# Low-energy effective description of light pseudo-scalar mesons in SO(N)-like dark QCD

Joachim Pomper

Supervisor: Dr. Suchita Kulkarni

Presentation of master thesis

12.07.2023







### The tale of dark matter

Astrophysical observations point to the existence of a non-visible type of matter, that makes up 26% of universes energy budget.

#### Evidence on various scales:

- Galaxy scale: Rotational curves
- Cluster scale:
   Visible mass too little to hold together coma cluster
- Cosmological scale:
   CMB anisotropies



Figure: Energy budget of the universe within ACDM model.

### Cusp vs. Core problem

Observed DM halo density profiles are more **cored** compared to profiles found in cold DM simulations, which are rather **cusp**.



Figure: Data from the DDO 154 dwarf galaxy [Murayama (2022)].



- Sufficient self-interactions resolve structure formation problems.
- Dark Photon maintains kinetic equilibrium until freeze-out.
- $3 \rightarrow 2$  cannibalization drives freeze-out.

### The model in the UV



# Symmetries and particles



# When might $\eta'_D$ become light?

#### 't Hooft large N limit:



### For which theories might $\eta'_D$ be relevant ?

- i) This argument works for SO(N)-vector theories  $\Rightarrow \eta_D'$  might be important
- ii) Does not work for other real theories we investigated

# (Non-anomalous) Low energy effective Lagrangian



### Topological terms and coset homotopy

The coset space G/H has non vanishing 4th homotopy group:

$$\pi_4(SU(4)/SO(4))\neq 0$$

### Problem:

• The standard construction/classification of topological terms in non-linear sigma model by Witten, Weinberg and d'Hoker requires  $\pi_4(G/H) = 0$ .

```
[Witten, Nucl. Phys. B 223 (1983)]

[D'Hoker and Weinberg, Physical Review D 50 (1994)]

[Brauner and Kolešová, Nuclear Physics B 945 (2019)]
```

 Modern approaches give more general classification but no practical construction.

```
[Davighi and Gripaios, Journal of High Energy Physics 2018 (2018)]
[Lee, Ohmori, and Tachikawa, SciPost Physics 10 (2021)]
```

### Derivation of WZW term

Chu, Ho, and Zumino, Nuclear Physics B 475 (1996)

Wess and Zumino, Physics Letters B 37 (1971)

#### Step 1: Calculate chiral anomaly in the UV



### Step 2: t' Hooft anomaly matching

Anomaly equation:  $\delta_{\epsilon} S_{\text{cov.}}^{IR}[\xi, A] = \mathcal{A}[\epsilon, A]$ 

#### (Step 3: Solve anomaly equation in the IR

$$S_{ ext{cov.}}^{IR}[\xi,A] = \int_0^1 d au \, \int \mathcal{A}[\xi,\ A_ au(\xi)] \ \ \text{with} \ A_ au(\xi) = \exp\left(- au \, \int dy \ \xi^a \mathcal{D}_a
ight) A$$

### The Wess-Zumino-Witten term

### Wess-Zumino effective action

$$\lim_{A \to 0} S_{\text{cov.}}^{WZ} = \frac{D_C}{48\pi^2 f_{\pi}} \int_0^1 d\tau \int_{S^4} \text{Tr} \left\{ \xi \left( (\Sigma[\tau \xi])^{-1} d\Sigma[\tau \xi] \right)^4 \right\}$$

$$\approx \frac{D_C}{15f_\pi^5 \pi^2} \epsilon^{\mu\nu\sigma\rho} \int_{S^4} \mathrm{d}^4 x \, \operatorname{Tr} \left\{ \pi \partial_\mu \pi \partial_\nu \pi \partial_\sigma \pi \partial_\rho \pi \right\}$$

- Incorporates 3 → 2 process.
- Low energy coefficient fixed by construction.
- Does not depend on  $\eta'$  in lowest order  $\chi$ PT.

# Charge assignments dark photon Z'



### Charge assignments $Q = e_D \sigma_C^3$

- $\rightarrow$  consistency (no gauge anomalies)
- → Maintain a non-abelian flavor symmetry
- ightarrow No anomalous pion decays occur
  - $\Rightarrow \pi_D$  states are stable

This choice of Q is physically unique!



### Dark photon anomalous vertices

### **Anomalous contributions:**

Anomaly equation:

$$S^{IR}[\xi] = \lim_{A \to Z'} S^{IR}_{\text{cov.}}[\xi, A]$$

$$\pi,\eta'$$
 ..... $Z'$ 

$$\alpha \quad
\begin{cases}
Tr \left\{ \pi \ Q^2 \right\} &= 0 \\
Tr \left\{ \eta' \ Q^2 \right\} &\neq 0
\end{cases}$$

Allows for decay of  $\eta_D'$  to standard model





# $\eta_D'$ affects freeze-out



 $\eta_D^\prime$  decays into the standard model



Depending on  $m_{\eta_D'}$  and  $\tau_{\eta_D'}$  the reaction chain may alter the freeze-out of the DM:

### Limiting cases:

followed by

- 1)  $\eta_D^\prime$  decays almost instantly  ${\rm Correct}~\Omega_{DM}~{\rm can}~{\rm not}~{\rm be}~{\rm produced}$ 
  - ⇒ not a viable DM model
- 2)  $\tau_{\eta_D'} \approx$  Age of the universe  ${\rm No~effects}~~\Omega_{DM}~{\rm on~relic~density}$

### Summary

- Delivered an extensive description of a model for SIMP DM.
  - $\circ$  Case of real representations of gauge group  $G_D$
  - Problem and alternative construction of WZW
  - $\circ$  Charge assignments of Z'
  - Symmetries and particle classification
  - Low energy effective description
- Discussed role of  $\eta'_D$  for phenomenology
  - Phenomenological limits where  $\eta'_D$  becomes important
  - $\circ$   $\eta_D'$  might affect DM parameters



# Outlook and future projects

- Evaluate DM parameter space taking into account  $\eta_D'$  (WIP)
- Study Sp(4) with antisymmetric fermions on the lattice.
- Study discrete symmetries related to the axial anomaly for higher tensor representations.
  - Semi-direct product structure  $Z_K \ltimes SU(4)$
  - Spontaneous breaking of these symmetries (Domain walls ?)
- Inclusion of  $\rho$ -mesons via local hidden symmetry

### Symmetries and particles



# The axial anomaly and discrete symmetries

### General form of Axial Anomaly

$$\mathcal{A}_{\mathrm{Axial}}[\epsilon,A] = -2i \ \mathcal{T}_{\mathcal{R}} \ \mathrm{tr}\{\epsilon\} \mathcal{Q}_{\mathrm{Topo}}[A]$$

#### Quantum chiral transfomrmations

### (Dynkin Index $T_R$

| SU(N) - Fund. | SO(N) - Vec. | Sp(2N) - Fund | Sp(2N) - AT2T |
|---------------|--------------|---------------|---------------|
| $T_R = 1/2$   | $T_R = 1$    | $T_R = 1/2$   | $T_R = N-1$   |

# 't Hooft large N considerations of $\eta_D'$

**Idea:** Compare for example SO(N)-vector theories for N very large.

#### **Technicality:** Define 't Hooft coupling $\lambda$

$$\lambda := C_{adj}(N) g^2$$
  $\lambda(\mu_{UV}) = \text{fixed}$ 

- $\rightarrow$  Running of  $\lambda$  is independent of N up to 1/N corrections.
- $\rightarrow$  A controlable perturbative scale 1/N is introduced into the theory.

#### Axial anomaly in the chiral limit:

$$\partial_{\mu}J^{\mu}_{\eta'_{D}} = - \quad \frac{T(R)}{C_{\rm adj}} \quad \frac{\lambda N_{F}}{32\pi^{2}} \; \epsilon^{\mu\nu\rho\sigma} \; G^{\alpha}_{\mu\nu}G_{\rho\sigma \; \beta}$$
 Gives potential large  $N$  suppression

$$\frac{T(R)}{C_{\rm adj}} \xrightarrow[N \to \infty]{!} 0$$
 must hold for the anomaly to vanish in large N limit

### Example:

SU(N)-Fund.

$$\lambda := N g^2$$
$$g^2 \xrightarrow[N \to \infty]{} 0$$

$$\frac{T(R)}{C_{\text{adj}}} = \frac{1}{2N}$$

# 4th Homotopy group of SU(4)/SO(4)

Fibration:

$$SO(4) \rightarrow SU(4) \rightarrow SU(4)/SO(4)$$

Long exact sequence:

- $Ker(h_2) = Img(h_1) = 0 \rightarrow h_2$  is injective
- $\pi_4(SU(4)/SO(4)) \cong Img(h_2) = Ker(h_3)$

$$\Rightarrow \pi_4(SU(4)/SO(4))$$

cannot be trivial

•  $Ker(h_3) \neq 0$ 

# Full UV Lagrangian

Energy Physics (2016)

$$-rac{1}{4} \ \emph{G}^{lpha}_{\mu
u} \ \emph{G}^{\mu
u}_{lpha}$$

Yang-Mills term for dark gluons : Based on  $G_D = Sp(4)$ 

$$-rac{1}{4}~F^{\prime}_{\mu
u}~F^{\prime\mu
u}$$

Yang-Mills term for dark photon : Based on  $U_D(1)$ 

$$+ \overline{u} i \gamma^{\mu} D_{\mu} u + m \overline{u} u$$

Dirac term of dark quarks 2 flavors: u and d quarks Charged under  $G_D \times U_D(1)$ 

$$+ \overline{d} i \gamma^{\mu} D_{\mu} d + m \overline{d} d$$

 $+ \left( D'_{\mu} \phi \right)^{\dagger} D'^{\mu} \phi + V \left[ \phi^{\dagger} \phi \right]$ 

Dark scalar charged under  $U_D(1)$ 

$$+ \frac{\epsilon}{2\cos(\theta_W)} F'_{\mu\nu} B^{\mu\nu}$$

Kinetic mixing of  $U_D(1)$  with SM hypercharge



Figure: Suggested DM self-interaction crosssection in dependence of average velocity [Kaplinghat, Tulin, and Yu, American Physical Society (APS) 116 (2016)].

### Dark pion mass



Figure: The solid horizontal line depicts the perturbative limit of  $m_\pi/f_\pi \approx <2\pi$ , providing a rough upper limit on the pion mass; the dashed horizontal line depicts the bullet-cluster and halo shape constraints on the self-scattering cross section, placing a lower limit on the pion mass. Each shaded region depicts the resulting approximate range for  $m_\pi$  [Hochberg et al., Physical Review Letters 115 (2015)]

# Discrete symmetries

### **Charge conjugation** *C*:

$$\forall \forall q \mapsto \Omega C \bar{q}^{\top}$$

IR 
$$\pi \mapsto \pi^{\top}$$

$$\forall \forall q(t, \vec{x}) \mapsto \eta_P \gamma^0 q(t, -\vec{x})$$

IR 
$$\pi(t, \vec{x}) \mapsto -\pi(t, -\vec{x})$$

The choice  $\eta_P = \pm i$  is adopted:

- Parity and flavor symmetries commute.
- All (pseudo) Nambu-Goldstone bosons (pNGB) are pseudo scalars.

# Meson spectrum in 2 flavor Sp(4)-fund. gauge theory



Figure: Meson spectrum in *Sp*(4)-fundamental with 2 flavors. Taken from [Zierler et al. (2022), arXiv:hep-lat/2210.11187]