1. (30 pts) Considere a equação diferencial ordinária homogénea

Duração: 2h 30min

16 de Junho de 2014

$$(1-x)y'' + xy' - y = 0, \ x \in]1, +\infty[.$$

- (a) Mostre que $\{x, e^x\}$ é um sistema fundamental de soluções da equação diferencial.
- (b) Determine o seu integral geral.
- (c) Considere a equação diferencial $(1-x)y'' + xy' y = x^2 2x + 2, x \in]1, +\infty[$.
 - i. Determine a constante A tal que $y=Ax^2$ seja uma solução particular desta equação diferencial:
 - ii. Indique o integral geral desta equação diferencial.
- 2. (25 pts) Para cada inteiro positivo n, considere a família de curvas $y_n = ke^{nx}, k \in \mathbb{R}$.
 - (a) Escreva uma equação diferencial de primeira ordem cujo integral geral seja a família de curvas y_n .
 - (b) Obtenha a equação diferencial das trajetórias ortogonais à família de curvas y_n .
 - (c) Integrando a equação diferencial obtida na alínea anterior, determine a família de trajetórias ortogonais a $y_n = ke^{nx}, \ k \in \mathbb{R}$.
- 3. (25 pts) Obtenha a solução geral da equação diferencial de Bernoulli $y' y = xy^3$.
- 4. (25 pts) Mostre que a série $\sum_{n=1}^{+\infty} (-1)^n \frac{\cos^2 n}{2^n}$ é absolutamente convergente.
- 5. **(25 pts)** Considere a série numérica $\sum_{n=1}^{+\infty} \frac{n!}{(n+2)!}.$
 - (a) Mostre que se trata de uma série de Mengoli.
 - (b) Determine a soma da série.
- 6. (35 pts) Considere a série de potências $\sum_{n=0}^{\infty} (-1)^n x^{2n}$.
 - (a) Determine o raio e o domínio de convergência da série de potências.
 - (b) Indique a função soma da série de potências, bem como o seu domínio.
 - (c) Utilizando a alínea anterior, obtenha a representação em série de potências da função $f(x) = \operatorname{arctg} x$ e indique o domínio onde essa representação é válida.
- 7. (35 pts) A série de Fourier da função f, periódica de período 2π , definida em $[-\pi,\pi]$ por $f(x)=x^2$ é

$$S(x) = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} (-1)^n \frac{4}{n^2} \cos(nx)$$

- (a) Mostre, usando o Critério de Weierstrass, que a série converge uniformemente em \mathbb{R} .
- (b) Indique, sem calcular, a expressão para determinar os coeficientes de Fourier, a_n e b_n , da função f e justifique o facto de $b_n = 0$, qualquer que seja $n \in \mathbb{N}$.
- (c) Esboce o gráfico da função soma da série dada no intervalo $[-3\pi, 3\pi]$. Justifique.
- (d) Usando a representação de f em série de Fourier, mostre que

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$