Fast and scalable spike and slab variable selection in high-dimensional Gaussian processes

Hugh Dance¹ and Brooks Paige¹

March 2022

¹University College London: hughwdance@gmail.com, b.paige@ucl.ac.uk

• Samples $(x_i, y_i)_{i=1}^n : x \in \mathcal{X}^d \subseteq \mathbb{R}^d, y \in \mathcal{Y} = \mathbb{R}$

- Samples $(x_i, y_i)_{i=1}^n : x \in \mathcal{X}^d \subseteq \mathbb{R}^d, y \in \mathcal{Y} = \mathbb{R}$
- ullet Want to learn/approximate $f(\cdot): \mathcal{X}^d o \mathcal{Y}$

- Samples $(x_i, y_i)_{i=1}^n : x \in \mathcal{X}^d \subseteq \mathbb{R}^d, y \in \mathcal{Y} = \mathbb{R}$
- Want to learn/approximate $f(\cdot): \mathcal{X}^d o \mathcal{Y}$
- High-dimensional inputs which are relevant to $f(\cdot)$?

- Samples $(x_i, y_i)_{i=1}^n : x \in \mathcal{X}^d \subseteq \mathbb{R}^d, y \in \mathcal{Y} = \mathbb{R}$
- Want to learn/approximate $f(\cdot): \mathcal{X}^d \to \mathcal{Y}$
- High-dimensional inputs which are relevant to $f(\cdot)$?
- Variable selection:
 - improve predictive accuracy
 - 2 reduce downstream data collection costs
 - understand 'meaningful' relationships

$$y = f(x) + \epsilon : \epsilon \sim \mathcal{N}(0, \sigma^2)$$

$$f(x) \sim \mathcal{GP}(m(x), k(x, x'))$$

$$y = f(x) + \epsilon : \epsilon \sim \mathcal{N}(0, \sigma^2)$$

$$f(x) \sim \mathcal{GP}(m(x), k(x, x'))$$

- A Gaussian process f(x) is a random function where any $f(x_1),...,f(x_n)$ are MVN
- ullet Properties determined by mean m(x), covariance (kernel) $k_{lpha}(x,x')$

$$\underbrace{p(f(\cdot)|y)}_{\text{posterior}} = \frac{p(y|f(\cdot))p(f(\cdot)|\alpha)}{p(y)}$$

• Use 'automatic relevance determination' (ARD) kernel²

$$k_{ARD}(x,x) = k(\theta \odot x, \theta \odot x') : \theta \in \mathbb{R}^d_+$$

²e.g. stationary isotropic monotone $k(\cdot,\cdot): \frac{\partial}{\partial \theta_j} \mathbb{E}[(f(x+he_j)-f(x))^2] > 0 \implies \theta$ as relevance measure

³MacKay (1996); Rasmussen and Williams (2006)

• Use 'automatic relevance determination' (ARD) kernel²

$$k_{ARD}(x,x) = k(\theta \odot x, \theta \odot x') : \theta \in \mathbb{R}^d_+$$

Optimise log marginal likelihood (ML-II):

$$\theta^* = \operatorname{argmax}_{\theta} \{ \log p(y|\theta) \}$$

²e.g. stationary isotropic monotone $k(\cdot,\cdot): \frac{\partial}{\partial \theta_j} \mathbb{E}[(f(x+he_j)-f(x))^2] > 0 \implies \theta$ as relevance measure

³MacKay (1996); Rasmussen and Williams (2006)

• Use 'automatic relevance determination' (ARD) kernel²

$$k_{ARD}(x,x) = k(\theta \odot x, \theta \odot x') : \theta \in \mathbb{R}^d_+$$

② Optimise log marginal likelihood (ML-II):

$$\theta^* = \operatorname{argmax}_{\theta} \{ \log p(y|\theta) \}$$

3 Hard threshold θ :

$$\theta_j^* \leftarrow \theta_j^* \mathbb{I}(\theta_j^* \ge \beta) : \beta \in \mathbb{R}_+$$

²e.g. stationary isotropic monotone $k(\cdot,\cdot): \frac{\partial}{\partial \theta_j} \mathbb{E}[(f(x+he_j)-f(x))^2] > 0 \implies \theta$ as relevance measure

³MacKay (1996); Rasmussen and Williams (2006)

• Use 'automatic relevance determination' (ARD) kernel²

$$k_{ARD}(x,x) = k(\theta \odot x, \theta \odot x') : \theta \in \mathbb{R}^d_+$$

② Optimise log marginal likelihood (ML-II):

$$\theta^* = \operatorname{argmax}_{\theta} \{ \log p(y|\theta) \}$$

3 Hard threshold θ :

$$\theta_i^* \leftarrow \theta_i^* \mathbb{I}(\theta_i^* \geq \beta) : \beta \in \mathbb{R}_+$$

ML-II complexity penalty \implies irrelevant $\theta_j \rightarrow 0$

²e.g. stationary isotropic monotone $k(\cdot, \cdot)$: $\frac{\partial}{\partial \theta_j} \mathbb{E}[(f(x + he_j) - f(x))^2] > 0 \implies \theta$ as relevance measure ³MacKay (1996); Rasmussen and Williams (2006)

ARD limitations⁴ - toy example

⁴Cawley and Talbot (2010); Mohammed and Cawley (2017); Ober et al. (2021)

ARD limitations⁴ - toy example

$$x \sim \mathcal{N}_{100}(0, I), \ y \sim \mathcal{N}(\sum_{j=1}^{5} \sin(a_{j}x_{j})), \sigma^{2}), \sigma^{2} = \frac{\sigma_{y}^{2}}{20}$$

⁴Cawley and Talbot (2010); Mohammed and Cawley (2017); Ober et al. (2021)

1 Place spike and slab prior on inverse lengthscales θ :

$$p(\theta_j|\gamma_j) = \gamma_j \underbrace{\tilde{p}(\theta_j)}_{\mathsf{slab}} + (1 - \gamma_j) \underbrace{\delta_0(\theta_j)}_{\mathsf{spike}}$$
, $p(\gamma_j) = \mathcal{B}\textit{ern}(\gamma_j|\pi)$

1 Place spike and slab prior on inverse lengthscales θ :

$$p(\theta_j|\gamma_j) = \gamma_j \underbrace{\tilde{p}(\theta_j)}_{\mathsf{slab}} + (1 - \gamma_j) \underbrace{\delta_0(\theta_j)}_{\mathsf{spike}}$$
, $p(\gamma_j) = \mathcal{B}\textit{ern}(\gamma_j|\pi)$

1 Place spike and slab prior on inverse lengthscales θ :

$$p(\theta_j|\gamma_j) = \gamma_j \underbrace{\tilde{p}(\theta_j)}_{\mathsf{slab}} + (1 - \gamma_j) \underbrace{\delta_0(\theta_j)}_{\mathsf{spike}}$$
, $p(\gamma_j) = \mathcal{B}\textit{ern}(\gamma_j|\pi)$

2 Recover posterior approximation: $q(\theta, \gamma) \approx p(\theta, \gamma|y) \propto p(y|\theta)p(\theta|\gamma)p(\gamma)$

1 Place spike and slab prior on inverse lengthscales θ :

$$p(\theta_j|\gamma_j) = \gamma_j \underbrace{\tilde{p}(\theta_j)}_{\text{slab}} + (1 - \gamma_j) \underbrace{\delta_0(\theta_j)}_{\text{spike}}$$
, $p(\gamma_j) = \mathcal{B}\textit{ern}(\gamma_j|\pi)$

- **2** Recover posterior approximation: $q(\theta, \gamma) \approx p(\theta, \gamma|y) \propto p(y|\theta)p(\theta|\gamma)p(\gamma)$
- **3** Variable select based on $q(\gamma_j = 1|y)$ or $argmax_{\gamma}\{q(\gamma)\}$.

Existing implementations

• Supervised GPR⁵: MCMC based \implies costly in high-dimensions (2^d search + no HMC)

⁵Savitsky et al. (2011); Linkletter et al. (2006); Qamar and Tokdar (2014)

⁶Dai et al. (2015)

Existing implementations

- Supervised GPR⁵: MCMC based \implies costly in high-dimensions (2^d search + no HMC)
- Unsupervised GP-LVM⁶: Variational inference ⇒ fast but intractable in supervised GPR

⁵Savitsky et al. (2011); Linkletter et al. (2006); Qamar and Tokdar (2014)

⁶Dai et al. (2015)

Existing implementations

- Supervised GPR⁵: MCMC based \implies costly in high-dimensions (2^d search + no HMC)
- Unsupervised GP-LVM⁶: Variational inference ⇒ fast but intractable in supervised GPR

can we develop fast and scalable VI scheme for spike and slab priors in GPR?

⁵Savitsky et al. (2011); Linkletter et al. (2006); Qamar and Tokdar (2014)

⁶Dai et al. (2015)

Existing implementations

- Supervised GPR⁵: MCMC based \implies costly in high-dimensions (2^d search + no HMC)
- ullet Unsupervised GP-LVM 6 : Variational inference \Longrightarrow fast but intractable in supervised GPR

can we develop fast and scalable VI scheme for spike and slab priors in GPR?

Paananen et al. (2019): better relevance measure than ARD, but thresholding still challenging in high-dimensions

⁵Savitsky et al. (2011); Linkletter et al. (2006); Qamar and Tokdar (2014)

⁶Dai et al. (2015)

Existing implementations

- Supervised GPR⁵: MCMC based \implies costly in high-dimensions (2^d search + no HMC)
- ullet Unsupervised GP-LVM 6 : Variational inference \Longrightarrow fast but intractable in supervised GPR

can we develop fast and scalable VI scheme for spike and slab priors in GPR?

Paananen et al. (2019): better relevance measure than ARD, but thresholding still challenging in high-dimensions

⁵Savitsky et al. (2011); Linkletter et al. (2006); Qamar and Tokdar (2014)

⁶Dai et al. (2015)

Variational inference for spike and slab GPR

$$\bullet \ \ \mathsf{Want} \ \ q^*(\theta,\gamma) = \mathsf{argmin}_{q \in \mathcal{Q}} \{ \mathit{KL}[q(\theta,\gamma)|\mathit{p}(\theta,\gamma|y)] \}$$

Variational inference for spike and slab GPR

- $\bullet \ \ \mathsf{Want} \ \ q^*(\theta,\gamma) = \mathsf{argmin}_{q \in \mathcal{Q}} \{ \mathit{KL}[q(\theta,\gamma)|\mathit{p}(\theta,\gamma|\mathit{y})] \}$
- Equivalent to maximising free energy / evidence lower bound:

$$\mathcal{F} = \langle \log p(y|\theta) \rangle_{q(\theta,\gamma)} - KL[q(\theta,\gamma)||p(\theta,\gamma)] \}$$

$$\mathcal{F} = \langle \log p(y|\theta) \rangle_{q(\theta,\gamma)} - KL[q(\theta,\gamma)||p(\theta,\gamma)]$$

$$\mathcal{F} = \langle \log p(y|\theta) \rangle_{q(\theta,\gamma)} - KL[q(\theta,\gamma)||p(\theta,\gamma)]$$

• $\langle \log p(y|\theta) \rangle_{q(\theta,\gamma)}$ intractable:

$$\langle \log p(y|\theta) \rangle_{q(\theta,\gamma)} = -\frac{1}{2} \int \left(\log |K(\theta)| + y^T K(\theta)^{-1} y \right) q(\theta,\gamma) d\theta d\gamma + \dots$$

$$\mathcal{F} = \langle \log p(y|\theta) \rangle_{q(\theta,\gamma)} - \mathit{KL}[q(\theta,\gamma)||p(\theta,\gamma)]$$

• $\langle \log p(y|\theta) \rangle_{q(\theta,\gamma)}$ intractable:

$$\langle \log p(y|\theta) \rangle_{q(\theta,\gamma)} = -\frac{1}{2} \int \left(\log |K(\theta)| + y^T K(\theta)^{-1} y \right) q(\theta,\gamma) d\theta d\gamma + \dots$$

 \implies need $q(\theta)q(\gamma)=q(\theta,\gamma)$ for (unbiased) reparameterisation gradients

$$\mathcal{F} = \langle \log p(y|\theta) \rangle_{q(\theta,\gamma)} - \mathit{KL}[q(\theta,\gamma)||p(\theta,\gamma)]$$

• $\langle \log p(y|\theta) \rangle_{q(\theta,\gamma)}$ intractable:

$$\langle \log p(y|\theta) \rangle_{q(\theta,\gamma)} = -\frac{1}{2} \int \left(\log |K(\theta)| + y^T K(\theta)^{-1} y \right) q(\theta,\gamma) d\theta d\gamma + \dots$$

- \implies need $q(\theta)q(\gamma)=q(\theta,\gamma)$ for (unbiased) reparameterisation gradients
- ②but then $KL[q(\theta)q(\gamma)||p(\theta,\gamma)]$ undefined:

$$\mathcal{F} = \langle \log p(y|\theta) \rangle_{q(\theta,\gamma)} - \mathit{KL}[q(\theta,\gamma)||p(\theta,\gamma)]$$

• $\langle \log p(y|\theta) \rangle_{q(\theta,\gamma)}$ intractable:

$$\langle \log p(y|\theta) \rangle_{q(\theta,\gamma)} = -\frac{1}{2} \int \left(\log |K(\theta)| + y^T K(\theta)^{-1} y \right) q(\theta,\gamma) d\theta d\gamma + \dots$$

- \implies need $q(\theta)q(\gamma)=q(\theta,\gamma)$ for (unbiased) reparameterisation gradients
- ②but then $KL[q(\theta)q(\gamma)||p(\theta,\gamma)]$ undefined:

$$\langle \log \delta_0(\theta_j) \rangle_{q(\theta_j)} = -\infty \quad \forall q(\cdot) \neq \delta_0(\cdot)$$

Gaussian approximation to the Dirac spike:

$$p(\theta_j|\gamma_j) = \gamma_j \underbrace{\mathcal{N}(0,\sigma_1^2)}_{\mathsf{slab}} + (1-\gamma_j) \underbrace{\mathcal{N}(0,\sigma_0^2)}_{\mathsf{spike}} \quad : \quad \sigma_0^2 \ll 1 \ll \sigma_1^2$$

Gaussian approximation to the Dirac spike:

$$p(\theta_j|\gamma_j) = \gamma_j \underbrace{\mathcal{N}(0,\sigma_1^2)}_{\mathsf{slab}} + (1-\gamma_j) \underbrace{\mathcal{N}(0,\sigma_0^2)}_{\mathsf{spike}} \quad : \quad \sigma_0^2 \ll 1 \ll \sigma_1^2$$

 \implies $KL[q(\theta)q(\gamma)||p(\theta,\gamma)]$ is defined.

Gaussian approximation to the Dirac spike:

$$p(\theta_j|\gamma_j) = \gamma_j \underbrace{\mathcal{N}(0, \sigma_1^2)}_{\mathsf{slab}} + (1 - \gamma_j) \underbrace{\mathcal{N}(0, \sigma_0^2)}_{\mathsf{spike}} \quad : \quad \sigma_0^2 \ll 1 \ll \sigma_1^2$$

$$\implies$$
 $KL[q(\theta)q(\gamma)||p(\theta,\gamma)]$ is defined.

 $extbf{9} \quad q(heta,\gamma) = q(heta)q(\gamma) ext{ with reparameterisable } q_{\psi}(heta)$

Gaussian approximation to the Dirac spike:

$$p(\theta_j|\gamma_j) = \gamma_j \underbrace{\mathcal{N}(0,\sigma_1^2)}_{\mathsf{slab}} + (1-\gamma_j) \underbrace{\mathcal{N}(0,\sigma_0^2)}_{\mathsf{spike}} \quad : \quad \sigma_0^2 \ll 1 \ll \sigma_1^2$$

- \implies $KL[q(\theta)q(\gamma)||p(\theta,\gamma)]$ is defined.
- $m{Q} \quad q(heta, \gamma) = q(heta)q(\gamma)$ with reparameterisable $q_{\psi}(heta)$
 - ⇒ fast approximate co-ordinate ascent strategy available

aCAVI: approximate coordinate ascent variational inference (CAVI)

(Exact) CAVI update to $q(\gamma)$:

$$q(\gamma) \propto exp\{\langle logp(\theta|\gamma) \rangle_{q(\theta)}\} p(\gamma) = \prod_{j} \mathcal{B}ern(\gamma_{j}|\lambda_{j})$$

 $\mathcal{O}(d)$ cost

aCAVI: approximate coordinate ascent variational inference (CAVI)

(Exact) CAVI update to $q(\gamma)$:

$$q(\gamma) \propto exp\{\langle logp(heta|\gamma)
angle_{q(heta)}\}p(\gamma) = \prod_{j} \mathcal{B}\textit{ern}(\gamma_{j}|\lambda_{j})$$
 $\mathcal{O}(d)$ cost

(Approximate) CAVI update to $q_{\psi}(\theta)$ using rep-grad SVI:

For
$$t=1,...T$$
 :
$$\psi \leftarrow \psi + \eta \odot \hat{\nabla}_{\psi} \mathcal{F}$$

$$\mathcal{O}(\mathit{sn}^2d) + \mathcal{O}(\mathit{sn}^3) \ \mathsf{cost}$$

Toy example results

Toy example results

Method	MSE	Runtime (s)
ML-II GP	0.096 ± 0.014	5.0 ± 0.7
SSVGP+MFG	0.068 ± 0.011	27.8 ± 0.5
33 ()	0.000 ± 0.011	21.0 ± 0.

Addressing hyperparameter sensitivity

$$\mathbf{v} = \frac{1}{\sigma_0^2}, c = \frac{\sigma_0^2}{\sigma_1^2}$$

Addressing hyperparameter sensitivity

$$\mathbf{v} = \frac{1}{\sigma_0^2}, c = \frac{\sigma_0^2}{\sigma_1^2}$$

V	10^{2}	10^{3}	10 ⁴	10^{5}	10^{6}
$ar{\lambda}$ (toy example)	0	0.05	0.07	0.34	1

Bayesian model averaging

Bayesian model averaging

$$\mathcal{M}_k = \{v_k, c, \pi\}$$

Bayesian model averaging

$$\mathcal{M}_k = \{v_k, c, \pi\}$$

... but expensive and $p(\mathcal{M}_k|y)$ intractable

- ① We zero-temperature restrict $q(\theta_j) = \delta_{\mu_j}(\theta_j)$
 - ullet Exact $abla_{\mu}\mathcal{F}$ and posterior predictive distribution

- We zero-temperature restrict $q(\theta_j) = \delta_{\mu_i}(\theta_j)$
 - Exact $\nabla_{\mu}\mathcal{F}$ and posterior predictive distribution
- **②** We prune low PIP variables during training: $\mu_j \leftarrow \mu_j \mathbb{I}(\lambda_j > \epsilon) : \epsilon \in (0, 1)$
 - ullet Reduces complexity from $\mathcal{O}(\mathbf{d})$ to $\mathcal{O}(\mathbf{q})$: $\mathbf{q} = \{\#\lambda > \epsilon\}$

- We zero-temperature restrict $q(\theta_j) = \delta_{\mu_i}(\theta_j)$
 - ullet Exact $abla_{\mu}\mathcal{F}$ and posterior predictive distribution
- **2** We prune low PIP variables during training: $\mu_i \leftarrow \mu_i \mathbb{I}(\lambda_i > \epsilon)$: $\epsilon \in (0,1)$
 - Reduces complexity from $\mathcal{O}(d)$ to $\mathcal{O}(q)$: $q = \{\#\lambda > \epsilon\}$
 - Under certain conditions $\mu_j \to N_\delta(0)$ if $\lambda_j \le \epsilon$ during a-CAVI

Using the leave-one-out predictive density to approximate posterior weights

$$\mathsf{LOO}\text{-}\mathsf{PD} = \prod_{i} p(y_i|\mathbf{y}_{\neg i}, \mathcal{M}_k)$$

Using the leave-one-out predictive density to approximate posterior weights

$$\mathsf{LOO\text{-}PD} = \prod_{i} p(y_i|y_{\neg i}, \mathcal{M}_k)$$

Under uniform prior $p(\mathcal{M}_k) \propto 1$:

$$p(\mathcal{M}_k|y) \propto p(y|\mathcal{M}_k) = \prod_i p(y_i|y_{< i}, \mathcal{M}_k) \approx \prod_i p(y_i|y_{\neg i}, \mathcal{M}_k)$$

Using the leave-one-out predictive density to approximate posterior weights

$$\mathsf{LOO\text{-}PD} = \prod_{i} p(y_i|y_{\neg i}, \mathcal{M}_k)$$

Under uniform prior $p(\mathcal{M}_k) \propto 1$:

$$p(\mathcal{M}_k|y) \propto p(y|\mathcal{M}_k) = \prod_i p(y_i|y_{< i}, \mathcal{M}_k) \approx \prod_i p(y_i|y_{\neg i}, \mathcal{M}_k)$$

• Under ZT approximation:

LOO-PD =
$$\prod_{i} \underbrace{p(y_i|y_{\neg i}, \theta = \mu_k)}_{\text{standard GPR posterior}}$$

 $\implies \mathcal{O}(n^3)$ using Bürkner et al. (2021)

Nearest neighbour truncations for large-n scalability⁷

Marginal likelihood:

$$\log p(y|\theta) \approx \frac{n}{m} \log p(y_i, y_{NN(i)}|\theta)$$

Predictive distribution:

$$\log p(y_i|y_{\neg i},\mathcal{M}_k) \approx logp(y_i|y_{NN(i)},\mathcal{M}_k)$$

⁷Used previously in Chen et al. (2020); Jankowiak and Pleiss (2021).

Nearest neighbour truncations for large-n scalability⁷

Marginal likelihood:

$$\log p(y|\theta) \approx \frac{n}{m} \log p(y_i, y_{NN(i)}|\theta)$$

Predictive distribution:

$$\log p(y_i|y_{\neg i},\mathcal{M}_k) \approx logp(y_i|y_{NN(i)},\mathcal{M}_k)$$

For *m*-nearest neighbours we get $\mathcal{O}(n^3) \to \mathcal{O}(n \log n + m^3)$

⁷Used previously in Chen et al. (2020); Jankowiak and Pleiss (2021).

Returning to the toy example

 $^{^{8}}$ nearest neighbour truncation with m=n/4 neighbours used for BMA

"Ground truth" simulation comparison

Savitsky et al. (2011) experiment:

- Draw n = 100 samples of $x \sim Unif[0, 1]^{1000}$
- Set $y = x_1 + x_2 + x_3 + x_4 + \sin(3x_5) + \sin(5x_6) + \epsilon$ for $\epsilon \sim \mathcal{N}(0, 0.05^2)$.

Method:	Savitsky et al. (2011)	SSVGP(n)	SSVGP(n/2)	SSVGP(n/4)	ML-II
Runtime:	10224s	20.3s	11.0s	8.4s	3.9s

Large-scale dataset results

Figure: LHS: synthetic datasets, RHS: real datasets from UCI repository

Figure: Synthetic experiment: average prediction surfaces for $n = d = 10^4$.

• Method for variable selection in Gaussian process regression using spike and slab priors

- Method for variable selection in Gaussian process regression using spike and slab priors
- (very) fast runtimes on high-dimensional datasets and $O(n \log n)$ scalability

- Method for variable selection in Gaussian process regression using spike and slab priors
- (very) fast runtimes on high-dimensional datasets and $O(n \log n)$ scalability
- BMA crucial for adaptive sparsity

- Method for variable selection in Gaussian process regression using spike and slab priors
- (very) fast runtimes on high-dimensional datasets and $O(n \log n)$ scalability
- BMA crucial for adaptive sparsity
- Can compete with spike and slab MCMC but orders of magnitude faster

- Method for variable selection in Gaussian process regression using spike and slab priors
- (very) fast runtimes on high-dimensional datasets and $O(n \log n)$ scalability
- BMA crucial for adaptive sparsity
- Can compete with spike and slab MCMC but orders of magnitude faster
- Consistently outperformed standard GPR and scalable approximations in high-dimensional, especially sparse settings.

- Method for variable selection in Gaussian process regression using spike and slab priors
- (very) fast runtimes on high-dimensional datasets and $O(n \log n)$ scalability
- BMA crucial for adaptive sparsity
- Can compete with spike and slab MCMC but orders of magnitude faster
- Consistently outperformed standard GPR and scalable approximations in high-dimensional, especially sparse settings.

https://github.com/HWDance/SSVGP

- Bürkner, P.-C., Gabry, J., and Vehtari, A. (2021). Efficient leave-one-out cross-validation for bayesian non-factorized normal and student-t models. *Computational Statistics*, 36(2):1243–1261.
 Cawley, G. C. and Talbot, N. L. (2010). On over-fitting in model selection and subsequent
- selection bias in performance evaluation. The Journal of Machine Learning Research, 11:2079–2107.
- Chen, H., Zheng, L., Al Kontar, R., and Raskutti, G. (2020). Stochastic gradient descent in correlated settings: A study on gaussian processes. *Advances in Neural Information Processing Systems*, 33.
- Dai, Z., Hensman, J., and Lawrence, N. (2015). Spike and slab gaussian process latent variable models. arXiv preprint arXiv:1505.02434.
- Jankowiak, M. and Pleiss, G. (2021). Scalable cross validation losses for gaussian process models. arXiv preprint arXiv:2105.11535.
- Linkletter, C., Bingham, D., Hengartner, N., Higdon, D., and Ye, K. Q. (2006). Variable selection for gaussian process models in computer experiments. *Technometrics*, 48(4):478–490.
- MacKay, D. J. (1996). Bayesian methods for backpropagation networks. In *Models of neural networks III*, pages 211–254. Springer.

- Mohammed, R. O. and Cawley, G. C. (2017). Over-fitting in model selection with gaussian process regression. In *International Conference on Machine Learning and Data Mining in Pattern Recognition*, pages 192–205. Springer.

 Obor S. W. Pasmusson, C. E. and van der Wille M. (2021). The promises and pitfalls of
- Ober, S. W., Rasmussen, C. E., and van der Wilk, M. (2021). The promises and pitfalls of deep kernel learning. arXiv preprint arXiv:2102.12108.
- Paananen, T., Piironen, J., Andersen, M. R., and Vehtari, A. (2019). Variable selection for gaussian processes via sensitivity analysis of the posterior predictive distribution. In *The 22nd International Conference on Artificial Intelligence and Statistics*, pages 1743–1752. PMLR.

Qamar, S. and Tokdar, S. T. (2014). Additive gaussian process regression. arXiv preprint

- arXiv:1411.7009.

 Rasmussen, C. E. and Williams, C. K. (2006). Rasmussen and christopher ki williams. gaussian processes for machine learning. *MIT Press*, 211:212.
- Savitsky, T., Vannucci, M., and Sha, N. (2011). Variable selection for nonparametric gaussian process priors: Models and computational strategies. *Statistical science: a review journal of the Institute of Mathematical Statistics*, 26(1):130.