

W66 N220 Commerce Court ● Cedarburg, WI 53012 ● USA Phone: 262.375.4400 ● Fax: 262.375.4248

www.lsr.com

TEST REPORT # 311238 LSR Job #: C-1272

Compliance Testing of: 900 MHz Radio Module

Test Date(s):

July 28, August 8, 9, 12, September 6, 2011

Prepared For: InterSense

Attn: Dan Holmes 4 Federal Street Billerica, MA 08121

In accordance with:
Federal Communications Commission (FCC)
Part 15, Subpart C, Section 15.247
Industry Canada (IC) RSS 210 Annex 8
Digital Modulation Transmitters (DTS) Operating in the
Frequency Band 906 MHz – 924 MHz

This Test Report is issued under the Authority of: Thomas T. Smith		
Signature: Thomas 7.5mt Date: 10/5/2011		
Test Report Reviewed by:	Tested by:	
	Peter Feilen, EMC Engineer	
Signature: Date: 10/5/2011	Signature: Peter Film Date: 09.07.11	

This Test Report may not be reproduced, except in full, without written approval of LS Research, LLC.

TABLE OF CONTENTS (page 1 of 2)

EXHIBIT 1.	INTRODUCTIO	ON	4
1.1 S	COPE		4
1.2 N	ORMATIVE RE	EFERENCES	4
1.3 L	S Research, LLC	TEST FACILITY	5
1.4 L	OCATION OF T	ESTING	5
1.5 T	EST EQUIPME	NT UTILIZED	5
EXHIBIT 2.	PERFORMAN	CE ASSESSMENT	6
2.1 C	LIENT INFORM	IATION	6
2.2 E	QUIPMENT UN	DER TEST (EUT) INFORMAT	ION 6
2.3 A	SSOCIATED A	NTENNA DESCRIPTION	6
2.4 E	UT'S TECHNIC	AL SPECIFICATIONS	7
2.5 P	RODUCT DESC	CRIPTION	8
EXHIBIT 3.	EUT OPERA	ATING CONDITIONS & CONFI	GURATIONS DURING TESTS 9
3.1 C	LIMATE TEST	CONDITIONS	9
			SION TEST RESULTS9
3.3 N	IODIFICATION	S INCORPORATED IN THE E	UT FOR COMPLIANCE PURPOSES
9			
3.4 D	EVIATIONS &	EXCLUSIONS FROM TEST SF	PECIFICATIONS9
EXHIBIT 4.	DECLARAT	ION OF CONFORMITY	
EXHIBIT 5.	RADIATED !	EMISSIONS TEST	11
5.1 T	est Setup		11
			11
5.3 Test Equipment Utilized			
5.4 Te	st Results		12
5.5 C	ALCULATION	OF RADIATED EMISSIONS L	IMITS
5.6 RAI	DIATED EMISS	IONS TEST DATA CHART	14
5.7 S	creen Captures -	Radiated Emissions Test	16
EXHIBIT 6.	CONDUCTE	D EMISSIONS TEST, AC POW	ER LINE:21
6.1 T	est Setup		21
6.2 T	est Procedure		21
6.3 Te	st Equipment Ut	ilized	21
6.4 T	est Results		21
6.6CON	IDUCTED EMIS	SSIONSTEST DATA CHART	23
6.7 S	creen Captures –	Conducted Emissions Test	24
Prepared For: In		EUT: 900 MHz Radio Module	LS Research, LLC
Report # 31123	8	Model #: R69-00198	Template: Class B DTS 08-2011
LSR Job #: C-1:	272	Serial #: N/A	Page 2 of 44

EXHIBIT 7. OCCUPIED BANDWIDTH:	25
7.1 Limits	25
7.2 Method of Measurements	25
7.3 Test Equipment List	25
7.4 Test Data	25
7.5 Screen Captures - OCCUPIED BANDWIDTH	26
EXHIBIT 8: BANDEDGE MEASUREMENTS	29
8.1 Method of Measurements	29
8.2 Data and Analysis	29
EXHIBIT 9. POWER OUTPUT (CONDUCTED): 15.247(b)	31
9.1 Method of Measurements	31
9.2 Test Equipment List	31
9.3 Test Data	31
9.4 Screen Captures – Power Output (Conducted)	32
EXHIBIT 10 POWER SPECTRAL DENSITY: 15.247(e)	33
10.1 Limits	33
10.2 Test Equipment List	33
10.3 Test Data	33
10.4 Screen Captures – Power Spectral Density	34
EXHIBIT 11. SPURIOUS CONDUCTED EMISSIONS	37
11.1 Limits	37
11.2 Test Equipment List	37
11.3 Test Data	37
11.4 Screen Captures – Spurious Radiated Emissions	38
EXHIBIT 12.FREQUENCY & POWER STABILITY OVER VOLTAGE VARIATIONS	39
APPENDIX A	40
APPENDIX B	42
APPENDIX C	43
Appendix D	44

Prepared For: InterSense	EUT: 900 MHz Radio Module	LS Research, LLC
Report # 311238	Model #: R69-00198	Template: Class B DTS 08-2011
LSR Job #: C-1272	Serial #: N/A	Page 3 of 44

EXHIBIT 1. INTRODUCTION

1.1 SCOPE

References:	FCC Part 15, Subpart C, Section 15.247 and 15.209	
	FCC Part 2, Section 2.1043 paragraph (b)1.	
	RSS GEN and RSS 210 Annex 8	
Title:	FCC: Telecommunication – Code of Federal Regulations,	
	CFR 47, Part 15.	
	IC: Low-power License-exempt Radio-communication Devices	
	(All Frequency Bands): Category I Equipment	
Purpose of Test:	To gain FCC and IC Certification Authorization for Low-Power	
-	License-Exempt Transmitters.	
Test Procedures:	Both conducted and radiated emissions measurements were conducted in accordance with American National Standards Institute ANSI C63.4 – American National Standard for Methods	
	of Measurement of Radio-Noise Emissions from Low-Voltage	
	Electrical and Electronic Equipment in the Range of 9 kHz to 40	
	GHz.	
Environmental Classification:	Commercial, Industrial or Business	
	Residential	

1.2 NORMATIVE REFERENCES

Publication	Title
47 CFR, Parts 0-15 (FCC)	Code of Federal Regulations -
47 Of 10, 1 arts 0-15 (1 00)	Telecommunications
	Low-power License-exempt Radio-communication
RSS 210 Annex 8	Devices (All Frequency Bands): Category I
	Equipment
	American National Standard for Methods of
ANSI C63.4	Measurement of Radio-Noise Emissions from
74401 000.4	Low-Voltage Electrical and Electronic Equipment
	in the Range of 9 kHz to 40 GHz.
	Specification for radio disturbance and immunity
CISPR 16-1-1	measuring apparatus and methods.
	Part 1-1: Measuring Apparatus.
	Specification for radio disturbance and immunity
CISPR 16-2-1	measuring apparatus and methods.
	Part 201: Conducted disturbance measurement.
FCC Public Notice	Part 15 Unlicensed Modular Transmitter Approval
DA 00-1407	T art 10 Officerised Wooddar Transmitter Approval
FCC ET Docket No.	Amendment to FCC Part 15 of the Commission's
99-231	Rules Regarding Spread Spectrum Devices.
FCC Procedures	Measurement of Digital Transmission Systems
1 CO Procedures	operating under Section 15.247.

Prepared For: InterSense	EUT: 900 MHz Radio Module	LS Research, LLC
Report # 311238	Model #: R69-00198	Template: Class B DTS 08-2011
LSR Job #: C-1272	Serial #: N/A	Page 4 of 44

1.3 LS Research, LLC TEST FACILITY

LS Research, LLC is accredited by A2LA (American Association for Laboratory Accreditation) to conform to ISO/IEC 17025, 2005 "General Requirements for the Competence of Calibration and Testing Laboratories".

LS Research, LLC's scope of accreditation includes all test methods listed herein, unless otherwise noted. A copy of the accreditation may be accessed on our web site: www.lsr.com. Accreditation status can be verified at A2LA's web site: www.a2la2.net.

1.4 LOCATION OF TESTING

All testing was performed at LS Research, LLC, W66 N220 Commerce Court, Cedarburg, Wisconsin, 53012 USA, utilizing the facilities listed below, unless otherwise noted.

List of Facilities Located at LS Research, LLC:

- Compact Chamber
- Semi-Anechoic Chamber
- Open Area Test Site (OATS)

1.5 TEST EQUIPMENT UTILIZED

A complete list of equipment utilized in testing is provided in Appendix A of this test report. Calibration dates are indicated in Appendix A. All test equipment is calibrated in accordance with A2LA standards.

Prepared For: InterSense	EUT: 900 MHz Radio Module	LS Research, LLC
Report # 311238	Model #: R69-00198	Template: Class B DTS 08-2011
LSR Job #: C-1272	Serial #: N/A	Page 5 of 44

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1 CLIENT INFORMATION

Manufacturer Name:	InterSense
Address:	4 Federal Street, Billerica, MA 08121
Contact Name:	Dan Holmes

2.2 EQUIPMENT UNDER TEST (EUT) INFORMATIONThe following information has been supplied by the applicant.

Product Name:	900 MHz Radio Module	
Model Number:	R69-00198	
Serial Number:	Engineering Sample	

2.3 ASSOCIATED ANTENNA DESCRIPTION Please see Appendix D

Prepared For: InterSense	EUT: 900 MHz Radio Module	LS Research, LLC
Report # 311238	Model #: R69-00198	Template: Class B DTS 08-2011
LSR Job #: C-1272	Serial #: N/A	Page 6 of 44

2.4 EUT'S TECHNICAL SPECIFICATIONS

Additional Information:

EUT Frequency Range (in MHz)	906-924 MHz
EIRP in Watts	0.0076 mW
Conducted Output Power (in dBm)	6.12 dBm
Occupied Bandwidth (99% BW)	1220 kHz
Type of Modulation	O-QPSK
Emission Designator	1M22G1D
Transmitter Spurious (worst case) at 3	
meters	36.34 dBuV/m
Frequency Tolerance %, Hz, ppm	Better than 100 ppm
Transceiver Model # (if applicable)	Atmel ATZB-900 ZigBit 900MHz
	Radio Module
Antenna Information	
Detachable/non-detachable	Detachable
Туре	Dipole
Gain (in dBi)	+ 2.7dBi
EUT will be operated under FCC Rule	
Part(s)	FCC Part 15.247
EUT will be operated under RSS Rule	
Part(s)	RSS 210 & RSS GEN
Modular Filing	
Portable or Mobile?	Portable

RF Technical Information:

Type of		SAR Evaluation: Device Used in the Vicinity of the Human Head
Evaluation		SAR Evaluation: Body-worn Device
(check one)	Χ	RF Evaluation

Procedure for Portable RF Exposure from KDB 447498:

Output Power
$$\leq \frac{60}{f (GHz)} (mW)$$

$$4.09 \ mW \le 66.67 \ mW$$

Note: Since the peak output power of 4.09 mW is below the low threshold of 66.67mW this device does not need SAR evaluation

Prepared For: InterSense	EUT: 900 MHz Radio Module	LS Research, LLC
Report # 311238	Model #: R69-00198	Template: Class B DTS 08-2011
LSR Job #: C-1272	Serial #: N/A	Page 7 of 44

2.5 PRODUCT DESCRIPTION

The radio solution will revolve around the Atmel AT86RF212, which is a low-power, low-voltage 900 MHz transceiver specially designed for low-cost IEEE 802.15.4, ZigBeeTM, and high data rate ISM applications.

The InterSense 900MHz radio module is used for real-time applications where it is important to maintain low and predictable latency. The radio module is a low powered device that operates over a frequency range of 906MHz to 926MHz, allowing up to 10 simultaneous radio pairs to coexist.

Prepared For: InterSense	EUT: 900 MHz Radio Module	LS Research, LLC
Report # 311238	Model #: R69-00198	Template: Class B DTS 08-2011
LSR Job #: C-1272	Serial #: N/A	Page 8 of 44

EXHIBIT 3. EUT OPERATING CONDITIONS & CONFIGURATIONS DURING TESTS

3.1 CLIMATE TEST CONDITIONS

Temperature:	20-25 °C
Humidity:	35-45 % Relative Humidity

3.2 APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

FCC and IC Paragraph	Test Requirements	Compliance (yes/no)
FCC: 15.207 IC: RSS GEN sect. 7.2.2	Power Line Conducted Emissions Measurements	Yes
FCC: 15.247(a)(2) IC: RSS 210 A8.2(a)	6 dB Bandwidth of a Digital Modulation System	Yes
IC : RSS GEN section 4.6.1	20 dB Bandwidth	Yes
FCC: 15.247(b) & 1.1310 IC: RSS 210 A8.4	Maximum Output Power	Yes
FCC: 15.247(i), 1.1307, 1.1310, 2.1091 & 2.1093 IC: RSS 102	RF Exposure Limit	Yes
FCC :15.247(c) IC : RSS 210 A8.5	RF Conducted Spurious Emissions at the Transmitter Antenna Terminal	Yes
FCC: 15.247(d) IC: RSS 210 A8.2(b)	Transmitted Power Spectral Density of a Digital Modulation System	Yes
FCC: 15.247(c), 15.209 & 15.205 IC: RSS 210 A8.2(b), section 2.2, 2.6 and 2.7	Transmitter Radiated Emissions	Yes

The digital circuit portion of the EUT has been tested and verified to comply with FCC Part 15, Subpart B, Class B Digital Devices (RSS GEN and RSS 210 of IC) and the associated Radio Receiver has also been tested and found to comply with Part 15, Subpart B – Radio Receivers (RSS GEN and RSS 210 of IC). The Receiver Test Report is available upon request.

3.3 MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES ☐ None ☐ Yes (explain below) The maximum power setting is register value 0x00a1. This corresponds to a conducted value of 6.12dBm maximum output power. 3.4 DEVIATIONS & EXCLUSIONS FROM TEST SPECIFICATIONS ☐ None ☐ Yes (explain below)

Prepared For: InterSense	EUT: 900 MHz Radio Module	LS Research, LLC
Report # 311238	Model #: R69-00198	Template: Class B DTS 08-2011
LSR Job #: C-1272	Serial #: N/A	Page 9 of 44

EXHIBIT 4. DECLARATION OF CONFORMITY

The EUT was found to MEET the requirements as described within the specification of FCC Title 47, CFR Part 15.247, and Industry Canada RSS-210, Issue 8 (2010), Section Annex 8 (section 8.2) for a Digital Spread Spectrum (DTS) Transmitter.

If some emissions are seen to be within 3 dB of their respective limits:

As these levels are within the tolerances of the test equipment and site employed, there is a possibility that this unit, or a similar unit selected out of production may not meet the required limit specification if tested by another agency.

LS Research, LLC certifies that the data contained herein was taken under conditions that meet or exceed the requirements of the test specifications. The results in this Test Report apply only to the item(s) tested on the above-specified dates. Any modifications made to the EUT subsequent to the indicated test date(s) will invalidate the data herein, and void this certification.

Prepared For: InterSense	EUT: 900 MHz Radio Module	LS Research, LLC
Report # 311238	Model #: R69-00198	Template: Class B DTS 08-2011
LSR Job #: C-1272	Serial #: N/A	Page 10 of 44

EXHIBIT 5. RADIATED EMISSIONS TEST

5.1 Test Setup

The test setup was assembled in accordance with Title 47, CFR FCC Part 15, RSS GEN and ANSI C63.4. The EUT was placed on an 80cm high non-conductive pedestal, centered on a flush mounted 2-meter diameter turntable inside a 3 meter Semi-Anechoic, FCC listed Chamber. The EUT was operated in transmit mode, using power as provided by a power pack, converting 120VAC to 6VDC. The unit has the capability to operate on 10 channels, controllable via laptop PC.

The applicable limits apply at a 3 meter distance. Measurements above 4 GHz were performed at a 1.0 meter separation distance. The calculations to determine these limits are detailed in the following pages. Please refer to Appendix A for a complete list of test equipment. The test sample was operated on one of three (3) standard channels: low (1, 906 MHz), middle (5, 914 MHz) and high (10, 924 MHz) to comply with FCC Part 15.31(m). The channels and operating modes were changed using a PC.

5.2 Test Procedure

Radiated RF measurements were performed on the EUT in a 3 meter Semi-Anechoic, FCC listed Chamber. The frequency range from 30 MHz to 10000 MHz was scanned and investigated. The radiated RF emission levels were manually noted at the various fixed degree settings of azimuth on the turntable and antenna height. The EUT was placed on a non-conductive pedestal in the 3 meter Semi-Anechoic Chamber, with the antenna mast placed such that the antenna was 3 meters from the EUT. A Biconical Antenna was used to measure emissions from 30 MHz to 300 MHz, and a Log Periodic Antenna was used to measure emissions from 300 MHz to 1000 MHz. A Double-Ridged Waveguide Horn Antenna was used from 1 GHz to 1 GHz. The maximum radiated RF emissions were found by raising and lowering the antenna between 1 and 4 meters in height, using both horizontal and vertical antenna polarities.

The EUT was rotated along three orthogonal axis during the investigations to find the highest emission levels.

5.3 Test Equipment Utilized

A list of the test equipment and antennas utilized for the Radiated Emissions test can be found in Appendix A. This list includes calibration information and equipment descriptions. All equipment is calibrated and used according to the operation manuals supplied by the manufacturers. All calibrations of the antennas used were performed at an N.I.S.T. traceable site. In addition, the Connecting Cables were measured for losses using a calibrated Signal Generator and an Agilent E4445A/N9039A EMI System. The resulting correction factors and the cable loss factors from these calibrations were entered into the EMI Receiver database. As a result, the data taken from the EMI Receiver accounts for the antenna correction factor as well as cable loss or other corrections, and can therefore be entered into the database as a corrected meter reading. The EMI Receiver was operated with a resolution bandwidth of 120 kHz for measurements below 1 GHz (video bandwidth of 300 kHz), and a bandwidth of 1 MHz for measurements above 1 GHz (video bandwidth of 1 MHz for peak measurements, 10Hz for average measurements).

Prepared For: InterSense	EUT: 900 MHz Radio Module	LS Research, LLC
Report # 311238	Model #: R69-00198	Template: Class B DTS 08-2011
LSR Job #: C-1272	Serial #: N/A	Page 11 of 44

Test Equipment List

Please see Appendix A

<u>5.4 Test Results</u>
The EUT was found to **MEET** the Radiated Emissions requirements of Title 47 CFR, FCC Part 15.247 and Canada RSS-210, Issue 8 (2010), Annex 8 for a DTS transmitter. The frequencies with significant RF signal strength were recorded and plotted as shown in the Data Charts and Graphs.

Prepared For: InterSense	EUT: 900 MHz Radio Module	LS Research, LLC
Report # 311238	Model #: R69-00198	Template: Class B DTS 08-2011
LSR Job #: C-1272	Serial #: N/A	Page 12 of 44

5.5 CALCULATION OF RADIATED EMISSIONS LIMITS

The maximum peak output power of an intentional radiator in the 2400-2483.5 MHz band, as specified in Title 47 CFR 15.247 (b)(3) and RSS 210 A8.4 is 1 Watt. The harmonic and spurious RF emissions, as measured in any 100 kHz bandwidth, as specified in 15.247 (d) and RSS 210 A8.2(b), shall be at least 20 dB below the measured power of the desired signal, and must also meet the requirements described in 15.205(c) for FCC and section 2.2,2.6 and 2.7 of RSS 210 for IC.

The following table depicts the general radiated emission limits above 30 MHz. These limits are obtained from Title 47 CFR, Part 15.209, for radiated emissions measurements. These limits were applied to any signals found in the 15.205 restricted bands. The mentioned limits correspond to those limits listed in RSS 210 section 2.7.

Frequency (MHz)	3 m Limit μV/m	3 m Limit (dBμV/m)	1 m Limit (dBµV/m)
30-88	100	40.0	-
88-216	150	43.5	-
216-960	200	46.0	-
>960	500	54.0	63.5

Sample conversion from field strength μ V/m to dB μ V/m: dB μ V/m = 20 log ₁₀ (100) = 40 dB μ V/m (from 30-88 MHz)

For measurements made at 1.0 meter, a 9.5 dB correction has been invoked.

>960 MHz 500 μ V/m or 54.0 dB/ μ V/m at 3 meters 54.0 + 9.5 = 63.5 dB/ μ V/m at 1 meter

Sample Calculation using correction factors from the device

Raw Receiver Data + Antenna Factor + Cable Factor + = Reported Value

Generic example of reported data at 870.7 MHz:

Reported Measurement data = 7.34 (raw receiver measurement) + 23.20 (antenna factor) + 2.69 (cable factor) = 33.23 dB μ V

Prepared For: InterSense	EUT: 900 MHz Radio Module	LS Research, LLC
Report # 311238	Model #: R69-00198	Template: Class B DTS 08-2011
LSR Job #: C-1272	Serial #: N/A	Page 13 of 44

5.6 RADIATED EMISSIONS TEST DATA CHART

3 Meter Measurements of Electromagnetic Radiated Emissions Test Standard: 47CFR, Part 15.205 and 15.247(DTS) RSS 210 A8, sections 2.2,2.6 and 2.7

Frequency Range Inspected: 30 MHz to 10000 MHz

		-, - ,					
Manufacturer:	InterSense						
Date(s) of Test:	July 5	July 5-6, August 8,9,12, September 6, 2011					
Test Engineer(s):	Peter	Feilen					
Voltage:	6 VD0	C					
Operation Mode:	Norm	al, continuous transmit	mode				
Environmental Conditions in the Lab:		Temperature: 20 – 25° C Relative Humidity: 30 – 60 %					
EUT Power:		Single PhaseVAC	;		3 Phase _	V	4C
EUT Power.		Battery	Χ	Other: 6 VDC			
EUT Placement:	X	80cm non-conductive	table	le 10cm Spacers			
EUT Test Location:	X	3 Meter Semi-Anecho FCC Listed Chamber	ic	3/10m OATS			
Measurements:		Pre-Compliance		Preliminary X Final		Final	
Detectors Used:	X	Peak	Х	Quasi-Peak X Average		Average	

The following table depicts the level of significant spurious radiated RF emissions found:

Frequency (MHz)	Height (m)	Azimuth (degree)	Electric Field Intensity Reading (dBµV/m)	Electric Field Intensity (dBµV/m)	Margin (dB)	Antenna Polarity	EUT orientation
870.7	1.00	0	33.23	46.0	12.8	Н	Н
273.8	1.00	0	28.25	46.0	17.8	V	Н
180.7	1.00	0	16.78	43.5	26.7	Н	Н
1000.0	1.00	0	36.34	54.0	17.7	Н	Н
300.0	1.00	0	31.83	46.0	14.2	Н	Н
298.9	1.00	0	30.38	46.0	15.6	Н	Н

Prepared For: InterSense	EUT: 900 MHz Radio Module	LS Research, LLC
Report # 311238	Model #: R69-00198	Template: Class B DTS 08-2011
LSR Job #: C-1272	Serial #: N/A	Page 14 of 44

RADIATED EMISSIONS DATA CHART (continued)

The following table depicts the level of significant radiated RF fundamental and harmonic emissions seen on Channel 1:

Harmonic	Orientation	Freq	Antenna Polarity	Height (m)	Azimuth (deg)	Peak (dBuV/m)	Avg (dBuV/m)	Limit (dBuV/m)	Margin (dB)
3fo	SIDE	2718					NF	54.0	
4fo	SIDE	3624	Н	1.12	0	53.4	52.15	54.0	1.9
5fo	SIDE	4530					NF	54.0	
6fo	SIDE	5436					NF	54.0	
8fo	SIDE	7248					NF	54.0	
9fo	SIDE	8154					NF	54.0	
10fo	SIDE	9060					NF	54.0	

The following table depicts the level of significant radiated RF fundamental and harmonic emissions seen on Channel 5:

Harmonic	Orientation	Freq	Antenna Polarity	Height (m)	Azimuth (deg)	Peak (dBuV/m)	Avg (dBuV/m)	Limit (dBuV/m)	Margin (dB)
3fo	SIDE	2742					NF	54	
4fo	SIDE	3656	Н	1.30	0	53.33	52.08	54.0	1.9
5fo	SIDE	4570					NF	54.0	
8fo	SIDE	7312					NF	54.0	
9fo	SIDE	8226					NF	54.0	
10fo	SIDE	9140					NF	54.0	

The following table depicts the level of significant radiated RF fundamental and harmonic emissions seen on Channel 10:

			Antenna	Height	Azimuth	Peak	Avg	Limit	Margin
Harmonic	Orientation	Freq	Polarity	(m)	(deg)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)
3fo	SIDE	2772					NF	54	
4fo	SIDE	3696	Н	1.28	0	53.46	51.82	54.0	2.2
5fo	SIDE	4620					NF	54.0	
8fo	SIDE	7392					NF	54.0	
9fo	SIDE	8316					NF	54.0	
10fo	SIDE	9240					NF	54.0	

Notes:

- 1) "NF" denotes measurement at receiver system noise floor.
- 2) A Peak as well as an Average Detector was used in measurements above 1 GHz. Only the results from the Average detector are published in the table above. The peak detector was used to ensure the peak emissions did not exceed 20 dB above the limits.

Prepared For: InterSense	EUT: 900 MHz Radio Module	LS Research, LLC
Report # 311238	Model #: R69-00198	Template: Class B DTS 08-2011
LSR Job #: C-1272	Serial #: N/A	Page 15 of 44

5.7 Screen Captures - Radiated Emissions Test

These screen captures represent Peak Emissions. For radiated emission measurements, a Quasi-Peak detector function is utilized when measuring frequencies below 1 GHz, and an Average detector function is utilized when measuring frequencies above 1 GHz.

The signature scans shown here are from worst-case emissions, as measured on channels 1, 5, or 10, with the sense antenna both in vertical and horizontal polarity for worst case presentations.

Prepared For: InterSense	EUT: 900 MHz Radio Module	LS Research, LLC
Report # 311238	Model #: R69-00198	Template: Class B DTS 08-2011
LSR Job #: C-1272	Serial #: N/A	Page 16 of 44

Channel 5, Antenna Vertically Polarized, 300-1000 MHz, at 3m

Prepared For: InterSense	EUT: 900 MHz Radio Module	LS Research, LLC
Report # 311238	Model #: R69-00198	Template: Class B DTS 08-2011
LSR Job #: C-1272	Serial #: N/A	Page 17 of 44

<u>Screen Captures - Radiated Emissions Testing</u>(continued)

Channel 5, Antenna Horizontally Polarized, 960-1000 MHz, at 3m

Prepared For: InterSense	EUT: 900 MHz Radio Module	LS Research, LLC
Report # 311238	Model #: R69-00198	Template: Class B DTS 08-2011
LSR Job #: C-1272	Serial #: N/A	Page 18 of 44

<u>Screen Captures - Radiated Emissions Testing</u> (continued)

Channel 5, Antenna Vertically Polarized, 1000-1800 MHz, at 3m

Prepared For: InterSense	EUT: 900 MHz Radio Module	LS Research, LLC
Report # 311238	Model #: R69-00198	Template: Class B DTS 08-2011
LSR Job #: C-1272	Serial #: N/A	Page 19 of 44

<u>Screen Captures - Radiated Emissions Testing</u> (continued)

Channel 5, Antenna Vertically Polarized, 1800-10000 MHz, at 3m

Prepared For: InterSense	EUT: 900 MHz Radio Module	LS Research, LLC
Report # 311238	Model #: R69-00198	Template: Class B DTS 08-2011
LSR Job #: C-1272	Serial #: N/A	Page 20 of 44

EXHIBIT 6. CONDUCTED EMISSIONS TEST, AC POWER LINE:

6.1 Test Setup

The test area and setup are in accordance with ANSI C63.4and with Title 47 CFR, FCC Part 15, Industry Canada RSS-210and RSS GEN. The EUT was placed on a non-conductive wooden table, with a height of 80 cm above the reference ground plane. The EUT's power cable was plugged into a 50Ω (ohm), $50/250~\mu$ H Line Impedance Stabilization Network (LISN). The AC power supply of 120V was provided at the conducted emissions test area via an appropriate broadband EMI Filter, and then to the LISN line input. Final readings were then taken and recorded. After the EUT was setup and connected to the LISN, the RF Sampling Port of the LISN was connected to a 10 dB Attenuator-Limiter, and then to the Agilent E4445A/N9039A EMI System. The EMCO LISN used has the ability to terminate the unused port with a 50Ω (ohm) load when switched to either L1 (line) or L2 (neutral).

6.2 Test Procedure

The EUT was investigated in continuous modulated transmit mode for this portion of the testing. The appropriate frequency range and bandwidths were selected on the EMI Receiver, and measurements were made. The bandwidth used for these measurements is 9 kHz, as specified in CISPR 16-1, Section 1, Table 1, for Quasi-Peak and Average detectors in the frequency range of 150 kHz to 30MHz. Final readings were then taken and recorded.

6.3 Test Equipment Utilized

A list of the test equipment and accessories utilized for the Conducted Emissions test is provided in Appendix A. This list includes calibration information and equipment descriptions. All equipment is calibrated and used according to the operation manuals supplied by the manufacturers. Calibrations of the LISN and Limiter are traceable to N.I.S.T. All cables are calibrated and checked periodically for conformance. The emissions are measured on the Agilent E4445A/N9039A EMI System, which has automatic correction for all factors stored in memory and allows direct readings to be taken.

Test Equipment List

Please see Appendix A

6.4 Test Results

The EUT was found to **MEET** the Conducted Emission requirements of FCC Part 15.207 Conducted Emissions for an Intentional Radiator. See the Data Charts and Graphs for more details of the test results.

Prepared For: InterSense	EUT: 900 MHz Radio Module	LS Research, LLC
Report # 311238	Model #: R69-00198	Template: Class B DTS 08-2011
LSR Job #: C-1272	Serial #: N/A	Page 21 of 44

6.5 FCC Limits of Conducted Emissions at the AC Mains Ports

Frequency Range	Class B Limits (dBµV)		Measuring
(MHz)	Quasi-Peak	Average	Bandwidth
0.150 -0.50 *	66-56	56-46	RBW = 9 kHz
0.5 - 5.0	56	46	VBW ≥ 9 kHz for QP
5.0 – 30	60	50	VBW = 1 Hz for Average
* The limit decrea			
logarithm of the fre			

Prepared For: InterSense	EUT: 900 MHz Radio Module	LS Research, LLC
Report # 311238	Model #: R69-00198	Template: Class B DTS 08-2011
LSR Job #: C-1272	Serial #: N/A	Page 22 of 44

6.6CONDUCTED EMISSIONSTEST DATA CHART

Frequency Range inspected: 150 KHz to 30 MHz Test Standard: FCC 15.207 Class B IC RSS GEN 7.2.2

		10 1100 OEN 1:2:2				
Manufacturer:	Inte	InterSense				
Date(s) of Test:	Sep	tember 7, 2011				
Test Engineer:	Pet	er Feilen				
Voltage:	6 V	DC				
Operation Mode:	con	continuous modulated transmit mode				
Environmental	Ten	Temperature: 20 – 25° C				
Conditions in the Lab:	Rela	Relative Humidity: 30 – 60 %				
Test Location:						Chamber
EUT Placed On:	Х	40cm from Vertical Ground Plane			10cm Spacers	
EUT Placed Off.	Х	80cm above Ground Plane			Other:	
Measurements:		Pre-Compliance		Preliminary	Х	Final
Detectors Used:		Peak	Χ	Quasi-Peak	X	Average

			Quasi-Pea	<u>ık</u>		<u>Average</u>	
Frequency (MHz)	Line	Q-Peak Reading (dBµV)	Q-Peak Limit (dBµV)	Quasi- Peak Margin (dB)	Average Reading (dBµV)	Average Limit (dBµV)	Average Margin (dB)
0.620	L1	35.5	56	20.5	32.1	46	13.9
4.020	L2	31.6	56	24.4	30.4	46	15.6
0.620	L2	36.1	56	19.9	32.6	46	13.4

Notes:

- 1) All other emissions were better than 20 dB below the limits.
- 2) The EUT exhibited similar emissions in transmit (and receive) modes, and across the Low, Middle and High channels tested.

Prepared For: InterSense	EUT: 900 MHz Radio Module	LS Research, LLC
Report # 311238	Model #: R69-00198	Template: Class B DTS 08-2011
LSR Job #: C-1272	Serial #: N/A	Page 23 of 44

6.7 Screen Captures – Conducted Emissions Test

START 158 kHz

#]F BW 9.0 kHz

These screen captures represent Peak Emissions. For conducted emission measurements, both a Quasi-Peak detector function and an Average detector function are utilized. The emissions must meet both the Quasi-peak limit and the Average limit as described in 47 CFR 15.207 and RSS GEN 7.2.2 (Table 2).

The signature scans shown here are from channel 5, chosen as being a good representative of channels.

Line 2

AVC BW 38 kHz

STOP

30.00 NHz

SWP 2.49 sec

1 of 3

Prepared For: InterSense	EUT: 900 MHz Radio Module	LS Research, LLC
Report # 311238	Model #: R69-00198	Template: Class B DTS 08-2011
LSR Job #: C-1272	Serial #: N/A	Page 24 of 44

EXHIBIT 7. OCCUPIED BANDWIDTH:

7.1 Limits

For a Digital Modulation System, the 6 dB bandwidth shall be at least 500 kHz.

7.2 Method of Measurements

Refer to ANSI C63.4 and FCC Procedures (2007) for Digital Transmission Systems operating under 15.247.

The transmitter output was connected to the Spectrum Analyzer. The bandwidth of the fundamental frequency was measured with the Spectrum Analyzer using 100 kHz RBW and VBW=300 kHz.

The bandwidth requirement found in FCC Part 15.247(a)(2) and RSS 210 A8.2(a) requires a minimum -6dBc occupied bandwidth of 500 kHz. In addition, Industry Canada (IC RSS GEN 4.6.1) requires the measurement of the 99% occupied bandwidth. For this portion of the tests, a direct measurement of the transmitted signal was performed at the antenna port of the EUT, via a cable connection to the Agilent E4446A spectrum analyzer. An attenuator was placed in series with the cable to protect the spectrum analyzer. The loss from the cable and the attenuator were added on the analyzer as gain offset settings, thereby allowing direct measurements, without the need for any further corrections. An Agilent model E4446A spectrum analyzer was used with the resolution bandwidth set to 30 kHz for this portion of the tests. The EUT was configured to run in a continuous transmit mode, while being supplied with typical data as a modulation source. The spectrum analyzer was used in peak-hold mode while measurements were made, as presented in the chart below.

From this data, the closest measurement (6 dB bandwidth) when compared to the specified limit, is 751.50 kHz, which is above the minimum of 500 kHz.

7.3 Test Equipment List

Please see Appendix A

7.4 Test Data

Channel	Center Frequency (MHz)	Measured -6 dBc Occ. BW (kHz)	Minimum -6 dBc Limit (kHz)	-6 dBc Margin (kHz)	Measured 99%Occ.Bw (kHz)
1	906	754.24	500	254.24	1203.50
5	914	751.50	500	251.50	1220.10
10	924	755.20	500	255.20	1199.70

Prepared For: InterSense	EUT: 900 MHz Radio Module	LS Research, LLC
Report # 311238	Model #: R69-00198	Template: Class B DTS 08-2011
LSR Job #: C-1272	Serial #: N/A	Page 25 of 44

7.5 Screen Captures - OCCUPIED BANDWIDTH

Channel 1, -6 dBc Occupied Bandwidth

Prepared For: InterSense	EUT: 900 MHz Radio Module	LS Research, LLC
Report # 311238	Model #: R69-00198	Template: Class B DTS 08-2011
LSR Job #: C-1272	Serial #: N/A	Page 26 of 44

Channel 10, -6 dBc Occupied Bandwidth

Channel 1,99% Occupied Bandwidth

Prepared For: InterSense	EUT: 900 MHz Radio Module	LS Research, LLC
Report # 311238	Model #: R69-00198	Template: Class B DTS 08-2011
LSR Job #: C-1272	Serial #: N/A	Page 27 of 44

Channel 5, 99% Occupied Bandwidth

Prepared For: InterSense	EUT: 900 MHz Radio Module	LS Research, LLC
Report # 311238	Model #: R69-00198	Template: Class B DTS 08-2011
LSR Job #: C-1272	Serial #: N/A	Page 28 of 44

EXHIBIT 8: BANDEDGE MEASUREMENTS

8.1 Method of Measurements

FCC 15.209(b) and 15.247(d) require a measurement of spurious emission levels to be at least 20 dB lower than the fundamental emission level, in particular at the Band-Edges where the intentional radiator operates. Also, RSS 210 Section 2.2 requires that unwanted emissions meet limits listed in tables 2 and 3 of the same standard and also to the limits in the applicable annex. The following screen captures demonstrate compliance of the intentional radiator at the Band-Edges. The EUT was operated in continuous transmit mode with continuous modulation, with internally generated data as the modulating source. The EUT was operated at the lowest channel for the investigation of the lower Band-Edge, and at the highest channel for the investigation of the higher Band-Edge.

8.2 Data and Analysis

Screen Capture Demonstrating Compliance at the Lower Band-Edge

Prepared For: InterSense	EUT: 900 MHz Radio Module	LS Research, LLC
Report # 311238	Model #: R69-00198	Template: Class B DTS 08-2011
LSR Job #: C-1272	Serial #: N/A	Page 29 of 44

Screen Capture Demonstrating Compliance at the Upper Band-Edge

Prepared For: InterSense	EUT: 900 MHz Radio Module	LS Research, LLC
Report # 311238	Model #: R69-00198	Template: Class B DTS 08-2011
LSR Job #: C-1272	Serial #: N/A	Page 30 of 44

EXHIBIT 9. POWER OUTPUT (CONDUCTED): 15.247(b)

9.1 Method of Measurements

The conducted RF output power of the EUT was measured at the antenna port using a short RF cable along with an attenuator as protection for the spectrum analyzer. The loss from the cable and the attenuator were added on the analyzer as gain offset settings, thereby allowing direct measurements without the need for any further corrections. The unit was configured to run in a continuous transmit mode, while being supplied internally with typical data as a modulation source. The spectrum analyzer was used with resolution and video bandwidths set to 3 MHz, and a span of 20 MHz, with measurements from a peak detector presented in the chart below.

9.2 Test Equipment List

Please see Appendix A for a list of test equipment used

9.3 Test Data

Test Data

Transmitter Channel	Freq. (MHz)	Peak Power at Antenna Terminal (dBm)	Calculated EIRP (dBm)	Conducted Power Limit (dBm)	EIRP Limit (dBm)	EIRP Margin (dB)
Lowest	906	6.12	8.82	30.0	36.0	27.18
Middle	914	5.40	8.10	30.0	36.0	27.90
Highest	924	5.36	8.06	30.0	36.0	27.94

⁽¹⁾ EIRP Calculation:

EIRP = (Peak power at antenna terminal in dBm) + (EUT Antenna gain in dBi)

Prepared For: InterSense	EUT: 900 MHz Radio Module	LS Research, LLC
Report # 311238	Model #: R69-00198	Template: Class B DTS 08-2011
LSR Job #: C-1272	Serial #: N/A	Page 31 of 44

9.4 Screen Captures – Power Output (Conducted)

Channel 5

Channel 10

Prepared For: InterSense	EUT: 900 MHz Radio Module	LS Research, LLC
Report # 311238	Model #: R69-00198	Template: Class B DTS 08-2011
LSR Job #: C-1272	Serial #: N/A	Page 32 of 44

EXHIBIT 10 POWER SPECTRAL DENSITY: 15.247(e)

10.1 Limits

For digitally modulate systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

In accordance with FCC Part 15.247(e) and RSS 210 A8.2(b), the peak power spectral density should not exceed +8 dBm in any 3 kHz band. This measurement was performed along with the conducted power output readings performed as described in previous sections. The peak output frequency for each representative frequency was scanned, with a narrow bandwidth, and reduced sweep, and a power density measurement was performed using the utility built into the Agilent Analyzer. The resultant density was then corrected to a 3 kHz bandwidth. The highest density was found to be no greater than -12.2dBm, which is under the allowable limit by 20dB.

10.2 Test Equipment List

Please see Appendix A

10.3 Test Data

Channel	Noise Marker (1 Hz)	Noise Marker Correction to PSD/3 kHz	PSD/3kHz	Limit	Margin
1	-52.29	35	-17.29	8.00	-25.29
5	-52.02	35	-17.02	8.00	-25.02
10	-51.97	35	-16.97	8.00	-24.97

Prepared For: InterSense	EUT: 900 MHz Radio Module	LS Research, LLC
Report # 311238	Model #: R69-00198	Template: Class B DTS 08-2011
LSR Job #: C-1272	Serial #: N/A	Page 33 of 44

10.4 Screen Captures – Power Spectral Density

Channel 1

Prepared For: InterSense	EUT: 900 MHz Radio Module	LS Research, LLC
Report # 311238	Model #: R69-00198	Template: Class B DTS 08-2011
LSR Job #: C-1272	Serial #: N/A	Page 34 of 44

Channel 5

Prepared For: InterSense	EUT: 900 MHz Radio Module	LS Research, LLC
Report # 311238	Model #: R69-00198	Template: Class B DTS 08-2011
LSR Job #: C-1272	Serial #: N/A	Page 35 of 44

Channel 10

* Agilent 00:45:03 Oct 13, 2011 Peak Search Mkr1 923.918 1 MHz Ref 10 dBm Atten 20 dB Noise -51.97 dBm(1Hz) Next Peak Avg Log 10 Next Pk Right dB/ Next Pk Left Min Search PAvg M1 S2 Pk-Pk Search S3 FC **£**(f): Marker f>50k Mkr → CF -923.918100 MHz-Swp Noise -51.97 dBm(1Hz) More Center 924.040 7 MHz Span 1.5 MHz 1 of 2 #Res BW 3 kHz #VBW 100 kHz #Sweep 500 s (601 pts) File Operation Status, A:\SCREN746.GIF file saved

Prepared For: InterSense	EUT: 900 MHz Radio Module	LS Research, LLC
Report # 311238	Model #: R69-00198	Template: Class B DTS 08-2011
LSR Job #: C-1272	Serial #: N/A	Page 36 of 44

EXHIBIT 11. SPURIOUS CONDUCTED EMISSIONS

11.1 Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 db below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

FCC Part 15.247(d) and IC RSS 210 A8.5 requires a measurement of conducted harmonic and spurious RF emission levels, as reference to the carrier level when measured in a 100 kHz bandwidth. For this test, the spurious and harmonic RF emissions from the EUT were measured at the EUT antenna port using a short RF cable along with an attenuator as protection for the spectrum analyzer. The loss from the cable and the attenuator were added on the analyzer as gain offset settings, thereby allowing direct readings of the measurements made without the need for any further corrections. An Agilent model E4446A spectrum analyzer was used with the resolution bandwidth set to 100 kHz for this portion of the tests. The unit was configured to run in a continuous transmit mode, while being supplied with typical data as a modulation source. The spectrum analyzer was used with measurements from a peak detector presented in the chart below. Screen captures were acquired and any noticeable spurious and harmonic signals were identified and measured.

No significant emissions could be noted within -60dBc of the fundamental level for this product.

11.2 Test Equipment List

Please see Appendix A

11.3 Test Data

Freq\Chan	1	5	10
fo	3.32 dBm	2.50 dBm	2.39 dBm
2fo	-59.88 dBm	-61.31 dBm	-61.68 dBm
3fo	-69.83 dBm	-70.13 dBm	-72.33 dBm
4fo	-73.28 dBm	-74.68 dBm	-75.18 dBm
5fo	NF	NF	NF
6fo	NF	NF	NF
7fo	NF	NF	NF
8fo	NF	NF	NF
9fo	-71.51 dBm	-70.31 dBm	-68.80 dBm
10fo	NF	NF	NF

Notes:

(1) NF denotes measurement at system noise floor.

Prepared For: InterSense	EUT: 900 MHz Radio Module	LS Research, LLC
Report # 311238	Model #: R69-00198	Template: Class B DTS 08-2011
LSR Job #: C-1272	Serial #: N/A	Page 37 of 44

11.4 Screen Captures – Spurious Radiated Emissions

Channel 5, shown from 30 MHz up to 1000 MHz

Channel 5, shown from 1000 MHz up to 10000 MHz

Prepared For: InterSense	EUT: 900 MHz Radio Module	LS Research, LLC
Report # 311238	Model #: R69-00198	Template: Class B DTS 08-2011
LSR Job #: C-1272	Serial #: N/A	Page 38 of 44

EXHIBIT 12.FREQUENCY & POWER STABILITY OVER VOLTAGE VARIATIONS

The stability of the device was examined as a function of the input voltage available to the EUT. A Spectrum Analyzer was used to measure the frequency at the appropriate frequency markers. Power was supplied by an external bench-type variable power supply, and the frequency of operation was monitored using the spectrum analyzer.

A spectrum analyzer was used to measure the frequency at the appropriate frequency markers. For this test, the EUT was placed in continuous transmit CW mode. Power to the EUT was supplied by an external bench-type variable power supply. The frequency of operation was monitored using the spectrum analyzer with RBW=VBW=1 kHz settings while the voltage was varied.

The RF Power Output of the EUT was also monitored in a separate test, also using a Spectrum Analyzer with RBW=VBW=3 MHz setting while the voltage was varied.

	4.3VDC	5.0VDC				
Power	Frequency	Power	Frequency	Power	Frequency	Channel
6.18	905918900	6.18	905918900	6.18	905918900	1
5.41	913919260	5.42	913919260	5.42	913919260	5
5.38	923919780	5.38	923919780	5.38	923919780	10

Channel	max	min	freq drift (Hz)
1	905918900	905918900	0
5	913919430	913919430	0
10	923919780	923919780	0

No anomalies were noted, in the measured transmit power, varying less than 1 dB, during the voltage variation tests.

Prepared For: InterSense	EUT: 900 MHz Radio Module	LS Research, LLC
Report # 311238	Model #: R69-00198	Template: Class B DTS 08-2011
LSR Job #: C-1272	Serial #: N/A	Page 39 of 44

APPENDIX A

Instrumentation Sheet

	Date	: 12-Aug-2011	Type Test	: Radiated Emiss	ions		Job#:	C-1272	
	Prepared By		Customer:	Intersense			Ouete #	311238	
	Prepared by	. Peter	_ Customer.	Intersense			_ unote #.	311236	
No.	Asset#	Description	Manufacturer	Model#	Serial#	Cal Date	Cal Due Date	Equipment Status	
1	AA 960078	Log Periodic Antenna	EMCO	93146	9701-4855	10/19/2010	10/19/2011	Active Calibration	
2	AA 960150	Bicon Antenna	ETS	3110B	0003-3346	10/19/2010	10/19/2011	Active Calibration	
3	AA 960007	Double Ridge Horn Antenna	EMCO	3115	9311-4138	4/27/2011	4/27/2012	Active Calibration	
4	EE 960158	RF Preselecter	Agilent	N9039A	MY46520110	6/11/2011	6/11/2012	Active Calibration	
5	EE 960157	3Hz-13.2GHz Spectrum Analyzer	Agilent	E4445A	MY48250225	6/6/2011	6/6/2012	Active Calibration	
6	EE 960156	100kHz-1GHz Analog Signal Generator	Agilent	N5181A	MY49060062	6/6/2011	6/6/2012	Active Calibration	
1	EE 960147	Pre-Amp	Adv. Micro	WLA612	123101	1/4/2011	1/4/2012	Active Calibration	
			leter Film		_	Quality Assurance	c		
2	Wireles Equ	SEARCH LLC is Product Development ipment Calibration							
	Date	: 12-Aug-2011	Type Test	: Occupied Bandy	width (6dB & 20d	IB)	_ Job#:	C-1272	
	Prepared By	: Peter	Customer:	Intersense			Quote #:	311238	
No.	Asset#	Description	Manufacturer	Model#	Serial#	Cal Date	Cal Due Date	Equipment Status	
1	CC 000284C	Signal Generator	Agilent	E4421B	MY41000402	9/17/2009	9/17/2010	Decommission	
2	AA 960144	Phaseflex	Gore	EKD01D010720	5800373	6/1/2011	6/1/2012	Active Calibration	
	Wirele: Equ	ESEARCH LLC ss Product Development ipment Calibration : 12-Aug-2011	Type Test	: Conducted Pow	er Output		Job#:	C-1272	
	Prepared By	: Peter	Customer:	Intersense			Quote #	311238	
	,		_				_		
No.	Asset#	Description	Manufacturer	Model#	Serial#	Cal Date	Cal Due Date	Equipment Status	
1 2	CC 000284C AA 960144	Signal Generator Phaseflex	Agilent Gore	E4421B EKD01D010720	MY41000402 5800373	9/17/2009 6/1/2011	9/17/2010 6/1/2012	Decommission Active Calibration	
		Project Engineer	leter Film		_	Quality Assurance			
	▲ ✓ ■ Wireles	ESEARCH LLC is Product Development ipment Calibration							
	Date	: 12-Aug-2011	Type Test	: Power Spectral	Density		Job # :	C-1272	
	Prepared By	: Peter	Customer:	Intersense			Quote #:	311238	
No	Asset#	Description	Manufacturer	Model#	Serial#	Cal Date	Cal Due Date	Equipment Status	
4	CC 000284C	Signal Generator	Agilent	E4421B	MY41000402	9/17/2009	9/17/2010	Decommission	
2	AA 960144	Phaseflex	Gore	EKD01D010720	5800373	6/1/2011	6/1/2012	Active Calibration	
		Project Engineer	leter Fisher	,	_	Quality Assurance	:		

Prepared For: InterSense	EUT: 900 MHz Radio Module	LS Research, LLC
Report # 311238	Model #: R69-00198	Template: Class B DTS 08-2011
LSR Job #: C-1272	Serial #: N/A	Page 40 of 44

 Date:
 12-Aug-2011
 Type Test:
 Spurious Emissions
 Job #: C-1272

 Prepared By:
 Peter
 Customer:
 Intersense
 Quote #: 311238

No.	Asset #	Description	Manufacturer	Model#	Serial#	Cal Date	Cal Due Date	Equipment Status
1	CC 000284C	Signal Generator	Agilent	E4421B	MY41000402	9/17/2009	9/17/2010	Decommission
2	AA 960144	Phaseflex	Gore	EKD01D010720	5800373	6/1/2011	6/1/2012	Active Calibration

Project Engineer: lette Zulen Quality Assurance:

Prepared For: InterSense	EUT: 900 MHz Radio Module	LS Research, LLC
Report # 311238	Model #: R69-00198	Template: Class B DTS 08-2011
LSR Job #: C-1272	Serial #: N/A	Page 41 of 44

APPENDIX B

			ALLEIN
STANDARD #	DATE	Am. 1	Am. 2
ANSI C63.4	2009		
ANSI C63.10	2009		
CISPR 11	2009-05	2009-12 P	
CISPR 12	2007-05		
CISPR 14-1	2005-11	2008-11	
CISPR 14-2	2001-11	2001-11	2008-05
CISPR 16-1-1 Note 1	2010-01		
CISPR 16-1-2 Note 1	2003	2004-04	2006-07
CISPR 22	2008-09		
CISPR 24	1997-09	2001-07	2002-10
EN 55011	2009		
EN 55014-1	2006		
EN 55014-2	1997		
EN 55022	2006	2007	
EN 60601-1-2	2007-03		
EN 61000-3-2	2006-05		
EN 61000-3-3	2008-12		
EN 61000-4-2	2009-05		
EN 61000-4-3	2006-07	2008-05	
EN 61000-4-4	2004		
EN 61000-4-5	2006-12		
EN 61000-4-6	2009-05		
EN 61000-4-8	1994	2001	
EN 61000-4-11	2004-10		
EN 61000-6-1	2007-02		
EN 61000-6-2	2005-12		
EN 61000-6-3	2007-02		
EN 61000-6-4	2007-02		
FCC 47 CFR, Parts 0-15, 18,	2009		
FCC Public Notice DA 00-1407	2000		
FCC ET Docket # 99-231	2002		
FCC Procedures	2007		
ICES 001	2006-06		
ICES 002	2009-08		
ICES 003	2004-02		
IEC 60601-1-2 Note 1	2007-03		
IEC 61000-3-2	2005-11	2008-03	2009-02
IEC 61000-3-3	2008-06		
IEC 61000-4-2	2008-12		
IEC 61000-4-3	2008-04	incl in 2008-	2009-12

STANDARD#	DATE	Am. 1	Am. 2
IEC 61000-4-4	2004-07	2010-10	
IEC 61000-4-5	2005-11		
IEC 61000-4-6	2008-10		
IEC 61000-4-8	2009-09		
IEC 61000-4-11	2004-03		
IEC 61000-6-1	2005-03		
IEC 61326-1	2006-06		
ISO 14982	1998-07		
MIL Std. 461E	1999-08		
RSS GEN	2007-06		
RSS 119	2007-06		
RSS 123	1999-11		
RSS 125	2000-03		
RSS 131	2003-07		
RSS 136	2002-10		
RSS 137	2009-02		
RSS 210	2010-12		
RSS 213	2005-12		
RSS 243	2010-02		
RSS 310	2007-06		
N. (. T. (. (. (. (. (. (. (. (.			
Note 1: Test not on LSR Sco	ope of Accredita	ation.	

Prepared For: InterSense	EUT: 900 MHz Radio Module	LS Research, LLC
Report # 311238	Model #: R69-00198	Template: Class B DTS 08-2011
LSR Job #: C-1272	Serial #: N/A	Page 42 of 44

APPENDIX C Uncertainty Statement

This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level, using a coverage factor of k=2.

Table of Expanded Uncertainty Values, (K=2) for Specified Measurements

Measurement Type	Particular Configuration	Uncertainty Values
Radiated Emissions	3 – Meter chamber, Biconical Antenna	4.24 dB
Radiated Emissions	3-Meter Chamber, Log Periodic Antenna	4.8 dB
Radiated Emissions	10-Meter OATS, Biconical Antenna	4.18 dB
Radiated Emissions	10-Meter OATS, Log Periodic Antenna	3.92 dB
Conducted Emissions	Shielded Room/EMCO LISN	1.60 dB
Radiated Immunity	3 Volts/Meter in 3-Meter Chamber	1.128 Volts/Meter

Prepared For: InterSense	EUT: 900 MHz Radio Module	LS Research, LLC
Report # 311238	Model #: R69-00198	Template: Class B DTS 08-2011
LSR Job #: C-1272	Serial #: N/A	Page 43 of 44

Appendix D

Antenna Specification(s)

Manufacturer: Taoglas

Part No. : **PC91.07.0100A.db**

Product Name: **The Stripe™** 915Mhz PCB Antenna

With 100mm IPEX 1.13mm diameter MHF connector

With foam attachment for assembly

Features: 34mm*7mm*0.8mm (PCB)

13mm*6mm*7mm (foam)

Compatible with Hirose U.FL

Typical Antenna Performance in free space

<u>Parameter</u> <u>Specification</u> Applications 915MHz ISM Band

Frequency Band 902-928MHz

Efficiency 52%
Return Loss <-10dB
VSWR <2.0:1
Impedance 50 Ohm
Polarization Horizontal

Radiation Pattern Omni-Directional

Antenna Characteristics

Band(MHz)	850	860	870	880	890	900	910	920	930	940	950	960	970
Gain	-0.13	-0.23	0.85	1.72	1.89	2.26	2.67	2.42	1.74	0.14	-1.94	-4.74	-7.54

Prepared For: InterSense	EUT: 900 MHz Radio Module	LS Research, LLC
Report # 311238	Model #: R69-00198	Template: Class B DTS 08-2011
LSR Job #: C-1272	Serial #: N/A	Page 44 of 44