

Univ.of Toronto Library

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

Physict.

THE ELECTRICAL CONDUCTIVITY, DISSOCIATION, AND TEMPERATURE COEFFICIENTS OF CONDUCTIVITY FROM ZERO TO SIXTY-FIVE DEGREES OF AQUEOUS SOLUTIONS OF A NUMBER OF SALTS AND ORGANIC ACIDS

BY HARRY C. JONES

PROFESSOR OF PHYSICAL CHEMISTRY IN THE JOHNS HOPKINS UNIVERSITY

The Experimental Work by

A. M. CLOVER
H. H. H. HOSFORD
S. F. HOWARD
C. A. JACOBSON
H. R. KREIDER
E. J. SHAEFFER
L. D. SMITH
A. SPRINGER, JR.
A. P. WEST
G. F. WHITE
E. P. WIGHTMAN
L. G. WINSTON

132419

WASHINGTON, D. C.
PUBLISHED BY THE CARNEGIE INSTITUTION OF WASHINGTON
1912

CARNEGIE INSTITUTION OF WASHINGTON Publication No. 170

PRESS OF GIBSON BROS. WASHINGTON, D. C.

CONTENTS.

PART I.

	PAGE.		8000
The Method	5	Ammonium Chromium Sulphate (Geren)	
Conductivity Cells	5	Ammonium Corner Sulphate (Legen)	35
Cell Constants	6	Ammonium Copper Sulphate	36
Call Constants at Higher Tonnerstone		Calcium Chloride	200
Cell Constants at Higher Temperatures.	7	Calcium Bromide	37
Solubility of Glass	7	Calcium Nitrate	27
Preparation of the Solutions	8	Calcium Chromate	26
Water	9	Calcium Formate	26
Baths	9	Strontium Chloride	20
Investigators Who Have Worked on the	open P	Strontium Bromide	219
Problem	11	Strontium Nitrate	60
The Results	11	Strontium Acetate	
Tithing Chloride	12	Strontium Acetate	60
Lithium Chloride		Barium Chloride	61
Lithium Bromide	12	Barium Bromide	41
Lithium Nitrate	13	Barium Nitrate	62
Lithium Sulphate	13	Barium Formate	62
Sodium Chloride	14	Barium Acetate	43
Sodium Bromide	14	Magnesium Chloride	63
Sodium Iodide	15	Magnesium Bromide	64
Sodium Nitrate	15	Magnesium Nitrate	66
Sodium Chlorate	16	Magnesium Sulphate	4.5
Sodium Perchlorate	16		45
		Magnesium Formate	
Sodium Sulphate	17	Magnesium Acetate	- 66
Sodium Carbonate	17	Zinc Nitrate	46
Sodium Acid Phosphate	18	Zine Sulphate	47
Sodium Ammonium Acid Phosphate	18	Zinc Acetate	47
Sodium Ferrocyanide	19	Cadmium Chloride	48
Sodium Tetraborate	19	Cadmium Bromide	48
Sodium Acetate	20	Cadmium Iodide	49
Potassium Chloride	20	Manganous Chloride	49
	21	Manganous Nitrate	50
Potassium Bromide	21		50
Potassium Iodide		Manganous Sulphate	
Potassium Nitrate	22	Nickel Chloride	51
Potassium Chlorate	22	Nickel Nitrate	51
Potassium Perchlorate	23	Nickel Sulphate	52
Potassium Sulphate	23	Nickel Acetate	52
Potassium Acid Sulphate	24	Cobalt Chloride	53
Potassium Carbonate	24	Cobalt Bromide	53
Potassium Acid Phosphate	25	Cobalt Nitrate	54
Potassium Phosphate	25	Cobalt Sulphate	54
Potassium Sodium Sulphate	26	Cobalt Acetate	55
Potassium Sodium Sulphate	26	Silver Nitrate	55
Potassium Nickel Sulphate		Cupric Chloride.	56
Potassium Chromium Sulphate (Violet).	21	Cupric Bromide	
Potassium Chromium Sulphate (Green).	27	Cupric Bromide	
Potassium Permanganate	28	Copper Nitrate	57
Potassium Chromate	28	Copper Sulphate	58
Potassium Dichromate	29	Lead Chloride	-
Potassium Ferrocyanide	29	Lead Nitrate	58
Potassium Aluminium Sulphate	30	Lead Acetate	59
Potassium Acetate	30	Aluminium Chloride	59
Potassium Sulphocyanate	31	Aluminium Nitrate	60
	31	Aluminium Sulphate	60
Ammonium Chloride	32	Ferrie Chloride	61
Ammonium Bromide		Parrie Vitento	
Tetraethylammonium Iodide	32	Ferric Nitrate	
Ammonium Nitrate	33		11
Ammonium Sulphate	33	Chromic Nitrate	- 200
Ammonium Acid Sulphate	34	Chromic Sulphate	00
Ammonium Aluminium Sulphate	34	Uranyl Chloride	63
Ammonium Chromium Sulphate (Violet)	35	Uranyl Nitrate	64
Ammondan Omoniam Carpinato (1010)			

PART I—CONTINUED.

	PAGE.		PAGE.
Uranyl Sulphate	64	Dissociation of the Various Salts	73
Uranyl Acetate	65	Temperature Coefficients of Conduc-	
TI de allerie Acid			
Hydrochloric Acid	65	tivity and the Solvate Theory of	
Nitric Acid	66	Solution	76
Sulphuric Acid	66	Substances with Slight Hydrating Power	77
DISCUSSION OF THE RESULTS	67	Substances with Large Hydreting Power	
		Substances with Large Hydrating Power	77
The Conductivity Measurements	67	Hydration and Ionic Volume	80
A Dehydrolytic Time Factor	69	Temperature Coefficients of Conduc-	
Molecular Conductivities	70	tivity in Per Cent	81
Molecular Conductivities		dividy in 1 ci Cent	01
	PART	TI	
	PART	11.	
Organic Acids	87 1	Phenylpropiolic Acid	115
	87	Maconia Asid	
Cell Constants		Meconic Acid	116
Dissociation of Organic Acids	87	Benzoic Acid	116
Values of μ_{∞} for the Sodium Salts of the	- 5 - 5	o-Chlorbenzoic Acid	117
Organic Acids	89	o-Nitrobenzoic Acid	117
Walnes of a for the Organic Acids	91		
Values of μ_{∞} for the Organic Acids		m-Nitrobenzoic Acid	118
Acetic Acid	93	p-Nitrobenzoic Acid	118
Dichloracetic Acid	93	1, 2, 4-Dinitrobenzoic Acid	119
Trichloracetic Acid	94	1, 3, 5-Dinitrobenzoic Acid	
			119
Cyanacetic Acid	94	Picric Acid	120
Phenylacetic Acid	95	Salicylic Acid	120
Propionic Acid	95	Salicylie Acid	121
α-Brompropionic Acid	96	Sulphosalicylic Acid	121
		outphosancy no rich	
β-Iodopropionic Acid	96	m-Hydroxybenzoic Acid	122
β-Acetylpropionic (Levulinic) Acid	97	p-Hydroxybenzoic Acid	122
n-Butyric Acid	97	1, 2, 4-Dihydroxybenzoic Acid	123
a-Brombutyric Acid	98	1, 2, 5-Dihydroxybenzoic Acid	123
T		G-11: A-: 1	
Isobutyrie Acid	98	Gallic Acid	124
Hydroxyisobutyric Acid	99	o-Aminobenzoic Acid	124
Isovaleric Acid	99	m-Aminobenzoic Acid	125
Caprylic Acid	100	p-Aminobenzoic Acid	
		p-Ammobelizote Acid	125
Malonic Acid	100	Metanilic Acid	126
Dimethylmalonic Acid	101	Sulphanilic Acid	126
Ethylmalonic Acid	101	Picramic Acid	127
Diethylmalonic Acid	102	p-Sulphaminobenzoic Acid	127
Mathalathalas lania Asid		D-surphammobelizote Acid	
Methylethylmalonic Acid	102	Benzenesulphonic Acid	128
Isopropylmalonic Acid	103	m-Nitrobenzenesulphonic Acid	128
Dipropylmalonic Acid	103	p-Toluenesulphonic Acid	129
Butylmalonic Acid	104	1, 2, 4-Nitrotoluenesulphonic Acid	129
	104		
Benzylmalonic Acid		1, 4, 2-Nitrotoluenesulphonic Acid	130
Allylmalonic Acid	105	o-Toluic Acid	130
Succinic Acid	105	m-Toluic Acid	131
Monobromsuccinic Acid	106	p-Toluic Acid	131
Dibromsuccinic Acid	106		
		Cinnamic Acid	132
Pyrotartaric Acid	107	Hydrocinnamic Acid	132
l-Tartaric Acid	107	o-Phthalic Acid	133
Racemic Acid	108	4, 5-Dichlorphthalic Acid	133
Thiodiglycolie Acid	108	Total chlombthelia Asid	
		Tetrachlorphthalic Acid	134
Tricarballylic Acid	109	Anisic Acid	134
Cyanuric Acid	109	Vanillic Acid	135
Diphenylglycolic (Benzilic) Acid	110	Naphthionic Acid	135
Hippuric Acid	110		
		Mandelic Acid	136
Uric Acid	111	Camphoric Acid	136
Citric Acid	111	Coumaric Acid	137
Pyromucic Acid	112	Discussion of the Results with the Or-	and the same of th
	112		197
Crotonic Acid		ganic Acids	137
Maleic Acid	113	Dissociation of Organic Acids	139
Fumaric Acid	113	The Dissociation Constants	140
Itaconic Acid	114	Temperature Coefficients in Conductiv-	
Citraconic Acid	114		141
Magazania Asid		ity Units	
Mesaconic Acid	115	Temperature Coefficients in Per Cent	143

PART I.-SALTS.

THE EXPERIMENTAL WORK IN PART FIRST WAS CARRIED OUT BY DOCTORS CLOVER, HOSFORD, HOWARD, JACOBSON, SHAEFFER, WEST, AND WINSTON.

This study of the conductivity and dissociation of electrolytes, and of the temperature coefficients of conductivity, was begun eleven years ago in connection with the solvate theory of solution, which had been proposed in this laboratory shortly before that time. Certain relations of interest, and I hope of some importance, between the temperature coefficients of conductivity and the magnitude of the hydration of the dissolved salt were pointed out.

The work, thus begun, was continued especially for the following reason: When reference was made to the literature for the conductivity of any electrolyte at any given temperature, and for the temperature coefficients of conductivity, we were frequently unable to find what was desired; or, if found, the data were often so discordant that it was impossible to decide what were the true conductivities and dissociations in question.

Since the magnitude of the dissociation of any electrolyte is fundamental to its scientific use in chemistry, it seemed desirable that such data should be made available over the range of temperature most frequently used in the laboratory. With this idea in mind the work has now been continued here until it represents more than twenty years' continuous labor for one man, about 40,000 conductivity measurements having been made. Every one of the investigators has worked from one to two years on the problem, and Doctors Springer, West, and Wightman have each continued their investigations between two and three years.

The result is, that the conductivities and dissociations of about 110 of the more common salts have been worked out from zero to sixty-five degrees, and over a range in dilution extending from about the most concentrated solution that could be used to the dilution of complete dissociation. The temperature coefficients of conductivity have been calculated in both conductivity units and percentages. Moreover, similar data have been obtained for about 90 of the more common organic acids, and their constants have been calculated by means of the Ostwald dilution law.

It is hoped that this work, which has consumed much of the best energy of my laboratory for several years past, may prove to be of some value to other investigators in the field of general or physical chemistry.

HARRY C. JONES.

INTRODUCTION.

THE METHOD.

The method of measuring the conductivity of the solutions, employed throughout this work, was essentially that of Kohlrausch. The bridge used in most of the work was the latest improved form made by Leeds and Northrup, consisting of a manganine wire between 4 and 5 meters long, wound around a marble cylinder. The wire was calibrated by the method of Strouhal and Barus.*

The resistance coils were standardized against a rheostat which had been corrected by the United States Bureau of Standards. A number of forms of telephone receivers were tried, and finally a sensitive form furnished by Leeds and Northrup was adopted. The very satisfactory inductoria were also made by Leeds and Northrup.

Three separate readings on the bridge were made for each solution at each temperature, different resistances being, of course, used for each reading. The average of the conductivities obtained by these measurements, which differed only slightly from one another, was taken as the true conductivity of the solution. The measuring flasks and burettes used in this work were generally calibrated by the method of Morse and Blalock.† For the work from 0° to 35° the measuring apparatus was all calibrated at 20°, and the results at lower and higher temperatures multiplied by the proper factor. For the work from 35° to 65° the measuring apparatus was usually calibrated at 50°, and the proper correction inserted into the results at the lower and higher temperatures.

The conductivities are all expressed in terms of potassium chloride solutions which were used for standardizing the cells.

CONDUCTIVITY CELLS.

The form of cell used in this work is shown in fig. 1. The glass tubes carrying the electrodes are sealed firmly into the tops and bottoms of the ground-glass stoppers, and these tubes are sealed down tightly on to the platinum plates serving as electrodes. The plates are thus held firmly in position, and the distance apart is fixed for any given cell.

In making a series of readings at any given temperature, as many cells were used as there were solutions of different concentrations of the salt in question to be measured. Eight such cells constituted a set, and the distances between the plates and the sizes of the plates were adapted to the concentrations to be studied.

The conductivity of the water was determined in a cell especially constructed for this purpose. It consisted of two concentric platinum cylinders, about 1 mm. apart and 6 cm. long, shown in fig. 2. Glass tubes carrying platinum wires were sealed down on to the tops of these cylinders. These glass tubes were firmly sealed into the top and bottom of the ground-glass stopper.

The cells were generally covered with a little platinum black, to increase the sharpness of the minimum in the reading on the bridge. The cylindrical type of cell, however, was never blackened.

The platinum plates used as electrodes were cut from sheet platinum about 1 mm. thick. The relatively thick plates were much less liable to bend and change the constant after it was once determined.

CELL CONSTANTS.

The cell constants were determined with standard solutions of potassium chloride whose molecular conductivity at 25° was determined with a high degree of accuracy. The cells to be used with the more concentrated solutions, and whose plates were therefore most widely apart, were all standardized with a n/50 solution of potassium

chloride. The cells to be used with the more dilute solutions were all standardized with a n/500 solution of the same salt, while the cylindrical cells were standardized with a n/2000 solution of potassium chloride. The solutions of potassium chloride of different concentrations were used for the different cells, in order that the resistance to be thrown into the rheostat would be of the order of magnitude to give a sharp reading on the bridge.

The cell constants in every set of cells used in this work were redetermined once or twice a month during the entire time that this series of investigations was in progress. With reasonably careful handling the constant of any cell underwent very small change during an entire year's work.

When the cells were used over the temperature range 35° to 65°, certain precautions were necessary in connection with the constants. It was found that at these

higher temperatures a strain seemed to develop in the cells unless they were kept at a fairly uniform temperature. This resulted in a small change in the cell constants, due either to a change in the distance between the plates or in the surfaces of the plates themselves. Errors would be introduced, especially in the case of those cells whose plates were close together—which had small cell constants.

Since such a variation as that referred to above had not previously been observed over the temperature range 0° to 35°, it was thought that the changes in the cell might be reduced to a minimum by keeping the cells at a temperature which was about the mean of those employed in the experimental work. Accordingly, the cells, when not in use, were filled with pure water and placed in a bath which was maintained continuously at a temperature of from 45° to 50°.

To test the accuracy of the procedure adopted the following experiments were carried out. The conductivities of several different substances at the three dilutions, 5, 1024, and 2048 liters were measured in the cells ordinarily used for solutions of these concentrations. The measurements were first carefully made at 35°, then the solutions warmed to 65° and their conductivities determined. The solutions were then cooled down to 35° and their conductivities redetermined. If the conductivities found the second time at 35° agreed with those initially found at this temperature, it would be some evidence as to the reliability of the method used. In about half the cases the two sets of measurements at 35° agreed very satisfactorily, In the other half, the second readings differed slightly from the first, and the difference seemed to be independent of the cell employed or the concentration of the solution used.

In all of those cases where any difference was detected between the initial and final conductivities at 35°, this difference always disappeared entirely on allowing the cells to stand at 35° for two or three hours. This showed that any slight change that the cell might have undergone at the higher temperature disappeared when the cell was kept for a time at the lower temperature.

SOLUBILITY OF GLASS.

In conductivity work at ordinary temperatures this factor has always been neglected and probably is not sufficiently large to influence the results, even with very dilute solutions. However, at 50° the error introduced by this factor at a dilution of 1000 is greater than any of the other ordinary experimental errors. At 65° the solubility of the glass is still greater, and at 80° the conductivity of pure water is increased tenfold on remaining in the cell for a couple of hours. In this connection it may be stated that the cells employed were made of hard glass. Of course, the amount of glass dissolved depends upon the exact nature of the latter, and was found to vary considerably with the different cells used, and at different intervals in the case of any one cell. The idea of introducing a correction for the solubility of the glass was abandoned, but the difficulty was overcome in another way. It was found that after the cells had been heated with water, acid, and alkali for several days, the amount of glass dissolved gradually decreased and finally amounted to practically nothing. After this treatment, as the cells were kept in a bath at 45° to 50° and the water in them changed once a day, the solubility of the glass at 65°

was always negligible. It is quite certain that for cups made and treated as above described the solubility of the glass does not stand in the way of accurate work up to 65°.

Since the solubility of glass increases very rapidly with the temperature above 65°, it was decided not to carry these measurements of conductivity to a temperature higher than 65°.

PREPARATION OF THE SOLUTIONS.

All of the substances used were obtained from Kahlbaum. These were purified by the method best adapted to each substance, and the purity of the compound tested in every case.

Whenever the nature of the compound permitted, the mother solution was prepared by directly weighing out the amount of the pure compound desired. In other cases the mother solution was standardized by the best gravimetric method available for that purpose. In the case of the organic acids the mother solution was frequently standardized by titration against a standard solution of an alkali.

Two sets of solutions of every compound were prepared—the one to be used for measurements from 0° to 35°, and the other set to be studied from 35° to 65°. The solutions to be used over the temperature range 0° to 35° were made up at 20°, and those solutions to be measured from 35° to 65° were generally made up at 50°, in vessels calibrated for 20° and 50° respectively. Since the coefficient of expansion of water increases greatly with the temperature, it is necessary to apply the proper correction to the conductivities of solutions taken at 35° and 65°, when the solutions were made up at 50°.

When a standard solution is cooled from 50° to 35° there is a contraction in volume and a consequent increase in the concentration of the solution. The value of μ_{v} for any solution would, therefore, be slightly too large. The value of μ_{v} as found must be multiplied by the factor 0.994 for results at 35° when the solutions were made up at 50° . The correction factor for solutions made up at 50° and used at 65° is 1.0076.

The coefficient of expansion for distilled water is somewhat less than that for an aqueous solution. However, the difference in the coefficients for water and for our most concentrated solution is so small that it is negligible.

By making use of the above correction it was necessary to prepare only one set of solutions for each salt for the temperature range, 35° to 65°; and, consequently, much pure material and time were saved.

By preparing one set of solutions to be used from 0° to 35°, and another set of solutions from entirely new material for use from 35° to 65°, we had a test of the purity of the material used, the proper standardization of the solutions, and the correctness of the conductivity values herein given. The two sets of solutions were both measured at 35°, and when discrepancies in the two sets of results, of appreciable order of magnitude, manifested themselves; as was inevitable in some cases where about 40,000 measurements were made, the work was repeated over the higher range in temperature, or over the lower range in temperature, or over the entire temperature range.

From these two mother solutions all of the more dilute solutions were prepared, directly or indirectly, using carefully calibrated flasks and burettes.

WATER.

All of the water used in this work was purified by the method worked out a number of years ago in this laboratory by Jones and Mackay.* It consisted in distilling the distilled water of the laboratory from chromic acid (potassium dichromate and sulphuric acid), which burned up any organic matter present in the water, and then redistilling the water from barium hydroxide. The sulphuric acid held back all ammonia formed from the organic substances, while the barium hydroxide combined all the carbon dioxide formed from the oxidation of the organic matter by the chromic acid.

When the water was distilled from barium hydroxide, it was distilled first from a Jena glass balloon-flask and the vapor conducted into a retort also containing a little of the hydroxide. The water-vapor after leaving the retort was condensed in a tube of block-tin. By this means 10 to 15 liters of water could be obtained daily, having a conductivity of from 0.8 to 1.0×10^{-6} at zero.

BATHS.

The baths used for obtaining the various temperatures were constructed as follows. The zero bath is shown in fig. 3. The bottom of the bath into which the cells were plunged was filled with finely powdered ice moistened with a little pure water. The air above the cells was kept at very nearly zero by suspending just above the cells a pan filled with finely crushed ice moistened with pure water. In this way the solutions whose conductivities were to be measured at zero were kept to within 0.01 to 0.02 of zero.

^{*}Amer. Chem. Journ., 19, 91 (1897).

The second temperature at which the conductivity measurements were made was at first taken as that of the hydrant water. A reasonably constant temperature could be obtained by allowing a rapid stream of hydrant water to flow through a large vessel of water. This was soon abandoned and a temperature of 10°, 12.5° or 15° was obtained as follows: A stream of hydrant water was allowed to flow through a large tub of water, which was warmed by a small flame placed beneath, and the temperature was regulated by the thermoregulator described by Reid.*

The higher temperatures, 25°, 35°, 50° and 65° were obtained as follows: The water-bath used had the form shown in fig. 4. It consisted of a double-walled

metal tub, the outer walls being 18 inches apart and the inner tub being 14 inches in diameter. The space between the two walls was filled with asbestos cement. which is a very poor conductor of heat. The inner vessel was filled with water, heated by a flame placed beneath and regulated by a thermoregulator. The top of the bath was covered with a neatly fitting piece of asbestos board. It was possible to keep any one of these baths to within 0.02° to 0.03° of the temperature desired. When working over the higher range in temperature the cells were kept over night in the 50° bath.

^{*}Amer. Chem. Journ., 41, 148 (1909).

INVESTIGATORS WHO HAVE WORKED ON THE PROBLEM.

The work recorded in this monograph has been done by twelve investigators, who have worked from one to nearly three years each upon the problem. Drs. Clover, Hosford, Howard, Kreider, Smith, and Winston worked one year each. Drs. Jacobson, Shaeffer, and Wight worked two years each, while Drs. Springer, West, and Wightman worked between two and three years each.

The following abbreviations are used after the name of the compound to show by whom the work in question was done; the first abbreviation referring to the investigator who worked over the range in temperature 0° to 35°, and the second abbreviation referring to the one who worked over the temperature range 35° to 65°. In a number of cases the same experimenter studied a given salt over both ranges in temperature. In these cases there is, of course, only one abbreviation.

C = Clover	J = Jacobson	Sm = Smith	Wt = Wight
H = Hosford	K = Kreider	Sp=Springer	Wm = Wightman
Hw = Howard	Sh=Shaeffer	W = West	Ws=Winston

THE RESULTS.

The volume of the solution, or the number of liters, that contain a gram-molecular weight of the electrolyte, is expressed by v. The molecular conductivity calculated by the equation $\mu_v = \frac{cva}{wb}$ is expressed by μ_v at the temperature in question; c being the constant of the cell, V the volume of the solution, a the reading on the arm of the bridge next to the rheostat, w the resistance in the box, and b the other arm of the bridge.

The percentage dissociation, represented by a, is calculated from the equation $a = \frac{\mu_v}{\mu_{\infty}}$, μ_v being the molecular conductivity at the volume v, and μ_{∞} the molecular conductivity at complete dissociation.

The temperature coefficients are expressed both in "conductivity units" and in "per cent." The coefficients in "conductivity units" are calculated thus—

Coefficient =
$$\frac{\mu_v t_1 - \mu_v t}{t_1 - t}$$

where t_1 is the higher temperature and t the lower temperature. The coefficient in "per cent" is calculated by dividing the coefficient in "conductivity units" by $\mu_* t$, i. e., by the molecular conductivity at the lower temperature.

The values of α for some of the salts are not given. This is the case with those salts for which the value of μ_{∞} was not nearly reached at the highest dilution used in this work. Such salts are nearly always strongly hydrolyzed by water, and this is the chief reason why the maximum molecular conductivity was not obtained at the highest dilutions employed. In such cases it is not possible to calculate even the approximate dissociation.

]	LITHIU	лм С	HLOR	IDE (J	. AND (C.).		LITHIU	JM BR	OMIDI	E (J.	AND W	.).
		Molec	ular C	Conducti	vity.			1	Molecul	ar Con	ductii	rity.	
v	$\mu_v 0^\circ$	$\mu_v 11.2$	2° μο	25° $\mu_v 3$	5° μ _v 50°	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	μ _v 9.3°	$\mu_v 25^\circ$	$\mu_v 35$	5° μ _υ 50°	$\mu_v 65^\circ$
2 8 16 32 128 512 1024 2048	41.33 47.27 49.20 51.11 53.96 55.55 56.08 57.34	55.2 64.1 67.3 69.9 73.9 77.5 77.6 78.6	8 88. 3 92. 11 96. 2 101 2 106 2 107	.41 107 .89 112 .24 116 1.5 124 3.3 128 7.2 130	.2 136.7 .3	7 167.7 8 185.6 8 199.0 2 205.3 5 208.3	32 128 512 1024	56.57 57.44 57.97	55.94 63.42 66.75 68.77 73.70 75.06 75.99	78.52 89.78 95.03 98.66 106.7 108.2 109.9	109 114 119 128 130 133	137.0 5 139.3 9 5 150.7 6 160.0 6 169.7	186.4 198.0 213.0
	I	Porcon	age D	Pissociat	ion	1	2048	61.05	80.68 Percenta		8 138	-	216.1
	1	,				1		1	i	1	1	1	1
v	a0°	a11.5	2° a2	5° a35	6° a50°	a65°	v	a0°	a9.3°	a25°	a 35	° a50°	a65°
2 8 16 32 128 512 1024 2048	82.4 85.8 89.1 94.1 96.9 97.8	81 81 85 85 88 94 94 97 88 98 98 98 8	6 80 6 85 9 87 0 91 0 96 7 97	8.7 69 0.1 81 5.1 7.2 88 1.9 93 6.6 97 7.1 98 0.0 100	.1 80.6 .3 88.4 .9 94.6 .3 97.8 .6 98.8	79.6 88.1 94.5 97.5 98.9	2 4 8 16 32 128 512 1024	81.6 84.4	69.3 78.6 82.7 85.2 91.4 93.0 94.2	78.2 82.8 85.9 92.9 94.3 95.7	79. 83. 86. 93. 94.	79.0 2 80.4 1 4 87.0 0 92.3 4 97.7	77.9 78.8 86.3 91.6
Tem ₁	peratur			s in Con	ductivity	Units. 50-65°	Temp	perature			n Con 5–35°	ductivity	Units
	-	_									_	55-50	50-05
2 8 16 32 128 512 1024 2048	1.0 1.0 1.0 1.0 1.0 1.0	51 62 68 79 90	1.49 1.75 1.85 1.91 2.00 2.08 2.15 2.28	1.65 1.88 1.94 2.04 2.26 2.23 2.30 2.35	1.69 1.97 2.21 2.35 2.44 2.49 2.49	1.76 2.07 2.39 2.65 2.67 2.72 2.74	2 4 8 16 32 128 512 1024 2048	1.1 1.4 1.6 1.6 1.8 1.8 1.9 2.3	6 1 3 1 8 1 4 2 9 2 4 2	.67 .80 .90 .10	1.75 1.97 1.99 2.08 2.19 2.24 2.34 2.35	1.99 2.08 2.10 2.61	2.09 2.07 2.38 2.53 2.93
	Temper	rature	Coeffi	cients in	Per Cer	nt.		Temper	ature C	oefficie	nts in	Per Cei	nt.
v	0-11.	2° 11	.2-25°	25-35°	35–50°	50-65°	v	0-9.3	° 9.3-	25° 2	5–35°	35-50°	50-65°
2 8 16 32 128 512 1024	3.4 3.3 3.3	11 39 29 32 42	2.69 2.72 2.75 2.73 2.70 2.69 2.77	2.18 2.13 2.09 2.12 2.23 2.09 2.15	1.83 1.84 1.89 1.89 1.90 1.91	1.50 1.51 1.60 1.66 1.62 1.62	2 4 8 16 32 128 512	2.6 2.9 3.1 3.1 3.2 3.2	$egin{array}{c cccc} & & & & & & \\ 3 & & 2 & & & \\ 6 & & 2 & & & \\ 5 & & 2 & & & \\ \end{array}$.63 .70 .91 .85	2.23 2.19 2.09 2.11 2.05 2.07	1.82 1.74 1.63 2.00	1.52 1.49 1.58 1.58 1.72
	0.	144	2.90	2.13	1.88	1.62	1024	3.3			2.13	2.00	1.12

Li	THIUM	a Nit	RATE	(J. A	ND W	.)	Lı	THIU	u Sui	PHAT	E (J.	AND V	W.)
	1	Molecu	lar Co	nductiv	ity.			λ	lolecul	ar Co	nductivi	ity.	
v	μ _ε 0°	μ,10°	μ ₀ 25°	μ,35°	μ,50°	μ,65°	v	μ ₁ 0°	μ.9.6°	μ,25	° µ _e 35	° μ _ν 50°	μ,65
2 4 8 16 32 128 512 1024 2048	38.65 43.83 45.96 47.27 51.05 51.53 52.00 52.40	52.29 57.79 60.32 62.51 66.88 68.07 69.47 70.01	70.56 79.71 84.16 87.39 93.29 96.03 98.01 100.03	96.98 100.9 105.1 112.9 115.6 117.8	119.6 128.6 1138.2 1138.2 150.1 154.2 160.3	157.7 170.1 184.9 192.4 197.8	2 4 8 16 32 128 512 1024 2048	66.74 75.50 82.15 96.81 104.6 108.1		128 144 159 188 202 211	4 154. 5 175. 3 194. 5 230. 8 248. 4 258.	168.8 9 197.3 3 0 245.7 3 290.5 3 324.3	207 . 242 . 301 . 302 . 405 . 425
	P	ercento	ige Dis	ssociati	ion.			F	ercente	ige Di	issociat	ion.	
v	a0°	a10°	a25°	a35°	a50°	a65°	v	a0°	a9.6°	a25	° a35	a50°	a65°
2 4 8 16 32 128 512 1024 2048	73.8 83.6 97.7 90.2 97.4 98.3 99.2 100.0	74.7 82.5 86.2 98.3 95.5 97.2 99.2 100.0	79.4 83.9 87.1 93.0 95.7 97.7 100.0	80.5 9 83.4 1 86.9 92.7 95.1	74.6 2 80.2 4 9 86.2 7 93.6 5 96.2 4 100.0	74.0 79.7 86.0 93.5	2 4 8 16 32 128 512 1024 2048	59.7 67.5 73.5 86.6 93.8 96.7 100.0	74.0 87.2 94.0 97.2	58. 65. 72. 85. 92. 96.	5 57. 8 65. 6 72. 9 85. 4 92. 3 96.	49.8 8 58.2 4 72.5 9 85.7 7 95.7	48. 56. 70. 84. 94. 98.
Temp					luctivity							ductivity	
	2 1.4 8 1.4 2 1.4 4 1.	26 1 40 1 44 1 52 1 58 1 65 1 75 1	25° 2 .35 .46 .59 .66 .76 .86 .90 .02	1.64 1.67 1.70	35-50°	1.48 1.94 2.13 2.32 2.55 2.50	1	2 1. 4 8 2. 6 2. 2 2. 8 3. 2 3. 4 3.	23 2 57 2 85 3 35 3 59 4 72 4	-25° (68) -68 -25 -88 -23 -86 -14 -39 -64	2.65 3.08 3.47 4.18 4.55 4.74 4.85	35-50° 2.83 3.45 4.01 5.07 5.17 5.38	2.60 3.00 3.74 4.78 5.38 5.98 6.14
7	Cemper	ature C	oeffici	ents in	Per Cer	nt.	7	Cemper	ature (oeffic	ients in	Per Cer	nt.
v	0-1	0° 10-	·25° 2	5-35°	35–50°	50-65°	v	0-9	.6° 9.6	5-25°	25–35°	35-50°	50-65
	2 3. 8 3. 2 3. 4 3.	19 2 13 2 22 2 10 2 20 2 36 2	.58 .53 .64 .67 .63 .73 .73	2.09 2.02 2.03 2.03 2.04	2.09	1.48 1.51 1.54 1.53 1.65 1.56 1.81	1	4 8 3. 6 3. 2 3. 8 3. 2 3. 4 3.	34 2 37 2 47 2 46 2 43 2 41 3	2.71 2.55 2.87 2.96 2.99 2.98 3.05 3.15	2.00 2.06 2.13 2.18 2.22 2.25 2.24 2.21	1.83 1.78 1.74 2.04 2.00 2.09	1.54 1.52 1.64 1.66 1.77

S	ODIUM	Сньс	RIDE	(Sн.	AND	C.).	S	ODIUN	M Brow	MIDE	(W. A	ND C	.).
		Molecul	ar Cor	rductiv	ity.	-			Molecule	ar Con	ductivit	y.	
v	$\mu_v 0^\circ$	μ _ν 12.5°	$\mu_v 25^\circ$	$\mu_v 35$	$^{\circ}$ $\mu_v 50^{\circ}$	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	μ _v 11.8°	$\mu_v 25^{\circ}$	μ ₀ 35°	μ _ν 50°	$\mu_v 65^{\circ}$
2 8 32 128 512 1024 2048 4096	48.1 53.5 57.5 60.4 62.3 61.6 62.2 62.6	66.4 74.7 80.6 84.9 87.8 86.9 88.0 88.3	86.8 98.8 106.8 112.6 116.4 115.4 116.8 117.0	5 118. 3 129. 5 136. 4 141. 4 140. 8 140.	5 150.5 5 164.3 3 175.4 2 181.1 0 183.2 9 184.7	184.5 201.0 214.7 222.9 225.5	2 8 16 32 128 512 1024 2048	51.46 55.36 57.35 58.79 61.23 63.02 64.48	69.24 75.26 78.17 80.03 84.35 87.17	100.3 105.1 107.7	129.1 136.7 140.5 141.4	131.1 151.4 164.5 174.6 180.1 180.9 182.0	162.6 184.1 201.0 212.6 219.5 222.8 227.0
		Percent	age Di	ssocia	tion.				Percenta	ge Dis	sociatio	n.	1
v	a0°	a12.5°	a25°	α35	° a50°	a65°	v	a0°	a11.8°	α25°	a35°	a50°	a65°
2 8 32 128 512 1024 2048 4096	77.2 85.8 92.4 96.9 100.0 98.9 100.0 100.0	76.8 85.3 91.8 96.7 100.0 98.9 100.0	74.3 84.6 91.7 96.6 100.0 99.1 100.0	83. 91. 96. 100. 199. 100. 100.	9 81.5 6 89.0 5 95.0 0 98.0 1 99.2 0 100.0	80.7 88.0 94.0 97.5 98.7 100.0	2 8 16 32 128 512 1024 2048	79.8 85.9 88.9 91.2 95.0 97.7	77.5 84.2 87.5 89.6 94.4 97.6		1	72.0 83.2 90.4 95.9 98.9 99.4 100.0	71.6 81.1 88.5 93.7 96.7 98.2 100.0
T'em v	0-12.				35–50°	Units. 50–65°	Temp	0-11.	8° 11 8		6-35° 3		Units. 50-65°
2 8 32 128 512 1024 2048 4096	1.4	19 1 39 1 34 2 96 2 94 2 92 2 95 2	.60 .89 .09 .21 .28 .28 .30 .32	1.77 2.00 2.27 2.37 2.48 2.46 2.41 2.38	1.89 2.13 2.32 2.61 2.66 2.88 2.92	1.95 2.27 2.45 2.62 2.79 2.82 2.92	2 8 16 32 128 512 1024 2048	1. 1. 1. 1. 1. 2. 2.	50 1 69 1 76 2 80 2 96 2 04 2	.72 .90 .04 .10	1.89 2.14 2.34 2.37	1.66 2.15 2.36 2.53 2.64 2.63 2.65	2.10 2.18 2.43 2.53 2.63 2.79 3.00
	Temper	rature C	oefficie	ents in	Per Cer	nt.		Гетрег	rature C	oefficie	nts in I	Per Cen	ıt.
v	0-12.	5° 12.5-	-25° 2	5–35°	35–50°	50–65°	v	0-11.	8° 11.8-	-25° 25	-35° 3	5-50°	50–65°
2 8 32 128 512 1024 2048 4096	3.1 3.1 3.2 3.2 3.2 3.2 3.2 3.2	15 2 24 2 24 2 27 2 27 2 28 2	.41 .41 .59 .60 .59 .60 .59	2.04 2.03 2.03 2.11 2.12 2.13 2.06 2.02	1.81 1.80 1.79 1.92 1.88 2.06 2.07	1.47 1.51 1.49 1.49 1.54 1.54	2 8 16 32 128 512 1024 2048	2.9 3.0 3.0 3.0 3.0 3.0 3.0	05 2 07 2 06 2 20 2 24 2	.61 .62	1.88 1.99 2.07 2.03	1.56 1.80 1.83 1.85 1.88 1.86 1.86	1.60 1.44 1.48 1.45 1.46 1.54 1.65

	So	DIUM	Iodid	E (V	V.).		Son	DIUM]	NITRA:	ге (Ј	. AND C	.).
	A	lolecul	ar Con	luctivi	ity.			Mol	ecular C	onduc	tivity.	
v	μ ₀ 0°	μ _v 16°	μ ₀ 25°	μ,35	μ,50°	μ.65°	v	μ ₀ 0°	μ _ε 25°	μ,35	s° μ _ν 50°	μ _ν 65°
2 4 8 16 32 128 512 1024 2048	51.90 55.26 57.03 58.62 60.97 61.81 63.14 64.15	83.52 86.36 89.02 93.20 94.91 96.28 98.40	104.2 107.4 112.5 114.7	111.6 115.8 121.6 125.8 130.6 136.8 139.3 141.8	9 146.2 5 152.6 8 6 163.4 8 173.2 8 180.6 8 187.0	187.5 200.2 213.2	2 8 16 32 128 512 1024 2048	43 .34 50 .27 52 .57 55 .38 59 .28 59 .34 59 .39 59 .93	78.1 90.9 97.5 101.3 107.7 111.3 114.0 116.6	91. 111. 117. 122. 128. 134. 138. 141.	3 141.1 5 5 155.7 9 164.8 8 171.0 5 173.0	146.0 171.4 189.0 201.3 209.6 213.2 213.2
	P	ercenta	ge Dis	sociati	on.			Perc	entage i	Dissoc	iation.	
v	a0°	a16°	a25°	a35°	a50°	a65°	v	a0°	a25°	a35	° a50°	a65°
2 4 8 16 32 128 512 1024 2048	80.5 85.7 88.4 90.9 94.5 95.8 97.9 100.0	78.5 84.9 87.8 90.5 94.7 96.5 97.8 100.0	77.9 84.3 87.5 90.2 94.5 96.3 97.7 100.0	77.3 84.2 87.1 90.4 94.7 96.4 98.1	78.2 81.6 1 87.4 7 92.6 4 96.6 1 100.0	80.1 85.5 91.1 94.8	2 8 16 32 128 512 1024 2048	72.3 83.9 86.1 92.4 98.9 99.0 99.8 100.0	67.0 77.9 83.6 86.9 92.3 95.5 97.8 100.0	65. 78. 83. 86. 91. 95. 98.	9 80.5 3 9 88.9 4 94.1 6 97.6 2 98.8	68.5 80.4 88.6 94.4 98.3 100.0 100.0
Temp	erature				luctivity		Tempero	ature Co		s in C	onductivit	y Units. 50–65°
	$egin{array}{c ccc} 2 & 1.9 \\ 8 & 2.0 \\ 2 & 2.0 \\ 4 & 2.0 \\ \hline \end{array}$	77 1 33 1 90 2 91 2 97 2 97 2	88 98 04 14 20 24	2.12 2.16 2.32 2.43 2.46 2.54 2.54	2.02 2.13 2.19 2.43 2.75 3.01	2.19 2.33 2.46 2.67 2.76 3.14	2 8 16 32 128 512 1024 2048	1. 1. 1. 1. 2. 2.	39 62 79 83 94 08 18 27	1.36 2.04 2.00 2.12 2.12 2.35 2.45 2.44	1.89 1.99 2.21 2.39 2.40 2.30 2.28	1.73 2.02 2.22 2.43 2.57 2.67 2.53
T	'empero	iture C	oefficie	nts in	Per Cer	nt.	Ten	nperatu	re Coeffi	cients	in Per Ce	ent.
v	0-16	3° 16-	25° 25	-35°	35-50°	50–65°	v	0-25	° 25	-35°	35-50°	50-65°
	$egin{array}{c cccc} 2 & 3.2 \\ 8 & 3.3 \\ 2 & 3.3 \\ 4 & 3.2 \\ \end{array}$	20 2 21 2. 24 2. 30 2. 35 2. 28 2.	25 29 29 29 30 2 32 2 33 2 3	2.03 . 2.11 2.07 . 2.16 2.16 2.14 2.18 2.13 .	1.74 1.75 1.68 1.78 1.98 2.12	1.49 1.52 1.50 1.54 1.53 1.67	2 8 16 32 128 512 1024 2048	3. 3. 3. 3.	22 41 30 27	1.74 2.24 2.44 2.05 1.94 2.11 2.15 2.09	2.06 1.79 1.80 1.86 1.78 1.56 1.62	1.44 1.43 1.47 1.50 1.54 1.44

	Sor	oium C	HI OP	A PENEZ ((Su)			Sor	TIM DE	RCHLORA	me (Cv	- \
		nom C	HLUN	AIL ((DH.).			501	JIUM I E	RCHLORA	TTE (SH	1.).
		Molecul	ar Con	ductivi	ity.				Molecul	ar Conduc	tivity.	
v	$\mu_v 0^\circ$	μ _v 12.5°	$\mu_v 25^\circ$	$\mu_v 35$	$ \mu_v 50^\circ $	$\mu_v 65^{\circ}$	ı		$\mu_v 0^\circ$	μ _ν 12-5°	μ _v 25°	μ,35°
2 8 32 128 512 1024 2048	41.6 47.4 51.7 54.7 56.0 56.2 56.1	57.5 66.1 72.4 76.9 78.9 79.0 78.8	74.7 86.7 95.0 101.1 104.6 104.1 104.1	122.5	132.1 2 151.6 5 158.4 0 165.2 3 167.8	186.3 198.7 2 204.4 3 211.3	1	8 32 128 512 024	49.4 53.2 56.6 57.0 56.8	68.9 74.5 79.2 80.0 79.7	90.2 98.3 104.1 105.7 105.4	108.0 118.1 126.2 127.8 127.8
		Percenta	ge Dis	sociati	on.				Percente	ige Dissoc	iation.	
v	a0°	a12.5°	a25°	a35°	a50°	a65°	v		a0°	a12.5°	a25°	a35°
2 8 32 128 512 1024 2048	74.0 84.3 91.9 97.3 99.8 100.0 99.7	72.8 83.6 91.6 97.3 100.0 100.0 99.7	71.4 82.9 90.8 96.6 100.0	70.8 81.4 90.7 96.4 100.0	78.5 90.0 94.1	88.1 94.0 96.7 100.0	1	8 32 128 512 024	88.4 93.3 99.3 100.0 99.6	86.2 93.1 99.0 100.0 99.6	84.5 93.0 98.5 100.0 99.7	84.5 92.4 98.7 99.9 100.0
Temp	erature	e Coeffic	ients in	Cond	uctivity	Units.	Tem	peratu	ire Coeffic	ients in Co	onductivii	y Units.
v	0-12	.5° 12.5-	·25° 25	-35°	35–50°	50-65°		v	0-12.5	12.5	5-25°	25-35°
32 128 512 1024 2048	1.8 1.6 1.7 2 1.8 1.8	50 1. 56 1. 78 1. 33 2. 32 2.	66 180 294 2	1.53 1.77 2.02 2.14 2.36 2.22 2.17	1.85 2.43 2.40 2.55 2.77 2.83	2.15 2.31 2.69 2.61 2.90 2.72		8 32 128 512 1024	1 1 1 1 1	70 81 84	1.70 1.89 1.99 2.05 2.06	1.78 1.98 2.21 2.21 2.24
2	Temper	ature Co	efficier	its in	Per Cer	ıt.		Temp	perature C	oefficients	in Per C	ent.
v	0-12	.5 12.5-	25° 25	-35°	35-50°	50-65°	1	D	0-12.5	12.5	-25°	25-35°
2 8 32 128 512 1024 2048	3.1 3.2 3.2 3.2 3.2 3.2 3.2	2 2. 21 2. 25 2. 26 2. 24 2.	41 2 49 2 53 2 64 2 54 2	2.04 . 2.05 2.12 2.12 2.25 2.13 2.09	1.82 2.12 1.96 2.01 2.19 2.25	1.62 1.52 1.69 1.58 1.78 1.62		8 32 128 512 1024	3.3.3.3.3.3.3.1	20 20 22	2.47 2.54 2.52 2.56 2.57	2.00 2.01 2.12 2.09 2.12

So	DIUM	SULPH	ATE	(Ws.	AND (C.).		Son	IUM C	ARBO	NATE	(W.).	
		Molecul	ar Con	ductiv	ity.				Molecu	lar Co	nductie	rity.	~
v	$\mu_v 0^\circ$	μ.12.5°	μ.25°	$\mu_v 35$	° µv50°	μι65°	v	μ.0°	$\mu_{\rm t}15.3^{\circ}$	μ,25	μ.35	° µ.50°	μ.65°
128 512 1024 2048	78.51 94.51 107.54 117.46 119.65 125.95	97.54 111.46 132.72 152.49 166.24 169.61 176.08 181.61	146 . 40 176 . 76 203 . 10 221 . 21 226 . 34 235 . 35	0178.2 0215.1 0247.0 0269.5 0276.9 0287.0	4 221.8 9 262.2 2 320.4 0 353.2 2 372.6	274.3 337.2 399.0 437.9	2 4 8 16 32 128 512 1024	50.90 70.70 79.75 87.28 99.16 105.8 110.8	78.94 109.1 123.8 134.7 155.4 166.9 173.9	137 .8 155 .4 170 .8 197 .9 209 .6 218 .1	145 168 3 209 241 5 258	5 219 6 0 272 1	343 4 403.3 424.7
		Percen	tage D	issocia	tion.				Percenta	ge Dis	sociali	on.	
v	a0°	a12.5°	a25°	a35°	α50°	a65°	υ	a0°	α15.3°	a25°	a35	° a50°	a65°
2 4 8 32 128 512 1024 2048 4096	53.6 61.4 73.9 84.1 91.9 93.6 98.5 100.0	53.7 61.4 73.1 84.0 91.6 93.4 97.0 100.0	53.1 60.1 72.6 83.4 90.9 93.0 96.7 100.0	60.6 73.6 83.9 91.6 94.6	5 59.0 69.7 9 85.2 5 93.9 0 4 99.1	58.5 71.9 85.1 93.4	4						
		re Coeffi										ductivity	
4	2	63 2 05 3 59 4 90 4 00 4 01 4	.53 .80 .52 .05 .40 .54	2.76 3.18 3.84 4.39 4.83 5.06 5.17 5.11	2.91 3.13 4.90 5.58 5.71 5.43	50-65° 2.19 3.50 5.00 5.24 5.65 5.99 6.18	4	2 1. 4	51 2 88 3 10 3 67 4 99 4	2.21	3.07 3.82 4.40 4.84 5.16	3.00 3.41 4.21 5.09 5.25 5.36	3.13 3.49 4.74 5.67 5.87 5.96
	Tempe	rature C	oefficie	nts in	Per Cer	nt.		Tempe	rature C	oefficie	ents in	Per Ce	nt.
v	0-12	2.5° 12.5	-25° 2	5-35°	35-50°	50-65°	v	0-15	.3° 15.3	3-25° 2	25–35°	35-50°	50-65°
	2 3. 8 3. 2 3. 4 3. 8 3.	35 2 23 2 34 2 32 2 34 2 18 2	.65 .68 .69	2.14 2.17 2.17 2.16 2.18 2.19 2.20 2.10	1.63 1.46 2.00 2.07 2.00 1.84	1.27 1.58 1.91 1.64 1.60 1.61 1.64		2 3. 8 3. 2 3.	55 2 61 2 55 2 70 2 77 2	2.80 . 2.71 . 64 . 2.77 . 2.82 . 2.64 . 2.62 .	2.23 2.24 2.22 2.39 2.37	2.05 2.02 2.00 2.10 2.04 1.99	1.64 1.59 1.74 1.78 1.74 1.70

	Disor		ACID I		PHATE		Sodium	Ammon	TIUM ACI	то Рноя	SPHATE
	Л	1 olecul	ar Cond	luctivit	y.			Molecul	ar Conduc	tivity.	
v	$\mu_v 0^{\circ}$	$\mu_v 25^\circ$	$\mu_v 30^\circ$	$\mu_v 35^{\circ}$	$\mu_v 50^\circ$	μ _ν 65°	v	$\mu_v 0^\circ$	$\mu_v 12.5^{\circ}$	μ _v 25°	$\mu_v 35^\circ$
16 32 128 512 1024 2048	67.3 75.0 88.4 91.7 91.9 92.0	147.8 168.6 182.3 183.7	188.1 203.8 205.2	164.3 182.4 212.1 231.6 236.4 240.3	238.7 278.4 304.7 310.2	268.5 298.9 350.9 384.6 393.2 399.0	8 32 128 512 1024 2048	65.6 84.4 96.5 100.7 104.7 103.9	119.2 136.7 141.4 145.7 144.7	158.7 181.4 186.4 193.6 190.9	186.5 216.6 221.6 235.2 229.2
	P	'ercenta	ige Diss	ociatio	n.			Percente	ige Dissoc	iation.	
v	a0°	a25°	a30°	a35°	α50°	a65°	v	a0°	a12.5°	a25°	a35°
16 32 128 512 1024 2048	68.8 81.5 96.1 99.7 99.9 100.0	72.5 80.3 91.5 99.1 99.8 100.0	72.1 79.8 91.2 98.8 99.5 100.0	68.4 75.9 88.3 96.4 98.4 100.0	68.2 75.6 88.2 96.5 98.3 100.0	67.3 74.9 87.9 96.4 98.5 100.0	8 32 128 512 1024 2048	62.6 80.6 91.3 96.3 100.0 99.2	81.7 93.1 97.0 100.0 99.3	81.9 93.7 96.2 100.0 98.6	79.3 92.1 94.2 100.0
Temp	erature	Coeffic	cients in	Condu	ctivity	Units.	Temperate	ure Coeffic	cients in C	onductiv	ity Units.
v	0-	25°	25-30°	35-	50° {	50–65°	v	0-12.	5° 12.	5–25°	25-35°
	2 8 2 4	2.64 2.91 3.21 3.62 3.67 3.68	3.04 3.34 3.90 4.30 4.44	4	3.40 3.75 4.42 4.87 4.92 5.02	3.55 4.02 4.83 5.33 5.53 5.56	32 128 512 1024 2048	3 3 3 3	2.78 3.21 3.26 3.36 3.36	3.16 3.57 3.60 3.83 3.70	2.78 3.52 3.52 4.16 3.83
T	empera	ture Co	pefficien	ts in P	er Cen	t.	Temp	erature Ce	pefficients	in Per C	ent.
v	0-	25°	25-30°	35-	50°	50-65°	v	0-12.	5° 12.	5-25°	25-35°
1 3 12 51 102 204	2 8 2 4	4.17 3.88 3.63 3.95 3.99 4.00	2.28 2.26 2.32 2.35 2.34 2.41	2 2 2 2 2	2.07 2.06 2.08 2.10 2.08 2.09	1.65 1.69 1.73 1.75 1.78 1.76	32 128 512 1024 2048	2 3 3 2 3 4 3	.30 .32 .24 .22 .23	2.65 2.61 2.54 2.62 2.55	1.49 1.62 1.58 1.76 1.67

Sor	DIUM I	Ferroc	YANII	ре (Н	. AND I	Hw.).	\$	Sodiu	м Тел (W	RABO	RATE H.)	(Bora	X)
		Molecul	ar Con	ductiv	ity.				Molecui	lar Con	ductivi	ty.	
v	μ_v0°	μ ₀ 12.5°	μ _ε 25°	$\mu_v 35$	μ _ε 50°	μ_c65°	v	$\mu_{\epsilon}0^{\circ}$	$\mu_{e}12.5^{\circ}$	μ,25°	$\mu_e 35^\circ$	μ ₂ 50°	μ,65°
	136.7 151.3 167.1 203.5 234.2 253.4 266.4 275.7	194.9 215.5 238.5 289.6 334.1 361.7 380.3 398.1	287.0 318.5 385.9 446.4 482.4 504.0	347 .7 386 .2 464 .5 543 .2 581 .2 612 .0	2487 . 25 5594 . 44 2730 . 35 2781 . 99	508.69 593.80 727.68 909.86 979.35 1000.84	16 32 128 512 1024 2048 4096	57 .99 64 .36 72 .87 78 .04 79 .20 83 .45 85 .50	92,74 104.81 112,22 113-29	141.73 152.00 153.40 161.23	0154.6 2174.5 0187.9 0189.3 3198.3	1 204.0 2 224.1 7 247.8 7 207.3	281.6 316.7
		Percente	nge Dis	social	tion.				Percenta	ige Dis	socialie	m.	
v	a0°	a12.5°	a25°	a35°	° a50°	a65°	v	a0°	a12.5°	a25°	a35°	a50°	a65°
16 32 128 512 1024 2048	49.58 54.88 60.61 73.81 84.95 91.91 96.63 100.00	48.96 54.13 59.91 72.74 83.92 90.86 95.53 100.00	60.43 73.21 84.69 91.52 95.62	55.0 61.0 73.4 85.9 91.9 96.8	0 52.07 0 60.57	50.83 59.33 72.71 90.91 97.85 100.00	16 32 128 512 1024 2048 4096	67.8 75.3 85.3 91.3 92.7 97.6 100.0	68.5 75.8 85.7 91.8 92.6 97.8 100.0	76.5 86.4 92.7 93.5 98.3	76.3 86.1 92.7 93.4 97.8	75.5 82.9 91.7	71.3 78.4 88.1
Tem	peratui	e Coeffic	ients i	n Con	ductivity	Units.	Tem	peratur	e Coeffi	cients i	n Cond	luctivity	Units
v	0-12	2.5° 12.5-	-25° 25	5-35°	35-50°	50-65°	v.	0-12	2.5° 12.5	-25° 2	5-35°	35-50°	50-65
102 204 409	2 5. 8 6. 2 7. 4 8. 8 9.	14 5 71 6 89 7 99 8 66 9 11 9	.72 .40 .70 .98 .66 .90	5.42 6.07 6.77 7.86 9.68 9.88 0.80 0.51	4.90 4.75 6.73 8.66 12.48 13.38 12.83 11.39	5.51 5.99 7.10 8.88 11.90 13.16 13.09 11.06	10 3: 12: 51: 102: 204: 409:	2 2. 8 2. 2 2. 4 2. 8 2.	27 2 56 2 73 3 73 3 89 3	.62 .95 .18 .21	2.63 2.91 3.28 3.60 3.60 3.71 3.87	2.87 3.29 3.31 4.00	3.23 3.48 3.83 4.59 5.93
	Temps	erature C	oefficie	ents in	Per Ce	ent.		Тетре	rature (ve ficie	nts in	Per Cer	ıl.
v	0-12	2.5° 12.5-	-25° 25	350	35–50°	50-65°	v	0-12	2.5° 12.5	-25° 2	5-35°	35-50°	50-65°
10 3: 12: 51: 102: 204: 409:	2 3. 8 3. 2 3. 4 3. 8 3.	40 2 42 2 39 2 41 2 42 2 42 2	.65 .68 .66 .69 .67	2.09 2.12 2.13 2.04 2.17 2.05 2.14 2.00	1.56 1.37 1.74 1.86 2.29 2.30 2.09 1.80	1.42 1.43 1.46 1.49 1.63 1.68 1.63 1.38	10 3: 12: 51: 102- 204: 409:	2 3. 8 3. 2 3. 4 3. 8 3.	53 2 51 2 50 2 45 2 46 2	.83 .82 .83 .83	2.32 2.32 2.32 2.37 2.35 2.30 2.36	2.05 2.13 1.89 2.13	1.76 1.71 1.71 1.85 2.19

	So	DIUM	ACETAT	re (W	7.).			Рота	SSIUM	Сньог	RIDE	(W. A1	ND C.).	
		Molecul	ar Cond	uctivit	<i>y</i> .				Mole	ecular C	onduc	tivity. E	F	
v	$\mu_v 0^{\circ}$	$\mu_v 13.6^{\circ}$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^{\circ}$	$\mu_v 65^{\circ}$	v	μ _v 0°	$\mu_v4.3^{\circ}$	$\mu_v 15.5^\circ$	$\mu_v 2$	5° $\mu_v 35$	$^{\circ}$ $\mu_v 50^{\circ}$	$\mu_v 65^\circ$
2 4 8 16 32 128 512 1024 2048	28.39 34.30 36.37 38.11 40.41 41.21 40.65 41.28	41.93 50.73 53.86 56.59 60.22 61.63 61.15 61.97	54.86 	67.06 81.09 86.01 90.55 96.43 99.34 98.6 99.4			2 8 16 32 128 512 1024 2048	62.96 66.47 68.40 70.27 73.00 74.24 75.14	70.09 74.48 76.95 78.95 82.25 83.59 84.59	91.0 98.2 101.5 104.9 109.4 111.9 112.9	$ \begin{array}{c cccc} 4 & 118 \\ & 122 \\ & 126 \\ & 132 \\ & 135 \end{array} $.6 142. .9 147. .8 152. .4 159. .5 163.	5 179.1 7 5 192.8 9 204.3 0 209.1	193.7 215.9 234.1 247.1 255.8 258.3 259.3
	1	Percenta	ge Disso	ciation	·.				Per	centage .	Dissoc	ciation.		
v	a0°	α13.6°	a25°	a35°	a50°	a65°	v	a0°	a4.3°	a15.5°	a25	5° a35	° a50°	a65°
2 4 8 16 32 128 512 1024 2048	83.2 88.3 92.2 98.1 100.0 100.0 100.0	82.3 87.4 91.8 97.7 100.0 100.0 100.0	82.7 87.6 92.1 97.7 100.0 100.0	81.6 86.6 91.2 97.1 100.0 100.0	74.6 81.3 90.4 96.4 99.2	80.1 89.8 95.7 98.9	2 8 16 32 128 512 1024 2048	83.8 88.5 91.0 93.5 97.2 98.8 100.0	82.9 88.0 91.0 93.3 97.2 98.8 100.0	80. 87. 89. 92. 96. 99.	0 86 9 89 0 92 9 96 1 98	.6 86. .7 89. .6 92. .6 96. .9 99	2 84.4 3	90.3 95.3 98.6 99.6
Tem	peratur	e Coeffic	ients in	Conduc	ctivity l	Inits.	T	'empere	iture Co	efficient:	in Co	onductiv	ity Units	3.
v	0-13.	.6° 13.6	-25° 25	5–35°	35–50°	50-65°	v	0-4.3	3° 4.3-1	15.5° 15	5–25°	25-35°	35-50°	50–65°
2 4 8 16 32 128 512 1024 2048	1. 1. 1. 1.	21 29 36 46 50	1.36 1.43 1.51 1.59 1.62 1.58	1.22	1.73 1.82 1.95 2.00	1.58 1.71 1.99 2.12 2.23 2.27	2 8 16 32 128 512 1024 2048	1.8 1.9 2.0 2.1 2.1 2.2	6 2 9 2 2 2 5 2 7 2	.88 1.12 1.19 1.32 1.42 1.53 1.53	1.94 2.14 2.25 2.31 2.42 2.48 2.54	2.13 2.39 2.48 2.57 2.75 2.75 2.84	2.07 2.44 2.69 2.96 3.07 3.08	2.12 2.45 2.75 2.85 3.11 3.11 3.15
	Temper	rature C	oefficien	ts in P	er Cent	*		Te	mperatu	re Coeff	icients	in Per	Cent.	
v	0-13	.6° 13.6	-25° 25	5–35°	35–50°	50–65°	v	0-4.3	3° 4.3–1	15.5° 15	5-25°	25–35°	35-50°	50-65°
24 4 8 16 32 128 512 1024 2048	3. 3. 3. 3. 3.	53 52 57 61 67 71	2.68 2.66 2.67 2.64 2.63 2.58	2.22	2.13 2.01 2.02 2.01 2.09	1.62 1.61 1.69 1.69 1.72	2 8 16 32 128 512 1024 2048	2.7 2.9 2.8 2.9 2.9 2.9	$egin{array}{c cccc} 8 & 2 & 2 & 2 & 2 & 2 & 2 & 3 & 2 & 3 & 2 & 3 & 3$.94	2.13 2.18 2.22 2.20 2.21 2.22 2.25	1.94 2.01 2.02 2.03 2.08 2.03 2.07	1.58 1.71 1.76 1.85 1.88 1.86	1.31 1.37 1.43 1.40 1.49 1.47 1.49

P	OTASS	IUM BE	ROMID	E (W	. AND	C.).		Po	TASSIU	m Ioi	DIDE ((W.).	
		Molecul	ar Con	ductiv	ity.				Molecul	ar Con	ductivi	ity.	
v	μ,0°	μ,14.5°	μ,25°	$\mu_v 35$	° µ _v 50°	μ,65°	v	μ _υ ()°	με10.1°	μ.25°	μ,35	μ,50°	μ _ε 65°
2 8 16 32 128 512 1024 2048	65.82 68.01 70.10 71.84 74.79 75.73 79.23	101.7 104.6 109.0 111.3	114.4 121.3 125.2 128.8 134.5 137.6 143.5	150. 154. 162. 165.	6 181.4 5 6 195.3 0 206.0 5 211.6	218.1 3 236 5 0 250.0 3 256.6 3 260.3	2 4 8 16 32 128 512 1024 2048	65.78 68.45 70.17 71.90 74.41 76.35 77.77 79.20	88.18 90.51 93.32 96.67 98.91 101.9	120.7 124.5 128.0 133.7 137.3 141.8 147.2	144 .3 148 4 153 .0 160 .3 165 .9 170 .9	174 8 5 181 5 4 0 194 2 2 202 0 9 213 3 9 217 6	221.2 235.8 248.0 261.4 268.1
		Percenta	ge Dis	sociati	ion.				Percenta	ge Dis	sociati	on.	
v	a0°	a14.5°	a25°	a35°	a50°	a65°	v	a0°	a10.1°	a25°	a35°	a50°	a65°
2 8 16 32 128 512 1024 2048	83.1 85.8 88.5 90.8 94.4 95.6 100.0	80.6 85.2 88.0 90.5 94.3 96.3 100.0	79.7 84.5 87.2 89.8 93.7 95.9 100.0	78.1 84 87 89 93 95 100	4 83.7 26 90.1 9 95.1 9 97.6	82.7 89.7 94.8 97.3 98.7	2 4 8 16 32 128 512 1024 2048	83.1 86.4 88.6 90.8 94.0 96.4 98.2 100.0	80.0 84.1 86.3 89.0 92.1 94.3 97.1 100.0	76.6 82.0 84.6 87.0 90.8 93.3 96.3 100.0	81.8 83.7 86.3 90.4 93.6 96.4	80.3 83.4 7 8 89.2 4 92.8 6 98.0 1 100.0	82.5 87.9 92.5 97.5
		e Coeffic					-		e Coeffic				
	2 1.8 8 2.3 6 2.2 2 2.3 8 2.3 2 2.4 4 2.3	89 2 10 2 18 2 26 2 35 2 45 2	02 18 24 30 43 50 50	2.18 2.43 2.53 2.58 2.75 2.79 2.91	35-50° 1.93 2.39 2.71 2.93 3.07 2.73	2.11 2.45 2.75 2.93 3.00 3.11 3.13		2 1. 3 1. 3 2. 2 2. 3 2. 4 2.	95 2 01 2 12 2 20 2 23 2 39 2	.94 .18 .28 .33 .48 .58 .68	2.09 2.38 2.39 2.50 2.65 2.86 2.91 3.00	2.47 2.75 2.79 3.16 3.11	2.53 2.65 2.77 3.07 3.22 3.37
	Tempe	rature C	oefficie	nts in	Per Ce	nt.	3	l'emper	rature C	oefficie	nts in	Per Cer	nt.
v	0-14	.5° 14.5-	-25° 25	-35°	35-50°	50–65°	v	0-10	0.1° 10.1	-25° 25	5-35°	35–50°	50-65°
	2 3. 8 3. 2 3. 4 3.	09 2 07 2 15 2 14 2 24 2	.21 .20 .20 .23 .25	1.90 2.00 2.02 2.00 2.04 2.03 2.03	1.42 1.64 1.75 1.81 1.86 1.58	1.28 1.35 1.41 1.42 1.42 1.46 1.45		2 2. 8 2. 2 2. 4 3.	84 2 86 2 95 2 96 2 92 2 07 2	.47 .52 .50 .57 .61 .63	1.85 1.97 1.92 1.95 1.98 2.08 2.05 2.04	1.71 1.80 1.74 1.90 1.82	1.45 1.46 1.43 1.52 1.51 1.55

	Po	TASSI	UM NI	TRATI	E (W	. AND	C.).		Рота	SSIUM	Снь	DRATI	E (SH.)	
			Molecul	ar Cone	ductiv	ity.				Molecule	ar Cone	ductivi	ty.	
	v	$\mu_v 0^{\circ}$	μ ₀ 10°	$\mu_v 25^\circ$	$\mu_v 35$	$ \mu_v 50^\circ $	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	$\mu_v 12.5^\circ$	$\mu_v 25^{\circ}$	$\mu_v 35^\circ$	$^{\circ}$ $\mu_v 50^{\circ}$	μ _v 65°
10	32 128 512 024	54.02 61.94 65.33 67.92 72.05 76.34 76.31	69.67 80.22 84.31 87.78 93.57 98.71 99.80	95.21 111.0 116.3 121.3 129.5 137.0 139.6		8 165.0 3 182.0 7 194.1 1 199.8 2 202.7	199.6 220.4 235.4 242.1 245.2	8 32 128 512 1024 2048 4096	58.9 64.3 68.5 70.1 70.6 71.2 72.4	80.8 88.3 94.2 96.7 97.7 98.4 100.7	104.7 115.2 122.8 126.1 127.8 128.4 131.4	124.9 137.3 146.4 150.9 153.3 154.0 157.0	3 173.4 5 185.0 9 193.4 1 197.4 0 200.8	211.9 228.8 239.1 241.5 244.9
		i	Percenta	ge Dis	sociat	ion.				Percenta	ge Dis	sociati	on.	
	v	a0°	a10°	a25°	a35°	° a50°	a65°	v	a0°	a12.5°	a25°	a35°	a50°	a65°
10	2 8 16 32 128 512 024 048	70.8 81.2 85.6 89.0 94.4 100.0 100.0	69.8 80.4 84.5 88.0 93.8 98.9 100.0	68.2 79.5 83.3 86.9 92.8 98.1 100.0	70. 81. 90. 96. 98. 100. 100.	9 81.5 3 89.9 1 95.9 9 98.7 0 100.0	81.0 89.4 95.5 98.3 99.5	8 32 128 512 1024 2048 4096	81.3 88.8 94.6 96.8 97.5 98.3 100.0	80.2 87.6 93.5 96.0 97.2 97.7 100.0	79.7 87.5 93.2 95.9 97.2 97.7 100.0	79.2 87.3 92.9 95.3 97.3 100.0	84.9 9 90.6 7 94.6 1 96.6 7 98.2	84.8 91.6 95.7 96.7 98.0
T	'emp	peratur	e Coeffic	ients in	Cone	ductivity	Units.	Temp	peratur	e Coeffic	ients in	Cond	luctivity	Units.
	v	0-10	0° 10–2	25° 25	-35°	35–50°	50-65°	v	0-12	2.5° 12.5	-25° 25	5–35°	35–50°	50-65°
	2 8 16 32 128 512 1024 2048	3 1.8 3 1.9 2 1.9 3 2.1 2 2.2 4 2.3	33 2 90 2 99 2 15 2 24 2	05 13 23 40 55	1.80 2.08 2.40 2.52 2.21 2.16	1.87 2.21 2.45 2.63 2.71 2.77 2.77	1.91 2.31 2.56 2.75 2.82 2.83 2.91	33 128 513 1029 2048 4090	8 2.0 2 2.1 4 2.1 8 2.1	94 2 07 2 12 2 15 2 18 2	.15 .29 .35 .42 .44	2.02 2.21 2.36 2.48 2.52 2.56 2.62	2.24 2.41 2.57 2.83 2.95 3.12 3.12	2.23 2.57 2.92 3.05 2.94 2.94 3.03
	2	Гетрег	rature C	oefficie	nts in	Per Cer	nt.		Temper	rature C	oefficie	nts in	Per Cen	ıt.
	v	0-10	0° 10-2	25° 25	-35°	35-50°	50-65°	v	0-12	.5° 12.5-	-25° 25	-35°	35-50°	50-65°
	16 32 128 512 1024 2048	3 2.9 3 2.9 2 2.9 3 2.9 4 3.0	95 2 91 2 93 2 98 2 93 2	56 54 56 58	1.89 1.87 1.98 1.95 1.61 1.53	1.65 1.68 1.69 1.70 1.70 1.72 1.72	1.35 1.40 1.41 1.42 1.41 1.40 1.44	32 128 512 1024 2048 4096	2 3.0 8 2.9 2 3.0 4 3.0 8 3.0	00 2. 90 2. 02 2. 04 2. 06 2.	43 42 43 47 47	1.93 1.93 1.92 1.95 1.97 1.98 1.98	1.78 1.76 1.76 1.87 1.92 2.01 1.97	1.40 1.48 1.57 1.57 1.49 1.46 1.48

1	Potas	SIUM P	ERCH	LORAT	re (Si	н.).	Po	TASSI	UM SUI	LPHAT	re (W	AND	C.).
		Molecul	ar Con	ductivi	ty.				Moleculo	ir Cone	ductivi	ly.	
v	$\mu_r 0^{\circ}$	μ.12.5°	μ _τ 25°	μ _v 35°	μ,50°	μ.65°	v	μ _ε 0°	μ _ε 9.5°	μ,25°	μ,35°	μ,50°	μ,65
32 128 512 1024 2048 4096	65.1 68.9 71.7 72.0 73.3 74.3	95.0 98.2 99.5 101.2	116.9 125.1 129.0 130.7 132.6 134.5	139.6 149.5 154.2 155.3 158.6 160.7	191.2 194.3 195.9 200.0	2 232.7 3 237.7 9 240.6 9 244.2	8 101.9 130.5 183.6 220.3 270 16 109.9 140.9 199.2						332. 2 400. 456. 500.
		Percenta	ge Dis	sociatie	on.			I	ercentag	e Diss	ociatio	n	
v	a0°	a12.5°	a25°	a35°	a50°	a65°	v	a0°	a9.5°	α25°	a35°	a5()°	a65°
32 128 512 1024 2048 4096	87.6 92.7 96.5 97.0 98.6 100.0	87.6 92.5 95.7 96.9 98.5 100.0	86.9 93.0 95.9 97.1 98.5 100.0	86.9 93.0 95.3 96.6 98.6 100.0	92.1 94.1 94.9 96.9 100.0	92.4 94.2 95.7 97.2 100.0	4 8						
v	-	.5° 12.5-			35–50°	50-65°	v	0-9.5	Coeffici	-	-		50-65
32 128 512 1024 2048 4096	2 1.9 8 2.0 2 2.1 4 2.5 8 2.5	08 2. 08 2. 12 2. 20 2. 23 2.	17 2 40 2 46 2 49 2 51 2	2.27 2.44 2.52 2.56 2.60 2.62	2.56 2.71 2.67 2.71 2.76 3.05	2.61 2.83 2.89 2.98 2.98 2.94 2.99	2 8 16 32 128 512 1024	2.4 3.0 3.2 3.5 4.0 4.5	1 2. 1 3. 6 3. 4 4. 4 4. 3 5.	74 2 43 3 76 06 4 63 5 13 5	2.85 3.67 1.53 3.48 3.61 3.02	2.91 3.76 4.63 5.27 5.81 6.09	2.83 3.74 4.72 5.35 6.27 6.23
1	Temper	cature Co	efficie	nts in i	Per Cer	nt.	7	em per	ature Co	essicien	its in l	Per Cen	ıt.
v	0-12	.5° 12.5-	25° 25	-35° 3	35–50°	50-65°	v	0-9.5	9.5-2	5° 25	-35° 3	35-50°	50-65
32 128 512 1024 2048 4096	3.0 2 2.9 4 3.0 8 3.0	02 2. 05 2. 05 2. 04 2.	52 1 60 1 50 1 48 1	1.94 1.95 1.95 1.95 1.96	1.83 1.81 1.73 1.74 1.67 1.87	1.46 1.48 1.48 1.52 1.47 1.45	2 8 16 32 128 512 1024	2.9 2.9 3.0 3.0 3.0	5 2. 7 2. 0 2. 6 2. 5 2.	63 2 67 61 2 72 2 79 2	.87 2.00 2.11 2.26 2.13 2.25	1.61 1.71 1.78 1.77 1.82 1.86	1.26 1.35 1.43 1.42 1.54 1.48

P	OTASS	IUM A	CID S	ULPH	ATE (W.).	Рот	ASSIU	M CAR	BONA	TE (W	. AND	Hw.).
	1	Moleculo	ar Con	ductiv	ity.				Molecul	ar Con	ductivit	y.	
v	μ ₀ 0°	$\mu_v 12.5^{\circ}$	$\mu_v 25^{\circ}$	$\mu_v 35$	$^{\circ}$ $\mu_v 50^{\circ}$	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	$\mu_v 17.8^\circ$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^\circ$
4 8 16 32 128 512 2048	153.8 182.1 201.2 223.6 263.1 291.8 290.9 291.2	222.9 248.8 280.7 336.9 383.9 385.8 401.0	207.6 254.2 286.6 323.7 401.0 467.1 478.2 496.0	220.0 310.0 353 446.4 531.0 556.0 569.0	265.8 1 298.8 0 1 388.4 4 502.9 0 616.0 6 675.0	408.9 536.7 675.6	2 8 16 32 128 512	84.34 98.74 105.3 112.9 122.3 131.2	129.2 154.1 166.5 179.6 197.6 211.1	180.9 195.3 210.5 233.6	191.45 216.87 228.87 263.89	5 237 . 57 7 278 . 60 7 296 . 51 9 340 . 18	1 228 . 63 7 291 . 17 6 341 . 86 1 369 . 42 8 424 . 50 1 468 . 12
	I	Percenta	ge Dis	sociati	on.			I	Percenta	ge Dis	sociatio	n.	
v	a0°	a12.5°	a25°	a35°	a50°	a65°	v	a0°	a17.8°	a25°	a35°	a50°	a65°
2 4 8 16 32 128 512 2048 8192							2 8 16 32 128 512	64.3 75.3 80.3 86.0 93.2 100.0	61.2 73.0 78.9 85.1 93.6 100.0	60.0 72.3 78.1 84.2 93.4 100.0	67.3 76.3 80.5 92.8	62.7 73.6 78.3 89.8	62.3 73.0 78.9 90.7
Temp				-	luctivity	Units.	Temp		e Coeffic			uctivity	Units.
v	0–12.	5° 12.5-	-25° 25	-35°	35–50°	50-65°	v	0-17	.8° 17.8	-25° 2	5–35° 3	35-50°	50-65°
2 4 8 16 32 128 512 2048 8192	3.8 3.8 3.8 4.5 5.9 7.3 7.5	2 2 1 3 7 3 0 5 7 6 9 7	50 02 44 13 66 39	1.30 1.99 2.34 2.94 4.54 6.39 7.84 7.30	1.65 2.35 3.77 5.66 7.89	0.87 0.97 1.37 2.25 3.97 4.80		2 3.3 8 4.3	11 3 44 4 75 4 23 5	.90 .72 .00 .29 .00 .42		2.73 3.07 4.12 4.51 5.09 6.29	1.95 2.57 4.21 4.86 5.62 5.89
2	l'emper	ature C	oefficie	nts in	Per Cer	nt.		Temper	rature C	oefficie	ents in l	Per Cei	at.
v	0–12.	5° 12.5-	-25° 25	5–35°	35-50°	50–65°	v	0-17	.8° 17.8	-25° 2	5–35° 3	35–50°	50-65°
2 4 8 16 32 128 512 2048 8192	2.1 1.8 2.2 2.0 3.2 2.3 2.6	0 1 9 1 4 1 4 1 1 1	12 (21 (23 (52 73 92)	0.63 0.78 0.82 0.91 1.13 1.37 1.64 1.47	0.60 0.67 0.85 1.07 1.42	0.33 0.32 0.35 0.45 0.64 0.71		3.3	15 2 26 2 32 2 46 2	.40		1.73 1.60 1.90 1.97 1.93 2.21	0.98 1.08 1.51 1.64 1.32 1.26

DI-	Potas	SIUM A	ACID H	Phosi v.).	PHATE	(Ws.		Рота	SSIUM	Рнов К₃РО	PHAT	E (SH.).
		Molecui	lar Con	ductiv	ity.				Molecul	ar Co	nductio	rity.	
v	μ _o 0°	μ ₀ 12.5°	$\mu_v 25^{\circ}$	μ,35	μ.50°	μ _ε 65°	v	μ ₀ 0°	μ ₀ 12.5°	μ,25°	μ.35	° μ,50°	μ.65°
128 512 1024 2048	79.19 91.69 102.47 107.76 109.35 110.47	86.82 109.25 127.42 142.37 150.85 152.23 157.04 154.98	143 . 34 167 . 61 188 . 10 199 . 40 200 . 52 206 . 13	174.9 203.8 230.7 239.8 242.6 242.5	1		8 32 128 512 1024 2048 4096	116.6 144.1 178.9 193.7 192.1 190.0 179.0	163.8 206.7 207.7 274.7 271.5 268.3 252.0	217 .2 280 .3 348 .2 366 .1 362 .8 359 .8 336 .7	344. 2 425. 442. 3 440. 3 437.	2 453 6 2 552 2 8 574 6 1 565 1 2 549 5	566.1 685.7 707.6 697.3 676.2
		Percente	age Die	ssociat	ion.				Percente	ige Di	ssocial	ion.	
v	a0°	a12.5°	a25°	a35°	a50°	a65°	v	a0°	a12.5°	a25°	a35	a50°	a65°
2 8 32 128 512 1024 2048 4096	57.0 71.7 83.0 92.8 97.6 99.0 100.0 97.0	55.3 69.6 81.1 90.7 96.1 96.9 100.0 98.7	54.8 69.5 81.3 91.3 96.7 97.3 100.0 98.0	69.8 81.3 92.0 95.3 96.8 96.8	8		8 32 128 512 1024 2048	60.2 74.4 92.9 100.0 99.2 98.0	59.6 75.2 93.8 100.0 98.8 97.3	59.8 76.8 95.1 100.0 99.0 98.1	77. 96. 100. 99.	7 78.7 0 96.1 0 100.0 3 98.3	80.0 96.9 100.0 98.5
Tem	peratur	e Coeffic	ients i	n Cond	luctivity	Units.	Temp	peratur	e Coeffic	ients i	n Con	luctivity	Units.
v	0-12	.5° 12.5	-25° 25	5-35°	35-50°	50-65°	v	0-12	2.5° 12.5	-25° 2	5-35°	35-50°	50-65°
	8 3.1 2 3.4 4 3.4 8 3.1	40 2 86 3 19 3 45 3 43 3 73 3	.73 .22 .66 .88 .85	3.16 3.62 4.26 4.04 4.21 3.64			31 126 511 102- 2048 4090	2 5.0 8 6.3 2 6.4 4 6.3 8 6.3	00 5 30 7 48 7 35 7 26 7	.27 .88 .24 .31 .28 .28 .78	4.64 6.39 7.70 7.67 7.76 7.79 7.09	4.73 7.29 8.46 8.78 8.33 7.49 7.30	5.40 7 50 8.90 8,87 8.81 8.45 8.65
	Tempe	rature C	oefficie	nts in	Per Cer	nt.		Tempe	rature C	oefficie	ents in	Per Ces	ıl.
v	0-12	.5° 12.5	-25° 26	5–35°	35-50°	50-65°	v	0-12	2.5° 12.5	-25° 2	5-35°	35-50°	50-65°
	8 3 2 3 4 3	03 2 05 2 11 2 20 2 14 2	.50 .53 .57 .57 .54	2.16 2.27 2.03			33 122 513 102- 2048 4090	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	54 2 50 2 34 2 30 2 29 2	.60 .85 .81 .66 .68 .75 .69	2.13 2.24 2.21 2.10 2.14 2.14 2.10	1.79 2.04 1.99 1.98 1.89 1.71 1.81	1 .61 1 .65 1 .61 1 .54 1 .56 1 .53 1 .67

	Рота		Sodiu And I		ULPHAT	TE		Ротая	SSIUM :		EL St Hw.)		TE .
		Molecul	ar Con	ductiv	ity.			M	olecular	· Cond	uctivity		
D	$\mu_v 0^{\circ}$	μ _v 12.5°	$\mu_v 25^\circ$	$\mu_v 35$	° µ _v 50°	μ _ν 65°	v	$\mu_v 0^{\circ}$	$\mu_v 12.5^\circ$	$\mu_v 25^\circ$	μ _ν 35°	$\mu_v 50^\circ$	$\mu_v 65^\circ$
4 8 32 128 512 1024 2048 4096	88.4 96.1 113.0 128.8 135.6 140.8 140.9 144.3	122.5 146.6 158.1 179.0 189.6 197.1 198.2 202.6	159.0 170.6 207.2 236.1 250.8 259.2 261.4 267.6	209. 249. 284. 301. 313. 316.	6 225.23 1 251.17 7 301.65 5 345.97 0 375.47 2 382.60 2 395.50 1 427.44	7305.40 6367.39 7424.23 7455.59 9469.31 9489.05	2048	122.6 155.4 187.5 219.6 235.5 249.5 268.0	170.7 217.0 263.0 309.3 331.2 349.9 367.9	344.8 407.7 437.1 463.0	8 339.7 8 414.1 7 490.7 1 527.1 0 560	3 343 . 48 7 438 . 23 1 547 . 33 7 655 . 16 1 695 . 98 1 752 . 22 1 785 . 94	3 527 . 29 3 659 . 73 5 798 . 45 3 850 . 20 2 927 . 00
		Percenta	ge Dis	sociat	ion.				Percento	ige Di	ssociati	on.	
v	a0°	a12.5°	a25°	α35	a50°	a65°	v	a0°	a12.5°	a25°	a35°	a50°	a65°
4 8 32 128 512 1024 2048 4096	61.3 66.6 78.3 89.3 94.0 97.6 97.6	60.5 72.4 78.0 88.4 93.6 97.3 97.8 100.0	59.4 63.7 77.4 88.2 93.7 96.7 97.7 100.0	58. 64. 77. 88. 93. 97. 98. 100.	9 58.76 5 70.57 4 80.94 5 87.84 3 89.51	58.56 70.45 81.34 87.36 89.99 93.77	8 32 128 512 1024 2048 4096	47.0 59.6 71.9 84.2 90.3 95.7 100.0	46.4 59.0 71.5 84.1 90.0 95.1 100.0	58.3 70.3 83.6 89.3 95.6	57.8 7 70.4 6 83.4 7 89.0 95.5	55.76 4 69.64 4 83.36 5 88.55	54.90 68.68 83.13 88.51 96.51
Temp	peratur	e Coeffic	ients ir	n Cone	ductivity	Units.	Temp	eratur	e Coeffic	cients i	in Cond	luctivity	Units.
v	0-12	2.5° 12.5	-25° 25	5–35°	35-50°	50–65°	v	0-12	.5° 12.5	-25° 2	5-35°	35-50°	50-65°
	8 4.0 2 4.3 4 4.4 8 4.6	04 1 68 3 02 4 32 4 50 4 58 5	.92 .93 .57 .90 .97	3.06 3.85 4.25 4.84 5.02 5.40 5.48 5.45		3.17 3.61 4.38 5.22 5.34 5.78 6.24 6.25	32 128 512 1024 2048 4096	6.1 7.1 7.1 8 8.1	93 5 04 6 18 7 66 8 03 9	.10 .32 .54 .87 .47 .05 .56	5.59 6.93 8.30		4.28 5.94 7.49 9.55 10.28 11.65 11.64
	Tempe	rature C	oefficie	nts in	Per Cer	ıt.		Temper	rature C	oeffici	ents in	Per Cer	ıt.
v	0-12	2.5° 12.5	-25° 25	5–35°	35-50°	50-65°	v	0-12	2.5° 12.5	-25° 2	5-35°	35-50°	50-65°
	3 3. 2 3. 4 3. 8 3.	30 1 26 2 12 2 19 2 20 2 25 2	.30 .49 .55 .58 .52 .55	1.92 1.79 2.05 2.05 2.00 2.08 2.10 2.04		1.41 1.44 1.45 1.51 1.42 1.51 1.58 1.46	32 128 512 1024 2048 4096	3 3 2 3 4 3 3 3	17 2 22 2 27 2 25 2 22 2	.40 .45 .48 .54 .56 .59	1.96 1.97 2.01 2.04 2.06 2.09 2.07		1.25 1.36 1.37 1.46 1.48 1.55

P	OTASS		CHRON (H. AN VIOLET	D Hw.		re	Potassium Chromium Sulphate (H. and Hw.). (Green Vamety.)							
		Mole	ecular C	onductiv	ity.				Mod	lecule	ır Co	nductiv	ity.	
v	μ ₀ 0°	$\mu_v 12$.5° μ _υ 25	° 4,35°	μ,50°	μ _v 65°	v	$\mu_e 0^\circ$	μ.12	2.5°	μ,25°	μ,35°	μ _e 50°	μ,65°
32 128 512 1024 2048	75.8 87.3 99.0 127.0 161.1 186.6 213.3 245.8	105 121 138 179 232 271 314 364	.2 157. .1 179. .5 236. .0 311. .6 369. .2 428.	3 185.3 6 211.3 7 279.9 5 374.5 6 443.8 8 520.6	201 .86 219 .21 271 .70 363 .28 499 .67 586 .07 701 .81 818 .02		16 32 128 512 1024 2048	101 .0 119 .3 137 .8 177 .7 210 .9 229 .7 247 .0 273 .1	3 15 3 179 23 2 286 3 310 3 339	4.0 9.3 4.4 3.5 0.9	359 . 1 399 . 6 441 . 3	213.2 5 249.3 5 333.5 426.6 6 479.0 8 539.1	618.30	485 99 699 33 771 94 903 28
		Perc	entage L)issocia <i>t</i>	ion.				Per	centa	ge D	issocial	ion.	
v	a0°	a12	2.5° a2	5° a35	o a50°	a65°	v	a0°	al	2.5°	a25	5° a35	° a50°	a65°
8 16 32 128 512 1024 2048 4096 Tem	16													
v	0-1	2.5°	2.5–25°	25-35°	35-50°	50-65°	v	0-3	12.5°	12.5	-25°	25-35°	35-50°	50-65°
1 3 12 51 102 204 409	6 2 3 8 4 4 6 8 8 8	34 .71 .13 .20 .67 .80 .07 .52	2.42 2.89 3.32 4.58 6.36 7.84 9.17 10.82	2.41 2.80 3.17 4.32 6.30 7.42 9.18 11.38	2.83 2.26 4.03 5.56 8.35 9.55 12.08 13.61	2.68 3.83 4.55 6.93 10.62 13.29 15.11 17.66	1 3 12 51 102 204 409	6 2 3 8 4 2 5 4 6 8 7	2.33 2.78 3.32 3.54 5.81 5.50 7.40 3.50	2 3 4 6 7 8	. 26 . 73 . 22 . 50 . 05 . 10 . 14 . 67	2.12 2.51 2.98 4.29 6.75 7.94 9.78 11.59		1.79 2.30 3.21 5.40 7.56
	Tempe	eratur	e Coeffic	cients in	Per Ce	nt.		Тетр	eratı	ire C	oeffic	ients in	Per Ce	nt.
v	0-1	2.5°	12.5–25°	25-35°	35–50°	50-65°	v	0-	12.5°	12.5	-25°	25–35°	35-50°	50-65°
1 3 12 51 102 204 409	6 3 3 8 3 8 3 4 3 8 3 3	.09 .10 .16 .31 .52 .64 .78 .87	2.31 2.38 2.40 2.55 2.74 2.89 2.92 2.97	1.78 1.78 1.77 1.82 2.02 2.01 2.14 2.28	1.77 1.22 1.90 1.99 2.23 2.15 2.32 2.22	1.33 1.28 1.67 1.91 2.15 2.27 2.15 2.16	1 3 12 51 102 204 409	6 2 2 2 8 2 2 2 4 2 8 3	2.31 2.33 2.41 2.55 2.76 2.83 3.00 3.11	1 1 1 2 2 2	.74 .77 .80 .92 .13 .28 .40	1.34 1.33 1.36 1.48 1.88 1.99 2.22 2.32		0.80 0.71 0.72 0.73 0.87 1.15 1.32

	Рота	Ws.			GANATE	2	Por	rassiu	м Сн	ROMA'	те (Ј	. AND	C.).
		Molecul	ar Co	nductiv	ity.				Molecul	ar Con	ductivi	ity.	
v	$\mu_v 0^{\circ}$	$\mu_v 12.5^\circ$	$\mu_v 25$	$\mu_v 35$	$^{\circ}$ $\mu_v 50^{\circ}$	$\mu_v 65^\circ$	v	μ_v 0°	$\mu_v 12.2^{\circ}$	$\mu_v 25^\circ$	$\mu_v 35$	$\mu_v 50^\circ$	$\mu_v 65^{\circ}$
8 32 128 512 1024 2048 4096	59.34 63.75 66.76 66.46 64.65 63.72 62.64	87.13 91.38 91.14 89.05 86.61	113.7 119.3 117.9 113.9 110.8	0 136 . 0 1 142 . 4 0 141 . 4 5 137 . 0 0 133 . 0	76 159 . 16 15171 . 71 12 181 . 98 19 185 . 19 182 . 48 12 183 . 16 17 178 . 59	208.58 3222.22 9226.46 5215.95 5215.22	2 8 16 32 128 512 1024 2048	96.50 111.3 117.8 124.6 140.1 147.1 150.1 151.4	128.1 151.9 163.5 173.7 191.1 205.5 209.2 211.5	165.7 196.0 213.5 227.2 252.9 272.0 276.2 279.9	235.4 256.0 272.0 303.0 327.3 2330.	4 297.5 0 343.8 0 389.4 8 415.0	417.4 468.5
		Percente	ige Di	ssociat	ion.				Percenta	ige Dis	sociati	ion.	
v	a0°	a12.5°	a25°	a35	a50°	α65°	v	a0°	a12.2°	a25°	a35°	a50°	a65°
8 32 128 512 1024 2048 4096	88.8 95.4 100.0 99.5 96.8 95.4 93.8	87.7 95.3 100.0 99.7 97.4 94.8 96.2	87. 95. 100. 98. 95. 92. 93.	3 95. 0 100. 8 99. 5 96. 9 93.	5 92.72 0 98.27 4 100.00 3 98.52 4 98.90	92.10 98.13 100.00 95.36 95.04	2 8 16 32 128 512 1024 2048	63.7 73.5 77.8 82.3 92.5 97.2 99.1 100.0	60.6 71.8 77.3 82.1 90.4 97.2 98.9 100.0	59.2 70.0 76.3 81.2 90.4 97.2 98.7 100.0	70.4 76.8 2 81.4 90.9 2 98.	4	
Tem	peratur	e Coeffic	cients	in Con	ductivity	Units.	Temp	oeratur	e Coeffic	ients i	n Cond	luctivity	Units.
v	0-12	2.5° 12.5	-25° 2	25–35°	35–50°	50–65°	v	0-12	2.2° 12.2	-25° 2	5–35°	35-50°	50-65°
3 12 51 102 204 409	8 1.1 2 1.1 4 1.1 8 1.1	87 2 97 2 97 2 95 1 83 1	.94 .13 .23 .14 .99 .94 .91	2.04 2.24 2.31 2.36 2.31 2.22 2.22	2.29 2.38 2.64 2.91 3.02 3.34 2.97	2.29 2.46 2.68 2.75 2.23 2.14 1.78		2 4.1 8 4. 2 4.1 4 4.1	35 3 74 3 04 4 18 4 78 5 84 5	.93 .45 .90 .17 .82 .19 .23 .34	3.18 3.94 4.25 4.48 5.01 5.44 5.40 5.44	3.44 4.16 4.79 5.76 5.81	3.12 4.01 4.91 5.27 6.57
	Tempe	rature C	oeffici	ents in	Per Cer	nt.		Tempe	rature C	oefficie	ents in	Per Cer	nt.
v	0-12	2.5° 12.5	-25° 2	25–35°	35-50°	50–65°	v	0-12	2.2° 12.2	-25° 2	5-35°	35-50°	50-65°
	2 2. 4 3. 8 2.	93 2 95 2 96 2 02 2 87 2	.42 .45 .44 .35 .24 .24 .17	1.96 1.97 1.94 2.00 2.03 2.00 1.99	1.84 1.75 1.85 2.06 2.20 2.51 2.22	1.44 1.43 1.47 1.48 1.22 1.17 1.00		2 3. 8 2. 2 3. 4 3.	00 2 17 2 24 2 98 2 24 2 22 2	.29 .27 .39 .40 .52 .53 .50	1.92 2.01 1.99 1.97 1.98 2.00 1.96 1.94	1.74 1.77 1.76 1.90 1.77	1.25 1.35 1.43 1.35 1.58

Por	TASSIT	m Di	CHRO	MATE (J. AND	W.).	P	OTASS	sium F	ERRO	CYANI	DE (W	·.).
		Molect	ular Co	onductiv	ity.				Molecul	ar Con	ductivi	ty.	
v	μ ₀ 0°	$\mu_{v}12.6$	β° μ,2	5° μ ₀ 35	° μ _υ 50°	μ ₀ 65°	v	μ _ε ()°	με13.1°	μ,25°	μ.35°	μ,50°	μ,65°
4 8 16 32 128 512 1024 2048	109.1 116.6 122.6 129.9 133.0 133.6 136.8	150. 161. 168. 178. 182. 185. 188.	5 209 8 219 8 231 5 237 7 240	.3 248. .4 260. .5 277. .3 281. .6 287.	8	352.9 396.9 417.9 426.8		162.1 168.8 179.9 195.6 236.1 280.7 295.1 315.0 328.0	224 1 236 8 255 0 277 0 335 5 399 4 421 4 449 0 467 0	287.1 305.1 327.1 357.8 432.8 516.6 546.5 578.0 599.0	523.8 627.0 660.0 703.0	450,6 7 535.0 8 663.1 0 818.7	543.0 651.0 808.3 1006.3
		Percen	tage D	rissociat	ion.				Percenta	ge Dis	sociati	on.	
v	a0°	a12.6	° a25	° a35	a50°	a65°	v	a0°	a13.1°	a25°	a35°	a50°	a65°
4 8 16 32 128 512 1024 2048	79.8 85.2 89.6 95.0 97.2 97.7 100.0	79. 85. 89. 94. 96. 98. 100.	5 85 4 89 7 94 7 96 4 98	.3 84. .4 88. .3 94. .7 95. .0 98.	7 9 89.3 4 94.4 8 96.0 1	8 78.6 8 88.4 93.1 95.1	4 8 16 32 128 512 1024 2048 8192	49.4 51.5 54.8 59.6 72.0 85.6 90.0 96.0 100.0	48.0 50.7 54.6 59.3 71.8 85.5 90.2 96.1 100.0	47.9 50.9 54.6 59.7 72.3 86.2 91.2 96.4 100.0	50.3 54.4 59.3 72.3 86.6 91.2	3 47.8 4 5 56.8 3 70.4 6 86.9 2 1 97.2	47.1 56.4 70.1 87.2
Tem		-			ductivity				e Coeffic	-	-		
v	-	2.6° 12.	.6–25°	25-35°	35-50°	50-65°	v	_	3.1° 13.1	-	_	35-50°	50-65°
	2 3. 8 3. 2 3. 4 4.	56 66 88 93	3.60 3.85 4.08 4.25 4.42 4.43 4.57	3.85 3.95 4.15 4.39 4.45 4.73 4.81	3.89 4.43 4.58 4.70 4.85	3.65 4.03 4.64 4.79 5.01 5.50		2 6. 8 7. 2 9. 4 9. 8 10.	19 5 73 6 21 6 59 8 06 9 64 10 23 10	.74 .06 .79 .18 .75 1 .51 1 .84	5.47 5.94 6.70 7.29 9.10 1.04 1.35 2.50 2.50	4.85 5.74 6.95 9.29 12.78 14.16 14.60	5.41 6.16 7.73 9.68 12.51 13.73 14.08
	Tempe	rature	Coeffic	cients in	Per Ce	nt.		Tempe	rature C	oessicie	nts in	Per Ces	ıt.
v	0-12	2.6° 12	.6-25°	25–35°	35-50°	50-65°	v	0-13	3.1° 13.1	-25° 2	5-35°	35-50°	50-65°
	2 2. 8 2. 2 2. 4 3.	05 98 99 95 09	2.19 2.38 2.42 2.38 2.42 2.39 2.42	1.97 1.89 1.89 1.90 1.88 1.97 1.96	1.58 1.70 1.65 1.67	1.34 1.37 1.42 1.38 1.42		2 3. 8 3. 2 3. 4 3. 8 3.	08 2 19 2 17 2 21 2 22 2 27 2 24 2	.42 .38 .45 .44 .47 .49 .41	1.91 1.62 2.05 2.04 2.10 2.14 2.08 2.16 2.09	1.42 1.58 1.61 1.77 2.04 2.01 2.01	1.30 1.36 1.44 1.46 1.53

Ротл	ASSIUM	ALUM	INIUM S	SULPHATE	(H.).	Po	OTASSI	UM Ac	ETATE	(Ws.	AND	C.).
		Molecule	ar Condu	ctivity.				Molecul	ar Cond	luctiivt	y.	
v	$\mu_v 0^\circ$	$\mu_v 12.5^\circ$	$\mu_v 25^{\circ}$ μ	$\mu_v 35^\circ \mid \mu_v 50^\circ$	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	$\mu_v 12.5^\circ$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^{\circ}$	$\mu_v 65$
4 8 32 128 512 1024 2048 4096	78.9 101.2 127.6 158.8 177.8 197.5 218.8	108.9 140.8 177.7 223.7 250.5 281.8 314.7	140.3 1 182.2 2 232.9 2 294.9 3 332.7 4 378.4 4	42.3 172.5 65.3 207.5 15.7 255.1 83.7 356.9 502.8 70.0 626.4 28.8	240.6 317.4 426.2	4 8 16 32 64 128 256 512 1024 2048 4096	46.13 48.60 53.09 55.57 57.17 58.33 59.24 59.06	79.91 81.14 82.09	88.43	117 . 46 	144.6 155.0 162.3 165.1 166.7	157. 177. 190. 199. 203. 210.
		Percenta	ge Dissoc	ciation.			1	Percenta	ge Diss	ociatio	n.	
v	a0°	a12.5°	a25° o	ι35° α50°	a 65°	v	a0°	a12.5°	a25°	a35°	a50°	a65°
4 8 32 128 512 1024 2048 4096						4 8 16 32 64 128 256 512 1024 2048 4096	77.8 82.0 89.6 93.7 96.4 98.4 100.0 99.6	76.3 81.8 89.7 94.4 97.4 98.9 100.0 99.8	76.6 81.3 89.5 93.9 96.7 98.3 99.7 100.0	76.9 81.5 90.4 94.7 97.6 99.3 99.9 100.0	77.5 86.7 93.0 97.4 99.0 100.0	74.7 84.0 90.3 94.7 96.0 100.0
Temp				onductivity	Units.	Temp		Coeffici			ctivity	Units.
v	0–12	.5° 12.5-	25° 25–3	5° 35–50°	50-65°	v	0-12	.5° 12.5-	25° 25	-35° 3	5-50°	50–65°
32 128 512 1024 2048 4096	2 3.1 8 4.0 2 5.1 4 5.8 8 6.7	17 3. 01 4. 19 5. 31 6. 74 7.	51 2.5 31 3.3 42 5.0 69 6.3 57 7.0 73 9.1 10.3	35 2.63 98 4.88 94 5.91 91 96 10.42	1.57 2.21 4.15 4.62 7.35	4 8 16 32 64 128 256 512 1024 2048 4096	1.4 1.6 1.7 1.8 1.8 1.8	18 1. 34 1. 35 1. 36 2. 38 2. 38 2.	71 1 90 2 98 2 02 2 06 2 11 2	.74 .02 .09 .17 .23	1.95	1.88 2.17 2.36 2.49 2.57 2.94
2	Temper	rature Co	efficients	in Per Cer	ıt.	7	Temper	ature Co	efficien	ts in P	er Cen	t.
v	0-12	.5° 12.5-	25° 25–3	5° 35-50°	50-65°	v	0-12	.5° 12.5-	-25° 25-	-35° 35	5-50°	50–65°
32 128 512 1024 2048 4096	3.1 3.1 3.2 3.2 4 3.2 3.4	13 2. 14 2. 27 2. 27 2. 11 2.	30 1.7 35 1.8 49 2.1 54 2.1 62 2.1 74 2.4 82 2.4	4 1.22 8 1.72 5 1.65 1 2 2.22	0.87 1.06 1.63 1.29 1.64	4 8 16 32 64 128 256 512 1024 2048 4096	3.0 3.1 3.1 3.1 3.0	05 2. 09 2. 5 2. 7 2. 4 2. 99 2.	55 1 58 2 54 2 53 2 54 2 57 1	.97 .07 .05 .06	1.95	1.46 1.50 1.52 1.53 1.56 1.76

	Potas	sium S	ULPHO	CYANAT	re (J. a	ND C.).	Ам	MONI	лм Сн	LORID	E (W.	. AND	C.).
		Mol	ecular (Conducti	vity.					Molecul	ar Conc	ductivit	y.	
v	$\mu_v 0^{\circ}$	μ,13.5°	$\mu_v 25^\circ$	$\mu_{\rm c}30^{\circ}$	μ ₀ 35°	$\mu_v 50^\circ$	μ_v65°	Į,	$\mu_s 0^{\circ}$	μ ₀ 14.5°	μ,25°	μ.35°	μ ₀ 50°	μ _ε 65°
2 4 8 16 32 128 512 1024 2048	57.75 62.48 64.26 65.99 70.70 71.28 72.25 72.86	79.47 87.87 90.81 93.39 100.1 101.2 102.6 103.0	100.0 110.9 115.4 118.7 127.3 129.8 131.5 133.7	110.2 121.9 126.8 130.8 139.4 142.3 144.3 147.3	127.6 132.9 142.3 149.3 153.7	160.2 166.7 179.6 190.0 192.6	191.1 201.8 219.6 232.4 239.3 250.9	2 8 16 32 128 512 1024 2048	62.76 66.17 68.02 70.20 73.08 74.39 74.84	89.86 96.11 99.26 102.4 107.6 109.8 110.5	109.2 118.6 123.2 127.6 133.4 136.8 137.8	153.7 161.4 165.4	179.4 194.0 206.2 211.4	235.9 251.1 259.5 269.7
		Perc	centage	Dissocia	tion.				1	Percenta	ge Diss	sociatio	m.	
v	a0°	a13.5°	a25°	a30°	a35°	a50°	$a65^{\circ}$	v	a0°	a14.5°	a25°	a35°	a50°	a65°
2 4 8 16 32 128 512 1024 2048	79.3 85.8 88.2 90.6 97.0 97.8 99.2 100.0	85.3 88.2 90.7 97.2 98.3 99.6 100.0	74.8 83.0 86.3 88.8 95.2 97.1 98.4 100.0	74.8 82.8 86.1 88.8 94.6 96.6 98.0 100.0	79.2 82.4 88.3 92.6 95.4	77.6 80.8 87.0 92.1 93.3	76.2 80.4 87.5 92.6 95.4 100.0	2 8 16 32 128 512 1024 2048	84.0 88.4 90.8 93.8 97.6 99.4 100.0	81.3 87.0 89.8 92.7 97.4 99.4 100.0	79.2 86.1 89.4 92.6 96.8 99.3 100.0	85.4 88.6 91.9 96.5 98.9	82.2 88.9 94.4 96.8 98.2	81.8 88.9 94.6 97.8
	Temper	rature Co	efficient	ts in Con	nductivit	y Units	•	Tem	peratur	e Coeffic	ients in	Cond	uctivity	Units.
v	0-13.5	° 13.5–2	5° 25–3	30° 30-	-35° 3	5-50°	50-65°	v	0-14	.5° 14.5	-25° 25	5-35° 3	35-50°	50-65°
2 4 8 16 32 128 512 1024 2048	1.33 1.88 1.97 2.04 2.18 2.23 2.26 2.24	3 2.0 7 2.1 4 2.1 8 2.3 8 2.4 6 2.4	0 2. 4 2. 8 2. 8 2. 6 2. 9 2.	28 41 2 42 1 50 2 56	2.20 2.42 1.99 2.28 2.78	2.17 2.25 2.49 2.74 2.60 3.01	2.06 2.34 2.67 2.83 3.11 2.97		2 2.3 8 2.3 2 2.4 4 2.4	06 2 15 2 22 2 38 2 44 2 46 2	.14 .28 .40 .46 .57	2.07 2.42 2.50 2.61 2.80 2.86 2.94	2.10 2.44 2.69 2.99 3.07 3.15	2.17 2.51 2.79 2.99 3.21 3.69 3.14
	Te	mperatu	re Coeff	cients in	n Per Ce	ent.			Temper	rature C	oefficie	nts in l	Per Cen	it.
v	0-13.5	° 13.5–2	5° 25–3	80° 30-	-35° 36	5-50°	50-65°	v	0-14	.5° 14.5	-25° 25	-35° 3	35-50°	50-65°
2 4 8 16 32 128 512 1024 2048	3.00 3.07 3.09 3.08 3.13 3.13 3.07	2.2 7 2.3 9 2.3 8 2.3 8 2.4 2.4 2.4	8 1. 6 1. 3 2. 8 1. 3 1.	98 03 1 90 1 93 1 95	.80 .85 .43 .60	1.70 1.69 1.75 1.84 1.69	1.29 1.40 1.49 1.49 1.62	10 3 12 51: 102 204	2 3 8 3 2 3 4 3	11 2 16 2 16 2 26 2 29 2	. 23 . 30 . 34 . 29 . 34	1 .90 2 .02 2 .02 2 .02 2 .04 2 .10 2 .09 2 .13	1.61 1.71 1.75 1.85 1.86 1.89	1.34 1.40 1.44 1.45 1.52 1.72 1.44

	Ами	MONIUM	BRO	MIDE	(W.).		TET	RAETI	IYL AM	MONI	um Io	DIDE (SH.).
		Molecul	ar Con	ductivi	ity.			Λ	I olecula:	r Cond	uctivity	<i>j</i> .	
v	$\mu_v 0^\circ$	$\mu_v 12.5^\circ$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^\circ$	v	$\mu_v 0^\circ$	$\mu_v 12.5^\circ$	$\mu_v 25^{\circ}$	$\mu_v 35^\circ$	μ _ν 50°	$\mu_v 65^{\circ}$
2 4 8 16 32 128 512 1024	67.26 69.36 71.53 73.50 76.18 77.55 77.06	89.81 	115.1 123.6 127.4 131.7 137.9 141.3 140.9		174.2 182.2 196.3 196.3 196.3 19206.2 19213.7	220.9	8 32 128 512 1024 2048 4096	38.6 46.5 51.1 52.8 53.3 54.4 54.0	54.6 65.4 72.1 73.9 75.2 77.0 76.5	72.8 86.8 95.4 98.0 99.3 101.7 101.6	105.0 114.8 118.4 119.7 122.5)	
		Percenta	ge Dis	sociati	on.				Percenta	ge Dis	sociati	on.	
\overline{v}	a0°	a12.5°	a25°	a35°	a50°	a65°	v	a0°	a12.5°	a25°	a35°	a50°	a65°
2 4 8 16 32 128 512 1024	90.0 92.8 95.4 98.9 100.0 100.0	83.5 88.8 91.2 94.1 98.1 100.0 100.0	81.7 87.7 90.4 93.5 97.9 100.0 100.0	80.6 90.4 93.2 97.3 99.6 100.6	78.8 82.4 4 	93.7 97.0	8 32 128 512 1024 2048 4096	69.6 83.9 92.2 95.3 96.2 100.0 98.7	70.9 84.9 92.3 94.6 96.2 100.0 98.0	71.6 85.3 93.7 96.3 97.6 100.0 99.9	85.4 93.4 96.3 97.5 99.7		
Temp	peratur	e Coeffic	ients in	Cond	luctivity	Units.	Temp		e Coeffic		n Cond	uctivity	Units.
v	0-12	2.5° 12.5	-25° 25	-35°	35–50°	50–65°	v	0-12	2.5° 12.5	-25° 2	5–35°	35-50°	50-65°
4	2 2.3 8 2.3 2 2.4	09 2 12 2 21 2 35 2 42 2	25 35 45 59 68	2.16 2.32 2.59 2.63 2.71 2.76 2.86	2.36 2.55 2.75 2.99 3.43	2.43 2.58 2.87 2.98 3.08 3.11	32 128 512 1024 2048 4096	2 1.68 1.64 1.68 1.68 1.68 1.68 1.68 1.68 1.68 1.68	51 1 67 1 69 1 76 1 78 1	.92 .93 .98	1.57 1.82 1.94 2.04 2.04 2.08 2.12		
	Tempe	rature C	oefficie	nts in	Per Cer	nt.	1	Гетре	rature C	oefficie	nts in	Per Cen	t.
v	0-12	2.5° 12.5-	-25° 25	-35°	35-50°	50-65°	v	0-12	2.5° 12.5-	-25° 25	5-35°	35-50°	50-65°
	2 3.0 8 3.0 2 3.	01 2 96 2 01 2 08 2 12 2	36 40 42 46 49	1.88 1.88 2.03 2.00 1.98 1.85 2.03	1.61 1.61 1.67 1.77 2.02	1.39 1.42 1.46 1.45 1.44 1.41	32 128 512 1024 2048 4096	2 3. 3 3. 2 3. 4 3. 8 3.	25 2 29 2 20 2 20 2 27 2	. 60 . 56 . 59 . 58 . 57	2.15 2.09 2.03 2.08 2.07 2.04 2.08		

Ам	MONI	UM NIT	TRATE	(Ws	. AND	C.).	Ам	MONIU	M Sui	PHAT	E (Ws	. AND	C.).
		Molecul	ar Cone	ductiv	ity.				Molecul	ar Con	ductivit	y.	
v	μ,0°	$\mu_v 12.5^\circ$	$\mu_v 25^{\circ}$	μ,35	° µ _v 50°	μ_v65°	v	$\mu_v 0^\circ$	$\mu_v 12.5^\circ$	με25°	μ _ε 35°	μ,50°	μ _ε 65°
2 8 32 128 512 1024 2048 4096	58.44 64.35 68.81 71.64 73.63 74.69 75.25 76.37	84.25 94.30 98.45 101.39 102.51	113.58 123.13 128.44 132.64 134.43 134.79	135.0 146.5 152.9 157.4 159.4 160.3	18 148 .9 17 169 .3 13 184 .2 12 195 .2 18 201 .4 14 203 .7 19 205 .3 12	204.3 223.0 237.5 246.3 249.3	128 512 1024 2048	98.06 115.27 130.95 139.69 143.84 150.62	112 09 136 28 160 26 182 65 195 77 202 31 209 74 211 55	179 . 57 210 . 98 241 . 38 259 . 21 267 . 62 275 . 96	213.19 254.86 291.69 313.00 2322.55 337.47	9 270.8 6 324.3 9 375.8 0 417.0 6 428.4	393.3 461.7 506.5
		Percenta	ige Dis	sociati	ion.				Percenta	age Dis	sociatio	on.	
v	a0°	a12.5°	a25°	a35°	a50°	a65°	v	a0°	a12.5°	a25°	a35°	a50°	a65°
2 8 32 128 512 1024 2048 4096	76.5 84.2 90.1 93.8 96.4 97.8 98.5 100.0	74.8 79.9 89.4 93.3 96.1 97.2 98.0 100.0	73.6 82.2 89.3 93.2 96.2 97.5 97.8 100.0	73.0 82.0 90.0 93.0 96.0 97.0 98.0 100.0	6 82.5 0 89.7 5 95.1 3 98.1 5 99.2 0 100.0	81.2 88.6 94.4 97.9 99.1	2 8 32 128 512 1024 2048 4096	54.6 65.0 76.5 86.9 92.7 95.4 100.0 99.8	52.9 64.4 75.7 86.3 92.5 95.6 99.1 100.0	63.9 75.1 85.9 92.3 95.2 98.2	62.6 74.8 85.7 91.9 94.7 99.1		
Tem	peratur	e Coeffic	cients in	1 Cone	ductivity	Units.	Tem	peratur	e Coeffic	cients i	n Cond	uctivity	Units.
v	0-12	2.5° 12.5	-25° 25	5–35°	35–50°	50–65°	v	0-12	2.5° 12.5	-25° 2	5-35°	35-50°	50-65°
	8 2. 2 2. 4 2. 8 2.	59 2 04 2 15 2 22 2 23 2 25 2	.33 .31 .40 .50 .55 .55	1.80 2.17 2.34 2.45 2.48 2.50 2.56 2.56 2.58	1.96 2.28 2.51 2.82 2.95 2.95 2.95	2.06 2.33 2.59 2.82 2.99 3.04 3.09		8 3. 2 3. 8 4. 4 4. 4 4. 8 4.	06 3 60 4 14 4 49 5 68 5 73 5	.46 .06 .70 .08 .22 .30	3 . 36 4 . 39 5 . 03 5 . 38 5 . 49 6 . 15		2.79 3.63 4.60 5.73 5.97 6.65 6.57
	Tempe	rature C	oefficie	nts in	Per Cer	nt.		Тетре	rature C	oefficie	nts in	Per Cer	ıt.
v	0-12	2.5° 12.5	-25° 25	-35°	35-50°	50–65°	v	0-12	2.5° 12.5	-25° 2	5–35°	35-50°	50-65°
3: 12: 51: 102- 204: 409:	8 3.0 2 3.0 4 2.1 8 2.1	47 2 97 2 00 2 02 2 99 2 99 2	.77 .45 .44 .47 .49 .44	1.77 1.91 1.90 1.91 1.86 1.86 1.90 1.87	1.64 1.69 1.71 1.84 1.87 1.85 1.86	1.38 1.38 1.41 1.44 1.48 1.49 1.51		8 3. 2 3. 4 3. 8 3.	12 2 12 2 16 2 21 2 25 2 14 2	.54 .53 .57 .60 .58 .53	1.87 2.08 2.08 2.08 2.08 2.05 2.23		1.29 1.34 1.42 1.52 1.43 1.55 1.49

	Амм	MONIUM (Ws	ACII			E	Амм	IONIU	M ALUM	MINIU	M SUL	PHATE	(H.).
		Molecul	ar Con	ductiv	ity.				Molecule	ar Con	ductivi	ty.	
v	$\mu_v 0^\circ$	$\mu_v 12.5^\circ$	$\mu_v 25^\circ$	$\mu_v 35$	$^{\circ}$ $\mu_v 50^{\circ}$	$\mu_v 65^\circ$	v	$\mu_v 0^\circ$	$\mu_v 12.5^\circ$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^\circ$
8 32 128 512 1024 2048	183.40 223.58 265.24 289.79 295.22 303.41	378.25 386.88	258.00 322.68 404.14 463.20 483.51 496.86	277 . 1 349 . 2 444 . 7 522 . 2 547 . 0 573 . 4	8 286.0 24 374.2 74 485.9 24 593.5 05 647.1 16 681.5	303.2 396.5 525.3 666.1 794.5 820.6	8 16 32 64 128 512 1024 2048 4096	80.0 102.5 130.1 162.2 181.0 201.8 224.2	110.9 143.1 182.7 230.9 257.5 288.2 322.8	143.1 185.5 238.8 304.5 342.4 386.4 437.6	261.5 284.8 365.9 415.1 485.8	3 247.5 5 325.8 3 347.5 477.5 8 643.1	384.8 426.3 573.8
		Percenta	ige Dis	sociati	ion.				Percenta	ge Dis	sociati	on.	
v	a0°	a12.5°	a25°	a35°	a50°	a65°	v	a0°	a12.5°	a25°	a35°	a50°	a65°
2 8 32 128 512 1024 2048 4096	51.0 60.3 73.5 87.1 95.2 97.0 99.7 100.0	46.4 55.7 69.6 84.4 94.2 96.3 99.6 100.0	42.7 51.9 65.0 81.3 93.2 97.4 99.9 100.0	39. 48. 60. 77. 90. 94. 99. 100.	1 40.1 6 52.5 1 68.2 5 83.3 9 90.8 4 95.6	35.5 46.4 61.4 77.9 93.0 96.0	8 16 32 64 128 512 1024 2048 4096						
Tem	peratur	e Coeffic	cients in	ı Cone	ductivity	Units.	Temp	peratur	e Coeffic	ients ir	n Cond	uctivity	Units.
v	0-12	2.5° 12.5	-25° 25	5–35°	35–50°	50-65°	v	0-12	2.5° 12.5	-25° 25	5-35°	35–50°	50-65
	8 5.1 2 7.1 4 7.3 8 7.3	04 2 48 3 90 5 08 6 33 7 73 7	.73 .45 .21 .79 .73 .74	1.91 2.66 4.06		0.77 1.15 1.49 2.63 4.84 9.83 9.27 8.85	10 32 64 128 512 1024 2048 4096	3	25 3 21 4 50 5 12 6 91 7	.39 .49 .89 .79 .86	2.57 3.49 4.60 6.14 7.27 9.94 0.27	3.01 4.29 4.18 7.44 10.49	2.20 2.70 3.93 5.25 6.40 12.56
	Temper	rature C	oefficier	ıts in	Per Cen	at.	2	Temper	rature C	oefficie	nts in	Per Cer	nt.
v	0-12	2.5° 12.5	-25° 25	5–35°	35–50°	50-65°	v	0-12	.5° 12.5	-25° 25	5-35°	35-50°	50-65°
	2 2.4 24 2.4 8 2.4	20 1 00 1 22 1 44 1 48 2 55 1	.22 .23 .54 .80 .00 .94	0.74 0.82 1.01 1.27		0.34 0.40 0.40 0.54 0.82 1.52 1.36 1.23	10 32 64 128 512 1024 2048 4096	2 3 3 3 3 3 4 3 8 3 8 3	24 2 39 2 38 2 42 2	.37 .46 .55 .64 .73	1.80 1.88 1.93 2.02 2.12 2.57 2.35	1.37 1.48 1.64 1.47 2.03	1.08 1.09 1.21 1.51 1.34

A	Аммо			Hw.)		IATE	A	MMO			Hw.)	Sulph	ATE
		Molecu	lar Co	nductivi	ity.				Molec	ılar Co	onductiv	ily.	
v	μ,0°	μ,12.5°	$\mu_v 25$	μ,35°	μ ₀ 50°	μ _ε 65°	υ	$\mu_{v}0^{\circ}$	$\mu_e 12.5$	° µ,25	° μ _ε 35°	μ _e 50°	μ _ε 65°
128 512 1024 2048	77.5 88.9 100.8 129.5 165.5 187.0 211.9 240.7	123.2 140.3 183.0 238.0 272.0 310.7	137.3 159.5 182.2 240.2 321.0 372.0 428.5 492.2	188.3 216.0 285.9 385.9 455.7 530.0		288.79 333.50 459.09 648.99	16 32 128 512 1024 2048	103.6 119.7 136.4 172.3 202.6 215.6 222.0 234.4	133 2 155 4 178,2 228,4 274 4 294,2 313,5 328,4	190.0 220.8 288.3 355.3 386.3 414.0	3 219.3 3 255.1 1 336.4 7 423.2 2 471.2 0 518.4	223 33 268 08 316 57 436 52 585 31 658 87 757 75 868 79	299 . 59 352 . 20 489 . 76 673 . 80 789 . 57 924 . 29
	1	Percenta	ige Dis	ssociatio	on.				Percen	tage D	issociat	ion.	
v	a0°	a12.5°	a25°	a35°	a50°	a65°	v	a0°	a12.5°	a25°	a35°	a50°	a65°
8 16 32 128 512 1024 2048 4096		re Coeffi					8 16 32 128 512 1024 2048 4096						
v	0-13	2.5° 12.5	-25°	25–35°	35-50°	50-65°	v	0-1	2.5° 12	5-25°	25-35°	35-50°	50-65°
102 51: 102 2048 4096	6 2. 3. 8 4. 2 5. 4 6. 8 7.	74 2 16 3 28 4 80 6 80 8 90 9	2.47 2.90 3.35 1.57 5.64 8.00 0.40 0.93	2.88 2.38 4.57 6.49 8.37 10.15		2.67 3.31 3.94 5.90 9.35 10.03 12.24 13.12	1 3 12 51 102 204 409	6 2 2 3 8 4 2 5 4 6 8 7	.37 .70 .34 .49 .74 .29 .32 .52	2.38 2.82 3.41 4.78 6.50 7.36 8.04 0.38	2.24 2.87 3.43 4.83 6.75 8.50 10.44 13.57		1.82 2.10 2.38 3.55 5.90 8.71 11.10 12.56
	Тетре	rature (Coeffic	ients in	Per Ce	nt.		Tempe	erature	Coeffic	ients in	Per Ce	nt.
v	0-13	2.5° 12.5	5-25°	25-35°	35–50°	50–65°	v	0-1	2.5° 12	.5-25°	25–35°	35–50°	50-65°
102 51: 102 204: 409	6 3. 2 3. 8 3. 2 3. 4 3. 8 3.	08 14 2 31 51 51 64 2 73 3	2.32 2.35 2.39 2.50 2.79 2.94 3.03 3.07	1.86 1.90 2.02		1.30 1.38 1.44 1.60 1.84 1.66 1.71 1.54	1 3 12 51 102 204 409	6 2 2 2 8 2 2 2 4 2 8 3	.29 .26 .45 .61 .83 .92 .37 .21	1.79 1.82 1.91 2.09 2.37 2.50 2.57 3.16	1.38 1.51 1.55 1.68 1.90 2.20 2.52 2.96		0.81 0.78 0.75 0.81 1.01 1.32 1.46 1.48
	1	1	1										

	Аммо	NIUM (H.	COPPI AND H		JLPHAT	E		- 11	Calciu (Sh	M Ci		DE	
		Molecul	ar Con	ductivi	ity.				Molecule	ar Con	ductivi	ty.	
v	μ ₀ 0°	$\mu_v 12.5^{\circ}$	$\mu_v 25^\circ$	$\mu_v 35$	$\circ \mid \mu_v 50^\circ$	$\mu_v 65^{\circ}$	v	$\mu_v 0^{\circ}$	$\mu_v 12.5^\circ$	$\mu_v 25^{\circ}$	$\mu_v 35$	$^{\circ}$ $\mu_v 50^{\circ}$	$\mu_v 65^{\circ}$
4 8 32 128 512 1024 2048 4096	106.3 122.7 153.5 187.8 221.6 236.0 246.4 259.4	146.6 169.9 213.8 262.4 312.1 333.5 347.9 367.3	190.4 220.7 280.2 346.7 411.7 442.6 463.6 494.0	225.7 262.2 334.3 412.0 495.7 532.3 560.0 597.3	2 323.5 3 417.5 6 521.1 7 634.0 5 697.8 0 744.1	383.1 496.9 630.1 768.9 850.8 916.2	2 4 8 32 128 512 1024 2048 4096	80.5 95.3 106.4 117.8 124.0 126.5 131.4 131.4	109.6 132.1 149.3 165.6 174.8 179.0 185.0 185.2	142.1 172.5 197.5 219.2 232.4 236.1 245.0 246.5	207.4 238.0 2 265.3 281.1 284.0 298.3	237.7 4 258.5 0 306.5 8 340.8 9 362.4 6 3 382.0	378.5 418.9 452.5
	i	Percenta	ge Dis	sociati	ion.				Percenta	ge Dis	sociati	ion.	
v	a0°	a12.5°	a25°	a35°	a50°	a65°	v	a0°	a12.5°	a25°	a35°	α50°	a65°
4 8 32 128 512 1024 2048 4096							2 4 8 32 128 512 1024 2048 4096	61.2 72.5 80.9 89.6 94.3 96.2 100.0 99.9	59.1 71.3 80.6 89.4 94.2 96.1 100.0 99.9	69.9 80.1 88.9 94.6 95.7 99.3 100.0	69. 79. 88. 93. 94. 8 99. 100.	62.2 1 67.7 3 80.2 6 89.2 9 94.9 8 100.0	67.1 79.7 88.2 95.3
remp		.5° 12.5		1	35-50°	50-65°	remp		e Coeffic 2.5° 12.5			35-50°	50-65°
32 128 512 1024 2048 4096	1 3.5 3 3.5 2 4.8 5.9 7.5 1 7.8 8 8.5	22 3 78 4 82 5 97 6 24 7 80 8 12 9	.50 .06 .31 .74 .97 .73 .26	3.53 4.15 5.41 6.59 8.40 8.99 9.64 0.33		3.76 3.97 5.29 7.27 8.99 10.20 11.47 12.57	4	2 2. 4 8 2. 3. 3. 4. 4. 4. 8 4.	32 2 94 3 43 3 82 4 06 4 20 4 28 4	.60 .23 .85 .29 .57 .70 .80 .90	2.70 3.49 4.05 4.66 4.94 4.85 5.33 5.35	3.41 4.57 5.00 5.37 5.58	1.71 1.62 1.78 1.84 1.86
	Temper	rature C	oefficie	nts in	Per Cer	nt.		Tempe	rature C	oefficie	ents in	Per Cer	nt.
v	0-12	2.5° 12.5	-25° 25	5-35°	35-50°	50-65°	v	0-12	2.5° 12.5	-25° 2	5-35°	35–50°	50-65°
	8 3.1 2 3.1 4 3.1 8 3.1	08 2 14 2 18 2 27 2 31 2 30 2	.39 .48 .57 .55 .62 .66	1.88 1.93 1.90 2.04 2.03		1.35 1.23 1.26 1.39 1.42 1.46 1.54 1.59	33 128 512 102 ² 2048 4090	4 8 3. 2 3. 8 3. 2 3. 4 3. 3.	08 2 21 2 24 2 27 2 39 2 02 2	.46 .58 .58 .61 .68 .58 .59	1.90 2.02 2.05 2.12 2.12 2.05 2.17 2.17	1.64 1.92 1.89 1.90	1.48 1.55 1.57 1.53 1.66

C.	ALCIUI	M Bro	MIDE	(W. A	AND H	w.).	(CALCI	UM NI	TRAT	E (J.	AND W	.).
		Molecule	ar Con	nductivi	ity.				Molecul	ar Co	nductiv	ity.	
v	μ ₀ 0°	μ,14.4°	$\mu_v 25^\circ$	° µ,35°	μ,50°	$\mu_{e}65^{\circ}$	v	μ ₀ ()°	μ _ε 9.7°	$\mu_{\rm t}25$	° µ,35	° μ.50°	$\mu_{e}65$
2 8 16 32 128 512 1024 2048	85.95 97.74 103.0 108.2 117.3 122.9 126.3 126.8	122.7 144.0 150.5 158.4 173.3 182.0 186.9 188.2	151.0 177.3 188.4 199.0 217.9 229.3 236.4 239.3	5 214.8 4 227.0 0 240.8 9 265.0 7 278.8 5 286.8	3 296 . 41 5 318 . 70 0 350 . 57 5 375 . 49 5 386 . 64	1339.40 1362.30 1391.68 7431.83	2 4 8 16 32 128 512 1024 2048	85.50 94.95 102.3 114.5 122.6 125.7 130.0	85.83 112.8 123.9 133.5 151.0 160.6 164.2 171.4	187. 212. 226.	3 188. 2 209. 7 225. 0 255. 7 274. 0 282.	212 6 2 237 9 8 6 285 6 4 323 1 2 349 4	350 397 432
	1	Percenta	ge Di	ssociati	on.				Percente	ige Di	ssocial	ion.	
v	a0°	a14.4°	a25°	a35°	a50°	a65°	v	a0°	a9.7°	a25°	a35	° a50°	a65°
2 8 16 32 128 512 1024 2048	67.7 77.1 81.2 85.3 92.5 96.9 99.6 100.0	65.2 76.5 80.0 84.2 92.1 96.7 99.3 100.0	63.1 74.1 78.3 83.1 91.0 95.9 98.3	1 73.7 7 78.1 1 82.8 0 90.9 9 95.8 7 98.3	7 71.3 75.8 81.5 9 89.7 5 96.0 98.9	69.6 74.4 80.4 88.6 94.1 97.9	2 4 8 16 32 128 512 1024 2048	50.7 65.8 73.0 78.7 88.1 94.3 96.7 100.0	50.1 65.8 72.3 77.9 88.1 93.7 95.8 100.0	77. 87. 93. 96.	8 64 8 71 3 77 4 87 4 93 8 96	57.2 4 64.0 8 2 76.8 4 86.9 8 94.0 8	76 86 86 94
		e Coeffic	-									ductivity	
v 10 33 124 513 1024 2043	2 2.8 8 3.2 6 3.3 2 3.4 8 3.8 2 4.1 4 4.2	21 3 30 3 49 3 89 4 10 4 21 4	-25° 2 .67 .16 .58 .83 .21 .50 .68 .84	3.01 3.73 3.92 4.15 4.71 4.88 5.00	35–50°	2.84 4.03 4.39 4.86 5.42 5.54 6.03 6.42		2 3.1 8 3.1 2 3.1 4 4.1	04 2 81 2 98 3 22 3 76 3 92 4 01 4	-25° 3 .31 .91 .29 .54 .99 .32 .60 .64	25-35° 2.40 3.09 3.56 3.79 4.34 4.75 4.79 4.97	3.31 4.00 4.51 5.01 5.30	3 03 3 33 4 33 4 97 5 54 5 77
	Temper	rature C	oeffici	ients in	Per Cei	nt.		Tempe	rature C	oeffici	ients in	Per Cer	nt.
v	0-14	.4° 14.4-	-25° 2	25-35°	35-50°	50–65°	v	0-9.	7° 9.7-	-25°	25-35°	35-50°	50-65
	2 3.3 8 3.3 2 3.3 4 3.3	28 2 20 2 23 2 32 2 34 2 33 2	. 18 .19 .37 .42 .43 .47 .50 .57	2.09		1.30 1.44 1.48 1.52 1.55 1.48 1.56		2 3. 8 3. 2 3. 4 3.	29 2 14 2 15 2 28 2 19 2 19 2	. 58 . 82 . 62 . 64 . 69 . 80 . 71	1.98 1.96 2.04 2.02 2.05 2.10 2.04 2.05	1.76 1.77 1.76 1.83	1.42 1.39 1.51 1.53 1.58

CA	LCIUM	CHR6	OMAT	Е (Н.	AND H	[w.).	C.	ALCIU	M FOR	MATE	Н.	AND W	(.).
	j	Molecul	ar Co	nductivi	ity.				Molecul	ar Con	ductivi	ly.	
v	$\mu_v 0^{\circ}$	$\mu_v 12.5^\circ$	$\mu_v 25$	° µ _v 35°	$\mu_v 50^\circ$	$\mu_{r}65^{\circ}$	v	$\mu_v 0^{\circ}$	$\mu_v 12.5^\circ$	$\mu_v 25^\circ$	$\mu_v 35$	$^{\circ}$ $\mu_v 50^{\circ}$	μ _v 65°
8 16 32 128 512 1024 2048 4096	57.7 64.6 72.2 91.2 106.7 111.6 114.4 116.1	80.9 90.4 101.4 126.9 150.0 157.3 160.8 162.5	105.1 118.1 133.1 167.1 198.2 208.2 214.2 216.	5 140.9 1 158.2 5 200.8 7 239.8 8 253.3 0 264.0	1 158.03 0 180.62 2 204.40 8 261.25 5 315.98 3 332.29 0 344.41 5 340.24	214.73 243.98 315.84 387.01 401.22 418.31	4 8 32 128 512 2048 4096	58.4 67.2 81.4 92.2 95.7 101.4 101.3	81.7 94.4 115.3 131.2 135.5 144.6 145.4	181.9 190.4	149.1 184.1 184.1 1 223.1 1 230.1	7 190.0 7 235.5 6 268.6 5 283.2 6 286.6	
	1	Percente	ige Di	issociati	ion.			P	Percentag	ge Diss	sociatio	on.	
v	a0°	a12.5°	a25°	° a35°	a50°	a65°	v	a0°	a12.5°	a25°	a35°	a50°	a65°
8 16 32 128 512 1024 2048 4096	49.7 55.6 62.2 78.5 91.9 96.1 98.5 100.0	49.8 55.6 62.4 78.1 92.3 96.8 98.9 100.0		8 53.9 6 60.3 5 76.3 9 91.3 6 96.3 0 100.0	52.44 59.35 8 75.85 91.75 8 96.48 100.00	51.23 5 58.20 5 75.35 5 92.33 8 95.72	4 8 32 128 512 2048 4096	57.6 66.3 80.4 91.0 94.5 100.0 100.0	56.2 64.9 79.3 90.2 93.2 99.5 100.0	80.3 91.3 95.4 99.6	3 65.3 8 80. 5 92.3 1 97. 0 100.	3 66.3 6 82.2 3 93.7 5 98.8 0 100.0	64.4 80.3 92.5 97.6 100.0
Temp	peratur	e Coeffic	cients	in Cond	luctivity	Units.	Temp	eratur	e Coeffic	cients i	n Cond	luctivity	Units.
v	0-12	2.5° 12.5	-25°	25–35°	35-50°	50–65°	v	0-12	2.5° 12.5	-25° 2	5-35°	35-50°	50–65°
16 32 128 512 1024 2048 4096	2 2 2 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3	06 2 33 2 86 3 46 3 66 4 71 4	.99 .25 .54 .25 .90 .12 .26 .29	2.24 2.51		1.99 2.27 2.64 3.64 4.74 4.60 4.93 5.26	32 128 512 2048 4096	2 2. 3 3. 2 3. 3 3.	18 2 70 3 12 3 18 3 46 3	.03 .41 .02 .45 .71 .66	2.15 2.52 3.16 3.73 4.16 4.02 3.86	2.18 2.69 3.39 3.80 4.00	2.26 2.72 3.49 4.13 4.43 4.77
′.	Tempe	rature C	oeffic	ients in	Per Cer	nt.	1	Гетре	rature C	oeffici	ents in	Per Cer	ıt.
v	0-12	2.5° 12.5	-25°	25–35°	35–50°	50–65°	v	0-12	2.5° 12.5	-25° 2	25-35°	35-50°	50-65°
16 32 128 512 1024 2048 4096	3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3	19 2 23 2 14 2 24 2 28 2 24 2	.46 .49 .51 .56 .60 .62 .65	1.85 1.89 1.89 1.99 2.05 2.13 2.34 2.11		1.26 1.26 1.29 1.39 1.50 1.38 1.43 1.55	32 128 512 2048 4096	2 3. 3. 3. 3. 3. 3.	24 2 32 2 38 2 32 2 41 2	.49 .55 .62 .63 .74 .53	2.01 2.02 2.06 2.14 2.29 2.11 2.03	1.69 1.80 1.84 1.79 1.79	1.40 1.43 1.48 1.54 1.56 1.66

ST	RONTI	UM CH	ILORII	DE (J	. AND	Sн.).		STR	ONTIU	и Вн	ROMID	E (W.).	
		Molecul	ar Con	ductiv	ity.				Molecul	ar Co	nductiv	ily.	
v	$\mu_v 0^{\circ}$	μ ₀ 9.9°	$\mu_v 25^{\circ}$	μ_v35	° µ,50°	μ.65°	v	μ.0°	μ,13.5°	μ,25	° µ.35	° μ.50°	μ,65
2 8 16 32 128 512 1024 2048 4096	81.36 92.97 101.1 106.3 118.5 125.0 129.1 133.9 133.3	106.2 124.3 134.5 141.5 157.6 166.1 171.4 176.1	141 .5 173 .7 187 .7 198 .4 225 .0 236 .7 242 .8 248 .7 248 .6	207. 225. 238. 271. 285. 294.	4 265.6 9 285.6 7 305.7 6 342.4 4 367.7 1 373.0 3 383.2	350.2 377.5 424.6 453.9 463.3 476.5	2 4 8 16 32 128 512 1024 2048	88.03 100.0 103.7 110.0 171.8 128.8 129.1	122.1 141.8 148.1 157.2 170.6 185.4 186.6	153. 180. 190. 202. 219. 239. 239.	6 217. 0 228, 2 243. 1 267. 1 289. 6 292.	256.3 2 282.5 1 9 316.9 1 356.2 9 380.3	343 388 437 470
	i	Percenta	ge Dis	sociat	ion.				Percenta	ige Di	issocial	ion.	
v	a0°	a9.9°	a25°	a35°	a50°	a65°	v	a0°	a13.5°	a25°	a35	° a50°	a65°
2 8 16 32 128 512 1024 2048 4096	60.8 69.5 75.5 79.4 88.5 93.4 96.4 100.0 100.0	60.3 70.6 76.4 80.4 89.5 94.3 97.3 100.0	56.9 69.8 75.5 79.8 90.5 95.2 97.6 100.0	75. 79. 90. 95. 97.	1 67.7 2 72.8 5 77.9 5 87.3 0 93.7 9 95.1 0 97.7	77.5 87.2 93.2 95.2 97.8	2 4 8 16 32 128 512 1024 2048	68.2 77.5 80.3 85.2 91.2 99.8 100.0	76.0 79.4 84.2 91.4 99.4 100.0	75 79 84 91 99 100	4 74. 3 78. 4 83. 4 91. 8 99.	63.1 3 69.6 0 4 78.1 4 87.7 2 93.7	77. 87. 93.
Temp				n Cone	luctivity	Units.	Temp					luctivity	Units.
v	0-9.	9° 9.9-	25° 25	5–35°	35–50°	50-65°	υ	0-13	3.5° 13.5	-25°	25–35°	35-50°	50-65
1024 1024 1024 1024 1024	3.3 3.3 3.3 3.4 4.3 4.3 4.3	16 3 38 3 56 3 96 4 15 4 27 4	. 27 . 52 . 90 . 46 . 67 . 73 . 81	3.05 3.37 3.82 4.03 4.66 4.87 5.13 5.16 5.31		3.92 4.25 4.79 5.48 5.75 6.02 6.22 6.32	4	2 3. 3 3. 2 4. 4 4.	10 3 29 3 50 3 91 4 19 4	.76 .37 .64 .91 .22 .67 .61	2.93 3.66 3.81 4.17 4.80 5.08 5.27		3.76 4.08 4.79 5.43 5.99
	Temper	rature C	oefficie	ents in	Per Ce	nt.		Тетре	rature C	oeffic	ients in	Per Cer	at.
v	0-9.	9° 9.9-	25° 2	5–35°	35-50°	50-65°	v	0-13	3.5° 13.5	-25°	25–35°	35~50°	50-65
10 32 128 512 1024 2048	2 3.3 3 3.3 2 3.3 4 3.3	39 2 34 2 35 2 34 2 32 2 31 2 22 2	.63 .62 .76 .83 .81 .76 .73	2.16 1.94 2.03 2.03 2.07 2.06 2.11 2.07 2.14		1.48 1.49 1.56 1.60 1.57 1.62 1.62	4	2 3. 8 3. 2 3. 4 3.	10 2 17 2 18 2 32 2 25 2 30 2	.26 .38 .46 .49 .17 .52 .47	1.91 2.03 2.01 2.06 2.19 2.13 2.20		1.46 1.44 1.51 1.52 1.57 1.50

	STRON	TIUM]	NITRA	TE (J. AND	W.).	ST	RONTI	UM Ac	ETATI	e (Ws	S. AND	W.).
		Molecul	ar Con	ductiv	vity.				Molecul	ar Con	ductivi	ity.	
v	$\mu_v 0^\circ$	μ _v 10°	$\mu_v 25^\circ$	$\mu_{v}35$	$5^{\circ} \mid \mu_v 50^{\circ}$	$^{\circ}$ $\mu_v 65^{\circ}$	v	$\mu_v 0^{\circ}$	μ,12.5°	$\mu_v 25^\circ$	$\mu_v 35$	$\mu_v 50^\circ$	$\mu_v 65^\circ$
2 4 8 16 32 128 512 1024 2048	63.24 84.33 93.33 100.7 114.8 122.5 126.9 131.3	81.25 112.8 124.8 133.3 151.4 161.6 167.0 171.9	112.4 154.1 171.4 185.3 211.2 227.1 233.7 238.6	135. 181. 205. 223. 254. 273. 282. 287.	206 7 234.3 7 5 284.2 0 322.3 5 351.7	3 288.0 2 354.4 5 400.7 7 441.0	2 4 8 32 128 512 1024 2048 4096	34.94 56.51 70.69 81.89 88.50 91.18 97.30 97.89	80 .19 100 .20 117 .19 128 .09 131 .09 139 .01 139 .60	106.96 135.25 157.69 170.16 177.44 180.07	164.8 193.4 209.2 218.2 219.7	132.4 9 153.7 8 207.7 4 244.3 2 267.0 4 7 279.9	7 193.8 7 256.5 8 305.0 0 336.6
	1	Percenta	ge Dis	sociat	ion.				Percenta	ige Dis	sociati	on.	
v	a0°	a10°	a25°	α35	° a50°	a65°	v	a0°	a12.5°	a25°	a35°	a50°	a65°
2 4 8 16 32 128 512 1024 2048	48.2 71.1 77.7 87.4 93.3 96.7 100.0	47.3 65.5 72.6 77.5 88.1 94.0 97.2 100.0	47 1 64.6 71.8 77.7 88.5 95.2 97.9 100.0	63. 71. 77. 88. 95. 98.	55.8 2 63.4 5 7 76.9 4 87.3 1 92.2	62.5 76.9 86.9 95.7	2 4 8 32 128 512 1024 2048 4096	35.7 72.2 83.6 90.4 93.1 99.3 100.0	35.3 57.4 71.8 83.9 91.7 93.9 99.6 100.0	36.1 58.0 73.4 85.5 92.3 96.4 97.7 100.0	36.1 57.8 73.4 86.1 93.1 97.8 100.0	47.3 54.9 4 74.2 1 87.3 1 95.4 1	54.7 72.4 8 86.1 95.0
	0-10	Coeffic		Con					e Coeffic				
2 4 8 16 32 128 512 1024 2048	2 1.8 3 2.8 3 3.1 3 3.2 3 3.6 4 4.0	20 2. 35 2. 44 3. 66 3. 66 3. 11 4.	75 11 47 99 37 45	2.30 2.76 3.43 3.82 4.28 4.64 4.86 4.89	3.51 4.05 4.57 5.21 5.45	3.17 3.58 4.68 5.21 5.95 6.11	2 4 8 32 128 512 1024 2048 4096	2 1.3 3 1.8 2 2.3 3 2.8 3 3.3 3 3.3	89 2 86 2 82 3 17 3 19 3 84 3	.38 .14 .80 .24 .37 .70 .28	1.46	2.86 3.39 3.85 4.01	1.80 2.67 3.25 4.05 4.64
2	Temper	ature Co	oefficie	nts in	Per Ce	nt.	7	Гетрег	rature C	oefficier	nts in	Per Cei	nt.
v	0-10	° 10–2	25° 25	-35°	35-50°	50-65°	v	0-12	.5° 12.5	-25° 25	-35° 3	35–50°	50–65°
2 4 8 16 32 128 512 1024 2048	3.3 3.3 3.2 3.1 3.1 3.1	8 2. 6 2. 4 2. 9 2. 9 2. 6 2.	44 49 2 60 2 63 2 70 2 66 2	2.05 1.79 2.00 2.06 2.03 2.04 2.08 2.05	1.81 1.80 1.90	1.54 1.53 1.65 1.62 1.69	2 4 8 32 128 512 1024 2048 4096	3.3 3.3 3.4 3.5 3.5 3.4	35 2 34 2 44 2 58 2 50 2 3 2	67 2 79 2 77 2 63 2 82 2 36 2	2.15 2.19 2.27 2.30 2.30 2.30	1.73 1.75 1.84	1.43 1.73 1.56 1.66 1.74

BA	RIUM	Снгов	RIDE (W	. AND	C.).		E	BARIUM	BRO	MIDE	(J. A	ND SH	.).
	M	olecular	r Conduct	ivity.				Λ	lolecule	ar Cond	ductivi	ty.	
$\mu_v 0^{\circ}$	$\mu_v4.6^{\circ}$	$\mu_{v}16.5$	° µ _e 25°	$\mu_e 35^\circ$	μ _e 50°	$\mu_{\rm c}65^{\circ}$	v	$\mu_{\rm e}0^{\circ}$	$\mu_{\rm c}10^{\circ}$	μ,25°	μ _e 35°	$\mu_v 50^\circ$	μ,65°
86.62 99.06 105.2 116.2 125.1 126.5 130.9 132.7	96.6 112.3 119.5 132.4 142.7 144.3 149.3 151.2	151.1 161.2 180.2 194.7 197.2 203.8	179.0 191.6 215.2 232.9 235.5 243.4	178.6 215.3 230.4 260.3 282.6 286.2 296.4 300.5	220.6 272.4 313.9 348.7 378.0 395.0	259 8 322 3 375 3 421 5 453 8 478 0	2 8 16 32 128 512 1024 2048 4096	91.81 103.4 109.3 114.4 123.6 131.8 133.8 134.2	119.3 137.0 144.8 151.0 163.7 175.5 177.2 178.7	158.6 187.4 198.9 209.4 228.5 246.8 249.9 252.6	224 . 0 238 . 8 251 . 4 274 . 4 298 . 2 301 . 6	280 .1 301 .1 320 .2 358 .0 2 379 .6 3 385 .3 7 393 .9	439.2 467.6 475.1 484.6
	Pe	ercentag	e Dissoci	ation.				P	ercenta	ge Diss	sociatio	on.	
a0°	a4.6°	a16.5	° a25°	a35°	a50°	a65°	v	a0°	a10°	a25°	a35°	a50°	a65°
65.3 74.6 79.3 87.6 94.3 95.3 98.6 100.0	63.9 74.3 79.0 87.6 94.4 95.4 98.7 100.0	78.1 87.3 94.4 95.6 98.8	72.4 77.5 87.1 94.3 95.3 98.5	59.4 71.6 76.6 86.6 94.0 95.2 98.6 100.0			2 8 16 32 128 512 1024 2048 4096	68.4 77.1 81.5 85.3 92.1 98.2 99.7 100.0	66.8 76.7 81.0 84.5 91.6 98.2 99.2 100.0	62 8 74 2 78 7 82 9 90 5 97 7 98 9 100 0	73.3 78.1 82.2 89.8 97.6 98.7	8 69 2 74.4 2 79.1 8 88.5 93.8 95.2 97.4	73.9 79.0 83.3 94.0 95.5 97.4
Tempe	rature	Coefficie	ents in Co	nductivi	ity Units	3.	Tempe	erature	Coeffic	ients in	Condi	uctivity	Units.
0-4	.6° 4.	6-16.5°	16.5-25°	25-35°	35-50°	50-65°	v	0-10	0° 10-	25° 25	-35° 3	35-50°	50-65°
8 2 6 3 2	.88 .11 .52 .83 .87 .00	2.66 3.26 3.50 4.02 4.36 4.45 4.57 4.63	2.56 3.28 3.58 4.12 4.49 4.51 4.66 4.80	2.86 3.63 3.88 4.51 4.97 5.07 5.30 5.34		2.61 3.33 4.09 4.85 5.05	10 3: 12: 51: 102- 204:	8 3.6 6 3.6 2 3.6 8 4.6 2 4.3 4 4.3 8 4.4	36 3 55 3 66 3 01 4 37 4 34 4	36 60 89 32 75 85	3.66 3.99 4.20 4.59 5.14 5.18		4.00 4.43 4.84 5.41 5.87 5.99 6.05 6.18
Te	empera	ture Coe	efficients i	in Per C	ent.		T	'empera	ture Co	efficier	nts in l	Per Cer	ıt.
0-4	.6° 4.	6-16.5°	16.5–25°	25-35°	35-50°	50-65°	v	0-10)° 10-	25° 25	-35° 3	35-50°	50-65°
8 2 2 2 4 3 8 3 2 3 4 3	.91 .96 	2.75 2.90 2.93 3.04 3.06 3.08 3.06 3.06 3.06	2.00 2.17 2.22 2.29 2.30 2.29 2.28 2.33	1.91 2.02 2.03 2.10 2.13 2.19 2.18 2.16		1.18 1.22 1.30 1.39	10 3: 128 51: 102- 2048	8 3.5 6 3.5 2 3.5 8 3.5 2 3.5 4 3.5 8 3.5	25 2. 25 2. 20 2. 24 2. 32 2. 24 2.	45 49 58 64 71 74	1.95 2.01 2.01 2.01 2.08 2.08		1.42 1.47 1.51 1.51 1.54 1.55 1.54 1.53
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Molecular $\mu_e 0^{\circ}$ $\mu_e 4.6^{\circ}$ $\mu_e 16.5$ 86.62 96.61 128.2 99.06 112.3 151.1 105.2 119.5 161.2 116.2 132.4 180.2 125.1 142.7 194.7 126.5 144.3 197.2 130.9 149.3 203.8 132.7 151.2 206.3 Percentag a0° a4.6° a16.5° 65.3 63.9 62.1 74.6 74.3 73.2 79.3 79.0 78.1 87.6 87.6 87.3 94.3 94.4 94.4 95.3 95.4 95.6 98.6 98.7 98.8 100.0 100.0 100.0 Temperature Coefficite 0-4.6° 4.6-16.5° 2 2.17 2.66 8 2.88 3.26 3.11 3.50 3.87 4.45 4 4.00 <td< td=""><td>Molecular Conduct $\mu_e 0^{\circ}$ $\mu_e 4.6^{\circ}$ $\mu_e 16.5^{\circ}$ $\mu_e 25^{\circ}$ 86.62 96.61 128.2 150.0 99.06 112.3 151.1 179.0 105.2 119.5 161.2 191.6 116.2 132.4 180.2 215.2 125.1 142.7 194.7 232.9 126.5 144.3 197.2 235.5 130.9 149.3 203.8 243.4 132.7 151.2 206.3 247.1 Percentage Dissocial 65.3 63.9 62.1 60.7 74.6 74.3 73.2 72.4 79.3 79.0 78.1 77.5 87.6 87.6 87.3 87.1 94.3 94.4 94.4 94.3 95.3 98.6 98.7 98.8 98.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2 2.17 2.66 2.56 8</td><td>Molecular Conductivity. $\mu_e 0^{\circ}$ $\mu_e 4.6^{\circ}$ $\mu_e 16.5^{\circ}$ $\mu_e 25^{\circ}$ $\mu_e 35^{\circ}$ 86.62 96.61 128.2 150.0 178.6 99.06 112.3 151.1 179.0 215.3 105.2 119.5 161.2 191.6 230.4 116.2 132.4 180.2 215.2 260.3 125.1 142.7 194.7 232.9 282.6 126.5 144.3 197.2 235.5 286.2 130.9 149.3 203.8 243.4 296.4 132.7 151.2 206.3 247.1 300.5 Percentage Dissociation. A0° A4.6° A16.5° A25° A25° A35° A35° A36.3 66.7 59.4 74.6 74.3 73.2 72.4 71.6 79.3 79.0 78.1 77.5 76.6 87.6 87.6 87.3 87.1 86.6 84.3 94.4 94.4 94.3 94.0 95.3 95.4 95.6 95.3 95.2 98.6 98.7 98.</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></td<>	Molecular Conduct $\mu_e 0^{\circ}$ $\mu_e 4.6^{\circ}$ $\mu_e 16.5^{\circ}$ $\mu_e 25^{\circ}$ 86.62 96.61 128.2 150.0 99.06 112.3 151.1 179.0 105.2 119.5 161.2 191.6 116.2 132.4 180.2 215.2 125.1 142.7 194.7 232.9 126.5 144.3 197.2 235.5 130.9 149.3 203.8 243.4 132.7 151.2 206.3 247.1 Percentage Dissocial 65.3 63.9 62.1 60.7 74.6 74.3 73.2 72.4 79.3 79.0 78.1 77.5 87.6 87.6 87.3 87.1 94.3 94.4 94.4 94.3 95.3 98.6 98.7 98.8 98.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2 2.17 2.66 2.56 8	Molecular Conductivity. $\mu_e 0^{\circ}$ $\mu_e 4.6^{\circ}$ $\mu_e 16.5^{\circ}$ $\mu_e 25^{\circ}$ $\mu_e 35^{\circ}$ 86.62 96.61 128.2 150.0 178.6 99.06 112.3 151.1 179.0 215.3 105.2 119.5 161.2 191.6 230.4 116.2 132.4 180.2 215.2 260.3 125.1 142.7 194.7 232.9 282.6 126.5 144.3 197.2 235.5 286.2 130.9 149.3 203.8 243.4 296.4 132.7 151.2 206.3 247.1 300.5 Percentage Dissociation. A0° A4.6° A16.5° A25° A25° A35° A35° A36.3 66.7 59.4 74.6 74.3 73.2 72.4 71.6 79.3 79.0 78.1 77.5 76.6 87.6 87.6 87.3 87.1 86.6 84.3 94.4 94.4 94.3 94.0 95.3 95.4 95.6 95.3 95.2 98.6 98.7 98.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

В	BARIUI	M NI	FRATE	(J. A	ND C	.).	В	ARIUM	For	MATE	(J. A)	ND SH	.).
	M	oleculo	ar Cone	ductivii	ty.			Λ	Iolecul	ar Con	ductivi	ty.	
v	$\mu_v 0^{\circ}$	$\mu_v 10^\circ$	μ ₀ 25°	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	μ _v 10°	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	μ_v65°
16 32 128 1 512 1 1024	88.29 97.62 14.4 24.3 27.4 31.4	103.0 117.6 129.8 150.8 163.8 167.8 171.6	146.4 165.2 183.2 210.0 229.2 234.2 239.8	177.3 200.1 219.8 251.8 275.2 281.6 288.8	282.0 325.5 360.7	334.2 398.3 440.7	2 8 16 32 128 512 1024 2048	51.67 72.22 77.72 85.56 86.20 102.2 103.0 111.8	67.74 95.34 102.7 114.3 114.3 133.6 135.0 149.4	93.97 133.4 144.6 160.6 162.4 182.0 184.0 210.0	159.2 173.8 193.1 197.4 215.2 226.2	2 201.0 8 227.3 1 252.1 4 289.6 2 308.2 2 313.2	275.1 307.3 359.6 383.6 385.5
	- Pe	ercenta	ge Diss	sociatio	on.			P	ercenta	ge Dis	sociati	on.	-
v	a0°	α10°	a25°	a35°	α50°	a65°	v	a0°	a10°	a25°	a35°	a50°	a65°
8 16 32 128 512 1024 2048 4096	58.1 67.2 74.3 87.1 94.6 97.0 100.0	60.0 68.5 75.6 87.9 95.5 97.8 100.0	61.1 68.9 76.4 87.6 95.6 97.7 100.0	61.4 69.3 76.1 87.2 95.3 97.5 100.0	73.8 85.1 94.3	72.4 83.8 92.7	2 8 16 32 128 512 1024 2048	46.2 64.6 69.5 76.5 77.1 91.4 92.1 100.0	45.3 63.8 68.7 76.5 76.5 89.4 90.3 100.0	44.8 63.5 68.9 76.5 77.3 86.7 87.7 100.0	61.8 69.0 75.0 76.6 83.8 87.8	8 64.2 72.6 80.5 92.4 8 100.0	71.4 79.7 93.3 99.5 100.0
Temper	1									1	1	uctivity	
v	0-10	° 10–	25° 25	-35° 3	35-50°	50-65°	v	0-1	0° 10-	25° 2	5-35°	35–50°	50-65°
8 16 32 128 512 1024 2048 4096	2.9 3.2 3.6 3.9 4.0 4.0	3 3. 2 3. 4 3. 5 4. 4 4.	17 3 56 3 95 4 36 4 43 4	3.09 3.49 3.66 4.18 4.60 4.74 4.90	3.25 4.16 4.91 5.70 5.99 5.23	3.34 4.15 4.85 5.33 5.91 6.21		2 2.8 8 2.8 2 3.4 4 3.5	31 2 49 2 87 3 81 3 15 3 20 3	.79	1.81 2.58 2.92 3.25 3.50 3.32 4.22 4.76		2.96 3.19 3.68 4.67 5.03 4.82 4.46
Te	empera	ture C	oefficie	nts in	Per Cer	nt.	7	emper	ature C	oefficie	nts in	Per Cer	nt.
v	0-10	° 10-	25° 25	-35° 3	35-50°	50-65°	v	0-1	0° 10-	-25° 2	5-35°	35-50°	50-65°
8 16 32 128 512 1024 2048 4096	3.3 3.3 3.1 3.1 3.1 3.0	2 2 2 8 2 8 2 7 2 2 7 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	.70 .74 .62 .66 .64	2.11 2.11 2.00 1.99 2.01 2.02 2.04	1.83 1.90 1.95 2.07	1.48 1.47 1.49 1.48 1.56 1.62		8 3. 2 3. 4 3.	20 2 20 2 35 2 26 2 08 2 10 2	.58 .66 .72 .70 .86 .41 .46 .70	1.93 1.93 2.02 2.02 2.16 1.82 2.29 2.27		1.47 1.43 1.46 1.61 1.63 1.54 1.44

	В	ARIUM	ACET	ATE ((J.).	_//	MA	GNESI	UM CE	LORI	DE (SI	H. AND	H.).
-	Л	Molecule	ir Cond	luctivi	y.*				Molecul	ar Con	ductivi	ty.	
v	$\mu_v 0^\circ$	μ _v 10°	μ,25°	μ,35	μ,50°	μ ₀ 65°	v	μ ₀ 0°	μ _τ 12.5°	μ,25°	μ,35	μ _ε 50°	μ ₀ 65°
2 8 16 32 128 512 1024 2048	40.16 59.05 65.68 72.93 78.15 90.75 92.63 95.96	53.25 79.46 87.10 97.58 104.5 123.1 124.7 129.3	76.18 113.3 124.3 139.5 149.0 176.9 180.5 186.3	136.0 149.3 168.6 181.2 215.8 219.8	3		4 8 32 128 512 1024 2048 4096	80.2 87.6 99.9 110.3 115.7 118.3 120.3 123.5	112.1 123.2 141.1 156.1 164.3 168.4 172.8 176.3		196.1 226.4 252.4 266.9 272.1 280.1	249.7 4 294.7 4 311.8 9 348 3 2 373.2	280.6 303.8 364.8 401.6 433.1
		Percento	ige Dis	sociati	on.				Percento	ge Dis	sociati	on.	
v	a0°	α10°	a25°	a35°	a50°	a65°	v	a0°	a12.5°	a25°	a35°	a50°	a65°
2 8 16 32 128 512 1024 2048	41.9 63.0 68.4 76.0 81.4 94.6 96.5 100.0	4.12 61.5 67.4 75.5 80.8 95.2 96.4 100.0	40.9 60.8 66.7 74.9 80.0 95.0 96.9 100.0	60.0 66.0 74.4 79.9 95.2 97.0	0		4 8 32 128 512 1024 2048 4096	64.9 70.9 80.9 89.2 93.7 95.8 97.3 100.0	63.6 69.9 80.0 88.6 93.1 95.5 98.0 100.0	62.8 69.1 79.7 88.6 93.5 95.8 98.1 100.0	68.3 7 79.4 8 88.4 93.3 95.4	60.3 65.3 78.4 86.3 93.0	
	peratur 0-1		-		luctivity				e Coeffic				
1	2 1.8 8 2.6 6 2.2 2 2.8 8 2.3 4 3.	30 1 04 2 14 2 40 2 63 2 23 2 20 3	.52	1.37 2.27 2.52 2.91 3.22 3.89 3.93 4.04	35–50°	50-65°		4 2. 8 2. 2 3. 8 3. 2 3. 4 4. 8 4.	85 3 29 3 67 4 89 4 02 4 21 4	.82 .11 .68 .15 .41 .52 .59	3.03 3.40 3.93 4.44 4.74 4.72 4.98 5.05	3.36 3.57 4.55 4.00 4.76 6.19	3.51 3.61 4.67 5.93 5.65 6.16
	Tempe	rature C	oefficie	nts in	Per Cer	nt.		Tempe	rature C	oefficie	ents in	Per Cen	it.
v	0-1	0° 10-	25° 2	5-35°	35–50°	50-65°	U	0-12	2.5° 12.5	-25° 2	5-35°	35-50°	50-65°
1	6 3. 2 3. 8 3. 2 3. 4 3.	45 2 26 2 38 2 37 2 06 2 45 2	.85 .84 .85 .86 .84 .91 .98	1.80 2.00 2.03 2.09 2.16 2.20 2.18 2.17				8 3. 2 3. 8 3. 2 3. 4 3. 8 3.	25 2 29 2 33 2 36 2 39 2 48 2	.51 .52 .60 .65 .67 .68 .65 .65	2.05 2.09 2.10 2.13 2.16 2.09 2.16 2.15	1.90 1.82 2.01 1.58 1.78	1.54 1.45 1.58 1.90 1.62

^{*}Decomposed at higher temperatures.

MA	GNESI	им Вн	ROMID	E (W	S. AND	W.).	MA	GNES	IUM N	ITRAT	E (W	s. AND	C.).
		Molecul	ar Con	ductivi	ity.				Molecul	ar Con	ductivi	ty.	
v	$\mu_v 0^{\circ}$	$\mu_v 12.5^\circ$	$\mu_v 25^\circ$	$\mu_t 35^\circ$	$\mu_v 50^\circ$	μ _ν 65°	v	μ ₀ 0°	$\mu_v 12.5^\circ$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^\circ$
128 512 1024 2048	93.73 104.56 113.52 118.93 122.80	173.39 179.74	170.6 194.4 211.9 223.0 230.9 238.7	4206.1 2235.5 1257.3 5270.4 4279.3 0289.5	251.2 8 263.2 1 297.6 1 332.4 0 358.0 8	324.4 367.7 412.8 445.5	128 512 1024 2048	101.55 110.78 119.01 120.68 123.34	123 . 42 141 . 97 155 . 50 165 . 77 170 . 27 173 . 18 173 . 70	187.10 204.72 220.89 224.49 229.70	223.2 247.6 265.3 272.3 280.0	4 283.5 6 316.8 3 341.6 0	347.4 390.8
	1	Percento	nge Dis	ssociati	ion.				Percente	ige Dis	sociati	on.	
v	a0°	a12.5°	a25°	a35°	a50°	a65°	v	a0°	α12.5°	a25°	a35°	a50°	a65°
2 4 8 32 128 512 1024 2048 4096	58.3 71.6 79.9 86.8 90.9 93.9 97.3 100.0	56.2 70.3 79.5 86.4 90.6 93.7 97.1 100.0	69.7 79.4 86.8 91.1 94.3	7 67.4 76.9 5 84. 88.3 91.3 5 94.	66.6 69.8 9 78.9 1 88.2 3 95.0 3 6 100.0	68.8 78.0 87.6 94.5	2 8 32 128 512 1024 2048 4096	72.1 82.4 89.9 96.5 97.9 100.0 99.7	71.1 81.7 89.5 95.4 98.0 99.7 100.0	89.1 96.2 99.7 100.0	79.1 88.4 94.1 97.2 100.0	7 4 7 2 	
					ductivity		Tem		e Coeffic 2.5° 12.5			luctivity 35–50°	
	2 2 2 3 4 2 3 3 4 4 4 4 8 4 4	91 3 41 3 71 4 90 4 05 4 20 4	2.31 2.31 3.24 3.77 3.16 3.43 3.60 4.72 4.79	2.93 3.55 4.11 4.54 4.73 4.84 5.08 6.10	3.80 4.14 5.01 5.84 5.83	3.81 4.08 4.67 5.36 5.83		2 8 2. 32 3. 8 3. 2 3. 24 3. 8 3.	76 2 23 3 58 3 74 4 97 4 99 4	2.99 3.61 3.54 4.41 4.34 4.52 4.47	3.10 3.61 4.29 4.44 4.78 5.04 4.80	3.51 4.02 4.61 5.08 5.13	50-65° 2.74 3.57 4.26 4.93 5.30 5.76
	Tempe	rature C	Coeffici	ents in	Per Cer	nt.		Tempe	rature (Coeffici	ents in	Per Cer	nt.
v	0-12	2.5° 12.5	5-25° 2	25-35°	35-50°	50-65°	v	0-1	2.5° 12.5	5-25° 2	5–35°	35–50°	50-65°
	28 3. 22 3. 24 3. 8 3.	11 2 26 2 27 2 28 2 30 2 30 2	2.22 2.49 2.56 2.60 2.64 2.65 2.63 2.59	2.20 2.08 2.11 2.14 2.12 2.10 2.13 2.49	1.84 1.76 1.95 2.16	1.41 1.46 1.54 1.57 1.56	12 51 102 204 409	32 3. 28 3. 12 3. 24 3. 48 3.	18 23 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	2.42 2.54 2.28 2.66 2.55 2.61 2.57	1.93 1.93 2.10 2.01 2.12 2.11 2.09	1.83 1.83 1.87 1.91	1.41 1.46 1.50 1.56 1.55

M	AGNESI	IUM St	JLPHA	те (Ј	. AND	SH.).	MA	GNESI	um Fo	RMAT	E (W	s. AND	W.).
		Molecul	ar Con	ductivi	ty.				Molecul	ar Con	ductivi	ty.	
v	$\mu_v 0^{\circ}$	$\mu_v 10^\circ$	μ,25°	$\mu_{v}35$	μ ₀ 50°	$\mu_{v}65^{\circ}$	v	μ ₀ 0°	μ _e 12.5°	μ _ε 25°	μ.35	μ _ε 50°	μ.65°
	32 . 12 45 . 70 50 . 95 59 . 57 71 . 17 95 . 57 102 . 7 111 . 1	60.90 68.14 79.73 95.38 128.3 138.4	85.62	72.6 2102.4 115.0 135.3 164.4 221.9 240.9 261.0	131.0 150.7 174.6 230.3 288.1 317.7	155.4 179.0 208.6 279.1 353.1 395.4	2 4 8 32 128 512 1024 2048 4096	58.15 74.68 85.99 88.58 94.03 97.22 97.18	106.05 122.17 123.84 133.87 138.60	109 29 141 71 164 00 167 80 176 23 184 73	172.3 200.3 205.4 209.9 226.3	135.7 4 165 2 1 212.8 0 253.8 4 273.7 0 7 284 2	201.4 261.8 313.8 337.9
	1	Percenta	ge Dis	sociati	ion.				Percenta	ge Dis	sociati	on.	
v	a0°	a10°	a25°	a35°	a50°	a65°	v	a0°	a12.5°	a25°	a35°	a50°	a65°
2 8 16 32 128 512 1024 2048	28.9 41.1 45.9 53.6 64.1 86.0 92.4 100.0	29.1 41.0 45.9 53.7 64.2 84.4 93.2 100.0	28.2 39.8 44.8 52.2 63.2 85.2 92.3 100.0	39.3 44. 51.3 63.0 85.0 92.3	2 38.3 1 44.1 8 55.1 0 67.4 0 84.3 93.0	36.8 42.4 49.4 66.0 83.6 93.6	2 4 8 32 128 512 1024 2048 4096	38.4 59.8 76.8 88.4 91.1 96.7 99.9 100.0	37.9 60.1 76.4 88.1 89.3 96.5 99.9 100.0	37.5 59.2 76.7 88.8 90.9 95.4 100.0 99.0	58. 76.1 88.4 90.1 92.1	47.7 4 58.1 1 74.9 5 89.3 7 96.3 7 100.0	74.4 89.1 96.0
Tem	peratur	e Coeffic	cients i	n Cone	ductivity	Units.	Temp		e Coeffic			uctivity	Units.
v	0-10	0° 10-	25° 2	5–35°	35-50°	50-65°	v	0-12	2.5° 12.5	-25° 2	5-35°	35-50°	50-65°
	2 2.6 8 2.4 2 3.5 4 3.8	52 1 71 1 01 2 42 2 27 3 57 3	.65 .89 .18 .75 .73	1.21 1.67 1.85 2.29 2.85 3.86 4.26 4.58		1.07 1.63 1.89 2.27 3.25 4.33 5.18 5.39	1	S 2.5 2 2.4 4 3.8 3.3	02 2 51 2 89 3 82 3 19 3 31 3	.07 .85 .35 .52 .38 .69	1.40 2.29 3.06 3.62 3.76 3.37 4.16 4.03	2.20 2.70 3.57	1.41 1.46 1.54 1.57 1.56
	Tempe	rature C	oefficie	ents in	Per Cer	nt.		Tempe	rature C	oefficie	nts in	Per Cer	nt.
υ	0-10	0° 10-	25° 2	5–35°	35-50°	50-65°	v	0-12	2.5° 12.5	-25° 2	5-35°	35-50°	50-65°
1 3 12 51 102 204	6 3.6 2 3.6 8 3.4 2 3.4 4 3.4	33 2 36 2 37 2 40 2 42 2 48 2	.77 .73 .88 .91	1.92 2.04 2.10 2.11		1.27		8 3. 2 3. 4 3. 8 3.	47 2 36 2 36 2 18 2 39 2 40 2	.48 .69 .74 .84 .52 .66	2.24 1.91 2.25	1.67 1.57 1.79	1.41 1.46 1.54 1.57 1.56 1.59

Ma	GNESI	им Ас	ETATE	(Ws	. AND	W.).	7	ZINC N	VITRAT	е (Н.	AND	Hw.).	
		Molecule	ar Cone	ductivii	y.			A	Aolecula:	r Cond	uctivity		
v	$\mu_v 0^\circ$	$\mu_v 12.5^\circ$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^{\circ}$	v	$\mu_v 0^\circ$	$\mu_v 12.5^\circ$	$\mu_v 25^\circ$	μ_v35°	$\mu_v 50^\circ$	$\mu_v 65^\circ$
4 8 32 128 512 1024 2048 4096	37.56 46.35 60.99 71.13 78.03 80.38 83.85 84.99	54.50 66.76 87.97 103.35 113.23 116.73 121.36 121.76	89.79 119.31 139.51 153.41 158.95 164.72	109 . 86 146 . 20 172 . 35 189 . 50 201 . 71 203 . 07	245.9	171.2 231.7 276.6 310.9	4 8 32 128 512 1024 2048 4096	80.6 87.6 100.0 110.4 114.1 117.1 120.4 124.4	110.8 121.2 139.2 154.1 164.9 165.0 169.2 175.0	222.4	188.5 219.0 243.5 254.3 261.3 270.2	238 . 28 280 . 00 312 . 91 336 . 48 347 . 38 352 . 62	8 258 . 65 5 289 . 67 0 343 . 09 1 384 . 97 3 415 . 20 5 428 . 50 2 434 . 82 7 445 . 53
	1	Percenta	ge Diss	sociatio	n.			1	Percenta	ge Dis	sociatio	n.	
v	a0°	a12.5°	a25°	a35°	a50°	a65°	v	a0°	a12.5°	a25°	a35°	a 50°	a65°
4 8 32 128 512 1024 2048 4096	44.2 56.6 71.8 83.7 91.9 94.6 98.7 100.0	44.8 54.8 72.2 84.9 93.0 95.9 99.7 100.0	43.8 54.3 72.1 84.3 92.8 96.1 99.6 100.0	43.7 53.9 71.8 84.6 93.0 99.0 99.7 100.0	53.8 72.4 85.1 95.2	52.3 70.8 84.5 95.0	4 8 32 128 512 1024 2048 4096	64.8 70.4 80.4 88.7 91.9 94.1 96.8 100.0	63.3 69.3 59.5 88.1 94.3 94.3 96.7 100.0	64.0 68.6 79.5 88.4 94.7 94.5 97.1 100.0	67.5 78.4 87.1 91.0 93.5 96.7	66.2 77.8 86.9 93.5 96.5 98.0	65.0 77.0 86.4 93.2 96.2 97.6
		e Coeffic							e Coeffic				7. STE STREET, MEMORIALISM
	1 1.3 8 1.6 2 2.1 8 2.8 2 2.8 4 2.8 8 3.0	53 1. 16 2. 58 2. 81 3. 91 3. 90 3.	44 1 84 2 51 2 89 3 21 3 38 4 47 3	-35° 3 1.64 2.01 2.69 3.28 3.61 4.28 3.84 3.83	1.45 1.93 2.73 3.16 3.76	1.69 2.16 2.97 3.79 4.33	128 32 128 512 1024 2048 4096	4 2.4 3 2.6 2 3.3 3 3.4 4.6 4 3.8 3 3.9	69 2 34 3 50 3 06 3 83 4 90 4	.86 .88 .43 .88 .62 .13	2.46 . 3.13 . 3.69 . 4.09 .	35-50°	50-65° 3.16 3.42 4.21 4.80 5.22 5.41 5.48 5.70
1	Temper	rature Co	pefficier	ıts in l	Per Cen	ıt.	1	Гетрег	rature Co	oefficie	nts in 1	Per Cer	nt.
v	0-12	.5° 12.5-	-25° 25	-35°	35-50°	50-65°	v	0-12	2.5° 12.5-	-25° 25	5-35°	35–50°	50–65°
	3.6 2 3.6 4 3.6 3 3.5	52 2. 54 2. 63 2. 60 2. 62 2. 68 2.	76 2 85 2 80 2 83 2 89 2 86 2	2.26 2.24 2.25 2.35 2.35 2.69 2.33 2.32	1.63 1.74 1.87 1.83 2.00	1.52 1.56 1.59 1.72 1.76	128 32 128 512 1024 2048 4096	2 3.8 3 3.1 2 3.8 4 3.2 8 3.3	07 2. 34 2. 17 2. 56 2. 27 2. 24 1.	.38 .46 .52 .20 .50 .52	20.2 2.10 2.06		1.50 1.44 1.50 1.53 1.55 1.56 1.55 1.58

	,	ZINC S	ШРН	TE (W.)			Zinc	ACI	er a r	re (l	H. AN	n H	(w)	
		-				-	-	21140	-	-	_			. ** . /	
		Molecul	ar Con	ductiv	ity.				Mol	ecule	ır Co	nductii	nty.		
v	$\mu_v 0^{\circ}$	μ _v 15°	$\mu_v 25^{\circ}$	μ,35	° μ _ε 50°	μ _ε 65°	v	$\mu_{\mathfrak{r}}0^{\circ}$	μ.13	2.5°	μ.25	° µ,3	5° µ	.,50°	μ,65°
2048	30.57 43.20 50.99 59.37 76.61 97.0 104.7 113.3 117.0	64.74 75.20 86.96 115.8 147.3 156.9 170.4	80.01 93.6 108.8 144.8 185.1 197.8 213.0 218.0	84.7	217.9 286.5 338.4	137.2 186.9 259.6 347.3	4 8 32 128 512 1024 2048 4096	27.8 37.7 55.5 70.0 78.6 79.9 83.2 83.2	5 7 10 11 11 11 12	88.0 52.2 78.6 50.7 3.7 6.1 20.8 21.3	48, 66, 103, 134, 153, 156, 163,	6 77 0 122 2 162 2 185 7 191 2 200	2 9 4 14 1 20 5 24 6 24 1 25	05 63 12 85 16 67 57 81	172 86 243 46 228 49 228 74
		Percenta	ige Dis	Rociati	ion.				Perc	enta	ge D	issocia	tion.		
v	a0°	al5°	a25°	a35°	a50°	a65°	v	a0°	a15	2.5°	a25	° a3	00	150°	a65°
2 4 8 16 32 128 512 1024 2048 4096	26.1 36.9 43.6 50.7 65.5 82.9 89.5 96.8 100.0	25.9 36.8 42.7 49.4 65.8 83.7 89.2 96.8 100.0	25.9 36.7 42.9 49.9 66.4 84.9 90.7 97.7 100.0	28. 32. 43. 58. 77. 88.	1 30.6 3 41.3 4 56.5 4 74.3	28.7 39.1 54.4 72.7 87.4	4 8 32 128 512 1024 2048 4096	33.2 45.0 66.2 83.6 93.8 95.3 99.3 100.0	8 8 8 9 9 9	31.3 33.0 34.8 33.0 33.7 05.7 09.6 00.0	29. 40. 63. 82. 93. 95. 99.	8 38 0 60 1 80 8 92 9 95 9 99	.4 .9 .6 .2 .3	34.9 57.6 79.4 93.7 95.2 99.5 00.0	53.9 76.0 93.1 93.2 99.7
Temp	peratur	e Coeffic	cients in	Cone	luctivity	Units.	Tem	peratu	re Co	effic	ients	in Con	duct	ivity	Units.
v	0-1	5° 15-	25° 25	-35°	35-50°	50-65°	v	0-1	2.5°	12.5	-25°	25–35°	35-	50°	50-65°
4	2 1.8 8 2.6 2 3.3 4 3.4 8 3.8	44 1 61 1 84 2 61 2 36 3 48 4 80 4	.84 .18 .90 .78 .09	1.56 2.00 2.92 4.00 5.08	1.32 1.47 2.03 2.93 4.09 4.97 5.85	1.17 1.29 1.84 2.78 4.05 5.26 6.13		8 1 2 1 8 2 2 2 4 2 8 3	81 16 85 45 81 90 01	1 1 2 3 3 3	80 15 95 68 16 25 39 37	0.70 1.06 1.94 2.79 3.23 3.49 3.69 3.77			0.68 1.57 2.52 3.71 3.47 4.11 4.09
- 1	Tempe	rature C	oefficie	nts in	Per Cer	nt.		Temp	eratu	re C	oeffic	ients is	Per	r Cen	u.
v	0-1	5° 15-	25° 25	-35°	35-50°	50-65°	v	0-1	2.5°	12.5	-25°	25–35°	35-	50°	50-65°
1	2 3. 8 3. 2 3. 4 3. 8 3.	33 2 16 2 10 2 41 2 46 2 32 2 35 2	.45 .51 .50 .57 .50	1.95 1.84 2.02 2.16 2.39	1.56 1.54 1.58 1.68 1.82 1.88 1.96	1 12 1 10 1 15 1 27 1 41 1 55 1 59		8 3 2 3 8 3 2 3 4 3 8 3	.91 .08 .33 .50 .58 .63 .61 .58	2 2 2 2 2 2	.11 .20 .48 .66 .78 .79 .81	1.46 1.59 1.88 2.08 2.11 2.23 2.26 2.31			0.75 1.05 1.23 1.53 1.41 1.59 1.58

CA	DMIUM	Сньо	RIDE	(Ws.	AND V	W.).	CA	DMIUM	BRON	MIDE (Ws.	AND V	V.).
		Molecul	ar Con	ductivi	ty.			M	lolecula	r Cond	uctivit	y.	
v	$\mu_v 0^{\circ}$	$\mu_v 12.5^\circ$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_{\iota}50^{\circ}$	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	$\mu_v 12.5^\circ$	$\mu_v 25^\circ$	$\mu_v 35$	$^{\circ}$ $\mu_v 50^{\circ}$	$\mu_v 65^\circ$
1024 2048	45.32 65.63 88.34 106.14 113.78 121.19	60.85	79.30 118.55 162.32 197.57 212.53 221.36	142.4 195.7 236.9 258.7 269.0	9 117.3 8 179.9 1 247.1 9 309.5 3	139.6 216.2 300.0 378.8	1024 2048	110.69 121.23	53.36 82.06 113.57 143.25 156.85 170.89	70.44 109.34 151.23 190.52 208.48 227.41	184.1 232.8 252.8 275.2	31 107.0 59 167.6 16 234.0 33 299.1	128.5 202.3 286.4 369.1 436.0
	1	Percenta	ige Dis	sociati	on.			1	Percento	ige Dis	sociati	ion.	
v	a0°	α12.5°	a25°	a35°	a50°	a65°	v	a0°	a12.5°	a25°	a35°	° a50°	a65°
4 8 32 128 512 1024 2048 4096	37.4 54.2 72.9 87.6 93.9	26.7 35.2 52.3 71.2 85.9 92.4 96.2 100.0	25.9 34.2 51.1 69.9 85.1 91.6 95.4 100.0	25.3 33.3 50.3 69.3 83.9 91.6 95.3 100.6	33.0 50.6 69.5 87.1 3 100.0	31.7 49.1 68.1 86.0	4 8 32 128 512 1024 2048 4096	23.1 30.5 46.7 64.4 81.9 89.4 97.9 100.0	23.3 30.6 47.1 65.2 82.3 90.1 98.2 100.0	23.0 30.3 47.1 65.1 82.1 89.8 97.9 100.0		2 30.5 3 47.8 6 66.7 9 85.3 0 100.0	29.5 46.4 65.7 84.6
Ten	peratur	e Coeffic	cients i	n Cone	luctivity	Units.	Tem	peratur	e Coeffi	cients i	n Con	ductivity	Units.
v	0-12	.5° 12.5	-25° 25	-35°	35–50°	50-65°	v	0-12	.5° 12.5	-25° 25	5–35°	35–50°	50-65°
	2 3.3 4 3.6 8 3.6	24 1. 27 2. 27 3. 38 3. 37 4. 30 4	.47 .26 .15 .94 .23	1.18 1.53 2.39 3.34 3.94 4.62 4.76 5.04	1.19 1.51 2.49 3.42 4.83	1.12 1.49 2.42 3.52 4.62		8 2.3 2 3.4 4 3.6 8 3.9	24 1 94 2 70 3 55 3 69 4 97 4	.37 .18 .01 .78 .13 .52	1.11 1.44 2.34 3.29 4.23 4.43 4.78 4.86		1.07 1.43 2.31 3.49 4.67
	Temper e	ature Co	efficien	ts in I	Per Cen	t.		Тетрег	rature C	oefficie:	nts in	Per Cer	ıt.
v	0-12	.5° 12.5-	-25° 25	-35°	35-50°	50-65°	v	0-12	.5° 12.5	-25° 25	5–35°	35–50°	50–65°
	2 3.1 4 3.2 8 2.9	74 2 01 2 14 2 18 2 23 2 07 2	.42 .50 .54 .66 .65	1.96 1.93 2.02 2.06 1.99 2.17 2.10 2.12	1:65 1:60 1:75 1:75 2:04	1.25 1.27 1.34 1.42 1.49		8 3.3 2 3.3 4 3.3 8 3.2	28 2 35 2 38 2 30 2 33 2 21 2	.56 .66 .65 .64 .62 .64	2.07 2.03 2.14 2.18 2.22 2.12 2.10 2.79		1.33 1.34 1.38 1.49 1.56 1.62

C	CADMIU	JM IOD	DIDE (Ws. A	ND W	.).	MAI	NGANO	ous Ch	LORID	E (W	. AND	Sн.).				
		Molecule	ar Cond	luctivit	y.				Molecule	ar Cond	ductivit	y.					
v	μ ₀ 0°	μ _v 12.5°	μ,25°	μ.35°	μ ₀ 50°	μ _τ 65°	v	μ _e 0°	μ,10.4°	μ,25°	μ _ε 35°	μ _ε 50°	μ _e 65°				
4 8 32 128 512 1024 2048 4096	96.31 109.01	29.76 35.85 59.23 93.36 127.74 140.03 157.20 170.69	48.44 81.53 127.36 172.93 188.66 209.73	101.22 157.35 211.90 231.10 256.42	77.16 130.4 204.8 276.7	254.8 345.5 414.5	512	84.98	89.64 113.5 121.9 130.0 143.8 154.0 154.9	121 .3 156 .7 169 .0 181 .6 202 .5 216 .6 216 .8	145 0 188 1 205 1 221 2 246 7 264 5 265 4	242.2 266.8 289.1 325.0 356.2	293.7 326.6 357.0 402.3 447.4 459.2				
	1	Percenta	ge Diss	ociatio	n.			1	Percenta	ge Diss	ociatio	n.					
v	a0°	a12.5°	a25°	a35°	a50°	a65°	v	a0°	a10.4°	a25°	a35°	a50°	a65°				
4 8 32 128 512 1024 2048 4096	17.2 20.5 33.2 52.8 73.3 81.0 91.7 100.0	17.4 21.0 34.7 54.7 74.8 82.6 92.1 100.0	17.7 21.5 36.3 56.6 76.9 83.9 93.3 100.0	17.8 21.9 37.3 58.0 78.1 85.2 94.5 100.0	18.5 23.1 39.1 61.4 83.0	18.5 22.8 38.9 61.4 83.3	2 8 16 32 128 512 1024 2048	59.3 84.0 79.0 84.8 93.1 99.3 100.0	57.9 73.3 78.7 83.9 92.8 99.4 100.0	56.0 72.3 78.0 83.8 93.4 99.0 100.0	72.3 70.9 64.9 78.0 77.3 71.5 83.8 83.1 77.5 93.4 93.0 87.2 99.0 99.7 95.5 100.0 100.0 98.3						
Temp	peratur	e Coeffic	ients in	Condu	ctivity	Units.	Temp	peratur	Coeffici	ients in	Condu	ctivity	Units.				
v	0-12	.5° 12.5-	-25° 25	-35° 3	5-50°	50-65°	v	0-10	.4° 10.4-	·25° 25	-35° 3	5-50°	50-65°				
	8 2.4 2 3.2 4 3.5 8 3.8	22 1. 38 1. 45 2. 25 3. 37 3. 36 4.	01 1 78 1 72 3 62 3 82 4 20 4	0.86 .10 .97 3.00 3.90 .24 .67	0.88 1.18 1.96 3.16 4.32 5.13	0.88 1.16 2.06 3.33 4.59	1024 2048	2.3 2.8 2.3.1 3.3 3.8 3.8 3.8	74 2. 89 3. 3 3. 34 4. 33 4.	96 3 23 3 53 3 02 4 28 4 24 4	3.14 3.61 3.96		2.21 3.43 3.99 4.53 5.15 6.08 6.19 6.37				
	Тетрег	cature Co	oefficien	ats in F	Per Cen	t.	2	l'em per	ature Co	efficien	ts in P	er Cent	1.				
v	0-12	.5° 12.5-	-25° 25	-35° 3	5-50°	50-65°	v	0-10	.4° 10.4-	-25° 25	-35° 3	5-50°	50-65°				
32 128 512 1024 2048 4096	2 4.0 8 3.9 2 3.7 4 3.7 8 3.8	78 2. 01 3. 00 2. 73 2. 71 3. 64 3.	82 2 01 2 91 2 83 2 71 2 67 2	2.16 2.27 2.42 2.36 2.26 2.25 2.23 2.06	1.82 1.99 1.94 2.01 2.04	1.42 1.50 1.58 1.62 1.66	1024 2048	3.3 3.3 3.3 3.3 3.3 3.3 3.3	22 2. 15 2. 21 2. 31 2. 37 2.	61 2 65 2 72 2 79 2 80 2 74 2	2.00 2.14 2.13 2.18 2.22		1.25 1.41 1.49 1.57 1.59 1.71 1.79				

	MAN	GANOU	s Nr	TRATE	е (Ѕн.)	•	Ma	NGANO	ous Su	LPHA	TE (W	s. AND	Н.).
		Molecule	ar Con	ductivi	ty.				Molecul	ar Cone	ductivit	y.	
v	$\mu_v 0^{\circ}$	μ _v 10.2°	$\mu_v 25^{\circ}$	$\mu_v 35^\circ$	μ _ν 50°	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	$\mu_v 12.5^\circ$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	μ _υ 50°	$\mu_v 65^\circ$
2 8 16 32 128 512 1024	66.1 83.1 85.5 90.5 98.3 104.8 105.4	85.4 104.1 111.5 118.8 129.7 138.4 139.3	116.3 144.3 154.5 165.0 182.0 194.6 195.8	138.7 172.8 185.1 197.9 219.8 236.2 237.4	5		2048	97.99 107.12 116.15	61.37	79.77 109.27 147.24 184.58 202.94 221.33	129.72 176.10 3222.69 245.72 3268.33	112.8 2 156.4 2 204.1 2 277.5 2	108.3 130.0 181.8 241.9 338.7
	i	Percenta	ge Dis	sociati	on.				Percento	ige Dis	sociatio	on.	
v	a0°	a10.2°	a25°	a35°	a50°	a65°	v	a0°	a12.5°	a25°	a35°	a50°	a65°
2 8 16 32 128 512 1024	62.7 78.8 81.1 85.9 93.3 99.4 100.0	61.3 74.7 80.0 85.2 93.1 99.4 100.0	59.4 73.7 78.9 84.3 93.0 99.4 100.0	58.4 72.3 78.0 83.4 92.0 99.4 100.0	7 0 1 1 3 		4 8 32 128 512 1024 2048 4096	29.9 35.4 47.9 63.8 78.7 86.1 93.3 100.0	29.2 34.6 47.0 62.9 78.1 85.8 93.1 100.0	61.8 77.5 85.2 92.9	32.5 44.8 60.8 76.9 84.9 92.7		1
Tem	peratur	e Coeffic	ients i	n Cond	luctivity	Units.	Tem		e Coeffic			uctivity	Units.
v	0-10	.2° 10.2	-25° 25	5–35°	35-50°	50-65°	v	0-12	2.5° 12.5	-25° 2	5-35°	35-50°	50-65°
1	2 3.	06 2 55 2 77 3 07 3 29 3	.72 .90 .12 .53 .08					8 1. 22 1. 28 2. 2 3. 24 3. 8 3.	38 1 91 2 58 2 26 3 62 4 93 4	.47 .06 .84 .67	1.19 1.43 2.05 2.89 3.81 4.28 4.70 5.12	1.25 1.78 3.65 3.89	1.35 1.15 1.69 2.52 4.08
	Tempe	rature C	oefficie	nts in	Per Cer	nt.		Tempe	rature C	oefficie	nts in	Per Cer	nt.
v	0-10	0.2° 10.2	-25° 2	5–35°	35–50°	50-65°	v	0-12	2.5° 12.5	5-25° 2	5-35°	35-50°	50-65°
1	2 3.	48 2 98 2 06 2 12 2 13 2	.61 .60 .63 .72 .75	1.93 1.95 1.98 1.99 2.08 2.14 2.13				8 3. 22 3. 28 3. 24 3. 48 3.	13 2 20 2 25 2 33 2 38 2 38 2	.66	1.77 1.79 1.88 1.96 2.06 2.11 2.12 2.15	1.33 1.37 1.64 1.45	1.53 1.04 1.08 1.24 1.47

	Nici	KEL (Снгог	RIDE	(W.).		I	NICKE	L NIT	RATE	(W.	AND S	н.).
	M	olecule	ar Cone	luctiv	ity.			λ	lolecule	ar Con	iductiv	ity.	
v	μ ₀ 0°	μ ₀ 6.3°	$\mu_v 25^{\circ}$	$\mu_v 35$	° μ,50°	μ,65°	v	μ _σ 0°	μ _ε 6°	$\mu_{0}25^{\circ}$	$\mu_{\rm r}$ 35	° μ _ε 50°	μ ₁ 65°
8 16 32 1 128 1 512 1 1024	112.0 119.0 120.7	106 .3 114 .4 122 .0 134 .7 144 .5 145 .4	164.8 177.4 190.5	198. 215. 231. 256. 278. 279.	218.0 9 247.3 3 2 288.1 8 321.4 6 344.4	354.7 398.4 426.1		87.35 93.67 99.15 108.3 116.1 115.8	109.9 116.8 128.7 137.2	157.9 169.7 180.9 200.1 215.4 214.3	190 7 204 9 218 1 242 1 261 3 260	0 237.5 8 6 278.3 9 310.6 3 336.2 1 344.6 369.8	342.7 386.1 416.0 427.3
	Pe	rcenta	ge Dist	ociati	ion.			P	ercenta	ge Di	social	ion.	
v	a0°	a6.3°	a25°	a35°	a50°	a65°	v	a0°	a6°	a25°	a35	° a50°	a65°
2 4 8 16 32 128 512 1024 2048	74.2 79.4 84.6 92.8 99.3 100.0	59.5 73.1 78.7 83.9 92.6 99.4 100.0	57.5 72.0 77.5 83.1 92.4 99.2 100.0	56. 71. 77. 82. 91. 99. 100.	59.3 2 57.2 1 78.3 9 87.4 1 93.6	66.2 77.9 87.5 93.5	2 8 16 32 128 512 1024 2048 4096	61.6 75.4 80.9 85.6 93.5 100.0 100.0	60.5 74.7 80.0 85.0 93.7 99.9 100.0		73. 78. 84. 193. 100.	0 64.8 7 0 75.3 4 84.0 0 91.0 0 93.2 100.0	75.5 85.0 91.6 94.1
Tempe	rature (Coeffic	ients in	Cone	ductivity	Units.	Temp	erature	Coeffic	ients i	n Con	ductivity	Units.
v	0-6.3°	6.3-2	25° 25	-35°	35-50°	50-65°	v	0-6°	6-2	5° 2	5-35°	35-50°	50-65°
2 4 8 16 32 128 512 1024 2048	2.13 2.67 2.95 3.16 3.57 3.90 3.92	3. 3. 3. 4. 4.	13 3 37 3 66 4 11 4 42 4 47 8	3.41 3.79 1.07 1.52 1.96 5.04		3.20 3.61 4.44 5.13 5.45 5.84	2 8 16 32 128 512 1024 2048 4096	2.50 2.77 2.94 3.40 3.50 3.60	3 2. 1 3. 1 3. 2 3. 2 4.			1	2.47 3.49 4.29 5.03 5.32 5.53 5.61 5.72
Te	emperat	ure Co	pefficier	nts in	Per Cer	nt.	T	'empera	ture Co	efficie	nts in	Per Ces	d.
v	0-6.3°	6.3-2	25° 25	-35°	35–50°	50-65°	v	0-6°	6-2	5° 2	5-35°	35-50°	50-65°
2 4 8 16 32 128 512 1024 2048	2.91 2.98 3.08 3.10 3.19 3.25 3.25	2. 2. 3. 3.	94 2 95 2 00 2 05 2 06 2	2.07 2.14 2.14 2.14 2.18 2.18 2.20		1.46 1.46 1.54 1.59 1.58	2 8 16 32 128 512 1024 2048 4096	2.73 2.93 2.89 2.97 3.14 3.03 3.11	3 2. 2 2. 2 2. 3 3. 2 .	83 87 89 92 00 95	2.03 2.07 2.08 2.14 2.13 2.14		1.35 1.42 1.54 1.65 1.58 1.60 1.52 1.57

N	Vickei	L SUL	PHATE	E (J.	AND H	[.).	N	ICKEL	Ac	ЕТА	TE (J. AN	D Hw	.).
	A	Iolecul	ar Con	ductiv	ity.			j	Mole	cular	Cone	ductiv	ity.	
v	μ _v 0°	μ _v 10°	$\mu_v 25^\circ$	$\mu_v 35$	$^{\circ}$ $\mu_v 50^{\circ}$	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	$\mu_v 1$	0°	u_v25°	$\mu_v 35$	$^{\circ}$ $\mu_v 50^{\circ}$	μ _ν 65°
2 4 8 16 32 128 512 1024 2048	28.77 40.58 47.78 54.78 73.95 93.12 100.4 108.3	38.37 54.42 64.00 73.23 99.92 124.7 134.8 145.5	54.58 77.06 90.44 103.5 140.3 177.5 193.8 208.7	90.9 106. 123. 168. 213. 234.	95.5 5 115.5 9 158.2 4 215.6 5 278.9	135.7 187.8 259.8 339.7	2 8 16 32 128 512 1024 2048	20.11 38.95 47.81 54.11 69.22 76.66 78.65 82.24	52. 64. 73. 92. 103	07 7 03 9 82 1 82 1 .5 1	39.22 74.10 01.60 105.8 134.6 150.7 153.9 160.6	110. 128. 164. 184. 189.	6 60.45 9 115.6 2 144.4 1 171.7 0 223.2 7 256.9 1 270.1 6 276.4	7 171 . 27 8 206 . 39 6 272 . 67 5 316 . 98 8 336 . 40
	P	ercenta	ige Dis	sociat	ion.			1	Perce	ntag	e Dis	sociat	ion.	
v	a0°	a10°	a25°	a35	° a50°	a65°	v	a0°	al	0°	a25°	α35	a50°	a65°
2 4 8 16 32 128 512 1024 2048	26.6 37.5 44.1 50.6 68.3 86.0 92.7 100.0	25.8 37.4 44.0 50.3 68.7 85.7 92.6 100.0	36.9 43.3 49.6 67.2 85.1 92.9 100.0				2 8 16 32 128 512 1024 2048	24.5 47.4 56.8 65.8 84.2 93.2 95.6 100.0	47 57 66 8 83 2 93 9 95	6 0 7 6 7 3	24.4 45.1 57.0 65.9 83.8 93.8 95.8	24. 45. 56. 65. 83. 93. 96.	4 41.8 1 52.3 2 62.1 4 80.8 9 92.9 2 97.7	39.8 49.3 59.4 78.4 91.2 96.8
					ductivity			-				1	luctivity	
	2 1.8 8 2.4 2 3.4 4 3.4	96 1 38 1 62 1 84 2 59 2 16 3 44 3	.08 .50 .76 .01 .69 .52 .93	5-35° 0.98 1.39 1.64 1.95 2.81 3.60 4.08 4.52	35–50° 1.64 2.35 3.15 4.36	1.09 1.35 1.97 2.95 4.05	1	8 1 6 1 2 1 8 2 2 2 4 2	71 .31 .62 .97 .36 .68 .72 .86	10-2 0.7 1.4 1.8 2.1 2.7 3.1 3.2 3.3	79 17 184 18 18 18 18 19 19	3-35° 0.82 1.51 1.86 2.23 2.94 3.40 3.52 3.60	35-50°	0.78 1.49 1.79 2.31 3.29 4.00 4.42 4.73
7	remper	ature C	oefficie	nts in	Per Cer	nt.	7	Cemper	ature	e Coe	efficie	nts in	Per Ce	nt.
v	0-1	0° 10-	-25° 25	5–35°	35–50°	50–65°	v	0-:	10°	10-2	5° 25	5–35°	35-50°	50–65°
	2 3.3 8 3.4 2 3.4 4 3.4	40 2 39 2 36 2 50 2 39 2 43 2		1.80 1.81 1.81 1.88 2.00 2.03 2.11 2.17	1.80 1.91 1.87 2.04	1.14 1.17 1.25 1.37 1.45	1	8 3 6 3 2 3 8 3 2 3 4 3	53 39 39 64 41 50 46 48	2.8 2.8 2.8 3.0 3.0 2.9	32 37 39 00 33	2.09 2.04 2.03 2.11 2.18 2.26 2.29 2.24		1.29 1.29 1.24 1.34 1.47 1.56 1.64 1.71

	C	OBALT	Снь	ORIDI	E (W.)		C	OBALT	r Broi	MIDE	(Ws.	AND V	V.).
		Molecul	ar Con	ductiv	ity.				Molecul	ar Con	ductiv	ity.	
v	μ ₀ 0°	μ ₀ 7.2°	μ ₀ 25°	$\mu_v 35$	° μ,50°	μ ₀ 65°	v	$\mu_{\rm e}0^{\circ}$	μ,12.5°	μ,25°	$\mu_{r}35$	° µ,50°	μ,65
2 4 8 16 32 128 512 1024 2048	71.77 87.75 94.08 100.2 109.6 116.5 116.8	87.16 107.4 115.3 122.8 135.1 143.7 144.0	129.5 161.5 174.2 186.7 207.1 221.2 221.1	154. 195. 211. 226. 252. 270. 270.	226.4 4 249.4 3 6 288.7 1 326.7 5 352.2 6	302.5 355.6 404.2 442.8	32 128 512 1024 2048	95.04 105.56 115.88 119.47 120.80 124.00	120 . 24 131 . 29 147 . 10 162 . 19 169 . 42 173 . 38 174 . 68 177 . 93	171 . 30 193 . 00 214 . 00 224 . 49 231 . 50 234 . 20	0204.4 9233.0 2259.9 9273.4 6281.1 8282.6	18 259 4 04 299 8 01 329 8 14 353 1 16	315.3 367.3 406.3 436.0
		Percenta	ge Disa	sociati	ion.			1	Percenta	ige Dis	sociali	ion.	
v	a0°	a7.2°	a25°	a35°	a50°	a65°	v	a0°	a12.5°	a25°	a35°	a50°	a65°
2 4 8 16 32 128 512 1024 2048	61.4 75.1 80.5 85.8 93.8 99.7 100.0	60.5 74.6 80.1 85.3 93.8 99.8 100.0		57 72 78 83 93 100	61.4 2 67.6 1 78.3 2 88.6 0 95.5	65.3 76.8 87.3 95.6	4 8 32 128 512 1024 2048 4096	70.0 75.7 84.1 92.3 95.2 96.3 98.8 100.0	67.6 73.8 82.7 92.0 95.2 97.5 98.2 100.0	94.8 97.8 98.9 100.0	3 70. 80. 89. 89. 89. 97. 97. 100.	7 70.0 5 80.8 8 88.9 5 95.3 2 7 100.0	68.0 79.1 87.6 94.0
Temp	- (e Coeffic			35–50°	Units. 50-65°	Temp		5° 12.5-			35-50°	Units.
	2 2 4 2 8 2 6 2 2 3 8 3 2 3 4 3	14 2 73 3 95 3 14 3 54 4 77 4	.38 2 .04 3 .31 .59 .04 4 .35 4	2.54 3.39 3.71 3.99 4.50 4.50 4.93 4.95	3.60 4.14 4.99 5.45	3.19 3.54 4.46 5.17 6.04 6.30	32 128 512 1024 2048 4096	1 2.5 3 2.5 2 3.5 3 3.7 4.6 4 4.5 3 4.6	59 2 90 3 32 3 71 4 90 4 21 4 95 4	.83 .20 .68 .15 .41 .65	3.32 4.00 4.59 4.90 4.96 4.84 5.26	2.85 3.66 4.43 4.64 5.31 5.86	3.37 3.75 4.52 5.15 5.57
	Tempe	rature C	oefficie	nts in	Per Cer	nt.		Temper	rature C	oefficie	ents in	Per Cei	nt.
v	0-7.	2° 7.2-	25° 25	-35°	35-50°	50-65°	v	0-12	.5° 12.5	-25° 2	5-35°	35-50°	50-65°
	2 3. 8 3. 2 3. 4 3.	11 2 14 2 13 2 23 2 23 3 24 3	.83 .87 .92 .99	2.10 2.13 2.14 2.17 2.22 2.24	1.84 1.83 1.98 2.02	1.41 1.42 1.54 1.58 1.71	32 126 512 102- 2048 4096	2 3.1 3 3.1 4 3.4 8 3.1	05 2 15 2 20 2 35 2 49 2 27 2	.56 .60 .68 .73	2.62 1.94 2.07 2.15 2.18 2.14 2.07 2.22	1.45 1.79 1.90 1.80 1.94	1.41 1.44 1.51 1.56 1.58

	Co	BALT	NITRA	ATE (W.).		C	OBALT	SULP	HATE	(J. A	ND H.).
	M	olecu!a	r Cond	u c tivii	ły.			M	lolecul	ar Con	iductiv	ity.	
v	μ ₀ 0°	μ ₀ 5.4°	$\mu_v 25^\circ$	$\mu_v 35$	$^{\circ}$ $\mu_v 50^{\circ}$	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	$\mu_v 10^\circ$	$\mu_v 25^\circ$	$\mu_v 35$	$^{\circ}$ $\mu_v 50^{\circ}$	$\mu_v 65^\circ$
2 4 8 16 32 128 512 1024 2048	87.07	82.27 101.0 108.2 114.7 125.8 135.5 135.4	125.9 157.9 169.2 180 8 200.4 215.5 215.3	189 9 204 218 242 262 262 .	216.8 9 239.7 7 6 276.9 2 310.1 1 334.7	291.4 340.2 384.0 414.6	2 4 8 16 32 128 512 1024 2048	29.47 42.06 49.26 56.26 75.89 94.88 101.9 110.9	39.22 56.00 65.61 75.04 101.5 126.9 137.6 148.4	78.37 91.97 105.4 143.4 180.5 196.5 214.	7 93.1 7 109. 4 125. 4 172. 2 218. 9 239.	95.6 4 117.2 4 8 160.0 1 203.4 1 290.7	189.6 256.6 346.0
	P	ercenta	ge Diss	sociati	ion.			P	ercenta	ige Di	ssociat	ion.	
v	a0°	a5.4°	a25°	a35°	a50°	a65°	v	a0°	a10°	a25°	a35	° a50°	a65°
2 4 8 16 32 128 512 1024 2048	61.7 	60.8 74.6 79.9 84.7 92.9 100.0 100.0	58.5 73.3 78.6 84.0 93.1 100.0 100.0	72. 78. 83. 92. 100.	61.0 5 67.5 1 4 77.9 4 87.3 0 94.2	77.5 87.5 94.4	2 4 8 16 32 128 512 1024 2048	26.6 37.9 44.4 50.7 68.4 85.6 91.9 100.0	26.4 37.7 44.2 50.6 68.4 85.5 92.7 100.0	36.0 43.0 49.5 67.0 84.5 92.0 100.0	6 35. 0 42. 2 48. 0 66. 2 84. 0 92.	9 2 5 4 2 3	
Temp	erature				luctivity	Units.	Temp	erature				ductivity	Units.
Ð	0-5.4	° 5.4-	25° 25	-35°	35-50°	50-65°	v	0-10	° 10-	25° 2	25-35°	35–50°	50-65°
2 4 8 16 32 128 512 1024 2048	2.39 2.79 2.92 3.30 3.63 3.57	2 3 3 3 3 3 4	90 3 11 3 37 3 81 4 08 4	2.48 3.20 3.55 3.78 4.18 4.66 4.67	3.32 3.89 4.53 4.84	3.11 3.45 4.22 4.93 5.33 5.58	2 4 8 16 32 128 512 1024 2048	1.39 1.60 1.80 2.50 3.22 3.50	9 1 3 1 8 2 6 2 1 3 7 3	.06 .49 .76 .02 .79 .55 .95	1.04 1.47 1.74 2.04 2.87 3.79 4.23 4.51		1.14 1.35 1.97 3.55 3.49 542
7	l'empero	ature C	oefficie	nts in	Per Cer	nt.	Т	'empero	ture C	oefficie	ents in	Per Cer	nt.
v	0-5.4	° 5.4-	25° 25	-35°	35-50°	50-65°	v	0-10	° 10-	25° 2	25–35°	35-50°	50-65°
2 4 8 16 32 128 512 1024 2048	2.74 2.99 2.98 3.00 3.13 3.08	2 2 3 3 3 3	87 87 94 03 01	1.97 2.03 2.09 2.09 2.09 2.16 2.17	1.75 1.78 1.87 1.85	1.43 1.44 1.52 1.59 1.59	2 4 8 16 32 128 512 1024 2048	3.30 3.33 3.34 3.35 3.36 3.56	0 2 1 2 4 2 7 2 8 2 0 2	.70 .66 .68 .69 .75 .79 .87	1.89 1.88 1.89 1.94 2.00 2.10 2.15 2.11		1.19 1.15 1.23 1.74 1.20

	COBA	LT ACE	TATE	(J. A	ND W	.).	Si	LVER	NITRA	TE (V	VS. AN	VD C.)).
		Molecul	ar Con	ductiv	ity.				Molecul	ar Cond	ductivit	y.	
v	$\mu_v 0^{\circ}$	$\mu_v 10^{\circ}$	$\mu_v 25^{\circ}$	$\mu_{v}35$	° µ,50°	μ ₀ 65°	υ	$\mu_{o}0^{\circ}$	μ,12.5°	μ. 25°	μ,35°	μ.50°	μ,65°
2 4 8 16 32 128 512 1024 2048	22.20 41.31 50.07 56.92 71.25 78.29 78.88 82.71	29.79 55.27 67.20 76.66 95.67 106.0 107.1 113.2	78.37 95.68 109.8 136.8 153.6 155.3 163.7	94.00 114.1 132. 166.3 188. 189.8	91.4 0 106.8 9 175.8 3 206.9 1 241.9	217.1 256.4 300.7	8 32 128 512 1024 2048	51.43 56.01 61.80 65.79 69.24 69.83 71.03	91.06 94.99 96.67	99.80 111.20 119.14 125.23	133 . 14 142 . 67 148 . 77	150.7 168.6 180.4 187.7 190.1 191.5	221.4 229.0 230.7
		Percenta	ge Dis	sociati	ion.				Percenta	ige Disi	sociatio	n.	
v	a0°	a10°	a25°	a35°	a50°	a65°	v	a0°	a12.5°	a25°	a35°	a50°	a65°
2 8 16 32 128 512 1024 2048	26.8 50.0 60.5 68.8 86.1 94.7 95.4 100.0	26.3 48.8 59.4 67.7 84.5 93.6 94.6 100.0	26.0 47.9 58.5 67.1 83.6 93.8 94.9 100.0	94. 95.	1 7 3 4 4 4 2		2 4 8 32 128 512 1024 2048 4096	72.4 78.8 87.0 92.6 97.4 98.3 100.0	71.3 77.4 86.2 92.0 95.9 97.6 100.0	70.6 76.9 85.7 91.8 96.5	71.7 78.5 86.8 93.1 97.0 98.7 100.9	88.0 94.2 98.0 99.3 100.0	79.8 89.4 95.3 98.8 99.3
		e Coeffic					-		e Coeffic				
2 4 8 16 32 128 512 1024 2048	1. 1. 1. 2. 2. 2.	75 0 39 1 71 1 97 2 44 2 77 3 82 3	.85 .54 .90 .21 .74 .15	5-35° 0.87 1.56 1.92 2.23 2.95 3.45 3.45 3.56	35-50°	1.30 1.63 2.75 3.30 3.92 4.37		2 1. 4 8 1. 2 1. 8 2. 2 2. 4 8 2.	65 1 88 2 02 2 06 2	.69 .65 .07 .25 .42		2.02 2.36 2.52 2.60 2.68	1.82 2.27 2.61 2.73 2.75 2.71 2.73
	Tempe	rature C	oefficie	nls in	Per Cer	nt.		Tempe	rature C	oe <u>f</u> ficie	nts in i	Per Cer	ıt.
v	0-1	0° 10-	25° 2	5–35°	35–50°	50-65°	υ	0-12	2.5° 12.5	-25° 2	5–35° 3	35–50°	50-65
1	6 3. 32 3. 28 3. 2 3. 24 3.	36 2 42 2 46 2 42 2 54 2 58 2	.79 .83 .88 .86	2.04 1.99 2.01 2.03 2.16 2.25 2.22 2.17		1.42 1.52 1.56 1.59 1.62		4 8 2. 2 2. 8 2. 2 2. 4 8 3.	95 2 94 2 94 2 98 2	.15 .43 .47 .55	2.00 . 2.06 1.97 1.97 1.87 1.87	1.68 1.78 1.77 1.75	1.46 1.51 1.55 1.51 1.46 1.43 1.43

	Cu	PRIC C	CHLOI	RIDE	(W.).			C	UPRIC	Вком	IDE (J.).	
	Λ	I olecula	r Con	ductivi	ty.*				Molecul	ar Cone	luctivit	y.*	
v	$\mu_v 0^\circ$	μ _v 13.8°	$\mu_v 25^\circ$	$\mu_v 3$	5° $\mu_v 50^{\circ}$	μ_v65°	v	$\mu_v 0^\circ$	μ,13.3°	$\mu_v 25^\circ$	μ_v35°	μ,50°	$\mu_v 65^\circ$
128 512	68.95 87.57 94.82 101.3 111.5 118.4 123.0	96.36 127.0 137.0 147.1 164.5 175.3 181.7	119.8 158.3 173.5 187.5 210.1 224.0 232.2	3 189. 5 208. 5 226. 255. 0 273.	9 6 2 6 4		128 512 1024	75.27 91.31 99.30 105.0 118.2 122.2 125.4 131.4		135.3 169.6 183.0 194.3 220.0 230.8 236.6 242.7 248.8 274.8	156.1 203.8 220.3 234.1 266.0 278.4 285.9 295.0 300.2 325.1		
	1	Percenta	ge Dis	sociat	ion.				Percenta	ge Dis	sociatio	on.	
v	a0°	a13.8°	a25°	α35	° a50°	a65°	v	a0°	a13.3°	a25°	a35°	a50°	a65°
2 8 16 32 128 512 1024	56.1 71.2 77.1 82.4 90.7 96.3 100.0	53.0 69.9 75.4 81.0 90.5 96.5 100.0	51.6 68.2 74.7 80.7 90.8 96.8 100.0	7 67. 7 73. 80. 90. 96. 96.	2 8 0 4 7		2 8 16 32 128 512 1024 2048	57.3 69.5 75.6 79.9 90.0 93.0 95.4 100.0	55.4 69.9 75.4 79.9 90.1 94.6 96.6 100.0	55.7 69.9 75.4 80.1 90.6 95.1 97.5 100.0	52.9 69.1 74.7 79.3 90.2 94.4 96.9 100.0		
v	0-13	.8° 13.8-	-25° 2	5–35°	35-50°	50-65°	v		3.3° 13.3		1	35–50°	50-65°
16 32 128 512 1024	3.6 2 3.8 3.8 2 4.1	36 2. 36 3. 32 3. 34 4. 4.	.09 .79 .26 .61 .07 .35 .51	2.15 3.16 3.51 3.87 4.55 4.94 5.04				2 3.3 8 3.5 2 4. 4 4. 8 4.5	99 3 17 3 37 3 82 4 14 4 19 4 19 4	.30 .50 .75 .35 .57 .73 .72	3.98 4.60 4.76 4.93 5.23 5.14		
	Тетрег	rature C	oefficie	ents in	Per Cer	nt.		Tempe	rature C	oefficie	nts in	Per Cen	it.
v	0-13	.8° 13.8-	-25° 2	5–35°	35-50°	50-65°	v	0-13	3.3° 13.3	-25° 25	-35°	35-50°	50-65°
	2 3.2 3 3.4 2 3.4	26 2. 23 2. 28 2. 14 2. 18 2.	.17 .20 .37 .45 .47 .48 .48	1.79 2.00 2.02 2.06 2.17 2.20 2.17				2 3.1 8 3.1 2 3.3 4 3.3	27 2 19 2 21 2 23 2 38 2 34 2	.51 .48 .50 .57 .57 .61	1.54 . 2.02 . 2.04 . 2.04 . 2.09 . 2.06 . 2.08 . 2.15 .		

^{*}Decomposed at higher temperatures.

(Сорре	R NIT	RATE ((W. A	ND H	w.).	C	OPPER	SULP	HATE	(Ws.	AND]	H.).
	1	Molecul	ar Cond	luctivi	ty.*				Molecul	ar Con	ductivit	y.	
v	$\mu_{\mathfrak{v}}0^{\circ}$	μ,5°	μ ₀ 15.8°	μ,25	μ ₀ 35°	μ.50°	v	μ ₀ 0°	μ,12.5°	μ,25°	μ.35°	μ _ε 50°	μ ₀ 65°
512	93.0 99.15 109.0	99.21 106.7 113.8 125.5 136.1	102.5 130.0 140.2 150.0 166.5 180.2 183.3	169.4 181.8 201.9 218.4	7 188.5 4 204.0 8 219.9 9 245.0 4 266.6		8 32 128 512 1024 2048	97.88 105.85 113.36	59.35	77 . 33 105 . 64 143 . 21 184 . 97 202 . 57 217 . 71	221 .08 245 .05 264 .44	93.8 109.1 152.7 210.3 279.1	107.4 124.5 173.8 247.3 237.7
		Percent	age Dis	sociati	ion.			1	Percenta	ge Dis	sociatio	n.	
v	a0°	a5°	a15.8°	a25°	a35°	a50°	v	a0°	a12.5°	a25°	a35°	a50°	a65°
2 8 16 32 128 512 1024	57.9 72.2 77.6 82.8 91.0 98.2 100.0	57.1 71.6 77.0 82.1 90.5 98.2 100.0	55.9 70.9 76.5 81.9 90.8 98.3 100.0	55.3 70.3 76.0 81.0 90.0 98.0 100.0	3 69.4 0 75.1 6 80.9 6 90.2 0 98.0		2 8 32 128 512 1024 2048 4096	25.2 35.5 48.0 64.5 82.1 88.8 95.1 100.0	24.6 34.7 47.1 63.6 81.2 88.2 94.6 100.0	23.8 33.4 45.7 61.9 80.0 87.6 94.1 100.0	78.6 87.1 94.0		
Temp	peratur			1	luctivity		Tem		e Coeffic				
v	0-5	5° 5-1	5.8° 15.	8-25°	25-35°	35-50°	v	0-12	2.5° 12.5	-25° 25	5-35° 3	35-50°	50-65°
	2 2.1 8 3.1 2 3.1	55 2 74 3 93 3 30 3 68 4	.85 .10 .35 .80 .08	2.26 2.90 3.17 3.46 3.85 4.15 4.30	3.46 3.81 4.31 4.82			8 2.4 2 3.5 4 3.6 8 3.8	36 1 86 2 54 2 28 3 60 4 87 4	.44 .01 .76 .68 .14	1.00 1.38 1.93 2.74 3.61 4.25 4.67 5.02	1.26 1.85 2.65 3.87 5.26	0.91 1.02 1.41 2.45 3.91 5.29
	Tempe	rature (Coefficie	nts in	Per Cer	nt.		Temper	rature C	oefficie	nts in l	Per Cer	nt.
v	0-5	5° 5-1	5.8° 15.	8-25°	25-35°	35–50°	v	0-12	2.5° 12.5	-25° 25	5-35° 3	35-50°	50-65
	2 2.8 8 3.0 2 3.	95 2 95 2 95 2 03 3 13 3	.87 .91 .94 .03	2.20 2.23 2.26 2.31 2.33 2.30 2.35	2.04 2.10 2.14 2.21			8 3.3 2 3.4 4 3.4 8 3.4	22 2 25 2 30 2 35 2 40 2 41 2	.43 .50 .54 .65 .74 .76	1.82	1.38 1.48 1.55 1.75	0.97 0.93 0.92 1.16 1.40

^{*}Decomposed at higher temperatures.

	LEAD	Сньог	RIDE (Ws. A	ND H	.).		LEAD	NITE	ATE (J. ANI	SH.).	
		Molecul	ar Con	ductivit	y.			1	Molecul	ar Con	ductivi	y.	
v	$\mu_v 0^\circ$	$\mu_v 12.5^\circ$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	μ_v65°	v	$\mu_v 0^{\circ}$	$\mu_v 10^\circ$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^\circ$
128 512 1024 2048	116.27 133.10 136.89 138.88	144.76 161.56 186.16 191.98 195.16 204.36	211.43 246.31 253.96 258.49	252.17 293.05 306.43 312.13	314.89 370.26 387.25 3412.06	379.39 452.75 476.90 502.84	16 32 128 512 1024	46.30 71.12 84.43 93.85 115.1 129.1 133.6 135.1	63.55 97.32 113.3 128.3 153.1 171.9 178.1 178.7	92.68 139.8 161.5 181.5 214.0 238.3 247.4 247.2	169.5 195.6 118.8 256.7 287.1 297.5	218.4 251.7 281.6 333.3 369.6 385.1	175.9 267.8 309.4 347.8 410.2 455.0 477.3 491.8
	i	Percenta	ige Dis	sociatio	m.			1	Percenta	ge Dis	sociatio	on.	
v	a0°	a12.5°	a25°	a35°	a50°	a65°	v	a0°	a10°	a25°	a35°	a50°	a65°
64 128 512 1024 2048 4096	72.2 80.4 92.0 94.6 96.0 100.0	70.8 79.0 91.1 93.9 95.5 100.0	69.8 78.2 91.1 94.0 95.6 100.0	76.9 89.4 93.5 95.2	75.5 88.8 92.9 98.8	64.3 73.6 87.9 92.6 97.6 100.0	2 8 16 32 128 512 1024 2048	34.3 52.6 62.5 69.5 85.2 95.6 98.9 100.0	35.6 54.5 63.4 71.8 85.7 96.2 99.7 100.0	37.5 55.3 65.3 73.4 86.6 96.4 100.0	56.7 65.4 73.2 85.9 96.0 99.5	54.8 63.2 70.8 83.8 92.9 6 96.8	62.9 70.3 83.4 92.4 97.5
Tem;	peratur	e Coeffic	ients in	n Cond	uctivity	Units.	Temp	erature	e Coeffic	ients i	n Cond	uctivity	Units
v	0-12	.5° 12.5	-25° 25	5–35° 3	35-50°	50-65°	v	0-10	0° 10-	25° 2	5-35°	35-50°	50-65
6 12 51 102 204 409	2 4.2 4 4.4 8 4.4	63 3 25 4 41 4 70 5	.99 .81 .96 .07	5.25 5.36		3.61 4.30 5.50 5.98 6.05 6.57	128 128 128 512 1024 2048	3 2.6 3 2.8 3 3.4 3 3.8 4 4.2 4 4.4	32 2 38 3 14 3 80 4 28 4 15 4	.94 .83 .21 .55 .06 .43 .62 .57	2.03 2.97 3.41 3.73 4.27 4.88 5.01 5.18		2.19 3.29 3.85 4.41 5.13 5.69 6.17 6.36
200				nts in	Per Cen	it.	2	Гетрег	ature C	oefficie	ents in	Per Cen	ıt.
	Tempe	rature C	oefficie										
v	-	2.5° 12.5			35-50°	50-65°	v	0-10	0° 10-	25° 2	5–35°	35-50°	50-65

					ND Hw	.,.	-		им Сн	DOM!	2 (11)		~!!.)
		Molecul	ar Con	ductiv	ity.				Molecul	ar Con	nductivi	ty.	
v	$\mu_v 0^{\circ}$	μ,12.5°	μ ₀ 25°	$\mu_v 35$	$^{\circ}$ $\mu_v 50^{\circ}$	μ ₀ 65°	v	μ _ε 0°	μ.12.5°	μ,25	μ,35°	μ.50°	μ,65
4 8 32 128 512 1024 2048 4096	11.2 16.0 28.8 46.4 65.3 74.5 84.3 87.8	16.4 23.3 41.4 66.3 92.7 108.2 119.4 124.6	22.1 31.2 54.9 87.1 123.1 139.1 156.8 165.5	66. 104. 146. 167. 189.	8 48.18 2 89.30 2 132.50 2 191.6 2 214.38 1 242.00	7 41.42 8 58.12 6 102.61 6 158.54 1 228.18 8 255.53 6 289.42 7 315.50	8 16 32 64 128 512 1024 2048	120 . 22 142 . 21 162 . 66 176 . 77 184 . 58 193 . 37	147.40 168.23 200.06 231.08 252.75 266.73 279.49 290.06	220 . 8 	6 266 . 5 2 3 2 2 . 1 0 3 7 7 . 2 4 4 2 1 . 0 6 4 4 6 . 9 4 4 7 2 . 4	8 341.6 381.1 8 455.5 8 6 567.5 5 609.3 6 647.5	419 470 567 730 796 868
		Percenta	ge Dis	sociat	ion.			1	Percento	ige Dis	sociati	on.	
v	a0°	a12.5°	a25°	a35	a50°	a65°	v	a0°	a12.5°	a25°	a35°	a50°	a65°
4 8 32 128 512 1024 2048 4096	12.8 18.2 32.8 52.8 74.4 84.9 96.0 100.0	13.2 18.7 33.2 53.2 74.4 86.8 95.8 100.0	13.3 18.8 33.2 52.6 74.4 84.0 94.7 100.0	19. 33. 52. 73. 84. 95.	0 18.5 3 32.3 4 50.8 6 73.4 2 82.1 2 92.7	18.4 32.5 50.2 72.3 81.0 91.7	4 8 16 32 64 128 512 1024 2048 4096	53.2 60.4 71.5 81.7 88.8 92.8 97.2 100.0	50.8 58.0 69.0 79.7 87.1 91.9 96.3 100.0	55.4 66.8 77.4 85.8 90.4 95.6	53.3 5 64.4 1 75.5 5 84.2 1 89.4	48.6 54.2 . 64.8 . 80.7 86.6 92.1	59. 76. 83. 91.
		e Coeffic							e Coeffic				
v		.5° 12.5-	-25° 25	5–35°	35–50°	50-65°	v	-	.5° 12.5	−25° 2		35-50°	50-65
	8 1.4 2 2.3 4 2.3 8 2.8	58 0 01 1 59 1 19 2 70 2 81 2	63 08 66 43 47	0.49 0.66 1.13 1.71 2.31 2.81 3.23 3.32		0.46 0.66 1.22 1.73 2.44 2.74 3.16 3.64		2 4.6 4 8 5.4 2 6.6 4 6.4 8 6.8	34 4 33 5 33 5 47 6 98 7 757 7 89 8	.69 .21 .21 .22 .08 .51 .16 .70	3.90 4.57 5.71 6.85 7.98 8.64 9.10 10.11		4.30 5.16 5.99 7.45 10.83 12.49 14.73 16.66
	Tempe	rature C	oefficie	nts in	Per Ce	nt.		Temper	ature C	oefficie	ents in	Per Cen	ıt.
v	0-12	2.5° 12.5-	-25° 25	5–35°	35-50°	50-65°	v	0-12	.5° 12.5	–25° 2	5–35°	35–50°	50-65
32 128 512 1024 2048 4096	2 3.4 2 3.5 4 3.6 8 3.5	63 2 50 2 42 2 35 2 62 2 34 2	.70 .61 .50 .62 .28			1.33 1.37 1.45 1.31 1.27 1.28 1.36 1.39		2 3.3 4 8 3.3 2 3.6 4 3.8 8 3.8	19 2 26 2 36 2 07 2 55 2 56 2	.50 .50 .60 .69 .80 .82 .92 .00	2.07 2.15 2.22 2.34 2.40 2.39		1.45 1.51 1.58 1.62 1.91 2.05 2.27 2.37

ALI	UMINI	um Ni	TRATE	(Ws	. AND	Sн.).	ALT	MINIU	M Sui	PHAT	e (Ws	. AND	SH.).
		Molecul	ar Con	ductiv	ty.			- 1	Molecul	ar Con	ductivit	y.	
v	$\mu_v 0^\circ$	$\mu_v 12.5^\circ$	$\mu_v 25^\circ$	$\mu_v 35$	$\mu_v 50^\circ$	$\mu_v 65^\circ$	v	$\mu_v 0^\circ$	$\mu_v 12.5^{\circ}$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	μ,50°	μ_v65°
8 32 128 512 1024 2048	115.67 136.32 156.18 166.97 173.45 179.32	188.54 217.14	206 . 89 247 . 70 287 . 03 313 . 03 332 . 20 345 . 82	248.8 299.9 349.4 384.4 0410.1 2428.3	2 320.8 6 394.3 9 464.4 3 535.8 8 575.8 2 613.3	393.6 487.3 583.9 685.9 750.5 820.9	512 1024 2048	51.90 65.21 89.50 121.87 164.08 191.95 222.31 262.35	123.63 169.38 230.86 271.31	114.44 158.01 219.04 301.01 359.16 425.03	183.51 266.22 358.79 433.51 518.19	166.7 236.7 239.9 497.3 613.2 746.8	594.6 740.2 943.0
	j	Percento	ige Dis	sociati	on.			j	Percenta	ige Dis	sociatio	n.	
v	a0°	a12.5°	a25°	a35°	a50°	a65°	v	a0°	a12.5°	a25°	a35°	a50°	a65°
4 8 32 128 512 1024 2048 4096	54.7 61.6 72.5 83.1 88.9 92.3 95.4 100.0	51.2 58.4 69.3 79.8 86.3 90.8 94.0 100.0	48.5 55.6 66.6 77.1 84.1 89.3 92.9 100.0	53.8 64.9 75.0 83.8 88.9	8 48.8 9 60.0 6 70.7 1 82.0 7 87.7 6 93.4	43.4 53.6 64.3 75.5 82.6 90.4	4 8 32 128 512 1024 2048 4096	19.8 24.9 34.1 46.5 62.5 73.2 84.7 100.0	19.0 23.7 32.7 44.8 61.0 71.7 83.9 100.0	18.0 22.3 30.7 42.6 58.5 69.9 82.7 100.0	17.0 20.9 28.9 41.9 56.5 68.3 81.6 100.0	17.8 25.3 36.3 53.1 65.5 79.8	21.8 32.4 48.7 60.6 72.2
Temp	peratur	e Coeffic	ients in	a Cond	uctivity	Units.	Tem	peratur	e Coeffic	cients in	n Cond	uctivity	Units.
v	0-12	.5° 12.5	-25° 2	5–35°	35-50°	50-65°	v	0-12	2.5° 12.5	-25° 25	5–35° 3	35–50°	50-65°
	8 4.8 2 5.4 4 5.9 8 6.1	45 3 18 4 88 5 45 6 93 6 19 7	.84 .75 .60 .28 .86	3.60 4.19 5.23 6.25 7.17 7.86 8.37 9.32	3.96 4.79 6.29 7.66 10.09 11.04 12.33 12.92	4.17 4.87 6.20 7.97 10.07 11.65 13.84 16.77		8 3.8 2 5.3 4 6.3 8 7.3	97 1 73 2 80 3 34 5 34 7 59 8	.97 .75 .97 .61 .03	1.53 . 1.80 . 2.55 . 4.72 . 5.78 . 7.44 . 9.32 . 2.07 .		1.09 1.27 1.97 3.67 6.49 8.47 13.08 19.01
	Tempe	rature C	oefficie	nts in	Per Cer	nt.		Tempe	rature C	oefficie	nts in 1	Per Cen	ıt.
v	0-12	.5° 12.5	-25° 25	5–35°	35–50°	50-65°	v	0-12	.5° 12.5	-25° 25	5-35° 3	5-50°	50-65°
	8 3.1 2 3.2 4 3.4 8 3.4	98 2 07 2 12 2 25 2 40 2 44 2	.42 .51 .58 .67 .77 .83	1.90 2.03 2.11 2.18 2.28 2.36 2.39 2.45	1.83 1.92 2.09 2.19 2.62 2.69 2.88 2.79	1.51 1.52 1.57 1.72 1.88 2.01 2.25 2.55		8 3 2 3 4 3 8 3	02 2 05 2 12 2 25 2 30 2 41 2	.19 .23 .34 .43 .59 .72	1.66 . 1.57 . 1.61 . 2.16 . 1.79 . 2.07 . 2.19 . 2.35 .		0.80 0.76 0.83 1.08 1.31 1.38 1.75 2.03

I	ERRIC	Снг	ORIDE	(J. A	ND H	.).		FER	RIC N	ITRAT	re (J.)).	
	λ	Iolecul	ar Cone	luctivit	y.			Λ	lolecul	ar Con	ductivi	ly.*	
υ	μ _υ 0°	μ ₀ 10°	μ ₀ 25°	$\mu_v 35^\circ$	μ ₀ 50°	μ ₀ 65°	v	μ ₀ 0°	μ ₀ 10°	μ,25°	μ,35°	μ ₀ 50°	μ _ε 65°
2 4 8 16 32 128 512 1024 2048	80.50 127.2 143.4 166.7 198.9 351.2 486.3 609.7	104.6 168.5 190.7 226.0 274.0 563.1 688.4 799.9	892.4	285.4 332.7 400.4 508.9 945.0 1130.3	269 . 5 346 . 9 515 . 8 1037 . 6 1405 . 4		2 8 16 32 128 512 1024 2048	97.68 138.2 150.7 171.4 199.5 371.3 490.9 585.2	128.1 185.7 202.7 233.7 271.7 408.7 571.4 693.5	181.6 266.5 295.3 342.6 399.4 705.7 877.7 961.6	328 .: 364 .: 422 .0 491 927 .0 1116 .:	7	
	P	ercenta	ige Diss	ociatio	n.			P	ercenta	ge Dis	sociatio	on.	
v	a0°	a10°	a25°	a35°	a50°	a65°	v	a0°	a10°	a25°	a35°	a50°	a65°
2 4 8 16 32 128 512 1024 2048					uctivity		2 8 16 32 128 512 1024 2048						
v	0-10)° 10–	25° 25	-35° 3	5-50°	50-65°	v	0-10	0° 10-	25° 25	5–35° 3	35-50°	50-65°
4	2 5.9 8 7.5 2 21.	13 4. 73 5. 93 6. 51 8. 1 9.	.64 4 .59 5 .82 7 .53 10 .61 23					2 6.2 8 7.2 2 3.7 4 8.0	75 5. 20 6. 23 7. 22 8. 74 19. 05 20.	39 17 26 50 80 2 42 2	6.17 6.90 8.00 9.20 2.13 3.88		
T	'empero	iture C	oefficier	its in I	Per Cen	t.	T	'empera	iture Co	efficie	nts in l	Per Cen	t.
v	0-10)° 10-	25° 25	-35° 3	5-50°	50-65°	v	0-10)° 10-	25° 25	-35° 3	35-50°	50-65°
	3.3 2 3.5 3 3.7 2 6.0	25 2 30 2 56 3 78 3	.75 1 .93 2 .02 2 .11 2 .71 3	.99 .12 .20 .66 .36			10 3: 128 51: 1024 2048	3.4 2 3.6 8 3.6 2 1.0 4 1.6	14 2. 14 3. 33 3. 32 3. 31 4. 34 3.	90 04 11 13 84 57	2.32 . 2.34 . 2.34 . 2.30 . 3.14 .		

^{*}Decomposed at higher temperatures.

Cı	HROMI	C CHL	ORIDE	(Ws	. AND	Sн.).	(CHROM	nc Nr	TRATE	(J. A	ND SI	н.).		
		Molecul	ar Con	ductiv	ity.				Molecul	ar Con	ductivi	ly.			
v	$\mu_v 0^{\circ}$	$\mu_v 12.5^\circ$	$\mu_v 25^{\circ}$	$\mu_v 35$	$^{\circ}$ $\mu_v 50^{\circ}$	$\mu_v 65^{\circ}$	v	$\mu_v 0^{\circ}$	$\mu_v 10^\circ$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	μ _v 50°	$\mu_v 65^\circ$		
32 128 512 1024 2048	104.53 130.03 162.34 188.46 200.21 214.48	182.75 231.28 272.50 294.55 316.60	184.18 245.00 313.45 372.34 403.58 434.36	243.5 319.1 393.6 465.1 504.3 543.0	0	410.0 538.5 681.5 834.4 941.3 1015.7 1101.4	2 8 16 32 128 512 1024 2048	87.17 117.6 129.7 138.5 149.0 188.7 203.0 210.4	112.1 153.1 169.7 181.9 198.9 253.0 274.0 295.3	154.7 214.0 238.8 258.1 286.2 370.2 412.9 438.0	183.6 256.5 287.4 312.6 350.7 459.4 511.8 550.9	335.9 380.6 420.5 511.2 634.7 692.0	416.3 473.8 531.2 658.9 821.2 894.4		
	1	Percenta	ge Diss	sociati	ion.			1	Percenta	ge Dis	sociatio	on.			
v	a0°	a12.5°	a25°	a35°	a50°	a65°	v	a0°	a10°	a25°	a35°	a50°	α65°		
4 8 32 128 512 1024 2048 4096	37.6 45.5 56.6 70.7 82.1 87.2 93.3 100.0	34.3 40.7 53.6 67.8 79.9 86.4 92.9 100.0	32.8 39.4 52.4 67.0 79.6 86.3 92.9 100.0	34.3 42.0 55.0 67.9 80.1 86.9 93.0	39.7 51.6 9 63.9 2 77.9 9 86.6 6 93.8	37.2 48.9 61.9 75.7 85.5 92.2 100.0	2 8 16 32 128 512 1024 2048	41.4 55.9 61.6 65.8 70.8 89.7 96.5 100.0	38.0 51.9 57.5 61.8 67.4 85.7 92.8 100.0	35.3 48.9 54.5 58.9 65.3 84.5 94.3 100.0	35.3 33.3 30. 48.9 46.6 43. 54.5 52.2 49. 58.9 56.8 54. 65.3 63.7 66. 84.5 83.6 82. 94.3 93.4 90.				
Tem	perature	Coeffic	ients in	Cond	luctivity	Units.	Temp	oerature	e Coeffic	ients in	Cond	uctivity	Units.		
v	0-12	.5° 12.5-	-25° 25	-35°	35-50°	50-65°	v	0-10)° 10–:	25° 25	-35° 3	35-50°	50-65°		
	8 5.5 2 6.7 4 7.5 8 8.1	74 3 82 4 82 6 83 7 84 8 8 9	63 8 98 7 57 8 99 9 72 10 42 10	7.42 3.02 9.28		5.18 7.15 9.81 12.23 14.47 15.45 17.66		2 4.3 8 4.9 2 6.4 4 7.1	55 4 00 4 34 5 09 5 13 7 10 9	.06 .61 .08 .82 .81 .26	4.25 4.06		3.11 5.36 6.22 7.38 9.85 12.43 13.49 15.47		
	Temper	ature C	oefficier	nts in	Per Cen	t.		Temper	ature C	oefficier	nts in l	Per Cen	at.		
v	0-12	.5° 12.5-	-25° 25	-35°	35–50°	50–65°	v	0-10)° 10–2	25° 25	-35° 3	35–50°	50–65°		
	3.4 2 3.5 4 3.7 8 3.8	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	62 3 73 3 84 2 93 3 96 2 98 2			1.56 1.66 1.83 1.87 1.99 1.53 1.60	10 32 128 512 1024 2048	3.0 2 3.1 8 3.3 2 3.4 4 3.5	02 2 08 2 3 2 35 2 41 3 60 3	.65 .72 .79 .93 .09 .38	1.87 1.99 2.04 2.11 2.25 2.41 2.40 2.58		1.34 1.59 1.63 1.75 1.92 1.96 1.95 2.01		

Сн	ROMIC	SULF	PHATE	(Ws	. AND	Sн.)	U	RANYI	Снь	ORIDI	e (Ws.	AND \	W.).
		Molecul	ar Con	rductiv	ity.				Molecu	lar Co	nductiv	ity.	
v	μ ₀ 0°	$\mu_v 12.5^\circ$	μ,25	ο μ _υ 35	° µ,50°	$\mu_{v}65^{\circ}$	v	$\mu_{\rm e}0^{\circ}$	μ,12.5	ο μ. 25	5° μ _ε 35	° \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	μ ₀ 65°
128 512 1024 2048	120.59 169.08 215.36 240.48 293.38	103 .64 158 .67 225 .60 292 .66 329 .96 405 .65	130.1 197.3 283.5 376.2 459.8 534.5	4230.3 6338.6 3472.1 3561.7 5708.1	11	585.3 732.1 905.2	8 32 128 512 1024 2048	110 . 48 133 . 05 148 . 39 155 . 98 161 . 02 168 . 42	157.64 186.56 209.75 220.70 231.37 242.69	206.0 246. 279.0 296 311.	01'246 . 8 12'297 . 8 00'339 . 4 56'360 . 4 92'383 . 8 24'405 . 9	0 274 6 51 318 9 54 380 3 10 439 4 14 491 1 38	387.8 473.2 548.5 610.6
		Percente	age Di	ssociat	ion.				Percent	age D	issociati	ion.	
v	a0°	a12.5°	a25°	a35	° a50°	a65°	v	a0°	a12.5°	a25	° a35	° a50°	a65°
4 8 32 128 512 1024 2048 4096	18.4 24.7 38.2 53.6 68.3 76.2 93.0 100.0	17.6 23.3 35.6 50.7 65.7 74.1 91.1 100.0	21. 33. 47. 62. 76. 89.	7 18. 0 28. 4 41. 8 58. 8 69. 3 87.	7 14.5 5 23.8 9 37.2 5 55.5 5 66.5 7 80.9	20.2 32.7 51.7 64.6	4 8 32 128 512 1024 2048 4096	58.0 63.1 76.0 84.8 89.1 92.0 96.3 100.0	54.7 62.0 73.4 82.5 86.8 91.0 95.5	59. 70. 80. 88. 88. 88. 89. 94.	.2 56. .7 68. .2 78. .2 83. .6 88. .3 93.	2	
Tem	peratur	e Coeffic	cients	in Con	ductivity	Units.	Tem	peratur	e Coeffi	cients	in Cone	ductivity	Units.
v	0-12	2.5° 12.5	-25° 2	25-35°	35-50°	50–65°	v	0-12	2.5° 12.	5-25°	25-35°	35-50°	50-65°
	8 4. 2 6. 4 7. 8 8.	06 2 05 2 52 4 18 4 16 10 98 10	.31	1.68 2.10 3.30 5.51 9.59 10.10 17.36 20.98		0.79 1.25 2.84 6.43 9.78 12.79 16.77		8 4. 2 5. 4 5. 8 5.	77 3 28 4 91 3 18 6 63 6 94 6	3.31 3.87 4.76 5.54 6.07 3.44 6.84 7.52	3.43 4.05 5.17 6.04 6.39 7.20 7.77 8.55	3.99 4.82 5.50 6.66	3.91 4.59 6.19 7.27 7.97 9.79
	Tempe	rature C	Coeffici	ients in	Per Cer	nt.		Tempe	rature (Coeffic	cients in	Per Ce	nt.
v	0-12	2.5° 12.5	5-25° 2	25–35°	35-50°	50-65°	v	0-12	2.5° 12.	5-25°	25-35°	35-50°	50-65°
	2 2. 4 2. 8 3.	65 2 54 1 67 2 87 1 98 3 06 2	2.15 2.05 1.55 2.06 1.60 3.15 2.54 2.75	1.69 1.61 1.67 1.94 2.55 2.22 3.25 3.51		0.62 0.60 0.86 1.32 1.67 1.78 1.94		2 3. 8 3. 2 3. 4 3. 8 3.	41 22 31 32 50 53	2.38 2.46 2.55 2.64 2.75 2.78 2.82 2.96	1.90 1.97 2.10 2.17 2.16 2.31 2.37 2.46	1.86 1.95 1.85 1.96	1.42 1.44 1.63 1.65 1.62

U	RANYI	NITE	RATE	(Ws	AND H	w.).	Uı	RANYL	SULP	HATE	(Ws. A	AND E	Iw.).
		Molecul	ar Con	nductiv	ity.			A.	Iolecula	r Cond	uctivity		
v	$\mu_v 0^\circ$	$\mu_v 12.5^\circ$	$\mu_v 25^\circ$	$\mu_v 35$	$\mu_t 50^\circ$	μ_v65°	v	$\mu_v 0^\circ$	$\mu_v 12.5^\circ$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	μ _v 50°	$\mu_v 65^\circ$
512 1024 2048	83.44 97.22 110.14 116.33 123.14 128.92	114.71 136.35 153.84 166.65 177.76 187.20	150.5 180.6 207.8 224.9 241.4 255.3	7 181 . 2 4 219 . 3 9 254 . 2 5 277 . 3 7 298 . 6 8 317 . 4	3404.71	2345.77 3406.32 5476.52 1514.08 538.35	128 512 1024 2048	128.62 157.54 175.68 191.68	99.77 129.52 166.72 207.90 235.28 260.77 285.05	203.02 257.69 296.95 332.57	176.52 229.42 295.20 343.01 391.00	2 215.3 2 279.5 0 369.5 421.7 0 498.9	231.0 300.1 403.7 471.0 562.6
	1	Percento	ige Di	ssociat	ion.			ì	Percento	ige Dis	sociatio	n.	
v	a0°	a12.5°	a25°	a35°	a50°	a65°	v	a0°	a12.5°	a25°	a35°	a50°	a65°
4 8 32 128 512 1024 2048 4096	54.8 61.9 71.1 80.5 85.0 90.0 94.2 100.0	51.0 57.3 68.1 77.9 83.3 88.8 93.6 100.0	54.9 65.8 75.8 82.0 88.0 93.	52. 8 63. 74. 9 80. 9 87. 1 92.	8 48.4 9 59.7 1 69.9 8 80.6 1 86.5 5 90.4	46.5 57.9 68.1 79.8 86.1 90.2	8 32 128 512 1024 2048 4096	38.4 49.5 63.2 77.5 86.4 94.2 100.0	35.0 45.4 58.5 72.9 82.5 91.5 100.0	42.0 54.3 69.0 79.5 89.0	76.9 87.6	37.7 49.0 64.7 73.9 87.4	34.6 44.9 60.4 70.5 84.2
Tem					ductivity	Units.	Tem		e Coeffic			uctivity	Units.
v	0-12	.5° 12.5	-25° 2	5–35°	35–50°	50-65°	v	0-12	2.5° 12.5	-25° 25	5–35° 3	35-50°	50-65°
	8 3.6 2 4.6 4 4.3 8 4.6	50 3 13 3 56 4 03 4 87 5 56 5	.47 .07 .54 .16 .66 .10 .46 .95	2.59 3.06 3.87 4.63 5.24 5.72 6.21 6.86	2.68 3.03 4.00 4.86 6.64 7.07 7.03 8.32	3.07 3.41 4.42 5.28 6.64 7.29 7.70 8.59		2 4.0 4 4.3 8 5.8	31 2 05 2 03 3 77 4 53 5	.18 .90 .98 .93 .74	1.97 2.64 3.75 4.61 5.84		1.16 1.05 1.37 2.28 3.29 4.25 6.48
1	Temper	ature C	oe.fficie	nts in	Per Cen	at.	T	'empera	ture Co	efficient	s in Pe	er Cent	
v	0-12	.5° 12.5	-25° 2	5-35°	35-50°	50-65°	v	0-12	2.5° 12.5	-25° 25	5-35° 3	35-50°	50-65°
	8 3.3 2 3.4 4 3.6 8 3.6	00 2 22 2 32 2 47 2 55 2 62 2	.42 .68 .60 .67 .80 .87 .92	1.95 2.03 2.14 2.23 2.33 2.37 2.43 2.50	1.69 1.67 1.82 1.91 2.39 2.37 2.22 2.43	1.54 1.50 1.58 1.61 1.76 1.80 1.82 1.84	3 12 51 102 204 409	8 2.3 2 2.4 4 2.3 8 2.8	30 1 37 1 56 1 72 2 89 2	.68 .74 .91 .10 .20	1.46 1.55 1.76		0.67 0.49 0.49 0.62 0.78 0.85 1.14

	Uı	RANYL	ACETA	ATE (V	Vs.).			Ну	DROCH	LORIC	Acid	(W.)	
		Molecul	ar Cond	ductivit	y.				Moleculo	ar Cond	luctivit	y.	
v	μ ₀ 0°	$\mu_v 12.5^{\circ}$	μ,25°	μ ₀ 35°	μ,50°	μ ₀ 65°	v	μ _e 0°	μ,12.5°	μ,25°	μ ₂ 35°	μ.50°	μ,65°
8 32 128 512 1024 2048 4096	30.59 39.65 51.48 63.57 70.13 76.81 83.75		91.34 110.47 120.37 131.78	86.67 108.52 129.06 141.12 154.46			4 8 16 32 128 512 1024	223.3 227.0 231.8 235.0 238.8 235.5 221.5	285.9 292.2 298.7 303.3 309.0 304.2 287.7	348 .2 357 .0 365 .2 370 .7 379 .3 374 .7 353 .4	397.9 407.1 415.5 423.4 433.3 428.3 405.3	/	
		Percenta	ge Diss	sociatio	n.			P	ercentag	e Disso	ciation		
v	a0°	a12.5°	a25°	a35°	a50°	a65°	v	a0°	a12.5°	a25°	a35°	a50°	a65°
8 32 128 512 1024 2048 4096	36.5 47.3 61.5 75.9 83.7 91.7 100.0	37.6 48.4 62.1 75.6 83.3 91.1 100.0	39.0 48.8 63.0 76.1 83.0 90.8 100.0	40.0 50.8 63.7 75.7 82.8 90.6 100.0			4 8 16 32 128	93.5 95.1 97.1 98.4 100.0	92.5 94.6 96.7 98.2 100.0	91.8 94.1 96.3 97.7 100.0	91.8 93.9 95.9 97.7 100.0		
Temp	peratur	e Coeffic	ients in	Condu	ctivity	Units.	Temp	perature	e Coeffici	ients in	Condu	clivity	Units.
v	0-12	.5° 12.5-	-25° 25	-35° 3	5-50°	50-65°	v	0-12	.5° 12.5	-25° 25	-35° 3	5-50°	50-65°
8 32 128 512 1024 2048 4096	1.2 3 1.5 1.8 1.9 2.1	23 1. 63 1. 60 1. 7 2. 5 2.	37 1 65 1 95 1 05 2 25 2	.16 .44 .72 .86 .208 .227 .254				2 5.4 8 5.6 2 5.8	22 5. 35 5. 46 5. 62 5. 50 5.	.18	5.01 5.03 5.27 5.40 5.36		
1	Гетрег	ature Co	oefficier	nts in F	er Cen	t.		Temper	rature Co	pefficier	nts in F	er Cen	t.
v	0-12	.5° 12.5-	·25° 25	-35° 3	5–50°	50–65°	v	0-12	.5° 12.5-	-25° 25	-35° 3	5-50°	50-65°
8 32 128 512 1024 2048 4096	3.1 2.9 2.8 4 2.8 3 2.8	0 2. 07 2. 33 2. 31 2. 30 2.	49 1 34 1 26 1 16 1 17 1	Company .			16 32 128 512 1024	2 2.3 2 2.3 3 2.3 2 2.3 2 2.3	30 1. 31 1. 37 1. 35 1. 34 1.	77 1 78 1 77 1 82 1 85 1	.43 .40 .38 .42 .42 .43		

		NITRI	c Acı	ь (W.	.).		1	S	ULPHU	RIC A	CID (V	V.).	
		Molecul	ar Con	ductivi	ty.				Molecul	ar Con	ductivit	y.	
v	$\mu_v 0^\circ$	$\mu_v 12.5^\circ$	$\mu_v 25^{\circ}$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	μ _v 16.3°	μ ₀ 25°	μ ₀ 35°	μ _ν 50°	μ _ν 65°
4 8 16 32 128 512 1024	222.4 226.9 231.3 235.4 238.3 236.7 231.4	284.3 290.5 296.3 301.7 308.2 306.0 299.9	344.4 354.4 362.0 368.7 376.6 373.9 366.5	402.7			4 8 16 32 128 512 2048 8192	292.9 303.9 323.6 347.2 403.6 442.7 449.2 441.6	382.8 393.9 417.3 450.0 535.6 601.1 622.4 618.2	419.3 431.5 456.6 491.4 589.4 675.2 709.9 708.6	457.2 471.7 498.0 533.6 646.2 753.0 814.4 816.3		
		Percenta	ge Diss	sociatio	n.			1	Percenta	ge Diss	sociatio	n.	
v	a0°	a12.5°	a25°	a35°	a50°	a65°	v	a0°	a16.3°	a25°	a35°	a50°	a65°
4 8 16 32 128	93.3 95.2 97.1 98.8 100.0	92.2 94.3 96.1 97.9 100.0	91.4 94.1 96.1 97.6 100.0	91.0 93.8 95.9 97.5 100.0			4 8 16 32 128 512 2048	65.2 67.7 72.0 77.3 89.8 98.6 100.0	61.5 63.3 67.0 72.3 86.1 96.6 100.0	59.1 60.8 64.3 69.2 83.0 95.1 100.0	57.9 61.2 65.5 79.3 92.5		
Temp	peratur	e Coeffic	ients in	n Condu	uctivity	Units.	Temp	erature	e Coeffic	ients in	Condu	ctivity	Units.
v	0-12	.5° 12.5-	-25° 25	-35° 3	5-50°	50-65°	v	0-16	.3° 16.3-	-25° 25	-35° 3	5-50°	50-65°
	2 5.3 3 5.5 2 5.5	09 5. 20 5. 30 5. 39 5. 34 5.	11 4 25 4 36 4 47 5 43 5	1.98			16 32 128 512 2048 8192	5.8 5.7 6.3 8.1 9.7 10.6	52 4. 75 4. 31 4. 10 6. 72 8. 33 10.	32 4 52 4 76 4 18 5 52 7 06 10	1.02		
	Temper	rature C	oefficie	nts in l	Per Cen	ıt.	1	Гетрег	rature Co	oefficier	nts in F	er Cen	t.
v	0-12	.5° 12.5-	-25° 25	-35° 3	5-50°	50-65°	v	0-16	.3° 16.3-	-25° 25	-35° 3	5-50°	50-65°
16 32 128 512 1024	3 2.2 3 2.2 2 2.2 3 2.3 2 2.3	24 1. 25 1. 25 1. 34 1. 34 1.	76 1 77 1 78 1 77 1 77 1	1.35 1.36 1.38 1.35 1.40 1.42			4 8 16 32 128 512 2048 8192	1.4 1.7 1.8 2.0 2.1 2.3	19 1. 78 1. 32 1. 01 1. 19 1.	10 0 08 0 06 0 15 0 42 1 62 1	0.90 0.93 0.91 0.86 0.96 15 47 52		

DISCUSSION OF THE RESULTS.

THE CONDUCTIVITY MEASUREMENTS.

The conductivities of about 110 salts and mineral acids have been measured and the results are herein recorded. These have been studied from about the most concentrated solution that could be prepared, up to a volume of from 1000 to 4000. The temperature range is from 0° to 65°. Salts of nearly all of the more common metals have been included within this work.

It is almost self-evident that in an investigation of this scope certain peculiarities would be presented by some of the substances studied.

The salts of lithium crystallize with more water than the corresponding salts of the other alkali elements. This means that the lithium ion is more hydrated in aqueous solution than the potassium, sodium, or ammonium ion. The result is that the lithium ion moves more slowly than the other alkali ions, and, consequently, the conductivities of lithium salts are smaller than those of the corresponding salts of sodium and potassium. Before we had the solvate theory it was very difficult to account for the fact that the lithium ion, which has a much smaller mass and smaller atomic volume than either sodium or potassium, should have a smaller velocity. But we now have the explanation of this fact. The larger conductivity of lithium sulphate, especially at high dilutions, as compared with other salts of lithium, is due to this being a ternary electrolyte, while the other three salts are binary electrolytes.

The salts of sodium with the simpler acids call for no special comment. The conductivities are larger than those of the corresponding salts of lithium, since the sodium ion is less hydrated than lithium, and, consequently, moves faster through the solution. Sodium carbonate has very great conductivity, especially at high dilution and elevated temperatures. This is undoubtedly due to large hydrolysis under these conditions. The very large conductivity of disodium phosphate is also probably due to hydrolysis. Sodium ammonium acid phosphate (microcosmic salt) begins, in fairly concentrated solutions, to give off ammonia at 25°, and this is still more marked at 35°.

The unusually high conductivity of sodium ferrocyanide, especially at N=1024 and 65° , is due in part to the large number of ions yielded by this substance, and in part to hydrolytic dissociation.

The salts of potassium have somewhat larger conductivity than those of sodium. The potassium ion has less hydrating power than sodium, as is shown by the fact that potassium salts show less tendency to crystallize with water than sodium. Notwithstanding the greater mass of potassium, the ion moves faster than sodium, since it drags less water with it through the solution. This would increase the conductivity of potassium salts over that of sodium. The large conductivities of potassium carbonate, dipotassium phosphate, and tripotassium phosphate are due to hydrolysis. The large values for potassium nickel sulphate, and for both the violet and green potassium chromium sulphates are due chiefly to the large number of ions into which these compounds dissociate. It was shown some time ago by Jones and

Mackay* "that compounds of this type first break down into the constituent sulphates, especially in dilute solution, and these then dissociate as if they alone were present in the solution."

Potassium permanganate underwent slight decomposition, especially at more elevated temperatures. The high conductivity of potassium ferrocyanide is explained by the large number of ions into which it breaks down.

Ammonium salts with the ordinary mineral acids crystallize with little or no water. This means that the ammonium ion is very slightly hydrated in aqueous solution. Ammonium salts, in general, conduct to just about the same extent as potassium salts. Tetraethylammonium iodide decomposes slowly around 50 degrees.

Turning to the bivalent metals, let us consider, first, salts of calcium, strontium, barium, and magnesium. Most of the salts of these metals with the ordinary mineral acids crystallize with six molecules of water; calcium nitrate, which crystallizes with four molecules of water; strontium nitrate, which crystallizes anhydrous; barium chloride and bromide, which crystallize with two molecules of water each, and barium nitrate, which crystallizes without water, are exceptions.

Earlier work in this laboratory on the approximate composition of the hydrates formed by various substances† has shown that salts of calcium, strontium, barium, and magnesium hydrate to approximately the same extent, and that all four of these elements have very great hydrating power. While the masses of the atoms of these four elements vary from magnesium=24.36, calcium=40.1, strontium=87.6, to barium=137.4, yet the amounts of water with which these substances in solution are combined are so large that the total masses of the four ions when hydrated as they are, especially in dilute solution, are not very different. Further, the atomic volumes of these four substances are not very different, magnesium being somewhat less than the other three. Ionic velocity is a function of the ionic volume and ionic mass of the hydrated ions. We should, therefore, expect the velocities of these four ions to be just about the same, and such is the fact. The velocities are: Mg=58, Ca=62, Sr=63, and Ba=64.

Conductivity is a function of the number and velocities of the ions taking part in the conduction of the current. Since salts of the above four elements are dissociated to just about the same extent, it follows that salts of calcium, strontium, barium, and magnesium should give conductivities of the same order of magnitude. An examination of the results will show this to be the case. The salts of these elements with the organic acids—formic and acetic—are probably somewhat hydrolyzed, especially the salts of acetic acid. The formate showed a short hydrolysis time factor, while the acetate precipitated a small amount of barium hydroxide on the platinum plates.

Zinc nitrate, like magnesium nitrate, crystallizes with six molecules of water and the two have very nearly the same conductivity. There was evidence that zinc nitrate underwent slight hydrolysis. Zinc sulphate and magnesium sulphate crystallize with the same amount of water—each with seven molecules—and they have very nearly the same conductivities. Zinc acetate was undoubtedly strongly hydrolyzed, especially at the high dilutions and high temperatures. There was an appreciable odor of acetic acid in these solutions.

The salts of cadmium present several points of interest. The chloride crystallizes with two molecules of water, while the bromide and iodide crystallize without water. Notwithstanding the small hydrating power of the cadmium ion, its salts conduct less than the corresponding compounds of calcium, strontium, barium, and magnesium. The explanation of this is well known. The halides of cadmium are much less dissociated than the halides of the metals related chemically to it, hence the smaller conductivity.

The conductivities of the salts of manganese, nickel, and cobalt call for no special comment. Manganese nitrate underwent some decomposition at 35°. Nickel acetate underwent hydrolysis, the solution having the odor of acetic acid. Salts of these three metals give conductivities that are of the same order of magnitude, and are, indeed, very nearly equal. This would be expected from the relative hydrating power of the manganese, cobalt, and nickel ions.

The above comments also apply to the salts of copper that were investigated. At 65° these salts, in general, underwent decomposition, and the work, therefore, could not be extended to this temperature. The salts of aluminium, iron, and chromium are all quaternary electrolytes, *i. e.*, the molecule breaks down into four ions. The conductivities of these substances are, therefore, large. Many of these salts undergo hydrolysis at the higher temperatures. This is so pronounced with the salts of iron that they could not be studied at all at the higher temperatures. The salts of aluminium, iron, and chromium crystallize with large amounts of water, *i. e.*, these ions have great hydrating power. The order of magnitude of this power can be seen from the earlier work in this laboratory.* That these substances have very large temperature coefficients of conductivity will be seen a little later.

The salts of uranyl undergo hydrolysis, especially at the more elevated temperatures. To this hydrolysis there is an appreciable time factor. This accounts for the difficulties encountered by different workers in obtaining concordant results.

The relations pointed out above will be seen from the table of molecular conductivities on pages 70 and 71. Here the results are given at two dilutions widely removed from one another, and at three temperatures as widely different as possible.

A DEHYDROLYTIC TIME FACTOR.

An observation of some importance was made by Mr. Shaeffer. He took four parts of a n/32 solution of chromium chloride. One of these was kept at room temperature. A second was heated for two hours to 50° , a third for the same time to 65° , while a fourth was heated for two hours to 90° . All four solutions were then brought to the same temperature and their conductivities determined. The conductivities of all four solutions were taken at 35° , at 50° , and at 65° , and the results are given in the following table:

CHROMIUM CHLORIDE.

v	T	Not heated	Heated to 50°	Heated to 65°	Heated to 90°
32	35°	330.5	331.4	342.0	415.7
32	50°	424.6	429.7	439.0	519.0
32	65°	532.4	536.9	544.6	624.2

^{*}Carnegie Institution of Washington Publication No. 60, pp. 87-93.

MOLECULAR CONDUCTIVITIES.

	0	0	2	5°	65	5°
	v = 8	v = 1024	v=8	v = 1024	v=8	v = 1024
LiCl	47.27	56.08	88.41	107.2	167.7	208.3
LiBr	49.84	57.97	89.78	109.9	170.4	
LiNO ₃	43.83	52.0	79.71	98.0	157.7	197.8
Li ₂ SO ₄	66.74	108.1	128.4	211.4	242.7	425.5
NaCl	53.5	61.6	98.5	115.4	184.5	225.5
NaBr	55.36		100.3		184.1	222.8
NaI	55.26	63.14	100.4	116.4	187.5	234.1
NaNO ₃	50.27	59.39	111.3	138.5	171.4	213.2
NaClO ₃	47.4	56.2	86.7	104.1	164.4	211.3
NaClO ₄	49.4	56.8	90.2	105.4		
Na ₂ SO ₄	78.51	119.65	146.4	226.34	274.3	
Na_2CO_3	70.7	110.8	137.8	218.1	271.9	439.5
Na ₂ HPO ₄		91.9		183.7		393.2
NaNH ₄ HPO ₄	65.6	104.7		193.6		
Na ₄ Fe(CN) ₆	136.7	253.4	259.2	482.4	469.61	939.35
Na ₂ B ₄ O ₇		79.20		153.4		
CH ₃ COONa	34.30	40.65	66.25	79.12	131.7	
KCl	66.47	75.14	118.6	137.0	215.9	258.3
KBr	68.01	79.23	121.3	143.5	218.1	260.3
KI	68.45	77.77	120.7	141.8	221.2	268.1
KNO ₃	61.94	76.31	111.0	139.6	199.6	245.2
KClO ₃	58.9	70.6	104.7	127.8	192.1	241.5
KClO ₄	00.0	72.0	101.7	130.7	102.1	240.6
K ₂ SO ₄	101.9	145.0	183.6	268.0	332.8	513.1
KHSO4	182.1	140.0	254.2	200.0	313.3	010.1
	98.74		180.9		291.17	
K ₂ CO ₃	79.19	109.35	143.34	200 52	291.17	
K₂HPO₄		192.1	217.2	200.52	415.5	697.3
K ₃ PO ₄	116.6			362.5		
KNaSO4	96.1	140.8	170.6	259.2	272.73	469.31
KNi(SO ₄) ₂	122.6	235.5	221.9	437.1	407.67	850.20
$KAl(SO_4)_2$	78.9	177.8	140.3	332.7	240.6	
KCr(SO ₄) ₂ violet	75.8	186.6	135.3	369.6	242.04	785.37
KCr(SO ₄) ₂ green	101.0	229.7	158.4	399.6	248.10	771.94
KMnO ₄	59.34	64.65	104.36	113.95	193.58	215.95
K₂CrO₄	111.3	150.1	196.0	276.2	357.7	
$K_2Cr_2O_7$	109.1	133.6	195.5	240.6	352.9	
K_4 Fe(CN) ₆	168.8	295.1	305.1	546.5	543.0	
CH ₃ COOK	48.6	58.33	88.43	106.84		203.7
CNSK	62.48	72.25	110.9	131.5	201.8	
NH4Cl	66.17	74.84	118.6	137.8	217.1	269.7
NH ₂ Br	69.36	77.06	123.6	140.9	220.9	267.6
$N(C_2H_5)_4I$	38.6	53.3	72.8	99.3		
NH ₄ NO ₃	64.35	74.69	113.38	134.43	204.3	249.3
$(NH_4)_2SO_4$	98.06	143.84	179.57	267.62	325.2	
NH ₄ HSO ₄	183.40	295.22	258.00	483.51	303.2	794.5
$NH_4Al(SO_4)_2$	80.00	181.0	143.1	342.4	236.5	
NH ₄ Cr(SO ₄) ₂ violet	77.5	187.0	137.3	372.0	244.97	754.79
NH ₄ Cr(SO ₄) ₂ green	103.6	215.6	162.9	386.2	250.70	789.57
$(NH_4)_2\hat{C}u(\hat{SO}_4)_2$	122.7	236.0	220.7	442.6	383.1	850.8
CaCl ₂	95.3	126.5	172.5	236.1	318.7	
CaBr ₂	97.74	126.3	177.5	236.5	339.4	477.18
$Ca(NO_3)_2$	85.50	125.7	157.3	235.0	287.8	
CaCrO ₄	57.7	111.6	105.8	208.8	187.81	401.22
Ca(HCOO) ₂	67.2		124.5	200.0	230.8	202.22
$SrCl_2$	92.97	129.1	173.7	242.8	324.4	463.3
$SrBr_2$	100.00	129.1	180.6	239.6	343.7	100.0
$Sr(NO_3)_2$	84.33	126.9	154.1	233.7	288.0	
$Sr(NO_3)_2$					193.8	
BaCl ₂	56.51	91.18	106.96	177.44		
	99.06	130.9	179.00	243.4	322.3	484.6
$BaBr_2$	103.4	133.8	187.4	249.9	340.1	404.0

ELECTRICAL CONDUCTIVITIES, ETC.

MOLECULAR CONDUCTIVITIES—Continued.

		0°	2	5°	6	5°
All to the second	v = 8	v = 1024	v = 8	v = 1024	v=8	v = 1024
Ba(NO ₃) ₂	76.37	127.4	146.4	234.2	276.2	
Ba(HCOO) ₂	72.22	103.0	133.4	184.0	245.4	385.5
Ba(CH ₃ COO) ₂	59.05	92.63	113.3	180.5		
MgCl ₂	87.6	118.3	162.1	224 9	303.8	
$MgBr_2$	93.73	122.8	170.64	230.94	324.4	
$Mg(NO_3)_2$	88.91	120.68	160.86	224.49	298.1	
MgSO ₄	45.70	102.7	85.62	198 3	102.4	240 9
$Mg(HCOO)_2$	58.15	94.03	109.29	176.23	201.4	
$Mg(CH_3COO)_2$	46.35	80.38	89.79	158.95	171.2	
$\operatorname{Zn}(\operatorname{NO}_3)_2 \dots \dots$	87.6	117.1	157.2	216.6	289.67	415.20
ZnŠO ₄	43.20	104.7	80.01	197.8		
Zn(CH ₃ COO) ₂	37.7	79.9	66.6	156.7	100.61	298 74
CdCl ₂	45.32	113.78	79.30	212.53	139.6	200 13
CdBr ₂	37.80	110.69	70.44	208.48	128.5	
CdI ₂	24.31	96.31	48.44	188.66	94.61	
MnCl ₂	84.98	114.9	156.7	216.8	293.7	468.4
$Mn(NO_3)_2$	83.1	105.4	144.3	195.8		
MnSO ₄	44.11	107.13	79.77	202.94	130.0	
NiCl ₂	89.51	120.7	164.8	229.0	301.5	
Ni(NO ₃) ₂	87.35	115.8	157.9	214.3		
NiSO4	40.58	100.4	77.06	193.8	135.7	
NiCH ₃ COO	38.95	78.65	74.10	153.9	138.32	226 46
		116.8				336.46
CoCl ₂	87.75		161.5	221.1	302.5	
CoBr ₂	95.04	120.80	171.3	231.56	315.7	
Co(NO ₃) ₂	87.07	116.1	157.9	215.3	291.4	
CoSO ₄	42.06	101.9	78.37	196.9	137.5	
Co(CH ₃ COO) ₂	41.31	78.88	78.37	155.3	131.2	220 -
AgNO ₃	56.01		99.80		184.8	230.7
CuCl ₂	87.57	123.0	158.3	232.2		
CuBr ₂	91.31	125.4	169.6	236.6		
$Cu(NO_3)_2 \dots$	86.48	119.8	156.7	222.9		
CuSO ₄	42.30	105.85	77.33	202.57	124.5	
PbCl ₂		136.89		253.96		476.90
$Pb(NO_3)_2$	71.12	133.6	139.8	247.4	267.8	477.7
Pb(CH ₃ COO) ₂	16.0	74.5	31.2	139.1	58.12	255.53
AlCl ₃	120.22	184.58	220.86	360.56	419.1	796.7
$M(NO_3)_3$	115.67	173.45	206.89	332.20	393.6	750.5
$M_2(SO_4)_3$	65.21	191.95	114.44	359.16	185.7	740.2
FeCl ₃	127.2	486.3	238.1	892.4		
Fe(NO ₃) ₃	138.2	490.9	266.5	877.7		
CrCl ₃	104.53	200.21	184.18	403.58	410.0	941.3
$Cr(NO_3)_3$	117.6	203.0	214.0	412.9	416.3	894.4
$\operatorname{Cr}_2(\operatorname{SO}_4)_3$	77.85	240.48	130.18	459.83	139.9	732.1
JO ₂ Cl ₂	110.48	161.02	206.01	311.92	387.8	548.5
$JO_2(NO_3)_2$	83.44	123.14	150.57	241.47	277.69	514.08
JO ₂ SO ₄	78.13	175.68	120.82	296.95		
JO ₂ (CH ₃ COO) ₂	30.59	70.13	56.53	120.37		
HCl	227.0	221.5	357.0	353.4		
HNO ₃	226.9	231.4	354.4	366.5		
H ₂ SO ₄	303.9	201.1				
12004	000.0		202.0			

The vessels used for holding the solutions were of Jena glass, which had been treated for months to remove all soluble matter. The increase in conductivity in the heated solutions could, therefore, not have been due to matter dissolved from the glass vessels. It will be seen that the solutions which had been heated had higher conductivity than those which had not. This is especially true of the solution which had been heated to 90°. This was undoubtedly due to hydrolytic dissociation of the salt into acid and base, and these did not completely recombine on cooling the solution to the initial temperature.

The same process was repeated, using a solution of chromium chloride which was n/512, heating one part to 50°, another to 65°, still another to 90°, then cooling all down to room temperature, and measuring the conductivities at the following temperatures:

CHROMIUM CHLORIDE.

v	T	Not heated	Heated to 50°	Heated to 65°	Heated to 90°
512	35°	487.4	489.5	500.6	559.7
512	50°	652.2	656.7	667.7	724.6
512	65°	842.5	843.8	856.6	915.1

The results for the more dilute solutions are of the same general character as those for the more concentrated.

To throw some light on the length of time required for the acid and base to recombine, the following experiment was carried out: The n/512 solution of chromium chloride, which had been heated to 90°, was cooled to room temperature and allowed to stand for 20 days. It was then warmed to 35°, and its conductivity determined. The value found was 508, while the value found shortly after heating was 559.9. The unheated solution gave a conductivity of 487.4. It is thus obvious that in 20 days the hydrolysis had not all disappeared.

A similar experiment with n/512 chromium chloride, which had been heated to 90°, cooled to room temperature and allowed to stand 20 days, and then warmed to 65° and its conductivity determined, gave the value 885. The conductivity shortly after heating was 915.1. The conductivity of the unheated solution was 842.5. This shows that the dehydrolysis, in this case, was not complete even after the solution had stood for 20 days. We propose to study these changes quantitatively in the near future, and see how long it requires for the completion of the dehydrolysis, in the cases especially of those salts which are strongly hydrolyzed.

The bearing of these facts on the purification of salts by recrystallization from water is important. The usual method of purification, by preparing a saturated solution at a higher temperature and then lowering the temperature and allowing the salt to crystallize is open to objection, especially for those salts which are strongly hydrolyzed by water. It has been supposed that when the solution in question was cooled down, the free acid and free base recombined. This work shows that such is not the case. There remains in the solution, for a long time, some free acid; and when the salt crystallizes from such a solution it is likely to occlude some of the free acid.

The better method for purifying hydrolyzable salts by crystallization is to make the saturated solution at low temperatures, and then remove the water by an airpump or over sulphuric acid. It is well known that hydrolysis increases very rapidly with rise in temperature.

DISSOCIATION OF THE VARIOUS SALTS.

The dissociation of the various salts can be best compared and studied by bringing together the results for the different salts under comparable conditions. For some of the salts it is impossible at present to give their true dissociations. This is due to the fact that they underwent more or less hydrolysis, and the true value of μ_{∞} for the unhydrolyzed salt was not obtained. In some other cases the dissociation may not have been complete, even in the most dilute solution investigated. In such cases the true value of μ_{∞} would not have been reached. However, most of the dissociations given are nearly correct.

DISSOCIATIONS OF THE VARIOUS SALTS.

	0	0	2	5°	6	5°
	v=8	v = 1024	v=8	v = 1024	v=8	v = 1024
LiCl	82.4	97.8	80.1	97.1	79.6	98.9
LiBr	81.6	95.0	78.2	95.7	78.8	
LiNO ₃	83.6	99.2	79.5	97.7	79.7	100.0
Li ₂ SO ₄	59.7	96.7	58.5	96.3	56.3	98.7
NaCl	85.8	98.9	84.6	99.1	80.7	97.5
NaBr	85.9		82.8		81.1	98.2
NaI	85.7	97.9	84.3	97.7	80.1	100.0
NaNO ₃	83.9	99.8	77.9	97.8	80.4	100.0
NaClO ₃	84.3	100.0	82.9	100.0	77.7	100.0
NaClO ₄	88.4	99.6	84.5	99.7		
Na ₂ SO ₄	61.4	93.6	60.1	93.0	58.5	
Na ₂ HPO ₄		99.9		99.8		98.5
NaHNH4PO4	62.6	100.0		100.0		100.0
Na ₄ Fe(CN) ₆	49.6	91.9	49.2	91.5	46.9	97.8
Na ₂ B ₄ O ₇		92.7		93.5		****
NaCH3COO	83.2	100.0	82.7	100.0	80.1	100.0
KCl	88.5	100.0	86.6	100.0	83.3	99.6
KBr	85.8	100.0	84.5	100.0	82.7	98.7
KI	86.4	98.2	82.0	96.3	82.5	100.0
KNO ₃	81.2	100.0	79.5	100.0	81.0	99.5
KClO ₃	81.3	97.5	79.7	97.2	76.8	96.7
KClO ₄	77.0	97.0	70.0	97.1	00.0	95.7
K ₂ CO ₃	75.3	00.0	72.3	07 0	62.2	
K ₂ HPO ₄	71.7	99.0	69.5	97.3	58.7	00 5
K ₃ PO ₄	60.2	99.2	59.3	99.0		98.5
KNaSO4	66.6	97.6	63.7	96.9	58.6 42.4	90.0 88.5
K ₂ Ni(SO ₄) ₂	47.0	90.3	45.5	89.7 95.5	85.5	95.4
KMnO ₄	88.8 73.5	-0.0	87.5 70.0	98.7	80.0	99.4
K ₂ CrO ₄		99.1			78.6	
K ₂ Cr ₂ O ₇	79.8	97.7	79.6	98.0	47.1	1
K4Fe(CN)6	51.5 82.0	90.0	50.9 81.3	91.2	47.1	96.6
KCH3COO	82.0 85.8	98.4 99.2	83.0	98.3	80.4	90.0
KSCN	88.4	100.0	86.1	100.0	81.8	100.0
NH ₄ Cl	90.0	100.0	87.7	100.0	82.5	100.0
NH ₄ Br. N(C ₂ H ₅) ₄ I.	69.6	96.2	71.6	97.6	02.0	100.0
HN ₄ NO ₃	84.2	97.8	82.2	97.5	81.2	99.1
(NH.) SO.	65.0	95.4	63.9	95.2	01.2	88.1
(NH ₄) ₂ SO ₄	60.3	95.4	51.9	95.2	35.5	93.0
NH ₄ HSO ₄	00.3	97.0	31.9	91.4	30.0	99.0

DISSOCIATIONS OF THE VARIOUS SALTS—Continued.

	0	0	2	5°	6	5°
	v = 8	v = 1024	v=8	v = 1024	v = 8	v = 1024
CaCl ₂	72.5	96.2	69.9	95.7	67.1	
CaBr ₂	77.1	99.6	74.1	98.7	69.6	97.9
$Ca(NO_3)_2$	65.8	96.7	64.8	96.8	62.8	
CaCrO ₄	49.7	96.1	49.0	96.6	44.8	95.7
Ca(HCOO) ₂	66.3	96.4	65.3 69.8	07 6	64.4 69.1	97.9
SrCl ₂	69.5 77.5	100.0	75.4	97.6 100.0	68.6	91.9
$SrBr_2$ $Sr(NO_3)_2$	64.2	96.7	64.6	97.9	62.5	
$Sr(CH_3COO)_2$	57.7	93.1	58.0	96.4	54.7	1
BaCl	74.6	98.6	72.4	98.5		
BaBr ₂	77.1	99.7	74.2	98.9	73.9	97.4
$Ba(NO_3)_2$	58.1	97.0	61.1	97.7	58.1	
Ba(HCOO) ₂	64.6	92.1	63.5	87.7	63.6	100.0
Ba(CH ₃ COO) ₂	63.0	96.5	60.8	96.9		
$MgCl_2$	70.9	95.8	69.1	95.8	65.3	
MgBr ₂	71.6	93.9 97.9	69.7 70.0	94.3	68.8	
$Mg(NO_3)_2$	72.1	97.9	39.8	99.7	36.8	93.6
$MgSO_4$	59.8	96.7	59.2	95.4	57.2	33.0
$Mg(CH_3COO)_2$	56.6	94.6	54.3	96.1	52.3	
$Z_n(NO_3)_2$	70.4	94.1	68.6	94.5	65.0	96.2
ZnSO ₄	36.9	89.5	36.7	90.7	28.7	
Zn(CH ₃ COO) ₂	45.0	95.3	40.8	95.9	31.4	93.2
CdCl ₂	37.4	93.9	34.2	91.6	31.7	
CdBr ₂	30.5	89.4	30.3	89.8	29.5	
CdI_2	20.5	81.0	21.5	83.9	22.8	
MnCl ₂	74.0	100.0	72.3	100.0	62.7	100.0
$Mn(NO_3)_2$	78.8	100.0	73.7	100.0		
MnSO ₄	35.4	86.1	33.5	85.2	00 0	
NiCl ₂		100.0	$\frac{72.0}{73.7}$	100.0	66.2	100.0
NiNO ₃	75.4 37.5	92.7	36.9	92.9	13.0	100.0
NiSO ₄ NiCH ₂ COO	47.4	95.6	45.1	95.8	39.8	96.8
CoCl ₂	75.1	100.0	73.0	100.0	65.3	100.0
CoBr ₂	75.7	96.3	72.3	97.8	68.0	
$C_0(NO_3)_2$		100.0	73.3	100.0	66.4	1
CoSO4	37.9	91.9	36.6	92.0		
Co(CH ₃ COO) ₂	50.0	95.4	47.9	94.9		
AgNO ₃			76.9		79.5	99.3
CuCl ₂	71.2	100.0	68.2	100.0		
CuBr ₂		95.4	69.9	97.5		
$Cu(NO_3)_2$	72.2	100.0	70.3 33.4	100.0		
CuSO ₄	35.5	88.8 94.6	55.4	87.6 94.0		92.6
$PbCl_2$ $Pb(NO_3)_2$	52.6	98.9	55.3	100.0	54.4	97.2
Pb(CH ₃ COO) ₂	18.2	84.9	18.8	84.0	18.4	81.0
AlCl ₃	60.4	92.8	55.4	90.4	44.0	83.6
Al(NO ₃) ₃	61.6	92.3	55.6	89.3	43.4	82.6
Al ₂ (SO ₄) ₃	24.9	73.2	22.3	69.9	15.2	60.6
CrCl ₃	45.5	87.2	39.4	86.3	48.9	85.5
Cr(NO ₃) ₃		96.5	48.9	94.3	41.7	89.5
$Cr_2(SO_4)_3$		76.2	21.7	76.8	12.4	64.6
UO ₂ Cl ₂		92.0	59.2	89.6		00 1
$UO_2(NO_3)_2 \dots \dots$		90.0	54.9	88.0	46.5	86.1
UO ₂ SO ₄	38.4	86.4	32.3	79.5	28.4	70.5
$UO_2(CH_3COO)_2$	36.5	83.7	39.0	83.0		

An examination of the preceding tables shows the following relations. The halogen salts of lithium are all dissociated to just about the same extent, the sulphate in the more concentrated solutions very much less.

The salts of sodium with the common mineral acids are all dissociated to just about the same extent, and slightly greater than the corresponding salts of lithium. This applies also to the sulphate in the more concentrated solution. Potassium salts of the common mineral acids show just about the same dissociation. The potassium salts of these acids are, in general, slightly more dissociated than the corresponding sodium salts.

The salts of ammonium are even slightly more dissociated than those of potassium. This points strongly to the correctness of the theory that ammonium hydroxide is a strong and not a weak base. Salts of strong bases are more dissociated than those of weak bases. The fact that ammonium hydroxide has small conductivity and is yet a strong base has been satisfactorily explained by Hantzsch. When ammonia is dissolved in water only a little ammonium hydroxide is formed, and this is strongly dissociated. Most of the ammonia in the presence of water remains there as ammonia and does not form the hydroxide with water. This explains the small conductivity of an aqueous solution of ammonia.

That ammonium hydroxide is a strong base is in keeping with the fact that ammonium salts of strong acids are so little hydrolyzed. Only the salts of comparatively weak bases with strong acids are appreciably hydrolyzed.

Salts of calcium, strontium, barium, and magnesium are dissociated to approximately the same extent, but considerably less than the corresponding salts of the alkali metals under the same conditions of dilution and temperature. Salts of zine are dissociated somewhat less than those of magnesium. This applies especially to the halogen salts, which were not studied in this work because of the ease with which they break down with water.

The halogen salts of cadmium are dissociated less than those of any other known metal except mercury. What this means we do not know. The comparatively small dissociation of the cadmium halides is seen from the above table. The halides of mercury are scarcely dissociated at all, the aqueous solutions of these salts being practically nonelectrolytes, not conducting the current to any appreciable extent. The salts of manganese, nickel, and cobalt have approximately the same dissociation. These substances are dissociated to just about the same extent as the corresponding salts of calcium, strontium, barium, and magnesium. The same applies to the salts of copper. Lead salts show considerably less dissociation.

The salts of aluminium and iron are quaternary electrolytes, each molecule dissociating into four ions. The percentage dissociation, which, on account of hydrolysis can be taken only as an approximation, is much less than that of the salts of calcium, strontium, barium, magnesium, manganese, nickel, and cobalt.

hydrated in aqueous solution. Those in Table II crystallize with very different amounts of water, but all with fairly large amounts of water. These substances are, therefore, much hydrated in aqueous solution.

It should be noted that the sulphates, single and double phosphates, chromates, bichromates, ferro- and ferricyanides, etc., are omitted from both of the above tables. The relations here under discussion do not apply to these more complex substances.

Let us now compare the temperature coefficients of conductivity, expressed in conductivity units per degree rise in temperature, for some of those substances which have slight hydrating power, with the corresponding coefficients for some of those compounds which have a much greater power to combine with water.

The volumes range from 8 to 1024, and the temperature coefficients are calculated between 25° and 35°, and between 50° and 65°. It will be seen, in general, that the substances in Table I have much smaller coefficients of conductivity at all dilutions and all temperatures than those in Table II. This is true, even when we take into account the fact that the substances in Table I are binary electrolytes—each molecule breaking down into two ions; while those in Table II are nearly all ternary electrolytes, each molecule yielding three ions, while the two salts of aluminium are quaternary electrolytes, each molecule breaking down into four ions.

Another fact of equal importance is brought out by comparing the results in Table I with one another, and similarly those in Table II with one another. If the temperature coefficient of conductivity is a function of the decrease in the complexity of the hydrate formed by the ion, with rise in temperature, then we might expect that those substances which have equal hydrating power would have approximately the same temperature coefficients of conductivity.

An examination of the above tables will show this to be true. The substances in Table I all have slight hydrating power, as would be expected from the fact that they all crystallize with little or no water. It will be seen that their temperature coefficients of conductivity are all of the same order of magnitude.

The compounds in Table II have different hydrating power, but all have very great hydrating power. Most of them, however, have hydrating power of the same order of magnitude. Indeed, this would be expected, since most of these substances crystallize with six molecules of water. There are a few substances in this table which crystallize with less than six molecules of water. Thus, barium chloride crystallizes with only two molecules, yet it forms hydrates of comparable complexity* with those substances which crystallize with larger amounts of water. That its temperature coefficients of conductivity are of the same order of magnitude as the other substances in the table is, therefore, entirely in keeping with the above relation. The hydrates formed by barium nitrate have not yet been worked out, so that it is impossible to say whether or not it presents an exception to the above relation, it crystallizing without water.

Manganous chloride crystallizes with only four molecules of water, yet the work of Jones and Bassett† has shown that it forms hydrates about as complex as the

^{*}Carnegie Institution of Washington Publication No. 60.

[†]Amer. Chem. Journ., 33, 562 (1905); Carnegie Institution of Washington Publication No. 60, pp. 75 and 76.

other salts in Table II. Its temperature coefficients of conductivity are of the same order of magnitude as the other compounds included in this table.

The halogen salts of copper present apparent exceptions to the above relation. The chloride crystallizes with only two molecules of water, and yet has temperature coefficients of conductivity that are nearly as large as the salts with six molecules of water of crystallization. It might be inferred from this that this salt has much less hydrating power than the other compounds in Table II. The work of Jones and Bassett,* however, shows that this is not the case. Copper chloride has almost as great hydrating power as the compounds in this table which crystallize with six molecules of water. When we take this fact into account its temperature coefficients of conductivity are not surprisingly large.

Aluminium chloride crystallizes with six molecules of water, and aluminium nitrate with eight. They are, however, quaternary electrolytes, and their temperature coefficients are therefore larger than those of the ternary electrolytes. The hydrating power of these salts has been worked out† and has been found to be of the same order of magnitude as that of the ternary electrolytes in this table.

A third point brought out by the above tables is the following. The temperature coefficients of conductivity for any given substance are greater at the higher dilution than at the lower. This is satisfactorily explained on the basis of the above suggestion. The complexity of the hydrates at the higher dilutions is greater than at the lower, as has been shown by Jones and his co-workers, on the composition of the hydrates formed by different substances at different dilutions.‡

The hydrates being more complex at the higher dilutions, the change in the composition of the hydrates with change in temperature would be greater at the higher dilutions; and, consequently, the temperature coefficients of conductivity would be greater the more dilute the solution.

To summarize the above three points:

(a) The temperature coefficients of conductivity of aqueous solutions of salts, expressed in conductivity units, are greater the greater the hydrating power of the salt.

(b) The temperature coefficients of conductivity of aqueous solutions of electrolytes are of the same order of magnitude for those substances having approximately the same hydrating power.

(c) The temperature coefficients of conductivity for any given salt increase with the dilution of the solution, and this increase is greatest for those substances with large hydrating power.

All three of these conclusions are necessary consequences of the assumption that the large change in conductivity with change in temperature is due, in part, to the decreasing complexity of the hydrates formed around the ions, with rise in temperature. As these conclusions are verified by the experimental results, and as there seems to be no other assumption which would lead to these conclusions, we must accept the assumption which led to them as containing a large element of truth.

†Carnegie Institution of Washington Publication No. 60.

^{*}Carnegie Institution of Washington Publication No. 60, pp. 84 and 85; Amer. Chem. Journ., 33, 577, 1905.

[†]Carnegie Institution of Washington Publications No. 60, pp. 67 and 88.

HYDRATION AND IONIC VOLUME.

While discussing the hydrating powers of different ions, the following relation should be pointed out. Jones and Pearce,*after calling attention to the fact that the hydrating power of any salt is primarily a function of the cation, point out this relation:

If the atomic volumes of the elements are plotted as ordinates against the atomic weights as abscissas, we have the well-known atomic-volume curve. The curve contains well-defined maxima and minima. The alkali metals fall at the maxima of the curve. The three elements with the largest atomic volumes are potassium, rubidium, and cæsium. Salts of these metals usually crystallize from aqueous solution without water of crystallization, and they, therefore, have very little hydrating power. Lithium and sodium, some of whose salts crystallize with two and three molecules of water, and which, therefore, show some hydrating power in solution, have much smaller atomic volumes. At the minimum of the third section of the atomic-volume curve we find the elements strontium, iron, cobalt, copper, and nickel. The salts of these metals crystallize with relatively large amounts of water, and they show great hydrating power in solution. Aluminium, which has less than half the atomic weight of iron, but slightly greater atomic volume, falls at the second minimum of the atomic-volume curve. Its salts crystallize with six and eight molecules of water and show great hydrating power in solution.

Comparing the metals of the calcium group, we find that barium, whose salts crystallize with two molecules of water, has the largest atomic volume. The salts of the other elements of this group crystallize each with six molecules of water, with the exception of calcium nitrate, which crystallizes with four molecules. The magnesium ion, which has the smallest atomic volume of any element of this group, has the greatest hydrating power. Strontium, which has a slightly larger atomic volume than calcium, has a somewhat smaller hydrating power than calcium.

A careful examination of all of the evidence available shows that the hydrating power of the cation is an inverse function of its atomic volume.

This explains why it is that ions with large mass often have larger migration velocities than ions with smaller mass, which is the reverse of what would be expected. Thus, potassium, rubidium, and cæsium have larger migration velocities than sodium and lithium, notwithstanding the greater mass and volume of the former. This was for a long time inexplicable. We now have the explanation. Lithium and sodium have smaller atomic volume than potassium, rubidium, and cæsium, and, consequently, greater hydrating power. The hydrated lithium and sodium ions move more slowly, due to the atmosphere of the solvent which they must drag with them through the solution.

A large number of similar relations have been pointed out by Jones and Pearce.† The question arises, Why this relation between hydrating power and atomic volume? It probably has to do with the electrical density upon the ion. The smaller the ion the greater the electrical density, and, consequently, the greater the power of the ion to condense molecules of the solvent upon it and hold them there in a state of loose combination.

It should be noted, before leaving the discussion of the temperature coefficients expressed in "conductivity units," that these coefficients in general increase with rise in temperature. This increase is only slight in the cases of those substances which are only a little hydrated, as will be seen in Table I. Table II shows a large increase in the coefficients with rise in temperature, and it will be recalled that this table contains those substances that have large hydrating power. This shows that the hydrates became more and more unstable the higher the temperature, there being more decomposition of the hydrates between 50° and 65° than between, say, 20° and 35°. This is what would be expected from the results already obtained in this laboratory* in connection with the effect of temperature on hydrates in aqueous solution.

Certain of the temperature coefficients from 35° to 50° are not given. This is due to the fact that one set of solutions was used from 0° to 35°, and an entirely different set from 35° to 65°. The solutions of these substances are more or less hydrolyzed, and probably have an hydrolysis time factor. Since the two sets of solutions of the substances in question stood for different lengths of time before using, this factor would make its influence felt.

The agreements, in general, between the two sets of results for the two sets of solutions at 35° were very good. In those cases where the deviations were more than a fraction of 1 per cent, the work, as has already been stated, was repeated.

TEMPERATURE COEFFICIENTS OF CONDUCTIVITY IN PER CENT.

The temperature coefficients of conductivity are also expressed in "per cent." These are the temperature coefficients in conductivity units divided by the conductivity at the lower temperature. The relations between the coefficients expressed in per cent can best be seen from the table on pages 82 and 83, which contains practically all of the salts studied in this investigation. The coefficients are given for two dilutions V=8 and V=1024, and over two ranges in temperature 25° to 35° and 50° to 65°. This will enable us to see the effect of dilution and of temperature on these coefficients.

The most striking feature of the table is the following: Take any one column, which gives the results for the different substances at the same dilution and temperature. It will be seen that for nearly all of these different types of salts, and the number is large, the temperature coefficients of conductivity in per cent is approximately the same; and not very widely removed from two, for V=8; and the range of temperature from 25° to 35°. There are some exceptions to this conclusion.

There are two lithium salts, the nitrate and sulphate, which are, the one much less, and the other much greater than two. Then there are exceptions among the complex salts. Potassium sodium sulphate, potassium chromium sulphate, potassium aluminium sulphate, and potassium ferrocyanide have values considerably less than two. Ammonium acid sulphate is a marked exception, the significance of which we shall try to work out in the future. Similarly, the green variety of ammonium chromium sulphate has a coefficient of only 1.38.

^{*}Carnegie Institution of Washington Publication No. 60, 156 (1907).

The salts of calcium, strontium, barium, and magnesium have, in general, coefficients which do not differ widely from 2; although strontium nitrate has a value of only 1.79. It might be mentioned that strontium nitrate crystallizes without water. Zinc acetate also has a small coefficient, 1.59. This may be due to hydrolysis. Cadmium iodide, which crystallizes without water, has the large coefficient 2.27. Manganous sulphate has the rather small value 1.79, and copper sulphate has the same value. Aluminium sulphate has the very low value 1.57, chromium sulphate 1.61, and uranyl sulphate only 1.29.

Notwithstanding these apparent exceptions, there is unmistakably this general relation, that the temperature coefficients for V=8 and over this temperature range, for a large number of very widely different compounds, are very nearly the same and not widely removed from 2.

If we examine the other columns of data corresponding to other dilutions and other temperatures, we find relations similar to the above. Thus, for V = 1024, and the temperature range 25° to 35°, the average value of the coefficient is a round 2.1. The average value of the coefficients for V = 8, between 50° and 65°, is from 1.4 to 1.5, while the average value for V = 1024, between 50° and 65°, is slightly greater.

We thus see that change in volume, range of temperature being constant, has very little effect on the temperature coefficients of conductivity expressed in per cent.

The effect of rise in temperature is to decrease the magnitude of these coefficients.

TEMPERATURE COEFFICIENTS IN PER CENT.

	25°	to 35°	50° 1	to 65°
Substances.	v=8	v = 1024	v=8	v = 1024
Lithium chloride	2.13	2.15	1.51	1.62
Lithium bromide	2.19	2.13	1.49	
Lithium nitrate	1.67	1.98	1.94	2.50
Lithium sulphate	2.65	2.24	3.00	1.77
Sodium chloride	2.03	2.13	1.51	1.54
Sodium bromide	1.88		1.44	1.54
Sodium iodide	2.11	2.18	1.52	1.67
Sodium nitrate	2.24	2.15	1.43	1.54
Sodium chloride	2.05	2.13	1.62	1.78
Sodium perchlorate	2.00	2.12		
Sodium sulphate	2.17	2.19	1.58	
Sodium carbonate	2.23	2.37	1.59	1.70
Sodium ferrocyanide	2.09	2.05	1.42	1.68
Sodium acetate	2.23	2.46	1.61	1
Potassium chloride	2.01	2.07	1.37	1.47
Potassium bromide	2.00	2.03	1.35	1.46
Potassium iodide	1.97	2.05	1.46	1.35
Potassium nitrate	1.87	1.53	1.40	1.40
Potassium chlorate	1.93	1.97	1.40	1.49
Potassium sulphate	2.00	2.25	1.35	1.48
Potassium phosphate	2.13	2.14	1.61	1.56
Potassium sodium sulphate	1.79	2.08	1.44	1.51
Potassium nickel sulphate	1.96	2.06	1.25	1.48
Potassium chromium sulphate	1.78	2.01	1.33	2.27
Potassium permanganate	1.96	2.03	1.44	1.22
Potassium chromate		1.96	1.35	
Potassium bichromate	1.97	1.97	1.37	
Potassium ferrocyanide	1.62	2.08	1.36	
Potassium aluminium sulphate	1.78	2.11	1.06	
Potassium acetate	1.97	2.09		1.56
Potassium sulphocyanate	1.98	1.95	1.40	2.50
Ammonium chloride	2.02	2.13	1.40	1.72
Ammonium bromide	1.88		1.42	1.41
Ammonium nitrate	1.91	1.86	1.38	1.49

ELECTRICAL CONDUCTIVITIES, ETC.

TEMPERATURE COEFFICIENTS IN PER CENT—Continued.

Substances.	25° t	o 35°	50° (to 65°
Dubstances.	v = 8	v = 1024	v = 8	v = 1024
Ammonium sulphate	1.87	2.05	1.34	Lucia S
Ammonium acid sulphate	0.74	1.31	0.40	1.52
Ammonium aluminium sulphate	1.80	2.12	1.08	
Ammonium chromium sulphate (violet)	1.85	2.25	1.30	1.66
Ammonium chromium sulphate (green)	1.38	2.20	0.81	1.32
Ammonium copper sulphate		2.03	1.23	1.46
Calcium chloride	2 02	2.05	1.55	
Calcium bromide	2.10	2.11	1.44	1.56
Calcium nitrate	1,96 1.85	2.04	1.39	1 90
Calcium formate.	2.02	2.10	1.43	1.38
Strontium chloride	1.94	2.11	1.48	1.62
Strontium bromide.		2.20	1.44	1.50
Strontium nitrate	1.79	2.08	1.53	
Strontium acetate	2.15	2.30	1.73	
Barium chloride		2.28	1.22	
Barium bromide		2.07	1.42	1.54
Barium nitrate	2.11	2.02	1.48	
Barium formate	1.93	2.29	1.47	1.54
Barium acetate	2.00	2.09	2.18 1.45	
Magnesium chloride		2.10	1.45	
Magnesium nitrate.	1.93	2.10	1.46	
Magnesium sulphate	1.95	2.15	1.24	1.63
Magnesium formate		1.91	1.46	
Magnesium acetate	2.24	2.69	1.56	
Zinc nitrate	1.99	2.06	1.44	1.56
Zinc sulphate	1.95	/	1.10	
Zinc acetate	1.59	2.23	0.75	1.41
Cadmium chloride	1.93	2.17 2.12	1.27	1 00
Cadmium bromide	2.03	2.12	1.50	1.62
Manganous chloride.		2.24	1.41	1.71
Manganous nitrate.		2.13		
Manganous sulphate		2.11	1.04	
Nickel chloride		2.18	1.46	1.58
Nickel nitrate			2.14	
Nickel sulphate	1.80	2.11	1.17	1.64
Nickel acetate	2.04	2.29	1.29	
Cobalt chloride		2.14	1.44	
Cobalt nitrate.		2.17	i.44	
Cobalt sulphate.	1.88	2.15	1.15	
Cobalt acetate.	1.99	2.22	1.52	
Silver nitrate			1.51	
Copper chloride			2.17	
Copper bromide	2.02		2.08	
Copper nitrate			2.19 0.93	
Copper sulphateLead chloride	1.79	2.07	0.93	1.54
Lead nitrate.	2.12	2.01	1.51	1.04
Lead acetate	2.12	2.02	1 37	1.28
Aluminium chloride	2.07	2.40	1.51	2.05
Aluminium nitrate	2.03	2.36	1.52	2.01
Aluminium sulphate	1.57	2.07	0.76	1.38
Ferric chloride	1.99	2.64		
Ferric nitrate	2.32	2.72 2.50	1.56	1.99
Chromium chloride	1.99	2.40	1.59	1.95
Chromium sulphate	1.61	2.90	0.60	1.67
Uranyl chloride	1.97	2.31	1.44	
Uranyl nitrate	2.03	2.37	1.50	1.80
Uranyl sulphate	1.29		1.55	
Uranyl acetate	2.05		1.73	

PART II.-ORGANIC ACIDS.

THE EXPERIMENTAL WORK IN PART II WAS CARRIED OUT BY DOCTORS CLOVER, JACOBSON, KREIDER, SMITH, SPRINGER, WHITE, AND WIGHTMAN.

ORGANIC ACIDS.

The acids used were all obtained from Kahlbaum. Each acid was purified by the method best adapted to that particular acid, and its purity tested.

The method of work was, in general, the same as that followed with the inorganic salts. The cell constants were determined as in the work with salts. The following table of data will show how well the constants as calculated from three different readings with three different resistances agreed with one another, the table being taken from the work of Wightman; W being the resistance in the rheostat, b the distance on the wire from the point of contact to one end of the wire, and K the cell constants.

CELL CONSTANTS.

Cell	Solution	W	b	K	Mean	Cell	Solution	W	b	K	Mean
VIII	0.02 N	100	559.0	328.82		I	0.002 N	40	505.6	11.240)
		140	475.2		328.82			46	470.5	11.241	11.243
		150	458.0	328.80				48	460.0	11.245	
VII	0.02 N	80	471.3	184.99		A	0.0005 N	40	451.0	2.381	
		84	459.1		184.97			42	439.0	2.381	2.381
		88	447.6	184.97				44	427.5	2.381)
VI	0.02 N	60	458.0	131.52		V	0.002 N	250	555.7	138.68	
		63	445.9	131.52	131.52			260	546.0	138.67	
		66	434.5	131.54				270	536.5	138.75	
V	0.02 N	40	454.3	86.38		IV	0.002 N	250		138.66	
		42	442.2	88.37	86.38			260	501.5	138.60	138.66
		44	430.8	86.40				270	492.0	138.64	
IV	0.02 N	30	481.6	72.30		II	0.0005 N	340	473.4	143.49	
		32	465.5	72.30	72.30		10-10-10-1	350	466.0	143.64	
		34	450.4	72.24				370	452.3	143.46	
III	0.002 N	200	445.0	44.10	1	I	0.0005 N	160	495.0	143.39	
		210	433.0	44.10	44.10			170	479.9	143.41	143.44
		220	421.6	44.10				180	465.6	143.39	
II	0.002 N	100	443.7	21.94							
		110	420.5	21.95	21.94						
		120	469.9	21.94							

The first eight cells were used with the various dilutions of the acid. Cell A is the cell with cylindrical electrodes with very small constant, and was employed to determine the conductivity of the water.

Cells V, IV, II, and I were used to determine the molecular conductivity of a 0.002 normal and a 0.0005 normal solution of potassium chloride at 25°, these solutions being used to standardize the cells with small constants. The data show how concordant were the results obtained.

DISSOCIATION OF ORGANIC ACIDS.

The dissociation of most of the organic acids cannot be determined directly by simply increasing the dilution of the solution until complete dissociation is reached. The dilution at which μ_{∞} would be reached for these weakly dissociated compounds would be so great that the conductivity method could not be applied to them. It is well known that we have an indirect method of determining the dissociation of

CONDUCTIVITIES OF SODIUM SALTS OF CERTAIN ACIDS—Continued.

Sodium.	v	$\mu_v 0^{\circ}$	$\mu_v 15^{\circ}$	$\mu_v 25^{\circ}$	μ_v35°	$\mu_v 50^{\circ}$	$\mu_v 65^{\circ}$	$\mathbf{K}t =$
m-Aminobenzoate	2048	28.63		69.36	89.49			$38.20+1.308t+0.00696t^2$
p-Aminobenzoate	2048	38.20		75.26	92.51			
Metanilate				77.69	95.60	125.0	160.2	
	1024	38.47		76.20	93.81			
Sulphanilate	2048	39.52		77.69	96.05	125.0	160.2	$39.52 + 1.307t + 0.00879t^2$
	4096	39.36		77.70	95.85			
p-Sulphamido-ben-								
zoate	2048	39.30	60.23	76.57	94.00	123.3	154.4	$39.30 + 1.31t + 0.0072t^2$
	1024	37.82		74.04	91.87			
o-Toluate	${2048}$	38.26			92.68	125.09	156.8	
	4096				92.58			
	1024	38.02			92.16			
m-Toluate	{2048	38.25			92.88	125.05	162.7	
	4096	38.28			92.79			
	1024	38.02			91.93			
p-Toluate	2048				92.40	124.12	159.65	
	4096	38.28			92.29			
	1024	27.15			89.91			
Cinnamate	$\{2048$	37.69			92.06	125.1	158.7	$37.69+1.271t+0.00811t^2$
	4096	37.60		74.41	91.95			
Hydrocinnamate		38.49	59.95	76.54	93.21		155.83	
Anisate		39.36	60.12	76.96	95.04	125.06	158.68	
Vanillate		38.98	60.08	76.64	93.26			
Naphthionate		39.54	57.28	79.05	97.10			
Mandelate		38.25		76.00	93.20	130.74		
Coumarate	2048	38.50	59.97	76.56	93.81	123.00	168.37	

The μ_{∞} for a number of the acids used in this work could not be determined as above described. These acids are di- or polybasic, and their sodium salts do not give a μ_{∞} value even at a dilution of n/4096.

The method first used in this laboratory by Wightman for determining the μ_{∞} for such acids is as follows: A curve was plotted in which the ordinates are the values of μ_{∞} for a number of organic acids, and the abscissas are the number of

atoms in the molecules of the acids. These curves were drawn for the various temperatures used in the work.

By placing the dibasic acid in question in its proper position on one of these curves (the position being determined by the number of atoms in its molecule) the μ_{∞} value for the acid can be read off at once.

To show how this method works the preceding figure (fig. 5) is given. The dots represent the positions of a number of acids on the curves, the asterisks the positions of a number of dibasic acids, whose μ_{α} values were found by this method.

VALUES OF μ_{∞} FOR THE ORGANIC ACIDS.

Acid.	$\mu \infty 0^{\circ}$	μ _∞ 15°	μ _∞ 25°	$\mu \propto 35^{\circ}$	$\mu \infty 50^{\circ}$	$\mu \infty 65$
Acetic	227	292 (12°)	361.0	412.0		
Dichloracetic	221.7	305.6	359.3	408.7	477.3	545.
Frichloracetic	224.8	303.9	355.9	406.4	478.5	520
Cyanacetic	227.0	304.5	360.0	410.0	480.6	551.
Phenylacetic	221.0	290.0 (13.2°)	349.0	400.0	466.0	535
Propionie	223.0	260.0 (6.9°)	354.0	405.0	477.0	545.0
-Brompropionic	229.0	308.9	363.6	415.2		
3-Iodopropionic	223.9	302.8	354.4	406.8		
-Butyrie	223.0	273 (9.4°)	354.0	404.0	473.3	540
-Brombutyric	224.9	304.1	357.5	407.4	4/0.0	010.
ashutunia	223.0				497 9	400
sobutyric		310 (16.46°)	353.8	403.0	437.3	468.
Hydroxyisobutyric	222.8	301.4	352.6	401.7	471.2	537.
sovaleric	222.0	299.7	350.0	399.5	468.0	533
Caprylic	225.1	300.9	350.8	399.8	464.4	539.
Malonic	223.0	250.0 (4.9°)	355.0	405.0	477.0	546.
Dimethylmalonic	222.2	300.4	352.0	400.0	470.0	539.
Ethylmalonic	222.2	300.4	352.0	400.0	470.0	539.
Diethylmalonic	219.4	296.1	346.2	393.9	464.8	533.
Methylethylmalonic	221.0	299.0	349.8	397.3	464.0	533.
sopropylmalonic	221.0	299.0	349.8	397.3	464.0	533.
Dipropylmalonic	218.6	295.1	345.7	392.8	458.0	520.
Butylmalonic	219.4	296.1	346.2	393.9	464.8	533.
Benzylmalonic	219.0	295.6	345.7	393.2	464.0	533
Allylmalonic	221.4	299.3	350.9	400.0	468.0	537
Succinic	223.0	249.8 (5.7°)	355.0	405.8	472.1	539
Monobromsuccinic	222.2	302.1	354.1	100.0	712.1	000.
Dibromsuccinic	262.2	302.1	004.1			
	221.0	200 0 (10%)	240.0	207.0	460 0	299
Pyrotartaric		290.0 (12°)	349.0	397.0	468.0	533.
-Tartaric	221.0	298.8	350.0	399.9	469.3	534.
Racemic	222.0	286.0 (12°)	350.0	398.0	468.2	534.
Thiodiglycolic	221.6	300.2	351.1	401.0	470.8	537.
Cricarballylic	219.9	296.7	347.6	396.8	468.0	535.
Cyanuric				405.0		
Benzilic) or diphenylglycolic	218.7	280.5 (12°)	344.7	392.9	458.6	519.
Hippuric	219.0	280.0 (12°)	345.0	392.0	446.4	499.
Jric	221.0	298.8	350.0	399.9		
Citric	219.0	311 (18.1°)	345.0	392.0	464.5	528.
Pyromucie	223.0	286 (12°)	355.0	405.0	471.0	539.
Crotonic	222.0	286 (12°)	352.0	402.0	475.1	544.
Maleic	223.0	289 (12°)	353.0	402.0	475.0	544.0
Tumaric	223.0	289 (12°)	353.0	402.0	475.0	544.
taeonic	221.3	284.6 (12°)	351.0	400.0	471.0	537.
Citraconic	221.3	284.6 (12°)	351.0	400.0	471.0	537.
Mesaconic	221.3	284.6 (12°)	351.0	400.0	471.0	537.
Phenylpropiolic	222.2	300.4	352.0	400.0	470.0	539.
	222.2		351.0	400.0	471.0	537
Benzoic		304.0 (15.8°)				532.
-Chlorbenzoic	220.4	301.8	348.7	397.2	468.0	
-Nitrobenzoic	222.2	284.6 (12°)	349.7	399.8	468.8	534.
n-Nitrobenzoic	222.2	284.6	349.7	399.8	469.4	535.
p-Nitrobenzoic	222.2	284.6	347.9	399.8	468.0	533 .
, 2, 4-Dinitrobenzoic	220.0	297.3	347.9	396.8	466.1	531.0
1, 3, 5-Dinitrobenzoic	220.2	297.4	347.4	396.9	466.7	531.

VALUES OF μ_{∞} FOR THE ORGANIC ACIDS—Continued.

Acid.	μ _∞ 0°	μ _∞ 15°	μ _∞ 25°	μ _∞ 35°	μ _∞ 50°	$\mu_{\infty}65^{\circ}$
Pierie					451.6	506.8
Salicylic		260.0 (6.9°)	353.0	403.0	472.5	539.0
Acetylsalicylic	220.8	297.4	344.0	397.9	463.5	
Sulphosalicylic						
m-Hydroxybenzoic	223.0	260.0 (6.9°)	353.0	403.0	472.5	539.0
p-Hydroxybenzoic	223.0	260.0 (6.9°)	353.0	403.0	472.5	539.0
1, 2, 4-Dihydroxybenzoic	222.0	299.8	350.7	399.1	467.6	532.6
1, 2, 5-Dihydroxybenzoic	221.8	299.6	350.7	399.6	467.6	532.6
Gallie	220.0	254.0 (6.5°)	348.0	396.0	459.1	513.4
o-Aminobenzoic	221.0	260 (7.5°)	349.0	396.0		
m-Aminobenzoic	211.0	305.8 (18°).	332.6	393.5		
p-Aminobenzoic	221.0	260 (7.5°)	349.0	396.0		
Metanilic	222.0	255 (6.3°)	351.0	400.0	470.0	538.8
Sulphanilic	222.0	255 (6.3°)	351.0	400.0	470.0	538.8
Picramic	221.7	299.1	350.2	399.0	470.0	537.2
p-Sulphaminobenzoic	221.7	299.3	349.8	398.0	468.3	533.6
Benzenesulphonic	228.0	309.0	359.0	410.0	475.3	544.3
m-Nitrobenzenesulphuric	204.5	275.5 (16°)	323.5	369.4	432.6	591.0
p-Toluenesulphonic	210.6	269.7 (12°)	332.7	379.3	445.9	503.4
1, 2, 4-Nitrotoluenesulphonic	200.5	276.5	318.4	361.9	487.5	556.3
1, 4, 2-Nitrotoluenesulphonic	228.9	318.5 (16°)	362.3	413.6	487.5	556.3
o-Toluic	221.0	284.0 (12°)	349.0	397.0	470.1	536.0
m-Toluic	221.0	284.0	349.0	397.0	470.1	540.2
p-Toluic	221.0	284.0	349.0	397.0	469.1	535.9
Cinnamic	220.0	248.0 (5.3°)	348.0	399.2	470.0	537.2
Hydrocinnamic	220.8	299.9	349.7	397.2	463.5	532.6
o-Phthalic	221.0	267.0 (8.2°)	349.0	397.0	470.0	538.8
4, 5-Dichlorphthalic						
Tetrachlorphthalic						
Anisic	221.7	299.1	350.2	399.0	470.0	537.2
Vanillic	221.3	299.1	349.8	397.3	464.0	532.8
Naphthionic	221.9	296.3	352.2	401.1	468.0	534.5
Mandelic	221.0	283.0 (12°)	349.0	397.0	475.4	540.0
Camphoric	218.3	279.8 (12°)	344.5	392.0	458.2	519.0
Coumaric	220.9	298.9	349.8	397.9	468.0	534.4

	ACET	TC AC	W) an	7т. А	ND C.)	•		Dich	LORAC	ETIC	Acid	(Sp.)	
	A	lolecule	ar Cone	luctiv	ity.			Λ	l olecula	r Conc	luctivi	y.	
v	μ ₀ 0°	$\mu_{v}9.2^{\circ}$	$\mu_v 25^\circ$	$\mu_v 35$	ο μ,50°	μ_v65°	v	$\mu_v 0^{\circ}$	μ.15°	μ,25°	μ ₀ 35°	$\mu_v 50$	μ _ν 65
2 8 32 128 512 1024 2048	2.656 5.328 10.48 20.45 28.03		4.342 8.699 17.11 33.24 45.87	9.9	18 5.62 12 11.19 3 22.04 5 41.84 9 58.29	6.24 12.40 24.48 46.31	32 128 512 1024 2048	166.0 203.7 220.5 221.7 217.0	220.3 272.6 300.0 305.6 302.1			418.3 468.6 470.0	453.3 528.4 535.8
	P	ercenta	ge Dis	sociat	ion.			P	ercentag	ge Diss	sociatio	m.	
v	a0°	a9.2°	a25°	a35	° a50°	a65°	v	a0°	a15°	a25°	a35°	a50°	a65°
2 8 32 128 512 1024 2048	0.56 1.18 2.37 4.62 8.80 12.35 17.20	0.56 1.19 2.40 4.71 9.13 12.51 17.56	0.58 1.20 2.41 4.74 9.21 12.71 17.45	1.2 2.4 4.7 9.1 12.6	20 1.18 11 2.38 12 4.63 16 8.80 14 12.20	8 1.14 5 2.28 8 4.50 0 8.51	32 128 512 1024 2048	99.46 100.00	72.09 89.20 98.17 100.00 98.85	88.51 98.18 100.00	88.12 98.80 100.00	98.4	4 83.0 8 96.8 7 98.1
	Dis	sociatio	n Cons	tants	× 104.			Diss	ociation	Cons	tants >	⟨ 10⁴.	
v	0°	9.2°	25°	35°	50°	65°	v	0°	15°	25°	35°	50°	65°
2 8 32 128 512 1024 2048	0.157 0.175 0.179 0.175 0.166 0.170 0.174	0.159 0.179 0.184 0.182 0.179 0.175 0.179	0.169 0.183 0.186 0.184 0.182 0.181 0.180	0.18 0.18	2 0.176 5 0.177 3 0.175 1 0.165 9 0.165	0.164 0.166 0.165 0.154 0.159	2 8 32 128 512 1024						
Temp	erature	Coeffic	ients in	Cone	ductivity	Units.	Temp	erature	Coeffic	ients in	n Cond	uctivity	Units
v	0-9.	2° 9.2-	-25° 25	-35°	35-50°	50-65°	U	0-1	5° 15-2	25° 25	-35° 3	35-50°	50-65°
	8 0.3 2 0.4 4 0.3	07 0. 14 0. 28 0. 54 0. 72 0.	07 0 13 0 26 0 50 0 69 0	0.03 0.06 0.12 0.24 0.45 0.62 0.79	0.03 0.05 0.08 0.17 0.27 0.42	0.019 0.041 0.080 0.16 0.30 0.46	3: 12: 51: 102: 204:	8 4.5 2 5.3 4 5.4	59 4. 80 5. 16 5.	54 4 28 5 37 4	3.30 4.24 5.10 4.94 5.04	2.93 3.86 4.19 4.09 4.59	1.75 2.33 3.99 4.39 4.57
2	l'emper	ature C	oefficie	nts in	Per Ce	nt.	T	empera	ture Co	efficien	its in I	er Cen	t.
v	0-9.	2° 9.2-	-25° 25	-35°	35-50°	50-65°	v	0-13	5° 15–2	25° 25	-35° 3	35-50°	50-65°
	$egin{array}{c cccc} 8 & 2.6 \\ 2 & 2.6 \\ 4 & 2.8 \\ \end{array}$	51 2. 52 2. 56 1. 53 1.	02 1 00 1 98 1 96 1 95 1	.30 .40 .39 .37 .36 .32 .25	1.27 1.01 0.81 0.87 0.72 0.81	0.72 0.73 0.72 0.74 0.71 0.79	32 128 512 1024 2048	3 2.2 2 2.4 4 2.4	25 1. 11 1. 16 1.	66 1 76 1 75 1	1.30 1.33 1.43 1.37 1.41	1.02 1.07 1.04 1.00 1.12	0.52 0.56 0.87 0.90 0.95

	Ткісн	LORAC	ETIC	Acid	(WM.)		CYA	NACE	тіс А	CID (Wm.)	
	A	Iolecul	ar Con	ducțivi	ty.			Λ	Iolecul	ar Con	ductivit	y.	W. TALL STEEL STEEL ST.
v	$\mu_v 0^{\circ}$	$\mu_v 15^\circ$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^\circ$	\overline{v}	$\mu_v 0^{\circ}$	μ,15°	$\mu_v 25^\circ$	μ,35°	μ _v 50°	$\mu_v 65^\circ$
8 32 128 512 1024 2048	221.73 223.65 224.77	277 . 67 297 . 62 302 . 33 303 . 94	322.46 344.90 353.96 355.94	363.69 389.83 403.44 406.4	7 388.8 9 423.7 3 455.1 5 476.5 4 478.5 6 473.0	465.0 501.8 519.5 520.9	8 32 128 512 1024 2048	114.23 164.90 187.49	92.26 3154.10 223.37 252.59	106 . 47 178 . 86 259 . 64 291 . 56	7118.79 6199.67 4293.00 6332.00	74.72 0134.00 7227.80 0337.30 0381.70 0418.10	0.144.5 $0.249.0$ $0.368.0$ $0.426.9$
	P	ercenta	ge Dis	sociati	on.			I	Percente	age Dis	sociatio	m.	
v	a0°	al5°	a25°	a35°	a50°	a65°	v	a0°	al5°	a25°	a35°	a50°	a65°
8 32 128 512 1024		84.31 91.36 97.92 99.47 100.00		89.88 95.91 99.26	8 88.55 1 95.11 6 99.58	89.27 96.33	8 32 128 512 1024 2048	16.86 30.26 50.31 72.63 82.58 88.04	30.30 50.60 73.36 82.96	29.58 49.68 72.12 80.99	28.97 48.70 71.46 80.98	27.88 47.40 70.18 79.42	26.2 45.1 66.7 77.4
	Diss	sociatio	n Cons	tants >	< 10⁴.			Dis	sociatio	n Cons	tants >	(104.	
v	0°	15°	25°	35°	50°	65°	v	0°	15°	25°	35°	50°	65°
8 32 128 512 1024 2048							8 32 128 512 1024 2048	43 41 40 38 38 38 32	42 40 39 37 36 31	41 39 38 36 35 29	39 37 36 35 34 28	36 34 33 32 30 27	31 29 29 26 26
Тетр	perature	Coeffic	ients i	n Cond	luctivity	Units.	Temp	erature	Coeffic	cients i	n Cond	uctivity	Units
v	0-1	5° 15-	-25° 25	5–35°	35-50°	50-65°	v	0-1	5° 15	-25° 2	5-35°	35-50°	50-65
12 51 102 204	12 5. 24 5.	60 4 06 4 25 5 28 5	.48 .73 .16 .20	3.63 4.12 4.49 4.95 5.05 4.79	3.61 4.00 4.34 4.87 4.80 5.04	2.52 2.75 3.11 2.87 2.83 2.69		$\begin{bmatrix} 2 & 3.9 \\ 4 & 4.3 \end{bmatrix}$	17 1. 16 2. 10 3. 15 3.	42 1 48 2 63 3 97 4	0.662 .23 2.08 3.04 4.04 4.23	0.57 1.01 1.87 2.95 3.31 4.10	0.38 0.70 1.41 2.05 3.01 3.63
_:	Temper	ature C	Coefficients in Per Cent. Temperature Coefficients in Per Cen						nt.				
v	0-1	5° 15-	-25° 2	5-35°	35-50°	50–65°	v	0-1	5° 15	-25° 2	5-35°	35–50°	50-65
12	32 2. 28 2. 12 2. 24 2.	20 1 28 1 35 1 35 1	.61 .59 .70	1.22 1.28 1.30 1.40 1.42 1.37	1.08 1.10 1.11 1.21 1.18 1.27	0.65 0.65 0.68 0.60 0.59 0.57		32 2. 28 2. 12 2. 24 2.	29 1 33 1 36 1 32 1	.52 .54 .61 .62 .57 .62	1.11 1.16 1.16 1.17 1.39 1.35	0.87 0.85 0.93 1.01 1.00 1.15	0.51 0.52 - 0.62 0.60 0.79 0.87

				_							-		
		Molecula	r Cond	uctivity				A	lolecule	ar Cone	ductivit	у.	
v	$\mu_v 0^{\circ}$	μ ₀ 13.25°	$\mu_v 25^{\circ}$	$\mu_v 35^\circ$	μ,50°	μ,65°	v.	μ ₀ 0°	μ,6.9°	μ.25°	μ ₂ 35°	μ ₂ 50°	μ,65
512 1024	9.00 17.82 33.35 45.68 61.00		71.63	31.26 58.55 79.84	34.75 65.64 88.31	19.26 37.53 70.98 95.18 130.00	512 1024	2.291	2.700 5.450 10.60 20.59 28.03	3.704 7.436 14.57 28.40 38.94	4 . 207 8 . 422 16 . 50 32 . 14 44 . 06	36.30 50.01	5_23 10_39 20_29 39_23 54_25
		Percentag	ge Diss	ociation	n.				Percen	tage Di	ssociat	ion.	
v	a0°	a13.25°	a25°	a35°	a50°	a65°	ť	a0°	a6.9°	a25°	a35°	a50°	a65°
32 128 512 1024 2048	4.07 8.06 15.09 20.67 27.60	8.06 8.01 7.87 7.46 7.01 8 1.03 1.04 1.05 1.04 0.9 15.01 14.97 14.75 14.08 13.26 32 2.08 2.10 2.10 2.08 2.6 37 20.55 20.52 20.11 18.95 17.78 128 4.04 4.08 4.12 4.07 3.5 30 27.41 27.36 26.77 25.75 24.29 512 7.83 7.92 8.02 7.93 7.6 1024 10.69 10.78 11.00 10.87 10.4							0.46 0.99 2.01 3.96 7.61 10.48 14.04	0 4 0.9 1.9 3.7 7.2 9.9 13.5			
	Di	ssociation	Const	ants ×	104.			Dis	sociati	on Con	stants	× 10 ⁴ .	
v	0°	13.25°	25°	35°	50°	65°	v	0°	6.9°	25°	35°	50°	65°
32 128 512 1024 2048	$0.552 \\ 0.524$	0.536 0.553 0.518 0.519 0.507	0.545 0.515 0.518	0.522 0.526 0.499 0.494 0.478	$\begin{array}{c} 0.470 \\ 0.451 \\ 0.433 \end{array}$	$0.413 \\ 0.396 \\ 0.375$	128 512 1024	0.133 0.138 0.133	0.136 0.140 0.135 0.133 0.127	0.138 0.141 0.138 0.137 0.123	0.137 0.138 0.135 0.134 0.130	0.129 0.128 0.122 0.120	0.12 0.11 0.11 0.10 0.10
Tem	peratu	re Coeffic	ients in	Condu	ctivity	Units.	Tem	peratur	e Coeffi	cients i	n Cond	uctivity	Units
v	0-13.	25° 13.25	-25° 25	5-35° 3	35-50°	50-65°	v	0-6.9	6.9	-25° 2	5-35° 3	35-50°	50-65
32 128 512 1024 2048	0. 2 0. 1 1.	$ \begin{array}{c cccc} 41 & 0 \\ 77 & 0 \\ 05 & 1 \end{array} $.40 .76 .03	0.18 0.33 0.62 0.82 1.06	0.13 0.23 0.47 0.57 0.91	0.098 0.185 0.356 0.451 0.666	2 8 32 128 512 1024 2048	0.0 0.1 0.2 0.4 0.6	$egin{array}{cccc} 6 & 0 \ 2 & 0 \ 3 & 0 \ 5 & 0 \ 1 & 0 \ \end{array}$.06 .11 .22 .43	0.02 0.05 0.10 0.19 0.37 0.51 0.68	0.02 0.04 0.08 0.16 0.28 0.40 0.45	0.02 0.03 0.05 0.09 0.19 0.28 0.44
Temperature Coefficients in Per Cent. Tempe										Coeffici	ents in	Per Ce	nt.
v	0-13.	25° 13.25	-25° 2	5–35° 3	35-50°	50-65°	v	0-6.9	0° 6.9	-25° 2	5-35°	35–50°	50-65
32 128 512 1024 2048	3 2. 2 2. 4 2.	32 1 30 1 30 1	.70 .72 .72	1.23 1.18 1.18 1.15 1.15	0.81 0.73 0.80 0.71 0.86	0.550 0.494 0.542 0.511 0.555	32 128 512 1024	$egin{array}{c c} 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ \end{array}$	9 2 6 2 8 2 9 2	2.19 2.05 2.01 2.07 2.10 2.11	1.25 1.36 1.33 1.32 1.31 1.31	1.05 0.95 0.95 0.97 0.88 0.91	0.75 0.69 0.50 0.50 0.5

a	-Bron	MPROP:	IONIC	ACID	(WM	.)	F	3-Iodo	PROPI	ONIC	ACID	(WM.)
	1	Molecul	ar Cone	luctivi	ty.			A	Iolecule	ar Cone	luctivit	y.	
v	$\mu_v 0^{\circ}$	μ,15°	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^\circ$	v	$\mu_v 0^\circ$	μ _v 15°	$\mu_v 25^\circ$	μ_v35°	μ,50°	$\mu_v 65$
32 128 512 1024 2048	77.10 124.7 151.7	200.8		61.5 125.9 206.7 257.0 295.3			8 32 128 512 1024 2048	6.30 12.57 23.79 44.36 58.61 76.55	59.47	19.37 36.67 68.42 91.05	21.98 41.69 78.04 104.24		8
	F	ercenta	ge Diss	ociati	on.			P	ercenta	ge Diss	sociatio	n.	
v	a0°	al5°	a25°	a35°	a50°	a65°	v	a0°	a15°	a25°	a35°	a50°	a65
32 128 512 1024 2048	16.60 33.37 54.45 66.25 77.52	15.99 32.37 53.13 65.01 73.62	15.38 31.47 50.21 62.98 72.06	14.81 30.33 49.79 61.90 71.12			8 32 128 512 1024 2048	2.84 5.66 10.71 19.97 26.38 34.46	2.78 5.55 10.56 19.64 25.98 33.98	2.75 5.48 10.37 19.35 25.75 33.47	2.74 5.42 10.29 19.26 25.73 33.42		
	Diss	ociatio	n Const	ants >	< 10⁴.			Diss	ociation	n Const	ants ×	104.	
v	0°	15°	25°	35°	50°	65°	v	0°	15°	25°	35°	50°	65°
32 128 512 1024 2048	10.3 13.4 12.7 12.7 13.1	10.2 13.2 13.1 13.5 11.9	8.7 11.3 9.9 10.6 11.4	8.0 10.3 9.6 9.8 8.4			8 32 128 512 1024 2048	1.04 1.04 1.00 0.97 0.92 0.89	1.00 1.02 0.97 0.94 0.89 0.85	0.97 0.99 0.94 0.91 0.87 0.82	0.97 0.97 0.93 0.90 0.87 0.82		
Тетр	erature	Coeffic	ients in	Cond	uctivity	Units.	Temp	erature	Coeffic	ients in	Condu	ctivity	Units
v	0-1	5° 15-	25° 25	-35° 3	35-50°	50-65°	v	0-1	5° 15-	25° 25	-35° 3	5-50°	50-65
3: 12: 51: 102: 204:	$ \begin{array}{c cccc} 8 & 1.4 \\ 2 & 2.6 \\ 4 & 3.5 \end{array} $	53 1. 53 2. 27 2.	.44 1 .27 1 .87 2	0.56 15 99 75 33		†	3: 12: 51: 102: 204:	$egin{array}{c c} 8 & 0.8 \\ 2 & 1.0 \\ 4 & 1.3 \\ \hline \end{array}$	28 0. 54 0. 01 0. 34 1.	26 0 48 0 89 0 24 1	0.14 0.26 0.50 0.96 1.32		
7	'empero	ature C	oefficien	its in i	Per Cen	ıt.	T	'empera	ture Ce	pefficien	nts in P	er Cen	t.
v	0-1	5° 15-	25° 25	-35° 3	35-50°	50-65°	v	0-18	5° 15–	25° 25	-35° 3	5-50°	50-65
3: 12: 51: 102: 204:	8 1.9 2 2.1 4 2.1	99 1. 11 1. 16 1.	44 1 38 1 43 1		‡ 	†	3: 12: 51: 102: 204:	$egin{array}{c cccc} 3 & 2.2 \\ 2 & 2.2 \\ 4 & 2.2 \\ \end{array}$	25 1. 26 1. 27 1. 28 1.	52 1 51 1 51 1 57 1	43 35 37 41 45		

^{*}Decomposes very rapidly at this temperature. †Decomposes. †This acid decomposes slowly at 50°, but very rapidly at 65°. §Decomposes slowly at 35°, and rapidly at higher temperatures.

LE	EVULIN		β-Accid (V		ROPIO	NIC	n	-Виту	RIC A	cid (WT. A	ND SA	d.).
	Λ	Molecul	ar Con	ductivit	y.			Λ	1 olecul	ar Cone	luctivit	y.	
v	μ _v 0°	$\mu_v 15^\circ$	μ,25°	μ ₀ 35°	μ ₀ 50°	μ ₀ 65°	v	μ _ε ()°	μ _τ 9.4°	μ,25°	μ _ε 35°	μ,50°	με65°
8 32 128 512 1024 2048	22.06 29.81	8.24 16.13 30.78 41.92	9.71 19.08 36.37 49.85	11.10 21.84 41.68 56.99	6,463 12.96 25.54 48.08 66.15 86.98	7.19 14.39 28.38 51.79 72.81 95.76	2 8 32 128 512 1024 2048		3.062 6.230 12.23 23.79 32.83	3.891 7.902 15.45 29.86 41.22	17.14 33.00 45.26	4.86: 9.95 19.77 37.80	2 5.26 10.80 21.23
	P	ercenta	ge Dis	sociatio	n.			P	ercenta	ge Diss	ociatio	n.	
v	a0°	al5°	a25°	a35°	a50°	a65°	v	a()°	a9.4°	a25°	a35°	a50°	a65°
8 32 128 512 1024 2048	1.33 2.65 5.24 9.99 13.50 17.84	1.38 2.76 5.41 10.32 14.06 18.89	1.39 2.79 5.48 10.44 14.31 19.02	1.40 2.80 5.50 10.50 14.36 19.28	1.39 2.78 5.48 10.32 14.19 18.66	1.36 2.71 5.35 9.77 13.73 18.06	2 8 32 128 512 1024 2048	0.49 1.12 2.27 4.48 8.72 12.02 16.76	0.49 1.12 2.28 4.48 8.71 12.02 16.71	0.49 1.10 2.23 4.36 8.44 11.64 16.15	0.48 1.08 2.18 4.24 8.17 11.20 15.52	0.47 1.03 2.10 4.18 7.98	0.97 2.00 3.93 7.61
	Diss	ociation	n Const	tants ×	104.			Diss	ociation	n Const	ants ×	104.	
v	0°	15°	25°	35°	50°	65°	v	0°	9.4°	25°	35°	50°	65°
8 32 128 512 1024 2048	0.224 0.225 0.226 0.217 0.206 0.189	0.234 0.238 0.235 0.226 0.219 0.209	0.245 0.250 0.248 0.238 0.233 0.218	0.249 0.252 0.250 0.241 0.235 0.225	0.244 0.249 0.248 0.232 0.229 0.209	0.233 0.237 0.236 0.207 0.213 0.194	2 8 32 128 512 1024 2048	0.164 0.163 0.161	0.161	0.153 0.157	0.115 0.147 0.152 0.147 0.142 0.138 0.139	0.142 0.135	0.127 0.125 0.122
Temp	erature	Coeffic	ients in	Condu	ctivity	Units.	Tempe	erature	Coeffici	ients in	Condu	ctivity	Units.
v	0-15	5° 15-	25° 25	-35° 35	5-50° 5	50-65°	v	0-9.	4° 9.4-	-25° 25	-35° 3.	5-50°	50-65°
3: 128 51: 1024 2048	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30 0.1 04 0.2 31 0.5 07 0.7	47 0. 295 0. 559 0. 293 0.	139 0 276 0 531 0 714 0	.124 .247 .43 .61	0.048 0.095 0.189 0.247 0.444 0.585		0.2 0.4 1 0.6	06 0. 2 0. 24 0. 66 0. 44 0.	05 0 11 0 21 0 39 0 54 0	0.05 0 0.09 0 0.17 0 0.31 0 0.41	0.019 0.034 0.077 0.176 0.32	0.013 0.027 0.057 0.097 0.221 0.443
T	'empera	ture Co	efficien	its in P	er Cen	t.	T	empera	ture Co	efficien	ts in P	er Cen	t.
v	0-15	° 15-	25° 25	-35° 35	5-50° 5	50-65°	v	0-9	4° 9.4-	·25° 25-	-35° 38	5-50°	50-65°
32 128 512 1024 2048	$ \begin{array}{c cccc} 3 & 2.6 \\ 2 & 2.6 \\ 4 & 2.7 \end{array} $	4 1. 3 1. 3 1. 1 1.	78 1 83 1 82 1 89 1	.43 .45 .46 .43	1.12 1.12 1.15 1.03 1.07 0.91	0.75 0.74 0.74 0.51 0.67 0.67	32 128 512 1024 2048	3 2.3 2 2.4 3 2.4 2 2.3 4 2.3	8 1. 3 1. 4 0. 8 1. 8 1.	74 1 72 1 69 1 64 1 64 0	.19 .14 .09 .05 .98	0.98 0.78 0.87 1.03 0.97	0.59 0.55 0.57 0.49 0.58

	a-BR	OMBUI	TYRIC	Acid	(WM.).	I	sobut	YRIC A	CID (WT. A	ND SM	:.).	
		Molecu	lar Co	nductiv	ity.				Molecula	r Condu	ictivity.			
v	μ,0°	μ,15°	$\mu_v 25^\circ$	μ ₀ 35°	$\mu_v 50^\circ$	μ_v65°	v	μ ₀ 0°	μ.16.46°	μ _ν 25°	$\mu_v 35^\circ$ $\mu_v 50^\circ$ $3 1.841 1.96$ $1.4.272 4.40$ $1.8.514 8.83$ $16.90 17.60$ $32.70 33.71$ $45.54 46.27$ $61.35 60.92$ sociation. $a35^\circ$ $a50^\circ$ $6.0.46 0.44$ $6.1.06 1.00$ $6.2.11 2.00$ $7.4.18 4.00$ $7.4.18 4.00$ $7.11.27 10.50$ $7.11.27 10.$		$\mu_v 65^{\circ}$	
1024	84.94 133.7 160.6	54.70 109.5 173.2 209.3 238.0	122.8 195.2 239.8	66.42 134.3 214.9 266.0 305.9			1024	1.034 2.453 4.912 9.736 18.91 26.32 35.96	$\frac{3.412}{6.809}$	1.633 3.821 7.621 15.13 29.30 40.90 55.01	4.272 8.514 16.90 32.70 45.54	4.409 8.831 17.60 33.71 46.27	4.76	
	1	Percente	age Dis	sociati	on.				Percenta	ge Diss	ociation	ı.		
v	a0°	al5°	a25°	a35°	a50°	a65°	v	a0°	a16.46°	a25°	a35°	a50°	a65°	
32 128 512 1024 2048	8 36.82 36.00 34.35 32.97 8 1.10 1.10 1.00 2 57.97 56.92 54.59 52.74 32 2.20 2.20 2.1 4 69.61 68.82 67.08 65.30 128 4.37 4.35 4.2 8 78.32 78.26 76.91 75.91 512 8.48 8.39 8.2 1024 11.80 11.67 11.5 2048 16.13 15.88 15.5							0.46 1.08 2.15 4.27 8.28 11.55 15.54	1.06 2.11 4.18 8.09 11.27	0.45 1.01 2.02 4.02 7.71 10.58 13.93	0.45 1.02 2.02 3.97 7.64 10.46 13.66			
	Dis	sociatio	n Cons	stants >	< 10⁴.			Di	ssociation	Const	ants ×	104.		
v	0°	15°	25°	35°	50°	65°	v	0°	16.46°	25°	35°	50°	65°	
32 128 512 1024 2048	13.1 16.8 15.6 15.6 13.8	13.2 17.2 16.4 17.0 16.6	11.0 14.0 12.8 13.2 12.5	10.1 12.7 11.5 12.0 11.1			2 8 32 128 512 1024 2048	0.108 0.153 0.155 0.156 0.154 0.154 0.151		0.108 0.147 0.148 0.149 0.146 0.147 0.140	0.141 0.142 0.143 0.139 0.140	0.102 0.128 0.130 0.131 0.125 0.122 0.110		
Temp	peratur	e Coeffic	cients i	n Cond	uctivity	Units.	Tem	peratur	e Coeffici	ents in	Condu	ctivity (Inits.	
v	0-1	5° 15-	25° 25	-35° 3	5-50°	50-65°	v	0-16.	46° 16.46	-25° 25	-35° 3	5-50°	50-65°	
3: 12: 51: 103- 204:	$egin{array}{c cccc} 8 & 1.0 \\ 2 & 2.0 \\ 4 & 3.3 \\ \end{array}$	64 1 63 2 25 3	.33 .20 .05	1.97			2 8 32 128 512 1024 2048	0.0 0.1 0.2 0.4	06 0 12 0 23 0 43 0 60 0	.05 .10 .19 .36 .51	0.05 0.09 0.18 0.34 0.46		0.009 0.024 0.041 0.067 0.14 0.18 0.21	
7	Temper	ature C	oefficie	nts in l	Per Cen	ıt.	Temperature Coefficients in Per Cent.							
v	0-1	5° 15-	25° 25	5-35° 3	5-50°	50-65°	v	0-16.	46° 16.46	-25° 25	-35° 3	5-50°	50-65°	
31 12 51 102 204	8 1.9 2 1.9 4 2.0	93 1 97 1 02 1	.21 .27 .46	0.89 . 0.94 . 1.01 . 1.09 .			2 8 32 128 512 1024 2048	2.3 2.3 2.3 2.3 2.3	38 1 35 1 33 1 28 1 28 1	.40 .40 .43 .41	1.18		0.47 0.54 0.46 0.38 0.41 0.39 0.34	

Note—Solutions more concentrated than v=128 decompose at 35°, and all dilutions decompose rapidly at 50°.

Н	IYDRO	XYISOI	BUTYRI	e Acid	(Wa	r.).		Iso	VALE	RIC A	CID (Wм.).	
		Molecu	lar Cone	luctivity				M	olecula	ar Cond	luctivity	1.	
v	μ ₀ 0°	μ,15°	μ ₀ 25°	μ _ε 35°	μ,50°	μ _ε 65°	v	μ _ε 0°	μ ₀ 15°	μ,25°	μ,35°	μ,50°	μ.65°
128 512 1024	6.075 12.11 23.50 44.06 58.80 76.78	8.553 17.04 33.04 61.74 81.95 106.95	20.19 39.18 73.16 97.00	22.97 44.65 83.41 111.60	26.84 51.41 96.52 128.30		512 1024	10.68 20.52 28.28	7.061 14.04 26.97 37.11	$30.74 \\ 42.18$	8.927 17.68	9.89	5.11 10.57 20.94 39.92 53.48 72.93
		Percent	age Diss	ociation				F	ercente	age Dis	sociati	on.	
v	a0°	al5°	a25°	a35°	a50°	a65°	v	a0°	al5°	a25°	a35°	a50°	a65°
8 32 128 512 1024 2048	2.75 5.47 10.62 19.92 25.58 34.70	5.653 10.96 20.48 27.19		2.89 5.74 11.15 20.84 27.88 36.00	2.88 5.70 10.91 20.48 27.23 35.24	5.43 10.48 19.71 26.17	8 32 128 512 1024 2048		1.13 2.36 4.69 9.00 12.38 16.65	1.11 2.30 4.57 8.78 12.05 16.25	1.07 2.24 4.34 8.44 11.60 15.66	11.87	0.96 1.98 3.93 7.49 10.03 13.68
	D	issociati	on Consi	tants ×	104.			Dis	sociatio	on Cons	stants >	< 10⁴.	
v	0°	15°	25°	35°	50°	65°	v	0°	15°	25°	35°	50°	65°
8 32 128 512 1024 2048	0.97 0.99 0.99 0.97 0.94 0.90	1.05 1.06 1.17 1.03 0.99 0.95	1.08 1.10 1.09 1.07 1.03 0.98	1.08 1.10 1.09 1.07 1.08 0.99	1.03 1.08 1.05 1.03 1.00 0.94	0.95 0.98 0.96 0.95 0.91 0.82	8 32 128 512 1024 2048	0.184 0.170	0.178 0.180 0.180 0.171	0.154 0.169 0.171 0.165 0.161 0.154	0.160	0.142 0.132 0.130	0.125 0.126 0.119 0.109
Tem	peratu	re Coeffi	cients in	Conduc	tivity l	Inits.	Tem	peratur	e Coeffi	cients i	n Cond	uctivity	Units.
ı	, ()-15° 1	5-25° 2	5–35° 3	5-50°	50-65°	v	0-1	5° 15-	-25° 25	5-35° 3	35-50°	50-65°
	8 32 128 512 024 2048	0.16 0.33 0.64 1.18 1.54 2.01	0.31	0.28 0.55 1.03	0.12 0.26 0.45 0.88 1.11 1.47	0.094 0.17 0.36 0.68 0.90 1.02	3: 12: 51: 102- 204:	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	13 0.0 24 0.3 30 0.3 89 0.3	099 0 197 0 377 0 507 0	.087 .167 .297 .415	0.032 0.064 0.123 0.216 0.301 0.483	0.016 0.045 0.095 0.138 0.175 0.209
	Temp	erature (Coefficie	nts in P	er Cen	t.	7	emper	ature C	Coefficie	ents in	Per Ce	nt.
v	, ()-15° 1	5-25° 2	5-35° 3	5-50°	50-65°	v	0-1	5° 15-	-25° 25	5-35° 3	35–50°	50-65°
	8 32 128 512 1024 2048	2.72 2.71 2.71 2.68 2.62 2.62	1.86 1.85 1.86 1.85 1.84 1.80	1.41 1.38 1.40 1.40 1.50 1.41	1.00 1.13 1.01 1.06 1.01 1.02	0.71 0.65 0.70 0.71 0.70 0.61	3: 12: 51: 102- 204:	$\begin{bmatrix} 2 & 1 \\ 2 & 2 \end{bmatrix}$	10 1 10 1 10 1 108 1	.40 .40 .40 .37	1.35 1.07 1.04 0.97 0.98 1.00	0.74 0.72 0.70 0.64 0.65 0.77	0.33 0.46 0.49 0.37 0.34 0.45

	CA	PRYLIC	c Acı	D (W	м.).			MALO	NIC A	CID (WT. A	ND C.),
	A	1 olecul	ar Con	ductivi	ty.			A	Iolecule	ar Cone	ductivit	y.	
v	$\mu_v 0^{\circ}$	μ _v 15°	$\mu_v 25^{\circ}$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^\circ$	v	$\mu_v 0^\circ$	μ _v 4.9°	$\mu_v 25^\circ$	μ_v35°	$\mu_v 50^\circ$	μ _υ 65°
512 1024 2048	24.39 32.84	32.76 44.08	27.79 37.84 51.08	31.07 42.35 56.89	47.28	50.57		43.51 78.30 127.1 153.3	26.20	38.40 72.23 129.8 208.7 251.2	237.4 284.8	37.38 71.76 130.8 173.8	41.47 79.73 145.8 191.7 310.9
	F	ercenta	ige Dis	sociati	on.			P	ercenta	ge Dis	sociatio	n.	
v	a0°	a15°	a25°	a35°	a50°	a65°	v	a0°	α4.9°	a25°	a35°	a50°	a65°
512 1024 2048	10.84 14.60	10.89 14.65	7.96 10.84 14.63	7.80 10.64 14.29	10.18		2 8 32 128 512 1024 2048	5.30 10.40 19.57 35.12 56.99 68.74 79.32	5.34 10.48 19.70 35.53 57.36 69.28 79.66	5.53 10.81 20.34 36.58 58.80 70.76 81.45	5.55 10.87 20.38 36.59 58.60 70.31 80.89	58.24	
	Diss	ociatio	n Cons	tants >	< 10⁴.		1	Diss	ociation	n Cons	tants ×	104.	
v	0°	15°	25°	35°	50°	65°	v	0°	4.9°	25°	35°	50°	65°
512 1024 2048	0.129 0 122	0.130 0.123	0.134 0.129 0.123	0.129 0.124 0.116	0.129 0.117 0.102 2 14.8 15.0 16.1 16.4 0.124 0.113 0.095 8 15.1 15.3 16.4 16.5 0.116 0.106 0.084 32 14.8 15.1 16.3 16.3 128 14.8 15.3 16.4 16.5 128 14.8 15.3 16.4 16.5 128 14.8 15.3 16.4 16.5 128 14.8 15.3 16.4 16.5							16.3 15.9 15.5	
Tempe	erature	Coeffic	ients in	Cond	uctivity	Units.	Temp	erature	Coeffic	cients in	n Condi	uctivity	Units.
\overline{v}	0-15	° 15-	25° 25	5-35°	35-50°	50-65°	v	0-4.9	0 4.9-	25° 25	5–35° 3	5-50°	50–65°
512 1024 2048	0.5		.51	0.33 0.45 0.47	0.23 0.33 0.45	0.20 0.22 0.17	2 4 8 16 32 64 128 512 1024 2048	0.6 1.1 2.0 3.3 4.0	1 0 7 1 9 2 3 3 6 3	.61 (14 .04 .25 .88 .88	0.29 . 0.58 . 1.03 . 1.84 . 2.87 . 3.36 . 3.75 .	1.70 2.70 3.12	0.27 0.53 1.00 1.19 2.21
2	l'emper	ature C	oefficie	ents in	Per Cer	nt.	7	emper	ature C	oefficie	nts in I	Per Cen	t.
v	0-15	° 15-	25° 25	5-35°	35-50°	50-65°	v	0-4.9	° 4.9-	25° 25	5–35°	35-50°	50-65°
512 1024 2048	2.2	9 1 1 1	.55	1.18 1.17 1 12	0.74 0.78 0.80	0.58 0.46	2 4 8 16 32 64 128 512 1024 2048	2.6 2.6 2.6 2.6 2.6	6 2 9 2 7 2 2 2 5 2	.32 .32 .30 .27 .24	1.48 . 1.47 . 1.43 . 1.42 . 1.38 . 1.34 .	1.15 1.14 1.09	0.73 0.74 0.76 0.68 0.80

-	1	1 alecul	ar Con	ductivi	ta	-		,	Malana	or Co-	ductivit	04	
	8 0.40 0.38 0.35 0.32 2 0.78 0.75 0.72 0.69 8 1.44 1.40 1.27 1.17 2 2.37 2.33 2.22 2.13 4 3.04 2.92 2.71 2.71 8 3.59 3.54 3.26 2.74							osecui	ar Con	uucswu	y.		
v	μ,0°	μ,15°	μ,25°	μ _ε 35°	μ.50°	μ,65°	v	μ,0°	μ,15°	μ,25°	μ.35°	μ,50°	$\mu_{\rm r}65$
8 32 128 512 1024 2048	32.00 59.00 101.42 124.10	43.76 80.57 136.94 169.74	51.23 94.61 160.28 198.93	58.4 107.2 182.4 226.0	1 68 .80 9 124 .82 9 217 . 20 5 266 .68	0 77.10 2139.53 0240.72 3299.26	1024	40.90 73.08 119.83 146.45	55.22 98.35 161.73 197.80	64 .42 114 .55 188 .90 231 .24	36,64 72,53 129,09 213,00 260,00 298,32	\$2 52 146 60 243 30 297 98	90 (161) 269 (330)
	P	ercenta	ge Dis	sociatio	on.			P	ercenta	ige Disi	ociatio	n.	
v	a0°	al5°	a25°	a35°	a50°	a65°	v	a0°	al5°	a25°	a35°	a50°	a65
8 32 128 512 1024 2048	14.40 26.55 45.64 55.85	14.59 26.86 45.65 56.58	$\begin{array}{c} 14.56 \\ 26.89 \\ 45.56 \\ 56.55 \end{array}$	14.62 26.85 45.66 56.56	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							30.0 50,0 61.3	
	Diss	ociation	n Cons	tants >	< 10⁴.			Diss	ociatio	n Cons	ianis ×	10°.	
v	0°	15°	25°	35°	50°	65°	v	0°	15°	25°	35°	50°	65°
8 32 128 512 1024 2048	7.57 7.50 7.48 6.90	7.79 7.71 7.49 7.20	7.75 7.73 7.45 7.21	7.82 7.70 7.50 7.20	7.82 7.51 7.69 7.26	6.72 7.45 7.06 7.04 6.77 5.84	8 32 128 512 1024	12.1 12.9 12.6 12.3 12.4	12.0 12.9 12.4 12.2 12.3	11.8 12.8 12.3 12.2 12.3	11.6 12.5 12.0 11.9 11.8	10.7 11.6 11.0 10.9 10.7	10.0 10.0 10.0 9.8 9.8
Temp	erature	Coeffic	ients in	Cond	uctivity	Units.	Temp	erature	Coeffic	cients is	Condi	ectivity	Units
v	0-1	5° 15-	25° 25	-35°	35-50°	50-65°	v	0-1	5° 15-	-25° 25	5-35° 3	5-50°	50-65
3 12 51 102 204	2 0.3 8 1.4 2 2.3 4 3.6	78 0. 44 1. 37 2. 04 2.	75 40 33 92	0.72 1.27 2.22 2.71	0.69 1.17 2.13 2.71	0.27 0.55 0.98 1.57 2.17 2.32		8 1. 2 2. 4 3.	$ \begin{array}{c cccc} 95 & 0 \\ 68 & 1 \\ 79 & 2 \\ 42 & 3 \end{array} $.92 62 .72 .34	0.40 0.81 1.45 2.41 2.88 3.48	0.34 0.67 1.70 2.02 2.53 3.13	0.25 0.54 1.01 1.64 2.18 2.63
T	"emper	ature C	oefficie	ficients in Per Cent. Temperature Coefficients in Per Cent							ıt.		
v	0-1	5° 15-	25° 25	-35°	35–50°	50-65°	v	0-1	5° 15-	-25° 2	5-35° 3	5-50°	50-65
	2 2.3 4 2.4	43 1 42 1 33 1 45 1	.70 .74 .70 .72	1.34 1.40 1.34 1.38 1.36	1.08 1.18 1.09 1.17 1.18 1.00	0.79 0.80 0.79 0.72 0.82 0.74		2 2. 8 2. 2 2. 4 2.	33 1 30 1 33 1 33 1	.66 .65 .68	1.23 1.27 1.26 1.27 1.25 1.32	0.91 0.92 0.90 0.95 0.97 1.04	0.7 0.6 0.6 0.6 0.7 0.7

	DIETH	IYLMA	LONIC	Acu	D (SP.)).	ME	THYLE	CTHYL	MALO	NIC A	CID (S	P.).
	Λ	1 olecule	ar Cone	luctivi	ty.			N.	lolecul	ar Cone	ductivit	y.	
v	$\mu_v 0^{\circ}$	μ _v 15°	$\mu_v 25^\circ$	$\mu_v 35^\circ$	μ _v 50°	μ_v65°	v	μ,0°	$\mu_v 15^\circ$	$\mu_v 25^\circ$	μ_v35°	μ _v 50°	$\mu_v 65^\circ$
	92.77 141.81 189.03 201.22	121.64 187.35 252.30 268.24	138 . 84 215 . 34 292 . 24 311 . 98	153.60 240.20 328.73 353.50	6 94.03 0 174.26 0 274.96 3 378.84 6 413.66 0 424.37	$\begin{array}{c} 186.22 \\ 299.01 \\ 422.61 \\ 462.78 \end{array}$	8 32 128 512 1024 2048	81.39 129.95 156.21	61.89 110.44 175.96 211.25	72.45 129.71 206.32 248.19	82.00 147.18 234.00 280.01	48.28 93.61 8168.51 0269.50 1323.20 3365.46	104.3 188.2 304.2 365.5
	P	ercenta	ge Dis	sociati	on.			P	ercenta	ge Dis	sociatio	on.	
v	a0°	al5°	a25°	a35°	a50°	a65°	v	a0°	al5°	a25°	a35°	a50°	a65°
8 32 128 512 1024 2048	23.88 42.29 64.65 86.17 91.73 91.92	22.92 41.08 63.27 85.21 90.59 91.94	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						19.58 35.31 57.08 68.58				
	Diss	sociation	n Cons	tants >	< 10⁴.			Diss	ociatio	n Cons	tants >	< 10⁴.	
v	0°	15°	25°	35°	50°	65°	v	0°	15°	25°	35°	50°	65°
8 32 128 512 1024 2048							8 32 128 512 1024 2048	16.0 17.0 16.8 16.4 16.7 16.5	15.9 16.9 16.9 16.4 16.6 16.1	15.9 16.9 17.1 16.6 16.9 15.9	15.7 16.7 17.0 16.4 16.3 15.0	15.6 15.9 16.1 15.7 15.6 14.3	14.3 14.5 15.0 14.8 14.6 12.8
Тетре	erature	Coeffici	ients in	Cond	uctivity	Units.	Temp	erature	Coeffic	cients in	n Cond	uctivity	Units
v	0-1	5° 15-	25° 25	-35°	35-50°	50-65°	v	0-1	5° 15-	-25° 25	5–35°	35-50°	50-65
	2 4. 4 4.	92 1 04 2 22 3 47 4	.72 .80 .99 .37	0.77 1.48 2.49 3.65 4.16 4.32	0.73 1.38 2.33 3.34 4.01 4.26	0.42 0.80 1.67 2.92 3.27 3.83		2 3. 4 3.	$egin{array}{c ccc} 07 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & $.06 .93 .04 .69	0.49 0.95 1.75 2.77 3.18 3.44	0.40 0.77 1.42 2.37 2.88 3.36	0.39 0.72 1.31 2.32 2.82 3.07
7	l'emper	ature C	oefficie	nts in	Per Cer	nt.	2	Temperature Coefficients in Per Ce					
v	0-1	5° 15-	25° 25	-35°	35–50°	50-65°	v	0-1	5° 15-	-25° 25	5–35°	35–50°	50-65
3 12 51 102 204	8 2. 2 2. 4 2.	07 1 14 1 23 1 22 1	.41 .49 .58 .63	1.00 1.06 1.15 1.25 1.33 1.36	0.85 0.89 0.97 1.01 1.13 1.18	0.44 0.46 0.61 0.77 0.79 0.90		2 2.3 4 2.3	33 1 38 1 36 1 35 1	.71 .74 .72 .75	1.30 1.31 1.34 1.34 1.28 1.28	0.96 0.94 0.96 1.01 1.02 1.07	0.72 0.76 0.77 0.85 0.87 0.83

1	SOPRO	PYLM	ALONI	c Acı	D (SP	.).	1	DIPRO	PYLMA	LONIC	Acr	D (SP.	.).
	Δ	1 olecule	ır Cona	luctivit	y.			3	1 olecule	ır Cond	luctivit	y.	
v	μ ₀ 0°	μ ₀ 15°	μ ₀ 25°	μ ₀ 35°	μ _e 50°	μ ₀ 65°	v	μ _ε 0°	μ _ε 15°	μ,25°	μ ₀ 35°	μ,30°	$\mu_c 65$
	118.6 144.1	98.65 161.6 197.0	117.00 192.95 234.00	132.34 217.62 264.40	1 151 .88 2 248 .81 3 307 .7	91.73 168.00 278.36 343.80 402.50		152,25	204 36 258 80 272 90	300.65 317.78	261 . 73 339 . 30 359 . 10	5297.58 0386.50 0417.00	0430.8 0468.0
	P	ercenta	ge Diss	ociatio	on.			I ^s	ercenta	ge Diss	ociatio	n.	
v	a0°	a15°	a25°	a35°	a50°	a65°	v	a0°	al5°	a25°	a35°	a50°	a65°
32 128 512 1024 2048	18.14 32.69 53.70 65.24 75.79	33.00 54.04 65.89	18.56 33.45 55.15 66.89 77.80		32.73 53.62 66.31	52.23 64.50	32 128 512 1024 2048	47.18 69.63 87.85 93.07 95.74	45.78 69.25 87.70 92.48 95.26	44.70 67.95 86.97 91.92 95.15	43 . 35 66 . 60 86 . 35 91 . 41 94 . 93	64.96 84.40 91.06	82.7 90.0
	Diss	ociation	n Const	ants ×	(104.			Diss	ociatio	n Const	anls ×	(10°.	
v	0°	15°	25°	35°	50°	65°	v	0°	15°	25°	35°	50°	65°
32 128 512 1024 2048	12.5 12.4 12.2 12.0 11.6	12.8 12.7 12.4 12.4 12.2	13.2 13.1 13.2 13.2 13.3	13.1 12.9 12.9 12.8 12.8	12.5 12.5 12.1 12.5 12.5	11.2 11.3 11.2 11.4 11.3	32 128 512 1024 2048	$125.0 \\ 124.0$	121.0 121.0 122.0 111.0 93.0	113.0 113.0	104.0 104.0 106.0 95.0 90.0	90 89 90 90	81 78 79 78
Гетре	rature	Coeffici	ents in	Condu	ctivity l	Units.	Temp	erature	Coeffic	ients in	Condu	ctivity	Units
v	0-13	5° 15-	25° 25-	-35° 3	5-50°	50-65°	v	0-13	5° 15-	25° 25	-35° 3	5-50°	50-65°
3: 12: 51: 120- 204:	$ \begin{array}{c cccc} 8 & 1.7 \\ 2 & 2.8 \\ 4 & 3.8 \end{array} $	76 1. 36 3. 53 3.	83 1 14 2 70 3	.87 .53 .47 .04 .77	0.69 1.30 2.08 2.89 3.27	0.51 1.07 1.97 2.41 3.03	3: 12: 51: 102- 204:	8 3.4 2 4.4 4 4.6	17 3. 15 4. 13 4.	06 2 18 3 49 4	.58 .68 .86 .14 .41	2.39 3.15 3.86 4.11	1.78 2.95 3.40 3.75
7	'empero	ature Co	efficien	ts in I	Per Cen	t.	T	'em pera	dure C	pessicien	us in I	er Cen	t.
v	0-18	5° 15-	25° 25	-35° 3	5-50°	50–65°	v	0-13	5° 15-	25° 25	-35° 3	5-50°	50-65°
31 125 511 1024 2048	8 2.4 2 2.4 4 2.4	13 1. 11 1. 15 1.	86 1 88 1 88 1	.34 .31 .28 .30 .38	0.94 0.98 0.96 0.92 1.06	0.61 0.71 0.79 0.78 0.85	3: 12: 51: 102: 204:	8 2.3 2 2.3 4 2.3	28 1. 31 1. 27 1.	49 1 62 1 64 1	.02 . .14 . .28 . .30 . .34	0.91 0.93 1.09 1.10	0.60 0.74 0.81 0.86

But	YLMAI	LONIC	ACID	(No	RMAL)	(Sp.).		BENZ	YLMAI	LONIC	ACID	(Sp.)			
Molecular Conductivity.								Molecular Conductivity.							
v	μ ₀ 0°	$\mu_v 15^\circ$	μ _ν 25°	$\mu_v 35$	° µ,50°	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	$\mu_v 15^\circ$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	μ _v 65°		
32 128 512 1024 2048	37.53 68.80 113.8 140.0 163.7	$154.2 \\ 187.2$	107.34 180.90 218.3	121.8 204.8 248.0	30 76.00 36 141.00 34 236.22 0 286.2 3 340.0	0.156.00 $0.264.25$ $0.320.1$		80.22 128.30 153.05	107 . 44 171 . 80 205 . 65	124.99 199.60 239.44	140.37 225.13 269.62	7160.03 258.98 2310.79	97.76 3175.82 8285.80 9345.35 3395.32		
	P	ercenta	ge Dis	sociati	ion.			P	ercenta	ge Diss	sociatio	m.			
v	a0°	al5°	a25°	a35°	a50°	a65°	v	a0°	al5°	a25°	a35°	a50°	a65°		
32 128 512 1024 2048	17.11 31.36 51.88 63.82 74.62	17.09 31.08 52.08 63.22 73.89	16.96 31.00 52.25 63.05 73.48	16.83 30.93 52.00 62.90 73.93	2 30.33 0 50.82 6 61.57	29.21 49.48 60.00	32 128 512 1024 2048	69.88	20.48 36.34 58.11 69.56 79.89	20.19 36.16 57.74 69.26 79.16	19.91 35.70 57.24 68.57 78.86		$\begin{vmatrix} 32.98 \\ 53.62 \\ 64.79 \end{vmatrix}$		
	Diss	ociation	n Cons	tants)	× 104.			Diss	ociation	n Const	ants ×	104.			
v	0°	15°	25°	35°	50°	65°	v	0°	15°	25°	35°	50°	65°		
32 128 512 1024 2048	11.0 11.2 10.9 11.0 10.7	11.0 11.0 11.0 10.6 10.2	10.8 10.9 11.1 10.5 10.0	10.6 10.8 11.0 10.4 10.3	$ \begin{array}{c c} 10.3 \\ 10.2 \\ 9.6 \end{array} $	9.15 9.4 9.5 8.8 8.8	32 128 512 1024 2048	16.6 16.5 16.2 15.8 17.0	16.5 16.2 15.7 15.5 15.5	16.0 16.0 15.4 15.2 14.7	15.5 15.5 15.0 14.6 14.4	14.2 14.1 13.8 13.3 12.7	12.8 12.7 12.1 11.7 10.4		
Temp	erature	Coeffic	ients in	Cond	luctivity	Units.	Tempe	erature	Coeffic	ients in	Condu	ctivity	Units.		
v	0-13	5° 15-	25° 25	-35°	35-50°	50-65°	v	0-18	5° 15-	25° 25	-35° 3	5-50°	50-65°		
35 128 515 1024 2048	$egin{array}{c cccc} 8 & 1.5 \\ 2 & 2.6 \\ 4 & 3.1 \\ \end{array}$	55 1. 69 2. 15 3.	53 67 11	0.78 1.45 2.39 2.97 3.59	0.65 1.28 2.09 2.55 3.25	0.53 1.00 1.87 2.26 2.84	128 512 1024 2048	$egin{array}{c cccc} 8 & 1.8 \ 2 & 2.9 \ 4 & 3.8 \ \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	75 1 78 2 38 3	0.85 .54 2.55 3.02 3.64	0.72 1.31 2.26 2.75 3.19	0.57 1.05 1.79 2.30 2.49		
T	'empero	iture C	oefficie	nts in	Per Cen	ıt.	T	'empero	ture Co	pefficien	its in F	Per Cen	ıt.		
v	0-15	5° 15-	25° 25	-35°	35-50°	50-65°	v	0-15	s° 15–2	25° 25	-35° 3	5-50°	50-65°		
32 128 512 1024 2048	$egin{array}{c cccc} 3 & 2.2 \\ 2 & 2.3 \\ 4 & 2.2 \\ \end{array}$	25 1. 36 1. 25 1.	66 1 73 1 66 1	1.32 1.35 1.32 1.36 1.40	0.98 1.04 1.02 1.02 1.11	0.69 0.71 0.79 0.79 0.83	32 128 512 1024 2048	$egin{array}{c cccc} 3 & 2.2 \\ 2 & 2.2 \\ 4 & 2.2 \\ \end{array}$	20 1. 29 1. 29 1.	57 1 61 1 64 1		0.91 0.93 1.00 1.02 1.04	0.65 0.66 0.69 0.74 0.69		

	ALL	YLMAL	ONIC	ACID	(Sp.).			Succ	CINIC	Acid (WT. AT	VD C.)				
	i	Molecu	lar Con	nductivi	ty.				Molec	ular Con	ductivit	y.				
v	μ _v 0°	μ,15°	μ,25°	$\mu_v 35^\circ$	μ _ε 50°	μ _e 65°	v	$\mu_v 0^\circ$	μ.5.7°	μ,25°	μ _ε 35°	μ _ε 50°	μ.65			
1024	80.81 130.49 158.93	61.58 109.08 176.28 214.00	126.33 204.36 248.67	80.30 3142.15 3231.00 7281.00	92.03 164.75 264.5 322.75	4 53.61 2 101.16 3 181.65 1 293.23 5 358.28 5 401.52	128 512 1024	9.211 18.24	21.35 40.59 55.91	8.032 16.01 31.24 59.34 81.31 109.6	9 . 25 18 . 36 35 . 80 67 . 87 92 . 89 124 . 8	21 .94 42 .64 82 .36	24.7 48.0			
	I	Percente	age Dis	ssociatio	on.				Percen	tage Die	sociatio	n.				
v	a0°	al5°	a25°	a35°	a50°	a65°	v	a0°	a5.7°	a25°	a35°	a50°	a65°			
8 32 128 512 1024 2048	10.95 20.60 36.49 58.93 71.77 79.65	10.90 20.57 36.43 58.87 71.47 79.45	10.76 20.37 36.01 58.26 70.89 79.08	20.07 35.54 57.75 70.25	19.66 35.21 56.52 68.96	18.84 33.82 54.61 66.72	8 32 128 512 1024 2048	2.05 4.13 8.18 15.58 20.47 28.97	2.15 4.29 8.54 16.24 22.37 30.11	2.26 4.51 8.80 16.72 22.91 30.88	4.53 8.84	4 .64 9 .03 17 .43 23 .26	4.50 8.90 16.90 23.20			
	Dis	sociati	on Con	stants ?	× 10 ⁴ .			Di	ssocial	ion Cons	itants X	104.				
v	0°	15°	25°	35°	50°	65°	v	0°	5.7°	25°	35°	50°	65°			
8 32 128 512 1024	16.8 16.7 16.4 16.5	16.6 16.6 16.3 16.5	16.2 16.2 15.8 15.9	15.6 15.7 15.3 15.4	15.3 15.0 14.9 14.4 14.9	13.8 13.7 13.5 12.8 13.1	32 128 512 1024	0.537 0.556 0.569 0.562 0.572 0.577	0.600	0.655 0.666 0.664 0.655 0.665 0.675	0.673 0.670 0.659 0.665	0.705 0.701 0.719 0.688	0.687 0.681 0.671 0.688			
Tem	peratur	e Coeffi	cients i	in Cond	uctivity	Units.	Tem	peratui	re Coef	icients i	n Condu	ctivity	Units.			
v	0-13	5° 15-	25° 25	5–35° 3	5-50°	50-65°	v	0-	5.7° 5.	7-25° 2	25–35° 3	35-50°	50-65			
32 128 512 1024 2048	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	06 0 38 1 05 2 37 3	.99 .72 .81 .47	0.45 0.88 1.58 2.66 3.23 3.64	0.44 0.78 1.51 2.23 2.78 2.98	0.31 0.61 1.12 1.92 2.37 2.86	1	32 0 28 0 12 1 24 1	.14 .28 .55 .02 .41 .87	0.14 0.27 0.51 0.97 1.32 1.78	0.12 0.24 0.46 0.85 1.16 1.52	0.12 0.24 0.46 0.90 1.13 1.40	0.09 0.18 0.36 0.59 1.03 1.13			
7	"empero	ature C	oefficie	nts in F	er Cen	it.		Tem	peratur	e Coeffic	ients in	0.667 0.693 0.673 0.703 0.670 0.701 0.659 0.719 0.665 0.688 0.670 0.673 Conductivity -35° 35–50° 1.12 0.12 .24 0.24 0.46 0.46 .85 0.90 .16 1.13				
v	0-15	5° 15-	25° 25	5–35° 3	5-50°	50-65°	v	0-	5.7° 5.	7-25° 2	25–35° 3	35-50°	50-65°			
32 128 512 1024 2048	$egin{array}{c c} 8 & 2.3 \\ 2 & 2.3 \\ 4 & 2.3 \\ \end{array}$	33 1. 33 1. 33 1.	60 58 59 62	1.20 1.23 1.25 1.30 1.30	1.05 0.98 1.06 0.97 0.99 0.95	0.63 0.66 0.68 0.72 0.73 0.79	1:	32 3 28 2 12 2 24 2	.07 .03 .99 .95 .94	2.57 2.56 2.40 2.39 2.36 2.36	1.52 1.47 1.46 1.44 1.42 1.39	1.30 1.31 1.29 1.33 1.21 1.12	0.84 0.84 0.85 0.71 0.94 0.77			

N	IONOE	ROMS	UCCIN	ic Ac	ID (SP	.).		DIBRO	OMSUC	CINIC	ACID	(Sp.).	
	Λ	Molecul	ar Con	ductivit	ty.			Λ	Molecul	ar Cone	ductivit	ty.	
v	μ,0°	μ,15°	$\mu_v 25^\circ$	$\mu_v 35^\circ$	μ _v 50°	μ _v 65°	v	$\mu_v 0^\circ$	μ,15°	μ _υ 25°	μ_v35°	μ,50°	$\mu_v 65^\circ$
128 512 1024 2048	156.00 189.44	210.27 252.44	246.72 293.74	2			32 128 512 1024 2048	254.34 339.15	326 . 83 438 . 40 501 . 79	367 . 56 497 . 38 571 . 44	399 . 68 546 . 48 634 . 97	2 293 . 37 8 448 . 57 8 614 . 97 7 707 . 13 6 792 . 16	7 509 . 8 7 685 . 9 3 786 . 1
	P	Percento	ige Dis	sociatio	m.			P	ercenta	ge Diss	sociatio	n.	
v	a0°	a15°	a25°	a35°	a50°	a65°	v	a0°	al5°	a25°	α35°	a50°	a65°
128 512 1024 2048	45.66 70.20 85.25 93.77	45.02 70.40 83.55 93.67	69.66				128 512 1024 2048						
	Diss	sociatio	n Cons	tants ×	(104.			Dis	sociatio	n Cons	tants >	< 10 ⁴ .	
v	0°	15°	25°	35°	50°	65°	v	0°	15°	25°	35°	50°	65°
128 512 1024 2048	30.0 32.3 48.1 68.9	28.8 32.7 41.4 67.7	28.2 31.2 39.4 58.0				128 512 1024 2048						
Temp	erature	Coeffic	ients in	ı Condi	ıctivity	Units.	Temp	erature	Coeffic	ients in	Condi	ıctivity	Units
v	0-1	5° 15-	25° 25	5–35° 3	5-50°	50-65°	v	0-1	5° 15-	25° 25	-35° 3	35-50°	50-65°
128 513 1024 2048	2 3.6 4 4.5	62 3 20 4	.21 .60 .13				3 12 51 102 204	8 4.8 2 6.0 4 8.0	83 4. 62 5. 01 6.	07 3 99 4 96 6	3.21 3.21 3.35 3.35 3.39	2.03 3.26 4.56 4.81 5.82	3.28 4.08 4.73 5.26 5.82
T	'empera	iture C	oe.fficie	nts in I	Per Cen	t.	T	'empero	ture Ce	efficien	ts in I	Per Cen	t.
v	0-18	5° 15-	25° 25	-35° 3	5-50°	50-65°	v	0-18	5° 15–	25° 25	-35° 3	5-50°	50-65°
128 512 1024 2048	$\begin{array}{c cccc} 2 & 2.3 \\ 4 & 2.2 \end{array}$	32 1. 22 1.	.60 .60 				33 128 513 1024 2048	8 1.8 2 1.9 4 2.1	39 1. 95 1. 10 1.	24 0 34 0 39 1	0.71 0.87 0.98 0.11 0.15	0.77 0.82 0.83 0.76 0.83	1.09 0.91 0.77 0.74 0.73

^{*}Decomposed at higher temperatures.

11	ROTAL	RTART	ACID	(WT	AND	эм.).		L-	LARTA	RIC A	CID (V	v M.).	
		Molecu	lar Con	ductivi	ty.				Molecu	dar Con	nductivi	ly.	
v	μ _ε 0°	μ ₀ 12°	μ.25°	$\mu_v 35^\circ$	μ _ε 50°	μ ₀ 65°	v	μ ₀ 0°	μ,15°	μ,25°	μ.35°	μ.50°	μ.65
128 512 1024	10.94 21.08 40.45 54.18	7.150 14.41 27.68 53.06 71.31 96.00	9.048 18.13 35.00 67.02 89.73 120.3	20.8 40.0 76.5	0 24 .36 0 46 .80 6 86 .64 157 .90	27.28 52.92 98.14	1024	$109.3 \\ 136.0$	49.03 90.12 156.8 192.0	58.72 107.4 186.9 229.4	67 68 123 5 213 0 261 6	2 5 80.6 145.3 248.9 308.4 386.7	2 90 8 165 4 280 7 348 8 434 4
		Percent	age Dis	sociati	on.				Percen	tage Di	ssociatio	m.	
v	an°	al2°	a25°	a35°	a50°	a65°	v	a0°	al5°	a25°	a35°	a50°	a65°
8 32 128 512 1024 2048	9.54 18.30 24.51	2.46 4.97 9.55 18.30 24.60 33.11	2.59 5.20 10.03 19.21 25.71 34.46	2.62 5.24 10.08 19.29 25.79 34.69	5.20 3 10.00 18.51	9.92 18.41	8 32 128 512 1024 2048	7.08 15.47 28.42 49.46 61.54 77.69	7.56 16.41 30.16 52.48 64.26 80.66	7.69 16.78 30.68 53.40 65.54 81.54	3 16.91 8 30.88 0 53.25	17.18 30.96 53.03 65.71	16.90 30.90 52.40 65.20
	Dis	sociati	on Cons	tants >	< 104.			Die	ssociati	on Cons	stants ×	104.	
v	0°	12°	25°	35°	50°	65°	v	0°	15°	25°	35°	50°	65°
8 32 128 512 1024 2048	0.77 0.81 0.79 0.80 0.78 0.80	0.78 0.81 0.79 0.80 0.78 0.80	0.86 0.89 0.87 0.89 0.87 0.88	0.89 0.90 0.88 0.90 0.88 0.90	0.85 0.89 0.86 0.82 0.83	0.85 0.85 0.85 0.81 0.79	8 32 128 512 1024 2048	6.7 8.9 8.8 9.5 9.6 13.2	7.7 10.1 10.2 11.3 11.3 16.4	8.0 10.6 10.6 12.0 12.2 17.6	8.2 10.8 10.8 11.8 12.1 17.4	11.1 10.8 11.7 12.3 18.8	11.1 10.8 11.3 11.9 17.1
Tem	peratur	e Coeffi	cients in	Cond	uctivity	Units.	Temp	peratur	e Coeffi	cients i	n Condi	ectivity	Units.
v	0-	12° 12	-25° 25	-35°	35-50°	50-65°	v	0-	15° 15	-25° 2	5–35° 3	5-50°	50-65°
1	32 0 28 0 12 1 24 1	. 29 (0.56 (0.05) 1.43	0.29 0.56 1.07 1.42	0.14 0.27 0.50 0.95 1.27	0.11 0.24 0.45 0.67	0.11 0.29 0.38 0.76	1:	32 0 28 1 12 3 24 3	.99 .89 .17 .73	0.43 0.97 1.73 3.01 3.74 4.44	0.42 0.89 1.61 2.61 3.22 4.09	0.86 1.45 2.40 3.12 4.08	0.68 1.34 2.12 2.70 3.18
	Temper	rature (Coefficie	nts in	Per Cen	it.		Tempe	rature (Coefficie	ents in I	Per Cen	ıt.
v	0-1	12° 12	-25° 25	-35° 3	35-50°	50-65°	v	0-	15° 15	-25° 2	5-35° 3	5-50°	50-65°
13 5 10	32 2. 28 2. 12 2. 24 2.	64 1 61 2 60 2 63 1	2.03 2.02 .99	.49 .47 .43 .42 .42 .45	1.06 1.15 1.13 0.88	0.82 0.79 0.82 0.88	12	32 2 28 3 12 2 24 2	.94 .00 .90 .75	1.93 1.98 1.92 1.92 1.95 1.84	1.55 . 1.52 . 1.47 . 1.40 . 1.40 .	1.27 1.17 1.13 1.19 1.26	0.84 0.92 0.85 0.88 0.82

								-					
	Λ	Molecul	ar Cone	luctivit	ty.			<i>N</i> .	Iolecul	ar Cone	luctivit	y.	
v	$\mu_v 0^{\circ}$	μ,12°	$\mu_v 25^{\circ}$	$\mu_v 35^\circ$	$\mu_v 50^{\circ}$	$\mu_v 65^{\circ}$	v .	$\mu_v 0^{\circ}$	$\mu_v 15^{\circ}$	$\mu_v 25^{\circ}$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^\circ$
8 32 128 512 1024 2048		46.85 85.15 147.8 183.7	59.65 108.2 187.0 230.0	69.03 124.7 215.1 264.3	77.91 141.44		8 32 128 512 1024 2048	15.70 28.86 52.79 93.31 119.93 152.20	39.38 72.42 127.47 164.00	46.27 84.80 148.93 191.30	52.18 96.00 169.03 216.13	194.9* 249.8*	66.48 122.5 214.7 278.9
	P	ercenta	ge Diss	sociatio	m.			P	ercenta	ge Diss	ociatio	n.	
v	a0°	a12°	a25°	a35°	a50°	a65°	v	a0°	al5°	α25°	a35°	a50°	a65°
8 32 128 512 1024 2048	8.15 15.66 28.62 50.03 62.90 79.30	8.51 16.38 29.77 51.68 64.22 80.93	8.85 17.04 30.91 53.42 65.70 82.96	9.04 17.34 31.32 54.04 66.40 83.85	16.64 30.21 52.09 64.7	8.39 16.30 29.61 50.72 62.83 77.53	8 32 128 512 1024 2048	7.09 13.03 23.83 42.12 54.14 68.70	7.13 13.11 24.12 42.45 34.61 69.06	7.12 13.17 24.14 42.39 54.46 69.10	7.02 13.01 23.94 42.15 53.90 68.76	6.90 12.88 23.58 41.40 53.06 67.54	6.64 12.37 22.79 39.94 51.88 66.10
	Diss	ociatio	n Consi	tants ×	(104.			Diss	ociation	n Const	ants ×	104.	
v	0°	12°	25°	35°	50°	65°	v	0°	15°	25°	35°	50°	65°
8 32 128 512 1024 2048	9.1 9.1 9.0 9.8 10.4 18.8	9.9 10.0 9.9 10.8 11.3 16.8	10.8 10.9 10.8 12.0 12.3 19.7	11.2 11.3 11.2 12.4 12.3 21.3	9.94 9.96 10.36 11.06 10.92 14.80	9.60 9.91 9.63 10.19 10.37 13.06	8 32 128 512 1024 2048	6.77 6.10 5.83 5.99 6.24 7.36	6.85 6.18 5.99 6.11 6.33 7.53	6.82 6.24 6.00 6.09 6.36 7.54	6.63 6.08 5.89 6.00 6.16 7.39	6.39 5.95 5.68 5.71 5.86 6.86	5.90 5.46 5.26 5.19 4.52 6.29
Temp	erature	Coeffic	ients in	Condu	uctivity	Units.	Temp	erature	Coeffic	ients in	Condu	ctivity	Units.
v	0-1	2° 12-	25° 25	-35° 3	85-50°	50-65°	v	0-1	5° 15	25° 25	-35° 3	5-50°	50-65°
	2 3. 4 3.	$egin{array}{c ccc} 02 & 0 \\ 83 & 1 \\ 10 & 3 \\ 73 & 3 \\ \end{array}$.99 0 .77 1 .02 2 .56 3	0.50 0.95 1.65 2.81 3.43 1.34	0.27 0.60 1.19 1.92 2.58 2.77	0.33 0.62 1.20 1.83 2.21 2.62		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	70 0. 31 1. 28 2. 94 2.	69 0 24 1 15 2 73 2	0.32 0.59 1.12 2.01 2.48 3.31	0.29 0.57 1.00 1.67 2.24 2.82	0.21 0.39 0.77 1.32 1.94 2.49
7	l'empere	ature C	oefficie	nts in 1	Per Cen	t.	7	Tempero	ature C	oefficier	nts in F	Per Cen	t.
v	0-1	2° 12-	25° 25	-35° 3	35-50°	50-65°	v	0-1	5° 15-	25° 25	-35° 3	5-50°	50-65
3 12 51 102	$\begin{array}{c cccc} 2 & 2.5 \\ 4 & 2.5 \end{array}$	93 1 89 2 80 2 68 2	.10 .08 .04 .94	1.62 1.59 1.53 1.50 1.49	0.75 0.87 0.95 0.89 0.98 0.83	0.82 0.80 0.85 0.75 0.73 0.70	3 12 51 102 204	$egin{array}{c cccc} 8 & 2.4 \\ 2 & 2.4 \\ 4 & 2.4 \\ \end{array}$	13 1. 18 1. 14 1. 15 1.	.75 1 .71 1 .68 1 .67 1	1.26 1.28 1.32 1.35 1.30 1.36	1.03 1.09 1.04 0.99 1.04 1.03	0.65 0.64 0.69 0.68 0.78 0.78

^{*}Interpolated values.

	TRIC	ARBA	LLYLI	c Acr	D (W	м.).			CYA	NURI	c Acı	D (W	м.).	
		Mole	cular C	onducti	vity.				3	lolecul	ar Cond	luctivit	y.	
v	$\mu_v 0$	μ_0	15° μ ₀ 2	5° μ,3	5° μ	,50°	μ _ε 65°	v	μ _e 0°	μ _c 15°	μ.25°	μ,35°	μ _e 50°	μ,65
8 32 128 512 1024 2048	78.7	39 23 32 45 35 83 79 110	.41 28.	67 152.	38 3 28 7 38 13 40 18	0.20	$150.20 \\ 203.10$	128 512 1024 2048		, . , , ,		1.46 2.78 3.52 4.67		
		Perce	entage D	dissocia	tion.				P	ercenta	ge Dis	sociatio	m.	
v	a0°	From		a25°	a35°	a50°	a65°	v	a0°	al5°	a25°	a35°	a50°	a65°
8 32 128 512 1024 2048	7.45 14.47 26.99 35.83	28.19 37.2	9 7.88 1 15.18	1	8.16 15.69 29.06 38.39	8.1 15.73 29.00 38.50	8.03 515.41 528.07 537.96	128 512 1024 2048				0.36 0.69 0.87 1.15		
	Di	880cia	tion Co	nstants	× 10) ⁴ .			Diss	ociatio	n Cons.	lants ×	104.	
v	0°	From	From equation.	25°	35°	50°	65°	v	0°	15°	25°	35°	50°	65°
8 32 128 512 1024 2048	1.84 1.87 1.91 1.95 1.95 2.02	2.03 2.11 2.13 2.16 2.16 2.25	2.11 2.12 2.15 2.15 2.15	2.23 2.27 2.25	2.18 2.27 2.28 2.33 2.34 2.38	2.21 2.24 2.30 2.31 2.35 2.30	2.19 2.19 2.14 2.27	8 32 128 512 1024 2048						
Temp	peratu	re Coe	efficients	in Cor	ıducti	vity l	Units.	Temp	erature	Coeffic	ients in	Condi	ctivity	Units.
v	0-	-15°	15-25°	25-35°	35-	50°	50-65°	v	0-1	5° 15-	-25° 25	-35° 3	35-50°	50-65
12	32 0 28 0 12 1 24 2	0.23 0.47 0.89 1.63 2.12 2.73	0.23 0.46 0.88 1.63 2.11 2.70	0.22 0.44 0.83 1.54 2.06 2.58	0. 0. 1. 1	20 35 76 35 85 28	0.19 0.33 0.58 0.97 1.22 2.05	3 12 51 102 204	8 2 4					,,,,,,
7	Гетре	rature	e Coeffic	ients in	Per	Cent		T	emperat	ure Co	efficien	ts in P	er Cent	
v	0-	-15°	15–25°	25-35°	35-	50°	50–65°	v	0-18	5° 15-	-25° 25	-35° 3	35-50°	50-65
12	32 2 28 2 12 2 24 2	2.79 2.86 2.79 2.74 2.68 2.65	1.97 1.97 1.96 1.95 1.91 1.87	1.55 1.56 1.54 1.54 1.57	1. 1. 1.	23 08 22 17 21 16	0.97 0.88 0.79 0.71 0.68 0.89		2 4					

BEN	ZILIC		PHEN (Wm.		YCOLIC	ACID	Н	IPPUI	RIC AC	CID (V	T. AN	D SM.).
		Molecu	lar Co	nducti	vity.			A	Aolecul.	ar Con	ductivit	y.	
v	$\mu_v 0^\circ$	μ,12°	$\mu_v 25^\circ$	$\mu_v 35$	° μ _υ 50°	$\mu_v 65^\circ$	v	μ,0°	μ,12°	μ _v 25°	μ,35°	μ ₀ 50°	μ,65°
128 512 1024 2048	63.8 106.4 133.6 152.3	81.7 138.3 169.8 193.0		192. 237.	4 220.6 1 266.5	293.0	128 512 1024 2048	61.66 81.10	80.54 105.8	$100.2 \\ 131.1$	$113.5 \\ 147.2$	70.76 131.23 169.15 219.90	184.77 186.18
	P	ercenta	ge Dis	sociat	ion.			I	Percento	ige Dis	sociatio	n.	,
v	a0°	al2°	a25°	a35	° a50°	a65°	v	a0°	al2°	a25°	a35°	α50°	a65°
128 512 1024 2048	29.17 48.64 61.08 69.63	29.08 49.24 60.44 68.71	29.45 48.60 60.46 67.81	47.5 6 60.2	7 48.01 0 58.11	56.36	128 512 1024 2048	15.51 28.16 37.03 47.03	28.76 37.79	29.04	28.96 37.55	29.38 37.87	
	Diss	ociatio	n Cons	stants	× 10 ⁴ .			Dis	sociatio	n Cons	tants >	(104.	
v	0°	12°	25°	35°	50°	65°	v	0°	12°	25°	35°	50°	65°
128 512 1024 2048	9.38 9.00 9.36 7.80	9.10 9.32 9.02 7.37	9.60 8.97 9.02 6.97	9.46 8.48 8.89 5.86	8.66	7.77 7.09 6.65	128 512 1024 2048	2.22 2.16 2.13 2.04	2.34 2.27 2.24 2.15	2.38 2.32 2.28 2.17	2.33 2.31 2.26 2.09	2.33 2.38 2.25 2.33	2.25 2.30 2.16 2.23
Temp	erature	Coeffic	ients i	n Con	ductivity	Units.	Temp	erature	Coeffic	ients is	a Condu	uctivity	Units.
v	0-1	2° 12-	25° 2	5-35°	35-50°	50-65°	v	0-1	2° 12-	-25° 2	5–35° 3	35-50°	50-65°
12 51: 102 204:	2 2. 4 3.	66 2 02 2	.50 .24 .97 .13	1.28 2.29 2.87	1.88 1.96 2.63	1.29 1.77 1.85	12 51 102 204	2 1. 4 2.	57 1 06 1	.52 .95	0.70 1.25 1.61 2.01	0.57 1.18 1.46 2.27	0.48 0.90 1.13 1.48
7	'emper	ature C	oefficie	ents in	Per Cer	ıt.	7	emper	ature C	oefficie	nts in 1	Per Cen	ıt.
v	0-1	2° 12-	25° 2	5–35°	35-50°	50-65°	v	0-1	2° 12-	-25° 2	5-35° 3	35–50°	50-65°
123 513 102 204	$\begin{array}{c cccc} 2 & 2 \\ 4 & 2 \end{array}$	50 1 26 1	.84 .62 .75 .62	1.26 1.35 1.23	0.98 0.83 0.93	0.58 0.66 0.58	12 51 102 204	2 2. 4 2.	55 1 54 1	.84	1.27 1.25 1.23 1.21	0.92 1.04 0.99 1.22	0.67 0.68 0.66 0.67

	1	URIC	Acm	(Wм	.).			Сіт	RIC AC	D (W	T. ANI	Sm.)	
	1	Molecu	lar Con	ductivi	y.				Molecul	ar Conc	luctivity	y.	
v	$\mu_v 0^\circ$	μ,15°	μ,25°	μ,35°	μ,50°	μ _ε 65°	v	μ,0°	μ,18.1°	μ,25°	μ,35°	μ,50°	μ _s 65°
8 32 128 512 1024 2048								15.64 30.27 55.94 97.22 127.3 153.2	46.74 86.40	52.76 97.30 167.6 218.1	61.42 112.7 195.1 251.9	37.91 2 75.80 136.44 234.37 305.21 357.77	86.99 155.61 267.22 338.70
	1	Percent	age Dis	sociatio	m.		*		Percenta	ge Diss	ociatio	n.	
v	a0°	al5°	a25°	a35°	a50°	a65°	v	a10°	a18.1°	a25°	a35°	a50°	a65°
8 32 128 512 1024 2048							128 512 1024	7.14 13.82 25.55 44.40 58.13 69.97		15.30 28.20	15.67 28.74 49.76 64.25	16.31 29.37 50.45	16.46 29.44 50.56 64.08
	Dis	sociatio	n Cons	tants >	< 104.			Di	ssociation	n Consi	lants X	104.	
v	0°	15°	25°	35°	50°	65°	v	0°	18.1°	25°	35°	50°	65°
8 32 128 512 1024 2048				i			8 32 128 512 1024 2048	6.87 6.92 6.85 6.92 7.88 7.96	8.30 8.30 8.34 8.38 9.96 10.1	8.63 8.63 8.66 8.97 10.6 10.8	9.10 9.10 9.05 9.63 11.3 11.7	9.06 9.93 9.55 10.36 12.28 12.60	9.34 10.13 9.59 10.09 11.16 13.21
Temp	peratur	e Coeffi	cients i	n Cond	uctivity	Units.	Ten	peratu	re Coeffic	rients is	Condi	ectivity	Units.
v	0-1	5° 15-	-25° 25	-35° 3	5-50°	50-65°	v	0-1	8.1° 18.	1-25° 2	5-35°	35-50°	50-65°
3: 12: 51: 102: 204:	8			0.38			3 12 51 102 204	2 0 8 1 2 2 1 3	.48 .91 .68 .82 .64 .20		0.46 0.87 1.54 2.66 3.38 3.99	0.39 0.96 1.58 2.62 3.55 3.99	0.39 0.75 1.28 3.28 4.35 5.29
1	Гетрег	rature (Coeffici	ents in	Per Ce	ent.		Tempe	erature C	oefficie	nts in 1	Per Cen	t.
v	0-1	5° 15-	-25° 25	5-35° 3	35-50°	50-65°	v	0-1	8.1° 18.	1-25° 2	5-35°	35-50°	50-65°
3: 12: 51: 102: 204:	8 2 	20 2						2 3 8 3 2 2 4 2	.07 .00 .01 .90 .86	1.88 1.87 1.83 1.87 1.86 1.81	1.66 1.64 1.58 1.58 1.55 1.55	1.22 1.56 1.40 1.34 1.41 1.34	1.02 0.98 0.93 0.93 0.95 0.98

^{*}Decomposes at higher temperatures.

P	YROMU	ICIC A	CID (WT. A	AND SI	P.).		ROTO	NIC A	CID (V	VT. AI	ND SM	i.).
	1	Molecul	ar Con	ductivi	ity.			Λ	Iolecul	ar Con	ductivit	y.	
v	$\mu_v 0^\circ$	$\mu_v 12^\circ$	$\mu_v 25^\circ$	μ,35°	$\mu_v 50^\circ$	$\mu_v 65^\circ$	v	$\mu_v 0^\circ$	μ _v 12°	$\mu_v 25^\circ$	μ_v35°	$\mu_v 50^\circ$	$\mu_v 65$
1024	17.47 34.24 62.90 107.1 132.0 159.5	$42.76 \\ 79.22 \\ 136.4$	51.15 94.61 163.2 201.0	56.3	7 62.36 116.32 199.9 249.2	265.3	8 32 128 512 1024 2048	2.75 5.53 10.92 21.25 29.14 39.78	3.64 7.31 14.49 28.23 38.50 53.41	4.55 9.12 18.00 35.15 48.04 65.33	5.18 10.31 20.29 39.85 54.60 74.19	11.90 23.88 46.54 62.67	13.1 26.2 51.7 69.5
	P	ercenta'	ge Dis	sociati	on.			P	ercenta	ge Dis	sociatio	n.	
v	a0°	α12°	a25°	a35°	a50°	a65°	v	a0°	a12°	a25°	a35°	a50°	a65
8 32 128 512 1024 2048	7.83 15.36 28.21 48.03 59.20 71.53	7.64 14.85 27.51 47.36 58.68 70.49	7.38 14.41 26.65 45.97 56.99 69.05	7.18 13.92 25.80 44.44 55.03 66.70	2 13.24 24.69 4 42.44 3 52.91	23.07 39.65	8 32 128 512 2048 2048	1.24 2.49 4.92 9.57 13.12 17.74	1.27 2.56 5.07 9.87 13.46 18.32	1.29 2.59 5.11 10.00 13.65 18.57	1.29 2.57 5.05 9.91 13.58 18.45	9.79 13.19	$ \begin{array}{c c} 2.4 \\ 4.8 \\ 9.5 \\ 12.7 \end{array} $
	Diss	ociation	n Consi	tants >	< 10⁴.			Diss	ociation	n Const	tants ×	104.	
v	0°	12°	25°	35°	50°	65°	v	0°	12°	25°	35°	50°	65°
8 32 128 512 1024 2048	8.3 8.7 8.7 8.7 8.4 8.7	7.9 8.1 8.1 8.3 8.1 8.2	7.4 7.6 7.6 7.6 7.4 7.5	6.9 7.0 7.0 6.9 6.6 6.5	6.0 6.3 6.3 6.1 5.8 6.1	5.1 5.4 5.4 5.1 4.8 4.9	8 32 128 512 1024 2048	0.195 0.199 0.199 0.198 0.194 0.187	0.205 0.210 0.211 0.211 0.205 0.201	0.212 0.215 0.215 0.216 0.211 0.207	0.211 0.211 0.210 0.213 0.208 0.204	$0.205 \\ 0.195$	0.18 0.19 0.19 0.18
Tempe	erature	Coeffic	ients in	Cond	uctivity	Units.	Temp	erature	Coeffici	ients in	Condu	ctivity	Units
v	0-12	2° 12-	25° 25	-35°	35–50°	50-65°	v	0-12	2° 12-	25° 25	-35° 3	5-50°	50-65
32 128 512 1024 2048	2 0.7 3 1.3 2 2.4 4 3.0	71 0. 36 1. 44 2. 08 2.	65 0 18 0 06 1 49 2	0.28 0.52 0.99 1.68 2.06 2.50	0.18 0.40 0.79 1.46 1.75 2.59	0.12 0.28 0.54 0.93 1.07 1.67	3: 12: 51: 102: 204:	$\begin{bmatrix} 8 & 0.3 \\ 2 & 0.8 \\ 4 & 0.7 \end{bmatrix}$	15 0. 30 0. 58 0. 78 0.	14 (27 (53 (73 (0.06 0.12 0.23 0.47 0.66 0.89	0.05 0.11 0.24 0.45 0.54 0.95	0.043 0.082 0.15 0.35 0.46 0.64
T	'empero	ature Co	pefficier	its in	Per Cen	et.	T	'empera	ture Co	pefficien	its in F	Per Cen	t.
v	0-12	2° 12-	25° 25	-35° 3	35–50°	50-65°	v	0-12	2° 12-	35° 25	-35° 3	5-50°	50-65
32 128 512 1024 2048	$egin{array}{c c} 2 & 2.0 \\ \hline 2 & 2.1 \\ \hline 2 & 2.2 \\ \hline 4 & 2.3 \\ \hline \end{array}$	08 1. 16 1. 28 1. 31 1.	61 1 50 1 51 1 47 1	05 04 05 03 02	0.62 0.71 0.76 0.82 0.79 0.96	0.37 0.45 0.46 0.46 0.43		$\begin{array}{c cccc} 2 & 2.7 \\ 4 & 2.6 \end{array}$	59 1. 72 1. 74 1. 58 1.	91 1 86 1 89 1 91 1	.38 .31 .27 .34 .37	0.97 1.07 1.18 1.13 0.99 1.28	0.72 0.68 0.64 0.74 0.73 0.72

1	MALEI	c Acı	D (W	T. AN	D SM.)).	1	FUMAE	ac Ac	CID (W	T. AN	D SM	.).
	Λ	1 olecul	ar Con	ductiv	ity.			Λ	Molecul	ar Con	ductivit	y.	
v	μ _v 0°	μ ₀ 12°	μ,25°	μ.35	° µ,50°	μ _ε 65°	v	μ _ε 0°	μ.12°	μ,25°	μ.35°	μ ₀ 50°	μ.65
32 128 512 1024 2048	108.1 159.2 198.5 212.8 221.1		175.4 256.2 317.6 337.9 352.3	290. 360. 384.	8 230 .34 7 338 .46 8 422 .18 6 451 .57 8 457 .98	3378.51 8477.78 7514.57	32 128 512 1024 2048	114.1 141.4	86.42 149.1 184.9	107.2 184.9 228.1	65.79 121.2 209.6 258.1 318.1	137.8 237.9 294.2	8 152 . 1 262 . 9 325 . 0
	P	ercenta	ge Dis	sociat	ion.			F	ercento	ige Dis	sociatio	n.	
v	a0°	al2°	a25°	a35°	° a50°	a65°	v	a0°	a12°	a25°	a35°	a50°	a65°
32 128 512 1024 2048	48.48 71.50 89.00 95.06 99.10	48.78 71.50 89.06 95.06 99.17	49.72 72.56 89.97 95.72 99.79	49.4 72.3 89.7 95.6 99.7	1 71.25 6 88.88 8 95.06	69.57 87.82 94.59	32 128 512 1024 2048	15.90 29.45 51.17 63.43 79.14	16.14 29.90 51.59 63.97 79.23	52.37 64.62	30.15 52.14 64.21	29.02 50.08 61.93	27.96 48.33 59.75
	Diss	ociation	n Cons	tants	× 104.			Diss	ociatio	n Cons	tants >	104.	
v	0°	12°	25°	35°	50°	65°	v	0°	12°	25°	35°	50°	65°
32 128 512 1024 2048	143.0 141.0 141.0 179.0	145.0 140.0 142.0 179.0	154.0 150.0 158.0 209.0	151. 148. 154. 208.	0 137.8 0 138.7 0 178.6	124.2 123.6 161.5	32 128 512 1024 2048	9.40 9.61 10.5 10.7 14.7	9.72 9.97 10.7 11.1 14.8	10.1 10.4 11.3 11.5 15.2	10.2 11.0 11.2	9.3 9.2 9.8	8.4 8.8 8.6 9.4
Tempe	erature	Coeffic	ients ir	c Cone	luctivity	Units.	Temp	erature	Coeffic	ients i	n Condi	ectivity	Units
v	0-13	2° 12-	25° 25	-35°	35-50°	50-65°	v	0-1	2° 12-	-25° 2	5-35° 3	5-50°	50-65
35 128 515 1024 2048	3.9 2 4.8 4 5.1	95 3. 85 4. 14 4.	82 63 86	2.34 3.45 4.32 4.67 4.85	2.10 3.18 4.09 4.46 3.81	1.80 2.67 3.70 4.20 4.28	3 12 51 102 204	8 1. 2 2. 4 3.	73 1 92 2 62 3	.60 .75 .32	1.78 1.46 2.47 3.00 3.71	0.63 1.11 1.89 2.41 2.89	0.50 0.95 1.70 2.05 2.34
T	'empero	ture C	oefficie	nts in	Per Cer	ıt.	Т	emper	sture C	oefficie	nts in l	Per Cer	ıt.
v	0-13	2° 12-	25° 25	-35°	35-50°	50-65°	v	0-1	2° 12-	-25° 25	5-35° 3	5-50°	50-65°
32 128 512 1024 2048	$ \begin{array}{c cccc} 3 & 2.4 \\ 2 & 2.5 \\ 4 & 2.4 \end{array} $	18 1. 50 1. 13 1.	85 80 77	1.34 1.35 1.36 1.38 1.41	1.05 1.09 1.14 1.16 0.95	0.78 0.78 0.87 0.93 0.93	3 12 51: 102 204:	8 2.0 2 2.4 4 2.4	63 1 56 1 56 1	.85 .85 .80	1.19 1.20 1.18 1.17 1.17	0.96 0.92 0.90 0.93 0.91	0.67 0.68 0.69 0.70 0.65

	ITACO	NIC AC	ID (W	T. AN	D SM.).	Cı	TRACO	NIC A	CID (WT. A	ND SM	и.).
		Molecui	ar Cond	luctivit	y.			1	Molecul	ar Con	ductivi	ty.	
v	$\mu_v 0^\circ$	$\mu_v 18.12$	° μ _ν 25°	$\mu_v 35^\circ$	μ _v 50°	$\mu_v 65^{\circ}$	v	$\mu_v 0^\circ$	μ _ν 12°	$\mu_v 25^\circ$	$\mu_v 35^\circ$	μ ₀ 50°	μ,65°
32 128 512 1024 2048	26.00 49.51 66.70	20.77 39.98 74.57 99.51 129.9	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	97.11 129.8	1 62.17 1 116.70 153.97	$\begin{array}{c} 36.60 \\ 70.76 \\ 132.59 \\ 175.02 \\ 2227.02 \end{array}$	512 1024	114.3 165.9 186.1	85.82 144.0 210.2 273.0 257.1	103.0 173.4 255.4 289.1 315.0	194.4 288.2 326.5	129 . 33 222 . 88 331 . 96 382 . 98 417 . 68	3248.1 3377.0 3431.5
		Percent	ige Diss	ociatio	n.			I	Percente	age Dis	sociati	on.	
v	a0°	a18.12°	a25°	a35°	a50°	α65°	v	a0°	a12°	a25°	a35°	a50°	a65°
32 128 512 1024 2048	6.10 11.75 22.38 30.14 39.72	6.57 12.64 23.66 31.49 41.11	1 12.97 24.15 32.28	32.45	13.19 24.77 32.68	13.16 24.64 32.55	32 128 512 1024 2048	31.02 51.64 74.98 84.09 90.59	50.60 73.86	29.34 49.40 72.76 82.37 89.74	28.77 48.60 72.04 81.62 89.01	70.48 81.31	46.17 $ 70.15$
	Di	ssociatio	n Const	ants ×	104.			Dis	sociatio	n Cons	tants >	< 10⁴.	
v	0°	18.12°	25°	35°	50°	65°	v	0°	12°	25°	35°	50°	65°
32 128 512 1024 2048	1.24 1.23 1.26 1.27 1.28	1.45 1.43 1.43 1.42 1.40	1.53 1.51 1.50 1.50 1.49	1.55 1.53 1.52 1.52 1.47	1.57 1.56 1.59 1.54 1.52	1.55 1.55 1.57 1.53 1.50	32 128 512 1024 2048	43.6 43.1 43.9 43.4 42.6	40.7 40.5 40.8 40.5 41.0	38.1 37.7 38.0 37.6 38.3	36.3 35.9 36.2 35.4 35.3	32.45 33.20 32.86 32.79 33.88	30.98 32.19 31.91
Tem	peratur	re Coeffic	cients in	Condi	ectivity	Units.	Temp	peratur	e Coeffi	cients i	n Cond	uctivity	Units
v	0-18	.12° 18.	12-25° 2	5-35° 3	35-50°	50-65°	v	0-1	2° 12-	25° 25	-35° 3	5-50°	50-65°
3: 12: 51: 102- 204:	$egin{array}{c c} 8 & 0 \\ 2 & 1 \\ 4 & 1 \\ \end{array}$.40 .77 .38 .81 .32	0.83 1.48 2.01	0.35 0.67 1.24 1.65 2.02	0.33 0.66 1.31 1.61 2.17	0.29 0.57 1.06 1.40 1.80	3: 12: 51: 102 204:	8 2.4 2 3.4 4 4.5	48 2 69 3 24 4	.26 .48 .00	1.21 2.10 3.28 3.74 4.10	0.95 1.90 2.92 3.77 4.11	0.91 1.69 3.01 3.24 3.83
	Tempe	rature (oefficier	its in I	Per Cen	t.		Tempe	rature (Coeffici	ents in	Per Ce	ent.
v	0-18	.12° 18.	12-25° 2	5-35°	35-50°	50-65°	v	0-1	2° 12-	25° 25	-35° 3	35-50°	50-65°
3: 12: 51: 102: 204:	$egin{array}{c c} 8 & 2 \\ 2 & 2 \\ 4 & 2 \\ \end{array}$.97 .97 .79 .71	2.03 1.98 2.01	1.50 1.47 1.46 1.45 1.44	1.21 1.27 1.35 1.24 1.30	0.90 0.92 0.90 0.91 0.90	3 12 51 102 204	$ \begin{array}{c cccc} 8 & 2. \\ 2 & 2. \\ 4 & 2. \end{array} $	17 1 23 1 28 1	. 57 . 65 . 69	1.18 1.21 1.28 1.29 1.30	0.83 0.97 1.02 1.15 1.15	0.70 0.75 0.90 0.84 0.91

M	ESACO	NIC A	CID (WT. A	ND SM	a.).		Рні	ENY	LPRO	PIOLIC	Acii	(Sp.)).
	Λ	1 olecul	ar Con	ductivit	y.				M	olecul	ar Con	ductivit	y.	
v	μ_v0°	μ ₀ 12°	μ,25°	μ,35°	μ,50°	μ,65°	v	μ_{e}	0°	μ,15°	μ,25°	μ _r 35°	μ,50°	μ,65°
1024	62.60 108.0 134.7	80.18 139.0 172.9	97.30 168.5 209.8	108.5 188.2 234.0	$123.0 \\ 214.1$	235.3 293.35	256 512 1024	154 176 191	.79: .08: .44:	207 . 96 236 . 63 258 . 04	239 . 19 274 . 45 299 . 84	3227 . 25 267 . 59 3307 . 85 339 . 21 357 . 91	301 . 25 349 . 73 392 . 11	327 .30 375 .33 422 .13
	P	'ercenta	ge Dis	sociatio	m.				Pe	ercenta	ge Dis	sociatio	n.	
v	a0°	a12°	a25°	a35°	a50°	a65°	v	al)°	al5°	a25°	a35°	a50°	a65°
32 128 512 1024 2048	15.05 28.29 48.79 60.87 72.69	28.17 48.67 60.74	14.81 27.72 48.00 59.77 71.22	47.06 58.49	26.11 45.45 56.49	25.20 43.77 54.57	128 256 512 1024 2048	69 79 86	.67 .66 .24 .15 .25		57.87 68.08 78.12 85.34 89.60	66.90	64.09 74.41 83.43	60.76 69.66 78.35
- First Brown or	Diss	ociatio	n Cons	tants >	< 10⁴.			1	Diss	ociatio	n Cons	lants >	(104.	
v	0°	12°	25°	35°	50°	65°	v	0	0	15°	25°	35°	50°	65°
32 128 512 1024 2048	8.4 8.7 9.1 9.3 9.5	8.4 8.6 9.0 9.2 9.3	8.1 8.3 8.6 8.7 8.6	7.7 7.9 8.2 8.1 9.8	6.6 7.2 7.3 7.1 6.9	6.6 6.6 6.6 6.4 6.1	128 256 512 1024 2048	62 59 52	.9 .5 .1 .3 .8	66.0 60.8 57.0 51.1 37.4	62.1 56.7 54.5 48.5 37.7	58.4 52.8 50.2 46.2 37.2	50.7 44.7 42.3 41.0 33.7	41.4 36.8 31.2 27.7 20.5
Temp	erature	Coeffic	ients in	n Cond	uctivity	Units.	Temp	eral	ure	Coeffic	cients i	n Cond	uctivity	Units
v	0-1	2° 12-	-25° 26	5-35°	35–50°	50-65°	v		0-1	5° 15-	-25° 2	5-35°	35–50°	50-65
3 12 51 102 204	28 1. 2 2. 24 3.	47 1 54 2 78 2	.32 .27 .84	0.60 1.12 1.97 2.42 2.88	0.53 0.97 1.71 2.14 2.63	0.41 0.83 1.41 1.86 2.29	12 28 51 102 204	66 2 24	2.9 3.8 4.0 4.4 4.6	54 3 05 3 14 4	.63 .12 .78 .08 .58	2.39 2.84 3.34 3.94 4.31	1.89 2.24 2.77 3.53 3.91	1.27 1.53 1.71 2.00 2.20
!	Temper	ature C	Coefficie	ents in	Per Ce	nt.	1	l'em	pero	iture C	oessicie	mls in	Per Cen	ıl.
v	0-1	2° 12-	-25° 2	5–35°	35-50°	50-65°	v		0-1	5° 15-	-25° 2	5-35°	35-50°	50-65
12	28 2. 12 2. 24 2.	36 1 35 1 37 1	. 64	1.16 1.15 1.16 1.15 1.15	0.91 0.90 0.91 0.92 0.94	0.67 0.68 0.66 0.68 0.72	2		2.2 2.2 2.2 2.2	24 1 25 1 32 1	.48 .50 .59 .61	1.17 1.18 1.21 1.31 1.36	0.83 0.84 0.90 1.04 1.09	0.50 0.51 0.49 0.51 0.53

	M	ECON	ic Ac	ID (W	м.).			BENZ	zoic Ac	eid (W	T. AN	D С.).	
	1	Molecu	lar Con	ıductivi	ty.				Molecule	ır Cond	luctivit	y.	
v	$\mu_v 0^{\circ}$	$\mu_v 15^\circ$	μ ₀ 25°	$\mu_v 35^\circ$	μ,50°	μ _v 65°	v	μ _v 0°	μ _v 15.8°	μ ₀ 25°	$\mu_v 35^\circ$	μ,50°	μ ₀ 65°
32 128 512 1024 2048	347.8 412.8 435.9 442.1	358.6 463.2 553.6 586.8 597.3	412.8 536.4 645.4 686.2 700.1	598.9 729.5	684.7 839.2 899.0	754.9	64 128 512 1024 2048	13.42 18.49 36.00 47.63 64.95	19.08 26.93 51.30 68.33 91.30	59.79	35.73 67.83 90.13		45.56 82.90 113.5
	I	Percent	age Dis	sociati	on.				Percenta	ge Diss	ociatio	n.	
v	a0°	al5°	a25°	a35°	a50°	a65°	v	a0°	a15.8°	a25°	a35°	a50°	a65°
32 128 512 1024 2048							64 128 512 1024 2048	6.04 8.46 16.21 21.45 29.25	6.32 8.92 17.00 22.62 30.24	8.94 17.02 22.67	8.92	8.66 16.48 21.95	8.48 15.42 21.12
	Dis	sociatio	m Cons	stants >	< 104.			Di	ssociation	n Const	ants ×	104.	
v	0°	15°	25°	35°	50°	65°	v	0°	15.8°	25°	35°	50°	65°
32 128 512 1024 2048							64 128 512 1024 2048	$0.611 \\ 0.613 \\ 0.572$	0.666 0.682 0.679 0.646 0.640	$0.686 \\ 0.683 \\ 0.649$	0.684	$0.641 \\ 0.635 \\ 0.603$	0.596 0.614 0.549 0.552 0.513
Tem	peratur	e Coeffi	cients i	in Cond	uctivity	Units.	Ten	peratu	re Coeffic	cients in	n Cond	uctivity	Units.
v	0-1	5° 15-	-25° 25	5-35° 3	35-50°	50-65°	v	0-15	5.8° 15.8	-25° 25	5-35°	35-50°	50-65°
3: 12: 51: 102: 204:	8 7.6 2 9.3 4 10.0	69 7 89 9 06 9	.32 .18 .94	4.86 6.25 8.41 9.18 0.26	4.19 5.72 7.31 8.07 9.49	3.32 4.68 6.77 8.59 9.08	122 512 102 204	$\begin{bmatrix} 8 & 0 \\ 2 & 0 \\ 4 & 1 \end{bmatrix}$.50 0 .97 0 .26 1	.49 .92 .22	0.31 0.43 0.80 1.06 1.37	0.27 0.34 0.65 0.89 1.06	0.18 0.32 0.35 0.67 0.84
7	l'emper	ature (Coefficie	ents in	Per Ce	nt.		Tempe	rature Co	oefficien	its in I	Per Cen	t.
v	0-1	5° 15-	25° 25	5–35° 3	5-50°	50-65°	v	0-15	5.8° 15.8	-25° 25	5–35°	35–50°	50-65°
3: 12: 51: 102: 204:	8 2.5 2 2.5 4 2.5	21 1 27 1 36 1	. 44 . 65 . 69	1.18 1.17 1.33 1.34 1.47	0.91 0.94 1.00 1.04 1.18	0.63 0.68 0.80 0.96 0.96	128 513 1024 2048	$egin{array}{c c} 8 & 2 \\ 2 & 2 \\ 4 & 2 \\ \end{array}$.66 1 .64 1 .64 1	.81 .81 .79	1.40 1.38 1.35 1.35 1.30	1.07 0.95 0.96 0.99 0.88	0.62 0.78 0.45 0.65 0.62

0	-CHL	ORBEN	zoic	ACID	(Wm.)	•	0-IN	ITROB	ENZOI	c Aci	D (J.	AND P	(R.).
	Λ	A olecul	ar Con	ductivi	ty.			Λ	lolecul	ar Con	ductivit	y.	
v	μ _ν 0°	μ,15°	μ ₀ 25°	$\mu_v 35^\circ$	μ,50°	μ,65°	v	μ ₀ 0°	μ ₀ 15°	μ,25°	μ ₁ 35°	μ _* 50°	μ,65°
	109.00 134.81 158.72	138.40 172.70 205.64	154.12 194.05 232.91	167 . 1: 211 . 86 256 . 4:	9 138.4 2 182.3 6 231.8 3 281.9 4 329.2	189.3 240.1 298.8		98.15 146.9 187.5 196.3 200.8	120.5 184.9 244.1 261.7 267.4	301.8	222.6 307.8	393.5	426.8
	P	ercenta	ge Dis	sociatio	on.			P	ercenta	ge Dis	sociatio	n.	
v	a0°	a15°	a25°	a35°	a50°	a65°	v	a0°	al5°	a25°	a35°	a50°	a65°
128 256 512 1024 2048	38.66 49.45 61.16 72.00 80.76		44.22 55.67 66.82	32.32 42.06 53.33 64.54 74.74	38.95 49.53 60.23	37.97 48.16 59.94	32 128 512 1024 2048	43.1 64.4 82.2 86.1 88.1	39.6 60.8 80.3 86.1 88.0	37.2 57.9 78.4 85.0 88.0	55.7 77.0 84.2	30.91 51.36 73.78 83.94 90.86	69.31 79.82
	Diss	sociatio	n Cons	tants >	< 104.			Diss	ociatio	n Cons	tants ×	104.	
v	0°	15°	25°	35°	50°	65°	v	0°	15°	25°	35°	50°	65°
128 256 512 1024 2048	19.0 18.9 18.8 18.1 16.6	15.8 15.7 15.6 15.0 13.8	13.8 13.7 13.7 13.1 12.1	12.1 11.9 11.9 11.5 10.8		9.0 9.1 8.7 8.8 8.2	32 128 512 1024 2048	102.0 91.0 74.0 52.0 32.0	81.1 73.6 63.9 52.0 34.4	68.9 62.2 55.6 47.0 34.4	59.7 54.7 50.3 43.7 34.4	43.2 42.4 32.2 42.8 55.2	32.7 32.1 30.6 30.8 34.1
Temp	erature	Coeffic	cients i	n Cond	luctivity	Units.	Temp	erature	Coeffic	cients is	n Condi	uctivity	Units
v	0-1	5° 15-	-25° 25	5-35°	35-50°	50-65°	v	0-1	5° 15-	-25° 25	5-35° 3	35-50°	50-65
12 25 51 102 204	66 1. 2 2. 24 3.	96 1 52 2 13 2	.57 .13 .73	0.95 1.30 1.78 2.35 3.04	0.67 1.01 1.33 1.70 2.15	0.31 0.47 0.55 1.13 1.42	3 12 51 102 204	28 2. 12 3. 24 4.	53 2 77 3 36 4	.07 .42 .01	0.84 1.70 2.95 3.51 3.96	0.29 1.21 2.54 3.77 4.94	0.153 0.606 1.65 3.22 3.23
1	Temper	ature C	l'oefficie	nts in	Per Ce	nt.	1	Гетрег	ature (oefficie	ents in i	Per Cei	at.
v	0-1	5° 15-	-25° 2	5-35°	35-50°	50-65°	v	0-1	5° 15-	-25° 2	5–35° 3	35–50°	50-65
12 52 51 102 204	26 1. 12 1. 24 1.	80 1 87 1 97 1	.14 .24 .33	0.80 0.84 0.92 1.01 1.14	0.52 0.60 0.63 0.66 0.73	0.23 0.26 0.24 0.40 0.43	12 51 102	28 1. 12 2. 24 2.	72 1 61 1 22 1		0.59 0.76 1.06 1.16 1.27	0.20 0.54 0.83 1.12 1.40	0.11 0.28 0.48 0.53 0.78

m-1	VITROI	BENZO	ic Ac	ть (Ј	. AND	KR.).	1	o-Niti	ROBEN	ZOIC .	ACID	(Wм.)	
	Λ	Iolecul	ar Con	ductiv	ity.			Λ	Iolecul	ar Con	ductivit	y.	
v	$\mu_v 0^{\circ}$	$\mu_v 15^\circ$	$\mu_v 25^\circ$	$\mu_v 35$	$^{\circ}$ $\mu_v 50^{\circ}$	$\mu_v 65^\circ$	v	μ ₀ 0°	μ,12°	μ _v 25°	$\mu_v 35^\circ$	μ,50°	$\mu_v 65^\circ$
128 512 1024 2048			120.0	137.1 175.4	160.1 210.7	177.9 235.9	512 1024 2048	99.9	104.0 131.5 165.9				238.6
	P	ercenta	ge Dis	sociati	ion.			P	ercenta	ge Dis	sociatio	ñ.	
v	a0°	al5°	a25°	a35°	a50°	a65°	v	a0°	al2°	a25°	a35°	a50°	a65°
128 512 1024 2048	18.7 33.6 43.1 53.7	19.0 33.8 43.4 53.8	19.1 33.8 43.3 53.7	19.2 33.9 43.4 53.6	34.1 44.9	18.7 33.2 44.0 55.2	512 1024 2048	35.59 44.93 55.47	36.55 46.20 58.30	46.73	37.12 46.86 58.87		44.76
	Diss	ociation	n Cons	tants >	× 10 ⁴ .		1	Diss	ociatio	n Cons	tants >	104.	
v	0°	15°	25°	35°	50°	65°	v	0°	12°	25°	35°	50°	65°
128 512 1024 2048	3.36 3.38 3.19 3.04	3.48 3.37 3.25 3.06	3.52 3.37 3.23 3.04	3.57 3.40 3.25 3.02	3.44 3.57	3.34 3.23 3.38 3.33	512 1024 2048	3.84 3.58 3.43	4.11 3.87 3.98	4.30 4.00 4.08	4.28 4.03 4.11	4.08 4.00 4.09	3.52 3.54 3.70
Тетр	erature	Coeffic	ients ir	n Cond	luctivity	Units.	Temp	erature	Coeffic	ients in	Condi	ictivity	Units.
v	0-18	5° 15-	25° 25	5-35°	35-50°	50-65°	v	0-1	2° 12-	25° 25	5-35° 3	35-50°	50–65°
12 51 102 204	$ \begin{array}{c cccc} 2 & 1.8 \\ 4 & 2.4 \end{array} $	37 1. 19 2.	90 40	0.99 1.71 2.16 2.62	0.82 1.53 2.35 3.08	0.67 1.19 1.67 2.19	51: 102: 204:	4 2.0	63 2	.46	1.95 2.40 3.00	1.49 2.09 2.65	1.15 1.33 1.93
7	Tempero	ture C	oefficie	nts in	Per Cen	at.	T	'empero	ture C	oefficier	nts in I	Per Cen	t.
v	0-15	5° 15-	25° 25	-35°	35-50°	50-65°	· v	0-13	2° 12-	25° 25	-35° 3	5-50°	50-65°
128 513 1024 2048	$ \begin{array}{c cccc} 2 & 2.6 \\ 4 & 2.6 \end{array} $	30 1. 39 1.	88 1	1.46 1.43 1.40	1.06 1.12 1.34 1.42	0.74 0.74 0.78 0.83	51: 1024 2048	1 2.6	33 1	.87	1.51 1.47 1.46	1.00 1.12 1.13	0.67 0.61 0.70

_							-						
	1	Molecu	lar Co	nductiv	ity.			A	lolecul	ar Cond	luctivit	y.	
v	μ _v 0°	μ,15°	$\mu_{e}25$	$^{\circ}$ $\mu_v 35$	° 4,50°	μ ₀ 65°	v	μ _ε ()°	μ ₀ 15°	μ.25°	μ,35°	$\mu_e 50^\circ$	μ,65
128 512 1024	199 . 23 214 . 97 218 . 60	262.30 288.20 293.40	0299.8 3334.8 0343.8	83336.350379.055391.0	00 284.5 35 376.2 00 443.4 02 459.8 33 466.7	412.0 493.2 512.6	512 1024 2047	122.28 147.86 167.63	205.4	203 6 244 0 273 5			311.8 366.0 426.9
	1	ercent	age D	issociat	ion.			P	ercenta	ige Disi	ociatio	m.	
v	a0°	al5°	a25	° a35°	a50°	a65°	v	a0°	al2°	a25°	a35°	a50°	a65°
32 128 512 1024 2048	99.35	88.21 96.93 98.67	85.9 95.9 98.5	6 84.7 0 95.4 0 98.4	4 80.71	78.42 93.87 97.56	512 1024 2048	55.52 67.14 76.12	69.06	70.23	58,83 70.54 78.86	70.43	59 33 69 66 81 .24
	Dis	sociatie	on Con	stants	× 10 ⁴ .			Diss	ociatio	n Cons	tants >	104.	
υ	0°	15°	25°	35°	50°	65°	v	0°	15°	25°	35°	50°	65°
512 1024 2048				'			512 1024 2048	13.5 13.4 11.9	15.3 15.1 13.5	16.2 16.2 14.2	16.4 16.5 14.4	17.5 16.4 17 3	16.4 15.6 17.2
Тетр	erature	Coeffi	cients	in Cone	ductivity	Units.	Temp	erature	Coeffic	cients in	Cond	uctivity	Units
v	0-1	5° 15	-25°	25-35°	35-50°	50–65°	v	0-1	5° 15-	-25° 25	5-35° 3	35-50°	50-65
3 12 51 102 204	28 4. 12 4. 24 5.	21 88 05	2.64 3.75 1.63 1.87 5.06	2.15 3.65 4.55 4.80 4.89	1.63 2.66 4.30 4.59 4.66	1.14 2.39 3.32 3.52 3.19	51 102 204	3.	84 3	.87	2.99 3.59 3.95	3.08 3.25 3.84	2.14 2.49 3.16
!	Temper	ature (Coeffic	ients in	Per Ce	nt.	1	l'emper	ature C	oefficie	nts in i	Per Cen	ıt.
v	0-1	15° 15	-25°	25–35°	35-50°	50-65°	v	0-1	5° 15	-25° 25	5–35°	35-50°	50-65
12	28 2 12 2 24 2	11 27 31	1.25 1.43 1.61 1.66 1.70	0.90 1.22 1.36 1.40 1.41	0.63 0.79 1.14 1.17	0.40 0.64 0.75 0.77 0.84	51 102 204	24 2.	60 1	.88	1.47 1.47 1.44	1.32 1.16 1.19	0.77 0.76 0.74

	Picr	ic Ac	id (J.	AND	Sm.).		S	ALICY	LIC A	CID (V	VT. Al	ND SP.).
	Λ	1 olecul	ar Con	ductiv	ity.			Λ	1 olecul	ar Con	ductivit	y.	
v	μ _v 0°	μ,15°	μ,25°	$\mu_v 35$	° µ _v 50°	$\mu_v 65^\circ$	v	μ,0°	μ _v 6.9°	μ _ν 25°	$\mu_v 35^\circ$	μ _v 50°	μ ₀ 65°
32 128 512 1024 2048	193.0 201.1 207.6 206.9 203.5		303.7 319.9 329.6 332.6 325.6	377. 379.	2 433.3 5 449.3 9 455.2	485.1 501.2 507.1	64 128 512 1024 2048	$105.4 \\ 130.7$	$126.4 \\ 156.9$	108.3 181.2 223.2		301.7	
	P	ercenta	ge Dis	sociati	ion.			P	ercenta	ge Dis	sociatio	m.	
v	a0°	al5°	a25°	a35°	a50°	a65°	v	a0°	a6.9°	a25°	a35°	a50°	a65°
32 128 512 1024 2048	93.0 96.9 100.0 100.0 100.0	92.4 96.7 99.7 100.0 100.0	91.3 96.2 99.1 100.0 100.0		1 95.9	95.7 98.8 100.0	64 128 512 1024 2048	28.09 47.28 58.60 68.96	29.06 48.62 60.34 70.73	51.34 63.22	31.03 51.37 63.37	31.44 52.67 63.78	$ \begin{array}{r} 30.96 \\ 52.00 \\ 62.58 \end{array} $
	Diss	ociatio	n Cons	tants)	× 10 ⁴ .			Diss	ociatio	n Cons	tants ×	104.	
v	0°	15°	25°	35°	50°	65°	v	0°	6.9°	25°	35°	50°	65°
32 128 512 1024 2048							64 128 512 1024 2048	8.6 8.3 8.1 7.5	9.3 9.0 9.0 8.4	10.5 10.6 10.6 10.6 9.4	10.7 10.9 10.6 10.7 9.9	11.1 11.2 11.4 11.0	10.9 10.8 11.0 10.2
Temp	erature	Coeffic	ients ir	Cond	luctivity	Units.	Temp	erature	Coeffic	ients in	a Condu	ectivity	Units.
v	0-18	5° 15-	25° 25	-35°	35-50°	50-65°	v	0-6.	9° 6.9	-25° 25	5-35° 3	35-50°	50-65°
128 512 102- 2048	8 4.7 2 4.8 4 4.9	75 4. 89 4. 99 4.	.75 .87 .89	1.14 1.53 1.79 1.93 1.71	3.79 4.54 4.79 5.12 4.58	3.61 3.45 3.46 3.46 3.44	6 12 51 102 204	2 3. 4 3.	$\begin{vmatrix} 12 & 3 \\ 80 & 3 \end{vmatrix}$.83 .00 .63	1.23 1.68 2.58 3.22 3.58	1.18 1.57 2.81 3.09 3.63	0.94 1.20 2.07 2.37 2.77
7	"emper	ature C	oefficie	nts in	Per Cer	nt.	2	l'emper	ature C	oessicie	nts in l	Per Cen	t.
v	0-1	5° 15-	25° 25	-35°	35-50°	50–65°	v	0-6.	9° 6.9	-25° 25	5-35° 3	35–50°	50-65°
3: 12: 51: 102- 204:	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	36 1. 36 1. 11 1.	77 73 74	1.36 1.42 1.42 1.48 1.45	1.09 1.22 1.27 1.34 1.22	0.90 0.79 0.77 0.75 0.76	6 12 51 102 204	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} 96 & 2 \\ 91 & 2 \end{array}$.42 .37 .31	1.53 1.55 1.42 1.41 1.38	1.27 1.25 1.35 1.21 1.23	0.85 0.81 0.83 0.79 0.79

10.4	ACETY	LSALI	CYLIC	ACID	(SP.).			SULF	PHOSAI	LICYLI	c Acı	D (SP	.).
	A	1 olecul	ar Con	ductivit	y.			Λ	1 olecul	ar Cone	ductivit	у.	
v	μ ₀ 0°	$\mu_v 15^\circ$	$\mu_v 25^\circ$	μ_v35°	μ ₀ 50°	μ ₀ 65°	v	μ ₀ 0°	μ.15°	μ.25°	μ ₀ 35°	μ _ν 50°	μ,65
128 512 1024 2048	73.10 92.60	95.21 121.0	109.27 139.3	124.34 158.72	79.41 142.88 184.09 238.31		32 128 512 1024 2048	239.61	283 . 71 328 . 53 403 . 30 443 . 04 485 . 01	386.46 474.12 522.38	440.07 538.54 598.13	508.88 622.44 701.32	8575.4 1706.2 2785.6
	P	ercenta	ge Dise	sociatio	n.			P	ercenta	ge Dise	ociatio	n.	
v	a0°	al5°	a25°	a35°	a50°	a65°	v	a0°	al5°	a25°	a35°	a50°	a65°
128 512 1024 2048	18.30 33.11 41.49 53.50	17.75 32.00 40.68 51.95	17.59 31.73 40.45 51.55	17.31 31.25 39.89 51.54	39.72		128 512 1024 2048						
	Diss	ociatio	n Consi	tants ×	104.			Diss	ociatio	n Cons	tants ×	104.	
v	0°	15°	25°	35°	50°	65°	v	0°	15°	25°	35°	50°	65°
128 512 1024 2048	3.2 3.2 3.0 3.0	3.0 2.9 2.7 2.7	2.9 2.9 2.7 2.7	2.8 2.8 2.6 2.7	2.7 2.7 2.6 2.7		128 512 1024 2048						
Temp	erature	Coeffic	ients in	Condu	ctivity	Units.	Temp	erature	Coeffic	ients in	Condi	ctivity	Units
v	0-18	5° 15-	25° 25	-35° 3	5-50°	50-65°	v	0-1	5° 15-	25° 25	-35° 3	5-50°	50-65
12 51 102 204	2 1.4 4 1.8	17 1 39 1	83 1	0.83 1.51 1.94 2.75	0.70 1.24 1.69 2.35		3 12 51 102 204	8 5.9 2 7.4 4 8.0	93 5 42 7 04 7	.79 .08 .93	4.56 5.36 6.44 7.57 8.13	3.69 4.61 5.59 6.84 7.38	3.59 4.43 5.58 5.62 6.38
7	"emper	iture C	oefficie	nts in I	Per Cen	t.	7	Cempere	ature C	oefficie	nts in I	er Cen	ıt.
v	0-18	5° 15-	25° 25	-35° 3	5-50°	50-65°	v	0-1	5° 15-	25° 25	-35° 3	5-50°	50-65
128 513 1024 2048	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	01 1.	48 1	.37 .38 .39 .54	1.00 1.06		3 12 51 102 204	$egin{array}{c cccc} 8 & 2.4 \\ 2 & 2.4 \\ 4 & 2.4 \\ \end{array}$	47 1. 54 1. 49 1.	.76 .75 .79	1.37 1.38 1.35 1.44	0.98 1.05 1.04 1.14 1.13	0.83 0.87 0.89 0.81 0.84

		Molecu	lar Con	ductivit	y.				Molecula	r Cond	luctivit	y.	
v	μ ₀ 0°	$\mu_v 13.22$	$\mu_{\nu}25^{\circ}$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^{\circ}$	v	$\mu_v 0^\circ$	$\mu_v 13.23^\circ$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^{\circ}$	$\mu_v 65^\circ$
128 512 1024	14.65 20.48 39.04 53.09		33.95 64.50 87.80	38.63 73.28 99.70	83.92 116.0	48.77 92.10 127.5	512 1024	8.746 18.29 23.87 33.03	16.81 32.45 44.91	20.69 39.96 55.30	16.97 23.71 45.77 63.24	19.41 26.70 51.95 72.92	21.43 29.38 57.18 80.22
2048	71.20		116.9		·	107.0	2040	44.40	Percentag			99.51 n.	109.30
				1		1			,		1		
v	a0°	a13.22	a25°	a35°	a50°	a65°	v	a0°	a13.23°	a25°	a35°	a50°	a65°
1024		6.8 9.5 18.0 24.5 32.7	9.62 5 18.27 6 24.87	6.88 9.58 18.19 24.74 32.91	6.7 9.4 17.7 24.5 32.1	6.4 9.1 17.1 23.6 31.1	64 128 512 2024 2048	3.92 5.51 10.70 14.81 19.91	11.08 15.32	5.86 11.32 15.66	5.88 11.36 15.70		
	D	issociati	on Cons	tants ×	104.			Dis	ssociation	Const	ants ×	104.	,
v	0°	13.22°	25°	35°	50°	65°	v	0°	13.23°	25°	35°	50°	65°
128 512 1024	0.722 0.725 0.725 0.726 0.715	$\frac{0.77}{0.78}$	$0.799 \\ 0.789$	$0.794 \\ 0.798 \\ 0.794$	$\begin{array}{c} 0.764 \\ 0.745 \\ 0.752 \end{array}$	0.687	64 128 512 0124 2048	$\begin{array}{c} 0.251 \\ 0.251 \\ 0.252 \end{array}$	$\begin{array}{c} 0.273 \\ 0.269 \\ 0.271 \end{array}$	$0.285 \\ 0.282 \\ 0.284$	0.289 0.287 0.284 0.285 0.273	$0.267 \\ 0.239 \\ 0.275$	0.246 0.245 0.261
Tem	peratu	re Coeff	icients in	ı Condi	ictivity	Units.	Tem	peratur	e Coeffici	ients in	Condu	ectivity	Units.
v	0-13	.22° 13.	22-25°2	5-35° 3	5-50°	50-65°	v	0-13.	23° 13.23	-25° 25	5–35° 3	5-50°	50-65°
64 128 512 1024 2048	0 1 1	.40 .56 .05 .44 .94	0.52 0.99 1.31	0.34 0.47 0.88 1.19 1.57	$egin{array}{c} 0.27 \\ 0.39 \\ 0.71 \\ 1.09 \\ 1.29 \\ \end{array}$	0.20 0.29 0.54 0.77 1.04	64 128 512 1024 2048	0. 0. 0.	34 0 65 0 90 0	0.33 0.64 0.88	0.22 0.30 0.58 0.79 1.05	$\begin{array}{c} 0.16 \\ 0.20 \\ 0.41 \\ 0.65 \\ 0.93 \end{array}$	0.13 0.27 0.35 0.49 0.66
	Temp	erature	Coefficie	nts in I	Per Cen	ıt.		Tempe	rature Co	efficie	nts in I	Per Cen	ıt.
v	0-13	.22° 13.	22-25°2	5-35° 3	5-50°	50-65°	v	0-13.	.25° 13.25	-25° 2	5-35° 3	35-50°	50-65°
64 128 512 1024 2048	$\begin{bmatrix} 2\\2\\2\\2 \end{bmatrix}$.75 .72 .68 .71	1.86 1.86 1.81	1.39 1.38 1.36 1.36 1.34	0.98 1.01 0.97 1.09 0.99	0.64 0.64 0.64 0.66 0.68	64 128 512 1024 2048	2. 2. 2.	78 1 72 1 72 1	.96 .97 .97	1 . 46 1 . 46 1 . 45 1 . 44 1 . 41	0.94 0.84 0.90 1.00 1.01	0.69 0.67 0.68 0.67 0.67

1, 2,	4-Din	YDROX	YBEN	ZOIC .	Acid (Wm.).	1,2,5	-Діну	DROX	YBENZ	core A	CID (V	Vм.).
	Λ.	1 olecul	ar Con	ductivi	ty.			A	1 olecule	ar Cond	luctivit	y.	
v	$\mu_v 0^\circ$	$\mu_v 15^\circ$	$\mu_v 25^\circ$	μ,35°	$\mu_v 50^\circ$	μ.65°	v	μ ₀ 0°	μ,15°	μ.25°	μ _e 35°	μ ₀ 50°	μ _e 65°
	80.73 103.30	116.40 147.77	140.15 177.20	162.0 203.5	4 109.2 2 189.7 8 241.4 8 294.4	211.9 266.7	1024	114.49 141.50	95,50 163,00 200,68 252,38	191.90 234.70	219.43 267.72		
	P	ercenta	ge Dis	sociati	on.			P	ercenta	ge Din	sociatio	n.	
v	a0°	al5°	a25°	a35°	a50°	a65°	v	a0°	al5°	a25°	a35°	a50°	a65°
128 512 1024 2048	20.16 36.37 46.54 57.51	49.28	22.70 40.12 50.73 61.79	51.04	2 40.48 4 51.63	39.78 50.07	128 512 1024 2048	63.82	31.87 54.39 66.97 84.22	32 .49 54 .71 66 .91 82 .92	54.89 66.98		
	Diss	ociatio	n Cons	tants >	× 10 ⁴ .			Diss	ociation	n Consi	lants X	104.	
v	0°	15°	25°	35°	50°	65°	v	0°	15°	25°	35°	50°	65°
128 512 1024 2048	3.98 4.06 3.94 3.80	4.62 4.81 4.66 4.45	5.21 5.25 5.08 4.88	5.42 5.43 5.12 5.01	5.38 5.38	5.33 5.13 4.90 4.52	128 512 1024 2048	9.9 10.8 10.6 23.9	11.7 12.7 13.3 22.0	12.2 12.9 13.2 19.7	12.5 13.0 13.3 18.5		
Temp	erature	Coeffic	ients ir	n Cond	uctivity	Units.	Temp	erature	Coeffic	ients in	Condu	ictivity	Units.
v	0-1	5° 15-	25° 25	5–35°	35–50°	50-65°	v	0-1	5° 15-	·25° 25	-35° 3	5-50°	50-65°
12 51 102 204	2 2.3 4 2.9	38 2 97 2	38 94	1.28 2.19 2.64 3.25	1.14 1.85 2.52 3.08	0.86 1.48 1.69 1.85	12 51 102 204	2 3.1 4 3.1	23 2 95 3	.89	1.73 . 2.75 . 3.30 . 3.76 .		
7	l'empero	ature C	oefficie:	nts in	Per Cer	nt.	7	'emper	ature C	oefficie	nts in l	Per Cen	ıt.
v	0-1	5° 15-	25° 25	5–35°	35–50°	50-65°	v	0-1	5° 15-	25° 25	-35° 3	5-50°	50-65°
12 51 102 204	2 2.9 4 2.8	95 2 87 1	04 99	1.62 1.56 1.46 1.50	1.24 1.14 1.24 1.24	0.79 0.78 0.70 0.63	12 51 102 204	2 2.4 4 2.	83 1 79 1	.77 .70	1.52 1.43 1.41 1.29		

^{*}Decomposes too rapidly above 35° to obtain satisfactory results.

	GALLI	c Acı	р (W	r. Ani	D Sм.)	1 -		о-Амі	NOBE	NZOIC	Acid	(WT.)	
	Λ	<i>lolecule</i>	ar Con	ductivi	ty.			Λ	Iolecul	ar Con	ductivit	y.	
v	$\mu_v 0^{\circ}$	μ _v 6.5°	$\mu_v 25^\circ$	μ_v35°	μ _ν 50°	μ _ν 65°	v	$\mu_v 0^\circ$	μ ₀ 7.5°	$\mu_v 25^\circ$	μ_v35°	μ,50°	$\mu_v 65^\circ$
64 128 512 1024 2048	9.79 14.01 28.89 37.84 51.50	11.66 16.55 34.08 44.63 60.72	16.90 23.60 48.33 62.50 85.02	19.36 27.10 55.12 71.18 96.7	33.09 67.58 8 86.15	36.64	64 128 512 1024 2048	10.90	6.283 14.31 20.48	10.71 23.26 33.53	9.001 13.39 28.96 41.57 55.78		
	P	'ercenta	ge Dis	sociati	on.			P	ercenta'	ge Dis	sociatio	n.	
v	a0°	a6.5°	a25°	a35°	a50°	a65°	v	a0°	a7.5°	a25°	a35°	a50°	a65°
64 128 512 1024 2048	4.44 6.36 13.11 17.18 23.37	4.59 6.51 13.41 17.55 23.88	4.86 6.78 13.89 17.96 24.43	17.98	7.20 2 14.72 3 18.76	5.09 7.12 14.66 18.63 24.13	64 128 512 1024 2048	1.39 2.12 4.93 7.25 7.88	1.60 2.42 5.50 7.87 10.88	2.05 3.07 6.67 9.62 13.00	3.38 7.31 10.48		
-	Diss	sociation	n Cons	tants >	× 10 ⁴ .			Diss	sociatio	n Cons	tants >	(104.	/
v	0°	6.5°	25°	35°	a50°	a65°	v	0°	7.5°	25°	35°	a50°	a65°
64 128 512 1024 2048	0.323 0.338 0.387 0.348 0.349	$0.354 \\ 0.405 \\ 0.365$	0.387 0.385 0.437 0.384 0.386	0.394 0.440 0.385	$ \begin{array}{c cccc} 0.42 \\ 0.49 \\ 0.42 \end{array} $	$egin{array}{c} 0.42 \\ 0.41 \\ 0.42 \\ \end{array}$	128 512 1024	0.0499	0.0467 0.0626 0.0658	0.0761 0.0932 0.1000	10.0922 20.112 00.120		
Temp	erature	Coeffic	ients i	n Cond	luctivity	Units.	Temp	erature	Coeffic	cients i	n Cond	uctivity	Units
v	0-6	.5° 6.5	-25° 25	5-35°	35-50°	50-65°	v	0-7	.5° 7.5	-25° 2	5-35°	35-50°	50-65
6 12 51 102 204	2 0. 24 1.	39 0 80 0 05 0	.38 .77 .97	0.25 0.35 0.68 0.87 1.17	0.26 0.40 0.83 1.00 1.04	0.19 0.24 0.53 0.65 0.79	12	28 0. 12 0. 24 0.	21 0 45 0 65 0	.25	0.19 0.27 0.57 0.81 1.05		
2	Temper	ature C	oefficie	ents in	Per Cer	nt.		Гетрег	rature C	oefficie	ents in	Per Cer	nt.
v	0-6	.5° 6.5	-25° 2	5-35°	35-50°	50-65°	v	0-7	.5° 7.5	-25° 2	5-35°	35-50°	50-65
12 51 102 204	28 2. 12 2. 24 2.	79 2 77 2 76 2	.43 .30 .26 .17	1.46 1.48 1.41 1.39 1.38	1.34 1.48 1.51 1.40 1.08	0.81 0.72 0.78 0.76 0.70	12	28 4. 12 4. 24 4.	52 3 17 3 03 3	.08 .98 .58 .46	2.59 2.57 2.45 2.40 2.33		

1	т-Ам:	INOBE	NZOI	c Acii	(WM	.).		р-Ам	IINOBEN	zoic	ACID ((WT.).	
	Λ	Molecu	lar Co	nductivi	ty.				Moleculo	ır Cond	uctivity		
v	$\mu_v 0^\circ$	μ ₀ 18°	$\mu_v 25$	° μ,35°	μ,50°	μ ₈ 65°	v	μ ₀ 0°	μ, 10.19	μ,25°	μ,35°	μ,50°	μ _τ 65°
128 512 1024 2048	3.57 6.26 11.75 17.20	6.91 10.33 22.61 32.38	12.1 27.7	7 35.57			512 1024	3.711 5.346 12.57 18.87 28.32	5.136 7.527 17.39 25.71 37.21	7.370 10.84 24.54 35.07 50.13	8,92 12,97 29,06 41,31 58,56		
	I	Percent	age D	issociati	ion.				Percenta	ge Diss	ociation	n.	
v	a0°	a18°	a25°	a35°	a50°	a65°	v	a0°	a10.19°	a25°	a35°	a50°	a65°
128 512 1024 2048	1.69 2.97 5.57 8.15	2.26 3.38 7.39 10.59	2.5 3.6 8.3 11.8	6 3.80 5 9.04			64 128 512 1024 2048	1.68 2.42 5.69 8.54 13.73	6.34 9.38	2.11 3.11 7.04 10.07 14.38	3.27 7.47 10.42		
	Dis	sociati	on Co	nstants	× 10 ⁴ .			D	issociatio	n Cons	tants X	104.	
v	0°	18°	25°	35°	50°	65°	v	0°	10.19°	25°	35°	50°	65°
128 512 1024 2048							128 512 1024	0.0448 0.0468 0.0670 0.0678 0.107	0.0606 0.0838	0.078 0.104 0.110	$00.0863 \\ 0.118$		
Tem	peratur	e Coef	ficient	s in Con	ductivit	y Units.	Ten	ıperatu	re Coeffic	cients in	r Condu	ctivity	Units.
v	0-1	8° 18	-25°	25–35°	35-50°	50-65°	v	0-1	0.19° 10.	19-25°2	25-35°	35-50°	50-65
12 51 102 204	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22 (60 (0.23 0.26 0.73 1.00	0.25 0.28 0.78 1.06			12	28 0 12 0 24 0).14).21).47).67).87	0.15 0.22 0.48 0.63 0.87	0.16 . 0.21 . 0.45 . 0.62 . 0.84 .		
	Tempe	rature	Coeffic	cients in	Per Ce	ent.		Temp	erature C	oefficie	nts in l	Per Cen	ıt.
v	0-1	18° 18	-25°	25-35°	35-50°	50-65°	v	0-1	0.19° 10.	19–25°	25–35°	35–50°	50-65
12 51 102 204	12 3. 24 5.	51 2	3.33 2.52 3.23 3.09	2.93 2.30 2.81 2.69			12	28 12 24	3.78 4.00 3.76 3.57 3.08	2.92 2.97 2.78 2.46 2.35	2.10 1.96 1.84 1.79 1.68		

M	ETAN	ILIC A	cid (WT. A	AND SI	P.).	Su	LPHAN	ilic .	ACID	(WT.	AND S	Р.).
	Λ	1 olecul	ar Con	ductivi	ty.			Λ	1 olecul	ar Con	ductivi	ty.	
v	$\mu_v 0^{\circ}$	μ,12°	μ ₀ 25°	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^\circ$	v	μ _v 0°	μ _v 6.3°	$\mu_v 25^\circ$	μ_v35°	μ _ν 50°	$\mu_v 65^\circ$
32 128 512 1024 2048	11.60 22.90 42.76 58.01 76.38	65.66 87.96	51.40 95.10 125.8	66.8 121.1 158.1	$9 92.74 \\ 165.15 \\ 210.0$	123.89 216.84 267.3	32 128 512 1024 2048	40.66 74.25 96.40	50.89 91.33 118.1	85.4 148.6 182.7	$0107.80 \\ 6180.80 \\ 7221.60$	$0.145.00 \\ 0.237.00 \\ 0.287.00$	186.40 298.00 352.60
	P	ercenta	ge Dis	sociati	on.			P	ercento	ige Dis	sociati	on.	
v	a0°	a12°	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								a65°		
32 128 512 1024 2048	5.23 10.27 19.26 26.13 34.41	6.32 12.23 23.04 30.87 40.39	14.64 27.10 25.84	16.73 30.23 39.53	2 19.73 7 35.14 8 44.66	12.99 40.24 49.61	128 512 1024	18.31 33.44 43.42	19.96 35.82 46.33	24.34 41.79 52.08	26.95 0 45.22 3 55.40	30.85 50.42 61.06	34.59 55.30 65.44
	Disa	sociatio	n Cons	tants	× 10 ⁴ .			Diss	ociatio	n Cons	stants >	< 10⁴.	
v	0°	12°	25°	35°	50°	65°	v	0°	6.3°	25°	35°	50°	65°
32 128 512 1024 2048	0.90 0.89 0.90 0.90 0.88	1.33 1.33 1.35 1.35 1.34	1.96 1.97 1.96	2.62 2.57 2.52	$\begin{array}{c} 3.80 \\ 3.72 \\ 3.52 \end{array}$	5.36 5.29 4.79	128 512 1024	3.20 3.28 3.26	3.89 3.90 3.90	6.09 5.86 5.53	7.77 7.30 6.72	$10.7 \\ 10.0 \\ 9.35$	13.4 14.2 13.4 12.1 11.3
Temp	erature	Coeffic	cients i	n Cone	luctivity	Units.	Temp	erature	Coeffic	cients 1	in Cond	uctivity	Units
v	0-1	2° 12-	-25° 25	5-35°	35-50°	50-65°	v	0-6	.3° 6.3	-25° 2	25-35°	35-50°	50-65°
3 12 51 102 204	$ \begin{array}{c cccc} 8 & 1. \\ 2 & 1. \\ 4 & 2. \end{array} $	$egin{array}{c c} 00 & 1 \\ 91 & 2 \\ 50 & 2 \\ \end{array}$. 28 . 27 . 91	1.55 2.60	$\frac{1.72}{2.94}$	2.08 3.44	12 51 102	8 1. 2 2. 4 3.	$ \begin{array}{c cccc} 62 & 1 \\ 71 & 3 \\ 45 & 3 \end{array} $.84 .07 .46	2.24 3.22	$\frac{2.48}{3.73}$	1.48 2.73 4.07 4.37 4.66
7	emper.	ature C	oefficie	nts in	Per Cer	nt.	2	l'emper	ature C	oeffici	ents in	Per Cer	nt.
v	0-1	2° 12-	-25° 2	5-35°	35-50°	50-65°	v	0-6	.3° 6.3	-25° 2	25-35°	35–50°	50-65°
3 12 51 102 204	2 4. 4 4.	40 3 46 3 30 3	.66 .45 .41	3.02 3.01 2.73 2.63 2.50	2.74 2.57 2.43 2.19 2.00	2.23 2.24 2.09 1.81 1.63	3 12 51 102 204	28 3. 2 3. 24 3.	99 3 65 3 57 2	. 56 . 62 . 36 . 93	2.68 2.62 2.17 2.12 2.02	2.28 2.30 2.06 1.97 1.91	1.89 1.88 1.72 1.52 1.38

	P	CRAM	ic Ac	eid (S	P.).		p-St	ULPHA	MINOI	BENZO	ic Ac	ID (W	м.).
	A	lolecul	ar Con	ductiv	ity.			3	lolecul	ar Cond	ductivit	y.	
v	μ ₀ 0°	μ,15°	μ ₀ 25°	μ.35	° μ,50°	μ ₀ 65°	v	μ,()°	μ,15°	μ,25°	μ _r 35°	μ _ε 50°	μ ₁ 65°
512 1024 2048	24.00 32.90 44.60	39.78 54.09 73.80		88.6	85.67 0 119.00 0 161.8	153.50	512 1024 2048	90.60	96,00 124,82 157.37	146.94	167 17	189 1	163 5 213 1 270 5
and I date a new tipe strang 270 A E	P	ercenta	ge Dis	sociati	ion.			P	ercenta'	ge Dis	nociatio	n.	
v	a0°	a15°	a25°	a35°	a50°	α65°	v	a0°	al5°	a25°	a35°	a50°	a65°
512 1024 2048	10.82 14.84 20.10	13.30 18.08 24.61	14.73 19.95 27.20	22.2	0 25.32	28.57	512 1024 2048		32.06 41.69 52.56	42.01	42.01	31.67 40.38 52.08	39,93
	Diss	ociatio	n Cons	tants	× 10 ⁴ .		1	Diss	sociatio	n Cons	tants >	(104.	
v	0°	15°	25°	35°	50°	65°	v	0°	15°	25°	35°	50°	65°
512 1024 2048	0.256 0.253 0.247	0.398 0.389 0.392	0.497 0.486 0.496	0.61	9 0.838	1.11	512 1024 2048	2.63 2.76 2.70	2.96 2.91 2.84	3.01 2.97 2.91	2.98 2.97 2.88	2.87 2.67 2.76	2.64 2.59 2.54
Temp	perature	Coeffic	cients i	n Con	ductivity	Units.	Temp	erature	Coeffic	rients i	n Cond	uctivity	Units.
v	0-1	5° 15-	25° 2	5-35°	35-50°	50-65°	v	0-1	5° 15-	-25° 2	5–35°	35-50°	50-65°
51 102 204	4 1.	41 1	.61	1.31 1.84 2.25	1.38 2.02 2.80	1.67 2.30 3.11	51 102 204	4 2.	28 2	.70 .21 .77	1.50 2.02 2.49	1.35 1.46 2.26	1.01 1.27 1.77
7	Temper.	ature C	oefficie	ents in	Per Cer	nt.	1	l'emper	ature C	oefficie	nts in	Per Cei	nt.
v	0-1	5° 15-	-25° 2	5-35°	35–50°	50-65°	v	0-1	.5° 15-	-25° 2	5-35°	35–50°	50-65°
51 102 204	4 4.	30 2	.97	2.53 2.58 2.57	2.12 2.28 2.34	1.94 1.93 1.92	51 102 204	24 2.	52 1	.77	1.17 1.21 1.19	1.06 0,87 1.08	0.68 0.67 0.73

Bı	ENZENI	ESULP	HONIC	Ac	ID (W	м.).	m-	-Nitro	OBENZ	ENESU (WM.)		NIC A	CID
	М	oleculo	ır Cond	luctivi	ity.			Λ	Molecul	ar Con	ductivii	y.	
v	μ ₀ 0°	μ _v 15°	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$^{\circ}$ $\mu_v 50^{\circ}$	μ _ν 65°	v	$\mu_v 0^\circ$	$\mu_v 16^\circ$	μ _υ 25°	μ_v35°	$\mu_v 50^\circ$	$\mu_v 65^\circ$
32 128 512 1024	204.572 210.232 222.143 226.923 228.003 226.833	281 . 69 300 . 43 305 . 81 308 . 97	336.55 350.47 356.38 359.03	370.3 399.8 407.0 410.3	1 453.0 8 473.9 0 475.3 3 474.2	515.4 540.6 544.3 544.2	32 128 512 1024 2048	195.9 200.5 202.0 204.3 204.3	202.9 269.1 272.9 275.5 274.6	307.1 313.8 320.4 323.5 321.5	367.2	419.5 430.4 432.6	478.4 489.5
	$P\epsilon$	rcenta	ge Diss	ociati	on.			P	ercenta	ge Dis	sociatio	on.	
v	a0°	α15°	a25°	a35°	a50°	a65°	v	a0°	a16°	a25°	a35°	a50°	a65°
1	$92.21 \\ 97.43$	98.98 00.00	90.95 97.62 99.26 100.00	99.2 100.0	95.30 4 99.70 0 100.00	2 89.09 0 94.69 0 99.30 0 100.00 Units.		100.00	97.68 99.09	97.00 99.04 100.00	96.69 99.40 100.00	9 96.97 9 99.49 100.00	97.43 99.69 100.00
v	0-15	15-2	25° 25-	-35°	35-50°	50-65°	v	0-10	6° 16-	25° 25	-35° 3	35-50°	50-65°
32 128 512 1024 2048	4.76 5.22 5.26 5.40	5 4.4 2 5.0 5 5.0 5 5.0	49 4 00 4 05 5 01 5	.50 .35 .93 .06 .13 .29	4.21 5.53 4.94 4.55 4.26 4.39	3.71 4.16 4.45 4.60 4.67 4.48	3: 12: 51: 102: 204:	8 4.3 2 4.3 4 4.3	57 4. 73 4. 73 4.	47 4 75 4 20 4	1.29 1.34 1.68 1.59 1.68	3.93 4.15 4.24 4.21	3.77 3.93 3.94 3.89
T	emperat	ure Co	efficien	ts in	Per Cer	ıt.	T	empera	iture Co	efficier	its in I	Per Cen	t.
D	0-15	15-2	5° 25-	-35° 3	35-50°	50-65°	v	0-16	3° 16–	25° 25	-35° 3	5-50°	50-65°
8 32 128 512 1024 2048	2.27 2.35 2.32 2.37	1.8 1.6 1.6	59 1 67 1 65 1 62 1	.40 .33 .41 .42 .43 .49	1.15 1.49 1.24 1.12 1.04 1.08	0.86 0.92 0.94 0.97 0.98 0.95	32 128 512 1024 2048	$\begin{bmatrix} 2.2 \\ 2.3 \\ 4 \end{bmatrix}$	28 1. 34 1. 31 1.	66 1 74 1 74 1	.40 .38 .46 .42 .45	1.12 1.16 1.15 1.14	0.92 0.94 0.92 0.90

^{*}Interpolated.

p-T	OLUE	NESUL	PHON	ic A	CID (W	м.).	1, 2	2, 4	-Nit	ROTO	LUEN (WM	NESUL	PHO	ONIC	Acid
	Λ	I olecul	ar Con	ductiv	ity.				M	lolecul	ar Co	nducti	vity.		
υ	$\mu_v 0^{\circ}$	$\mu_v 12^\circ$	μ,25°	μ.35	° µ _v 50°	μ ₀ 65°	v		u _e 0°	μ _e 15°	μ.2	5° μ _ε 3.	5°	μ _ε 50°	$\mu_{\rm r}65^{\circ}$
32 128 512 1024 2048	203.0 208.4 210.0 210.6 206.7	258.5 267.0 269.0 269.7 266.4	317.3 328.2 331.7 332.7 327.7	363. 374. 376. 380. 379.	7 440.0 8 444.2 3 445.9	499.3 502.0 503.4	3 12 51 102 204	2 1 8 1 2 1 4 2	76.9 93.0 98.4 99.9 00.5 99.7	276.5	315. 318.	6 344 4 354 6 358 4 361	.2 .7 .6 .9	•	•
	P	'ercenta	ige Dis	sociat	ion.		Percentage Dissociation.								
v	a0°	a12°	a25°	a35°	a50°	a65°	v	1	a °	al5°	a25	° a3	5°	a50°	a65°
32 128 512 1024 2048	96.4 99.0 99.7 100.0	95.8 99.0 99.7 100.0	95.4 98.7 99.7 100.0	98. 99.	7 98.7 3 99.6	99.2 99.7		2 9 9 9 9 9 9 9 9 9	98.97 99.62	95.52 98.37 99.22	95. 98. 99.	35, 95. 13, 98. 10, 99.	.02 .08		
Temp	erature	Coeffic	cients i	n Con	ductivity	Units.	Ten	per	ature	Coeffic	cients	in Con	nduc	tivity	Units.
v	0-1	2° 12-	-25° 25	5–35°	35-50°	50-65°	1	,	0-1	5° 15-	-25°	25-35°	35	-50°	50-65°
3 12 51 102 204	8 4. 2 4. 4 4.	88 4 92 4 93 4	.76 .82 .84	4.59 4.65 4.51 4.76 5.21	4.59 4.39 4.52 4.44 4.87	3.94 3.95 3.85 3.83 3.82	1	8 32 128 512 024 048	4.0 4.0 4.0 4.1 4.1	44 4 60 4 65 4 74 4	.86 .31 .49 .59 .67 .48	3.70 4.06 4.23 4.30 4.35 4.28			
2	 Temper	ature C	oefficie	ents in	Per Ce	nt.		Te	mper	ature C	oe.ffic	cients i	n P	er Cer	ıt.
v	0-1	2° 12-	-25° 2	5–35°	35-50°	50-65°	1)	0-1	5° 15	-25°	25–35°	35	-50°	50-65°
3 12 51 102 204	8 2. 2 2. 4 2.	34 1 35 1 34 1	.76	1.45 1.42 1.36 1.43 1.59	1.27 1.17 1.20 1.17 1.31	0.92 0.90 0.87 0.86 0.86	1	8 32 128 512 024 048	2.: 2.: 2.: 2.: 2.: 2.:	30 1 32 1 33 1 37 1	.60 .63 .65 .67 .69	1.34 1.34 1.35 1.36 1.37 1.36			

^{*}Higher temperatures were not studied because of lack of material.

1, 4,	2-N11	кото	LUEN (WM	NESULF	PHONIC	ACID	0-	Tolu	ric Ac	CID (W	T. AN	D SM.).
	Λ	Iolecul	ar Co	nductiv	ity.			λ	Iolecul	ar Cond	luctivit	y.	
v	μ,0°	$\mu_v 16^{\circ}$	$\mu_v 25$	s° μ,35	$\circ \mid \mu_v 50^\circ$	$\mu_v 65^{\circ}$	v	$\mu_t 0^{\circ}$	μ _v 12°	μ _v 25°	μ _υ 35°	$\mu_v 50^\circ$	μ _v 65°
8 32 128 512 1024 2048	203.0 221.6 225.3 228.3 228.9 228.0	281.8 308.7 312.8 317.5 318.5 318.7	349. 355. 360. 362.	5 393. 6 407. 7 411. 3 413.	3 433.3 1 462.1 ⁴ 6 476.7 8 486.0 6 487.5 2 485.4	493.4 524.8 542.6 554.5 556.3 553.2	512 2048 2048	54.71 71.65 95.06	89.87	106.7	116.7	96.41 127.31 168.46	134.94
	P	ercente	age D	issociat	ion.			P	ercenta	ge Dis	sociatio	n.	
v	a0°	a16°	a25	° a35°	α50°	a65°	v	a0°	al2°	a25°	a35°	a50°	a65°
8 32 128 512 1024		96.92 98.21 99.69	96. 98. 99.	47 95.0 15 98.5 56 99.5	08 88.88 94.79 55 97.78 66 99.69 100.0	94.34 97.54 99.67	512 1024 2048	24.76 32.44 43.01		23.23 30.50 40.54	29.47	27.29	26.10
	Diss	ociation	n Con	stants >	< 10 ⁴ .			Disse	ociation	Const	ants ×	104.	
v	0°	16°	250	35°	50°	65°	v	0°	12°	25°	35°	50°	65°
512 1024 2048							512 1024 2048	1.59 1.52 1.59	1.49 1.44 1.46	1.37 1.32 1.35	1.25 1.30 1.22	1.03 1.00 0.98	0.88 0.90 0.80
Temp	erature	Coeffic	cients	in Con	ductivity	Units.	Tempe	erature	Coeffic	ients ir	n Condi	uctivity	Units.
v	0-1	6° 16-	-25°	25–35°	35-50°	50–65°	v	0-1	2° 12-	-25° 25	5–35°	35–50°	50-65
3 12 51 102 204	8 5. 2 5. 4 5.	42 4 44 4 55 4 58 4	.30 .53 .76 .80 .87 .68	4.38 4.36 5.20 5.11 4.95 5.14	4.60 4.60 4.61 4.95 4.92 4.88	4.01 4.18 4.39 4.57 4.59 4.52	51: 102 204:	4 1.	52 1	.29	0.74 1.00 1.33	0.53 0.71 0.91	0.40 0.51 0.62
7	l'emper	ature (Coeffic	ients in	Per Cer	nt.	T	'emper	ature C	oefficie	nts in	Per Cen	ıt.
v	0-1	6° 16	-25°	25–35°	35-50°	50-65°	v	0-1	2° 12-	-25° 2	5–35°	35–50°	50-65°
	2 2. 4 2.	44 1 41 1 43 1 44 1	.53 .47 .52 .51 .53 .47	1.37 1.25 1.46 1.42 1.37 1.42	1.26 1.17 1.13 1.20 1.19 1.18	0.92 0.91 0.92 0.94 0.94 0.93	51 102 204	4 2.	11 1	.44	0.91 0.94 0.94	0.60 0.61 0.59	0.41 0.40 0.36

^{*}Interpolated value.

n	n-Toli	uic A	CID (V	VT. A	ND SM	i.).	p	-Tolu	ne A	CID (V	VT. A	ND SM	.).
	Λ	Molecul	ar Con	ductivi	ty.			Λ	1 olecul	ar Con	ductivi	ty.	
v	μ,0°	μ,12°	μ ₀ 25°	μ.35	μ,50°	μ,65°	v	μ,0°	μ,12°	μ.25°	μ,35°	μ.50°	μ,65°
512 1024 2048	33.05 45.20 61.24	43.57 59.43 80.79	74.16	83.9	5 71.29 3 98.70 128.87	108.33	512 1024 2048	39.63 54.12	52.52 71.75	48.48 66.13 89.96	75.5	4 62.96 4 86.30 114.90	95.43
	P	ercenta	ge Diss	sociati	on.			P	ercenta	ge Dis	sociatio	on.	
v	a0°	a12°	a25°	a35°	a50°	a65°	v	a0°	al2°	a25°	a35°	a50°	a65°
512 1024 2048	14.95 20.45 27.71	21.05	15.64 21.25 28.77	15.63 21.14 28.49	21.00		512						
	Dis	sociatio	n Cons	tants	× 10 ⁴ .		Dissociation Constants × 10 ⁴ .						
v	0°	12°	25°	35°	50°	65°	v	0°	12°	25°	35°	50°	65°
512 1024 2048	0.513 0.513 0.519	0.550 0.548 0.560	0.567 0.560 0.567	0.565 0.554 0.554	0.54	0.47 0.48 0.45	512 1024 2048	0.383 0.388	0.410 0.417	0.438 0.433 0.437	0.437		
Temp	erature	Coeffici	ients in	Cond	uctivity	Units.	Tempe	erature	Coeffici	ients in	Cond	ectivity	Units.
v	0-12	2° 12-	25° 25-	-35° 3	35-50°	50-65°	v	0-12	2° 12-	25° 25	-35° 3	35-50°	50-65°
512 1024 2048	1 1.1	9 1.	13 0	.75 .98 .27	0.62 0.98 1.05	0.48 0.64 0.80	512 102 2048	4 1.0		05 (0.70	0.50 0.72 0.76	0.36 0.61 0.69
T	Temperature Coefficients in Per Cent.							етрега	ture Co	pefficien	its in l	Per Cen	t.
v	0-12	° 12-2	25° 25-	-35° 3	35-50°	50-65°	υ	0-12	° 12-	25° 25	-35° 3	35-50°	50-65°
512 1024 2048	2.6	2 1.	91 1	.37 .32 .27	1.00 1.17 0.93	0.65 0.65 0.62	512 1024 2048	1 2.7		99 1	.44	0.90 0.95 0.73	0.57 0.70 0.60

(CINNAI	MIC A	CID (WT. A	AND Sp.).		Hydr	OCINN	AMIC	ACID	(Sp.).	
	Λ	Iolecul	ar Cor	nductiv	ity.			Λ	Iolecul	ar Cond	ductivit	y.	
v	μ _v 0°	$\mu_v 5.3^\circ$	$\mu_v 25^\circ$	° µ _v 35	° µ _v 50°	$\mu_v 65^{\circ}$	v	μ _v 0°	μ _υ 15°	μ ₀ 25°	μ _v 35°	μ _τ 50°	μ,65°
512 1024 2048	26.50 36.40 49.69	30.67 42.11 57.40	44.60 61.22 83.4	2 69.6		90.20	128	5.89 11.49 22.18 30.40 41.60	8.07 15.64 30.46 41.76 56.41	35.49 48.84	10.57 20.56 39.85 54.79 73.72	44.82 61.37	25.28 49.00 67.04
	P	ercenta	ge Di	ssociat	ion.			P	'ercenta	ge Dis	sociatio	n.	
v	a0°	a5.3°	a25°	a35	° a50°	a65°	v	a0°	al5°	α25°	a35°	α50°	α65°
512 1024 2048	12.04 16.55 22.08	12.37 16.97 23.14	12.81 17.59 23.98	9 17.5	8 17.22	16.79	32 128 512 1024 2048	2.67 5.20 10.04 13.76 18.84	2.70 5.23 10.17 13.97 18.87	2.69 5.23 10.14 13.96 18.77	2.66 5.17 10.03 13.79 18.56	5.01 9.67 13.24	4.75 9.20 12.59
	Dis	sociatio	n Con	nstants	\times 10 ⁴ .			Dis	sociatio	on Cons	tants >	< 104.	
v	0°	5.3°	25°	35°	50°	65°	v	0°	15°	25°	35°	50°	65°
512 1024 2048	0.322 0.320 0.305	0.341 0.339 0.342	0.368 0.367 0.370	7 0.36	$6 \mid 0.350$	0.347 0.331 0.338	32 128 512 1024 2048	0.229 0.223 0.219 0.214 0.214	0.234 0.225 0.225 0.222 0.214	$0.223 \\ 0.221$		$0.206 \\ 0.202 \\ 0.197$	0.185
Temp	erature	Coeffic	ients	in Con	ductivity	Units.	Temp	erature	Coeffic	ients in	Condi	uctivity	Units.
v	0-5.	3° 5.3-	-25° 2	25-35°	35-50°	50-65°	v	0-1	5° 15-	-25° 25	5-35° 3	35-50°	50-65°
51 102 204	4 1.0	0.	.71 .97 .32	0.61 0.84 1.14	0.61 0.75 1.45	0.47 0.62 0.87	3 12 51 102 204	$egin{array}{c c} 8 & 0.2 \\ 2 & 0.5 \\ 4 & 0.7 \end{array}$	76 0.3 52 0.3 57 0.3	268 0 503 0 708 0	.224 .436 .595	0.083 0.176 0.331 0.438 0.620	0.079 0.138 0.278 0.378 0.443
7	Temperature Coefficients in Per Cent.							'emper	ature C	oefficie:	nts in 1	Per Cer	nt.
v	0-5.	3° 5.3	-25° 2	25–35°	35-50°	50-65°	v	0-1	5° 15-	-25° 25	5–35° 3	35–50°	50–65°
51 102 204	4 2.9	96 2	.31 .30 .30	1.37 1.37 1.36	1.20 1.08 1.53	0.79 0.77 0.78	3 12 51 102 204	$ \begin{array}{c cccc} 8 & 2 & 2 \\ 2 & 2 & 4 \\ 4 & 2 & 4 \end{array} $	41 1 49 1 49 1	.71 .65 .69	1.24 1.22 1.23 1.22 1.23	0.78 0.85 0.83 0.80 0.84	0.67 0.59 0.62 0.61 0.53

0	-Рнтп	ALIC A	CID (WT. A	IND SI	P.).	4,	5-Dic	HLORPI	HTHAL	ac Ac	W) de	м.).
		Molecul	ar Cone	ductivi	y.				Molecul	ar Con	ductivi	ly.	
v	μ ₀ 0°	μ _ε 8.23°	μ,25°	μ ₀ 35°	μ,50°	μ.65°	v	μ ₀ 0°	μ.15°	μ.25°	μ _ε 35°	μ.50°	μ,65°
1024	55.98 75.56 122.3 148.2 174.2	88.32 145.7 177.1	114.8 189.2 231.9	128.06 212.8 258.5	5 147 . 58 244 . 8 300 . 3	122.70 3163.86 272.4 336.9 395.1	512 1024	238.55 263.80	353.00 314.66 348.53 378.49	359.02 397.13	2398.428440.78	2 451.7 8 499.3	492,8 543.8
	1	Percenta	ge Diss	ociatio	n.			1	Percenta	ge Dis	sociatio	m.	
v	a0°	a8.23°	a25°	a35°	a50°	a65°	v	a0°	al5°	a25°	a35°	a50°	a65°
64 128 512 1024 2048	25.33 33.75 55.34 67.07 78.81	24.89 33.09 54.58 66.33 78.05	24.62 32.90 54.23 66.45 78.14	24.08 32.01 53.20 64.62 75.68	31.40 52.09	30.41 50.55	128 512 1024 2048						
	Di	ssociatio	n Cons	tants >	< 10⁴.	-		Di	ssociatio	on Cons	stants >	< 10⁴.	
v	0°	8.23°	25°	35°	50°	65°	v	0°	15°	25°	35°	50°	65°
64 128 512 1024 2048	13.4 13.4 13.4 13.4 14.3	12.9 12.8 12.8 12.8 13.6	12.6 12.6 12.5 12.8 13.6	11.9 11.8 11.8 11.5 11.5	11.2 11.2 11.1 11.0 11.0	10.5 10.4 10.1 10.2 9.8	128 512 1024 2048						
Temp	perature	Coeffic	ients in	Condi	ictivity	Units.	Tem	peratur	e Coeffic	ients in	Condi	uctivity	Units.
v	0-8.2	23° 8.23-	-25° 25	-35° 3	35-50°	50-65°	v	0-13	5° 15–	25° 25	5-35° 3	35-50°	50-65
64 128 512 1024 2048	$egin{array}{c cccc} 8 & 1.6 \\ 2 & 2.8 \\ 4 & 3.5 \\ \end{array}$	57 1. 34 2. 51 3.	58 1 59 2 27 2	.04 .42 2.36 2.66 3.00	0.93 1.30 2.13 2.78 3.33	0.83 1.09 1.84 2.44 2.83	122 51: 102- 204:	2 5.0 4 5.6	07 4 35 4	.86	3.15 3.94 4.37 5.14	2.42 3.55 3.91 5.02	1,60 2,72 2,93 3,41
Temperature Coefficients in Per Cent.								Temper	ature C	oefficie	nts in l	Per Cen	ıt.
v	0-8.2	23° 8.23-	-25° 25	-35° 3	5-50°	50-65°	v	0-18	5° 15–	25° 25	5–35° 3	35-50°	50-65°
64 128 512 1024 2048	$egin{array}{c cccc} 8 & 2.2 \\ 2 & 2.3 \\ 4 & 2.3 \\ \end{array}$	24 1. 33 1. 37 1.	79 1 78 1 85 1	21 24 25 15	0.96 1.02 1.01 1.08 1.10	0.75 0.74 0.75 0.81 0.80	12 51: 102- 204:	$ \begin{array}{c cccc} 2 & 2.1 \\ 4 & 2.1 \end{array} $	3 1	.41	1.10 1.10 1.10 1.10	0.76 0.89 0.89 1.03	0.45 0.60 0.59 0.60

TE	TRACH	LORPH	THAL	ic Ac	CID (W	м.).		I	Anisio	Acii	SP.).	
	1	Iolecul	ar Con	ductivi	ity.			Λ	Iolecul	ar Cone	luctivit	y.	
v	$\mu_{v}0^{\circ}$	μ _v 15°	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	μ _ν 65°	v	$\mu_v 0^\circ$	$\mu_v 15^\circ$	$\mu_v 25^\circ$	$\mu_r 35^\circ$	μ _v 50°	μ _ν 65°
512 1024 2048	296.8 328.6 356.0	386.5 432.7 469.2	441.3 495.9 539.8	555.2	2 617.4	669.3	1024 2048	35.80 47.13	50.50 66.74	59.10 78.80			90.25 115.17
	P	ercenta	ge Dis	sociati	on.			Pe	ercentaç	ge Diss	ociation	n.	
v	α0°	al5°	a25°	a35°	a50°	a65°	v	a0°	al5°	α25°	a35°	a50°	a65°
512 1024 2048							1024 2048	16.14 21.26	16.84 22.25	16.88 22.50	16.94 22.59		
	Diss	sociatio	n Cons	tants ?	× 10 ⁴ .			Diss	Rociatio	n Cons	tants >	< 10⁴.	
v	0°	15°	25°	35°	50°	65°	v	0°	15°	25°	35°	50°	65°
512 1024 2048							1024 2048	0.303 0.280	0.333 0.311	0.335 0.319	0.337 0.322	0.343 0.304	
Tempe	erature	Coeffic	ients in	Cond	uctivity	Units.	Temp	erature	Coeffic	ients in	Condi	ıctivity	Units.
v	0-18	5° 15-	25° 25	-35°	35-50°	50-65°	v	0-1	5° 15-	25° 25	-35° 3	5-50°	50-65°
512 1024 2048	6.9	04 6.	32 8	5.14 5.93 5.52	4.00 4.15 5.33	3.24 3.46 3.65	102 204		- 1		0.85	0.84 0.90	0.66 0.77
T	'empere	ature C	oefficie	nts in	Per Cei	nt.	Т	'empero	iture C	oefficier	nts in 1	Per Cen	ıt.
v	0-18	5° 15–	25° 25	-35° 3	35–50°	50-65°	v	0-1	5° 15-	25° 25	-35° 3	5-50°	50-65°
512 1024 2048	1 2.1	1 1.	46 1	.17 .20 .21	0.81 0.75 0.88	0.59 0.56 0.53	102- 2048				1.43	1.24	0.82 0.74

	_ V.	ANILL	ic A	CID (S	P.).			NAI	PHTHIC	ONIC A	ACID (Sp.).	
	M	olecula	ır Con	ductivi	ty.			J	lolecul	ar Con	ductivit	y.	
v	μ ₀ 0°	μ,15°	μ,25°	$\mu_v 35$	° µ,50°	μ,65°	v	μ,0°	μ,15°	μ,25°	μ,35°	μ,50°	μ,65°
256 512 1024 2048	18.48 26.16 35.87 47.26	26.44 36.65 50.10 67.40	59.58	49.8 6 69.0	9 57.80 0 80.38	2 47 41 0 64 62 8 89 42 5 120 08	2048					5382 58 0420 93	
	P	ercenta	ge Dis	ssociati	ion.		1	F	'ercenta	ige Din	sociatio	n.	
v	a0°	al5°	a25°	a35°	a50°	a65°	v	a0°	a15°	a25°	a35°	a50°	a65
256 512 1024 2048	16.21	8.84 12.25 16.75 22.53	9.05 12.38 17.33 23.12	3 12.56 3 17.3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12.13 16.78	1024 2048	64.04 76.58	71.82 82.98				
-	Diss	ociation	n Cons	stants	× 10 ⁴ .			Dis	sociatio	on Cons	tants)	< 10⁴.	
v	0°	15°	25°	35°	50°	65°	v	0°	15°	25°	35°	50°	65°
256 512 1024 2048	0.30 0.31 0.31 0.28	0.33 0.33 0.33 0.32	$0.35 \\ 0.34 \\ 0.35 \\ 0.34$	0.35	$0.35 \\ 0.35$	0.34 0.33 0.33 0.32	1024 2048	11.1	17.9 19.7	21.2 21.4	27.4 27.9	35.8 39.3	44.2 50.9
Temp	erature	Coeffic	ients i	in Conc	luctivity	Units.	Temp	erature	Coeffic	cients in	Condi	uctivity	Units
v	0-1	5° 15-	25° 2	5–35°	35-50°	50-65°	v	0-1	5° 15-	-25° 25	5–35° 3	35-50°	50-65
250 513 102- 2048	2 0.3	70 0	.52 .66 .95 .34	0.48 0.66 0.94 1.26	0.39 0.53 0.76 1.04	0.34 0.45 0.60 0.73	102 204				5.09 5.16	4.64 4.92	4.56
T	Temperature Coefficients in Per Cent.							l'emper	ature C	oefficie	nts in l	Per Cen	ıt.
v	0.1	5° 15-	25° 2	5-35°	35-50°	50-65°	v	0-1	5° 15-	-25° 25	-35°	35-50°	50-65
250 513 1024 2048	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	67 1. 63 1.	.98 .81 .88 .99	1.52 1.52 1.58 1.55	1.07 1.06 1.10 1.11	0.80 0.79 0.75 0.67	102 204				1.94	1.48 1.42	1.19

M	IANDE	LIC A	CID (WT. A	ND SM	1.).		CAN	IPHOR	ic Ac	ID (W	м.).	
	1	Aolecul	ar Con	ductiv	ity.			1	Iolecul	ar Cond	luctivit	y.	
v	$\mu_v 0^{\circ}$	μ _v 12°	$\mu_v 25^\circ$	$\mu_v 35$	$^{\circ}$ $\mu_v 50^{\circ}$	$\mu_v 65^\circ$	v	μ _v 0°	$\mu_v 12^\circ$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	μ,50°	$\mu_v 65^\circ$
8 32 128 512 1024 2048	24.49 46.40 82.21 106.0	59.64 106.1 135.2	38.50		2 50.07 9 94.42 168.20 216.03	55.40	2048	24.94 34.05 45.10	33.05 45.27 59.54	38.17 52.12 68.15	42.57 57.99 76.12		51.30 69.26 93.84
	P	'ercenta	ge Dis	sociati	on.			P	'ercenta	ge Diss	ociatio	n.	
v	a0°	a12°	a25°	a35°	a50°	a65°	v	a0°	a12°	a25°	a35°	a50°	a65°
8 32 128 512 1024 2048	5.70 11.09 20.99 37.20 47.96 59.91	5.69 11.03 20.78 36.98 47.76 59.47	5.69 11.05 20.90 37.18 47.97 59.03	10.98 20.73 36.84 47.58	8 10.52 5 19.84 4 35.35 8 45.40	19.34 34.41 44.32	512 1024 2048	11.43 15.60 20.66	11.81 16.18 21.28			13.94	9.88 13.34 18.08
	Diss	ociatio	n Cons	tants)	× 10 ⁴ .			Diss	ociatio	n Cons	tants ×	104.	
v	0°	12°	25°	35°	50°	65°	v	0°	12°	25°	35°	50°	65°
8 32 128 512 1024 2048	4.32 4.30 4.36 4.30 4.32 4.37	4.29 4.27 4.26 4.24 4.26 4.26	4.29 4.29 4.31 4.30 4.32 4.16	4.24 4.24 4.25 4.20 4.21 4.16	3.86 3.83 3.78 3.69	3.71 3.66 3.62 3.53 3.45 3.32	512 1024 2048	0.288 0.282 0.263	0.309 0.305 0.289	0.264		0.220	0.201
Temp	erature	Coeffic	ients i	n Cond	luctivity	Units.	Temp	erature	Coeffic	cients in	Condi	uctivity	Units
v	0-1	2° 12-	-25° 2	5-35°	35-50°	50-65°	v	0-1	2° 12-	-25° 25	-35°	35-50°	50-65
	2 1. 4 2.	56 0 10 1 99 1 43 2	.56 .02 .81 .48	0.26 0.51 0.94 1.66 2.13 2.90	0.22 0.43 0.82 1.47 1.82 2.28	0.19 0.35 0.67 1.18 1.55 1.96	51 102 204	4 0.	75 0	.68	0.44 0.59 0.80	0.33 0.39 0.69	0.26 0.36 0.51
7	Temper	ature C	oefficie	ents in	Per Cer	ıt.	7	l'emper	ature C	oefficie	nts in 1	Per Cer	at.
v	0-1	2° 12-	-25° 2	5-35°	35-50°	50-65°	U	0-1	2° 12-	-25° 25	5–35° 3	35–50°	50-65
	2 2. 4 2.	29 1 38 1 42 1 30 1	.81 .72 .71 .83	1.30 1.31 1.29 1.28 1.27 1.40	0.99 0.99 0.99 1.01 0.97 0.97	0.74 0.71 9.71 0.70 0.72 0.73	51 102 204	4 2.	20 1	.57	1.15 1.13 1.17	0.78 0.67 0.91	0.54 0.56 0.59

					Cou	MARIC	ACID (Sp.).				
	A	1 olecul	ar Conc	luctivity	y.		Temper	ature Co	resicient	s in Con	ductivity	Units.
υ	μ _σ 0°	μ ₀ 15°	μ.25°	μ ₀ 35°	μ ₀ 50°	$\mu_{\rm e}65^{\circ}$	v	0-15°	15-25°	25-35°	35-50°	50-65°
256 512 1024 2048	16.00 22.40 31.48 44.53	23.22 32.39 46.00 65.13		30.38 42.01 59.52 77.50	35.56 49.08 69.57 90.50	39.39 54.24 76.92 98.75	256 512 1024 2048	0.48 0.67 0.97 1.37	0.38 0.52 0.74 1.04	0.33 0,44 0.61 0.19	0.34 0.47 0.67 0.87	0.25 0.34 0.49 0.55
	P	ercenta	ge Diss	sociatio	n.		Ten	nperatu	re Coeffu	cients in	Per Ce	nt.
v	a0°	al5°	a25°	a35°	a50°	a65°	6,	0-15°	15-25°	25-35°	35-50°	50-65°
256 512 1024 2048	7.27 10.18 14.30 20.23	7.74 10.80 15.34 21.72	15.25	7.60 10.51 14.89 19.39	7.59 10.48 14.86 19.34	7.37 10.15 14.39 18.48	256 512 1024 2048	3.00 2.99 3.07 3.08	1.64 1.61 1.63 1.60	1.21 1.17 1.15 0.25	1.13 1.12 1.12 1.12	0.71 0.70 0.70 0.70 0.61
	Diss	ociatio	n Consi	lants X	104.	100 Marian V 11 100 V						
v	0°	15°	25°	35°	50°	65°	-	1				
256 512 1024 2048	0.223 0.225 0.233 0.250	0.254 0.255 0.271 0.294	0.253 0.252 0.268 0.290	$0.241 \\ 0.254$		0.236						

DISCUSSION OF THE RESULTS WITH THE ORGANIC ACIDS.

It does not seem necessary or desirable, in discussing the results with the organic acids, to tabulate these results as was done in the case of the salts. The anions of these acids are not related as the cations of the salts were, and any relations must be of a more limited nature. Certain relations will, however, be pointed out, and they can easily be verified from the data for the various acids.

Take, first, the conductivities of the various acids: The presence of chlorine in acetic acid increases enormously its dissociation. Thus, at volume 32 and 0° the conductivity of acetic acid is 5.33; of dichloracetic acid 166, and of trichloracetic acid 208.7. The conductivity of cyanacetic acid under the same conditions is 68.7, and of phenylacetic acid 9. Acetic acid is slightly stronger than propionic, which at volume 32 and 0° has a conductivity of 4.63. This illustrates the general principle that in a homologous series of organic acids the lower members of the series are the stronger, at the same temperature and volume a-brompropionic acid having a conductivity of 38, β -iodopropionic acid of 12.57, while β -acetylpropionic acid has a conductivity of 5.85. Butyric acid at the same volume and temperature has the value 5.0; a-brombutyric 42.75, showing the marked increase in the strength due to the presence of bromine.

Isobutyric acid at volume 32 and 0° has the value 4.91, while hydroxyisobutyric has the conductivity 12.11, showing the increase in the strength due to the presence of the hydroxyl group. The conductivities of butyric and isobutyric acids are very nearly the same, which is characteristic of a large number of isomeric compounds. Isovaleric acid has the conductivity 5.36.

Turning to the dibasic acids of the oxalic series, we come first to oxalic acid. This was decomposed by the platinum plates, and was therefore not studied. Malonic acid

and a large number of its derivatives were investigated. The following table gives the results for two volumes and three temperatures for all of these substances:

Acid.	C)°	2	5°	65°		
nord.	v = 32	v = 1024	v = 32	v = 1024	v = 32	v = 1024	
Malonic	43.51	153.3	72.23	251.2			
Dimethylmalonic	32.00	124.1	51.23	198.93	77.1	299.26	
Ethylmalonic	40.90	146.45	64.42	231.24	90.66	330.62	
Diethylmalonic	92.77	201.22	138.84	311.98	186.22	462.78	
Methylethylmalonic	45.89	156.21	72.45	248.19	104.35	365.54	
Isopropylmalonic	40.07	144.1	64.92	234.00	91.73	343.8	
Dipropylmalonic	103.16	203.51	154.54	317.78		468.0	
Butylmalonic		140.0	58.72	218.3	83.93	320.1	
Benzylmalonic	45.06	153.05	69.82	239.44	97.76	345.35	
Allylmalonic	45.62	158.93	71.47	248.67	101.16	358.28	

The presence of two methyl groups weakens the acid, while two ethyl groups more than double the strength. Ethyl, methylethyl, isopropyl, butyl, benzyl, and allyl affect the conductivity very slightly. Dipropyl more than doubles the strength of the acid. These empirical relations have a certain kind of interest, but their meaning is at present not at all fully understood.

Succinic acid at zero and v=32 has a conductivity of 9.21, being much less than malonic. This is in accord with the relation pointed out between the strengths of acids and their position in an homologous series. Monobromsuccinic acid was studied at v=128. It had a conductivity of 101.46 against succinic at this volume of 18.24, showing that bromine increases acidity. Dibromsuccinic at volume 128 and 0° has the conductivity 254.34, showing the effect on acidity of the second bromine atom

Pyrotartaric at v=32 has $\mu_0=10.94$, μ_0 for α -tartaric at v=32=34.18 and for racemic = 34.60. These two isomeric acids have practically the same conductivity.

The kind of isomerism, illustrated by maleic and fumaric acids stereoisomerism, is interesting in the present connection. We have seen that ordinary isomeric acids, using that term as we generally do, have very nearly the same conductivity. Maleic and fumaric acids at the same volumes and temperatures have widely different conductivities. Thus at v=32 and 0° , μ_{\bullet} for maleic acid = 108.1, μ_{\bullet} for fumaric = 35.46. The results for itaconic, citraconic, and mesaconic acids differ widely. For v=32:

 μ_{\bullet} for itaconic = 13.50 μ_{\bullet} for citraconic = 68.66 μ_{\bullet} for mesaconic = 33.31

Passing to the acids of the aromatic compounds, the introduction of chlorine into benzoic acid raises the conductivity at v=64 and 0° from 18.49 to 85.20. μ_{ν} for orthonitrobenzoic at v=128 (0°) is 146.9, for metanitrobenzoic = 40.1. This shows the effect of chlorine and of the nitro group in the ortho position on the acidity. The 1, 2, 4 dinitrobenzoic at 0° and v=32, $\mu_{\nu}=166.51$, showing that the second nitro group in these positions still further increases the acidity. The 1, 3, 5 dinitrobenzoic at v=512 has a value for μ_{ν} of only 122.28.

The effect of the nitro group in increasing acidity is well illustrated by picric acid. Phenol is a very weak acid, one of the weakest, while trinitrophenol is very strong. Its dissociation is of the same order of magnitude as the strongest mineral acids.

The effect of the introduction of the hydroxyl group into benzoic acid, on the

strength of that acid, depends upon the position of the group. Benzoic acid at zero and v=128 has a value of $\mu_*=18.49$. μ_* for salicylic or orthohydroxybenzoic acid = 62.65, for metahydroxybenzoic = 20.48, while for parahydroxybenzoic at 128 and 0° , $\mu_{\bullet}=18.29$.

The introduction of the second hydroxyl group raises the conductivity, the amount depending on the position of those groups. At zero and v = 128, μ_v for 1, 2, 4 dihydroxybenzoic acid = 44.74, while μ_v for 1, 2, 5 dihydroxybenzoic = 66.18.

Gallic acid, or trihydroxybenzoic acid, has an interest of its own. For zero and v=128, $\mu_v=14.01$. The third hydroxyl, instead of raising, lowers the conductivity below that of benzoic acid itself.

The presence of the amino group lowers the strength of the acid, as would be expected. Thus, benzoic acid at 0° and v = 64, $\mu_e = 13.42$. For orthoaminobenzoic acid $\mu_e = 3.07$; while for paraminobenzoic acid $\mu_e = 3.71$.

The four sulphonic acids studied are all strong, as are sulphonic acids in general. Of the three toluic acids, the ortho is much stronger than the benzoic, while the other two are of the same order of strength. Cinnamic acid is slightly stronger than hydrocinnamic.

When we come to the dibasic phthalic acid, we have a much stronger compound than the monobasic acid. Thus, at 0° and v=64, μ_{\bullet} for phthalic acid = 55.98. The introduction of the second carboxyl thus increases the strength of the acid.

DISSOCIATIONS OF ORGANIC ACIDS.

It is not necessary to consider the dissociations of the several acids in detail. It is better to take up the constants calculated from the dissociations, since these are the quantities so often desired in connection with the organic acids. Some conclusions have, however, been reached, especially by White and Wightman, in connection with the dissociations of these compounds, and these will be given.

The conductivity of most of the organic acids is a parabolic function of the temperature, as is shown by comparing the values found with those calculated from interpolation formula. Several of the amino acids are exceptions to this relation, their conductivities not being a parabolic function of the temperature.

The effect of rise in temperature on the dissociation of organic acids can be formulated thus: The dissociation of some of the organic acids decreases regularly with rise in temperature from 0°. Maxima occur in the dissociation of many of the organic acids. In some cases the maximum appears between 15° and 25°; in others between 25° and 35°, while in still other cases it falls at a higher temperature, i. e., around 50°. This is apparently not in accord with the Thomson-Nernst hypothesis, which connects the dissociating power of a solvent with its dielectric constant, and the dielectric constant decreases with rise in temperature.

The strong organic acids do not obey the Ostwald dilution law and, therefore, "dissociation constants" could not be calculated for them by means of this law.

Isomeric acids are not always dissociated to the same extent, and their dissociations change differently with rise in temperature.

The migration velocities of metameric ions are identical. The migration velocities of the anions of organic acids are a function of the number of atoms present in the anions. This fact is utilized to find the values of μ_{π} for the dibasic organic acids.

THE DISSOCIATION CONSTANTS.

The "constants" for the various acids are calculated by means of the Ostwald dilution law, $\frac{a^2}{(1-a)v}$ const. This, as is well known, does not apply to the strongly dissociated compounds, which therefore have no "constants." The constants are given for the volumes 32 and 1024, and for the temperatures 0°, 25°, and 65°.

DISSOCIATION CONSTANTS

D	ISSOCIATIO	N CONST	ANTS.			
Acid.)°	2	5°	6	5°
Acid.	v = 32	v = 1024	v = 32	v = 1024	v = 32	v = 1024
Acetic	0.179	0.170	0.184	0.175	0.166	0.154
Cyanacetic	41.0	38.0	39.0	35.0	29.0	26.0
Phenylacetic	0.540	0.526	0.536	0.518	0.420	0.375
Propionic	0.138	0.125	0.141	0.123	0.116	0.108
a-Brompropionic	10.3	12.7	8.7	10.6		
β-Iodopropionic	1.04	0.92	0.99	0.87		
Acetylpropionic		0.206	0.250	0.233	0.237	0.213
n-Butyric		0.161	0.157	0.150		
a-Brombutyric	13.1	15.6	11.0	13.2		
Isobutyric	0.155	0.154	0.148	0.147	0.129	0.119
Hydroxyisobutyric		0.94	1.10	1.03	0.98	0.91
Isovaleric		0.170	0.169	0.161	0.125	0.109
Caprylic		0.129		0.129		0.095
Malonic		14.8	16.3	16.7		
Dimethylmalonic		6.90	7.75	7.21	7.45	6.77
Ethylmalonic		12.4	12.8	12.3	10.6	9.5
Methylethylmalonic	17.0	16.7	16.9	16.9	14.5	14.6
Isopropylmalonic		12.0	13.2	13.2	11.2	11.4
Dipropylmalonic		122.0	113.0	102.0		79.0
Butylmalonic		11.0	10.8	10.5	9.15	8.8
Benzylmalonic		15.8	16.0	15.2	12.8	11.7
Allylmalonic		20.0	16.2		13.8	13.1
Succinic		0.572	0.655	0.665	0.687	0.688
Monobromsuccinic		48.1		39.4		
Pyrotartaric		0.78	0.89	0.87	0.85	0.81
l-Tartaric		9.6	10.6	12.2	11.1	11.9
Racemic		10.4	10.9	12.3	9.9	10.4
Thiodiglycolic		6.24	6.23	6.36	6.08	6.16
Tricarballylic		1.95	2.11	2.15	2.19	2.27
Benzilic		9.36		9.02		7.09
Hippuric				2.28		2.16
Citrie		7.88	8.63	10.6	10.13	11.16
Pyromucic		8.4	7.6	7.4	5.4	4.8
Crotonic		0.194	0.215	0.211	0.185	0.182
Maleic		179.0	154.0	209.0	106.0	161.5
Fumaric	9.40	10.7	10.1	11.5	8.5	8.6
Itaconic	1.24	1.27	1.53	1.50	1.55	1.53
Citraconic		43.4	38.1	37.6	30.12	31.91
Mesaconic		9.3	8.1	8.7	6.6	6.4
Phenylpropiolic		52.3		48.5		27.7
Benzoic		0.572		0.649		0.552
o-Chlorbenzoic		18.1		13.1		8.8
o-Nitrobenzoic	102.0	52.0	68.9	47.0	32.7	30.8
m-Nitrobenzoic		3.19		3.23		3.38
p-Nitrobenzoic		3.58		4.00		3.54
1, 3, 5-Dinitrobenzoic		13.4		16.2		15.6
Salicylic		8.1		10.6		11.0
Acetylsalicylic		3.0		2.7		
m-Hydroxybenzoic		0.726		0.804		0.692
p-Hydroxybenzoic		0.252		0.284		0.261
1, 2, 4-Dihydroxybenzoic		3.94		5.08		4.90
1, 2, 5-Dihydroxybenzoic		10.6		13.2		
Gallic		0.348		0.384		0.420
o-Aminobenzoic		0.0554		√ 0.100		
	1	1	1			

DISSOCIATION CONSTANTS—Continued.

Acid.	0	9	25	j°	35°	
Acid.	v = 32	v = 1024	v = 32	v = 1024	v = 32	v = 1024
m-Aminobenzoic p-Aminobenzoie Metanilic Sulphanilic Pieramie p-Sulphaminobenzoic o-Toluie m-Toluie p-Toluie Cinnamie Hydrocinnamie o-Phthalie Anisie	0.90 3.34	0.0678 0.90 3.26 0.253	1.99 6.01	0.110 1.96 5.53 0.486 2.97 1.32 0.560 0.433 0.367 0.221	5.34 13.4	4.79 12.10 1.11 2.59 0.90 0.48 0.372 0.331 0.177 10.2
Vanillie Naphthionie Mandelie Camphorie Coumarie	4.30	0.31 11.1 4.32 0.282 0.233	4.29	21.2	3.66	44.2 3.45 0.201

These "affinity constants" are of fundamental importance in dealing with organic acids. From these values we learn more about the organic acids as acids than from any other data. The constants are tabulated for convenience of reference, and a glance will give a very good idea of the relative activities of a fairly large number of very different types of the acids of carbon.

TEMPERATURE COEFFICIENTS IN CONDUCTIVITY UNITS.

The following tabulation of some of the results will aid in an examination of these values. The heading 0° means zero to the next temperature.

Acid.		0°		25° to 35°		50° to 65°	
Acid.	v = 32	v = 1024	v = 32	v = 1024	v = 32	v = 102	
Acetic	0.14	0.72	0.12	0.62	0.08	0.46	
Dichloracetic	3.62	5.46	3.30	4.94	1.75	4.39	
Trichloracetic	4.60	5.26	4.12	5.05	2.75	2.83	
Cyanacetic	1.67	4.35	1.23	4.04	0.70	3.01	
Phenylacetic		1.05	0.18	0.82	0.98	0.45	
Propionic		0.61	0.10	0.51	0.05	0.28	
a-Brompropionic		3.27	0.56	2.75			
β-Iodopropionic		1.34	0.26	1.32			
Acetylpropionic		0.81	0.14	0.71	0.095	0.44	
n-Butyric	0.12	0.64	0.05	0.41			
a-Brombutyric		3.25	0.54	2.62			
Isobutyric	0.12	0.60	0.09	0.46	0.041	0.18	
Hydroxyisobutyric	0.33	1.54	0.28	1.46	0.17	0.90	
Isovaleric		0.589	0.87	0.415	0.45	0.17	
Caprylic		0.56		0.45		0.22	
Malonic	4 4 10	4.06	1.03	3.36	0.53		
Dimethylmalonic	0.78	3.04	0.72	2.71	0.55	2.17	
Ethylmalonic	0.95	3.42	0.81	2.88	0.54	2.18	
Diethylmalonic	1.92	4.47	1.48	4.16	0.80	3.27	
Methylethylmalonic	1.07	3.67	0.95	3.18	0.72	2.82	
Isopropylmalonic	0.97	3.53	0.87	3.04	0.51	2.41	
Dipropylmalonic		4.63	1.58	4.14		3.40	
Butylmalonic		3.15	0.78	2.97	0.53	2.26	
Benzylmalonic		3.50	0.85	3.02	0.57	2.30	
Allylmalonic		3.67	0.88	3.23	0.61	2.37	

TEMPERATURE COEFFICIENTS IN CONDUCTIVITY UNITS—Continued.

A -: 1	. 0°		25° to 35°		50° to 65°	
Acid.	v = 32	v = 1024	v = 32	v = 1024	v = 32	v = 1024
Succinic	0.28	1.41	0.24	1.16	0.18	1.03
Monobromsuccinic		4.20				
Dibromsuccinic	3.10	8.01	1.74	6.35	3.28	5.26
Pyrotartaric		1.43	0.27	1.27	0.29	
l-Tartaric	$0.99 \\ 1.02$	3.73 3.73	$0.89 \\ 0.95$	$\frac{3.22}{3.43}$	$0.68 \\ 0.62$	$2.70 \\ 2.21$
Thiodiglycolic	0.70	2.94	0.59	2.48	0.39	1.94
Tricarballylic	0.47	2.12	0.44	2.06	0.33	1.22
Diphenylglycolic		3.02		2.87		1.77
Hippuric		2.06		1.61		1.13
Citric	0.91	3.64	0.87	3.38	0.75	4.35
Pyromucie	$0.71 \\ 0.15$	$\frac{3.08}{0.78}$	$0.52 \\ 0.12$	2.06 0.66	$0.28 \\ 0.082$	1.07 0.64
Maleic	2.74	5.14	2.34	4.67	1.80	4.20
Fumaric	0.94	3.62	1.78	3.00	0.50	2.05
Itaconic	0.40	1.81	0.35	1.65	0.29	1.40
Citraconic	1.43	2.24	1.21	3.74	0.91	3.24
Mesaconic	0.80	3.78	0.60	2.42	0.41	1.86
Phenylpropiolic		4.44 10.06	4.86	3.94 9.18	3.32	2.00 8.59
Benzoic		1.26	4.00	1.06	0.02	0.67
o-Chlorbenzoic		0 10		2.35		1.13
o-Nitrobenzoic	1.49	4.36	0.84	3.51	0.153	2.22
m-Nitrobenzoic		2.49		2.16		1.67
p-Nitrobenzoic				2.40		1.33
1, 2, 4-Dinitrobenzoic	3.04	5.05 3.84	2.15	4.80 3.59	1.14	3.52 2.49
Picric		4.99	4.14	4.93	3.61	3.46
Salicylic	1.10			3.22		2.37
Acetylsalicylic		1.89		1.94		
Sulphosalicylic	4.95		4.56	7.57	3.59	5.62
m-Hydroxybenzoic				1.19		0.77
p-Hydroxybenzoic						0.49
1, 2, 5-Dihydroxybenzoic						
Gallic						0.65
o-Aminobenzoic						1
m-Aminobenzoic						
p-Aminobenzoic	0.53	$0.67 \\ 2.50$	0.81	$0.62 \\ 3.23$	1.10	3.82
Sulphanilie	0.88	3.45	1.30	3.88	1.48	4.37
Picramic			1.00	1		2.30
p-Sulphaminobenzoic		2.28		2.02		1.27
Benzenesulphonic	4.76	5.40	4.50	5.13	4.16	4.67
m-Nitrotoluenesulphonicp-Toluenesulphonic	4.47	4.73	4.29	4.59	3.77 3.94	3.89
1, 2, 4-Nitrotoluenesulphonic	4.62	4.93	4.59		3.94	0.00
o-Toluic		1	2.00			0.51
m-Toluic				0.98		0.64
p-Toluic						0.61
Cinnamic Hydrocinnamic	0.145		0.104		0.079	$0.62 \\ 0.38$
o-Phthalie	0.145	$0.757 \\ 3.51$	0.104	$0.595 \\ 0.266$	0.079	2.44
4, 5-Dichlorphthalic		~ ~~				2.93
Tetrachlorphthalic				5.93		3.46
Anisic						0.66
Vanillic						0.60
Naphthionic	0.56	4.70 2.43	0.51	5.09	0.35	4.56 1.55
Camphorie		0 ==	0.31		0.00	0.36
Coumaric		0 0=		1		0.49
		1	1		1	

The temperature coefficients of conductivity, expressed in conductivity units, increase rapidly with the dilution of the solution, and for weak organic acids, when not much hydrated, decrease rapidly with rise in temperature. When the acids are hydrated the temperature coefficients of conductivity are larger, and their increase with dilution and decrease with rise in temperature both take place at a slower rate.

The organic acids with the larger constants also have, in general, the larger temperature coefficients of conductivity expressed in conductivity units. The ortho acids usually have a somewhat larger coefficient than the meta and the para. The meta and the para have very nearly the same values for the temperature coefficients expressed in conductivity units.

TEMPERATURE COEFFICIENTS IN PER CENT.

The following coefficients in per cent were obtained; the heading 0° means from zero to next temperature.

	()°	25° t	o 35°	50° to 65°	
Acid.	v = 32	v = 1024	v = 32	v = 1024	v = 32	v = 102
Acetic	2.62	2.57	1.39	1.32	0.72	0.79
Dichloracetic	2.18	2.46	1.30	1.37	0.52	0.90
Trichloracetic	2.20	2.35	1.28	1.42	0.65	0.59
Cyanacetic	2.29	2.32	1.16	1.39	0.52	0.79
Phenylacetic	2.32	2.30	1.23	1.15	0.55	0.51
Propionic	2.56	2.56	1.33	1.31	0.56	0.57
a-Brompropionic	2.00	2.16	1.00	1.17		100.00
β-Iodopropionic	2.25	2.28	1.35	1.45		
Acetylpropionic	2.74	2.71	1.43	1.43	0.74	0.67
n-Butyric	2.38	2.38	1.19	0.98		
a-Brombutyric	1.86	2.02	0.89	1.09		
Isobutyric		2.28	1.17	1.13	0.46	0.39
Hydroxyisobutyric	2.71	2.62	1.38	1.50	0.65	0.70
	2.10	2.08	1.07	0.98	0.46	0.34
Isovaleric	2.10	2.29	1.07	1.17		0.40
Caprylie	2.69	2.65	1.43	1.34	0.74	0.80
Malonic		2.45	1.40	1.36	0.80	0.80
Dimethylmalonic	2.43	2.32	1.27	1.25	0.66	0.82
Ethylmalonic	2.33			4.00		
Diethylmalonic	2.07	2.22	1.06	1.33	0.46	0.79
Methylethylmalonic	2.33	2.35	1.31	1.28	0.76	0.87
Isopropylmalonic	2.43	2.45	1.34	1.30	0.61	0.78
Dipropylmalonic	2.06	2.27	1.02	1.30		
Butylmalonic	2.32	2.25	1.32	1.36	0.69	0.79
Benzylmalonic	2.29	2.29	1.22	1.26	0.65	0.74
Allylmalonic	2.33	2.31	1.23	1.30	0.16	0.73
Succinic	2.03	2.94	1.47	1.42	0.84	0.94
Monobromsuccinic		2.22				
Dibromsuccinic	1.77	2.10	0.71	1.11	1.09	0.74
Pyrotartaric	2.64	2.63	1.47	1.42	0.79	
<i>l</i> -Tartaric	2.94	2.75	1.52	1.40	0.84	0.88
Racemic	2.93	2.68	1.59	1.49	0.80	0.73
Thiodiglycolic	2.43	2.45	1.28	1.30	0.64	0.78
Tricarballylic	2.86	2.68	1.56	1.57	0.88	0.68
Diphenylglycolic		. 2.26		1.23		0.66
Hippuric		. 2.54		. 1.23		0.66
Citrie	3.00	2.86	1.64	1.55	0.98	0.95
Pyromucic	2.08	2.31	1.04	1.02	0.45	0.43
Crotonic	2.69	2.68	1.31	1.37	0.68	0.73
Maleic	2.54	2.43	1.34	1.38	0.78	0.93
Fumaric	2.64	2.56	1.19	1.17	0.67	0.70
Itaconic	2.97	2.71	1.50	1.45	0.90	0.91
Citraconic	2.08	2.28	1.18	1.29	0.70	0.84
Mesaconic	2.39	2.37	1.16	1.15	0.67	0.68
A14 UNIO UNIO UNIO UNIO UNIO UNIO UNIO UNIO	1 2.00	0.	1	1	0.00	1

Acid.	()°	25° to 35°		50° to 65°	
Acid.	v = 32	v = 1024	v = 32	v = 1024	v = 32	v = 1024
Phenylpropiolic				1.31		0.51
Meconic			1.18	1.34	0.63	0.96
Benzoic				1.35		0.65
o-Chlorbenzoic				1.01		0.40
o-Nitrobenzoic		2.22	0.59	1.16	0.11	0.55
m-Nitrobenzoic		2.69 2.63		1.40		0.78
p-Nitrobenzoic		2.03	0.00	1.47	0.40	0.61
1, 2, 4-Dinitrobenzoic		2.60	0.90	1.40	0.40	0.77
1, 3, 5-Dinitrobenzoic		2.41	1.36	1.47	0.00	0.76
Picrie				1.48	0.90	0.75
Acetylsalicylic				1.41		0.79 1.06
Sulphosalicylic		2.49	1.37	1.44	0.83	0.81
m-Hydroxybenzoic			1.07	1.36		0.66
p-Hydroxybenzoic				1.44		0.67
1, 2, 4-Dihydroxybenzoic						0.70
1, 2, 5-Dihydroxybenzoic				1.41		0.70
Gallic						0.76
o-Aminobenzoic				2.40		
m-Aminobenzoic				2.81		
p-Aminobenzoic				1.79		
Metanilic		2.30	3.02	2.63	2.23	1.81
Sulphanilic		3.57	2.68	2.12	1.89	1.52
Picramic				2.58		1.93
p-Sulphaminobenzoic				1.21		0.67
Benzenesulphonic		2.37	1.33	1.43	0.92	0.98
m-Nitrobenzenesulphonic		2.31	1.40	1.42	0.92	0.90
p-Toluenesulphonic		2.34	1.45	1.43	0.92	0.86
1, 2, 4-Nitrotoluenesulphonic		2.37	1.34	1.37		
o-Toluic				0.94		0.40
<i>m</i> -Toluic				1.32		0.65
<i>p</i> -Toluic				1.42		0.70
Cinnamic				1.37		0.77
Hydrocinnamic	2.47	2.49	1.24	1.22	0.67	0.61
o-Phthalic				1.15		0.81
4, 5-Dichlorphthalic				1.10		0.59
Tetrachlorphthalic		2.11		1.20		0.56
Anisic		2.74		1.43		0.82
Vanillie		2.63		1.58		0.75
Naphthionic		3.30		1.94		1.19
Mandelic		2.30	1.31	1.27	0.71	0.72
Camphoric		2.20		1.13		0.56
Coumaric		3.07		1.15		0.70
	1	1	1	1		

The temperature coefficients of conductivity, expressed in conductivity units, are, for the same volume and temperature, of the same order of magnitude. Take v=32, and at 0° these coefficients range in general from 2.2 to 2.7. There are a few comparatively wide discrepancies. Thus a= brombutyric, dibromsuccinic, o-nitrobenzoic, and 1, 2, 4 dinitrobenzoic have percentage coefficients that are much lower than 2.2; while citric, coumaric, and especially metanilic and sulphanilic, have coefficients much larger than 2.7. That the relation pointed out above holds in general will be seen from the results. It will also be noted that the temperature coefficients in "per cent" decrease with rise in temperature.

The results recorded in this monograph are for 200 of the most frequently used salts and organic acids. Work along this same line is being continued in this laboratory. It is intended to include in this investigation a much larger number of salts, organic acids, the strong mineral acids and bases, and the organic bases in water and nonaqueous and mixed solvents.

INDEX.

Acetate- PAGE.	
Barium 43	Meta-aminobenzoic
Cobalt	Meta-hydroxybenzoic 122
Lead	
Magnesium	Meta-nitrobenzenesulphonic 128
Nickel	
Potassium	Meta-toluic
Sodium 20	
Strontium	
Uranyl	
Zinc	
Acetic acid	
Cyan	Contraction of the second seco
Dichlor	Nitrotoluenesulphonic (1, 2, 4) 129
Phenyl	
Acetylpropionic acid, beta 97	
Acetylpropionic acid, beta	
Acid—	O it to t
Acetic 93	
Acetylsalicylic121	Ortho-toluic
Acetylpropionic, beta 97	Para-aminobenzoic
Allylmalonic	
Alpha-brombutyrie 98	
Alpha-brompropionic	
Aminobenzoic, meta	
Anisic	
Benzenesulphonic	
Benzilic	
Benzoic	
Benzylmalonic	
Butylmalonic 104	
Butyric normal	
Camphoric	
Caprylie	Salicylic
Cinnamic	Succinic
Citraconic	
Citric	
Coumaric	
Crotonie	
Cyanuric	
Cyanacetic	
Dibromsuccinic	
Dichloracetic	
Dichlorphthalic (4, 5)	
Diethylmalonic	
Dihydroxybenzoic (1, 2, 4) 128	
Dihydroxybenzoic (1, 2, 5) 123	Aluminium—
Dimethylmalonic	Ammonium sulphate 34
Dinitrobenzoic (1, 2, 6)	Chloride 59
Diphenylglycolic	Nitrate 60
Ethylmalonic	
Fumaric	
Gallic	Aminobenzoic acid—
Hippuric	Meta
Hydrochloric	Ortho 124
Hydrocinnamic	
Hydroxyisobutyric 99	
Iodopropionic, beta 96	Ammonium acid sulphate 34
Isobutyric	
Isopropylmalonic	Bromide 32
Isovaleric	Chloride
Itaconic	
Laevo-tartaric	
Levulinic 93	Copper sulphate 36
Maleic	
Malonic 100	Nitrate
Mandelic	
Meconic	Sulphate
Mesaconic	Anisic acid

Barium-	PAGE.	Chloride, continued—	AGE.
Acetate	43	Strontium	39
Bromide		Uranyl	63
Chloride		Chromate—	00
Formate		Calcium	38
Nitrate		Potassium	28
Benzenesulphonic acid		Chloride	62
Benzilic acid		Nitrate	62
Benzoic acid		Sulphate	63
Benzylmalonic acid		Chromium—	
Beta-acetylpropionic acid		Ammonium sulphate (green)	35
Beta-iodopropionic acid		Ammonium sulphate (violet)	35
Borax	19	Potassium sulphate (green)	$\frac{27}{27}$
Brombutyric acid, alpha	98	Cinnamic acid	
Ammonium	32	Citraconic acid.	
Barium		Citric acid	
Cadmium		Cobalt—	
Calcium		Acetate	55
Cobalt		Bromide	53
Cupric		Chloride	53
Lithium		Nitrate	54
Magnesium		Sulphate	54
PotassiumSodium		Temperature, in conductivity units	141
Strontium.		Temperature, in per cent	143
Brompropionic acid, alpha		Temperature, of conductivity and the	
Butylmalonic acid		solvate theory of solution	76
Butyric acid—		Temperature, of conductivity in per	
Alpha-brom		cent	
Iso.		Conductivities, molecular	70
Normal	97	Conductivity—	5
~ · ·		Cells	
Cadmium—	40	Temperature, coefficients of in percent.	
Bromide		Units, temperature coefficients in	141
Chloride	49	Constants—	
Calcium—	10	Cell	
Bromide	37	Dissociation	140
Chloride		Copper ammonium sulphate	36
Chromate		Crotonic acid.	119
Formate		Cupric—	114
Nitrate		Bromide	56
Caprylic acid.	100	Chloride	56
Carbonate—	100	Nitrate	
Potassium	24	Sulphate	
Sodium	17	Cyanacetic acid	94
Cell constants	6, 87	Cyanuric acid	108
Cells, conductivity	5	Dehydrolytic time factor	69
Chlorate— Potassium	. 22	Dibromsuccinic acid	
Sodium.		Dichloracetic acid	98
Chlorbenzoic acid, ortho	117	Dichlorphthalic acid	133
Chloride—		Dichromate potassium. Diethylmalonic acid.	109
Aluminium	59	Dihydroxybenzoic acid (1, 2, 4)	123
Ammonium		Dihydroxybenzoic acid (1, 2, 5)	123
Barium		Dimethylmalonic acid	101
Cadmium		Dinitrobenzoic acid (1, 2, 6)	119
Calcium		Dinitrobenzoic acid (1, 3, 5)	119
Cobalt		Diphenylglycolic acid	11(
Cupric		Dipotassium acid phosphate	109
Ferric	-	Dipropylmalonic acid	
Lead	58	Discussion of the results	
Lithium		Dissociation—	
Magnesium		Constants	140
Manganous		Of organic acids87	, 139
NickelPotassium		Of the various salts	73
Sodium	14	Ethylmalonic acid	10

PAGE.	PAGE.
Ferric—	Measurements, conductivity 67
Chloride	Meconic acid
Nitrate 61	Mesaconic acid
Ferrocyanide—	Meta-aminobenzoic acid
Potassium	Meta-hydroxybenzoic acid
Sodium 19	Metanilic acid
Formate—	Meta-nitrobenzenesulphonic acid 128
Barium 42	Meta-nitrobenzoic acid
Calcium	Meta-toluie acid
Magnesium	Meta-toluie acid
Fumaric acid	Methylmalonic acid, di 101
Gallie acid	Molecular conductivities 70
	Monobromsuccinic acid 106
Hippuric acid	Naphthionic acid
Hydration and ionic volume 80	Nickel—
Hydrochloric acid 65	Acetate
Hydrocinnamic acid	Chloride
Hydroxybenzoic acid—	Nitrate
Meta	Potassium sulphate
Para 122	Sulphate 52
Hydroxyisobutyric acid	Nitrate-
Investigators who have worked on the	Aluminium
	Ammonium
problem	Barium 42
Introduction 5	Calcium
Iodide—	Chromic 62
Cadmium	Cobalt
Potassium	Cupric. 57
Sodium 15	Ferric. 61
Tetraethylammonium	Lead
Iodopropionic acid, beta 96	
Ionic volume and hydration 80	
Isobutyric acid	Magnesium
Hydroxy	Manganous
Isopropylmalonic acid	Nickel
Isovaleric acid	Potassium
Itaconic acid	Silver 55
Toaconic acid	Sodium 15
Laevo-tartaric acid	Strontium 40
Lead—	Uranyl
Acetate	Zinc
Chloride	Nitric acid 66
Nitrate 58	Nitrobenzenesulphonic acid, meta 128
Levulinic acid	Nitrobenzoic acid—
Lithium—	Meta
Bromide 12	Ortho. 117
Chloride	Para
	Nitrotoluenenesulphonic acid (1, 2, 4) 129
	Nitrotoluenenulphonic acid (1, 2, 4) 125
Sulphate	Nitrotoluenesulphonic acid (1, 4, 2) 130
Magnesium—	Organic acids
Acetate	Discussion of the results with the 137
Bromide	Dissociation of
Chloride	Values of μ_{∞} for the 91
Formate	Ortho-aminobenzoic acid 124
Nitrate	Ortho-chlorbenzoic acid
Magnesium sulphate	Ortho-nitrobenzoic acid
Maleia soid	Ortho-phthalic acid
Maleic acid	Ortho-toluic acid
Malonic acid	Para-aminobenzoic acid
Allyl	Para-aminopenzoic acid
Benzyl	Para-hydroxybenzoic acid
Butyl	Para-nitrobenzoic acid
Diethyl	Para-sulphaminobenzoic acid
Dimethyl	Para-toluenesulphonic acid
Dipropyl 103	Para-toluic acid
Ethyl101	Per cent—
Isopropyl	Temperature coefficients in 143
Methylethyl	Temperature coefficients of conduc-
Mandelic acid	tivity 81
Manganous—	Perchlorate—
Chloride 49	Potassium
Nitrate 50	Sodium 16
Sulphate 50	Permanganate, potassium

148 INDEX.

PA	GE.	PA	GE.
Phenylacetic acid	95	Solutions, preparation of	8
Phenylpropiolic acid		Succinic acid	105
Dhambata	110		127
Phosphate—	95		141
Dipotassium acid	25	Sulphate—	00
Disodium acid	18	Aluminium	60
Potassium	25	Ammonium	33
Sodium ammonium acid	18	Ammonium acid	34
Phthalic acid, ortho		Ammonium aluminium	34
Picramic acid	127	Ammonium chromium (green)	35
Pierie acid	120	Ammonium chromium (violet)	35
Potassium—		Ammonium copper	36
Acetate	30	Chromic	63
Acid sulphate	24	Cobalt	54
Aluminium sulphate	30	Cupric	57
Bromide	21	Lithium	13
Carbonate	24	Magnesium	45
	22		50
Chlorate		Manganous	
Chloride	20	Nickel	52
Chromate	28	Potassium	23
Chromium sulphate (green)	27	Potassium acid	24
Chromium sulphate (violet)	27	Potassium aluminium	30
Dichromate	29	Potassium chromium (green)	27
Ferrocyanide	29	Potassium chromium (violet)	27
Iodide	21	Potassium nickel	26
Nickel sulphate	26	Potassium sodium	26
	22	Sodium	17
Nitrate			
Monacid phosphate	25	Uranyl	64
Perchlorate	23	Zinc	47
Permanganate	28	Sulphaminobenzoic acid, para	127
Phosphate	25	Sulphanilic acid	126
Sodium sulphate	26	Sulphocyanate, potassium	31
Sulphate	23	Sulphosalicylic acid	121
Sulphocyanate	31	Sulphuric acid	66
Preparation of the solutions	8	Strontium—	-
	0	Acetate	40
Problem, investigators who have worked	11	MD 4.5	39
on the	11	Bromide	
Propionic acid	95	Chloride	39
Alpha-brom	96	Nitrate	40
Beta-acetyl	97	Tartaric acid, laevo	107
Beta-iodo	96	Temperature coefficients—	
Propylmalonic acid, di	103	In conductivity units	141
Pyromucic acid		In per cent	143
Pyrotartaric acid	107	Of conductivity and the solvate theory	110
Racemic acid	108		76
Results	11	of solution	
Discoursion of the		Of conductivity in per cent	81
Discussion of the	67	Tetraborate, sodium	19
With the organic acids, discussion of	137	Tetrachlorphthalic acid	134
Salts—		Tetraethylammonium iodide	32
Dissociation of the various	73	Thiodiglycolic acid	108
Sodium, of the organic acids, values of		Time factor, dehydrolytic	69
μ_{∞}	88	Toluenesulphonic acid, para	129
Salicylic acid		Toluic acid—	
Silver nitrate.	55	Meta	131
	00	Ortho	130
Sodium-	00	D	121
Acetate	20	Para	100
Ammonium acid phosphate	18	Tricarballylic acid	
Bromide	14	Trichloracetic acid	94
Carbonate	17	Uranyl—	
Chlorate	16	Acetate	65
Chloride	14	Chloride	63
Ferrocyanide	19	Nitrate	64
Iodide	15	Sulphate	64
Nitrate	15	Uric acid	
	16	Valeric acid, iso	99
Perchlorate	26	Vanillic acid	40.
Potassium sulphate			
Salts of the organic acids, values of μ_{∞} .	88	Volume ionic and hydration	-
Sulphate	17	Water	ć
Tetraborate	19	Zine—	
Solvate theory of solution and temperature		Acetate	47
coefficients of conductivity	76	Nitrate	46
Solubility of glass	7	Sulphate	47

University of Toronto Library

DO NOT
REMOVE
THE
CARD
FROM
THIS
POCKET

Acme Library Card Pocket
Under Pat. "Ref. Index File"
Made by LIBRARY BUREAU

