Visualization of CNN

What's going on inside CNN?

This image is CC0 public domain

Input Image: 3 x 224 x 224

Class Scores: 1000 numbers

Slide Credit: Stanford CS231n

Visualize Patches that Maximally Activate Neurons

Figure 4: Top regions for six pool₅ units. Receptive fields and activation values are drawn in white. Some units are aligned to concepts, such as people (row 1) or text (4). Other units capture texture and material properties, such as dot arrays (2) and specular reflections (6).

Rich feature hierarchies for accurate object detection and semantic segmentation [Girshick, Donahue, Darrell, Malik]

Slide Credit: Stanford CS231n

Visualize Filters

Only interpretable on the first layer

AlexNet: 64 x 3 x 11 x 11

ResNet-18: 64 x 3 x 7 x 7

ResNet-101: 64 x 3 x 7 x 7

DenseNet-121: 64 x 3 x 7 x 7

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifario.html

Visualizing the Representation

4096-dimensional "code" for an image (layer immediately before the classifier)

can collect the code for many images

Slide Credit: Stanford CS231n

Last Layer : Nearest Neighbors

4096-dim vector

Test image L2 Nearest neighbors in feature space

Last Layer: Dimensionality Reduction

 Visualize the "space" of FC7 feature vectors by reducing dimensionality of vectors from 4096 to 2 dimensions

• Simple algorithm: Principle Component Analysis(PCA)

More complex: t-SNE

Last Layer: Dimensionality Reduction

http://cs.stanford.edu/people/karpathy/cnnembed/

Occlusion Experiments

Visualizing Activations

https://www.youtube.com/watch?v=AgkflQ4IGaM

Weakly Supervised Learning

Class activation map (CAM)

- Identify important image regions by projecting back the weights of output layer to convolutional feature maps.
- CAMs can be generated for each class in single image.
- Regions for each categories are different in given image.
 - palace, dome, church ...

Figure 2. Class Activation Mapping: the predicted class score is mapped back to the previous convolutional layer to generate the class activation maps (CAMs). The CAM highlights the class-specific discriminative regions.

Results

- CAM on top 5 predictions on an image
- CAM for one object class in images

Figure 4. Examples of the CAMs generated from the top 5 predicted categories for the given image with ground-truth as dome. The predicted class and its score are shown above each class activation map. We observe that the highlighted regions vary across predicted classes e.g., *dome* activates the upper round part while palace activates the lower flat part of the compound.

Figure 3. The CAMs of four classes from ILSVRC [20]. The maps highlight the discriminative image regions used for image classification e.g., the head of the animal for *briard* and *hen*, the plates in *barbell*, and the bell in *bell cote*.

GAP & GMP

- GAP (upper) vs GMP (lower)
- GAP outperforms GMP
- GAP highlights more **complete** object regions and less background noise.
- Loss for average pooling benefits when the network identifies all discriminative regions of an object

Table 2. Localization error on the ILSVRC validation set. Backprop refers to using [22] for localization instead of CAM.

Ta	ole 1. Classification	error on the ILS	VRC validation
	Networks	top-1 val. error	top-5 val. error
	VGGnet-GAP	33.4	12.2
	GoogLeNet-GAP	35.0	13.2
	AlexNet*-GAP	44.9	20.9
	AlexNet-GAP	51.1	26.3
	GoogLeNet	31.9	11.3
	VGGnet	31.2	11.4
	AlexNet	42.6	19.5
	NIN	41.9	19.6
	GoogLeNet-GMP	35.6	13.9

Method	top-1 val.error	top-5 val. error
GoogLeNet-GAP	56.40	43.00
VGGnet-GAP	57.20	45.14
GoogLeNet	60.09	49.34
AlexNet*-GAP	63.75	49.53
AlexNet-GAP	67.19	52.16
NIN	65.47	54.19
Backprop on GoogLeNet	61.31	50.55
Backprop on VGGnet	61.12	51.46
Backprop on AlexNet	65.17	52.64
GoogLeNet-GMP	57.78	45.26

Weakness of CAM (Weakly Supervised Localicztion)

Focusing on discriminative features

Weakness of CAM (Weakly Supervised Localicztion)

• Focusing on discriminative features

