Robot

You have two arrays of integers, $V=\{V_1,V_2,\ldots,V_N\}$ and $P=\{P_1,P_2,\ldots,P_N\}$, where both have N number of elements. Consider the following function:

```
score = 0
int Go(step, energy) {
  if (step == N) {
    score += V[step];
    return (score);
  else {
    int way = random(1, 2);
    if (way == 1) {
       score += V[step];
    else {
       energy = P[step];
    if (energy > 0) {
       Go(step + 1, energy - 1);
    else {
      KillTheWorld();
  }
}
```

What is the maximum possible value of score that we can get in the end, if we call Go(1,0)?.

Note that the function should never invoke $\mathit{KillTheWorld}$ function. And $\mathit{random}(1,2)$ generates a random integer from set [1,2].

It is guaranteed there will be a solution that wont kill the world.

Input format

The first line contains an integer N. Each of the following N lines contains a pair of integers. The i-th line contains a pair of numbers, V_i , P_i , separated by space.

Output Format

Derive the maximum score given by return (score);.

Constraints

```
1 \le N \le 5 	imes 10^5 \ 0 \le V_i \le 10^9 \ 0 \le P_i \le 10^5
```

Sample input

```
4
4 2
0 2
4 0
3 4
```

Sample output

Explanation

In the best case, the first and second function call in Go variable way will take value 2, while in the other calls it will be equal to 1 then the final score will be equal to the value of 7.