

STATISTIQUE INFÉRENTIELLE

Examen – janvier 2020 – durée 1h30mn

Calculatrice non programmable autorisée

Exercice 1 (8 points)

On a demandé d'un étudiant de choisir au hasard 30 livres répartis dans différents rayons et à différentes hauteurs de la bibliothèque, de les ouvrir de façon aléatoire, et de compter les mots se situant sur la page de droite. L'étudiant doit ensuite calculer un intervalle de confiance à 95% basé sur ses 30 livres choisis.

- 1) Définir l'expérience aléatoire ε , la population Ω et la variable aléatoire X étudiée.
- 2) Quelle quantité tente-t-on d'estimer par cette expérience?
- 3) Proposer un estimateur de cette quantité et donner sa loi selon le théorème central limite.
- 4) L'étudiant a observé un échantillon de moyenne 302.4 et d'écart type échantillonnale 60.5. Construire un intervalle de confiance à 95% de la moyenne basé sur cet échantillon.

On demande maintenant à 120 étudiants de faire la même expérience et de calculer un intervalle de confiance à 95% basé sur les 30 livres choisis.

- 5) Les 120 intervalles seront-ils tous centrés sur la même valeur? Justifier votre réponse.
- 6) Les 120 intervalles auront-ils tous la même longueur? Justifier votre réponse.
- 7) Environ combien d'étudiants devraient avoir la vraie valeur du paramètre dans leur intervalle?
- 8) Environ combien d'étudiants surestimeront significativement la vraie valeur du paramètre, c'est-à-dire que les deux bornes de leur intervalle seront supérieures à la vraie valeur?

Exercice 2 (8 points)

Deux types d'appareils de musculation pour personnes handicapées, A et B, sont utilisés pour mesurer l'effet d'un exercice particulier sur le rythme cardiaque (en nombre de pulsations par minute). On considère que la loi normale est un bon modèle pour les deux types.

Sept sujets ont participé à une étude pour déterminer si les deux types d'appareils ont le même effet sur le rythme cardiaque. Les résultats obtenus sont les suivants.

Sujet	1	2	3	4	5	6	7	\overline{x}	$\sum_{i=1}^{n} (x_i - \overline{x})^2$
Type A	162	163	140	191	160	158	155	161.29	1391.43
Type B	161	187	199	206	161	160	162	176.57	2449.71

- 1) Pour déterminer si le rythme cardiaque diffère de façon significative d'un appareil à l'autre on vérifie d'abord si les variances sont égales. Quel est la fonction R qui permet de faire ce test?
- 2) Le test de comparaison de variances sur R a donné le résultat suivant. Quelles sont les hypothèses du test et quelle décision au seuil $\alpha = 5\%$ peut-on prendre suite à ce résultat?

```
##
## F test to compare two variances
##
## data: x1 and x2
## F = 0.568, num df = 6, denom df = 6, p-value = 0.509
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
```

```
## 0.09759794 3.30560002
## sample estimates:
## ratio of variances
## 0.5679963
```

3) Effectuer un test d'hypothèse pour déterminer si le rythme cardiaque diffère de façon significative d'un appareil à l'autre au seuil 5%, en précisant: les hypothèses du test, l'estimateur choisi et sa loi, la statistique qu'on utilise pour ce test et sa loi, la règle de rejet de H_0 et la décision.

Exercice 3 (4 points)

Une entreprise exploite quatre machines avec trois équipes d'employés chaque jour. Les rapports de production présentent les données suivantes sur le nombre de pannes.

		Machines								
Equipe	A	В	С	D						
1	41	20	12	16						
2	31	11	9	14						
3	15	17	16	10						

On veut vérifier si les pannes sont indépendantes de l'équipe en place à l'aide d'un test du χ^2 .

- 1) Quelles sont les hypothèses H_0 et H_1 ?
- 2) Définir la statistique du test U_0 ? Quelle est sa loi?
- 3) Quelle est la règle de rejet de l'hypothèse nulle, si on utilise un seuil de 1%?
- 4) Sachant que la valeur observée de la statistique du test est de 11.649, que pouvez-vous conclure?

1 Table de la loi Normale centrée réduite

X étant une variable aléatoire de loi $\mathcal{N}(0,1)$ et α un réel de [0,1], la table donne la valeur de $z_{1-\frac{\alpha}{2}}=\Phi^{-1}(1-\frac{\alpha}{2})$ telle que $P(|X|>z_{1-\frac{\alpha}{2}})=\alpha$. En , la commande correspondante est qnorm(1-alpha/2).

α	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0	Inf	2.5758	2.3263	2.1701	2.0537	1.9600	1.8808	1.8119	1.7507	1.6954
0.1	1.6449	1.5982	1.5548	1.5141	1.4758	1.4395	1.4051	1.3722	1.3408	1.3106
0.2	1.2816	1.2536	1.2265	1.2004	1.1750	1.1503	1.1264	1.1031	1.0803	1.0581
0.3	1.0364	1.0152	0.9945	0.9741	0.9542	0.9346	0.9154	0.8965	0.8779	0.8596
0.4	0.8416	0.8239	0.8064	0.7892	0.7722	0.7554	0.7388	0.7225	0.7063	0.6903
0.5	0.6745	0.6588	0.6433	0.6280	0.6128	0.5978	0.5828	0.5681	0.5534	0.5388
0.6	0.5244	0.5101	0.4959	0.4817	0.4677	0.4538	0.4399	0.4261	0.4125	0.3989
0.7	0.3853	0.3719	0.3585	0.3451	0.3319	0.3186	0.3055	0.2924	0.2793	0.2663
0.8	0.2533	0.2404	0.2275	0.2147	0.2019	0.1891	0.1764	0.1637	0.1510	0.1383
0.9	0.1257	0.1130	0.1004	0.0878	0.0753	0.0627	0.0502	0.0376	0.0251	0.0125

2 Table de la loi de Student

Attention pour la description de cette table. Ici on donne directement le quantile $t_{n,1-\frac{\alpha}{2}}$.

X étant une variable aléatoire de loi de Student à n degrés de liberté St(n) et α un réel de [0,1], la table donne la valeur de $t_{n,1-\frac{\alpha}{2}}=F^{-1}(1-\frac{\alpha}{2})$ telle que $P(|X|>t_{n,1-\frac{\alpha}{2}})=\alpha$. En , la commande correspondante est $\operatorname{\mathsf{qt}}(1-\operatorname{\mathsf{alpha}/2},\ n)$.

$n \setminus \alpha$	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1	0.05	0.02	0.01	0.001
1	0.158	0.325	0.510	0.727	1.000	1.376	1.96	3.08	6.31	12.71	31.82	63.66	636.62
2	0.142	0.289	0.445	0.617	0.816	1.061	1.39	1.89	2.92	4.30	6.96	9.93	31.60
3	0.137	0.277	0.424	0.584	0.765	0.978	1.25	1.64	2.35	3.18	4.54	5.84	12.92
4	0.134	0.271	0.414	0.569	0.741	0.941	1.19	1.53	2.13	2.78	3.75	4.60	8.61
5	0.132	0.267	0.408	0.559	0.727	0.920	1.16	1.48	2.02	2.57	3.37	4.03	6.87
6	0.131	0.265	0.404	0.553	0.718	0.906	1.13	1.44	1.94	2.45	3.14	3.71	5.96
7	0.130	0.263	0.402	0.549	0.711	0.896	1.12	1.42	1.90	2.37	3.00	3.50	5.41
8	0.130	0.262	0.399	0.546	0.706	0.889	1.11	1.40	1.86	2.31	2.90	3.35	5.04
9	0.129	0.261	0.398	0.543	0.703	0.883	1.10	1.38	1.83	2.26	2.82	3.25	4.78
10	0.129	0.260	0.397	0.542	0.700	0.879	1.09	1.37	1.81	2.23	2.76	3.17	4.59
11	0.129	0.260	0.396	0.540	0.697	0.876	1.09	1.36	1.80	2.20	2.72	3.11	4.44
12	0.128	0.259	0.395	0.539	0.695	0.873	1.08	1.36	1.78	2.18	2.68	3.06	4.32
13	0.128	0.259	0.394	0.538	0.694	0.870	1.08	1.35	1.77	2.16	2.65	3.01	4.22
14	0.128	0.258	0.393	0.537	0.692	0.868	1.08	1.34	1.76	2.14	2.62	2.98	4.14
15	0.128	0.258	0.393	0.536	0.691	0.866	1.07	1.34	1.75	2.13	2.60	2.95	4.07
16	0.128	0.258	0.392	0.535	0.690	0.865	1.07	1.34	1.75	2.12	2.58	2.92	4.01
17	0.128	0.257	0.392	0.534	0.689	0.863	1.07	1.33	1.74	2.11	2.57	2.90	3.96
18	0.127	0.257	0.392	0.534	0.688	0.862	1.07	1.33	1.73	2.10	2.55	2.88	3.92
19	0.127	0.257	0.391	0.533	0.688	0.861	1.07	1.33	1.73	2.09	2.54	2.86	3.88
20	0.127	0.257	0.391	0.533	0.687	0.860	1.06	1.32	1.73	2.09	2.53	2.85	3.85
21	0.127	0.257	0.391	0.532	0.686	0.859	1.06	1.32	1.72	2.08	2.52	2.83	3.82
22	0.127	0.256	0.390	0.532	0.686	0.858	1.06	1.32	1.72	2.07	2.51	2.82	3.79
23	0.127	0.256	0.390	0.532	0.685	0.858	1.06	1.32	1.71	2.07	2.50	2.81	3.77
${\bf 24}$	0.127	0.256	0.390	0.531	0.685	0.857	1.06	1.32	1.71	2.06	2.49	2.80	3.75
25	0.127	0.256	0.390	0.531	0.684	0.856	1.06	1.32	1.71	2.06	2.48	2.79	3.73
26	0.127	0.256	0.390	0.531	0.684	0.856	1.06	1.31	1.71	2.06	2.48	2.78	3.71
27	0.127	0.256	0.389	0.531	0.684	0.855	1.06	1.31	1.70	2.05	2.47	2.77	3.69
28	0.127	0.256	0.389	0.530	0.683	0.855	1.06	1.31	1.70	2.05	2.47	2.76	3.67
29	0.127	0.256	0.389	0.530	0.683	0.854	1.05	1.31	1.70	2.04	2.46	2.76	3.66
30	0.127	0.256	0.389	0.530	0.683	0.854	1.05	1.31	1.70	2.04	2.46	2.75	3.65

3 Table de la loi de Khi-deux χ^2

X étant une variable aléatoire de loi de χ^2 à n degrés de liberté et α un réel de [0,1], la table donne la valeur de $z_{n,\alpha}=F_{\chi^2_n}^{-1}(1-\alpha)$ telle que $P(X>z_{n,\alpha})=\alpha$. En , la commande correspondante est qchisq(1-alpha, n)

$n \setminus \alpha$	0.995	0.99	0.975	0.95	0.1	0.05	0.025	0.01	0.005	0.001
1	0.000	0.000	0.001	0.004	2.71	3.84	5.02	6.63	7.88	10.8
2	0.010	0.020	0.051	0.103	4.61	5.99	7.38	9.21	10.60	13.8
3	0.072	0.115	0.216	0.352	6.25	7.82	9.35	11.35	12.84	16.3
4	0.207	0.297	0.484	0.711	7.78	9.49	11.14	13.28	14.86	18.5
5	0.412	0.554	0.831	1.145	9.24	11.07	12.83	15.09	16.75	20.5
6	0.676	0.872	1.237	1.635	10.64	12.59	14.45	16.81	18.55	22.5
7	0.989	1.239	1.690	2.167	12.02	14.07	16.01	18.48	20.28	24.3
8	1.344	1.646	2.180	2.733	13.36	15.51	17.54	20.09	21.95	26.1
9	1.735	2.088	2.700	3.325	14.68	16.92	19.02	21.67	23.59	27.9
10	2.156	2.558	3.247	3.940	15.99	18.31	20.48	23.21	25.19	29.6
11	2.603	3.053	3.816	4.575	17.27	19.68	21.92	24.73	26.76	31.3
12	3.074	3.571	4.404	5.226	18.55	21.03	23.34	26.22	28.30	32.9
13	3.565	4.107	5.009	5.892	19.81	22.36	24.74	27.69	29.82	34.5
14	4.075	4.660	5.629	6.571	21.06	23.68	26.12	29.14	31.32	36.1
15	4.601	5.229	6.262	7.261	22.31	25.00	27.49	30.58	32.80	37.7
16	5.142	5.812	6.908	7.962	23.54	26.30	28.84	32.00	34.27	39.3
17	5.697	6.408	7.564	8.672	24.77	27.59	30.19	33.41	35.72	40.8
18	6.265	7.015	8.231	9.390	25.99	28.87	31.53	34.80	37.16	42.3
19	6.844	7.633	8.907	10.117	27.20	30.14	32.85	36.19	38.58	43.8
20	7.434	8.260	9.591	10.851	28.41	31.41	34.17	37.57	40.00	45.3
21	8.034	8.897	10.283	11.591	29.61	32.67	35.48	38.93	41.40	46.8
22	8.643	9.542	10.982	12.338	30.81	33.92	36.78	40.29	42.80	48.3
23	9.260	10.196	11.689	13.091	32.01	35.17	38.08	41.64	44.18	49.7
24	9.886	10.856	12.401	13.848	33.20	36.41	39.36	42.98	45.56	51.2
25	10.520	11.524	13.120	14.611	34.38	37.65	40.65	44.31	46.93	52.6
26	11.160	12.198	13.844	15.379	35.56	38.88	41.92	45.64	48.29	54.1
27	11.808	12.879	14.573	16.151	36.74	40.11	43.20	46.96	49.65	55.5
28	12.461	13.565	15.308	16.928	37.92	41.34	44.46	48.28	50.99	56.9
29	13.121	14.256	16.047	17.708	39.09	42.56	45.72	49.59	52.34	58.3
30	13.787	14.953	16.791	18.493	40.26	43.77	46.98	50.89	53.67	59.7