山东大学___________学院

计算机组成与设计 课程实验报告

学号: 202000130143 | 姓名: 郑凯饶 | 班级: 2020 级 1 班

实验题目: 移位器

实验学时: 2 实验日期: 2022-4-17

实验目的:

要求采用传送方式实现二进制数的移位电路。

实验软件和硬件环境:

软件环境:

Quartus II 软件

硬件环境:

- 1. 实验室台式机
- 2. 计算机组成与设计实验箱

实验原理和方法:

(1) 移位器电路原理图:

图 4 移位器电路原理图

图 4.4 给出了可对四位二进制数实 现左移 1 位(\times 2),右移 1 位(\div 2)和直接传送功能的移位线路,这也是运算器的主要功 能。在 LM(左移)的控制下可实现左移 1 位,空位补 0。在 RM(右移)的控制下可实现右移 1 位,空位补 0。在 DM(直送)的控制下可实现直接传送。

实验步骤:

连接电路原理图:

连接同一或门的与门为一组,从上往下控制线依次连接 LM, DM, RM, 分别对应左移, 直传, 以及右移功能。

引脚分配:

Node Name	Direction	Location	I/O Bank	VREF Group	Fitter Location	I/O Standard	Reserved	Current Strength	Slew Rate	Differential Pair
_ a0	Input	PIN 52	3	B3_N0	PIN_52	2.5 V (default)		8mA (default)		
a1	Input	PIN_55	4	B4_N0	PIN_55	2.5 V (default)		8mA (default)		
a2	Input	PIN_64	4	B4_N0	PIN_64	2.5 V (default)		8mA (default)		
a3	Input	PIN_66	4	B4_N0	PIN_66	2.5 V (default)		8mA (default)		
5 b0	Output	PIN_60	4	B4_N0	PIN_60	2.5 V (default)		8mA (default)	2 (default)	
b1	Output	PIN_65	4	B4_N0	PIN_65	2.5 V (default)		8mA (default)	2 (default)	
b2	Output	PIN_70	4	B4_N0	PIN_70	2.5 V (default)		8mA (default)	2 (default)	
b3	Output	PIN_74	5	B5_N0	PIN_74	2.5 V (default)		8mA (default)	2 (default)	
_ DM	Input	PIN_75	5	B5_N0	PIN_75	2.5 V (default)		8mA (default)		
LM .	Input	PIN_34	2	B2_N0	PIN_34	2.5 V (default)		8mA (default)		
⊢ RM	Input	PIN_67	4	B4 N0	PIN 67	2.5 V (default)		8mA (default)		

测试、调试:

(键 7: 左移 键 6: 直传 键 5: 右移 键 4-1: 输入) 直传: 5 -> 5

左移: 5 << 1 = 10

右移: 5 >> 1 = 2

结论分析与体会:

这次实验我们完成了移位器,相比于乘除法,移位运算电路相对简单,接线数量少,只需要一步运算,不需要像前者一样考虑串行、并行电路结构。因此在*2 和/2 时我们可以使用移位运算更加高效地完成运算。