Теория вероятностей и математическая статистика

Цель изложения

- Теория вероятностей и математическая статистика
 - Вероятностное пространство
 - Формула полной вероятности
 - Плотность вероятности
 - Математическое ожидание случайной величины
 - Формула композиции
 - Евклидово пространство случайных величин
 - Гильбертово пространство случайных величин
 - Разложение в ряд по ортогональным функциям
 - Пространство суммируемых функций
 - \circ Ортогональные системы функций в L_2
 - Биномиальное распределение
 - Производящие функции последовательности
 - Арифметические действия с формальными степенными рядами
 - Рекуррентные соотношения и рациональные производящие функции
 - Производящие функции моментов
 - Факториальные моменты
 - Характеристические функции последовательности

Необходимо обеспечить переход от теории вероятностей к квантовой механике и распределениям вероятности. Производящие и характеристические функции (и еще факториальные моменты) нужны для введения в теорию операторов.

Все изложенные идеи - абстрактны. Ни один интеграл приведенный ниже считать не нужно. Весь этот материал-вводная часть к дискретной математике, которая следует из теории операторов в дискретном пространстве. Расчеты начинаются там, где вместо функций возникают вектора коэффициентов разложения и матрицы, а вместо уравнений в частных производных - полиномы и алгоритмы.

- [1] Б.А. Севастьянов. Курс теории вероятностей и математической статистики.
- [2] А.Н. Колмогоров. Основные понятия теории вероятностей.
- [3] А.Н. Колмогоров, С.В. Фомин. Элементы теории функций и функционального анализа.

Вероятностное пространство

Тройку (Ω, \mathcal{A}, P) , где Ω — пространство элементарных событий, — σ -алгебра подмножеств Ω , называемых событиями, P —

числовая функция, определенная на событиях и называемая вероятностью, будем называть вероятностным пространством, если выполнены следующие аксиомы:

- 1. $P(A) \geq 0$ для всех $A \in \mathcal{A}$ (неотрицательность Р);
- 2. $P(\Omega) = 1$ (нормированность Р);
- 3. P(A+B)=P(A)+P(B), если $A\cap B=\emptyset$ (аддитивность Р);
- 4. Если $A_n\downarrow\emptyset$, т. е. $A_1\supseteq A_2\supseteq ...$ и $\bigcap_{n=1}^\infty A_n=\emptyset$, то $\lim_{n\to\infty}P(A_n)=0$ (непрерывность Р).

Система аксиом 1 $^{\circ}$, 2 $^{\circ}$, 3 $^{\circ}$, 4 $^{\circ}$ определяет вероятностную меру на σ -алгебре пространства Ω . Эта система аксиом предложена А. Н. Колмогоровым [2].

Формула полной вероятности

Для любых событий A и B:

$$P(AB) = P(A) + P(B) - P(A \cup B).$$

Два события A и B независимы тогда и только тогда

$$P(AB) = P(A) + P(B) .$$

Условная вероятность. Пусть P(B)>0. Условной вероятностью P(A|B) события A при условии, что произошло событие B (или просто: при условии B), назовем отношение

$$P(A|B) = \frac{P(AB)}{P(B)}$$

Для условной вероятности P(A|B) применяется также обозначение $P_B(A)$.

$$P(AB) = P(B)P(A|B)$$

Систему событий $A_1,A_2,...,A_n$ будем называть конечным разбиением (в дальнейшем — просто разбиением), если они попарно несовместны и $A_1+A_2+...+A_n=\Omega$ образуют полное пространство.

Формула полной вероятности. Если $A_1,...,A_n$ — разбиение и все $P(A_k)>0$, то для любого события B имеет место формула

$$P(B) = \sum_{k=1}^n P(A_k) P(B|A_k) \; ,$$

называемая формулой полной вероятности.

Формула Байеса. Если выполнены условия (2): $A_1,...,A_n$ — конечное разбиение и все $P(A_k)>0$ и P(B)>0, то имеют место формулы

$$P(A_k|B) = rac{P(A_k)P(B|A_k)}{\sum\limits_{i=1}^n P(A_i)P(B|A_i)} \; ,$$

называемые формулами Байеса.

из этих определений следует разложение в ряд по ортогональным функциям

Надо выстроить аналогию между условной вероятностью и линейным пространством функций, которая выражается через скалярное произведение и норму в гильбертовом пространстве.

Надо ввести аналогию между функцией Softmax из формулы Байеса. Откуда берется экспонента, из какого распределения плотности вероятности

Плотность вероятности

в курсе теории функции вводится понятие σ -алгебра над обрезками абстрактного множества и алгебра (борелевская) над обрезками множества, к которому можно применить операцию сравнения (множество чисел). Теория вероятностей сопоставляет абстрактному множеству со своей нарезкой - вероятности. Множеству чисел, множеству векторов, множеству функций мы сопоставляем некоторую числовую меру - вероятность. Если множество упорядоченное, то ему можно сопоставить числовую функцию и говорить про функции распределения. Из двух положительных функций можно составить произвольную функцию. Из двух функций вещественных можно сделать комплексную. Из множества функций - вектор. Если функция распределения (вероятности) непрерывная и дифференцируемая, можно говорить про плотность (вероятности).

Числовая функция $\xi=\xi(\omega)$ от элементарного события $\omega\in\Omega$ ($\xi:\Omega\mapsto\mathbb{R}$) называется случайной величиной, если для любого числа $x\in\mathbb{R}$

$$\{\xi\leqslant x\}=\{\omega:\xi(\omega)\leqslant x\}\in\mathcal{A}$$
 .

Функцию

$$F(x) = F_{\varepsilon}(x) = P\{\xi \leq x\},$$

определенную при всех $x \in \mathbb{R}$, назовем функцией распределения случайной величины ξ .

Для $x_1 < x_2$ можно записать событие $\{\xi \leqslant x_2\}$ как сумму интервалов (непересекающихся)

$$\{\xi\leqslant x_1\}+\{x_1<\xi\leqslant x_2\}$$

откуда следует

$$P(\xi \leqslant x_2) = P(\xi \leqslant x_1) + P(x_1 < \xi \leqslant x_2)$$

$$P(x_1 < \xi \leqslant x_2) = F(x_2) - F(x_1)$$

 σ -алгебра $\mathcal B$ числовых множеств, порожденная всевозможными интервалами вида $x_1 < x \leqslant x_2$, называется борелевской; множества B, входящие в $\mathcal B$, также называются борелевскими.

 σ -алгебра борелевских множеств ${\mathcal B}$ содержит всевозможные интервалы вида

$$x_1 \leq x \leq x_2, \quad x_1 < x < x_2, \quad x_1 < x \leq x_2, \quad x_1 \leq x < x_2$$

с конечными и бесконечными концами, их конечные и счетные суммы, все открытые и замкнутые множества.

Для каждого $B\in \mathcal{B}$ определена вероятность $P\{\xi\in B\}$, которую мы будем обозначать $P_{\xi}(B)$.

Функция $P_{\xi}(B)$, определенная для всех $B\in\mathcal{B}$, называется распределением вероятностей случайной величины ξ .

- [3] Колмогоров, Фомин. Гл. VI Пар. 6 Интеграл Стилтьеса.
- [1] Севастьянов. § 27. Случайные величины и их распределения

В теории функции [3] вводится понятие меры Лебега и меры Стилтьеса на подмножествах отрезков на интервале [a,b]. Функция распределения монотонна и не убывает. Интеграл

строится как разность двух функций.

Интегралу Лебега по мере образованной функцией распределения F(x)

$$\int_a^b f(x) d\mu_F$$

сопоставляется интеграл в форме Лебега-Стилтьеса

$$\int_a^b f(x) \ dF(x) = \int_a^b f(x) F'(x) \ dx$$

Функция F'(х) будет называться плотностью вероятности.

Вместе с тем вводится понятие *пинейный непрерывный функционал* и доказывается теорема Ф.Рисса. Всякий линейный непрерывный функционал на S в пространстве C[a,b] представим в виде

$$S(f) = \int_a^b f(x) \ dF(x)$$

Мы будем говорить, что функция $p(x) = p_{\xi}(x)$ есть плотность распределения случайной величины ξ , если для любых $x_1 < x_2$

$$P\{a < \xi < b\} = \int\limits_{x_1}^{x_2} p_{\xi}(x) dx \; .$$

Из определения следует

1. $F'_{\xi}(x) = p_{\xi}(x)$;

2.
$$F_{\xi}(x)=\int\limits_{-\infty}^{x}p_{\xi}(u)\ du$$
;

3.
$$F_{\xi}(x_2) - F_{\xi}(x_1) = \int_{x_1}^{x_2} p_{\xi}(u) \ du$$
 для $x_1 < x_2$.

очень важный пункт 2. Я запишу в другом виде

$$F_{\xi}(x) = P(\xi < x) = \int\limits_{-\infty}^{x} p_{\xi}(u) \ du = \int\limits_{-\infty}^{x} dF_{\xi}(u)$$

Если распределение имеет плотность $p_{\xi}(x)$, то мы будем говорить, что случайная величина ξ имеет *абсолютно непрерывное распределение*. Через плотность $p_{\xi}(x)$ можно выразить любую

вероятность $P\{\xi\in B\}$, если мы умеем вычислять интеграл по области B в следующей форме:

$$P\{\xi\in B\}=\int_B p_\xi(x)dx \ .$$

Для множеств B, равных сумме интервалов, интеграл вычисляется обычным способом. Для того чтобы равенство имело смысл при любом борелевском множестве B, нам нужно обобщить понятие интеграла, перейдя от интеграла Римана к интегралу Лебега.

Плотность распределения p(x) обладает следующими двумя свойствами:

$$p(x) \geq 0, \quad \int\limits_{-\infty}^{\infty} p(x) dx = 1 \ .$$

Математическое ожидание случайной величины

Математическое ожидание $\mathsf{E}\xi$ случайной величины $\xi=\xi(\omega)$, заданной на вероятностном пространстве (Ω,\mathcal{A},P) , определяется последовательно сначала для целых случайных величин, затем для неотрицательных случайных величин и, наконец, в общем случае.

Ввести понятие функции можно через определение индикатора события А

$$I_A(\omega) = egin{cases} 1, & ext{если} & \omega \in A \ 0, & ext{если} & \omega
otin A \end{cases}$$

Случайную величину можно выразить с помощью индикаторов конечного разбиения на множестве ... через сумму – разложение по индикаторам.

$$\xi(\omega) = \sum_{i=1}^N x_i I_{A_i}(\omega)$$

Индикаторная функция тесно связана с понятием финитной функции и обобщенной функции. Так вводится понятие δ -функции [3].

Функцией распределения случайной величины ξ будем называть вероятность $\mathbf{P}(\xi\leqslant x_i)$ того что величина примет значение не более x_i .

Математическое ожидание случайной величины при разложении по полному множеству независимых событий.

$$\mathsf{E}\xi = \sum_{i=1}^N x_i \mathrm{P}(A_i)$$

В теории вероятностей можно определить разложение по положительно определенным функциям.

В общем случае случайная величина однозначно представима в виде $\xi = \xi^+ - \xi^-$

$$\mathsf{E}\xi = \mathsf{E}\xi^+ - \mathsf{E}\xi^-$$

Можно определить мат.ожидание от комплексной величины $\zeta=\xi+i\eta$

$$\mathsf{E}\zeta = \mathsf{E}\xi + i\mathsf{E}\eta$$

Предел $\lim_{n o \infty} o \mathsf{E} \xi_n$ обозначим как интеграл Лебега

$$\int_{\Omega} \xi(\omega) dP(\omega)$$

Функция распределения $F(x) = P(\xi < x)$. Функция F монотонно не убывает, непрерывная и удовлетворяет условиям $F(-\infty) = 0$, $F(+\infty) = 1$.

Математическое ожидание случайной величины (в форме интеграла Лебега-Стилтьеса):

$$\mathsf{E} \xi = \int\limits_{-\infty}^{\infty} x \ dF(x) \ .$$

Дисперсия:

$$\mathsf{D}\xi = \int\limits_{-\infty}^{\infty} (x - \mathsf{E}\xi)^2 \, dF(x) \; .$$

Если случайная величина ξ имеет плотность $p_{\xi}(x)$ то

$$\mathsf{E} \xi = \int\limits_{-\infty}^{\infty} x p_{\xi}(x) dx \ .$$

Если ξ имеет плотность $p_{\xi}(x)$, функция g(x) непрерывна, то

$$\mathsf{E} g(\xi) = \int\limits_{-\infty}^{\infty} g(x) p_{\xi}(x) dx \ .$$

Формула композиции

Пусть ξ и η – независимые случайные величины, p_{ξ} и p_{η} – их плотности вероятности. Плотность их совместного распределения равна

$$p_{\xi\eta}(x,y)=p_{\xi}(x)p_{\eta}(y)$$

Функция распределения суммы равна следующему интегралу

$$F_{\xi+\eta}(z) = P(\xi+\eta\leqslant z) = \int\limits_{x+y\leqslant z} p_{\xi}(x)p_{\eta}(y)\ dx\ dy$$

Интеграл можно выразить, как повторный (для непрерывных плотностей — это факт из анализа, — следствие теоремы Фубини, доказываемой в теории интеграла Лебега), поэтому

$$F_{\xi+\eta}(z)=\int\limits_{-\infty}^{+\infty}p_{\xi}(x)\ dx\int\limits_{-\infty}^{z-x}p_{\eta}(y)\ dy=\int\limits_{-\infty}^{+\infty}F_{\eta}(z-x)p_{\xi}(x)\ dx$$

$$=\int\limits_{-\infty}^{+\infty}p_{\xi}(x)\int\limits_{-\infty}^{z}p_{\eta}(y-x)\ dx\ dy=\int\limits_{-\infty}^{z}dy\int\limits_{-\infty}^{+\infty}p_{\eta}(y-x)p_{\xi}(x)\ dx$$

Формулы

$$F_{\xi+\eta}(z)=\int\limits_{-\infty}^{+\infty}F_{\eta}(z-x)p_{\xi}(x)\;dx$$
 — композиция

$$p_{\xi+\eta}(y)=\int\limits_{-\infty}^{+\infty}p_{\eta}(y-x)p_{\xi}(x)\;dx$$
 — свертка

Компози́ция (суперпози́ция) фу́нкций — это применение одной функции к результату другой. Суперпозиция это операция, которую мы хотим использовать для генерализации выражений связанных с разложениями.

Пусть даны две функции f:X o Y и g:f[X] o Z, где $f[X]\subseteq Y$ — образ (отображение) множества X. Тогда их композицией называется функция $g\circ f:X o Z$, определённая равенством: $(g\circ f)(x)=g(f(x)), x\in X$.

Это утверждение такое, что мы применяем некоторое обобщение операции сложения, когда работаем с более сложными объектами. В простейшем случае это может быть свертка с весовыми коэффициентами, в более сложном случае это более сложная функция, которую можно представить как композицию или суперпозицию функций.

Свойства композиции:

- 1. Композиция ассоциативна: $(h \circ g) \circ f = h \circ (g \circ f)$
- 2. Если $f(x)=I_X$ тождество тождественное отображение на X, то есть $\forall x\in X:$ $f(x)=I_X(x)$, то $g\circ f=g.$
- 3. Если $g=I_Y$ тождественное отображение на Y , то есть $\forall y\in Y: g(y)=I_Y(y)=y$, то $g\circ f=f$
- 4. Композиция отображений $f:X \to X$, $g:X \to X$, в общем случае не коммутативна, $f\circ g \neq g\circ f$. Для некоторого класса функций коммутативность существует.
- Свойства 2 и 3 выражаются через «identity» инвариант множества, который обозначается как I.
- \circ операция разложения, которая соответствует функции от функции f(g(x)).

Композиции функций мы хотим сопоставить ассоциативную алгебру. см. понятие линейность. Операцию умножения на скаляр. Композиция - линейна.

Евклидово пространство случайных величин

см. [1] Севастьянов § 16.

Векторное n-мерное пространство квадратно- суммируемых функций на интервале $L^2([0,1]^n)$ с определенными свойствами:

- 1. мера Лебега, заданной плотностью вероятности на интервале ho(x)>0.
- 2. Скалярное произведение векторов $(\xi,\eta)=\sum_{\omega}\xi(\omega)\eta(\omega)
 ho(\omega)=\mathsf{E}\xi\eta$
- 3. Норма $\|\xi\|=\sqrt{(\xi,\xi)}$
- 4. Дистанция $d(\xi,\eta) = \sqrt{\mathsf{E}(\xi-\eta)^2} = \|\xi-\eta\|$

Механическое истолкование $\mathsf{E}(\xi)$ и $\mathsf{D}(\xi)$

$$\mathsf{E}\xi = \sum_{k=0}^n x_k p_k \;, \quad \mathsf{D}\xi = \sum_{k=0}^n \left(x_k - \mathsf{E}\xi\right)^2 p_k \;, \quad \mathrm{Cov}(\xi,\eta) = \mathsf{E}\{(\xi - \mathsf{E}\xi)(\eta - \mathsf{E}\eta)\}$$

-- центр масс и момент инерции (разброс масс) относительно центра. В трехмерном пространстве момент инерции — тензорная величина, представленная матрицей 3х3, собственным вектором и собственными значениями. Ковариация имеет смысл коэффициента корреляции — скалярного произведения.

дан пример в дискретном пространстве. Тоже самое можно определить для непрерывных вероятностей.

Гильбертово пространство случайных величин

[4] Бахтин В. И., Пиндрик О. И. Геометрические методы в статистике

В математических классах вводится аксиоматика из теории функции [3] - пространство со счетно-аддитивной мерой. Теория вероятностей представлена, как вероятностное пространство со своей мерой. В курсе теории вероятностей показано, как вводится понятие меры и интеграла Лебега. Аналогичная связь (двойственность представления) существует между разделами математической статистики и теорией Гильбертова пространства.

Вероятностное пространство можно образовать от любого множества с разбиением на непересекающиеся подмножества. Множеству можно сопоставить набор базисных функций. Гильбертово пространство можно образовать от набора ортогональных базисных функций.

Например, условные математические ожидания, линейные регрессии, частные и множественные корреляции проще всего определять с помощью ортогональных проекций в гильбертовом пространстве случайных величин.

Вероятностным пространством называется тройка $(\Omega, \mathcal{A}, \mathbf{P})$, в которой Ω — некоторое множество (элементы которого называются элементарными событиями), \mathcal{A} — некоторая σ -алгебра подмножеств Ω , а \mathbf{P} — вероятностная мера на этой σ -алгебре. (то есть такая неотрицательная мера, что $\mathbf{P}(\Omega)=1$).

Математическим ожиданием E и дисперсией D скалярной случайной величины ξ называются соответственно интегралы

$$\mathsf{E}\xi = \int_\Omega \xi dP$$
 и $\mathsf{D}\xi = \mathsf{E}\{(\xi - \mathsf{E}\xi)^2\} = \int_\Omega (\xi - \mathsf{E}\xi)^2 dP$

Если случайные величины ξ и η имеют конечные дисперсии, то их ковариацией называется число

$$Cov\{\xi,\eta\} = E\{(\xi - E\xi)(\eta - E\eta)\} = E\xi\eta - E\xi \cdot E\eta,$$

а корреляцией

$$\operatorname{Corr}\{\xi,\eta\} = \frac{\operatorname{Cov}\{\xi,\eta\}}{\sqrt{\mathsf{D}\xi\cdot\mathsf{D}\eta}} \ .$$

Обозначим через H множество всех случайных величин ξ , для которых $\mathsf{E}\{\xi^2\}<\infty$.

Определим скалярное произведение любых двух случайных величин $\xi, \eta \in H$ формулой

$$(\xi,\eta) = \mathsf{E} \xi \eta = \int_{\Omega} \xi \eta dP$$

Скалярное произведение порождает норму

$$\|\xi\|=\sqrt{(\xi,\xi)},$$
или $\|\xi\|=\int_{\Omega}\xi^2dP$.

По определению, H является гильбертовым пространством, оно совпадает с $L^2(\Omega, \mathcal{A}, \mathbf{P})$ - линейное квадратично суммируемое пространство.

Для элементов этого гильбертова пространства математическое ожидание, дисперсия, ковариация и корреляция представляются через скалярное произведение в виде:

$$\mathsf{E}\xi = (\xi, 1) \; , \quad \mathsf{D}\xi = \|\xi - \mathsf{E}\xi\|^2 \; ,$$

$$Cov\{\xi,\eta\} = (\xi - \mathsf{E}\xi, \eta - \mathsf{E}\eta)$$
,

$$\operatorname{Corr}\{\xi,\eta\} = rac{(\xi - \mathsf{E}\xi, \eta - \mathsf{E}\eta)}{\|\xi - \mathsf{E}\xi\| \cdot \|\eta - \mathsf{E}\eta\|} \; .$$

Корреляция может интерпретироваться как косинус угла между векторами $\xi-\mathsf{E}\xi\in H$ и $\eta-\mathsf{E}\eta\in H$. Если случайные величины не коррелируют то центрированные величины $\xi-\mathsf{E}\xi$ и

Разложение в ряд по ортогональным функциям

В случае сепарабельных гильбертовых пространств полная ортонормированная система $\{e_k\}$ является базисом. Для каждого элемента f пространства H имеет место разложение по ортонормированному базису $\{e_k\}$:

$$f=\sum_{k=1}^{\infty}lpha_k e_k=\sum_{k=1}^{\infty}(f,e_k)e_k \ .$$

Коэффициенты разложения в ряд $\alpha_k=(f,e_k)$ называют коэффициентами Фурье. Норма определенная через скалярное произведение будет давать равенство

$$\|f\|^2 = \sum_{k=1}^{\infty} |(f,e_k)|^2 \ .$$

Любые два гильбертовы пространства, имеющие одинаковую размерность, изоморфны. В частности, любые два бесконечномерные сепарабельные гильбертовы пространства изоморфны друг другу и пространству квадратично-суммируемых последовательностей ℓ^2 .

Квантовая механика первоначально была разработана в виде двух эквивалентных теорий: матричной механики Гейзенберга, использующей пространство ℓ^2 , и волновой механики Шрёдингера, использующей изоморфное ему гильбертово пространство L^2 [^3]

Пространство суммируемых функций

[3]: Колмогоров, Фомин. Гл. VII Пространства суммируемых функций. Пар. 2 Пространство L_2

Определение #1. Функция f называется функцией c интеграл

$$\int f^2(x) \ d\mu$$

существует (конечен). Совокупность всех таких функций обозначим $L_2(X,\mu)$.

Определение #2. Евклидовым пространством L_2 называется линейное пространство, состоящее из классов эквивалентных между собой функций с интегрируемым квадратом, в котором скалярное произведение определяется формулой

$$f(f,g)=\int f(x)g(x)d\mu$$

Норма и расстояние определяются через скалярное произведение

$$||f|| = \sqrt{(f,f)} , \quad \rho(f,g) = ||f-g|| .$$

Согласно теореме Рисса всякий линейный функционал в гильбертовом пространстве H записывается в виде скалярного произведения F(h)=(h,a), где a - фиксированный вектор из H. Поэтому всякий линейный функционал в L_2 имеет вид

$$F(f) = \int f(x)g(x) \ d\mu \ ,$$

где g - фиксированная функция с интегрируемым квадратом.

Комплексная функция f, определенная на некотором пространстве X с заданной на нем мерой μ , называется функцией с интегрируемым квадратом, если интеграл

$$\int_X |f(x)|^2 d\mu$$

существует(конечен).

Определив обычное сложение функций, умножение на скаляр и введя скалярное произведение по формуле

$$f(f,g)=\int_X f(x)\overline{g(x)}d\mu$$

определяем комплексное пространство L_2

Ортогональные системы функций в L_2

Если в L_2 выбрана некоторая полная ортогональная система $\{\psi_n\}$, то каждый элемент $f\in L_2$ можно представить как сумму ряда

$$f=\sum_{n=1}^{\infty}c_n\psi_n$$

-- ряда Фурье функции f по ортогональной системе $\{\psi_n\}$. При этом коэффициенты c_n определяются формулами

$$c_n = rac{1}{\|\psi_n\|^2} \int f(x) \psi_n(x) \; d\mu \; , \quad \|\psi_n\|^2 = \int \psi_n^2(x) \; d\mu \; .$$

Далее следует рассмотреть ортогональные системы полиномов... одна из таких систем базисные полиномы Бернштейна рождаются из биномиального распределения.

Биномиальное распределение

Схема Бернулли. Частный случай независимых испытаний.

Пусть некоторый исход A, который мы будем называть успехом, может произойти при каждом испытании с одной и той же вероятностью p; противоположный исход \bar{A} (неуспех) может произойти при каждом испытании с дополнительной вероятностью q=1-p. В элементарном событии $\omega=(\omega_1,...,\omega_n)$ имеем $\omega_i=1$, если при і-м испытании произошел успех, и $\omega_i=0$ в противоположном случае.

Обозначим $Bk=\{\omega:\omega_1+...+\omega_n=k\}$ событие, состоящее в том, что при n независимых испытаниях в схеме Бернулли произошло ровно k успехов. Поскольку при $\omega\in B_k:p(\omega)=p^kq^{n-k}$, то

$$P(B_k) = p^k q^{n-k} imes$$
 (число элементарных событий $\omega \in B_k$)

$$P(B_k) = C_n^k p^k q^{n-k}, \quad k = 0, 1, ..., n.$$

Теорема Пуассона. Если $n o \infty$ и p o 0 так, что np o a, то для любого фиксированного m=0,1,...

$$P\{\mu=m\}=C_n^mp^mq^{n-m}
ightarrowrac{a^m}{m!}e^{-a}\ .$$

Биномиальное распределение числа успехов μ при n независимых испытаниях в схеме Бернулли с вероятностью успеха p в каждом испытании задается вероятностями

$$P\{\mu=m\}=C_n^mp^mq^{n-m}, m=0,1,...,n,q=1-p$$
 . Биномиальное распределение случайной величины μ имеет $\mathsf{E}\mu=np$ и $\mathsf{D}\mu=npq$

Локальная предельная теорема Муавра–Лапласа. Если в схеме Бернулли $\sigma=\sqrt{npq}\to\infty$, то для любого C>0 равномерно по всем $|x|\leq C$ вида

$$x = \frac{m - np}{\sigma} \; ,$$

где m — целые неотрицательные числа,

$$P\{rac{\mu-np}{\sqrt{npq}}=x\}
ightarrowrac{1}{\sqrt{2\pi}\sigma}e^{-x^2/2}$$

Интегральная предельная теорема Муавра–Лапласа. При $\sigma = \sqrt{npq} o \infty$ равномерно по $-\infty \leqslant a < b \leqslant \infty$

$$P\{a\leqslant rac{\mu-np}{\sqrt{npq}}\leqslant b\}
ightarrowrac{1}{\sqrt{2\pi}}\int\limits_a^b e^{-x^2/2}dx$$

Приближение, получаемое с помощью теорем Муавра—Лапласа, называется *нормальным распределением*.

Производящие функции последовательности

{смысл этого раздела в том чтобы через вероятности ввести S-пространство Лапласа} Сложно найти эту связь, но изначально под производящей функцией понимали функцию представимую в форме интеграла Лапласа-Стилтьеса

$$f(x) = \int\limits_0^\infty e^{-xt} \ d\mu(t)$$

В непрерывном распределении, если функцию μ возможно представить в виде интеграла

$$\mu(t) = \int\limits_0^t \phi(u) \; du \; ,$$

тогда интеграл примет вид

$$f(x) = \int\limits_0^\infty e^{-xt} \phi(t) \; d(t)$$

Или в дискретном виде (дискретное преобразование Лапласа), если функция μ является ступенчатой функцией со ступеньками в точках λ_k .

Обозначим прямое преобразование Лапласа функции f(t) (переменной t) как функцию новой переменной s как

$$\mathcal{L}\left\{f(t)
ight\}(s) = \int\limits_{0}^{\infty} e^{-st} f(t) \ dt \ .$$

где s — комплексный параметр частотной области $s=\sigma+i\omega$ с действительными числами σ и ω .

Преобразование Лапласа конечной борелевской меры μ можно определить с помощью интеграла Лебега:

$$\mathcal{L}\{\mu\}(s) = \int_{[0,\infty)} e^{-st} \; d\mu(t) \; .$$

Важный особый случай — когда μ — вероятностная мера, например, дельта-функция Дирака. В операторном исчислении меры преобразование Лапласа рассматривается так, как если бы мера давала функцию плотности вероятности f. Важно отметить что, в случае когда масса сосредоточена в точке 0 при использовании δ - функции, функция полностью входит под интеграл.

В теории вероятностей преобразование Лапласа определяется как математическое ожидание. Если ξ — случайная величина с функцией плотности вероятности f, то преобразование Лапласа f задается математическим ожиданием

$$\mathcal{L}\{f\}(s) = \mathsf{E}\left[e^{-s\xi}
ight]$$
, где

 $\mathsf{E}[r]$ - математическое ожидание случайной величины r.

Замена s на -t дает производящую функцию функцию моментов ξ .

$$\mathsf{M}_{\xi}(t) = \mathcal{L}\{f_{\xi}\}(-t).$$

Z-преобразование — это преобразование Лапласа решётчатой функции, производимое с помощью замены переменных:

 $z\equiv e^{sT}$, где $T=1/f_s$ — период дискретизации, а f_s — частота дискретизации сигнала.

Пусть $\Delta_T(t) \stackrel{\mathrm{def}}{=} \sum_{n=0}^\infty \delta(t-nT)$ будет последовательность выделяющая дискретные значения в определенные моменты времени (решетчатая функция Дирака) и

$$egin{aligned} x_q(t) & \stackrel{ ext{def}}{=} x(t) \Delta_T(t) = x(t) \sum_{n=0}^\infty \delta(t-nT) \ & = \sum_{n=0}^\infty x(nT) \delta(t-nT) = \sum_{n=0}^\infty x[n] \delta(t-nT) \end{aligned}$$

получаем дискретное представление непрерывной функции x(t). $x[n] \stackrel{\mathrm{def}}{=} x(nT)$.

Преобразование Лапласа от дискретного сигнала $x_q(t)$, выделенного решетчатой функцией запишется:

$$egin{align} X_q(s) &= \int_{0^-}^\infty x_q(t) e^{-st} \, dt \ &= \int_{0^-}^\infty \sum_{n=0}^\infty x[n] \delta(t-nT) e^{-st} \, dt \ &= \sum_{n=0}^\infty x[n] \int_{0^-}^\infty \delta(t-nT) e^{-st} \, dt \ &= \sum_{n=0}^\infty x[n] e^{-nsT} \; . \end{split}$$

Определение Z-преобразования от дискретной функции x[n] с учетом подстановки $z o e^{sT}$:

$$X(z) = \sum_{n=0}^{\infty} x[n]z^{-n}$$

Преобразование Лапласа образует линейное пространство операторов.

$$\mathcal{L}\{\alpha f(t) + \beta g(t)\} = \alpha \mathcal{L}\{f(t)\} + \beta \mathcal{L}\{g(t)\}$$

В пространстве линейных операторов можно определить вторую операцию - композиция функций (суперпозиция).

Свертке оригиналов соответствует произведение изображений

$$\mathcal{L}\{f(t)\circ g(t)\} = F(s)G(s).$$

Для аналитического решения линейных систем дифференциальных уравнений используется операционное исчисление, которое сопоставляет интегралам и производным рациональные функции (т.н. передаточные функции).

Дискретное пространство получается при использовании дискретного преобразования Лапласа. Производящие функции позволяют напрямую получить переход в дискретное Z-пространство. Производящие функции (формальные степенные ряды) и выражения с использованием рациональных функций дают простой алгебраический путь в дискретное Z-пространство.

[1] Б.А. Севастьянов Курс теории вероятностей и математической статистики. Гл.8 Пар. 32

Определение. Дискретную случайную величину ξ принимающую только целые не отрицательные значения будем называть целочисленной случайной величиной. Закон распределения целочисленной случайной величины определяется элементарными вероятностями $p_k=P(\xi=k), k=0,1\dots$ для которых

$$\sum_{k=0}^{\infty}p_k=1$$
 .

Распределение случайной величины удобно изучать с помощью производящей функции последовательности $\{p_k\}$, как суммы ряда

$$f_{\xi}(s) = \sum_{k=0}^{\infty} p_k s^k \ ,$$

которая сходится при $|s|\leqslant 1$. s определено на множестве $\mathbb C$ или $\mathbb R.$

Определение. Пусть $a_0, a_1, a_2, ...$ — произвольная (бесконечная) последовательность чисел. Производящей функцией для этой последовательности будем называть выражение вида

$$a_0 + a_1 s + a_2 s^2 + \dots$$

или

$$\sum_{k=0}^{\infty}a_ks^k$$
 .

Если все члены последовательности, начиная с некоторого n, равны нулю, то производящая функция является производящим многочленом.

Замечение. Употребляя слово «функция», мы вовсе не имеем в виду, что написанное выражение действительно является функцией. Так, не следует думать, будто мы можем сказать, чему равно «значение $A(s_0)$ производящей функции A в точке s_0 ». Переменная s является формальной, и сумма ряда $a_0+a_1s_0+a_2s_0^2+\dots$ смысла не имеет.

Следует понимать производящую функцию, как разложение по степеням (оператора) формальной переменной s. Операции с производящими функциями такие же как с полиномами, мы работаем с коэффициентами разложения. Т.е. функция вычисления значения ряда не используется.

Производящая функция определяется через математическое ожидание

$$f_{\xi}(s) = \mathsf{E} s^{\xi}$$

Производящей функцией любой числовой последовательности является сумма степенного ряда.

$$f(x) = \sum_{n=0}^{+\infty} rac{f^{(n)}(a)}{n!} (x-a)^n$$

-- разложение в ряд Тейлора позволяет говорить о явных формулах для вычисления коэффициентов разложения для аналитических функций распределения. Однако, в контексте производящих функций мы можем говорить о разложении в начальной или конечной точке интервала.

Можно установить соответствие между функцией распределения и числовой последовательностью

$$p_n = rac{1}{n!} f^{(n)}(0) \ , \quad n = 0, 1, 2, \ldots,$$

Мультипликативное свойство производящих функций. Если имеются несколько независимых целочисленных случайных величин, то производящая функция композиции является

Арифметические действия с формальными степенными рядами

Можно образовать формальный степенной ряд. В отличие от обычных рядов сходимость формальных рядов не требуется, и значение функции (суммы ряда) не вычисляется.

The name "generating function" is due to Laplace. Yet, without giving it a name, Euler used the device of generating functions long before Laplace [..].

Понятие производящей функции числовой последовательности ввел Лаплас, с тех пор этот инструмент используется в теории вероятностей. Мы хотим немного расширить инструментарий, чтобы провести параллель между преобразованием Лапласа и операторным методом решения систему уравнений. Аналогичный результат и действия с операторами получается путем Z-преобразования из S-пространства.

Можно рассмотреть, какие операции над производящими функциями бывают: Сложение, умножение и суперпозиция функций. Из производящих функций можно составить рациональные дроби (формальные) и исследовать свойства рациональных производящих функций. Центральной теоремой является утверждение, что произведение рациональных производящих функций - рационально.

Выводы полученные для рациональных производящих функций применимы в теории операторов.

Суммой двух производящих функций

$$A(s) = a_0 + a_1 s + a_2 s^2 + ...$$
 $B(s) = b_0 + b_1 s + b_2 s^2 + ...$

называется производящая функция

$$A(s) + B(s) = (a_0 + b_0) + (a_1 + b_1)s + (a_2 + b_2)s^2 + ...$$

Произведением производящих функций А и В называется производящая функция

$$A(s)B(s) = a_0b_0 + (a_0b_1 + a_1b_0)s + (a_0b_2 + a_1b_1 + a_2b_0)s^2 + ...$$

Операции сложения и умножения производящих функций коммутативны и ассоциативны. Операции сложения и умножения рациональных функций также будут коммутативны.

Пусть $A(s)=a_0+a_1s+a_2s^2+\dots$ и $B(t)=b_0+b_1t+b_2t_2+b_3t_3+\dots$ — две производящие функции, причем B(0)=b0=0.

Подстановкой производящей функции В в производящую функцию А называется производящая функция

$$A(B(t)) = a0 + a_1b_1t + (a_1b_2 + a_2b_1^2)t^2 + (a_1b_3 + 2a_2b_1b_2 + a_3b_1^3)t^3 + \dots$$

Суперпозиция функций (или сложная функция, или композиция функций, англ. function composition) — это функция, полученная из некоторого множества функций путем подстановки одной функции в другую.

Из производящих функций вводится понятие *оператор задержки* и задержка сопоставляется с производной.

Теорема (о существовании и единственности обратной подстановки) Пусть функция $B(t)=b_1t+b_2t^2+b_3t^3+...$ такова, что $B(0)=b_0=0$, а $b_1\neq 0$. Тогда существуют такие функции

$$A(s) = a_1 s + a_2 s^2 + a_3 s^3 + ..., A(0) = 0,$$

И

$$C(u)=c_1u+c_2u^2+c_3u^3+...,\,C(0)=0$$
, что

A(B(t))=t и B(C(u))=u. Функции A и C единственны. Функция A называется левой обратной, а функция C — правой обратной к функции B.

Мне иногда кажется, что я занимаюсь археологией, добываю артефакты из забытых теорий. Понятие производящей функции ввел Лаплас. По сути все эти выводы можно изложить в рамках единой теории операторов. Теория развитая вокруг производящих функций воспроизводится в виде схемы курса в теории операторов и теории линейных стационарных систем (LTI). При анализе физических процессов (электрических цепей) используется т.н операторный метод, который производным и интегралам сопоставляет полиномы и рациональные функции полиномов.

Теорема (обращение ряда) Пусть $A(s)=a_0+a_1s+a_2s^2+a_3s^3+...$ — формальный степенной ряд, причем $A(0)\neq 0$. Тогда существует единственный формальный степенной ряд $B(s)=b_0+b_1s+b_2s^2+b_3s^3+...$, такой что A(s)B(s)=1.

Доказательство теорем в курсе Ландо [^3]. Доказательства не всегда даются четко.

В итоге мы рассматриваем три операции: сложение, умножение и суперпозиция функций. Для каждой такой операции мы определяем понятие обратная операция и обратная функция. Для каждой операции мы определяем понятие единица или ноль - выделенный элемент множества

функций - инвариант. Таким образом мы рассматриваем множество производящих функций, как математический класс - кольцо рациональных производящих функций со своей ассоциативной алгеброй.

С алгебраической точки зрения множество формальных степенных рядов (с коэффициентами в поле комплексных, вещественных или рациональных чисел) образует (бесконечномерное) векторное пространство над этим полем.

Мы вводим понятие интегрирование и дифференцирования формального степенного ряда:

$$A'(s) = a_1 + 2a_2s + 3a_3s^2 + ... + na_ns^{n-1} + ...,$$

$$\int A(s) = a_0 s + a_1 rac{s^2}{2} + a_2 rac{s^3}{3} + ... + a_n rac{s^{n+1}}{n+1} + ...$$

Операция дифференцирования обратна операици интегрирования.

Интегрирование соответсвует понятию интеграл с переменным верхним пределом.

$$\int A(s) = \int\limits_0^s A(\xi) d\xi$$

Рекуррентные соотношения и рациональные производящие функции

[3] С.А. Ландо. Лекции о производящих функциях, 2007.

Теория рациональных производящих функций совпадает, по существу, с теорией решений обыкновенных дифференциальных уравнений с постоянными коэффициентами.

Пример 1. В качестве примера рассмотрим геометрическую прогрессию $G(s)=1+s+s^2+s^3+\dots$ Домножив на s получаем формулу

$$sG(s) = s + s^2 + s^3 + s^4 + ... = G(s) - 1$$
, откуда

$$G(s) = \frac{1}{1-s}$$

Пример 2. Последовательность Фибоначчи определяется начальными членами ряда $f_0=f_1=1$ и рекуррентным соотношением $f_{n+2}=f_{n+1}+f_n$

дает формулу производящей функции последовательности

$$F(s) = 1 + s + 2s^2 + 3s^3 + 5s^4 + \dots$$

Умножив левую и правую часть равенства на $s+s^2$

$$(s+s^2)F(s) = ... = F(s) - 1$$

Откуда получается

$$F(s) = \frac{1}{1 - s - s^2}$$

Полученную формулу можно понимать как композицию двух производящих функций

Теорема (рациональные производящие функции заданные линейной рекурсией) Пусть последовательность $\{a_k\}$ задается линейным рекуррентным соотношением порядка n с постоянными $c_1,...,c_n$:

$$a_{n+k} = c_1 a_{n+k-1} + c_2 a_{n+k-2} + \dots + c_k a_n$$

и числа $a_0,a_1,...,a_{k-1}$ заданы. Тогда производящая функция $A(s)=a_0+a_1s+a_2s^2+...$ рациональна,

 $A(s)=rac{P(s)}{Q(s)}$, причем степень многочлена Q(s) равна k, а степень многочлена P(s) не превосходит k-1.

Доказательство:

Умножив производящую функцию A(s) на $c_1s+c_2s^2+...+c_ks^k$, получаем

$$(c_1s + \dots + c_ks^k)A(s) = c_1a_0s + c_1a_1s^2 + c_1a_2s^3 + \dots + c_1a_{k-1}s^k + \dots + c_2a_0s^2 + c_2a_1s^3 + \dots + c_2a_{k-2}s^k + \dots + c_3a_0s^3 + \dots + c_3a_{k-3}s^k + \dots \dots + c_ka_0s^k + \dots = -P(s) + A(s)$$

где P- некоторый многочлен, степень которого не превосходит k-1. Коэффициенты при степенях s^{n+k} равны правой части реккурентного соотнощения.

Полином Q(s) имеет вид:

$$Q(s) = 1 - c_1 s - c_2 s^2 - ... - c_k s^k$$

для P(s) также можно составить выражение.

Операция деления для бесконечных степенных рядов не определена. Но можно говорить о делении полиномов данной сетпени с остатком.

Теорема 2 (обратная). Если производящая функция $A(s)=a_0+a_1s++a_2s^2+\dots$ рациональна, $A(s)=\frac{P(s)}{Q(s)}$, где многочлены P(s) и Q(s) взаимно просты, то начиная с некоторого номера n последовательность

 $a_0, a_1, a_2, ...$ задается линейным рекуррентным соотношением $a_{n+k} = c_1 a_{n+k-1} + c_2 a_{n+k-2} + ... + c_k a_n,$

где k—степень многочлена Q(s), а $c_1, c_2, ..., c_k$ - некоторые константы.

Далее см. раздел математического аланиза, Разложение рациональных функций с комплекснмыи и действительными коэффициентами.

Производящие функции моментов

Пусть есть случайная величина ξ с распределением P_{ξ} . Тогда её производящей функцией моментов называется функция, имеющая вид:

$$\mathsf{M}_{\xi}(t) = \mathsf{E}\left[e^{t\xi}\right]$$
.

Пользуясь формулами для вычисления математического ожидания, определение производящей функции моментов можно переписать в виде:

$$\mathsf{M}_{\xi}(t) = \int\limits_{-\infty}^{\infty} e^{tx} \; \mathsf{P}_{\xi}(dx)$$
 ,

то есть производящая функция моментов — это двустороннее преобразование Лапласа плотности распределения случайной величины (с точностью до отражения).

Факториальные моменты

Для вывода интерполяционных формул понадобится понятие момента $\mathsf{E}\xi^r$ и факториального момента $\mathsf{E}\xi^{[r]}$, где

$$\xi^{[r]} = \xi(\xi-1)\cdots(\xi-r+1) \ , \quad \xi^{[0]} = 1 \ .$$

Факториальные моменты можно выразить через моменты и наоборот. Например, $\mathsf{E}\xi=\mathsf{E}\xi^{[2]}+\mathsf{E}\xi.$

Факториальные моменты вычисляются через производные производящих функций в точке s=1.

$$\mathsf{E}\xi^{[r]}=f_\xi^{(r)}(1)$$

Характеристические функции последовательности

Характеристической функцией случайной величины ξ мы будем называть функцию $f_{\xi}(t)$ от действительного аргумента t, равную

$$f_{\xi}(t) = \mathsf{E} e^{it\xi}$$
 .

Раскрывая в $e^{i\phi}$ по формуле Эйлера $e^{i\phi}=\cos\phi+i\sin\phi,$ мы имеем $f_\xi(t)=\mathsf{E}\cos\xi t+i\mathsf{E}\sin\xi t.$

{дописать}