Foglio Esercizi 3 (MDAG 2023)

Esercizi proposti da R. Buzano e M. Radeschi

24 novembre 2023

Esercizio 1. Siano

$$A_1 = \begin{pmatrix} 1 & 2 \\ -1 & 0 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 1 & 0 \\ 2 & -1 \end{pmatrix}, \quad A_3 = \begin{pmatrix} 0 & 2 \\ -2 & 1 \end{pmatrix}, \quad A_4 = \begin{pmatrix} 4 & 1 \\ -2 & 3 \end{pmatrix},$$

Dimostrare che $\mathcal{A} = \{A_1, A_2, A_3, A_4\}$ forma una base di $M(2, \mathbb{R})$. Trovare il vettore di coordinate della matrice

$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

nella base \mathcal{A} .

Esercizio 2. In $\mathbb{R}_3[x]$ calcolare la matrice del cambio di base da $\{1, x-1, (x-1)^2, (x-1)^3\}$ a $\{1, x, x^2, x^3\}$, e vice-versa.

Esercizio 3. Data la mappa $T: \mathbb{R}_3[x] \to \mathbb{R}_2[x], T(p(x)) = p(0) + p(1)x + p(2)x^2$, calcolare:

- 1. $A = [T]_{\mathcal{B}}^{\mathcal{A}}$, dove $\mathcal{A} \in \mathcal{B}$ sono le basi canoniche.
- 2. $\ker L_A \in \ker T$.

Che rapporto hanno $\ker L_A$ e $\ker T$? Come si ottiene l'uno dall'altro?

Esercizio 4. Sia $V = \mathbb{R}^3$. Sia $\mathcal{A} = \{e_1, e_2, e_3\}$ la base canonica di V e $\mathcal{B} = \{v_1, v_2, v_3\}$ e $\mathcal{C} = \{w_1, w_2, w_3\}$ due altri basi dati da

$$v_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix}, v_3 = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}, \qquad w_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, w_2 = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}, w_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}.$$

Sia $T:V\to V$ dato da

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} 3x_1 + x_2 \\ x_1 + x_3 \\ x_2 - x_3 \end{pmatrix}.$$

Trovare $[T]_{\mathcal{A}}^{\mathcal{A}}$ e $[T]_{\mathcal{C}}^{\mathcal{B}}$.

Esercizio 5. Data la matrice

$$A = \begin{pmatrix} -1 & 3 & -3 \\ -3 & 5 & -3 \\ -6 & 6 & -4 \end{pmatrix}.$$

- (i) Verificare che $\lambda = -4$ e un autovalore di A e trovare l'autospazio associato a λ .
- (ii) Si trova tutti gli autovettori di A.

Esercizio 6. Determinare la diagonalizzabilità di

$$A = \left(\begin{array}{ccc} 1 & 1 & k \\ 0 & 1 & 0 \\ 0 & 1 & 2 \end{array}\right)$$

al variare di k: in altre parole, determinare per quali valori di $k \in \mathbb{R}$ la matrice è diagonalizzabile e, per tali valori, determinare una base di autovettori.

Esercizio 7. Calcolare gli autovalori di:

$$A = \left(\begin{array}{cccc} 1 & 0 & 1 & 0 \\ 3 & 2 & 0 & 1 \\ 0 & 0 & 3 & 0 \\ 9 & 0 & -3 & 4 \end{array}\right)$$

Attenzione: Calcolare il determinante con cura!!

Esercizio 8. Dato $\lambda \in \mathbb{K}$, sia $B = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$ e sia A la matrice scritta "a blocchi" nella forma

$$A = \left(\begin{array}{c|c|c} B & 0 \\ \hline 0 & B \end{array}\right) = \left(\begin{array}{c|c|c} \lambda & 1 & 0 & 0 \\ \hline 0 & \lambda & 0 & 0 \\ \hline 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & \lambda \end{array}\right)$$

Calcolare le molteplicità degli autovalori di A. In maniera simile, fissati due interi m,n, calcolare le molteplicità degli autovalori di

$$C = \begin{pmatrix} B & 0 & 0 & 0 \\ \hline 0 & \ddots & 0 & 0 \\ \hline 0 & 0 & B & 0 \\ \hline 0 & 0 & 0 & \lambda I_n \end{pmatrix}$$

dove la matrice B si ripete m volte.

Esercizio 9. Calcolare gli autovalori dell'endomorfismo $T: \mathbb{R}_2[x] \to \mathbb{R}_2[x]$, definito da

$$T(p(x)) = p(0) + p(1)x + p(-1)x^{2}.$$

Esercizio 10. Determinare la diagonalizzabilità, ed eventualmente diagonalizzare, la matrice

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

2

prima su \mathbb{R} , e poi su \mathbb{C} .