Problem 1. Consider the function $f: [0, 2\pi] \to [-1, 1]$ given by $f(x) = \cos x$. Determine each of the following sets.

- (i) $f([0,\pi])$
- (ii) $f(\lbrace \pi \rbrace)$

- (ii) $f(\{n\})$ (iii) $f((0, \frac{\pi}{2}))$ (iv) $f((0, \pi))$ (v) $f^{-1}(\{-1, 1\}) = \{0, \pi, 2\pi\}$ (vi) $f^{-1}(\{0, 1\})$ (vii) $f^{-1}(\{-1, 0\})$ (viii) $f^{-1}(\{0\})$

Solution.

- (i) [-1,1]
- (ii) $\{-1\}$
- (iii) (0,1)
- (iv) (-1,1)
- (v) $\{0, \pi, 2\pi\}$
- (vi) $\{\frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi\}$
- (vii) $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$
- (viii) $\{\frac{\pi}{2}, \frac{3\pi}{2}\}$

Problem 2. Consider $f: A \to B$.

- (i) Prove f is injective if and only if $X = f^{-1}(f(X))$ for all $X \subseteq A$.
- (ii) Prove f is surjective if and only if $Y = f(f^{-1}(Y))$ for all $Y \subseteq B$.

Solution.

(i)

Suppose the function f is injective with a range of B'.

Suppose $x, y \in X$ and $X \subseteq A$.

Then, f(x) = f(y) if and only if x = y.

Observe that $f^{-1}(z)$ is not a function but behaves as an injective function if $z \in B'$.

Because $f(x), f(y) \in B'$, $f^{-1}(f(x)) = f^{-1}(f(y))$ if and only if f(x) = f(y).

So, $f^{-1}(f(x)) = f^{-1}(f(y))$ if and only if x = y.

Thus, $X = f^{-1}(f(X))$.

Suppose that $X = f^{-1}(f(X))$ for all X where $X \subseteq A$.

So, for all singletons $\{x\} \subseteq X$, $\{x\} = f^{-1}(f(\{x\}))$.

NOTE: come up with some way to show that f(x) = f(y), so x = y.