# ハーツホーン

# Chap. 1 99 本美(本

1.1アフィンタタキ記作

长: 代数的 開作

k L o 7 7 7 - , n To Fol Alk

 $P = (a_1, ..., a_n) \in Al^n \otimes C$   $f \in k[x_1, ..., x_n] = A \times \frac{\mathbb{P}}{3} C$ 

內变数约項式環

## 不完美言

Z(f) = {P ∈ Aln | f(P) = 0}

Z(T) = {P & Alm | of &T, f(P) = 0} TCA

Tによって生成されるイデアルをみてすると

 $Z(T) = Z(a) = Z(f_1,..,f_n)$ 

个人的生成元

### 代数的集合

YCA \*\* ヨTCA Y=Z(T)のとき Yは代数的集合という。

Prop. 1.1

200代数的集合的和过代数的。 代数的集合的任意的交易分为证代数的。 空集合、全空间证代数的。



### Al L on Zariski (1) +1.

代数的集合飞骨集合之对3位相

34 1.1.1

Al + o Zariski (271).

A= h(2) 17 PID. 任意のイデアル a=(f)

見は代数的領域をおう。f=c(x-a1)·(x-an)

 $Z(a) = Z(f) = \{a_1, ..., a_n\}$ 

2(1)= \$

Z(0) = A1

よ,2 Al'の野集合は、中、有限部分集合、全体、





### 民无系匀

位相空間×の空でか、部分集合 Y x で配約では Yにおいて閉であるような 2つの真部分集合 Y、 Y2 を使って Y=Y、UY2 と書けない ていうーと、 空集合は配称とみなさない。

(3·1 1.1.2 Al 17 配系分

131 1.1.3

既約了空間の空ごない間部分集合は でそれかつ 相望





何りしし、4 Yxixの配給を算分集合なるメニカ・ケス開を下もで配約、



ててすても同様

 $Y = (Y, nY) \cup (Y_2, nY)$ ,  $Y = (Y, nY) \cup (Y_2, nY)$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup (Y_2, nY) \times Y_3$ ,  $Y = (Y, nY) \cup ($ 

よっと は まれなうでなくなり 矛信.

## アフィン代数多様体

Aいの配的問部分集合に誘導位相を いれたもの、





現分でないから違う、

アフィンタタ様は本の開発が筆をモンチアフィンタタを記体でいう。



$$(a) T_1 \subset T_2 \subset A \Rightarrow Z(T_1) \supset Z(T_2)$$

$$(c) \ \forall_{1} \ \forall_{2} \ C \ Al' \Rightarrow \ I(Y_{1} \cup Y_{2}) = I(Y_{1}) \ \wedge \ I(Y_{2})$$

$$\gamma \longrightarrow \gamma (\gamma)$$
 $\gamma (\alpha) \longleftarrow \alpha$ 

$$Z(I(Y)) = \overline{Y} = Y$$

$$I(Z(\alpha)) = \sqrt{\alpha} = \alpha.$$

$$\int I(Y) = I(Z(I(Y))) = I(Y)$$
 $Y \subset Z(I(Y)) \neq Y \quad I(Y) \supset I(Z(I(Y)))$ 
 $-\frac{1}{5} \cdot I(Y) \subset I(Z(I(Y))) \quad \text{(IAA} is)$ 

Z(a) が 配紙的 会 a E Spec A

T Aの素(デアルたら、
根整(デアル

Ex- 1.4.1

An (丁 是无系分

A1 = Z ((0))

(0) は素イデアル

Ex. 1.4.2

febcx.为了配系分为项式之了了。

A

A (I UFD なので (f) (I 素(デアル

よって (= Z(f) は 尼死分

fの、y)=0をアフィン曲祭にていう

ナメーカ次のとき カ次曲等にという。

一角沒一千千日日(火,,,,,,,) 既约约项式

n=3のとことけりを曲面。

カラろ

ス<sup>2</sup>+3<sup>2</sup>-1=0 2次曲祭.

b = ± 1 b = = 7 n