Latent-Factors Based Recommender Systems

Mining Massive Datasets

Prof. Carlos Castillo

Topic 18

Sources

- Data Mining, The Textbook (2015) by Charu Aggarwal (Section 18.5) – slides by Lijun Zhang
- Mining of Massive Datasets 2nd edition (2014) by Leskovec et al. (Chapter 9) slides A, B

Key idea

- Summarize the correlations across rows and columns in the form of lower dimensional vectors, or **latent** factors
- These latent factors become hidden variables that encode the correlations in the data matrix in a concise way and can be used to make predictions
- Estimation of the k-dimensional dominant latent factors is often possible even from **incompletely** specified data

Modeling

- n users: $\overline{U_1},\ldots,U_n\in\mathbb{R}^k$
- d items: $\overline{I_1}, \ldots, I_d \in \mathbb{R}^k$
- ullet Approximate rating r_{ii} by

$$r_{ij} pprox \left\langle \overline{U_i}, \overline{I_j} \right\rangle = \overline{U_i}^T \overline{I_j} = \overline{I_j}^T \overline{U_i}$$

• Approximate rating matrix $D = [r_{ij}]_{n \times d}$

$$D \approx F_{\text{user}} F_{\text{item}}^T$$
 $F_{\text{user}} \in \mathbb{R}^{n \times k}$ $F_{\text{item}} \in \mathbb{R}^{d \times k}$

Singular Value Decomposition

• SVD
$$D = Q\Sigma P^{T} \qquad Q^{T}Q = I, P^{T}P = I$$
$$D \in \mathbb{R}^{n \times d} \qquad \Sigma = \operatorname{diag}(\sigma_{1}, \dots, \sigma_{d}) \in \mathbb{R}^{d \times d}, \sigma_{1} \geq \dots \geq \sigma_{d}$$

• Truncated SVD $D pprox Q_k \Sigma_k P_k^T$ $\Sigma_k = \mathrm{diag}(\sigma_1,\ldots,\sigma_k) \in \mathbb{R}^{k \times k}, \sigma_1 \geq \cdots \geq \sigma_k$

$$\Delta_k = \text{drag}(\sigma_1, \dots, \sigma_k) \subset \mathbb{R} \quad , \sigma_1 \geq \dots \geq \sigma$$

Note: SVD is undefined for incomplete matrices

Matrix factorization

• SVD is a special form of matrix factorization

$$D \approx UV^T$$

Objective when D is fully observed

$$\min \left\|D - UV^T \right\|_F^2 \qquad \qquad \|A\|_F = \sqrt{\sum_{i,j} a_{ij}^2}$$

Objective when D is partially observed

$$\min \sum_{(i,j)\in\Omega} \left(D_{ij} - \overline{U_i}^T \overline{V_j} \right)^2$$

 Ω is the set of observed cells

Non-negative, regularized matrix factorization

• Matrix factorization $D \approx UV^T$

Objective:

$$\min \sum_{(i,j)\in\Omega} \left(D_{ij} - \overline{U_i}^T \overline{V_j} \right)^2 + \lambda \left(\|U\|_F^2 + \|V\|_F^2 \right)$$

 Ω is the set of observed cells in the matrix

$$U \ge 0, V \ge 0$$

Example 1: grocery shopping

Example: grocery shopping

	John	Alice	Mary	Greg	Peter	Jennifer
Vegetables	0	1	0	1	2	2
Fruits	2	3	1	1	2	2
Sweets	1	1	1	0	1	1
Bread	0	2	3	4	1	1
Coffee	0	0	0	0	1	0

- This purchase history indicates the number of time each person has purchased an item
- For clarity we're dealing with categories of items, but they can be the items themselves

In Python

Python code

```
        Vegetables
        0
        1
        0
        1
        2
        2

        Fruits
        2
        3
        1
        1
        2
        2

        Sweets
        1
        1
        1
        0
        1
        1

        Bread
        0
        2
        3
        4
        1
        1

        Coffee
        0
        0
        0
        0
        1
        0
```

Matrix factorization ($V \simeq WH$)

Matrix W (items x factors) with possible names for each factor added for legibility

	Fruits pickers	Bread eaters	Veggies
Vegetables	0.00	0.04	2.74
Fruits	1.93	0.15	0.47
Sweets	0.97	0.00	0.00
Bread	0.00	2.66	1.18
Coffee	0.00	0.00	0.59

Python code

```
from sklearn.decomposition
import NMF
nmf = NMF(3)
nmf.fit(V)
H =
pd.DataFrame(np.round(nmf.compon
ents_,2), columns=V.columns)
H.index = ['Fruits pickers',
'Bread eaters', 'Veggies']
W =
pd.DataFrame(np.round(nmf.transf
orm(V),2), columns=H.index)
W.index = V.index
```

Matrix W (items x factors) Fruits pickers Bread eaters Veggies

Vegetables	0.00	0.
Fruits	1.93	0.
Sweets	0.97	0.
Bread	0.00	2.
Coffee	0.00	0.
This example (20	019) by Piotr G	ahrve
This example (20	oro) by Floti G	aui yS

Fruits pickers

Bread eaters

Veggies

1.04

0.00

0.00

2.66 1.18

0.00 0.59

Matrix H (factors x people)

John Alice Mary Greg Peter Jennifer

1.34

0.60

0.35

0.55

1.12

0.00

Possible names for each

factor added for legibility

0.26

1.36

0.34

0.89

0.03

0.77

0.90

0.07

0.69

12

Reconstruction

Original matrix (V)								Reconstructed matrix (W H)							
	John	Alice	Mary	Greg	Peter	Jennifer			John	Alice	Mary	Greg	Peter	Jennifer	
Vegetables	0	1	0	1	2	2		Vegetables	0.00	0.98	0.04	0.99	2.11	1.89	
Fruits	2	3	1	1	2	2		Fruits	2.01	2.84	1.23	0.87	2.08	2.07	
Sweets	1	1	1	0	1	1		Sweets	1.01	1.30	0.53	0.25	0.86	0.87	
Bread	0	2	3	4	1	1		Bread	0.00	2.01	2.98	4.02	0.99	1.00	
Coffee	0	0	0	0	1	0		Coffee	0.00	0.21	0.00	0.20	0.45	0.41	

reconstructed = pd.DataFrame(np.round(np.dot(W,H),2), columns=V.columns)
reconstructed.index = V.index

Recommendation

Original matrix (V)								Reconstructed matrix (W H)							
	John	Alice	Mary	Greg	Peter	Jennifer			John	Alice	Mary	Greg	Peter	Jennifer	
Vegetables	0	1	0	1	2	2		Vegetables	0.00	0.98	0.04	0.99	2.11	1.89	
Fruits	2	3	1	1	2	2		Fruits	2.01	2.84	1.23	0.87	2.08	2.07	
Sweets	1	1	1	0	1	1		Sweets	1.01	1.30	0.53	0.25	0.86	0.87	
Bread	0	2	3	4	1	1		Bread	0.00	2.01	2.98	4.02	0.99	1.00	
Coffee	0	0	0	0	1	0		Coffee	0.00	0.21	0.00	0.20	0.45	0.41	
			_												

If you were to recommend one product to someone, what would you recommend and to whom?

Evaluation

Direct evaluation

- Randomized controlled experiment
 - Renamed A/B testing for ... reasons
 - People are split randomly in control/experimental
 - Control group: receives one type of recommendation
 - Experimental group: receives another type
- Metrics such as CTR, retention, etc.
- Requires infrastructure, users, policies

Evaluating with existing data

Evaluating with existing data

Evaluation metrics

RMSE (root of mean of squared errors)

$$\sqrt{E[(x-\hat{x})^2]}$$

- Precision @ k
 - % of recommendations that are correct among those in the top k positions
- Rank correlation
 - Spearman's correlation between system and user

Evaluating is hard

- Accuracy is not all
- We also want diversity
- We want to be contextually sensitive
- The order of predictions matters
- RMSE might penalize a method that does well for high ratings but bad for others

Example 2: Netflix prize

Example 2: Netflix prize (2009)

- Netflix offered \$1,000,000 to anyone beating their algorithm by 10% in RMSE
- Provided 100M (user,movie) ratings for training
- Held a testing set and allowed one guess/day on the testing set to create a leader board

Latent factors

In latent factor space, similar movies are mapped to similar points

Shortly before deadline ...

The big picture Solution of BellKor's Pragmatic Chaos

Leaderboard

Rank **Team Name** Best Test Score % Improvement Best Submit Time Grand Prize - RMSE = 0.8567 - Winning Team Pell Kor's Pro-BellKor's Pragmatic Chaos 0.8567 0.8567 10.06 The Ensemble 2009-07-26 18:38:22 Grand Prize Team Opera Solutions and Vandelay United 0.8588 9.84 9.81 Vandelay Industries! 0.8591 PragmaticTheory 0.8594 9.77

26 July 2009.- Bellkor team submits 40 minutes before the deadline, "The Ensemble" team made of a mix of other teams submitted 20 minutes before the deadline.

Bellkor team wins one million dollars

Summary

Things to remember

- Interaction-based recommendations
 - Latent factors based
- Evaluation methods

Exercises for TT16-TT18

- Mining of Massive Datasets 2nd edition (2014) by Leskovec et al. Note that some exercises cover advanced concepts:
 - Exercises 9.2.8
 - Exercises 9.3.4
 - Exercises 9.4.6