Dynamic Programming

Bin Wang

School of Software Tsinghua University

March 29, 2022

Outline

- Rod cutting
- Matrix-chain multiplication
- Elements of DM
- 4 LCS
- Optimal binary search trees

Rod cutting

Dynamic Programming vs Divide & Conquer

- Similarities
 - partition the problem into subproblems
 - combining the solutions from subproblems
- Differences

Rod cutting

Dynamic Programming vs Divide & Conquer

- Similarities
 - partition the problem into subproblems
 - combining the solutions from subproblems
- Differences
 - overlapping subproblems vs no overlapping subproblems
 - Dynamic programming is typically applied to optimization problems.

- Characterize the structure of an optimal solution.
- Recursively define the value of an optimal solution.
- Compute the value of an optimal solution in a bottom-up fashion.
- Construct an optimal solution from computed information.

- Characterize the structure of an optimal solution.
- Recursively define the value of an optimal solution.
- Compute the value of an optimal solution in a bottom-up fashion.
- Construct an optimal solution from computed information.

- Characterize the structure of an optimal solution.
- Recursively define the value of an optimal solution.
- Ompute the value of an optimal solution in a bottom-up fashion.
- Construct an optimal solution from computed information.

Rod cutting

- Characterize the structure of an optimal solution.
- Recursively define the value of an optimal solution.
- Ompute the value of an optimal solution in a bottom-up fashion.
- Construct an optimal solution from computed information.

Rod-cutting problem

Given a rod of length n inches and a table of prices p_i for i = 1, 2, ..., n, determine the maximum revenue r_n obtainable by cutting up the rod and selling the pieces.

Example										
length i	1	2	3	4	5	6	7	8	9	10
price p _i	1	5	8	9	10	17	17	20	24	30

If an optimal solution cuts the rod into k pieces, for some $1 \le k \le n$, then an optimal decompositon

$$n = i_1 + i_2 + \cdots + i_k$$

of the rod into pieces of lengths i_1, i_2, \dots, i_k provides maximum corresponding revenue

$$r_n = p_{i_1} + p_{i_2} + \cdots + p_{i_k}$$

Sample inspection

```
r_1 = 1 from solution 1 = 1 (no cuts)
r_2 = 5 from solution 2 = 2 (no cuts)
r_3 = 8 from solution 3 = 3 (no cuts)
r_4 = 10 from solution 4 = 2 + 2
```

 $r_5 = 13$ from solution 5 = 2+3

$$r_n = \max(p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \cdots, r_{n-1} + r_1)$$

Sample inspection

```
r_1 = 1 from solution 1 = 1 (no cuts)
```

$$r_2 = 5$$
 from solution 2 = 2 (no cuts)

$$r_3 = 8$$
 from solution 3 = 3 (no cuts)

$$r_4 = 10$$
 from solution $4 = 2 + 2$

$$r_5 = 13$$
 from solution $5 = 2+3$

Generally

$$r_n = max(p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \cdots, r_{n-1} + r_1)$$

Optimal substructure

Optimal solutions to a problem incorporate optimal solutions to related subproblems, which we may solve independently.

A simpler equation

$$r_n = \max_{1 \le i \le n} (p_i + r_{n-i})$$

Optimal substructure

Optimal solutions to a problem incorporate optimal solutions to related subproblems, which we may solve independently.

A simpler equation

$$r_n = \max_{1 < i < n} (p_i + r_{n-i})$$

Recursive implementation

Recursive top-down implementation

```
CUT-ROD(p, n)

1 if n == 0

2 return 0

3 q = -\infty

4 for i = 1 to n

5 q = \max(q, p[i] + \text{CUT-ROD}(p, n - i))

6 return q
```

$$T(n) = 2^n$$

Recursive implementation

Recursive top-down implementation

```
CUT-ROD(p, n)

1 if n == 0

2 return 0

3 q = -\infty

4 for i = 1 to n

5 q = \max(q, p[i] + \text{CUT-ROD}(p, n - i))

6 return q
```

$$T(n)=2^n$$

Dynamic programming

Top-down with memoization

```
MEMOIZED-CUT-ROD(p, n)
```

- 1 let r[0..n] be a new array
- 2 **for** i = 0 **to** n
- 3 $r[i] = -\infty$
- 4 return Memoized-Cut-Rod-Aux(p, n, r)

Dynamic programming

Top-down with memoization

```
MEMOIZED-CUT-ROD-AUX(p, n, r)
   if r[n] > 0
        return r[n]
3 if n == 0
        q = 0
5
   else q = -\infty
6
        for i = 1 to n
7
             q = \max(q, p[i] +
                   MEMOIZED-CUT-ROD-AUX(p, n - i, r)
   r[n] = q
   return q
```

Dynamic programming

Bottom-up solution

```
BOTTOM-UP-CUT-ROD(p, n)
   let r[0..n] be a new array
   r[0] = 0
   for i = 1 to n
         q=-\infty
5
        for i = 1 to i
6
              q = \max(q, p[i] + r[i - i])
         r[j] = q
   return r[n]
```

return r and s

Reconstructing a solution

```
EXTENDED-BOTTOM-UP-CUT-ROD(p, n)
    let r[0..n] and s[0..n] be new arrays
    r[0] = 0
    for j = 1 to n
 4
          q=-\infty
         for i = 1 to j
 5
               if q < p[i] + r[j-i]
                    q = p[i] + r[i - i]
                    s[i] = i
          r[j] = q
```

10

```
PRINT-CUT-ROD-SOLUTION(p, n)
```

```
1 (r, s) = EXTENDED-BOTTOM-UP-CUT-ROD(p, n)
```

- 2 while n > 0
- 3 print s[n]
- 4 n = n s[n]

```
    Example

    i
    0
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10

    r[i]
    0
    1
    5
    8
    10
    13
    17
    18
    22
    25
    30

    s[i]
    0
    1
    2
    3
    2
    2
    6
    1
    2
    3
    10
```

0000

```
PRINT-CUT-ROD-SOLUTION(p, n)
```

```
1 (r, s) = \text{EXTENDED-BOTTOM-UP-CUT-ROD}(p, n)
2 while n > 0
3 print s[n]
```

4 n=n-s[n]

Example												
i		0	1	2	3	4	5	6	7	8	9	10
r[i	<i>i</i>]	0	1	5	8	10	13	17	18	22	25	30
s[<i>i</i>]	0	1	2	3	2	2	6	1	2	3	10

Rod cutting

0000

Rod cutting

Purpose

Give a sequence $\langle A_1, A_2, \dots, A_n \rangle$ of *n* matrices to be multiplied, and we wish to compute the product: $A_1 A_2 \dots A_n$.

Fully parenthesized

A product of matrices is **fully parenthesized** if it is either a single matrix or the product of two fully parenthesized matrix products, surrounded by parentheses.

Rod cutting

Purpose

Give a sequence $\langle A_1, A_2, \dots, A_n \rangle$ of *n* matrices to be multiplied, and we wish to compute the product: $A_1 A_2 \dots A_n$.

Fully parenthesized

A product of matrices is **fully parenthesized** if it is either a single matrix or the product of two fully parenthesized matrix products, surrounded by parentheses.

Example

$$(A_1(A_2(A_3A_4))), (A_1((A_2A_3)A_4)), ((A_1A_2)(A_3A_4)), ((A_1(A_2A_3))A_4), (((A_1A_2)A_3)A_4).$$

```
MATRIX-MULTIPLY(A, B)
```

```
if A.columns \neq B.rows
         error "incompatible dimensions"
   else Let C be a new A rows × B columns matrix
         for i = 1 to A rows
5
               for j = 1 to B.columns
6
                    c_{ii}=0
                    for k = 1 to A.columns
                          c_{ii} = c_{ii} + a_{ik} \cdot b_{ki}
9
         return C
```

Why parenthesized?

Different costs incurred by different parenthesizations!

Example

```
A_{10 \times 100} B_{100 \times 5} C_{5 \times 50} \ A_{10 \times 100} (B_{100 \times 5} C_{5 \times 50}) : \ 10 \times 100 \times 50 + 100 \times 5 \times 50 = 75,000 \ (A_{10 \times 100} B_{100 \times 5}) C_{5 \times 50} : \ 10 \times 100 \times 5 + 10 \times 5 \times 50 = 7,500
```

Why parenthesized?

Different costs incurred by different parenthesizations!

Example

```
A_{10\times100}B_{100\times5}C_{5\times50} \ A_{10\times100}(B_{100\times5}C_{5\times50}): \ 10\times100\times50+100\times5\times50=75,000 \ (A_{10\times100}B_{100\times5})C_{5\times50}: \ 10\times100\times5+10\times5\times50=7,500
```


Counting the number of parenthesization

Denote the number of alternative parenthesizations of a sequence of n matrices by P(n), then:

$$P(n) = \begin{cases} 1 & n = 1, \\ \sum_{k=1}^{n-1} P(k)P(n-k) & n \ge 2. \end{cases}$$

P(n) grows as $\Omega(4^n/n^{\frac{3}{2}})$

Brute force

Counting the number of parenthesization

Denote the number of alternative parenthesizations of a sequence of n matrices by P(n), then:

$$P(n) = \begin{cases} 1 & n = 1, \\ \sum_{k=1}^{n-1} P(k)P(n-k) & n \ge 2. \end{cases}$$

P(n) grows as $\Omega(4^n/n^{\frac{3}{2}})$.

Step1: The structure of an optimal solution

- Suppose that an optimal parenzhesization of $A_i A_{i+1} ... A_j$ split the product between A_k and A_{k+1} .
- Then the parenthesization of "prefix" subchain $A_iA_{i+1}...A_k$ within this optimal parenthesization of $A_iA_{i+1}...A_j$ must be an optimal parenthesization of $A_iA_{i+1}...A_k$.
- Similarly, subchain $A_{k+1}A_{k+2}...A_j$ in the optimal parenthesization of must be an optimal parenthesization of $A_{k+1}A_{k+2}...A_j$

- Suppose that an optimal parenzhesization of $A_i A_{i+1} \dots A_j$ split the product between A_k and A_{k+1} .
- Then the parenthesization of "prefix" subchain $A_iA_{i+1}...A_k$ within this optimal parenthesization of $A_iA_{i+1}...A_j$ must be an optimal parenthesization of $A_iA_{i+1}...A_k$.
- Similarly, subchain $A_{k+1}A_{k+2}...A_j$ in the optimal parenthesization of must be an optimal parenthesization of $A_{k+1}A_{k+2}...A_j$

Step1: The structure of an optimal solution

- Suppose that an optimal parenzhesization of $A_i A_{i+1} \dots A_j$ split the product between A_k and A_{k+1} .
- Then the parenthesization of "prefix" subchain $A_iA_{i+1}...A_k$ within this optimal parenthesization of $A_iA_{i+1}...A_j$ must be an optimal parenthesization of $A_iA_{i+1}...A_k$.
- Similarly, subchain $A_{k+1}A_{k+2}...A_j$ in the optimal parenthesization of must be an optimal parenthesization of $A_{k+1}A_{k+2}...A_j$.

- Let m[i, j] be the minimum number of scalar multiplications needed to computer the matrix A_{i...j}; for the full problem, a cheapest way would thus be m[1, n]
- Let us assume that the optimal parenthesization splits the product $A_iA_{i+1}...A_j$ between A_k and A_{k+1} , where i < k < i.

- Let m[i, j] be the minimum number of scalar multiplications needed to computer the matrix A_{i...j}; for the full problem, a cheapest way would thus be m[1, n]
- Let us assume that the optimal parenthesization splits the product $A_i A_{i+1} \dots A_j$ between A_k and A_{k+1} , where i < k < j.

$$m[i,j] = \begin{cases} 0 & \text{if } i = j, \\ \min_{i \le k < j} \{ m[i,k] + m[k+1,j] \\ + p_{i-1}p_kp_j \} & \text{if } i < j. \end{cases}$$

Step3: Computing the optimal costs

```
MATRIX-CHAIN-ORDER(p)
    n = p.length - 1
 2 for i = 1 to n
          m[i, i] = 0
    for l = 2 to n // l is the chain length.
 5
          for i = 1 to n - l + 1
               i = i + l - 1
 6
               m[i,j]=\infty
 8
               for k = i to i - 1
                     q = m[i, k] + m[k + 1, j] + p_{i-1}p_kp_i
                     if q < m[i, j]
10
11
                          m[i,j]=q
                          s[i,j]=k
12
13
     return m and s
```

Step3: Computing the optimal costs

matrix	dimension
A_1	30×35
A_2	35×15
A_3	15×5
A_4	5×10
A_5	10×20
A_6	20×25

Step3: Computing the optimal costs

Constructing an optimal solution

```
PRINT-OPTIMAL-PARENS(s, i, j)

1 if i = j

2 print "A";

3 else print "("

PRINT-OPTIMAL-PARENS(s, i, s[i, j])

PRINT-OPTIMAL-PARENS(s, s[i, j] + 1, j)

print ")"
```

Example result

 $((A_1(A_2A_3))((A_4A_5)A_6))$

Constructing an optimal solution

```
PRINT-OPTIMAL-PARENS(s, i, j)
   if i = j
         print "A";
   else print "("
             PRINT-OPTIMAL-PARENS(s, i, s[i, j])
             PRINT-OPTIMAL-PARENS(s, s[i, j] + 1, j)
             print ")"
```

Example result

 $((A_1(A_2A_3))((A_4A_5)A_6))$

- In 1973, S.Godbole presented the $O(n^3)$ algorithm.
- In 1975, A. K. Chandra from IBM developed an O(n) heuristic algorithm.
- In 1978, F. Y. Chin improved Chandra's algorithm, but the algorithm is also in O(n).
- In 1982, T. C. Hu and M.T. Shing gave an $O(n \lg n)$ -time algorithm by solving the equivalent problem of finding the optimal triangulation of a convex polygon.

History

- In 1994, P. Ramanan presented a simpler algorithm and obtained the tight lower bound of Ω(n lg n) for a related problem.
- In 2003, H.Lee and S.J. Hong found an optimal product schedule for evaluating a chain of matrix products on a parallel computer.

Elements of dynamic programming

When should we look for a dynamic programming solution to a problem?

- Optimal substructure
- Overlapping subproblems

How to discover optimal substructure?

- Make a choice to split the problem into one or more subproblems;
- Just assume you are given the choice that leads to an optimal solution;
- Given this choice, try to best characterize the resulting space of subproblems;
- Show the subproblems chosen are optimal by using a "cut-and-paste" technique.

How to discover optimal substructure?

- Make a choice to split the problem into one or more subproblems;
- Just assume you are given the choice that leads to an optimal solution;

How to discover optimal substructure?

- Make a choice to split the problem into one or more subproblems;
- Just assume you are given the choice that leads to an optimal solution;
- Given this choice, try to best characterize the resulting space of subproblems;
- Show the subproblems chosen are optimal by using a "cut-and-paste" technique.

How to discover optimal substructure?

- Make a choice to split the problem into one or more subproblems;
- Just assume you are given the choice that leads to an optimal solution;
- Given this choice, try to best characterize the resulting space of subproblems;
- Show the subproblems chosen are optimal by using a "cut-and-paste" technique.

Rule of thumb

Keep the space of subproblems as simple as possible.

Optimal substructure varies in two ways

- How many subproblems are used in an optimal solution to the original problem, and
- How many choices we have in determining which subproblem(s) to use in an optimal solution.

Two factors decide the running time

- the number of subproblems overall.
- 2 the number of choices for each subproblem.

Optimal substructure varies in two ways

- How many subproblems are used in an optimal solution to the original problem, and
- How many choices we have in determining which subproblem(s) to use in an optimal solution.

Two factors decide the running time

- 1 the number of subproblems overall.
- 2 the number of choices for each subproblem.

Example

- In rod cutting, we had $\Theta(n)$ subproblems overall, and at most n choices to examine for each yielding a $\Theta(n^2)$ running time.
- For matrix-chain multiplication, there were $\Theta(n^2)$ subproblems overall, and in each we had at most n-1 choices, giving an $O(n^3)$ running time.

Independence of subproblems

Unweighted longest simple path

- Given a directed graph G = (V, E) and vertices $u, v \in V$. The unweighted longest simple path consists the most edges from u to v.
- Supposed we decompose a longest simple path $u \stackrel{\rho}{\leadsto} v$ into path $u \stackrel{\rho_1}{\leadsto} w \stackrel{\rho_2}{\leadsto} v$.
- Mustn't p₁ be a longest simple path from u to w, and mustn't p_2 be a longest simple path from w to v?

Independence of subproblems

Consider $q \rightarrow r \rightarrow t$, which is the longest simple path from q to t_{-}

$$q$$
 to $r: q \rightarrow s \rightarrow t \rightarrow r$
 r to $t: r \rightarrow q \rightarrow s \rightarrow t$.

Combining:

$$q \rightarrow s \rightarrow t \rightarrow r \rightarrow q \rightarrow s \rightarrow t$$

Independence of subproblems

Unweighted longest simple path

NO!

Why?

- The suproblems in finding the longest simple path are not independent.
- independent: The solution to one subproblem does not affect the solution to another subproblem of the same problem.

Overlapping subproblems

Overlapping subproblems

When a recursive algorithm revisits the same problem over and over again, we say that the optimization problem has **overlapping** subproblems.

Overlapping subproblems

Example

```
RECURSIVE-MATRIX-CHAIN (p, i, j)
   if i = i
        return 0
  m[i,j]=\infty
   for k = i to j - 1
5
         q = RECURSIVE-MATRIX-CHAIN(p, i, k)
                 +RECURSIVE-MATRIX-CHAIN(p, k + 1, j)
                 +p_{i-1}p_kp_i
        if q < m[i, j]
             m[i,j]=q
   return m[i, i]
```


RECURSIVE-MATRIX-CHAIN(p, 1, 4)

$$T(n) \ge 2 \sum_{i=1}^{n-1} T(i) + n \ge 2^{n-1}$$

Memoization

Memoization

- A memoized recursive algorithm maintains an entry in a table for the solution to each subproblem.
- When the subproblem is first encountered, its solution is computed and then stored in the table.
- Each subsequent time that the subproblem is encountered, just return the stored value in the table.

Memoization

Example

```
MEMOIZED-MATRIX-CHAIN(p)
```

```
n = p.length - 1
   let m[1..n, 1..n] be a new table
   for i = 1 to n
         for i = i to n
5
               m[i,j]=\infty
6
```

return LOOKUP-CHAIN(p, 1, n)

Example

```
LOOKUP-CHAIN (p, i, j)
   if m[i,j] < \infty
         return m[i,j]
   if i = i
         m[i,j] = 0
5
   else for k = i to j - 1
6
               q = LOOKUP-CHAIN(p, i, k)
                  +LOOKUP-CHAIN(p, k+1, j)+p_{i-1}p_kp_i
7
               if q < m[i, j]
8
                    m[i,j]=q
    return m[i, j]
```

Memoization

Rod cutting

When to use?

 If some subproblems in the subproblem space need not be solved at all, the memoized solution has the advantage of solving only subproblems that are definitely required.

00000

Longest common subsequence

Definition

• Given a sequence $X = \langle x_1, x_2, \dots, x_m \rangle$, another sequence $Z = \langle z_1, z_2, \dots, z_k \rangle$ is a **subsequence** of X if there exists a strictly increasing sequence $\langle i_1, i_2, \dots, i_k \rangle$ of indices of X such that for all j = 1, 2, ..., k, we have $X_{i} = Z_{i}$.

Longest common subsequence

Definition

- Given two sequences X and Y, we say that
 Z is a common subsequence of X and Y
 if Z is a subsequence of both X and Y.
- In the longest-common-subsequence problem, we are given two sequences X and Y, and wish to find a maximum-length common subsequence of X and Y.

Longest common subsequence

Definition

- Given two sequences X and Y, we say that
 Z is a common subsequence of X and Y
 if Z is a subsequence of both X and Y.
- In the longest-common-subsequence problem, we are given two sequences X and Y, and wish to find a maximum-length common subsequence of X and Y.

•00000

Longest common subsequence

Example

If X = \(\lambda, \begin{align*} B, C, B, D, A, B \rangle, \\ Y = \lambda B, D, C, A, B, A \rangle, \\ the sequence \(\lambda, C, A \rangle \) is a common subsequence of both X and Y, but not a longest common subsequence of both X and Y. The sequence \(\lambda B, C, B, A \rangle \) is an LCS of X and Y.

Longest common subsequence

Example

Rod cutting

In biological applications, the DNA of one organism may be S₁ = ACCGGTCGAGTGCGCGGAAGCCG, while the DNA of another organism may be S₂ = GTCGTTCGGAATGCCGTT. One goal of comparing two strands of DNA is to determine how "similar" the two strands are.

In our example, an LCS of S_1 and S_2 is $S_2 = GTCGTCGGAAGCCG$

Longest common subsequence

Example

 In biological applications, the DNA of one organism may be $S_1 =$ ACCGGTCGAGTGCGCGGAAGCCG. while the DNA of another organism may be $S_2 = GTCGTTCGGAATGCCGTT$. One goal of comparing two strands of DNA is to determine how "similar" the two strands are. In our example, an LCS of S_1 and S_2 is $S_3 = GTCGTCGGAAGCCG$.

•00000

Longest common subsequence

longest-common-subsequence problem

Find out an LCS of two sequences

$$X = \langle x_1, x_2, \dots, x_m \rangle$$
 and $Y = \langle y_1, y_2, \dots, y_n \rangle$.

Step1: Characterizing an LCS

Theorem 15.1(Optimal substructure of an LCS)

Let $X = \langle x_1, x_2, \dots, x_m \rangle$ and $Y = \langle y_1, y_2, \dots, y_n \rangle$ be sequences, and let $Z = \langle z_1, z_2, \dots, z_k \rangle$ be any LCS of X and Y.

- If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .
- ② If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is an LCS of X_{m-1} and Y.
- If $x_m \neq y_n$, then $z_k \neq y_n$ implies that Z is an LCS of X and Y_{n-1} .

Step1: Characterizing an LCS

Theorem 15.1(Optimal substructure of an LCS)

Let $X = \langle x_1, x_2, \dots, x_m \rangle$ and $Y = \langle y_1, y_2, \dots, y_n \rangle$ be sequences, and let $Z = \langle z_1, z_2, \dots, z_k \rangle$ be any LCS of X and Y.

- If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .
- ② If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is an LCS of X_{m-1} and Y.
- If $x_m \neq y_n$, then $z_k \neq y_n$ implies that Z is an LCS of X and Y_{n-1} .

Step1: Characterizing an LCS

Theorem 15.1(Optimal substructure of an LCS)

Let $X = \langle x_1, x_2, \dots, x_m \rangle$ and $Y = \langle y_1, y_2, \dots, y_n \rangle$ be sequences, and let $Z = \langle z_1, z_2, \dots, z_k \rangle$ be any LCS of X and Y.

- If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .
- If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is an LCS of X_{m-1} and Y.
- If $x_m \neq y_n$, then $z_k \neq y_n$ implies that Z is an LCS of X and Y_{n-1} .

Step1: Characterizing an LCS

Theorem 15.1(Optimal substructure of an LCS)

Let $X = \langle x_1, x_2, \dots, x_m \rangle$ and $Y = \langle y_1, y_2, \dots, y_n \rangle$ be sequences, and let $Z = \langle z_1, z_2, \dots, z_k \rangle$ be any LCS of X and Y.

- 1 If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .
- 2 If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is an LCS of X_{m-1} and Y.
- If $x_m \neq y_n$, then $z_k \neq y_n$ implies that Z is an LCS of X and Y_{n-1} .

Define c[i, j] to be the length of an LCS of the sequences X_i and Y_j , then

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ c[i-1,j-1] + 1 & \text{if } i,j > 0 \text{ and } x_i = y_j, \\ \max(c[i,j-1], c[i-1,j]) & \text{if } i,j > 0 \text{ and } x_i \neq y_j. \end{cases}$$

Step3: Computing the length of an LCS

```
LCS-LENGTH(X, Y)
```

```
1 m = X.length
2 n = Y.length
3 for i = 1 to m
4 c[i, 0] = 0
5 for j = 0 to n
6 c[0, j] = 0
```

Step3: Computing the length of an LCS

```
Start 13 for i = 1 to m
      14
                  for j = 1 to n
      15
                        if x_i = y_i
                              c[i,j] = c[i-1,j-1] + 1
      16
      17
                              b[i,j] = "\nwarrow"
                        else if c[i - 1, j] > c[i, j - 1]
      18
      19
                                     c[i, j] = c[i - 1, j]
                                     b[i,j] = "\uparrow"
      20
                              else c[i, j] = c[i, j - 1]
      21
                                     b[i, j] = "\leftarrow"
      22
      23
            return c and b
```

Running time

O(mn)

```
Start 13 for i = 1 to m
      14
                  for j = 1 to n
      15
                        if x_i = y_i
                              c[i,j] = c[i-1,j-1] + 1
      16
      17
                              b[i,j] = "\nwarrow"
                        else if c[i - 1, j] > c[i, j - 1]
      18
      19
                                     c[i, j] = c[i - 1, j]
                                     b[i,i] = "\uparrow"
      20
                              else c[i, j] = c[i, j - 1]
      21
      22
                                     b[i, j] = "\leftarrow"
      23
            return c and b
```

Running time

O(mn)

$$X = \langle A, B, C, B, D, A, B \rangle$$

 $Y = \langle B, D, C, A, B, A \rangle$

Step4: Constructing an LCS

```
PRINT-LCS(b, X, i, j)
   if i = 0 or i = 0
         return
   if b[i,j] = "\nwarrow"
         PRINT-LCS(b, X, i - 1, j - 1)
5
         print xi
   elseif b[i,j] = "\uparrow"
         PRINT-LCS(b, X, i - 1, j)
   else PRINT-LCS(b, X, i, i-1)
```

Rod cutting

Problem

Considering a word-to-word translation system from English to French, we need to look up dictionary as efficient as possible.

Problem

Considering a word-to-word translation system from English to French, we need to look up dictionary as efficient as possible.

Definition

- Given a sequence K = (k₁, k₂,..., k_n) of n distinct keys in sorted order, and n + 1 "dummy keys", d₀, d₁,..., d_n for values not in K, we wish to build a binary search tree.
- d_i represents all values between k_i and k_{i+1}

Rod cutting

Problem

Considering a word-to-word translation system from English to French, we need to look up dictionary as efficient as possible.

Definition

- Given a sequence K = (k₁, k₂,..., k_n) of n distinct keys in sorted order, and n + 1 "dummy keys", d₀, d₁,..., d_n for values not in K, we wish to build a binary search tree.
- d_i represents all values between k_i and k_{i+1} .

Problem

Considering a word-to-word translation system from English to French, we need to look up dictionary as efficient as possible.

Definition

For each key k_i, we have a probability p_i that a search will be for k_i; and for each dummy key d_i, we have a probability q_i.

$$\sum_{i=1}^{n} p_i + \sum_{i=0}^{n} q_i = 1$$

Rod cutting

Optimal binary search tree

A binary search tree whose expected search cost is smallest.

Expected cost of a search in a binary search tree T

$$E = \sum_{i=1}^{n} (\operatorname{depth}_{T}(k_{i}) + 1) \cdot p_{i} + \sum_{i=0}^{n} (\operatorname{depth}_{T}(d_{i}) + 1) \cdot q_{i}$$

$$= 1 + \sum_{i=1}^{n} \operatorname{depth}_{T}(k_{i}) \cdot p_{i} + \sum_{i=0}^{n} \operatorname{depth}_{T}(d_{i}) \cdot q_{i}$$

LCS

Two binary search trees

	1	2		
	0.10			0.10

Two binary search trees

			2			
p _i		0.15	0.10 0.05	0.05	0.10	0.20
Q;	0.05	0.10	0.05	0.05	0.05	0.10

LCS

						5
p_i		0.15	0.10	0.05	0.10	0.20 0.10
q_i	0.05	0.10	0.05	0.05	0.05	0.10

search cost

left tree = 2.80, right tree = 2.75

Step1:The optimal structure

- If an optimal binary search tree T has a subtree T' containing keys k_i, \ldots, k_i , then this subtree T' must be optimal as well for the subproblem with keys k_i, \ldots, k_i and dummy keys d_{i-1}, \ldots, d_i .

Step1:The optimal structure

- If an optimal binary search tree T has a subtree T' containing keys k_i, \ldots, k_j , then this subtree T' must be optimal as well for the subproblem with keys k_i, \ldots, k_j and dummy keys d_{i-1}, \ldots, d_i .
- Given keys k_i, \ldots, k_j , if $k_r (i \le r \le j)$ is the root of an optimal subtree, the left subtree of the root k_r will containing k_i, \ldots, k_{r-1} , and the right subtree will contain k_{r+1}, \ldots, k_i .

- Define e[i, j] as the expected cost of searching an optimal binary search tree.
- if k_r is the root of an optimal tree, we have

$$e[i,j] = p_r + (e[i,r-1] + w(i,r-1)) + (e[r+1,j] + w(r+1,j))$$

Step2: A recursive solution

- Define e[i, j] as the expected cost of searching an optimal binary search tree.
- if k_r is the root of an optimal tree, we have

$$e[i,j] = p_r + (e[i,r-1] + w(i,r-1)) + (e[r+1,j] + w(r+1,j))$$

• For a subtree with keys k_i, \ldots, k_j , the sum of probabilities are

$$w(i,j) = \sum_{l=i}^{j} p_{l} + \sum_{l=i-1}^{j} q_{l}$$

LCS

Step2: A recursive solution

Noting that

$$w(i,j) = w(i,r-1) + p_r + w(r+1,j).$$

• we rewrite e[i, j] as

$$e(i, j) = e[i, r - 1] + e[r + 1, j] + w(i, j)$$

Step2: A recursive solution

Noting that

$$w(i,j) = w(i,r-1) + p_r + w(r+1,j).$$

• we rewrite e[i, j] as

$$e(i, j) = e[i, r - 1] + e[r + 1, j] + w(i, j).$$

Step2: A recursive solution

so

$$e[i,j] = \begin{cases} q_{i-1} & \text{if } j = i-1, \\ \min_{i \le r \le j} \{e[i,r-1] \\ +e[r+1,j] + w(i,j)\} & \text{if } i \le j. \end{cases}$$

Step3: Computing the search cost

```
OPTIMAL-BST(p, q, n)
     for i = 1 to n + 1
           e[i, i-1] = q_{i-1}
           w[i, i-1] = q_{i-1}
     for l=1 to n
           for i = 1 to n - l + 1
 5
 6
                i = i + l - 1
                e[i,j] = \infty
 8
                w[i,j] = w[i,j-1] + p_i + q_i
 9
                for r = i to i
                      t = e[i, r-1] + e[r+1, i] + w[i, i]
10
11
                      if t < e[i, j]
12
                           e[i,j]=t
                           root[i, j] = r
13
14
     return e and root
```

LCS

Step3: Computing the search cost

- In 1959, E. N. Gilbert and E. F. Moore from Bell Labs published a paper on constructing optimal binary search trees for the case in which all probabilities p_i are 0; this paper contains an $O(n^3)$ -time algorithm.
- In 1971, T. C. Hu and A. C. Tucker devised an algorithm for the case in which all probabilities p_i are 0 that uses $O(n^2)$ time and O(n) space; In 1973, Knuth reduced the time to $O(n \lg n)$.

History

Rod cutting

 In 1974, A. V. Aho, J. E. Hopcroft, and J. D. Ullman present the algorithm we just discussed.