Introduction to Machine Learning

Fall 2022

University of Science and Technology of China

Lecturer: Jie Wang
Name: Yunqin Zhu
Homework 3
ID: PB20061372

Notice, to get the full credits, please present your solutions step by step.

Exercise 1: Convex Sets

Let $C \subset \mathbb{R}^n$ be a nonempty convex set. Please show the following statements.

- 1. Please find the interior and relative interior of the following convex sets (you don't need to prove them).
 - (a) $\{\mathbf{x} \in \mathbb{R}^3 : x_1^2 + x_2^2 < 1, x_3 = 0\} \subset \mathbb{R}^3.$
 - (b) $\{\mathbf{A} \in S_{++}^n : \operatorname{tr}(\mathbf{A}) = 1\} \subset \mathbb{R}^{n \times n}$.
 - (c) $\{ \mathbf{A} \in S_{++}^n : \text{tr}(\mathbf{A}) = 1 \} \subset S^n$.
 - (d) (Optional) $\{\mathbf{A} \in S_{++}^n : \operatorname{tr}(\mathbf{A}) \leq 1\} \subset \mathbb{R}^{n \times n}$.
 - (e) **conv** $(\{x, x^2, x^3\}) \subset C[0, 1]$ with L^{∞} norm, i.e., $||f||_{\infty} = \max_{x \in [0, 1]} |f(x)|$ for any $f \in C[0, 1]$.

Solution:

- (a) int $C = \emptyset$. aff $C = \{ \mathbf{x} \in \mathbb{R}^3 : x_3 = 0 \} \implies \mathbf{relint} \ C = C$.
- (b) int $C = \emptyset$. relint $C = (\text{relint } S_{++}^n) \cap (\text{relint } \{\mathbf{A} \in S^n : \operatorname{tr}(\mathbf{A}) = 1\}) = C$.
- (c) int $C = \emptyset$. relint C = C
- (d) int $C = \emptyset$. relint $C = (\operatorname{relint} S_{++}^n) \cap (\operatorname{relint} \{ \mathbf{A} \in S^n : \operatorname{tr}(\mathbf{A}) \leq 1 \}) = \{ \mathbf{A} \in S_{++}^n : \operatorname{tr}(\mathbf{A}) < 1 \}$.
- (e) int $C = \emptyset$. relint $C = \{\alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3 : \alpha_1 + \alpha_2 + \alpha_3 = 1, \alpha_1, \alpha_2, \alpha_3 > 0\}$
- 2. Some operations that preserve convexity.
 - (a) Both **cl** C and **int** C are convex.
 - (b) The set **relint** C is convex.
 - (c) The intersection $\bigcap_{i \in I} C_i$ of any collection $\{C_i : i \in \mathcal{I}\}$ of convex sets is convex.
 - (d) If C_1 and C_2 are convex sets in \mathbb{R}^n , then the set

$$C_1 - C_2 = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{x} = \mathbf{x}_1 - \mathbf{x}_2, \mathbf{x}_1 \in C_1, \mathbf{x}_2 \in C_2 \}$$

is convex.

- (e) The set $\{\mathbf{y} \in \mathbb{R}^m : \mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{a}, \mathbf{x} \in C\}$ is convex, where $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{a} \in \mathbb{R}^m$.
- (f) The set $\{\mathbf{y} \in \mathbb{R}^m : \mathbf{x} = \mathbf{B}\mathbf{y} + \mathbf{b}, \mathbf{x} \in C\}$ is convex, where $\mathbf{B} \in \mathbb{R}^{n \times m}$ and $\mathbf{b} \in \mathbb{R}^n$.

Solution:

(a) Let $\mathbf{x}, \mathbf{y} \in \mathbf{cl}\ C$. There exist $\{\mathbf{x}_n\}, \{\mathbf{y}_n\} \subset C$ such that $\mathbf{x}_n \to \mathbf{x}$ and $\mathbf{y}_n \to \mathbf{y}$. The convexity of C implies that $\{\theta\mathbf{x}_n + (1-\theta)\mathbf{y}_n\} \subset C$ and $\theta\mathbf{x}_n + (1-\theta)\mathbf{y}_n \to \theta\mathbf{x} + (1-\theta)\mathbf{y}$ for any $\theta \in [0, 1]$; that is, $\theta\mathbf{x} + (1-\theta)\mathbf{y} \in \mathbf{cl}\ C$. Hence $\mathbf{cl}\ C$ is convex.

- Let $\mathbf{x}, \mathbf{y} \in \mathbf{int} \ C$. There exists $\epsilon > 0$ such that $N_{\epsilon}(\mathbf{x}), N_{\epsilon}(\mathbf{y}) \subset C$. The convexity of C implies that $N_{\epsilon}(\theta \mathbf{x} + (1 \theta)\mathbf{y}) \subset \{\theta \tilde{\mathbf{x}} + (1 \theta)\tilde{\mathbf{y}} : \tilde{\mathbf{x}} \in N_{\epsilon}(\mathbf{x}), \tilde{\mathbf{y}} \in N_{\epsilon}(\mathbf{y})\} \subset C$ for any $\theta \in [0, 1]$; that is, $\theta \mathbf{x} + (1 \theta)\mathbf{y} \in \mathbf{int} \ C$. Hence $\mathbf{int} \ C$ is convex.
- (b) Let $\mathbf{x}, \mathbf{y} \in \mathbf{relint}\ C$. There exists $\epsilon > 0$ such that $N_{\epsilon}(\mathbf{x}) \cap \mathbf{aff}\ C \subset C$ and $N_{\epsilon}(\mathbf{y}) \cap \mathbf{aff}\ C \subset C$. The convexity of C implies that $N_{\epsilon}(\theta \mathbf{x} + (1 \theta)\mathbf{y}) \cap \mathbf{aff}\ C \subset \{\theta \tilde{\mathbf{x}} + (1 \theta)\tilde{\mathbf{y}} : \tilde{\mathbf{x}} \in N_{\epsilon}(\mathbf{x}) \cap \mathbf{aff}\ C, \tilde{\mathbf{y}} \in N_{\epsilon}(\mathbf{y}) \cap \mathbf{aff}\ C\} \subset C$ for any $\theta \in [0, 1]$; that is, $\theta \mathbf{x} + (1 \theta)\mathbf{y} \in \mathbf{relint}\ C$. Hence $\mathbf{relint}\ C$ is convex.
- (c) Let $\mathbf{x}, \mathbf{y} \in \bigcap_{i \in I} C_i$. The convexity of $C_i, \forall i \in I$ implies that $\theta \mathbf{x} + (1 \theta) \mathbf{y} \in C_i$ for any $\theta \in [0, 1]$; that is, $\theta \mathbf{x} + (1 \theta) \mathbf{y} \in \bigcap_{i \in I} C_i$. Hence $\bigcap_{i \in I} C_i$ is convex.
- (d) Let $\mathbf{x}, \mathbf{y} \in C_1 C_2$. There exist $\mathbf{x}_1, \mathbf{y}_1 \in C_1$ and $\mathbf{x}_2, \mathbf{y}_2 \in C_2$ such that $\mathbf{x} = \mathbf{x}_1 \mathbf{x}_2$ and $\mathbf{y} = \mathbf{y}_1 \mathbf{y}_2$. The convexity of C_1 and C_2 implies that $\theta \mathbf{x} + (1 \theta)\mathbf{y} = \theta \mathbf{x}_1 + (1 \theta)\mathbf{y}_1 \theta \mathbf{x}_2 (1 \theta)\mathbf{y}_2 \in C_1 C_2$ for any $\theta \in [0, 1]$. Hence $C_1 C_2$ is convex.
- (e) Let $\mathbf{y}_1, \mathbf{y}_2 \in \{\mathbf{y} \in \mathbb{R}^m : \mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{a}, \mathbf{x} \in C\}$. There exist $\mathbf{x}_1, \mathbf{x}_2 \in C$ such that $\mathbf{y}_1 = \mathbf{A}\mathbf{x}_1 + \mathbf{a}$ and $\mathbf{y}_2 = \mathbf{A}\mathbf{x}_2 + \mathbf{a}$. The convexity of C implies that $\theta \mathbf{y}_1 + (1 \theta)\mathbf{y}_2 = \mathbf{A}(\theta \mathbf{x}_1 + (1 \theta)\mathbf{x}_2) + \mathbf{a} \in \{\mathbf{y} \in \mathbb{R}^m : \mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{a}, \mathbf{x} \in C\}$ for any $\theta \in [0, 1]$. Hence $\{\mathbf{y} \in \mathbb{R}^m : \mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{a}, \mathbf{x} \in C\}$ is convex.
- (f) Let $\mathbf{y}_1, \mathbf{y}_2 \in \{\mathbf{y} \in \mathbb{R}^m : \mathbf{x} = \mathbf{B}\mathbf{y} + \mathbf{b}, \mathbf{x} \in C\}$. There exist $\mathbf{x}_1, \mathbf{x}_2 \in C$ such that $\mathbf{x}_1 = \mathbf{B}\mathbf{y}_1 + \mathbf{b}$ and $\mathbf{x}_2 = \mathbf{B}\mathbf{y}_2 + \mathbf{b}$. The convexity of C implies that $\theta \mathbf{x}_1 + (1 \theta)\mathbf{x}_2 = \mathbf{B}(\theta \mathbf{y}_1 + (1 \theta)\mathbf{y}_2) + \mathbf{b} \in C$ for any $\theta \in [0, 1]$; that is, $\theta \mathbf{y}_1 + (1 \theta)\mathbf{y}_2 \in \{\mathbf{y} \in \mathbb{R}^m : \mathbf{x} = \mathbf{B}\mathbf{y} + \mathbf{b}, \mathbf{x} \in C\}$. Hence $\{\mathbf{y} \in \mathbb{R}^m : \mathbf{x} = \mathbf{B}\mathbf{y} + \mathbf{b}, \mathbf{x} \in C\}$ is convex.

Exercise 2: Affine Sets

Please show the following statements about affine sets.

1. If $U \subset \mathbb{R}^n$ and $\mathbf{0} \in U$, then U is an affine set if and only if it is a subspace.

Solution:

- (\Rightarrow) Since U is an affine set, for any $\mathbf{x}, \mathbf{y} \in U$ and $\alpha, \beta \in \mathbb{R}$, we have $\alpha \mathbf{x} + \beta \mathbf{y} = \alpha \mathbf{x} + \beta \mathbf{y} + (1 \alpha \beta)\mathbf{0} \in U$. Thus, U is a subspace.
- (\Leftarrow) Since U is a subspace, for any $\mathbf{x}, \mathbf{y} \in U$ and $\theta \in \mathbb{R}$, we have $\theta \mathbf{x} + (1 \theta)\mathbf{y} \in U$. Thus, U is an affine set.
- 2. If $U \subset \mathbb{R}^n$ is an affine set, there is a unique subspace $V \subset \mathbb{R}^n$ such that $U = \mathbf{u} + V$ for any $\mathbf{u} \in U$.

Solution:

Let $\mathbf{u} \in U$ be arbitrary. Then, for any $\mathbf{x}, \mathbf{y} \in U - \mathbf{u}$ and $\alpha, \beta \in \mathbb{R}$, we have $\alpha \mathbf{x} + \beta \mathbf{y} = [\alpha(\mathbf{u} + \mathbf{x}) + \beta(\mathbf{u} + \mathbf{y}) + (1 - \alpha - \beta)\mathbf{u}] - \mathbf{u} \in U - \mathbf{u}$. Thus, $V = U - \mathbf{u}$ is a subspace. For any $\tilde{\mathbf{u}} \in U$, it is clear that $\tilde{\mathbf{u}} - \mathbf{u} \in V$, and hence $U - \tilde{\mathbf{u}} = V - (\tilde{\mathbf{u}} - \mathbf{u}) = V$, from which we conclude that V must be unique.

3. Let $U = \mathbf{aff}(\{(1,0,0)^\top, (0,1,0)^\top, (0,0,1)^\top\})$. Please find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that we can represent any vectors $\mathbf{v} \in U$ in the form of $\mathbf{v} = (1,0,0)^\top + \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2$ uniquely, where α_1 and α_2 are two real numbers depending on \mathbf{v} . Furthermore, given a point $\mathbf{x}_0 \in U$, find two vectors \mathbf{w}_1 and \mathbf{w}_2 such that we can represent any vectors $\mathbf{w} \in U$ in the form of $\mathbf{w} = \mathbf{x}_0 + \alpha_1 \mathbf{w}_1 + \alpha_2 \mathbf{w}_2$ uniquely.

Solution:

For any $\mathbf{v} \in U$, there exist $\alpha_1, \alpha_2 \in \mathbb{R}$ depending on \mathbf{v} such that $\mathbf{v} = (1 - \alpha_1 - \alpha_2)(1, 0, 0)^\top + \alpha_1(0, 1, 0)^\top + \alpha_2(0, 0, 1)^\top = (1, 0, 0)^\top + \alpha_1(-1, 1, 0)^\top + \alpha_2(-1, 0, 1)^\top$. Equivalently, $\mathbf{v}_1 = (-1, 1, 0)^\top$ and $\mathbf{v}_2 = (-1, 0, 1)^\top$ span the subspace $V = U - (1, 0, 0)^\top$. By Question 2, $V = U - \mathbf{x}_0$ for any $\mathbf{x}_0 \in U$. So $\mathbf{w} \in U$ can also be represented in the form of $\mathbf{w} = \mathbf{x}_0 + \alpha_1 \mathbf{w}_1 + \alpha_2 \mathbf{w}_2$, where $\mathbf{w}_1 = \mathbf{v}_1 = (-1, 1, 0)^\top$ and $\mathbf{w}_2 = \mathbf{v}_2 = (-1, 0, 1)^\top$. Since (α_1, α_2) serves as the coordinate of $\mathbf{w} - \mathbf{x}_0$ in the basis $\{\mathbf{w}_1, \mathbf{w}_2\}$, we know it must be unique.

Exercise 3: Convex Hull and Affine Hull (Optional)

Let A be a subset of \mathbb{R}^n .

- 1. (a) Please show that the convex hull of A is the smallest convex set containing A, i.e., all the convex sets containing A also contain **conv** A.
 - (b) Please find the convex hull of the following sets.

i.
$$\{ \mathbf{A} \in S_{++}^n : \text{tr}(\mathbf{A}) = 1 \} \cup \{ \mathbf{A} \in S_{++}^n : \text{tr}(\mathbf{A}) \ge 2 \} \subset \mathbb{R}^{n \times n}$$
.

ii.
$$\{f \in C[0,1] : ||f||_{\infty} = 1\} \cup \{f \in C[0,1] : ||f||_{\infty} = 2\} \subset C[0,1].$$

Solution:

(a) First, it is clear that $A \subset \mathbf{conv}\ A$. Second, let C be an arbitrary convex set containing A. We prove by induction on k that any $\mathbf{x} = \sum_{i=1}^k \theta_i \mathbf{x}_i \in \mathbf{conv}\ A$ also belongs to C, where $\mathbf{x}_i \in A$, $\theta_i \geq 0$, and $\sum_{i=1}^k \theta_i = 1$. If k = 1, we have $\mathbf{x} = \mathbf{x}_1 \in C$ by definition. Now, assume that the statement holds for k - 1 and consider $\mathbf{x} = \sum_{i=1}^k \theta_i \mathbf{x}_i$, where $\sum_{i=1}^{k-1} \theta_i \neq 0$. Let $\alpha_i = \theta_i / \sum_{i=1}^{k-1} \theta_i$. Then,

$$\sum_{i=1}^{k-1} \alpha_i \mathbf{x}_i \in C, \ \mathbf{x}_k \in C \implies \mathbf{x} = \left(\sum_{i=1}^{k-1} \theta_i\right) \left(\sum_{i=1}^{k-1} \alpha_i \mathbf{x}_i\right) + \theta_k \mathbf{x}_k \in C,$$

which completes the proof, i.e., **conv** $A \subset C$.

(b) i. **conv** $A = \{ \mathbf{A} \in S_{++}^n : \operatorname{tr}(\mathbf{A}) \ge 1 \}$, which is a convex set containing A and any \mathbf{A} belongs to this set can be written as the convex combination

$$\mathbf{A} = \theta \frac{\mathbf{A}}{\operatorname{tr}(\mathbf{A})} + (1 - \theta) \left(\frac{\mathbf{A}}{\operatorname{tr}(\mathbf{A})} + \mathbf{A} \right), \text{ where } \theta = \frac{1}{\operatorname{tr}(\mathbf{A})}.$$

- ii. **conv** $A = \{f \in C[0,1] : ||f||_{\infty} \le 2\}$, which is a convex set containing A and any f belongs to this set can be written as the convex combination ...
- 2. (a) Please show that the affine hull of A is the smallest affine set containing A, i.e., all the affine sets containing A also contain **aff**A.
 - (b) Please find the affine hull of the following sets.

i.
$$\{\mathbf{A} \in S^n_{\perp\perp} : \operatorname{tr}(\mathbf{A}) = 1\} \subset \mathbb{R}^{n \times n}$$
.

ii.
$$\{ \mathbf{A} \in S_{++}^n : \text{tr}(\mathbf{A}) = 1 \} \cup \{ \mathbf{A} \in S_{++}^n : \text{tr}(\mathbf{A}) \ge 2 \} \subset \mathbb{R}^{n \times n}$$
.

Solution:

(a) First, it is clear that $A \subset \mathbf{aff}$ A. Second, let C be an arbitrary affine set containing A. We prove by induction on k that any $\mathbf{x} = \sum_{i=1}^k \theta_i \mathbf{x}_i \in \mathbf{aff}$ A also belongs to C, where $\mathbf{x}_i \in A$ and $\sum_{i=1}^k \theta_i = 1$. If k = 1, we have $\mathbf{x} = \mathbf{x}_1 \in C$ by definition. Now, assume that the statement holds for k - 1 and consider $\mathbf{x} = \sum_{i=1}^k \theta_i \mathbf{x}_i$. Without loss of generality, we can assume that $\sum_{i=1}^{k-1} \theta_i \neq 0$. Let $\alpha_i = \theta_i / \sum_{i=1}^{k-1} \theta_i$. Then,

$$\sum_{i=1}^{k-1} \alpha_i \mathbf{x}_i \in C, \ \mathbf{x}_k \in C \implies \mathbf{x} = \left(\sum_{i=1}^{k-1} \theta_i\right) \left(\sum_{i=1}^{k-1} \alpha_i \mathbf{x}_i\right) + \theta_k \mathbf{x}_k \in C,$$

which completes the proof, i.e., **aff** $A \subset C$.

(b) i. **aff** $A = \{ \mathbf{A} \in S^n : \operatorname{tr}(\mathbf{A}) = 1 \}$, which is an affine set containing A and any \mathbf{A} belongs to this set can be written as the affine combination

$$\mathbf{A} = \theta \frac{\mathbf{A} - \lambda \mathbf{I}}{1 - \lambda n} + (1 - \theta) \frac{\mathbf{I}}{n},$$

where $\lambda < \lambda_{\min}(\mathbf{A})$ and $\theta = 1 - \lambda n$.

ii. aff $A = S^n$, which is an affine set containing A and any A belongs to this set can be written as the affine combination

$$\mathbf{A} = \theta(\mathbf{A} + \alpha \mathbf{I}) + (1 - \theta)(\mathbf{A} + 2\alpha \mathbf{I}),$$

where
$$\alpha > \max\{-\lambda_{\min}(\mathbf{A}), \frac{2-\operatorname{tr}(\mathbf{A})}{n}\}$$
 and $\theta = 2$.

Exercise 4: Relative Interior and Interior

Let $C \subset \mathbb{R}^n$ be a nonempty convex set.

- 1. Let $\mathbf{x}_0 \in C$. Please show the following statements.
 - (a) The point $\mathbf{x}_0 \in \mathbf{relint}\ C$ if and only if there exists r > 0 such that $\mathbf{x}_0 + r\mathbf{v} \in C$ for any $\mathbf{v} \in \mathbf{aff}\ C \mathbf{x}_0$ and $\|\mathbf{v}\|_2 \leq 1$.
 - (b) Let $\{\mathbf{v}_i\}_{i=1}^m$ be a basis of **aff** $C \mathbf{x}_0$. Then $\mathbf{x}_0 \in \mathbf{relint}\ C$ if and only if there exists r > 0 such that $\mathbf{x}_0 + r \sum_i \alpha_i \mathbf{v}_i \in C$ for any $\{\alpha_i\}_{i=1}^m$ with $\sum_i \alpha_i^2 \leq 1$.

Solution:

- (a) By definition, $\mathbf{x}_0 \in \mathbf{relint} \ C$ if and only if there exists r > 0 such that $B(\mathbf{x}_0, r) \cap \mathbf{aff} \ C \subset C$. Since $B(\mathbf{x}_0, r) = \{\mathbf{x} : \|\mathbf{x} \mathbf{x}_0\|_2 \le r\} = \{\mathbf{x}_0 + r\mathbf{v} : \|\mathbf{v}\|_2 \le 1\}$, we have $B(\mathbf{x}_0, r) \cap \mathbf{aff} \ C = \{\mathbf{x}_0 + r\mathbf{v} : r\mathbf{v} \in \mathbf{aff} \ C \mathbf{x}_0 \text{ and } \|\mathbf{v}\|_2 \le 1\}$. Moreover, the fact that $\mathbf{aff} \ C \mathbf{x}_0$ is a subspace implies that $r\mathbf{v} \in \mathbf{aff} \ C \mathbf{x}_0$ if and only if $\mathbf{v} \in \mathbf{aff} \ C \mathbf{x}_0$. So $B(\mathbf{x}_0, r) \cap \mathbf{aff} \ C = \{\mathbf{x}_0 + r\mathbf{v} : \mathbf{v} \in \mathbf{aff} \ C \mathbf{x}_0 \text{ and } \|\mathbf{v}\|_2 \le 1\}$. This completes the proof.
- (b) Let $\mathbf{V} = (\mathbf{v}_1, \dots, \mathbf{v}_m)$ and $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_m)$. Then any $\mathbf{v} = \sum_{i=1}^m \alpha_i \mathbf{v}_i \in \mathbf{aff} \ C \mathbf{x}_0$ can be written as $\mathbf{v} = \mathbf{V}\boldsymbol{\alpha}$. So $\|\boldsymbol{\alpha}\|_2 \le 1 \implies \|\mathbf{v}\|_2 \le \|\mathbf{V}\|_2 \|\boldsymbol{\alpha}\|_2 \le \|\mathbf{V}\|_2$. On the other hand, $\|\mathbf{v}\|_2 \le \|\mathbf{V}\|_2 \implies \|\boldsymbol{\alpha}\|_2 \le \|\mathbf{V}^{-1}\|_2 \|\mathbf{v}\|_2 \le 1$. Therefore, $\mathbf{x}_0 \in \mathbf{relint} \ C$ if and only if there exists $\rho = r\|\mathbf{V}\|_2 > 0$ such that $C \supset B(\mathbf{x}_0, \rho) \cap \mathbf{aff} \ C = \{\mathbf{x}_0 + r\mathbf{v} : \mathbf{v} \in \mathbf{aff} \ C \mathbf{x}_0 \text{ and } \|\mathbf{v}\|_2 \le \|\mathbf{V}\|_2\} = \{\mathbf{x}_0 + r\mathbf{V}\boldsymbol{\alpha} : \|\boldsymbol{\alpha}\|_2 \le 1\}$, which is equivalent to the statement.
- 2. (a) We let $\mathbf{x}_0 \in \mathbf{int} \ C$, $\mathbf{x}_1 \in \mathbf{bd} \ C$ and $\mathbf{x}_2 = \lambda(\mathbf{x}_1 \mathbf{x}_0) + \mathbf{x}_0$.
 - i. Please show that if $\lambda > 1$, then $\mathbf{x}_2 \notin C$.
 - ii. Please show that if $\lambda \in (0,1)$, then $\mathbf{x}_2 \in \mathbf{int} \ C$.
 - (b) i. Please show that $\mathbf{x} \in \mathbf{relint}\ C$ if and only if for any $\mathbf{y} \in C$, there exists $\gamma > 0$ such that $\mathbf{x} + \gamma(\mathbf{x} \mathbf{y}) \in C$.
 - ii. Please show that if $\mathbf{x} \in \mathbf{relint} \ C$, $\mathbf{y} \in \mathbf{cl} \ C$, then $\lambda \mathbf{x} + (1 \lambda)\mathbf{y} \in \mathbf{relint} \ C$ for $\lambda \in (0, 1]$.

Solution:

- (a) i. Assume that $\mathbf{x}_2 \in C$. Since $\mathbf{x}_0 \in \operatorname{int} C$, there exists r > 0 such that $B(\mathbf{x}_0, r) \in C$. By convexity of C, we have $(1 - \frac{1}{\lambda})B(\mathbf{x}_0, r) + \frac{1}{\lambda}\mathbf{x}_2 = B(\mathbf{x}_1, \frac{(\lambda - 1)r}{\lambda}) \subset C$, which contradicts $\mathbf{x}_1 \in \operatorname{\mathbf{bd}} C$. So $\mathbf{x}_2 \notin C$.
 - ii. Since $\mathbf{x}_0 \in \mathbf{int} \ C$, there exists r > 0 such that $B(\mathbf{x}_0, r) \in C$. Since $\mathbf{x}_1 \in \mathbf{bd} \ C$, there exists $0 < \epsilon < \frac{1-\lambda}{\lambda} r$ such that $\mathbf{x}_1 \in C + B(0, \epsilon)$. Then

$$B(\mathbf{x}_{2}, (1 - \lambda)r - \lambda\epsilon)$$

$$= B((1 - \lambda)\mathbf{x}_{0}, (1 - \lambda)r - \lambda\epsilon) + \lambda\mathbf{x}_{1}$$

$$\subset B((1 - \lambda)\mathbf{x}_{0}, (1 - \lambda)r - \lambda\epsilon) + \lambda C + \lambda B(0, \epsilon)$$

$$= (1 - \lambda)B(\mathbf{x}_{0}, r) + \lambda C$$

$$\subset (1 - \lambda)C + \lambda C = C,$$

implying that $\mathbf{x}_2 \in \mathbf{int} \ C$.

- (b) i.(\Rightarrow) Clearly, $\mathbf{x} \mathbf{y} \in \mathbf{aff} \ C \mathbf{x}$. According to Question 1(a), there exists $r = \gamma \|\mathbf{x} \mathbf{y}\|_2 > 0$ such that $\mathbf{x} + r \frac{(\mathbf{x} \mathbf{y})}{\|\mathbf{x} \mathbf{y}\|_2} = \mathbf{x} + \gamma(\mathbf{x} \mathbf{y}) \in C$.
 - (\Leftarrow) Let $\mathbf{y} \in \mathbf{relint} \ C$ and $\mathbf{x} + \gamma(\mathbf{x} \mathbf{y}) \in \mathbf{cl} \ C$. Then $\mathbf{x} = \frac{1}{\gamma + 1}(\mathbf{x} + \gamma(\mathbf{x} \mathbf{y})) + \frac{\gamma}{\gamma + 1}\mathbf{y}$ implies that $\mathbf{x} \in \mathbf{relint} \ C$, according to (b)ii.
 - ii. If $\lambda = 1$, it is clear that $\mathbf{x} \in \mathbf{relint}\ C$. Consider $0 < \lambda < 1$. Since $\mathbf{x} \in \mathbf{relint}\ C$, there exists r > 0 such that $B(\mathbf{x}, r) \cap \mathbf{aff}\ C \subset C$. Since $\mathbf{y} \in \mathbf{cl}\ C$, there exists $0 < \epsilon < \frac{\lambda}{1-\lambda}r$ such that $\mathbf{y} \in C + B(0, \epsilon) \cap \mathbf{aff}\ C$. Then

$$B(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}, \lambda r - (1 - \lambda)\epsilon) \cap \mathbf{aff} \ C$$

$$= B(\lambda \mathbf{x}, \lambda r - (1 - \lambda)\epsilon) \cap \mathbf{aff} \ C + (1 - \lambda)\mathbf{y}$$

$$\subset B(\lambda \mathbf{x}, \lambda r - (1 - \lambda)\epsilon) \cap \mathbf{aff} \ C + (1 - \lambda)C + (1 - \lambda)B(0, \epsilon) \cap \mathbf{aff} \ C$$

$$= \lambda B(\mathbf{x}, r) \cap \mathbf{aff} \ C + (1 - \lambda)C$$

$$\subset \lambda C + (1 - \lambda)C = C,$$

implying that $\lambda \mathbf{x} + (1 - \lambda)\mathbf{y} \in \mathbf{relint} \ C$.

- 3. (a) Please show the following statements.
 - i. Suppose **int** C is nonempty, then **int** C = int(cl C) (in fact, the result still holds when $C = \emptyset$).
 - ii. $\mathbf{cl}\left(\mathbf{relint}\ C\right) = \mathbf{cl}\ C$.
 - iii. $\operatorname{relint}(\operatorname{cl} C) = \operatorname{relint} C$.

[Hint: if C contains more than one point, then **relint** C is nonempty. You may also use the results in Question 2.]

(b) Using the results in Question 3(a), please prove the following statement. For a convex set $C \subset \mathbb{R}^n$ and $\mathbf{x}_0 \in \mathbf{bd}$ C, we can find a sequence $\{\mathbf{x}_k\} \subset \mathbb{R}^n \setminus \mathbf{cl}$ C such that $\mathbf{x}_k \to \mathbf{x}_0$ as $k \to \infty$.

Solution:

- (a) i. It is clear that int $C \subset \operatorname{int}(\operatorname{cl} C)$ as $C \subset \operatorname{cl} C$. Consider $\mathbf{x} \in \operatorname{int}(\operatorname{cl} C)$ and $\mathbf{y} \in \operatorname{int} C$, where $\mathbf{x} \neq \mathbf{y}$. There exist $r = \gamma \|\mathbf{x} \mathbf{y}\|_2 > 0$ such that $\mathbf{z} = \mathbf{x} + \gamma(\mathbf{x} \mathbf{y}) \in B(\mathbf{x}, r) \subset \operatorname{cl} C$. Then, by Question 2(a)ii, $\mathbf{x} \in \operatorname{relint} C$ follows from $\mathbf{x} = \frac{1}{\gamma + 1}\mathbf{z} + \frac{\gamma}{\gamma + 1}\mathbf{y}$.
 - ii. It is clear that $\mathbf{cl}(\mathbf{relint}\ C) \subset \mathbf{cl}\ C$ as $\mathbf{relint}\ C \subset C$. Consider $\mathbf{x} \in \mathbf{cl}\ C$ and $\mathbf{y} \in \mathbf{relint}\ C$, where $\mathbf{x} \neq \mathbf{y}$. According to Question 2(b)ii, we have $\mathbf{x}_k = (1 \frac{1}{k})\mathbf{x} + \frac{1}{k}\mathbf{y} \in \mathbf{relint}\ C$ for any $k \in \mathbb{N}^+$. Since $\mathbf{x}_k \to \mathbf{x}$, we have $\mathbf{x} \in \mathbf{cl}(\mathbf{relint}\ C)$. Hence $\mathbf{cl}\ C \subset \mathbf{cl}(\mathbf{relint}\ C)$.
 - iii. It is clear that $\operatorname{relint}(\operatorname{cl} C)\supset\operatorname{relint} C$ as $\operatorname{cl} C\supset C$ and $\operatorname{aff}(\operatorname{cl} C)=\operatorname{aff} C$. Consider $\mathbf{x}\in\operatorname{relint}(\operatorname{cl} C)$ and $\mathbf{y}\in\operatorname{relint} C$, where $\mathbf{x}\neq\mathbf{y}$. By Question 2(b)i, there exists $\mathbf{z}=\mathbf{x}+\gamma(\mathbf{x}-\mathbf{y})\in\operatorname{cl} C$ for some $\gamma>0$. Then, by Question 2(b)ii, $\mathbf{x}\in\operatorname{relint} C$ follows from $\mathbf{x}=\frac{1}{\gamma+1}\mathbf{z}+\frac{\gamma}{\gamma+1}\mathbf{y}$.
- (b) $\mathbf{x}_0 \in \mathbf{bd} \ C \implies \mathbf{x}_0 \notin \mathbf{int} \ C \implies \mathbf{x}_0 \notin \mathbf{int} \ (\mathbf{cl} \ C)$. That is, for any r > 0, there exists $\mathbf{x} \in B(\mathbf{x}_0, r)$ but $\mathbf{x} \notin \mathbf{cl} \ C$. Let $r = \frac{1}{k}$ and pick $\mathbf{x}_k \in B(\mathbf{x}_0, r)$ such that $\mathbf{x}_k \notin \mathbf{cl} \ C$. Then $\{\mathbf{x}_k\}$ is the desired sequence.

Exercise 5: Relative Boundary

The relative boundary of a set $S \subset \mathbb{R}^n$ is defined as **relbd** $S = \mathbf{cl}\ S \setminus \mathbf{relint}\ S$. Please show the following statements **or give counter-examples**.

1. For a set $S \subset \mathbb{R}^n$, relbd $S \subset \mathbf{bd} S$.

Solution:

By definition, we know that **relint** $S \supset \text{int } S$. Hence, **relbd** $S \subset \text{cl } S \setminus \text{int } S = \text{bd } S$.

2. For a set $S \subset \mathbb{R}^n$, relbd $S = \mathbf{bd} S$.

Solution:

Counter-example: $S = [0, 1] \times \{0\} \subset \mathbb{R}^2$. relbd $S = \{(0, 0), (1, 0)\}$, bd S = S, relbd $S \neq$ bd S.

3. For a set $S \subset \mathbb{R}^n$, relbd S = relbd cl S.

Solution:

Counter-example: $S = \mathbb{R} \setminus \{0\} \subset \mathbb{R}$. relbd $S = \{0\}$, relbd (cl S) = \emptyset , relbd (cl S).

4. (Optional) For a convex set $C \subset \mathbb{R}^n$, relbd C = relbd cl C.

Solution:

If S is empty, then the statement is clear. If S is nonempty, by Exercise 4 Question 3(a)iii, we have relint $S = \operatorname{relint}(\operatorname{cl} S)$. So relbd $S = \operatorname{cl} S \setminus \operatorname{relint} S = \operatorname{cl}(\operatorname{cl} S) \setminus \operatorname{relint}(\operatorname{cl} S) = \operatorname{relbd}(\operatorname{cl} S)$.

5. For a set $S \subset \mathbb{R}^n$ and $\mathbf{x}_0 \in \mathbf{cl}\ S$, we can find a sequence $\{\mathbf{x}_k\} \subset \mathbb{R}^n \setminus \mathbf{cl}\ S$ such that $\mathbf{x}_k \to \mathbf{x}_0$ as $k \to \infty$.

Solution:

If $\mathbf{x}_0 \in \mathbf{int} S$, then the statement is clearly false. If $\mathbf{x}_0 \in \mathbf{bd} S$, consider $S = \mathbb{R} \setminus \{0\} \subset \mathbb{R}$ for counter-example. It is impossible to find the desired sequence $\{\mathbf{x}_k\} \subset \mathbb{R} \setminus \mathbf{cl} S = \emptyset$.

Exercise 6: Minkowski Summation of Sets (Optional)

The Minkowski sum of two sets S_1 and S_2 is defined by

$$S_1 + S_2 = \{ \mathbf{x} + \mathbf{y} : \mathbf{x} \in S_1, \mathbf{y} \in S_2 \}.$$

- 1. Let $S_1 = {\mathbf{x} \in \mathbb{R}^2 : ||\mathbf{x}||_2 \le 1}$ and $S_2 = {\mathbf{x} \in \mathbb{R}^2 : ||\mathbf{x}||_\infty \le 1}$.
 - (a) Please draw the set $S_1 + S_2$.
 - (b) How do you tell if a point \mathbf{x} is in the set $S_1 + S_2$?

Solution:

(a) The plot of $S_1 + S_2$ is shown below.

Figure 1: Plot of $S_1 + S_2$

(b)
$$S_1 + S_2 = \{ \mathbf{x} \in \mathbb{R}^n : S_1 \cap (\mathbf{x} - S_2) \neq \emptyset \} = \{ \mathbf{x} \in \mathbb{R}^n : S_2 \cap (\mathbf{x} - S_1) \neq \emptyset \}.$$

- 2. Recall that \mathbb{R}^n can be decomposed as $\mathbb{R}^n = S \oplus S^{\perp}$, i.e., $\mathbb{R}^n = S + S^{\perp}$ and $S \cap S^{\perp} = \emptyset$, where $S \subset \mathbb{R}^n$ is a subspace and $S^{\perp} = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{x} \perp S\}$. Let $C \subset \mathbb{R}^n$ be a convex set. Define $\hat{C} = C + (\mathbf{aff} \ C \mathbf{x}_0)^{\perp}$. Please show that:
 - (a) dim(aff \hat{C}) = n;
 - (b) relint $C + (\mathbf{aff} \ C \mathbf{x}_0)^{\perp} = \mathbf{relint} \ \hat{C};$
 - (c) relbd $C + (\mathbf{aff} \ C \mathbf{x}_0)^{\perp} = \mathbf{relbd} \ \hat{C}$.

Solution:

(a) We assert that **aff** $\hat{C} = \mathbf{aff} \ C + \mathbf{aff} \ (\mathbf{aff} \ C - \mathbf{x}_0)^{\perp}$. Since $(\mathbf{aff} \ C - \mathbf{x}_0)^{\perp}$ is a subspace, we have $\mathbf{aff} \ (\mathbf{aff} \ C - \mathbf{x}_0)^{\perp} = (\mathbf{aff} \ C - \mathbf{x}_0)^{\perp}$. So $\mathbf{aff} \ \hat{C} = \mathbf{x}_0 + (\mathbf{aff} \ C - \mathbf{x}_0) + (\mathbf{aff} \ C - \mathbf{x}_0)^{\perp} = \mathbf{x}_0 + \mathbb{R}^n$. Hence $\dim(\mathbf{aff} \ \hat{C}) = n$.

To complete the proof, we show that $\operatorname{\mathbf{aff}}(C_1+C_2)=\operatorname{\mathbf{aff}}(C_1)+\operatorname{\mathbf{aff}}(C_2)$ for any sets C_1 and C_2 . Let $\mathbf{z}=\sum_i\theta_i(\mathbf{x}_i+\mathbf{y}_i)\in\operatorname{\mathbf{aff}}(C_1+C_2)$, where $\mathbf{x}_i\in C_1$, $\mathbf{y}_i\in C_2$ and $\sum_i\theta_i=1$. Then $\mathbf{z}=\sum_i\theta_i\mathbf{x}_i+\sum_i\theta_i\mathbf{y}_i\in\operatorname{\mathbf{aff}}(C_1)+\operatorname{\mathbf{aff}}(C_2)$, and hence $\operatorname{\mathbf{aff}}(C_1+C_2)\subset\operatorname{\mathbf{aff}}(C_1)+\operatorname{\mathbf{aff}}(C_2)$.

To show the reverse inclusion, let $\mathbf{x} = \sum_i \alpha_i \mathbf{x}_i \in \mathbf{aff} \ C_1$ and $\mathbf{y} = \sum_j \beta_j \mathbf{y}_j \in \mathbf{aff} \ C_2$, where $\mathbf{x}_i \in C_1$, $\mathbf{y}_j \in C_2$ and $\sum_i \alpha_i = \sum_j \beta_j = 1$. Then $\mathbf{x} + \mathbf{y} = \sum_{i,j} \alpha_i \beta_i (\mathbf{x}_i + \mathbf{y}_j) \in \mathbf{aff} \ (C_1 + C_2)$, and hence $\mathbf{aff} \ (C_1) + \mathbf{aff} \ (C_2) \subset \mathbf{aff} \ (C_1 + C_2)$.

(b) We assert that relint $\hat{C} = \text{relint } C + \text{relint } (\text{aff } C - \mathbf{x}_0)^{\perp}$. Since $(\text{aff } C - \mathbf{x}_0)^{\perp}$ is a subspace, we have relint $(\text{aff } C - \mathbf{x}_0)^{\perp} = (\text{aff } C - \mathbf{x}_0)^{\perp}$. So relint $C + (\text{aff } C - \mathbf{x}_0)^{\perp} = \text{relint } \hat{C}$.

To complete the proof, we show that $\operatorname{\mathbf{relint}}(C_1+C_2)=\operatorname{\mathbf{relint}}(C_1)+\operatorname{\mathbf{relint}}(C_2)$ for any convex sets C_1 and C_2 . First, we note that by Exercise 4.2(b), a point \mathbf{x} belongs to the relative interior of a convex set C if and only if $\mathbf{x}=\theta\mathbf{x}_1+(1-\theta)\mathbf{x}_2$, where $\mathbf{x}_1,\mathbf{x}_2\in C$ and $0<\theta<1$. For any $\mathbf{z}=\theta\mathbf{z}_1+(1-\theta)\mathbf{z}_2\in\operatorname{\mathbf{relint}}(C_1+C_2)$, where $\mathbf{z}_1,\mathbf{z}_2\in C_1+C_2$ and $0<\theta<1$, there exists $\mathbf{x}_1,\mathbf{x}_2\in C_1$ and $\mathbf{y}_1,\mathbf{y}_2\in C_2$ such that $\mathbf{z}_1=\mathbf{x}_1+\mathbf{y}_1$ and $\mathbf{z}_2=\mathbf{x}_2+\mathbf{y}_2$. Therefore, $\mathbf{z}=\theta\mathbf{x}_1+(1-\theta)\mathbf{x}_2+\theta\mathbf{y}_1+(1-\theta)\mathbf{y}_2\in\operatorname{\mathbf{relint}}(C_1+\operatorname{\mathbf{relint}}(C_2)$, and hence $\operatorname{\mathbf{relint}}(C_1+C_2)\subset\operatorname{\mathbf{relint}}(C_1)+\operatorname{\mathbf{relint}}(C_2)$.

To show the reverse inclusion, let $\mathbf{x} = \alpha \mathbf{x}_1 + (1 - \alpha) \mathbf{x}_2 \in \mathbf{relint} \ C_1$ and $\mathbf{y} = \beta \mathbf{y}_1 + (1 - \beta) \mathbf{y}_2 \in \mathbf{relint} \ C_2$, where $\mathbf{x}_1, \mathbf{x}_2 \in C_1$ and $\mathbf{y}_1, \mathbf{y}_2 \in C_2$ and $0 < \alpha, \beta < 1$. Actually, by Exercise 4.2(b)ii, we can always find $\mathbf{x}_1, \mathbf{x}_2, \mathbf{y}_1, \mathbf{y}_2$ such that $\alpha = \beta$. Then $\mathbf{x} + \mathbf{y} = \alpha(\mathbf{x}_1 + \mathbf{y}_1) + (1 - \alpha)(\mathbf{x}_2 + \mathbf{y}_2) \in \mathbf{relint} \ (C_1 + C_2)$, and hence $\mathbf{relint} \ (C_1) + \mathbf{relint} \ (C_2) \subset \mathbf{relint} \ (C_1 + C_2)$.

- (c) We assert that relbd $\hat{C} = \operatorname{cl} \hat{C} \backslash \operatorname{relint} \hat{C} = (\operatorname{cl} C + (\operatorname{aff} C \mathbf{x}_0)^{\perp}) \backslash (\operatorname{relint} C + (\operatorname{aff} C \mathbf{x}_0)^{\perp}) = (\operatorname{cl} C \backslash \operatorname{relint} C) + (\operatorname{aff} C \mathbf{x}_0)^{\perp} = \operatorname{relbd} C + (\operatorname{aff} C \mathbf{x}_0)^{\perp}.$ To complete the proof, we need to show:
 - i. $\mathbf{cl}(C_1+C_2) = \mathbf{cl}(C_1) + \mathbf{cl}(C_2)$ for any sets C_1 and C_2 satisfying $\mathbf{aff}(C_1) \perp \mathbf{aff}(C_2)$.
 - ii. $(C_1+C)\setminus (C_2+C)=(C_1\setminus C_2)+C$ for any sets satisfying $C_1\supset C_2$ and $C_1\cap C=\{\mathbf{0}\}$.

For the first statement, let $\mathbf{x} + \mathbf{y} \in \mathbf{cl}(C_1 + C_2)$ and $\{\mathbf{x}_k + \mathbf{y}_k\} \subset C_1 + C_2$ converges to $\mathbf{x} + \mathbf{y}$, where $\mathbf{x}, \mathbf{x}_k \in C_1$ and $\mathbf{y}, \mathbf{y}_k \in C_2$. Since $\langle \mathbf{x}_k + \mathbf{y}_k, \mathbf{x}_k \rangle = \langle \mathbf{x}_k, \mathbf{x}_k \rangle \to \langle \mathbf{x}, \mathbf{x}_k \rangle$, it follows that $\mathbf{x}_k \to \mathbf{x}$. Analogously, $\mathbf{y}_k \to \mathbf{y}$. Therefore, $\mathbf{x} \in \mathbf{cl}(C_1)$ and $\mathbf{y} \in \mathbf{cl}(C_2)$, and hence $\mathbf{x} + \mathbf{y} \in \mathbf{cl}(C_1) + \mathbf{cl}(C_2)$, i.e. $\mathbf{cl}(C_1 + C_2) \subset \mathbf{cl}(C_1) + \mathbf{cl}(C_2)$. The reverse inclusion is obvious.

For the second statement, let $\mathbf{x} \in C_1$, $\mathbf{y} \in C_2$. If $\forall \mathbf{z}_1 \in C$, $\neg \exists \mathbf{z}_2 \in C$, s.t. $\mathbf{x} + \mathbf{z}_1 = \mathbf{y} + \mathbf{z}_2$, then it is clear that $\mathbf{x} \neq \mathbf{y}$. This implies that $(C_1 + C) \setminus (C_2 + C) \subset (C_1 \setminus C_2) + C$. Conversely, if $\exists \mathbf{x} \in C_1$, $\mathbf{y} \in C_2$ and \mathbf{z}_1 , $\mathbf{z}_2 \in C$, s.t. $\mathbf{x} + \mathbf{z}_1 = \mathbf{y} + \mathbf{z}_2$, then $\mathbf{x} - \mathbf{y} = \mathbf{z}_2 - \mathbf{z}_1 = \mathbf{0} \in C_1 \cap C$. Therefore, $\mathbf{z}_1 = \mathbf{z}_2$, $\mathbf{x} = \mathbf{y}$. This implies $(C_1 + C) \cap (C_2 + C) \cap ((C_1 \setminus C_2) + C) = \emptyset$.

Exercise 7: Convex Sets and Linear Functions

Let $C \subset \mathbb{R}^n$ be a convex set and $l(\mathbf{x}) = \langle \mathbf{a}, \mathbf{x} \rangle$ be a linear function on \mathbb{R}^n . The linear function is nontrivial if $\mathbf{a} \neq \mathbf{0}$. Suppose $\mathbf{x}_0 \in C$ and denote

$$B_C(\mathbf{x}_0, r) = B(\mathbf{x}_0, r) \cap \mathbf{aff} \ C.$$

Please show the following statements.

1. If $l(\mathbf{x}) = \alpha, \forall \mathbf{x} \in B_C(\mathbf{x}_0, r)$, then $l(\mathbf{x}) = \alpha, \forall \mathbf{x} \in C$.

Solution:

Let $m = \dim(\mathbf{aff}\ C - \mathbf{x}_0)$ and $\mathbf{V} = (\mathbf{v}_1, \dots, \mathbf{v}_m) \in \mathbb{R}^{n \times m}$ be a matrix whose columns form an orthonormal basis of $\mathbf{aff}\ C - \mathbf{x}_0$. Then any $\mathbf{x} \in B_C(\mathbf{x}_0, r)$ can be written as $\mathbf{x}_0 + \mathbf{V}\mathbf{y}$, where $\mathbf{y} \in \mathbb{R}^m$ satisfies $\|\mathbf{y}\|_2 \le r$. If we let $\mathbf{y} = \pm r\mathbf{e}_i$, $i = 1, \dots, m$, then $l(\mathbf{x}) = \langle \mathbf{a}, \mathbf{x}_0 \rangle \pm r\langle \mathbf{a}, \mathbf{v}_i \rangle = \alpha$ $\Rightarrow \langle \mathbf{a}, \mathbf{x}_0 \rangle = \alpha$ and $\langle \mathbf{a}, \mathbf{v}_i \rangle = 0$. Therefore, for any $\mathbf{x}' = \mathbf{x}_0 + \mathbf{V}\mathbf{y}' \in C$, we have $l(\mathbf{x}') = \langle \mathbf{a}, \mathbf{x}_0 \rangle + \langle \mathbf{a}, \mathbf{V}\mathbf{y}' \rangle = \alpha + 0 = \alpha$.

2. The linear function $l(\mathbf{x}) = \alpha, \forall \mathbf{x} \in B_C(\mathbf{x}_0, r)$ for some constant α if and only if $\mathbf{a} \perp (\mathbf{aff} \ C - \mathbf{x}_0)$.

Solution:

- (\Rightarrow) According to Question 1, $\langle \mathbf{a}, \mathbf{v}_i \rangle = 0 \implies \mathbf{a} \perp \mathbf{v}_i, i = 1, \dots, m$. Since $C(\mathbf{V}) = \mathbf{aff} \ C \mathbf{x}_0$, we have $\mathbf{a} \perp (\mathbf{aff} \ C \mathbf{x}_0)$.
- (\Leftarrow) The fact $\mathbf{a} \perp \mathcal{C}(\mathbf{V})$ implies that for any $\mathbf{x} = \mathbf{x}_0 + \mathbf{V}\mathbf{y} \in B_C(\mathbf{x}_0, r)$, we have $l(\mathbf{x}) = \langle \mathbf{a}, \mathbf{x}_0 \rangle + \langle \mathbf{a}, \mathbf{V}\mathbf{y} \rangle = \langle \mathbf{a}, \mathbf{x}_0 \rangle + 0 = \alpha$, where $\alpha = \langle \mathbf{a}, \mathbf{x}_0 \rangle$ is a constant.
- 3. The linear function $l(\mathbf{x}) = \langle \mathbf{a}, \mathbf{x} \rangle$ is not constant if and only if $\Pi_{(\mathbf{aff}\ C \mathbf{x}_0)}(\mathbf{a}) \neq \mathbf{0}$, where Π means the projection.

Solution:

On the basis of Question 2, we only need to prove that $\Pi_{(\mathbf{aff}\ C-\mathbf{x}_0)}(\mathbf{a}) = \mathbf{0}$ if and only if $\mathbf{a} \perp (\mathbf{aff}\ C - \mathbf{x}_0)$.

- $(\Rightarrow) \ \mathbf{V}^{\top} \Pi_{(\mathbf{aff} \ C \mathbf{x}_0)}(\mathbf{a}) = \mathbf{V}^{\top} \mathbf{V} (\mathbf{V}^{\top} \mathbf{V})^{-1} \mathbf{V}^{\top} \mathbf{a} = \mathbf{V}^{\top} \mathbf{a} = \mathbf{0}. \ \text{So} \ \mathbf{a} \perp (\mathbf{aff} \ C \mathbf{x}_0).$
- $(\Leftarrow) \ \mathbf{V}^{\top}\mathbf{a} = \mathbf{0}. \ \mathrm{So} \ \Pi_{(\mathbf{aff} \ C \mathbf{x}_0)}(\mathbf{a}) = \mathbf{V}(\mathbf{V}^{\top}\mathbf{V})^{-1}\mathbf{V}^{\top}\mathbf{a} = \mathbf{V}(\mathbf{V}^{\top}\mathbf{V})^{-1}\mathbf{0} = \mathbf{0}.$
- 4. If **relbd** $C \neq \emptyset$, then there exists a nontrivial linear function l, and a constant α such that $l(\mathbf{x}) \leq \alpha$ for $\forall \mathbf{x} \in C$.

Solution:

If $m = \dim(\mathbf{aff}\ C - \mathbf{x}_0) < n$, then by Question 2, we can find $\mathbf{a} \in (\mathbf{aff}\ C - \mathbf{x}_0)^{\perp}$ such that $\mathbf{a} \neq \mathbf{0}$ and $l(\mathbf{x}) = l(\mathbf{x}_0) = \alpha$.

If m = n, then **aff** $C = \mathbb{R}^n$, **relbd** $C = \mathbf{bd}$ C. Suppose $\mathbf{x_1} \in \mathbf{bd}$ C. By the Supporting Hyperplane Theorem, there exists a hyperplane $H_{(\mathbf{a},\alpha)}$ supporting C at $\mathbf{x_1}$ such that $l(\mathbf{x}) \leq l(\mathbf{x_1}) = \alpha$ for $\forall \mathbf{x} \in C$.

Exercise 8: Separation Theorems

Let $C_1, C_2, C \subset \mathbb{R}^n$ be convex sets. Please show the following statements.

1. If C_1 is compact, C_2 is closed and $C_1 \cap C_2 = \emptyset$, then C_1 and C_2 can be strongly separated.

Solution:

Let $C = C_1 - C_2$, which is a nonempty convex closed set because both C_1, C_2 are nonempty, convex and closed. Since $C_1 \cap C_2 = \emptyset$, we know that $\mathbf{0} \notin C$. By Theorem 3 in Lecture 5, C and $\mathbf{0}$ can strongly separated, i.e. there exists $\mathbf{a} \in \mathbb{R}^n$ and $\alpha > \beta$ such that $C \subset H_{(\mathbf{a},\alpha)}^+$ and $\mathbf{0} \in H_{(\mathbf{a},\beta)}^{--} \implies \beta > 0$. So $\mathbf{a}^{\top}(\mathbf{x}_1 - \mathbf{x}_2) > \beta \implies \mathbf{a}^{\top}\mathbf{x}_1 > \beta + \mathbf{a}^{\top}\mathbf{x}_2$ for any $\mathbf{x}_1 \in C_1$ and $\mathbf{x}_2 \in C_2$. Note that C_1 is bounded, which implies that there exists $\alpha' = \inf \mathbf{a}^{\top}\mathbf{x}_1$ and hence exists $\beta' = \sup \mathbf{a}^{\top}\mathbf{x}_2$. Then we have $\mathbf{a}^{\top}\mathbf{x}_1 \geq \alpha' \geq \beta + \beta' > \beta' \geq \mathbf{a}^{\top}\mathbf{x}_2$, i.e. $C_1 \subset H_{(\mathbf{a},\alpha')}^+$ and $C_2 \in H_{(\mathbf{a},\beta')}^-$. Therefore, C_1 and C_2 can be strongly separated.

2. (Optional) The sets C_1 and C_2 can be properly separated if and only if **relint** $C_1 \cap$ **relint** $C_2 = \emptyset$.

Solution:

Let $C = C_1 - C_2$, which is a nonempty convex set. Since **relint** $C = \text{relint } C_1 - \text{relint } C_2$, we have **relint** $C_1 \cap \text{relint } C_2 = \emptyset$ if and only if $\mathbf{0} \notin \text{relint } C$, and hence if and only if C and $\mathbf{0}$ can be properly separated, which follows from the Proper Separation Theorem in Lecture 5. That is, there exists $H_{(\mathbf{a},\alpha)}$ such that

$$C \subset H_{(\mathbf{a},\alpha)}^+, \mathbf{0} \in H_{(\mathbf{a},\alpha)}^-;$$

$$\exists \mathbf{x} \in C \cup \{\mathbf{0}\}, \mathbf{x} \notin H_{(\mathbf{a},\alpha)}.$$

This is equivalent to the conditions that $H_{(\mathbf{a},\alpha)}$ properly separates C_1, C_2 :

$$\forall \mathbf{x}_1 \in C_1, \mathbf{x}_2 \in C_2, \mathbf{a}^\top \mathbf{x}_1 \ge \mathbf{a}^\top \mathbf{x}_2;$$
$$\exists \mathbf{x}_1 \in C_1, \mathbf{x}_2 \in C_2, \mathbf{a}^\top \mathbf{x}_1 > \mathbf{a}^\top \mathbf{x}_2.$$

To sum up, C_1 and C_2 is properly separated if and only if **relint** $C_1 \cap$ **relint** $C_2 = \emptyset$.

3. If dim(aff C) = n and $\mathbf{x} \in \mathbb{R}^n \setminus C$, then \mathbf{x} and C can be properly separated.

Solution:

If $\mathbf{x} \notin \mathbf{cl} C$, by the Strict Separation Theorem, there exists a hyperplane which strictly separates \mathbf{x} and $\mathbf{cl} C$ and thus also properly separates \mathbf{x} and C.

If $\mathbf{x} \in \mathbf{bd}$ $C = \mathbf{relbd}$ C, by the Supporting Hyperplane Theorem, there exists a hyperplane $H_{(\mathbf{a},\alpha)}$ such that $C \subset H_{(\mathbf{a},\alpha)}^-$. Note that \mathbf{int} $C = \mathbf{relint}$ $C \neq \emptyset$. For any $\mathbf{y} \in \mathbf{int}$ C and r > 0 such that $B(\mathbf{y},r) \subset C$, we have $\mathbf{a}^{\top}(\mathbf{y} + r\mathbf{a}) \leq \alpha \implies \mathbf{a}^{\top}\mathbf{y} < \alpha$, so $y \notin H_{(\mathbf{a},\alpha)}$ and thus $C \not\subset H_{(\mathbf{a},\alpha)}$. Therefore, \mathbf{x} and C can be properly separated by $H_{(\mathbf{a},\alpha)}$.

Exercise 9: Farkas' Lemma

Let $\mathbf{A} = (\mathbf{a}_1, \dots, \mathbf{a}_n) \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$. Consider a set $A = {\mathbf{a}_1, \dots, \mathbf{a}_n}$. Its conic hull **cone** A is defined as

$$\mathbf{cone}\ A = \{ \sum_{i=1}^n \alpha_i \mathbf{a}_i : \alpha_i \ge 0, \mathbf{a}_i \in A \}.$$

1. Please show that **cone** A is closed and convex.

Solution:

Without loss of generality, we assume that $\mathbf{a}_1, \ldots, \mathbf{a}_n$ are linearly independent. Let $\{\mathbf{x}_k\} \subset$ **cone** A be an arbitrary sequence that converges to some $\mathbf{x} = \sum_{i=1}^n \alpha_i \mathbf{a}_i \in \mathbf{span} \ A$, where $\mathbf{x}_k = \sum_{i=1}^n \alpha_{ki} \mathbf{a}_i$ for some $\alpha_{ki} \geq 0$. Since A is a basis of **span** A, it follows that $\alpha_{ki} \to \alpha_i$ as $k \to \infty$, and hence $\alpha_i \geq 0$ for all i. Therefore, $\mathbf{x} \in \mathbf{cone} \ A$ and $\mathbf{cone} \ A$ is closed.

If $\mathbf{a}_1, \dots, \mathbf{a}_n$ are linearly dependent, TBD.

Second, for any $\mathbf{y} = \sum_{i=1}^{n} \beta_i \mathbf{a}_i \in \mathbf{cone} \ A$ and any $0 \le \theta \le 1$, we have $\theta \mathbf{x} + (1 - \theta) \mathbf{y} = \sum_{i=1}^{n} (\theta \alpha_i + (1 - \theta)\beta_i) \mathbf{a}_i \in \mathbf{cone} \ A$, implying that $\mathbf{cone} \ A$ is convex.

2. If $\mathbf{b} \in \mathbf{cone} A$, please show that there exists $\mathbf{x} \in \mathbb{R}^n$ such that $\mathbf{A}\mathbf{x} = \mathbf{b}$ and $\mathbf{x} \geq \mathbf{0}$.

Solution:

If $\mathbf{b} \in \mathbf{cone} \ A$, then there exists $x_i \geq 0$ such that $\mathbf{b} = \sum_{i=1}^n x_i \mathbf{a}_i$. Let $\mathbf{x} = (x_1, \dots, x_n)^{\top}$. Then $\mathbf{A}\mathbf{x} = \mathbf{b}$ and $\mathbf{x} \geq \mathbf{0}$.

3. If $\mathbf{b} \notin \mathbf{cone} \ A$, use separation theorems to show that there exists $\mathbf{y} \in \mathbb{R}^m$, such that $\mathbf{A}^\top \mathbf{y} \geq \mathbf{0}$ and $\mathbf{b}^\top \mathbf{y} < 0$.

Solution:

cone A is a nonempty closed convex set. If $\mathbf{b} \notin \mathbf{cone} \ A$, then $\mathbf{cone} \ A$ and \mathbf{b} can be strongly separated; that is, there exists $\mathbf{y} \in \mathbb{R}^n$ and $\alpha > \beta$ such that $\mathbf{cone} \ A \subset H_{(\mathbf{y},\alpha)}^+$ and $\mathbf{b} \in H_{(\mathbf{y},\beta)}^-$. Since $\mathbf{0} \in \mathbf{cone} \ \mathbf{A}$, we have $\alpha \leq 0 \implies \beta < 0$. Thus $\mathbf{b}^\top \mathbf{y} \leq \beta < 0$. Note that $\lambda \mathbf{a}_i \in \mathbf{cone} \ \mathbf{A}$ for any $\lambda > 0$. Hence $\mathbf{a}_i^\top \mathbf{y} \geq \lim_{\lambda \to \infty} \frac{\alpha}{\lambda} = 0 \implies \mathbf{A}^\top \mathbf{y} \geq \mathbf{0}$.

- 4. Now you can prove Farkas' Lemma: for given $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$, one and only one of the two statements hold:
 - $\exists \mathbf{x} \in \mathbb{R}^n$, $\mathbf{A}\mathbf{x} = \mathbf{b}$ and $\mathbf{x} > \mathbf{0}$.
 - $\exists \mathbf{v} \in \mathbb{R}^m$, $\mathbf{A}^{\top} \mathbf{v} > \mathbf{0}$ and $\mathbf{b}^{\top} \mathbf{v} < 0$.

Solution:

If $\mathbf{b} \in \mathbf{cone} A$, then by Question 2, the first statement holds. If $\mathbf{b} \notin \mathbf{cone} A$, then by Question 3, the second statement holds.

Suppose that both the statements hold. Then there exists $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{A}\mathbf{x} = \mathbf{b}$ and $\mathbf{x} \geq \mathbf{0}$, and there exists $\mathbf{y} \in \mathbb{R}^m$, $\mathbf{A}^\top \mathbf{y} \geq \mathbf{0}$ and $\mathbf{b}^\top \mathbf{y} < 0$. It follows that $\mathbf{b}^\top \mathbf{y} = \mathbf{x}^\top \mathbf{A}^\top \mathbf{y} = \langle \mathbf{x}, \mathbf{A}^\top \mathbf{y} \rangle \geq 0$, which is a contradiction.

Exercise 10: Projection to a Polytope

Hint: you may want to read [1, 2].

- 1. Let C be a nonempty closed convex subset of \mathbb{R}^n . Please show the following statements.
 - (a) The projection operator on C, i.e., Π_C , is continuous and firmly nonexpansive. In other words, for any $\mathbf{w}_1, \mathbf{w}_2 \in \mathbb{R}^n$, we have

$$\|\Pi_C(\mathbf{w}_1) - \Pi_C(\mathbf{w}_2)\|_2^2 + \|(\operatorname{Id} - \Pi_C)(\mathbf{w}_1) - (\operatorname{Id} - \Pi_C)(\mathbf{w}_2)\|_2^2 \le \|\mathbf{w}_1 - \mathbf{w}_2\|_2^2$$

where Id is the identity operator.

(b) For a point $\mathbf{w} \in \mathbb{R}^n$, let $\mathbf{w}(t) = \Pi_C(\mathbf{w}) + t(\mathbf{w} - \Pi_C(\mathbf{w}))$. Then, the projection of the point $\mathbf{w}(t)$ is $\Pi_C(\mathbf{w})$ for all $t \geq 0$, i.e.,

$$\Pi_C(\mathbf{w}(t)) = \Pi_C(\mathbf{w}), \forall t \geq 0.$$

Solution:

(a) Since $\mathbf{w}_{1,2} = \Pi_C(\mathbf{w}_{1,2}) + (\mathbf{w}_{1,2} - \Pi_C(\mathbf{w}_{1,2})) = \Pi_C(\mathbf{w}_{1,2}) + (\mathrm{Id} - \Pi_C)\mathbf{w}_{1,2}$, we have

$$\|\mathbf{w}_{1} - \mathbf{w}_{2}\|_{2}^{2} = \|\Pi_{C}(\mathbf{w}_{1}) - \Pi_{C}(\mathbf{w}_{2})\|_{2}^{2} + \|(\operatorname{Id} - \Pi_{C})(\mathbf{w}_{1}) - (\operatorname{Id} - \Pi_{C})(\mathbf{w}_{2})\|_{2}^{2} + 2\langle \Pi_{C}(\mathbf{w}_{1}) - \Pi_{C}(\mathbf{w}_{2}), (\operatorname{Id} - \Pi_{C})(\mathbf{w}_{1}) - (\operatorname{Id} - \Pi_{C})(\mathbf{w}_{2})\rangle.$$

We need to show the last term is non-negative, i.e.

$$\langle \Pi_C(\mathbf{w}_1) - \Pi_C(\mathbf{w}_2), \mathbf{w}_1 - \mathbf{w}_2 - \Pi_C(\mathbf{w}_1) + \Pi_C(\mathbf{w}_2) \rangle \ge 0$$
 (1)

Since $\Pi_C(\mathbf{w}_1), \Pi_C(\mathbf{w}_2) \in C$, by variational inequality, we have

$$\langle \Pi_C(\mathbf{w}_1) - \Pi_C(\mathbf{w}_2), \mathbf{w}_2 - \Pi_C(\mathbf{w}_2) \rangle \le 0 \tag{2}$$

$$\langle \Pi_C(\mathbf{w}_2) - \Pi_C(\mathbf{w}_1), \mathbf{w}_1 - \Pi_C(\mathbf{w}_1) \rangle \le 0 \tag{3}$$

- (3) (2) yields (1). The nonexpansiveness implies $\lim_{\mathbf{w}_2 \to \mathbf{w}_1} \|\Pi_C(\mathbf{w}_2) \Pi_C(\mathbf{w}_1)\|_2 = 0$ and hence $\lim_{\mathbf{w}_2 \to \mathbf{w}_1} \Pi_C(\mathbf{w}_2) = \Pi_C(\mathbf{w}_1)$, i.e. Π_C is continuous.
- (b) By variational inequality,

$$0 \ge \langle \Pi_C(\mathbf{w}) - \Pi_C(\mathbf{w}(t)), \mathbf{w}(t) - \Pi_C(\mathbf{w}(t)) \rangle$$

= $\|\Pi_C(\mathbf{w}) - \Pi_C(\mathbf{w}(t))\|_2^2 - t \langle \Pi_C(\mathbf{w}(t)) - \Pi_C(\mathbf{w}), \mathbf{w} - \Pi_C(\mathbf{w}) \rangle$
\geq \|\Pi_C(\mathbf{w}) - \Pi_C(\mathbf{w}(t))\|_2^2

Thus
$$\|\Pi_C(\mathbf{w}) - \Pi_C(\mathbf{w}(t))\|_2 = 0$$
, i.e. $\Pi_C(\mathbf{w}(t)) = \Pi_C(\mathbf{w})$ for all $t \ge 0$.

2. Let \mathbf{y} be an N-dimensional vector $\{\mathbf{x}_1, \dots, \mathbf{x}_p\}$ be N-dimension non-zero vectors and $\lambda \geq 0$ is a regularization parameter. Consider the following optimization problem:

$$\min_{\theta} \left\{ \left\| \theta - \frac{\mathbf{y}}{\lambda} \right\|_{2}^{2} : \left| \mathbf{x}_{i}^{\top} \theta \right| \le 1, i = 1, 2, \dots, p \right\}. \tag{4}$$

For notational convenience, we denote the optimal solution of (4) by $\theta^*(\lambda)$.

- (a) We let the feasible set of (4) be F. Please give an interpretation of the geometry of F (you don't need to prove it). Then give a close form of the optimal solution $\theta^*(\lambda)$ in the form of projection.
- (b) Let $\lambda, \lambda_0 > 0$ be two regularization parameters. Please show that

$$\theta^*(\lambda) \in B\left(\theta^*(\lambda_0), \left|\frac{1}{\lambda} - \frac{1}{\lambda_0}\right| \|\mathbf{y}\|_2\right).$$

(c) Let $\lambda, \lambda_0 > 0$ be two regularization parameters. Please show that

$$\theta^*(\lambda) \in B\left(\theta^*(\lambda_0) + \frac{1}{2}\left(\frac{1}{\lambda} - \frac{1}{\lambda_0}\right)\mathbf{y}, \frac{1}{2}\left|\frac{1}{\lambda} - \frac{1}{\lambda_0}\right| \|\mathbf{y}\|_2\right).$$

(You may use the result in Question 1(a).)

(d) Suppose that $\Pi_F\left(\frac{\mathbf{y}}{\lambda_0}\right) \neq \theta^*(\lambda_0)$. For any $\lambda \in (0, \lambda_0]$, let us define

$$\begin{aligned} \mathbf{v}_{1}\left(\lambda_{0}\right) &= \frac{\mathbf{y}}{\lambda_{0}} - \theta^{*}\left(\lambda_{0}\right), \\ \mathbf{v}_{2}\left(\lambda, \lambda_{0}\right) &= \frac{\mathbf{y}}{\lambda} - \theta^{*}\left(\lambda_{0}\right), \\ \mathbf{v}_{2}^{\perp}\left(\lambda, \lambda_{0}\right) &= \mathbf{v}_{2}\left(\lambda, \lambda_{0}\right) - \frac{\left\langle\mathbf{v}_{1}\left(\lambda_{0}\right), \mathbf{v}_{2}\left(\lambda, \lambda_{0}\right)\right\rangle}{\left\|\mathbf{v}_{1}\left(\lambda_{0}\right)\right\|_{2}^{2}} \mathbf{v}_{1}\left(\lambda_{0}\right). \end{aligned}$$

Then, the dual optimal solution $\theta^*(\lambda)$ can be estimated as follows:

$$\theta^*(\lambda) \in B\left(\theta^*\left(\lambda_0\right), \left\|\mathbf{v}_2^{\perp}\left(\lambda, \lambda_0\right)\right\|_2\right) \subseteq B\left(\theta^*\left(\lambda_0\right), \left|\frac{1}{\lambda} - \frac{1}{\lambda_0}\right| \|\mathbf{y}\|_2\right)$$

(You may use the result in Question 1(b).)

Solution:

- (a) Define $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$. Then $\mathbf{X}^{\top} \theta$ is a point in the unit ∞ -norm ball; that is, each dimension of $\mathbf{X}^{\top} \theta$ is bounded within [-1,1]. As F is a nonempty closed convex set, the optimal solution $\theta^*(\lambda) = \Pi_F(\frac{\mathbf{y}}{\lambda})$.
- (b) By nonexpansiveness of Π_F , we have

$$\|\theta^*(\lambda) - \theta^*(\lambda_0)\|_2 = \left\|\Pi_F(\frac{\mathbf{y}}{\lambda}) - \Pi_F(\frac{\mathbf{y}}{\lambda_0})\right\|_2 \le \left\|\frac{\mathbf{y}}{\lambda} - \frac{\mathbf{y}}{\lambda_0}\right\|_2 = \left|\frac{1}{\lambda} - \frac{1}{\lambda_0}\right| \|\mathbf{y}\|_2.$$

(c) By Question 1(a), we have

$$\begin{split} & \left\| \boldsymbol{\theta}^*(\lambda) - \boldsymbol{\theta}^*(\lambda_0) - \frac{1}{2} \left(\frac{1}{\lambda} - \frac{1}{\lambda_0} \right) \mathbf{y} \right\|_2 \\ &= \left\| \Pi_F(\frac{\mathbf{y}}{\lambda}) - \Pi_F(\frac{\mathbf{y}}{\lambda_0}) - \frac{1}{2} \left(\frac{1}{\lambda} - \frac{1}{\lambda_0} \right) \mathbf{y} \right\|_2 \\ &= \frac{1}{2} \left\| \Pi_F(\frac{\mathbf{y}}{\lambda}) - \Pi_F(\frac{\mathbf{y}}{\lambda_0}) - (\operatorname{Id} - \Pi_F)(\frac{\mathbf{y}}{\lambda}) + (\operatorname{Id} - \Pi_F)(\frac{\mathbf{y}}{\lambda_0}) \right\|_2 \\ &\leq \frac{1}{2} \sqrt{\left\| \Pi_F(\frac{\mathbf{y}}{\lambda}) - \Pi_F(\frac{\mathbf{y}}{\lambda_0}) \right\|_2^2 + \left\| (\operatorname{Id} - \Pi_F)(\frac{\mathbf{y}}{\lambda}) - (\operatorname{Id} - \Pi_F)(\frac{\mathbf{y}}{\lambda_0}) \right\|_2^2} \\ &\leq \frac{1}{2} \sqrt{\left\| \frac{\mathbf{y}}{\lambda} - \frac{\mathbf{y}}{\lambda_0} \right\|_2^2} = \frac{1}{2} \left| \frac{1}{\lambda} - \frac{1}{\lambda_0} \right| \left\| \mathbf{y} \right\|_2, \end{split}$$

where the first inequality holds as $\left\langle \Pi_F(\frac{\mathbf{y}}{\lambda}) - \Pi_F(\frac{\mathbf{y}}{\lambda_0}), (\operatorname{Id} - \Pi_F)(\frac{\mathbf{y}}{\lambda}) - (\operatorname{Id} - \Pi_F)(\frac{\mathbf{y}}{\lambda_0}) \right\rangle \ge 0.$

(d) Note that $\langle \mathbf{v}_2^{\perp}(\lambda, \lambda_0), \mathbf{v}_1(\lambda_0) \rangle = 0$, so

$$\|\mathbf{v}_{2}^{\perp}(\lambda,\lambda_{0})\|_{2} = \left\|\frac{\mathbf{y}}{\lambda} - \frac{\mathbf{y}}{\lambda_{0}} + \left(1 - \frac{\langle \mathbf{v}_{1}(\lambda_{0}), \mathbf{v}_{2}(\lambda,\lambda_{0})\rangle}{\|\mathbf{v}_{1}(\lambda_{0})\|_{2}^{2}}\right) \mathbf{v}_{1}(\lambda_{0})\right\|$$

$$\leq \left\|\frac{\mathbf{y}}{\lambda} - \frac{\mathbf{y}}{\lambda_{0}}\right\|_{2} = \left|\frac{1}{\lambda} - \frac{1}{\lambda_{0}}\right| \|\mathbf{y}\|_{2}.$$

By Question 1(b), we know that $\Pi_F\left(\theta^*(\lambda_0) + \frac{\langle \mathbf{v}_1(\lambda_0), \mathbf{v}_2(\lambda, \lambda_0)\rangle}{\|\mathbf{v}_1(\lambda_0)\|_2^2}\mathbf{v}_1(\lambda_0)\right) = \theta^*(\lambda_0)$. Then by nonexpansiveness, we have

$$\|\theta^*(\lambda) - \theta^*(\lambda_0)\| = \left\| \Pi_F(\frac{\mathbf{y}}{\lambda}) - \Pi_F\left(\theta^*(\lambda_0) + \frac{\langle \mathbf{v}_1(\lambda_0), \mathbf{v}_2(\lambda, \lambda_0) \rangle}{\|\mathbf{v}_1(\lambda_0)\|_2^2} \mathbf{v}_1(\lambda_0) \right) \right\|$$

$$\leq \left\| \frac{\mathbf{y}}{\lambda} - \theta^*(\lambda_0) - \frac{\langle \mathbf{v}_1(\lambda_0), \mathbf{v}_2(\lambda, \lambda_0) \rangle}{\|\mathbf{v}_1(\lambda_0)\|_2^2} \mathbf{v}_1(\lambda_0) \right\|$$

$$= \|\mathbf{v}_2^{\perp}(\lambda, \lambda_0)\|_2$$

16

References

- [1] T. Hastie, R. Tibshirani, and M. Wainwright. Statistical learning with sparsity. *Monographs on statistics and applied probability*, 143:143, 2015.
- [2] J. Wang, P. Wonka, and J. Ye. Lasso screening rules via dual polytope projection. *Journal of Machine Learning Research*, 16(32):1063–1101, 2015.