

Relatório-TP1

Guilherme Sobreiro Almeida – 2019224555

Mariana Ferreira Sousa – 2020226346

Nuno Alexandre Santos Vasques - 2020235483

Índice

Α.	Resultados do editor de imagem p JPEG (GIMP)	2
В.	Comparação da imagem com YCbCr e RGB	3
C.	Dimensão resultante do <i>downsampled</i> realizado	4
D.	Transformada de Cosseno Discreta (DCT)	4
E.	DCT block 8	5
F.	Quantização	6
G.	Codificação DPCM dos coeficientes DC	7
Н.	Métricas de distorção (MSE, RMSE, SNR e PSNR) e fator de qualidade	7

A. Resultados do editor de imagem p JPEG (GIMP)

Para o cálculo das taxas de compressão foi utilizado como ferramenta o editor de imagem GIMP. E com isto, concluímos que:

	Taxas de compressão						
Ficheiros	+5	+25	+75				
barn_mountains.bmp	O detalhe praticamente desapareceu, a imagem parece ser constituída por quadrados de cores diferentes e várias dessas cores são agora mistura de cores que anteriormente estavam na imagem, originando novas cores que não existiam na imagem.	A diferença é percetível, podemos observar que se perdeu uma quantidade considerável de detalhe e que a imagem no geral tem um aspeto mais desfocado.	A diferença é quase impercetível, se observarmos extremamente perto conseguimos perceber que algo está diferente, mas numa observação normal é impercetível.				
logo.bmp	O efeito de "noise" está agora a afetar grandes porções da imagem, originando cores que não se encontravam anteriormente na imagem, mas continuo a apontar que onde não existe transições de cores é completamente impercetível da imagem original.	O efeito anterior de "noise" visual está agora muito acentuado, observando-se distorção nas transições de cor bruscas, mas também se deve apontar que onde não existe transição de cor (o background branco, o centro das formas), a diferença com a original é impercetível.	A imagem no geral parece semelhante, mas se observarmos as zonas onde existem transições bruscas de cores conseguimos observar um tipo de "noise" visual, mas não muito acentuado.				
peppers.bmp	O background é praticamente constituído por uma cor, perdendo todo o detalhe da original e o efeito de "noise" visual observado no logo é claramente visível a volta das peppers.	Tal como na barn_mountains, o detalhe diminuiu significativamente, como se pode observar no background e a transição entre as pepper, transições de cor bruscas, estão praticamente desfocadas.	A diferença é praticamente impercetível, inclusive se observarmos de perto.				

 Tabela1.
 Comentários acerca da taxa de compressão em relação ao nível de qualidade da imagem comprimida.

B. Comparação da imagem com YCbCr e RGB

> Comparar Y com RGB

Y representa a luz e o brilho numa imagem e, como o olho humano é mais sensível a verde e a vermelho, podemos observar que o detalhe nos canais R e G é substancialmente superior do que no canal B, especialmente o canal G.

.

Comparar Y com CbCr e RGB

Cb e Cr representam a crominância da imagem sendo Cb a variação de azul relativamente a Y e Cr a variação de vermelho em relação a Y, relações essas que podem ser observadas se compararmos os canais Cb com B e Cr com R.

Figura4. Imagem Y

Figura5. Imagem Cb

Figura6. Imagem Cr

C. Dimensão resultante do downsampled realizado

Dimensão Cb downsampled 4:2:2	208 x 320
Dimensão Cr downsampled 4:2:2	208 x 320

Tabela 2. Dimensão obtida após downsampled 4:2:2

Dimensão Cb downsampled 4:2:0	208 x 160
Dimensão Cr downsampled 4:2:0	208 x 160

Tabela3. Dimensão obtida após downsampled 4:2:0

De acordo com os resultados, verificamos que, no caso 4:2:0, a imagem sofreu uma perda de qualidade e perda de dimensões, neste caso, reduzidas, o que significa que a imagem foi mais destrutiva e teve maior taxa de compressão em JPEG. Por outro lado, no caso 4:2:2, a imagem sofreu uma perda de qualidade menor, vistos que só afetou a largura da imagem e não ambas as dimensões.

D. Transformada de Cosseno Discreta (DCT)

A aplicação da transformada de Cosseno Discreta (DCT) é comum em processos de compressão de dados, sobretudo em multimédia como áudio e vídeo.

O uso da DCT permitiu-nos a remoção de componentes de alta frequência, que são consideradas perceptualmente menos importantes para o sistema visual (ou até mesmo auditivo) humano.

Dessa forma, ao utilizar a DCT em um sinal, é possível reduzir a quantidade de informação necessária para a sua representação, mantendo a qualidade percebida de forma satisfatória.

Figura 7. DCT_Y Figura 8. DCT_Cb Figura 9. DCT_Cr

E. DCT block 8

Ao utilizar-mos a DCT em imagens, verificamos que, o uso de blocos 8x8 é preferível em relação ao uso da DCT sem os mesmos ou com blocos maiores, como 64x64.

Isso ocorre porque a DCT em blocos 8x8 oferece um melhor equilíbrio entre a resolução espacial e a resolução de frequência, permitindo a representação de componentes de alta frequência em áreas localizadas da imagem, enquanto mantém a qualidade em resolução espacial.

Assim, concluímos que, a técnica de blocos 8x8 é amplamente utilizada em algoritmos de compressão de imagem, como o JPEG, proporcionando uma compressão eficiente com uma qualidade visual aceitável.

Figura13. DCT_BLOCK_Y_64 Figura14. DCT_BLOCK_Y_64 Figura15. DCT_BLOCK_Y_64

F. Quantização

No processo de compressão de imagem com DCT, a etapa da quantização é responsável por reduzir ainda mais a quantidade de dados a serem armazenados ou transmitidos.

Durante essa etapa, os coeficientes de frequência obtidos pela DCT são arredondados para zero se tiverem magnitudes baixas e representados em menos bits se tiverem magnitudes elevadas.

Isso resulta em uma compressão ainda maior do que a simples aplicação da DCT ou da DCT em blocos 8x8, pois a maioria dos coeficientes é descartada e os poucos que permanecem são representados em menos bits.

Dito isto, concluímos que, quanto maior a qualidade, menos dados são comprimidos.

Figura16. QUANT_Y_10 Figura17. QUANT_Y_25 Figura18. QUANT_Y_50

G. Codificação DPCM dos coeficientes DC

Além da quantização, outra técnica comum utilizada em processos de compressão de imagem é o DPCM (Diferencial *Pulse Code Modulation*), que é aplicado após a etapa de quantização da DCT.

O DPCM aproveita a correlação entre os coeficientes de frequência adjacentes e usa a diferença entre eles para representar os valores de frequência, resultando em uma compressão ainda maior dos dados da imagem, mantendo uma qualidade aceitável.

H. Métricas de distorção (MSE, RMSE, SNR e PSNR) e fator de qualidade

Métricas de distorção/erro são grandezas matemáticas que medem o quão próximo a imagem descompactada e a original estão.

Desta maneira, abaixo encontram-se os respetivos valores, para cada ficheiro, do fator de qualidade em relação a cada métrica de distorção. Sendo:

- MSE: A diferença média quadrada entre os pixéis da imagem original e os da imagem reconstruída, penalizando mais erros elevados;
-) RMSE: Raiz do MSE, significando que a penalização de erros elevados não será tanta;
- > SNR: Relação entre o original e o erro;
- PSNR: Rácio entre o quadrado do valor mais alto da imagem original e o MSE.

barn_mountains.bmp

	Fator de qualidade					
Métricas de Distorção	10	25	50	75	100	
MSE	726.6761195286196	416.4002946127946	278.5848148148148	169.4515488215488	26.9494023569023	
RMSE	26.956930825459704	20.405888723914835	16.69086021794008	13.017355677000948	5.19128137909152	
SNR	18.572866924388357	20.991165527059763	22.736701407395536	24.89582038086679	32.88078442314741	
PSNR	19.517394724888177	21.93569332755959	23.681229207895353	25.84034818136661	33.82531222364723	

Tabela4. Valores do fator de qualidade em relação a métricas de distorção.

> Logo.bmp

	Fator de qualidade					
Métricas de Distorção	10	25	50	75	100	
MSE	177.811871886121	81.3826975088968	54.71254092526691	32.95059786476868	13.874064056939503	
RMSE	13.33461180110321	9.021235919146378	7.39679261067031	5.740261132106159	3.724790471548635	
SNR	28.832511094131714	32.22679782491714	33.951249788859705	36.15348564400993	39.910081680439674	
PSNR	25.631196069192743	29.025482799978167	30.749934763920734	32.95217061907096	36.708766655500696	

Tabela5. Valores do fator de qualidade em relação a métricas de distorção.

> peppers.bmp

	Fator de qualidade					
Métricas de	10	25	50	75	100	
Distorção						
MSE	322.8239491780599	154.3888397216797	102.2606709798177	69.38922627766927	20.40338134765625	
RMSE	17.96730222315136	12.425330567903604	10.11240184030568	8.33001958447093	4.517010222221802	
SNR	19.836294711821715	23.039793138466568	24.82886579205879	26.513031722831467	31.8289307042819	
PSNR	23.04114614836275	26.2446445750076	28.033717228599826	29.7178831593725	35.033782140822936	

Tabela5. Valores do fator de qualidade em relação a métricas de distorção.

A partir dos resultados apresentados, é possível concluir que quanto maior o fator de qualidade, menor é o MSE e RMSE e maior é o SNR e o PSNR. Isto significa que uma maior taxa de compressão resulta numa maior perda de informação, afetando a qualidade da imagem. Além disso, é possível perceber que a imagem "logo" apresentou, em geral, melhores resultados do que as imagens "barn_mountains" e "peppers".

No entanto, é importante ressaltar que os valores obtidos podem variar de acordo com as características de cada imagem e com as técnicas de compressão utilizadas.

Decoded e erros:

	Fator de qualidade				
Ficheiros	10	25	50	75	100
barn_mountains.bmp	9.478234638047136	6.982699511784512	5.564526742424243	4.150938585858586	0.5207630134680136
logo.bmp	2.3535700355871896	1.0873179572953724	0.9543289893238438	0.43488057651245726	0.1388953096085427
peppers.bmp	4.446283269246419	2.7025779418945306	2.0236660664876296	1.5613263956705723	0.5329066619873046

Com base nos valores obtidos para os diferentes valores de fator de qualidade, podemos concluir que a imagem "logo" é a que apresenta uma menor taxa de erro em comparação com as outras duas imagens. Isto deve-se ao facto de a imagem "logo" ser constituída por cores sólidas, o que facilita a compressão de dados.

Além disso, podemos observar que à medida que o fator de qualidade diminui, ou seja, à medida que a compressão aumenta, a taxa de erro das imagens *decoded* aumenta. Isto significa que à medida que a imagem é mais comprimida, a sua qualidade é degradada e surgem mais erros.

Finalmente, podemos notar que a imagem "barn_mountains" apresenta uma taxa de erro mais elevada do que a imagem "peppers" para o mesmo valor de fator de qualidade. Isso sugere que a imagem "burn_mountains" pode ser mais sensível à compressão do que a imagem "peppers".

Abaixo, temos como exemplo, a imagem "barn_mountains" de acordo com o seu erro e fator de qualidade.

Nota: Para uma visualização mais detalhada, as respetivas imagens irão junto com o relatório.