LISTA 1

- 1) Fie M o mulțime, $\mathcal{P}(M)$ mulțimea submulțimilor sale și \triangle **diferența simetrică**, adică pentru $X,Y\subseteq M$ avem $X\triangle Y=(X\setminus Y)\cup (Y\setminus X)$. Să se arate că $(\mathcal{P}(M),\triangle)$ este un grup.
- 2) Fie $x, y \in \mathbb{R}$ si x * y = xy 5x 5y + 30. Este $(\mathbb{R}, *)$ grup? Dar $(\mathbb{R} \setminus \{5\}, *)$?
- 3) Fie $G = (-1, 1), x, y \in G$ şi

$$(*) x * y = \frac{x+y}{1+xy}.$$

Să se arate că:

- i) egalitatea (*) definește o operație * peG și (G, *) este un grup abelian;
- ii) între grupul multiplicativ al numerelor reale pozitive (\mathbb{R}_+^*,\cdot) și (G,*) există un izomorfism $f:\mathbb{R}_+^*\to G$ de forma $f(x)=\frac{\alpha x-1}{x+1}$.
- 4) Fie (G,\cdot) un grup și $a,b\in G$ astfel încât ab=ba. Arătați că

$$a^m b^n = b^n a^m, \ \forall m, n \in \mathbb{Z}.$$

- 5) Fie (G,\cdot) un grup finit şi $\emptyset \neq H \subseteq G$. Să se arate că H este un subgrup în G dacă şi numai dacă H este parte stabilă în (G,\cdot) .
- 6) Să se arate că $H \subseteq \mathbb{Z}$ este subgrup al lui $(\mathbb{Z}, +)$ dacă și numai dacă există un unic $n \in \mathbb{N}$ astfel încât $H = n\mathbb{Z}$.
- 7) Fie (G,\cdot) un grup și $f,g:G\to G,\, f(x)=x^{-1},\, g(x)=x^2.$ Să se arate că:
- i) f este o bijecție;
- ii) f este automorfism dacă şi numai dacă (G, \cdot) este abelian;
- iii) g este omomorfism dacă și numai dacă (G, \cdot) este abelian.
- 8) Să se arate că există un singur omomorfism de la grupul $(\mathbb{Q}, +)$ la grupul $(\mathbb{Z}, +)$.
- 9) Fie $n \in \mathbb{N}$, $n \geq 2$. Să se arate că există un singur omomorfism de la grupul $(\mathbb{Z}_n, +)$ la grupul $(\mathbb{Z}, +)$.
- 10) Să se determine automorfismele grupului $(\mathbb{Z}, +)$.
- 11) Să se arate că dacă $f: \mathbb{Q} \to \mathbb{Q}$ este un endomorfism al grupului $(\mathbb{Q}, +)$ atunci

$$f(x) = f(1) \cdot x, \ \forall x \in \mathbb{Q},$$

adică f este o translație a lui (\mathbb{Q}, \cdot) și că orice translație a lui (\mathbb{Q}, \cdot) este un endomorfism al lui $(\mathbb{Q}, +)$. Să se determine apoi automorfismele lui $(\mathbb{Q}, +)$.

1