Zadanie 1.

Dla następujących relacji w zbiorze $X=\{0,1,2,3\}$ określ, które z własności $(Z),\,(PZ),\,(S),\,(AS)$ i (P) spełniają te relacje:

- a) $(m, n) \in R_1$, jeśli m + n = 3,
- b) $(m, n) \in R_2$, jeśli m n jest liczbą parzystą,
- c) $(m,n) \in R_3$, jeśli $m \le n$,
- d) $(m,n) \in R_4$, jeśli $m+n \le 4$,
- e) $(m, n) \in R_5$, jeśli $max\{m, n\} = 3$.

Zadanie 2.

Niech $X=\{0,1,2\}$. Każde z poniższych stwierdzeń określa relację R w zbiorze X w ten sposób, że $(m,n)\in R$, jeśli to stwierdzenie jest prawdziwe dla m i n. Zapisz każdą relację jako zbiór par uporządkowanych.

- a) $m \leq n$
- b) m < n
- c) m=n
- d) mn = 0
- e) mn = m
- f) $m+n \in X$
- g) $m^2 + n^2 = 2$
- h) $m^2 + n^2 = 3$
- i) $m = max\{n, 1\}$

Zadanie 3. Określ, które z własności (Z), (PZ), (S), (AS) i (P) spełniają relacje w zadaniu poprzednim.

Zadanie 4.

W zbiorze N określone są następujące relacje dwuargumentowe:

- a) Zapisz relację dwuargumentową R_1 określoną wzorem m+n=5 jako zbiór par uporządkowanych.
- b) Zrób to samo dla relacji R_2 określonej wzorem $max\{m,n\}=2$.
- c) Relacja dwuargumentowa R_3 określona wzorem $min\{m, n\} = 2$ zawiera nieskończenie wiele par uporządkowanych. Wypisz pięć z nich.

Zadanie 5.

Dla każdej relacji z zadania 4 określ, które z własności (Z), (PZ), (S), (AS), i (P) spełnia ta relacja.

Zadanie 6.

Weźmy relację R w zbiorze \mathbb{Z} określoną w następujący sposób: $(m,n) \in R$ wtedy i tylko wtedy, gdy $m^3 - n^3 \equiv 0 \pmod{5}$. Które z własności (Z), (PZ), (S), (AS) i (P) ma ta relacja?

Zadanie 7.

- a) Weźmy relację pustą \emptyset na niepustym zbiorze S. Które z własności (Z), (PZ), (S), (AS) i (P) spełnia ta relacja?
- b) Powtórz ćwiczenie a) dla relacji uniwersalnej $U = S \times S$ w zbiorze S.

Zadanie 8.

Podaj przykład relacji, która jest:

- a) antysymetryczna i przechodnia, ale nie jest zwrotna,
- b) symetryczna, ale nie jest zwrotna ani przechodnia.

Zadanie 9.

Niech R_1 i R_2 będą relacjami dwuargumentowymi w zbiorze S.

- a) Pokaż, że relacja $R_1 \cap R_2$ jest zwrotna, jeśli R_1 i R_2 są zwrotne.
- b) Pokaż, że relacja $R_1 \cap R_2$ jest symetryczna, jeśli R_1 i R_2 są symetryczne.
- c) Pokaż, że relacja $R_1 \cap R_2$ jest przechodnia, jeśli R_1 i R_2 są przechodnie.

Zadanie 10.

Niech R_1 i R_2 będą relacjami dwuargumentowymi w zbiorze S.

- a) Czy jeśli relacje R_1 i R_2 są zwrotne, to relacja $R_1 \cup R_2$ musi być zwrotna?
- b) Czy jeśli relacje R_1 i R_2 są symetryczne, to relacja $R_1 \cup R_2$ musi być symetryczna?
- c) Czy jeśli relacje R_1 i R_2 są przechodnie, to czy relacja $R_1 \cup R_2$ musi być przechodnia?

Zadanie 11.

Czy są to relacje częściowego porządku? Jeśli tak to narysuj diagramy Hassego.

- a) $X = \{1, 2, 3, 4, 5, 6, 7, 8\}$ gdzie $(m, n) \in R$ oznacza, że m jest większe od n.
- b) $X = \{1, 2, 3, 4, 6, 8, 12, 24\}$ gdzie $(m, n) \in R$ oznacza że m | n czyli, że m jest dzielnikiem (tzn. dzieli) n.

c) Zbiór wszystkich podzbiorów zbioru $\{3,7,5\}$ z relacją \subseteq .

Zadanie 12.

- a) Podaj przykłady dwóch zbiorów częściowo uporządkowanych wziętych bądź z codziennego życia, bądź z innych wykładów
- b) Czy zbiory z twoich przykładów mają elementy maksymalne lub minimalne? Jeśli tak, to jakie?
- c) Jak wyglądają relacje odwrotne do częściowych porządków z twoich przykładów?

Zadanie 13.

Poniższy rysunek przedstawia diagramy Hassego trzech zbiorów częściowo uporządkowanych.

- a) Jakie elementy maksymalne mają te zbiory?
- b) W których spośród tych zbiorów istnieją elementy minimalne?
- c) Które spośród tych zbiorów mają elementy najmniejsze?
- d) Które elementy nakrywaję element e?

Zadanie 14.

a) Wykaż, że jeśli \preceq jest częściowym porządkiem w zbiorze S, to jest nim również relacja \succeq odwrotna do $\preceq.$

b) Wykaż, że jeśli \prec jest quasi-porządkiem w zbiorze S, to relacja zdefiniowana w następujący sposób:

$$x \leq y$$
 wtedy i tylko wtedy, gdy $x \prec y$ lub $x = y$

jest częściowym porządkiem w zbiorze S.

Zadanie 15.

Niech \sum będzie pewnym alfabetem. Dla $\omega_1, \, \omega_2 \in \sum^*$ powiemy, że $\omega_1 \preceq \omega_2$, jeśli w \sum^* istnieją słowa ω i ω' takie, że $\omega_2 = \omega \omega_1 \omega'$. Czy \preceq jest częściowym porządkiem w zbiorze \sum^* ? Uzasadnij swoją odpowiedź.

Zadanie 16.

Tabelka przedstawiona poniżej została częściowo wypełniona. Podane są w niej wartości działań $x \vee y$ dla niektórych elementów x i y pewnego zbioru (L, \preceq) . Na przykład $b \vee c = d$.

- a) Wypełnij pozostałą część tabelki.
- b) Wskaż, element największy i element najmniejszy w L?
- c) Wskaż, że $f \leq c \leq d \leq e$.
- d) Narysuj diagram Hassego dla L.

\vee	a	b	c	d	e	f
\overline{a}		e	\overline{a}	e	e	\overline{a}
b			d	d	e	b
c				d	e	c
d					e	d
e						e
f						

Zadanie 17.

Określmy relacje <,
 < oraz \preceq w zbiorze $\mathbb{R}\times\mathbb{R}$ wszystkich punktów płaszczy
zny w nastepujący sposób:

$$(x,y) < (z,\omega)$$
, jeśli $x^2 + y^2 < z^2 + \omega^2$;
$$(x,y) \le (z,\omega)$$
, jeśli $(x,y) < (z,\omega)$ lub $(x,y) = (z,\omega)$;
$$(x,y) \le (z,\omega)$$
, jeśli $x^2 + y^2 \le z^2 + \omega^2$.

- a) Które z tych relacji są częściowymi porządkami? Odpowiedź uzasadnij.
- b) Które z nich są quasi-porządkami? Odpowiedź uzasadnij.
- c) Wyznacz graficznie zbiór $\{(x,y):\ (x,y)\leq (3,4)\}.$
- d) Wyznacz graficznie zbiór $\{(x,y):\ (x,y)\preceq (3,4)\}.$