Cortex-data (script 01) A=anodal B=sham

Accuracy as function of pair and stimulation condition

repeated measures, so more informative to look at means of differences (error bars are confidence limits)

Logistic regression (we did not include this but should have):

```
Formula: ACC ~ scale(trial) + as.numeric(pair) + condition + (1 | subj)
```

Fixed effects:

```
Estimate Std. Error z value Pr(>|z|)
                  2.33403
                             0.24722
                                       9.441 < 2e-16 ***
(Intercept)
                                              < 2e-16 ***
scale(trial)
                  0.35311
                             0.02565
                                      13.767
                             0.03131 -12.468 < 2e-16 ***
as.numeric(pair) -0.39035
                                       4.615 3.93e-06 ***
conditionB
                  0.23278
                             0.05044
```

all the usual suspects: later trials are more accurate (learning), higher pair number associated with lower accuracy (difficulty).

In addition, sham has a positive effect (i.e., anodal performs worse).

Here an illustrative plot with data from two random subjects and model fit:

Reaction times do not appear to be influenced by stimulation (at least not the mean):

```
Formula: (RT) ~ scale(trial) + as.numeric(pair) + condition + (1 | subj)
```

Fixed effects:

	Estimate	Std. Err	or	df t val	ue Pr(> t)
(Intercept)	773.225	38.655	16.000	20.003	1.53e-12 ***
scale(trial)	-69.966	2.039	11380.000	-34.322	< 2e-16 ***
as.numeric(pair)	20.705	2.496	11380.000	8.295	< 2e-16 ***
conditionB	-1.711	4.077	11380.000	-0.420	0.675

but effect of learning and difficulty still there.

Possible that anodal stimulation results in more variable Rts, though:

RTs per pair

Formula: (RT) ~ scale(trial) + as.factor(pair) * condition + (1 | subj)

Fixed effects:

	Estimate	df t value Pr(> t)	
(Intercept)	803.842	38.555 15.000	20.849 1.01e-12 ***
scale(trial)	-69.977	2.037 11364.000	-34.352 < 2e-16 ***
as.factor(pair)2	3.187	7.061 11364.000	0.451 0.651731

```
as.factor(pair)3 29.260 7.060 11364.000 4.144 3.43e-05 ***
conditionB -24.154 7.056 11364.000 -3.423 0.000621 ***
as.factor(pair)2:conditionB 43.166 9.980 11364.000 4.325 1.54e-05 ***
as.factor(pair)3:conditionB 24.200 9.977 11364.000 2.425 0.015305 *
```

Interestingly, pair 2 is positively influenced by tDCS both in terms of ACC (more) and RT (faster) while the other pairs are impaired (hence the main effect).

P(stay|win) and p(stay|lose)

this reproduces table 2 from the paper (mean+SEM):

and the corresponding plot of differences (confidence limits), anodal-sham

Transfer phase

