Controllo del motore di un automobile - Progetto c2

Presentazione del progetto c2

Gruppo BB:

Dinamica del sistema

Sistema in forma di stato

Ricerca dell'equilibrio

Linearizzazione nell'intorno dell'equilibrio

Funzione di trasferimento

Progetto del regolatore $R(s) = R_s(s) R_d(s)$

Specifiche

Regolatore statico $R_s(s) = \frac{\mu_s}{s^k}$

Punto 3.1

Regolatore dinamico

<u>Punto 3.2 - Punto 3.3</u>

Punto 3.4

<u>Punto 3.5</u> - Attenuazione del disturbo in uscita d(t)

<u>Punto 3.6</u> - Attenuazione del rumore di misura n(t)

Testing del sistema di controllo

Testing del sistema di controllo modello non lineare

Parametri progetto	
γ_1	0.75
γ_2	0.15
β	1.3
ψ	0.04
δ_1	$3*10^{4}$
δ_2	0.2
δ_3	0.02
J	20
ω_e	30

Presentazione del progetto c2

Gruppo BB:

Bernardini Claudio

Corsetti Luca

Straccali Leonardo

Dinamica del sistema

$$\dot{m} = \gamma_1 (1 - \cos(\beta \theta - \psi)) - \gamma_2 \omega m$$

$$J\dot{\omega}=\delta_1 m{-}\delta_2 \omega{-}\delta_3 \omega^2$$

dove:

- $\theta(t)$ indica l'**angolo di accelerazione**
- $\gamma_1(1-\cos(eta heta-\psi))$ modella la caratteristica intrinseca della valvola
- ullet J rappresenta il **momento d'inerzia** equivalente del sistema automobile
- + $\delta_1 m$ descrive la coppia trasmessa all'albero motore
- $\delta_2 \omega$ modella l'**attrito nel motore**

• $\delta_3 \omega^2$ descrive la **resistenza dell'aria**

con
$$\gamma_1, \psi, J, \delta_1, \delta_2, \delta_3 \in \mathbb{R}$$

Sistema in forma di stato

Considerando la **velocità angolare** $\omega(t)$ come **uscita del sistema**, possiamo scrivere il **sistema in forma di stato** nel seguente modo .

$$egin{aligned} x_1 &= m \ , \ x_2 &= \omega \ \ \dot{x} &= f(x,u) = egin{bmatrix} \dot{x}_1 \ \dot{x}_2 \end{bmatrix} = egin{bmatrix} f_1(x,u) \ f_2(x,u) \end{bmatrix} = egin{bmatrix} \gamma_1(1-\cos(eta u - \psi)) - \gamma_2 x_1 x_2 \ \frac{1}{J}(\delta_1 x_1 - \delta_2 x_2 - \delta_3 x_2^2) \end{bmatrix} \in \mathbb{R}^2 \ \ y &= h(x,u) = egin{bmatrix} x_2 \end{bmatrix} \in \mathbb{R} \end{aligned}$$

Ricerca dell'equilibrio

Utilizzando la **rappresentazione in forma di stato del nostro sistema** e i parametri forniti, ricerchiamo **l'intera coppia di equilibrio** (x_e, u_e) del sistema:

Dato l'equilibrio $\omega_e=30$, ricaviamo il valore di equilibrio per la massa (m_e) nel seguente modo :

$$egin{aligned} f_2(x_e,u_e) &= 0 \
ightarrow rac{1}{J}(\delta_1 m_e \!-\! \delta_2 \omega_e \!-\! \delta_3 \omega_e^2) &= 0 \
ightarrow m_e &= rac{1}{\delta_1}(\delta_2 \omega_e + \delta_3 \omega_e^2) &= 8 \ \cdot 10^{-4} \end{aligned}$$

 $Grazie \ agli \ \textbf{equilibri degli stati} \ appena \ trovati, \ dalla \ prima \ componente \ del \ sistema, \ possiamo \ ricavare \ l'\textbf{ingresso} \ \textbf{d'equilibrio}:$

$$egin{aligned} f_1(x_e,u_e) &= 0 \ \
ightarrow \gamma_1(1-\cos(eta u_e - \psi)) - \gamma_2 m_e \omega_e &= 0 \ \
ightarrow u_e &= rac{(rccos(-rac{\gamma_2}{\gamma_1} \cdot \omega_e \cdot m_e + 1) + \psi)}{eta} \end{aligned}$$

L'intera coppia di equilibrio è :

$$x_e = egin{bmatrix} m_e \ \omega_e \end{bmatrix} = egin{bmatrix} 8 & \cdot 10^{-4} \ 30 \end{bmatrix} \ , \ u_e = 0,1062$$

Linearizzazione nell'intorno dell'equilibrio

$$\begin{split} \delta \dot{x}(t) &= A\delta x(t) + B\delta u(t) \\ \delta y(t) &= C\delta x(t) + D\delta u(t) \end{split}$$

$$\delta \dot{x}(t) = \begin{bmatrix} \frac{\partial f_1(x,u)}{\partial x_1} & \frac{\partial f_1(x,u)}{\partial x_2} \\ \frac{\partial f_2(x,u)}{\partial x_1} & \frac{\partial f_2(x,u)}{\partial x_2} \end{bmatrix} \begin{bmatrix} \delta x_1 \\ \delta x_2 \end{bmatrix} + \begin{bmatrix} \frac{\partial f_1(x,u)}{\partial u} \\ \frac{\partial f_2(x,u)}{\partial u} \end{bmatrix} \begin{bmatrix} \delta u \end{bmatrix}$$

$$\delta y(t) = \begin{bmatrix} \frac{\partial h(x,u)}{\partial x_1} \\ \frac{\partial h(x,u)}{\partial x_2} \end{bmatrix} \begin{bmatrix} \delta x_1 \\ \delta x_2 \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} \delta u \end{bmatrix}$$

$$A = \begin{bmatrix} \frac{\partial f_1(x,u)}{\partial x_1} & \frac{\partial f_1(x,u)}{\partial x_2} \\ \frac{\partial f_2(x,u)}{\partial x_1} & \frac{\partial f_2(x,u)}{\partial x_2} \end{bmatrix} \bigg|_{\substack{x_1 = m_e \\ x_2 = \omega_e}} = \begin{bmatrix} -4.5 & -1.2 \cdot 10^{-4} \\ 1500 & -0.07 \end{bmatrix}, B = \begin{bmatrix} \frac{\partial f_1(x,u)}{\partial u} \\ \frac{\partial f_2(x,u)}{\partial u} \end{bmatrix} \bigg|_{\substack{u = u_e}} = \begin{bmatrix} 0.0954 \\ 0 \end{bmatrix}$$

$$C = \begin{bmatrix} \frac{\partial h(x,u)}{\partial x_1} & \frac{\partial h(x,u)}{\partial x_2} \end{bmatrix} \bigg|_{\substack{x_1 = m_e \\ x_2 = \omega_e}} = \begin{bmatrix} 0 & 1 \end{bmatrix}, D = \begin{bmatrix} 0 \end{bmatrix}$$

Funzione di trasferimento

Dopo aver trovato il **sistema linearizzato nell'intorno di equilibrio**, ci viene richiesto di trovare la funzione di trasferimento che lega $\delta U(s)$ e $\delta Y(s)$, rispettivamente la trasformata dell'ingresso e dell'uscita del sistema linearizzato precedentemente trovato, si ricava la **funzione di trasferimento**

$$\delta Y(s) = G(s)\delta U(s)$$

definita dalla seguente formula:

$$G(s) = C(sI - A)^{-1}B + D$$

Possiamo ricavare la matrice inversa come segue:

$$(sI-A)^{-1} = rac{adj(sI-A)}{det(sI-A)}
ightarrow \ G(s) = C \; rac{adj(sI-A)}{det(sI-A)} B + D \ (sI-A) = egin{bmatrix} s+4,5 & +1.2 \cdot 10^{-4} \ -1500 & s+0.07 \end{bmatrix}$$

Sfruttando le potenzialità offerte da Matlab, ricaviamo **la matrice aggiunga** (definita come la **trasposta della matrice dei cofattori**) e il **determinante** definiti come segue:

$$cofattori(sI-A) = egin{bmatrix} s+0.07 & 1500 \ +1.2 \cdot 10^{-4} & s+4.5 \end{bmatrix} \hspace{1cm} adj(sI-A) = egin{bmatrix} s+0.07 & +1.2 \cdot 10^{-4} \ 1500 & s+4.5 \end{bmatrix}$$

$$det(sI - A) = (s + 4.5) \cdot (s + 0.07) - (+1.2 \cdot 10^{-4} \cdot -1500) = s^2 + 4.57s + 0.495$$

partendo dai dati precedenti ricaviamo

$$G(s) = \frac{C \cdot adj(sI - A) \cdot B}{det(sI - A)} + C$$

$$= \frac{\begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} s + 0.07 & +1.2 \cdot 10^{-4} \\ 1500 & s + 4.5 \end{bmatrix} \begin{bmatrix} 0.0954 \\ 0 \end{bmatrix}}{s^2 + 4.57s + 0.495} + \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$= \frac{\begin{bmatrix} 1500 & s + 4.5 \end{bmatrix}}{s^2 + 4.57s + 0.495} \cdot \begin{bmatrix} 0.0954 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1500}{s^2 + 4.57s + 0.495} & \frac{s + 4.5}{s^2 + 4.57s + 0.495} \end{bmatrix} \begin{bmatrix} 0.0954 \\ 0 \end{bmatrix}$$

$$= \frac{1500 \cdot 0.0954}{s^2 + 4.57s + 0.495}$$

$$= \frac{143.1}{s^2 + 4.57s + 0.495}$$

Le radici del denominatore, ovvero i poli del sistema risultano essere :

$$p1 = -4.458$$
, $p2 = -0.111$

Riscriviamo la G(s)

$$G(s) = rac{143.1}{s^2 + 4.57s + 0.495}$$

Progetto del regolatore $R(s)=R_s(s)R_d(s)$

Specifiche

- 1. Errore a regime $|e_\infty| \leq e^* = 0.01$ in risposta a un gradino $\omega(t) = 9 \cdot 1(t)$ e $d(t) = 8 \cdot 1(t)$
- 2. Per garantire una certa robustezza del sistema si deve avere un margine di fase $M_f \geq 55\,^\circ$
- 3. Il sistema può accettare una sovraelongazione percentuale al massimo dell' $5\%:S\%\leq 5\%$
- 4. Il tempo di assestamento all' $\epsilon\%=5\%$ deve essere inferiore al valore fissato: $T_{a,\epsilon}=0.08s$
- 5. l disturbo sull'uscita d(t), con una banda limitata nel range di pulsazioni [0,0.05], deve essere abbattuto di almeno 55db
- 6. Il rumore di misura n(t), con una banda limitata nel range di pulsazioni $[8 \cdot 10^3, 2 \cdot 10^6]$, deve essere abbattuto di almeno 45db

Regolatore statico $R_s(s)=rac{\mu_s}{s^k}$

Punto 3.1

Partendo dalla funzione di trasferimento G(s) ricavata al punto precedente, progettiamo un regolatore che rispetti le precedenti specifiche:

Scriviamo la funzione di trasferimento in anello aperto

$$L(s) = R(s)G(s)$$

dove possiamo scrivere $R(s)=R_s(s)R_d(s)\,$ con $\,R_s(s)=rac{\mu_s}{s^k}\,$

$$e_{\infty} = rac{D+W}{1+\mu} \implies \mu = rac{D+W}{e_{\infty}} - 1$$

ove:

- ullet D è l'ampiezza del rumore di misura
- ullet W è l'ampiezza del segnale di riferimento del nostro sistema
- ullet e_{∞} è l'errore a $t
 ightarrow\infty$
- ullet μ è il guadagno del nostro sistema

la formula è valida solamente quando non abbiamo poli nell'origine in L(s).

$$R_s(s)=rac{\mu_s}{s^0}=\mu_s$$

$$\mu = L(0) = R(0)G(0) = \mu_s \mu_g$$

possiamo quindi ricavare

$$e_{\infty} = rac{D+W}{1+\mu} \leq 0.01
ightarrow rac{17}{1+\mu} \leq 0.01$$
 $ightarrow \mu \geq rac{17}{0.01} - 1 \geq 1699$

quindi

$$\mu_s = \frac{L(0)}{G(0)} = \frac{\mu}{\mu_q} = \frac{1699}{289.1376} = 5.8761$$

Definiamo la nuova funzione di trasferimento estesa:

$$G_e(s) = R_s(s)G(s) = \mu_sG(s)$$

Regolatore dinamico

Punto 3.2 - Punto 3.3

Dal grafico della seguente equazione

$$S\% = 100e^{-rac{\pi \xi}{\sqrt{1-\xi^2}}}$$

Ricaviamo graficamente lo smorzamento ξ^* affinché venga rispettato il requisito sulla sovraelongazione percentuale di $S\% \leq 5\%$.

Da ciò che si evince dal grafico, il **valore dello smorzamento minimo** desiderato è $\xi^*\cong 0.69$. Data la seguente equazione $M_f\geq 100\xi^*$, possiamo concludere che il **margine di fase** desiderato è:

$$M_f \geq 100 \xi^*
ightarrow M_f \geq 69\,^\circ$$

Notiamo che il valore di M_f trovato è più elevato rispetto a quello richiesto dalle specifiche, ciò garantirà maggior robustezza del sistema migliori.

Punto 3.4

Il tempo di assestamento al 5% deve essere minore di $T^*=0.08s$, possiamo quindi trovare $w_{c,min}$ tramite la seguente formula:

$$T_{a,5} < T^*$$

dove grazie all'approssimazione a poli dominanti possiamo scrivere $\omega_n\cong\ \omega_c$

$$T_{a,5}\cong \, rac{3}{\xi \omega_n}\cong \, rac{3}{\xi \omega_c}$$

di conseguenza

$$egin{aligned} rac{3}{\xi \omega_{c,min}} < T^* &
ightarrow rac{3}{\xi \omega_{c,min}} < 0.08
ightarrow \omega_{c,min} > rac{3}{rac{M_f}{100} \cdot 0.08} \
ightarrow \omega_{c,min} > rac{300}{69.1 \cdot 0.08} \
ightarrow \omega_{c,min} > 54.27 \end{aligned}$$

Per i punti <u>3.5</u> e <u>3.6</u> andremo a **sfruttare il principio di sovrapposizione degli effetti** che ci consente di considerare l'uscita del sistema come somma dei singoli contributi :

$$Y(s) = Y_{\omega}(s) + Y_d(s) + Y_n(s)$$

<u>Punto 3.5</u> - Attenuazione del disturbo in uscita d(t)

Scollegando gli ingressi W(s)=N(S)=0 sappiamo che un generico disturbo in uscita si presenta in questa forma:

$$d(t) = D \cdot cos(\omega_d t + \psi_d)$$

la funzione di sensitività risulta essere:

$$S(s) = rac{1}{1 + R(s)G(s)} = rac{1}{1 + L(s)}$$

quindi la relativa uscita del disturbo sarà

$$y_d(t) = |S(j\omega_d)| \cdot Dcos(\omega_d t + \psi_d + arg(S(j\omega_d)))$$

Per rispettare la specifica dovremo imporre $|S(j\omega_d)|_{db} \leq -55db$.

Sapendo che $|S(j\omega)|_{db} \approx -|L(j\omega)|_{db}$ a **basse frequenze**, possiamo ricavare il vincolo sull'ampiezza della L(s) nel range di frequenze [0,0.05] come

$$-|L(j\omega)|_{db} \leq -55db \rightarrow |L(j\omega)|_{db} \geq 55db$$

<u>Punto 3.6</u> - Attenuazione del rumore di misura n(t)

I passaggi effettuati sono analoghi a quelli per la d(t)

Viene richiesta un'attenuazione del rumore di misura di 45db. Sapendo che la funzione di sensitività corrispondente è

$$F(s) = \frac{R(s)G(s)}{1 + R(s)G(s)} = \frac{L(s)}{1 + L(s)}$$

Dovremo quindi imporre $|F(j\omega_n)|_{db} \leq -45db$.

Sapendo che $|F(j\omega_n)|_{db} \approx |L(J\omega_n)|_{db}$ ad **alte frequenze**, possiamo ricavare il vincolo sull'ampiezza della L(s) nel range di frequenze $[8\cdot 10^3, 2\cdot 10^6]$ come

$$|L(J\omega_n)|_{db} \leq -45db$$

Possiamo ora tracciare il diagramma di Bode della $G_e(s)$ con le patch dei vincoli trovati

Da una prima analisi del diagramma di Bode prodotto dal nostro sistema, emerge l.a vicinanza allo **scenario B** visto durante le lezioni ovvero nell'intervallo di pulsazioni ammissibili per la pulsazione di attraversamento ω_c , non esistono pulsazioni in cui la fase di $G_e(j\omega)$ rispetta il vincolo sul margine di fase.

Progettiamo quindi il regolatore dinamico per il nostro sistema di controllo utilizzando la formula che definisce la rete anticipatrice:

$$R_d(s) = rac{1+ au s}{1+lpha au s}\ con\ 0 < lpha < 1$$

consideriamo la funzione della rete anticipatrice in $s=j\omega_c^*$ otteniamo

$$R_d(j\omega_c^*)=M^*e^{jarphi^*}
ightarrow$$

$$rac{1+j au\omega_c^*}{1+jlpha au\omega_c^*}=M^*(cosarphi^*+jsinarphi^*)$$

valgono le seguenti uguaglianze

$$au = rac{M^* - cos arphi^*}{\omega_c^* sin arphi^*} \;\;,\;\; lpha au = rac{cos arphi^* - rac{1}{M^*}}{\omega_c^* sin arphi^*}$$

Quindi il nostro obiettivo è trovare i valori di M^* e φ^* in modo da ricavare τ e $\alpha \tau$, imponiamo $|G_e(j\omega_c^*)|_{dB}+20~log~M^*=0~$, $M_f^*=180~$ $^\circ+arg(G_e(j\omega_c^*))+\varphi^*$ e considerando i valori

$$\omega_c^*=200~,~M_f^*=69\degree$$

$$arg(G_e(j\omega_c^*)) = -178.69 \; , \; |G_e(j\omega_c^*)|_{dB} = -33.54$$

così facendo otteniamo i valori

$$M^* = 10^{-rac{|G_e(j\omega_c^*)|_{dB}}{20}} pprox 47.535$$

$$arphi^* = rac{\pi}{180} (M_f^* - 180\degree - arg(G_e(j\omega_c^*))) pprox 1.1814$$

 $\tau\approx 0.2549~rad$, $\alpha\tau\approx 0.0019~rad$

Il regolatore è fisicamente realizzabile in quanto il numero di poli del regolatore è uguale al numero di zeri e da ciò consegue che la pendenza dell'ampiezza di L(s) è uguale alla pendenza della G(s) ad alte frequenze.

Testing del sistema di controllo

Dopo aver opportunamente realizzato il regolatore per il nostro sistema linearizzato, andiamo a testare il nostro sistema con i seguenti segnali:

- $w(t) = 0.75 \cdot 1(t)$
- $d(t) = \sum_{k=1}^{4} 0.05 \cdot \sin(0.01kt)$
- $n(t) = \sum_{k=1}^{4} 0.02 \cdot \sin(8 \cdot 10^3 kt)$

Nel precedente diagramma è possibile visionare l'uscita del nostro sistema sollecitato dall'ingresso $w(t)=0.75\cdot 1(t)$ e con le componenti d(t) e n(t) nulle. Le patch verdi delimitano l'area in cui la risposta al nostro gradino dovrà assestarsi affinchè vengano rispettati i requisiti, l'uscita del nostro sistema si assesta intorno ai 0.03s quindi molto prima del requisito.

Nel precedente diagramma è possibile visionare l'uscita del nostro sistema sollecitato dall'ingresso $d(t) = \sum_{k=1}^4 0.05 \cdot \sin(0.01kt)$ e con le componenti w(t) e n(t) nulle.

Nel precedente diagramma rappresentiamo il comportamento del rumore di misura ad una sollecitazione in ingresso pari a $n(t) = \sum_{k=1}^4 0.02 \cdot \sin(8 \cdot 10^3 kt)$ quando gli ingressi w(t) e d(t) sono nulli. Come possiamo vedere, il rumore viene attenuato. Nel grafico a destra possiamo vedere un ingrandimento del sistema a basse frequenze prima dell'attenuazione.

Nel precedente diagramma, sfruttando la proprietà di **sovrapposizione degli effetti**, rappresentiamo l'uscita del nostro sistema come combinazione lineare delle uscite precedenti: $y(t)=y_\omega(t)+y_n(t)+y_d(t)$.

Testing del sistema di controllo modello non lineare

Dopo aver realizzato il sistema non lineare su SimuLink e collegati i rispettivi segnali, effettuiamo il testing del sistema:

Il diagramma precedente illustra la risposta del sistema non lineare, a partire dall'intorno di equilibrio, ad un gradino di ampiezza pari a 9 dato dalle specifiche del progetto. Dopo una prima esecuzione, emerge come il comportamento del sistema diverga.

Cambiando l'ampiezza del gradino di riferimento, raggiungiamo il comportamento desiderato: il nuovo setting $\,$ prevede un ampiezza di $\,10^{-4}$.

Grazie questo accorgimento, il controllore rimane efficace sul sistema non lineare.

