AMENDMENTS TO THE CLAIMS

(Currently amended) The compound of the general formula (1):

$$\begin{array}{cccc}
R^2 \\
R^1 \\
R
\end{array}$$
(1)

wherein

R is halo:

R1 is arylor, heteroaryl; merpheline, piperidine er pyrrelidine;

R2 is NR3R4.

wherein R³ and R⁴ are independently H, C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, aryl, aryl(C₁₋₈)alkyl, G₂₋₈ sycloalkyl, C₃₋₈ sycloalkyl, G₂₋₈ sycloalkyl, hotoroaryl, h

or wherein R³ and R⁴ together form a C₃₋₇ alkylene or C₃₋₇ alkenylene chain optionally substituted with one or more C₃₋₇ alkyl or C₃₋₇ alkoxy groups:

or wherein R³ and R⁴ together with the nitrogen atom to which they are attached form a morpholine, thiomorpholine, thiomorpholine S-oxide or thiomorpholine S-dioxide ring or a piperazine or piperazine N-(C₁₋₄)alkyl (especially N-methyl) ring;

 \mathbb{R}^6 and \mathbb{R}^6 are independently. H., $C_{1:0}$ alkyl, $C_{2:0}$ alkyl, $C_{2:0}$ alkyl, $C_{2:0}$ alkyl, aryl, aryl, aryl, $C_{1:0}$ alkyl, heteroaryl or heteroaryl $C_{1:0}$ alkyl;

and wherein

said alkyl, alkenyl, <u>or alkynyl er-eydealkyl</u> groups or moieties are optionally substituted with halogen, cyano, C₁₋₆alkoxy, C₁₋₆alkylcarbonyl, C₁₋₆alkoxycarbonyl, C₁₋₆haloalkoxy, C₁₋₆alkylthio, tri(C₁₋₄)alkylsilyl. C₁₋₆alkylamino or C₁₋₆dialkylamino:

said morpholine, thiomorpholine, piperidine, and piperazine and pyrrolidine rings are optionally substituted with C₁₋₄ alkyl (especially methyl); and

said aryl or heteroaryl groups or moieties are optionally substituted with one or more substituents selected from the group consisting halo, hydroxy, mercapto, $C_{1:6}$ alkyl, $C_{2:6}$ alkenyl, $C_{2:6}$ alkynyloxy, halo($C_{1:6}$)alkyl, halo($C_{1:6}$)alkoxy, $C_{2:6}$ alkenyloxy, $C_{2:6}$ alkynyloxy, halo($C_{1:6}$)alkyl, halo($C_{1:6}$)alkylthio, hydroxy($C_{1:6}$)alkyl, $C_{1:4}$ alkoxy($C_{1:6}$)alkyl, $C_{3:6}$ cycloalkyl, $C_{3:6}$ cycloalkyl($C_{1:4}$)alkyl, phenoxy, benzyloxy, benzyloxy, cyano, isocyano, thiocyanato, isothiocyanato, nitro, -NR"R"", -NHCOR", -NHCORR"R", -CONR"R", -SO₂R", -OSO₂R", -OSO₂R",

Amendment SN 10/540,037 May 30, 2007 Page 2 of 8 -COR''', -CR'''=NR'''' and -N=CR'''R'''', in which R''' and R'''' are independently hydrogen, C_{1-4} alkyl, halo(C_{1-4})alkyl, C_{1-4} alkyl, halo(C_{1-4})alkyl, C_{1-4} alkyl, halo(C_{1-4})alkyl, C_{1-4} alkyl or benzyl, the phenyl and benzyl groups being optionally substituted with halogen, C_{1-4} alkyl or C_{1-4} alkyxy.

- 2. (Currently amended) A compound according claim 1 wherein:
- (A) R^3 is $C_{1.8}$ alkyl, $halo(C_{1.8})$ alkyl, $hydroxy(C_{1.8})$ alkyl, $C_{1.4}$ alkoxy($C_{1.9}$)alkyl, $C_{1.4}$ alkoxy($C_{1.9}$)alkyl, $C_{1.4}$ alkoxy($C_{1.9}$)alkyl, $C_{1.4}$ alkylcarbonyl($C_{1.8}$)alkyl, $C_{1.4}$ alkylcarbonylhalo($C_{1.8}$)alkyl, $C_{1.4}$ alkyl, $C_{2.8}$ alkenyl, $C_{2.8}$ alkyl, phenylamino, piperidino or morpholino, the phenyl ring of phenylalkyl or phenylamino popionally substituted with one, two or three substituents celected from halo, $C_{1.4}$ alkyl, halo($C_{1.4}$) alkyl, $C_{1.4}$ alkyl, $C_{1.4}$
- (B) ${\sf R}^3$ and ${\sf R}^4$ together form a ${\sf C}_{3\text{-}7}$ alkylene or ${\sf C}_{3\text{-}7}$ alkenylene chain optionally substituted with methyl; or
- (C) R^3 and R^4 , together with the nitrogen atom to which they are attached, form a morpholine, thiomorpholine, thiomorpholine. S-oxide-or-thiomorpholine. S-dioxide-ring-or-a-piperazine or piperazine N-(C_{1-4})alkyl (especially N-methyl) ring, in which the morpholine or piperazine rings are optionally substituted with methyl.
- 3. (Currently amended) A compound according to claim1 wherein \mathbb{R}^1 is phenyl optionally substituted with from one to five halogen atoms or with from one to three substituents selected from halo, $C_{1:4}$ alkyl, halo($C_{1:4}$)alkyl, $C_{1:4}$ alkoxy or halo($C_{1:4}$)alkoxy_z—pyridyl—potionally—substituted with from one to four halogen atoms or with from one to three substituents selected from halo, $C_{4:4}$ -alkyl, halo($C_{4:4}$)alkyl, $C_{4:4}$ -alkoxy-or-halo($C_{4:4}$)alkoxy, 2-or-3-thienyl-optionally-substituted with from one to three substituents selected from halo, $C_{4:4}$ -alkyl, halo($C_{4:4}$)alkoxy-or-halo($C_{4:4}$)alkoxy-or-piperidino-or-morpholino-both-optionally-substituted with one or two methyl-groups.
- (Original) A compound according to claim 3 wherein R¹ is 2,6-diffluorophenyl, 2-fluoro-6chlorophenyl, 2,5,6-trifluorophenyl, 2,4,6-trifluorophenyl, 2,6-diffluoro-4-methoxyphenyl or pentafluorophenyl.
- Cancelled.

- 6. (Currently amended) A compound according to claim 1 wherein:
 - (A) R³ is G₁₋₄—alkyl, C₁₋₈ alkyl, halo(C₁₋₄)alkyl, C₂₋₄ alkenyl; C₃₋₆—cycloalkyl, C₆₋₈ cycloalkyl(C₁₋₄)alkyl-or phenylamino in which the phenyl ring is optionally-substituted with one, two or three substituents selected from halo, C₁₋₄ alkyl, halo(C₁₋₄)alkyl, C₃₋₄ alkoxy and halo(C₁₋₄)alkyl, C₃₋₄ alkoxy and halo(C₁₋₄)alkyl, C₃₋₄ alkoxy and R⁴ is H. or C₁₋₄ alkyl; or amino:
 - (B) or wherein R^3 and R^4 together form a \mathbb{G}_{44} \mathbb{G}_{237} alkylene chain optionally substituted with C_{14} alkyl; $-6-\mathbb{G}_{34}$ -alkeryr;
 - (C) or wherein R³ and R⁴, together with the nitrogen atom to which they are attached, form a morpholine, thiomorpholine, thiomorpholine, soxide or thiomorpholine. Soxide or thiomorpholine. Socially N-methyl) ring; and

wherein said alkylor, alkenylor-eyelealkyl groups or moieties are optionally substituted with halogen, cyano, $C_{1-\delta}$ alkoxy, $C_{1+\delta}$ alkylcarbonyl, $C_{1-\delta}$ alkoxycarbonyl, $C_{1-\delta}$ alkylthio, $tri(C_{1-\delta})$ alkylsilyl, $C_{1-\delta}$ alkylamino or $C_{1+\delta}$ dialkylamino;

and wherein said said morpholine, and, this morpholine, piperidine, piperazine and pyrrolidine rings are optionally substituted with C_{1.4} alkyl;

and wherein said aryl er-heterearyl groups or moieties are optionally substituted with one or more substituents selected from the group consisting of halo, hydroxy, mercapto, C_{1-6} alkyl, C_{2-6} alkenyl, C_{1-6} alkylthio, halo (C_{1-6}) alkylthio, hydroxy (C_{1-6}) alkyl, C_{1-4} alkoxy (C_{1-6}) alkyl, C_{3-6} cycloalkyl, C_{3-6} alkyl yr, C_{3

- (Previously presented) A compound according to claim 1 wherein R¹ is optionally substituted phenyl.
- 8. (Currently amended) A compound according to claim 1 wherein:

 R^1 is phenyl optionally substituted with from one to five halogen atoms or with from one to three substituents selected from the group consisting of halo, C_{1-4} alkyl, $halo(C_{1-4})$ alkyl, C_{1-4} alkoxy and en halo(C_{1-4})alkoxy, and enough optionally substituted with from one to four halogen atoms or with from one to three substituents selected from halo, C_{1-4} alkyl, halo(C_{1-4})alkoxy, or

 $\label{eq:controller} \begin{minipage}{0.9\textwidth} $halo(G_{1,4})$ always, 2-or 3-thionyl-optionally-substituted with from one to three substituents-selected from halo, $G_{1,4}$ elkyl, $halo(G_{1,4})$ alkyl, $G_{1,4}$-alkexy or halo(G_{1,4})$ elkexy, or piperidine or morpholine both optionally-substituted with one or two methyl-groups; and $G_{1,4}$ elkexy, or piperidine or morpholine both optionally-substituted with one or two methyl-groups; and $G_{1,4}$ elkexy, G_{1

wherein R^3 is $C_{1:4}$ alkyl or $halo(C_{1:4})$ alkyl, $G_{1:6}$ alkyl, $halo(G_{1:6})$ alkyl, $G_{1:4}$ alkexy($G_{1:4}$) alkyl, $G_{1:4}$ alkexyl, $G_{1:4}$ alkexyl, $G_{1:4}$ alkexyl, $G_{1:4}$ alkyl, $G_{1:4}$ alkyl, $G_{1:4}$ alkexyl, $G_{1:4}$ alkyl, $G_{1:4}$ alkexyl, $G_{1:4}$ alkexyl and $G_{1:4}$ alkexy; and $G_{1:4}$ alkyl, $G_{1:4}$ alkexy; and $G_{1:4}$ alkexy; and $G_{1:4}$ alkexy; and $G_{1:4}$ alkyl, $G_{1:4}$

or wherein R³ and R⁴ together form a <u>C₄₋₆ alkylene chain C₃₋₂ alkylene or C₃₋₂ alkenylene chain chain continually substituted with methyl:</u>

or wherein, -er, R³ and R⁴ together with the nitrogen atom to which they are attached, R³ and R⁴-form a morpholine, thiomorpholine S-oxide or thiomorpholine S-dioxide ring er a piperazine or piperazine N-(C₁₋₄)alkyl (especially *N*-methyl) ring, in which the morpholine or piperazine rings are optionally substituted with methyl.

9. (Currently amended) A compound according to claim 1 wherein:

 R^1 is phenyl optionally substituted with from one to five halogen atoms; or with from one to three-substituents-selected from halo, $C_{1.4}$ alkyl, halo($C_{1.4}$)alkyl, $C_{1.4}$ alkoxy-or-halo($C_{1.4}$)alkoxy- and

wherein R^3 is $C_{1.4}$ alkyl, $-halo(C_{1.4})$ alkyl, $C_{2.4}$ alkenyl, $C_{2.4}$ -cycloalkyl, $C_{2.6}$ -cycloalkyl($C_{1.6}$)alkyl or phenylamino in which the phenyl ring is optionally substituted with one, two or three substituents selected from halo, $C_{1.4}$ -alkyl, $-halo(C_{4.4})$ alkyl, $-C_{2.4}$ -alkoxy and $-halo(C_{4.4})$ alkexy; and $-R^4$ is $-R^4$ is $-R^4$ -alkyl or amino:

or wherein R^3 and R^4 together form a $C_{4:6}$ alkylene chain optionally substituted with methyl; or wherein R^3 and R^4 , together with the nitrogen atom to which they are attached, form a morpholine ring.

- 10. (Previously presented) A process for preparing a compound of the general formula (1) according to claim 1 wherein R is chloro or fluoro, comprising:
- (A) reacting an amine of the general formula NR³R⁴ with a compound of the general formula (6) or (13):

wherein R1, R3 and R4 are as defined in claim 1.

- 11. (Original): A plant fungicidal composition comprising a fungicidally effective amount of a compound as defined in claim 1 and a suitable carrier or diluent therefor.
- 12. (Previously presented) A method of combating or controlling phytopathogenic fungi which comprises applying to a plant, to a seed of a plant, to the locus of the plant or seed or to soil or to any other plant growth medium, a fungicidally effective amount of a compound according to claim 1.