Fundação Getulio Vargas Escola de Matemática Aplicada

Wellington José

Resumo de Analise na Reta - Parte 2

1 Funções Contínuas

Seja $f: I \to \mathbb{R}$ definida no intervalo I, se $c \in I$, dizemos que f é contínua em c quando $\lim_{x\to c} f(x) = f(c)$. A função é contínua em I quando for contínua em todos os pontos.

Teorema 1.1 Seja $f:[a,b] \to \mathbb{R}$ contínua. Então f é limitada.

Teorema 1.2 Seja $f:[a,b] \to \mathbb{R}$ contínua, $A = \inf\{f(t); t \in [a,b]\}$ e $B = \sup\{f(t); t \in [a,b]\}$. Existem então $c,d \in [a,b]$ de modo que f(c) = A e f(d) = B.

Definição 1 Uma partição \mathcal{B} de [a,b] é uma sequência finita de pontos $a=a_0 < a_1 < \cdots < a_{k-1} < a_k = b$. Dado $n \in \mathbb{N}$, consideramos a partição \mathcal{B}_n formada por intervalos de mesmo comprimento $\frac{b-a}{n}$.

Teorema 1.3 Seja $f:[a,b] \to \mathbb{R}$ contínua e $\varepsilon > 0$ qualquer. Então $\exists n \in \mathbb{N}$ de modo que se x, y estão num certo intervalo de \mathcal{P}_n temos que $|f(x)-f(y)| < \varepsilon$.

Dizemos que $f:[a,b]\to\mathbb{R}$ contínua é uniformemente contínua quando, dado $\varepsilon>0$ qualquer, $\exists \delta>0$ tal que se $|x-y|<\delta$ então $f(x)-f(y)|<\varepsilon$.

1.1 T.V.I.

Lema 1.4 Seja $f: I \to \mathbb{R}$ contínua e $c \in I$. Se f(c) > 0, $\exists \delta > 0$ tal que se $|x - c| < \delta$ e $x \in I$ então f(x) > 0.

Teorema 1.5 Seja $f:[a,b] \to \mathbb{R}$ contínua. Tome $L \in (f(a), f(b)), \exists c \in (a,b)$ de modo que f(c) = L.

Corolário 1.5.1 Seja $f:[a,b] \to \mathbb{R}$ contínua, com f(a) < 0 e f(b) > 0. Existe então $c \in (a,b)$ tal que f(c) = 0.

Corolário 1.5.2 Tome $g(x) = x^n$, com $x \ge 0$ ($n \in \mathbb{N}$. Para qualquer $L > 0, \exists c > 0$ de modo que g(c) = L, ou seja, $c^n = L$ ($c \notin raiz \ n$ -ésima de L).

2 Derivadas e Integrais

Definição 2 Dizemos que $f: I \to \mathbb{R}$ é derivável em $a \in I$ quando existe $\lim_{x\to a} \frac{f(x) - f(a)}{x - a}$, neste caso $f'(a) = \lim_{x\to a} \frac{f(x) - f(a)}{x - a}$

obs.: se f é derivável em a, então f é contínua em a. E a inclinação da função no ponto a é dada por:

$$\frac{f(x) - f(a)}{x - a}$$

Propriedades Operacionais:

- 1. Se $f, g: I \to \mathbb{R}$, $c \in I$, f e g deriváveis em c então (f+g) é derivável em c e (f+g)'(c) = f'(c) + g'(c) e f.g é derivável em c e (f.g)'(c) = f'(c)g(c) + g'(c)f(c).
- 2. Suponhamos $g: I \to \mathbb{R}$, $g(x) \neq 0$ se $x \in I$ e g é derivável em c então $f(x) = \frac{1}{g(x)}$ é derivável em c e $f'(x) = \frac{-g'(x)}{g(c)^2}$.
- 3. Seja $f:(a,b) \to (A,B)$ função injetiva e sobrejetiva, e denotaremos por $g:(A,B) \to (a,b)$ sua inversa. Se f é derivável e $f'(x) \neq 0$ para todo $x \in (a,b)$, então g é derivável em (A,B) e $g'(y) = \frac{1}{f'(g(y))}$.
- 4. (A Regra da Cadeia) Sejam $f: I \to j$ e $g: j \to \mathbb{R}$ deriváveis, I e j intervalos abertos e $f(I) \subset j$. Definimos a composta $g \circ f: I \to \mathbb{R}$ como $(g \circ f)(x) := g(f(x))$. Então $(g \circ f)$ é derivável e $(g \circ f)'(x) = g'(f(x)).f'(x)$.

2.1 Relações Com Máximos e Mínimos de Funções

Consideremos uma função $f: I \to \mathbb{R}$ derivável num ponto interior $c \in I$. Suponhamos que exista $\delta > 0$ de modo que $(c - \delta, c + \delta) \subset I$ e $f(x) \leq f(c)$. Sempre que $x \in (c - \delta, c + \delta)$ então diremos que c é um ponto de máximo local de f (análogo para o mínimo).

Teorema 2.1 Se $c \in I$ é ponto de máximo local, então f'(c) = 0 (análogo para o mínimo).

Teorema 2.2 (Rolle) Seja $f : [a,b] \to \mathbb{R}$ contínua tal que f seja derivável em (a,b). Caso f(a) = f(b), então $\exists c \in (a,b)$ tal que f'(c) = 0

Teorema 2.3 (Valor Médio) Seja $f : [a, b] \to \mathbb{R}$ contínua e derivável em (a, b). $\exists c \in (a, b)$ de modo que $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Corolário 2.3.1 Seja $f: I \to \mathbb{R}$ função localmente constante. Então f é constante.

Corolário 2.3.2 (Monotonicidade) Seja $g: I \to \mathbb{R}$ uma função derivável.

- se $g'(x) \ge 0$ para todo $x \in I$, então g é crescente. se g'(x) > 0 para todo $x \in I$, então g é estritamente crescente.
- se g'(x) ≤ 0 para todo x ∈ I, então g é decrescente.
 se g'(x) < 0 para todo x ∈ I, então g é estritamente decrescente.

2.2 Áreas e Derivadas

Vamos usar a noção intuitiva de área para regiões associada ao gráfico de uma função contínua e positiva $f:[a,b] \to \mathbb{R}$. A região em questão está limitada pelo eixo horizontal, o gráfico de f e as verticais pelos pontos (a,0) e (x,0) denotamos por A(x) sua área.

Definição 3 A(x) é derivável e A'(x) = f(x).(a formulação rigorosa será apresentada a frente)

Definição 4 (Função logaritmo) Consideremos $g: \mathbb{R}_{>0} \to \mathbb{R}$, $g(x) = \frac{1}{x}$, e tomemos a região delimitada pelo gráfico de g, o eixo horizontal e os verticais por (1,0) e (x,0), seja A(x) sua área. Se $x \ge 1$, $\log x := A(x)$, se $0 < x \le 1$, $\log x := -A(x)$

Definição 5 (Função exponencial) Seja a > 0, então $a^x := e^{x \log a}$

2.3 Derivadas Sucessivas

Se a função f é derivável k vezes podemos escrever a i-ésima derivada de f em x como $f^{(i)}(x)$.

Teorema 2.4 As funções apresentadas (polinômios, funções trigonométricas, racionais, logaritmo, exponencial) são infinitamente deriváveis em seu domínio de definição.

Lema 2.5 Seja $f:(a,b) \to \mathbb{R}$ derivável e duas vezes derivável em $c \in (a,b)$. Suponhamos f'(c) = 0 e f''(c) > 0 (f''(c) < 0). Então c é ponto de mínimo local (máximo local).

2.4 Convexidade de Função

Definição 6 Dizemos que $f: I \to \mathbb{R}$ é estritamente convexa para cima quando para quaisquer $a < b \in I$ temos que $f(x) < f(a) + \frac{f(b) - f(a)}{b - a}(x - a)$ para todo $x \in (a,b)$. E f é estritamente convexa para baixo quando para quaisquer $a < b \in I$ temos que $f(x) > f(a) + \frac{f(b) - f(a)}{b - a}(x - a)$ para todo $x \in (a,b)$.

Teorema 2.6 Suponhamos que $f: I \to \mathbb{R}$ seja duas vezes derivável. Se f''(x) > 0 (f''(x) < 0) para todo $x \in I$ então f é estritamente convexa para cima (estritamente convexa para baixo).

Lema 2.7 Seja $\varphi: [a,b] \to \mathbb{R}$ duas vezes derivável. Suponhamos $\varphi(a) = \varphi(b) = 0$ e $\varphi''(x) > 0 \ \forall x \in [a,b]$. Então $\varphi(x) < 0 \ \forall x \in (a,b)$.

3 Integral de Riemann

Consideremos uma função $f:[a,b] \to \mathbb{R}$ limitada e uma partição $\mathcal{P}: a = t_0 < \cdots < t_{i-1} < t_i < \cdots < t_n = b$ do intervalo $[a,b], 1 \le i \le n$.

Definição 7 A soma inferior de f relativa à partição \mathcal{P} é $s(f,\mathcal{P}) := \sum_{i=1}^{n} (\inf\{f(t); \ t_{i-1} \leq t \leq t_i\})(t_i - t_{i-1})$ e a soma superior de f relativa à partição \mathcal{P} é $S(f,\mathcal{P}) := \sum_{i=1}^{n} (\sup\{f(t); \ t_{i-1} \leq t \leq t_i\})(t_i - t_{i-1})$

Temos $s(f, \mathcal{P}) \leq S(f, \mathcal{P})$

Definição 8 $\exists \underline{\int_a^b} f := \sup\{s(f, \mathcal{P}); \, \mathcal{P}partição\} \, e \, \exists \, \overline{\int_a^b} f := \inf\{S(f, \mathcal{P}); \, \mathcal{P}partição\}$ integral inferior de f em [a, b] e integral superior de f em [a, b], respectivamente.

Lema 3.1
$$\underline{\int_a^b} f \leq \overline{\int_a^b} f$$

Definição 9 $f \in integrável \ quando \ \underline{\int_a^b} f = \overline{\int_a^b} f \ o \ valor \ comum \ \acute{e} \ denotado \ por \ \underline{\int_a^b} f \ e \ convencionamos \ \underline{\int_a^b} f := -\overline{\int_b^a} f.$

Teorema 3.2 Funções contínuas são integráveis.

3.1 Teorema Fundamental do Cálculo

Lema 3.3 Seja $f:[a,b] \to \mathbb{R}$ integrável. $\forall x \in (a,b), f|_{[a,b]}$ e $f|_{[c,b]}$ são integráveis. Além disso, $\int_a^b f = \int_a^c f + \int_c^b f$.

Teorema 3.4 (Teorema Fundamental do Cálculo) Seja $f:[a,b] \to \mathbb{R}$ integrável e $F(x) := \int_a^x f$. Se f é contínua em $c \in [a,b]$, então F é derivável em c e F'(c) = f(c).

Definição 10 $G:[a,b] \to \mathbb{R}$ é **primitiva** de g quando G'(x) = g(x) em [a,b].

Lema 3.5 Se f é contínua, pelo Teorema Fundamental do Cálculo, então f possui primitiva $F(x) = \int_a^b f$. Tomando \overline{F} qualquer outra primitiva (acrescentando uma constante), temos que $\overline{F}(x) = F(x) + \overline{F}(0)$, e portanto $\overline{F}(b) - \overline{F}(a) = \int_a^b f$.

3.2 Operações com Integrais

Proposições: Sejam $f, g: [a, b] \to \mathbb{R}$ integráveis.

- f + g e $f \cdot g$ são integráveis e $\int_a^b (f + g) = \int_a^b f + \int_a^b g$
- Se $|f(x)| \ge k > 0 \ \forall x \in [a, b]$ e algum k > 0, então $\frac{1}{f(x)}$ é integrável.

• |f| é integrável e $|\int_a^b f(x)dx| \le \int_a^b |f(x)| dx$

Definição 11 Quando $\int_0^\infty |f(x)| dx$ (ou $\int_a^b |f(x)| dx$) existe, dizemos que a integral é **absolutamente** convergente. E a integral também é convergente.

3.3 Fórmula de Taylor (versão infinitesimal)

Consideremos $f:(a,b)\to\mathbb{R}$ função n-1 vezes derivável em (a,b) e n vezes derivável em $c\in(a,b)$.

Definição 12 Definimos o polinômio de Taylor de f de ordem n centrado em c como

$$T_{f,c}^n(x) = \sum_{j=0}^n \frac{f^{(j)}(c)}{j!} (x-c)^j$$

Teorema 3.6 Seja $r(x) := f(x) - T_{f,c}^n(x)$. Então $\lim_{x\to c} \frac{r(x)}{(x-c)^n} = 0$

3.4 Fórmula de Taylor, versão integral

Teorema 3.7 Seja $f:[a,b]\mathbb{R}n+1$ vezes derivável, e $c \in [a,b]$. Então $f(x) = T_{f,c}^n(x) + r_n(x)$, onde $r_n(x) = \frac{1}{n!} \int_c^x (x-t)^n f^{(n+1)}(t) dt$.

Corolário 3.7.1 Seja $f:[a,b] \to \mathbb{R}n$ vezes derivável no ponto $c \in [a,b]$. Se p(x) é polinômio de grau n t.q. f(x) = p(x) + S(x) com $\lim_{x \to c} \frac{S(x)}{(x-c)^n} = 0$, então $T_{f,c}^n(x) = p(x)$.

4 Séries

Definição 13 Consideremos a sequência (a_j) e formemos a nova sequência $s_n := \sum_{j=1}^n a_j$ ela se denomina **série**, e caso seja convergente, escrevemos $\sum_{j=1}^{\infty} a_j := \lim_{n \to \infty} s_n$.

Teorema 4.1 Se $\sum |a_j|$ é convergente então $\sum a_j$ é também convergente.

Definição 14 $\sum a_n$ converge absolutamente quando $\sum |a_n|$ for convergente.

Teorema 4.2 (Critério de d'Alewbert) Se existe $0 \le c \le 1$ t.q. $|a_{n+1}| \le c|a_n|$ a partir de algum n_0 , então $\sum a_n$ é absolutamente convergente.

4.1 Séries de Potências

Vamos tratar o caso particular de séries do tipo $\sum a_n(x-c)^n$, diremos que está é uma **série de potências** centrada em c. Queremos encontrar valores de x para os quais a série converge, no caso c=0 observe que $\sum a_n x^n$ é sempre convergente em 0.

Teorema 4.3 Suponhamos que $\exists x_0 \neq 0 \ t.q. \sum a_n x_0^n$ seja convergente. $\exists R > 0$ de modo que $\sum a_n x^n$ converge em (-R, R) e diverge em $(-\infty, -R) \cup (R, \infty)$ (podendo sem $R = \infty$).

Teorema 4.4 Seja $[-b,b] \subset (-R,R)$. Dado $\varepsilon > 0$, $\exists n \in \mathbb{N}$ t. q. $n_0 > n \Rightarrow |\sum_{j=n_0+1}^{\infty} a_j x^j| < \varepsilon$ para $x \in [-b.b]$.

Definição 15 Tomando $s(x) := \sum_{j=0}^{\infty} a_j x^j, s_m(x) := \sum_{j=0}^{m} a_j x^j$ para $x \in (-R, R)$, temos que $\forall x \in (-R, R) : \lim_{m \to \infty} s_m(x) = s(x)$, então a série s_m converge uniformemente para s em um intervalo $[-b, b] \subset (-R, R)$, ou seja, dado $\varepsilon > 0$ qualquer, $\exists N \in \mathbb{N}$ t.q. $|s(x) - s_m(x)| < \varepsilon$ se m > N e $x \in [-b, b]$ (intervalo limitado fechado de (-R, R)).

Teorema 4.5 Da definição 15, temos que, s(x) é contínua em (-R,R).

Teorema 4.6 (Integração termo a termo) $\int_0^x s(t)dt = \sum_{j=0}^\infty \int_0^x a_j t^j dt$ para $x \in (-R, R)$.

Teorema 4.7 (Derivação termo a termo) $s'(x) = \sum_{j=1}^{\infty} j a_j x^{j-1} para x \in (-R, R)$.

Definição 16 (geral) Sejam $f_n: I \to \mathbb{R}$ sequência de função e $f: I \to \mathbb{R}$, dizemos que f_n converge uniformemente para f quando dado $\varepsilon > 0$ qualquer, $\exists N \in \mathbb{N}$ de modo que $|f_n(x) - f(x)| < \varepsilon$ se n > N e para todo $x \in I$.

Temos os seguintes teoremas correspondentes ao caso das séries. Suponhamos então $f_n \to f$ em I.

Teorema 4.8 Se f_n é contínua $\forall n \in \mathbb{N}$, então f é contínua.

Teorema 4.9 Fixemos $a \in I$, f_n contínua $\forall n \in \mathbb{N}$. Então $\int_a^x f_n(t)dt \rightarrow \int_a^x f(t)dt \ \forall x \in I$.

Teorema 4.10 Suponhamos f_n deriváveis, e que f'_n sejam contínuas. Se $f'_n \to g$ converge uniformemente, então g = f', isto é, $\frac{d}{dx} f_n(x) \to \frac{d}{dx} f(X)$.