

dall'esponente E_a e E_B.

Università di Verona Dipartimento Scientifico e Tecnologico

Architettura degli Elaboratori: prova intermedia 18/04/01

Cognome: Matricola:			
Note:	le soluzioni devono essere opportunamente commentate, è vietato utilizzare appunti o libri.		
1) Ra	appresentare in base due il numero 23 ₁₀ , utilizzando 8 bit e le seguenti codifiche:		
•	Modulo		
•	Modulo e segno		
•	Complemento a due		
•	Sommare al numero 23_{10} il numero 110110_2 codificato in complemento a due. Eseguire la somma in complemento a due e portare il risultato in base 10 .		
•	Descrivere, come schema a blocchi, l'algoritmo per la somma di due numeri A e		

B in virgola mobile descritti, rispettivamente, dalla mantissa Ma e Mb e

- 2) Si consideri il circuito sequenziale che riconosce la seguente sequenza di codici a due bit: 11 11 00 11. Il circuito ha i seguenti ingressi uscite:
 - START[1]: quando vale 1 il circuito può iniziare, o riiniziare, il riconoscimento.
 - DATO[2]: fornisce al circuito i valori della sequenza da riconoscere.
 - OK[1]: viene posto a 1, per due cicli di clock, quando la sequenza è stata riconosciuta.
 Viene mantenuto 0 in tutti gli altri casi.
 - NO[1]: viene posto a 1, per un ciclo di clock, tutte le volte che, durante la fase di riconoscimento della sequenza, sulla linea DATO è presente un codice che non appartiene all'insieme dei codici che costituiscono la sequenza. Viene mantenuto a 0 in tutti gli altri casi.
 - Definire gli insiemi della FSM che descrive il controllore (gli ingressi e le uscite devono essere considerati *nell'ordine* in cui sono stati descritti):
 - I = {
 - O = {
 - S = {
 - Disegnare il grafo delle transizioni (STG) del controllore.

 Descrivere, eventualmente estendendo o riducendo la tabella, la tabella delle transizioni derivato dallo STG.

i∈I			
$s \in S$			

3) Data la seguente FSM, descritta mediante la tabella delle transizioni:

	00	01	11	10
S0	S3/00	S6/01	S0/00	S7/11
S1	S1/01	S6/00	S4/11	S3/01
S2	S3/10	S2/11	S5/00	S6/00
S3	S0/01	S6/00	S1/11	S3/00
S4	S0/01	S6/00	S1/11	S3/00
S5	S0/01	S2/00	S1/11	S4/00
S6	S3/10	S2/11	S5/00	S6/00
S7	S7/00	S7/00	S7/00	S7/00

• Identificare la FSM minima equivalente e completando la tabella sottostante.

	00	01	11	10
S0				

• Dopo aver assegnato agli stati dei codici in sequenza a partire da 0, si identifichi l'espressione in somma di prodotti minima del bit di uscita meno significativo.