Lagrange multipliers

Course of Machine Learning Master Degree in Computer Science University of Rome "Tor Vergata"

Giorgio Gambosi

a.a. 2017-2018

Lagrange method

Widely applied to solve constrained optimization problems, such as

$$\min_{\mathbf{x}} f(\mathbf{x})$$

$$h_i(\mathbf{x}) = 0 \qquad i = 1, \dots, l$$

The lagrangian of this problem is defined as

$$L(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) + \sum_{i=1}^{l} \lambda_i h_i(\mathbf{x})$$

The coefficients λ_i are said lagrangian multipliers

Lagrangian optimization

Finding the solutions of

$$\frac{\partial L(\mathbf{x}, \boldsymbol{\lambda})}{\partial \mathbf{x}} = \mathbf{0}$$

is a means to identify the values ${\bf x}$ which minimize (or maximize) $L({\bf x}, {m \lambda})$.

Also, the solutions of setting to zero the derivates wrt to multipliers

$$\frac{\partial L(\mathbf{x}, \boldsymbol{\lambda})}{\partial \boldsymbol{\lambda}} = \mathbf{0}$$

correspond to setting $h_i(\mathbf{x}) = 0$ for all i, that is to satisfy all the constraints.

Hence, requiring that all derivatives are equal to zero is equivalent to solve the original optimization problem wrt $f(\mathbf{x})$, while satisfying all constraints.

Given the following minimization problem,

$$\min_{x_1, x_2} 1 - x_1^2 - x_2^2$$

$$x_1 + x_2 - 1 = 0 \qquad i = 1, \dots, l$$

the corresponding lagrangian is defined

$$L(x_1, x_2, \lambda) = 1 - x_1^2 - x_2^2 + \lambda(x_1 + x_2 - 1)$$

Setting all derivatives (wrt x_1 , x_2 , and λ) to zero, we get

$$\frac{\partial}{\partial x_1} L(x_1, x_2, \lambda) = -2x_1 + \lambda = 0$$

$$\frac{\partial}{\partial x_2} L(x_1, x_2, \lambda) = -2x_2 + \lambda = 0$$

$$\frac{\partial}{\partial \lambda} L(x_1, x_2, \lambda) = x_1 + x_2 - 1 = 0$$

which results into $x_1=1/2$ and $x_2=1/2$ (the solution $\lambda=1$ also results, but this value is of minor relevance).

General case

In the general definition, not all constraints are defined in terms of equalities. In this case, the following general problem $\mathcal P$ is considered:

$$\min_{\mathbf{x}} f(\mathbf{x})$$

$$g_i(\mathbf{x}) \le 0 \qquad i = 1, \dots, k$$

$$h_i(\mathbf{x}) = 0 \qquad i = 1, \dots, l$$

Let us introduce the generalized lagrangian

$$L(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\lambda}) = f(\mathbf{x}) + \sum_{i=1}^{k} \lambda_i g_i(\mathbf{x}) + \sum_{i=1}^{l} \alpha_i h_i(\mathbf{x})$$

where the set of lagrangian multipliers (also denoted as dual variables) is given by $\alpha \cup \lambda$, where $\alpha = \{\alpha_1, \dots, \alpha_l\}$ and $\lambda = \{\lambda_i, \dots, \lambda_k\}$).

Primal problem

Let us introduce the maximization problem \mathcal{P}_p

$$\theta_p(\mathbf{x}) = \max_{\boldsymbol{\lambda}, \boldsymbol{\alpha}: \lambda_i \ge 0} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\alpha})$$

For any \mathbf{x} ,

- 1. if \mathbf{x} violates a constraint in \mathcal{P} (either $g_i(\mathbf{x}) > 0$ or $h_i(\mathbf{x}) \neq 0$, for some i), then $\theta_p(\mathbf{x})$ can be arbitrarily large.
- 2. if \mathbf{x} satisfies all constraints in \mathcal{P} , then $L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\alpha}) = f(\mathbf{x})$ for all $\boldsymbol{\lambda}, \boldsymbol{\alpha}$ and, as a consequence, $\theta_p(\mathbf{x}) = f(\mathbf{x})$.

Hence,

- if all constraints defined in $\mathcal P$ are satisfied, the values of the objective functions of $\mathcal P$ and of $\mathcal P_p$ are equal (and their optimal values are then equal themselves)
- · if some constraint in ${\mathcal P}$ is not satisfied, θ_p has value $+\infty$

Primal problem

The primal optimization problem \mathcal{P}_1 is defined as

$$\min_{\mathbf{x}} \theta_p(\mathbf{x}) = \min_{\mathbf{x}} \max_{\boldsymbol{\lambda}, \boldsymbol{\alpha}: \lambda_i \geq 0} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\alpha})$$

with optimal value $p^* = \min_{\mathbf{x}} \theta_p(\mathbf{x})$. The problem has the following properties

- 1. all feasible solutions of ${\mathcal P}$ are feasible solutions of ${\mathcal P}_1$
- 2. each unfeasible solution of $\mathcal P$ is a feasible solution of $\mathcal P_1$, with value $+\infty$ of the objective function

As a consequence

- 1. all solutions of \mathcal{P}_1 are feasible
- 2. the optimal solution of ${\mathcal P}$ has value p^*

Dual problem

Let us introduce the dual function

$$\theta_d(\lambda, \alpha) = \min_{\mathbf{x}} L(\mathbf{x}, \lambda, \alpha)$$

and consider the dual problem

$$\max_{\boldsymbol{\lambda},\boldsymbol{\alpha}:\lambda_i\geq 0}\theta_d(\boldsymbol{\lambda},\boldsymbol{\alpha}) = \max_{\boldsymbol{\lambda},\boldsymbol{\alpha}:\lambda_i\geq 0}\min_{\mathbf{x}}L(\mathbf{x},\boldsymbol{\lambda},\boldsymbol{\alpha})$$

with optimum value $d^* = \max_{\lambda,\alpha:\lambda_i \geq 0} \theta_d(\lambda,\alpha)$.

Relations between primal and dual

In general, for all functions f(x, y) it holds

$$\max_{x} \min_{y} f(x, y) \le \min_{y} \max_{x} f(x, y)$$

Then,

$$d^* = \max_{\boldsymbol{\lambda}, \boldsymbol{\alpha}: \lambda_i \ge 0} \theta_d(\boldsymbol{\lambda}, \boldsymbol{\alpha}) = \max_{\boldsymbol{\lambda}, \boldsymbol{\alpha}: \lambda_i \ge 0} \min_{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\alpha}) \le$$
$$= \min_{\mathbf{x}} \max_{\boldsymbol{\lambda}, \boldsymbol{\alpha}: \lambda_i \ge 0} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\alpha}) = \min_{\mathbf{x}} \theta_p(\mathbf{x}) = p^*$$

Relations between primal and dual

In the case of linear constraints and convex objective function (non negative second derivative), the optimal solutions λ^* , α^* of $\theta_d(\lambda, \alpha)$, and the optimal solution \mathbf{x}^* of $\theta_p(\mathbf{x})$ are such that

$$p^* = \theta_p(\mathbf{x}^*) = \theta_d(\boldsymbol{\lambda}^*, \boldsymbol{\alpha}^*) = d^*$$

and

$$p^* = d^* = L(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\alpha}^*)$$

KKT conditions

Under the same hypotheses, the optimum values λ^* , α^* , \mathbf{x}^* satisfy the following Karush-Kuhn-Tucker (KKT) conditions

$$\begin{split} \frac{\partial}{\partial \mathbf{x}} L(\mathbf{x}^*, \pmb{\lambda}^*, \pmb{\alpha}^*) &= \mathbf{0} \\ g_i(\mathbf{x}^*) &\leq 0 \qquad i = 1, \dots, k \qquad \text{inequality constraints} \\ h_i(\mathbf{x}^*) &= 0 \qquad i = 1, \dots, l \qquad \text{equality constraints} \\ \lambda_i^* &\geq 0 \qquad i = 1, \dots, k \qquad \text{multipliers of inequality constraints} \\ \lambda_i^* g_i(\mathbf{x}^*) &= 0 \qquad i = 1, \dots, k \qquad \text{complementary slackness} \end{split}$$

KKT conditions

Condition 1

$$rac{\partial}{\partial \mathbf{x}} L(\mathbf{x}^*, oldsymbol{\lambda}^*, oldsymbol{lpha}^*) = \mathbf{0}$$

states that the gradient must be null for the optimum solution.

Conditions 2-3

$$g_i(\mathbf{x}^*) \le 0$$
 $i = 1, \dots, k$

and

$$h_i(\mathbf{x}^*) = 0 \qquad i = 1, \dots, l$$

are just the original problem constraints.

Condition 4

$$\lambda_i^* \ge 0 \qquad i = 1, \dots, k$$

for inequality constraints.

KKT conditions

Condition 5

$$\lambda_i^* g_i(\mathbf{x}^*) = 0$$

implies that if $\lambda_i^* > 0$ then $g_i(\mathbf{x}) = 0$, that is the constraint $g_i(\mathbf{x}) \geq 0$ is satisfied at the limit (with equality): in this case, the constraint is said *attivo*.