矩阵分析及其应用

管华

2017-09-10 更新

目录

第一章	矩阵基	建础知识	7
1.1	线性空	[间与线性映射	7
	1.1.1	线性空间与线性子空间	7
	1.1.2	Euclid 空间、酉空间	9
	1.1.3	线性映射及其矩阵表示	10
	1.1.4	几个重要的线性子空间及其性质	11
1.2	矩阵的	的数值特征	11
	1.2.1	秩	11
	1.2.2	行列式	11
	1.2.3	迹	11
	1.2.4	特征值、特征向量和特征多项式	12
1.3	矩阵的	7标准形	12
	1.3.1	等价变换下的标准形	12
	1.3.2	相似变换下的 Jordan 标准形	13
	1.3.3	相合变换下的标准形	13
1.4	半正症	至和正定矩阵	14
1.5	•	∵—~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	14
	1.5.1	Leverrier-Faddeev 算法	14
	1.5.2	分块求逆公式	14
	1.5.3	Sherman-Motrison-Woodbury 公式	14
1.6		nard 与 Kronecker 积	14

4	目录	

	1.6.1	Hadamard 积及其性质	14
	1.6.2	Kronecker 积及其性质	14
第二章	向量范	 	15
2.1	向量灌	支数	15
	2.1.1	向量范数的定义	15
	2.1.2	常用向量范数	15
	2.1.3	向量范数的分析性质	16
	2.1.4	向量范数的代数性质	17
2.2	矩阵范	芭数	17
	2.2.1	矩阵范数的定义及分析性质	17
	2.2.2	常用的矩阵范数	17
	2.2.3	由向量范数诱导的矩阵范数	18
2.3	一些应	対用	19
	2.3.1	谱半径与矩阵范数	19
	2.3.2	矩阵逆与线性方程组解的扰动问题	19
	2.3.3	条件数	19
第三章	矩阵函	函数和矩阵微积分	21
3.1	矩阵序	序列和矩阵级数	21
	3.1.1	矩阵序列	21
	3.1.2	矩阵级数	22
	3.1.3	矩阵幂级数	22
3.2	矩阵函	函数	22
	3.2.1	矩阵函数的定义与性质	22
	3.2.2	矩阵函数值的计算	23
3.3	矩阵的	均微分和积分	24
	3.3.1	以一元函数为元素的矩阵的微积分	24
	3.3.2	函数对向量的微分	24
	3.3.3	函数对矩阵的微分	27
	3.3.4	矩阵对矩阵的微分	29

目录 5

3.4	一些应用	29			
	3.4.1 特征多项式系数的表示	29			
	3.4.2 线性常系数微分方程组的求解	29			
	3.4.3 矩阵最优低秩逼近	29			
fot come - ha	Prints of the				
第四章	矩阵分解 31				
4.1	满秩分解	31			
4.2	三角分解	31			
	4.2.1 LU 分解	31			
	4.2.2 LDU 分解	32			
	4.2.3 LU 分解的算法	32			
	4.2.4 Cholesky 分解	32			
4.3	QR 分解	32			
	4.3.1 QR 分解	32			
	4.3.2 Gram-Schmidt 算法及其修正	33			
	4.3.3 Householder 变换法	33			
	4.3.4 Givens 旋转法	34			
4.4	奇异值分解	34			
	4.4.1 定义及性质	34			
	4.4.2 极分解	36			
4.5	矩阵的同时对角化	36			
	4.5.1 Hermite 矩阵和正规矩阵同时对角化	36			
	4.5.2 广义奇异值分解	37			
4.6	一些应用	37			
	4.6.1 随机向量的模拟	37			
	4.6.2 基于 QR 分解的最小二乘算法	37			
	4.6.3 矩阵的最优逼近	37			
	4.0.0 心性切 拟心思处····································	91			
第五章	特征值分析	39			
5.1	特征值的连续性	39			
5.2	特征值的估计	39			

	5.2.1	特征值的界	39
	5.2.2	特征值所在的区域	39
5.3	Hermi	ite 矩阵的特征值及其极性	39
	5.3.1	Rayleigh 商	39
	5.3.2	广义 Rayleigh 商	39
	5.3.3	特征值的分隔	40
	5.3.4	Hermite 扰动下的特征值	40
5.4	一些应	対用	40
	5.4.1	与对角矩阵相似的矩阵特征值的扰动	40
	5.4.2	主成分分析	40
	5.4.3	概率分布的 Wasserstein 距离	40
	广义迫		41
6.1		巨阵	41
6.2		逆矩阵及其性质	41
	6.2.1	广义逆的定义	41
	6.2.2	广义逆的性质	42
	6.2.3	广义逆的等价形式	42
	6.2.4	广义逆的反序法则	42
	6.2.5	广义逆矩阵的连续性问题	42
6.3	广义这	色的计算方法	42
	6.3.1	单个矩阵的广义逆	42
	6.3.2	更新矩阵的广义逆	42
	6.3.3	分块算法	42
6.4	一些应	対用	42
	6.4.1	矩阵方程、线性方程组的解与广义逆	42
	0.4.1	起阵刀性、线性刀性组的肿 一 厂又进 · · · · · · · · ·	44

第一章 矩阵基础知识

1.1 线性空间与线性映射

- 1.1.1 线性空间与线性子空间
- 定义 1.1.1 (线性空间/向量空间)

三个条件:

- V 在数域 F
- 加法运算
- 数乘运算

定义 1.1.2 (基)

 $oldsymbol{e}_1,\ldots,oldsymbol{e}_n\in\mathbb{C}^n$

若 x 在该基下的线性表示为

$$\boldsymbol{x} = x_1 \boldsymbol{v}_1 + \dots + x_n \boldsymbol{v}_n$$

则称 x_1, \ldots, x_n 为向量 x 在该坐标系中的**坐标**或**分量**,并将向量 x 记为

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

$$\mathbf{v}_1 = a_{11}\mathbf{u}_1 + \ldots + a_{n1}\mathbf{u}_n \tag{1.1.1}$$

$$\vdots \qquad (1.1.2)$$

$$\mathbf{v}_1 = a_{11}\mathbf{u}_1 + \ldots + a_{n1}\mathbf{u}_n \tag{1.1.3}$$

称矩阵

$$\mathbf{A} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix}$$

为由基 u_1, \ldots, u_n 变为基 v_1, \ldots, v_n 的**过渡矩阵**, 并称

$$[\boldsymbol{v}_1,\ldots,\boldsymbol{v}_n]=[\boldsymbol{u}_1,\ldots,\boldsymbol{u}_n]\,\boldsymbol{A}$$

为基变换公式。

某个向量在 $\mathbf{u}_1, \ldots, \mathbf{u}_n$ 和基 $\mathbf{v}_1, \ldots, \mathbf{v}_n$ 下的坐标分别为 $[x_1, \ldots, x_n]^T$ 和 $[y_1, \ldots, y_n]^T$, 则称

$$\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \boldsymbol{A} \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$

为基变换下向量坐标的变换公式。

定义 1.1.3 (线性子空间)

向量组 x_1, \ldots, x_n 生成的子空间, 记为 $\operatorname{span}\{x_1, \ldots, x_n\}$

定义 1.1.4

直和 称子空间 V_1+V_2 为 V_1 与 V_2 的直和,记为 $V_1\oplus V_2$ 互补子空间 若 $V=V_1\oplus V_2$,称 V_1 和 V_2 为互补子空间

1.1.2 Euclid 空间、酉空间 定义 1.1.5 (内积)

- 非负性
- 正定性 $\langle \boldsymbol{x}, \boldsymbol{x} \rangle = 0$ 当且仅当 $\boldsymbol{x} = 0$
- 可加性
- 齐次性 $\langle a\mathbf{x}, \mathbf{y} \rangle = a \langle \mathbf{x}, \mathbf{y} \rangle$
- Hermite $\mbox{$\not =$} \langle x,y \rangle = \langle y,x \rangle$

称函数 $\langle \cdot, \cdot \rangle : V \to F 为 V$ 上的内积。

赋予了内积的 **复**和 **实**线性空间分别称为 **酉空间**和 **Euclid 空间**。 对任意两个向量 $x, y \in \mathbb{C}^n$,由

$$\langle \boldsymbol{x}, \boldsymbol{y}
angle = \boldsymbol{y}^T \boldsymbol{x}$$

定义的函数是 \mathbb{C}^n 上的内积,从而 \mathbb{C}^n 为酉空间。 对任意两个矩阵 $A, B \in \mathbb{C}^{m \times n}$,由

$$\langle \boldsymbol{A}, \boldsymbol{B} \rangle = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} b_{ij}$$

定义的函数是 $\mathbb{C}^{m\times n}$ 上的内积,从而 $\mathbb{C}^{m\times n}$ 为酉空间。 第一次阅读

- 1. 欧式空间就是酉空间
- 2. 酉空间的一个重要性质就是 对称性,即 Hermite 性。
- 3. 正定性即是,永远保持自己是整数,仅当为0时取0
- 4. 齐次性就是倍数

定义 1.1.6

设 V 为酉空间,且 SS,SS_1,SS_2 均为 V 的子空间。

向量 $x, y \in V$ 正交, 记为 $x \perp y \langle x, y \rangle = 0$

向量 x 正交于子空间 SS x 与子空间 SS 中所有向量正交

 SS_1,SS_2 为正交子空间 SS_1 中的任意向量均正交于子空间 SS_2 SS 的正交补子空间,记为 SS^\perp

定义 1.1.7

线性映射线性变换

$$T[\boldsymbol{v}_1,\cdots,\boldsymbol{v}_n]=[\boldsymbol{u}_1,\cdots,\boldsymbol{u}_m]\boldsymbol{A}$$

定义 1.1.8 (正交变换/酉变换)

$$\langle \boldsymbol{x}, \boldsymbol{x} \rangle = \langle T \boldsymbol{x}, T \boldsymbol{x} \rangle$$

正交矩阵/酉矩阵

向量内积,向量长度,两个非零向量的夹角均是正交变换下的不变量。 $U \in R^{n \times n}$ 为正交矩阵的充要条件是 $UU^T = I$ 若矩阵 $U \in R^{m \times n}$ 满足 $UU^T = I$,则称 U 为列正交矩阵。

定义 1.1.9 (对称变换/ Hermite 变换)

$$\langle T\boldsymbol{x}, \boldsymbol{y} \rangle = \langle \boldsymbol{x}, T\boldsymbol{y} \rangle$$

A 为对称矩阵的充要条件是 $A = A^T$

1.1.3 线性映射及其矩阵表示

定义 1.1.10

定义 1.1.11

定义 1.1.12

1.1.4 几个重要的线性子空间及其性质

定义 1.1.13

定义 1.1.14

1.2 矩阵的数值特征

1.2.1 秩

定义 1.2.1 (秩)

 $m{A} \in \mathbb{C}^{m \times n}$ 的值域的维数,记为 rank $m{A}$ 的零空间的维数,记为 $n(m{A})$

定义 1.2.2

1.2.2 行列式

定义 1.2.3

代数余子式 $\mathbf{A} = (a_{ij}) \in \mathbb{C}^{n \times n}$ 中去掉第 i 行和第 j 列元素后剩下的行列式,再乘以系数 $(-1)^{i+j}$ 。

 (A_{ij}) 所有代数余子式构成的矩阵

1.2.3 迹

定义 1.2.4 (迹)

A 的主对角线元素之和

$$\operatorname{tr} \boldsymbol{A} = \sum_{i=1}^{n} a_{ij}$$

1.2.4 特征值、特征向量和特征多项式 定义 1.2.5

特征多项式 $det(\lambda I - A)$

特征值 $\lambda \lambda \in \det(\lambda I - A)$ 的根

特征向量 $x Ax = \lambda x$

特征对 (λ, \mathbf{x})

定义 1.2.6

谱 $\lambda(A)$ 所有特征值的集合

谱半径 $\rho(A)$ 最大特征值绝对值

特征子空间 $S_{\lambda}(\mathbf{A})$ 特征向量构成的空间

1.3 矩阵的标准形

1.3.1 等价变换下的标准形

定义 1.3.1 (行阶梯矩阵)

- 1. 每行的第一个元素一般为1
- 2. 1 的头上列全是 0
- 3. 全 0 行在底下

$$\begin{bmatrix} 0 & 1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 0 & 1 & 2 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

13

1.3.2 相似变换下的 Jordan 标准形

Schur 分解定理

Jordan 分解定理

定义 1.3.2

Jordan 块 $J_j(\lambda)$ $j \times j$ 上三角矩阵, 主对角线 λ , 上面是 1

$$m{J}_j(\lambda) = egin{bmatrix} \lambda & 1 & & & & \\ & \lambda & 1 & & & \\ & & \lambda & \ddots & & \\ & & & \ddots & 1 \\ & & & & \lambda \end{bmatrix}$$

Jordan 矩阵 \boldsymbol{J} 把 Jordan 块放在对角线上 $\sum n_i = n$

$$oldsymbol{J} = egin{bmatrix} oldsymbol{J}_{n_1}(\lambda_1) & & & & & \ & \ddots & & & & \ & & oldsymbol{J}_{n_k}(\lambda_k) \end{bmatrix}$$

Jordan 标准形 加个限制条件: J 与 A 相似

矩阵的可对角化

定义 1.3.3

1.3.3 相合变换下的标准形

定义 1.3.4 (A 的惯性)

就是一个三元组,记为 $\ln A$

$$(i_{+}(\mathbf{A}), i_{-}(\mathbf{A}), i_{0}(\mathbf{A}))$$

- $A \in \mathbb{C}^{n \times n}$ 为对称矩阵 Hermite 矩阵
- $i_{+}(A)$, $i_{-}(A)$, $i_{0}(A)$ 分别为 A 的正、负和零特征值的个数

1.4 半正定和正定矩阵

1.5 矩阵求逆公式

- 1.5.1 Leverrier-Faddeev 算法
- 1.5.2 分块求逆公式
- 1.5.3 Sherman-Motrison-Woodbury 公式

1.6 Hadamard 与 Kronecker 积

1.6.1 Hadamard 积及其性质

定义 1.6.1 (Hadamard 积)

A, B 对应位置元素相乘得到的新矩阵,记为 $A \odot B$

定义 1.6.2 (矩阵的向量化)

就是把矩阵的每一行首尾连接起来形成一个大向量,记为 $\text{vec}(\mathbf{A})$

1.6.2 Kronecker 积及其性质

定义 1.6.3 (Kronecker 积)

把 A 中每个 a_{ij} 变成 $a_{ij}B$, 记为 $A \otimes B$

定义 1.6.4

第二章 向量范数和矩阵范数

2.1 向量范数

2.1.1 向量范数的定义

定义 2.1.1 (向量范数是酉不变的)

向量乘以一个酉矩阵之后范数大小不变

$$\| \boldsymbol{\mathit{Ux}} \| = \| \boldsymbol{\mathit{x}} \|$$

2.1.2 常用向量范数

定义 2.1.2 (1-范数或 l_1 范数)

 $\|x\|_1$ 向量元素绝对值之和

定义 2.1.3 (2-范数或 l₂ 范数)

 $\|x\|_{2}$ 向量元素平方和的开方

定义 2.1.4 (p-范数或 l_p 范数)

$$\|\boldsymbol{x}\|_p = \left(\sum |x_i|^p\right)^{\frac{1}{p}}$$

定义 2.1.5 (∞ -范数或 l_{∞} 范数)

 $\|x\|_{\infty}$ 向量元素的最大绝对值

定义 2.1.6 (加权范数 $||x||_A$)

A 是对称正定矩阵

$$\left\| oldsymbol{x}
ight\|_{oldsymbol{A}} = \left(oldsymbol{x}^T oldsymbol{A} oldsymbol{x}
ight)^{rac{1}{2}}$$

$$m{x} = egin{bmatrix} x_1 \ dots \ x_n \end{bmatrix}$$

$$\|\boldsymbol{x}\|_1 = \sum |x_i| \tag{2.1.1}$$

$$\|\mathbf{x}\|_{2} = \left(\sum |x_{i}|^{2}\right)^{\frac{1}{2}}$$
 (2.1.2)

$$\|(\|\boldsymbol{x})_{\infty} = \max_{i \leqslant i \leqslant n} |x_i| \tag{2.1.3}$$

定义 2.1.7 (Hölder 不等式)

 $\frac{1}{p}\frac{1}{q} = 1$

$$\sum |x_i y_i| \leqslant \left(\sum |x_i|^p\right)^{\frac{1}{p}} \left(\sum |y_i|^q\right)^{\frac{1}{q}}$$

内积 \leqslant 范数 $||a||_p \cdot$ 范数 $||b||_q$

定义 2.1.8 (Minkowski 不等式)

$$\left(\sum |x_i + y_i|^p\right)^{\frac{1}{p}} \leqslant \left(\sum |x_i|^p\right)^{\frac{1}{p}} + \left(\sum |y_i|^p\right)^{\frac{1}{p}}$$
$$\|a \oplus b\|_p \leqslant \|a\|_p + \|b\|_p$$

定义 2.1.9 (加权范数)

A is $n \times n$ 是 Hermite 正定矩阵

$$\left\| oldsymbol{x}
ight\|_{oldsymbol{A}} = \left(oldsymbol{x}^T oldsymbol{A} oldsymbol{x}
ight)^{rac{1}{2}}$$

2.1.3 向量范数的分析性质

所有向量范数都是等价的。

2.2 矩阵范数 17

2.1.4 向量范数的代数性质

定义 2.1.10

amn 满列秩,则 $\mathbf{A}^T A$ 为 Hermite 正定矩阵,从而

$$\|\boldsymbol{x}\|_{\boldsymbol{A}} = \|\boldsymbol{A}\boldsymbol{x}\|$$

2.2 矩阵范数

2.2.1 矩阵范数的定义及分析性质

定义 2.2.1 ((广义) 矩阵范数是酉不变的)

矩阵前后乘以两个酉阵范数大小不变

$$||UAV|| = ||A||$$

定理 2.2.1

矩阵范数也具有与向量范数一样的等价性。

定义 2.2.2 (矩阵范数与向量范数相容)
$$A$$
 is $m \times n, x = \begin{bmatrix} \vdots \\ x_n \end{bmatrix}$

$$\|\boldsymbol{A}\boldsymbol{x}\|_{V}\leqslant\|\boldsymbol{A}\|_{M}\|\boldsymbol{x}\|_{V}$$

定理 2.2.2

 $\|\cdot\|_{M}$ 是 $n \times n$ 上的矩阵范数 $\|\cdot\|_{V}$ 是 n 上的矩阵范数可以得到

$$\left\|\boldsymbol{A}\boldsymbol{x}\right\|_{V}=\left\|\boldsymbol{A}\right\|_{M}\left\|\boldsymbol{x}\right\|_{V}$$

 $\|\cdot\|_{M}$ 与 $\|\cdot\|_{V}$ 相容。

2.2.2 常用的矩阵范数

定义 2.2.3 (l1 范数)

$$\|\boldsymbol{A}\|_{m_1} = \sum \sum |a_{ij}|$$

定义 2.2.4 (l_2 范数, Euclid 范数, Frobenius 范数)

$$\left\|oldsymbol{A}
ight\|_F = \left(\sum\sum\left|a_{ij}
ight|^2
ight)^{rac{1}{2}}$$

重要:

$$\left\|oldsymbol{A}oldsymbol{B}
ight\|_F^2 = \left\|oldsymbol{A}
ight\|_F^2 \left\|oldsymbol{A}
ight\|_F^2 = \operatorname{Tr}(oldsymbol{A}^Toldsymbol{A})$$
 $\left\|oldsymbol{A}oldsymbol{x}
ight\|_2 = \left\|oldsymbol{A}
ight\|_F^2 \left\|oldsymbol{x}
ight\|_2$

∥・∥∞∞ 是广义矩阵范数不是矩阵范数。

2.2.3 由向量范数诱导的矩阵范数

定义 2.2.5 (向量范数诱导的矩阵范数)

 \boldsymbol{A} is $m \times n$

$$\|A\| = \max_{\|x\|=1} \|Ax\| = \max_{x \neq 0} \frac{\|Ax\|}{\|x\|}$$

与向量范数相容。

定理 2.2.3

任何向量范数都可以诱导出相应的矩阵范数。

定理 2.2.4

列和范数
$$\|\boldsymbol{A}\|_1 = \max_{1 \leq j \leq n} \sum_{i=1}^m \left| a_{ij} \right|$$
 谱范数 $\|\boldsymbol{A}\|_2 = \sqrt{\lambda_1}, \lambda_1$ 为 $\boldsymbol{A}^T \boldsymbol{A}$ 的最大特征值行和范数 $\|\boldsymbol{A}\|_{\infty} = \max_{1 \leq i \leq m} \sum_{j=1}^n \left| a_{ij} \right|$

2.3 一些应用 19

2.3 一些应用

2.3.1 谱半径与矩阵范数

定理 2.3.1

$$\|\boldsymbol{A}\|_2 =
ho^{\frac{1}{2}}(\boldsymbol{A}^T\boldsymbol{A}) =
ho^{\frac{1}{2}}(\boldsymbol{A}^T\boldsymbol{A})$$

若 A 为 Hermite 矩阵,则

$$\|\boldsymbol{A}\| = \rho(\boldsymbol{A})$$

对于一般矩阵范数,任意矩阵的谱半径均被矩阵范数数值所控制。

定理 2.3.2

 \boldsymbol{A} is $n \times n$

$$\rho(\mathbf{A}) = \|\mathbf{A}\|$$

推论 2.3.1

虽然谱半径不是矩阵范数,但是对每个固定的方阵 A,谱半径是关于 A 的所有矩阵数值的下确界。

2.3.2 矩阵逆与线性方程组解的扰动问题

$$Ax = b$$

定义 2.3.1

$$\kappa = \|\boldsymbol{A}\| \|\boldsymbol{A}\|^{-1}$$

若 κ 越大,则方程组解的相对误差也越大。

2.3.3 条件数

定义 2.3.2 (条件数)

 $m{A}$ is $n \times n$ 非奇异, $\|m{A}\| \|m{A}^{-1}\|$ 是条件数,记为 $\mathrm{cond}\,(m{A})$

$$\operatorname{cond}_{2}\left(\boldsymbol{A}\right)=\left\|\boldsymbol{A}\right\|_{2}\left\|\boldsymbol{A}^{-1}\right\|_{2}$$

定理 2.3.3

 \boldsymbol{A} is $n \times n$ 非奇异

- 1. $\operatorname{cond}(\alpha \mathbf{A}) = \operatorname{cond}(\mathbf{A}) = \operatorname{cond}(\mathbf{A})$
- 2. cond $_p(\mathbf{A}) \geqslant 1$

3.

$$\operatorname{cond}_{2}(\boldsymbol{A}) = \left(\frac{\lambda_{max}\left(\boldsymbol{A}^{T}\boldsymbol{A}\right)}{\lambda_{min}\left(\boldsymbol{A}^{T}\boldsymbol{A}\right)}\right)^{\frac{1}{2}}$$
(2.3.1)

若 A 为 Hermite 矩阵, 则

$$\operatorname{cond}_{2}(\boldsymbol{A}) = \frac{\lambda_{max}(\boldsymbol{A})}{\lambda_{min}(\boldsymbol{A})}$$
(2.3.2)

4. $\operatorname{cond}_{2}^{2}(\boldsymbol{A}) = \operatorname{cond}_{2}(\boldsymbol{A}^{T}\boldsymbol{A})$

当条件数 $\operatorname{cond}(\boldsymbol{A})$ 的值很大时,我们称 \boldsymbol{A} 为病态的。

第三章 矩阵函数和矩阵微积分

3.1 矩阵序列和矩阵级数

3.1.1 矩阵序列

引理 3.1.1

 $m{A}$ is $n \times n$,若存在一种矩阵范数 $\|\cdot\|$ 使得 $\|m{A}\| < 1$,则 $m{A}^k \to m{O}$ 。

定理 3.1.1

设 \mathbf{A} is $n \times n$, 则 $\mathbf{A}^k \to \mathbf{O} \iff \rho(\mathbf{A}) < 1$

定义 3.1.1 (收敛矩阵)

 \mathbf{A} is $n \times n$

$${m A}^k o {m O}$$

定义 3.1.2 (界)

$$\left| a_{ij}^{(k)} \right| < C$$

并称 C 为 $\{\boldsymbol{A}^{(k)}\}$ 的界。

推论 3.1.1

$$\left\| oldsymbol{A}^k
ight\|^{rac{1}{k}}
ightarrow
ho oldsymbol{A}$$

3.1.2 矩阵级数

定义 3.1.3 (矩阵级数)

$${\pmb A}^{(0)} + {\pmb A}^{(1)} + \cdots {\pmb A}^{(k)} + \cdots = \sum {\pmb A}^{(k)}$$

定义 3.1.4

矩阵级数是发散的

绝对收敛

3.1.3 矩阵幂级数

定理 3.1.2 (幂级数)

$$\sum A^k = I + A + A^2 + \cdots + A^k + \cdots = (I - A)^{-1}$$

收敛的充要条件是 A 为收敛矩阵,且在收敛是,其和为 $(I - A)^{-1}$.

定理 3.1.3

 $f(z) = \sum c_k z^k$ 的收敛半径为 r. 若 A is $n \times n$ 满足 $\rho(A) < r$, 则矩阵幂级数 $\sum c_k A^k$ 绝对收敛;若 rho(A) > r, 则矩阵幂级数发散。

3.2 矩阵函数

3.2.1 矩阵函数的定义与性质

定义 3.2.1

当矩阵 A is $n \times n$ 的谱半径 $\rho(A) < r$ 时,矩阵幂级数 $\sum c_k A^k$ 收敛,称 其和为 **矩阵函数**,记为

$$f(oldsymbol{A}) = \sum_{0}^{\infty} c_k oldsymbol{A}^k$$

3.2 矩阵函数 23

例 3.2.1

$$\begin{cases} f(z) = \frac{1}{1-z} = \sum z^k, & |z| < 1\\ f(\boldsymbol{A}) = \sum \boldsymbol{A}^k = (\boldsymbol{I} - \boldsymbol{A})^{-1}, & \rho(\boldsymbol{A}) < 1 \end{cases}$$

定理 3.2.1

若 A, B 可交换, 即 AB = BA, 则

$$e^A e^B = e^B e^A = e^{A+B}$$

同时,

$$\begin{cases} e^{\mathbf{A}}e^{-\mathbf{A}} = e^{-\mathbf{A}}e^{\mathbf{A}} = \mathbf{I} \\ (e^{\mathbf{A}})^{-1} = e^{-\mathbf{A}} \\ (e^{\mathbf{A}})^{k} = e^{k\mathbf{A}} \end{cases}$$

3.2.2 矩阵函数值的计算

待定系数法

数项级数求和法

对角形法

若 A is $n \times n$ 相似于对角矩阵 Λ, 即存在非奇异矩阵 P, 使得

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \Lambda = \operatorname{diag}(\lambda_1, \cdots, \lambda_n)$$

则有

$$f(\mathbf{A}) = \mathbf{P} \cdot \operatorname{diag} (f(\lambda_1), \cdots, f(\lambda_n)) \cdot \mathbf{P}^{-1}$$

当 A 相似于对角矩阵是,矩阵幂级数的求和问题可以转化为求变换矩阵的问题。

Jordan 标准形法

定义 3.2.2

设 A 的 Jordan 标准形为 J, 则存在可逆矩阵 P 使得

$$\begin{cases} \boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P} = \boldsymbol{J} = \operatorname{diag}(\boldsymbol{J}_1, \cdots, \boldsymbol{J}_s) \\ f(\boldsymbol{A}) = \boldsymbol{P} \cdot \operatorname{diag}(f(\boldsymbol{J}_1), \cdots, f(\boldsymbol{J}_s)) \cdot \boldsymbol{P}^{-1} \end{cases}$$

去掉了收敛矩阵的限制。

定理 3.2.2

对于 f(A) 与矩阵的 Jordan 标准形 J 中 Jordan 块的排列顺序无关,与变换矩阵 P 的选取无关。函数可相加,可相乘。

$$\begin{cases} f(z) = f_1(z) + f_2(z) \Longrightarrow f(\mathbf{A}) = f_1(\mathbf{A}) + f_2(\mathbf{A}) \\ f(z) = f_1(z)f_2(z) \Longrightarrow f(\mathbf{A}) = f_1(\mathbf{A})f_2(\mathbf{A}) \end{cases}$$

3.3 矩阵的微分和积分

3.3.1 以一元函数为元素的矩阵的微积分

$$\mathbf{A}(t) = \begin{bmatrix} a_{11}(t) & \cdots & a_{1n}(t) \\ \vdots & & \vdots \\ a_{m1}(t) & \cdots & a_{mn}(t) \end{bmatrix}$$

3.3.2 函数对向量的微分

定义 3.3.1

设 $f(\mathbf{x})$ 为纯量函数, 其中 $\mathbf{x} = [x_1, \cdots, x_n]^T \in \mathbb{C}^n$, 则

$$rac{\partial f(oldsymbol{x})}{\partial oldsymbol{x}} = egin{bmatrix} rac{\partial f(oldsymbol{x})}{\partial oldsymbol{x}_1} \ dots \ rac{\partial f(oldsymbol{x})}{\partial oldsymbol{x}_n} \end{bmatrix}$$

例 3.3.1
$$\boldsymbol{A}$$
 is $n \times n, \boldsymbol{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$

$$f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} = \sum \sum a_{ij} x_i y_j$$

对 $\forall k = 1, \cdots, n, 有$

$$\frac{\partial f(\mathbf{x})}{\partial x_k} = \frac{\partial}{\partial x_k} \left(\sum \sum a_{ij} x_i y_j \right) = \sum a_{ik} x_i + \sum a_{kj} x_j$$

所以

$$\frac{\partial \boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}}{\partial \boldsymbol{x}} = \boldsymbol{A} \boldsymbol{x} + \boldsymbol{A}^{T} \boldsymbol{x}$$

若 A 为对称矩阵,则

$$\frac{\partial \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x}}{\partial \boldsymbol{x}} = 2\boldsymbol{A} \boldsymbol{x}$$

定义
$$\begin{bmatrix} \mathbf{x} \cdot \mathbf{x} \\ \mathbf{x} \end{bmatrix} \mathbf{2}$$

$$\mathbf{x} = \begin{bmatrix} \vdots \\ x_n \end{bmatrix}_{[n \times 1]}, f(\mathbf{x}) = [f_1(\mathbf{x}), \dots, f_m(\mathbf{x})]_{1 \times m}$$

$$rac{\partial f(m{x})}{\partial m{x}} = egin{bmatrix} rac{\partial f_1(m{x})}{\partial x_1} & \dots & rac{\partial f_m(m{x})}{\partial x_1} \ dots & & dots \ rac{\partial f_1(m{x})}{\partial x_n} & \dots & rac{\partial f_m(m{x})}{\partial x_n} \end{bmatrix}_{n imes m}$$

定义 3.3.3 (Jacobi 矩阵)

$$m{x} = egin{bmatrix} x_1 \ dots \ x_n \end{bmatrix}_{[n imes 1]}, f(m{x}) = egin{bmatrix} f_1(m{x}) \ dots \ f_m(m{x}) \end{bmatrix}$$

$$rac{\partial f(m{x})}{\partial m{x}^T} = egin{bmatrix} rac{\partial f_1(m{x})}{\partial x_1} & \dots & rac{\partial f_1(m{x})}{\partial x_n} \ dots & dots \ rac{\partial f_m(m{x})}{\partial x_1} & \dots & rac{\partial f_m(m{x})}{\partial x_n} \end{bmatrix}_{m imes n}$$

定理 3.3.1 (链式法则)

$$\frac{\partial f}{\partial \boldsymbol{x}} = \frac{\partial \boldsymbol{y}^T}{\partial \boldsymbol{x}} \frac{\partial f}{\partial \boldsymbol{y}} \Longleftrightarrow \frac{\partial f(\boldsymbol{y}(\boldsymbol{x}))}{\partial \boldsymbol{x}} = \frac{\partial \left(\boldsymbol{y}(\boldsymbol{x})\right)^T}{\partial \boldsymbol{x}} \frac{\partial f(\boldsymbol{y})}{\partial \boldsymbol{y}}$$

定义 $\begin{bmatrix} \mathbf{x} \cdot \mathbf{3} \end{bmatrix} \mathbf{4}$ $\mathbf{x} = \begin{bmatrix} \vdots \\ x_n \end{bmatrix}$ 纯量函数关于向量的二阶微分是由 n^2 个二阶偏导组成的 $n \times n$ 阶 矩阵,称为 Hessian 矩阵。

$$\frac{\partial^2 f(\mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}^T} = \frac{\partial}{\partial \mathbf{x}^T} (\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}})$$

$$\frac{\partial^2 f(\mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}^T} = \begin{bmatrix} \frac{\partial^2 f(\mathbf{x})}{\partial \mathbf{x}_1 \partial \mathbf{x}_1} & cdots & \frac{\partial^2 f(\mathbf{x})}{\partial \mathbf{x}_1 \partial \mathbf{x}_n} \\ \vdots & & \vdots \\ \frac{\partial^2 f(\mathbf{x})}{\partial \mathbf{x}_n \partial \mathbf{x}_1} & cdots & \frac{\partial^2 f(\mathbf{x})}{\partial \mathbf{x}_n \partial \mathbf{x}_n} \end{bmatrix}$$

特别的,若 $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}$,则

$$\frac{\partial^2(\boldsymbol{x}^T\boldsymbol{A}\boldsymbol{x})}{\partial\boldsymbol{x}\partial\boldsymbol{x}^T} = \boldsymbol{A} + MA^T$$

定义 3.3.5 (向量值函数 f(x) 对向量 x 的微分) $x = [x_1, \dots, x_n]^T$, $f(x) = [f_1(x), \dots, f_m(x)]^T$

$$rac{\partial f(m{x})}{\partial m{x}} = egin{bmatrix} rac{\partial f_1(m{x})}{\partial x_1} & \dots & rac{\partial f_m(m{x})}{\partial x_1} \ dots & & dots \ rac{\partial f_1(m{x})}{\partial x_1} & \dots & rac{\partial f_m(m{x})}{\partial x_1} \end{bmatrix}$$

定义 3.3.6 (Jacobi 矩阵)

$$\boldsymbol{x} = [x_1, \dots, x_n]^T, \ f(\boldsymbol{x}) = [f_1(\boldsymbol{x}), \dots, f_m(\boldsymbol{x})]^T$$

$$rac{\partial f(m{x})}{\partial m{x}^T} = egin{bmatrix} rac{\partial f_1(m{x})}{\partial x_1} & \cdots & rac{\partial f_1(m{x})}{\partial x_n} \ dots & dots \ rac{\partial f_m(m{x})}{\partial x_1} & \cdots & rac{\partial f_m(m{x})}{\partial x_n} \end{bmatrix}$$

定义 3.3.7 (Hessian 矩阵)

$$\frac{\partial^2 f(\boldsymbol{x})}{\partial \boldsymbol{x} \partial \boldsymbol{x}^T} = \frac{\partial}{\partial \boldsymbol{x}^T} \left(\frac{\partial f(\boldsymbol{x})}{\partial \boldsymbol{x}} \right) = \begin{bmatrix} \frac{\partial^2 f(\boldsymbol{x})}{\partial x_1 \partial x_1} & \cdots & \frac{\partial^2 f(\boldsymbol{x})}{\partial x_1 \partial x_n} \\ \vdots & & \vdots \\ \frac{\partial^2 f(\boldsymbol{x})}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f(\boldsymbol{x})}{\partial x_n \partial x_n} \end{bmatrix}$$

若 $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}$, 则

$$\frac{\partial^2 (\boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x})}{\partial \boldsymbol{x} \partial \boldsymbol{x}^T} = \boldsymbol{A} + \boldsymbol{A}^T$$

3.3.3 函数对矩阵的微分

定义与性质

定义 3.3.8 (纯量函数 f(A) 对矩阵 A 的微分定义)

$$\frac{\partial f(\boldsymbol{A})}{\partial \boldsymbol{A}} = \begin{bmatrix} \frac{\partial f(\boldsymbol{A})}{\partial a_{11}} & \cdots & \frac{\partial f(\boldsymbol{A})}{\partial a_{1n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f(\boldsymbol{A})}{\partial a_{m1}} & \cdots & \frac{\partial f(\boldsymbol{A})}{\partial a_{mn}} \end{bmatrix}$$

定理 3.3.2

$$\frac{\partial g}{\partial \mathbf{A}} = \frac{\partial g}{\partial y} \frac{\partial y}{\partial \mathbf{A}} \Longleftrightarrow \frac{\partial g(f(\mathbf{A}))}{\partial \mathbf{A}} = \frac{\partial g(y)}{\partial y} \frac{\partial f(\mathbf{A})}{\partial \mathbf{A}}$$

记 $\mathbf{E}_{ij} = \mathbf{e}_i \mathbf{e}_j^T$, 即第 i 行第 j 列元素为 1, 其余元素为零的矩阵。

$$rac{\partial \left(oldsymbol{a}^Toldsymbol{X}^{-1}oldsymbol{b}
ight)}{\partial oldsymbol{X}} = -\left(oldsymbol{A}^{-1}
ight)^Toldsymbol{a}oldsymbol{b}^T\left(oldsymbol{X}^{-1}
ight)^T$$

迹的梯度矩阵

定理 3.3.3

$$\frac{\partial \text{Tr} \boldsymbol{X}}{\partial \boldsymbol{X}} = \boldsymbol{I}$$

$$\frac{\partial \text{Tr}(\boldsymbol{X}^{-1})}{\partial \boldsymbol{X}} = -(\boldsymbol{X}^{-2})^T$$

$$\text{Tr}(\boldsymbol{A}\boldsymbol{X}) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} x_{ij}$$

定理 3.3.4

$$\begin{split} \frac{\partial \text{Tr}(\boldsymbol{A}\boldsymbol{X})}{\partial \boldsymbol{X}} &= \boldsymbol{A}^T \\ \frac{\partial \text{Tr}(\boldsymbol{A}\boldsymbol{X})}{\partial \boldsymbol{X}} &= \boldsymbol{A} + \boldsymbol{A}^T - \text{diag}\boldsymbol{A} \\ \frac{\partial \text{Tr}(\boldsymbol{A}\boldsymbol{X}^{-1})}{\partial \boldsymbol{X}} &= -\left(\boldsymbol{X}^{-1}\boldsymbol{A}\boldsymbol{X}^{-1}\right)^T \end{split}$$

定理 3.3.5

$$\frac{\partial \text{Tr}(\boldsymbol{X}^{T} \boldsymbol{A} \boldsymbol{X})}{\partial \boldsymbol{X}} = (\boldsymbol{A} + \boldsymbol{A}^{T}) \boldsymbol{X}$$
$$\frac{\partial \boldsymbol{X} \boldsymbol{A} \boldsymbol{X}^{T}}{\partial \boldsymbol{X}} = \boldsymbol{X} (\boldsymbol{A} + \boldsymbol{A}^{T})$$
$$\frac{\partial \text{Tr}(\boldsymbol{A} \boldsymbol{X}^{-1} \boldsymbol{B})}{\partial \boldsymbol{X}} = -\left(\boldsymbol{X}^{-1} \boldsymbol{B} \boldsymbol{A} \boldsymbol{X}^{-1}\right)^{T}$$

行列式的梯度矩阵

定理 3.3.6

若 X 中的元素相互独立,则

$$\frac{\partial \det \boldsymbol{X}}{\partial \boldsymbol{X}} = \det \boldsymbol{X} \cdot (\boldsymbol{X}^{-1})^T$$

若 X 为对称矩阵,则

$$\frac{\partial \det \boldsymbol{X}}{\partial \boldsymbol{X}} = \det \boldsymbol{X} \cdot (2\boldsymbol{X}^{-1} - \operatorname{diag}(\boldsymbol{X}^{-1})$$

3.4 一些应用 29

3.3.4 矩阵对矩阵的微分

定义 3.3.9 (矩阵 F(X) 对 X 的微分)

 $X \in \mathbb{C}^{m \times n}$, $f_{ij}(X)$ 为 mn 元纯量函数 $(i: 1 \rightarrow p, j: 1 \rightarrow q)$, 记矩阵函数 $F(X) = (f_{ij}(X))$

$$\frac{\partial \boldsymbol{F}(\boldsymbol{X})}{\partial \boldsymbol{X}} = \left[\operatorname{vec} \left(\frac{\partial f_{11}}{\partial \boldsymbol{X}} \right), \operatorname{vec} \left(\frac{\partial f_{12}}{\partial \boldsymbol{X}} \right), \dots, \operatorname{vec} \left(\frac{\partial f_{pq}}{\partial \boldsymbol{X}} \right) \right]$$

3.4 一些应用

- 3.4.1 特征多项式系数的表示
- 3.4.2 线性常系数微分方程组的求解
- 3.4.3 矩阵最优低秩逼近

第四章 矩阵分解

4.1 满秩分解

定义 4.1.1 (满秩分解)

一个秩为r的矩阵被分解为一个列数为r的矩阵和一个行数为r的矩阵的乘积。

- $\mathbf{A} \in \mathbb{C}^{m \times n}$, $r = \operatorname{rank} \mathbf{A} > 0$
- $\mathbf{F} \in \mathbb{C}^{m \times r}$, 满列秩矩阵
- $G \in \mathbb{C}^{r \times n}$, 满行秩矩阵

A = FG

4.2 三角分解

4.2.1 LU 分解

定义 4.2.1 (LU 分解)

一个 $n \times n$ 的矩阵可以分解为一个 n 阶的下三角矩阵和上三角矩阵。 \boldsymbol{A} 的绝对值等于 \boldsymbol{U} 对角线元素之积。

- $\mathbf{A} \in \mathbb{C}^{n \times n}$
- *L* 为 *n* 阶下三角矩阵

• *U* 为 *n* 阶上三角矩阵

 $\det \mathbf{A} = u_{11} \dots u_{nn}$

非奇异 ⇒ LU 分解唯一

4.2.2 LDU 分解

定义 4.2.2 (LDU 分解)

一个 $n \times n$ 矩阵可以分解为一个单位下三角矩阵 \times 一个对角矩阵 \times 单位上 三角矩阵

A = LDU

4.2.3 LU 分解的算法

4.2.4 Cholesky 分解

定义 4.2.3 (Cholesky 分解, 又叫平方根分解)

一个 $n \times n$ 的对称正定矩阵被分解为一个下三角矩阵和它转置矩阵的乘积。

$$\boldsymbol{A} = \boldsymbol{G} \boldsymbol{G}^T$$

- A $in\mathbb{C}^{n\times n}$ 的 Hermite 正定矩阵, 对称正定矩阵
- *G* 下三角矩阵
- G^T 上三角矩阵

4.3 QR 分解

4.3.1 QR 分解 定义 4.3.1 (QR 分解)

A = QR

4.3 QR 分解 33

- $A \in \mathbb{C}^{m \times n}$
- Q is $m \times n$ 列正交矩阵, 并且是酉阵
- \mathbf{R} is $n \times n$ 上三角矩阵

4.3.2 Gram-Schmidt 算法及其修正

4.3.3 Householder 变换法

在二维空间中,将 x 映射为关于 e_1 轴对称的向量 y 的变换为:

$$\boldsymbol{y} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \boldsymbol{x}$$

y 为关于与 e_2 轴正交的直线对称的镜像向量,此时

$$oldsymbol{y} = \left(oldsymbol{I} - 2 oldsymbol{e}_2 oldsymbol{e}_2^T
ight) oldsymbol{x}$$

定义 4.3.2 (初等反射矩阵, 又叫 Householder 矩阵)

$$H_u = I - 2uu^T$$

引理 4.3.1

H 为 Householder 矩阵,则

- 1. **H** 为 Hermite 矩阵, 对称
- 2. H 为酉阵
- 3. $\mathbf{H}^2 = \mathbf{I}$
- 4. $\det H = -1$
- 5. 分块对角矩阵 $\operatorname{diag}(\mathbf{I}_m, \mathbf{H}, \mathbf{I}_n)$ 为 Householder 矩阵

引理 4.3.2

 $\forall x \text{ is } n \times n, \exists H$

$$Hx = ||x||_2 e_1$$

定理 4.3.1

任意非奇异矩阵都可以通过左乘一系列 Householder 矩阵化为上三角矩阵。

4.3.4 Givens 旋转法

在二维空间中将x顺时针旋转角度为 θ y的变换为

$$m{y} = egin{bmatrix} \cos heta & \sin heta \ -\sin heta & \cos heta \end{bmatrix} m{x}$$

定义 4.3.3 (初等旋转矩阵, 又叫 Givens 矩阵)

设 $c^2 + s^2 = 1$ G_{ij} 是这样的一个矩阵,对角线一般为 1,除了 $g_{ii} = c$, $g_{jj} = 1$, $g_{ij} = -s$, $g_{ji} = s$, 记为 $G_{ij}(c,s)$ 。

引理 4.3.3

Givens 矩阵为正交矩阵

$$G_{ij}(c,s)^{-1} = G_{ij}^T = G_{ij}(c,-s)$$

det $G_{ij}(c,s) = 1$

分块对角矩阵 $\operatorname{diag}(\boldsymbol{I}_m, \boldsymbol{G}_{ij}(c,s), \boldsymbol{I}_n)$ 为 Givens 矩阵

命题 4.3.1

Givens 矩阵为两个 Householder 矩阵的乘积。

引理 4.3.4

对 $\forall x$ is $n \times n$, ∃ 有限个 Givens 矩阵的乘积 G, 使得

$$oldsymbol{G}oldsymbol{x} = \|oldsymbol{x}\|_2 \ oldsymbol{e}_1$$

定理 4.3.2

∀非奇异a 均可通过左乘一系列 Givens 矩阵化为上三角矩阵。

4.4 奇异值分解

4.4.1 定义及性质

定义 4.4.1 (奇异值)

$$\sigma_i = \sqrt{\lambda_i}$$

4.4 奇异值分解 35

 σ_i 称为 **A** 的奇异值。

注意: λ_i 不是 A 的特征值!

- $A \in m \times n$ 的矩阵, 秩为 r
- 那么 $A^T A$ 为半正定矩阵,秩也为 r
- $A^T A$ 的特征值 $\lambda_1, \ldots, \lambda_n$ 从大到小排列

定理 4.4.1

$$m{A} = m{U} egin{bmatrix} \Sigma & 0 \\ 0 & 0 \end{bmatrix} m{V}^T$$

- *U*, *V* 为酉阵
- $\Sigma = \operatorname{diag}(\sigma_1, \ldots, \sigma_r)$

推论 4.4.1

- U 的列向量为 AA^T 的特征向量
- V的列向量为 AA^T 的特征向量 奇异值唯一确定,但是 U, V 一般不唯一。

$$\begin{cases} \|\boldsymbol{A}\|_2 = \sigma_1 \\ \|\boldsymbol{A}\|_F = \left(\sum_1^r \sigma_i^2\right)^{\frac{1}{2}} \end{cases}$$

推论 4.4.2

$$extbf{\emph{U}} = \left[extbf{\emph{u}}_1, \ldots, extbf{\emph{u}}_m
ight], \ extbf{\emph{V}} = \left[extbf{\emph{v}}_1, \ldots, extbf{\emph{v}}_n
ight], \ \mathbb{M}$$

$$oldsymbol{A} = \sum_{i=1}^r \sigma_i oldsymbol{u}_i oldsymbol{v}_i^T$$

4.4.2 极分解

定理 4.4.2

A is $n \times n$, 则 A 可以分解为

$$A = PW = WQ$$

- W 为酉阵
- P, Q 为 Hermite 半正定矩阵

 $P^2 = AA^T$

 $\boldsymbol{Q}^2 = \boldsymbol{A}^T \boldsymbol{A}$

一般来说,极分解因子是不可交换的。

定理 4.4.3

A is $n \times n$ 的极分解因子可交换的充要条件是 A 为**为正规矩阵**。

4.5 矩阵的同时对角化

4.5.1 Hermite 矩阵和正规矩阵同时对角化

定理 4.5.1

 \pmb{A}, \pmb{B} is $n \times n$ 均为 $\pmb{Hermite}$ 矩阵,且 \pmb{B} 为正定矩阵,则存在非奇异矩阵 \pmb{P} 使得

$$\boldsymbol{A} = \boldsymbol{P}^T \Lambda \boldsymbol{P} \tag{4.5.1}$$

$$\boldsymbol{B} = \boldsymbol{P}^T \boldsymbol{P} \tag{4.5.2}$$

其中, $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$, 且 λ_i 为 \boldsymbol{AB}^{-1} 的特征值。

4.6 一些应用 37

定理 4.5.2

A, B is $n \times n$ 均为 Hermite 矩阵,且 B 非奇异,则存在非奇异矩阵 P 使得 P^TAP 和 A^TBP 均为对角矩阵的充要条件是 AB^{-1} 可对角化且其特征 值均为实数。

定理 4.5.3

A, B is $n \times n$ 均为正规矩阵,则存在酉阵 U 使得 U^TAU 和 U^TBU 均为对角矩阵的充要条件是 AB = BA。

定理 4.5.4

A, B is $n \times n$ 均为 Hermite 半正定矩阵,则存在非奇异矩阵 P, 使得 P^TAP 和 A^TBP 均为对角矩阵。

4.5.2 广义奇异值分解

定理 4.5.5

 $m{A}$ is $m \times n$, $m{B}$ is $p \times n$, 且 $m{A}$ 是瘦矩阵, 则存在酉阵 $m{U}$ is $m \times m$ 和 $m{V}$ is $p \times p$, 以及非奇异矩阵 $m{Q}$ is $n \times n$, 使得

$$UAQ = [\Sigma_A, O] \tag{4.5.3}$$

$$\mathbf{VBQ} = [\Sigma_B, O] \tag{4.5.4}$$

4.6 一些应用

- 4.6.1 随机向量的模拟
- 4.6.2 基于 QR 分解的最小二乘算法
- 4.6.3 矩阵的最优逼近

第五章 特征值分析

- 5.1 特征值的连续性
 - 5.2 特征值的估计
- 5.2.1 特征值的界
- 5.2.2 特征值所在的区域
 - 5.3 Hermite 矩阵的特征值及其极性
- 5.3.1 Rayleigh 商

定义 5.3.1 (Rayleigh 商)

$$R(\boldsymbol{x}) = \frac{\boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x}}{\boldsymbol{x}^T \boldsymbol{x}}$$

5.3.2 广义 Rayleigh 商

 \boldsymbol{A} $n \times n$ Hermite 矩阵 \boldsymbol{B} $n \times n$ Hermite 正定矩阵

定义 5.3.2

$$egin{aligned} oldsymbol{A}oldsymbol{x} &= \lambda oldsymbol{B}oldsymbol{x} \ oldsymbol{B}^{-rac{1}{2}}oldsymbol{A}oldsymbol{B}^{-rac{1}{2}} ilde{oldsymbol{x}} &= \lambda ilde{oldsymbol{x}} \ oldsymbol{x} &= oldsymbol{B}^{-rac{1}{2}} ilde{oldsymbol{x}} \end{aligned}$$

 λ **A** 相对于 **B** 的特征值

x A 相对于 B 的属于 λ 的特征向量

定义 5.3.3 (矩阵 A 相对于矩阵 B 的广义 Rayleigh 商)

$$R(\boldsymbol{x})) = \frac{\boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x}}{\boldsymbol{x}^T \boldsymbol{B} \boldsymbol{x}}$$

- 5.3.3 特征值的分隔
- 5.3.4 Hermite 扰动下的特征值

- 5.4.1 与对角矩阵相似的矩阵特征值的扰动
- 5.4.2 主成分分析
- 5.4.3 概率分布的 Wasserstein 距离

第六章 广义逆矩阵

6.1 投影矩阵

定义 6.1.1 (投影矩阵)

 $x \in \mathbb{C}^n$,这个空间可以被拆分为两个互补子空间($\mathbb{C}^n = L \oplus M$),称 y 为 x 沿着 M 到 L 上的投影。

x = y + z, $y \in L$, $z \in M$

投影算子 x 到 L 的变换, 记为 $P_{L,M}$

投影矩阵 投影算子在标准正交基下对应的矩阵,记为 $P_{L,M}$

定义 6.1.2 (幂等矩阵)

 $\mathbf{P}^2 = \mathbf{P} \, n \times n$

定义 6.1.3 (正交投影算子/正交投影矩阵)

 P_L 到 L 上的正交投影算子

6.2 广义逆矩阵及其性质

6.2.1 广义逆的定义

定义 6.2.1

- 6.2.2 广义逆的性质
- 6.2.3 广义逆的等价形式 定义 6.2.2
- 6.2.4 广义逆的反序法则
- 6.2.5 广义逆矩阵的连续性问题

6.3 广义逆的计算方法

- 6.3.1 单个矩阵的广义逆
- 6.3.2 更新矩阵的广义逆
- 6.3.3 分块算法

6.4 一些应用

- 6.4.1 矩阵方程、线性方程组的解与广义逆
- 6.4.2 精确初始化的最小二乘递推算法