UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO TECNOLÓGICO DEPARTAMENTO DE AUTOMAÇÃO E SISTEMAS

Ígor Assis Rocha Yamamoto

SEMÁFORO COM CONTROLE DE FLUXO

Florianópolis

Ígor Assis Rocha Yamamoto

SEMÁFORO COM CONTROLE DE FLUXO

Projeto Final da disciplina Sistemas Digitais (EEL7020) apresentado à Universidade Federal de Santa Catarina

Professores: Eduardo Augusto Bezerra e Joni da Silva Fraga

Florianópolis

SUMÁRIO

1.	INTRODUÇÃO	3
2.	ESPECIFICAÇÃO DO PROBLEMA PROPOSTO	3
3.	COMPONENTES DO SISTEMA	5
	3.2. Contadores	6
	3.2.1. Contador do Semáforo Horizontal	7
	3.2.2. Contador do Semáforo Vertical	
	3.3. MÁQUINA DE ESTADOS	9
	3.4. Decodificador Binário para 7 Segmentos	11
	3.5. Registrador	12
	3.6. Topo da Hierarquia	13
4.	DIAGRAMA DE BLOCOS DO SISTEMA	13
5.	FLUXO DE PROJETO	14
6.	CONCLUSÃO	15

1. Introdução

Este trabalho tem por objetivo especificar o modo de realização do projeto final da disciplina Sistemas Digitais, simulando uma situação real e colocando em prática os conhecimentos adquiridos em aulas ao longo do disciplina.

O projeto consiste no desenvolvimento em VHDL para FPGA de um circuito digital que realize o controle do fluxo de veículos e pessoas utilizando um semáforo de trânsito. FPGA é um dispositivo usado para o processamento de informações digitais.

Este documento apresenta o problema, a descrição dos módulos utilizados no projeto, o fluxo do projeto, diagrama de blocos do projeto, representação gráfica da máquina de estado, explicações sobre estados e transições, diagramas de onda da simulação com explicação, conforme as exigências apresentadas.

2. Especificação do Problema Proposto

O projeto fundamenta-se na implementação de um circuito digital para o controle de fluxo de um cruzamento onde existem duas vias: uma horizontal (via H) e outra vertical (via V) (figura 1). Ambas possuem semáforos que controlam o fluxo de veículos de acordo com um tempo pré-estabelecido, contudo a via horizontal (via principal) tem prioridade sobre a via vertical, podendo ter seu tempo de sinalização do verde estendido. A extensão do tempo de sinalização em verde terá um limite máximo de vezes permitido.

Figura 1

O tempo de sinalização da via horizontal ocorrerá conforme descrito abaixo:

1) Primeiramente, o semáforo permanece um tempo mínimo de 16 segundos em verde.

Após esse tempo mínimo, poderão ocorrer até 3 extensões de 4s no tempo verde (totalizando um máximo de 12s de extensão). Cada extensão só ocorrerá se ambas as seguintes condições forem satisfeitas:

- Não houver pedido para passagem de pedestre na via horizontal, ou seja, a botoeira (P_H) não é pressionada.
- O detector indutivo (D_V), localizado na via vertical, n\u00e3o esteja detectando a
 presença de autom\u00f3veis na mesma.
- 2) O fim do verde na sinaleira da via horizontal é seguido por 2s de amarelo.

Obs.: Para a detecção de pedestres e automóveis são utilizados sinais de dois sensores: Um sensor indutivo (D_V), que sinaliza a presença de um veículo na via vertical e uma botoeira de pedestres (P_H), que sinaliza a presença de pedestres aguardando a travessia.

Para a via vertical, o verde tem um tempo não estendível de 6s, seguido por um intervalo de 2s de amarelo.

Conforme definido acima, a seguinte tabela mostra os tempos das indicações semafóricas:

Via Horizontal		Via Vertical	
Tempo	Valor (s)	Tempo	Valor (s)
TgH mín.	16	Tg_{V}	6
Tg _{H máx} .	28	Ty_V	2
TgH ext.	4	Tr_{V}	Variável
Тун	2		
Tr _H	8		

3. Componentes do Sistema

3.1. Divisor de Frequência

• Quantidade: 1

• Entradas: clock_in, reset

• Saída: clock_out

O divisor de frequência é um temporizador, este componente é quem regula a frequência com que temos uma borda de subida do *clock*, no caso há um intervalo de 1 segundo a cada subida. Para o implementar o componente foi usado a seguinte estratégia: Utilizamos 3 estados, cada qual com sua função (s0: estado inicial, s1: estado incrementador, s2: estado de verificação). O divisor funciona incrementando um contador em 1 a cada 2 pulsos de *clock* de 50MHz, então deve-se contar até 25 milhões.

Figura 2 - Divisor de Frequência

3.2. Contadores

• Quantidade: 2

Um contador é um circuito digital que permite reproduzir uma sequência prédeterminada. Para a solução do problema em questão, foram implementados dois contadores com o objetivo de contar os tempos em que os semáforos permanecem abertos a fim de controlar o fluxo de veículos da região. Os contadores, aos quais chamaremos *contadorH* (para a via horizontal) e *contadorV* (para a via vertical), serão descritos a seguir.

3.2.1. Contador do Semáforo Horizontal

- Entradas: clk, reset, enable, modcont, extensao
- Saídas: contagemH

O Contador da via principal Horizontal tem seu ritmo ditado pelo *clock* fornecido pelo temporizador, sendo atualizado a cada segundo, realizando portanto a função de contar os segundo em que o semáforo permanece sinalizando verde, amarelo e vermelho. Para a via em questão, o contador deve obedecer as regras especificas anteriormente, ou seja, deve contar no mínimo 16s de sinal verde, e de acordo com os sinais de *extensão* recebidos, estender ou não o tempo em que permanece aberto a passagem de veículos.

O módulo de contagem opera da seguinte maneira: quando *modcont* = '1' temos a contagem da sinaleira indicando verde (16 a 28s) e quando *modcont* = '0' temos a contagem do tempo de 2s em que o semáforo permanece no amarelo.

A saída *contagemH* indica o tempo que já foi decorrido desde a mudança para o estado atual. E o *enable* (ativo alto) é responsável pela ativação/desativação do contador.

Figura 3 - Simulação do Contador da Via Horizontal

A simulação acima mostra o funcionamento de contador, onde cnt representa a saída do contador. Percebe-se na situação-exemplo testada que no tempo de 17s (cnt = "10001") foi recebido a indicação dos sensores (ativo baixo) de que algum pedestre está pedindo travessia ou algum veículo se encontra em deslocamento na via Vertical, assim, após o tempo de extensão de 4s desde o tempo mínimo de 16s, a contagem zera, indicando uma mudança de estado, do verde para o amarelo no semáforo Horizontal.

Após os 2s de tempo em que o estado amarelo horizontal opera, percebe-se que o contador volta a zerar, e assim permanece até que volte a contar o tempo de sinalização do verde horizontal (desativado através do enable).

3.2.2. Contador do Semáforo Vertical

• Entradas: clk, reset, enable, modcont

Saídas: contagemV

Assim como o contador da via horizontal, o contador da via secundária vertical, é ritmado de acordo com o temporizador e tem sua ativação efetuada pelo *enable* (ativo alto).

Os módulos de contagem do semáforo vertical lhe permite contar até 6s, para o tempo em que o semáforo permanece em verde, e contar até 2s para o período em que se encontra sinalizando amarelo.

O contador também gera uma saída de contagem, indicando quantos segundos se passaram desde a mudança de estado.

Figura 4 - Simulação do Contador da Via Vertical

Na simulação acima notamos o funcionamento do contador vertical, contando até 6s, logo após tem sua contagem zerada, passando do verde para o amarelo vertical, onde permanece por 2s e então é desativado.

3.3. Máquina de Estados

- Quantidade: 1
- Entradas: clk, reset, controle, flagH, flagV
- Saídas: enableH, enableV, modcontH, modcontV, semafH, semafV, state, resetFF

A FSM (Finite State Machine) é um modelo usado pra representar circuitos lógicos. A Máquina de Estados Finitos é o cérebro do sistema, quem realiza a mais importante função de controlar a lógica de operação dos demais componentes.

No projeto, a FSM é responsável por fazer a transição dos estados. A máquina de estados tem em suas entradas sua fonte de informação para realizar as operações lógicas para a manutenção do sistema de forma a continuar funcionando continuamente ao longo do tempo. Os *flags* recebidos dos contadores são indicações de quanto tempo se passou desde a mudança de estado e indicarão em conjunto à entrada de controle (recebida através dos sensores) quando o próximo estado irá ocorrer.

A Máquina de Estados gera saídas para os contadores, os *enables* e *módulos de contagem*, indicando a forma que devem operar ou ficar desativados (no caso da sinalização de vermelho). Além desses sinais de saída para os contadores, a máquina de estados envia as saídas para os LEDs, informando a sinalização momentânea para pedestres e veículos que estão em circulação.

O *resetFF* tem a função de resetar (ativo baixo) o armazenamento da informação de extensão do tempo de verde na horizontal.

Figura 5 - Diagrama de Estados

O diagrama de estados acima facilita o entendimento da operação do sistema. Temos que o estado inicial está indicado pelo círculo com borda dupla, e este estado corresponde ao Verde Horizontal (VerdeH), tempo em que o semáforo da Via Horizontal permanece aberto. Ele é seguido pelo Amarelo Horizontal, então temos adiante o estado de Verde Vertical e, por último, fechando o ciclo, temos o Amarelo Vertical. As setas em conjunto com as condições descritas acima delas fazem a indicação de qual o próximo passo da sequêcia lógica deve ser seguido.

Figura 7 - Simulação da Máquina de Estados

A simulação da máquina de estados acima fornece a visualização completa da lógica do sistema.

O teste começa no estado inicial de Verde Horizontal, que permanece em vigor até atingir o tempo mínimo de 16s – observe que não foi concedida extensão no tempo de passagem de veículos na Horizontal pois ao tempo de 14s foi recebida a informação pelo controle de que algum dos sensores estava ativo (ativo baixo).

3.4. Decodificador Binário para 7 Segmentos.

• Quantidade: 2 (1 para o contador Horizontal, outro para o Vertical)

Entradas: C

• Saídas: F

Os decodificadores realizam a função, neste caso, de converter o número binário gerado pelos contadores em um número representado por 7 segmentos para que se possa visualiza-lo para fins de simulações.

Figura 8 - Decodificador para o Contador Horizontal

Figura 9 - Decodificador para Contador Vertical

3.5. Registrador

- Quantidade: 1
- Entradas: reset, CLEAR, k_IN (Entra o Ph (KEY(3)) ou o Dv (KEY(2)))
- Saídas: k_OUT (bit armazenado)

O Registrador é componente com a capacidade de armazenar um valor que será transmitido para a saída quando necessário. No projeto o único registrador presente é de 1 bit e está sendo utilizado pra armazenar o valor da expressão (Ph(KEY(3)) or Dv(KEY(2)).

3.6. Topo da Hierarquia

• Quantidade: 1

• Entradas: CLOCK_50, KEY(3 downto 0)

• Saídas: LEDG, LEDR, HEX0, HEX1, HEX4

O topo é o componente responsável por conectar os componentes do circuito através do comando *port map* do VHDL. Neste são realizadas todas as declarações dos componentes do projeto, cada qual com suas respectivas entradas e saídas. Ainda nele, são realizadas declarações de sinais que são transmitidos entre os componentes de forma que o semáforo de forma correta.

4. Diagrama de Blocos do Sistema

Figura 10 - Diagrama de Blocos

5. Fluxo de Projeto

O projeto foi desenvolvido pelos graduandos Fernando Battisti, Iago de Oliveira Silvestre e Ígor Assis Rocha Yamamoto.

Os componentes já haviam sido desenvolvidos em laboratório, contudo eles precisaram algumas modificações para que se adequassem a aplicação no projeto.

Para que o projeto fosse realizado, seguimos a seguinte ordem:

- Inicialmente, foi lida e entendida toda a descrição do projeto e as exigências necessárias.
- 2. O grupo entrou em discussão para desenvolver uma estratégia de projeto.
- 3. Um cronograma foi desenvolvido para que o projeto fosse concluído a tempo, para isso ele foi dividido em partes menores.
- 4. Após todos os componentes desenvolvidos corretamente e simulados, começou-se a ser feita a construção do arquivo TOPO.
- 5. Pra finalizar, após o TOPO ser implementado e simulado, deu-se início a escrita do relatório, e no fim deste, o objetivo do projeto foi alcançado.

6. Conclusão

O projeto em questão foi de grande valia, não somente para a nota final, mas também para um melhor entendimento da matéria Sistemas Digitais, pois além de ser simulada uma situação real, todo o conhecimento adquirido durante o semestre foi revisado e colocado em prática. Além disso a equipe precisou se organizar, pensar em grupo, fazer cronogramas, montar estratégias e seguir as exigências do projeto, ou seja, fazer o papel que é feito em engenharia, na qual tudo precisa ser levado com seriedade e de maneira rigorosa.

Ficou evidente que um código precisa ser claro e bem comentado, para que quaisquer alterações que forem necessárias sejam de fácil manipulação, como ocorrido no projeto em questão distintas vezes.

Durante o semestre e no projeto, o professor e os monitores sempre responderam quaisquer dúvidas, sempre comprometidos a ajudar.

Finalmente, com tudo citado anteriormente, conclui-se que a implementação do sistema para controle de fluxo de veículos e pessoas utilizando um semáforo de trânsito atendeu o objetivo, funcionando de acordo com as exigências iniciais.