Question-1 [5 points]: Suppose you are testing whether light bulbs produced by two competing companies are equivalent in terms of length of life. You have 10 observations from the first company $(X_1, X_2, ..., X_{10})$ and 15 observations from the second company $(Y_1, Y_2, ..., Y_{15})$. You can assume the observations are all independent and drawn from Normal distribution. The table below summarizes the observed samples.

	sample size	mean	sd
X	10	10.48	2.57
Y	15	9.30	4.50

[2 points] Test H_0 : $\sigma_x^2 = \sigma_y^2$ vs. H_a : $\sigma_x^2 \neq \sigma_y^2$ at $\alpha = 0.05$. What conclusion do you make?

b. [3 points] By assuming the population variances to be equal, test H_0 : $\mu_x = \mu_y$ vs. H_a : $\mu_x > \mu_y$ at $\alpha = 0.05$. What conclusion do you make?

Question-2 [5 points]: Suppose $X_1, X_2, ..., X_n$ are independently drawn from a Non-normal distribution with mean μ and variance σ^2 .

By proving any required identity, show that $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$ is an unbiased estimator of σ^2 .

Question-3 [6 points]: Suppose these following observations are independently drawn from a Poisson distribution with an unknown λ

3,5,1,3,6,6,10,4,5,4

For this sample, $\bar{x} = 4.7$

You are also told that, for Poisson (λ), $E[X_i] = \lambda$ and MLE of $\lambda = \bar{X}$.

a.[3 points] Considering the sample large enough, by showing all the necessary steps, Construct a 95% confidence interval for λ .

b. [3 points] Suppose you are testing H_0 : $\lambda = 5$ vs H_a : $\lambda = 4$ for sample size, n = 10. At level of significance, $\alpha = 0.05$ using $\frac{\bar{X} - \lambda}{\sqrt{\lambda/n}} \stackrel{D}{\to} N(0,1)$ as the test statistic, calculate the power of your test. Leave your answer in terms of the CDF of standard normal distribution, $\Phi()$ or pnorm().

雅婧

雅婧

雅婧

Question-4 [6 points]: Suppose these following 15 numbers $(Y_1, Y_2, ..., Y_{15})$ are randomly drawn from a distribution. The sorting was done after the random draw.

0.33, 0.49, 0.51, 0.56, 0.64, 0.66, 0.74, 1.11, 1.24, 1.36, 1.52, 2.21, 2.58, 2.73, 4.40

You are also told that $\bar{y} = 1.41$.

By using an appropriate test and converting the range of y to (0,1), [1,2) and $[2,\infty)$, test whether the samples are from an Exponential (θ) distribution.

hint: for Exp (θ) , $F(y) = 1 - e^{-\frac{y}{\theta}}$; and MLE of θ is \bar{Y} .

雅精

雅婧

雅婧

Question-5 [6 points]: Suppose $(X_1, X_2, ..., X_n)$ are independently distributed as Exp (θ) with pdf

$$f(x \mid \theta) = \frac{1}{\theta} e^{-\frac{x}{\theta}}$$

雅婧

 $\frac{1}{\theta}$ is believed to be from a Gamma (α_0, β_0) distribution with pdf

$$\frac{\beta_0^{\alpha_0}}{\Gamma(\alpha_0)} \frac{1}{\theta^{(\alpha_0-1)}} e^{-\frac{\beta_0}{\theta}}$$

a. [3 points] By showing appropriate steps, find out the Posterior distribution of $\frac{1}{\theta}$.

b. [1.5 points] Calculate the posterior mean and the posterior variance of $\frac{1}{\theta}$. c.[1.5 points] What type of prior have we used here? Propose a non-informative prior.

Question-6 [6 points]: Suppose

$$(X_1, X_2, ..., X_n) \stackrel{iid}{\sim} \text{Bernoulli } (\theta_x) \text{ and } (Y_1, Y_2, ..., Y_m) \stackrel{\text{iid}}{\sim} \text{Bernoulli } (\theta_y)$$

You are also told that *X* and *Y* are independent.

a. [4 points] Construct a likelihood ratio test for testing the hypothesis, $H_0: \theta_x = \theta_y$ with an alternative hypothesis, $H_a: \theta_x \neq \theta_y$ at significance level α . (This question is asking for three things: the test statistic, corresponding distribution and the rejection region). Simplify your test statistic as much as possible.

b. [2 points] Suppose these following two set of samples are believed to be from a Bernoulli (θ_x) and a Bernoulli (θ_y) distributions.

X	1,1,1,1,0,1,0,1,1,1	$\sum_{i=1}^{10} x_i = 8$
Y	0,1,1,0,0,1,0,1,0,1	$\sum_{i=1}^{10} y_i = 5$

Test H_0 : $\theta_x = \theta_y$ vs. H_a : $\theta_x \neq \theta_y$ at $\alpha = 0.05$

Question-7 [6 points]: Suppose you are given a data set with 5 observations. The first two columns of this following table represent the given data.

	\mathbf{x}_i	Уi	$(\mathbf{x}_i - \bar{x})^2$	$(\mathbf{y}_i - \bar{y})^2$	$(\mathbf{x}_i - \bar{x})(y_i - \bar{y})$
_	-2	6	4	12.96	7.2
-	-1	8	1	2.56	1.6
	0	11	0	1.96	0.0
	1	10	1	0.16	0.4
	2	13	4	11.56	6.8
\overline{Sum} :	: 0	48	10	29.20	16.0

$$(Y \mid X = x) \sim N(\beta_1 + \beta_2 x, \sigma^2)$$

a. [1.5 points] Calculate the maximum likelihood estimate of β_1 and β_2 and interpret there values. (you do not need to maximize the likelihood function)

b.[1.5 points] Calculate the value of the coefficient of determination and interpret the value.

c. [1.5 points] Test (at $\alpha=0.05$) the hypothesis, H_0 : $\beta_2=1$ vs H_a : $\beta_2\neq 1$. Write your complete conclusion.

d.[1.5 points] Construct a 95% confidence interval for β_2 and interpret it.

