Control Systems

G V V Sharma*

1	Cianal	CONTENTS	1	10	10.1	Introduction	2	
1	Signai 1.1	Flow Graph Mason's Gain Formula	1		10.2	Example	2	
	1.2 Matrix Formula		1 1 Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text.					
2	Bode Plot		1					
	2.1				Download python codes using			
	2.2	Example	1	svn co https://github.com/gadepall/school/trunk/				
3	Second order System		1	C	ontrol/co	des		
	3.1	Damping	1					
	3.2	Example	1			1.6 5 6		
	3.3	Peak Overshoot	1			1 Signal Flow Graph		
				1.1 1	Mason's	Gain Formula		
4		Hurwitz Criterion	2	1.2 1	Matrix Fe	ormula		
	4.1	Routh Array	2			2 Bode Plot		
	4.2	Marginal Stability	2	211	ntroduct			
	4.3	Stability	2			Oil		
	4.4	Example	2	2.2 I	Example			
5	State-Space Model		2			3 Second order System		
		5.1 Controllability and Observ-		3.1 1	Damping			
	0.12	ability	2	3.2 1	Example			
	5.2	Second Order System	2		Peak Ove	rshoot		
	5.3	Example	2				1	
	5.4	Example	2			peak overshoot for the second or	aer	
	5.5	Example	2		control s	ystem given by:		
6	Nyquis	t Plot	2		C	$F(S) = \frac{100}{s^2 + 10s + 100} $ (3.3.1)	l.1)	
7	Compensators		2		Solution	Peak overshoot (M_p) is defined as	the	
	7.1	Phase Lead	2			of the response at peak time from		
	7.2	Example	2		final valı	ne of response.		
8	Gain Margin		2		=	$\Rightarrow M_p = c(t_p) - c(\infty) \tag{3.3.1}$	1.2)	
	8.1	Introduction	2		Given,			
	8.2	Example	2		•	C(s) 100		
9	Phase Margin		2		G(S)	$= \frac{C(s)}{R(s)} = \frac{100}{s^2 + 10s + 100} $ (3.3.1)	1.3)	
*The	e author is	with the Department of Electrical Enginee	rino		To calcu	ate the unit step response,		

 $r(t) = 1 \implies R(s) = \frac{1}{s}$

(3.3.1.4)

*The author is with the Department of Electrical Engineering,

Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU

GPL. Free and open source.

$$\implies C(S) = \frac{100}{(s)(s^2 + 10s + 100)} \quad (3.3.1.5)$$

C(s) can be expanded as:

$$C(s) = \frac{1}{s} - \frac{s+5}{(s+5)^2 + 75} - \frac{1}{\sqrt{3}} \cdot \frac{\sqrt{75}}{(s+5)^2 + 75}$$
(3.3.1.6)

In time domain,

$$c(t) = \mathcal{L}^{-1}C(s)$$
 (3.3.1.7)

$$\implies c(t) = 1 - e^{-5t} cos(\sqrt{75}t) - \frac{e^{-5t}}{\sqrt{3}}.sin(\sqrt{75}t)$$
(3.3.1.8)

From (3.3.1.8):

$$\lim_{t \to \infty} c(t) = 1 \tag{3.3.1.9}$$

At t_p , c(t) is maximum:

$$\implies \frac{dc(t)}{d(t)} = 0 \tag{3.3.1.10}$$

Applying this condition on (3.3.1.8), we get:

$$t_p = \frac{\pi}{\sqrt{75}} \tag{3.3.1.11}$$

Substitute t_p in (3.3.1.8) to get $c(t_p)$:

$$c(t_p) = 1 + e^{\frac{-\pi}{\sqrt{3}}} \implies c(t_p) = 1.163 \quad (3.3.1.12)$$

Substitute $c(t_p)$ and $c(\infty)$ in (3.3.1.2) to get peak overshoot:

$$M_p = 1.163 - 1 = 0.163$$
 (3.3.1.13)

3.3.2. Verify using a Python Plot

Solution:

4 ROUTH HURWITZ CRITERION

- 4.1 Routh Array
- 4.2 Marginal Stability
- 4.3 Stability
- 4.4 Example
- 5 STATE-SPACE MODEL
- 5.1 Controllability and Observability
- 5.2 Second Order System
- 5.3 Example
- 5.4 Example
- 5.5 Example
- **6** Nyquist Plot
- 7 Compensators
- 7.1 Phase Lead
- 7.2 Example
- 8 Gain Margin
- 8.1 Introduction
- 8.2 Example
- 9 Phase Margin
 - 10 Oscillator
- 10.1 Introduction
- 10.2 Example

codes/ee18btech11045.py