MATH 220A

Name: Quin Darcy Due Date: 2/19/21 Instructor: Dr.Martins Assignment: Homework 2

8. (a) Apply Lemma 13.2 to show that the countable collection

$$\mathcal{B} = \{(a, b) \mid a < b, a \text{ and } b \text{ rational } \}$$

is a basis that generates the standard topology on \mathbb{R} .

Proof. Let \mathcal{T}_1 be the topology generated by \mathcal{B} and let \mathcal{T}_2 be the standard topology. Then we must show that for any $U \in \mathcal{T}_2$ and $x \in U$, there exists $B \in \mathcal{T}_2$ such that $x \in B \subset U$.

Let $U \in \mathcal{T}_2$ and $x \in U$. Then by Lemma 13.1, U is the union of some collection of open intervals in \mathbb{R} . With $x \in U$, then we have that for some $a, b \in \mathbb{R}$, $x \in (a, b)$. If $a, b \in \mathbb{Q}$, then we are done since in this case, $(a, b) \in \mathcal{T}_2$ and $x \in (a, b) \subset U$. If a, b are not rational, then since \mathbb{Q} is dense in \mathbb{R} , we have that there exists $a < a_2 < x < b_2 < b$, where $a_2, b_2 \in \mathbb{Q}$. Thus $(a_2, b_2) \in \mathcal{T}_2$ and $x \in (a_2, b_2) \subset U$. Therefore, by Lemma 13.2, \mathcal{T}_1 is a basis for \mathcal{T}_2 .

(b) Show that the collection

$$\mathcal{C} = \{ [a, b) \mid a < b, \ a \text{ and } b \text{ rational } \}$$

is a basis that generates a topology different from the lower limit topology on \mathbb{R} .

Proof. We want to show that $C \neq \mathbb{R}_l$, where \mathbb{R}_l is the lower limit topology on \mathbb{R} . To prove this we select the set $[\sqrt{2},3) \in \mathbb{R}_l$ and let $x = \sqrt{2}$. From here we appeal to the negation of Lemma 13.2. Namely, to show that there does not exist a $B \in C$ such that $x \in B \subset [\sqrt{2},3)$. This follows from $x = \sqrt{2}$, and so for all $[a,b) \subset [\sqrt{2},3)$ such that $x \in [a,b)$ it implies $a = \sqrt{2}$ and thus $[a,b) \not\subset C$.

3. Consider the set Y = [-1, 1] as a subspace of \mathbb{R} . Which of the following are open in Y? Which are open in \mathbb{R} ?

$$A = \{x \mid \frac{1}{2} < |x| < 1\},\$$

$$B = \{x \mid \frac{1}{2} < |x| \le 1\},\$$

$$C = \{x \mid \frac{1}{2} \le |x| < 1\},\$$

$$D = \{x \mid \frac{1}{2} \le |x| \le 1\},\$$

$$E = \{x \mid 0 < |x| < 1 \text{ and } 1/x \notin \mathbb{Z}_+ \}.$$

MATH 220A Darcy

Proof.

(a) Considering the standard topology on \mathbb{R} and letting a basis for this topology be denoted by \mathcal{B} , then by Lemma 16.1, $\mathcal{B}_Y = \{B \cap Y \mid B \in \mathcal{B}\}$ is a topology on Y. As such, we have that $A = (-1, -\frac{1}{2}) \cup (-\frac{1}{2}, 1)$ is open in \mathbb{R} as it is the union of two open sets in X, and $A \subset Y$. Therefore, A is open in Y and open in \mathbb{R} .

(b) Considering the standard topology on \mathbb{R} , we have that $B = [-1, -\frac{1}{2}) \cup (-\frac{1}{2}, 1]$, which is not open in \mathbb{R} . However, we can rewrite

$$B = Y \cap \left((-\frac{3}{2}, -\frac{1}{2}) \cup (\frac{1}{2}, \frac{3}{2}) \right)$$

which is the union of two basis elements of the standard topology intersected with Y, and thus B is in the topology on Y. Hence, B is open in Y.

(c) We can rewrite

$$C = (-1, -\frac{1}{2}] \cup [\frac{1}{2}, 1)$$

which is not open in \mathbb{R} . Moreover, we cannot do as we did above and express C as the intersection of open sets of \mathbb{R} with Y since for all open sets $U \in \mathbb{R}$ such that $C \subset U$, we have $U \cap Y \neq C$. To see why, suppose there is such an open set $U \in \mathbb{R}$. Then since $\frac{1}{2} \in C \subset U$, it follows that there exists an open set $U' \subset U$ such that $\frac{1}{2} \in U'$. However, this implies that there exists an open set $U'' \subset C$ such that $\frac{1}{2} \in U''$, which is not possible.

- (d) By the same argument above, we can conclude that D is neither open in \mathbb{R} , nor is D open in Y.
- (e) To show that E is open in Y, we will show that E is open in \mathbb{R} and appeal to Lemma 16.1. We need to show that E is an element of the topology on \mathbb{R} . Thus, we need to show that E is either a basis element or the union of basis elements.

Let $x \in E$. Then if 0 < x, by the Archmedian principle, there exists $n \in \mathbb{N}$ such that $\frac{1}{n+1} < x < \frac{1}{n}$. Thus, for some $n \in \mathbb{N}$, we have that $x \in \left(\frac{1}{n+1}, \frac{1}{n}\right)$. If x < 0, then immediately we see that $\frac{1}{x} \notin \mathbb{Z}_+$ and that $x \in (-1,0)$, which is open in \mathbb{R} . Therefore,

$$E \subseteq (-1,0) \cup \bigcup_{n \in \mathbb{N}} \left(\frac{1}{n+1}, \frac{1}{n}\right)$$

which is the union of basis elements of the standard topology on \mathbb{R} . If x is an element of the set on the right, then either $x \in (-1,0)$ which implies $x \in E$, or for some $n \in \mathbb{N}$, $x \in (\frac{1}{n+1}, \frac{1}{n})$ which implies that $1/x \notin \mathbb{Z}_+$. In either case, we have that 0 < |x| < 1. Therefore, $x \in E$ and

$$E = (-1, 0) \cup \bigcup_{n \in \mathbb{N}} \left(\frac{1}{n+1}, \frac{1}{n} \right).$$

Thus E is open in \mathbb{R} and thus open in Y.

MATH 220A Darcy

1. Let $[a,b] \subset \mathbb{R}$ be a closed interval and consider the following set of functions:

$$C([a,b]) = \{ f : [a,b] \to \mathbb{R} \mid f(x) \text{ is continuous on } [a,b] \}.$$

Using the properties of the Riemann integral, show that d_{L^1} is a metric on the space C([a,b]).

Proof. Let $f, g \in C([a, b])$. Then we want to show that $||f(x) - g(x)|| \ge 0$. If $f(x) \ne g(x)$, then define h(x) = f(x) - g(x). By properties of continuous functions, $h(x) \in C([a, b])$. Furthermore, we have that

$$-|h(x)| \le h(x) \le |h(x)|$$

and since h(x) is continuous [a, b], then |h(x)| is continuous on [a, b] and thus Riemann integrable on [a, b]. Thus taking the integral of the above inequality, we get that

$$0 \le \left| \int_a^b h(x) dx \right| \le \int_a^b |h(x)| dx.$$

And if f(x) = g(x), then f(x) - g(x) = 0 which implies that $||f(x) - g(x)||_{L^1} = 0$. Therefore, $||f(x) - g(x)|| \ge 0$, with equality when f(x) = g(x).

Next we let $f(x), g(x) \in C([a, b])$. We need to show that ||f(x) - g(x)|| = ||g(x) - f(x)||. This property follows immediately from the commutativity of the real numbers. Namely, that f(x) - g(x) = g(x) - f(x) for all $x \in [a, b]$.

Let $f(x), g(x), h(x) \in C([a, b])$. We need to show that

$$||f(x) - h(x)|| \le ||f(x) - g(x)|| + ||g(x) - h(x)||.$$

By properties of continuous functions, f(x) - h(x), f(x) - g(x), and g(x) - h(x) are all continuous on [a, b]. Moreover, we have that

$$|f(x) - h(x)| \le |f(x) - g(x)| + |g(x) - h(x)|.$$

Lastly, we have that |f(x) - h(x)|, |f(x) - g(x)|, and |g(x) - h(x)| are all continuous on [a, b] and thus Riemann integrable on [a, b]. Thus taking the integral of the above inequality we get that

$$\int_{a}^{b} |f(x) - h(x)| dx \le \int_{a}^{b} |f(x) - g(x)| dx + \int_{a}^{b} |g(x) - h(x)| dx$$

as desired. \Box