CSE 3320 Operating Systems Computer and Operating Systems Overview

Jia Rao

Department of Computer Science and Engineering

http://ranger.uta.edu/~jrao

Overview

- Recap of last class
 - What is an operating system ?
 - Functionalities of operating systems
 - Types of operating systems
- Computer hardware review
- Operating system organization

Computer Hardware Review

Basic components of a simple personal computer

- CPU: data processing
- Memory: volatile data storage
- Disk: persistent data storage
- NIC: inter-machine communication
- Bus: intra-machine communication

Central Processing Unit (CPU)

Components

- Arithmetic Logic Unit (ALU)
- Control Unit (CU)

Clock rate

 $_{\circ}$ The speed at which a CPU is running

Data storage

- General-purpose registers: EAX, EBX ...
- Special-purpose registers: PC (EIP), SP, IR ...

Parallelism

- Instruction-level parallelism
- Thread-level parallelism
 - Hyper-threading: duplicate units that store architectural states
 - Replicated: registers. Partitioned: ROB, load buffer... Shared: reservation station, caches

Multi-Core Processors

Multiple CPUs on a single chip

A schematic view of Intel Core 2

Multi-Core Processors: NUMA

Local memory

Intel Core i7

Core Memory Subsystem

UnCore Memory Subsystem

Shared LLC

Memory

A typical memory hierarchy

Why Cache is important?

- A larger size than registers
- A much faster speed than memory
- Concurrent accesses to memory when cache misses occur

More on CPU Cache

Cache management

- When to put a new item into the cache.
- Which cache line to put the new item in.
- Which item to remove from the cache when a slot is needed.
- Where to put a newly evicted item in the larger memory.
- When to write dirty item back to memory

Hard Disks

- A stack of platters, a surface with a magnetic coating
- Typical numbers (depending on the disk size):
 - 500 to 2,000 tracks per surface
 - o 32 to 128 sectors per track
 - A sector is the smallest unit that can be read or written
- Originally, all tracks have the same number of sectors:
 - "Constant" bit density: record more sectors on the outer tracks

Magnetic Disk Characteristics

- Disk head: each side of a platter has separate disk head
- Read/write data is a three-stage process:
 - Seek time: position the arm over the proper track
 - Rotational latency: wait for the desired sector to rotate under the read/write head
 - Transfer time: transfer a block of bits (sector)
 under the read-write head
- Long seek time
- Only one request at a time
- Throughput is dependent on data size
- Average seek time as reported by the industry:
 - Typically in the range of 8 ms to 15 ms
 - (Sum of the time for all possible seek) / (total # of possible seeks)
- Due to locality of disk reference
 - Actual average seek time may only be 25% to 33% of the advertised number

CPU v.s. Hard Disks

- Similarity
 - Time-sharing
- Differences (execution vehicle v.s. storage device)
 - CPU
 - Cache reuse -> temporal locality
 - Easy to switch between sharing parties -> fine grain, overhead sensitive
 - Usually multiple CPUs-> load balancing
 - Multiple execution modes -> energy saving
 - Hard disks
 - Almost no data reuse, but faster to read adjacent data -> spatial locality
 - Expensive to switch between sharing parties -> coarse grain
 - Striping or replication required if using multiple disks -> coordination

Memory Management

- Multiprogramming
 - How to protect the programs from one another and the kernel from them all?
 - How to handle relocation ?

Virtual memory space/address → Physical memory space/address

I/O Devices

- Device controller
 - To provide a simple interface of device control to OS
- Device driver
 - The software that talks to a controller, giving it commands and accepting responses

Interactions between OS and I/O Devices

- The OS gives commands to the I/O devices
- The I/O device notifies the OS when the I/O device has completed an operation or has encountered an error
- Data is transferred between memory and an I/O device

How I/O Devices Notify the OS?

Polling

- The I/O device put information in a status register
- The OS periodically check the status register

Interrupt

Whenever an I/O device needs attention from the processor,
 it interrupts the processor from what it is currently doing

DMA

Delegate I/O responsibility from CPU

Interrupts

Interrupts

- An interruption of the normal sequence of execution
- Improves processing efficiency
- Allows the processor to execute other instructions while an I/O operation is in progress
- A suspension of a process caused by an event external to that process and performed in such a way that the process can be resumed

Types of interrupts

- I/O
- Program (exception)
 - arithmetic overflow
 - division by zero
 - reference outside user's memory space
- Timer, Hardware failure

I/O Interrupt

(a)

- 1. CPU writes cmds in to device registers
- 2. The device signals interrupt controller
- 3. Interrupt controller informs a CPU
- 4. The CPU accepts the interrupt and triggers the service routine

System Calls

There are 11 steps in making the system call read (fd, buffer, nbytes)

Operating System Components

- Process management
- Memory management
- File and storage
- Networking

Process Management

- Process: a fundamental OS concept
 - Memory address space
 - Some set of registers
 - Protection domain
 - Resource allocation unit
- OS responsibilities for process management
 - Process creation and deletion
 - Process scheduling, suspension, and resumption
 - Inter-process communication and synchronization

Memory Management

- Memory
 - A large array of addressable words and bytes
- OS responsibilities for memory management
 - Allocate and de-allocate memory space
 - Keep memory space efficiently utilized
 - Keep track of which part of memory are used and by whom

Design goals: transparency and efficiency

File and Storage Management

- A file is a collection of data (usually) stored on disk with a unique name
 - Programs
 - Data
 - Devices (UNIX & Linux)
- OS responsibilities for file management
 - Organize directories and files
 - Map files onto disk
- OS responsibilities for disk management
 - Disk space management
 - Disk scheduling

Summary

Computer hardware

Time-sharing: CPU, disk

Space-sharing: memory, disk

OS components

- Process management
- Memory management
- File and storage management

Additional readings and practice

- Section 1.6 and try the following Linux commands
 - Who, uname, Is, cat, cp, rm, mv, cd, mkdir, touch, chmod
 - Use "man" to see the manual of above commends
- Write an C program with an output to the screen
 - Strace -o trace.txt ./YOUR_PROG
 - ▶ See the system calls triggered (execve, write, ...)
 - http://unix.stackexchange.com/questions/797/understanding-the-linux-kernel-source
- Check the VMware tutorial on course website