FICHA TÉCNICA ACTUALIZADA

Medidor de Salinidad y Conductividad con Arduino UNO

Versión: Agosto 2025 Autora: Paulina Juich

Expediente DNDA: EX-2025-78014687-

1. Descripción General

Dispositivo electrónico de bajo costo y fácil armado para **medir la conductividad eléctrica** de una muestra líquida (simulada con un potenciómetro), mostrando en pantalla LCD 16x2 I2C el **voltaje**, **valor ADC**, **conductividad estimada** (mS/cm) y, ahora, **salinidad estimada** (g/L) aplicando fórmulas seleccionables (lineal, cuadrática o cúbica).

2. Componentes Principales

Componente	Cantidad Descripción	
Arduino UNO / Nano / compatible	1	Placa principal de control
Sensor de conductividad (potenciómetro para pruebas)	1	Simula el sensor real, salida analógica a A0
Pantalla LCD 16x2 I2C (0x27)	1	Visualización de datos
Pulsador	1	Cambia entre modo medición y pausa
Protoboard o placa perforada	1	Montaje del circuito
Cables dupont Fuente 5V o USB	Varios 1	Conexión de componentes Alimentación

3. Conexiones

Sensor de conductividad:

- Salida analógica \rightarrow Pin A0 (Arduino)

Pantalla LCD 16x2 I2C:

- $SDA \to \operatorname{Pin}\, A4$
- $\mathbf{SCL} o \mathrm{Pin} \ \mathbf{A5}$
- $\mathbf{VCC} \to 5 \mathbf{V}$
- $\mathbf{GND} \to \mathrm{GND}$

Pulsador:

- Un extremo \rightarrow Pin digital ${f 2}$
- Otro extremo \rightarrow **GND**
- (Configurar con INPUT_PULLUP en software)

4. Especificaciones Técnicas

Parámetro	Valor / Rango	
Voltaje de trabajo	5V DC	
Rango ADC	0–1023 (10 bits)	
Rango de voltaje	0–5V (precisión de 2 decimales)	
Rango	0-50 mS/cm (ajustable por maxConductividad)	
conductividad		
Rango salinidad	Depende de fórmula (g/L, estimado, ajustable)	
Intervalo de	300 ms (configurable)	
medición		
Visualización	LCD 16x2 I2C (0x27), muestra V, C, S, ADC	
Control	Pulsador físico con antirrebote por software	
Comunicación	9600 baudios	
Serial		
Consumo típico	$<100~\mathrm{mA}$ (sin relés ni actuadores adicionales)	

5. Funcionamiento del Sistema

- Medición periódica: Cada 300 ms (sin delay()), lee el sensor.
- Conversión:
 - Valor ADC \rightarrow Voltaje
 - Valor ADC \rightarrow Conductividad (mS/cm, escalado por maxConductividad)
 - Conductividad → Salinidad (g/L), usando fórmula seleccionada:
 - * Lineal: S = a1*C + b1
 - * Cuadrática: $S = a2*C^2 + b2*C + c2$
 - * Cúbica: $S = a3*C^3 + b3*C^2 + c3*C + d3$
- Pausa/reanudación: Pulsador alterna entre medición y pausa (con mensaje en pantalla).
- Visualización:
 - Línea 1: Voltaje y Conductividad
 - Línea 2: Salinidad (g/L) y ADC
- Datos por Serial: Todos los parámetros principales enviados en cada ciclo.

6. Configuración de Fórmulas

• Variables de fórmula declaradas al inicio del código.

- Seleccionar tipo de fórmula cambiando el valor de tipoFormula (1=lineal, 2=cuadrática, 3=cúbica).
- Fórmulas y coeficientes deben ajustarse/calibrarse con valores reales para mayor precisión.

para mayor precision.

7. Ejemplo de Lectura en Pantalla

V:2.3 C:24.5 S:5.6g/L ADC:512

• V: Voltaje del sensor

- C: Conductividad estimada (mS/cm)
- S: Salinidad calculada (g/L, según fórmula activa)
- ADC: Valor digital de entrada (0–1023)

8. Estados del Sistema

• MIDIENDO: Lee y actualiza datos en LCD y Serial.

• PAUSADO: LCD muestra "== PAUSADO ==", datos congelados (se reanudan al presionar el botón).

9. Licencia y Contacto

Licencia:

Uso personal, educativo o académico permitido con atribución.

Prohibido uso comercial, modificación o integración sin autorización/licencia paga.

Contacto para licencias: paulinajuich4@gmail.com

10. Notas y Mejoras Futuras

- Calibrar coeficientes con datos reales de laboratorio.
- Construcción del hardware físico (Se requiere la donación de los componentes electrónicos necesarios para el armado del dispositivo, o bien el contacto directo conmigo de un/a técnico/a electrónico/a que desee colaborar en la construcción del prototipo).
- Agregar alertas visuales o sonoras.

- Soporte para pantalla OLED opcional.
- Exportar datos vía WiFi/Bluetooth (futuro).

Este proyecto fue creado con dedicación y amor, pensado para democratizar la medición de salinidad y contribuir a la salud, la ciencia y la educación accesible.

4