Práctica 2: Limpieza y validación de los datos

ANTONIO SANCHEZ NAVARRO

24 de diciembre 2018

Table of Contents

Carga de los datos	1
Resolución	2
Integración y selección de los datos de interés	10
Detección de ceros y elementos vacíos por campo	11
Valores extremos	11
Exportación de los datos preprocesados	21
Análisis de resultados	21
Selección de los grupos de datos que se quieren comparar	22
Pruebas de normalidad y homogeneidad de la varianza	22
Pruebas estadísticas	
Influencia de las variables fisicoquímicas en la calidad de los vinos	33
Matriz de correlación entre variables	34
Contrastes de hipótesis	38
Modelo de regresión lineal	39
Modelo de regresión logístico	41
Tabla resumen de los datos preprocesados y represntación en forma de boxp	lots 42
Referencias	49

Carga de los datos

En esta actividad se usará el fichero winequality-red.csv del repositorio Github, el cual precisa tareas de preprocesado (limpieza, integración y validación) para posterior análisis. Los datos a tratar corresponden a variables físicoquímicas correspondientes a variantes rojas del vino portugués "Vinho Verde", las cuales se prestan a tareas de clasificación o análisis de regresión. Las clases están ordenadas y no son equilibradas (por ejemplo, hay muchos más vinos normales que vinos excelentes o pobres).

El archivo se denomina *C:/Users/Antonio/Desktop/UOC/Tipologýa y ciclo de vida de los datos/PRAC2/winequality-red.csv*, contiene 1599 registros y 12 variables. Estas variables son: fixed.acidity, volatile.acidity, citric.acid, residual.sugar, chlorides, free.sulfur.dioxide, total.sulfur.dioxide, density, pH, sulphates, alcohol, quality

```
# Cargo el archivo de datos "winequality-red.csv" y valido que los tipos
# de datos se interpretan correctamente
winequality.red <- read.csv("C:/Users/Antonio/Desktop/UOC/Tipologýa y</pre>
ciclo de vida de los datos/PRAC2/winequality-red.csv", stringsAsFactors =
FALSE, header = TRUE)
head(winequality.red[,1:5])
     fixed.acidity volatile.acidity citric.acid residual.sugar chlorides
##
## 1
               7.4
                                0.70
                                             0.00
                                                              1.9
                                                                      0.076
## 2
               7.8
                                             0.00
                                                              2.6
                                0.88
                                                                      0.098
## 3
               7.8
                                0.76
                                             0.04
                                                              2.3
                                                                      0.092
## 4
                                                              1.9
              11.2
                                0.28
                                             0.56
                                                                      0.075
               7.4
                                                              1.9
## 5
                                0.70
                                             0.00
                                                                      0.076
## 6
               7.4
                                0.66
                                             0.00
                                                              1.8
                                                                      0.075
```

Resolución

Examinamos el tipo de dato asociado a cada campo

```
# Tipo de dato asignado a cada campo
sapply(winequality.red, function(x) class(x))
##
          fixed.acidity
                             volatile.acidity
                                                         citric.acid
##
               "numeric"
                                     "numeric"
                                                           "numeric"
##
         residual.sugar
                                     chlorides free.sulfur.dioxide
##
               "numeric"
                                     "numeric"
                                                           "numeric"
## total.sulfur.dioxide
                                       density
               "numeric"
                                                           "numeric"
##
                                     "numeric"
               sulphates
##
                                       alcohol
                                                             quality
                                     "numeric"
##
               "numeric"
                                                           "integer"
```

Histograma de frecuencias absolutas para cada variable fisicoquímica

```
# Histograma de frecuencias absolutas de las variables fisicoquímicas hist(winequality.red$fixed.acidity, main="fixed acidity", xlab="Class brands", ylab="Frequency", col="blue")
```


hist(winequality.red\$volatile.acidity, main="volatile acidity",
xlab="Class brands", ylab="Frequency", col="blue")

hist(winequality.red\$residual.sugar, main="residual sugar", xlab="Class
brands", ylab="Frequency", col="blue")

hist(winequality.red\$chlorides, main="chlorides", xlab="Class brands",
ylab="Frequency", col="blue")

chlorides

free sulfur dioxide

hist(winequality.red\$total.sulfur.dioxide, main="total sulfur dioxide",
xlab="Class brands", ylab="Frequency", col="blue")

total sulfur dioxide

hist(winequality.red\$density, main="density", xlab="Class brands",
ylab="Frequency", col="blue")

hist(winequality.red\$sulphates, main="sulphates", xlab="Class brands",
ylab="Frequency", col="blue")

hist(winequality.red\$alcohol, main="alcohol", xlab="Class brands",
ylab="Frequency", col="blue")

Integración y selección de los datos de interés

En esta sección, eliminamos columnas innecesarias o redundantes y fijamos el número de cifras decimales que deben contemplar. Se establece la columna "quality" de tipo numérico para facilitar cálculos y resultados posteriores.

```
# Eliminación de datos de columnas redundantes
winequality.red <- winequality.red[, -(6:6)]</pre>
# Unimos las dos columnas de acidez (fija y volátil) en una sola columna
winequality.red$fixed.acidity<-winequality.red$fixed.acidity +</pre>
winequality.red$volatile.acidity
winequality.red$fixed.acidity<-round(winequality.red$fixed.acidity,2)</pre>
colnames(winequality.red)[colnames(winequality.red)=="fixed.acidity"] <-</pre>
"acidity"
# Ahora que ya disponemos de la acidez total, eliminamos la columna
"volatile.acidity":
winequality.red <- winequality.red[, -(2:2)]</pre>
head(winequality.red)
     acidity citric.acid residual.sugar chlorides total.sulfur.dioxide
##
## 1
                    0.00
```

```
## 2
        8.68
                     0.00
                                      2.6
                                              0.098
                                                                        67
## 3
        8.56
                     0.04
                                      2.3
                                              0.092
                                                                        54
## 4
       11.48
                     0.56
                                      1.9
                                              0.075
                                                                        60
## 5
        8.10
                     0.00
                                      1.9
                                              0.076
                                                                        34
## 6
        8.06
                     0.00
                                      1.8
                                              0.075
                                                                        40
##
     density
               pH sulphates alcohol quality
## 1 0.9978 3.51
                        0.56
                                  9.4
                                            5
## 2 0.9968 3.20
                        0.68
                                  9.8
## 3 0.9970 3.26
                        0.65
                                  9.8
                                            5
                                            6
## 4 0.9980 3.16
                        0.58
                                  9.8
## 5
      0.9978 3.51
                        0.56
                                  9.4
                                            5
                                            5
## 6 0.9978 3.51
                        0.56
                                  9.4
# Establecemos el número de cifras decimales en las columnas "acidity",
"citric.acid" "chlorides" y "density"
winequality.red$acidity<-round(winequality.red$acidity, 2)</pre>
winequality.red$citric.acid<-round(winequality.red$citric.acid, 2)</pre>
winequality.red$chlorides<-round(winequality.red$chlorides, 3)</pre>
winequality.red$density<-round(winequality.red$density, 4)</pre>
# Convertimos la columna "quality" a tipo "numeric":
winequality.red$quality<-as.numeric(winequality.red$quality)</pre>
class(winequality.red$quality)
## [1] "numeric"
```

Detección de ceros y elementos vacíos por campo

En esta sección, se lleva a cabo la detección de ceros y elementos vacíos por campo

```
# Número de valores desconocidos por campo
sapply(winequality.red, function(x) sum(is.na(x)))
##
                 acidity
                                  citric.acid
                                                     residual.sugar
##
              chlorides total.sulfur.dioxide
##
                                                             density
##
##
                                    sulphates
                                                             alcohol
                      рΗ
##
                       0
##
                 quality
```

Valores extremos

Identificamos outliers de cada variable fisicoquímica mediante diagramas de caja y usando la función boxplots.stats() de R.

```
boxplot(winequality.red$acidity,main="Box plot of acidity",
col="gray",ylab="values")
```

Box plot of acidity


```
boxplot.stats(winequality.red$acidity)$out

## [1] 13.10 13.10 15.21 15.21 13.06 13.64 13.67 12.89 14.29 14.03 12.98
## [12] 12.96 13.42 13.42 14.41 14.11 14.11 13.30 12.96 13.64 12.91 16.29
## [23] 12.88 13.32 12.87 13.59 13.10 13.25 14.61 16.14 16.14 16.25 13.47
## [34] 13.30 13.47 13.30 13.29 13.66 13.66 13.58 16.26 13.73 13.40 13.01
## [45] 12.99

boxplot(winequality.red$citric.acid,main="Box plot of citric acid",
col="gray",ylab="values")
```

Box plot of citric acid


```
boxplot.stats(winequality.red$citric.acid)$out
## [1] 1
boxplot(winequality.red$residual.sugar,main="Box plot of residual sugar",
col="gray",ylab="values")
```

Box plot of residual sugar

boxplot.s	<pre>boxplot.stats(winequality.red\$residual.sugar)\$out</pre>											
## [1] 5.10	6.10	6.10	3.80	3.90	4.40	10.70	5.50	5.90	5.90	3.80		
## [12] 4.00	4.65	4.65	5.50	5.50	5.50	5.50	7.30	7.20	3.80	5.60		
## [23] 11.00	4.00	4.00	4.00	7.00	4.00	4.00	6.40	5.60	5.60	11.00		
## [34] 3.70	4.50	4.80	5.80	5.80	3.80	4.40	6.20	4.20	7.90	7.90		
## [45] 4.60	4.50	6.70	6.60	3.70	5.20	15.50	4.10	8.30	6.55	6.55		
## [56] 4.30	6.10	4.30	5.80	5.15	6.30	4.20	4.20	4.60	4.20	4.60		
## [67] 4.25	4.30	7.90	4.60	5.10	5.60	5.60	6.00	8.60	7.50	4.40		
## [78] 9.00	6.00	3.90	4.20	4.00	4.00	4.00	6.60	6.00	6.00	3.80		
## [89] 4.00	4.60	8.80	8.80	5.00	3.80	4.10	5.90	4.10	6.20	8.90		
## [100] 5.50	3.90	4.00	8.10	8.10	6.40	6.40	8.30	8.30	4.70	5.50		
## [111] 4.30	4.30	5.50	3.70	6.20	5.60	7.80	4.60	5.80	4.10	12.90		
## [122] 3.80	13.40	4.80	6.30	4.50	4.50	4.30	4.30	3.90	3.80	5.40		
## [133]	6.10	3.90	5.10	5.10	3.90	15.40	15.40	4.80	5.20	5.20		

```
3.75
## [144] 13.80 13.80 5.70 4.30 4.10 4.10 4.40 3.70 6.70 13.90
5.10
## [155] 7.80

boxplot(winequality.red$chlorides,main="Box plot of chlorides",
col="gray",ylab="values")
```

Box plot of chlorides


```
boxplot.stats(winequality.red$chlorides)$out
     [1] 0.176 0.170 0.368 0.341 0.172 0.332 0.464 0.401 0.467 0.122
##
0.178
## [12] 0.146 0.236 0.610 0.360 0.270 0.039 0.337 0.263 0.611 0.358
0.343
## [23] 0.186 0.213 0.214 0.121 0.122 0.122 0.128 0.120 0.159 0.124
0.122
## [34] 0.122 0.174 0.121 0.127 0.413 0.152 0.152 0.125 0.122 0.200
0.171
## [45] 0.226 0.226 0.250 0.148 0.122 0.124 0.124 0.143 0.222 0.039
0.157
## [56] 0.422 0.034 0.387 0.415 0.157 0.157 0.243 0.241 0.190 0.132
0.126
## [67] 0.038 0.165 0.145 0.147 0.012 0.012 0.039 0.194 0.132 0.161
0.120
## [78] 0.120 0.123 0.123 0.414 0.216 0.171 0.178 0.369 0.166 0.166
0.136
## [89] 0.132 0.132 0.123 0.123 0.123 0.403 0.137 0.414 0.166 0.168
```

```
0.415
## [100] 0.153 0.415 0.267 0.123 0.214 0.214 0.169 0.205 0.205 0.039
0.235
## [111] 0.230 0.038

boxplot(winequality.red$total.sulfur.dioxide,main="Box plot of total sulfur dioxide", col="gray",ylab="values")
```

Box plot of total sulfur dioxide


```
boxplot.stats(winequality.red$total.sulfur.dioxide)$out

## [1] 145 148 136 125 140 136 133 153 134 141 129 128 129 128 143 144
127

## [18] 126 145 144 135 165 124 124 134 124 129 151 133 142 149 147 145
148

## [35] 155 151 152 125 127 139 143 144 130 278 289 135 160 141 141 133
147

## [52] 147 131 131 131

boxplot(winequality.red$density,main="Box plot of density",
col="gray",ylab="values")
```

Box plot of density


```
boxplot.stats(winequality.red$density)$out

## [1] 0.9916 0.9916 1.0014 1.0015 1.0015 1.0018 0.9912 1.0022 1.0022
1.0014

## [11] 1.0014 1.0014 1.0014 1.0032 1.0026 1.0014 1.0031 1.0031 1.0031
1.0021

## [21] 1.0021 0.9917 0.9922 1.0026 0.9921 0.9915 0.9906 0.9906 1.0029
0.9916

## [31] 0.9901 0.9901 0.9902 0.9922 0.9915 0.9916 0.9908 0.9908 0.9919
1.0037

## [41] 1.0037 1.0024 0.9918 1.0024 0.9918

boxplot(winequality.red$pH,main="Box plot of pH",
col="gray",ylab="values")
```

Box plot of pH


```
boxplot.stats(winequality.red$pH)$out

## [1] 3.90 3.75 3.85 2.74 3.69 3.69 2.88 2.86 3.74 2.92 2.92 2.92 3.72
2.87

## [15] 2.89 2.89 2.92 3.90 3.71 3.69 3.69 3.71 3.71 2.89 2.89 3.78 3.70
3.78

## [29] 4.01 2.90 4.01 3.71 2.88 3.72 3.72

boxplot(winequality.red$sulphates,main="Box plot of sulphates",
col="gray",ylab="values")
```

Box plot of sulphates


```
boxplot.stats(winequality.red$sulphates)$out

## [1] 1.56 1.28 1.08 1.20 1.12 1.28 1.14 1.95 1.22 1.95 1.98 1.31 2.00
1.08

## [15] 1.59 1.02 1.03 1.61 1.09 1.26 1.08 1.00 1.36 1.18 1.13 1.04 1.11
1.13

## [29] 1.07 1.06 1.06 1.05 1.06 1.04 1.05 1.02 1.14 1.02 1.36 1.36 1.05
1.17

## [43] 1.62 1.06 1.18 1.07 1.34 1.16 1.10 1.15 1.17 1.17 1.33 1.18 1.17
1.03

## [57] 1.17 1.10 1.01

boxplot(winequality.red$alcohol,main="Box plot of alcohol",
col="gray",ylab="values")
```

Box plot of alcohol


```
boxplot.stats(winequality.red$alcohol)$out
    [1] 14.00000 14.00000 14.00000 14.90000 14.90000 13.60000
    [8] 13.60000 13.60000 14.00000 14.00000 13.56667 13.60000
# Eliminamos valores outliers de cada una de las variables
fisicoquímicas.
outliers.acidity <- boxplot(winequality.red$acidity, plot=FALSE)$out
winequality.red <- winequality.red[-which(winequality.red$acidity %in%</pre>
outliers.acidity),
outliers.citric.acid <- boxplot(winequality.red$citric.acid,</pre>
plot=FALSE)$out
winequality.red <- winequality.red[-which(winequality.red$citric.acid</pre>
%in% outliers.citric.acid),]
outliers.residual.sugar <- boxplot(winequality.red$residual.sugar,
plot=FALSE)$out
winequality.red <- winequality.red[-which(winequality.red$residual.sugar</pre>
%in% outliers.residual.sugar),]
outliers.chlorides <- boxplot(winequality.red$chlorides, plot=FALSE)$out
winequality.red <- winequality.red[-which(winequality.red$chlorides %in%</pre>
outliers.chlorides), ]
outliers.total.sulfur.dioxide <-
```

```
boxplot(winequality.red$total.sulfur.dioxide, plot=FALSE)$out
winequality.red <- winequality.red[-</pre>
which(winequality.red$total.sulfur.dioxide %in%
outliers.total.sulfur.dioxide), ]
outliers.density <- boxplot(winequality.red$density, plot=FALSE)$out
winequality.red <- winequality.red[-which(winequality.red$density %in%
outliers.density),]
outliers.pH <- boxplot(winequality.red$pH, plot=FALSE)$out
winequality.red <- winequality.red[-which(winequality.red$pH %in%</pre>
outliers.pH),]
outliers.sulphates <- boxplot(winequality.red\sulphates, plot=FALSE)\subseteq outliers.sulphates
winequality.red <- winequality.red[-which(winequality.red$sulphates %in%
outliers.sulphates),]
outliers.alcohol <- boxplot(winequality.red$alcohol, plot=FALSE)$out
winequality.red <- winequality.red[-which(winequality.red$alcohol %in%
outliers.alcohol),]
# Número de columnas y registros o filas del nuevo dataset
ncol(winequality.red)
## [1] 10
nrow(winequality.red)
## [1] 1182
```

Exportación de los datos preprocesados

Una vez limpiados los datos, los guardamos en un fichero llamado winequalityred data clean.csv

write.csv(winequality.red, "C:/Users/Antonio/Desktop/UOC/Tipologýa y
ciclo de vida de los datos/PRAC2/winequality-red_data_clean.csv")

Análisis de resultados

Selección de los grupos de datos que se quieren comparar

Establecemos grupos dentro del conjunto de datos para posteriores análisis y comparaciones.

```
# Agrupación por valores de densidad
low.density <- winequality.red[winequality.red$density <=
mean(winequality.red$density),]
high.density <- winequality.red[winequality.red$density >
mean(winequality.red$density),]

# Agrupación por porcentaje de alcohol en vino
low.alcohol.percentage<- winequality.red[winequality.red$alcohol <=
11.5,]
high.alcohol.percentage <- winequality.red[winequality.red$alcohol >
11.5,]

# Agrupación por cantidad de sal presente en el vino
low.clhorides <- winequality.red[winequality.red$chlorides <=
mean(winequality.red$chlorides),]
high.clhorides <- winequality.red[winequality.red$chlorides >
mean(winequality.red$chlorides),]
```

Pruebas de normalidad y homogeneidad de la varianza

Pruebas de normalidad de Anderson-Darling

```
library(nortest)
alpha = 0.05
col.names = colnames(winequality.red)
for (i in 1:ncol(winequality.red)) {
if (i == 1) cat("Listado de variables fisicoquímicas que no siguen una
distribución normal:\n")
if (is.integer(winequality.red[,i]) | is.numeric(winequality.red[,i])) {
p_val = ad.test(winequality.red[,i])$p.value
if (p val < alpha) {</pre>
cat(col.names[i])
# Format output
if (i < ncol(winequality.red) - 1) cat(", ")</pre>
if (i %% 3 == 0) cat("\n")
}
## Listado de variables fisicoquímicas que no siguen una distribución
normal:
```

```
## acidity, citric.acid, residual.sugar,
## chlorides, total.sulfur.dioxide, density,
## pH, sulphates, alcohol
## quality
```

Test de normalidad Shapiro-Wilk y gráficos Q-Q

```
qqnorm(winequality.red$acidity, main = "Normal Q-Q Plot for acidity")
qqline(winequality.red$acidity, col = "red")
```

Normal Q-Q Plot for acidity

shapiro.test(winequality.red\$acidity)
##
Shapiro-Wilk normality test
##
data: winequality.red\$acidity
W = 0.95654, p-value < 2.2e-16

qqnorm(winequality.red\$citric.acid, main = "Normal Q-Q Plot for citric acid")
qqline(winequality.red\$citric.acid, col = "red")</pre>

Normal Q-Q Plot for citric acid


```
shapiro.test(winequality.red$citric.acid)

##

## Shapiro-Wilk normality test

##

## data: winequality.red$citric.acid

## W = 0.94951, p-value < 2.2e-16

qqnorm(winequality.red$residual.sugar, main = "Normal Q-Q Plot for redidual sugar")
qqline(winequality.red$residual.sugar, col = "red")</pre>
```

Normal Q-Q Plot for redidual sugar


```
shapiro.test(winequality.red$residual.sugar)
##
## Shapiro-Wilk normality test
##
## data: winequality.red$residual.sugar
## W = 0.97058, p-value = 9.184e-15

qqnorm(winequality.red$chlorides, main = "Normal Q-Q Plot for chlorides")
qqline(winequality.red$chlorides, col = "red")
```

Normal Q-Q Plot for chlorides


```
shapiro.test(winequality.red$chlorides)

##

## Shapiro-Wilk normality test

##

## data: winequality.red$chlorides

## W = 0.99382, p-value = 8.049e-05

qqnorm(winequality.red$total.sulfur.dioxide, main = "Normal Q-Q Plot for total sulfur dioxide")
qqline(winequality.red$total.sulfur.dioxide, col = "red")
```

Normal Q-Q Plot for total sulfur dioxide


```
shapiro.test(winequality.red$total.sulfur.dioxide)
##
## Shapiro-Wilk normality test
##
## data: winequality.red$total.sulfur.dioxide
## W = 0.92227, p-value < 2.2e-16

qqnorm(winequality.red$density, main = "Normal Q-Q Plot for density")
qqline(winequality.red$density, col = "red")</pre>
```

Normal Q-Q Plot for density


```
shapiro.test(winequality.red$density)

##

## Shapiro-Wilk normality test

##

## data: winequality.red$density

## W = 0.99502, p-value = 0.0006067

qqnorm(winequality.red$pH, main = "Normal Q-Q Plot for pH")
qqline(winequality.red$pH, col = "red")
```

Normal Q-Q Plot for pH


```
shapiro.test(winequality.red$pH)

##

## Shapiro-Wilk normality test

##

## data: winequality.red$pH

## W = 0.99516, p-value = 0.0007893

qqnorm(winequality.red$sulphates, main = "Normal Q-Q Plot for sulphates")
qqline(winequality.red$sulphates, col = "red")
```

Normal Q-Q Plot for sulphates


```
shapiro.test(winequality.red$sulphates)

##

## Shapiro-Wilk normality test

##

## data: winequality.red$sulphates

## W = 0.9721, p-value = 2.543e-14

qqnorm(winequality.red$alcohol, main = "Normal Q-Q Plot for alcohol")
qqline(winequality.red$alcohol, col = "red")
```

Normal Q-Q Plot for alcohol


```
shapiro.test(winequality.red$alcohol)

##

## Shapiro-Wilk normality test

##

## data: winequality.red$alcohol

## W = 0.93279, p-value < 2.2e-16

qqnorm(winequality.red$quality, main = "Normal Q-Q Plot for quality")
qqline(winequality.red$quality, col = "red")</pre>
```

Normal Q-Q Plot for quality


```
shapiro.test(winequality.red$quality)

##

## Shapiro-Wilk normality test

##

## data: winequality.red$quality

## W = 0.84742, p-value < 2.2e-16</pre>
```

Estudio de la homogeneidad de las varianzas. Test de Fligner-Kileen

```
fligner.test(quality ~ density, data = winequality.red)
##
    Fligner-Killeen test of homogeneity of variances
##
##
## data: quality by density
## Fligner-Killeen:med chi-squared = 84.586, df = 77, p-value =
## 0.2593
fligner.test(quality ~ alcohol, data = winequality.red)
##
    Fligner-Killeen test of homogeneity of variances
##
##
## data: quality by alcohol
## Fligner-Killeen:med chi-squared = 72.047, df = 50, p-value =
## 0.02225
```

```
fligner.test(quality ~ chlorides, data = winequality.red)

##

## Fligner-Killeen test of homogeneity of variances

##

## data: quality by chlorides

## Fligner-Killeen:med chi-squared = 82.893, df = 73, p-value =

## 0.2007
```

Pruebas estadísticas

Influencia de las variables fisicoquímicas en la calidad de los vinos

```
corr matrix <- matrix(nc = 2, nr = 0)</pre>
colnames(corr_matrix) <- c("estimate", "p-value")</pre>
# Calcular el coeficiente de correlación para cada variable fisicoquimica
# con respecto al campo "quality"
for (i in 1:(ncol(winequality.red) - 1)) {
if (is.integer(winequality.red[,i]) | is.numeric(winequality.red[,i])) {
spearman test = cor.test(winequality.red[,i],
winequality.red[,length(winequality.red)],
method = "spearman")
corr coef = spearman test$estimate
p val = spearman test$p.value
# Add row to matrix
pair = matrix(ncol = 2, nrow = 1)
pair[1][1] = corr_coef
pair[2][1] = p val
corr matrix <- rbind(corr matrix, pair)</pre>
rownames(corr matrix)[nrow(corr matrix)] <- colnames(winequality.red)[i]</pre>
}
## Warning in cor.test.default(winequality.red[, i], winequality.red[,
## length(winequality.red)], : Cannot compute exact p-value with ties
## Warning in cor.test.default(winequality.red[, i], winequality.red[,
## length(winequality.red)], : Cannot compute exact p-value with ties
## Warning in cor.test.default(winequality.red[, i], winequality.red[,
## length(winequality.red)], : Cannot compute exact p-value with ties
## Warning in cor.test.default(winequality.red[, i], winequality.red[,
```

```
## length(winequality.red)], : Cannot compute exact p-value with ties
## Warning in cor.test.default(winequality.red[, i], winequality.red[,
## length(winequality.red)], : Cannot compute exact p-value with ties
## Warning in cor.test.default(winequality.red[, i], winequality.red[,
## length(winequality.red)], : Cannot compute exact p-value with ties
## Warning in cor.test.default(winequality.red[, i], winequality.red[,
## length(winequality.red)], : Cannot compute exact p-value with ties
## Warning in cor.test.default(winequality.red[, i], winequality.red[,
## length(winequality.red)], : Cannot compute exact p-value with ties
## Warning in cor.test.default(winequality.red[, i], winequality.red[,
## length(winequality.red)], : Cannot compute exact p-value with ties
print(corr_matrix)
##
                           estimate
                                         p-value
## acidity
                        0.06334928 2.941751e-02
## citric.acid
                        0.22587602 3.864772e-15
## residual.sugar
                        0.02399919 4.097446e-01
                        -0.20202975 2.367987e-12
## chlorides
## total.sulfur.dioxide -0.14232988 8.960679e-07
                        -0.21470668 8.584723e-14
## density
                        -0.06304193 3.021513e-02
## pH
                         0.43853552 9.900814e-57
## sulphates
## alcohol
                        0.48457880 1.261876e-70
```

Matriz de correlación entre variables

```
library(PerformanceAnalytics)

## Loading required package: xts

## Loading required package: zoo

##

## Attaching package: 'zoo'

## The following objects are masked from 'package:base':

##

## as.Date, as.Date.numeric

##

## Attaching package: 'xts'

## The following objects are masked from 'package:dplyr':

##

## first, last
```

```
## The following objects are masked from 'package:data.table':
##
##
       first, last
##
## Attaching package: 'PerformanceAnalytics'
## The following object is masked from 'package:gplots':
##
##
       textplot
## The following object is masked from 'package:graphics':
##
##
       legend
# Guardamos datos en un data.frame
acidity<-winequality.red$acidity
citric.acid<-winequality.red$citric.acid
residual.sugar<-winequality.red$residual.sugar
chlorides<-winequality.red$chlorides
total.sulfur.dioxide<-winequality.red$total.sulfur.dioxide
density<-winequality.red$density
pH<-winequality.red$pH
sulphates<-winequality.red$sulphates</pre>
alcohol<-winequality.red$alcohol
quality<-winequality.red$quality
data <- data.frame(acidity, citric.acid, residual.sugar, chlorides,</pre>
total.sulfur.dioxide, density, pH, sulphates, alcohol, quality)
colnames(data) <- c("acidity","citric acid","residual</pre>
sugar","chlorides","total sulfur dioxide","density", "pH", "sulphates",
"alcohol", "quality")
cor(data)
##
                            acidity citric acid residual sugar
chlorides
                         1.00000000 0.603353709
## acidity
                                                      0.24484897
0.19254182
## citric acid
                         0.60335371 1.000000000
                                                      0.15025882
0.06902013
## residual sugar
                         0.24484897 0.150258817
                                                      1.00000000
0.24054793
## chlorides
                         0.19254182 0.069020125
                                                      0.24054793
1.00000000
## total sulfur dioxide -0.07812217 0.002177295
                                                      0.17088644
0.16974256
                         0.62718180 0.300976996
## density
                                                      0.39804848
0.40341417
                        -0.67289768 -0.482954798
## pH
                                                     -0.05565157 -
0.15070000
## sulphates
                         0.12300305 0.275666484
                                                      0.04069258 -
0.09583778
```

```
## alcohol
                     -0.05935530 0.146719282
                                              0.10393533 -
0.29691699
## quality
                    0.08447757 0.244631954
                                              0.01784264 -
0.18985018
                    total sulfur dioxide
                                          density
##
## acidity
                            -0.078122174   0.62718180   -0.672897678
## citric acid
                            ## residual sugar
                            ## chlorides
                            ## total sulfur dioxide
                            1.000000000 0.14109698 0.019098399
## density
                            0.141096985 1.00000000 -0.223299857
## pH
                            0.019098399 -0.22329986 1.000000000
## sulphates
                            -0.024142466 0.05816787 0.003591845
## alcohol
                           -0.223753777 -0.54100848 0.117723679
## quality
                            -0.151868436 -0.21581441 -0.093901964
##
                       sulphates
                                  alcohol
                                             quality
## acidity
                     0.123003050 -0.0593553 0.08447757
## citric acid
                     0.275666484 0.1467193 0.24463195
                    0.040692585 0.1039353 0.01784264
## residual sugar
## chlorides
                     -0.095837782 -0.2969170 -0.18985018
## total sulfur dioxide -0.024142466 -0.2237538 -0.15186844
## density
                     0.058167875 -0.5410085 -0.21581441
## pH
                     ## sulphates
                     1.000000000 0.2787311 0.43968490
## alcohol
                     0.278731106 1.0000000 0.49172395
## quality
                     0.439684896 0.4917240 1.00000000
chart.Correlation(data)
```


library(corrplot)

corrplot 0.84 loaded

M<-cor(winequality.red)</pre>

corrplot(M, method = "ellipse")

Contrastes de hipótesis

¿La calidad de los vinos con densidad inferior a la media supera la de los vinos con densidad por encima de la media?

```
low.density.quality <- winequality.red[winequality.red$density <=</pre>
mean(winequality.red$density), | $quality
high.density.quality <- winequality.red[winequality.red$density >
mean(winequality.red$density), | $quality
t.test(low.density.quality, high.density.quality, alternative = "less",
conf.level = 0.95)
##
##
   Welch Two Sample t-test
##
          low.density.quality and high.density.quality
## t = 5.4571, df = 1155.5, p-value = 1
## alternative hypothesis: true difference in means is less than 0
## 95 percent confidence interval:
##
         -Inf 0.3162226
## sample estimates:
## mean of x mean of y
   5.764605 5.521667
```

¿La calidad de los vinos con menos sal es igual o diferente a la de los vinos más salados?

```
low.chlorides.quality <- winequality.red[winequality.red$chlorides <=</pre>
mean(winequality.red$chlorides), | $quality
high.chlorides.quality <- winequality.red[winequality.red$chlorides >
mean(winequality.red$chlorides), | $quality
t.test(low.chlorides.quality, high.chlorides.quality, alternative =
"two.sided", conf.level = 0.95)
##
## Welch Two Sample t-test
## data: low.chlorides.quality and high.chlorides.quality
## t = 5.5282, df = 1178.3, p-value = 3.981e-08
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.1576308 0.3310735
## sample estimates:
## mean of x mean of y
## 5.757674 5.513321
```

Modelo de regresión lineal

Modelo de regresión multilineal para predecir la calidad

```
# Regresores cuantitativos más influyentes en la calidad de los vinos
alcohol<-winequality.red$alcohol</pre>
sulphates<-winequality.red$sulphates
citric.acid<-winequality.red$citric.acid
density<-winequality.red$density
chlorides<-winequality.red$chlorides
total.sulfur.dioxide<-winequality.red$total.sulfur.dioxide
# Variable que se quiere predecir
quality<-winequality.red$quality
# Modelos de regresión lineal
modelo1 <- lm(quality ~ alcohol + sulphates + citric.acid, data =</pre>
winequality.red)
modelo2 <- lm(quality ~ alcohol + sulphates + citric.acid + chlorides,</pre>
data = winequality.red)
modelo3 <- lm(quality ~ alcohol + sulphates + citric.acid + chlorides +</pre>
density, data = winequality.red)
modelo4 <- lm(quality ~ alcohol + sulphates + citric.acid + density +</pre>
total.sulfur.dioxide, data = winequality.red)
# Tabla con los coeficientes de determinación de cada modelo
tabla.coeficientes <- matrix(c(1, summary(modelo1)\squared.
2, summary(modelo2)$r.squared,
3, summary(modelo3)$r.squared,
4, summary(modelo4)$r.squared),
ncol = 2, byrow = TRUE)
colnames(tabla.coeficientes) <- c("Modelo", "R^2")</pre>
tabla.coeficientes
```

```
##
       Modelo
                    R^2
## [1,]
            1 0.3510071
## [2,]
            2 0.3539755
            3 0.3572902
## [3,]
## [4,]
            4 0.3594511
summary(modelo4)
##
## Call:
## lm(formula = quality ~ alcohol + sulphates + citric.acid + density +
##
      total.sulfur.dioxide, data = winequality.red)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                     Max
## -2.4797 -0.3792 -0.0628 0.4683 1.9680
##
## Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
                        4.805e+01 1.545e+01
                                              3.109 0.00192 **
## (Intercept)
                        2.543e-01 2.564e-02
                                              9.919 < 2e-16 ***
## alcohol
                        2.154e+00 1.731e-01 12.443 < 2e-16 ***
## sulphates
                       5.990e-01 1.150e-01 5.207 2.26e-07 ***
## citric.acid
                       -4.664e+01 1.537e+01 -3.034 0.00247 **
## density
## total.sulfur.dioxide -1.831e-03 7.327e-04 -2.499 0.01258 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.6201 on 1176 degrees of freedom
## Multiple R-squared: 0.3595, Adjusted R-squared: 0.3567
## F-statistic: 132 on 5 and 1176 DF, p-value: < 2.2e-16
```

Predicción de la calidad con el modelo de regresión lineal

```
newdata <- data.frame(
alcohol = mean(winequality.red$alcohol),
sulphates = mean(winequality.red$sulphates),
citric.acid = mean(winequality.red$citric.acid),
density = mean(winequality.red$density),
total.sulfur.dioxide = mean(winequality.red$total.sulfur.dioxide)
)
# Predecir el precio
predict(modelo4, newdata)

## 1
## 5.641286</pre>
```

Modelo de regresión multilineal para predecir la acidez

```
# Regresores cuantitativos más influyentes en la calidad de los vinos
citric.acid<-winequality.red$citric.acid
density<-winequality.red$density</pre>
```

```
pH<-winequality.red$pH
# Variable que se quiere predecir
acidity<-winequality.red$acidity</pre>
# Modelo de regresión lineal
modelo <- lm(acidity ~ citric.acid + density + pH)
summary(modelo)
##
## Call:
## lm(formula = acidity ~ citric.acid + density + pH)
##
## Residuals:
       Min
                 1Q
                      Median
                                   3Q
                                           Max
## -2.58139 -0.47482 -0.02323 0.49081 2.39549
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -376.8421
                          14.0437 -26.83 <2e-16 ***
## citric.acid
                1.9641
                            0.1379 14.25 <2e-16 ***
                           14.0285 28.70 <2e-16 ***
## density
               402.5965
                            0.1843 -26.38 <2e-16 ***
               -4.8608
## pH
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.7289 on 1178 degrees of freedom
## Multiple R-squared: 0.7374, Adjusted R-squared: 0.7368
## F-statistic: 1103 on 3 and 1178 DF, p-value: < 2.2e-16
Predecimos la acidez para unos valores de ácido cítrico, densidad y pH
data <- data.frame(citric.acid = 0.489, density = 0.998, pH = 3.8)
# Predicción de la acidez
predict(modelo, data)
## 7.438701
Modelo de regresión logístico
# Creación de la variable binaria "high.density"
winequality.red$density[winequality.red$density >= 1]<1</pre>
## [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [12] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [23] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
winequality.red$density[winequality.red$density < 1]<-0</pre>
```

high.density<-winequality.red\$density high.density<-factor(high.density)

acidity<-winequality.red\$acidity
alcohol<-winequality.red\$alcohol</pre>

Variables explicativas de la densidad

```
residual.sugar<-winequality.red$residual.sugar
chlorides<-winequality.red$chlorides
# Estimación del modelo de regresión logística
reglog <- glm(high.density ~ acidity+alcohol+residual.sugar+chlorides,</pre>
data = winequality.red, family = binomial, control = list(maxit = 1000))
summary(reglog)
##
## Call:
## glm(formula = high.density ~ acidity + alcohol + residual.sugar +
       chlorides, family = binomial, data = winequality.red, control =
list(maxit = 1000))
##
## Deviance Residuals:
                      Median
##
       Min
                10
                                   30
                                           Max
                                        3.4087
## -1.7816 -0.0736 -0.0213 -0.0073
##
## Coefficients:
##
                  Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                  -19.2219
                               4.4742 -4.296 1.74e-05 ***
                                        7.048 1.82e-12 ***
## acidity
                    1.6387
                               0.2325
## alcohol
                               0.3947 -3.385 0.000711 ***
                   -1.3362
                               0.5298 4.590 4.44e-06 ***
## residual.sugar 2.4316
## chlorides
                  72.4817
                              21.9921 3.296 0.000981 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 294.12 on 1181 degrees of freedom
## Residual deviance: 135.26 on 1177 degrees of freedom
## AIC: 145.26
##
## Number of Fisher Scoring iterations: 9
# Creación del dataset con los datos necesarios para la predicción
newdata = data.frame(acidity = 6.36,alcohol = 8.496, residual.sugar =
2.226, chlorides=0.198)
# Usamos la función predict() para calcular la probabilidad predicha.
Para obtener la predicción, se incluye el argumento type = "response"
predict(reglog, newdata, type="response")
##
## 0.4041297
```

Tabla resumen de los datos preprocesados y represntación en forma de boxplots

```
# Tabla resumen de las principales variables fisicoquímicas del conjunto de datos
summary(winequality.red)
```

```
##
       acidity
                       citric.acid
                                        residual.sugar
                                                           chlorides
           : 5.520
                             :0.0000
                                        Min.
                                               :1.200
                                                         Min.
##
    Min.
                      Min.
                                                                 :0.04200
    1st Qu.: 7.680
##
                      1st Qu.:0.0800
                                        1st Qu.:1.900
                                                         1st Qu.:0.06900
##
    Median : 8.380
                      Median :0.2400
                                        Median :2.100
                                                         Median :0.07800
                                        Mean
                                                         Mean
##
    Mean
           : 8.681
                      Mean
                             :0.2459
                                               :2.183
                                                                :0.07817
##
    3rd Qu.: 9.498
                      3rd Qu.:0.3900
                                        3rd Qu.:2.500
                                                         3rd Qu.:0.08675
##
           :12.800
                                               :3.600
                                                         Max.
    Max.
                      Max.
                             :0.7300
                                        Max.
                                                                :0.11600
    total.sulfur.dioxide
##
                             density
                                                    рН
                                                                sulphates
##
           : 6.00
                                  :0.00000
                                             Min.
                                                     :2.980
    Min.
                          Min.
                                                              Min.
                                                                      :0.3300
    1st Qu.: 22.00
                                             1st Qu.:3.230
                                                              1st Qu.:0.5500
##
                          1st Qu.:0.00000
##
    Median : 36.00
                          Median :0.00000
                                             Median :3.330
                                                              Median :0.6100
##
    Mean
           : 41.79
                          Mean
                                  :0.02708
                                             Mean
                                                     :3.326
                                                              Mean
                                                                      :0.6294
##
    3rd Qu.: 55.00
                          3rd Qu.:0.00000
                                             3rd Qu.:3.410
                                                              3rd Qu.:0.7000
##
    Max.
           :115.00
                                  :1.00060
                                             Max.
                                                     :3.680
                                                              Max.
                                                                      :0.9400
                          Max.
##
       alcohol
                        quality
           : 8.70
##
    Min.
                     Min.
                            :3.000
    1st Qu.: 9.50
                     1st Qu.:5.000
##
##
    Median :10.10
                     Median:6.000
##
           :10.37
    Mean
                     Mean
                            :5.641
##
    3rd Qu.:11.00
                     3rd Qu.:6.000
##
    Max.
           :13.10
                     Max.
                            :8.000
boxplot(winequality.red$acidity,main="Box plot of acidity",
col="gray",ylab="values")
```

Box plot of acidity

Box plot of citric acid

boxplot(winequality.red\$residual.sugar,main="Box plot of residual sugar",
col="gray",ylab="values")

Box plot of residual sugar

boxplot(winequality.red\$chlorides,main="Box plot of chlorides",
col="gray",ylab="values")

Box plot of chlorides

boxplot(winequality.red\$total.sulfur.dioxide,main="Box plot of total
sulfur dioxide", col="gray",ylab="values")

Box plot of total sulfur dioxide

boxplot(winequality.red\$density,main="Box plot of density",
col="gray",ylab="values")

Box plot of density


```
boxplot(winequality.red$pH,main="Box plot of pH",
col="gray",ylab="values")
```

Box plot of pH

boxplot(winequality.red\$sulphates,main="Box plot of sulphates",
col="gray",ylab="values")

Box plot of sulphates

boxplot(winequality.red\$alcohol,main="Box plot of alcohol",
col="gray",ylab="values")

Box plot of alcohol

Referencias

Squire, Megan (2015). Clean Data. Packt Publishing Ltd.

Jiawei Han, Micheine Kamber, Jian Pei (2012). Data mining: concepts and techniques. Morgan Kaufmann.

Jason W. Osborne (2010). Data Cleaning Basics: Best Practices in Dealing with Extreme Scores. Newborn and Infant Nursing Reviews; 10 (1): pp. 1527-3369.

Peter Dalgaard (2008). Introductory statistics with R. Springer Science & Business Media.

Wes McKinney (2012). Python for Data Analysis. O'Reilley Media, Inc.

Tutorial de Github (https://guides.github.com/activities/hello-world/)