TABLE DES MATIÈRES

1. Variables aléatoires réelles positives	2
1.1. Espérance des variables aléatoires réelles	
1.2. Premiers exemples	11
2. Exercices	12
Index	14

1. VARIABLES ALÉATOIRES RÉELLES POSITIVES

Dans ce qui suit, $(\Omega, \mathcal{A}, \mathbb{P})$ désigne un espace probabilisé et X une variable aléatoire à valeurs réelles positives (i. e. une application de Ω dans \mathbb{R}^+ telle que $X^{-1}(]-\infty,x]) \in \mathcal{A}$ pour tout réel x).

On note $\mathscr{V}_{\mathbb{R}}(\Omega, \mathscr{A}, \mathbb{P})$ l'espace vectoriel des variables aléatoires réelles sur $(\Omega, \mathscr{A}, \mathbb{P})$.

On rappelle qu'une variable aléatoire X est dite discrète si $X(\Omega)$ est au plus dénombrable et si $X^{-1}(\{x\}) \in \mathscr{A}$ pour tout réel x. Dans le cas où $X(\Omega)$ est fini, on dit que X est étagée. Pour tout $A \in \mathscr{A}$, on note χ_A (ou encore $\mathbf{1}_A$) la fonction caractéristique de A.

Soient A_1, \dots, A_n sont des éléments de \mathscr{A} et $\lambda_1, \dots, \lambda_n$ des réels et $X = \sum_{k=1}^n \lambda_k \chi_{A_k}$. C'est une variable aléatoire étagée sur $(\Omega, \mathscr{A}, \mathbb{P})$ d'espérance est égale à

$$\mathbb{E}(X) = \sum \lambda_k \, \mathbb{P}(A_k).$$

Théorème 1.1. Une variable aléatoire réelle positive sur $(\Omega, \mathcal{A}, \mathbb{P})$ est limite d'une suite croissante de variables aléatoires réelles étagées positives.

Démonstration. Soit X une variable aléatoire réelle positive sur $(\Omega, \mathcal{A}, \mathbb{P})$. Pour tout $\omega \in \Omega$, il existe un entier n tel que $0 \ge X(\omega) < n$ et, puisque $2^n X(\omega) < 2^n n$, il existe un unique entier $k \in \{0, \dots, 2^n n - 1\}$ tel que $k < X(\omega) < k + 1$.

X étant une variable aléatoire, l'ensemble

$$A_{n,k} = \left(\boldsymbol{\omega} \in \Omega ; \frac{k}{2^n} \le X < \frac{k+1}{2^n}\right)$$

appartient à la tribu A et, d'après ce qui précède,

$$\Omega = \bigcup_{n \in N} \bigcup_{0 \le k < n2^n - 1} A_{n,k}.$$

Considérons alors la suite de variables aléatoires réelles étagées sur $(\Omega, \mathscr{A}, \mathbb{P})$ définie par :

$$X_n = \sum_{k=0}^{n2^n-1} \frac{k}{2^n} \chi_{A_{n,k}}.$$

Pour tout $\omega \in \Omega$, si $\omega \in A_{n,k}$ on a

$$|X(o)-X_n(\omega)|\leq \frac{1}{2^n},$$

ce qui montre que la suite X_n converge simplement vers X. Il reste à montrer que la suite (X_n) est croisssante.

Soit $\omega \in \Omega$. Si $n \le X(\omega)$, $X(\omega)$ n'appartient à aucun des $A_{n,k}$ pour $k \in \{0, \dots, n2^n - 1\}$ de sorte que $X_n(\omega) = 0 \le X_{n+1}(\omega)$. Si, par contre, il existe $k \in \{0, \dots, n2^n - 1\}$ tel que $\omega \in A_{n,k}$, on a $X_n(\omega) = \frac{k}{2^n}$ et

$$X_{n+1}(\omega) = \begin{cases} [c]l\frac{k}{2^n} & \text{si} \quad \frac{k}{2^n} = \frac{2k}{2^{n+1}} \le X(\omega) < \frac{2k+1}{2^{n+1}} \\ \frac{2k+1}{2^{n+1}} & \text{si} \quad \frac{2k+1}{2^{n+1}} \le X(\omega) < \frac{k+1}{2^n} = \frac{2k+2}{2^{n+1}} \end{cases}$$

On a donc $X_n(\omega) \leq X_{n+1}(\omega)$ pour tout $\omega \in \Omega$.

Lemme 1.1. Soit X_n une suite croissante de variables aléatoires étagées positives et Y une variable aléatoire étagée positive. Si $Y \le \lim_n X_n$ alors

$$\mathbb{E}(Y) \leq \lim_{n} \uparrow \mathbb{E}(X_n).$$

Démonstration. Pour tout $c \in]0,1[$, la suite $A_n = \{\omega \in \Omega \ X_n(\omega) \ge cY(\omega)\}$ d'éléments de \mathscr{A} est croissante de réunion Ω . En effet, si $Y(\omega) > 0$, comme $\lim_n X_n(\omega) \ge Y(\omega) > cY(\omega)$, ω appartient à l'un des A_n . De plus, si $Y(\omega) = 0$, X_n étant positive, ω appartient à tous les A_n . Mais $X_n \ge cY\chi_{A_n}$ de sorte que, $Y\chi_{A_n}$ étant étagée positive,

$$\mathbb{E}(X_n) \geq \mathbb{E}(Y\chi_{A_n}).$$

On a de plus,

$$\mathbb{E}(Y\chi_{A_n}) = \sum_{Y(\Omega)} y_i \mathbb{P}((Y = y_i) \cap A_n)$$

suite qui converge en croissant vers $\mathbb{E}(Y)$. On a donc, par positivité de l'espérance dans le cas discret, $\mathbb{E}(X_n) \ge c \mathbb{E}(Y)$ et, c étant quelconque dans]0,1[, le lemme est démontré.

Définition 1.1. Soit $(\Omega, \mathscr{A}, \mathbb{P})$ un espace probabilisé et soit X est une variable aléatoire positive. L'espérance de X est

$$\int f d\mathbb{P} = \mathbb{E}(X) = \sup{\{\mathbb{E}(Y) ; Y \text{ \'etag\'ee positive } Y \leq X\}}.$$

Si (X_n) est la suite de variables aléatoires étagées définies dans la démonstration de (1.1), on voit que

$$\mathbb{E}(X) \geq \lim_{n} \mathbb{E}(X_n).$$

Le lemme précdent montre en outre que si Y est étagée et $Y \le X$ on a

$$\mathbb{E}(Y) \leq \lim \mathbb{E}(X_n)$$

Il en résulte donc, en passant à la borne supérieure, que $\mathbb{E}(X) = \lim \mathbb{E}(X_n)$.

Proposition 1.1. L'espérance des variables aléatoires positives sur $(\Omega, \mathcal{A}, \mathbb{P})$ vérifie les propriétés suivantes :

- (1) Pour tout réel positif λ , $\mathbb{E}(\lambda X + Y) = \lambda \mathbb{E}(X) + \mathbb{E}(Y)$.
- (2) $Si X \leq Y$, $alors \mathbb{E}(X) \leq \mathbb{E}(Y)$.

Démonstration. En désignant respectivement par $(X_n)_{n\in\mathbb{N}}$ et $(Y_n)_{n\in\mathbb{N}}$ deux suites croissantes de variables aléatoires réelles positives et étagées sur $(\Omega, \mathscr{A}, \mathbb{P})$ qui convergent vers X et Y respectivement, la suite $(\lambda X_n + Y_n)_{n\in\mathbb{N}}$ est étagée positive, converge en croissant vers $\lambda X + Y$ et on a :

$$\mathbb{E}(\lambda X + Y) = \lim_{n \to +\infty} \mathbb{E}(\lambda X_n + Y_n) = \lim_{n \to +\infty} \lambda \mathbb{E}(X_n) + \mathbb{E}(Y_n)$$
$$= \lambda \mathbb{E}(X) + \mathbb{E}(Y)$$

Théorème 1.2 (Beppo-Levi). Si $(X_n)_{n\in\mathbb{N}}$ est une suite croissante de variables aléatoires réelles positives sur $(\Omega, \mathcal{B}, \mathbb{P})$ qui converge vers une variable aléatoire réelle X sur $(\Omega, \mathcal{A}, \mathbb{P})$ on a alors :

$$\mathbb{E}(X) = \lim_{n \to +\infty} \mathbb{E}(X_n)$$

dans $\overline{\mathbb{R}^+}$.

Démonstration. Comme (X_n) converge en croissant vers X, $0 \le X_n \le X_{n+1} \le X$ et on déduit que $0 \le \mathbb{E}(X_n) \le \mathbb{E}(X_{n+1}) \le \mathbb{E}(X)$. La suite $(\mathbb{E}(X_n))_{n \in \mathbb{N}}$ est croissante dans $\overline{\mathbb{R}^+}$, elle est donc convergente (éventuellement vers $+\infty$) et $\lim_{n \to +\infty} \mathbb{E}(X_n) \le \mathbb{E}(X)$.

Soit Y une variable aléatoire étagée positive telle que $Y \leq X$. Pour $c \in]0,1[$ on considère

$$A_n = \{ \boldsymbol{\omega} \in \Omega ; X_n(\boldsymbol{\omega}) \ge cY(\boldsymbol{\omega}) \}.$$

On a

$$\mathbb{E}(X_n) \geq \mathbb{E}(X_n \chi_{A_n}) \geq c \, \mathbb{E}(Y \chi_{A_n}).$$

Mais les A_n forment une suite croissante d'éléments de \mathcal{A} , de réunion Ω . On a donc

$$\lim \uparrow \mathbb{E}(Y\chi_{A_n}) = \mathbb{E}(Y)$$

de sorte que $\lim \mathbb{E}(X_n) \ge c \mathbb{E}(Y)$ et, c étant quelconque dans]0,1[,

$$\lim \mathbb{E}(X_n) \geq \mathbb{E}(Y)$$
.

Ceci étant vrai pour toute fonction positive étagée inférieure ou égale à X, le résultat en découle par définition de l'espérance de X.

1.1. **Espérance des variables aléatoires réelles.** Pour toute variable aléatoire X sur $(\Omega, \mathscr{A}, \mathbb{P})$, on désigne par X^+ et X^- les fonctions définies sur $(\Omega, \mathscr{A}, \mathbb{P})$ définies par :

$$X^{+} = \max(X, 0) = \frac{1}{2}(X + |X|) \text{ et } X^{-} = \max(-X, 0) = \frac{1}{2}(|X| - X) = -\min(X, 0)$$

Si X est une variable aléatoire, |X| est aussi une variable aléatoire de sorte que X^+ et X^- sont des variables aléatoires. De plus,

$$X = X^{+} - X^{-}$$
 et $|X| = X^{+} + X^{-}$.

Définition 1.2. On dit qu'une variable aléatoire X sur $(\Omega, \mathscr{A}, \mathbb{P})$ est intégrable si $\mathbb{E}(X^+) < +\infty$ et $\mathbb{E}(X^-) < +\infty$.

On note $\mathscr{L}^1_{\mathbb{R}}(\Omega,\mathscr{A},\mathbb{P})$ l'ensemble des variables aléatoires intégrables sur $(\Omega,\mathscr{A},\mathbb{P})$.

Définition 1.3. Si X est une variable aléatoire sur $(\Omega, \mathscr{A}, \mathbb{P})$ intégrable, son espérance est le réel :

$$\mathbb{E}(X) = \mathbb{E}(X^{+}) - \mathbb{E}(X^{-})$$

Proposition 1.2. Soit $(\Omega, \mathscr{A}, \mathbb{P})$ un espace probabilisé. Une variable aléatoire X sur $(\Omega, \mathscr{A}, \mathbb{P})$ est intégrable si, et seulement si $\mathbb{E}(|X|) < +\infty$. On a alors

$$|\mathbb{E}(X)| \leq \mathbb{E}(|X|)$$
.

Démonstration. Supposons X intégrable. Avec $|X| = X^+ + X^-$, on déduit que

$$\mathbb{E}\left(\left|X\right|\right) = \mathbb{E}\left(X^{+}\right) + \mathbb{E}\left(X^{-}\right) < +\infty.$$

Réciproquement si $\mathbb{E}(|X|) < +\infty$, avec $X^{\pm} \leq |X|$, on déduit que $\mathbb{E}(X^{\pm}) \leq \mathbb{E}(|X|) < +\infty$ et X est intégrable.

Si X est intégrable,

$$|\mathbb{E}(X)| \le \mathbb{E}(X^+) + \mathbb{E}(X^-)$$

ce qui démontre la dernière assertion.

Théorème 1.3. L'ensemble $\mathcal{L}^1_{\mathbb{R}}(\Omega, \mathcal{A}, \mathbb{P})$ des variables aléatoires intégrables sur $(\Omega, \mathcal{A}, \mathbb{P})$ est un sous-espace vectoriel de l'espace $\mathcal{V}_{\mathbb{R}}(\Omega, \mathcal{A}, \mathbb{P})$ des variables aléatoires réelles sur $(\Omega, \mathcal{A}, \mathbb{P})$ et l'application :

$$\mathbb{E}: \ \mathscr{L}^1_{\mathbb{R}}(\Omega, \mathscr{A}, \mathbb{P}) \ \to \ \mathbb{R}$$

$$X \ \mapsto \ \mathbb{E}(X)$$

est une forme linéaire positive.

Démonstration. Il est clair que les constantes sont intégrables de sorte que $0 \in \mathscr{L}^1_{\mathbb{R}}(\Omega, \mathscr{B}, \mathbb{P})$. Pour $\lambda \in \mathbb{R}$ et X, Y dans $\mathscr{L}^1_{\mathbb{R}}(\Omega, \mathscr{B}, \mathbb{P})$, on a :

$$|\lambda X + Y| \le |\lambda| |X| + |Y|$$

et, par linéarité de l'espérance pour les variables positives,

$$\mathbb{E}\left(\left|\lambda\right|\left|X\right|+\left|Y\right|\right) = \left|\lambda\right|\mathbb{E}\left(\left|X\right|\right) + \mathbb{E}\left(\left|Y\right|\right) < +\infty.$$

On a donc $\mathbb{E}(|\lambda X + Y|) < +\infty$ et $\lambda X + Y \in \mathcal{L}^1_{\mathbb{R}}(\Omega, \mathcal{B}, \mathbb{P})$. Il en résulte que $\mathcal{L}^1_{\mathbb{R}}(\Omega, \mathcal{B}, \mathbb{P})$ est un sous-espace vectoriel de $\mathcal{V}_{\mathbb{R}}(\Omega, \mathcal{B}, \mathbb{P})$.

Si X et Y sont intégrables, puisque

$$X + Y = (X + Y)^{+} - (X + Y)^{-} = (X^{+} - X^{-}) + (Y^{+} - Y^{-}),$$

on a:

$$(X+Y)^{+} + X^{-} + Y^{-} = (X+Y)^{-} + X^{+} + Y^{+}.$$

Il en résulte que

$$\mathbb{E}\left(\left(X+Y\right)^{+}\right)+\mathbb{E}\left(X^{-}\right)+\mathbb{E}\left(Y^{-}\right)=\mathbb{E}\left(\left(X+Y\right)^{-}\right)+\mathbb{E}\left(X^{+}\right)+\mathbb{E}\left(Y^{+}\right)$$

d'où:

$$\mathbb{E}\left(\left(X+Y\right)^{+}\right) - \mathbb{E}\left(\left(X+Y\right)^{-}\right) = \mathbb{E}\left(X^{+}\right) - \mathbb{E}\left(X^{-}\right) + \mathbb{E}\left(Y^{+}\right) - \mathbb{E}\left(Y^{-}\right).$$

On a donc $\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y)$.

Pour X dans $\mathscr{L}^1_{\mathbb{R}}(\Omega,\mathscr{B},\mathbb{P})$ et $\lambda \in \mathbb{R}^{+,*}$ on a :

$$(\lambda X)^{+} = \frac{\lambda}{2} (X + |X|) = \lambda X^{+} \text{ et } (\lambda X)^{-} = \frac{\lambda}{2} (|X| - X) = \lambda X^{-}$$

donc:

$$\mathbb{E}\left(\lambda X\right) = \mathbb{E}\left(\left(\lambda X\right)^{+}\right) - \mathbb{E}\left(\left(\lambda X\right)^{-}\right) = \mathbb{E}\left(\lambda X^{+}\right) - \mathbb{E}\left(\lambda X^{-}\right) = \lambda\left(\mathbb{E}\left(X^{+}\right) - \mathbb{E}\left(X^{-}\right)\right) = \lambda\mathbb{E}\left(X\right)$$

Un calcul analogue montre que si $\lambda \in \mathbb{R}^{-,*}$, alors $\mathbb{E}(\lambda X) = \lambda \mathbb{E}(X)$. Le cas $\lambda = 0$ étant trivial, ceci termine la démonstration de l'espérance pour une variable positive.

Soit X une variable aléatoire réelle et h une fonction de \mathbb{R} dans \mathbb{R} telle que pour tout $B \in \mathscr{B}_{\mathbb{R}}$, $h^{-1}(B) \in \mathscr{B}_{\mathbb{R}}$ (on dit alors que h est borélienne). La fonction $h \circ X$ est alors une variable aléatoire sur $(\Omega, \mathscr{A}, \mathbb{P})$. Soit \mathbb{P}_X la loi de probabilité de $X : (\mathbb{R}, \mathscr{B}_{\mathbb{R}}, \mathbb{P}_X)$ est un espace probabilisé et h une variable aléatoire de $(\mathbb{R}, \mathscr{B}_{\mathbb{R}}, \mathbb{P}_X)$ à valeurs réelles.

Théorème 1.4. Sous les hypothèses précédentes, les assertions suivantes sont équivalentes :

- (1) $h \in \mathcal{L}^1(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \mathbb{P}_X)$.
- (2) $h \circ X \in \mathcal{L}^1(\Omega, \mathcal{A}, \mathbb{P})$.

Lorsque c'est le cas,

$$\mathbb{E}(h(X)) = \int_{\mathbb{D}} h(x) d \, \mathbb{P}_X.$$

Démonstration. Le théorème est clair si h est étagée. Si h est positive, h est limite d'une suite croissante de fonctions étagées et le résultat en découle. Dans le cas général, il nous reste à remarquer que h est différence de deux fonctions boréliennes positives.

On rappelle qu'une fonction $f: \mathbb{R} \setminus S \to \mathbb{R}^+$, où S est une partie finie (éventuellement vide) de \mathbb{R} , est dite intégrable (ou mieux sommable) sur \mathbb{R} au sens de Riemann, si elle est intégrable au sens de Riemann sur tout segment $[a,b] \subset \mathbb{R} \setminus S$ et si l'intégrale généralisée $\int_{\mathbb{R}} f(x) \, dx$ est convergente.

Définition 1.4. On appelle densité de probabilité sur \mathbb{R} , toute fonction $f: \mathbb{R} \setminus S \to \mathbb{R}^+$ intégrable sur \mathbb{R} (au sens de Riemann) et telle que $\int_{\mathbb{R}} f(x) dx = 1$.

Pour toute partie A de \mathbb{R} , on note $\mathbf{1}_A$ la fonction indicatrice de A définie par

$$\forall x \in \mathbb{R}, \ \mathbf{1}_{A}(x) = \left\{ \begin{array}{l} 1 \text{ si } x \in A \\ 0 \text{ si } x \notin A \end{array} \right.$$

Définition 1.5. On dit qu'une variable aléatoire réelle X sur (Ω, \mathcal{B}) est à densité, s'il existe une densité de probabilité f sur \mathbb{R} , telle que pour tous réels a < b, on ait :

$$\mathbb{P}(a < X \le b) = \int_{a}^{b} f(x) dx$$

Une telle variable aléatoire est aussi dite absolument continue.

Remarque 1.1. Si, dans la définition précédente, a ou b est l'un des points de S, l'intégrale est alors généralisée.

Remarque 1.2. Si X est à densité et Y a même loi que X, la variable aléatoire Y est aussi à densité.

Alors que la fonction de répartition est *unique*, les densités ne le sont pas (on peut toujours modifier f sur un nombre fini de points par exemple).

Théorème 1.5. Soit X une variable aléatoire réelle sur (Ω, \mathcal{B}) possédant une densité f.

(1) La fonction de répartition de X est définie par :

$$\forall x \in \mathbb{R}, F_X(x) = \int_{-\infty}^{x} f(t) dt$$

- (2) Cette fonction est croissante, continue sur \mathbb{R} , dérivable en tout point x_0 où f est continue avec $F'_X(x_0) = f(x_0)$.
- (3) Pour tout réel x, on a :

$$\begin{cases} \mathbb{P}(X = x) = 0\\ \mathbb{P}(X < x) = \mathbb{P}(X \le x) = \int_{-\infty}^{x} f(t) dt\\ \mathbb{P}(X > x) = \mathbb{P}(X \ge x) = \int_{x}^{+\infty} f(t) dt \end{cases}$$

et pour tous réels a < b, on a:

$$\mathbb{P}(a < X < b) = \mathbb{P}(a \le X < b) = \mathbb{P}(a \le X \le b) = \mathbb{P}(a \le X \le b) = \int_a^b f(x) dx$$

Démonstration. (1) Pour tout réel x, on a :

$$F_X(x) = \mathbb{P}(X \le x) = \mathbb{P}\left(\bigcup_{n > -x} (-n < X \le x)\right)$$
$$= \lim_{n \to +\infty} \mathbb{P}(-n < X \le x) = \lim_{n \to +\infty} \int_{-n}^{x} f(t) dt = \int_{-\infty}^{x} f(t) dt$$

puisque $((-n < X \le x))_{n>-x}$ une suite croissante dans \mathscr{B} .

(2) La croissance et la continuité de F_X sur $\mathbb R$ en résulte. On sait déjà qu'elle croissante sur $\mathbb R$ et continue à droite en tout point $x_0 \in \mathbb R$ (c'est une fonction de répartition). Il suffit donc de montrer la continuité à gauche. Pour $x_0 \in \mathbb R$, il existe un réel $a < x_0$ assez proche de x_0 telle que f soit Riemann-intégrable sur tout segment $[a,x] \subset [a,x_0[$ (x_0 peut être l'un des points de S) et :

$$F_X(x) - F_X(a) = \int_a^x f(t) dt \underset{x \to x_0^-}{\to} \int_a^{x_0} f(t) dt = F_X(x_0) - F_X(a)$$

la dernière intégrale étant éventuellement généralisée. Il en résulte que $\lim_{x \to x_0^-} F_X(x) = F_X(x_0)$. Supposons f continue en $x_0 \in \mathbb{R} \setminus S$. Pour tout réel $\varepsilon > 0$, il existe un réel $\eta > 0$ tel que

 $|f(t)-f(x_0)| < \varepsilon$ pour $t \in [x_0-\eta,x_0+\eta] \subset \mathbb{R} \setminus S$ (c'est un ouvert puisque S est fini). Pour $0 < |h| < \eta$, on a alors :

$$\left| \frac{F_X(x_0 + h) - F_X(x_0)}{h} - f(x_0) \right| = \left| \int_{x_0}^{x_0 + h} \frac{f(t) - f(x_0)}{h} dt \right|$$

$$< \varepsilon$$

On a donc $\lim_{h\to 0} \frac{F_X\left(x_0+h\right)-F_X\left(x_0\right)}{h}=f\left(x_0\right)$, ce qui signifie que F_X est dérivable en x_0 avec $F_X'\left(x_0\right)=f\left(x_0\right)$.

(3) La suite $\left(\left(x-\frac{1}{n} < X \le x\right)\right)_{n \in \mathbb{N}}$ est une suite décroissante dans \mathscr{B} et pour tout réel x, on a :

$$\mathbb{P}(X = x) = \mathbb{P}\left(\bigcap_{n \in \mathbb{N}^*} \left(x - \frac{1}{n} < X \le x\right)\right)$$
$$= \lim_{n \to +\infty} \mathbb{P}\left(x - \frac{1}{n} < X \le x\right) = \lim_{n \to +\infty} \left(F_X(x) - F_X\left(x - \frac{1}{n}\right)\right) = 0$$

du fait de la continuité de F_X . On en déduit que :

$$\mathbb{P}(X < x) = \mathbb{P}(X \le x) - \mathbb{P}(X = x) = \mathbb{P}(X \le x).$$

Les autres égalités se vérifient de manière analogue.

Remarque 1.3. La condition $\mathbb{P}(X = x) = \mathbb{P}_X(\{x\}) = 0$ équivaut en fait à la continuité de F_X en x et se traduit en disant que X est une variable aléatoire continue.

Une variable aléatoire discrète ne peut être à densité puisqu'il existe des réels x tels que $\mathbb{P}(X=x) \neq 0$.

Remarque 1.4. L'ensembles des variables aléatoires discrètes définies sur $(\Omega, \mathcal{A}, \mathbb{P})$, de même que celui de toutes les variables aléatoires définies sur $(\Omega, \mathcal{A}, \mathbb{P})$, admet une structure naturelle d'espace vectoriel sur \mathbb{R} . Par contre, il est important de remarquer que la somme de deux variables à densité n'est en général pas une variable aléatoire à densité. En effet, même si X est à densité, X - X est discrète et n'est donc pas à densité.

Remarque 1.5. Si X est à densité, la fonction F_X n'est pas nécessairement dérivable. Par exemple pour X de densité $f: x \mapsto \frac{1}{2\sqrt{x}} \mathbf{1}_{]0,1]}(x)$, on a :

$$F_X(x) = \int_{-\infty}^x f(t) dt = \begin{cases} 0 \text{ si } x \le 0\\ \sqrt{x} \text{ si } 0 < x \le 1 \end{cases} = \sqrt{x} \mathbf{1}_{]0,1]}(x) + \mathbf{1}_{[1,+\infty[}(x)$$

$$1 \text{ si } x > 1$$

et c'est fonction n'est pas dérivable en 0 et 1.

Si X admet une densité f continue par morceaux, F_X est dérivable sauf aux points de discontinuité de f.

Rappelons sans démonstration le résultat suivant :

Lemme 1.2. Soit F une fonction continue et de classe \mathscr{C}^1 par morceaux sur \mathbb{R} et soit f = F' définie sur $\mathbb{R} \setminus S$ où S est un ensemble au plus dénombrable. Alors,

$$\forall (a,b) \in \mathbb{R}^2 F(b) - F(a) = \int_a^b f(t) dt.$$

Remarque 1.6. Ce résultat tombe en défaut si on ne suppose pas F continue. Par exemple, si F est la fonction caractéristique de [0,1], f est définie sur $\mathbb{R}\{0,1\}$ et nulle sur cet ensemble alors que F n'est pas constante.

Théorème 1.6. Soit X une variable aléatoire réelle sur (Ω, \mathcal{B}) . Si sa fonction de répartition F_X est continue et de classe \mathcal{C}^1 par morceaux sur \mathbb{R} , cette variable aléatoire est à densité de densité $f = F_X'$.

Démonstration. remarquons tout d'abord que f est positive ou nulle sur $\mathbb{R} \setminus S$ où S est au plus dénombrable. D'après le lemme précédent, pour tout $(a,b) \in \mathbb{R}^2$ on a

$$F(b) - F(a) = \int_{a}^{b} f(t)dt$$

et, F_X étant une fonction de répartition, $\lim_{x\to-\infty} F_X(x) = 0$ et $\lim_{x\to+\infty} F_X(x) = 1$. Il en résulte que f est intégrable sur $\mathbb R$ et que f est une densité de probabilité de plus,

$$\mathbb{P}\left(a < X \le b\right) = F_X\left(b\right) - F_X\left(a\right) = \int_a^b f\left(t\right) dt$$

ce qui signifie que X a pour densité f.

Théorème 1.7. Soit X une variable aléatoire réelle sur (Ω, \mathcal{B}) possédant une densité f. Pour toute fonction $\varphi : \mathbb{R} \to \mathbb{R}$ de classe \mathscr{C}^1 et strictement monotone, la variable aléatoire $Y = \varphi(X)$ a pour densité la fonction $g = f \circ \varphi^{-1} \left| (\varphi^{-1})' \right| \mathbf{1}_{\varphi(\mathbb{R})}$.

Démonstration. Comme φ est de classe \mathscr{C}^1 et strictement monotone, elle réalise une bijection de \mathbb{R} sur l'intervalle $\varphi(\mathbb{R}) =]a,b[$ avec $-\infty \leq a < b \leq +\infty$, la fonction réciproque étant aussi de classe \mathscr{C}^1 avec $(\varphi^{-1})'(y) = \frac{1}{\varphi'(x)}$ pour tout $y = \varphi(x) \in \varphi(\mathbb{R})$ (on a $\varphi'(x) > 0$ [resp. $\varphi'(x) < 0$] pour φ strictement croissante [resp. strictement décroissante]). Comme φ est de classe \mathscr{C}^1 , elle est borélienne et $Y = \varphi \circ X = \varphi(X)$ est bien une variable aléatoire.

Supposons φ strictement croissante. Pour y < a (dans le cas où $-\infty < a$), on a :

$$\mathbb{P}\left(Y \le y\right) = \mathbb{P}\left(\varphi\left(X\right) \le y\right) \le \mathbb{P}\left(\varphi\left(X\right) < a\right) = 0$$

Pour y > b (dans le cas où $b < +\infty$), on a :

$$1 \ge \mathbb{P}(Y \le y) = \mathbb{P}(\varphi(X) \le y) \ge \mathbb{P}(\varphi(X) \le b) = 1$$

donc $\mathbb{P}(\varphi \leq y) = 1$.

Pour $y = \varphi(x) \in F(\mathbb{R})$, on a a < y < b et :

$$\mathbb{P}(Y \le y) = \mathbb{P}(\varphi(X) \le \varphi(x)) = \mathbb{P}(X \le x) = \int_{-\infty}^{x} f(t) dt.$$

Le changement de variable $t = \varphi^{-1}(\theta)$, $dt = (\varphi^{-1})'(\theta) d\theta$, nous donne :

$$\mathbb{P}(Y \le y) = \int_{a}^{y} f(\varphi^{-1}(\theta)) (\varphi^{-1})'(\theta) d\theta$$

De plus:

$$\int_{a}^{b} f\left(\varphi^{-1}\left(\theta\right)\right) \left(\varphi^{-1}\right)'(\theta) d\theta = \int_{-\infty}^{+\infty} f\left(t\right) dt = 1$$

la variable aléatoire Y a donc pour densité la fonction positive $f\left(\varphi^{-1}(\theta)\right)\left(\varphi^{-1}\right)'(\theta)\mathbf{1}_{\varphi(\mathbb{R})}$. On procède de même pour φ décroissante avec $\varphi'<0$ (en faisant attention aux signes).

Si φ est une fonction affine, soit $\varphi(x) = ax + b$ pour tout réel x avec $a \neq 0$, on a alors $\varphi(\mathbb{R}) = \mathbb{R}$, $\varphi^{-1}(y) = \frac{1}{a}(y-b)$ et la variable aléatoire Y = aX + b a pour densité la fonction g définie par :

$$g(y) = \frac{1}{|a|} f\left(\frac{1}{a}(y-b)\right)$$

sa fonction de répartition étant définie par :

$$F_Y(y) = \int_{-\infty}^{y} g(y) dy = \frac{1}{|a|} \int_{-\infty}^{y} f\left(\frac{1}{a}(y-b)\right) dy = \frac{1}{|a|} F_X(x)$$
$$= \frac{1}{|a|} F_X\left(\frac{1}{a}(y-b)\right)$$

Théorème 1.8. Si X est une variable aléatoire réelle sur $(\Omega, \mathscr{P}(\Omega), \mathbb{P})$ possédant une densité f, on a alors :

$$\mathbb{E}\left(X^{+}\right) = \int_{0}^{+\infty} t f\left(t\right) dt, \ \mathbb{E}\left(X^{-}\right) = \int_{-\infty}^{0} -t f\left(t\right) dt$$

et:

$$\mathbb{E}(|X|) = \int_{-\infty}^{+\infty} |t| f(t) dt$$

Si en outre X admet une espérance,

$$\mathbb{E}(X) = \mathbb{E}(X^{+}) - \mathbb{E}(X^{-}) = \int_{-\infty}^{+\infty} tf(t) dt.$$

 $D\acute{e}monstration$. La suite $(X_n)_{n\in\mathbb{N}^*}$ de variables aléatoires réelles étagées positives définie par :

$$X_n = \sum_{k=0}^{n2^n-1} \frac{k}{2^n} \chi_{A_{n,k}}$$
 où $A_{n,k} = \left(\frac{k}{2^n} \le X < \frac{k+1}{2^n}\right)$

converge en croissant vers X^+ Alors, $\mathbb{E}(X^+) = \lim_{n \to +\infty} \mathbb{E}(X_n)$ avec :

$$\mathbb{E}(X_n) = \sum_{k=0}^{n2^n - 1} \frac{k}{2^n} \mathbb{P}\left(\frac{k}{2^n} \le X < \frac{k+1}{2^n}\right) = \sum_{k=0}^{n2^n - 1} \frac{k}{2^n} \left(F_X\left(\frac{k+1}{2^n}\right) - F_X\left(\frac{k}{2^n}\right)\right)$$
$$= \sum_{k=0}^{n2^n - 1} \frac{k}{2^n} \int_{\frac{k}{2^n}}^{\frac{k+1}{2^n}} f(t) dt$$

On a donc:

$$\left| \int_{0}^{n} t f(t) dt - \mathbb{E}(X_{n}) \right| = \left| \sum_{k=0}^{n2^{n}-1} \int_{\frac{k}{2^{n}}}^{\frac{k+1}{2^{n}}} \left(t - \frac{k}{2^{n}} \right) f(t) dt \right| \leq \sum_{k=0}^{n2^{n}-1} \int_{\frac{k}{2^{n}}}^{\frac{k+1}{2^{n}}} \left(t - \frac{k}{2^{n}} \right) f(t) dt$$

$$\leq \frac{1}{2^{n}} \sum_{k=0}^{n2^{n}-1} \int_{\frac{k}{2^{n}}}^{\frac{k+1}{2^{n}}} f(t) dt = \frac{1}{2^{n}} \int_{0}^{n} f(t) dt \leq \frac{1}{2^{n}} \int_{-\infty}^{\infty} f(t) dt = \frac{1}{2^{n}}.$$

On en déduit que :

$$\left| \int_{0}^{n} t f(t) dt - \mathbb{E}(X_{n}) \right| \leq \frac{1}{2^{n}} \underset{n \to +\infty}{\to} 0$$

et:

$$\mathbb{E}\left(X^{+}\right) = \lim_{n \to +\infty} \mathbb{E}\left(X_{n}\right) = \lim_{n \to +\infty} \int_{0}^{n} t f\left(t\right) dt = \int_{0}^{+\infty} t f\left(t\right) dt$$

De manière analogue, on vérifie que la suite $(Y_n)_{n\in\mathbb{N}^*}$ de variables aléatoires réelles étagées positives définie par :

$$Y_n = \sum_{k=0}^{n2^n-1} \frac{k}{2^n} \chi_{B_{n,k}}$$
 où $B_{n,k} = \left(-\frac{k+1}{2^n} < X \le -\frac{k}{2^n}\right)$

converge en croissant vers X^- et $\mathbb{E}(X^-) = \lim_{n \to +\infty} \mathbb{E}(Y_n)$ avec :

$$\mathbb{E}(Y_n) = \sum_{k=0}^{n2^n - 1} \frac{k}{2^n} \int_{-\frac{k+1}{2^n}}^{-\frac{k}{2^n}} f(t) dt.$$

De plus,

$$\left| \int_{-n}^{0} -t f(t) dt - \mathbb{E}(Y_n) \right| \le \sum_{k=0}^{n2^{n}-1} \int_{-\frac{k+1}{2^{n}}}^{-\frac{k}{2^{n}}} \left(-t - \frac{k}{2^{n}} \right) f(t) dt \le \frac{1}{2^{n}}$$

ce qui donne $\mathbb{E}(X^{-}) = \int_{-\infty}^{0} -tf(t) dt$.

Enfin:

$$\mathbb{E}(|X|) = \mathbb{E}(X^{+}) + \mathbb{E}(X^{-}) = \int_{-\infty}^{+\infty} |t| f(t) dt$$

Remarque 1.7. On retiendra en définitive qu'une variable aléatoire continue de densité f admet une espérance si $\int_{-\infty}^{+\infty} t f(t) dt$ est convergente et dans ce cas la valeur de cette intégrale est l'espérance de X. En effet, la fonction $t \mapsto t f(t)$ étant de signe constant sur \mathbb{R}^- et sur \mathbb{R}^+ respectivement, la convergence de l'intégrale $\int_{-\infty}^{+\infty} t f(t) dt$ est équivalente à l'absolue convergence.

Nous admettrons ici le théorème suivant dont la démosntration dépasse le cadre de ces notes.

Théorème 1.9. [Théorème du transfert] Si X est une variable aléatoire réelle sur $(\Omega, \mathcal{A}, \mathbb{P})$ possédant une densité f et si $\varphi : \mathbb{R} \to \mathbb{R}$ est une fonction continue (ou plus généralement borélienne) telle que la variable aléatoire $\varphi \circ X$ soit intégrable, on a alors :

$$\mathbb{E}(\varphi \circ X) = \int_{-\infty}^{+\infty} \varphi(t) f(t) dt$$

Remarque 1.8. Si $\varphi = \sum_i \alpha_i \chi_{A_i}$ est une fonction étagée, $\varphi(X) = \sum_i \alpha_i \chi_{X^{-1}(A_i)}$ est encore étagée et

$$\mathbb{E}(\varphi(X)) = \sum_{i} \alpha_{i} \mathbb{P}(X \in A_{i})$$

$$= \sum_{i} \int_{A_{i}} \alpha_{i} f(t) dt = \int_{\mathbb{R}} \varphi(t) f(t) dt.$$

ce qui démontre le résultat dans ce cas *simple*. Si φ est positive continue (borélienne), φ est limite d'une suite croissante de fonctions étagées φ_n mais, pour conclure, il nous faudrait savoir que

$$\int_{\mathbb{R}} \varphi(t) f(t) dt = \lim \int_{\mathbb{R}} \varphi_n(t) f(t) dt.$$

On pourrait alors conclure en considérant φ^+ et φ^- .

1.2. Premiers exemples.

- [Lois uniformes]

Définition 1.6. Soit X une variable aléatoire définie sur $(\Omega, \mathscr{A}, \mathbb{P})$ à valeurs dans \mathbb{R} . On dit que X suit la loi uniforme sur [a,b] (b>a) si elle admet pour densité $\frac{1}{b-a}\chi_{[a,b]}$.

Autrement dit, X suit la loi uniforme sur [a,b] si sa fonction de répartition est donnée par

$$F_X(x) = \begin{cases} 0 & \text{si} & x \le a \\ x - a & \text{si} & a \le x \le b \\ 1 & \text{si} & x > b \end{cases}$$

Si X suit la loi uniforme sur [a,b], on note $X \sim \mathcal{U}_{[a,b]}$ Alors,

$$\mathbb{E}(X) = \frac{a+b}{2}.$$

– [Lois exponentielles] Remarquons que pour tout $\lambda > 0$ et tout $x \in \mathbb{R}$, $\frac{1}{\lambda}e^{-\lambda x} \ge 0$ et

$$\int_{\mathbb{R}} \lambda e^{-\lambda x} \chi_{\mathbb{R}^+} dx = \int_0^{+\infty} \lambda e^{-\lambda x} dx = 1.$$

Définition 1.7. Soit X une variable aléatoire sur $(\Omega, \mathcal{A}, \mathbb{P})$ à valeurs réelles et λ un réel strictement positif. On dit que X suit une *loi exponentielle de paramètre* λ si elle admet pour densité la fonction f définie par

$$f(x) = \lambda e^{-\lambda x} \chi_{\mathbb{R}^+}.$$

Il est facile de voir qu'une variable de loi exponentielle de paramètre λ admet pour fonction de répartition

$$F_X(x) = \left(1 - e^{-\lambda x}\right) \chi_{\mathbb{R}^+}.$$

on note alors $X \sim \mathcal{E}\lambda$ et

$$\mathbb{E}(X) = \int_{0}^{+\infty} \lambda x e^{-\lambda x} dx = \frac{1}{\lambda}.$$

- [Loi de Cauchy]

Définition 1.8. Soit X une variable aléatoire sur $(\Omega, \mathscr{A}, \mathbb{P})$ à valeurs réelles. on dit que X suit une loi de Cauchy sur \mathbb{R} si elle admet pour densité $f(x) = \frac{1}{\pi} \frac{1}{1+x^2}$.

Sa fonction de répartition est alors donnée par

$$\int_{-\infty}^{x} f(t) dt = \frac{1}{\pi} \left(\arctan(x) + \frac{\pi}{2} \right).$$

Par contre, on remarquera qu'une telle variable aléatoire n'admet pas d'espérance.

- [Lois normales]

Définition 1.9. Soient σ un réel strictement positif et μ réel. On dit qu'une variable aléatoire réelle X suit une loi normale (de Gauss) de paramètres μ et σ si elle possède une densité définie par :

$$\forall x \in \mathbb{R}, \ f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

On note $X \hookrightarrow \mathcal{N}(\mu, \sigma)$.

On peut toujours se ramener à une loi $\mathcal{N}(0,1)$ (on dit alors que X suit une loi normale centrée réduite).

Nous verrons l'importance de cette loi avec le théorème limite central.

Théorème 1.10. Si la variable aléatoire réelle X suit une loi de Gauss de paramètres μ et σ , alors la variable aléatoire $Y = \frac{X - \mu}{\sigma}$ suit une loi de Gauss de paramètres 0 et 1.

Démonstration. On effectue le changement de variable $y = \frac{t - \mu}{\sigma}$ dans le calcul de $F_X(x)$.

On en déduit que, si $X \hookrightarrow \mathcal{N}(\mu, \sigma)$:

$$\mathbb{P}\left(a < X \leq b\right) = \mathbb{P}\left(\alpha < Y \leq \beta\right) = F_Y\left(\beta\right) - F_Y\left(\alpha\right)$$

où
$$Y \hookrightarrow \mathcal{N}(0,1)$$
, $\alpha = \frac{a-\mu}{\sigma}$, $\beta = \frac{b-\mu}{\sigma}$ et:

$$F_Y(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt$$

Si $X \sim \mathcal{N}(\mu, \sigma^2)$, l'espérance de X est

$$\frac{1}{\sigma\sqrt{2\pi}} \int_{\mathbb{R}} x e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \frac{1}{\sigma\sqrt{2\pi}} \int_{\mathbb{R}} (x-\mu) e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx + \mu \frac{1}{\sigma\sqrt{2\pi}} \int_{\mathbb{R}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \mu.$$

2. EXERCICES

Exercice 2.1 Déterminer les constantes réelles λ_k pour que les fonctions $f_1: x \mapsto \lambda_1 \mathbf{1}_{[a,b]}(x)$, pour a < b, $f_2: x \mapsto \frac{\lambda_2}{\sqrt{x}} \mathbf{1}_{]0,1]}(x)$; $f_3: x \mapsto \lambda_3 e^{-\lambda x} \mathbf{1}_{\mathbb{R}^+}(x)$, où $\lambda_i > 0$ est donné et $f_4: x \mapsto \frac{\lambda_4}{1+x^2}$ soient des densités de probabilité sur \mathbb{R} .

Solution Toutes ces fonctions sont absolument sommable (i. e. $|f_k|$ est sommable) avec :

$$\int_{\mathbb{R}} f_1(x) dx = \lambda_1 \int_a^b dx = 1 \Leftrightarrow \lambda_1 = \frac{1}{b-a}$$

$$\int_{\mathbb{R}} f_2(x) dx = \lambda_2 \int_0^1 \frac{dx}{\sqrt{x}} = 1 \Leftrightarrow \lambda_2 = \frac{1}{2}$$

$$\int_{\mathbb{R}} f_3(x) dx = \lambda_3 \int_0^{+\infty} e^{-\lambda x} dx = 1 \Leftrightarrow \lambda_3 = \lambda$$

$$\int_{\mathbb{R}} f_4(x) dx = \lambda_4 \int_{-\infty}^{+\infty} \frac{dx}{1+x^2} = 1 \Leftrightarrow \lambda_4 = \frac{1}{\pi}$$

Exercice 2.2 Soit X une variable aléatoire suivant une loi uniforme sur [a,b], avec 0 < a < b. Donner la fonction de répartition, la densité, l'espérance et la variance de $Y = X^2$.

Exercice 2.3 On dit qu'une variable aléatoire T à valeurs dans \mathbb{R}_+ est *sans mémoire* si elle vérifie, pour tous $s, t \ge 0$,

$$P(T > t + s) = P(T > s)P(T > t).$$

- (1) Vérifier qu'une variable aléatoire T vérifiant une loi exponentielle de paramètre $\lambda > 0$, c'està-dire dont la densité est donnée par $f(t) = \lambda \exp(-\lambda t) \mathbf{1}_{[0,+\infty[}(t)$ est une variable aléatoire sans mémoire.
- (2) Réciproquement, soit T une variable aléatoire à valeurs dans \mathbb{R}_+ sans mémoire et vérifiant P(T>0)>0.

- (a) On suppose qu'il existe t > 0 tel que P(T > t) = 0. Calculer $P(T > t/2^n)$ en fonction de P(T > t). En déduire que P(T > 0) = 0. Conclusion ?
- (b) Soit $\alpha = P(T > 1)$. Démontrer que $P(T > t) = \alpha^t$ pour tout $t \in \mathbb{R}_+$ (démontrer le d'abord pour $t \in \mathbb{N}_+^*$, puis pour $t \in \mathbb{Q}_+^*$ et enfin pour $t \in \mathbb{R}_+^*$).
- (c) Conclure.

Exercice 2.4 Soient X_0, \ldots, X_n des variables aléatoires suivant une loi uniforme sur [0,1], indépendantes.

- (1) Soit $0 \le k \le n$ et soit $U_k = \min(X_0, \dots, X_k)$. Démontrer que U_k admet une densité que l'on déterminera.
- (2) Soit N une variable aléatoire suivant une loi binomiale $\mathcal{B}(n, 1/2)$. Démontrer que

$$U = \min(X_0, \dots, X_N)$$

admet une densité que l'on déterminera.

Exercice 2.5 Soit X une variable aléatoire définie sur $(\Omega, \mathscr{A}, \P)$ à valeurs dans]0,1[et de loi uniforme sur]0,1[. On définit

$$Z = \frac{1 - X}{X}.$$

- (1) Déterminer la fonction de répartition de Z.
- (2) La variable aléatoire Z est-elle une variable à densité? Dans l'affirmative, déterminer une densité.

Exercice 2.6 [Loi de Laplace] Soit X une variable aléatoire ayant pour densité de probabilité la fonction f définie sur \mathbb{R} par

$$f(x) = \frac{1}{2} \exp\left(-|x|\right).$$

- (1) Déterminer L'espérance de X. montrer que X^2 admet une espérance et calculer $\mathbb{E}\left((X \mathbb{E}(X))^2\right)$.
- (2) Déerminer la fonction de répartition de X.
- (3) Soient Y et Z deux variables aléatoires indépendantes de même loi exponentielle $\mathscr{E}(1)$. Déterminer la loi de Y-Z.

INDEX

loi exponentielle de paramètre λ , 11 Loi uniforme sur [a,b], 11

Variable aléatoire à densité, 5