Métodos numéricos - Tarea 9 Método de iteraciones en subespacios Factorización *QR*

Salim Vargas Hernández

15 de octubre del 2018

1. Introducción

El método de iteraciones en subespacios permite encontrar los primeros m eigenvalores y eigenvectores de mayor magnitud en valor absoluto de A, con pequeñas modificaciones se pueden encontrar los m de magnitud más pequeña o los m más cercanos a un valor dado para los eigenvalores de A.

Este método resulta bastante útil cuando no se quiere calcular todo el espectro de *A* o cuando la matriz *A* es demasiado grande. La factorización *QR* de una matriz *A* es una descomposición de la misma como producto de una matriz ortonormal por una triangular superior.

2. Desarrollo

2.1. Método de iteraciones en subespacios

Dada una matriz A, se quieren calcular los m mayores eigenvalores y eivenvectores en valor absoluto. El algoritmo 1 muestra el pseudocódigo del método.

2.2. Factorización QR

Dada una matriz A, se buscan matrices Q y R tales que Q sea contenga una base ortonormal de A y R sea triangular superior. Estas matrices se pueden encontrar mediante el método de Gram-Schmidt, el cual, dada una matriz con columnas linealmente independientes, obtiene una matriz con columnas ortogonales entre si y de norma 1.

Este método permite encontrar Q, dado que es ortonormal, su transpuesta es su inversa, por lo que la matriz R se puede entontrar con la operación

$$R = Q^T A$$

El algoritmo 2 muestra el pseudocódigo del método de ortonormalización de Gram-Schmidt.

Algoritmo 1 Método de iteraciones en subespacios para cálculo de valores y vectores propios

Entrada:

Matriz simétrica A

número de eigenvalores a calcular m

tolerancia tol

máximo de iteraciones maxIter

Salida: Matriz diagonal C con los m mayores valores propios en valor absoluto

Matriz ortonormal X con los m mayores vectores propios

- 1: Inicializar *X* como un conjunto de vectores ortonormales.
- 2: Mientras no haya convergencia y no se alcance el máximo de iteraciones hacer
- 3: $C = X^T A X$
- 4: Obener las matrices Q y Λ de la factorización $C = Q^T \Lambda Q$ utilizando el método de Jacobi
- 5: **Si** *C* es una matriz diagonal **entonces**
- 6: se alzanzó la convergencia
- 7: **Si no**
- 8: X = XQ
- 9: Ortonormalizar *X* usando el método de Gram-Schmidt
- 10: **Para** cada vector ϕ de X hacer
- 11: Restar a ϕ las proyecciones de los eigenvectores calculados antes que él
- 12: Realizar 1 iteración del método de la Potencia partiendo del vector ϕ
- 13: Actualizar ϕ en X tras este paso
- 14: Fin Para
- 15: Ortonormalizar *X* usando el método de Gram-Schmidt
- 16: **Fin Si**
- 17: Fin Mientras
- 18: **Devolver** C, X

Algoritmo 2 Método de ortonormalización de Gram-Schmidt

Entrada:

Matriz A

Salida: Matriz ortonormal *U*

- 1: **Para** cada vector *v* en *A* hacer
- 2: u = v
- 3: j = 0
- 4: **Mientras** *j* menor al índice de *v* en *A* **hacer**
- 5: $u = u \frac{\langle v, U_j \rangle}{||U_j||^2} U_j$
- 6: j = j + 1
- 7: **Fin Mientras**
- 8: Agregar $\frac{u}{||u||}$ a U
- 9: Fin Para
- 10: **Devolver** U

3. Resultados

3.1. Método de iteraciones en subespacios

Se probó el método de iteraciones en subespacios con las matrices mat5a.txt, mat5b.txt y mat10.txt. Para lograr la convergencia se utilizaron los siguientes parámetros:

Parámetro	mat5a.txt	mat5b.txt	mat10.txt
tolerancia	0.0001	0.0001	0.001
maxIter	10,000	10,000	10,000
m	4	4	8

Para cada matriz se imprimían los eigenvalores obtenidos. Los resultados se muestran en la figura 1.

```
Nombre del archivo: mat5a.txt
                                                                  Nombre del archivo: mat10.txt
                                 Nombre del archivo: mat5b.txt
Número de eigenvalores: 4
                                                                   Número de eigenvalores: 8
                                 Número de eigenvalores: 4
Tolerancia: 0.0001
                                                                   Tolerancia: 0.001
                                 Tolerancia: 0.0001
Máximo de iteraciones: 10000
                                                                   Máximo de iteraciones: 10000
                                 Máximo de iteraciones: 10000
Eigenvalores
                                  Eigenvalores
                                                                   Eigenvalores
       5 4 3 2
                                        10 8 6.99995 9
                                                                           10 -10 -8 8 6 4 -4 -6
```

Figura 1: Resultados del método iteraciones en el subespacio

3.2. Factorización QR

Se probó la factorización QR con las matrices mat5a.txt, mat5b.txt y mat10.txt.

Se imprimían en consola las matrices Q y R, así como la norma matricial de ||A - QR||. Los resultados se muestran en las figuras 2 y 3.

En el caso de la matriz mat 10. txt, el resultado fue ||A - QR|| = 6.46966e - 15.

```
Nombre del archivo: mat5a.txt
        FACTORIZACIÓN OR
        MATRIZ Q
        0.949187
                        0.0548257
                                         0.150484
                                                         -0.189502
                                                                          0.193603
        -0.0864075
                        0.930821
                                         0.126797
                                                         0.204225
                                                                          0.261381
        -0.224679
                        -0.213283
                                         0.870096
                                                         -0.126384
                                                                          0.361925
        0.127319
                        -0.274744
                                         -0.0560025
                                                         0.880917
                                                                          0.35938
        -0.157758
                        -0.0979349
                                         -0.448412
                                                         -0.3611 0.796276
        MATRIZ R
        4.06842 -0.522905
                                                 1.06592 -1.13904
                                -1.26042
                        2.64095 -0.895915
        2.08167e-16
                                                 -1.32101
                                                                  -0.12007
                                                         -2.29372
        0
                9.71445e-17
                                2.20228 0.261235
        0
                1.80411e-16
                                5.55112e-17
                                                 2.43087 -2.04319
        4.44089e-16
                        1.94289e-16
                                         -2.22045e-16
                                                         -3.33067e-16
                                                                          2.08622
        || A - Q*R || = 1.18478e-15
```

Figura 2: Factorización QR de la matriz mat5a.txt

```
Nombre del archivo: mat5b.txt
       FACTORIZACIÓN QR
       MATRIZ Q
       0.99392 0.0753524
                                               -0.0457897
                                                               0.0451549
                               0.0480536
        -0.0708226
                       0.989939
                                       0.00291097
                                                       0.119809
                                                                       0.025333
        -0.0508109
                       -0.0169841
                                       0.985296
                                                       0.0540112
                                                                       0.152982
                                                       0.98835 0.0520913
       0.0549948
                       -0.116835
                                       -0.0614445
                                       -0.15198
        -0.0387397
                       -0.0200876
                                                       -0.0616083
                                                                       0.985496
       MATRIZ R
       9.34396 -1.22753
                               -0.862899
                                               1.0416 -0.596986
                                               -1.77243
                                                               -0.218319
        -1.38778e-16
                     7.40924 -0.149968
                       2.94903e-17
       6.245e-17
                                       8.2029 -0.929588
                                                               -2.31995
                       2.91434e-16
        -1.42247e-16
                                       -4.16334e-17 7.49446 -0.840316
        -1.11022e-16
                       6.93889e-17
                                       0
                                               -2.77556e-16
                                                               7.10509
        || A - Q*R || = 2.28078e-15
```

Figura 3: Factorización QR de la matriz mat 5b. txt

4. Conclusiones

El método de iteraciones en subespacios es un método eficiente para calcular algunos eigenvetores de la matriz A, resulta de gran utilidad cuando A es muy grande.

Variantes en la actualización de la matriz X por el método de la potencia pueden hacer que se encuentren los eigenvalores más pequeños en valor absoluto o bien aquellos que estén cerca de un valor en particular.

La factorización *QR* programada permitió encontrar las matrices *Q* y *R* de manera satisfactoria mediante el método de ortogonalización de Gram-Schmidt.