Topic Mining and Analysis: Probabilistic Topic Models

ChengXiang "Cheng" Zhai
Department of Computer Science
University of Illinois at Urbana-Champaign

Topic Mining and Analysis: Probabilistic Topic Models

Problems with "Term as Topic"

- Lack of expressive power
- → Topic = {Multiple Words}
- Can only represent simple/general topics
- Can't represent complicated topics
- Incompleteness in vocabulary coverage + weights on words
 - Can't capture variations of vocabulary (e.g., related words)
- Word sense ambiguity → Split an ambiguous word
 - A topical term or related term can be ambiguous (e.g., basketball star vs. star in the sky)

A probabilistic topic model can do all these!

Improved Idea: Topic = Word Distribution

"Sports"

 $P(w|\theta_1)$

sports 0.02 game 0.01 basketball 0.005 football 0.004 play 0.003 0.003 star nba 0.001 0.0005 travel ...

"Travel"

 $P(w|\theta_2)$

travel 0.05 attraction 0.03 trip 0.01 flight 0.004 hotel 0.003 island 0.003 culture 0.001 play 0.0002

"Science"

 $P(w|\theta_k)$

science 0.04 scientist 0.03 spaceship 0.006 telescope 0.004 genomics 0.004 star 0.002 genetics 0.001

0.00001 travel

...

 $\sum p(w \mid \theta_i) = 1$ $w \in V$

Vocabulary Set: V={w1, w2,....}

Probabilistic Topic Mining and Analysis

Input

- A collection of N text documents $C=\{d_1, ..., d_N\}$
- Vocabulary set: V={w₁, ..., w_M}
- Number of topics: k
- Output
 - k topics, each a word distribution: $\{\theta_1, ..., \theta_k\}$
- $\sum_{\mathbf{w} \in \mathbf{V}} \mathbf{p}(\mathbf{w} \mid \boldsymbol{\theta}_{\mathbf{i}}) = 1$

- Coverage of topics in each d_i : { π_{i1} , ..., π_{ik} }
- π_{ij} =prob. of d_i covering topic θ_j

$$\sum_{i=1}^k \pi_{ij} = 1$$

The Computation Task

Generative Model for Text Mining

Summary

- Topic represented as word distribution
 - Multiple words: allow for describing a complicated topic
 - Weights on words: model subtle semantic variations of a topic
- Task of topic mining and analysis
 - Input: collection C, number of topics k, vocabulary set V
 - Output: a set of topics, each a word distribution; coverage of all topics in each document

$$\Lambda = (\{ \theta_1, ..., \theta_k \}, \{ \pi_{11}, ..., \pi_{1k} \}, ..., \{ \pi_{N1}, ..., \pi_{Nk} \})$$

$$\forall j \in [1, k], \sum_{w \in V} p(w \mid \theta_j) = 1$$

$$\forall i \in [1, N], \sum_{j=1}^{k} \pi_{ij} = 1$$

Summary (cont.)

- Generative model for text mining
 - Model data generation with a prob. model: P(Data | Model, Λ)
 - Infer the most likely parameter values Λ^* given a particular data set: $\Lambda^* = \operatorname{argmax}_{\Lambda} p(\operatorname{Data}|\operatorname{Model}, \Lambda)$
 - <u>Take Λ^* as the "knowledge"</u> to be mined for the text mining problem
 - Adjust the design of the model to discover different knowledge