lab2.1 利用wireshark观察网络层报文

lab2.1 利用wireshark观察网络层报文

&实验步骤

&IP数据报/ICMP协议简介

IP数据报

ICMP协议

&抓包结果分析

- 1.显示过滤器过滤出本机到目的主机的所有IP和ICMP数据包
- 2. 查找本机发送的第一个 TTL等于1 的 ICMP Echo Request 消息
- 3.分析碎片IP数据报的第一个片段
- 4.分析碎片IP数据报的第二个片段
- 5.分析碎片IP数据报的最后一个片段

&实验步骤

利用 wireshark 和 PingPlotter 观察网络层数据包 (1) 下载并安装wireshark以及PingPlotter (2) 配置PingPlotter发包大小为3000Bytes (3) 启动wireshark (4) 启动PingPlotter追踪 gaia.cs.umass.edu,大约count值为3-4次时停止

&IP数据报/ICMP协议简介

IP数据报

IP数据报的数据部分一般是TCP/UDP报文段或ICMP协议内容

ICMP协议

ICMP报文承载在IP分组中,其首部占8个字节。

ICMP可用于网络层差错报告, 其报文类型如下

ICMP类型	编码	描述										
0	0	回显回答 (对 ping 的回答)										
3	0	目的网络不可达										
3	1	目的主机不可达										
3	2	目的协议不可达										
3	3	目的端口不可达										
3	6	目的网络未知										
3 7		目的主机未知										
4	0	源抑制 (拥塞控制)										
8 0 9 0 10 0		回显请求 路由器通告 路由器发现										
							11	0	TTL过期			
							12	0	IP首部损坏			

&抓包结果分析

1.显示过滤器过滤出本机到目的主机的所有IP和ICMP数据包

• IP数据包

显示过滤器: ip and ip.src== 211.86.145.7 and ip.dst==128.119.245.12

	ip and ip. src== 211.86.145.7 and ip. dst==128.119.245.12						
No.		Time	Source	Destination	Protoco1	Length	Info
	86	0.620335	211.86.145.7	128.119.245.12	IPv4	1514	Fragmented IP protocol (proto=ICMF
	87	0.620338	211.86.145.7	128.119.245.12	ICMP	54	Echo (ping) request id=0x0001, se
	88	0.621325	67.14.30.158	211.86.145.7	ICMP	70	Time-to-live exceeded (Time to liv
	90	0.652460	65.126.225.186	211.86.145.7	ICMP	70	Time-to-live exceeded (Time to live
	93	0.671149	211.86.145.7	128.119.245.12	IPv4	1514	Fragmented IP protocol (proto=ICMF
	94	0.671162	211.86.145.7	128.119.245.12	IPv4	1514	Fragmented IP protocol (proto=ICMF
	95	0.671167	211.86.145.7	128.119.245.12	ICMP	54	Echo (ping) request id=0x0001, se
	101	0.716556	192.80.83.105	211.86.145.7	ICMP	70	Time-to-live exceeded (Time to liv
	104	0.770700	128.119.0.10	211.86.145.7	ICMP	70	Time-to-live exceeded (Time to liv
	106	0.817292	128.119.3.32	211.86.145.7	ICMP	70	Time-to-live exceeded (Time to live
•	130	1.181239	211.86.145.7	128.119.245.12	IPv4	1514	Fragmented IP protocol (proto=ICMF
•	131	1.181279	211.86.145.7	128.119.245.12	IPv4	1514	Fragmented IP protocol (proto=ICMF
-	132	1.181298	211.86.145.7	128.119.245.12	ICMP	54	Echo (ping) request id=0x0001, se
	135	1.231846	211.86.145.7	128.119.245.12	IPv4	1514	Fragmented IP protocol (proto=ICMF
	136	1.231864	211.86.145.7	128.119.245.12	IPv4	1514	Fragmented IP protocol (proto=ICMF
	137	1.231871	211.86.145.7	128.119.245.12	ICMP	54	Echo (ping) request id=0x0001, se
	139	1.236517	0.0.0.0	211.86.145.7	ICMP	70	Time-to-live exceeded (Time to liv
	141	1.282610	211.86.145.7	128.119.245.12	IPv4	1514	Fragmented IP protocol (proto=ICMF

• ICMP数据包

显示过滤器: icmp and ip.src== 211.86.145.7 and ip.dst==128.119.245.12

	icmp and ip.src== 211.86.145.7 and ip.dst==128.119.245.12						
No.	Time	Source	Destination	Protoco1	Length	Info	
!	42 0.237067	219.158.113.117	211.86.145.7	ICMP	110	Time-to-live exceeded (Time to li	
	45 0.264587	211.86.145.7	128.119.245.12	ICMP	54	Echo (ping) request id=0x0001, se	
	53 0.315415	211.86.145.7	128.119.245.12	ICMP	54	Echo (ping) request id=0x0001, se	
	56 0.366409	211.86.145.7	128.119.245.12	ICMP	54	Echo (ping) request id=0x0001, se	
	61 0.417318	211.86.145.7	128.119.245.12	ICMP	54	Echo (ping) request id=0x0001, se	
	67 0.468008	211.86.145.7	128.119.245.12	ICMP	54	Echo (ping) request id=0x0001, se	
	68 0.468524	219.158.102.114	211.86.145.7	ICMP	110	Time-to-live exceeded (Time to li	
}	69 0.487727	63.146.27.85	211.86.145.7	ICMP	70	Time-to-live exceeded (Time to li	
	74 0.518651	211.86.145.7	128.119.245.12	ICMP	54	Echo (ping) request id=0x0001, se	
	82 0.569479	211.86.145.7	128.119.245.12	ICMP	54	Echo (ping) request id=0x0001, se	
	87 0.620338	211.86.145.7	128.119.245.12	ICMP	54	Echo (ping) request id=0x0001, se	
	88 0.621325	67.14.30.158	211.86.145.7	ICMP	70	Time-to-live exceeded (Time to li	
ł	90 0.652460	65.126.225.186	211.86.145.7	ICMP	70	Time-to-live exceeded (Time to li	
	95 0.671167	211.86.145.7	128.119.245.12	ICMP	54	Echo (ping) request id=0x0001, se	
1	101 0.716556	192.80.83.105	211.86.145.7	ICMP	70	Time-to-live exceeded (Time to li	
}	104 0.770700	128.119.0.10	211.86.145.7	ICMP	70	Time-to-live exceeded (Time to li	
	106 0.817292	128.119.3.32	211.86.145.7	ICMP	70	Time-to-live exceeded (Time to li	
>	132 1.181298	211.86.145.7	128.119.245.12	ICMP	54	Echo (ping) request id=0x0001, s	

2. 查找本机发送的第一个 TTL等于1 的 ICMP Echo Request 消息

• 显示过滤器输入ip.src==211.86.145.7 and icmp

查找到第一个TTL=1的ICMP Echo Request 消息

• 此IP数据报是否被分片?

查看此数据报详细IP报文段,可知其在链路层帧中分片为三个片段,数据包编号分别为No.135, No.136, No.137

▼ [3 IPv4 Fragments (2980 bytes): #135(1480), #136(1480), #137(20)]

[Frame: 135, payload: 0-1479 (1480 bytes)]
[Frame: 136, payload: 1480-2959 (1480 bytes)]
[Frame: 137, payload: 2960-2979 (20 bytes)]

[Fragment count: 3]

[Reassembled IPv4 length: 2980]

3.分析碎片IP数据报的第一个片段

• 打印出碎片IP数据报的第一个片段

No.135数据包的IPv4数据报文如下图

```
✓ Internet Protocol Version 4, Src: 211.86.145.7, Dst: 128.119.245.12
    0100 .... = Version: 4
    .... 0101 = Header Length: 20 bytes (5)
  Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)
    Total Length: 1500
    Identification: 0x7db3 (32179)

▼ Flags: 0x2000, More fragments

       0... .... = Reserved bit: Not set
       .0.. .... .... = Don't fragment: Not set
       ..1. .... = More fragments: Set
       ...0 0000 0000 0000 = Fragment offset: 0
  > Time to live: 1
    Protocol: ICMP (1)
    Header checksum: 0x3c8c [validation disabled]
    [Header checksum status: Unverified]
    Source: 211.86.145.7
    Destination: 128.119.245.12
```

• IP 头中的哪些信息表明数据报已碎片化?

✓ Data (1480 bytes)

标志(flags)字段为1,说明已碎片化,且不为最后一个片段。

Reassembled IPv4 in frame: 137

Total Length=1500, 说明此数据报已达到最大长度,这不能确定已碎片化,只能说明很可能已碎片化。

• IP报头中的哪些信息表明这是第一个片段还是后一个片段?

标志(flags)字段为1,说明已碎片化,且不为最后一个片段。 偏移字段(offset)为0,说明是第一个片段。

• 这个 IP 数据报header有多少个字节?

Header Length= 20 bytes, 即header有20字节

• 有效负载有多少个字节?

Total Length=1500, 1500-20=1480, 即数据段为1480字节

4.分析碎片IP数据报的第二个片段

• 打印出碎片 IP 数据报的第二个片段。

No.136数据包的IPv4数据报文如下图

```
✓ Internet Protocol Version 4, Src: 211.86.145.7, Dst: 128.119.245.12
    0100 .... = Version: 4
    .... 0101 = Header Length: 20 bytes (5)
  Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)
    Total Length: 1500
    Identification: 0x7db3 (32179)

▼ Flags: 0x20b9, More fragments

       0... .... = Reserved bit: Not set
       .0.. .... = Don't fragment: Not set
       ..1. .... = More fragments: Set
       ...0 0000 1011 1001 = Fragment offset: 185
  > Time to live: 1
    Protocol: ICMP (1)
    Header checksum: 0x3bd3 [validation disabled]
    [Header checksum status: Unverified]
    Source: 211.86.145.7
    Destination: 128.119.245.12
    Reassembled IPv4 in frame: 137
```

- ➤ Data (1480 bytes)
- IP 报头中的哪些信息表明这不是第一个数据报片段?

偏移字段(offset)为185,说明这不是第一个数据报片段。

• 是否还有更多的片段?

标志(flags)字段为1,说明已碎片化,且不为最后一个片段,故还有更多片段。

5.分析碎片IP数据报的最后一个片段

• 打印出碎片 IP 数据报的最后一个片段

在第一个片段的数据包中,蓝色字段说明最后一个片段是编号为No.137的数据包,其IPv4数据报文如下图

```
Internet Protocol Version 4, Src: 211.86.145.7, Dst: 128.119.245.12
    0100 .... = Version: 4
    .... 0101 = Header Length: 20 bytes (5)
  Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)
    Total Length: 40
    Identification: 0x7db3 (32179)

▼ Flags: 0x0172
       0... .... = Reserved bit: Not set
       .0.. .... = Don't fragment: Not set
       ..0. .... = More fragments: Not set
       ...0 0001 0111 0010 = Fragment offset: 370
  > Time to live: 1
    Protocol: ICMP (1)
    Header checksum: 0x60ce [validation disabled]
    [Header checksum status: Unverified]
    Source: 211.86.145.7
    Destination: 128.119.245.12

▼ [3 IPv4 Fragments (2980 bytes): #135(1480), #136(1480), #137(20)]

       [Frame: 135, payload: 0-1479 (1480 bytes)]
       [Frame: 136, payload: 1480-2959 (1480 bytes)]
       [Frame: 137, payload: 2960-2979 (20 bytes)]
       [Fragment count: 3]
       [Reassembled IPv4 length: 2980]
       [Reassembled IPv4 data: 08007870000105142020202020202020202020202020202020...]
```

• 从原始数据报创建了多少个片段?

Fragment count=3,说明从原始数据报创建了3个片段

• 如何判断是最后一个片段?

标志(flags)字段为0,说明是最后一个片段

• 最后一个 IP数据报负载有多少个字节?

总长度: 40 字节

首部长度: 20 字节

负载长度: 40-20=20 字节

• TTL的值

TTL=1

• 上层协议字段

三个分段的IP数据报组装成一个完整的IP数据报,组装得到IP数据报文,其上层协议字段为ICMP,故把组装后的有效载荷提供给ICMP协议

• 下层协议

网络层的下层即为链路层协议, 其信息如下图

Fethernet II, Src: RivetNet_e1:41:91 (9c:b6:d0:e1:41:91), Dst: Hangzhou_91:72:e2 (5c:dd:70:91:72:e2)
Destination: Hangzhou_91:72:e2 (5c:dd:70:91:72:e2)
Source: RivetNet_e1:41:91 (9c:b6:d0:e1:41:91)
Type: IPv4 (0x0800)