- 1. Decidir cuáles de las siguientes funciones son continuas:
 - (a) $f: (\mathbb{R}^2, d_2) \to (\mathbb{R}, d_2), f(x, y) = x^2 + y^2.$
 - (b) $id_{\mathbb{R}^2}: (\mathbb{R}^2, \delta) \to (\mathbb{R}^2, d_2)$, la función identidad.
 - (c) $id_{\mathbb{R}^2}: (\mathbb{R}^2, d_2) \to (\mathbb{R}^2, \delta)$, la función identidad.
 - (d) $i:(A,d)\to(E,d)$, la inclusión, siendo (E,d) un espacio métrico y $A\subseteq E$.

Aquí d_2 es la métrica euclídea usual, y δ es la métrica discreta.

¿Cambia algo si en lugar de d_2 consideramos d_1 o d_{∞} ?

a) Ses
$$(x_n, y_n)_{n \in \mathbb{N}}$$
 uns successón convergente en (\mathbb{R}^2, d_2)

$$\Rightarrow (x_n, y_n) \xrightarrow{n \to \infty} (x, y)$$

Si tomo

$$f(x_n, y_n) = x_n^2 + y_n^2 \xrightarrow[n \to \infty]{} x^2 + y^2 = f(x,y)$$

mostré que dede une suceión convergente, el aplicar f, obtengo una succión convergente

·· fer continus.

b) Sic, convergenter on $(\mathbb{R}^2, \mathcal{S})$ son equellar constanter a partir de un no. $(x_n, y_n) \longrightarrow (x,y) \Leftrightarrow \exists n_0 / x_n = x \wedge y_n = y \forall n > n_0$

$$\left(\frac{1}{n}, \frac{1}{n}\right)_{n \in \mathbb{N}} \xrightarrow{n \to \infty} (0,0)$$
 en $\left(\mathbb{R}^2, d_z\right)$

Pero

$$\begin{cases}
\frac{1}{n}, \frac{1}{n} \\
\frac{1}{n}
\end{cases} = \left(\frac{1}{n}, \frac{1}{n}\right)$$

no on verge on (R2, 5)

Puer 1/n + 1/m Vn + m

 $\int_{0}^{\infty} \left(\left(\frac{1}{n} \left(\frac{1}{n} \right) \right) \left(\frac{1}{n} \left(\frac{1}{n} \right) \right) \right) = 1 \quad \forall n \neq m$

=> + vo er continus.

10

bas csqs t_(X) spieto >> X c E spieto

Preimagen:

$$f'(y) = \{x \in A : f(x) = g \quad con \quad g \in y \}$$

2. Sea $f: \mathbb{R} \to \mathbb{R}$ dada por

Sea
$$f: \mathbb{R} \to \mathbb{R}$$
 dada por
$$f(x) = \begin{cases} x, & \text{si } x \in \mathbb{Q}, \\ 0, & \text{si } x \notin \mathbb{Q}. \end{cases}$$
 Probar que f es continua únicamente en $x = 0$.

3. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x,y) = \begin{cases} \frac{x^2y}{\frac{1}{2}x^2 + (x-1)^2y^2}, & \text{si } (x,y) \neq (0,0), \\ 0, & \text{si } (x,y) = (0,0). \end{cases}$$

Probar que f es continua en todo \mathbb{R}^2 .

4. Sea $f:(0,1)\to\mathbb{R}$ dada por

$$f(x) = \begin{cases} 0, & \text{si } x \notin \mathbb{Q}, \\ \frac{1}{n}, & \text{si } x = \frac{m}{n} \text{ con } m \text{ y } n \in \mathbb{N} \text{ coprimos.} \end{cases}$$

Probar que f es continua en los irracionales del (0,1) y **no** es continua en los racionales del (0,1).

5. Sea (E,d) un espacio métrico, y sea $x_0 \in E$. Sea $f: E \to \mathbb{R}$ una función continua en x_0 . Probar que si $f(x_0) > 0$ entonces existe r > 0 tal que f(x) > 0 para todo $x \in B(x_0, r)$.

- 6. Sean (E,d) y (E',d') espacios métricos y $f,g:E\to E'$ funciones continuas.
 - (a) Probar que $\{x \in E : f(x) \neq g(x)\}$ es abierto.
 - (b) Deducir que $\{x \in E : f(x) = g(x)\}$ es cerrado.

- 7. Considerando en cada \mathbb{R}^n la métrica euclídea d_2 , probar que:

 - (a) $\{(x,y) \in \mathbb{R}^2 : x^2 + y \operatorname{sen}(e^x 1) = -2\}$ es cerrado. (b) $\{(x,y,z) \in \mathbb{R}^3 : -1 \le x^3 3y^4 + z 2 \le 3\}$ es cerrado. (c) $\{(x_1,x_2,x_3,x_4,x_5) \in \mathbb{R}^5 : 3 < x_1 x_2\}$ es abierto.

Mencionar otras dos métricas para las cuales siguen valiendo estas afirmaciones.

- 8. Sean $f, g : \mathbb{R} \to \mathbb{R}$ dadas por $f(x) = x^2$, $g(x) = \frac{x^2}{1+x^2}$. Probar que:
 - (a) f continua, y sin embargo existe $G\subseteq\mathbb{R}$ abierto tal que f(G) no es abierto.
 - (b) g es continua, y sin embargo existe $F \subseteq \mathbb{R}$ cerrado tal que g(F) no es cerrado.

- 9. Sean (E,d) y (E',d') espacios métricos y $f,g:E\to E'$ funciones continuas.
 - (a) Sea $D\subseteq E$ un subconjunto denso, esto es, tal que $\overline{D}=E$. Probar que si $f|_D=g|_D,$ entonces f=g.
 - (b) Concluir que la función $R:C([0,1])\to \{f:\mathbb{Q}\to\mathbb{R}\}$ dada por $R(f)=f|_{\mathbb{Q}}$ es inyectiva.

10. Sean (E,d) y (E',d') espacios métricos y $f:E\to E'$ una función continua y suryectiva. Probar que si D es denso en E entonces f(D) es denso en E'.

