Counter-example

- Random exp: Pick a number uniformly from the real line.
- ho $\Omega=\mathbb{R}$ and hence $\mathbb{P}(\mathbb{R})=1$.
- ightharpoonup Domain $\mathcal{P}(\mathbb{R})$ which is unimaginably complex!
- ightharpoonup We have $\mathbb{P}:\mathcal{P}(\mathbb{R}) o [0,1]$.
- ightharpoonup has the property that sets of equal 'length' have equal probability.
- ▶ We know that $\mathbb{R} = \bigcup_{n=-\infty}^{\infty} [n,n+1)$ where $[n,n+1) \in \mathcal{P}(\mathbb{R})$.
- ▶ What is $\mathbb{P}[n, n+1)$?
- ▶ If we define $\mathbb{P}[n, n+1) = x$ for all $n \in \mathbb{Z}$ then $\mathbb{P}(\mathbb{R}) = \infty!$
- ▶ If we define $\mathbb{P}[n, n+1) = 0$ for all $n \in \mathbb{Z}$ then $\mathbb{P}(\mathbb{R}) = 0$!

Counter-example

- What is the takeaway from the counterexample?
- Not all set-functions (or measures) can be calibrated to measure every possible subset of your sample space.
- This is like you weighing scale at home, that is not able to weigh a piece of paper!
- ► What is the way out?
- Restrict your domain to only measurable sets.
- Possible domain for the counter example?
- $\mathcal{F} = \{\Phi, \Omega, \mathbb{R}_-, \mathbb{R}_+\}$. There can be many other domains one can define!

Towards sigma-algebra

- $\mathcal{F} = \{\emptyset, \Omega, \mathbb{R}_-, \mathbb{R}_+\}.$
- ightharpoonup The domain $\mathcal F$ should have some nice and obvious properties.
- lacksquare For example, \emptyset and Ω in \mathcal{F} . Also if $B \in \mathcal{F}$, then $B^c \in \mathcal{F}$.
- ▶ If A_1 and A_2 belong in \mathcal{F} , then $A_1 \cup A_2 \in \mathcal{F}$ and $A_1 \cap A_2 \in \mathcal{F}$.
- A domain with such nice properties is called as a sigma-algebra.

sigma-algebra as domain for $\mathbb P$

- ightharpoonup Event space or $sigma-algebra \mathcal{F}$ associated with a set Ω is a collection of subsets of Ω that satisfy
 - ullet $\emptyset \in \mathcal{F}$ and $\Omega \in \mathcal{F}$
 - $\bullet A \in \mathcal{F} \implies A^c \in \mathcal{F}$
 - $\bullet A_1, A_2, \ldots A_n, \ldots \in \mathcal{F} \implies \bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$
- The σ -algebra is said to be closed under formation of complements and countable unions.
- ► Is it also closed under the formation of countable intersections?
- ▶ When Ω is countable and finite, is $\mathcal{P}(Ω)$ a sigma-algebra? Yes.

When Ω is countable and finite, we will consider power-set $\mathcal{P}(\Omega)$ as the domain.

Formal definition of Probability measure \mathbb{P}

Definition

A probability measure $\mathbb P$ on the *measurable space* $(\Omega, \mathcal F)$ is a function $\mathbb P: \mathcal F \to [0,1]$ s.t.

- 1. $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\Omega) = 1$
- 2. For a disjoint collection of event sets A_1, A_2, \ldots from \mathcal{F} we have

$$\mathbb{P}\left(igcup_{i=1}^{\infty}A_i
ight)=\sum_{i=1}^{\infty}\mathbb{P}(A_i)$$

(countable additivity)

- ightharpoonup The trio $(\Omega, \mathcal{F}, \mathbb{P})$ is called as a probability space.
- ▶ Recall that when $|\Omega| < \infty$, we consider $\mathcal{F} = 2^{\Omega}$.

Formal definition of Probability measure \mathbb{P}

Definition

A probability measure $\mathbb P$ on the *measurable space* $(\Omega, \mathcal F)$ is a function $\mathbb P: \mathcal F \to [0,1]$ s.t.

- 1. $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\Omega) = 1$
- 2. For a disjoint collection of event sets A_1, A_2, \ldots from \mathcal{F} we have

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}\mathbb{P}(A_{i})$$

(countable additivity)

- ightharpoonup The trio $(\Omega, \mathcal{F}, \mathbb{P})$ is called as a probability space.
- Identify the probability space in the coin and dice experiment.

Probability space for U[0,1]

- $\Omega = [0, 1].$
- Suppose $\mathcal{F} = \{\Phi, [0, 1], [0, .5), [.5, 1]\}$. Is there a problem in using this as a sigma-algebra?
- We cannot measure probability of sets like [.25, .75] although we know P([.25, .75]) = .5.
- So lets include [.25, .75] in \mathcal{F} .
- Now we have $\mathcal{F}^+ = \{\Phi, [0, 1], [0, .5), [.5, 1], [.25, .75]\}$. Is \mathcal{F}^+ a sigma-algebra? No.
- Can you make it a sigma-algebra by adding missing pieces?

Probability space for U[0,1]

- $\mathcal{F}^+ = \{\Phi, [0, 1], [0, .5), [.5, 1], [.25, .75]\}$
- Can you make it a sigma-algebra by adding missing pieces?
- Recall that sigma-algebras are closed under complements, union and intersection.
- ▶ Intersection and union of [.25, .75] with sets in \mathcal{F}^+ gives the collection $\{[.25, .5), [.5, .75], [.25, 1], [0, 0.75]\}$.
- Adding complements, the collection enlarges by $\{[.25,.5), [.5,.75], [.25,1], [0,0.75], [0,.25) \cup [.5,1], [0,.5) \cup (.75,1], [0,.25), (0.75,1]\}.$
- Lets call it $\mathcal{F}^{++} = \{ \Phi, [0, 1], [0, .5), [.5, 1], [.25, .75], [.25, .5), [.5, .75], [.25, 1], [0, 0.75], [0, .25) \cup [.5, 1], [0, .5) \cup (.75, 1], [0, .25), (0.75, 1] \}$

Probability space for U[0,1]

- $\mathcal{F}^{++} = \{ \Phi, [0, 1], [0, .5), [.5, 1], [.25, .75], [.25, .5), [.5, .75], [.25, 1], [0, 0.75], [0, .25) \cup [.5, 1], [0, .5) \cup (.75, 1], [0, .25), (0.75, 1] \}$
- Notice different type of sets with different brackets [), (], () that appear.
- ▶ But \mathcal{F}^{++} is still not a sigma-algebra as each red set will demand a furthermore sets to be added.
- This operation we attempted is called generating a sigma-algebra!.
- Continuing on these lines, the resulting sigma algebra is called a borel-sigma algebra $\mathcal{B}[0,1]$.

Borel sigma-algebra $\mathcal{B}[0,1]$

- Porel σ -algebra $\mathcal{B}[0,1]$: When $\Omega = [0,1]$ the $\mathcal{B}[0,1]$ is the σ -algebra generated by closed sets of the form [a,b] where $a \leq b$ and $a,b \in [0,1]$.
- ▶ Does this set contain sets of the form (a, b) or [a, b) or (a, b]?
- $| (a,b) = \bigcup_{n=1}^{\infty} [a + \frac{1}{n}, b \frac{1}{n}]. | (a,b] = \bigcap_{n=1}^{\infty} (a, b + \frac{1}{n})$

Borel σ -algebra $\mathcal{B}[0,1]$: $\mathcal{B}[0,1]$ is the σ -algebra generated by sets of the form [a,b] or (a,b) or (a,b) or even [a,b) where $a \leq b$ and $a,b \in [0,1]$.

Borel sigma-algebra $\mathcal{B}(\mathbb{R})$

- Porel sigma-algebra $\mathcal{B}(\mathbb{R})$: If $\Omega = \mathbb{R}$, then $\mathcal{B}(\mathbb{R})$ is the sigma-algebra generated by open sets of the form (a,b) where $a \leq b$ and $a,b \in \mathbb{R}$.
- $ightharpoonup \mathcal{B}(\mathbb{R})$ contains intervals of the form

$$[a, b]$$

$$[a, b)$$

$$(a, \infty)$$

$$[a, \infty)$$

$$(-\infty, b]$$

$$(-\infty, b)$$

$$\{a\}$$

► How would you define $\mathcal{B}(\mathbb{R}^2)$?

Consequences of the Probability Axioms

- $P(A^c) = 1 P(A)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B).$
- ▶ If $A \subseteq B$, prove that $P(A) \le P(B)$. $(A \subseteq B \text{ has the interpretation that Event A implies event B)$
- $P(\bigcup_{i=1}^{\infty} B_i) \leq \sum_{i=1}^{\infty} P(B_i)$ (Boole's/Bonferroni's inequality). HW
- ▶ What is $P(A \cup B \cup C)$?
- ▶ State and prove the inclusion-exclusion principle for $P(\bigcup_{i=1}^{n} A_i)$

Impossible event v/s Zero prob. event

- ▶ In U[0,1] what is $P(\omega = 0.5)$? = 0.
- Intuitive reasoning for this is that a point has zero length!
- ▶ If $P(\omega \in [a, b]) = b a$ then $P([.5, .5]) = P(\{.5\}) = 0$.
- This is a zero probability event. In fact, every outcome of this experiment is a zero probability event.
- This implies that events of zero probability can happen and they are not impossible events.
- $ho P(\emptyset) = 0$, then is \emptyset also possible ?No!
- ▶ What is $P(\omega \in [0, .25] \cap [.75, 1])$?
- ▶ $P([0,.25] \cap [.75,1]) = P(\emptyset) = 0$ This event will never happen.

Impossible event v/s Zero prob. event

- Note that in the U[0,1] experiment, $\Omega = \bigcup_{\omega \in \Omega} \{\omega\}$
- $P(\Omega) = P(\bigcup_{\omega \in \Omega} \{\omega\}) = \sum_{\omega \in \Omega} P(\{\omega\}) = 0.$
- ► What is the problem above ?
- $ightharpoonup \Omega$ is an uncountable set and the probability set-function only has a countable additive property.
- $\bigcup_{\omega \in \Omega} \{\omega\} \text{ is an uncountable disjoint union!}$

Limits and Continuity

- ▶ How do we define limit of a sequence $\{a_1, a_2, \ldots, \}$?
- Notation: $\lim_{n\to\infty} a_n = L$.
- ► How do you define limit of a function at a point c?
- Notation: $\lim_{x\to c} f(x) = L$
- ▶ How do you define continuity of a function f(x) at c?
- When do you say a function is continuous?
- $ightharpoonup (\epsilon, \delta)$ -definition of limits and continuity?

Limits and Continuity

Definition in terms of limits of sequences.

For a continuous function $f(\cdot)$, as $x \to c$, we have $f(x) \to f(c)$

For a continuous set-function S, as $A_n \to A$, we have $S(A_n) \to S(A)$

- \triangleright Recall that \mathbb{P} is a set-function. Is it continuous?
- We will see the proof shortly.