Non-Clairvoyant Dynamic Mechanism Design: Experimental Evidence

Shan Gui, Daniel Houser

George Mason University

May 6th, 2022

Main Takeaways

What do we do?

- ▶ Bring Non-Clairvoyant Environment (Mirrokni et al., 2020) into Lab.
- ► Test Optimal Non-clairvoyant Dynamic Mechanism (NC).
- ▶ Compare the performance with Repeated Static Optimal Mechanism (RS).

What do we find?

- ▶ Dynamic NC works well as theory predicts more revenue.
- ▶ Participants overbid less in NC.
- ▶ Risk aversion \rightarrow no fully participation \rightarrow revenue loss in NC.

Optimal Dynamic Mechanism Design

- ▶ How the principal (seller) establish the rules of allocation and price over **multi-period** as the agent (buyer) receives private information over time.
 - ► Long-term principal-agent relationship
 - ► Repeated selling of perishable goods

Long-term contract

Repeated selling

Dynamic mechanism improves revenues and efficiency (Baron & Besanko, 1984).

Non-clairvoyance

Clairvoyance: Future demand distribution is known at the beginning.

- Form of the optimal dynamic mechanism depends on environment.
- ▶ Buyers tend to have biased forecast on future demand (DellaVigna & Malmendier, 2006).

Non-clairvoyance: Future demand is not accessible at the beginning.

- ▶ No needs to share unbiased belief.
- ► General Form.

 F_2 is unknown in Day 1

 $v_1 \sim F_1$

 $v_2 \sim F_2$?

Mechanisms under Non-clairvoyant Environment

Repeated Optimal Static Mechanism (Myerson, 1981)

▶ Rules in two days are independent of each other

Maximize intra-period revenue for each period separately.

 $\Rightarrow \frac{Rev_S^*}{Rev^*}$ could be arbitrarily small (Papadimitriou et al., 2016)

Optimal Non-clairvoyant Dynamic Mechanism (Mirrokni et al., 2020)

▶ Rules in Day 2 depends on bid in day 1

Best Revenue Guarantee: $\Rightarrow \frac{Rev_D^*}{Rev*} \ge \frac{1}{a}$

Achieve at least $\frac{1}{2}$ revenue produced by optimal clairvoyant mechanism under all scenarios in two-period single-buyer case.

When can non-clairvoyant dynamic mechanism do better?

Theoretically, non-clairvoyant mechanism can not always outperform.

	Intra-period revenue	Inter-period Revenue
Repeated Static	optimal	zero
Non-clairvoyant Dynamic	$\frac{1}{2}$ of optimal	$\frac{1}{2}$ of optimal

Inter-period is the key.

- ▶ Good Senario: Expected value in 2nd period is high, Myerson's revenue in low.
- ▶ Bad Senario: Expected value in 2nd period is how.

Experimental Design 2 * 2

Two Mechanisms

▶ Non-Clairvoyant Dynamic * Repeated Static

Two Scenarios

$$F_A = \{v, p(v)\} = \{(2, \frac{1}{2}), (4, \frac{1}{2})\}, \mathbb{E}_A = 3.$$

$$F_B = \{v, p(v)\} = \{(2, \frac{1}{2}), (4, \frac{1}{4}), (8, \frac{1}{8}), (16, \frac{1}{16}), (32, \frac{1}{16})\}, \mathbb{E}_B = 6.$$

▶ S1-Good Scenario: Non-Clairvoyant Dynamic has more revenue.

$$F_1 = F_A, F_2 = F_B \implies REV^{static} = 4, REV^{Non} = 4.5 \uparrow 12.5\%$$

▶ S2-Bad Scenario: Non-Clairvoyant has less revenue than Repeated Static.

$$F_1 = F_B, F_2 = F_A \implies REV^{static} = 4, REV^{Non} = 3.5 \downarrow 12.5\%$$

Non-clairvoyant Environment

- **Buyer**: Participant
- ▶ **Robot Seller**: Experimenter, c = 0
- **Two periods**: Buyer can buy one item in each period from seller, t = 1, 2.
- Non-clairvoyance: The distribution of buyer's value (F_t) is common knowledge only in that period
- ► Incomplete Information :
 - 1. Only buyer knows his value for the item in each period, v_t .
 - 2. Buyer's value is drawn **independently**.

Variables for Environment

▶ Endowment: E = 50

Institution-Static Optimal Mechanism

Period 1

- \triangleright Seller sets a secret reserve price r_1 based on the distributional knowledge F_1 .
- ▶ Buyer learns his value (v_1) , makes a bid : b_1
- ▶ Buyer can get the item only when $b_1 \ge r_1$ and pay $p_1 = r_1$.

Period 2

 $ightharpoonup F_2 \Rightarrow r_2, v_2 \Rightarrow b_2, \text{ pays } p_2 = r_2 \text{ if } b_2 \geq r_2$

Myerson's Auction

monopoly price:
$$r_1 = r_2 = 2$$

 $r_A = 2 \in arg \max_r r \cdot P(v_A > r), \quad r_B = 2 \in arg \max_r r \cdot P(v_B > r)$

Optimal Non-clairvoyant Dynamic Mechanism

How the dynamic mechanism work?

Half chance of free in period 1

Half chance of membership fee in period 2

Non-clairvoyant Mechanism

Period 1

- \triangleright Seller sets a fixed secret reserve price r_1 based on the distribution F_1 .
- ▶ Buyer learns his value (v_1) , makes a bid : b_1
- ▶ Buyer has 50% chance to get the item for free: $p_1 = 0$; Otherwise, buyer can get the item only when $b_1 \ge r_1$ and pay $p_1 = r_1$.

Institution-Non-clairvoyant Mechanism

Period 2

- ▶ Seller set a membership fee $m_2 = \min(b_1, E(v_2))$.
- \triangleright Buyer decides pay or leave. If buyer leave (enter = 0), game over.
- ightharpoonup If buyer pays, (enter = 1),
 - ▶ Buyer learns his value, v_2 , and makes a bid: b_2
 - ▶ Buyer has 50% chance to redeem the membership fee (luck = 1).
 - Seller sets a secret reserve price r_2 based on the $F_2, m_2, luck$. Buyer can get the item only when $b_2 \ge r_2$ and pay $p_2 = r_2$

Uniform Combination of Two Auctions

Hypotheses

Hypothesis 1 - Revenue Comparison

▶ In S1, Non-Clairvoyant mechanism has more revenue than repeated mechanism; has less revenue in S2.

Hypothesis 2 - Individual Rationality

▶ Risk-aversed buyers not paying membership fee hurts the revenue of non-clairvoyant mechanism.

Hypothesis 3 - Incentive Compatibility

▶ Randomization in NC lead participants overbid less.

Experiments

▶ 256 George Mason Students. September to November 2021.

	Scenario 1	l	Scenario 2		
Treatment	Non-clairvoyant	Static	Non-clairvoyant	Static	
Age	21.6	22.3	21.9	22.7	
Gender (Male=1)	0.48	0.44	0.52	0.47	
Risk aversion	4.46	4.90	4.55	4.63	
Observation	64	64	64	64	

Table 1: Summary Statistic

Results

Result 1.

Experimental observations match with theoretical prediction.

- ▶ In S1, Non-Clairvoyant mechanism has more revenue than repeated mechanism.
- ▶ In S2, Non-Clairvoyant mechanism has less revenue than repeated static mechanism.

Experimental Revenue Comparison - Period 1

Figure 4: Revenues of Period 1 in each Treatment

Experimental Revenue Comparison - Period 2

Figure 5: Revenues in each Treatment

Results

Result 2.

Risk aversion hurt the revenue of Non-clairvoyant mechanism.

- ▶ In good scenario (S1) 4 buyers quit the second period, and the number goes to 8 in bad scenario.
- ▶ The more risk-aversed the buyer is, the more likely they will refused to pay the membership fee and quit the second period.

Revenue Loss Decomposition

Figure 6: Revenues Increase if all Buyers enter in Period 2.

Why not pay the membership fee

- ▶ "Since I got a profit the first time I didn't want to go again with my luck"
- ▶ "Risk vs Reward...... I got lucky and did not have to pay."
- ▶ "Based on the membership fee."
- "didn't want to take any big risks so I just lowballed my offers and refused to take the membership"
- "i read the instructions carefully. i think the second period isn't worth losing the points i had to pay membership fee and could only get the item by bidding higher than the price set by the seller..... honestly, i haven't been feeling lucky so i'd rather not take my chances. so i tried not to lose money in the first period and just left it as is."

Risk Aversion Affects second-period Participation

	Enter in period 2 $(=1)$					
	S1 - Good Scenario			S2 -	ario	
	(1)	(2)	(3)	(1)	(2)	(3)
risk aversion	-0.0279*	-0.0281*	-0.0465**	-0.0909**	-0.0825*	-0.0938*
	(0.0161)	(0.0164)	(0.0199)	(0.0437)	(0.0462)	(0.0503)
$Free_1 (= 0)$	0.044	0.044	0.140*	-0.026	-0.013	0.004
	(0.0620)	(0.0629)	(0.0707)	(0.124)	(0.134)	(0.146)
Membership fee	-0.028	-0.003	-0.020	-0.243**	-0.203*	-0.232**
	(0.0215)	(0.0304)	(0.0227)	(0.107)	(0.109)	(0.111)
$Value_1$	0.046	,	0.029	0.0142*	,	0.008
	(0.0313)		(0.0342)	(0.00799)		(0.00955)
Male (=1)	0.014	0.007	-0.036	0.196	0.141	0.177
	(0.0607)	(0.0613)	(0.0681)	(0.123)	(0.124)	(0.140)
Age	-0.002	-0.004	0.006	-0.0637***	-0.0550**	-0.0590**
_	(0.0104)	(0.0105)	(0.0122)	(0.0201)	(0.0204)	(0.0220)
Graduate (=1)	-0.145	-0.115	-0.110	0.016	-0.010	-0.042
	(0.0902)	(0.0915)	(0.103)	(0.124)	(0.131)	(0.155)
$Bid/Value_1$,	-0.025	,	,	-0.007	,
, -		(0.0300)			(0.0185)	
Constant	1.068***	1.139***	0.968***	2.971***	2.756***	2.907***
	(0.272)	(0.271)	(0.304)	(0.651)	(0.678)	(0.728)

Results

Result 3.

- ► Generally overbid.
- ▶ Buyers overbid less under Non-clairvoyant mechanism when the distribution of their valuation has low variance.

Bid-Value Ratio Comparison

Bid/value	Non-clairvoyant Dynamic	Repeated Static	(p-value) ¹
F1(low variance)	1.264(0.04)	1.379(0.04)	(0.060*)
F2(High variance)	1.194(0.05)	1.251(0.04)	0.392
(p-value)	0.116	(0.008***)	

Table 3: Bid-Value Ratio Comparison

Conclusions

- ▶ We find the experimental observations match with theoretical predictions on revenue comparison between mechanisms.
- ▶ Buyer's risk aversion matters in the success of non-clairvoyant mechanism.
- ▶ Randomization in non-clairvoyant mechanism leads buyer to overbid less.

Discussion

- Experiment on multi-buyer with more than 2 periods.
- Can participants as Seller set up correct rules?

Thank you!

Reserve price (r_1, r_2) for Scenario 1

$$\begin{array}{l} F_1=F_A=\{v,p(v)\}=\{(2,\frac{1}{2}),(4,\frac{1}{2})\},\ \mathbb{E}_1=3.\\ F_2=F_B=\{v,p(v)\}=\{(2,\frac{1}{2}),(4,\frac{1}{4}),(8,\frac{1}{8}),(16,\frac{1}{16}),(32,\frac{1}{16})\},\ \mathbb{E}_2=6. \end{array}$$

Period 1

▶ Myserson's Auction: $r_1 = 2$

Period 2

- ▶ If luck = 1, Myserson's Auction: $r_2 = 2$
- ▶ If luck = 0, Posted Price Auction: r_2 satisfies

$$E_{v_2}[(v_2 - r_2)^+] = min(b_1, E(v_2)) = membership fee.$$

Piece-wise function: $r_2^P = 0$ if $b_1 \ge 6$, $r_2^P = 2$ if $b_1 = 4$, $r_2^P = 8$ if $b_1 = 2$, and $r_2^P = 32$ if $b_1 = 0$.

Reserve price (r_1, r_2) for Scenario 2

$$F_1 = F_B = \{v, p(v)\} = \{(2, \frac{1}{2}), (4, \frac{1}{4}), (8, \frac{1}{8}), (16, \frac{1}{16}), (32, \frac{1}{16})\}, \ \mathbb{E}_1 = 6.$$

$$F_2 = F_A = \{v, p(v)\} = \{(2, \frac{1}{2}), (4, \frac{1}{2})\}, \ \mathbb{E}_2 = 3.$$

Period 1

▶ Myserson's Auction: $r_1 = 2$

Period 2

- ▶ If luck = 1, Myserson's Auction: $r_2 = 2$
- ▶ If luck = 0, Posted Price Auction: r_2 satisfies

$$E_{v_2}[(v_2 - r_2)^+] = min(b_1, E(v_2)) = membership fee.$$

Piece-wise function: $r_2^P = 0$ if $b_1 \ge 3$, $r_2^P = 1$ if $b_1 = 2$ and $r_2^P = 4$ if $b_1 = 0$.

Mechanism Comparison for Scenario 1

$$\begin{split} F_1 &= F_A = \{v, p(v)\} = \{(2, \frac{1}{2}), (4, \frac{1}{2})\} \ \mathbb{E}_1 = 3. \\ F_2 &= F_B = \{v, p(v)\} = \{(2, \frac{1}{2}), (4, \frac{1}{4}), (8, \frac{1}{8}), (16, \frac{1}{16}), (32, \frac{1}{16})\}, \ \mathbb{E} = 6. \end{split}$$

 \blacktriangleright Non-Clairvoyant Mechanism increases revenue, $\uparrow 12.5\%$

E1-Revenue	Non-clairvoyant Dynamic	e	Repeated Static	
Period 1	Give for Free (F) Myerson's Auction (M)	$0 \\ 2$	Myerson's Auction (M)	2
Period 2	Post Price Auction (P) Myerson's Auction (M)	5 2	Myerson's Auction (M)	2
Total		4.5		4

Table 4: Theoretical Revenues in Scenario 1.

Mechanism Comparison for Scenario 2

$$F_1 = F_B = \{v, p(v)\} = \{(2, \frac{1}{2}), (4, \frac{1}{4}), (8, \frac{1}{8}), (16, \frac{1}{16}), (32, \frac{1}{16})\}, \ \mathbb{E}_1 = 6.$$

$$F_2 = F_A = \{v, p(v)\} = \{(2, \frac{1}{2}), (4, \frac{1}{2})\}, \ \mathbb{E}_2 = 3.$$

▶ Non-Clairvoyant Mechanism decreases revenue, ↓ 12.5%

E1-Revenue	Non-clairvoyant Dynami	.c	Repeated Static	
Period 1	Give for Free (F) Myerson's Auction (M)	0 2	Myerson's Auction (M)	2
Period 2	Post Price Auction (P) Myerson's Auction (M)	3 2	Myerson's Auction (M)	2
Total		3.5		4

Table 5: Theoretical Revenues in Scenario 2.

Experimental Revenue Decomposition in S1

	Non-clairvoyant Dynamic			Repeated Static		
E1 Revenue	Theory		Experiment	Theory		Experiment
D : 11	Give it for free	0	0	ν	0	1.04(0.04)
Period 1	Myerson's auction	2	1.94(0.06)	Myerson's	2	1.94(0.04)
Period 2	Post Price Auction	5	4.84(0.47)	Myerson's	9	1.91(0.05)
renou z	Myerson's auction	2	1.94(0.06)	Myerson s	2	1.91(0.00)
Total		5	4.35 (0.32)		4	3.84(0.07)

Table 6: Revenue decomposition under E1 (Good Environment)

Experimental Revenue Decomposition in S2

Fo D	Non-clairvoyant Dynamic			Repeated Static		
E2 Revenue	Theory		Experiment	Theory		Experiment
David 1.1	Give it for free	0	0	M	0	1.01(0.05)
Period 1	Myerson's auction	2	1.93(0.06)	Myerson's	2	1.91(0.05)
Period 2	Post Price Auction	3	2.25(0.21) Myerson's	Marongon's	2	1.97(0.03)
1 eriod 2	Myerson's auction	2	1.75(0.12)	Myerson s	_	1.97(0.03)
Total		3.5	2.91 (0.18)		4	3.88(0.06)

Table 7: Revenue decomposition in S2 (Bad Scenario)