Programmation dynamique: corrigé

Exercice 1. Carré de zéros dans une matrice binaire. On considère une matrice de taille $n \times m$, constituée de zéros et de uns. On cherche à déterminer la taille maximale d'un carré dans la matrice, constitué uniquement de zéros. Par exemple, la matrice suivante possède un carré de zéros de taille 3×3 :

Pour $0 \le i < n$ et $0 \le j < m$ on note $t_{i,j}$ la taille maximale d'un carré de zéro dans la matrice, dont le coin en bas à droite est indexé par (i,j) (on a donc notamment $t_{i,j} = 0$ si le coefficient en case (i,j) de la matrice est 1).

- 1. Relier $t_{i,j}$ à $t_{i-1,j}$, $t_{i,j-1}$ et $t_{i-1,j-1}$ pour $i, j \ge 1$.
- 2. En déduire une méthode efficace pour calculer la taille maximale d'un carré de zéros dans la matrice.
- 3. L'implémenter en Caml et donner sa complexité.

```
#a ;;
- : int array array =
[|[|1; 0; 0; 1; 1; 0; 1; 1; 0|]; [|0; 1; 1; 1; 0; 1; 1; 0; 0|];
[|0; 0; 0; 1; 0; 1; 0; 0|]; [|0; 1; 1; 1; 0; 0; 0; 0; 0|];
[|0; 0; 0; 0; 0; 0; 1; 0; 0|]; [|1; 1; 0; 0; 1; 1; 1; 0|]|]
#taille_zeros a ;;
- : int = 3
```

Corrigé.

1. Notons $A = (a_{i,j})_{0 \le i < n, 0 \le j < m}$ la matrice. On a, pour $i, j \ge 1$:

$$t_{i,j} = \begin{cases} 0 & \text{si } a_{i,j} = 1\\ 1 + \min(t_{i-1,j}, t_{i,j-1}, t_{i-1,j-1}) & \text{sinon.} \end{cases}$$

En effet, supposons $a_{i,j} = 0$ (sinon il n'y a rien à prouver) et notons $p = \min(t_{i-1,j}, t_{i,j-1}, t_{i-1,j-1})$.

- D'une part, l'union des 3 carrés de taille $p \times p$ dont le coin en bas à droite est situé en (i-1,j), (i,j-1) et (i-1,j-1) forme avec la case (i,j) un carré de taille $(p+1) \times (p+1)$ rempli de zéros, donc $t_{i,j} \ge p+1$.
- . D'autre part, on sait que le carré de taille $(t_{i,j}+1) \times (t_{i,j}+1)$ dont le coin en bas à droite est (i,j) n'est pas constitué uniquement de zéros. Comme $a_{i,j}=0$, l'un des trois carrrés de taille $t_{i,j} \times t_{i,j}$ dont le coin en bas à droite est (i-1,j), (i,j-1) et (i-1,j-1) n'est donc pas constitué uniquement de zéros, et donc $p \le t_{i,j}-1$.

Et la relation est prouvée.

- 2. Il suffit de calculer incrémentalement les $t_{i,j}$ dans une matrice de même taille que A (par exemple par indices i croissants et par indice j croissants à i fixé), et de trouver le maximum.
- 3. En calculant le maximum en parallèle :

```
let taille_zeros a=
  let n,m=Array.length a, Array.length a.(0) in
  let t=Array.make_matrix (n+1) (m+1) 0 and maxi=ref 0 in (* petit décalage pour pas s'embeter *)
  for i=1 to n do
    for j=1 to m do
    if a.(i-1).(j-1)=0 then t.(i).(j) <- 1+ min (min t.(i-1).(j) t.(i-1).(j-1)) t.(i).(j-1);
    maxi:= max !maxi t.(i).(j)
    done
    done;
!maxi
;;</pre>
```

La complexité (en temps comme en espace) est O(nm). Remarque : il est possible d'écrire un algorithme de complexité $O(\min(n, m))$ en mémoire seulement. Comment ?

Exercice 2. Le problème de la portion de somme maximale. On se donne un tableau t de taille n contenant des entiers, qui peuvent être positifs ou négatifs. Le but de l'exercice est de rechercher une portion du tableau, délimitée par deux indices $i \leq j$, telle que la somme $t.(i) + t.(i+1) + \cdots + t.(j)$ est maximale.

1. Résoudre le problème naïvement en testant toutes les possibilités : écrire une fonction max_somme_naif t retournant un couple d'indices (i, j) qui convient (on pourra écrire une fonction somme_portion t i j, et faire usage de références ensuite). Quelle est la complexité de cette approche?

```
# let t_ex = [|-1; 2; 1; 4; -3; -5; 6; 2; -1; 6; 0; -1; -2; 2|] in max_somme_naif t_ex ;;
- : int * int = (6, 9)
```

- 2. Le reste de l'exercice est dévolu à la recherche d'une solution faisant usage de programmation dynamique. On note s_j une somme maximale de la forme $t.(i) + t.(i+1) + \cdots + t.(j)$. Exprimer s_j en fonction de s_{j-1} .
- 3. En déduire un algorithme max_somme_dyn t permettant le calcul de tous les s_j , et renvoyant $s = \max_j s_j$. Quelle est sa complexité?
- 4. Modifier l'algorithme pour qu'il retourne en plus un couple d'indice (i, j) qui convient, sans changer la complexité.

Corrigé.

1. On écrit d'abord une fonction calculant $\sum_{k=i}^{j} t.(k)$:

```
let somme_portion t i j =
  let s=ref 0 in
  for k=i to j do
    s:= !s + t.(k)
  done;
  !s
;;
```

Puis:

```
let max_somme_naif t =
  let im, jm, sm = ref 0, ref 0, ref t.(0) in
  let n=Array.length t in
  for i=0 to n-1 do
    for j=i to n-1 do
    let s=somme_portion t i j in
        if s> !sm then (sm:=s; im:=i; jm:=j)
        done;
    done;
    !im, !jm
;;
```

La complexité est $O(n^3): O(n)$ pour somme_portion, que l'on appelle $O(n^2)$ fois.

- 2. $s_i = t.(j) + \max(s_{i-1}, 0)$. En effet :
 - $s_j \ge t.(j)$ (il suffit de prendre la portion contenant seulement l'élément d'indice j), et $s_j \ge s_{j-1} + t.(j)$ (compléter une portion de poids s_{j-1} par t.(j) donne une portion de poids $s_{j-1} + t.(j)$, d'où $s_j \ge t.(j) + \max(s_{j-1}, 0)$.
 - Réciproquement, notons $i \leq j$ un indice tel que $\sum_{k=i}^{j} t.(k) = s_{j}$. Si i = j, alors $s_{j} = t.(j)$, et nécessairement $s_{j-1} \leq 0$, et il y a égalité dans l'inégalité précédente. Sinon, en retirant t.(j) on obtient une portion de poids $s_{j} t.(j) \geq 0$ terminant à l'indice j 1, donc de poids au plus s_{j-1} , ainsi $s_{j} t.(j) \leq s_{j-1}$ et on a encore $s_{j} = t.(j) + \max(s_{j-1}, 0)$.
- 3. Voici l'algorithme :
 - En démarrant avec $s_0 = t.(0)$, calculer itérativement tous les s_j (complexité O(n)), en gardant l'indice j_m tel que s_{j_m} soit maximal;
 - En partant de $i = j_m$ par pas de -1, chercher i tel que $\sum_{k=i}^{j_m} t.(k) = s_{j_m}$ (temps O(n) également).
 - Renvoyer le couple (i, j_m) obtenu.

D'où la solution du problème en O(n).

4. Voici le code :

```
let max_somme_dyn t=
  let n=Array.length t in
  let s=ref t.(0) and jm=ref 0 and sm=ref t.(0) in
  for j=1 to n-1 do
    s:= t.(j) + max !s 0;
    if !s > !sm then (sm:= !s ; jm:=j)
  done;
  let i=ref !jm and s=ref t.( !jm) in
  while !s < !sm do
    decr i;
    s:= !s + t.( !i)
  done;
  !i, !jm
;;</pre>
```

Exercice 3. Distance de Levenshtein. On définit la distance de Levenshtein entre deux mots u et v comme le nombre minimal d(u,v) d'opérations nécessaires pour obtenir v à partir de u, les opérations autorisées étant la suppression, l'insertion, ou la modification d'une lettre. Par exemple, mathematique est à distance 5 de arithmetique, comme on le voit par la suite de transformations :

 $mathematique \rightarrow mathmatique \rightarrow mathmetique \rightarrow aathmetique \rightarrow arthmetique \rightarrow arithmetique$

- 1. Montrer que d est bien une distance, c'est à dire qu'elle vérifie : $d(u,v) = 0 \Leftrightarrow u = v \qquad \forall u,v,\ d(u,v) = d(v,u) \qquad \text{et} \qquad \forall u,v,w,\ d(u,v) \leq d(u,w) + d(w,v).$
- 2. Pour $0 \le i \le |u|$ et $0 \le j \le |v|$, on note $d_{i,j}$ la distance de Levenshtein entre les préfixes de u et de v de longueurs respectives i et j. Déterminer une expression de $d_{i,j}$ faisant intervenir $d_{i,j-1}$, $d_{i-1,j-1}$ et $d_{i-1,j}$.
- 3. En déduire un algorithme de calcul de la distance de Levenshtein.

```
# dist_levenshtein "mathematique" "arithmetique" ;;
- : int = 5
```

4. Modifier l'algorithme pour obtenir un *alignement* de séquences, c'est à dire une plus courte manière de passer de u à v. Coder effectivement une fonction alignement u v permettant de passer de u à v. (On utilisera print_string pour des affichages à l'écran).

```
# alignement "mathematique" "arithmetique";;
mathematique
mathemetique
mathmetique
athmetique
arthmetique
arithmetique
- : unit = ()
```

Corrigé.

- **1.** d(u, u) = 0 pour tout mot u: il n'y a aucune opération pour passer de u à lui-même! Si d(u, v) = 0, alors u = v.
 - d est clairement symétrique.
 - Si on effectue d(u, w) opérations pour passer de u à w, puis d(w, v) opérations pour passer de w à v, on a effectué d(u, w) + d(w, v) opérations pour passer de u à v, ainsi, $d(u, v) \le d(u, w) + d(w, v)$.
- 2. On note $u_0, u_1, \dots, u_{|u|-1}$ les lettres de u, de même pour v. On a :

$$d_{i,j} = \begin{cases} i & \text{si } j = 0\\ j & \text{si } i = 0\\ d_{i-1,j-1} & \text{si } u_{i-1} = v_{j-1}\\ 1 + \min(d_{i-1,j-1}, d_{i,j-1}, d_{i-1,j}) & \text{sinon.} \end{cases}$$

En effet:

• les deux premiers cas sont évidents;

• Supposons $u_{i-1} = v_{j-1}$. Étant donnée une chaîne d'opérations de longueur $d_{i,j}$ permettant de passer de $u_0 \cdots u_{i-1}$ à $v_0 \cdots v_{j-1}$, on obtient une chaîne d'opérations de longueur inférieure permettant de passer de $u_0 \cdots u_{i-2}$ à $v_0 \cdots v_{j-2}$ en supprimant les dernières lettres des mots apparaissant dans la chaîne et les éventuelles répétitions de mots identiques dans la chaîne obtenue, d'où $d_{i,j} \geq d_{i-1,j-1}$. La réciproque s'obtient en rajoutant u_{i-1} à la fin de tous les mots d'une chaîne d'opérations permettant de passer de $u_0 \cdots u_{i-2}$ à $u_0 \cdots u_{j-2}$.

- Si $u_{i-1} \neq v_{j-1}$, on montre de même que $d_{i,j} \leq 1 + \min(d_{i-1,j-1}, d_{i,j-1}, d_{i-1,j})$. Par exemple, si le minimum est atteint pour $d_{i-1,j-1}$, il suffit d'effectuer la transformation $u_0 \cdots u_{i-1} \to u_0 \cdots u_{i-2} v_{i-1}$ suivie des transformations permettant de transformer $u_0 \cdots u_{i-2}$ et $v_0 \cdots v_{i-2}$ pour obtenir une chaîne de transformation de $u_0 \cdots u_{i-1}$ en $v_0 \cdots v_{i-1}$ de longueur $1 + d_{i-1,j-1} = 1 + \min(d_{i-1,j-1}, d_{i,j-1}, d_{i-1,j})$ (les deux autres cas se traitent de manière similaire). Réciproquement, considérons une chaîne de transformations de longueur $d_{i,j}$ permettant de passer de $u_0 \cdots u_{i-1}$ à $v_0 \cdots v_{j-1}$. Considérons, en remontant depuis la fin, le premier moment où la lettre v_{j-1} apparaît à la fin des mots. Si la transformation est un ajout, on obtient en supprimant cette transformation et toutes les dernières v_{j-1} apparaissant dans les mots à partir de cette transformation une suite de transformations de longueur $d_{i,j} 1$ permettant de passer de u_0, \ldots, u_{i-1} à v_0, \ldots, v_{i-2} , d'où $d_{i,j-1} \leq d_{i,j} 1$ dans ce cas, ainsi $\min(d_{i-1,j-1}, d_{i,j-1}, d_{i-1,j}) \leq d_{i,j} 1$. On traite les deux autres cas possibles (suppression, modification) de manière similaire.
- 3. Voici:

```
let dist_levenshtein u v =
  let n, m = String.length u, String.length v in
  let d = Array.make_matrix (n+1) (m+1) 0 in
  for i=0 to n do
    d.(i).(0) <- i
  done ;
  for j=0 to m do
    d.(0).(j) < - j
  done ;
  for i=1 to n do
    for j=1 to m do
      if u.[i-1] = v.[j-1] then
        d.(i).(j) \leftarrow d.(i-1).(j-1)
      else
        d.(i).(j) \leftarrow 1 + min (min d.(i-1).(j-1) d.(i).(j-1)) d.(i-1).(j)
    done
  done ;
  d.(n).(m)
```

4. Voici une solution : c'est un peu long. En Ocaml, les chaînes sont désormais immuables, il faut utiliser le type Bytes (octets) pour avoir un objet mutable. L'expression Bytes.set s i x remplace le caractère i de s par x, et les fonctions Bytes.of_string et Bytes.to_string permettent la conversion entre les types Bytes et String.

```
let retire_lettre u i=
  (* retire la lette d'indice i de u *)
 String.sub u 0 i^String.sub u (i+1) (String.length u - i -1)
let change_lettre u i c=
  (* change la lette d'indice i de u en c*)
 let b=Bytes.of_string u in Bytes.set b i c ; Bytes.to_string b
let affiche u= print_string u ; print_string "\n" ;;
let alignement u v =
 let n, m=String.length u, String.length v in
 let d=Array.make_matrix (n+1) (m+1) 0 in
 for i=0 to n do
    d.(i).(0) <- i
 done ;
  for j=0 to m do
   d.(0).(j) <- j
 done ;
 for i=1 to n do
    for j=1 to m do
      if u.[i-1] = v.[j-1] then
```

```
d.(i).(j) <- d.(i-1).(j-1)
  else
    d.(i).(j) <- 1 + min (min d.(i-1).(j-1) d.(i).(j-1)) d.(i-1).(j)
  done
done;
print_string "\n";
let rec aux i j u v =
    if d.(i).(j) = 0 then affiche v
    else if i>0 && j>0 && u.[i-1] = v.[j-1] then aux (i-1) (j-1) u v
    else if i>0 && d.(i-1).(j) = d.(i).(j) - 1 then (affiche u; aux (i-1) j (retire_lettre u (i-1)) v)
    else if d.(i).(j-1) = d.(i).(j) - 1 then (aux i (j-1) u (retire_lettre v (j-1)); affiche v)
    else (affiche u; aux (i-1) (j-1) (change_lettre u (i-1) v.[j-1]) v)
    in aux n m u v
;;
```

L'idée est par contre assez simple : il suffit de créer un chemin entre u et v via le tableau d, en passant par une case telle que d.(i).(j) soit égal à 0 (associé à une chaîne w). Le code affiche les changements de u à w (avant l'appel récursif à aux) et de w à v (après l'appel récursif).

Exercice 4. Rendu de monnaie. On se donne v_0, \ldots, v_{n-1} des valeurs de pièces de monnaie, avec $v_0 = 1$. On peut supposer les v_i croissantes. On se donne une somme d'argent S à décomposer en les v_i (il y a au moins une solution car $v_0 = 1$), et on cherche à minimiser le nombre de pièces impliquées. En clair, on cherche à résoudre le problème :

Trouver
$$(\alpha_0, \dots, \alpha_{n-1})$$
 tel que $S = \sum_{i=0}^{n-1} \alpha_i v_i$ et $\sum_{i=0}^{n-1} \alpha_i$ minimal.

Dans un système monétaire usuel, il suffit de procéder en rendant le plus possible de pièces v_{n-1} , puis de pièces v_{n-2} , etc... Ce n'est pas le cas par exemple pour $(v_0, v_1, v_2) = (1, 3, 4)$, où pour S = 6 il vaut mieux utiliser deux pièces 3 que trois pièces 1, 1 et 4. Chercher une méthode de résolution du problème avec une complexité O(Sn).

Corrigé. Notons $N_{i,j}$ le nombre minimal de pièces nécessaires pour obtenir la somme j, avec seulement les pièces d'indice au plus i (inclus), pour $0 \le i < n$ et $0 \le j \le S$. On a larelation suivante :

$$N_{i,j} = \begin{cases} j & \text{si } i = 0 \\ N_{i-1,j} & \text{si } v_i > j \\ \min(N_{i-1,j}, 1 + N_{i,j-v_i}) & \text{sinon.} \end{cases}$$

En effet, les deux premiers cas sont immédiats. Pour le troisième :

- $N_{i,j} \leq N_{i-1,j}$ est clair, de même que $N_{i,j} \leq 1 + N_{i,j-v.(i)}$ car on peut obtenir une décomposition de i en $1 + N_{i,j-v.(i)}$ pièces à partir d'une décomposition de j-v.(i) à $N_{i,j-v.(i)}$ pièces en lui rajoutant la pièce de valeur v.(i). Donc $N_{i,j} \leq \min(N_{i-1,j}, 1 + N_{i,j-v_i})$.
- Réciproquement, si on possède une décomposition de j en $N_{i,j}$ pièces, soit celle-ci ne contient pas la pièce de valeur v.(j) et $N_{i-1,j} = N_{i,j}$ soit elle la contient au moins une fois, et l'enlever fournit une décomposition de j-v.(i) à $N_{i,j}-1$ pièces (et donc $N_{i,j-v.(i)} \leq N_{i,j}-1$). Dans les deux cas $N_{i,j} \geq \min(N_{i-1,j}, 1+N_{i,j-v_i})$, d'où la relation

Le code ressemble ensuite beaucoup à des choses déja faites : on calcule les $N_{i,j}$ dans un premier temps, puis une décomposition optimale sous forme de listes (un tableau indiquant pour chaque valeur de pièces le nombre choisi était également possible).

```
let decomposition v s=
  let n=Array.length v in
  let m=Array.make_matrix n (s+1) 0 in
  for j=0 to s do
    m.(0).(j) <- j
  done;
  for i=1 to n-1 do
    for j=1 to s do
    if v.(i) > j then
        m.(i).(j) <- m.(i-1).(j)
    else
        m.(i).(j) <- min m.(i-1).(j) (1+m.(i).(j-v.(i)))
    done
  done;</pre>
```