Mécanique quantique – Corrigé du TD 8

Antoine Bourget - Alain Comtet - Antoine Tilloy

1 Opérateur Parité

Cf. le complément F_{II} du Cohen-Tannoudji (page 192).

2 Puits de potentiel en δ

2.1 Propriétés de la fonction d'onde au voisinage d'une discontinuité

1. Soit φ une fonction propre de H, associée à l'énergie propre E. On a alors :

$$E\varphi(x) = -\frac{\hbar^2}{2m}\frac{d^2\varphi}{dx^2} + V(x)\varphi(x).$$

En isolant la dérivée seconde et en intégrant l'équation sur $[-\varepsilon, \varepsilon]$, on obtient :

$$-\frac{\hbar^2}{2m} \left[\frac{d\varphi}{dx} \right]_{-\varepsilon}^{\varepsilon} = \int_{-\varepsilon}^{\varepsilon} E\varphi(x) \ dx - \int_{-\varepsilon}^{\varepsilon} V(x)\varphi(x) \ dx$$

Quand on fait tendre ε vers 0, les deux intégrales tendent vers 0 : la dérivée de φ reste donc continue même en présence d'une discontinuité (finie) de l'énergie potentielle.

2.2 Puits unique

La fonction δ (à une dimension) ayant les dimensions de l'inverse d'une longueur, α a les dimensions d'une énergie par une longueur, soit[M] $[L^3]$ $[T^{-2}]$.

2. Si on reprend le raisonnement précédent avec $V(x)=-\alpha\delta(x),$ on obtient :

$$-\frac{\hbar^2}{2m} \left[\frac{d\varphi}{dx} \right]_{-\varepsilon}^{\varepsilon} = \int_{-\varepsilon}^{\varepsilon} E\varphi(x) \ dx + \int_{-\varepsilon}^{\varepsilon} \alpha \delta(x) \varphi(x) \ dx$$

Quand on fait tendre ε vers 0, la première intégrale tend vers 0 alors que la deuxième reste finie et on obtient une discontinuité :

$$\varphi'(0^+) - \varphi'(0^-) = -\frac{2m}{\hbar^2}\alpha\varphi(0).$$

3. Pour x>0, l'équation de Schrödinger stationnaire s'écrit $E\varphi(x)=-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\varphi$, et admet pour E<0 des solutions évidentes de la forme

$$\varphi(x) = A_2 e^{\rho x} + A_2' e^{-\rho x},$$

avec $\rho = \sqrt{\frac{-2mE}{\hbar^2}}$ (et de même pour x < 0).

4. La continuité de φ en x=0 impose alors

$$A_1 + A_1' = A_2 + A_2'$$

et la discontinuité de $\frac{d}{dx}\varphi$ au même point s'écrit ici :

$$\rho(A_1 + A_2' - A_1' - A_2) = -\frac{2m\alpha}{\hbar^2} (A_1 + A_1').$$

5. Pour que φ soit de carré sommable, il faut nécessairement que $A_1' = A_2 = 0$. Alors $A_1 = A_2' \Longrightarrow 2\rho A_1 = -\frac{2m\alpha}{\hbar^2} A_1 \Longrightarrow \rho = \rho_0 = \frac{m\alpha}{\hbar^2}$ et donc

$$E = -\frac{\hbar^2 \rho_0^2}{2m} = -\frac{m\alpha^2}{2\hbar^2}.$$

Le système n'a qu'un seul état lié, ce qui n'est pas étonnant. On a vu en cours que tout puits de potentiel à une dimension avait au moins un état lié, mais que ce nombre diminuait à mesure qu'on augmentait le confinement de la particule (ce qui augmente son énergie cinétique).

La fonction d'onde normée de l'état lié est donc :

$$\varphi(x) = \sqrt{\rho_0} \exp\left(-\rho_0|x|\right).$$

6. On calcule sans problème la variance des fluctuations de position de la particule autour du puits :

$$\Delta x^2 = \int_{-\infty}^{+\infty} x^2 |\varphi(x)|^2 dx = 2\rho_0 \int_0^{+\infty} x^2 \exp(-2\rho_0 x) dx = \frac{1}{2\rho_0^2}.$$

Pour prétendre décrire (très imparfaitement) un atome d'hydrogène avec ce modèle, il faut prendre :

$$\alpha = \frac{\hbar^2}{ma_0\sqrt{2}} = \frac{e^2}{4\pi\epsilon_0\sqrt{2}}.$$

7. La fonction d'onde en représentation impulsion se calcule simplement :

$$\tilde{\varphi}(p) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} dx \, e^{\frac{-ipx}{\hbar}} \varphi(x)$$

$$= \sqrt{\frac{\rho_0}{2\pi\hbar}} \left(\int_0^{+\infty} \exp\left(\frac{-ipx}{\hbar}\right) \exp\left(-\rho_0 x\right) dx + \int_{-\infty}^0 \exp\left(\frac{-ipx}{\hbar}\right) \exp\left(+\rho_0 x\right) dx \right)$$

$$= \sqrt{\frac{\rho_0}{2\pi\hbar}} \left(\frac{1}{\rho_0 + ip/\hbar} + \frac{1}{\rho_0 - ip/\hbar} \right) = \sqrt{\frac{2}{\pi\rho_0\hbar}} \frac{1}{1 + p^2/\rho_0^2\hbar^2}.$$

La probabilité dP(p) s'écrit finalement : $dP(p) = |\tilde{\varphi}(p)|^2 dp$.

Le calcul exact de Δp est faisable (avec une bonne table d'intégrales), et on trouve $\Delta p \simeq \rho_0$, la valeur exacte vérifiant évidemment $\Delta x \Delta p \geq \hbar/2$.

2.3 Double puits

8. Forme générale des solutions

On procède comme d'habitude : on cherche des solutions par intervalle, solutions qu'on raccordera ensuite.

Domaine	x	$\Psi(x)$
I	$x < -\frac{l}{2}$	$Ae^{\rho x}$
II	$\frac{-l}{2} < x < \frac{l}{2}$	$Be^{\rho x} + Ce^{-\rho x}$
III	$x > \frac{l}{2}$	$De^{-\rho x}$

avec
$$E = -\frac{\hbar^2 \rho^2}{2m}$$
.

En fait, $[H,\Pi] = 0$, donc on peut chercher les états propres avec une parité définie. On a alors tout intérêt à distinguer 2 cas :

Domaine	Ψ paire	Ψ impaire
I	$\Psi(x) = A e^{\rho x}$	$\Psi(x) = A e^{\rho x}$
II	$\Psi(x) = B \cosh(\rho x)$	$\Psi(x) = B \sinh(\rho x)$
III	$\Psi(x) = Ae^{-\rho x}$	$\Psi(x) = -Ae^{-\rho x}$

La prise en compte de la symétrie du potentiel nous permet ainsi d'éliminer immédiatement 2 des 4 coefficients!

9. Cas où Ψ est paire On écrit les conditions de raccordement de la fonction d'onde en $x = -\frac{l}{2}$ (les mêmes que dans l'exercice du puits simple). Avec cette forme déjà symétrisée de la fonction d'onde, les conditions en $x = \frac{l}{2}$ sont bien sûr redondantes.

Continuité de
$$\Psi$$
 $Ae^{-\frac{\rho l}{2}} = B\cosh(\frac{\rho l}{2})$
Discontinuité de $\frac{d\Psi}{dx}$ $-\rho B\sinh(\frac{\rho l}{2}) - \rho Ae^{-\frac{\rho l}{2}} = -\mu Ae^{-\frac{\rho l}{2}}$

En combinant ces deux équations, on obtient immédiatement :

$$-\rho \sinh(\frac{\rho l}{2}) - \rho \cosh(\frac{\rho l}{2}) = -\mu \cosh(\frac{\rho l}{2})$$

$$\implies -\rho e^{\frac{\rho l}{2}} = -\frac{\mu}{2} (e^{\frac{\rho l}{2}} + e^{-\frac{\rho l}{2}})$$

$$\implies -\rho = -\frac{\mu}{2} (1 + e^{-\rho l})$$

$$\implies e^{-\rho l} = \frac{2\rho}{\mu} - 1$$

10. On peut déterminer graphiquement les valeurs de ρ qui vérifient cette équation. On voit en fait qu'il existe une et une seule valeur de ρ qui la vérifie : appelons la ρ_+ .

Pour
$$\rho = \frac{\mu}{2}, \, \frac{2\rho}{\mu} - 1 = 0 \implies \text{nécessairement } \rho_+ > \frac{\mu}{2}.$$

$$E=-\frac{\hbar^2
ho^2}{2m}$$
 est une fonction décroissante de ho ; on a donc $E_+<-\frac{\hbar^2}{2m}(\frac{\mu}{2})^2=-\frac{m\alpha}{2\hbar^2}$.

11. Cas où Ψ est impaire Les calculs ressemblent bien sûr énormément aux précédents.

Continuité de
$$\Psi$$
 $Ae^{-\frac{\rho l}{2}} = -B \sinh(\frac{\rho l}{2})$
Discontinuité de $\frac{d\Psi}{dx}$ $\rho B \cosh(\frac{\rho l}{2}) - \rho Ae^{-\frac{\rho l}{2}} = -\mu Ae^{-\frac{\rho l}{2}}$

FIGURE 1 – Détermination graphique des solutions du problème à deux puits.

En combinant ces deux équations, on obtient immédiatement :

$$\rho \cosh(\frac{\rho l}{2}) + \rho \sinh(\frac{\rho l}{2}) = \mu \sinh(\frac{\rho l}{2})$$

$$\implies \rho e^{\frac{\rho l}{2}} = \frac{\mu}{2} (e^{\frac{\rho l}{2}} - e^{-\frac{\rho l}{2}})$$

$$\implies \rho = \frac{\mu}{2} (1 - e^{-\rho l})$$

$$\implies e^{-\rho l} = 1 - \frac{2\rho}{\mu}$$

Il n'y a de solution (autre que $\rho=0$) que si $l>\frac{\mu}{2}$: il faut que la pente de la droite soit inférieure à celle de l'exponentielle.

- 12. La valeur unique ρ_{-} ainsi obtenue est telle que $1 \frac{2\rho_{-}}{\mu} > 0$ $\Longrightarrow \rho_{-} < \frac{\mu}{2}$ et donc $E_{-} < -\frac{m\alpha}{2\hbar^{2}}$.
- 13. Force covalente Pour $l \gg 2/\mu$, on va avoir $\rho_+ = \frac{\mu}{2}(1+\varepsilon)$ avec $\varepsilon \ll 1$. En reportant dans l'équation qui régit ρ_+ , on trouve $\varepsilon \simeq \exp(-\mu l/2)$ (avec $\exp(\mu l\varepsilon/2) \to 1 : \varepsilon$ tend plus vite vers 0 que l n'augmente).

On trouve donc $E_{+} = -\frac{\hbar^{2} \rho_{+}^{2}}{2m} \simeq -\frac{\hbar^{2} \mu^{2}}{8m} (1 + 2 \exp{(-\mu l)}).$

14. L'énergie E_+ dépend à la fois des degrés de libertés électronique et nucléaire (à travers l). Dans le cadre de l'approximation de Born-Oppenheimer (étudiée au second semestre dans le module L6), on traite la dynamique des électrons en fixant la position des noyaux et on considère l'énergie obtenue à l fixée (E_+ ici) comme une énergie potentielle pour le problème du mouvement relatif des noyaux.

Cette énergie augmente avec l: elle correspond donc à une force attractive entre les noyaux. Pour un ion moléculaire H_2^+ par exemple, la prise en compte de la répulsion électrostatique entre les noyaux permet de trouver leur distance d'équilibre et la fréquence de vibration (reliée à la courbure du potentiel au voisinage de la position d'équilibre) de la molécule.