

MINI-PROJECT VARIANT CALLING IN GENOMIC SEQUENCING DATA USING DEEP LEARNING

PRESENTED BY

ABIJITH T K
DEVIKA MOHAN
AJITH PRASAD
SHIBU C

HUMAN GENOME

 A genome is the complete set of DNA instructions found in every cell

DNA is made of four different nucleotides:

adenine (A), thymine (T), cytosine (C) and quanine (G).

• The order of these letters (i.e., the DNA sequence) encodes the information that instructs each cell what to do and when to do it.

Human Genomic Variation

 The vast majority of the DNA letters in peoples' genomes is identical, but a small fraction of those letters varies

• This genomic variation accounts for some of the differences among people, including important aspects of their health and susceptibility to diseases.

Different Genomic Variations

- The smallest genomic variants are single-nucleotide variants (SNVs). Each SNV reflects a difference in a single nucleotide (or letter).
 - An insertion is a variation in which a specific nucleotide sequence is present in DNA
 - A deletion is a type of mutation that involves the loss of one or more nucleotides from a segment of DNA

Variant Calling

- Align the sequences to a reference genome
- Identify where the aligned reads differ from the reference genome

Limitations of traditional variant calling methods

- Inaccurate for complex variants: Traditional methods struggle to identify and classify complex variants like indels and multiallelic variants.
- **Prone to sequencing errors:** Traditional methods are susceptible to false positive variant calls due to sequencing errors.
- Limited to specific variant types: Traditional methods are often tailored to specific variant types, limiting their applicability.
- Scalability issues with large datasets: Traditional methods can become inefficient when processing large volumes of sequencing data.

How the model overcome the issues

- Inaccurate for complex variants The model uses a deep learning approach that is able to learn complex patterns in the data.
- **Prone to sequencing errors** The model uses a variety of techniques to filter out sequencing errors, such as using quality scores and base calling consensus.
- Limited to specific variant types The model is able to handle a wide range of variant types, including SNPs, indels, and multiallelic variants.
- Scalability issues with large datasets The model is able to efficiently process large volumes of sequencing data.

How we identified the variants

• The alignments are converted to three 15 by 4 matrices for training the network and calling variants.

 Encode all alignments to a 15*4*3 tensor

- we train the neural network and classify the called variants into four categories: homozygous variant, heterozygous variant, non-variant or complex varient.
- It is also trained to predict the possible varient base

Homozygous

variant: A variant that is present on both copies of a chromosome in an individual.

Heterozygous

variant: A variant that is present on only one copy of a chromosome in an individual.

Non-variant: A variant that is not present in any of the individuals in the sample that was being sequenced.

Complex variant: A variant that is difficult to classify into one of the other categories.

Variant Calling Flowchart

Each candidate +/- 7 bp

Encode all alignments to a 15 x 4 x 3 tensor

2 convolution layers

4 full connected layers

Genotype

[0.5, 0.0, 0.5, 0.0] [0.98, 0, 0, 0.02]

Model Accuracy

Output 1 - Bases(A/C/G/T)
Output 2 - Varient Type
(hom/het/non/com)

Understanding the Predictions

Predictions

Original variant call

Predicted variant call

Classification report

	precision	recall	f1-score	support
0	0.96	0.97	0.97	21809
1	0.96	0.99	0.97	9691
2	0.94	0.98	0.98	12609
3	0.90	0.90	0.54	3125
accuracy			0.95	47234
acro avg	0.94	0.87	0.89	47234
weighted	0.95	0.95	0.95	47234

THANK YOU

