Assignment 3

Meriam Elabor, 1076589

 $March\ 22,\ 2018$

Question 1.1

1-KNN				
Record	Label of the record			
	record			
6	-1			
Prediction		-1		

Question 1.2

3-KNN				
Record	Label of the record			
	record			
26	1.36993215	1		
21 1.65639809		1		
39	2.09803532	1		
Prediction		1		

Question 1.3

5-KNN				
Record	Distance from the	Label of the record		
	record			
29	3.23194266	1		
8	5.03028237	-1		
36	5.2278505	1		
37 5.23353427		1		
39	5.61435592	1		
Prediction		1		

Question 1.4

Testing Error Rates								
1-NN	Test	Error	3-NN	Test	Error	5-NN	Test	Error
Rate			Rate			Rate		
0.025			0.05			0.075		

Question 2.1

 $h_{\Theta}(x) \in (1, -1)$

Question 2.2

let
$$J(\Theta) = \frac{1}{N} \sum_{n=1}^{N} (h_{\Theta}(x^n) - y^n)^2$$
, $h_{\Theta}(x^n) = \frac{2}{1 + e^{\Theta^T \cdot x}} - 1$, $g_{\Theta}(x^n) = \frac{1}{1 + e^{\Theta^T \cdot x}}$, then $\forall k = \{0, ..., 4\}$

$$\frac{\partial J(\Theta)}{\partial \theta_k} = \frac{\partial J(\Theta)}{\partial h_{\Theta}(x^n)} \cdot \frac{\partial h_{\Theta}(x^n)}{\partial \theta_k}$$

$$\frac{\partial J(\Theta)}{\partial h_{\Theta}(x^n)} = \frac{2}{N} \sum_{n=1}^{N} (h_{\Theta}(x^n) - y^n)$$

$$\frac{\partial h_{\Theta}(x^n)}{\partial \theta_k} = \frac{2x_k e^{\Theta^T \cdot x}}{(1 + e^{\Theta^T \cdot x})^2} = 2x_k g_{\Theta}(x^n) (1 - g_{\Theta}(x^n))$$
thus
$$\frac{\partial J(\Theta)}{\partial \theta_k} = 4x_k \frac{1}{N} \sum_{n=1}^{N} (h_{\Theta}(x^n) - y^n) g_{\Theta}(x^n) (1 - g_{\Theta}(x^n))$$

and
$$\theta_k \to \theta_k - \alpha 4x_k \frac{1}{N} \sum_{n=1}^{N} (h_{\Theta}(x^n) - y^n) g_{\Theta}(x^n) (1 - g_{\Theta}(x^n)), \forall k = \{0, ..., 4\}$$

Question 2.3

Question 4				
Testing record	Classifier	Output	Final Output	
	$h_{\Theta}(x^{(n)})$			
5	-0.949479		-1	
10	-0.991887		-1	
15	-0.996641		-1	
20	-0.992353		-1	
25	0.893525		1	
30	0.968980		1	
35	0.991332		1	
40	0.983889		1	

Question 3.1

let
$$f(X) = \frac{1}{1+e^X}$$
, $X \in R$ then $h_{\Theta}(x) = g_2 = f(g_1\theta_6 + x_0\theta_5)$, $h_{\Theta}(x) \in (0,1)$ $g_1 = f(x_0\theta_0 + x_1\theta_1 + x_2\theta_2 + x_3\theta_3 + x_4\theta_4)$

Question 3.2

$$\begin{array}{l} \text{let } f(X) = \frac{1}{1+e^X}, \quad X \in R \text{ and} \\ J(\Theta) = (h_\Theta(x) - y)^2 \text{ then} \\ \frac{d}{dX} f(X) = f(X)(1-f(X)) \\ \text{and} \quad \forall k = \{5,6\} \end{array}$$

$$\begin{split} \frac{\partial J(\Theta)}{\partial \theta_k} &= \frac{\partial J(\Theta)}{\partial h_{\Theta}(x)} \cdot \frac{\partial h_{\Theta}(x)}{\partial \theta_k} \\ \frac{\partial J(\Theta)}{\partial h_{\Theta}(x)} &= 2(h_{\Theta}(x) - y) \\ \frac{\partial h_{\Theta}(x)}{\partial \theta_k} &= 2x_k h_{\Theta}(x)(1 - h_{\Theta}(x)) \\ \text{thus } \frac{\partial J(\Theta)}{\partial \theta_k} &= 4x_k (h_{\Theta}(x) - y) h_{\Theta}(x)(1 - g_{\Theta}(x)) \end{split}$$

and
$$\theta_k \to \theta_k - \alpha 4x_k (h_{\Theta}(x) - y) h_{\Theta}(x) (1 - h_{\Theta}(x)), \forall k = \{5, 6\}$$

$$\forall k = \{0, ..., 4\}$$

$$\begin{split} \frac{\partial J(\Theta)}{\partial \theta_k} &= \frac{\partial J(\Theta)}{\partial h_\Theta(x)}.\frac{\partial h_\Theta(x)}{\partial g1}.\frac{\partial g1}{\partial \theta_k} \\ \frac{\partial J(\Theta)}{\partial h_\Theta(x)} &= 2(h_\Theta(x) - y) \\ \frac{\partial h_\Theta(x)}{\partial g1} &= 2\theta_6 h_\Theta(x)(1 - h_\Theta(x)) \\ \frac{\partial g1}{\partial \theta_k} &= x_k g1(1 - g1) \\ \text{thus } \frac{\partial J(\Theta)}{\partial \theta_k} &= 4x_k \theta_6(h_\Theta(x) - y)h_\Theta(x)(1 - h_\Theta(x))g1(1 - g1) \end{split}$$

and
$$\theta_k \to \theta_k - \alpha 4x_k \theta_6(h_{\Theta}(x) - y)h_{\Theta}(x)(1 - h_{\Theta}(x))g1(1 - g1), \forall k = \{0, ..., 4\}$$