Contents

Ι	Mult	tivariable Calculus	1
11	Parametric Equations and Polar Coordinates		
	11.1	Curves Defined by Parametric Equations	2
	11.2	Calculus with Parametric Curves	3
	11.3	Polar Coordinates	9
	11.4	Areas and Lengths in Polar Coordinates	11
	11.5	Conic Sections	13
	11.6	Conic Sections in Polar Coordinates	17
12	Infinit	te Sequences and Series	18
	12.1	Sequences	19
	12.2	Series	19
	12.3	The Integral Test and Estimates of Sums	19
	12.4	The Comparison Tests	19
	12.5	Alternating Series	19
	12.6	Absolute Convergence and the Ratio and Root Tests	19
	12.7	Strategy for Testing Series	19
	12.8	Power Series	19
	12.9	Representation of Functions as Power Series	19
	12.10	Taylor and Maclaurin Series	19
	12.11	The Binomial Series	19
	12.12	Applications of Taylor Polynomials	19
13	Vector	rs and the Geometry of Space	20
	13.1	Three-Dimensional Coordinate Systems	20
	13.2	Vectors	20
	13.3	The Dot Product	20
	13.4	The Cross Product	20
	13.5	Equations of Lines and Planes	20
	13.6	Cylinders and Quadric Surfaces	20
	13.7	Cylindrical and Spherical Coordinates	20
14	Vector	r Functions	21
	14.1	Vector Functions and Space Curves	21
	14.2	Derivatives and Integrals of Vector Functions	21

CONTENTS ii

14.4 Motion in Space: Velocity and Acceleration 2 15 Partial Derivatives 2 15.1 Functions of Several Variables 2 15.2 Limits and Continuity 2 15.3 Partial Derivatives 2 15.4 Tangent Planes and Linear Approximations 2 15.5 The Chain Rule 2 15.6 Directional Derivatives and the Gradient Vector 2 15.7 Maximum and Minimum Values 2 15.8 Lagrange Multipliers 2 16.1 Double Integrals 2 16.2 Iterated Integrals over Rectangles 2 16.3 Double Integrals over General Regions 2 16.4 Double Integrals over General Regions 2 16.5 Applications of Double Integrals 2 16.5 Applications of Double Integrals 2 16.6 Surface Area 2 16.7 Triple Integrals 2 16.8 Triple Integrals in Cylindrical and Spherical Coordinates 2 16.9 Change of Variables in Multiple Integrals 2 17.1 Vector Fields 2 17.2 Line Integrals 2 17.4 Green's Theorem 2 17.5 Curl and Divergence 2	14	.3 Arc Length and Curvature
15 Partial Derivatives 2: 15.1 Functions of Several Variables 2: 15.2 Limits and Continuity 2: 15.3 Partial Derivatives 2: 15.4 Tangent Planes and Linear Approximations 2: 15.5 The Chain Rule 2: 15.6 Directional Derivatives and the Gradient Vector 2: 15.7 Maximum and Minimum Values 2: 15.8 Lagrange Multipliers 2: 16 Multiple Integrals 2: 16.1 Double Integrals over Rectangles 2: 16.2 Iterated Integrals 2: 16.3 Double Integrals over General Regions 2: 16.4 Double Integrals in Polar Coordinates 2: 16.5 Applications of Double Integrals 2: 16.6 Surface Area 2: 16.7 Triple Integrals 2: 16.8 Triple Integrals in Cylindrical and Spherical Coordinates 2: 16.9 Change of Variables in Multiple Integrals 2: 17.1 Vector Fields 2: 17.2 Line Integrals 2: 17.3 THe Fundamental Theorem for Line Integrals 2: 17.4 Green's Theorem 2: 17.5 Curl and Divergence 2: <tr< td=""><td>14</td><td></td></tr<>	14	
15.1 Functions of Several Variables 22 15.2 Limits and Continuity 22 15.3 Partial Derivatives 22 15.4 Tangent Planes and Linear Approximations 22 15.5 The Chain Rule 22 15.6 Directional Derivatives and the Gradient Vector 22 15.7 Maximum and Minimum Values 22 15.8 Lagrange Multipliers 22 16.8 Lagrange Multipliers 23 16.1 Double Integrals 22 16.2 Iterated Integrals 23 16.3 Double Integrals over Rectangles 23 16.4 Double Integrals over General Regions 23 16.5 Applications of Double Integrals 23 16.5 Applications of Double Integrals 23 16.6 Surface Area 22 16.7 Triple Integrals 23 16.8 Triple Integrals in Cylindrical and Spherical Coordinates 23 16.9 Change of Variables in Multiple Integrals 24 17.1 Vector Fields 24 17.2		- · · · · · · · · · · · · · · · · · · ·
15.2 Limits and Continuity 22 15.3 Partial Derivatives 22 15.4 Tangent Planes and Linear Approximations 22 15.5 The Chain Rule 22 15.6 Directional Derivatives and the Gradient Vector 22 15.7 Maximum and Minimum Values 22 15.8 Lagrange Multipliers 22 16 Multiple Integrals 22 16.1 Double Integrals over Rectangles 23 16.2 Iterated Integrals 22 16.3 Double Integrals over General Regions 23 16.4 Double Integrals over General Regions 23 16.5 Applications of Double Integrals 23 16.5 Applications of Double Integrals 23 16.6 Surface Area 22 16.7 Triple Integrals 22 16.8 Triple Integrals in Cylindrical and Spherical Coordinates 23 16.9 Change of Variables in Multiple Integrals 24 17.1 Vector Fields 24 17.2 Line Integrals 24 17.4	15 P	
15.3 Partial Derivatives 22 15.4 Tangent Planes and Linear Approximations 22 15.5 The Chain Rule 22 15.6 Directional Derivatives and the Gradient Vector 22 15.7 Maximum and Minimum Values 22 15.8 Lagrange Multipliers 22 16 Multiple Integrals 22 16.1 Double Integrals over Rectangles 22 16.2 Iterated Integrals 22 16.3 Double Integrals over General Regions 22 16.4 Double Integrals in Polar Coordinates 23 16.5 Applications of Double Integrals 22 16.6 Surface Area 22 16.7 Triple Integrals 22 16.8 Triple Integrals in Cylindrical and Spherical Coordinates 23 16.9 Change of Variables in Multiple Integrals 23 17 Vector Fields 24 17.1 Vector Fields 24 17.2 Line Integrals 24 17.4 Green's Theorem 24 17.5 Curl and Divergenc		
15.4 Tangent Planes and Linear Approximations 2: 15.5 The Chain Rule 2: 15.6 Directional Derivatives and the Gradient Vector 2: 15.7 Maximum and Minimum Values 2: 15.8 Lagrange Multipliers 2: 16.8 Lagrange Multipliers 2: 16 Multiple Integrals 2: 16.1 Double Integrals over Rectangles 2: 16.2 Iterated Integrals 2: 16.3 Double Integrals over General Regions 2: 16.4 Double Integrals in Polar Coordinates 2: 16.5 Applications of Double Integrals 2: 16.6 Surface Area 2: 16.7 Triple Integrals 2: 16.8 Triple Integrals in Cylindrical and Spherical Coordinates 2: 16.9 Change of Variables in Multiple Integrals 2: 17 Vector Fields 2: 17.1 Vector Fields 2: 17.2 Line Integrals 2: 17.3 THe Fundamental Theorem for Line Integrals 2: 17.4 Green		V
15.5 The Chain Rule 2: 15.6 Directional Derivatives and the Gradient Vector 2: 15.7 Maximum and Minimum Values 2: 15.8 Lagrange Multipliers 2: 16.8 Lagrange Multipliers 2: 16.1 Double Integrals 2: 16.2 I terated Integrals 2: 16.3 Double Integrals over General Regions 2: 16.4 Double Integrals in Polar Coordinates 2: 16.5 Applications of Double Integrals 2: 16.6 Surface Area 2: 16.7 Triple Integrals 2: 16.8 Triple Integrals in Cylindrical and Spherical Coordinates 2: 16.9 Change of Variables in Multiple Integrals 2: 17.1 Vector Fields 2. 17.2 Line Integrals 2. 17.3 THe Fundamental Theorem for Line Integrals 2. 17.4 Green's Theorem 2. 17.5 Curl and Divergence 2. 17.6 Parametric Surfaces and Their Areas 2. 17.8 Sto	1!	
15.6 Directional Derivatives and the Gradient Vector 2: 15.7 Maximum and Minimum Values 2: 15.8 Lagrange Multipliers 2: 16.8 Lagrange Multipliers 2: 16.1 Double Integrals 2: 16.2 Iterated Integrals 2: 16.3 Double Integrals over General Regions 2: 16.4 Double Integrals in Polar Coordinates 2: 16.5 Applications of Double Integrals 2: 16.6 Surface Area 2: 16.7 Triple Integrals 2: 16.8 Triple Integrals in Cylindrical and Spherical Coordinates 2: 16.9 Change of Variables in Multiple Integrals 2: 17 Vector Calculus 2. 17.1 Vector Fields 2. 17.2 Line Integrals 2. 17.3 THe Fundamental Theorem for Line Integrals 2. 17.4 Green's Theorem 2. 17.5 Curl and Divergence 2. 17.6 Parametric Surfaces and Their Areas 2. 17.8 Stoke	1!	
15.7 Maximum and Minimum Values 2: 15.8 Lagrange Multipliers 2: 16 Multiple Integrals 2: 16.1 Double Integrals over Rectangles 2: 16.2 Iterated Integrals 2: 16.3 Double Integrals over General Regions 2: 16.4 Double Integrals in Polar Coordinates 2: 16.5 Applications of Double Integrals 2: 16.6 Surface Area 2: 16.7 Triple Integrals 2: 16.8 Triple Integrals in Cylindrical and Spherical Coordinates 2: 16.9 Change of Variables in Multiple Integrals 2: 17 Vector Calculus 2- 17.1 Vector Fields 2- 17.2 Line Integrals 2- 17.3 THe Fundamental Theorem for Line Integrals 2- 17.4 Green's Theorem 2- 17.5 Curl and Divergence 2- 17.6 Parametric Surfaces and Their Areas 2- 17.7 Surface Integrals 2- 17.8 Stokes' Theorem	1!	.5 The Chain Rule
15.8 Lagrange Multipliers 22 16 Multiple Integrals 23 16.1 Double Integrals over Rectangles 23 16.2 Iterated Integrals 22 16.3 Double Integrals over General Regions 23 16.4 Double Integrals in Polar Coordinates 23 16.5 Applications of Double Integrals 23 16.6 Surface Area 22 16.7 Triple Integrals 22 16.8 Triple Integrals in Cylindrical and Spherical Coordinates 23 16.9 Change of Variables in Multiple Integrals 23 17 Vector Calculus 24 17.1 Vector Fields 24 17.2 Line Integrals 24 17.3 THe Fundamental Theorem for Line Integrals 24 17.4 Green's Theorem 24 17.5 Curl and Divergence 24 17.6 Parametric Surfaces and Their Areas 25 17.7 Surface Integrals 26 17.8 Stokes' Theorem 26 17.9 The Divergence Theorem 26	1!	
16 Multiple Integrals 23 16.1 Double Integrals over Rectangles 23 16.2 Iterated Integrals 23 16.3 Double Integrals over General Regions 23 16.4 Double Integrals in Polar Coordinates 23 16.5 Applications of Double Integrals 23 16.6 Surface Area 23 16.7 Triple Integrals 23 16.8 Triple Integrals 24 16.9 Change of Variables in Multiple Integrals 25 16.9 Change of Variables in Multiple Integrals 24 17.1 Vector Fields 24 17.2 Line Integrals 24 17.3 THe Fundamental Theorem for Line Integrals 24 17.4 Green's Theorem 24 17.5 Curl and Divergence 24 17.6 Parametric Surfaces and Their Areas 24 17.7 Surface Integrals 24 17.8 Stokes' Theorem 24 17.9 The Divergence Theorem 24 17.10 Summary 24	1!	
16.1 Double Integrals over Rectangles 2: 16.2 Iterated Integrals 2: 16.3 Double Integrals over General Regions 2: 16.4 Double Integrals in Polar Coordinates 2: 16.5 Applications of Double Integrals 2: 16.6 Surface Area 2: 16.7 Triple Integrals 2: 16.8 Triple Integrals 2: 16.9 Change of Variables in Multiple Integrals 2: 17.1 Vector Calculus 2: 17.1 Vector Fields 2: 17.2 Line Integrals 2: 17.3 THe Fundamental Theorem for Line Integrals 2: 17.4 Green's Theorem 2: 17.5 Curl and Divergence 2: 17.6 Parametric Surfaces and Their Areas 2: 17.7 Surface Integrals 2: 17.8 Stokes' Theorem 2: 17.9 The Divergence Theorem 2: 17.10 Summary 2:	15	.8 Lagrange Multipliers
16.1 Double Integrals over Rectangles 2: 16.2 Iterated Integrals 2: 16.3 Double Integrals over General Regions 2: 16.4 Double Integrals in Polar Coordinates 2: 16.5 Applications of Double Integrals 2: 16.6 Surface Area 2: 16.7 Triple Integrals 2: 16.8 Triple Integrals 2: 16.9 Change of Variables in Multiple Integrals 2: 17.1 Vector Calculus 2: 17.1 Vector Fields 2: 17.2 Line Integrals 2: 17.3 THe Fundamental Theorem for Line Integrals 2: 17.4 Green's Theorem 2: 17.5 Curl and Divergence 2: 17.6 Parametric Surfaces and Their Areas 2: 17.7 Surface Integrals 2: 17.8 Stokes' Theorem 2: 17.9 The Divergence Theorem 2: 17.10 Summary 2:	16 N	ultiple Integrals
16.2 Iterated Integrals 25 16.3 Double Integrals over General Regions 25 16.4 Double Integrals in Polar Coordinates 25 16.5 Applications of Double Integrals 25 16.6 Surface Area 25 16.7 Triple Integrals 25 16.8 Triple Integrals 25 16.9 Change of Variables in Multiple Integrals 26 17.0 Vector Calculus 26 17.1 Vector Fields 26 17.2 Line Integrals 26 17.3 THe Fundamental Theorem for Line Integrals 26 17.4 Green's Theorem 26 17.5 Curl and Divergence 26 17.6 Parametric Surfaces and Their Areas 26 17.7 Surface Integrals 26 17.8 Stokes' Theorem 26 17.9 The Divergence Theorem 26 17.10 Summary 26		1 0
16.3 Double Integrals over General Regions 23 16.4 Double Integrals in Polar Coordinates 25 16.5 Applications of Double Integrals 25 16.6 Surface Area 25 16.7 Triple Integrals 25 16.8 Triple Integrals in Cylindrical and Spherical Coordinates 25 16.9 Change of Variables in Multiple Integrals 26 17.1 Vector Fields 26 17.2 Line Integrals 26 17.3 THe Fundamental Theorem for Line Integrals 26 17.4 Green's Theorem 26 17.5 Curl and Divergence 26 17.6 Parametric Surfaces and Their Areas 26 17.7 Surface Integrals 26 17.8 Stokes' Theorem 26 17.9 The Divergence Theorem 26 17.10 Summary 26		
16.4 Double Integrals in Polar Coordinates 2: 16.5 Applications of Double Integrals 2: 16.6 Surface Area 2: 16.7 Triple Integrals 2: 16.8 Triple Integrals in Cylindrical and Spherical Coordinates 2: 16.9 Change of Variables in Multiple Integrals 2: 17 Vector Calculus 24 17.1 Vector Fields 24 17.2 Line Integrals 24 17.3 THe Fundamental Theorem for Line Integrals 24 17.4 Green's Theorem 24 17.5 Curl and Divergence 24 17.6 Parametric Surfaces and Their Areas 24 17.7 Surface Integrals 24 17.8 Stokes' Theorem 24 17.9 The Divergence Theorem 24 17.10 Summary 24		
16.5 Applications of Double Integrals 2: 16.6 Surface Area 2: 16.7 Triple Integrals 2: 16.8 Triple Integrals in Cylindrical and Spherical Coordinates 2: 16.9 Change of Variables in Multiple Integrals 2: 17 Vector Calculus 24 17.1 Vector Fields 24 17.2 Line Integrals 24 17.3 The Fundamental Theorem for Line Integrals 24 17.4 Green's Theorem 24 17.5 Curl and Divergence 24 17.6 Parametric Surfaces and Their Areas 24 17.7 Surface Integrals 24 17.8 Stokes' Theorem 24 17.9 The Divergence Theorem 24 17.10 Summary 24		
16.6 Surface Area 25 16.7 Triple Integrals 25 16.8 Triple Integrals in Cylindrical and Spherical Coordinates 25 16.9 Change of Variables in Multiple Integrals 25 17 Vector Calculus 24 17.1 Vector Fields 24 17.2 Line Integrals 24 17.3 THe Fundamental Theorem for Line Integrals 24 17.4 Green's Theorem 24 17.5 Curl and Divergence 24 17.6 Parametric Surfaces and Their Areas 24 17.7 Surface Integrals 24 17.8 Stokes' Theorem 24 17.9 The Divergence Theorem 24 17.10 Summary 24		
16.7 Triple Integrals 23 16.8 Triple Integrals in Cylindrical and Spherical Coordinates 23 16.9 Change of Variables in Multiple Integrals 24 17 Vector Calculus 24 17.1 Vector Fields 24 17.2 Line Integrals 24 17.3 THe Fundamental Theorem for Line Integrals 24 17.4 Green's Theorem 24 17.5 Curl and Divergence 24 17.6 Parametric Surfaces and Their Areas 24 17.7 Surface Integrals 24 17.8 Stokes' Theorem 24 17.9 The Divergence Theorem 24 17.10 Summary 24		
16.8 Triple Integrals in Cylindrical and Spherical Coordinates 2: 16.9 Change of Variables in Multiple Integrals 2: 17 Vector Calculus 24 17.1 Vector Fields 24 17.2 Line Integrals 24 17.3 THe Fundamental Theorem for Line Integrals 24 17.4 Green's Theorem 24 17.5 Curl and Divergence 24 17.6 Parametric Surfaces and Their Areas 24 17.7 Surface Integrals 24 17.8 Stokes' Theorem 24 17.9 The Divergence Theorem 24 17.10 Summary 24		
16.9 Change of Variables in Multiple Integrals 23 17 Vector Calculus 24 17.1 Vector Fields 24 17.2 Line Integrals 24 17.3 THe Fundamental Theorem for Line Integrals 24 17.4 Green's Theorem 24 17.5 Curl and Divergence 24 17.6 Parametric Surfaces and Their Areas 24 17.7 Surface Integrals 24 17.8 Stokes' Theorem 24 17.9 The Divergence Theorem 24 17.10 Summary 24		
17 Vector Calculus 24 17.1 Vector Fields 24 17.2 Line Integrals 24 17.3 THe Fundamental Theorem for Line Integrals 24 17.4 Green's Theorem 24 17.5 Curl and Divergence 24 17.6 Parametric Surfaces and Their Areas 24 17.7 Surface Integrals 24 17.8 Stokes' Theorem 24 17.9 The Divergence Theorem 24 17.10 Summary 24		- · · · · · · · · · · · · · · · · · · ·
17.1 Vector Fields 24 17.2 Line Integrals 24 17.3 THe Fundamental Theorem for Line Integrals 24 17.4 Green's Theorem 24 17.5 Curl and Divergence 24 17.6 Parametric Surfaces and Their Areas 24 17.7 Surface Integrals 24 17.8 Stokes' Theorem 24 17.9 The Divergence Theorem 24 17.10 Summary 24		
17.2 Line Integrals 24 17.3 THe Fundamental Theorem for Line Integrals 24 17.4 Green's Theorem 24 17.5 Curl and Divergence 24 17.6 Parametric Surfaces and Their Areas 24 17.7 Surface Integrals 24 17.8 Stokes' Theorem 24 17.9 The Divergence Theorem 24 17.10 Summary 24	17 V	ector Calculus 24
17.3 THe Fundamental Theorem for Line Integrals 24 17.4 Green's Theorem 24 17.5 Curl and Divergence 24 17.6 Parametric Surfaces and Their Areas 24 17.7 Surface Integrals 24 17.8 Stokes' Theorem 24 17.9 The Divergence Theorem 24 17.10 Summary 24	17	
17.4 Green's Theorem 24 17.5 Curl and Divergence 24 17.6 Parametric Surfaces and Their Areas 24 17.7 Surface Integrals 24 17.8 Stokes' Theorem 24 17.9 The Divergence Theorem 24 17.10 Summary 24	17	
17.5 Curl and Divergence 24 17.6 Parametric Surfaces and Their Areas 24 17.7 Surface Integrals 24 17.8 Stokes' Theorem 24 17.9 The Divergence Theorem 24 17.10 Summary 24	17	
17.6 Parametric Surfaces and Their Areas 24 17.7 Surface Integrals 24 17.8 Stokes' Theorem 24 17.9 The Divergence Theorem 24 17.10 Summary 24		
17.7 Surface Integrals 24 17.8 Stokes' Theorem 24 17.9 The Divergence Theorem 24 17.10 Summary 24	17	.5 Curl and Divergence
17.8 Stokes' Theorem 24 17.9 The Divergence Theorem 24 17.10 Summary 24	17	
17.9 The Divergence Theorem 24 17.10 Summary 24	17	.7 Surface Integrals
17.10 Summary	17	.8 Stokes' Theorem
V	17	.9 The Divergence Theorem
18 Second-Order Differential Equations 2:	17	.10 Summary
	18 S	econd-Order Differential Equations 25
1		ı

Part I Multivariable Calculus

Parametric Equations and Polar Coordinates

11.1 Curves Defined by Parametric Equations

Suppose that x and y are both given as functions of a third variable t (called a **parameter** by the equations)

$$x = f(t)$$
 $y = g(t)$

(called **parametric equations**). Each value of t determines a point (x,y). As t changes, (x,y) = (f(t),g(t)) changes and traces out a curve C, which is called a **parametric curve**. The direction of the arrows on curve C show the change in the position of the equation as t increases.

We can also restrict t to a finite interval. In general, the curve with parametric equations

$$x = f(t)$$
 $y = g(t)$ $a \le t \le b$

has initial point (f(a), g(a)) and terminal point (f(b), g(b)).

The Cycloid

Example 11.1.1. A circle with radius r rolls along the x-axis. The curve traced out by a point P on the circumference of the circle is called a **cycloid**. Find parametric equations for the cycloid.

Solution. We will use the angle of rotation θ as the parameter ($\theta = 0$ when P is at the origin).

Suppose the circle has rotated θ radians. Using the figure, the distance it has rolled from the origin is

$$|OT| = arc \ PT = r\theta$$

because P starts at the origin. Therefore, the center of the circle is $C(r\theta, r)$. Let the coordinates of P be (x, y). Then from the figure,

$$x = |OT| - |PQ| = r\theta - r\sin\theta = r(\theta - \sin\theta)$$
$$y = |TC| - |QC| = r - r\cos\theta = r(1 - \cos\theta)$$

Definition 11.1.1. Paremetric equations of the cycloid are

$$x = r(\theta - \sin \theta)$$
 $y = r(1 - \cos \theta)$

11.2 Calculus with Parametric Curves

We will mainly solve problems involving tangents, area, arc length, and surface area.

Tangents

In the previous section, we saw that some curves defined by parametric equations x = f(t) and y = g(t) can also be expressed, by eliminating the parameter, in the form y = F(x). If we substitute x = f(t) and y = g(t) in the equation y = F(x), we get

$$g(t) = F(f(t))$$

If g, f, and F are differentiable, the Chain Rule gives

$$g'(t) = F'(f(t))f'(t) = F'(x)f'(t)$$

If $f'(t) \neq 0$, we can solve for F'(x):

Definition 11.2.1. The slope of the tangent to the parametric curve y = F(x) is F'(x).

 $F'(x) = \frac{g'(t)}{f'(t)}$

This enables us to find tangents to parametric curves without having to eliminate the parameter. We can rewrite the previous equation in an easily remembered form.

Definition 11.2.2. We can use this to find tangents to parametric curves without having to eliminate the parameter.

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} \quad \text{if} \quad \frac{dx}{dt} \neq 0$$

The curve has a

- \bullet horizontal tangent when $\frac{dy}{dt}=0$ (provided that $\frac{dx}{dt}\neq 0)$
- vertical tangent when $\frac{dx}{dt} = 0$ (provided that $\frac{dy}{dt} \neq 0$)

This is useful when sketching parametric curves.

Definition 11.2.3. We can also find $\frac{d^2y}{dx^2}$ by replacing y with $\frac{dy}{dx}$

$$\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}}$$

Proof. Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ considering y(t) and g(t).

1.

Chain rule:
$$\frac{dy}{dt} = \frac{dy}{dx} \frac{dx}{dt} \implies \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$
 (\implies means "implies")

2.

Chain rule:
$$\frac{d}{dt} \left(\frac{dy}{dx} \right) = \left(\frac{d}{dx} \frac{dy}{dx} \right) \frac{dx}{dt} = \frac{d^2y}{dx^2} \frac{dx}{dt}$$

Substitute: $\frac{d}{dt} \left(\frac{dy}{dx} \right) = \frac{d}{dt} \left(\frac{\frac{dy}{dt}}{\frac{dx}{dt}} \right)$

Quotient rule: $= \frac{\frac{d^2y}{dt^2} \frac{dx}{dt} - \frac{dy}{dt} \frac{d^2x}{dt^2}}{\left(\frac{dx}{dt} \right)^2}$

Set equation from line 1 and line 3 equal and divide both sides by $\frac{dx}{dt}$

$$\frac{d^2y}{dx^2} = \frac{\frac{d^2y}{dt^2}\frac{d^x}{dt} - \frac{dy}{dt}\frac{d^2x}{dt^2}}{\left(\frac{dx}{dt}\right)^2\left(\frac{dx}{dt}\right)}$$
$$= \frac{\frac{d^2y}{dt^2}\frac{d^x}{dt} - \frac{dy}{dt}\frac{d^2x}{dt^2}}{\left(\frac{dx}{dt}\right)^3}$$

Example 11.2.1. A curve C is defined by the parametric equations $x = t^2$, $y = t^3 - 3t$.

- 1. Show that C has two tangents at the point (3,0) and find their equations.
- 2. Find the points on C where the tangent is horizontal or vertical.
- 3. Determine where the curve is concave upward or downward.

Solution. A curve C is defined by the parametric equations $x = t^2$, $y = t^3 - 3t$.

1. Rewrite $y = t^3 - 3t = t(t^2 - 3) = 0$ when t = 0 or $t = \pm \sqrt{3}$. This indicates that C intersects itself at (3.0).

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{3t^2 - 3}{2t} = \frac{3}{2}\left(t - \frac{1}{t}\right)$$
$$t = \pm\sqrt{3} \rightarrow dy/dx = \pm 6/(2\sqrt{3})$$

so the equations of the tangents at (3,0) are

$$y = \sqrt{3}(x-3)$$
 and $y = -\sqrt{3}(x-3)$

- 2. C has a horizontal tangent when dy/dx = 0. In other words, when dy/dt = 0 and $dx/dt \neq 0$. $dy/dt = 3t^2 3 = 0$ when $t^2 = 1$ so $t = \pm 1$. This means there are horizontal tangents on C at (1,-2) and (1,2). C has a vertical tangent when dx/dt = 2t = 0, so t = 0. This means C has a vertical tangent at (0,0).
- 3. To determine concavity we calculate the second derivative:

$$\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}} = \frac{\frac{3}{2}\left(1 + \frac{1}{t^2}\right)}{2t} = \frac{3(t^2 + 1)}{4t^3}$$

The curve is concave upward when t > 0 and concave downward when t < 0.

Area

We already know that area under a curve y = F(x) from a to b is $A = \int_a^b F(x) dx$. We can apply this to parametric equations using the Substitution Rule for Definite Integrals.

Definition 11.2.4. If the curve C is given by parametric equations x = f(t) and y = g(t) and t increases from α to β ,

$$A = \int_{a}^{b} y dx = \int_{\alpha}^{\beta} g(t) f'(t) dt$$

(Switch α to β if the point on C at β is more left than α .

Example 11.2.2. Find the area under one arch of the cycloid $x = r(\theta - \sin \theta)$, $y = r(1 - \cos \theta)$.

Solution. One arch of the cycloid is given by $0 \le \theta \le 2\pi$. Using the Substitution Rule with $y = r(1 - \cos \theta)$ and $dx = r(1 - \cos \theta)d\theta$, we have

$$A = \int_0^{2\pi} y dx = A = \int_0^{2\pi} r(1 - \cos \theta) r(1 - \cos \theta) d\theta$$

$$= r^2 \int_0^{2\pi} (1 - \cos \theta)^2 d\theta = r^2 \int_0^{2\pi} (1 - 2\cos \theta + \cos^2 \theta) d\theta$$

$$= r^2 \int_0^{2\pi} \left[1 - 2\cos \theta + \frac{1}{2} (1 + \cos 2\theta) \right] d\theta$$

$$= r^2 \left[\frac{3}{2} \theta - 2\sin \theta + \frac{1}{4} \sin 2\theta \right]_0^{2\pi}$$

$$= r^2 \left(\frac{3}{2} \cdot 2\pi \right) = 3\pi r^2$$

Arc Length

We already know how to find length L of a curve C given in the form y = F(x), $a \le x \le b$.

Definition 11.2.5. If F' is continuous, then

$$L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2} dx}$$

If C can describe the parametric equations x = f(t) and y = g(t), $\alpha \le t \le \beta$, where dx/dt = f'(t) > 0. Using the substitution rule, we obtain

$$L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2} dx} = \int_{\alpha}^{\beta} \sqrt{1 + \left(\frac{dy/dt}{dx/dt}\right)^{2} \frac{dx}{dt} dt}$$

Since dx/dt > 0, we have

Theorem 11.1. If a curve C is described by the parametric equations x = f(t), y = g(t), $\alpha \le t \le \beta$, where f' and g' are continuous on $[\alpha, \beta]$ and C is traversed exactly once as t increases from α to β , then the length of C is

$$L = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

This is consistent with the general formula $L = \int ds$ and $(ds^2) = (dx^2) + (dy^2)$.

Proof. Prove the length formula of a parametric curve

$$\overrightarrow{ds} = \overrightarrow{i} dx + \overrightarrow{j} dy$$

$$ds^2 = \overrightarrow{ds} \cdot \overrightarrow{ds} = \left(\overrightarrow{i} dx + \overrightarrow{j} dy\right) \cdot \left(\overrightarrow{i} dx + \overrightarrow{j} dy\right) = dx^2 + dy^2$$

$$ds = \sqrt{dx^2 + dy^2} = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

$$L = \int_{\alpha}^{\beta} ds = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

Example 11.2.3. Find the length of the unit circle as (x,y) moves both once and twice around the circle.

Solution. For one traversal around the unit circle,

$$x = \cos t$$
 $y = \sin t$ $0 \le t \le 2\pi$

so $dx/dt = -\sin t$ and $dy/dt = \cos t$

$$L = \int_0^{2\pi} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt = \int_0^{2\pi} \sqrt{\sin^2 t + \cos^2 t} dt$$
$$= \int_0^{2\pi} dt = 2\pi$$

For two traversals around the unit circle,

$$x = \sin 2t$$
 $y = \cos 2t$ $0 \le t \le 2\pi$

so $dx/dt = 2\cos 2t$ and $dy/dt = -2\sin 2t$

$$L = \int_0^{2\pi} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt = \int_0^{2\pi} \sqrt{4\cos^2 2t + 4\sin^2 2t} \ dt = \int_0^{2\pi} 2 \ dt = 4\pi$$

Surface Area

We can also adapt the surface area formula to a parametric curve.

Definition 11.2.6. If a curve C is described by the parametric equations $x = f(t), y = g(t), \alpha \le t \le \beta$, is rotated about the **x-axis**, where f', g' are continuous and $g(t) \ge 0$, the surface area is

$$S = \int_{\alpha}^{\beta} 2\pi y \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

If the curve C is rotated about the **y-axis**, the surface area is

$$S = \int_{\alpha}^{\beta} 2\pi x \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

The generic formulas $S = \int 2\pi y \ ds$ for rotation about the x-axis and $S = \int 2\pi x \ ds$ for rotation about the y-axis are still valid, but for parametric curves we use

$$ds = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

Example 11.2.4. Show that the surface area of a sphere of radius r is $4\pi r^2$

Solution. The sphere is obtained by rotating the semicircle

$$x = r \cos t$$
 $y = r \sin t$ $0 \le t \le \pi$

about the x-axis.

$$S = \int_0^{\pi} 2\pi r \sin t \sqrt{(-r\sin t)^2 + (r\cos t)^2} dt$$

$$= 2\pi \int_0^{\pi} r \sin t \sqrt{r^2 (\sin^2 t + \cos^2 t)} dt$$

$$= 2\pi \int_0^{\pi} r \sin t \cdot r dt = 2\pi r^2 \int_0^{\pi} \sin t dt$$

$$= 2\pi r^2 (-\cos t) \Big|_0^{\pi} = 4\pi r^2$$

11.3 Polar Coordinates

In addition to Cartisian coordinates, we can also use a **polar coordinate system**.

Point P is represented by the ordered pair (r, θ) , where r is the distance to the point from the center and θ is the angle from the polar axis to the point.

The points (r, θ) and $(-r, \theta)$ are on the same line and have the same distance |r| from the center but are on opposite sides of the center. Additionally, $(-r, \theta)$ and $(r, \theta + \pi)$ are also on the same line.

This means a complete counterclockwise rotation is given by an angle 2π , so (r,θ) is also represented by

$$(r, \theta + 2n\pi)$$
 and $(-r, \theta + (2n+1)\pi)$

Relationship Between Cartesian and Polar Coordinates

Example 11.3.1. Convert the point $(2, \pi/3)$ from polar to Cartesian coordinates.

Solution.

$$r=2,\ \theta=\pi/3$$

$$x=r\cos\theta=2\cos\frac{\pi}{3}=2\cdot\frac{1}{2}=1$$

$$y=r\sin\theta=2\sin\frac{\pi}{3}=2\cdot\frac{\sqrt{3}}{2}=\sqrt{3}$$

So the point is $(1, \sqrt{3})$ in Cartesian coordinates.

Example 11.3.2. Represent the Cartesian coordinates (1, -1) in polar coordinates.

Solution.

$$r = \sqrt{x^2 + y^2} = \sqrt{1^2 + (-1)^2} = \sqrt{2}$$
$$\tan \theta = \frac{y}{x} = -1$$

Since the point (1,-1) lies in the fourth quadrant, we can choose $\theta = -pi/4$ or $\theta = 7pi/4$. So the possible answers are either $(\sqrt{2}, -\pi/4 \text{ or } (\sqrt{2}, 7\pi/4.$

Polar Curves

The graph of a polar equation $r = f(\theta)$, or $F(r, \theta) = 0$, consists of all of the points where (r, θ) satisfies the equation.

Tangents to Polar Curves

To find a tangent line to a polar curce $r = f(\theta)$, we regard θ as a parameter and write the parametric equations as

$$x = r\cos\theta = f(\theta)\cos\theta$$
 $y = r\sin\theta = f(\theta)\sin\theta$

So

Definition 11.3.1.

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{\frac{dy}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta}$$

- horizontal tangent when $\frac{dy}{d\theta}=0$ (provided that $\frac{dx}{d\theta}\neq 0$)
- vertical tangent when $\frac{dx}{d\theta} = 0$ (provided that $\frac{dy}{d\theta} \neq 0$)

Note tangent lines at the pole have r=0 and the slope of the tangent simplifies to

$$\frac{dy}{dr} = \tan\theta \text{ if } \frac{dr}{d\theta} \neq 0$$

Example 11.3.3. For the cardiod $r = 1 + \sin \theta$, find the slope of the tangent line when r=3

Solution.

$$\begin{split} r &= 1 + \sin \theta \\ \frac{dy}{dx} &= \frac{\frac{dy}{d\theta} \sin \theta + r \cos \theta}{\frac{dr}{d\theta} \cos \theta - r \sin \theta} = \frac{\cos \theta \sin \theta + (1 + \sin \theta) \cos \theta}{\cos \theta \cos \theta - (1 + \sin \theta) \sin \theta} \\ &= \frac{\cos \theta (1 + 2 \sin \theta)}{1 - 2 \sin^2 \theta - \sin \theta} = \frac{\cos \theta (1 + 2 \sin \theta)}{(1 + \sin \theta)(1 - \sin \theta)} \end{split}$$

The slope of the tangent where $\theta = \pi/3$ is

$$\frac{dy}{dx} \Big|_{\theta=\pi/3} = \frac{\cos(\pi/3)(1+2\sin(\pi/3))}{(1+\sin(\pi/3))(1-\sin(\pi/3))}$$

$$= \frac{\frac{1}{2}(1+\sqrt{3})}{(1+\sqrt{3}/2)(1-\sqrt{3})} = \frac{1+\sqrt{3}}{(2+\sqrt{3})(1-\sqrt{3})}$$

$$= \frac{1+\sqrt{3}}{-1-\sqrt{3}} = -1$$

NOTE Instead of memorizing the equation, we can instead use the same method we used to derive it.

$$x = r\cos\theta = (1 + \sin\theta)\cos\theta = \cos\theta + \frac{1}{2}\sin 2\theta$$

$$y = r\sin\theta = (1 + \sin\theta)\sin\theta = \sin\theta + \sin^2\theta$$

$$\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{\cos\theta + 2\sin\theta\cos\theta}{-\sin\theta + \cos 2\theta} = \frac{\cos\theta + \sin 2\theta}{-\sin\theta + \cos 2\theta}$$

This is equivalent to the previous equation.

11.4 Areas and Lengths in Polar Coordinates

Area

We can determine the formula for the area of a region whose boundary is given by a polar equation by taking the limit of a Riemann Sum starting with the formula for the area of a sector of a circle $A = \frac{1}{2}r^2\theta$.

Definition 11.4.1. The formula for the area A of the polar region \mathcal{R} is

$$A = \int_a^b \frac{1}{2} [f(\theta)]^2 \ d\theta = \int_a^b \frac{1}{2} r^2 d\theta$$

with the understanding that $r = f(\theta)$.

Example 11.4.1. Find the area enclosed by one loop of the four-leaved rose $r = 2\cos 2\theta$.

Solution. The right loop rotates from $\theta = -\pi/4$ to $\theta = \pi/4$.

$$A = \int_{-\pi/4}^{\pi/4} \frac{1}{2} r^2 d\theta = \frac{1}{2} \int_{-\pi/4}^{\pi/4} \cos^2 2\theta \ d\theta$$
$$= \int_0^{\pi/4} \cos^2 2\theta \ d\theta = \int_0^{\pi/4} \frac{1}{2} (1 + \cos 4\theta) \ d\theta$$
$$= \frac{1}{2} [\theta + \frac{1}{4} \sin 4\theta] = \pi/8$$

We can also adapt the formula to find the area of a region bounded by two polar curves.

Definition 11.4.2. Let \mathcal{R} be a region that is bounded by curves with polar equations $r = f(\theta)$, $r = g(\theta)$, $\theta = a$, and $\theta = b$, where $f(\theta) \geq g(\theta) \geq 0$ and $0 < b - a \leq 2\pi$. The area A of \mathcal{R} is found by subtracting the area inside $r = g(\theta)$ from the area inside $r = f(\theta)$, so

$$A = \int_{a}^{b} \frac{1}{2} [f(\theta)]^{2} d\theta - \int_{a}^{b} \frac{1}{2} [g(\theta)]^{2} d\theta$$
$$= \int_{a}^{b} \frac{1}{2} ([f(\theta)]^{2} - [g(\theta)]^{2}) d\theta$$

Arc Length

To find the length of a polar curve $r=f(\theta),\ a\leq \theta\leq b,$ we regard θ as a parameter and write the parametric equations of the curve as

$$x = r \cos \theta = f(\theta) \cos \theta$$
 $y = r \sin \theta = f(\theta) \sin \theta$

Using the projecut Rule and differentiating with respect to θ , we obtain

$$\frac{dx}{d\theta} = \frac{dr}{d\theta}\cos\theta - r\sin\theta \qquad \frac{dy}{d\theta} = \frac{dr}{d\theta}\sin\theta + r\cos\theta$$

so, using $\cos^2 \theta + \sin^2 \theta = 1$, we have

$$\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2 = \left(\frac{dr}{d\theta}\right)^2 \cos^2\theta - 2r\frac{dr}{d\theta}\cos\theta\sin\theta + r^2\sin^2\theta$$
$$+ \left(\frac{dr}{d\theta}\right)^2 \sin^2\theta + 2r\frac{dr}{d\theta}\sin\theta\cos\theta + r^2\cos^2\theta$$
$$= \left(\frac{dr}{d\theta}\right)^2 + r^2$$

Assuming that f' is continuous, we can use the theorem from 11.2 about the arc length of a curve defined by parametric equations to write the arc length as

$$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{d\theta}\right)^{2} + \left(\frac{dy}{d\theta}\right)^{2}} \ d\theta$$

Definition 11.4.3. The length of a curve with polar equation $r = f(\theta), \ a \le \theta \le b$, is

$$L = \int_{a}^{b} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} \ d\theta$$

Example 11.4.2. Find the arc length of the cardiod $r = 1 + \sin \theta$.

Solution. The full length of the cardiod is given by the parameter interval $0 \le \theta \le 2\pi$.

$$L = \int_0^{2\pi} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta = \int_0^{2\pi} \sqrt{(1+\sin\theta)^2 + \cos^2\theta} d\theta$$
$$= \int_0^{2\pi} \sqrt{2+2\sin\theta} d\theta = 8 \text{ (by rationalizing the integrand by } \sqrt{2-2\sin\theta})$$

11.5 Conic Sections

Parabolas, ellipses, and hyperbolas are called **conic sections**, or **conics**, because they result from intersecting a cone with a plane.

Parabolas

A **parabola** is the set of points in a plane that are equidistant from a fixed point F (called the **focus**) and a fixed line (called the **directrix**). The halfway point between the focus and directrix is on the parabola and is called the **vertex**. The line through the focus and the vertex and perpendicular to the directrix is the **axis** of the parabola.

As seen in the figure, the focus is always inside the region of the parabola and the directrix is the same distance away on the opposite side.

Definition 11.5.1. An equation of the parabola with focus (0, p) and directrix y = -p is

$$x^2 = 4py$$

. If we set $a=\frac{1}{4p}$, then the standard equation of a parabola is $y=ax^2$. This opens upward if p>0 and downard if p<0, and is symmetric with respect to the y-axis.

Definition 11.5.2. If we switch x and y, we get

$$y^2 = 4px$$

(reflection about the diagonal line y=x). This parabola opens to the right if p > 0 and to the left if p < 0.

Definition 11.5.3. The vertex form of a parabola is

$$y = a(x - h)^2 + k$$

where (h, k) is the vertex of the parabola and x = h is the axis of symmetry. We can also switch x and y to get the vertex form of the rotated parabola.

Example 11.5.1. Find the focus and directrix of the parabola $y^2 + 10x = 0$.

Solution. We rewrite the equation as $y^2=-10x$. We know $y^2=4px$, so 4px=-10x and $p=-\frac{5}{2}$. Thus, the focus is $(p,0)=-\frac{5}{2},0)$ and the directrix is $x=\frac{5}{2}$.

Ellipses

An **ellipse** is the set of points in a plane surrounding two fixed focal points F_1 and F_2 such that the <u>sum</u> of the two distances to the focal points is a constant. Imagine tracing a line along the furthest path of a string stretched across two different points.

Definition 11.5.4. The ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \quad a \ge b \ge 0$$

has foci $(\pm c, 0)$, where $c^2 = a^2 - b^2$, and vertices $(\pm a, 0)$ (lies on x-axis).

The **vertices** are on the **major axis**, where a is the distance to the center of the ellipse from each vertex. This distance is greater than the distance from a **co-vertex** to the center of the ellipse, b. The co-vertices lie on the **minor axis**. Because the sum of the two distances from a point on the ellipse to the foci is a constant, the distance from a co-vertex to a focal point is also a. If the foci coincide, then c = 0, so a = b and the ellipse becomes a circle with radius r = a = b.

Definition 11.5.5. The ellipse

$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1 \quad a \ge b \ge 0$$

has foci $(0, \pm c)$, where $c^2 = a^2 - b^2$, and vertices $(0, \pm a)$ (lies on y-axis).

Definition 11.5.6. The general form of a horizontal ellipse is

$$\frac{(x-h)^2}{h^2} + \frac{(y-h)^2}{a^2} = 1$$

where (h, k) is the center of the ellipse. The same transformation can be done to the standard form of a vertical ellipse.

Example 11.5.2. Find an equation of the ellipse with foci $(0, \pm 2)$ and vertices $(0, \pm 3)$.

Solution. This equation represents a vertical ellipse because the foci and vertices lie on the y-axis. The distance from a focal point to the center is c=2 and the distance from a vertex to the center is a=3. Then we obtain $b^2=a^2+c^2=9-4=5$, so the equation of the ellipse is

$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = \frac{x^2}{5} + \frac{y^2}{9} = 1$$

Hyperbolas

An **ellipse** is the set of points in a plane surrounding two fixed focal points F_1 and F_2 such that the <u>difference</u> of the two distances to the focal points is a constant. The **transverse axis** is the axis of a hyperbola that passes through the two foci. The **conjugate axis** is perpendicular to the transverse axis and passes through the center of the hyperbola.

Definition 11.5.7. The hyperbola along a horizontal transverse axis

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

has foci $(\pm c,0)$, where $c^2=a^2+b^2$, vertices $(\pm a,0)$ (lies on x-axis), and asymptotes $y=\pm \frac{b}{a}x$.

Definition 11.5.8. The hyperbola along a vertical transverse axis

$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$$

has foci $(0, \pm c)$, where $c^2 = a^2 + b^2$, vertices $(0, \pm a)$ (lies on y-axis), and asymptotes $y = \pm \frac{a}{b}x$.

Definition 11.5.9. The general form of a hyperbola along a horizontal transverse axis is

$$\frac{(x-h)^2}{h^2} - \frac{(y-h)^2}{a^2} = 1$$

where (h, k) is the center of the ellipse. The same transformation can be done to the standard form a hyperbola along a vertical transverse axis.

Example 11.5.3. Find the foci and asymptotes of the hyperbola $9x^2 - 16y^2 = 144$.

Solution. If we divide both sides of the equation by 144, it becomes

$$\frac{x^2}{16} - \frac{y^2}{9} = 1$$

which is a hyperbola along a horizontal transverse axis. Therefore, we get a=4 and b=3. Since $c^2=a^2+b^2=16+9=25,\ c=5$. The foci are $(\pm 5,0)$, and the asymptotes are $y=\pm \frac{3}{4}x$.

11.6 Conic Sections in Polar Coordinates

Infinite Sequences and Series

12.1	Sequences

- 12.2 Series
- 12.3 The Integral Test and Estimates of Sums
- 12.4 The Comparison Tests
- 12.5 Alternating Series
- 12.6 Absolute Convergence and the Ratio and Root Tests
- 12.7 Strategy for Testing Series
- 12.8 Power Series
- 12.9 Representation of Functions as Power Series
- 12.10 Taylor and Maclaurin Series
- 12.11 The Binomial Series
- 12.12 Applications of Taylor Polynomials

Vectors and the Geometry of Space

- 13.1 Three-Dimensional Coordinate Systems
- 13.2 Vectors
- 13.3 The Dot Product
- 13.4 The Cross Product
- 13.5 Equations of Lines and Planes
- 13.6 Cylinders and Quadric Surfaces
- 13.7 Cylindrical and Spherical Coordinates

Vector Functions

- 14.1 Vector Functions and Space Curves
- 14.2 Derivatives and Integrals of Vector Functions
- 14.3 Arc Length and Curvature
- 14.4 Motion in Space: Velocity and Acceleration

Partial Derivatives

- 15.1 Functions of Several Variables
- 15.2 Limits and Continuity
- 15.3 Partial Derivatives
- 15.4 Tangent Planes and Linear Approximations
- 15.5 The Chain Rule
- 15.6 Directional Derivatives and the Gradient Vector
- 15.7 Maximum and Minimum Values
- 15.8 Lagrange Multipliers

Multiple Integrals

16.1	Double Integrals over Rectangles
16.2	Iterated Integrals
16.3	Double Integrals over General Regions
16.4	Double Integrals in Polar Coordinates
16.5	Applications of Double Integrals
16.6	Surface Area
16.7	Triple Integrals
16.8	Triple Integrals in Cylindrical and Spherical Coordinates
16.9	Change of Variables in Multiple Integrals

Vector Calculus

- 17.1 Vector Fields
- 17.2 Line Integrals
- 17.3 THe Fundamental Theorem for Line Integrals
- 17.4 Green's Theorem
- 17.5 Curl and Divergence
- 17.6 Parametric Surfaces and Their Areas
- 17.7 Surface Integrals
- 17.8 Stokes' Theorem
- 17.9 The Divergence Theorem
- 17.10 Summary

Second-Order Differential Equations

- 18.1 Second-Order Linear Equations
- 18.2 Nonhomogenous Linear Equations
- 18.3 Applications of Second-Order Differential Equations
- 18.4 Series Solutions