Project Time Management: Critical Path Analysis

Project Time Management Processes

- Activity definition: Identifying the specific activities that the project team members and stakeholders must perform to produce the project deliverables.
- Activity sequencing: Identifying and documenting the relationships between project activities.
- Activity resource estimating: Estimating how many resources a project team should use to perform project activities.
- Activity duration estimating: Estimating the number of work periods that are needed to complete individual activities.
- Schedule development: Analyzing activity sequences, activity resource estimates, and activity duration estimates to create the project schedule.
- Schedule control: Controlling and managing changes to the project schedule.

Activity Definition

- An **activity** or **task** is an element of work normally found on the WBS that has an expected duration, a cost, and resource requirements.
- Project schedules grow out of the basic documents that initiate a project.
 - The project charter includes start and end dates and budget information.
 - The scope statement and WBS help define what will be done.
- Activity definition involves developing a more detailed WBS and supporting explanations to understand all the work to be done, so you can develop realistic cost and duration estimates.

Activity Lists and Attributes

- An **activity list** is a tabulation of activities to be included on a project schedule. The list should include:
 - The activity name
 - An activity identifier or number
 - A brief description of the activity
- Activity attributes provide more information about each activity, such as predecessors, successors, logical relationships, leads and lags, resource requirements, constraints, imposed dates, and assumptions related to the activity.

Milestones

- A **milestone** is a significant event that normally has no duration.
- It often takes several activities and a lot of work to complete a milestone.
- Milestones are useful tools for setting schedule goals and monitoring progress.
- Examples include completion and customer sign-off on key documents and completion of specific products.

Activity Sequencing

- Involves reviewing activities and determining dependencies.
- A dependency or relationship relates to the sequencing of project activities or tasks.
- You *must* determine dependencies in order to use critical path analysis.

Critical Path Analysis

Activity	duration
Shower	3
Dry hair	8
Fetch car	7
Iron clothes	12
Dress and make-up	10
Drive to interview	20

Precedence table

The last activities that must be completed before an activity can begin

	Activity	Immediately preceding activities	duration
A	Shower	-	3
В	Dry hair	A	8
С	Fetch car	-	7
D	Iron clothes	1	12
Е	Dress and make-up	B,D	10
F	Drive to interview	C,E	20

Activity on Arc Network

Microsoft Project Example

Microsoft Project Example

Sample Network Diagram

Network Diagrams

- AOA consists of
 - Circles representing Events
 - Such as 'start' or 'end' of a given task
 - Lines representing Tasks
 - Thing being done 'Build UI'
 - a.k.a. Arrow Diagramming Method (ADM)
- AON
 - Tasks on Nodes
 - Nodes can be circles or rectangles (usually latter)
 - Task information written on node
 - Arrows are dependencies between tasks
 - a.k.a. Precedence Diagramming Method (PDM)

AOA Project Network for House

AON Project Network for House

Situations in network diagram

A must finish before either B or C can start

both A and B must finish before C can start

both A and B must finish before either of C or D can start

A must finish before B can start

both A and C must finish before D can start

Concurrent Activities

Critical Path Method (CPM)

- **CPM** is a network diagramming technique used to predict total project duration.
- A **critical path** for a project is the series of activities that determines the *earliest time* by which the project can be completed.
- The critical path is the *longest path* through the network diagram and has the least amount of slack or float.
- Slack or float is the amount of time an activity can be delayed without delaying a succeeding activity or the project finish date.

Forward Pass

- Earliest Start Time (ES)
 - earliest time an activity can start
 - ES = maximum EF of immediate predecessors
- Earliest finish time (EF)
 - earliest time an activity can finish
 - earliest start time plus activity time

$$EF = ES + t$$

Backward Pass

Latest Start Time (LS)

Latest time an activity can start without delaying critical path time

$$LS = LF - t$$

Latest finish time (LF)

latest time an activity can be completed without delaying critical path time

LS = minimum LS of immediate predecessors

CPM analysis

- Draw the CPM network
- Analyze the paths through the network
- Determine the float for each activity
 - Compute the activity's float

$$float = LS - ES = LF - EF$$

- Float is the maximum amount of time that this activity can be delay in its completion before it becomes a critical activity, i.e., delays completion of the project
- Find the critical path is that the sequence of activities and events where there is no "slack" i.e.. Zero slack
 - Longest path through a network
- Find the project duration is minimum project completion time

CPM Network

Float or Float

Critical Path f, 15 n, 9 9, 17 રા, ઈ i, 6 **b**, 8 d, 13 j, 12 C, 5 3, 9 **NOTE:** All related calculations are shown on Slide 50 onwards.