Dynamika - Teoretický přehled

Fyzika - opakování a prohloubení

1 Newtonovy zákony pohybu

1.1 1. Newtonův zákon (Zákon setrvačnosti)

Formulace:

Těleso setrvává v klidu nebo v rovnoměrném přímočarém pohybu, pokud není nuceno vnějšími silami tento stav změnit.

Fyzikální význam:

- Každé těleso má vlastnost setrvačnosti
- Setrvačnost závisí na hmotnosti
- Platí v inerciálních vztažných soustavách

1.2 2. Newtonův zákon (Zákon síly)

Rovnice:

$$\vec{F} = m \cdot \vec{a}$$

nebo

$$\vec{a} = \frac{\vec{F}}{m}$$

Popis veličin:

Veličina	Popis	Jednotka
$ec{F}$	Síla (vektor)	N (Newton)
m	Hmotnost	kg
\vec{a}	Zrychlení (vektor)	m/s^2

Fyzikální význam:

- Síla způsobuje zrychlení
- Zrychlení je přímo úměrné síle a nepřímo úměrné hmotnosti
- Směr zrychlení je stejný jako směr výsledné síly

1.3 3. Newtonův zákon (Zákon akce a reakce)

Formulace:

Každé působení (akce) vyvolává stejně velké opačné působení (reakci).

Rovnice:

$$\vec{F}_{12} = -\vec{F}_{21}$$

Fyzikální význam:

- $\bullet\,$ Síly vznikají vždy ve dvojicích
- $\bullet\,$ Akce a reakce působí na různá tělesa
- $\bullet\,$ Akce a reakce mají stejnou velikost a opačný směr

2 Druhy sil

2.1 Tíhová síla

Rovnice:

$$F_g = m \cdot g$$

Popis veličin:

Veličina	Popis	Jednotka
F_g	Tíhová síla	N
m	Hmotnost	kg
g	Tíhové zrychlení	$ m m/s^2$

Fyzikální význam:

• Gravitační síla působící na těleso v blízkosti Země

• Na Zemi: $g \approx 9.81 \text{ m/s}^2$

• Směřuje svisle dolů k středu Země

2.2 Třecí síla

Rovnice:

$$F_t = f \cdot F_n$$

Popis veličin:

Veličina	Popis	Jednotka
F_t	Třecí síla	N
f	Součinitel tření	-
F_n	Normálová síla	N

Druhy tření:

- Statické tření (f_s) - těleso v klidu

• Platí: $f_s > f_k$

2.3 Dostředivá síla

Rovnice:

$$F_d = m \cdot \frac{v^2}{r} = m \cdot \omega^2 \cdot r$$

Popis veličin:

Veličina	Popis	Jednotka
F_d	Dostředivá síla	N
m	Hmotnost	kg
v	Obvodová rychlost	m/s
r	Poloměr	\mathbf{m}
ω	Úhlová rychlost	$\mathrm{rad/s}$

Fyzikální význam:

- $\bullet~$ Výslednice sil při pohybu po kružnici
- Směřuje k středu kružnice
- $\bullet\,$ Nutná pro udržení kruhové trajektorie

3 Síla na nakloněné rovině

3.1 Rozklad tíhové síly

Rovnoběžná složka (po nakloněné rovině):

$$F_{||} = m \cdot g \cdot \sin \alpha$$

Kolmá složka (na nakloněnou rovinu):

$$F_{\perp} = m \cdot g \cdot \cos \alpha$$

Popis veličin:

Veličina	Popis	Jednotka
$F_{ }$	Síla rovnoběžná s rovinou	N
F_{\perp}	Síla kolmá k rovině	N
α	Úhel sklonu roviny	° nebo rad

Normálová síla:

$$F_n = F_{\perp} = m \cdot g \cdot \cos \alpha$$

Podmínka rovnováhy (bez tření):

$$F_{tah} = F_{||} = m \cdot g \cdot \sin \alpha$$

S třením:

$$F_{tah} = m \cdot g \cdot \sin \alpha + f \cdot m \cdot g \cdot \cos \alpha$$

4 Hybnost a zákony zachování

4.1 Hybnost

Definice:

Hybnost je vektorová veličina rovná součinu hmotnosti a rychlosti.

Rovnice:

$$\vec{p} = m \cdot \vec{v}$$

Popis veličin:

Veličina	Popis	Jednotka
$egin{array}{c} ec{p} \ m \ ec{v} \end{array}$	Hybnost Hmotnost Rychlost	$\begin{array}{c} \text{kg} \cdot \text{m/s} \\ \text{kg} \\ \text{m/s} \end{array}$

4.2 Zákon zachování hybnosti

Formulace:

V izolované soustavě je celková hybnost konstantní.

Rovnice:

$$\sum ec{p}_{ ext{před}} = \sum ec{p}_{ ext{po}}$$

Pro dvě tělesa:

$$m_1\vec{v}_1 + m_2\vec{v}_2 = m_1\vec{v}_1' + m_2\vec{v}_2'$$

Aplikace:

- Srážky těles (pružné i nepružné)
- Výstřel z děla (zpětný ráz)
- Raketový pohon

4.3 Impuls síly

Definice:

Impuls síly je změna hybnosti.

Rovnice:

$$\Delta \vec{p} = \vec{F} \cdot \Delta t$$

nebo

$$\vec{F} = \frac{\Delta \vec{p}}{\Delta t}$$

Fyzikální význam:

- Stejná změna hybnosti může být dosažena malou silou po dlouhý čas nebo velkou silou po krátký čas
- $\bullet\,$ Airbag v autě prodlužuje dobu nárazu \to menší síla

5 Fyzikální konstanty

Konstanta	Symbol	Hodnota	Jednotka
Tíhové zrychlení (Země)	$g \\ g_M$	9,81	m/s^2
Tíhové zrychlení (Měsíc)		1,62	m/s^2

5.1 Typické hodnoty součinitelů tření

Materiály	Statické f_s	Kinetické f_k
Ocel - ocel	0,74	0,57
Dřevo - dřevo	$0,\!25\text{-}0,\!50$	0,20
Led - led	0,10	0,03
Guma - suchý asfalt	1,0	0,8
Guma - mokrý asfalt	0,7	0,5

6 Souhrn jednotek v SI

Veličina	Jednotka SI	Odvození	Poznámka
Síla	N (Newton)	$kg \cdot m/s^2$	$1~\mathrm{N} = \mathrm{síla}$ potřebná k udělení zrychlení $1~\mathrm{m/s^2}$ tělesu o hmotnosti 1
Hmotnost	kg (kilogram)	-	Základní jednotka
Zrychlení	$\mathrm{m/s^2}$	-	-
Hybnost	$ ext{kg} \cdot ext{m/s}$	-	Alternativně N·s
Impuls síly	$N \cdot s$	-	Alternativně kg·m/s

Poznámky

- Inerciální soustava: Vztažná soustava, ve které platí Newtonovy zákony (soustava pohybující se rovnoměrně přímočaře nebo v klidu)
- Setrvačná hmotnost vs. tíhová hmotnost: V klasické mechanice jsou totožné, obecně mohou být různé
- Výsledná síla: Vektorový součet všech sil působících na těleso
- Rovnováha sil: $\sum \vec{F} = 0 \to$ těleso je v klidu nebo se pohybuje rovnoměrně přímočaře
- Třecí síla: Vždy působí proti směru pohybu (nebo možného pohybu)
- Izolovaná soustava: Soustava, na kterou nepůsobí vnější síly (uzavřená soustava)
- Pružná srážka: Zachovává se hybnost i kinetická energie
- Nepružná srážka: Zachovává se pouze hybnost, ne kinetická energie