MAT	Η	253
April	2,	2020

Name:		
rvame:		

Instructions. (100 points) You have 120 minutes to scan, complete, and upload this exam. In other words, you have up to a maximum of two hours for this exam. Closed book, closed notes, no internet, no calculators, and no help allowed. No cheating of any kind. **Show all your work** in order to receive credit. Incomplete answers with little work shown will be graded harshly.

(6^{pts}) **1.** Find the directional derivative $D_{\vec{u}}(1,0)$ of $h(x,y) = x\sin(xy)$ in the direction of $\vec{v} = \langle 3,3 \rangle$.

(8^{pts}) **2.** The graph of f(x,y) is shown in the figure below with the red point denoting (1,2,f(1,2)).

(a) (4 pts) Is $\frac{\partial f}{\partial x}$ (1, 2) negative, zero, or positive? Explain carefully.

(b) (4 pts) Is $\frac{\partial f}{\partial y}(1,2)$ negative, zero, or positive? Explain carefully.

(12^{pts}) **3.** Compute the integral

$$I = \int_0^3 \int_{y^2}^9 \frac{1}{x\sqrt{x} + 1} \, dx \, dy$$

by drawing the region of integration and then reversing the order of integration.

- (12^{pts}) 4. Consider the function $f(x,y) = x^2y + y^2 4xy + 3y$.
 - (a) (5 pts) Show that the point (2,1/2) is a critical point for f(x,y).
 - (b) (7 pts) Use the second derivative test to classify (2,1/2) as a local minimum, local maximum or saddle point of f(x,y).

(8^{pts}) **5.** Find an equation of the tangent plane to the surface

$$x^2 \sin z + yz - \ln y - 2x = 4$$

at the point (-2,1,0).

- (16^{pts}) **6.** Set up, but **DO NOT INTEGRATE**, double integrals for the computations below. A complete answer has limits of integration and the integrand is simplified completely.
 - (a) (8 pts) Compute the volume of the solid that lies below the paraboloid $z = 7 x^2 y^2$ and above the plane z = 3. Use polar coordinates and DO NOT EVALUATE.

(b) (8 pts) Compute the surface area of the part of the plane 2x+y+z=4 that lies above the triangular region in the xy-plane bounded by vertices (0,0), (1,0), and (0,1). Use rectangular coordinates, and DO NOT EVALUATE.

(14^{pts}) **7.** Consider the contour plot of a function f(x,y) below where f(x,y) gives the temperature in degrees Celsius. Points A, B and C are shown in the figure, and a vector \mathbf{u} too.

- (a) (4 pts) The magnitude of the gradient vector is largest at which of the three points (A, B, or C)? Why?
- (b) (4 pts) A cold-seeking particle is located at C (red dot). Which direction (roughly) should it move to decrease its temperature the most. Draw an arrow on the contour plot to indicate this, or if you do not have a printer, simply make a cartoon drawing that shows where your arrow would be. Explain your answer briefly.
- (c) (3 pts) Consider the point (3,3). Is the value $f_{xx}(3,3)$ negative, positive, or zero? (Circle one.) Why?
- (d) (3 pts) What is the value of the directional derivative $D_{\vec{u}}(4,4)$ where \vec{u} is the vector shown in the figure?

(6^{pts}) 8. Show that $\lim_{(x,y)\to(2,-1)} \frac{xy+2}{x^2-y-5}$ does not exist.

(8^{pts}) 9. Compute the total charge on the lamina pictured below, if the charge density is given by $\sigma(x,y) = 3y$ coulombs/ in². Include units in your final answer.

(10^{pts}) **10.** Use the method of Lagrange multipliers to find the absolute maximum and absolute minimum of the function $f(x,y) = y^2 - x^2$ subject to the constraint $g(x,y) = 4x^2 + y^2 - 36 = 0$.