Supervised Finetuning (SFT)

Alignment Tuning

LLMs are great for many NLP tasks. However they sometimes exhibit **unintended behaviour**:

- False information
- Inaccurate objectives
- Harmful, misleading, and biased expressions

It lacks consideration of human values or preferences

Alignment Tuning: Criteria

Helpfulness:

- Solving tasks/answering questions concisely and efficiently
- Might elicit additional relevant information
- Challenging since it's difficult to precisely define and measure intention of users

Honesty:

- Present accurate content
- No fabricated information
- Convey degrees of uncertainty in it's output
- "Know unknowns" (know about your levels of knowledge)

Harmlessness:

- Not offensive nor discriminatory
- Detect requests for malicious purposes
- Refuse dangerous actions

Alignment Tuning: Collecting Human Feedback

- Human Labeler Selection: filter labelers by assessing agreement between human labeler and researcher
- Human Feedback Collection:
 - Ranking-based
 - Question-based
 - Rule-based

Alignment Tuning: RLHF

- Reinforcement Learning from Human Feedback
- 3 components:
 - Pre-trained LM to be aligned (generative model with existing pre-trained parameters)
 - Reward model learning from human feedback: fine-tuned LM or LM trained de novo using human preference data
 - RL algorithm training the LM

Alignment Tuning: RLHF Key Steps

- Supervised Fine-tuning
 - Supervised dataset containing input
 prompts and desired outputs
- Reward Model Training
 - Train with human feedback data
- RL Fine-tuning
 - Reward/Penalty model based on divergence between initial LM and current output

Fig. 12: The workflow of the RLHF algorithm.

Alignment Tuning: Alignment without RLHF

- Problems:
 - RLHF needs to train multiple LMs including model being aligned, reward model, reference model
 - Commonly used PPO RL-algorithm is complex and sensitive to hyper-parameters
- Alternative: supervised fine-tuning without reinforcement learning
 - Supervised learning on high-quality alignment dataset
 - Assuming that golden rules are integrated in the alignment dataset
- 2 issues:
 - Alignment Data Collection
 - Supervised Alignment Tuning

Alignment Tuning: Alignment without RLHF

Alignment Data Collection

- Construction of alignment data
 - Align LLM-behaviour with human preferences
- Reward model based approaches
 - Leverage existing reward models
- LLM based generative approaches
 - Powerful LLMs to generate human-aligned data
- LLM based interactive approaches
 - Simulated interaction with number of LLM agents
 - Central agent revises original response based on the suggestions from the other agents

Alignment Tuning: Alignment without RLHF

Supervised Alignment Tuning

Primary training objective

- Primary training loss is still the traditional cross-entropy loss for sequence-to-sequence learning
- CoH: prepend "helpful answer" and "unhelpful answer" to responses
- Only compute losses with special masking

Direct preference optimization

- Reparameterize the response rewards using the policy model
- Original reward modeling objective can be reformulated only based on the policy model.

Auxiliary optimization objectives

- The ranking loss can be used to train the model to preserve the ranking order of these responses
- Contrastive learning to push up the probability of correct instruction-response pairs while pushing down incorrect instruction-response pairs

LIMA (Less Is More for Alignment)

Superficial Alignment Hypothesis

- Knowledge and capabilities are learned in pre-training
- Small set of examples enough for tuning
- Model needs to learn the subdistribution to use

Experiment

- LIMA, 65B parameter LLM
- 1000 examples of "helpful Al Assistant"
 - 750 Stack Exchange and wikiHow -> High Quality and diversity
 - 250 Manually authored -> task diversity and maintaining a uniform response style

2 Tests

- Human evaluation
- GPT-4 as judge

Source	#Examples	Avg Input Len.	Avg Output Len.
Training			
Stack Exchange (STEM)	200	117	523
Stack Exchange (Other)	200	119	530
wikiHow	200	12	1,811
Pushshift r/WritingPrompts	150	34	274
Natural Instructions	50	236	92
Paper Authors (Group A)	200	40	334
Dev			
Paper Authors (Group A)	50	36	N/A
Test			
Pushshift r/AskReddit	70	30	N/A
Paper Authors (Group B)	230	31	N/A

Table 1: Sources of training prompts (inputs) and responses (outputs), and test prompts. The total amount of training data is roughly 750,000 tokens, split over exactly 1,000 sequences.

Training

- 15 epochs
- AdamW with β 1 = 0.9, β 2 = 0.95, weight-decay = 0.1
- Batch size of 32
- 2048 tokens per text
- Residual dropout p=0.0 for bottom layer, up to p=0.3 for last

Evaluation

- Each model creates a response for each prompt
 - Nucleus sampling with p = 0.9 and a temperature of $\tau = 0.7$
- Annotators rate responses

Evaluation

Figure 1: Human preference evaluation, comparing LIMA to 5 different baselines across 300 test prompts.

Figure 2: Preference evaluation using GPT-4 as the annotator, given the same instructions provided to humans.

Figure 3: Analysis of LIMA over 50 test prompts.

LIMA

Advantages

- "Relative" good performance after training on few but diverse prompts
- Able to generalize well

Limits

- After 3 interactions in 6/10 interactions LIMA fails to follow the prompt
 - Adding Dialogue Data to it improved it
- Mental effort to manually sort/filter and craft examples
 - Difficult to scale
- Not as robust as product-grade models
 - "Unlucky sample" during decoding or adversarial prompt can lead to weak response
- It loses in the benchmarks for comparably sized models
- Data leak in annotation groups before labeling