DATA SCIENCE

CSC 405/605

- Course: Data Science
 - CSC 405/605
 - Tuesday and Thursday 12:30 pm 1:45 pm
 - Prerequisite:
 - CSC 339 (Programming Languages) OR Programming experience (Instructor Permission Required)
 - Mostly programming experience
- Instructor: Dr. Somya Mohanty
 - Office: Petty 152
 - Office Hours: Tuesday and Thursday 10:00 am 11:00 am
 - Email for appointment
 - Email: <u>mohanty.somya@uncg.edu</u>

What is the course about?

- Programming your way into Data Science
- Theory Programming
- It is not a Statistics or an AI or a Visualization course
- The course contains parts of everything
- Learn about lot of tools and how to use them in innovative ways
- We will work with real-world data
- Hopefully develop some cool projects

• Experience in:

- Programming skills Python
 - We will go through Introduction to Python
 - You would have to work hard in the early weeks to get comfortable with Python
- Linux
- Terminal, Command-Line

Books:

- Nothing is required
- Recommended
 - Building Machine Learning Systems with Python (Richert and Coelho)
 - Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython (Wes McKinney)

- Grading
 - Class Participation: 5%
 - Class / Homework Assignments (4-6): 30%
 - Final Project: 65%
 - Project Progress Presentation and Report: 15%
 - Project Final Submission Code: 20%
 - Project Class Final Presentation: 15%
 - Graduate Students
 - (Paper and Presentation)
 - 5% (Presentation)
 - 10% (Paper)
 - Undergraduates 15%
- No Exams

Grading

Class Participation

- Most of the activities in class are interactive
- Asking questions and participating in discussion gets you bonus points!
- Show off your programming skills by finding better approaches.

Homework Assignments (4-6):

- Utilization of tools learned in class
- Mostly programming and data analysis
- The submission will be on IPython notebooks
- Utilize Github for assignments (own account)
- Link to the assignment submission via Canvas for submission

- Grading
 - Final Project:
 - Most of the grade is based on the Final Project
 - Take a look at the syllabus
 - Project progress
 - 3 min presentation by each member and 1 page report
 - End of each course topic (discussion later)
 - Utilization of git is important, will look at the commit logs of every member (hosted by the team)
 - Final Presentation on Completion
 - 20 min presentation
 - Data, Methods, Novelty, Visualization
 - Everyone is invited Department, Mentors, Other students
 - Graduate Students
 - Paper (6 pages minimum) IEEE/ACM Standard

100%	to	94%
< 94%	to	90%
< 90%	to	87%
< 87%	to	84%
< 84%	to	80%
< 80%	to	77%
< 77%	to	74%
< 74%	to	70%
< 70%	to	67%
< 67%	to	64%
< 64%	to	60%
< 60%	to	59%
	< 94% < 90% < 87% < 84% < 80% < 77% < 74% < 70% < 67% < 64%	< 94% to < 90% to < 87% to < 84% to < 80% to < 77% to < 74% to < 70% to < 67% to < 64% to

- Introduction to Data Science: (Week 1)
 - Class Syllabus, Grading, Expectations, and Getting to know each other.
 - Introduction to Data Science.
- Startup Tools and Programming (Weeks 2-3)
 - Class Project discussion and assignment
 - Programming
 - Git (Github)
 - Re/Introduction to Python
 - IPython, IPython-Notebook
- Data Munging, Wrangling, Cleaning (Week 3-4)
 - Pandas
 - NumPy
 - Project Review 1 (Understand the data and project)

- Data and Statistics (Week 5-6)
 - Basics
 - Distributions and Point Estimates
 - Statistical Hypothesis Testing
 - Correlation
 - Regression
 - Project Review 2 (Data Statistics)

- Introduction to Applied Machine Learning: (Weeks 8-11)
 - Overview
 - Python Libraries for Machine Learning: Sk-Learn, Scikit, Sci-Py, Gensim
 - Basic Principles
 - Classification
 - Validation
 - Dimensionality
 - Clustering
 - Time-Series
 - End-to-end Machine Learning
 - Clustering, Topic Modeling, Classification, Regression, Feature Selection and Dimensionality Reduction
 - NLP, Text Processing and Feature Extraction: Review of NLTK, Gensim
 - Project Review 3 (Learning from Data)

- Data Analytics and Visualization: (Weeks 12-14) *
 - Graph Generation and Tools
 - MatplotLib
 - Plotly
 - Pandas
 - Bokeh
 - Spatial and Temporal Analysis:
 - Google Maps
 - Basemap
 - CartoDB
 - Network Analysis:
 - NetworkX
 - Gephi, CytoScape
 - Project Review

- Project Presentations: (Week 15)
 - Class Presentations
 - Project Paper (Graduate students only)

COURSE INFO – DISCLAIMER

- Read the syllabus.
- Take regular notes.
- Class is encouraged to participate and discuss/ask questions
 Class Participation Points!
- On team projects
 - Start early
 - The team creation can be random or self-assigned, we will discuss it
 - In the project review presentations, two members must present each time. All members must know their counterparts work.
- The course is going to be tough, especially for people with limited programming experience
 - Work hard, be rewarded with a good data science experience
 - Will talk about the benefits later in course intro

COURSE INFO – DISCLAIMER

- Do not cheat in the course Result will be an 'F' grade.
 - Assignment solutions are unique, differs from student to student. No collaboration on Assignments whatsoever.
 - I will run the code through plagiarism detection software single incident reporting to honor committee
 - In team project
 - Do not think that you can get away without contributing I
 will be monitoring repositories for work done
 - Any work done should be reported on the repository worked locally on my computer will not count.
- Utilization of resources found on the Internet is allowed for project accomplishment, with caveats
 - Any code/library used should be referenced/cited and thoroughly understood
 - If you use code without understanding, that counts as plagiarism

COURSE INFO – DISCLAIMER

- More on team projects
 - You will get critical comments from me, both on presentation and project progress
 - Its geared towards making your projects awesome!
 - You will be presenting at the end to the department and external attendees.
 - We are trying to achieve a great presentation made by you for your project.
 - Use office hours I am here to help you through your project.

QUESTIONS

