Caracterização dos teores de nutrientes na serapilheira florestal no bioma amazônico

Cyro Matheus Cometti Favalessa¹, Édila Cristina de Souza ², Karen Janones da Rocha ³ Marcelino Alves Rosa de Pascoa⁴ Kuang Hongyu ⁵

1. Introdução

A serapilheira compreende o conjunto de componentes senescentes da parte aérea das plantas e, em menor escala, o material de origem animal disposto sobre a superfície do solo (MARTINS, 2007; CALDEIRA et al., 2008), sendo particularmente importante na recuperação da fertilidade do solo de áreas em início de sucessão ecológica (ALONSO et al., 2015).

O conhecimento da concentração de nutrientes contidos na serapilheira, assim como suas inter-relações é importante dentro dos processos ecológicos. O número e a natureza das variáveis envolvidas nos processos naturais têm grande variação e demandam análises que considerem todos os componentes dessa variação.

Em virtude da complexidade desses processos são necessárias técnicas multivariadas de análise para o estudo das relações existentes entre todos os componentes dentro dos ecossistemas. A Análise de componentes principais é uma técnica de ordenação indireta, descrita inicialmente por Karl Pearson em 1901 e introduzida em estudos de vegetação por Orlóci (1978), sendo, desde então, amplamente utilizada (KENT e COKER, 1992).

A análise de componentes principais (ACP) condensa as informações contidas em grande número de variáveis em um pequeno grupo de novas composições dimensionais, denominadas componentes, tal que o arranjo dos pontos sofre a menor distorção possível, preservando a estrutura original dos dados. Isso é feito com a sumarização dos dados redundantes (supérfluos), para colocar entidades similares em pontos próximos ao longo do eixo de ordenação (KENT e COKER, 1992; McGARIGAL et al., 2000; McCUNE e GRACE, 2002).

A ACP constrói o primeiro eixo ao longo da máxima variação presente nos dados distribuídos no espaço de ordenação, e o segundo eixo baseia-se na máxima variação seguinte, e assim por diante. Para cada eixo da ACP é produzido um autovalor, que é o somatório da variância dos dados que representam o eixo. Os autovalores dos eixos significam contribuição relativa de cada componente na explicação da variância total dos dados (GAUCH, 1982; KENT e COKER, 1992). Diante do exposto o objetivo geral do trabalho foi determinar os componentes principais responsáveis pela explicação da variabilidade dos dados.

2. Material e métodos

2.1. Área de estudo

O trabalho foi realizado em um fragmento, com área de 32,9801 ha, pertencentes à fazenda Rancho Fundo, localizada no município de Tapurah, Mato Grosso, Brasil, circunscrita à coordenada

¹ Professor do Departamento de Engenharia Florestal, Universidade Federal de Mato Grosso. email: favalessa.cmc@gmail.com.

² Professora do Departamento de Estatística, Universidade Federal de Mato Grosso. email: edilacrsouza@gmail.com.

³ Professora do Departamento Acadêmico de Engenharia Florestal, Universidade Federal de Rondônia. email: karenrocha@unir.br

⁴ Professor do Departamento de Estatística, Universidade Federal de Mato Grosso. email: marcelino.pascoa@gmail.com.

⁵ Professor do Departamento de Estatística, Universidade Federal de Mato Grosso. email: prof.kuang@gmail.com.

12°28'5,67"S e 56°33'32,14"W como observado na Figura 1. O clima da região é do tipo Am (Tropica de Monções), segundo a classificação de Köppen, com inverno seco de pequena duração e elevada precipitação anual, aproximadamente, 3.000 mm ano⁻¹, e temperatura média anual de 25°C (ALVARES et al., 2013).

2.2 Coleta dos dados

Foi utilizado o método de amostragem de área fixa com conglomerados retangulares de dimensões de 10 x 250 m (2.500 m²), pelo processo de amostragem sistemático. Foram cinco conglomerados com cinco subunidades cada de área de 10 X 50 m (500 m²). No centro de cada subunidade amostral foi coletada a serapilheira utilizando um gabarito de madeira de 30cm x 30cm (SCORIZA et al., 2012).

A classificação do material foi realizada no Laboratório de Cultura de Tecidos do Departamento de Engenharia Florestal da Universidade Federal de Mato Grosso em que a serapilheira coletada foi dividida em três frações: a) Folhas: Fração composta por folhas coletadas dentro do gabarito; b) Material lenhoso: Todo tipo de galhos e pedaços de madeira encontrados; c) Miscelânea: Material já decomposto e/ou aquele que não se enquadra nas frações folha e material lenhoso;

Foi realizada a quantificação dos macronutrientes Nitrogênio (N), Fósforo (P), Potássio (K), Cálcio (Ca), Magnésio (Mg) e Enxofre (S) todos em gramas por quilo de serapilheira (g/kg). Os micronutrientes quantificados foram Zinco (Zn), Cobre (Cu), Ferro (Fe) em miligramas por quilo de serapilheira (mg/kg). Foi também quantificada o Carbono orgânico percentual presente na serapilheira.

2.3 Análise de componentes principais

Os componentes principais foram calculados pela matriz de correlação dos dados padronizados referentes as concentrações de nutrientes das frações analisadas. A matriz de dados dos nutrientes respeitou a recomendação feita por Borcard et al., (2011) em que o número de linhas (observações) deve ser superior ao número de colunas (variáveis). Foi utilizada a técnica de Análise de Componentes Principais com as 10 variáveis da análise química da serapilheira para cada fração (Folhas, Material Lenhoso e Miscelânea) resultando em uma matriz com 75 linhas e 10 colunas.

O número de componentes principais foi determinado em função da contribuição para explicação da variabilidade considerando os critérios de Henderson (2003) com explicação proporcional entre 40% e 90% e o de Felfili et al., (2013) que em geral três componentes são suficientes e o restante representam apenas variação residual. Para ratificar a determinação do número de componentes principais foi construído o *Scree plot* dos autovalores em função de sua ordem, em que o número ideal de componentes é aquele em que ocorre a mudança mais acentuada na magnitude do autovalor.

A determinação das variáveis responsáveis pela explicação da variabilidade amostral foi realizada por uma análise conjunta da matriz de correlação dos dados padronizados, a dimensão dos autovetores dos componentes principais selecionados. Complementarmente foi realizada a análise do Biplot tridimensional conforme recomendado por Yan e Kang, (2003) em que ângulos formados entre os eixos diferentes de 90° significa correlação entre as variáveis e quanto menor (< 45°) ou maior (> 135°) esse ângulo mais forte será a correlação.

As análises foram realizadas no programa R Core Team (2018) e foram utilizados os pacotes *Plotrix, elipse, corrplot, factoextra* e *FactoMineR*.

3. Resultados e discussões

O primeiro componente principal foi o mais importante responsável por explicar cerca de 28,5% da variabilidade dos teores de nutrientes presentes na serapilheira e associado aos segundo e terceiro componentes explicam 57,7 % da variabilidade total (Figura 1), dentro dos limites recomendados por Henderson (2003) e Felfili et al. (2013). Foi observada a relação dos autovalores com sua ordem em que a partir do terceiro componente principal a variação dos autovalores foi menos acentuada com tendencia a estabilidade a partir do terceiro componente principal (Figura 1).

Figura 1: *Scree plot*, variâncias explicadas (*Percentage of explained variance*) e autovalores dos componentes principais dos nutrientes da serapilheira florestal no bioma amazônico

A associação entre os dois componentes principais em que o Fe e o Cu foram fortemente correlacionados e seus teores são inversamente proporcionais ao Mn, C e K. O Ca e o Mg têm forte correlação no componente Dim1, assim como Zn e S. Correlações positivas fortes foram entre Ca e Mg, Ca e K, Fe e Cu, K e Mg, e a correlação negativa mais forte foi entre Fe e K (Figura 2).

O Ca tem forte associação com as observações 1, 8 e 11 que correspondem respectivamente com as frações folha da subunidade 1, fração material lenhoso na subunidade 3 e fração de material lenhoso na subunidade de material lenhoso (Figura 2), fato esse explicado pela presença o Ca nas folhas pois conforme Barker e Pilbean (2007) o nutriente promove a abertura e fechamento dos estômatos sendo de fundamental importância no processo fotossintético, sua presença no material lenhoso ocorre pois é integrante da parede e membrana celular dos vegetais e desempenha importante papel na translocação de soluto (WIEDENHOEFT, 2006).

O Mg tem associação com a observação 10 que corresponde a fração de folhas na subunidade 4 (Figura 3), Wiedenhoft (2006) e Barker e Pilbean (2007) comentam que o Mg é o principal componente da molécula de clorofila presente nas folhas, e estudos realizados por Marschner (1995) e Neales (1956) indicam que 15 a 30% do magnésio total em plantas está associada com a molécula de clorofila

O K pode ser associado fortemente a observações 10 e 16 que correspondem a fração de folhas na subunidade 4 e 6 respectivamente (Figura 2). Esse nutriente é encontrado nas folhas pois atua, como apresentado por Pflüger e Mengel (1972), no transporte de íons de potássio através dos cloroplastos e membranas mitocondriais que estão está relacionada estreitamente com a produção de energia das plantas. Em trabalhos anteriores, foi demonstrado que K tinha uma influência favorável sobre fotoredução e fotofosforilação.

O Cu foi associado principalmente as observações 6, 34 e 39 que correspondem respectivamente as frações miscelânea, folhas e miscelânea (Figura 2). O Cu tem transporte limitado em plantas, portanto, as concentrações mais elevadas são frequentemente em tecidos de raiz (CHAIGNON et al., 2002a; CHAIGNON et al., 2002B; LIU et al., 2001, NAN e CHENG, 2001), mas pode ser encontrado em folhas e flores (PEDERSON ET AL., 2002).

Foi constatada forte relação com os teores de Fe nas observações 48 e 72 que correspondem a fração miscelânea nas subunidades 16 e 24 respectivamente com elevados teores do nutriente (Figura 3). O Fe tem função de fazer ligação com vários nutrientes para formar moléculas, e está presente em dois grandes grupos de proteínas, além de estar presente no transporte eletrônico no processo de fotossíntese, quando o Fe faz parte de alguma proteína se torna essencial ao vegetal (BIENFAIT e VAN DER MARK., 1983).

Figura 2: Biplot dos componentes principais e correlação dos teores de nutrientes da serapilheira florestal no bioma amazônico

4. Conclusão

O teor dos macronutrientes presentes na serapilheira em floresta secundária no município de Tapurah – MT segue a ordem N > Ca > Mg > K > S > P para todas as frações. A ordem do teor dos micronutrientes presentes na serapilheira na fração de folhas é Mn > Fe > Zn > Cu > B, na fração material lenhoso é Fe > Mn > B > Zn > Cu e na fração miscelânea é Fe > Mn > Cu > Zn > B. A distribuição dos teores é normal para todas as frações dos nutrientes N, Mn e C (%), para a fração de folhas dos nutrientes K, Mg, S, Zn, para fração de material lenhoso do K, e para fração de miscelânea dos nutrientes P, Fe e B.

A variabilidade dos teores de nutrientes na serapilheira florestal no bioma amazônico no município de Tapurah – MT é explicada principalmente pelos macronutrientes Ca, Mg, K e os micronutrientes Fe e Cu.

Os maiores teores de K, Ca, Mn, N e S são observados na fração de folhas, e para o Mn o teor nas folhas é semelhante ao do material lenhoso, o maior teor de Mg é observado nas frações de material lenhoso e miscelânea, e o maior teor de Fe é verificado na fração miscelânea. O teor de B e C são estatisticamente iguais para as três frações analisadas.

5. Referências bibliográficas

ALONSO, J. M.; LELES, P. S. S.; FERREIRA, L. N.; OLIVEIRA, N. S. A. Aporte de serapilheira em plantio de recomposição florestal em diferentes espaçamentos. **Ciência Florestal**, Santa Maria, v. 25, n. 1, p. 1-11, jan. - mar., 2015.

BARKER, A. V.; PILBEAN, D. J. **Handbook ok plant nutrition**. Taylor & Francis Group, New York, 2007.

BIENFAIT, H.F.; VAN DER MARK, F. Phytoferritin and its role in iron metabolism. In: D.A. Robb, W.S. Pierpoint, eds. **Metals and Micronutrients. Uptake and Utilization by Plants**. London: Academic Press: London, 1983, pp. 111–123.

BORCARD, D.; GILLET, F.; LEGENDRE, P. **Numerical Ecological with R**. New York: Springer, 2011. xii+306p. Use R!.

CHAIGNON, V.; BEDIN F,; HINSINGER, P. Copper bioavailability and rhizosphere pH changes as affected y nitrogen supply for tomato and oilseed rape cropped on an acidic and calcareous soil. *Plant Soil.* 243:219–228, 2002.

CHAIGNON, V.; DI MALTA, D.; HINSINGER, P. Fe-deficiency increases Cu acquisition by wheat cropped in a Cu-contaminated vineyard soil. **New Phytol.** 154:121–130, 2002.

CALDEIRA, M. V. W. et al.; VITORINO, M. D.; SCHAADT, S. S.; MORAES, E.; BALBINOT, R. Quantificação de serapilheira e de nutrientes em uma Floresta Ombrófila Densa. **Semina:** Ciências Agrárias, Londrina, v. 29, p. 53-68, 2008.

FELFILI, J.M.; EISENLOHR, P.V.; MELO, M.M.R.F.; ANDRADE, L.A.; MEIRA NETO, J.A. **Fitossociologia no Brasil: métodos e estudos de casos**. Volume I. Viçosa, MG: Ed. UFV, 2013. 556p.

GAUCH, H.G. **Multivariate analysis in community ecology.** New York: Cambridge University Press. 1982.

HENDERSON, P.A. Practical methods in ecology. Oxford: Blackwell. 2003.

KENT, M.; COKER, P. **Vegetation description and analysis**. London, John Wiley & Sons. 1992. 363 p.

Liu, D.; Jiang, W.; Hou, W. Uptake and accumulation of copper by roots and shoots of maize. **J. Environ. Sci.** 13:228–232, 2001. 15. Z.

McCUNE, B.; GRACE, J.B. **Analysis of ecological communities**. Gleneden Beach: MjM Software Design. 2002.

McGARIGAL, K.; CUSHMAN, S.; STAFFORD, S. Multivariate statistics for wildlife and ecology research. New York: Springer Science and Business Media. 2000.

MARSCHNER, H. Mineral Nutrition of Higher Plants. 2nd ed. New York: Academic Press, 1995.

MARTINS, S. V. Recuperação de Matas Ciliares. Viçosa: Aprenda Fácil, 2007. 255 p.

NAN, Z.; CHENG, G. Copper and zinc uptake by spring wheat (*Triticum aestivum* L.) and corn (*Zea Mays* L.) grown in Baiyin region. **Bull. Environ. Contam.** Toxicol. 67:83–90, 2001.

ORLÓCI, L. **Multivariate analysis in vegetation research**. 2. ed. Boston: Dr. W. Junk B. V. Publishers, The Hauge, 1978. ix+451p.

PEDERSON, G.A.; BRINK, G.E.; FAIRBROTHER, T.E.Nutrient uptake in plant parts of sixteen forages fertilized with poultry litter: Nitrogen, phosphorus, potassium, copper, and zinc. **Agron**. J. 94:895–904, 2002.

PFLÜGER, R.; MENGEL, K. Photochemical activity of chloroplasts from different plants fed with potassium. **Plant Soil** 36:417–425, 1972.

R CORE TEAM (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

SCORIZA, R. N.; PEREIRA, M. G.; PEREIRA, G. H. A.; MACHADO, D. L.; SILVA, E. M. R. Métodos para coleta e análise de serapilheira aplicados à ciclagem de nutrientes. **Floresta e Ambiente**, v.2, n.2, p.01-18, 2012

YAN, W.; KANG, M.S. **GGE** biplot analysis: a graphical tool for breeders, geneticists, and agronomists. CRC Press, New York, 2003. 267p.

WIEDENHOEFT, A. C.; **Plant nutrition.** Infobase Publishing, Philadelphia, 2006.