Comparison of approaches to adjust for confounding

A simplified example with dichotomous treatment *A*, dichotomous confounder *L*, continuous outcome *Y*, and ignoring censoring.

Approach	Estimand	Models we fit Note: Product terms shown below are optional, based on whether you think there is effect modification.	Interpretation: The mean weight gain would have been X kg higher had everyone quit smoking compared with had no one quit smoking	To consistently estimate the average causal effect in the population, are you forced to make any assumption(s) about effect modification?
Outcome regression on confounders, L	$E[Y^{a=1} L]$ - $E[Y^{a=0} L]$ Conditional	Outcome model: $E[Y A,L] = \beta_0 + \beta_1 A + \beta_2 L + \beta_3 A^*L$	$\underline{\text{conditional}}$ on the confounders L .	Yes
Outcome regression on propensity score, PS	$\mathbb{E}[Y^{a=1} PS]$ - $\mathbb{E}[Y^{a=0} PS]$ Conditional	Propensity score model: logit $Pr[A=1 L] = \beta_0 + \beta_1 L$ Outcome model: $E[Y A,PS] = \beta_0 + \beta_1 A + \beta_2 PS + \beta_3 A^*PS$	conditional on the PS.	
Standardization	$E[Y^{a=1}] - E[Y^{a=0}]$ $Marginal$ If interested: $E[Y^{a=1} L] - E[Y^{a=0} L]$ $Conditional$	Outcome model: $E[Y A,L] = \beta_0 + \beta_1 A + \beta_2 L + \beta_3 A^*L$ or $E[Y A,PS] = \beta_0 + \beta_1 A + \beta_2 PS + \beta_3 A^*PS$. (marginal interpretation)	No
Inverse probability weighting	$E[Y^{a=1}]$ - $E[Y^{a=0}]$ $Marginal$ If interested: $E[Y^{a=1} V]$ - $E[Y^{a=0} V]$ $Conditional$	Model for weights: logit $Pr[A=1 L] = \beta_0 + \beta_1 L$ Outcome model (fit to pseudopopulation): $E[Y A] = \beta_0 + \beta_1 A$ or, if interested: Outcome model (fit to pseudopopulation): $E[Y A,V] = \beta_0 + \beta_1 A + \beta_2 V + \beta_3 A^*V$		
G-estimation	$\mathbb{E}[Y^{a=1} \mathbb{L}]$ - $\mathbb{E}[Y^{a=0} \mathbb{L}]$ Conditional	Model for $H(\psi)$ for the grid search method: logit $Pr[A=1 H(\psi),L]=\beta_0+\beta_1H(\psi)+\beta_2L$	$\overline{\text{conditional}}$ on the confounders L .	Yes

Instrumental variable	$E[Y^{a=1}] - E[Y^{a=0}]$	Using the ratio method:	. (marginal interpretation)	Yes
estimation	Marginal (under the	Model for the numerator:		
	homogeneity	$E[Y Z] = \beta_0 + \beta_1 Z$	or	
	assumption)			
		Model for the denominator:	among the compliers.	
	$E[Y^{a=1} A^{z=1}=1, A^{z=0}=0]$ -	$E[A Z] = \beta_0 + \beta_1 Z$		
	$E[Y^{a=0} A^{z=1}=1, A^{z=0}=0]$			
	Effect among the	<u>Using two-stage-least-squares regression:</u>		
	compliers (under the	First-stage treatment model:		
	monotonicity	$E[A Z] = \beta_0 + \beta_1 Z$		
	assumption)			
		Second-stage outcome model:		
		$E[Y Z] = \beta_0 + \beta_1 \hat{E}[A Z]$		
	If interested:			
	$E[Y^{a=1} L] - E[Y^{a=0} L]$			
	Conditional			
	$E[Y^{a=1} A^{z=1}=1, A^{z=0}=0, L]$ -			
	$E[Y^{a=0} A^{z=1}=1, A^{z=0}=0, L]$			
	Conditional effect among			
	the compliers			