My presentation

Rui Dong

2022-10-14

Contents

1	Hov	w I can contribute to the SAPPHIRE project
	1.1	Update the glottodist with different metrics other than Gower's distance
		The Hausdorff distance of two datasets
	1.3	Topological data analysis (TDA)
		Spectral graph theory methods
	C	1
2		ne codes
		Load the wals datasets
	2.2	The Hausdorff distance
	2.3	TDA
	2.4	Futher codes

1 How I can contribute to the SAPPHIRE project

1.1 Update the glottodist with different metrics other than Gower's distance

We can implement other kinds of metrics like listed in [Boriah et al., 2008], Take Eskin's distance as an example:

$$S_k(X_k, Y_k) = \begin{cases} 1 & \text{if } X_k = Y_k \\ \frac{n_k^2}{n_k^2 + 2} & \text{otherwise} \end{cases}$$

1.2 The Hausdorff distance of two datasets

The **Hausdorff distance** is a qunatity to measure the distance between two subsets of a metric space.

Definition 1.1 (Hausdorff distance). Let X and Y be two subsets of a metric space (M, d). The Hausdorff distance $d_H(X, Y)$ is given by

$$d_H(X,Y) = \max \left\{ \sup_{x \in X} d(x,Y), \sup_{y \in Y} d(X,y) \right\},\,$$

where $d(x, Y) := \inf_{y \in Y} d(x, y)$.

More than that, we can take the **Gromov-Hausdorff distance**, which measures the difference between two different datasets, into account.

1.3 Topological data analysis (TDA)

Using topological data analysis methods to analyze the glottodata

- Linguistic data analysis: [Port et al., 2018], [Port et al., 2022]
- Spatial data: [Feng et al., 2022]

1.4 Spectral graph theory methods

Construct a graph from the glottodata and analyse the graph, for example, analyse the spectrum of the Laplacian operator of the graph or apply heat kernel analysis methods [Ortegaray et al., 2021] to analyse the glottodata.

2 Some codes

2.1 Load the wals datasets

```
library(glottospace)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(TDAstats)
library(sf)
## Linking to GEOS 3.10.2, GDAL 3.4.1, PROJ 8.2.1; sf_use_s2() is TRUE
# load the dataset wals
wals <- glottoget("wals")</pre>
#select the data wrt Aouth America
wals_sam <- subset(wals, continent == "South America")</pre>
wals asia <- subset(wals, continent=="Asia")</pre>
# Define a function select.features to get all features of dataset that the percentage of
# NA values is less than the threshold a
count.na <- function (dataset, feature.name) {</pre>
 num.features <- length(st_drop_geometry(dataset))</pre>
 return(sum(is.na(dataset[[feature.name]])) / nrow(dataset))
}
select.features <- function(dataset, feature_names, a) {</pre>
  counts <- c()
  for (x in feature_names) {
    counts <- append(counts, count.na(wals_sam, x))</pre>
  }
  result <- t(as.matrix(counts[counts<0.5]))</pre>
  colnames(result) <- feature_names[which(counts<0.5)]</pre>
  return(result)
}
feature_names <- colnames(wals_sam)[-c(1, 194:208)]
select.features(wals_sam, feature_names, 0.5)
```

```
81A
                  82A
                          83A
                                     86A
## [1,] 0.4875 0.425 0.4125 0.4833333 0.4875
glottodata.wals <- function (continent_name) {</pre>
  structure <- glottocreate_structuretable(varnames = c("81A", "82A", "83A", "86A", "129A"))
structure$type <- rep("factor", 5)</pre>
  wals_data <- subset(wals, continent == continent_name)</pre>
  data <- select(wals_data, 'glottocode', '81A', '82A', '83A', '86A', '129A')
  data.df <- st_drop_geometry(data)</pre>
  data.df$`81A` <- as.factor(data.df$`81A`)</pre>
  data.df$`82A` <- as.factor(data.df$`82A`)</pre>
  data.df$`83A` <- as.factor(data.df$`83A`)</pre>
  data.df$`86A` <- as.factor(data.df$`86A`)</pre>
  data.df$`129A` <- as.factor(data.df$`129A`)</pre>
  data.unique <- match(unique(data.df$glottocode),</pre>
                              data.df$glottocode)
  data.df.unique <- data.df[data.unique, ]</pre>
  glottodata <- glottocreate_addtable(data.df.unique, structure,</pre>
                                              name="structure")
  return(glottodata)
glottodata_sam <- glottodata.wals("South America")</pre>
glottodata_asia <- glottodata.wals("Asia")</pre>
```

2.2 The Hausdorff distance

```
overlap.dist <- function (x, y){
  sum(x != y) / length(x)
overlap.x.Y.dist <- function(x, Y) {</pre>
  result <- c()
  for (i in 1:nrow(Y)) {
    result <- append(result, overlap.dist(x, Y[i,]))
  return(min(result))
overlap.supX.Y.dist <- function(X, Y) {</pre>
  result <- c()
  for (i in 1:nrow(X)) {
    result <- append(result, overlap.x.Y.dist(X[i, ], Y))</pre>
  }
  return(max(result))
overlap.hausdorff.dist <- function(X, Y) {</pre>
  X <- glottoclean(X)</pre>
  structure <- X[["structure"]]</pre>
  X <- glottosimplify(X)</pre>
  X <- tibble::column_to_rownames(X, "glottocode")</pre>
```

Compute the Hausdorff distance between South America and Asia:

overlap.hausdorff.dist(glottodata_asia, glottodata_sam)

```
## Missing values recoded to NA
##
## Missing values recoded to NA
## [1] 0.6
```

2.3 TDA

2.3.1 The linguistic syntactic data of South America and Asia

```
glottodist_sam <- glottodist(glottodata_sam)

## Missing values recoded to NA

## All variables have two or more levels (excluding NA)
glottodist_sam[is.na(glottodist_sam)] <- 0

glottodist_asia <- glottodist(glottodata_asia)

## Missing values recoded to NA

##

## All variables have two or more levels (excluding NA)
glottodist_asia[is.na(glottodist_asia)] <- 0

The persistence barcode and persistence diagram of South America language syntactic structures
sam.phom <- calculate_homology(glottodist_sam)

par(mfrow=c(1,2))
plot_barcode(sam.phom)</pre>
```


Vietoris-Rips Diameter

plot_persist(asia.phom)

2.3.2 The spatial data of South America and Asia

```
sam_coordinates <- st_coordinates(wals_sam)
asia_coordinates <- st_coordinates(wals_asia)

sam_geo_phm <- calculate_homology(sam_coordinates)
asia_geo_phm <- calculate_homology(asia_coordinates)

par(mfrow=c(1,2))
plot(sam_coordinates, main="South America")
plot(asia_coordinates, main="Asia")</pre>
```


The persistence barcodes of spatial data of South America and Asia:

```
par(mfrow=c(1,2))
plot_barcode(sam_geo_phm)
```


The persistence diagrams of spatial data of South America and Asia:

```
par(mfrow=c(1,2))
plot_persist(sam_geo_phm)
```


2.4 Futher codes

Codes about spectral graph theory methods and heat kernel analysis methods like described in [Ortegaray et al., 2021] in the future?

References

[Boriah et al., 2008] Boriah, S., Chandola, V., and Kumar, V. (2008). Similarity measures for categorical data: A comparative evaluation. In *SDM*.

[Feng et al., 2022] Feng, M., Hickok, A., and Porter, M. A. ([2022] ©2022). Topological data analysis of spatial systems. In *Higher-order systems*, Underst. Complex Syst., pages 389–399. Springer, Cham.

[Ortegaray et al., 2021] Ortegaray, A., Berwick, R. C., and Marcolli, M. (2021). Heat kernel analysis of syntactic structures. *Math. Comput. Sci.*, 15(4):643–660.

[Port et al., 2018] Port, A., Gheorghita, I., Guth, D., Clark, J. M., Liang, C., Dasu, S., and Marcolli, M. (2018). Persistent topology of syntax. *Math. Comput. Sci.*, 12(1):33–50.

[Port et al., 2022] Port, A., Karidi, T., and Marcolli, M. (2022). Topological analysis of syntactic structures. *Math. Comput. Sci.*, 16(1):Paper No. 2, 68.