Intro To Artificial Intelligence - Exercise 5

Eran Ston (206704512) and Oded Vaalany (208230474) $\label{eq:July 14, 2024} \text{July 14, 2024}$

1 Value Iteration

1.1

Now we want to use MDP with the following transition probabilities:

- $S = \{s1, s2, s3, s4, s5, s6, s7, s8, s9\}$
- $\bullet A = \{U, D, L, R\}$
- P(s|s',A) = 1 where we need to do A from s to s'
- R(s) = -0.05 for all $s \notin \{s_5, s_7, s_9\}$
- $R(s_5) = -10$
- $R(s_7) = 15$
- $R(s_9) = 30$
- $\gamma = 0.99$

Values of states after each iteration:

step	s1	s2	s3	s4	s5	s6	s7	s8	s9
0	0	0	0	0	0	0	0	0	0
1	-0.05	-0.05	-0.05	-0.05	-10	-0.05	15	-0.05	30
2	-0.0995	-0.0995	-0.0995	14.8	-10	29.65	15	29.65	30
3	14.602	-0.148505	29.3035	14.8	-10	29.65	15	29.65	30
4	14.602	28.960465	29.3035	14.8	-10	29.65	15	29.65	30
5	28.6208	28.96046	29.3035	14.8	-10	29.65	15	29.65	30
6	28.6208	28.96046	29.3035	28.284592	-10	29.65	15	29.65	30
7	28.6208	28.96046	29.3035	28.284592	-10	29.65	15	29.65	30

Optimal actions after each iteration:

step	s1	s2	s3	s4	s5	s6	s7	s8	s9
0	L	L	L	L	L	L	L	L	L
1	R	R	U	U	L	U	L	R	L
2	U	R	U	U	L	U	L	R	L
3	U	R	U	U	L	U	L	R	L
4	U	R	U	U	L	U	L	R	L
5	R	R	U	U	L	U	L	R	L
6	R	R	U	D	L	U	L	R	L
7	R	R	U	D	L	U	L	R	L

The optimal policy is:

\leftarrow	\rightarrow	\leftarrow
+	\leftarrow	\uparrow
\rightarrow	\rightarrow	↑

1.2

Now we want to use stochastic MDP with the following transition probabilities:

- $S = \{s1, s2, s3, s4, s5, s6, s7, s8, s9\}$
- $A = \{U, D, L, R\}$
- P(s|s',A) = 0.9 where we need to do A from s to s'
- P(s'|s',A) = 0.9 where A is not legitimate move for the state
- $P(s|s',A) = \frac{0.1}{\text{number of neighbors -1}}$ where A is not possible from s to s'(neighbors)
- R(s) = -0.05 for all $s \notin \{s_5, s_7, s_9\}$
- $R(s_5) = -10$
- $R(s_7) = 15$
- $R(s_9) = 30$
- $\gamma = 0.99$

Values of states after each iteration:

v aı	values of states after each iteration.								
step	s1	s2	s3	s4	s5	s6	s7	s8	s9
0	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
1	-0.05000	-0.05000	-0.05000	-0.05000	-10.00000	-0.05000	15.00000	-0.05000	30.00000
2	-0.09950	-0.42785	-0.09950	12.81752	-10.00000	26.18252	15.00000	26.92750	30.00000
3	11.32806	-0.63858	23.23627	12.81507	-10.00000	26.18007	15.00000	26.92750	30.00000
4	11.30501	20.71926	23.21323	13.38074	-10.00000	27.33520	15.00000	26.92750	30.00000
5	19.73555	20.69758	26.35687	13.37960	-10.00000	27.33405	15.00000	26.92750	30.00000
6	19.71613	23.91588	26.35370	17.78188	-10.00000	27.48966	15.00000	26.92750	30.00000
7	23.01945	23.91210	26.81096	17.76457	-10.00000	27.48951	15.00000	26.92750	30.00000

Optimal actions after each iteration:

step	s1	s2	s3	s4	s5	s6	s7	s8	s9
0	L	L	L	L	L	L	L	L	L
1	L	L	L	L	L	L	L	L	L
2	R	D	L	U	L	U	L	R	L
3	U	L	U	U	L	U	L	R	L
4	U	R	U	U	L	U	L	R	L
5	R	R	U	U	L	U	L	R	L
6	R	R	U	D	L	U	L	R	L
7	R	R	U	D	L	U	L	R	L

The optimal policy is:

\leftarrow	\rightarrow	\leftarrow
\downarrow	\leftarrow	\uparrow
\rightarrow	\rightarrow	\uparrow

The values of the optimal policy in the stochastic MDP are lower the values of the optimal policy in the deterministic MDP. This is because the stochastic MDP has a probability of transitioning to a state that is not the desired state, which causes the values to be lower.

1.3

Given the following policy: $a_1 = \uparrow |a_2 = \rightarrow |a_3 = \uparrow |a_4 = \uparrow |a_5 = *|a_6 = \uparrow |a_7 = *|a_8 = \leftarrow |a_9 = *|a_8 = \uparrow |a_8 = \uparrow |a_8$