Problemas con submatrices

Nos puede interesar ver una matriz como un conjunto de submatrices. Muchas veces es un conjunto de submatrices que no se intersectan y que se obtienen al recorrer la matriz como si escribiéramos en un papel con bolígrafo (de izquierda a derecha y de arriba abajo). Por ejemplo, tenemos una matriz de 11x11 y queremos ver sus submatrices de 3x3

0-0	0-1	0-2	<mark>0-3</mark>	0-4	<mark>0-5</mark>	0-6	0-7	0-8	0-9	0-10
1-0	1-1	1-2	<mark>1-3</mark>	1-4	<mark>1-5</mark>	1-6	1-7	1-8	1-9	1-10
2-0	2-1	2-2	<mark>2-3</mark>	<mark>2-4</mark>	<mark>2-5</mark>	<mark>2-6</mark>	2-7	<mark>2-8</mark>	2-9	2-10
3-0	3-1	3-2	<mark>3-3</mark>	3-4	<mark>3-5</mark>	3-6	3-7	3-8	3-9	3-10
4-0	4-1	4-2	<mark>4-3</mark>	4-4	<mark>4-5</mark>	4-6	4-7	4-8	4-9	4-10
5-0	5-1	5-2	<mark>5-3</mark>	5-4	<mark>5-5</mark>	5-6	5-7	5-8	5-9	5-10
6-0	6-1	6-2	<mark>6-3</mark>	<mark>6-4</mark>	<mark>6-5</mark>	6-6	6-7	6-8	6-9	6-10
7-0	<mark>7-1</mark>	7-2	<mark>7-3</mark>	<mark>7-4</mark>	<mark>7-5</mark>	<mark>7-6</mark>	7-7	7-8	7-9	7-10
8-0	8-1	8-2	<mark>8-3</mark>	8-4	<mark>8-5</mark>	<mark>8-6</mark>	8-7	8-8	8-9	8-10
9-0	9-1	9-2	9-3	9-4	9-5	9-6	9-7	9-8	9-9	9-10
10-0	10-1	10-2	10-3	10-4	10-5	10-6	10-7	10-8	10-9	10-10

Tendremos 9 submatrices 3x3. En gris las zonas sin asignar a submatrices ya que 11 no es múltiplo de 3

Un código que nos permite obtener las coordenadas del origen (esquina superior izquierda) de las submatrices anteriores podría ser

```
public class Unidad4 {
  public static void main(String[] args) {
     String[][] matriz = new String[11][11];
     for (int i = 0; i < 11; i++) {
        for (int j = 0; j < 11; j++) { matriz[i][j] = i + "-" + j;
     System.out.println("Matriz original");
     for (String[] fila : matriz) {
        for (String s : fila) {
           System.out.print(s + "\t");
        System.out.println("");
     System.out.println("coordenadas origen Submatrices 3x3");
     for (int i = 0; i + 3 < matriz.length; i = i + 3) {
        for (int j = 0; j + 3 < matriz[i].length; <math>j = j + 3) {
           System.out.print("(" + i + "," + j + ") ");
        System.out.println("");
     System.out.println("otro razonamiento");
     // habra mxn submatrices
     int m = matriz.length / 3;
     int n = matriz[0].length / 3;
```

```
int coordenadaFila = 0;
for (int i = 0; i < m; i++) {
   int coordenadaCol = 0;
   for (int j = 0; j < n; j + +) {
System.out.print("(" + coordenadaFila + "," + coordenadaCol + ") ");
      coordenadaCol += 3;
   coordenadaFila += 3;
   System.out.println("");
System.out.println("otro razonamiento similar, hay muchos ....");
// franjasHorizontalesxfranjasVerticales es lo mismo que mxn
// pero cambiamos el nombre para distinguir solución
int franjasHorizontales = matriz.length / 3;
int franjasVerticales = matriz[0].length / 3;
for (int i = 0; i < franjasHorizontales; i++) {
   for (int j = 0; j < franjasVerticales; j++) {
    System.out.print("(" + i * 3 + "," + j * 3 + ") ");
   System.out.println("");
}
```

Ejercicio U4_B4C_E1: Generalizamos un poco el código anterior escribiendo un método que nos imprima las coordenadas origen de las submatrices de cualquier rango mxn (no necesariamente m=n). Escribe el método para que funcione el código public class Unidad4{

```
static void obtenerOrigenSubMatrices(String[][] matriz,int tamFilas, int tamCol){
    //escribir código de este método
}
public static void main(String[] args) {
    String [][] matriz= new String[11][11];

    for (int i=0;i<11;i++){
            for(int j=0;j<11;j++){
                matriz[i][j]=i+"-"+j;
            }
    }
System.out.println("Matriz original");
    for(String[] fila:matriz){
        for(String s:fila){
            System.out.print(s+"\t");
        }
        System.out.println("");
}
obtenerOrigenSubMatrices(matriz,5,5);
obtenerOrigenSubMatrices(matriz,3,5);
obtenerOrigenSubMatrices(matriz,5,3);
}
</pre>
```

Salida:

}

Matriz original											
0-0	0-1	0-2	0-3	0-4	0-5	0-6	0-7	0-8	0-9	0-10	
1-0	1-1	1-2	1-3	1-4	1-5	1-6	1-7	1-8	1-9	1-10	
2-0	2-1	2-2	2-3	2-4	2-5	2-6	2-7	2-8	2-9	2-10	
3-0	3-1	3-2	3-3	3-4	3-5	3-6	3-7	3-8	3-9	3-10	
4-0	4-1	4-2	4-3	4-4	4-5	4-6	4-7	4-8	4-9	4-10	
5-0	5-1	5-2	5-3	5-4	5-5	5-6	5-7	5-8	5-9	5-10	
6-0	6-1	6-2	6-3	6-4	6-5	6-6	6-7	6-8	6-9	6-10	
7-0	7-1	7-2	7-3	7-4	7-5	7-6	7-7	7-8	7-9	7-10	
8-0	8-1	8-2	8-3	8-4	8-5	8-6	8-7	8-8	8-9	8-10	
9-0	9-1	9-2	9-3	9-4	9-5	9-6	9-7	9-8	9-9	9-10	
10-0	10-1	10-2	10-3	10-4	10-5	10-6	10-7	10-8	10-9	10-10	

coordenadas origen Submatrices 5x5 (0,0) (0,5) (5,0) (5,5) coordenadas origen Submatrices 3x5 (0,0) (0,5) (3,0) (3,5) (6,0) (6,5) coordenadas origen Submatrices 5x3 (0,0) (0,3) (0,6) (5,0) (5,3) (5,6)

Ejercicio U4_B4C_E2: SUDOKUS CORRECTOS EN CODERUNNER