Mathematics-3 Tutorial-4

Discussion on Friday, 30th August Topic: Continuous Random Variables

1. For a nonnegative random variable *Y*,

$$E[Y] = \int_0^\infty P\{Y > y\} \, dy$$

2. From the above result, for any function g for which $g(x) \ge 0$, show that

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x) dx$$

3.

The density function of X is given by

$$f(x) = \begin{cases} a + bx^2 & 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

If $E[X] = \frac{3}{5}$, find a and b.

4.

The random variable x is N(5, 2) and y = 2x + 4. Find η_y , σ_y , and $f_y(y)$.

5.

Find
$$F_y(y)$$
 and $f_y(y)$ if $y = -4x + 3$ and $f_x(x) = 2e^{-2x}U(x)$.

Where U(x) = 1 if x > = 0, otherwise 0

6.

Let X be a normal random variable with mean 12 and variance 4. Find the value of c such that $P\{X > c\} = 0.10$

7.

The lifetime in hours of an electronic tube is a random variable having a probability density function given by

$$f(x) = xe^{-x}$$
 $x \ge 0$

Compute the expected lifetime of such a tube.

Consider the function

$$f(x) = \begin{cases} C(2x - x^3) & 0 < x < \frac{5}{2} \\ 0 & \text{otherwise} \end{cases}$$

Could f be a probability density function? If so, determine C. Repeat if f(x) were given by

$$f(x) = \begin{cases} C(2x - x^2) & 0 < x < \frac{5}{2} \\ 0 & \text{otherwise} \end{cases}$$

9.

Compute E[X] if X has a density function given by

(a)
$$f(x) = \begin{cases} \frac{1}{4}xe^{-x/2} & x > 0\\ 0 & \text{otherwise} \end{cases}$$
;
(b) $f(x) = \begin{cases} c(1 - x^2) & -1 < x < 1\\ 0 & \text{otherwise} \end{cases}$;
(c) $f(x) = \begin{cases} \frac{5}{x^2} & x > 5\\ 0 & x \le 5 \end{cases}$.

(b)
$$f(x) = \begin{cases} c(1 - x^2) & -1 < x < 1 \\ 0 & \text{otherwise} \end{cases}$$

(c)
$$f(x) = \begin{cases} \frac{5}{x^2} & x > 5 \\ 0 & x \le 5 \end{cases}$$

10.

If X is an exponential random variable with parameter $\lambda = 1$, compute the probability density function of the random variable Y defined by $Y = \log X$.

If X is uniformly distributed over (0, 1), find the density function of $Y = e^X$.

11.

Let X be a continuous random variable with the following PDF:

$$f_X(x) = \begin{cases} 2x & 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$$

Let also

$$Y=g(X)= egin{cases} X & & 0 \leq X \leq rac{1}{2} \ rac{1}{2} & & X > rac{1}{2} \end{cases}$$

Find the CDF of Y.

12. (from Q-11)

Let Y be the mixed random variable defined in Example

a. Find
$$P(\frac{1}{4} \leq Y \leq \frac{3}{8}).$$
 b. Find $P(Y \geq \frac{1}{4}).$

b. Find
$$P(Y \ge \frac{1}{4})$$
.

c. Find EY.

13.

Let X be a Uniform(-2,2) continuous random variable. We define Y=g(X), where the function g(x) is defined as

$$g(x) = egin{cases} 1 & x > 1 \ x & 0 \leq x \leq 1 \ 0 & ext{otherwise} \end{cases}$$

Find the CDF and PDF of Y.