

Fig. 2E T

Fig. 2C p_c

Fig. 2D p_d

Fig. 2A p_a

Fig. 2B p_b

FIG. 3E P_a

FIG. 3F P_b

FIG. 3G P_c

FIG. 3H P_d

FIG. 3I P_e

FIG. 3J P_f

FIG. 3K P_g

FIG. 3L P_h

FIG. 3M P_i

FIG. 4A

METHOD LUB (p, q)

Input: p and q are tree patterns.

Output: A tree pattern representing the LUB of p and q .

- 1) if ($q \sqsubseteq p$) then return p ;
- 2) if ($p \sqsubseteq q$) then return q ;
- 3) Initialize $TCSubPat[v, w] = \emptyset$,
 $\forall v \in Nodes(p), \forall w \in Nodes(q)$;
- 4) Let v_{root} and w_{root} denote the root nodes of p and q , resp.;
- 5) **for** each $v \in Child(v_{root}, p)$ **do**
- 6) **for** each $w \in Child(w_{root}, q)$ **do**
- 7) $TCSubPat[v, w] = LUB_SUB(v, w, TCSubPat)$;
- 8) Create a tree pattern x with root node label $/$. and
the set of child sub-patterns

$$\bigcup_{v \in Child(v_{root}, p), w \in Child(w_{root}, q)} TCSubPat[v, w];$$
- 9) **return** MINIMIZE (x);

FIG. 4B

METHOD LUB_SUB ($v, w, TCSubPat$)

Input: v, w are nodes in tree patterns p, q (respectively),
 $TCSubPat$ is a 2-dimensional array such that
 $TCSubPat[v, w]$ is the set of tightest container
sub-patterns of $Subtree(v, p)$ and $Subtree(w, q)$.

Output: $TCSubPat[v, w]$.

- 1) if ($TCSubPat[v, w] \neq \emptyset$) then
- 2) **return** $TCSubPat[v, w]$;
- 3) else if ($Subtree(w, q) \sqsubseteq Subtree(v, p)$) then
- 4) **return** $\{Subtree(v, p)\}$;
- 5) else if ($Subtree(v, p) \sqsubseteq Subtree(w, q)$) then
- 6) **return** $\{Subtree(w, q)\}$;
- 7) else
- 8) Initialize $R = \emptyset; R' = \emptyset; R'' = \emptyset$;
- 9) **for** each $v' \in Child(v, p)$ **do**
- 10) **for** each $w' \in Child(w, q)$ **do**
- 11) $R = R \cup LUB_SUB(v', w', TCSubPat)$;
- 12) **for** each $v' \in Child(v, p)$ **do**
- 13) $R' = R' \cup LUB_SUB(v', w, TCSubPat)$;
- 14) **for** each $w' \in Child(w, q)$ **do**
- 15) $R'' = R'' \cup LUB_SUB(v, w', TCSubPat)$;
- 16) Let x be the pattern with root node label $MaxLabel(v, w)$
and set of child subtree patterns R ;
- 17) Let x' be the pattern with root node label $//$
and set of child subtree patterns R' ;
- 18) Let x'' be the pattern with root node label $//$
and set of child subtree patterns R'' ;
- 19) **return** $TCSubPat[v, w] = \{x, x', x''\}$;

F16.5A

METHOD CONTAINS (p, q)

Input: p and q are two tree patterns.

Output: Returns *true* if $q \sqsubseteq p$; *false* otherwise.

- 1) Initialize $Status[v, w] = null$,
 $\forall v \in Nodes(p), \forall w \in Nodes(q);$
- 2) Let v_{root} and w_{root} denote the root nodes of p and q , resp.;
- 3) if ($Child(v_{root}, p) = \emptyset$) then
- 4) return *true*;
- 5) else
- 6) return CONTAINS_SUB ($v_{root}, w_{root}, Status$);

METHOD CONTAINS_SUB ($v, w, Status$)

Input: v, w are nodes in tree patterns p, q (respectively),
 $Status$ is a 2-dimensional array such that each
 $Status[v, w] \in \{null, false, true\}$.

Output: $Status[v, w]$.

- 1) if ($Status[v, w] \neq null$) then
- 2) return $Status[v, w]$;
- 3) if (v is a leaf node in p) then
- 4) $Status[v, w] = (label(w) \preceq label(v))$;
- 5) else if ($label(w) \not\preceq label(v)$) then
- 6) $Status[v, w] = false$;
- 7) else
- 8) $Status[v, w] = \bigwedge_{v' \in Child(v, p)} \left(\bigvee_{w' \in Child(w, q)} \text{CONTAINS_SUB} (v', w', Status) \right);$
- 9) if ($Status[v, w] = false$) and ($label(v) = //$) then
- 10) $Status[v, w] = \bigwedge_{v' \in Child(v, p)} \text{CONTAINS_SUB} (v', w, Status);$
- 11) if ($Status[v, w] = false$) and ($label(v) = //$) then
- 12) $Status[v, w] = \bigvee_{w' \in Child(w, q)} \text{CONTAINS_SUB} (v, w', Status);$
- 13) return $Status[v, w]$;

F16.5B

Fig. 6.D Skeleton tree for T1

F112.6CT3

Fig. 6.D Skeleton tree for T1

F16, 6E Document Tree **F16, 6F** Compressed Document Tree

$m \in \mathcal{N}^o_D$, $\text{SEL}(v, t)$

Input: v is a node in tree pattern p , t is a node in DT .

Output: $\text{SelSubPat}[v, t]$.

- 1) if ($\text{SelSubPat}[v, t]$ is already computed) then
2) return $\text{SelSubPat}[v, t]$;
- 3) else if ($\text{label}(t) \not\leq \text{label}(v)$) then
4) return $\text{SelSubPat}[v, t] = 0$;
- 5) else if (v is a leaf) then
6) return $\text{freq}(t)/N$;
- 7) for each child $v_c \in \text{Child}(v, p)$ do
8) $\text{Sel}_{v_c} = \max_{t_c \in \text{Child}(v_c, DT)} \{\text{SEL}(v_c, t_c)\}$;
9) $\text{Sel} = \prod_{v_c \in \text{Child}(v, p)} \text{Sel}_{v_c}$;
10) if ($\text{label}(v) = //$) then
11) $\text{Sel}_v = \prod_{v_c \in \text{Child}(v, p)} \text{SEL}(v_c, t)$;
12) $\text{Sel} = \max\{\text{Sel}, \text{Sel}_v\}$;
13) $\text{Sel}_v = \max_{t_c \in \text{Child}(v, DT)} \{\text{SEL}(v, t_c)\}$;
14) $\text{Sel} = \max\{\text{Sel}, \text{Sel}_v\}$;
15) return $\text{SelSubPat}[v, t] = \text{Sel}$

METHOD AGGREGATE (S, k)

Input: S is a set of tree patterns, k is a space constraint.

Output: A set of tree patterns S' such that $S \sqsubseteq S'$ and $\sum_{p \in S'} |p| \leq k$.

- 1) Initialize $S' = S$;
- 2) **while** ($\sum_{p \in S'} |p| > k$) **do**
 - 3) $C_1 = \{x \mid x = \text{PRUNE}(p, |p| - 1), p \in S'\}$;
 - 4) $C_2 = \{x \mid x = \text{PRUNE}(p \sqcup q, |p| + |q| - 1), p, q \in S'\}$;
 - 5) $C = C_1 \cup C_2$;
 - 6) Select $x \in C$ such that $\text{Benefit}(x)$ is maximum;
 - 7) $S' = S' - \{p \mid p \sqsubseteq x, p \in S'\} \cup \{x\}$;
 - 8) **return** S' ;

F | C. 8