Видове проводникови материали

1. Класификация на проводниковите материали

Meд (Cu)

Основни свойства

- малко специфично съпротивление р
- >добра технологичност лесно се изтегля на тънки проводници и листове
- > запояване при ниска температура
- > добра корозоустойчивост
- ниска цена

Особености

✓ Силно увеличава специфичното си съпротивление ρ при наличие на примеси – 0,5 % примеси намаляват ρ с от 2 до 4 пъти

Meд (Cu)

Приложения

изолирани проводници

проводници за трансформатори

метализация на печатни платки

Алуминий (Al)

Особености

✓ Много бързо се оксидира и се покрива с тънък слой Al_2O_3 , който притежава отлични диелектрични и механични свойства

Предимство - този слой предпазва метала от корозия

Недостатък - много затруднява запояването на А1

✓ A1 е вентилен метал - проявява различни свойства в зависимост от поляритета на приложеното напрежение

Алуминий (Al)

Основни свойства

- малко специфично съпротивление р
- ▶ голяма топлопроводност
- > малко тегло

Приложения

вентилатори

радиатори

електролитни кондензатори

Благородни метали (Ag, Au, Pt, Pd)

Основни свойства

- малко специфично съпротивление р
- >изключителна корозоустойчивост

Приложения

Злато

бондиране на интегрални схеми (много тънки проводници, които свързват изводите на схемата с изводите на корпуса)

3. Резистивни материали

Приложения

токопровеждащ елемент на резистори

Основни изисквания

- > голямо специфично съпротивление р
- малка стойност на термо-е.д.н. основно спрямо Cu
- ightharpoonup висока температурна стабилност на параметрите им (т. е. $\alpha_{
 ho} pprox 0$)
- добра технологичност

3. Резистивни материали

3. Припои и флюсове

Припои

Сплави, които се използват за запояване (създаване на механически здрав шев и електрически контакт с малко контактно съпротивление)

Флюсове

Органични материали, които подпомагат запояването

3. Припои и флюсове

Основни изисквания към припоите

- $ilde{range}$ ниска температура на топене $T_{
 m T}$
- > галванична съвместимост със спояваните метали
- малко специфично съпротивление р
- **>** голяма механична якост
- > добра корозоустойчивост
- **>** ниска цена

Основни изисквания към флюсовете

- > да осигурят добро умокряне на спояваните метали
- **>** да отделят оксидния слой от повърхността им
- > да защитават от оксидиране по време на запояване

3. Припои и флюсове

Сплави за припои

Меки припои (T_T < 400 °C)

безоловни припои Sn + Ag + Cu

калаено-оловни (Sn-Pb) сплави Твърди припои $(T_T > 400 \, ^{\circ}C)$

Cu – Zn сплави

Ад сплави

4. Метали и сплави за контакти

Състав:

сплави на метали с висока $T_{\rm T}$ като W, Mo, Cr, Cd и др.

Основни изисквания

- малко механично износване
- ightharpoonup висока температура на топене $T_{\rm T}$ (да не се запои контакта)
- **≻**добра корозоустойчивост
- малко специфично съпротивление р
- > голяма химическа устойчивост

5. Термоустойчиви сплави

Приложения

нагревателни елементи

Основни изисквания

- ▶ висока работна температура (над 1000 °C)
- >да образуват стабилен оксид

Представители

Cr-Ni сплави (нихром)

6. Метали и сплави за термодвойки

Основни изисквания

- **>** висока стойност на термо-е. д. н.
- **>** висока температурна стабилност на параметрите им
- висока работна температура

6. Метали и сплави за термодвойки

