

Tutorial: Automagic EEG toolbox & Microstates toolbox

Nicolas Langer & Andreas Pedroni

Outline

- Importance of Clean Data
- Common Artifacts in EEG
- What is Automagic
- What does Automagic
- Step-by-step tutorial on example data
- Pre-processing steps:
 - Filtering
 - Bad Channel Detection and Interpolation
 - EOG Regression
 - ICA / PCA

Importance of Clean EEG Data

- Event-Related Potentials (ERPs) are tiny
 - Many experimental effects are less than a millionth of a volt
- ERPs are embedded in noise that is 20-100 μV
- Averaging is a key method to reduce noise
 - S/N ratio is a function of sqrt(# of trials)
 - Doubling # of trials increases S/N ratio by 41% [sqrt(2)=1.41]
 - Quadrupling # of trials doubles S/N ratio [sqrt(4)=2]

Importance of Clean EEG Data

- Just having a lot of trials is often not enough to get clean data
- It pays to reduce sources of noise before the noise is recorded
- Hansen's Axiom: There is no substitute for clean data
- Cleaning up noise after recording has a cost
 - Averaging requires lots of trials (lots of time)
 - Filters can distort the time course of the ERPs
- "By reducing sources of noise before they are recorded, you could cut an hour off every recording session or cut the number of subjects in each experiment by 25% (or even more)" Steven Luck

Common Artifacts in EEG data

Common Artifacts in EEG:

Subjects related Artifacts:

- Any minor body movement (EMG)
- Cardiac activity
- Blinks and eye-movement
- Sweating

Technical Artifacts:

- 50/60 Hz power line
- Impedance fluctuations
- Movement of cables
- Broken wire contacts
- Too much electrode gel/paste

What to do with Artifacts?

Artifact-rejection vs. Artifact-correction

- Throw out trials with problematic artifacts (e.g., rejection threshold >100 μ V); at the same time don't throw out "good" trials
- Data gets lost!
- Use data reduction methods to eliminate artifacts (increase SNR)
- No data is lost!
- Automagic does Artifact-correction

What is Automagic

- Automagic is a MATLAB based toolbox for preprocessing of EEG-datasets.
- GUI vs. Open Source
- MATLAB (Octave) => Python version under construction
- Where to find it:
- https://github.com/amirrezaw/automagic

What does Automagic?

- 1. Automagic automatically removes artifacts (e.g. eye movements, noisy electrodes, etc.) from your raw EEG-data.
- 2. Automagic lets you check the entire dataset for remaining artifacts. You will be able to select and remove these manually in a very efficient way.
- 3. You can rate the quality of individual EEG-files.

Pre-processing with Automagic

Filtering - Highpass-filter (~1Hz) - Optional lowpass-filter - Notch-filter (50/60Hz) Detect and interpolate noisy electrodes

Regress out eye-artifacts

ICA or PCA

Visual inspection and rating of data quality

STEP-BY-STEP TUTORIAL

Let's do some practical stuff

Step-by-step Tutorial

System Requirements

You need MATLAB installed and activated on your system to use *Automagic*. *Automagic* was developed and tested in MATLAB R2015b and newer releases.

Installation

Download the Automagic EEG Toolbox to a folder of your choice.

https://github.com/amirrezaw/automagic

Navigate to gui/ folder

Double click the file named *Automagic* or *Automagic.mlappinstall*. Wait until MATLAB displays a dialogue box.

Please select Install. You will be notified as soon as the installation is complete.

How to Run Automagic

Start MATLAB.

Select the APPS tab.

Click on the Automagic icon. You might have to expand the APPS tab to see the *Automagic* icon by clicking the small triangle pointing down on the far right of the APPS tab.

Smilla Pedroni (2016)

Step-by-step Tutorial

Before you start Automagic... prepare your data

Folder organization:

Each subject has a folder and the EEG files have the same names as the folder

Example Data Set:

Step-by-step Tutorial

Work Flow in Automagic

- 1. Create a new project or load an existing project.
- 2. Preprocess the data.
- 3. Rate data and manually select bad channels if any.
- 4. Interpolate all bad channels.
- 5. Repeat steps 3 and 4 until all data is rated.

The Automagic GUI

1. Create a new project or load an existing project

1b. Specify your data (super easy with EGI data)

Let's quickly look at the configurations if you don't have EEG data recorded with an EGI system

... other data formats need a bit more work

(yes, the EEG worlds needs a similar approach as BIDS (Gorgolewski), maybe the ESS-format)

... Specifying the electrodes location file (only if you don't have EGI data)

			Filtering	
Select Project	Create New Project	٥	Notch Filter US (60Hz)	Run
Project Name	Type the name of your new project		Europe (50Hz)	
File Extension (e.graw, .dat) EEG System	○ EGI (HCGSN) ● (Other	High Pass Filter ✓ (Recommended)	Manual Rating
Channel location file	select, where the electrodes coordinate file is located.		Start Rating	
Channel location file type	(Cartesian, Spherical or Polar information needed)			
EOG channels	Space opportunity matrix, e.g. 1 x 0 ii	11/21 20 120 120 121 120		Interpolation
Downsampling Rate	2 0			Interpolate All
Data Folder	Choose Choose where your raw dota is			
Project Folder	Choose Choose where you want the results to be saved			
			Create New	

... Specifying the EOG channels

(only if you don't have EGI data)

Let's assume we have EEG data recorded with an EGI system (see example data)

We're using the example data on github...

... Specifying downsampling rate

(just for visualization)

... Specifying the path to the data

... Specifying the path of the output

... Specifying the notch filter

... Specifying the high pass filter

... More options available

... Press the "Create New" button

(Automagic will tell you, if you have specified everything correctly)

... Automagic will show you, how many subjects and files were found

FILTERING

pop_eegfiltnew.m (EEGLAB)

Filtering

High-pass filter: Remove low frequencies

Filtering

High-pass filter: Remove low frequencies

Filtering

Low-pass filter: Remove high frequencies

Filtering

Notch filter: removes power line artifacts (50/60 Hz)

BAD CHANNEL DETECTION

Noisy Electrodes

Noisy electrodes are defined as statistical outliers (e.g. > 3 STD) based on:

EOG Regression

EOG Regression

Electrooculography (EOG)

- Goal: Estimate contribution of EOG artifact at each EEG channel and subtract it
- Problem: Signal at EOG electrodes contains non-artifact activity as well as artifact activity
 - The first technique (Gratton et al., 1983)
 "overcorrects" and distorts the scalp distribution of the ERP components
- The best approaches use more sophisticated ways of estimating the actual ocular activity
 - EOG Regression (Parra et al., 2005)

EOG regression

Independent Component Analysis (ICA)

Winkler I., Haufe S., Tangermann, M. (2011). Automatic Classification of Artifactual ICA-Components for Artifact Removal in EEG Signals. *Behavioral and Brain Functions*, 7:30.

General Logic

Mixing and Unmixing

 $w_{i,j}$ = weight from component i to Electrode j w_i = scalp distribution of component i

Mixing Matrix

	Component 1	Component 2	Component 3
Electrode 1	1	0.5	1
Electrode 2	0.25	0.5	0.75
Electrode 3	0.5	-0.5	0.5

Mixing and Unmixing

Goal of ICA- Figure out an "unmixing" matrix that will allow us to recover the time courses of the sources from the observed mixtures

Blind Source Separation- No assumptions about the sources except that (a) they are independent, and (b) # of sources = # of mixtures

Artifact Correction with ICA

- In most (but not all) cases, artifacts will have a fixed scalp distribution and will be statistically independent of brain acitivity of interest.
 - Examples: Blinks, line noise
- To remove artifact, data are reconstructed by simply adding together the non-artifact components

ICA Component Maps

Single-Trial Time Course

General Logic

Single Trial After Correction

ICA Flow

Modified PCA

Lin Z., Chen M., Ma Y. (2010). The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices. arXiv:10095055.

BACK TO AUTOMAGIC...

Pre-processing with Automagic

Filtering - Highpass-filter (~1Hz) - Optional lowpass-filter - Notch-filter (50/60Hz) Detect and interpolate noisy electrodes

Regress out eye-artifacts

ICA or PCA

Visual inspection and rating of data quality

3. Rate data and manually select bad channels if any

3. Rate data and manually select bad channels if any

3. Manually select bad electrodes

4. Interpolate all bad channels

5. Repeat steps 3 and 4 until all data is rated

Pre-processing with Automagic

ICA or PCA

Visual inspection and rating of data quality

OUTPUT of Automagic

• What's in the "Results" folder:

There's also a "project_state.mat" file in the results folder. You can ignore that, but don't delete

OUTPUT of Automagic

The final (clean) pre-processed file: nomenclature

Other possible file names:

gp_subject1_file1.mat gp_subject1_file1.mat oip_subject1_file1.mat op_subject1_file1.mat **b**ip_subject1_file1.mat bp_subject1_file1.mat np_subject1_file1.mat

OUTPUT of Automagic

The final (clean) pre-processed file contains 7 variables in MATLAB (try to load it in MATLAB)

Do I really need to use the GUI?

- NO! You can use the individual pre-processing files independent from the gui. (see Automagic manual)
- All m-files are in the "preprocessing" folder

You need data? Here you go: FREE EEG AND EYE-TRACKING DATA SET

Validation

Microstates with Automagic

Microstates without Automagic

69

Credentials

"No one can do EEG pre-processing better than I do, except maybe Automagic. It's magic." Donald Trump, 2017, Journal of Alternative Facts