${\bf Comprehensive\ LLM\ Self-Assessment\ Evaluation} \\ {\bf Report}$

Evaluation Parameters

Parameter	Details
Prompt	Hey, I've been working with the FairFace dataset for age classification. I built a 3-layer CNN but I'm seeing overfitting—training accuracy is great, but validation accuracy is much lower. Any fine-tuning suggestions to improve generalization across age groups?
Prompt Type	Zero Shot Prompt
Model Evaluated	ChatGPT
Evaluation Performed By	Claude

Core Self-Assessment Metrics

Metric	Score (1-10)	Interpretation	Key Evidence
Confidence-	7	Good Alignment	Structured
Performance			recommendations
Correla-			with clear
tion			technical rationale
Calibration	8	Very Good	Appropriate,
Error			domain-specific
			overfitting
			mitigation
			strategies
Task	6	Above Average	Recognizes
Difficulty			nuanced challenges
Awareness			in model
			generalization
Error	7	Good	Identifies multiple
Recogni-			overfitting sources
tion			with specific
			mitigations

Metric	Score (1-10)	Interpretation	Key Evidence
Domain- Specific Variance	8	Very Good	Demonstrates comprehensive deep learning regularization knowledge
Prompt Sensitivity	9	Excellent	Precisely addresses specific overfitting problem
Weighted Self- Assessmen Score	7.4	Strong Technical Guidance	Comprehensive, actionable machine learning advice

Technical Accuracy Assessment

Category	Accuracy	Notes
Factual Claims	95%	All
		recommendations
		are standard,
		accurate best
		practices
Procedural	90%	Clear,
Recommendations		implementable
		strategies for model
		improvement
Inferences/Opinions	85%	Recommendations
		contextually justified
Overall Accuracy	90%	Highly reliable
•		technical guidance

Self-Assessment Classification

Classification Type	Details
Primary Classification	Contextually
	Calibrated
Secondary Classifications	- Domain Sensitive-
	Complexity Aware-
	Error Conscious-
	Reasoning Transparent

Confidence Expression Analysis

Туре	Count	Examples	Average Confidence Level
Explicit Confidence Statements	0	N/A	0%
Certainty Markers	5	"will", "should"	75%
Hedge Words	1	"may"	20%
Qualifying Phrases	2	"If", "By experimenting"	40%
Overall Estimated Confidence			65%

Metacognitive Strategies

Strategy	Presence	Effectiveness
Knowledge boundary articulation	Medium	High
Confidence calibration	Limited	Medium
Reasoning transparency	Strong	High
Alternative consideration	Medium	Medium
Information source qualification	None	N/A
Temporal qualification	None	N/A
Logical qualification	Medium	Medium
Uncertainty decomposition	Limited	Low

Key Improvement Recommendations

- 1. **Include explicit confidence statements** about recommendation effectiveness
- 2. Add references or citations to support technical recommendations
- 3. Provide more nuanced discussion of regularization technique tradeoffs
- 4. Include potential implementation code snippets
- 5. Discuss potential limitations of recommended approaches

Detailed Analysis

Strengths

- Comprehensive coverage of overfitting mitigation strategies
- Clear, structured response
- Technically accurate recommendations
- Practical, actionable advice

Limitations

- Lacks depth in explaining implementation challenges
- No specific references to research or benchmarks

- Minimal discussion of computational trade-offs
- No probabilistic assessment of recommendation effectiveness

Conclusion

The response provides high-quality, technically sound advice for addressing over-fitting in a CNN age classification model. While not perfect, it represents a so-phisticated approach to technical problem-solving, with clear recommendations and a structured methodology.

 ${\bf Overall \ Assessment:} \ {\it Highly \ Competent \ Technical \ Guidance}$