CS101 Algorithms and Data Structures Fall 2023 Homework 12

Due date: 23:59, January 16th, 2024

- 1. Please write your solutions in English.
- 2. Submit your solutions to gradescope.com.
- 3. Set your FULL name to your Chinese name and your STUDENT ID correctly in Account Settings.
- 4. If you want to submit a handwritten version, scan it clearly. CamScanner is recommended.
- 5. When submitting, match your solutions to the problems correctly.
- 6. No late submission will be accepted.
- 7. Violations to any of the above may result in zero points.
- 8. You are recommended to finish this homework with LATEX.

- 1. (0 points) Tutorial on how to prove that a particular problem is in NP-Complete To prove problem A is in NP-Complete, your answer should include:
 - 1. Prove that problem A is in NP by showing:
 - (a) What your polynomial-size certificate is.
 - (b) What your polynomial-time certifier is.
 - 2. Choose a problem B in NP-Complete to reduce from.
 - 3. Construct your polynomial-time many-one reduction f that maps instances of problem A to instances of problem B.
 - (polynomial-time many-one reduction = polynomial transformation = Karp reduction, see presenter notes of page 7 & 61 in lecture slides (.pptx file) for more details.)
 - 4. Prove the correctness of your reduction (i.e. Prove that your reduction f do map yes-instance of problem A to yes-instance of problem B and map no-instance of problem A to no-instance of problem B) by showing:
 - (a) x is a yes-instance of problem $A \Rightarrow f(x)$ is a yes-instance of problem B.
 - (b) x is a yes-instance of problem $A \leftarrow f(x)$ is a yes-instance of problem B.

(The statement above is the contrapositive of the statement "x is a no-instance of problem $A \Rightarrow f(x)$ is a no-instance of problem B.". These two statements are logically equivalent, but the one listed above would be much easier to prove.)

Proof Example

Prove that the decision version of Set-Cover is in NP-Complete. Recall that the yes-instances of the decision version of Set-Cover is:

$$\mathsf{Set\text{-}Cover} = \left\{ \langle U, S_1, \dots, S_n, k \rangle \; \middle| \; \begin{array}{l} n \in \mathbb{Z}^+, S_1, \dots, S_n \subseteq U \ \mathrm{and \ there \ exist} \ k \ \mathrm{sets} \ S_{i_1}, \dots, \\ S_{i_k} \mathrm{that \ cover \ all \ of} \ U, \ \mathrm{i.e.}, \ S_{i_1} \cup S_{i_2} \cup \dots \cup S_{i_k} = U \end{array} \right\}$$

- 1. Our certificate and certifier for Set-Cover goes as follows:
 - (a) A set of indices $\{i_1, \ldots, i_k\} \subseteq \{1, 2, \ldots, n\}$, whose size is polynomial of input size .
 - (b) Check whether $S_{i_1} \cup S_{i_2} \cup \cdots \cup S_{i_k} = U$, whose run-time is polynomial of input size.
- 2. We choose the decision version of Vertex-Cover to reduce from. Recall that the yes-instances of the decision version of Vertex-Cover is:

$$\mathsf{Vertex\text{-}Cover} = \left\{ \langle \mathsf{G}, \mathsf{k}' \rangle \; \middle| \; \begin{array}{c} \mathsf{G} \; \mathrm{is \; an \; undirected \; graph \; and \; there \; exists \; a \; set \; of} \\ \mathsf{k}' \; \mathrm{vertices \; that \; touches \; all \; edges \; in \; \mathsf{G}}. \end{array} \right\}$$

(We use k' here because k has already appeared before.)

- 3. Given an undirected graph G=(V,E) and an postive integer $k'\in\mathbb{Z}^+$, we construct $f(\langle G,k'\rangle)=\langle U,S_1,\ldots,S_n,k\rangle$ as follows:
 - (a) U = E, which represents the edges from the graph.
 - (b) Define $\mathfrak{m}=|V|$ and let $\mathfrak{n}=\mathfrak{m},$ which means the number of sets equals the number of vertices in G.

- (c) Label elements in V as $V = \{\nu_1, \nu_2, \dots, \nu_m\}$. For each $i \in \{1, \dots, m\}$, the set S_i is defined as $S_i = \{e \in E \mid e = (\nu_i, u) \text{ for some } u \in V \setminus \{\nu\}\}$. In other word, S_i is the set of edges incident to ν_i .
- (d) k = k'.

Our reduction takes polynomial time because:

- (a) Generating each S_i just takes polynomial time since each edge is visited twice (once for each endpoint).
- (b) Generating U and k trivially takes polynomial time because they are copied directly from the input.
- 4. Then we prove the correctness of our reduction as follows:
 - (a) "\(\Rightarrow\)": Let $\langle G, k' \rangle$ be a yes-instance of Vertex-Cover and let $V^* = \{\nu_{i_1}, \ldots, \nu_{i_{k'}}\}$ be the choice of k' vertices that form the vertex cover. Then for each $e \in E$, there is some ν_{i_j} ($j \in [k']$) that is an endpoint of e, which directly translates to for each $e \in U$, there is some S_{i_j} ($j \in [k']$) containing e by our construction of f. Hence, we claim that the sets $S_{i_1}, \ldots, S_{i_{k'}}$ form a set cover of size k = k' for U.
 - (b) " \Leftarrow ": Let $\langle U, S_1, \ldots, S_m, k \rangle$ be a yes-instance of Set-Cover and let $\{S_{i_1}, \ldots, S_{i_k}\}$ be the choice of k sets that form the set cover. Then for each $e \in U$, there is some S_{i_j} $(j \in [k])$ that contains e, which directly translates to for each $e \in E$, there is some v_{i_j} $(j \in [k])$ that is an endpoint of e. Hence, we claim that the sets $\{v_{i_1}, \ldots, v_{i_k}\}$ form a vertex cover of size k' = k for G.

Hence, the decision version of Set-Cover is in NP-Complete.

2. (18 points) Multiple / Single Choice(s)

This part consists of multiple choices questions ((a)-(d)) and single choice questions ((e)-(g)).

For each multiple choices question ((a)-(d)), there may be **one or more** correct choice(s). Select all the correct answer(s). For each such question, you will get 0 points if you select any wrong choice, but you will get 1 point if you select a non-empty subset of the correct choices.

For each single choice question ((e)-(g)), there is **exactly one** correct choice.

Write your answers in the following table.

2(a)	2(b)	2(c)	2(d)	2(e)	2(f)	2(g)
BD	С	AB	CD	D	A	В

- (a) (3') A problem in NP is NP-Complete if:
 - A. It can be reduced to any other NP problem in polynomial time.
 - B. Any other NP problem can be reduced to it in polynomial time.
 - C. It can be reduced to another NP-Complete problem in polynomial time.
 - D. There exists another NP-Complete problem which can be reduced to it in polynomial time.

Solution:

- B. Definition of NP-Complete in slide page 69.
- D. Proposition regarding NP-Complete in slide page 76.
- (b) (3') Given two decision problems A and B such that there exists a polynomial-time manyone reduction from A to B. Which of the following statements must be true?
 - $A. \ A \in P \implies B \in P$
 - B. $A \in NP$ -Complete $\implies B \in NP$ -Complete.
 - C. $B \in P \implies A \in P$.
 - D. $B \in NP$ -Complete $\implies A \in NP$ -Complete.

Solution:

- B. If a problem is to be in NP-Complete, it must first be in NP. However, in this case, since B is not necessarily in NP, you can't conclude that $B \in NP$ -Complete.
- C. Slides page 11 (intractability: quiz 1).
- (c) (3') Which of the following statements are true?
 - A. The "N" in NP stands for "nondeterministic", instead of "not".
 - B. According to Cook-Levin Theorem, any problem in NP can be reduced to Circuit-SAT in polynomial time.
 - C. k-SAT \in NP-Complete for any positive integer $k \ge 2$.
 - D. Consider the optimization version of Knapsack problem with $n \in \mathbb{Z}^+$ items and $W \in \mathbb{Z}^+$ where the weight and value of each item is $w_i \in \mathbb{Z}^+$ and $v_i \in \mathbb{R}^+$

respectively. Since there is a dynamic programming algorithm for this problem that runs in O(nW) time, we may deduce that we can solve this problem in polynomial time.

Solution:

- A. Slides page 56 (intractability: quiz 6).
- B. Slides page 83 (implications of Cook-Levin).
- C. 2-SAT \in P (slides page 5).
- D. In this case, W is not necessarily polynomial of \mathfrak{n} (i.e. W is not necessarily in poly(n)). Hence, O(nW) is not necessarily a subset of poly(n).

(By the way, this algorithm actually runs in **pseudo-polynomial time**.)

- (d) (3') Which of the following statements are true?
 - A. If you find a polynomial time algorithm for a problem in NP, then you have proved P = NP.
 - B. If you prove that 4-Color can be reduced to 3-Color in polynomial time, then you've proved P = NP.
 - C. $P \neq NP$ if and only if $P \cap NP$ -Complete $= \emptyset$.
 - D. P = NP if and only if NP = NP-Complete.

Hint: In fact, any two problems in P reduces to each other in polynomial time. Intuitively, you may interpret this as the fact that all the problems in P share the same "hardness". A more formal explanation goes as follows:

For simplicity, we only consider those **decision** problem in P here. Let A and B be any two decision problems in P and we want to show that A can be reduced to B in polynomial time. Given an instance x of A, our reduction goes as follows:

- 1. Prepare two copies of data containing a yes-instance of B and a no-instance of B respectively, which can be done in polynomial time since $B \in P$.
- 2. Determine whether x is a yes-instance of A or not, which can be done in polynomial time since $A \in P$.
- 3. If the answer is yes, then we return the copy containing a yes-instance of B. Otherwise, we return the copy containing a no-instance of B.

More specifically, let's see how this idea works in the case where:

- 1. A is "Given an undirected weighted graph $G = (V, E, \langle w_e | e \in E \rangle)$ and $c \in \mathbb{R}$, does the minimum spanning tree of it have cost no more than c?"
- 2. B is "Given an undirected weighted graph $G' = (V', E', \langle w'_e | e \in E' \rangle)$ with no negative-cost cycles and $c' \in \mathbb{R}$, does the shortest path between any pairs of vertices of G' have cost no more than c'?"

Given an undirected weighted graph G (an instance of A):

1. Prepare two graphs G_1 and G_2 where G_1 satisfies the shortest path between any pairs of vertices of G_1 has cost no more than c' and G_2 satisfies there exists a pair of vertices of G_2 such that the shortest path between them has cost more than c'.

- 2. Find the minimum spanning tree of G with Kruskal's algorithm and compare the answer with c.
- 3. If the answer is no more than c, then we return G_1 . Otherwise, we return G_2 .

Solution:

A. First, we definitely have a polynomial-time algorithm for the problem Minimum-Spanning-Tree, which is in P. Second, by slides page 58 (P, NP, and EXP), $P \subseteq NP$, which indicates that Minimum-Spanning-Tree is in NP. Hence, we have already found a polynomial time algorithm for the problem Minimum-Spanning-Tree, which is in NP. However, this doesn't imply P = NP.

By the way, this statement would be true if you modify it as follows:

- (a) If you can find a polynomial time algorithm for **any** problem in NP, then you have proved P = NP.
- (b) If you find a polynomial time algorithm for a problem in NP-Complete, then you have proved P = NP.
- B. Theorem: Any two problems in NP-Complete reduces to each other in poly-time.

 Proof:

Given any two problems A and B that are in NP-Complete, we want to show that not only A reduces to B in poly-time, but also B reduces to A in poly-time:

First, by Cook-Levin Theorem, we claim that A reduces to Circuit-SAT in polytime. Second, by implication of Karp's work (slides page 82), we claim that Circuit-SAT reduces to B in poly-time. By transitivity of reduction (slides page 31), we deduce that A reduces to B in poly-time. Similarly, we may also conclude that B reduces to A in poly-time.

By question 3(c), we claim that 4-Color is in NP-Complete. Hence, we have already proved that 4-Color can be reduced to 3-Color in polynomial time. However, this doesn't imply P = NP.

By the way, this statement would be true if you modify it as follows:

(a) If you prove that 3-Color can be reduced to 2-Color in polynomial time, then you've proved P = NP.

This statement is true because:

- (a) First, $2\text{-}\mathsf{Color} \in \mathsf{P}$ (it is equivalent to determine whether the graph is a bipartite one).
- (b) Proving that 3-Color can be reduced to 2-Color indicates that you can solve 3-Color within polynomial number of standard computational steps as well as calling the subroutine that solves 2-Color, which is also of polynomial time because 2-Color \in P. In this way, you have found a polynomial time algorithm for 3-Color, an NP-Complete problem, which implies that P = NP.

- C. This statement is equivalent to "P = NP if and only if $P \cap NP$ -Complete $\neq \emptyset$ ". which would be much easier to prove. So we prove the equivalent statement instead as follows:
 - (a) " \Rightarrow ": If P = NP, since NP-Complete $\subseteq NP$ naturally, we may deduce that NP-Complete $\subseteq P$. Hence, $P \cap NP$ -Complete = NP-Complete $\neq \emptyset$.

Due date: 23:59, January 16th, 2024

- (b) " \Leftarrow ": If $P \cap NP$ -Complete $\neq \emptyset$, then we would be able to solve some NP-Complete problem in polynomial time. In this way, by definition of NP-Completeness, we would be able to solve all problems in NP in polynomial time, which implies that P = NP.
- D. (a) "⇒": If P = NP, then any two problems in NP reduces to each other in polynomial time because any two problems in P reduces to each other in polynomial time, which implies that every problem in NP must be in NP-Complete. In this way, we may deduce that $NP \subseteq NP$ -Complete. Since NP-Complete $\subseteq NP$ naturally, we conclude that NP = NP-Complete.
 - (b) " \Leftarrow ": If NP = NP-Complete, since $P \subseteq NP$ naturally, we may deduce that $P \subseteq NP$ -Complete. Hence, $P \cap NP$ -Complete $= P \neq \emptyset$. By the equivalent statement of choice C, we may conclude that P = NP.
- (e) (2') The statement "Minimum-Spanning-Tree is not in NP-Complete." is ______
 - A. True regardless of whether P equals to NP or not.
 - B. False regardless of whether P equals to NP or not.
 - C. True if and only if P = NP.
 - D. True if and only if $P \neq NP$.

Solution:

First, clearly, Minimum-Spanning-Tree \in P. Then:

- 1. If P = NP, then by question 2(d) choice D, NP-Complete = NP = P. Hence, in this case, Minimum-Spanning-Tree \in NP-Complete.
- 2. If $P \neq NP$, then by question 2(d) choice C, $P \cap NP$ -Complete = \emptyset . Hence, in this case Minimum-Spanning-Tree ∉ NP-Complete.
- (f) (2') The statement "If problem B is in NP, then for any problem $A \in P$, A can be reduced to B in polynomial time." is _____?
 - A. True regardless of whether P equals to NP or not.
 - B. False regardless of whether P equals to NP or not.
 - C. True if and only if P = NP.
 - D. True if and only if $P \neq NP$.

Solution:

According to the hint in question (d), any two problems in P can be reduced to each

other in polynomial time and by slides page 58 (P, NP, and EXP), $P \subseteq NP$ regardless of whether P equals to NP or not.

- (g) (2') The statement "There are problems in NP that cannot be solved in exponential time." is
 - A. True regardless of whether P equals to NP or not.
 - B. False regardless of whether P equals to NP or not.
 - C. True if and only if P = NP.
 - D. True if and only if $P \neq NP$.

Solution:

By slides page 58 (P, NP, and EXP), NP \subseteq EXP regardless of whether P equals to NP or not.

3. (9 points) Reductions

In this question, you are required to construct 3 correct direct polynomial-time many-one reduction that respectively:

- 1. maps instances of Independent-Set to instances of Clique.
- 2. maps instances of Subset-Sum to instances of Knapsack (decision version).
- 3. maps instances of 3-color to instances of k-color (k is a given positive integer and $k \ge 4$).

In this question, you are **not** required to prove the correctness of your reductions and it suffices to write your reduction only. However, make sure your reduction is correct to receive points.

Reminder: Don't forget state that your reduction takes polynomial time!

(a) (3') Consider the following problems:

1.Independet-Set: Given an undirected graph G = (V, E) and a positive integer k, determine whether there exists a subset k (or more) vertices of V such that no two of them are adjacent (i.e. does G contains an independent set of size at least k).

The yes-instances of Independet-Set is:

$$\mbox{Independet-Set} = \left\{ \langle G, k \rangle \; \middle| \; \begin{array}{c} G = (V, E) \mbox{ is an undirected graph that contains} \\ k \mbox{ vertices with no edges between them.} \end{array} \right\}$$

2. Clique: Given an undirected graph G' = (V', E') and a positive integer k', determine whether there exists a subset k' (or more) vertices of V' such that **any** two of them are adjacent (i.e. does G' contains a clique of size at least k').

The yes-instances of Clique is:

$$\mathsf{Clique} = \left\{ \langle \mathsf{G}', \mathsf{k}' \rangle \; \middle| \; \begin{array}{c} \mathsf{G}' = (\mathsf{V}', \mathsf{E}') \text{ is an undirected graph that contains } \mathsf{k}' \\ \text{vertices such that they are connected to each other.} \end{array} \right\}$$

Construct a correct direct polynomial-time many-one reduction f₁ that maps instances of Independent-Set to instances of Clique.

Solution:

Given an undirected graph G = (V, E) and an positive integer $k \in \mathbb{Z}^+$, we construct $f_1(\langle G, k \rangle) = \langle G', k' \rangle$ as follows:

- 1. $G' = \overline{G} \stackrel{\Delta}{=} (V, \overline{E})$ where $\overline{E} \stackrel{\Delta}{=} \{\{u, v\} \mid u, v \in V, \{u, v\} \notin V\}$. $(\overline{G} \text{ is called the comple-})$ ment graph of G.)
- 2. k' = k.

- (b) (3') Consider the following problems:
 - **3.**Subset-Sum: Given an array $A=[a_1,a_2,...,a_m]$ of positive integers and a positive integer k such that $k \leq \sum_{i \in [m]} a_i$, determine whether there exists a subset $S \subseteq [m]$ such that $\sum_{i \in S} a_i = k$ (i.e. determine whether there exists a subset of A such that the sum of its elements is k).

The yes-instances of Subset-Sum is:

$$\mathsf{Subset\text{-}Sum} = \left\{ \langle \alpha_1, \alpha_2, \dots, \alpha_m, k \rangle \, \middle| \, \begin{array}{l} m \in \mathbb{Z}^+, \alpha_1, \dots, \alpha_m, k \in \mathbb{Z}^+ \text{ and there} \\ \text{exists a subset of the α_i's that sum up} \\ \text{to k, i.e. } \exists \, S \subseteq [m] : \sum_{i \in S} \alpha_i = k. \end{array} \right\}$$

4.Knapsack: Given $n \in \mathbb{Z}^+$ items where the weight and value of each item is $w_i \in \mathbb{Z}^+$ and $v_i \in \mathbb{R}^+$ respectively as well as fixed $W \in \mathbb{Z}^+$ and $V \in \mathbb{R}^+$, determine whether there exists a subset $P \subseteq [n]$ such that $\sum_{i \in P} w_i \leq W$ and $\sum_{i \in P} v_i \geq V$ (i.e. determine whether there exists a subset of items such that the sum of their weights is no more than W while the sum of their values is no less than V).

The yes-instances of Knapsack is:

$$\mathsf{Knapsack} = \left\{ \langle w_1, \dots, w_n, v_1, \dots, v_n, V, W \in \mathbb{Z}^+ \\ \langle w_1, \dots, w_n, v_1, \dots, v_n, V, W \in \mathbb{Z}^+ \\ \text{and there exists a subset } P \subseteq [n] \\ \text{such that } \sum_{i \in P} w_i \leq W \text{ and } \sum_{i \in P} v_i \geq V. \right\}$$

Construct a **correct** direct polynomial-time many-one reduction f₂ that maps instances of Subset-Sum to instances of Knapsack.

Solution:

Given an array $A = [\alpha_1, \alpha_2, ..., \alpha_m]$ of positive integers and a positive integer k such that $k \leq \sum_{i \in [m]} \alpha_i$, we construct $f_2(\langle \alpha_1, \alpha_2, ..., \alpha_m, k \rangle) = \langle w_1, ..., w_n, v_1, ..., v_n, W, V \rangle$ as follows:

- 1. n = m, which means the number of items equals the number elements in A.
- 2. $w_i = a_i$ and $v_i = a_i$, $\forall i \in [m]$, which means both the value and the weight of the i-th item equal a_i .
- 3. W = k and v = k, which means that both the weight limit and the target value equal k.

(c) (3') Consider the following problems:

5.3-Color: Given an undirected graph G = (V, E), determine whether its vertices can be colored **within** 3 different colors such that no adjacent nodes have the same color? The yes-instances of 3-Color is:

$$\mbox{3-Color} = \left\{ \langle G \rangle \, \middle| \, \begin{array}{c} G = (V,E) \mbox{ is an undirected graph such that its} \\ \mbox{vertices can be colored } \mbox{within 3 different colors} \\ \mbox{such that no adjacent nodes have the same color.} \end{array} \right\}$$

6.k-Color: For fixed positive integer $k \geq 4$, given an undirected graph G' = (V', E'), determine whether its vertices can be colored **within** k different colors such that no adjacent nodes have the same color?

The yes-instances of k-Color is:

$$\mathsf{k\text{-}Color} = \left\{ \langle \mathsf{G}' \rangle \, \middle| \, \begin{array}{c} \mathsf{G}' = (\mathsf{V}', \mathsf{E}') \text{ is an undirected graph such that its} \\ \text{vertices can be colored } \mathbf{within} \text{ k different colors} \\ \text{such that no adjacent nodes have the same color.} \end{array} \right\}$$

Construct a **correct** direct polynomial-time many-one reduction f_3 that maps instances of 3-Color to instances of k-Color.

Reminder: You may \mathbf{not} apply mathematical induction for k here. A direct reduction is required.

Solution:

Given an undirected graph G=(V,E), we construct $f_3(\langle G \rangle)=\langle G' \rangle=(V',E')$ as follows:

- 1. Add k-3 new vertices and define V^* as the set of these newly added vertices.
- 2. Let $V' = V \cup V^*$.
- 3. Define $E^* = \{\{u, v\} \mid u \in V, v \in V^*\}$.
- 4. Define $E^{**} = \{\{u, v\} \mid u, v \in V^*\}.$
- 5. Let $E' = E \cup E^* \cup E^{**}$

4. (8 points) Equivalent-Partition is in NP-Complete

In this question, we will prove that Equivalent-Partition is in NP-Complete.

Equivalent-Partition: Given an array $B = [b_1, b_2, ..., b_n]$ of non-negative integers, determine whether there exists a subset $T \subseteq [n]$ such that $\sum_{i \in T} b_i = \sum_{j \in [n] \setminus T} b_j$ (i.e. determine whether there is a way to partition B into two disjoint subsets such that the sum of the elements in each subset is equivalent).

The yes-instances of Equivalent-Partition is:

$$\mbox{Equivalent-Partition} = \left\{ \langle b_1, \dots, b_n \rangle \, \middle| \, \begin{array}{l} n \in \mathbb{Z}^+, b_1, \dots, b_n \in \mathbb{N} \mbox{ and there exists a} \\ \mbox{partition of the } b_i \mbox{'s to two parts whose sums} \\ \mbox{are equivalent, i.e. } \exists \, T \subseteq [n] : \sum_{i \in T} b_i = \sum_{j \in [n] \setminus T} b_j \end{array} \right\}$$

Based on the tutorial on page 2 and 3, our proof goes as follows:

(a) (2') Prove that Equivalent-Partition is in NP. (Show your certificate and certifier.)

Solution: Our certificate and certifier for Equivalent-Partition goes as follows:

- 1. Certificate: A subset of indices $T \subseteq [n]$, whose size is polynomial of input size.
- 2. Certifier: Check whether $\sum_{i \in T} b_i$ equals $\sum_{j \in [n] \setminus T} b_j$, whose run-time is polynomial of input size.

(b) (0') We choose Subset-Sum to reduce from. Recall that the yes-instance of Subset-Sum is:

$$\mathsf{Subset\text{-}Sum} = \left\{ \langle \alpha_1, \alpha_2, \dots, \alpha_m, k \rangle \, \middle| \, \begin{array}{l} m \in \mathbb{Z}^+, \alpha_1, \dots, \alpha_m, k \in \mathbb{Z}^+ \text{ and there} \\ \text{exists a subset of the α_i's that sum up} \\ \text{to k, i.e. } \exists \, S \subseteq [m] : \sum_{i \in S} \alpha_i = k. \end{array} \right\}$$

- (c) Construct your polynomial-time many-one reduction f that maps instances of Subset-Sum to instances of Equivalent-Partition.
 - i. (0') Vixbob proposed a reduction as follows: Let n=m and $b_i=a_i$ for $\forall \ i\in [m]$. Finally set $k=\frac{1}{2}\sum_{i\in [m]}a_i$. In this way, $\langle a_1,a_2,\ldots,a_m,k\rangle$ is a yes-instance of Subset-Sum if and only if $\langle b_1,\ldots,b_n\rangle=\langle a_1,a_2,\ldots,a_m\rangle$ is a yes-instance of Equivalent-Partition. However, this reduction is **wrong**. Why?

Solution:

Here k is given (fixed) since it's part of the instance of the problem that we want to reduce from (i.e. it's part of the input of your reduction). Thus, you **can't** arbitrarily modify the value of k.

ii. (0') GKxx proposed another reduction as follows: Define $X = \sum_{i \in [m]} \alpha_i$ and let n = m + 2. Then we define our reduction as:

$$\langle b_1, \ldots, b_n \rangle = f(\langle \alpha_1, \alpha_2, \ldots, \alpha_m, k \rangle) \stackrel{\Delta}{=} \langle \alpha_1, \alpha_2, \ldots, \alpha_m, k, X - k \rangle$$

In this way, we may deduce that $\langle a_1, a_2, \ldots, a_m, k \rangle$ is a yes-instance of Subset-Sum if and only if $\langle b_1, \ldots, b_n \rangle = \langle a_1, a_2, \ldots, a_m, k, X - k \rangle$ is a yes-instance of Equivalent-Partition because a subset with sum k can be paired with k and the remaining subset with sum k can be paired with k resulting in an equivalent partition. However, this reduction is **wrong** again. Why?

Solution:

This reduction is not a valid one since the sequence $\langle a_1, a_2, \ldots, a_m, k, X - k \rangle$ always has a trivial equivalent partition $\langle a_1, a_2, \ldots, a_m \rangle$ versus $\langle k, X - k \rangle$, which indicates that $f(\langle a_1, a_2, \ldots, a_m, k \rangle)$ is always a yes-instance of Equivalent-Partition regardless of whether $\langle a_1, a_2, \ldots, a_m, k \rangle$ is a yes-instance of Subset-Sum or not.

iii. (3') What's your **correct** polynomial-time many-one reduction f that maps instances of Subset-Sum to instances of Equivalent-Partition?

Hint: GKxx's reduction is really close to a correct one. Maybe you can modify it a little bit to make it correct?

Solution:

First, still define $X = \sum_{i \in [m]} \alpha_i$ and let n = m + 2. To avoid having k and X - k in the same side of the partition, we add 1 (or any positive number) to both of them. Hence, we define our reduction as

$$\langle b_1, \ldots, b_n \rangle = f(\langle a_1, a_2, \ldots, a_m, k \rangle) \stackrel{\Delta}{=} \langle a_1, a_2, \ldots, a_m, k+1, X-k+1 \rangle$$

Our reduction takes polynomial time because all computation including computing the sum of all elements, adding 1 and subtracting k can be done in polynomial time.

(d) Prove the correctness of your reduction by showing:

i. (1') x is a yes-instance of Subset-Sum $\Rightarrow f(x)$ is a yes-instance of Equivalent-Partition.

Solution:

Let $\langle \alpha_1, \alpha_2, \ldots, \alpha_m, k \rangle$ be a yes-instance of Subset-Sum and let $S \subseteq [m]$ be the set of indices such that $\sum_{i \in S} \alpha_i = k$. Then we may deduce that $\sum_{i \in [n] \setminus S} \alpha_i = X - k$. Hence:

$$X - k + 1 + \sum_{i \in S} \alpha_i = (X - k + 1) + k = (k + 1) + (X - k) = k + \sum_{i \in [n] \setminus S} \alpha_i$$

which indicates that $f(\langle \alpha_1, \alpha_2, ..., \alpha_m, k \rangle) = \langle \alpha_1, \alpha_2, ..., \alpha_m, k+1, X-k+1 \rangle$ is a yes-instance of Equivalent-Partition.

ii. (2') x is a yes-instance of Subset-Sum \leftarrow f(x) is a yes-instance of Equivalent-Partition.

Solution:

Let $\langle b_1,\ldots,b_n\rangle=f(\langle \alpha_1,\alpha_2,\ldots,\alpha_m,k\rangle)=\langle \alpha_1,\alpha_2,\ldots,\alpha_m,k+1,X-k+1\rangle$ be a yes-instance of Equivalent-Partition and let $T\subseteq [n]$ be the set of indices such that $\sum_{i\in T}b_i=\sum_{j\in [n]\setminus T}b_j.$ Note that $\sum_{i\in [n]}b_i=(k+1)+(X-k+1)+\sum_{i\in [m]}a_i=(k+1)+(X-k+1)+X=2X+2,$ we may deduce that $\sum_{i\in T}b_i=\frac{1}{2}(2X+2)=X+1.$ Since all $b_i\geq 0, \forall\, i\in [n]$ while (k+1)+(X-k+1)>X+1, we may deduce that k+1 and X-k+1 cannot be on the same side of the partition. Thus, we may conclude that X-k+1 is paired with a subset of element from $\alpha_1,\alpha_2,\ldots,\alpha_m$ such that their overall sum is X+1, which indicates that $\exists\, S\subseteq [m]$ such that $\sum_{i\in S}a_i=(X+1)-(X-k+1)=k.$ Hence, we claim that $\langle \alpha_1,\alpha_2,\ldots,\alpha_m,k\rangle$ is a yes-instance of Subset-Sum.