## Supplementary Materials: Improving measurements of similarity judgments with machine-learning algorithms

## Jeffrey R. Stevens<br/>¹, Alexis Polzkill Saltzman¹, Tanner Rasmussen¹, & Leen-Kiat Soh¹

Table S1
Predictors

| Value/function              |
|-----------------------------|
| S                           |
| L                           |
| L-S                         |
| $rac{S}{L}$                |
| $\frac{S}{\frac{S+L}{2}}$   |
| $\log(\frac{S}{L})$         |
| $\frac{L-S}{L}$             |
| $\frac{L-S}{\frac{S+L}{2}}$ |
| $\frac{L-S}{S+L}$           |
| $\log(\frac{L}{L-S})$       |
| $\frac{1}{1+e^{L-S}}$       |
|                             |

Note. Table from Stevens & Soh (2018).

<sup>&</sup>lt;sup>1</sup> University of Nebraska-Lincoln

Table S2

Confusion matrix and classification performance metrics

| Data split | Data split Algorithm True positives | True<br>positives | True<br>negatives | False<br>positives | False<br>negatives | Accuracy | True<br>positive rate | True<br>negative rate | Positive<br>predictive<br>value | Negative<br>predictive<br>value |
|------------|-------------------------------------|-------------------|-------------------|--------------------|--------------------|----------|-----------------------|-----------------------|---------------------------------|---------------------------------|
| Training   | C5.0                                | 39.6              | 57.2              | 1.4                | 1.8                | 8.96     | 95.2                  | 97.3                  | 96.4                            | 2.96                            |
| Training   | CART                                | 36.4              | 54.7              | 3.9                | 5.0                | 91.1     | 86.2                  | 92.8                  | 88.4                            | 6.06                            |
| Training   | kNN                                 | 33.6              | 53.9              | 4.7                | 7.9                | 87.4     | 75.0                  | 90.0                  | 87.3                            | 87.2                            |
| Training   | Naive Bayes                         | 38.0              | 54.9              | 3.7                | 3.4                | 92.9     | 92.5                  | 93.4                  | 90.5                            | 93.3                            |
| Training   | Neural Network                      | 39.2              | 2.99              | 1.9                | 2.2                | 95.9     | 94.2                  | 96.2                  | 95.5                            | 8.26                            |
| Training   | Random Forest                       | 41.4              | 58.5              | 0.1                | 0.0                | 6.66     | 6.66                  | 6.66                  | 6.66                            | 6.66                            |
| Training   | Regression                          | 40.0              | 57.3              | 1.3                | 1.4                | 97.3     | 9.96                  | 97.3                  | 97.0                            | 97.2                            |
| Training   | SVM                                 | 38.3              | 56.0              | 2.6                | 3.1                | 94.3     | 91.7                  | 94.7                  | 93.8                            | 94.2                            |
| Testing    | C5.0                                | 34.8              | 53.9              | 5.6                | 5.7                | 88.7     | 85.2                  | 89.3                  | 84.3                            | 89.0                            |
| Testing    | CART                                | 33.0              | 53.5              | 0.9                | 7.4                | 9.98     | 79.2                  | 88.9                  | 81.7                            | 86.4                            |
| Testing    | kNN                                 | 28.7              | 51.7              | 7.8                | 11.7               | 80.4     | 62.4                  | 83.6                  | 72.6                            | 80.1                            |
| Testing    | Naive Bayes                         | 35.1              | 53.5              | 0.9                | 5.4                | 9.88     | 9.98                  | 88.8                  | 83.9                            | 89.4                            |
| Testing    | Neural Network                      | 35.2              | 54.7              | 4.8                | 5.3                | 8.68     | 85.4                  | 9.06                  | 86.5                            | 8.68                            |
| Testing    | Random Forest                       | 35.2              | 54.6              | 4.9                | 5.3                | 8.68     | 85.9                  | 90.5                  | 9.98                            | 89.9                            |
| Testing    | Regression                          | 33.6              | 52.6              | 6.9                | 6.9                | 86.3     | 81.7                  | 87.1                  | 80.8                            | 8.98                            |
| Testing    | SVM                                 | 34.7              | 55.2              | 4.3                | 5.7                | 90.0     | 84.1                  | 91.4                  | 88.0                            | 89.4                            |

Note. Rates based on random ordering of a sample size of 30 instances. True positive rate = recall; Positive predictive value = precision.

 $\begin{array}{c} \text{Table S3} \\ \textit{Predictor importance} \end{array}$ 

| Algorithm      | Predictor importance calculation                                         |
|----------------|--------------------------------------------------------------------------|
| C5.0           | Percentage of training set samples that fall into all the terminal nodes |
|                | after the split                                                          |
| CART           | Reduction in the loss function (e.g., mean squared error) attributed to  |
|                | each variable at each split                                              |
| kNN            | Area under the ROC curve                                                 |
| Naive Bayes    | Area under the ROC curve                                                 |
| Neural network | Absolute values of node weights                                          |
| Random forest  | Difference between prediction accuracy on the out-of-bag portion of      |
|                | the data and after permuting each predictor variable, averaged over      |
|                | all trees and normalized by the standard error                           |
| Regression     | Absolute value of the t–statistic for each model parameter               |

Note. Drawn from caret package documentation (Kuhn, 2020).



 $Figure\ S1$ . Pairwise correlations for amount similarity judgment predictors. Diagonal shows histogram, below diagonal shows correlation plots, above diagonal shows correlation coefficients.



Figure S2. Pairwise correlations for delay similarity judgment predictors. Diagonal shows histogram, below diagonal shows correlation plots, above diagonal shows correlation coefficients.



Figure S3. Training set accuracy, precision, and recall for each algorithm based on random ordering of a sample size of 30 instances. For each performance measure, algorithms are ordered by mean score. Dots represent means, error bars represent within-subjects 95% confidence intervals, boxplot horizontal lines represent medians, boxes represent interquartile range (25-75th percentile), whiskers represent  $1.5 \times$  interquartile range. Outliers are not shown. Note the y-axis is truncated at 0.65 to enlarge the presentation of the means and confidence intervals.



Figure S4. Training set accuracy, precision, and recall rates for each algorithm, judgment type, and data set (A = Data set 1, B = Data set 2). Algorithms are ordered by overall testing accuracy rates. Dots represent means, error bars represent within-subjects 95% confidence intervals, boxplot horizontal lines represent medians, boxes represent interquartile range, whiskers represent  $1.5 \times$  interquartile range. Outliers are not shown. Note the y-axis is truncated at 0.6 to enlarge the presentation of the means and confidence intervals.



Figure S5. Out-of-sample accuracy, precision, and recall rates for each algorithm, judgment type, and data set (A = Data set 1, B = Data set 2). Algorithms are ordered by overall testing accuracy rates. Dots represent means, error bars represent within-subjects 95% confidence intervals, boxplot horizontal lines represent medians, boxes represent interquartile range, whiskers represent  $1.5 \times \text{interquartile}$  range. Outliers are not shown. Note the y-axis is truncated at 0.6 to enlarge the presentation of the means and confidence intervals.





Figure S6. Predictor importance for each judgment type and data set (A = Data set 1, B = Data set 2). Predictor importance refers to the relative contribution of each predictor to the response. Predictors are ordered by overall mean importance. Dots represent means, error bars represent within-subjects 95% confidence intervals, boxplot horizontal lines represent medians, boxes represent interquartile range, whiskers represent 1.5  $\times$  interquartile range. Outliers are not shown.



Figure S7. Predictor importance for each judgment type and algorithm. Predictor importance refers to the relative contribution of each predictor to the response. Predictors are ordered by overall mean importance. Dots represent means, error bars represent between-subjects 95% confidence intervals (the failure of regression models to calculate importance for the difference predictor prevents calculation of within-subject confidence intervals), boxplot horizontal lines represent medians, boxes represent interquartile range, whiskers represent  $1.5 \times \text{interquartile range}$ , and \* represents the failure of regression models to calculate importance for the difference predictor. Outliers are not shown.



Figure S8. Out-of-sample accuracy for each sample size, judgment type, data set, and ordering (A = Random, B = Sequential). Sample size refers to number of questions per participant used to train the algorithms. Random refers to a random sample of training questions used to predict a random sample of 10 testing questions. Sequential refers to a sample of training questions drawn in order of presentation to each participant that was used to predict a random sample of 10 testing questions. Dots represent means, and error bars represent between-subjects 95% confidence intervals (within-subject confidence intervals were not used because excessive missing data for small sample sizes caused too many participants to be removed from the calculations).