

SF1681 Linjär algebra, fk HT20

# SF1681 LINJÄR ALGEBRA, FORTSÄTTNINGSKURS FÖRELÄSNING 3

#### DAVID RYDH

3. KVOTER OCH ISOMORFISATSEN. EGENVÄRDEN OCH DIAGONALISERING

### Målet för idag.

- Kvotrum och kvotavbildningar
- Isomorfisatsen (generaliserar dimensionssatsen)
- Repetion från SF1672 Linjär algebra när det gäller
  - Egenvärden och egenvektorer
  - Diagonaliserbara matriser och operatorer
  - Karakteristiska polynomet
- Nya perspektiv
  - Egenvärden och egenvektorer för operatorer på oändligdimensionella vektorrum
  - Andra kroppar än  $\mathbb R$

#### Kvotrum.

**Definition 3.1.** En *sidoklass* till ett delrum  $W \subseteq V$  är en delmängd på formen

$$\mathbf{x} + W = {\mathbf{x} + \mathbf{w} : \mathbf{w} \in W} \subseteq V$$

**Lemma 3.2.** Sidoklasserna  $\mathbf{x} + W$  och  $\mathbf{y} + W$  sammanfaller om och endast om  $\mathbf{x} - \mathbf{y} \in W$ .

Bevis. Om  $\mathbf{x} - \mathbf{y} \in W$  och  $\mathbf{w} \in W$  så är  $\mathbf{x} + \mathbf{w} = \mathbf{y} + (\mathbf{x} - \mathbf{y} + \mathbf{w}) = \mathbf{y} + \mathbf{w}'$  och  $\mathbf{y} + \mathbf{w} = \mathbf{x} + (-(\mathbf{x} - \mathbf{y}) + \mathbf{w}) = \mathbf{x} + \mathbf{w}''$  för några  $\mathbf{w}', \mathbf{w}'' \in W$ . Alltså är  $\mathbf{x} + W = \mathbf{y} + W$ .

Omvänt om 
$$\mathbf{x} + W = \mathbf{y} + W$$
 så är  $\mathbf{x} + \mathbf{0} = \mathbf{y} + \mathbf{w}$  för något  $\mathbf{w} \in W$  och alltså  $\mathbf{x} - \mathbf{y} = \mathbf{w} \in W$ .

Det följer att om  $\mathbf{x} \in \mathbf{y} + W$  så är  $\mathbf{x} + W = \mathbf{y} + W$ . Observera att sidoklasser ej är delrum, förutom sidoklassen  $\mathbf{0} + W = W$ , eftersom ett delrum alltid innehåller vektorn  $\mathbf{0}$ .

Man kan också införa en *ekvivalensrelation* på V genom att definiera att två vektorer  $\mathbf{x}$  och  $\mathbf{y}$  är ekvivalenta, vilket skrivs som  $\mathbf{x} \sim \mathbf{y}$ , om  $\mathbf{x} - \mathbf{y} \in W$ . *Ekvivalensklassen* till  $\mathbf{x}$  betecknas  $[\mathbf{x}]$  och består av alla vektorer  $\mathbf{y}$  som är ekvivalenta med  $\mathbf{x}$ , dvs:

$$[\mathbf{x}] = \{ \mathbf{y} \in V : \mathbf{y} \sim \mathbf{x} \}$$

Enligt ovan är alltså ekvivalensklassen  $[\mathbf{x}]$  detsamma som sidoklassen  $\mathbf{x} + W$  till  $\mathbf{x}$ . När man skriver  $[\mathbf{x}]$  istället för  $\mathbf{x} + W$  behöver det framgå från sammanhanget vilket delrum W kvoten avser.

Sidoklasserna/ekvivalensklasserna partitionerar V, dvs varje element x tillhör exakt en klass.

Date: 2020-10-30.

**Definition 3.3.** Om  $W \subseteq V$  är ett delrum är *kvotrummet*, V/W, det vektorrum vars element är sidoklasser till W och där addition och multiplikation med skalär ges av

- (x+W) + (y+W) = (x+y) + W
- $a(\mathbf{x} + W) = (a\mathbf{x}) + W$ .

Anmärkning 3.4. Vi måste kontrollera att addition och multiplikation med skalär inte beror på val av representant  $\mathbf{x}$  för sidoklassen  $\mathbf{x} + W$ . Om  $\mathbf{x} + W = \mathbf{x}' + W$  och  $\mathbf{y} + W = \mathbf{y}' + W$  så är  $\mathbf{x} - \mathbf{x}' \in W$  och  $\mathbf{y} - \mathbf{y}' \in W$  enligt lemmat. Alltså är  $(\mathbf{x} + \mathbf{y}) + W = (\mathbf{x}' + \mathbf{y}') + (\mathbf{x} - \mathbf{x}') + (\mathbf{y} - \mathbf{y}') + W = (\mathbf{x}' + \mathbf{y}') + W$ . På samma sätt är  $(a\mathbf{x}) + W = a\mathbf{x}' + a(\mathbf{x} - \mathbf{x}') + W = (a\mathbf{x}') + W$ .

Anmärkning 3.5. Sidoklasserna är delmängder (ej delrum) till V men kvoten V/W är **inte** en delmängd av V. Det finns däremot en linjär avbildning  $V \to V/W$  som skickar  $\mathbf{x}$  på  $\mathbf{x} + W$ .

Nollan i kvoten V/W ges av sidoklassen  $\mathbf{0} + W$  och  $\mathbf{x} + W = \mathbf{0} + W$  betyder att  $\mathbf{x} \in W$ . Alltså identifieras alla element i W med  $\mathbf{0}$  genom att bilda kvoten V/W.

**Exempel 3.6.** Betrakta linjen  $L = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$  i  $\mathbb{R}^2$ . Då är  $\mathbb{R}^2/L$  mängden av linjer som är parallella med L. Nollan i kvotrummet består av linjen genom i origo (dvs L). Varje linje parallell med L kan skrivas som y = 2x + m. Vi kan alltså identifiera  $\mathbb{R}^2/L$  med  $\mathbb{R}$  genom bijektionen mellan delmängden  $\{y = 2x + m\} \subset \mathbb{R}^2$  och  $\mathbb{R}$  som tar  $\{y = 2x + m\}$  på m.

Om  $M \neq L$  är en linje genom origo så skär varje linje parallell med L linjen M i en unik punkt. På så sätt kan vi också identifiera varje punkt i  $\mathbb{R}^2/L$  med en punkt på M. Andra linjer ger andra identifikationer. Om vi betraktar  $\mathbb{R}^2$  med den vanliga inre produkten så är ett naturligt val  $M = L^{\perp}$  — linjen vinkelrät mot L.

**Exempel 3.7** (Kvot). Låt  $V = \mathbb{R}^3$  och  $W \subseteq V$  planet  $x_1 = 0$ . Sidoklasserna är då plan parallella med detta med  $x_1 = a$  för alla olika a. Kvoten V/W blir isomorf med  $\mathbb{R}$  genom att identifiera varje plan med sin första koordinat.

Liksom förut kan vi också identifiera planet  $x_1 = a$  med skärningen med linjen (t,0,0), alltså (a,0,0). Andra linjer ger andra identifikationer.

#### Kvotavbildningar och dimensionssatsen.

**Definition 3.8.** Låt  $W \subseteq V$  vara ett delrum. *Kvotavbildningen* är avbildningen  $q: V \longrightarrow V/W$  som definieras av  $q(\mathbf{x}) = \mathbf{x} + W$ .

**Sats 3.9.** Kvotavbildningen q är en linjär avbildning.

Bevis. Vi har

$$(x + y) \mapsto (x + y) + W = x + y + W = (x + W) + (y + W)$$

och

$$a\mathbf{x} \mapsto a\mathbf{x} + W = a\mathbf{x} + aW = a(\mathbf{x} + W).$$

för alla vektorer  $\mathbf{x}, \mathbf{y} \in V$  och skalärer  $a \in k$ .

**Sats 3.10** (Sadun Thm. 2.14). Om V är ändligdimensionellt så gäller  $\dim(V/W) = \dim V - \dim W$ .

Bevis. Välj ett komplement W' till W, dvs ett vektorrum så att V = W + W' och  $W \cap W' = \{0\}$ . Konkret: om  $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_m$  är en bas till W, utöka denna till en bas  $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_m, \mathbf{b}_{m+1}, \dots, \mathbf{b}_n$  för V och låt  $W' = \operatorname{Span}\{\mathbf{b}_{m+1}, \dots, \mathbf{b}_n\}$ . Då är  $V = W \oplus W'$  (en inre direkt summa). Man visar nu att  $W' \to V \to V/W$ , som avbildar  $w' \mapsto (0, w') \mapsto [(0, w')]$  är en isomorfi.

### Isomorfisatsen och dimensionssatsen.

**Sats 3.11** (Isomorfisatsen, Sadun Thm. 3.6). För en linjär avbildning  $L: V \longrightarrow W$  gäller att

$$\operatorname{im}(L) \cong V / \ker(L)$$
.

*Bevis.* Vi konstruerar en avbildning  $\Phi: V/\ker(L) \longrightarrow \operatorname{im}(L)$  genom att sätta  $\Phi(\mathbf{x} + \ker(L)) = L(\mathbf{x})$ .

•  $\Phi$  är *väldefinierad* eftersom  $\mathbf{x} + \ker(L) = \mathbf{y} + \ker(L)$  ger att  $\mathbf{y} - \mathbf{x} \in \ker(L)$ , dvs  $L(\mathbf{y} - \mathbf{x}) = 0$ . Alltså är  $L(\mathbf{y}) = L(\mathbf{x} + (\mathbf{y} - \mathbf{x})) = L(\mathbf{x}) + L(\mathbf{y} - \mathbf{x}) = L(\mathbf{x})$ .

- $\Phi$  är linjär eftersom  $\Phi(\mathbf{x} + \ker(L) + \mathbf{y} + \ker(L)) = \Phi(\mathbf{x} + \mathbf{y} + \ker(L)) = L(\mathbf{x} + \mathbf{y}) = L(\mathbf{x}) + L(\mathbf{y}) = \Phi(\mathbf{x} + \ker L) + \phi(\mathbf{y} + \ker L)$ .
- $\Phi$  är *surjektiv* ty om  $\mathbf{y} \in \operatorname{im}(L)$  så är  $\mathbf{y} = L(\mathbf{x})$  för något  $\mathbf{x} \in V$  och då är  $\mathbf{y} = \Phi(\mathbf{x} + \ker(L))$  i bilden av  $\Phi$ .
- $\Phi$  är *injektiv* ty om  $\Phi(\mathbf{x} + \ker L) = 0$  så är  $L(\mathbf{x}) = 0$ , dvs  $\mathbf{x} \in \ker L$  och därmed  $\mathbf{x} + \ker L = 0 + \ker L$  vilket är nollvektorn i  $V/\ker L$ .

**Korollarium 3.12** (Dimensionssatsen). *Om* dim $V < \infty \ddot{a}r$  dim $\ker L + \dim \operatorname{im}(L) = \dim V$ .

**Exempel 3.13** (  $V \cong \ker(L) \oplus \operatorname{im}(L)$ . ).  $L(A) = A + A^T$  har

$$\ker(L) = A_n = \{\text{antisymmetriska } n \times n\text{-matriser}\}$$

och

$$im(L) = S_n = \{symmetriska \ n \times n\text{-matriser}\}$$

Här har vi att  $V = M_n(k) = \ker(L) \oplus \operatorname{im}(L)$  som en inre direkt summa eftersom varje matris A på ett unikt sätt kan skrivas som en summa av en symmetrisk och en antisymmetrisk matris

$$A = \frac{A + A^T}{2} + \frac{A - A^T}{2}.$$

**Uppgift 3.14** (Uppgift 2 vid Tentamen 2018-01-10). Låt  $V = \mathbb{C}[x]$  vara vektorrummet som ges av alla polynom i x med komplexa koefficienter och låt  $W = \{p(x) \in V : p(1) = p(-1) = 0\}$ .

- (a) Bestäm en linjär avbildning  $L: V \longrightarrow U$  så att  $W = \ker(L)$ . (1)
- (b) Bestäm en bas för V/W.

Lösning.

- (a) Vi kan välja  $L: V \longrightarrow \mathbb{C}^2$  som ges av L(p(x)) = (p(-1), p(1)). Då är  $W = \ker(L)$  per definition
- (b) Eftersom  $V/W = V/\ker(L)$  har vi enligt isomorfisatsen att  $V/W \cong \operatorname{im}(L)$ . Eftersom L är surjektiv har vi att  $V/W \cong \mathbb{C}^2$ . Vi kan välja en bas genom att ta sidoklasserna till två polynom som ger linjärt oberoende bilder i  $\mathbb{C}^2$ . Ett exempel är 1 och x med L(1) = (1,1) och L(x) = (-1,1). Basen för V/W är då  $\{1+W,x+W\}$ .

I beviset av dimensionssatsen skapade vi en avbildning  $V/\ker L \to W$ . Mer allmänt gäller:

**Sats 3.15** (Faktorisering genom kvot). Låt  $U \subseteq V$  vara ett delrum och  $L: V \longrightarrow W$  en linjär avbildning. Om  $U \subseteq \ker(L)$  så faktoriserar L via kvotavbildningen  $q: V \to V/U$ , dvs det finns en unik avbildning  $\Phi: V/U \longrightarrow W$  sådan att  $L = \Phi \circ q$ . Detta sammanfattas i det kommutativa diagrammet



*Bevis.* Definiera  $\Phi(\mathbf{x}+U) = L(\mathbf{x})$ . Detta är en väldefinierad avbildning precis som i beviset av isomorfisatsen. Eftersom  $\mathbf{x}+U=\mathbf{y}+U$  så är  $\mathbf{y}-\mathbf{x}\in U\subseteq\ker L$  så  $L(\mathbf{x}-\mathbf{y})=0$  vilket ger  $L(\mathbf{y})=L(\mathbf{x}+(\mathbf{y}-\mathbf{x}))=L(\mathbf{x})$ .  $\square$ 

#### Egenvärden och egenvektorer.

**Definition 3.16** (Egenvärden och egenvektorer). Om L är en operator på ett vektorrum V och  $\boldsymbol{\xi} \in V$  så är  $\boldsymbol{\xi}$  en *egenvektor* med *egenvärde*  $\lambda$  om

$$L(\boldsymbol{\xi}) = \lambda \boldsymbol{\xi}$$
 och  $\boldsymbol{\xi} \neq \boldsymbol{0}$ .

Om  $\lambda$  är ett egenvärde så är *egenrummet*  $E_{\lambda} \subseteq V$  alla lösningar  $\xi$  till  $L(\xi) = \lambda \xi$ , inklusive noll-vektorn.

Anmärkning 3.17. Egenvärdet  $\lambda$  är en *skalär* och måste tillhöra den kropp vektorrummet är definierat över. Egenrummet  $E_{\lambda} = \ker(\lambda I - L)$  är en kärna till en operator och därmed ett delrum. Här betecknar I identitetsoperatorn på V.

**Exempel 3.18** (Sadun, §4.4). En operator med matrisen  $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$  har inga egenvektorer om skalärerna är  $k = \mathbb{R}$ , men väl om skalärerna är  $k = \mathbb{C}$  eftersom

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ i \end{bmatrix} = \begin{bmatrix} -i \\ 1 \end{bmatrix} = -i \begin{bmatrix} 1 \\ i \end{bmatrix}$$

## Diagonalisering.

**Definition 3.19.** En operator L på V är diagonaliserbar om vi kan hitta en bas  $\mathscr{B}$  för V som består av egenvektorer till L. Då blir matrisen för L med avseende på  $\mathscr{B}$  en diagonal matris.

**Exempel 3.20.** Låt  $V = \operatorname{Span}\{1, \sin(x), \cos(x), \sin(2x), \cos(2x), \dots\} \subseteq C^{\infty}(\mathbb{R})$  vara vektorrummet av *tri-gonometriska* polynom med komplexa koefficienter. Operatorn  $L = \frac{d}{dx}$  har inga reella egenvärden och är alltså inte diagonaliserbar över  $\mathbb{R}$ . Däremot är L diagonaliserbar över  $\mathbb{C}$ : en bas av egenvektorer ges av  $\{e^{i\omega x} = \cos(\omega x) + i\sin(\omega x)\}_{\omega \in \mathbb{Z}}$  och matrisen för L i denna bas ges av

$$\frac{d}{dx}(\cos(\omega x) + i\sin(\omega x)) = -\omega\sin(\omega x) + i\omega\cos(\omega x)$$
$$= i\omega(\cos(\omega x) + i\sin(\omega x))$$

dvs en diagonalmatris med  $i\omega$  på position  $(\omega, \omega)$ . Observera att diagonalbasen och matrisen är indexerad med  $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$  istället för 1, 2, 3, ...

Anmärkning 3.21. L diagonaliserbar om och endast om  $V = \bigoplus_{\lambda} E_{\lambda}$ , dvs om varje vektor  $\mathbf{v} \in V$  går att skriva unikt som  $\mathbf{v} = \sum_{\lambda} \mathbf{v}_{\lambda}$  där  $\mathbf{v}_{\lambda} \in E_{\lambda}$  är en egenvektor med egenvärde  $\lambda$ .

## Konjugerade matriser.

**Definition 3.22** (Konjugerade matriser). Två kvadratiska matriser *A* och *B* är *konjugerade*, eller *similära*, om de motsvarar samma linjära operator med olika baser. Det betyder att det finns en matris *P* så att

$$A = P^{-1}BP$$
 och  $B = PAP^{-1}$ .

Anmärkning 3.23. Att diagonalisera en matris handlar om att hitta en konjugerad diagonalmatris.

### Karakteristiska polynomet.

**Definition 3.24.** Om A är en  $n \times n$ -matris är det karakteristiska polynomet

$$p_A(x) = \det(xI - A).$$

Anmärkning 3.25. Två konjugerade matriser A och  $B = PAP^{-1}$  har samma determinant ty

$$\det(PAP^{-1}) = \det(P)\det(A)\det(P)^{-1} = \det(A).$$

Vi kan därför för en operator L på ett ändligdimensionellt vektorrum definiera  $\det L = \det[L]_{\mathscr{B}}$  för någon bas  $\mathscr{B}$  och  $\det L$  beror inte på valet av bas.

Anmärkning 3.26. Två konjugerade matriser A och  $B = PAP^{-1}$  har samma karakteristiska polynom ty:

$$\det(xI - PAP^{-1}) = \det(P(xI - A)P^{-1}) = \det(P)\det(xI - A)\det(P)^{-1} = \det(xI - A).$$

Vi kan därför också tala om det karakteristiska polynomet  $p_L(x)$  för en operator L på ett ändligdimensionellt vektorrum.

**Sats 3.27** (Sadun, Thm. 2.2).  $\lambda$  är ett egenvärde till L om och endast om  $p_L(\lambda) = 0$ .

*Bevis.*  $L(\boldsymbol{\xi}) = \lambda \boldsymbol{\xi} \iff (\lambda I - L)(\boldsymbol{\xi}) = \boldsymbol{0} \iff \boldsymbol{\xi} \in \ker(\lambda I - L)$ . Att  $\lambda$  är ett egenvärde betyder att det finns nollskild  $\boldsymbol{\xi}$  i kärnan, dvs att  $p_L(\lambda) = \det(\lambda I - L) = 0$ .

*Anmärkning* 3.28. Att de karakteristiska polynomen är lika räcker inte för att matriserna ska vara konjugerade. Exempelvis är

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \quad \text{och} \quad \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

inte konjugerade, men båda har karakteristiska polynomet  $p_A(x) = x^2$ .

### Algebraisk och geometrisk multiplicitet.

**Definition 3.29** (Algebraisk och geometrisk multiplicitet). För en linjär operator L med egenvärde  $\lambda$  är

• Den *algebraiska multipliciteten* hos  $\lambda$  är multipliciteten hos roten  $\lambda$  i  $p_L(x)$ , dvs:

$$m_a(\lambda) = \max\{m \in \mathbb{N} : (x - \lambda)^m \text{ delar } p_L(x)\}.$$

• Den *geometriska multipliciteten* hos  $\lambda$  är dimensionen hos egenrummet  $E_{\lambda}$ , dvs:

$$m_{g}(\lambda) = \dim(\ker(\lambda I - L))$$

**Sats 3.30** (Sadun, Thm. 4.6). Om  $\xi_1, \ldots, \xi_m$  är egenvektorer till distinkta egenvärden  $\lambda_1, \ldots, \lambda_m$  så är  $\{\xi_1, \ldots, \xi_m\}$  linjärt oberoende.

**Sats 3.31** (Sadun, Thm. 4.9). Låt L vara en operator på ett vektorrum V av dimension n. Då är L diagonaliserbar om och endast om  $m_a(\lambda) = m_g(\lambda)$  för alla  $\lambda$  och om  $\sum_{\lambda} m_a(\lambda) = n$  (t ex om  $k = \mathbb{C}$ ).

Anmärkning 3.32. Om  $\lambda$  är ett egenvärde så gäller per definition att  $L(E_{\lambda}) \subseteq E_{\lambda}$ . Vi kan därför *restrice-ra* (begränsa) L till en operator  $L_{\lambda} : E_{\lambda} \longrightarrow E_{\lambda}$  på delrummet  $E_{\lambda}$ . Om  $m_a(\lambda) = m_g(\lambda)$  kan operatorn  $L_{\lambda}$  representeras med en diagonalmatris.