Spécification d'un ascenseur

47

Specification of a lift

Hypothesis:

- ▶ A floor door is open or closed.
- ▶ A button is pressed or depressed.
- An indicator light is on or off.
- ▶ The cabin is present at floor i, or it is absent.

Specification of a lift

H. Barringer ("Up and down, the temporal way", 1985)

Specification of a lift

P1. Safe doors:

A floor door is never opened if the cabin is not present at the given floor.

P2. Indicator lights:

The indicator lights correctly reflect the current requests.

P3. Services:

All requests are eventually satisfied.

P4. Smart service:

The cabin only services the requested floors and does not move when there is no request.

Specification of a lift

P5. Diligent service:

The cabin does not pass by a floor for which it has a request without servicing it.

P6. Direct movements:

The cabin always moves directly from previous to next serviced floor.

P7. Priorities:

The cabin services in priority requests that do not imply a change of direction (upward or downward).

51

Specification of a lift

P1. Safe doors:

A floor door is never opened if the cabin is not present at the given floor. $G (D_i \Rightarrow at_i)$

Specification of a lift: the atomic prop.

Specification of a lift

P2. Indicator lights:

The indicator lights correctly reflect the current requests.

Specification of a lift

P2. Indicator lights:

The indicator lights correctly reflect the current requests.

An alternative is:

$$\bigwedge_{i} \mathbf{G} \left(\mathsf{LC}_{i} \Leftrightarrow \left((\neg \mathsf{servicing}_{i}) \mathbf{S} \left(\mathsf{C}_{i} \land \neg \mathsf{servicing}_{i} \right) \right) \right)$$

(and the same for S_i and SL_i)

Specification of a lift

P5. Diligent service:

The cabin does not pass by a floor for which it has a request without servicing it.

$$\bigwedge G([(LC_i \vee LS_i) \land at_i] \Rightarrow (at_i U servicing_i))$$

Specification of a lift

P3. Services:

All requests are eventually satisfied.

$$\bigwedge_{i}$$
 G (request_i \Rightarrow **F** servicing_i))
with: request_i = C_i \vee S_i

P4. Smart service:

The cabin only services the requested floors and does not move when there is no request.

$$\bigwedge_{i} \mathbf{G} (servicing_{i} \Rightarrow [servicing_{i} \mathbf{S} (CL_{i} \vee SL_{i})])$$

$$\bigwedge_{i} \mathbf{G} (at_{i} \Rightarrow (at_{i} \mathbf{W} (\bigvee_{j \neq i} (CL_{j} \vee SL_{j}))))$$

Specification of a lift

P6. Direct movements:

The cabin always moves directly from previous to next serviced floor.

 $service = servicing_0 \lor servicing_1 \lor ... \lor servicing_k$

Specification of a lift

P7. Priorities:

The cabin services in priority requests that do not imply a change of direction (upward or downward).

$$Up = \bigvee_{i=1..k} \left[\text{ (at}_i \lor \text{ betw_floors) } \mathbf{S} \text{ at}_{i-1} \land (\mathbf{at}_i \lor \text{ betw_floors) } \mathbf{U} \text{ at}_i \right]$$

$$G \bigwedge_{i=0,.k-1} [(servicing_i \land Down \land \bigvee_{j < i} (CL_j \lor SL_j))) \Rightarrow \bigvee_{n < i} From_i_to_n]$$

$$G \bigwedge_{i=1..k} \left[(servicing_i \land Up \land \bigvee_{j>i} (CL_j \lor SL_j)) \Rightarrow \bigvee_{n>i} From_i_to_n \right]$$

LTL sans opérateurs du passé

Pour cette partie, on va considérer une variante de LTL où il n'y a ni Since, ni F-1, ni X-1.

Pourquoi? pour simplifier un peu la suite... sans rien perdre sur le fond:

- les mêmes techniques marchent pour LTL avec passé...
- les opérateurs du passé sont pratiques pour exprimer des propriétés mais pas indispensables: on peut toujours se débrouiller avec Until et X.

Débrouiller? Toute formule de LTL avec passé est équivalente à une formule sans passé lorsqu'on les interprète au début d'une exécution.

60

LTL sans opérateurs du passé

Simplifier?

Syntaxe:

$$\phi, \psi ::= P \mid \neg \phi \mid \phi \lor \psi \mid \phi \land \psi \mid \mathbf{X} \phi \mid \psi \mathbf{U} \phi$$

On interprète désormais les formules de LTL sur une exécution p d'un STE... (sans position !)

$$\rho \models \mathbf{X} \Leftrightarrow ssi \ \rho^1 \models \varphi$$

$$\rho \models \psi U \varphi$$
 ssi ($\exists i \ge 0$. ($\rho^i \models \varphi$ et $\forall 0 \le j < i$ on a $\rho^j \models \psi$)

 ρ^i est le i-ème suffixe: $\rho(i)\rho(i+1)...$

Une histoire de mots!

$$S = (Q, Act, \rightarrow, q_0, AP, L)$$

Lorsqu'on travaille avec LTL, **S** est vu comme un ensemble d'exécutions étiquetées:

En fait, on n'utilise les noms des états que pour utiliser la fonction d'étiquetage L et obtenir les propositions atomiques associées à chaque état de ρ .

 ρ + L peuvent être vues comme une « trace », un mot infini sur l'alphabet 2^{AP} .

Ex:

Une histoire de mots!

Une formule φ de LTL décrit une propriété le long d'un mot infini sur l'alphabet 2^{AP} .

Les modèles de ϕ de LTL sont l'ensemble des mots où ϕ est vraie.

On note $mod(\phi)$ les modèles de ϕ de LTL.

Donc $mod(\phi)$ = les mots infinis sur l'alphabet 2^{AP} vérifiant ϕ .

 $mod(\phi)$ est donc aussi un langage!

Une histoire de mots!

$$S = (Q, Act, \rightarrow, q_0, AP, L)$$

Donc **S** est vu un ensemble de mots.

Donc **S** est vu comme un **langage** \rightarrow Traces(**S**)

Exec: $q_0.q_1^{\omega} \cup q_0.q_2^{\omega} \cup q_0.q_2^{+}.q_1^{\omega}$

Langage des traces:

 $\{a,b\}.\{b\}^{\omega} \cup \{a,b\}.\{a\}^{\omega} \cup \{a,b\}.\{a\}^{+}.\{b\}^{\omega}$

Problèmes de vérification

Model-checking:

input: un modèle (STE) **S** et une formule φ output: oui ssi **S** $\models \varphi$.

Satisfaisabilité:

input: une formule φ output: oui ssi il existe un modèle \mathbf{S} t.q. $\mathbf{S} \vDash \varphi$. $(+\mathbf{S} \text{ si il existe !}))$

Synthèse de contrôleur:

input: un modèle partiel **S** une formule φ output: un « controleur » C t.g. $\mathbf{S} \times C \models \varphi$.

Problèmes de vérification pour LTL

Construire les modèles de φ

Quel lien entre Traces(S) et $mod(\phi)$?

1) Traces(S)
$$\subseteq$$
 mod(φ)

$$S \models \varphi$$

2) Traces(S) n
$$mod(\phi) = \emptyset$$

$$S \vDash \neg \varphi$$

3) sinon

$$\mathbf{S}
ot\models\varphi$$
 , $\mathbf{S}
ot\models\neg\varphi$

$$mod(\neg \varphi) = (2^{AP})^{\omega} \setminus mod(\varphi)$$

 $(2^{AP})^{\omega}$ = ens. de tous les mots infinis sur l'alphabet 2^{AP} .

Rappel:
$$\mathbf{S} \models \varphi \iff (\rho \models \varphi \forall \rho \in \mathsf{Exec}(\mathbf{S}))$$

Satisfaisabilité de LTL

Comment tester si il existe un modèle pour φ?

 \rightarrow Tester $mod(\phi)$ est non vide.

C'est-à-dire tester si $\mathcal{L}(\mathcal{A}_{\Phi}) \neq \emptyset$?

Etant donnée $\varphi,$ on sait construire un automate \mathcal{A}_{φ} qui reconnait les modèles de φ !

$$mod(\phi) = \mathcal{L}(\mathcal{A}_{\phi})$$

Pourquoi chercher des automates ? Parce que nous disposons de nombreux outils pour les manipuler (union, intersection, complément, inclusion, *etc.*)!

68

Model-checking de LTL

Comment tester si $\mathbf{S} \models \Phi$?

Tester Traces(\mathbf{S}) $\subseteq \mod(\Phi)$?

C'est-à-dire tester si $\mathcal{L}(\mathcal{A}_{S}) \subseteq \mathcal{L}(\mathcal{A}_{\Phi})$?

Ou plutôt tester Traces(S) \cap mod($\neg \varphi$) = \varnothing (donc tester si $\mathcal{L}(\mathcal{A}_S) \cap \mathcal{L}(\mathcal{A}_{\neg \varphi}) = \varnothing$) car tester le vide est plus simple que tester l'inclusion de deux langages, et faire l'intersection est facile.

Satisfaisabilité et Model-checking de LTL

Les deux problèmes se ramènent donc aux deux questions suivantes:

- $\mathcal{L}(\mathcal{A}_{\Phi}) \neq \emptyset$
- $\mathcal{L}(\mathcal{A}_{S}) \cap \mathcal{L}(\mathcal{A}_{\neg \Phi}) = \emptyset$?

Tout repose sur les deux automates \mathcal{A}_S et \mathcal{A}_{φ} (ou $\mathcal{A}_{\neg \varphi}$). \mathcal{A}_S ne pose pas de problème: il est facile à construire à partir de S.

Et \mathcal{A}_{ϕ} ?

71

Construction de \mathcal{A}_{Φ} - 2

$$\mathcal{A}_{\Phi} = (Q, Q_0, \rightarrow, \mathcal{F})$$

Chaque état de Q sera associé (défini) par un sous-ensemble de sous-formules de Φ .

idée de la construction: depuis un état associé à l'ensemble de sous-formules $\{\psi_1,...,\psi_n\}$, on reconnait des mots vérifiants chacune de ses sous-formules.

Comme \mathcal{A}_{φ} doit reconnaître les modèles de φ , l'ensemble des états initiaux Q_0 contiendra tous les états de Q contenant la sous-formule $\varphi\dots$

Construction de \mathcal{A}_{Φ} - 1

Etant donnée une formule de LTL ϕ , on veut construire un automate \mathcal{A}_{ϕ} qui reconnait le langage $\text{mod}(\phi)$.

 $\mathcal{A}_{\varphi} = (Q, q_0, \rightarrow, \mathcal{F})$ sera un automate de Büchi généralisé. kesako?

Un automate de Büchi reconnait des mots infinis: un mot w est accepté si il existe un chemin dans l'automate dont l'étiquetage correspond à w et si le chemin passe infiniment souvent par un des états acceptants (un sous-ensemble de Q).

Dans un automate de Büchi généralisé, les états acceptants sont donnés par un ensemble de sou-ensemble $\mathcal{F} = \{\mathcal{F}_1, \dots, \mathcal{F}_k\}$: un « bon » chemin doit passer infiniment souvent par un des états de chaque \mathcal{F}_i ...

72

Construction de \mathcal{A}_{Φ} - 3

$$\mathcal{A}_{\Phi} = (Q,Q_0, \rightarrow, \mathcal{F})$$

Comment définir les états Q ? Quels ensembles de sous-formules de φ choisir ?

On va choisir des sous-ensembles cohérents (logiquement), maximaux et conforme à la sémantique de LTL.

Soit S_{φ} l'ensemble des sous-formules de φ et leur négation.

Exemple:

$$\phi = \overrightarrow{\mathbf{u}} (\mathbf{X} b)$$

$$S_{\phi} = \{a, \neg a, b, \neg b, \mathbf{X} b, \neg \mathbf{X} b, a \mathbf{U} (\mathbf{X} b), \neg (a \mathbf{U} (\mathbf{X} b)) \}$$

Construction de \mathcal{A}_{φ} - 4 $\mathcal{A}_{\varphi} = (Q, Q_0, \rightarrow, \mathcal{F})$

Comment définir les états Q?

$$\mathcal{A}_{\Phi} = (Q, Q_0, \rightarrow, \mathcal{F}$$

Les états q sont des sous-ensembles cohérents, maximaux et conforme à la sémantique de LTL...

▶ Cohérents:

Si $\psi_1 \wedge \psi_2 \in q$, alors ψ_1 et ψ_2 sont dans q, si $\psi_1 \vee \psi_2 \in q$, alors ψ_1 ou ψ_2 sont dans α , $\forall \psi \in \alpha$, alors $\neg \psi \notin \alpha$.

▶ Maximaux:

Dans tout état, pour chaque sous-formule ψ , on met soit ψ , soit $\neg \psi$.

Conforme à la sémantique de LTL:

Dans tout état q, si la sous-formule $\psi_1 U \psi_2$ est présente, alors on a soit ψ_1 , soit ψ_2 dans l'état q.

Si $\psi_1 U \psi_2 \in S\Phi$, alors si ψ_2 est dans un état q, $\psi_1 U \psi_2 \in Q$

Et les états initiaux sont ceux contenant φ.

Construction de
$$\mathcal{A}_{\Phi}$$
 - 6 $\mathcal{A}_{\Phi} = (Q, Q_0, \rightarrow, \mathcal{F})$

Comment définir les transitions de l'automate \mathcal{A}_{Φ} ?

On met une transition $(q, \sigma, q') \in Qx2^{AP}xQ$ si et seulement si:

- $\sigma = g \cap AP$ (ie les prop. atomiques de g)
- $\forall X\psi \in S_{\Phi}$. $X\psi \in G \iff \psi \in G'$
- $\forall \psi_1 \cup \psi_2 \in S_{\oplus}$, $\psi_1 \cup \psi_2 \in G \Leftrightarrow (\psi_2 \in G \vee (\psi_1 \in G \wedge \psi_1 \cup \psi_2 \in G'))$

Exemple:

$$\phi = a \mathbf{U} (b \wedge c)$$

$$S_{\varphi} = \{a, \neg a, b, \neg b, c, \neg c, b \land c, \neg (b \land c), a U (b \land c), \neg (a U (b \land c))\}$$

 $q=\{a, \neg b, c, \neg (b \land c), a U (b \land c)\}$

 $q' = {\neg a,b,c,(b \land c),(a \cup (b \land c))}$

Construction de \mathcal{A}_{Φ} - 5 $\mathcal{A}_{\Phi} = (Q, Q_0, \rightarrow, \mathcal{F})$

Comment définir les états Q?

Ce sont des sous-ensembles cohérents, maximaux et conforme à la sémantique de LTL...

Exemple:

$$q=\{a,\neg b,c,\neg(b\land c),a\ U\ (b\land c)\}\ ou$$

 $q'=\{a,\neg b,c,\neg(b\land c),\neg\ (a\ U\ (b\land c))\}\ sont\ ok\ !$

Mais
$$r=\{a,b,\neg b,c,\neg(b\land c),a\ U\ (b\land c)\},$$

 $r'=\{a,b,c,\neg(b\land c),a\ U\ (b\land c)\}$ ou
 $r''=\{a,b,c,(b\land c),\neg(a\ U\ (b\land c))\}$ ne sont pas bien formés!

Construction de
$$\mathcal{A}_{\Phi}$$
 - 7 $\mathcal{A}_{\Phi} = (Q, Q_0, \rightarrow, \mathcal{F})$

Comment définir les conditions d'acceptation F?

Pour chaque sous-formule $\psi_1 \mathbf{U} \psi_2$, on a un ensemble $\mathcal{F}_{\psi_1 \mathbf{U} \psi_2}$ défini par:

$$\mathcal{F}_{\psi_1 \cup \psi_2} = \{ q \in Q \mid \psi_1 \cup \psi_2 \notin q \lor \psi_2 \in q \}$$

idée: un état contenant $\psi_1 U \psi_2$ doit reconnaître les modèles de $\psi_1 U \psi_2$ et donc visiter un jour un état contenant ψ_2

Pour en être sûr, on impose de visiter infiniment souvent des états contenant ψ_2 ... ou infiniment souvent des états contenant $\neg \psi_1 \mathbf{U} \psi_2$...

Dans les deux cas, on est sûr de ne pas attendre indéfiniment la satisfaction de ψ_2 .

\mathcal{A}_{Φ} et les modèles de Φ

$$\mathcal{A}_{\Phi} = (Q,Q_0, \rightarrow, \mathcal{F})$$

Prenons un chemin dans \mathcal{A}_{φ} $q_1 \rightarrow q_2 \rightarrow q_3 \rightarrow q_4 \rightarrow \dots$ étiqueté par le mot $\sigma_1 \sigma_2 \sigma_3 \sigma_4 \dots$ de $(2^{AP})^{\omega}$

Alors on a:

 $\{a, \neg b\}\{a, \neg b\}\{a, b\}\dots$

$$\forall \psi \in Q_i, \quad \sigma_i \sigma_{i+1} \sigma_{i+2} \dots \models \psi$$

79

Construction de \mathcal{A}_{Φ} - exemple

Construction de \mathcal{A}_{Φ} - exemple

$$\Phi = \mathbf{X} \mathbf{a}$$

$$S_{\Phi} = \{\mathbf{a}, \neg \mathbf{a}, \mathbf{X}\mathbf{a}, \neg \mathbf{X}\mathbf{a}\}$$

$$Q_{1} = \{\mathbf{a}, \mathbf{X}\mathbf{a}\},$$

$$Q_{2} = \{\mathbf{a}, \neg \mathbf{X}\mathbf{a}\}$$

$$Q_{3} = \{\neg \mathbf{a}, \mathbf{X}\mathbf{a}\}$$

$$Q_{4} = \{\neg \mathbf{a}, \neg \mathbf{X}\mathbf{a}\}$$

$$Q_{4} = \{\neg \mathbf{a}, \neg \mathbf{X}\mathbf{a}\}$$

$${a}{a}{-a}...$$
 ${\neg a}{a}{a}...$ ${a}{a}...$

Construction de \mathcal{A}_{Φ} - exemple

 $\{\neg a, Xa\}$

{¬a,¬**X**a}

82

Construction de \mathcal{A}_{φ} - exemple

On remarque ici que on ne peut jamais aller d'un état contenant φ à un état contenant $\neg \varphi$...

83

Constru $\{a,b\}\{a,b\}\{a,\neg b\}\{a,\neg b\}\{a,\neg b\}\{\neg a,\neg b\}\{\neg a,b\}\dots$ $\phi = G (a \Rightarrow F b)$ $q_1 = \{a,b,Fb,a\Rightarrow Fb,\phi\},$ $q_3 = \{a,\neg b,Fb,a\Rightarrow Fb,\phi\},$ $q_6 = \{\neg a,b,Fb,a\Rightarrow Fb,\phi\},$ $q_8 = \{\neg a,\neg b,Fb,a\Rightarrow Fb,\phi\},$ $q_{10} = \{\neg a,\neg b,\neg Fb,a\Rightarrow Fb,\phi\},$

attente d'un b

{¬a,b}

 $\{\neg a, \neg b\}$