

Fy1400-Buck_Adj

Imax = 10A, Vin = 4.5V~18V, Vo = 3V~6V, Buck

Description

This module can provide 3V~6V adjustable voltage output under a wide voltage input of 4.5V-18V, with a maximum output current of 10A. The input voltage of the module needs to be higher than the output voltage in order to function properly. Both input and output are

equipped with power indicator lights, high-quality solid-state capacitors are selected, and heat dissipation fins are installed to ensure that the module can work stably and reliably for a long time; Equipped with M3 fixing holes for easy external fixation of modules.

Electrical Characteristics

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	ТҮР	мах	UNIT
Input Voltage	Vin	_	4.5	_	18	V
Output Voltage	Vout	lout=0 mA	3.0	_	6.0	٧
Output Current	lout1	Vin=2.5V	ı		10	Α
Efficiency	η	ľ	1	-	96	%
Ripple Voltage ^①	Vpp1 /&Flectron	lout=0 A	Ē.	30 Fv&	35 Flectro	_mV
(FA)	√√Vpp2	Tout= 6A	<u>'Fy</u>	40∨	50	mV
	Vpp3	lout= 10A	_	50	65	mV
QuiescentCurrent	ld1	7V≤Vin≤18V / lout=0mA Vo=5V	_	_	50	mA

^① The recommended working voltage is less than 20V, and the maximum input voltage of the module is 24V. Once exceeded, the module is easily burned.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
EN E	Id2 /&Electron	5V≤Vin≤18V / lout=0mA Vo=3.3V tron	LEO	Fy&	40 Electro	_mA
FastTransient	Vpp4	Vin=9V / lout:1A->5A Vo =5V / f = 1KHz	7	200	-	mV
	Vpp5	Vin=12V/ lout:1A->5A Vo=5V / f = 1KHz	_	150	_	mV
	Vpp6	Vin=15V/ lout:1A->5A Vo=5V / f = 1KHz	_	130	_	mV
Fy F	/&Elvpp7n	Vin=5V / lout:1A->5A Vo =3.3V / f = 1KHz	Fy	130×	Electro	mV
	Vpp8	Vin=9V / lout:1A->5A Vo=3.3V / f = 1KHz	_	100	_	mV
	Vpp9	Vin=12V/ lout:1A->5A Vo=3.3V / f = 1KHz	_	85	_	mV
	Vpp10	Vin=15V/ lout:1A->5A Vo=3.3V / f = 1KHz	_	80	_	mV
Load N F Regulation	/&Electron	Vout(full load)- Vout(no load) *100% /Vout(no load)	(Fy	Fy& -4//	Electro 2	<u>m</u> %
Line Regulation	_	Vout(max)- Vout(min) [©] *100% /Vout(no load)	_	_	1	%
Temperature Rise	ΔΤ1	@25 ℃ room temperature 10 minutes lout = 8A	_	_	50	°C
	ΔΤ2	@25 ℃ room temperature 10 minutes lout = 10A	_	_	70	°C
Storage Temperature	/&Electron	Fy&Electron	10	Fy& -\(\frac{1}{2}\)	+50	°C
Operating Temperature	-	_	-40	_	+105	°C

^② Vout(max): When fully loaded, adjust the input voltage to slowly change within the full voltage range, and record the maximum output voltage value. Similarly, Vout (min) is the minimum output voltage value recorded.

Efficiency VS lout

Size

Test Waveform

Vin=12V Vo=5V lout=0A

Vin=12V Vo=3.3V Iout=0A

Vin=12V Vo=3.3V lout=10A

FastTransient

Vin=12V /Vo =5V/lout:1A->5A/ f = 1KHz

Vin=12V /Vo =3.3V/lout:1A->5A/ f = 1KHz

Thermal imaging image

Vin=12V / Vo =3.3V / Iout:10A

Vin=12V / Vo =5.0V / lout:10A