Vision par ordinateur

Vision 3D (deuxième partie)

Alain Boucher – IFI

Mise en correspondance (appariement)

Approche basée sur la corrélation

Approche basée sur la corrélation

Il faut

- des régions texturées
- des points de vue assez semblables

Fonctionnement :

- On sélectionne une fenêtre définissant un voisinage dans l'image gauche
- On cherche la fenêtre de voisinage correspondante
 - Si on connait la géométrie épipolaire
 alors recherche sur la droite épipolaire dans l'image de droite
 sinon recherche dans toute l'image de droite
 - On peut concentrer d'abord la recherche dans les environs du point observé

Correspondance par corrélation

Approche basée sur la corrélation

Il existe plusieurs fonctions de corrélation de voisinage :

$$SSD = \sum_{i} \sum_{j} (I(ax+i, ay+j) - I'(bx+i, by+j))^{2}$$

$$ZSSD = -\sum_{i} \sum_{j} ((I(ax+i, ay+j) - \overline{I(ax, ay)}) - (I'(bx+i, by+j) - \overline{I'(bx, by)}))^{2}$$

$$\sum_{i} \sum_{j} ((I(ax+i, ay+j) - \overline{I(ax, ay)}) (I'(bx+i, by+j) - \overline{I'(bx, by)})$$

$$ZNCC = \frac{\sum_{i} \sum_{j} (I(ax+i, ay+j) - \overline{I(ax, ay)})^{2} \sqrt{\sum_{i} \sum_{j} (I'(bx+i, by+j) - \overline{I'(bx, by)})^{2}}$$

...

Calcul de carte de profondeurs

- Avec l'ensemble des correspondances, nous pouvons calculer une carte des profondeurs de la scène
- En fait, il s'agit d'une carte des disparités entre les correspondances [distance(p₁,p₂)]
 - Plus la distance de disparité est grande, plus l'objet est proche en 3D

Carte des profondeurs

Carte des disparités

image I(x,y)

Carte des disparités D(x,y)

(x',y')=(x+D(x,y),y)

image I'(x',y')

Taille de la fenêtre de corrélation

$$w = 3$$

$$w = 20$$

- La taille de la fenêtre de corrélation est importante
 - Petit voisinage (w=3) : plus de détails
 - Grand voisinage (w=20): moins d'erreurs isolées (mais plus long)

Pourquoi normaliser la corrélation ?

- L'intensité et les couleurs peuvent varier d'une caméra à l'autre
- La corrélation normalisée permet de corriger ces variations

$$\frac{\sum (u-\overline{u})(v-\overline{v})}{\sqrt{\sum (u-\overline{u})^2}\sqrt{\sum (v-\overline{v})^2}}$$

Corrélation hiérarchique

Plus rapide en calcul Permet de tenir compte des grandes disparités

Réduction d'échelle (pyramide Gaussienne)

Propagation des disparités

(Falkenhagen '97; Van Meerbergen, Vergauwen, Pollefeys, Van Gool IJCV '02)

Deux représentations 3D similaires

- Ces deux représentations sont similaires et montrent la 3D entre deux images
- Quelques différences entre les infos 3D disponibles

Rectification d'images

Rectification stéréo (1)

- Soit un système stéréo composée de deux caméras
- Définir une rotation pour chacun des caméras pour que les caméras soient coplanaires
- Définir une matrice de transformation pour chaque image

Rectification stéréo (2)

- Soit un système stéréo composée de deux caméras
- Définir une rotation pour chacun des caméras pour que les caméras soient coplanaires
- Définir une matrice de transformation pour chaque image

$$X_{i}' = T, \quad Y_{i}' = X_{i}'xZ_{i}, \quad Z'_{i} = X_{i}'xY_{i}'$$

Rectification stéréo (3)

- Soit un système stéréo composée de deux caméras
- Définir une rotation pour chacun des caméras pour que les caméras soient coplanaires
- Définir une matrice de transformation pour chaque image

Rectification d'images

- Pour simplifier les calculs à suivre, une étape intermédiaire consiste à rectifier les images
 - Idée: appliquer une transformation aux deux images pour que leurs droites épipolaires soient parallèles et alignées
 - Intérêt : la recherche du point correspondant sur les droites épipolaires est grandement simplifiée
 - Cette étape n'est pas obligatoire mais peut simplifier la suite

Rectification d'images

17

Rectification d'images : exemple

 (a) Original image pair overlayed with several epipolar lines.

(b) Image pair transformed by the specialized projective mapping H_p and H'_p. Note that the epipolar lines are now parallel to each other in each image.

Rectification d'images : exemple

transformed by the similarity \mathbf{H}_r and \mathbf{H}_r' . Note that the image pair is now rectified (the epipolar lines are horizontally aligned).

(d) Final image rectification after shearing transform H_s and H'_s. Note that the image pair remains rectified, but the horizontal distortion is reduced.

20

- Si les images sont rectifiées, alors la recherche des correspondances est beaucoup plus facile
- Il suffit de rechercher les zones similaires sur la même ligne (y constant)
- La **distance** (x₂-x₁) entre les deux correspondances est une indication de la profondeur du point dans la scène

Corrélation sur images rectifiées

Plus de 2 caméras

- Système de vision stéréoscopique trinoculaire
 - Hypothèse d'une correspondance entre A et B
 - Sur C : La ligne verte représente la droite épipolaire entre A et C
 - Sur C : La ligne rouge représente la droite épipolaire entre B et C
 - L'intersection des deux droites en C permet de vérifier l'hypothèse

Utilisation de 3 caméras

Trois lignes dans les images se croisent au même endroit en 3D Plus de contraintes pour la mise en correspondance 3D

Reconstruction 3D (exemples)

Reconstruction 3D

Avec plusieurs caméras, on peut reconstruire le volume 3D de l'objet

Une paire d'images stéréo...

...et sa reconstruction 3D

Reconstruction avec 10 images 2D

Interpolation de vues

 Etant donné deux images avec des correspondances, faire du morphing entre elles

[Chen & Williams, SIGGRAPH'93]

Entrée

Carte des profondeurs

Sortie

Reconstruction 3D à partir d'images 2D

Géométrie épipôlaire -Reconstruction 3D à partir d'images 2D (source: Mendonça 2001)

Reconstruction 3D

Inférence de surfaces avec un binoculaire stéréo (Lee et al. 2002)

Reconstruction 3D à partir de 3 vues affines (Quan et al. 2002)

Exemples de reconstruction 3D

Images de dinosaure

table tournante calibrée

Images de fleur

Image d'entrée (1 sur 100)

Vues de la reconstruction

Exemples de reconstruction 3D

« Virtualized Reality »

- Takeo Kanade, CMU
 - plus de 50 flux vidéo simultanés
- reconstruction de séquences de modèles 3D

Y from X: une seule caméra

- Shape from X Structure from X
 - Plusieurs travaux tentent de retrouver l'information 3D avec une seule caméra en utilisant une autre information de profondeur
 - X: texture, shading, lighting, focus, defocus, motion, ...

Shape from illumination (Georghiades et al. 2001)

Références (voir aussi la page web du cours)

- Marc Pollefeys, Multiple View Geometry (comp290-89 Spring 2003), University of North Carolina (USA).
 - Class 15 Rectification and structure reconstruction http://www.cs.unc.edu/~marc/mvg/course15.ppt
 - Class 17 The Trifocal Tensor
 http://www.cs.unc.edu/~marc/mvg/course17.ppt
 - Class 23 Multi-View Reconstruction
 http://www.cs.unc.edu/~marc/mvg/course23.ppt
- Zhigang Zhu, Video Computing and 3D Computer Vision (CSc 80000 Spring 2005),
 The City University of New York (CUNY, USA).
 - http://www-cs.engr.ccny.cuny.edu/~zhu/GC-Spring2005/CSc80000-2-VisionCourse.html
 - Lecture 5 Stereo Vision
 http://www-cs.engr.ccny.cuny.edu/~zhu/GC-Spring2005/Handouts/CVVC_Lecture5_Stereo.ppt