Brain Tumor Segmentation with Deep Neural Networks

Christian Arndt

Original authors:

Mohammad Havaei, Axel Davy, David Warde-Farley, Antoine Biard, Aaron Courville, Yoshua Bengio, Chris Pal, Pierre-Marc Jodoin, Hugo Larochelle Medical Image Analysis, Volume 35, 1 January 2017, Pages 18-31

Content

- 1. Introduction
 - Convolutional Neural Networks
- 2. Proposed Method
 - Architecture
 - Training
 - Results
- 3. Conclusion

Introduction

Clinical Background:

- There are > 20.000 new brain cancer cases p.a. in the US.
- MRI as most common modality for tumor diagnosis.
- Often difficult to localize (gliomas and glioblastomas).

Why Deep Learning?

- Voxel values in MR images are not standardized.
- Learning features with CNNs (as opposed to classical machine learning).
- Improved diagnostics, growth rate prediction and treatment planning.

Convolutional Neural Networks (CNNs)

- Deep Neural Networks adapted to image data.
- Stanford University class: http://cs231n.github.io/

Figure: Schematic overview of a CNN architecture. (Image from https://medium.com/@Aj.Cheng/convolutional-neural-network-d9f69e473feb, 12.05.2018)

Convolution (in images)

Figure: 2D-convolution: weighted sum over a local patch of data. (Image from https://i.stack.imgur.com/YDusp.png, 12.05.2018)

Architecture

- BraTS 2013 dataset.
- Slice by slice segmentation due to bad depth resolution.
- Different image modalities of the same structures.

Figure: MRI sequences used as input channels and ground truth labels (p. 9, figure 4).

Architecture

Two-pathway architecture:

- One smaller (7×7) and one larger (13×13) receptive field.
- Prediction based on local region and larger context.

Cascaded architectures:

- Goal: model dependencies between spatially close labels by
- input concatenation,
- local pathway concatenation, and
- pre-output concatenation.

Two-pathway architecture

Figure: Two-pathway CNN architecture (p. 6, figure 2).

Cascaded architecture

Figure: Cascaded architecture using input concatenation to combine two CNNs (p. 7, figure 3).

Training

Gradient Descent:

- Forward propagation on a mini-batch of patches.
- Compute label probabilities and deviation from ground truth.
- · Update the CNNs parameters.

Two-phase training:

- Highly imbalanced data (98% healthy voxels).
- First: Pick patches such that all labels are equiprobable.
- Then: Re-train output layer with original distribution.

Regularization:

 Prevent overfitting by bounding kernel weights and modifying output probabilities.

Two-pathway architecture

- Second phase and joint training of local and global path yields better performance.
- · Very fast, about 25s for a whole brain.

Table: Quantitative results of the two-pathway architecture variations on the BRATS 2013 dataset, where the appended * denotes two-phase training (p. 11, table 1).

Rank	Method	Dice	Specifity	Sensitivity
4	TwoPathCNN*	0.85	0.93	0.80
9	LocalPathCNN*	0.85	0.91	0.80
10	AverageCNN*	0.84	0.95	0.77
14	GlobalPathCNN*	0.82	0.93	0.75
14	TwoPathCNN	0.78	0.67	0.96
15	LocalPathCNN	0.77	0.65	0.96

Cascaded architecture

- Fast, about 3 minutes for a whole brain.
- Winner of the challenge takes about 100 minutes.

Table: Quantitative results of the cascaded architecture variations on the BRATS 2013 dataset, where the appended * denotes two-phase training (p. 13, table 2).

Rank	Method	Dice	Specifity	Sensitivity
2	InputCascadeCNN*	0.88	0.89	0.87
4-a	MFCascadeCNN*	0.86	0.92	0.81
4-b	LocalCascadeCNN*	0.88	0.91	0.84

Cascaded architecture

Figure: Progression of learning InputCascadeCNN* (p. 11, figure 6).

Conclusion

 Automatic brain tumor segmentation based on deep learning (Convolutional Neural Networks).

Improve on currently published state-of-the-art methods

Improvements especially in speed (25s to 3m per brain).

Novel two-pathway architecture

- Fuse local details and global context.
- Model local dependencies of labels.

Thank you for your attention! Any questions?

Additional information

Imbalanced data

 Assume a predictor trained on 10 malignant and 90 benign tumors. A model could predict "benign" for all samples and still gain a very high accuracy. An unbalanced dataset will bias the prediction model towards the more common class!

Gradient Descent

 Maximize the probability of all labels in the training set or, equivalently, minimize the negative log-probability for the label Y given the data X:

$$-\log p(\mathbf{Y}|\mathbf{X}) = \sum_{ij} -\log p(Y_{ij}, \mathbf{X}) \tag{1}$$

Additional information

Quantitative Measurements

$$Dice(P,T) = \frac{2|P_1 \cap T_1|}{|P_1| + |T_1|}$$
 (2)

$$Sensitivity(P,T) = \frac{|P_1 \cap T_1|}{|T_1|}$$
 (3)

$$Specificity(P,T) = \frac{|P_0 \cap T_0|}{|T_0|} \tag{4}$$

- P model predictions
- T ground truth
- Index 1 for positives and index 0 for negatives for the tumor region in question