Computer Graphics I

Lecture 23: Final

Xiaopei LIU

School of Information Science and Technology ShanghaiTech University

Real-time Smoke Simulation (A+)

- Simulate smoke by a more accurate advection solver
 - Implement the stable fluids solver
 - Modify the advection by the reflection solver
 - Implement them on GPU using CUDA
 - Particle-based renderer using texture sprite
 (https://learnopengl.com/In-Practice/2D-Game/Particles)
- **Reference**: https://jzehnder.me/publications/advectionReflection/

Smoke Rendering (A)

Render smoke by volumetric techniques

- Volume data are stored in VDB files
- In-scattering effects
- Shadow effects
- Combined with surface rendering

• Reference:

- Kutz P, et al. Spectral and Decomposition Tracking
- Library: <u>OpenVDB</u>.

Photon Mapping (A)

- Create an offline renderer using photon mapping techniques
 - Capable of handling caustics from light refraction through transparent substances.
- Reference:
 - Henrik Wann Jensen. Realistic Image Synthesis Using Photon Mapping.
 - Matt Pharr, et al. <u>Stochastic</u>
 <u>Progressive Photon Mapping</u>.

Mesh Deformation (A)

- 3D mesh deformation using volumetric graph Laplacian
 - Design a tool to select and drag mesh curves.
 - Quadric Energy Minimization.
- Reference: Kun Zhou, et al. <u>Large Mesh Deformation</u>
 <u>Using the Volumetric Graph Laplacian</u>.

Isosurface Rendering (A)

Render isosurfaces by volumetric techniques

- Build k-d trees for isosurfaces encompassed in discrete volume data
- Design transfer functions for isosurface rendering
- Pre-integrated transfer function

• Reference:

- Interactive Isosurface Ray Tracing of Large Octree Volumes
- High-Quality Pre-Integrated Volume Rendering Using Hardware-Accelerated Pixel Shading

Interactive Sculpting (A)

- An interactive mesh editor that supports sculpting
 - Interactive sculpture visual tool.
 - Dynamic changes of mesh structure.

Reference:

 Stanculescu L, Chaine R, Cani M P. Freestyle: Sculpting meshes with self-adaptive topology[J].

Massive rigid-body simulation (B)

- Implement the massive rigid body simulation
 - Basic transformation: translation + rotation over time
 - Collision detection
 - Handling colliding and resting contacts
- Reference:
 - Iterative Dynamics with Temporal Coherence

Liquid simulation by SPH (B)

- Implement the incompressible SPH solver for particle-based liquid simulation
 - The basic SPH solver (can use existing range search library)
 - The incompressible SPH solver
 - Surface extraction for rendering or render particles
 - Reference:

https://people.inf.ethz.ch/~sobarbar/papers/Solog/Solog.pdf

Cloth simulation with mass-spring model (B)

Fast Simulation of Mass-Spring System

- Implementation of the fast non-linear solver
- Possibly GPU parallel implementation

• Reference:

https://www.cs.utah.edu/~ladislav/liu13fast/liu13fast.html

Surface Reconstruction (C)

- Poisson surface reconstruct from point clouds
 - Estimate SDF of point clouds by Poisson equation
 - Extract meshes via marching cubes

 Reference: Michael Kazhdan, et al. <u>Poisson</u> <u>surface reconstruction</u>.

NURBS Surface Editing (C)

- An interactive NURBS modeling editor
 - Interactive edit NURBS.

- Reference:
 - Piegl L, Tiller W. The NURBS book[M].

Terrain Synthesis (C)

- Synthesize terrain for use in computer games
 - Generate terrain with stochastic heightmap and texture
 - Free-view navigation in the generated terrain (first-person perspective).

Reference: Jacob Olsen.
 Realtime Procedural
 Terrain Generation.

Dipole Subsurface Scattering (C)

- Use dipole model for subsurface light transport in translucent materials
 - Approximate BSSRDF through dipole model.
 - Optional: implement directional dipole model.
- Reference: Henrik Wann Jensen, et al. <u>A Practical</u> <u>Model for Subsurface Light Transport</u>.

