<u>강의계획서</u>

1. 과목 기본 정보(Basic Course Information)

교과목명		특론1				코드		EC	E40097
개설년도		2024			개	설학기			1
개설학부					이수	구분/영역			/
대상학년		2	1			분반			01
인정전공	컴퓨터	공학(33),/전지	가공학	학(33),/전자공학심	남화(60),, 학심)),/컴	퓨터공학	박(45),/AI·컴퓨터공
학점구성		총학점		이론	실	험/실습	4	설계	기타()
96T6	3			3	0			0	0
수업주유형	강의, F	Project, 토론,	실습						
선수과목	필수					병수과목			
	권장					0749			
주관교수성명						주관교수 En	nail		
담당교수 성명	담	담당교수 Email		담당교수 전화		Office 위치		Office Hour	
안민규	minkyuahn@handong.e du		1167		OH 311		by	appointment /	
TA성명						TA email			
강의실						강의시간			

2. 학습목표 및 개요(Course Objectives)

● 학습목표(Course Objective)

번호	학습목표
1	뇌 구조 및 신경 정보 전달 메커니즘을 이해한다.
2	뇌인지 기능 및 행동에 대한 기초 지식을 이해한다.
3	기계학습 및 인공지능 기법을 통한 인지추론, 의도확인 등의 기본적인 과정을 이해한다.
4	뇌-컴퓨터 인터페이스를 구축하기 위한 요소를 이해한다.

● 연관 학습성과(Related Learning Outcomes)

역량	학습성과
	조회된 데이터가 없습니다.

● 강의개요(Course Description)
뇌-컴퓨터 인터페이스는 신경 신호를 이용하여 외부 시스템을 작동 시키는 기술을 의미한다. 본 교과목에서는 이러한 기술을 구현하
기 위해 필요한 구성 요소 및 방법들을 알아본다. 뇌 구조 및 작동 메커니즘부터 신경 신호 측정과 기계학습/인공지능을 이용한 생각
분류 기술까지 포괄적으로 다룸으로써 뇌-컴퓨터 인터페이스 개발에 관한 기본적인 지식을 쌓는 것을 목표로 한다.

3. 과목 운영 및 과제물

● 교재

주교재	서명		저자	
	출판사		출판년도	
부교재	서명	Brain-computer Interfaces Handbook Technological and Theoretical Advances (1st Edition)	저자	Chang S. Nam, Anton Nijholt, Fabien Lotte
	출판사	CRC Press	출판년도	2018
부교재	서명	The Student's Guide to Cognitive Neuroscience	저자	Jamie Ward
	출판사	Psychology Press	출판년도	2014

기자재 Labtop and Matlab	
-----------------------	--

● 평가

출석관리	_	Handong Attendance Rule applies. Grade F will be given to the students who missed more than 1/4 classes.						
학점산출 평가 도구	출석	중간시험	기말시험	퀴즈	팀프로젝트	개인과제	기타1(기타 1)	기타2(기타 2)
및 비중(%)	20		20			60		
Honor Code 준수 및 평가방법 추가설명					by yourself. e) is found, the	en you will ge	et F.	

● 수업 활동유형

강의	50%	실험	%	실습	20%
팀프로젝트	10%	발표	10%	토론	10%
기타1()	%	기타2()	%	기타3()	%
총계	100 %				

● 과제 및 프로젝트(Assignments and Projects)

번호	내용
	- 뇌-컴퓨터 인터페이스 관련 논문 읽기 및 발표.
1	- 뇌 신호에서 바이오마커를 추출하고 기계학습 기반 처리를 위한 기본적인 실습 과제 (matlab or python)
	- 목표 주제에 대한 자료 조사, 결론 도출 및 프로젝트 보고서 작성.

4. 강의 일정 계획(Weekly Schedule)

주차	날짜	강의주제 및 범위	과제 결과물 및 평가
1	2024-03-05 2024-03-08	Course overview and introduction	
2	2024-03-12 2024-03-15	What is BCI?	
3	2024-03-19 2024-03-22	Brain and EEG	
4	2024-03-26 2024-03-29	Special Talk	

주차	날짜	강의주제 및 범위	과제 결과물 및 평가
5	2024-04-02 2024-04-05	Brain imaging	
6	2024-04-09 2024-04-12	Preprocessing	
7	2024-04-16 2024-04-19	EEG device (demoandLab)	
8	2024-04-23 2024-04-26	Temporal Analysis	
9	2024-04-30 2024-05-03	Spectral Analysis	
10	2024-05-07 2024-05-10	* reserved	
11	2024-05-14 2024-05-17	Spatial Analysis	
12	2024-05-21 2024-05-24	Advanced EEG features	
13	2024-05-28 2024-05-31	EEG classification	
14	2024-06-04 2024-06-07	Deep Learning for EEG analysis	
15	2024-06-11 2024-06-14	Project presentation	
16	2024-06-18 2024-06-21	Final Exam	

5. 공지사항/부가정보

● 본 과목의 수강신청을 위한 주요 공지사항(Notice)

가. 수업진행방식(대면/비대면) Course Progress(contact/untact/Hybrid)

- 기본적으로 대면 강의를 합니다.
- 수업은 이론 강의와 학생들의 논문 발표 그리고 주제에 대한 그룹 토의로 진행됩니다.
- 약간의 실습이 있으며 기본적인 프로그래밍 소양이 있으면 됩니다. 수업에서는 matlab 사용 예정입니다.
- 나. 기타 etc
- 이 수업의 수강생들은 아래의 교육 콘텐츠를 활용해 수업에 도움이 되기 바랍니다.
- 한동대학교 SW중심대학 유튜브채널에 올려진 '뇌-컴퓨터 인터페이스 입문'강좌
- 동영상 (URL)

https://www.youtube.com/playlist?list=PLoJdZ7VvEiRPpBV1wVG1RvWE9iI40IsWd

● 전공별 부가 정보(Additional Information)

번호	내용

6. 과목 세부 정보

V	문제해결력 프로젝트 수업 여부
	현장과 연계한 과목여부 - 코너스톤
	현장과 연계한 과목여부 - 키스톤
	현장과 연계한 과목여부 - 캡스톤
	창업관련 교과목 여부
V	온라인 콘텐츠 강의활용 수업여부 - 온라인 콘텐츠 강의활용 비율 50 %

- 온라인 콘텐츠 활용 콘텐츠 선택 (복수개 선택 가능함)

v	Hudcc(우리대학 강의녹화 서비스)
	타대학 및 타기관 협력하여 개발된 온라인 강좌 활용
	MOOC 활용
	OCW 활용
V	그 외 온라인콘텐츠 활용

7. 장애학생을 위한 강의 및 평가 안내

● 장애학생의 장애유형과 정도를 고려하여 강의, 과제 및 평가를 실시

예)강의 :

- 강의파일 제공, 강의대필도우미 제공.
- 치료 및 입원 등으로 출석이 어려운 경우 증명서류 제출 시 출석으로 간주.

과제 및 평가

- 시험대필도우미, 필요 시 수화 설명 등