SVKM's NMIMS MUKESH PATEL SCHOOL OF TECHNOLOGY MANAGEMENT & ENGINEERING

Programme: B. Tech (COMP)

Year: III

Semester: V

Batch:

2013-2014

Academic Year: 2014-2015

Subject:

Theoretical Computer Science

Marks:

Time:

Duratio

Date:

27/11/2014

Re-Examination

Instructions:-candidates should read carefully the instructions printed on the question paper and on the cover of the answer book, which is provided for their use.

NB: - 1) Question No ONE is compulsory

- 2) Out of remaining attempt FOUR questions,
- 3) All Questions carry equal marks.
- 4) Figures in brackets on right hand side indicate full marks

VI. Attempt in					
	A)	Construct Post machine for accepting Language $L = \{a^n b^n c^n \mid n \ge 0\}$.	[8]		
	B)	Prove with the help of example that the Post correspondence problem in un-decidable.	[7]		
	C)	En-list and explain the limitations of Finite Automata.	[5]		

	TA)	Construct I ost machine for accepting Bangarage B	[o]
	B)	Prove with the help of example that the Post correspondence problem in un-decidable.	[7]
	C)	En-list and explain the limitations of Finite Automata.	[5]
Q2.	A)	Show that "Context Free Language is super set of Regular Language".	[8]
	B)	Design a Mealy Machine for converting every sequence of "1001" to "1000" from the input string over a alphabet $\Sigma = \{0,1\}^*$.	[8]
	(C)	Convert the following regular expression in to equivalent English statements (Any Two)	[4]
		i) (10+111)0*1. ii) (a+b)*abb(a+b)*. iii) (a+b)*ba.	
Q3.	A)	Design Turing Machine for accepting string with equal number of a's and b's over {a,b}*.	[8]
	B)	Construct Push Down Automata for accepting even length palindrome over {0,1}*.	[8]

	C)	Show that the CFL's are closed under union, concatenation and kleen operation.	[4]
Q4.	A)	Let G be the grammar with Productions {S→ aB bA, A→a aS bAA, B→ b bS aBB}. Find i) Leftmost derivation, ii) Rightmost derivation & iii) Parse Tree for the string "aaabbabbba".	[10]
	B)	Find PDA equivalent to the grammar rules $\{S \to abAB, A \to bAB \in, B \to baA A \in \}$.	[10]

Q6.	A)	Give Non-deterministic finite automata with ∈-moves for (((10+011)*+11)*+0)101.	[10]	
	B)	Give context free grammar for generating all the strings for the language $L = \{\#w\#w^R\$ \mid w \in (0+1)^*, w^R \text{ is the reverse of } w \text{ and } \{\#,\$\} \text{ are terminal symbols}\}.$	[10]	
Q7. Write Short Note (Attempt Any 4)				
	A)	Applications of Automata in Compiler Construction.	[5]	
	B)	Properties of Recursively Enumerable Languages.	[5]	
	C)	Universal Turing Machine.	[5]	
	D)	Pumping Lemma for Context Free Language.	[5]	
	E)	Properties of Regular Languages.	[5]	
	F)	Elements of Post Machine.	[5]	