METODY NUMERYCZNE – LABORATORIUM

Zadanie 4 – wzór Simpsona oraz całki Laguerre'a

Opis rozwiązania

Wzór Simpsona:

Złożona kwadratura Newtona-Cotesa oparta na trzech węzłach, znana również jako wzór Simpsona, jest jedną z metod numerycznego obliczania wartości całki z funkcji. Ta metoda polega na przybliżeniu krzywej funkcji na odcinku całkowania za pomocą paraboli i obliczeniu pola pod tą parabolą.

Oto kroki które należy podjąć w celu obliczenia wartości całki przy pomocy adaptacyjnej kwadratury Newtona-Cotesa

- 1. Wybierz początkową wartość a > 0, zakładaną dokładność ε oraz inicjalizuj sumę całkową na 0: S = 0
- 2. Oblicz całkę na przedziale [0, a) za pomocą kwadratury Newtona-Cotesa opartej na trzech węzłach (wzoru Simpsona), wykorzystując wcześniej opisane wzory. Otrzymujemy wartość I1.
- 3. Zainicjalizuj zmienną delta (δ) na pewną wartość większą od zera, na przykład $\delta=1$.
- 4. W pętli wykonuj następujące kroki:
- a. Oblicz całkę na przedziale $[a, a + \delta)$ za pomocą kwadratury Newtona-Cotesa. Otrzymujemy wartość 12.
- b. Jeśli I2 > ε , dodaj I1 do sumy całkowej: S = S + I1.
- c. Zaktualizuj wartość a: $a = a + \delta$.
- d. Zmniejsz wartość δ , na przykład $\delta = \delta/2$.
- e. Przejdź do kroku 4a.
 - 5. Jeśli I2 $<= \varepsilon$, oznacza to, że wartość całki na przedziale [a, a + δ) jest dostatecznie mała. W takim przypadku dodaj I2 do sumy całkowej: S = S + I2.
 - 6. Kontynuuj pętlę, wykonując kolejne kroki 4-5, aż wartość całki na danym przedziale będzie mniejsza niż zakładana dokładność ε .
 - 7. Ostatecznym wynikiem całki na przedziale [0, +∞) z wagą e^(-x) jest wartość sumy całkowej S

Całki Laguerre'a:

Całkowanie na przedziale $[0, +\infty)$ z wagą e^(-x) jest związane z wielomianami Laguerre'a. Całki tego rodzaju są znane jako całki Laguerre'a i mają wiele zastosowań w matematyce i fizyce, szczególnie w teorii kwantowej.

Całka postaci $\int [0, +\infty) e^{-(-x)} f(x) dx$, gdzie f(x) jest dowolną funkcją, może być obliczana za pomocą wzoru całkowego Laguerre'a. Wzór ten jest postaci:

$$\int [0, +\infty) e^{-(-x)} f(x) dx = \sum [k=0, +\infty) w_k f(x_k),$$

gdzie w_k to wagi Laguerre'a, a x_k to zera wielomianów Laguerre'a, w naszym przypadku wartości te pobieramy z predefiniowanych tablic.

Wyniki

Poniższa tabela przedstawia wyniki dla 2 z 4 funkcji zaimplementowanych w programie, wykorzystane przybliżenie wynosiło 0.001

Liczba węzłów	Wynik Gauss-Laugerre	Wynik Newton-Cotes	Różnica w wynikach
	x^4-x	.^3-x^2-x+1	
1	-1,0	15,99967	16,99967
2	11,99997		3,99970
3	16,00010		0,00042
4	15,99999		0,00032
5	16,00004		0,00036
	x^3-	-2*x+ x-5	
1	2.0		F 01000
1	3,0		5,01298
2	8,0	8,01298	0,01298
3	8,02682		0,01384
4	8,00474		0,00824
5	8,01543		0,00246

Wnioski

- Metoda Simpsona jest bardziej specjalizowana i zoptymalizowana dla funkcji, które można aproksymować wielomianami Laguerre'a. Jeśli funkcja jest tego typu, metoda ta może być bardziej efektywna i dokładna.
- Metoda Całki Laguerre'a: jest bardziej ogólna i elastyczna, ponieważ może być stosowana do różnych funkcji. Jednak wymaga dodatkowego obliczania granicy i iteracji, co może wprowadzać dodatkową złożoność obliczeniową.