

An Example Problem

Let's assume we want to <u>estimate real-estate prices in Taiwan</u>

Loading the Data

We have data about this problem in a csv file in the data directory

```
In [10]: data = pd.read csv(os.path.join('..', 'data', 'real estate.csv'), sep=',')
           data.head()
Out[10]:
                                                   longitude price per area
               house age dist to MRT #stores
                                           latitude
            0 14.8
                        393.2606
                                          24.96172 121.53812 7.6
                        6488.0210
                                          24.95719 121.47353 11.2
            1 17.4
            2 16.0
                        4066.5870 0
                                          24.94297 121.50342 11.6
            3 30.9
                        6396.2830
                                          24.94375 121.47883 12.2
            4 16.5
                        4082.0150 0
                                          24.94155 121.50381 12.8
```

The first 4 columns contain easy-to-obtain quantities, the last does not

Obtaining price information requires actual houses to be sold and bought

- Therefore, it might be useful to learn a machine model
- ...That can estimate the price based on the easily available information

Using Histograms

Since our goal is roughly defined, it's a good idea to inspect the dataset

We will start by using histograms, i.e. plots with:

- On the x-axis: values for one attribute
- On the y-axis: occurrency count in the dataset

They are useful to display the distribution of each column

Some comments:

- Continuous attributes are typically discretized (i.e. binned) first
- The counts can be normalized to obtain frequencies

Histograms can be built directly from pandas

- ...By using the <u>hist</u> method.
- matplotlib is used behind the scens and can be employed to add details
- ...Or as an alernative, if we need a more complex plot

Dataset Inspection via Histograms

Let's inspect the "house age" attribute

What can you say about that?

Using Histograms

Let's inspect the "house age" attribute

- There seems to be two main clusters, roughly normally distributed
- Lower age values are roughly uniformly likely

Now, try building histograms for the other columns

Dataset Inspection via Cartesian Plots

We can obtain information about the distribution of each column

...By using statistics. For example we can call:

[13]: dat	data.describe()						
ut[13]:		house age	dist to MRT	#stores	latitude	longitude	price per area
cou	ınt	414.000000	414.000000	414.000000	414.000000	414.000000	414.000000
me	an	17.712560	1083.885689	4.094203	24.969030	121.533361	37.980193
std		11.392485	1262.109595	2.945562	0.012410	0.015347	13.606488
mir	1	0.000000	23.382840	0.000000	24.932070	121.473530	7.600000
259	%	9.025000	289.324800	1.000000	24.963000	121.528085	27.700000
509	%	16.100000	492.231300	4.000000	24.971100	121.538630	38.450000
759	%	28.150000	1454.279000	6.000000	24.977455	121.543305	46.600000
ma	X	43.800000	6488.021000	10.000000	25.014590	121.566270	117.500000

- Statistics are a very compact way to convey information
- ...But they are also less rich than using a histogram

Dataset Inspection via Scatter Plots

The fourth tool we'll use for dataset inspection

...Is given by scatter plots, which have:

- On the x-axis: the values for one attribute
- On the y-axis: the values for anotehr attribute (usually the target)
- Points in scatter plot are not connected by a line

Some comments:

- These are great for the visual identification of correlations
- By looking at the shape of the "cloud of points"
- ...It is possible to get insight on how the attributes are connected

Using Scatter Plots

Let's inspect how "house age" and the target are linked

- There does not seem to be a strong correlation here
- ...But it's worth checking other columns, too

- We have one box per value of an attribute
- \blacksquare On the y axis, we have a second attribute (usually the target)

- The box boundaries are the 1st and 3rd quartile
- The green line represents the mean

- The "whiskers" extend for 1.5 the inter-quartile range
- Values outside the whiskers are plotted directly

- lacktriangle Box plots are great to see how the distribution of a y depends on x
- They can be used with continuous attributes, if we first discretize them