MA2102: LINEAR ALGEBRA

Lecture 28: Eigenspaces

4th November 2020

A natural generalization of the notion of eigenvectors is the concept of eigenspaces.

Definition [Eigenspace] Let $T: V \to V$ be a linear map. If λ is an eigenvalue, then its eigenspace is defined as

$$E_{\lambda} := \{ v \in V \mid T(v) = \lambda v \}.$$

Note that $E_{\lambda} \neq \emptyset$ and it is a (vector) subspace. If T is diagonalizable, with distinct eigenvalues $\lambda_1, \ldots, \lambda_k$. Then there exists a basis

$$\beta = \{v_1, \dots, v_n\}$$

consisting of eigenvectors. Such a basis is called an eigenbasis. We may rearrange the v_j 's such that the first r_1 vectors are eigenvectors for λ_1 , the next r_2 vectors are eigenvectors for λ_2 and so on all the way up to the last r_k vectors are eigenvectors for λ_k .

It follows that

$$r_1 + \cdots + r_b = n$$
.

Consider the span S of $\{v_1, \dots, v_{r_1}\}$. We know that it is contained in E_{λ_i} . If $v \in E_{\lambda_i}$, then write v in terms of v_i 's and look at

$$\begin{split} T(v) &=& T(c_1v_1+\dots+c_nv_n) \\ &=& \lambda_1(c_1v_1+\dots+c_{r_1}v_{r_1})+\lambda_2(c_{r_1+1}v_{r_1+1}+\dots+c_{r_1+r_2}v_{r_1+r_2}) \\ &+\dots+\lambda_k(c_{r_1+\dots+r_{k-1}+1}v_{r_1+\dots+r_{k-1}+1}+\dots+c_{r_1+\dots+r_k}v_{r_1+\dots+r_k}) \\ \lambda_1v &=& \lambda_1(c_1v_1+\dots+c_{r_1}v_{r_1})+\lambda_1(c_{r_1+1}v_{r_1+1}+\dots+c_{r_1+r_2}v_{r_1+r_2}) \\ &+\dots+\lambda_1(c_{r_1+\dots+r_{k-1}+1}v_{r_1+\dots+r_{k-1}+1}+\dots+c_{r_1+\dots+r_k}v_{r_1+\dots+r_k}) \end{split}$$

It follows from $T(v) = \lambda_1 v$ that $c_j = 0$ for $j > r_1$, whence $v \in S$. This establishes the equality $E_{\lambda_1} = \operatorname{span}_F\{v_1, \dots, v_{r_1}\}$.

Show that $E_{\lambda_i} = \text{span}_F \{ v_{r_1 + \dots + r_{i-1} + 1}, \dots, v_{r_1 + \dots + r_i} \}.$

If $v \in E_{\lambda_i} \cap E_{\lambda_i}$ for $i \neq j$, then

$$\lambda_i v = T(v) = \lambda_i v,$$

implying that $(\lambda_i - \lambda_j)v = 0$. This implies that v = 0,

$$E_{\lambda_i} \cap E_{\lambda_i} = \{0\}$$

and $E_{\lambda_i} + E_{\lambda_i}$ is a direct sum. More generally, we claim that

$$E_{\lambda_1} + \dots + E_{\lambda_k} = E_{\lambda_1} \oplus \dots \oplus E_{\lambda_k}.$$

This may be proven by induction, starting with $E_{\lambda_1} + E_{\lambda_2} = E_{\lambda_1} \oplus E_{\lambda_2}$.

Lemma If $v_1, ..., v_k$ are eigenvectors corresponding to eigenvalues $\lambda_1, ..., \lambda_k$, then $\{v_1, ..., v_k\}$ is linearly independent.

Proof.

Let *j* be the maximum index such that $\{v_1, ..., v_j\}$ is linearly independent. If j = k we are done; otherwise

$$v_{j+1} = c_1 v_1 + \dots + c_j v_j.$$

Applying *T* to both sides we obtain

$$\lambda_{j+1}(c_1v_1 + \dots + c_jv_j) = \lambda_{j+1}v_{j+1} = c_1\lambda_1v_1 + \dots + c_j\lambda_jv_j.$$

This leads us to

$$c_1(\lambda_{j+1}-\lambda_1)v_1+\cdots+c_j(\lambda_{j+1}-\lambda_j)v_1=0$$

implying that $c_1 = \cdots = c_j = 0$. Hence, $v_{j+1} = 0$, a contradiction.

Show that V is the direct sum of E_{λ_i} 's, when T is diagonalizable, i.e., every v can be written uniquely as $v = v_1 + \dots + v_k$, where $v_j \in E_{\lambda_i}$.

Example (1) Let $T: V \to V$ admit two eigenvalues λ , μ and $\dim_F V =$

2. Note that $\dim_F E_\lambda \geq 1$ as well as $\dim_F E_\mu \geq 1$. As $E_\lambda \oplus E_\mu$ has dimension at least 2, we must have $V = E_\lambda \oplus E_\mu$. Thus, both the eigenspaces have dimension 1. Choose a basis v and w of E_λ and E_μ respectively. Then $\beta = \{v, w\}$ is an eigenbasis of V and T is diagonal with respect to β .

(2) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be given by

$$T(x,y) = (x + 2y, 3x + 2y).$$

The matrix with respect to the standard basis is

$$A = [T]_{\beta} = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}.$$

The characteristic polynomial is $p_A(x) = (x-4)(x+1)$ (exercise).

By the previous example, we know that $\mathbb{R}^2 = E_4 \oplus E_{-1}$. If (x, y) is an eigenvector with eigenvalue 4, then

$$(x + 2y, 3x + 2y) = (4x, 4y).$$

Solving we obtain (x,y) = c(2,3). Show that any element of E_{-1} is of the form c(1,-1). Thus, T is diagonalizable with $\{(2,3),(1,-1)\}$ as an eigenbasis.

- (3) Let $P: V \to V$ be a projection map. If $P(v) = \lambda v$ and $v \neq 0$, then applying P we obtain $\lambda v = \lambda^2 v$. This implies that $\lambda \in \{0,1\}$ and eigenvalues of P can be either 0 or 1. We have seen earlier that E_0 is the null space of P, E_1 is the range of P and $V = E_0 \oplus E_1$.
- (4) Consider the map $T: P_n(\mathbb{R}) \to P_n(\mathbb{R}), \ p(x) \mapsto xp'(x)$. As $T(x^k) = kx^k$, for $k = 0, \dots, n$, the standard basis $\beta = \{1, x, x^2, \dots, x^n\}$

As $I(x^*) = kx^*$, for k = 0, ..., n, the standard basis $\beta = \{1, x, x^*, ..., x^*\}$ is an eigenbasis.

There are n + 1 distinct eigenvalues and

$$P_n(\mathbb{R}) = E_0 \oplus \cdots \oplus E_n$$

(5) Consider the *shear* matrix

$$A = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right)$$

and the associated linear map

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
, $T(x, y) = (x + y, y)$.

The only eigenvalue is 1 and

$$E_1 = \{(0, y) \in \mathbb{R}^2 | y \in \mathbb{R} \}.$$

Thus, A or T is not diagonalizable. However, A has the same trace, rank, determinant, eigenvalues and characteristic polynomial as I_2 .