Module2-quiz-SP23 A*

Due Feb 5 at 11:59pm

Points 10

Questions 10

Available Jan 22 at 12am - Feb 6 at 2:59am

Time Limit 300 Minutes

Attempt History

	Attempt	Time	Score	
LATEST	Attempt 1	4 minutes	10 out of 10	

(!) Correct answers will be available on Feb 6 at 11pm.

Score for this quiz: **10** out of 10 Submitted Jan 27 at 2:30pm This attempt took 4 minutes.

Question 1	1 / 1 pts
What are the free variables in the below Formula F1?	
F1: $\exists x \ P(x) \rightarrow \forall \ y \ Q(y)$	
○ x	
○ x, y	
Оу	
None	
There are no free variables. Both x and y are bounded variables. With the of parse tree you can find bound and free variables.	ne help

Question 2	1 / 1 pts

What will be the Herbrand model for the below formula whose signature is {a, b, P}?

$$\neg P(a) \land P(b) \land (\exists x P(x))$$

$$P^{I}(a) = f, P^{I}(b) = f$$

$$P^{I}(a) = f, P^{I}(b) = t$$

For $\neg P(a)$ to be true, $P^I(a)$ will be false and for P(b) to be true, $P^I(b)$ has to be true. And there exists some x that P can be True

$$P^{I}(a) = t, P^{I}(b) = t$$

$$P^{I}(a) = t , P^{I}(b) = f$$

Question 3

1 / 1 pts

Suppose σ = {a, P, Q}, where a is object constant, P is Unary and Q is binary predicate constant.

Statement: Q(a) is a Formula. True or False?

True

False

As Q is binary predicate constant, the above statement is not a formula because it has only one predicate and syntactically not allowed.

Question 4

1 / 1 pts

The following 3 questions use the function MapColor and predicates In(x,y), Borders(x,y), and Country(x), whose arguments are geographical regions, along

syntactically invalid and therefore meaningless

Question 5 Choose the correct logical expression for the following English sentence: "Paris and Marseilles are both in France." $In(Paris, France) \lor In(Marseilles, France)$ $In(Paris, France) \land In(Marseilles, France)$ this expression correctly expresses the English sentence $In(Paris \land Marseilles, France)$

Question 6 1 / 1 pts

adjacent countries have the same map color." $\forall x \forall y \\ (Country(x) \land Country(y) \land Borders(x,y) \land \neg(x=y)) \Rightarrow \neg(MapColor(x) = MapColor(y))$

this accurately expresses the English sentence. Notice that we also need to make sure that x and y are not the same country

Choose the correct logical expression for the following English sentence: "No two

 $orall x orall y \ Country(x) \wedge Country(y) \wedge Borders(x,y) \wedge
eg (MapColor(x) = MapColor(y))$

 $orall x orall y \
eg Country(x) \lor
eg Country(y) \lor
eg Borders(x,y) \lor
eg (MapColor(x) = MapColor(y))$

 $\forall x \forall y \ (Country(x) \land Country(y) \land Borders(x,y)) \Rightarrow MapColor(x \neq y)$

Question 7 1 / 1 pts

Let the underlying signature be {a, P, Q}, where a is an object constant, P is a unary predicate constant, and Q is a binary predicate constant. Assume object variables range over the set N of nonnegative integers, and the signature is interpreted as follows:

- a represents the number 10,
- P(x) represents the condition "x is a prime number,"
- Q(x, y) represents the condition "x is less than y."

Which of the following first-order logic formulas express the following English sentence?

"x equals 9."

Choose all that apply.

 \square Q(a, x) $\land \neg$ P(x)

~	$Q(x, a) \land \neg \exists y [Q(x, y) \land Q(y, a)]$
~	$Q(x, a) \land \forall y [Q(x, y) -> (y = a \lor Q(a, y))]$
	Q(a, x)

Question 8	1 / 1 pts
Statement: Following first-order formula is satisfiable. True or False? ∀xy(x = y)	
True	
O False	

Assume that the signature consists of the object constant Me, the unary predicate constant Male, and the binary predicate constant Parent, and nothing else. Which

of the following first-order logic formulas express the following English sentence?

1 / 1 pts

"I have no daughters"

Question 9

Choose all that apply. (Hint: there are 2 correct answers.)

- $\neg \exists x (\neg Male(x) \land Parent(Me, x))$
- $\forall x (Male(x) \land \neg Parent(Me, x))$
- $\exists x (Male(x) \land Parent(Me, x))$
- \bigvee \forall x (Parent(Me, x) -> Male(x))

Which of the following statements are true for any first-order formula F and G, and for any interpretation I?

$$(F\wedge G)^I=\wedge (F,G)$$

$$(\neg F)^I = \neg \left(F^I\right)$$

 $\exists w F(w)^I = t \text{ iff, for some object constant } c, F(c)^I = t$

- 3
- 2
- 1,3
- 0 1,2

Quiz Score: 10 out of 10