Обучение с подкреплением для выявления недобросовестных пользователей на краудсорсинговой платформе

Филимохина А.И.

Научный руководитель: Шпильман А.А.

Научный консультант: Свидченко О.А.

Санкт-Петербургская школа физико-математических и компьютерных наук

НИУ ВШЭ – Санкт-Петербург 2020 год

Задача определения недобросовестных пользователей

Особенности существующих методов

Обучение с подкреплением

Обучение с подкреплением

- Diversity Is All You Need DIAYN¹
- Variational Option Discovery Algorithm VALOR²
- Dynamic-Aware Unsupervised Discovery DADS³

 $\pi(a|s,z)$ - политика агента зависит от **навыка** $z \in \{1..n\}$ Навык определяет распределение конечного состояния $p(s_f|s_0,z)$

 $p(s_f|s_0) \longrightarrow$ более разнообразное

 $z\,$ — определяет достижимые конечные состояния

¹ Benjamin Eysenbach et al. Diversity is All You Need: Learning Skills without a Reward Function, 2018

² Joshua Achiam et al. Variational Option Discovery Algorithms, 2018

³ Archit Sharma et al. Dynamics-Aware Unsupervised Discovery of Skills, 2020

Алгоритмы DIAYN и VALOR

Внутренняя награда и Дискриминатор

Алгоритмы VALOR и DIAYN


```
f 1: Инициализируем \pi,q
2: Повторяем до сходимости:
                            Каждый эпизод семплируем навык z \sim p(z)
3:
                           Проигрываем эпизод со стратегией: \pi(a|s,z)
4:
                                      lue{1} каждого перехода (s_t, a_t, s_{t+1})
5:
                                      lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}_{lue{}}}}}}}}}}}
всей траектории 	au
                          Обновляем q(z|s_{t+1}) q(z|t)
6:
                          Вычисляем награду: r_{\text{внутреняя}} = \frac{\log q(z|s_{t+1})}{\log q(z|\tau)} - \log p^{C}(z)
7:
                          Обновляем: \pi(a_t|s_t,z) в соответствии с наградой \pi(a|s,z)
8:
```

Цель и задачи

Цель:

Создать модель, способную выявлять недобросовестных пользователей на краудсорсинговой платформе, применяя методы обучения с подкреплением

Задачи:

- Реализовать алгоритмы обучения с подкреплением, нацеленные на исследование агентом различных навыков и стратегий поведения
- Проверить работу алгоритмов на простых средах
- Создать среду, имитирующую выполнения заданий на платформе Яндекс.Толока
- Протестировать алгоритмы на своей среде

Модификация награды

Внутренняя награда: $r_{\text{внутреняя}} \sim \log(\mathbb{P}_{\text{Дискриминатор}})$

Комбинирование награды:
$$r = \alpha \cdot r_{\text{внутренняя}} + \beta \cdot r_{\text{среды}}$$
 max max

 α , β — настаиваемые гиперпараметры

Тестирование алгоритма VALOR на HalfCheetah-v2

Использование комбинированной наградыИспользование внутренней награды

Тестирование алгоритма DIAYN на MountainCar-v0

Создание среды Толока

Задание: Выберите картинку на которой расположен самый маленький кружок

Тестирование алгоритма VALOR на среде Толока

———— Использование комбинированной награды ———— Использование внутренней награды

Тестирование алгоритма DIAYN на среде Толока

Результаты

- Реализованы алгоритмы VALOR и DIAYN
- Проверена работа алгоритмов на стандартных средах
- Создана среда, имитирующая взаимодействие исполнителей с Яндекс.Толокой
- Имеющаяся среда адаптирована под особенности каждого из алгоритмов
- Алгоритмы протестированы на среде Толока
- По полученным результатам введены некоторые модификации моделей

Будущая работа

- Понять из-за чего алгоритмы не могут выучить различные навыки на нашей среде и устранить эту проблему
- Определить как лучше применять комбинирование награды
- Оценить возможность использования алгоритмов на реальных задачах
- Применить к реальным задачам