TD n°9

résiduels, Myhill-Nerode

Exercice 1 Calculez tous les résiduels des langages suivants en utilisant la méthode de l'arbre.

- $-L_1 = a^*b^*$
- $-L_2 = \{w \mid |w|_a = 1\}$
- $-L_3 = \{w \mid |w|_a \ge 2\}$
- $-L_4 = \{w \in \{a, b\}^* \mid w \text{ contient le facteur } ab\}$
- $-L_5 = \{w \in \{a,b\}^* \mid |w|_a \text{ est pair }\}$
- $-L_6 = a^+b^+$

Exercice 2 Soit $Min = \{a, b, c, ..., z\}$ l'ensemble de toutes les lettres minuscules. Soit l'alphabet $\Sigma = \{<,>,/\} \cup Min$.

On considère un sous langage du langage XML qui est défini comme

$$L = \{ < u > w < /u > \mid u, w \in Min^+ \}$$

Montrer, en utilisant le théorème de Myhill-Nerode, que L n'est pas régulier. Indication : Comment séparer < u > et < v > si $u \neq v$?

Exercice 3 Soit l'alphabet $\{a, b\}$, et $L = \{a^{(2^n)}) \mid n \ge 0\}$.

- 1. Donner un mot qui sépare a^2 et a^4 .
- 2. Montrer que la relation \sim_L a un nombre infini de classes d'équivalences.
- 3. En conclure que L n'est pas régulier.