CSE3024 WEB MINING

NAME: Aryaman Mishra

REGISTRATION NUMBER: 19BCE1027

LAB EXERCISE 5

Problem-1: Write a Naïve Bayes Classifier in python without using any package

for the following dataset.

The following gives a Term frequency of some of the documents for the given keywords and the last column gives the category of the document.

Document	TDP	Nifty	Sidhu	BJP	Sensex	Sixer	Congress	Century	Category
D1	4	0	3	5	1	0	6	0	Politics
D2	0	5	0	2	6	0	1	0	Business
D3	0	0	6	1	0	4	1	2	Sports
D4	4	1	0	1	1	0	6	0	Politics
D5	0	0	0	0	0	5	0	6	Sports
D6	0	4	0	2	6	0	0	1	Business
D7	5	0	0	3	0	0	5	0	Politics

Predict which Category the following document will fall into

Testdoc	0	3	0	2	6	0	2	1	?

Proposed Algorithm/Pseudocode:

- 1. Compute the term document matrix for each category.
- 2. Find frequency of word in each category.
- 3. Calculate the probability of each word in every category.
- 4. Calculate the total count of each feature in the training set.
- 5. Find the probability of all the words in a text document.
- 6. Lowest priority is given to the document.

Data Structure Proposed: 2D-Arrays, Dictionaries.

Libraries Used: Pandas, CountVectorizer

IMPLEMENTATION CODE AND RESULTS:

```
In [4]: training_data=pd.DataFrame(rows, columns=columns)
    training_data
```

Out[4]: sent class

	Jene	oluss
0	TDP TDP TDP Sidhu Sidhu Sidhu BJP BJP BJP	Politics
1	Nifty Nifty Nifty Nifty BJP BJP Sensex S	Business
2	Sidhu Sidhu Sidhu Sidhu Sidhu BJP Sixer	Sports
3	TDP TDP TDP Nifty BJP Sensex Congress Cong	Politics
4	Sixer Sixer Sixer Sixer Century Century	Sports
5	Nifty Nifty Nifty BJP BJP Sensex Sensex	Business
6	TDP TDP TDP TDP BJP BJP BJP Congress Congr	Politics

```
In [13]: from sklearn.feature extraction.text import CountVectorizer
        pol_docs = [row['sent'] for index,row in training_data.iterrows() if row['class'] == 'Politics']
         bus_docs = [row['sent'] for index,row in training_data.iterrows() if row['class'] == 'Business']
         sports_docs = [row['sent'] for index,row in training_data.iterrows() if row['class'] == 'Sports']
In [14]: vec_p = CountVectorizer()
        X_p = vec_p.fit_transform(pol_docs)
        tdm_p = pd.DataFrame(X_p.toarray(), columns=vec_p.get_feature_names())
Out[14]:
           bip congress nifty sensex sidhu tdp
         0 5
               6 0 0 3 4
                     6
         2 3 5 0 0 0 5
In [15]: vec_b = CountVectorizer()
         X_b = vec_b.fit_transform(bus_docs)
         {\sf tdm\_b = pd.DataFrame}(X\_b.toarray(), \ columns = {\sf vec\_b.get\_feature\_names}())
        tdm_b
Out[15]: bjp century congress nifty sensex
         0 2 0 1 5 6
                            0 4
```

```
In [16]: vec_s = CountVectorizer()
                 X_s = vec_s.fit_transform(sports_docs)
                 tdm_s = pd.DataFrame(X_s.toarray(), columns=vec_s.get_feature_names())
                 tdm_s
       Out[16]:
                  bjp century congress sidhu sixer
                  0 1
                              2
                                                   4
                                                   5
       In [17]: word_list_p = vec_p.get_feature_names();
                 count_list_p = X_p.toarray().sum(axis=0)
                 freq_p = dict(zip(word_list_p,count_list_p))
                 freq_p
       Out[17]: {'bjp': 9, 'congress': 17, 'nifty': 1, 'sensex': 1, 'sidhu': 3, 'tdp': 13}
       In [19]: word_list_b = vec_b.get_feature_names();
                 count_list_b = X_b.toarray().sum(axis=0)
                 freq_b = dict(zip(word_list_b,count_list_b))
                 freq_b
       Out[19]: {'bjp': 4, 'century': 1, 'congress': 1, 'nifty': 9, 'sensex': 12}
       In [20]: word_list_s = vec_s.get_feature_names();
                 count_list_s = X_s.toarray().sum(axis=0)
                 freq_s = dict(zip(word_list_s,count_list_s))
                 freq s
       Out[20]: {'bjp': 1, 'century': 8, 'congress': 1, 'sidhu': 6, 'sixer': 9}
In [21]: from sklearn.feature_extraction.text import CountVectorizer
         docs = [row['sent'] for index,row in training data.iterrows()]
         vec = CountVectorizer()
         X = vec.fit_transform(docs)
         total_features = len(vec.get_feature_names())
         total_features
Out[21]: 8
In [24]: total_cnts_features_p = count_list_p.sum(axis=0)
         total_cnts_features_b = count_list_b.sum(axis=0)
         total_cnts_features_s = count_list_s.sum(axis=0)
In [28]: import nltk
         nltk.download('punkt')
         from nltk.tokenize import word_tokenize
         new_sentence = 'Nifty Nifty Nifty BJP BJP Sensex Sensex Sensex Sensex Sensex Sensex Congress Congress Century'
         new_word_list = word_tokenize(new_sentence)
         [nltk_data] Downloading package punkt to /root/nltk_data...
         [nltk_data] Unzipping tokenizers/punkt.zip.
In [34]: prob_s_with_ls = []
         p1=1
         for word in new_word_list:
            if word in freq_s.keys():
                count = freq_s[word]
             else:
                count = 0
            prob\_s\_with\_ls.append((count + 1)/(total\_cnts\_features\_s + total\_features))
             p1=p1*((count + 1)/(total_cnts_features_s + total_features))
         dict(zip(new_word_list,prob_s_with_ls))
         р1
Out[34]: 5.505602363429078e-22
```

```
In [36]: prob_p_with_ls = []
         p2=1
         for word in new_word_list:
             if word in freq_p.keys():
                 count = freq_p[word]
             else:
                 count = 0
             prob_p_with_ls.append((count + 1)/(total_cnts_features_p + total_features))
             p2=p2*((count + 1)/(total_cnts_features_p + total_features))
         dict(zip(new_word_list,prob_p_with_ls))
Out[36]: 9.46135175695248e-25
In [38]: prob_b_with_ls = []
         p3=1
         for word in new_word_list:
             if word in freq_b.keys():
                 count = freq_b[word]
                 count = 0
             prob_b_with_ls.append((count + 1)/(total_cnts_features_b + total_features))
             p3=p3*((count + 1)/(total_cnts_features_b + total_features))
         dict(zip(new_word_list,prob_b_with_ls))
Out[38]: 2.415724362071022e-22
         Business has least value; Document belongs to Business Category
```

RESULTS: Test Doc belongs to 'Business' Category.

Challenging Exercise 1- Take any large text corpora, do the necessary preprocessing and built a Naïve Bayes Classifier and draw the interferences.

Proposed Algorithm:

- 1. First, we will load all the necessary libraries required for our classifier.
- 2. Next, we load the data (training and test sets):
- 3. We calculate the total number of classes and samples we have.
- 4. The next step consists of building the Naive Bayes classifier and finally training the model. We will convert the collection of text documents (train and test sets) into a matrix of token counts.
- 5. To implement that text transformation we will use the make_pipeline function. This will internally transform the text data and then the model will be fitted using the transformed data.
- 6. The last line of code predicts the labels of the test set.
- 7. Finally, we build the multi-class confusion matrix to see if the model is good or if the model predicts correctly only specific text categories.
- 8. Hence, we classify whatever sentence we choose.

Pseudocode:

```
from sklearn.feature_extraction.text import CountVectorizer
corpus = [
  'This is the first document.',
  'This document is the second document.',
  'And this is the third one.',
  'Is this the first document?',
1
vectorizer = CountVectorizer()
X = vectorizer.fit transform(corpus)
print(vectorizer.get feature names())
['and', 'document', 'first', 'is', 'one', 'second', '
the', 'third', 'this']
print(X.toarray())
[[0 1 1 1 0 0 1 0 1]
 [0 2 0 1 0 1 1 0 1]
 [1 0 0 1 1 0 1 1 1]
 [0 1 1 1 0 0 1 0 1]
```

Data Structure Proposed: Arrays

Libraries Used: Pandas, Seaborn, Matplotlib, pyplot, sklearn.

IMPLEMENTATION CODE AND RESULTS:

```
In [3]: import numpy as np, pandas as pd
        import seaborn as sns
        import matplotlib.pyplot as plt
        from sklearn.datasets import fetch_20newsgroups
        from sklearn.feature_extraction.text import TfidfVectorizer
        from sklearn.naive_bayes import MultinomialNB
        from sklearn.pipeline import make_pipeline
        from sklearn.metrics import confusion_matrix, accuracy_score
        sns.set() # use seaborn plotting style
In [4]: # Load the dataset
        data = fetch_20newsgroups()
        # Get the text categories
        text_categories = data.target_names
        # define the training set
        train_data = fetch_20newsgroups(subset="train", categories=text_categories)
        # define the test set
        test_data = fetch_20newsgroups(subset="test", categories=text_categories)
In [5]: print("We have {} unique classes".format(len(text_categories)))
        print("We have {} training samples".format(len(train_data.data)))
        print("We have {} test samples".format(len(test_data.data)))
        We have 20 unique classes
        We have 11314 training samples
        We have 7532 test samples
```

```
In article <1rp8p1$2d3@usenet.INS.CWRU.Edu>, esd3@po.CWRU.Edu (Elisabeth S. Davidson) writes:
          > In a previous article, banschbach@vms.ocom.okstate.edu () says:
          >>least a few "enlightened" physicians practicing in the U.S. It's really
          >>too bad that most U.S. medical schools don't cover nutrition because if
          >>they did, candida would not be viewed as a non-disease by so many in the
          >>medical profession.
          > Case Western Reserve Med School teaches nutrition in its own section as
          > well as covering it in other sections as they apply (i.e. B12
> deficiency in neuro as a cause of neuropathy, B12 deficiency in
          > hematology as a cause of megaloblastic anemia), yet I sill
           > hold the viewpoint of mainstream medicine: candida can cause
           > mucocutaneous candidiasis, and, in already very sick patients
          > with damaged immune systems like AIDS and cancer patients,
> systemic candida infection. I think "The Yeast Connection" is
> a bunch of hooey. What does this have to do with how well
          > nutrition is taught, anyway?
          Elisabeth, let's set the record straight for the nth time, I have not read
          "The Yeast Connection". So anything that I say is not due to brainwashing by this "hated" book. It's okay I guess to hate the book, by why hate me?
          Elisabeth, I'm going to quote from Zinsser's Microbiology, 20th Edition.
          A book that you should be familiar with and not "hate".
                                                                             .
'Candida species
          colonize the mucosal surfaces of all humans during birth or shortly \dot{\mbox{\sc c}}
          thereafter. The risk of endogenous infection is clearly ever present.
          Indeed, candidiasis occurs worldwide and is the most common systemic mycosis." Neutrophils play the main role in preventing a systemic
          infection(candidiasis) so you would have to have a low neutrophil count or
          "sick" neutrophils to see a systemic infection. Poor diet and persistent
          parasitic infestation set many third world residents up for candidiasis.
          Your assessment of candidiasis in the U.S. is correct and I do not dispute
In [7]: # Build the model
          model = make_pipeline(TfidfVectorizer(), MultinomialNB())
          # Train the model using the training data
          model.fit(train_data.data, train_data.target)
          # Predict the categories of the test data
          predicted categories = model.predict(test data.data)
In [8]: print(np.array(test_data.target_names)[predicted_categories])
          ['rec.autos' 'sci.crypt' 'alt.atheism' ... 'rec.sport.baseball'
            comp.sys.ibm.pc.hardware' 'soc.religion.christian']
In [9]: # plot the confusion matrix
         mat = confusion_matrix(test_data.target, predicted_categories)
sns.heatmap(mat.T, square = True, annot=True, fmt = "d", xticklabels=train_data.target_names,yticklabels=train_data.target_names;
plt.xlabel("true labels")
          plt.ylabel("predicted label")
          plt.show()
          print("The accuracy is {}".format(accuracy_score(test_data.target, predicted_categories)))
```

In [6]: # let's have a look as some training data
print(test_data.data[5])

Lines: 91

From: banschbach@vms.ocom.okstate.edu

Nntp-Posting-Host: vms.ocom.okstate.edu

Subject: Re: Candida(yeast) Bloom, Fact or Fiction Organization: OSU College of Osteopathic Medicine


```
In [11]: # custom function to find results|
    def my_predictions(my_sentence, model):
        all_categories_names = np.array(data.target_names)
        prediction = model.predict([my_sentence])
        return all_categories_names[prediction]

my_sentence = "jesus"
    print(my_predictions(my_sentence, model))
    ['soc.religion.christian']
    my_sentence = "Are you an atheist?"
    print(my_predictions(my_sentence, model))

['soc.religion.christian']
    ['soc.religion.christian']
    ['alt.atheism']
```

RESULTS: Hence we are able to infer our results and find out the confusion matrix and the value of accuracy which is around 0.77 or 77%.