Лекция 11

Теория формальных языков (III)

(Конспект: В. Вялов)

11.1 Бесконтекстные языки

11.1.1 Нормальные формы бесконтекстных языков

Определение 11.1. Будем говорить, что грамматика — в *нормальной* форме Хомского $(H\Phi X)$, если она содержит только правила одного из следующих типов.

- 1. $A \rightarrow BC$.
- $2. A \rightarrow a.$
- 3. $S \to \epsilon$.

Причем

4. Стартовый символ S в правых частях не встречается (т.е. $B, C \neq S$ в пункте 1).

Теорема 11.1. Для любой бесконтекстной грамматики G существует грамматика G^* в $H\Phi X$, такая, что $L(G)=L(G^*)$.

Доказательство. 1. Добавим новый стартовый символ S^* и правило $S^* \to S$. Тем самым мы заработаем пункт 4.

2. Для каждого терминала a добавим нетерминал A_a и правило $A_a \to a$. Также заменим a на A_a в остальных правилах. Теперь в правых частях правил у нас встречается либо только один терминал (как в пункте 2), либо цепочка нетерминалов (почти как в пунктах 1 и 3). Следующим шагом мы уменьшим длину этой цепочки до не более, чем двух символов.

- 3. Пусть у нас есть правило $A \to BC\alpha$, где α непустая цепочка из нетерминалов. Добавим новый нетерминал Z, а правило заменим на два других: $A \to BZ$ и $Z \to C\alpha$. Тем самым мы сократим правую часть правила на один символ. Продолжая действовать таким образом, добьемся нужной длины правой части.
- 4. Остается избавиться от правил вида $A \to \epsilon$ (где $A \neq S^*$) и $A \to B$. Аналогично лемме о праволинейных грамматиках построим множества $S(B) = \{A \mid A \to^* B\}$ и $S(\epsilon) = \{A \mid A \to^* \epsilon\}$. Заметим, что $A \in S(B)$ означает, что выполняется хотя бы одно из трех условий:
 - (1) A = B;
 - (2) $A \to C$, где $C \in S(B)$;
 - (3) $A \to CD$, где $C \in S(B)$, а $D \in S(\epsilon)$ (или наоборот).

Аналогично для $S(\epsilon)$. Отсюда видно, что множества $S(\ldots)$ можно построить за конечное число шагов: на каждом шаге мы будем для каждой пары нетерминалов (A,B) проверять условия (1)–(3) и добавлять A в S(B), если одно из условий выполнится (и то же самое — для $S(\epsilon)$). Если на очередном шаге мы ничего не добавим ни в одно из множеств, то множества $S(\ldots)$ построены.

Теперь для каждого $A \in S(B)$ и правила $B \to \alpha$ добавим правило $A \to \alpha$. Также, если $S^* \in S(\epsilon)$, то добавим правило $S^* \to \epsilon$. После этого удалим все «плохие» правила, т.е. правила вида $A \to \epsilon$ (где $A \neq S^*$) и $A \to B$.

Заметим, что в результате наших действий язык не изменился.

Определение 11.2. Будем говорить, что грамматика — в *нормальной* форме Γ рейбах $(H\Phi\Gamma)$, если она содержит только правила одного из следующих типов.

- 1. $A \rightarrow a$.
- 2. $A \rightarrow aB$.
- 3. $A \rightarrow aBC$.
- 4. $S \rightarrow \epsilon$.

Причем

5. Стартовый символ S в правых частях не встречается.

Задача 11.1. Доказать аналогичную теорему для НФГ.

11.1.2 Автоматы с магазинной памятью

Как уже было доказано, любой праволинейной грамматике соответствует конечный автомат. Для бесконтекстной грамматики конечного автомата мало, поэтому мы усложним конструкцию автомата.

Наш автомат будет обладать памятью, а именно, магазином. *Магазин* представляет из себя стек, с которым мы можем делать две вещи:

- (1) достать верхний элемент;
- (2) положить наверх данный элемент.

Определение 11.3. Недетерминированный автомат с магазинной памятью состоит из тех же частей, что и недетерминированный конечный автомат, но надо добавить еще магазинный алфавит M и начальный символ магазина $Z \in M$. Функция перехода теперь такая:

$$\delta: Q \times (\Sigma \cup {\epsilon}) \times M \to 2^{Q \times M^*},$$

при этом требуется, чтобы значения δ были конечными множествами.

Переход такого автомата мы будем записывать следующим образом: $q \xrightarrow{a,A/\alpha} p$. Это значит, что $(p,\alpha) \in \delta(q,a,A)$. Фактически это означает следующее: мы переходим из состояния q в состояние p, считывая из строки символ a (возможно, никакого символа вовсе не считываем: $a = \epsilon$). При этом мы снимаем с магазина символ A, а на его место помещаем строку α .

Конфигурацией нашего автомата назовем тройку (q, u, γ) , где $q \in Q$ — текущее состояние, u — оставшаяся (непрочитанная) часть строки, γ — содержимое магазина (верхний символ записывается слева). Такт работы нашего автомата выглядит так:

$$(q, au, A\beta) \vdash (p, u, \alpha\beta),$$

если $q \xrightarrow{a,A/\alpha} p$ (здесь $a \in \Sigma \cup \{\epsilon\}$). Будем говорить, что строка x npuhu-мается автоматом, если мы сможем из состояния (q_s,x,Z) за конечное число шагов попасть в конечное состояние, исчерпав всю строку, т.е.

$$(q_s, x, Z) \vdash^* (q, \epsilon, \alpha)$$
 (где $q \in F$).

При этом нам неважно, что именно у нас осталось в магазине.

Пример 11.1. Построим автомат, задающий язык $\{0^n1^n \mid n \in \mathbb{N} \cup \{0\}\}$. Он будет иметь четыре состояния: начальное q_s , конечное q_f , и два промежуточных q_1, q_2 ; а также следующие правила:

- 4
- (1) $q_s \xrightarrow{\epsilon,Z/} q_f$ (чтобы не забыть о случае n=0);
- $(2) \ q_s \stackrel{0,Z/0Z}{\longrightarrow} q_1;$
- $(3) \ q_1 \xrightarrow{0,0/00} q_1;$
- $(4) \ q_1 \xrightarrow{1,0/} q_2;$
- $(5) q_2 \xrightarrow{1,0/} q_2;$
- (6) $q_2 \xrightarrow{\epsilon, Z/} q_f$.

Наш автомат действует следующим образом: считывая на очередном шаге 0, мы кладем его в магазин; считывая 1, вынимаем 0 из магазина. При этом, если единиц будет больше, чем нулей, то мы не сможем дочитать строку до конца; а если наоборот, то мы не увидим дна магазина и не попадем в конечное состояние.

Теорема 11.2. По любой бесконтекстной грамматике можно построить недетерминированный магазинный автомат, задающий тот же язык.

Доказательство. 1. Приведем грамматику к НФХ.

- 2. В магазин автомата мы будем складывать нетерминалы; наши состояния q_s (стартовое), q («рабочее») и q_f (конечное); а правилам вида (1)–(3) сопоставим, соответственно, такие переходы:
 - $(1) \ q \xrightarrow{\epsilon, A/BC} q;$
 - $(2) \ q \xrightarrow{a, A/\epsilon} q;$
 - (3) $q \xrightarrow{\epsilon, S/\epsilon} q$.

А также добавим еще два правила: $q_s \stackrel{\epsilon,Z/SZ}{\longrightarrow} q$ («начинаем вывод со стартового символа») и $q \stackrel{\epsilon,Z/\epsilon}{\longrightarrow} q_f$ («увидев дно магазина, следует завершить вывод»). Для того, чтобы убедиться, что полученный автомат задает тот же самый язык, достаточно доказать по индукции (упражнение) следующую лемму.

Лемма 11.1. $(q, uv, \alpha\beta) \vdash^* (q, v, \beta)$ для нашего автомата выполняется тогда и только тогда, когда $\alpha \Rightarrow^* u$ для исходной грамматики (в $H\Phi X$).

Задача 11.2. Доказать обратную теорему.

11.1.3 Алгоритмические проблемы, связанные с бесконтекстными языками

Алгоритм проверки принадлежности слова языку. Цель — проверить, принадлежит ли слово $a_1a_2 \dots a_n$ языку, задаваемому грамматикой G (очевидно, можно считать, что она — в $H\Phi X$).

Решать эту задачу мы будем методом динамического программирования. Обозначим t_{ij} множество тех нетерминалов, из которых можно получить строку $a_i \dots a_{i+j-1}$. Множество t_{i1} состоит из терминалов, для которых в G имеется правило $A \to a_i$. Для того, чтобы построить множество t_{ij} будем разбивать строку по позиции i+k-1 и смотреть, из чего выводится каждая из половинок. Иначе говоря, $A \in t_{ij}$, если существует правило $A \to BC$, где $B \in t_{ik}$ и $C \in t_{i+k,j-k}$. Отсюда видно, что все множества t_{ij} можно построить за кубическое от длины строки количество шагов. При этом исходная строка принадлежит языку, если стартовый символ лежит в множестве t_{1n} .

Проверка пустоты языка. Для решения этой задачи докажем следующую лемму:

Лемма 11.2 (лемма о разрастании для бесконтекстных языков). Для любого бесконтекстного языка L существует число k, такое, что, если длина слова α больше чем k, то его можно представить в виде $\alpha = xuvwy$, где длина слова $uvw - menee\ k$, слово uw не nycmo, u $xu^ivw^iy \in L$ для всех $i \geqslant 0$.

Доказательство. Рассмотрим грамматику в НФХ, порождающую этот язык. В качестве k возьмем $2^{|N|+2}$.

Построим дерево вывода строки α . В корень поместим стартовый символ S. Потомками вершины, помеченной символом X, будут вершины, помеченные символами правой части правила, которое было применено для X при выводе строки α . (Упорядочим их так же, как они были расположены в правой части правила.) Листьями будут терминалы (символы строки α).

По условию, в дереве $\geqslant 2^{|N|+2}$ листьев, поэтому его высота — не менее |N|+2. Значит, существует путь из корня в лист такой длины. Тогда на этом пути какой-то нетерминал B встретится дважды.

Рассмотрим основное дерево, а также получившиеся два поддерева с корнями в вершинах, где сидит этот символ. В результате слово разобьется на необходимые нам пять частей (см. рис. 11.1). По построению, $B \Rightarrow^* uBw$ и $B \Rightarrow^* v$. Слово uw непусто, поскольку грамматика была в $H\Phi X$.

Рис. 11.1: Разбиение $\alpha = xuvwy$. Пунктирная черта обозначает «границы» соответствующего поддерева.

Осталось добиться того, чтобы выполнялось |uvw| < k.

Задача 11.3. Сделать это.

Теперь легко проверить пустоту языка. Если язык не является пустым, то в нем должна существовать строка длины меньшей, чем k (пока строка удовлетворяет лемме, ее можно при помощи леммы заменять на другую строку, меньшую по длине), а количество таких строк конечно. Итого нам надо будет лишь конечное число раз запустить алгоритм, распознающий принадлежность строки нашему языку.