[PSZT-P] Kiedy się poddać?

Bartosz Świtalski

Piotr Frątczak

22 listopada 2020

1 Opis problemu

Algorytmy ewolucyjne w klasycznym wydaniu nie mogą same zdecydować, kiedy zakończyć swoje działanie. W związku z tym należy rozważyć implementację określonego z góry kryterium. Nie istnieje uniwersalne kryterium wykrywania bezcelowości dalszej pracy algorytmu ewolucyjnego. W naszej pracy zaproponujemy przykładowe rozwiązania, zaimplementujemy je oraz dokonamy analizy ich działania.

2 Decyzje projektowe

Optymalizacja zostanie przeprowadzona na funkcjach z cec2005. Zaimplementowana została strategia ewolucyjna $(\mu + \lambda)$. Przyjęty budżet możliwych ewaluacji funkcji celu dla pojedynczej próby optymalizacji wynosi 10000*wymiarowość zadania. Skupiamy się na wymiarowości D=10. Podczas jednego uruchomienia programu dokonujemy uśrednienia wyników z 25 wywołań algorytmu.

3 Cele eksperymentu

Implementacja kryteriów przerwań optymalizacji. Zbadanie wpływu tychże kryteriów na ogólny czas optymalizacji oraz dokładność uzyskanego wyniku (optimum).

4 Użycie

/when-to-surrender\$

python3 when-to-surrender/main.py $\langle \text{funkcja} \rangle$ $\langle \text{kryterium} \rangle$ $\langle \text{p}_1 \rangle$ $\langle \text{p}_2 \rangle$ $\langle \text{p}_3 \rangle$ $\langle \text{p}_4 \rangle$

4.1 Oznaczenia argumentów

<funkcja> - optymalizowana funkcja (dozwolone wartości:F4, F5, F6). <kryterium> - kryterium przerwania (dozwolone wartości: k-iter, sd, best-worst, variance).

 $\langle p_i \rangle$ - kolejne wartości parametru do wcześniej sprecyzowanego kryterium.

4.2 Użycie skryptu

/when-to-surrender\$

./xscript.sh
./cleangraphs.sh

4.3 Komentarz do użycia

Skrypt umożliwia uruchomienie optymalizacji wszystkich dostępnych funkcji (3) według wszystkich zaimplementowanych kryteriów (4) z wcześniej określonymi parametrami (4 różne). Pojedyncze uruchomienie skryptu jest dość kosztowne czasowo (> 30 min.), więc w celu skrócenia czasu wykonania zalecany jest np. przydział zadań do różnych rdzeni (komenda taskset), ale optymalizacja czasu wykonania wielu uruchomień na raz nie jest tematem projektu.

5 Zaimplementowane strategie

- K-iterations (K-iteracji). Wykorzystane jako kryterium bazowe. Kryterium jest spełnione, jeśli nie ma poprawy wartości funkcji celu przez K kolejnych iteracji. Należy wybrać odpowiednią wartość K przy założeniu, że niemożliwe jest uzyskanie lepszego wyniku po K kolejnych iteracjach.
- Standard Deviation (Odchylenie Standardowe). Kryterium jest spełnione, jeżeli odchylenie standardowe wartości każdej z cech osobników obecnej generacji jest mniejsze lub równe niż dane próg $\epsilon \geq 0$.

- Best-worst (Najlepszy-Najgorszy). Kryterium jest spełnione, gdy różnica funkcji celu między najlepszym i najgorszym osobnikiem jest mniejsza lub równa niż dany próg $\epsilon \geq 0$.
- ϵ -Variance (ϵ -Wariancja). Kryterium uwzględniające koncepcję elitaryzmu poprzez zachowanie najsilniejszych jednostek na przestrzeni pokoleń. Kryterium jest spełnione, jeżeli wariancja najlepszych rozwiązań na przestrzeni pokoleń jest równa lub mniejsza od zadanego progu ϵ przy czym $1 \gg \epsilon \geq 0$.

6 Uzyskane wyniki

Uzyskane wyniki dla uruchomień każdej funkcji według każdego kryterium z różnymi parametrami zostały zebrane w pojedynczy plik output.pdf.

6.1 Komentarz do wyników

Przedstawione wyniki dotyczą średniej z 25 uruchomień algorytmu według ustalonego kryterium i ustalonych parametrów.

7 Wnioski

- 7.1 Wnioski do F4
- 7.2 Wnioski do F5
- 7.3 Wnioski do F6
- 8 Wkład pracy
- 9 Użyte narzędzia
- 9.1 Język programowania

Python 3.8.

9.1.1 Moduly

- optproblems zawiera zbiór powszechnie używanych benchmarków. Wykorzystano szczególnie moduł optproblems.cec2005 zawierający benchmarki CEC 2005, do badania działania zaimplementowanego algorytmu i kryteriów przerwań optymalizacji.
- random użycie funkcji do generowania liczb pseudolosowych z rozkładu normalnego i jednostajnego.
- math użycie funkcji matematycznych (exp, pierwiastek itd.).
- numpy wykorzystanie struktur do obsługi danych.
- matplotlib użyte do graficznej prezentacji danych w postaci wykresów.

10 Powiązane linki

Repozytorium projektowe

11 Bibliografia

GHOREISHI, Seyyedeh Newsha; CLAUSEN, Anders; JØRGENSEN, Bo Nørregaard. Termination Criteria in Evolutionary Algorithms: A Survey. In: IJCCI. 2017. p. 373-384.

SUGANTHAN, Ponnuthurai N., et al. Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. KanGAL report, 2005, 2005005.2005: 2005.