1

The curve C has equation $y = \frac{1}{3}x^3 - 9x + 1$ (a) Find $\frac{dy}{dx}$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \tag{2}$$

(b) Find the range of values of x for which C has a negative gradient.

(3)

(Total for Question 1 is 5 marks)

2	The curve C has equation $y = 5x^3 - x^2 - 6x + 4$
	(a) Find $\frac{dy}{dx}$
	dx
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \dots$
	\mathbf{u}_{λ} (2)
	There are two points on the curve C at which the gradient of the curve is 2
	(b) Find the <i>x</i> coordinate of each of these two points. Show clear algebraic working.
	(4)
	(Total for Question 2 is 6 marks)
	·

- 3 A curve C has equation $y = x^3 x^2 8x + 12$
 - (a) Find $\frac{dy}{dx}$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \tag{2}$$

The curve C has two turning points.

(b) Work out the *x* coordinates of the two turning points. Show your working clearly.

(3)

(c) Show that the x-axis is a tangent to the curve \mathbb{C} .

Λ
п

(a) Find
$$\frac{dy}{dx}$$

$$y = x^3 - 2x^2 - 15x + 5$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \dots \tag{2}$$

C is the curve with equation $y = x^3 - 2x^2 - 15x + 5$

(b) Work out the range of values of x for which C has a negative gradient.

(4)

(Total for Question 4 is 6 marks)

5 The curve shown in the diagram has equation

 $y = x^3 - 27x + k$ where k is a positive constant with k < 54

The curve has a maximum point at A(a, b)

The curve has a minimum point at B(c, d)

Diagram **NOT** accurately drawn

Using differentiation, find the value of b - dShow your working clearly.

(Total for Question 5 is 6 marks)

6	The point A is the only stationary point on the curve with equation $y = kx^2 + \frac{16}{x}$ where k is a constant.
	Given that the coordinates of A are $\left(\frac{2}{3}, a\right)$
	find the value of a . Show your working clearly.
	<i>a</i> =
	(Total for Question 6 is 5 marks)

The diagram shows a sketch of part of the curve with equation $y = x^2 - \frac{p}{x}$ where p is a positive constant.

For all values of p, the curve has exactly one turning point and this turning point is a minimum shown as the point T in the sketch.

For the curve where the x coordinate of T is -3

(a) find the value of p

$$p = \dots$$
 (4)

The line with equation $y = k$ is a tangent to the curve version (b) Find the value of k	with equation $y = x^2 - \frac{16}{x}$
	k =
	(Total for Question 7 is 7 marks)

8	
	Curve C has equation $y = px^3 - mx$ where p and m are positive integers.
	Find the range of values of x , in terms of p and m , for which the gradient of C is negative.
	(Total for Question 8 is 4 marks)

9	The curve C has equation $y = ax^3 + bx^2 - 12x + 6$ where a and b are constants.
	The point A with coordinates $(2, -6)$ lies on \mathbb{C} The gradient of the curve at A is 16
	Find the <i>y</i> coordinate of the point on the curve whose <i>x</i> coordinate is 3 Show clear algebraic working.
	<i>y</i> =
_	(Total for Question 9 is 6 marks)

10

The diagram shows a cuboid of volume $V \text{cm}^3$

(a) Show that $V = 15 + 16x - x^2 - 2x^3$

(3)

(b) Find this value of x.		
Show your working clearly.		
Give your answer correct to 3 significant figures.		
	<i>x</i> =	
		(5)
	(Total for Question 10 is 8 n	narke)
	(Total for Question to is on	nar Ksj

11 The diagram shows a solid cuboid.

Diagram **NOT** accurately drawn

The total surface area of the cuboid is $A \, \text{cm}^2$

Find the maximum value of A.

(Total for Question 11 is 5 marks)

12 A solid, S, is made from a hemisphere and a cylinder.

The centre of the circular face of the hemisphere and the centre of the top face of the cylinder are at the same point.

Diagram **NOT** accurately drawn

The radius of the cylinder and the radius of the hemisphere are both x cm. The height of the cylinder is (20-4x) cm.

The volume of **S** is $V \text{cm}^3$ where $V = \frac{1}{3} \pi y$

Find the maximum value of *y*. Show clear algebraic working.

(Total for Question 12 is 5 marks)
,

13 ABCED is a five-sided shape.

ABCD is a rectangle.

CED is an equilateral triangle.

$$AB = x \text{ cm}$$
 $BC = y \text{ cm}$

The perimeter of ABCED is 100 cm. The area of ABCED is $R \text{ cm}^2$

(a) Show that
$$R = \frac{x}{4} \left(200 - \left[6 - \sqrt{3} \right] x \right)$$

(b) (i) Find the value of x for which R has its maximum value.	
Give your answer in the form $\frac{p}{q-\sqrt{3}}$ where p and q are integers.	
$x = \dots$	(2)
	(2)
(ii) Explain why the maximum value of R is given by this value of x .	
	(1)
(Tatal fan Omastian 1	()
(Total for Question 1	3 is 6 marks)

14	A particle <i>P</i> is moving along a straight line. The fixed point <i>O</i> lies on this line.
	At time t seconds, the displacement, s metres, of P from O is given by
	$s = 4t^3 - 6t^2 + 5t$
	At time t seconds, the velocity of P is v m/s.
	(a) Find an expression for v in terms of t .
	$v = \dots (2)$
	(b) Find the time at which the acceleration of the particle is 6 m/s ²
	seconds
	(3)
_	(Total for Question 14 is 5 marks)

15	A particle <i>P</i> is moving along a straight line. The fixed point <i>O</i> lies on the line.	
	At time t seconds ($t \ge 0$), the displacement of P from O is s metres where	
	$s = t^3 - 9t^2 + 33t - 6$	
	Find the minimum speed of <i>P</i> .	
	m/s	
	(Total for Question 15 is 5 marks)	

16	A particle P is moving along a straight line that passes through the fixed point O . The displacement, s metres, of P from O at time t seconds is given by
	$s = t^3 - 6t^2 + 5t - 4$
	Find the value of t for which the acceleration of P is 3 m/s^2
	$t = \dots$
	(Total for Question 16 is 4 marks)

17	A particle P moves along a straight line that passes through the fixed point O
	The displacement, x metres, of P from O at time t seconds, where $t \ge 0$, is given by
	$x = 4t^3 - 27t + 8$
	The direction of motion of P reverses when P is at the point A on the line.
	The acceleration of P at the instant when P is at A is $a \text{ m/s}^2$
	Find the value of a
	$a = \dots$
	(Total for Question 17 is 5 marks)