Math, Convex analysis#5

OSM Lab instructor, Jorge Barro OSM Lab student, CHEN Anhua Due Wednesday, July 21 at 8:00am

- 1. (7.1) Let $x, y \in conv(C)$, where $x = \sum_{i=1}^{n} a_i x_i$ and $y = \sum_{j=1}^{m} b_j y_j$. Then for $t \in [0, 1]$, we define $tx + (1 t)y = \sum_{k}^{n+m} \theta c_k$, where $\theta_k = a_k, c_k = x_k$ if $k \le n$ and $\theta_k = b_{k-n}, c_k = y_{k-n}$ if k > n. Since $c_k \in C$ and $t \sum_{i=1}^{n} +(1 t) \sum_{j=1}^{m} = 1$, $tx + (1 t)y \in conv(C) \implies conv(C)$ is a convex set.
- 2. (7.2)
 - (i) If $x, y \in P = \{x \in V | < a, x >= b\}$, then < a, x >= b, < a, y >= b. $< a, \lambda x + (1 \lambda)y >= \lambda < a, x > + (1 \lambda) < a, y >= b$. Therefore, hyperplane is a convex set.
 - (ii) If $x, y \in H = \{x \in V | < a, x > \le b\}$, then $< a, x > \le b, < a, y > \le b$. $< a, \lambda x + (1 \lambda)y > = \lambda < a, x > + (1 \lambda) < a, y > \le b$. Therefore, half space is a convex set.
- 3. (7.4) i). $||x-y||^2 = ||x-p+p-y||^2 = \langle (x-p+p-y), (x-p+p-y) \rangle = ||x-p||^2 + ||p-y||^2 + 2\langle x-p, p-y \rangle$
 - ii). If $\langle x p, p y \rangle \geq 0$, it's easy to use i) to prove that ||x y|| > ||x p|| iii). This one could be easily proved by using the method in i) and substituting z by the convex combination of y and p.
 - iv). If we let $z = \lambda y + (1 \lambda)p$, according to i), we have $||x z||^2 = ||x p||^2 + ||p z||^2 + 2 < x p, p z > \implies 2 < x p, p z > = ||x z||^2 ||x p||^2 ||p z||^2$. Then according to iii), it's equal to $2 < x p, p z > = 2\lambda < x p, p y > + \lambda^2 ||y p||^2 ||p z||^2 = 2\lambda < x p, p y > + \lambda^2 ||y p||^2 ||\lambda(p y)||^2 = 2\lambda < x p, p y >$. Therefore, by induction method, if we assume $< x p, p y > \ge 0$, then $< x p, p z > \ge 0$.
- 4. (7.6) Let $x, y \in \{x \in \mathbb{R}^n | f(x) \le c\}$, since f is a convex function, $f(\lambda x + (1 \lambda)y) \le \lambda f(x) + (1 \lambda)f(y) \le \lambda c + (1 \lambda)c = c$. Therefore, $\lambda x + (1 \lambda)y \in \{x \in \mathbb{R}^n | f(x) \le c\}$
- 5. (7.7) For $x, y \in C$, since f_i is convex function, $f(\lambda x + (1 \lambda)y) = \sum_{i=1}^k \lambda_i f_i(\lambda x + (1 \lambda)y)$

 $(1-\lambda)y) \leq \sum_{i=1}^k \lambda_i(\lambda f_i(x) + (1-\lambda)f_i(y)) = \lambda f(x) + (1-\lambda)f(y)$. Therefore, the function is convex.

6. (7.13)

If f is not constant, W.L.O.G., f(a) < f(b) for a < b. For c > b, since the epigraph is also convex, $f(c) \le f(a) + (c-a) \frac{f(b)-f(a)}{b-a}$. When c goes to inifinity, then f cannot be bounded above. Therefore f has to be a constant function.

7.(7.20)

If f is convex, then $f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$. Similarly for -f: $-f(\lambda x + (1 - \lambda)y) \leq -\lambda f(x) - (1 - \lambda)f(y)$. These two inequality implies that $f(\lambda x + (1 - \lambda)y) = \lambda f(x) + (1 - \lambda)f(y)$, indicating f is a linear function, therefore affine.

8. (7.21)

Since $x \in \mathbb{R}^n$, the minimize x^* is an interior point. If x^* is the local minimizer of the first optimization problem, then $\phi'f'(x^*) = 0$, $f'(x^*) = 0$ because $\phi(x)$ is a strictly increasing function. It's easy to prove the other direction since $f'(x^*) = 0 \implies \phi'f'(x^*) = 0$