REINFORCEMENT LEARNING

Create me a painting in the style of Dali with the title "waiting for the discounted expected returns"

MARCOVIAN PROPERTY

Actions

The future state depends ONLY on the current state and not on the sequence of events that preceded it.

TOTAL RETURN

$$G_t = R_{t+1} + R_{t+2} + R_{t+3} + \dots + R_T$$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots$$

TOTAL RETURN

$$0 \le \gamma < 1$$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots$$

$$G_t = R_{t+1} + \gamma G_{t+1}$$

BELLMAN "EXPECTATION" EQUATION FOR STATE-ACTION-VALUES

$$q^{\pi}(s, a) = \mathbb{E}_{\pi}[R_{t+1} + \gamma \ q^{\pi}(s', a') | S_t = s, A_t = a]$$

Simplify notation:
$$q^{\pi}(s,a) = \mathbb{E}_{\pi}[r + \gamma \ q^{\pi}(s',a') \ | \ s,a]$$

Next state-action

(Stochastic) immediate reward due to action a from state s

ACTION-VALUE FUNCTIONS

$$q^{\pi}(s, a) = \mathbb{E}_{\pi}[r + \gamma \ q^{\pi}(s', a') | s, a]$$

BELLMAN OPTIMALITY "EXPECTATION" EQUATION FOR STATE-ACTION-VALUES

$$q^*(s, a) = \max_{\pi} q^{\pi}(s, a)$$

One policy better or equal than any other

Greedy policy *

$$q^{\pi}(s, a) = \mathbb{E}_{\pi}[r + \gamma \ q^{\pi}(s', a') | s, a] \qquad \pi = *$$

$$q^*(s, a) = \mathbb{E}[r + \gamma \max_{a'} q^*(s', a') \mid s, a]$$

IMMEDIATE REWARDS - A REMINDER

BANDITS

$$q^*(a) \doteq E[R | A_t = a]$$

Q-value: estimate of the expected return

$$Q(a) \approx q^*(a)$$

In RL we obtain an estimate via sampling

$$R(A_t = a) \sim P(R \mid A_t = a)$$

Desirable: $E[(Q(a) - R(A_t = a))^2] \approx 0$

IMMEDIATE REWARDS - A REMINDER

BANDITS

Minimise:
$$\frac{E[\left(Q(a) - R(A_t = a)\right)^2]}{2}$$

$$L(a) = \frac{1}{2T_a} \sum_{t=1}^{T} (Q(a) - R)^2 \mathbf{1}_{A_t = a}$$

$$\mathbf{1}_{A_t=a} = \begin{cases} 1 & \text{if } A_t = a \\ 0 & \text{otherwise.} \end{cases}$$
 Indicator function

$$T(a) = \sum_{t=1}^{T} \mathbf{1}_{A_t=a}$$
 R=R(t) is the reward at trial t

IMMEDIATE REWARDS

BATCH AND ONLINE UPDATES

$$\Delta Q(a) = -\eta \frac{dL(a)}{dQ} = -\eta \sum_{t=1}^{T} (Q(a) - R) \mathbf{1}_{A_t = a}$$

Note a: action, α: learning rate!

We can suppress the sum. This suggests we now update our estimate after each trial (sample) known as online learning. We then write:

$$\Delta Q(a) = -\eta \left(Q(a) - R \right) \mathbf{1}_{A_t = a}$$

i.e. for trial 1 to T, if action a is taken, we update its Q value by:

$$Q(a) = Q(a) - \eta \left(Q(a) - R \right)$$

SARSA

$$q^{\pi}(s, a) = E_{\pi}[r + \gamma \ q^{\pi}(s', a') | s, a]$$

$$E_{\pi}[r + \gamma \ q^{\pi}(s', a') - q^{\pi}(s, a) | s, a] = 0$$

$$\mathcal{L}(s,a) = \frac{1}{2N} \sum_{i=1}^{N} \left(Q(s,a) - \left[r^{(i)} + \gamma Q(s^{'(i)}, a^{'(i)}) \right] \right)^2$$

SARSA

$$\mathcal{L}(s,a) = \frac{1}{2N} \sum_{i=1}^{N} \left(Q(s,a) - \left[r^{(i)} + \gamma Q(s^{'(i)}, a^{'(i)}) \right] \right)^2$$

$$\frac{\partial \mathcal{L}(Q(s,a))}{\partial Q(s,a)} = \frac{1}{N} \sum_{i=1}^{N} \left(Q(s,a) - [r + \gamma Q(s',a')] \right)$$

$$\Delta Q(s, a) = -\eta \frac{1}{N} \sum_{i=1}^{N} (Q(s, a) - [r + \gamma Q(s', a')])$$

SARSA

$$\Delta Q(s, a) = -\eta \frac{1}{N} \sum_{i=1}^{N} (Q(s, a) - [r + \gamma Q(s', a')])$$

N=1 (online learning):

$$\Delta Q(s,a) = -\eta \left(Q(s,a) - [r + \gamma Q(s',a')] \right)$$

$$\Delta Q(s,a) = \eta \left(r + \gamma Q(s',a') - Q(s,a) \right)$$

SARSA: REWARD - "ANTICIPATED REWARD"

$$\Delta Q = \eta \left(r + \gamma Q(s', a') - Q(s, a) \right)$$

What I "actually" get

Anticipated reward

POLICIES

Greedy
$$a = \underset{a}{\operatorname{argmax}} Q(s, a)$$

Optimistic Greedy: initialise Q-values unrealistically high

Epsilon-Greedy: explore with probability epsilon, greedy otherwise

Softmax:
$$P(a) = \frac{e^{Q(s,a)/\tau}}{\sum_b e^{Q(s,b)/\tau}}$$

THE SARSA ALGORITHM

- 1. Initialise Q(s, a) arbitrarily for all $s \in S$ and $a \in A(s)$.
- 2. Repeat (for each episode):
 - a. Initialise s.
 - b. Choose an action a from s using a policy derived from Q (e.g., \(\epsilon\), e-greedy).
 - c. Repeat (for each step of episode):
 - i. Take action a, observe reward r and next state s'.
 - ii. Choose a' from s' using policy derived from Q (e.g., ε-greedy).
 - iii. $Q(s, a) \leftarrow Q(s, a) + \eta * [r + \gamma * Q(s', a') Q(s, a)].$
 - iv. $s \leftarrow s'; a \leftarrow a'$.
 - d. until s is terminal.

On-policy

Former head of COM

THE SARSA ALGORITHM

In 1994, Gavin Rummery and Mahesan Niranjan published a paper titled "Online Q-Learning using Connectionist Systems," in which they introduced an algorithm they called at the time "Modified Connectionist Q-Learning." In 1996, Singh and Sutton dubbed this algorithm Sarsa because of the quintuple of events that the algorithm uses: $(S_t, A_t, R_{t+1},$ S_{t+1} , A_{t+1}). People often like knowing where these names come from as you will soon see, RL researchers can get pretty creative with these names.

https://livebook.manning.com/concept/reinforcement-learning/this-algorithm

THE SARSA ALGORITHM

Right after obtaining his Ph.D. in 1995, Gavin became a programmer and later a lead programmer for the company responsible for the series of the Tomb Raider games. Gavin has had a very successful career as a game developer.

Mahesan, who became Gavin's Ph.D. supervisor after the unexpected death of Gavin's original supervisor, followed a more traditional academic career holding lecturer and professor roles ever since his Ph.D. graduation in 1990.

https://livebook.manning.com/concept/reinforcement-learning/this-algorithm

Q-LEARNING

$$q^*(s, a) = \max_{\pi} q^{\pi}(s, a)$$

$$q^*(s, a) = E[R_{t+1} + \gamma \max_{a'} q^*(s', a') \mid S_t = s, A_t = a]$$

SARSA

$$\Delta Q(s,a) = \eta \left(r + \gamma Q(s',a') - Q(s,a) \right)$$

Q-Learning

$$\Delta Q(s,a) = \eta(r + \gamma \max_{a'} Q(s',a') - Q(s,a))$$

Q-LEARNING

$$\Delta Q = \eta \left(r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right)$$

What I "actually" get Anticipated reward

THE Q-LEARNING ALGORITHM

- 1. Initialise Q(s, a) arbitrarily for all $s \in S$ and $a \in A(s)$.
- 2. Repeat (for each episode):
 - a. Initialise s.
 - b. Repeat (for each step of episode):
 - i. Choose an action a from s using a policy derived from Q (e.g., \(\epsilon\), e-greedy).
 - ii. Take action a, observe reward r and next state s'.
 - iii. $Q(s, a) \leftarrow Q(s, a) + \eta * [r + \gamma * max_a' Q(s', a') Q(s, a)].$
 - iv. $s \leftarrow s'$.
 - c. until s is terminal.

Off-policy

SARSA VS Q-LEARNING

From Sutton & Barto, 2020 - with permission.

SARSA

$$\Delta Q = \eta \left(r + \gamma Q(s', a') - Q(s, a) \right)$$

A robot walks this corridor and finds reward. How many Q-values will be updated?

ELIGIBILITY TRACE

Design an ant leaving a trace of pheromone.

ELIGIBILITY TRACE

We mark that action pair that were visited/used: e(s, a)

Update eligibility trace for the most recent state action pair: $e(s, a) \leftarrow e(s, a) + 1$

Decay eligibility trace for all other states: $e(s, a) \leftarrow \gamma \lambda * e(s, a)$

SARSA: TABULAR ELIGIBILITY TRACE

- 1. Initialise Q(s, a) arbitrarily for all $s \in S$ and $a \in A(s)$.
- 2. Initialise eligibility traces e(s, a) for all s, a to zeros.
- 3. Repeat (for each episode):
 - a. Initialise s, eligibility traces e(s, a) for all s, a to zeros.
 - b. Choose an action a from s using policy derived from Q (e.g., \ell-greedy).
 - c. Repeat (for each step of episode):
 - i. Take action a, observe reward r, and next state s'.
 - ii. Choose a' from s' using policy derived from Q (e.g., \(\epsilon\), e-greedy).
 - iii. For the visited s, a:
 - Update delta: $\delta \leftarrow r + \gamma * Q(s', a') Q(s, a)$
 - Update eligibility trace: $e(s, a) \leftarrow e(s, a) + 1$

iv. For all states:

- Update Q(s, a) \leftarrow Q(s, a) + η * δ * e(s, a)
- Decay eligibility trace: $e(s, a) \leftarrow \gamma \lambda * e(s, a)$

$$v.s \leftarrow s'; a \leftarrow a'.$$

until s is terminal.

TABULAR ELIGIBILITY TRACE

- 1. Initialise Q(s, a) arbitrarily for all $s \in S$ and $a \in A(s)$.
- 2. Repeat (for each episode):
 - a. Initialise s and eligibility traces e(s, a) for all s, a to zeros.
 - b. Repeat (for each step of episode):
 - i. Choose an action a from s using policy derived from Q (e.g., \seconglessed end).
 - ii. Take action a, observe reward r, and next state s'.
 - iii. For the selected s, a:
 - Update delta: $\delta \leftarrow r + \gamma * max_a' Q(s', a') Q(s, a)$
 - Update eligibility trace: $e(s, a) \leftarrow e(s, a) + 1$
 - iv. For all s,a
 - -Update Q(s, a) \leftarrow Q(s, a) + η * δ * e(s, a)
 - -Decay eligibility trace: $e(s, a) \leftarrow \gamma \lambda * e(s, a)$
 - $v. s \leftarrow s'.$

until s is terminal.

TEMPORAL DIFFERENCE LEARNING

- By approximating the action-value q by an estimate Q and by writing an error function based on a form of the Bellman equation we derived two Temporal Difference algorithms:
 - SARSA (State Action Reward State Action): "safe"
 - Q-Learning : optimal
- An eligibility trace can speed up the performance of the algorithms by propagating to the pathway taken information about the reward.

THANK YOU!