Uniwersytet Gdański Wydział Matematyki, Fizyki i Informatyki

Magia algebry liniowej

Autor:
Tomasz Kopka

Wkrocz w świat liczb...

Spis treści

Liczby zespolone						
1.1	Wstęp					
	1.1.1 Definicja					
	1.1.2 Postacie zapisu					
1.2	Zadania:					
Macierze						
	Wstęp					
2.1						
	2.1.1 Definicja					
22	Wzory					

1 Liczby zespolone

1.1 Wstęp

1.1.1 Definicja

Liczby zespolone

– liczby będące elementami rozszerzenia ciała liczb rzeczywistych o jednostkę urojoną i, tj. pierwiastek wielomianu x^2+1 (innymi słowy, jednostka urojona spełnia równanie $i^2=-1$). Każda liczba zespolona z może być zapisana w postaci z=a+bi, gdzie a,b są pewnymi liczbami rzeczywistymi, nazywanymi odpowiednio częścią rzeczywistą oraz częścią liczby z. [1]

1.1.2 Postacie zapisu

Postać algebraiczna

Każdą liczbę zespoloną z można zapisać w postaci

$$z = a + bi \tag{1}$$

Rysunek 1: Wykres a + ib = z

, gdzie a i b są pewnymi liczbami rzeczywistymi oraz i jest tzw. jednostką urojoną, tj. i jest jednym z dwóch elementów zbioru liczb zespolonych, spełniającym warunek $i^2 = -1$ (drugim elementem jest -i). Spotyka się czasami zapis $i = \sqrt{-1}$, który nie jest formalnie poprawny ze względu na fakt, że również $(-i)^2 = -1$, jest on jednak uznawany za pewien skrót myślowy i powszechnie akceptowany.

Postać z=a+bi nazywana jest postacią algebraiczną (albo kanoniczną) liczby zespolonej z.

Dla liczby z = a + bi definiuje się jej

część rzeczywistą (łac. pars realis) jako re z=a (inne oznaczenia: $\Re z$, Re z), część urojoną (łac. pars imaginaria) jako im z=b (inne oznaczenia: $\Im z$, Im z).

Przykładowo liczba 7-5i jest liczbą zespoloną, której część rzeczywista wynosi 7, a część urojona -5. Liczby rzeczywiste są utożsamiane z liczbami zespolonymi o części urojonej równej 0.

Liczby postaci z = 0 + bi nazywa się liczbami urojonymi.

Rysunek 2: Wykres

$$f(x) = \frac{(x^2 - 1)(x - 2 - i)^2}{(x^2 + 2 + 2i)}$$
 (2)

1.2 Zadania:

Zadanie 1.

Udowodnij następujące własnosci dziań w zbiorze liczb zespolonych:

- a) $\forall z_1, z_2 \in \mathbb{C} : z_1 + z_2 = z_2 + z_1$,
- b) $\forall z_1, z_2, z_3 \in \mathbb{C} : (z_1 + z_2) + z_3 = z_1 + (z_2 + z_3),$
- c) $\forall z \in \mathbb{C} : z + 0 = z$, gdzie $0 \stackrel{df}{=} (0, 0)$,
- $d) \ \forall z \in \mathbb{C} : z z = 0,$

2 Macierze

2.1 Wstęp

2.1.1 Definicja

Macierze

Macierz – w matematyce układ liczb, symboli lub wyrażeń zapisanych w postaci prostokątnej tablicy. Choć słowo "macierz" oznacza najczęściej macierz dwuwskaźnikową, to możliwe jest rozpatrywanie macierzy wielowskaźnikowych (zob. notacja wielowskaźnikowa). Macierze jednowskaźnikowe nazywa się często wektorami wierszowymi lub kolumnowymi, co wynika z zastosowań macierzy w algebrze liniowej. W informatyce macierze modeluje się zwykle za pomocą (najczęściej dwuwymiarowych) tablic. [2]

2.2 Wzory

$$\mathbf{X} = \begin{pmatrix} x_{11} & x_{12} & \dots \\ x_{21} & x_{22} & \dots \\ \vdots & \vdots & \ddots \end{pmatrix}$$
 (3)

X	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1m}x_m = b_1 \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2m}x_m = b_2 \\
\vdots \\
a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nm}x_m = b_n
\end{cases}$$
(4)

Bibliografia

- [1] mgr Tomasz Zabawa. Matematyka liczby zespolone. http://wms.mat.agh.edu.pl/~zrr/zespolone/index.htm.
- [2] Grzegorz Banaszak and Wojciech Gajda. *Elementy algebry liniowej*. Wydawnictwa Naukowo-Techniczne, Warszawa, 1 edition, 2002.