1

Abstract

The algorithm checks the propositional formulas for patterns of non-satisfiability.

A Polynomial Time Algorithm for 3-SAT

Sergey Gubin

June 8, 2011

1 Introduction

3-SAT (or 3SAT) [1, 2, 3, 4] is a problem to determine whether a given logical formula, written in conjunctive normal form, is satisfiable:

$$d_1 \wedge d_2 \wedge \ldots \wedge d_m,$$
 (1)

- where clauses d_k , k = 1, 2, ..., m, are disjunctions of at most [1] three Boolean variables (or their negations) from a given set of n Boolean variables

$$B = \{b_1, b_2, \dots, b_n\}. \tag{2}$$

In other words, given the set of Boolean variables (2), the set of literals

$$L = \{b_1, \bar{b}_1, b_2, \bar{b}_2, \dots, b_n, \bar{b}_n\},$$
(3)

and m normalized clauses d_1, d_2, \dots, d_m from the set of all 3-disjunctions of literals

$$D = \{ \eta \lor \xi \lor \zeta \mid \eta, \xi, \zeta \in L \},\$$

it is required to determine whether there is a truth assignment making (1) true.

The 3-SAT problem was one of the first four NP-complete problems identified [1]. This article describes an algorithm solving the problem in polynomial time.

Using reductions [3, 4, or other], a polynomial time algorithms for the problem can be derived from the algorithms for DHC and TSP described in [5]. But the algorithm described in this article is ideologically and technically simpler. Although, the base idea of all these algorithms is the same:

^{*}Author's email: sgubin@genesyslab.com

to search the string encoding a problem's instance for a YES/NO pattern. Really, how else a universal Turing machine can "decide" to stop? And any NP-complete problem is a mathematical model of a Turing machine universal for all NP-problems. Such approach directs the quest for an efficient solution of a NP-complete problem to the search for such mathematical model of the problem, which would produce a polynomial number of YES/NO patterns. Then, a polynomial time algorithm could be realized as the brute-force search through all those patterns. Author hopes that the next section will prove that 3-SAT is one of such models.

2 Solution of 3-SAT

Theorem 1. (Patterns of non-satisfiability).

Let (1) - (2) be the given instance of 3-SAT. Let C be the set of clauses of the instance:

$$C = \{d_1, d_2, \dots, d_m\}.$$

The instance is non-satisfiable iff at least one of the following is true:

Pattern 1. There is $\alpha \in B$:

$$\{\alpha, \ \bar{\alpha}\} \subseteq C;$$

Pattern 2. There are different $\alpha, \beta \in B$:

$$\{\alpha \vee \beta, \ \alpha \vee \bar{\beta}, \ \bar{\alpha} \vee \beta, \ \bar{\alpha} \vee \bar{\beta}\} \subseteq C;$$

Pattern 3. There are different $\alpha, \beta, \gamma \in B$:

$$\{ \alpha \vee \beta \vee \gamma, \ \alpha \vee \beta \vee \bar{\gamma}, \ \alpha \vee \bar{\beta} \vee \gamma, \ \alpha \vee \bar{\beta} \vee \bar{\gamma}, \\ \bar{\alpha} \vee \beta \vee \gamma, \ \bar{\alpha} \vee \beta \vee \bar{\gamma}, \ \bar{\alpha} \vee \bar{\beta} \vee \gamma, \ \bar{\alpha} \vee \bar{\beta} \vee \bar{\gamma} \} \subseteq C.$$

Proof. Let's use distributive laws and rewrite (1) in disjunctive normal form:

$$c_1 \vee c_2 \vee \ldots \vee c_k, \tag{4}$$

- where all c_i , $i=1,2,\ldots,k$, are conjunctions of appropriate literals from (3). Formula (1) is non-satisfiable iff formula (4) is non-satisfiable. And the latter is non-satisfiable iff each of the conjunctions c_i , $i=1,2,\ldots,k$, contains at least one couple of complimentary literals:

$$c_i = \ldots \wedge \delta_i \wedge \ldots \wedge \bar{\delta_i} \wedge \ldots$$

Thus, formula (1) is non-satisfiable iff it contains the conjunctive normal form of the following formula:

$$\delta_1 \wedge \bar{\delta_1} \vee \delta_2 \wedge \bar{\delta_2} \vee \ldots \vee \delta_k \wedge \bar{\delta_k}.$$
 (5)

Since the length of clauses in (1) is limited by 3 (it is 3-SAT), formula (5) contains three different variables at most.

A 3-SAT instance with n variables produces $C_n^1 + C_n^2 + C_n^3 = O(n^3)$ different patterns of non-satisfiability. Thus, the following algorithm solves 3-SAT in $O(n^3)$ -time:

Algorithm 1. In a sequential order, generate patterns of non-satisfiability and check them on inclusion in the set of clauses of the given instance. If a pattern enters in the set, then stop - the 3-SAT instance is non-satisfiable. If all patterns were checked, then the instance is satisfiable.

The following $O(n^4)$ -time algorithm finds a truth assignment satisfying a satisfiable 3-SAT instance:

Algorithm 2. In a sequential order, for each variable assign value *true* or *false* and check the resulting instance of 3-SAT for satisfiability. Fix that value, which produces a satisfiable instance.

References

- [1] Stephen Cook. The complexity of theorem-proving procedures. In Conference Record of Third Annual ACM Symposium on Theory of Computing. p.151-158, 1971
- [2] Stephen Cook. The P versus NP problem. http://www.claymath.org/millennium/P_vs_NP/pvsnp.pdf
- [3] Richard M. Karp. Reducibility Among Combinatorial Problems. In Complexity of Computer Computations, Proc. Sympos. IBM Thomas J. Watson Res. Center, Yorktown Heights, N.Y. New York: Plenum, p.85-103, 1972.
- [4] M.R. Garey and D.S. Johnson. Computers and Intractability, a Guide to the Theory of NP-Completeness. W.H. Freeman and Co. San Francisco, 1979.
- [5] Sergey Gubin. A Polynomial Time Algorithm for The Traveling Salesman Problem. http://arxiv.org/PS_cache/cs/pdf/0610/0610042.pdf