$11a_{246} (K11a_{246})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{20} - u^{19} + \dots - 4u - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 20 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{20} - u^{19} + \dots - 4u - 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{3} - 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{5} - 2u^{3} + u \\ u^{7} - 3u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{6} - 3u^{4} + 2u^{2} + 1 \\ -u^{6} + 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{9} - 4u^{7} + 5u^{5} - 3u \\ -u^{9} + 3u^{7} - 3u^{5} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{12} - 5u^{10} + 9u^{8} - 4u^{6} - 6u^{4} + 5u^{2} + 1 \\ -u^{12} + 4u^{10} - 6u^{8} + 2u^{6} + 3u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{15} - 6u^{13} + 14u^{11} - 12u^{9} - 6u^{7} + 16u^{5} - 4u^{3} - 4u \\ -u^{15} + 5u^{13} - 10u^{11} + 7u^{9} + 4u^{7} - 8u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{15} - 6u^{13} + 14u^{11} - 12u^{9} - 6u^{7} + 16u^{5} - 4u^{3} - 4u \\ -u^{15} + 5u^{13} - 10u^{11} + 7u^{9} + 4u^{7} - 8u^{5} + 2u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-4u^{18} + 28u^{16} + 4u^{15} - 80u^{14} - 24u^{13} + 96u^{12} + 56u^{11} + 16u^{10} - 44u^9 - 160u^8 - 40u^7 + 108u^6 + 84u^5 + 60u^4 - 12u^3 - 64u^2 - 36u - 22$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_7	$u^{20} + u^{19} + \dots - 2u - 1$
c_2, c_4, c_5 c_6, c_8, c_9	$u^{20} + 3u^{19} + \dots + 6u + 1$
c_3, c_{10}, c_{11}	$u^{20} - u^{19} + \dots - 4u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_7	$y^{20} - 3y^{19} + \dots - 6y + 1$
c_2, c_4, c_5 c_6, c_8, c_9	$y^{20} + 29y^{19} + \dots + 2y + 1$
c_3, c_{10}, c_{11}	$y^{20} - 15y^{19} + \dots - 6y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.007607 + 0.949634I	18.4290 + 3.4609I	-3.93136 - 2.23046I
u = -0.007607 - 0.949634I	18.4290 - 3.4609I	-3.93136 + 2.23046I
u = -1.101030 + 0.131890I	-1.54609 + 0.69516I	-7.68521 - 0.30999I
u = -1.101030 - 0.131890I	-1.54609 - 0.69516I	-7.68521 + 0.30999I
u = -0.038091 + 0.788227I	7.04605 + 2.82035I	-3.80057 - 3.20704I
u = -0.038091 - 0.788227I	7.04605 - 2.82035I	-3.80057 + 3.20704I
u = 1.24407	-5.00568	-19.1740
u = 1.239950 + 0.176027I	-3.11470 - 3.99252I	-13.6755 + 7.5015I
u = 1.239950 - 0.176027I	-3.11470 + 3.99252I	-13.6755 - 7.5015I
u = -1.204290 + 0.369958I	3.49001 + 1.34947I	-7.27011 - 0.63614I
u = -1.204290 - 0.369958I	3.49001 - 1.34947I	-7.27011 + 0.63614I
u = 1.261210 + 0.352418I	3.03541 - 6.91001I	-8.48791 + 6.50357I
u = 1.261210 - 0.352418I	3.03541 + 6.91001I	-8.48791 - 6.50357I
u = -1.293390 + 0.470696I	14.4385 + 1.5977I	-7.05732 - 0.65036I
u = -1.293390 - 0.470696I	14.4385 - 1.5977I	-7.05732 + 0.65036I
u = 1.304330 + 0.464606I	14.3498 - 8.5006I	-7.22483 + 5.05516I
u = 1.304330 - 0.464606I	14.3498 + 8.5006I	-7.22483 - 5.05516I
u = -0.133388 + 0.482581I	0.98038 + 1.64938I	-5.14084 - 6.42836I
u = -0.133388 - 0.482581I	0.98038 - 1.64938I	-5.14084 + 6.42836I
u = -0.299460	-0.645282	-16.2790

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_7	$u^{20} + u^{19} + \dots - 2u - 1$
c_2, c_4, c_5 c_6, c_8, c_9	$u^{20} + 3u^{19} + \dots + 6u + 1$
c_3, c_{10}, c_{11}	$u^{20} - u^{19} + \dots - 4u - 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_{1}, c_{7}	$y^{20} - 3y^{19} + \dots - 6y + 1$
c_2, c_4, c_5 c_6, c_8, c_9	$y^{20} + 29y^{19} + \dots + 2y + 1$
c_3, c_{10}, c_{11}	$y^{20} - 15y^{19} + \dots - 6y + 1$