Math 5110 Applied Linear Algebra -Fall 2020.

He Wang

he.wang@northeastern.edu

Homework 3.

1. Reading: [Gockenbach], Chapters 4.

2. Questions: (You can use Matlab if needed.)

The following questions 1-4 are about Section 4.

Question 1. Let $\mathscr{B} = \{\vec{b}_1, \vec{b}_2\} = \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$ be a basis for $V = \text{Span}\{\vec{b}_1, \vec{b}_2\}$.

(1). Find the coordinate of $\vec{x} = \begin{bmatrix} 3 \\ 5 \\ 7 \end{bmatrix}$ relative to \mathcal{B} .

(2). Suppose the coordinate of $\vec{y} \in V$ is $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Find the vector \vec{y} .

Question 2. Let $V = \{a_1t + a_2t^2 + a_3t^3 \mid a_1, a_2, a_3 \in \mathbb{R}\}$ with basis $\mathscr{B} = \{t, t^2, t^3\}$. Let $P_2 = \{a_0 + a_1t + a_2t^2 \mid a_0, a_1, a_2 \in \mathbb{R}\}$ with basis $\mathscr{C} = \{1, t, t^2\}$. Let $T : V \to P_2$ be a transformation defined by derivatives T(p) = 2f' - f''.

(1) Prove that T is a linear transformation. (using properties of derivative.)

(2) Find the matrix $[T]_{\mathscr{BC}}$ of the transformation T respective to the bases \mathscr{B} and \mathscr{C} .

(3) Is T an isomorphism?

Question 3. Let V be a subspace of \mathbb{R}^n . Suppose $\mathscr{B} = \{\vec{b}_1, \dots, \vec{b}_s\}$ and $\mathscr{C} = \{\vec{v}_1, \dots, \vec{v}_s\}$ are two bases of V.

(1) Find the $\mathscr{B} - \mathscr{C}$ -matrix $S = [\mathrm{id}]_{\mathscr{B}\mathscr{C}}$ of the identity map from V to V. This matrix is also called **change of coordinate matrix** from \mathscr{B} to \mathscr{C} .

(2) Show that $[\vec{b}_1 \dots \vec{b}_s] = [\vec{v}_1 \dots \vec{v}_s]S$.

Question 4. Let V be a subspace of \mathbb{R}^3 . Suppose $\mathscr{B} = \{\vec{b}_1, \vec{b}_2\} = \{\begin{bmatrix} 1\\2\\-3 \end{bmatrix}, \begin{bmatrix} 4\\-1\\-3 \end{bmatrix}\}$ and $\mathscr{C} = \{\vec{v}_1, \vec{v}_2\} = \{\vec{v}_1, \vec{v}_2\}$

 $\left\{\begin{bmatrix}0\\1\\-1\end{bmatrix},\begin{bmatrix}1\\0\\-1\end{bmatrix}\right\}$ are two bases of V. (Example for the above question.)

(1) Find change of coordinate matrix S from \mathcal{B} to \mathcal{C} .

(2) Verify that $[\vec{b}_1 \ \vec{b}_2] = [\vec{v}_1 \ \vec{v}_2]S$.

The following questions 5-9 are about determinant in Section 5.

Question 5. Consider the real $n \times n$ matrix $A_n = (a_{ij})_{i,j=1,\dots,n}$ which has 2's on the main diagonal, -1's on the two diagonals next to the main diagonal, and 0's elsewhere. For example $A_2 = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$, $A_3 = \begin{bmatrix} -1 & 1 \\ 1 & 2 \end{bmatrix}$

$$\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}, A_4 = \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix}.$$

Compute $det(A_n)$ in terms of n.

Question 6. Compute the area of the hexagon with vertices (3, 1), (12, 8), (10, 7), (-1,-1), (-10,-8) and (-8,-7). Compute by hand (using determinant) and verify by Matlab use polyshape.

Question 7. True or False: (Briefly explain the reason.)

- (1) det(A + B) = det(A) + det(B) for all 5×5 matrices A and B.
- (2) The equation det(-A) = det(A) holds for all 6×6 matrices.
- (3) If all the entries of a 7×7 matrix A are 7, then det(A) must be 7^7
- (4) An 8×8 matrix fails to be invertible if (and only if) its determinant is nonzero.
- (5) If B is obtained be multiplying a column of A by 9, then the equation det(B) = 9 det(A) must hold.
- (6) If A is any $n \times n$ matrix, then $det(AA^T) = det(A^TA)$
- (7) There is an invertible matrix of the form $\begin{bmatrix} a & e & f & j \\ b & 0 & g & 0 \\ c & 0 & h & 0 \end{bmatrix}$
- (8) If A is an invertible $n \times n$ matrix, then $\det(A^T) \det(A^{-1}) = 1$.
- (9) det(4A) = 4 det(A) for all 4×4 matrices A.
- (10) There is a nonzero 4×4 matrix A such that det(4A) = 4 det(A).
- (11) det(AB) = det(BA) for all $n \times n$ matrices A and B.

Question 8. Is there a 3×3 matrix such that $A^2 + I = \mathbf{0}$? Show your reason.

Question 9. Let A be the matrix $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 8 & 9 \\ 2 & 4 & 6 & 10 \\ 1 & 5 & 10 & 9 \end{bmatrix}$. Compute by hand the **determinant** of A. Write down all steps you are using A.

all steps you are using. (Hint: using row operations together with cofactor expansion)