DIGITAL LOGIC AND COMPUETR AECHITECTURE

TOPIC NO 4

BOOLEAN ALGEBRA

BOOLEAN ALGEBRA

- ✓ It is the set of rules used to simplify given logic expression without changing its functionality
- ✓ It is used when number of variables are less (like 1, 2, 3)

George Boole 1815 -1864

Boolean Expression

Logic Circuits

Truth Tables

Real life example converted into Logic circuit

CYCLE

Boolean Expression

Y= (A+B).C'

Truth Table

Α	В	C	Υ
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Reduction for of Expressions

• Example:

Introduction to Reduction techniques

- 1. Using Boolean Laws
- 2. K- Maps
- 3. Quine Mc-Cluskey

Know George Boole

BOOLEAN ALGEBRA:

- George Boole introduce a new Algebra called Boolean Algebra in 1854
- Ordinary Algebra deals with a real numbers where as Boolean Algebra deals with a set two elements 0 and 1

• Operators : '+' and '•'

Rules are same as AND ,OR, and NOT

What is Boolean Algebra?

- Boolean Algebra may be defined with
 - A set of elements
 - A set of operators
 - A number of postulates
- A set of elements is set of any collection of objects having a common property
 - S = (a,b,c,d)a £ S , e ∉ S
- A binary operators defined on a set S of elements is a rule that assigns each pair of elements from S to a unique element from S
 - a*b = c
 - > +
 - **>** .
 - > -
- A postulates are used to reduced the rules theorems and properties

Boolean Laws:

AND LAW:

A.A = A

A.0 = 0

A.1 = 1

 $A.\overline{A} = 0$

OR LAW:

A+A=A

A+0=A

A+1 = 1

 $A+\overline{A}=1$

NOT LAW:

1 = 0

0 = 1

A = A

COMMULATIVE LAW

A.B = B.A

A+B=B+A

ASSOCIATIVE LAW

A+(B+C)=(A+B)+C

DISTRUBUTIVE LAW

A(B+C) = AB+AC

Suvarna Bhat

Boolean Laws:

Other LAWs:

A+BC = (A+B)(A+C)

A+A'B=A+B

A(A'+B) = AB

AB+AB' = A

(A+B)(A+B')=A

AB+A'C=(A+C(A'+B))

A+AB=A

(A+B)(A'+C)=AC+A'B

Class work

Verify any Boolean law using truth table method

DE Morgan's theorem

•	Α.	B	=	Α	+	B
	/ \ .			/ \		\boldsymbol{L}

•	A+B	= A	. B

• $\overline{A+B} = \overline{A} \cdot \overline{B}$							
1	2	3	4	5	6	7	8
А	В	Ā	В	A.B	A + B	A+B	A . B
0	0	1	1	1	1	1	1
0	1	1	0	1	1	0	0
1	0	0	1	1	1	0	0
1	1	0	0	O Suvar	O na Bhat	0	0

Canonical For of Expression

- Sum of Product (SOP)
- Product of sum (POS)