How to invest in movies

Deng Zhantao
Xia Shengzhao

Huang Yu-Ting
Zhang Yinan

Motivation

- Whether a movie will succeed decides the investment.
- Success = revenue budget / budget
- Successful factors:
 - Theme
 - Cast
 - Production company
- Successful factors of different genres would be different
- For a specific genre, which factor would influence it most?
- Hopefully, help investors to do a wise investment

Data exploration

- Kaggle TMDB 5000 Movie Dataset
- Interested features:
 - Actors
 - Directors
 - Budget
 - Keywords
 - Production companies
- Let's do some data exploration:
 - Explore actors feature detailedly
 - Analyze and visualize via networkx package

Actors data exploration

- 54201 distinct actors
- Filter actors appearing less than 5 movies, 3794 actors were left
- Distribution: 1400

- Too massive for visualization and analysis
- Subsump 400 nodes according to distribution
- Preserve generality of data and easier to utilize

Clustering and actor social network

Apply spectral clustering method

- Largest gap appeared after the second eigenvalue => 2 clusters
- Laplacian eigenmaps: embed our graph in a 6-d Euclidean space
- k-means: a binary clustering
- Visualize the result on 2-d space

• Visualized the actor social network:

• 5 most 'sociable' actors of each cluster:

	Name	Degree
128	Julian Glover	15
111	Jason Ritter	12
44	Spencer Wilding	12
87	David Kelly	11
15	Elwin 'Chopper' David	11

	Name	Degree
108	Vera Farmiga	16
78	Kevin Corrigan	14
41	Adam LeFevre	13
144	Marcia Gay Harden	13
190	Carlos Alazraqui	13

Idea

What we have:

Features: budget, actor/ress, director, etc.

What we want:

A graph that can predict ROI

Idea

Heat kernel and Diffusion

Input signals Diffused signals Ground truth

Optimization

Building subgraphs

- Interpretring "success" as Return on Investment (ROI)
- A linear weighted sum of subgraphs
- Every node represents a movie
- Edge relates to actor / director/ keyword/ production company

Building subgraphs - Budget

- Range from 0 to 3E+8
- Treat nodes with missing and wrong values as isolated nodes
- Use the Gaussian function to turn Euclidean distance into edge weights

heat map of budget adjacency matrix

Building subgraphs - Actors, Directors

- Keep four actors or two directors at most
- Special characters replaced by
- Use names to run the bag-ofwords model
- Double roles

$$[0, 0, 0, 1, 0, 0, 0, 0, 1, 0, \dots, 0, 0]$$

 $[0, 0, 0, \frac{2}{2}, 0, 0, 0, 0, 1, 0, \dots, 0, 0]$

Degree distribution of actor adjacency matrix

Building subgraphs - Keywords

- More than 9000 keywords
- Group keywords that have the same root
- Replace keywords by synonyms of higher frequency
- Delete keywords that appear in fewer than four movies
- Bag-of-words model

frequency of occurence of keywords before and after cleaning

Building subgraphs - Company

- Extracting production companies for each movie as subsets
- The union of all these subsets serve as the bag of companies
- Generatings feature vectors as intersersections which only contain 0 and 1

The frequency distribution map of movies producted by different companies

Loss function

$$Loss = \frac{1}{2N} \|f \odot (H_t \cdot S - Y)\|_2^2 + \frac{\lambda}{2} \|v\|_2^2$$
$$= \frac{1}{2N} \sum_i f_i \left[\sum_j H_{ij} S_j - Y_i \right]^2 + \frac{\lambda}{2} \sum_k v_k^2$$

$$H_t = e^{-tL} \approx I - tL + \frac{1}{2}t^2L^2$$
$$L = I - D^{-\frac{1}{2}}WD^{-\frac{1}{2}}$$

Ht: Heat kernel

S: Signal

Y: Groundtruth

f: Mask

N: number of valid indices

Gradient on t

$$\frac{\partial Loss}{\partial t} = \frac{1}{N} \sum_{i,j} \left[(H_t S - Y) \odot f \cdot S^T \odot (-L + tL^2) \right]_{ij}$$

Gradient on v

$$\frac{\partial Loss}{\partial v_k} = \sum_{i,j} \frac{\partial Loss}{\partial H_{ij}} \frac{\partial H_{ij}}{\partial v_k} \qquad \frac{\partial W_{mn}}{\partial v_k} = W_{m,n}^k$$

$$= \sum_{i,j} \frac{\partial Loss}{\partial H_{ij}} \sum_{k,l} \frac{\partial H_{ij}}{\partial L_{kl}} \frac{\partial L_{kl}}{\partial v_k} \qquad \frac{\partial L_{kl}}{\partial W_{mn}} \frac{\partial W_{mn}}{\partial v_k} \qquad \frac{\partial L_{kl}}{\partial W_{mn}} = \begin{cases} \frac{(m,n) = (k,l),}{2D_{kk}^{-\frac{3}{2}} D_{ll}^{-\frac{1}{2}} + \frac{1}{2} D_{kk}^{-\frac{1}{2}} W_{kl} D_{ll}^{-\frac{3}{2}}} \\ \frac{1}{2} D_{kk}^{-\frac{3}{2}} W_{kl} D_{ll}^{-\frac{1}{2}} - D_{kk}^{-\frac{1}{2}} D_{ll}^{-\frac{1}{2}} + \frac{1}{2} D_{kk}^{-\frac{1}{2}} W_{kl} D_{ll}^{-\frac{3}{2}}} \\ \frac{1}{2} D_{kk}^{-\frac{3}{2}} W_{kl} D_{ll}^{-\frac{1}{2}} \\ m \neq k, n = l, \\ \frac{1}{2} D_{kk}^{-\frac{1}{2}} W_{kl} D_{ll}^{-\frac{3}{2}} \end{cases}$$

$$H_t = e^{-tL} \approx I - tL + \frac{1}{2}t^2L^2$$

 $L = I - D^{-\frac{1}{2}}WD^{-\frac{1}{2}}$

$$\frac{\partial H_{ij}}{\partial L_{kl}} = \begin{cases} (k,l) = (i,j), & -t + \frac{t^2}{2}(L_{ii} + L_{jj}) \\ k = i, l \neq j, & \frac{1}{2}t^2L_{lj} \\ k \neq i, l = j, & \frac{1}{2}t^2L_{ik} \end{cases}$$

$$\frac{\partial Loss}{\partial H_{ij}} = \frac{1}{N} [(H_i S - Y_i) f_i] S_j$$

Result - Comedy

Result - Drama

Result - Romance

Prediction on ROI

Science fiction and drama

Interstella: (K = 3)

Predicted ROI: 3.10

Groundtruth: 3.09

Action

Pacific rim 2: (K = 5)

Predicted ROI: 0.87

Groundtruth: 0.93

Romance

La La Land: (K = 5)

Predicted ROI: 2.35

Groundtruth: 18.36

Thank you for your listening