```
## Coffee example (Coffee Quality Institute, 2018) continued.
coffee <- read.csv("csv/coffee_arabica.csv")</pre>
mfull <-
  lm(
    Flavor ~ factor(Processing.Method) + Aroma + Aftertaste +
      Body + Acidity + Balance + Sweetness + Uniformity + Moisture,
    dat = coffee
  )
summary(mfull)$adj.r.squared
AIC(mfull)
BIC(mfull)
library(leaps)
# Exhaustive, brute-force search.
all_regs <-
  regsubsets(
    Flavor ~ .,
    data = coffee,
    nvmax = 10,
    nbest = 2 ^10,
    really.big = TRUE
  )
all_regs_summ <- summary(all_regs)</pre>
all_regs_summ$which
all_regs_summ$adjr2
all_regs_summ$bic
# Organize results according to number of variables in model.
p <- 10
k < -c(
  rep(1, choose(p, 1)),
  rep(2, choose(p, 2)),
  rep(3, choose(p, 3)),
  rep(4, choose(p, 4)),
  rep(5, choose(p, 5)),
  rep(6, choose(p, 6)),
  rep(7, choose(p, 7)),
  rep(8, choose(p, 8)),
  rep(9, choose(p, 9)),
  rep(10, choose(p, 10))
boxplot(
  all_regs_summ$adjr2 ~ k,
 xlab = "Number of predictors",
  ylab =
    expression(R[adj] ^ 2),
  ylim = c(0, 1)
abline(h = c(0, 1), lty = 2, col = "red")
boxplot(all_regs_summ$bic ~ k, xlab = "Number of predictors", ylab = "BIC")
```

```
max(all_regs_summ$adjr2)
bestR2adj <- which.max(all_regs_summ$adjr2)</pre>
min(all_regs_summ$bic)
bestBIC <- which.min(all_regs_summ$bic)</pre>
# Find out which predictors in those models.
all_regs_summ$which[bestR2adj, ]
all regs summ$which[bestBIC, ]
coffee$wet <- ifelse(coffee$Processing.Method == 'Washed / Wet', 1,</pre>
                      0) # 1 = wet, 0 otherwise
coffee$semi <-
  ifelse(coffee$Processing.Method == 'Semi-washed / Semi-pulped',
         1, 0) # 1 = semi/dry, 0 otherwise
coffee$Processing.Method <- NULL</pre>
m_bestr2adj <- lm(</pre>
  Flavor ~ wet + Aroma + Aftertaste +
    Body + Acidity + Balance + Sweetness + Uniformity + Moisture,
  dat = coffee
summary(m_bestr2adj)
AIC(m_bestr2adj)
BIC(m_bestr2adj)
m bestBIC <- lm(Flavor ~ wet + Aroma + Aftertaste +
                   Body + Acidity + Sweetness , dat = coffee)
summary(m_bestBIC)
AIC(m_bestBIC)
BIC(m_bestBIC)
# Let's also try stepwise methods.
library(MASS)
# Full model and empty model with just intercept.
full <- lm(Flavor ~ ., data = coffee)</pre>
empty <- lm(Flavor ~ 1, data = coffee)</pre>
# Default stepAIC uses AIC criterion.
m_f_AIC <- stepAIC(</pre>
 object = empty,
 scope = list(upper = full, lower = empty),
 direction = "forward"
# Let's get stepAIC to use BIC by specifying the penalty k = log(n).
# Add 'trace = 0' to hide the output.
# Forward.
m_f <-
  stepAIC(
   object = empty,
    scope = list(upper = full, lower = empty),
```

```
direction = "forward",
   trace = 0,
    k = log(nrow(coffee))
  )
summary(m_f)
# Backward.
m_b <-
  stepAIC(
    object = full,
    scope = list(upper = full, lower = empty),
    direction = "backward",
   trace = 0,
    k = log(nrow(coffee))
summary(m_b)
# Forward-backward.
m_h <-
  stepAIC(
    object = empty,
    scope = list(upper = full, lower = empty),
   direction = "both",
   trace = 0,
    k = log(nrow(coffee))
  )
summary(m_h)
```

10 variables is still a fairly small problem: in this example all 3 approaches identify the same BIC-based model as the exhaustive search.