

threshold vapor

Home

Biography

E-journal

Info

Publications

Group

Department

Notre Dame

NMR

Webfile

InsideND

Contact me

Please sent an Email.

- 1. Solvent Polarity Table
- 2. pKa Compilation
- 3. NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities

Properties of Organic Solvents

The values in the table below except as noted have been extracted from online and hardbound compilations. Values for relative polarity, eluant strength, threshold limits and vapor pressure have been extracted from: Christian Reichardt, Solvents and Solvent Effects in Organic Chemistry, Wiley-VCH Publishers, 3rd ed., 2003. For Spectra of Solvents, jump to the bottom of this p http://murov.info/webercises.htm age. For an Organic Chemistry Directory, see: http://murov.info/orgchem.htm.

For a Chemistry Directory, see: http://murov.info/webercises.htm

For much more complete information on physical and safety properties of solvents, please go to:

http://www.knovel.com/web/portal/browse/display? EXT KNOVEL DISPLAY bookid=761

<a href="http://chem.sis.nlm.nih.gov/chem.idplus/chem.

The tables below were posted (10/23/98) and revised (07/28/09) and updated (04/10/10) by Steve Murov, Professor Emeritus of Chemistry.

formula boiling melting density solubility relative

Table 1 arranged alphabetically, Table 2 arranged according to increasing polarity

TABLE 1

Solvent

		point (°C)	point (°C)	(g/mL)	in H ₂ O ¹ (g/100g)	polarity ²	strength3	limits4 (ppm)	pressur 20°C (hPa)
acetic acid	$C_2H_4O_2$	118	16.6	1.049	M	0.648	>1	10	15.3
acetone	C_3H_6O	56.2	-94.3	0.786	M	0.355	0.56	500	240
acetonitrile	C_2H_3N	81.6	-46	0.786	M	0.460	0.65	20	97
acetyl acetone	$C_5H_8O_2$	140.4	-23	0.975	16	0.571			
2-aminoethanol	C_2H_7NO	170.9	10.5	1.018	M	0.651		3	0.53
aniline	C_6H_7N	184.4	-6.0	1.022	3.4	0.420		2	0.4
anisole	C ₇ H ₈ O	153.7	-37.5	0.996	0.10	0.198			
benzene	C_6H_6	80.1	5.5	0.879	0.18	0.111	0.32	0.5	101
benzonitrile	C_7H_5N	205	-13	0.996	0.2	0.333		10	12
benzyl alcohol	C ₇ H ₈ O	205.4	-15.3	1.042	3.5	0.608			
1-butanol	C ₄ H ₁₀ O	117.6	-89.5	0.81	7.7	0.586		20	6.3
2-butanol	C ₄ H ₁₀ O	99.5	-114.7	0.808	18.1	0.506		100	
i-butanol	$C_4H_{10}O$	107.9	-108.2	0.803	8.5	0.552			
2-butanone	C_4H_8O	79.6	-86.3	0.805	25.6	0.327	0.51	200	105
t-butyl alcohol	$C_4H_{10}O$	82.2	25.5	0.786	M	0.389		100	41
carbon disulfide	CS ₂	46.3	-111.6	1.263	0.2	0.065	0.15	10	400
carbon tetrachloride	CCI ₄	76.7	-22.4	1.594	0.08	0.052	0.18	5	120
chlorobenzene	C ₆ H ₅ Cl	132	-45.6	1.106	0.05	0.188	0.30	10	12
chloroform	CHCl ₃	61.2	-63.5	1.498	0.8	0.259		10	210
cyclohexane	C_6H_{12}	80.7	6.6	0.779	0.005	0.006	0.04	100	104
cyclohexanol	$C_6H_{12}O$	161.1	25.2	0.962	4.2	0.509		50	1.2
cyclohexanone	$C_6H_{10}O$	155.6	-16.4	0.948	2.3	0.281		25	5
di-n-butylphthalate	$C_{16}H_{22}O_4$	340	-35	1.049	0.0011	0.272			
1,1-dichloroethane	$C_2H_4CI_2$	57.3	-97.0	1.176	0.5	0.269		100	240
diethylene glycol	$C_4H_{10}O_3$	245	-10	1.118	M	0.713			0.027

diglyme	$C_6H_{14}O_3$	162	-64	0.945	M	0.244			
dimethoxyethane (glyme)	$C_4H_{10}O_2$	85	-58	0.868	M	0.231			
N,N-dimethylaniline	C ₈ H ₁₁ N	194.2	2.4	0.956	0.14	0.179			
dimethylformamide (DMF)	C ₃ H ₇ NO	153	-61	0.944	M	0.386		10	3.5
dimethylphthalate	C ₁₀ H ₁₀ O ₄	283.8	1	1.190	0.43	0.309			
dimethylsulfoxide (DMSO)	C ₂ H ₆ OS	189	18.4	1.092	M	0.444	0.75		
dioxane	$C_4H_8O_2$	101.1	11.8	1.033	M	0.164	0.56	20	41
ethanol	C ₂ H ₆ O	78.5	-114.1	0.789	M	0.654	0.88	100	59
ether	C ₄ H ₁₀ O	34.6	-116.3	0.713	7.5	0.117	0.38	400	587
ethyl acetate	$C_4H_8O_2$	77	-83.6	0.894	8.7	0.228	0.58	400	97
ethyl acetoacetate	$C_6H_{10}O_3$	180.4	-80	1.028	2.9	0.577			
ethyl benzoate	$C_9H_{10}O_2$	213	-34.6	1.047	0.07	0.228			
ethylene glycol	$C_2H_6O_2$	197	-13	1.115	M	0.790	1.11		
glycerin	$C_3H_8O_3$	290	17.8	1.261	M	0.812			
heptane	C ₇ H ₁₆	98	-90.6	0.684	0.0003	0.012		400	48
1-heptanol	$C_7H_{16}O$	176.4	-35	0.819	0.17	0.549			
hexane	C_6H_{14}	69	-95	0.655	0.0014	0.009	0.01	50	160
1-hexanol	C ₆ H ₁₄ O	158	-46.7	0.814	0.59	0.559			
methanol	CH ₄ O	64.6	-98	0.791	M	0.762	0.95	200	128
methyl acetate	$C_3H_6O_2$	56.9	-98.1	0.933	24.4	0.253		200	220
methyl <i>t-</i> butyl ether (MTBE)	C ₅ H ₁₂ O	55.2	-109	0.741	4.8	0.124	0.20		
methylene chloride	$\mathrm{CH_2Cl_2}$	39.8	-96.7	1.326	1.32	0.309	0.42	50	475
1-octanol	$C_8H_{18}O$	194.4	-15	0.827	0.096	0.537			
pentane	C_5H_{12}	36.1	-129.7	0.626	0.004	0.009	0.00	600	573
1-pentanol	$C_5H_{12}O$	138.0	-78.2	0.814	2.2	0.568			
2-pentanol	$C_5H_{12}O$	119.0	-50	0.810	4.5	0.488			
3-pentanol	$C_5H_{12}O$	115.3	-8	0.821	5.1	0.463			
2-pentanone	$C_5H_{10}O$	102.3	-76.9	0.809	4.3	0.321			
3-pentanone	$C_5H_{12}O$	101.7	-39.8	0.814	3.4	0.265		200	
1-propanol	C_3H_8O	97	-126	0.803	M	0.617	0.82		
2-propanol	C ₃ H ₈ O	82.4	-88.5	0.785	M	0.546	0.82	400	44
pyridine	C_5H_5N	115.5	-42	0.982	M	0.302	0.71	5	20
tetrahydrofuran(THF)	C ₄ H ₈ O	66	-108.4	0.886	30	0.207	0.57	200	200
toluene	C ₇ H ₈	110.6	-93	0.867	0.05	0.099	0.29	50	29
water	H ₂ O	100.00	0.00	0.998	M	1.000	>>1		
water, heavy	D ₂ O	101.3	4	1.107	M	0.991			
p-xylene	C ₈ H ₁₀	138.3	13.3	0.861	0.02	0.074	0.26	100	15

¹ M = miscible.

TABLE 2

Solvent	formula	boiling point (°C)	melting point (°C)	density (g/mL)	solubility in H ₂ O ¹ (g/100g)	relative polarity ²	eluant strength3	threshold limits4 (ppm)	vapor pressur 20°C (hPa)
cyclohexane	C ₆ H ₁₂	80.7	6.6	0.779	0.005	0.006	0.04	100	104
pentane	C ₅ H ₁₂	36.1	-129.7	0.626	0.0039	0.009	0.00	600	573
hexane	C ₆ H ₁₄	69	-95	0.655	0.0014	0.009	0.01	50	160
heptane	C ₇ H ₁₆	98	-90.6	0.684	0.0003	0.012		400	48
carbon tetrachloride	CCI ₄	76.7	-22.4	1.594	0.08	0.052	0.18	5	120

² The values for relative polarity are normalized from measurements of solvent shifts of absorption spectra and were extracted from Christian Reichardt, Solvents and Solvent Effects in Organic Chemistry, Wiley-VCH Publishers, 3rd ed., 2003.

³ Snyder's empirical eluant strength parameter for alumina. Extracted from Reichardt, page 495.

⁴ Threshold limits for exposure. Extracted from Reichardt, pages 501-502.

carbon disulfide	CS ₂	46.3	-111.6	1.263	0.2	0.065	0.15	10	400
<i>p</i> -xylene	C ₈ H ₁₀	138.3	13.3	0.861	0.02	0.074	0.26	100	15
toluene	C ₇ H ₈	110.6	-93	0.867	0.05	0.099	0.24	50	29
benzene	C_6H_6	80.1	5.5	0.879	0.18	0.111	0.32	0.5	101
ether	C ₄ H ₁₀ O	34.6	-116.3	0.713	7.5	0.117	0.38	400	587
methyl <i>t</i> -butyl ether (MTBE)	C ₅ H ₁₂ O	55.2	-109	0.741	4.8	0.124	0.20		
diethylamine	$C_4H_{11}N$	56.3	-48	0.706	M	0.145	0.63	5	260
dioxane	$C_4H_8O_2$	101.1	11.8	1.033	M	0.164	0.56	20	41
N,N-dimethylaniline	$C_8H_{11}N$	194.2	2.4	0.956	0.14	0.179			
chlorobenzene	C_6H_5CI	132	-45.6	1.106	0.05	0.188	0.30	10	12
anisole	C ₇ H ₈ O	153.7	-37.5	0.996	0.10	0.198			
tetrahy drofuran (THF)	C ₄ H ₈ O	66	-108.4	0.886	30	0.207	0.57	200	200
ethyl acetate	$C_4H_8O_2$	77	-83.6	0.894	8.7	0.228	0.57	400	97
ethyl benzoate	$C_9H_{10}O_2$	213	-34.6	1.047	0.07	0.228			
dimethoxyethane (glyme)	C ₄ H ₁₀ O ₂	85	-58	0.868	M	0.231			
diglyme	$C_6H_{14}O_3$	162	-64	0.945	M	0.244			
methyl acetate	$C_3H_6O_2$	56.9	-98.1	0.933	24.4	0.253		200	220
chloroform	CHCl ₃	61.2	-63.5	1.498	0.8	0.259	0.40	10	210
3-pentanone	C ₅ H ₁₂ O	101.7	-39.8	0.814	3.4	0.265		200	
1,1-dichloroethane	$C_2H_4CI_2$	57.3	-97.0	1.176	0.5	0.269		100	240
di-n-butyl phthalate	C ₁₆ H ₂₂ O ₄	340	-35	1.049	0.0011	0.272			
cyclohexanone	C ₆ H ₁₀ O	155.6	-16.4	0.948	2.3	0.281		25	5
pyridine	C_5H_5N	115.5	-42	0.982	M	0.302	0.71	5	20
dimethylphthalate	C ₁₀ H ₁₀ O ₄	283.8	1	1.190	0.43	0.309			
methylene chloride	CH ₂ Cl ₂	39.8	-96.7	1.326	1.32	0.309	0.42	50	475
2-pentanone	C ₅ H ₁₀ O	102.3	-76.9	0.809	4.3	0.321			
2-butanone	C ₄ H ₈ O	79.6	-86.3	0.805	25.6	0.327	0.51	200	105
1,2-dichloroethane	C ₂ H ₄ Cl ₂	83.5	-35.4	1.235	0.87	0.327			
benzonitrile	C_7H_5N	205	-13	0.996	0.2	0.333		10	12
acetone	C_3H_6O	56.2	-94.3	0.786	M	0.355	0.56	500	240
dimethylformamide (DMF)	C ₃ H ₇ NO	153	-61	0.944	М	0.386		10	3.5
t-butyl alcohol	C ₄ H ₁₀ O	82.2	25.5	0.786	M	0.389		100	41
aniline	C_6H_7N	184.4	-6.0	1.022	3.4	0.420		2	0.4
dimethylsulfoxide (DMSO)	C ₂ H ₆ OS	189	18.4	1.092	М	0.444	0.75		
acetonitrile	C_2H_3N	81.6	-46	0.786	M	0.460	0.65	20	97
3-pentanol	C ₅ H ₁₂ O	115.3	-8	0.821	5.1	0.463			
2-pentanol	C ₅ H ₁₂ O	119.0	-50	0.810	4.5	0.488			
2-butanol	C ₄ H ₁₀ O	99.5	-114.7	0.808	18.1	0.506		100	
cyclohexanol	$C_6H_{12}O$	161.1	25.2	0.962	4.2	0.509		50	1.2
1-octanol	C ₈ H ₁₈ O	194.4	-15	0.827	0.096	0.537			
2-propanol	C ₃ H ₈ O	82.4	-88.5	0.785	M	0.546	0.82	400	44
1-heptanol	C ₇ H ₁₆ O	176.4	-35	0.819	0.17	0.549			
<i>i</i> -butanol	C ₄ H ₁₀ O	107.9	-108.2	0.803	8.5	0.552			
1-hexanol	C ₆ H ₁₄ O	158	-46.7	0.814	0.59	0.559			
1-pentanol	C ₅ H ₁₂ O	138.0	-78.2	0.814	2.2	0.568			
acetyl acetone	C ₅ H ₈ O ₂	140.4	-23	0.975	16	0.571			
ethyl acetoacetate	C ₆ H ₁₀ O ₃	180.4	-80	1.028	2.9	0.577			
1-butanol	C ₄ H ₁₀ O	117.6	-89.5	0.81	7.7	0.586		20	6.3
benzyl alcohol	C ₇ H ₈ O	205.4	-15.3	1.042	3.5	0.608			
1-propanol	C ₃ H ₈ O	97	-126	0.803	М	0.617	0.82		
acetic acid	$C_2H_4O_2$	118	16.6	1.049	M	0.648	>1	10	15.3
2-aminoethanol	C ₂ H ₇ NO	170.9	10.5	1.018	M	0.651		3	0.53

ethanol	C_2H_6O	78.5	-114.1	0.789	M	0.654	0.88	1000	59
diethylene glycol	$C_4H_{10}O_3$	245	-10	1.118	M	0.713			0.027
methanol	CH ₄ O	64.6	-98	0.791	M	0.762	0.95	200	128
ethylene glycol	$C_2H_6O_2$	197	-13	1.115	M	0.790	1.11		
glycerin	$C_3H_8O_3$	290	17.8	1.261	М	0.812			
water, heavy	D ₂ O	101.3	4	1.107	M	0.991			
water	H ₂ O	100.00	0.00	0.998	M	1.000	>>1		

Spectra (of solvents and other compounds)

1. ir, nmr, mass spectra

Aldrich - http://www.sigmaaldrich.com/

NIMC site - http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/cre_index.cgi?lang=eng

RSC - http://www.rsc.org/education/teachers/learnnet/spectra/index2.htm

2. ir, mass spectra, uv-vis

NIST site - http://webbook.nist.gov/chemistry/

3. ir

Acros - http://www.acros.com/portal/alias_Rainbow/lang_en/tabl0_21/DesktopDefault.aspx
ChemExper Chem Directory - http://www.chemexper.com/

4. nmr

human metabolites - http://hmdb.ca/ (also some mass spectra) bioorganics - http://mmcd.nmrfam.wisc.edu/mmcdbrowse.html Solvents - http://www.alsnotebook.com/chlorformtraces.html

Jump to **Chemistry Webercises Directory**.

visitor counter (started 10/23/98)

Sign in | Report Abuse | Print Page | Remove Access | Powered By Google Sites