离散数学 (2023) 作业 XX

周帛岑 221900309

2023年6月10日

1 Problem 1

prim 算法: ef - fc - eh - hi - cb - da - dg

权值: 1+3+3+2+4+3+2+6=24

kruskal 算法: ef - hi - ad - eh - fc - bd - bc - dg

权值: 1+2+2+3+3+3+4+6=24

2 Problem 2

(1):

证: 我们不妨应用 kruskal 算法

找到这样的最小生成树, 其对应的边集按大小排序记为: $E = \{e_1, e_2, \dots, e_n\}$

由于该图为每条边权重均不相同的带权图,于是我们可以得到这个最小生成树的权,不妨记为 $N_e = (|e_1| + |e_2| + + |e_n|)$

不妨假设最小生成树不唯一,不妨假设另一最小生成树只有两条边 e_i , $e_j(|e_i|<|e_j|)$ 与该生成树不同。

由于每条边的权均不同,要使新的树的权值保持不变,则 $|e_i^{'}|$ 小于 $|e_n|$,且 $e_i^{'} \notin \mathbf{E}$

根据 kruskal 算法,当进行到 $|e_i|$ 当前权值最小 (权值小于 $|e_i|$ 但已经不满足无回路条件的已排除) 时,由于 kruskal 算法生成的最小生成树中并没有 e_i

则其与 $e_{1}^{'}$, $e_{2}^{'}$, …… , $e_{(i-1)}^{'}$ 相连后会形成回路

这与其为最小生成树相矛盾, 故这样的最小生成树是唯一的, 命题成立

(2):

反驳:

最小生成树权值为 1 + 2 + 3 + 4 = 10

但此时次小生成树有两个: 1+2+3+6=1+2+4+5=12

与题设矛盾, 故该命题不正确

3 Problem 3

证:采用反证法:

假设 e 所在的回路中(取回路中的简单回路)为 C

不妨假设 e 在某生成树 T 中,此时若去掉 e 这条边,则可以构成两个连通分支,分别记为 T_1,T_2

又该图存在一个回路,且 T_1,T_2 中显然不存在回路,故 C 包含了 T_1,T_2 中的某些点与边

由去掉 e 后,C 构成一个无回路的连通图,此时 T_1 在该回路中的部分与 T_2 在该回路中的部分一定存在边相连,且权值小于 |e|

故我们在 T-{e} 中连接这条边,显然,此时构成了一个树,且权值小于 T 这与 T 为最小生成树相矛盾,故假设不成立

命题得证

4 Problem 4

DFS: \rightarrow a, a \rightarrow b, b \rightarrow c, c \rightarrow h, h \rightarrow g, g \rightarrow l, h \rightarrow i, i \rightarrow e, e \rightarrow d, e \rightarrow f, f \rightarrow k, k \rightarrow j, j \rightarrow n, i \rightarrow m

BFS: $\to a$, $a\to b$, $a\to g$, $b\to c$, $g\to h$, $g\to l$, $h\to i$, $h\to m$, $i\to e$, $i\to j$, $i\to n$, $e\to d$, $e\to f$, $j\to k$