Y1163/0>6 黄廷霍

$$2.12$$
 f(x,y) = $\frac{1}{2}$ (x,y) * Y(x,y) , where Y=|
= $\frac{1}{2}$ (x,y)
= $\frac{1}{2}$ (x-xo) + (y-yo) $\frac{1}{2}$, $k = 255$

2-(6

$$A = \begin{bmatrix} C_{X} & O & O \\ A & C_{Y} & O \\ O & O & I \end{bmatrix}$$

$$A = \begin{bmatrix} C_{X} & O & O \\ C_{X} & O & O \\ O & O & I \end{bmatrix}$$

C.
$$A_{v} = \begin{bmatrix} 1 & S_{v} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, $A_{v} = \begin{bmatrix} 1 & S_{v} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

$$A_{h} = \begin{bmatrix} 1 & 0 & 0 \\ 5h & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, A_{h} = \begin{bmatrix} 1 & 0 & 0 \\ 5h & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

3.1>.
$$\int_{0}^{R} R(u) du$$
.

 $R_{1}(t) = -3r+2 - \int_{0}^{R} (-2u) + 2u du$
 $-r^{2} + 2r^{2}$
 $R_{2}(t) = 2r^{2} - \int_{0}^{R} 2r^{2} du = r^{2}$
 $R_{2}(t) = 2r^{2} - \int_{0}^{R} 2r^{2} du = r^{2}$
 $R_{3}(t) = 2r^{2} - \int_{0}^{R} 2r^{2} du = r^{2}$
 $R_{4}(t) = 2r^{2} - \int_{0}^{R} 2r^{2} du = r^{2}$
 $R_{4}(t) = 2r^{2} - \int_{0}^{R} 2r^{2} du = r^{2}$
 $R_{4}(t) = 2r^{2} - \int_{0}^{R} 2r^{2} du = r^{2}$
 $R_{4}(t) = 2r^{2} - \int_{0}^{R} 2r^{2} du = r^{2}$
 $R_{4}(t) = 2r^{2} - \int_{0}^{R} 2r^{2} du = r^{2}$
 $R_{4}(t) = 2r^{2} - \int_{0}^{R} 2r^{2} du = r^{2}$
 $R_{4}(t) = 2r^{2} - \int_{0}^{R} 2r^{2} du = r^{2}$
 $R_{4}(t) = 2r^{2} - \int_{0}^{R} 2r^{2} du = r^{2}$
 $R_{4}(t) = 2r^{2} - \int_{0}^{R} 2r^{2} du = r^{2}$
 $R_{4}(t) = 2r^{2} - \int_{0}^{R} 2r^{2} du = r^{2}$
 $R_{4}(t) = 2r^{2} - \int_{0}^{R} 2r^{2} du = r^{2}$
 $R_{4}(t) = 2r^{2} - \int_{0}^{R} 2r^{2} du = r^{2}$
 $R_{4}(t) = 2r^{2} - \int_{0}^{R} 2r^{2} du = r^{2}$
 $R_{4}(t) = 2r^{2} - \int_{0}^{R} 2r^{2} du = r^{2}$
 $R_{4}(t) = 2r^{2} - \int_{0}^{R} 2r^{2} du = r^{2}$
 $R_{4}(t) = 2r^{2} - \int_{0}^{R} 2r^{2} du = r^{2}$
 $R_{4}(t) = 2r^{2} - \int_{0}^{R} 2r^{2} du = r^{2}$
 $R_{4}(t) = 2r^{2} - \int_{0}^{R} 2r^{2} du = r^{2}$
 $R_{4}(t) = 2r^{2} - \int_{0}^{R} 2r^{2} du = r^{2}$
 $R_{4}(t) = 2r^{2} - \int_{0}^{R} 2r^{2} du = r^{2}$
 $R_{4}(t) = 2r^{2} - \int_{0}^{R} 2r^{2} du = r^{2}$
 $R_{4}(t) = 2r^{2} - \int_{0}^{R} 2r^{2} du = r^{2}$
 $R_{4}(t) = 2r^{2} - \int_{0}^{R} 2r^{2} du = r^{2}$
 $R_{4}(t) = 2r^{2} - \int_{0}^{R} 2r^{2} du = r^{2}$
 $R_{4}(t) = 2r^{2} - \int_{0}^{R} 2r^{2} du = r^{2}$
 $R_{4}(t) = 2r^{2} - \int_{0}^{R} 2r^{2} du = r^{2}$
 $R_{4}(t) = 2r^{2} - \int_{0}^{R} 2r^{2} du = r^{2}$
 $R_{4}(t) = 2r^{2} - \int_{0}^{R} 2r^{2} du = r^{2}$
 $R_{4}(t) = 2r^{2} - \int_{0}^{R} 2r^{2} du = r^{2}$
 $R_{4}(t) = 2r^{2} - \int_{0}^{R} 2r^{2} du = r^{2}$
 $R_{4}(t) = 2r^{2} - \int_{0}^{R} 2r^{2} du = r^{2}$
 $R_{4}(t) = 2r^{2} - \int_{0}^{R} 2r^{2} du = r^{2}$
 $R_{4}(t) = 2r^{2} - \int_{0}^{R} 2r^{2} du = r^{2}$
 $R_{4}(t) = 2r^{2} - \int_{0}^{R} 2r^{2} du = r^{2}$
 $R_{4}(t) = 2r^{2} - \int_{0}^{R} 2r^{2} du = r^{2}$
 $R_{4}(t) = 2r$

(C) Correlation.

GOIME OLG CONV.

Principles and Applications of Digital Image Processing

HW2 Report

R11631026 黃廷睿

Part 2: Image File Reading, Display and Basic Processing

整體介面如上圖,各區域分別對應不同小題的功能。

1. Read image

透過檔案選取功能,讓使用者可透過檔案總管選取所需要的圖片,並將其讀入 QT 中,利用 QLabel 做顯示,並同時顯示直方圖以便後續觀察變化。

- 2. Convert a color image into a grayscale image
- 3. Display the histogram of a grayscale image

此處兩題一起進行,透過將圖片各通道/3 或是乘上彼此不同的權重,雖然從肉眼判斷並無太大差距,但在直方圖表示即可發現不同權重圖的高光部分有個較尖的突起,這是/3 所沒有的。

並且將兩張照片相減可發現,其實彼此不同的區域比想 像的還要多,大致都分布在最亮或是最暗處。

並且同時也與攝影界常用的修圖軟體 Lightroom(LR)做比較,可發現利用 LR轉成的黑白照片較/3的照片亮部 過渡較為平滑,推測是軟體內還是有 針對相片做特定的優化算法。

4. Manual threshold function

此處設計是利用 Slider 做滑桿,當調整到所要的數值時按下 2-4 button,照片便會做相對應的轉換,目前是設計當照片中的像素值大於滑桿設定的 threshold 便會將其轉為 255,亦即為白色,以下便是不同 threshold 對應的結果

5. Adjust the spatial resolution 此題目前尚未做完

6. Adjust the brightness and contrast

原先打算利用單純的矩陣加上常數作為調整亮度功能:
self.brightness_img = self.img + self.brightness
然而此方法會產生相當奇怪的照片,圖片顏色會錯亂,原因並不清楚。

但後來發現若將原始圖片*1.0 便可以正常顯示了
(僅只有*1 還不行)
self.brightness_img = self.img * 1.0 + self.brightness

並且這邊也與 LR 的對比調整功能做比較,可發現即使用了較合理的計算方法,但調整出來的 顏色風格仍較 LR 更為濃烈,因此可判斷兩者內部的算法應不相同。

7. Histogram equalization function

可發現目前設計的算法確實可以將直方圖平均的分散到整個X軸上。