Named Distribution

Concepts	Named Distribution			
	Notation		Method of Momenet Maximum Likelihood Sufficient Statistic Note	
County C	Ber(p)	ingle trials. $p^x(1-p)^{1-x}$ $p = p(1-p)$ $p(1-p) = pe^t$	$\hat{p} = \bar{X}$ $\hat{p} = \bar{X}$	
No. Processed		of successes out of n trials. $\binom{n}{x}p^x(1-p)^{n-x} \qquad \qquad (1-p+pe^t)^n$	$\hat{p} = \frac{\bar{X}}{n}$	
Price Process Price Pr	Geo(p)	trials until first success. $ (1-p)^{x-1}p $	$\hat{p} = \frac{1}{\bar{X}}$ $\hat{p} = \frac{1}{\bar{X}}$ Memoryless ¹	
Martin $2i + Q_1^2 = \frac{1}{\sqrt{2}} = \frac{1}{$	NegBin(r,p)	Trials until r successes.		
Division Professor Second processor Second	HypGeo(m,r,n)	m balls with r blacks. x or of black ball picked. $\frac{\binom{r}{x}\binom{n-r}{m-x}}{\binom{n}{m}}$ $m\left(\frac{r}{n}\right)\left(1-\frac{r}{n}\right)\left(\frac{n-m}{n-1}\right)$	n is population, m is number of trials, r is number of black ball.	
Experiential $D(y \lambda)$ $\lambda > 0$ so the superior of access λ $\lambda > 0$ s	1 (1)(S)(A)	riod. x is the number of λ λ λ λ λ λ λ	$\hat{\lambda} = \bar{X}$ Poisson can approximate Binomial when $n \to \infty$ and $p \to 0$, that is: $X \sim Bin(n, p)$ then $X \sim Pois(np)$	
Figure 2017 $S_{2}(0)$	Uni(a,b)	$\frac{1}{\beta - \alpha} \qquad \frac{x - a}{b - a} \qquad \frac{b + a}{2} \qquad \frac{(b - a)^2}{12} \qquad \frac{e^{tb} - eta}{t(b - a)}$	$\hat{\beta} = \max\{X_1, \dots, X_n\} \qquad \beta : \max\{X_1, \dots, X_n\}$	
Corone Calca, $\lambda > 0$ circles for a period, or is to the fine to with for a coronaces. Normal (Gaussian) $N(p,\sigma)$ $\sigma \in \mathbb{R}$ $\sigma \in $	$Exp(\lambda)$	eriod. x is the time to $1 - e^{-\lambda x}$ $1 - e^{-\lambda x}$ $\frac{1}{\lambda}$	$\hat{\lambda} = \frac{1}{\bar{X}}$ $\hat{\lambda} = \frac{1}{\bar{X}}$ Memoryless ¹ , Often model time.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$Ga(lpha,\lambda)$	eriod. x is the time to $\frac{\lambda^{\alpha}}{\lambda^{2}} x^{\alpha-1} e^{-\lambda x}$	$\alpha: \sum^{n} \ln X_{i} \qquad \qquad Ga(1,\lambda) = Exp(\lambda)$	
Normal $X_{i}^{(0,1)}$ X_{i}	$N(\mu, \sigma^2)$	$\frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$ ρ^2 $e^{\mu t}e^{(\sigma^2t^2)/2}$	$\hat{\mu} = \bar{X}$ $\hat{\sigma^2} = \frac{1}{n} \sum_i (X_i - \bar{X})^2$ Symmetric.	
Beta $Beta(\alpha,\beta)$ $\alpha > 0$ $\beta > 0$ Modelling proportion. $\Gamma(\alpha)\Gamma(\beta)x^{\alpha-1}(1-x)^{\beta-1}$ $\alpha + \beta$	Z, N(0,1)	$\frac{1}{\sqrt{2\pi}}e^{-x^2/2}$	– – Special Case of Normal.	
Chi-Square x_n^2 $x \ge 0$ $n \in \mathbb{N}^+$ Normal. Only takes positive value, model sample variance. Hypothesis tests. The sum of the sample variance in the sample variance in the sample variance. Hypothesis tests. The sum of the sample variance in the sample variance in the sample variance in the sample variance. The sample variance in the s	$Beta(\alpha, \beta)$	ling proportion. $\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1} \qquad \frac{\alpha}{\alpha+\beta} \qquad \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	Beta(1,1) = Uni(0,1)	
$T = \begin{bmatrix} T_n & t \geq 0 \\ n \in \mathbb{N}^+ & \text{Bell-shaped, looks like Normal but} \\ with heavier tails. & \frac{\Gamma((n+1)/2)}{\sqrt{n\pi}\Gamma(n/2)} \left(1 + \frac{t^2}{n}\right) \end{bmatrix}$ $T = \begin{bmatrix} w \geq 0 \\ m \in \mathbb{N}^+ & \text{Model ratio of variance.} \end{bmatrix}$ $T = \begin{bmatrix} T((m+n)/2) \\ m \in \mathbb{N}^+ & \text{Model ratio of variance.} \end{bmatrix}$ $T = \begin{bmatrix} T((m+n)/2) \\ T((m+n)/2) \\ T((m+n)/2) \end{bmatrix} \left(1 + \frac{m}{n}\right)^{-(m+n)/2} w^{(m/2)-1}$	χ^2_n	y takes positive value, e variance. Hypothesis $\frac{x^{n/2-1}}{2^{n/2}\Gamma(n/2)}e^{-x/2}$	$\chi_n^2 \sim Ga (n/2, 0.5),$ $U + V \sim \chi_{n+m}^2$	
F $K_{m,n}$ $K_$	T_n	adardized quantities. looks like Normal but heavier tails. $\frac{\Gamma((n+1)/2)}{\sqrt{n\pi}\Gamma(n/2)}\left(1+\frac{t^2}{n}\right)^{-(n+1)/2}$	$T = \frac{Z}{\sqrt{U/n}}, Z \sim N(0, 1), U \sim \chi_n^2$	
	$F_{m,n}$	ratio of variance. $\frac{\Gamma((m+n)/2)}{\Gamma(m/2)\Gamma(n/2)} \left(\frac{m}{n}\right)^{m/2} \left(1 + \frac{m}{n}w\right)^{-(m+n)/2} w^{(m/2)-1}$	$W = \frac{U/m}{V/n}, U \sim \chi_m^2, V \sim \chi_n^2,$ $X \sim T_n \implies X^2 \implies F_{1,n}$	
Sample Mean \bar{X} $\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$ $\frac{1}{n}\sum_{i=1}^n X_i$	$ar{X}$	$\sim N\left(\mu, \frac{\sigma^2}{n}\right) \qquad \qquad \frac{1}{n} \sum_{i=1}^n X_i \qquad \qquad \frac{\sigma^2}{n}$	$\frac{\bar{X} - \mu}{S/\sqrt{n}} \sim T_{n-1}$	
$\frac{1}{n-1}\sum_{i=1}^{n}(X_i-\bar{X})^2$ σ^2 $\frac{2\sigma^4}{n-1}$	S^2	$\frac{1}{n-1}\sum_{i=1}^{n}(X_i-\bar{X})^2$ σ^2 $\frac{2\sigma^4}{n-1}$	$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$	