第5章 作业参考答案

 `	单项选择题:

1,	CPU中的程序计数器PC中存放的是 <u>B</u> 。
	A. 指令 B. 指令地址 C. 操作数 D. 操作数地址
2,	指令寄存器中寄存的是 <u>C</u> 。
	A. 下一条要执行的指令 B. 已执行完了的指令
	C. 正在执行的指令 D. 要转移的指令
3、	在CPU中微操作信号发生器的作用是D。
	A. 从主存中取出指令 B. 完成指令操作码的译码功能
	C. 产生控制时序 D. 产生各种微操作控制信号
4,	CPU中通用寄存器的长度取决于B。
	A. 存储器容量 B. 机器字长 C. 指令长度 D. CPU功能
5,	中央处理器是指 <u>C</u> 。
	A. 运算器 B. 运算器、控制器和主存储器
	C. 运算器和控制器 D. 控制器
6,	计算机操作的最小时间单位是 <u>A</u> 。
	A. 时钟周期 B. 指令周期 C. CPU周期 D. 微指令周期
7、	在计算机系统中,表征系统运行状态的是 <u>C</u> 。
	A. 指令寄存器 B. 指令译码器 C. 程序状态字寄存器 D. 地址译码器

8,	在微和	程序控制中	,把操作	控制信号	编成	Α。		
	A. 彷	散指令	B. 微力	地址	C. 操	身作码	D. 5	程序
9,	微程序	亨存放在	<u>B</u> 中。					
	Α.	RAM	B. 控	制存储器	<u>i</u>			
	C .	指令寄存器	B. D.	内存储器				
10,	微程	皇序控制器的	的速度比硬	更布线控制	刊器慢,	主要是	是因为 <u>D</u>	_ 0
	Α.	增加了从磁	兹盘存储器	异读取微指	自令的时	广间		
	В.	增加了从主	三存储器读	取微指令	>的时间	J		
	C.	增加了从指	令寄存器	读取微排	自令的时	广间		
	D.	增加了从挖	的制存储器	读取微排	自令的时	广间		
11,	指令	译码器是对	<u>d_B</u> 进	行译码。				
	Α.	整条指令	B. 指	令中的势	操作码字	召段		
	C .	指令的地址	L D. 指	令的操作	巨数地址	上码字段	L	
12,	在计	算机中,有	了放微程序	的控制有	存储器属	属于	D °	
	Α.	外存 B.	高速缓存	C. 内	存储器	B.	CPU	
13,	机器	指令代码中	中的地址学	2段作用是	<u> </u>	_,微指	台令代码中	的地址字段
的作	乍用是	<u>E_A</u> .						
	Α.	确定执行顺	页序 B.	存取地	址 C.	存取数	文据 D.	存取指令

14,	微程序	序控制器中,	机器指	令与微指	令的	关系是_	В	_	
	A. :	每一条机器	指令由一	一条微指	令来是	 完成			
	B.	每一条机器	指令由-	一段用微	指令纲	扁成的微	程序来	ぞ解释	执行
	C.	一段机器指	令组成的	的程序可	由一条	K 微指令	来执行	Ţ.	
	D.	一条微指令	由若干氣	条机器指	令组员	戈			
15,	在微程	是序控制器中	7, 形质	戈 微程序。	入口均	也址的字.	没是_	<u>A</u>	0
	Α.	机器指令的	的操作码	B. 微	(指令)	的地址码	J		
	C.	机器指令的	的地址码	D. 微	(指令)	的微操作	码		
16,	组合逻	逻辑控制器中	7,微操	作信号的]形成	主要与_	<u>B</u>	信号	有关。
	Α.	指令操作码	日和地址	码	В.	指令译	玛信号	和时	钟
	C.	操作码和象	《件码		D.	状态信	号和条	件	
17、	下列為	F存器中,汇	二编语言	程序员可	「见的	是 <u>B</u>	o		
	Α.	存储器地	址寄存署	器(MAR)	В.	程序计数	文器 (]	PC)	
	С.	存储器数	据寄存署	器(MDR)	D.	指令寄存	字器 (]	IR)	
18,	下列	不会引起指令	令流水队	且塞的是_	<u>A</u>				
	Α.	数据旁路	В.	数据相关		C. 条件	转移	D.	资源冲突

19	, <u>}</u> _	马·诺依曼计算	拿机中指	令和数抗	居均以	二进制建	形式存放在	E存储器	
	CPU	」区分它们的	依据是_	<u> </u>					
	A.	指令操作码	的译码组	吉果	В	. 指令	和数据的导	身址方式	
	C.	指令周期的	不同阶段	艾	D	. 指令	和数据所在	E的存储	单元
答	案:	C							
20	_	其计算机的指	•				• • • • •		
		(忽略各功能					ns, 80ns,	70ns和6	60ns,
	则i	该计算机的(PU周期的	全少是_	A	0			
	A.	90ns	B. 80r	ıs	C. 7	0ns	D. 60	ns	
21	、村	目对于微程序	控制器	硬布线	注控制制	器的特点	点是 <u>D</u>	0	
	A.	指令的执行	速度慢,	指令功	能的何	多改和扩	展容易		
	В.	指令的执行	速度慢,	指令功	能的何	多改和扩	展难		
	C.	指令的执行	速度快,	指令功	能的個	多改和扩	展容易		
	D.	指令的执行	速度快,	指令功	能的個	多改和扩	展难		

教材: 习题5 (P139-141)

二、综合应用题

3, 4, 5, 6, 7, 13题

二、综合应用题

3、假设主机框图如5-14所示,各部分之间的连线表示数据通路,箭头表示信息传送方向。求(1)表明图中X、Y、Z、W四个寄存器的名称。(2)简述取指令的数据通路。(3)简述取数指令和存数指令执行阶段的数据通路。

解:

1) X:主存数据寄存器MDR。Y:主存地址寄存器MAR。

Z:指令寄存器IR。W:程序计数器PC

思路: X、Y连接主存储器,故为主存接口寄存器(MDR,MAR)之一;X和AC的数据传入ALU,故X为MDR。每次更新+1的为程序计数器,故W为PC。

- (2)取指令: W -> Y -> M -> X -> Z (见教材p119)
- (3)取数指令: X(Z) -> Y -> M -> X -> ALU -> AC (见教材p120)

存数指令:

先取存储地址: X(Z) → Y → M

后数据存入主存: AC -> X -> M

- 4、设某机主频为8MHz,每个机器周期平均含2个时钟周期,每条指令平均有2.5个机器周期,试问:
 - (1) 该机的平均指令执行速度为多少MIPS?
 - (2) 若机器主频不变,但每个机器周期平均含4个时钟周期, 每条指令平均有5个机器周期,则该机的平均指令执行速 度又是多少 MIPS?(3) 由此可得出什么结论?

解:

(1) CPI=2.5×2=5, 平均指令执行速度为:

MIPS: $fc/(CPI \times 10^6) = 8 \times 10^6/(5 \times 10^6) = 1.6 \text{ MIPS}$

(2) CPI=5×4=20, 平均指令执行速度为:

MIPS: $fc/(CPI \times 10^6) = 8 \times 10^6/(20 \times 10^6) = 0.4 \text{ MIPS}$

(3) 机器的速度不仅与主频相关,与每条指令时钟周期也相关

- 5、某CPU的主频为8MHz,若已知每个机器周期平均包含4个时钟周期,该机的平均指令执行速度为0.8 MIPS,试求:
 - (1) 该机的平均指令周期及每个指令周期含几个机器周期?
 - (2) 若改用时钟周期为0. 4μs的CPU芯片,则计算机的平均指令执行速度为 多少MIPS?
 - (3) 若要得到平均每秒40万次的指令执行速度,则应采用主频为多少的CPU 芯片?
- 解: 时钟周期为Tc=1/8=0.125 us, 机器周期为0.125 × 4=0.5us。
 - (1) 根据平均指令执行速度 MIPS=fc/(CPI×10⁶),得CPI=fc/(MIPS×10⁶)=8×10⁶/(0.8×10⁶)=10Tc=1.25 us
- 由每个机器周期平均包含4个时钟周期得:每个指令周期含有机器周期数: 10Tc/4Tc=2.5个。
 - (2) 若改用时钟周期为0.4 us的CPU芯片, 平均指令执行速度为: MIPS= 1/(CPI×Tc×10⁶)=1/(10×Tc×10⁶)=1/(10×0.4)=0.25
 - (3) 若要得到平均每秒40万次的指令执行速度,即0.4 MIPS,由 MIPS=fc/(CPI×10⁶)得,则CPU芯片的主频:

fc= MIPS \times (CPI \times 10⁶)=0.4 \times (10 \times 10⁶)=4 MHz.

- 6、已知单总线计算机结构如图5-15所示,其中M为主存,XR为变址寄存器,EAR为有效地址寄存器,LATCH为暂存器。假设指令地址已存于PC中,画出ADD X,D指令周期信息流程图,并列出相应的控制信号序列。说明:
 - (1) ADD X, D指令字中X为变址寄存器XR, D为形式地址
 - (2) 寄存器的输入和输出均受控制信号控制,如 PC_i 表示PC的输入控制信号,又如 MDR_0 表示MDR的输入控制信号。
 - (3) 凡是需要经过总线实现寄存器之间的传送,需在流程图中表明,如PC、Bus、MAR、 PC_0 、MAR_i。

其中Ad(IR)为形式地址

- 7、在图5-16所示的CPU逻辑框图中,有两条独立的总线和两个独立的存储器。已知指令存储其IM最大的容量为16384字,每个字字长18位。数据存储器 DM最大容量是65536字,每字长16位。各寄存器均有"打入"(R_{in})和"送出"(R_{out})控制命令,但图中未标出。
 - (1) 指出下列寄存器的位数:程序计数器PC,指令寄存器IR,累加器AC $_0$ 、AC $_1$,通用寄存器R $_0$ R $_3$,指令存储器地址寄存器IAR,指令存储器数据存储器IDR,数据存储器地址寄存器DAR,数据存储器数据寄存器DDR。

答: 指令存储器IM最大容量为16384=214, 故PC=14位; IAR=14位。

指令字长18位, IR=18位; IDR=18位。

数据存储器DM最大容量65536=216, DAR=16位。

数据字长16位,DDR=16位; $AC_0=AC_1=16位$; $R_0^{\sim}R_3=16位$ 。

(2) 设机器指令格式为:

假发指令可写成"ADD $X(R_i)$ ",其功能是 $(AC_0)+((R_i)+X)->AC_1$,其中 $((R_i)+X)$ 部分通过寻址方式指向数据存储其DM。现取 R_i 为 R_1 。画出ADD指令的指令周期流程图,写明"数据通路"和相应的微操作控制信号。

答:取指周期

控制信号序列

指令执行周期

$$\begin{array}{|c|c|c|c|}\hline R_1 + IR(X) -> AC_1 & R_{1out}, X_{out}, +, AC_{1in} \\ \hline AC_1 -> DAR & AC_{1out}, DAR_{in} \\ \hline DM(DAR) -> DDR & DAR_{out}, R/\overline{W}, DDR_{in} \\ \hline AC_0 + DDR -> AC_1 & AC_{0out}(BUS_1), +, DDR_{out}(BUS_2), AC_{1in} \\ \hline \end{array}$$

13、已知某机器采取微程序控制方式,其控制存储器容量为512 x 48位。微指令字长48位,微指令可在整个存储器中实现转移,可控制微程序转移的条件共有4个(直接控制),微指令采用水平型格式,如下所示。求:微指令中的三个字段分别应为多少位?

微指令字段		判别测试字段	下地址字段	
操作字段		顺序哲	图制	

答:由控制存储器容量可知,微指令共有48位

寻址范围位512=29, 故下地址字段长9位;

程序转移条件有4个,并为直接控制法表示,故判别测试字段长4位;微指令字段的长度为48-4-9=35位

	微指令字段		判别测试	字段		下地址字段	
47		13	12	9	8		0