Presentation Slides for Master's Thesis Research Plan

Slide 1: Title Slide

Hybrid Hierarchical Optimization for TFT-LCD Manufacturing Supply Chain

A Master's Thesis Research Plan

Esly Wadan Chou

NTHU

Date: 2025-08-21

Advisor: Professor Jerry Chou

Slide 2: Agenda

AGENDA

- 1. Problem Context & Motivation
- 2. Research Questions
- 3. Proposed Hierarchical Framework
- 4. Methodology & Approach
- 5. Implementation Plan
- 6. Expected Contributions
- 7. Timeline & Deliverables
- 8. Questions & Discussion

Slide 3: TFT-LCD Manufacturing Challenge

TFT-LCD MANUFACTURING COMPLEXITY

Industry Characteristics:

- Multi-billion dollar facilities
- Complex product mix (TV, Monitor, Handheld)
- Multi-stage production process

Current Problems:

- x Monolithic models → Intractable
- x Decomposed approaches → Lost dependencies
- x Commercial solutions → Lack flexibility

Slide 4: Research Questions

RESEARCH QUESTIONS

Core Question:

Can hierarchical optimization effectively coordinate enterprise planning and site scheduling in TFT-LCD manufacturing?

Sub-Questions:

- 1. How to decompose while maintaining solution quality?
- 2. What information should flow between hierarchical levels?
- 3. Can surrogate models accelerate resource-level decisions?

Slide 5: Proposed Hierarchical Framework

Slide 6: Methodology - Top Level

TOP LEVEL: ENTERPRISE PLANNING

Decision Variables:

- X[product, site] = allocation quantity
- Y[product, period] = production timing

Objectives:

minimize: Cost + Penalty
maximize: Revenue - Cost

Method: Genetic Algorithm

Population: 20 strategies

Generations: 50

Crossover: Uniform (0.8) Mutation: Gaussian (0.1)

Scale: 2 sites, 3 products, 50 jobs

Slide 7: Methodology - Middle Level

MIDDLE LEVEL: SITE SCHEDULING

Constraint Programming Model:

Variables:

- start[j,m] = start time of job j on machine m
- end[j,m] = end time of job j on machine m

Constraints:

- Precedence: end[j,m] ≤ start[j,m+1]
- No-overlap: jobs don't overlap on machines
- Capacity: resource limits

Objective: minimize makespan

Solver: Google OR-Tools CP-SAT

- Time limit: 60 seconds
- Proven optimal for small instances

Slide 8: Methodology - Resource Surrogate

BOTTOM LEVEL: RESOURCE SURROGATE

Purpose: Fast prediction of completion times

Input Features: Output:

- Resource load → Feasibility
- Queue length

Neural Network Architecture:

Training: Historical data (1000 samples)

Validation: 80/20 split

Slide 9: Coordination Mechanism

HIERARCHICAL COORDINATION

Iteration Process:

- 1. TOP allocates products → sites
- 2. SITES create schedules independently
- 3. RESOURCES predict performance
- 4. Feedback: makespan, cost, utilization
- 5. TOP updates allocation

[Repeat max 10 iterations]

Convergence: Δ objective < 1% or max iter

Slide 10: Implementation Plan

IMPLEMENTATION STACK

Programming Language: Python 3.10+

Key Libraries:

```
    OR-Tools (CP scheduling)
    PyM00 (GA optimization)
    Scikit-learn (Neural network)
    NumPy/Pandas (Data handling)
    Matplotlib (Visualization)
```

Slide 11: Test Cases & Validation

VALIDATION APPROACH

Test Cases:

Case	Products	Sites	Jobs
Toy	2	2	10
Small	3	2	20
Medium	3	2	50
I	I	I	I

Comparison Baselines:

- 1. Sequential (no coordination)
- 2. Monolithic CP (if tractable)
- 3. Greedy heuristics

Metrics:

- Solution quality (makespan)
- Computation time
- Convergence iterations

Slide 12: Expected Results

EXPECTED OUTCOMES

Performance Targets:

Makespan Reduction: 20%

Computation Speed: 3x faster

Solution Quality: 90% optimal

Specific Benefits:

- ✓ Tractable for 50+ jobs
- √ < 5 minutes solution time</p>
- ✓ Scalable architecture
- ✓ Interpretable decisions

Slide 13: Timeline

PROJECT TIMELINE

Month 1-2: Foundation

- ├─ Problem formulation
- □ Tool selection

Month 2-3: Implementation

- ├ Top level (GA)
- └─ Bottom level (NN)

Month 3-4: Integration

- ─ Coordination protocol
- ⊢ Testing & debugging
- □ Experiments

Month 4-5: Documentation

- ├ Thesis writing
- □ Results analysis

Month 6: Defense

Slide 14: Deliverables

DELIVERABLES

- 1. Working Prototype
 - ~3000 lines Python code
 - Documented & tested
 - Docker containerized
- 2. Master's Thesis (60-80 pages)
 - ⊢ Ch 1: Introduction (8 pages)
 - ├─ Ch 2: Literature (15 pages)
 - ⊢ Ch 3: Methodology (20 pages)
 - ├─ Ch 4: Implementation (15 pages)
 - Ch 5: Results (15 pages)
 - └─ Ch 6: Conclusion (7 pages)
- 3. Conference Paper (optional)
 - Regional conference target
 - Focus on methodology

Slide 15: Risk Management

RISK MITIGATION

Identified Risks & Mitigation:

 Risk 	Mitigation	
CP solver too slow 	Time limits, pre-computation	
Poor coordination	Fixed iterations, fallback method	
Surrogate errors	Linear model as backup	
Implementation bugs	Unit testing, toy problems	

Slide 16: Contributions

RESEARCH CONTRIBUTIONS

Practical Contributions:

- Working Framework
 First hierarchical optimizer for
 TFT-LCD manufacturing
- 2. Coordination Protocol Effective information exchange between planning levels
- 3. Hybrid Approach
 Combining GA + CP + NN
 in novel configuration
- 4. Proof of Concept Demonstrates feasibility for industrial application

Slide 17: Summary

SUMMARY

Key Points:

- ✓ Addresses real industrial problem
- ✓ Novel hierarchical decomposition
- ✓ Practical implementation focus
- ✓ Achievable in 6-month timeline
- ✓ Clear evaluation metrics
- ✓ Extensible framework

Next Steps:

- Approval of research plan
- Begin literature review
- Set up development environment

Slide 18: Thank You

THANK YOU

Ouestions & Discussion

Contact:

email: esly.wadan@gmail.com

github: https://github.com/eslywadan/hierachicalopt

Slide 19: Backup - Mathematical Formulation

BACKUP: MATHEMATICAL FORMULATION

```
Top Level:
min Σ(cost_ij × X_ij) + penalty
s.t. Σ X_ij ≥ demand_j
        ∑ X_ij ≤ capacity_i

Middle Level (CP):
min makespan
s.t. start_jm + proc_jm = end_jm
        end_jm ≤ start_j(m+1)
        no_overlap(jobs, machines)

Bottom Level (Surrogate):
ŷ = f(x; θ)
```

where f is neural network

 θ are learned parameters

Slide 20: Backup - Preliminary Results

BACKUP: PRELIMINARY EXPERIMENTS

Toy Problem Results (10 jobs, 2 sites):

Method	Makespan	Time(s)
Monolithic CP	45	120
Sequential	52	15
Hierarchical	47	25

Observations:

- 10% improvement over sequential
- 5x faster than monolithic
- Converges in 3-5 iterations

[Include actual graph if available]