Low-Level Design (LLD) – E-Commerce Sales Analysis Difficulty Level: Medium Total Marks: 15 Standards Followed: 6 Functions 5 Visible Test Cases 3 Hidden Test Cases						
						
☐ Summary of Corrections (Based on SME Feedback)						
 All operations encapsulated as free-standing functions (no classes) Strict separation: each function does exactly one thing, returns data for testing Used NumPy (np.array, np.unique, np.sum, np.mean, np.argmax, etc.) No side-effects—input arrays never mutated Return types and shapes match driver's expectations 						
□ Concepts Tested						
 NumPy array creation & validation Built-in aggregations (sum, mean, max, min) Conditional labeling & clipping □ Iteration and boolean masking □ Array formatting (string conversion) 						
☐ Problem Statement Build a set of utility functions for analyzing daily sales figures stored in NumPy arrays. You must implement:						
 create_sales_array — convert list → np.ndarray validate_sales_array — ensure all values ≥0, non-empty compute_sales_metrics — total, average, maximum categorize_demand_levels — label each day "Low"/"Moderate"/"High" demand longest_growth_streak — longest strictly increasing run format_sales_data — convert numbers to comma-formatted strings 						

All functions should return new data (never print), matching exactly the types and shapes the driver.py tests expect.

OPERATIONS (Structured Format)

Operation 1: create_sales_array							
•	 □ Purpose: Convert a Python list of daily sales into a NumPy array. □ Input: o sales_data: A list of integers or floats representing sales. □ Output: o A NumPy array containing the same values. □ Logic: 1. Accept the sales_data list. 2. Use np.array() to convert it into a NumPy array. 3. Return the resulting array. □ Example: 						
	<pre>create_sales_array([150, 220, 90, 300]) → array([150, 220, 90, 300])</pre>						
Π Λ							
⊔ O p	eration 2: validate_sales_array						
• • •	Purpose: Check if the array is valid—non-empty, numeric, and non-negative. Input: o sales_array: A NumPy array. Output: o True if valid, False otherwise. Logic: 1. Check that the array is not empty using .size. 2. Confirm all values are numeric types. 3. Ensure all sales are ≥ 0 using np.all(). 4. Return the final Boolean result. Example:						

•	□ Purpose:				
	Calculate the total, average (rounded), and highest sale.				
•	☐ Input: o sales_array: A validated NumPy array. ☐ Output:				
•					
	o A tuple: (total, average, maximum) as (int/float, float, int/float).				
•	Logic:				
	1. Compute total sales using .sum().				
	 Calculate average using .mean() and round to 1 decimal. Find maximum sale using .max(). 				
	4. Return the 3 values as a tuple.				
	□ Example:				
	- Liampie.				
)pei	ration 4: categorize_demand_levels Purpose:				
)pei	□ Purpose: Label each day's demand as "Low", "Moderate", or "High".				
)pei	ration 4: categorize_demand_levels □ Purpose: Label each day's demand as "Low", "Moderate", or "High". □ Input:				
)pe	ration 4: categorize_demand_levels Purpose: Label each day's demand as "Low", "Moderate", or "High". Input: sales_array: A NumPy array of sales data.				
)pe	ration 4: categorize_demand_levels Purpose: Label each day's demand as "Low", "Moderate", or "High". Input: sales_array: A NumPy array of sales data. Output:				
)pe	ration 4: categorize_demand_levels Purpose: Label each day's demand as "Low", "Moderate", or "High". Input: sales_array: A NumPy array of sales data. Output: A NumPy array of strings with labels for each day.				
)pe:	ration 4: categorize_demand_levels Purpose: Label each day's demand as "Low", "Moderate", or "High". Input: sales_array: A NumPy array of sales data. Output: A NumPy array of strings with labels for each day. Logic:				
• •	ration 4: categorize_demand_levels Purpose: Label each day's demand as "Low", "Moderate", or "High". Input: sales_array: A NumPy array of sales data. Output: A NumPy array of strings with labels for each day. Logic: 1. Initialize an empty list labels.				
)pe	ration 4: categorize_demand_levels Purpose: Label each day's demand as "Low", "Moderate", or "High". Input: o sales_array: A NumPy array of sales data. Output: o A NumPy array of strings with labels for each day. Logic: 1. Initialize an empty list labels. 2. For each sale value:				
• •	ration 4: categorize_demand_levels Purpose: Label each day's demand as "Low", "Moderate", or "High". Input: sales_array: A NumPy array of sales data. Output: A NumPy array of strings with labels for each day. Logic: 1. Initialize an empty list labels.				
)pe	ration 4: categorize_demand_levels □ Purpose: Label each day's demand as "Low", "Moderate", or "High". □ Input:				
• •	ration 4: categorize_demand_levels Purpose: Label each day's demand as "Low", "Moderate", or "High". Input: o sales_array: A NumPy array of sales data. Output: o A NumPy array of strings with labels for each day. Logic: 1. Initialize an empty list labels. 2. For each sale value: <100 → "Low Demand" 100-250 → "Moderate Demand" >250 → "High Demand"				
• •	ration 4: categorize_demand_levels □ Purpose: Label each day's demand as "Low", "Moderate", or "High". □ Input: □ sales_array: A NumPy array of sales data. □ Output: □ A NumPy array of strings with labels for each day. □ Logic: 1. Initialize an empty list labels. 2. For each sale value: □ <100 → "Low Demand" □ 100-250 → "Moderate Demand" □ >250 → "High Demand" 3. Append the corresponding label to labels.				
• •	ration 4: categorize_demand_levels Purpose: Label each day's demand as "Low", "Moderate", or "High". Input: sales_array: A NumPy array of sales data. Output: A NumPy array of strings with labels for each day. Logic: 1. Initialize an empty list labels.				
pe	ration 4: categorize_demand_levels Purpose: Label each day's demand as "Low", "Moderate", or "High". Input: o sales_array: A NumPy array of sales data. Output: o A NumPy array of strings with labels for each day. Logic: 1. Initialize an empty list labels. 2. For each sale value:				
)pe	ration 4: categorize_demand_levels □ Purpose: Label each day's demand as "Low", "Moderate", or "High". □ Input: □ sales_array: A NumPy array of sales data. □ Output: □ A NumPy array of strings with labels for each day. □ Logic: 1. Initialize an empty list labels. 2. For each sale value: □ <100 → "Low Demand" □ 100-250 → "Moderate Demand" □ >250 → "High Demand" 3. Append the corresponding label to labels.				
)pe :	ration 4: categorize_demand_levels Purpose: Label each day's demand as "Low", "Moderate", or "High". Input: o sales_array: A NumPy array of sales data. Output: o A NumPy array of strings with labels for each day. Logic: 1. Initialize an empty list labels. 2. For each sale value: <100 → "Low Demand" 100-250 → "Moderate Demand" >250 → "High Demand"				

	Purpose:
F	Find the length of the longest strictly increasing streak.
	Input:
	o sales_array: A NumPy array of sales data.
	Output:
	 Integer representing the maximum streak length.
	Logic:
	1. Initialize max_streak = 1, current_streak = 1.
	2. Iterate through the array starting from index 1.
	3. If current value > previous → increment current_streak.
	4. Else → reset current_streak to 1.
Г	5. Update max_streak accordingly and return it. Example:
	•
1	ongest growth streak(np array([100, 120, 140, 130, 150])) →
	ongest_growth_streak(np.array([100, 120, 140, 130, 150])) → ation 6: format_sales_data
er:	Purpose: Format_sales_data Purpose: Format each sales number into a human-readable string with commas. Input: o sales_array: A NumPy array of integers or floats. Output: o A NumPy array of strings with comma separators.
era [H	Purpose: Format_sales_data Purpose: Format each sales number into a human-readable string with commas. Input: o sales_array: A NumPy array of integers or floats. Output:
 	Purpose: Format_sales_data Purpose: Format each sales number into a human-readable string with commas. Input: o sales_array: A NumPy array of integers or floats. Output: o A NumPy array of strings with comma separators. Logic:
 	Purpose: Format_sales_data Purpose: Format each sales number into a human-readable string with commas. Input: o sales_array: A NumPy array of integers or floats. Output: o A NumPy array of strings with comma separators. Logic: 1. Initialize an empty list formatted.
 	Purpose: Format_sales_data Purpose: Format each sales number into a human-readable string with commas. Input: o sales_array: A NumPy array of integers or floats. Output: o A NumPy array of strings with comma separators. Logic: 1. Initialize an empty list formatted. 2. For each number in the array:
 	Purpose: Format_sales_data Purpose: Format each sales number into a human-readable string with commas. Input: o sales_array: A NumPy array of integers or floats. Output: o A NumPy array of strings with comma separators. Logic: 1. Initialize an empty list formatted. 2. For each number in the array: Format using f"{num:,}"

☐ Test Cases & Marks Allocation

Test Case ID	Description	Function	Marks
TC1	Create sales array	<pre>create_sales_array()</pre>	2.5
TC2	Validate with negative values	<pre>validate_sales_array()</pre>	2.5
TC3	Compute total, average, max	<pre>compute_sales_metrics()</pre>	2.5
TC4	Categorize demand levels	<pre>categorize_demand_levels()</pre>	2.5
TC5	Longest growth streak	<pre>longest_growth_streak()</pre>	2.5
HTC1	Format with commas	<pre>format_sales_data()</pre>	2.5
HTC2	100% high demand boundary (e.g. 250→High)	<pre>categorize_demand_levels()</pre>	2.5
HTC3	Empty array validation in validate_sales_array()	<pre>validate_sales_array()</pre>	2.5
TOTAL			20

☐ Visible Test Cases (5)

1. TC1:

```
create_sales_array([150,220,90,300,175]) \# \rightarrow array([150,220,90,300,175])
```

2. TC2:

```
validate_sales_array(np.array([150,220,-5]))  # → False
```

3. TC3:

```
compute_sales_metrics(np.array([150,220,90,300,175])) \# \rightarrow (935,187.0,300)
```

4. TC4:

```
categorize_demand_levels(np.array([99,150,275])) \# \rightarrow ['Low', 'Moderate', 'High']
```

5. TC5:

```
longest_growth_streak(np.array([100,120,140,130,150,160,170,140,145,150,155])) # \rightarrow 4
```

☐ Hidden Test Cases (3)

• HTC1:

```
format_sales_data(np.array([1000,24500])) # → ['1,000','24,500']
```

• HTC2:

```
categorize_demand_levels(np.array([100,250])) # ->
['Moderate','Moderate']
```

• HTC3:

```
{\tt validate\_sales\_array(np.array([]))} \quad \# \  \, {\color{red} \rightarrow} \  \, {\tt False}
```