Week 9: Knowledge Based RSs - Part I

CSX4207/ITX4207: Decision Support and Recommender Systems ITX4287: Selected Topic in Decision

Support and Recommender Systems

Asst. Prof. Dr. Rachsuda Setthawong

Objectives

- To understand the concept of knowledge based filtering approach
- To understand the necessity for this recommendation approach.
- To understand main advantages of knowledge-based recommender systems
- To be familiar with a widely used knowledge-based recommendation algorithm

Outlines

- Main idea and definition of knowledge based filtering
- Motivation and main advantages of knowledge-based recommender systems
- A Constraint Satisfaction Problem (CSP)
- Using Defaults
- Knowledge-based recommendation algorithm
 - Constraint based

Main Idea

- To match user requirements with item's features.
- To use user interaction to refine recommendations.
- To predict which items the current user will most probably like.

How to Generate Recommendation Using Knowledge Based Filtering Approach

Knowledge based: "Tell me what *fits* my needs."

Definition

• "Recommenders that *rely on knowledge sources* NOT exploited by collaborative and content-based approaches are by default defined as knowledge-based recommenders" – *Burke* (2000) and *Felfernig and Burke* (2008)

Motivations

- Situations that collaborative and content-based recommender algorithms do NOT work well:
 - Low number of available ratings (e.g., buying a house)
 - Time spans (e.g., outdate ratings of technology-related items)

- Remark: *Explicit* requirements are needed.
 - E.g.,
 - The max. price of the car is x.
 - The color should be black.

Main Advantages of Knowledge-based Recommender Systems

Limitation in collaborative based RS — No ratings required

Recommendations are calculated independently of

Limitation in content-based RS — No ramp-up problems

- Exploit customer requirements and items' feature.
- Highly interactive to the user

Goal

• Suggest items from a catalog that match the user's preferences or hard requirements.

Id	Price (€)	Mpix	Opt-zoom	LCD- size	Movies	Sound	Waterproof
p1	148	8	4X	2.5	no	no	yes
p 2	182	8	5x	2.7	yes	yes	no
р3	189	8	10X	2.5	yes	yes	no
p4	196	10	12X	2.7	yes	no	yes
p5	151	7.1	3x	3.0	yes	yes	no
p6	199	9	3x	3.0	yes	yes	no
p 7	259	10	3x	3.0	yes	yes	no
p8	278	9.1	10X	3.0	yes	yes	yes

Digital camera dataset

Asst. Prof. D**RaRhshda**da Setthawong Jiamthapthaksin, Ph.D.

Knowledge Representation and Reasoning

- How to represent user's requirements and domain knowledge to build a knowledge-based RS
 - Representation of user's requirements:
 - Desired values or value ranges for an item's features.
 - E.g.,
 - The **price** should be *lower than 300€*.
 - The **usage** of camera is for *sports photography*.

Basic Types of Knowledge-based Recommender Systems

- Constraint-based
- Case-based

A Constraint Satisfaction Problem (CSP)

- Given a-tuple (V, D, C) where
 - V is a set of variables
 - D is a set of finite domains for these variables
 - C is a set of *constraints* that describes the combinations of values the variables can simultaneously take.

• Goal: Assign a value to each variable in V in a way that all constraints are satisfied.

A Recommender's Knowledge Base (V)

- $V = V_c \cup V_{PROD}$
 - Requirements of potential customer (V_c)
 - Product properties (V_{PROD})
 - Example,

	Requirement / product property	Domain (D)
V_{c}	{max-price, usage, photography}	(01000) (digital, small-print, large-print) (sports, landscape, portrait, macro)
V _{PROD}	{price, mpix, opt-zoom, lcd-size, movies, sound, waterproof}	(01000) (3.012.0) (4x12x) (2.53.0) (yes, no) (yes, no) (yes, no)

A Recommender's Knowledge Base (V) - Cont.

- $V = V_c \cup V_{PROD}$
 - Requirements of potential customer (V_c)
 - Product properties (V_{PROD})

- May NOT be the SAME variables
- May need Compatibility/Filter constraints for mapping V_c to V_c or V_c to V_{PROD}

Example,

	Requirement / product property	Domain (D)
V_{c}	{max-price, usage, photography}	(01000) (digital, small-print, large-print) (sports, landscape, portrait, macro)
V_{PROD}	{price, mpix, opt-zoom, lcd-size, movies, sound, waterproof}	(01000) (3.012.0) (4x12x) (2.53.0) (yes, no) (yes, no) (yes, no)

Three Sets of Constraints (C)

- $(C = C_R \cup C_F \cup C_{PROD})$
 - Compatibility constraints (C_R)
 - Derive customer properties
 from existing ones
 - Filter constraints (C_F)
 - Derive product properties
 from customer properties
 - Product constraints (C_{PROD})
 - Currently availableproducts in form of constraints

Example,

```
C_R {usage=large-print \rightarrow max-price > 200}

\begin{array}{ccc} customer \\ property \end{array} property
```

```
\begin{array}{ccc} C_{F} & & \{ \text{usage=large-print} \rightarrow \mathbf{mpix} > \mathbf{5.0} \} \\ \hline customer & product \\ property & property \\ \end{array}
```

```
C_{PROD} \quad \{ \begin{array}{ll} (\text{id=p1} \land \text{price=148} \land \text{mpix=8.0} \land \\ & \text{opt-zoom=4} \land \text{lcd-size=2.5} \land \\ & \text{Movies=no} \land \text{sound=no} \land \\ & \text{waterproof=yes}) \\ & \checkmark ... \lor \\ & (\text{id=p8} \land \text{price=278} \land \text{mpix=9.1} \land \\ & \text{opt-zoom=10} \land \text{lcd-size=3.0} \land \\ \end{array} \right.
```

waterproof=yes) }

Movies=yes ∧ sound=yes ∧

The Customer Requirements (REQ)

• Encoded as unary constraints over the variables in V_c and V_{PROD}

Example,

```
REQ { max-price=300,
usage=large-print,
photography=sports }
```

Defining Knowledge Based Recommendation Problem as a CSP Problem

- Given: CSP ($V = V_c \cup V_{PROD}$, $D, C = C_R \cup C_F \cup C_{PROD} \cup REQ$)
- Find: A consistent recommendation (RES) wrt CSP
- Example,

```
RES {max-price=300,

Usage=large-print,

photography =sports,

id=p8,

price=278, mpix=9.1,

opt-zoom=10, lcd-size=3.0,

Movies=yes, sound=yes,

waterproof=yes}
```

REQ

 C_{PROD}

A Simple Approach - Conjunctive Queries

- View the item selection (σ) problem as a data filtering task.
 - Construct a conjunctive query (a database query with a set of selection criteria connected *conjunctively*.)
 - E.g., REQ {usage=large-print, waterproof=yes}
 - Apply also constraints (C_R, C_F) if provided:

{usage=large-print
$$\rightarrow$$
 max-price > 200}

{usage=large-print
$$\rightarrow$$
 mpix > 5.0}

$$\sigma_{[mpix > 5.0, price > 200, waterproof = `yes']}(P) = \{p8\}$$

Id	Price (€)	M- pix	Opt- zoo m	LC D- siz e	Mov -ies	Sou nd	Waterp roof
p1	148	8	4x	2.5	no	no	yes
p2	182	8	5x	2.7	yes	yes	no
р3	189	8	10X	2.5	yes	yes	no
p4	196	10	12X	2.7	yes	no	yes
p 5	151	7.1	3x	3.0	yes	yes	no
p6	199	9	3x	3.0	yes	yes	no
p 7	259	10	3x	3.0	yes	yes	no
p8	278	9.1	10x	3.0	yes	yes	yes

Ranking Recommended Items

- What if multiple items are retrieved wrt potential user's requirements?
 - E.g., REQ {max-price<200}
 - How to rank them?
 - using similarity measure

Id	Price (€)	Mpi x	Opt- zoo m	LC D- siz e	Mo vie s	So un d	Water proof
p1	148	8	4x	2.5	no	no	yes
p 2	182	8	5x	2.7	yes	yes	no
р3	189	8	10X	2.5	yes	yes	no
p4	196	10	12X	2.7	yes	no	yes
P5	151	7.1	3x	3.0	yes	yes	no
p6	199	9	3x	3.0	yes	yes	no
p7	259	10	3x	3.0	yes	yes	no
p8	278	9.1	10X	3.0	yes	yes	yes

Case-based Recommendation Approach

• Similarity measure used to retrieve and rank items wrt user's requirements:

$$similarity(p,REQ) = \frac{\sum_{r \in REQ} w_r * sim(p,r)}{\sum_{r \in REQ} w_r}$$

- where,
 - p: a product (item)
 - r: the requirement ($r \in REQ$)
 - $\label{eq:simprob} \ ^{\text{$_{\!\!\!\!-}$}} \ sim(p,\,r): the \ similarity \ between \ an \ \emph{item attribute value} \ \phi_r(p) \ to \ \emph{the}$ $\emph{customer requirement} \ r \in REQ$
 - w_r: the important *weight for requirement* r

sim(p, r)

Note: user's requirement may be represented as value's range.

More-is-better (MIB) properties

$$sim(p,r) = \frac{\phi_r(p) - \min(r)}{\max(r) - \min(r)}$$

p: a product (item)

r: the requirement (attribute value) ($r \in REQ$)

Less-is-better (LIB) properties

 $\phi_r(p)$: an item attribute value for $r \in REQ$

$$sim(p,r) = \frac{\max(r) - \phi_r(p)}{\max(r) - \min(r)}$$

Alternative similarity measure

 $sim(p,r) = 1 - \frac{|\phi_r(p) - r|}{\max(r) - \min(r)}$

Certain attr. value from the user

Attribute Examples for sim(p, r)

• More-is-better (MIB) properties

$$sim(p,r) = \frac{\phi_r(p) - \min(r)}{\max(r) - \min(r)}$$

Mega-pixel of a digital camera

Less-is-better (LIB) properties

$$sim(p,r) = \frac{\max(r) - \phi_r(p)}{\max(r) - \min(r)}$$

Price of an item

Alternative similarity measure

$$sim(p,r) = 1 - \frac{|\phi_r(p) - r|}{\max(r) - \min(r)}$$

Released year of a movie

An Example of Cases and Similarities

- REQ = {mpix≥9, 150≥price≤300}
- Calculate

$$sim_{MIB}(p4, r_{mpix}) = (10-9)/(10-9) = 1$$

$$sim_{LIB}(p4, r_{price}) = (300-196)/(300-150) = 0.693$$

Suppose that mpix and price have equal weight,
 similarity(p4, REQ)

$$= \frac{(w_{mpix}*sim(p4,r_{mpix})+(wpric_{e}*sim(p4,rprice)))}{w_{mpix}+w_{price}}$$
$$= [(0.5*1)+(0.5*0.693)] / 1 = 0.8465$$

- similarity(p7, REQ) = ?
- Rank the suggested items?

$$similarity(p,REQ) = \frac{\sum_{r \in REQ} w_r * sim(p,r)}{\sum_{r \in REQ} w_r}$$

Id	Price (€)	Mpi x	Opt - zoo m	LC D- siz e	M ovi es		Wate rpro of
p4	196	10	12X	2.7	yes	no	yes
p 7	259	10	3x	3.0	yes	yes	no

MIB:
$$sim(p,r) = \frac{\phi_r(p) - \min(r)}{\max(r) - \min(r)}$$

LIB:
$$sim(p,r) = \frac{\max(r) - \phi_r(p)}{\max(r) - \min(r)}$$

Interacting with Constraint-based Recommenders (Steps)

The user specifies his/her initial preferences

Form and question/answer

A set of *matching* items and explanation (optional) are presented to the user

The user may revise his/her requirements.

Narrow down/ See alternative solution

Using Defaults During Recommendation Process

• For naïve user who doesn't know about features of items, using defaults will give him/her a reasonable suggestion

• Side effect: Ethical issue since it may lead the user to choose certain options. (e.g., select items with over specification)

Ways to Generate Defaults

Static defaults

- One default per customer property
- E.g., default(usage) = large-print

Dependent defaults

- One default per different combinations of potential customer requirements
- E.g., default(max-price (usage=small-print)) = 300

Derived defaults

Exploit existing interaction logs for the automated derivation of default values

An Example of Derived Defaults

Customer Interaction Log

A new user

custo	mer (user)	price	opt-zoom	lcd-size
cu ₁	1	400	10X	3.0
cu_2		300	10X	3.0
cu_3		150	4X	2.5
cu ₄		200	5x	2.7
cu_5		200	5x	2.7
	prico-400	ont-zoom -2		
•	price=400	opt-zoom _{default} =?		
	(00)			

Alternatives for Derived Defaults: 1-Nearest neighbor

• Most similar entry in the *interactive log* to the user's REQ

$$similarity(p,REQ) = \frac{\sum_{r \in REQ} w_r * sim(p,r)}{\sum_{r \in REQ} w_r}$$

• E.g., REQ = $\{r1: price=150, r2: opt-zoom=4x\};$

- C	raurt		
customer (user)	price	opt-zoom	lcd- size
cu ₁	400	10X	3.0
cu_2	300	10X	3.0
cu ₃	150	4X	2.5
cu ₄	200	5x	2.7
cu ₅	200	5x	2.7

Lcd-size_{default}=?

A user

Alternatives for Derived Defaults: Weighted Majority Voter

• The default value is based on the **majority voting** of neighbor items (k-NN).

$$similarity(p, REQ) = \frac{\sum_{r \in REQ} w_r * sim(p, r)}{\sum_{r \in REQ} w_r}$$

- E.g., REQ = {r1:price=400};
- opt-zoom_{default} = ?

customer (user)	price	opt-zoom	lcd- size
cu ₁	400	10X	3.0
cu_2	300	10X	3.0
cu_3	150	4X	2.5
cu ₄	200	5x	2.7
cu ₅	200	5x	2.7

A user

For n=3,
$$3-NN(REQ)=\{cu_1, cu_2, cu_4\}$$
 Majority Voting = Max(10x, 10x, 5x) opt-zoom_{default}=10x

A Major Problem with Using 1-NN and Weighted Majority Voters for Derived Defaults

CANNOT guarantee that the result is a non-empty set.

customer (user)	price	opt- zoom	lcd- size
cu ₁	400	10X	3.0
$\mathrm{cu}_{\scriptscriptstyle 2}$	300	10x	3.0
cu_3	150	4x	2.5
cu ₄	200	5 X	2. 7
cu ₅	200	5 X	2.7

Id	Price (€)	Mpix	Opt- zoom	LCD- size	Movies	Sound	Waterproof
p1	148	8	4x	2.5	no	no	yes
p2	182	8	5x	2. 7	yes	yes	no
р3	189	8	10X	2.5	yes	yes	no
p 4	196	10	12X	2. 7	yes	no	yes
p5	151	7.1	3x	3.0	yes	yes	no
p6	199	9	3x	3.0	yes	yes	no
p 7	259	10	3x	3.0	yes	yes	no
p8	278	9.1	10x	3.0	yes	yes	yes

Soln. slide 35

Selecting the Next Questions (Propose *Default* for Next Property) - Approach 1

- E.g., what is the first recommended PROPERTY interested by the user?
- Pre-condition: user interaction log is available.
- Approach 1: using the principle of frequent usage (popularity)

$$popularity(attribute,pos) = \frac{\#selections(attr,pos)}{\#sessions}$$

Sess- ion- id	pos:1	pos:2	pos:3	pos:4	pos:5	pos:6	•••
1	price	opt-zoom	mpix	movies	lcd-size	sound	
2	price	opt-zoom	mpix	movies	lcd-size	-	
3	price	Mpix	opt-zoom	lcd-size	movies	sound	
4	mpix	price	opt-zoom	lcd-size	movies	-	
5	mpix	price	lcd-size	opt-zoom	movies	sound	

popularity(price, pos:1)=3/5 =0.6

popularity(mpix, pos:1)=2/5 =0.4

Selecting the Next Questions (Propose *Default* for Next Property) - Approach 2

- E.g., *Given current REQ* contains properties {price, opt-zoom}, what is the **next** recommended PROPERTY interested by the user?
- Pre-condition: user interaction log is available.
- Approach 2: using the weighted majority voters

Sess- ion- id	pos:1	pos:2	pos:3	pos:4	pos:5	pos:6	•••
1	price	opt-zoom	mpix	movies	lcd-size	sound	
2	price	opt-zoom	mpix	movies	lcd-size	-	
3	price	Mpix	opt-zoom	lcd-size	movies	sound	
4	mpix	price	opt-zoom	lcd-size	movies	-	
5	mpix	price	lcd-size	opt-zoom	movies	sound	

Previous selection of the current user = {price, opt-zoom} 2-NN={1,2} Next property (pos:3) =mpix

Dealing with Unsatisfiable Requirements and Empty Result Sets - 1/2

- E.g., Given
 - \square REQ = {
 - r1: price <= 150,
 - r2: opt-zoom = 5x,
 - r_3 : sound = yes,
 - r4: waterproof = yes}
 - $P = \{p_1, p_2, p_3, p_4, p_5, p_6, p_7, p_8\}$

Id	Price (€)	Mpi x	Opt - zoo m	LC D- siz e	M ovi es	So un d	Wate rpro of
p1	148	8	4x	2.5	no	no	yes
p 2	182	8	5x	2.7	yes	yes	no
р3	189	8	10X	2.5	yes	yes	no
p4	196	10	12X	2.7	yes	no	yes
p 5	151	7.1	3x	3.0	yes	yes	no
p6	199	9	3x	3.0	yes	yes	no
p 7	259	10	3x	3.0	yes	yes	no
p8	278	9.1	10X	3.0	yes	yes	yes

- IF: $\sigma_{\text{[price <= 150, opt-zoom = 5x, sound = yes, waterproof = yes]}}(P) = \emptyset$
- Solution: Relax constraints until the recommended product is met.

Dealing with Unsatisfiable Requirements and Empty Result Sets - 2/2

• **Assumption**: user's requirements V_C are *directly related* to item properties V_{PROD} .

- Basic idea: identifying and resolving requirements-immanent conflicts induced by the set of product P.
 - Step 1: provide the user a minimal set of requirements, once changed, leading to a solution.
 - Step 2: propose the adaptations of the initial requirements that guarantee a solution.

Step 1: Model-based Diagnosis (MBD) - 1/2

- The basis for automatically identification and repair of *minimal* sets of *faulty* requirements
 - The diagnosis task is to identify $r \in REQ$ that may cause solution-not-found.
 - Output: A diagnosis (d) is a minimal set of users
 requirements whose repair (adaptation) will allow the
 retrieval of a recommendation.
 - So that, once repair, at least one solution is found: $\sigma[_{REQ-d}](P)\neq\emptyset$

Step 1: Model-based Diagnosis (MBD) - 2/2

Given

$$P = \{p_1, p_2, ..., p_n\}$$

$$REQ = \{r_1, r_2, ..., r_m\}$$

• Goal: Calculate a set of diagnoses $\Delta = \{d_1, d_2, ..., d_k\}$, where $\sigma[_{REQ-di}](P) \neq \emptyset \ \forall d_i \in \Delta$

• Finding diagnoses $d_i \in \Delta$ is based on the determination and resolution of conflict sets.

Conflict Set (CS)

• A subset $\{r_1, r_2, ..., r_l\} \subseteq REQ$, s.t. $\sigma_{[CS]}(P) = \emptyset$

• Is Minimal iff there does NOT exist a CS' with CS' \subset CS.

Revisiting the Problem:

Dealing with unsatisfiable requirements and empty result sets

- E.g., Given
 - \square REQ = {
 - r1: price <= 150,
 - r2: opt-zoom = 5x,
 - r_3 : sound = yes,
 - r4: waterproof = yes}
 - $P = \{p_1, p_2, p_3, p_4, p_5, p_6, p_7, p_8\}$

Id	Pri ce (€)	Mp ix	Opt- zoom	LCD- size	Mov ies	Sou nd	Waterpro of
p1	148	8	4x	2.5	no	no	yes
p2	182	8	5x	2.7	yes	yes	no
р3	189	8	10x	2.5	yes	yes	no
p 4	196	10	12X	2.7	yes	no	yes
p 5	151	7.1	3x	3.0	yes	yes	no
p6	199	9	3x	3.0	yes	yes	no
p 7	259	10	3x	3.0	yes	yes	no
p8	278	9.1	10x	3.0	yes	yes	yes

- IF: $\sigma_{\text{[price <= 150, opt-zoom = 5x, sound = yes, waterproof = yes]}}(P) = \emptyset$
- Solution: Finding 1.1) the Minimal Conflict Set (CS), then used it to find 1.2) Diagnoses $d_i \in \Delta$ and propose them to the user (for relaxing user requirements)

Step 1.1: Finding the Minimal Conflict Set (CS)

- Given
 - □ REQ = {
 - r1: price <= 150,
 - r2: opt-zoom = 5x,
 - r3: sound = yes,
 - r4: waterproof = yes}

Id	Price (€)	Mpix	Opt- zoom	LCD- size	Mov ies	Sound	Water proof
p1	148	8	4x	2.5	no	no	yes
p 2	182	8	5x	2.7	yes	yes	no
р3	189	8	10x	2.5	yes	yes	no
p4	196	10	12X	2.7	yes	no	yes
p5	151	7.1	3x	3.0	yes	yes	no
p6	199	9	3x	3.0	yes	yes	no
p 7	259	10	3x	3.0	yes	yes	no
p8	278	9.1	10x	3.0	yes	yes	yes

- $CS1 = \{r_1, r_2\}, \sigma_{[CS1]}(P) = \emptyset$
- $CS_2 = \{r_2, r_4\}, \ \sigma_{[CS_2]}(P) = \emptyset$
- $CS_3 = \{r_1, r_3\}, \ \sigma_{[CS_3]}(P) = \emptyset$

QUICKXPLAIN (P, REQ)

Find the conflict set (CS).

```
Input: trusted knowledge (items) P; Set of requirements REQ
Output: minimal conflict set CS
if \sigma_{[REO]}(P) \neq \emptyset or REQ = \emptyset then return \emptyset
else return QX'(P, \emptyset, \emptyset, REQ);
Function QX'(P, B, \Delta, REQ)
if \Delta \neq \emptyset and \sigma_{[B]}(P) = \emptyset then return \emptyset;
if REQ = \{r\} then return \{r\};
let \{r_1, ..., r_n\} = REQ;
let k be n/2;
REQ_1 \leftarrow r_1, ..., r_k and REQ_2 \leftarrow r_{k+1}, ..., r_n;
\Delta_{2} \leftarrow QX'(P, B \cup REQ_{1}, REQ_{1}, REQ_{2});
\Delta_1 \leftarrow QX'(P, B \cup \Delta_2, \Delta_2, REQ_2);
return \Delta_1 \cup \Delta_2;
```

Step 1.2: Calculating Diagnoses di

Conflict set: CS1 = $\{r_1, r_2\}$, CS2 = $\{r_2, r_4\}$, CS3 = $\{r_1, r_3\}$

- Calculated by resolving conflicts in the given set of requirements.
 - By deleting one of the elements from CS.
 - Obtaining a corresponding diagnosis (an outcome)
- From the example,

 $\Delta = \{ d_1: \{r_1, r_2\}, \}$

$$\begin{aligned} d_2: &\{r_1, r_4\}, \\ d_3: &\{r_2, r_3\} \ \ \} \\ &\text{REQ} = \{ \\ &\text{r1: price} <= 150, \\ &\text{r2: opt-zoom} = 5x, \\ &\text{r3: sound} = \text{yes}, \\ &\text{r4: waterproof} = \text{yes} \} \end{aligned}$$

			•			Ü	O
Id	Price (€)	Mpix	Opt- zoom	LCD- size	Mov ies	Sound	Water proof
p1	148	8	4x	2.5	no	no	yes
p2	182	8	5x	2.7	yes	yes	no
р3	189	8	10X	2.5	yes	yes	no
p4	196	10	12X	2.7	yes	no	yes
p 5	151	7.1	3x	3.0	yes	yes	no
p6	199	9	3x	3.0	yes	yes	no
p 7	259	10	3x	3.0	yes	yes	no
p8	278	9.1	10x	3.0	yes	yes	yes

Step 2: Proposing Repairs for Unsatisfiable Requirements

Derive alternative repair action by querying the product table P with

$$\prod_{[attributes(d)]} \sigma_{[\mathbf{REQ-d}]}(P).$$

Example: repair alternatives for the requirements in

r1

r2

r3

r4

repair	price	opt-zoom	sound	waterproof	$\Delta = \{$
repair1	278	10X	V	$\sqrt{}$	$d_1:\{r_1, r_2\},$
repair2	182	1	1	no	$d_2:\{r_1, r_4\},$
repair3	\checkmark	4x	no	1	$d_3:\{r_2, r_3\}$

1	= {
	$d_1:\{r_1, r_2\},$
	$d_2:\{r_1, r_4\},$
	$d_{o}:\{r_{o}, r_{o}\}$

Atfer repair	Recom- mended ID	Price (€)	Mpix	Opt- zoom	LCD -size	Movies	Sound	Waterproof
repair1	p8	278	9.1	10x	3.0	yes	yes	yes
repair2	p2	182	8	5x	2.7	yes	yes	no
repair3	p1	148	8	4X	2.5	no	no	yes

Relaxed constraints

 $\sqrt{\cdot}$: matched constraints

Better Solution: MINRELAX(P, REQ)

- Find a complete set of diagnoses (integrating the steps 1.1 and 1.2)
 - NO explicit conflict sets extraction is required.

```
ALGORITHM: MinRelax
In: A query Q, a product catalog P
Out: Set of minimal relaxations minRS for Q
\overline{\text{MinRS}} = \emptyset
forall p_i \in P do
    PSX = Compute the product-specific relaxation <math>PSX(Q, p_i)
   % Check relaxations that were already found
   SUB = \{ r \in MinRS \mid r \subset PSX \}
   if SUB \neq \emptyset
       % Current relaxation is superset of existing relaxation
       continue with next p_i
    endif
   SUPER = \{r \in MinRS \mid PSX \subset r\}
   if SUPER \neq \emptyset
       % Remove supersets
       MinRS = MinRS \setminus SUPER
   endif
   % Store the new relaxation
   MinRS = MinRS \cup \{PSX\}
endfor
return MinRS
```

Fig. 4. Algorithm for determining all minimal relaxations.

Product-Specific-Relaxation (PSXs)'s Idea

_	ID	USB	Firewire	Price	Resolution	Make
	p1	true	false	400	5 MP	Canon
	p2	false	true	500	5 MP	Canon
	рЗ	true	false	200	4 MP	Fuji
	p4	false	true	400	5 MP	HP

Fig. 2. Product database of digital cameras.

ID	p1	p2	р3	p4			
Q1	1	0	1	0			
Q2	0	1	0	1			
Q3	0	0	1	0			
Q4	1	/1	0	1			
Product-specific relaxation for p1							

Fig. 3. Evaluating the subqueries individually.

Let the user's query consist of the following requirements (atoms) which results in a theoretical search space of $2^4 = 16$ combinations of atoms.

$$Q = \{ \text{ usb} = \text{true (Q1)}, \text{ firewire} = \text{true (Q2)}, \text{ price} < 300 (Q3), \\ \text{resolution} >= 5 \text{ MP (Q4)} \}$$

The list of product-specific-relaxation (PSXs) = $\{\{Q_2,Q_3\},\{Q_1,Q_3\},\{Q_1,Q_3\}\}\}$ The set of *minimal* relaxation is $\{\{Q_1,Q_3\},\{Q_2,Q_4\}\}\}$ (Duplicated PSX)

Example - MINRELAX(P, REQ) 1/9

```
REQ: {
r1: price <= 150,
r2: opt-zoom = 5x,
r3: sound = yes,
r4: waterproof = yes}
```

Id	Price (€)	Opt- zoom	Sound	Waterproof	product-specific- relaxation (PSXs)
p1	148	4x	no	yes	{r2, r3}
p 2	182	5x	yes	no	{r1, r4}
р3	189	10x	yes	no	{r1, r2, r4}
p4	196	12X	no	yes	{r1, r2, r3}
p5	151	3x	yes	no	{r1, r2, r4}
p6	199	3x	yes	no	{r1, r2, r4}
p 7	259	3x	yes	no	{r1, r2, r4}
p8	278	10x	yes	yes	{r1, r2}

Example - MINRELAX(P, REQ) 2/9

```
Algorithm: MinRelax
In: A query Q, a product catalog P
Out: Set of minimal relaxations minRS for Q
MinRS = \emptyset
forall p_i \in P do
    PSX = Compute the product-specific relaxation <math>PSX(Q, p_i)
   % Check relaxations that were already found
   SUB = \{r \in MinRS \mid r \subset PSX\}
   if SUB \neq \emptyset
       % Current relaxation is superset of existing relaxation
       continue with next p_i
   endif
   SUPER = \{r \in MinRS \mid PSX \subset r\}
   if SUPER \neq \emptyset
       % Remove supersets
       MinRS = MinRS \setminus SUPER
   endif
   % Store the new relaxation
   MinRS = MinRS \cup \{PSX\}
endtor
```

Fig. 4. Algorithm for determining all minimal relaxations.

return MinRS

```
product-specific-relaxation
Id
        (PSXs)
        {r2, r3}
p1
        {r1, r4}
p2
        {r1, r2, r4}
р3
        {r1, r2, r3}
p4
        {r1, r2, r4}
p5
        {r1, r2, r4}
р6
        {r1, r2, r4}
p7
        {r1, r2}
p8
```

$$PSX(p1) = \{r2, r3\}$$

$$SUB = \emptyset, SUPER = \emptyset$$

$$MinRS = \{\{r2, r3\}\}$$

Example - MINRELAX(P, REQ) 3/9

```
Algorithm: MinRelax
In: A query Q, a product catalog P
Out: Set of minimal relaxations minRS for Q
MinRS = \emptyset
forall p_i \in P do
    PSX = Compute the product-specific relaxation <math>PSX(Q, p_i)
   % Check relaxations that were already found
   SUB = \{r \in MinRS \mid r \subset PSX\}
   if SUB \neq \emptyset
       % Current relaxation is superset of existing relaxation
       continue with next p_i
   endif
   SUPER = \{r \in MinRS \mid PSX \subset r\}
   if SUPER \neq \emptyset
       % Remove supersets
       MinRS = MinRS \setminus SUPER
   endif
   % Store the new relaxation
   MinRS = MinRS \cup \{PSX\}
endfor
```

Fig. 4. Algorithm for determining all minimal relaxations.

return MinRS

```
product-specific-relaxation
Id
        (PSXs)
        {r2, r3}
p1
        {r1, r4}
p2
        {r1, r2, r4}
р3
        {r1, r2, r3}
p4
        {r1, r2, r4}
p5
        {r1, r2, r4}
р6
        {r1, r2, r4}
p7
        {r1, r2}
p8
```

$$PSX(p2) = \{r1, r4\}$$

 $SUB = \emptyset$, $SUPER = \emptyset$
 $MinRS = \{ \{r2, r3\}, \{r1, r4\} \}$

Example - MINRELAX(P, REQ) 4/9

```
Algorithm: MinRelax
In: A query Q, a product catalog P
Out: Set of minimal relaxations minRS for Q
MinRS = \emptyset
forall p_i \in P do
    PSX = Compute the product-specific relaxation <math>PSX(Q, p_i)
   % Check relaxations that were already found
   SUB = \{r \in MinRS \mid r \subset PSX\}
   if SUB \neq \emptyset
       % Current relaxation is superset of existing relaxation
       continue with next p_i
   endif
   SUPER = \{r \in MinRS \mid PSX \subset r\}
   if SUPER \neq \emptyset
       % Remove supersets
       MinRS = MinRS \setminus SUPER
   endif
   % Store the new relaxation
   MinRS = MinRS \cup \{PSX\}
endfor
return MinRS
```

Fig. 4. Algorithm for determining all minimal relaxations.

```
Id
        product-specific-relaxation
        (PSXs)
        \{r2, r3\}
p1
        {r1, r4}
p2
        {r1, r2, r4}
p3
        {r1, r2, r3}
p4
        {r1, r2, r4}
p5
        {r1, r2, r4}
р6
        {r1, r2, r4}
p7
        {r1, r2}
p8
```

Example - MINRELAX(P, REQ) 5/9

```
Algorithm: MinRelax
In: A query Q, a product catalog P
Out: Set of minimal relaxations minRS for Q
MinRS = \emptyset
forall p_i \in P do
    PSX = Compute the product-specific relaxation <math>PSX(Q, p_i)
   % Check relaxations that were already found
   SUB = \{r \in MinRS \mid r \subset PSX\}
   if SUB \neq \emptyset
       % Current relaxation is superset of existing relaxation
       continue with next p_i
   endif
   SUPER = \{r \in MinRS \mid PSX \subset r\}
   if SUPER \neq \emptyset
       % Remove supersets
       MinRS = MinRS \setminus SUPER
   endif
   % Store the new relaxation
   MinRS = MinRS \cup \{PSX\}
endfor
return MinRS
```

Fig. 4. Algorithm for determining all minimal relaxations.

```
Id
        product-specific-relaxation
        (PSXs)
        \{r2, r3\}
p1
        {r1, r4}
p2
        {r1, r2, r4}
р3
        {r1, r2, r3}
p4
        {r1, r2, r4}
p5
        {r1, r2, r4}
р6
        {r1, r2, r4}
p7
        {r1, r2}
p8
```

Example - MINRELAX(P, REQ) 6/9

```
Algorithm: MinRelax
In: A query Q, a product catalog P
Out: Set of minimal relaxations minRS for Q
MinRS = \emptyset
forall p_i \in P do
    PSX = Compute the product-specific relaxation <math>PSX(Q, p_i)
   % Check relaxations that were already found
   SUB = \{r \in MinRS \mid r \subset PSX\}
   if SUB \neq \emptyset
       % Current relaxation is superset of existing relaxation
       continue with next p_i
   endif
   SUPER = \{r \in MinRS \mid PSX \subset r\}
   if SUPER \neq \emptyset
       % Remove supersets
       MinRS = MinRS \setminus SUPER
   endif
   % Store the new relaxation
   MinRS = MinRS \cup \{PSX\}
endfor
return MinRS
```

Fig. 4. Algorithm for determining all minimal relaxations.

```
Id
        product-specific-relaxation
        (PSXs)
        \{r2, r3\}
p1
        {r1, r4}
p2
        {r1, r2, r4}
р3
        {r1, r2, r3}
p4
        {r1, r2, r4}
p5
        {r1, r2, r4}
р6
        {r1, r2, r4}
p7
        {r1, r2}
p8
```

Example - MINRELAX(P, REQ) 7/9

```
Algorithm: MinRelax
In: A query Q, a product catalog P
Out: Set of minimal relaxations minRS for Q
MinRS = \emptyset
forall p_i \in P do
    PSX = Compute the product-specific relaxation <math>PSX(Q, p_i)
   % Check relaxations that were already found
   SUB = \{r \in MinRS \mid r \subset PSX\}
   if SUB \neq \emptyset
       % Current relaxation is superset of existing relaxation
       continue with next p_i
   endif
   SUPER = \{r \in MinRS \mid PSX \subset r\}
   if SUPER \neq \emptyset
       % Remove supersets
       MinRS = MinRS \setminus SUPER
   endif
   % Store the new relaxation
   MinRS = MinRS \cup \{PSX\}
endfor
return MinRS
```

Fig. 4. Algorithm for determining all minimal relaxations.

```
product-specific-relaxation
Id
        (PSXs)
        \{r2, r3\}
p1
        {r1, r4}
p2
        {r1, r2, r4}
р3
        {r1, r2, r3}
p4
        {r1, r2, r4}
p5
        {r1, r2, r4}
p6
        {r1, r2, r4}
p7
        {r1, r2}
p8
```

Example - MINRELAX(P, REQ) 8/9

```
Algorithm: MinRelax
In: A query Q, a product catalog P
Out: Set of minimal relaxations minRS for Q
MinRS = \emptyset
forall p_i \in P do
    PSX = Compute the product-specific relaxation <math>PSX(Q, p_i)
   % Check relaxations that were already found
   SUB = \{r \in MinRS \mid r \subset PSX\}
   if SUB \neq \emptyset
       % Current relaxation is superset of existing relaxation
       continue with next p_i
   endif
   SUPER = \{r \in MinRS \mid PSX \subset r\}
   if SUPER \neq \emptyset
       % Remove supersets
       MinRS = MinRS \setminus SUPER
   endif
   % Store the new relaxation
   MinRS = MinRS \cup \{PSX\}
endfor
return MinRS
```

Fig. 4. Algorithm for determining all minimal relaxations.

```
product-specific-relaxation
Id
        (PSXs)
        \{r2, r3\}
p1
        {r1, r4}
p2
        {r1, r2, r4}
р3
        {r1, r2, r3}
p4
        {r1, r2, r4}
p5
        {r1, r2, r4}
р6
        {r1, r2, r4}
p7
        {r1, r2}
p8
```

Example - MINRELAX(P, REQ) 9/9

```
Algorithm: MinRelax
In: A query Q, a product catalog P
Out: Set of minimal relaxations minRS for Q
MinRS = \emptyset
forall p_i \in P do
    PSX = Compute the product-specific relaxation <math>PSX(Q, p_i)
   % Check relaxations that were already found
   SUB = \{r \in MinRS \mid r \subset PSX\}
   if SUB \neq \emptyset
       % Current relaxation is superset of existing relaxation
       continue with next p_i
   endif
   SUPER = \{r \in MinRS \mid PSX \subset r\}
   if SUPER \neq \emptyset
       % Remove supersets
       MinRS = MinRS \setminus SUPER
   endif
   % Store the new relaxation
   MinRS = MinRS \cup \{PSX\}
```

Fig. 4. Algorithm for determining all minimal relaxations.

return MinRS

```
product-specific-relaxation
Id
        (PSXs)
        {r2, r3}
p1
        {r1, r4}
p2
        {r1, r2, r4}
р3
        {r1, r2, r3}
p4
        {r1, r2, r4}
p5
        {r1, r2, r4}
р6
        {r1, r2, r4}
p7
       {r1, r2}
p8
```

```
PSX(p8) = \{r1, r2\}

SUB = \emptyset, SUPER = \emptyset

MinRS = \{\{r2, r3\}, \{r1, r4\}, \{r1, r2\}\}
```

Then, can further apply "Step 2: Proposing Repairs for Unsatisfiable Requirements" (slide no. 44)

Ranking the Items/Utility-based Recommendation - 1/3

- Rank recommendations before presenting them to the user.
- Based on the multi-attribute utility theory (MAUT),
 - Evaluates each item wrt its utility for the customer.
 - E.g.,

domain	Evaluation measures (dimensions)		
Digital camera	Quality, economy		
Financial services	Availability, risk, profit		

Ranking the Items/Utility-based Recommendation - 2/3

$$utility(p) = \sum_{j=1}^{\#(dimensions)} interest(j) * contribution(p, j)$$

Customer-specific preferences (*interest*) Scoring rules (for calculating *contribution*)

customer (user)	quality	economy
cu ₁	80%	20%
cu_2	40%	60%

	value	quality	economy
Price	≤250	5	10
	>250	10	5
mpix	≤8	4	10
	>8	10	6
opt-zoom	≤9	6	9
	>9	10	6
lcd-size	≤2.7	6	10
	>2.7	9	5
movies	yes	10	7
	no	3	10
sound	yes	10	8
	no	7	10
waterproof	yes	10	6
	no	8	10

Knowledge base

Example of Calculation Contribution(p_1 , j)

Id	Price (€)	Mpix	Opt- zoom	LCD- size	Mov ies	Sound	Water proof
p1	148	8	4x	2.5	no	no	yes

	value	quality	economy
Price	≤ 250	5	10
	>250	10	5
mpix	≤8	4	10
	>8	10	6
opt-zoom	≤9	6	9
	>9	10	6
lcd-size	≤ 2. 7	6	10
	>2.7	9	5
movies	yes	10	7
	no	3	10
sound	yes	10	8
	no	7	10
waterproof	yes	10	6
	no	8	10

Ranking the Items/Utility-based Recommendation - 3/3

#(dimensions)

$$utility(p) =$$

$$\sum_{j=1}^{n}$$

$$interest(j) * contribution(p, j)$$

Rank of Recommended Products

Customer-specific preferences (*interest*)

customer	quality	economy	
(user)			

cu ₁	80%	20%
cu ₂	40%	60%

From previous slide's calculation: contribution(p_1 , quality) = 41 contribution(p_1 , economy) = 65

Then, utility(p_1) for $cu_1 = (0.8*41) + (0.2*65) = 45.8$ utility(p_1) for $cu_2 = (0.4*41) + (0.6*65) = 55.4$

Product utilities for customer cu_1 and cu_2

product	aamtuihu.	aamtuihu		
product	contribu- tion(p _i , quality)	contribu- tion(p _i , economy)	utility(p _i) for cu ₁	utility(p _i) for cu ₂
p_1	41	65	45.8 <mark>[8]</mark>	55.4 <mark>[6]</mark>
p_2	49	64	52.0 [7]	58.0 [1]
p_3	53	-61	54.6 [5]	57.8 [2]
p ₄	58	55	57.4 [4]	56.2 [4]
p_5	_53	60	54.4 [6]	57.2 [3]
 p ₆	58	55	57.4 [3]	56.2 [5]
 \mathbf{p}_7	63	50	60.4[2]	55.2 [7]
p_8	69	43	63.8 [1]	53.4 [8]

Approaches for Determining a *Customer's Degree of Interest*

User-defined preferences

- The user explicitly specifies his/her preferences beforehand.
- Utility-based preferences
 - Apply the scoring rules in the table.
 - E.g., REQ = {
 r₁: price <=200,
 r₂: mpix=8.0,
 r₃: opt-zoom=10x,
 r₄: lcd-size <= 2.7 }
 Interest(quality) = 5-
 - Interest(quality) = 5+4+10+6 = 25
 - Interest(economy) = 10+10+6+10 = 36
 - Relative Interest(quality) = 25/(25+36) = 0.41
 - Relative Interest(economy) = 36/(25+36) = 0.59

Example of scoring rules

	value	quality	economy
Price	≤250	5	10
	>250	10	5
mpix	≤8 >8	4 10	10 6
opt-zoom	≤9	6	9
	> 9	10	6
lcd-size	≤ 2. 7 >2.7	6 9	10 5
movies	yes	10	7
	no	3	10
sound	yes	10	8
	no	7	10
waterproof	yes	10	6
	no	8	10