Conditional Probability

1:: Set Notation

How sets are used to describe a sample space/event and how notation like $A \cap B$ is used to combine sets.

2:: Conditional Probability in Venn Diagrams

The notation P(A|B) means "the probability of A given that B happened". How we can find such probabilities using a Venn Diagram.

3:: Formula for Conditional Probability

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

4:: Tree Diagrams

"I have 3 red and 4 green balls in a bag. I take one ball out the bag, keep it, then take another. **Given that** the second ball was green, determine the probability the first was red."

RECAP:: Using sets for sample spaces and events

Combining events/sets

 $\xi = \text{the whole}$ sample space (1 to 6)

A =even number on a die thrown

B = prime number on a die thrown

	733
T 1	0
11	5
U	
	U

	What does it mean in this context?	What is the resulting set of outcomes?
A'	Not A (the " $\underline{\text{complement}}$ " of A). i.e. Not rolling an even number.	{1,3,5}
$A \cup B$	A or B (the " $\underline{\text{union}}$ " of A and B). i.e. Rolling an even or prime number.	{2,3,4,5,6}
$A \cap B$	A and B (the " <u>intersection</u> " of A and B). i.e. Rolling a number which is even and prime.	{2}
$A\cap B'$	"A and not B". Rolling a number which is even and not prime.	{4,6}
$(A \cup B)'$	Rolling a number which is not [even or prime].	{1}
$(A \cap B)'$	Rolling a number which is not [even and prime].	{1,3,4,5,6}

More complex Venn diagrams

 $A \cap C'$

ANBNC

(AUBUC)

A)

An (Bnc)

AN BUC)

Examples

Venn Diagram can either contain:

- (a) The **specific outcomes** in each set
- (b) The number of items in the set (i.e. frequencies)
- (c) The **probability** of being in that set.

A card is selected at random from a pack of 52 playing cards. Let A be the event that the card is an ace and D the event that the card is a diamond. Find:

- a) $P(A \cap D)$ b) $P(A \cup D)$ c) P(A') d) $P(A' \cap D)$

$$a)$$
 $\frac{1}{52}$

b)
$$\frac{16}{52}$$

$$d) \frac{12}{57}$$

Given that P(A) = 0.3, P(B) = 0.4 and $P(A \cap B) = 0.25$,

a. Explain why events A and B are not independent.

Given also that P(C) = 0.2, that events A and C are mutually exclusive and that events B and C are independent,

b. Draw a Venn diagram to illustrate the events A, B and C, showing the probabilities for each region.

c. Find
$$P((A \cap B') \cup C) = 0.25$$

a)
$$P(A) \times P(B) \neq P(A \cap B)$$

 $0.3 \times 0.4 \neq 0.25$
 $0.12 \neq 0.25$

If events A and B are independent.

$$P(A \cap B) = P(A) \times P(B)$$

If events A and B are mutually exclusive:

$$P(A \cap B) = 0$$

$$P(A \cup B) = P(A) + P(B)$$

$$P(B \cap C) = P(B) \times P(C)$$

$$= 0.4 \times 0.2$$

$$= 0.08$$

May 2013 (R) Q6

$$P(A \cap B) = P(A) \times P(B)$$

 $0.1 = (0.1+p) \times 0.4$
 $0.1 = 0.1 = p$
 $0.4 = 0.1 = p$
 $0.4 = 0.15$

The Venn diagram in Figure 1 shows three events A, B and C and the probabilities associated with each region of B. The constants p, q and r each represent probabilities associated with the three separate regions outside B.

The events A and B are independent.

(a) Find the value of p.

(3)

(AUB) U (ANB)

Ex2A QOdd.

 $(A'VB')\Lambda C$

Conditional Probability

"given that"

Think about how we formed a probability tree at GCSE:

$$P(A \cap B) = P(A) \times P(B|A)$$

$$P(A \cap B') = P(A) \times P(B'|A)$$

$$P(B'|A) = P(A \cap B')$$

$$P(A)$$

$$P(A'(B') = \frac{P(A' \cap B')}{P(B')}$$

Alternatively (and more commonly):

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

Memory Tip: You're dividing by the event you're conditioning on.

1 The following two-way table shows what foreign language students in Year 9 study.

B is the event that the student is a boy. F is the event they chose French as their language.

	В	B '	Total
F	14	38	52
F'	26	22	48
Total	40	60	100

Determine the probability of: P(F|B') A girl is chosen. What is P(F|B') The prob F?

Method 1: Using the formula: $P(F|B') = P(F \cap B') = \frac{38}{60}$

Method 2: Restricted sample space.

b
$$P(B|F') = \frac{26}{48}$$

2 Using the Venn Diagram, determine:

Crequencies

a P(A|B)

Method 1: Using the formula

$$P(A|B) = \frac{P(A\cap B)}{P(B)} = \frac{2}{6/15} = \frac{3}{6}$$

Method 2: Restricted sample space

Given that P(A) = 0.5 and $P(A \cap B) = 0.3$, what is P(B|A)?

$$P(B|A) = P(A \cap B) = \frac{0.3}{0.5} = \frac{0.6}{0.5}$$

Tip: The 'restricted sample space' method also works for Venn Diagrams with probabilities.

Given that P(Y) = 0.6 and $P(X \cap Y) = 0.4$, what is P(X'|Y)?

(Hint: Drawing a Venn Diagram will help!)

$$P(x'|y) = \frac{0.2}{0.6} = \frac{1}{3}$$

Given that P(A) = 0.5, P(B) = 0.5 and $P(A \cap B) = 0.4$, what is P(B|A')?

$$\frac{0.1}{0.5} = 0.2$$

Your Turn

The events E and F are such that

$$P(E) = 0.28$$
 $P(E \cup F) = 0.76$ $P(E \cap F') = 0.11$

Find

a)
$$P(E \cap F) =$$

b)
$$P(F) =$$

c)
$$P(E'|F') =$$

(Drawing a Venn diagram is often helpful!)