```
Rual Z= {0, ±1, ±2,...}
```

division by b: a = qb + r where r is remainder $0 \le r < |b|$

ged (a, b)=d greatest common divisor, (d >, 1)

lem (a,b) = m least common muliple

note $M = \frac{|ab|}{d}$

Begouls Whintity: If gcd(a,b) = d then $\exists x,y \in \mathbb{Z}$ s.t. ax+by=d

Corollary 1.9: Integers a and b are coprime ⇔ ax + by=1 for some x, y ∈ Z

Theorem 1.10 (FTA): Every pointive integer n > 1 can be represented as the product of prime powers $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$. Where p_1, \ldots, p_k are primes and $\alpha_1, \ldots, \alpha_k$ are positive integers.

Example: 4004 = 22x7x11x13

tunce k=4, p1=2, p2=7, p3=11, p4=13 and a=2, a2=a3=a4=1.

Theorem 1,11 (Euclid). There are infinitely many primes.

Proof: Assume there is only a finite number of primes: p_1, \ldots, p_k .

Consider the number $A=p_1,\ldots,p_k+1$ note that p_i does not divides A, for any $i=1,\ldots,k$. So A is not divisible by any prime, which conductive to FTA.

Remark 1.12: FTA provides another algorithm for finding $\gcd(a,b)$ and lem(a,b). If $a = p_1^{\alpha_1} \cdots p_K^{\alpha_K}$ $(\alpha; 7,0)$ and $p_1, p_2, p_3, ...$ all primes $b = p_1^{\alpha_1} \cdots p_K^{\alpha_K}$ $(\beta; 7,0)$ and

Then $gcd(a,b) = p_1^{\gamma_1} ... p_k^{\gamma_k}$ when $Y_i = min(\alpha_i, \beta_i)$ $lan(a,b) = p_1^{\gamma_1} ... p_k^{\gamma_k}$ where $\delta_i = max(\alpha_i, \beta_i)$

Evenuple 1.13:
$$\Delta = 77077 = 7^2 \times 11^2 \times 13 = 2^0 \times 3^0 \times 5^0 \times 7^2 \times 11^2 \times 13$$

$$b = 674817 = 3 \times 11^3 \times 13^2 = 2^0 \times 3 \times 5^0 \times 7^0 \times 11^3 \times 13^2$$
thun $\gcd(a,b) = 2^0 \times 3^0 \times 5^0 \times 7^0 \times 11^2 \times 13 = 11^2 \times 13 = 1573$

$$lon(a,b) = 3 \times 7^2 \times 11^3 \times 13^2 = 33066033$$

note: on computer, Euclidean Algorithm is used to find god (factorization was loo many calculations)

2. Modular Arithmetics

" "huncaled" union of \mathbb{Z} : the ring of integers mod n:

$$\mathbb{Z}_{n} = \mathbb{Z}/n \mathbb{Z} = \{ [0]_{n}, [1]_{n}, [2]_{n}, \dots, [n-1]_{n} \} \quad (n \text{ elements})$$

or simply $\mathbb{Z}_n = \{0, 1, 2, 3, ..., n-1\}$ (here 0, 1, ..., n-1 are not normal intigers)

<u>Definition 2.1:</u> Let n>0, $n\in\mathbb{Z}$. Then integers a and b are <u>congruent modulo n</u>, written $a\equiv b \mod n$ if $n\mid (a-b)$.

Recall that by Vivision Alg, $a = gn + \pi$ where $0 \le \pi < n$ is the <u>remainder</u> (or residue) after division by n. Then $a - \pi = qn$ is divisible by n, so $a = \pi$ mod n

Hence a = b mod n ⇔ a and b have the same residue mod n.

Example: Let n=5. If we divide 19 by 5, we get residue 4: $19=3\times5+4$. But the same is true for 14, 9, 4, -1 $(-1=(-1)\times5+4)$, so 19=14=9=4=-1...

Exercise: Properties of = mod n

(1)
$$a = b \Rightarrow b = a$$
 (symm.)

$$(2) \alpha = b \ b = c \Rightarrow \alpha = c \ (bransistin)$$

noitaber endanupe na ai "=" os_

(3) a a + a = a b a = a a a = a a = a (8) (but no division and a = a prime) Definition 2.3: The residue class of a modulo n is $[a]_n = a + n \mathbb{Z} = \{a, a \pm n, a \pm 2n, a \pm 3n, ...\} \subseteq \mathbb{Z}$ (subset)

(all integers with the same residue as a mod n).

Executible:
$$[o]_n = O + n \mathbb{Z} = n \mathbb{Z} = \{ \text{ all multiples of } n \}$$

note:
$$a = b$$
 mod $n \Leftrightarrow [a]_n = [b]_n \Leftrightarrow n | (a-b)$

Escomple: Since
$$19 = 14 = 9 = 4 = -1$$
 mod 5,
 $[19]_5 = [14]_5 = [9]_5 = [4]_5 = [-6, -1, 4, 9, 14, ...]_5 = [-1]_5 = ...$