29-May-19 69734 1T01224 - S.E.(INFORMATION TECHNOLOGY) (Sem IV) (Choice Based) / 41005 - AUTOMATA THEORY

(3 Hours) [Total Marks: 80]

- 1. Question No. 1 is compulsory.
- 2. Out of remaining questions, attempt any three questions.
- 3. Assume **suitable** data wherever required but **justify** the same.
- 4. **All** questions carry **equal** marks.
- 5. Answer to each new question to be started on a fresh page.
- 6. **Figure** to the **right** in brackets indicate **full** marks.

1. Solve any four from the followings.

(a) Construct Moore machine equivalent to following Mealy machine.

[05]

(b) Construct a PDA for the following Context Free Grammar (CFG).

[05]

$$S \rightarrow CBAA$$

$$A \rightarrow 0A0 \mid 0$$

$$B \rightarrow 0B \mid 0$$

$$C \rightarrow 0C1 \mid 1C0 \mid \epsilon$$

- (c) Construct right linear grammar and left linear grammar for the regular expression 1(01)*0(0+1)*. [05]
- (d) Explain the concepts, acceptance by final state and acceptance by empty stack of a Pushdown automata with suitable example. [05]
- (e) Construct regular expression for the following FA using state elimination method. [05]

2. (a) Write down the regular expressions for the following language.

[04]

- i. L is the language of all strings over {0, 1} having odd number of 0's and any number of 1's.
- ii. L is the language of all strings over {0, 1} having number of 1's multiple of three.
- (b) Construct DFA for the following NFA with &-moves.

[10]

(c) Construct NFA with ε -moves for the regular expression $ab^*(a + b)^* + ba^*$

[06]

Paper / Subject Code: 41005 / Automata Theory

3. (a) Covert the following context free grammar into Chomsky normal form.

[10]

 $S \rightarrow A \mid C$

 $A \rightarrow aA \mid a \mid B$

 $B \rightarrow bB \mid b \mid \epsilon$

 $C \rightarrow cC \mid c \mid B$

(b) Construct a Context Free Grammar (CFG) for the following PDA.

[10]

 $M = (\{q_0, q_1\}, \{(,), [,]\}, \{(, [, Z_0\}, \delta, q_0, Z_0, \Phi) \text{ and } \delta \text{ is given by:}$

$$\delta(q_0,\,(,\,Z_0)=(q_0,\,(Z_0)$$

$$\delta(q_0, [, Z_0) = (q_0, [Z_0)$$

$$\delta(q_0, (, () = (q_0, (())$$

$$\delta(q_0, [, [) = (q_0, [[)$$

$$\delta(q_0, (, [) = (q_0, ([)$$

$$\delta(q_0, (, [) = (q_0, [()$$

$$\delta(q_0,), () = (q_0, \epsilon)$$

$$\delta(q_0,], [) = (q_0, \epsilon)$$

$$\delta(q_0, \varepsilon, Z_0) = (q_1, \varepsilon)$$

4. (a) Construct a PDA for $L = \{a^nbc^m \mid n, m \ge 1 \text{ and } n < m\}$.

[10]

- (b) Design a DFA over {0, 1} which accepts all strings that contain substring '11' and do not contain the substring '00'. [06]
- (c) Give context free grammar for the following languages.

[04]

- i. $L = \{0^n 1^m 0^k \mid m > n + k \text{ and } n, m, k \ge 0\}$
- ii. $L = \{a^{2n}b^{3m}c^md^n | n, m \ge 1\}$
- **5.** (a) Construct Turing Machine to accept language $L = \{a^nb^{2n+1} \mid n \ge 1\}$.

[10]

(b) Find the equivalent NFA with ε-moves accepting the regular language defined by the following grammar.[05]

$$S \rightarrow 01S \mid 0A$$

$$A \rightarrow 10 \mid 1B \mid 00A$$

 $B \rightarrow 1S \mid 1B \mid \epsilon$

(c) Let G be the grammar having following set of production.

[05]

$$S \rightarrow ABA$$

$$A \rightarrow aA \mid bA \mid \epsilon$$

 $B \rightarrow bbb$

For the string "ababbbba", find a leftmost derivation and rightmost derivation.

6. (a) Minimize the following DFA $M = (\{q_0, q_1, q_2, q_3, q_4, q_5\}, \{0, 1\}, \delta, q_0, \{q_3, q_5\})$, where δ is given in the following table. [06]

46	\rightarrow q ₀	q_1	q_2	* q 3	q ₄	* q 5
0	q_1	q_3	q_5	q_3	q_5	q_3
4	q_2	q ₄	$\overline{q_1}$	q_4	q_1	$\overline{q_4}$

- (b) Construct Turing Machine wherein given an input 1ⁿ leaves 1³ⁿ⁺¹ on the tape. Covert the TM design into equivalent function. [10]
- (c) What do you understand by closure property? State the various set theoretic operations under which regular languages are closed. Give suitable example. [04]