日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2002年10月30日

出願番号 Application Number:

特願2002-316162

[ST. 10/C]:

[JP2002-316162]

出 願 Applicant(s): 人

京セラミタ株式会社

2003年 8月19日

特許庁長官 Commissioner, Japan Patent Office 今井原

【書類名】 特許願

【整理番号】 03-00476

【提出日】 平成14年10月30日

【あて先】 特許庁長官 殿

【国際特許分類】 B41J 2/44

B41J 2/45

H04N 1/29

G03G 15/00

【発明の名称】 LEDアレイ露光装置及びそれを備えた画像形成装置

【請求項の数】 6

【発明者】

【住所又は居所】 大阪府大阪市中央区玉造1丁目2番28号 京セラミタ

株式会社内

【氏名】 大庭 忠志

【発明者】

【住所又は居所】 大阪府大阪市中央区玉造1丁目2番28号 京セラミタ

株式会社内

【氏名】 中井 潤

【特許出願人】

【識別番号】 000006150

【氏名又は名称】 京セラミタ株式会社

【代理人】

【識別番号】 100085501

【弁理士】

【氏名又は名称】 佐野 静夫

【手数料の表示】

【予納台帳番号】 024969

【納付金額】 21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 0001263

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 LEDアレイ露光装置及びそれを備えた画像形成装置

【特許請求の範囲】

【請求項1】 画素データに応じて点灯制御される複数のLED発光素子からなる1つまたは複数のLEDアレイチップがライン状に配設され、各LED発光素子の光量データに基づき該LED発光素子の光量補正を行い、該LED発光素子の発光をレンズアレイを介して結像させて露光を行うLEDアレイ露光装置において、レンズアレイを透過した各LED発光素子のビーム面積のばらつきに対するビーム面積補正と、感光体感度に応じて前記ビーム面積補正の大小を調節する重み付けとが、前記光量補正に重畳されることを特徴とするLEDアレイ露光装置。

【請求項2】 前記ビーム面積補正は、補正対象となるLED発光素子を含む前後複数個のLED発光素子のビーム面積を平均値化し、該平均値と補正対象となるLED発光素子のビーム面積の差分の大小に応じて行うことを特徴とする請求項1に記載のLEDアレイ露光装置。

【請求項3】 前記ビーム面積の平均値が移動平均値となるように、移動平均値の対象となる前記前後複数個のLED発光素子が、補正対象となるLED発光素子とともに移動することを特徴とする請求項2に記載のLEDアレイ露光装置

【請求項4】 前記前後複数個のLED発光素子は、補正対象となるLED発 光素子を先頭とする後続する複数個のLED発光素子であることを特徴とする請 求項2または請求項3のいずれかに記載のLEDアレイ露光装置。

【請求項5】 前記前後複数個のLED発光素子は、補正対象となるLED発 光素子を含む同一のLEDアレイチップ内のLED発光素子であることを特徴と する請求項2に記載のLEDアレイ露光装置。

【請求項6】 請求項1乃至請求項5のいずれかに記載のLEDアレイ露光装置を備えた画像形成装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、画像形成時に書き込み用として使用されるLEDアレイ露光装置及びそれを備えた画像形成装置に関する。

[0002]

【従来の技術】

複写機やプリンタ及びファクシミリなどの画像形成装置には、被記録媒体である用紙などに直接画像を形成する直接画像形成方式と、感光体などからなる中間媒体に一旦画像を記録し、その画像を最終的な被記録媒体に転写する間接画像形成方式とがある。家庭などにおける小規模な使用を除けば、被記録媒体に普通紙を使用できる間接画像形成方式の画像形成装置が広く使用されている。

[0003]

また、複写機などの画像形成装置では、従来、アナログ画像情報をアナログ画像形成プロセスを用いて記録形成していたが、最近の情報のデジタル化に伴い、デジタル画像形成プロセスを用いてデジタル情報として処理し、被記録媒体に微小なドットからなる画像を形成することが一般的に行われている。このような画像形成装置では、微小なドットの集合で形成されるデジタル画像情報を、帯電した感光体に微小なドットとして露光して静電潜像を形成する。その後、現像器で粉状のトナーを用いて可視化して、被記録媒体である用紙に転写して画像を形成する。

[0004]

デジタル画像情報を感光体に露光する装置としては、レーザダイオードなどが発光するレーザ光を利用して露光を行うレーザ露光装置や、デジタル画像の1ドットに対応した微小なLED(発光ダイオード)を多数個直線状に配列してアレイ状とし、感光体の軸方向(主走査方向)に配置して露光を行うLEDアレイ露光装置がある。特に最近では、LEDアレイ露光装置が小型化、低価格化、制御の容易さ、機械的可動部がなく信頼性が高いなどの面で、プリンタやその他の画像形成装置に幅広く使用されている。

[0005]

このようなLEDアレイ露光装置は、プリント基板と、その上に搭載されるL

3/

EDアレイチップと、これに電流を供給して駆動する駆動ICと、LEDアレイチップの発光面と感光体との間に在ってLED発光素子からの光を感光体上にビームとして収束して結像させる複数のレンズの集合体であるレンズアレイと、これらの部品を保持する保持部材などを備えている。

[0006]

LEDアレイチップは、少なくとも被記録媒体(用紙)の幅以上の有効走査幅を露光できるよう、基板上に1個または複数個配置されており、帯電した感光体に静電潜像を形成するための露光源をなしている。このLEDアレイチップ上には、ビデオデータ(記録しようとする画像データ)のそれぞれの画素に対応する微小なLED発光素子が一列に配置されている。例えば600dpiの解像度でA4サイズの記録幅に対応する場合、1個または複数個のLEDアレイチップが有するLED発光素子の総数は少なくとも5120個になる。

[0007]

駆動ICは、各LED発光素子を駆動して発光させる回路を有しており、前記基板(または外部)に1個または複数個搭載されている。レンズアレイは、複数のシリンダ状のレンズを束にして配列したものであり、LED発光素子の光を感光体上に収束させてビーム形状のドットとして露光する。

[0008]

しかし、各LED発光素子の発光強度にはばらつきがあり、そのばらつきが被記録媒体上の可視化された画像で、濃度のむらやスジとなってあらわれ、記録品質の劣化を引き起こす。そのため、従来のLEDアレイ露光装置では、各LED発光素子の露光エネルギーが一定になるように補正する光量補正データを、LED発光素子個々に予め準備しておき、この光量補正データに従って、各LED発光素子が発光するときの露光エネルギーのばらつきを補正していた。

[0009]

また、レンズアレイの不均一な配列などにより解像力にばらつきがあったり、 レンズアレイの取り付け誤差によりLED発光素子からの光の焦点位置がずれた りすると、感光体上に結像するドットが歪んだり、解像力がばらついたりする。 各LED発光素子の発光強度のばらつきを±2%程度に収まるように補正したと しても、レンズアレイによる解像力にばらつきがあると、可視化された画像では 濃度むらが顕著に現れる。

[0010]

また、使用する感光体の感度によっても濃度むらが顕著になる傾向が確認されている。つまり、感光体の感度が高いと、LED発光素子の光量やビーム面積のばらつきに対して感光体が敏感に反応するため、ばらつきが増幅されるように濃度むらやスジとして視認され易くなる。特に、複数の画像形成部を使用して異なる色の画像を同時に形成するタンデム方式のカラー画像形成装置では、各色ごとに画像が形成される感光体が異なり、その感度のばらつきを補正しないと濃度むらの程度が色ごとに異なり、色の再現性に大きな影響を及ぼす。

$[0\ 0\ 1\ 1]$

このような問題に対処するため、特許文献1によると、LED発光素子個々の発光をセンサ部で受光測定し、LED発光素子の光とセンサ部の走査距離との関係を求めて、感光体の感度をしきい値としたときに、受光した光出力が目標値になるようにLED発光素子の光出力を調整する方法が開示されている。

$[0\ 0\ 1\ 2]$

【特許文献1】

特開2002-67372号公報

[0013]

しかし、このように測定した光出力を、感光体の感度をしきい値に置き換えて、それに基づき理論上のビーム径に換算し、そのビーム径が均一になるように光出力を調整する方法では、個々のビーム径が理論的には揃ってくるものの、感光体の感度と濃度むらの発生度合いとの関係が明らかでなく、従って、その濃度むらを低減する補正を施しているわけではない。また、このようはLEDアレイ露光装置では、センサ部の取り付けスペースが必要になるとともにコストも上昇することになる。

[0014]

本発明は、斯かる実状に鑑みなされたものであり、LEDアレイ露光装置において、光量補正とともに、ビーム面積の補正に感光体感度による影響の重みを加

味して、濃度むらやスジを大幅に低減することが可能なLEDアレイ露光装置及びそれを備えた画像形成装置を提供することを目的とするものである。

[0015]

【課題を解決するための手段】

上記目的を達成するために、本発明では、画素データに応じて点灯制御される複数のLED発光素子からなる1つまたは複数のLEDアレイチップがライン状に配設され、各LED発光素子の光量データに基づき該LED発光素子の光量補正を行い、該LED発光素子の発光をレンズアレイを介して結像させて露光を行うLEDアレイ露光装置において、レンズアレイを透過した各LED発光素子のビーム面積のばらつきに対するビーム面積補正と、感光体感度に応じて前記ビーム面積補正の大小を調節する重み付けとが、前記光量補正に重畳される構成とする。

[0016]

更に、本発明では、前記ビーム面積補正は、補正対象となるLED発光素子を含む前後複数個のLED発光素子のビーム面積を平均値化し、該平均値と補正対象となるLED発光素子のビーム面積の差分の大小に応じて行う構成とする。

$[0\ 0\ 1\ 7]$

また、本発明では、前記ビーム面積の平均値が移動平均値となるように、移動平均値の対象となる前記前後複数個のLED発光素子が、補正対象となるLED発光素子とともに移動する構成とする。

[0018]

前記した前後複数個のLED発光素子は、補正対象となるLED発光素子を先頭とする後続する複数個のLED発光素子である。

[0019]

あるいは、前記前後複数個のLED発光素子は、補正対象となるLED発光素子を含む同一のLEDアレイチップ内のLED発光素子となっている。

[0020]

更に、本発明は、前記のLEDアレイ露光装置を使用して画像形成装置を構成している。

[0021]

【発明の実施の形態】

以下、本発明の詳細を図1~図7に基づいて説明する。先ず、本発明に係るLEDアレイ露光装置を使用した画像形成装置の概略構成について、図1に基づき説明する。図1は、本発明に係るLEDアレイ露光装置を使用したカラープリンタの概略を模式的に示す正面図である。

[0022]

図1において、符号1は、画像形成装置の一例としてのカラープリンタである。その主要構成部品として、2は筐体、3Bと3Yと3Cと3Mはそれぞれブラック、イエロー、シアン、マゼンタ用の画像形成部で、10Bと10Yと10Cと10Mは、それぞれ前記の色のトナーホッパーで、12は被記録媒体である用紙14を格納する給紙カセット、13は給紙ガイド、11aと11bは搬送ベルト駆動ローラ、8は搬送ベルト、9は転写ローラ、17は定着部、15は排紙ガイド、16は排紙部である。また、各色の画像形成部3B、3Y、3C、3Mは、それぞれ、現像器4、感光体5、主帯電器6、LEDアレイ露光装置7、クリーニング部20などから構成されている。

[0023]

カラープリンタ1において、主帯電器6によって帯電した感光体5上には、LEDアレイ露光装置7によって静電潜像が形成され、現像器4により現像されて可視画像が形成される。このようなプロセスが各色ごとに行われる。給紙カセット12から給紙された用紙14は給紙ガイドにより案内されて、図中、反時計方向に回転している搬送ベルト8の上面に吸着されて、各色の画像形成部3B、3Y、3C、3Mの直下を通過するときに、転写ローラ9によって各色の画像が用紙14に順次転写される。このように用紙14上でフルカラー画像を形成した4色のトナーは、用紙14が定着部17を通過する際に定着される。その後、用紙14は排紙ガイド15により排紙部16に排出案内される。

[0024]

次に、上記のようなカラープリンタ1が備えているLEDアレイ露光装置7について、その詳細を図2に基づき説明する。図2は、本発明に係わるLEDアレ

イ露光装置7の上面概略模式図である。LEDアレイ露光装置7は、配線を有する基板30上に一列に配置された1個または複数個のLEDアレイチップ31と、そのLEDアレイチップ31の上方に配されて正立等倍の像を結像するレンズアレイ32(例えば、日本板硝子社製の商品名「セルフォック・レンズ・アレイ」)と、LEDアレイチップ31の各LED発光素子を駆動する回路を収めた1個または複数個の駆動IC33とから構成されている。実際には、上記の基板30とレンズアレイ32などは図示しない保持部材により保持されている。また、各LED発光素子の発光を補正するなどの制御を行う制御部34を外部に設ける場合もある。

[0025]

図3は、LEDアレイ露光装置7を画像形成装置に組み込んだ場合の模式図である。尚、図2と同じ構成要素は同じ参照番号を附してその説明は省略する。図中、5はドラム状の感光体を示し、レンズアレイ32がLED発光素子の発光を受光して屈折透過させ、ドラム面上に結像する様子を破線で示している。

[0026]

このように、図1のカラープリンタ1に外部のPC(不図示)などから送信されてくるプリントデータの各画素に対応してLED発光素子が駆動され、その発光がレンズアレイ32(図2と図3参照)を介して、感光体5にドットとして結像する。従来技術に関して説明したように、各LED発光素子の露光エネルギーのばらつきを補正するには、事前に測定した各LED発光素子の露光エネルギーに基づいて周知の方法で、駆動電流値や発光時間あるいはその両方を補正するための補正値を算出して、その補正値を光量補正値として図2で示した制御部34や図1で示したカラープリンタ1の制御部(不図示)あるいはLEDアレイ露光装置7に記憶部を設けて記憶させておく。

[0027]

次に、LEDアレイ露光装置 7 の少なくとも有効走査幅の全てのLED発光素子がレンズアレイ 3 2 を介して結像するビーム面積をLED発光素子個々に予め測定算出して、それぞれのビーム面積を、図 2 で示した制御部 3 4 や図 1 で示したカラープリンタ 1 の制御部 (不図示) あるいは LEDアレイ露光装置 7 に記憶部

を設けて記憶させておく。このようにして、上記の記憶部に記憶された各LED 発光素子の光量補正値とビーム面積のデータを基に、濃度むらやスジがより低減 できる補正方法を、図4を参照して説明する。

[0028]

図4は、LED発光素子を補正して駆動するカラープリンタ1の概略回路ブロック図である。40はプリント制御部で、41は前記した補正を行う補正回路で、42は光量補正値を記憶している光量補正値記憶部で、43はビーム面積を記憶しているビーム面積記憶部で、7はLEDアレイ露光装置である。また、PCは外部に接続された情報端末装置であり、例えばパソコンをあらわしている。

[0029]

図4の構成では、まず、PCからプリントドライバによってラスター処理され た(画素に分解された)プリントデータがプリント制御信号とともにプリント制 御部40に送信される。また、予め準備した感光体感度データは補正回路41に 与えられる。この感光体感度データは感光体の組み付け時や交換時に、カラープ リンタ1の操作部(不図示)から入力しておいてもよいし、PCのプリントドラ イバから与えられるようにPCで入力して記憶させておくことも可能である。次 に、プリント制御部40は例えば1走査ラインごとの画像信号を補正回路41に 送出すると同時に、プリント駆動信号をLEDアレイ露光装置7に送出してプリ ントを開始させる。補正回路41は前記画像信号と感光体感度データを受けて、 その画素を露光するLED発光素子の光量補正値とビーム面積を、光量補正値記 憶部42とビーム面積記憶部43とからそれぞれ読み込み、感光体感度データと ともに後述する方法で補正を行い、LED発光素子を駆動するための補正済み画 像信号として、タイミング用のクロックとともにLEDアレイ露光装置7に送出 する。この時、送出する補正済み画像信号の量は、1走査ライン分またはそれを 複数個に分割した1走査ブロック分であり、この分量のデータをLEDアレイ露 光装置7がラッチして同時発光させるためのラッチ信号も送出する。

[0030]

上記の説明のように、本発明では、従来の光量補正とともにビーム面積に対する補正を施し、さらに感光体感度に応じた補正も行っている。図5は、感光体感

度に係わる補正が、プリントされた画像の粒状度に与える影響を表した図である。図の縦軸は粒状度を、横軸は感光体の感度を表している。また、符号 a ~ d の曲線は、それぞれ補正強度 3 、5 、7 、9 による粒状度と感光体感度との関係を示しており、この数値が大きいほど補正度が高いことになる。

[0031]

粒状度の数値が高いとプリントされた画像は荒くなり、数値が低いと、きめ細かな画像になる。そのため、プリントされた画像の濃度むらやスジは、粒状度が高いと顕著になると同時に視認しやすくなるという性質がある。図5によると、感光体感度が大きいものほど、補正強度を強くしないと粒状度が大きくなって、濃度むらや筋が発生しやすくなる。反対に、感光体感度が小さいものは補正強度を強くすると粒状度が大きくなって、同様の問題が発生し易くなることがわかる。言い換えれば、大きな感度を有する感光体でプリントされた画素は、濃度むらやスジが現われ易くなる。そのため、図4を参照して説明した補正においては、感光体感度も考慮して補正を行っている。

[0032]

次に、このような補正方法を図6を参照して説明する。図6は、本発明に係わる各LED発光素子を駆動する際に使用する補正方法を図式化したものである。なお、説明の簡略化のために、LED発光素子は5個で1つの補正グループを形成するように説明しているが、実際には、1つのLEDアレイチップ単位で、あるいは32個~256個単位のLED発光素子で1つの補正グループを形成するようにするとよい。

[0033]

図6において、最初のステップS1で、プリントされる画素が取り込まれ、その画素番号Nを1から順番に割り当てる。最初の画素の番号を1として、画素5までを示している。次のステップS2で、感光体感度Sを読み取る。ステップS3で、それぞれの画素に対応するLED発光素子の光量補正値Lを取り込み、ステップS4で、それぞれの画素に対応するLED発光素子のビーム面積Aを取り込む。ステップS5で、画素1~5のビーム面積の平均値Mを算出して、ステップS6で、平均値Mに対するそれぞれの画素のビーム面積Aの差分(M-A)を

算出する。さらに、ステップS7で、平均値Mに対する差分Dの割合Pを算出する。

[0034]

このように算出された割合Pの絶対値が大きいほど、その画素に対応するLED発光素子のビーム面積が、グループ平均から大きくばらついていることになる。そのため、ステップS8で、上記のように得られた割合Pに対して、補正のランク付けを行い、そのランクに対応する補正に必要な係数を別途実験などで算出しておき、ビーム面積補正値Bとする。次のステップS9では、感光体感度Sを判断し、前記したように大きな感光体感度であれば強い補正がかかるように、小さな感光体感度であれば弱い補正がかかるように、感光体感度Sによる重み付けを行い、最終的な補正係数Cを得る。最後にステップS10で、LED発光素子の基準駆動値に各画素の光量補正値Lを乗じ、更に上記で得られた補正係数Cを乗ずることにより、各LED発光素子の駆動値Iを算出する。

[0035]

上記のような方法で、LEDアレイ露光装置7のLED発光素子を、レンズアレイ32の影響も考慮して、光量、ビーム面積、感光体感度による視認具合のばらつきに対して補正を行うため、濃度むらやスジの発生を大幅に低減させることが可能になる。上記の例では、LED発光素子5個を1つのグループとして平均化して、各素子をグループ内でのばらつきに対して補正するようにしているため、グループごとのばらつきがほぼ均一である場合は、プリントされた画素も平均化されるが、グループごとにばらつきがある場合には、以下に説明する方法を採用すると、更に高い効果を上げることができる。

[0036]

図7は本発明に係わる各LED発光素子を駆動する際に使用する別の補正方法を図式化したものである。なお、説明の簡略化のために、LED発光素子は5個で1つの補正グループを形成するように説明しているが、実際には、1つのLEDアレイチップ単位で、あるいは32個~256個単位のLED発光素子で1つの補正グループを形成するようにするとよい。

[0037]

図 7 において、最初のステップS1で、1 走査ラインあるいは 1 走査ブロック (例えば、LEDアレイチップ単位) ごとにプリントされるN個の画素が取り込 まれ、その画素番号を 1 から N とし、特定の画素番号を n とする。図 7 では、最 初の画素の番号を1として、画素9までを図示している。次のステップS2で、 感光体感度Sを取り込む。ステップS3で、各画素に対応するLED発光素子の 光量補正値Lを取り込み、ステップS4で、各画素に対応するLED発光素子の ビーム面積Aを取り込む。ステップS5-1で、画素1に注目して、画素1~5 のビーム面積の平均値M1を算出し、ステップS5-2で、画素2に注目して、 画素2~6のビーム面積の平均値M2を算出し、ステップS5-3で、画素3に 注目して、画素3~7のビーム面積の平均値M3を算出し、ステップS5-4で 、画素4に注目して、画素4~8のビーム面積の平均値M4を算出し、ステップ S5-5で、画素5に注目して、画素5~9のビーム面積の平均値M5を算出す る。以降、同様に、最後の画素Nまで上記のような平均値Mを求める。実際の使 用例では、有効走査幅の外側にもLED発光素子が配列されており、有効走査幅 の最後の画素Nに注目して平均値Mを求める場合は、これらの有効走査幅の外側 にあるLED発光素子を利用しても良い。または、最後の画素の領域では平均値 を求めるサンプル数を減らして行っても良い。ステップS6で、注目した画素n の平均値Mnに対する画素のビーム面積Aの差分(Mn-An)を算出する。さ らに、ステップS7で、平均値Mnに対する差分Dnの割合Pnを算出する。

[0038]

このように算出された割合Pnの絶対値が大きいほど、その画素に対応するLED発光素子のビーム面積が、グループ平均から大きくばらついていることになる。そのため、ステップS8で、上記のように得られた割合Pnに対して、補正のランク付けを行い、そのランクに対応する補正に必要な係数を別途実験などで算出しておき、ビーム補正値Bnとする。次のステップS9では、感光体感度Sを判断し、前記したように大きな感光体感度であれば強い補正がかかるように、小さな感光体感度であれば弱い補正がかかるように、感光体感度Sに対応した重み付けを行い、最終的な補正係数Cnを得る。最後にステップS10で、LED発光素子の基準駆動値に各画素の光量補正値Lnを乗じ、更に上記で得られた補

正係数Cnを乗ずることにより、各LED発光素子の駆動データInを算出する。

[0039]

上記の方法では、注目画素ごとに移動するグループの平均値(移動平均)を使用するため、レンズアレイ32による影響も考慮して、LEDアレイ露光装置7のLED発光素子を、光量やビーム面積、且つ感光体感度による視認具合のばらつきに対して補正を行う。その補正が移動平均に基づくため、緩やかに連続した補正を行うことが可能となり、濃度むらやスジの発生を更に低減させることができる。

[0040]

尚、図6と図7とを参照して説明した補正方法では、平均値Mを求める画素の グループを、注目画素に後続する5個の画素で説明したが、画素グループは注目 画素に後続する複数の画素に限らず、注目画素の前後の連続する画素であっても よい。更に、画素グループは連続する必要はなく、2画素おきに選択するような 不連続画素であってもよい。また、前記したようにグループを形成する画素は5 個に限定されないことは言うまでもない。同時に、図6と図7で使用した数値は 理解を助けるための数値であり、この数値に本発明の実施形態が限定されるもの ではない。

[0041]

また、図6や図7で説明した補正を、LEDアレイ露光装置7内に制御部を設けて、その制御部で行ってもよいし、図2や図4で示したような外部の制御部や、カラープリンタ1の制御回路に含ませてもよい。また、このような補正制御を演算で行ってもよいし、ASICなどに統合して回路で行うことも可能である。

$[0\ 0\ 4\ 2]$

【発明の効果】

本発明では、レンズアレイを透過した各LED発光素子のビーム面積のばらつきに対するビーム面積補正と、感光体感度に応じてビーム面積補正の大小を調節する重み付けとを光量補正に重畳する構成としているため、従来のように光量補正のみでは効率的に抑制できなかった画像の濃度むらやスジを大幅に低減できる

という優れた効果を奏するとともに、濃度むらや筋が発生しやすい高感度感光体 や個々に感度のばらつく感光体の使用時に、適切な補正が可能となる。

[0043]

更に、本発明では、補正対象となるLED発光素子を含む前後複数個のLED発光素子のビーム面積を平均値化し、該平均値と補正対象となるLED発光素子のビーム面積の差分の大小に応じて行う構成にしているため、段階的に急激に行われる補正による弊害が起こりにくい構成になっている。

[0044]

また、本発明では、前記ビーム面積の平均値が移動平均値となるように、移動平均値の対象となる前記前後複数個のLED発光素子が、補正対象となるLED発光素子とともに移動する構成としているため、補正が緩やかに行われ、補正の境界が認識されにくくなる。

[0045]

更に、本発明は、このようなLEDアレイ露光装置を画像形成装置に使用するため、使用する個々の感光体の感度がばらついても、また、複数の感光体を有するカラー画像形成装置においても大きな効果を奏することが可能となる。

【図面の簡単な説明】

- 【図1】 本発明に係るLEDアレイ露光装置を使用したカラープリンタの概略を模式的に示す正面図である。
 - 【図2】 本発明に係わるLEDアレイ露光装置の上面概略模式図である。
- 【図3】 LEDアレイ露光装置を画像形成装置に組み込んだ場合の模式図である。
- 【図4】 LED発光素子を補正して駆動するカラープリンタ1の概略回路ブロック図である。
- 【図5】 補正強度の違いによる感光体感度と粒状度との関係を表した図である。
- 【図6】 本発明に係わる各LED発光素子の駆動補正方法を図式化したものである。
 - 【図7】 本発明に係わる各LED発光素子の別の駆動補正方法を図式化した

ものである。

【符号の説明】

- 1 カラープリンタ
- 2 筐体
- 3B、3C、3M、3Y 画像形成部
- 4 現像器
- 5 感光体
- 6 主帯電器
- 7 LEDアレイ露光装置
- 8 搬送ベルト
- 9 転写ローラ
- 10B、10C、10M、10Y トナーホッパー
- 11a、11b 搬送ベルト駆動ローラ、
- 12 給紙カセット
- 13 給紙ガイド
- 14 用紙
- 15 排紙ガイド
- 16 排紙部
- 17 定着部
- 20 クリーニング部
- 30 基板
- 31 LEDアレイチップ
- 32 レンズアレイ
- 33 駆動 I C
- 3 4 制御部
- 40 プリント制御部
- 41 補正回路
- 42 光量補正値記憶部
- 43 ビーム面積記憶部

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

【図5】

補正強度の違いによる感光体感度と粒状度の関係

【図6】

S1	画素番号	z	1	2	3	4	5
S2	感光体感度	S			4 (cm2/ µJ)	!	
S3	光量補正值	7	1.1	0.8	1.5	6.0	1
S4	ビーム面積	٧	01	8	91	2	12
SS	ピーム面積平均値	N			10		
98	差分(M-A)	a	0	2	9-	5	-2
S7	割合(D/M)	d	0	0.2	5.0-	0.5	-0.2
88	ピーム面積補正値	8	割合(P)のラ	割合(P)のランク付け (各画素ごと)	画案ごと)		
88	補正係数	0	ピーム面積補正値(B)×感光体感度(S)による重み (各画素ごと)	矿正値(B)× 億	8光体感度(S	を重るよい((各画素ごと)
S10	各LED発光素子駆動値	-	基準駆動値>	< 光量補正値	(L)×補正係	基準駆動値×光量補正値(L)×補正係数(C) (各画素ごと)	素ごと)

【図7】

S1	画素番号	z	_	2	3	4	3	9	7	8	6	:
25	感光体感度	S		!		4	4(cm2/µJ)	3				
S3	光量補正値	-	1.1	0.8	1.5	6:0	_	0.5	1.2	1.3	0.5	:
S4	ビーム面積	٧	10	8	15	5	12	14	9	6	9	:
S5-1	ビーム面積移動平均値	M1			10							
S5-2		M2				10.8						
S5-3		M3					10.4	:				
S5-4		™						9.2				
S5-5		M5		i					10.2			
S6	差分(M-A)	D	0	2.8	9.4-	4.2	-1.8					
S7	割合(D/M)	Ь	0	0.26	-0.44	0.46	-0.18	÷				
88	ビーム面積補正値	В	割合(F)05.	割合(P)のランク付け		(各画素ごと)	()				
89	補正係数	၁	ゲーム	面積補	正値(3) × 6	光体图	ピーム面積補正値(B)×感光体感度(S)の重み (各画素ごと)	の重み	(各	が楽画	G)
S10	各LED発光素子駆動値	1	基準配	動値〉	< 光量ね	事正値 ((L) ×	基準駆動値×光量補正値(L)×補正係数(C) (各画素ごと)	(C)	(各画	ましと)	

ページ: 1/E

【書類名】 要約書

【要約】

【課題】 光量補正とともに、ビーム面積の補正に感光体感度に対する補正を加味することにより、濃度むらやスジを大幅に低減することが可能なLEDアレイ露光装置及びそれを備えた画像形成装置を提供する。

【解決手段】 LEDアレイ露光装置において、レンズアレイを透過した各LED発光素子のビーム面積のばらつきに対するビーム面積補正と、感光体感度に応じてビーム面積補正の大小を調節する重み付けとが、光量補正に重畳される。

【選択図】 図7

特願2002-316162

出 願 人 履 歴 情 報

識別番号

[000006150]

1. 変更年月日

2000年 1月31日

[変更理由]

名称変更

住 所

大阪府大阪市中央区玉造1丁目2番28号

氏 名 京セラミタ株式会社