ECON 4561 Applied Computational Economics Homework 4 Due Saturday, July 11, 2009

- 1. As a social planner, you wish to maximize the discounted sum of net social surplus from harvesting a renewable resource over an infinite horizon. Let s_t denote the amount of resource available at the beginning of year t and let x_t denote the amount harvested. The harvest cost is $c(x_t) = kx_t$, the market clearing price is $p_t = x_t^{-\gamma}$, and the stock dynamic is $s_{t+1} = \alpha(s_t x_t) 0.5\beta(s_t x_t)^2$. Assume $\gamma = 0.5$, $\alpha = 4$, $\beta = 1.0$, k = 0.2, and $\delta = 0.9$.
 - (a) Solve the model using Chebychev collocation on the interval [4, 8].
 - (b) Plot the optimal harvest policy.
 - (c) Plot the shadow price function.
 - (d) Plot the residual function.
 - (e) Plot the resource level over a twenty year horizon beginning from a level of s=4.