

Grundlagen des Operations Research

Teil 4 – Simplex-Phase 1, Sensitivitätsanalyse Lin Xie | 02.11.2021

PROF. DR. LIN XIE - WIRTSCHAFTSINFORMATIK, INSBESONDERE OPERATIONS RESEARCH

- 1 Wiederholung
- 2 Simplex-Algorithmus Phase I
- 3 Vorbereitungen für die Sensitivitätsanalyse
- 4 Sensitivitätsanalyse
- 5 Fazit und Ausblick

1/44

Wiederholung

Zusammenfassung

Wiederholung

- **1** Bringe das LP in die Standardform.
- 2 Starte mit einer zulässigen Basislösung (evtl. Phase I ausführen).
- **3** Finde eine Nichtbasisvariable x_q , die den Zielfunktionswert verbessern kann.

(Bei Maximierung: Nichtbasisvariablen mit positiven Koeffizienten.) Falls es keine gibt, dann ist die aktuelle Basislösung optimal. (Bei Maximierung: alle Koeffizienten in der Zielfunktion negativ.)

- 4 Bestimme den Wert für x_q , der zur größtmöglichen Verbesserung der Zielfunktion führt, ohne dass eine Basisvariable unzulässig wird. Sei x_p die erste Basisvariable, die den Wert von x_q beschränkt. Falls es keine solche Beschränkung für x_q gibt, dann ist das Problem unbeschränkt.
- **5** Führe einen Pivotschritt durch, bei dem x_p die Basis verlässt und x_q in die Basis eintritt. Gehe zu Schritt 3.

3/44

Finden einer optimalen Lösung für das Fahrradproblem

Wiederholung

Modell:

Die Lösung $x_1 = x_2 = 0$, also nichts zu produzieren, ist eine zulässige Lösung für dieses Problem.

Ist dies auch eine optimale Lösung für das Problem?

 \rightarrow Nein, aber wie kann die Lösung $x_1 = x_2 = 0$ verbessert werden?

4/44

Finden einer optimalen Lösung für das Fahrradproblem – 1.Iteration
Wiederholung

NBV:
$$x_1 = x_2 = 0$$

BV:
$$x_3 = 800$$
, $x_4 = 6000$, $x_5 = 400$ und $x_6 = 700$

Finden einer optimalen Lösung für das Fahrradproblem – 1.Iteration
Wiederholung

NBV:
$$x_1 = x_2 = 0$$

BV:
$$x_3 = 800$$
, $x_4 = 6000$, $x_5 = 400$ und $x_6 = 700$

Finden einer optimalen Lösung für das Fahrradproblem – 1.Iteration

Wiederholung

NBV:
$$x_1 = x_2 = 0$$

BV:
$$x_3 = 800$$
, $x_4 = 6000$, $x_5 = 400$ und $x_6 = 700$

Finden einer optimalen Lösung für das Fahrradproblem – 1.Iteration Wiederholung

NBV:
$$x_1 = x_2 = 0$$

BV:
$$x_3 = 800$$
, $x_4 = 6000$, $x_5 = 400$ und $x_6 = 700$

Finden einer optimalen Lösung für das Fahrradproblem – 1.Iteration Wiederholung

Ausgangsbasislösung:

NBV:
$$x_1 = x_2 = 0$$

BV:
$$x_3 = 800$$
, $x_4 = 6000$, $x_5 = 400$ und $x_6 = 700$

 $x_1 = x_2 = 0$

Finden einer optimalen Lösung für das Fahrradproblem – 2.Iteration
Wiederholung

Basislösung:

NBV:
$$x_2 = x_5 = 0$$

BV:
$$x_1 = 400$$
, $x_3 = 400$, $x_4 = 1200$ und $x_6 = 700$

$$\begin{array}{llll} \max \ z & = 48000 + 90x_2 - 120x_5 \\ \text{subject to} & x_3 & = 400 & -x_2 & +x_5 \\ x_4 & = 1200 & -6x_2 & +12x_5 \\ x_1 & = 400 & -x_5 \\ x_6 & = 700 & -x_2 \\ x_1, x_2, x_3, x_4, x_5, x_6 \geq 0 \end{array}$$

Finden einer optimalen Lösung für das Fahrradproblem – 2.Iteration
Wiederholung

Basislösung:

NBV:
$$x_2 = x_5 = 0$$

BV:
$$x_1 = 400$$
, $x_3 = 400$, $x_4 = 1200$ und $x_6 = 700$

Finden einer optimalen Lösung für das Fahrradproblem – 2.Iteration
Wiederholung

■ Basislösung:

NBV:
$$x_2 = x_5 = 0$$

BV:
$$x_1 = 400, \ x_3 = 400, \ x_4 = 1200 \ und \ x_6 = 700$$

Finden einer optimalen Lösung für das Fahrradproblem – 2.Iteration
Wiederholung

■ Basislösung:

NBV:
$$x_2 = x_5 = 0$$

BV:
$$x_1 = 400$$
, $x_3 = 400$, $x_4 = 1200$ und $x_6 = 700$

Finden einer optimalen Lösung für das Fahrradproblem – 2. Iteration Wiederholung

Basislösung:

NBV:
$$x_2 = x_5 = 0$$

BV:
$$x_1 = 400$$
, $x_3 = 400$, $x_4 = 1200$ und $x_6 = 700$

D.h. x2 kommt in unsere Basis und x4 verlässt die Basis.

6/44

Finden einer optimalen Lösung für das Fahrradproblem – 3.Iteration
Wiederholung

■ Basislösung:

NBV:
$$x_5 = x_4 = 0$$

BV: $x_1 = 400$, $x_2 = 200$, $x_3 = 200$ und $x_6 = 500$

$$\begin{array}{lll} \max z & = 66000 - 15x_4 + 60x_5 \\ \text{subject to} & \\ x_3 & = 200 & +\frac{1}{6}x_4 - x_5 \\ x_2 & = 200 & -\frac{1}{6}x_4 + 2x_5 \\ x_1 & = 400 & -x_5 \\ x_6 & = 500 & +\frac{1}{6}x_4 - 2x_5 \\ x_1, x_2, x_3, x_4, x_5, x_6 \geq 0 \end{array}$$

Finden einer optimalen Lösung für das Fahrradproblem – 3.Iteration
Wiederholung

Basislösung:

NBV:
$$x_5 = x_4 = 0$$

BV:
$$x_1 = 400$$
, $x_2 = 200$, $x_3 = 200$ und $x_6 = 500$

max z =66000-15
$$x_4$$
+60 x_5
subject to

 $x_3 = 200 + \frac{1}{6}x_4 - x_5$
 $x_2 = 200 - \frac{1}{6}x_4 + 2x_5$
 $x_1 = 400$
 $x_6 = 500 + \frac{1}{6}x_4$
 $x_1 = 2x_5$
 $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$

Finden einer optimalen Lösung für das Fahrradproblem – 3. Iteration

Wiederholung

Basislösung:

NBV:
$$x_5 = x_4 = 0$$

BV:
$$x_1 = 400$$
, $x_2 = 200$, $x_3 = 200$ und $x_6 = 500$

Quotiententest:

$$|x_5 \le 200 \text{ Min!}$$

$$x_5 \leq \infty$$

$$|x_5 \le 400$$

$$|x_5 \le 250$$

Finden einer optimalen Lösung für das Fahrradproblem – 3.Iteration
Wiederholung

Basislösung:

NBV:
$$x_5 = x_4 = 0$$

BV:
$$x_1 = 400$$
, $x_2 = 200$, $x_3 = 200$ und $x_6 = 500$

Quotiententest:

$$|x_5 \le 200 \text{ Min!}$$

$$|x_5 \le \infty$$

$$|x_5 \le 400$$

$$|x_5 \le 250$$

$$|x_5| \le 250$$

Finden einer optimalen Lösung für das Fahrradproblem – 3.Iteration Wiederholung

■ Basislösung:

NBV:
$$x_5 = x_4 = 0$$

BV:
$$x_1 = 400$$
, $x_2 = 200$, $x_3 = 200$ und $x_6 = 500$

D.h. x_5 kommt in unsere Basis und x_3 verlässt die Basis.

Finden einer optimalen Lösung für das Fahrradproblem – 4.Iteration

Wiederholung

■ Basislösung:

NBV:
$$x_3 = x_4 = 0$$

BV: $x_1 = 200$, $x_2 = 600$, $x_5 = 200$ und $x_6 = 100$

max z =78000-60
$$x_3$$
-5 x_4
subject to
 x_5 =200 - x_3 + $\frac{1}{6}x_4$
 x_2 =600 -2 x_3 + $\frac{1}{6}x_4$
 x_1 =200 + x_3 - $\frac{1}{6}x_4$
 x_6 =100 +2 x_3 - $\frac{1}{6}x_4$
 x_1 , x_2 , x_3 , x_4 , x_5 , x_6 > 0

Sind weitere Verbesserungen möglich?

Finden einer optimalen Lösung für das Fahrradproblem – 4.Iteration

Wiederholung

■ Basislösung:

NBV:
$$x_3 = x_4 = 0$$

BV:
$$x_1 = 200$$
, $x_2 = 600$, $x_5 = 200$ und $x_6 = 100$

max z = 78000-60
$$x_3$$
-5 x_4
subject to
 x_5 = 200 - x_3 + $\frac{1}{6}x_4$
 x_2 = 600 - 2 x_3 + $\frac{1}{6}x_4$
 x_1 = 200 + x_3 - $\frac{1}{6}x_4$

$$x_6 = 100 + 2x_3 - \frac{1}{6}x_4$$

 $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$

Sind weitere Verbesserungen möglich? \Rightarrow Nein. Die optimale Lösung wurde gefunden.

Frage

m := Anzahl der Restriktionen eines LP-Problems

n := Anzahl der Entscheidungsvariablen eines LP-Problems

- A. Basis ist eine m*m-Matrix
- B. Basis ist eine n*n-Matrix
- C. Die Basismatrix ist singulär
- Die Vektoren in der Basis sind linear abhängig
- Weiß nicht

Wiederholung

- **Definition:** Jede nichtsinguläre m x m-Teilmatrix B von A heißt Basis des Standardmodells, m ist hierbei die Anzahl der Restriktionen des I Ps
- B nichtsingulär heißt, dass die m-dimensionalen Spaltenvektoren von B linear unabhängig sind.

$$x_1 + x_2 + x_3 = 800$$
 $12x_1 + 6x_2 + x_4 = 6000$
 $x_1 + x_2 + x_5 = 400$
 $x_2 + x_6 = 700$

B ist hierbei immer eine *Einheitsmatrix*

■ Wenn die Basis als Menge von Basisvariablen aufgeschrieben wird, so enthält diese Menge immer genau so viele Elemente wie es Restriktionen im Problem gibt (ohne die NNB): $B = \{x_3, x_4, x_5, x_6\}.$

Frage

Für eine degenerierte Basislösung gilt:

- A Einer Ecke entsprechen mehrere unterschiedliche Basen
- B. Die minimale Anzahl Hyperebenen wie nötig kreuzen sich
- Alle Basisvariablen sind ungleich null
- Sie treten in Praxisproblemen nur selten auf
- Weiß nicht

Spezialfälle von Lösungen

Degenerierte Lösung:

- Mehr Hyperebenen als nötig kreuzen sich in einer Ecke.
- Mindestens eine der Basisvariablen in der Basislösung ist gleich Null.

Beispiel:

Basis: $\{x_1, x_2, x_5, x_6, x_7\}$ Nichtbasisvariablen:

$$x_3 = x_4 = 0$$

Zusätzlich Basisvariable

 $x_7 = 0$

Gleiche Ecke mit:

Basis: $\{x_1, x_2, x_5, x_6, x_4\}$ Nichtbasisvariablen:

$$x_3 = x_7 = 0$$

12/44

Frage

Bei der Lösung mit Simplex-Algorithmus gilt für das u.a. Modell:

max z =5000 +90
$$x_2$$
 +120 x_5
subject to

 x_3 =400 - x_2 - x_5
 x_4 =1200 -6 x_2 -12 x_5
 x_1 =300 - x_5
 x_6 =700 - x_2
 $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$

- \triangle Die aktuelle Basis ist $\{x_1, x_2, x_3, x_4\}$
- **B.** Das Pivot-Element ist $-x_2$ auf den ersten Zeile des Modells
- \blacksquare Das Pivot-Element ist $-x_5$ auf den ersten Zeile des Modells
- \square Das Pivot-Element ist $-12x_5$ auf der zweiten Zeile der Restriktionen
- Weiß nicht

Unzulässige Ausgangsbasislösung

- Wie vorgehen, wenn die Ausgangsbasislösung unzulässig ist?
 - ⇒ Phase I der Simplex-Methode. Diese versucht eine gültige Startbasis für die Phase II zu erzeugen.
- Phase I Grundidee
 Ein Hilfsproblem mit einer neuen Zielfunktion, welche die
 Summe der Unzulässigkeiten minimiert, wird gelöst
 → Maximiere die Summe der Variablen die negative also unzulässige Werte annehmen.

Grafische Darstellung

Beispiel:

Standardformat?

$$\begin{array}{llll} \text{max } z = & 3x_1 & +2x_2 \\ \text{s.t.} & & & \\ & x_1 & +x_2 & \leq 4 \\ & 2x_1 & +x_2 & \leq 5 \\ & -x_1 & +4x_2 \geq 2 \\ & x_1 & +2x_2 \geq 3 \\ & x_1, x_2 \geq 0 \end{array}$$

Anfangsbasis?

Basislösung

Beispiel: Standardformat?

Anfangsbasis? BV:(z),
$$x_3$$
, x_4 , x_5 , x_6 NBV: x_1 , x_2 Basislösung 0,4,5,-2,-3, 0,0

Diese Basislösung ist nicht zulässig! \rightarrow Phase I

Wie soll die Zielfunktion in der Phase I lauten?

Beispiel:

Anfangsbasis? BV:(z),
$$x_3$$
, x_4 , x_5 , x_6 NBV: x_1 , x_2 Basislösung 0,4,5,-2,-3, 0,0

Diese Basislösung ist nicht zulässig!→ Phase I

Wie soll die Zielfunktion in der Phase I lauten?

Standardformat:

Basis B_0 aus

Schlupfvariablen:

max z=
s.t. z-
$$3x_1 - 2x_2$$
 = 0
 $x_1 + x_2 + x_3$ = 4 z= 0 $+3x_1 + 2x_2$
 $2x_1 + x_2 + x_4$ = 5 $x_3 = 4$ $-x_1 - x_2$
 $-x_1 + 4x_2$ $-x_5$ = 2 $x_4 = 5$ $-2x_1 - x_2$
 $x_1 + 2x_2$ $-x_6 = 3$ $x_5 = -2$ $x_1 + 4x_2$
 $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$ $x_6 = -3$ $+x_1 + 2x_2$

Standardformat:

Basis B_0 aus

Schlupfvariablen:

Neue Zielfunktion für Phase I:

max s

Wobei
$$s=x_5+x_6=(-2-x_1+4x_2)+(-3+x_1+2x_2)=-5+6x_2$$

Iteration 1:

max s= -5
$$+6x_2$$

s.t. $z= 0 +3x_1 +2x_2$

$$x_3 = 4$$
 $-x_1 - x_2$
 $x_4 = 5$ $-2x_1 - x_2$

$$x_5 = -2$$
 $-x_1 + 4x_2$

$$x_6 = -3 + x_1 + 2x_2$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

Iteration 1:

max s= -5
s.t.

$$z= 0 +3x_1 +2x_2$$

$$x_3 = 4 -x_1 -x_2$$

$$x_4 = 5 -2x_1 -x_2$$

$$x_5 = -2 -x_1 +4x_2$$

$$x_6 = -3 +x_1 +2x_2$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

Iteration 1:

max s= -5
s.t.

$$z = 0$$
 +3x₁ +2x₂
 $x_3 = 4$ -x₁ +2x₂
 $x_4 = 5$ -2x₁ -x₂ \uparrow x₂
 $x_5 = -2$ -x₁ +4x₂ \uparrow x₂
 $x_6 = -3$ +x₁ +2x₂ \uparrow x₂
 $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$

Iteration 1:

Iteration 1:

Basistausch: x_2 hinein und heraus x_5

Iteration 2:

Umgewandeltes System nach Basistausch:

max s=
$$-2 + \frac{3}{2}x_1 + \frac{3}{2}x_5$$

s.t.

$$z = 1 + \frac{7}{2}x_1 + \frac{1}{2}x_5$$

$$x_2 = \frac{1}{2} + \frac{1}{4}x_1 + \frac{1}{4}x_5$$

$$x_3 = \frac{7}{2} - \frac{5}{4}x_1 - \frac{1}{4}x_5$$

$$x_4 = \frac{9}{2} - \frac{9}{4}x_1 - \frac{1}{4}x_5$$

$$x_6 = -2 + \frac{3}{2}x_1 + \frac{1}{2}x_5$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

Basis B1: NBV: x_1, x_5 BV:(s, z,) x_2, x_3, x_4, x_6

Basislösung: $0\ 0\ -2, 1, \frac{1}{2}, \frac{7}{2}, \frac{9}{2}, -2$

Iteration 2:

Umgewandeltes System nach Basistausch:

$$\begin{array}{lllll} \text{max} & \text{s=} & -2 & +\frac{3}{2}x_1 & +\frac{3}{2}x_5 \\ \text{s.t.} & & & & \\ & \text{z=} & 1 & +\frac{7}{2}x_1 & +\frac{1}{2}x_5 \\ & x_2 &= & \frac{1}{2} & +\frac{1}{4}x_1 & +\frac{1}{4}x_5 \\ & x_3 &= & \frac{7}{2} & -\frac{5}{4}x_1 & -\frac{1}{4}x_5 \\ & x_4 &= & \frac{9}{2} & -\frac{9}{4}x_1 & -\frac{1}{4}x_5 \\ & x_6 &= & -2 & +\frac{3}{2}x_1 & +\frac{1}{2}x_5 \\ & x_1, x_2, x_3, x_4, x_5, x_6 & \geq 0 \end{array}$$

Basis B1: NBV:
$$x_1, x_5$$
 BV:(s, z,) x_2, x_3, x_4, x_6

Basislösung:
$$0\ 0 \ -2, 1, \frac{1}{2}, \frac{7}{2}, \frac{9}{2}, -2$$

Iteration 2:

Umgewandeltes System nach Basistausch:

max s=
$$-2$$
 $+\frac{3}{2}x_1 + \frac{3}{2}x_5$
s.t. $z=1$ $+\frac{7}{2}x_1 + \frac{1}{2}x_5$ $x_2 = \frac{1}{2}$ $+\frac{1}{4}x_1 + \frac{1}{4}x_5$ $x_1 \uparrow \infty$ $x_3 = \frac{7}{2}$ $-\frac{5}{4}x_1 - \frac{1}{4}x_5$ $x_1 \uparrow \frac{14}{5}$ $x_4 = \frac{9}{2}$ $-\frac{9}{4}x_1 - \frac{1}{4}x_5$ $x_1 \uparrow 2$ $x_6 = -2$ $+\frac{3}{2}x_1 + \frac{1}{2}x_5$ $x_1 \uparrow \frac{4}{3}$ $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$

Basis B1: NBV:
$$x_1, x_5$$
 BV:(s, z,) x_2, x_3, x_4, x_6

Basislösung:
$$0\ 0 \ -2, 1, \frac{1}{2}, \frac{7}{2}, \frac{9}{2}, -2$$

Iteration 2:

Umgewandeltes System nach Basistausch:

Basis B1: NBV: x_1, x_5 BV:(s, z,) x_2, x_3, x_4, x_6

Basislösung: $0\ 0\ -2, 1, \frac{1}{2}, \frac{7}{2}, \frac{9}{2}, -2$

Iteration 2:

Umgewandeltes System nach Basistausch:

Basis B1: NBV: x_1, x_5 BV:(s, z,) x_2, x_3, x_4, x_6

 $0\ 0\ -2, 1, \frac{1}{2}, \frac{7}{2}, \frac{9}{2}, -2$ Basislösung: Basistausch: x_1 hinein und heraus x_6

Iteration 3:

Setze
$$x_1 = \frac{4}{3} - \frac{1}{3}x_5 + \frac{2}{3}x_6$$
 ein:

$$s = -2 + \frac{3}{2}(\frac{4}{3} - \frac{1}{3}x_5 + \frac{2}{3}x_6) + \frac{3}{2}x_5 = 0 + x_5 + x_6$$
max $s = x_5 + x_6$
s.t.

$$z = \frac{17}{3} - \frac{2}{3}x_5 + \frac{7}{3}x_6$$

$$x_1 = \frac{4}{3} - \frac{1}{3}x_5 + \frac{2}{3}x_6$$

$$x_2 = \frac{5}{6} + \frac{1}{6}x_5 + \frac{1}{6}x_6$$

$$x_3 = \frac{11}{6} + \frac{1}{6}x_5 - \frac{5}{6}x_6$$

$$x_4 = \frac{3}{2} + \frac{1}{2}x_5 - \frac{3}{2}x_6$$

Iteration 3:

Setze
$$x_1 = \frac{4}{3} - \frac{1}{3}x_5 + \frac{2}{3}x_6$$
 ein:

$$s=-2+\frac{3}{2}(\frac{4}{3}-\frac{1}{3}x_5+\frac{2}{3}x_6)+\frac{3}{2}x_5=0+x_5+x_6$$
max $s=x_5+x_6$
s.t.

$$z = \frac{17}{3} - \frac{2}{3}x_5 + \frac{7}{3}x_6$$

$$x_1 = \frac{4}{3} - \frac{1}{3}x_5 + \frac{2}{3}x_6$$

$$x_2 = \frac{5}{6} + \frac{1}{6}x_5 + \frac{1}{6}x_6$$

$$x_3 = \frac{11}{6} + \frac{1}{6}x_5 - \frac{5}{6}x_6$$

$$x_4 = \frac{3}{2} + \frac{1}{2}x_5 - \frac{3}{2}x_6$$
Ende Phase I

Die Unzulässigkeiten sind abgebaut (s=0 und $x_5, x_6 = 0$, da NBV)!

Ausgangsbasis B2: NBV: x_5 , x_6 BV:(z,) x_1 , x_2 , x_3 , x_4

Basislösung:

 $0\ 0\ \frac{17}{3},\ \frac{4}{3},\ \frac{5}{6},\ \frac{11}{6},\ \frac{3}{2}$

Ausgangssystem für Phase II ist das modifizierte System aus der letzten Iteration in Phase I:

max
$$z = \frac{17}{3} - \frac{2}{3}x_5 + \frac{7}{3}x_6$$

s.t.

$$x_1 = \frac{4}{3} - \frac{1}{3}x_5 + \frac{2}{3}x_6$$

$$x_2 = \frac{5}{6} + \frac{1}{6}x_5 + \frac{1}{6}x_6$$

$$x_3 = \frac{11}{6} + \frac{1}{6}x_5 - \frac{5}{6}x_6$$

$$x_4 = \frac{3}{2} + \frac{1}{2}x_5 - \frac{3}{2}x_6$$

Zusammenfassung Simplex Phase I

- 1 Bringe das LP in die Standardform.
- Prüfe, ob die Basislösung unzulässig ist. Falls ja, starte Simplex Phase I. Ansonsten gehe zu Schritt 9.
- 3 Stelle neue Zielfunktion s auf mit max s = Summe aller unzulässigen Variablen. Ersetze die Variablen in s so, dass nur NBV in dieser Gleichung stehen
- 4 Stelle das neue LP mit der Zielfunktion max s auf und nehme z auch als Restriktion auf.
- Falls alle Basisvariablen zulässig sind, ist eine zulässige Lösung gefunden. Gehe zu Schritt 8. Ansonsten: Finde ein x_q in s, das den Zielfunktionswert für s verbessern kann (positiver Koeffizient). Falls es kein solches x_q gibt und es noch unzulässige Basisvariablen gibt, dann hat das Originalproblem keine zulässige Lösung. Beende den Algorithmus.
- Bestimme die Werte für x_q , sodass die jeweilige Basisvariable auf Null gesetzt wird. Suche das Minimum. Die zugehörige Basisvariable ist x_p .
- **7** Führe einen Pivotschritt durch, bei dem x_p die Basis verlässt und x_q in die Basis eintritt. Gehe zu Schritt 5.
- 3 Lösche die Zielfunktion s und stelle LP mit modifizierter Zielfunktion max z auf. Gehe zu Schritt 9.
- 9 Start Simplex Phase II.

Vorbereitungen für die Sensitivitätsanalyse

25/44

Exkurs: Okonomische Interpretation von LP-Lösungen

Nobel-Preis für Wirtschaftswissenschaften (1975) für L. V. Kantorovich und T. C. Koopmans für den Beitrag zur Theorie der optimalen Ressourcen-Verwendung

Strukturvariable: x_1, x_2 ; Schlupfvariable: x_3, x_4, x_5, x_6

Strukturvariable: x_1, x_2 ; Schlupfvariable: x_3, x_4, x_5, x_6

Frage

In dem optimalen Gleichungssystem:

Welche Variablen sind in der Basis? Sind auch Schlupfvariablen in der Basis?

Strukturvariable: x_1, x_2 ; Schlupfvariable: x_3, x_4, x_5, x_6

Frage

In dem optimalen Gleichungssystem:

- Welche Variablen sind in der Basis? Sind auch Schlupfvariablen in der Basis?
- Welche Ressourcen sind aufgebraucht (Restriktionen sind aktiv? Hinweis: Der Wert einer NBV x_j bei der optimalen Lösung ist 0.)

Definition: Reduzierte Kosten und Schattenpreise

■ Man kann die Einträge von den Struktur- bzw. Schlupfvariablen in der modifizierten Zielfunktion bei der berechneten optimalen Basislösung als Reduzierte Kosten bzw. Schattenpreise bezeichnen.

- Man kann die Einträge von den Struktur- bzw. Schlupfvariablen in der modifizierten Zielfunktion bei der berechneten optimalen Basislösung als Reduzierte Kosten bzw. Schattenpreise bezeichnen.
- Die **Reduzierten Kosten (Reduced Cost)** einer strukturellen Variable stellt die marginale Auswirkung im Zielfunktionswert dar, wenn der Wert der Variable um eine Einheit erhöht wird. $c_1' = 0, c_2' = 0$

28/44

Definition: Reduzierte Kosten und Schattenpreise

- Man kann die Einträge von den Struktur- bzw. Schlupfvariablen in der modifizierten Zielfunktion bei der berechneten optimalen Basislösung als Reduzierte Kosten bzw. Schattenpreise bezeichnen.
- Die **Reduzierten Kosten (Reduced Cost)** einer strukturellen Variable stellt die marginale Auswirkung im Zielfunktionswert dar, wenn der Wert der Variable um eine Finheit erhöht wird. $c_1' = 0, c_2' = 0$
- Der Schattenpreis (Shadow Price) einer Restriktion gibt an, wie viel sich der Zielfunktionswert ändert, wenn die Kapazität der entsprechenden Ressource um eine Einheit erhöht wird.

$$c_3' = -60, c_4' = -5, c_5' = 0, c_6' = 0$$

Beispiel: Fahrradfabrik – Interpretation der reduzierten Kosten

Frage 1

Wie ändert sich die Lösung, wenn der Preis vom Fahrradtyp Deluxe marginal erhöht oder reduziert wird?

Beispiel: Fahrradfabrik – Grafische Lösung

Beispiel: Fahrradfabrik - Grafische Lösung

Beispiel: Fahrradfabrik – Grafische Lösung

Beispiel: Fahrradfabrik – Interpretation der Schattenpreise

Frage 2

Wie ändert sich die Lösung, wenn die Produktionsmenge von Fahrräder marginal erhöht wird?

Beispiel: Fahrradfabrik – Grafische Lösung

Beispiel: Fahrradfabrik – Grafische Lösung

Wichtige Anmerkung I

- Reduced Cost/Shadow Price c'_j für eine NBV x_j ist ihr Koeffizient in der modifizierten Zielfunktion
 - Reduzierte Kosten *(reduced Cost)* für Strukturvariable *x_j*
 - Schattenpreis (Shadow Prices) für die zu der Schlupfvariable x_j gehörende Restriktion
- Reduced Cost/Shadow Price c'_i ist
 - negativ (oder 0) für eine Max-Zielfunktion
 - positiv (oder 0) für eine Min-Zielfunktion
- Der Wert einer NBV x_j bei der optimalen Lösung ist 0

Wichtige Anmerkung II

- Falls eine Veränderung eine Einschränkung des zulässigen Bereichs bewirkt, dann kann sich der Zielfunktionswert nicht verbessern, sondern höchstens verschlechtern.
- Falls eine Veränderung eine Erweiterung des zulässigen Bereichs bewirkt, dann wird sich der Zielfunktionswert nicht verschlechtern, sondern eher verbesseren (z.B. Kapazitätserweiterung).

Wichtige Anmerkung II

- Falls eine Veränderung eine Einschränkung des zulässigen Bereichs bewirkt, dann kann sich der Zielfunktionswert nicht verbessern, sondern höchstens verschlechtern.
- Falls eine Veränderung eine Erweiterung des zulässigen Bereichs bewirkt, dann wird sich der Zielfunktionswert nicht verschlechtern, sondern eher verbesseren (z.B. Kapazitätserweiterung).
- Offene Frage: Bis zu welchen Grenzen gelten *marginale* Veränderungen, die mit Hilfe der Reduzierten Kosten und Schattenpreise berechnet werden?

Sensitivitätsanalyse

Motivation

- Zum Zeitpunkt der Planung ist nicht immer genau bekannt, welche exakte Daten zukünftig eintreten werden.
- Unter Sensitivitätsanalyse versteht man das Testen der optimalen Lösung eines Optimierungsmodells auf Reaktionen gegenüber Veränderungen der folgenden Ausgangsdaten:
 - die Zielfunktionskoeffizienten *c_i*
 - die rechten Seiten b_i
 - die Koeffizienten a_{ij} der Nebenbedingungen
- Im Folgenden beschäftigen wir uns mit der Frage, um welchen Wert ein einzelner Koeffizient cj bzw. ein einzelnes bi eines LPs verändert werden kann, ohne dass die optimale Lösung ihre Optimalitätseigenschaft veliert.

Anderung von Zielfunktionskoeffizienten

- In welchem Intervall $[c_k c_k^-, c_k + c_k^+]$ sich der Zielfunktionskoeffizient c_k bewegen darf, ohne dass die optimale Basislösung ihre Optimalitätseigenschaft verliert, d.h. ohne dass ein Basistausch erforderlich wird.
- Ist x_k Nichtbasisvariable mit den aktuellen Reduzierten Kosten c'_{ν} , so gilt $c_{\nu}^{-} = \infty$ und $c_{\nu}^{+} = -c'_{\nu}$.
- Ist x_k Basisvariable, dann gelten folgende Aussagen:

$$\begin{split} c_k^- &:= \left\{ \begin{array}{c} \infty, & \text{es ex. kein } a_{\sigma(k),j}^{'} < 0 \text{ mit } j \neq k \\ \min \left\{ \frac{c_j^{'}}{a_{\sigma(k),j}^{'}} \middle| a_{\sigma(k),j}^{'} < 0, j \neq k \right\}, & \text{sonst} \end{array} \right\} \\ c_k^+ &:= \left\{ \begin{array}{c} \infty, & \text{es ex. kein } a_{\sigma(k),j}^{'} > 0 \text{ mit } j \neq k \\ \min \left\{ \frac{-c_j^{'}}{a_{\sigma(k),j}^{'}} \middle| a_{\sigma(k),j}^{'} > 0, j \neq k \right\}, & \text{sonst} \end{array} \right\} \end{split}$$

Anderung von Zielfunktionskoeffizienten – Beispiel

- Ist x_k Nichtbasisvariable mit den aktuellen Reduzierten Kosten $c_{\nu}^{'}$, so gilt $c_{\iota}^{-}=\infty$ und $c_{\iota}^{+}=-c_{\iota}^{'}$.
- Ist x_k Basisvariable, dann gelten folgende Aussagen:

$$\begin{aligned} \mathbf{c}_k^- &:= \left\{ \begin{array}{c} \infty, & \text{es ex. kein } a_{\sigma(k),j}^{'} < 0 \text{ mit } j \neq k \\ \min \left\{ \frac{c_j^{'}}{a_{\sigma(k),j}^{'}} \middle| a_{\sigma(k),j}^{'} < 0, j \neq k \right\}, & \text{sonst} \end{array} \right\} \\ \mathbf{c}_k^+ &:= \left\{ \begin{array}{c} \infty, & \text{es ex. kein } a_{\sigma(k),j}^{'} > 0 \text{ mit } j \neq k \\ \min \left\{ \frac{-c_j^{'}}{a_{\sigma(k),j}^{'}} \middle| a_{\sigma(k),j}^{'} > 0, j \neq k \right\}, & \text{sonst} \end{array} \right\} \end{aligned}$$

Anderung von Zielfunktionskoeffizienten – Beispiel

- Ist x_k Nichtbasisvariable mit den aktuellen Reduzierten Kosten $c_{\nu}^{'}$, so gilt $c_{\iota}^{-}=\infty$ und $c_{\iota}^{+}=-c_{\iota}^{'}$.
- Ist x_k Basisvariable, dann gelten folgende Aussagen:

$$c_k^- := \left\{ \begin{array}{c} \infty, & \text{es ex. kein } a_{\sigma(k),j}' < 0 \text{ mit } j \neq k \\ \min \left\{ \frac{c_j'}{a_{\sigma(k),j}'} \middle| a_{\sigma(k),j}' < 0, j \neq k \right\}, & \textit{sonst} \end{array} \right\}$$

$$c_k^+ := \left\{ \begin{array}{c} \infty, & \text{es ex. kein } a_{\sigma(k),j}' > 0 \text{ mit } j \neq k \\ \min \left\{ \frac{-c_j'}{a_{\sigma(k),j}'} \middle| a_{\sigma(k),j}' > 0, j \neq k \right\}, & \textit{sonst} \end{array} \right\}$$

Änderung von Zielfunktionskoeffizienten – Beispiel

- Ist x_k Nichtbasisvariable mit den aktuellen Reduzierten Kosten $c_k^{'}$, so gilt $c_k^-=\infty$ und $c_k^+=-c_k^{'}$.
- Ist x_k Basisvariable, dann gelten folgende Aussagen:

$$\begin{split} c_k^- &:= \left\{ \begin{array}{c} \infty, & \text{es ex. kein } a_{\sigma(k),j}^{'} < 0 \text{ mit } j \neq k \\ \min \left\{ \frac{c_j^{'}}{a_{\sigma(k),j}^{'}} \middle| a_{\sigma(k),j}^{'} < 0, j \neq k \right\}, & \text{sonst} \end{array} \right\} \\ c_k^+ &:= \left\{ \begin{array}{c} \infty, & \text{es ex. kein } a_{\sigma(k),j}^{'} > 0 \text{ mit } j \neq k \\ \min \left\{ \frac{-c_j^{'}}{a_{\sigma(k),j}^{'}} \middle| a_{\sigma(k),j}^{'} > 0, j \neq k \right\}, & \text{sonst} \end{array} \right\} \end{split}$$

Anderung von Ressourcenbeschränkungen

- In welchem Intervall $[b_q b_q^-, b_q + b_q^+]$ sich eine Ressourcenbeschränkung b_a bewegen darf, ohne dass die optimale Basislösung ihre Optimalitätseigenschaft verliert, d.h. ohne dass ein Basistausch erforderlich wird.
- Ist x_a Basisvariable, so gilt $b_a^- = x_a$ und $b_a^+ = \infty$.
- Ist x_a Nichtbasisvariable, dann gelten folgende Aussagen:

$$\begin{split} b_q^- &:= \left\{ \begin{array}{c} \infty, & \text{es ex. kein } a_{iq}^{'} < 0 \\ \min \left\{ -\frac{b_i^{'}}{a_{iq}^{'}} \middle| a_{iq}^{'} < 0, i = 1, ..., m \right\}, & \textit{sonst} \end{array} \right\} \\ b_q^+ &:= \left\{ \begin{array}{c} \infty, & \text{es ex. kein } a_{iq}^{'} > 0 \\ \min \left\{ \frac{b_i^{'}}{a_{iq}^{'}} \middle| a_{iq}^{'} > 0, i = 1, ..., m \right\}, & \textit{sonst} \end{array} \right\} \end{split}$$

Änderung von Ressourcenbeschränkungen – Beispiel

- Ist x_q Basisvariable, so gilt $b_q^- = x_q$ und $b_q^+ = \infty$.
- Ist x_a Nichtbasisvariable, dann gelten folgende Aussagen:

$$\begin{split} b_q^- := \left\{ \begin{array}{c} \infty, & \text{es ex. kein } a_{iq}^{'} < 0 \\ \min \left\{ -\frac{b_i^{'}}{a_{iq}^{'}} \middle| a_{iq}^{'} < 0, i = 1, ..., m \right\}, & \textit{sonst} \end{array} \right\} \\ b_q^+ := \left\{ \begin{array}{c} \infty, & \text{es ex. kein } a_{iq}^{'} > 0 \\ \min \left\{ \frac{b_i^{'}}{a_{iq}^{'}} \middle| a_{iq}^{'} > 0, i = 1, ..., m \right\}, & \textit{sonst} \end{array} \right\} \end{split}$$

Änderung von Ressourcenbeschränkungen – Beispiel

- Ist x_q Basisvariable, so gilt $b_q^- = x_q$ und $b_q^+ = \infty$.
- Ist x_a Nichtbasisvariable, dann gelten folgende Aussagen:

$$\begin{aligned} b_q^- &:= \left\{ \begin{array}{c} \infty, & \text{es ex. kein } a_{iq}' < 0 \\ \min \left\{ -\frac{b_i'}{a_{iq}'} \middle| a_{iq}' < 0, i = 1, ..., m \right\}, & \text{sonst} \end{array} \right\} \\ b_q^+ &:= \left\{ \begin{array}{c} \infty, & \text{es ex. kein } a_{iq}' > 0 \\ \min \left\{ \frac{b_i'}{a_{iq}'} \middle| a_{iq}' > 0, i = 1, ..., m \right\}, & \text{sonst} \end{array} \right\} \end{aligned}$$

Anderung von Ressourcenbeschränkungen – Beispiel

- Ist x_q Basisvariable, so gilt $b_q^- = x_q$ und $b_a^+ = \infty$.
- Ist x_a Nichtbasisvariable, dann gelten folgende Aussagen:

$$\begin{split} b_q^- &:= \left\{ \begin{array}{c} \infty, & \text{es ex. kein } a_{iq}^\prime < 0 \\ \min \left\{ -\frac{b_i^\prime}{a_{iq}^\prime} \middle| a_{iq}^\prime < 0, i = 1, ..., m \right\}, & \textit{sonst} \end{array} \right\} \\ b_q^+ &:= \left\{ \begin{array}{c} \infty, & \text{es ex. kein } a_{iq}^\prime > 0 \\ \min \left\{ \frac{b_i^\prime}{a_{iq}^\prime} \middle| a_{iq}^\prime > 0, i = 1, ..., m \right\}, & \textit{sonst} \end{array} \right\} \end{split}$$

Beispiel: Fahrradfabrik – Lösungsrepot von Lingo

	Variable	Value	Reduced	Objective	Allowable	Allowable
			Cost	Coefficient	Increase	Decrease
ľ	<i>X</i> ₁	200.0	0	120.0	60.0	30.0
Γ	<i>X</i> ₂	600.0	0	90.0	30.0	30.0

Constraint	Value	Shadow	Current	Allowable	Allowable
		Price	RHS	Increase	Decrease
Menge	0	60.0	800	50.0	200.0
Max. Deluxe	200.0	0	400	Infinity	200.0
Max. Normal	100	0	700	Infinity	100.0
Zeit	0	5.0	6000	1200.0	600.0

- Mengenrestriktion: Basis ändert sich nicht, falls RHS
 - -800 200 = 600 nicht unterschreitet
 - und 800 + 50 = 850 nicht überschreitet

- Fast alle großen Praxisprobleme haben *degenerierte* optimale Lösungen
 - Somit ist der Wert vieler Basisvariablen gleich 0. In diesem Fall gehören zu einem Eckpunkt mehrere Werte der Reduzierten Kosten.

- Fast alle großen Praxisprobleme haben *degenerierte* optimale Lösungen
 - Somit ist der Wert vieler Basisvariablen gleich 0. In diesem Fall gehören zu einem Eckpunkt mehrere Werte der Reduzierten Kosten.
- Was heißt das für die (klassische) Sensitivitätsanalyse?

- Fast alle großen Praxisprobleme haben *degenerierte* optimale Lösungen
 - Somit ist der Wert vieler Basisvariablen gleich 0. In diesem Fall gehören zu einem Eckpunkt mehrere Werte der Reduzierten Kosten.
- Was heißt das für die (klassische) Sensitivitätsanalyse?
 - Die Analyse ist in solchen Fällen wertlos!

- Fast alle großen Praxisprobleme haben *degenerierte* optimale Lösungen
 - Somit ist der Wert vieler Basisvariablen gleich 0. In diesem Fall gehören zu einem Eckpunkt mehrere Werte der Reduzierten Kosten
- Was heißt das für die (klassische) Sensitivitätsanalyse?
 - Die Analyse ist in solchen Fällen wertlos!
- Weiterhin ist die Analyse wertlos, wenn es ganzzahlige Variablen gibt!

- Fast alle großen Praxisprobleme haben *degenerierte* optimale Lösungen
 - Somit ist der Wert vieler Basisvariablen gleich 0. In diesem Fall gehören zu einem Eckpunkt mehrere Werte der Reduzierten Kosten.
- Was heißt das für die (klassische) Sensitivitätsanalyse?
 - Die Analyse ist in solchen Fällen wertlos!
- Weiterhin ist die Analyse wertlos, wenn es *ganzzahlige* Variablen gibt!
- Reduzierte Kosten und Schattenpreise verlieren für eine ökonomische Interpretation bei degenerierten großen LP-Modellen an Bedeutung, jedoch sind sie z.B. für die Lösung großer LP-Modelle mit sehr vielen Variablen sehr hilfreich (Column-Generation-Methode)

Fazit und Ausblick

Fazit und Ausblick

Lernziele

- Durchführen das Hilfsproblem Simplex Phase I
- Verstehen der Reduzierten Kosten/Schattenpreise
- Durchführen von Sensitivitätsanalysen

Nächste Woche

- Ganzzahlige Variablen
- Schwellenwerte
- Fixkosten
- Alternative Restriktionen

Literatur

■ L. Suhl, T. Mellouli. Optimierungssysteme – Modelle, Verfahren, Software, Anwendungen. 3. Auflage, Springer Gabler, Berlin/Heidelberg, 2013, Seite 52–67.

Danke für Ihre Aufmerksamkeit!

Leuphana Universität Lüneburg Wirtschaftsinformatik, insbesondere Operations Research Prof Dr Lin Xie Universitätsallee 1 Gebäude 4. Raum 314 21335 Lüneburg Fon +49 4131 677 2305 Fax +49 4131 677 1749 xie@leuphana.de

