Math 362: Mathematical Statistics II

Le Chen

le.chen@emory.edu chenle02@gmail.com

> Emory University Atlanta, GA

Last updated on Spring 2021 Last compiled on January 15, 2023

2021 Spring

Creative Commons License (CC By-NC-SA)

Chapter 9. Two-Sample Inferences

- § 9.1 Introduction
- § 9.2 Testing $H_0: \mu_X = \mu_Y$
- § 9.3 Testing $H_0: \sigma_X^2 = \sigma_Y^2$
- § 9.4 Binomial Data: Testing $H_0: p_X = p_Y$
- § 9.5 Confidence Intervals for the Two-Sample Problem

1

Plan

§ 9.1 Introduction

§ 9.2 Testing
$$H_0: \mu_X = \mu_Y$$

§ 9.3 Testing
$$H_0:\sigma_X^2=\sigma_Y^2$$

§ 9.4 Binomial Data: Testing
$$H_0: p_X = p_Y$$

§ 9.5 Confidence Intervals for the Two-Sample Problem

Chapter 9. Two-Sample Inferences

§ 9.1 Introduction

§ 9.2 Testing
$$H_0: \mu_X = \mu_Y$$

§ 9.3 Testing
$$H_0: \sigma_X^2 = \sigma_Y^2$$

§ 9.4 Binomial Data: Testing $H_0: p_X = p_Y$

§ 9.5 Confidence Intervals for the Two-Sample Problem

- ▶ Let X_1, \dots, X_n be a random sample of size n from $N(\mu_X, \sigma_X^2)$.
- ▶ Let Y_1, \dots, Y_m be a random sample of size m from $N(\mu_Y, \sigma_Y^2)$.

Prob. 1 Testing
$$H_0: \mu_X = \mu_Y$$
 if $\sigma_X^2 = \sigma_Y^2$.

Prob. 2 Testing
$$H_0: \mu_X = \mu_Y$$
 if $\sigma_X^2 \neq \sigma_Y^2$.

True means:
$$\mu_X, \mu$$

True std. dev.'s:
$$\sigma_X$$
, σ_Y

► True variances:
$$\sigma_X^2$$
, σ_Y^2

$$S_X, S_Y$$

$$S_X^2, S_Y^2$$

- ▶ Let X_1, \dots, X_n be a random sample of size n from $N(\mu_X, \sigma_X^2)$.
- ▶ Let Y_1, \dots, Y_m be a random sample of size m from $N(\mu_Y, \sigma_Y^2)$.

Prob. 1 Testing
$$H_0: \mu_X = \mu_Y$$
 if $\sigma_X^2 = \sigma_Y^2$.

Prob. 2 Testing
$$H_0: \mu_X = \mu_Y$$
 if $\sigma_X^2 \neq \sigma_Y^2$.

True means:
$$\mu_X, \mu$$

► True std. dev.'s:
$$\sigma_X$$
, σ_Y

► True variances:
$$\sigma_X^2$$
, σ_Y^2

$$\sigma_{X}, \sigma_{Y}$$

Sample std. dev.'s:
$$S_X$$
, S_Y

$$S_X^2, S$$

- ▶ Let X_1, \dots, X_n be a random sample of size n from $N(\mu_X, \sigma_X^2)$.
- Let Y_1, \dots, Y_m be a random sample of size m from $N(\mu_Y, \sigma_Y^2)$.

Prob. 1 Testing
$$H_0: \mu_X = \mu_Y$$
 if $\sigma_X^2 = \sigma_Y^2$.

Prob. 2 Testing
$$H_0: \mu_X = \mu_Y$$
 if $\sigma_X^2 \neq \sigma_Y^2$.

True means: μ_X, μ_Y

► True std. dev.'s: σ_X , σ_Y

► True variances: σ_X^2 , σ_Y^2

Sample means:

 $\overline{X}, \overline{Y}$

Sample std. dev.'s:

 S_X, S_Y

Sample variances:

 S_X^2, S_X^2

- ▶ Let X_1, \dots, X_n be a random sample of size n from $N(\mu_X, \sigma_X^2)$.
- ▶ Let Y_1, \dots, Y_m be a random sample of size m from $N(\mu_Y, \sigma_Y^2)$.

Prob. 1 Testing
$$H_0: \mu_X = \mu_Y$$
 if $\sigma_X^2 = \sigma_Y^2$.

Prob. 2 Testing
$$H_0: \mu_X = \mu_Y$$
 if $\sigma_X^2 \neq \sigma_Y^2$.

True means:
$$\mu_X, \mu$$

► True std. dev.'s:
$$\sigma_X$$
, σ_Y

► True variances:
$$\sigma_X^2$$
, σ_Y^2

Sample std. dev.'s:
$$S_X$$
, S_Y

Sample variances:
$$S_X^2$$
, S_X^2

$$S_X^-$$
, S_X^-

- ▶ Let X_1, \dots, X_n be a random sample of size *n* from $N(\mu_X, \sigma_X^2)$.
- Let Y_1, \dots, Y_m be a random sample of size m from $N(\mu_Y, \sigma_Y^2)$.

Prob. 1 Testing
$$H_0: \mu_X = \mu_Y$$
 if $\sigma_X^2 = \sigma_Y^2$.

Prob. 2 Testing
$$H_0: \mu_X = \mu_Y$$
 if $\sigma_X^2 \neq \sigma_Y^2$.

► True means:
$$\mu_X$$
, μ_Y

True std. dev.'s:
$$\sigma_X$$
, σ_Y

► True variances:
$$\sigma_X^2$$
, σ_Y^2

$$S_X, S_Y$$

$$S_X^2$$
, S_X^2

- ▶ Let X_1, \dots, X_n be a random sample of size *n* from $N(\mu_X, \sigma_X^2)$.
- Let Y_1, \dots, Y_m be a random sample of size m from $N(\mu_Y, \sigma_Y^2)$.

Prob. 1 Testing
$$H_0: \mu_X = \mu_Y$$
 if $\sigma_X^2 = \sigma_Y^2$.

Prob. 2 Testing
$$H_0: \mu_X = \mu_Y$$
 if $\sigma_X^2 \neq \sigma_Y^2$.

► True means:
$$\mu_X$$
, μ_Y

► True std. dev.'s:
$$\sigma_X$$
, σ_Y

True variances:
$$\sigma_X^2$$

True variances:
$$\sigma_X^2$$
, σ_Y^2

$$\overline{X}, \overline{Y}$$

$$S_X, S_Y$$

$$S_X^2,\,S_Y^2$$

- ▶ Let X_1, \dots, X_n be a random sample of size n from $N(\mu_X, \sigma_X^2)$.
- Let Y_1, \dots, Y_m be a random sample of size m from $N(\mu_Y, \sigma_Y^2)$.

Prob. 1 Testing
$$H_0: \mu_X = \mu_Y$$
 if $\sigma_X^2 = \sigma_Y^2$.

Prob. 2 Testing
$$H_0: \mu_X = \mu_Y$$
 if $\sigma_X^2 \neq \sigma_Y^2$.

True means:
$$\mu_X, \mu_Y$$

► True std. dev.'s:
$$\sigma_X$$
, σ_Y

► True variances:
$$\sigma_X^2$$
, σ_Y^2

$$\overline{X}$$
, \overline{Y}

$$S_X, S_Y$$

$$S_X^2, S_X^2$$

- ▶ Let X_1, \dots, X_n be a random sample of size n from $N(\mu_X, \sigma_X^2)$.
- ▶ Let Y_1, \dots, Y_m be a random sample of size m from $N(\mu_Y, \sigma_Y^2)$.

Prob. 1 Testing
$$H_0: \mu_X = \mu_Y$$
 if $\sigma_X^2 = \sigma_Y^2$.

Prob. 2 Testing
$$H_0: \mu_X = \mu_Y$$
 if $\sigma_X^2 \neq \sigma_Y^2$.

True means:
$$\mu_X, \mu_Y$$

► True std. dev.'s:
$$\sigma_X$$
, σ_Y

► True variances:
$$\sigma_X^2$$
, σ_Y^2

$$\overline{X}$$
, \overline{Y}

$$S_X, S_Y$$

$$S_X^2$$
, S

- ▶ Let X_1, \dots, X_n be a random sample of size n from $N(\mu_X, \sigma_X^2)$.
- ▶ Let Y_1, \dots, Y_m be a random sample of size m from $N(\mu_Y, \sigma_Y^2)$.

Prob. 1 Testing
$$H_0: \mu_X = \mu_Y$$
 if $\sigma_X^2 = \sigma_Y^2$.

Prob. 2 Testing
$$H_0: \mu_X = \mu_Y$$
 if $\sigma_X^2 \neq \sigma_Y^2$.

True means:
$$\mu_X, \mu_Y$$

► True std. dev.'s:
$$\sigma_X$$
, σ_Y

► True variances:
$$\sigma_X^2$$
, σ_Y^2

$$\overline{X}$$
, \overline{Y}

$$S_X$$
, S_Y

$$S_X^2, S_Y^2$$

- ▶ Let X_1, \dots, X_n be a random sample of size n from $N(\mu_X, \sigma_X^2)$.
- ▶ Let Y_1, \dots, Y_m be a random sample of size m from $N(\mu_Y, \sigma_Y^2)$.

Prob. 1 Testing
$$H_0: \mu_X = \mu_Y$$
 if $\sigma_X^2 = \sigma_Y^2$.

Prob. 2 Testing
$$H_0: \mu_X = \mu_Y$$
 if $\sigma_X^2 \neq \sigma_Y^2$.

True means:
$$\mu_X, \mu_Y$$

► True std. dev.'s:
$$\sigma_X$$
, σ_Y

► True variances:
$$\sigma_X^2$$
, σ_Y^2

$$\overline{X}$$
, \overline{Y}

$$S_X, S_Y$$

$$S_X^2$$
, S_Y^2

When
$$\sigma_X^2 = \sigma_Y^2 = \sigma^2$$

Def. The pooled variance:
$$S_p^2 = \frac{(n-1)S_\chi^2 + (m-1)S_\gamma^2}{n+m-2}$$

$$=\frac{\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}+\sum_{j=1}^{n}(Y_{j}-\overline{Y})^{2}}{n+m-2}$$

Thm.
$$T_{n+m-2}=rac{\overline{X}-\overline{Y}-(\mu_X-\mu_Y)}{S_p\sqrt{rac{1}{n}+rac{1}{m}}}\sim$$
 Student t distr. of $n+m-2$ dgs of fd.

Proof. (See slides on Section 9.1

When
$$\sigma_X^2 = \sigma_Y^2 = \sigma^2$$

Def. The pooled variance:
$$S_p^2 = \frac{(n-1)S_\chi^2 + (m-1)S_\gamma^2}{n+m-2}$$

$$=\frac{\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}+\sum_{j=1}^{n}(Y_{j}-\overline{Y})^{2}}{n+m-2}$$

Thm.
$$T_{n+m-2} = \frac{\overline{X} - \overline{Y} - (\mu_X - \mu_Y)}{S_p \sqrt{\frac{1}{n} + \frac{1}{m}}} \sim \text{Student t distr. of } n + m - 2 \text{ dgs of fd.}$$

Proof. (See slides on Section 9.1)

When
$$\sigma_X^2 = \sigma_Y^2 = \sigma^2$$

Def. The pooled variance:
$$S_p^2 = \frac{(n-1)S_X^2 + (m-1)S_Y^2}{n+m-2}$$

$$=\frac{\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}+\sum_{j=1}^{n}(Y_{j}-\overline{Y})^{2}}{n+m-2}$$

Thm.
$$T_{n+m-2}=rac{\overline{X}-\overline{Y}-(\mu_X-\mu_Y)}{S_p\sqrt{rac{1}{p}+rac{1}{m}}}\sim$$
 Student t distr. of $n+m-2$ dgs of fd.

When
$$\sigma_{\it X}^2=\sigma_{\it Y}^2=\sigma^2$$

Testing
$$H_0: \mu_X = \mu_Y$$
 v.s.

(at the α level of significance)

$$t = \frac{\bar{x} - \bar{y}}{s_p \sqrt{\frac{1}{n} + \frac{1}{m}}}$$

$$H_1: \mu_X < \mu_Y$$
: $H_1: \mu_X \neq \mu_Y$: $H_1: \mu_X > \mu_Y$: Reject H_0 if Reject H_0 if $t \leq -t_{\alpha,n+m-2}$ $|t| \geq t_{\alpha/2,n+m-2}$ $t \geq t_{\alpha,n+m-2}$

E.g. Test whether Mark Twain and Snodgrass are the same person by checking the proportion of three-letter words at the 99% level of significance.

Sol. We need to test

$$H_0: \mu_X = \mu_Y \quad v.s. \quad H_1: \mu_X \neq \mu_Y.$$

Since we are tesing whether they are the same person, one can assume that $\sigma_X^2 = \sigma_Y^2$.

E.g. Test whether Mark Twain and Snodgrass are the same person by checking the proportion of three-letter words at the 99% level of significance.

Table 9.2.1 Proportion of Three-Letter Words					
Twain	Proportion	QCS	Proportion		
Sergeant Fathom letter	0.225	Letter I	0.209		
Madame Caprell letter	0.262	Letter II	0.205		
Mark Twain letters in		Letter III	0.196		
Territorial Enterprise		Letter IV	0.210		
First letter	0.217	Letter V	0.202		
Second letter	0.240	Letter VI	0.207		
Third letter	0.230	Letter VII	0.224		
Fourth letter	0.229	Letter VIII	0.223		
First Innocents Abroad letter		Letter IX	0.220		
First half	0.235	Letter X	0.201		
Second half	0.217				

Sol. We need to test

$$H_0: \mu_X = \mu_Y$$
 v.s. $H_1: \mu_X \neq \mu_Y$.

Since we are tesing whether they are the same person, one can assume that $\sigma_X^2 = \sigma_Y^2$.

1. n = 8, m = 10,

$$\sum_{i=1}^{n} x_i = 1.855, \quad \sum_{i=1}^{n} x_i^2 = 0.4316$$

$$\sum_{i=1}^{m} y_i = 2.097, \quad \sum_{i=1}^{m} y_i^2 = 0.4406$$

2. Hence.

$$\bar{x} = 1.855/8 = 02319 \quad \bar{y} = 2.097/10 = 0.2097$$

$$s_X^2 = \frac{8 \times 0.4316 - 1.855^2}{8 \times 7} = 0.0002103$$

$$s_Y^2 = \frac{10 \times 0.4406 - 2.097^2}{10 \times 9} = 0.0000955$$

$$s_\rho^2 = \frac{(n-1)s_X^2 + (m-1)s_Y^2}{n+m-2} = \dots = 0.0001457$$

$$t = \frac{\bar{x} - \bar{y}}{s_\rho \sqrt{\frac{1}{n} + \frac{1}{m}}} = \dots = 3.88$$

1. n = 8, m = 10,

$$\sum_{i=1}^{n} x_i = 1.855, \quad \sum_{i=1}^{n} x_i^2 = 0.4316$$

$$\sum_{i=1}^{m} y_i = 2.097, \quad \sum_{i=1}^{m} y_i^2 = 0.4406$$

2. Hence,

$$\bar{x} = 1.855/8 = 02319 \quad \bar{y} = 2.097/10 = 0.2097$$

$$s_X^2 = \frac{8 \times 0.4316 - 1.855^2}{8 \times 7} = 0.0002103$$

$$s_Y^2 = \frac{10 \times 0.4406 - 2.097^2}{10 \times 9} = 0.0000955$$

$$s_p^2 = \frac{(n-1)s_X^2 + (m-1)s_Y^2}{n+m-2} = \dots = 0.0001457$$

$$t = \frac{\bar{x} - \bar{y}}{s_p \sqrt{\frac{1}{n} + \frac{1}{m}}} = \dots = 3.88$$

3. Critical region: $|t| \ge t_{0.005,n+m-2} = t_{0.005,16} = 2.9208$.

4. Conclusion: Rejection!

3. Critical region: $|t| \ge t_{0.005,n+m-2} = t_{0.005,16} = 2.9208$.

4. Conclusion: Rejection!

E.g. Comparing large-scales and small-scales companies:

Based on the data below, can we say that the return o equity differs between the two types of companies?

E.g. Comparing large-scales and small-scales companies:

Based on the data below, can we say that the return o equity differs between the two types of companies?

Table 9.2.4			
	Return on		Return on
Large-Sales Companies	Equity (%)	Small-Sales Companies	Equity (%)
Deckers Outdoor	21	NVE	21
Jos. A. Bank Clothiers	23	Hi-Shear Technology	21
National Instruments	13	Bovie Medical	14
Dolby Laboratories	22	Rocky Mountain Chocolate	31
		Factory	
Quest Software		Rochester Medical	19
Green Mountain Coffee	17	Anika Therapeutics	19
Roasters			
Lufkin Industries	19	Nathan's Famous	11
Red Hat	11	Somanetics	29
Matrix Service	2	Bolt Technology	20
DXP Enterprises	30	Energy Recovery	27
Franklin Electric	15	Transcend Services	27
LSB Industries	43	IEC Electronics	24

Sol. Let μ_X and μ_Y be the average returns. We are asked to test

$$H_0: \mu_X = \mu_Y$$
 v.s. $H_1: \mu_X \neq \mu_Y$.

$$n = 12,$$
 $\sum_{i=1}^{n} x_i = 223$ $\sum_{i=1}^{n} x_i^2 = 5421$
 $m = 12,$ $\sum_{i=1}^{m} y_i = 263$ $\sum_{i=1}^{m} y_i^2 = 6157$

$$\bar{x} = 18.5833,$$
 $s_X^2 = 116.0833$ $\bar{y} = 21.9167,$ $s_Y^2 = 35.7197$ $w = \frac{18.5833 - 21.9167}{\sqrt{\frac{116.0833}{12} + \frac{35.7197}{12}}} = -0.9371932.$

$$\theta = \frac{35.7179}{35.7179} = 3.250 \quad \Rightarrow \quad \nu = \left[\frac{1}{11}3.250^2 + \frac{1}{11}1^2\right] = [17.18403] = 17.$$

Sol. Let μ_X and μ_Y be the average returns. We are asked to test

$$H_0: \mu_X = \mu_Y$$
 v.s. $H_1: \mu_X \neq \mu_Y$.

1.

$$n = 12,$$
 $\sum_{i=1}^{n} x_i = 223$ $\sum_{i=1}^{n} x_i^2 = 5421$ $m = 12,$ $\sum_{i=1}^{m} y_i = 263$ $\sum_{i=1}^{m} y_i^2 = 6157$

2

$$\bar{x} = 18.5833, \qquad s_X^2 = 116.0833$$

$$\bar{y} = 21.9167, \qquad s_Y^2 = 35.7197$$

$$w = \frac{18.5833 - 21.9167}{\sqrt{\frac{116.0833}{12} + \frac{35.7197}{12}}} = -0.9371932.$$

$$\hat{\theta} = \frac{116.0833}{35.7179} = 3.250 \quad \Rightarrow \quad \nu = \left[\frac{(3.250 + 1)^2}{\frac{1}{11}3.250^2 + \frac{1}{11}1^2} \right] = [17.18403] = 17.$$

Sol. Let μ_X and μ_Y be the average returns. We are asked to test

$$H_0: \mu_X = \mu_Y$$
 v.s. $H_1: \mu_X \neq \mu_Y$.

1.

$$n = 12,$$
 $\sum_{i=1}^{n} x_i = 223$ $\sum_{i=1}^{n} x_i^2 = 5421$
 $m = 12,$ $\sum_{i=1}^{m} y_i = 263$ $\sum_{i=1}^{m} y_i^2 = 6157$

2.

$$ar{x} = 18.5833, \qquad s_X^2 = 116.0833$$
 $ar{y} = 21.9167, \qquad s_Y^2 = 35.7197$
 $w = rac{18.5833 - 21.9167}{\sqrt{rac{116.0833}{12} + rac{35.7197}{12}}} = -0.9371932.$

$$\hat{\theta} = \frac{116.0833}{35.7179} = 3.250 \quad \Rightarrow \quad \nu = \left[\frac{(3.250 + 1)^2}{\frac{1}{11}3.250^2 + \frac{1}{11}1^2} \right] = [17.18403] = 17.$$

3. The critical region is $|w| \ge t_{\alpha/2,17} = 2.1098$.

4. Conclusion

Since w = -0.94 is not in the critical region, we fail to reject H_0 .

3. The critical region is $|w| \ge t_{\alpha/2,17} = 2.1098$.

4. Conclusion:

Since w = -0.94 is not in the critical region, we fail to reject H_0 .