Microprocessor and Computer Architecture Laboratory UE19CS256

4th Semester, Academic Year 2020-21

Name: Pranav R. Hegde SRN: PES1UG19CS343 Section: F	
---	--

Date:09/04/2021

Week#____9___Program Number: ____1__

Title of the Program:

5 Stage MIPS pipelined simulator

Observations:

Without data forwarding

- Yes, there is a data dependency between the instructions.
- The number of stalls introduced in the case without data forwarding are 6.
- And the number of clock cycles consumed are 16.

With data forwarding:

- In case of data forwarding, only 1 stall is introduced.
- And the number of clock cycles consumed are 13.

Microprocessor and Computer Architecture Laboratory UE19CS256

4th Semester, Academic Year 2020-21

Name: Pranav R. Hegde	SRN: PES1UG19CS343	Section: F

Date:09/04/2021

Week#____9___Program Number: ____2__

Title of the Program:

Cache simulator

Part 1 – Direct mapping:

Based on the info given:

• Index bits: 5

• Tag bits: 5

• Block bits: 10

144 - Miss

2176 - Miss

2180 - Miss

128 - Hit

2176 - Hit

Final Hit and Miss rates:

Statistics

Hit Rate : 29%

Miss Rate: 71%

Total:

Hits: 2

Misses: 4

Part 2: 4 way set associative mapping

Observations based on given info:

• Index bits: 4

• Tag bits: 7

• Block bits: 11

Generated a random set of numbers:

All the numbers lead to misses.

Final statistics:

Misses = 10

Hits = 0

Microprocessor and Computer Architecture Laboratory UE19CS256

4th Semester, Academic Year 2020-21

|--|

Date:09/04/2021

Week#____9___Program Number: ____3___

Title of the Program:

Write the equivalent ARM assembly instructions for the given C code

The code:

```
.text
  mov r0, #0 ;considered x
  mov r1, #2 ;considered a
  mov r2, #3 ;considered b
  mov r3, #4 ;considered c
  mov r4, #0 ;auxillary space

add r4, r1, r2
  sub r0, r4, r3
```

The arm sim executed screenshot:

The code:

```
.text
  mov r0, #0 ;considered z
  mov r1, #2 ;considered a
  mov r2, #3 ;considered b

mov r3, #4 ;auxillary space 1
  mov r4, #0 ;auxillary space 2

and r3, r2, #15
  mov r4, r1, LSL #2
  orr r0, r3, r4
```

The arm sim executed screenshot:

