Bil 2114 Otomata Teorisi Çalışma Soruları ve Cevapları – II (Hafta 4,5,6)

 ${f 1}.$ $\Sigma=\{a,b\}$ için, sonu a ile yada sonu bb ile biten kelilemelerden olusan dıl ıçın düzenli ifade bulunuz.

Burada kelimenin basi her şey olabilir. Bunu $\{a,b\}^* = (a \cup b)^*$ ile sagliyoruz.

Kelimenin sonunda a yada bb olmalidir. Bunu $(a \cup bb)$ ile sagliyoruz.

Sonuc olarak aradigimiz duzenli ifade: $R = (a \cup b)^*(a \cup bb)$ olur.

2. $R = (aa)^*(bb)^*b$ duzenli ifadesinin tanıdığı düzenli dil nedir?

 $R = \{\varepsilon, aa, aaaa, aaaaaa, ...\}\{\varepsilon, bb, bbbb, bbbbbb,\}\{b\}$

 $= \{b, bbb, bbbbb, ..., aab, aabbb, aabbbbb, ..., aaaab, aaaabbb, aaaabbbbb, ...\}$

$$= L = \{a^{2n}b^{2m+1} | n \ge 0, m \ge 0\}.$$

Yani bu duzenli ifadenin tanidigi dil cift sayida a'nin tek sayida b'yi takip ettigi kelimelerden olusan dildir.

3. $\Sigma = \{0,0\}$ için, içinde en az bir defa ardışik iki tane 0 harfinin olduğu kelimelerden olusan dili taniyan duzenli ifade bulunuz.

2 uzunligundaki ardisik 0 harfleri: 00

Bu ardisik harflerin onunde ve arkasında her sey olabilir. Bu da $(0 \cup 1)^*$ duzenli ifadesi ile verilir.

Su halde aradigimiz duzenli ifade:

$$R = (0 \cup 1)^*00(0 \cup 1)^*$$
.

4. $L = \{a^n b^m | n \ge 4, m \le 3\}$ dili icin duzenli ifade bulunuz.

Bu dilin kelimeleri 4, 5, 6, ... tane a harfi ile baslar. Bu, $(aaaa)(a^*)$ duzenli ifadesi ile verilir.

a harflerinn ardindan hic, 1, 2, yada 3 tane b harfi takip eder: $(\varepsilon \cup b \cup bb \cup bbb)$.

Su halde aradigimiz duzenli ifade:

$$R = (aaaa)(a^*) (\varepsilon \cup b \cup bb \cup bbb)$$
.

5. $\Sigma = \{x, y, z\}$ için, içinde en az bir defa x, en az bir defa y ve en az bir defa z içeren kelimelerden olusan dili taniyan duzenli ifadeyi bulunuz.

Bu dilde, x, y ve z harfleri muhakkak olacak; fakat bunlarin arasina her turlu kelime girebilir.

Bu,
$$x(x \cup y \cup z)^*y(x \cup y \cup z)^*z(x \cup y \cup z)^*$$
 ile verilir.

Burada x, y ve z harflerinin yer degistirebilecegi goz onunde bulundurulmalidir.

Toplamda 6 farkli x, y, z dizilimi olur.

$$R = (x(x \cup y \cup z)^* y(x \cup y \cup z)^* z(x \cup y \cup z)^*) \cup (x(x \cup y \cup z)^* z(x \cup y \cup z)^* y(x \cup y \cup z)^*) \cup (y(x \cup y \cup z)^* x(x \cup y \cup z)^* z(x \cup y \cup z)^*) \cup (y(x \cup y \cup z)^* z(x \cup y \cup z)^* x(x \cup y \cup z)^*) \cup (z(x \cup y \cup z)^* x(x \cup y \cup z)^* y(x \cup y \cup z)^*) \cup (z(x \cup y \cup z)^* y(x \cup y \cup z)^* x(x \cup y \cup z)^*)$$

6. $R = (a \cup a^*)^* \cup b^*$ duzenli ifadesinin denk oldugu nondeterministik sonlu otomatayi ciziniz.

$$R_1 = a$$
, $R_2 = a$, $R_3 = R_2^*$, $R_4 = R_1 \cup R_3$, $R_5 = R_4^*$, $R_6 = b$, $R_7 = R_6^*$, $R_8 = R_5 \cup R_7$

$$R_1 = a \longrightarrow a \longrightarrow R_3 = R_2^* \longrightarrow \varepsilon \longrightarrow a \longrightarrow \varepsilon$$

$$R_2 = a \longrightarrow a \longrightarrow \varepsilon$$

7. Aşagida gosterilen NSO'ya denk olan duzenli ifadeyi bulunuz.

Once GNSO ya cevirelim:

 q_0 durumunu eleyelim:

$$R_1 = \varepsilon$$
, $R_2 = b$, $R_3 = a$

 q_1 durumunu eleyelim:

$$R_1 = b^*a$$
, $R_2 = a$, $R_3 = a$

 q_2 durumunu eleyelim:

$$R_1 = (b^*a)a^*a$$
, $R_2 = b$, $R_3 = a$

$$\longrightarrow S \xrightarrow{((b^*a)a^*a)b^*a} q_3 \xrightarrow{\mathcal{E}} F$$

 q_3 durumunu eleyelim:

$$R_1 = ((b^*a)a^*a)b^*a$$

$$\rightarrow$$
 S $((b^*a)a^*a)b^*a$ F

$$R = ((b^*a)a^*a)b^*a$$

8. Aşagida gosterilen NSO'ya denk olan duzenli ifadeyi bulunuz.

Once GNSO ya cevirelim:

 q_0 durumunu eleyelim:

Burada kuralimiz iki defa isleyecek. Birincisi \mathcal{S} , q_0 ve q_1 durumlari arasında:

$$R_1=\varepsilon, R_2=\alpha, R_3=b$$

İkincisi S, q_0 ve q_2 durumlari arasında:

$$R_1 = \varepsilon$$
, $R_2 = \alpha$, $R_3 = b$

 q_1 durumunu eleyelim:

Burada kuralimiz iki defa isleyecek. Birincisi S, q_1 ve F durumlari arasında:

$$R_1 = a^*b$$
, $R_3 = \varepsilon$

İkincisi q_1 ve q_2 durumlari arasında:

$$R_1 = a, R_3 = a$$

 q_2 durumunu eleyelim:

$$R_1 = a^*b$$
, $R_2 = aa$, $R_3 = \varepsilon$, $R_4 = a^*b$

$$\longrightarrow S \xrightarrow{(a^*b)(aa)^* \cup (a^*b)} F$$

9. $\Sigma=\{a,b\}$ için $L=\{w\in\Sigma^*|n_a(w)< n_b(w)\}$ (burada $n_a(w)$, w kelimesi icindeki toplam a harfi sayisini gosteriyor). Pumping lemmayi kullanarak bu dilin duzenli olmadigini gosteriniz.

Olmayana ergi yontemini kullanalim. Varsayalimki bu dil duzenli olsun. Su halde bu dil pumping lemmayi saglar ve bir p pumping uzunluguna sahiptir. Uzunlugu p' den buyuk olan

L'nin bir kelimesini ele alalim. Bu kelime $w=a^pb^{p+1}$ olsun. Bu kelimeyi w=xyz olacak sekilde 3 parcaya bolelim. Oyleki |y|>0, $ve|xy|\leq p$ olsun.

$$x = a^{p-1}, y = a, z = b^{p+1}$$
 olsun.

L pumping lemmayi sagladigini varsaydigimiz icin her $i \geq 0$ icin $w = xy^iz$, L'nin elemani olmalidir.

i=3 alalim. Bu durumda $w=xy^3z=a^{p+2}b^{p+1}$ olur boylece $n_a(w)>n_b(w)$ olup, w, L nin bir elemani olmaz. L icin pumping lemma saglanmaz, bu ise bastaki kabulumuz ile bir celiskidir. L dili duzensizdir.

10. $\Sigma=\{a,b\}$ için $L=\{(ab)^na^k|n>k,k\geq 0\}$. Pumping lemmayi kullanarak bu dilin duzenli olmadigini gosteriniz.

Olmayana ergi yontemini kullanalim. Varsayalimki bu dil duzenli olsun. Su halde bu dil pumping lemmayi saglar ve bir p pumping uzunluguna sahiptir. Uzunlugu p' den buyuk olan

L'nin bir kelimesini ele alalim. Bu kelime $w=(ab)^{p+1}a^p$ olsun . Bu kelimeyi w=xyz olacak sekilde 3 parcaya bolelim.

$$x = a, y = b, z = (ab)^p a^p$$
 olsun.

Pumping lemma geregi her $i \ge 0$ icin $w = xy^i z$, L'nin elemani olmalidir.

i=0 alalim. $w=xy^0z=x\varepsilon z=xz=a(ab)^pa^p$ olur ki bu kelime L'nin kelimelerinin sahip oldugu formda degildir. Su halde bu kelime L'ye ait degildir. Bu bir celiskidir. L dili duzensizdir.