CMPSC 138 SUMMER 2018

Homework III: Due Wednesday, August 22, during the discussion session.

- 1. Do Problem 6, Section 2.1 of the text.
- 2. Do Problem 13, Section 2.1 of the text.
- 3. Do Problem 5, Section 2.2 of the text.
- 4. Do Problem 5, Section 2.3 of the text.
- 5. Do Problem 14, Section 2.3 of the text.
- 6. Do Problem 17, Section 2.3 of the text.
- 7. Do Problem 19, Section 3.1 of the text.
- 8. Convert the NFA $N = (\{q_0, q_1, q_2\}, \{a, b\}, \delta, q_0, \{q_1\})$ where δ is given by

δ	a	b	λ
q_0	$\{q_1\}$	ϕ	$\{q_1\}$
q_1	$\{q_0,q_2\}$	$\{q_1,q_2\}$	ϕ
q_2	$\{q_2\}$	$\{q_1\}$	ϕ

into an equivalent DFA.

- 9. Do Problem 20, Section 3.1 of the text.
- 10. Let $\Sigma = \{0, 1\}$. We can view a Σ -string w which starts with the letter 1 as a binary number (where the rightmost character of the string is the least significant digit of the number). Construct transition diagrams of NFA accepting the following languages:
 - (a) $\{w \in \Sigma^+ \mid w > 4\}$
 - (b) $\{w \in \Sigma^+ \mid w \text{ is a power of } 2\},\$
 - (c) $\{w \in \Sigma^+ \mid w \text{ is even}\}.$