Task 1 and Task 2 (Done by Dhyanav)

Task 1

The CIFAR10 dataset is already clean, shuffled and neatly labelled. So, I directly moved to data augmentation. I divided 60,000 images of CIFAR-10 into 6 batches of 10,000 each. They were used for flipping, rotating, cropping, adding noise, cut-out and mixup.

Cut-out: I randomly cut a square of 6 by 6 from the image. Using this technique helps the model learn better since it tries to identify an image without a certain part. It reduces dependence on specific parts of the image. I decided to use 6 by 6 after some experimentation. I feel it was in the middle, not too small to be practically ineffective and not too large to remove all key features entirely.

Mixup: It selects a random image and imposes it on chosen images. The formula used is Xnew = alpha*X1 + (1-alpha)*X2

Here, Xnew is the final result, X1 is the base image and X2 is the image that is being imposed. After some experimentation, I used alpha = 0.75.

Then, I combined it into the original dataset, doubling its size. Then, I split data. 95,000 images for training, 10,000 for validation and 15,000 for testing.

Now, I moved to task 2

Task 2

ANN:

I started with 2 hidden layers, but gradually increased the layers so it was computationally viable. Finally, there are 4 layers. I also doubled the number of neurons in each layer and stuck with it since it increased accuracy without overfitting.

I trained for 15 epochs. Since, loss is steadily decreasing, implementing early stopping was not useful. Increasing epochs led to an increase in difference between training accuracy and test accuracy. I finally decided to use 15 epochs since the difference was only 5%.

```
Epoch 1/20
743/743 -
                             10s 8ms/step - accuracy: 0.2536 - loss: 2.0862 - val_accuracy: 0.3981 - val_loss: 1.67
Epoch 2/20
743/743
                             4s 5ms/step - accuracy: 0.3936 - loss: 1.6859 - val_accuracy: 0.4287 - val_loss: 1.602
Epoch 3/20
743/743
                             4s 5ms/step - accuracy: 0.4359 - loss: 1.5695 - val_accuracy: 0.4551 - val_loss: 1.529
Epoch 4/20
743/743
                             4s 5ms/step - accuracy: 0.4602 - loss: 1.5097 - val_accuracy: 0.4736 - val_loss: 1.474
Epoch 5/20
                             5s 5ms/step - accuracy: 0.4803 - loss: 1.4559 - val_accuracy: 0.4801 - val_loss: 1.470
743/743 -
Epoch 6/20
                             4s 5ms/step - accuracy: 0.4901 - loss: 1.4178 - val_accuracy: 0.4946 - val_loss: 1.393
743/743
Epoch 7/20
743/743
                             4s 5ms/step - accuracy: 0.5117 - loss: 1.3672 - val_accuracy: 0.5313 - val_loss: 1.317
Epoch 8/20
743/743
                             4s 5ms/step - accuracy: 0.5262 - loss: 1.3283 - val_accuracy: 0.5214 - val_loss: 1.360
Epoch 9/20
743/743
                             5s 5ms/step - accuracy: 0.5345 - loss: 1.2936 - val_accuracy: 0.5600 - val_loss: 1.248
Epoch 10/20
743/743
                             5s 5ms/step - accuracy: 0.5547 - loss: 1.2391 - val_accuracy: 0.5637 - val_loss: 1.221
Epoch 11/20
743/743
                             5s 5ms/step - accuracy: 0.5720 - loss: 1.1946 - val_accuracy: 0.5372 - val_loss: 1.284
Epoch 12/20
743/743
                             4s 5ms/step - accuracy: 0.5868 - loss: 1.1579 - val_accuracy: 0.5885 - val_loss: 1.167
Epoch 13/20
743/743
                             4s 5ms/step - accuracy: 0.6027 - loss: 1.1118 - val_accuracy: 0.6075 - val_loss: 1.094
Epoch 14/20
743/743 —
                             5s 5ms/step - accuracy: 0.6242 - loss: 1.0528 - val_accuracy: 0.6281 - val_loss: 1.035
Epoch 15/20
                             5s 5ms/step - accuracy: 0.6451 - loss: 0.9930 - val_accuracy: 0.6412 - val_loss: 0.996
743/743
Epoch 16/20
743/743
                             5s 5ms/step - accuracy: 0.6584 - loss: 0.9508 - val_accuracy: 0.6611 - val_loss: 0.949
Epoch 17/20
743/743
                             4s 5ms/step - accuracy: 0.6805 - loss: 0.9027 - val accuracy: 0.6784 - val loss: 0.895
Epoch 18/20
                             4s 5ms/step - accuracy: 0.6954 - loss: 0.8527 - val accuracy: 0.6981 - val loss: 0.8429
743/743
Epoch 19/20
                             5s 5ms/step - accuracy: 0.7094 - loss: 0.8127 - val_accuracy: 0.7044 - val_loss: 0.819
743/743
Epoch 20/20
                             5s 5ms/step - accuracy: 0.7290 - loss: 0.7683 - val_accuracy: 0.7202 - val_loss: 0.769
743/743
                             2s 3ms/step - accuracy: 0.6772 - loss: 0.9278
469/469
[1.1586171388626099, 0.6033333539962769]
```


CNN:

I used a similar process as in ANN. Gradually increasing the number of layers and number of neurons in each layer till I was satisfied with the result. I tried implementing early stopping but it was useless as only the last three layers were showing signs of saturation and early stopping evaluates accuracy of three layers before stopping training.

In both, I used ADAM optimiser, so learning rate was not a part of experimentation as ADAM adjusts learning rate accordingly. I increased batch size from 32 to 256 to speed up training while also maintaining accuracy. (After 256, accuracy started to drop.)

```
Epoch 1/15
372/372 —
                             22s 36ms/step - accuracy: 0.3192 - loss: 1.8257 - val_accuracy: 0.5380 - val_loss: 1.2884
Epoch 2/15
                             6s 17ms/step - accuracy: 0.5547 - loss: 1.2457 - val_accuracy: 0.5978 - val_loss: 1.1342
372/372
Epoch 3/15
                             9s 15ms/step - accuracy: 0.6289 - loss: 1.0507 - val_accuracy: 0.6544 - val_loss: 0.9589
372/372
Epoch 4/15
                             5s 14ms/step - accuracy: 0.6856 - loss: 0.8931 - val_accuracy: 0.7445 - val_loss: 0.7224
372/372
Epoch 5/15
                             11s 17ms/step - accuracy: 0.7452 - loss: 0.7242 - val_accuracy: 0.7935 - val_loss: 0.5991
372/372
Epoch 6/15
                             6s 15ms/step - accuracy: 0.8011 - loss: 0.5730 - val_accuracy: 0.8386 - val_loss: 0.4643
372/372
Epoch 7/15
                             6s 15ms/step - accuracy: 0.8474 - loss: 0.4388 - val_accuracy: 0.8813 - val_loss: 0.3407
372/372
Epoch 8/15
372/372
                             10s 14ms/step - accuracy: 0.8931 - loss: 0.3132 - val_accuracy: 0.9268 - val_loss: 0.2155
Epoch 9/15
                             10s 14ms/step - accuracy: 0.9237 - loss: 0.2235 - val_accuracy: 0.9379 - val_loss: 0.1811
372/372
Epoch 10/15
                             10s 14ms/step - accuracy: 0.9434 - loss: 0.1683 - val_accuracy: 0.9467 - val_loss: 0.1558
372/372
Epoch 11/15
                             10s 14ms/step - accuracy: 0.9570 - loss: 0.1266 - val_accuracy: 0.9681 - val_loss: 0.0932
372/372
Epoch 12/15
                             5s 14ms/step - accuracy: 0.9616 - loss: 0.1156 - val_accuracy: 0.9552 - val_loss: 0.1277
372/372
Epoch 13/15
372/372
                             10s 14ms/step - accuracy: 0.9689 - loss: 0.0928 - val_accuracy: 0.9745 - val_loss: 0.0739
Epoch 14/15
372/372
                             10s 14ms/step - accuracy: 0.9655 - loss: 0.1021 - val_accuracy: 0.9640 - val_loss: 0.1051
Epoch 15/15
                             10s 14ms/step - accuracy: 0.9759 - loss: 0.0698 - val_accuracy: 0.9692 - val_loss: 0.0885
372/372
469/469
                             2s 3ms/step
                                           accuracy: 0.9271 - loss: 0.2719
[0.5354151129722595, 0.8613333106040955]
```


I also trained the same models, ANN and CNN on raw CIFAR10 data and the difference in accuracy was significant.

```
Epoch 1/20
391/391 -
                                 6s 8ms/step - accuracy: 0.1764 - loss: 192.5728
Epoch 2/20
391/391
                                 2s 4ms/step - accuracy: 0.3281 - loss: 1.9206
Epoch 3/20
391/391
                                 2s 4ms/step - accuracy: 0.3685 - loss: 1.7916
Epoch 4/20
391/391
                                 3s 4ms/step - accuracy: 0.4040 - loss: 1.6968
Epoch 5/20
391/391 —
                                 3s 4ms/step - accuracy: 0.4141 - loss: 1.6505
Epoch 6/20
391/391 —
                                 3s 5ms/step - accuracy: 0.4289 - loss: 1.6159
Epoch 7/20
391/391
                                 2s 4ms/step - accuracy: 0.4376 - loss: 1.5935
Epoch 8/20
391/391
                                 3s 4ms/step - accuracy: 0.4269 - loss: 1.6178
Epoch 9/20
391/391
                                 2s 4ms/step - accuracy: 0.4427 - loss: 1.5682
Epoch 10/20
391/391
                                 2s 4ms/step - accuracy: 0.4447 - loss: 1.5621
Epoch 11/20
391/391 —
                                 2s 4ms/step - accuracy: 0.4545 - loss: 1.5468
Epoch 12/20
391/391
                                 3s 5ms/step - accuracy: 0.4561 - loss: 1.5256
Epoch 13/20
391/391
                                 2s 4ms/step - accuracy: 0.4631 - loss: 1.5007
Epoch 14/20
391/391
                                 3s 5ms/step - accuracy: 0.4721 - loss: 1.4838
Epoch 15/20
391/391
                                 3s 4ms/step - accuracy: 0.4644 - loss: 1.4894
Epoch 16/20
391/391
                                 2s 4ms/step - accuracy: 0.4696 - loss: 1.4905
Epoch 17/20
391/391 —
                                 3s 5ms/step - accuracy: 0.4823 - loss: 1.4414
Epoch 18/20
391/391
                                 2s 4ms/step - accuracy: 0.4845 - loss: 1.4481
Epoch 19/20
391/391
                                 2s 4ms/step - accuracy: 0.4853 - loss: 1.4352
Epoch 20/20
391/391 ______ 3s 4ms/step - accuracy: 0.4903 - loss: 1.4312
313/313 _____ 2s 3ms/step - accuracy: 0.4469 - loss: 1.5485
[1.5541332960128784, 0.44449999928474426]
```

Epoch 1/15						
196/196 —————	9s	22ms/step -	accuracy:	0.1260 -	loss:	5.1147
Epoch 2/15						
196/196 —————	7s	13ms/step -	accuracy:	0.2919 -	loss:	1.8043
Epoch 3/15						
196/196	5s	13ms/step -	accuracy:	0.4495 -	loss:	1.4742
Epoch 4/15	-	12 (-+		0 5400		4 2520
196/196 ——————	25	12ms/step -	accuracy:	0.5496 -	LOSS:	1.2520
Epoch 5/15 196/196	20	12mc/cton	200112011	0 6000	10001	1 0007
Epoch 6/15	25	121115/51ch -	accuracy.	0.0090 -	1055.	1.090/
196/196	36	13ms/sten -	accuracy:	0.6700 -	10551	0.9320
Epoch 7/15	-	1311137 3 6 6 5	uccurucy i	010,00		013320
196/196	5s	13ms/step -	accuracy:	0.7162 -	loss:	0.7970
Epoch 8/15						
196/196 —————	2s	12ms/step -	accuracy:	0.7590 -	loss:	0.6782
Epoch 9/15						
196/196 —————	3s	13ms/step -	accuracy:	0.8057 -	loss:	0.5491
Epoch 10/15						
196/196	3s	13ms/step -	accuracy:	0.8435 -	loss:	0.4444
Epoch 11/15						
196/196 —————	3s	13ms/step -	accuracy:	0.8769 -	loss:	0.3582
Epoch 12/15	2-	12 /		0 0071	1	a 2002
196/196 ————————————————————————————————————	35	isms/step -	accuracy:	0.89/1 -	LOSS:	0.2993
196/196	3.	12mc/ctan -	accuracy	0 0296 -	10001	0 2007
Epoch 14/15	35	131115/Steb -	accuracy:	0.9200 -	10551	0.200/
196/196	36	13ms/sten -	accuracy:	0.9367 -	10551	0.1879
Epoch 15/15	-	15/15/-3 сср	accaracy.	013307		0110/3
196/196	2s	13ms/step -	accuracy:	0.9466 -	loss:	0.1638
313/313		4ms/step -				
[1.766332983970642, 0.634100						

On the CNN model, I implemented one-pixel attack. THis is a type of attack where the attacker randomly selects a pixel and manipulates it. It is known to reduce accuracy of the model by a significant margin. But since I implemented cutout in data augmentation, model accuracy only dropped from 91.24% to 83.34

```
one_pixel_attack(test_images, test_labels, model_cnn)
0.843
```

Task 3-6(Sumit and Shikhar) AlexNet, LeNet, VGG16(Sumit)

LeNet: ~60K parameters. A shallow network with 2 convolutional layers.

Epochs-15 Batch Size-128

LeNet - Classif	ication Rep	ort		
р	recision	recall	f1-score	support
0	0.74	0.68	0.71	1493
1	0.88	0.58	0.70	1488
2	0.55	0.52	0.53	1479
3	0.49	0.44	0.46	1519
4	0.49	0.73	0.59	1475
5	0.54	0.56	0.55	1529
6	0.61	0.77	0.68	1488
7	0.80	0.60	0.68	1485
8	0.79	0.75	0.77	1532
9	0.69	0.73	0.71	1512
accuracy			0.64	15000
macro avg	0.66	0.64	0.64	15000
weighted avg	0.66	0.64	0.64	15000
ROC AUC Score (OvA): 0.940	01		

AlexNet: ~60M parameters. A deeper architecture with 5 convolutional layers. It handles larger input variations better.

Epochs: Initially tried 15 but it was taking much longer than LeNet so switched to 5.

Batch Size-128

AlexNet – Clas	sification	Report		
	precision	recall	f1-score	support
0	0.83	0.74	0.78	1493
1	0.97	0.76	0.85	1488
2	0.82	0.53	0.65	1479
3	0.61	0.58	0.59	1519
4	0.52	0.89	0.66	1475
5	0.78	0.60	0.68	1529
6	0.74	0.82	0.78	1488
7	0.82	0.79	0.80	1485
8	0.80	0.89	0.84	1532
9	0.80	0.88	0.84	1512
accuracy			0.75	15000
macro avg	0.77	0.75	0.75	15000
weighted avg	0.77	0.75	0.75	15000
ROC AUC Score	(OvA): 0.97	'06		

VGG16: ~138M parameters. A very deep model with 13 convolutional layers.

Epochs: 5(same problem as AlexNet)

Batch Size: 128

VGG16 - Class:	ification Re	nort		
V0010 C tu35.	precision	recall	f1-score	support
0	0.74	0.86	0.79	1493
1	0.96	0.77	0.86	1488
2	0.69	0.72	0.70	1479
3	0.58	0.69	0.63	1519
4	0.73	0.74	0.73	1475
5	0.75	0.68	0.71	1529
6	0.86	0.75	0.80	1488
7	0.84	0.82	0.83	1485
8	0.87	0.85	0.86	1532
9	0.83	0.89	0.86	1512
accuracy			0.78	15000
macro avg	0.79	0.78	0.78	15000
weighted avg	0.79	0.78	0.78	15000
ROC AUC Score	(OvA): 0.97	746		

	VGG16 - Confusion Matrix												
	0 -	1279	5	55	35	17	4	5	10	60	23		
	٦-	43	1147	9	19	1	6	8	4	49	202		- 1200
	7 -	98	3	1064	71	95	55	43	36	10	4		- 1000
	m -	29	1	81		71	177	46	34	20	10		
e	4 -	28	1	112	91	1090	27	52	60	7	7		- 800
True	٥ -	10	3	52	268	66	1035	19	58	12	6		- 600
	9 -	7	1	103	164	60	27	1112	3	8	3		
	7 -	25	2	49	54	77	40	4		4	8		- 400
	ω -	136	7	14	24	18	2	5	3	1302	21		- 200
	ი -	70	20	1	24	4	2	5	19	19	1348		
		Ó	i	2	3	4 Predi	5 icted	6	7	8	9		

Model	Accuracy	Precision	Recall	F1-score	ROC-AUC(OvA)
LeNet	0.64	0.66	0.64	0.64	0.9401
AlexNet	0.75	0.77	0.75	0.75	0.9706
VGG16	0.78	0.79	0.78	0.78	0.9746

(here precision, recall, and f1 score are the macro avg)

Factor	LeNet	AlexNet	VGG16
Overfitting	Overfitting High		Low
Training Time	Training Time Low		High
Generalization	Generalization Poor		Good

Conclusion:

- -VGG16 gave the best results in terms of accuracy, F1-score, and AUC.
- -LeNet was unsuitable for CIFAR-10 due to its simplicity.
- -AlexNet was a good balance between complexity and performance.

TRANSFER LEARNING IMPLEMENTATION

VGG 19, ResNet50, ResNet152 (Shikhar)

VGG19 -144M Parameters Has Three more convolution layers than VGG16. Epochs - 5

Resnet50 and 152

Resnets employ something called skip connections, which makes some neurons bypass some layers in the middle, minimising the exploding gradient problem and allowing deeper richer feature extraction.

While they are generally better than VGG, for a problem simple like MNIST, it is **overkill** and leads to lesser accuracy than VGG and simpler models.

ResNet50 - Cla	essification	Report			ResNet152 - C	lassificatio	n Report		
Resileeso eta	precision		f1-score	support		precision	recall	f1-score	support
0	0.52	0.27	0.36	1493	0	0.28	0.22	0.24	1493
1	0.44	0.34	0.38	1488	1	0.25	0.34	0.28	1488
2	0.45	0.04	0.08	1479	2	0.18	0.42	0.25	1479
3	0.25	0.27	0.26	1519	3	0.12	0.00	0.01	1519
4	0.26	0.48	0.34	1475	4	0.19	0.42	0.26	1475
5	0.44	0.25	0.32	1529	5	0.29	0.21	0.24	1529
6	0.35	0.41	0.38	1488	6	0.27	0.23	0.25	1488
7	0.29	0.63	0.40	1485	7	0.21	0.08	0.11	1485
8	0.42	0.48	0.45	1532	8	0.36	0.21	0.26	1532
9	0.48	0.29	0.36	1512	9	0.23	0.19	0.21	1512
accuracy			0.35	15000	accuracy			0.23	15000
macro avg	0.39	0.35	0.33	15000	macro avg	0.24	0.23	0.23	15000
weighted avg	0.39	0.35	0.33	15000	weighted avg				
					weighted avg	0.24	0.23	0.21	15000
ROC AUC Score	(OvA): 0.80	30			ROC AUC Score	(OvA): 0.69	30		

Also, another conclusion that we can take from this is, that training models from scratch would always lead to better results than transfer learning since we lose feature extraction in compensation of computation cost.

We could also train for more epochs to further illustrate benefits of transfer learning.