300 mm B 200 mm C 300 N

PROBLEM 4.84

Using the method of Section 4.7, solve Problem 4.28.

P4.28 A lever is hinged at *C* and is attached to a control cable at *A*. If the lever is subjected to a 300-N vertical force at *B*, determine (a) the tension in the cable, (b) the reaction at *C*.

SOLUTION

From geometry of forces acting on lever

$$\alpha = \tan^{-1} \left(\frac{y_{DA}}{x_{DA}} \right)$$

where

$$y_{DA} = 0.24 \text{ m} - y_{AC} = 0.24 \text{ m} - (0.2 \text{ m})\sin 20^{\circ}$$

= 0.171596 m

$$x_{DA} = (0.2 \text{ m})\cos 20^{\circ}$$

= 0.187939 m

$$\therefore \quad \alpha = \tan^{-1} \left(\frac{0.171596}{0.187939} \right) = 42.397^{\circ}$$

$$\beta = 90^{\circ} - \tan^{-1} \left(\frac{y_{AC} + y_{EA}}{x_{CE}} \right)$$

$$x_{CE} = (0.3 \,\mathrm{m})\cos 20^{\circ} = 0.28191 \,\mathrm{m}$$

$$y_{AC} = (0.2 \text{ m})\sin 20^\circ = 0.068404 \text{ m}$$

$$y_{EA} = (x_{DA} + x_{CE}) \tan \alpha$$

= $(0.187939 + 0.28191) \tan 42.397^{\circ}$
= 0.42898 m

$$\beta = 90^{\circ} - \tan^{-1} \left(\frac{0.49739}{0.28191} \right) = 29.544^{\circ}$$

Also,
$$90^{\circ} - (\alpha + \beta) = 90^{\circ} - 71.941^{\circ} = 18.0593^{\circ}$$

 $90^{\circ} + \alpha = 90^{\circ} + 42.397^{\circ} = 132.397^{\circ}$

PROBLEM 4.84 CONTINUED

Applying the law of sines to the force triangle,

$$\frac{300 \text{ N}}{\sin[90^{\circ} - (\alpha + \beta)]} = \frac{T}{\sin \beta} = \frac{C}{\sin(90^{\circ} + \alpha)}$$

$$\frac{300 \text{ N}}{\sin 18.0593^{\circ}} = \frac{T}{\sin 29.544^{\circ}} = \frac{C}{\sin 132.397^{\circ}}$$

(a)
$$T = 477.18 \text{ N}$$

or
$$T = 477 \text{ N} \blacktriangleleft$$

(b)
$$C = 714.67 \text{ N}$$

or
$$C = 715 \text{ N} \ge 60.5^{\circ} \blacktriangleleft$$

Knowing that $\theta = 35^{\circ}$, determine the reaction (a) at B, (b) at C.

SOLUTION

From the geometry of the three forces applied to the member ABC

$$\alpha = \tan^{-1} \left(\frac{y_{CD}}{R} \right)$$

where

$$y_{CD} = R \tan 55^{\circ} - R = 0.42815R$$

$$\alpha = \tan^{-1}(0.42815) = 23.178^{\circ}$$

Then

$$55^{\circ} - \alpha = 55^{\circ} - 23.178^{\circ} = 31.822^{\circ}$$

$$90^{\circ} + \alpha = 90^{\circ} + 23.178^{\circ} = 113.178^{\circ}$$

$$\frac{P}{\sin(55^{\circ} - \alpha)} = \frac{B}{\sin(90^{\circ} + \alpha)} = \frac{C}{\sin 35^{\circ}}$$

or
$$\frac{P}{\sin 31.822^{\circ}} = \frac{B}{\sin 113.178^{\circ}} = \frac{C}{\sin 35^{\circ}}$$

(a)
$$B = 1.74344P$$

or **B** =
$$1.743P \ge 55.0^{\circ}$$

$$(b) C = 1.08780P$$

or
$$C = 1.088P \le 23.2^{\circ} \blacktriangleleft$$

Knowing that $\theta = 50^{\circ}$, determine the reaction (a) at B, (b) at C.

SOLUTION

From the geometry of the three forces acting on member ABC

$$\alpha = \tan^{-1} \left(\frac{y_{DC}}{R} \right)$$

where

$$y_{DC} = R - y_{AD} = R [1 - \tan(90^{\circ} - 50^{\circ})]$$

= 0.160900R

$$\therefore \alpha = \tan^{-1}(0.160900) = 9.1406^{\circ}$$

Then

40°+«

$$90^{\circ} - \alpha = 90^{\circ} - 9.1406^{\circ} = 80.859^{\circ}$$

$$40^{\circ} + \alpha = 40^{\circ} + 9.1406^{\circ} = 49.141^{\circ}$$

$$\frac{P}{\sin\left(40^\circ + \alpha\right)} = \frac{B}{\sin\left(90^\circ - \alpha\right)} = \frac{C}{\sin 50^\circ}$$

or
$$\frac{P}{\sin 49.141^{\circ}} = \frac{B}{\sin (80.859^{\circ})} = \frac{C}{\sin 50^{\circ}}$$

(a)
$$B = 1.30540P$$

or **B** = $1.305P \ge 40.0^{\circ} \blacktriangleleft$

(b)
$$C = 1.01286P$$

or $C = 1.013P \angle 9.14^{\circ} \blacktriangleleft$

S C h h

PROBLEM 4.87

A slender rod of length L and weight W is held in equilibrium as shown, with one end against a frictionless wall and the other end attached to a cord of length S. Derive an expression for the distance h in terms of L and S. Show that this position of equilibrium does not exist if S > 2L.

SOLUTION

From the f.b.d of the three-force member AB, forces must intersect at D. Since the force T intersects point D, directly above G,

$$y_{BE} = h$$

For triangle *ACE*:

$$S^{2} = (AE)^{2} + (2h)^{2} \tag{1}$$

For triangle ABE:

$$L^{2} = (AE)^{2} + (h)^{2}$$
 (2)

Subtracting Equation (2) from Equation (1)

$$S^2 - L^2 = 3h^2 (3)$$

or
$$h = \sqrt{\frac{S^2 - L^2}{3}}$$

(4)

Therefore, for all positions of AB $h \ge S - L$

or
$$S^2 - L^2 \ge 3(S - L)^2 = 3(S^2 - 2SL + L^2) = 3S^2 - 6SL + 3L^2$$

or
$$0 \ge 2S^2 - 6SL + 4L^2$$

and
$$0 \ge S^2 - 3SL + 2L^2 = (S - L)(S - 2L)$$

For
$$S - L = 0$$
 $S = L$

 \therefore Minimum value of S is L

For
$$S - 2L = 0$$
 $S = 2L$

 \therefore Maximum value of S is 2L

Therefore, equilibrium does not exist if S > 2L

A slender rod of length L=200 mm is held in equilibrium as shown, with one end against a frictionless wall and the other end attached to a cord of length S=300 mm. Knowing that the mass of the rod is 1.5 kg, determine (a) the distance h, (b) the tension in the cord, (c) the reaction at B.

SOLUTION

From the f.b.d of the three-force member AB, forces must intersect at D. Since the force T intersects point D, directly above G,

$$y_{BE} = h$$

For triangle ACE:

$$S^{2} = (AE)^{2} + (2h)^{2} \tag{1}$$

For triangle ABE:

$$L^{2} = (AE)^{2} + (h)^{2}$$
 (2)

Subtracting Equation (2) from Equation (1)

$$S^2 - L^2 = 3h^2$$

or
$$h = \sqrt{\frac{S^2 - L^2}{3}}$$

(a) For $L = 200 \,\text{mm}$ and $S = 300 \,\text{mm}$

$$h = \sqrt{\frac{(300)^2 - (200)^2}{3}} = 129.099 \,\text{mm}$$

or $h = 129.1 \, \text{mm} \, \blacktriangleleft$

(b) Have
$$W = mg = (1.5 \text{ kg})(9.81 \text{ m/s}^2) = 14.715 \text{ N}$$

and

$$\theta = \sin^{-1} \left(\frac{2h}{s} \right) = \sin^{-1} \left[\frac{2(129.099)}{300} \right]$$

$$\theta = 59.391^{\circ}$$

From the force triangle

$$T = \frac{W}{\sin \theta} = \frac{14.715 \text{ N}}{\sin 59.391^{\circ}} = 17.0973 \text{ N}$$

or T = 17.10 N

(c)
$$B = \frac{W}{\tan \theta} = \frac{14.715 \text{ N}}{\tan 59.391^{\circ}} = 8.7055 \text{ N}$$

or
$$\mathbf{B} = 8.71 \,\mathrm{N} \blacktriangleleft$$

A slender rod of length L and weight W is attached to collars which can slide freely along the guides shown. Knowing that the rod is in equilibrium, derive an expression for the angle θ in terms of the angle β .

SOLUTION

As shown in the f.b.d of the slender rod AB, the three forces intersect at C. From the force geometry

$$\tan \beta = \frac{x_{GB}}{y_{AB}}$$

where

$$y_{AB} = L\cos\theta$$

and

$$x_{GB} = \frac{1}{2}L\sin\theta$$

$$\therefore \tan \beta = \frac{\frac{1}{2}L\sin\theta}{L\cos\theta} = \frac{1}{2}\tan\theta$$

or $\tan \theta = 2 \tan \beta \blacktriangleleft$

A 10-kg slender rod of length L is attached to collars which can slide freely along the guides shown. Knowing that the rod is in equilibrium and that $\beta = 25^{\circ}$, determine (a) the angle θ that the rod forms with the vertical, (b) the reactions at A and B.

SOLUTION

(a) As shown in the f.b.d. of the slender rod AB, the three forces intersect at C. From the geometry of the forces

$$\tan \beta = \frac{x_{CB}}{y_{BC}}$$

where

$$x_{CB} = \frac{1}{2} L \sin \theta$$

and

$$y_{BC} = L\cos\theta$$

$$\therefore \quad \tan \beta = \frac{1}{2} \tan \theta$$

or

$$\tan\theta = 2\tan\beta$$

For

$$\beta = 25^{\circ}$$

$$\tan \theta = 2 \tan 25^\circ = 0.93262$$

$$\theta = 43.003^{\circ}$$

or $\theta = 43.0^{\circ} \blacktriangleleft$

(b)
$$W = mg = (10 \text{ kg})(9.81 \text{ m/s}^2) = 98.1 \text{ N}$$

From force triangle

$$A = W \tan \beta$$
$$= (98.1 \text{ N}) \tan 25^{\circ}$$
$$= 45.745 \text{ N}$$

or $\mathbf{A} = 45.7 \,\mathrm{N} \blacktriangleleft$

and
$$B = \frac{W}{\cos \beta} = \frac{98.1 \text{ N}}{\cos 25^{\circ}} = 108.241 \text{ N}$$

or **B** = $108.2 \text{ N} \angle 65.0^{\circ} \blacktriangleleft$

A uniform slender rod of mass 5 g and length 250 mm is balanced on a glass of inner diameter 70 mm. Neglecting friction, determine the angle θ corresponding to equilibrium.

SOLUTION

From the geometry of the forces acting on the three-force member AB

Triangle ACF

$$y_{CF} = d \tan \theta$$

Triangle CEF

$$x_{FE} = y_{CF} \tan \theta = d \tan^2 \theta$$

Triangle AGE

$$\cos \theta = \frac{d + x_{FE}}{\left(\frac{L}{2}\right)} = \frac{d + d\tan^2 \theta}{\left(\frac{L}{2}\right)}$$

$$\frac{2d}{2}(x_{FE} + x_{FE})$$

$$= \frac{2d}{L} \Big(1 + \tan^2 \theta \Big)$$

Now
$$(1 + \tan^2 \theta) = \sec^2 \theta$$
 and $\sec \theta = \frac{1}{\cos \theta}$

$$\sec \theta = \frac{1}{\cos \theta}$$

$$\cos \theta = \frac{2d}{L} \sec^2 \theta = \frac{2d}{L} \left(\frac{1}{\cos^2 \theta} \right)$$

$$\therefore \cos^3 \theta = \frac{2d}{I}$$

$$d = 70 \,\mathrm{mm}$$
 and $L = 250 \,\mathrm{mm}$

$$\cos^3 \theta = \frac{2(70)}{250} = 0.56$$

$$\therefore \cos\theta = 0.82426$$

$$\theta = 34.487^{\circ}$$