

UM ESTUDO COMPARATIVO DE MODELOS DE LINHAS DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA EM CIRCUITOS SECUNDÁRIOS

Walmeran José Trindade Júnior Coordenação de Eletrotécnica – CEFET-PB Av. 1º de maio, 720 Jaguaribe CEP 58.015-430 João Pessoa-PB E-mail: walmeran@cefetpb.edu.br

RESUMO

Programas de cálculo de fluxo de potência tradicionais consideram o sistema trifásico de energia elétrica balanceado e condutores em transposição completa, analisando com isso apenas uma fase e estendendo o resultado para as outras duas com defasagens de 120°. Em sistemas de distribuição de energia elétrica, tais considerações não podem ser assumidas. Neles, há uma grande predominância de cargas monofásicas, principalmente nos circuitos secundários, e a configuração dos condutores nas linhas de distribuição nunca é equilateral simétrica. Portanto, o desbalanceamento da rede trifásica, bem como o acoplamento magnético entre as fases, mesmo em circuitos secundários de distribuição de energia elétrica, deve ser levado em conta, sob pena de consideráveis erros na determinação das tensões nodais e das perdas elétricas serem cometidos. Neste trabalho apresentamos as conclusões sobre os erros na determinação das tensões nodais e das perdas elétricas, obtidas a partir do cálculo de fluxo de potência trifásico para redes secundárias de distribuição de energia elétrica, provenientes de modelos de linhas inadequados. Para isso, foi considerada a linha de Carson como modelo preciso, fazendo-se comparações para três situações de carregamento (cargas balanceadas, levemente desbalanceadas e fortemente desbalanceadas) e três modelos aproximados de linhas comumente utilizados em programas de fluxo de potência.

PALAVRAS-CHAVE: Distribuição de energia elétrica. Rede secundária. Qualidade de energia.

1. INTRODUÇÃO

A resolução Nº 505 da ANEEL (Agência Nacional de Energia Elétrica) (ANELL, 2001) considera como imprescindível a definição dos limites de variação das tensões a serem observadas pelas concessionárias de energia elétrica para a conceituação de serviço adequado e estabelece a conformidade dos níveis de tensão de atendimento em regime permanente, classificando-a em adequada, precária ou crítica. Surge daí um problema operacional para essas empresas: como monitorar na rede secundária de distribuição a tensão em dezenas de pontos de entrega em milhares de circuitos, de forma a garantir o serviço adequado, conforme estabelece essa resolução? Uma forma viável para um primeiro levantamento de áreas críticas é através da simulação digital dessa rede, determinando-se as tensões nodais pelo cálculo de fluxo de potência trifásico.

Programas de cálculo de fluxo de potência tradicionais consideram o sistema trifásico de energia elétrica balanceado e condutores em transposição completa, analisando com isso apenas uma fase e estendendo o resultado para as outras duas com defasagens de 120°. Em sistemas de distribuição de energia elétrica, tais considerações não podem ser assumidas. Neles, há uma grande predominância de cargas monofásicas, principalmente nos circuitos secundários, e a configuração dos condutores nas linhas de distribuição nunca é eqüilateral simétrica. Portanto, o desbalanceamento da rede trifásica, bem como o acoplamento magnético entre as fases, mesmo em circuitos secundários de distribuição de energia elétrica, deve ser levado em conta, sob pena de consideráveis erros na determinação das tensões nodais e das perdas elétricas serem cometidos.

Neste trabalho apresentamos as conclusões sobre os erros na determinação das tensões nodais e das perdas elétricas, obtidas a partir do cálculo de fluxo de potência trifásico para redes secundárias de distribuição de energia elétrica, provenientes de modelos de linhas inadequados. Para isso, foi considerada a linha de Carson como modelo preciso, fazendo-se comparações para três situações de carregamento (cargas balanceadas, levemente desbalanceadas e fortemente desbalanceadas) e três modelos aproximados de linhas comumente utilizados em programas de fluxo de potência.

2. A LINHA DE CARSON COMO O MODELO EXATO

A Figura 1 apresenta o circuito equivalente para uma linha de distribuição trifásica.

Figura 1: Modelo exato para linha trifásica

A linha de Carson, tomada aqui como modelo exato para a linha trifásica, leva em consideração o acoplamento magnético entre as fases, bem como entre as fases e o neutro, se este estiver presente. Assim, a matriz de impedâncias primitivas fica:

$$[Z_{prim}] = \begin{bmatrix} Z_{aa} & Z_{ab} & Z_{ac} & Z_{an} \\ Z_{ba} & Z_{bb} & Z_{bc} & Z_{bn} \\ Z_{ca} & Z_{cb} & Z_{cc} & Z_{cn} \\ Z_{na} & Z_{nb} & Z_{nc} & Z_{nn} \end{bmatrix}$$

$$(1)$$

Os elementos desta matriz podem ser determinados pelas equações de Carson (ANDERSON, 1973), dadas por:

$$z_{ii} = r_i + 0.0953 + j0.12134[\ln(1/GMR_i) + +7.934]$$
 ohms/milha (2)

$$z_{ij} = 0.0953 + j0.12134[\ln(1/D_{ij}) + + 7.934] \text{ ohms/milha}$$
(3)

Onde:

r_i= Resistência do condutor (ohms/milha)

GMR_i=Raio médio geométrico (pés)

D_{ij}=Espaçamento entre os condutores i e j (pés)

A matriz de impedâncias primitivas $[Z_{prim}]$ pode ser reduzida à ordem 3x3 através da redução de Kron, transformando esta na matriz impedância de fase $[Z_{abc}]$, onde cada elemento é dado por:

$$Z_{ij} = z_{ij} - z_{in} z_{nj} / z_{nn} (4)$$

ficando a matriz impedância de fase como:

$$\begin{bmatrix} Z_{abc} \end{bmatrix} = \begin{bmatrix} Z_a & Z_{ab} & Z_{ac} \\ Z_{ab} & Z_b & Z_{bc} \\ Z_{ac} & Z_{bc} & Z_c \end{bmatrix}$$
(5)

Vale registrar o fato de que a redução de Kron promove uma simplificação no modelo da linha, haja vista a não representação do condutor neutro e do aterramento, ficando assim não conhecidas as correntes e as tensões nestes. Informações estas que podem ser de interesse em análises de perdas elétricas, qualidade de energia ou de proteção (CIRIC et al, 2003).

3. MODELOS APROXIMADOS PARA LINHAS DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA

Uma das informações mais comuns em linhas de transmissão ou de distribuição de energia elétrica são as impedâncias de seqüência positiva e negativa (KERSTING & PHILLIPS, 1995). A partir da consideração da linha eqüilateral simétrica ou da sua transposição, a matriz impedância de seqüência pode ser obtida como:

$$[Z_{012}] = \begin{bmatrix} (Z_s + 2Z_m) & 0 & 0\\ 0 & (Z_s - Z_m) & 0\\ 0 & 0 & (Z_s - Z_m) \end{bmatrix}$$

$$(6)$$

com,

$$Z_0 = Z_s + 2Z_m \tag{7}$$

$$Z_1 = Z_2 = Z_s - Z_m (8)$$

sendo Z_s a impedância própria de cada fase e Z_m a impedância mútua entre fases, após a redução de Kron em $[Z_{prim}]$, ou seja,

$$\begin{bmatrix} Z_{abc} \end{bmatrix} = \begin{bmatrix} Z_s & Z_m & Z_m \\ Z_m & Z_s & Z_m \\ Z_m & Z_m & Z_s \end{bmatrix}$$

$$(9)$$

Não havendo essas considerações, a matriz [Z_{012}] teria elementos fora da diagonal não nulos, ou seja, haveria acoplamento magnético entre as seqüências, ficando desvantajoso o uso dessa transformação matricial na matriz impedância de fase [Z_{abc}] (KERSTING & PHILLIPS, 1995).

A partir da matriz impedância de seqüência $[Z_{012}]$ é possível obter a matriz impedância de fase equivalente, originando com isso a matriz impedância de seqüência de fase $[Z_{seq}]$. Assim, tem-se:

$$[Z_{seq}] = [A] [Z_{012}] [A]^{-1}$$
(10)

$$\left[Z_{seq} \right] = \frac{1}{3} \begin{bmatrix} (2Z_1 + Z_0) & (Z_0 - Z_1) & (Z_0 - Z_1) \\ (Z_0 - Z_1) & (2Z_1 + Z_0) & (Z_0 - Z_1) \\ (Z_0 - Z_1) & (Z_0 - Z_1) & (2Z_1 + Z_0) \end{bmatrix}$$
(11)

com.

e $a = 1 \angle 120^{\circ}$.

Desse modo, a matriz impedância de seqüência de fase $[Z_{seq}]$ pode substituir o modelo de linha, aqui considerado exato, e descrito na Equação 5. Porém, deve ficar entendido que, com isso, é assumido o espaçamento eqüilateral simétrico da linha ou a sua transposição, introduzindo assim um certo grau de imprecisão nas análises, se a linha em questão assim não for. Portanto, a matriz impedância de seqüência de fase $[Z_{seq}]$ se constitui num primeiro modelo aproximado para linhas de distribuição de energia elétrica.

Uma segunda aproximação consiste em ignorar os termos fora da diagonal da matriz impedância de seqüência de fase $[Z_{seq}]$, surgindo a matriz impedância de seqüência de fase modificada $[Z_{md}]$. Esta eliminação dos termos fora da diagonal de $[Z_{seq}]$, caracterizando a não consideração do acoplamento magnético entre as fases da linha, simplifica o procedimento de cálculo do fluxo de potência, repetindo-se esse cálculo três vezes, uma para cada fase do sistema trifásico. Esta consideração em $[Z_{seq}]$ introduz significantes erros nesta análise (KERSTING & PHILLIPS, 1995). Então, a matriz impedância de seqüência de fase modificada $[Z_{md}]$, fica:

$$[Z_{seq}] = \frac{1}{3} \begin{bmatrix} (2Z_1 + Z_0) & 0 & 0\\ 0 & (2Z_1 + Z_0) & 0\\ 0 & 0 & (2Z_1 + Z_0) \end{bmatrix}$$
 (13)

Uma outra simplificação no modelo de linha trifásica é aquela que considera o desacoplamento magnético entre as fases da linha, e representa cada fase apenas pela sua impedância de seqüência positiva. A matriz impedância de seqüência positiva $[Z_{pos}]$ resultante é:

$$[Z_{pos}] = \begin{bmatrix} Z_1 & 0 & 0 \\ 0 & Z_1 & 0 \\ 0 & 0 & Z_1 \end{bmatrix}$$
 (14)

4. COMPARAÇÃO ENTRE OS MODELOS DE LINHAS APRESENTADOS

Para fins de comparação entre os modelos de linha apresentados, consideram-se trechos de rede secundária trifásico, bifásico e monofásico com cabos 4 CAA, com 100m de comprimento, espaçamento entre os cabos sendo: $d_{ab}=d_{bc}=0.20$ m, $d_{ca}=0.40$ m, $d_{an}=0.20$ m, $d_{bn}=0.40$ m e $d_{cn}=0.60$ m, e três condições de carregamento, descritos nas tabelas abaixo, com **Tipo 1** balanceado, **Tipo 2** levemente desbalanceado e **Tipo 3** muito desbalanceado, para trechos de linha trifásico, bifásico e monofásico. A tensão de linha adotada para o sistema secundário foi de 380 V.

Tabela I: Carga trifásica (FP=0,9)

	S _a (kVA)	$S_b (kVA)$	S _c (kVA)
Tipo 1	15,0	15,0	15,0
Tipo 2	20,0	15,0	10,0
Tipo 3	20,0	1,5	10,0

Tabela II: Carga bifásica (FP=0,9)

	S _a (kVA)	S _b (kVA)
Tipo 1	15,0	15,0
Tipo 2	20,0	10,0
Tipo 3	20,0	5,0

Tabela III: Carga monofásica (FP=0,9)

ria III. Carga II	nonorasica (FF-		
	S _a (kVA)		
_	15.0		

Os quatro modelos trifásicos de linha mostrados até então, $[Z_{\text{abc}}]$, $[Z_{\text{seq}}]$, $[Z_{\text{md}}]$ e $[Z_{\text{pos}}]$, podem ser adaptados para linhas bifásicas e monofásicas, tornando nulo(s) o(s) elemento(s) referente(s) à(s) fase(s) ausente(s) e utilizados no procedimento do cálculo de fluxo de potência, tomando-se o cuidado de que essas matrizes de impedâncias para os modelos de linhas bifásicas e monofásicas não são originadas das matrizes dos modelos de linha trifásica, fazendo-se iguais a zero os valores dos elementos correspondentes à(s) fase(s) ausente(s). A aplicação das fórmulas de Carson deve ser feita para a configuração geométrica das linhas bifásicas e monofásicas.

As tensões de fase, em pu (tensão base de 380 V), as perdas em cada fase e as perdas totais, em kW, para cada caso de carregamento e topologia da linha são apresentadas nas tabelas a seguir, sendo determinadas utilizando os quatro modelos de linha descritos anteriormente.

Para isso, foi utilizado um programa computacional para o cálculo do fluxo de potência trifásico para redes radiais de distribuição de energia elétrica, baseado no método soma de potências, com modificação apropriada para considerar o acoplamento magnético entre as fases da rede de distribuição (TRINDADE, 2005) (CESPEDES, 1990) (RUDNICK & MUNOZ, 1990).

Tabela IVa: Trecho de linha trifásico com carga Tipo 1 (tensões de fase)

Modelo	V _{an}	V _{bn}	V_{cn}
$[Z_{abc}]$	0,9453	0,9467	0,9489
$[Z_{\text{seq}}]$	0,9469	0,9469	0,9469
$[Z_{md}]$	0,9334	0,9334	0,9334
$[Z_{pos}]$	0,9469	0,9469	0,9469

Tabela IVb: Trecho de linha trifásico com carga Tipo 1 (perdas elétricas)

Modelo	Pa	P_b	P _c	P _{total}
$[Z_{abc}]$	0,866	0,837	0,795	2,498
$[Z_{seq}]$	0,833	0,833	0,833	2,497
$[Z_{md}]$	0,958	0,958	0,958	2,876
$[Z_{pos}]$	0,833	0,833	0,833	2,498

Tabela Va: Trecho de linha trifásico com carga Tipo 2 (tensões de fase)

Modelo	V_{an}	V_{bn}	V_{cn}
$[Z_{abc}]$	0,9151	0,9553	0,9701
$[Z_{\text{seq}}]$	0,9166	0,9551	0,9681
$[Z_{md}]$	0,9088	0,9334	0,9567
$[Z_{pos}]$	0,9278	0,9469	0,9653

Tabela Vb: Trecho de linha trifásico com carga Tipo 2 (perdas elétricas)

Modelo	Pa	P_b	P_{c}	P _{total}
$[Z_{abc}]$	1,802	0,655	0,349	2,807
$[Z_{seq}]$	1,757	0,659	0,374	2,789
$[Z_{md}]$	1,798	0,958	0,405	3,162
$[Z_{pos}]$	1,542	0,833	0,356	2,731

Tabela VIa: Trecho de linha trifásico com carga Tipo 3 (tensões de fase)

Modelo	V_{an}	V_{bn}	V_{cn}
$[Z_{abc}]$	0,9191	1,0138	0,9543
$[Z_{\text{seq}}]$	0,9103	0,9938	0,9573
$[Z_{md}]$	0,9103	0,9938	0,9573
$[Z_{pos}]$	0,9252	0,9948	0,9641

Tabela VIb: Trecho de linha trifásico com carga Tipo 3 (perdas elétricas)

Modelo	P_a	P_b	P_{c}	P _{tota1}
$[Z_{abc}]$	1,571	-0,016	0,524	2,079
$[Z_{\text{seq}}]$	1,558	-0,012	0,514	2,060
$[Z_{md}]$	1,739	0,008	0,393	2,140
$[Z_{pos}]$	1,550	0,008	0,357	1,915

Tabela VIIa: Trecho de linha bifásico com carga Tipo 1 (tensões de fase)

•	terio de mina omasico com carga mpo m					
	Modelo	V_{an}	V_{bn}			
	$[Z_{abc}]$	0,9345	0,9344			
	$[Z_{\text{seq}}]$	0,9345	0,9345			
	$[Z_{md}]$	0,9345	0,9345			
	$[Z_{pos}]$	0,9451	0,9451			

Tabela VIIb: Trecho de linha bifásico com carga Tipo 1 (perdas elétricas)

Modelo	P_a	P_b	P _{total}	
$[Z_{abc}]$	0,895	0,827	1,722	
$[Z_{seq}]$	0,855	0,855	1,710	
$[Z_{md}]$	0,928	0,928	1,856	
$[Z_{pos}]$	0,836	0,836	1,672	

Tabela VIIIa: Trecho de linha bifásico com carga Tipo 2 (tensões de fase)

Modelo	Van	V_{bn}		
$[Z_{abc}]$	0,9104	0,9344		
$[Z_{\text{seq}}]$	0,9103	0,9345		
$[Z_{\mathrm{md}}]$	0,9103	0,9345		
$[Z_{pos}]$	0,9252	0,9451		

Tabela VIIIb: Trecho de linha bifásico com carga Tipo 2 (perdas elétricas)

Modelo	Pa	P _b	P _{total}
$[Z_{abc}]$	1,792	0,685	2,477
$[Z_{\text{seq}}]$	1,747	0,719	2,466
$[Z_{md}]$	1,739	0,928	2,667
$[Z_{pos}]$	1,550	0,836	2,386

Tabela IXa: Trecho de linha bifásico com carga Tipo 3 (tensões de fase)

Modelo	V_{an}	V_{bn}
$[Z_{abc}]$	0,9104	0,9938
$[Z_{\text{seq}}]$	0,9103	0,9938
$[Z_{md}]$	0,9103	0,9938
$[Z_{pos}]$	0,9252	0,9948

Tabela IXb: Trecho de linha bifásico com carga Tipo 3 (perdas elétricas)

Modelo	Pa	P_b	P _{total}
$[Z_{abc}]$	1,575	-0,015	1,560
$[Z_{\text{seq}}]$	1,558	-0,012	1,546
$[Z_{md}]$	1,739	0,008	1,747
$[Z_{pos}]$	1,550	0,008	1,558

Tabela Xa: Trecho de linha monofásico (tensões de fase)

Modelo	V_{an}
$[Z_{abc}]$	0,9345
$[Z_{seq}]$	0,9345
$[Z_{md}]$	0,9345
$[Z_{pos}]$	0,9451

Tabela Xb: Trecho de linha monofásico (perdas elétricas)

Modelo	\mathbf{P}_{a}
$[Z_{abc}]$	0,927
$[Z_{\text{seq}}]$	0,928
$[Z_{md}]$	0,928
$[Z_{pos}]$	0,836

Nas Tabelas 4a, 4b, 5a, 5b, 6a e 6b, percebem-se valores de tensão próximos quando se utilizam os modelos $[Z_{abc}]$ e $[Z_{seq}]$, porém as perdas elétricas por fase apresentam algumas diferenças. Assim, se o propósito da análise for principalmente perfil de tensão, a consideração da linha transposta não conduz a erros significativos. Porém, se o objetivo for estudos de perdas elétricas cuidados devem ser tomados com essas diferenças. Com os outros modelos, $[Z_{md}]$ e $[Z_{pos}]$, à medida que o desbalanceamento da carga aumenta, aumentam também os erros na determinação da tensão e das perdas elétricas por fase. O que reflete o efeito da negligência do acoplamento magnético entre as fases da linha.

Nos casos estudados para linha bifásica, também se repete o comportamento dos modelos de linhas trifásicas adotados: $[Z_{abc}]$ e $[Z_{seq}]$ resultam tensões com valores próximos, porém diferem nos valores de perdas elétricas por fase. Os modelos $[Z_{md}]$ e $[Z_{pos}]$ continuam com o comportamento de erro crescente na determinação das perdas elétricas, com o incremento do desbalanceamento da carga.

Para a linha monofásica, os modelos apresentam diferenças tanto em tensão quanto em perdas elétricas, devido à utilização de impedâncias de sequência em linhas monofásicas (KERSTING & PHILLIPS, 1995).

Percebem-se também nos resultados para as perdas elétricas, alguns valores negativos. Como explicado em (KERSTING & PHILLIPS, 1995), as perdas elétricas são calculadas como sendo a diferença entre a potência que entra no nó e a potência que sai dele, por fase, existindo a possibilidade de valores menores que zero, resultante do efeito da representação matemática do acoplamento magnético, através da matriz impedância de fase. Isso é o que ocorre, de forma semelhante, na transferência de potência em um transformador, através do acoplamento magnético entre seus enrolamentos (KERSTING & PHILLIPS, 1995).

5. CONCLUSÕES

Com a necessidade da determinação do perfil de tensão e das perdas elétricas de forma automática, para fins de enquadramento da rede secundária de distribuição de energia elétrica em padrões de qualidade exigidos por legislação própria e/ou por razões econômicas por parte das concessionárias de energia elétrica, mister se faz ter o devido cuidado com a escolha do modelo matemático de representação das linhas de distribuição, a ser utilizado em programas computacionais para o cálculo de fluxo de potência, sob pena de cometerem-se erros significativos de avaliação.

De forma semelhante ao que foi observado em (KERSTING & PHILLIPS, 1995) para a rede primária de distribuição de energia elétrica, quanto à influência dos modelos de linha $[Z_{abc}]$, $[Z_{seq}]$, $[Z_{md}]$ e $[Z_{pos}]$ na determinação do perfil de tensão e das perdas elétricas, ocorre também para a rede secundária. Ou seja, os modelos $[Z_{abc}]$, $[Z_{seq}]$ apresentam os melhores resultados, tanto em condições de balanceamento da carga quanto em forte desbalanceamento desta, isso por considerarem o acoplamento magnético entre as fases da linha. Os outros dois modelos, $[Z_{md}]$ e $[Z_{pos}]$, não se aplicam muito bem ao caso de linhas de distribuição de energia elétrica, pois nestas, o acoplamento magnético entre as suas fases e o balanceamento das cargas não podem ser desconsiderados.

6. REFERÊNCIAS

ANDERSON, M.P. "Analysis of Faulted Power Systems". Ames, Iowa State Univ. Press, 1973.

ANEEL - Agência Nacional de Energia Elétrica - Resolução Nº 505, novembro 2001.

CESPEDES, R. "New Method for the Analysis of Distribution Networks". IEEE Transactions on Power Delivery, V. 5, n.1, pp.391-396, Jan. 1990.

CIRIC, R. M., FELTRIN, A. P. & OCHOA, L. F. "Power Flow in Four-Wire Distribution Networks – General Approach". IEEE Transaction on Power Systems, V. 18, n.4, pp. 1283-1290, November, 2003.

KERSTING, W.H. & PHILLIPS, W. H. "Distribution Feeder Line Models". IEEE Transaction on Industry Application, V. 31, n.4, pp. 715-720, Jul./Aug., 1995.

RUDNICK, H. & MUNOZ, M. "Three Phase Load Flow Analysis in Radial Power Systems". In: I SIDEE, 1990.

TRINDADE, W. J. "Cálculo de Fluxo de Potência Trifásico para Redes de Distribuição de Energia Elétrica Utilizando o Método Soma de Potências Modificado", In: VI SBQEE, Belém-PA, Agosto, 2005.