BLG372E Analysis of Algorithms

Homework 2

Ozan Arkan CAN 040090573

PROBLEM 1 In general, order of functions like that:

$$log(n) \le n^x \le r^n \le n^n$$
, $\forall x > 0$ and $r > 1$

We can order given functions by this order information.

$$F_9=2/n < F_{12}=37 < F_2=\sqrt{n} < F_1=n < F_6=nlog(logn) < F_5=nlogn < F_8=nlog(n^2) < F_7=nlog^2n < F_3=n^{1.5} < F_4=n^2 < F_{13}=n^2logn < F_{14}=n^3 < F_{11}=2^{n/2} < F_{10}=2^n$$

 F_9 is a descending function, so its complexity minimum. F_{12} is a constant function and it never grows. Its obvious that relation between \sqrt{n} , n, nlog(logn) and nlogn. If we apart function F_8 and F_7 like n times $log(n^2)$, log^2n ; those part of functions act logarithmic and pow of number. F_3 , F_4 , F_{13} and F_{14} functions are ordered by their power and log(n) < n information. F_{11} and F_{10} functions are ordered by their power.

PROBLEM 2 First of all, given algorithm does not work all possible situation. For n = 16 and maximum independent set size = 11, k gets following values:

There is infinite loop and exceeding loop counter (log_2n).

Algorithm checks there is an independent set of size k in a graph in the loop. But k is not constant, so for this line complexity is not $O(n^k)$. k can be O(n). Thus, complexity goes $O(n^n)$. I assume algorithm terminates $O(\log_2 n)$ by ignoring bug of algorithm. In this situation, complexty is $O(\log_2 n * n^n)$. $(n^2) * 2^n < \log_2 n * n^n$. Given algorithm is slower than the slides in worst case.

PROBLEM 3 If we investigate each iteration of outer loop, we can see the second loop after outer loop iterates n-1. If we look inner loop iteration by iteration, total number of iteration is 1 for S_1 , 2 for S_2 , 3 for S_3 ,..., n for S_n . Here, S_i belongs to outer loop. Thus, total number of iteration of whole algorithm is;

$$(n-1)*1+(n-1)*2+...+(n-1)*n$$

 $(n-1)*\frac{n*(n+1)}{2}$

So complexity is;

$$(n-1) * \frac{n*(n+1)}{2} = O(n^3)$$

PROBLEM 4

- a) It is true. $c_1*h \le f \le c_2*h \ n \ge n_0 \\ d_1*h \le g \le d_2*h \ n \ge n_1 \\ c_1*d_1*h*h \le f \le g \le c_2*d_2*h*h \ , \ n \ge \max(n_0,n_1) \\ f*g = \theta(h*h) \\ c_1*d_1 \text{ and } c_2*d_2 \text{ are constant.}$
- b) $log_2(n) \le c * n^{0.5}$, $n \ge n_0$ $n \le 2^{c*n^{0.5}}$, $n \ge n_0$ c = 1, $n_0 = 0 \Rightarrow n \le 2^{c*n^{0.5}}$, $\forall n \ n \ge n_0$