Vertex of the Quadratic

Given a quadratic $p(n) = a n^2 + b n + c$ compute its value at $n_1 = -\frac{b}{2a}$ namely $p(n_1) = c - \frac{b^2}{4a}$ Now compute the same quadratic at $\mathsf{n}_{1^+}\mathsf{h}$, namely

 $p(n_1+h) = -\frac{b^2}{4a} + a h^2 + c$

Compute $\triangle = p(n_1+h) - p(n_1) = a h^2$ Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the

global minimum!

Example 1. $p(n) = 4 n^2 - 16 n - 58$

However if a < 0 then riangle < 0 or vertex is the global maximum!

