Vorlesung MTI - Trennen

Prof. Dr.-Ing. Christian Willberg Hochschule Magdeburg-Stendal

Kontakt: christian.willberg@h2.de

Trennen ist das Herstellen geometrisch bestimmter fester Körper mittels Werkzeugen durch Formänderunge und Stoffverminderung. Geometrisch bestimmte feste Köper sind Halbzeuge, montagefähige Einzelteile oder Werkzeuge.

Unterteilung

- Spanen
- Abstragen
- Zerteilen
- Zerlegen
- Reinigen

Video

Spanen

- hohe Fertigungsgenauigkeit
- hohe Reproduzierbarkeit der Qualität
- hohe Flexibilität bei den geometrischen Bearbeitungsmöglichkeite
- hohe stückzahl- und auftragbezogene Fertigungsflexibilität

Klassifierung

- Automatisierunggrad
 - maschinell automatisiert
 - o manuell unbestimmte Relativbewegung zwiwechen Werzeug und Werkstück
- geometrische Art der Schneide
 - geometrisch bestimmt
 - o geometrisch unbestimmt

- nach Art der zu erzeugenden Flächen (Formelement)
 - Plandrehen
 - Planfräsen
 - Runddrehen
 - Schrauben-/Gewindedrehen
 - Profildrehen
 - Freiformflächen

Prozesse sind verschaltbar

Basisgrößen

- Bewegungen / Richtungsvektoren
- Spanungsgrößen
- Vorschubgrößen
- Geschwindigkeiten
- Eingriffsgrößen / Wirkpaarung Werkzeug Werkstück
- Geometrie der Schneide
- Hilfsgrößen
 - Arbeitsebene
 - Wirkrichtungswinkel
 - Vorschubsrichtungswinkel

Alle Basisgrößen sind beeinflusst durch das Material was bearbeitet wird.

Schneidstoffe

- hohe Schnittgeschwindigkeit wird angestrebt
 - hohe Temperatur
 - höherer Verschleiß

Härte und Warmfestigkeit und somit Schnittgeschwindigkeit

Zähigkeit und Biegefestigkeit und somit Vorschub

Komponenten

Spanarten

Reißspan

- spröde Werkstoffe
- schlechte Oberflächenqualität
- niedrige Schnittgeschwindigkeit und kleine Spanwinkel
- sollte durch Wärmebehandlung vermieden werden

Scherspan

- zäher Werkstoff, mittlerer Spanwinkel, niedrige Schnittgeschwindgkeit
- schuppenförmige Spanteile die teilweise wieder miteinander Verschweißen

Fließspan

- große Spanwinkel und hohe Schnittgeschwindigkeit
- sehr gute Oberflächengüte
- Spanlänge kann zu Störungen im Arbeitsablauf führen

Drehen

Beispiele:

- Plandrehen
- Runddrehen
- Schrauben-/Gewindedrehen

Fräsen

Planfräsen

Bohren

Bohren Gewindebohren

Schleifen

- Schleifmittel
 - \circ Korund AL_2O_3
 - am häufigsten eingesetzt
 - Härte steigt mit Reinheitsgrad
 - Siliciumcarbid, Bornitrid,
 Diamant
- Matrix
 - keramisch, Kunstharze,Metall

- Körnung beschreibt die größe des Schleifmittelkörner
- kleinere Körner -> geringere Oberflächenrauheit

Schleifmittelgefüge

- dicht
- porös
- hochporös

Bezeichnung von Schleifscheiben

Weiche Schleifwerkzeuge für

- harte Werkstoffe
- goße Berührungsflächen zwischen Schleifwerkstoff und Werkstück
- kleiner Vorschub

Harte Schleifwerkzeuge für

- weiche Werkstoffe
- kleinere Berührungsflächen
- größerer Vorschub

Trennprozesse sind verschaltbar

Zerteilen

- Scheren
- Brechen
- Reißen
- Schneiden

Schneiden

Mechanisch

Wasserstrahl

Laserschneiden

Abtragen

chemisch, elektrochemisch

ätzen

thermisch

- Funkenerosion
- Elektronenstrahlbearbeitung
- Laserstrahlbearbeitungen
- Plasmastrahlbearbeitung

mechanisch

Wasserstrahlbearbeitung

Endspiegel

Auskoppelspiegel

Vorteile von Lasern

- hohe Bearbeitungsgeschwindigkeit
- hohe Präzision
- hohe Bearbeitungsqualität
- es werden keine mechanischen Kräfte ausgeübt
- geringe Wärmebelastung
- hohe, präzise, defineirte Energiedichte
- Automatisierbarkeit
- hohe Flexibilität
- Verschleißfreies Werkzeug

Zerlegen

- Auseinandernehmen (Demontieren im engeren Sinne)
- Entleeren
- Lösen kraftschlüssiger Verbindungen
- Zerlegen von durch Urformen gefügten Teilen
- Ablöten
- Lösen von Klebeverbindungen
- Zerlegen textiler Verbindungen

