57017213 张曙

设输入信号为 P 和 Q, 输入进位为 C_I , 输出为 F, 输出进位为 C_O . 真值表如下:

P	Q	C_I	F	C_O
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

1 逻辑门实现

1.1 问题分析

卡诺图如下:

F:

QC_I	00	01	11	10
0	0	1	0	1
1	1	0	1	0

 C_O :

化简,得

$$F = P \oplus Q \oplus C_I$$

$$C_O = QC_I + PC_I + PQ$$

1.2 Verilog HDL 语言描述如下

```
module task1( P, Q, CI, F, CO );
input P, Q, CI;
output F, CO;
wire x, a1, a2, a3;

xor Xgate1( x, P, Q );
xor Xgate2( F, x, CI );
and Agate1( a1, P, Q );
and Agate2( a2, Q, CI );
and Agate3( a3, P, CI );
or Ogate( CO, a1, a2, a3 );
endmodule
```

1.3 电路生成

1.4 时序仿真

由图可知,该实验实现了一位全加器,其中 P,Q 为输入, C_I 为进位输入,F 为输出, C_O 为进位输出。

2 中规模逻辑器件实现

2.1 问题分析

由真值表,得出标准与-或表达式:

$$F = \sum m(1, 2, 4, 7)$$

$$C_O = \sum m(3, 5, 6, 7)$$

2.2 电路生成

2.3 时序仿真

由图可知,该实验实现了一位全加器,其中 P,Q 为输入, C_I 为进位输入,F 为输出, C_O 为进位输出。