541 729

(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関 国際事務局

I Toria di Kalunin diring kalun dalih dalih dalih di bi dalih dalih dalih di bida di bida dalih di bida bilah dalih da

(43) 国際公開日 2004 年7 月29 日 (29.07.2004)

PCT

(10) 国際公開番号 WO 2004/063238 A1

(51) 国際特許分類7: C08F 265/04, C08J 5/18, B32B 27/30

(21) 国際出願番号:

PCT/JP2003/016951

(22) 国際出願日:

2003年12月26日(26.12.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

2003年1月10日(10.01.2003) 特願2003-4427 Љ 特願2003-41212 2003年2月19日(19.02.2003) JP 特願2003-57335 2003年3月4日(04.03.2003) Љ 特願2003-58554 2003年3月5日(05.03.2003) Љ 特願2003-58690 2003年3月5日(05.03.2003) JР 特願2003-58692 2003年3月5日 (05.03.2003) JP 2003年3月12日(12.03.2003) 特願2003-66645 Ъ 特願2003-69915 2003年3月14日(14.03.2003) JР

(71) 出願人 (米国を除く全ての指定国について): 三菱 レイヨン株式会社 (MITSUBISHI RAYON CO., LTD.) [JP/JP]; 〒108-8506 東京都港区港南一丁目 6番4 1号 Tokyo (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 北池 幸雄 (KI-TAIKE, Yukio) [JP/JP]; 〒739-0693 広島県 大竹市 御幸 町 2 0 番 1 号 三菱レイヨン株式会社大竹事業所内 Hiroshima (JP). 安部 善紀 (ABE,Yoshinori) [JP/JP]; 〒739-0693 広島県大竹市御幸町20番1号三菱レイヨン株式会社大竹事業所内 Hiroshima (JP). 阿部純ー(ABE,Junichi) [JP/JP]; 〒739-0693 広島県大竹市御幸町20番1号三菱レイヨン株式会社大竹事業所内 Hiroshima (JP). 北嶋浩一郎 (KITASHIMA,Kouichirou) [JP/JP]; 〒931-8601 富山県富山市海岸通3番地三菱レイヨン株式会社富山事業所内 Toyama (JP). 岡崎正吾(OKAZAKI,Shogo) [JP/JP]; 〒739-0693 広島県大竹市御幸町20番1号三菱レイヨン株式会社大竹事業所内 Hiroshima (JP). 藤井秀幸 (FUJII,Hideyuki) [JP/JP]; 〒739-0693 広島県大竹市御幸町20番1号三菱レイヨン株式会社大竹事業所内 Hiroshima (JP).

- (74) 代理人: 宮崎 昭夫, 外(MIYAZAKI,Teruo et al.); 〒 107-0052 東京都 港区 赤坂 1 丁目 9番 2 0号 第 1 6 興和ビル 8 階 Tokyo (JP).
- (81) 指定国 (国内): CN, US.
- (84) 指定国 (広域): ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

添付公開書類:

一 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

(54) Title: MULTILAYER STRUCTURE POLYMER AND RESIN COMPOSITION TOGETHER WITH ACRYLIC RSIN FILM MATERIAL, ACRYLIC RESIN LAMINATE FILM, PHOTOCURABLE ACRYLIC RESIN FILM OR SHEET, LAMINATE FILM OR SHEET AND LAMINATE MOLDING OBTAINED BY LAMINATING THEREOF

(54) 発明の名称: 多層構造重合体及び樹脂組成物、並びに、アクリル樹脂フィルム状物、アクリル樹脂積層フィルム、光硬化性アクリル樹脂フィルム又はシート、積層フィルム又はシート、及び、これを積層した積層成形品

(57) Abstract: An acrylic resin film material comprising at least a multilayer structure polymer of specified structure that at insert molding or in-mold forming, is free from whitening of molded item, and has, suitable for vehicle uses, satisfactory surface hardness, heat resistance and transparency or matteness. Use can be made of an acrylic resin film material of 2B or higher pencil hardness (measured in accordance with JIS K5400) exhibiting a measurement difference of 30% or less at measuring of test pieces in accordance with the testing method of JIS K7136 (method of measuring cloud value), the test pieces consisting of the one having undergone a tensile test, the tensile test performed with respect to a test piece of 20 mm width under such conditions that the chuck distance is 25 mm, the tensile rate 50 mm/min and the temperature 23°C so that the chuck distance at end point is 33 mm, and the other before the tensile test.

(57) 要約: 特定構造の多層構造重合体を少なくとも含有するアクリル樹脂フィルム状物は、インサート成形またはインモールド成形を施した時に、成形品が白化しない、かつ車輌用途に用いることができる表面硬度、耐熱性、および透明性または艶消し性を満足する。また、巾20mmの試験片に対して、チャック間距離25mm、速度50mm/min、温度23℃の条件で、終点のチャック間距離33mmとなるように行った引張試験前後の試験片をJIS K7136(最価の測定方法)の試験方法にて測定した値の差が30%以下であり、ならびに鉛筆硬度(JIS K5400に基づく測定)が2B以上の、アクリル樹脂フィルム状物も使用可能である。

明細書

多層構造重合体及び樹脂組成物、並びに、アクリル樹脂フィルム状物、 アクリル樹脂積層フィルム、光硬化性アクリル樹脂フィルム又はシート、 積層フィルム又はシート、及び、これらを積層した積層成形品

技術分野

本発明は、多層構造重合体及び樹脂組成物、並びに、アクリル樹脂フィルム状物、アクリル樹脂積層フィルム、光硬化性アクリル樹脂フィルム又はシート、積層フィルム又はシート、及び、これらを積層した積層成形品に関する。

背景技術

低コストで成形品に意匠性を付与する方法として、インサート成形法、またはインモールド成形法がある。インサート成形法は、印刷等の加飾を施したポリエステル樹脂、ポリカーボネート樹脂、アクリル樹脂などのフィルムまたはシートを、あらかじめ真空成形等によって三次元の形状に成形し、不要なフィルムまたはシート部分を除去した後、射出成形金型内に移し、基材となる樹脂を射出成形することにより一体化させた成形品を得るものである。一方、インモールド成形法は、印刷等の加飾を施したポリエステル樹脂、ポリカーボネート樹脂、アクリル樹脂などのフィルムまたはシートを射出成形金型内に設置し、真空成形を施した後、同じ金型内で基材となる樹脂を射出成形することにより一体化させた成形品を得るものである。

インサート成形またはインモールド成形に用いることができる表面硬度、耐熱性に優れたアクリル樹脂フィルム状物として、特定の組成からなるゴム含有重合体と、特定の組成からなる熱可塑性重合体とを特定の割合で混合してなるアクリル樹脂フィルム状物が開示されている(例えば、参考文献1~4参照。)。このようなアクリル樹脂フィルム状物は、成形品に加飾性を付与するばかりでなく、クリア塗装の代替材料としての機能を有する。

また、特定の組成からなるゴム含有重合体と特定の組成からなる熱可塑性重合体とを特定の割合で含有するアクリル樹脂フィルム状物、あるいは、特定の組成

からなるゴム含有重合体と特定の組成からなる熱可塑性重合体と艶消し剤とを特定の割合で含有するアクリル樹脂フィルム状物が開示されている(例えば、参考文献 5、6参照。)。このようなアクリル樹脂フィルム状物は、成形品に加飾性を付与するばかりでなく、艶消し塗装の代替材料としての機能を有する。

また、インモールド成形またはインサート成形に用いることができる表面硬度、耐擦傷性に優れたアクリル樹脂フィルムを得るために、ゴム粒子を含有したアクリル樹脂層の少なくとも片面に、事実上ゴム粒子を含まないアクリル樹脂層を積層してなるアクリル樹脂積層フィルムが提案されている(例えば、参考文献14、15参照)。

また同様に、ゴム粒子を含有させることにより、耐候性や耐薬品性が低下する等の問題が生じてしまう。このため、ゴム粒子を含有したアクリル樹脂層の少なくとも片面に、耐候性や耐薬品性に優れた樹脂であり、アクリル樹脂との密着性が良好なフッ化ビニリデン系重合体等のフッ素系樹脂を積層してなる積層フィルムも提案されている(例えば、参考文献16参照)。

また、インモールド成形またはインサート成形に用いることができる意匠性の 良好な成形品の製造に有利に用いることのできる、耐磨耗性、耐候性および耐薬 品性に優れ、かつ、粘着性がなく、加工性および保存安定性に優れた光硬化性樹 脂を表面に有する光硬化性フィルムまたはシートが開示されている(参考文献1 7、18)。このような光硬化性フィルムまたはシートは、成形品に加飾性を付 与するばかりでなく、塗装の代替材料としての機能を有する。

さらに、インサート成形法またはインモールド成形法で好適に使用でき、アクリル樹脂層としてアクリル樹脂フィルムまたはシートを積層した積層フィルムまたはシートが開示されている(例えば、参考文献19~22参照)。

また、インモールド成形に用いることができる、ゴム成分を含有する多層構造 重合体からなる加工性、柔軟性に富んだアクリル樹脂フィルム状物が開示されて いる(例えば、参考文献 7 参照。)。

一方、ゴムを含有するアクリル樹脂からなるアクリル樹脂フィルム状物は、透明性、耐候性、柔軟性、加工性における優れた特性を活かし、各種樹脂成形品、 木工製品、および金属成形品の表面に積層し、車輌内外装、家具・ドア材・窓枠

・巾木・浴室内装等の建材用途等の表皮材、マーキングフィルム、高輝度反射材 被覆用フィルムとして使用されている。

従来、上記用途に用いられているアクリル樹脂フィルム状物用原料としては、様々な樹脂組成物が提案され、実用化されている。このうち、特に耐候性、透明性に優れ、かつ耐折り曲げ白化性等の耐ストレス白化性に優れたアクリル樹脂フィルム状物を与える原料として、アクリル酸アルキルエステル、メタクリル酸アルキルエステル、およびグラフト交叉剤を重合体の構成成分とする特定構造の多層構造重合体が知られている(例えば、参考文献8、9参照。)。また、同様の特性を有するアクリル樹脂フィルム状物の原料としての多層構造重合体が開示されている(例えば、参考文献10~12参照。)。また、艶消し性に優れたアクリル樹脂フィルム状物を与える熱可塑性樹脂組成物として、特定構造の多層構造重合体と、特定の組成からなる水酸基を有する直鎖状重合体とからなる熱可塑性樹脂組成物が開示されている(例えば、参考文献13参照。)。

近年、インサート成形法またはインモールド成形法により成形された、表層に アクリル樹脂フィルム状物層を有する部材が、車輌用途の部品として用いられて いる。

特定の平均粒子径のゴム含有重合体を特定量含有することで、表面硬度、耐熱性、成形性に優れたアクリル樹脂フィルム状物が得られる(例えば、参考文献1参照。)。平均粒子径 0.2 μ m未満のゴム含有重合体を使用することで、透明性に優れた塗装代替用アクリル樹脂フィルム状物が得られる(例えば、参考文献3参照。)。特定の構造を有するゴム含有重合体を使用することで、表面硬度、耐熱性を損なうことなく、耐可塑剤白化性と成形性を両立した塗装代替用アクリル樹脂フィルム状物が得られる(例えば、参考文献4参照。)。Tgが約105℃のハード芯構造のゴム含有重合体を使用したアクリル樹脂フィルム状物が提案されており、表面硬度に優れたアクリル樹脂フィルム状物が得られる(例えば、参考文献2参照。)。艶消し剤と特定の平均粒子径のゴム含有重合体を特定量含有することで、艶消し性、表面硬度、耐熱性、成形性に優れたアクリル樹脂フィルム状物が得られる(例えば、参考文献5参照。)。特定のフィルム表面光沢度を有する印刷適正が良好で、艶消し性、表面硬度、耐熱性、成形性に優れたアク

リル樹脂フィルム状物が得られる(例えば、参考文献6参照。) しかしながら、 これらのアクリル樹脂フィルム状物は、耐成形白化性に懸念がある。

具体的には、(1) インサート成形では、真空成形後にアクリル樹脂フィルム状物またはアクリル樹脂フィルム状物を積層した積層シートを取り除くため、またインモールド成形では、基材樹脂からはみ出したアクリル樹脂フィルム状物を取り除くために打ち抜き加工を行うと、成形品の端部で白化が生じるため、成形品の意匠性が損なわれる、(2) アンダーカットデザインの成形品を金型から取り外す際に白化が生じる、(3) 文字等の凸または凹のデザインを有する成形品を得るために凹みまたは凸のある金型を使用した際、真空または圧空成形後も凹みまたは凸部分ではアクリル樹脂フィルム状物が金型に追従せず、さらにアクリル樹脂フィルム状物の温度がTg以下の状態で、基材樹脂を射出成形しなければならないため、樹脂圧によりフィルムが延伸されると白化が生じ、場合によっては割れてしまう。

上述したアクリル樹脂フィルム状物の耐成形白化性の問題により、打ち抜き加工のかわりに手作業ではみ出したフィルムを取り除く、デザイン上の制約がある、場合によっては白化した部分を再加熱して白味を取り除く作業工程が必要になるなど、工業的利用価値が低かった。

また例えば、耐候性、耐溶剤性、耐ストレス白化性、耐水白化性、および透明性または艶消し性に優れたアクリル樹脂フィルム状物が得られる(例えば、参考文献8~12、13参照。)。しかしながら、該公報には、得られたアクリル樹脂フィルム状物のインサート成形、またはインモールド成形に関する記述はなく、さらには、表面硬度、耐熱性に関する記述もない。また、実施例に記載されている組成のアクリル樹脂フィルム状物の表面硬度、耐熱性は、いずれも車輌用途に必要なレベルに達していない。加工性、柔軟性に富み、かつ該アクリル樹脂フィルム状物のインモールド成形に関して記述しているものがあるが(例えば、参考文献7参照。)、上述のアクリル樹脂フィルム状物同様、表面硬度、耐熱性は車輌用途の必要レベルに達していない。

また、ゴム粒子を含有するアクリル樹脂層の少なくとも片面に、炭素数1~4 のアルキル基を有するアルキルメタクリレートを主成分とするロックウェル硬度

がMスケールで90以上の樹脂層を積層することで、耐擦傷性に優れたアクリル 樹脂積層フィルムが得られる(例えば、参考文献14参照)。

しかしながら、該公報記載のゴム粒子を含有するアクリル樹脂層では、その表面硬度が低いため、最終的に得られるアクリル樹脂積層フィルムの表面硬度(耐擦傷性)は車輌用途に用いるためには改善の余地があった。また、実施例に記載されているアクリル樹脂積層フィルムでは、良好な成形品を得るための加工条件が狭く、加工条件によってはアクリル樹脂層の亀裂、破断、積層部分での剥がれ等が発生することがあった。すなわち、アクリル樹脂積層フィルムの加工温度、基材樹脂の射出速度等に制限があり、工業的利用価値が低いものであった。

さらに、ゴム粒子を含有し、曲げ弾性率が1500MPa以下であるアクリル系樹脂からなる軟質層の少なくとも片面に、曲げ弾性率が1600MPa以上であるアクリル系樹脂からなる硬質層を積層することで、折り曲げまたは引っ張りを含む成形加工に適用した際に、適度の表面硬度及び柔軟性を有し、成形白化の少ない成形品とすることのできるアクリル樹脂積層フィルムが得られる(例えば、参考文献15)。

該公報では、耐成形白化性に関する記述がなされており、その評価方法として、JIS K7113-1995「プラスチックの引張試験方法」に従って引張試験を行い、その前後における破断部の曇価(ヘイズ)を測定している。該引張試験による耐成形白化性の評価では、その引張速度、温度条件、チャック間距離、終点のチャック間距離等の試験条件により、試験後の曇価はまちまちである。しかしながら、該公報では、これらの試験条件に関する記載が一切なく、耐成形白化性の評価としては不明確である。

また、実施例に記載されているアクリル樹脂積層フィルムに用いられている2 層構造アクリル系ゴムの組成の説明が明確になされていない。

このため、既に公知となっている2層構造アクリル系ゴム(例えば、参考文献3参照)で、アクリル系樹脂に混和したときの平均粒子径を約75 nmに調製したものを用いて、実施例に記載されているアクリル樹脂積層フィルムを作製し、インサート成形、またはインモールド成形を施した場合、硬質層としてゴム粒子を含有するアクリル系樹脂を使用した実施例1のアクリル樹脂積層フィルムでは

、亀裂、破断、積層部分での剥がれ等は生じなかったものの、成形白化が観測された。

また、硬質層としてゴム粒子を含有しないアクリル系樹脂を使用した実施例2~4のアクリル樹脂積層フィルムでは、加工条件によってはアクリル樹脂層の亀裂、破断、積層部分での剥がれ等が発生した。すなわち、アクリル樹脂積層フィルムの加工温度、基材樹脂の射出速度等に厳しい制限があり、工業的利用価値の低いものであった。

該公報では、曲げ弾性率が1600MPa以上であるアクリル系樹脂からなる 硬質層を、事実上ゴム粒子を含有させないことにより、耐成形白化性が良好とな る効果を謳っている。しかしながら、上記のインサート成形、またはインモール ド成形を施した際の成形白化現象は、アクリル樹脂積層フィルムの大部分を占め る軟質層で発生しており、比較的成形白化した部分が目立たない木目調の印刷柄 でもその白化が確認でき、工業的利用価値は低いものであった。

これは、アクリル樹脂フィルムに用いられるゴム粒子に、例えば特定のテイパー構造、グラフト構造を有する耐ストレス白化性に優れたゴム粒子 (例えば、参考文献 5、6参照)を用いなければ、実用途上における耐成形白化性を満足するレベルに達しないことに起因するものである。

しかしながら、現在公知となっている特定のテイパー構造、グラフト構造を有する耐ストレス白化性に優れたゴム粒子を用いると、耐成形白化が目立たない良好な成形品を得ることができるものの、上記したように、車輌用途に用いることのできる表面硬度を有する成形品を得ることは困難であった。

該公報実施例5のアクリル樹脂積層フィルムでは、その表面硬度(耐擦傷性) 、耐熱性が車輌用途に必要なレベルに達していない。

また、耐候性、耐溶剤性に優れ、アクリル樹脂層との密着性の良好なフッ化ビニリデン系重合体層と特定の多層構造重合体からなるアクリル樹脂層とを積層することで、透明性、耐ストレス白化性、耐水白化性に優れ、また各層間の密着性に優れる積層フィルムが得られる(例えば、参考文献16)。しかしながら、該公報では、得られた積層フィルムのインサート成形、またはインモールド成形に関する記述がなされていない。さらには、表面硬度(耐擦傷性)、耐熱性に関す

る記述もなされていない。

また、実施例に記載されている積層フィルムでは、その表面硬度 (耐擦傷性) 、耐熱性はいずれも車輌用途に用いるには改善の余地があった。

また、耐磨耗性、耐候性および耐薬品性に優れ、かつ、粘着性がなく、加工性 および保存安定性に優れた光硬化性樹脂を表面に有する光硬化性フィルムまたは シートが得られる(参考文献17、18)。

例えば光硬化性フィルムまたはシートを得るために、基材フィルム又はシートとして、表面硬度、耐熱性、成形性に優れたアクリル樹脂フィルム (例えば、参考文献1参照。)を用いた場合、これらのアクリル樹脂フィルムは、耐成形白化性に懸念があるため、得られる光硬化性フィルム又はシートについても、同様に耐成形白化性に懸念があった。

さらに、基材フィルム又はシートとして、耐候性、耐溶剤性、耐ストレス白化性、耐水白化性、および透明性に優れたアクリル樹脂フィルム(例えば、参考文献8、9参照。)を用いた場合、これらのアクリル樹脂フィルムは耐熱性が劣るために、光硬化性樹脂組成物をフィルムに塗布した後の溶剤除去のための乾燥工程で、光硬化性樹脂組成物やアクリル樹脂フィルムが引き伸ばされてしまい、硬化後の耐擦傷性、表面硬度が低下する問題があった。また、これらのアクリル樹脂フィルムを用いた場合、乾燥条件を最適化することで、アクリル樹脂フィルムの引き伸ばされ度合いを最小限に抑えることは可能であるが、乾燥工程の装置が長大化するばかりでなく、生産効率が低下するため工業的利用価値が低かった。更に、乾燥温度を高めることができないために、後述するように光硬化性樹脂層中の残存有機溶剤量を低減することができないので、残存溶剤に起因する種々の問題が起こり易くなる。また、光硬化後の光硬化性フィルム又はシートの表面硬度については、基材となるフィルム又はシートの表面硬度の影響を強く受けるため、これらのアクリル樹脂フィルムを基材として用いた場合の光硬化後の光硬化性フィルム又はシートの表面硬度は低いものしか得られなかった。

また、インサート成形法またはインモールド成形法で好適に使用でき、アクリル樹脂層としてアクリル樹脂フィルム状物またはシートを積層した積層フィルムまたはシートが得られる(例えば、参考文献19~22参照)。しかしながら、

これらのアクリル樹脂層を有する積層フィルムおよびシートにおいては、耐成形白化性の重要性および解決策に関して、全く言及していない。

次に、窓等の開口部サッシや、玄関引き戸、玄関ドア等の外装建築部材の表面 化粧に用いられる積層フィルムまたはシート(以下、「建材用積層フィルムまた はシート」と称する。)としては、ポリ塩化ビニル樹脂等の熱可塑性樹脂からな る基材シートの表面に、耐候性の優れたアクリル系樹脂からなる表面保護層を設 けた構成のものが主流である。この建材用積層フィルムまたはシートは、表面保 護層のアクリル系樹脂が紫外線による酸化・分解等の劣化を発生しにくい性質を 有していると共に、例えばベンゾトリアゾール系、ベンゾフェノン系等の紫外線 吸収剤との相溶性にも優れていることから、基材シートやその表面に通常設けら れる絵柄層を、太陽光に含まれる紫外線から保護し、外装用途にも十分に堪える 耐候性が得られる。

従来公知の積層方法により積層された、表面保護層にアクリル樹脂フィルムまたはシートを積層した建材用積層フィルムまたはシートが開示されている(例えば、参考文献23~25参照)。

上記用途の積層フィルムまたはシートには、下記のような機能が要求される。

(1)耐艶戻り性

建材用積層フィルムまたはシートには、製造・加工工程中や使用状態において表面の艶変化を発生し易いという問題点がある。すなわち、建材用積層フィルムまたはシートの表面は、所望の適度の艶状態となる様に、絞付加工や艶調整剤の添加、艶調整層の形成等の手段により、所定の艶状態に調整されるのが一般的である。ところが、該建材用積層フィルムまたはシートの場合には、建材用積層フィルムまたはシートの製造工程中に表面を所定の適度の艶状態に調整しても、アルミサッシ基材や鋼板ドア基材等の各種基材の表面にラッピング加工等により貼着する加工工程中や、こうして加工された各種部材を住宅等の建築物に施工後実際に使用している間に、表面の艶が上昇してテカリや艶ムラ等の意匠欠陥状態となり易い傾向があるためである。この意匠欠陥は、上記加工工程時や建材用部材として使用している状態において、熱等により積層フィルムまたはシートの表面温度が高温状態となり、この高温によって表面保護層の熱可塑性樹脂層が軟化す

ることに起因している。すなわち、積層フィルムまたはシートに求められる耐艶 戻り性は、表面保護層の熱可塑性樹脂層の耐熱性に対応している。

(2) 二次加工適性

建材用積層フィルムまたはシートは一般に、例えば合板やパーティクルボード 、中密度繊維板(MDF)等の木質系基材や、珪酸カルシウム板やスレート板、 木毛セメント板等の無機質系基材、繊維強化プラスティック(FRP)等の合成 樹脂系基材等の各種の基材の表面に貼着されて使用されるものであるが、単に平 板状の基材に貼着するのみならず、これにVカット加工等の折り曲げ加工を施し たり、或いは凹凸形状を有する基材の表面にラッピング法又は真空成形法等の手 法により立体成形して貼着して使用する場合もある。特に近年では、消費者の嗜 好の多様化によって、各種の特殊な立体形状の化粧部材に対する需要が高まって おり、これに伴って建材用積層フィルムまたはシートにも折り曲げ加工性や立体 成形性等の二次加工適性が益々強く要請される様になっているためである。 例えば、寒冷地等で積層フィルムまたはシートを積層した基材を折り曲げ加工す る際に、基材にV字状の溝を形成して折り曲げ加工(Vカット加工)を行う際、 あるいは、表面に凹凸形状を有する長尺状の基材に、該凹凸形状の表面に沿って 折り曲げながら貼着する加工(ラッピング加工)を行う際に、表層のアクリル樹 脂層の応力緩和が不十分な場合は、折り曲げ部に白化、亀裂、破断等が生じてし まうことがある。

(3)耐擦傷性

積層成形品を得るための工程中で、擦傷による外観不良を起こさない、さらには、窓等の開口部サッシや、玄関引き戸、玄関ドア等、擦傷の可能性の高い部位への用途拡大の観点から耐擦傷性に優れた建材用積層フィルムまたはシートへの強い要求がある。なお、耐擦傷性の指標として、積層成形品の表層に位置するアクリル樹脂層の鉛筆硬度が2B以上であることが求められる。鉛筆硬度が2B以上であるアクリル樹脂層の場合、該建材用積層フィルムまたはシートを用いて得られる積層成形品は、実用的な耐擦傷性を有し、さらに積層成形品になるまでの工程中で擦傷による外観不良を起こす問題が少なく、上記した窓等の開口部サッシや、玄関引き戸、玄関ドア等、各種外装建築部材に使用できるためである。

参考文献23~25に記載されている、アクリル樹脂フィルムを表面保護層に 有する建材用積層フィルムまたはシートにおいては、これら耐擦傷性、耐艶戻り 性、および耐成形白化性を併せ持つことの重要性および解決策に関して、全く言 及していない。例えば、参考文献23、24に関しては、耐成形白化性に関して は言及しているものの、耐艶戻り性については記載していない。

また、参考文献25に関しては、耐艶戻り性については言及しているものの、 耐擦傷性、耐成形白化性については記載していない。

具体的には、表面保護層にガラス転移温度90℃以上のアクリル樹脂フィルムを用いることにより、積層フィルムまたはシートの表面温度が60℃以上の高温に曝されることがあっても、艶戻り等の艶変化を発生しにくい積層フィルムまたはシートが得られる、と記載されている。しかしながら、該公報中では、該アクリル樹脂フィルムに関する組成、あるいはガラス転移温度の測定方法等の説明が明確になされていない。さらには、積層成形品を得るための各加工工程、あるいは、建築物に施工後の実用途を想定していると思われる「積層フィルムまたはシートの表面温度が60℃以上」という根拠も明確に記載されていない。また、積層成形品を得るための加工に関する詳しい記載もなされていない。

積層フィルムまたはシートを含む建材用積層成形品の利用分野の中でも、例えば、サイディング等の外壁、塀、屋根、ルーフデッキ、バルコニー等の最も耐熱性の要求が高い部位に、アクリル樹脂フィルムを表面保護層に有する積層フィルムまたはシートを用いるには、積層フィルムまたはシートの表面温度が90℃の環境下で24時間保持した際でも艶戻り等の艶変化がないことが望ましい。

しかしながら、該公報の実施例に記載されているアクリル樹脂フィルム (三菱レイヨン株式会社製HBS006 (商品名))では、上記用途での耐熱性の要求性能を満たすことができず、積層フィルムまたはシートの表面温度が90℃の環境下で24時間保持した際に艶戻り等の艶変化が見られる。このため、使用用途が限定された。

さらに、該公報の実施例に記載されているアクリル樹脂フィルム (三菱レイョン株式会社製HBS006およびHBS027 (商品名)) を用いて得られた積層フィルムまたはシートを曲率半径0.5の形状のポリエステル樹脂系三次元形

状基材に、積層フィルムまたはシート温度80℃の条件にて、三次元ラミネートして、三次元形状を有する積層成形品を作製したところ、HBS006を用いた積層フィルムまたはシートではやや白化が見られ、HBS027を用いた積層フィルムまたはシートでは白化が見られた。このため、成型加工温度、加工条件等に制限があった。

これらの事例より、参考文献 2 5 に記載されているアクリル樹脂フィルムを表面保護層に有する建材用積層フィルムまたはシートは、耐成形白化性、および耐艶戻り性に関して改良の余地があった。

また、特定の樹脂組成物を用いることにより、アクリル樹脂フィルムの柔軟性を向上し、曲率半径の小さな曲げ加工、変形速度の大きい速い曲げ加工等にも使用できる加工性良好なアクリル樹脂フィルムが開示されている(例えば、参考文献26)。特定の樹脂組成物を用いることにより、低温加工性の優れたアクリル樹脂フィルムも開示されている(例えば、参考文献27、28)。しかしながら、参考文献26~28に記載されたアクリル樹脂フィルムについては、耐艶戻り性に関する記述がなく、実施例に記載されている樹脂組成物を原料として用いたアクリル樹脂フィルムでは、その予想される耐艶戻り性はいずれも建材用途に必要なレベルに達しておらず、建材用積層フィルムまたはシートとして用いるには不適であった。

一方、耐熱性に優れたアクリル樹脂フィルム(例えば参考文献1~4)を用いた場合は耐艶戻り性に優れるものの、耐成形白化性が劣るために建材用積層フィルムまたはシートとして用いるには不適であった。

<参考文献>

- 1. 特開平8-323934号公報
- 2. 特開平11-147237号公報
- 3. 特開2002-80678号公報
- 4. 特開2002-80679号公報
- 5. 特開平10-237261号公報
- 6. 特開2002-361712号公報
- 7. 特開平8-267500号公報

- 8. 特公昭62-19309号公報
- 9. 特公昭63-8983号公報
- 10. 特開平11-60876号公報
- 11. 特開平11-335511号公報
- 12. 特開2001-81266号公報
- 13. 特開平7-238202号公報
- 14. 特開平4-166334号公報
- 15. 特開2002-292808号公報
- 16. 特開平3-288640号公報
- 17. 特開2002-80550号公報
- 18. 特開2002-79621号公報
- 19. 特開2000-86853号公報
- 20. 特開2001-232660号公報
- 21. 特開2001-334609号公報
- 22. 特開2002-3620号公報
- 23. 特開2000-225672号公報
- 24. 特開2001-1465号公報
- 25. 特開2002-347185号公報
- 26. 特開平11-80487号公報
- 27. 特開2002-241445号公報
- 28. 特開2003-128734号公報
- 29. 特許第2808251号公報
- 30. WO97/28950号公報
- 31. Polymer HandBook (J. Brandrup, Interscience, 1989)

発明の開示

本発明は、インサート成形またはインモールド成形を施した時に、成形品が白 化しない、かつ車輌用途に用いることができる表面硬度、耐熱性、および透明性

または艶消し性を有するアクリル樹脂フィルム状物またはアクリル樹脂積層フィ ルムを提供することを目的とする。また、インサート成形またはインモールド成 形を施した時に、成形品が白化しない、かつ車輌用途に用いることができる耐熱 性、耐擦傷性、表面硬度を有する光硬化性アクリル樹脂フィルム又はシートまた は積層フィルムまたはシートを提供することを目的とする。また、寒冷地でVカ ット加工やラッピング加工等の加工を施す工程において成形品が白化しない、か つ耐擦傷性、耐艶戻り性を満足する建材用積層フィルムまたはシートを提供する ことを本発明の目的とする。さらに、本発明は、これらを基材に積層した積層成 形品を提供することを目的とする。

また、本発明は、上記のアクリル樹脂フィルム状物を得るために適した多層構 造重合体、およびその多層構造重合体を含む樹脂組成物を提供することを目的と する。

本発明の上記目的は、以下の本発明により解決できる。

[1] 下記の単量体成分から構成される、(1) 最内層重合体(I-A)と、(2) ガラス転移温度が25~100℃であり、前記最内層重合体(I-A)とは 異なる組成の中間層重合体 (I-B)と、(3)最外層重合体 (I-C)と、が この順に積層されてなる多層構造重合体(I)。

(1) 最内層重合体 (I-A) を構成するための単量体成分

(I-A1) アクリル酸アルキルエステル

50~99.9質量%

(I-A2) メタクリル酸アルキルエステル

0~49.9質量%

(I-A3) 共重合可能な二重結合を有する他の単量体 0~20質量%

(I-A4) 多官能性単量体

0~10質量%

(I-A5) グラフト交叉剤

0.1~10質量%

(2) 中間層重合体 (I-B) を構成するための単量体成分

(I-B1)アクリル酸アルキルエステル

9.9~90質量%

(I-B2)メタクリル酸アルキルエステル 9.9~90質量%

(I-B3) 共重合可能な二重結合を有する他の単量体 0~20質量%

(I-B4) 多官能性単量体

0~10質量%

(I-B5)グラフト交叉剤

0.1~10質量%

(3) 最外層重合体 (I-C) を構成するための単量体成分

(I-C1) メタクリル酸アルキルエステル 80~100質量%

(I-C2) アクリル酸アルキルエステル 0~20質量%

(I-C3) 共重合可能な二重結合を有する他の単量体 0~20質量%

[2]前記[1]記載の多層構造重合体(I)と、メタクリル酸アルキルエステルを主成分とする熱可塑性重合体(II)とを含有する樹脂組成物(III)。

[3] 前記[1] 記載の多層構造重合体 (I) または前記[2] 記載の樹脂組成物 (III) 100質量部と、艶消し剤 0.1~40質量部とを含有する樹脂組成物 (IV)。

[4]前記[1]記載の多層構造重合体(I)、前記[2]記載の樹脂組成物(II)、及び、前記[3]記載の樹脂組成物(IV)からなる群より選ばれる1つからなるアクリル樹脂フィルム状物(A)。

[5] 巾20mmの試験片を初期のチャック間距離25mm、速度50mm/m in、温度23 $^{\circ}$ の条件で、終点のチャック間距離33mmとなるように引張試験を行った後の試験片をJIS K7136 (曇価の測定方法)の試験方法にて測定した値と、試験前の試験片をJIS K7136 (曇価の測定方法)の試験方法にて測定した値との差が30 $^{\circ}$ 以下であり、かつ、鉛筆硬度 (JIS K5400に基づく測定)が2B以上であるアクリル樹脂フィルム状物 (A)。

[2] 少なくとも片面の 60° 表面光沢度が100%以下である前記 [4] または [5] 記載のアクリル樹脂フィルム状物 (A)。

[7] 熱変形温度 (ASTM D648に基づく測定)が80℃以上である前記[4] ~ [6] のいずれかに記載のアクリル樹脂フィルム状物 (A)。

[8] さらに、少なくとも片面に加飾層を有する前記 [4] ~ [7] のいずれかに記載のアクリル樹脂フィルム状物 (A)。

[9]前記[4]~[7]のいずれかに記載のアクリル樹脂フィルム状物(A)を有するアクリル樹脂積層フィルムであって、さらに他のアクリル樹脂フィルム状物(A')またはフッ素樹脂フィルム状物(A')とを有するアクリル樹脂積層フィルム。

[10] さらに、少なくとも片面に加飾層を有する前記 [9] 記載のアクリル樹

脂積層フィルム。

[11] 前記 [4] ~ [7] のいずれかに記載のアクリル樹脂フィルム状物(A)または前記 [9] 記載のアクリル樹脂積層フィルムと、側鎖にラジカル重合性不飽和基を有する熱可塑性樹脂(z-1)および光重合開始剤(z-2)を含む光硬化性樹脂組成物(Z)層とを有する光硬化性アクリル樹脂フィルム又はシート。

[12] さらに、少なくとも片面に加飾層を有する前記 [11] 記載の光硬化性 アクリル樹脂フィルム又はシート。

[13]前記[4]~[7]のいずれかに記載のアクリル樹脂フィルム状物(A)、前記[9]記載のアクリル樹脂積層フィルム、及び、前記[11]記載の光硬化性アクリル樹脂フィルム又はシートからなる群より選ばれる1つと、熱可塑性樹脂層(C)とを有する積層フィルムまたはシート。

[14] 加飾層をさらに有する前記 [13] 記載の積層フィルムまたはシート。

[15] 前記 [13] または [14] 記載の積層フィルムまたはシートからなる 建材用積層フィルムまたはシート。

[16] 前記 [4] ~ [8] のいずれかに記載のアクリル樹脂フィルム状物(A)、前記 [9] または [10] 記載のアクリル樹脂積層フィルム、前記 [11] または [12] 記載の光硬化性アクリル樹脂フィルム又はシート、前記 [13] または [14] 記載の積層フィルムまたはシート、及び、前記 [15] 記載の建材用積層フィルムまたはシートからなる群より選ばれる1つを、基材 (E) に積層したことを特徴とする積層成形品。

[17]前記[4]~[8]のいずれかに記載のアクリル樹脂フィルム状物(A)、前記[9]または[10]記載のアクリル樹脂積層フィルム、前記[11]または[12]記載の光硬化性アクリル樹脂フィルム又はシート、前記[13]または[14]記載の積層フィルムまたはシート、及び、前記[15]記載の建材用積層フィルムまたはシートからなる群より選ばれる1つに、射出成形金型内で真空成形または圧空成形を施し、その後、該射出成形金型内で前記基材(E)となる樹脂を射出成形して一体化することにより得られる前記[16]記載の積層成形品。

[18] 前記 [4] ~ [8] のいずれかに記載のアクリル樹脂フィルム状物(A)、前記 [9] または [10] 記載のアクリル樹脂積層フィルム、前記 [11] または [12] 記載の光硬化性アクリル樹脂フィルム又はシート、前記 [13] または [14] 記載の積層フィルムまたはシート、及び、前記 [15] 記載の建材用積層フィルムまたはシートからなる群より選ばれる1つに、真空成形または圧空成形を施し、その後、射出成形金型内に挿入し、該射出成形金型内で前記基材(F)となる樹脂を射出成形することにより得られる前記 [16] 記載の積層成形品。

本発明の、多層構造重合体(I)、樹脂組成物(III)、及び樹脂組成物(IV)からなる群より選ばれる1つを用いたアクリル樹脂フィルム状物(A)、 或いは、巾20mmの試験片をチャック間距離25mm、速度50mm/min 、温度23℃の条件で、終点のチャック間距離33mmとなるように引張試験を 行った後の試験片をJIS K7136 (曇価の測定方法) の試験方法にて測定 した値と、試験前の試験片をJIS K7136 (曇価の測定方法) の試験方法 にて測定した値との差が30%以下であり、ならびに鉛筆硬度(JIS K54 00に基づく測定)が2B以上であるアクリル樹脂フィルム状物(A)、を採用 すると、インサート成形、またはインモールド成形を施した時に、成形品が白化 しない、かつ車輌用途に用いることができる表面硬度、耐熱性、および透明性ま たは艶消し性を満足するアクリル樹脂フィルム状物(A)およびアクリル樹脂積 層フィルムを提供することができる。また、インサート成形またはインモールド 成形を施した時に、成形品が白化しない、かつ車輌用途に用いることができる耐 熱性、耐擦傷性、表面硬度を有する光硬化性アクリル樹脂フィルム又はシートお よび積層フィルムまたはシートを提供することができる。また、寒冷地でVカッ ト加工やラッピング加工等の加工を施す工程において成形品が白化しない、かつ 耐擦傷性、耐艶戻り性を満足する建材用積層フィルムまたはシートを提供するこ とができる。さらに、これらを基材に積層した積層成形品を提供することができ る。

特に、インサート成形またはインモールド成形を施した際の耐成形白化性に優れている、本発明の、アクリル樹脂フィルム状物(A)、アクリル樹脂積層フィ

ルム、光硬化性アクリル樹脂フィルム又はシート、及び、積層フィルムまたはシ ートからなる群より選ばれる1つを用いることにより、打ち抜き加工の代わりに 手作業ではみ出したフィルムを取り除く、デザイン上の制約がある、白化した部 分を再加熱して白味を取り除く作業工程が必要であるといったことはなくなる。 本発明のアクリル樹脂フィルム状物(A)、アクリル樹脂積層フィルム、光硬化 性アクリル樹脂フィルム又はシート、及び、積層フィルムまたはシートは、工業 的利用価値が極めて高いものであり、従来の使用用途を飛躍的に広げることが可 能である。

発明を実施するための最良の形態

[多層構造重合体 (I)]

多層構造重合体(I)は、下記の単量体成分から構成される、最内層重合体(I-A)、最内層重合体(I-A)とは異なる組成の中間層重合体(I-B)お よび最外層重合体(I-C)の各重合体層から構成されるものである。

最内層重合体 (I-A) を構成するための単量体成分

(I-A1) アクリル酸アルキルエステル

50~99.9質量%

(I-A2)メタクリル酸アルキルエステル

0~49.9質量%

(I-A3) 共重合可能な二重結合を有する

(I-A1)、(I-A2)以外の単量体 0~20質量%

(I-A4) 多官能性単量体

0~10質量%

(I-A5) グラフト交叉剤

0.1~10質量%

中間層重合体(I-B)を構成するための単量体成分

(I-B1) アクリル酸アルキルエステル

9.9~90質量%

(I-B2)メタクリル酸アルキルエステル

9.9~90質量%

(I-B3) 共重合可能な二重結合を有する

(I-B1)、(I-B2)以外の単量体 0~20質量%

(I-B4) 多官能性単量体

0~10質量%

(I-B5) グラフト交叉剤

0.1~10質量%

最外層重合体(I-C)を構成するための単量体成分

(I-C1) メタクリル酸アルキルエステル

80~100質量%

(I-C2) アクリル酸アルキルエステル

0~20質量%

(I-C3) 共重合可能な二重結合を有する

(I-C1)、(I-C2)以外の単量体 0~20質量%。

なお、ここで「異なる組成」とは、各重合体を構成するための単量体成分の少なくとも1成分の種類および/または量が異なることをいう。

以上を構成成分とし、中間層重合体(I-B)単独のTgが25~100℃である。

最内層重合体(I-A)を構成するための単量体成分に含まれる成分(I-A
1)のアクリル酸アルキルエステルは、直鎖状、分岐鎖状のいずれでも良い。その具体例としては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n-ブチル、アクリル酸2-エチルへキシル、アクリル酸n-オクチル等が挙げられる。これらは単独で、または二種以上を混合して使用することができる。中でも、アクリル酸n-ブチルが好ましい。

最内層重合体(I-A)を構成するための単量体成分に必要に応じて含まれる成分(I-A2)のメタクリル酸アルキルエステルは、直鎖状、分岐鎖状のいずれでも良い。その具体例としては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n-ブチル等が挙げられる。これらは、単独で、または二種以上を混合して使用できる。中でも、メタクリル酸メチルが好ましい。

最内層重合体(I-A)を構成するための単量体成分に必要に応じて含まれる成分(I-A3)の、共重合可能な二重結合を有する(I-A1)、(I-A2)以外の単量体は、低級アルコキシアクリレート、シアノエチルアクリレート、アクリルアミド、アクリル酸、メタクリル酸等のアクリル性単量体、スチレン、アルキル置換スチレン、アクリロニトリル、メタクリロニトリル等が挙げられる。これらは単独で、または、二種以上を混合して使用することができる。

最内層重合体 (I-A) を構成するための単量体成分に必要に応じて含まれる成分 (I-A4) の多官能性単量体とは、同程度の共重合性の二重結合を1分子内に2個以上有する単量体と定義する。その具体例としては、エチレングリコー

ルジメタクリレート、1,3ープチレングリコールジメタクリレート、1,4ープチレングリコールジメタクリレート、プロピレングリコールジメタクリレート等のアルキレングリコールジメタクリレートを用いることが好ましい。また、ジビニルベンゼン、トリビニルベンゼン等のポリビニルベンゼン等も使用可能である。これらは単独で、または、二種以上を混合して使用することができる。中でも、1,3ープチレングリコールジメタクリレートが好ましい。多官能性単量体(IーA4)が全く作用しない場合でも、グラフト交叉剤(IーA5)が存在する限り、かなり安定な多層構造重合体(I)を与える。例えば、熱間強度等が厳しく要求されたりする場合など、その添加目的に応じて任意に行えばよい。

最内層重合体(I-A)を構成するための単量体成分に含まれるグラフト交叉剤(I-A5)とは、異なる共重合性の二重結合を1分子内に2個以上有する単量体と定義する。その具体例としては、共重合性の α , β -不飽和カルボン酸またはジカルボン酸のアリル、メタリル、またはクロチルエステル等が挙げられる。特に、アクリル酸、メタクリル酸、マレイン酸、またはフマル酸のアリルエステルが好ましい。これらのうち、メタクリル酸アリルエステルが優れた効果を奏し、好ましい。その他、トリアリルシアヌレート、トリアリルイソシアヌレート等も有効である。これらは単独で、または、二種以上を混合して使用することができる。グラフト交叉剤(I-A5)は、主としてそのエステルの共役不飽和結合が、アリル基、メタリル基、またはクロチル基よりはるかに速く反応し、化学的に結合する。この間、アリル基、メタリル基、またはクロチル基の実質上かなりの部分は、次層重合体の重合中に有効に働き、隣接二層間にグラフト結合を与える。

なお、連鎖移動剤の存在下で重合してもよい。

最内層重合体 (I-A) を構成するための単量体成分における、アクリル酸アルキルエステル (I-A1) の含有量は、50~99.9質量%である。得られるアクリル樹脂フィルム状物 (A) の耐成形白化性の観点から、好ましくは55質量%以上、より好ましくは60質量%以上である。また、得られるアクリル樹脂フィルム状物 (A) の表面硬度、耐熱性 (建材用途の場合は耐艶戻り性) の観点から、好ましくは79.9質量%以下、より好ましくは69.9質量%以下で

ある。

最内層重合体 (I-A) を構成するための単量体成分における、メタクリル酸アルキルエステル (I-A2) の含有量は、 $0\sim49$. 9質量%である。好ましくは20質量%以上、より好ましくは30質量%以上である。また、好ましくは44. 9質量%以下、より好ましくは39. 9質量%以下である。

最内層重合体 (I-A) を構成するための単量体成分における、共重合可能な二重結合を有する (I-A1)、 (I-A2) 以外の単量体 (I-A3) は、0 ~ 20 質量%である。好ましくは15 質量%以下である。

最内層重合体 (I-A) を構成するための単量体成分における、多官能性単量体 (I-A4) の含有量は、0~10質量%である。得られるアクリル樹脂フィルム状物 (A) の耐成形白化性の観点から、好ましくは0.1質量%以上、より好ましくは3質量%以上である。十分な柔軟性、強靭さを付与する観点から、好ましくは6質量%以下、より好ましくは5質量%以下である。

最内層重合体(I-A)を構成するための単量体成分における、グラフト交叉剤(I-A5)の含有量は、0.1~10質量%である。0.1質量%以上の含有量では、得られるアクリル樹脂フィルム状物(A)の耐成形白化性が良好となり、透明性等の光学的物性を低下させずに成形することができる。好ましくは0.5質量%以上である。また、10質量%以下の含有量では、得られるアクリル樹脂フィルム状物(A)に十分な柔軟性、強靭さを付与することができる。好ましくは5質量%以下、より好ましくは2質量%以下である。

特に限定されるわけではないが、最内層重合体(I-A)単独のTgは、10 $^{\circ}$ $^{\circ}$

多層構造重合体(I)中の最内層重合体(I-A)の含有量は $15\sim50$ 質量%が好ましい。15質量%以上の場合、得られるアクリル樹脂フィルム状物(A)に耐成形白化性を付与することができ、製膜性とインサート成形およびインモ

ールド成形可能な靭性を両立させることができる。また、50質量%以下の場合、車輌用途に必要な表面硬度および耐熱性(建材用途の場合は耐艶戻り性)を兼ね備えたフィルムが得られるため、好ましい。より好ましくは35質量%以下である。

最内層重合体(I-A)は、単層でも多層でも良いが、より好ましくは2層である。特に限定はされないが、最内層重合体(I-A)中の2層の単量体構成比は異なっていることが好ましい。

最内層重合体(I-A)が 2層からなる場合、得られるアクリル樹脂フィルム状物(A)の耐成形白化性、耐衝撃性、耐熱性(建材用途の場合は耐艶戻り性)および表面硬度の観点から、内側層($I-A_1$)のT g は外側層($I-A_2$)の T g よりも低いほうが好ましい。具体的には、内側層($I-A_1$)のT g は、耐成形白化性および耐衝撃性の観点から-30 \mathbb{C} 未満が好ましく、外側層($I-A_2$)のT g は、表面硬度、耐熱性(建材用途の場合は耐艶戻り性)の観点から-15 $\mathbb{C}\sim10$ \mathbb{C} が好ましい。また、表面硬度、耐熱性(建材用途の場合は耐艶戻り性)の観点から、最内層重合体(I-A)中の内側層($I-A_1$)の含有量は $1\sim20$ 質量%が好ましく、外側層($I-A_2$)の含有量は $80\sim99$ 質量%が好ましい。

中間層重合体(I-B)を構成するための単量体成分に含まれる成分(I-B 1)のアクリル酸アルキルエステルは、直鎖状、分岐鎖状のいずれでも良い。その具体例としては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n-ブチル、アクリル酸2-エチルへキシル、アクリル酸n-オクチル等が挙げられる。これらは単独で、または二種以上を混合して使用できる。これらのうち、好ましいものはアクリル酸メチル、アクリル酸n-ブチルである

中間層重合体(I-B)を構成するための単量体成分に含まれる成分(I-B2)のメタクリル酸アルキルエステルは、直鎖状、分岐鎖状のいずれでも良い。その具体例としては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸nーブチル等が挙げられる。これらは、単独で、または二種以上を混合して使用できる。これらのうち、好ましいものはメタクリル酸メ

チルである。

中間層重合体(I-B)を構成するための単量体成分に必要に応じて含まれる成分(I-B3)の、共重合可能な二重結合を有する(I-B1)、(I-B2)以外の単量体は、低級アルコキシアクリレート、シアノエチルアクリレート、アクリルアミド、アクリル酸、メタクリル酸等のアクリル性単量体、スチレン、アルキル置換スチレン、アクリロニトリル、メタクリロニトリル等が挙げられる。これらは、単独で、または二種以上を混合して使用できる。

中間層重合体(I-B)を構成するための単量体成分に必要に応じて含まれる成分(I-B4)の多官能性単量体は、エチレングリコールジメタクリレート、1,3ープチレングリコールジメタクリレート、1,4ープチレングリコールジメタクリレート、プロピレングリコールジメタクリレート等のアルキレングリコールジメタクリレートを用いることが好ましい。また、ジビニルベンゼン、トリビニルベンゼン等のポリビニルベンゼン等も使用可能である。これらのうち、好ましいものは1,3ープチレングリコールジメタクリレートである。これらは、単独で、または二種以上を混合して使用できる。また、多官能性単量体(I-B4)が全く作用しない場合でも、グラフト交叉剤(I-B5)が存在する限り、かなり安定な多層構造重合体(I)を与える。例えば、熱間強度等が厳しく要求されたりする場合など、その添加目的に応じて任意に行えばよい。

中間層重合体(I-B)を構成するための単量体成分に含まれるグラフト交叉剤(I-B5)としては、共重合性の α , β -不飽和カルボン酸またはジカルボン酸のアリル、メタリル、またはクロチルエステル等が挙げられる。特に、アクリル酸、メタクリル酸、マレイン酸、またはフマル酸のアリルエステルが好ましい。これらのうち、メタクリル酸アリルエステルが優れた効果を奏し、好ましい。その他、トリアリルシアヌレート、トリアリルイソシアヌレート等も有効である。これらは、単独で、または二種以上を混合して使用できる。グラフト交叉剤(I-B5)は、主としてそのエステルの共役不飽和結合が、アリル基、メタリル基、またはクロチル基よりはるかに速く反応し、化学的に結合する。この間、アリル基、メタリル基、またはクロチル基の実質上、かなりの部分は、次層重合体の重合中に有効に働き、隣接二層間にグラフト結合を与える。

なお、連鎖移動剤の存在下で重合してもよい。

中間層重合体(I-B)を構成するための単量体成分における、アクリル酸アルキルエステル(I-B1)の含有量は、9.9~90質量%である。得られるアクリル樹脂フィルム状物(A)の耐成形白化性、表面硬度および耐熱性(建材用途の場合は耐艶戻り性)の観点から、好ましくは19.9質量%以上、より好ましくは29.9質量%以上である。また、好ましくは60質量%以下、より好ましくは50質量%以下である。

中間層重合体(I-B)を構成するための単量体成分における、メタクリル酸アルキルエステル(I-B2)の含有量は、9.9~90質量%である。得られるアクリル樹脂フィルム状物(A)の耐成形白化性、表面硬度および耐熱性(建材用途の場合は耐艶戻り性)の観点から、好ましくは39.9質量%以上、より好ましくは49.9質量%以上である。また、好ましくは80質量%以下、より好ましくは70質量%以下である。

中間層重合体 (I-B) を構成するための単量体成分における、共重合可能な二重結合を有する (I-B1)、 (I-B2) 以外の単量体 (I-B3) の含有量は、 $0\sim20$ 質量%である。好ましくは15 質量%以下である。

中間層重合体(I-B)を構成するための単量体成分における、多官能性単量体(I-B4)の含有量は、 $0\sim10$ 質量%である。得られるアクリル樹脂フィルム状物(A)に十分な柔軟性、強靭さを付与する観点から、好ましくは6質量%以下、より好ましくは3質量%以下である。

中間層重合体(I-B)を構成するための単量体成分における、グラフト交叉剤(I-B5)の含有量は、 $0.1\sim10$ 質量%である。0.1質量%以上の含有量では、得られるアクリル樹脂フィルム状物(A)の耐成形白化性が良好となり、透明性等の光学的物性を低下させずに成形することができる。好ましくは0.5質量%以上である。また、10質量%以下の含有量では、得られるアクリル樹脂フィルム状物(A)に十分な柔軟性、強靭さを付与することができる。好ましくは5質量%以下、より好ましくは2質量%以下である。

中間層重合体 (I-B) 単独のTgは、25~100℃の範囲であることが必要である。Tgが25℃以上の場合、得られるアクリル樹脂フィルム状物 (A)

の表面硬度および耐熱性(建材用途の場合は耐艶戻り性)が車輌用途又は建材用途に必要なレベルとなる。好ましくは40 \mathbb{C} 以上、より好ましくは50 \mathbb{C} 以上である。また \mathbb{T} gが100 \mathbb{C} 以下の場合、耐成形白化性および製膜性の良好なアクリル樹脂フィルム状物(A)が得られる。好ましくは80 \mathbb{C} 以下、より好ましくは70 \mathbb{C} 以下である。

このように、特定の組成およびTgの中間層重合体 (I-B)を設けることで、これまで実現困難であった、耐成形白化性と、表面硬度および耐熱性 (建材用途の場合は耐艶戻り性)を両立させるアクリル樹脂フィルム状物 (A)を得ることができる。

特に限定されるわけではないが、好ましい多層構造重合体(I)中の中間層重合体(I-B)の含有量は、 $5\sim35$ 質量%が好ましい。この範囲内であれば、上述の耐成形白化性、表面硬度および耐熱性(建材用途の場合は耐艶戻り性)を両立するために重要な中間層重合体(I-B)の機能を発現させることができるとともに、得られるアクリル樹脂フィルム状物(A)のその他の物性、例えば、製膜性、インサート成形およびインモールド成形可能な靭性を付与することができるため好ましい。より好ましくは20質量%以下である。

中間層重合体 (I-B) は、通常、単層であるが、 2 層以上とすることもできる。

最外層重合体(I-C)を構成するための単量体成分に含まれる成分(I-C 1)のメタクリル酸アルキルエステルは、直鎖状、分岐鎖状のいずれでも良い。その具体例としては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n-ブチル等が挙げられる。これらは、単独で、または二種以上を混合して使用できる。これらのうち、好ましいものはメタクリル酸メチルである。

最外層重合体(I-C)を構成するための単量体成分に必要に応じて含まれる成分(I-C2)のアクリル酸アルキルエステルは、直鎖状、分岐鎖状のいずれでも良い。その具体例としては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸 n-ブチル、アクリル酸 2-エチルヘキシル、アクリル酸 n-オクチル等が挙げられる。これらは単独で、または二種以上を混合して

使用できる。これらのうち、好ましいものはアクリル酸メチル、アクリル酸n-ブチルである。

最外層重合体(I-C)を構成するための単量体成分に必要に応じて含まれる成分(I-C3)の、共重合可能な二重結合を有する(I-C1)、(I-C2)以外の単量体は、低級アルコキシアクリレート、シアノエチルアクリレート、アクリルアミド、アクリル酸、メタクリル酸等のアクリル性単量体、スチレン、アルキル置換スチレン、アクリロニトリル、メタクリロニトリル、無水マレイン酸、無水イタコン酸等の不飽和ジカルボン酸無水物、N-フェニルマレイミド、N-シクロヘキシルマレイミド等が挙げられる。これらは単独で、または二種以上を混合して使用できる。

最外層重合体(I-C)を構成するための単量体成分における、メタクリル酸アルキルエステル(I-C1)の含有量は、 $80\sim100$ 質量%である。得られるアクリル樹脂フィルム状物(A)の表面硬度、耐熱性(建材用途の場合は耐艶戻り性)の観点から、好ましくは90質量%以上、より好ましくは93質量%以上である。また、好ましくは99質量%以下である。

最外層重合体(I-C)を構成するための単量体成分における、アクリル酸アルキルエステル(I-C2)の含有量は、 $0\sim20$ 質量%である。好ましくは1質量%以上である。また、好ましくは10質量%以下、より好ましくは7質量%以下である。

最外層重合体 (I-C) を構成するための単量体成分における、共重合可能な二重結合を有する (I-C1)、 (I-C2) 以外の単量体 (I-C3) の含有量は、 $0\sim20$ 質量%である。好ましくは15質量%以下である。

特に限定されないが、最外層重合体(I-C)の重合時に連鎖移動剤を使用し、最外層重合体(I-C)の分子量を調整することができる。この連鎖移動剤は通常ラジカル重合に用いられるものの中から選択して用いるのが好ましく、具体例としては、炭素数 $2\sim2$ 0のアルキルメルカプタン、メルカプト酸類、チオフェノール、四塩化炭素等が挙げられ、これらは単独、または二種以上を混合して使用できる。連鎖移動剤の含有量は、重合体(I-C)の単量体((I-C1)~(I-C3))100質量部に対して、0.01~5質量部が好ましい。より

好ましくは0.2質量部以上、最も好ましくは0.4質量部以上である。

特に限定されないが、最外層重合体(I-C)単独のTgは、60 C以上が好ましい。Tgが60 C以上の場合、車輌用途に適した表面硬度、および耐熱性(建材用途の場合は耐艶戻り性)を有するアクリル樹脂フィルム状物(A)が得られるため、好ましい。より好ましくは80 C以上、最も好ましくは90 C以上である。

特に限定されないが、多層構造重合体(I)中の最外層重合体(I-C)の含有量は15~80質量%が好ましい。含有量が15質量%以上の場合、表面硬度、および耐熱性(建材用途の場合は耐艶戻り性)の観点から好ましい。より好ましくは45質量%以上である。また含有量が80質量%以下の場合、得られるフィルムに耐成形白化性、インサート成形およびインモールド成形可能な靭性を付与することができるため好ましい。

最外層重合体(I-C)は、通常、単層であるが、2層以上とすることもできる。

本発明のアクリル樹脂フィルム状物(A)に好適に使用される多層構造重合体(I)は、上記のような最内層重合体(I-A)、中間層重合体(I-B)および最外層重合体(I-C)の重合体層から構成される。

多層構造重合体(I)のゲル含有率は、より優れた耐成形白化性を得る観点から、50%以上が好ましく、60%以上がより好ましい。この場合のゲル含有率とは、所定量(抽出前質量)の多層構造重合体(I)をアセトン溶媒中還流下で抽出処理、この処理液を遠心分離により分別、アセトン不溶分を乾燥後、質量を測定し(抽出後質量)、以下の方法にて算出した値のものである:

ゲル含有率(%)=抽出後質量(g)/抽出前質量(g)×100。

耐成形白化性の点から述べると、ゲル含有率は大きい程有利であるが、易成形性の点から述べると、ある量以上のフリーポリマーの存在が必要であるため、ゲル含有率は80%以下が好ましい。

多層構造重合体 (I) の重量平均粒子径は、 $0.03\mu m \sim 0.3\mu m$ の範囲が好ましい。得られるアクリル樹脂フィルム状物 (A) の機械的特性の観点から、より好ましくは $0.07\mu m$ 以上、最も好ましくは $0.09\mu m$ 以上である。

また、耐成形白化性および透明性の観点から、より好ましくは 0.15μ m以下、最も好ましくは 0.13μ m以下である。なお、重量平均粒子径は、大塚電子 (株) 製の光散乱光度計DLS-700 (商品名)を用い、動的光散乱法で測定することができる。

多層構造重合体(I)の製造法としては、乳化重合法による逐次多段重合法が最も適した重合法であるが、特にこれに制限されることはなく、例えば、乳化重合後、最外層重合体(I-C)の重合時に懸濁重合系に転換させる乳化懸濁重合法によっても行うことができる。

また、特に限定されるわけではないが、多層構造重合体(I)を乳化重合により製造する場合は、多層構造重合体(I)中の最内層重合体(I-A)を与える単量体成分を、あらかじめ水および界面活性剤と混合して調製した乳化液を反応器に供給し重合した後、中間層重合体(I-B)、および最外層重合体(I-C)を与える単量体、あるいは単量体成分をそれぞれ順に反応器に供給し、重合する方法が好ましい。

最内層重合体(I-A)を与える単量体成分を、あらかじめ水および界面活性剤と混合して調製した乳化液を反応器に供給し、重合させることにより、特にアセトン中に分散させた際に、その分散液中に存在する直径 55μ m以上の粒子の数が多層構造重合体(I) 100g あたり $0\sim50$ 個である多層構造重合体(I)を容易に得ることができる。こうして得られた多層構造重合体(I)を原料に用いたアクリル樹脂フィルム状物(A)は、フィルム中のフィッシュアイ数が少ないという特性を有し、特に印刷抜けが発生しやすい印圧の低い淡色の木目柄やメタリック調、漆黒調等のベタ刷りのグラビア印刷を施した場合でも、印刷抜けが少なく、高いレベルでの印刷性を有するため、好ましい。

乳化液を調製する際に使用される界面活性剤としては、アニオン系、カチオン系、およびノニオン系の界面活性剤が使用できるが、特にアニオン系の界面活性剤が好ましい。アニオン系界面活性剤としては、ロジン石鹸、オレイン酸カリウム、ステアリン酸ナトリウム、ミリスチン酸ナトリウム、Nーラウロイルザルコシン酸ナトリウム、アルケニルコハク酸ジカリウム系等のカルボン酸塩、ラウリル硫酸ナトリウム等の硫酸エステル塩、ジオクチルスルホコハク酸ナトリウム、

ドデシルベンゼンスルホン酸ナトリウム、アルキルジフェニルエーテルジスルホン酸ナトリウム系等のスルホン酸塩、ポリオキシエチレンアルキルフェニルエーテルリン酸ナトリウム系等のリン酸エステル塩、ポリオキシエチレンアルキルエーテルリン酸ナトリウム系等のリン酸エステル塩等が挙げられる。このうち、ポリオキシエチレンアルキルエーテルリン酸ナトリウム系等のリン酸エステル塩が好ましい。上記界面活性剤の好ましい具体例としては、三洋化成工業社製のNC-718、東邦化学工業社製のフォスファノールLS-529、フォスファノールRS-610NA、フォスファノールRS-620NA、フォスファノールRS-630NA、フォスファノールRS-650NA、フォスファノールRS-650NA、フォスファノールRS-650NA、フォスファノールRS-650NA、フォスファノールRS-650NA、フォスファノールRS-650NA、フォスファノールRS-650NA、フォスファノールRS-650NA、フォスファノールRS-650NA、フォスファノールRS-660NA、花王社製のラテムルP-0406、ラテムルP-0407(以上いずれも商品名)等が挙げられる。

また、乳化液を調製する方法としては、水中に単量体成分を仕込んだ後界面活性剤を投入する方法、水中に界面活性剤を仕込んだ後単量体成分を投入する方法、単量体成分中に界面活性剤を仕込んだ後水を投入する方法等が挙げられる。このうち、水中に単量体成分を仕込んだ後界面活性剤を投入する方法、および水中に界面活性剤を仕込んだ後単量体成分を投入する方法、が多層構造重合体(I)を得る方法としては好ましい。

また、最内層重合体(I-A)を与える単量体成分を水、および界面活性剤と混合して調製した乳化液を調製するための混合装置としては、攪拌翼を備えた攪拌機およびホモジナイザー、ホモミキサー等の各種強制乳化装置、膜乳化装置等が挙げられる。

また、調製する乳化液としては、単量体成分の油中に水滴が分散したW/O型、水中に単量体成分の油滴が分散したO/W型のいずれの分散構造でも使用することができるが、特に水中に単量体成分の油滴が分散したO/W型で、分散相の油滴の直径が100μm以下であることが好ましい。

一方、多層構造重合体(I)を構成する最内層重合体(I-A)、中間層重合体(I-B)、および最外層重合体(I-C)を形成する際に使用する重合開始 剤は公知のものが使用でき、その添加方法は、水相、単量体相のいずれか片方、

または双方に添加する方法を用いることができる。特に好ましい開始剤としては、 過酸化物、アグ系開始剤、または酸化剤・還元剤を組み合わせたレドックス系開始剤が用いられる。レドックス系開始剤が好ましく、特に、硫酸第一鉄・エチレンジアミン四酢酸ニナトリウム塩・ロンガリット・ヒドロパーオキサイドを組み合わせたスルホキシレート系開始剤が好ましい。

重合開始剤の添加方法は、水相、単量体相(油相)のいずれか片方または双方 に添加する方法を用いることができる。

なお、重合開始剤の添加量は、重合条件等に応じて適宜決めればよい。

多層構造重合体(I)を得る方法としては、特に、反応器に仕込んだ硫酸第一鉄、エチレンジアミン四酢酸ニナトリウム塩およびロンガリットを含む水溶液を重合温度にまで昇温した後、最内層重合体(IーA)を与える過酸化物等の重合開始剤を含む単量体成分を水および界面活性剤と混合して調製した乳化液を反応器に供給して重合し、次いで、中間層重合体(IーB)を与える過酸化物等の重合開始剤を含む単量体成分を反応器に供給して重合し、次いで、最外層重合体(IーC)を与える過酸化物等の重合開始剤などを含む単量体成分を反応器に供給して重合する方法が好ましい。

なお、重合温度は、用いる重合開始剤の種類や量によって異なるが、通常、40 $^{\circ}$ $^$

上記の方法で得られる好ましい多層構造重合体(I)を含むポリマーラテックスを必要に応じて濾材を配した濾過装置を用いて処理することができる。この濾過処理は、重合中に発生するスケールのラテックスからの除去、あるいは重合原料中、また重合中に外部から混入する夾雑物を除去するためのものであり、多層構造重合体(I)を得るためにより好ましい方法である。

なお、その際使用される濾材を配した濾過装置としては、袋状のメッシュフィルターを利用した ISPフィルターズ・ピーテーイー・リミテッド社のGAFフィルターシステムや円筒型濾過室内の内側面に円筒型の濾材を配し、濾材内に攪拌翼を配した遠心分離型濾過装置、あるいは濾材が濾材面に対して水平の円運動および垂直の振幅運動をする振動型濾過装置が好ましい。

多層構造重合体(I)は、上述の方法で製造した重合体ラテックスから多層構造重合体(I)を回収することによって製造することができる。重合体ラテックスから多層構造重合体(I)を回収する方法としては、特に限定はされないが、塩析または酸析凝固、あるいは噴霧乾燥、凍結乾燥等の方法が挙げられ、粉状で回収される。

このうち、金属塩を用いて塩析処理する場合、最終的に得られた多層構造重合体(I)中への残存金属含有量を800ppm以下にすることが好ましい。特に、マグネシウム、ナトリウム等の水との親和性の強い金属塩を塩析剤として使用する際は、その残存金属含有量を極力少なくしないと、最終的に得られた多層構造重合体(I)を原料としたアクリル樹脂フィルム状物(A)を沸騰水中に浸漬する際、白化現象を生じ、実用上大きな問題となる。なお、カルシウム系、硫酸系凝固を行うと、比較的良好な傾向を示すが、いずれにしても優れた耐水白化性を与えるためには、残存金属量を800ppm以下にすることが必要であり、微量であるほどよい。

本発明では、多層構造重合体 (I) を単独で用いることもできるが、以下に示す熱可塑性重合体 (II) を併用した樹脂組成物 (III) を用いることもできる。

[熱可塑性重合体 (II)]

熱可塑性重合体(II)は、メタクリル酸アルキルエステル(II-A)ユニットを主成分としていることが好ましい。具体的には、炭素数 $1\sim4$ のメタクリル酸アルキルエステル(II-A) $50\sim100$ 質量%含有し、必要によりアクリル酸アルキルエステル(II-B) $0\sim50$ 質量%と、必要により共重合可能な二重結合を有する(II-A)、(II-B)以外の単量体(II-C)の少なくとも一種 $0\sim50$ 質量%と、を含む単量体成分を重合して得られるものであり、還元粘度(重合体0.1gをクロロホルム100mLに溶解し、25℃で測定)が0.15L/g以下である重合体が好ましい。このような熱可塑性重合体(II)を併用することで、表面硬度、耐熱性(建材用途の場合は耐艶戻り性)を高めることができる。したがって、ガラス転移温度が80℃以上、好ましくは90℃以上であることが好ましい。

熱可塑性重合体(II)を構成するための単量体成分に含まれるメタクリル酸アルキルエステル(II-A)としては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸nーブチル等が挙げられるが、これらのうちメタクリル酸メチルが好ましい。これらは単独で、または二種以上を混合して使用できる。

熱可塑性重合体(II)を構成するための単量体成分に必要に応じて含まれる アクリル酸アルキルエステル(II-B)としては、アクリル酸メチル、アクリ ル酸エチル、アクリル酸プロピル、アクリル酸 n ーブチル等が挙げられるが、こ れらのうちアクリル酸メチルが好ましい。これらは単独で、または二種以上を混 合して使用できる。

熱可塑性重合体(II)を構成するための単量体成分に必要に応じて含まれる、共重合可能な二重結合を有する(II-A)、(II-B)以外の単量体(II-C)としては、公知の単量体を必要に応じて使用できる。例えば、スチレン等の芳香族ビニル化合物、アクリロニトリル等のシアン化ビニル系単量体、無水マレイン酸、無水イタコン酸等の不飽和ジカルボン酸無水物、N-フェニルマレイミド、N-シクロヘキシルマレイミド等が挙げられる。これらは単独で、または二種以上を混合して使用できる。

熱可塑性重合体 (II) を構成するための単量体成分に含まれるメタクリル酸アルキルエステル (II-A) の含有量は、得られるアクリル樹脂フィルム状物 (A) の表面硬度および耐熱性 (建材用途の場合は耐艶戻り性) の観点から、50~100質量%が好ましい。より好ましくは80質量%以上であり、99.9質量%以下である。

熱可塑性重合体(II)を構成するための単量体成分に含まれるアクリル酸アルキルエステル(II-B)の含有量は、得られるアクリル樹脂フィルム状物(A)の製膜性、インサート成形およびインモールド成形可能な靭性を付与する観点から、 $0\sim50$ 質量%が好ましい。好ましくは0.1質量%以上であり、20質量%以下である。

熱可塑性重合体(II)を構成するための単量体成分に含まれる、共重合可能な二重結合を有する(II-A)、(II-B)以外の単量体(II-C)の含

有量は、0~50質量が好ましい。

熱可塑性重合体(II)の還元粘度(重合体 0.1g をクロロホルム 100m Lに溶解し、25 で測定)は、得られるアクリル樹脂フィルム状物(A)のインサート成形性およびインモールド成形性、および製膜性の観点から、0.15 L/g以下が好ましい。より好ましくは0.1 L/g以下である。また、製膜性の観点から、0.01 L/g以上が好ましく、0.03 L/g以上がより好ましい。

熱可塑性重合体(II)の製造方法は特に限定されず、通常の懸濁重合、乳化 重合、塊状重合等の方法で重合することができる。

[樹脂組成物 (III)]

本発明のアクリル樹脂フィルム状物(A)に好適に使用される樹脂組成物(III)は、多層構造重合体(I)と熱可塑性重合体(II)とを含む。好ましくは、多層構造重合体(I)1~99質量%、熱可塑性重合体(II)1~99質量%からなる。得られるアクリル樹脂フィルム状物(A)の耐成形白化性の観点から、樹脂組成物(III)中の多層構造重合体(I)の含有量は、より好ましくは50質量%以上、最も好ましくは70質量%以上である。樹脂組成物(III)中の熱可塑性重合体(II)の含有量は、より好ましくは50質量%以下、最も好ましくは30質量%以下である。

樹脂組成物(III)のゲル含有率は、耐成形白化性および製膜性の観点から、10~80%であることが好ましい。より好ましくは20%以上、最も好ましくは40%以上である。また、より好ましくは75%以下、最も好ましくは70%以下である。

[樹脂組成物 (IV)]

本発明において、艶消し性を有するアクリル樹脂フィルム状物(A)は、上記の多層構造重合体(I)または樹脂組成物(III)から得ることができるが、多層構造重合体(I)または樹脂組成物(III)100質量部に対して艶消し剤0.1~40質量部を含有する樹脂組成物(IV)から得ることが好ましい。艶消し剤を用いることにより、2次成形加工の際の熱によるアクリル樹脂フィルム状物(A)の艶戻りをより軽減することができる。

艶消し剤としては、有機系、無機系に関わらず従来公知の各種の艶消し剤が挙げられる。艶消し剤は単独で、または、二種以上を混合して使用することができる。艶消し剤としては、透明性の観点から PMMAを主成分とする架橋樹脂からなる重量平均粒子径が $2\sim15~\mu$ m程度の、例えば球状の微粒子が好ましい。また、透明性、艶消し性、製膜性および成形性の観点から、以下に示す水酸基を含有する重合体(VI)が好ましい

艶消し剤として、水酸基を含有する重合体(V)および/または水酸基を含有する重合体(VI)を用いると、アクリル樹脂フィルム状物(A)の伸度等の物性はほとんど低下しない。そのため、艶消し剤として水酸基を含有する重合体(V)および/または水酸基を含有する重合体(VI)を用いたアクリル樹脂フィルム状物(A)は、事前にフィルムの真空成形等が必要なインモールド成形等においてもフィルム切れ等が起こらず、より良好に使用することができる。

[水酸基を含有する重合体(V)]

水酸基を含有する重合体(V)は、炭素数1~8のアルキル基を有する(メタ)アクリル酸ヒドロキシアルキルエステル1~80質量部、炭素数1~13のアルキル基を有するメタクリル酸アルキルエステル10~99質量部、および、炭素数1~8のアルキル基を有するアクリル酸アルキルエステル0~79質量部の合計100質量部からなる単量体成分を共重合して得られるものである。

炭素数1~8のアルキル基を有する(メタ)アクリル酸ヒドロキシアルキルエステルとしては、メタクリル酸2ーヒドロキシエチル、メタクリル酸2ーヒドロキシプロピル、メタクリル酸2ーヒドロキシプロピル、アクリル酸2ーヒドロキシエチル、アクリル酸4ーヒドロキシブチル等が挙げられる。これらは単独で、または、二種以上を混合して使用することができる。炭素数1~8のアルキル基を有する(メタ)アクリル酸ヒドロキシアルキルエステルとしては、中でも、メタクリル酸2ーヒドロキシエチルが好ましい。

水酸基を含有する重合体(V)を与える単量体成分中の炭素数1~8のアルキル基を有する(メタ)アクリル酸ヒドロキシアルキルエステルの含有量は、1~80質量%の範囲である。炭素数1~8のアルキル基を有する(メタ)アクリル

酸ヒドロキシアルキルエステルの含有量を1質量%以上とすることにより、艶消し効果がより高くなる。また、炭素数1~8のアルキル基を有する(メタ)アクリル酸ヒドロキシアルキルエステルの含有量を80質量%以下とすることにより、粒子の分散性がより良好となり、フィルムの製膜性がより良好となる。水酸基を含有する重合体(V)を与える単量体成分中の炭素数1~8のアルキル基を有する(メタ)アクリル酸ヒドロキシアルキルエステルの含有量は、艶消し性の観点から、5質量%以上が好ましく、20質量%以上がより好ましい。また、水酸基を含有する重合体(V)を与える単量体成分中の炭素数1~8のアルキル基を有する(メタ)アクリル酸ヒドロキシアルキルエステルの含有量は、製膜性の観点から、50質量%以下が好ましい。

一方、車輌内装用途においては、芳香剤、整髪料などが内装部品に付着する可能性があるので、一般的に、内装部材には耐薬品性が求められる。これらの薬品類に対する耐性をアクリル樹脂フィルム状物(A)により十分に発現させる観点からは、水酸基を含有する重合体(V)を与える単量体成分中の炭素数1~8のアルキル基を有する(メタ)アクリル酸ヒドロキシアルキルエステルの含有量は、5質量%以上が好ましく、また、25質量%以下が好ましい。艶消し性と耐薬品性との両立の観点からは、水酸基を含有する重合体(V)を与える単量体成分中の炭素数1~8のアルキル基を有する(メタ)アクリル酸ヒドロキシアルキルエステルの含有量は、10質量%以上が好ましく、また、20質量%以下が好ましい。

炭素数1~13のアルキル基を有するメタクリル酸アルキルエステルとしては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル等の低級メタクリル酸アルキルエステルが好ましく、中でも、メタクリル酸メチルが好ましい。これらは単独で、または、二種以上を混合して使用することができる。

水酸基を含有する重合体(V)を与える単量体成分中の炭素数 $1\sim130$ アルキル基を有するメタクリル酸アルキルエステルの含有量は、 $10\sim99$ 質量%の範囲である。水酸基を含有する重合体(V)を与える単量体成分中の炭素数 $1\sim130$ アルキル基を有するメタクリル酸アルキルエステルの含有量は、30 質量%以上が好ましい。また、水酸基を含有する重合体(V)を与える単量体成分中

の炭素数1~13のアルキル基を有するメタクリル酸アルキルエステルの含有量は、90質量%以下が好ましい。

炭素数1~8のアルキル基を有するアクリル酸アルキルエステルとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル等の低級アクリル酸アルキルエステルが好ましい。これらは単独で、または、二種以上を混合して使用することができる。

水酸基を含有する重合体(V)を与える単量体成分中の炭素数1~8のアルキル基を有するアクリル酸アルキルエステルの含有量は、0~79質量%の範囲である。水酸基を含有する重合体(V)を与える単量体成分中の炭素数1~8のアルキル基を有するアクリル酸アルキルエステルの含有量は、0.5質量%以上が好ましく、5質量%以上がより好ましい。また、水酸基を含有する重合体(V)を与える単量体成分中の炭素数1~8のアルキル基を有するアクリル酸アルキルエステルの含有量は、40質量%以下が好ましく、25質量%以下がより好ましい。

一方で、水酸基を含有する重合体(V)のガラス転移温度は、耐薬品性の観点からは、80 \mathbb{C} 以上が好ましく、90 \mathbb{C} 以上がより好ましい。この場合、水酸基を含有する重合体(V)を与える単量体成分中の炭素数 $1\sim 8$ のアルキル基を有するアクリル酸アルキルエステルの含有量は、0 質量%を超えて 5 質量%以下の範囲が好ましく、0 質量%を超えて 2 質量%以下の範囲がより好ましい。

水酸基を含有する重合体(V)の固有粘度は、艶消し発現性、外観の観点から、 $0.05\sim0.3$ L/gの範囲内であることが好ましい。水酸基を含有する重合体(V)の固有粘度は、0.06 L/g以上がより好ましい。また、水酸基を含有する重合体(V)の固有粘度は、0.15 L/g以下がより好ましい。

また、分子量を上記の範囲内に調節するために、メルカプタン等の重合調節剤を用いることが好ましい。メルカプタンとしては、例えば、nーオクチルメルカプタン、nードデシルメルカプタン、tードデシルメルカプタン等が挙げられるが、特にこれらのものに限定されず、従来公知の各種のメルカプタンを使用することができる。

[水酸基を含有する重合体(VI)]

水酸基を含有する重合体(VI)は、炭素数1~8のアルキル基を有する(メタ)アクリル酸ヒドロキシアルキルエステル5~80質量部、炭素数1~13のアルキル基を有するメタクリル酸アルキルエステル10~94質量部、および、芳香族ビニル単量体1~80質量部の合計100質量部からなる単量体成分を共重合して得られるものである。

炭素数1~8のアルキル基を有する(メタ)アクリル酸ヒドロキシアルキルエステルとしては、水酸基を含有する重合体(V)の場合と同様のものが挙げられ、好ましいものも同様である。炭素数1~8のアルキル基を有する(メタ)アクリル酸ヒドロキシアルキルエステルは単独で、または、二種以上を混合して使用することができる。

水酸基を含有する重合体(VI)を与える単量体成分中の炭素数1~8のアルキル基を有する(メタ)アクリル酸ヒドロキシアルキルエステルの含有量は、5~80質量%の範囲である。炭素数1~8のアルキル基を有する(メタ)アクリル酸ヒドロキシアルキルエステルの含有量を5質量%以上とすることにより、艶消し効果がより高くなる。また、炭素数1~8のアルキル基を有する(メタ)アクリル酸ヒドロキシアルキルエステルの含有量を80質量%以下とすることにより、粒子の分散性がより良好となり、フィルムの製膜性がより良好となる。水酸基を含有する重合体(VI)を与える単量体成分中の炭素数1~8のアルキル基を有する(メタ)アクリル酸ヒドロキシアルキルエステルの含有量は、艶消し性の観点から、5質量%以上が好ましく、10質量%以上がより好ましい。また、水酸基を含有する重合体(VI)を与える単量体成分中の炭素数1~8のアルキル基を有する(メタ)アクリル酸ヒドロキシアルキルエステルの含有量は、製膜性、耐薬品性の観点から、50質量%以下が好ましく、20質量%以下がより好ましい。

炭素数1~13のアルキル基を有するメタクリル酸アルキルエステルとしては、水酸基を含有する重合体(V)の場合と同様のものが挙げられ、好ましいものも同様である。炭素数1~13のアルキル基を有するメタクリル酸アルキルエステルは単独で、または、二種以上を混合して使用することができる。

水酸基を含有する重合体(VI)を与える単量体成分中の炭素数1~13のア

ルキル基を有するメタクリル酸アルキルエステルの含有量は、 $10\sim94$ 質量%の範囲である。水酸基を含有する重合体(VI)を与える単量体成分中の炭素数 $1\sim13$ のアルキル基を有するメタクリル酸アルキルエステルの含有量は、50 質量%以上が好ましい。また、水酸基を含有する重合体(VI)を与える単量体成分中の炭素数 $1\sim13$ のアルキル基を有するメタクリル酸アルキルエステルの含有量は、90質量%以下が好ましい。

芳香族ビニル単量体としては、公知のものいずれも使用することができる。その具体例としては、スチレン、αーメチルスチレン等が挙げられる。これらは単独で、または、二種以上を混合して使用することができる。芳香族ビニル単量体としては、中でも、スチレンが好ましい。芳香族ビニル単量体を用いることにより、フィルム状物の耐薬品性をより向上することができる。

水酸基を含有する重合体 (VI) を与える単量体成分中の芳香族ビニル単量体の含有量は、1~80質量%の範囲である。水酸基を含有する重合体 (VI) を与える単量体成分中の芳香族ビニル単量体の含有量は、5質量%以上が好ましい。また、水酸基を含有する重合体 (VI) を与える単量体成分中の芳香族ビニル単量体の含有量は、40質量%以下が好ましく、20質量%以下がより好ましい

水酸基を含有する重合体(VI)のガラス転移温度は、耐薬品性の観点からは、80℃以上が好ましく、90℃以上がより好ましい。

水酸基を含有する重合体(VI)の固有粘度は、艶消し発現性、外観の観点から、 $0.05\sim0.3$ L/gの範囲内であることが好ましい。水酸基を含有する重合体(VI)の固有粘度は、0.06 L/g以上がより好ましい。また、水酸基を含有する重合体(VI)の固有粘度は、0.15 L/g以下がより好ましい

また、分子量を上記の範囲内に調節するために、メルカプタン等の重合調節剤を用いることが好ましい。メルカプタンとしては、例えば、nーオクチルメルカプタン、nードデシルメルカプタン、tードデシルメルカプタン等が挙げられるが、特にこれらのものに限定されず、従来公知の各種のメルカプタンを使用することができる。

水酸基を含有する重合体(V)および水酸基を含有する重合体(VI)の製造 方法としては、特に限定はされないが、懸濁重合、乳化重合等が好ましい。

懸濁重合の開始剤としては、従来公知の各種の開始剤を使用することができる。その具体例としては、有機過酸化物、アゾ化合物等が挙げられる。これらは単独で、または、二種以上を混合して使用することができる。

なお、開始剤の添加量は、重合条件等に応じて適宜決めればよい。

懸濁安定剤としては、従来公知の各種の懸濁安定剤を使用することができる。 その具体例としては、有機コロイド性高分子物質、無機コロイド性高分子物質、 無機微粒子、および、これらと界面活性剤との組み合わせ等が挙げられる。これ らは単独で、または、二種以上を混合して使用することができる。

なお、懸濁安定剤の添加量は、重合条件等に応じて適宜決めればよい。

懸濁重合は、通常、懸濁安定剤の存在下にモノマー類を重合開始剤とともに水性懸濁して行う。それ以外にも、モノマーに可溶な重合物をモノマーに溶かし込んで使用し、懸濁重合を行うこともできる。

樹脂組成物(IV)は、多層構造重合体(I)または樹脂組成物(III)100質量部に対して、上記の水酸基を含有する重合体(V)または水酸基を含有する重合体(VI)等の艶消し剤を0.1~40質量部含有するものが好ましい

樹脂組成物(IV)中の艶消し剤の含有量を多層構造重合体(I)または樹脂組成物(III)100質量部に対して0.1質量部以上とすることにより、より優れた艶消し効果が発現する。樹脂組成物(IV)中の艶消し剤の含有量は、さらに良好な艶消し性を得る観点から、多層構造重合体(I)あるいは樹脂組成物(III)100質量部に対して、2質量部以上がより好ましく、5質量部以上が最も好ましい。好ましくは40質量部以下、より好ましくは20質量部以下、最も好ましくは15質量部以下とすることで良好な製膜性となる。

本発明の樹脂組成物(IV)のゲル含有率は、耐成形白化性および製膜性の観点から、10~80%であることが好ましい。より好ましくは20%以上、最も好ましくは40%以上である。また、より好ましくは75%以下、最も好ましくは70%以下である。

本発明の耐成形白化性と表面硬度、耐熱性さらには透明性または艶消し性を満足するアクリル樹脂フィルム状物(A)は、上記の多層構造重合体(I)、または、多層構造重合体(I)とメタクリル酸アルキルエステルを主成分とする熱可塑性重合体(II)とからなる樹脂組成物(III)、または、多層構造重合体(I)あるいは樹脂組成物(III)100質量部に対して艶消し剤0.1~40質量部を含有する樹脂組成物(IV)から得られる。

本発明においては、上述の熱可塑性重合体(II)とは別に、還元粘度(重合体 0.1gをクロロホルム100mLに溶解し、25℃で測定)が 0.15L/gを越える熱可塑性重合体(VII)を使用することもできる。熱可塑性重合体(VII)としては、具体的には、メタクリル酸メチル50~100質量%と、これと共重合可能な二重結合を有する他の単量体 0~50質量%とを重合して得られるものである。これと共重合可能な二重結合を有する他の単量体は単独で、または、二種以上を混合して使用することができる。熱可塑性重合体(VII)は、フィルム製膜性、水酸基を含有する重合体(V)または(VI)を使用する場合はさらに艶消し性をより良好とする成分である。

熱可塑性重合体(VII)は、多層構造重合体(I)または樹脂組成物(III)または樹脂組成物(IV)100質量部に対して、0質量部を超えて20質量部以下の範囲で使用することが好ましい。さらに好ましくは、フィルム製膜性の観点から $1\sim10$ 質量部の範囲である。

本発明のアクリル樹脂フィルム状物(A)は、必要に応じて、一般の配合剤、 例えば、安定剤、滑剤、加工助剤、可塑剤、耐衝撃剤、発泡剤、充填剤、抗菌剤 、防カビ剤、離型剤、帯電防止剤、着色剤、紫外線吸収剤、光安定剤等を含むこ とができる。

基材の保護の点では、耐候性を付与するために、紫外線吸収剤が添加されることが好ましい。紫外線吸収剤としては公知のものを用いることができ、共重合タイプのものを使用することもできる。使用される紫外線吸収剤の分子量は300以上であることが好ましく、より好ましくは400以上である。分子量が300以上の紫外線吸収剤を使用すると、射出成形金型内で真空成形または圧空成形を施す際の紫外線吸収剤の揮発による金型汚れ等を防止することができ

る。また一般的に、分子量が高い紫外線吸収剤ほど、フィルム状態に加工した後の長期的なブリードアウトが起こりにくく、分子量が低いものよりも紫外線吸収性能が長期間に渡り持続する。さらに、紫外線吸収剤の分子量が300以上であると、アクリル樹脂フィルム状物(A)がTダイから押し出され冷却ロールで冷やされるまでの間に、紫外線吸収剤が揮発する量が少ない。従って、残留する紫外線吸収剤の量が十分なので良好な性能を発現する。また、揮発した紫外線吸収剤がTダイ上部にあるTダイを吊るすチェーンや排気用のフードの上で再結晶して経時的に成長し、これがやがてフィルム上に落ちて、外観上の欠陥になるという問題も少なくなる。

紫外線吸収剤の種類は、特に限定されないが、分子量400以上のベンゾトリアゾール系または分子量400以上のトリアジン系のものが特に好ましく使用できる。前者の具体例としては、チバスペシャリティケミカルズ社製の商品名:チヌビン234、旭電化工業社製の商品名:アデカスタブLA-31、後者の具体例としては、チバスペシャリティケミカルズ社製の商品名:チヌビン1577等が挙げられる。

本発明のアクリル樹脂フィルム状物(A)が車輌用途に使用される場合、各種自動車メーカーの車輌規格にある耐整髪料性、および耐芳香剤性の特性が必要となる。これらの特性を考慮すると、使用する紫外線吸収剤は、融点が180℃以下のものを用いることが好ましい。このような紫外線吸収剤は、整髪料、および芳香剤をアクリル樹脂フィルム状物(A)に塗布した際に紫外線吸収剤が結晶化しにくい、チバスペシャリティケミカルズ社製の商品名:チヌビン234、チヌビン329、チヌビン1577が特に好ましい。このような紫外線吸収剤を使用することにより、整髪料、および芳香剤が付いた時に外観変化がほとんど起こらないため工業的利用価値が非常に高い。

紫外線吸収剤の添加量は0.1~10質量部の範囲で用いることが好ましい。耐候性改良の観点から、添加量はより好ましくは0.5質量部、最も好ましくは1質量部以上である。製膜時ロール汚れ、耐薬品性、透明性の観点から、添加量は5質量部以下が好ましく、最も好ましくは3質量部以下である。

また、光安定剤としては公知のものを用いることができるが、アクリル

樹脂フィルム状物(A)の耐光性のみならず、耐薬品性をより向上させるために、ヒンダードアミン系光安定剤等のラジカル捕捉剤を用いることが好ましい。例えば整髪料が付着した際の外観変化を著しく改善することができ工業的利用価値が高い。

ヒンダードアミン系光安定剤の添加量は0.01~5質量部の範囲で用いることが好ましい。耐光性、耐薬品性改良の観点から、添加量はより好ましくは0.1質量部、最も好ましくは0.2質量部以上である。製膜時ロール汚れの観点から、添加量は2質量部以下が好ましく、最も好ましくは1質量部以下である。

これらの特定の紫外線吸収剤とヒンダードアミン系光安定剤を併用することにより、特に車輌用途に好適なアクリル樹脂フィルム状物(A)を得ることができる。

特に、樹脂組成物(IV)において、艶消し剤として水酸基を含有する重合体(V)および/または水酸基を含有する重合体(VI)を用いる場合、樹脂組成物(IV)100質量部に対してリン系化合物0.01~3質量部を含有することが好ましい。リン系化合物の含有量を樹脂組成物(IV)100質量部に対して0.01質量部以上とすることにより、艶消し性がさらに良好となる。また、リン系化合物の含有量を樹脂組成物(IV)100質量部に対して3質量部以下とすることが、製膜時のロール汚れ、経済的な観点から好ましい。リン系化合物の含有量は、樹脂組成物(IV)100質量部に対して0.1質量部以上がより好ましい。また、リン系化合物の含有量は、樹脂組成物(IV)100質量部に対して1質量部以下がより好ましい。

リン系化合物としては、トリアルキルホスファイト、アルキルアリールホスファイト、アリールホスファイト、ノニルフェニルホスファイト、アルキルノニルフェニルホスファイト等のホスファイト系化合物;トリアルキルホスフェート、トリポリオキシエチレンアルキルエーテルホスフェート、ジアルキルホスフェートおよびその金属塩、ジポリオキシエチレンアルキルエーテルホスフェートおよびその金属塩、アルキルホスフェートおよびその金属塩、ポリオキシエチレンアルキルエーテルホスフェートおよびその金属塩等のホスフェート系化合物;ジアルキルエーテルホスフェートおよびその金属塩等のホスフェート系化合物;ジア

ルキルアルキルホスホネート、アルキルアルキルホスホネートおよびその金属塩等のホスホネート系化合物;等が挙げられる。リン系化合物としては、中でも、艶消し発現性の観点から、ホスファイト系化合物が好ましい。さらには、ホスファイト系化合物の中でも、艶消し発現性の観点から、ホスファイト基周辺にバルキーな置換基がないものがより好ましい。また、耐加水分解性(製膜時のロール汚れ)の観点からトリアルキルホスファイトが好ましい。

上記のような配合剤の添加方法としては、アクリル樹脂フィルム状物(A)を形成するための押出機に多層構造重合体(I)または樹脂組成物(III)または樹脂組成物(IV)を含む成分とともに供給する方法と、多層構造重合体(I)または樹脂組成物(II)または樹脂組成物(IV)を含む成分にあらかじめ配合剤を添加した混合物を各種混練機にて混練混合する方法とがある。後者の方法に使用する混練機としては、通常の単軸押出機、二軸押出機、バンバリーミキサー、ロール混練機等が挙げられる。

<アクリル樹脂フィルム状物 (A) >

本発明のアクリル樹脂フィルム状物(A)は、巾20mmの試験片を初期のチャック間距離25mm、速度50mm/min、温度23℃の条件で、終点のチャック間距離33mmとなるように引張試験を行った後の試験片のJIS K7136(曇価の測定方法)の試験方法にて測定した値と、前記引張試験前の試験片のJIS K7136(曇価の測定方法)の試験方法にて測定した値との差が、30%以下であるものも使用可能である。その差は、10%以下が好ましく、5%以下がより好ましい。アクリル樹脂フィルム状物(A)、並びに、それを含むアクリル樹脂積層フィルム、光硬化性アクリル樹脂フィルム又はシート及び積層フィルムまたはシートにインサート成形またはインモールド成形を施す工程で生じる成形白化は、上記の差に対応している。また、建材用として用いる場合における、寒冷地でVカット加工やラッピング加工等の加工を施す工程で生じる成形白化についても、上記の差に対応している。

上記の差が30%以下であるアクリル樹脂フィルム状物(A)を用いた場合、インサート成形またはインモールド成形を施す工程で生じる成形白化が目立たなくなるため、印刷柄が消えることなく、また、意匠性が低下することなく積層成

形品を得ることができる。また、アクリル樹脂フィルム状物(A)を有する積層フィルムまたはシートを建材用として用いる場合、寒冷地でVカット加工やラッピング加工等の加工を施す工程で生じる成形白化が目立たなくなるため、印刷柄が消えることなく、また意匠性が低下することなく成形品を得ることができる。

また、巾20mmの試験片を初期のチャック間距離25mm、引張速度300mm/min、温度15Cの条件で、終点のチャック間距離33mmとなるように引張試験を行った後の試験片の引張試験前と試験後の試験片をJIS K7136(曇値の測定方法)の試験方法にて測定した値の差は10%以下であることが好ましい。この条件下での差が10%以下の場合、通常の木目・メタリック柄よりも白化した部分が目立つ漆黒調などの印刷柄においても成形白化が目立たなくなるため、工業的利用価値は極めて高くなる。この条件下で上記試験方法にて測定した値の差は、5%以下がより好ましく、最も好ましくは1%以下である。

さらに、本発明のアクリル樹脂フィルム状物(A)は、鉛筆硬度(JIS K5400に基づく測定)が2B以上である。さらにHB以上がより好ましく、最も好ましくはF以上である。

鉛筆硬度が2B以上のアクリル樹脂フィルム状物(A)を用いると、インサート成形またはインモールド成形を施す工程中で、アクリル樹脂フィルム状物(A)、並びに、それを含むアクリル樹脂積層フィルム、光硬化性アクリル樹脂フィルム又はシート及び積層フィルムまたはシートに傷がつきにくく、さらに成形品の耐擦傷性も良好である。

車輌用途に使用される場合、本発明のアクリル樹脂フィルム状物(A)の鉛筆 硬度はHB以上であることが好ましい。鉛筆硬度がHB以上のアクリル樹脂フィルム状物(A)、並びに、それを含むアクリル樹脂積層フィルム、光硬化性アクリル樹脂フィルム又はシート及び積層フィルムまたはシートを用いた積層成形品は、ドアウエストガーニッシュ、フロントコントロールパネル、パワーウィンドウスイッチパネル、エアバッグカバーなど、各種車輌用部材に好適に使用することができる。用途拡大の観点から工業上非常に有用である。

さらに、鉛筆硬度がF以上であると、ガーゼなど表面の粗い布で擦傷しても傷が目立たなく、鉛筆硬度が2Hのアクリル樹脂フィルム状物(A)を用いた成形

品と同等の実用上の耐擦傷性能を付与することができるため、工業的利用価値は 非常に高い。

本発明の、鉛筆硬度が2B以上のアクリル樹脂フィルム状物(A)を用いて、アクリル樹脂積層フィルムとすることができる。このような本発明のアクリル樹脂積層フィルムについては後述するが、アクリル樹脂フィルム状物(A)がアクリル樹脂積層フィルムの最表層に位置する場合はもちろん、鉛筆硬度が2H以上を有するアクリル樹脂層(A'-a)をアクリル樹脂積層フィルムの最表層(つまり、アクリル樹脂フィルム状物(A)の上層)に位置した場合でも、その表面硬度を低下させにくい。このアクリル樹脂積層フィルムを用いて、インサート成形またはインモールド成形を施す工程中で傷がつきにくく、さらに成形品の耐擦傷性も良好である。HB以上が好ましく、F以上がより好ましい。

本発明の、鉛筆硬度が2B以上のアクリル樹脂フィルム状物(A)を用いて、 光硬化性アクリル樹脂フィルム又はシートとすることができる。このような本発 明の光硬化性アクリル樹脂フィルム又はシートについては後述するが、光硬化性 アクリル樹脂フィルム又はシートは、インサート成形またはインモールド成形を 施す工程中で傷がつきにくい。また、光硬化後の光硬化性アクリル樹脂フィルム 又はシートの鉛筆硬度についても基材であるアクリル樹脂フィルム状物(A)の 鉛筆硬度の影響を強く受けるため、アクリル樹脂フィルム状物(A)の硬度は2 B以上であることが必要である。HB以上が好ましく、F以上がより好ましい。

本発明の、鉛筆硬度が2B以上のアクリル樹脂フィルム状物(A)を用いて、例えば建材用の積層フィルムまたはシートとすることができる。このような本発明の建材用積層フィルムまたはシートについては後述するが、建材用積層フィルムまたはシートは、Vカット加工やラッピング加工等の加工を施す工程中で傷がつきにくく、さらに成形品の耐擦傷性も良好である。

建材用途に使用される場合、本発明のアクリル樹脂フィルム状物(A)の鉛筆硬度はHB以上であることが好ましい。アクリル樹脂フィルム状物(A)の鉛筆硬度がHB以上であると、アクリル樹脂フィルム状物(A)を有する建材用積層フィルムまたはシートを用いた成形品は、窓等の開口部サッシや、玄関引き戸、玄関ドアなど、各種建材用部材に好適に使用することができる。用途拡大の観点

から工業上非常に有用である。

本発明のアクリル樹脂フィルム状物(A)をクリア塗装の代替として用いる場合、JIS K7136の試験方法で測定したアクリル樹脂フィルム状物(A)の曇価の値は2%以下であることが好ましい。このようなアクリル樹脂フィルム状物(A)は、例えば漆黒調等の黒っぽい絵柄層を設けてもアクリル樹脂フィルム状物(A)の影響を受けることなく絵柄層が鮮明、忠実に見えるため好ましい。このようなアクリル樹脂フィルム状物(A)は、クリア塗装と同等の外観を示す。より好ましくは1%以下、さらに好ましくは0.5%以下、最も好ましくは0.4%以下である。

また、本発明のアクリル樹脂フィルム状物(A)はメタリック調などの絵柄層と組み合わせる場合、少なくとも片面の60°表面光沢度が100%以下であることが好ましい。この表面光沢度は、50%以下がより好ましく、20%以下が特に好ましい。少なくとも片面の60°表面光沢度が100%以下のアクリル樹脂フィルム状物(A)は、優れた意匠性、艶消し外観を有する。

本発明のアクリル樹脂フィルム状物(A)は、熱変形温度(ASTM D648に基づく測定)が80℃以上であることが好ましい。熱変形温度が80℃以上の場合、高温で長時間曝露した際に、アクリル樹脂フィルム状物(A)表面に自化、曇りが見られないため、工業的利用価値は高い。また、車輌用途においては、アクリル樹脂フィルム状物(A)の熱変形温度が80℃以上であると、アクリル樹脂フィルム状物(A)、並びに、それを含むアクリル樹脂積層フィルム、光硬化性アクリル樹脂フィルム又はシート及び積層フィルムまたはシートを用いた積層成形品は、フロントコントロールパネルなど、車内で直射日光を受ける部分にも使用することができる。用途がさらに拡大するという観点から、熱変形温度が90℃以上であることがより好ましい。なお、上記の熱変形温度の測定は、アクリル樹脂フィルム状物(A)の原料ペレットを射出成形にて成形後、60℃で4時間アニールした熱変形温度測定試片により行うものであり、測定される熱変形温度は、通常、アクリル樹脂フィルム状物(A)の熱変形温度と同じとされる

なお、少なくとも片面の60°表面光沢度が100%以下のアクリル樹脂フィ

ルム状物(A)の場合、熱変形温度が80℃以上であれば、高温で長時間曝露した際に、アクリル樹脂フィルム状物(A)表面の艶消し性の変化が小さい。そのため、熱変形温度が80℃以上のアクリル樹脂フィルム状物(A)は、さらに工業的利用価値が高い。なお、熱変形温度が90℃以上であれば、フロントコントロールパネルなど、車内で直射日光を受ける部分に好適に使用することができる。そのため、用途がさらに拡大するという観点から、熱変形温度は90℃以上であることがより好ましい。

また、光硬化性アクリル樹脂フィルム又はシートとして用いる場合、本発明のアクリル樹脂フィルム状物(A)は、熱変形温度(ASTM D648に基づく測定)が80℃以上であることが好ましい。熱変形温度が80℃以上の場合、光硬化性樹脂組成物をフィルムに塗布した後の溶剤除去のための乾燥工程で、光硬化性樹脂組成物やアクリル樹脂フィルムが引き伸ばされ難くなり、硬化後の耐擦傷性、表面硬度の低下を最小限に抑えることができるばかりでなく、乾燥温度を高めることができるので、最小限の乾燥設備で効率よく乾燥を行うことが出来る。更に、乾燥温度を高めることができると、後述するように光硬化性樹脂(Z)層中の残存有機溶剤量を低減することができるので、残存溶剤に起因する種々の問題が起こり難くなる。アクリル樹脂フィルムの熱変形温度は85℃以上であることがさらに好ましく、90℃以上であることが最も好ましい。

また、アクリル樹脂フィルム状物(A)を有する積層フィルムまたはシートを建材用として用いる場合、アクリル樹脂フィルム状物(A)は、熱変形温度(ASTM D648に基づく測定)が80℃以上であることが好ましい。熱変形温度が80℃以上の場合、各種基材の表面にラッピング加工等により貼着する加工時、あるいは加工した各種部材を住宅等の建築物に施工後実際に長期間使用した時に艶戻り等の艶変化を発生しにくい積層フィルムまたはシートが得られるため、工業的利用価値は高い。また、建材用途において、特に、実用途で特に積層フィルムまたはシートの表面が高温となる場合がある、ドア材、窓枠材、外壁材、塀、屋根、ルーフデッキ、バルコニー、雨戸等の外装、準外装用途等、用途がさらに拡大するという観点から、熱変形温度が90℃以上であることがより好ましい。

本発明で用いられるアクリル樹脂フィルム状物(A)の製造法としては、溶融流延法や、Tダイ法、インフレーション法などの溶融押出法、カレンダー法等の公知の方法が挙げられるが、経済性の点からTダイ法が好ましい。

なお、Tダイ法によりアクリル樹脂フィルム状物(A)を成形する場合、金属ロール、非金属ロール及び金属ベルトから選ばれる複数のロール又はベルトに狭持して製膜する方法を用いれば、得られるアクリル樹脂フィルム状物(A)の表面平滑性を向上させ、アクリル樹脂フィルム状物(A)に印刷処理した際の印刷抜けを抑制することができる。なお、金属ロールとしては、金属製の鏡面タッチロール;特許第2808251号公報(参考文献29)またはWO97/28950号公報(参考文献30)に記載の金属スリーブ(金属製薄膜パイプ)と成型用ロールからなるスリーブタッチ方式で使用されるロール等を例示することができる。また、非金属ロールとしては、シリコンゴム性等のタッチロール等を例示することができる。更に、金属ベルトとしては、金属製のエンドレスベルト等を例示することができる。なお、これらの金属ロール、非金属ロール及び金属ベルトを複数組み合わせて使用することもできる。

以上に述べた、金属ロール、非金属ロール及び金属ベルトから選ばれる複数のロール又はベルトに狭持して製膜する方法では、溶融押出後の多層構造重合体(I)または樹脂組成物(IV)を含む成分(以下「アクリル樹脂組成物」と称することがある)を、実質的にバンク(樹脂溜まり)が無い状態で狭持し、実質的に圧延されることなく面転写させて製膜することが好ましい。バンク(樹脂溜まり)を形成することなく製膜した場合は、冷却過程にあるアクリル樹脂組成物が圧延されることなく面転写されるため、この方法で製膜したアクリル樹脂フィルム状物(A)の加熱収縮率を低減することもできる

なお、Tダイ法などで溶融押出しをする場合は、200メッシュ以上のスクリーンメッシュで溶融状態にあるアクリル樹脂を濾過しながら押出しすることも好ましい。

また、アクリル樹脂フィルム状物(A)を艶消し状態とする場合、アクリル樹脂組成物Tダイ法等の溶融押出法によりフィルム形状にした直後に、鏡面ロール

と、ゴムロールまたはシボ入りロールとで挟持して製膜する方法が好ましい。特に、鏡面ロールとゴムロールとで挟持して製膜する方法は、鏡面ロールとシボ入りロールとで挟持して製膜する方法と比較して、50μm程度の比較的薄い膜厚のフィルムを製造することが可能となる点で、より好ましい。

また、カレンダー法において、最後にフィルムが挟まれる2本の鏡面ロールの 片側をゴムロールまたはシボ入りロールに代えて製膜することもできる。あるい は、公知の方法により一旦フィルム形状に成形した後、再びアクリル樹脂フィル ム状物(A)をガラス転移点温度以上に加熱し、鏡面ロールとゴムロールまたは シボ入りロールとで挟み込んでフィルムを製造することもできる。

鏡面ロールとしては、従来公知の各種のものを用いることができる。鏡面ロールとしては、中でも、クロムメッキ加工を施した表面粗度が 0.5 S以下のロールが好ましい。

フィルム製造の際、鏡面ロールの温度が高いと、ゴムロールまたはシボ入りロールに接するフィルム面により良好な艶消し性が発現し、同様に、鏡面ロールのアクリル樹脂フィルム状物(A)への鏡面転写性がより良好となり、鏡面ロールに接していた面の平滑性が増して印刷抜けがより軽減する傾向がある。ただし、鏡面ロールの温度があまりに高すぎると、アクリル樹脂フィルム状物(A)の鏡面ロールからの剥離性が低下したり、アクリル樹脂フィルム状物(A)が巻き付いたりすることがある。また、鏡面ロールの温度があまりに低すぎると、鏡面ロールのアクリル樹脂フィルム状物(A)への鏡面転写性が低下し、印刷抜け軽減効果が十分には得られにくくなったり、フィルムにしわが入りやすくなったりする。アクリル樹脂のガラス転移点温度にもよるが、冷却ロールを20~140℃の範囲内で温調することが好ましい。冷却ロールの温度は、50℃以上がより好ましく、60℃以上が特に好ましい。また、冷却ロールの温度は、120℃以下がより好ましく、100℃以下が特に好ましい。

ゴムロールとしては、従来公知の各種のものを用いることができる。ゴムロールとしては、中でも、耐熱性の観点から、シリコーンゴムが好ましい。また、良好な艶消し性を得る観点からは、アルミナ入りのシリコーンゴムが好ましい。ア

クリル樹脂フィルム状物 (A) では、用途によって好まれる艶消し外観が異なるため、シリコーンゴムに添加されるアルミナの粒度や量は用途に応じて適宜決めればよい。具体的には、例えば、平均粒度が 40 μ mのアルミナが 5 0 質量%添加されているシリコーン製ゴムロール等を用いることができる。

また、ゴムロールの代わりに、シボ入りロールを用いることもできる。シボ入りロールとしては、従来公知の各種のものを用いることができる。

また、溶融押出しをする場合は、200メッシュ以上のスクリーンメッシュで溶融状態にあるアクリル樹脂を濾過しながら押出しすることもフィルム中のFE (フィッシュアイ) 低減の観点から好ましい。

上記のような方法で得られたアクリル樹脂フィルム状物(A)の表面光沢度の差 [(鏡面ロール側に接していたフィルム面の60°表面光沢度)ー(鏡面ロール側に接していないフィルム面の60°表面光沢度)の絶対値]の値は、製膜条件、ゴムロールやシボ入りロール等の非鏡面ロールの種類により制御することができる。この表面光沢度の差は、印刷抜け性、艶消し性の観点から、5%以上が好ましい。さらに、この表面光沢度の差は、10%以上がより好ましく、15%以上が特に好ましい。

鏡面ロール側に接していたフィルム面には鏡面が転写されるので、印刷抜けの原因となる異物による表面突起を著しく低減することができる。したがって、鏡面ロール側に接していた面に印刷を施した場合、その印刷抜けを著しく低減することができる。

一方、鏡面ロール側に接していないフィルム面の 60° 表面光沢度は、ゴムロールやシボ入りロール等の非鏡面ロールの種類により制御することができる。鏡面ロール側に接していないフィルム面の 60° 表面光沢度は、意匠性、艶消し外観の観点から、100%以下が好ましい。さらに、鏡面ロール側に接していないフィルム面の 60° 表面光沢度は、50%以下がより好ましい。

また、同程度の表面光沢度を有するフィルムの中で比較すると、アクリル樹脂 フィルム状物 (A) の熱変形温度が高いほど、インサート成形やインモールド成 形する際の艶戻り性が軽減する。したがって、インサート成形やインモールド成 形する際の艶戻り性の観点からは、アクリル樹脂フィルム状物 (A) の熱変形温

度は高い方が好ましい。前述の鏡面ロールからの剥離性、ゴムロールまたはシボ入りロールへの追従性、成形時の艶戻りの観点から、アクリル樹脂フィルム状物 (A) の熱変形温度は、85 $^{\circ}$ ~105 $^{\circ}$ 0の範囲内にあることが好ましく、90 $^{\circ}$ 0以上がより好ましく、また、100 $^{\circ}$ 0以下がより好ましい。

本発明のアクリル樹脂フィルム状物(A)の厚みは、 $10\sim500\mu$ mが好ましい。アクリル樹脂フィルム状物(A)の厚みを 500μ m以下とすることにより、インサート成形およびインモールド成形に適した剛性が得られ、より安定にフィルムを製造することができる。また、アクリル樹脂フィルム状物(A)の厚みを 10μ m以上とすることにより、基材の保護性とともに、得られる成形品に深み感をより十分に付与することができる。アクリル樹脂フィルム状物(A)の厚みは、 30μ m以上がより好ましく、 50μ m以上が最も好ましい。また、アクリル樹脂フィルム状物(A)の厚みは、 300μ m以下がより好ましく、 20μ m以下が最も好ましい。

成形品に塗装によって十分な厚みの塗膜を形成するためには、十数回の重ね塗りが必要になることがあり、この場合、コストがかかり、生産性があまりよくない。それに対して、本発明の積層成形品は、アクリル樹脂フィルム状物(A)自体が塗膜となるため、容易に非常に厚い塗膜を形成することができ、工業的利用価値が高い。

<アクリル樹脂積層フィルム>

本発明のアクリル樹脂積層フィルムは、本発明のアクリル樹脂フィルム状物 (A) を有するものであり、さらに他のアクリル樹脂フィルム状物 (A') またはフッ素樹脂フィルム状物 (A') を有するものである。

本発明のアクリル樹脂積層フィルムとして、アクリル樹脂フィルム状物 (A) を基材に用いて、アクリル樹脂フィルム状物 (A') を表層に用いる場合には、アクリル樹脂フィルム状物 (A) よりも表面硬度が高いアクリル樹脂フィルム状物 (A'-a) を用いることが好ましい。具体的には、鉛筆硬度 (JIS K5400に基づく測定)が2H以上のアクリル樹脂フィルム状物 (A'-a) を用いることが好ましい。基材として、本発明のアクリル樹脂フィルム状物 (A) を基材として用い、表層として、鉛筆硬度が2H以上のアクリル樹脂フィルム状物

(A'-a)を用いることで、現在公知となっているアクリル樹脂積層フィルムと比較して、耐成形白化、表面硬度(耐擦傷性)、耐熱性を両立したアクリル樹脂積層フィルムが得られるようになるため、好ましい。

また、この時、アクリル樹脂フィルム状物(A'-a)は、メタクリル酸アルキルエステルを主成分とする熱可塑性樹脂で形成されていてもよいし、また、その熱可塑性樹脂にゴム含有重合体を混合してなる樹脂組成物から形成されていてもよく、特に限定はされない。アクリル樹脂積層フィルムに、インサート成形、またはインモールド成形を施した場合、アクリル樹脂フィルム状物(A'-a)の応力緩和が不十分となって、亀裂、破断、積層部分での剥がれ等を発生することを避ける観点から、メタクリル酸アルキルエステルを主成分とする熱可塑性樹脂にゴム含有重合体を少量混合してなる樹脂組成物から形成されることが好ましい。

また、鉛筆硬度2H以上であれば、アクリル樹脂フィルム状物(A'-a)として、アクリル樹脂フィルム状物(A)とは多層構造重合体(I)の含有量が異なるものを用いることが特に好ましい。

他に例えば、好ましい樹脂組成物として下記の(i)及び(i i)を含むものが挙げられる。

(i) メタクリル酸アルキルエステルを主成分とする熱可塑性樹脂:

メタクリル酸アルキルエステル50~100質量%と、アクリル酸アルキルエステル0~50質量%と、これらと共重合可能な他のビニル単量体0~49質量%とからなる熱可塑性樹脂。

(ii) ゴム含有重合体:

(ii-a)アクリル酸アルキルエステル系弾性重合体の存在下にメタクリル酸アルキルエステル系単量体をグラフト重合して硬質重合体を形成してなる2層構造を有する平均粒子径0.2μm未満のゴム含有重合体。

(ii-b) Tgが0℃以上25℃未満のメタクリル酸アルキルエステルおよびアクリル酸アルキルエステルの単量体を重合してなる最内層重合体、Tgが0℃未満のアクリル酸アルキルエステルの単量体を重合してなる中間層弾性重合体、メタクリル酸アルキルエステルの単量体からなる最外層重合体からなる3層構

造を有する平均粒子径0.2~0.4μmのゴム含有重合体。

より具体的には、例えば、下記の樹脂組成物が挙げられる。

○特開2002-80678号公報記載のアクリル樹脂フィルム用樹脂組成物: 熱可塑性樹脂(i)20~94.5質量部、およびゴム含有重合体(ii-a)5.5~80質量部を含んでなり、ゴム含有重合体(ii-a)中のアクリル酸アルキルエステル系弾性重合体の量が5~72質量部[成分(i)および成分(i)の合計100質量部]からなる樹脂組成物。

○特開2002-80679号公報記載のアクリル樹脂フィルム用樹脂組成物: 熱可塑性樹脂(i)75~94.5質量部、およびゴム含有重合体(ii-b)5.5~25質量部を含んでなり、ゴム含有重合体(ii-b)中の最内層重合体および中間層弾性重合体からなる弾性重合体の量が5~18質量部[成分(i)および成分(ii)の合計100質量部]からなる樹脂組成物。

本発明に使用されるアクリル樹脂フィルム状物(A'-a)は、必要に応じて、一般の配合剤、例えば、安定剤、滑剤、加工助剤、可塑剤、耐衝撃剤、発泡剤、充填剤、抗菌剤、防カビ剤、離型剤、帯電防止剤、着色剤、艶消し剤、紫外線吸収剤、光安定化剤等を含むことができる。

特に、基材、印刷等の色柄、着色剤等の保護の点では、耐候性を付与するために、紫外線吸収剤が添加されることが好ましい。使用される紫外線吸収剤の分子量は300以上が好ましく、より好ましくは400以上である。分子量が300以上の紫外線吸収剤を使用すると、射出成形金型内で真空成形または圧空成形を施す際の紫外線吸収剤の揮発による金型汚れ等を防止することができる。また一般的に、分子量が高い紫外線吸収剤ほど、アクリル樹脂積層フィルム状態に加工した後の長期的なブリードアウトが起こりにくく、分子量が低いものよりも紫外線吸収性能が長期間に渡り持続する。

上記配合剤の添加方法としては、本発明のアクリル樹脂フィルム状物 (A'-a) を形成するためのアクリル樹脂フィルム状物 (A'-a) 用原料とともに押出機に供給する方法と、予めアクリル樹脂フィルム状物 (A'-a) 用原料に配合剤を添加した混合物を各種混練機にて混練混合する方法とがある。後者の方法に使用する混練機としては、通常の単軸押出機、二軸押出機、バンバリミキサー

、ロール混練機等が挙げられる。

さらに、必要に応じて公知の方法により本発明のアクリル樹脂フィルム状物(A'-a)の光沢を低減させることができる。具体的には、無機充填剤、または架橋性高分子粒子を混練する方法、エポキシ基含有単量体を共重合する方法、水酸基を有する直鎖状重合体を使用する方法、エンボス加工する方法等で実施することができる。また、本発明のアクリル樹脂フィルム状物(A'-a)に着色加工したものを用いることもできる。

またこの時、本発明のアクリル樹脂積層フィルム中のアクリル樹脂フィルム状物(A)の厚みは $10\sim500\mu$ mが好ましく、より好ましくは 30μ m以上であり 200μ m以下である。 500μ m以下の場合、最終的に得られるアクリル樹脂積層フィルムがインサート成形およびインモールド成形に適した剛性となるあり、アクリル樹脂フィルム状物(A)をフィルム状に成形する場合に安定してフィルムを製造することができるため、好ましい。 10μ m以上の場合、基材の保護性、得られる積層成形品に深み感を付与することができるため、好ましい。

また、本発明のアクリル樹脂積層フィルム中のアクリル樹脂フィルム状物(A $^{\prime}$ ー a)の厚みは $^{\prime}$ ~ 3 $^{\prime}$ $^{\prime}$ μ m が好ましく、より好ましくは、 $^{\prime}$ 3 $^{\prime}$ μ m 以上であり $^{\prime}$ 2 $^{\prime}$ μ m 以下である。 $^{\prime}$ 3 $^{\prime}$ μ m 以下の場合、本発明のアクリル樹脂積層フィルムの表面硬度(耐擦傷性)、および耐熱性を向上させるとともに、積層フィルムにインサート成形、またはインモールド成形を施した場合、アクリル樹脂フィルム状物(A $^{\prime}$ - a)部分の亀裂、破断、積層部分での剥がれ、白化等を目立たせず、意匠性を損なうことなく積層成形品を得ることができるため、好ましい。また、1 $^{\prime}$ μ m 以上の場合、本発明のアクリル樹脂積層フィルムの表面硬度(耐擦傷性)、および耐熱性を向上させる効果を保ちつつ、均一な膜厚でアクリル樹脂フィルム状物(A $^{\prime}$ - a)を得ることができるため、好ましい。また、成形品に塗装によって十分な厚みの塗膜を作るためには、十数回の重ね塗りが必要であり、コストがかかり、生産性が極端に悪くなるのに対して、本発明の積層成形品であれば、アクリル樹脂積層フィルム自体が塗膜となるため、容易に非常に厚い塗膜を形成することができ、工業的利用価値は高い。

本発明のアクリル樹脂フィルム状物(A)を基材として、鉛筆硬度が2H以上

のアクリル樹脂フィルム状物(A'-a)を表層に用いたアクリル樹脂積層フィルムのさらに表層側または裏面側に、表面硬度(耐擦傷性)、耐熱性の観点から、鉛筆硬度が2 H以上のアクリル樹脂フィルム状物(A'-a)を積層してもよい。また、耐候性、耐溶剤性の観点から、フッ素樹脂フィルム状物(A',)を積層してもよい。

また、アクリル樹脂積層フィルムのさらに基材側に、加工性付与の観点から、 鉛筆硬度がF以下のアクリル樹脂フィルム状物(A'-b)を積層してもよい。 これにより、インサート成形、またはインモールド成形等の真空成形だけでなく 、その他の加工法、例えばラッピング加工等により三次元形状の成形品を得るこ とができるため、工業的利用価値が高くなる。

また、本発明のアクリル樹脂積層フィルムとして、アクリル樹脂フィルム状物 (A') を基材に用いて、アクリル樹脂フィルム状物 (A) を表層に用いる場合には、アクリル樹脂フィルム状物 (A) よりも表面硬度の低いアクリル樹脂フィルム状物 (A'-b)を用いることが好ましく、具体的には、鉛筆硬度 (JIS K5400に基づく測定)がF以下のアクリル樹脂フィルム状物 (A'-b)を用いることが好ましい。より好ましくはHB以下、さらに好ましくは3B以下である。

基材として、鉛筆硬度がF以下のアクリル樹脂フィルム状物(A'-b)を用い、表層として、本発明のアクリル樹脂フィルム状物(A)を用いることで、現在公知となっているアクリル樹脂(積層)フィルムと比較して、耐成形白化性に非常に優れ、良好な表面硬度(耐擦傷性)、耐熱性を有したアクリル樹脂積層フィルムが得られるようになるため、好ましい。

またこの時、アクリル樹脂フィルム状物(A'-b)は、特定の構造を有する 多層構造重合体単独、あるいは必要に応じてメタクリル酸アルキルエステルを主 成分とする熱可塑性樹脂を混合してなる樹脂組成物から形成されていることが好 ましい。

具体的には、下記の(i i i)及び(i v)を含む樹脂組成物が挙げられる。 (i i i)メタクリル酸アルキルエステルを主成分とする熱可塑性樹脂: (i i i - a)一般式 $CH_2 = CHX$ 又は $CH_2 = CXY$ を有するビニルモノ

マー又はビニリデンモノマーの単独重合体、或いはこれらモノマーの二種以上からなる熱可塑性樹脂。なお、前記一般式中X、Yは、同一であっても異なっていてもよく、各々、H、C1、F、Br、CH $_3$ 、COOH、COOCH $_3$ 、CN、 $OCOCH_3$ 、C6 H_5 、O-低級アルキル基、COCH $_3$ 、SO $_3$ Hである。

(i i i - b) 炭素数 $1\sim 4$ のメタクリル酸アルキルエステル 5 0~100質量%と、アクリル酸アルキルエステル 0~50質量%、および共重合可能な他のビニル系単量体の少なくとも1種0~50質量%とからなり、重合体のガラス転移温度が 70 ℃未満であり、重量平均分子量が 10 万~30万である熱可塑性樹脂。

(iv)特定の構造を有した多層構造重合体(ゴム含有重合体):

(i v-a) 80~100質量%の炭素数1~8のアクリル酸アルキルエステ ルおよび/または炭素数1~4のメタクリル酸アルキルエステル (iv-aa1)、 $0\sim20$ 質量%の(iv-aa1)成分と共重合可能な他の二重結合を有す る単量体 (i v-a a 2)、0~10質量%の多官能性単量体 (i v-a a 3) 、(i v-a a 1)~(i v-a a 3)の合計量100質量部に対して、0. 1 ~5質量部のグラフト交叉剤の組成からなる最内層重合体(i v-aa)、80 ~100質量%の炭素数1~8のアクリル酸アルキルエステルおよび/または炭 素数1~4のメタクリル酸アルキルエステル(iv-ab1)、0~20質量% の(i v-a b 1)成分と共重合可能な他の二重結合を有する単量体(i v-a b 2) 、0~10質量%の多官能性単量体 (i v-a b 3) 、 (i v-a b 1) ~ (i v-a b 3) の合計量100質量部に対して、0.1~5質量部のグラフ ト交叉剤の組成からなる架橋弾性重合体 (i v-a b)、51~100質量%の 炭素数1~4のメタクリル酸アルキルエステル(i v-a c 1)、0~49質量 %の共重合可能な二重結合を有する単量体 (i v-a c 2) の組成からなるガラ ス転移温度が少なくとも60℃となる最外層重合体 (iv-ac)、を基本構造 単位とし、重合体 (i v-ab) 層と重合体 (i v-ac) 層間に中間層 (i v -ad)として、10~90質量%の炭素数1~8のアクリル酸アルキルエステ ル(i v-a d 1)、90~10質量%の炭素数1~4のメタクリル酸アルキル エステル (i v-a d 2)、0~20質量%の (i v-a d 1) および (i v-

ad2)成分と共重合可能な他の二重結合を有する単量体(iv-ad3)、 $0\sim10$ 質量%の多官能性単量体(iv-ad4)、(iv-ad1)~(iv-ad4)の合計量100質量部に対して、 $0.1\sim5$ 質量部のグラフト交叉剤の組成からなる多層構造重合体。

(iv-b) アクリル酸アルキルエステル 50~99. 9質量%、他の共重合可能なビニル系単量体 0~49. 9質量%、および共重合可能な架橋性単量体 0. 1~10質量%からなる弾性共重合体 100質量部存在下に、メタクリル酸アルキルエステル 40~100質量%と、これと共重合可能なビニル系単量体 0~60質量%とからなる単量体、またはその混合物 10~400質量部を重合させて得た多層構造重合体。

より具体的には、例えば、下記の樹脂組成物が挙げられる。

○特公昭63-8983号記載のアクリル樹脂フィルム用樹脂組成物:

熱可塑性樹脂(i i i - a) 1~99質量部、およびゴム含有重合体(i v - a) 1~99質量部からなる樹脂組成物。

○特開平11-80487号公報記載のアクリル樹脂フィルム用樹脂組成物: 熱可塑性樹脂(iii-b)5~30質量部、およびゴム含有重合体(iv-b)75~95質量部からなる樹脂組成物。

本発明に使用されるアクリル樹脂フィルム状物 (A'-b) は、必要に応じて、一般の配合剤、例えば、安定剤、滑剤、加工助剤、可塑剤、耐衝撃剤、発泡剤、充填剤、抗菌剤、防カビ剤、離型剤、帯電防止剤、着色剤、艶消し剤、紫外線吸収剤、光安定化剤等を含むことができる。

上記配合剤の添加方法としては、本発明のアクリル樹脂フィルム状物(A'-b)を形成するための押出機にアクリル樹脂フィルム状物(A'-b)用原料とともに供給する方法と、予めアクリル樹脂フィルム状物(A'-b)用原料に配合剤を添加した混合物を各種混練機にて混練混合する方法とがある。後者の方法に使用する混練機としては、通常の単軸押出機、二軸押出機、バンバリミキサー、ロール混練機等が挙げられる。

さらに、必要に応じて公知の方法により本発明のアクリル樹脂フィルム状物 (A'-b) の光沢を低減させることができる。具体的には、無機充填剤、または

架橋性高分子粒子を混練する方法、エポキシ基含有単量体を共重合する方法、水酸基を有する直鎖状重合体を使用する方法、エンボス加工する方法等で実施することができる。また、本発明のアクリル樹脂フィルム状物(A'ーb)に着色加工したものを用いることもできる。

またこの時、本発明のアクリル樹脂積層フィルム中のアクリル樹脂フィルム状物(A'-b)の厚みは、 $10\sim500\mu$ mが好ましく、より好ましくは、 30μ m以上であり 200μ m以下である。 500μ m以下の場合、最終的に得られるアクリル樹脂積層フィルムがインサート成形およびインモールド成形に適した剛性となるあり、アクリル樹脂フィルム状物(A)をあらかじめフィルム状に成形する場合に安定してフィルムを製造することができるため、好ましい。 10μ m以上の場合、基材の保護性、得られる積層成形品に深み感を付与することができるため、好ましい。

またこの時、本発明のアクリル樹脂積層フィルム中のアクリル樹脂フィルム状物(A'-b)の厚みは、 $10\sim500\mu$ mが好ましく、より好ましくは、 30μ m以上であり 200μ m以下である。 500μ m以下の場合、最終的に得られるアクリル樹脂積層フィルムがインサート成形およびインモールド成形に適した剛性となるあり、アクリル樹脂フィルム状物(A)をあらかじめフィルム状に成形する場合に安定してフィルムを製造することができるため、好ましい。 10μ m以上の場合、基材の保護性、得られる積層成形品に深み感を付与することができるため、好ましい。

また、本発明のアクリル樹脂積層フィルム中のアクリル樹脂フィルム状物(A)の厚みは $1\sim30\mu$ mが好ましく、より好ましくは、 3μ m以上であり 20μ m以下である。 30μ m以下の場合、本発明のアクリル樹脂積層フィルムの表面硬度(耐擦傷性)、および耐熱性を向上させるとともに、積層フィルムにインサート成形、またはインモールド成形を施した場合、成形白化を発生させずに成形品を得ることができるため、好ましい。また、 1μ m以上の場合、本発明のアクリル樹脂積層フィルムの表面硬度(耐擦傷性)、および耐熱性を向上させる効果を保ちつつ、均一な膜厚でアクリル樹脂フィルム状物(A)を得ることができるため、好ましい。成形品に塗装によって十分な厚みの塗膜を作るためには、十数

回の重ね塗りが必要であり、コストがかかり、生産性が極端に悪くなるのに対して、本発明の積層成形品であれば、アクリル樹脂積層フィルム自体が塗膜となるため、容易に非常に厚い塗膜を形成することができ、工業的利用価値は高い。

アクリル樹脂フィルム状物 (A'-b) を基材として、本発明のアクリル樹脂フィルム状物 (A) を表層に用いたアクリル樹脂積層フィルムのさらに表層側に、表面硬度(耐擦傷性)、耐熱性の観点から、鉛筆硬度が2H以上のアクリル樹脂フィルム状物 (A'-a) 層を積層してもよい。また、耐候性、耐溶剤性の観点から、フッ素樹脂フィルム状物 (A') を積層してもよい。

また、本発明のアクリル樹脂積層フィルムとして、アクリル樹脂フィルム状物 (A) を基材に用いて、フッ素樹脂フィルム状物 (A'') を表皮材とすることもできる。

フッ素樹脂フィルム状物(A')を構成するフッ素系樹脂の種類は特に限定されず、公知のフッ素系樹脂を使用することができる。具体的には、フッ化ビニリデン重合体、フッ化ビニリデンとフッ化ビニル、テトラフロロエチレン等のフッ素化合物、あるいはアクリル酸アルキルエステル、メタクリル酸アルキルエステル等のアクリル系単量体との共重合体、またはフッ化ビニリデン重合体を主成分とした樹脂組成物が挙げられる。

この時、フッ素樹脂フィルム状物 (A'') を設ける位置は特に限定はされないが、アクリル樹脂積層フィルムの耐候性、および耐溶剤性の観点から、フッ素樹脂フィルム状物 (A'') はアクリル樹脂フィルム状物 (A) の上層 (つまり、フッ素樹脂フィルム状物 (A'') を最表層) に設けることが好ましい。

本発明に使用されるフッ素樹脂フィルム状物(A'')は、必要に応じて、一般の配合剤、例えば、安定剤、滑剤、加工助剤、可塑剤、耐衝撃剤、発泡剤、充填剤、抗菌剤、防カビ剤、離型剤、帯電防止剤、着色剤、艶消し剤、紫外線吸収剤、光安定化剤等を含むことができる。

特に、基材、印刷等の色柄、着色剤等の保護の点では、耐候性を付与するために、紫外線吸収剤が添加されることが好ましい。使用される紫外線吸収剤の分子量は300以上が好ましく、より好ましくは400以上である。分子量が300以上の紫外線吸収剤を使用すると、射出成形金型内で真空成形または圧空成形を

施す際の紫外線吸収剤の揮発による金型汚れ等を防止することができる。また一般的に、分子量が高い紫外線吸収剤ほど、アクリル樹脂積層フィルム状態に加工した後の長期的なブリードアウトが起こりにくく、分子量が低いものよりも紫外線吸収性能が長期間に渡り持続する。

さらに、紫外線吸収剤の分子量が300以上であると、フッ素樹脂フィルム状物(A')をフィルム状に成形する場合、フィルム状物がTダイから押し出され冷却ロールで冷やされるまでの間に、紫外線吸収剤が揮発する量が少ない。従って、残留する紫外線吸収剤の量が十分なので良好な性能を発現する。また、揮発した紫外線吸収剤がTダイ上部にあるTダイを吊るすチェーンや排気用のフードの上で再結晶して経時的に成長し、これがやがてフィルム上に落ちて、外観上の欠陥になるという問題も少なくなる。

紫外線吸収剤の種類は、特に限定されないが、分子量40.0以上のベンゾトリアゾール系または分子量400以上のトリアジン系のものが特に好ましく使用できる。前者の具体例としては、チバスペシャリティケミカルズ社製の商品名:チヌビン234、旭電化工業社製の商品名:アデカスタブLA-31、後者の具体例としては、チバスペシャリティケミカルズ社製の商品名:チヌビン1577等が挙げられる。

上記配合剤の添加方法としては、本発明のフッ素樹脂フィルム状物(A',)を形成するための押出機にフッ素樹脂フィルム状物(A',)用原料とともに供給する方法と、予めフッ素樹脂フィルム状物(A',)用原料に配合剤を添加した混合物を各種混練機にて混練混合する方法とがある。後者の方法に使用する混練機としては、通常の単軸押出機、二軸押出機、バンバリミキサー、ロール混練機等が挙げられる。

さらに、必要に応じて公知の方法により本発明のフッ素樹脂フィルム状物(A')の光沢を低減させることができる。具体的には、無機充填剤、または架橋性高分子粒子を混練する方法、エポキシ基含有単量体を共重合する方法、水酸基を有する直鎖状重合体を使用する方法、エンボス加工する方法等で実施することができる。また、本発明のフッ素樹脂フィルム状物(A'))に着色加工したものを用いることもできる。

またこの時、本発明のアクリル樹脂積層フィルム中のアクリル樹脂フィルム状物(A)の厚みは、 $10\sim500\mu$ mが好ましく、より好ましくは、 30μ m以上であり 200μ m以下である。 500μ m以下の場合、最終的に得られるアクリル樹脂積層フィルムがインサート成形およびインモールド成形に適した剛性となり、アクリル樹脂フィルム状物(A)をあらかじめフィルム状に成形する場合に安定してフィルムを製造することができるため、好ましい。 10μ m以上の場合、基材の保護性、得られる積層成形品に深み感を付与することができるため、好ましい。

また、本発明のアクリル樹脂積層フィルム中のフッ素樹脂フィルム状物(A')の厚みは $1\sim30\mu$ mが好ましく、より好ましくは、 3μ m以上であり 20μ m以下である。 30μ m以下の場合、本発明のアクリル樹脂積層フィルムを製造する際、大幅なコストアップとならずに、また、得られるアクリル樹脂積層フィルムの表面硬度、および耐擦傷性を低下させずに、耐候性、および耐溶剤性を付与することができるため、好ましい。また、 1μ m以上の場合、本発明のアクリル樹脂積層フィルムの耐候性、および耐溶剤性を向上させる効果を保ちつつ、均一な膜厚でフッ素樹脂フィルム状物(A'))を得ることができるため、好ましい。成形品に塗装によって十分な厚みの塗膜を作るためには、十数回の重ね塗りが必要であり、コストがかかり、生産性が極端に悪くなるのに対して、本発明の積層成形品であれば、アクリル樹脂積層フィルム自体が塗膜となるため、容易に非常に厚い塗膜を形成することができ、工業的利用価値は高い。

なお、一般に、フッ素樹脂フィルム状物 (A'') の表面硬度は、アクリル樹脂フィルム状物 (A) と比較すると同等かそれよりも低い。しかしながら摺動性が良好であるために、フッ素樹脂フィルム状物 (A'') を表面に有するアクリル樹脂積層フィルムの耐擦傷性は比較的良好である。

本発明のアクリル樹脂積層フィルムの形成方法としては、(1)あらかじめアクリル樹脂フィルム状物(A)、および他のアクリル樹脂フィルム状物(A')またはフッ素樹脂フィルム状物(A')を成形した後に積層する方法、(2)あらかじめ他のアクリル樹脂フィルム状物(A')、またはフッ素樹脂フィルム状物(A')をに成形しておいたものに、アクリル樹脂フィルム状物(A)を

溶融押出しながら同時に積層する方法、(3)あらかじめアクリル樹脂フィルム状物(A)を成形しておいたものに他のアクリル樹脂フィルム状物(A')またはフッ素樹脂フィルム状物(A'))を溶融押出しながら同時に積層する方法、

(4) アクリル樹脂フィルム状物(A) と、他のアクリル樹脂フィルム状物(A)) またはフッ素樹脂フィルム状物(A)) と、を溶融押出しながら同時に積層する方法、等が挙げられる。

アクリル樹脂フィルム状物(A)、他のアクリル樹脂フィルム状物(A')、およびフッ素樹脂フィルム状物(A'))をあらかじめフィルム状に成形する場合の製造法としては、溶融流延法や、Tダイ法、インフレーション法などの溶融押出法、カレンダー法等の公知の成形方法が挙げられる。なお、フィルム化する場合、経済性の点からTダイ法が好ましい。

前述の、(1)あらかじめアクリル樹脂フィルム状物(A)および他のアクリル樹脂フィルム状物(A')、またはフッ素樹脂フィルム状物(A')を成形した後に積層する方法としては、アクリル樹脂フィルム状物(A)と他のアクリル樹脂フィルム状物(A')、またはフッ素樹脂フィルム状物(A')を、ドライラミネート、ウェットラミネート、ホットメルトラミネートなどでラミネートする方法等の積層方法があげられる。熱融着可能であれば、加熱プレスラミネート法で積層することもできる。

なお、あらかじめ、アクリル樹脂フィルム状物(A)および他のアクリル樹脂フィルム状物(A')またはフッ素樹脂フィルム状物(A')を成形する際、金属ロール、非金属ロール及び金属ベルトから選ばれる複数のロール又はベルトに挟持して製膜するのが好ましい。

前述の、(2) あらかじめ他のアクリル樹脂フィルム状物(A')またはフッ素樹脂フィルム状物(A')を成形しておいたものに、アクリル樹脂フィルム状物(A)を溶融押出しながら同時に積層する方法としては、あらかじめ成形しておいたアクリル樹脂フィルム状物(A')、またはフッ素樹脂フィルム状物(A')にアクリル樹脂フィルム状物(A)をTダイ等でフィルム状に溶融押出しながらラミネートする押出ラミネート等が挙げられる。

なお、あらかじめ、他のアクリル樹脂フィルム状物 (A')、またはフッ素樹

脂フィルム状物(A') を成形する際、金属ロール、非金属ロール及び金属ベルトから選ばれる複数のロール又はベルトに挟持して製膜するのが好ましい。

前述の、(3)あらかじめアクリル樹脂フィルム状物(A)を成形しておいたものに、他のアクリル樹脂フィルム状物(A')またはフッ素樹脂フィルム状物(A')を溶融押出しながら同時に積層する方法としては、あらかじめ成形しておいたアクリル樹脂フィルム状物(A)に、アクリル樹脂フィルム状物(A')またはフッ素樹脂フィルム状物(A')をTダイ等でフィルム状に溶融押出しながらラミネートする押出ラミネート等が挙げられる。

なお、あらかじめ、アクリル樹脂フィルム状物(A)を成形する際、金属ロール、非金属ロール及び金属ベルトから選ばれる複数のロール又はベルトに挟持して製膜するのが好ましい。

前述の、(4) アクリル樹脂フィルム状物(A) と、他のアクリル樹脂フィルム状物(A') またはフッ素樹脂フィルム状物(A')) と、を溶融押出しながら同時に積層する方法としては、フィードブロック法などのダイ前で接着する方法、マルチマニホールド法などのダイ内で接着する方法や、マルチスロット法などのダイ外で接着する方法等の共押出成形による積層方法があげられる。

このうち、特に限定されないが、アクリル樹脂積層フィルムの製造工程を少なくすることができるという観点から、前述の、(4)アクリル樹脂フィルム状物(A)と、他のアクリル樹脂フィルム状物(A')またはフッ素樹脂フィルム状物(A')、とを溶融押出しながら同時に積層する方法が好ましい。

なお、Tダイ法によりアクリル樹脂積層フィルムを積層する場合、金属ロール、非金属ロール及び金属ベルトから選ばれる複数のロール又はベルトに狭持して 製膜する方法を用いれば、得られるアクリル樹脂積層フィルムの表面平滑性を向上させ、アクリル樹脂積層フィルムに印刷処理した際の印刷抜けを抑制することができる。

なお、金属ロールとしては、金属製の鏡面タッチロール;特許第280825 1号公報またはWO97/28950号公報に記載の金属スリーブ(金属製薄膜パイプ)と成型用ロールからなるスリーブタッチ方式で使用されるロール等を例示することができる。また、非金属ロールとしては、シリコンゴム性等のタッチ

ロール等を例示することができる。更に、金属ベルトとしては、金属製のエンド レスベルト等を例示することができる。なお、これらの金属ロール、非金属ロー ル及び金属ベルトを複数組み合わせて使用することもできる。

以上に述べた、金属ロール、非金属ロール及び金属ベルトから選ばれる複数のロール又はベルトに狭持して製膜する方法では、溶融押出後のアクリル樹脂組成物を、実質的にバンク(樹脂溜まり)が無い状態で狭持し、実質的に圧延されることなく面転写させて製膜することが好ましい。バンク(樹脂溜まり)を形成することなく製膜した場合は、冷却過程にあるアクリル樹脂組成物が圧延されることなく面転写されるため、この方法で製膜したアクリル樹脂積層フィルムの加熱収縮率を低減させることもできる。

<光硬化性アクリル樹脂フィルムまたはシート>

本発明の光硬化性アクリル樹脂フィルムまたはシートは、本発明のアクリル樹脂フィルム状物 (A) または本発明のアクリル樹脂積層フィルムと、側鎖にラジカル重合性不飽和基を有する熱可塑性樹脂 (z-1) および光重合開始剤 (z-2) を含む光硬化性樹脂組成物 (Z) 層とを有するものである。

上記の光硬化性樹脂組成物(Z)は、側鎖にラジカル重合性不飽和基を有する熱可塑性樹脂(z-1)および光重合開始剤(z-2)を含み、熱可塑性樹脂(z-1)以外の架橋性化合物を実質的に含まないものであることが好ましい。本発明においては、この光硬化性樹脂組成物(Z)の層をアクリル樹脂フィルム状物(A)またはアクリル樹脂積層フィルム上に積層することにより、光硬化性アクリル樹脂フィルム又はシートを得ることができる。本発明における光硬化性樹脂組成物(Z)は、このようにポリマー側鎖にラジカル重合性不飽和基を有する構造を導入したことにより、ポリマー側鎖間で架橋反応が進行するため、著しく良好な耐磨耗性、耐擦傷性が得られ、また反応性ビニル基を有する低分子量架橋性化合物を含有させる必要が無く、そのため表面粘着性が無く、保存安定性に優れる光硬化性アクリル樹脂フィルム又はシートが得られるという利点を有する。

側鎖にラジカル重合性不飽和基を有する熱可塑性樹脂(z-1)としては、例えば、ガラス転移温度が $25\sim175$ $\mathbb C$ 、好ましくは $30\sim150$ $\mathbb C$ の、ポリマー中にラジカル重合性不飽和基を有するものが挙げられる。具体的には、ポリマ

一として以下の化合物(1)~(7)を重合または共重合させたものに対し、後述する方法(イ)~(^)によりラジカル重合性不飽和基を導入したものを用いることができる。なお、「(メタ)アクリレート」は、アクリレートまたはメタクリレートを表し、「(メタ)アクリル酸」は、アクリル酸またはメタクリル酸を表し、「(メタ)アクリルアミド」は、アクリルアミドまたはメタクリルアミドを表し、「(メタ)アクリロイルオキシ」は、アクリロイルオキシまたはメタクリロイルオキシを表す。

- (1) 水酸基を有する単量体: N-メチロールアクリルアミド、2-ヒドロキシエチル (メタ) アクリレート、2-ヒドロキシプロピル (メタ) アクリレート、2-ヒドロキシブチル (メタ) アクリレート、2-ヒドロキシー3-フェノキシプロピル (メタ) アクリレート等
- (2) カルボキシル基を有する単量体: (メタ) アクリル酸、アクリロイル オキシエチルモノサクシネート等
- (3) エポキシ基を有する単量体:グリシジル(メタ)アクリレート、3, 4-エポキシシクロヘキシルメチル(メタ)アクリレート等
- (4) アジリジニル基を有する単量体:2-アジリジニルエチル(メタ)ア クリレート、2-アジリジニルプロピオン酸アリル等
- (5) アミノ基を有する単量体: (メタ) アクリルアミド、ジアセトンアクリルアミド、ジメチルアミノエチル (メタ) アクリレート、ジエチルアミノエチル (メタ) アクリレート等
- (6) スルホン基を有する単量体:2-アクリルアミド-2-メチルプロパンスルホン酸等
- (7) イソシアネート基を有する単量体: 2, 4ートルエンジイソシアネートと2ーヒドロキシエチルアクリレートの等モル付加物のような、ジイソシアネートと活性水素を有するラジカル重合性単量体の付加物、2ーイソシアネートエチル(メタ)アクリレート等。

さらに、上記の化合物の重合体または共重合体のガラス転移温度を調節したり、 、光硬化性フィルム又はシートの物性を調和させたりするために、上記の化合物 と共重合可能な単量体と共重合させることもできる。 そのような共重合可能な単

量体としては、例えば、メチル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、イソボルニル(メタ)アクリレート等の(メタ)アクリレート類、Nーフェニルマレイミド、シクロヘキシルマレイミド、Nーブチルマレイミド等のイミド誘導体、ブタジエン等のオレフィン系単量体、スチレン、αーメチルスチレン等の芳香族ビニル化合物等を挙げることができる。

上述の重合体または共重合体に、以下に述べる方法(イ)~ (二) によりラジカル重合性不飽和基を導入することができる。

- (イ) 水酸基を有する単量体(1)の重合体または共重合体の場合には、(メタ)アクリル酸等のカルボキシル基を有する単量体(2)等を縮合反応させる。
- (ロ) カルボキシル基を有する単量体(2)、スルホン基を有する単量体(6)の重合体または共重合体の場合には、前述の水酸基を有する単量体(1)等を縮合反応させる。
- (ハ) エポキシ基を有する単量体(3)、イソシアネート基を有する単量体(7)、またはアジリジニル基を有する単量体(4)の重合体または共重合体の場合には、前述の水酸基を有する単量体(1)又はカルボキシル基を有する単量体(2)等を付加反応させる。
- (二) 水酸基またはカルボキシル基を有する単量体の重合体または共重合体の場合には、エポキシ基を有する単量体(3)またはアジリジニル基を有する単量体(4)、あるいはイソシアネート基を有する単量体(7)、またはジイソシアネート化合物と水酸基含有アクリル酸エステル単量体との等モル付加物等を付加反応させる。
- (ホ) アミノ基を有する単量体(5)の重合体または共重合体の場合には、 前述のカルボキシル基を有する単量体(2)等を縮合反応させる。
- (へ) アミノ基を有する単量体(5)の重合体または共重合体の場合には、 前述のエポキシ基を有する単量体(3)またはアセトアセトキシ基を有する単量 体等を付加反応させる。

上記の反応は、微量のハイドロキノン等の重合禁止剤を加え、乾燥空気を送りながら行うことが好ましい。

側鎖にラジカル重合性不飽和基を有する熱可塑性樹脂(z-1)の側鎖のラジカル重合性不飽和基の量は、二重結合当量(側鎖ラジカル重合性不飽和基1個あたりの平均分子量)が、仕込み値からの計算値で平均3000g/mo1以下であることが、耐擦傷性、耐磨耗性向上の観点から好ましい。より好ましい二重結合当量の範囲は、平均1200g/mo1以下であり、さらに好ましい範囲は、最も好ましい範囲は、平均800g/mo1以下である。

このように、架橋に関与するラジカル重合性不飽和基を熱可塑性樹脂中に複数導入することにより、低分子量の架橋性化合物を使用する必要がなく、後述する長期間の保管や加熱成形時においても、表面粘着性を有することなく、効率的に硬化物性を向上することが可能となる。

側鎖にラジカル重合性不飽和基を有する熱可塑性樹脂(z-1)の数平均分子量は、5,000~2,500,000範囲が好ましく、10,000~1,000,000範囲がさらに好ましい。側鎖にラジカル重合性不飽和基を有する熱可塑性樹脂(z-1)を含む光硬化性樹脂組成物(Z)を用いて形成した光硬化性アクリル樹脂フィルム又はシートをインサート又はインモールド成形する際に、金型離型性が良好になる点や、光硬化後のインサート又はインモールド成形品の表面硬度が向上する点から、数平均分子量はz000以上であることが好ましい。一方、合成の容易さや外観の観点、また、アクリル樹脂フィルム状物(A)との密着性発現の観点から、数平均分子量はz500,000以下であることが好ましい。

また、側鎖にラジカル重合性不飽和基を有する熱可塑性樹脂(z-1)はガラス転移温度が $25\sim175$ $\mathbb C$ に調節されていることが好ましく、 $30\sim150$ $\mathbb C$ に調節されていることがさらに好ましい。インサート又はインモールド成形時の光硬化性アクリル樹脂フィルム又はシートの金型剥離性が良好になる点や、光硬化後のインサート又はインモールド成形品の表面硬度が向上する点から、ガラス転移温度は25 $\mathbb C$ 以上であることが好ましい。一方、光硬化性アクリル樹脂フィルム又はシートの取り扱い性の観点からガラス転移温度は175 $\mathbb C$ 以下であることが好ましい。

また、得られる側鎖にラジカル重合性不飽和基を有する熱可塑性樹脂 (z-1

)のガラス転移温度を考慮すると、ホモポリマーとして高いガラス転移温度を有するものとなるビニル重合性単量体を使用することが好ましい。さらに、側鎖にラジカル重合性不飽和基を有する熱可塑性樹脂(z-1)の耐候性向上の観点からは、ビニル重合性単量体として(メタ)アクリレート類を主成分として用いてアクリル系樹脂とすることが好ましい。また、後述するように、本発明の光硬化性樹脂組成物(Z)中に無機微粒子(a-3)を添加する場合、無機微粒子(a-3)の表面の官能基(ヒドロキシル基、カルボキシル基、シラノール基等)と反応しうる基、例えば、ヒドロキシル基、カルボキシル基、ハロゲン化シリル基およびアルコキシシリル基からなる群より選ばれた少なくとも1種の官能基を分子内に有するビニル重合性単量体は、得られる光硬化性樹脂組成物の剛性、靱性、耐熱性等の物性をより向上させるように働くので、かかる官能基がラジカル重合可能なビニル重合性単量体成分の一部として含有されていてもよい。

このような反応性の基を分子内に含有するビニル重合性単量体としては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、(メタ) アクリレート、(メタ) アクリル酸、ビニルトリクロロシラン、ビニルトリメトキシシラン、γ-(メタ) アクリロイルオキシプロピルトリメトキシシラン等が挙げられる。

本発明で用いる光重合開始剤 (z-2) としては、光照射によってラジカルを 発生させる光ラジカル重合開始剤が挙げられる。

光ラジカル重合開始剤としては、公知の化合物を用いることができ、特に限定はされないが、硬化時の黄変性や耐候時の劣化を考慮すると、アセトフェノン系、ベンゾフェノン系、アシルホスフィンオキサイド系のような分子内にアミノ基を含まない開始剤が良い。例えば、1-(4-ドデシルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-ヒドロキシシクロへキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2, 4, 6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2, 6-ジメトキシベンゾイル) -2, 4, 4-トリメチルペンチルホスフィンオキサイドが好ましい。これらのうちには成形方法によっては一時的にその化

合物の沸点以上の温度になることがあるので、その成形方法に応じて適切に選択すればよい。成形品の表面硬度を上げるため、n-メチルジエタノールアミンなどの酸素による重合硬化阻害を抑制する添加剤を添加しても良い。また、これらの光重合開始剤の他に、成形時の熱を利用しての硬化も考慮して、各種過酸化物を添加しても良い。光硬化性アクリル樹脂フィルム又はシートに過酸化物を含有させる場合には、150 $\mathbb C$ 、30 $\mathbb D$ $\mathbb C$ $\mathbb D$ $\mathbb D$ $\mathbb C$ $\mathbb D$ $\mathbb D$

光ラジカル重合開始剤の添加量は、硬化後の残存量が耐候性に影響するため、 側鎖にラジカル重合性不飽和基を有する化合物に対して5質量%以下が望ましく 、特に硬化時の黄変に関連するアミノ系の光ラジカル重合開始剤は1質量%以下 が望ましい。

本発明の光硬化性樹脂組成物(Z)には、さらに耐擦傷性や耐磨耗性を向上させる目的で、無機微粒子(a-3)を添加することができる。本発明に用いられる無機微粒子(a-3)においては、得られる光硬化性樹脂組成物が透明となれば、その種類や粒子径、形態は特に制限されない。無機微粒子の例としては、コロイダルシリカ、アルミナ、酸化チタン、等が挙げられる。これらを単独で用いてもよいし、2種類以上組み合わせて用いてもよい。なかでも、入手の容易さや価格面、得られる光硬化性樹脂組成物層の透明性や耐磨耗性発現の観点から、特にコロイダルシリカが好ましい。

コロイダルシリカは、通常の水性分散液の形態や、有機溶媒に分散させた形態で用いることができるが、(z-1)成分である側鎖にラジカル重合性不飽和基を有する熱可塑性樹脂とともに均一かつ安定に分散させるためには、有機溶媒に分散させたコロイダルシリカを用いることが好ましい。

そのような有機溶媒としては、メタノール、イソプロピルアルコール、nーブタノール、エチレングリコール、キシレン/ブタノール、エチルセロソルブ、ブチルセロソルブ、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、メチルイソブチルケトン、トルエン等を例示することができる。なかで

も、熱可塑性樹脂とともに均一に分散させるためには、側鎖にラジカル重合性不飽和基を有する熱可塑性樹脂(z-1)を溶解可能な有機溶媒を選択することが好ましい。また、後述するように、本発明の光硬化性アクリル樹脂フィルム又はシートを製造する際にこれらの有機溶媒は加熱乾燥させて揮発させるため、アクリル樹脂フィルム状物(A)の主たる構成成分である樹脂成分のガラス転移温度より80℃以上高くない、好ましくは30℃以上高くない沸点を有する有機溶媒が、光硬化性アクリル樹脂フィルム又はシート内に残存しにくく好ましい。

有機溶媒に分散させた形態のコロイダルシリカとしては、分散媒に分散されている市販品、例えば、メタノールシリカゾルMA-ST、イソプロピルアルコールシリカゾルIPA-ST、nーブタノールシリカゾルNBA-ST、エチレングリコールシリカゾルEG-ST、キシレン/ブタノールシリカゾルXBA-ST、エチルセロソルブシリカゾルETC-ST、ブチルセロソルブシリカゾルBTC-ST、ジメチルホルムアミドシリカゾルDBF-ST、ジメチルアセトアミドシリカゾルDMAC-ST、メチルエチルケトンシリカゾルMEK-ST、メチルイソブチルケトンシリカゾルMIBK-ST(以上商品名、日産化学社製)等を用いることができる。

無機微粒子 (a-3) の粒子径は、得られる光硬化性樹脂組成物層の透明性の 観点から、通常は200nm以下である。より好ましくは100nm以下であり 、さらに好ましくは50nm以下である。

無機微粒子(a-3)の添加量は、側鎖にラジカル重合性不飽和基を有する熱可塑性樹脂(z-1)の固形分100質量部に対して、無機微粒子固形分で5~400質量部の範囲が好ましく、10~200質量部の範囲が特に好ましい。無機微粒子の添加量が5質量部未満の場合には、耐磨耗性向上効果が認められないことがあり、また添加量が400質量部を超える場合には、光硬化性樹脂組成物(Z)の保存安定性が低下するばかりか、得られる光硬化性アクリル樹脂フィルム又はシートの成形性が低下することがある。

また、本発明で用いられる無機微粒子 (a-3) としては、下記構造式 (a3-1) で表されるシラン化合物によって、予め表面が処理されたものを用いてもよい。表面処理された無機微粒子の使用は、光硬化性樹脂組成物 (Z) の保存安

定性がさらに良好となり、また得られる光硬化性アクリル樹脂フィルム又はシートの表面硬度および耐候性も良好となるので好ましい。

$$S i R_{a}^{1} R_{b}^{2} (OR^{3})$$
 (a 3-1)

(上式中、 R^1 および R^2 は、それぞれ、エーテル結合、エステル結合、エポキシ結合または炭素一炭素二重結合を有していてもよい炭素数 $1\sim10$ の炭化水素残基を表し、 R^3 は水素原子またはエーテル結合、エステル結合、エポキシ結合もしくは炭素一炭素二重結合を有していてもよい炭素数 $1\sim10$ の炭化水素残基を表し、aおよびbは、それぞれ、 $0\sim3$ の整数であり、cは4-a-bを満足する $1\sim4$ の整数である)

前記構造式 (a 3-1) で表されるシラン化合物のなかでも、下記構造式 (a 3-2) ~ (a 3-7) で表されるシラン化合物を好ましいものとして挙げることができる。

$$S i R_{a}^{4} R_{b}^{5} (OR_{b}^{6}) c$$
 (a 3-2)
 $S i R_{n}^{4} (OCH_{2}CH_{2}OCO (R_{n}^{7}) C=CH_{2}) + CH_{2} (CH_{2}^{7}) COO (CH_{2}^{7}) con (CH_{2}^{7}) con (CH_{2}^{6}) con (CH_{2}^{6$

$$H_2C = C - SiR^8_n(OR^6)_{3-n} \qquad (a 3-7)$$

(上式中、 R^4 および R^5 は、それぞれ、エーテル結合、エステル結合またはエポキシ結合を有していてもよい炭素数 $1\sim 10$ の炭化水素残基を表し、 R^6 は水素原子または炭素数 $1\sim 10$ の炭化水素残基を表し、 R^7 は水素原子またはメチル基を表し、 R^8 は炭素数 $1\sim 3$ のアルキル基またはフェニル基を表し、 A^8 は炭素数 A^8 0 であり、 A^8 0 には A^8 1 では A^8 2 であり、 A^8 3 の整数であり、 A^8 4 には A^8 5 であり、 A^8 6 の整数であり、 A^8 7 には A^8 8 であり、 A^8 9 には A^8 9 であり、 A^8 9 では A^8 9 であり、 A^8 9

前記構造式(a3-2)で表されるシラン化合物としては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキ

シシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジスチルジメトキシシラン、ジフェニルジメトキシシラン、トリメチルエチルジエトキシシラン、メチルフェニルジメトキシシラン、トリメチルエトキシシラン、メトキシエチルトリエトキシシラン、アセトキシエチルトリエトキシシラン、ジエトキシエチルジメトキシシラン、テトラアセトキシシラン、メチルトリアセトキシシラン、テトラキス(2-メトキシエトキシ)シラン、 $\gamma-$ グリシドキシプロピルトリメトキシシラン、 $\gamma-$ グリシドキシプロピルメチルジエトキシシラン、 $\beta-$ (3, 4-エポキシシクロヘキシル)エチルトリメトキシシラン等が挙げられる。

前記構造式(a3-3)で表されるシラン化合物としては、例えば、テトラキス(アクリロイルオキシエトキシ)シラン、テトラキス(メタクリロイルオキシエトキシ)シラン、メチルトリス(アクリロイルオキシエトキシ)シラン、メチルトリス(メタクリロイルオキシエトキシ)シラン等が挙げられる。

前記構造式(a 3-4)で表されるシラン化合物としては、例えば、 $\beta-P$ クリロイルオキシエチルジメトキシメチルシラン、 $\gamma-P$ クリロイルオキシプロピルメトキシジメチルシラン、 $\gamma-P$ クリロイルオキシプロピルトリメトキシシラン、 $\beta-$ メタクリロイルオキシエチルジメトキシメチルシラン、 $\gamma-$ メタクリロイルオキシアロピルトリメトキシシラン等が挙げられる。

前記構造式(a3-5)で表されるシラン化合物としては、例えば、ビニルメ チルジメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン 等が挙げられる。

前記構造式(a3-6)で表されるシラン化合物としては、例えば、γーメルカプトプロピルジメトキシメチルシラン、γーメルカプトプロピルトリメトキシシラン等が挙げられる。

前記構造式(a3-7)で表されるシラン化合物としては、例えばpービニルフェニルメチルジメトキシシラン、pービニルフェニルトリメトキシシラン等が挙げられる。

かかるシラン化合物は、無機微粒子(a-3)の固形分1モル部に対して、O

~3モル部の割合で使用することが好ましい。シラン化合物の使用量が3モル部を超える場合には、得られる光硬化性アクリル樹脂フィルム又はシートの耐磨耗性が低下することがある。ここでモル部とは、無機微粒子又はシラン化合物の質量部を分子式量で割った値のことである。例えば無機微粒子であるコロイダルシリカ(SiO_2)の固形分100質量部は $100\div60=1$. 666モル部に相当する。

シラン化合物で表面処理された無機微粒子は、市販品を利用したり、または公知の方法により無機微粒子を表面処理したりすることにより得ることができる。 公知の表面処理方法としては、例えば、少量の水の存在下で、シラン化合物と無機微粒子を加熱攪拌することにより、処理することができる。

無機微粒子(a-3)を、側鎖にラジカル重合性不飽和基を有する熱可塑性樹脂(z-1)に添加する方法としては、予め側鎖にラジカル重合性不飽和基を有する熱可塑性樹脂(z-1)を合成後、無機微粒子を混合しても良いし、また側鎖にラジカル重合性不飽和基を有する熱可塑性樹脂(z-1)を構成するビニル重合性単量体と無機微粒子を混合した条件下で重合する方法等の任意の方法を選択することができる。

本発明で用いられる光硬化性樹脂組成物(Z)においては、必須成分の側鎖に ラジカル重合性不飽和基を有する熱可塑性樹脂(z-1)および光重合開始剤(z-2)、さらに、必要に応じて使用することができる前述した無機微粒子(a-3)以外に、必要に応じて、増感剤、変性用樹脂、染料、顔料およびレベリング剤やハジキ防止剤、紫外線吸収剤、光安定剤、酸化安定剤等の添加剤を配合することができる。

上記の増感剤は、光硬化反応を促進するものであって、その例としてはベンゾフェノン、ベンゾインイソプロピルエーテル、チオキサントン等が挙げられる。

ただし、光硬化性樹脂組成物(Z)は、前記側鎖にラジカル重合性不飽和基を有する熱可塑性樹脂(z-1)以外の架橋性化合物を実質的に含有すべきではない。特に、40 Cにおいて液体状の架橋性モノマー、オリゴマーや、分子量 20 O O 以下の低分子量の架橋性モノマー、オリゴマーは実質的に含有するべきではない。特に、40 Cにおいて液体状の架橋性モノマー、オリゴマーや、分子量 2

000以下の低分子量の架橋性モノマー、オリゴマーを含有すると、長期間の保管や加熱成形時において表面粘着性を有するようになり、印刷工程において不具合を生じたり、インサート成形又はインモールド成形時において金型を汚染したりする等の問題を生じることがある。より好ましくは、50℃において液体状の架橋性モノマー、オリゴマーを実質的に含有するべきではなく、さらに好ましくは60℃において液体状の架橋性モノマー、オリゴマーを実質的に含有するべきではない。

本発明においては、上記の如き光硬化性樹脂組成物 (Z) を用いているため、 光硬化性樹脂組成物をアクリル樹脂フィルム状物 (A) またはアクリル樹脂積層 フィルム上に積層して光硬化性アクリル樹脂フィルム又はシートを形成した場合 にも、光硬化性アクリル樹脂フィルム又はシートの表面は粘着性がなく、また表 面の粘着性が時間と共に変化する等の現象も起こらず、ロール状態での保存安定 性が良好となる。

本発明の光硬化性アクリル樹脂フィルム又はシートは、上述した構成を有する ことより、光硬化前の優れた成形性や保存安定性と、光硬化後の優れた表面性状 (硬度、耐候性、等) を高次元で両立している光硬化性アクリル樹脂フィルム又 はシートである。後述するように、通常、本発明の光硬化性アクリル樹脂フィル ム又はシートは、有機溶剤等の溶剤に光硬化性樹脂組成物(Z)を混合、溶解さ せた溶液を、各種コート法によりアクリル樹脂フィルム状物(A)またはアクリ ル樹脂積層フィルム上にコーティングした後に溶剤除去の為の加熱乾燥を行って 製造する。この際、光硬化性アクリル樹脂フィルム又はシート内に溶剤が多量に 残存していると、光照射前の光硬化性樹脂組成物(Z)層表面が粘着性を有する ようになり、印刷工程における歩留まりの低下や、ロール状態での保存安定性の 低下、あるいはインサート成形又はインモールド成形時の金型汚染性の低下等の 問題を生じる。また、光硬化性アクリル樹脂フィルム又はシートをインサート成 形又はインモールド成形することによって得られたインサート成形品又はインモ ールド成形品を光硬化させても、耐擦傷性、耐薬品性、耐候性等の表面物性が劣 ることがある。このような不具合を解決するには、光硬化性アクリル樹脂フィル ム又はシート中の溶剤量を出来るだけ少なくすることが好ましい。

アクリル樹脂フィルム状物(A)またはアクリル樹脂積層フィルムと光硬化性 樹脂組成物(Z)層を有する本発明の光硬化性アクリル樹脂フィルム又はシートの製造方法としては、例えば、必須成分の側鎖にラジカル重合性不飽和基を有する熱可塑性樹脂(z-1)と光重合開始剤(z-2)、必要に応じて無機微粒子(a-3)を含む光硬化性樹脂組成物(Z)を有機溶媒等の溶剤に十分に攪拌溶解させ、グラビア印刷法、スクリーン印刷法、オフセット印刷法等の公知の印刷方法や、フローコート法、スプレーコート法、バーコート法、グラビアコート法、ロールコート法、ブレードコート法、ロールドクターコート法、エアナイフコート法、コンマロールコート法、リバースロールコート法、トランスファーロールコート法、キスロールコート法、カーテンコート法、ディッピングコート法等の公知のコート方法によりアクリル樹脂フィルム状物(A)上にコーティングし、溶剤除去のための加熱乾燥を行い積層フィルム又はシートとする方法がある。ガラス転移温度より80℃以上高くない、好ましくは30℃以上高くない沸点を有する有機溶媒が、光硬化性アクリル樹脂フィルム又はシート内に残存しにくく好ましい。

光硬化性樹脂組成物 (Z) を攪拌溶解させる溶剤としては、光硬化性樹脂組成物 (Z) の各成分を溶解または均一に分散させ、且つアクリル樹脂フィルム状物 (A) またはアクリル樹脂積層フィルムの物性 (機械的強度、透明性、等) に実用上甚大な悪影響を及ぼさず、さらにアクリル樹脂フィルム状物 (A) またはアクリル樹脂積層フィルムの主たる構成成分である樹脂成分のガラス転移温度より80℃以上高くない、好ましくは30℃以上高くない沸点を有している揮発性の溶剤が好ましい。そのような溶剤としては、メタノール、エタノール、イソプロピルアルコール、nーブタノール、エチレングリコール等のアルコール系溶剤;キシレン、トルエン、ベンゼン等の芳香族系溶剤;ヘキサン、ペンタン等の脂肪族炭化水素系溶剤;クロロホルム、四塩化炭素等のハロゲン化炭化水素系溶剤;フェノール、クレゾール等のフェノール系溶剤;メチルエチルケトン、メチルイソブチルケトン、アセトン等のケトン系溶剤;ジエチルエーテル、メトキシトルエン、1、2ージメトキシエタン、1、2ージオトサン、THF等のエーキシメタン、1、1ージメトキシエタン、1、4ージオキサン、THF等のエー

テル系溶剤; ギ酸、酢酸、プロピオン酸等の脂肪酸系溶剤; 無水酢酸等の酸無水物系溶剤; 酢酸エチル、酢酸プチル、ギ酸プチル等のエステル系溶剤; エチルアミン、トルイジン、ジメチルホルムアミド、ジメチルアセトアミド等の窒素含有溶剤; チオフェン、ジメチルスホキシド等の硫黄含有溶剤; ジアセトンアルコール、2-メトキシエタノール(メチルセロソルブ)、2-エトキシエタノール(エチルセロソルブ)、2-ブトキシエタノール(ブチルセロソルブ)、ジエチレングリコール、2-アミノエタノール、アセトシアノヒドリン、ジエタノールアミン、モルホリン等の2種以上の官能基を有する溶剤; あるいは水等、各種公知の溶剤を使用することができる。

ここで前述した光硬化性アクリル樹脂フィルム又はシート内の残存溶剤に起因する不具合を解消し、且つ低コストで生産効率を向上させる目的でより短時間で光硬化性アクリル樹脂フィルム又はシートを製造するためには、溶剤除去のための加熱乾燥条件を強化し乾燥を十分に行う必要がある。しかし、この時に光硬化性アクリル樹脂フィルム又はシートを、アクリル樹脂フィルム状物(A)またはアクリル樹脂積層フィルムの熱変形温度以上の温度で、連続して20秒間以上加熱乾燥させると、光硬化性アクリル樹脂フィルム又はシートが僅かな張力でも引き伸ばされてしまい、光硬化性樹脂組成物(Z)層やアクリル樹脂フィルム状物(A)またはアクリル樹脂積層フィルムの厚みが薄くなるばかりか、光硬化後の光硬化性樹脂組成物(Z)の耐擦傷性、表面硬度の低下等を招くことがある。

光硬化性アクリル樹脂フィルム又はシートの加熱乾燥条件は、アクリル樹脂フィルム状物(A)またはアクリル樹脂積層フィルムの熱変形温度を超えない範囲の温度で加熱乾燥させるか、またはアクリル樹脂フィルム状物(A)またはアクリル樹脂積層フィルムの熱変形温度より高い温度で乾燥させる場合には、アクリル樹脂フィルム状物(A)またはアクリル樹脂積層フィルムの熱変形温度+15 \mathbb{C} 以下、好ましくは $+10\mathbb{C}$ 以下とし、且つその温度での加熱乾燥時間を20秒以下、好ましくは10秒以下、さらに好ましくは5秒以下とするとよい。

乾燥機としては、溶剤として可燃性有機溶剤を使用する場合には、安全性の点から蒸気による空気加熱式の熱源を備えたものを用い、乾燥機内の熱風を向流接触せしめる方式及びノズルより光硬化性アクリル樹脂フィルム又はシートに吹き

付ける方式等が用いることができる。乾燥機の形状は、アーチ式、フラット式等 、目的に合わせて公知のものを選択して用いることができる。

<加飾層(B)を有する、アクリル樹脂フィルム状物(A)、アクリル樹脂積 . 層フィルム、光硬化性アクリル樹脂フィルム又はシート>

本発明のアクリル樹脂フィルム状物(A)、アクリル樹脂積層フィルム、及び、光硬化性アクリル樹脂フィルム又はシートには、各種基材に意匠性を付与するために加飾層(B)を設けることができる。例えば、必要に応じて適当な印刷法により印刷したものを用いることができる。この場合、アクリル樹脂フィルム状物(A)、アクリル樹脂積層フィルム、及び、光硬化性アクリル樹脂フィルム又はシートからなる群より選ばれる1つに片側印刷処理を施して、片面に加飾層(B)を有するフィルムとして用いることが好ましい。また、成形時には加飾層(B)を基材樹脂との接着面に配することが加飾面の保護や高級感の付与の点から好ましい。加飾層(B)は公知の方法で形成することができるが、印刷法で印刷層、蒸着法で蒸着層として形成することが好ましい。

加飾層(B)としての印刷層は、インサート又はインモールド成形品表面で模様や文字等となる。印刷柄は、任意であるが、例えば、木目、石目、布目、砂目、幾何学模様、文字、全面ベタ等からなる絵柄が挙げられる。印刷層のバインダ材料としては、塩化ビニル/酢酸ビニル系共重合体等のポリビニル系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリアクリル系樹脂、ポリウレタン系樹脂、ポリビニルアセタール系樹脂、ポリエステルウレタン系樹脂、セルロースエステル系樹脂、アルキッド樹脂、塩素化ポリオレフィン系樹脂等の樹脂が挙げられる。ポリアクリル系樹脂としては、例えば、多層構造重合体(I)又は樹脂組成物(II)又は樹脂組成物(II)又は樹脂組成物(II)をバインダ材料として用いる事が出来る。印刷層には、さらに適切な色の顔料または染料を着色剤として含有する着色インキを用いるとよい。

印刷層に用いられるインキの顔料としては、例えば、次のものが使用できる。 通常、顔料として、黄色顔料としてはポリアゾ等のアゾ系顔料、イソインドリノン等の有機顔料や黄鉛等の無機顔料、赤色顔料としてはポリアゾ等のアゾ系顔料 、キナクリドン等の有機顔料や弁柄等の無機顔料、青色顔料としてはフタロシア

ニンブルー等の有機顔料やコバルトブルー等の無機顔料、黒色顔料としてはアニリンプラック等の有機顔料、白色顔料としては二酸化チタン等の無機顔料が使用できる。

印刷層に用いられるインキの染料としては、本発明の効果を損なわない範囲で 、各種公知の染料を使用することができる。

また、印刷層の形成方法としては、オフセット印刷法、グラビア輪転印刷法、スクリーン印刷法等の公知の印刷法やロールコート法、スプレーコート法等の公知のコート法、フレキソグラフ印刷法を用いるのが良い。印刷層の厚みは、必要に応じて適宜決めればよいが、通常、0.5~30μm程度とする。なお、本発明の光硬化性アクリル樹脂フィルム又はシートでは、低分子量の架橋性化合物を使用するのではなくポリマー同士を架橋させる構成の光硬化性樹脂組成物を用いるので、表面に粘着性が無く、印刷時のトラブルが少なく、歩留まりが良好である。

また、アクリル樹脂フィルム状物(A)、アクリル樹脂積層フィルム、及び、 光硬化性アクリル樹脂フィルム又はシートからなる群より選ばれる1つに、加飾 層(B)として蒸着層を設けてもよいし、印刷層と蒸着層の両方を設けてもよい 。蒸着層は、アルミニウム、ニッケル、金、白金、クロム、鉄、銅、インジウム 、スズ、銀、チタニウム、鉛、亜鉛等の群から選ばれる少なくとも一つの金属、 またはこれらの合金若しくは化合物で形成される。蒸着層の形成方法としては、 真空蒸着法やスパッタリング法、イオンプレーティング法、メッキ法等の方法が 挙げられる。これら加飾のための印刷層や蒸着層は、所望のインサート又はイン モールド成形品の表面外観が得られるよう、インサート又はインモールド成形時 の伸張度合いに応じて、適宜その厚みを選択すればよい。

少なくとも片面の60°表面光沢度が100%以下であるアクリル樹脂フィルム状物(A)に印刷を施す場合は、特に、印刷抜け低減の観点から、フィルムの60°表面光沢度が高い方の面に印刷処理を施すことが好ましい。

アクリル樹脂フィルム状物(A)、アクリル樹脂積層フィルム、及び、光硬化性アクリル樹脂フィルム又はシートからなる群より選ばれる1つに印刷を施した面における印刷抜けの個数は、意匠性、加飾性の観点から、10個/m²以下が

好ましい。印刷抜けの個数を10個 $/m^2$ 以下とすることにより、このフィルムの積層成形品の外観がより良好となる。印刷を施した面における印刷抜けの個数は、5個 $/m^2$ 以下がより好ましく、1個 $/m^2$ 以下が特に好ましい。

また、基材となるプラスティックの色調を活かし、透明な塗装の代替として用いる場合には、透明なまま使用することができる。特に、このような基材の色調を活かす用途には、アクリル樹脂フィルム状物(A)、アクリル樹脂積層フィルム、及び、光硬化性アクリル樹脂フィルム又はシートからなる群より選ばれる1つは、塩化ビニルやポリエステル樹脂フィルムに比べ、透明性、深み感や高級感の点で優れている。

本発明の、アクリル樹脂フィルム状物(A)、アクリル樹脂積層フィルム、及び、光硬化性アクリル樹脂フィルム又はシートからなる群より選ばれる1つに、 着色加工したものを用いることができる。

本発明の、アクリル樹脂フィルム状物(A)、アクリル樹脂積層フィルム、及び、光硬化性アクリル樹脂フィルム又はシートからなる群より選ばれる1つには、必要に応じて接着層(D)を設けることができる。

接着層(D)には、加飾層(B)と後述する熱可塑性樹脂層(C)との密着性、あるいは加飾層(B)と後述する基材(E)との密着性を高める性質のものであれば、任意の合成樹脂状材料を選択して用いることができる。例えば、熱可塑性樹脂層(C)がポリアクリル系樹脂の場合は、ポリアクリル系樹脂を用いるとよい。また、熱可塑性樹脂層(C)がABS系樹脂(アクリロニトリルーブタジエンースチレン樹脂)、AS樹脂(アクリロニトリルースチレン樹脂)、塩化ビニル樹脂、ポリフェニレンオキシド・ポリスチレン系樹脂、ポリカーボネート系樹脂、スチレン共重合体系樹脂、ポリスチレン系ブレンド樹脂の場合は、これらの樹脂と親和性のあるポリアクリル系樹脂、ポリスチレン系樹脂、ポリアミド系樹脂、ABS系樹脂、塩化ビニル樹脂等を使用すればよい。さらに、熱可塑性樹脂層(C)がポリプロピレン系樹脂等のポリオレフィン系樹脂である場合には、塩素化ポリオレフィン樹脂、塩素化エチレンー酢酸ビニル共重合体樹脂、環化ゴム、クマロンインデン樹脂、ブロックイソシアネートを用いた熱硬化型ウレタン樹脂等が使用可能である。なお、接着層の粘着性低減や耐熱性向上の目的に、疎

水性シリカやエポキシ樹脂、石油樹脂等をさらに含有させることもできる。

また、本発明の、アクリル樹脂フィルム状物(A)、アクリル樹脂積層フィルム、及び、光硬化性アクリル樹脂フィルム又はシートからなる群より選ばれる1つの上に、さらにカバーフィルムを設けることもできる。このカバーフィルムは、アクリル樹脂フィルム状物(A)、アクリル樹脂積層フィルム、及び、光硬化性アクリル樹脂フィルム又はシートからなる群より選ばれる1つの表面の防塵に有効であり、また活性エネルギー線照射前の光硬化性樹脂組成物(Z)層表面の傷つき防止にも有効である。

上記カバーフィルムを光硬化性アクリル樹脂フィルム又はシートに用いる場合は、インサート成形する前まで光硬化性樹脂組成物(Z)層に密着し、インサート成形する際は直ちに剥離するので、光硬化性樹脂組成物(Z)層に対して適度な密着性と良好な離型性を有していることが必要である。このような条件を満たしたフィルムで有れば、任意のフィルムを選択して用いることができる。そのようなフィルムとしては、例えば、ポリエチレン系フィルム、ポリプロピレン系フィルム、ポリエステル系フィルム等が挙げられる。

<積層フィルムまたはシート、及び、積層成型品>

本発明では、本発明の、アクリル樹脂フィルム状物(A)、アクリル樹脂積層フィルム、及び、光硬化性アクリル樹脂フィルム又はシートからなる群より選ばれる1つを、基材(E)に積層した積層成形品とすることができる。あるいは、本発明の、アクリル樹脂フィルム状物(A)、アクリル樹脂積層フィルム、及び、光硬化性アクリル樹脂フィルム又はシートからなる群より選ばれる1つと、熱可塑性樹脂層(C)とを有する積層フィルムまたはシートを、基材(E)に積層した積層成形品とすることもできる。例えば、真空成形または圧空成形等の予備成形を施し、予備成形品を別の金型内に挿入した後、基材である樹脂を射出成形しアクリル積層成形品を得るインサート成形法の場合は、積層フィルムまたはシートを用いることが好ましい。

本発明の積層フィルムまたはシートは、本発明の、アクリル樹脂フィルム状物 (A)、アクリル樹脂積層フィルム、及び、光硬化性アクリル樹脂フィルム又はシートからなる群より選ばれる1つと、熱可塑性樹脂層 (C) とを有する。建材

用積層フィルムまたはシートとすることが好ましい。衝撃や変形等の外力に対して取り扱い上十分な強度を発現させる。例えば、インサート成形などでフィルムを真空成形した後に金型から取り外したり、その真空成形品を射出成形用金型に装着したりするときにこうむる衝撃や変形に対しても、割れ等が生じ難く、取り扱い性が良好となる。或いは基材(E)との密着性を高める等の目的で熱可塑性樹脂層(C)を用いることもできる。さらに熱可塑性樹脂層(C)を用いることにより、例えば射出成形品の表面欠陥が、アクリル樹脂フィルム状物(A)、アクリル樹脂積層フィルム、及び、光硬化性アクリル樹脂フィルム又はシートからなる群より選ばれる1つに伝搬されるのを最少にする、或いは基材(E)を射出成形する際に、加飾層(B)が消失しにくくなるといった利点を与える。

なお、熱可塑性樹脂層(C)は、基材(E)との密着性を高める目的から、基 材(E) と相溶性の材料からなるのが良い。現実的には、熱可塑性樹脂層(C) は、基材(E)と同じポリマー材料からなるのが好ましく、公知の熱可塑性樹脂 フィルムまたはシート用いることができる。例えば、アクリル樹脂、ABS樹脂 (アクリロニトリルーブタジエンースチレン樹脂)、 AS樹脂 (アクリロニトリ ルースチレン樹脂)、塩化ビニル樹脂、ポリエチレン、ポリプロピレン、ポリブ テン、ポリメチルペンテン等のポリオレフィン系樹脂、エチレンー酢酸ビニル共 重合体またはその鹸化物、エチレンー (メタ) アクリル酸エステル共重合体等の ポリオレフィン系共重合体、ポリエチレンテレフタレート、ポリブチレンテレフ タレート、ポリエチレンナフタレート、ポリアリレート、ポリカーボネート等の ポリエステル系樹脂、6ーナイロン、6,6ーナイロン、6,10ーナイロン、 12ーナイロン等のポリアミド系樹脂、ポリスチレン樹脂、セルロースアセテー ト、ニトロセルロース等の繊維素誘導体、ポリフッ化ビニル、ポリフッ化ビニリ デン、ポリテトラフロロエチレン、エチレンーテトラフロロエチレン共重合体等 のフッ素系樹脂等、またはこれらから選ばれる2種、または3種以上の共重合体 や混合物、複合体、積層体等が挙げられる。熱可塑性樹脂層(C)としては、中 でも、加飾層(B)の形成性、積層フィルムまたはシートの二次成形性の観点か ら、アクリル樹脂、ABS樹脂、塩化ビニル樹脂、ポリオレフィン、ポリカーボ ネートが好ましい。

但し建材用途に用いる場合、塩素やフッ素等のハロゲン元素を含有しない樹脂、すなわち非ハロゲン系樹脂を使用することが好ましい。中でも、市場での価格や流通量・調達の容易性をはじめ、適度な柔軟性と強度のバランスや、折り曲げや切断・切削等の加工適性、耐磨耗性や耐溶剤性等の表面物性、耐候性等の各種の側面から見て、ポリオレフィン系樹脂、アクリル系樹脂、及びポリエステル系樹脂から選ばれる熱可塑性樹脂を使用することが好ましい。

熱可塑性樹脂層(C)には、必要に応じて、一般の配合剤、例えば、安定剤、酸化防止剤、滑剤、加工助剤、可塑剤、耐衝撃剤、発泡剤、充填剤、抗菌剤、防力ビ剤、離型剤、帯電防止剤、着色剤、紫外線吸収剤、光安定剤、熱安定剤、難燃剤等を含むことができる。

酸化防止剤としては、例えば、フェノール系、硫黄系、リン系等、紫外線吸収剤としては、例えば、ベンゾフェノン系、ベンゾトリアゾール系、サリシレート系、シアノアクリレート系、ホルムアミジン系、オキザニリド系、トリアジン系等、光安定剤としては、例えば、ヒンダードアミン系、ニッケル錯体系等、熱安定剤としては、例えば、ヒンダードフェノール系、硫黄系、ヒドラジン系等、可塑剤としては、樹脂の種類にもよるが、例えば、フタル酸エステル系、リン酸エステル系、脂肪酸エステル系、脂肪酸エステル系、脂肪酸エステル系、脂肪酸アミド系、高級アルコール系、パラフィン系等、帯電防止剤としては、例えば、カチオン系、アニオン系、アルスン系等、帯電防止剤としては、例えば、臭素系、リン系、塩素系、窒素系、アルミニウム系、アンチモン系、マグネシウム系、ホウ素系、ジルコニウム系等、充填剤としては、例えば、炭酸カルシウム、硫酸バリウム、滑石、蝋石、カオリン等から選ばれる1種または2種以上の混合系で使用される。

上記配合剤の添加方法としては、熱可塑性樹脂層(C)を形成するための押出機に熱可塑性樹脂とともに供給する方法と、予め熱可塑性樹脂に配合剤を添加した混合物を各種混練機にて混練混合する方法がある。後者の方法に使用する混練機としては、通常の単軸押出機、二軸押出機、バンバリミキサー、ロール混練機等が挙げられる。

本発明のような積層フィルムまたはシートには、一般に被貼着基材の表面の色彩や欠陥に対する隠蔽性が必要とされる場合が多い。そこで、目的の積層フィルムまたはシートに十分な隠蔽性を持たせるために、熱可塑性樹脂層(C)を構成する熱可塑性樹脂に隠蔽性顔料を添加することにより、熱可塑性樹脂層(C)を隠蔽性とすることもできる。また、熱可塑性樹脂層(C)を隠蔽性とする代わりに、熱可塑性樹脂層(C)の表面または裏面に、隠蔽性顔料を含有する印刷インキ組成物による隠蔽ベタ印刷層を設けても良いし、両者を併用することも可能である。

上記隠蔽性顔料としては、高屈折率で隠蔽性に優れた無機顔料を使用することが望ましい。具体的には、例えば黄鉛、黄色酸化鉄、カドミウムイエロー、チタンイエロー、バリウムイエロー、キナクリドン、オーレオリン、モリブデートオレンジ、カドミウムレッド、弁柄、鉛丹、辰砂、マルスバイオレット、マンガンバイオレット、コバルトブルー、セルリアンブルー、群青、紺青、エメラルドグリーン、クロムバーミリオン、酸化クロム、ビリジアン、鉄黒、カーボンブラック等の有機顔料や、例えば酸化チタン(チタン白、チタニウムホワイト)、酸化亜鉛(亜鉛華)、塩基性炭酸鉛、硫化亜鉛、リトポン、チタノックス等の白色顔料等を使用することができる。

本発明の熱可塑性樹脂層 (C) は、同種又は異種の熱可塑性樹脂からなる複数層の積層体によって構成されていても良い。

熱可塑性樹脂層(C)をあらかじめフィルムまたはシートとして用いる場合の製造方法としては、ポリッシングロールを介した溶融押出法やカレンダー法が好ましい。なお、溶融押出時に、200メッシュ以上のスクリーンメッシュで異物を除去しながら、溶融状態にある樹脂を押し出すことが好ましい。この際、金属ロール、非金属ロール及び金属ベルトから選ばれる複数のロール又はベルトに狭持して製膜する方法を用いれば、得られる熱可塑性樹脂層(C)であるフィルムまたはシートの表面平滑性を向上させることができ好ましい。このようにすることにより、印刷抜け等の外観欠陥の原因となるフィッシュアイをより低減することができる。

熱可塑性樹脂層 (C) の厚みは、必要に応じて適宜決めればよいが、通常、2

 $0\sim500\mu$ m程度とすることが好ましい。熱可塑性樹脂層(C)の厚みは、アクリル樹脂フィルム状物(A)、アクリル樹脂積層フィルム、及び、光硬化性アクリル樹脂フィルム又はシートからなる群より選ばれる1つの外観が完全に円滑な上面を呈する、基材(E)の表面欠陥を吸収する、或いは射出成形時に加飾層(B)が消失しない、程度の厚みを有することが必要である。

積層フィルムまたはシートを得るためには、(1)アクリル樹脂フィルム状物(A)、アクリル樹脂積層フィルム、及び、光硬化性アクリル樹脂フィルム又はシートからなる群より選ばれる1つと、熱可塑性樹脂層(C)であるフィルムまたはシートと、を熱ラミネーション、ドライラミネーション、ウェットラミネーション、ホットメルトラミネーション等の公知の方法により行うことができる。

また、押出しラミネーションにより積層することもできる。具体的には、(2)熱可塑性樹脂層(C)であるフィルムまたはシート上に、アクリル樹脂フィルム状物(A)又はアクリル樹脂積層フィルムをTダイ等でフィルムまたはシート状に溶融押出しながらラミネーションする方法、(3)アクリル樹脂フィルム状物(A)、アクリル樹脂積層フィルム、及び、光硬化性アクリル樹脂フィルム又はシートからなる群より選ばれる1つ上に、熱可塑性樹脂層(C)をTダイ等でフィルムまたはシート状に溶融押出しながらラミネーションする方法等が挙げられる。

さらに、(4) アクリル樹脂フィルム状物(A) と熱可塑性樹脂層(C) を溶融押出しながら同時に積層する方法がある。具体的には、フィードブロック法や多数マニホールド法などでダイ内で接着する方法や、一つのダイに複数のダイリップを設けダイ外で接着する方法等の共押出成形による積層方法があげられる。

また、アクリル樹脂積層フィルムと熱可塑性樹脂層(C)とを有する積層フィルムまたはシートを得る方法としては、アクリル樹脂フィルム状物(A)と、他のアクリル樹脂フィルム状物(A')またはフッ素系樹脂フィルム状物(A'))と、熱可塑性樹脂層(C)を溶融押出しながら同時に積層する方法がある。具体的には、フィードプロック法や多数マニホールド法などでダイ内で接着する方法や、一つのダイに複数のダイリップを設けダイ外で接着する方法等の共押出成形による積層方法があげられる。

アクリル樹脂フィルム状物(A)、アクリル樹脂積層フィルム、及び、光硬化性アクリル樹脂フィルム又はシートからなる群より選ばれる1つと、熱可塑性樹脂層(C)との間には、前述した加飾層(B)及び/又は着色層(F)を設けることができる。

前述の、(1) あらかじめ、アクリル樹脂フィルム状物(A)、アクリル樹脂 積層フィルム、及び、光硬化性アクリル樹脂フィルム又はシートからなる群より 選ばれる1つ、および熱可塑性樹脂層(C)を成形する場合には、どちらかのフィルムまたはシート上に加飾層(B)を形成させることができる。この場合、フィルムまたはシートの片側に加飾層(B)を形成させたものを用いることが好ましく、積層フィルムおよびシート化時には加飾層(B)面を非表面に配することが加飾層(B)の保護や高級感の付与の点から好ましい。

前述の、(2)熱可塑性樹脂層(C)をあらかじめフィルムまたはシート状に成形した後に積層する方法においては、加飾層(B)を熱可塑性樹脂層(C)上に形成させた後に、加飾層(B)側を、アクリル樹脂フィルム状物(A)、アクリル樹脂積層フィルム、及び、光硬化性アクリル樹脂フィルム又はシートからなる群より選ばれる1つに対面させて積層する。

前述の、(3) あらかじめ、アクリル樹脂フィルム状物(A)、アクリル樹脂 積層フィルム、及び、光硬化性アクリル樹脂フィルム又はシートからなる群より 選ばれる1つを成形した後に積層する方法においては、加飾層(B)を、アクリ ル樹脂フィルム状物(A)、アクリル樹脂積層フィルム、及び、光硬化性アクリ ル樹脂フィルム又はシートからなる群より選ばれる1つの上に形成させた後に、 加飾層(B)側を熱可塑性樹脂層(C)に対面させて積層する。

なお、必要に応じてアクリル樹脂フィルム状物(A)、熱可塑性樹脂層(C)等の片面に例えばコロナ処理、オゾン処理、プラズマ処理、電離放射線処理、重クロム酸処理、アンカー、プライマー処理等の表面処理を施すことができる。熱可塑性樹脂層(C)と加飾層(B)との間、アクリル樹脂フィルム状物(A)と熱可塑性樹脂層(C)との間等の密着性を向上することもできる。

着色層(F)を設ける位置は、特に限定はされないが、アクリル樹脂フィルム 状物(A)、アクリル樹脂積層フィルム、及び、光硬化性アクリル樹脂フィルム

又はシートからなる群より選ばれる1つと、加飾層(B)との間など、加飾層(B)と接する位置に設けることが好ましい。

透明な着色層(F)を、アクリル樹脂フィルム状物(A)、アクリル樹脂積層フィルム、及び、光硬化性アクリル樹脂フィルム又はシートからなる群より選ばれる1つと、加飾層(B)との間に設けることにより、同一の加飾層(B)で種々の色調を有する外観とすることができる。

例えば、印刷法により加飾層(B)を設ける場合など、印刷工程上で版やインキ等を変更することなく、色調の異なる意匠の積層フィルムまたはシートを容易に得ることができる。特に加飾層(B)として金属調の印刷層や金属層を用いた場合、透明な着色層(F)を設けることにより、シルバーメタリック、ゴールドメタリック、ブルーメタリック等の種々の色相を有するメタリック外観とすることができるので好ましい。

着色層(F)を加飾層(B)と熱可塑性樹脂層(C)との間に設けることにより、同一の加飾層(B)で種々の色調の背景色を有する外観とすることができる

例えば、印刷法により加飾層(B)を設ける場合など、背景色は着色層(F)の色を利用し、背景色以外の図柄のみを印刷するようにすることで、印刷工程上で版やインキ等を変更することなく、色調の異なる意匠の積層フィルムまたはシートを容易に得ることができる。特に加飾層(B)として透過性の金属調加飾層を用いた場合、着色層(F)を設けることにより、シルバーメタリック、ゴールドメタリック、ブルーメタリック等の種々の色相を有するメタリック外観とすることができるので好ましい。

また、必要に応じて接着層(D)を設けることができる。例えば、着色層(F)または加飾層(B)と熱可塑性樹脂層(C)との間、基材(E)と接する側の熱可塑性樹脂層(C)面に設けることができる。

本発明の積層成形品は、本発明の、アクリル樹脂フィルム状物(A)、アクリル樹脂積層フィルム、光硬化性アクリル樹脂フィルム又はシート、及び、積層フィルムまたはシートからなる群より選ばれる1つを溶融接着等により基材(E)に積層したことを特徴とするものである。

基材(E)となる樹脂は、種類は問わず、公知の全ての樹脂が使用可能である 。そのような樹脂としては、例えば、ポリエチレン系樹脂、ポリプロピレン系樹 脂、ポリブテン系樹脂、ポリメチルペンテン系樹脂、エチレンープロピレン共重 合体樹脂、エチレンープロピレンーブテン共重合体樹脂、オレフィン系熱可塑性 エラストマー等のオレフィン系樹脂、ポリスチレン系樹脂、ABS (アクリロニ トリル/ブタジエン/スチレン系共重合体)系樹脂、AS(アクリロニトリル/ スチレン系共重合体)系樹脂、アクリル系樹脂、ウレタン系樹脂、不飽和ポリエ ステル系樹脂、エポキシ系樹脂等の汎用の熱可塑性または熱硬化性樹脂を挙げる ことができる。また、ポリフェニレンオキシド・ポリスチレン系樹脂、ポリカー ボネート系樹脂、ポリアセタール系樹脂、ポリカーボネート変性ポリフェニレン エーテル系樹脂、ポリエチレンテレフタレート系樹脂等の汎用エンジニアリング 樹脂やポリスルホン系樹脂、ポリフェニレンサルファイド系樹脂、ポリフェニレ ンオキシド系樹脂、ポリエーテルイミド系樹脂、ポリイミド系樹脂、液晶ポリエ ステル系樹脂、ポリアリル系耐熱樹脂等のスーパーエンジニアリング樹脂を使用 することもできる。さらに、ガラス繊維や無機フィラー(タルク、炭酸カルシウ ム、シリカ、マイカ等)等の補強材、ゴム成分等の改質剤を添加した複合樹脂や 各種変性樹脂を使用することができる。

これらの中でも、アクリル樹脂フィルム状物(A)、アクリル樹脂積層フィルム、及び、光硬化性アクリル樹脂フィルム又はシートからなる群より選ばれる1つと、或いは、積層フィルムまたはシートの場合は熱可塑性樹脂層(C)と溶融接着可能なものであることが好ましい。例えば、ABS樹脂、AS樹脂、ポリスチレン樹脂、ポリカーボネート樹脂、塩化ビニル樹脂、アクリル樹脂、ポリエステル系樹脂、あるいはこれらを主成分とする樹脂が挙げられる。接着性の点でABS樹脂、AS樹脂、ポリカーボネート樹脂、塩化ビニル樹脂、あるいはこれらを主成分とする樹脂が好ましく、特にABS樹脂、ポリカーボネート樹脂あるいはこれらを主成分とする樹脂がより好ましい。

ただし、ポリオレフィン樹脂等の熱融着しない基材樹脂でも接着層(D)を用いることで、アクリル樹脂フィルム状物(A)、アクリル樹脂積層フィルム、光硬化性アクリル樹脂フィルム又はシート、及び、積層フィルムまたはシートから

なる群より選ばれる1つと基材(E)とを成形時に接着させることは可能である。

本発明の積層成形品は、二次元形状の積層体に成形する場合、熱融着できる基材に対しては、熱ラミネーション等の公知の方法を用いることができる。例えば、木材単板、木材合板、パーティクルボード、中密度繊維板(MDF)等の木材板、木質繊維板等の水質板、鉄、アルミニウム等の金属熱融着しない基材 (E)に対しては、接着層 (D)を介して貼り合せることは可能である。

三次元形状の積層体に成形する場合は、インサート成形法やインモールド成形 法等の公知の方法を用いることができ、生産性の点からインモールド成形法が好 ましい。

インモールド成形法は、アクリル樹脂フィルム状物(A)、アクリル樹脂積層フィルム、光硬化性アクリル樹脂フィルム又はシート、及び、積層フィルムまたはシートからなる群より選ばれる1つを加熱した後、真空引き機能を持つ型内で真空成形を行う。この方法は、フィルムの成形と射出成形を一工程で行えるため、作業性、経済性の点から好ましい。

なお、加飾層(B)を有する公知のアクリル樹脂フィルム状物を用いてインモールド成形を行った場合、金型の形状、射出成形の条件によっては、ゲート付近の加飾層が消失することがある。ゲートは大別してゲート部で樹脂流路が狭められない非制限ゲートと流路が狭められる制限ゲートに大別される。後者の代表例としてピンポイントゲート、サイドゲート、サブマリンゲートなどがある。これらのゲート形状はゲート付近の残留応力は小さくなるものの、ゲート通過樹脂の温度上昇をともなったり、ゲート付近のアクリル樹脂フィルム状物面にかかる単位面積あたりの射出樹脂圧力は大きくなるために加飾層(B)が消失しやすい。しかし、本発明のアクリル樹脂フィルム状物(A)を用いると、従来から知られているアクリル樹脂フィルム状物を用いた場合と比較して、加飾層(B)の消失を軽減することができる。

なお、熱可塑性樹脂層(C)を有する積層フィルムまたはシートを用いてインモールド成形またはインサート成形を行う場合は、熱可塑性樹脂層(C)が存在するために加飾層(B)の消失をより軽減することができる点で好ましい。

インモールド成形時の加熱温度は、アクリル樹脂フィルム状物(A)、アクリル樹脂積層フィルム、光硬化性アクリル樹脂フィルム又はシート、及び、積層フィルムまたはシートからなる群より選ばれる1つが軟化する温度以上が望ましい。具体的にはフィルムの熱的性質あるいは成形品の形状に左右されるが、通常70℃以上である。また、あまり温度が高いと、表面外観が悪化したり、離型性が悪くなる傾向にある。これもフィルムの熱的性質あるいは成形品の形状に左右されるが、通常は170℃以下が好ましい。さらに、エネルギー効率の観点からは、真空成形時の予備加熱温度は低い方が好ましい。具体的には135℃以下が好ましい。また、予備加熱温度が低くとも成形ができるフィルムは、予備加熱温度を低くする代わりに予備加熱時間を短くすることもできる。この場合は、真空成形のハイサイクル化が可能となり、工業的利用価値が高い。

このように、真空成形によりフィルムに三次元形状を付与する場合、アクリル樹脂フィルム状物 (A)、アクリル樹脂積層フィルム、光硬化性アクリル樹脂フィルム又はシート、及び、積層フィルムまたはシートからなる群より選ばれる1つは高温時の伸度に富んでおり、非常に有利である。

なお、金属ロール、非金属ロール及び金属ベルトから選ばれる複数のロール又はベルトに狭持して製膜したアクリル樹脂フィルム状物(A)を用い、かつメタリック調などの輝度が高い加飾層(B)を有するアクリル樹脂フィルム状物(A)を使用して真空成形を実施した場合に、アクリル樹脂フィルム状物(A)中のフィッシュアイが原因で外観不良が発生する場合がある。ここで言う外観不良とは印刷抜けとは異なり、真空成形品の表面が凹んだかのように見える欠陥である。この場合、熱可塑性樹脂層(C)を有する積層フィルムまたはシートとすることで、このような外観不良の発生を低減することができるため好ましい。

射出成形する基材(E)としては、種類は問わず、射出成形可能な全ての樹脂が使用可能である。なお、成形樹脂の成形後の収縮率を前記フィルム又はシートの収縮率に近似させることで、インサート成形品の反りやフィルム又はシートの剥がれ等の不具合を解消できるので好ましい。

本発明の積層フィルムまたはシートを建材用途に用いる場合、インサート成形 法やインモールド成形法以外で、積層フィルムまたはシートをラミネートする方

法としてはラッピング加工、Vカット加工等が挙げられる。

ラッピング加工は、円柱、多角柱等の柱状基材の長軸方向に、積層フィルムまたはシートを間に接着層(D)を介して供給しつつ、多数の向きの異なるローラーにより、柱状体を構成する複数の側面に順次、積層フィルムまたはシートを加圧接着することにより積層成形品を得る方法である。

Vカット加工は、先ず積層フィルムまたはシートを板状基材に接着層(D)を介して積層し、次いで板状基材の積層フィルムまたはシートとは反対側の面に、積層フィルムまたはシートと板状基材との界面に到達するように、断面がV字状、またはU字状溝を切削し、次いで溝内に接着剤を塗布した上で、溝を折り曲げ、箱体または柱状体の積層成形品を得る方法である。

本発明のアクリル樹脂フィルム状物(A)を含む積層フィルムまたはシートを用いるとラッピング加工やVカット加工の際にアクリルフィルムが白化する現象を軽減できる。

本発明の光硬化性アクリル樹脂フィルムまたはシートを用いて得られた積層成形品の場合、光照射することにより積層成形品表面の光硬化性樹脂組成物を光硬化させる。照射する光としては、電子線、紫外線、 γ 線等を挙げることができる。照射条件は、光硬化性樹脂組成物(Z)層の光硬化特性に応じて定められるが、照射量は、通常 $500\sim10$, $000\,\mathrm{m}\,\mathrm{J/c}\,\mathrm{m}^2$ 程度である。これによって、光硬化性樹脂組成物(Z)が硬化して硬質の被膜が表面に形成された積層成形品を得ることができる。

本発明の、アクリル樹脂フィルム状物(A)、アクリル樹脂積層フィルム、光硬化性アクリル樹脂フィルム又はシート、積層フィルムまたはシート、及び、積層成型品からなる群より選ばれる1つの表面には、必要に応じて各種機能付与のための表面処理を表面に施すことができる。機能付与のための表面処理としては、シルク印刷、インクジェットプリント等の印刷処理、金属調付与、あるいは反射防止のための金属蒸着、スパッタリング、湿式メッキ処理、表面硬度向上のための表面硬化処理、汚れ防止のための撥水化処理、あるいは光触媒層形成処理、塵付着防止、あるいは電磁波カットを目的とした帯電防止処理、反射防止層形成、防眩処理等が挙げられる。

本発明の、アクリル樹脂フィルム状物(A)、アクリル樹脂積層フィルム、光 硬化性アクリル樹脂フィルム又はシート、及び、積層フィルムまたはシートから なる群より選ばれる1つを積層した積層成形品は、特に、車輌用途、建材用途に 適している。具体例としては、インストルメントパネル、コンソールボックス、 メーターカバー、ドアロックペゼル、ステアリングホイール、パワーウィンドウ スイッチベース、センタークラスター、ダッシュボード等の自動車内装用途、ウ エザーストリップ、バンパー、バンパーガード、サイドマッドガード、ボディー パネル、スポイラー、フロントグリル、ストラットマウント、ホイールキャップ 、センターピラー、ドアミラー、センターオーナメント、サイドモール、ドアモ ール、ウインドモール等、窓、ヘッドランプカバー、テールランプカバー、風防 部品等の自動車外装用途、AV機器や家具製品のフロントパネル、ボタン、エン ブレム、表面化粧材等の用途、携帯電話等のハウジング、表示窓、ボタン等の用 途、さらには家具用外装材用途、壁面、天井、床等の建築用内装材用途、サイデ イング等の外壁、塀、屋根、門扉、破風板等の建築用外装材用途、窓枠、扉、手 すり、敷居、鴨居等の家具類の表面化粧材用途、各種ディスプレイ、レンズ、ミ ラー、ゴーグル、窓ガラス等の光学部材用途、あるいは電車、航空機、船舶等の 自動車以外の各種乗り物の内外装用途、瓶、化粧品容器、小物入れ等の各種包装 容器および材料、景品や小物等の雑貨等のその他各種用途等に好適に使用するこ とができる。

本発明の、アクリル樹脂フィルム状物(A)、アクリル樹脂積層フィルム、光硬化性アクリル樹脂フィルム又はシート、及び、積層フィルムまたはシートからなる群より選ばれる1つは、耐成形白化性、表面硬度および耐熱性、透明性または艶消し性の性能を満足させたものであり、従来の使用用途を飛躍的に広げることが可能である。特に、インサート成形およびインモールド成形を施した際の耐成形白化性に優れており、本発明のアクリル樹脂フィルム状物(A)を用いることにより、打ち抜き加工のかわりに手作業ではみ出したフィルムを取り除く、デザイン上の制約がある、白化した部分を再加熱して白味を取り除く作業工程が必要でなくなる、ために工業的利用価値が極めて高い。

実施例

以下、実施例により本発明をさらに詳細に説明するが、本発明は実施例により限定されるものではない。なお、実施例中の「部」とあるのは「質量部」を表し、「%」は「質量%」を表す。また、実施例中の略号は以下の通りである。

1	
メチルメタクリレート	MMA
メチルアクリレート	MA,
nープチルアクリレート	n-BA
スチレン	St,
1, 3ーブチレングリコールジメタクリレート	1, 3-BD
アリルメタクリレート	AMA,
クメンハイドロパーオキサイド	CHP,
t ープチルハイドロパーオキサイド	t-BH
t ーヘキシルハイドロパーオキサイド	t-HH,
nーオクチルメルカプタン	n-OM
エチレンジアミン四酢酸二ナトリウム	EDTA,
メタクリル酸2-ヒドロキシエチル	HEMA,
ラウロイルパーオキサイド	LPO.

[物性の測定、評価方法]

なお、積層成形品の評価は、耐成形白化性の評価用に作製した積層成形品で行った。ただし、実施例24~27、並びに、比較例13及び14での評価については、本文中に記載した方法で作製した積層成形品で実施した。

(1) 多層構造重合体 (I) の重量平均粒子径

乳化重合にて得られた多層構造重合体(I)のポリマーラテックスを、大塚電子(株)製の光散乱光度計DLS-700(商品名)を用い、動的光散乱法で測

定した。

(2)多層構造重合体(I)、樹脂組成物(III)および樹脂組成物(IV)のゲル含有率

所定量(抽出前質量)の多層構造重合体(I)(重合後、得られた凝固粉)、 樹脂組成物(I I I I)(押出後、得られたペレット状物)または樹脂組成物(I V)(押出後、得られたペレット状物)をアセトン溶媒中、還流下で抽出処理し 、この処理液を遠心分離により分別して、アセトン不溶分を乾燥した後、質量を 測定し(抽出後質量)、以下の式にて算出した:

ゲル含有率(%)=抽出後質量(g)/抽出前質量(g)×100。

(3) 多層構造重合体(I) および水酸基を含有する重合体(V) のガラス転移温度(Tg)

ポリマーハンドブック [Polymer HandBook (J. Brandrup, Interscience, 1989)] に記載されている値を用いてFOXの式から算出した。

(4) 熱可塑性重合体(II)の還元粘度、水酸基を含有する重合体(V)の 固有粘度および熱可塑性重合体(VII)の還元粘度

重合体 0. 1gをクロロホルム 100m L に溶解し、25℃で測定した。

(5) アクリル樹脂フィルム状物 (A) の引張試験前後の曇価の値、及びインサート積層成形品の曇価の値

アクリル樹脂フィルム状物(A)の引張試験は、巾 $20\,\mathrm{mm}$ 、膜厚 $1\,25\,\mu\,\mathrm{m}$ の試験片を使用し、東洋精機製作所社製、ストログラフT(商品名)を用いて、初期のチャック間距離 $25\,\mathrm{mm}$ 、速度 $50\,\mathrm{mm/min}$ 、温度 $2\,3\,\mathrm{C}$ 、終点のチャック間距離 $33\,\mathrm{mm}$ となる条件 $a\,\mathrm{c}$ 、または、初期のチャック間距離 $25\,\mathrm{mm}$ 、速度 $300\,\mathrm{mm/min}$ 、温度 $15\,\mathrm{C}$ 、終点のチャック間距離 $33\,\mathrm{mm}$ となる条件 $b\,\mathrm{c}$ 、JIS K7127の試験方法に従って行った。

曇価の値は、上記引張試験前の試験片と引張試験後の試験片とについて、JIS K7136の試験方法に従って測定した。また、曇価の値が40%を越えるアクリル樹脂フィルム状物(A)に関しても、同様の試験方法で実施した。

また、実施例24~27、並びに、比較例13及び14中に記載のインサート

成形品についても、JIS K7136の試験方法に従って測定した。

(6) アクリル樹脂フィルム状物 (A) の表面光沢

グロスメーター (ムラカミカラーリサーチラボラトリー製、GM-26D型 (商品名)) を用い、製膜の際に鏡面ロールに接していない方の面の60°での表面光沢を測定した。

(7) アクリル樹脂フィルム状物 (A) のHDT (熱変形温度)

樹脂組成物のペレットを、射出成形にて、ASTM D648に基づく熱変形温度測定試片に成形し、60Cで4時間アニールした。そして、この試験片を使用し、低荷重(0.45MPa)で、ASTM D648に従って測定した。

(8) アクリル樹脂フィルム状物(A)、アクリル樹脂積層フィルム、及び、 光硬化性アクリル樹脂フィルムの耐成形白化性、インモールド成形時のゲート付 近印刷状態

得られた、アクリル樹脂フィルム状物(A)又はアクリル樹脂積層フィルム又は光硬化性アクリル樹脂フィルム又はシートに、グラビア印刷で木目調および漆 黒調の加飾層(B)を形成した。

真空引き機能を有し、キャビティー側の金型の底に1 c m ²四方で深さ1 m m の凹み(中央のゲートから横方向に3 c m の位置)がある金型を用い、J85 E L I I 型射出成形機(日本製鋼所社製、商品名)およびホットパックシステム(日本写真印刷社製、商品名)を組み合わせたインモールド成形装置により、インモールド成形を行った。

詳細な成形品形状は、縦150mm×横120mm×厚み2mm、深さ10mmの箱型であり、金型のゲート位置は、成形品中央に1箇所と、中央ゲートの上下(成形品縦方向)40mmの位置に各1箇所の計3箇所であり、ゲート形状は、直径1mmのピンポイントゲートである。

なお、加飾層(B)を有するフィルムの真空成形は、ヒーター温度 260 \mathbb{C} 、加熱時間 15 秒、ヒーターとフィルムとの距離 15 mmの条件で加熱を行い、非加飾層が金型と接する向きに真空成形を実施した。

また、引き続き同一金型内で実施する射出成形は、シリンダー温度250℃、 射出速度30%、射出圧力43%、金型温度60℃の条件で、加飾層側から基材

樹脂を射出した。なお、基材樹脂として耐熱性ABS樹脂(UMGABS社製、商品名「バルクサムTM25B」)を用いた。

得られた積層成形品の1 c m²四方凸部分の状態を観察し、以下のように評価した。また、ゲート付近の加飾層(B)である印刷の状態についても観察し、以下のように評価した。

(白化に関して)

〇:フィルム白化なし、

△:フィルム弱い白化あり、

×:フィルム強い白化あり、

*艶消しフィルム(実施例7~16、比較例4、5)を用いた場合

〇:フィルム白化なし、

×:フィルム白化あり、

(割れに関して)

〇:フィルム割れなし、

×:フィルム割れあり、

(ゲート付近の印刷状態に関して)

〇:印刷の消失なし、

×:印刷の消失あり。

(9) 積層フィルムの耐成形白化性

得られた積層フィルムを、アクリル樹脂フィルム状物(A)側がキャビティー側になるように、真空引き機能を持つ金型内に配置し、140℃で1分間加熱した後、真空成形を行い、不要部をトリミングした。キャビティー側の金型の底に1 c m²四方で深さ1 m m の 凹み(位置は、中央のゲートから横方向に3 c m の位置)がある金型に、真空成形した積層フィルムをアクリル樹脂フィルム状物側がキャビティー側になるように、金型の底に配置した。次に、積層フィルムの熱可塑性樹脂フィルム側に基材となるABS樹脂(UMG ABS社製、商品名「ダイヤペットABSバルクサムTM25」)を射出成形し、インサート成形により積層成形品を得た。

詳細な成形品形状は、縦150mm×横120mm×厚み2mm、深さ10m

mの箱型であり、金型のゲート位置は、成形品中央に1箇所と、中央ゲートの上下(成形品縦方向)40mmの位置に各1箇所の計3箇所であり、ゲート形状は、直径1mmのピンポイントゲートである。

射出成形は、日本製鋼所社製、J85ELII型射出成形機(商品名)を用い、シリンダー温度250℃、射出速度30%、射出圧力43%、金型温度60℃の条件で行った。

得られた積層成形品の1 c m ²四方凸部分の状態を観察し、(8)と同じ基準で評価した。

(10) 積層成形品の耐熱老化性試験

80℃で400時間加熱した時の成形品の外観を以下のように評価した。

〇:変化なし、

×:白化、曇りあり。

また、艶消しフィルム(実施例 $7\sim16$ 、比較例4、5)を用いた成形品については、100で400時間加熱した時の成形品の外観を以下のように評価した。

〇: 艶戻りなし、

×: 艶戻りあり。

(11) アクリル樹脂フィルムおよび積層成形品の鉛筆硬度

JIS K5400に従って測定した。

(12) 積層成形品、建材用積層フィルムの耐擦傷性

5枚重ねのガーゼ上に0.049MPaの荷重をかけ、ストローク100mm間を30往復/分の速さで200往復擦傷した時の積層成形品、積層フィルムの外観を以下のように評価した。

〇:傷つきなし、

△:傷つきあり、擦傷した部分に白化は見られない、

×:傷つきあり、擦傷した部分に白化も見られる。

また、艶消しフィルム(実施例 $7\sim16$ 、 $52\sim61$ 、比較例4、5、 $25\sim28$)を用いた積層成形品については、100往復擦傷した時の成形品の外観を以下のように評価した。

〇:傷つきなし、

 Δ :弱い傷つきあり、

×:強い傷つきあり。

(13) 積層成形品の耐芳香剤性

成形品の表面に内径38mm、高さ15mmのポリエチレン製円筒を置き、圧着器で試験片に強く密着させ、その開口部に自動車用芳香剤(ダイヤケミカル社製、商品名「グレイスメイトポピー柑橘系」)を5mL注入した。そして、開口部にガラス板で蓋をした後、55℃に保持した恒温槽に入れて4時間放置した。その後、圧着器を取り外し、試験片を水洗した後、風乾し、試験部の表面状態を観察し、以下のように評価した。

〇:変化なし、

×:結晶状物が析出した。

(14) 積層成形品の外観

成形品での木目柄印刷または漆黒柄印刷の見え方を目視により以下のように評価した。

〇:印刷が鮮明に見える、

△:極わずかに白味がかったように印刷が見える、

×:白味がかったように印刷が見える。

(15) 光硬化性アクリル樹脂フィルムの膜厚

透過型電子顕微鏡 J E M 1 O O S (日本電子株式会社製、商品名)を用いて、 光硬化性アクリル樹脂フィルムの断面観察を行い、光硬化性樹脂組成物 (Z) 層 とアクリル樹脂フィルム状物 (A) 層の膜厚を測定した。

(16) 光硬化性アクリル樹脂フィルムから得られる積層成形品の耐磨耗性テーバー磨耗試験(片側500g荷重、CS-10F(商品名)磨耗輪を用い、回転速度60rpm、試験回数100回および500回で試験を実施)後の曇価の値を測定した。そして(試験後の曇価の値)ー(試験前の曇価の値)で表される数値を耐磨耗性(%)として示した。

(17) インサート成形品の密着性

JIS K5400に準じて、碁盤目テープ法により評価した。

(18) 樹脂組成物 (III) の曲げ弾性率

東洋精機製作所社製ストログラフTを用い、支点間100mm、曲げ速度3mm/minの条件下でASTM D790の試験方法に従って行った。

各樹脂組成物(III)ペレットを、射出成形にてASTM D648に基づく熱変形温度測定試片に成形し、その試片を用いて測定した。

(19) 建材用積層フィルムの耐成形白化性

積層成形品を得るために行ったラッピング加工時の積層成形品表面の外観を示す。表示は以下のとおりである。

(白化に関して)

〇:フィルム白化なし、

△:フィルム弱い白化あり、

×:フィルム強い白化あり、

(割れに関して)

〇:フィルム割れなし、

×:フィルム割れあり。

(20) 建材用積層フィルムの耐艶戻り性

積層フィルムの表面温度が90℃の状態で24時間保持した後の積層フィルムの外観を示す。表示は以下のとおりである。

〇: 艶戻りなし、

×: 艶戻りあり。

(21) アクリル樹脂フィルム状物(A) の耐折り曲げ白化性(耐成形白化性の指標)

20 $^{\circ}$ $^{\circ}$ の雰囲気下で、 $125\,\mu$ $^{\circ}$ mの膜厚のアクリル樹脂フィルム状物(A)を比較的速い速度で、 $180\,^{\circ}$ 折り曲げたときの白化状態を示す。表示は以下のとおりである。

◎:白化が認められず、

〇:極僅かに白化する、

△:若干白化が確認できる、

×:白化する、

××:割れが生じる。

(22)アクリル樹脂フィルム状物 (A)の製膜性

Tダイ法にて、膜厚125μmのアクリル樹脂フィルム状物 (A) を製膜したときの状況を示す。表示は以下のとおりである。

〇:5時間以上フィルムが切れずに製膜可能であった、

△:5時間で数回のフィルム切断が発生した。

(23) アクリル樹脂フィルム状物 (A) の全光線透過率

JIS K6714に従って評価した。

(24) 積層成形品の耐艶戻り性

表面が艶消し状になった鋳型を用いて、 125μ mのアクリル樹脂フィルム状物(A)と厚み3mmの塩化ビニル板をプレス成形することにより得られた積層成形品を85%、15時間加熱したときの外観を示す。表示は以下のとおりである。

〇: 艶戻りなし、

×: 艶戻りあり。

(25) 積層成形品の耐整髪料性

積層成形品のアクリル樹脂層側表面に、整髪料としてブラバスへアリキッド(商品名;資生堂社製)を、 $105 cm^2$ あたり2gとなるように指で均一に塗布し、試験片よりやや小さめのネルを載せ、80でのオーブンに放置した。1週間後、取り出して水洗(少量の中性洗剤を用いても可)し風乾した後に、表面状態を目視で観察し、下記により、白化および凸凹の発生度を評価した。

(白化)

〇:白化が見られない、

×:一部に白化が見られる。

(凹凸)

〇:凹凸があまり見られない

×:一面に凹凸が見られる。

<1. 多層構造重合体(I-1)の製造>

攪拌機を備えた容器に脱イオン水10.8部を仕込んだ後、MMA0.3部、

n-BA4.5部、1,3-BD0.2部、AMA0.05部およびCHP0.025部からなる単量体成分を投入し、室温下にて攪拌混合した。次いで、攪拌しながら、乳化剤(東邦化学工業社製、商品名「フォスファノールRS610NA」)1.3部を上記容器内に投入し、攪拌を20分間継続して乳化液を調製した。

次に、冷却器付き重合容器内に脱イオン水139. 2部を投入し、75℃に昇温した。さらに、イオン交換水5部にソジウムホルムアルデヒドスルホキシレート0. 20部、硫酸第一鉄0. 0001部およびEDTA0. 0003部を加えて調製した混合物を重合容器内に一度に投入した。次いで、窒素下で攪拌しながら、調製した乳化液を8分間にわたって重合容器に滴下した後、15分間反応を継続させ、最内層重合体内側層($I-1-A_1$)の重合を完結した。続いて、MMA9. 6部、n-BA14. 4部、1,3-BD1. 0部およびAMA0. 25部からなる単量体成分を、CHP0. 016部と共に、90分間にわたって重合容器に滴下した後、60分間反応を継続させ、最内層重合体外側層($I-1-A_2$)を含む最内層重合体(I-1-A)を得た。なお、最内層重合体内側層($I-1-A_2$)を含む最内層重合体($I-1-A_3$)単独のTgはI-10であった。

続いて、MMA 6 部、MA 4 部およびAMA 0. 0 7 5 部からなる単量体成分を、CHP 0. 0 1 2 5 部と共に、4 5 分間にわたって重合容器に滴下した後、6 0 分間反応を継続させ、中間層重合体(I-1-B)を形成させた。なお、中間層重合体(I-1-B)単独のT g は G 0 G であった。

続いて、MMA 5 7部、MA 3部、n-OM0. 2 6 4部およびt-BH0. 0 7 5部からなる単量体成分を 1 4 0 分間にわたって重合容器に滴下した後、 6 0 分間反応を継続させ、最外層重合体(I-1-C)を形成して、多層構造重合体(I-1)の重合体ラテックスを得た。なお、最外層重合体(I-1-C)単独のT g は 9 9 C であった。

重合後に測定した多層構造重合体(I-1)の重量平均粒子径は $0.11\mu m$ であった。

得られた多層構造重合体(I-1)の重合体ラテックスを、濾材にSUS製の

メッシュ(平均目開き: 62μ m)を取り付けた振動型濾過装置を用い、濾過した後、酢酸カルシウム3.5 部を含む水溶液中で塩析させ、水洗して回収した後、乾燥し、粉体状の多層構造重合体(I-1)を得た。多層構造重合体(I-1)のゲル含有率は、70%であった。

また、得られた多層構造重合体(I-1) 2 1 4 . 3 gを目開き 2 5 μ mのナイロンメッシュで濾過したアセトン 1 5 0 0 m 1 に投入し、 3 時間攪拌して、多層構造重合体(I-1)のアセトン分散液を調製した。次いで、この分散液を目開き 3 2 μ mのナイロンメッシュで濾過した後、ナイロンメッシュごとクロロホルム中で 1 5 分間超音波洗浄することでメッシュ上の捕捉物をクロロホルム洗浄した。次いで、目開き 2 5 μ mのナイロンメッシュで濾過したアセトン 1 5 0 m 1 に上記超音波洗浄後の捕捉物をナイロンメッシュごと投入し、この液を 1 5 分間超音波処理した後、ナイロンメッシュを除去して、メッシュ上の捕捉物のアセトン分散液 1 5 0 m 1 を調製した。次いで、この分散液 7 0 m 1 をリオン株式会社製、自動式液中微粒子計測器(型式:KL-01)にて 2 5 $\mathbb C$ 下で測定し、直径 5 5 μ m以上の粒子の数を求めたところ、 1 0 個であった。

< 2. 多層構造重合体(I-2)の製造>

多層構造重合体(I-1)の最内層重合体内側層($I-1-A_1$)および最内層重合体外側層($I-1-A_2$)を含む最内層重合体($I-1-A_1$)と同様にして、最内層重合体内側層($I-2-A_1$)および最内層重合体外側層($I-2-A_2$)を含む最内層重合体($I-2-A_1$)および最内層重合体外側層($I-2-A_2$)を含む最内層重合体($I-2-A_1$)を得た。なお、最内層重合体内側層($I-2-A_2$)単独のI g は $I-2-A_1$)単独のI g は I g は I g は I g は I g は I c I w I w I g は I c I w

続いて、多層構造重合体(I-1)の中間層重合体(I-1-B)と同様にして、中間層重合体(I-2-B)を形成させた。なお、中間層重合体(I-2-B)単独のTgは60であった。

続いて、MMA59.4部、MA0.6部、n-OM0.264部およびt-BH0.075部からなる単量体成分を140分間にわたって重合容器に滴下した後、60分間反応を継続させ、最外層重合体(I-2-C)を形成して、多層構造重合体(I-2)の重合体ラテックスを得た。なお、最外層重合体(I-2

-C)単独のTgは104℃であった。

重合後に測定した多層構造重合体 (I-2) の重量平均粒子径は 0.11μ m であった。

得られた多層構造重合体 (I-2) の重合体ラテックスを、濾材にSUS製のメッシュ(平均目開き: 62μ m)を取り付けた振動型濾過装置を用い、濾過した後、酢酸カルシウム 3. 5部を含む水溶液中で塩析させ、水洗して回収した後、乾燥し、粉体状の多層構造重合体 (I-2) を得た。多層構造重合体 (I-2) のゲル含有率は、70%であった。

また、多層構造重合体 (I-1) と同様にして、得られた多層構造重合体 (I-2) の直径 55μ m以上の粒子の数を求めたところ、11 個であった。

<3. 多層構造重合体(I-3)の製造>

攪拌機を備えた容器に脱イオン水 8.5部を仕込んだ後、MMA 0.3部、n-BA 4.5部、1,3-BD 0.2部、AMA 0.05部およびCHP 0.025部からなる単量体成分を投入し、室温下にて攪拌混合した。次いで、攪拌しながら、乳化剤(東邦化学工業社製、商品名「フォスファノールRS 6 1 0 NA」)1.3部を上記容器内に投入し、攪拌を 2 0 分間継続して乳化液を調製した

次に、冷却器付き重合容器内に脱イオン水186.5部を投入し、70℃に昇温した。さらに、イオン交換水5部にソジウムホルムアルデヒドスルホキシレート0.20部、硫酸第一鉄0.0001部およびEDTA0.0003部を加えて調製した混合物を重合容器内に一度に投入した。次いで、窒素下で攪拌しながら、調製した乳化液を8分間にわたって重合容器に滴下した後、15分間反応を継続させ、最内層重合体内側層($I-3-A_1$)の重合を完結した。続いて、MMA1.5部、n-BA22.5部、1,3-BD1.0部およびAMA0.25部からなる単量体成分を、CHP0.016部と共に、90分間にわたって重合容器に滴下した後、60分間反応を継続させ、最内層重合体外側層($I-3-A_2$)を含む最内層重合体($I-3-A_3$)を含む最内層重合体($I-3-A_3$)を得た。なお、最内層重合体内側層($I-3-A_3$)単独のI0 単独のI1 単独のI1 以上のI2 以上のI3 以上のI3 以上のI3 以上のI3 以上のI4 のI3 によった。

続いて、MMA6部、n-BA4部およびAMA0.075部からなる単量体成分を、CHP0.0125部と共に、45分間にわたって重合容器に滴下した後、60分間反応を継続させ、中間層重合体(I-3-B)を形成させた。なお、中間層重合体(I-3-B)単独のTgは20℃であった。

続いて、MMA55.2部、n-BA4.8部、n-OM0.19部および t-BH0.08部からなる単量体成分を140分間にわたって重合容器に滴下した後、60分間反応を継続させ、最外層重合体(I-3-C)を形成して、多層構造重合体(I-3)の重合体ラテックスを得た。なお、最外層重合体(I-3-C)単独のTg は84 C であった。

重合後に測定した多層構造重合体 (I-3) の重量平均粒子径は 0. 12 μm であった。

得られた多層構造重合体(I-3)の重合体ラテックスを、濾材にSUS製のメッシュ(平均目開き: 62μ m)を取り付けた振動型濾過装置を用い、濾過した後、酢酸カルシウム 3 部を含む水溶液中で塩析させ、水洗して回収した後、乾燥し、粉体状の多層構造重合体(I-3)を得た。

多層構造重合体 (I-3) のゲル含有率は、60%であった。

< 4. 多層構造重合体(I-4)の製造>

続いて、このラテックスに脱イオン水10部およびソジウムホルムアルデヒドスルホキシレート0.15部を加え、15分間保持した。そして、窒素雰囲気下、80℃で撹拌しながら、以下に示す最外層重合体(I-4-C)用の原料(ハ)を100分間にわたって連続的に添加した後、さらに80℃で60分間保持して重合を行い、最外層重合体(I-4-C)を形成して、多層構造重合体(I-40の重合体ラテックスを得た。なお、最外層重合体(I-4-C)単独のTgは99℃であった。

得られた多層構造重合体 (I-4) の重量平均粒子径は 0. 12 μ m であった

得られた多層構造重合体 (I-4) の重合体ラテックスに対し、酢酸カルシウムを用いて凝析、凝集、固化反応を行い、ろ過、水洗後、乾燥して多層構造重合体 (I-4) を得た。

(イ) モノ (ポリオキシエチレンノニルフェニルエーテル) リン酸40%と ジ (ポリオキシエチレンノニルフェニルエーテル) リン酸60%との

水酸化ナトリウムの混合物の部分中和物

0.5部、

炭酸ナトリウム

0.1部、

ソジウムホルムアルデヒドスルホキシレート

0.5部、

硫酸第一鉄

0.00024部、

EDTA

0.00072部、

 (\square) n-BA

81.0部、

St

19.0部、

AMA

1.0部、

t - BH

0.25部、

モノ (ポリオキシエチレンノニルフェニルエーテル) リン酸40%と ジ (ポリオキシエチレンノニルフェニルエーテル) リン酸60%との

水酸化ナトリウムの混合物の部分中和物

1.1部、

(ハ) MMA

57.0部、

MA

3. 0部、

n - OM

0.2部、

t - BH

0.1部。

<5. 多層構造重合体(I-5)の製造>

室素雰囲気下、還流冷却器付き反応容器内に脱イオン水 244 部を入れ、 80 ℃に昇温した。そして、以下に示す(ニ)を添加し、撹拌しながら、以下に示す 最内層重合体内側層($I-5-A_1$)用の原料(ホ)の 1/15 を仕込み、 15 分間保持した。次いで、残りの原料(ホ)を、水に対する単量体成分 [原料(ホ)] の増加率 8%/時間で、連続的に添加した後、 60 分間保持し、最内層重合

体内側層($I-5-A_1$)のラテックスを得た。なお、最内層重合体内側層($I-5-A_1$)単独の T_g は2.4 \mathbb{C} であった。

続いて、このラテックスにソジウムホルムアルデヒドスルホキシレート0.6 部を加え、15分間保持した。そして、窒素雰囲気下、80℃で撹拌しながら、以下に示す最内層重合体外側層($I-5-A_2$)用の原料($^{^{^{\prime}}}$)を、水に対する 単量体成分[原料($^{^{\prime}}$)の増加率4%/時間で、連続的に添加した後、120分間保持し、最内層重合体外側層($I-5-A_2$)の重合を行って、最内層重合体(I-5-A)のラテックスを得た。なお、最内層重合体外側層($I-5-A_2$)単独のTgは-38℃であった。

続いて、このラテックスにソジウムホルムアルデヒドスルホキシレート0.4 部を加え、15分間保持した。そして、窒素雰囲気下、80℃で撹拌しながら、以下に示す最外層重合体(I-5-C)用の原料(I-5-C)用の原料(I-5-C)の増加率I-10%/時間で、連続的に添加した後、I-106 の分間保持し、最外層重合体(I-107 の重合を行って、多層構造重合体(I-108 の重合体ラテックスを得た。なお、最外層重合体(I-108 単独のI-109 のであった。

得られた多層構造重合体 (I-5)の重量平均粒子径は0.28μmであった

得られた多層構造重合体(I-5)の重合体ラテックスに対し、酢酸カルシウムを用いて凝析、凝集、固化反応を行い、ろ過、水洗後、乾燥して多層構造重合体(I-5)を得た。

(=)	ソジウムホルムアルデヒドスルホキシレート		0.	6部、
	硫酸第一鉄	0.0	001	2部、
	EDTA	Ο.	000	3部、
(ホ)	MMA		22.	0部、
	n - B A		15.	0部、
	S t		3.	0部、
	AMA		0.	4部、
	1, 3-BD		0. 1	4部、

t - BH0.18部、 モノ(ポリオキシエチレンノニルフェニルエーテル)リン酸40%と ジ(ポリオキシエチレンノニルフェニルエーテル)リン酸60%との 水酸化ナトリウムの混合物の部分中和物 1.0部、 (\sim) n – B A 50.0部、 St 10.0部、 AMA0.4部、 1, 3-BD0.14部、 t - HH0.2部、 モノ (ポリオキシエチレンノニルフェニルエーテル) リン酸40%と ジ(ポリオキシエチレンノニルフェニルエーテル)リン酸60%との 水酸化ナトリウムの混合物の部分中和物 1.0部、 (ト) MMA 57.0部、 MA3.0部、 n - OM0.3部、

< 6. 水酸基を含有する重合体 (V-1) の製造>

t - BH

撹拌機、還流冷却器、窒素ガス導入口等を備えた反応容器に、以下の混合物を 仕込んだ。

0.06部。

MA1 部、 MMA 79部、 HEMA 20部、 n - OM0.14部、 LPO 0.5部、 メチルメタクリレート/メタクリル酸塩/メタクリル酸エチルスルホン酸塩の 共重合体 0.05部、 硫酸ナトリウム 0.5部、 イオン交換水 250部。

容器内を十分に窒素ガスで置換した後、撹拌しながら75℃まで加熱し、窒素

ガス気流中で重合を行った。 2 時間後に 9 0 \mathbb{C} に昇温し、さらに 4 5 分間保持して重合を完了した。そして、得られた重合体ビーズを脱水、乾燥して、水酸基を含有する重合体(V-1)を得た。

得られた水酸基を含有する重合体(V-1)の固有粘度は、O. O 7 6 L/g、ガラス転移温度は 9 3 $\mathbb C$ であった。

< 7. 熱可塑性重合体 (VII-1) の製造>

反応容器に窒素置換したイオン交換水200部を仕込み、さらに乳化剤として 花王製、商品名「ラテムルASK」1部と、過硫酸カリウム0.15部とを仕込 んだ。

次に、MMA40部、n-BA2部およびn-OM0.004部を仕込み、窒素雰囲気下、65℃で3時間攪拌し、重合を完結させた。

続いて、MMA44部およびn-BA14部からなる単量体成分を2時間にわたって滴下した後、2時間保持し、重合を完結した。

得られた熱可塑性重合体 (VII-1) の重合体ラテックスを0.25%硫酸水溶液に添加し、重合体を酸析させた後、脱水、水洗、乾燥し、粉体状の熱可塑性重合体 (VII-1) を回収した。

得られた熱可塑性重合体(VII-1)の還元粘度は、0.38L/gであった。

< 8. 多層構造重合体 (I-6) の製造>

引き続き、下記(ル)を窒素雰囲気下75 $^{\circ}$ $^{\circ}$ で、撹拌を行いながら45 $^{\circ}$ $^{\circ}$ 間に わたって滴下し、その後60 $^{\circ}$ 0間保持して重合を完結させ、中間層(I-6-B)を形成させた。なお、中間層(I-6-B)単独のTgは-10 $^{\circ}$ $^{\circ}$ であった。

最後に、下記(ヲ)窒素雰囲気下75℃で、撹拌を行いながら90分間にわたって滴下し、滴下終了後に75℃、60分間撹拌し、最外層重合体層(I-6-C)の反応を完結させた。なお、最外層重合体層(I-6-C)単独のTgは68℃であった。

得られた多層構造重合体 (I-6) の平均粒子径は 0.11μ mであった。

得られた多層構造重合体 (I-6) の重合体ラテックスを濾材にSUS製のメッシュ (平均目開き 62μ $\mathbf{m})$ を取り付けた振動型濾過装置を用い濾過した後、酢酸カルシウム 3.5 部を含む水溶液中で塩析させ、水洗回収後、乾燥し、粉体状の多層構造重合体 (I-6) を得た。多層構造重合体 (I-6) のゲル含有率は、75%であった。

(チ)	脱イオン水		2 0	0部、
	ソジウムホルムアルデヒドスルホキシレート		0.	2部、
	硫酸第一鉄	Ο.	0 0 0	1部、
	EDTA	Ο.	0 0 0	3部、
(リ)	MMA		1.	6部、
	n-BA		8.	O部、
	1, 3-BD		Ο.	4.部、
	AMA		0.	1部、
	CHP		0.0	5部、
	東邦化学工業社製:フォスファノールRS610	NΑ	Ο.	9部、
	(商品名)			•
(ヌ)	MMA			2部、
	n-BA		3	7部、
	1, 3-BD			1部、
	AMA		0.	5部、
	CHP		Ο.	5部、
(ル)	MMA			4部、
	n - BA			6部、
	AMA		·О.	1部、

CHP0.05部(ヲ) MMA34部n-BA6部t-BH0.5部n-OM0.13部。

< 9. 側鎖にラジカル重合性不飽和基を有する熱可塑性樹脂(z-1)の製造</p>

窒素導入口、攪拌機、コンデンサーおよび温度計を備えた1 Lの4つ口フラスコに、メチルエチルケトン5 O部を入れ、8 O $\mathbb C$ に昇温した。窒素雰囲気下でメチルメタクリレート7 9. 9部、グリシジルメタクリレート2 0. 1 部およびアゾビスイソブチロニトリル 0. 5 部の混合物を3 時間かけて滴下した。その後、メチルエチルケトン (沸点 7 9. 6 $\mathbb C$) 8 O部とアゾビスイソブチロニトリル 0. 2 部の混合物を加え、重合させた。4 時間後、メチルエチルケトン7 4. 4 部、ハイドロキノンモノメチルエーテル 0. 5 部、トリフェニルホスフィン 2. 5 部およびアクリル酸 1 0. 1 部を加え、空気を吹き込みなが 5 8 0 $\mathbb C$ で 3 0 時間 攪拌した。その後、冷却した後、反応物をフラスコより取り出し、側鎖にラジカル重合性不飽和基を有する熱可塑性樹脂(2 -1)の溶液を得た。

側鎖にラジカル重合性不飽和基を有する熱可塑性樹脂(z-1)における単量体の重合率は99.5%以上であり、ポリマー固形分量は約35質量%、数平均分子量は約3万、ガラス転移温度は約105℃、二重結合当量は平均788g/mo1であった。

<10. コロイダルシリカ (無機微粒子 (a-3)) の製造>

攪拌機、コンデンサーおよび温度計を備えたフラスコに、固形分換算のモル部で I PA-ST (イソプロパノール分散コロイダルシリカゾル (日産化学工業 (株) 製) ,シリカ粒子径=15 nm) 1部、KBM503 (γ -メタクリロイルオキシプロピルトリメトキシシラン (信越化学工業 (株) 製) ,分子量=248) 0.1 部、水0.3 部を入れ、攪拌しながら湯浴の温度を75℃に上げ、その温度で2時間反応させることにより、イソプロパノール中に分散され、表面がシラン化合物で処理されたコロイダルシリカを得た。続いて、イソプロパノールを

留去した後にトルエン (沸点110.6°C) を添加することを繰り返し、完全にイソプロパノールをトルエンに置換することにより、トルエン中に分散され、表面がシラン化合物で処理されたコロイダルシリカを得た。

< 1 1. 光硬化性樹脂溶液の製造>

固形分換算の質量部で、側鎖にラジカル重合性不飽和基を有する熱可塑性樹脂 (z-1) 100部、1-ビドロキシシクロヘキシルフェニルケトン (光重合開始剤 (z-2)) 3部、コロイダルシリカ (無機微粒子 (a-3)) 66部からなる光硬化性樹脂溶液を、プロペラ型ミキサーで攪拌して調製した。

<12. 多層構造重合体 (I-7) の製造>

冷却器付き重合容器内に脱イオン水150部を投入し、75℃に昇温し、さらに、イオン交換水5部にソジウムホルムアルデヒドスルホキシレート0.20部、硫酸第一鉄0.0001部、EDTA0.0003部を加えて調製した混合物を重合容器内に一括投入した。次いで、窒素下で攪拌しながら、MMA6部、n-BA22.5部、1,3-BD1.2部、AMA0.3部、CHP0.041部、乳化剤(東邦化学工業社製:フォスファノールRS610NA(商品名))1.3部からなる単量体成分の1/6を仕込み、15分保持した。その後、残りの単量体成分を90分間にわたり連続的に添加した。その後、60分間保持して、最内層重合体(I-7-A)のラテックスを得た。なお、最内層重合体(I-7-A)単独のTgは-33℃であった。

続いて、MMA 5. 9 6 部、MA 3. 9 7 部、AMA 0. 0 7 部からなる単量体成分をCHP0.0125 部と共に45 分間にわたり重合容器に滴下した後、60 分間反応を継続させ、中間層重合体(I-7-B)を形成させた。なお、中間層重合体(I-7-B)単独のTg は60 C であった。

次いで、MMA 5 7部、MA 3部、n-OM0. 2 6 4部、t-BH0. 0 7 5部からなる単量体成分を 1 4 0 分間にわたり重合容器に滴下した後、 6 0 分間 反応を継続させ、最外層重合体(I-7-C)を形成し、多層構造重合体(I-70 の重合体ラテックスを得た。なお、最外層重合体(I-7-C)単独のTgは9 9 Cであった。

重合後測定した重量平均粒子径は0. 11μmであった。

得られた多層構造重合体(I-7)の重合体ラテックスを濾材にSUS製のメッシュ(平均目開き 62μ m)を取り付けた振動型濾過装置を用い濾過した後、酢酸カルシウム3.5部を含む水溶液中で塩析させ、水洗回収後、乾燥し、粉体状の多層構造重合体(I-7)を得た。多層構造重合体(I-7)のゲル含有率は、68%であった。

<13. 多層構造重合体 (I-8)~(I-16)の製造>

多層構造重合体 (I-7) の製造と同様の方法で、各層が表 1 に示す単量体成分で構成された多層構造重合体 (I-8)、 (I-9) を製造した。

多層構造重合体 (I-1) の製造と同様の方法で、各層が表 1 に示す単量体成分で構成された多層構造重合体 (I-10) ~ (I-12) を製造した。

多層構造重合体(I-3)の製造と同様の方法で、各層が表 1に示す単量体成分で構成された多層構造重合体(I-13)~(I-16)を製造した。なお、(I-15)、(I-16)については、各重合体のモノマー滴下速度を(I-3)の製造条件に合わせ、最内層重合体(I-A)の重合を完結させた後に引き続いて、最外層重合体(I-C)を重合させることで製造した。

各層を構成する重合体のTgを表1に示す。

(%) 1-1 1-7	多国概治宙会体(1)	-8 [-9 [-10 [-12 [-13 [-14 [-15 [-16		30 30 30 30 30 30 30 30 40 30	30 30 5 5 5 5 5 5 5	33 40 6 6 6 6 6 6 6	62 55 89 89 89 89 89 89 89 89	4 4 4		6 -7 -48 -48 -48 -48 -48 -48 -48	25 25 25 25 25 35 25	38 38 38 38 38 38 38	┞	4 4 4 4 4 4 4 4 4	- 1 1 1 1 1 1 1 1	10 -10 -10 -10 -10 -10	01 01 01 01 01 01 01	6 59.6 39.7 74.5 59.6 59.6 99.3	7 39.7 59.6 24.8 39.7 - - -	39.7	7 0.7 0.7 0.7 0.7 0.7 0.7 7	0 60 42 76 60 20 105	02 09 09 09 09 09 09 09 0	5 95 95 95 85 95 95 95 95	5 5 5 15 5 5 5	1 1 1 1	
<u> </u>		- 1	2 6	30	2	20	89 75	\vdash	1 1	-48 -33	25	9	_		1 -	-48	10	59.6 59.6	- 39.7	7	0.7 0.7	09	09	95	5	1	
	-3£b0]_				(%)	(%)	(%)	Н	(၃)		(%)	(%)	(%)		(၃)	<u> </u>	(%)	(%)	_	_	(၃)			(%)	_	

〔実施例1〕

多層構造重合体(I-1)100部に、配合剤としてチバスペシャリティケミカルズ社製商品名「チヌビン234」2.7部、旭電化工業社製商品名「アデカスタブAO-50」0.1部、及び旭電化工業社製商品名「アデカスタブLA-57」0.3部を添加した後、ヘンシェルミキサーを用いて混合した。この混合

物 [樹脂組成物 (IIII-1)] を230℃に加熱した脱気式押出機 (池貝鉄工 (株) 製PCM-30 (商品名)) に供給し、混練してペレットを得た。

上記の方法で製造したペレットを80℃で一昼夜乾燥し、300mm巾のTダイを取り付けた40mm ϕ のノンベントスクリュー型押出機(L/D=26)を用いて、シリンダー温度 180~240℃、Tダイ温度 240℃の条件で、125 μ m厚みのアクリル樹脂フィルム状物(A)を製膜した。なお、加飾層(B)の形成において、印刷抜けが少なく、良好であった。

[実施例2]

多層構造重合体(I-1)100部の代わりに、多層構造重合体(I-1)90部および熱可塑性重合体(II-1) [MMA/MA共重合体 (MMA/MA)] $=99/1 (質量比)、還元粘度<math>_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{7}$ $_{$

〔実施例3〕

多層構造重合体(I-1) 100 部の代わりに、多層構造重合体(I-1) 75 部および熱可塑性重合体(II-1) 25 部を用いた以外は、実施例 1 と同様にして混合物 [樹脂組成物(III-3)]を得、アクリル樹脂フィルム状物(A)を製膜した。なお、加飾層(B)の形成において、印刷抜けが少なく、良好であった。

〔実施例4〕

多層構造重合体(I-1) 100 部の代わりに、多層構造重合体(I-2) 90 部および熱可塑性重合体(II-1) 10 部を用いた以外は、実施例 1 と同様にして混合物 [樹脂組成物(III-4)]を得、アクリル樹脂フィルム状物(A)を製膜した。なお、加飾層(B)の形成において、印刷抜けが少なく、良好であった。

〔実施例5〕

配合剤の1つとして用いたチバスペシャリティケミカルズ社製商品名「チヌビン234」2.7部の代わりに、旭電化工業社製商品名「アデカスタブLA-3

1」 2. 1 部を添加した以外は、実施例 3 と同様にして混合物 [樹脂組成物 (I I I -5)] を得、アクリル樹脂フィルム状物 (A) を製膜した。なお、加飾層 (B) の形成において、印刷抜けが少なく、良好であった。

[実施例6]

多層構造重合体(I-1) 75部および熱可塑性重合体(II-1) 25部に、配合剤としてチバスペシャリティケミカルズ社製商品名「チヌビン234」1.4部、旭電化工業社製商品名「アデカスタブAO-50」0.1部、及び旭電化工業社製商品名「アデカスタブAO-50」0.1部、及び旭電化工業社製商品名「アデカスタブAO-67」0.3部を添加した以外は、実施例3と同様にして混合物 [樹脂組成物(III-6)]のペレットを得た。そして、この混合物 [樹脂組成物(III-6)]のペレットを用い、さらに製膜の際、Tダイのスリット幅を0.5mmの条件で押し出しした溶融状態のアクリル樹脂フィルム状物を2本の金属製冷却ロール間に通し、バンク(樹脂溜まり)のない状態で樹脂を挟持し、圧延されず面転写させた後、これを巻き取り機で紙巻に巻き取ることによって125 μ mのアクリル樹脂フィルム状物(A)を製造した以外は、実施例3と同様にしてフィルムを製膜した。なお、加飾層(B)の形成において、印刷抜けがなく、良好であった。

[比較例1]

多層構造重合体(I-3)100部に、配合剤として旭電化工業社製商品名「アデカスタブLA-31」2.1部、旭電化工業社製商品名「アデカスタブLA-57」0.0.1部、及び旭電化工業社製商品名「アデカスタブLA-57」0.0.1部を添加した後、ヘンシェルミキサーを用いて混合した。この混合物 [樹脂組成物(III-7)]を230Cに加熱した脱気式押出機(池貝鉄工(株)製CM-30(商品名))に供給し、混練してペレットを得た。そして、この混合物 [樹脂組成物(III-7)]のペレットを用いた以外は、実施例1と同様にしてアクリル樹脂フィルム状物(A)を製膜した。

[比較例2]

多層構造重合体(I-3)100部の代わりに、多層構造重合体(I-4)3 2部および熱可塑性重合体(II-1)68部を用いた以外は、比較例1と同様 にして混合物 [樹脂組成物(III-8)]を得、アクリル樹脂フィルム状物(

A)を製膜した。

〔比較例3〕

多層構造重合体 (I-3) 100部の代わりに、多層構造重合体 (I-5) 16部および熱可塑性重合体 (II-1) 84部を用いた以外は、比較例1と同様にして混合物 [樹脂組成物 (III-9)]を得、アクリル樹脂フィルム状物 (A)を製膜した。

[実施例7]

多層構造重合体(I-1)100部、水酸基を含有する重合体(V-1)10部、配合剤としてチバスペシャリティケミカルズ社製商品名「チヌビン234」2.7部、旭電化工業社製商品名「アデカスタブAO-50」0.1部、及び旭電化工業社製商品名「アデカスタブLA-57」0.3部を、ヘンシェルミキサーを用いて混合した。この混合物 [樹脂組成物(IV-1)]を230℃に加熱した脱気式押出機(池貝鉄工(株)製PCM-30(商品名))に供給し、混練してペレットを得た。

得られたペレットを80℃で一昼夜乾燥し、300mm巾のTダイを取り付けた40mm ϕ のノンベントスクリュー型押出機(L/D=26)を用いて、シリンダー温度 $180\sim240$ ℃、Tダイ温度240℃の条件で、125 μ m厚みのアクリル樹脂フィルム状物(A)を製膜した。

〔実施例8〕

多層構造重合体(I-1)100部の代わりに、多層構造重合体(I-1)9 0部、実施例2で使用した熱可塑性重合体(II-1)10部を用いた以外は、 実施例7と同様にして混合物 [樹脂組成物(IV-2)]を得、アクリル樹脂フィルム状物(A)を製膜した。

[実施例9]

多層構造重合体(I-1)100部の代わりに、多層構造重合体(I-1)75部、実施例2で使用した熱可塑性重合体(II-1)25部を用いた以外は、実施例7と同様にして混合物 [樹脂組成物(IV-3)]を得、アクリル樹脂フィルム状物(A)を製膜した。

[実施例10]

配合剤としてチバスペシャリティケミカルズ社製商品名「チヌビン234」2.7部、旭電化工業社製商品名「アデカスタブAO-50」0.1部、旭電化工業社製商品名「アデカスタブLA-57」0.3部、及び旭電化工業社製商品名「アデカスタブ260」0.4部を用いた以外は、実施例8と同様にして混合物[樹脂組成物(IV-4)]を得、アクリル樹脂フィルム状物(A)を製膜した

[実施例11]

実施例8と同様にしてペレットを得た。

得られたペレットを80℃で一昼夜乾燥し、300mm巾のTダイを取り付けた40mm ϕ のノンベントスクリュー型押出機(L/D=26)を用いて、シリンダー温度 $180\sim240$ ℃、Tダイ温度240℃の条件で、Tダイを介して溶融押出を行った。押出した樹脂は、75℃に温調した冷却用の鏡面ロール(クロムメッキ加工した表面粗度が0.2 Sのロール)と、平均粒度 40μ mのアルミナを50部含有したシリコーンゴムロールとで挟み込み、厚さ 125μ mのアクリル樹脂フィルム状物(A)を製膜した。なお、実施例11のフィルムを用いた場合、印刷抜けが発生しなかった。

〔実施例12〕

配合剤として旭電化工業社製商品名「アデカスタブLA-31」2.1部、旭電化工業社製商品名「アデカスタブAO-50」0.1部、及び旭電化工業社製商品名「アデカスタブLA-57」0.3部を用いた以外は、実施例9と同様にして混合物 [樹脂組成物(IV-5)]を得、アクリル樹脂フィルム状物(A)を製膜した。

[実施例13]

多層構造重合体(I-1)70部、熱可塑性重合体(II-2) [MMA/M A共重合体(MMA/MA=90/10(質量比)、還元粘度 η s p/c=0.056 L/g)]20部、水酸基を含有する重合体(V-1)10部、配合剤として熱可塑性重合体(VII-1)3部、チバスペシャリティケミカルズ社製商品名「チヌビン234」1.4部、旭電化工業社製商品名「アデカスタブAO-60」0.1部、旭電化工業社製商品名「アデカスタブLA-67」0.3部、

及び城北化学工業社製商品名「JP333EJ0.3部を、ヘンシェルミキサーを用いて混合した。この混合物 [樹脂組成物 (IV-6)] を230 $^{\circ}$ に加熱した脱気式押出機(池貝鉄工(株)製PCM-30(商品名))に供給し、混練してペレットを得た。そして、この混合物 [樹脂組成物 (IV-6)] のペレットを用いた以外は、実施例11と同様にしてアクリル樹脂フィルム状物 (A) を製膜した。なお、実施例13のフィルムを用いた場合、印刷抜けが発生しなかった

[実施例14]

多層構造重合体(I-1)および熱可塑性重合体(II-2)の配合比を多層構造重合体(I-1)65部、熱可塑性重合体(II-2)25部とした以外は、実施例13と同様にして混合物 [樹脂組成物(IV-7)]を得、アクリル樹脂フィルム状物(A)を製膜した。なお、実施例14のフィルムを用いた場合、印刷抜けが発生しなかった。

[実施例15]

熱可塑性樹脂層(C)として、ABS樹脂(UMG ABS社製、商品名「ダイヤペットABS SW7」)を用い、300mm巾のTダイを取り付けた、400メッシュのスクリーンメッシュを設けた40mm ϕ のノンベントスクリュー型押出機(L/D=26)を用いて、シリンダー温度180 \mathbb{C} \sim 220 \mathbb{C} 、Tダイ温度230 \mathbb{C} の条件で、Tダイを介して溶融押出を行った。押出した樹脂は、75 \mathbb{C} に温調した 3 本のポリッシングロールを介して、厚み125 μ μ μ mの熱可塑性樹脂フィルム(C)を製膜した。

次に、実施例13で作製したアクリル樹脂フィルム状物(A)の鏡面ロールと接していた面にシルバーメタリック調の印刷を施し加飾層(B)を形成した。この印刷済みのアクリル樹脂フィルム状物(A)を上記の熱可塑性樹脂フィルムに、熱可塑性樹脂フィルム層と加飾層とが接するように、エンボスロールを介して熱ラミネーションして積層フィルムを得た。

[実施例16]

実施例8で製作したアクリル樹脂フィルム状物(A)を用いる以外は実施例15と同様に実施して積層フィルムを得た。

〔比較例4〕

多層構造重合体(I-3)100部、水酸基を含有する重合体(V-1)を10部、配合剤として旭電化工業社製商品名「アデカスタブLA-31」2.1部、旭電化工業社製商品名「アデカスタブAO-50」0.1部、及び旭電化工業社製商品名「アデカスタブLA-57」0.3部を混合した混合物 [樹脂組成物(IV-8)]を用いた以外は、実施例7と同様にしてアクリル樹脂フィルム状物(A)を製膜した。

[比較例5]

多層構造重合体(I-5)16部、熱可塑性重合体(II-1)84部、水酸基を含有する重合体(V-1)を10部、配合剤として旭電化工業社製商品名「アデカスタブLA-31」2.1部、旭電化工業社製商品名「アデカスタブAO-50」0.1部、旭電化工業社製商品名「アデカスタブLA-57」0.3部、及び旭電化工業社製商品名「アデカスタブ260」0.4部を混合した混合物[樹脂組成物(IV-9)]を用いた以外は、実施例7と同様にしてアクリル樹脂フィルム状物(A)を製膜した。

[実施例17]

アクリル樹脂フィルム状物(A)として実施例1で得られたペレット(樹脂組成物(III-1))と、アクリル樹脂フィルム状物(A'-a)として比較例3で得られたペレット(樹脂組成物(III-9)、ただし、旭電化工業社製商品名「アデカスタブLA31」2.1部の代わりにチバスペシャリティケミカルズ社製商品名「チヌビン234」2.7部を用いた)を用いて、アクリル樹脂積層フィルムを製膜した。

具体的には、ペレットを80℃で一昼夜乾燥し、それぞれ65mm ϕ ノンベントスクリューー軸押出機、40mm ϕ ノンベントスクリューー軸押出機、300mm巾のマルチマニホールド型ダイスを用いて、シリンダー温度180~240℃、Tダイ温度240℃で共押出成形し、表層に位置するアクリル樹脂フィルム状物(A' -a)の厚みが10 μ m、およびその下層に位置するアクリル樹脂フィルムパか(A)の厚みが115 μ mの総厚125 μ mのアクリル樹脂積層フィルム状物(A)の厚みが115 μ mの総厚125 μ mのアクリル樹脂積層フィルムを得た。なお、アクリル樹脂フィルム状物(A)は65 mm ϕ 、アクリル樹脂

脂フィルム状物(A'ーα)は40mmφ押出機でそれぞれ押出した。

[実施例18~20]

アクリル樹脂フィルム状物 (A) として実施例 $2 \sim 4$ で得られたペレット (樹脂組成物 (III-2) \sim (III-4)) を用いる以外は、実施例 17 と同様にアクリル樹脂積層フィルムを製膜した。

[実施例21]

多層構造重合体(I-1)と、熱可塑性重合体(II-1)を、それぞれ表 7 に示す割合で混合する以外は、実施例 1 と同様に実施して得たペレット(樹脂組成物(II-A'-1))を、アクリル樹脂フィルム状物(A'-a)として用いる以外は、実施例 1 8 と同様にアクリル樹脂積層フィルムを製膜した。

[実施例22]

三菱レイヨン社製アクリル系樹脂「アクリペットMD」(商品名)を、アクリル樹脂フィルム状物(A'ーa)として用いる以外は、実施例18と同様にアクリル樹脂積層フィルムを製膜した。なお、このアクリル樹脂フィルム状物(A'ーa)を単独で 125μ mのフィルムにした場合の鉛筆硬度は3Hであった。

[実施例23]

アクリル樹脂フィルム状物(A'ーa)の代わりに、フッ素樹脂フィルム状物(A'')であるSolvay Solexis社製フッ化ビニリデン重合体「HYLAR460」(商品名)を用いる以外は、実施例17と同様にアクリル樹脂積層フィルムを製膜した。

[比較例6]

アクリル樹脂フィルム状物(A'ーa)として比較例3で得られたペレット(樹脂組成物(IIIー9)、ただし、旭電化工業社製商品名「アデカスタブLA31」2.1部の代わりにチバスペシャリティケミカルズ社製商品名「チヌビン234」2.7部を用いた)と、アクリル樹脂フィルム状物(A'ーb)として比較例1で得られたペレット(樹脂組成物(IIIー7))を用いて、各層の厚みを表8に示した値となるように実施する以外は、実施例17と同様に実施した。なお、アクリル樹脂フィルム状物(A'ーb)は65mm ϕ 、アクリル樹脂フィルム状物(A'ーa)は40mm ϕ 押出機でそれぞれ押出した。

[比較例7]

多層構造重合体(I-6)と、熱可塑性重合体(II-3)[MMA/n-BA共重合体(MMA/n-BA=77/23(質量比)、還元粘度 η sp/c=0.08L/g)]を、それぞれ表7に示す割合で混合し、配合剤として旭電化工業社製商品名「アデカスタブLA-31」1.5 部、旭電化工業社製商品名「アデカスタブLA-57」0.3 部、及び三洋化成工業社製商品名「ポリエチレングリコールPEG2000」2 部を添加した後、ヘンシェルミキサーを用いて混合した以外は実施例1と同様に実施し、アクリル樹脂フィルム状物(A'-b)用のペレット(樹脂組成物(II-A'-2))を得た。このペレットを用いる以外は、比較例6と同様に実施した。

[比較例8]

比較例2で得られたペレット(樹脂組成物(III-8))をアクリル樹脂フィルム状物(A'-b)として用いる以外は、比較例6と同様に実施した。

[比較例9]

多層構造重合体 (I-4) と、熱可塑性重合体 (II-3) を表 7に示す割合で混合する以外は、実施例 1 と同様に実施し、アクリル樹脂フィルム状物 (A'-b) 用のペレット(樹脂組成物 (II-A'-3))を得た。

このペレットをアクリル樹脂フィルム状物 (A'-b) として用いる以外は、 比較例6と同様に実施した。

[比較例10]

比較例 3で得られたペレット(樹脂組成物(III-9)、ただし、旭電化工業社製商品名「アデカスタブLA3I」 2.1 部の代わりにチバスペシャリティケミカルズ社製商品名「チヌビン234」 2.7 部を用いた)を用いて、125 μ mのアクリル樹脂フィルム状物を製膜する以外は比較例 3 と同様に実施した。

[比較例11]

三菱レイヨン社製アクリル系樹脂「アクリペットMD」(商品名)を、アクリル樹脂フィルム状物(A'-a)として用いる以外は、比較例6と同様にアクリル樹脂積層フィルムを製膜した。

[比較例12]

アクリル樹脂フィルム状物(A'ーa)の代わりに、フッ素樹脂フィルム状物(A'')であるSolvay Solexis社製フッ化ビニリデン重合体「HYLAR460」(商品名)を用いる以外は、比較例6と同様にアクリル樹脂積層フィルムを製膜した。

[実施例24]

実施例1で得られたアクリル樹脂フィルム状物(A)上に光硬化性樹脂溶液をコンマロールコーターにて塗工幅250mmで塗工を行った。引き続いて、下記表2の温度条件に設定したトンネル型乾燥炉(巾800mm,高さ100mm,長さ8m,4つの乾燥ゾーン(1ゾーンの長さ2m)に分割,シートの動きに対して向流になるように熱風を送り込む方式)の中を、10m/分の速度で通過させて溶剤を揮発させ、光硬化性樹脂(Z)層を形成した。この時の各乾燥ゾーンの滞在時間を下記表2に示す。

表2

	乾燥ゾーン1	乾燥ゾーン2	乾燥ゾーン3	乾燥ゾーン4
温度(℃)	50	60	80	100
滞在時間(秒)	12	12	12	12

続いて、幅200mmにスリットして20mの長さにABS製コアにロール状に巻き取った。

この光硬化性アクリル樹脂フィルムを、光硬化性樹脂組成物が金型の内壁面に向き合うように金型内に配置し、次いで赤外線ヒーターにより温度350℃で10秒間光硬化性アクリル樹脂フィルムを予備加熱した後、さらに加熱を行いながら真空吸引することにより金型形状に光硬化性アクリル樹脂フィルムを追従させた。なお、この金型の形状は、切頭角錐形状で、切頭面のサイズは100mm×100mmで、底面のサイズは108mm×117mm、深さは10mmであり、切頭面の端部の曲率半径がそれぞれ3, 5, 7, 10mmであった。その際の金型追従性を目視で評価したところ、各端部とも良好に追従していた。

次に、成形温度280~300℃、金型温度40~60℃の条件において、ポリカーボネート樹脂を成形樹脂として用いてインサート成形を行い、光硬化性ア

クリル樹脂フィルムが成形品表面に密着した積層成形品を得た。

次いで、紫外線照射装置を用いて、約700mJ/сm²の紫外線を照射して、光硬化性樹脂組成物を硬化させ、積層成形品の表面物性を評価した。

[実施例25]

実施例2で得られたアクリル樹脂フィルム状物(A)を用いる以外は、実施例24と同様に実施した。

[実施例26]

実施例3で得られたアクリル樹脂フィルム状物(A)を用いる以外は、実施例24と同様に実施した。

[実施例27]

実施例4で得られたアクリル樹脂フィルム状物(A)を用いる以外は、実施例24と同様に実施した。

〔実施例28〕

熱可塑性樹脂層(C)として、ABS樹脂(UMG ABS社製、商品名「ダイヤペットABS SW7」)を用い、300 mm Tダイを取り付けた、400 メッシュのスクリーンメッシュを設けた $40 mm \phi$ のノンベントスクリュー型押出機(L/D=26)を用いてシリンダー温度 $180 \text{ C} \sim 220 \text{ C}$ 、Tダイ温度 230 Cの条件下で、Tダイを介して溶融押出した樹脂を 75 Cに温調した 3本のポリッシングロールを介して 200μ m厚みの熱可塑性樹脂フィルムに製膜した。

次に、実施例26で得られた光硬化性アクリル樹脂フィルムのアクリル樹脂フィルム状物 (A) 側に、グラビア印刷でシルバーメタリック調の加飾層 (B) を形成した。

この光硬化性アクリル樹脂フィルムの加飾層(B)側に、上記で得られた熱可 塑性樹脂フィルムを、熱ラミネーションして光硬化性の積層フィルムを得た。

この光硬化性の積層フィルムを用いて、〔物性の測定、評価方法〕の (9) に 記載の方法でインサート成形を実施して積層成形品を作製した。

次いで、紫外線照射装置を用いて、約700mJ/cm²の紫外線を照射して、光硬化性樹脂組成物を硬化させ、積層成形品を得た。

得られた積層成形品は、印刷絵柄を有していて意匠性に優れた成形品であった

[比較例13]

比較例2で得られたアクリル樹脂フィルム状物(A)を用いる以外は、実施例24と同様に実施した。

[比較例14]

比較例3で得られたアクリル樹脂フィルム状物(A)を用いる以外は、実施例24と同様に実施した。

[実施例29]

実施例1で得られたアクリル樹脂フィルム状物(A)に加飾層(B)としてグラビア印刷にて木目柄および漆黒柄を施し、最後に加熱ロールを介して、加飾層(B)が実施例15で得られた熱可塑性樹脂フィルム(C)に接するように配して、熱ラミネーションして積層フィルムを得た。

[実施例30~33]

実施例2~5で得られたアクリル樹脂フィルム状物(A)を用いる以外は実施例29と同様に実施した。

[実施例34]

実施例15で得られた熱可塑性樹脂フィルム(C)に加飾層(B)としてグラビア印刷にて木目柄および漆黒柄を施し、最後に加熱ロールを介して、加飾層(B)が実施例3で得られたアクリル樹脂フィルム状物(A)に接するように配して、熱ラミネーションして積層フィルムを得た。

[実施例35]

[物性の測定、評価方法]の欄(8)に記載の方法で、インモールド成形による積層成形品を得た以外は実施例31と同様に実施した。

[実施例36]

実施例6で得られたアクリル樹脂フィルム状物(A)を用いる以外は実施例29と同様に実施した。

なお、加飾層(B)形成において、印刷抜けがなく良好であった。

[比較例15~17]

比較例1~3で得られたアクリル樹脂フィルム状物(A)を用いる以外は実施例29と同様に実施した。

[実施例37]

熱可塑性樹脂層(C)としての厚さ90μmの着色ランダムポリプロピレン樹脂フィルム(理研ビニル工業社製)の表面に、ポリエステルポリオール系ビヒクルにイソシアネート硬化剤を3質量%配合してなる2液硬化型ウレタン樹脂系インキ「ラミスター」(東洋インキ社製;商品名)を使用してグラビア印刷法により加飾層(B)(木目柄および漆黒柄)を印刷し、さらに印刷面上に、アクリルーポリエステルー塩化酢酸ビニル系熱接着性樹脂をグラビアコート法により乾燥後の塗布量1.5g/m²に塗工して接着層(D)を形成した。しかる後、接着層面に、表面保護層として実施例1と同様の方法で得た50μmのアクリル樹脂フィルム状物(A)を、フィルム表面温度120℃の条件で熱ラミネートし、表面温度180℃の金属製エンボスロールにて導管柄のエンボス加工を施して、建材用積層フィルムを得た。次いで、この建材用積層フィルムに、接着層(D)として水性2液ウレタン系接着剤を乾燥後の塗布量10g/m²にスプレー塗装、乾燥した曲率半径0.5Rの形状のポリエステル樹脂系三次元形状基材に、建材用積層フィルム温度80℃の条件にて三次元ラミネートして、三次元形状を有する積層成形品を得た。

[実施例38~40]

実施例 $2 \sim 4$ と同様の方法で得た 50μ mのアクリル樹脂フィルム状物 (A) を用いる以外は実施例 37 と同様に実施した。

[比較例18~20]

比較例 $1 \sim 3$ と同様の方法で得た 50μ mのアクリル樹脂フィルム状物 (A) を用いる以外は実施例 37 と同様に実施した。

[実施例41]

多層構造重合体(I-1)の代わりに、多層構造重合体(I-7)を用いる以外は、実施例1と同様に実施した。

[実施例42~46]

多層構造重合体 (I-7) の代わりに、多層構造重合体 (I-8) ~ (I-1

2) のそれぞれを用いる以外は、実施例41と同様に実施した。

[実施例47及び48]

多層構造重合体 (I-1) と熱可塑性重合体 (II-1) の配合比を表12に 示すように変更する以外は、実施例2と同様に実施した。

[実施例49及び50]

配合剤の1つとして用いたチバスペシャリティケミカルズ社製商品名「チヌビン234」2.7部の代わりに、それぞれチバスペシャリティケミカルズ社製商品名「チヌビン329」2.5部(実施例49)、チバスペシャリティケミカルズ社製商品名「チヌビン1577」1.0部(実施例50)を使用した以外は、実施例3と同様に実施した。

[実施例51]

配合剤の1つとして用いた旭電化工業社製商品名「アデカスタブLA-67」 を添加しない以外は、実施例6と同様に実施した。

[比較例21~24]

多層構造重合体 (I-1) の代わりに、多層構造重合体 (I-13) ~ (I-16) を用いる以外は、実施例 1 と同様に実施した。

[実施例52~59]

水酸基を含有する重合体(V-1) 10 部をブレンド時にさらに添加する以外は実施例 $41\sim48$ と同様に実施した。

[実施例60及び61]

表15に示す添加量の通り、水酸基を含有する重合体 (V-1) の代わりに、PMMA系架橋粒子として株式会社日本触媒製商品名「エポスターMA1004」を用い、さらに城北化学工業社製商品名「JP333E」0.3部を用いない以外は実施例13と同様に実施した。

[比較例25~28]

水酸基を含有する重合体(V-1) 10 部をブレンド時にさらに添加する以外は比較例 $21\sim24$ と同様に実施した。

実施例 $1\sim6$ および比較例 $1\sim3$ で用いた樹脂組成物(III) [樹脂組成物 ($III-1\sim9$)] の樹脂成分の組成とゲル含有率とを表3に示す。また、得

られたアクリル樹脂フィルム状物 (A) および積層成形品の評価結果を表 4 に示す。

200		İ						
	神師銘は帯		多層	多層構造重合体	合体		熟可塑性重合体 樹脂組成物(樹脂組成物(III)
			烧	添加量(部	3)		(II – 1)	のゲル合有率
	(111)	I-I	I-2	I -3	1-4	I 5	添加量(部)	_ (%)
実施例1	1-111	100						70
実施例2	111-2	06					10	63
実施例3	111-3	75					25	52.5
実施例4	111-4		06				10	63
実施例5	9-111	75					25	52.5
実施例6	9-III	75					25	52
比較例1	<i>L</i> –111			001				09
比較例2	8–III				32		89	27
比較例3	6-111					91	84	14

125

アクリル樹脂フィルム状物(A)評価結果 引張 試驗前 対略級					mk L						積層成形, 耐成形白化件	積層成形品評価結果 第白化性	品評	5 年				
		4 4		Ē	滎夜			盲		木目				=	· 孫 · 直	直		外観
条件		光 % % %	發低 (%)	姆(%)	曇価差 (%)	ව	硬度	換傷性	白化	砸	ゲート日間米億	白化	割れ	ゲート円配手数	老化性		₩ ₩	茶票
а		ī	20	6.0	0	6	É		L	[VIII VIII I	ľ		137 VP (147 L			\downarrow	1
q	\dashv	12	2.5	1.4	6.0	83	E	4))	0	0	0	0	0	0	0	◁
æ	_	153	7	9.0	0.1	40	ţ	(((((ľ					
ام	┥	3	3	1.5	1.0	ò	4))))	0	0	0	0	0	0	◁
ø	٦	153	ט	4.4	3.9	6	11	((((
ᆈ		3	?;	14.6	14.1	30	Ľ))))	◁	0	0	0	0	0	◁
Ø	_	53	L C	8.0	0.3	60	17	((((((,				
ᆈ	\dashv	3	3	2.3	1.8	26	C	_ >))	<u></u>)	0	0	0	0	0	4
ಡ	7	53	ر اد	4.5	4.0	00	1		(((1	1				
ρ.	┪	-		14.4	13.9	3	ב)	<u> </u>	 O	 	◁	0	0	0	×	0	⊲
Ø	\neg	153	- T	4.3	3.9	00	7	C	((((,	1			
P.	\dashv	\dashv	-1	14.5	14.1	20	Ľ))))	◁	0	0	0	0	0	0
Ø	_	1/13	- 2	0.0	0.2	30	4.	;	((1	1					
ᆈ				5.3	4.6	<u> </u>	4p	×))	×	0	0	×	×	×	4	×
to.	a	150		37.2	36.6	8	1		:	(T	1		T		Ī	
q		_	0.0	68.4	67.8	75	<u>e</u>	4	×	<u> </u>	×	×	0	×	0	×	◁	×
Ø				98.7	96.5										\int			
ع,		140	2.2	フィルム和	_	100	2H	0	×	×	×	×	×	×	0	×	×	×
٠				ため趣が	め側定不能				_			_	_)			

|引張試験条件: | a;中 20mm、 腹厚 125μm、 初期のチャック間距離 25mm、 終点のチャック間距離 33mm、 速度 50mm/min、 温度 23℃ | b;中 20mm、 腹厚 125μm、 初期のチャック間距離 25mm、 終点のチャック間距離 33mm、 速度 300mm/min、 温度 15℃

実施例7~16並びに比較例4及び5で用いた樹脂組成物 (IV) [樹脂組成物 (IV-1~9)] の樹脂成分の組成とゲル含有率とを表5に示す。また、得られたアクリル樹脂フィルム状物 (A) 又は積層フィルムおよび積層成形品の評価結果を表6に示す。

4								
	樹脂組成物	多層族	多層構造重合 統加量(部)	·合体 (5)	熱可塑性重合体 (II-1) (II-2)	熱可塑性重合体 (II-2)	水酸基を含有する	雄脂 クグ
	(AD	I-1	I -3	I -5		栎加量(部)	重合体(V)	(%)
実施例7	IV-1	100					01	64
実施例8	IV-2	06			10		01	57
実施例9	IV-3	22			22		10	48
実施例10	IV-4	06			01		10	58
実施例11	IV-2	06			01		01	58
実施例12	IV~5	22			25		10	48
実施例13	9-/1	02				20	10	47
実施例14	<i>1</i> ∕−7	92				25	10	43
実施例15	1V-6	20				20	10	47
実施例16	IV-2	90			10		10	57
比較例4	1V-8		100				10	54
比較例5	6-AI			91	84		10	13

127

a; φ 20mm、 膜厚 125μm、 初期のチャック間距離 25mm、 終点のチャック間距離 33mm、 速度 50mm/min、 温度 23℃ 耐成形自化性: 実施例15, 16はシルバーメタリック調の加飾柄で評価した |olololol× 老化性 ゲート円別状態 積層成形品評価結 耐成形白化性 割れ 0 lololo 0 O 0 動 蒸飯性 ۵IO 0 0 0 鉛 硬 硬 田丘丘 ₹ 5 8 8 8 8 8 8 8 8 82 母 (%) アクリル樹脂フィルム状物(A 2 6 40 36 41 40 23 22 20 38 29 試驗前 4 35 20 鉛 硬 度 H H Ή 実施例10 実施例12 実施例13 実施例14 美施例15 実施例1

樹脂組成物(III-1~4)及び(III-7~9)並びに樹脂組成物(II-A'-1~3)の樹脂成分の組成、ゲル含有率、曲げ弾性率及びそれを用いて作製したアクリル樹脂フィルム状物(A)としての評価結果を表7に示す。また、アクリル樹脂積層フィルムに用いたフィルム状物の種類及び得られた積層成形品の評価結果を表8に示す。

価結果	LINT		83 T	1	_ ~	5	8		8	36	7.0	61	6	_) 100	do		86	מנג	7.0	2	72	-
アクリル樹脂フィルム状物(A)としての評価結果	試験後	i	$\vdash \vdash$	4	0.1	1	\dashv	14.1	0.3	1.8	0.2	4.6	36.6	67.8	96.5	フィルム破断の	ため測定不能	50.8	フィルム破断の	ため測定不能	0.3	4.9	1	12.6
3(A)と	the	魯価 (%)	0.5	7:4	9.0	1.5	4.4	14.6	0.8	2.3	0.9	5.3	37.2	68.4	98.7	711	ため	51.3	711/	ため	1.3	5.9	39.6	73.4
ム状物	試驗前	母価(%)	0.5				0.5		20	v	0 3	;	0 6	ç.,		2.2			0.5		1	7.0	0.8	
711		光況 (%)	151		153	100	153		152	100	143	7.1	150	2		140			155		111	144	148	
ア樹脂	引張	斯 条 年	8	-	ಚ	q	В	٥	а	q	В	þ	В	b	a	4		а	ع.		a	þ	B.	
771	数位	領度	HB		(I	_	H		П	11	И	40	H	***		2H			2H		5.0	αn	4B	
<u>4</u>	62		1.7		~	4.0	1.9		α.	1.0	1 7	7.7	2.5	2:2		2.9			2.9		1	1.1	1.1	
7. 7.	今を存扱	(%)	02		63	8	52.5		63	3	60	3	27	,		14			23		05	00	55	
重合体(II)	添加量(部)	II-3																			00	40	35	
熟可塑性重合体(II	添加	11-1			9	77	25		10	40			89			84			29					
		1–6																	•		Va	00		
Ξ		1-5														16				,				
重合体	引(部)	I-4											32										65	
多層構造重合体(I)	添加量(部	I-3									100	3												
KN		1-2							06	3														
		1-1	100	1	06	3	75						-						33		-			
	樹脂組成物	(iii)	1-11		111-2		III-3		111-4		111-7		8-111	,		6-JII			III-A'-1		6-,V-III	7 V III	III-A'-3	引張討略条件

引張試験条件: a;巾 20mm、膜厚 125μm、初期のチャック間距離 25mm、終点のチャック間距離 33mm、速度 50mm/min、温度 23℃ b;巾 20mm、膜厚 125μm、初期のチャック間距離 25mm、終点のチャック間距離 33mm、速度 300mm/min、温度 15℃ アクリル樹脂フィルム状物(A)評価:125μm厚みに製膜したフィルムで実施した

	面数	粉 名 和	0	0	0	0	0	0	0	×	×	0	×	0	×	×
	追	数年	0	0	0	0	0	0	0	٥	×	0	۷	0	◁	×
積層成形品評価結果	# **	路 硬 便	F	H	2H	2H	Ξ	2H	2B	2B	3B	G.	2B	2H	щ	4B
形品部		黒割れ	0	0	0	0	0	×	0	0	0	0	0	×	×	0
福層成	百化档	木目 漆黒 割れ 白化 割	<u> </u>	◁	×	◁	0	0	0	٧	٧	×	×	×	0	0
	耐成形	大国 岩池		0	0	0	0	×	0	0	0	0	0	×	×	0
		一二	<u> </u>	0	0	0	0	0	0	0	0	×	×	×	0	0
(A.")		(mヵ)							10							10
7%素樹脂74%A状物(A")	#	商品名							Solvay Solexis社數 「HYLAR460」 鉛筆硬度:4B							Solvay Solexis社製 「HYLAR460」 鉛筆硬度:4B
		海 (田ヵ)								115	115	115	115		115	115
7711n樹脂74n4狀物(A')	(A'-b)	樹脂組成物 (III)								III-7	III-A'-2	8-III	III-A'-3		111-7	L-III
指フィルタ		厚み (m m)	10	10	10	10	10	10		10	01	10	10	125	10	
アツル樹	(A'-a)	樹脂組成物(III) 又は商品名	111–9* ²	III-9*2	III–9*2	III–9*²	III-A'-I	三菱レイヨン社製 「アクリペットMD」 鉛筆硬度:3H		III-9*2	111-9*2	III-9*2	III–9*2	_{2*} 6-III	三菱レイヨン社製 「アクリペットMD」 鉛筆硬度:3H	12
霊	(A)	<i> 厚み</i> (μ m)	115	115	115	115	115	115	115					!		
アツル樹脂	74NA状物(A	樹脂組成物 (III)	. III-1	III-2	III-3	#-III	111-2	III-2	111-1							
0			17	18	19	50	21	22	23	9	7	®	6	01	11	12
<u> </u>						张 格	<u>E</u>						丑:	換窗		

*1 アクリル樹脂フイルム状物(ダーa)の代わりに使用 *2 旭電化工業社製商品名「アデカスタブLA31_2.1部の代わりに、チバスペシャリティケミカルズ社製商品名「チスビン234_2.7部を使用

実施例 $24 \sim 28$ 並びに比較例 13 及び 14 において得られたアクリル樹脂フィルム状物(A)、光硬化性アクリル樹脂フィルムおよび積層成形品の評価結果を表 9 に示す。

	7.	クリル樹脂	フィル	アクリル樹脂フィルム状物(A)評価結果	評価紀	海	术	5硬化性	<u> </u>	ア御脂	光硬化性アクリル樹脂フィルム評価結果	拒結 果		積層	成形品高	積層成形品評価結果	
	司记	お客は	盐	学 略%				耐成形白化性	白化性	,	膜厚((m n/)			耐磨耗性(%	(%)]	
	アンが			然 後	鉛筆	HDT	¥	ш	茶果	噩	W. THE 11. LIA.	アクリル樹脂	- 小型	鉛筆			4
	3.条 条件	霉 (%)	魯(%)	曼価差 (%)	硬度	ည့	白化	割れ	自化	響れ	元碳化性 樹脂(2)層	7.41v.b(A) 層	%	硬度	回001	200回	名を行
中核値の人	а	30	0.5	0	T.T.	60	(0	C	C	·	2	6	į		70	(
大旭四4	P	 	1.4	6.0	914	3))))	Б	c S		qu	71	4.7)
中本面の円	а	30	9.0	0.1	þ	6	Ċ	C	((,	90,	2	ŀ	:	5	(
米局別43	P	0.0	1.5	1.0	4	õ))))		90 1		14	=	<u> </u>)
事権励った	а	20	4.4	3.9	11	8		(~	7	,	116	,		:	:	(
大加出で 」なり	þ	0.0	14.6	14.1	Ç	26))	1)	_	CTT		Ľ	2	7)
中体的の7	а	20	8.0	0.3	=	8	((,	9:	1	:	,		(
大畑7321	q	6.0	2.3	1.8	נ	76))))	•	611	· ·	C	מ	<u>.</u>	 D
年権励のの	В	2	4.4	3.9	12	5					,	1.5		;			(
大地で140	þ	0.0	14.6	14.1	G .	26))	 	 	-	CTT	1	Ç		I)
15四十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二	а	90	37.2	36.6	an	00	>	(>		,	01.1	2 0	9	5		(
元款 77.10	q	0.0	68.4	8.79	9	26	<)	-)		911		9	 3	7)
	а		98.7	96.5					_								
比較例14	4	2.2	4111	イルム破断の	2H	100	×	×	×	×	∞	125	0.7	2H	6	15	0
	2		ため御	め測定不能													
引張試験条件:	:件:																

引張討験条件: a;巾 20mm、 膜厚 125 μ m、 初期のチャック間距離 25mm、 終点のチャック間距離 33mm、 速度 50mm/min、 温度 23 $\mathbb C$ b;巾 20mm、 膜厚 125 μ m、 初期のチャック間距離 25mm、 終点のチャック間距離 33mm、 速度 300mm/min、 温度 15 $\mathbb C$ アクリル樹脂フィルム状物(A)評価:125μm厚みに製膜したフィルムで実施した 耐成形白化性:実施例28はシルバーメタリック調の加飾柄で評価した

実施例29~36および比較例15~17において得られたアクリル樹脂フィルム状物(A)、積層フィルムおよび積層成形品の評価結果を表10に示す。

思数 地C在

黎 黎鄉在

部 強 強 度

増れ

白化

割れ

白化

桑価差 (%)

曇価

曇価 (%)

光(%)

引起条件锻锻件

8

HDT (S)

試験後

試験前

橨層成形品評価結果

積層フィルム評価結果

クリル樹脂フィルム状物(A) 評価結果

表10

耐成形白化性

0

0

◁

0

0

0

0

83

0.9

1.4

0

0.5

0.5

151

ਲ

実施例29

0

0

0

Œ,

0

0

0

0

87

0.6

0.5

153

実施例30

0

0

0

工

0

◁

Ó

0

8

14.6

2.3

0.5

153

実施例32

3.9

4.4

0.5

153

実施例31

0

0

0

工

0

0

0

0

92

×

0

0

エ

0

◁

0

0

8

13.9

14.4

0.5

153

a o

実施例33

0

0

0

工

0

4

0

0

9

3.9

4.4

0.5

153

а

実施例34

14.6

0

0

0

工

0

◁

0

0

9

14.1

14.6

4.3

0.4

155

a o

実施例36

4.4

Ö

153

a o

実施例35

0

0

0

工

0

◁

0

0

8

14.1

14.5

a;巾 20mm、膜厚 125 μ m、初期のチャック間距離 25mm、終点のチャック間距離 33mm、速度 50mm/min、温度 23 $\mathbb C$ b;巾 20mm、膜厚 125 μ m、初期のチャック間距離 25mm、終点のチャック間距離 33mm、速度 300mm/min、温度 15 $\mathbb C$ アグリル樹脂フィルム状物(A)評価:125 μ m厚みに製膜したフィルムで実施した × × × X 0 0 × ◁ 0 **4B** 2H 0 0 × 0 × × 0 0 × 0 × × 100 79 92 98.7 96.5 74ルA破断の ため測定不能 36.6 67.8 0.2 4.6 5.3 37.2 68.4 0.60.7 143 120 a o æ 引張試験条件 比較例15 比較例17 比較例16

実施例37~40および比較例18~20において得られたアクリル樹脂フィルム状物(A)及び建材用積層フィルムの評価結果を表11に示す。

														•					a;巾 20mm、 膜厚 125μm、 初期のチャック間距離 25mm、 終点のチャック間距離 33mm、 速度 50mm / min. 温度 23℃	b; ψ 20mm、 膜厚 125 μm、 初期のチャック間距離 25mm、 終点のチャック間距離 33mm、 速度 300mm/min、 温度 15℃		
黑		直	蔽		◁	()	(<u></u>	0	×		<	-		0			n、速度	n、速度		
建材用積層フィルム評価結果	Ħ	<u>}</u>		(Э —	ď)	(Э —	0	×		C)		0			# 33mr	羅 33mi		
747	<u>,,,</u>	漆黑	割れ	9	O	٥)	()	0	0		C)		×			間距	雪蹈	زير	
積層	耐成形白化性	崧	白化	(>	()		1	0	0	,	>	<		×			14.7	イルシ	で描し	
建材用	耐成形	木目	割れ)	()	()	0	0		C)		×			点のチ	点のカ	イトで	
			印化	9))	()	0	0		>	<		×			H,然	現然	74	
無	:		硬度	11.	110	t	4	:	G	H	4B		ПВ	777		2H			25m	25m	願い	
评価結		HDT	ව	50	Š	20	70	5	3	92	62		60	36		100			買距離	買距離	みに観	
アクリル樹脂フィルム状物(A) 評価結果	計略%	37 K	曇価差 (%)	0	6.0	0.1	1	3.9	14.1	0.3	0.2	4.0	36.6	67.8	96.5	フィルム破断の	ため側に不能		チャック	チャック	2μ四庫	
11/4	都	Ĭ	。 像 多	0.5	1.4	9.0	1.5	4.4	14.6	0.8	0.9	5:5	37.2	68.4	98.7	74164	ため強		初期の	初期の	面:12	
対脂7	計器計		瞬 (S 角	2 0	0.0	4	0.0	9 6	0.0	0.5	0.7	Ī	9	2:5		2.2			μm	μm,	》(A)郭	
クリル		- 1	光 (%)	121	101	ដ	100	152	100	153	143	1	150	22.		140			₹ 125	月125	マ状物	
1	部	おお	条件	В	P	а	Ь	а	þ	а	a 1	-	60	P.	В	۔		年	1、膜馬	n、膜馬	ジィグ	
				中格/回37	Y WE VIOL	年 佐 回 3 8	OO!/197	宇祐/阿30	KAN POSO	実施例40	比較例18		上数極10	21/45:				引 最 財 数 条 件 :	a; ft 20mn	ь; ф 20mp	アクリル樹脂フィルム状物(A)評価:125μm厚みに製膜したフィルムで実施した	

実施例 $1\sim3$ 、5、6、 $41\sim51$ および比較例1、3、 $21\sim24$ のアクリル樹脂フィルム状物(A)および積層成形品の評価結果を表 $12\sim14$ に示す。

	_	$\overline{}$	_	1	Τ,		_	_	_	_	_	-			_	
		24	91-1	8	Ŀ	89	92.5	0.5	151	0	Œ	×	88	0	0	0
		23	1-15	001		89	92.5	0.5	151	0	38	0	79	×	×	×
	比較例	22	1-14	<u>0</u>	1	2	92.5	0.5	151	⊲	Œ	××	88	0	0	0
		12	1-13	001	١	89	92.5	0.5	151	0	38	0	81	×	0	0
		1	1-3	100	,	90	92.5	0.7	143	0	48	0	79	×	×	×
		48	1-1	55	45	38.5	92.7	0.3	155	0	2H	4	96	0	0	0
		47	1-1	02	30	50	92.5	9.4	154	0	Ξ	0	92	0	0	0
		3	I1	22	25	52.5	92.5	0.5	153	0	Ŧ	0	96	0	0	0
		2	I-1	06	01	63	92.5	0.5	153	0	F	0	87	0	0	0
		46	1-12	100	1	69	92.5	0.5	151	0	В	0	82	◁	0	0
	実施例	45	11-1	100		89	92.5	0.5	151	0	HB	0	85	V	0	0
i		44	I-10	001	1	67	92.5	0.5	151	0	В	0	82	V	0	0
		43	· 6-I	100	1	70	92.5	0.5	151	0	НВ	0	84	V	0	0
		42	I8	100	1	69	92.5	0.5	151	0	НВ	0	83	V	0	0
		41	I7	100	-	89	92.5	0.5	151	0	В	0	82	V	0	0
		1	I-1	100	~	70	92.5	0.5	151	0	HB	0	83	V	0	0
			種類	(報)	(與)	(%)	(%)	(%)	(%)			世			E.	44
			名 図 権 浩 宙 今 休 (r)		熟可塑性重合体(II-1)	旨組成物(III)の ゲル含有率	全光線透過	桑 佰	光浴	製膜性	鉛筆硬度	距於田口化	HDT(C)	耐擦傷性	耐艶戻り性	正数老化
77.76			多個權		熟可塑的	樹脂組成物 ゲル含有		77111	華 語	7414	大物・	 €		無		HE

135

耐整髮料性 00000 積層成型品
 49
 チヌピン329
 104
 92.5
 0.5
 153
 〇
 H
 〇
 〇

 50
 チヌピン1577
 148
 92.5
 0.5
 153
 〇
 H
 〇
 〇

 51
 チヌピン234
 139
 92.5
 0.5
 153
 〇
 H
 〇
 〇

 実施例51では旭電化工業社製商品名「アデカスタブLA-67」の添加量を0質量部とした
 鉛 硬 硬 アクリル 樹脂フィルム状物(A) I I 製膜性 153 御便 全光線 透過率 92.5 92.5 92.5 融点(% チヌピン234 アデカスタブLA-31 チヌピン234 紫外線吸収剤 種類(商品名) ß 9 **张插**囱

表13

136

多層構造 熟可塑性 樹脂組度 (I-4) (II-1) のゲル信(部) (部) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%	アクリル樹脂フィルム状物(A) 積層成型品	物III 全光線 曇価 光沢 製膜性 鉛筆 耐折曲 HDT 擦傷 艶戻り	世 世 100	
熱可塑性 樹脂 重合体 (II-1) (部)		組成物III 全光線 い合有率 透過率 曇価		
1 N/N UMM 1 1	数回随杆) [16 04

実施例7~9及び52~61並びに比較例4及び25~28の樹脂組成物(IV)の組成及びゲル含有率、並びにアクリル樹脂フィルム状物(A)および積層成形品の評価結果を表15に示す。

		Т	T	_	_	_	_		_	_	٠,		_	_	_	_	_		_	
		ă6	上	4	3	1	<u>.</u>	01		1		63		23	c	٥		×	c	
		22	1.15	2 5	3		:	01		-		19		_	c	2	3	9	×	c
	比較例	3,6	7 -	100	3			10		ı		63	1	22	<] [-	××	C	0
		3,5	1	100	3	,	-	01		-		62	1	×2	C	2		9	×	0
		4	1	2	3	1	1	01		ı	1	54	1			E P) ()	×	×
		9	1	15	2	1 8	3	1		01		29	Š	30	C	=		7	О	0
		9	Ī	5	2	200	3	1		7		26	ļ	40	0	=			0	0
		59	E	5	3 ų	3		01		1		32	١	C7	0	I	•	1	0	0
		58	I	5	2 2	3		10		1		45	66	ეე	0	Ξ	: 0		0	0
		6	I	75	2 g	3		10		1		48	15	3	0	Ξ	c		0	0
		8	工	06	2	1		10		1	T	22	ec c	777	0	ſŁ	(9	0	0
	実施例	22	1-12	100	,	,		10		ı	T	63	15	3	0	B	(◁	0
		26	Ī	100	,	1		01		3	T	62	9	2	0	HB	C	1	Δ	0
		22	I-10	100	1	,	T	20		١		09	1.		0	В	0		٥	0
		54	6-1	100	,	,	Ì	10		ı	T	62	0		0	HB	c	1	◁	0
		53	8-I	100	i	1		10		ı	T	63	×		0	HB	@	1	◁	0
		52	1-1	100	,	,	T	21	İ	1	T	62	×			æ	0	†	4	0
			工	100	,			01		1		64	<u>~</u>			HB	0	† -	4	
			種類	(知)	(銀)	(組)		(銀	r	(銀)		 @	(%)	†	7		#		1	
	•		多層權浩爾合体(I) L	WEST HIT II	熟可塑性重合体(II-1)	熱可塑性重合体(II-2)	大砂ボシ会右ナスト	重合体(V)		PMMA系架橋粒子	樹脂組成物(IV)の	ゲル合有樹	光米	事に	教房に	鉛筆硬度)	计存在计		耐艷展9性
2 3 4 7			多層梅		熟可塑	熱可塑	大學工	重		PMM	極脂熱	H	11/14	本品		74144	大物(A)	特局		双型品

139

鉛筆硬度が2 B以上である実施例 $1\sim16$ のアクリル樹脂フィルム状物(A)は、耐擦傷性に優れていた。鉛筆硬度がF以上の実施例 $2\sim6$ 及び $8\sim16$ のアクリル樹脂フィルム状物(A)は特に優れた耐擦傷性を示し、傷つきは見られなかった。さらに、巾20 mmの試験片をチャック間距離25 mm、速度50 mm/min、温度23 $\mathbb C$ の条件で、終点のチャック間距離が33 mmとなるように引張試験を行った後の試験片をJIS K7136(曇価の測定方法)の試験方法にて測定した値と、試験前の試験片をJIS K7136(曇価の測定方法)の試験方法にて測定した値との差が30 %以下である実施例 $1\sim16$ のアクリル樹脂フィルム状物(A)は耐成形白化性において木目および漆黒の何れにおいても問題が生じなかった。また、実施例 $1\sim16$ のアクリル樹脂フィルム状物(A)は耐成形白化性において木目および漆黒の何れにおいて

一方、鉛筆硬度が2 B未満である比較例1、4のアクリル樹脂フィルム状物(A)は、耐擦傷性に欠けるものであり、さらに、熱変形温度が7 9 $\mathbb C$ のため、耐熱老化性を満たすものではなく、工業的利用価値は低くなってしまう。上記引張試験の前後でそれぞれの試験片の曇価の値の差が3 0 %を超える比較例2、3 および5のアクリル樹脂フィルム状物(A)は、耐成形白化性を十分に満たすものとならず、木目・漆黒の両方において成形白化が目立ち、印刷柄が消えてしまう等、工業的利用を考えると価値は低くなる。

また、実施例 $1\sim16$ のいずれかのアクリル樹脂フィルム状物(A)を有する 実施例 $17\sim40$ の積層成型品は、いずれも良好な特性を有していた。

さらに、本発明の多層構造重合体(I)又は樹脂組成物(III)又は樹脂組成物(IV)を用いた実施例 $1\sim3$ 、5、 $7\sim9$ 、 $41\sim61$ のアクリル樹脂フィルム状物(A)及びそれを有する積層成型品は、いずれも良好な特性を有していた。

なお、実施例17~23では、従来公知のアクリル樹脂多層フィルムでは得る ことができなかった、木目印刷時の耐成形白化性、耐擦傷性、耐熱老化性に優れ たアクリル樹脂多層フィルムが得られた。

産業上の利用可能性

本発明のアクリル樹脂フィルム状物(A)を有する積層成形品は、特に車輌用 途、建材用途に適している。具体例としては、インストルメントパネル、コンソ ールボックス、メーターカバー、ドアロックペゼル、ステアリングホイール、パ ワーウィンドウスイッチベース、センタークラスター、ダッシュボード等の自動 車内装用途、ウェザーストリップ、バンパー、バンパーガード、サイドマッドガ ード、ボディーパネル、スポイラー、フロントグリル、ストラットマウント、ホ イールキャップ、センターピラー、ドアミラー、センターオーナメント、サイド モール、ドアモール、ウインドモール等、窓、ヘッドランプカバー、テールラン プカバー、風防部品等の自動車外装用途、AV機器や家具製品のフロントパネル 、ボタン、エンブレム、表面化粧材等の用途、携帯電話等のハウジング、表示窓 、ボタン等の用途、さらには家具用外装材用途、壁面、天井、床等の建築用内装 材用途、サイディング等の外壁、塀、屋根、門扉、破風板等の建築用外装材用途 、窓枠、扉、手すり、敷居、鴨居等の家具類の表面化粧材用途、各種ディスプレ イ、レンズ、ミラー、ゴーグル、窓ガラス等の光学部材用途、あるいは電車、航 空機、船舶等の自動車以外の各種乗り物の内外装用途、瓶、化粧品容器、小物入 れ等の各種包装容器および材料、景品や小物等の雑貨等のその他各種用途等に好 適に使用することができる。

請求の範囲

- 1. 下記の単量体成分から構成される、(1)最内層重合体(I-A)と、(2) ガラス転移温度が25~100℃であり、前記最内層重合体(I-A)とは 異なる組成の中間層重合体(I-B)と、(3)最外層重合体(I-C)と、が この順に積層されてなる多層構造重合体(I)。
 - (1) 最内層重合体(I-A)を構成するための単量体成分

(I-A1) アクリル酸アルキルエステル

50~99.9質量%

(I-A2) メタクリル酸アルキルエステル 0~49.9質量%

(I-A3) 共重合可能な二重結合を有する他の単量体 0~20質量%

(I-A4) 多官能性単量体

0~10質量%

(I-A5) グラフト交叉剤

0.1~10質量%

(2) 中間層重合体 (I-B) を構成するための単量体成分

(I-B1) アクリル酸アルキルエステル

9. 9~90質量%

(I-B2) メタクリル酸アルキルエステル 9.9~90質量%

(I-B3) 共重合可能な二重結合を有する他の単量体 0~20質量%

(I-B4) 多官能性単量体

0~10質量%

(I-B5) グラフト交叉剤

0.1~10質量%

(3) 最外層重合体 (I-C) を構成するための単量体成分

(I-C1) メタクリル酸アルキルエステル 80~100質量%

(I-C2) アクリル酸アルキルエステル

0~20質量%

(I-C3) 共重合可能な二重結合を有する他の単量体 0~20質量%

- 2. 請求項1記載の多層構造重合体(I)と、メタクリル酸アルキルエステル を主成分とする熱可塑性重合体(II)とを含有する樹脂組成物(III)。
- 3. 請求項1記載の多層構造重合体(I)または請求項2記載の樹脂組成物(III) 100質量部と、艶消し剤O.1~40質量部とを含有する樹脂組成物 (IV) 。

4. 請求項1記載の多層構造重合体(I)、請求項2記載の樹脂組成物(IIII)、及び、請求項3記載の樹脂組成物(IV)からなる群より選ばれる1つからなるアクリル樹脂フィルム状物(A)。

- 5. 巾20mmの試験片を初期のチャック間距離25mm、速度50mm/m in、温度23 $^{\circ}$ の条件で、終点のチャック間距離33mmとなるように引張試験を行った後の試験片をJIS K7136 (曇価の測定方法)の試験方法にて測定した値と、試験前の試験片をJIS K7136 (曇価の測定方法)の試験方法にて測定した値との差が30 $^{\circ}$ 以下であり、かつ、鉛筆硬度(JIS K5400に基づく測定)が2B以上であるアクリル樹脂フィルム状物(A)。
- 6. 少なくとも片面の60°表面光沢度が100%以下である請求項4または 5記載のアクリル樹脂フィルム状物(A)。
- 7. 熱変形温度 (ASTM D648に基づく測定) が80 \mathbb{C} 以上である請求 項4~6のいずれかに記載のアクリル樹脂フィルム状物 (A)。
- 8. さらに、少なくとも片面に加飾層を有する請求項4~7のいずれかに記載のアクリル樹脂フィルム状物(A)。
- 9. 請求項4~7のいずれかに記載のアクリル樹脂フィルム状物(A)を有するアクリル樹脂積層フィルムであって、さらに他のアクリル樹脂フィルム状物(A') またはフッ素樹脂フィルム状物(A'))とを有するアクリル樹脂積層フィルム。
- 10. さらに、少なくとも片面に加飾層を有する請求項9記載のアクリル樹脂積層フィルム。

11. 請求項4~7のいずれかに記載のアクリル樹脂フィルム状物 (A) または請求項9記載のアクリル樹脂積層フィルムと、側鎖にラジカル重合性不飽和基を有する熱可塑性樹脂 (z-1) および光重合開始剤 (z-2) を含む光硬化性樹脂組成物 (Z) 層とを有する光硬化性アクリル樹脂フィルム又はシート。

- 12. さらに、少なくとも片面に加飾層を有する請求項11記載の光硬化性アクリル樹脂フィルム又はシート。
- 13. 請求項4~7のいずれかに記載のアクリル樹脂フィルム状物(A)、請求項9記載のアクリル樹脂積層フィルム、及び、請求項11記載の光硬化性アクリル樹脂フィルム又はシートからなる群より選ばれる1つと、熱可塑性樹脂層(C)とを有する積層フィルムまたはシート。
- 14. 加飾層(B)をさらに有する請求項13記載の積層フィルムまたはシート。
- 15. 請求項13または14記載の積層フィルムまたはシートからなる建材用積層フィルムまたはシート。
- 16. 請求項4~8のいずれかに記載のアクリル樹脂フィルム状物(A)、請求項9または10記載のアクリル樹脂積層フィルム、請求項11または12記載の光硬化性アクリル樹脂フィルム又はシート、請求項13または14記載の積層フィルムまたはシート、及び、請求項15記載の建材用積層フィルムまたはシートからなる群より選ばれる1つを、基材(E)に積層したことを特徴とする積層成形品。
- 17. 請求項4~8のいずれかに記載のアクリル樹脂フィルム状物(A)、請求項9または10記載のアクリル樹脂積層フィルム、請求項11または12記載の光硬化性アクリル樹脂フィルム又はシート、請求項13または14記載の積層

フィルムまたはシート、及び、請求項15記載の建材用積層フィルムまたはシートからなる群より選ばれる1つに、射出成形金型内で真空成形または圧空成形を施し、その後、該射出成形金型内で前記基材 (E) となる樹脂を射出成形して一体化することにより得られる請求項16記載の積層成形品。

18. 請求項4~8のいずれかに記載のアクリル樹脂フィルム状物(A)、請求項9または10記載のアクリル樹脂積層フィルム、請求項11または12記載の光硬化性アクリル樹脂フィルム又はシート、請求項13または14記載の積層フィルムまたはシート、及び、請求項15記載の建材用積層フィルムまたはシートからなる群より選ばれる1つに、真空成形または圧空成形を施し、その後、射出成形金型内に挿入し、該射出成形金型内で前記基材(E)となる樹脂を射出成形することにより得られる請求項16記載の積層成形品。

International application No. PCT/JP03/16951

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ C08F265/04, C08J5/18, B32B27/30				
	o International Patent Classification (IPC) or to both n	ational classification and	IPC	
	S SEARCHED		<u> </u>	
Minimum d	ocumentation searched (classification system followed	by classification symbol	s)	•
	Int.Cl ⁷ C08F265/0, C08J5/18, B32B27/304			
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched				
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)				
C. DOCU	MENTS CONSIDERED TO BE RELEVANT			:
Category*	Citation of document, with indication, where ap	· -	t passages	Relevant to claim No.
A		2322251 A1 6348542 B		1–18
A	JP 2001-122932 A (Kuraray Co 08 May, 2001 (08.05.01), Full text (Family: none)	o., Ltd.),		1-18
A	JP 9-263614 A (Mitsubishi Ra 07 October, 1997 (07.10.97), Full text (Family: none)	yon Co., Ltd.),	1-18
× Furthe	er documents are listed in the continuation of Box C.	See patent family	y annex.	
* Special categories of cited documents: "A" document defining the general state of the art which is not		"T" later document pub	lished after the inter	mational filing date or e application but cited to
conside	considered to be of particular relevance		ciple or theory unde	rlying the invention
date "L" document which may throw doubts on priority claim(s) or which is		considered novel or	r cannot be consider	laimed invention cannot be ed to involve an inventive
cited to establish the publication date of another citation or other		"Y" document of partice	ment is taken alone ular relevance; the c	laimed invention cannot be
special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other		combined with one	or more other such	when the document is documents, such
"P" docume than the	ent published prior to the international filing date but later e priority date claimed	combination being	obvious to a person of the same patent fa	skilled in the art
Date of the actual completion of the international search 22 March, 2004 (22.03.04) Date of mailing of the international search 06 April, 2004 (06.04)			h report 04.04)	
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer		
Facsimile No.		Telephone No.		

International application No.
PCT/JP03/16951

C (Continua	tion). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	JP 5-140244 A (Mitsubishi Rayon Co., Ltd.), 08 June, 1993 (08.06.93), Full text (Family: none)	1-18
A	JP 2002-60439 A (Mitsubishi Rayon Co., Ltd.), 26 February, 2002 (26.02.02), Full text (Family: none)	1-18
A	JP 2002-86551 A (NISSHA Printing Co., Ltd.), 26 March, 2002 (26.03.02), Full text (Family: none)	1-18

Form PCT/ISA/210 (continuation of second sheet) (July 1998)

International application No.
PCT/JP03/16951

_		Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
Th	is inte	ernational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.		Claims Nos.:
ĺ		because they relate to subject matter not required to be searched by this Authority, namely:
ĺ		
2.	ш	Claims Nos.:
İ		because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
l		,
ļ		
3.		Claims Nos.:
J.		because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
_		Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
	The (I) (emational Searching Authority found multiple inventions in this international application, as follows: e matter common to claims 1-4 is a specified multilayer structure polymer defined in claim 1.
t	cechr	wever, claim 5 is not one wherein this common matter constitutes special inical features.
	Cla	aims 6-18 comprehend inventions defined quoting claim 5, and hence involve entions wherein the above common matter does not constitute special technical
£	feati	cures.
(con	nsequently, there is no matter common to all the claims 1-18. tinued to extra sheet)
1.	X.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
*-		claims.
2.		As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment
	,	of any additional fee.
3.		As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
	•	
4.		No required additional search fees were timely paid by the applicant. Consequently, this international search report is
4.		restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Ren	nark o	on Protest The additional search fees were accompanied by the applicant's protest.
		No protest accompanied the payment of additional search fees.

International application No.
PCT/JP03/16951

Continuation of Box No. II of continuation of first sheet(1) Since there exists no other common feature which can be considered as a special technical feature within the meaning of PCT Rule 13.2, second sentence, no technical relationship within the meaning of PCT Rule 13 can be found between the different inventions.

A. 発明の Int.	属する分野の分類(国際特許分類(I P C)) C 1 ⁷ C O 8 F 2 6 5 / O 4, C O 8 J 5,		37 10 9 3 1
B. 調査を行った分野 調査を行った最小限資料 (IPC)) Int. Cl ⁷ C08F265/0, C08J5/18, B32B27/304			
最小限資料以外	外の資料で調査を行った分野に含まれるもの 	,	
国際調査で使り	用した電子データベース (データベースの名称、	、調査に使用した用語)	
C. 関連する	ると認められる文献		-
引用文献の カテゴリー*	日田女神夕 エバーかっかごと問せよっ		関連する
A	引用文献名 及び一部の箇所が関連する。 JP 2001-181357 A (株式会社クラレ) EP 1092736 A1 & CA 2322251 A1 & (2001.07.03.全文献 &	請求の範囲の番号 1-18
A	JP 2001-122932 A (株式会社クラレ) リーなし)	2001.05.08,全文献(ファミ	1-18
A	JP 9-263614 A (三菱レイヨン株式会 ミリーなし)	社)1997.10.07,全文献(ファ	1–18
A	JP 5-140244 A (三菱レイヨン株式会	社)1993.06.08,全文献(ファ	1–18
x C欄の続き	さにも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。
* 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す) 「O」口頭による開示、使用、展示等に言及する文献「をして進歩性がないと考え「P」国際出願日前で、かつ優先権の主張の基礎となる出願「&」同一パテントファミリース		の日の後に公表された文献 「T」国際出願日又は優先日後に公表さ出願と矛盾するものではなく、多の理解のために引用するもの 「X」特に関連のある文献であって、当の新規性又は進歩性がないと考え 「Y」特に関連のある文献であって、当上の文献との、当業者にとって、まって進歩性がないと考えられる「&」同一パテントファミリー文献	された文献であって を明の原理又は理論 当該文献のみで発明 たられるもの 当該文献と他の1以 明である組合せに
国際調査を完了	22.03.2004	国際調査報告の発送日 06.4.	2004
郵便番号100-8915		特許庁審査官(権限のある職員) 中島 庸子 電話番号 03-3581-1101	4 J 8 4 1 6 内線 3 4 5 5

C(続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
	ミリーなし)	門がペン地区四ック番う
A	JP 2002-60439 A (三菱レイヨン株式会社) 2002.02.26,全文献 (ファミリーなし)	. 1–18
A	JP 2002-86551 A(日本写真印刷株式会社)2002.03.26,全文献(ファミリーなし)	1–18
		·

第Ⅰ欄	請求の範囲の一部の調査ができないときの意見(第1ページの2の続き)
法第8条 成しなか	R第3項(PCT17条(2)(a))の規定により、この国際調査報告は次の理由により競技の範囲の一部について作
1.	請求の範囲は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、
2.	請求の範囲 は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、
з. 🗌	請求の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。
第Ⅱ欄	発明の単一性が欠如しているときの意見 (第1ページの3の続き)
次に述	べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
いしまらしまの	京水の範囲1-4に共通の事項は、請求の範囲1に記載される特定の多層構造重合体)である。 かし、請求の範囲5はこの共通事項を特別な技術的特徴とするものではない。 た請求の範囲6-18は、請求の範囲5を引用して特定する発明を包含するものである。 、上記の共通事項を特別な技術的特徴とするものではない発明を含んでいる。 たがって、請求の範囲1-18全てに共通の事項はない。 た、PCT規則13.2の第2文の意味において特別な技術的特徴と考えられる他の共事項も存在しないので、それらの相違する発明の間にPCT規則13の意味における技 な関連を見いだすことはできない。
1. x	出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。
2.	追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追 加調査手数料の納付を求めなかった。
3. []	出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
4.	出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。
追加調査	手数料の異議の申立てに関する注意 追加調査手数料の納付と共に出願人から異議申立てがあった。
N X	追加調査手数料の納付と共に出願人から異議申立てがなかった。