

دوائر رقمية 9:11 الثلاثاء 8/6/2021 أ.د. أسامة سيد محمد

Faculty of Computers & Information, Assiut University 1st Level Final Exam Duration: 2 hours

1

* الإسم الرباعي (بالعربي فقط)

نرمين محب خير عوض الله

2

* رقم الجلوس

162020677

* المستوي

- الاول 🌑
- الثاني 🔵
- الثالث 🔵
- رابعة 2013
- رابعة 2014
- رابعة 2015
- رابعة 2016
- رابعة 2017

4

* البرنامج

- عام 🌑
- بايو 🔵
- هندسة 🦳

5

* رقم المعمل

- •ج 🔾
- O 7•

اب 🖰		
اد 🔾		
اهـ 🔾		
○ Ír		
آب (
7ج 🔾		
٦٢ 🔘		
اهـ 🔾		
(ir		
۳ب 🔵		
٣ج ①		
۳د 🔾		
٣هـ 🔾		
_ lå		
٤ب (
6		
* رقم الكمبيوتر		
رهم التسبيوس		
19		

* الكود (قد تمت مراجعة بيانات الطالب ورقم الجلوس)

8

If a Boolean expression has four variables, then the truth table has _____ values.

(4 Points)

- 4
- 8
- 16
- 2

9

For a two-input XNOR gate, with the input waveforms as shown below, which output waveform is correct?

(4 Points)

- (d
- () a
- () c
- () b

The number of full and half adders are required to add 16-bit number is

(4 Points)

- 8 half adders, 8 full adders
- 1 half adders, 15 full adders
- 16 half adders, 0 full adders
- 4 half adders, 12 full adders

11

During the first three intervals for the pulsed circuit shown, the output of (4 Points)

- G1 is LOW and G2 is LOW
- G1 is LOW and G2 is HIGH
- G1 is HIGH and G2 is LOW
- G1 is HIGH and G2 is KIGH

12

The logic circuit shown is the implementation of (4 Points)

- 3x8 decoder with enable
- 3x8 decoder with enable and basic logic gates
- eight-input mux using a decoder and logic gates
- None of the previous

13

NAND and NOR gates are called (4 Points)

- high level logic gates
- unilateral gates
- universal gates
- bidirectional gates

14

The four-variable K-map has ____ cells. (4 Points)

) 4

\bigcirc	8
	16
	2
	15
	To minimize a Boolean expression using K-maps, it has to be in form. (4 Points)
	binary
	decimal
	octal
	SOP
	16
	The gate allows the output to be high, low or offers high output impedance is (4 Points)
	tri-state logic
	MUX
	NOR
	NAND
	17
	The maximum number of inputs of several similar logic gates that any one gat

The maximum number of inputs of several similar logic gates that any one gate output can drive is called (4 Points)

	fan-out
	noise margin
	noise immunity
	fan-in
	All logic operations can be obtained by means of (4 Points)
	AND and NAND operations
	OR and NOR operations
	OR and NOT operations
	NAND and NOR operations
	19
1	What is the minimum number of two-input NAND gates used to perform the function of two input OR gate ? (4 Points)
	1
	2
	3
	4

Simplifying the following expression will give F = A.C.E + A·C·D' + A·C·E' + A·B·D'·E + B·C'·E (4 Points)
A.C. I. D. C. F. I. A.C. D.

- A.C + B'.C'.E + A.C.D'
- A.C + B.C'.E
- A.C.E + A·C·D'
- None of the previous

21

The multiplexer is an examp1e of what type of logic circuit (4 Points)

- Sequential
- Combinational
- Moore machine
- Analog

22

A movement of data from right (least significant bit) to left (most significant bit) is what type of shift: (4 Points)

- Right
- Lift
- Parallel

Finite state machine
The time interval between the application of an input pulse to a logic gate and the occurrence of the resultant output pulse is called (4 Points)
Oelay time
turn-on time
transition time
propagation delay
24
What type of a combinational circuit illustrated in the figure shown: (4 Points)
Full Adder
Equality Comparator
Multiplexer

DeMultiplexer

Twos Complement

De Morgan's second theorem states that the complement of a sum of variables is equal to the of the complements of the variables. (4 Points)
complement
complement sum
product
sum
26
The complement of the following function in the simplest form is: $F = AB' + C + (A' + B) C' + (AB' + C) (A + B')C$ (4 Points)
O 1
0
AB' + C + A' + B
None of the previous
27
Negative numbers cannot be represented in: (4 Points)
Sign Magnitude
l's Complement

None of the previous	
28	
If P is a logical or Boolean variable such that P can take values '0' or '1', then + P is equal (4 Points)	Р
O 0	
2P	
O 1	
P	
29	
Simplifying the following expression will give A' (A+B)+ (B+AA)(A+B') (4 Points)	
\bigcirc A.B + A'·B'	
A' + B'	
None of the previous	
30	
Simplifying the following expression will give $G = A \cdot B \cdot C \cdot D + A' \cdot E \cdot F + B' \cdot E \cdot F + C \cdot D \cdot E \cdot F$ (4 Points)	

 \bigcirc A.B.C.D + A'·E. F + B'·E·F

A'-E-F + B'-E-F + C-D-E-F
A·B·C·D + A'·E·F + B'·D·F
None of the previous
31
A demultiplexer has (4 Points)
 One data input and a number of selection inputs, and they have several outputs.
One input and one output
Several inputs and several outputs
Several inputs and one output
32
A combinatiponal logic circuit which sends a single data source to two or more separate (4 Points)
Decoder
Multiplexer
Encoder
Demultiplexer

This content is created by the owner of the form. The data you submit will be sent to the form owner. Microsoft is not responsible for the privacy or security practices of its customers, including those of this form owner. Never give out your password.

Powered by Microsoft Forms | Privacy and cookies | Terms of use