

ДЕЖУРНЫЙ ПО ПЛАНЕТЕ

Приемник-передатчик АИС КУ04-22

Команда: Космодесантные Уловители

Космическая автоматическая идентификация объектов и искусственный интеллект

Космодесантные Уловители

Эксперты 05

Сергей

Корягина Софья

Проектный менеджер

Сергей

Парфентьев Павел Схемотехник

Цель

Реализовать интерфейс на базе системы АИС с применением технологий искусственного интеллекта

Задачи

- 1.Создать приемник КУ04-22;
- 2.Создать интерфейс для отображения данных;
- 3.Разработать нейросеть

Цель программиста

Создание системы мониторинга состояния судна на основании данных физических датчиков

Задачи программиста

- 1. Написать код для нейросети;
- 2. Написать код для платы на языке «С»;
- 3. Отладка и тестирование кода.

Цель схемотехника

Проектирование и создание электрической цепи

Задачи схемотехника

- 1. Проектировка электрической цепи
- 2. Нанесение медных дорожек на текстолит
- 3. Установка и пайка компонентов

Цель проектировщика

Разработка и сборка корпуса для приёмника

Задачи проектировщика

- 1. Создание эскиза детали корпуса
- 2. Разработка корпуса в программах 3D моделирования
- 3. Печать и сборка всех компонентов

Цель проектного менеджера

Обеспечение результативного выполнения работы

Задачи проектировщика

- 1. Построение эффективного процесса в работе команды.
- 2. Обеспечение работы всех направлений проекта
- 3. Распределение задач и контроль их выполнения
- 4. Подготовка к защите проекта

Теоретические обоснования

АИС предназначена для предупреждения столкновений и для автоматического обмена с другими судами и компетентными береговыми службами навигационной, рейсовой и другой информацией, связанной с безопасностью.

Типы данных АИС

- идентификационный номер судна ІМО
- идентификационный номер морской подвижной службы
- MMSI позывной сигнал и название судна
- длина и ширина
- судна тип судна

Динамические данные

- координаты судна с признаком точности и состоянием целостности
- время в UTC, час, мин, с
- курс относительно грунта (COG)
- курс судна по гирокомпасу
- навигационное состояние судна
- скорость поворота (ROT)

Рейсовые данные

- осадка судна (вводится в на рейса, исправляется по мер необходимости)
- (тип) опасного груза (вводится в начале рейса)
- порт назначения и время прибытия (вводится в начале рейса, исправляется по мере необходимости)

Анализ существующих решений

- Режим дальней связи по каналам ИНМАРСАТ-С обеспечивает автоматическую передачу информации с существенным расширением зоны мониторинга.
- Является одним из наиболее перспективных технических решений задачи мониторинга судов в глобальном масштабе.

Виды приемников АИС

- Передатчик и приемник класса А для коммерческих перевозок
- Передатчик и приемник класса В для прогулочных судов
- Приемник.

Технологические решения

- Простая форма
- Подходит под форму платы
- Быстро производится

Схема: электрическая

Микроконтроллер STM32L

- Усилитель
- Радиомодуль Si4463

ПО: нейросеть и код для платы

- Язык Python для нейросети и С для платы
- Библиотеки pandas и numpy

Работа нейросети

•

Организация работы приемника

Для отладочной платы был написан код для следующих датчиков:

- Датчик температуры и влажности SHT20/21/25
- Акселерометр и магнитометр GY-511
- RGB датчик HW-478

Организация работы приемника

- В ходе проведения тестов с радиодатчиком были получены следующие результаты:
- Максимальный размер файла для передачи 500кб
- Минимальный процент потери/искажения данных 3%
- Средний процент потери/искажения данных 4%
- При передаче больших объёмов данных на расстояние более метра файл теряет 60% данных.

Рассмотренные варианты реализации проекта

Создание системы мониторинга состояния судна на основании данных физических датчиков

Создание нейросети для распознавания судна по данным со спутника

Ход проекта

Первый этап. Теоретический:

- 1. Обсуждение проектной идеи, распределение задач;
- 2. Изучение теоретической информации;
- 3. Выбор варианта решения

Второй этап. Практический:

- 1. Написание нейросети и кода, тестирование;
- 2. Проектирование и сборка электросхемы;
- 3. Моделирование и печать модуля;
- <u>4. Под</u>готовка к защите

Третий этап. Завершающий:

Окончание работы, контрольная проверка и отладка, защита проекта

Ошибки проекта

- Постоянное уменьшение текстолита.
- Не подошел по размеру.
- Микроконтроллер STM8
 медленный, слабый, поэтому мы решили работать с
 микроконтроллером STM32L.
- Подбор элементной базы.

Результаты проекта

Результаты обязательно будут!

Оценка результатов проекта, план развития

Развитие проекта

 $N_2:05$

Добавление возможности динамического выделения исследуемой области карты

Космическая смена «Сириус 2022» 01-15 апреля 2022г.

Nº : 05

Контакты:

команда: Космодесантные Уловители

Космическая автоматическая идентификация объектов и искусственный интеллект

