Chapter 3.3: Z-Estimators

Rens Kamphuis

University of Amsterdam

July 6, 2020

Overview

Recap of M-estimators

- Z-estimators
 - What are they?
 - Limiting distribution
 - The i.i.d. case
 - Example

M-Estimators Recap

Consider the criterion function $\theta \mapsto M_n(\theta)$.

M-Estimators Recap

Consider the criterion function $\theta \mapsto M_n(\theta)$.

Estimators $\hat{\theta}_n = \hat{\theta}_n(X_1, \dots, X_n)$ that maximise a certain criterion function are called M-estimators.

M-Estimators Recap

Consider the criterion function $\theta \mapsto M_n(\theta)$.

Estimators $\hat{\theta}_n = \hat{\theta}_n(X_1, \dots, X_n)$ that maximise a certain criterion function are called M-estimators.

We have seen results that ensure:

- Consistency: $\hat{\theta}_n \stackrel{P^*}{\to} \theta_0$
- Rate of convergence: $r_n d(\hat{\theta}_n, \theta_0) = O_P^*(1)$
- Limiting distribution

We again consider a criterion function

$$\Psi_n:\Theta\to\mathbb{L},$$

where Θ is a subset of a Banach space and $\mathbb L$ is another Banach space.

We again consider a criterion function

$$\Psi_n:\Theta\to\mathbb{L},$$

where Θ is a subset of a Banach space and $\mathbb L$ is another Banach space.

The estimators $\hat{\theta}_n$ solve

$$\Psi_n(\hat{\theta}_n)=0.$$

We again consider a criterion function

$$\Psi_n:\Theta\to\mathbb{L},$$

where Θ is a subset of a Banach space and $\mathbb L$ is another Banach space.

The estimators $\hat{\theta}_n$ solve

$$\Psi_n(\hat{\theta}_n)=0.$$

Let $\Psi:\Theta\to\mathbb{L}$ be the deterministic limiting process of Ψ_n . It is again reasonable to assume

$$\Psi_n(\theta) \stackrel{P^*}{\to} \Psi(\theta)$$
 for every θ .

We again consider a criterion function

$$\Psi_n:\Theta\to\mathbb{L},$$

where Θ is a subset of a Banach space and $\mathbb L$ is another Banach space.

The estimators $\hat{\theta}_n$ solve

$$\Psi_n(\hat{\theta}_n)=0.$$

Let $\Psi:\Theta\to\mathbb{L}$ be the deterministic limiting process of Ψ_n . It is again reasonable to assume

$$\Psi_n(\theta) \stackrel{P^*}{\to} \Psi(\theta)$$
 for every θ .

We hope that $\hat{\theta}_n$ tends to a value θ_0 satisfying

$$\Psi(\theta_0)=0.$$

We are interested in the same questions as last week. Namely,

- Do we have consistency?
- What is the rate of convergence?
- What is the limiting distribution?

We are interested in the same questions as last week. Namely,

- Do we have consistency?
- What is the rate of convergence?
- What is the limiting distribution?

Fortunately, there is a very direct relationship between M-estimators and Z-estimators.

A zero of Ψ_n maximises the function $\theta \mapsto -\|\Psi_n(\theta)\|$.

We are interested in the same questions as last week. Namely,

- Do we have consistency?
- What is the rate of convergence?
- What is the limiting distribution?

Fortunately, there is a very direct relationship between M-estimators and Z-estimators.

A zero of Ψ_n maximises the function $\theta \mapsto -\|\Psi_n(\theta)\|$.

Results from last week allow us to derive similar results for Z-estimators very easily! Therefore, we will only be looking at the limiting distribution.

Recall that $\Psi:\Theta\to\mathbb{L},$ where Θ is a subset of a Banach space and \mathbb{L} is another Banach space.

Recall that $\Psi:\Theta\to\mathbb{L}$, where Θ is a subset of a Banach space and \mathbb{L} is another Banach space. We assume that Ψ is Fréchet-differentiable at θ_0 . That is,

$$\|\Psi(\theta) - \Psi(\theta_0) - \dot{\Psi}_{\theta_0}(\theta - \theta_0)\| = o(\|\theta - \theta_0\|) \quad \text{as } \theta \to \theta_0,$$

where $\dot{\Psi}_{\theta_0}$: lin $\Theta \to \mathbb{L}$ is a continuous, linear, and one-to-one map.

Recall that $\Psi:\Theta\to\mathbb{L}$, where Θ is a subset of a Banach space and \mathbb{L} is another Banach space. We assume that Ψ is Fréchet-differentiable at θ_0 . That is,

$$\|\Psi(\theta) - \Psi(\theta_0) - \dot{\Psi}_{\theta_0}(\theta - \theta_0)\| = o(\|\theta - \theta_0\|) \quad \text{as } \theta \to \theta_0,$$

where $\dot{\Psi}_{\theta_0}$: lin $\Theta \to \mathbb{L}$ is a continuous, linear, and one-to-one map.

In the following theorem we will make the assumption that $\dot{\Psi}_{\theta_0}^{-1}$ exists and is continuous on the range of $\dot{\Psi}_{\theta_0}$.

Recall that $\Psi:\Theta\to\mathbb{L}$, where Θ is a subset of a Banach space and \mathbb{L} is another Banach space. We assume that Ψ is Fréchet-differentiable at θ_0 . That is,

$$\|\Psi(\theta) - \Psi(\theta_0) - \dot{\Psi}_{\theta_0}(\theta - \theta_0)\| = o(\|\theta - \theta_0\|)$$
 as $\theta \to \theta_0$,

where $\dot{\Psi}_{\theta_0}$: lin $\Theta \to \mathbb{L}$ is a continuous, linear, and one-to-one map.

In the following theorem we will make the assumption that $\dot{\Psi}_{\theta_0}^{-1}$ exists and is continuous on the range of $\dot{\Psi}_{\theta_0}$.

Remark: this assumption is easy to verify if Θ were finite-dimensional.

Theorem (3.3.1)

Assume that

$$\sqrt{n}(\Psi_n - \Psi)(\hat{\theta}_n) - \sqrt{n}(\Psi_n - \Psi)(\theta_0) = o_P^*(1 + \sqrt{n}\|\hat{\theta}_n - \theta\|),$$

Theorem (3.3.1)

Assume that

$$\sqrt{n}(\Psi_n - \Psi)(\hat{\theta}_n) - \sqrt{n}(\Psi_n - \Psi)(\theta_0) = o_P^*(1 + \sqrt{n}||\hat{\theta}_n - \theta||),$$

and that the sequence $\sqrt{n}(\Psi_n - \Psi)(\theta_0)$ converges in distribution to a tight random element Z.

Theorem (3.3.1)

Assume that

$$\sqrt{n}(\Psi_n - \Psi)(\hat{\theta}_n) - \sqrt{n}(\Psi_n - \Psi)(\theta_0) = o_P^*(1 + \sqrt{n}||\hat{\theta}_n - \theta||),$$

and that the sequence $\sqrt{n}(\Psi_n - \Psi)(\theta_0)$ converges in distribution to a tight random element Z.If $\Psi(\theta_0) = 0$ and $\Psi_n(\hat{\theta}_n) = o_P^*(n^{-1/2})$, and $\hat{\theta}_n \stackrel{P^*}{\to} \theta_0$, then

$$\sqrt{n}\dot{\Psi}_{\theta_0}(\hat{\theta}_n-\theta_0)=-\sqrt{n}(\Psi_n-\Psi)(\theta_0)+o_P^*(1).$$

Theorem (3.3.1)

Assume that

$$\sqrt{n}(\Psi_n - \Psi)(\hat{\theta}_n) - \sqrt{n}(\Psi_n - \Psi)(\theta_0) = o_P^*(1 + \sqrt{n}||\hat{\theta}_n - \theta||),$$

and that the sequence $\sqrt{n}(\Psi_n - \Psi)(\theta_0)$ converges in distribution to a tight random element Z.If $\Psi(\theta_0) = 0$ and $\Psi_n(\hat{\theta}_n) = o_P^*(n^{-1/2})$, and $\hat{\theta}_n \overset{P^*}{\to} \theta_0$, then

$$\sqrt{n}\dot{\Psi}_{\theta_0}(\hat{\theta}_n-\theta_0)=-\sqrt{n}(\Psi_n-\Psi)(\theta_0)+o_P^*(1).$$

Consequently, $\sqrt{n}(\hat{\theta}_n - \theta_0) \rightsquigarrow -\dot{\Psi}_{\theta_0}^{-1}Z$.

Since
$$\Psi(\theta_0)=0$$
 and $\Psi_n(\hat{\theta}_n)=o_P^*(n^{-1/2})$, we have
$$\sqrt{n}(\Psi(\hat{\theta}_n)-\Psi(\theta_0))=\sqrt{n}(\Psi(\hat{\theta}_n)-\Psi_n(\hat{\theta}_n))+o_P^*(1).$$

Since
$$\Psi(\theta_0) = 0$$
 and $\Psi_n(\hat{\theta}_n) = o_P^*(n^{-1/2})$, we have
$$\sqrt{n}(\Psi(\hat{\theta}_n) - \Psi(\theta_0)) = \sqrt{n}(\Psi(\hat{\theta}_n) - \Psi_n(\hat{\theta}_n)) + o_P^*(1).$$

Reshuffling terms in the first assumption gives

$$\sqrt{n}(\Psi(\hat{\theta}_n) - \Psi(\theta_0)) = -\sqrt{n}(\Psi_n - \Psi)(\theta_0) + o_P^*(1 + \sqrt{n}||\hat{\theta}_n - \theta||).$$

Since
$$\Psi(\theta_0) = 0$$
 and $\Psi_n(\hat{\theta}_n) = o_P^*(n^{-1/2})$, we have
$$\sqrt{n}(\Psi(\hat{\theta}_n) - \Psi(\theta_0)) = \sqrt{n}(\Psi(\hat{\theta}_n) - \Psi_n(\hat{\theta}_n)) + o_P^*(1).$$

Reshuffling terms in the first assumption gives

$$\sqrt{n}(\Psi(\hat{\theta}_n) - \Psi(\theta_0)) = -\sqrt{n}(\Psi_n - \Psi)(\theta_0) + o_P^*(1 + \sqrt{n}\|\hat{\theta}_n - \theta\|).$$

Since $\dot{\Psi}_{ heta_0}$ is continuously invertible, there exists c>0 such that

$$\|\theta - \theta_0\| = \|\dot{\Psi}_{\theta_0}^{-1} \dot{\Psi}_{\theta_0} (\theta - \theta_0)\| \le \frac{1}{c} \|\dot{\Psi}_{\theta_0} (\theta - \theta_0)\|$$
$$\implies \|\dot{\Psi}_{\theta_0} (\theta - \theta_0)\| \ge c \|\theta - \theta_0\|.$$

Since $\Psi(\theta_0) = 0$ and $\Psi_n(\hat{\theta}_n) = o_P^*(n^{-1/2})$, we have $\sqrt{n}(\Psi(\hat{\theta}_n) - \Psi(\theta_0)) = \sqrt{n}(\Psi(\hat{\theta}_n) - \Psi_n(\hat{\theta}_n)) + o_P^*(1).$

Reshuffling terms in the first assumption gives

$$\sqrt{n}(\Psi(\hat{\theta}_n) - \Psi(\theta_0)) = -\sqrt{n}(\Psi_n - \Psi)(\theta_0) + o_P^*(1 + \sqrt{n}\|\hat{\theta}_n - \theta\|).$$

Since $\dot{\Psi}_{\theta_0}$ is continuously invertible, there exists c>0 such that

$$\begin{split} \|\theta - \theta_0\| &= \|\dot{\Psi}_{\theta_0}^{-1} \dot{\Psi}_{\theta_0}(\theta - \theta_0)\| \le \frac{1}{c} \|\dot{\Psi}_{\theta_0}(\theta - \theta_0)\| \\ &\implies \|\dot{\Psi}_{\theta_0}(\theta - \theta_0)\| \ge c \|\theta - \theta_0\|. \end{split}$$

Using the differentiability of $\boldsymbol{\Psi}$ then gives

$$\|\Psi(\theta)-\Psi(\theta_0)\|\geq c\|\theta-\theta_0\|+o(\|\theta-\theta_0\|).$$

Since
$$\Psi(\theta_0) = 0$$
 and $\Psi_n(\hat{\theta}_n) = o_P^*(n^{-1/2})$, we have
$$\sqrt{n}(\Psi(\hat{\theta}_n) - \Psi(\theta_0)) = \sqrt{n}(\Psi(\hat{\theta}_n) - \Psi_n(\hat{\theta}_n)) + o_P^*(1).$$

Reshuffling terms in the first assumption gives

$$\sqrt{n}(\Psi(\hat{\theta}_n) - \Psi(\theta_0)) = -\sqrt{n}(\Psi_n - \Psi)(\theta_0) + o_P^*(1 + \sqrt{n}\|\hat{\theta}_n - \theta\|).$$

Since $\dot{\Psi}_{\theta_0}$ is continuously invertible, there exists c>0 such that

$$\begin{split} \|\theta - \theta_0\| &= \|\dot{\Psi}_{\theta_0}^{-1} \dot{\Psi}_{\theta_0}(\theta - \theta_0)\| \le \frac{1}{c} \|\dot{\Psi}_{\theta_0}(\theta - \theta_0)\| \\ &\implies \|\dot{\Psi}_{\theta_0}(\theta - \theta_0)\| \ge c \|\theta - \theta_0\|. \end{split}$$

Using the differentiability of Ψ then gives

$$\|\Psi(\theta)-\Psi(\theta_0)\|\geq c\|\theta-\theta_0\|+o(\|\theta-\theta_0\|).$$

Combining now gives

$$\sqrt{n}\|\hat{\theta}_n - \theta_0\|(c + o_P(1)) \le O_P^*(1) + o_P^*(1 + \sqrt{n}\|\hat{\theta}_n - \theta_0\|),$$

Since $\Psi(\theta_0) = 0$ and $\Psi_n(\hat{\theta}_n) = o_P^*(n^{-1/2})$, we have $\sqrt{n}(\Psi(\hat{\theta}_n) - \Psi(\theta_0)) = \sqrt{n}(\Psi(\hat{\theta}_n) - \Psi_n(\hat{\theta}_n)) + o_P^*(1).$

Reshuffling terms in the first assumption gives

$$\sqrt{n}(\Psi(\hat{\theta}_n) - \Psi(\theta_0)) = -\sqrt{n}(\Psi_n - \Psi)(\theta_0) + o_P^*(1 + \sqrt{n}\|\hat{\theta}_n - \theta\|).$$

Since $\dot{\Psi}_{\theta_0}$ is continuously invertible, there exists c>0 such that

$$\|\theta - \theta_0\| = \|\dot{\Psi}_{\theta_0}^{-1} \dot{\Psi}_{\theta_0} (\theta - \theta_0)\| \le \frac{1}{c} \|\dot{\Psi}_{\theta_0} (\theta - \theta_0)\|$$
$$\implies \|\dot{\Psi}_{\theta_0} (\theta - \theta_0)\| \ge c \|\theta - \theta_0\|.$$

Using the differentiability of Ψ then gives

$$\|\Psi(\theta)-\Psi(\theta_0)\|\geq c\|\theta-\theta_0\|+o(\|\theta-\theta_0\|).$$

Combining now gives

$$\sqrt{n}\|\hat{\theta}_n - \theta_0\|(c + o_P(1)) \leq O_P^*(1) + o_P^*(1 + \sqrt{n}\|\hat{\theta}_n - \theta_0\|),$$

and we conclude that $\hat{\theta}_n$ is \sqrt{n} -consistent for θ_0 in norm,

The differentiability of Ψ allows us to write

$$\sqrt{n}(\Psi(\hat{\theta}_n) - \Psi(\theta_0)) = \sqrt{n}\dot{\Psi}_{\theta_0}(\hat{\theta}_n - \theta_0) + o_P^*(\sqrt{n}||\hat{\theta}_n - \theta_0||).$$

Note that the last term is $o_P^*(1)$.

The differentiability of Ψ allows us to write

$$\sqrt{n}(\Psi(\hat{\theta}_n) - \Psi(\theta_0)) = \sqrt{n}\dot{\Psi}_{\theta_0}(\hat{\theta}_n - \theta_0) + o_P^*(\sqrt{n}||\hat{\theta}_n - \theta_0||).$$

Note that the last term is $o_P^*(1)$. Recall that

$$\sqrt{n}(\Psi(\hat{\theta}_n) - \Psi(\theta_0)) = -\sqrt{n}(\Psi_n - \Psi)(\theta_0) + o_P^*(1 + \sqrt{n}||\hat{\theta}_n - \theta||).$$

The differentiability of Ψ allows us to write

$$\sqrt{n}(\Psi(\hat{\theta}_n) - \Psi(\theta_0)) = \sqrt{n}\dot{\Psi}_{\theta_0}(\hat{\theta}_n - \theta_0) + o_P^*(\sqrt{n}||\hat{\theta}_n - \theta_0||).$$

Note that the last term is $o_P^*(1)$. Recall that

$$\sqrt{n}(\Psi(\hat{\theta}_n) - \Psi(\theta_0)) = -\sqrt{n}(\Psi_n - \Psi)(\theta_0) + o_P^*(1 + \sqrt{n}\|\hat{\theta}_n - \theta\|).$$

We conclude that indeed

$$\sqrt{n}\dot{\Psi}_{\theta_0}(\hat{\theta}_n-\theta_0)=-\sqrt{n}(\Psi_n-\Psi)(\theta_0)+o_P^*(1).$$

The differentiability of Ψ allows us to write

$$\sqrt{n}(\Psi(\hat{\theta}_n) - \Psi(\theta_0)) = \sqrt{n}\dot{\Psi}_{\theta_0}(\hat{\theta}_n - \theta_0) + o_P^*(\sqrt{n}||\hat{\theta}_n - \theta_0||).$$

Note that the last term is $o_P^*(1)$. Recall that

$$\sqrt{n}(\Psi(\hat{\theta}_n) - \Psi(\theta_0)) = -\sqrt{n}(\Psi_n - \Psi)(\theta_0) + o_P^*(1 + \sqrt{n}||\hat{\theta}_n - \theta||).$$

We conclude that indeed

$$\sqrt{n}\dot{\Psi}_{\theta_0}(\hat{\theta}_n-\theta_0)=-\sqrt{n}(\Psi_n-\Psi)(\theta_0)+o_P^*(1).$$

Using continuity of $\dot{\Psi}_{\theta_0}^{-1}$, the continuous mapping theorem gives

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \rightsquigarrow -\dot{\Psi}_{\theta_0}^{-1} Z.$$

Remark: if $\sqrt{n}\|\hat{\theta}_n - \theta_0\|$ were asymptotically tight, the first conclusion is valid without without requiring continuous invertibility of $\dot{\Psi}_{\theta_0}$.

Recall that we are looking for the zero of

$$\Psi_n:\Theta\to\mathbb{L}.$$

Recall that we are looking for the zero of

$$\Psi_n:\Theta\to\mathbb{L}$$
.

If $\mathbb L$ is an $\ell^\infty(\mathcal H)$ space, then $\hat\theta_n$ is the zero of Ψ_n if it solves the system of estimating equations

$$\Psi_n(\hat{\theta}_n)h = 0$$
 for all $h \in \mathcal{H}$.

Recall that we are looking for the zero of

$$\Psi_n:\Theta\to\mathbb{L}$$
.

If $\mathbb L$ is an $\ell^\infty(\mathcal H)$ space, then $\hat\theta_n$ is the zero of Ψ_n if it solves the system of estimating equations

$$\Psi_n(\hat{\theta}_n)h = 0 \text{ for all } h \in \mathcal{H}.$$

In case of i.i.d. observations, we may use $\Psi_n(\theta)h = \mathbb{P}_n\psi_{\theta,h}$ and $\Psi(\theta)h = \mathbb{P}\psi_{\theta,h}$ for given measurable functions $\psi_{\theta,h}$.

Recall that we are looking for the zero of

$$\Psi_n:\Theta\to\mathbb{L}$$
.

If \mathbb{L} is an $\ell^{\infty}(\mathcal{H})$ space, then $\hat{\theta}_n$ is the zero of Ψ_n if it solves the system of estimating equations

$$\Psi_n(\hat{\theta}_n)h = 0$$
 for all $h \in \mathcal{H}$.

In case of i.i.d. observations, we may use $\Psi_n(\theta)h = \mathbb{P}_n\psi_{\theta,h}$ and $\Psi(\theta)h = \mathbb{P}\psi_{\theta,h}$ for given measurable functions $\psi_{\theta,h}$.

The stochastic condition reduces to

$$\|\mathbb{G}_n(\psi_{\hat{\theta}_n,h}-\psi_{\theta_0,h})\|_{\mathcal{H}}=o_P^*(1+\sqrt{n}\|\hat{\theta}_n-\theta\|).$$

The stochastic condition revisited

Lemma (3.3.5)

Suppose the class of functions

$$\{\psi_{\theta,h} - \psi_{\theta_0,h} : \|\theta - \theta_0\| < \delta, h \in \mathcal{H}\}$$

is P-Donsker for some $\delta > 0$ and that

$$\sup_{h\in\mathcal{H}}P(\psi_{\theta,h}-\psi_{\theta_0,h})^2\to 0,\quad \theta\to\theta_0.$$

If $\hat{\theta}_n \stackrel{P^*}{\to} \theta_0$, then the stochastic condition in Theorem 3.3.1 is satisfied.

Wlog, $\hat{\theta}_n$ takes its values in $\Theta_{\delta} = \{\theta : \|\theta - \theta_0\| < \delta\}$.

Wlog, $\hat{\theta}_n$ takes its values in $\Theta_{\delta} = \{\theta : \|\theta - \theta_0\| < \delta\}$. Define $f : \ell^{\infty}(\Theta_{\delta} \times \mathcal{H}) \times \Theta_{\delta} \to \ell^{\infty}(\mathcal{H})$ by $f(z, \theta)h = z(\theta, h)$. This function is continuous at (z, θ_0) such that

$$||z(\theta,h)-z(\theta_0,h)||_{\mathcal{H}} \to 0 \quad \text{as } \theta \to \theta_0.$$

Wlog, $\hat{\theta}_n$ takes its values in $\Theta_{\delta} = \{\theta : \|\theta - \theta_0\| < \delta\}$. Define $f : \ell^{\infty}(\Theta_{\delta} \times \mathcal{H}) \times \Theta_{\delta} \to \ell^{\infty}(\mathcal{H})$ by $f(z, \theta)h = z(\theta, h)$. This function is continuous at (z, θ_0) such that

$$\|z(\theta,h)-z(\theta_0,h)\|_{\mathcal{H}} \to 0 \quad \text{as } \theta \to \theta_0.$$

Define a stochastic process Z_n indexed by $\Theta_\delta \times \mathcal{H}$ by

$$Z_n(\theta,h) = \mathbb{G}_n(\psi_{\theta,h} - \psi_{\theta_0,h}).$$

This sequence converges in $\ell^{\infty}(\Theta_{\delta} \times \mathcal{H})$ to a tight Gaussian process Z.

Wlog, $\hat{\theta}_n$ takes its values in $\Theta_{\delta} = \{\theta : \|\theta - \theta_0\| < \delta\}$. Define $f : \ell^{\infty}(\Theta_{\delta} \times \mathcal{H}) \times \Theta_{\delta} \to \ell^{\infty}(\mathcal{H})$ by $f(z, \theta)h = z(\theta, h)$. This function is continuous at (z, θ_0) such that

$$\|z(\theta,h)-z(\theta_0,h)\|_{\mathcal{H}} \to 0 \quad \text{as } \theta \to \theta_0.$$

Define a stochastic process Z_n indexed by $\Theta_\delta \times \mathcal{H}$ by

$$Z_n(\theta, h) = \mathbb{G}_n(\psi_{\theta,h} - \psi_{\theta_0,h}).$$

This sequence converges in $\ell^{\infty}(\Theta_{\delta} \times \mathcal{H})$ to a tight Gaussian process Z. Moreover, it has continuous samples paths with respect to the semimetric ρ given by

$$\rho^2((\theta_1,h_1),(\theta_2,h_2)) = P(\psi_{\theta_1,h_1} - \psi_{\theta_0,h_1} - \psi_{\theta_2,h_2} + \psi_{\theta_0,h_2})^2.$$

By assumption

$$\sup_h \rho^2((\theta,h),(\theta_0,h)) = \sup_h P(\psi_{\theta,h} - \psi_{\theta_0,h})^2 \to 0 \quad \text{as } \theta \to \theta_0.$$

It follows that f is continuous at almost all sample paths of Z.

By assumption

$$\sup_h \rho^2((\theta,h),(\theta_0,h)) = \sup_h P(\psi_{\theta,h} - \psi_{\theta_0,h})^2 \to 0 \quad \text{as } \theta \to \theta_0.$$

It follows that f is continuous at almost all sample paths of Z.

By Slutsky's lemma (Example 1.4.7), $(Z_n, \hat{\theta}_n) \rightsquigarrow (Z, \theta_0)$.

By assumption

$$\sup_h \rho^2((\theta,h),(\theta_0,h)) = \sup_h P(\psi_{\theta,h} - \psi_{\theta_0,h})^2 \to 0 \quad \text{as } \theta \to \theta_0.$$

It follows that f is continuous at almost all sample paths of Z.

By Slutsky's lemma (Example 1.4.7), $(Z_n, \hat{\theta}_n) \rightsquigarrow (Z, \theta_0)$.

The continuous mapping theorem then gives

$$Z_n(\hat{\theta}_n) = f(Z_n, \hat{\theta}_n) \leadsto f(Z, \theta_0) = 0 \text{ in } \ell^{\infty}(\mathcal{H}).$$

Examples

In case of Euclidean Θ and i.i.d. random variables, the following examples satisfy the stochastic condition:

Example 3.3.7 (Lipschitz): For every θ_1, θ_2 in a neighbourhood of θ_0 ,

$$\|\psi_{\theta_1}(x) - \psi_{\theta_2}(x)\| \le \dot{\psi}(x)\|\theta_1 - \theta_2\|,$$

where $P\dot{\psi}^2<\infty$.

Examples

In case of Euclidean Θ and i.i.d. random variables, the following examples satisfy the stochastic condition:

Example 3.3.7 (Lipschitz): For every θ_1, θ_2 in a neighbourhood of θ_0 ,

$$\|\psi_{\theta_1}(x) - \psi_{\theta_2}(x)\| \le \dot{\psi}(x)\|\theta_1 - \theta_2\|,$$

where $P\dot{\psi}^2<\infty$.

Example 3.3.8 (Classical smoothness): Assume $\theta \mapsto \psi_{\theta}(x)$ is twice continuously differentiable for each x, with derivatives satisfying

$$P\|\dot{\psi}_{\theta_0}\|^2<\infty; \qquad P^*\sup_{\|\theta-\theta_0\|<\delta}\|\ddot{\psi}_{\theta}\|<\infty.$$

Idea: Taylor $\mathbb{G}_n(\psi_{\theta} - \psi_{\theta_0})$ to show that

$$\|\mathbb{G}_n(\psi_{\hat{\theta}_n} - \psi_{\theta_0})\| \le o_P(1) + o_P(1)\sqrt{n}\|\hat{\theta}_n - \theta_0\|.$$