Seismic Imaging on NVIDIA GPUs

Scott Morton
Hess Corporation

Seismic Imaging Outline

- Seismic data & imaging
- NVIDIA GPUs + CUDA
 - Why?
 - How?
- Three imaging methods
 - Algorithm
 - Challenges
 - Performance

Seismic Imaging Data

Data

Data

An iterative process

Computation scales as size of data and image/model

Seismic ImagingWhy GPUs?

- Price-to-performance ratio improvement
 - Want 10X to change platforms
 - Payback must more than cover effort & risk
 - Got 10X ten years ago in switching from supercomputers to PC clusters

Seismic Imaging Why GPUs?

- Price-to-performance ratio improvement
 - Want 10X to change platforms
 - Payback must more than cover effort & risk
 - Got 10X ten years ago in switching from supercomputers to PC clusters
 - Several years ago there were indicators we can get 10X or more on GPUs
 - Peak performance
 - Benchmarks
 - Simple prototype kernels

Seismic ImagingWhy CUDA & NVIDIA GPUs?

Ease of programming

- Must be able to port, maintain & modify production codes (relatively) easily
 - These costs must be included
- Have tried Cg, Brook and Peakstream
 - All lacking in some aspect
- CUDA programming model straightforward
 - SIMD-like thread-based parallelism
 - In 1.5 days
 - Took "intro to CUDA" class
 - Wrote a working 2-D seismic modeling code
 - Programming memory hierarchy for optimization is the biggest challenge

Seismic Imaging How to port a code?

Design GPU algorithm

- Optimize for memory hierarchy
- Keep main data structures in GPU memory
- Create prototype GPU kernel
 - Include main computational characteristics
 - Test performance against CPU kernel
 - Iteratively refine prototype
- Port full kernel & compare with CPU kernel
 - Verify numerical results
 - Compare performance results
- Incorporate into production code & system

Imaging methods

Increasing computational cost

Kirchhoff imaging

- High-frequency propagation
- Ray or eikonal travel-times

"Wave-equation" imaging

- One-way propagation: z ~ t
- Frequency-domain method
- ADI (alternating direction implicit) finite difference

"Reverse-time" imaging

- Two-way propagation
- Time-domain
- Explicit finite-difference

Kirchhoff Imaging Physical algorithm

Based on the Kirchhoff integral

- Pre-compute coarse travel-times for propagation from surface locations to image points: $T(\vec{s}, \vec{x})$
- 4-D surface integral through a 5-D data set

$$I(\vec{\mathbf{x}}) = \iint d^2\mathbf{s} d^2\mathbf{r} D(\vec{\mathbf{s}}, \vec{\mathbf{r}}, t = T(\vec{\mathbf{s}}, \vec{\mathbf{x}}) + T(\vec{\mathbf{x}}, \vec{\mathbf{r}}))$$

- Computational complexity:
 - $N_1 \sim 10^9$ is the number of output image points
 - $N_{\rm D}$ ~ 10⁸ is the number of input data traces
 - $f \sim 10$ is the number of cycles/point/trace
 - $f N_1 N_D \sim 10^{18}$ cycles ~ 10 CPU-years

Computational kernel

Data trace

$$I(\vec{\mathbf{x}}) = \sum_{\vec{\mathbf{s}}, \vec{\mathbf{r}}} D(\vec{\mathbf{s}}, \vec{\mathbf{r}}, t = T(\vec{\mathbf{s}}, \vec{\mathbf{x}}) + T(\vec{\mathbf{x}}, \vec{\mathbf{r}}))$$

Kirchhoff Imaging CUDA kernel

Kernel optimization

- 0 Initial Kernel
- 1 Used Texture Memory
- 2 Used Shared Memory
- 3 Global Memory Coalescing
- 4 Decreased Data Trace Shared Memory Use
- 5 Optimized Use of Shared Memory
- 6 Consolidated "if" Statements,Eliminated or Substituted SomeMath Operations
- 7 Removed an "if" and "for"
- 8 Used Texture Memory for Data-Trace Fetch

Kernel performance

GPU-to-CPU Performance Ratio

Production status

GPU kernel incorporated into production code

 Large kernel speed-ups results in "CPU overhead" for task setup dominating GPU production runs

Further optimizations

- create GPU kernels for most "overhead" components
- optimized left-over CPU code (which helps CPU version also)

Time (hr)	Set-up	Kernel	Total	Speed-up
Original CPU code	5	20	25	
Main GPU kernel	5	0.5	5.5	5
Further optimizations	0.5	0.5	1	25

One-way propagation

Based on scalar wave equation

$$\frac{1}{V(\vec{\mathbf{x}})^2} \frac{\partial^2 P}{\partial t^2} = \nabla^2 P$$

- Frequency-domain
- Preferred direction of propagation: z ~ t

$$\frac{\partial P}{\partial z} = \frac{\pm i\omega}{V(\vec{\mathbf{x}})} \sqrt{1 + \frac{V^2(\vec{\mathbf{x}})}{\omega^2} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right)} P$$

One-way propagation

Based on scalar wave equation

$$\frac{1}{V(\vec{\mathbf{x}})^2} \frac{\partial^2 P}{\partial t^2} = \nabla^2 P$$

- Frequency-domain
- Preferred direction of propagation: z ~ t

$$\frac{\partial P}{\partial z} = \frac{\pm i\omega}{V(\vec{\mathbf{x}})} \sqrt{1 + \frac{V^2(\vec{\mathbf{x}})}{\omega^2} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right)} P$$

One-way propagation

Based on scalar wave equation

$$\frac{1}{V(\vec{\mathbf{x}})^2} \frac{\partial^2 P}{\partial t^2} = \nabla^2 P$$

- Frequency-domain
- Preferred direction of propagation: z ~ t

$$\frac{\partial P}{\partial z} = \frac{\pm i\omega}{V(\vec{\mathbf{x}})} \sqrt{1 + \frac{V^2(\vec{\mathbf{x}})}{\omega^2} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right)} P$$

One-way propagation

Based on scalar wave equation

$$\frac{1}{V(\vec{\mathbf{x}})^2} \frac{\partial^2 P}{\partial t^2} = \nabla^2 P$$

- Frequency-domain
- Preferred direction of propagation: z ~ t

$$\frac{\partial P}{\partial z} = \frac{\pm i\omega}{V(\vec{\mathbf{x}})} \sqrt{1 + \frac{V^2(\vec{\mathbf{x}})}{\omega^2} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right)} P$$

One-way propagation

Based on scalar wave equation

$$\frac{1}{V(\vec{\mathbf{x}})^2} \frac{\partial^2 P}{\partial t^2} = \nabla^2 P$$

- Frequency-domain
- Preferred direction of propagation: z ~ t

$$\frac{\partial P}{\partial z} = \frac{\pm i\omega}{V(\vec{\mathbf{x}})} \sqrt{1 + \frac{V^2(\vec{\mathbf{x}})}{\omega^2} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right)} P$$

One-way propagation

Based on scalar wave equation

$$\frac{1}{V(\vec{\mathbf{x}})^2} \frac{\partial^2 P}{\partial t^2} = \nabla^2 P$$

- Frequency-domain
- Preferred direction of propagation: z ~ t

$$\frac{\partial P}{\partial z} = \frac{\pm i\omega}{V(\vec{\mathbf{x}})} \sqrt{1 + \frac{V^2(\vec{\mathbf{x}})}{\omega^2} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right)} P$$

One-way propagation

- Evolution eqn uses
 - Continued fractions
 - Operator splitting
 - ADI finite difference
- Each depth step requires applying four operators
 - Along x
 - Along y
 - Along x + y
 - Along x y

One-way propagation

- Continued fractions
- Operator splitting
- ADI finite difference
- Each depth step requires applying four operators
 - Along x
 - Along y
 - Along x + y
 - Along x y

One-way propagation

- Continued fractions
- Operator splitting
- ADI finite difference
- Each depth step requires applying four operators
 - Along x
 - Along y
 - Along x + y
 - Along x y

One-way propagation

- Continued fractions
- Operator splitting
- ADI finite difference
- Each depth step requires applying four operators
 - Along x
 - Along y
 - Along x + y
 - Along x y

One-way propagation

- Continued fractions
- Operator splitting
- ADI finite difference
- Each depth step requires applying four operators
 - Along x
 - Along y
 - Along x + y
 - Along x y

Implicit complex tri-diagonal linear systems

HESS

Implicit complex tri-diagonal linear systems

The evaluation and solution of these complex tri-diagonal systems dominates the computational cost of our wave-equation imaging code.

"Wave-equation" Imaging Low level parallelism

- Common work between shot-records
 - Calculating the coefficients of the matrices
 - Dependent on frequency & local velocity
 - Part of the solving of the tri-diagonal system
- Parallelize over shot-records in the kernel

"Wave-equation" Imaging CUDA kernels

 Separate kernels for each operator

- xyx+yand x-y

CUDA kernels

HESS

- Separate kernels for each operator
 - x, y, x+y and x-y

"Wave-equation" Imaging CUDA kernels

"Wave-equation" Imaging CUDA kernels

Production CPU kernel

Performance: 15 - 50 Mpoints/sec

Prototype CUDA kernel

- Single tri-diagonal system
- Constant coefficients
- Performance: 700 Mpoints/sec

Production CUDA kernels

- Single kernel handles x, y, x+y & x-y operators
- Several kernels calculate coefficients
- Performance: 300-500 Mpoints/sec

Two-way propagation

Based on the scalar wave equation

$$\frac{1}{V(\mathbf{x})^2} \frac{\partial^2 P}{\partial t^2} = \nabla^2 P$$

- Explicit finite-difference scheme
 - 2nd order in time
 - Variable order in space: 6th 16th
 - Most of the computation
 - Bandwidth
 - Read P(x,t), P(x,t-dt) & V(x) (plus halo!)
 - Write *P*(*x*, *t*+*dt*)
 - Max performance is 4+ Gpt/s

"Reverse-time" Imaging CUDA algorithm

Paulius's algorithm

- Each thread specifies an (x,y) point, marching in z.
- Each thread block handles a 2-D rectangle.
- Each 2-D slice + halo is read into shared memory.
- Threads in a block re-use these values.

"Reverse-time" Imaging CUDA algorithm

Paulius's algorithm

- Threads in a block march in z, storing values "infront" & "behind" in registers.
- Number of registers limits the block size and the core-to-halo ratio.
- GPU performance is predictable: 2.5 - 3 Gpt/s.

Kernel performance

Inter-GPU communication

High frequency requires

- Dense sampling
- Large memory
- Multiple GPUs
- Halo exchange
- Inter-GPU communication

Device ⇔Host

- Use pinned memory
- PCle bus predictably yields ~ 5 GB/s
- ~ 10 % of kernel time
- Easily hidden

Inter-GPU communication

CPU process ⇔process

- Currently using MPI
 - From legacy code
- Performance variable
- Comparable to kernel time
- Solutions
 - OpenMP?
 - single controlling process?

Node ⇔node

- Currently Gigabit Ethernet
- Solution? Infiniband? 10-GigE?

Seismic Imaging Summary

Seismic imaging CUDA codes

- All 3 main codes written & verified
 - Two in production
 - One in production testing/optimization
- All done with about two-man years of effort
- Kernel speed-ups vary from 10 80 X on GT200
- 456-GPU cluster out-performs 3000-CPU cluster

GPU cluster

- Jan 2008: bought 32-nodes (128 G80 GPUs)
- Dec 2008: upgraded & expanded to 456 GT200s
- Nov 2009: expanding to 1200 GT200s

Summary

Acknowledgements

Code co-authors/collaborators

- Thomas Cullison (Hess & Colorado School of Mines)
- Paulius Micikevicius (NVIDIA)
- Igor Terentyev (Hess & Rice University)

Hess GPU systems

- Jeff Davis, Mac McCalla

NVIDIA support & management

 Ty Mckercher, Paul Holzhauer, Jeff Saunders, Philip Nenon

Hess management

- Jacques Leveille, Vic Forsyth, Jim Sherman