Physics Programming

The Dot Product and Angled Lines

Slides & lesson materials by Hans Wichman & Paul Bonsma

Previous Lecture

 Last week everything was horizontal or vertical

This Lecture

 This week: collisions between a ball and angled lines

Grading Criteria

	Insufficient	Sufficient	Good	Excellent	
Vectors and Unit	4 pts	12 pts	16 pts	20 pts	
Testing					
	The Vec2 struct is not	The Vec2 struct is used	S + the Vec2 struct is used	G + methods are all implemented	
(20%)	consistently used,	for most vector	consistently for almost all	efficiently in terms of code reuse	
	basic functionality	operations, all the basic	vector operations, methods	or computation time. Useful extra	
	missing, or not all of	functionality is present	are implemented with code	functionality is added to the Vec2	
	its methods are unit	(see the weekly	reuse and efficiency in mind,	struct.	
	tested.	assignments), and	good unit tests are chosen		
		functional unit tests are	and cover all Vec2 methods.		
		included for most			
		methods.			
Aiming and	4 pts	12 pts	16 pts	20 pts	
shooting					
	Aiming is not	Aiming (+ shooting or	S + Aiming in the current	G + Advanced aiming	
(20%)	implemented correctly	moving) in the current	direction and aiming to a	functionality has been added.	
	or the sprite rotation	direction, or aiming to a	target are both	(Examples: leading a moving	
	does not match the	target is implemented,	implemented.	target, correctly aiming a gravity-	
	movement direction.	using a rotated sprite		influenced or bouncing projectile,	
		(without using the GXP		timing fixed angle shots to hit a	
		Engine's methods such		moving target.)	
		as Move)			
Collisions	6 pts	18 pts	24 pts	30 pts	
(30%)	Collision detection	Correct collision detection	S + Correct point of impact	G + Robust handling of advanced	
	resolve contains	+ resolve (incl. bouncing /	calculation, correct collision	collisions (Examples: multiple	
	bugs, or is not	velocity reflection) on	with line seaments (without	moving objects following	
	included for angled	angled lines (without	using the GXP Engine's	Newton's laws, combining gravity	
	lines, or no bouncing	using the GXP Engine's	methods such as	with sliding or rolling, kinematic	
	is included, or is no	me nods such as	MoveUntilCollision).	objects such as moving	
	explained properly.	oveUntilCollision). The		platforms, or collision friction)	
		product applications in	V		
	Today	detail.	Next week		
	·	dotail.	+	 	4

Today: final 3 required methods

> Basics: last week

Lecture overview

- Bouncing off angled lines
 - Normals
 - Scalar & Vector projection
 - Dot product
 - Law of reflection
- Assignment 4

Bouncing off a line recap

Bouncing recap

- Bouncing off a line:
 - 1. Detect a hit
 - 2. Move ball back onto the line
 - 3. Reflect velocity

Not just any distance: shortest distance

- Shortest distance: the distance measured on a line perpendicular (green) to the original line
- if (shortest distance from ball to line < ball radius) then there is a collision

Distance less than r?

Move ball back onto the line

- Bouncing off a straight line:
 - 1. Detect a hit
 - 2. Move ball back onto the line (simple way: only up)
 - 3. Reflect velocity

Bouncing recap

- Bouncing off a straight line:
 - 1. Detect a hit
 - 2. Move ball back onto the line
 - 3. Reflect velocity

- Bouncing off an angled line:
 - 1. Detect a hit
 - 2. Move ball back onto the line
 - 3. Reflect velocity

- Bouncing off an angled line:
 - 1. Detect a hit
 - 2. Move ball back onto the line (the simple way)
 - 3. Reflect velocity

- Bouncing off an angled line:
 - 1. Detect a hit
 - 2. Move ball back onto the line
 - 3. Reflect velocity

Conclusion

- Previously (easy case):
 - Just check / modify x or y coordinate
- But the general case requires us to:
 - Detect a hit using the distance along the perpendicular (the shortest distance)
 - Move ball back onto the line along the perpendicular
 - Reflect velocity using the perpendicular

Normal vectors / Vector normals

Normal vector

- The perpendicular of a line is called its normal vector
- Angle between a vector and its normal is 90°
- Denoted with \vec{n}
- Important to understand:
 - Normal has no position, it only defines a direction
 - It is based on a line's slope not its position

Normal vs normalized

- A normalized vector != a normal vector
 - A normalized vector is a vector with length 1
 - A normal vector is a vector perpendicular to some other vector
- A normal vector can be normalized however:
 - A normalized normal vector is called a *unit normal* vector, denoted as \hat{n} , pointing in the direction of \vec{n} with length 1
 - Often when talking about a normal, we assume it is normalized!

"Calculating" the normal

- Let $\vec{v} = (x,y)$ denote the "direction vector" of a line segment L (=end point start point).
- Normal of L is then equal to \vec{v} rotated by 90°.
- The formula for 2d rotation was:
 - $-x' = x * \cos \alpha y * \sin \alpha$ - y' = x * \sin \alpha + y * \cos \alpha
- What is the normal of $\vec{v} = (x,y)$?

Cos
$$(90^{\circ}) = 0$$
, Sin $(90^{\circ}) = 1$, so:

$$x' = x * 0 - y * 1 = -y$$

 $y' = x * 1 + y * 0 = x$

• So the normal of $\vec{v} = (x, y)$ is $\vec{n} = (-y, x)$

Example $\vec{v} = (3,1) \rightarrow \vec{n} = (?,?)$

Example $\vec{v} = (3,1) \rightarrow \vec{n} = (-1,3)$

Example $\vec{v} = (3,-2) \rightarrow \vec{n} = (?,?)$

Example $\vec{v} = (3,-2) \rightarrow \vec{n} = (2,3)$

The "opposite" normal

- Is there an opposite normal?
 - same vector just negated: (y,-x)
 - By convention, the normal is +90° and not -90°
- In GXPEngine +90° is clockwise
- In standard Cartesian space +90° is counterclockwise

Exercise: calculate \hat{n}

Exercise: calculate \hat{n}

•
$$\vec{v} = (3, -4)$$

•
$$\vec{n} = (4,3)$$

•
$$|\vec{n}| = 5$$

•
$$\hat{n} = \frac{\vec{n}}{|\vec{n}|} = \frac{(4,3)}{5}$$

• $\hat{n} = (\frac{4}{5}, \frac{3}{5})$

•
$$\hat{n} = (\frac{4}{5}, \frac{3}{5})$$

Implementing Normal()

Implementing Normal()

 Vec2.Normal() returns the unit normal of the current vector as a new vector:

```
public Vec2 Normal() {
    return ???;
}
```

Tip: it's too small to draw without scaling!

Implementing Normal()

- Test code provided:
 - +002_line_collision_detection
 - Uses NLineSegment: a Line with Normal displayed
- When Normal() is correctly implemented it

should look like:

Ball/Line Distance

Ball/Line distance computation

Ball/Line distance computation

Scalar projection

Vector projection

The vector \vec{p} is the projection of \vec{a} onto \vec{b} if

- 1. \vec{p} is parallel to \vec{b} and
- 2. $\vec{a} \vec{p}$ is perpendicular to \vec{b} .

Informally: \vec{p} and $\vec{a} - \vec{p}$ are the "shadows" cast by \vec{a} when shining a light perpendicular resp. parallel to \vec{b}

Scalar projection

The scalar projection of \vec{a} onto \vec{b} is the "length"* of the vector projection

*Note: if the angle between \vec{a} and \vec{b} is >90, this number is negative.

Exercise

Calculate $|\vec{p}|$ using trigonometry:

"Primitive" solution

- In theory we could calculate α , β , α - β and then $|\vec{p}|$ using a combination of atan2, Pythagoras, cos:
 - slow
 - cumbersome
 - error prone
 - repetitive
 - hurts your brain

Quicker way: Dot product

Definition of the • (dot) product:

$$\vec{a} \cdot \vec{b} = \vec{a} \cdot x * \vec{b} \cdot x + \vec{a} \cdot y * \vec{b} \cdot y$$

As it turns out:

$$\vec{a} \cdot \hat{b} = \vec{a} \cdot x * \hat{b} \cdot x + \vec{a} \cdot y * \hat{b} \cdot y = |\vec{p}|$$

Note: must use the normalized version of b!

Dot Product = Scalar Projection

There are different ways to convince yourself of this claim:

$$\vec{a} \cdot \hat{b} = \vec{a} \cdot x \cdot \hat{b} \cdot x + \vec{a} \cdot y \cdot \hat{b} \cdot y = |\vec{p}|$$

- 1. Believe the teacher...?
- 2. Implement it in code sample 001, and see for yourself (see Assignment 4.1)
- 3. ... See also the next < demo>
- 4. Check out the *proof* at the end of these slides.

$\overrightarrow{a} \cdot \widehat{b}$ vs $\overrightarrow{b} \cdot \widehat{a}$

Order matters!

The official dot product formula

$$|\vec{p}| = \vec{a} \cdot \hat{b} = \vec{a} \cdot \frac{\vec{b}}{|\vec{b}|} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} \rightarrow$$
therefore

 $|\vec{p}||\vec{b}| = \vec{a} \cdot \vec{b}$, but $|\vec{p}|$ is also $|\vec{a}| \cos(\alpha)$

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos(\alpha)$$

The dot product

$$\vec{a} \cdot \vec{b} = ||\vec{a}|| ||\vec{b}|| \cos(\alpha)$$
 implies $\hat{a} \cdot \hat{b} = \cos(\alpha) = -1..1$

Don't forget to normalize \vec{b} !!

Otherwise the projection is $|\vec{b}|$ times too big ! So size matters too!

Exercise: calculate $|\vec{p}|$ using the dot product

Exercise: calculate $|\vec{p}|$ using the dot product

$$\vec{a} = (7,1)$$

$$\vec{b} = (8,-6)$$

$$|\vec{b}| = \sqrt{8^2 + (-6)^2} = \sqrt{100} = 10$$

$$\hat{b} = \frac{\vec{b}}{|\vec{b}|} = (\frac{4}{5}, -\frac{3}{5})$$

$$|\vec{p}| = \vec{a} \cdot \hat{b} = \frac{7 \cdot 4 - 1 \cdot 3}{5} = 25/5 = 5$$

Implementing Dot(...)

Implementing Dot()

- Implement Vec2.Dot(???):
 - Return the dot product of this and the given vector:

```
-\vec{a} \cdot \vec{b} = \vec{a} \cdot x \cdot \vec{b} \cdot x + \vec{a} \cdot y \cdot \vec{b} \cdot y
```

```
public ??? Dot(???) {
    return ???;
}
```

How can we test the dot product?

- If we draw \vec{a} and \vec{b} we could calculate:
 - $-|\vec{p}| \text{ using } \vec{a} \cdot \hat{b}$ $-|\vec{p}| = |\vec{p}| * \hat{b} = \vec{a} \cdot \hat{b} * \hat{b}$
- This is *vector projection* (vs scalar):
- Example: -001_dot_product

Exercise: calculate \vec{p} using the dot product

Exercise: calculate \vec{p} using the dot product

$$\vec{a} = (7,1)$$

$$\vec{b} = (8,-6)$$

$$|\vec{b}| = \sqrt{8^2 + (-6)^2} = \sqrt{100} = 10$$

$$\hat{b} = \frac{\vec{b}}{|\vec{b}|} = (\frac{4}{5}, -\frac{3}{5})$$

$$|\vec{p}| = \vec{a} \cdot \hat{b} = \frac{7 \cdot 4 - 1 \cdot 3}{5} = 25/5 = 5$$

$$\vec{p} = (\vec{a} \cdot \hat{b}) \hat{b} = 5 \cdot (\frac{4}{5}, -\frac{3}{5}) = (4, -3)$$

Test your setup!

- Using +001_the_dot_product:
 - Left and right click to set the green/red vectors
- When correctly implemented it looks like:

Ball/Line collision detection using scalar projection (the dot product)

Ball/Line collision detection

Ball/Line collision detection overview

Get difference vector of ball and line start/end:

Scalar project diff. vector onto line normal with dot product:

Compare projection length with ball radius:

Ball/Line collision detection overview

- For now we are ignoring the fact that we are dealing with only a segment. We act as if we are bouncing on an infinite line, not just a segment.
 - limiting to segments: lecture 5.
- This is discrete collision detection: are we currently overlapping/below the line?
- We can use any point on the line to compute a difference vector (=green) to start with

Ball/Line collision detection code

Base code: +002_line_collision_detection

- When implemented correctly, the ball turns red when closer than r to the line (or only when above the line, that is ok too)
- Basically for now, lines have only 1 positive/ok side

Position reset

Simple position reset

If the ball is below the line / touching the line:

Move it back in the direction of the normal

Point of Impact (POI) Calculation

Consider three values:

− oldDistance
− Radius
− newDistance
→

- They define lengths a and b. (with a<b)
- Define time of impact t = a/b.
 - If t=0: impact at "start of current frame"
 - If t=1: impact at "end of current frame"
- Set: POI = oldPosition + t * velocity

Reflecting the velocity using The Law of Reflection

Law of Reflection

 the angle of incidence == the angle of reflection (in the case of fully elastic collisions)

Law of Reflection

• In non angled case $\overrightarrow{v_{out}}$. $y = -\overrightarrow{v_{in}}$. y

Law of Reflection: Non angled

$$\overrightarrow{v_{out}} = \overrightarrow{v_{in}} - 2 * (0, \overrightarrow{v_{in}}.y)$$

Law of Reflection, Angled: step by step

1. Find the part of the velocity parallel to the normal using vector projection.

Law of Reflection, Angled: step by step

2. Subtract projected velocity twice from original velocity

Law of Reflection, Perfect elastic collision

$$\overrightarrow{v_{out}} = \overrightarrow{v_{in}} - 2 \cdot (\overrightarrow{v_{in}} \cdot \widehat{n}) \cdot \widehat{n}$$

Law of Reflection, non perfect collisions

$$\overrightarrow{v_{out}} = \overrightarrow{v_{in}} - (1 + bounciness) \cdot (\overrightarrow{v_{in}} \cdot \hat{n}) \cdot \hat{n}$$
$$0 \le bounciness \le 1$$

(Perfect elastic collision: bounciness = 1)

COR: Coefficient Of Reflection

- Official word for bounciness:
 - coefficient of reflection COR, written as C:

$$-\overrightarrow{v_{out}} = \overrightarrow{v_{in}} - (1+C) \cdot (\overrightarrow{v_{in}} \cdot \widehat{n}) \cdot \widehat{n}$$

Implementing Reflect()

Implement Reflect(...)

$$\overrightarrow{v_{out}} = \overrightarrow{v_{in}} - (1 + C) \cdot (\overrightarrow{v_{in}} \cdot \hat{n}) \cdot \hat{n}$$

```
public void Reflect(Vec2 pNormal, float pBounciness = 1) {
     //.... reflection code here ....
}
```

Demo (-003 / -004)

Dot product - Summary

- Main uses of Dot product:
 - Projecting a vector onto another vector
 - Used for velocity reflection, distance computation, ...
 - Computing angle between two vectors
 - Really easy to determine: is the angle bigger or smaller than 90 degrees?
- Everything presented holds also for 3 (or 4, 5...)
 dimensions:
 - -3D: $\vec{a} \cdot \vec{b} = \vec{a} \cdot x * \vec{b} \cdot x + \vec{a} \cdot y * \vec{b} \cdot y + \vec{a} \cdot z * \vec{b} \cdot z$
 - $-\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos(\alpha)$ still true

Assignment 4

Download the assignment from blackboard for details

- In short:
 - Bouncing a ball off multiple angled lines (demo)

Other Applications

- Note that the dot product and formulas from the last two lectures have many more (unexpected) applications!
- Next year: 3D Math
- Example for now: smart aiming (you might use this to score `excellent' on aiming)
- (demo)

(If you score well on the Blackboard tests for week 3, 4, you might find some tips for this somewhere on Blackboard...)

Next time

- Fixing line segment collision issues:
 - collision is not limited to the line segment yet
 - ball cannot pass behind line segment without being reset
 - ball cannot bounce on the line ends/caps
 - bounce is one sided

And more exciting stories from the world of physics ©

Scalar projection proof

Background info

Scalar Projection

Given \vec{a} , \vec{b} and \vec{p} as shown below (see also earlier slides), this is what we want to prove:

$$\vec{a} \bullet \hat{b} = \vec{a}. x * \hat{b}. x + \vec{a}. y * \hat{b}. y = |\vec{p}|$$

Note: must use the normalized version of b!

Simplify by rotating

- Observation:
 - if we rotate \vec{a} over $-\beta$ to \vec{a}'
 - we see $|\vec{p}|$ is equal to $\vec{a}' \cdot x$

Calculate \vec{a}' . x with 2d rotation formula

$$\vec{a}' \cdot x = \vec{a} \cdot x * \cos(-\beta) - \vec{a} \cdot y * \sin(-\beta)$$

Simplify using angle "identities"

$$\vec{a}' \cdot x = \vec{a} \cdot x * \cos(-\beta) - \vec{a} \cdot y * \sin(-\beta)$$

$$= \vec{a}.x * \cos(\beta) + \vec{a}.y * \sin(\beta)$$

Simplify using Sohcahtoa

$$\cos(\beta) = \frac{\vec{b}.x}{|\vec{b}|} \& \sin(\beta) = \frac{\vec{b}.y}{|\vec{b}|}$$

Therefore:

$$\vec{a}' \cdot x = \vec{a} \cdot x * \cos(\beta) + \vec{a} \cdot y * \sin(\beta)$$

$$= \vec{a}.x * \frac{\vec{b}.x}{|\vec{b}|} + \vec{a}.y * \frac{\vec{b}.y}{|\vec{b}|}$$

Simplify notation using definition of \widehat{b}

$$\vec{a}' \cdot x = \vec{a} \cdot x * \frac{\vec{b} \cdot x}{|\vec{b}|} + \vec{a} \cdot y * \frac{\vec{b} \cdot y}{|\vec{b}|}$$

= $\vec{a} \cdot x * \hat{b} \cdot x + \vec{a} \cdot y * \hat{b} \cdot y = \vec{a} \cdot \hat{b}$

