

Online Asymptotic Calibration

Juan Elenter elenter@seas.upenn.edu

March 23, 2022

Outline

- 1. Context
- 2. Problem formulations
- 3. Foster & Vohra's approach
- 4. A calibrated forecaster
- 5. Key Takeaways

1. Context

Asymptotic Calibration, Biometrika, Vol. 85, Oxford University Press, 1991

Dean Foster

Rakesh Vohra

Online Calibration Basics

$$\blacktriangleright \ \ X^T = \overbrace{[1, \quad 0, \quad 1, \quad 1, \cdots, 0]}^{\mathsf{length}\, T} \qquad \qquad e.g: \quad \begin{cases} 1 & \longrightarrow \mathit{Rain} \\ 0 & \longrightarrow \mathsf{No} \ \mathsf{Rain} \end{cases}$$

- ▶ Forecasting method $F: \mathcal{X}^T \to A = [0, 1]$
- ▶ Forecast at time T: $f_T = F(X^{T-1})$.
- ▶ Number of p forecasts up to time t: $n_t(p; F, X) = \sum_{t=1}^{T} 1\{f_t = p\}$
- ▶ Fraction of those forecasts where it actually rained: $\rho_t(p; X, F) = \frac{\sum_{t=1}^T 1\{f_t = p\}X_t}{n_t(p; X, F)}$

Traditional Calibration Definitions

- ▶ Intuitively, F is well-calibrated w.r.t X iff $\rho_t \approx p$ for all $p \in A$
- Definition of Online Asymptotic Calibration:

$$F$$
 is well-calibrated w.r.t X iff $\lim_{t\to\infty}\underbrace{\sum_{p\in A}(\rho_t(p)-p)^2\frac{n_t(p)}{t}}_{C_t(F,X)}=0$

Asymptotic calibration is not a sufficient condition for a forecast to be good. Let $X = [0, 1, 0, 1, \cdots]$:

$$f_t = rac{1}{2}$$
 VS $f_t = X_t$ for all t

- Oakes (1985): No deterministic forectasing scheme can be calibrated for all possible sequences.
- Schervish (1985): Why should we care about long term, worst-case criteria? "In the short run, when we are alive, a forecaster might do quite well".

The mission

- ▶ To rescue the notion of online asymptotic calibration.
- ▶ How? Broaden the definition of calibration by allowing randomized forecasts:
- ▶ Forecasting method $F: \mathcal{X}^T \to [0, 1]$,

 $F: \mathcal{X}^T \to L$ where L is a suitable distribution space.

2. Problem Formulation

Game Theoretic Formulation

- $\begin{tabular}{lll} \hline & Two Players: & Forecaster & \longrightarrow Picks F \\ Nature & \longrightarrow Picks X \\ \hline \end{tabular}$
- ► Rules of the game:
 - ▶ 1. Forecaster chooses F and reveals only the forecast distribution to Nature.
 - ▶ 2. At each $t \ge 1$, $f_t(X^{t-1})$ is drawn and simultaneously, Nature selects X_t .
 - ▶ 3. At the end of the game, statistician pays $C_t(F, X)$ to Nature.
- ▶ The forecaster wins if $C_t(F,X)$ is vanishingly small in some probabilistic sense.

Probabilistic Formulation

A randomized forecast F is ϵ -calibrated iff:

$$\lim_{t\to\infty} P\{C_t(F,X)<\epsilon\} > 1-\epsilon$$

for all X.

Connection between formulations

In the context of a game: $\exists \ \mathsf{F} \ \epsilon\text{-calibrated}$ iff

$$\min_{F} \max_{X} \mathbb{E}\{C_t(F,X)\} \leq \epsilon^2$$

for t sufficiently large.

3. Foster & Vohra's approach

Preliminaries

At round t, forecaster draws from the set $A = \{0, \frac{1}{k}, \frac{2}{k}, \cdots, 1\}$ with probability distribution μ_t :

$$\mathbb{P}(f_t = \frac{i}{k}) = \mu_t^i$$

- ► $EBS_T(F, X) = \frac{1}{T} \sum_{t=1}^{T} \sum_{i=0}^{k} \mu_t^i (X_t \frac{i}{k})^2$
- ► Notion of Regret:

$$R_T^{i o j} = T[EBS_T(F, X) - EBS_T(F^{i o j}, X)]_+$$

If μ_t satisfies the following condition for each t:

$$\sum_{j\neq i} \mu_t^j R_{t-1}^{j\to i} = \mu_t^i \sum_{j\neq i} R_{t-1}^{i\to j} \quad \text{for all } i=0,\cdots,k$$

the forecaster F with $k > \frac{1}{\epsilon^2}$ is ϵ -calibrated.

4. A calibrated forecaster

How to find an ϵ -Calibrated Forecast

Let
$$A = \begin{pmatrix} -\sum_{j \neq i} R^{1 \to j} & R^{2 \to 1} & \cdots & R^{k \to 1} \\ R^{1 \to 2} & -\sum_{j \neq 2} R^{2 \to j} & \cdots & R^{k \to 2} \\ \vdots & \vdots & \vdots & \vdots \\ R^{1 \to k} & R^{2 \to k} & \cdots & -\sum_{j \neq k} R^{k \to j} \end{pmatrix} \longrightarrow \sum_{i} A_{ij} = 0 \quad \text{for all } j$$

▶ $\exists \epsilon$ -calibrated F $\iff \exists x \text{ probability vector s.t: } Ax = 0.$

How to find an ϵ -Calibrated Forecast

- ▶ Let A_2 such that $A_{2ij} = \frac{A_{ij}}{\max_{i,j} |A_{ij}|}$
- $\triangleright P = A_2 + \mathbb{I}_D$
- ightharpoonup P positive and $\sum_i P_{ij} = 1$
- ▶ \exists state x_s (stationary distribution) such that $Px_s = x_s$.
- $Px_s = x_s \quad \rightarrow \quad A_2x_s + \mathbb{I}_Dx_s = x_s \quad \rightarrow \quad A_2x_s = 0 \quad \rightarrow \quad Ax_s = 0$

 μ_t can be found through Gaussian elimination of the Regret matrix A.

Sketch of Original Proof

- ▶ 1. Approximate $C_t(F, X)$ by $\tilde{C}_t(F, X) = \sum_{j=0}^k \frac{\sum_{t=1}^T \mu_t^j}{T} (\sum_{t=1}^T \frac{\mu_t^j X_t}{\sum_{t=1}^T \mu_t^j} \frac{j}{k})^2$
- ightharpoonup 2. Note that $C_t \tilde{C}_t \stackrel{p}{\longrightarrow} 0$
- ▶ 2. Bound $\tilde{C}_t(F,X) \leq k\rho + \frac{k}{2\rho t} + \frac{1}{4k^2}$
- ▶ 3. For all $\epsilon > 0$, if $k > \frac{1}{\epsilon^2}$, we have $\tilde{C}_t(F, X) \leq \epsilon$ for t big enough.
- ▶ 4. Combining 1. and 3. , for all $\epsilon > 0$, $\exists t_0$ such that $\mathbb{P}(C_t(F, X) < \epsilon) \ge 1 \epsilon$ for all $t > t_0$.

David Blackwell: "Basically, I'm not interested in doing research and I never have been. I'm interested in understanding, which is quite a different thing."

▶ "Over the past few years many proofs of the existence of calibration have been discovered. Does the literature really need one more? Probably not. " Foster.

- ► Recall Strategy: $f_t \in \{0, \frac{1}{k}, \frac{2}{k}, \dots, 1\}$ according probability distribution $\mu_t = \{\mu_t(0), \mu_t(1), \dots, \mu_t(k)\}.$
- ▶ More general setting with $X_t \in [0, 1]$.
- Consider the vector payoff:

$$c(\mu_t, X_t) = [\mu_t(0)(X_t - \frac{0}{k}), \mu_t(1)(X_t - \frac{1}{k}), \cdots, \mu_t(k)(X_t - 1)]$$

lacktriangle In the context of game theory , a set S is approachable if there exists a forecasting scheme such that

$$\lim_{t\to\infty}d(\bar{c}_t(\mu,X),S)=0\quad a.s$$

where $d(c, S) = \inf_{s \in S} ||c - S||$ and \bar{c}_t is the average pay-off vector function until time t.

Blackwell's Approachability Theorem: Any closed convex set S is approachable if and only if it is response-satisfiable. (i.e. for all X_t , $\exists \mu_t$ such that $c(\mu_t, X_t) \in S$).

- \blacktriangleright Let $\epsilon > 0$.
- ▶ We can select k such that the set $S = \{x : \sum |x| \le \epsilon\}$ (ℓ_1 -ball of radius ϵ) is approachable:
 - ▶ If $k > \frac{1}{2\epsilon}$ then $\exists i$ such that: $|\frac{i}{k} X_t| < \epsilon$ for all $X_t \in [0,1]$.
 - ▶ By setting $\mu_t = \delta(i)$ we get: $c(\mu_t, X_t) = [0, \dots, 0, \frac{i}{k} y, 0, \dots, 0]$.
 - $ightharpoonup c(\mu_t, X_t) \in S$
- ▶ By Blackwell's Theorem: $d(\frac{1}{T}\sum_{t=1}^{T}c(\mu_t,X_t),S) \longrightarrow 0$ a.s.
- ▶ The almost sure convergence of average pay-off implies :

$$\lim_{t\to\infty} P\{C_t(\mu,X)<\epsilon\} > 1-\epsilon$$

Key Takeaways

- "Our goal in this paper has been to rescue the notion of calibration..."
- ► Generalization of the original notion of calibration to allow for randomised forecasts.
- ▶ The definition is not vacuous (existence and algorithms).
- Still, Schervish's concerns remain unanswered.