MALLÉJAC CLÉMENT

Note: 9.9/20 (score total: 35/70.5)

+16/1/45+

UE INF1601

2019

Théorie des langages et compilation Contrôle continu numéro 2 (45 minutes)

Nom et prénom: Maléjac Clénent

Noircissez les bonnes réponses (cocher ne suffit pas). Les questions faisant apparaître le symbole & peuvent présenter une ou plusieurs bonnes réponses ; les autres ont une seule bonne réponse. Toute absence de réponse équivaut à une réponse fausse. Utilisez le verso des feuilles comme brouillon si nécessaire.

		Langages et grammaires						
	Question 1	Le vocabulaire d'	un langage peut être un	ensemble infini d	e symboles.			
1/1	faux	□ vrai						
	Question 2 🌲	Quel sont les te	ermes synonymes de voca	bulaire d'un lang	age?			
1.25/1.25	syntaxe	mot	grammaire	lexique	alphabet			
	Question 3 langage.	Un mot d'un la	angage est une séquence	finie d'éléments	du vocabulaire de	ce		
1/1	faux		vra	ıi				
	Question 4	Une grammaire e	est composée de l'ensemb	le des mots d'un	langage.			
1/1	vrai vrai		fau	ix	15 No. 8			
	Question 5 🌲	Une grammaire	e formelle possède :					
1.5/1.5	des règles des symbo non termi		un axiome des symboles termin		s états e table de transition	1040		
	Question 6	L'axiome d'une a	grammaire est un symbol	e non terminal.				
1/1	faux		vra vra	ai				
	Question 7	Le formalisme B	NF est un méta-langage.					
1/1	🗯 vrai		far	ıx				
	Question 8	La hiérarchie de	Chomsky est une classifi	cation des gramm	naires.			
1/1	wrai vrai	100	far	ıx				
	Question 9 🎄	Les grammaire	s de type 1 sont les gram	imaires :				
-1/1	algébrique	es ho	rs contexte ré	gulières	contextuelles			

	Question 10 . Les grammaires de type 2 son	les grammaires :					
1/1	contextuelles a hors contexte	algébriques régulières					
	Question 11 Les grammaires contextuelles so	nt utilisées dans les compilateurs.					
1/1	faux	vrai vrai					
	Question 12 & Les grammaires de type 3 son	t les grammaires :					
-1/1	hors contexte contextuelles	régulières algébriques					
	Question 13 Les grammaires régulières sont mots terminaux du langage.	utilisées dans les compilateurs pour décrire les					
1/1	faux	vrai vrai					
	Question 14 \clubsuit La grammaire définie sur V_t =	$= \{a, b, c\} \text{ par } : \left\{ \begin{array}{l} X \to Xa Yb \\ Y \to cY \epsilon \end{array} \right. \text{ est } :$					
0/1	est récursive à droite est récursive à gauche	de type 3 de type 2					
	Expressions régulières						
1.25/1.25	Question 15 \clubsuit Parmi les expressions régulière que la grammaire suivante: $\begin{cases} A \to aA aB \\ B \to bB \varepsilon \end{cases}$ aa^*b^* $(a b)^+$ b^*a^+	es suivantes, lesquelles décrivent le même langage					
	Question 16 Donnez une expression régulière qui n'ont jamais deux a ou deux b consécutifs. $\left(\sqrt{(b \alpha)^*} \right) \left(\sqrt{(a b)^*} \right)$	qui décrit le langage sur a,b des mots non vides					
2/5	A B C D E	F Réservé au correcteur : ne pas cocher !					
	Automates d'états finis						
	Question 17 🏶 Un automate à nombre finis	d'états possède :					
1/2	un seul état final un ensemble de symboles d'entrée un seul état initial une fonction de transition	un ensemble d'états finaux un ensemble de symbole non terminaux un ensemble fini d'états un ensemble de règles de production					
	Question 18 Un automate déterministe con	tient au plus une transition entre deux états.					
1/1	□ vrai	faux					
	Question 19 Toute expression régulière e déterministe.	st reconnaissable par un automate d'états finis					
1/1	aux	vrai vrai					

Donnez un AFD qui reconnaît le langage sur a, b des mots non vides qui n'ont Question 20 jamais deux a ou deux b consécutifs. A B Réservé au correcteur : ne pas cocher ! 0/5Un automate d'états finis reconnaît un langage algébrique. Question 21 faux vrai 1/1 Tous les automates d'états finis non déterministes peuvent être déterminisés. Question 22 faux 1/1 vrai Pour quels langages suivants peut on construire un automate d'états finis ? Question 23 & a^nb^n pour n fixé $a^n b^n c^n$ pour n fixé $a^n b^m$ pour n et m fixés 1.5/1.5 a^nb^m pour n et m quelconques $a^nb^nc^n$ pour n quelconque a^nb^n pour n quelconque Grammaires hors-contexte Les grammaires hors contextes sont nécessaires pour décrire les structures im-Question 24 briquées des langages de programmation wrai 1/1 faux On peut décrire le langage des expressions arithmétiques classiques avec des Question 25 expressions régulières faux 1/1 vrai Question 26 \clubsuit La grammaire suivante $G = \langle \{E, T, F\}, \}$ $\{nb, +, \times, (,)\},\$ $\{E \to E + T | T\}$ $T \to T \times F|F$ $F \to (E)|nb\},$ récursive à gauche propre factorisable à gauche -0.5/1.5récursive à droite LL(1)ambiguë pour $2 \times 3 + 5$ L'automate à pile est le moyen de reconnaître qu'un mot appartient à un langage Question 27 hors contexte. faux -1/1vrai

Donnez une grammaire définissant le langage sur a, b des mots de la forme mm^{-1} Question 28 où m^{-1} est le mot miroir de m, c-à-d. le mot m écrit à l'envers.

Exemples de mots générés par la grammaire : abbbaabbba, abbbba, aa, bb

	min or	Па			Pásamiá au somustaux : na nae cocher	Š
L_A	B		E	L	Réservé au correcteur : ne pas cocher	

vrai

Tous les langages hors contextes sont reconnaissables par des automates à pile Question 29 déterministes.

On considère la grammaire suivante $G = \{S\}$, Question 30 $\{nb, \oplus\},\$ $\{S \to S \oplus S | nb \},\$

Éliminez sa récursivité à gauche et donnez la nouvelle grammaire obtenue :

B C D E F Réservé au correcteur : ne pas cocher ! A

Quel problème subsiste avec cette nouvelle grammaire ? Démontrez le sur un Question 31 exemple.

Table d'analyse

On considère l'extrait ci-contre de la grammaire du langage C pour les expressions postfixes, tel qu'obtenu après suppression de la récursivité à gauche.

- 1. $E \rightarrow *E$
- 2. $E \rightarrow P$ 3. $P \rightarrow M P'$
- 6. $M \rightarrow id$ 7. $M \rightarrow (E)$

4/5

1/1

faux

0/4

0/2.5

	Question 32 🌲	Quels symboles appartiennent	à l'ensemble PREMIER	de E?
1.75/1.75	□) ■ *	_ ε	□ \$ □ ++	id id
	Question 33 🎄	Quels symboles appartiennent	à l'ensemble PREMIER	de P?
1.75/1.75	□) □ ε	id (* \$	_ ++
	Question 34 🌲	Quels symboles appartiennent	à l'ensemble PREMIER	de M ?
1.75/1.75	□ ++ id		3 (*
	Question 35 🌲	Quels symboles appartiennent	à l'ensemble PREMIER	de P' ?
1.75/1.75	□) □ *	ε ε ++	☐ <i>id</i>	
	Question 36 🌲	Quels symboles appartiennent	à l'ensemble SUIVANT	de E?
1.75/1.75	* \$			igsqcup id $igsqcup arepsilon$
	Question 37 🌲	Quels symboles appartiennent	à l'ensemble SUIVANT	de P?
1.75/1.75) () ()	☐ <i>id</i> ☐ ++	□ * □ ε	
	Question 38 🌲	Quels symboles appartiennent	à l'ensemble SUIVANT	de M ?
0.75/1.75	2)		(\$	\square id
	Question 39 🌲	Quels symboles appartiennent	à l'ensemble SUIVANT	de P' ?
-2.25/1.75	☐ <i>id</i> □ *	Θ ε	++	E \$
	Question 40	Oonnez sa table d'analyse : (met	ttre des numéros de règle	es dans les cases)
		* ++ id E	() \$	
0/5	□A	B C D E	F Réservé au correc	cteur : ne pas cocher !
	Question 41	Déduisez en à quoi est équivaler	nt l'expression $*i++$	
1/1	*(i++)	7	(* <i>i</i>)++	