

KTH Royal Institute of Technology

Emoji's?

Kristoffer Åhgren, Fredrik Hernqvist, Ludo Pulles

NWERC 2018

2018-11-25

1

Contents

- Contest
- 2. Mathematics
- Data structures
- Numerical
- Number theory
- Combinatorics
- Graph 7.
- Geometry
- 9. Strings
- 10. Various
- Appendix A. Techniques

1. Contest

template.cpp

18 lines

11

16

21

22

```
#include <bits/stdc++.h>
using namespace std;
#define rep(i, a, b) for(int i = a; i < (b); ++i)
#define trav(a, x) for(auto& a : x)
\#define\ all(x)\ x.begin().\ x.end()
#define sz(x) (int)(x).size()
typedef long long ll:
typedef long double ld;
typedef pair<int, int> pii;
typedef vector<int> vi:
const ll LLINF = ~(1LL<<63);</pre>
const ld pi = acos(-1.0);
int main() {
 cin.sync_with_stdio(0); cin.tie(0);
 cin.exceptions(cin.failbit):
```

.bashrc

alias c='g++ -Wall -Wshadow -Wconversion -Wfatal-errors -g → -std=c++14 -fsanitize=undefined.address' xmodmap -e 'clear lock' -e 'keycode 66=less greater' #caps = <>

.vimrc

2 lines

set nu sw=4 ts=4 sts=4 noet ai hls shcf=-ic sy on | colo slate

Pre-submit:

- Write a few simple test cases, if sample is not enough.
- Are time limits close? If so, generate max cases.
- Is the memory usage fine?
- Could anything overflow?
- Make sure to submit the right file.

Wrong answer:

- Print your solution! Print debug output, as well.
- Are you clearing all datastructures between test cases?
- Can your algorithm handle the whole range of input?

- Read the full problem statement again.
- Do you handle all corner cases correctly?
- Have you understood the problem correctly?
- Any uninitialized variables?
- Any overflows?
- Confusing N and M, i and j, etc.?
- Are you sure your algorithm works?
- What special cases have you not thought of?
- Are you sure the STL functions you use work as you think?
- Add some assertions, maybe resubmit.
- Create some testcases to run your algorithm on.
- Go through the algorithm for a simple case.
- Go through this list again.
- Explain your algorithm to a team mate.
- Ask the team mate to look at your code.
- Go for a small walk, e.g. to the toilet.
- Is your output format correct? (including whitespace)
- Rewrite your solution from the start or let a team mate do it.

Runtime error:

- Have you tested all corner cases locally?
- Any uninitialized variables?
- Are you reading or writing outside the range of any vector?
- Any assertions that might fail?
- Any possible division by 0? (mod 0 for example)
- Any possible infinite recursion?
- Invalidated pointers or iterators?
- Are you using too much memory?
- Debug with resubmits (e.g. remapped signals, see Various).

Time limit exceeded:

- Do you have any possible infinite loops?
- What is the complexity of your algorithm?
- Are you copying a lot of unnecessary data? (References)
- How big is the input and output? (consider scanf)
- Avoid vector, map. (use array/unordered_map)
- What do your team mates think about your algorithm?

Memory limit exceeded:

- What is the max amount of memory your algorithm should need?
- Are you clearing all datastructures between test cases?

2. Mathematics

2.1. Equations.

$$ax^2 + bx + c = 0 \implies x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

The extremum is given by x = -b/2a.

$$ax + by = e$$

$$cx + dy = f \Rightarrow x = \frac{ed - bf}{ad - bc}$$

$$y = \frac{af - ec}{ad - bc}$$

In general, given an equation Ax = b, the solution to a variable x_i is given by

$$x_i = \frac{\det A_i'}{\det A}$$

where A'_i is A with the i'th column replaced by b.

2.2. Recurrences. If $a_n = c_1 a_{n-1} + \cdots + c_k a_{n-k}$, and r_1, \ldots, r_k are distinct roots of $x^k + c_1 x^{k-1} + \cdots + c_k$, there are d_1, \ldots, d_k s.t.

$$a_n = d_1 r_1^n + \dots + d_k r_k^n.$$

Non-distinct roots r become polynomial factors, e.g. $a_n = (d_1 n +$ $d_2)r^n$.

2.3. Trigonometry.

$$\sin(v + w) = \sin v \cos w + \cos v \sin w$$
$$\cos(v + w) = \cos v \cos w - \sin v \sin w$$

$$\tan(v+w) = \frac{\tan v + \tan w}{1 - \tan v \tan w}$$
$$\sin v + \sin w = 2\sin\frac{v+w}{2}\cos\frac{v-w}{2}$$
$$\cos v + \cos w = 2\cos\frac{v+w}{2}\cos\frac{v-w}{2}$$

$$(V+W)\tan(v-w)/2 = (V-W)\tan(v+w)/2$$

where V, W are lengths of sides opposite angles v, w.

$$a\cos x + b\sin x = r\cos(x - \phi)$$
$$a\sin x + b\cos x = r\sin(x + \phi)$$

where $r = \sqrt{a^2 + b^2}$, $\phi = \operatorname{atan2}(b, a)$.

2.4. Geometry.

2.4.1. Triangles. Side lengths: a, b, c

Semiperimeter:
$$p = \frac{a+b+c}{2}$$

Area:
$$A = \sqrt{p(p-a)(p-b)(p-c)}$$

Circumradius:
$$R = \frac{abc}{4A}$$

Inradius:
$$r = \frac{A}{p}$$

Length of median (divides triangle into two equal-area triangles): $m_a = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2}$

Length of bisector (divides angles in two):
$$s_a = \sqrt{bc \left[1 - \left(\frac{a}{b+c}\right)^2\right]}$$

Law of sines:
$$\frac{\sin\alpha}{a} = \frac{\sin\beta}{b} = \frac{\sin\gamma}{c} = \frac{1}{2R}$$
 Law of cosines:
$$a^2 = b^2 + c^2 - 2bc\cos\alpha$$

Law of cosines:
$$a^2 = b^2 + c^2 - 2bc \cos \alpha$$

Law of tangents:
$$\frac{a+b}{a-b} = \frac{\tan \frac{\alpha+\beta}{2}}{\tan \frac{\alpha-\beta}{2}}$$

2.4.2. Quadrilaterals. With side lengths a, b, c, d, diagonals e, f, diagonals angle θ , area A and magic flux $F = b^2 + d^2 - a^2 - c^2$:

$$4A = 2ef \cdot \sin \theta = F \tan \theta = \sqrt{4e^2 f^2 - F^2}$$

For cyclic quadrilaterals the sum of opposite angles is 180° , ef = ac + bd, and $A = \sqrt{(p-a)(p-b)(p-c)(p-d)}$.

2.4.3. Spherical coordinates.

$$x = r \sin \theta \cos \phi \qquad r = \sqrt{x^2 + y^2 + z^2}$$

$$y = r \sin \theta \sin \phi \qquad \theta = a\cos(z/\sqrt{x^2 + y^2 + z^2})$$

$$z = r \cos \theta \qquad \phi = a\tan(2(y, x))$$

2.5. Derivatives/Integrals.

$$\frac{d}{dx}\arcsin x = \frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}\arccos x = -\frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}\tan x = 1 + \tan^2 x \qquad \frac{d}{dx}\arctan x = \frac{1}{1+x^2}$$

$$\int \tan ax = -\frac{\ln|\cos ax|}{a} \qquad \int x\sin ax = \frac{\sin ax - ax\cos ax}{a^2}$$

$$\int e^{-x^2} = \frac{\sqrt{\pi}}{2}\operatorname{erf}(x) \qquad \int xe^{ax}dx = \frac{e^{ax}}{a^2}(ax-1)$$

Integration by parts:

$$\int_{a}^{b} f(x)g(x)dx = [F(x)g(x)]_{a}^{b} - \int_{a}^{b} F(x)g'(x)dx$$

2.6. Sums.

$$c^{a} + c^{a+1} + \dots + c^{b} = \frac{c^{b+1} - c^{a}}{c-1}, c \neq 1$$

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(2n+1)(n+1)}{6}$$

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

$$1^{4} + 2^{4} + 3^{4} + \dots + n^{4} = \frac{n(n+1)(2n+1)(3n^{2} + 3n - 1)}{30}$$

2.7. Series.

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots, (-\infty < x < \infty)$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots, (-1 < x \le 1)$$

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^{2}}{8} + \frac{2x^{3}}{32} - \frac{5x^{4}}{128} + \dots, (-1 \le x \le 1)$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots, (-\infty < x < \infty)$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots, (-\infty < x < \infty)$$

2.8. **Probability theory.** Let X be a discrete random variable with probability $p_X(x)$ of assuming the value x. It will then have an expected value (mean) $\mu = \mathbb{E}(X) = \sum_x x p_X(x)$ and variance $\sigma^2 = V(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = \sum_x (x - \mathbb{E}(X))^2 p_X(x)$ where σ is the standard deviation. If X is instead continuous it will have a probability density function $f_X(x)$ and the sums above will instead be integrals with $p_X(x)$ replaced by $f_X(x)$.

Expectation is linear:

$$\mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y)$$

For independent X and Y,

$$V(aX + bY) = a^2V(X) + b^2V(Y).$$

2.8.1. Discrete distributions.

Binomial distribution. The number of successes in n independent yes/no experiments, each which yields success with probability p is Bin(n,p), $n=1,2,\ldots,0 \le p \le 1$.

$$p(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

$$\mu = np, \ \sigma^2 = np(1-p)$$

Bin(n, p) is approximately Po(np) for small p.

First success distribution. The number of trials needed to get the first success in independent yes/no experiments, each wich yields success with probability p is Fs(p), $0 \le p \le 1$.

$$p(k) = p(1-p)^{k-1}, k = 1, 2, \dots$$

$$\mu = \frac{1}{p}, \sigma^2 = \frac{1-p}{p^2}$$

Poisson distribution. The number of events occurring in a fixed period of time t if these events occur with a known average rate κ and independently of the time since the last event is $\text{Po}(\lambda)$, $\lambda = t\kappa$.

$$p(k) = e^{-\lambda} \frac{\lambda^k}{k!}, k = 0, 1, 2, \dots$$
$$\mu = \lambda, \sigma^2 = \lambda$$

2.8.2. Continuous distributions.

Uniform distribution. If the probability density function is constant between a and b and 0 elsewhere it is U(a, b), a < b.

$$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{otherwise} \end{cases}$$

$$\mu = \frac{a+b}{2}, \ \sigma^2 = \frac{(b-a)^2}{12}$$

Exponential distribution. The time between events in a Poisson process is $\text{Exp}(\lambda)$, $\lambda > 0$.

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$

$$\mu = \frac{1}{\lambda}, \, \sigma^2 = \frac{1}{\lambda^2}$$

Normal distribution. Most real random values with mean μ and variance σ^2 are well described by $\mathcal{N}(\mu, \sigma^2)$, $\sigma > 0$.

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

If $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ then

$$aX_1 + bX_2 + c \sim \mathcal{N}(\mu_1 + \mu_2 + c, a^2\sigma_1^2 + b^2\sigma_2^2)$$

2.9. **Markov chains.** A *Markov chain* is a discrete random process with the property that the next state depends only on the current state. Let X_1, X_2, \ldots be a sequence of random variables generated by the Markov process. Then there is a transition matrix $\mathbf{P} = (p_{ij})$, with $p_{ij} = \Pr(X_n = i | X_{n-1} = j)$, and $\mathbf{p}^{(n)} = \mathbf{P}^n \mathbf{p}^{(0)}$ is the probability distribution for X_n (i.e., $p_i^{(n)} = \Pr(X_n = i)$), where $\mathbf{p}^{(0)}$ is the initial distribution.

 π is a stationary distribution if $\pi = \pi \mathbf{P}$. If the Markov chain is irreducible (it is possible to get to any state from any state), then $\pi_i = \frac{1}{\mathbb{E}(T_i)}$ where $\mathbb{E}(T_i)$ is the expected time between two visits in state i. π_j/π_i is the expected number of visits in state j between two visits in state i.

For a connected, undirected and non-bipartite graph, where the transition probability is uniform among all neighbors, π_i is proportional to node i's degree.

A Markov chain is *ergodic* if the asymptotic distribution is independent of the initial distribution. A finite Markov chain is ergodic iff it is irreducible and *aperiodic* (i.e., the gcd of cycle lengths is 1). $\lim_{k\to\infty} \mathbf{P}^k = \mathbf{1}\pi$.

A Markov chain is an A-chain if the states can be partitioned into two sets ${\bf A}$ and ${\bf G}$, such that all states in ${\bf A}$ are absorbing $(p_{ii}=1)$, and all states in ${\bf G}$ leads to an absorbing state in ${\bf A}$. The probability for absorption in state $i\in {\bf A}$, when the initial state is j, is $a_{ij}=p_{ij}+\sum_{k\in {\bf G}}a_{ik}p_{kj}$. The expected time until absorption, when the initial state is i, is $t_i=1+\sum_{k\in {\bf G}}p_{ki}t_k$.

3. Data structures

OrderStatisticTree.h

Description: A set (not multiset!) with support for finding the n'th element, and finding the index of an element. Time: $\mathcal{O}(\log N)$

```
#include <bits/extc++.h>
using namespace __gnu_pbds;
template<class TK, class TM> using TreeMap = tree<TK, TM,
 less<TK>, rb_tree_tag, tree_order_statistics_node_update>;
template<class T> using Tree = TreeMap<T, null_type>;
void example() {
 Tree<int> t, t2; t.insert(8);
 auto it = t.insert(10).first;
 assert(it == t.lower_bound(9));
 assert(t.order_of_kev(10) == 1):
 assert(t.order_of_key(11) == 2);
 assert(*t.find_by_order(0) == 8);
 t.join(t2); // assuming T < T2 or T > T2, merge t2 into t
```

HashMap.h

Description: Hash map with the same API as unordered map, but $\approx 3x$ faster. Initial capacity must be a power of 2 (if provided).

```
#include <bits/extc++.h>
__gnu_pbds::gp_hash_table<ll, int> h({},{},{},{},{}, {1 << 16});</pre>
```

SegmentTree.h

Description: Zero-indexed max-tree. Bounds are inclusive to the left and exclusive to the right. Can be changed by modifying T, LOW and f. Time: $\mathcal{O}(\log N)$

50 lines

```
struct Tree {
 typedef int T:
 static const T LOW = INT_MIN;
 T f(T a, T b) { return max(a, b); } // (any associative fn)
 vector<T> s: int n:
 Tree(int n = 0, T def = 0) : s(2*n, def), n(n) {}
 void update(int pos, T val) {
   for (s[pos += n] = val; pos > 1; pos /= 2)
      s[pos / 2] = f(s[pos \& ~1], s[pos | 1]);
 T query(int b, int e) { // query [b, e)
    T ra = LOW, rb = LOW;
    for (b += n, e += n; b < e; b /= 2, e /= 2) {
     if (b % 2) ra = f(ra, s[b++]);
      if (e \% 2) rb = f(s[--e], rb);
    return f(ra, rb);
};
```

LazySegmentTree.h

Description: Segment tree with ability to add or set values of large intervals, and compute max of intervals. Can be changed to other things. Use with a bump allocator for better performance, and SmallPtr or implicit indices to save memory. Usage: Node* tr = new Node(v, 0, sz(v)); Time: $O(\log N)$.

```
"../various/BumpAllocator.h"
```

struct Node { Node *l = 0, *r = 0;

```
const int inf = 1e9:
 int lo, hi, mset = inf, madd = 0, val = -inf;
 Node(int lo,int hi):lo(lo),hi(hi){} // Large interval of -inf
 Node(vi& v, int lo, int hi) : lo(lo), hi(hi) {
```

```
if (lo + 1 < hi) {
      int mid = lo + (hi - lo)/2;
      l = new Node(v, lo, mid); r = new Node(v, mid, hi);
      val = max(l->val, r->val):
    else val = v[lol:
  int query(int L, int R) {
    if (R <= lo || hi <= L) return -inf;</pre>
    if (L <= lo && hi <= R) return val;</pre>
    return max(l->query(L, R), r->query(L, R));
  void set(int L, int R, int x) {
    if (R <= lo || hi <= L) return:</pre>
    if (L <= lo && hi <= R) mset = val = x, madd = 0;
      push(), l->set(L, R, x), r->set(L, R, x);
      val = max(l->val, r->val);
  void add(int L, int R, int x) {
    if (R <= lo || hi <= L) return;</pre>
    if (L <= lo && hi <= R) {
      if (mset != inf) mset += x;
      else madd += x;
      val += x;
      push(), l->add(L, R, x), r->add(L, R, x);
      val = max(l->val, r->val):
  void push() {
    if (!l) {
      int mid = lo + (hi - lo)/2:
      l = new Node(lo, mid); r = new Node(mid, hi);
    if (mset != inf)
     l->set(lo,hi,mset), r->set(lo,hi,mset), mset = inf;
    else if (madd)
      l->add(lo,hi,madd), r->add(lo,hi,madd), madd = 0;
};
```

LazySegmentTreeAlt.h

Description: Lazy segment tree can handle range updates and all stuff. Implement the node structure for your own use. Time: $O(\log N)$.

```
struct node {
 int l, r, x, lazy;
 node() {}
 node(int _l, int _r) : l(_l), r(_r), x(INF), lazy(0) { }
 node(int _l, int _r, int _x) : node(_l,_r) { x = _x; }
 node(node a, node b) : node(a.l,b.r) { x = min(a.x, b.x); }
 void update(int v) { x = v; }
 void range_update(int v) { lazy = v; }
 void apply() { x += lazy; lazy = 0; }
 void push(node &u) { u.lazy += lazy; } };
struct segment_tree {
 int n;
 vector<node> arr:
 segment_tree() { }
 segment_tree(const vector<ll> &a) : n(size(a)), arr(4*n) {
```

```
mk(a.0.0.n-1): }
node mk(const vector<ll> &a, int i, int l, int r) {
 int m = (l+r)/2:
 return arr[i] = l > r ? node(l.r) :
   l == r ? node(l,r,a[l]) :
   node(mk(a,2*i+1,l,m),mk(a,2*i+2,m+1,r)); }
node update(int at, ll v, int i=0) {
 propagate(i);
 int hl = arr[i].l, hr = arr[i].r;
 if (at < hl || hr < at) return arr[i];</pre>
 if (hl == at \&\& at == hr) {
   arr[i].update(v); return arr[i]; }
 return arr[i] =
   node(update(at,v,2*i+1),update(at,v,2*i+2)); }
node query(int l, int r, int i=0) {
 propagate(i);
 int hl = arr[i].l, hr = arr[i].r;
 if (r < hl || hr < l) return node(hl,hr);</pre>
 if (l <= hl && hr <= r) return arr[i];</pre>
 return node(query(l,r,2*i+1),query(l,r,2*i+2)); }
node range_update(int l, int r, ll v, int i=0) {
 propagate(i):
 int hl = arr[i].l, hr = arr[i].r;
 if (r < hl || hr < l) return arr[i];</pre>
 if (l <= hl && hr <= r)
   return arr[i].range_update(v), propagate(i), arr[i];
 return arr[i] = node(range_update(l,r,v,2*i+1),
      range_update(l,r,v,2*i+2)); }
 void propagate(int i) {
   if (arr[i].l < arr[i].r)
     arr[i].push(arr[2*i+1]), arr[i].push(arr[2*i+2]);
   arr[i].apply(); } };
```

UnionFind.h

Description: Disjoint-set data structure. Time: $\mathcal{O}\left(\alpha(N)\right)$

48 lines

```
13 lines
struct UF {
 vi e:
 UF(int n) : e(n, -1) {}
  bool same_set(int a, int b) { return find(a) == find(b); }
  int size(int x) { return -e[find(x)]: }
  int find(int x) { return e[x] < 0 ? x : e[x] = find(e[x]); }
  void join(int a. int b) {
   a = find(a), b = find(b):
    if (a == b) return;
    if (e[a] > e[b]) swap(a, b):
   e[a] += e[b]; e[b] = a;
};
```

SubMatrix.h

Description: Calculate submatrix sums quickly, given upper-left and lower-right corners (half-open). Usage: SubMatrix<int> m(matrix); m.sum(0, 0, 2, 2): // top left 4 elements

```
Time: \mathcal{O}\left(N^2+Q\right)
                                                                  13 lines
template<class T>
struct SubMatrix {
 vector<vector<T>> p;
 SubMatrix(vector<vector<T>>& v) {
   int R = sz(v), C = sz(v[0]);
    p.assign(R+1, vector<T>(C+1));
    rep(r,0,R) rep(c,0,C)
      p[r+1][c+1] = v[r][c] + p[r][c+1] + p[r+1][c] - p[r][c];
```

T sum(int u, int l, int d, int r) {

return p[d][r] - p[d][l] - p[u][r] + p[u][l];

22 lines

19 lines

```
};
                               Matrix.h
Description: Basic operations on square matrices.
Usage: Matrix<int. 3> A:
A.d = \{\{\{1,2,3\}\}, \{\{4,5,6\}\}, \{\{7,8,9\}\}\}\};
vector<int> vec = {1,2,3};
vec = (A^N) * vec:
                                                                  26 lines
template<class T, int N> struct Matrix {
  typedef Matrix M;
  array<array<T, N>, N> d{};
  M operator*(const M& m) const {
    Ma;
    rep(i,0,N) rep(j,0,N)
      rep(k,0,N) \ a.d[i][j] += d[i][k]*m.d[k][j];
    return a;
  vector<T> operator*(const vector<T>& vec) const {
    vector<T> ret(N);
    rep(i,0,N) rep(j,0,N) ret[i] += d[i][j] * vec[j];
    return ret;
  M operator^(ll p) const {
    assert(p >= 0);
    M a, b(*this);
    rep(i,0,N) a.d[i][i] = 1;
    while (p) {
      if (p\&1) a = a*b;
      b = b*b;
      p >>= 1;
    return a;
};
                           LineContainer.h
```

Description: Container where you can add lines of the form kx+m, and guery maximum values at points x. Useful for dynamic programming. Time: $O(\log N)$

```
32 lines
bool Q;
struct Line {
  mutable ll k, m, p;
  bool operator<(const Line& o) const {
    return 0 ? p < o.p : k < o.k:
};
struct LineContainer : multiset<Line> {
  // (for doubles, use \inf = 1/.0, \operatorname{div}(a,b) = a/b)
  const ll inf = LLONG_MAX:
  ll div(ll a, ll b) { // floored division
    return a / b - ((a ^ b) < 0 && a % b); }
  bool isect(iterator x, iterator y) {
    if (y == end()) { x->p = inf; return false; }
    if (x->k == y->k) x->p = x->m > y->m ? inf : -inf;
    else x->p = div(y->m - x->m, x->k - y->k);
    return x->p >= y->p;
  void add(ll k, ll m) {
    auto z = insert(\{k, m, \theta\}), y = z++, x = y;
    while (isect(y, z)) z = erase(z);
    if (x != begin() \&\& isect(--x, y)) isect(x, y = erase(y));
    while ((y = x) != begin() \&\& (--x)->p >= y->p)
```

```
isect(x. erase(v)):
 ll query(ll x) {
    assert(!emptv()):
    Q = 1; auto l = *lower_bound(\{0,0,x\}); Q = 0;
    return l.k * x + l.m:
 }
};
```

Treap.h

Description: A short self-balancing tree. It acts as a sequential container with logtime splits/joins, and is easy to augment with additional data. Time: $O(\log N)$

55 lines

```
struct Node {
 Node *l = 0, *r = 0;
 int val, y, c = 1;
 Node(int val) : val(val), y(rand()) {}
 void recalc();
int cnt(Node* n) { return n ? n->c : 0; }
void Node::recalc() { c = cnt(l) + cnt(r) + 1; }
template<class F> void each(Node* n, F f) {
 if (n) { each(n->l, f); f(n->val); each(n->r, f); }
pair<Node*, Node*> split(Node* n, int k) {
 if (!n) return {};
 if (cnt(n->l) >= k) { // "n->val >= v" for lower_bound(v) }
   auto pa = split(n->l, k);
   n->l = pa.second;
   n->recalc();
    return {pa.first, n};
  } else {
   auto pa = split(n->r, k - cnt(n->l) - 1):
   n->r = pa.first;
   n->recalc():
    return {n, pa.second};
 }
Node* merge(Node* l, Node* r) {
 if (!l) return r:
  if (!r) return l;
  if (l->y > r->y) {
   l->r = merge(l->r, r):
   l->recalc();
    return l:
 } else {
   r->l = merge(l, r->l);
    r->recalc():
    return r;
 }
Node* ins(Node* t, Node* n, int pos) {
 auto pa = split(t, pos);
 return merge(merge(pa.first, n), pa.second);
// Example application: move the range [l, r) to index k
void move(Node*& t. int l. int r. int k) {
 Node *a, *b, *c;
 tie(a,b) = split(t, l); tie(b,c) = split(b, r - l);
```

```
if (k <= l) t = merge(ins(a, b, k), c);</pre>
else t = merge(a, ins(c, b, k - r));
```

FenwickTree.h

Description: Computes partial sums a[0] + a[1] + ... + a[pos - 1], and updates single elements a[i], taking the difference between the old and new value. Time: Both operations are $O(\log N)$.

```
struct FT {
  vector<ll> s:
  FT(int n) : s(n) {}
  void update(int pos, ll dif) { // a[pos] += dif
    for (: pos < sz(s): pos |= pos + 1) s[pos] += dif:
  ll query(int pos) { // sum of values in [0, pos)
    ll res = 0;
    for (; pos > 0; pos \delta = pos - 1) res += s[pos-1];
    return res:
  int lower_bound(ll sum) {// min pos st sum of [0, pos] >= sum
    // Returns n if no sum is >= sum, or -1 if empty sum is.
    if (sum <= 0) return -1;
    int pos = 0:
    for (int pw = 1 << 25; pw; pw >>= 1) {
      if (pos + pw \leq sz(s) && s[pos + pw-1] < sum)
        pos += pw, sum -= s[pos-1];
    return pos:
};
```

FenwickTree2d.h

Description: Computes sums a[i,j] for all i<I, j<J, and increases single elements a[i,j]. Requires that the elements to be updated are known in advance (call fakeUp-

Time: $\mathcal{O}\left(\log^2 N\right)$. (Use persistent segment trees for $\mathcal{O}\left(\log N\right)$.)

```
"FenwickTree.h"
                                                             22 lines
struct FT2 {
 vector<vi> ys; vector<FT> ft;
 FT2(int limx) : vs(limx) {}
 void fakeUpdate(int x, int y) {
   for (; x < sz(ys); x = x + 1) ys[x].push_back(y);
 void init() {
   trav(v, ys) sort(all(v)), ft.emplace_back(sz(v));
 int ind(int x, int y) {
   return (int)(lower_bound(all(ys[x]), y) - ys[x].begin()); }
 void update(int x, int y, ll dif) {
   for (; x < sz(ys); x |= x + 1)
     ft[x].update(ind(x, y), dif);
 ll query(int x, int y) {
   ll sum = 0:
   for (; x; x &= x - 1)
     sum += ft[x-1].query(ind(x-1, y));
   return sum;
};
```

RMO.h

Description: Range Minimum Queries on an array. Returns min(V[a], V[a + 1], ... V[b - 1]) in constant time. Usage: RMO rmg(values): rmq.query(inclusive, exclusive); Time: $\mathcal{O}\left(|V|\log|V|+Q\right)$

26 lines

```
template < class T >
struct RMQ {
    vector < vector < T >> jmp;

RMQ(const vector < T >> V) {
    int N = sz(V), on = 1, depth = 1;
    while (on < sz(V)) on *= 2, depth*+;
    jmp.assign(depth, V);
    rep(i,0,depth-1) rep(j,0,N)
        jmp[i+1][j] = min(jmp[i][j],
        jmp[i][min(N - 1, j + (1 << i))]);
}

T query(int a, int b) {
    assert(a < b); // or return inf if a == b
    int dep = 31 - __builtin.clz(b - a);
    return min(jmp[dep][a], jmp[dep][b - (1 << dep)]);
}
};</pre>
```

4. Numerical

GoldenSectionSearch.h

Description: Finds the argument minimizing the function f in the interval [a,b] assuming f is unimodal on the interval, i.e. has only one local minimum. The maximum error in the result is eps. Works equally well for maximization with a small change in the code. See TernarySearch.h in the Various chapter for a discrete version. Usage: double func(double x) $\{return 4+x+.3*x*x;\}$ double xmin = gss(-1000, 1000, func); Time: $\mathcal{O}(\log(b-a)/\epsilon)$)

```
double gss(double a, double b, double (*f)(double)) {
   double r = (sqrt(5)-1)/2, eps = 1e-7;
   double x1 = b - r*(b-a), x2 = a + r*(b-a);
   double f1 = f(x1), f2 = f(x2);
   while (b-a > eps)
    if (f1 < f2) { //change to > to find maximum
        b = x2; x2 = x1; f2 = f1;
        x1 = b - r*(b-a); f1 = f(x1);
   } else {
        a = x1; x1 = x2; f1 = f2;
        x2 = a + r*(b-a); f2 = f(x2);
   }
   return a;
```

Polynomial.h

17 lines

```
struct Poly {
  vector<double> a;
  double operator()(double x) const {
    double val = 0;
    for(int i = sz(a); i--;) (val *= x) += a[i];
    return val;
}

void diff() {
    rep(i,1,sz(a)) a[i-1] = i*a[i];
    a.pop_back();
}

void divroot(double x0) {
    double b = a.back(), c; a.back() = 0;
    for(int i=sz(a)-1; i--;) c = a[i], a[i] = a[i+1]*x0+b, b=c;
    a.pop_back();
}
};
```

PolyRoots.h

```
Description: Finds the real roots to a polynomial.
Usage: poly_roots(\{\{2,-3,1\}\},-1e9,1e9) // solve x^2-3x+2 = 0
Time: \mathcal{O}\left(n^2\log(1/\epsilon)\right)
"Polvnomial.h"
                                                                    23 lines
vector<double> polv_roots(Polv p, double xmin, double xmax) {
  if (sz(p.a) == 2) \{ return \{-p.a[0]/p.a[1]\}; \}
  vector<double> ret;
  Polv der = p:
  der.diff();
  auto dr = poly_roots(der, xmin, xmax);
  dr.push_back(xmin-1);
  dr.push_back(xmax+1);
  sort(all(dr)):
  rep(i.0.sz(dr)-1) {
    double l = dr[i], h = dr[i+1];
    bool sign = p(l) > 0;
    if (sign ^ (p(h) > 0)) {
      rep(it,0,60) \{ // while (h - l > 1e-8) \}
        double m = (l + h) / 2, f = p(m);
        if ((f \ll 0) ^ sign) l = m;
        else h = m;
      ret.push_back((l + h) / 2);
  return ret;
```

PolyInterpolate.h

Description: Given n points $(\mathbf{x}[\mathbf{i}], \mathbf{y}[\mathbf{i}])$, computes an n-1-degree polynomial p that passes through them: $p(x) = a[0]*x^0 + \ldots + a[n-1]*x^{n-1}$. For numerical precision, pick $x[k] = c*\cos(k/(n-1)*\pi), k = 0\ldots n-1$. **Time:** $\mathcal{O}\left(n^2\right)$

```
typedef vector<double> vd;
vd interpolate(vd x, vd y, int n) {
    vd res(n), temp(n);
    rep(k,0,n-1) rep(i,k+1,n)
    y[i] = (y[i] - y[k]) / (x[i] - x[k]);
    double last = 0; temp[0] = 1;
    rep(k,0,n) rep(i,0,n) {
        res[i] += y[k] * temp[i];
        swap(last, temp[i]);
        temp[i] -= last * x[k];
    }
    return res;
```

BerlekampMassey.h

Description: Recovers any n-order linear recurrence relation from the first 2n terms of the recurrence. Useful for guessing linear recurrences after brute-forcing the first terms. Should work on any field, but numerical stability for floats is not guaranteed. Output will have size $\leq n$. Usage: BerlekampMassey $(\{0, 1, 1, 3, 5, 11\})$ // $\{1, 2\}$

```
rep(j,m,n) C[j] = (C[j] - coef * B[j - m]) % mod;
if (2 * L > i) continue;
  L = i + 1 - L; B = T; b = d; m = 0;
}

C.resize(L + 1); C.erase(C.begin());
trav(x, C) x = (mod - x) % mod;
return C;
}
```

LinearRecurrence.h

Description: Generates the k'th term of an n-order linear recurrence $S[i] = \sum_j S[i-j-1]tr[j]$, given $S[0\ldots n-1]$ and $tr[0\ldots n-1]$. Faster than matrix multiplication. Useful together with Berlekamp-Massey. Usage: linearRec($\{0,1\}$, $\{1,1\}$, k) // k'th Fibonacci number Time: $\mathcal{O}\left(n^2\log k\right)$

```
typedef vector<ll> Poly;
ll linearRec(Poly S, Poly tr, ll k) {
 int n = sz(S);
 auto combine = [\&] (Poly a, Poly b) {
   Poly res(n * 2 + 1);
   rep(i,0,n+1) rep(j,0,n+1)
     res[i + j] = (res[i + j] + a[i] * b[j]) % mod;
   for (int i = 2 * n; i > n; --i) rep(j,0,n)
     res[i - 1 - j] = (res[i - 1 - j] + res[i] * tr[j]) % mod;
   res.resize(n + 1);
   return res;
  Poly pol(n + 1), e(pol);
 pol[0] = e[1] = 1;
 for (++k; k; k /= 2) {
   if (k % 2) pol = combine(pol, e);
   e = combine(e, e);
 rep(i,0,n) res = (res + pol[i + 1] * S[i]) % mod;
 return res:
```

HillClimbing.h

Description: Poor man's optimization for unimodal functions.

16 lines

```
typedef array<double, 2> P;
double func(P p);

pair<double, P> hillClimb(P start) {
    pair<double, P> cur(func(start), start);
    for (double jmp = le9; jmp > le-20; jmp /= 2) {
        rep(j,0,100) rep(dx,-1,2) rep(dy,-1,2) {
            P p = cur.second;
            p[0] += dx*jmp;
            p[1] += dy*jmp;
            cur = min(cur, make_pair(func(p), p));
        }
    }
    return cur;
}
```

Integrate.h

Description: Simple integration of a function over an interval using Simpson's rule. The error should be proportional to h^4 , although in practice you will want to verify that the result is stable to desired precision when epsilon changes.

```
double quad(double (*f)(double), double a, double b) {
  const int n = 1000;
  double h = (b - a) / 2 / n;
  double v = f(a) + f(b);
  rep(1,1,n*2)
    v += f(a + i*h) * (i&1 ? 4 : 2);
  return v * h / 3;
}
```

IntegrateAdaptive.h

Description: Fast integration using an adaptive Simpson's rule.

Usage: double z, y;
double h(double x) { return x*x + y*y + z*z <= 1; }
double g(double y) { ::y = y; return quad(h, -1, 1); }
double f(double z) { ::z = z; return quad(g, -1, 1); }
double sphereVol = quad(f, -1, 1), pi = sphereVol*3/4;

```
typedef double d;
d simpson(d (*f)(d), d a, d b) {
    d c = (a+b) / 2;
    return (f(a) + 4*f(c) + f(b)) * (b-a) / 6;
}
d rec(d (*f)(d), d a, d b, d eps, d S) {
    d c = (a+b) / 2;
    d S1 = simpson(f, a, c);
    d S2 = simpson(f, c, b), T = S1 + S2;
    if (abs (T - S) <= 15*eps || b-a < 1e-10)
        return T + (T - S) / 15;
    return rec(f, a, c, eps/2, S1) + rec(f, c, b, eps/2, S2);
}
d quad(d (*f)(d), d a, d b, d eps = 1e-8) {
    return rec(f, a, b, eps, simpson(f, a, b));
}</pre>
```

Determinant.h

Description: Calculates determinant of a matrix. Destroys the matrix. Time: $\mathcal{O}\left(N^3\right)$

```
double det(vector<vector<double>>& a) {
  int n = sz(a); double res = 1;
  rep(i,0,n) {
    int b = i;
    rep(j,1+1,n) if (fabs(a[j][i]) > fabs(a[b][i])) b = j;
    if (i != b) swap(a[i], a[b]), res *= -1;
    res *= a[i][i];
    if (res == 0) return 0;
    rep(j,1+1,n) {
        double v = a[j][i] / a[i][i];
        if (v != 0) rep(k,i+1,n) a[j][k] -= v * a[i][k];
    }
}
return res;
}
```

IntDeterminant.h

Description: Calculates determinant using modular arithmetics. Modulos can also be removed to get a pure-integer version. Time: $\mathcal{O}\left(N^3\right)$

```
const ll mod = 12345;
```

```
const ll mod = 12345;
ll det(vector<vector<ll>>& a) {
  int n = sz(a); ll ans = 1;
  rep(i,0,n) {
    rep(j,i+1,n) {
```

Simplex.h

Description: Solves a general linear maximization problem: maximize c^Tx subject to $Ax \leq b$, $x \geq 0$. Returns -inf if there is no solution, inf if there are arbitrarily good solutions, or the maximum value of c^Tx otherwise. The input vector is set to an optimal x (or in the unbounded case, an arbitrary solution fulfilling the constraints). Numerical stability is not guaranteed. For better performance, define variables such that x = 0 is viable.

Usage: vvd $A = \{(1, -1), \{-1, 1\}, \{-1, -2\}\};$

Usage: vvd A = {{1,-1}, {-1,1}, {-1,-2}}; vd b = {1,1,-4}, c = {-1,-1}, x; T val = LPSolver(A, b, c).solve(x);

bool simplex(int phase) {

for (;;) {

int s = -1;

int r = -1:

int x = m + phase - 1;

rep(j,0,n+1) if (N[j] != -phase) ltj(D[x]);

if (D[x][s] >= -eps) return true;

Time: $\mathcal{O}\left(NM*\#pivots\right)$, where a pivot may be e.g. an edge relaxation. $\mathcal{O}\left(2^{n}\right)$ in the general case.

```
typedef double T; // long double, Rational, double + mod<P>...
typedef vector<T> vd;
typedef vector<vd> vvd;
const T eps = 1e-8, inf = 1/.0;
#define MP make_pair
#define lti(X) if (s == -1 \mid | MP(X[i], N[i]) < MP(X[s], N[s])) s=i
struct LPSolver {
 int m, n;
 vi N, B;
  vvd D:
  LPSolver(const vvd& A. const vd& b. const vd& c) :
   m(sz(b)), n(sz(c)), N(n+1), B(m), D(m+2, vd(n+2)) {
      rep(i,0,m) rep(i,0,n) D[i][i] = A[i][i];
      rep(i,0,m) { B[i] = n+i; D[i][n] = -1; D[i][n+1] = b[i];}
      rep(j,0,n) \{ N[j] = j; D[m][j] = -c[j]; \}
     N[n] = -1; D[m+1][n] = 1;
  void pivot(int r, int s) {
   T *a = D[r].data(), inv = 1 / a[s];
    rep(i,0,m+2) if (i != r \&\& abs(D[i][s]) > eps) {
     T *b = D[i].data(), inv2 = b[s] * inv;
      rep(j,0,n+2) b[j] -= a[j] * inv2;
     b[s] = a[s] * inv2;
    rep(j,0,n+2) if (j != s) D[r][j] *= inv;
    rep(i,0,m+2) if (i != r) D[i][s] *= -inv;
   D[r][s] = inv;
   swap(B[r], N[s]);
```

```
rep(i,0,m) {
       if (D[i][s] <= eps) continue;</pre>
        if (r == -1 || MP(D[i][n+1] / D[i][s], B[i])
                     < MP(D[r][n+1] / D[r][s], B[r])) r = i;
      if (r == -1) return false:
      pivot(r, s);
 }
 T solve(vd \&x) {
    int r = 0;
    rep(i,1,m) if (D[i][n+1] < D[r][n+1]) r = i;
    if (D[r][n+1] < -eps) {
      pivot(r, n);
      if (!simplex(2) || D[m+1][n+1] < -eps) return -inf;</pre>
      rep(i,0,m) if (B[i] == -1) {
       int s = 0;
        rep(j,1,n+1) ltj(D[i]);
        pivot(i, s);
    bool ok = simplex(1); x = vd(n);
    rep(i,0,m) if (B[i] < n) x[B[i]] = D[i][n+1];
    return ok ? D[m][n+1] : inf;
};
```

SolveLinear.h

Description: Solves A*x=b. If there are multiple solutions, an arbitrary one is returned. Returns rank, or -1 if no solutions. Data in A and b is lost. Time: $\mathcal{O}\left(n^2m\right)$

```
38 lines
typedef vector<double> vd;
const double eps = 1e-12;
int solveLinear(vector<vd>& A, vd& b, vd& x) {
 int n = sz(A), m = sz(x), rank = 0, br, bc;
 if (n) assert(sz(A[0]) == m):
 vi col(m); iota(all(col), 0);
  rep(i,0,n) {
   double v, bv = 0;
   rep(r,i,n) rep(c,i,m)
     if ((v = fabs(A[r][c])) > bv)
       br = r, bc = c, bv = v;
   if (bv <= eps) {
     rep(j,i,n) if (fabs(b[j]) > eps) return -1;
     break:
   swap(A[i], A[br]);
   swap(b[i], b[br]);
   swap(col[i], col[bc]);
   rep(j,0,n) swap(A[j][i], A[j][bc]);
   bv = 1/A[i][i];
   rep(j,i+1,n) {
     double fac = A[j][i] * bv;
     b[j] -= fac * b[i];
     rep(k,i+1,m) A[j][k] -= fac*A[i][k];
   rank++;
 x.assign(m, 0);
 for (int i = rank; i--;) {
```

b[i] /= A[i][i];

27 lines

"SolveLinear.h"

```
x[col[i]] = b[i]:
  rep(j,0,i) b[j] -= A[j][i] * b[i];
return rank; // (multiple solutions if rank < m)</pre>
```

SolveLinear2.h

Description: To get all uniquely determined values of x back from SolveLinear, make the following changes:

```
rep(j,0,n) if (j != i) // instead of <math>rep(j,i+1,n)
// ... then at the end:
x.assign(m, undefined);
rep(i,0,rank) {
 rep(j,rank,m) if (fabs(A[i][j]) > eps) goto fail;
 x[col[i]] = b[i] / A[i][i];
fail:; }
```

SolveLinearBinarv.h

Description: Solves Ax = b over \mathbb{F}_2 . If there are multiple solutions, one is returned arbitrarily. Returns rank, or -1 if no solutions. Destroys A and b. Time: $\mathcal{O}\left(n^2m\right)$

typedef bitset<1000> bs; int solveLinear(vector<bs>& A, vi& b, bs& x, int m) { int n = sz(A), rank = 0, br;assert(m <= sz(x));</pre> vi col(m); iota(all(col), 0); rep(i,0,n) { for (br=i; br<n; ++br) if (A[br].any()) break;</pre> **if** (br == n) { rep(j,i,n) if(b[j]) return -1; break: int bc = (int)A[br]._Find_next(i-1); swap(A[i], A[br]); swap(b[i], b[br]); swap(col[i], col[bc]); rep(j,0,n) if (A[j][i] != A[j][bc]) { A[j].flip(i); A[j].flip(bc); rep(j,i+1,n) **if** (A[j][i]) { b[j] ^= b[i]; A[j] ^= A[i]; rank++: x = bs(): for (int i = rank; i--;) { if (!b[i]) continue; x[col[i]] = 1;rep(j,0,i) b[j] ^= A[j][i]; return rank; // (multiple solutions if rank < m)</pre>

MatrixInverse.h

Description: Invert matrix A. Returns rank; result is stored in A unless singular (rank < n). Can easily be extended to prime moduli; for prime powers, repeatedly set $A^{-1} = A^{-1}(2I - AA^{-1}) \pmod{p^k}$ where A^{-1} starts as the inverse of A mod p, and k is doubled in each step. Time: $\mathcal{O}\left(n^3\right)$

```
int matInv(vector<vector<double>>& A) {
 int n = sz(A); vi col(n);
```

```
vector<vector<double>> tmp(n, vector<double>(n));
rep(i,0,n) tmp[i][i] = 1, col[i] = i;
rep(i,0,n) {
 int r = i, c = i;
  rep(j,i,n) rep(k,i,n)
    if (fabs(A[j][k]) > fabs(A[r][c]))
      r = j, c = k;
  if (fabs(A[r][c]) < 1e-12) return i;</pre>
  A[i].swap(A[r]); tmp[i].swap(tmp[r]);
  rep(j,0,n)
    swap(A[j][i], A[j][c]), swap(tmp[j][i], tmp[j][c]);
  swap(col[i], col[c]);
  double v = A[i][i];
  rep(j,i+1,n) {
    double f = A[j][i] / v;
    A[j][i] = 0;
    rep(k,i+1,n) A[j][k] -= f*A[i][k];
    rep(k,0,n) tmp[j][k] -= f*tmp[i][k];
  rep(j,i+1,n) A[i][j] /= v;
  rep(j,0,n) tmp[i][j] /= v;
  A[i][i] = 1;
for (int i = n-1; i > 0; --i) rep(j,0,i) {
  double v = A[i][i];
  rep(k,0,n) tmp[j][k] -= v*tmp[i][k];
rep(i,0,n) rep(j,0,n) A[col[i]][col[j]] = tmp[i][j];
return n;
```

Tridiagonal.h

Description: x = tridiagonal(d, p, q, b) solves the equation system

```
0
                                                         0
                     d_1
               _{0}^{q_{0}}
                                                         0
                     q_1
                                    p_2
                                                                       x_2
b_3
                                                                       x_3
               0
                     0
                                            d_{n-2}
               0
                     0
                                             q_n - 2
```

This is useful for solving problems on the type

```
a_i = b_i a_{i-1} + c_i a_{i+1} + d_i, 1 \le i \le n,
```

where a_0 , a_{n+1} , b_i , c_i and d_i are known. a can then be obtained from

```
\{a_i\} = \text{tridiagonal}(\{1, -1, -1, ..., -1, 1\}, \{0, c_1, c_2, ..., c_n\},\
                         \{b_1, b_2, \ldots, b_n, 0\}, \{a_0, d_1, d_2, \ldots, d_n, a_{n+1}\}\).
```

Fails if the solution is not unique

If $|d_i| > |p_i| + |q_{i-1}|$ for all i, or $|d_i| > |p_{i-1}| + |q_i|$, or the matrix is positive definite, the algorithm is numerically stable and neither tr nor the check for diag[i] == O is needed. Time: O(N)26 lines

```
typedef double T;
vector<T> tridiagonal(vector<T> diag, const vector<T>& super,
    const vector<T>& sub, vector<T> b) {
  int n = sz(b); vi tr(n);
  rep(i,0,n-1) {
    if (abs(diag[i]) < 1e-9 * abs(super[i])) { // diag[i] == 0}
      b[i+1] -= b[i] * diag[i+1] / super[i];
      if (i+2 < n) b[i+2] -= b[i] * sub[i+1] / super[i];</pre>
      diag[i+1] = sub[i]; tr[++i] = 1;
    } else {
      diag[i+1] -= super[i]*sub[i]/diag[i];
```

```
b[i+1] -= b[i]*sub[i]/diag[i]:
 }
for (int i = n; i--;) {
 if (tr[i]) {
    swap(b[i], b[i-1]);
    diag[i-1] = diag[i];
    b[i] /= super[i-1];
  } else {
    b[i] /= diag[i];
    if (i) b[i-1] -= b[i]*super[i-1];
return b;
```

4.1. Fourier transforms.

FastFourierTransform.h

Description: Computes $\hat{f}(k) = \sum_x f(x) \exp(-2\pi i k x/N)$ for all k. Useful for convolution: conv(a, b) = c, where $c[x] = \sum a[i]b[x-i]$. a and b should be of roughly equal size. For convolutions of integers, consider using a number-theoretic transform instead, to avoid rounding issues.

Time: $O(N \log N)$

```
<valarray>
                                                              29 lines
typedef valarray<complex<double> > carray;
void fft(carray& x, carray& roots) {
 int N = sz(x);
 if (N <= 1) return;</pre>
  carray even = x[slice(0, N/2, 2)];
  carray odd = x[slice(1, N/2, 2)];
  carray rs = roots[slice(0, N/2, 2)];
  fft(even, rs);
  fft(odd, rs);
  rep(k.0.N/2) {
    auto t = roots[k] * odd[k];
    x[k] = even[k] + t;
    x[k+N/2] = even[k] - t;
}
typedef vector<double> vd;
vd conv(const vd& a. const vd& b) {
  int s = sz(a) + sz(b) - 1, L = 32-\_builtin\_clz(s), n = 1 << L;
  if (s <= 0) return {};</pre>
  carray av(n), bv(n), roots(n);
  rep(i,0,n) \ roots[i] = polar(1.0, -2 * M_PI * i / n);
  copy(all(a), begin(av)); fft(av, roots);
  copy(all(b), begin(bv)); fft(bv, roots);
  roots = roots.apply(conj);
  carray cv = av * bv; fft(cv, roots);
  vd c(s); rep(i,0,s) c[i] = cv[i].real() / n;
  return c;
```

FFTOptimized.h

Description: Computes the coefficients of $(a_n x^n + \cdots + a_0) \cdot (b_n x^n + \cdots + b_0) =$ $\sum_{k=0}^{2n} \left(\sum_{i=0}^{k} a_i b_{k-i}\right) x^k$. For convolutions of integers, consider using a numbertheoretic transform instead, to avoid rounding issues. This destroys a and b and stores the result in a.

```
Time: \mathcal{O}(N \log N), but roughly 0.8s for N = 2^{18}.
```

```
typedef complex<double> cpx;
const int LOGN = 19, MAXN = 1 << LOGN;</pre>
int rev[MAXN];
cpx rt[MAXN], a[MAXN] = {}, b[MAXN] = {};
```

```
void fft(cpx *A) {
  REP(i, MAXN) if (i < rev[i]) swap(A[i], A[rev[i]]);</pre>
  for (int k = 1: k < MAXN: k *= 2)
    for (int i = 0; i < MAXN; i += 2*k) REP(j, k) {
        cpx t = rt[j + k] * A[i + j + k];
        A[i + j + k] = A[i + j] - t;
        A[i + j] += t;
}
void multiply() { // a = convolution of a * b
  rev[0] = 0; rt[1] = cpx(1, 0);
  REP(i, MAXN) rev[i] = (rev[i/2] | (i\&1) << LOGN)/2;
  for (int k = 2; k < MAXN; k *= 2) {
    cpx z(cos(PI/k), sin(PI/k));
    rep(i, k/2, k) rt[2*i]=rt[i], rt[2*i+1]=rt[i]*z;
  fft(a); fft(b);
  REP(i, MAXN) a[i] *= b[i] / (double)MAXN;
  reverse(a+1,a+MAXN); fft(a);
```

NumberTheoreticTransform.h

Description: Can be used for convolutions modulo specific nice primes of the form $2^a b + 1$, where the convolution result has size at most 2^a . For other primes/integers, use two different primes and combine with CRT. May return negative values. Time: $O(N \log N)$

```
"ModPow.h"
                                                             38 lines
const ll mod = (119 << 23) + 1, root = 3; // = 998244353</pre>
// For p < 2^30 there is also e.g. (5 << 25, 3), (7 << 26, 3),
// (479 << 21, 3) and (483 << 21, 5). The last two are > 10^9.
typedef vector<ll> vl;
void ntt(ll* x, ll* temp, ll* roots, int N, int skip) {
 if (N == 1) return:
 int n2 = N/2;
         , temp, roots, n2, skip*2);
 ntt(x+skip, temp, roots, n2, skip*2);
 rep(i,0,N) temp[i] = x[i*skip];
 rep(i.0.n2) {
   ll s = temp[2*i], t = temp[2*i+1] * roots[skip*i];
   x[skip*i] = (s + t) % mod; x[skip*(i+n2)] = (s - t) % mod;
void ntt(vl\& x. bool inv = false) {
 ll e = modpow(root. (mod-1) / sz(x)):
 if (inv) e = modpow(e, mod-2);
 vl roots(sz(x), 1), temp = roots;
 rep(i,1,sz(x)) roots[i] = roots[i-1] * e % mod;
 ntt(&x[0], &temp[0], &roots[0], sz(x), 1);
vl conv(vl a, vl b) {
 int s = sz(a) + sz(b) - 1; if (s \le 0) return {};
 int L = s > 1 ? 32 - __builtin_clz(s - 1) : 0, n = 1 << L;</pre>
 if (s <= 200) { // (factor 10 optimization for |a|, |b| = 10)
    rep(i,0,sz(a)) rep(j,0,sz(b))
     c[i + j] = (c[i + j] + a[i] * b[j]) % mod;
    return c:
 a.resize(n); ntt(a);
 b.resize(n); ntt(b);
 vl c(n); ll d = modpow(n, mod-2);
 rep(i,0,n) c[i] = a[i] * b[i] % mod * d % mod;
```

```
ntt(c, true): c.resize(s): return c:
```

FastSubsetTransform.h

Description: Transform to a basis with fast convolutions of the form c[z] = $\sum_{z=x\oplus y} a[x] \cdot b[y]$, where \oplus is one of AND, OR, XOR. The size of a must be a Time: $O(N \log N)$

```
void FST(vi& a, bool inv) {
  for (int n = sz(a), step = 1; step < n; step *= 2) {
    for (int i = 0; i < n; i += 2 * step) rep(j,i,i+step) {
      int \&u = a[j], \&v = a[j + step]; tie(u, v) =
        inv ? pii(v - u, u) : pii(v, u + v); // AND
        inv ? pii(v, u - v) : pii(u + v, u); // OR
        pii(u + v, u - v);
  if (inv) trav(x, a) x \neq sz(a); // XOR only
vi conv(vi a. vi b) {
  FST(a, 0); FST(b, 0);
  rep(i.0.sz(a)) a[i] *= b[i]:
 FST(a, 1); return a;
```

5. Number theory

5.1. Modular arithmetic.

Modular Arithmetic.h

Description: Operators for modular arithmetic. You need to set mod to some number first and then you can use the structure.

```
18 lines
const ll mod = 17; // change to something else
struct Mod {
 ll x;
 Mod(ll xx) : x(xx) \{ \}
  Mod operator+(Mod b) { return Mod((x + b.x) % mod); }
  Mod operator-(Mod b) { return Mod((x - b.x + mod) % mod); }
  Mod operator*(Mod b) { return Mod((x * b.x) % mod); }
  Mod operator/(Mod b) { return *this * invert(b); }
  Mod invert(Mod a) {
   ll x, y, g = euclid(a.x, mod, x, y);
   assert(g == 1); return Mod((x + mod) % mod);
 Mod operator^(ll e) {
   if (!e) return Mod(1);
   Mod r = *this ^ (e / 2); r = r * r;
   return e&1 ? *this * r : r;
 }
};
```

ModInverse.h

Description: Pre-computation of modular inverses. Assumes LIM < mod and that

```
const ll mod = 10000000007, LIM = 200000;
ll* inv = new ll[LIM] - 1; inv[1] = 1;
rep(i,2,LIM) inv[i] = mod - (mod / i) * inv[mod % i] % mod;
```

ModPow.h

```
const ll mod = 1000000007; // faster if const
ll modpow(ll a, ll e) {
 if (e == 0) return 1;
 ll x = modpow(a * a % mod, e >> 1);
```

```
return e & 1 ? x * a % mod : x:
```

ModSum.h

Description: Sums of mod'ed arithmetic progressions.

modsum(to, c, k, m) $=\sum_{i=0}^{to-1}(ki+c)\%m$. divsum is similar but for floored division. Time: log(m), with a large constant.

```
19 lines
typedef unsigned long long ull;
ull sumsq(ull to) { return to / 2 * ((to-1) | 1); }
ull divsum(ull to, ull c, ull k, ull m) {
 ull res = k / m * sumsq(to) + c / m * to;
 k %= m: c %= m:
 if (k) {
   ull to2 = (to * k + c) / m;
   res += to * to2;
   res -= divsum(to2, m-1 - c, m, k) + to2;
 return res;
ll modsum(ull to, ll c, ll k, ll m) {
 c = ((c \% m) + m) \% m;
 k = ((k \% m) + m) \% m;
 return to * c + k * sumsq(to) - m * divsum(to, c, k, m);
```

ModMulLL.h

Description: Calculate $a \cdot b \mod c$ (or $a^b \mod c$) for large c. **Time:** $\mathcal{O}(64/bits \cdot \log b)$, where bits = 64 - k, if we want to deal with k-bit numbers.

```
typedef unsigned long long ull;
const int bits = 10:
// if all numbers are less than 2^k, set bits = 64-k
const ull po = 1 << bits;</pre>
ull mod_mul(ull a, ull b, ull &c) {
 ull x = a * (b \& (po - 1)) % c;
 while ((b >>= bits) > 0) {
   a = (a \ll bits) % c:
   x += (a * (b \& (po - 1))) % c;
 return x % c:
ull mod_pow(ull a, ull b, ull mod) {
 if (b == 0) return 1:
 ull res = mod_pow(a, b / 2, mod);
 res = mod_mul(res, res, mod);
 if (b & 1) return mod_mul(res, a, mod);
 return res;
```

ModSart.h

Description: Tonelli-Shanks algorithm for modular square roots.

Time: $\mathcal{O}\left(\log^2 p\right)$ worst case, often $\mathcal{O}\left(\log p\right)$

```
"ModPow.h"
                                                                  30 lines
ll sqrt(ll a, ll p) {
 a \% = p; if (a < 0) a += p;
 if (a == 0) return 0;
 assert(modpow(a, (p-1)/2, p) == 1);
 if (p % 4 == 3) return modpow(a, (p+1)/4, p);
 // a^{(n+3)/8} \text{ or } 2^{(n+3)/8} * 2^{(n-1)/4} \text{ works if } p \% 8 == 5
 ll s = p - 1;
 int r = 0;
 while (s % 2 == 0)
   ++r, s /= 2;
 ll n = 2; // find a non-square mod p
```

```
while (modpow(n, (p - 1) / 2, p) != p - 1) ++n;
ll x = modpow(a, (s + 1) / 2, p);
ll b = modpow(a, s, p);
ll g = modpow(n, s, p);
for (;;) {
 ll t = b:
  int m = 0:
  for (; m < r; ++m) {
   if (t == 1) break:
   t = t * t % p;
  if (m == 0) return x;
  ll gs = modpow(g, 1 << (r - m - 1), p);
  g = gs * gs % p;
  x = x * qs % p;
 b = b * g % p;
  r = m;
```

5.2. Primality.

eratosthenes.h

Description: Prime sieve for generating all primes up to a certain limit. is prime[i] is true iff i is a prime.

Time: $N=10^8$ takes ≈ 0.8 s. Runs 30% faster if only odd indices are stored.

```
const int MAX PR = 5000000:
bitset<MAX_PR> isprime;
vi eratosthenes_sieve(int lim) {
 isprime.set(); isprime[0] = isprime[1] = 0;
 for (int i = 4: i < lim: i += 2) isprime[i] = 0:</pre>
 for (int i = 3; i*i < lim; i += 2) if (isprime[i])</pre>
   for (int j = i*i; j < lim; <math>j += i*2) isprime[j] = 0;
 rep(i,2,lim) if (isprime[i]) pr.push_back(i);
 return pr:
```

MillerRabin.h

Description: Miller-Rabin primality probabilistic test. Probability of failing one iteration is at most 1/4. 15 iterations should be enough for 50-bit numbers.

Time: 15 times the complexity of $a^b \mod c$.

```
"ModMulLL.h"
bool prime(ull p) {
 if (p == 2) return true;
 if (p == 1 || p % 2 == 0) return false;
 ull s = p - 1;
  while (s % 2 == 0) s /= 2;
  rep(i,0,15) {
    ull a = rand() % (p - 1) + 1, tmp = s;
    ull mod = mod_pow(a, tmp, p);
    while (tmp != p - 1 \&\& \mod != 1 \&\& \mod != p - 1) {
     mod = mod_mul(mod, mod, p);
      tmp *= 2:
    if (mod != p - 1 \&\& tmp % 2 == 0) return false;
  return true;
}
```

factor.h

Description: Pollard's rho algorithm. It is a probabilistic factorisation algorithm, whose expected time complexity is good. Before you start using it, run init(bits), where bits is the length of the numbers you use. Returns factors of the input without

Time: Expected running time should be good enough for 50-bit numbers.

"ModMulLL.h", "MillerRabin.h", "eratosthenes.h"

35 lines }

```
vector<ull> pr:
ull f(ull a, ull n, ull &has) {
 return (mod_mul(a, a, n) + has) % n;
vector<ull> factor(ull d) {
  vector<ull> res;
  for (int i = 0; i < sz(pr) && pr[i]*pr[i] <= d; i++)
   if (d % pr[i] == 0) {
      while (d % pr[i] == 0) d /= pr[i];
      res.push_back(pr[i]);
  //d is now a product of at most 2 primes.
  if (d > 1) {
   if (prime(d))
      res.push_back(d);
    else while (true) {
      ull has = rand() % 2321 + 47;
      ull x = 2, y = 2, c = 1;
      for (; c==1; c = \_gcd((y > x ? y - x : x - y), d)) {
       x = f(x, d, has);
        y = f(f(y, d, has), d, has);
      if (c != d) {
        res.push_back(c); d /= c;
        if (d != c) res.push_back(d);
        break:
  return res;
void init(int bits) {//how many bits do we use?
 vi p = eratosthenes_sieve(1 << ((bits + 2) / 3));</pre>
 pr.assign(all(p)):
```

5.3. Divisibility.

euclid.h

Description: Finds the Greatest Common Divisor to the integers a and b. Euclid also finds two integers x and y, such that $ax + by = \gcd(a, b)$. If a and b are coprime, then x is the inverse of $a \pmod{b}$.

```
ll gcd(ll a, ll b) { return __gcd(a, b); }
ll euclid(ll a, ll b, ll &x, ll &y) {
 if (b) { ll d = euclid(b, a % b, y, x);
   return y -= a/b * x, d; 
 return x = 1, y = 0, a;
                           Euclid.java
```

```
Description: Finds \{x, y, d\} s.t. ax + by = d = gcd(a, b).
                                                               11 lines
static BigInteger[] euclid(BigInteger a, BigInteger b) {
 BigInteger x = BigInteger.ONE, yy = x;
 BigInteger y = BigInteger.ZER0, xx = y;
  while (b.signum() != 0) {
   BigInteger q = a.divide(b), t = b;
   b = a.mod(b); a = t;
   t = xx; xx = x.subtract(q.multiply(xx)); x = t;
```

t = yy; yy = y.subtract(q.multiply(yy)); y = t;

return new BigInteger[]{x, y, a};

```
for (int j = i; j < N; j+=i) phi[j] -= phi[j]/i;</pre>
 return phi:
5.4. Fractions.
                      ContinuedFractions.h
Description: Given N and a real number x > 0, finds the closest rational approxi-
   For consecutive convergents, p_{k+1}q_k - q_{k+1}p_k = (-1)^k. (p_k/q_k alternates be-
Time: O(\log N)
typedef double d; // for N ~ 1e7; long double for N ~ 1e9
pair<ll, ll> approximate(d x, ll N) {
 ll LP = 0, LQ = 1, P = 1, Q = 0, inf = LLONG_MAX; d y = x;
   ll lim = min(P ? (N-LP) / P : inf, Q ? (N-LQ) / Q : inf),
       a = (ll)floor(y), b = min(a, lim),
       NP = b*P + LP, NQ = b*Q + LQ;
   if (a > b) {
      // If b > a/2, we have a semi-convergent that gives us a
      // better approximation; if b = a/2, we *may* have one.
      // Return {P, 0} here for a more canonical approximation.
      return (abs(x - (d)NP / (d)NQ) < abs(x - (d)P / (d)Q))?
        make_pair(NP, NQ) : make_pair(P, Q);
   if (abs(y = 1/(y - (d)a)) > 3*N) {
      return {NP, NO}:
   LP = P; P = NP;
   L0 = 0: 0 = N0:
```

5.3.1. Bézout's identity. For $a \neq b \neq 0$, then d = qcd(a, b) is the smallest positive integer for which there are integer solutions to

$$ax + by = d$$

If (x, y) is one solution, then all solutions are given by

$$\left(x + \frac{kb}{\gcd(a,b)}, y - \frac{ka}{\gcd(a,b)}\right), \quad k \in \mathbb{Z}$$

phiFunction.h

Description: Euler's totient (or phi) function is defined as

$$\phi(i) := \# \left\{ \, 0 < j \leq i \mid \gcd(i,j) = 1 \, \right\} = n \cdot \prod_{p \mid n} \frac{p-1}{p}.$$

The cototient is $n - \phi(n)$. $\phi(1) = 1$, p prime $\Rightarrow \phi(p^k) = (p-1)p^{k-1}$, m, n coprime $\Rightarrow \phi(mn) = \phi(m)\phi(n). \text{ If } n = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r} \text{ then } \phi(n) = (p_1 - 1)p_1^{k_1 - 1} \dots (p_r - 1)p_r^{k_1 - 1} \dots (p_r - 1)p_r^$ 1) $p_r^{k_r-1}$. $\sum_{d|n} \phi(d) = n$, $\sum_{1 \le k \le n, \gcd(k,n)=1} k = n\phi(n)/2$, n > 1

Euler's thm: a, n coprime $\Rightarrow a^{\phi(n)} \equiv 1 \pmod{n}$.

Fermat's little thm: $p \text{ prime } \Rightarrow a^{p-1} \equiv 1 \pmod{p} \ \forall a.$

7 lines

```
vi totient(int N) {
 vi phi(N):
 for (int i = 0: i < N: i++) phi[i] = i:
 for (int i = 2; i < N; i++) if (phi[i] == i)
```

}

mation p/q with $p, q \leq N$. It will obey $|p/q - x| \leq 1/qN$.

tween > x and < x.) If x is rational, y eventually becomes ∞ ; if x is the root of a degree 2 polynomial the a's eventually become cyclic.

FracBinarySearch.h

Description: Given f and N, finds the smallest fraction $p/q \in [0,1]$ such that f(p/q)is true, and p, q < N. You may want to throw an exception from f if it finds an exact solution, in which case N can be removed

Usage: fracBS([](Frac f) { return f.p>=3*f.q; }, 10); // {1,3}

Time: $O(\log(N))$

24 lines

```
struct Frac { ll p, q; };
template<class F>
Frac fracBS(F f, ll N) {
 bool dir = 1, A = 1, B = 1;
 Frac lo{0, 1}, hi{1, 1}; // Set hi to 1/0 to search (0, N]
 assert(!f(lo)); assert(f(hi));
  while (A || B) {
   ll adv = 0, step = 1; // move hi if dir, else lo
    for (int si = 0; step; (step *= 2) >>= si) {
      adv += step:
      Frac mid{lo.p * adv + hi.p, lo.q * adv + hi.q};
      if (abs(mid.p) > N \mid \mid mid.q > N \mid \mid dir == !f(mid)) {
        adv -= step: si = 2:
   hi.p += lo.p * adv;
   hi.q += lo.q * adv;
   dir = !dir;
   swap(lo, hi);
   A = B; B = !!adv;
  return dir ? hi : lo;
```

5.5. Chinese remainder theorem.

chinese.h

Description: Chinese Remainder Theorem

chinese(a, m, b, n) returns a number x, such that $x \equiv a \pmod{m}$ and $x \equiv b$ \pmod{n} . For not coprime n, m, use chinese_common. Note that all numbers must be less than 2^{31} if you have Z = unsigned long longTime: $\log(m+n)$

"euclid.h"	13 lines
<pre>template<class z=""> Z chinese(Z a, Z m, Z b, Z n) { Z x, y; euclid(m, n, x, y); Z ret = a * (y + m) % m * n + b * (x + n) % n * m; if (ret >= m * n) ret -= m * n; return ret;</class></pre>	
}	
<pre>template<class z=""> Z chinese_common(Z a, Z m, Z b, Z n) { Z d = gcd(m, n); if (((b -= a) %= n) < 0) b += n; if (b % d) return -1; // No solution return d * chinese(Z(0), m/d, b/d, n/d) + a; }</class></pre>	

5.6. Pythagorean Triples. The Pythagorean triples are uniquely generated by

$$a = k \cdot (m^2 - n^2), b = k \cdot (2mn), c = k \cdot (m^2 + n^2),$$

with m > n > 0, k > 0, $m \perp n$, and either m or n even.

5.7. **Primes.** p = 962592769 is such that $2^{21} \mid p - 1$, which may be useful. For hashing use 970592641 (31-bit number), 31443539979727 (45-bit), 3006703054056749 (52-bit). There are 78498 primes less than $1\,000\,000.$

Primitive roots exist modulo any prime power p^a , except for p=2, a>2, and there are $\phi(\phi(p^a))$ many. For p=2, a>2, the group $\mathbb{Z}_{2^a}^{\times}$ is instead isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_{2^{a-2}}$.

5.8. Estimates. $\sum_{d|n} d = O(n \log \log n)$.

The number of divisors of n is at most around 100 for n < 5e4, 500 for n < 1e7, 2000 for n < 1e10, 200 000 for n < 1e19.

6. Combinatorics

• Catalan numbers (valid bracket seq's of length 2n):

$$C_0 = 1, C_n = \frac{1}{n+1} {2n \choose n} = \sum_{i=0}^{n-1} C_i C_{n-i-1}.$$

• Stirling 1th kind ($\#\pi \in \mathfrak{S}_n$ with exactly k cycles):

$$\begin{bmatrix} n \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ n \end{bmatrix} = \delta_{0n}, \begin{bmatrix} n \\ k \end{bmatrix} = (n-1) \begin{bmatrix} n-1 \\ k \end{bmatrix} + \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}.$$

• Stirling 2^{nd} kind (k-partitions of [n])

$$\left\{ {n \atop 1} \right\} = \left\{ {n \atop n} \right\} = 1, \left\{ {n \atop k} \right\} = k \left\{ {n-1 \atop k} \right\} + \left\{ {n-1 \atop k-1} \right\}.$$

• Bell numbers (partitions of [n]):

Bo = 1,
$$B_n = \sum_{k=0}^{n-1} B_k \binom{n-1}{k} = \sum_{k=0}^{n} \begin{Bmatrix} n \\ k \end{Bmatrix}$$
• Euler (# $\pi \in \mathfrak{S}_n$ with exactly k ascents):

$$\left\langle {n\atop 0}\right\rangle = \left\langle {n\atop n-1}\right\rangle = 1, \left\langle {n\atop k}\right\rangle = (k+1)\left\langle {n-1\atop k}\right\rangle + (n-k)\left\langle {n-1\atop k-1}\right\rangle.$$

• Euler 2^{nd} order (nr perms of $1, 1, 2, 2, \ldots, n, n$ with exactly k as-

- Forests of k rooted trees: $\binom{n}{k} k \cdot n^{n-k-1}$.
- $\sum_{i=1}^{n} \binom{n}{i} F_i = F_{2n}, \quad \sum_{i} \binom{n-i}{i} = F_{n+1}$
- $\sum_{k=0}^{n} {k \choose m} = {n+1 \choose m+1}, \quad x^k = \sum_{i=0}^{k} i! {k \choose i} {x \choose i} = \sum_{i=0}^{k} {k \choose i} {x+i \choose k}$
- $a \equiv b \pmod{x, y} \Leftrightarrow a \equiv b \pmod{\operatorname{lcm}(x, y)}$.
- $ac \equiv bc \pmod{m} \Leftrightarrow a \equiv b \pmod{m/\gcd(c,m)}.$
 - $gcd(n^a 1, n^b 1) = gcd(a, b) 1$.
 - Möbius inversion formula: If $f(n) = \sum_{d|n} g(d)$, then $g(n) = \sum_{d|n} g(d)$ $\sum_{d|n} \mu(d) f(n/d)$. If $f(n) = \sum_{m=1}^{n} g(\lfloor n/m \rfloor)$, then $g(n) = \sum_{m=1}^{n} g(\lfloor n/m \rfloor)$ $\sum_{m=1}^{n} \mu(m) f(\lfloor \frac{n}{m} \rfloor).$
 - Inclusion-Exclusion: If $g(T) = \sum_{S \subset T} f(S)$, then

$$f(T) = \sum_{S \subseteq T} (-1)^{|T \setminus S|} g(T).$$

Corollary: $b_n = \sum_{k=0}^n \binom{n}{k} a_k \iff a_n = \sum_{k=0}^n (-1)^{n-k} \binom{n}{k} b_k$.

6.1. The Twelvefold Way. Putting n balls into k boxes. p(n,k) is # partitions of n in k parts, each > 0. $p_k(n) = \sum_{i=0}^k p(n,k)$

Balls	same	distinct	same	distinct
Boxes	same	same	distinct	distinct
_	$p_k(n)$	$\sum_{i=0}^{k} {n \brace i}$	$\binom{n+k-1}{k-1}$	k^n
$\mathrm{size} \geq 1$	p(n,k)	$\binom{n}{k}$	$\binom{n-1}{k-1}$	$k!\binom{n}{k}$
$\mathrm{size} \leq 1$	$[n \le k]$	$[n \le k]$	$\binom{k}{n}$	$n!\binom{k}{n}$

6.2. **Game Theory.** A game can be reduced to Nim if it is a finite impartial game. Nim and its variants include:

- Nim: Let $X = \bigoplus_{i=1}^n x_i$, then $(x_i)_{i=1}^n$ is a winning position iff $X \neq 0$. Find a move by picking k such that $x_k > x_k \oplus X$.
- Misère Nim: Regular Nim, except that the last player to move loses. Play regular Nim until there is only one pile of size larger than 1, reduce it to 0 or 1 such that there is an odd number of piles. The second player wins (a_1, \ldots, a_n) if 1) there is a pile $a_i > 1$ and $\bigoplus_{i=1}^n a_i = 0$ or 2) all $a_i \leq 1$ and $\bigoplus_{i=1}^n a_i = 1$.
- Staircase Nim: Stones are moved down a staircase and only removed from the last pile. $(x_i)_{i=1}^n$ is an L-position if $(x_{2i-1})_{i=1}^{n/2}$ is (i.e. only look at odd-numbered piles).
- Moore's Nim_k : The player may remove from at most k piles $(Nim = Nim_1)$. Expand the piles in base 2, do a carry-less addition in base k+1 (i.e. the number of ones in each column should be divisible by k+1
- Dim⁺: The number of removed stones must be a divisor of the pile size. The Sprague-Grundy function is k+1 where 2^k is the largest power of 2 dividing the pile size.
- Aliquot game: Same as above, except the divisor should be proper (hence 1 is also a terminal state, but watch out for size 0 piles). Now the Sprague-Grundy function is just k.
- Nim (at most half): Write $n+1=2^m y$ with m maximal, then the Sprague-Grundy function of n is (y-1)/2.
- Lasker's Nim: Players may alternatively split a pile into two new non-empty piles. g(4k + 1) = 4k + 1, g(4k + 2) = 4k + 2, g(4k+3) = 4k+4, g(4k+4) = 4k+3 $(k \ge 0)$.
- Hackenbush on trees: A tree with stalks $(x_i)_{i=1}^n$ may be replaced with a single stalk with length $\bigoplus_{i=1}^n x_i$.

6.3. Permutations

6.3.1. Factorial.

n	1 2 3	4	5 6	7	8	9	10	
n!	1 2 6	24 1	20 720	0 5040	40320	362880	3628800	_
n	11	12	13	14	15	16	17	
n!	4.0e7	′ 4.8e	8 6.2e	9 8.7e	10 1.3e	12 2.1e	13 3.6e14	-
n	20	25	30	40	50 1	00 15	0 17	1
n!	2e18	2e25	3e32	8e47 3	Be64 9e	157 6e2	$62 > DBL_$	MAX

6.3.2. Cycles. Let $g_S(n)$ be the number of n-permutations whose cycle lengths all belong to the set S. Then

$$\sum_{n=0}^{\infty} g_S(n) \frac{x^n}{n!} = \exp\left(\sum_{n \in S} \frac{x^n}{n}\right)$$

6.3.3. Derangements. Permutations of a set such that none of the elements appear in their original position.

$$D(n) = (n-1)(D(n-1) + D(n-2)) = nD(n-1) + (-1)^n = \left\lfloor \frac{n!}{e} \right\rfloor$$

6.3.4. Burnside's lemma. Given a group G of symmetries and a set X, the number of elements of X up to symmetry equals

$$\frac{1}{|G|} \sum_{g \in G} |X^g|,$$

where $X^g = \{ x \in X \mid gx = x \}.$

If f(n) counts "configurations" (of some sort) of length n, we can ignore rotational symmetry using $G = \mathbb{Z}_n$ to get

$$g(n) = \frac{1}{n} \sum_{k=0}^{n-1} f(\gcd(n,k)) = \frac{1}{n} \sum_{k|n} f(k)\phi(n/k).$$

6.4. Partitions and subsets.

6.4.1. Partition function. Number of ways of writing n as a sum of positive integers, disregarding the order of the summands.

$$p(0) = 1, \ p(n) = \sum_{k \in \mathbb{Z} \setminus \{0\}} (-1)^{k+1} p(n - k(3k - 1)/2)$$

$$p(n) \sim 0.145/n \cdot \exp(2.56\sqrt{n})$$

$$\frac{n \mid 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 20 \ 50 \ 100}{p(n) \mid 1 \ 1 \ 2 \ 3 \ 5 \ 7 \ 11 \ 15 \ 22 \ 30 \ 627 \sim 2e5 \sim 2e8}$$

6.4.2. Binomials.

binomialModPrime.h

Description: Lucas' thm: Let n,m be non-negative integers and p a prime. Write $n=n_kp^k+\ldots+n_1p+n_0$ and $m=m_kp^k+\ldots+m_1p+m_0$. Then $\binom{n}{m}\equiv\prod_{i=0}^k\binom{n_i}{m_i}\pmod{p}$. (mod p). fact and invfact must hold pre-computed factorials / inverse factorials, e.g. from ModInverse.h. Time: $\mathcal{O}\left(\log_p n\right)$

```
ll chooseModP(ll n, ll m, int p, vi& fact, vi& invfact) {
    ll c = 1;
    while (n || m) {
        ll a = n % p, b = m % p;
        if (a < b) return 0;
        c = c * fact[a] % p * invfact[b] % p * invfact[a - b] % p;
        n /= p; m /= p;
    }
    return c;</pre>
```

multinomial.h

```
Description: Computes \binom{k_1, k_2, \ldots, k_n}{k_1! k_2! \ldots k_n!} = \frac{1}{k_1! k_2! \ldots k_n!}. 6 lines limultinomial(vi& v) {
ll c = 1, m = v.empty() ? 1 : v[0];
rep(i,1,sz(v)) rep(j,0,v[i])
c = c * ++m / (j+1);
return c;
```

7. Graph

7.1. Fundamentals.

bellmanFord.h

Description: Calculates shortest path in a graph that might have negative edge distances. Propagates negative infinity distances (sets dist = -inf), and returns true if there is some negative cycle. Unreachable nodes get dist = inf. **Time:** $\mathcal{O}\left(EV\right)$

·)

```
typedef ll T: // or whatever
struct Edge { int src, dest; T weight; };
struct Node { T dist; int prev; };
struct Graph { vector<Node> nodes: vector<Edge> edges: };
const T inf = numeric_limits<T>::max():
bool bellmanFord2(Graph& q, int start_node) {
  trav(n, q.nodes) { n.dist = inf; n.prev = -1; }
  g.nodes[start_node].dist = 0;
  rep(i,0,sz(g.nodes)) trav(e, g.edges) {
    Node& cur = g.nodes[e.src];
    Node& dest = g.nodes[e.dest];
    if (cur.dist == inf) continue;
    T ndist = cur.dist + (cur.dist == -inf ? 0 : e.weight);
    if (ndist < dest.dist) {</pre>
      dest.prev = e.src;
      dest.dist = (i >= sz(g.nodes)-1 ? -inf : ndist);
  bool ret = 0;
  rep(i,0,sz(g.nodes)) trav(e, g.edges) {
    if (g.nodes[e.src].dist == -inf)
      q.nodes[e.dest].dist = -inf, ret = 1;
  return ret;
```

FloydWarshall.h

Description: Calculates all-pairs shortest path in a directed graph that might have negative edge distances. Input is an distance matrix m, where $m[i][j] = \inf$ if i and j are not adjacent. As output, m[i][j] is set to the shortest distance between i and j, inf if no path, or -inf if the path goes through a negative-weight cycle. Time: $\mathcal{O}\left(N^3\right)$

```
const ll inf = 1LL << 62;
void floydWarshall(vector<vector<ll>>>& m) {
   int n = sz(m);
   rep(i,0,n) m[i][i] = min(m[i][i], {});
   rep(k,0,n) rep(i,0,n) rep(j,0,n)
   if (m[i][k] != inf && m[k][j] != inf) {
      auto newDist = max(m[i][k] + m[k][j], -inf);
      m[i][j] = min(m[i][j], newDist);
   }
   rep(k,0,n) if (m[k][k] < 0) rep(i,0,n) rep(j,0,n)
   if (m[i][k] != inf && m[k][j] != inf) m[i][j] = -inf;
}</pre>
```

TopoSort.h

Description: Topological sorting. Given is an oriented graph. Output is an ordering of vertices (array idx), such that there are edges only from left to right. The function returns false if there is a cycle in the graph. Time: $\mathcal{O}(|V|+|E|)$

```
template<class E, class I>
bool topo_sort(const E &edges, I &idx, int n) {
  vi indeg(n);
  rep(i,0,n)
    trav(e, edges[i])
    indeg[e]++;
  queue<int> q; // use priority queue for lexic. smallest ans.
  rep(i,0,n) if (indeg[i] == 0) q.push(-i);
  int nr = 0;
  while (q.size() > 0) {
    int i = -q.front(); // top() for priority queue
    idx[i] = nr++;
  q.pop();
  trav(e, edges[i])
```

```
if (--indeg[e] == 0) q.push(-e);
}
return nr == n;
}
```

7.2. Euler walk.

EulerWalk.h

Description: Eulerian undirected/directed path/cycle algorithm. Returns a list of nodes in the Eulerian path/cycle with src at both start and end, or empty list if no cycle/path exists. To get edge indices back, also put it->second in s (and then ret). Time: $\mathcal{O}(E)$ where E is the number of edges.

```
vector<pii> outs; // (dest, edge index)
 int nins = 0;
vi euler_walk(vector<V>& nodes. int nedges. int src=0) {
 int c = 0;
 trav(n, nodes) c += abs(n.nins - sz(n.outs));
 if (c > 2) return {};
 vector<vector<pii>::iterator> its;
 trav(n. nodes)
   its.push_back(n.outs.begin());
 vector<bool> eu(nedges);
 vi ret, s = \{src\};
 while(!s.empty()) {
   int x = s.back():
   auto\& it = its[x], end = nodes[x].outs.end();
   while(it != end && eu[it->second]) ++it;
   if(it == end) { ret.push_back(x); s.pop_back(); }
   else { s.push_back(it->first); eu[it->second] = true; }
 if(sz(ret) != nedges+1)
   ret.clear(); // No Eulerian cycles/paths.
 // else, non-cycle if ret.front() != ret.back()
  reverse(all(ret)):
 return ret;
```

7.3. Network flow.

PushRelabel.h

Description: Push-relabel using the highest label selection rule and the gap heuristic. Quite fast in practice. To obtain the actual flow, look at positive values only. Time: \mathcal{O} ($V^2\sqrt{\mathcal{E}}$)

```
typedef ll Flow:
struct Edge {
 int dest, back;
 Flow f, c;
};
struct PushRelabel {
 vector<vector<Edge>> q;
 vector<Flow> ec:
 vector<Edae*> cur:
 vector<vi> hs; vi H;
 PushRelabel(int n) : g(n), ec(n), cur(n), hs(2*n), H(n) {}
 void add_edge(int s, int t, Flow cap, Flow rcap=0) {
   if (s == t) return;
   Edge a = \{t, sz(g[t]), 0, cap\};
   Edge b = \{s, sz(g[s]), 0, rcap\};
   g[s].push_back(a);
   g[t].push_back(b);
```

```
void add_flow(Edge& e, Flow f) {
    Edge &back = g[e.dest][e.back];
    if (!ec[e.dest] && f) hs[H[e.dest]].push_back(e.dest);
    e.f += f; e.c -= f; ec[e.dest] += f;
    back.f -= f: back.c += f: ec[back.dest] -= f:
  Flow maxflow(int s, int t) {
    int v = sz(g); H[s] = v; ec[t] = 1;
    vi co(2*v); co[0] = v-1;
    rep(i,0,v) cur[i] = g[i].data();
    trav(e, g[s]) add_flow(e, e.c);
    for (int hi = 0;;) {
      while (hs[hi].empty()) if (!hi--) return -ec[s];
      int u = hs[hi].back(); hs[hi].pop_back();
      while (ec[u] > 0) // discharge u
       if (cur[u] == g[u].data() + sz(g[u])) {
          H[u] = 1e9;
          trav(e, g[u]) if (e.c && H[u] > H[e.dest]+1)
           H[u] = H[e.dest]+1, cur[u] = \&e;
          if (++co[H[u]], !--co[hi] \&\& hi < v)
            rep(i,0,v) if (hi < H[i] \&\& H[i] < v)
              --co[H[i]], H[i] = v + 1;
          hi = H[u];
       } else if (cur[u]->c \&\& H[u] == H[cur[u]->dest]+1)
          add_flow(*cur[u], min(ec[u], cur[u]->c));
        else ++cur[u];
 }
};
```

Dinic.h

Description: Quite fast flow algorithm for graphs with short path from source to sink.

```
Time: \mathcal{O}\left(V \cdot E^2\right)
                                                               37 lines
struct Edge { int t; ll c, f; };
struct Dinic {
 vi H, P; vvi E;
 vector<Edge> G;
 Dinic(int n) : H(n), P(n), E(n) {}
 void addEdge(int u, int v, ll c) {
   E[u].pb(G.size()); G.pb({v, c, OLL});
   E[v].pb(G.size()); G.pb({u, OLL, OLL});
 ll dfs(int t, int v, ll f) {
   if (v == t || !f) return f;
   for ( ; P[v] < (int) E[v].size(); P[v]++) {</pre>
      int e = E[v][P[v]], w = G[e].t;
      if (H[w] != H[v] + 1) continue;
      ll df = dfs(t, w, min(f, G[e].c - G[e].f));
      if (df > 0) {
       G[e].f += df, G[e ^ 1].f -= df;
       return df:
   } return 0;
 ll maxflow(int s, int t, ll f = 0) {
   while (1) {
     fill(all(H), 0); H[s] = 1;
      queue<int> q; q.push(s);
      while (!q.empty()) {
       int v = q.front(); q.pop();
       for (int w : E[v]) if (G[w].f < G[w].c && !H[G[w].t])
```

```
H[G[w].t] = H[v] + 1, q.push(G[w].t);

if (!H[t]) return f;
 fill(all(P), 0);
 while (ll df = dfs(t, s, LLINF)) f += df;
}
};
```

MinCostMaxFlow.h

Description: Min-cost max-flow. cap[i][j] != cap[j][i] is allowed; double edges are not. If costs can be negative, call setp before maxflow, but note that negative cost cycles are not supported. To obtain the actual flow, look at positive values only.

```
Time: Approximately \mathcal{O}\left(E^2\right)
                                                              81 lines
#include <bits/extc++.h>
const ll INF = numeric_limits<ll>::max() / 4;
typedef vector<ll> VL;
struct MCMF {
 int N;
 vector<vi> ed. red:
 vector<VL> cap, flow, cost;
  vi seen;
 VL dist, pi;
  vector<pii> par;
  MCMF(int N) :
   N(N), ed(N), red(N), cap(N, VL(N)), flow(cap), cost(cap),
   seen(N), dist(N), pi(N), par(N) {}
  void addEdge(int from, int to, ll cap, ll cost) {
    this->cap[from][to] = cap;
    this->cost[from][to] = cost;
    ed[from].push_back(to);
    red[to].push_back(from):
  void path(int s) {
    fill(all(seen), 0);
    fill(all(dist), INF);
    dist[s] = 0; ll di;
    __gnu_pbds::priority_queue<pair<ll, int>> q;
    vector<decltype(g)::point_iterator> its(N);
    q.push({0, s});
    auto relax = [&](int i, ll cap, ll cost, int dir) {
     ll val = di - pi[i] + cost;
     if (cap && val < dist[i]) {</pre>
        dist[i] = val;
        par[i] = {s, dir};
        if (its[i] == q.end()) its[i] = q.push({-dist[i], i});
        else q.modify(its[i], {-dist[i], i});
   };
    while (!q.empty()) {
     s = q.top().second; q.pop();
     seen[s] = 1; di = dist[s] + pi[s];
      trav(i, ed[s]) if (!seen[i])
        relax(i, cap[s][i] - flow[s][i], cost[s][i], 1);
      trav(i, red[s]) if (!seen[i])
        relax(i, flow[i][s], -cost[i][s], 0);
```

```
rep(i.0.N) pi[i] = min(pi[i] + dist[i]. INF):
  pair<ll, ll> maxflow(int s, int t) {
    ll totflow = 0, totcost = 0;
    while (path(s), seen[t]) {
     ll fl = INF:
      for (int p,r,x = t; tie(p,r) = par[x], x != s; x = p)
       fl = min(fl, r ? cap[p][x] - flow[p][x] : flow[x][p]);
      for (int p,r,x = t; tie(p,r) = par[x], x != s; x = p)
       if (r) flow[p][x] += fl;
        else flow[x][p] -= fl;
    rep(i,0,N) rep(j,0,N) totcost += cost[i][j] * flow[i][j];
    return {totflow, totcost};
  // If some costs can be negative, call this before maxflow:
  void setpi(int s) { // (otherwise, leave this out)
    fill(all(pi), INF); pi[s] = 0;
    int it = N, ch = 1; ll v;
    while (ch-- && it--)
      rep(i,0,N) if (pi[i] != INF)
       trav(to, ed[i]) if (cap[i][to])
          if ((v = pi[i] + cost[i][to]) < pi[to])</pre>
            pi[to] = v, ch = 1;
    assert(it >= 0); // negative cost cycle
};
```

EdmondsKarp.h

Description: Flow algorithm with guaranteed complexity $O(VE^2)$. To get edge flow values, compare capacities before and after, and take the positive values only. 35 lines

```
template<class T> T edmondsKarp(vector<unordered_map<int, T>>&
assert(source != sink):
 T flow = 0;
 vi par(sz(graph)), q = par;
 for (;;) {
   fill(all(par), -1);
   par[source] = 0;
   int ptr = 1;
   a[0] = source:
   rep(i,0,ptr) {
     int x = q[i];
     trav(e, graph[x]) {
       if (par[e.first] == -1 \&\& e.second > 0) {
         par[e.first] = x:
         q[ptr++] = e.first;
         if (e.first == sink) goto out;
     }
   return flow;
   T inc = numeric_limits<T>::max();
   for (int y = sink; y != source; y = par[y])
     inc = min(inc, graph[par[y]][y]);
   flow += inc;
   for (int y = sink; y != source; y = par[y]) {
```

```
int p = par[y];
   if ((graph[p][y] -= inc) <= 0) graph[p].erase(y);
     graph[y][p] += inc;
   }
}</pre>
```

MinCut.h

Description: After running max-flow, the left side of a min-cut from s to t is given by all vertices reachable from s, only traversing edges with positive residual capacity.

GlobalMinCut.h

Description: Find a global minimum cut in an undirected graph, as represented by an adjacency matrix.

Time: $O(V^3)$

KTH

31 lines

45 lines

```
pair<int, vi> GetMinCut(vector<vi>& weights) {
 int N = sz(weights);
 vi used(N), cut, best_cut;
 int best_weight = -1;
 for (int phase = N-1; phase >= 0; phase--) {
   vi w = weights[0], added = used;
   int prev, k = 0;
    rep(i,0,phase){
     prev = k;
     k = -1:
      rep(j,1,N)
       if (!added[j] && (k == -1 || w[j] > w[k])) k = j;
      if (i == phase-1) {
       rep(j,0,N) weights[prev][j] += weights[k][j];
       rep(j,0,N) weights[j][prev] = weights[prev][j];
       used[k] = true;
        cut.push_back(k);
       if (best_weight == -1 || w[k] < best_weight) {</pre>
         best_cut = cut:
         best_weight = w[k];
     } else {
       rep(j,0,N)
         w[j] += weights[k][j];
        added[k] = true;
 return {best_weight, best_cut};
```

7.4. Matching.

hopcroftKarp.h

Description: Find a maximum matching in a bipartite graph. Usage: vi ba(m, -1); hopcroftKarp(g, ba); Time: $\mathcal{O}\left(\sqrt{V}E\right)$

```
int hopcroftKarp(const vector<vi>& q, vi& btoa) {
  int res = 0:
 vi A(g.size()), B(btoa.size()), cur, next;
  for (;;) {
   fill(all(A), 0);
   fill(all(B), -1);
    cur.clear();
    trav(a, btoa) if(a != -1) A[a] = -1;
    rep(a,0,sz(g)) if(A[a] == 0) cur.push_back(a);
    for (int lay = 1;; lay += 2) {
     bool islast = 0;
     next.clear();
      trav(a, cur) trav(b, g[a]) {
        if (btoa[b] == -1) {
         B[b] = lay;
         islast = 1;
        else if (btoa[b] != a && B[b] == -1) {
         B[b] = lay;
          next.push_back(btoa[b]);
      if (islast) break;
     if (next.empty()) return res;
     trav(a, next) A[a] = lay+1;
      cur.swap(next);
    rep(a,0,sz(g)) {
     if(dfs(a, 0, q, btoa, A, B))
        ++res:
```

DFSMatching.h

Description: This is a simple matching algorithm but should be just fine in most cases. Graph g should be a list of neighbours of the left partition. n is the size of the left partition and m is the size of the right partition. If you want to get the matched pairs, match[i] contains match for vertex i on the right side or -1 if it's not matched. Time: $\mathcal{O}\left(VE\right)$

```
vi match;
vector<bool> seen;
bool find(int j, const vector<vi>& g) {
 if (match[j] == -1) return 1;
 seen[j] = 1; int di = match[j];
  trav(e. q[di])
   if (!seen[e] && find(e, g)) {
     match[e] = di;
     return 1;
 return 0:
int dfs_matching(const vector<vi>& g, int n, int m) {
  match.assign(m, -1);
  rep(i,0,n) {
   seen.assign(m, 0);
    trav(j,g[i])
     if (find(j, g)) {
       match[j] = i;
        break;
 return m - (int)count(all(match), -1);
```

WeightedMatching.h

Description: Min cost bipartite matching. Negate costs for max cost. **Time:** $\mathcal{O}\left(N^3\right)$

75 lines

```
typedef vector<double> vd;
bool zero(double x) { return fabs(x) < 1e-10; }</pre>
double MinCostMatching(const vector<vd>& cost, vi& L, vi& R) {
 int n = sz(cost), mated = 0;
 vd dist(n), u(n), v(n);
 vi dad(n), seen(n);
  rep(i,0,n) {
   u[i] = cost[i][0];
   rep(j,1,n) u[i] = min(u[i], cost[i][j]);
 rep(j,0,n) {
   v[j] = cost[0][j] - u[0];
   rep(i,1,n) \ v[j] = min(v[j], cost[i][j] - u[i]);
 L = R = vi(n, -1);
 rep(i,0,n) rep(j,0,n) {
   if (R[j] != -1) continue;
   if (zero(cost[i][j] - u[i] - v[j])) {
     L[i] = i;
     R[j] = i;
     mated++;
     break;
 for (; mated < n; mated++) { // until solution is feasible</pre>
   int s = 0;
   while (L[s] != -1) s++;
   fill(all(dad), -1):
   fill(all(seen), 0);
   rep(k.0.n)
     dist[k] = cost[s][k] - u[s] - v[k];
   int i = 0:
   for (;;) {
     i = -1;
     rep(k,0,n){
       if (seen[k]) continue;
       if (j == -1 || dist[k] < dist[j]) j = k;</pre>
     seen[j] = 1;
     int i = R[j];
     if (i == -1) break;
      rep(k,0,n) {
       if (seen[k]) continue:
        auto new_dist = dist[j] + cost[i][k] - u[i] - v[k];
       if (dist[k] > new_dist) {
         dist[k] = new_dist;
         dad[k] = j;
     }
   }
   rep(k,0,n) {
     if (k == j || !seen[k]) continue;
     auto w = dist[k] - dist[j];
     v[k] += w, u[R[k]] -= w;
```

```
u[s] += dist[i]:
    while (dad[j] >= 0) {
     int d = dad[j];
     R[i] = R[d];
     L[R[j]] = j;
     j = d;
   R[j] = s;
   L[s] = j;
 auto value = vd(1)[0];
 rep(i,0,n) value += cost[i][L[i]];
 return value:
                       GeneralMatching.h
Description: Matching for general graphs. Fails with probability N/mod.
Time: O(N^3)
"../numerical/MatrixInverse-mod.h"
                                                              40 lines
vector<pii> generalMatching(int N, vector<pii>& ed) {
 vector<vector<ll>>> mat(N, vector<ll>(N)), A:
 trav(pa, ed) {
   int a = pa.first, b = pa.second, r = rand() % mod;
   mat[a][b] = r, mat[b][a] = (mod - r) % mod;
 int r = matInv(A = mat), M = 2*N - r, fi, fj;
 assert(r % 2 == 0);
 if (M != N) do {
   mat.resize(M, vector<ll>(M));
    rep(i,0,N) {
     mat[i].resize(M);
     rep(j,N,M) {
       int r = rand() % mod:
       mat[i][j] = r, mat[j][i] = (mod - r) % mod;
 } while (matInv(A = mat) != M);
 vi has(M, 1); vector<pii> ret;
 rep(it,0,M/2) {
    rep(i,0,M) if (has[i])
     rep(j,i+1,M) if (A[i][j] && mat[i][j]) {
       fi = i; fj = j; goto done;
   } assert(0); done:
   if (fj < N) ret.emplace_back(fi, fj);</pre>
   has[fi] = has[fj] = 0;
    rep(sw,0,2) {
     il a = modpow(A[fi][fj], mod-2);
      rep(i,0,M) if (has[i] && A[i][fj]) {
       ll b = A[i][fj] * a % mod;
       rep(j,0,M) A[i][j] = (A[i][j] - A[fi][j] * b) % mod;
      swap(fi,fj);
```

MinimumVertexCover.h

return ret;

Description: Finds a minimum vertex cover in a bipartite graph. The size is the same as the size of a maximum matching, and the complement is an independent set.

"DESMatching.h" 20 lix

```
vi cover(vector<vi>& g, int n, int m) {
  int res = dfs_matching(g, n, m);
 seen.assign(m, false);
 vector<bool> lfound(n, true);
  trav(it, match) if (it != -1) lfound[it] = false;
  vi q, cover;
  rep(i,0,n) if (lfound[i]) q.push_back(i);
  while (!q.empty()) {
   int i = q.back(); q.pop_back();
   lfound[i] = 1;
   trav(e, g[i]) if (!seen[e] && match[e] != -1) {
     seen[e] = true;
      q.push_back(match[e]);
  rep(i,0,n) if (!lfound[i]) cover.push_back(i);
  rep(i,0,m) if (seen[i]) cover.push_back(n+i);
 assert(sz(cover) == res);
  return cover;
```

7.5. DFS algorithms.

Time: $\mathcal{O}(E+V)$

SCC.h

Description: Finds strongly connected components in a directed graph. If vertices u,v belong to the same component, we can reach u from v and vice versa. **Usage:** $scc(graph, [6](vi\& v) \ \{\dots, \})$ visits all components in reverse topological order. comp[i] holds the component index of a node (a component only has edges to components with lower index). ncomps will contain the number of components. **Time:** \mathcal{O} (E+V)

```
24 lines
vi val, comp, z, cont;
int Time, ncomps;
template<class G, class F> int dfs(int j, G& q, F f) {
  int low = val[j] = ++Time, x; z.push_back(j);
  trav(e,q[i]) if (comp[e] < 0)
    low = min(low, val[e] ?: dfs(e,g,f));
  if (low == val[i]) {
    do {
      x = z.back(); z.pop_back();
      comp[x] = ncomps;
      cont.push_back(x):
    } while (x != j);
    f(cont); cont.clear();
    ncomps++:
  return val[i] = low;
template<class G, class F> void scc(G& q, F f) {
  int n = sz(a):
  val.assign(n, 0); comp.assign(n, -1);
 Time = ncomps = 0;
  rep(i,0,n) if (comp[i] < 0) dfs(i, g, f);
```

BiconnectedComponents.h

Description: Finds all biconnected components in an undirected graph, and runs a callback for the edges in each. In a biconnected component there are at least two distinct paths between any two nodes. Note that a node can be in several components. An edge which is not in a component is a bridge, i.e., not part of any cycle. Usage: int eid = 0; ed.resize(N); for each edge (a,b) { ed[a].emplace.back(b, eid); ed[b].emplace.back(a, eid++); } bicomps([b](const vi& edgelist) {...});

```
vi num. st:
vector<vector<pii>>> ed;
int Time:
template<class F>
int dfs(int at, int par, F f) {
 int me = num[at] = ++Time, e, y, top = me;
 trav(pa, ed[at]) if (pa.second != par) {
   tie(v, e) = pa;
   if (num[y]) {
     top = min(top, num[y]);
     if (num[y] < me)</pre>
        st.push_back(e);
   } else {
      int si = sz(st);
     int up = dfs(y, e, f);
      top = min(top, up);
     if (up == me) {
       st.push_back(e);
       f(vi(st.begin() + si, st.end()));
       st.resize(si);
     else if (up < me) st.push_back(e);</pre>
     else { /* e is a bridge */ }
 return top;
template<class F>
void bicomps(F f) {
 num.assign(sz(ed), 0);
  rep(i,0,sz(ed)) if (!num[i]) dfs(i, -1, f);
```

2sat.h

Description: Calculates a valid assignment to boolean variables a, b, c,... to a 2-SAT problem, so that an expression of the type (a||b)&&(1a||c)&&(d||1b)&... becomes true, or reports that it is unsatisfiable. Negated variables are represented by bit-inversions (-x).

Usage: TwoSat ts(number of boolean variables):

```
Osage: woosa (Simulae) or boutean variables); ts.either(0, 3); // Var 0 is true or var 3 is false ts.set.value(2); // Var 0 is true ts.at.most.one(\{0,1,2\}); // <=1 of vars 0, 1 and 2 are true ts.solve(); // Returns true iff it is solvable ts.values[0, N-1] holds the assigned values to the vars Time: \mathcal{O}(N+E), where N is the number of boolean variables, and E is the number of solvance.
```

void set_value(int x) { either(x, x); }

```
Time: O(N + E), where N is the number of boolean variables, and E is the number of clauses.

57 limes of clauses.

TwoSat (int N;

vector<vi>yer;

vi values; // 0 = false, 1 = true

TwoSat(int n = 0) : N(n), gr(2*n) {}

int add_var() { // (optional)

gr.emplace_back();

gr.emplace_back();

return N++;
}

void either(int f, int j) {

f = max(2*f, -1-2*f);

j = max(2*f, -1-2*f);

j = max(2*j, -1-2*j);

gr[f^1].push_back(j);

gr[j^1].push_back(f);
}
```

```
void at_most_one(const vi& li) { // (optional)
    if (sz(li) <= 1) return:</pre>
    int cur = ~li[0]:
    rep(i,2,sz(li)) {
     int next = add_var():
      either(cur, ~li[i]);
      either(cur, next);
      either(~li[i], next);
      cur = ~next;
    either(cur, ~li[1]);
  vi val, comp, z; int time = 0;
  int dfs(int i) {
    int low = val[i] = ++time, x; z.push_back(i);
    trav(e, gr[i]) if (!comp[e])
     low = min(low, val[e] ?: dfs(e));
    if (low == val[i]) do {
     x = z.back(); z.pop_back();
      comp[x] = time;
      if (values[x>>1] == -1)
        values[x>>1] = !(x&1);
    } while (x != i);
    return val[i] = low;
  bool solve() {
    values.assign(N, -1);
    val.assign(2*N, 0); comp = val;
    rep(i,0,2*N) if (!comp[i]) dfs(i);
    rep(i,0,N) if (comp[2*i] == comp[2*i+1]) return 0;
    return 1;
};
```

7.6. Heuristics.

MaximalCliques.h

Description: Runs a callback for all maximal cliques in a graph (given as a symmetric bitset matrix; self-edges not allowed). Possible optimization: on the top-most recursion level, ignore 'cands', and go through nodes in order of increasing degree, where degrees go down as nodes are removed.

Time: $\mathcal{O}(3^{n/3})$, much faster for sparse graphs

```
typedef bitset<128> B:
template<class F>
void cliques(vector<B>& eds, F f, B P = \simB(), B X={}, B R={}) {
 if (!P.any()) { if (!X.any()) f(R); return; }
 auto q = (P | X)._Find_first();
 auto cands = P \& \sim eds[q];
 rep(i,0,sz(eds)) if (cands[i]) {
   R[i] = 1;
   cliques(eds, f, P & eds[i], X & eds[i], R);
   R[i] = P[i] = 0; X[i] = 1;
```

7.7. Trees.

TreePower.h

Description: Calculate power of two jumps in a tree, to support fast upward jumps and LCAs. Assumes the root node points to itself. Time: construction $O(N \log N)$, queries $O(\log N)$

25 lines

```
vector<vi> treeJump(vi& P){
  int on = 1. d = 1:
  while(on < sz(P)) on *= 2, d++;
 vector<vi> jmp(d, P);
  rep(i,1,d) rep(i,0,sz(P))
   jmp[i][j] = jmp[i-1][jmp[i-1][j]];
 return imp;
int jmp(vector<vi>& tbl, int nod, int steps){
  rep(i,0,sz(tbl))
   if(steps&(1<<i)) nod = tbl[i][nod];
 return nod;
int lca(vector<vi>& tbl, vi& depth, int a, int b) {
 if (depth[a] < depth[b]) swap(a, b);</pre>
 a = jmp(tbl, a, depth[a] - depth[b]);
 if (a == b) return a;
  for (int i = sz(tbl); i--;) {
   int c = tbl[i][a], d = tbl[i][b];
   if (c != d) a = c, b = d;
 return tbl[0][a];
                               LCA.h
Description: Data structure for computing lowest common ancestors in a tree (with
Usage: ICA lca(undirGraph):
lca.distance(firstNode, secondNode):
```

0 as root). C should be an adjacency list of the tree, either directed or undirected. Can also find the distance between two nodes

lca.guery(firstNode, secondNode): Time: $O(N \log N + Q)$

if (a == b) return a;

a = time[a], b = time[b];

"../data-structures/RMO.h"

typedef vector<pii> vpi; typedef vector<vpi> graph:

```
struct LCA {
  vi time;
  vector<ll> dist:
  RMQ<pii> rmq;
  LCA(graph\& C) : time(sz(C), -99), dist(sz(C)), rmq(dfs(C)) {}
  vpi dfs(graph& C) {
    vector<tuple<int, int, int, ll>> q(1);
    vpi ret:
    int T = 0, v, p, d; ll di;
    while (!q.empty()) {
      tie(v, p, d, di) = q.back();
      g.pop_back():
      if (d) ret.emplace_back(d, p);
      time[v] = T++;
      dist[v] = di:
      trav(e, C[v]) if (e.first != p)
        q.emplace_back(e.first, v, d+1, di + e.second);
    return ret;
 }
  int query(int a, int b) {
```

return rmq.query(min(a, b), max(a, b)).second;

```
ll distance(int a, int b) {
    int lca = query(a, b);
    return dist[a] + dist[b] - 2 * dist[lca];
};
```

CompressTree.h

Description: Given a rooted tree and a subset S of nodes, compute the minimal subtree that contains all the nodes by adding all (at most |S|-1) pairwise LCA's and compressing edges. Returns a list of (par, origi index) representing a tree rooted at 0. The root points to itself. Time: $\mathcal{O}(|S| \log |S|)$

```
"LCA.h"
                                                              20 lines
vpi compressTree(LCA& lca. const vi& subset) {
 static vi rev; rev.resize(sz(lca.dist));
 vi li = subset, &T = lca.time;
 auto cmp = [&](int a, int b) { return T[a] < T[b]; };</pre>
 sort(all(li), cmp);
 int m = sz(li)-1;
 rep(i,0,m) {
   int a = li[i], b = li[i+1];
   li.push_back(lca.guery(a, b));
 sort(all(li), cmp);
 li.erase(unique(all(li)), li.end());
 rep(i,0,sz(li)) rev[li[i]] = i;
 vpi ret = {pii(0, li[0])};
  rep(i,0,sz(li)-1) {
   int a = li[i], b = li[i+1];
   ret.emplace_back(rev[lca.query(a, b)], b);
 return ret;
```

HLD.h

Description: Decomposes a tree into vertex disjoint heavy paths and light edges such that the path from any leaf to the root contains at most log(n) light edges. The function of the HLD can be changed by modifying T, LOW and f. f is assumed to be associative and commutative.

```
Usage: HLD hld(G);
hld.update(index, value);
tie(value, lca) = hld.query(n1, n2);
```

37 lines

```
"../data-structures/SegmentTree.h"
                                                                 93 lines
typedef vector<pii> vpi;
struct Node {
 int d, par, val, chain = -1, pos = -1;
};
struct Chain {
 int par. val:
 vector<int> nodes;
 Tree tree:
struct HLD {
 typedef int T;
  const T LOW = -(1 << 29);
  void f(T\& a, T b) \{ a = max(a, b); \}
 vector<Node> V:
  vector<Chain> C;
  HLD(vector < vpi > \& g) : V(sz(g)) {
    dfs(0, -1, g, 0);
    trav(c, C) {
```

```
for (int ni : c.nodes)
      c.tree.update(V[ni].pos, V[ni].val);
void update(int node, T val) {
  Node& n = V[node]; n.val = val;
  if (n.chain != -1) C[n.chain].tree.update(n.pos, val);
int pard(Node& nod) {
  if (nod.par == -1) return -1;
  return V[nod.chain == -1 ? nod.par : C[nod.chain].par].d;
// query all *edges* between n1, n2
pair<T, int> query(int i1, int i2) {
  T ans = LOW;
  while(i1 != i2) {
    Node n1 = V[i1], n2 = V[i2];
    if (n1.chain != -1 \&\& n1.chain == n2.chain) {
      int lo = n1.pos, hi = n2.pos;
      if (lo > hi) swap(lo, hi);
      f(ans, C[n1.chain].tree.query(lo, hi));
      i1 = i2 = C[n1.chain].nodes[hi];
    } else {
      if (pard(n1) < pard(n2))</pre>
        n1 = n2, swap(i1, i2);
      if (n1.chain == -1)
        f(ans, n1.val), i1 = n1.par;
      else {
        Chain& c = C[n1.chain];
        f(ans, n1.pos ? c.tree.query(n1.pos, sz(c.nodes))
                      : c.tree.s[1]);
        i1 = c.par:
  return make_pair(ans, i1);
// guery all *nodes* between n1, n2
pair<T, int> query2(int i1, int i2) {
  pair<T, int> ans = query(i1, i2);
  f(ans.first, V[ans.second].val);
  return ans:
pii dfs(int at, int par, vector<vpi>& q, int d) {
  V[at].d = d; V[at].par = par;
  int sum = 1. ch. nod. sz:
  tuple<int,int,int> mx(-1,-1,-1);
  trav(e, g[at]){
    if (e.first == par) continue;
    tie(sz, ch) = dfs(e.first, at, g, d+1);
    V[e.first].val = e.second;
    sum += sz:
    mx = max(mx, make_tuple(sz, e.first, ch));
  tie(sz. nod. ch) = mx:
  if (2*sz < sum) return pii(sum, -1);</pre>
  if (ch == -1) { ch = sz(C); C.emplace_back(); }
  V[nod].pos = sz(C[ch].nodes);
  V[nod].chain = ch;
```

c.tree = {sz(c.nodes), 0}:

```
C[chl.par = at:
    C[ch].nodes.push_back(nod);
    return pii(sum, ch);
 }
};
```

LinkCutTree.h

Description: Represents a forest of unrooted trees. You can add and remove edges (as long as the result is still a forest), and check whether two nodes are in the same

90 lines

```
Time: All operations take amortized \mathcal{O}(\log N).
struct Node { // Splay tree. Root's pp contains tree's parent.
  Node *p = 0, *pp = 0, *c[2];
  bool flip = 0;
  Node() { c[0] = c[1] = 0; fix(); }
  void fix() {
    if (c[0]) c[0]->p = this;
    if (c[1]) c[1]->p = this;
    // (+ update sum of subtree elements etc. if wanted)
  void push_flip() {
    if (!flip) return;
    flip = 0; swap(c[0], c[1]);
    if (c[0]) c[0]->flip ^= 1;
    if (c[1]) c[1]->flip ^= 1;
  int up() { return p ? p->c[1] == this : -1; }
  void rot(int i, int b) {
    int h = i ^ b;
    Node *x = c[i], *y = b == 2 ? x : x -> c[h], *z = b ? y : x;
    if ((y->p = p)) p->c[up()] = y;
    c[i] = z -> c[i ^ 1];
    if (b < 2) {
      x->c[h] = y->c[h ^ 1];
      z - c[h ^ 1] = b ? x : this;
   y - c[i ^ 1] = b ? this : x;
    fix(): x->fix(): v->fix():
    if (p) p->fix();
    swap(pp, y->pp);
  void splay() {
    for (push_flip(); p; ) {
      if (p->p) p->p->push_flip();
      p->push_flip(); push_flip();
      int c1 = up(), c2 = p->up();
      if (c2 == -1) p->rot(c1, 2):
      else p->p->rot(c2, c1 != c2);
  Node* first() {
    push_flip():
    return c[0] ? c[0]->first() : (splay(), this);
};
struct LinkCut {
 vector<Node> node;
  LinkCut(int N) : node(N) {}
  void link(int u, int v) { // add an edge (u, v)
    assert(!connected(u, v));
    make_root(&node[u]);
    node[u].pp = &node[v];
```

```
void cut(int u. int v) { // remove an edge (u, v)
    Node *x = \&node[u], *top = \&node[v];
    make_root(top); x->splay();
    assert(top == (x->pp ?: x->c[0]));
    if (x->pp) x->pp = 0;
    else {
      x->c[0] = top->p = 0;
      x->fix();
  bool connected(int u, int v) { // are u, v in the same tree?
    Node* nu = access(&node[u])->first();
    return nu == access(&node[v])->first();
  void make_root(Node* u) {
    access(u);
    u->splay();
    if(u->c[0]) {
      u - > c[0] - > p = 0;
      u -> c[0] -> flip ^= 1;
      u \rightarrow c[0] \rightarrow pp = u;
      u -> c[0] = 0;
      u->fix();
  Node* access(Node* u) {
    u->splay();
    while (Node* pp = u->pp) {
      pp->splay(); u->pp = 0;
      if (pp->c[1]) {
        pp->c[1]->p=0; pp->c[1]->pp=pp; }
      pp->c[1] = u; pp->fix(); u = pp;
    return u;
};
```

MatrixTree.h

Description: To count the number of spanning trees in an undirected graph G: create an $N \times N$ matrix mat, and for each edge $(a,b) \in G$, do mat[a][a]++, mat[b][b]++, mat[a][b]-, mat[b][a]-. Remove the last row and column, and take the determinant,

8. Geometry

8.1. Geometric primitives.

Point.h

Description: Class to handle points in the plane. T can be e.g. double or long long. (Avoid int.)

```
template<class T>
struct Point {
 typedef Point P;
 T x, y;
 explicit Point(T x=0, T y=0) : x(x), y(y) {}
 bool operator<(P p) const { return tie(x,y) < tie(p.x,p.y); }</pre>
  bool operator==(P p) const { return tie(x,y)==tie(p.x,p.y); }
  P operator+(P p) const { return P(x+p.x, y+p.y); }
  P operator-(P p) const { return P(x-p.x, y-p.y); }
 P operator*(T d) const { return P(x*d, y*d); }
 P operator/(T d) const { return P(x/d, y/d); }
 T dot(P p) const { return x*p.x + y*p.y; }
 T cross(P p) const { return x*p.y - y*p.x; }
 T cross(P a, P b) const { return (a-*this).cross(b-*this); }
 T dist2() const { return x*x + y*y; }
```

```
double dist() const { return sqrt((double)dist2()); }
// angle to x-axis in interval [-pi, pi]
double angle() const { return atan2(y, x); }
P unit() const { return *this/dist(); } // makes dist()=1
P perp() const { return P(-y, x); } // rotates +90 degrees
P normal() const { return perp().unit(); }
// returns point rotated 'a' radians ccw around the origin
P rotate(double a) const {
    return P(x*cos(a)-y*sin(a),x*sin(a)+y*cos(a)); }
};
```

lineDistance.h

Description:

Returns the signed distance between point p and the line containing points a and b. Positive value on left side and negative on right as seen from a towards b. a==b gives nan. P is supposed to be Point<T> or Point3D<T> where T is e.g. double or long long. It uses products in intermediate steps so watch out for overflow if using int or long long. Using Point3D will always give a non-negative distance.

"Point.h" 4 lines

```
template<class P>
double lineDist(const P& a, const P& b, const P& p) {
  return (double)(b-a).cross(p-a)/(b-a).dist();
}
```

SegmentDistance.h

Description: Returns the shortest distance between point p and the line segment from point s to e.

 $\label{eq:Usage: Point double} \begin{tabular}{ll} Usage: Point < double > a, b(2,2), p(1,1); \\ bool onSegment = segDist(a,b,p) &< 1e-10; \\ \end{tabular}$

```
"Point.h"

typedef Point<double> P;
double segDist(P& s, P& e, P& p) {
   if (s==e) return (p-s).dist();
   auto d = (e-s).dist2(), t = min(d,max(.0,(p-s).dot(e-s)));
   return ((p-s)*d-(e-s)*t).dist()/d;
```

SegmentIntersection.h

Description:

If a unique intersetion point between the line segments going from s1 to e1 and from s2 to e2 exists r1 is set to this point and 1 is returned. If no intersection point exists 0 is returned and if infinitely many exists 2 is returned and r1 and r2 are set to the two ends of the common line. The wrong position will be returned if P is Point<int> and the intersection point does not have integer coordinates. Products of three coordinates are used in intermediate steps so watch out for overflow if using int or long long. Use segmentIntersectionQ to get just a true/false answer.

Usage: Point < double > intersection, dummy;
if (segmentIntersection(s1,e1,s2,e2,intersection,dummy)==1)
cout < < "segments intersect at " << intersection << endt;</pre>

"Point.h"

```
template<class P>
int segmentIntersection(const P& s1, const P& e1,
    const P& s2, const P& e2, P& r1, P& r2) {
    if (e1==s1) {
        if (e2==s2) {
```

```
if (e1==e2) { r1 = e1: return 1: } //all equal
    else return 0; //different point segments
  } else return segmentIntersection(s2,e2,s1,e1,r1,r2);//swap
//segment directions and separation
P v1 = e1-s1, v2 = e2-s2, d = s2-s1;
auto a = v1.cross(v2), a1 = v1.cross(d), a2 = v2.cross(d);
if (a == 0) { //if parallel
  auto b1=s1.dot(v1), c1=e1.dot(v1),
       b2=s2.dot(v1), c2=e2.dot(v1);
  if (a1 || a2 || max(b1,min(b2,c2))>min(c1,max(b2,c2)))
    return 0:
  r1 = min(b2,c2) < b1 ? s1 : (b2 < c2 ? s2 : e2);
  r2 = max(b2,c2)>c1 ? e1 : (b2>c2 ? s2 : e2);
  return 2-(r1==r2);
if (a < 0) { a = -a; a1 = -a1; a2 = -a2; }
if (0<a1 || a<-a1 || 0<a2 || a<-a2)
  return 0;
r1 = s1-v1*a2/a;
return 1;
```

SegmentIntersectionQ.h

Description: Like segmentIntersection, but only returns true/false. Products of three coordinates are used in intermediate steps so watch out for overflow if using int or long long.

```
return ! a1 && max(b1,min(b2,c2)) <= min(c1,max(b2,c2));

}

return (0 <= a1 && a <= a && 0 <= a2 && a2 <= a);

}

return (0 <= a1 && a1 <= a && 0 <= a2 && a2 <= a);

}

return (0 <= a1 && a1 <= a && 0 <= a2 && a2 <= a);

return (0 <= a1 && a1 <= a && 0 <= a2 && a2 <= a);

return (0 <= a1 && a1 <= a && 0 <= a2 && a2 <= a);

return (0 <= a1 && a1 <= a && 0 <= a2 && a2 <= a);

return (0 <= a1 && a1 <= a && 0 <= a2 && a2 <= a);
}
```

lineIntersection.h

Description:

If a unique intersetion point of the lines going through s1,e1 and s2,e2 exists r is set to this point and 1 is returned. If no intersection point exists 0 is returned and if infinitely many exists -1 is returned. If s1==e1 or s2==e2 -1 is returned. The wrong position will be returned if P is Point-1 intersection point does not have integer coordinates. Products of three coordinates are used in intermediate steps so watch out for overflow if using int or long long.

"Point.h"

Usage: point<double> intersection;
if (1 == LineIntersection(s1,e1,s2,e2,intersection))
cout << "intersection point at " << intersection << endl;</pre>

```
template<class P>
int lineIntersection(const P& s1, const P& e1, const P& s2,
    const P& e2, P& r) {
   if ((e1-s1).cross(e2-s2)) { //if not parallell
    r = s2-(e2-s2)*(e1-s1).cross(s2-s1)/(e1-s1).cross(e2-s2);
```

```
return 1;
} else
  return -((e1-s1).cross(s2-s1)==0 || s2==e2);
```

sideOf.h

Description: Returns where p is as seen from s towards e. $1/0/-1 \Leftrightarrow \operatorname{lett/on}$ line/right. If the optional argument eps is given 0 is returned if p is within distance eps from the line. P is supposed to be Point<T> where T is e.g. double or long long. It uses products in intermediate steps so watch out for overflow if using int or long long.

```
Usage: bool left = sideOf(p1,p2,q)==1;
```

onSegment.h

Description: Returns true iff p lies on the line segment from s to e. Intended for use with e.g. Point<long long> where overflow is an issue. Use (segDist(s,e,p) <= epsilon) instead when using Point<double>.

Angle.h

return q0 + P((r-p0).cross(num), (r-p0).dot(num))/dp.dist2();

Description: A class for ordering angles (as represented by int points and a number of rotations around the origin). Useful for rotational sweeping. Sometimes also represents points or vectors.

```
Usage: vector<Angle> v = \{w[\theta], w[\theta], x[\theta], x[
```

9 lines

vertices at θ and i $$37\ \rm lines$

```
struct Angle {
   int x, y;
   int t;
   Angle(int x, int y, int t=0) : x(x), y(y), t(t) {}
   Angle operator-(Angle b) const { return {x-b.x, y-b.y, t}; }
   int quad() const {
      assert(x || y);
      if (y < 0) return (x >= 0) + 2;
      if (y > 0) return (x <= 0);
   }
}</pre>
```

6 lines

10 lines

```
return (x <= 0) * 2:
 Angle t90() const { return \{-y, x, t + (quad() == 3)\}; }
 Angle t180() const { return \{-x, -y, t + (quad() >= 2)\}; \}
 Angle t360() const { return {x, y, t + 1}; }
bool operator<(Angle a, Angle b) {</pre>
 // add a.dist2() and b.dist2() to also compare distances
 return make_tuple(a.t, a.quad(), a.y * (ll)b.x) <</pre>
         make_tuple(b.t, b.quad(), a.x * (ll)b.y);
// Given two points, this calculates the smallest angle between
// them, i.e., the angle that covers the defined line segment.
pair<Angle, Angle> segmentAngles(Angle a, Angle b) {
 if (b < a) swap(a, b);
 return (b < a.t180() ?
          make_pair(a, b) : make_pair(b, a.t360()));
Angle operator+(Angle a, Angle b) { // point a + vector b
 Angle r(a.x + b.x, a.y + b.y, a.t);
 if (a.t180() < r) r.t--;
 return r.t180() < a ? r.t360() : r;
Angle angleDiff(Angle a, Angle b) { // angle b - angle a
 int tu = b.t - a.t; a.t = b.t;
 return \{a.x*b.x + a.y*b.y, a.x*b.y - a.y*b.x, tu - (b < a)\};
```

8.2. Circles.

CircleIntersection.h

 $\bf Description:$ Computes a pair of points at which two circles intersect. Returns false in case of no intersection.

circleTangents.h

Description:

Returns a pair of the two points on the circle with radius r centered around c whos tangent lines intersect p. If p lies within the circle NaN-points are returned. P is intended to be Point double >. The first point is the one to the right as seen from the p towards c.

 $\begin{tabular}{ll} {\bf Usage:} & typedef Point < double > P; \\ pair < P, P > p = circleTangents(P(100,2),P(0,0),2); \\ \end{tabular}$

template<class P> pair<P,P> circleTangents(const P &p, const P &c, double r) { P a = p-c;

```
pair<P,P> p = circleTangents(P(100,2),P(0,0),2);
"Point.h" 6 lines
```

```
double x = r*r/a.dist2(), y = sqrt(x-x*x);
return make_pair(c+a*x+a.perp()*y, c+a*x-a.perp()*y);
```

circumcircle.h

Description:

The circumcirle of a triangle is the circle intersecting all three vertices. ccRadius returns the radius of the circle going through points A, B and C and cclenter returns the center of the same circle.

typedef Point<double> P;
double ccRadius(const P& A, const P& B, const P& C) {
 return (B-A).dist()*(C-B).dist()*(A-C).dist()/
 abs((B-A).cross(C-A))/2;
}
P ccCenter(const P& A, const P& B, const P& C) {
 P b = C-A, c = B-A;

MinimumEnclosingCircle.h

Description: Computes the minimum circle that encloses a set of points. **Time:** expected $\mathcal{O}\left(n\right)$

return A + (b*c.dist2()-c*b.dist2()).perp()/b.cross(c)/2;

```
28 lines
pair<double, P> mec2(vector<P>& S, P a, P b, int n) {
  double hi = INFINITY, lo = -hi;
  rep(i,0,n) {
   auto si = (b-a).cross(S[i]-a);
   if (si == 0) continue:
   P m = ccCenter(a, b, S[i]);
    auto cr = (b-a).cross(m-a);
   if (si < \theta) hi = min(hi, cr);
   else lo = max(lo, cr);
  double v = (0 < lo ? lo : hi < 0 ? hi : 0);
 Pc = (a + b) / 2 + (b - a).perp() * v / (b - a).dist2();
 return {(a - c).dist2(), c};
pair<double, P> mec(vector<P>& S, P a, int n) {
  random_shuffle(S.begin(), S.begin() + n);
 P b = S[0], c = (a + b) / 2;
  double r = (a - c).dist2();
  rep(i,1,n) if ((S[i] - c).dist2() > r * (1 + 1e-8)) {
   tie(r,c) = (n == sz(S))?
      mec(S, S[i], i) : mec2(S, a, S[i], i));
 return {r, c};
pair<double, P> enclosingCircle(vector<P> S) {
  assert(!S.empty()); auto r = mec(S, S[0], sz(S));
  return {sqrt(r.first), r.second};
```

8.3. Polygons.

insidePolygon.h

Description: Returns true if p lies within the polygon described by the points between iterators begin and end. If strict false is returned when p is on the edge of the polygon. Answer is calculated by counting the number of intersections between the polygon and a line going from p to infinity in the positive x-direction. The algorithm uses products in intermediate steps so watch out for overflow. If points within epsilon from an edge should be considered as on the edge replace the line "if (onSegment..." with the comment bellow it (this will cause overflow for int and long long). Usage: typedef Point</br>

```
vector < pi > v; v.push_back(pi(4,4));
```

```
v.push_back(pi(1,2)); v.push_back(pi(2,1));
bool in = insidePolygon(v.begin(),v.end(), pi(3,4), false);
Time: O(n)
"Point.h", "onSegment.h", "SegmentDistance.h"
                                                                  14 lines
template<class It, class P>
bool insidePolygon(It begin, It end, const P& p,
    bool strict = true) {
  int n = 0; //number of isects with line from p to (inf,p.y)
 for (It i = begin, j = end-1; i != end; j = i++) {
    //if p is on edge of polygon
    if (onSegment(*i, *j, p)) return !strict;
    //or: if (segDist(*i, *j, p) <= epsilon) return !strict;</pre>
    //increment n if seament intersects line from p
    n += (max(i->y,j->y) > p.y \&\& min(i->y,j->y) <= p.y \&\&
        ((*j-*i).cross(p-*i) > 0) == (i->y <= p.y));
 return n&1; //inside if odd number of intersections
```

PolygonArea.h

Description: Returns twice the signed area of a polygon. Clockwise enumeration gives negative area. Watch out for overflow if using int as T!

```
"Point.h"
template<class T>
T polygonArea2(vector<Point<T>>& v) {
   T a = v.back().cross(v[0]);
   rep(i,0,sz(v)-1) a += v[i].cross(v[i+1]);
   return a;
}
```

9 lines

PolygonCenter.h

Description: Returns the center of mass for a polygon.

```
"Point.h"

typedef Point<double> P;
Point<double> polygonCenter(vector<P>& v) {
  auto i = v.begin(), end = v.end(), j = end-1;
  Point<double> res{0,0}; double A = 0;
  for (; i != end; j=i++) {
    res = res + (*i + *j) * j->cross(*i);
    A += j->cross(*i);
  }
  return res / A / 3;
}
```

```
PolygonCut.h

Description:
Returns a dector with the vertices of a polygon with everything to the left of the line going from s to e cut away.

Usage: vector<P> p = ...;
p=polygonCut(p, P(0,0), P(1,0));

"Point.h", "lineIntersection.h"

15 lines

typedef Point<double> P;
vector<P> polygonCut(const vector<P>& poly, P s, P e) {
    vector<P> res;
    rep(i,0.sz(poly)) {
```

```
typedef Point<double> P;
vector<P> polygonCut(const vector<P>& poly, P s, P e) {
  vector<P> res;
  rep(i,0,sz(poly)) {
    P cur = poly[i], prev = i ? poly[i-1] : poly.back();
    bool side = s.cross(e, cur) < 0;
    if (side != (s.cross(e, prev) < 0)) {
      res.emplace_back();
      lineIntersection(s, e, cur, prev, res.back());
    }
  if (side)
    res.push_back(cur);</pre>
```

```
return res;
                            ConvexHull.h
Description:
Returns a vector of indices of the convex hull in counter-clockwise or-
        ats on the edge of the hull between two other points are not
   sidered part of the hull.
       wector<P> ps, hull;
trav(i, convexHull(ps)) hull.push_back(ps[i]);
Time: O(n \log n)
"Point.h"
                                                                  20 lines
typedef Point<ll> P;
pair<vi, vi> ulHull(const vector<P>& S) {
 vi Q(sz(S)), U, L;
 iota(all(Q), 0);
 sort(all(Q), [&S](int a, int b){ return S[a] < S[b]; });</pre>
 trav(it, Q) {
#define ADDP(C, cmp) while (sz(C) > 1 \&\& S[C[sz(C)-2]].cross()
 S[it], S[C.back()]) cmp 0) C.pop_back(); C.push_back(it);
    ADDP(U, <=): ADDP(L, >=):
 return {U, L};
vi convexHull(const vector<P>& S) {
 vi u, l; tie(u, l) = ulHull(S);
 if (sz(S) <= 1) return u;</pre>
 if (S[u[0]] == S[u[1]]) return {0};
 l.insert(l.end(), u.rbegin()+1, u.rend()-1);
 return l:
```

PolygonDiameter.h

Description: Calculates the max squared distance of a set of points.

```
19 <u>lines</u>
vector<pii> antipodal(const vector<P>& S, vi& U, vi& L) {
 vector<pii> ret;
 int i = 0, j = sz(L) - 1;
 while (i < sz(U) - 1 | | j > 0) {
   ret.emplace_back(U[i], L[j]);
   if (j == 0 \mid | (i != sz(U) - 1 \&\& (S[L[j]]] - S[L[j-1]])
          .cross(S[U[i+1]] - S[U[i]]) > 0)) ++i;
   else --j;
 return ret;
pii polygonDiameter(const vector<P>& S) {
 vi U, L; tie(U, L) = ulHull(S);
 pair<ll, pii> ans;
 trav(x, antipodal(S, U, L))
   ans = max(ans, \{(S[x.first] - S[x.second]).dist2(), x\});
 return ans.second;
```

PointInsideHull.h

Description: Determine whether a point t lies inside a given polygon (counterclockwise order). The polygon must be such that every point on the circumference is visible from the first point in the vector. It returns 0 for points outside, 1 for points on the circumference, and 2 for points inside. Time: $O(\log N)$

```
"Point.h", "sideOf.h", "onSegment.h"
```

typedef Point<ll> P; int insideHull2(const vector<P>& H, int L, int R, const P& p) {

```
int len = R - L:
  if (len == 2) {
   int sa = sideOf(H[0], H[L], p);
   int sb = sideOf(H[L], H[L+1], p);
   int sc = sideOf(H[L+1], H[0], p);
   if (sa < 0 || sb < 0 || sc < 0) return 0;
   if (sb==0 || (sa==0 && L == 1) || (sc == 0 && R == sz(H)))
     return 1;
   return 2;
  int mid = L + len / 2;
 if (sideOf(H[0], H[mid], p) >= 0)
   return insideHull2(H, mid, R, p);
  return insideHull2(H, L, mid+1, p);
int insideHull(const vector<P>& hull, const P& p) {
 if (sz(hull) < 3) return onSegment(hull[0], hull.back(), p);</pre>
 else return insideHull2(hull, 1, sz(hull), p);
```

LineHullIntersection.h

Description: Line-convex polygon intersection. The polygon must be ccw and have no colinear points. isct(a, b) returns a pair describing the intersection of a line with the polygon:

```
• (-1, -1) if no collision,

    (i, −1) if touching the corner i,

    (i, i) if along side (i, i + 1),
```

int bs(P dir) {

int lo = -1. hi = N:

hi = mid:

else lo = mid;

return a[hi%N].second;

while (hi - lo > 1) {

int mid = (lo + hi) / 2;

• (i, j) if crossing sides (i, i+1) and (j, j+1).

In the last case, if a corner i is crossed, this is treated as happening on side (i, i + 1). The points are returned in the same order as the line hits the polygon Time: $O(N + Q \log n)$

```
"Point.h"
                                                              63 lines
ll sqn(ll a) { return (a > 0) - (a < 0); }
typedef Point<ll> P;
struct HullIntersection {
  int N;
  vector<P> p:
  vector<pair<P, int>> a;
  HullIntersection(const vector<P>\& ps) : N(sz(ps)), p(ps) {
    p.insert(p.end(), all(ps));
    int b = 0:
    rep(i,1,N) if (P\{p[i].y,p[i].x\} < P\{p[b].y,p[b].x\}) b = i;
    rep(i,0,N) {
      int f = (i + b) \% N;
      a.emplace_back(p[f+1] - p[f], f);
 }
  int qd(P p) {
    return (p.y < 0) ? (p.x >= 0) + 2
         : (p.x \le 0) * (1 + (p.y \le 0));
```

```
if (make_pair(qd(dir), dir.y * a[mid].first.x) <</pre>
  make_pair(qd(a[mid].first), dir.x * a[mid].first.y))
```

```
bool isign(P a, P b, int x, int y, int s) {
  return sgn(a.cross(p[x], b)) * sgn(a.cross(p[y], b)) == s;
int bs2(int lo, int hi, P a, P b) {
  int L = lo:
  if (hi < lo) hi += N;</pre>
  while (hi - lo > 1) {
    int mid = (lo + hi) / 2;
    if (isign(a, b, mid, L, -1)) hi = mid;
    else lo = mid;
  return lo;
pii isct(P a, P b) {
  int f = bs(a - b), j = bs(b - a);
  if (isign(a, b, f, j, 1)) return {-1, -1};
  int x = bs2(f, j, a, b)%N,
      y = bs2(j, f, a, b)%N;
  if (a.cross(p[x], b) == 0 \&\&
      a.cross(p[x+1], b) == 0) return \{x, x\};
  if (a.cross(p[y], b) == 0 \&\&
      a.cross(p[y+1], b) == 0) return {y, y};
  if (a.cross(p[f], b) == 0) return \{f, -1\};
  if (a.cross(p[j], b) == 0) return \{j, -1\};
  return {x, y};
```

8.4. Misc. Point Set Problems.

closestPair.h

Description: i1, i2 are the indices to the closest pair of points in the point vector pafter the call. The distance is returned.

```
Time: O(n \log n)
"Point.h"
                                                               58 lines
template<class It>
bool it_less(const It& i, const It& j) { return *i < *j; }</pre>
template<class It>
bool y_it_less(const It& i,const It& j) {return i->y < j->y;}
template<class It, class IIt> /* IIt = vector<It>::iterator */
double cp_sub(IIt ya, IIt yaend, IIt xa, It &i1, It &i2) {
  typedef typename iterator_traits<It>::value_type P;
  int n = vaend-va. split = n/2:
  if(n <= 3) { // base case
    double a = (*xa[1]-*xa[0]).dist(), b = 1e50, c = 1e50;
    if(n==3) b=(*xa[2]-*xa[0]).dist(), c=(*xa[2]-*xa[1]).dist();
    if(a <= b) { i1 = xa[1];
      if(a \leq c) return i2 = xa[0], a;
      else return i2 = xa[2], c;
    } else { i1 = xa[2];
      if(b \ll c) return i2 = xa[0], b;
      else return i2 = xa[1], c;
  vector<It> ly, ry, stripy;
  P splitp = *xa[split];
  double splitx = splitp.x;
  for(IIt i = ya; i != yaend; ++i) { // Divide
    if(*i != xa[split] && (**i-splitp).dist2() < 1e-12)</pre>
      return i1 = *i, i2 = xa[split], 0;// nasty special case!
    if (**i < splitp) ly.push_back(*i);</pre>
    else ry.push_back(*i);
```

```
} // assert((signed)leftv.size() == split)
 It i1. i2: // Conquer
 double a = cp_sub(ly.begin(), ly.end(), xa, i1, i2);
 double b = cp_sub(ry.begin(), ry.end(), xa+split, j1, j2);
 if(b < a) a = b, i1 = j1, i2 = j2;
 double a2 = a*a:
 for(IIt i = ya; i != yaend; ++i) { // Create strip (y-sorted)
   double x = (*i) -> x;
   if(x >= splitx-a && x <= splitx+a) stripy.push_back(*i);</pre>
  for(IIt i = stripy.begin(); i != stripy.end(); ++i) {
   const P \&p1 = **i;
   for(IIt j = i+1; j != stripy.end(); ++j) {
     const P &p2 = **j;
     if(p2.y-p1.y > a) break;
     double d2 = (p2-p1).dist2();
     if(d2 < a2) i1 = *i, i2 = *j, a2 = d2;
 } }
 return sqrt(a2);
template<class It> // It is random access iterators of point<T>
double closestpair(It begin, It end, It &i1, It &i2 ) {
 vector<It> xa, ya;
 assert(end-begin >= 2);
 for (It i = begin; i != end; ++i)
   xa.push_back(i), ya.push_back(i);
 sort(xa.begin(), xa.end(), it_less<It>);
 sort(ya.begin(), ya.end(), y_it_less<It>);
 return cp_sub(ya.begin(), ya.end(), xa.begin(), i1, i2);
```

kdTree.h

Description: KD-tree (2d, can be extended to 3d)

```
"Point.h"
                                                              63 lines
typedef long long T;
typedef Point<T> P;
const T INF = numeric_limits<T>::max();
bool on_x(const P\& a, const P\& b) { return a.x < b.x; }
bool on_y(const P\& a, const P\& b) { return a.y < b.y; }
struct Node {
 P pt; // if this is a leaf, the single point in it
 T \times 0 = INF, \times 1 = -INF, y0 = INF, y1 = -INF; // bounds
 Node *first = 0, *second = 0:
 T distance(const P& p) { // min squared distance to a point
   T x = (p.x < x0 ? x0 : p.x > x1 ? x1 : p.x);
   T y = (p.y < y0 ? y0 : p.y > y1 ? y1 : p.y);
    return (P(x,y) - p).dist2();
 Node(vector<P>&& vp) : pt(vp[0]) {
    for (P p : vp) {
      x0 = min(x0, p.x); x1 = max(x1, p.x);
      y0 = min(y0, p.y); y1 = max(y1, p.y);
    if (vp.size() > 1) {
     // split on x if the box is wider than high (not best
      \hookrightarrow heuristic...)
      sort(all(vp), x1 - x0 >= y1 - y0 ? on_x : on_y);
      // divide by taking half the array for each child (not
      // best performance with many duplicates in the middle)
      int half = sz(vp)/2;
```

```
first = new Node({vp.begin(), vp.begin() + half}):
      second = new Node({vp.begin() + half, vp.end()});
 }
};
struct KDTree {
  Node* root;
  KDTree(const vector<P>& vp) : root(new Node({all(vp)})) {}
  pair<T, P> search(Node *node, const P& p) {
    if (!node->first) {
      // uncomment if we should not find the point itself:
      // if (p == node->pt) return {INF, P()};
      return make_pair((p - node->pt).dist2(), node->pt);
    Node *f = node->first, *s = node->second;
    T bfirst = f->distance(p), bsec = s->distance(p);
    if (bfirst > bsec) swap(bsec, bfirst), swap(f, s);
    // search closest side first, other side if needed
    auto best = search(f, p);
    if (bsec < best.first)</pre>
      best = min(best, search(s, p));
    return best;
  // find nearest point to a point, and its squared distance
  // (requires an arbitrary operator< for Point)</pre>
  pair<T, P> nearest(const P& p) {
    return search(root, p);
};
```

DelaunayTriangulation.h

Description: Computes the Delaunay triangulation of a set of points. Each circumcircle contains none of the input points. If any three points are colinear or any four are on the same circle, behavior is undefined. Time: $O(n^2)$

```
"Point.h", "3dHull.h"
template<class P, class F>
void delaunay(vector<P>& ps, F trifun) {
 if (sz(ps) == 3) { int d = (ps[0].cross(ps[1], ps[2]) < 0);
   trifun(0,1+d,2-d); }
  vector<P3> p3;
  trav(p, ps) p3.emplace_back(p.x, p.y, p.dist2());
  if (sz(ps) > 3) trav(t, hull3d(p3)) if ((p3[t.b]-p3[t.a]).
      cross(p3[t.c]-p3[t.a]).dot(P3(0,0,1)) < 0)
    trifun(t.a, t.c, t.b);
```

8.5. **3D.**

PolyhedronVolume.h

Description: Magic formula for the volume of a polyhedron. Faces should point out-

```
template<class V. class L>
double signed_poly_volume(const V& p, const L& trilist) {
 double v = 0;
 trav(i, trilist) v += p[i.a].cross(p[i.b]).dot(p[i.c]);
 return v / 6;
```

Point3D.h

Description: Class to handle points in 3D space. T can be e.g. double or long long. template<class T> struct Point3D { typedef Point3D P: typedef const P& R; T x, y, z; explicit Point3D(T x=0, T y=0, T z=0) : x(x), y(y), z(z) {} bool operator<(R p) const {</pre> return tie(x, y, z) < tie(p.x, p.y, p.z); } bool operator==(R p) const { return tie(x, y, z) == tie(p.x, p.y, p.z); } P operator+(R p) const { return P(x+p.x, y+p.y, z+p.z); } P operator-(R p) const { return P(x-p.x, y-p.y, z-p.z); } P operator*(T d) const { return P(x*d, y*d, z*d); } P operator/(T d) const { return P(x/d, y/d, z/d); } T dot(R p) const { return x*p.x + y*p.y + z*p.z; } P cross(R p) const { return P(y*p.z - z*p.y, z*p.x - x*p.z, x*p.y - y*p.x); T dist2() const { return x*x + y*y + z*z; } double dist() const { return sqrt((double)dist2()): } //Azimuthal angle (longitude) to x-axis in interval [-pi, pi] double phi() const { return atan2(v, x): } //Zenith angle (latitude) to the z-axis in interval [0, pi] double theta() const { return atan2(sqrt(x*x+y*y),z); } P unit() const { return *this/(T)dist(); } //makes dist()=1 //returns unit vector normal to *this and p P normal(P p) const { return cross(p).unit(): } //returns point rotated 'angle' radians ccw around axis P rotate(double angle, P axis) const { double s = sin(angle), c = cos(angle); P u = axis.unit(); return u*dot(u)*(1-c) + (*this)*c - cross(u)*s: };

3dHull.h

Description: Computes all faces of the 3-dimension hull of a point set. *No four points must be coplanar*, or else random results will be returned. All faces will point Time: $\mathcal{O}\left(n^2\right)$

```
"Point3D.h"
                                                              49 lines
typedef Point3D<double> P3;
struct PR {
 void ins(int x) { (a == -1 ? a : b) = x; }
  void rem(int x) \{ (a == x ? a : b) = -1: \}
 int cnt() { return (a != -1) + (b != -1); }
 int a, b;
};
struct F { P3 q; int a, b, c; };
vector<F> hull3d(const vector<P3>& A) {
 assert(sz(A) >= 4);
 vector<vector<PR>>> E(sz(A), vector<PR>(sz(A), {-1, -1}));
#define E(x,y) E[f.x][f.y]
 vector<F> FS:
  auto mf = [\&](int i, int j, int k, int l) {
    P3 q = (A[j] - A[i]).cross((A[k] - A[i]));
    if (q.dot(A[l]) > q.dot(A[i]))
     q = q * -1;
    F f{q, i, j, k};
    E(a,b).ins(k); E(a,c).ins(j); E(b,c).ins(i);
```

FS.push_back(f);

};

```
rep(i,0,4) rep(j,i+1,4) rep(k,j+1,4)
   mf(i, j, k, 6 - i - j - k);
 rep(i,4,sz(A)) {
    rep(i,0,sz(FS)) {
     F f = FS[i]:
     if(f.q.dot(A[i]) > f.q.dot(A[f.a])) {
       E(a,b).rem(f.c);
       E(a,c).rem(f.b);
       E(b,c).rem(f.a);
       swap(FS[j--], FS.back());
       FS.pop_back();
   int nw = sz(FS);
    rep(j,0,nw) {
     F f = FS[j];
#define C(a, b, c) if (E(a,b).cnt() != 2) mf(f.a, f.b, i, f.c);
      C(a, b, c); C(a, c, b); C(b, c, a);
 trav(it, FS) if ((A[it.b] - A[it.a]).cross(
   A[it.c] - A[it.a]).dot(it.q) \ll 0) swap(it.c, it.b);
 return FS;
};
```

sphericalDistance.h

Description: Returns the shortest distance on the sphere with radius radius between the points with azimuthal angles (longitude) $\mathrm{fl}~(\phi_1)$ and $\mathrm{f2}~(\phi_2)$ from x axis and zenith angles (latitude) $\mathrm{t1}~(\theta_1)$ and $\mathrm{t2}~(\theta_2)$ from x axis. All angles measured in radians. The algorithm starts by converting the spherical coordinates to cartesian coordinates so if that is what you have you can use only the two last rows. dx*radius is then the difference between the two points in the x direction and d*radius is the total distance between the points.

```
double sphericalDistance(double f1, double t1,
    double f2, double t2, double radius) {
    double dx = sin(t2)*cos(f2) - sin(t1)*cos(f1);
    double dy = sin(t2)*sin(f2) - sin(t1)*sin(f1);
    double dz = cos(t2) - cos(t1);
    double d = sqrt(dx*dx + dy*dy + dz*dz);
    return radius*2*asin(d/2);
}
```

9. Strings

KMP.h

Description: pi[x] computes the length of the longest prefix of s that ends at x, other than s[0...x] itself (abacaba -> 0010123). Can be used to find all occurrences of a string.

Time: $\mathcal{O}(n)$

```
vi pi(const string& s) {
  vi p(sz(s));
  rep(i,1,sz(s)) {
    int g = p[i-1];
    while (g && s[i] != s[g]) g = p[g-1];
    p[i] = g + (s[i] == s[g]);
  }
  return p;
}

vi match(const string& s, const string& pat) {
  vi p = pi(pat + '\0' + s), res;
  rep(i,sz(p)-sz(s),sz(p))
    if (p[i] == sz(pat)) res.push_back(i - 2 * sz(pat));
  return res;
```

Manacher.h

Description: For each position in a string, computes p[0][i] = half length of longest even palmorome around pos i, <math>p[1][i] = longest odd (half rounded down).

```
void manacher(const string& s) {
   int n = sz(s);
   vi p[2] = {vi(n+1), vi(n)};
   rep(z,0,2) for (int i=0,l=0,r=0; i < n; i++) {
      int t = r-i+!z;
      if (i<r) p[z][i] = min(t, p[z][l+t]);
      int L = i-p[z][i], R = i+p[z][i]-!z;
      while (L>=1 && R+1<n && s[L-1] == s[R+1])
           p[z][i]++, L--, R++;
      if (R>r) l=L, r=R;
}}
```

MinRotation.h

 $\begin{tabular}{ll} \textbf{Description:} Finds the lexicographically smallest rotation of a string. \\ \textbf{Usage:} rotate(v.begin(), v.begin()+min_rotation(v), v.end()); \\ \hline \end{tabular}$

```
int min_rotation(string s) {
   int a=0, N=sz(s); s += s;
   rep(b,0,N) rep(i,0,N) {
    if (a+i == b || s[a+i] < s[b+i]) {b += max(0, i-1); break;}
   if (s[a+i] > s[b+i]) { a = b; break; }
   return a;
}
```

SuffixArray.h

Description: Builds suffix array for a string. a[i] is the starting index of the suffix which is i-th in the sorted suffix array. The returned vector is of size n+1, and a[0]=n. The lcp function calculates longest common prefixes for neighbouring strings in suffix array. The returned vector is of size n+1, and ret[0]=0. **Memory:** $\mathcal{O}(N)$

Time: $\mathcal{O}\left(N\log^2N\right)$ where N is the length of the string for creation of the SA. $\mathcal{O}\left(N\right)$ for longest common prefixes.

```
typedef pair<ll, int> pli;
void count_sort(vector<pli> &b, int bits) { // (optional)
 //this is just 3 times faster than stl sort for N=10^6
  int mask = (1 << bits) - 1;</pre>
  rep(it.0.2) {
   int move = it * bits;
   vi q(1 \ll bits), w(sz(q) + 1);
    rep(i,0,sz(b))
     q[(b[i].first >> move) & mask]++;
    partial_sum(q.begin(), q.end(), w.begin() + 1);
    vector<pli> res(b.size()):
    rep(i,0,sz(b))
      res[w[(b[i].first >> move) \& mask]++] = b[i];
   swap(b, res);
 }
struct SuffixArray {
 vi a;
  string s;
  SuffixArray(const string\& _s) : s(_s + '\0') {
   int N = sz(s):
   vector<pli> b(N);
   a.resize(N);
    rep(i,0,N) {
     b[i].first = s[i];
     b[i].second = i;
   int q = 8;
```

```
while ((1 << a) < N) a++:
 for (int moc = 0;; moc++) {
    count_sort(b, q); // sort(all(b)) can be used as well
   a[b[0].second] = 0:
    rep(i,1,N)
     a[b[i].second] = a[b[i - 1].second] +
       (b[i - 1].first != b[i].first);
   if ((1 << moc) >= N) break;
    rep(i,0,N) {
     b[i].first = (ll)a[i] << q;
     if (i + (1 << moc) < N)
       b[i].first += a[i + (1 << moc)];
      b[i].second = i;
 rep(i,0,sz(a)) a[i] = b[i].second;
vi lcp() {
 // longest common prefixes: res[i] = lcp(a[i], a[i-1])
 int n = sz(a), h = 0;
 vi inv(n), res(n);
 rep(i,0,n) inv[a[i]] = i;
 rep(i,0,n) if (inv[i] > 0) {
   int p0 = a[inv[i] - 1];
   while (s[i + h] == s[p0 + h]) h++;
   res[inv[i]] = h;
   if(h > 0) h--;
 return res;
```

SuffixTree.h

Description: Ukkonen's algorithm for online suffix tree construction. Each node contains indices [1, r] into the string, and a list of child nodes. Suffixes are given by traversals of this tree, joining [1, r] substrings. The root is 0 (has 1 = -1, r = 0), nonexistent children are -1. To get a complete tree, append a dummy symbol – otherwise it may contain an incomplete path (still useful for substring matching, though). Time: $\mathcal{O}(26N)$

50 lines

```
struct SuffixTree {
 enum { N = 200010, ALPHA = 26 }; // N ~ 2*maxlen+10
 int toi(char c) { return c - 'a'; }
 string a; // v = cur \ node, q = cur \ position
 int t[N][ALPHA], l[N], r[N], p[N], s[N], v=0, q=0, m=2;
 void ukkadd(int i, int c) { suff:
   if (r[v]<=q) {
     if (t[v][c]==-1) { t[v][c]=m; l[m]=i;
       p[m++]=v; v=s[v]; q=r[v]; goto suff; }
     v=t[v][c]; q=l[v];
   if (q==-1 || c==toi(a[q])) q++; else {
     l[m+1]=i; p[m+1]=m; l[m]=l[v]; r[m]=q;
     p[m]=p[v]; t[m][c]=m+1; t[m][toi(a[q])]=v;
     l[v]=q; p[v]=m; t[p[m]][toi(a[l[m]])]=m;
     v=s[p[m]]; q=l[m];
     while (q<r[m]) { v=t[v][toi(a[q])]; q+=r[v]-l[v]; }</pre>
     if (q==r[m]) s[m]=v; else s[m]=m+2;
     q=r[v]-(q-r[m]); m+=2; goto suff;
 SuffixTree(string a) : a(a) {
```

```
fill(r.r+N.sz(a)):
    memset(s, 0, sizeof s);
    memset(t, -1, sizeof t);
    fill(t[1],t[1]+ALPHA,0);
    s[0] = 1; l[0] = l[1] = -1; r[0] = r[1] = p[0] = p[1] = 0;
    rep(i,0,sz(a)) ukkadd(i, toi(a[i]));
  // example: find longest common substring (uses ALPHA = 28)
  pii best;
  int lcs(int node, int i1, int i2, int olen) {
    if (l[node] \leftarrow i1 && i1 \leftarrow r[node]) return 1;
    if (l[node] <= i2 && i2 < r[node]) return 2;</pre>
    int mask = 0, len = node ? olen + (r[node] - l[node]) : 0;
    rep(c,0,ALPHA) if (t[node][c] != -1)
      mask |= lcs(t[node][c], i1, i2, len);
    if (mask == 3)
      best = max(best, {len, r[node] - len});
    return mask;
  static pii LCS(string s, string t) {
    SuffixTree st(s + (char)('z' + 1) + t + (char)('z' + 2));
    st.lcs(0, sz(s), sz(s) + 1 + sz(t), 0);
    return st.best;
};
```

Hashing.h

Description: Various self-explanatory methods for string hashing.

```
44 lines
// Arithmetic mod 2^64-1. 2x slower than mod 2^64 and more
// code, but works on evil test data (e.g. Thue-Morse, where
// ABBA... and BAAB... of length 2^10 hash the same mod 2^64).
// "typedef ull H;" instead if you think test data is random,
// or work mod 10^9+7 if the Birthday paradox is not a problem.
struct H {
  typedef uint64_t ull;
  ull x; H(ull x=0) : x(x)  {}
#define OP(0,A,B) H operator O(H \circ) { ull r = x; asm \
  (A "addq %rdx, %0\n adcq $0,%0" : "+a"(r) : B); return r; }
  OP(+,,"d"(o.x)) OP(*,"mul %1\n", "r"(o.x) : "rdx")
  H operator-(H o) { return *this + ~o.x; }
  ull get() const { return x + !~x; }
  bool operator==(H o) const { return get() == o.get(); }
  bool operator<(H o) const { return get() < o.get(); }</pre>
static const H C = (ll)1e11+3: // (order ~ 3e9: random also ok)
struct HashInterval {
  vector<H> ha, pw;
  HashInterval(string\& str) : ha(sz(str)+1), pw(ha) {
    pw[0] = 1;
    rep(i,0,sz(str))
      ha[i+1] = ha[i] * C + str[i],
      pw[i+1] = pw[i] * C;
  H hashInterval(int a, int b) { // hash [a, b)
    return ha[b] - ha[a] * pw[b - a];
};
vector<H> getHashes(string& str, int length) {
  if (sz(str) < length) return {};</pre>
  H h = 0, pw = 1;
  rep(i,0,length)
    h = h * C + str[i], pw = pw * C;
```

```
vector<H> ret = {h}:
 rep(i,length,sz(str)) {
   ret.push_back(h = h * C + str[i] - pw * str[i-length]);
 return ret;
H hashString(string& s) { H h{}; trav(c,s) h=h*C+c; return h; }
```

AhoCorasick.h

Description: Aho-Corasick tree is used for multiple pattern matching. Initialize the tree with create(patterns). find(word) returns for each position the index of the longest word that ends there, or -1 if none. findAll(_, word) finds all words (up to $N\sqrt{N}$ many if no duplicate patterns) that start at each position (shortest first). Duplicate patterns are allowed; empty patterns are not. To find the longest words that start at each position, reverse all input.

Time: Function create is $\mathcal{O}(26N)$ where N is the sum of length of patterns. find is $\mathcal{O}(M)$ where M is the length of the word. findAll is $\mathcal{O}(NM)$. 67 lines

```
struct AhoCorasick {
 enum {alpha = 26, first = 'A'};
  struct Node {
    // (nmatches is optional)
   int back, next[alpha], start = -1, end = -1, nmatches = 0;
   Node(int v) { memset(next, v, sizeof(next)); }
 };
  vector<Node> N;
  vector<int> backp;
  void insert(string& s, int j) {
   assert(!s.empty());
   int n = 0;
    trav(c, s) {
     int& m = N[n].next[c - first];
     if (m == -1) { n = m = sz(N); N.emplace_back(-1); }
    if (N[n].end == -1) N[n].start = j;
    backp.push_back(N[n].end):
    N[n].end = i;
    N[n].nmatches++:
  AhoCorasick(vector<string>& pat) {
   N.emplace_back(-1);
    rep(i,0,sz(pat)) insert(pat[i], i);
    N[0].back = sz(N);
    N.emplace_back(0);
    queue<int> q;
    for (q.push(\theta); !q.empty(); q.pop()) {
     int n = q.front(), prev = N[n].back;
      rep(i,0,alpha) {
       int &ed = N[n].next[i], y = N[prev].next[i];
        if (ed == -1) ed = y;
        else {
          N[ed].back = y;
          (N[ed].end == -1 ? N[ed].end : backp[N[ed].start])
           = N[y].end;
          N[ed].nmatches += N[y].nmatches;
         q.push(ed);
       }
  vi find(string word) {
   int n = 0:
   vi res; // ll count = 0;
```

trav(c, word) {

```
n = N[n].next[c - first]:
     res.push_back(N[n].end);
     // count += N[n].nmatches;
   return res;
 vector<vi> findAll(vector<string>& pat, string word) {
   vi r = find(word);
   vector<vi> res(sz(word));
   rep(i,0,sz(word)) {
     int ind = r[i];
     while (ind !=-1) {
        res[i - sz(pat[ind]) + 1].push_back(ind);
       ind = backp[ind];
   }
   return res;
};
```

10. Various

22/26

23 lines

10.1. Intervals.

IntervalContainer.h

Description: Add and remove intervals from a set of disjoint intervals. Will merge the added interval with any overlapping intervals in the set when adding. Intervals are [inclusive, exclusive).

Time: $O(\log N)$

```
set<pii>::iterator addInterval(set<pii>& is, int L, int R) {
 if (L == R) return is.end();
 auto it = is.lower_bound({L, R}), before = it;
 while (it != is.end() && it->first <= R) {
   R = max(R, it->second);
   before = it = is.erase(it);
 if (it != is.begin() && (--it)->second >= L) {
   L = min(L, it->first);
   R = max(R, it->second);
   is.erase(it);
 return is.insert(before, {L,R});
void removeInterval(set<pii>& is, int L, int R) {
 if (L == R) return:
 auto it = addInterval(is, L, R);
 auto r2 = it->second;
 if (it->first == L) is.erase(it);
 else (int&)it->second = L;
 if (R != r2) is.emplace(R, r2);
```

IntervalCover.h

Description: Compute indices of smallest set of intervals covering another interval. Intervals should be [inclusive, exclusive). To support [inclusive, inclusive], change (A) to add | R.empty(). Returns empty set on failure (or if G is empty). Time: $O(N \log N)$ 19 lines

```
template<class T>
vi cover(pair<T, T> G, vector<pair<T, T>> I) {
 vi S(sz(I)), R;
 iota(all(S), 0);
 sort(all(S), [&](int a, int b) { return I[a] < I[b]; });</pre>
 T cur = G.first;
 int at = 0;
```

```
while (cur < G.second) { // (A)
   pair<T, int> mx = make_pair(cur, -1);
   while (at < sz(I) && I[S[at]].first <= cur) {
        mx = max(mx, make_pair(I[S[at]].second, S[at]));
        at++;
   }
   if (mx.second == -1) return {};
   cur = mx.first;
   R.push_back(mx.second);
}
return R;</pre>
```

ConstantIntervals.h

Description: Split a monotone function on [from, to) into a minimal set of half-open intervals on which it has the same value. Runs a callback g for each such interval. Usage: constantIntervals(0, sz(v), [&](int x){return v[x];}, [&](int lo, int hi, T val{...});

```
Time: \mathcal{O}\left(k\log\frac{n}{k}\right) 19 li template<class F, class G, class T>
```

```
template<ctass F, ctass G, ctass I>
void rec(int from, int to, F f, G g, int& i, T& p, T q) {
   if (p == q) return;
   if (from == to) {
      g(i, to, p);
      i = to; p = q;
   } else {
      int mid = (from + to) >> 1;
      rec(from, mid, f, g, i, p, f(mid));
      rec(mid+l, to, f, g, i, p, q);
   }
}
template<ctass F, ctass G>
void constantIntervals(int from, int to, F f, G g) {
   if (to <= from) return;
   int i = from; auto p = f(i), q = f(to-1);
   rec(from, to-1, f, g, i, p, q);
   g(i, to, q);
}</pre>
```

10.2. Misc. algorithms.

TernarySearch.h

Description: Find the smallest i in [a,b] that maximizes f(i), assuming that $f(a) < \dots < f(i) \ge \dots \ge f(b)$. To reverse which of the sides allows non-strict inequalities, change the < marked with (A) to <=, and reverse the loop at (B). To minimize f, change it to >, also at (B).

Usage: int ind = ternSearch(0,n-1,[&](int i){return a[i];}); Time: $O(\log(b-a))$

13 lines

Karatsuba.h

Description: Faster-than-naive convolution of two sequences: $c[x] = \sum a[i]b[x-i]$. Uses the identity $(aX+b)(cX+d) = acX^2 + bd + ((a+c)(b+d) - ac - bd)X$. Doesn't handle sequences of very different length well. See also FFT, under the Numerical chapter.

```
Time: \mathcal{O}\left(N^{1.6}\right)
```

LIS.h

Description: Compute indices for the longest increasing subsequence. Time: $\mathcal{O}\left(N\log N\right)$

```
template<class I> vi lis(vector<I> S) {
  vi prev(sz(S));
  typedef pair<I, int> p;
  vector res;
  rep(i,0,sz(S)) {
    p el { S[i], i };
    //S[i]+1 for non-decreasing
    auto it = lower_bound(all(res), p { S[i], 0 });
    if (it == res.end()) res.push_back(el), it = --res.end();
    *it = el;
    prev[i] = it==res.begin() ?0:(it-1)->second;
}
int L = sz(res), cur = res.back().second;
vi ans(L);
while (L--) ans[L] = cur, cur = prev[cur];
return ans;
}
```

LCS.h

Description: Finds the longest common subsequence. **Memory:** $\mathcal{O}(nm)$.

Time: $\mathcal{O}(nm)$ where n and m are the lengths of the sequences.

14 lines

```
template<class T> T lcs(const T &X, const T &Y) {
    int a = sz(X), b = sz(Y);
    vector<vi> dp(a+1, vi(b+1));
    rep(i,1,a+1) rep(j,1,b+1)
        dp[i][j] = X[i-1]==Y[j-1] ? dp[i-1][j-1]+1 :
            max(dp[i][j-1],dp[i-1][j]);
    int len = dp[a][b];
    T ans(len,0);
    while(a && b)
        if(X[a-1]==Y[b-1]) ans[--len] = X[--a], --b;
        else if(dp[a][b-1]>dp[a-1][b]) --b;
        else --a;
    return ans;
}
```

10.3. Dynamic programming.

DivideAndConquerDP.h

Description: Given $a[i] = \min_{lo(i) \le k < hi(i)} (f(i, k))$ where the (minimal) optimal k increases with i, computes a[i] for i = L..R - 1. Time: $O((N + (hi - lo)) \log N)$

```
struct DP { // Modify at will:
   int lo(int ind) { return 0; }
   int hi(int ind) { return ind; }
   ll f(int ind, int k) { return dp[ind][k]; }
   void store(int ind, int k, ll v) { res[ind] = pii(k, v); }

void rec(int L, int R, int LO, int HI) {
   if (L >= R) return;
   int mid = (L + R) >> 1;
   pair<ll, int> best(LLONG_MAX, LO);
   rep(k, max(LO,lo(mid)), min(HI,hi(mid)))
   best = min(best, make_pair(f(mid, k), k));
   store(mid, best.second, best.first);
   rec(L, mid, LO, best.second+I);
   rec(mid+1, R, best.second, HI);
```

```
void solve(int L, int R) { rec(L, R, INT_MIN, INT_MAX); }
};
```

KnuthDP.h

Description: When doing DP on intervals: $a[i][j] = \min_{i < k < j} (a[i][k] + a[k][j]) + f(i,j)$, where the (minimal) optimal k increases with both i and j, one can solve intervals in increasing order of length, and search k = p[i][j] for a[i][j] only between p[i][j-1] and p[i+1][j]. This is known as Knuth DP. Sufficient criteria for this are if $f(b,c) \le f(a,d)$ and $f(a,c) + f(b,d) \le f(a,d) + f(b,c)$ for all $a \le b \le c \le d$. Consider also: LineContainer (ch. Data structures), monotone queues, ternary search. Time: $\mathcal{O}\left(N^2\right)$

10.4. Debugging tricks.

- signal(SIGSEGV, [](int) { _Exit(0); }); converts segfaults into Wrong Answers. Similarly one can catch SIGABRT (assertion failures) and SIGFPE (zero divisions). _GLIBCXX_DEBUG violations generate SIGABRT (or SIGSEGV on gcc 5.4.0 apparently).
- feenableexcept(29); kills the program on NaNs (1), 0-divs (4), infinities (8) and denormals (16).

10.5. Optimization tricks.

10.5.1. Bit hacks.

- x & -x is the least bit in x.
- for (int x = m; x;) { -x &= m; ... } loops over all subset masks of m (except m itself).
- c = x&-x, r = x+c; $(((r^x) * 2)/c) \mid r$ is the next number after x with the same number of bits set.
- rep(b,0,K) rep(i,0,(1 « K)) if (i & 1 « b) D[i] += D[i^(1 « b)]; computes all sums of subsets.

10.5.2. *Pragmas*.

- #pragma GCC optimize ("Ofast") will make GCC autovectorize for loops and optimizes floating points better (assumes associativity and turns off denormals).
- #pragma GCC target ("avx,avx2") can double performance of vectorized code, but causes crashes on old machines.
- #pragma GCC optimize ("trapv") kills the program on integer overflows (but is really slow).

BumpAllocator.h

Description: When you need to dynamically allocate many objects and don't care about freeing them. "new X" otherwise has an overhead of something like 0.05us + 16 bytes per allocation.

```
// Either globally or in a single class:
static char buf[450 << 20];
void* operator new(size_t s) {
    static size_t i = sizeof buf;
    assert(s < i);
    return (void*)&buf[i -= s];
}
void operator delete(void*) {}</pre>
```

SmallPtr.h

```
Description: A 32-bit pointer that points into BumpAllocator memory.

"BumpAllocator.h"

10 lines

template<class T> struct ptr {
    unsigned ind;
    ptr(T* p = 0) : ind(p ? unsigned((char*)p - buf) : 0) {
```

```
template<class T> struct ptr {
  unsigned ind;
  ptr(T* p = 0) : ind(p ? unsigned((char*)p - buf) : 0) {
    assert(ind < sizeof buf);
}
T& operator*() const { return *(T*)(buf + ind); }
T* operator->() const { return &**this; }
T& operator[](int a) const { return (&**this)[a]; }
  explicit operator bool() const { return ind; }
};
```

BumpAllocatorSTL.h

Description: BumpAllocator for STL containers. Usage: vector<vector<int, small<int>>> ed(N);

14 lines

```
char buf[450 << 20] alignas(16);
size_t buf_ind = sizeof buf;

template<class T> struct small {
   typedef T value_type;
   small() {}
   template<class U> small(const U&) {}
   T* allocate(size_t n) {
      buf_ind &= 0 - alignof(T);
      return (T*)(buf + buf_ind);
   }
   void deallocate(T*, size_t) {}
}:
```

Unrolling.h

5 lines

```
#define F {...; ++i;}
int i = from;
while (i&3 && i < to) F // for alignment, if needed
while (i + 4 <= to) { F F F F }
while (i < to) F
```

SIMD.h

```
#pragma GCC target ("avx2") // or sse4.1
#include "immintrin.h"

typedef __m256i mi;
#define L(x) _mm256_loadu_si256((mi*)&(x))

// High-level/specific methods:
// load(u)?_si256, store(u)?_si256, setzero_si256, _mm_malloc
// blendv_(epi8|ps|pd) (z?y:x), movemask_epi8 (hibits of bytes)
// i32gather_epi32(addr, x, 4): map addr[] over 32-b parts of x
// sad_epu8: sum of absolute differences of u8, outputs 4xi64
// maddubs_epi16: dot product of unsigned i7's, outputs 16xi15
// madd_epi16: dot product of signed i16's, outputs 8xi32
// extractf128_si256(, i) (256->128), cvtsi128_si32 (128->lo32)
// permute2f128_si256(x,x,1) swaps 128-bit lanes
// shuffle_epi32(x, 3*64+2*16+1*4+0) == x for each lane
// shuffle_epi8(x, y) takes a vector instead of an imm
```

```
// Methods that work with most data types (append e.g. _epi32):
// set1, blend (i8?x:y), add, adds (sat.), mullo, sub, and/or,
// andnot, abs, min, max, sign(1,x), cmp(gt|eq), unpack(lo|hi)
int sumi32(mi m) { union {int v[8]; mi m;} u; u.m = m;
 int ret = 0: rep(i.0.8) ret += u.v[i]: return ret: }
mi zero() { return _mm256_setzero_si256(); }
mi one() { return _mm256_set1_epi32(-1); }
bool all_zero(mi m) { return _mm256_testz_si256(m, m); }
bool all_one(mi m) { return _mm256_testc_si256(m, one()); }
ll example_filteredDotProduct(int n, short* a, short* b) {
  int i = 0; ll r = 0;
  mi zero = _mm256_setzero_si256(), acc = zero;
  while (i + 16 \le n) {
    mi \ va = L(a[i]), \ vb = L(b[i]); \ i += 16;
    va = _{mm256\_and\_si256(_{mm256\_cmpgt\_epi16(vb, va), va)};
    mi vp = _mm256_madd_epi16(va, vb);
    acc = _mm256_add_epi64(_mm256_unpacklo_epi32(vp, zero),
      _mm256_add_epi64(acc, _mm256_unpackhi_epi32(vp, zero)));
  union {ll v[4]; mi m;} u; u.m = acc; rep(i,0,4) r += u.v[i];
  for (;i<n;++i) if (a[i] < b[i]) r += a[i]*b[i]; // <- equiv</pre>
  return r;
```

Appendix A. Techniques

- Recursion
- Divide and conquer
- Finding interesting points in N log N
- Algorithm analysis
- Master theorem
- Amortized time complexity
- Greedy algorithm
- Scheduling
- Max contiguous subvector sum
- Invariants
- Huffman encoding
- Graph theory
- Dynamic graphs (extra book-keeping)
- Breadth first search
- Depth first search
- * Normal trees / DFS trees
- Dijkstra's algorithm
- MST: Prim's algorithm
- Bellman-Ford
- Konig's theorem and vertex cover
- Min-cost max flow
- Lovasz toggle
- Matrix tree theorem
- Maximal matching, general graphs
- Hopcroft-Karp
- Hall's marriage theorem
- Graphical sequences
- Floyd-Warshall
- Euler cycles
- Flow networks
- * Augmenting paths
- * Edmonds-Karp
- Bipartite matching
- Min. path cover
- Topological sorting
- Strongly connected components
- 2-SAT
- Cut vertices, cut-edges and biconnected components
- Edge coloring
- * Trees
- Vertex coloring
- * Bipartite graphs (=> trees)
- * 3^n (special case of set cover)
- Diameter and centroid
- K'th shortest path
- Shortest cycle
- Dynamic programming
- Knapsack
- Coin change
- Longest common subsequence
- Longest increasing subsequence

- Number of paths in a dag
- Shortest path in a dag
- Dynprog over intervals
- Dynprog over subsets
- Dynprog over probabilities
- Dynprog over trees
- -3^n set cover
- Divide and conquer
- Knuth optimization
- Convex hull optimizations - RMQ (sparse table a.k.a 2^k -jumps)
- Bitonic cycle
- Log partitioning (loop over most restricted)
- Combinatorics
- Computation of binomial coefficients
- Pigeon-hole principle
- Inclusion/exclusion
- Catalan number
- Pick's theorem
- Number theory
- Integer parts
- Divisibility
- Euclidean algorithm
- Modular arithmetic
- * Modular multiplication
- * Modular inverses
- * Modular exponentiation by squaring
- Chinese remainder theorem
- Fermat's little theorem
- Euler's theorem
- Phi function
- Frobenius number
- Quadratic reciprocity
- Pollard-Rho
- Miller-Rabin
- Hensel lifting
- Vieta root jumping
- Game theory
 - Combinatorial games
- Game trees
- Mini-max
- Nim
- Games on graphs
- Games on graphs with loops
- Grundy numbers
- Bipartite games without repetition
- General games without repetition
- Alpha-beta pruning
- Probability theory
- Optimization - Binary search
- Ternary search

- Unimodality and convex functions
- Binary search on derivative
- Numerical methods
 - Numeric integration
 - Newton's method
- Root-finding with binary/ternary search
- Golden section search
- Matrices
 - Gaussian elimination
 - Exponentiation by squaring
- Sorting
- Radix sort
- Geometry
- Coordinates and vectors
 - * Cross product
- * Scalar product
- Convex hull
- Polygon cut
- Closest pair
- Coordinate-compression
- Quadtrees
- KD-trees
- All segment-segment intersection
- Sweeping
- Discretization (convert to events and sweep)
- Angle sweeping
- Line sweeping
- Discrete second derivatives
- Strings
- Longest common substring
- Palindrome subsequences
- Knuth-Morris-Pratt
- Tries
- Rolling polynomial hashes
- Suffix array
- Suffix tree
- Aho-Corasick
- Manacher's algorithm
- Letter position lists
- Combinatorial search
- Meet in the middle
- Brute-force with pruning
- Best-first (A*)
- Bidirectional search
- Iterative deepening DFS / A*
- Data structures
- LCA (2^k -jumps in trees in general)
- Pull/push-technique on trees
- Heavy-light decomposition
- Centroid decomposition Lazy propagation
- Self-balancing trees

KTH 26/26

- Convex hull trick
- Monotone queues / monotone stacks / sliding queues
- Sliding queue using 2 stacks
 Persistent segment tree