Package 'Rquake'

March 5, 2024

Type Package

Index

doAmap	 16
eqlipse	 17
eqwrapup	 19
EQXYresid	 21
euler_passive	 23
getEulers	 24
getGAP	 25
GETpsTT	26
getregionals	28
getresidTT	29
Gfirstguess	31
gMAP	32
GPIX	33
HiJACK	34
imageINFLUENCE	35
INITpickfile	
Klocate	
lastPIX	
latlonz2wpx	
LDATlist	
LeftjustTime	
legitWPX	
MeanStaDist	42
NLSlocate	43
OnePerSta	
PCfiledatetime	
PCsaveWPX	
PFoutput	
•	
plotEQ	
plotJACKLLZ	
PostREQquake	
PostVquake	
Qrangedatetime	
ReSet	54
ripper	55
Rowz2Keep	
RQ	
SavePF	 59
SELstaDB	
UPdateEQLOC	
Vlocate	
XYerror.bars	
XYlocate	
XYSETUP	
Y2Pphase	 71
	73
	13

Rquake-package 3

Rquake-package

Seismic Analysis of Earthquake Hypocenter determination

Description

Non-linear earthquake locations are estimated by sequential convergence to hypocenter solutions, along with error ellipsoids and 3D-plotting, using a coordination of functions from 'RSEIS', 'GE-Omap', 'RFOC' and others for a complete seismic analysis from field campaign data or data extracted from online websites. Interactive codes for seismic phase picking can be combined with event location to go from raw seismic time series to earthquake analysis and spatial statistics.

Details

Rquake is a package for analysis of seismic data collected continuously, or in trigger mode. The functions organize other functions from 'RSEIS' and 'GEOmap' to help researchers pick, locate, and store hypocenters for detailed seismic investigation.

Note

Functions CONTPF EQXYresid INITpickfile NLSlocate PFoutput RQ SavePF UPdateEQLOC XYSETUP Y2Pphase chak contPFarrivals doAmap gMAP getregionals prepPDE viewCHAC

Author(s)

Jonathan M. Lees<jonathan.lees.edu> Maintainer:Jonathan M. Lees<jonathan.lees.edu>

References

Lee, W.H.K., and S.W. Stewart, Principles and Applications of Microearthquake Networks, Academic Press, New York, 1981.

See Also

RSEIS

4 ASW.vel

```
N = length(sec)
        Ldat =
                 list(
          name = g1$STAS$name[w1],
           sec = g1$STAS$sec[w1],
           phase = g1$STAS$phase[w1],
           lat=g1$STAS$lat[w1],
           lon = g1$STAS$lon[w1],
           z = g1$STAS$z[w1],
           err= g1$STAS$err[w1],
           yr = rep(g1$LOC$yr , times=N),
           jd = rep(g1$LOC$jd, times=N),
           mo = rep(g1$LOC$mo, times=N),
           dom = rep(g1$LOC$dom, times=N),
           hr =rep( g1$LOC$hr, times=N),
           mi = rep(g1$LOC$mi, times=N) )
wstart = which.min(Ldat$sec)
        EQ = list(lat=Ldat$lat[wstart], lon=Ldat$lon[wstart], z=6, t=Ldat$sec[wstart] )
  AQ = Vlocate(Ldat,EQ,vel,
      distwt = 10,
      lambdareg =100 ,
      REG = TRUE,
      WTS = TRUE,
      STOPPING = TRUE,
      tolx = 0.01,
      toly = 0.01,
      tolz = 0.05, maxITER = c(7,5,7,4) , RESMAX = c(0.1, 0.1), PLOT=FALSE)
```

ASW.vel

1D Velocity Ecuador

Description

1D Velocity Ecuador

Usage

```
data(ASW.vel)
```

Format

a list of velocities for hypocenter relocation

BLACKJACK 5

Source

Mario Ruiz

Examples

```
data(ASW.vel)
data(wu_coso.vel)
data(fuj1.vel)
data(LITHOS.vel)

RSEIS::Comp1Dvels(c("ASW.vel","wu_coso.vel", "fuj1.vel", "LITHOS.vel"))
```

BLACKJACK

Jackknife earthquake location

Description

Perform jackknife on earthquake location by eliminating stations.

Usage

```
BLACKJACK(Ldat, vel)
```

Arguments

Ldat event list

vel Velocity model

Details

Stations are eliminated, not rows.

Value

event list with pseudo values

Note

events are located with P and S-wave arrivals, but code here should eliminate just stations.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

6 BLACKJACK

References

Iversen, E. S., and J. M. Lees (1996), A statistical technique for validating velocity models, Bull. Seismol. Soc. Am. 86(6), 1853-1862.

See Also

Vlocate, plotJACKLLZ

```
###### lps=list of files names to be read
data(GH, package='RSEIS')
g1 = GH$pickfile
data(VELMOD1D, package='RSEIS')
vel= VELMOD1D
 w1 = which(!is.na(g1$STAS$lat))
        sec = g1$STAS$sec[w1]
        N = length(sec)
        Ldat =
                 list(
           name = g1$STAS$name[w1],
           sec = g1$STAS$sec[w1],
           phase = g1$STAS$phase[w1],
           lat=g1$STAS$lat[w1],
           lon = g1$STAS$lon[w1],
           z = g1\$STAS\$z[w1],
           err= g1$STAS$err[w1],
           yr = rep(g1$LOC$yr , times=N),
           jd = rep(g1$LOC$jd, times=N),
           mo = rep(g1$LOC$mo, times=N),
           dom = rep(g1$LOC$dom, times=N),
           hr =rep( g1$LOC$hr, times=N),
           mi = rep(g1$LOC$mi, times=N) )
B = BLACKJACK(Ldat, vel)
## the code HiJACK
### runs BLACKJACK on many pickfiles stored in files
### COSOjack = HiJACK(lps, sta)
     plotJACKLLZ(COSOjack, sta, proj)
```

checkLOCATEinput 7

checkLOCATEinput

Check Location data

Description

Check to see if location data has the minimally correct list components.

Usage

```
checkLOCATEinput(Ldat, EQ, vel = NULL)
```

Arguments

Ldat list, must inlude: x,y,err, sec, cor (see details)

EQ list, must inlude: x,y,z, t vel list, 1D velocity structure

Details

Input pick list must have at x,y,z, sec, cor, err elements for each station.

Value

logical: FALSE mean problem with data

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

XYlocate

8 clusterWPX

```
N = length(sec)
        Ldat =
                  list(
          name = g1$STAS$name[w1],
           sec = g1$STAS$sec[w1],
           phase = g1$STAS$phase[w1],
           lat=g1$STAS$lat[w1],
           lon = g1$STAS$lon[w1],
           z = g1$STAS$z[w1],
           err= g1$STAS$err[w1],
           yr = rep(g1$LOC$yr , times=N),
           jd = rep(g1$LOC$jd, times=N),
           mo = rep(g1$LOC$mo, times=N),
           dom = rep(g1$LOC$dom, times=N),
           hr =rep( g1$LOC$hr, times=N),
           mi = rep(g1$LOC$mi, times=N) )
 MLAT = median(Ldat$lat)
   MLON = median(Ldat$lon)
   proj = GEOmap::setPROJ(type=2, LAT0=MLAT, LON0=MLON)
#### get station X-Y values in km
   XY = GEOmap::GLOB.XY(Ldat$lat, Ldat$lon, proj)
### add to Ldat list
   Ldat$x = XY$x
   Ldat$y = XY$y
       wstart = which.min(Ldat$sec)
EQ = list(x=XY$x[wstart], y=XY$y[wstart], z=6, t=Ldat$sec[wstart] )
checkLOCATEinput(Ldat, EQ)
```

clusterWPX

Cluster Analysis of Picks

Description

Given a pick file in WPX format, break the picks apart clustered according to single link cluster analysis.

Usage

```
clusterWPX(twpx, tol = 200, PLOT = FALSE)
```

clusterWPX 9

Arguments

twpx	WPX list
tol	tolerance in seconds - all pick distances less than tol will be set to zero to force these to be associated.
PLOT	logical, if TRUE, add verbose plotting

Details

If there is not significant separation of picks, only one cluster is returned. To avoid spurious clusters, increase the tolerance.

Value

list of WPX lists

Note

Cluster depends on what one considers a cluster.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

RSEIS:: addWPX, RSEIS:: checkWPX, RSEIS:: cleanWPX, PCs aveWPX, RSEIS:: setWPX, RSEIS:: repairWPX

```
s1 = RSEIS::setWPX(name="HI", yr=2011, jd=231, hr=4, mi=3, sec = runif(5))
s2 = RSEIS::setWPX(name="HI", yr=2011, jd=231, hr=5, mi=2, sec = runif(5))
s3 = RSEIS::catWPX(s1,s2)
twpx = data.frame(s3)
L3 = clusterWPX(twpx)
```

10 CONTPF

CONTPF

Button to Contour Pickfile Arrivals

Description

Button to Contour Pickfile Arrivals, used internally in swig.

Usage

```
CONTPF(nh, g, idev = 3)
```

Arguments

nh	RSEIS list
g	swig parameters
idev	device for plotting

Details

Driver for contPFarrivals

Value

Side effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

contPFarrivals

```
if(interactive()){
###### interactive: addition of button in swig
data(GH, package='RSEIS')
buts = "CONTPF"
RSEIS::swig(GH, PADDLAB=buts, SHOWONLY=FALSE)
}
```

contPFarrivals 11

contPFarrivals	Contour Pickfile Arrivals	
----------------	---------------------------	--

Description

Contour plot of arrival times recorded in a pickfile list.

Usage

Arguments

PF	Pickfile list in RSEIS format
stas	station list
proj	projection from GEOmap
cont	logical, add contour to plot
POINTS	logical, add mark up (stations) to plot
image	logical, add image to plot
col	color palette for image
gcol	color for contour lines
phase	character, phase to contour
add	logical, TRUE=add to existing plot

Details

Contours the arrival time. The earliest arrival is subtracted from each time pick. Uses only the phase indicated and there can be only one phase per station - default is earliest at each station.

Value

Graphical Side Effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

doAmap

12 cosopix

Examples

cosopix

Selection of pickfiles from Coso Geothermal Field

Description

Set of selected seismic arrival files with hypocenter locations.

Usage

```
data("cosopix")
```

Format

List consisting of:

- PF: original text version of file, as read from disk
- AC: Acard: hypocenter information
- LOC: location
- MC: Fault Mechanizm card
- STAS: Station information
- LIP: Error Ellipse
- E: E-card
- F: F-card
- filename: original file location
- UWFILEID: UW file identification

cosopix 13

- comments: Comments on event location
- OSTAS: Station names
- H: High resolution location numbers
- N: Stations Not used in location

Details

Each element of this list is an individual earthquake record.

```
data(cosopix)
A = sapply(cosopix, '[[', 'LOC')
### gather stations
ST.name = vector(mode='character')
ST.lat = vector(mode='numeric')
ST.lon = vector(mode='numeric')
ST.z = vector(mode='numeric')
for(i in 1:length(cosopix))
g = cosopix[[i]]
g = data.frame(g$STAS )
w = which(!is.na(g$lat) )
ST.name = c(ST.name, g$name[w])
ST.lat = c(ST.lat, g$lat[w])
ST.lon = c(ST.lon, g$lon[w])
ST.z = c(ST.z, g$z[w])
notdup = !duplicated(ST.name)
name = ST.name[notdup ]
lat = ST.lat[notdup ]
lon =ST.lon[notdup ]
z = ST.z[notdup]
plot(range(c(A[9, ], lon)), range(c(A[8, ], lat)), type='n',
xlab='Lon', ylab='Lat')
points(lon, lat, pch=6)
text(lon, lat, labels=name, pos=3)
points(A[9, ], A[8, ])
```

14 defaultVEL

coso_sta_LLZ

Coso Station File

Description

Coso Station Location file, 1989-1999

Usage

```
data(coso_sta_LLZ)
```

Format

Name, Lat, Lon, Z

Source

Personal Files

References

Wu, H. and J. M. Lees (1996). Attenuation Structure of Coso Geothermal Area, California, from P Wave Pulse Widths, Bull. Seismol. Soc. Am., 86, 1574-1590.

Lees, J. M. (1998), Multiplet analysis at Coso Geothermal, Bull. Seismol. Soc. Am. 88(5) 1127-1143.

defaultVEL

Default Velocity Function

Description

Default Velocity Function is returned in the event no velocity function is available.

Usage

```
defaultVEL(kind = 1)
```

Arguments

kind

integer, 1=fuj1, 2=LITHOS

Details

A set of default velocity functions are available.

DistWeight 15

Value

```
velocity list, P and S waves
```

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

fuj1.vel

Examples

```
v = defaultVEL(1)
```

 ${\tt DistWeight}$

Distance wheighting

Description

Distance weighting for non-linear earthquake location.

Usage

```
DistWeight(dist, err, distwt)
DistWeightLL(lat, lon, elat, elon, err, distwt)
DistWeightXY(x, y, ex, ey, err, distwt)
```

Arguments

dist	distance in km
err	sigma error in seconds
distwt	distance weighting parameter
lat	Latitude
lon	Longitude
elat	Event Latitude
elon	Event Longitude
x	station X(km)
У	station Y(km)
ex	event X (km)
ey	event Y (km)

16 doAmap

Details

Based on Lquake scheme from University of Washington. If you need to reduce the effect of distance weighting, increase distwt.

Since the hypocenter moves between each iteration, the distance weighting is updated.

Value

vector of weights

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

Examples

```
DistWeight(1:10, .4, 20)
```

doAmap

Plot a map of station locations

Description

Plot a map of station locations

Usage

```
doAmap(stas, doproj = TRUE)
```

Arguments

stas station list

doproj logical, if TRUE, project (UTM) the data so plot is in units of km with the

median lat-lon as the center. If FALSE, use the lat-lon coordinates.

Details

The range of the plot is expanded by 10 percent prior to plotting.

Value

list, GEOmap projection

eqlipse 17

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

```
gMAP,expandbound,GLOB.XY
```

Examples

```
data(coso_sta_LLZ)
### or read in from file:
## fsta = "staLLZ.txt"
## stas = scan(file=fsta,what=list(name="", lat=0, lon=0, z=0))
## stas$z = stas$z/1000

stas = coso_sta_LLZ
STA = doAmap(stas, doproj = TRUE)
```

eqlipse

Error Elipse for Hypocenter Location

Description

Error Elipse for Hypocenter Location

Usage

```
eqlipse(x, y, cov, wcols = c(1, 2), dof = 2, pct=0.05, ...)
```

Arguments

Х	X-location for drawing
у	Y-location for drawing
cov	matrix, 3 by 3 Covariance matrix
wcols	vector, which columns to extract from cov, see details.
dof	Degrees of Freedom for 95 percent confidence
pct	Percent used for 2-sided confidence bounds, default=0.05
	graphical parameters, par

18 eqlipse

Details

The 3 by 3 matrix is supplied and a 2 by 2 matrix is subtracted depending on which components are being drawn. For X-Y projections, use wcols=c(1,2). For vertical cross sections, rotate the cov matrix and then extract the columns.

Value

Side effects, graphical

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

eqwrapup

```
library(RSEIS)
data(GH, package='RSEIS')
data(VELMOD1D, package='RSEIS' )
vel = VELMOD1D
gpf = GH$pickfile
w1 = which(gpf$STAS$phase=="P" | gpf$STAS$phase=="S" )
N = length(w1)
 Ldat =
          list(
      name = gpf$STAS$name[w1],
      sec = gpf$STAS$sec[w1],
      phase = gpf$STAS$phase[w1],
      lat=gpf$STAS$lat[w1],
      lon = gpf$STAS$lon[w1],
      z = gpf$STAS$z[w1],
      err= gpf$STAS$err[w1],
      yr = rep(gpf$LOC$yr , times=N),
      jd = rep(gpf$LOC$jd, times=N),
      mo = rep(gpf$LOC$mo, times=N),
      dom = rep(gpf$LOC$dom, times=N),
      hr =rep( gpf$LOC$hr, times=N),
      mi = rep(gpf$LOC$mi, times=N) )
EQ = GH$pickfile$LOC
EQ$t = EQ$sec
```

eqwrapup 19

eqwrapup

Earthquake Wrap Uo

Description

Calculate error and summary information on earthquake location.

Usage

```
eqwrapup(Ldat, EQ, vel, distwt=20, lambdareg = 0.0, verbose=FALSE)
```

Arguments

Ldat	List of station	arrival times	lat-lon	and uncertainty
Luat	List of station	arrivar umics,	iat-ion,	and uncertainty

EQ List of earthquake location: Lat-Lon-z-t

vel velocity model

distance weight, default=20

lambdareg numeric, regularization parameter (default=0) verbose logical, TRUE=print information to screen

20 eqwrapup

Details

Earthquakes are located with a generalized inverse (SVD). covariance matrix is extracted and 95% confidence bounds are calculated. Quality factors Q1 and Q1 estimate the quality iof the location based on the gap, minimum distance and rms.

Value

List

rms Root Mean Square Residual

meanres Mean Residual

sdres Standard Dev of residuals

sdmean Standard error of mean residual sswres Sum squared weighted residuals ndf Number of Degrees of Freedom

sterry km, error in X (East-West)
sterry km, error in Y (North-South)

``

sterrz km, error in Z, (depth)

sterrt s, Delta-time

cov covariance matrix (used for error ellipsoids)

lam lambda

gap Spatial gap (max subtended angle)

herr Horizontal error

distmin Minimum distance to epicenter

Q1 Quality Factor based on Gap and RMS

Q2 Quality factor based on RMS, depth and min-Distance

Note

The Damping parameter (lambda) is set to zero. In the UW lquake program, lambda is set to 0.02.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

Klocate, Glocate, getGAP

EQXYresid 21

Examples

```
library(RSEIS, package='RSEIS')
data(GH, package='RSEIS')
data(wu_coso.vel, package='Rquake' )
vel = wu_coso.vel
gpf = GH$pickfile
w1 = which(gpf$STAS$phase=="P" | gpf$STAS$phase=="S" )
N = length(w1)
 Ldat =
         list(
      name = gpf$STAS$name[w1],
      sec = gpf$STAS$sec[w1],
      phase = gpf$STAS$phase[w1],
      lat=gpf$STAS$lat[w1],
      lon = gpf$STAS$lon[w1],
      z = gpf$STAS$z[w1],
      err= gpf$STAS$err[w1],
      yr = rep(gpf$LOC$yr , times=N),
      jd = rep(gpf$LOC$jd, times=N),
      mo = rep(gpf$LOC$mo, times=N),
      dom = rep(gpf$LOC$dom, times=N),
      hr =rep( gpf$LOC$hr, times=N),
      mi = rep(gpf$LOC$mi, times=N) )
EQ = GH$pickfile$LOC
EQ$t = EQ$sec
kuality = eqwrapup(Ldat, EQ, vel, distwt = 20, verbose = TRUE )
names(kuality)
```

EQXYresid

Calculate Residuals

Description

Given an earthquake hypocenter and a list of station information, retrieve the station residuals.

Usage

```
EQXYresid(XY, vel = list(), h1 = c(0, 0, 0, 0), PLOT = FALSE)
```

EQXYresid EQXYresid

Arguments

XY	matrix	of	station	location	and	arrival	times.

vel list, RSEIS velocity model
h1 hypocenter location, c(x,y,z,t)
PLOT logical, TRUE=plot the residuals

Details

The XY mtrix is in cartesian coordinates, i.e. it has been projected into units of km. Only 1D velocity models are used at this time. Only residuals of P and S wave arrivals are estimated.

Value

vector, right hand side of the least squares problem.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

travel.time1D,UPdateEQLOC

```
#### get sample data
data(GH, package='RSEIS')
pstas = GH$pickfile
###### get velocity file
v = GH$velfile
#### project to flatten
proj = GEOmap::setPROJ(type = 2, LAT0 = mean(pstas$STAS$lat), LON0 = mean(pstas$STAS$lon) )
XY = GEOmap::GLOB.XY(pstas$STAS$lat, pstas$STAS$lon, proj)
###### elevation corrections
   elcor = rep(0, length(pstas$STAS$lat))
   DZ = pstas$STAS$z - mean(pstas$STAS$z)
   elcor[pstas$STAS$phase=="P"] = DZ[pstas$STAS$phase=="P"]/v$vp[1]
   elcor[pstas$STAS$phase=="S"] = DZ[pstas$STAS$phase=="S"]/v$vs[1]
###### set up requisite vectors
   XY$cor = elcor
   XY$phase = pstas$STAS$phase
   XY$sec = pstas$STAS$sec
  sol = c(GH$pickfile$LOC$lat, GH$pickfile$LOC$lon, GH$pickfile$LOC$sec)
```

euler_passive 23

```
eqXY = GEOmap::GLOB.XY(sol[1], sol[2], proj)
####### get residuals
  res = EQXYresid(XY, vel=v , h1=c(eqXY$x, eqXY$y, sol[3], sol[4] ) ,
  PLOT=FALSE)
```

euler_passive

Euler Rotation Angles

Description

Given three angles return rotation matrix.

Usage

```
euler_passive(phi, theta, psi)
```

Arguments

phi angle with x-axis theta angle with y-axis psi angle with z-axis

Details

Code borrowed from cpp code in package cda. used in rgl.ellipsoid.

Value

3 by 3 rotation matrix.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>, Baptiste Auguie
baptiste.auguie@gmail.com>

See Also

rgl.ellipsoid

```
options(rgl.useNULL = TRUE)
phi=30*pi/180; theta= 20*pi/180; psi = 6*pi/180
rr = euler_passive(phi,theta,psi)
```

24 getEulers

getEulers

Get Eulers Angles

Description

Given a covariance matrix calculated with Vlocate, extract euler's angles for plotting in rgl

Usage

```
getEulers(R)
```

Arguments

R

covarince matrix

Details

Extract the euler angles for plotting an ellipsoid. psi about X-axis, theta about Y axis, phi about Z-axis.

Value

vector, phi theta psi

Note

Used in conjunction with ROTcovQUAKE

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

ROTcovQUAKE

```
options(rgl.useNULL = TRUE)
R = matrix( runif(9), ncol=3)
getEulers(R)
```

getGAP 25

Description

Given an earthquake and a set of stations, return the maximum angle subtended between adjacent stations relative to the epicenter.

Usage

```
getGAP(EQ, Ldat, PLOT = FALSE)
```

Arguments

EQ List, Earthequake location, elements (lat, lon) must be present

Ldat List, station information, (lat, lon) must be present

PLOT logical, plot the stations and show the gap

Details

Theangles are calculated in cartesian coordinates with the epicenter at the origin using a UTM projection.

Value

```
numeric, gap in degrees
```

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

eqwrapup

```
set.seed(0)

N = 10
snames = paste(sep="", "A", as.character(1:N))
stas = list(name=snames, lat=runif(N, 35.9823, 36.1414), lon=runif(N, -118.0031, -117.6213))

NEQ = 3
WEQ = list(lat=runif(NEQ, 35.9823, 36.1414), lon=runif(NEQ, -118.0031, -117.6213))
```

26 GETpsTT

```
MLAT = median(stas$lat)
 MLON = median(stas$lon)
  proj = GEOmap::setPROJ(type=2, LAT0=MLAT, LON0=MLON)
  XYSTAS = GEOmap::GLOB.XY(stas$lat, stas$lon , proj)
  eqxy = GEOmap::GLOB.XY(WEQ$lat, WEQ$lon, proj)
plot(range(c(XYSTAS$x, eqxy$x)), range(c(XYSTAS$y, eqxy$y)), type='n', asp=1, xlab="km", ylab="km")
points(XYSTAS$x, XYSTAS$y, pch=6)
for(i in 1:NEQ)
EQ = list(lat=WEQ$lat[i], lon=WEQ$lon[i])
g = getGAP(EQ, stas, PLOT=FALSE)
points(eqxy$x[i], eqxy$y[i], pch=8, col='red')
text(eqxy$x[i], eqxy$y[i], labels=paste("gap=", format(g)), pos=3)
}
```

GETpsTT

Get Pand S travel times and derivatives

Description

Get Pand S travel times and derivatives

Usage

```
GETpsTT(phase, eqz = 6, staz = 0, delx = 1, dely = 1, deltadis = 6, vel)
```

Arguments

phase	character vector, phase
eqz	event depth
staz	station elevation
delx	km, delta X
dely	km, delta Y
deltadis	km, distance
vel	velocity models (P and S)

GETpsTT 27

Details

Creates a vector of travel times, and a matrix and derivatives used for inversion.

Value

list:

TT travel time vector

Derivs matrix of derivatives, dtdx, dtdy, dtdz

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

many.time1D

```
library(RSEIS)
library(GEOmap)

data(GH, package='RSEIS')

data(VELMOD1D, package='RSEIS')
vel = VELMOD1D

p1 = GH$pickfile$STAS

loc = GH$pickfile$LOC

proj = GEOmap::setPROJ(type = 2, LAT0 =loc$lat, LON0 = loc$lon)

XYsta = GEOmap::GLOB.XY(p1$lat, p1$lon, proj)
XYq = GEOmap::GLOB.XY(loc$lat, loc$lon, proj)
delx = XYq$x~XYsta$x
dely = XYq$y~XYsta$y
dists = sqrt(delx^2+dely^2)

G1 = GETpsTT(p1$phase, eqz=loc$z, staz=0, delx=delx, dely=dely, deltadis=dists , vel)
```

28 getregionals

getregionals	Extract regional events
0 0	O

Description

Extract regional events from a hypocenter list (catalog)

Usage

```
getregionals(KAT, Mlat, Mlon, rad = 1000, t1 = 1, t2 = 2)
```

Arguments

KAT	catalog list: must include lat, lon and jsec.
Mlat	central latitude
Mlon	central longitude
rad	radius (km)
t1	start time (julian days)
t2	end time (julian days)

Details

Given an earthquake catalog from PDEs, for example, extract the events that are close to a network in a given time frame. The limited data set may be used to help predict arrival times for known hypocenter locations.

The time jsec is in julian days, i.e. jsec=jd+hr/24+mi/(24*60)+sec/(24*3600) so that they can be compared to t1 and t2.

Value

Catalog

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

RSEIS::Mine.seis, RSEIS::swig

getresidTT 29

Examples

getresidTT

Travel time residuals

Description

Given an earthquake location and a set of arrival times, return a vector of residuals.

Usage

```
getresidTT(Ldat, EQ, stas, vel)
```

Arguments

Ldat List of arrival times

EQ List of event location, (lat, lon, z, and time)

stas station location list vel list, velocity structure

Details

1D travel time calculation.

Value

vector of residuals

30 getresidTT

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

travel.time1D

```
######## LF is a vector of arrival time files
##### KAM is a set of locations
data(GH, package='RSEIS')
g1 = GH$pickfile
data(VELMOD1D, package='RSEIS')
vel= VELMOD1D
WW = RSEIS::uwpfile2ypx(GH$pickfile)
twpx = latlonz2wpx(WW, GH$pickfile$STAS )
    zip = LeftjustTime(twpx)
 w1 = which(!is.na(g1$STAS$lat))
        sec = g1$STAS$sec[w1]
        N = length(sec)
        Ldat = list(
          name = g1$STAS$name[w1],
           sec = g1$STAS$sec[w1],
           phase = g1$STAS$phase[w1],
           lat=g1$STAS$lat[w1],
           lon = g1$STAS$lon[w1],
          z = g1\$STAS\$z[w1],
           err= g1$STAS$err[w1],
           yr = rep(g1$LOC$yr , times=N),
           jd = rep(g1$LOC$jd, times=N),
          mo = rep(g1$LOC$mo, times=N),
          dom = rep(g1$LOC$dom, times=N),
           hr =rep( g1$LOC$hr, times=N),
           mi = rep(g1$LOC$mi, times=N) )
 resids = getresidTT(Ldat, g1$LOC, g1$STAS , vel)
```

Gfirstguess 31

Gfirstguess

First guess from a pick file

Description

Extract the lat lon from the pick file.

Usage

```
Gfirstguess(Ldat, type = "first")
```

Arguments

Ldat Matrix of data information

type one of "first", "mean", or "median"

Details

Either the earliest arrival or the average station is returned. Used internally in the earthquake location program to provide a first guess.

Value

```
vector, lat, lon, z and tee
```

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

Klocate

```
data(GH, package='RSEIS')
WW = RSEIS::uwpfile2ypx(GH$pickfile)

twpx = latlonz2wpx(WW, GH$pickfile$STAS )
g1 = Gfirstguess(twpx, type = "first")
```

gMAP

gMAP

Generic Map Button

Description

Generic Map Button

Usage

```
gMAP(nh, g, idev = 3)
```

Arguments

nh RSEIS structure

g parameters used in swig

idev device for plotting (not used)

Details

This is a button used internally in swig

Value

Graphical Side Effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

swig

```
if(interactive()){
#### this is interactive
### adds button to swig menu
data(GH, package='RSEIS')
buts = "gMAP"
RSEIS::swig(GH, PADDLAB = buts )
}
```

GPIX 33

GPIX

PICK Buttons for swig

Description

defining functions for swig

Usage

```
GPIX(nh, g)
```

Arguments

nh waveform list for RSEIS
g plotting parameter list for interactive program

Details

Buttons can be defined on the fly.

GPIX Multiple picks on a panel

Value

The return value depends on the nature of the function as it is returned to the main code swig. Choices for returning to swig are: break, replot, revert, replace, donothing, exit.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

```
swig, XTR
```

```
if(interactive()){
###### interactive addition of buttons in swig

STDLAB=c("DONE", "QUIT", "SELBUT" , "GPIX" )
data(GH, package='RSEIS')
JJ = RSEIS::swig(GH, sel=1:10, STDLAB=STDLAB)
}
```

34 HIJACK

HiJACK

Jackknife a list of events

Description

Jackknife a list of events

Usage

```
HiJACK(lps, sta, vel)
```

Arguments

lps list of earthquake event pickfiles, each element is an individual pickfile list, with

STAS: relative timing of phase arrivals

sta staiton list vel velocity list

Details

Driver for BLACKJACK

Value

jackknife pseudovalues for each event

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

References

Iversen, E. S., and J. M. Lees (1996), A statistical technique for validating velocity models, Bull. Seismol. Soc. Am. 86(6), 1853-1862.

See Also

BLACKJACK

```
##### uses external files, runs Vlocate on each one
#### lps = list of file names to be read

data(cosopix)
data(wu_coso.vel)
data(coso_sta_LLZ)
```

imageINFLUENCE 35

```
COSOjack = HiJACK(cosopix, coso_sta_LLZ, wu_coso.vel)
proj = GEOmap::setPROJ(2, mean(coso_sta_LLZ$lat),
mean(coso_sta_LLZ$lon))

#### show stats
plotJACKLLZ(COSOjack, coso_sta_LLZ, proj, PLOT=1 )

#### show maps
plotJACKLLZ(COSOjack, coso_sta_LLZ, proj, PLOT=2 )
```

imageINFLUENCE

Image Influence of stations

Description

Plot contours/image of Influence scores.

Usage

```
imageINFLUENCE(B, sta, proj)
```

Arguments

B Pseudovalue list sta station location list proj projection list

Details

Following jackknife - plot results. this function is called by plotJACKLLZ.

Value

side effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

References

Iversen, E. S., and J. M. Lees (1996), A statistical technique for validating velocity models, Bull. Seismol. Soc. Am. 86(6), 1853-1862.

36 INITpickfile

See Also

plotJACKLLZ

INITpickfile

Initialize a pickfile

Description

Initialize a pickfile

Usage

```
INITpickfile(stas = NULL, src = NULL, WPX = NULL)
```

Arguments

stas station list

src hypocenter location

WPX GPIX or PPIX picks from swig

Details

Initialize a pickfile with a set of picks extracted from swig.

Value

list, pickfile

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

EmptyPickfile

```
data(GH, package='RSEIS')
WW = RSEIS::uwpfile2ypx(GH$pickfile)
PF = INITpickfile(stas=GH$stafile, src=NULL, WPX=WW )
```

Klocate 37

ĸ	\sim	ca	٠+	_
1_	LU	La	ıL	$\overline{}$

Earthquake Hypocenter Location

Description

Earthquake Hypocenter Location

Usage

```
\label{eq:klocate} \begin{split} & \text{Klocate}(\text{Ldat, sol} = \text{c}(0, \, 0, \, 0, \, 0), \, \text{vel=defaultVEL}(6), \\ & \text{distwt} = 20, \, \text{errtol} = \text{c}(0.01, \, 0.01, \, 0.01), \, \text{maxit} = 20, \\ & \text{Lambda} = 1, \, \text{guessdepth} = 6, \, \text{APLOT} = \text{FALSE}, \\ & \text{stas} = \text{list}(\text{name} = "", \, \text{lat} = \text{NA, lon} = \text{NA, z} = \text{NA})) \end{split}
```

Arguments

Ldat swig pick list

sol vector, initial solution

vel velocity list

distance weight parameter

errtol error tolerance

maxit Maximum number of iterations

Lambda damping parameter guessdepth initial depth for guess

APLOT logical, plot intermediate solutions

stas station list

Details

Inversion is done with SVD.

Value

Event location in Lat-Lon-Z-T.

Note

Damped least squares.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

swig, defaultVEL

38 lastPIX

Examples

```
###### could read from a list of files on disk
### LF = list.files(path=pdir, pattern="p$", full.names=TRUE )
   data(GH, package='RSEIS')
g1 = GH$pickfile
    ## points(g1$H$lon, g1$H$lat, pch=8, col='red')
   w1 = which(!is.na(g1$STAS$lat))
    sec = g1$STAS$sec[w1]
   N = length(sec)
   Ldat = list(
      name = g1$STAS$name[w1],
      sec = g1\$STAS\$sec[w1],
      phase = g1$STAS$phase[w1],
      lat=g1$STAS$lat[w1],
      lon = g1$STAS$lon[w1],
      z = g1$STAS$z[w1],
      err= g1$STAS$err[w1],
      yr = rep(g1$LOC$yr , times=N),
      jd = rep(g1$LOC$jd, times=N),
      mo = rep(g1$LOC$mo, times=N),
      dom = rep(g1$LOC$dom, times=N),
      hr =rep( g1$LOC$hr, times=N),
      mi = rep(g1$LOC$mi, times=N) )
 \#\#\#\#\# let the code determine the initial guess
   NEW = Klocate(Ldat )
```

lastPIX

Last Pix

Description

'RSEIS' Button: Restore Last WPX file from memory. Function is used internally in swig.

Usage

```
lastPIX(nh, g)
```

latlonz2wpx 39

```
editPIX(nh, g)
```

Arguments

nh GH list from RSEIS g parameters from swig

Value

New WPX list attached to g

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

latlonz2wpx

Add Lat-Lon-Z to WPX list

Description

Given an existing list of seismic picks, add Latitude, Longitude and Elevation associated with the indicated station.

Usage

```
latlonz2wpx(twpx, stas)
```

Arguments

twpx List of picks from swig

stas station list

Details

The names of the stations are matched to the station names int he station file.

Value

Pick file with LLZ added as list members.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

Klocate

40 LeftjustTime

Examples

```
data(GH, package='RSEIS')
WW = RSEIS::uwpfile2ypx(GH$pickfile)
twpx = latlonz2wpx(WW, GH$pickfile$STAS )
```

LDATlist

List location data

Description

List location data

Usage

```
LDATlist(g1, w1)
```

Arguments

g1 loc list w1 index

Value

side effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

 $Leftjust \\ Time$

Adjust times relative to least minute.

Description

Adjust times relative to least minute.

Usage

```
LeftjustTime(g1)
```

legitWPX 41

Arguments

g1

list with times, yr, jd, hr, mi, sec

Details

Reutrns the list with the times adjusted to the least minimum (left adjusted)

Value

list is returned.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

recdate

Examples

```
set.seed(0)
d1 = list(yr=rep(2005, 4), jd=rep(5, 4), hr=rep(6, 4), mi=c(1,1,2,3), sec=runif(4, 0, 60))
LeftjustTime(d1)
```

legitWPX

Legitimate Pix

Description

Check WPX list for legitimate picks

Usage

```
legitWPX(twpx, quiet=TRUE)
```

Arguments

twpx pick information list (WPX)

quiet logical, default=TRUE, FALSE generates an error message

Details

Used internall to test if a WPX list has legitimate picks. Initially a list is generated with NA and 0 values in the place holders. If no legitimate picks are added, the list still exists, but the picks are bogus, so this routine will return 0.

42 MeanStaDist

Value

```
integer: 0=not legitimate, 1=legitimate
```

Note

Currently only the name is tested for all(NA), but this might be changed int he future for a more sophisticated test.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

PCsaveWPX

Examples

```
### test fails
library(RSEIS)
jk = RSEIS::cleanWPX()
legitWPX(jk)

#### test passes:
data(GH, package='RSEIS')
gwpx = RSEIS::uwpfile2ypx(GH$pickfile)
legitWPX(gwpx)
```

MeanStaDist

Mean Station Distance

Description

calculate the mean km distance of a set of Lat-lon pairs

Usage

```
MeanStaDist(Ldat)
```

Arguments

Ldat

station list with elements of Lat-Lon

NLSlocate 43

Details

Given a list with elements named lat and lon, find the mean station distance.

Value

scalar

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

```
setPROJ, GLOB.XY, dist
```

Examples

```
data(GH, package='RSEIS')
MeanStaDist(GH$pickfile$STAS)
```

NLSlocate

Nonlinear Least Squares Location

Description

Nonlinear Least Squares Location using Gieger's method

Usage

```
NLSlocate(GH, vel = list(), init = c(0, 0, 0, 0), PLOT = FALSE)
```

Arguments

GH	List, RSEIS
vel	velocity model

init initial guess for event location

PLOT logical, TRUE=plot

Details

This is an adaptation of non-linear least squares inversion for earthquake location. A residual function is supplied, and iterations are performed until the location is determined.

Value

vector, new location

44 OnePerSta

Note

At this stage there are no weighting mechanisms or code to eliminate data that has residuals that are too large.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

References

Lee, W.H.K., and S.W. Stewart, Principles and Applications of Microearthquake Networks, Academic Press, New York, 1981.

See Also

swig

Examples

```
data(GH, package='RSEIS')
### location is:
eqsol = NLSlocate(GH, vel=GH$velfile, PLOT=TRUE)
```

OnePerSta

One Phase Pick Per Station

Description

Require only one pick per station of a specified phase.

Usage

```
OnePerSta(twpx, phase = "Y")
```

Arguments

twpx WPX list

phase character, specific phase

Details

This is used to reduce the number of picks for specific station and phase. The purpose is avoid multiple P-wave phases for each station in the earthquake location routines.

PCfiledatetime 45

Value

WPX list

Note

For S-waves there may be multiple S-wave arrivals, as in the case for shear wave splitting. In that case it is probably best to name the phases differently, as in S1, S2, for example.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

cleanWPX, repairWPX

Examples

```
s1 = RSEIS::setWPX(name="HI", phase="P", yr=2011, jd=231, hr=4, mi=3, sec = runif(5))
s2 = RSEIS::setWPX(name="BYE", phase="P", yr=2011, jd=231, hr=4, mi=3, sec = runif(5))
s3 = RSEIS::catWPX(s1, s2)
s4 = OnePerSta(s3, phase = "P")
```

PCfiledatetime

Create a character string from a date

Description

Create a character string from a date for naming unique output files.

Usage

```
PCfiledatetime(orgtim, tims)
```

Arguments

orgtim time vector of length 5: c(yr, jd, hr, mi, sec) tims seconds to add to orgtim

Value

filename character string

46 PCsaveWPX

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

Examples

```
library(RSEIS)
data(GH, package='RSEIS')
g1 = getGHtime(GH)
g2 = unlist(g1)
PCfiledatetime(g2, 1)
```

PCsaveWPX

Save WPX list

Description

Save a WPX list to a file on the local file system.

Usage

```
PCsaveWPX(twpx, destdir = NULL)
```

Arguments

twpx WPX list

destdir character, destination directory, default=NULL

Details

Creates a file with the list as in native binary format. This file can be loaded with the standard load function in R. The name of the file is created by using the minimum time extracted from the WPX list. The suffix on the file name is RDATA. When reading in, the object created is named "twpx" for further processing.

destdir must be set, otherwise the destination directory will be temporary. Typically this is set to a local directory where the user has write access.

Value

Side effects on file system. The name of the output file is returned.

Note

User must have write access to the destination directory.

PFoutput 47

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

RSEIS::addWPX, RSEIS::catWPX, RSEIS::checkWPX, RSEIS::cleanWPX, RSEIS::cleanWPX, RSEIS::repairWPX, RSEIS::setWPX

Examples

```
##### save files as RDS to users disk
s1 = RSEIS::setWPX(name="HI", yr=2011, jd=231, hr=4, mi=3, sec = runif(5))
hh = PCsaveWPX(s1, destdir= tempdir() )
### read in the data
twpx = readRDS(hh)
data.frame(twpx)
```

PFoutput

Write a pickfile to disk

Description

Write a pickfile to disk, after updating the earthquake location, in a variety of formats.

Usage

```
PFoutput(PF, stas = NULL, sol = NULL, format = 0, destdir=NULL)
```

Arguments

Pickfile list from RSEIS
station list
solution vector, (lat, lon, z, t0)
integer, 0=all formats, 1=native R, 2=UW, 3=csv)

character, full path to destination directory, default=NULL)

Details

destdir

Writes files to disk in local directory.

48 Pick3

Value

Side effects: writes files to user's disk

Note

The destdir (destination directory) must be provided for the file to be save properly.

Creates a file name and writes to disk in a variety of formats.

A destdir that is NULL will result in writing to a temporary file.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

SavePF, RSEIS

Examples

```
data(GH, package='RSEIS')
g1 = GH$pickfile

#### saves pick files to disk
PFoutput(g1, stas = NULL, sol = NULL, format = 1, destdir=tempdir() )

PFoutput(g1, stas = NULL, sol = NULL, format = 2, destdir=tempdir() )

PFoutput(g1, stas = NULL, sol = NULL, format = 3, destdir=tempdir() )

PFoutput(g1, stas = NULL, sol = NULL, format = 0, destdir=tempdir() )
```

Pick3

PICK Buttons for swig

Description

Picking functions for swig

Usage

```
Pick3(nh, g)
```

Pick3

Arguments

nh waveform list for RSEIS

g plotting parameter list for interactive program

Details

Buttons can be defined on the fly.

Pick3 Multiple picks on a panel

Value

The return value depends on the nature of the function as it is returned to the main code swig. Choices for returning to swig are: break, replot, revert, replace, donothing, exit.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

swig, PickWin

```
if(interactive()){
###### interactive addition of button in swig
library(RSEIS)
MYFUNC<-function(nh, g)
{
    print("pressed MYFUNC")
        d = data.frame(list(stations=nh$STNS, components=nh$COMPS))
print(d)
    g$action = "replot"
    invisible(list(global.vars=g))
}
STDLAB=c("DONE", "QUIT", "SELBUT" , "MYFUNC" )
data(GH, package='RSEIS')
JJ = RSEIS::swig(GH, sel=1:10, STDLAB=STDLAB)
}</pre>
```

50 plotEQ

Plot Earthquake location

Description

Plot Earthquake location

Usage

```
plotEQ(Ldat, AQ, add = FALSE, prep = FALSE,
TIT = "UTM Projected Stations", proj = NULL,
xlim = NULL, ylim = NULL)
```

Arguments

Ldat	Data list
AQ	Earthquake solution (location)
add	logical, TRUE=add to plot
prep	preparation
TIT	title
proj	projection list
xlim	2-vector, x limits (km)
ylim	2-vector, y limits (km)

Details

used internally in RElocateEQ

Value

graphical side effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

RElocateEQ

plotJACKLLZ 51

plotJACKLLZ	BoxPlot Jackknife of station locations
-------------	--

Description

BoxPlot Jackknife of station locations

Usage

```
plotJACKLLZ(hjack, sta, proj = NULL, PLOT=1)
```

Arguments

hjack	Output of hijack
sta	station location list
proj	projection list
PLOT	plotting flag, 1,2. if plot =1 plot only boxplot, if plot=2 plot only map. Default=0

Details

takes the output of the HiJack function and extracts the pseudovalues and influence information for boxplots.

Value

Graphical side effects and

Χ	influence of lon
Υ	influence of lat
Z	influence of depth

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

References

Iversen, E. S., and J. M. Lees (1996), A statistical technique for validating velocity models, Bull. Seismol. Soc. Am. 86(6), 1853-1862.

See Also

HiJACK, BLACKJACK, imageINFLUENCE, Vlocate

52 PostREQquake

Examples

```
data(cosopix)
data(wu_coso.vel)
data(coso_sta_LLZ)

COSOjack = HiJACK(cosopix, coso_sta_LLZ, wu_coso.vel)

proj = GEOmap::setPROJ(2, mean(coso_sta_LLZ$lat), mean(coso_sta_LLZ$lon))

#### show stats
plotJACKLLZ(COSOjack, coso_sta_LLZ, proj, PLOT=1 )

#### show maps
plotJACKLLZ(COSOjack, coso_sta_LLZ, proj, PLOT=2 )
```

PostREQquake

Post Processing on EQrquake

Description

Post Processing on EQrquake

Usage

```
PostREQquake(XQ, proj)
```

Arguments

XQ List of Earthquakes proj projection list

Details

Following event locations, plot.

Value

graphical side effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

PostVquake 53

PostVquake	Plotting error ellipsoids of many events	
------------	--	--

Description

Plotting error ellipsoids of many events

Usage

```
PostVquake(MANYeq, GX, GY, XY, proj, add=FALSE, ...)
```

Arguments

MANYeq	List of earthquakes following Vlocate
GX	X-bounds for plot
GY	Y-bounds for plot
XY	station locations in km
proj	projection list
add	logical; if TRUE, add to existing plot (DEFAULT=FALSE)
	graphical parameters for plotting (see par)

Details

Plots the event and the error ellipsoids

Value

Graphical side effects

Note

This is used to plot many event locations and their error ellipsoids

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

eqlipse

54 ReSet

Qrangedatetime

Range of Date Time

Description

Return the range of dates and times for any list with a date/time list

Usage

```
Qrangedatetime(D)
```

Arguments

D info list from RSEIS seismic data list

Value

min date time list
max date time list

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

Examples

```
library(RSEIS)
data(GH, package='RSEIS')
v = Qrangedatetime(GH$info)
```

ReSet

Button to reset the choices of station and component

Description

Button to reset the choices of station and component in swig and Mine.seis

Usage

```
ReSet(nh, g)
```

ripper 55

Arguments

nh RSEIS list

g swig parameters

Details

Driver for SELstaDB

Value

Side effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

SELstaDB, Mine.seis

Examples

```
if(interactive()){
data(GH, package='RSEIS')
buts = "ReSet"
RSEIS::swig(GH, PADDLAB=buts)
}
```

ripper

Rip off Event location information

Description

Extract Event location information following Vlocate

Usage

```
ripper(AQ)
```

Arguments

ΑQ

event location list

56 ripper

Details

Extract lat-lon from event locations to track intermediate solutions and convergence

Value

```
2 by N matrix, lat-lon
```

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

plotEQ

```
library(RSEIS)
data(GH, package='RSEIS')
g1 = GH$pickfile
data(VELMOD1D, package='RSEIS')
vel= VELMOD1D
 w1 = which(!is.na(g1$STAS$lat))
         sec = g1$STAS$sec[w1]
         N = length(sec)
         Ldat = list(
           name = g1$STAS$name[w1],
           sec = g1$STAS$sec[w1],
           phase = g1$STAS$phase[w1],
           lat=g1$STAS$lat[w1],
           lon = g1$STAS$lon[w1],
           z = g1$STAS$z[w1],
           err= g1$STAS$err[w1],
           yr = rep(g1$LOC$yr , times=N),
           jd = rep(g1$LOC$jd, times=N),
           mo = rep(g1$LOC$mo, times=N),
           dom = rep(g1$LOC$dom, times=N),
           hr =rep( g1$LOC$hr, times=N),
           mi = rep(g1$LOC$mi, times=N) )
wstart = which.min(Ldat$sec)
        EQ = list(lat=Ldat$lat[wstart], lon=Ldat$lon[wstart], z=6, t=Ldat$sec[wstart] )
  AQ = Vlocate(Ldat,EQ,vel,
```

Rowz2Keep 57

```
distwt = 10,
    lambdareg =100 ,
    REG = TRUE,
    WTS = TRUE,
    STOPPING = TRUE,
    tolx = 0.01,
    toly = 0.01 ,
    tolz = 0.05, maxITER = c(7,5,7,4) , RESMAX = c(0.1, 0.1), PLOT=FALSE)
```

Rowz2Keep

Rows to Keep for inversion

Description

Selects which rows in the hypocenter determination to keep during non-linear itaerations based on robust rsidual elimination.

Usage

```
Rowz2Keep(Ldat, EQ, G1, RESMAX)
```

Arguments

Ldat List of station arrivals
EQ Earthquake location

G1 derivative and travel time estimates

RESMAX 2-vector for P and S-wave residual maxima

Details

This is a utility used internally.

Residuals greater than the respective maxima provided are eliminated in the svd inversion. If fewer than 4 remain, the smallest 4 rows are returned.

Value

Index of good rows

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

58 RQ

See Also

XYlocate

RQ

Rquake Button

Description

Driver for NLSlocate

Usage

```
RQ(nh, g, idev = 3)
```

Arguments

nh RSEIS list

g parameters from swigidev device for plotting

Details

Button to be called from within swig after picking.

Value

new hypocenter

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

NLSlocate, EQXYresid, XYSETUP, swig, chak

SavePF 59

SavePF

Save Pick File Button

Description

Save a pick file from within swig

Usage

```
SavePF(nh, g)
```

Arguments

nh RSEIS data list

g list of parameters internal to swig

Details

Uses PFoutput to save a pickfile to disk.

Value

Side Effects

Note

Pickfile is saved as a native R file with wpx extension

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

PFoutput

```
if(interactive()){
data(GH, package='RSEIS')
buts = "SavePF"
RSEIS::swig(GH, PADDLAB=buts)
}
```

60 SELstaDB

SELstaDB

Pick stations and components interactively

Description

Pick stations and components interactively. This is a routine used in swig.

Usage

```
SELstaDB(IDB, sel=1, newdev=TRUE, STAY=FALSE)
```

Arguments

IDB list with component vectors, usta and ucomp

sel vector of index to selected traces

newdev logical, whether to create a new device.

STAY logical, whether to keep device active.

Value

vector of index to list of stations and components

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

```
infoDB, makeDB
```

```
if(interactive()){

### make a database from the files on disk
### DBnov = makeDB(fpath, fpat, kind=2, Iendian=1, BIGLONG=FALSE)
### IDB = infoDB(DBnov)
### or, as an example:
data(GH, package='RSEIS')

DBnov = list(usta = unique(GH$STNS), unique(GH$COMPS))

k = SELstaDB(IDB)
}
```

UPdateEQLOC 61

dateEQLOC Update an Earthquake location

Description

Update an Earthquake location following a relocation.

Usage

```
UPdateEQLOC(PF, sol, vel, stas = NULL)
```

Arguments

PF	Pickfile List
sol	solution vector (lat, lon, z, t0)
vel	1D velocity model

stas station list (name, lat, lon, z)

Details

After re-picking or changing the model or the station corrections, update the event location in the pickfile.

Value

Pickfile List

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

EQXYresid, NLSlocate, PFoutput

62 Vlocate

```
N = length(sec)
         Ldat = list(
           name = g1$STAS$name[w1],
           sec = g1$STAS$sec[w1],
           phase = g1$STAS$phase[w1],
           lat=g1$STAS$lat[w1],
           lon = g1$STAS$lon[w1],
           z = g1\$STAS\$z[w1],
           err= g1$STAS$err[w1],
           yr = rep(g1$LOC$yr , times=N),
           jd = rep(g1$LOC$jd, times=N),
           mo = rep(g1$LOC$mo, times=N),
           dom = rep(g1$LOC$dom, times=N),
           hr =rep( g1$LOC$hr, times=N),
           mi = rep(g1$LOC$mi, times=N) )
  wstart = which.min(Ldat$sec)
  EQ = list(lat=Ldat$lat[wstart], lon=Ldat$lon[wstart], z=6, t=Ldat$sec[wstart] )
 AQ = Vlocate(Ldat,EQ,vel,
      distwt = 10,
      lambdareg = 100 ,
      REG = TRUE,
      WTS = TRUE,
      STOPPING = TRUE,
      tolx = 0.01,
      toly = 0.01,
      tolz = 0.05, maxITER = c(7,5,7,4) , RESMAX = c(0.1, 0.1), PLOT=FALSE)
sol = c(AQ\$EQ\$lat, AQ\$EQ\$lon, AQ\$EQ\$z, AQ\$EQ\$t)
upf = UPdateEQLOC(g1, sol , vel, stas=g1$STAS)
```

Vlocate

Hypocenter Determination

Description

Hypocenter Determination with error checking and adjustments.

Usage

Vlocate 63

```
tolx = 0.1,
toly = 0.1,
tolz = 0.5,
RESMAX = c(.4,.5),
maxITER = c(7, 5, 7, 4),
PLOT=FALSE)
```

Arguments

Ldat list, must inlude: lat, lon ,err, sec, cor (see details)

EQ list, must inlude: lat,lon,z, t vel list, 1D velocity structure distwt distance weighting factor

lambdaregregularization parameter for dampingREGlogical, TRUE=use regularizationWTSlogical, TRUE=use weightingSTOPPINGlogical, TRUE=use stopping criteriatolxnumeric, tolerance in km in x directiontolynumeric, tolerance in km in y directiontolznumeric, tolerance in km in z direction

RESMAX vector, residual max for P and S, default=c(4,5)

maxITER vector, Maximum number of iterations for each section of the location routine,

default=c(7,5,7,4)

PLOT logical, plot results during iterations

Details

This is a wrapper for XYlocate, only here the lat-lon of the stations is passed and the code does the projection internally.

There are 3 main loops, each controlled by differing input params: first event is located only in XY keeping the depth fixed (7 iterations). Then an initial free solution is estimated using robust elimination of residual based on RESMAX (5 iterations). Finally a set of 7 iterations is applied providing the final estimate, along with error bars, elliposids, etc.

In the event no good solution is derived, the regularization parameter is doubled and a loop with 4 iterations is applied, and the result returned.

Value

list:

EQ Hypocenter lcoation
ERR Error Analysis
its number of iteration

Ksolutions list of matrices, each with intermediate x,y,z,t locations

Vlocate Vlocate

Note

The schedule may be adjusted by duplicating this function and changing the maxit parameters.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

References

Lee and Stewart

See Also

XYlocate, Klocate, DoRLocate

```
library(RSEIS)
data(GH, package='RSEIS')
g1 = GH$pickfile
data(VELMOD1D, package='RSEIS')
vel= VELMOD1D
 w1 = which(!is.na(g1$STAS$lat))
         sec = g1$STAS$sec[w1]
         N = length(sec)
         Ldat = list(
           name = g1$STAS$name[w1],
           sec = g1$STAS$sec[w1],
           phase = g1$STAS$phase[w1],
           lat=g1$STAS$lat[w1],
           lon = g1$STAS$lon[w1],
           z = g1\$STAS\$z[w1],
           err= g1$STAS$err[w1],
           yr = rep(g1$LOC$yr , times=N),
           jd = rep(g1$LOC$jd, times=N),
           mo = rep(g1$LOC$mo, times=N),
           dom = rep(g1$LOC$dom, times=N),
           hr =rep( g1$LOC$hr, times=N),
           mi = rep(g1$LOC$mi, times=N) )
wstart = which.min(Ldat$sec)
        EQ = list(lat=Ldat$lat[wstart], lon=Ldat$lon[wstart], z=6, t=Ldat$sec[wstart] )
  AQ = Vlocate(Ldat, EQ, vel,
      distwt = 10,
```

XYerror.bars 65

```
lambdareg =100 , 

REG = TRUE, 

WTS = TRUE, 

STOPPING = TRUE, 

tolx = 0.01, 

toly = 0.01 , 

tolz = 0.05, maxITER = c(7,5,7,4) , RESMAX = c(0.1, 0.1), PLOT=FALSE)
```

XYerror.bars

Error Bars in X and Y

Description

Error Bars in X and Y

Usage

```
XYerror.bars(x, y, xlo = 0, xhi = 0, ylo = 0, yhi = 0, pch = 1, col = 1, barw = 0.1, add = FALSE, ...)
```

Arguments

X	X-values
У	Y-values
xlo	X Lower limit of error bars
xhi	X Upper limit of error bars
ylo	Y Lower limit of error bars
yhi	Y Upper limit of error bars
pch	plotting character
col	color
barw	width of the bar (inches)
add	logical, add=FALSE starts a new plot
	other plotting parameters

Value

graphical side effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

66 XYlocate

Examples

```
set.seed(0)
zup = rnorm(10)
x = 1:10
y = 2*x+5+zup
ydown = rnorm(10)
ydown = ydown-min(ydown)+.2
yup = rnorm(10)
yup = yup-min(yup)+.2
zup = rnorm(10)
xup = zup-min(zup)+.5
xdown = rnorm(10)
xdown = xdown-min(xdown)+.2
#### example with different error on either side:
XYerror.bars(x, y, y-ydown, y+yup, x-xdown, x+xup,
pch = 1, col = 'brown', barw = 0.1, add
= FALSE)
```

XYlocate

Locate Earthquake with UTM projection

Description

Non-linear hypocenter location with UTM geographical projection. Used for locating earthquakes in local or regional settings.

Usage

```
XYlocate(Ldat, EQ, vel, maxITER = 10, distwt = 10,
lambdareg = 100, FIXZ
= FALSE, REG = TRUE, WTS = TRUE, STOPPING = TRUE,
RESMAX = c(.4,.5), tolx = 0.005, toly = 0.005,
tolz = 0.01, PLOT = FALSE)
```

XYlocate 67

Arguments

Ldat list, must inlude: x,y,err, sec, cor (see details)

EQ list, must inlude: x,y,z, t vel list, 1D velocity structure

maxITER Maximum number of iterations

distance weighting factor

lambdareg regularization parameter for damping

FIXZ logical, TRUE = fix depth, i.e. only calculate x,y,t

REG logical, TRUE=use regularization
WTS logical, TRUE==use weighting

STOPPING logical, TRUE=use stopping criteria

RESMAX vector, residual max for P and S, default=c(4,5)

tolx numeric, tolerance in km in x direction
toly numeric, tolerance in km in y direction
tolz numeric, tolerance in km in z direction
PLOT logical, plot results during iterations

Details

Input pick list must have at x,y,z, sec, cor, err elements for each station. If no station correction is available it is set to zero. If no uncertainty (err) is available, it is set to 0.05 sec. Each station must have a finite x-y coordinate and arrival time in seconds. Events are located relative to the minute.

Routine uses the svd in a sequence of linear inversions to estimate the nonlinear location.

Value

List:

EQ list, Earthquake hypocenter and time

its number of iterations

rms rms residual

wrms wheighted rms residual

used vector, index of used equations

guesses list of x,y,z,t intermediate locations when converging

Note

This routine should be called by a wrapper (Vlocate) that applies the algorithm several times and changes parameters based on the quality.

If RESMAX is used and the robust approach yields fewer than 4 equations, the best (smallest) four residuals will be used to determine the event location.

68 XYlocate

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

Vlocate

```
library(RSEIS)
data(GH, package='RSEIS')
g1 = GH$pickfile
data(VELMOD1D, package='RSEIS')
vel= VELMOD1D
 w1 = which(!is.na(g1$STAS$lat))
        sec = g1$STAS$sec[w1]
        N = length(sec)
        Ldat = list(
          name = g1$STAS$name[w1],
           sec = g1$STAS$sec[w1],
           phase = g1$STAS$phase[w1],
           lat=g1$STAS$lat[w1],
           lon = g1$STAS$lon[w1],
           z = g1\$STAS\$z[w1],
           err= g1$STAS$err[w1],
           yr = rep(g1$LOC$yr , times=N),
           jd = rep(g1$LOC$jd, times=N),
           mo = rep(g1$LOC$mo, times=N),
           dom = rep(g1$LOC$dom, times=N),
           hr =rep( g1$LOC$hr, times=N),
           mi = rep(g1$LOC$mi, times=N) )
 MLAT = median(Ldat$lat)
   MLON = median(Ldat$lon)
   proj = GEOmap::setPROJ(type=2, LAT0=MLAT, LON0=MLON)
#### get station X-Y values in km
   XY = GEOmap::GLOB.XY(Ldat$lat, Ldat$lon, proj)
### add to Ldat list
   Ldat$x = XY$x
   Ldat$y = XY$y
      wstart = which.min(Ldat$sec)
EQ = list(x=XY$x[wstart], y=XY$y[wstart], z=6, t=Ldat$sec[wstart] )
```

XYSETUP 69

```
maxITER = 7
###print(EQ)
   AQ = XYlocate(Ldat, EQ, vel,
      maxITER = maxITER,
      distwt = 1,
      lambdareg =10 ,
      FIXZ = FALSE,
      REG = TRUE,
      WTS = TRUE,
      STOPPING = TRUE,
      RESMAX = c(0.1, 0.1),
      tolx = 0.001,
      toly = 0.001,
      tolz = 0.5, PLOT=FALSE)
####### update the new location
AXY = GEOmap::XY.GLOB(AQ$EQ$x, AQ$EQ$y, proj)
AQ\$EQ\$lat = AXY\$lat
AQ\$EQ\$lon = AXY\$lon
if(AQ$EQ$lon>180) { AQ$EQ$lon = AQ$EQ$lon-360 }
plot(c(Ldat$x, AQ$EQ$x) , c(Ldat$y,AQ$EQ$y), type='n' , xlab="km",
ylab="km" )
points(Ldat$x, Ldat$y, pch=6)
points(AQ$EQ$x, AQ$EQ$y, pch=8, col='red')
points(EQ$x, EQ$y, pch=4, col='blue')
legend("topright", pch=c(8,4, 6), col=c("red", "blue", "black"),
legend=c("Final location", "Initial guess", "Station"))
print(AQ)
##### try a different case with an extremely wrong start
EQ$x = 10
EQ\$y = 2
```

XYSETUP

Set up matrix for hypocenter inversion

Description

Set up matrix for hypocenter inversion

70 XYSETUP

Usage

```
XYSETUP(STAS, init, vel)
```

Arguments

STAS station information from pickfile

init initial event location

vel list, velocity

Details

This sets up the matrix used for nonlinear inversion. The code does not include information on the weighting. Station corrections are included.

The STAS are an internal component of the pickfile.

Value

matrix

Note

Need scheme for weighting according to errors in picks and distance weighting.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

```
setPROJ, GLOB.XY,NLSlocate
```

```
## start with the location of the closest station
data(GH, package='RSEIS')
g1 = GH$pickfile
data(VELMOD1D, package='RSEIS')

vel= VELMOD1D

STAS = GH$pickfile$STAS
w1 = STAS$phase == 'P'
initz = 6
t0a = GH$pickfile$LOC$sec

XY = XYSETUP(STAS, c(STAS$lat[w1],STAS$lon[w1], initz, STAS$sec[w1]-t0a ) , vel )
```

Y2Pphase 71

Y2Pphase

Convert Y-phase to P-phase

Description

Removes extraneous other-phase from a pick file. If Ypix were made initially as a rough pick, this removes them.

Usage

```
Y2Pphase(twpx, phase)
```

Arguments

twpx WPX list

phase character, phase to exchange to P

Details

Initially many events may be picked using GPIX button. These should be removed after the P-phases have been determined with PickWin.

Value

WPX returned without other-phases

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

```
PPIX, GPIX, YPIX, PickWin
```

```
data(GH, package='RSEIS')
WW = RSEIS::uwpfile2ypx(GH$pickfile)

twpx = latlonz2wpx(WW, GH$pickfile$STAS )

twpx$phase[twpx$phase=='P'] = 'Y'
#### now twpx is like a Ypix from swig
### switch to P
newwpx = Y2Pphase(twpx, "Y")
```

Index

* datasets	PFoutput, 47
ASW.vel,4	Pick3, 48
coso_sta_LLZ, 14	plotEQ, 50
* misc	plotJACKLLZ, 51
BLACKJACK, 5	PostREQquake, 52
checkLOCATEinput, 7	PostVquake, 53
clusterWPX,8	Qrangedatetime, 54
CONTPF, 10	ReSet, 54
contPFarrivals, 11	ripper,55
cosopix, 12	Rowz2Keep, 57
defaultVEL, 14	RQ, 58
DistWeight, 15	SavePF, 59
doAmap, 16	SELstaDB, 60
eglipse, 17	UPdateEQLOC, 61
egwrapup, 19	Vlocate, 62
EQXYresid, 21	XYerror.bars,65
euler_passive, 23	XYlocate, 66
getEulers, 24	XYSETUP, 69
getGAP, 25	Y2Pphase, 71
GETpsTT, 26	* package
getregionals, 28	Rquake-package, 3
getresidTT, 29	ACW
Gfirstguess, 31	ASW.vel,4
gMAP, 32	BLACKJACK, 5
GPIX, 33	22.10.10.11, 2
HiJACK, 34	<pre>checkLOCATEinput, 7</pre>
imageINFLUENCE, 35	clusterWPX,8
INITpickfile, 36	CONTPF, 10
Klocate, 37	contPFarrivals, 11
lastPIX, 38	coso_sta_LLZ, 14
latlonz2wpx, 39	cosopix, 12
LDATlist, 40	1.0.7
LeftjustTime, 40	defaultVEL, 14
legitWPX, 41	DistWeight, 15
MeanStaDist, 42	DistWeightLL (DistWeight), 15
NLSlocate, 43	DistWeightXY (DistWeight), 15
OnePerSta, 44	doAmap, 16
PCfiledatetime, 45	editPIX (lastPIX), 38
PCsaveWPX, 46	eqlipse, 17
i couvem A, To	C411p3C, 17

74 INDEX

eqwrapup, 19 EQXYresid, 21 euler_passive, 23 fuj1.vel (ASW.vel), 4	Rowz2Keep, 57 RQ, 58 Rquake (Rquake-package), 3 Rquake-package, 3 RSEIS, 3
getEulers, 24 getGAP, 25 GETpsTT, 26 getregionals, 28 getresidTT, 29 Gfirstguess, 31 gMAP, 32 GPIX, 33	SaveCSV (PCsaveWPX), 46 SavePF, 59 SELstaDB, 60 StHelens4.vel (ASW.vel), 4 UPdateEQLOC, 61 Vlocate, 62
HiJACK, 34	wu_coso.vel(ASW.vel),4
<pre>imageINFLUENCE, 35 INITpickfile, 36 jap1.vel (ASW.vel), 4 Klocate, 37 lastPIX, 38 latlonz2wpx, 39 LDATlist, 40 LeftjustTime, 40 legitWPX, 41 LITHOS.vel (ASW.vel), 4 MeanStaDist, 42 montserat.vel (ASW.vel), 4 NLSlocate, 43</pre>	XYerror.bars, 65 XYlocate, 66 XYSETUP, 69 Y2Pphase, 71
OnePerSta, 44	
PCfiledatetime, 45 PCsaveWPX, 46 PFoutput, 47 Pick3, 48 plotEQ, 50 plotJACKLLZ, 51 PostREQquake, 52 PostVquake, 53	
Qrangedatetime, 54	
ReSet, 54 ripper, 55	