On considère pour tout $n \in \mathbb{N}$ l'intégrale

$$I_n = \int_1^e (\ln(x))^n dx$$

- 1. (a) Démontrer que pour tout $x \in]1, e[$ et pour tout entier naturel $n \in \mathbb{N}$ on a $(\ln(x))^n (\ln(x))^{n+1} > 0.$
 - (b) En déduire que la suite $(I_n)_{n\in\mathbb{N}}$ est décroissante.
- 2. (a) Calculer I_1 a l'aide d'une intégration par partie.
 - (b) Démontrer, toujours à l'aide d'une intégration par parties que, pour tout $n \in \mathbb{N}$, $I_{n+1} = e (n+1)I_n$
- 3. (a) Démontrer que pour tout $n \in \mathbb{N}$, $I_n \geq 0$.
 - (b) Démontrer que pour tout $n \in \mathbb{N}$, $(n+1)I_n \leq e$.
 - (c) En déduire la limite de $(I_n)_{n\in\mathbb{N}}$.
 - (d) Déterminer la valeur de $nI_n + (I_n + I_{n+1})$ et en déduire la limite de nI_n .