Information Security and Privacy - Policies and Standards

22MCS15

Dr. BASAVARAJ G.N

OUTCOME

- > Syllabus & Course Outcome
- Introduction
- > IA guidelines
- Paper publication 10Marks
- > AAT/Assignment 10Marks

Information can be

- Printed or written on paper
- Stored electronically
- Transmitted by post or using electronics means
- Displayed / published on web
- Verbal spoken in conversations

Characteristics of Information

- Three characteristics of information must be protected by information security:
 - Confidentially
 - Integrity
 - Availability

INFORMATION SECURITY?

- ➤ The architecture where an integrated combination of appliances, systems and solutions, software, and vulnerability scans are working together.
- Information security is all about protecting and preserving information. It's all about protecting and preserving the confidentiality, integrity, authenticity, availability, and reliability of information.
- ➤ Monitored 24 x7

Introduction

- Policy is the essential foundation of an effective information security program
 - "The success of an information resources protection program depends on the policy generated, and on the attitude of management toward securing information on automated systems"
- Policy maker sets the tone and emphasis on the importance of information security

Introduction (cont'd.)

- Policy objectives
 - Reduced risk
 - Compliance with laws and regulations
 - Assurance of operational continuity, information integrity, and confidentiality

Why Policy? (cont'd.)

Figure 4-1 The bull's eye model

Why Policy? (cont'd.)

- Policies are important reference documents
 - For internal audits
 - For the resolution of legal disputes about management's due diligence
 - Policy documents can act as a clear statement of management's intent

Policy, Standards, and Practices

Policy

- A plan or course of action that influences decisions
- For policies to be effective they must be properly disseminated, read, understood, agreed-to, and uniformly enforced
- Policies require constant modification and maintenance

Issue-Specific Security Policy (ISSP)

- Provides detailed, targeted guidance
 - Instructs the organization in secure use of a technology systems
 - Begins with introduction to fundamental technological philosophy of the organization
- Protects organization from inefficiency and ambiguity
 - Documents how the technology-based system is controlled

Issue-Specific Security Policy (cont'd.)

- Protects organization from inefficiency and ambiguity (cont'd.)
 - Identifies the processes and authorities that provide this control
- Indemnifies the organization against liability for an employee's inappropriate or illegal system use

Issue-Specific Security Policy (cont'd.)

- Every organization's ISSP should:
 - Address specific technologybased systems
 - Require frequent updates
 - Contain an issue statement on the organization's position on an issue

- Policy development projects should be
 - Well planned
 - Properly funded
 - Aggressively managed to ensure that it is completed on time and within budget
- The policy development project can be guided by the SecSDLC process

- Investigation phase
 - Obtain support from senior management, and active involvement of IT management, specifically the CIO
 - Clearly articulate the goals of the policy project
 - Gain participation of correct individuals affected by the recommended policies

- Investigation phase (cont'd.)
 - Involve legal, human resources and end-users
 - Assign a project
 champion with sufficient
 stature and prestige
 - Acquire a capable project manager
 - Develop a detailed outline of and sound estimates for project cost and scheduling

- Analysis phase should produce
 - New or recent risk assessment or IT audit documenting the current information security needs of the organization
 - Key reference materials
 - Including any existing policies

Figure 4-8 End user license agreement for Microsoft Windows XP

- Design phase includes
 - How the policies will be distributed
 - How verification of the distribution will be accomplished
 - Specifications for any automated tools
 - Revisions to feasibility analysis reports based on improved costs and benefits as the design is clarified

- Implementation phase includes
 - Writing the policies
 - Making certain the policies are enforceable as written
 - Policy distribution is not always straightforward
 - Effective policy is written at a reasonable reading level, and attempts to minimize technical jargon and management terminology

- Maintenance Phase
 - Maintain and modify the policy as needed to ensure that it remains effective as a tool to meet changing threats
 - The policy should have a builtin mechanism via which users can report problems with the policy, preferably anonymously
 - Periodic review should be built in to the process

Approach to Policy Development

Overview: Scott
 Barman emphasizes
 the importance of
 strategic timing and a
 structured
 methodology in policy
 development for
 effective information
 security

When to Develop Policies

Timing is Key: Policies should be developed proactively, ahead of system implementations, to integrate security measures seamlessly

Response to Threats: Policies should evolve in response to emerging cyber threats to maintain resilience

Compliance Alignment: Develop policies to align with regulatory requirements and industry standards

Methodology Overview

- Risk Assessment: Conduct thorough risk assessments to identify and prioritize areas for policy development
- Stakeholder Engagement: Involve key stakeholders for diverse insights and policy alignment
- Policy Drafting: Craft clear policies outlining roles, responsibilities, and procedures for safeguarding information assets

Policy Components

- Access Control: Define procedures for granting, monitoring, and revoking access to sensitive data and systems
- Data Protection: Establish guidelines for encryption, backup, retention, and secure disposal
- Incident Response: Outline protocols for detecting, reporting, and responding to security incidents

Training and Awareness

- Employee Training:
 Provide comprehensive
 training to educate
 employees on security
 policies and best practices
- Awareness Campaigns:
 Launch initiatives to
 reinforce security
 awareness and foster a
 culture of cybersecurity

Compliance and Auditing

- Monitoring Compliance:
 Implement mechanisms to
 monitor and enforce policy
 compliance, conducting regular
 audits
- Regulatory Alignment: Ensure
 policies align with regulations like
 GDPR, HIPAA, or PCI DSS, and
 update them as needed

Conclusion

- Strategic Approach: Barman's approach prioritizes proactive risk management, stakeholder engagement, and compliance
- Key Takeaways: Develop policies ahead of system implementations, in response to threats, and to meet compliance standards

SEMESTER – I Information Security and Privacy - Policies and

Dr. Basavaraj G.N

Introduction

- Title: Safeguarding Data and Intellectual Property: Essential Practices
- Welcome to our presentation on protecting data and intellectual property.
- Overview of topics: Data security, backups, archival storage, data disposal, and intellectual property rights.

Data Security Considerations

- Definition: Ensuring the confidentiality, integrity, and availability of data.
- Example: Encryption of sensitive information during transmission (e.g., HTTPS).
- . Who and What is Protected: Personal data, financial records, and company trade secrets.
- Considerations: Strong passwords, access controls, and regular security audits.

Backups

- Definition: Creating copies of data to prevent loss in case of system failures or cyber attacks.
- Example: Automatic daily backups of a company's database to an offsite server.
- . Who and What is Protected: Business data, customer records, and intellectual property.
- Considerations: Regular backup schedules, redundant storage, and testing restoration procedures.

Archival Storage

- Definition: Long-term preservation of data for historical, legal, or research purposes.
- Example: Digital archives of historical documents by libraries and museums.
- . Who and What is Protected: Cultural heritage, scientific research, and institutional records.
- Considerations: Metadata management, data integrity verification, and accessibility standards.

Disposal of Data

- Definition: Proper removal or destruction of data to prevent unauthorized access.
- Example: Shredding physical documents containing sensitive information.
- . Who and What is Protected: Personal data, obsolete records, and proprietary information.
- Considerations: Secure deletion methods, compliance with data protection regulations, and documentation of disposal processes.

Intellectual Property Rights

- Definition: Legal rights protecting creations of the mind, such as inventions, literary works, and trademarks.
- Example: Patenting a new invention to prevent others from using it without permission.
- . Who and What is Protected: Innovations, artistic creations, and brand identities.
- Considerations: Understanding IP laws, registration processes, and enforcement mechanisms.

Copyright

- Definition: Protection granted to original works of authorship, such as books, music, and software.
- Example: Licensing of a photograph for use in advertising campaigns.
- Who and What is Protected: Creative works, literary compositions, and digital content.
- Considerations: Fair use exceptions, copyright duration, and infringement claims.

Trademarks

- Definition: Symbols, words, or designs used to identify and distinguish goods or services.
- Example: Registration of a company logo to prevent others from using a similar design.
- . Who and What is Protected: Brand names, logos, and product packaging.
- Considerations: Trademark searches, brand consistency, and renewal requirements.

Patents

- Definition: Exclusive rights granted to inventors for new inventions or processes.
- Example: Patenting a unique technology to prevent competitors from copying it.
- . Who and What is Protected: Technical innovations, pharmaceutical compounds, and manufacturing methods.
- . Considerations: Patentability criteria, patent infringement litigation, and patent expiration.

• : Trade Secrets

- Definition: Confidential information that provides a competitive advantage to its owner.
- Example: Formula for a popular soft drink kept confidential by the manufacturer.
- . Who and What is Protected: Business strategies, customer lists, and research data.
- Considerations: Non-disclosure agreements, access controls, and employee training on trade secret protection

University IP Policies

- Definition: Institutional guidelines governing the ownership and commercialization of intellectual property.
- Example: Research institution policies on faculty inventions and discoveries.
- . Who and What is Protected: Faculty research, student innovations, and university-generated intellectual property.
- Considerations: Royalty sharing agreements, technology transfer processes, and academic freedom.

Ethical Considerations

- Definition: Moral principles guiding the responsible use and protection of data and intellectual property.
- Example: Respecting copyright laws by citing sources in academic research papers.
- Who and What is Protected: Privacy rights, academic integrity, and cultural heritage.
- Considerations: Transparency, accountability, and balancing competing interests.

Compliance and Regulation

- Definition: Adherence to laws and regulations governing data protection and intellectual property rights.
- Example: Compliance with the European Union's General Data Protection Regulation (GDPR).
- . Who and What is Protected: Personal data privacy, consumer rights, and fair competition.
- Considerations: Data breach notification requirements, copyright infringement penalties, and regulatory audits.

Case Studies

- Example 1: Sony Pictures Entertainment Hack (2014) Data security breach resulting in leaked emails and sensitive employee information.
- Example 2: Apple vs. Samsung Patent Dispute Legal battles over smartphone design and software patents.
- Example 3: Disney's Protection of Mickey Mouse Trademark Vigilant enforcement of trademark rights to safeguard brand integrity.
- Example 4: IBM's Patent Portfolio Strategic use of patents to protect innovations and generate revenue through licensing.
- Example 5: Harvard University's Technology Transfer Office Facilitating the commercialization of university research through IP licensing and startup incubation.

Conclusion

- Recap of key points on safeguarding data and intellectual property.
- Importance of implementing robust security measures, adhering to IP laws, and promoting ethical practices.
- Encouragement for ongoing education and vigilance in protecting valuable assets in an increasingly digital world.

Information Security and Privacy - Policies and Standards

Dr. BASAVARAJ G.N

MODULE 1...

RECAP:

Incident Response

Forensics

- Forensics involves the systematic gathering, examination, and analysis of digital evidence to understand and mitigate security incidents
- Real-world Example: The forensic analysis conducted after the 2016 Democratic National Committee email leak, which helped identify the intruder and their methods

Management Responsibilities

- Management holds the responsibility for setting cybersecurity policies, allocating resources, and overseeing compliance efforts
- Real-world Example: The fallout from the 2017 Equifax data breach, where poor management decisions and inadequate security practices led to significant financial and reputational damage

Role of Information Security Department

- The Information Security Department is tasked with implementing security measures, monitoring for threats, and responding to incidents
- Real-world Example: The proactive measures taken by the security team at Google to prevent and mitigate cyber attacks, such as the 2017 WannaCry ransomware outbreak

Incident Response and Forensic Readiness

- Effective incident response plans incorporate forensic readiness, ensuring that digital evidence is collected and preserved properly
- Real-world Example: The forensic investigation following the 2014 Sony Pictures hack, which uncovered the extent of the breach and informed response efforts

- Collaboration between management, IT teams, and the Information Security Department is crucial for a cohesive cybersecurity strategy
- Real-world Example: The collaborative efforts between government agencies and private sector organizations to combat cyber threats, such as the sharing of threat intelligence
- Continuous training and education are essential for keeping cybersecurity professionals updated on emerging threats and best practices

Incident Response and Forensic Readiness

- Real-world Example: The cybersecurity training programs offered by organizations like Cisco and Microsoft to enhance the skills of their employees and partners
- Compliance with regulations and standards is necessary to ensure the security and privacy of data
- Real-world Example: The impact of the European
 Union's General Data Protection Regulation on global
 businesses, prompting them to strengthen their data
 protection measures

Building Resilience

- Organizations must focus on building resilience to quickly recover from cyber attacks and minimize their impact
- Real-world Example: The resilience demonstrated by organizations during the COVID-19 pandemic, where remote work and heightened cyber threats necessitated adaptive security measures

Conclusion

Understanding the roles of forensics, management responsibilities, and the Information Security Department is crucial for effective information security.

Recap

• Understanding the roles of forensics, management responsibilities, and the Information Security Department is crucial for effective information security.

Understanding Security Management

- Definition: Security management involves the identification, assessment, and prioritization of <u>risks</u> followed by coordinated and economical application of resources to <u>minimize</u>, <u>monitor</u>, and <u>control</u> the probability and/or impact of unfortunate events.
- Real-life Example: Let's consider the security measures implemented in airports worldwide.
- Definition: Law enforcement refers to the system by which laws are enforced and upheld within a society
- Real-life Example: The collaboration between local police departments and federal agencies in combating organized crime syndicates highlights the critical role of law enforcement in maintaining societal order and safety

Definition: Security awareness training aims to educate individuals about potential security threats and best practices to mitigate risks

Security Awareness Training and Support

Real-life Example: Consider a corporate setting where employees undergo regular cybersecurity awareness training sessions

Enhancing Organizational Resilience: By encouragement a culture of security awareness, organizations can empower employees to become proactive stakeholders in safeguarding sensitive information and assets

Mitigating Insider Threats: Educating personnel about the risks associated with insider threats helps preempt malicious actions and fosters a sense of accountability among employees

Security Awareness Training and Support

- Overview: The Equifax data breach exposed the personal information of approximately
 147 million individuals due to vulnerabilities in the company's security infrastructure
- Lessons Learned: This incident underscores the criticality of robust security measures, comprehensive risk assessments, and continuous monitoring to prevent cyber threats

Conclusion

- Recap: Today, we explored the fundamentals of security management, the pivotal role of law enforcement, and the significance of security awareness training
- Takeaway: As future engineers, it's essential to recognize the interdisciplinary nature of security management and law enforcement, incorporating these principles into our professional endeavors to uphold safety and integrity in an ever-evolving landscape