Общеобразовательная автономная некоммерческая организация «Лицей «Сириус»

Приложение к ООП ООО ПРИНЯТО: Решением педагогического совета ОАНО «Лицей «Сириус» протокол № 2 от 31.08.2020

РАБОЧАЯ ПРОГРАММА СРЕДНЕЕ ОБЩЕЕ ОБРАЗОВАНИЕ

ХИМИЯ

І. Планируемые результаты освоения учебного предмета

І.1. Планируемые личностные результаты

Личностные результаты в сфере отношения обучающихся к себе, к своему здоровью, к познанию себя:

- ориентация обучающихся на достижение личного счастья, реализацию позитивных жизненных перспектив, инициативность, креативность, готовность и способность к личностному самоопределению, способность ставить цели и строить жизненные планы;
- готовность и способность обеспечить себе и своим близким достойную жизнь в процессе самостоятельной, творческой и ответственной деятельности;
- готовность и способность обучающихся к отстаиванию личного достоинства, собственного мнения, готовность и способность вырабатывать собственную позицию по отношению к общественно-политическим событиям прошлого и настоящего на основе осознания и осмысления истории, духовных ценностей и достижений нашей страны;
- готовность и способность обучающихся к саморазвитию и самовоспитанию в соответствии с общечеловеческими ценностями и идеалами гражданского общества, потребность в физическом самосовершенствовании, занятиях спортивно-оздоровительной деятельностью;
- принятие и реализация ценностей здорового и безопасного образа жизни, бережное, ответственное и компетентное отношение к собственному физическому и психологическому здоровью;
- неприятие вредных привычек: курения, употребления алкоголя, наркотиков.

Личностные результаты в сфере отношения обучающихся к России как к Родине (Отечеству):

- российская идентичность, способность к осознанию российской идентичности в поликультурном социуме, чувство причастности к историко-культурной общности российского народа и судьбе России, патриотизм, готовность к служению Отечеству, его защите;
- уважение к своему народу, чувство ответственности перед Родиной, гордости за свой край, свою Родину, прошлое и настоящее многонационального народа России, уважение к государственным символам (герб, флаг, гимн);
- формирование уважения к русскому языку как государственному языку Российской Федерации, являющемуся основой российской идентичности и главным фактором национального самоопределения;
- воспитание уважения к культуре, языкам, традициям и обычаям народов, проживающих в Российской Федерации.

Личностные результаты в сфере отношения обучающихся к закону, государству и к гражданскому обществу:

- гражданственность, гражданская позиция активного и ответственного члена российского общества, осознающего свои конституционные права и обязанности, уважающего закон и правопорядок, осознанно принимающего традиционные национальные и общечеловеческие гуманистические и демократические ценности, готового к участию в общественной жизни;
- признание основных прав и свобод человека, которые принадлежат каждому от рождения, готовность к осуществлению собственных прав и свобод без нарушения прав и свобод других лиц, готовность отстаивать собственные права и свободы человека и гражданина согласно общепризнанным принципам и нормам международного права и в соответствии с Конституцией Российской Федерации, правовая и политическая грамотность;
- мировоззрение, соответствующее современному уровню развития науки и общественной практики, основанное на диалоге культур, а также различных форм общественного сознания, осознание своего места в поликультурном мире;
- готовность обучающихся к конструктивному участию в принятии решений, затрагивающих их права и интересы, в том числе в различных формах общественной самоорганизации, самоуправления, общественно значимой деятельности;

- приверженность идеям интернационализма, дружбы, равенства, взаимопомощи народов; воспитание уважительного отношения к национальному достоинству людей, их чувствам, религиозным убеждениям;
- готовность обучающихся противостоять идеологии экстремизма, национализма, ксенофобии; коррупции; дискриминации по социальным, религиозным, расовым, национальным признакам и другим негативным социальным явлениям.

Личностные результаты в сфере отношений обучающихся с окружающими людьми:

- нравственное сознание и поведение на основе усвоения общечеловеческих ценностей, толерантного сознания и поведения в поликультурном мире, готовности и способности вести диалог с другими людьми, достигать в нем взаимопонимания, находить общие цели и сотрудничать для их достижения;
- принятие гуманистических ценностей, осознанное, уважительное и доброжелательное отношение к другому человеку, его мнению, мировоззрению;
- способность к сопереживанию и формирование позитивного отношения к людям, в том числе к лицам с ограниченными возможностями здоровья и инвалидам; бережное, ответственное и компетентное отношение к физическому и психологическому здоровью других людей, умение оказывать первую помощь;
- формирование выраженной в поведении нравственной позиции, в том числе способности к сознательному выбору добра, нравственного сознания и поведения на основе усвоения общечеловеческих ценностей и нравственных чувств (чести, долга, справедливости, милосердия и дружелюбия);
- развитие компетенций сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности.

Личностные результаты в сфере отношения обучающихся к окружающему миру, живой природе, художественной культуре:

- мировоззрение, соответствующее современному уровню развития науки, значимости науки, готовность к научно-техническому творчеству, владение достоверной информацией о передовых достижениях и открытиях мировой и отечественной науки, заинтересованность в научных знаниях об устройстве мира и общества;
- готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- экологическая культура, бережное отношения к родной земле, природным богатствам России и мира; понимание влияния социально-экономических процессов на состояние природной и социальной среды, ответственность за состояние природных ресурсов; умения и навыки разумного природопользования, нетерпимое отношение к действиям, приносящим вред экологии; приобретение опыта эколого-направленной деятельности;
- эстетическое отношения к миру, готовность к эстетическому обустройству собственного быта.

Личностные результаты в сфере отношения обучающихся к семье и родителям, в том числе полготовка к семейной жизни:

- ответственное отношение к созданию семьи на основе осознанного принятия ценностей семейной жизни;
- положительный образ семьи, родительства (отцовства и материнства), семейных

Личностные результаты в сфере отношения обучающихся к труду, в сфере социально-экономических отношений:

- уважение ко всем формам собственности, готовность к защите своей собственности,
- осознанный выбор будущей профессии как путь и способ реализации собственных жизненных планов;

- готовность обучающихся к трудовой профессиональной деятельности как к возможности участия в решении личных, общественных, государственных, общенациональных проблем;
- потребность трудиться, уважение к труду и людям труда, трудовым достижениям, добросовестное, ответственное и творческое отношение к разным видам трудовой деятельности;
- готовность к самообслуживанию, включая обучение и выполнение домашних обязанностей.

Личностные результаты в сфере физического, психологического, социального и академического благополучия обучающихся:

– физическое, эмоционально-психологическое, социальное благополучие обучающихся в жизни образовательной организации, ощущение детьми безопасности и психологического комфорта, информационной безопасности.

І.2. Планируемые метапредметные результаты

Метапредметные результаты представлены тремя группами универсальных учебных действий (УУД).

1. Регулятивные универсальные учебные действия Выпускник научится:

- самостоятельно определять цели, задавать параметры и критерии, по которым можно определить, что цель достигнута;
- оценивать возможные последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей, основываясь на соображениях этики и морали;
- ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
- оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной цели;
- выбирать путь достижения цели, планировать решение поставленных задач, оптимизируя материальные и нематериальные затраты;
- организовывать эффективный поиск ресурсов, необходимых для достижения поставленной цели;
 - сопоставлять полученный результат деятельности с поставленной заранее целью.

2. Познавательные универсальные учебные действия

Выпускник научится:

- искать и находить обобщенные способы решения задач, в том числе, осуществлять развернутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи;
- критически оценивать и интерпретировать информацию с разных позиций, распознавать и фиксировать противоречия в информационных источниках;
- использовать различные модельно-схематические средства для представления существенных связей и отношений, а также противоречий, выявленных в информационных источниках;
- находить и приводить критические аргументы в отношении действий и суждений другого; спокойно и разумно относиться к критическим замечаниям в отношении собственного суждения, рассматривать их как ресурс собственного развития;
- выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможностей для широкого переноса средств и способов действия;
- выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные ограничения;
 - менять и удерживать разные позиции в познавательной деятельности.

3. Коммуникативные универсальные учебные действия Выпускник научится:

- осуществлять деловую коммуникацию как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за ее пределами), подбирать партнеров для деловой коммуникации исходя из соображений результативности взаимодействия, а не личных симпатий;
- при осуществлении групповой работы быть как руководителем, так и членом команды в разных ролях (генератор идей, критик, исполнитель, выступающий, эксперт и т.д.);
- координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия;
- развернуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств;
- распознавать и предотвращать конфликты до их активной фазы, выстраивать деловую и образовательную коммуникацию, избегая личностных оценочных суждений.

І.З. Планируемые предметные результаты

Химия

В результате изучения учебного предмета «Химия» на уровне среднего общего образования:

Выпускник на базовом уровне научится:

раскрывать на примерах роль химии в формировании современной научной картины мира и в практической деятельности человека;

демонстрировать на примерах взаимосвязь между химией и другими естественными науками; раскрывать на примерах положения теории химического строения А.М. Бутлерова;

понимать физический смысл Периодического закона Д.И. Менделеева и на его основе объяснять зависимость свойств химических элементов и образованных ими веществ от электронного строения атомов;

объяснять причины многообразия веществ на основе общих представлений об их составе и строении;

применять правила систематической международной номенклатуры как средства различения и идентификации веществ по их составу и строению;

составлять молекулярные и структурные формулы органических веществ как носителей информации о строении вещества, его свойствах и принадлежности к определенному классу соединений;

характеризовать органические вещества по составу, строению и свойствам, устанавливать причинно-следственные связи между данными характеристиками вещества;

приводить примеры химических реакций, раскрывающих характерные свойства типичных представителей классов органических веществ с целью их идентификации и объяснения области применения;

прогнозировать возможность протекания химических реакций на основе знаний о типах химической связи в молекулах реагентов и их реакционной способности;

использовать знания о составе, строении и химических свойствах веществ для безопасного применения в практической деятельности;

приводить примеры практического использования продуктов переработки нефти и природного газа, высокомолекулярных соединений (полиэтилена, синтетического каучука, ацетатного волокна);

проводить опыты по распознаванию органических веществ: глицерина, уксусной кислоты, непредельных жиров, глюкозы, крахмала, белков — в составе пищевых продуктов и косметических средств;

владеть правилами и приемами безопасной работы с химическими веществами и лабораторным оборудованием;

устанавливать зависимость скорости химической реакции и смещения химического равновесия от различных факторов с целью определения оптимальных условий протекания химических процессов;

приводить примеры гидролиза солей в повседневной жизни человека;

приводить примеры окислительно-восстановительных реакций в природе, производственных процессах и жизнедеятельности организмов;

приводить примеры химических реакций, раскрывающих общие химические свойства простых веществ – металлов и неметаллов;

проводить расчеты на нахождение молекулярной формулы углеводорода по продуктам сгорания и по его относительной плотности и массовым долям элементов, входящих в его состав;

владеть правилами безопасного обращения с едкими, горючими и токсичными веществами, средствами бытовой химии;

осуществлять поиск химической информации по названиям, идентификаторам, структурным формулам веществ;

критически оценивать и интерпретировать химическую информацию, содержащуюся в сообщениях средств массовой информации, ресурсах Интернета, научно-популярных статьях с точки зрения естественно-научной корректности в целях выявления ошибочных суждений и формирования собственной позиции;

представлять пути решения глобальных проблем, стоящих перед человечеством: экологических, энергетических, сырьевых, и роль химии в решении этих проблем.

Выпускник на базовом уровне получит возможность научиться:

иллюстрировать на примерах становление и эволюцию органической химии как науки на различных исторических этапах ее развития;

использовать методы научного познания при выполнении проектов и учебноисследовательских задач по изучению свойств, способов получения и распознавания органических веществ;

объяснять природу и способы образования химической связи: ковалентной (полярной, неполярной), ионной, металлической, водородной — с целью определения химической активности веществ;

устанавливать генетическую связь между классами органических веществ для обоснования принципиальной возможности получения органических соединений заданного состава и строения;

устанавливать взаимосвязи между фактами и теорией, причиной и следствием при анализе проблемных ситуаций и обосновании принимаемых решений на основе химических знаний.

Выпускник на углубленном уровне научится:

- раскрывать на примерах роль химии в формировании современной научной картины мира и в практической деятельности человека, взаимосвязь между химией и другими естественными науками;
- иллюстрировать на примерах становление и эволюцию органической химии как науки на различных исторических этапах ее развития;
- устанавливать причинно-следственные связи между строением атомов химических элементов и периодическим изменением свойств химических элементов и их соединений в соответствии с положением химических элементов в периодической системе;
- анализировать состав, строение и свойства веществ, применяя положения основных химических теорий: химического строения органических соединений А.М. Бутлерова, строения атома, химической связи, электролитической диссоциации кислот и оснований; устанавливать причинно-следственные связи между свойствами вещества и его составом и строением;
- применять правила систематической международной номенклатуры как средства различения и идентификации веществ по их составу и строению;
- составлять молекулярные и структурные формулы неорганических и органических веществ как носителей информации о строении вещества, его свойствах и принадлежности к определенному классу соединений;

- объяснять природу и способы образования химической связи: ковалентной (полярной, неполярной), ионной, металлической, водородной с целью определения химической активности веществ;
- характеризовать физические свойства неорганических и органических веществ и устанавливать зависимость физических свойств веществ от типа кристаллической решетки;
- характеризовать закономерности в изменении химических свойств простых веществ, водородных соединений, высших оксидов и гидроксидов;
- приводить примеры химических реакций, раскрывающих характерные химические свойства неорганических и органических веществ изученных классов с целью их идентификации и объяснения области применения;
- определять механизм реакции в зависимости от условий проведения реакции и прогнозировать возможность протекания химических реакций на основе типа химической связи и активности реагентов;
- устанавливать зависимость реакционной способности органических соединений от характера взаимного влияния атомов в молекулах с целью прогнозирования продуктов реакции;
- устанавливать зависимость скорости химической реакции и смещения химического равновесия от различных факторов с целью определения оптимальных условий протекания химических процессов;
- устанавливать генетическую связь между классами неорганических и органических веществ для обоснования принципиальной возможности получения неорганических и органических соединений заданного состава и строения;
- подбирать реагенты, условия и определять продукты реакций, позволяющих реализовать лабораторные и промышленные способы получения важнейших неорганических и органических веществ;
- определять характер среды в результате гидролиза неорганических и органических веществ и приводить примеры гидролиза веществ в повседневной жизни человека, биологических обменных процессах и промышленности;
- приводить примеры окислительно-восстановительных реакций в природе,
 производственных процессах и жизнедеятельности организмов;
- обосновывать практическое использование неорганических и органических веществ и их реакций в промышленности и быту;
- выполнять химический эксперимент по распознаванию и получению неорганических и органических веществ, относящихся к различным классам соединений, в соответствии с правилами и приемами безопасной работы с химическими веществами и лабораторным оборудованием;
- проводить расчеты на основе химических формул и уравнений реакций: нахождение молекулярной формулы органического вещества по его плотности и массовым долям элементов, входящих в его состав, или по продуктам сгорания; расчеты массовой доли (массы) химического соединения в смеси; расчеты массы (объема, количества вещества) продуктов реакции, если одно из веществ дано в избытке (имеет примеси); расчеты массовой или объемной доли выхода продукта реакции от теоретически возможного; расчеты теплового эффекта реакции; расчеты объемных отношений газов при химических реакциях; расчеты массы (объема, количества вещества) продукта реакции, если одно из веществ дано в виде раствора с определенной массовой долей растворенного вещества;
- использовать методы научного познания: анализ, синтез, моделирование химических процессов и явлений при решении учебно-исследовательских задач по изучению свойств, способов получения и распознавания органических веществ;
- владеть правилами безопасного обращения с едкими, горючими и токсичными веществами, средствами бытовой химии;
- осуществлять поиск химической информации по названиям, идентификаторам, структурным формулам веществ;
- критически оценивать и интерпретировать химическую информацию, содержащуюся в сообщениях средств массовой информации, ресурсах Интернета, научно-популярных статьях с

точки зрения естественно-научной корректности в целях выявления ошибочных суждений и формирования собственной позиции;

- устанавливать взаимосвязи между фактами и теорией, причиной и следствием при анализе проблемных ситуаций и обосновании принимаемых решений на основе химических знаний;
- представлять пути решения глобальных проблем, стоящих перед человечеством, и перспективных направлений развития химических технологий, в том числе технологий современных материалов с различной функциональностью, возобновляемых источников сырья, переработки и утилизации промышленных и бытовых отходов.

Выпускник на углубленном уровне получит возможность научиться:

- формулировать цель исследования, выдвигать и проверять экспериментально гипотезы о химических свойствах веществ на основе их состава и строения, их способности вступать в химические реакции, о характере и продуктах различных химических реакций;
- самостоятельно планировать и проводить химические эксперименты с соблюдением правил безопасной работы с веществами и лабораторным оборудованием;
- интерпретировать данные о составе и строении веществ, полученные с помощью современных физико-химических методов;
- описывать состояние электрона в атоме на основе современных квантово-механических представлений о строении атома для объяснения результатов спектрального анализа веществ;
- характеризовать роль азотосодержащих гетероциклических соединений и нуклеиновых кислот как важнейших биологически активных веществ;
- прогнозировать возможность протекания окислительно-восстановительных реакций, лежащих в основе природных и производственных процессов.

II. Содержание учебного предмета

В системе естественно-научного образования химия как учебный предмет занимает важное место в познании законов природы, формировании научной картины мира, химической грамотности, необходимой для повседневной жизни, навыков здорового и безопасного для человека и окружающей его среды образа жизни, а также в воспитании экологической культуры, формировании собственной позиции по отношению к химической информации, получаемой из разных источников.

В соответствии с ФГОС СОО химия может изучаться на базовом и углубленном уровнях.

Изучение химии на базовом уровне ориентировано на обеспечение общеобразовательной и общекультурной подготовки выпускников.

Содержание базового курса позволяет раскрыть ведущие идеи и отдельные положения, важные в познавательном и мировоззренческом отношении: зависимость свойств веществ от состава и строения; обусловленность применения веществ их свойствами; материальное единство неорганических и органических веществ; возрастающая роль химии в создании новых лекарств и материалов, в экономии сырья, охране окружающей среды.

Изучение предмета «Химия» в части формирования у обучающихся научного мировоззрения, освоения общенаучных методов познания, а также практического применения научных знаний основано на межпредметных связях с предметами областей естественных, математических и гуманитарных наук.

10 класс. Базовый уровень.

Основы органической химии.

Появление и развитие органической химии как науки. Предмет органической химии. Место и значение органической химии в системе естественных наук.

Химическое строение как порядок соединения атомов в молекуле согласно их валентности. Основные положения теории химического строения органических соединений А.М. Бутлерова. Углеродный скелет органической молекулы. Кратность химической связи. Зависимость свойств веществ от химического строения молекул. Изомерия и изомеры. Понятие о функциональной группе. Принципы классификации органических соединений. Систематическая международная номенклатура и принципы образования названий органических соединений.

Практическая работа. Определение качественного состава органического вещества.

Демонстрации. Разложение сахара. Коллекция органических веществ и материалов. Модели органических молекул.

Расчетные задачи. Нахождение молекулярной формулы органического вещества по его плотности и массовым долям элементов, входящих в его состав.

Углеводороды.

Алканы. Строение молекулы метана. Гомологический ряд алканов. Гомологи. Номенклатура. Изомерия углеродного скелета. Закономерности изменения физических свойств. Химические свойства (на примере метана и этана): реакции замещения (галогенирование), дегидрирования как способы получения важнейших соединений в органическом синтезе. Горение метана как один из основных источников тепла в промышленности и быту. Нахождение в природе и применение алканов. Понятие о циклоалканах.

Алкены. Строение молекулы этилена. Гомологический ряд алкенов. Номенклатура. Изомерия углеродного скелета и положения кратной связи в молекуле. Химические свойства (на примере этилена): реакции присоединения (галогенирование, гидрирование, гидратация, гидрогалогенирование) как способ получения функциональных производных углеводородов, горения. Полимеризация этилена как основное направление его использования. Полиэтилен как крупнотоннажный продукт химического производства. Применение этилена.

Алкадиены и каучуки. Понятие об алкадиенах как углеводородах с двумя двойными связями. Полимеризация дивинила (бутадиена-1,3) как способ получения синтетического каучука. Натуральный и синтетический каучуки. Вулканизация каучука. Резина. Применение каучука и резины.

Алкины. Строение молекулы ацетилена. Гомологический ряд алкинов. Номенклатура. Изомерия углеродного скелета и положения кратной связи в молекуле. Химические свойства (на примере ацетилена): реакции присоединения (галогенирование, гидрирование, гидратация, гидрогалогенирование) как способ получения полимеров и других полезных продуктов. Горение ацетилена как источник высокотемпературного пламени для сварки и резки металлов. Применение апетилена.

Арены. Бензол как представитель ароматических углеводородов. Строение молекулы бензола. Химические свойства: реакции замещения (галогенирование) как способ получения химических средств защиты растений, присоединения (гидрирование) как доказательство непредельного характера бензола. Реакция горения. Применение бензола.

Лабораторные опыты. Составление моделей алканов и непредельных углеводородов. Ознакомление с образцами каучуков, резины, эбонита. Ознакомление с образцами продуктов нефтепереработки.

Демонстрации. Горение метана, этилена, ацетилена. Отношение метана, этилена, ацетилена и бензола к раствору перманганата калия. Получение этилена или ацетилена. Образование нефтяной пленки на поверхности воды.

Расчетные задачи. Нахождение молекулярной формулы органического вещества по его плотности и массовым долям элементов, входящих в его состав, или по продуктам сгорания. Расчеты объемных отношений газов при химических реакциях.

Кислородсодержащие органические вещества.

Спирты. Классификация, номенклатура, изомерия спиртов. Метанол и этанол как представители предельных одноатомных спиртов. Химические свойства (на примере метанола и этанола): взаимодействие с натрием как способ установления наличия гидроксогруппы, реакция с галогеноводородами как способ получения растворителей, дегидратация как способ получения этилена. Реакция горения: спирты как топливо. Применение метанола и этанола. Физиологическое действие метанола и этанола на организм человека. Этиленгликоль и глицерин как представители предельных многоатомных спиртов. Качественная реакция на многоатомные спирты и ее применение для распознавания глицерина в составе косметических средств. Практическое применение этиленгликоля и глицерина.

Фенол. Строение молекулы фенола. Взаимное влияние атомов в молекуле фенола. Химические свойства: взаимодействие с натрием, гидроксидом натрия, бромом. Применение фенола.

Альдегиды. Метаналь (формальдегид) и этаналь (ацетальдегид) как представители предельных альдегидов. Качественные реакции на карбонильную группу (реакция «серебряного зеркала», взаимодействие с гидроксидом меди (II) и их применение для обнаружения предельных альдегидов в промышленных сточных водах. Токсичность альдегидов. Применение формальдегида и ацетальдегида.

Карбоновые кислоты. Уксусная кислота как представитель предельных одноосновных карбоновых кислот. Химические свойства (на примере уксусной кислоты): реакции с металлами, основными оксидами, основаниями и солями как подтверждение сходства с неорганическими кислотами. Реакция этерификации как способ получения сложных эфиров. Применение уксусной кислоты. Представление о высших карбоновых кислотах.

Сложные эфиры и жиры. Сложные эфиры как продукты взаимодействия карбоновых кислот со спиртами. Применение сложных эфиров в пищевой и парфюмерной промышленности. Жиры как сложные эфиры глицерина и высших карбоновых кислот. Растительные и животные жиры, их состав. Распознавание растительных жиров на основании их непредельного характера. Применение жиров. Гидролиз или омыление жиров как способ промышленного получения солей высших карбоновых кислот. Мыла́ как соли высших карбоновых кислот. Моющие свойства мыла.

Углеводы. Классификация углеводов. Нахождение углеводов в природе. Глюкоза как альдегидоспирт. Брожение глюкозы. Сахароза. Гидролиз сахарозы. Крахмал и целлюлоза как биологические полимеры. Химические свойства крахмала и целлюлозы (гидролиз, качественная реакция с йодом на крахмал и ее применение для обнаружения крахмала в продуктах питания). Применение и биологическая роль углеводов. Понятие об искусственных волокнах на примере ацетатного волокна.

Идентификация органических соединений. Генетическая связь между классами органических соединений. Типы химических реакций в органической химии.

Практическая работа. Идентификация органических соединений.

Лабораторные опыты. Свойства одноатомных и многоатомных спиртов. Свойства уксусной и бензойной кислот. Свойства глюкозы. Свойства жиров.

Демонстрации. Химические свойства спиртов. Качественные реакции на спирты. Свойства фенола. Реакция «серебряного зеркала». Качественные реакции на карбоновые кислоты.

Азотсодержащие органические вещества.

Аминокислоты и белки. Состав и номенклатура. Аминокислоты как амфотерные органические соединения. Пептидная связь. Биологическое значение α-аминокислот. Области применения аминокислот. Белки как природные биополимеры. Состав и строение белков. Химические свойства белков: гидролиз, денатурация. Обнаружение белков при помощи качественных (цветных) реакций. Превращения белков пищи в организме. Биологические функции белков.

Лабораторные опыты. Качественные реакции на белки.

Демонстрации. Реакции анилина с бромной водой. Растворение и осаждение белков.

Расчетные задачи. Расчеты массовой доли (массы) химического соединения в смеси.

Высокомолекулярные соединения.

Высокомолекулярные соединения. Основные понятия высокомолекулярных соединений: мономер, полимер, структурное звено, степень полимеризации. Классификация полимеров. Основные способы получения высокомолекулярных соединений: реакции полимеризации и поликонденсации. Строение и структура полимеров. Зависимость свойств полимеров от строения молекул. Термопластичные и термореактивные полимеры. Классификация волокон. Синтетические волокна. Полиэфирные и полиамидные волокна, их строение, свойства. Практическое использование волокон.

Лабораторные опыты. Отношение пластмасс и синтетических волокон к растворам кислот и щелочей.

Демонстрации. Образцы пластиков. Коллекция волокон.

Решение задач. Расчеты массы (объема, количества вещества) продуктов реакции, если одно из веществ дано в избытке (имеет примеси). Расчеты массы (объема, количества вещества) продукта реакции, если одно из веществ дано в виде раствора с определенной массовой долей растворенного вещества.

11 класс

Теоретические основы химии.

Строение вещества. Современная модель строения атома. Электронная конфигурация атома. Основное и возбужденные состояния атомов. Классификация химических элементов (s-, p-, d-элементы). Особенности строения энергетических уровней атомов d-элементов. Периодическая система химических элементов Д.И. Менделеева. Физический смысл Периодического закона Д.И. Менделеева. Причины и закономерности изменения свойств элементов и их соединений по периодам и группам. Электронная природа химической связи. Электроотрицательность. Виды химической связи (ковалентная, ионная, металлическая, водородная) и механизмы ее образования. Кристаллические и аморфные вещества. Типы кристаллических решеток (атомная, молекулярная, ионная, металлическая). Зависимость физических свойств вещества от типа кристаллической решетки. Причины многообразия веществ.

Лабораторные опыты. Ознакомление с образцами кристаллических решеток. Выявление зависимости физических свойств веществ от кристаллической решетки.

Демонстрации. Модели атомных орбиталей разной формы. Модели пространственного расположения гибридных орбиталей. Возгонка иода, нагревание кварца, серы и поваренной соли.

Химические реакции.

Химические реакции. Гомогенные и гетерогенные реакции. Скорость реакции, ее зависимость от различных факторов: природы реагирующих веществ, концентрации реагирующих веществ, температуры, площади реакционной поверхности, наличия катализатора. Роль катализаторов в природе и промышленном производстве. Обратимость реакций. Химическое равновесие

и его смещение под действием различных факторов (концентрация реагентов или продуктов реакции, давление, температура) для создания оптимальных условий протекания химических процессов. Дисперсные системы. Понятие о коллоидах (золи, гели). Истинные растворы. Реакции в растворах электролитов. рН раствора как показатель кислотности среды. Гидролиз солей. Значение гидролиза в биологических обменных процессах. Окислительно-восстановительные реакции в природе, производственных процессах и жизнедеятельности организмов. Окислительно-восстановительные свойства простых веществ — металлов главных и побочных подгрупп (медь, железо) и неметаллов: водорода, кислорода, галогенов, серы, азота, фосфора, углерода, кремния. Коррозия металлов: виды коррозии, способы защиты металлов от коррозии. Электролиз растворов и расплавов. Применение электролиза в промышленности.

Практическая работа. Влияние различных факторов на скорость химических реакций.

Лабораторные опыты. Скорость химической реакции. Химическое равновесие. Условия протекания химических реакций.

Расчетные задачи. Расчеты массовой доли (массы) химического соединения в смеси. Расчеты массы (объема, количества вещества) продуктов реакции, если одно из веществ дано в избытке (имеет примеси). Расчеты массовой или объемной доли выхода продукта реакции от теоретически возможного. Расчеты теплового эффекта реакции. Расчеты объемных отношений газов при химических реакциях. Расчеты массы (объема, количества вещества) продукта реакции, если одно из веществ дано в виде раствора с определенной массовой долей растворенного вещества.

Химические вешества – металлы и неметаллы.

Окислительно-восстановительные реакции в природе, производственных процессах и жизнедеятельности организмов. Окислительно-восстановительные свойства простых веществ — металлов главных и побочных подгрупп (медь, железо) и неметаллов: водорода, кислорода, галогенов, серы, азота, фосфора, углерода, кремния. Коррозия металлов: виды коррозии, способы защиты металлов от коррозии. Электролиз растворов и расплавов. Применение электролиза в промышленности.

Практическая работа. Качественные реакции на ионы. Идентификация неорганических соединений.

Лабораторные опыты. Ознакомление со свойствами неметаллов. Ознакомление со свойствами металлов и сплавов.

Демонстрации. Взаимодействие алюминия с йодом. Взаимодействие меди с концентрированной азотной кислотой.

Расчетные задачи. Расчеты массовой доли (массы) химического соединения в смеси. Расчеты массы (объема, количества вещества) продуктов реакции, если одно из веществ дано в избытке (имеет примеси). Расчеты массовой или объемной доли выхода продукта реакции от теоретически возможного. Расчеты теплового эффекта реакции. Расчеты объемных отношений газов при химических реакциях. Расчеты массы (объема, количества вещества) продукта реакции, если одно из веществ дано в виде раствора с определенной массовой долей растворенного вещества.

Научные основы химического производства.

Научные методы познания в химии. Источники химической информации. Поиск информации по названиям, идентификаторам, структурным формулам. Моделирование химических процессов и явлений, химический анализ и синтез как методы научного познания.

Демонстрации. Схемы производства серной кислоты и аммиака. Модели доменной печи и кислородного конвертера. Образцы чугуна и стали. Схема безотходного производства. Схема очистки воды.

Расчетные задачи. Расчеты массовой доли (массы) химического соединения в смеси (сплаве). Расчеты массы (объема, количества вещества) продуктов реакции, если одно из веществ дано в избытке (имеет примеси). Расчеты массовой или объемной доли выхода продукта реакции от теоретически возможного. Расчеты теплового эффекта реакции.

Химия в жизни и обществе.

Химия и здоровье. Лекарства, ферменты, витамины, гормоны, минеральные воды. Проблемы, связанные с применением лекарственных препаратов. Вредные привычки и факторы, разрушающие здоровье (курение, употребление алкоголя, наркомания). Рациональное питание. Пищевые добавки. Основы пищевой химии.

Химия в повседневной жизни. Моющие и чистящие средства. Средства борьбы с бытовыми насекомыми: репелленты, инсектициды. Средства личной гигиены и косметики. Правила безопасной работы с едкими, горючими и токсичными веществами, средствами бытовой химии.

Химия и сельское хозяйство. Минеральные и органические удобрения. Средства защиты растений.

Химия и энергетика. Природные источники углеводородов. Природный и попутный нефтяной газы, их состав и использование. Состав нефти и ее переработка. Нефтепродукты. Октановое число бензина. Охрана окружающей среды при нефтепереработке и транспортировке нефтепродуктов. Альтернативные источники энергии.

Химия в строительстве. Цемент. Бетон. Подбор оптимальных строительных материалов в практической деятельности человека.

Химия и экология. Химическое загрязнение окружающей среды и его последствия. Охрана гидросферы, почвы, атмосферы, флоры и фауны от химического загрязнения.

Лабораторные опыты. Знакомство с минеральными удобрениями и изучение их свойств. Ознакомление с нефтью и нефтепродуктами.

Расчетные задачи. Расчеты массовой доли (массы) химического соединения в смеси (сплаве). Расчеты массы (объема, количества вещества) продуктов реакции, если одно из веществ дано в избытке (имеет примеси). Расчеты массовой или объемной доли выхода продукта реакции от теоретически возможного. Расчеты теплового эффекта реакции.

10 класс. Углубленный уровень

Органическая химия. Введение в органическую химию.

Повторение важнейших вопросов неорганической химии. Периодический закон. Строение атома. Химическое строение как порядок соединения атомов в молекуле согласно их валентности. Химические реакции. Растворы. Комплексные соединения.

Появление и развитие органической химии как науки. Предмет органической химии. Место и значение органической химии в системе естественных наук. Взаимосвязь неорганических и органических веществ.

Химическое строение как порядок соединения атомов в молекуле согласно их валентности. Основные положения теории химического строения органических соединений А.М. Бутлерова. Углеродный скелет органической молекулы. Кратность химической связи. Зависимость свойств веществ от химического строения молекул. Изомерия и изомеры. Понятие о функциональной группе. Принципы классификации органических соединений. Международная номенклатура и принципы образования названий органических соединений.

Классификация и особенности органических реакций. Реакционные центры. Первоначальные понятия о типах и механизмах органических реакций. Гомолитический и гетеролитический разрыв ковалентной химической связи. Свободнорадикальный и ионный механизмы реакции. Понятие о нуклеофиле и электрофиле.

Демонстрации. Разложение сахара. Коллекция органических веществ и материалов. Модели органических молекул.

Расчетные задачи. Нахождение молекулярной формулы органического вещества по его плотности и массовым долям элементов, входящих в его состав. Нахождение молекулярной формулы органического вещества по его плотности и массовым долям элементов, входящих в его состав, или по продуктам сгорания.

Органическая химия. Углеводороды.

Алканы. Электронное и пространственное строение молекулы метана. sp^3 -гибридизация орбиталей атомов углерода. Гомологический ряд и общая формула алканов. Систематическая номенклатура алканов и радикалов. Изомерия углеродного скелета. Физические свойства алканов. Закономерности изменения физических свойств. Химические свойства алканов: галогенирование, дегидрирование, термическое разложение, крекинг как способы получения важнейших соединений в органическом синтезе. Горение алканов как один из основных источников тепла в промышленности и быту. Изомеризация как способ получения высокосортного бензина. Механизм реакции свободнорадикального замещения. Получение алканов. Реакция Вюрца. Нахождение в природе и применение алканов.

Циклоалканы. Строение молекул циклоалканов. Общая формула циклоалканов. Номенклатура циклоалканов. Изомерия циклоалканов: углеродного скелета, межклассовая, пространственная (*цис-транс*-изомерия). Специфика свойств циклоалканов с малым размером цикла. Реакции присоединения и радикального замещения.

Алкены. Электронное и пространственное строение молекулы этилена. sp^2 -гибридизация орбиталей атомов углерода. σ - и π -связи. Гомологический ряд и общая формула алкенов. Номенклатура алкенов. Изомерия алкенов: углеродного скелета, положения кратной связи, пространственная (*цис-транс*-изомерия), межклассовая. Физические свойства алкенов. Реакции электрофильного присоединения как способ получения функциональных производных углеводородов. Правило Марковникова, его электронное обоснование. Реакции окисления и полимеризации. Полиэтилен как крупнотоннажный продукт химического производства. Промышленные и лабораторные способы получения алкенов. *Правило Зайцева*. Применение алкенов.

Алкадиены. Классификация алкадиенов по взаимному расположению кратных связей в молекуле. Особенности электронного и пространственного строения сопряженных алкадиенов. Общая формула алкадиенов. Номенклатура и изомерия алкадиенов. Физические свойства алкадиенов: реакции присоединения (гидрирование, галогенирование), горения и полимеризации. Вклад С.В. Лебедева в получение синтетического каучука. Вулканизация каучука. Резина. Многообразие видов синтетических каучуков, их свойства и применение. Получение алкадиенов.

Алкины. Электронное и пространственное строение молекулы ацетилена. *ѕр*-гибридизация орбиталей атомов углерода. Гомологический ряд и общая формула алкинов. Номенклатура. Изомерия: углеродного скелета, положения кратной связи, межклассовая. Физические свойства алкинов. Химические свойства алкинов: реакции присоединения как способ получения полимеров и других полезных продуктов. *Реакции замещения*. Горение ацетилена как источник высокотемпературного пламени для сварки и резки металлов. Получение ацетилена пиролизом метана и карбидным методом. Применение ацетилена.

Арены. История открытия бензола. Современные представления об электронном и пространственном строении бензола. Изомерия и номенклатура гомологов бензола. Общая формула аренов. Физические свойства бензола. Химические свойства бензола: реакции электрофильного замещения (нитрование, галогенирование) как способ получения химических средств защиты растений; присоединения (гидрирование, галогенирование) как доказательство непредельного характера бензола. Реакция горения. Получение бензола. Особенности химических свойств толуола. Взаимное влияние атомов в молекуле толуола. Ориентационные эффекты заместителей. Применение гомологов бензола.

Практическая работа. Определение качественного состава органического вещества.

Практическая работа. Получение этилена и изучение его свойств.

Лабораторные опыты. Составление моделей алканов и непредельных углеводородов. Ознакомление с образцами каучуков, резины, эбонита. Ознакомление с образцами продуктов нефтепереработки.

Демонстрации. Горение метана, этилена, ацетилена. Отношение метана, этилена, ацетилена и бензола к раствору перманганата калия. Получение этилена или ацетилена. Образование йодоформа. Образование нефтяной пленки на поверхности воды.

Расчетные задачи. Нахождение молекулярной формулы органического вещества по его плотности и массовым долям элементов, входящих в его состав, или по продуктам сгорания. Расчеты объемных отношений газов при химических реакциях. Расчеты массовой доли (массы) химического соединения в смеси. Расчеты массы (объема, количества вещества) продуктов реакции, если одно из веществ дано в избытке (имеет примеси). Расчеты массовой или объемной доли выхода продукта реакции от теоретически возможного. Расчеты объемных отношений газов при химических реакциях. Расчеты массы (объема, количества вещества) продукта реакции, если одно из веществ дано в виде раствора с определенной массовой долей растворенного вещества.

Органическая химия. Кислородсодержащие органические соединения.

Спирты. Классификация, номенклатура спиртов. Гомологический ряд и общая формула предельных одноатомных спиртов. Изомерия. Физические свойства предельных одноатомных спиртов. Водородная связь между молекулами и ее влияние на физические свойства спиртов. Химические свойства: взаимодействие с натрием как способ установления наличия гидроксогруппы, с галогеноводородами как способ получения растворителей, внутри- и межмолекулярная дегидратация. Реакция горения: спирты как топливо. Получение этанола: реакция брожения глюкозы, гидратация этилена. Применение метанола и этанола. Физиологическое действие метанола и этанола на организм человека. Этиленгликоль и глицерин как представители предельных многоатомных спиртов. Качественная реакция на многоатомные спирты и ее применение для распознавания глицерина в составе косметических средств. Практическое применение этиленгликоля и глицерина.

Фенол. Строение молекулы фенола. Взаимное влияние атомов в молекуле фенола. Физические свойства фенола. Химические свойства (реакции с натрием, гидроксидом натрия, бромом). Получение фенола. Применение фенола.

Альдегиды и кетоны. Классификация альдегидов и кетонов. Строение предельных альдегидов. Электронное и пространственное строение карбонильной группы. Гомологический ряд, общая формула, номенклатура и изомерия предельных альдегидов. Физические свойства предельных альдегидов. Химические свойства предельных альдегидов: гидрирование; качественные реакции на карбонильную группу (реакция «серебряного зеркала», взаимодействие с гидроксидом меди (II)) и их применение для обнаружения предельных альдегидов в промышленных сточных водах. Получение предельных альдегидов: окисление спиртов, гидратация ацетилена (реакция Кучерова). Токсичность альдегидов. Применение формальдегида и ацетальдегида. Ацетон

как представитель кетонов. Строение молекулы ацетона. Особенности реакции окисления ацетона. Применение ацетона.

Карбоновые кислоты. Классификация и номенклатура карбоновых кислот. Строение предельных одноосновных карбоновых кислот. Электронное и пространственное строение карбоксильной группы. Гомологический ряд и общая формула предельных одноосновных карбоновых кислот. Физические свойства предельных одноосновных карбоновых кислот. Химические свойства предельных одноосновных карбоновых кислот (реакции с металлами, основными оксидами, основаниями и солями) как подтверждение сходства с неорганическими кислотами. Реакция этерификации и ее обратимость. Влияние заместителей в углеводородном радикале на силу карбоновых кислот. Особенности химических свойств муравьиной кислоты. Получение предельных одноосновных карбоновых кислот: окисление алканов, алкенов, первичных спиртов, альдегидов. Важнейшие представители карбоновых кислот: муравьиная, уксусная и бензойная. Высшие предельные и непредельные карбоновые кислоты. Оптическая изомерия. Асимметрический атом углерода. Применение карбоновых кислот.

Сложные эфиры и жиры. Строение и номенклатура сложных эфиров. Межклассовая изомерия с карбоновыми кислотами. Способы получения сложных эфиров. Обратимость реакции этерификации. Применение сложных эфиров в пищевой и парфюмерной промышленности. Жиры как сложные эфиры глицерина и высших карбоновых кислот. Растительные и животные жиры, их состав. Физические свойства жиров. Химические свойства жиров: гидрирование, окисление. Гидролиз или омыление жиров как способ промышленного получения солей высших карбоновых кислот. Применение жиров. Мыла́ как соли высших карбоновых кислот. Моющие свойства мыла.

Углеводы. Классификация углеводов. Физические свойства и нахождение углеводов в природе. Глюкоза как альдегидоспирт. Химические свойства глюкозы: ацилирование, алкилирование, спиртовое и молочнокислое брожение. Экспериментальные доказательства наличия альдегидной и спиртовых групп в глюкозе. Получение глюкозы. Фруктоза как изомер глюкозы. Рибоза и дезоксирибоза. Важнейшие дисахариды (сахароза, лактоза, мальтоза), их строение и физические свойства. Гидролиз сахарозы, лактозы, мальтозы. Крахмал и целлюлоза как биологические полимеры. Химические свойства крахмала (гидролиз, качественная реакция с йодом на крахмал и ее применение для обнаружения крахмала в продуктах питания). Химические свойства целлюлозы: гидролиз, образование сложных эфиров. Применение и биологическая роль углеводов. Окисление углеводов – источник энергии живых организмов. Понятие об искусственных волокнах на примере ацетатного волокна. Идентификация органических соединений. Генетическая связь между классами органических соединений.

Практическая работа. Карбоновые кислоты.

Практическая работа. Углеводы и их свойства.

Лабораторные опыты. Свойства одноатомных и многоатомных спиртов. Свойства уксусной и бензойной кислот. Свойства глюкозы. Свойства жиров.

Демонстрации. Химические свойства спиртов. Качественные реакции на спирты. Свойства фенола. Реакция «серебряного зеркала». Возгонка бензойной кислоты. Качественные реакции на карбоновые кислоты.

Расчетные задачи. Расчеты массовой доли (массы) химического соединения в смеси. Расчеты массы (объема, количества вещества) продуктов реакции, если одно из веществ дано в избытке (имеет примеси). Расчеты массовой или объемной доли выхода продукта реакции от теоретически возможного. Расчеты объемных отношений газов при химических реакциях. Расчеты массы (объема, количества вещества) продукта реакции, если одно из веществ дано в виде раствора с определенной массовой долей растворенного вещества.

Органическая химия. Азотсодержащие органические соединения.

Амины. Первичные, вторичные, третичные амины. Классификация аминов по типу углеводородного радикала и числу аминогрупп в молекуле. Электронное и пространственное строение предельных аминов. Физические свойства аминов. Амины как органические основания: реакции с водой, кислотами. Реакция горения. Анилин как представитель ароматических аминов. Строение анилина. Причины ослабления основных свойств анилина в сравнении с аминами предельного ряда. Химические свойства анилина: взаимодействие с кислотами, бромной водой, окисление. Получение аминов алкилированием аммиака и восстановлением нитропроизводных углеводородов. Реакция Зинина. Применение аминов в фармацевтической промышленности. Анилин как сырье для производства анилиновых красителей. Синтезы на основе анилина.

Аминокислоты и белки. Состав и номенклатура. Строение аминокислот. Гомологический ряд предельных аминокислот. *Изомерия предельных аминокислот*. Физические свойства предельных аминокислот. Аминокислоты как амфотерные органические соединения. Синтез пептидов. Пептидная связь. Биологическое значение α-аминокислот. Области применения аминокислот. Белки как природные биополимеры. Состав и строение белков. *Основные аминокислоты, образующие белки*. Химические свойства белков: гидролиз, денатурация, качественные (цветные) реакции на белки. Превращения белков пищи в организме. Биологические функции белков. *Достижения в изучении строения и синтеза белков*.

Азотсодержащие гетероциклические соединения. Пиррол и пиридин: электронное строение, ароматический характер, различие в проявлении основных свойств. Нуклеиновые кислоты: состав и строение. Строение нуклеотидов. Состав нуклеиновых кислот (ДНК, РНК). Роль нуклеиновых кислот в жизнедеятельности организмов.

Практическая работа. Амины. Аминокислоты. Белки.

Лабораторные опыты. Качественные реакции на белки.

Демонстрации. Реакции анилина с бромной водой. Растворение и осаждение белков.

Расчетные задачи. Расчеты массовой доли (массы) химического соединения в смеси.

Органическая химия. Высокомолекулярные соединения.

Высокомолекулярные соединения. Основные понятия высокомолекулярных соединений: мономер, полимер, структурное звено, степень полимеризации. Классификация полимеров. Основные способы получения высокомолекулярных соединений: реакции полимеризации и поликонденсации. Строение и структура полимеров. Зависимость свойств полимеров от строения молекул. Термопластичные и термореактивные полимеры. Проводящие органические полимеры. Композитные материалы. Перспективы использования композитных материалов. Классификация волокон. Синтетические волокна. Полиэфирные и полиамидные волокна, их строение, свойства. Практическое использование волокон. Синтетические пленки: изоляция для проводов, мембраны для опреснения воды, защитные пленки для автомобилей, пластыри, хирургические повязки. Новые технологии дальнейшего совершенствования полимерных материалов.

Практическая работа. Распознавание пластмасс и волокон.

Лабораторные опыты. Отношение пластмасс и синтетических волокон к растворам кислот и щелочей.

Демонстрации. Образцы пластиков. Коллекция волокон. Поликонденсация этиленгликоля с терефталевой кислотой.

Решение задач. Нахождение молекулярной формулы органического вещества по его плотности и массовым долям элементов, входящих в его состав, или по продуктам сгорания. Расчеты массовой доли (массы) химического соединения в смеси. Расчеты массы (объема, количества вещества) продуктов реакции, если одно из веществ дано в избытке (имеет примеси). Расчеты массовой или объемной доли выхода продукта реакции от теоретически возможного. Расчеты массовой или объемной доли выхода продукта реакции от теоретически возможного. Расчеты массовой или объемной доли выхода продукта реакции от теоретически возможного.

четы теплового эффекта реакции. Расчеты массы (объема, количества вещества) продукта реакции, если одно из веществ дано в виде раствора с определенной массовой долей растворенного вешества.

Повторение изученного.

Генетическая связь между классами органических соединений. Классификация, изомерия и номенклатура органических соединений. Важнейшие химические свойства и качественные реакции органических веществ. Значение органических соединений в жизни человека.

Практическая работа. Идентификация органических веществ.

Решение задач. Решение комбинированных задач по органической химии.

11 класс.

Теоретические основы химии. Строение атома и вещества.

Строение вещества. Современная модель строения атома. Дуализм электрона. *Квантовые числа*. Распределение электронов по энергетическим уровням в соответствии с принципом наименьшей энергии, правилом Хунда и принципом Паули. Особенности строения энергетических уровней атомов d-элементов. Электронная конфигурация атома. Классификация химических элементов (s-, p-, d-элементы). Основное и возбужденные состояния атомов. Валентные электроны. Периодическая система химических элементов Д.И. Менделеева. Физический смысл Периодического закона Д.И. Менделеева. Причины и закономерности изменения свойств элементов и их соединений по периодам и группам. Мировоззренческое и научное значение Периодического закона Д.И. Менделеева. *Прогнозы Д.И. Менделеева*. *Открытие новых химических элементов*.

Электронная природа химической связи. Электроотрицательность. Ковалентная связь, ее разновидности и механизмы образования (обменный и донорно-акцепторный). Ионная связь. Металлическая связь. Водородная связь. Межмолекулярные взаимодействия.

Кристаллические и аморфные вещества. Типы кристаллических решеток (атомная, молекулярная, ионная, металлическая). Зависимость физических свойств вещества от типа кристаллической решетки. Причины многообразия веществ. Современные представления о строении твердых, жидких и газообразных веществ. Жидкие кристаллы.

Лабораторные опыты. Ознакомление с образцами кристаллических решеток. Выявление зависимости физических свойств веществ от кристаллической решетки.

Демонстрации. Модели атомных орбиталей разной формы. Модели пространственного расположения гибридных орбиталей. Возгонка иода, нагревание кварца, серы и поваренной соли.

Теоретические основы химии. Химические реакции.

Химические реакции. Гомогенные и гетерогенные реакции. Скорость реакции, ее зависимость от различных факторов: природы реагирующих веществ, концентрации реагирующих веществ, температуры (правило Вант-Гоффа), площади реакционной поверхности, наличия катализатора. Энергия активации. Активированный комплекс. Катализаторы и катализ. Роль катализаторов в природе и промышленном производстве.

Понятие об энтальпии и энтропии. Энергия Гиббса. Закон Гесса и следствия из него. Тепловые эффекты химических реакций. Термохимические уравнения. Обратимость реакций. Химическое равновесие. Смещение химического равновесия под действием различных факторов: концентрации реагентов или продуктов реакции, давления, температуры. Роль смещения равновесия в технологических процессах.

Дисперсные системы. *Коллоидные системы*. Истинные растворы. Растворение как физико-химический процесс. Способы выражения концентрации растворов: массовая доля растворенного вещества, *молярная и моляльная концентрации*. *Титр раствора и титрование*.

Реакции в растворах электролитов. Качественные реакции на ионы в растворе. Кислотноосновные взаимодействия в растворах. Амфотерность. *Ионное произведение воды. Водородный показатель (pH) раствора*. Гидролиз солей. Значение гидролиза в биологических обменных процессах. Применение гидролиза в промышленности.

Окислительно-восстановительные реакции в природе, производственных процессах и жизнедеятельности организмов. Окислительно-восстановительный потенциал среды. Диаграмма Пурбэ. Поведение веществ в средах с разным значением рН. Методы электронного и электронно-ионного баланса. Гальванический элемент. Химические источники тока. Стандартный водородный электрод. Стандартный электродный потенциал системы. Ряд стандартных электродных потенциалов. Направление окислительно-восстановительных реакций. Электролиз растворов и расплавов солей. Практическое применение электролиза для получения щелочных, щелочноземельных металлов и алюминия. Коррозия металлов: виды коррозии, способы защиты металлов от коррозии.

Практическая работа. Влияние различных факторов на скорость химических реакций. Химическое равновесие.

Практическая работа. Приготовление растворов различной молярной концентрации.

Практическая работа. Реакции ионного обмена. Гидролиз солей.

Практическая работа. Окислительно-восстановительные реакции.

Лабораторные опыты. Скорость химической реакции. Химическое равновесие. Условия протекания химических реакций. Ознакомление со свойствами неметаллов. Ознакомление со свойствами металлов и сплавов. Каталитическое разложение пероксида водорода. Свойства коллоидных растворов. Получение и свойства комплексных соединений.

Демонстрации. Тепловые явления при растворении. Взаимодействие алюминия с йодом. Взаимодействие меди с концентрированной азотной кислотой. Взаимодействие раствора серной кислоты с растворами тиосульфата натрия различной концентрации и температуры. Взаимодействие перманганата калия с сульфитом натрия в разных средах. Образование комплексных соединений переходных металлов.

Расчетные задачи. Расчеты массовой доли (массы) химического соединения в смеси. Расчеты массы (объема, количества вещества) продуктов реакции, если одно из веществ дано в избытке (имеет примеси). Расчеты массовой или объемной доли выхода продукта реакции от теоретически возможного. Расчеты теплового эффекта реакции. Расчеты объемных отношений газов при химических реакциях. Расчеты массы (объема, количества вещества) продукта реакции, если одно из веществ дано в виде раствора с определенной массовой долей растворенного вещества.

Неорганическая химия. Металлы и их соединения.

Общая характеристика элементов IA—IIIA-групп. Оксиды и пероксиды натрия и калия. Распознавание катионов натрия и калия. Соли натрия, калия, кальция и магния, их значение в природе и жизни человека. Жесткость воды и способы ее устранения. Комплексные соединения алюминия. Алюмосиликаты.

Металлы IB–VIIB-групп (медь, цинк, хром, марганец). Особенности строения атомов. Общие физические и химические свойства. Получение и применение. Оксиды и гидроксиды этих металлов, зависимость их свойств от степени окисления элемента. Важнейшие соли. Окислительные свойства солей хрома и марганца в высшей степени окисления. Комплексные соединения хрома.

Практическая работа. Экспериментальное решение задач по теме «Металлы главных подгрупп».

Практическая работа. Экспериментальное решение задач по теме «Металлы побочных подгрупп».

Лабораторные опыты. Окрашивание пламени соединениями щелочных и щелочноземельных металлов. Ознакомление с минералами и важнейшими соединениями щелочных металлов. Свойства щелочных и щелочноземельных металлов. Жесткость воды. Свойства соединений олова, свинца, хрома, марганца, меди, цинка и железа.

Демонстрации. Коллекция металлов. Взаимодействие натрия с водой. Взаимодействие алюминия с йодом. Взаимодействие алюминия со щелочью. Осаждение гидроксида хрома (III) и окисление его пероксидом водорода. Разложение дихромата аммония. Осаждение гидроксида железа (II) и окисление его на воздухе. Выделение серебра из его солей действием меди. Взаимодействие меди с концентрированной азотной кислотой.

Расчетные задачи. Расчеты массовой доли (массы) химического соединения в смеси. Расчеты массы (объема, количества вещества) продуктов реакции, если одно из веществ дано в избытке (имеет примеси). Расчеты массовой или объемной доли выхода продукта реакции от теоретически возможного. Расчеты теплового эффекта реакции. Расчеты объемных отношений газов при химических реакциях. Расчеты массы (объема, количества вещества) продукта реакции, если одно из веществ дано в виде раствора с определенной массовой долей растворенного вещества.

Неорганическая химия. Неметаллы и их соединения.

Общая характеристика элементов IVA-группы. Свойства, получение и применение угля. Синтез-газ как основа современной промышленности. Активированный уголь как адсорбент. Наноструктуры. Мировые достижения в области создания наноматериалов. Электронное строение молекулы угарного газа. Получение и применение угарного газа. Биологическое действие угарного газа. Карбиды кальция, алюминия и железа. Карбонаты и гидрокарбонаты. Круговорот углерода в живой и неживой природе. Качественная реакция на карбонат-ион. Физические и химические свойства кремния. Силаны и силициды. Оксид кремния (IV). Кремниевые кислоты и их соли. Силикатные минералы – основа земной коры.

Общая характеристика элементов VA-группы. Нитриды. Качественная реакция на ион аммония. Азотная кислота как окислитель. Нитраты, их физические и химические свойства, применение. Свойства, получение и применение фосфора. Фосфин. Фосфорные и полифосфорные кислоты. Биологическая роль фосфатов.

Общая характеристика элементов VIA-группы. Особые свойства концентрированной серной кислоты. Качественные реакции на сульфид-, сульфит-, и сульфат-ионы.

Общая характеристика элементов VIIA-группы. Особенности химии фтора. Галогеноводороды и их получение. Галогеноводородные кислоты и их соли. Качественные реакции на галогенид-ионы. Кислородсодержащие соединения хлора. Применение галогенов и их важнейших соединений. *Благородные газы. Применение благородных газов*. Закономерности в изменении свойств простых веществ, водородных соединений, высших оксидов и гидроксидов. Идентификация неорганических веществ и ионов.

Практическая работа. Экспериментальное решение задач по теме «Галогены».

Практическая работа. Экспериментальное решение задач по теме «Халькогены».

Практическая работа. Получение аммиака и изучение его свойств.

Лабораторные опыты. Получение хлора и изучение его свойств. Изучение свойств серной кислоты и ее солей. Изучение свойств водного раствора аммиака. Свойства солей аммония.

Качественные реакции на карбонат- и силикат-ионы. Ознакомление с образцами природных силикатов.

Демонстрации. Окислительные свойства раствора гипохлорита натрия. Плавление серы. Горение серы в кислороде. Осаждение сульфидов. Действие концентрированной серной кислоты на медь и сахарозу. Основные свойства раствора аммиака. Действие концентрированной серной кислоты на медь. Горение фосфора в кислороде. Взаимодействие фосфорного ангидрида с водой. Образцы графита, алмаза, кремния. Тушение пламени углекислым газом. Разложение мрамора.

Расчетные задачи. Расчеты массовой доли (массы) химического соединения в смеси. Расчеты массы (объема, количества вещества) продуктов реакции, если одно из веществ дано в избытке (имеет примеси). Расчеты массовой или объемной доли выхода продукта реакции от теоретически возможного. Расчеты теплового эффекта реакции. Расчеты объемных отношений газов при химических реакциях. Расчеты массы (объема, количества вещества) продукта реакции, если одно из веществ дано в виде раствора с определенной массовой долей растворенного вещества.

Химия и жизнь.

Химия и здоровье. Лекарства, ферменты, витамины, гормоны, минеральные воды. Проблемы, связанные с применением лекарственных препаратов. Вредные привычки и факторы, разрушающие здоровье (курение, употребление алкоголя, наркомания). Рациональное питание. Пищевые добавки. Основы пищевой химии.

Химия в медицине. Разработка лекарств. Химические сенсоры.

Химия в повседневной жизни. Моющие и чистящие средства. Репелленты, инсектициды. Средства личной гигиены и косметики. Правила безопасной работы с едкими, горючими и токсичными веществами, средствами бытовой химии.

Химия и сельское хозяйство. Минеральные и органические удобрения. Средства защиты растений.

Химия в строительстве. Цемент. Бетон. Подбор оптимальных строительных материалов в практической деятельности человека.

Химия и экология. Химическое загрязнение окружающей среды и его последствия. Охрана гидросферы, почвы, атмосферы, флоры и фауны от химического загрязнения.

Научные методы познания в химии. Источники химической информации. Поиск информации по названиям, идентификаторам, структурным формулам. Химический анализ, синтез, моделирование химических процессов и явлений как методы научного познания. Математическое моделирование пространственного строения молекул органических веществ. Современные физико-химические методы установления состава и структуры веществ.

Химия в промышленности. Общие представления о промышленных способах получения химических веществ (на примере производства аммиака, серной кислоты). Промышленная органическая химия. Сырье для органической промышленности. Проблема отходов и побочных продуктов. Наиболее крупнотоннажные производства органических соединений. Черная и цветная металлургия. Стекло и силикатная промышленность.

Химия и энергетика. Природные источники углеводородов. Природный и попутный нефтяной газы, их состав и использование. Состав нефти и ее переработка. Нефтепродукты. Октановое число бензина. Охрана окружающей среды при нефтепереработке и транспортировке нефтепродуктов. Альтернативные источники энергии.

Практическая работа. Решение экспериментальных задач по теме «Генетическая связь между классами химических соединений».

Лабораторные опыты. Знакомство с моющими средствами. Клеи. Знакомство с минеральными удобрениями и изучение их свойств.

Демонстрации. Схемы производства серной кислоты и аммиака. Модели доменной печи и кислородного конвертера. Образцы чугуна и стали. Схема безотходного производства. Схема очистки воды. Пищевые красители. Керамические материалы. Цветные стекла.

Расчетные задачи. Расчеты массовой доли (массы) химического соединения в смеси (сплаве). Расчеты массы (объема, количества вещества) продуктов реакции, если одно из веществ дано в избытке (имеет примеси). Расчеты массовой или объемной доли выхода продукта реакции от теоретически возможного.

III. Тематическое планирование с указанием количества часов, отводимых на освоение каждой темы

Количество часов, отведенное на изучение каждой темы, может быть незначительно скорректировано учителем в сторону уменьшения или увеличения часов, в зависимости от степени усвоения материала классом.

Точное (итоговое за год) количество часов определяется конкретным годовым учебным календарным графиком.

№п/п	название темы	количество часов
	10 класс (базовый уровень)	
1	Органическая химия. Введение в органическую химию	2
2	Органическая химия. Углеводороды	13
3	Органическая химия. Кислородосодержащие органические соединения	14
4	Органическая химия. Азотосодержащие органические соединения	6
	11 класс (базовый уровень)	
1	Теоретические основы химии. Строение атома и вещества	7
2	Теоретические основы химии. Химические реакции	5
3	Неорганическая химия. Неметаллы и их соединения	2
4	Неорганическая химия. Металлы и их соединения	4
5	Химия и жизнь	16
	10 класс (углубленный уровень)	
1.	Органическая химия. Введение в органическую химию.	16
2.	Органическая химия. Углеводороды.	36
3.	Органическая химия. Кислородсодержащие органические соединения.	40
4.	Органическая химия. Азотсодержащие органические соединения.	19
5.	Органическая химия. Синтетические высокомолекулярные соединения.	6
6.	Повторение изученного.	7

	Практических работ – 7	
	Контрольных работ – 5	
	Итого:	124 + 6 ч. ре- зерв
	11 класс (углубленный уровень)	1
1.	Теоретические основы общей химии. Строение атома и вещества.	15
2.	Теоретические основы химии. Химические реакции.	38
3.	Неорганическая химия. Металлы и их соединения.	23
4.	Неорганическая химия. Неметаллы и их соединения.	24
5.	Химия и жизнь.	23
	Практических работ – 10	
	Контрольных работ – 4	
	Итого:	123 + 3 ч. резерв