⑩日本国特許庁(JP)

(1) Appl. No. 09/632,857

⑩公開特許公報(A) 平4-127601

@int. Cl. 5

識別記号

庁内整理番号

@公開 平成 4年(1992) 4月28日

H 03 D 7/00 В 8836-5 J

> 審査請求 未請求 請求項の数 3 (全8頁)

会発明の名称 周波数変換回路

> 平2-247957 20特 頭

平2(1990)9月18日 @出

垣 個発 明 者 石

行

神奈川県横浜市神奈川区守屋町3丁目12番地

一株式会社内

日本ピクター株式会社 至 人 勿出

神奈川県横浜市神奈川区守屋町3丁目12番地

1. 発明の名称

周波数交换回路

- 2. 特許請求の範囲
- (1) 入力信号に対して相対的に主々だけ互いに異 なる位相差の移相を行なう第1、第2の位相回路 と、該第1、第2の位相回路の出力信号を取(取 は2以上の自然数)箇のスイッチに分配して供給 する手段と、誰れ箇のスイッチの出力を同位相及 び逆位相にて複数回合成する合成手段と、該合成 手段の出力信号中の高級スイッチング成分を除去 する低級評波器と、局部発掘信号(キャリア信号) のm倍(mは4以上の自然数)の周波数に対応す るクロック信号を入力してこれを基にれ種類のタ イミングパルスを出力するタイミングパルスジェ ネレータとを備え、

上記れ価のタイミングパルスを上記れ価のスイ ・ッチに供給して夫々のスイッチを開閉制御するこ とにより、上記低級評波器から上記入方信号周波 数と局部発振信号周波数との和又は差の周波数に 変換された信号を出力するよう構成したことを特 微とする間波数交換回路。

(2) 入力信号に対して相対的に支水だけ互いに異 なる位相差の移相を行なう第1、第2の位相回路 と、該第1、第2の位相回路の出力を夫々2つの スイッチに分配して供給する供給手段と、互いに 異なる位相回路に接続されているスイッチの出力 個を夫々2つずつ接続する2つの接続手段と、こ れらの接続手段の出力を逆相にて合成する合成手 段と、該合成手段の出力信号中の高級スイッチン グ成分を除去する低級記波器と、局部発展信号の 4.倍の周波数に対応するクロック信号を入力して これを基に4種類のタイミングパルスを出力する タイミングパルスジェネレータとを聞え、

上記4亩のタイミングパルスを上記計4箇のス イッチに供給して各々を開閉制御することにより、 上記低級評波器から上記入力信号周波数と局部発 経信号周波数との和又は差の周波数に変換された 信号を出力するよう構成したことを特徴とする周 波敦交换回路.

・(3) 入力信号に対して相対的に士々だけ互いに異 なる位相差の移相を行なう第1、第2の位相回路 と、該第1。第2の位相回路の出力を夫々加算及 び減重する加重器及び減算器と、該加算器及び減 算器の出力レベルを夫々所定量減衰させる第1. 第2のレベル減衰器と、上記第1, 第2の位相回 路の出力及び上記加算器、減算器の出力を失々位 相反転させる第1乃至第4の反転増編器と、キャ リア信号周波数の8倍の線返しによるクロック信 号を入力してこれを基に8種類のタイミングパル スを出力するタイミングパルスジェネレータと、 註8つのタイミングパルスにより夫々ON,OFF制御 されると共に上記第1の位相回路の出力、上記加 **复器の出力、第2の位相回路の出力、上記減算器** の出力又は上記第1乃至第4の反転増編器の出力 信号を夫々→周期ずつ順次間歇的に出力する第1 乃至第8のスイッチと、該第1乃至第8のスイッ チの出力信号を加算する加算手段とを備えて、上 記入力信号周波数に対して周波数の変換された信 号を生成、出力するよう構成したことを特徴とす

あり、SSB通信用変調復調回路として良く使用されている。また第3図(A) ~(H) は回路各部の信号波形図である。入力囃子(in: に入来する信号 aとして、第3図(A) に示すような cosin波とすると、士々位相回路5からは同図(B) に示すような sin波の信号 b が変換出力される。この信号 a 及び b は夫々乗算器(又は平衡変調器) 2 及び 4 に供給される。

る周波数変換回路。

3. 発明の詳細な説明

〔産業上の利用分野〕

本発明は周波数変換回路に係り、特に、無線通信分野に於けるSSB通信装置や音声信号の周波数反転による秘話装置等、各種の装置に利用して 好適な周波数変換回路に関する。

「従来の技術」

周波数交換手段として一般的な方法は、乗算器 又は平衡変調器で乗算を行ない、その出力のお及び差の成分を沪波器により選択分離して得るお法 や、2つの平衡変調器を用いて入力信号と局部発 疑信号の直接信号と、入力信号と局部発發信号の 支ェ位相信号を平衡変調器に供給して2つの新 変調器の出力を加算又は減算することにより、 波器を原理的に不要とした周波数変換方法等がある。

かかる従来の技術について、第2図及び第3 で を併せ参照しながら説明する。第2図は原理的に LPF (低級記波器)が不要な周波数変換回路で

算を行なって出力信号を得ることもある。信号 8 の波形を観察すると、適当な遮断周波数を有するフィルタ (低域評波器)を用いてスイッチング成分を取除くことにより、同図(H)に示すような、上記信号 a に比べて周波数の変換された信号 h となることがわかる。

(本発明が解決しようとする課題)

ところで、このような乗算器を複数個使用する 周波数変換回路は、乗算器 2 . 4 における直流パランスの精度が重要なファクターであり、パランスが少しでも別れると、周波数変換信号の波形が歪んだり別れてしまうという問題が生じる。また、乗算器や平衡変調器には直線性に関する問題も基本的に存在している。

即ち、周波数交換手段として乗算器や平衡変調器を使用するは場合、直流パランスを正しく設定しないと、待られる交換出力信号波形に歪が生じて劣化し、単側波帯(SSB)通信や音声信号の周波数反転に使用する場合には大きな問題となる。従って、直流パランスをとる必要の無い方法の実

現が更望されていた.

更に、全球移相回路5、6は一般に低抗とコンデンサを複数個使用して構成されているので、第2回の回路をIC化しようとすると、ピン数が増加し、小型で低コストのが困難となる。即ちる場合に、沖波器や移相器の使用コンデンサ数の側面につながるので、ピン数の削減の要請からも、原理的に使用コンデンサ数の少ない周波数変換方法の出現が顕立されていた。

(温度を解決するための手段)

本発明の周波数変換回路は、入力信号に対して相対的に主意だけ互いに異なる位相差の移相を行なう第1、第2の位相回路と、これらの位相回路の出力信号を取(れる2)値のスイッチに分配して供給する手段と、れ値のおイッチの出力を同位相にて複数回合成する合成手段の出力信号中の高級スイッチング成分を除去する低級距波器と、局部発援信号の皿的

いま、入力増子(n 1 より入力信号 sinω tが位相回路 8 及び位相回路 7 に供給されると、夫々第4図(A) 及び(D) に示すような波形の信号 a . d となる。但し、ここでは便宜上 φ = 0 としている。その場合位相回路 8 は不要であり、位相回路 7 は第2図の士 π位相回路 5 と同じ機能となる。これらの各出力信号 a (= sin(ω t + ± π))は夫々スイッチ S I, S a へ供給されると

(m≥4)の周波数に対応するクロック信号を入力してこれを基にれ種類のタイミングパルスを出力するタイミングパルスジェネレータとを備え、上記れ間のタイミングパルスを印間制御することにより、低級沪波器から入力信号周波数と局部発展信号周波数との和又は差の周波数に変換された信号問法力するよう構成する等して、上記器問題点を解消した。

(実施例)

本発明の周波数変換回路の第1実施例について、第1因及び第4因の信号波形図(タイミングチャート)を併せ参照しながら説明する。第1図は本発明の周波数変換回路31のプロック構成図であり、位相回路8は入力信号に対してする位相を与える移相器では(タナナボ)位相を与える移相器である。これらは例えば音声信号周波数帯域内において、両位相回路8、7の出力の位相差を一たがまませるために、位相維移回路(フェーズシェク)を多段に組合せて構成されている。13は高

共に、反転増福器 1.4 、1.5 で夫々反転されて信号 c ($=-\sin\omega$ t ;同図 (c) 参照)及び信号 b ($=\sin(\omega$ $t-\pm \pi$);同図 (B) 参照)となって、夫々スイッチ S 2 及びスイッチ S 2 に供給される。

一方、入力權子ln z からは周因(E) に示すよう なキャリア信号用波敷の4倍の最返しによるクロ ック信号eがタイミングパルスジェネレータ11 に供給される。このタイミングパルスジェネレー タ11では、同図(F) ~(I) に夫々示すようなク イミングパルスT」~T』が生成、出力され、上 記スイッチS」~Sょに夫々供給されて、これら をON,OFF制御する。即ち、各タイミングパルスT ı~T」ともそのレベルがHのときに各スイッチ S」~S』を夫々等道させるので、第4因(A)~ (0) 図示の各信号波形中、太く推いた部分(1)。四、 (八. (二), …が夫々遺造して、結果的に周閉(J) に 示すような信号」が合成され、LPF(低級更波 器)13に供給される。LPF13では高端スイ ッチング成分が除去されて、信号 k (同図(K) 参 照)が出力増子により出力される。

第4図(J) に示した合成出力信号 J は、前記第2図(G) の加算出力信号 B に相当し、波形的に比較してみても相似であることが分る。これは即ち、周波数変換方法が異っても、得られる結果は等しいことを意味している。

A ...

合成されて、結果的に同図(E)に示すような放形の信号をとなる。かかる合成出力信号をも育記第2回(G)の加算出力信号をに相当し、波形的に入りしてみても相似であることが分る。これもの人となっており、待られる結果は等しいことを吸いる。この信号をはしPF13にて高級のサング成分を除去されて、同図(F) 図示の如き信号kとなり、出力組子により出力される。

なお、第2実施例回路32においては、スイッチ出力の合成方法を代えて構成することもできる。例えば第7図のように構成することもでき、この第3実施例回路33に場合、信号c, d, eの放影は夫々第9図(C),(0),(E) のようになり、LPF13を通過した波形1を第6図(F) 図示の波形1と比較すると、向波数が若干高くなっていることが分るが、これは入力信号とキャリア信号との和の阅波数に変換されたからである。

、次に、本発明回路の第4実施例について、第8 因のブロック構成因及び第9因の信号波形因を併

かかる構成において、入力端子「れ」より入力は 号 sina tが位相回路 8 及び9 に供給されると、 位相回路8からは第6図(A) に示すような信号a · (= sin(ω t - φ))がスイッチS」及びSュに出 力され、位相回路9からは岡図(8) に示すような 信号 b (= sin(ω t - φ + ± π)がスイッチSゥ. S. に出力される、一方、入力場子Ingからは同 図(K) に示すような、キャリア(又は局部発掘) 周波数の4倍の縁返しによるクロック信号kがタ イミングパルスジェネレータ11に供給される。 すると、同因(G) ~(J) に夫々示すようなタイミ ングパルスT」~T」が生成、出力され、上記ス イッチS」~S」に夫々供給されて、これらをON ,OFF制御する。即ち、各タイミングパルスTi~ T』共そのレベルがHのときに各スイッチS」~ Sょを夫々閉成させるので、スイッチSiSzの 加算(合成)出力は同図(C) 図示の如き信号cと なり、スイッチS」SLの合成出力は同図(0) 3 示の如き信号はとなる、この信号はは反転増信器 1.4にて反転された後、加算器22にて信号cと

せ参照して説明する。この第8回においても、第 1. 図や第5 図等に示した各実施例回路と同一構成 要素には同一符号を付して、その詳細な説明を省 略する。また、タイミングパルスジェネレータ1 1から各スイッチS」~Sょに至るタイミングパ ルスT」~T」の各信号ラインも省略している。 この第4実施例回路34では位相回路9の代りに 第1実施例回路31と同じく位相回路7を使用し ている。これにより各位相回路8及び7の出力信 号aとbの位相関係は、第9図(A)及び(B)に示 す関係 (第4図の(A) と(O) の位相関係と同じ) となっている。その他の回路構成は前記第2実施 例回路32と同じであるが、上記位相回路7を使 用したために、出力信号c~eの波形は食記第6 図示のものとは夫々異なり、第9因(C) ~(E) に 示す波形(即ち第3実施例回路33と同じ)とな る。従って、LPF13を通過した信号でも当然 第9図(F) 図示の波形となる.

次に、本発明の周波数変換回路の第5実施例に ついて、第10回のブロック構成因及び第11回 の信号放形図(タイミングチャート)を併せ参照 しながら説明する。この第5実施例回路35では、 上記第1~4実施例回路31~34に比べてスイッチング時間を半分に短くし、周波数変換出力信 号のスイッチング成分を小さくして、出力波形の 改善が行なえるようにした所に最大の特徴がある。

いま、入力昭子In」より入力信号 sinω tが位相回路 8 及び位相回路 9 に供給されると、位相回路 8 、9 からは夫々第11図(A)及び(C)に示すような波形の信号 a、cが出力される。但し、ここでは便宜上 = 0 としている(その場合位相回路 5 と同じ機能となる)。これらの各出力信号 a (= sinω t)に会号 c (= sin(ω t - t π))は夫々スイッチ Si, Sa へ供給されると共に、加算器 2 3 で加算されて、

 $sin\omega$ $t + sin(\omega t - \frac{1}{2}\pi) = \emptyset sin(\omega t - \frac{1}{2}\pi)$ となる。この信号レベルは信号 a. c. より 必倍高 いので、レベル減衰器(アッテネータ) 2.5 にて 伝送レベルを 1/必下げることにより、同図(8)

(1) ~ (P) に夫々示す如きタイミングパルスTi~Tsが出力され、上記スイッチSi~Ss に夫々供給されて、これらを育記第1実施例同様の容量でOH, OFF制御する。その結果、第11図(A) ~ (H) 図示の各信号波形のうち太く描いた部分が夫々通過して、結果的に同図(Q) に示すような合っな生成され、出力端子のより出力される。かかる信号 q はかなり精密な変形なので、このがでも使用できるが、LPPで高級スイッチング成分を除去すると更に好速である。

以上の説明において使用される位相回路 7 ~ 9 は、位相推移回路(フェーズシフタ)を多段に組合せて構成されるが、このような位相推移回路の具体的構成例を第12図(A)、(B) に示す。図中2 8 は演算(反転)増幅器、Qは NPN型トランジスタ、C1、C2 はコンデンサ、R1 ~R6 は低抗である。これらの位相推移回路はいずれもコンデンサと抵抗の組合せによる遅延回路を含んでいる。

なお、以上の説明においては、クロック信号の 周波数を入力信号の周波数の4倍又は8倍とした に示すような信号 b を得ている。同様に、加算器 24で信号 a を反転増幅器 16で反転したものを 信号 c に加え (即ち滅算し) て、

一方、入力場子 In 2 からはキャリア信号周波数の 8 倍の繰返しによるクロック信号がタイミング パルスジェネレータ 1 2 に供給され、ここで同図

が、これに限らず、例えば12倍、16倍等の周 波数を有するクロック信号を用いて周波数変換回 路を構成することも可能である。

(効果)

本発明の間波数変換回路は以上のように構成したので、次のような様々な特長を有する。

- ① 従来の周波数変換回路に比べて直流バランスや 直線性等の問題は殆ど生じない。
- ②位相 ø を 0 とした場合、土π位相回路を入力信 号伝送系に 1 個だけ使用したことになり、抵抗・ コンデンサ等の使用個数は減少する。
- ③ダイナミックレンジが大きくて歪の少ない、波 形精度の良い周波数変換が可能となり、IC化 にも有利である。
- ④音声信号周波数帯は勿論、オーディオ周波数帯 でのHiーF 1 システムへの応用も可能となる。
- ⑤ (φ++π) 位相を与える位相回路の代りに、 (φ-+π) 位相を与える位相回路を使用する と反転増幅器は1個で済み、加算器の代りに減 算器を使用すれば更に反転増幅器も不要となり、

特閒平4-127601 (6)

構成が簡素化される。

⑥入力信号を等分割するスイッチを増やしてスイッチング時間を短くすればするほど、周波数変換出力信号のスイッチング成分が小さくなるので、出力波形の改善が行なえ、低級評波器も不要となる。

4. 図面の簡単な説明

第1図、第5図、第7図、第8図及び第10図は本発明の周波数交換回路の夫々第1乃至第5実施例のブロック構成図、第2図は従来回路のブロック図、第3図(A)~(H)は従来回路各部の動作設明用信号波形図、第4図(A)~(K)及び第6図(A)~(K)は本発明回路の夫々第1及び第2実施例の動作説明用信号波形図(タイミングチャート)、第9図(A)~(J)及び第11図(A)~(Q)は本発明回路の夫々第4及び第5実施例の動作説明用信号波形図、第12図(A)、(B)は位相回路を構成する位相推移回路の各種構成例である。

7~9…位相回路、11.12…タイミングパルスジェネレータ、13…低域記波器、14~

19…反転増福器、22~24…加算器、25. 26…レベル減衰器、28…液算増幅器、31~ 35…周波数変換回路、Si~Si…スイッチ。

> 特許出願人 日本ビクター株式会社 代表者 坊上 卓郎

