EAS 5830: BLOCKCHAINS

Avalanche

Dr. Brett Hemenway Falk

← Tweet

Someone dropped this paper on IPFS and some IRC channels yesterday. It describes a new family of consensus protocols that combines the best of Nakamoto consensus with the best of classical consensus. Huge breakthrough:

ipfs.io/ipfs/QmUy4jh5m...

7:58 AM · May 17, 2018 · Twitter for Android

433 Retweets 70 Quote Tweets 1,274 Likes

Snowflake to Avalanche: A Novel Metastable Consensus Protocol Family for Cryptocurrencies

Team Rocket[†] t-rocket@protonmail.com

Revision: 05/16/2018 21:51:26 UTC

Search...

Help | Ad

Computer Science > Distributed, Parallel, and Cluster Computing

[Submitted on 21 Jun 2019 (v1), last revised 24 Aug 2020 (this version, v2)]

Scalable and Probabilistic Leaderless BFT Consensus through Metastability

Team Rocket, Maofan Yin, Kevin Sekniqi, Robbert van Renesse, Emin Gün Sirer

FUNDING

Avalanche developer raising \$350 million at \$5.25 billion valuation: report

April 14, 2022, 3:43AM EDT · 1 min read

Avalanche

- P-Chain
 - o Platform chain
- X-Chain
 - Exchange chain
- <u>C-Chain</u>
 - Contract chain (EVM compatible)
- Anyone can create a new subnet

EVM Compatibility

- Avalanche C-Chain is EVM compatible
- Ethereum DeFi projects can easily re-deploy on Avalanche
 - o <u>Aave</u>
 - o Curve
- Native DeFi like <u>Traderloe</u>
- Avalanche bridge makes it easy to send assets from Ethereum

Scalability

Scalability

- Two main metrics:
 - Transactions Per Second (TPS)
 - (Transactions per Block)*(Blocks per Second)
 - Time to Finality (TTF)
- TTF may be longer than block production time
 - Block time can be lower than TTF
 - Bitcoin, Ethereum, Solana, Polkadot produce blocks "optimistically," so block time is lower than TTF
- TPS is an average, so it's possible to have high TPS, but long TTF
 - Enormous blocks produced infrequently could lead to high TPS but long
 TTF

SnowTrace: Avalanche C-Chain Blockchain Explorer Average Block Time Chart

Solana Block Times

Algorand Block Times

Osmosis (Cosmos) Block Times

Ethereum Block Times

o ETH 2 Target TTF: <u>14 Minutes</u> (or <u>6 minutes</u>)

3 Most recent epochs									
Epoch	Time	Final	Eligible (ETH)	Voted					
230,659	5 mins ago	No	Calculating	Calculating					
230,658	11 mins ago	No	26,015,432	25,090,933 (96.45%)					
230,657	18 mins ago	No	26,015,048	25,933,205 (99.69%)					
230,656	24 mins ago	Yes	26,014,664	25,931,285 (99.68%)					
230,655	30 mins ago	Yes	26,014,280	25,933,941 (99.69%)					
230,654	37 mins ago	Yes	26,013,896	25,930,389 (99.68%)					

Polkadot Block Times

o <u>Target TTF: 12-60 seconds</u>

Cardano

Latest Blocks							
ЕРОСН	SLOT	BLOCK	CREATED AT	TRANSACTIONS	OUTPUT (A)	SIZE (BYTES)	CREATED BY
437	103831556	9322926	2023/09/22 15:50:47	8	47943.241854	23609	1af3ab3
437	103831545	9322925	2023/09/22 15:50:36	4	296042.950021	16224	22cfa3b
437	103831539	9322924	2023/09/22 15:50:30	42	515825.85181	53883	6d9ce53
437	103831520	9322923	2023/09/22 15:50:11	25	947936.251996	87114	7d7ac07
437	103831415	9322922	2023/09/22 15:48:26	0	0	4	9924e7d
437	103831402	9322921	2023/09/22 15:48:13	31	4648487.63299	54798	0338d4f
437	103831347	9322920	2023/09/22 15:47:18	2	1394.159974	14321	1596878
437	103831340	9322919	2023/09/22 15:47:11	10	4237486.101504	31318	397f04e
437	103831325	9322918	2023/09/22 15:46:56	5	1196.898728	16439	03fbee9
437	103831315	9322917	2023/09/22 15:46:46		1806.054868	893	ed40b0a
							/ = /

True finality takes 36 hours

Consensus

- I. Ask *k* random nodes their preference
- 2. If at least α give same response
 - a. Count consecutive successes
- 3. If less than α give same response, reset count
- If successive count exceeds β, finalize

- 1. Ask *k* random nodes their preference
- 2. If at least α give same response
 - a. Count consecutive successes
- 3. If less than α give same response, reset count
- If successive count exceeds β, finalize

$$k = 3$$

$$\alpha = 2$$

- 1. Ask *k* random nodes their preference
- 2. If at least α give same response
 - a. Count consecutive successes
- 3. If less than α give same response, reset count
- If successive count exceeds β, finalize

$$k = 3$$

$$\alpha = 2$$

- 1. Ask *k* random nodes their preference
- 2. If at least α give same response
 - a. Count consecutive successes
- 3. If less than α give same response, reset count
- If successive count exceeds β, finalize

$$k = 3$$

$$\alpha = 2$$

- 1. Ask *k* random nodes their preference
- 2. If at least α give same response
 - a. Count consecutive successes
- 3. If less than α give same response, reset count
- If successive count exceeds β, finalize

$$k = 3$$

$$\alpha = 2$$

- 1. Ask *k* random nodes their preference
- 2. If at least α give same response
 - a. Count consecutive successes
- 3. If less than α give same response, reset count
- If successive count exceeds β, finalize

$$k = 3$$

$$\alpha = 2$$

- 1. Ask *k* random nodes their preference
- 2. If at least α give same response
 - a. Count consecutive successes
- 3. If less than α give same response, reset count
- If successive count exceeds β, finalize

$$k = 3$$

$$\alpha = 2$$

- 1. Ask *k* random nodes their preference
- 2. If at least α give same response
 - a. Count consecutive successes
- 3. If less than α give same response, reset count
- If successive count exceeds β, finalize

$$k = 3$$

$$\alpha = 2$$

If
$$\beta = 1$$
, stop here

- 1. Ask *k* random nodes their preference
- 2. If at least α give same response
 - a. Count consecutive successes
- 3. If less than α give same response, reset count
- If successive count exceeds β, finalize

$$k = 3$$

$$\alpha = 2$$

```
preference := blue
consecutiveSuccesses := 0
while not decided:
ask k random people their preference
if \geq \alpha give the same response:
  preference := response with \geq \alpha
 if preference == old preference:
   consecutiveSuccesses++
 else:
   consecutiveSuccesses = 1
else:
 consecutiveSuccesses = 0
if consecutiveSuccesses > \beta:
 decide(preference)
```

Parameters:

k - number of nodes to sample

α - number needed to change your mind

β - number of rounds of consistency before finality

Avalanche consensus

In practice:

- k = 20 (Number of nodes to query)
- $\alpha = 14$ (Threshold of responses needed to change your view)
- β = 20 (Number of consistent rounds before finalizing)

Proof of Stake

To make this proof of stake, each node selects its random sample weighted by validator stake

Copyright 2020 University of Pennsylvania No reproduction or distribution without permission.