Athelete events data analytics

Code link:

dataset link:

Objective

- > Analyze trends in athletes participation across Olympic events.
- > Examine key attributes such as age, height, weight, nationality, and sport.
- Identify seasonal patterns in participation and performance.
- > Evaluate correlations between athlete characteristics and medal achievements.
- Provide insights into factors that may influence success at the Olympic Games.

Tools and technolgies used

Importing modules

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

Loading dataset

Code:

```
df = pd.read_csv('athlete_events_combined.csv')
df.head()
```

	ID	Name	Sex	Age	Height	Weight	Team	NOC	Games	Year	Season	City	Sport	Event	Medal	Region	Notes
0	1	A Dijiang	М	24.0	180.0	80.0	China	CHN	1992 Summer	1992	Summer	Barcelona	Basketball	Basketball Men's Basketball	NaN	CHN	China
1	2	A Lamusi	М	23.0	170.0	60.0	China	CHN	2012 Summer	2012	Summer	London	Judo	Judo Men's Extra- Lightweight	NaN	CHN	China
2	3	Gunnar Nielsen Aaby	М	24.0	NaN	NaN	Denmark	DEN	1920 Summer	1920	Summer	Antwerpen	Football	Football Men's Football	NaN	DEN	Denmark
3	4	Edgar Lindenau Aabye	М	34.0	NaN	NaN	Denmark/Sweden	DEN	1900 Summer	1900	Summer	Paris	Tug-Of- War	Tug-Of-War Men's Tug-Of- War	Gold	DEN	Denmark
4	5	Christine Jacoba Aaftink	F	21.0	185.0	82.0	Netherlands	NED	1988 Winter	1988	Winter	Calgary	Speed Skating	Speed Skating Women's 500 metres	NaN	NED	Netherlands

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 271116 entries, 0 to 271115
Data columns (total 17 columns):
    Column Non-Null Count
            271116 non-null int64
          271116 non-null object
    Name
            271116 non-null object
    Sex
    Age
            261642 non-null float64
    Height 210945 non-null float64
    Weight 208241 non-null float64
          271116 non-null object
    Team
    NOC
            271116 non-null object
    Games 271116 non-null object
    Year
            271116 non-null int64
    Season 271116 non-null object
 11 City
            271116 non-null object
 12 Sport 271116 non-null object
 13 Event 271116 non-null object
 14 Medal
            39783 non-null
                            object
    Region 270767 non-null object
 16 Notes
            270746 non-null object
dtypes: float64(3), int64(2), object(12)
memory usage: 35.2+ MB
```

- Output gives the information about the data.
- Non-null count gives the count of non null rows in a column
- Dtype column shows the datatype of a columns

Task 1: Calculating (mean, median, mode) for numerical columns Age, Height, and Weight.

Code:

```
print("Mean of Ages :", df['Age'].mean())
print("Mean of Height :", df['Height'].mean())
print("Mean of Weight :", df['Weight'].mean())
```

Output:

```
Mean of Ages : 25.556898357297374

Mean of Height : 175.33896987366376

Mean of Weight : 70.70239290053351
```

We have calculated the means of the numerical columns and the output shows the results that **Age** has mean of **25.55**, **Height** has **175.33** and the **weight** has **70.70**

```
print("Median of Ages :", df['Age'].median())
print("Median of Height :", df['Height'].median())
print("Median of Weight :", df['Weight'].median())
```

Output:

```
Median of Ages : 24.0
Median of Height : 175.0
Median of Weight : 70.0
```

Results shows the **median** of the columns, **Age** has median **24.0**, **Height** has **175.0** and the **Weight** is having the median of **70.0**.

```
print("Mode of Ages :", df['Age'].mode())
print("Mode of Height :", df['Height'].mode())
print("Mode of Weight :", df['Weight'].mode())
```

Output:

```
Mode of Ages: 0 23.0
Name: Age, dtype: float64
Mode of Height: 0 180.0
Name: Height, dtype: float64
Mode of Weight: 0 70.0
Name: Weight, dtype: float64
```

Above output shows us the **Mode value** of Age, Height and Weight column. Mode value of Age is **23.0**, for **Height** it is **180.0** and for **Weight** it is **70.0**

Task 2: Filtering the dataset to show only athletes who participated in the 1992 Summer Olympics. Code:

```
filtered_data = (df[(df['Season'] == 'Summer') & (df['Year'] == 1992)])
filtered_data.head()
```

Output:

	I	ID	Name	Sex	Age	Height	Weight	Team	NOC	Games	Year	Season	City	Sport	Event	Medal	Region	Notes
0		1	A Dijiang	М	24.0	180.0	80.0	China	CHN	1992 Summer	1992	Summer	Barcelona	Basketball	Basketball Men's Basketball	NaN	CHN	China
96	3	33	Mika Lauri Aarnikka	М	24.0	187.0	76.0	Finland	FIN	1992 Summer	1992	Summer	Barcelona	Sailing	Sailing Men's Two Person Dinghy	NaN	FIN	Finland
118	4	43	Morten Gjerdrum Aasen	М	34.0	185.0	75.0	Norway	NOR	1992 Summer	1992	Summer	Barcelona	Equestrianism	Equestrianism Mixed Jumping, Individual	NaN	NOR	Norway
137	5	50	Arvi Aavik	М	22.0	185.0	106.0	Estonia	EST	1992 Summer	1992	Summer	Barcelona	Wrestling	Wrestling Men's Heavyweight, Freestyle	NaN	EST	Estonia
160	6	5 <mark>4</mark>	M'Bairo Abakar	M	31.0	NaN	NaN	Chad	СНА	1992 Summer	1992	Summer	Barcelona	Judo	Judo Men's Half- Middleweight	NaN	CHA	Chad

Above filtered data shows the data of athletes who participated in 1992 Summer olympics.

print("Toal number of records athletes who participated in the 1992 Summer Olympics : ", len(filtered_data))

Output:

Toal number of records athletes who participated in the 1992 Summer Olympics : 12977

Total number of athletes who participated in Summer olympics 1992 is 12,977.

Task 3: Count number of unique teams (NOCs) in the dataset Code :

```
uniqe_noc = len(df['NOC'].unique())
print('Total number of unique records in NOC: ', uniqe_noc)
```

Output:

Total number of unique records in NOC: 230

Task 4: Group the data by 'Team' and calculate the average age of athletes for each team.

```
group = df.groupby('Team')['Age'].mean()
group
```

Team					
30. Februar	33.500000				
A North American Team	41.333333				
Acipactli	47.333333				
Acturus	27.000000				
Afghanistan	23.538462				
Zambia	23.461039				
Zefyros	35.500000				
Zimbabwe	25.166124				
Zut	32.000000				
rn-2	29.200000				
Name: Age, Length: 1184,	dtype: float64				

- By using groupby function, data was grouped with same Teams.
- The other columns in the output gives the Mean of each team.

- Task 5: Create a bar plot showing the number of athletes per team.
- Code :

```
data_vis = df['Team'].value_counts()
abc = data_vis.nlargest(10, keep = 'first')
plt.figure(figsize=(8, 4))
abc.plot(kind='bar', color='Brown')
plt.title('Number of Athletes per Team')
plt.xlabel('Team')
plt.ylabel('Number of Athletes')
plt.xticks(rotation=45)
plt.show()
```

- The bar graph concludes that USA has the highest number of athletes, followed by France, Great britain, Italy.
- Australia and Hungary has the lowest number of athletes per team.

- Task 6: Filter the data for Athletes data who won medal
- Code:

```
medal_wons = df[df['Medal'].isin(['Bronze', 'Silver', 'Gold'])]
medal_wons.head()
```

Output :

	ID	Name	Sex	Age	Height	Weight	Team	NOC	Games	Year	Season	City	Sport	Event	Medal	Region	Notes
3	4	Edgar Lindenau Aabye	M	34.0	NaN	NaN	Denmark/Sweden	DEN	1900 Summer	1900	Summer	Paris	Tug-Of- War	Tug-Of-War Men's Tug-Of- War	Gold	DEN	Denmark
37	15	Arvo Ossian Aaltonen	М	30.0	NaN	NaN	Finland	FIN	1 <mark>9</mark> 20 Summer	1920	Summer	Antwerpen	Swimming	Swimming Men's 200 metres Breaststroke	Bronze	FIN	Finland
38	15	Arvo Ossian Aaltonen	М	30.0	NaN	NaN	Finland	FIN	1920 Summer	1920	Summer	Antwerpen	Swimming	Swimming Men's 400 metres Breaststroke	Bronze	FIN	Finland
40	16	Juhamatti Tapio Aaltonen	М	28.0	184.0	85.0	Finland	FIN	2014 Winter	2014	Winter	Sochi	Ice Hockey	Ice Hockey Men's Ice Hockey	Bronze	FIN	Finland
41	17	Paavo Johannes Aaltonen	M	28.0	175.0	64.0	Finland	FIN	1948 Summer	1948	Summer	London	Gymnastics	Gymnastics Men's Individual All-Around	Bronze	FIN	Finland

Filtered data in the output is showing the first 5 rows of Athletes who won medal in any of tournament

- Task 7: Calculate Number of medals won by USA in each sport
- Code :

```
medal_wons[(medal_wons['NOC'] == 'USA')].value_counts('Sport')
```

Sport					
Athletics	1080				
Swimming	1078				
Rowing	375				
Basketball	341				
Ice Hockey	276				
Gymnastics	194				
Shooting	193				
Water Polo	150				
Diving	140				
Sailing	140				
Equestrianism	132				
Wrestling	128				
Volleyball	120				
Boxing	113				
Football	102				
Cycling	78				
Bobsleigh	74				
Speed Skating	70				
Fencing	69				
Baseball	68				
Figure Skating	66				
Tennis	62				
Softball	60				

Softball	60
Archery	57
Alpine Skiing	44
Weightlifting	42
Short Track Speed Skating	42
Golf	38
Rugby	36
Hockey	30
Synchronized Swimming	30
Snowboarding	24
Freestyle Skiing	21
Canoeing	21
Beach Volleyball	20
Modern Pentathlon	17
Tug-Of-War	14
Judo	14
Polo	12
Lacrosse	12
Luge	9
Taekwondo	9
Art Competitions	9
Skeleton	8
Nordic Combined	7
Curling	4
Roque	3
Triathlon	2
Ski Jumping	1
Cross Country Skiing	1
Jeu De Paume	1
Name: count dtyne: int64	

- In sport Athletics and Swimming USA has won the most number of medals 1080 and 1078.
- Above 300 medals has been won by USA in Rowing and Basketball.
- Ice hockey, Gymnastics and Shooting sports has 276, 194, 193 medals.
- The sports with least medals are Ski jumping, Cross Country, Skiing having only 1 medals each.

- Task 8: Retrieve the data of Athletes winning medal in Winter olympics
- Code:

```
winter_medalists = medal_wons[(medal_wons['Season'] == 'Winter')]
winter_medalists.head()
```

• Output:

	ID	Name	Sex	Age	Height	Weight	Team	NOC	Games	Year	Season	City	Sport	Event	Medal	Region	Notes
40	16	Juhamatti Tapio Aaltonen	M	28.0	184.0	85.0	Finland	FIN	2014 Winter	2014	Winter	Sochi	lce Hockey	Ice Hockey Men's Ice Hockey	Bronze	FIN	Finland
60	20	Kjetil Andr Aamodt	М	20.0	176.0	85.0	Norway	NOR	1992 Winter	1992	Winter	Albertville	Alpine Skiing	Alpine Skiing Men's Super G	Gold	NOR	Norway
61	20	Kjetil Andr Aamodt	М	20.0	176.0	85.0	Norway	NOR	1992 Winter	1992	Winter	Albertville	Alpine Skiing	Alpine Skiing Men's Giant Slalom	Bronze	NOR	Norway
63	20	Kjetil An <mark>d</mark> r Aamodt	M	22.0	176.0	85.0	Norway	NOR	1994 Winter	1994	Winter	Lillehammer	Alpine Skiing	Alpine Skiing Men's Downhill	Silver	NOR	Norway
64	20	Kjetil Andr Aamodt	M	22.0	176.0	85.0	Norway	NOR	1994 Winter	1994	Winter	Lillehammer	Alpine Skiing	Alpine Skiing Men's Super G	Bronze	NOR	Norway

Above output is showing the data of first 5 rows of Athletes who won medal in Winter olympics.

- Task 9: Filter Top 5 teams with the most gold medals.
- Code :

```
gold_medalists = df[df['Medal'] == 'Gold']
gold_medal_counts = gold_medalists['Team'].value_counts()
top_5_teams = gold_medal_counts.nlargest(5)
print(top_5_teams)
```

• Output:

Team	
United State	s 2474
Soviet Union	1058
Germany	679
Italy	535
Great Britai	n 519
Name: count,	dtype: int64

- Results are informing us about Top 5 teams with most number of gold medals.
- United States is leading the list with most number of gold medals in history 2474.
- Soviet union and Germany are having the count 1058 and 679 gold medals.
- Italy has 535 gold medals and Great britain on number 5 having 519 gold medals.

Conclusion

- The mean age, height, and weight of athletes are 25.55 years, 175.33 cm, and 70.70 kg, respectively.
- Median values closely match the means, with an age of 24 years, height of 175 cm, and weight of 70 kg.
- Mode values indicate that the most common age is 23 years, height is 180 cm, and weight is 70 kg.
- A total of 12,977 athletes participated in the 1992 Summer Olympics.
- The USA has the highest number of athletes and leads with 2,474 gold medals in Olympic history.
- The Soviet Union (1,058), Germany (679), Italy (535), and Great Britain (519) follow in gold medal counts.
- Countries like Australia and Hungary have the lowest number of athletes per team.