Distribución de Poisson

RAFAEL NOGALES VAQUERO LOTHAR SOTO PALMA Universidad de Granada 13 de diciembre de 2015

Índice

1.	Deducción de función de densidad	2
2.	Función generatriz de momentos	2
	2.1. Esperanza	3
	2.2. Varianza	3
	2.3. Familia exponencial	3
3.	EMV	3
	3.1. Insesgadez	4
	3.2. Eficiencia	4
	3.3. Consistencia	5
	3.4. Suficiencia	5
4.	Ejemplos	5
5	Referencias	5

1. Deducción de función de densidad

La distribución de Poisson expresa a partir de una frecuencia de ocurrencia media, la probabilidad de que ocurra un determinado número de eventos durante cierto periodo de tiempo. Se especializa en la probabilidad de ocurrencia de sucesos con probabilidades pequeñas. Es una distribución que sirve para modelar diferentes tipos de experimentos, como fenómenosen los que se espera que ocurra un suceso en específico como esperar el bus, o la llegada de clientes en deternimado servicio.

La distribución de Poisson es un caso particular del limite de la distribución binomial, podemos deducirlo de la siguiente representación geométrica:

Tomamos AB como el segmento de longitud L y CD el segmento de longitud l contenido en AB, la probabilidad de que un punto se encuentre en CD es l/L. Sitomamos n puntos aleatorios en AB la probabilidad de que exactamente x de ellos esten en CD viene dada por una distribución binomial:

$$B(x|\frac{l}{L},n) = \frac{n!}{x!(n-x)!} (\frac{l}{L})^x (1-\frac{l}{L})^{n-x}$$

n y L crecen indefinidamente de tal manera que el número promedio de puntos por unidad de longitud es un número finito $k \neq 0$, $\frac{n}{L} \to k$.

$$B(x|\frac{l}{L},n) = \frac{n(n-1)...(n-x+1)}{x!n^x} (\frac{nl}{L})^x (1-\frac{n}{L}\frac{l}{n})^{n-x}$$

asi que el limite de $B(x|\frac{l}{L},n)$ cuando $n,L\to\infty$:

$$\lim_{n,L \to \infty} B(x|\frac{l}{L},n) = \lim_{n,L \to \infty} \frac{1(1-\frac{1}{n})...(1-x+1\frac{x+1}{n})}{x!} (\frac{nl}{L})^x (1-\frac{n}{L}\frac{l}{n})^{n-x} = \frac{(kl)^x e^{-kl}}{x!}$$

Tomando que $kl = \theta$ obtenemos la expresión de la distribución de Poisson:

$$Poisson(\theta) = f(x|\theta) = \frac{e^{-\theta}\theta^x}{x!}, \quad x = 0, 1...$$

Tiene un único parámetro θ se suele denominar parámetro de intensidad, y se aplica sobre una variable aleatoria X.

2. Función generatriz de momentos

Para definir la función generatriz de momentos es importante ver que se verifica que $e^x = \sum_{i=0}^{\infty} \frac{x^i}{i!}$ es la serie de Taylor para e^x . La función generatriz de momentos se define como sigue:

$$\phi(t) = E[e^{-tX}] = \sum_{x=0}^{\infty} e^{-tx} \frac{e^{-\theta} \theta^x}{x!} = e^{-\theta} \sum_{x=0}^{\infty} e^{tx} \frac{\theta^x}{x!} = e^{-\theta} \sum_{x=0}^{\infty} \frac{(\theta e^t)^x}{x!} = e^{-\theta} e^{\theta e^t} = e^{\theta(e^t - 1)}$$

2.1. Esperanza

Para el calculo de la esperanza tan solo debemos derivar la función generatriz de momentos una vez y evaluarla con t=0:

$$\frac{\partial \phi}{\partial t} = \theta e^t e^{\theta(e^t - 1)}$$

Evaluamos la expresión en t=0 y tenemos que:

$$E[X] = \theta$$

2.2. Varianza

La varianza tiene se puede expresar como $\sigma^2=E[X^2]-E[X]^2$ por lo que es tan solo calcular, usando la función generatriz de momentos, el momento de orden 2 por lo que volvemos a derivar la expresión anterior:

$$\frac{\partial^2 \phi}{\partial t^2} = \theta e^t e^{\theta(e^t - 1)} + \theta^2 e^{2t} e^{\theta(e^t - 1)}$$

Evaluamos la expresión en t=0 y tenemos que:

$$E[X^2] = \theta + \theta^2$$

Y por lo tanto la expresión de la varianza es la siguiente:

$$\sigma^2 = \theta + \theta^2 - \theta^2 = \theta$$

2.3. Familia exponencial

3. EMV

Para una muestra de tamaño n, que denotamos por $x=(x_1,...,x_n)$ definimos la función de verosimilitud como:

$$l(x_1, ..., x_n | \theta) = \prod_{i=1}^n \frac{e^{-\theta} \theta^{x_i}}{x_i!} = e^{-n\theta} \prod_{i=1}^n \frac{\theta^{x_i}}{x_i!}$$

Para el cálculo del estimador máximo verosimil de la ley de Poisson vamos a maximizar la función $log(l(x_1,...,x_n|\theta))$ puesto que el logaritmo es monotona y conserva los máximos:

$$L(x_1, ..., x_n | \theta) = log(l(x_1, ..., x_n | \theta)) = -n\theta + \sum_{i=1}^n log(\frac{\theta^{x_i}}{x_i!}) = -n\theta + \sum_{i=1}^n (x_i log(\theta) - log(x_i!))$$

Ahora calculamos la derivada para maximizar el logaritmo de la función de verosimilitud:

$$\frac{\partial L}{\partial \theta} = -n + \sum_{i=1}^{n} \frac{x_i}{\theta} = -n + \frac{1}{\theta} \sum_{i=1}^{n} x_i$$

Encontramos el extremo igualando a 0:

$$-n + \frac{1}{\theta} \sum_{i=1}^{n} x_i = 0 \Leftrightarrow \frac{1}{\theta} \sum_{i=1}^{n} x_i = n \Leftrightarrow \theta = \frac{\sum_{i=1}^{n} x_i}{n}$$

Para verificar que hemos encontrado un máximo calculamos la segunda derivada y evaluamos en $\theta = \frac{\sum_{i=1}^{n} x_i}{n}$:

$$\frac{\partial^2 L}{\partial \theta^2} = -\frac{1}{\theta^2} \sum_{i=1}^n x_i$$

$$\frac{\partial^2 L}{\partial \theta^2} \left(\frac{\sum_{i=1}^n x_i}{n} \right) < 0$$

3.1. Insesgadez

Definición 1: Se denomina sesgo de un estimador a la diferencia entre la esperanza del estimador y el verdadero valor del parámetro a estimar. Un estimador es insesgado si su sesgo es nulo por ser su esperanza igual al parámetro que se desea estimar.

Sea una variable aleatoria que sigue una distribución de Poisson de parametro θ y consideramos n pruebas $x=(x_1,...x_n)$, para que el estimador $\hat{\theta}$ sea insesgado tenemos que probar que:

$$E[\hat{\theta}] = \theta$$

Demostración:

$$E[\hat{\theta}] = E[\frac{1}{n} \sum_{i=1}^{n} x_i] = \frac{1}{n} \sum_{i=1}^{n} E[x_i] = \frac{1}{n} \sum_{i=1}^{n} \theta = \frac{n\theta}{n} = \theta$$

3.2. Eficiencia

Definición 2: Un estimador $\hat{\theta}_1$ se dice que es más eficiente que otro estimador $\hat{\theta}_2$, si la varianza del primero es menor que la del segundo $Var(\hat{\theta}_1) < Var(\hat{\theta}_2)$.

Sea una variable aleatoria que sigue una distribución de Poisson de parametro θ y consideramos n pruebas $x=(x_1,...x_n)$, para que el estimador $\hat{\theta}$ sea eficiente tenemos que probar que:

$$Var(\hat{\theta}) = \frac{1}{nI(\theta)}$$

Se verifica que el estimador tiene el mismo valor que la cota de Cramer-Rao.

Demostración: Sea la función información de Fisher definida por

$$log(f(x|\theta)) = -\theta + xlog(\theta) - log(x!)$$

$$(\frac{\partial}{\partial \theta}log(f(x|\theta)))^2 = (\frac{x - \theta}{\theta})^2$$

$$I(\theta) = E[(\frac{\partial}{\partial \theta}log(f(x|\theta)))^2] = E[(\frac{x - \theta}{\theta})^2] = \frac{1}{\theta^2}E[(x - \theta)^2] = \frac{1}{\theta^2}Var(x) = \frac{\theta}{\theta^2} = \frac{1}{\theta}$$

$$nI(\theta) = \frac{n}{\theta}$$

$$Var(\hat{\theta}) = Var(\frac{\sum_{i=1}^n x_i}{n}) = \frac{1}{n^2}Var(\sum_{i=1}^n x_i) = \frac{n\theta}{n^2} = \frac{\theta}{n}$$

Por lo que se verifica la condición de de eficiencia y el estimador es eficiente.

- 3.3. Consistencia
- 3.4. Suficiencia
- 4. Ejemplos
- 5. Referencias