Optical properties of free-standing cubic silicon carbide

Mattias Jansson

Outline

- Introduction to silicon-carbide
- About growth
- About optical characterization

Polytypes - atomic arrangements

Polytypes - atomic arrangements

Cubic 3C-SiC

CONDUCTION BAND

Allowed

Disallowed

VALENCE BAND

Allowed

My contributions

My contributions

Growth of boron-doped samples

My contributions

- Growth of boron-doped samples
- Optical characterization

Sublimation growth

The reactor

The growth setup

Investigated parameters

- Doping concentrations (10¹⁸ 10²⁰ cm⁻³)
- Growth on 3C seed or 4H substrate
- Direct or indirect doping method

Doping concentrations

Indirect/direct doping, 10¹⁸ cm⁻³

Indirect/direct doping, 10²⁰ cm⁻³

$$p - n = N_A^- - N_D^+$$

$$p - n = N_A^- - N_D^+$$

$$N_D^+ \approx N_D$$

$$p \approx N_V e^{-E_F/kT}$$

$$N_A^- = \frac{N_A}{1 + 2e^{\frac{E_A - E_F}{kT}}}$$

Photoluminescence spectroscopy

- Non-radiative impurity levels
- Non radiative defect states
- Competition between B and Al

Other results

- Cubic growth on C-face 4H not possible under same conditions as Si-face
- Water splitting possible using both p- and ntype 3C

Summary and conclusions

- Boron impurities lead to poor quality material
- Both direct and indirect doping methods give intermediate band
- No VB-B transition, possibly due to high occupancy
- N and Al inclusions
- No luminescence from B-doped 3C, but from 4H. Possibly due to non-radiative defects.
- Possible competition between Al and B

Thank you!

www.liu.se

