Distributed

Theorem Proving

by seasons a see on.

Peens

Maria Paola Bonacina Dept. of CS University of Jowa William Mc Cume MCS Div. Argonne Nat. Lab.

Overview of Peers

- · Logic: equational (also Ac-theories).
- Strategies: refutational,

 contraction based

 (simplification based,

 rewriting based,

 completion based).
- · Paralle lization: <u>Clause Diffusion</u> me thodology.
- · Environment: <u>network</u> of workstations.

Overview of Peers

Clause - Diffusion:

- · coarse-grain paraffelism:

 paraffel search,
- · concurrent, asynchronous, deductive processes ("peers"):
 - same theorem proving problem,
 - same strategy (default)

 (different strategies possible)

 no special-purpose processes,
 - separate data bases (distributed memory),
 - independent derivations,
 - one succeeds, all halt.

Overview of Peers

Clause - Diffusion:

- · subdivision of work:
 - subdivision of clauses (distributed allocation algorithm),
 - subdivision of inferences (data-driven)

- * subdivision of the search space,
- * balance of work-load.
- · communication:

exchange of clauses

by message - passing.

The structure of Peers

- · Initialization phase
- · Distributed computation:
 - 3 states: incoming messages,
 inferences,
 - idle.

Basic work-Poop:

- · Select pending message messages => actions,
- · else do unit of inference work,
- · else become idle (till a message arrives):

The structure of Peers

· Termination:

- Ofinds a proof => success broadcast "halt message."
- o raise an exception broadcast "halt message" (fault-toperance possible).
- all idle,
 all sent messages received,
 (e.g. for Knuth-Bendix completion)
 or no refutation)

Dijkstra-Pnueli global termination de tection algorithm.

The "Types of work"

- · Receive new settler
- · Receive inference message
- · Do inference work:
 - select given clause or given - pair
 - broadcast inference message
 - generate new clauses
 - forward contraction
 - allocation
 - backward contraction
 - send new settlers

More features

- · Selection of strategies: flags/parameters.
- · Distributed allocation algorithm:
 - _ "rotate",
 - "syntax",
 - "sefect mim".
- Treatment of new clauses

 generated by

 backward contraction.

Experiments

Problem	1-Peers	2-Peers	4-Peers	6-Peers	$8 ext{-}Peers$
х3	96.45	50.29	43.28	30.66	7.51
r2	40.04	16.51	18.74	34.97	22.31
sa1	15.99	7.30	16.06	12.96	9.65
sa2	24.28	20.09	12.76	81.05	20.34

Problem	1-Peers	2-Peers	4-Peers	6-Peers	8-Peers
x3-a	96.28	53.58	46.87	54.04	25.95
x3-b	96.45	50.29	43.28	30.66	7.51
х3-с	96.06	51.37	44.06	43.52	28.06
x3-d	95.86	49.16	44.52	31.65	8.60
х3-е	96.36	87.64	38.34	24.93	31.02

Problem	1-Peers	2-Peers	4-Peers	$6 ext{-}Peers$	$8 ext{-}Peers$
kbcomm	5.14	1.62	0.55	0.55	0.58
x3	62.42	49.40	24.09	23.80	14.03
sa1	25.84	10.05	20.32	4.60	5.29
sa2	12.97	20.73	2.24	1.56	2.15

Discussion on the experiments

1 : solutions

blue: sequential search

green: paraffel search by Iblack Clause - Diffusion