

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Batch: D2 Roll No.: 16010122323

Experiment / assignment / tutorial No.4

Grade: AA / AB / BB / BC / CC / CD /DD

Signature of the Staff In-charge with date

TITLE: To study and implement Non Restoring method of division

AIM: The basis of algorithm is based on paper and pencil approach and the operation involve repetitive shifting with addition and subtraction. So, the main aim is to depict the usual process in the form of an algorithm.

Expected OUTCOME of Experiment: (Mention CO/COs attained here)

To better understand the non-restoring algorithm and executing it using a programming language. To find the advantage of non-restoring over restoring division.

Books/ Journals/ Websites referred:

- 1. Carl Hamacher, Zvonko Vranesic and Safwat Zaky, "Computer Organization", Fifth Edition, TataMcGraw-Hill.
- **2.** William Stallings, "Computer Organization and Architecture: Designing for Performance", Eighth Edition, Pearson.
- **3.** Dr. M. Usha, T. S. Srikanth, "Computer System Architecture and Organization", First Edition, Wiley-India.

Pre Lab/ Prior Concepts:

The Non Restoring algorithm works with any combination of positive and negative numbers.

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Implementation details:

```
#include <stdio.h>
#include <math.h>
void shiftleft(int A[], int Q[]);
void twocomp(int A[], int Ad, int p);
void nonrestoring();
int main() {
   nonrestoring();
   return 0;
void nonrestoring() {
   0}, Ad = 0, Md = 0, p = 0, Qd = 0, it = 1;
   int flag = 0;
   Q[0] = Q[1] = Q[2] = Q[3] = Q[4] = Q[5] = Q[6] = Q[7] = 0;
   printf("Name: Vedansh Savla\n");
   printf("Roll Number: 16010122323 \nDivision: D2\n------
     ·----\n");
   printf("COA exp 4: To study and implement Non Restoring method of
division\n");
   printf("Implementation details:\n-----
\n");
   printf("NON RESTORING DIVISION ALGORITHM\n");
   printf("Enter two numbers to multiply:\n");
   printf("Both must be less than 16\n");
   do {
       printf("\nEnter Dividend: ");
       scanf("%d", &divid);
       printf("Enter Divisor: ");
       scanf("%d", &divisor);
   } while (divid >= 16 || divisor >= 16);
   if (divid > 0 && divisor < 0) {
       flag += 1;
       divisor = divisor * -1;
   } else if (divid < 0 && divisor > 0) {
       flag += 1;
       divid = divid * -1;
   } else {
       printf(" ");
```


(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering T R U S T

```
if (divisor == 0) {
            printf("\nInvalid operation!!!!");
        } else {
            for (i = 7; divid > 0 \&\& i >= 0; i--) {
                Q[i] = divid % 2;
                divid = divid / 2;
            Q[0] = 0;
            while (count > 0) {
                printf("\n\nIteration%d", it);
                if (A[0] == 0) {
                    printf("State:A>0\n");
                    shiftleft(A, Q);
                    printf("Left Shifting of A=\n");
                    for (i = 0; i < 8; i++)
                         printf("%d\t", A[i]);
                    printf("Left shifting of Q=\n");
                    for (i = 0; i < 7; i++)
                        printf("%d\t", Q[i]);
                    for (i = 7; i >= 0; i--) {
                         Ad = Ad + (A[i] * pow(2, p));
                        p++;
                    p = 0;
                    Ad = Ad - divisor;
                    printf("State:A=A-M\n");
                    if (Ad > 0) {
                        A[0] = A[1] = A[2] = A[3] = A[4] = A[5] = A[6] = A[7] =
0;
                         for (i = 7; Ad > 0 \&\& i >= 0; i--) {
                             A[i] = Ad \% 2;
                             Ad = Ad / 2;
                         printf("A=\n");
                         for (i = 0; i < 8; i++) {
                             printf("%d\t", A[i]);
                        Ad = Md = 0;
                    } else
                         twocomp(A, Ad, p);
                    printf("A=\n");
                    for (i = 0; i < 8; i++) {
                        printf("%d\t", A[i]);
                    Md = 0;
                } else {
                    printf("State:A<0\n");</pre>
                    shiftleft(A, Q);
```


(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

```
printf("Left Shifting of A=\n");
        for (i = 0; i < 8; i++)
            printf("%d\t", A[i]);
        printf("Left shifting of Q=\n");
        for (i = 0; i < 7; i++)
            printf("%d\t", Q[i]);
        p = 0, Ad = 0;
        for (i = 7; i >= 0; i--) {
            Ad = Ad + (A[i] * pow(2, p));
            p++;
        Md = 0;
        p = 0;
        Ad = Ad + divisor;
        printf("State:A=A+M\n");
        A[0] = A[1] = A[2] = A[3] = A[4] = A[5] = A[6] = A[7] = 0;
        for (i = 7; Ad > 0 & i >= 0; i--)
            A[i] = Ad \% 2;
        Ad = Ad / 2;
        printf("A=\n");
        for (i = 0; i < 8; i++) {
            printf("%d\t", A[i]);
        Ad = Md = 0;
    if (A[0] == 0) {
        printf("LSB of Q when A>0\n");
        Q[7] = 1;
        printf("\nQ=");
        for (i = 0; i < 8; i++) {
            printf("%d\t", Q[i]);
    } else {
        printf("LSB of Q when A<0\n");</pre>
        Q[7] = 0;
        printf("Q=\n");
        for (i = 0; i < 8; i++) {
            printf("%d\t", Q[i]);
    count = count - 1;
    it++;
if (count == 0) {
    if (A[0] == 1) {
        printf("State:A<0\n");</pre>
        for (i = 7; i >= 0; i--) {
            Ad = Ad + (A[i] * pow(2, p));
            p++;
```


(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

```
p = 0;
                    p = 0;
                    Ad = Ad + divisor;
                    printf("State:A=A+M\n");
                    A[0] = A[1] = A[2] = A[3] = A[4] = A[5] = A[6] = A[7] = 0;
                    for (i = 7; Ad > 0 \&\& i >= 0; i++)
                        A[i] = Ad \% 2;
                    Ad = Ad / 2;
                    printf("A=\n");
                    for (i = 0; i < 8; i++) {
                        printf("%d\t", A[i]);
                    Ad = 0;
                Ad = 0;
                p = 0;
                for (i = 7; i >= 0; i--) {
                    Ad = Ad + (A[i] * pow(2, p));
                    p++;
                p = 0;
                Qd = 0;
                for (i = 7; i >= 0; i--) {
                    Qd = Qd + (Q[i] * pow(2, p));
                    p++;
    printf("\nQuotient=%d", Qd);
    printf("\nRemainder=%d", Ad);
void shiftleft(int A[], int Q[]) {
    int i;
    for (i = 0; i < 7; i++) {
        A[i] = A[i + 1];
    A[7] = Q[0];
    for (i = 0; i < 7; i++) {
        Q[i] = Q[i + 1];
    }
void twocomp(int A[], int Ad, int p) {
    int i;
    Ad = Ad + ((-Ad) * 2);
    A[0] = A[1] = A[2] = A[3] = A[4] = A[5] = A[6] = A[7] = 0;
    for (i = 7; Ad > 0 \&\& i >= 0; i--) {
        A[i] = Ad \% 2;
```


(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**


```
Ad = Ad / 2;
for (i = 0; i < 8; i++) {
    if (A[i] == 1)
        A[i] = 0;
    else
        A[i] = 1;
Ad = 0;
p = 0;
for (i = 7; i >= 0; i--) {
   Ad = Ad + (A[i] * pow(2, p));
Ad = Ad + 1;
A[0] = A[1] = A[2] = A[3] = A[4] = A[5] = A[6] = A[7] = 0;
for (i = 7; Ad > 0 && i >= 0; i--) {
   A[i] = Ad \% 2;
    Ad = Ad / 2;
Ad = 0;
```

Output:

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

/tm	p/tl	PFNC	(mhvp	0.0									
Nam	e: V	edar	ısh S	Savla	a								
Rol	l Nu	mber	: 16	50101	12232	23							
Div	isio	n: [)2										
COA	exp	4:	To s	study	/ and	d imp	olem	ent Non Restoring method of division					
				deta									
-													
NON	RES	TORI	NG [OIVIS	SION	ALGO	RIT	HM					
Ent	er t	wo r	numbe	ers t	to mu	ultin	olv:						
	Enter two numbers to multiply: Both must be less than 16												
	Enter Dividend: 11												
	Enter Divisor: 3												
)								
	<pre>Iteration1State:A>0 Left Shifting of A=</pre>												
						0	0	Left shifting of Q=					
								ate:A=A-M					
A=	U	U	'	U	'	'	30	ace.A-A-W					
	1	1	1	1	1	0	1	LSB of Q when A<0					
	'	'	'	'	'	U	'	LSB OT Q WHEN AND					
Q=	^	0	4	0	4	4	_						
0	0	0	1	0	1	1	0						
				e:A<(
				of A=									
1	1	1	1	1	0	1	0	Left shifting of Q=					

State:A=A+M

0

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University) Department of Computer Engineering

L	.eft :	Shift	ing (of A:			
1	1	1	1	1	0	1	0
L	eft :	Shift	ing (of Q:			
						0	State: A = A + M
	١:						
		1	1	1	1	0	1 LSB of Q when A < 0
):						
		1	0	1	1	0	0
1	tera	tion	3				
	tate						
	eft :			of A:			
						1	0
L	eft :	Shift	ing (of 0:			
						0	State: A = A + M
A	\:						
		1	1	1	1	0	1 LSB of Q when A < 0
):						•
		0	1	1	0	0	0
1	tera	tion	4				
	tate						
	eft :			of A:			
						1	0
	.eft :						
	0					0	State: A = A + M
	0			Ü	0	Ü	Seace. A. A. M.

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University) Department of Computer Engineering

Α:							
1	1	1	1	1	1	0	1 LSB of Q when A < 0
Q:							
1	0	1	1	0	0	0	0
It	erati	ion 5	5				
Sta	ate:	A <	0				
Le	ft Sh	nift	ing	of A:			
1	1	1	1	1	0	1	1
Le	ft Sh	nift	ing	of Q:			
						0	State: A = A + M
Α:							
1	1	1	1	1	1	1	0 LSB of Q when A < 0
Q:							
	1	1	0	0	0	0	0
It	erati	ion 6	5				
Sta	ate:	A <	0				
Le	ft Sł	nift	ing	of A:			
				1		0	0
				of Q:			
						0	State: A = A + M
Α:							
1	1	1	1	1	1	1	1 LSB of Q when A < 0
Q:							
1	1	0	0	0	0	0	0
		0	0	0	0	0	

Department of Computer Engineering

```
Iteration 7
State: A < 0
Left Shifting of A:
1 1 1 1 1
                   1
                       1
                           1
Left Shifting of Q:
   0
1
       0
           0
                0
                    0
                        0
                            State: A = A + M
A:
0
   0
                                LSB of Q when A > 0
Q:
1
   0
        0
           0
                0
                    0
                           1
Iteration 8
State: A > 0
Left Shifting of A:
   0
       0
          0 0
                            1
Left Shifting of Q:
       0
            0
                0
                    0
                        1
                            State: A = A - M
A:
    0
                                LSB of Q when A > 0
0
        0
           0
                0
                    0
                        1
                            0
Q:
   0
        0
                0
                    0
                        1
                            1
Quotient=3
Remainder=2
```

Example: (Handwritten solved problem needs to uploaded):

Divide	14(1110) 6	y 3/001) using non +	estoring method
A	0	17	· ·	Remork
9 0000	1110	00011	4	nemark,
11110	1100	111	3	Shift left Aca sub (AL A-M) set ac to 0
00000	1000	111	2	SHIE HEFT AO AND (AC AND) Let Oo to 1
11110	001-	, ,	- No. 1	Short hot aco hos (ACA, -N) hat (Oo to O
11111	0100	1	- 0	Mist left A, CR Not (De A+m) Set Do to O.
•	0 0100			Add (A C Asm)
0,	votient in	A = 3 -	0011	White Court of
Por	naineler in	A = 2.	00010	

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Conclusion:

In this experiment, Non-Restoring Division Algorithm is executed with the help of C programming.

The advantage of Non-Restoring Division over Restoring Division is better understood.

Post Lab Descriptive Ouestions

1. What are the advantages of non-restoring division over restoring division?

Non-restoring division uses the digit set $\{-1, 1\}$ for the quotient digits instead of $\{0, 1\}$. Non-Restoring Division when implemented in hardware, there is only one decision and addition/subtraction per quotient bit; there is no restoring step after the subtraction, which potentially cuts down the numbers of operations by up to half and lets it be executed faster.

Restoring method: you add the divisor back, and put 0 as your next quotient digit Non-restoring method: you don't do that - you keep negative remainder and a digit 1, and basically correct things by a supplementary addition afterwards.

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

