Week 1

Juan Patricio Carrizales Torres Section 4: The Implication

July 4, 2021

"At times, the desire becomes almost overpowering, in its intensity. It is not mere curiosity, that prompts me; but more as though some unexplained influence were at work"

— William Hope Hodgson, The House on the Borderland

Problem 19. Consider the statements P: 17 is even. and Q: 19 is prime. Write each of the following statements in words and indicate whether it is true or false.

(A) $\sim P$: 17 is odd; **TRUE**

Proof. The real integer 17 is odd, thus the statement P is false. The negation of this statement will have the opposite truth value, true.

(B) $P \vee Q$: 17 is even or 19 is prime; **TRUE**

Proof. The real integer 19 is prime, thus Q is true. Because this statement is the disjunction of P and Q, it is only needed for one of them to be true for the statement to be true. \square

(C) $P \wedge Q$: 17 is even and 19 is prime; **FALSE**

Proof. We already know that the statement Q is true and P is false. This statement is a conjunction of both Q and P, and since one of them is false, the statement is false.

(D) $P \implies Q$: if 17 is even, then 19 is prime; **TRUE**

Proof. According to this statement P implies Q, so the only way for it to be false is when P is true and Q is false. We know that P is false, which means that this statement is true, because it tells nothing about what would happen when P is false.

Problem 20. For statements P and Q, construct a truth table for $(P \implies Q) \implies (\sim P)$

P	Q	$P \implies Q$	$\sim P$	$(P \implies Q) \implies (\sim P)$
\overline{T}	Т	Τ	F	\mathbf{F}
Τ	\mathbf{F}	${ m F}$	F	${f T}$
F	\mathbf{T}	${ m T}$	${ m T}$	${f T}$
F	F	${ m T}$	Τ	${f T}$

Problem 21. Consider the statements $P: \sqrt{2}$ is rational. and Q: 22/7 is rational. Write each of the following statements in words and indicate whether it is true or false.

(A)
$$P \implies Q$$
: if $\sqrt{2}$ is rational, then 22/7 is rational; **TRUE**

Proof. We know that $\sqrt{2}$ is irrational (we don't prove it here, because it is out of the scope of this excercise), thus the statement P is false. Since the statement we declare is an implication, it does not say anything about the truth value of Q when P is false. Therefore it did not "lie".

(B)
$$Q \implies P$$
: if 22/7 is rational, then $\sqrt{2}$ is rational; **FALSE**

Proof. The fraction 22/7 is the quotient of two integers and the denominator is a natural non-zero number, which means that it is rational. The statement Q is true and P is false, therefore the implication is not true.

(C)
$$(\sim P) \implies (\sim Q)$$
: if $\sqrt{2}$ is irrational, then 22/7 is irrational; **FALSE**

Proof. The first statement $\sim P$ is true because $\sqrt{2}$ is irrational, but $\sim Q$ is not since 22/7 is rational. Therefore, $\sim P$ does not imply $\sim Q$.

(D)
$$(\sim Q) \implies (\sim P)$$
: if 22/7 is irrational, then $\sqrt{2}$ is irrational; **TRUE**

Proof. This statement is similar to the previous one, but the places of the negations are switched. $\sim Q$ is false, therefore we can not prove the falseness of this implication because it tells nothing about the case when $\sim Q$ is false.

Problem 22. Consider the statements:

$$P:\sqrt{2}$$
 is irrational. $Q:\frac{2}{3}$ is rational. $R:\sqrt{3}$ is rational.

Write each of the following statements in words and indicate whether the statement is true or false.