

Today's Agenda

Last time:

- More examples on variance
- Continuous random variables (motivation)

Today (Lec 22, 06/22):

- Continuous random variables:
 - definition
 - cdf and pdf
 - expected value and variance of continuous random variables
- the continuous uniform distribution

Chapter 8: Continuous Random Variables

Recall...

- a random variable is a function $X : S \to \mathbb{R}$.
- If the range X(S) is...
 - ▶ countable or finite, X is called a discrete random variable
 - ▶ an interval $(a, b) \subseteq \mathbb{R}$, X is called a continuous random variable

Cutting a stick of length 2

- Suppose you cut a stick of length 2 at random and denote by X the cutting point. Then X can take values in (0,2).
- What is the probability that the cut *X* is
 - ▶ ... between 0 and 1?
 - ▶ ... between 1 and 2?
 - ▶ ... between 0 and 1/2?
 - ▶ ...smaller than 0?
 - ▶ ...larger than 1?
 - ▶ ... smaller than t for some $t \in (0, 2)$?
- The cdf $F(x) = P(X \le x)$ is then

$$F(x) =$$

■ And for any $x \in (0, 2)$,

$$P(X = x) =$$

So it seems that, for a continuous random variable, assigning probabilities to **intervals** is more "natural" than assigning probabilities to specific values.

We shall do exactly that by defining the cumulative distribution function for a continuous random variable.

Definition (CDF of continuous random variable)

The cumulative distribution function of a continuous random variable X, $F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt$, is a function such that

- 1. F(x) is defined for all $x \in \mathbb{R}$,
- 2. F(x) is a non-decreasing function of x for all $x \in \mathbb{R}$,
- 3. $\lim_{x \to -\infty} F(x) = 0$ and $\lim_{x \to \infty} F(x) = 1$,
- 4. $P(a < X \le b) = F(b) F(a)$,

Note: P(X = x) = 0 for all $x \in \mathbb{R}$!

Strict inequalities don't matter...

If X is a continuous random variable, then

$$P(a < X \le b) = F(b) - F(a)$$

$$P(a \le X \le b) = P(a < X \le b) + P(X = a) = F(b) - F(a) + 0$$

$$P(a < X < b) = P(a < X \le b) - P(X = b) = F(b) - F(a) - 0$$

$$P(a \le X < b) = P(a < X \le b) + P(X = a) - P(X = b) = F(b) - F(a)$$
 so if X is continuous, all these probabilities coincide!

If X was discrete, these 4 probabilities could all be different.

So we now have a tool for computing probabilities of a continuous random variable. However, the cdf doesn't show directly which values of \boldsymbol{X} are more likely or less likely.

To find that out, let's see how the CDF changes as the value of x changes over a small interval $[x, x + \Delta x]$.

We have

$$P(x \le X \le x + \Delta x) = F(x + \Delta x) - F(x).$$

To study how CDF changes, we want to look at its rate of change as Δx becomes really small. That is,

$$\lim_{\Delta x \to 0} \frac{P(x \le X \le x + \Delta x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{F(x + \Delta x) - F(x)}{\Delta x}.$$

Looks familiar? That's the derivative!

Definition (Probability density function)

The probability density function (pdf) of a continuous random variable X is the derivative of the cdf

$$f(x) = \frac{d}{dx}F(x),$$

where f(x) is continuous.

Definition (Support of pdf)

The support of a pdf f(x) is defined as

$$supp(f) = \{x \in \mathbb{R} : f(x) \neq 0\}.$$

Integrals of a pdf f over a domain D may be computed on $D \cap supp(f)$.

Properties of the pdf

a)
$$f(x) \geq 0 \quad \forall x \in \mathbb{R}$$
 b)
$$\int_{-\infty}^{\infty} f(x) dx = 1$$
 c)
$$P(a \leq X \leq b) = \int_{a}^{b} f(x) dx \quad \text{for } a < b \in \mathbb{R}$$

Suppose that X is a continuous random variable with probability density function

$$f(x) = \begin{cases} cx(1-x) & \text{if } 0 \le x \le 1, \\ 0 & \text{otherwise} \end{cases}$$

- a) Compute c so that this is a valid pdf
- b) Graph f(x)
- c) Compute $P(X \ge 1/2)$
- d) Compute $P(1/4 \le X \le 3/4)$
- e) Compute P(X = 1/2)

Suppose that X is a continuous random variable with probability density function

$$f(x) = \begin{cases} x & \text{if } 0 \le x \le \sqrt{2}, \\ 0 & \text{otherwise} \end{cases}$$

- a) Compute $F_X(x)$
- b) Graph $F_X(x)$
- c) Compute $P(1/2 \le X < 1)$.

Definition (Expectation of continuous RV)

If X is a continuous random variable with pdf f(x), and $g: \mathbb{R} \to \mathbb{R}$, then

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)dx.$$

It follows that

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx.$$

$$Var(X) = E[(X - E[X])^2] = \int_{-\infty}^{\infty} (x - E[X])^2 f(x) dx.$$

The shortcut formula for computing the variance still holds in the continuous case:

$$Var(X) = E[X^2] - (E[X])^2.$$

Suppose X has pdf

$$f(x) = \begin{cases} 6x(1-x) & \text{if } 0 \le x \le 1, \\ 0 & \text{otherwise} \end{cases}$$

Compute E[X] and Var(X)

Question

Suppose X has pdf f(x), and f is an even function about the origin on \mathbb{R} (i.e. f(x) = f(-x)). If E[X] is well defined, which of the following is true:

A
$$E[X] < 0$$

B
$$E[X] = 0$$

Suppose X has CDF

$$F(x) = \begin{cases} 0 & x < 0, \\ \frac{x^2}{2} & 0 \le x < 1/2 \\ \frac{7}{4}x - \frac{3}{4} & 1/2 \le x < 1 \\ 1 & x \ge 1 \end{cases}$$

Compute E(X) and Var(X).

So far, we have a way of dealing with the expectation of a function of random variable g(X) (Law of Unconscious Statistician).

However, we may be interested in the distribution of g(X) itself.

Example: X = time until a light bulb breaks, g(X) = the amount of work done before the light bulb breaks

If the function g has an inverse over the range of X, then we have a fairly easy way of obtaining the distribution of Y = g(X). In short, the method is as follows.

- a) Write the CDF of Y as a function of X, i.e., start by $P(Y \le y)$ and try to express it using X.
- b) Use the CDF of X to find the CDF of Y. If you want the PDF of Y, then you can take the derivative of the CDF.
- c) Find the range of Y.

Let X be a continuous random variable with the following pdf and cdf:

$$f(x) = \begin{cases} \frac{1}{4} & 0 < x \le 4, \\ 0 & \text{otherwise} \end{cases}$$

$$F(x) = \begin{cases} 0 & x \le 0 \\ \frac{x}{4} & 0 < x < 4, \\ 1 & x \ge 4. \end{cases}$$

Find the pdf of $Y = X^{-1}$.

We now introduce the first continuous distribution.

Definition

We say that X has a continuous uniform distribution on (a,b) if X has pdf

$$f(x) = \begin{cases} \frac{1}{b-a} & x \in (a, b), \\ 0 & \text{otherwise} \end{cases}$$

This is abbreviated $X \sim U(a, b)$.

Let $X \sim U(a, b)$. Show the following.

a)
$$E(X) = \frac{a+b}{2}$$

b)
$$Var(X) = \frac{(b-a)^2}{12}$$

Suppose that the angle measured from the principal axis to the point of a spinner is uniformly distributed on $[0,2\pi]$. You win the prize you want if the point lands in $\left[\frac{3\pi}{4},\frac{3\pi}{2}\right]$. Given that the point will stop in the top half of the circle, what is the probability that you win the prize you want.

Question

Suppose $X \sim U(0,1)$, and that $Y = \frac{2}{X} - 1$. What is the range of Y?

A
$$Y(S) = [0, \infty)$$

B
$$Y(S) = [1, 3]$$

$$C Y(S) = [0, \infty)$$

D
$$Y(S) = [0, 2]$$

$$\mathsf{E}\ Y(S) = [1, \infty)$$