Q1. The ratio of two quantities is dimensionless but not unitless. Which of the following is a valid example?

- A. Angle in radians
- B. Relative density
- C. Temperature ratio in kelvin
- D. Refractive index

Answer: C

Explanation:

The ratio of two temperatures in kelvin is dimensionless because the units cancel, but it is not unitless since kelvin is a base unit.

Q2. The SI unit of the coefficient of viscosity (written as "eta") is:

- A. Pa·s
- B. N·s/m
- C. $kg \cdot m^{-1} \cdot s^{-2}$
- D. dyne·s/cm²

Answer: A Explanation:

Viscosity $\eta = (Force / Area) \times (dx / dv)$

 $= (N / m^2) \times s = Pa \cdot s$

Q3. Which of the following pairs has the same dimensions but different SI units?

- A. Work and torque
- B. Pressure and energy
- C. Power and energy
- D. Impulse and force

Answer: A

Explanation:

Work and torque both have the same dimensions: [M L² T⁻²]

Work has SI unit: joule (J = N⋅m)
Torque also has unit N·m, but represents rotational effect and is a vector So, dimensions are same, but physical meaning and usage are different.
Q4. Which of the following physical quantities has an SI unit that is not derived, i.e., it is a base unit?
A. Luminous intensity B. Electric potential C. Heat D. Velocity
Answer: A Explanation: Luminous intensity is a base physical quantity. Its SI unit is candela (cd), which is a base unit.
Q5. The SI unit of solid angle is:
A. Radian B. Steradian C. Degree D. Dioptre
Answer: B Explanation: Solid angle is measured in steradians (sr), the SI unit for 3D angular measure.
Q6. A student writes the unit of Planck's constant as "erg·s". What is the equivalent SI unit?
A. J·s B. N·s C. kg·m²/s D. W·s

Answer: A

Explanation:

$$1 \text{ erg} = 10^{-7} \text{ joule}$$

So, erg·s =
$$10^{-7}$$
 J·s

Hence, the correct SI unit of Planck's constant is joule-second (J·s)

Q7. The dimensional formula of pressure is:

A.
$$[M L^{-1} T^{-2}]$$

B.
$$[M L T^{-2}]$$

C.
$$[M L^2 T^{-2}]$$

D.
$$[M L^{-2} T^{-2}]$$

Answer: D

Explanation:

Pressure = Force / Area

$$= [M L T^{-2}] / [L^{2}] = [M L^{-1} T^{-2}]$$

Q8. Which of the following is dimensionally consistent?

A.
$$v^2 = u^2 + 2as$$

B.
$$v = u + at^2$$

C.
$$v^2 = u^2 + 2a$$

D.
$$s = ut + at$$

Answer: A

Explanation:

Check each term's dimensions:

$$v^2 = [L^2 T^{-2}]$$

$$u^2 = [L^2 T^{-2}]$$

$$2as = [L T^{-2}] \times [L] = [L^2 T^{-2}]$$

All terms have same dimensions.

Q9. The dimensional formula of surface tension is:

- A. $[M^0 L^0 T^0]$
- B. $[M T^{-2}]$
- C. $[M L^0 T^{-2}]$
- D. [M T]

Answer: C

Explanation:

Surface tension = Force / Length

 $= [M L T^{-2}] / [L] = [M L^{0} T^{-2}]$

Q10. Which of the following physical quantities has the same dimensional formula as energy?

- A. Force
- B. Torque
- C. Pressure
- D. Power

Answer: B

Explanation:

Energy = $[M L^2 T^{-2}]$

Torque = Force × Distance = $[M L T^{-2}] \times [L] = [M L^2 T^{-2}]$

Q11. Which quantity has the same dimensions as impulse?

- A. Force
- B. Energy
- C. Momentum
- D. Pressure

Answer: C

Impulse = Force × Time =
$$[M L T^{-2}] \times [T] = [M L T^{-1}]$$

Momentum = Mass × Velocity = $[M] \times [L T^{-1}] = [M L T^{-1}]$

Q12. Which of the following equations is dimensionally incorrect?

A. T =
$$2\pi \sqrt{(L/g)}$$

B.
$$E = mc^2$$

$$C. F = ma^2$$

D.
$$v = u + at$$

Answer: C

Explanation:

$$F = ma^2 \Rightarrow Dimensions = M \times (L T^{-2})^2 = [M L^2 T^{-4}]$$

But Force = [M L T⁻²], so mismatch \rightarrow Incorrect.

Q13. What is the dimensional formula of Planck's constant?

A.
$$[M L^2 T^{-1}]$$

B.
$$[M L^2 T^{-2}]$$

C.
$$[M L T^{-1}]$$

Answer: A

Explanation:

Energy =
$$h \times frequency \rightarrow [M L^2 T^{-2}] = h \times [T^{-1}]$$

So, $h = [M L^2 T^{-1}]$

Q14. The dimensional formula of angular momentum is:

A.
$$[M L^2 T^{-2}]$$

B.
$$[M L^2 T^{-1}]$$

D.
$$[M^2 L T^{-2}]$$

Answer: B

Angular momentum = Moment of inertia × Angular velocity = $[M L^2] \times [T^{-1}] = [M L^2 T^{-1}]$

Q15. Which quantity is dimensionless?

- A. Strain
- **B.** Stress
- C. Energy
- D. Force

Answer: A

Explanation:

Strain = Change in length / Original length \rightarrow [L] / [L] = No units

Hence, dimensionless.

Q16. The unit of a quantity is given as joule-second. Identify the physical quantity.

- A. Planck's constant
- B. Work
- C. Energy
- D. Angular momentum

Answer: D

Explanation:

Angular momentum = Moment of inertia × Angular velocity

= $[\stackrel{-}{M} L^2] \times [T^{-1}]$ = $[\stackrel{-}{M} L^2 T^{-1}] \rightarrow Joule$ -second

Q17. Which of the following quantities has the dimensional formula [M^0 L^0 T^0]?

- A. Relative density
- B. Density
- C. Pressure
- D. Force

Answer: A

Relative density = Density of substance / Density of water

 \rightarrow No units \rightarrow Dimensionless

Q18. Dimensional formula of gravitational constant (G) is:

A.
$$[M^{-1} L^3 T^{-2}]$$

B.
$$[M L^3 T^{-2}]$$

C.
$$[M^{-2} L^3 T^{-2}]$$

D.
$$[M^{-1} L^2 T^2]$$

Answer: A

Explanation:

F = G (m₁m₂ / r²)
$$\Rightarrow$$
 G = F × r² / m²
= [M L T⁻²] × [L²] / [M²] = [M⁻¹ L³ T⁻²]

Q19. Which of the following quantities has same dimensions as work?

- A. Moment of inertia
- B. Power
- C. Torque
- D. Momentum

Answer: C

Explanation:

Torque = Force × Perpendicular distance

=
$$[M L T^{-2}] \times [L] = [M L^2 T^{-2}] \rightarrow Same as Work$$

Q20. The true value of a quantity is 9.80 m/s^2 , and the measured value is 9.65 m/s^2 . The absolute error is:

- A. 0.05
- B. 0.10
- C. 0.15
- D. 0.25

Answer: C Explanation:

Absolute error = |True - Measured| = |9.80 - 9.65| = 0.15

Q21. If the absolute error in measuring length is 0.02 m and the length is 2.00 m, then the percentage error is:

A. 1%

B. 0.5%

C. 0.02%

D. 2%

Answer: B

Explanation:

Percentage error = $(0.02 / 2.00) \times 100 = 1\%$

Q22. Which of the following has maximum possible error when added?

A. 10.2 + 3.58

B. 100.03 + 0.004

C.23.1 + 5.342

D. 3.2 + 1.75

Answer: A

Explanation:

Final result should match the least precise decimal place (1 decimal). Max error comes from large rounding.

Q23. If two quantities $A = 5.0 \pm 0.1$ and $B = 2.0 \pm 0.2$, then the error in A + B is:

A. ± 0.1

 $B. \pm 0.2$

C. ±0.3

D. ±0.02

Answer: C

In addition: total error = error in A + error in B = $0.1 + 0.2 = \pm 0.3$

Q24. If A = 10 ± 0.2 and B = 5 ± 0.1 , the maximum relative error in A/B is:

- A. 0.02
- B. 0.03
- C. 0.04
- D. 0.05

Answer: D

Explanation:

Relative error = $(\Delta A/A) + (\Delta B/B) = (0.2/10) + (0.1/5) = 0.02 + 0.02 = 0.04$ (or 4%)

Q25. If A = 4.0 ± 0.2 and we calculate A^2 , the percentage error is:

- A. 5%
- B. 10%
- C. 20%
- D. 40%

Answer: B

Explanation:

If $y = A^n$, % error = $n \times (\% \text{ error in } A)$

% error in A = $(0.2/4.0) \times 100 = 5\%$

So, % error in $A^2 = 2 \times 5 = 10\%$

Q26. The least count of a scale that reads up to 1 mm is: $\frac{1}{2}$

- A. 0.1 mm
- B. 0.5 mm
- C. 1 mm
- D. 10 mm

Answer: C

Explanation:

Least count = smallest division readable = 1 mm

Q27. A student measures the diameter of a wire as 2.00 mm, 2.02 mm, and 1.98 mm. The mean diameter is:

A. 2.01 mm

B. 2.00 mm

C. 1.99 mm

D. 2.02 mm

Answer: B Explanation:

Mean = (2.00 + 2.02 + 1.98)/3 = 2.00 mm

Q28. For the same readings in Q27, the absolute error in each measurement is:

A. 0.01 mm

B. 0.02 mm

C. 0.04 mm

D. 0.10 mm

Answer: B Explanation:

|2.02 - 2.00| = 0.02, |1.98 - 2.00| = 0.02

Average error = $(0.02 + 0.02 + 0)/3 = 0.013 \approx 0.02$ mm

Q29. If $Z = A \times B$, then fractional error in Z is:

A. $\Delta A + \Delta B$

B. $\Delta A/A + \Delta B/B$

C. $A \times \Delta B + B \times \Delta A$

D. None

Answer: B Explanation:

For multiplication/division: fractional error in $Z = \Delta A/A + \Delta B/B$

Q30. If a measurement is 2.50 cm, how many significant figures does it have?
A. 1 B. 2 C. 3 D. 4
Answer: C Explanation: Trailing zero after decimal counts \rightarrow 2.50 has 3 significant figures
Q31. The quantity 0.00340 has how many significant figures?
A. 2 B. 3 C. 4 D. 5
Answer: B Explanation: Leading zeros don't count. 3, 4, and final 0 after decimal \rightarrow 3 sig figs
Q32. Which of the following is dimensionally incorrect?
A. Velocity = Distance / Time B. Work = Force × Distance C. Power = Work × Time D. Acceleration = Velocity / Time
Answer: C Explanation: Power = Work / Time, not × Time ⇒ Incorrect dimensions.

Q33. If length = 4.0 ± 0.2 m and time = 2.0 ± 0.1 s, what is the error in speed?

```
A. 0.1 \text{ m/s}
```

$$B. 0.2 \text{ m/s}$$

$$C. 0.3 \text{ m/s}$$

$$D. 0.4 \text{ m/s}$$

Answer: B

Explanation:

Speed = L/T

Relative error = 0.2/4.0 + 0.1/2.0 = 0.05 + 0.05 = 0.10

Speed = 2.0 m/s

Absolute error = 10% of 2.0 = 0.2 m/s

Q34. If density is calculated from m/V, and m has 3% error, V has 2% error, then error in density is:

A. 1%

B. 2%

C. 5%

D. 6%

Answer: C

Explanation:

% error in density = 3% + 2% = 5%

Q35. If $R = A^2B / C^3$, the % error in R is:

A.
$$2(\Delta A/A) + \Delta B/B + 3(\Delta C/C)$$

B.
$$\Delta A + \Delta B - \Delta C$$

$$C. \Delta A^2 + \Delta B^2 - \Delta C^3$$

D.
$$\Delta A/A + \Delta B/B - \Delta C/C$$

Answer: A

Explanation:

Use exponents: % error = $n(\Delta A/A) + m(\Delta B/B) + ...$

So here = $2(\Delta A/A) + \Delta B/B + 3(\Delta C/C)$

Q36. A value is measured as 5.60. Rounding it to 2 significant digits gives:
A. 5.5 B. 5.6 C. 6.0 D. 5.0
Answer: B Explanation: First two digits: $5.6 \rightarrow$ Already 2 significant figures
Q37. The mean absolute error is best described as:
A. Minimum possible error B. Average of all errors C. Largest error D. Standard deviation
Answer: B Explanation: Mean absolute error = average of individual absolute errors.
Q38. A physical quantity X is found using:
X = P^2Q / $R.$ If % errors in P, Q and R are 2%, 1%, and 3% respectively, then % error in X is:
A. 8% B. 7% C. 6% D. 5%
Answer: C Explanation: $\%$ error in $X = 2(2\%) + 1\% + 3\% = 6\%$

Q39. Which type of error cannot be reduced by taking multiple measurements?
A. Random error B. Instrumental error C. Systematic error D. Personal error
Answer: C Explanation: Systematic error stays constant in every trial → not reduced by repetition.
Q40. Which device gives least count of 0.01 cm?
A. Meter scale B. Vernier caliper C. Screw gauge D. Measuring tape
Answer: B Explanation: Vernier caliper → typical least count = 0.01 cm
Q41. The resistance of a wire is measured as R = 5.00 \pm 0.05 $\Omega.$ The percentage error in R is:
A. 1% B. 5% C. 10% D. 0.5% Answer: A Explanation: Percentage error = (0.05 / 5.00) × 100 = 1%
Q42. The quantity Q is given by Q = A^2 / \sqrt{B} . If the percentage errors in A and B are 3% and 4% respectively, then the percentage error in Q is:

A. 4%

B. 5%

C. 8%

D. 10%

Answer: C

Explanation:

% error in Q = $2 \times \text{error in A} + (1/2) \times \text{error in B}$

 $= 2 \times 3 + 0.5 \times 4 = 6 + 2 = 8\%$

Q43. A student records the time of oscillation of a pendulum as 1.62 s using a stopwatch with least count 0.01 s. What is the relative error?

A. 0.62%

B. 1%

C. 0.31%

D. 0.01%

Answer: A Explanation:

Relative error = $(0.01 / 1.62) \times 100 \approx 0.62\%$

Q44. A student takes three readings for the diameter of a wire: 2.01 mm, 2.03 mm, and 2.00 mm. The mean and absolute error are:

A. 2.01 mm and ±0.02 mm

B. 2.01 mm and ±0.01 mm

C. 2.02 mm and ±0.03 mm

D. 2.02 mm and $\pm 0.01 \text{ mm}$

Answer: A

Explanation:

Mean = (2.01 + 2.03 + 2.00)/3 = 2.01 mm

Deviation from mean: 0.00, 0.02, 0.01

Mean absolute error = $(0 + 0.02 + 0.01)/3 \approx 0.01$

Maximum absolute error = $0.02 \text{ mm} \Rightarrow \text{Final} = \pm 0.02 \text{ mm}$

Q45. If two quantities A and B have absolute errors of 0.01 and 0.02 respectively, the absolute error in (A + B) is:

B. 0.02

C. 0.03

D. 0.002

Answer: C

Explanation:

For addition: total absolute error = $\Delta A + \Delta B = 0.01 + 0.02 = 0.03$