In [2]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

In [3]: df=pd.read_csv('Financials.csv',encoding='unicode_escape')

In [4]: df.shape

Out[4]: (700, 16)

In [171]: df.head()

Out[171]:

	Segment	Country	Product	Discount Band	Units Sold	-	Sale Price	Gross Sales	Discounts
0	Government	Canada	Carretera	None	1618.5	3.0	20.0	32370.0	0
1	Government	Germany	Carretera	None	1321.0	3.0	20.0	26420.0	0
2	Midmarket	France	Carretera	None	2178.0	3.0	15.0	32670.0	0
3	Midmarket	Germany	Carretera	None	888.0	3.0	15.0	13320.0	0
4	Midmarket	Mexico	Carretera	None	2470.0	3.0	15.0	37050.0	0
4									•

```
df.info()
In [10]:
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 700 entries, 0 to 699
          Data columns (total 16 columns):
                Column
                                         Non-Null Count
                                                          Dtype
          _ _ _
           0
                Segment
                                         700 non-null
                                                          object
           1
               Country
                                         700 non-null
                                                          object
           2
                 Product
                                         700 non-null
                                                          object
           3
                Discount Band
                                         700 non-null
                                                          object
           4
                                         700 non-null
                                                          object
                Units Sold
           5
                                                          object
                Manufacturing Price
                                         700 non-null
           6
                 Sale Price
                                         700 non-null
                                                          object
           7
                Gross Sales
                                         700 non-null
                                                          object
           8
                Discounts
                                         700 non-null
                                                          object
           9
                  Sales
                                         700 non-null
                                                          object
           10
                COGS
                                         700 non-null
                                                          object
           11
                Profit
                                         700 non-null
                                                          object
           12
               Date
                                         700 non-null
                                                          object
           13
               Month Number
                                         700 non-null
                                                          int64
           14
                Month Name
                                         700 non-null
                                                          object
           15
               Year
                                         700 non-null
                                                          int64
          dtypes: int64(2), object(14)
          memory usage: 87.6+ KB
In [11]:
          df.columns=df.columns.str.strip()
          dollars = ['Units Sold', 'Manufacturing Price', 'Sale Price', 'Gross Sales',
In [13]:
          for column in dollars:
              df[column] = pd.to_numeric(df[column].replace('[\$,]', '', regex=True), er
          df.head()
In [14]:
Out[14]:
                                                          Manufacturing
                                          Discount
                                                     Units
                                                                         Sale
                                                                               Gross
                                  Product
                                                                                      Discounts
                Segment
                         Country
                                                                        Price
                                                                                Sales
                                              Band
                                                     Sold
                                                                  Price
             Government
                                                   1618.5
                                                                    3.0
                                                                         20.0
                                                                              32370.0
                          Canada
                                 Carretera
                                              None
                                                                                           NaN
             Government Germany
                                 Carretera
                                              None 1321.0
                                                                    3.0
                                                                         20.0
                                                                              26420.0
                                                                                           NaN
                                              None 2178.0
           2
               Midmarket
                          France
                                 Carretera
                                                                    3.0
                                                                         15.0 32670.0
                                                                                           NaN
           3
               Midmarket Germany
                                 Carretera
                                              None
                                                    888.0
                                                                    3.0
                                                                         15.0 13320.0
                                                                                           NaN
               Midmarket
                          Mexico Carretera
                                              None 2470.0
                                                                    3.0
                                                                         15.0 37050.0
                                                                                           NaN
          df['Discounts']=df['Discounts'].fillna('0')
In [15]:
```

```
In [16]: df.head()
```

Out[16]:

	Segment	Country	Product	Discount Band	Units Sold	Manufacturing Price	Sale Price	Gross Sales	Discounts
0	Government	Canada	Carretera	None	1618.5	3.0	20.0	32370.0	0
1	Government	Germany	Carretera	None	1321.0	3.0	20.0	26420.0	0
2	Midmarket	France	Carretera	None	2178.0	3.0	15.0	32670.0	0
3	Midmarket	Germany	Carretera	None	0.888	3.0	15.0	13320.0	0
4	Midmarket	Mexico	Carretera	None	2470.0	3.0	15.0	37050.0	0
4									•

```
In [17]: df['Date']=pd.to_datetime(df['Date'])
```

In [18]: | df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 700 entries, 0 to 699 Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	Segment	700 non-null	object
1	Country	700 non-null	object
2	Product	700 non-null	object
3	Discount Band	700 non-null	object
4	Units Sold	700 non-null	float64
5	Manufacturing Price	700 non-null	float64
6	Sale Price	700 non-null	float64
7	Gross Sales	700 non-null	float64
8	Discounts	700 non-null	object
9	Sales	700 non-null	float64
10	COGS	700 non-null	float64
11	Profit	637 non-null	float64
12	Date	700 non-null	datetime64[ns]
1 3	Month Number	700 non-null	int64
14	Month Name	700 non-null	object
15	Year	700 non-null	int64
dtyp	es: datetime64[ns](1)	, float64(7), ir	nt64(2), object(6)

memory usage: 87.6+ KB

In [19]: df.describe()

Out[19]:

	Units Sold	Manufacturing Price	Sale Price	Gross Sales	Sales	cogs	
cour	t 700.000000	700.000000	700.000000	7.000000e+02	7.000000e+02	700.000000	(
mea	n 1608.294286	96.477143	118.428571	1.827594e+05	1.696091e+05	145475.211429	277
mi	n 200.000000	3.000000	7.000000	1.799000e+03	1.655080e+03	918.000000	2
25%	6 905.000000	5.000000	12.000000	1.739175e+04	1.592800e+04	7490.000000	38
50%	6 1542.500000	10.000000	20.000000	3.798000e+04	3.554020e+04	22506.250000	11′
75%	6 2229.125000	250.000000	300.000000	2.790250e+05	2.610775e+05	245607.500000	25′
ma	x 4492.500000	260.000000	350.000000	1.207500e+06	1.159200e+06	950625.000000	2622
st	d 867.427859	108.602612	136.775515	2.542623e+05	2.367263e+05	203865.506118	43(
4							•

```
In [20]: sns.countplot(x='Country',data=df)
sns.set(rc={'figure.figsize':(15,5)})
```



```
In [21]: country_group = df.groupby('Country').agg({'Sales': 'sum', 'Profit': 'sum', 'U
```

In [22]: country_group.head()

Out[22]:

	Country	Sales	Profit	Units Sold	cogs
0	Canada	24887654.89	3693717.64	247428.5	21358426.0
1	France	24354172.29	3906754.54	240931.0	20573151.5
2	Germany	23505340.82	3820885.07	201494.0	19824952.0
3	Mexico	20949352.11	3053223.11	203325.0	18041829.0
4	United States of America	25029830.18	3196443.18	232627.5	22034289.5

total sales countrywise:

from above graph we can see that more sales from USA and lowest sales from mexico

total profit countrywise:

from above grap we can see that more profit in france and less profit in $\ensuremath{\mathsf{mexico}}$

```
In [25]: country_group = df.groupby('Country').agg({'Sales': 'sum', 'Profit': 'sum', 'U
country_group.head()
```

Out[25]:

	Country	Sales	Profit	Units Sold	cogs
0	Canada	24887654.89	3693717.64	247428.5	21358426.0
1	France	24354172.29	3906754.54	240931.0	20573151.5
2	Germany	23505340.82	3820885.07	201494.0	19824952.0
3	Mexico	20949352.11	3053223.11	203325.0	18041829.0
4	United States of America	25029830.18	3196443.18	232627.5	22034289.5

total analysis:

```
In [26]: country_group = df.groupby('Country').agg({'Sales': 'sum', 'Profit': 'sum', 'U
         country_group = country_group.sort_values(by='Country')
         countries = country_group['Country']
         sales = country_group['Sales']
         profit = country_group['Profit']
         units_sold = country_group['Units Sold']
         cogs = country_group['COGS']
         width = 0.2
         fig, ax = plt.subplots(figsize=(12, 6))
         ax.bar(countries, sales, width, label='Sales')
         ax.bar(countries, profit, width, label='Profit',bottom=sales)
         ax.bar(countries, units sold, width, label='Units Sold',bottom=sales+profit)
         ax.bar(countries, cogs, width, label='COGS',bottom=sales+profit+units_sold)
         ax.set title('Aggregate Metrics by Country')
         ax.set xlabel('Country')
         ax.set_ylabel('Values')
         ax.legend()
         plt.show()
```


total sales countrywise:

```
In [27]: country_group = df.groupby('Country').agg({'Sales': 'sum'}).reset_index()
    plt.figure(figsize=(10,5))
    width=0.2
    x = np.arange(len(country_group['Country']))

plt.bar(x - width / 2 , country_group['Sales'], width, label='Sales')

plt.xlabel('Country')
    plt.ylabel('Sales')
    plt.title('Total Sales by Country')
    plt.xticks(x, country_group['Country'])
    plt.legend()

plt.show()
```


total Sales vs Profit countrywise:

```
country_group = df.groupby('Country').agg({'Sales': 'sum', 'Profit': 'sum'}).re
In [58]:
         plt.figure(figsize=(30,10))
         width=0.3
         x = np.arange(len(country_group['Country']))
         bar1=plt.bar(x - width / 2 , country_group['Sales'], width, label='Sales')
         bar2=plt.bar(x + width / 2 , country_group['Sales'], width, label='profit')
         for bar, value in zip(bar1, country_group['Sales']):
             plt.text(bar.get_x() + bar.get_width() / 2, bar.get_height(), str(value),
                      ha='center', va='bottom')
         for bar, value in zip(bar2, country_group['Sales']):
             plt.text(bar.get_x() + bar.get_width() / 2, bar.get_height(), str(value),
                      ha='center', va='bottom')
         plt.xlabel('Country')
         plt.ylabel('Values')
         plt.title('Total Sales vs Profit by Country')
         plt.xticks(x, country_group['Country'])
         plt.legend()
         plt.show()
```


Total Sales vs COGS by Country

```
In [54]: CGS=df.groupby(['Country']).agg({'Sales': 'sum','COGS' : 'sum'}).reset_index()
    plt.figure(figsize=(10,5))
    width=0.2
    ax=np.arange(len(country_group['Country']))
    plt.bar(x - width / 2 , CGS['Sales'], width, label='Sales')
    plt.bar(x + width / 2 , CGS['COGS'], width, label='COGS' )

    plt.xlabel('Country')
    plt.ylabel('Values')
    plt.title('Total Sales vs COGS by Country')
    plt.xticks(x, CGS['Country'])
    plt.legend()

plt.show()
```


Total Sales vs COGS by Country

```
SL = df.groupby(['Country']).agg({'Sales':'sum','COGS':'sum'}).reset_index()
In [38]:
         plt.figure(figsize=(10,5))
         width=0.2
         ax=np.arange(len(SL['Country']))
         bar1=plt.bar(ax - width/2,SL['Sales'],width,label='Sales')
         bar2=plt.bar(ax + width/2,SL['COGS'],width,label='COGS')
         for bar, value in zip(bar1, SL['Sales']):
             plt.text(bar.get_x() + bar.get_width() / 2, bar.get_height(), str(value),
                      ha='center', va='bottom')
         for bar, value in zip(bar2, SL['COGS']):
             plt.text(bar.get_x() + bar.get_width() / 2, bar.get_height(), str(value),
                      ha='center', va='bottom')
         plt.xlabel('Country')
         plt.ylabel('values')
         plt.title('sales vs cogs')
         plt.xticks(x, SL['Country'])
         plt.legend()
         plt.show()
```


PROFIT BY COUNTRY WISE

```
In [61]: plt.figure(figsize=(10,5))
    plt.pie(country_group['Profit'],labels=country_group['Country'],autopct='%1.0f
    plt.title('PROFIT BY COUNTRYWISE ')
    plt.show()
```

PROFIT BY COUNTRYWISE

Above pie chart france in higher profit and mexico is lowest profit

PRODUCT WISE PROFIT MARGIN

```
product = df.groupby(['Product']).agg({
In [122]:
              'Units Sold': 'sum',
              'Manufacturing Price': 'mean',
              'Sale Price': 'sum',
              'Gross Sales': 'sum',
              'COGS': 'sum',
              'Profit': 'sum'
          })
          product['margin']=product['Sale Price']-product['Manufacturing Price']
          plt.figure(figsize=(10,5))
          width=0.5
          x = range(len(product))
          bars=plt.bar(x, product['margin'], width, label='Profit Margin')
          for bar, value in zip(bars, product['margin']):
              plt.text(bar.get_x() + bar.get_width() / 2, bar.get_height(), f'{value:.2f
                       ha='center', va='bottom')
          plt.xlabel('Product')
          plt.ylabel('profit margin')
          plt.legend()
          plt.xticks(x, product.index)
          plt.show()
```


PRODUCT SALES VS PROFIT

```
In [170]: AF=df.groupby(['Product']).agg({'Sales':'sum','Profit': 'sum'}).reset_index()
width=0.5
plt.figure(figsize=(10,5))
x=np.arange(len(AF['Product']))
plt.bar(x-width/2,AF['Sales'],width,label='Sales')

plt.bar(x+width/2,AF['Profit'],width,label='Profit')

plt.xlabel('Product')
plt.ylabel('values')
plt.title('PRODUCT SALES VS PROFIT')
plt.xticks(x,AF['Product'])
plt.legend()
plt.show()
```



```
In [142]: plt.figure(figsize=(10,5))
    plt.pie(AF['Sales'],labels=AF['Product'],autopct='%1.0f%%')
    plt.title(' product wise sales')
    plt.show()
```

product wise sales

SEGMENT WISE SALES

```
In [167]: BF = df.groupby(['Segment']).agg({'Sales':'sum','Profit': 'sum'}).reset_index(
    plt.figure(figsize=(10, 5))
    width = 0.5
    Ax = np.arange(len(BF['Segment']))

bars=plt.bar(Ax - width/2, BF['Sales'], width, label='Sales')
for bar, value in zip(bars, BF['Sales']):
    plt.text(bar.get_x() + bar.get_width() / 2, bar.get_height(), f'{value:.2f ha='center', va='bottom'})
    plt.xlabel('Segment')
    plt.ylabel('Values')
    plt.title('Segment-wise Sales')
    plt.xticks(Ax, BF['Segment'])
    plt.legend()
    plt.show()
```


Thank you