Complejidad descriptiva - parte 3

IIC3263

Complejidad Descriptiva: recordatorio

Definición

Una lógica LO captura una clase de complejidad C si:

Para toda oración φ en \mathcal{LO} , se tiene que:

$$\mathcal{L}_{arphi} = \{ \mathrm{enc}(\mathfrak{A}) \mid \mathfrak{A} \models arphi \}$$
 está en \mathcal{C}

▶ Para cada lenguaje $L \in C$, existe una oración φ en LO tal que

$$L = L_{\varphi}$$

Vale decir: $\operatorname{enc}(\mathfrak{A}) \in L$ *si y sólo si* $\mathfrak{A} \models \varphi$

Y ahora PTIME ...

Pregunta fundamental en bases de datos:

► Encontrar una lógica que pueda expresar todas las propiedades computables en tiempo polinomial

Y ahora PTIME ...

Pregunta fundamental en bases de datos:

► Encontrar una lógica que pueda expresar todas las propiedades computables en tiempo polinomial

Tenemos un candidato: LPO con operador de menor punto fijo

Y ahora PTIME ...

Pregunta fundamental en bases de datos:

 Encontrar una lógica que pueda expresar todas las propiedades computables en tiempo polinomial

Tenemos un candidato: LPO con operador de menor punto fijo

Problema: Vamos a ver que esta lógica no es suficiente

 Necesitamos herramientas para estudiar la expresividad de las lógicas con operadores de punto fijo

Una lógica infinitaria

Dado: vocabulario \mathcal{L}

Definición

La lógica $\mathcal{L}_{\infty\omega}$ es definida como la extensión de LPO con dos conectivos infinitarios:

▶ Si para cada $i \in I$ se tiene que φ_i es una fórmula, donde I no es necesariamente finito, entonces también son fórmulas:

$$\bigvee_{i \in I} \varphi_i \qquad y \qquad \bigwedge_{i \in I} \varphi_i$$

Una lógica infinitaria: Semántica

Definición

La semántica de $\mathcal{L}_{\infty\omega}$ es definida de manera usual:

- $(\mathfrak{A}, \sigma) \models \bigvee_{i \in I} \varphi_i$ si existe $i \in I$ tal que $(\mathfrak{A}, \sigma) \models \varphi_i$
- $(\mathfrak{A}, \sigma) \models \bigwedge_{i \in I} \varphi_i$ si para todo $i \in I$, se tiene que $(\mathfrak{A}, \sigma) \models \varphi_i$

¿Qué propiedades podemos expresar en $\mathcal{L}_{\infty\omega}$?

Ejercicio

Dado $\mathcal{L} = \{E(\cdot, \cdot)\}$, construya una fórmula $\varphi(x, y)$ en $\mathcal{L}_{\infty\omega}$ tal que para toda \mathcal{L} -estructura $\mathfrak A$ y elementos c, d en $\mathfrak A$:

 $\mathfrak{A} \models \varphi(c,d)$ si y sólo si existe un camino desde c a d en el grafo representado por \mathfrak{A}

¿Qué propiedades podemos expresar en $\mathcal{L}_{\infty\omega}$?

Ejercicio

Dado $\mathcal{L} = \{E(\cdot, \cdot)\}$, construya una fórmula $\varphi(x, y)$ en $\mathcal{L}_{\infty\omega}$ tal que para toda \mathcal{L} -estructura \mathfrak{A} y elementos c, d en \mathfrak{A} :

 $\mathfrak{A} \models \varphi(c,d)$ si y sólo si existe un camino desde c a d en el grafo representado por \mathfrak{A}

Sea
$$\alpha_1(x,y)=E(x,y)$$
, y para $n\geq 2$:
$$\alpha_n(x,y)=\exists z_1\exists z_2\cdots\exists z_n\left(E(x,z_1)\wedge E(z_1,z_2)\wedge\cdots\wedge E(z_n,y)\right)$$

Entonces:
$$\varphi(x,y) = \bigvee_{n\geq 1} \alpha_n(x,y)$$

$\mathcal{L}_{\infty\omega}$: Expresividad

Problema: $\mathcal{L}_{\infty\omega}$ es demasiado expresiva

Sea $\mathcal L$ un vocabulario y $\mathcal C\subseteq\operatorname{Struct}[\mathcal L]$ una clase de $\mathcal L$ -estructuras cerrada bajo isomorfismo.

 $lackbox{ Si } \mathfrak{A} \in \mathcal{C} \ {
m y } \ \mathfrak{A} \cong \mathfrak{B}, \ {
m entonces } \ \mathfrak{B} \in \mathcal{C}$

$\mathcal{L}_{\infty\omega}$: Expresividad

Problema: $\mathcal{L}_{\infty\omega}$ es demasiado expresiva

Sea $\mathcal L$ un vocabulario y $\mathcal C\subseteq\operatorname{Struct}[\mathcal L]$ una clase de $\mathcal L$ -estructuras cerrada bajo isomorfismo.

 $lackbox{ Si } \mathfrak{A} \in \mathcal{C} \ \mathsf{y} \ \mathfrak{A} \cong \mathfrak{B}, \ \mathsf{entonces} \ \mathfrak{B} \in \mathcal{C}$

Proposición

Existe una \mathcal{L} -oración φ en $\mathcal{L}_{\infty\omega}$ tal que $\mathfrak{A} \in \mathcal{C}$ si y sólo si $\mathfrak{A} \models \varphi$.

$\mathcal{L}_{\infty\omega}$: Expresividad

Problema: $\mathcal{L}_{\infty\omega}$ es demasiado expresiva

Sea $\mathcal L$ un vocabulario y $\mathcal C\subseteq\operatorname{Struct}[\mathcal L]$ una clase de $\mathcal L$ -estructuras cerrada bajo isomorfismo.

 $lackbox{ Si } \mathfrak{A} \in \mathcal{C} \ \mathsf{y} \ \mathfrak{A} \cong \mathfrak{B}, \ \mathsf{entonces} \ \mathfrak{B} \in \mathcal{C}$

Proposición

Existe una \mathcal{L} -oración φ en $\mathcal{L}_{\infty\omega}$ tal que $\mathfrak{A} \in \mathcal{C}$ si y sólo si $\mathfrak{A} \models \varphi$.

Ejercicio

Demuestre la proposición

Lógicas con un número fijo de variables

Vamos a restringir la lógica $\mathcal{L}_{\infty\omega}$.

▶ Para cada $k \ge 1$, sea $\mathcal{L}_{\infty\omega}^k$ el conjunto de fórmulas en $\mathcal{L}_{\infty\omega}$ construidas sólo usando variables x_1, \ldots, x_k

¿Qué podemos expresar en $\mathcal{L}_{\infty\omega}^k$?

Depende del valor de k

Lógicas con un número fijo de variables: Expresividad

Ejemplo

Clausura transitiva es expresable en $\mathcal{L}^3_{\infty\omega}$

Sea
$$\beta_1(x_1, x_2) = E(x_1, x_2)$$
, y para $n \ge 1$:

$$\beta_{n+1}(x_1, x_2) = \exists x_3 (E(x_1, x_3) \land \exists x_1 (x_1 = x_3 \land \beta_n(x_1, x_2)))$$

Clausura transitiva:
$$\bigvee_{n\geq 1} \beta_n(x_1, x_2)$$

Una lógica con un número restringido de variables

Definición $\mathcal{L}_{\infty\omega}^{\omega}$ es definida como $\bigcup_{k>1} \mathcal{L}_{\infty\omega}^{k}$

Una lógica con un número restringido de variables

Definición

$$\mathcal{L}^{\omega}_{\infty\omega}$$
 es definida como $igcup_{k>1}\mathcal{L}^k_{\infty\omega}$

Si φ es una fórmula en $\mathcal{L}_{\infty\omega}^{\omega}$, entonces existe $k\geq 1$ tal que φ está en $\mathcal{L}_{\infty\omega}^{k}$

• φ sólo menciona a las variables x_1, \ldots, x_k

Una lógica con un número restringido de variables

Definición

$$\mathcal{L}^{\omega}_{\infty\omega}$$
 es definida como $igcup_{k>1}\mathcal{L}^k_{\infty\omega}$

Si φ es una fórmula en $\mathcal{L}^\omega_{\infty\omega}$, entonces existe $k\geq 1$ tal que φ está en $\mathcal{L}^k_{\infty\omega}$

• φ sólo menciona a las variables x_1, \ldots, x_k

¿Cuan expresiva es la lógica $\mathcal{L}_{\infty\omega}^{\omega}$?

Sea ${\cal L}$ un vocabulario que contiene el símbolo <

- ▶ Suponemos que los otros predicados de \mathcal{L} son R_1, \ldots, R_ℓ
- ▶ La aridad de R_i es $k_i \ge 1$ $(1 \le i \le \ell)$

Sea ${\cal L}$ un vocabulario que contiene el símbolo <

- ▶ Suponemos que los otros predicados de \mathcal{L} son R_1, \ldots, R_ℓ
- ▶ La aridad de R_i es $k_i \ge 1$ $(1 \le i \le \ell)$

 ${\cal O}$ es la clase de ${\cal L}\text{-estructuras }{\mathfrak A}$ tal que $<^{\mathfrak A}$ es un orden lineal sobre el dominio de ${\mathfrak A}$

Sea ${\cal L}$ un vocabulario que contiene el símbolo <

- ▶ Suponemos que los otros predicados de \mathcal{L} son R_1, \ldots, R_ℓ
- ▶ La aridad de R_i es $k_i \ge 1$ $(1 \le i \le \ell)$

 ${\mathcal O}$ es la clase de ${\mathcal L}$ -estructuras ${\mathfrak A}$ tal que $<^{{\mathfrak A}}$ es un orden lineal sobre el dominio de ${\mathfrak A}$

 $\mathcal{P}\subseteq\mathcal{O}$ es una propiedad sobre las estructuras en \mathcal{O}

ightharpoonup Suponemos que $\mathcal P$ es cerrada bajo isomorfismo

Sobre la clase ${\mathcal O}$ la lógica ${\mathcal L}_{\infty\omega}^\omega$ es muy expresiva

Sobre la clase ${\mathcal O}$ la lógica ${\mathcal L}_{\infty\omega}^\omega$ es muy expresiva

Proposición

Existe una \mathcal{L} -oración Φ en $\mathcal{L}^{\omega}_{\infty\omega}$ tal que para cada $\mathfrak{A} \in \mathcal{O}$:

$$\mathfrak{A} \in \mathcal{P}$$
 si y sólo si $\mathfrak{A} \models \Phi$

$$\mathcal{L}^{\omega}_{\infty\omega}$$
 sobre estructuras ordenadas

Sobre la clase $\mathcal O$ la lógica $\mathcal L^\omega_{\infty\omega}$ es muy expresiva

Proposición

Existe una \mathcal{L} -oración Φ en $\mathcal{L}^{\omega}_{\infty\omega}$ tal que para cada $\mathfrak{A}\in\mathcal{O}$:

$$\mathfrak{A} \in \mathcal{P}$$
 si y sólo si $\mathfrak{A} \models \Phi$

Demostración: Sea $\alpha_1(x_1) = (x_1 = x_1)$, y para $n \ge 1$:

$$\alpha_{n+1}(x_1) = \exists x_2 (x_2 < x_1 \land \exists x_1 (x_1 = x_2 \land \alpha_n(x_1)))$$

 $\mathfrak{A} \models \alpha_n(c)$ si y sólo si existen al menos (n-1) elementos antes que c de acuerdo al orden $<^{\mathfrak{A}}$

Para cada $n \ge 1$:

$$\beta_n(x_1) = \alpha_n(x_1) \wedge \neg \alpha_{n+1}(x_1)$$

 $\mathfrak{A} \models \beta_n(c)$ si y sólo si c es el n-ésimo elemento de acuerdo al orden $<^{\mathfrak{A}}$

Para cada $n \ge 1$:

$$\beta_n(x_1) = \alpha_n(x_1) \wedge \neg \alpha_{n+1}(x_1)$$

 $\mathfrak{A} \models \beta_n(c)$ si y sólo si c es el n-ésimo elemento de acuerdo al orden $<^{\mathfrak{A}}$

lacktriangle Cada fórmula $eta_n(x_1)$ está en $\mathcal{L}^2_{\infty\omega}$

Para cada $n \ge 1$:

$$\beta_n(x_1) = \alpha_n(x_1) \wedge \neg \alpha_{n+1}(x_1)$$

 $\mathfrak{A} \models \beta_n(c)$ si y sólo si c es el n-ésimo elemento de acuerdo al orden $<^{\mathfrak{A}}$

lacktriangle Cada fórmula $eta_n(x_1)$ está en $\mathcal{L}^2_{\infty\omega}$

Vamos a utilizar las fórmulas $\{\beta_n(x_1)\}_{n\geq 1}$ para definir Φ

Sea $\mathfrak{A} \in \mathcal{O}$ con dominio A

▶ Suponga que $A = \{a_1, a_2, \dots, a_{n-1}, a_n\}$, con $n \ge 1$ y $a_1 <^{\mathfrak{A}}$ $a_2 <^{\mathfrak{A}} \cdots <^{\mathfrak{A}} a_{n-1} <^{\mathfrak{A}} a_n$

Sea $\Psi_{\mathfrak{A}}$:

$$\exists x_1 \, \beta_n(x_1) \land \neg \exists x_1 \, \beta_{n+1}(x_1) \land$$

$$\bigwedge_{j=1}^{\ell} \left[\forall x_1 \cdots \forall x_{k_j} \left(R_j(x_1, \dots, x_{k_j}) \right) \leftrightarrow \right.$$

$$\bigvee_{(a_{i_1}, \dots, a_{i_{k_j}}) \in R_j^{\mathfrak{A}}} \left(\beta_{i_1}(x_1) \land \exists x_1 \, (x_1 = x_2 \land \beta_{i_2}(x_1)) \land \cdots \right.$$

$$\land \exists x_1 \, (x_1 = x_{k_j} \land \beta_{i_{k_j}}(x_1)) \right) \right]$$

Para cada $\mathfrak{B}\in\mathcal{O}$: Si $\mathfrak{B}\models\Psi_{\mathfrak{A}}$, entonces $\mathfrak{B}\cong\mathfrak{A}$

Para cada $\mathfrak{B}\in\mathcal{O}$: Si $\mathfrak{B}\models\Psi_{\mathfrak{A}}$, entonces $\mathfrak{B}\cong\mathfrak{A}$

¿Cómo se representa una estructura

Ω con dominio vacío para que se tenga esta propiedad?

Para cada $\mathfrak{B}\in\mathcal{O}$: Si $\mathfrak{B}\models\Psi_{\mathfrak{A}}$, entonces $\mathfrak{B}\cong\mathfrak{A}$

▶ ¿Cómo se representa una estructura $\mathfrak A$ con dominio vacío para que se tenga esta propiedad? Se representa con la oración $\Psi_{\mathfrak A} = \neg \exists x \, (x = x)$

Para cada $\mathfrak{B} \in \mathcal{O}$: Si $\mathfrak{B} \models \Psi_{\mathfrak{A}}$, entonces $\mathfrak{B} \cong \mathfrak{A}$

- ¿Cómo se representa una estructura $\mathfrak A$ con dominio vacío para que se tenga esta propiedad? Se representa con la oración $\Psi_{\mathfrak A}=\neg\exists x\,(x=x)$
- Sólo permitimos relaciones con aridad mayor a 0. ¿Cómo podemos manejar las relaciones con aridad igual a 0?

Para cada $\mathfrak{B}\in\mathcal{O}$: Si $\mathfrak{B}\models\Psi_{\mathfrak{A}}$, entonces $\mathfrak{B}\cong\mathfrak{A}$

- ▶ ¿Cómo se representa una estructura $\mathfrak A$ con dominio vacío para que se tenga esta propiedad? Se representa con la oración $\Psi_{\mathfrak A} = \neg \exists x \, (x=x)$
- ➤ Sólo permitimos relaciones con aridad mayor a 0. ¿Cómo podemos manejar las relaciones con aridad igual a 0?

Sea
$$p = \mathsf{máx}\{k_1, \ldots, k_\ell, 2\}$$

ightharpoonup Ψ $_{\mathfrak{A}}$ está en $\mathcal{L}^p_{\infty \omega}$

Para cada $\mathfrak{B} \in \mathcal{O}$: Si $\mathfrak{B} \models \Psi_{\mathfrak{A}}$, entonces $\mathfrak{B} \cong \mathfrak{A}$

- ▶ ¿Cómo se representa una estructura $\mathfrak A$ con dominio vacío para que se tenga esta propiedad? Se representa con la oración $\Psi_{\mathfrak A} = \neg \exists x \, (x = x)$
- ➤ Sólo permitimos relaciones con aridad mayor a 0. ¿Cómo podemos manejar las relaciones con aridad igual a 0?

Sea
$$p = \mathsf{máx}\{k_1, \ldots, k_\ell, 2\}$$

ightharpoonup Ψ $_{\mathfrak{A}}$ está en $\mathcal{L}^p_{\infty \omega}$

Entonces:
$$\Phi = \bigvee_{\mathfrak{A} \in \mathcal{P}} \Psi_{\mathfrak{A}}$$

▶ ¿Cómo se demuestra que $\mathfrak{A} \in \mathcal{P}$ si y sólo si $\mathfrak{A} \models \Phi$?

$\mathcal{L}^{\omega}_{\infty}$, sobre estructuras arbitrarias

¿Cuan expresiva es $\mathcal{L}^{\omega}_{\infty\omega}$ sobre estructuras arbitrarias?

¿Cuan expresiva es $\mathcal{L}^{\omega}_{\infty\omega}$ sobre estructuras arbitrarias?

▶ Vamos a demostrar que no todas las propiedades (cerradas bajo isomorfismo) son expresables en esta lógica

¿Cuan expresiva es $\mathcal{L}^{\omega}_{\infty\omega}$ sobre estructuras arbitrarias?

► Vamos a demostrar que no todas las propiedades (cerradas bajo isomorfismo) son expresables en esta lógica

¿Cómo podemos demostrar estos resultados?

$\mathcal{L}^{\omega}_{\infty\omega}$ sobre estructuras arbitrarias

¿Cuan expresiva es $\mathcal{L}^{\omega}_{\infty\omega}$ sobre estructuras arbitrarias?

► Vamos a demostrar que no todas las propiedades (cerradas bajo isomorfismo) son expresables en esta lógica

¿Cómo podemos demostrar estos resultados?

lacktriangle Vamos a presentar juegos que caracterizan $\mathcal{L}^\omega_{\infty\omega}$

$\mathcal{L}^{\omega}_{\infty\omega}$ sobre estructuras arbitrarias

¿Cuan expresiva es $\mathcal{L}^{\omega}_{\infty\omega}$ sobre estructuras arbitrarias?

► Vamos a demostrar que no todas las propiedades (cerradas bajo isomorfismo) son expresables en esta lógica

¿Cómo podemos demostrar estos resultados?

lacktriangle Vamos a presentar juegos que caracterizan $\mathcal{L}^\omega_{\infty\omega}$

¿Por qué nos interesan estos resultados?

$\mathcal{L}^{\omega}_{\infty\omega}$ sobre estructuras arbitrarias

¿Cuan expresiva es $\mathcal{L}^{\omega}_{\infty\omega}$ sobre estructuras arbitrarias?

 Vamos a demostrar que no todas las propiedades (cerradas bajo isomorfismo) son expresables en esta lógica

¿Cómo podemos demostrar estos resultados?

lacktriangle Vamos a presentar juegos que caracterizan $\mathcal{L}^\omega_{\infty\omega}$

¿Por qué nos interesan estos resultados?

 Nos sirven para demostrar que hay propiedades que no son expresable en LPO con operador de menor punto fijo y LPO con operador parcial de punto fijo

Dado: Vocabulario \mathcal{L}

Tablero : \mathcal{L} -estructuras $\mathfrak A$ y $\mathfrak B$

Jugadores : Duplicator (**D**) y Spoiler (**S**) Número de guijarros : $k \ge 1$ (parámetro del juego)

Número de rondas : infinito

Los jugadores tienen pares de guijarros: $\{(g_{\mathfrak{A}}^1, g_{\mathfrak{B}}^1), \dots, (g_{\mathfrak{A}}^k, g_{\mathfrak{B}}^k)\}$

En cada ronda:

Los jugadores tienen pares de guijarros: $\{(g_{\mathfrak{A}}^1, g_{\mathfrak{B}}^1), \dots, (g_{\mathfrak{A}}^k, g_{\mathfrak{B}}^k)\}$

En cada ronda:

1. **S** elije una estructura, digamos $\mathfrak A$ (el juego es definido de la misma forma para $\mathfrak B$)

Los jugadores tienen pares de guijarros: $\{(g_{\mathfrak{A}}^1, g_{\mathfrak{B}}^1), \dots, (g_{\mathfrak{A}}^k, g_{\mathfrak{B}}^k)\}$

En cada ronda:

- 1. **S** elije una estructura, digamos \mathfrak{A} (el juego es definido de la misma forma para \mathfrak{B})
- 2. **S** elije un número $i \in \{1, \dots, k\}$ y coloca $g^i_{\mathfrak{A}}$ sobre algún elemento de \mathfrak{A}

Los jugadores tienen pares de guijarros: $\{(g_{\mathfrak{A}}^1, g_{\mathfrak{B}}^1), \dots, (g_{\mathfrak{A}}^k, g_{\mathfrak{B}}^k)\}$

En cada ronda:

- 1. **S** elije una estructura, digamos \mathfrak{A} (el juego es definido de la misma forma para \mathfrak{B})
- 2. **S** elije un número $i \in \{1, \dots, k\}$ y coloca $g^i_{\mathfrak{A}}$ sobre algún elemento de \mathfrak{A}
- 3. ${f D}$ responde colocando $g^i_{\mathfrak B}$ sobre algún elemento de ${\mathfrak B}$

En cada ronda los guijarros en juego definen una función:

 $ightharpoonup g^i_{\mathfrak A}$ tiene como imagen a $g^i_{\mathfrak B}$

S gana si en alguna ronda los guijarros en juego no forman un isomorfismo parcial de $\mathfrak A$ en $\mathfrak B$.

► En caso contrario gana **D**

Juegos de Ehrenfeucht-Fraïssé con guijarros: Estrategia ganadora

Notación

D tiene una estrategia ganadora en el juego de Ehrenfeucht-Fraïssé con k guijarros entre $\mathfrak A$ y $\mathfrak B$, si para cada posible forma de jugar de **S**, existe una forma de jugar de **D** que le permite ganar.

$$ightharpoonup \mathfrak{A} \equiv_{k}^{\infty\omega} \mathfrak{B}$$

$\mathcal{L}^{\omega}_{\infty\omega}$ y los juegos de Ehrenfeucht-Fraïssé con guijarros

Dado: Vocabulario \mathcal{L}

Teorema

Dos \mathcal{L} -estructuras \mathfrak{A} y \mathfrak{B} están de acuerdo en todas las oraciones de $\mathcal{L}_{\infty\omega}^k$ si y sólo si $\mathfrak{A}\equiv_k^{\infty\omega}\mathfrak{B}$

 $\mathcal{L}^{\omega}_{\infty\omega}$: Un poco de intuición . . .

Ejercicios

- 1. Sea ${\mathfrak A}$ un grafo formado por un ciclo y ${\mathfrak B}$ un grafo formado por la unión disjunta de dos ciclos.
 - 1.1 Demuestre que si los ciclos son lo suficientemente largos, entonces $\mathfrak{A}\equiv_2^{\infty\omega}\mathfrak{B}$
 - 1.2 Demuestre que sin importar cuan largos son los ciclos, se tiene que $\mathfrak{A}\not\equiv_3^{\infty\omega}\mathfrak{B}$
 - 1.3 Encuentre una oración en $\mathcal{L}^3_{\infty\omega}$ que distingue entre $\mathfrak A$ y $\mathfrak B$

 $\mathcal{L}^{\omega}_{\infty\omega}$: Un poco de intuición . . .

Ejercicios

- 2. Demuestre que para todo $k\geq 1$ se tiene que $\mathcal{L}_{\infty\omega}^k$ es menos expresivo que $\mathcal{L}_{\infty\omega}^{k+1}$
- 3. Sea $\mathcal{L} = \emptyset$ y PARIDAD = $\{\mathfrak{A} \in \text{Struct}[\mathcal{L}] \mid \text{dominio de } \mathfrak{A} \text{ tiene un número par de elementos}\}$
 - Demuestre que PARIDAD no es expresable en $\mathcal{L}^{\omega}_{\infty\omega}$

Hay propiedades que no pueden ser expresadas en $\mathcal{L}^\omega_{\infty\omega}$

▶ De hecho, sabemos que algunas de estas propiedades son computables en tiempo polinomial

Hay propiedades que no pueden ser expresadas en $\mathcal{L}^\omega_{\infty\omega}$

▶ De hecho, sabemos que algunas de estas propiedades son computables en tiempo polinomial

Vamos a demostrar que la LPO con operador de menor punto fijo está contenida en $\mathcal{L}^\omega_{\infty\omega}$

Hay propiedades que no pueden ser expresadas en $\mathcal{L}^\omega_{\infty\omega}$

▶ De hecho, sabemos que algunas de estas propiedades son computables en tiempo polinomial

Vamos a demostrar que la LPO con operador de menor punto fijo está contenida en $\mathcal{L}^\omega_{\infty\omega}$

 Concluimos que la LPO con operador de menor punto fijo no captura PTIME

Dado: Vocabulario \mathcal{L}

- ▶ R_1 , ..., R_n son símbolos de predicados que no son mencionados en \mathcal{L}
- ▶ La aridad de R_i es k_i $(1 \le i \le n)$

Sea $\varphi_i(\bar{x}_i, R_1, \dots, R_n)$ $(1 \le i \le n)$ una fórmula en LPO sobre $(\mathcal{L} \cup \{R_1, \dots, R_n\})$ que es positiva en R_1, \dots, R_n

- ▶ El número de variables en \bar{x}_i es igual al número de argumentos en R_i
- ▶ V_i es el conjunto de variables mencionadas en $\varphi_i(\bar{x}_i, R_1, \dots, R_n)$

Sea $\ell \in \{1, \dots, n\}$. La siguiente es una fórmula en LPO con operador de menor punto fijo:

$$\alpha(\bar{y}) = [\mathbf{lfp}_{\bar{x}_{\ell}, R_{\ell}}(\varphi_{1}(\bar{x}_{1}, R_{1}, \dots, R_{n}), \dots, \varphi_{n}(\bar{x}_{n}, R_{1}, \dots, R_{n}))](\bar{y})$$

Sea $\ell \in \{1, ..., n\}$. La siguiente es una fórmula en LPO con operador de menor punto fijo:

$$\alpha(\bar{y}) = [\mathbf{lfp}_{\bar{x}_{\ell}, R_{\ell}}(\varphi_1(\bar{x}_1, R_1, \dots, R_n), \dots, \varphi_n(\bar{x}_n, R_1, \dots, R_n))](\bar{y})$$

Sean:

$$k = \max\{k_1, \dots, k_n\}$$

 $v = |V_1| + \dots + |V_n|$

Vamos a mostrar como expresar $\alpha(\bar{y})$ en $\mathcal{L}_{\infty\omega}^{2\cdot k+v+k_{\ell}}$

Para cada $i \in \{1, ..., n\}$, definimos:

$$\psi_i^0(\bar{x}_i) = \neg(u=u),$$

donde u es una variable en \bar{x}_i

¿Qué representa ψ_i^0 ?

Sea
$$i \in \{1, \ldots, n\}$$
 y $m \ge 0$

Definimos $\psi_i^{m+1}(\bar{x}_i)$ como $\varphi_i(\bar{x}_i, R_1, \dots, R_n)$ pero aplicando la siguiente regla de reemplazo.

▶ Suponga que $R_j(\bar{v})$ es mencionado en $\varphi_i(\bar{x}_i, R_1, \dots, R_n)$, con $j \in \{1, \dots, n\}$, $\bar{v} = (v_1, \dots, v_{k_j})$ y $\{v_1, \dots, v_{k_j}\} \subseteq V_i$.

 $R_j(\bar{v})$ es reemplazado en $\psi_i^{m+1}(\bar{x}_i)$ por:

$$\exists \bar{z} \left[\bar{z} = \bar{v} \wedge \exists \bar{x}_j \left(\bar{x}_j = \bar{z} \wedge \psi_j^m(\bar{x}_j) \right) \right]$$

Entonces $\alpha(\bar{y})$ es equivalente a:

$$\exists \bar{\mathbf{x}}_{\ell} \left[\bar{\mathbf{y}} = \bar{\mathbf{x}}_{\ell} \wedge \left(\bigvee_{m \geq 0} \psi_{\ell}^{m}(\bar{\mathbf{x}}_{\ell}) \right) \right]$$

¿Por qué la equivalencia es cierta?

LPO con operador de menor punto fijo: Inclusión

De lo anterior obtenemos como conclusión:

Proposición

Cada fórmula φ en LPO con operador de menor punto fijo puede ser expresada en $\mathcal{L}_{\infty\omega}^{\omega}$

LPO con operador de menor punto fijo no captura PTIME

Sea $\mathcal{L} = \emptyset$ y PARIDAD = $\{\mathfrak{A} \in \operatorname{Struct}[\mathcal{L}] \mid \text{dominio de } \mathfrak{A} \text{ tiene } \text{un número par de elementos}\}$

Obtenemos como corolarios de los resultados anteriores:

LPO con operador de menor punto fijo no captura PTIME

Sea $\mathcal{L} = \emptyset$ y PARIDAD = $\{\mathfrak{A} \in \operatorname{Struct}[\mathcal{L}] \mid \text{dominio de } \mathfrak{A} \text{ tiene}$ un número par de elementos $\}$

Obtenemos como corolarios de los resultados anteriores:

Corolario

PARIDAD no es expresable en LPO con operador de menor punto fijo

LPO con operador de menor punto fijo no captura PTIME

Sea $\mathcal{L} = \emptyset$ y PARIDAD = $\{\mathfrak{A} \in \operatorname{Struct}[\mathcal{L}] \mid \text{dominio de } \mathfrak{A} \text{ tiene}$ un número par de elementos $\}$

Obtenemos como corolarios de los resultados anteriores:

Corolario

PARIDAD no es expresable en LPO con operador de menor punto fijo

Corolario

LPO con operador de menor punto fijo no captura PTIME

Complejidad Descriptiva: Orden

Dado: Vocabulario ${\cal L}$ que contiene predicado binario <

Notación

- ▶ OrdStruct[\mathcal{L}] = { $\mathfrak{A} \in \text{Struct}[\mathcal{L}] \mid <^{\mathfrak{A}}$ es un orden lineal}
- ▶ Lenguaje: Subconjunto de $\{enc(\mathfrak{A}) \mid \mathfrak{A} \in OrdStruct[\mathcal{L}]\}$, donde $enc(\mathfrak{A})$ no incluye al predicado <
- Clase de complejidad: Conjunto de lenguajes

Complejidad Descriptiva: Orden

Definición

Una lógica \mathcal{LO} captura una clase de complejidad \mathcal{C} sobre la clase de estructuras ordenadas si:

- ▶ Para toda oración φ en \mathcal{LO} , se tiene que $L_{\varphi}^{<} = \{ \text{enc}(\mathfrak{A}) \mid \mathfrak{A} \in \text{OrdStruct}[\mathcal{L}] \ \text{y} \ \mathfrak{A} \models \varphi \}$ está en \mathcal{C}
- ▶ Para cada $L \in \mathcal{C}$, existe una oración φ en \mathcal{LO} tal que $L = L_{\varphi}^{<}$ Vale decir, para cada $\mathfrak{A} \in \mathrm{OrdStruct}[\mathcal{L}]$: $\mathrm{enc}(\mathfrak{A}) \in L$ si y sólo si $\mathfrak{A} \models \varphi$

Complejidad Descriptiva: Una lógica para PTIME

Teorema (Immerman-Vardi)

LPO con operador de menor punto fijo captura PTIME sobre la clase de estructuras ordenadas

Complejidad Descriptiva: Una lógica para PTIME

Teorema (Immerman-Vardi)

LPO con operador de menor punto fijo captura PTIME sobre la clase de estructuras ordenadas

Demostración: Consideramos el caso $\mathcal{L} = \{G(\cdot, \cdot), <\}$

Para otros vocabularios la demostración es similar

Sabemos que para toda oración φ en LPO con operador de menor punto fijo, se tiene que $L_{\wp}^{<}$ está en PTIME

Sólo tenemos que demostrar la otra dirección

Dado L en PTIME, vamos a encontrar φ en LPO con operador de menor punto fijo tal que $L=L_\varphi^<$

▶ Para cada $\mathfrak{A} \in \mathrm{OrdStruct}[\mathcal{L}]$: $\mathrm{enc}(\mathfrak{A}) \in \mathcal{L}$ si y sólo si $\mathfrak{A} \models \varphi$

Suponemos que L es aceptado por una MT determinista M que para en todas las entradas y funciona en tiempo n^k

▶ Como en la demostración del teorema de Fagin: M funciona en tiempo n^{2k} para una estructura con n elementos

Además, suponemos que $M = (Q, \Sigma, q_0, \delta, F)$, donde:

- ▶ $\Sigma = \{0, 1\}$
- $Q = \{q_0, \ldots, q_m\}$
- $ightharpoonup F = \{q_m\}$
- ▶ $\delta: (Q \setminus \{q_m\}) \times (\Sigma \cup \{B, \vdash\}) \rightarrow Q \times (\Sigma \cup \{B, \vdash\}) \times \{\leftarrow, \Box, \rightarrow\}$ es una función total

Fórmulas auxiliares:

Fórmulas auxiliares:

• φ_0 : Orden lexicográfico construido a partir de <

$$\varphi_O(x_1,\ldots,x_{2k},y_1,\ldots,y_{2k}) = \bigvee_{i=1}^{2k} \left(\left(\bigwedge_{j=1}^{i-1} x_j = y_j \right) \wedge x_i < y_i \right)$$

Fórmulas auxiliares:

• φ_0 : Orden lexicográfico construido a partir de <

$$\varphi_O(x_1,\ldots,x_{2k},y_1,\ldots,y_{2k}) = \bigvee_{i=1}^{2k} \left(\left(\bigwedge_{j=1}^{i-1} x_j = y_j \right) \wedge x_i < y_i \right)$$

• φ_P : Primer elemento del orden O

$$\varphi_P(\bar{x}) = \neg \exists \bar{y} \, \varphi_O(\bar{y}, \bar{x})$$

Cada tupla de variables tiene largo 2k ($|\bar{x}| = |\bar{y}| = 2k$)

Fórmulas auxiliares:

• φ_0 : Orden lexicográfico construido a partir de <

$$\varphi_O(x_1, \ldots, x_{2k}, y_1, \ldots, y_{2k}) = \bigvee_{i=1}^{2k} \left(\left(\bigwedge_{j=1}^{i-1} x_j = y_j \right) \land x_i < y_i \right)$$

• φ_P : Primer elemento del orden O

$$\varphi_P(\bar{x}) = \neg \exists \bar{y} \, \varphi_O(\bar{y}, \bar{x})$$

Cada tupla de variables tiene largo 2k $(|\bar{x}| = |\bar{y}| = 2k)$

 $\triangleright \varphi_{S}$: Relación de sucesor asociada a O

$$\varphi_S(\bar{x}, \bar{y}) = \varphi_O(\bar{x}, \bar{y}) \land \neg \exists \bar{z} (\varphi_O(\bar{x}, \bar{z}) \land \varphi_O(\bar{z}, \bar{y}))$$

Oración φ es definida como:

$$\exists \bar{u} \left[\mathbf{Ifp}_{\bar{u}_m, E_{q_m}} \left(\theta_{T_0}(\bar{x}_1, \bar{y}_1, T_0, T_1, T_B, T_{\vdash}, H, NH, E_{q_0}, \dots, E_{q_m}), \right. \right. \\ \left. \theta_{T_1}(\bar{x}_2, \bar{y}_2, T_0, T_1, T_B, T_{\vdash}, H, NH, E_{q_0}, \dots, E_{q_m}), \right. \\ \left. \theta_{T_B}(\bar{x}_3, \bar{y}_3, T_0, T_1, T_B, T_{\vdash}, H, NH, E_{q_0}, \dots, E_{q_m}), \right. \\ \left. \theta_{T_{\vdash}}(\bar{x}_4, \bar{y}_4, T_0, T_1, T_B, T_{\vdash}, H, NH, E_{q_0}, \dots, E_{q_m}), \right. \\ \left. \theta_{H}(\bar{x}_5, \bar{y}_5, T_0, T_1, T_B, T_{\vdash}, H, NH, E_{q_0}, \dots, E_{q_m}), \right. \\ \left. \theta_{NH}(\bar{x}_6, \bar{y}_6, T_0, T_1, T_B, T_{\vdash}, H, NH, E_{q_0}, \dots, E_{q_m}), \right. \\ \left. \theta_{E_{q_m}}(\bar{u}_0, T_0, T_1, T_B, T_{\vdash}, H, NH, E_{q_0}, \dots, E_{q_m}), \right. \\ \left. \dots, \right. \\ \left. \theta_{E_{q_m}}(\bar{u}_m, T_0, T_1, T_B, T_{\vdash}, H, NH, E_{q_0}, \dots, E_{q_m}) \right) \right] (\bar{u})$$

$$\theta_{T_0}(\bar{x}_1, \bar{y}_1, T_0, T_1, T_B, T_{\vdash}, H, NH, E_{q_0}, \dots, E_{q_m}):$$

$$\varphi_P(\bar{x}_1) \wedge \exists z_1 \exists z_2 \exists z_3 \left(\neg \exists w \left(w < z_1 \right) \wedge \neg G(z_2, z_3) \wedge \varphi_S(\underline{z_1, \dots, z_1}, z_2, z_3, \bar{y}_1) \right)$$

$$\forall \varphi_S(\underline{z_1, \dots, z_1}, z_2, z_3, \bar{y}_1) \right)$$

$$\forall \varphi_S(\bar{z}_1, \dots, \bar{z}_1, z_2, z_3, \bar{y}_1) \right)$$

$$\forall \varphi_S(\bar{z}_1, \dots, \bar{z}_1, z_2, z_3, \bar{y}_1) \right)$$

$$\forall \varphi_S(\bar{z}_1, \dots, \bar{z}_1, z_2, z_3, \bar{y}_1)$$

$$\theta_{T_{1}}(\bar{x}_{2}, \bar{y}_{2}, T_{0}, T_{1}, T_{B}, T_{\vdash}, H, NH, E_{q_{0}}, \dots, E_{q_{m}}):$$

$$\varphi_{P}(\bar{x}_{2}) \wedge \exists z_{1} \exists z_{2} \exists z_{3} \left(\neg \exists w \left(w < z_{1} \right) \wedge G(z_{2}, z_{3}) \wedge \varphi_{S}(\underline{z_{1}, \dots, z_{1}}, z_{2}, z_{3}, \bar{y}_{2}) \right)$$

$$\forall \varphi_{S}(\underline{z_{1}, \dots, z_{1}}, z_{2}, z_{3}, \bar{y}_{2})$$

$$\theta_{T_{B}}(\bar{x}_{3}, \bar{y}_{3}, T_{0}, T_{1}, T_{B}, T_{\vdash}, H, NH, E_{q_{0}}, \dots, E_{q_{m}}):$$

$$\varphi_{P}(\bar{x}_{3}) \wedge \exists z_{1} \exists z_{2} \left(\neg \exists v \left(v < z_{1} \right) \wedge z_{1} < z_{2} \wedge \cdots \right)$$

$$\neg \exists z_{3} \left(z_{1} < z_{3} \wedge z_{3} < z_{2} \right) \wedge \varphi_{O}(\underbrace{z_{1}, \dots, z_{1}}_{2k-3}, z_{2}, z_{1}, z_{1}, \bar{y}_{3}) \right)$$

$$\vee$$

$$\exists \bar{z} \left(\varphi_{S}(\bar{z}, \bar{x}_{3}) \wedge T_{B}(\bar{z}, \bar{y}_{3}) \wedge NH(\bar{z}, \bar{y}_{3}) \right)$$

$$\vee$$

$$\forall$$

$$\exists \bar{z} \left(\varphi_{S}(\bar{z}, \bar{x}_{3}) \wedge T_{a}(\bar{z}, \bar{y}_{3}) \wedge H(\bar{z}, \bar{y}_{3}) \wedge E_{q}(\bar{z}) \right)$$

$$\theta_{T_{\vdash}}(\bar{x}_{4}, \bar{y}_{4}, T_{0}, T_{1}, T_{B}, T_{\vdash}, H, NH, E_{q_{0}}, \dots, E_{q_{m}}):$$

$$(\varphi_{P}(\bar{x}_{4}) \wedge \varphi_{P}(\bar{y}_{4}))$$

$$\vee$$

$$\exists \bar{z} (\varphi_{S}(\bar{z}, \bar{x}_{4}) \wedge T_{\vdash}(\bar{z}, \bar{y}_{4}) \wedge NH(\bar{z}, \bar{y}_{4}))$$

$$\vee$$

$$\bigvee_{(q,a): \delta(q,a)=(q', \vdash, X)} \exists \bar{z} \left(\varphi_{S}(\bar{z}, \bar{x}_{4}) \wedge T_{a}(\bar{z}, \bar{y}_{4}) \wedge H(\bar{z}, \bar{y}_{4}) \wedge E_{q}(\bar{z})\right)$$

$$\theta_{H}(\bar{x}_{5}, \bar{y}_{5}, T_{0}, T_{1}, T_{B}, T_{\vdash}, H, NH, E_{q_{0}}, \dots, E_{q_{m}})$$
:

$$\varphi_{P}(\bar{x}_{5}) \wedge \varphi_{S}(\bar{x}_{5}, \bar{y}_{5})$$

$$\vee$$

$$\bigvee_{(q,a): \delta(q,a) = (q',b,\leftarrow)} \exists \bar{v} \exists \bar{w} \left(\varphi_{S}(\bar{v}, \bar{x}_{5}) \wedge \varphi_{S}(\bar{y}_{5}, \bar{w}) \wedge \right.$$

$$T_{a}(\bar{v}, \bar{w}) \wedge H(\bar{v}, \bar{w}) \wedge E_{q}(\bar{v}) \right)$$

$$\bigvee_{\substack{(q,a): \delta(q,a)=(q',b,\rightarrow)}} \exists \bar{v} \exists \bar{w} \left(\varphi_{S}(\bar{v},\bar{x}_{5}) \land \varphi_{S}(\bar{w},\bar{y}_{5}) \land \right.$$

$$T_{a}(\bar{v},\bar{w}) \land H(\bar{v},\bar{w}) \land E_{q}(\bar{v}) \right)$$

$$\bigvee_{\substack{(q,a): \delta(q,a)=(q',b,\Box)}} \exists \bar{v} \left(\varphi_{S}(\bar{v},\bar{x}_{5}) \land T_{a}(\bar{v},\bar{y}_{5}) \land H(\bar{v},\bar{y}_{5}) \land E_{q}(\bar{v}) \right)$$

$$\bigvee_{(q,a):\,\delta(q,a)=(q',b,\to)} \exists \bar{v} \exists \bar{w} \exists \bar{z} \left(\varphi_S(\bar{v},\bar{x}_6) \wedge T_a(\bar{v},\bar{w}) \wedge H(\bar{v},\bar{w}) \wedge \right.$$

$$E_q(\bar{v}) \wedge \varphi_S(\bar{w},\bar{z}) \wedge (\varphi_O(\bar{y}_6,\bar{z}) \vee \varphi_O(\bar{z},\bar{y}_6)) \right)$$

$$\vee$$

$$\bigvee_{(q,a):\,\delta(q,a)=(q',b,\Box)} \exists \bar{v} \exists \bar{w} \left(\varphi_S(\bar{v},\bar{x}_6) \wedge T_a(\bar{v},\bar{w}) \wedge H(\bar{v},\bar{w}) \wedge \right.$$

$$E_q(\bar{v}) \wedge (\varphi_O(\bar{y}_6,\bar{w}) \vee \varphi_O(\bar{w},\bar{y}_6)) \right)$$

$$\theta_{E_{q_0}}(\bar{\textit{u}}_0,\,\textit{T}_0,\,\textit{T}_1,\,\textit{T}_{\text{B}},\,\textit{T}_{\vdash},\textit{H},\,\textit{NH},\,\textit{E}_{q_0},\ldots,\,\textit{E}_{q_m}) :$$

$$\varphi_{P}(\bar{u}_{0})$$

$$\bigvee_{q,a): \delta(q,a)=(q_{0},b,X)} \exists \bar{v} \exists \bar{w} \left(\varphi_{S}(\bar{v},\bar{u}_{0}) \wedge T_{a}(\bar{v},\bar{w}) \wedge H(\bar{v},\bar{w}) \wedge E_{q}(\bar{v}) \right)$$

Para cada $i \in \{1, ..., m\}$, $\theta_{E_{q_i}}(\bar{u}_i, T_0, T_1, T_B, T_{\vdash}, H, NH, E_{q_0}, ..., E_{q_m})$ es definido como:

$$\bigvee_{(q',a):\,\delta(q',a)=(q_i,b,X)} \exists \bar{v} \exists \bar{w} \left(\varphi_{\mathcal{S}}(\bar{v},\bar{u}_i) \wedge T_a(\bar{v},\bar{w}) \wedge H(\bar{v},\bar{w}) \wedge E_{q'}(\bar{v}) \right)$$

Teorema de Immerman-Vardi: Un corolario fundamental

Corolario

 $PTIME \neq NP$ si y sólo si LPO con operador de menor punto fijo es menos expresiva que $\exists LSO$ sobre la clase de las estructuras ordenadas

Teorema de Immerman-Vardi: Un corolario fundamental

Corolario

 $PTIME \neq NP$ si y sólo si LPO con operador de menor punto fijo es menos expresiva que $\exists LSO$ sobre la clase de las estructuras ordenadas

Existe una oración φ en ∃LSO que no puede ser expresada en LPO con operador de menor punto fijo sobre la clase de las estructuras ordenadas

El Teorema de Immerman-Vardi nos da una lógica que captura PTIME sobre la clase de las estructuras ordenadas.

Es una lógica natural

El Teorema de Immerman-Vardi nos da una lógica que captura PTIME sobre la clase de las estructuras ordenadas.

Es una lógica natural

Una consecuencia del Teorema de Fagin: Si PTIME = NP, entonces existe una lógica *natural* que captura PTIME sobre la clase de todas las estructuras

El Teorema de Immerman-Vardi nos da una lógica que captura PTIME sobre la clase de las estructuras ordenadas.

► Es una lógica *natural*

Una consecuencia del Teorema de Fagin: Si PTIME = NP, entonces existe una lógica *natural* que captura PTIME sobre la clase de todas las estructuras

► Esta lógica es ∃LSO

El Teorema de Immerman-Vardi nos da una lógica que captura PTIME sobre la clase de las estructuras ordenadas.

► Es una lógica *natural*

Una consecuencia del Teorema de Fagin: Si PTIME = NP, entonces existe una lógica *natural* que captura PTIME sobre la clase de todas las estructuras

► Esta lógica es ∃LSO

Conjetura de Gurevich

No existe una lógica *natural* que captura a PTIME sobre la clase de todas las estructuras

Y finalmente PSPACE ...

Una última preguntar por responder:

▶ ¿Existe una lógica que captura PSPACE?

Y finalmente PSPACE ...

Una última preguntar por responder:

► ¿Existe una lógica que captura PSPACE?

Candidato natural: LPO con operador parcial de punto fijo

Y finalmente PSPACE ...

Una última preguntar por responder:

► ¿Existe una lógica que captura PSPACE?

Candidato natural: LPO con operador parcial de punto fijo

¿Captura esta lógica a PSPACE sobre la clase de todas las estructuras?

Dado: Vocabulario \mathcal{L}

- ▶ R_1 , ..., R_n son símbolos de predicados que no son mencionados en \mathcal{L}
- ▶ La aridad de R_i es k_i $(1 \le i \le n)$

Sea $\varphi_i(\bar{x}_i, R_1, \dots, R_n)$ $(1 \le i \le n)$ una fórmula en LPO sobre $(\mathcal{L} \cup \{R_1, \dots, R_n\})$

- ▶ El número de variables en \bar{x}_i es igual al número de argumentos en R_i
- ▶ V_i es el conjunto de variables mencionadas en $\varphi_i(\bar{x}_i, R_1, \dots, R_n)$

Sea $\ell \in \{1, ..., n\}$. La siguiente es una fórmula en LPO con operador parcial de punto fijo:

$$\alpha(\bar{y}) = [\mathbf{pfp}_{\bar{x}_{\ell}, R_{\ell}}(\varphi_1(\bar{x}_1, R_1, \dots, R_n), \dots, \varphi_n(\bar{x}_n, R_1, \dots, R_n))](\bar{y})$$

Sea $\ell \in \{1, ..., n\}$. La siguiente es una fórmula en LPO con operador parcial de punto fijo:

$$\alpha(\bar{y}) = [\mathbf{pfp}_{\bar{x}_{\ell}, R_{\ell}}(\varphi_1(\bar{x}_1, R_1, \dots, R_n), \dots, \varphi_n(\bar{x}_n, R_1, \dots, R_n))](\bar{y})$$

Sean:

$$k = \max\{k_1, \dots, k_n\}$$

 $v = |V_1| + \dots + |V_n|$

Vamos a mostrar como expresar $\alpha(\bar{y})$ en $\mathcal{L}_{\infty\omega}^{2\cdot k+v+k_{\ell}}$

Para cada $i \in \{1, ..., n\}$ y $m \ge 0$:

 $\psi_i^m(\bar{x}_i)$ es definida como en la demostración de que la LPO con operador de menor punto fijo está incluida en $\mathcal{L}_{\infty\omega}^{\omega}$

Además, para cada $m \ge 0$:

$$\Phi^{m} = \bigwedge_{i=1}^{n} \forall \bar{x}_{i} \left(\psi_{i}^{m}(\bar{x}_{i}) \leftrightarrow \psi_{i}^{m+1}(\bar{x}_{i}) \right)$$

Entonces $\alpha(\bar{y})$ es equivalente a:

$$\exists \bar{x}_{\ell} \left[\bar{y} = \bar{x}_{\ell} \wedge \bigvee_{m \geq 0} \left(\Phi^{m} \wedge \psi_{\ell}^{m}(\bar{x}_{\ell}) \right) \right]$$

¿Por qué la equivalencia es cierta?

De lo anterior obtenemos como conclusión:

Proposición

Cada fórmula φ en LPO con operador parcial de punto fijo puede ser expresada en $\mathcal{L}_{\infty\omega}^\omega$

Sea $\mathcal{L} = \emptyset$ y PARIDAD = $\{\mathfrak{A} \in \operatorname{Struct}[\mathcal{L}] \mid \text{dominio de } \mathfrak{A} \text{ tiene } \text{un número par de elementos}\}$

Obtenemos como corolarios de los resultados anteriores:

Sea $\mathcal{L} = \emptyset$ y PARIDAD = $\{\mathfrak{A} \in \text{Struct}[\mathcal{L}] \mid \text{dominio de } \mathfrak{A} \text{ tiene}$ un número par de elementos $\}$

Obtenemos como corolarios de los resultados anteriores:

Corolario

PARIDAD no es expresable en LPO con operador parcial de punto fijo

Corolario

LPO con operador parcial de punto fijo no captura PSPACE

► De hecho, LPO con operador parcial de punto fijo ni siquiera incluye a PTIME

Corolario

LPO con operador parcial de punto fijo no captura PSPACE

► De hecho, LPO con operador parcial de punto fijo ni siquiera incluye a PTIME

¿Qué faltó para capturar PSPACE?

Corolario

LPO con operador parcial de punto fijo no captura PSPACE

► De hecho, LPO con operador parcial de punto fijo ni siquiera incluye a PTIME

¿Qué faltó para capturar PSPACE?

► Nuevamente vamos a demostrar que el ingrediente faltante era un orden lineal

Complejidad Descriptiva: Una lógica para PSPACE

Teorema

LPO con operador parcial de punto fijo captura PSPACE sobre la clase de estructuras ordenadas

Complejidad Descriptiva: Una lógica para PSPACE

Teorema

LPO con operador parcial de punto fijo captura PSPACE sobre la clase de estructuras ordenadas

Obtenemos como corolario:

Corolario

 $NP \neq PSPACE$ si y sólo si $\exists LSO$ es menos expresiva que LPO con operador parcial de punto fijo sobre la clase de las estructuras ordenadas