Dép. Math et Informatique Module: Structure machine 2

Année 2020-2021

CORRECTION DE LA SÉRIE DE TD N° 2

Exercice 1. Chronogramme des circuits séquentiels à bascules.

Les chronogrammes des bascules suivantes.

Exercice 2. Chronogramme des circuits séquentiels à bascules.

1. Les chronogrammes du circuit séquentiel à bascules suivant.

2. Ce circuit représente un registre à décalage à gauche.

Exercice 3. Synthèse des circuits séquentiels à bascules.

Réalisation du circuit correspondant au graphe de Mealy suivant avec des bascules JK.

q	Q	J	K
0	0	0	х
0	1	1	х
1	1 0		1
1	1 1		0

Table réduite de la bascule JK

– La table de transitions.

Etat a	Etat actuel Entrée		Etat futur		Basc	ule 1	Basc	Sortie	
q1	q0	E	Q1	Q0	J1	K1	J0	KO	S
0	0	0	0	0	0	х	0	х	0
0	0	1	0	1	0	х	1	х	0
0	1	0	1	0	1	х	х	1	0
0	1	1	0	1	0	х	х	0	0
1	0	0	0	0	х	1	0	х	0
1	0	1	1	1	х	0	1	х	0
1	1	0	1	0	х	0	х	1	1
1	1	1	0	1	х	1	х	0	0

– Les expressions simplifiées des entrées des bascules.

$$j1 = q0.\overline{E}$$

q1q0	00	01	11	10
0	х	х	0	1
1	х	х	1	0

$$k1 = \overline{q0 \oplus E}$$

$$S = q1 \cdot q0 \cdot \overline{E}$$

- Le schéma logique du circuit.

Exercice 4. Synthèse des compteurs à bascules.

1. Le chronogramme du circuit suivant.

 ${\it 2.}$ Ce circuit représente un compteur synchrone modulo 8.

- 3. Réalisation d'un compteur synchrone modulo 6 à l'aide de bascules JK.
 - La table de transitions.

Et	at actu	el	E	tat futu	ır	Bascule 2		Bascule 1		Bascule 0	
q2	q1	q0	Q2	Q1	Q0	J2	K2	J1	K1	JO	КО
0	0	0	0	0	1	0	Х	0	х	1	х
0	0	1	0	1	0	0	Х	1	х (Х	1
0	1	0	0	1	1	0	Х	Х	0	1	Х
0	1	1	1	0	0	1	Х	Х	1	Х	_1
1	0	0	1	0	1	Х	0	0	×	1	X
1	0	1	0	0	0	Х	1	0	Х	X	1

- Les expressions simplifiées des entrées des bascules.

– Le schéma logique du circuit.

- 4. Réalisation d'un décompteur synchrone modulo 10 à l'aide de bascules JK.
 - La table de transitions.

Etat actuel					Etat futur			Bascule 3		Bascule 2		Bascule 1		Bascule 0		
	q3	q2	q1	q0	Q3	Q2	Q1	Q0	J3	КЗ	J2	K2	J1	K1	J0	K0
	1	0	0	1	1	0	0	0	Χ	0	0	Χ	0	Χ	Χ	1
	1	0	0	0	0	1	1	1	Χ	1	1	Χ	1	Χ	1	Χ
	0	1	1	1	0	1	1	0	0	Χ	Χ	0	Χ	0	Χ	1
	0	1	1	0	0	1	0	1	0	Χ	Χ	0	Χ	1	1	Χ
	0	1	0	1	0	1	0	0	0	Χ	Χ	0	0	Χ	Χ	1
	0	1	0	0	0	0	1	1	0	Χ	Χ	1	1	Χ	1	Χ
	0	0	1	1	0	0	1	0	0	Χ	0	Χ	Χ	0	Χ	1
	0	0	1	0	0	0	0	1	0	Χ	0	Χ	Χ	1	1	Χ
	0	0	0	1	0	0	0	0	0	Χ	0	Χ	0	Χ	Χ	1
	0	0	0	0	1	0	0	1	1	Χ	0	Χ	0	Х	1	Χ

– Les expressions simplifiées des entrées des bascules.

- Le schéma logique du circuit.

