IIIT-Bangalore, Mathematics for ML (GEN 512) Assignment Set 2

(Orthogonality)

03-07-2018

- 1. The equation x 3y 4z = 0 describes a plane P in \mathbb{R}^3 (actually a subspace).
 - (a) The plane P is the nullspace of what 1 by 3 matrix A?
 - (b) Find a basis s_1 , s_2 of special solutions of x 3y 4z = 0 (these would be the columns of the nullspace matrix N).
 - (c) Also find a basis for the line P^{\perp} that is perpendicular to P.
 - (d) Split v = (6,4,5) into its nullspace component v_n in P and its row space component v_r in P^{\perp} .
- 2. If **P** is the plane of vectors in \mathbb{R}^4 satisfying $x_1 + x_2 + x_3 + x_4 = 0$, write a basis for \mathbf{P}^{\perp} . Construct a matrix that has **P** as its nullspace.
- 3. In \mathbb{R}^m , suppose I give you b and p, and p is a combination of a_1, \ldots, a_n . How would you test to see if p is the projection of b onto the subspace spanned by the a's?
- 4. Suppose A is the 4 by 4 identity matrix with its last column removed. A is 4 by 3. Project $\mathbf{b} = (1, 2, 3, 4)$ onto the column space of A. What shape is the projection matrix P and what is P?
- 5. Find the parabola $C + Dt + Et^2$ that comes closest (least square error) to the values $\mathbf{b} = (0,0,1,0,0)$ at the times $\mathbf{t} = -2,-1,0,1,2$. First write down the five equations $A\mathbf{x} = \mathbf{b}$ in three unknowns $\mathbf{x} = (C,D,E)$ for a parabola to go through the five points. No solution because no such parabola exists. Solve $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$.
- 6. Find the plane that gives the best fit to the four values $\mathbf{b} = (0, 1, 3, 4)$ at the corners (1,0) and (0,1) and (-1,0) and (0,-1) of a square. The equations C + Dx + Ey = b at those four points are $A\mathbf{x} = \mathbf{b}$ with three unknowns $\mathbf{x} = (C, D, E)$. What is A? At the center (0,0) of the square, show that C + Dx + Ey = average of the b's.
- 7. Find q_1, q_2, q_3 (orthonormal) as combinations of a, b, c (independent columns). Then write A as QR:

$$A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 0 & 5 \\ 0 & 3 & 6 \end{bmatrix}.$$

8. (a) Find a basis for the subspace S in \mathbb{R}^4 spanned by all solutions of $x_1 + x_2 + x_3 - x_4 = 0$.

1

- (b) Find a basis for the orthogonal complement S^{\perp} .
- (c) Find $\mathbf{b_1}$ in \mathbf{S} and $\mathbf{b_2}$ in \mathbf{S}^{\perp} so that $\mathbf{b_1} + \mathbf{b_2} = \mathbf{b} = (1, 1, 1, 1)$.