Advanced Probability

October 10, 2018

CONTENTS 2

Contents

0 REVIEWS 3

0 Reviews

0.1 Measure spaces

Let E be a set. Let \mathcal{E} be a set of subsets of E. We say that \mathcal{E} is a σ -algebra on E if:

- $\phi \in \mathcal{E}$;
- ullet is closed under countable unions and complements.

In that case, (E, \mathcal{E}) is called a measurable space.

We call the elements of \mathcal{E} measurable sets.

Let μ be a function $\mathcal{E} \to [0, \infty]$. We say μ is a measure if:

• $\mu(\phi) = 0$; • μ is countably additive: for all sequences (A_n) of disjoint elements of \mathcal{E} , then

$$\mu(\bigcup_n A_n) = \sum_n \mu(A_n)$$

In that case, the triple (E, \mathcal{E}, μ) is called a measure space.

Given a topological space E, there is a smallest σ -algebra containing all the open sets in E. This is the *Borel* σ -algebra of \mathcal{E} , denoted $\mathcal{B}(E)$.

In particular, for the real line \mathbb{R} , we will just write $\mathcal{B} = \mathcal{B}(\mathbb{R})$ for simplicity.

0.2 Integration of measurable functions

Let (E, \mathcal{E}) and (E', \mathcal{E}') be measurable spaces. A function $f: E \to E'$ is measurable if $f^{-1}(A) = \{x \in E : f(x) \in A\} \in \mathcal{E} \forall A \in \mathcal{E}'$.

If we refer to a measurable function f without specifying range, the default is $(\mathbb{R}, \mathcal{B})$.

Similarly, if we refer to f as a non-negative measurable function, then we mean $E' = [0, \infty], \mathcal{E}' = \mathcal{B}([0, \infty]).$

It is worth notice that under this set of definitions, a non-negative measurable function might not be \mathbb{R} -measurable (since we allowed ∞).

We write $m\mathcal{E}^+$ for set of non-negative measurable functions.

Theorem. Let (E, \mathcal{E}, μ) be a measure space. There exists a unique map $\tilde{\mu}$: $m\mathcal{E}^+ \to [0, \infty]$ such that:

- •(a) $\tilde{\mu}(1_A) = \mu(A)$ for all $A \in \mathcal{E}$, where 1_A is the indicator function;
- •(b) $\tilde{\mu}(\alpha f + \beta g) = \alpha \tilde{\mu}(f) + \beta \tilde{\mu}(g)$ for all $\alpha, \beta \in [0, \infty), f, g \in m\mathcal{E}^+$ (linearity);
- •(c) $\tilde{\mu}(f) = \lim_{n \to \infty} \tilde{\mu}(f_n)$ for any non-decreasing sequence $(f_n : n \in \mathbb{N})$ in $m\mathcal{E}^+$ such that $f_n(x) \to f(x)$ for all $x \in E$ (monotone-convergence).

We'll only prove uniqueness. For existence, see II Probability and Measure notes.

0 REVIEWS 4

From now on, write μ for $\tilde{\mu}$. We'll call $\mu(f)$ the *integral* of f w.r.t. μ . We also write $\int_E f d\mu = \int E f(x) \mu(dx)$.

A *simple function* is a finite linear combination of indicator functions of measurable sets with positive coefficients, i.e. f is simple if

$$f = \sum_{k=1}^{n} \alpha_k 1_{A_k}$$

for some $n \geq 0$, $\alpha_k \in (0, \infty)$, $A_k \in \mathcal{E} \forall k = 1, ..., n$.

From (a) and (b), for f simple,

$$\mu(f) = sum_{k=1}^{n} \alpha_k \mu(A_k)$$

Also, if $f, g \in m\mathcal{E}^+$ with $f \leq g$, then f + h = g where $h = g - f \cdot 1_{f < \infty} \in m\mathcal{E}^+$. Then since $\mu(h) \geq 0$, (b) implies $\mu(f) \leq \mu(g)$.

Take $f \in m\mathcal{E}^+$. Define for $x \in E$, $n \in \mathbb{N}$,

$$f_n(x) = \left(2^{-n} | 2^n f(x)|\right) \wedge n$$

where \wedge means taking the minimum. Note that (f_n) is a non-decreasing sequence of simple functions that converges to f pointwise everywhere on E. Then by (c),

$$\mu(f) = \lim_{n \to \infty} \mu(f_n)$$

So we have shown uniqueness: μ is uniquely determined by the measure (provided that it exists, which we're not going to show).

When is $\mu(f)$ zero (for $f \in m\mathcal{E}^+$)? For measurable functions f, g, we say f = g almost everywhere if

$$\mu(\{x \in E : f(x) \neq g(x)\}) = 0$$

i.e. they only disagree on a measure-zero set.

We can show, for $f \in m\mathcal{E}^+$, that $\mu(f) = 0$ if and only if f = 0 almost everywhere.

Let f be a measurable function. We say that f is integrable if $\mu(|f|) < \infty$.

Write $L^1 = L^1(E, \mathcal{E}, \mu)$ for the set of all integrable functions. We extend the integral to L^1 by setting $\mu(f) = \mu(f^+) - \mu(f^-)$, where

$$f^{\pm}(x) = 0 \lor (\pm f(x))$$

where \vee means the maximum (so $f = f^+ - f^-$). Note that now f^+, f^- are both non-negative, with disjoint support. Then we can show that L^1 is a vector space, and $\mu: L^1 \to \mathbb{R}$ is linear.

Lemma. (Fatou's lemma)

Let $(f_n : n \in \mathbb{N})$ be any sequence in $m\mathcal{E}^+$. Then

$$\mu(\liminf_{n\to\infty} f_n) \le \liminf_{n\to\infty} \mu(f_n)$$

0 REVIEWS 5

The proof is a straight forward application of monotone convergence. The only hard part is to remember which way the inequality is (consider a sliding block function to the right).

Theorem. (Dominated convergence)

Let $(f_n : n \in \mathbb{N})$ be a sequence of measurable functions on (E, \mathcal{E}) . Suppose $f_n(x)$ converges pointwise as $n \to \infty$, with limit f(x) say. Suppose further that $|f_n| \leq g$ for all n, for some integrable function g. Then f_n is integrable for all n, so is f, and $\mu(f_n) \to \mu(f)$ as $n \to \infty$.

Definition. We call a measure space $(\Omega, \mathcal{F}, \mathbb{P})$ such that $\mathbb{P}(\Omega) = 1$ a probability space. In this setting, measurable functions correspond to random variables, measurable sets correspond to events, almost everywhere corresponds to almost surely, and the integral $\mathbb{P}(X)$ corresponds to the expectation $\mathbb{E}(X) = \int_{\Omega} X d\mathbb{P}$, sometimes written $\mathbb{E}_{\mathbb{P}}(X)$ if we need to specify the underlying measure.

1 Conditional expectation

Throughout this section we'll use the default probability space $(\Omega \mathcal{F}, \mathbb{P})$.

1.1 The discrete case

Suppose $(G_n:n\in\mathbb{N})$ is a sequence of disjoint set in \mathcal{F} such that $\cup_n G_n=\Omega$ (so a partition of the space Ω). Let X be an integrable random variable. Set $\mathcal{G}=\sigma(G_n:n\in\mathbb{N})$, which in this case is $\{\cup_{n\in I}G_n:I\subseteq\mathbb{N}\}$, i.e. all countable unions of G_n . Define $Y=\sum_{n\in\mathbb{N}}\mathbb{E}(X|G_n)1_{G_n}$, where $\mathbb{E}(X|G_n)=\mathbb{E}(X1_{G_n})/\mathbb{P}(G_n)$, except in the case where $\mathbb{P}(G_n)$ we define LHS to be 0 as well). Now note that Y is \mathcal{G} -measurable, is integrable, and $\mathbb{E}(Y1_A)=\mathbb{E}(X1_A)$ for any $A\in\mathcal{G}$. We'll write $Y=\mathbb{E}(X|\mathcal{G})$ almost surely, and say Y is a version of conditional expectation of X given \mathcal{G} .

1.2 Gaussian case

Let (W,X) be a Gaussian (normal) random variable in \mathbb{R}^2 . Take a coarser σ -algebra $\mathcal G$ generated by W, which is $\{\{WinB\}: B\in \mathcal B\}$. Consider for $a,b\in \mathbb R$, the random variable Y=aW+b. We can choose a,b so that $\mathbb E(Y-X)=a\mathbb E(W)+b-\mathbb E(X)=0$, and cov(Y-X,W)=avar(W)-cov(X,W)=0. Then Y is $\mathcal G$ -measurable, is integrable, and $\mathbb E(Y1_A)=\mathbb E(X1_A)$ for all $A\in \mathcal G$. To see this, note Y-X and W are independent (as their covariance is 0), and $A=\{W\in B\}$ for some $B\in \mathcal B$. So for $A\in \mathcal G$, $\mathbb E((Y-X)1_A)=\mathbb E(Y-X)\mathbb P(A)=0$.

1.3 Conditional density functions

Let (U, V) be a random variable in \mathbb{R}^2 with density function f(u, v), i.e.

$$\mathbb{P}((U,V) \in A) = \int_{A} f(u,v) du dv$$

Take $\mathcal{G} = \sigma(U) = \{\{U \in B\} : B \in \mathcal{B}\}$. Take a Borel measurable function h on \mathbb{R} and set X = h(V), assume $X \in L^1(\mathbb{P})$. Note U has density function

$$f(u) = \int_{\mathbb{R}} f(u, v) dv$$

Define the conditional density function

$$f(v|u) = f(u,v)/f(u)$$

where we define 0/0 = 0.

Now set Y = g(U), where

$$g(u) = \int_{\mathbb{R}} h(v)f(v|u)dv$$

Then g is a Borel-measurable function on \mathbb{R} (not obvious), so Y is a \mathcal{G} -measurable random variable, and is integrable and for all $A = \{U \in B\} \in \mathcal{G}$, $\mathbb{E}(Y1_A) = \mathbb{E}(X1_A)$. To see this,

$$\mathbb{E}(Y1_A) = \int_{\mathbb{R}} g(u)1_B(u)f(u)du$$
$$= \int_{\mathbb{R}} \int_{\mathbb{R}} h(v)f(v|u)dv1_B(u)f(u)du$$
$$= \mathbb{E}(X1_A)$$

where at the last step we use Fubini's theorem (introduced later) to swap integrals, and note that we can combine $\int f(v|u)f(u)$ to get f(u,v).

1.4 Product measure and Fubini's theorem

Take finite (or countably infinite) measure spaces $(E_1, \mathcal{E}_1, \mu_1)$ and $(E_2, \mathcal{E}_2, \mu_2)$. Write $\mathcal{E}_1 \otimes \mathcal{E}_2$ for the σ -algebra on $E_1 \times E_2$ generated by sets of the form $A_1 \times A_2$ where $A_i \in \mathcal{E}_i$ for i = 1, 2. We call $\mathcal{E}_1 \otimes \mathcal{E}_2$ the product σ -algebra.

Theorem. There exists a unique measure $\mu = \mu_1 \otimes \mu_2$ on $(E_1 \times E_2, \mathcal{E}_1 \otimes \mathcal{E}_2)$ such that

$$\mu(A_1 \times A_2) = \mu_1(A_1)\mu_2(A_2)$$

for all $A_i \in \mathcal{E}_i$ for i = 1, 2.

Theorem. (Fubini's theorem)

Let f be a non-negative measurable function $(E_1 \times E_2, \mathcal{E}_1 \otimes \mathcal{E}_2)$. For $x_1 \in E_1$, define in the obvious way

$$f_{x_1}(x_2) = f(x_1, x_2)$$

Then f_{x_1} is \mathcal{E}_2 -measurable for all $x_1 \in E_1$. Now define $f_1(x_1) = \mu_2(f_{x_1})$. Then f_1 is \mathcal{E}_1 measurable and $\mu_1(f_1) = \mu(f)$ (see part II Prob and Measure notes for the integrable case). Define \hat{f} on $E_2 \times E_1$ by

$$\hat{f}(x_2, x_1) = f(x_1, x_2)$$

then we can show \hat{f} is $\mathcal{E}_2 \otimes \mathcal{E}_1$ -measurable, and

$$(\mu_2 \otimes \mu_1)(\hat{f}) = (\mu_1 \otimes \mu_2)(f)$$

So by Fubini,

$$\mu_2(f_2) = \hat{f}(\hat{f}) = \mu(f) = \mu_1(f_1)$$

with obvious notations. This means

$$\int_{E_2} \left(\int_{E_1} f(x_1, x_2) \mu_1(dx_1) \right) \mu_2(dx_2) = \int_{E_1} \left(\int_{E_2} f(x_1, x_2) \mu_2(dx_2) \right) \mu_1(dx_1)$$

Note that this also holds for just f integrable.