

Loopy pattern filter

-1	1	1	1	-1
-1	1	-1	1	-1
-1	1	1	1	-1
-1	-1	-1	1	-1
-1	-1	-1	1	-1
-1	-1	1	-1	-1
-1	1	-1	-1	-1

-1	1	1	1	-1
-1	1	-1	1	-1
-1	1	1	1	-1
-1	-1	-1	1	-1
-1	-1	-1	1	-1
-1	-1	1	-1	-1
-1	1	-1	-1	-1

-1	1	1	1	-1
-1	1	-1	1	-1
-1	1	1	1	-1
-1	-1	-1	1	-1
-1	-1	-1	1	-1
-1	-1	1	-1	-1
-1	1	-1	-1	-1

-1	1	1	1	-1
-1	1	-1	1	-1
-1	1	1	1	-1
-1	-1	-1	1	-1
-1	-1	-1	1	-1
-1	-1	1	-1	-1
-1	1	-1	-1	-1

Vertidal line filter

Diagonal line filter

-1	1	1	1	-1
-1	1	-1	1	-1
-1	1	1	1	-1
-1	-1	-1	1	-1
-1	-1	-1	1	-1
-1	-1	1	-1	-1
-1	1	-1	-1	-1

1	1	1
1	-1	1
1	1	1

-0.11	1	-0.11
-0.55	0.11	-0.33
-0.33	0.33	-0.33
-0.22	-0.11	-0.22
-0.33	-0.33	-0.33

Feature Map

*

	1	1	1
2	1	-1	1
	1	1	1

Loopy pattern detector

*

Loopy pattern detector

1	1	1	
1	-1	1	
1	1	1	

1		
	1	

Filters are nothing but the feature detectors

Location invariant: It can detect eyes in any location of the image

Feature Extraction

Classification

Pooling layer is used to reduce the size

5	1	3	4
8	2	9	2
1	3	0	1
2	2	2	0

8	9
3	2

2 by 2 filter with stride = 2

Shifted 9 at different position

	1	1	1	-1	-1
1	1	-1	1	-1	-1
١	1	1	1	-1	-1
	-1	-1	1	-1	-1
	-1	-1	1	-1	-1
	-1	1	-1	-1	-1
	1	-1	-1	-1	-1

1	-0.11	-0.11	
0.11	-0.33	0.33	
0.33	-0.33	-0.33	
-0.11	-0.55	-0.33	
-0.55	-0.33	-0.55	

1	0	0
0.11	0	0.33
0.33	0	0
0	0	0
0	0	0

Max	1
pooling	0.33
\rightarrow	0.33

0.33

0.33

0

0

Benefits of pooling

Reduces dimensions & computation Reduce overfitting as there are less parameters

Model is tolerant towards variations, distortions

Classification

Rotation

Thickness

CNN by itself doesn't take care of rotation and scale

- You need to have rotated, scaled samples in training dataset
- If you don't have such samples than use data augmentation methods to generate new rotated/scaled samples from existing training samples

