Review:Inner Attention based Recurrent Neural Networks for Answer Selection

ACL 16

An Weijie

Motivation

 Because of the attention bias problem in traditional attention based RNN models, the author propose three inner attention based RNN models

attention bias problem

- In the RNN architecture, those hidden states near the end of the sentence are expected to capture more information
- the near-the-end hidden variables will be more attended,
 which may result in a biased attentive weight

Traditional attention based RNN answerselection model

$$\mathbf{H}_{a} = [\mathbf{h}_{a}(1), \mathbf{h}_{a}(2), ..., \mathbf{h}_{a}(m)]$$

$$s_{t} \propto f_{attention}(\mathbf{r}_{q}, \mathbf{h}_{a}(t))$$

$$\tilde{\mathbf{h}}_{a}(t) = \mathbf{h}_{a}(t)s_{t}$$

$$\mathbf{r}_{a} = \sum_{t=1}^{m} \tilde{\mathbf{h}}_{a}(t)$$
(2)

$$\mathbf{m}(t) = tanh(\mathbf{W}_{hm}\mathbf{h}_{a}(t) + \mathbf{W}_{qm}\mathbf{r}_{q})$$

$$f_{attention}(\mathbf{r}_{q}, \mathbf{h}_{a}(t)) = exp(\mathbf{w}_{ms}^{T}\mathbf{m}(t))$$
(3)

IARNN-WORD

$$\alpha_t = \sigma(\mathbf{r}_q^T \mathbf{M}_{qi} \mathbf{x}_t)$$

$$\tilde{\mathbf{x}}_t = \alpha_t * \mathbf{x}_t$$
(4)

IARNN-CONTEXT

$$\mathbf{w}_{C}(t) = \mathbf{M}_{hc}\mathbf{h}_{t-1} + \mathbf{M}_{qc}\mathbf{r}_{q}$$

$$\alpha_{C}^{t} = \sigma(\mathbf{w}_{C}^{T}(t)\mathbf{x}_{t})$$

$$\tilde{\mathbf{x}}_{t} = \alpha_{C}^{t} * \mathbf{x}_{t}$$
(6)

IARNN-GATE

$$\mathbf{z}_{t} = \sigma(\mathbf{W}_{xz}\mathbf{x}_{t} + \mathbf{W}_{hz}\mathbf{h}_{t-1} + \mathbf{M}_{qz}\mathbf{r}_{q})$$

$$\mathbf{f}_{t} = \sigma(\mathbf{W}_{xf}\mathbf{x}_{t} + \mathbf{W}_{hf}\mathbf{h}_{t-1} + \mathbf{M}_{qf}\mathbf{r}_{q})$$

$$\tilde{\mathbf{h}}_{t} = tanh(\mathbf{W}_{xh}\mathbf{x}_{t} + \mathbf{W}_{hh}(\mathbf{f}_{t} \odot \mathbf{h}_{t-1}))$$

$$\mathbf{h}_{t} = (1 - \mathbf{z}_{t}) \odot \mathbf{h}_{t-1} + \mathbf{z}_{t} \odot \tilde{\mathbf{h}}_{t}$$

$$(7)$$

IARNN-OCCAM

 An application of Occam's Razor: Among the whole words set, we choose those with fewest number that can represent the sentence.

$$n_p^i = \max\{\mathbf{w}_{qp}^T \mathbf{r}_q^i, \lambda_q\}$$

$$J_i^* = J_i + n_p^i \sum_{t=1}^{mc} \alpha_t^i$$
(8)

Quantify Traditional Attention based Model Bias Problem

Figure 5: One directional OARNN attention distribution, the horizontal axis is position of word in a sentence that has been normalized from 1 to 10000.

Quantify Traditional Attention based Model Bias Problem

Figure 6: Bi-directional OARNN attention distribution, the horizontal axis is the postion of the word in a sentence that has been normalized from 1 to 10000.

Experiments

MAP	MRR
0.652	0.6652
0.6921	0.7108
0.6886	0.6957
0.6581	0.6691
0.6881	0.7013
0.7098	0.7234
0.7121	0.7318
0.7182	0.7339
0.7341	0.7418
0.7258	0.7394
	0.652 0.6921 0.6886 0.6581 0.6881 0.7098 0.7121 0.7182 0.7341

Table 2: Performances on WikiQA

Experiments

System	Dev	Test1	Test2
(Feng et al., 2015)	65.4	65.3	61.0
(Santos et al., 2016)	66.8	67.8	60.3
GRU	59.4	53.2	58.1
OARNN	65.4	66.1	60.2
IARNN-word	67.2125	67.0651	61.5896
IARNN-Occam(word)	69.9130	69.5923	63.7317
IARNN-context	67.1025	66.7211	63.0656
IARNN-Occam(context)	69.1125	68.8651	65.1396
IARNN-Gate	69.9812	70.1128	62.7965

Table 3: Experiment result in InsuranceQA, (Feng et al., 2015) is a CNN architecture without attention mechanism.

Experiments

System	MAP	MRR
(Wang and Nyberg, 2015) †	0.7134	0.7913
(Wang and Ittycheriah, 2015) †	0.7460	0.8200
(Santos et al., 2016) †	0.7530	0.8511
GRU	0.6487	0.6991
OARNN	0.6887	0.7491
IARNN-word	0.7098	0.7757
IARNN-Occam(word)	0.7162	0.7916
IARNN-context	0.7232	0.8069
IARNN-Occam(context)	0.7272	0.8191
IARNN-Gate	0.7369	0.8208

Table 4: Result of different systems in Trec-QA.(Wang and Ittycheriah, 2015) propose a question similarity model to extract features from word alignment between two questions which is suitable to FAQ based QA. It needs to mention that the system marked with † are learned on TREC-QA original full training data.

Conclution

 Analyze the deficiency of traditional attention based RNN models quantitatively and qualitatively

 present three new RNN models that add attention information before RNN hidden representation, which shows advantage in representing sentence and achieves new state-of-art results in answer selection task