IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the Application of

Inventors: Daichi IMAMURA

Application No.: New Patent Application

Filed:

May 3, 2001

For:

OFDM COMMUNICATION APPARATUS AND DETECTION METHOD

CLAIM FOR PRIORITY

Honorable Commissioner of Patents and Trademarks Washington, D.C. 20231

Sir:

The benefit of the filing date of the following prior foreign application filed in the following foreign country is hereby requested for the above-identified application and the priority provided in 35 USC 119 is hereby claimed:

Japanese Appln. No. 11-258912, Filed September 13, 1999.

The International Bureau received the priority document within the time limit, as evidenced by the attached copy of the PCT/IB/304.

THIS PAGE BLANK (USPTO)

366088/27

It is requested that the file of this application be marked to indicate that the requirements of 35 USC 119 have been fulfilled and that the Patent and Trademark Office kindly acknowledge receipt of this document.

Respectfully submitted,

Date:

May 3, 2001

James E. Ledbetter

Registration No. 28,732

JEL/ejw

Attorney Docket No. <u>L9289.01135</u>

STEVENS, DAVIS, MILLER & MOSHER, L.L.P. 1615 L Street, NW, Suite 850

P.O. Box 34387

Washington, DC 20043-4387

Telephone: (202) 785-0100 Facsimile: (202) 408-5200 THIS PAGE BLANK (USPTO)

From the INTERNATIONAL BUREAU PCT WASHIDA, Kimihito **NOTIFICATION CONCERNING** Shintoshicenter Building SUBMISSION OR TRANSMITTASHIDA & AS ∪.5th:floor OF PRIORITY DOCUMENT 24-1-Tsurumaki 1-chome Tama-shi (PCT Administrative Instructions, Section 411) Tokyo 206-0034 JAPON Date of mailing (day/month/year) 17 November 2000 (17.11.00) Applicant's or agent's file reference IMPORTANT NOTIFICATION 2F00009-PCT International filing date (day/month/year) International application No. . 13 September 2000 (13.09.00) PCT/JP00/06243 Priority date (day/month/year) International publication date (day/month/year) 13 September 1999 (13.09.99) Not yet published Applicant MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD. et al

- The applicant is hereby notified of the date of receipt (except where the letters "NR" appear in the right-hand column) by the
 International Bureau of the priority document(s) relating to the earlier application(s) indicated below. Unless otherwise
 indicated by an asterisk appearing next to a date of receipt, or by the letters "NR", in the right-hand column, the priority
 document concerned was submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b).
- 2. This updates and replaces any previously issued notification concerning submission or transmittal of priority documents.
- 3. An asterisk(*) appearing next to a date of receipt, in the right-hand column, denotes a priority document submitted or transmitted to the International Bureau but not in compliance with Rule 17.1(a) or (b). In such a case, the attention of the applicant is directed to Rule 17.1(c) which provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.
- 4. The letters "NR" appearing in the right-hand column denote a priority document which was not received by the International Bureau or which the applicant did not request the receiving Office to prepare and transmit to the International Bureau, as provided by Rule 17.1(a) or (b), respectively. In such a case, the attention of the applicant is directed to Rule 17.1(c) which provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.

Priority datePriority application No.Country or regional Office or PCT receiving OfficeDate of receipt of priority document13 Sept 1999 (13.09.99)11/258912JP06 Nove 2000 (06.11.00)

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland

Authorized officer

Magda BOUACHA

B

Telephone No. (41-22) 338.83.38

THIS PAGE BLANK (USPTO)

PCT/JP00/06243

B 国

13.09.00

PATENT OFFICE JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されて いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office. REC'D 0 6 NOV 2000

WIPO

出願年月日 Date of Application:

1999年 9月13日 PCT

出 Application Number: 平成11年特許願第258912号

Applicant (s):

松下電器産業株式会社

PRIORITY SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2000年10月20日

特許庁長官 Commissioner. Patent Office

特平11-258912

【書類名】

特許願

【整理番号】

2906415191

【提出日】

平成11年 9月13日

【あて先】

特許庁長官殿

【国際特許分類】

H04J 11/00

【発明者】

【住所又は居所】

神奈川県横浜市港北区綱島東四丁目3番1号 松下通信

工業株式会社内

【氏名】

今村 大地

【特許出願人】

【識別番号】

000005821

【氏名又は名称】

松下電器産業株式会社

【代理人】

【識別番号】

100105050

【弁理士】

【氏名又は名称】

鷲田 公一

【手数料の表示】

【予納台帳番号】

041243

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】

9700376

【プルーフの要否】

要

【書類名】

明細書

【発明の名称】

OFDM通信装置および検波方法

【特許請求の範囲】

【請求項1】 既知信号を含むOFDM信号の前記既知信号を用いて残留位相誤差推定値を求める推定値算出手段と、前記残留位相誤差推定値を用いて前記 OFDM信号から得られた情報信号に対して残留位相誤差を補償する第1の補償手段と、残留位相誤差が補償された前記OFDM信号の判定値を既知信号として用いて前記OFDM信号から得られた情報信号に対して伝搬路歪を補償する第2の補償手段と、を具備することを特徴とするOFDM通信装置。

【請求項2】 推定値算出手段は、複数の既知信号を使用した遅延検波により残留位相誤差推定値を求めることを特徴とする請求項1記載のOFDM通信装置。

【請求項3】 推定値算出手段は、複数の残留位相誤差推定値の平均値を前 記残留位相誤差推定値として更新することを特徴とする請求項1または請求項2 記載のOFDM通信装置。

【請求項4】 推定値算出手段は、パイロットシンボルを用いて求めた第1 の残留位相誤差推定値と、パイロットキャリアを用いて求めた第2の残留位相誤差推定値とに対して重み付けを行い、重み付け後の前記第1の残留位相誤差推定値と重み付け後の前記第2の残留位相誤差推定値とを加算することにより残留位相誤差推定値を求めることを特徴とする請求項1から請求項3のいずれかに記載のOFDM通信装置。

【請求項5】 推定値算出手段は、パイロットキャリアを用いて求めた複数の第2の残留位相誤差推定値の平均値を前記第2の残留位相誤差推定値として更新することを特徴とする請求項4記載のOFDM通信装置。

【請求項6】 推定値算出手段は、FFT処理前の既知信号を用いて残留位相誤差推定値を求め、第1の補償手段は、FFT処理後の情報信号に対して残留位相誤差を補償することを特徴とする請求項1記載のOFDM通信装置。

【請求項7】 第1の補償手段および第2の補償手段によって補償できなかった位相雑音をパイロットキャリアの同期検波により推定・補償する第3の補償

手段を具備することを特徴とする請求項1から請求項6記載のOFDM通信装置

【請求項8】 受信情報の長さおよび位相雑音量に応じて、第1の補償手段と第2の補償手段との接続状態、および第2の補償手段と第3の補償手段との接続状態を適宜切り替えることを特徴とする請求項1から請求項7記載のOFDM通信装置。

【請求項9】 請求項1から請求項8記載のOFDM通信装置を搭載することを特徴とする移動体通信端末装置。

【請求項10】 請求項1から請求項8記載のOFDM通信装置を搭載することを特徴とする移動体通信基地局装置。

【請求項11】 既知信号を含むOFDM信号の前記既知信号を用いて残留位相誤差推定値を求め、前記残留位相誤差推定値を用いて前記OFDM信号から得られた情報信号に対して残留位相誤差を補償し、残留位相誤差が補償された前記OFDM信号の判定値を既知信号として用いて前記OFDM信号から得られた情報信号に対して適応的に伝搬路応答の推定・補償を行う、ことを特徴とする検波方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、ディジタル無線通信システムにおけるOFDM通信装置および検波 方法に関する。

[0002]

【従来の技術】

現在の地上波の伝送路における伝送特性の劣化の主な要因は、マルチパス妨害である。このマルチパス妨害に対して強いOFDM (Orthogonal Frequency Division Multiplexing) 伝送方式が近年注目されている。このOFDMは、ある信号区間で互いに直交する多数(数十~数百)のディジタル変調波を多重する方式である。

[0003]

従来のOFDM通信装置では、受信信号をFFT回路で時間-周波数変換し、 受信信号に含まれるパイロットシンボルと既知信号との間で複素乗算を行うこと により、伝搬路の周波数応答推定値を得る。そして、周波数応答推定値と、情報 OFDMシンボルとを複素乗算することにより、伝搬路歪を補償する。この伝搬 路歪補償された受信信号を誤り訂正回路で、復調、誤り訂正して受信データであ る情報ビット列を得る。

[0004]

上記従来のOFDM通信装置においては、長い情報を送信する場合に、図16に示すように、情報OFDMシンボル中にある一定間隔で伝搬路応答推定用パイロットシンボル(斜線部)を挿入して、時々刻々変動する伝搬路応答の変化に追従させている。すなわち、図17に示すように、パイロットシンボルAで得られた伝搬路推定値を用いて情報OFDMシンボル1~nを補償し、パイロットシンボルBで得られた伝搬路推定値を用いて情報OFDMシンボルn+1~2nを補償する。

[0005]

しかしながら、このように長い情報を送信する場合において、伝搬路の時間変動に追従するためには、頻繁にパイロットシンボルなどの既知信号を挿入する必要があるため、伝送効率が落ちるという問題がある。

[0006]

この問題を解決するために、本発明者は、先に、受信した情報信号の判定値を 既知信号として用いて、伝搬路応答を適応的に推定するOFDM通信装置および 伝搬路推定方法を提案した。これにより、長い情報を送信する場合でも、伝搬路 応答の時間変動が大きい場合でも、伝送効率を低下させずに、伝送路の時間変動 に適応的に追従して低い誤り率を維持することができる。

[0007]

【発明が解決しようとする課題】

しかしながら、上記本発明者が先に提案したOFDM通信装置および伝搬路推 定方法では、残留位相誤差が存在する場合に、以下のようなことが考えられる。 なお、「残留位相誤差」とは、搬送波周波数オフセット補償で補償しきれなかっ

[0008]

すなわち、上記本発明者が先に提案したOFDM通信装置および伝搬路推定方法では、誤り訂正された受信信号を再符号化した信号または伝搬路歪補償後の受信信号の信号点を硬判定した信号を用いて伝搬路応答推定値の適応更新を行うと同時に、残留位相誤差補償を行なうために、伝搬路歪補償後にパイロットキャリアを用いて残留位相誤差を推定し補償する場合、残留位相誤差の時間的変動量が伝搬路変動による位相誤差の時間的変動量に対して大きいため、伝搬路推定の適応更新を用いて残留位相誤差まで含めて推定・補償しようとすると、新たに推定した伝搬路推定値のみを用いて補償する必要がある。

[0009]

しかしながら、新たに推定した伝搬路推定値のみを用いて補償すると、誤り訂 正後の情報ビットまたは硬判定後の情報シンボルに誤りが存在する場合、伝搬路 推定誤差が大きくなってしまう。また、新たに推定した伝搬路推定値のみを用い て補償すると、加法性雑音等の外乱による推定誤差も無視できなくなる。

[0010]

したがって、受信特性を劣化させないためには、過去の情報を利用して伝搬路 推定値を更新する必要がある。

[0011]

しかしながら、上記のように過去の伝搬路推定値を用いて逐次伝搬路補償を行った後パイロットキャリアによる残留位相誤差推定・補償を行うと、時間変動の速い残留位相誤差による位相変動に追従できず、後段での残留位相誤差推定ができないほど位相回転が進むおそれがある。また、パイロットキャリアの伝搬路で補償誤差が大きい場合、推定される残留位相誤差にパイロットキャリアの伝搬路応答の位相変動分が加わってしまう。この状態で残留位相誤差推定・補償を行うと、伝搬路応答の位相変動は各サブキャリアで値が異なるため、残留位相誤差の推定値に誤差を生じ、受信特性の劣化を招いてしまう。

[0012]

本発明はかかる点に鑑みてなされたものであり、伝搬路応答の時間的変動が大きい場合でも伝送効率を低下させずに、伝送路の時間変動に適応的に追従して受信特性を向上させるとともに、残留位相誤差が存在する場合にも、伝送効率を低下させずに残留位相誤差の時間変動に適応的に追従して受信特性を向上させることができるOFDM通信装置および検波方法を提供することを目的とする。

[0013]

【課題を解決するための手段】

本発明のOFDM通信装置は、既知信号を含むOFDM信号の前記既知信号を 用いて残留位相誤差推定値を求める推定値算出手段と、前記残留位相誤差推定値 を用いて前記OFDM信号から得られた情報信号に対して残留位相誤差を補償す る第1の補償手段と、残留位相誤差が補償された前記OFDM信号の判定値を既 知信号として用いて前記OFDM信号から得られた情報信号に対して伝搬路歪を 補償する第2の補償手段と、を具備する構成を採る。

[0014]

本発明のOFDM通信装置は、推定値算出手段は、複数の既知信号を使用した 遅延検波により残留位相誤差推定値を求める構成を採る。

[0015]

これらの構成によれば、搬送波周波数同期誤差により生じた残留位相誤差を正確に推定・補償した後、伝搬路推定・補償を行うため、残留位相誤差が大きい場合であっても、伝搬路推定・補償では伝搬路変動のみに追従すればよいので、残留位相誤差の存在下であっても、優れた受信特性の適応同期検波を行うことができる。

[0016]

本発明のOFDM通信装置は、推定値算出手段は、複数の残留位相誤差推定値の平均値を前記残留位相誤差推定値として更新する構成を採る。

[0017]

この構成によれば、2シンボル以上のパイロットシンボルまたはパイロットキャリアにより推定された残留位相誤差の平均値を用いて残留位相誤差を補償するため、残留位相誤差の存在下であっても、優れた受信特性の適応検波を行うこと

[0018]

本発明のOFDM通信装置は、推定値算出手段は、パイロットシンボルを用いて求めた第1の残留位相誤差推定値と、パイロットキャリアを用いて求めた第2 の残留位相誤差推定値とに対して重み付けを行い、重み付け後の前記第1の残留 位相誤差推定値と重み付け後の前記第2の残留位相誤差推定値とを加算すること により残留位相誤差推定値を求める構成を採る。

[0019]

この構成によれば、パイロットシンボルによる残留位相誤差推定と、パイロットキャリアによる残留位相誤差推定を組み合わせて行い、両者で算出された残留位相誤差の推定値を使用して残留位相誤差を補償するため、残留位相誤差の存在下であっても、優れた受信特性の適応検波を行うことができるとともに、きわめて精度の高い残留位相誤差の推定が可能となる。

[0020]

本発明のOFDM通信装置は、推定値算出手段は、パイロットキャリアを用いて求めた複数の第2の残留位相誤差推定値の平均値を前記第2の残留位相誤差推定値として更新する構成を採る。

[0021]

この構成によれば、パイロットキャリアによる残留位相誤差推定値を複数シンボル分平均化して残留位相誤差推定値を更新するため、残留位相誤差の存在下であっても、優れた受信特性の適応検波を行うことができるとともに、きわめて精度の高い残留位相誤差の推定が可能となり、さらに、加法性雑音によって発生する残留位相誤差の推定値誤差を低減することができる。

[0022]

本発明のOFDM通信装置は、推定値算出手段は、FFT処理前の既知信号を 用いて残留位相誤差推定値を求め、第1の補償手段は、FFT処理後の情報信号 に対して残留位相誤差を補償する構成を採る。

[0023]

この構成によれば、FFT処理と残留位相誤差推定・補償を同時に並行して行うため、残留位相誤差の存在下であっても、優れた受信特性の適応検波を行うことができるとともに、受信信号に対する残留位相誤差の推定・補償に要する時間を短縮することができる。

[0024]

þ₹ **~**

本発明のOFDM通信装置は、第1の補償手段および第2の補償手段によって 補償できなかった位相雑音をパイロットキャリアの同期検波により推定・補償す る第3の補償手段を具備する構成を採る。

[0025]

この構成によれば、伝搬路推定・補償の後に、位相雑音推定・補償を行うため、残留位相誤差の存在下であっても、優れた受信特性の適応検波を行うことができるとともに、残留位相誤差補償および伝搬路歪補償で補償しきれない位相雑音を補償することができる。

[0026]

本発明のOFDM通信装置は、受信情報の長さおよび位相雑音量に応じて、第 1の補償手段と第2の補償手段との接続状態、および第2の補償手段と第3の補 償手段との接続状態を適宜切り替える構成を採る。

[0027]

この構成によれば、受信情報の長さおよび位相雑音量に応じて、残留位相誤差 推定補償および位相雑音推定補償を行うか否か適宜切り替えるため、優れた受信 特性の適応検波を行うことができるとともに、受信情報の長さおよび位相雑音量 に応じて、処理に無駄のない常に最適な同期検波を行うことができる。

[0028]

本発明の移動体通信端末装置は、前記いずれかのOFDM通信装置を搭載する 構成を採る。

[0029]

本発明の移動体通信基地局装置は、前記いずれかのOFDM通信装置を搭載する構成を採る。

[0030]

これらの構成によれば、搬送波周波数同期誤差により生じた残留位相誤差を正確に推定・補償した後、伝搬路推定・補償を行うため、残留位相誤差が大きい場合であっても、伝搬路推定・補償では伝搬路変動のみに追従すればよいので、残留位相誤差の存在下であっても、優れた受信特性の適応同期検波を行うことができる。

[0031]

本発明の検波方法は、既知信号を含むOFDM信号の前記既知信号を用いて残留位相誤差推定値を求め、前記残留位相誤差推定値を用いて前記OFDM信号から得られた情報信号に対して残留位相誤差を補償し、残留位相誤差が補償された前記OFDM信号の判定値を既知信号として用いて前記OFDM信号から得られた情報信号に対して適応的に伝搬路応答の推定・補償を行うようにした。

[0032]

この方法によれば、搬送波周波数同期誤差により生じた残留位相誤差を正確に推定・補償した後、伝搬路推定・補償を行うため、残留位相誤差が大きい場合であっても、伝搬路推定・補償では伝搬路変動のみに追従すればよいので、残留位相誤差の存在下であっても、優れた受信特性の適応同期検波を行うことができる

[0033]

【発明の実施の形態】

本発明の骨子は、伝搬路推定・補償を行う前に残留位相誤差推定・補償を行って残留位相誤差を除去した信号に対し伝搬路推定し、受信信号に含まれる、各サブキャリアに共通な変化量である残留位相誤差および各サブキャリアで異なる変化量である伝搬路応答を独立に、それぞれの時間変動に追従して推定・補償を行うことにより、残留位相誤差が無視できない環境で長い情報を送る場合であっても、伝送効率を低下させることなく優れた受信特性を実現することである。

[0034]

以下、本発明の実施の形態について、添付図面を参照して詳細に説明する。

(実施の形態1)

図1は、本発明の実施の形態1に係るOFDM通信装置の構成を示すブロック

図である。

アンテナ101を介して受信されたOFDM信号は、無線受信回路102で通常の無線受信処理がなされてベースバンド信号となる。このベースバンド信号は、直交検波器で直交検波処理され、ローパス・フィルタで不要周波数成分が除去され、A/D変換される。なお、直交検波処理により受信信号は同相成分と直交成分に分かれるが図面では一つの信号経路としている。

[0035]

このベースバンド信号は、FFT (Fast Fourier Transform) 回路103でFFT演算されて、各サブキャリアに割り当てられた信号が得られる。FFT回路103でFFT演算された信号は、残留位相誤差推定補償回路104に送られ、受信OFDM信号に含まれる連続して送られたパイロットシンボル同士で遅延検波を行うことにより、残留位相誤差の推定を行う。残留位相誤差推定補償回路104は、推定された残留位相誤差をもとに、パイロットシンボルとそれ以降の情報OFDMシンボルのすべてのサブキャリアに対して、残留位相誤差補償を行う

[0036]

残留位相誤差を補償された信号は、伝搬路推定補償回路105に送られ、受信 OFDM信号に含まれるパイロットシンボルと既知信号との間で複素乗算を行う ことにより、伝搬路推定を行い、最初の伝搬路推定値(初期値)を得る。

[0037]

伝搬路推定補償回路105では、最初の伝搬路推定値を用いて情報OFDMシンボルの伝搬路歪補償をOFDMシンボル毎に逐次行う。伝搬路歪補償された情報シンボルは、逐次誤り訂正回路106に送られて誤り訂正される。誤り訂正回路106からは、伝送路符号化される単位毎に誤り訂正された情報ビット列が出力される。この情報ビット列は、誤り検出回路107に送られ、そこで誤り検出が行われて、受信データとして出力される。

[0038]

誤り訂正後の情報ビット列は、定期的に再符号化回路108に送られる。再符号化回路108では、誤り訂正された情報ビットに対して再び伝送路符号化処理

、変調処理、および再配列処理が行われる。このように再符号化された誤り訂正後の情報ビット列は、伝搬路推定補償回路105に送られる。伝搬路推定補償回路105では、この再符号化情報ビットを既知信号として用い、FFT演算された信号と複素乗算することにより伝搬路推定を行い、伝搬路推定値を求める。この伝搬路推定値は、最初の伝搬路推定値に更新される。

[0039]

ここで、伝搬路推定値の推定精度と時間的変動への追従性とを両立するために、過去の伝搬路推定値も用いて伝搬路推定値の更新を行うことが考えられる。この場合でも、伝搬路推定補償回路105に入力される受信OFDM信号は、すでに相対的に時間的変動の大きな残留位相誤差成分が補償された状態であるため、相対的に時間的変動の小さな伝搬路応答の時間的変動および位相雑音を高い精度で、適応的に推定・補償することが可能となる。

[0040]

一方、各サブキャリア毎の送信データである情報信号は、図示しない変調部で、例えば、QPSK (Quadrature Phase Shift Keying) やQAM (Quadrature Amplitude Modulation) などでディジタル変調処理された後、IFFT (Inverse Fast Fourier Transform) 回路109でIFFT演算されてOFDM信号となる。このOFDM信号は、D/A変換された後に、無線送信回路110に送られ、そこで通常の無線送信処理がなされて送信信号としてアンテナ101を介して送信される。

[0041]

次いで、残留位相誤差補償回路の構成および動作について、図2および図3を 用いて説明する。図2は、図1に示す残留位相誤差推定補償回路の内部構成を示すブロック図である。また、図3は、図2に示す位相誤差演算回路の内部構成を 示すブロック図である。

[0042]

図2に示す残留位相誤差推定補償回路は、連続して送信される複数のパイロットシンボルを用いて残留位相誤差推定・補償を行なう回路である。また、パイロットシンボルを用いて残留位相誤差推定・補償を行う場合のOFDM通信に使用

される信号は、図4に示す構成を有する。すなわち、パイロットシンボル以外の プリアンブルに続けて、既知信号である複数の伝搬路応答推定用パイロットシン ボルの後に、情報OFDMシンボルが続く構成となる。

[0043]

FFT処理された受信OFDM信号のうち1番目のパイロットシンボルが、スイッチ201の接続・切断制御により、遅延器202、複素乗算器203および位相誤差演算回路204へ入力される。2番目のパイロットシンボルも同様に入力され、複素乗算器203において、1番目のパイロットシンボルと2番目のパイロットシンボルとで遅延検波が行われる。n個パイロットシンボルが送信されていれば、i番目とi-1番目のパイロットシンボル間で遅延検波が行われる。遅延検波された信号は、連続する2パイロットシンボル間の位相差を表している

[0044]

複素乗算器203は伝搬路の時間的変動が無視できる程度の時間で遅延検波が 行われるように設定されているため、複素乗算器203から出力される信号は、 残留位相誤差成分のみを含んだ信号となる。そして、この残留位相誤差成分のみ を含んだ信号が、位相誤差演算回路204へ入力される。

[0045]

位相誤差演算回路204では、遅延検波により算出された各サブキャリアの残留位相誤差を用いて残留位相誤差を算出する。ここで、複素乗算器203の後段に位相誤差演算回路204を設けるのは次の理由による。すなわち、パイロットシンボルやパイロットキャリアの遅延検波により算出される各サブキャリアの位相誤差は加法性雑音を含んでいるため、各サブキャリアの位相誤差を単体で用いると、推定精度が悪化する。したがって、パイロットシンボルあるいはパイロットキャリアから求められる複数の位相誤差を用いて、雑音成分を抑圧し、より推定制度の高い残留位相誤差推定値を算出するために、複素乗算器203の後段に位相誤差演算回路204を設けたものである。

[0046]

位相誤差演算回路204は、例えば図3に示すような内部構成となっている。

図3において、複素乗算器203から出力される各パイロットキャリアのすべての遅延検波出力が、同相成分(I成分)、直交成分(Q成分)別々に、全受信パイロットキャリア加算器301および全受信パイロットキャリア加算器302により加算される。

[0047]

一方、2乗和回路303により各パイロットキャリアの電力値 (I²+Q²) が 算出され、全受信パイロットキャリア加算器304により各パイロットキャリア のすべての電力値が加算される。

[0048]

そして、除算器305および除算器306によって、加算された遅延検波出力 を電力加算値で除算することにより、正規化する(振幅を1にする)。

[0049]

位相誤差演算回路204を、図3に示すような構成とすることにより、複数のパイロットキャリアから得られた残留位相誤差出力を平均化しS/Nを大きくすることができるため、より正確な残留位相誤差推定値を算出することができる。

[0050]

なお、位相誤差演算回路 2 0 4 の構成は、上記構成に限られるものではなく、雑音成分を抑圧し、残留位相誤差出力を平均化しS/Nを大きくすることができる回路であれば、どのような構成をとってもよい。いくつかの構成を例示すると、1) 等利得合成によりS/Nを向上する構成、2) 最大比合成によりS/Nを向上する構成、3) ある閾値を設け、これを超えたパイロットキャリアないしはパイロットシンボルのキャリアを用いて平均、等利得合成あるいは最大比合成をおこなうことによりS/Nを向上する構成、4) もっとも受信電力の大きいキャリアによる位相誤差出力を用いる構成等が挙げられる。いずれも位相誤差推定結果のS/Nを向上することを目的としたものである。

[0051]

また、パイロットシンボルを2つ以上用いる場合、位相誤差演算回路204が 演算結果を平均化することにより、さらに雑音成分を抑圧した正確な位相誤差を 推定することができるようになる。 1

位相誤差演算回路204の出力は一旦メモリ205に格納され、複素乗算器206へ入力される。複素乗算器206では、複素乗算により、1シンボル前の累積残留位相誤差に現在の残留位相誤差が新たに累積され、メモリ207へ格納される。

[0053]

この格納された累積残留位相誤差の推定値は、スイッチ208の接続・切断制御により、一定間隔ごとに複素乗算器209へ出力される。そして、複素乗算器209で、FFT回路103の出力信号と累積残留位相誤差の推定値との複素乗算を行なうことにより、残留位相誤差が補償される。残留位相誤差が補償された受信OFDM信号は、伝搬路推定補償回路105へ送られる。

[0054]

なお、残留位相誤差推定補償回路104において、図5に示すように、スイッチ201の代わりにセレクタ501を用いて、情報OFDMシンボル間に挿入されたパイロットキャリアを用いて、残留位相誤差の推定・補償を行うようにしてもよい。

[0055]

この場合、FFT回路103より出力された受信OFDM信号のうち、パイロットキャリアをセレクタ501によって取り出す。パイロットキャリア以外の信号は複素乗算器209へ入力される。セレクタ501により取り出されたパイロットキャリアは、上記同様の動作にて、複素乗算器203で、1つ前のパイロットキャリアとの遅延検波が行なわれる。

[0056]

遅延検波後の信号は位相誤差演算回路204で、パイロットキャリア数分の合成や平均が行なわれ、残留位相誤差の推定値が算出される。算出された残留位相誤差の推定値は、メモリ205に格納される。

[0057]

メモリ205に格納された残留位相誤差の推定値は、複素乗算器206へ入力 され、メモリ207に格納されている過去の累積された残留位相誤差と複素乗算 される。これにより、10FDMシンボル分の残留位相誤差がメモリ207に格納される。そして、複素乗算器209で、FFT回路103の出力信号と累積残留位相誤差の推定値との複素乗算を行なうことにより、残留位相誤差が補償される。残留位相誤差が補償された受信OFDM信号は、伝搬路推定補償回路105へ送られる。

[0058]

このように、本実施の形態によれば、搬送波周波数同期誤差により生じた残留 位相誤差を正確に推定・補償した後、伝搬路推定・補償を行うため、残留位相誤 差が大きい場合であっても、伝搬路推定・補償では伝搬路変動のみに追従すれば よいので、残留位相誤差の存在下であっても、優れた受信特性の適応同期検波を 行うことができる。

[0059]

(実施の形態2)

本実施の形態に係るOFDM通信装置は、実施の形態1と同様の構成を有し、 FFT処理の前段で時系列信号に対して残留位相誤差推定・補償を行うものであ る。

[0060]

図6は、本発明の実施の形態2に係るOFDM通信装置の構成を示すブロック 図である。但し、実施の形態1と同一の構成には同一の符号を付し、詳しい説明 は省略する。

[0061]

残留位相誤差推定補償回路601は、無線受信回路102から出力されたOF DM信号に対して残留位相誤差の推定・補償を行う。残留位相誤差推定補償回路 601は、図7に示す構成を採る。図7は、図6に示す残留位相誤差推定補償回 路の内部構成を示すブロック図である。

[0062]

無線受信回路102から入力された受信時系列信号は、遅延器701および複素乗算器702に入力され、連続して送信される複数のパイロット信号の間で遅延検波が行なわれる。遅延検波された信号は、積算器703へ入力される。

[0063]

ここで、FFTの入出力数をN、受信パイロットシンボルをR(mT,n); Tは 1 OFDMシンボル時間、m=0, 1, 2, \cdots 、n=1、2、 \cdots 、Nとすると、 複素乗算器 7 0 2 および積算器 7 0 3 による処理後の出力は以下の式(1)のようになる。

【数1】

$$\sum_{n=1}^{N} R(mT,n)R((m-1)T,n) \cdots (1)$$

[0064]

次いで、この処理結果の振幅が1になるように正規化回路704で正規化し、 1FFTサンプリング時間あたりに変化する位相変動量(複素値)を位相変動量 算出器705により算出する。

[0065]

算出された1FFTサンプリング時間あたりの位相変動量は、複素乗算器706へ入力され、メモリ708に蓄えられた1FFTサンプル前の累積位相変動量に1サンプル分の位相変動量が累積される。この累積された位相変動量は、正規化回路707で振幅が1になるように正規化された後、メモリ708に蓄えられる。そして、複素乗算器709で、無線受信回路102の出力信号と位相変動量との複素乗算を行なうことにより、残留位相誤差が補償される。

[0066]

このように、本実施の形態によれば、搬送波周波数同期誤差により生じた残留 位相誤差を正確に推定・補償した後、伝搬路推定・補償を行うため、残留位相誤 差が大きい場合であっても、伝搬路推定・補償では伝搬路変動のみに追従すれば よいので、残留位相誤差の存在下であっても、優れた受信特性の適応同期検波を 行うことができる。

[0067]

(実施の形態3)

本実施の形態に係るOFDM通信装置は、実施の形態1と同様の構成を有し、 残留位相誤差推定補償回路において、複数シンボル分のパイロットキャリアによ り推定された残留位相誤差の平均値を用いて残留位相誤差を補償するものである

[0068]

本実施の形態に係るOFDM通信装置の構成は、残留位相誤差推定補償回路以外について実施の形態 1 と同様であるので、残留位相誤差推定補償回路について説明する。

[0069]

図8は、本発明の実施の形態3に係るOFDM通信装置の残留位相誤差推定補 償回路の内部構成を示すブロック図である。但し、実施の形態1と同一の構成に は同一の符号を付し、詳しい説明は省略する。

[0070]

遅延検波後の信号は位相誤差演算回路204で、パイロットキャリア数分の合成や平均が行なわれ、残留位相誤差の推定値が算出される。算出された残留位相誤差の推定値は、平均化回路801およびスイッチ802へ出力される。

[0071]

平均化回路 8 0 1 では、複数 O F D M シンボル分の残留位相誤差推定値の平均値を算出する。平均するシンボル数 n は、残留位相誤差推定値にパイロットキャリアの伝搬路応答の時間変動成分が含まれないようにするため、伝搬路応答の時間変動に比べ十分に小さな値とする。平均化された残留位相誤差推定値は、メモリ 8 0 3 に一旦蓄積された後、スイッチ 8 0 2 へ出力される。なお、平均化回路 8 0 1 で行われる平均化処理は、加法性雑音による推定誤差を低減できれば、その処理方法に特に限定されない。

[0072]

スイッチ802では、位相誤差演算回路204の出力とメモリ803の出力とを切り替えて、複素乗算器206へ入力する。このようにスイッチ802によって複素乗算器206への入力を切り替えているのは、平均化処理が終了するまでのnシンボル分の間は位相誤差演算回路204の出力すなわち平均化されていない残留位相誤差推定値を直接使用し、平均化処理終了後はメモリ803の出力、すなわち平均化された残留位相誤差推定値を用いることにより、平均化処理によ

[0073]

なお、nシンボル分平均するまでの間は、その時点で平均された値を逐次用いて残留位相誤差推定・補償を行うようにしてもよい。つまり、i番目(1<i<n)のシンボルでは、1番目からi番目までの平均値を用いるようにしてもよい

[0074]

スイッチ802で選択された残留位相誤差推定値は複素乗算器206へ入力される。

[0075]

このように、本実施の形態によれば、残留位相誤差推定補償回路において、2 シンボル以上のパイロットシンボルまたはパイロットキャリアにより推定された 残留位相誤差の平均値を用いて残留位相誤差を補償するため、残留位相誤差の存 在下であっても、優れた受信特性の適応検波を行うことができるとともに、加法 性雑音によって発生する残留位相誤差の推定値誤差を低減することができる。

[0076]

(実施の形態4)

本実施の形態に係るOFDM通信装置は、実施の形態1と同様の構成を有し、 残留位相誤差推定補償回路において、パイロットシンボルによる残留位相誤差推 定と、パイロットキャリアによる残留位相誤差推定を組み合わせて行い、両者で 算出された残留位相誤差の推定値を使用して残留位相誤差を補償するものである

[0077]

本実施の形態に係るOFDM通信装置の構成は、残留位相誤差推定補償回路以外について実施の形態1と同様であるので、残留位相誤差推定補償回路について説明する。

[0078]

図9は、本発明の実施の形態4に係るOFDM通信装置の残留位相誤差推定補 價回路の内部構成を示すブロック図である。但し、実施の形態1と同一の構成に

[0079]

図9に示す残留位相誤差推定補償回路は、実施の形態に1におけるパイロットシンボルを用いた残留位相誤差推定補償回路と、実施の形態に1におけるパイロットキャリアを用いた残留位相誤差推定補償回路とを組み合わせたものである。

[0800]

図9において、まずパイロットシンボルの遅延検波結果を用いて、位相誤差演算回路1で残留位相誤差の推定値が算出され、スイッチ901およびスイッチ902へ出力される。このとき、スイッチ901は、位相誤差演算回路1で算出された残留位相誤差の推定値がメモリ205へ蓄積される状態となっており、スイッチ902は、位相誤差演算回路1で算出された残留位相誤差の推定値が複素乗算器206へ入力される状態となっている。

[0081]

パイロットシンボルに続く情報OFDMシンボルでは、パイロットキャリアの 遅延検波結果を用いて、位相誤差演算回路2で残留位相誤差の推定値を算出する 。なお、位相誤差演算回路1および位相誤差演算回路2は、実施の形態1におけ る位相誤差演算回路204と同一の構成を採るものである。

[0082]

メモリ205に蓄えられたパイロットシンボルから算出された残留位相誤差推定値は乗算器903によって重み付けされ、また、パイロットキャリアから算出された残留位相誤差推定値は乗算器904によって重み付けされる。そして、これらの重み付けされた残留位相誤差推定値が、加算器905によって加算される

[0083]

従って、加算器905の出力は、以下の式(2)のようになる。

(加算器905の出力)

=W× (パイロットキャリアから算出された残留位相誤差推定値)

+ (1-W) × (1つ過去の残留位相誤差推定値) … (2)

ここで、Wは重み係数であり、係数選択回路906により与えられる。係数選

択回路906は、回線品質などの品質情報に基づく制御信号にしたがって、あらかじめ設定してある重み係数を選択する。なお、すべての場合の重み係数が同じであってもよい。

[0084]

この加算結果は、メモリ205および複素乗算器206へ出力される。このとき、スイッチ901は、加算結果がメモリ205へ蓄積される状態となっており、スイッチ902は、加算結果が複素乗算器206へ入力される状態となっている。

[0085]

このように、本実施の形態によれば、残留位相誤差推定補償回路において、パイロットシンボルによる残留位相誤差推定と、パイロットキャリアによる残留位相誤差推定を組み合わせて行い、両者で算出された残留位相誤差の推定値を使用して残留位相誤差を補償するため、残留位相誤差の存在下であっても、優れた受信特性の適応検波を行うことができるとともに、きわめて精度の高い残留位相誤差の推定が可能となる。

[0086]

(実施の形態5)

本実施の形態に係るOFDM通信装置は、実施の形態4と同様の構成を有し、 残留位相誤差推定補償回路において、パイロットキャリアによる残留位相誤差推 定値を複数シンボル分平均化して残留位相誤差推定値を更新するものである。

[0087]

本実施の形態に係るOFDM通信装置の構成は、残留位相誤差推定補償回路以外について実施の形態4と同様であるので、残留位相誤差推定補償回路について説明する。

[0088]

図10は、本発明の実施の形態5に係るOFDM通信装置の残留位相誤差推定 補償回路の内部構成を示すブロック図である。但し、実施の形態4と同一の構成 には同一の符号を付し、詳しい説明は省略する。

[0089]

[0090]

平均化回路1001では、複数OFDMシンボル分の残留位相誤差推定値の平均値を算出する。平均するシンボル数nは、残留位相誤差推定値にパイロットキャリアの伝搬路応答の時間変動成分が含まれないようにするため、伝搬路応答の時間変動に比べ十分に小さな値とする。平均化された残留位相誤差推定値は、メモリ1002に一旦蓄積された後、乗算器904へ出力される。なお、平均化回路1001で行われる平均化処理は、加法性雑音による推定誤差を低減できれば、その処理方法に特に限定されない。

[0091]

メモリ205に蓄えられた残留位相誤差推定値は乗算器903によって重み付けされ、また、平均化された残留位相誤差推定値は乗算器904によって重み付けされる。そして、これらの重み付けされた残留位相誤差推定値が、加算器905によって加算される。

[0092]

このように、本実施の形態によれば、残留位相誤差推定補償回路において、パイロットキャリアによる残留位相誤差推定値を複数シンボル分平均化して残留位相誤差推定値を更新するため、残留位相誤差の存在下であっても、優れた受信特性の適応検波を行うことができるとともに、きわめて精度の高い残留位相誤差の推定が可能となり、さらに、加法性雑音によって発生する残留位相誤差の推定値誤差を低減することができる。

[0093]

(実施の形態 6)

本実施の形態に係るOFDM通信装置は、実施の形態1と同様の構成を有し、 FFT処理と残留位相誤差推定・補償を同時に並行して行うものである。

[0094]

図11は、本発明の実施の形態6に係るOFDM通信装置の構成を示すブロック図である。但し、実施の形態1と同一の構成には同一の符号を付し、詳しい説

[0095]

無線受信回路102で所定の無線処理を施された受信時系列OFDM信号は、 FFT回路103および残留位相誤差推定補償回路1101へ同時に入力される。すなわち、この受信時系列OFDM信号に対して、一方でFFT回路103に よりFFT処理が行われている間に、他方で同時並行的に残留位相誤差推定補償 回路1101により残留位相誤差の推定・補償が行われる。

[0096]

残留位相誤差推定補償回路1101は、図12に示す構成を採る。図12は、 図11に示す残留位相誤差推定補償回路の内部構成を示すブロック図である。

[0097]

無線受信回路102から入力された受信時系列信号は、遅延器1201および 複素乗算器1202に入力され、連続して送信される複数のパイロット信号の間 で遅延検波が行なわれる。遅延検波された信号は、積算器1203へ入力される

[0098]

ここで、FFTの入出力数をN、受信パイロットシンボルをR(mT,n); Tは 1OFDMシンボル時間、m=0, 1, 2, …、n=1、2、…、Nとすると、 複素乗算器 1 2 0 2 および積算器 1 2 0 3 による処理後の出力は以下の式(3)のようになる。

【数2】

$$\sum_{n=1}^{N} R(mT,n)R((m-1)T,n) \qquad \cdots (3)$$

[0099]

次いで、この処理結果の振幅が1になるように正規化回路1204で正規化されることにより10FDMシンボル区間における残留位相誤差の推定値が算出され、メモリ1205に蓄えられる。そして、複素乗算器1102で、FFT回路103の出力信号と残留位相誤差の推定値との複素乗算を行うことにより、残留

[0100]

このように本実施の形態によれば、FFT処理と残留位相誤差推定・補償を同時に並行して行うため、残留位相誤差の存在下であっても、優れた受信特性の適応検波を行うことができるとともに、受信信号に対する残留位相誤差の推定・補償に要する時間を短縮することができる。

[0101]

(実施の形態7)

本実施の形態に係るOFDM通信装置は、実施の形態1と同様の構成を有し、 伝搬路推定・補償の後に、位相雑音推定・補償を行うものである。

[0102]

本実施の形態に係るOFDM通信装置の構成は、実施の形態1のOFDM通信装置の伝搬路推定補償回路の後段に、位相雑音推定補償回路を設けたものである。図13は、本発明の実施の形態7に係るOFDM通信装置の構成を示すブロック図である。但し、実施の形態1と同一の構成には同一の符号を付し、詳しい説明は省略する。

[0103]

残留位相誤差推定補償回路104では、パイロットシンボルの残留位相誤差推 定値またはこの推定値の複数シンボル分の平均値を用いる場合、位相雑音による 位相誤差成分が含まれない。また、伝搬路推定補償回路105では、一度伝搬路 応答値を推定すると次に伝搬路応答推定値を更新するまで、同じ伝搬路応答推定 値で伝搬路歪補償をおこなうため、一括復調する場合を除き、シンボル毎に変動 する位相雑音の追従が困難となる。そこで、伝搬路推定補償回路105の後段に 、位相雑音推定補償回路1301を設け対処するものである。

[0104]

図14は、図13に示す位相雑音推定補償回路の内部構成を示すブロック図である。図14において、伝搬路推定補償回路105より出力された受信OFDM信号のうち、パイロットキャリアをセレクタ1401によって取り出す。パイロットキャリア以外の信号は複素乗算器1404へ入力される。

複素乗算器1402に入力された受信パイロットキャリアは、送信パイロットキャリア信号と同じパイロットキャリア信号と複素乗算される。これにより、各パイロットキャリア毎の位相差が算出される。各パイロットキャリアより算出された位相差は、位相誤差演算回路1403へ入力され、各位相差について等利得合成または最大比合成等の処理が施され、より正確な位相差が算出される。そし

て、複素乗算器 1 4 0 4 で、算出された位相誤差推定値と情報キャリアとの複素 乗算が行われることにより、位相雑音が補償される。

[0106]

このように、本実施の形態によれば、伝搬路推定・補償の後に、位相雑音推定・補償を行うため、残留位相誤差の存在下であっても、優れた受信特性の適応検波を行うことができるとともに、残留位相誤差補償および伝搬路歪補償で補償しきれない位相雑音を補償することができる。

[0107]

(実施の形態8)

本実施の形態に係るOFDM通信装置は、実施の形態7と同様の構成を有し、 受信情報の長さおよび位相雑音量に応じて、残留位相誤差推定補償および位相雑 音推定補償を行うか否か適宜切り替えるものである。

[0108]

図15は、本発明の実施の形態8に係るOFDM通信装置の構成を示すブロック図である。但し、実施の形態7と同一の構成には同一の符号を付し、詳しい説明は省略する。

[0109]

図15において、連続して受信されるパケットの長さが短い場合には、スイッチ1501は、FFT回路103と伝搬路推定補償回路105とが直接接続される状態なり、スイッチ1502は、伝搬路推定補償回路105と誤り訂正回路106とが位相雑音推定補償回路1301を介して接続される状態となる。すなわち、受信情報の長さが短い場合には、後段の同期検波による位相雑音推定・補償は行われるが、前段の遅延検波による残留位相誤差推定・補償は行われないこと

[0110]

受信されるパケットの長さが短い場合に、このような接続状態となるようにしたのは、以下の理由による。すなわち、受信されるパケットの長さが短い場合には、プリアンブルによる搬送波周波数オフセット補償で周波数オフセットを十分補償でき残留位相誤差は十分に小さくなるため、伝搬路推定・補償の前段で残留位相誤差推定補償を行う必要がないからである。

[0111]

また、この場合、残留位相誤差および位相雑音の推定・補償を、伝搬路推定・ 補償の前段で、遅延検波を用いた残留位相誤差推定補償回路104で行うことも 考えられるが、受信されるパケットの長さが短い場合には、位相誤差のの時間的 変動量が小さいため、同期検波を用いた位相雑音推定補償回路1301で推定・ 補償する方が、位相雑音を精度よく推定・補償できるからである。

[0112]

一方、受信されるパケットの長さが長く、かつ位相雑音が無視できる程度のものである場合には、スイッチ1501は、FFT回路103と伝搬路推定補償回路105とが残留位相誤差推定補償回路104を介して接続される状態となり、スイッチ1502は、伝搬路推定補償回路105と誤り訂正回路106とが直接接続される状態となる。

[0113]

また、受信されるパケットの長さが長く、かつ位相雑音が無視できない程度のものである場合には、スイッチ1501は、FFT回路103と伝搬路推定補償回路105とが残留位相誤差推定補償回路104を介して接続される状態となり、スイッチ1502は、伝搬路推定補償回路105と誤り訂正回路106とが位相雑音推定補償回路1301を介して接続される状態となる。

[0114]

なお、通信チャネル以外のチャネルから受信されるパケットの長さ情報に基づく制御信号を、スイッチ1501および1502が受け取り、その制御信号に基づき、スイッチ1501および1502の切り替えが行われる構成としてもよい

[0115]

このように、本実施の形態によれば、受信情報の長さおよび位相雑音量に応じて、残留位相誤差推定補償および位相雑音推定補償を行うか否か適宜切り替えるため、優れた受信特性の適応検波を行うことができるとともに、受信情報の長さおよび位相雑音量に応じて、処理に無駄のない常に最適な同期検波を行うことができる。

[0116]

なお、上記実施の形態 1 ~ 8 では、誤り訂正後の受信信号を再符号化して既知信号として用いて伝搬路応答を適応的に推定する構成としたが、誤り訂正前の信号を硬判定し、その硬判定された信号を既知信号として用いて伝搬路応答を適応的に推定する構成としてもよい。

[0117]

また、本発明は上記実施の形態1~8に限定されず、種々変更して実施することが可能である。例えば、本発明においては、実施の形態1~8を適宜組み合わせて実施してもよい。

[0118]

また、上記実施の形態1~8のOFDM通信装置は、移動体通信システムにおける移動体通信端末装置や移動体通信基地局装置に適用することが可能である。

[0119]

【発明の効果】

以上説明したように、本発明によれば、伝搬路応答の時間的変動が大きい場合でも伝送効率を低下させずに、伝送路の時間変動に適応的に追従して受信特性を向上させるとともに、残留位相誤差が存在する場合にも、伝送効率を低下させずに残留位相誤差の時間変動に適応的に追従して受信特性を向上させることができる。

【図面の簡単な説明】

【図1】

本発明の実施の形態1に係るOFDM通信装置の構成を示すプロック図

本発明の実施の形態1に係るOFDM通信装置の残留位相誤差推定補償回路の内部構成を示すブロック図

【図3】

本発明の実施の形態1に係るOFDM通信装置の残留位相誤差推定補償回路に おける位相誤差演算回路の内部構成を示すブロック図

【図4】

本発明に係る検波方法において使用されるシンボル構成を示す図

【図5】

本発明の実施の形態1に係るOFDM通信装置の残留位相誤差推定補償回路の内部構成を示すブロック図

【図6】

本発明の実施の形態2に係るOFDM通信装置の構成を示すブロック図

【図7】

本発明の実施の形態2に係るOFDM通信装置の残留位相誤差推定補償回路の内部構成を示すブロック図

【図8】

本発明の実施の形態3に係るOFDM通信装置の残留位相誤差推定補償回路の内部構成を示すブロック図

【図9】

本発明の実施の形態4に係るOFDM通信装置の残留位相誤差推定補償回路の内部構成を示すプロック図

【図10】

本発明の実施の形態 5 に係るOFDM通信装置の残留位相誤差推定補償回路の内部構成を示すプロック図

【図11】

本発明の実施の形態6に係るOFDM通信装置の構成を示すプロック図

【図12】

本発明の実施の形態6に係るOFDM通信装置の残留位相誤差推定補償回路の

内部構成を示すブロック図

【図13】

本発明の実施の形態7に係るOFDM通信装置の構成を示すブロック図

【図14】

本発明の実施の形態7に係るOFDM通信装置の位相雑音推定補償回路の内部

構成を示すブロック図

【図15】

本発明の実施の形態8に係るOFDM通信装置の構成を示すプロック図

【図16】

従来の伝搬路推定方法において使用されるシンボル構成を示す図

【図17】

従来の伝搬路推定方法を説明するための図

【符号の説明】

104,601,1101 残留位相誤差推定補償回路

105 伝搬路推定補償回路

204 位相誤差演算回路

801,1001 平均化回路

906 係数選択回路

1301 位相雑音推定補償回路

【書類名】

図面

【図1】

【図3】

【図4】

【図6】

【図12】

【図17】

【書類名】

要約書

【要約】

【課題】 伝搬路応答の時間的変動が大きい場合でも伝送効率を低下させずに、伝送路の時間変動に適応的に追従して受信特性を向上させるとともに、 残留位相誤差が存在する場合にも、伝送効率を低下させずに残留位相誤差の時間 変動に適応的に追従して受信特性を向上させること。

【解決手段】 無線受信回路102が通常の無線受信処理を行い、FFT回路103がFFT演算し、残留位相誤差推定補償回路104がOFDM信号に含まれるパイロットシンボル同士で遅延検波を行うことにより残留位相誤差の推定・補償を行い、残留位相誤差の補償されたOFDM信号に対して、伝搬路推定補償回路105が誤り訂正および再符号化後の信号を既知信号として伝搬路歪補償を行う。

【選択図】 図1

出願人履歴情報

識別番号

[000005821]

1. 変更年月日 1990年 8月28日

[変更理由] 新規登録

住 所 大阪府門真市大字門真1006番地

氏 名 松下電器産業株式会社