Задание

ИНС, способна Создать модель которая провести бинарную классификацию по сгенерированным данным.

Выполнение работы

Для генерации данных выбрана функция, соответствующая варианту 2.

Для решения поставленной задачи задается модель ИНС, имеющей два скрытых уровня из 30 и 20 нейронов, использующих функцию активации relu, и выходной уровень из одного нейрона с функцией активации sigmoid. В качестве функции потерь используется бинарная кросс-энтропия.

```
model = models.Sequential()
model.add(layers.Dense(30, activation='relu'))
model.add(layers.Dense(20, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
model.compile(optimizer='rmsprop',
loss='binary crossentropy', metrics=['accuracy'])
```

Обучение модели проводится в течение 30 эпох пакетами по 10 образцов. 10% исходных данных отводится на валидационное множество.

```
H = model.fit(train data, train label, epochs=30,
batch size=10, validation split=0.1)
```

На рисунках 1 и 2 представлены графики потерь и точности на тренировочных и валидационных данных соответственно.

Рисунок 1

После обучения модель оценивается на тестовых данных. Получим:

Таким образом, точность модели составляет 99%.

Проведем бинарную классификацию всех сгенерированных данных и изобразим результаты на графике (см. рис. 3).

На рисунке видно, что из 500 предсказанных значений только два оказались неверными, то есть нейронная сеть хорошо решает поставленную задачу.