IN PREVIOUS LECTURE (QUICK RECAP) Date-22/07/2020	In Today's Lecture (Overview)
What is Palindrome Fibonacci Series/Problem	⇒ How to print all Subsequence of String
Matrix Problem	==>New Topic
Important Things	⇒ Binary Search
	MCQs For Practice

⇒ How to print all Subsequence of String

Definition-

A **subsequence** is a sequence generated from a **string** after deleting some characters of **string** without changing the order of remaining **string** characters

Steps To print All subsequences

- Step 1: Iterate over the entire String
- Step 2: Iterate from the **end of string in order to generate different substring** add the substring to the list
- Step 3: **Drop character from the substring obtained from above** to generate different subsequence.
- Step 4: if the subsequence is not in the list then recur.

*This Image Is Just Example

Program/Code

```
def F(str, idx, res):
    if idx == len(str):
        print(res)
        return
    F(str, idx + 1, res) #skipping the character
    F(str, idx + 1, res + str[idx]) # taking the character

if __name__ == '__main__':
    F("ABC", 0, "")
```

==>New Topic

⇒ Binary Search

Definition-

- -In Python a **binary search** algorithm **finds the position of a target value** within a sorted array.
- -The **binary search** algorithm can be classified as a **divide-and-conquer search** algorithm and executes in logarithmic time.

Algorithm of binary Search\Rules

- -Requires Array[]
- -Requires **Target** Element

Code Of Binary Search

```
def binarySearchWithRecurssion(list, target, 1, r):
    if 1 > r:
        return False
    mid = (1 + r) // 2
    if list[mid] == target:
        return True

if list[mid] > target:
        binarySearchWithRecurssion(list, target, 1, mid - 1)
    elif list[mid] < target:
        binarySearchWithRecurssion(list, target, mid + 1, r)
    return False

if __name__ == '__main__':
    1 = [1,2,3,4,5]
    print(binarySearchWithRecurssion(1, 33, 0, len(1) - 1))</pre>
```

*This Program Search's 33 in The 1

MCQs For Practice

1. What is the time complexity of linear searching?

```
(A) = O(logn)
```

(B) = O(n)

(C)=O(n2)

2.What is the time complexity of Binary Search ?	
$(A) = \log(N)$	
(B)= O(N)	
(C)= worst cast O(N) best case Log(N)	
3. Which of the following is correct about binary search?	
(A)= it reduces the search base by dividing it to 2	
(B)= it is faster than linear search	
(C)= it reduces the search base by dividing it to 3	
4.which of these is not a subsequence of ABC?	
4.willcii of these is not a subsequence of ABC?	
(A)= CB	
(B)= BC	
(C)= AB	
(D)= ABC	

Answers Of The MCQs

- 1. B
- 2. A
- 3. A or B
- 4. A