Eksamen på Økonomistudiet, vinter 2012-2013 Makro A

2. årsprøve

7. januar, 2013

(3-timers skriftlig prøve uden hjælpemidler)

Alle delspørgsmål, 1.1-1.3 og 2.1-2.8, skal besvares og alle tæller lige meget ved bedømmelsen.

I Opgave 1 er fokus på de verbale, intuitive forklaringer, men formel analyse og notation kan inddrages efter ønske.

I Opgave 2 er de formelle og beregningsmæssige elementer i fokus, men verbale, intuitive forklaringer er fortsat vigtige.

Opgave 1: Konvergens i Solow-modellen og tværlande-empirien

- 1.1 Redegør for hvad der bestemmer (niveau for og vækstrate langs) steady statevækstbanen for BNP per arbejder i henhold til den generelle (kapitel 5-) Solowmodel med eksogen teknologisk udvikling.
- 1.2 Forklar hvad man i henhold til samme model kan forvente om den gennemsnitlige vækstrate i BNP per arbejder fra et initialt år 0 (nul), hvor BNP per arbejder ikke nødvendigvis er på steady state-vækstbanen, til et senere år T.
- 1.3 Nedenfor er angivet resultatet af en OLS-estimation på tværs af 65 repræsentative lande indekseret med i, idet g^i er den gennemsnitlige årlige vækstrate i BNP per arbejder fra 1960 til 2003 i land i, y_0^i er BNP per arbejder i 1960 i land i, og s^i og n^i er hhv. investeringskvoten og vækstraten i arbejdsstyrken som årsgennemsnit over 1960 2003 i land i (standardfejl anført i parantes under estimat).

$$g^{i} = 0,063 - \underset{(se=0,0015)}{0,006} \ln y_{0}^{i} + \underset{(se=0,0025)}{0,016} \ln \left[\ln s^{i} - \ln \left(n^{i} + 0,075 \right) \right]$$

Diskutér denne estimation i relation til den generelle Solowmodels konvergens- (vækst-) forudsigelse som beskrevet i spørgsmål 1.2.

Opgave 2: Giver fri kapitalbevægelighed højere indkomst per arbejder, også når der er en risikopræmie på kapital placeret i indlandet?

Der betragtes en lille økonomi kaldet "indlandet", dels som lukket økonomi, dels som åben økonomi med frie kapitalbevægelser. I begge tilfælde antages nedslidningsraten for fysisik kapital at være nul ($\delta=0$), og der ses bort fra teknologisk udvikling. Det antages at være forbundet med risiko at placere formue i indlandet: Hvis én enhed kapital placeret i landet i periode t giver et afkast på r_t , hvis kapitalen ikke går tabt, så er det risikokorrigerede afkast, hvor der er taget hensyn til sandsynligheden for at kapitalen kan gå tabt, lig med $r_t - \varepsilon$, hvor $\varepsilon > 0$.

Som lukket økonomi er indlandet beskrevet ved Solow-modellen bestående af ligningerne (C1) - (C3), hvor Y_t , K_t og L_t betegner hhv. indlandets BNP (samlede indkomst), kapitalapparat og arbejdsstyrke i periode t.

$$Y_t = K_t^{\alpha} L_t^{1-\alpha}, \quad 0 < \alpha < 1 \tag{C1}$$

$$K_{t+1} = sY_t + K_t, \quad 0 < s < 1$$
 (C2)

$$L_{t+1} = (1+n)L_t, \quad n > 0$$
 (C3)

Modellens tilstandsvariable er K_t og L_t med givne initialværdier $K_0 > 0$ og $L_0 > 0$. Udover de anførte parameterrestriktioner antages at $\varepsilon s < n$.

Der anvendes definitionerne $k_t \equiv K_t/L_t$ og $y_t \equiv Y_t/L_t$.

2.1 Vis at modellen fører til følgende transitionsligning for kapital per arbejder:

$$k_{t+1} = \frac{1}{1+n} (sk_t^{\alpha} + k_t)$$
 (C4)

Det oplyses, at for et vilkårligt initialt $k_0 > 0$ indebærer transitionsligningen (C4) konvergens af k_t mod en bestemt, konstant værdi $k_c^* > 0$, hvilket definerer steady state.

2.2 Angiv steady state-værdierne, k_c^* og y_c^* , for hhv. kapital per arbejder og indkomst per arbejder i den lukkede økonomi. Forklar at den risikokorrigerede samlede indkomst meningsfuldt kan defineres som $\hat{Y}_t \equiv Y_t - \varepsilon K_t$. Definér $\hat{y}_t \equiv \hat{Y}_t/L_t$ og vis at denne risikokorrigerede indkomst per arbejder i steady state er:

$$\hat{y}_c^* = \left(\frac{s}{n}\right)^{\frac{\alpha}{1-\alpha}} \left(1 - \varepsilon \frac{s}{n}\right) > 0. \tag{C5}$$

Som åben økonomi er indlandet beskrevet ved Solow-modellen bestående af ligningerne (O1) - (O7). Indlandets BNP, kapitalapparat og arbejdsstyrke betegnes fortsat hhv. Y_t ,

 K_t og L_t , mens Y_t^n er indlandets BNI (indlændingenes samlede indkomst), \bar{r} er den internationale, risikofri realrente og ε er risikopræmien på kapitalplacering i indlandet. Det er antaget, at indlandet som åben økonomi er nettodebitor, så nettofordringerne på udlandet opfylder $F_t = V_t - K_t < 0$ i alle perioder. Specifikt antages, at hele indlandets formue V_t er placeret i indenlandsk kapital, mens den resterende del af K_t ejes af udlændinge.

$$Y_t = K_t^{\alpha} L_t^{1-\alpha}, \quad 0 < \alpha < 1 \tag{O1}$$

$$V_t = K_t + F_t \tag{O2}$$

$$Y_t^n = Y_t + (\bar{r} + \varepsilon) F_t, \quad \bar{r} > 0, \ \varepsilon > 0 \tag{O3}$$

$$V_{t+1} = sY_t^n + V_t, \quad 0 < s < 1 \tag{O4}$$

$$L_{t+1} = (1+n)L_t, \quad n > 0$$
 (O5)

$$\bar{r} + \varepsilon = \alpha \left(\frac{K_t}{L_t}\right)^{\alpha - 1}$$
 (O6)

$$w_t = (1 - \alpha) \left(\frac{K_t}{L_t}\right)^{\alpha} \tag{O7}$$

Modellens tilstandsvariable er V_t og L_t med givne initialværdier $V_0 > 0$ og $L_0 > 0$. Udover de anførte parameterrestriktioner antages at $s(\bar{r} + \varepsilon) < n$.

2.3 Forklar ligningerne (O3) og (O6) specielt mht. hvordan \bar{r} og ε optræder. Forklar hvorfor den risikokorrigerede nationalindkomst nu meningsfuldt skal defineres som: $\hat{Y}_t^n \equiv Y_t^n - \varepsilon V_t$.

Der anvendes fortsat definitionerne $k_t \equiv K_t/L_t$ og $y_t \equiv Y_t/L_t$ og nu også: $v_t \equiv V_t/L_t$, $f_t \equiv F_t/L_t$, $y_t^n \equiv Y_t^n/L_t$ og $\hat{y}_t^n \equiv \hat{Y}_t^n/L_t$.

2.4 Vis at ligningerne (O1), (O6) og (O7) sammen med definitioner fører til:

$$y_t = (\bar{r} + \varepsilon) k_t + w_t \tag{O8}$$

Vis herefter ved også at anvende (O2) og (O3) samt definitioner at:

$$y_t^n = w_t + (\bar{r} + \varepsilon) v_t \tag{O9}$$

Vis endelig at:

$$\hat{y}_t^n = w_t + \bar{r}v_t \tag{O10}$$

Kommentér.

2.5 Forklar at indlandets kapital per arbejder, k_t , BNP per arbejder, y_t , og realløn, w_t , tilpasser sig springvist til steady state-værdier, hhv. k^* , y^* og w^* og vis at:

$$w^* = (1 - \alpha) \left(\frac{\alpha}{\bar{r} + \varepsilon}\right)^{\frac{\alpha}{1 - \alpha}} > 0 \tag{O11}$$

2.6 Vis at modellen for den åbne økonomi fører til følgende transitionsligning for indlandets formue per arbejder:

$$v_{t+1} = \frac{1 + s(\bar{r} + \varepsilon)}{1 + n} v_t + \frac{s}{1 + n} w^*$$
 (O12)

og at denne for en vilkårlig intialværdi $v_0 > 0$ indebærer konvergens af v_t mod steady state-værdien:

$$v^* = \frac{\frac{s}{n}}{1 - \frac{s}{n}(\bar{r} + \varepsilon)}w^* > 0 \tag{O13}$$

2.7 Vis at steady state-værdien for risikokorrigeret nationalindkomst per arbejder kan skrives:

$$\hat{y}^{n*} = \frac{1 - \varepsilon \frac{s}{n}}{1 - \frac{s}{n} (\bar{r} + \varepsilon)} w^* > 0 \tag{O14}$$

2.8 Vis at bortset fra i knivsægstilfældet $\bar{r} + \varepsilon = \frac{\alpha n}{s}$ gælder, at den risikokorrigerede nationalindkomst per arbejder i den åbne økonomi, \hat{y}^{n*} , er større end den risikokorrigerede indkomst per arbejder i den lukkede økonomi, \hat{y}^*_c . [Vink: Du skal indsætte udtrykket for w^* fra (O11) i (O14) og sammenligne det resulterende udtryk for \hat{y}^{n*} med udtrykket for \hat{y}^*_c fra (C5)]. Kommentér og forklar.