Week 6 – Tuesday Session

Linear Regression

EPI202 – Epidemiologic Methods II Murray A. Mittleman, MD, DrPH Department of Epidemiology, Harvard TH Chan School of Public Health

Advantages of Regression Models

- Generally more efficient than stratification-based methods when data are sparse
- Modelling of a continuous outcomes
- Specify continuous and categorical exposures, confounders and modifiers
- Specify interactions to model effect modification
- Model nonlinear relations associations hips between exposure and outcome and other covariates

Regression Models

y =	$\beta_0 + \beta_1 x_1 + \beta_i x_i + \varepsilon$
Dependent	Independent
Predicted	Predictor variables
Response variable	Explanatory variables
Outcome variable	Covariables

Simple Linear Regression

- Predict a continuous dependent (outcome) variable y from a continuous independent (exposure) variable x
- Simple linear regression fits a straight line to the data using the least squares method.
- Regression line: $E[Y|X] = \beta_0 + \beta_1 x_1$
 - \Box Often presented as y = mx + b where
 - b=y-intercept
 - m=slope= $\Delta y/\Delta x$ (rise/run)

- \Box β_1 =slope= $\Delta y/\Delta x$ =average change in y when x changes by one unit
- \Box X₁ is a known constant
- $^{\square}$ ϵ , the error, is an observation's deviation from the conditional mean, N(0, σ 2)

independent variable (X)

Linear Regression

Age versus Height

Week 6 Linear Regression Exercise

HAVE A GOOD WEEK