

Cálculo II Ingeniería Civil

Prof. Víctor Aros Quinán

Segundo Semestre 2021

Clase Nº23: Cálculo II Sucesiones de Números Reales

Definición

Sea $(x_n)_{n\in\mathbb{N}}$ una sucesión de números reales. Llamamos **subsucesión** de $(x_n)_{n\in\mathbb{N}}$ a cualquier otra sucesión de la forma $(x_{n_k})_{k\in\mathbb{N}}$ donde $(n_k)_{k\in\mathbb{N}}$ es una sucesión de números naturales estrictamente creciente.

Ejemplos:

- 1. Determine una subsucesión de $\left\{\frac{1}{\sqrt{n}}\right\}_{n=1}^{\infty}$.
 - 2. Determine dos subsucesiones de $\{(-1)^n\}_{n=1}^{\infty}$.

Teorema

Si $(x_n)_{n\in\mathbb{N}}$ es convergente, entonces toda subsucesión de ella es también convergente y converge al mismo valor.

Ejemplo: Consideremos la sucesión $\left(\frac{1}{n}\right)_{n\geq 3}$ y determine dos subsucesiones y verifique el teorema precedente.

Corolario

Sean $(x_{n_k})_{k\in\mathbb{N}}$ y $(x_{n_s})_{s\in\mathbb{N}}$ dos subsucesiones de $(x_n)_{n\in\mathbb{N}}$.

- 1. Si una subsucesión diverge, entonces $(x_n)_{n\in\mathbb{N}}$ diverge.
- 2. Si $(x_{n_k})_{k\in\mathbb{N}}$ y $(x_{n_s})_{s\in\mathbb{N}}$ convergen tal que

$$\lim_{k \to +\infty} x_{n_k} \neq \lim_{s \to +\infty} x_{n_s}$$

entonces $(x_n)_{n\in\mathbb{N}}$ diverge.

Ejemplo:

A continuación, presentaremos las propiedades de sucesiones convergentes.

Teorema

Si $(x_n)_{n\in\mathbb{N}}$ e $(y_n)_{n\in\mathbb{N}}$ son sucesiones convergentes, entonces también lo son $(x_n+y_n)_{n\in\mathbb{N}}$, $(kx_n)_{n\in\mathbb{N}}$, siendo $k\in\mathbb{R}$, $(x_n\cdot y_n)_{n\in\mathbb{N}}$ y $\left(\frac{x_n}{y_n}\right)_{n\in\mathbb{N}}$. Además,

- 1. $\lim_{n \to +\infty} (x_n + y_n) = \lim_{n \to +\infty} x_n + \lim_{n \to +\infty} y_n.$
- $2. \lim_{n \to +\infty} (kx_n) = k \lim_{n \to +\infty} x_n.$
- 3. $\lim_{n \to +\infty} (x_n \cdot y_n) = \lim_{n \to +\infty} x_n \cdot \lim_{n \to +\infty} y_n.$
- 4. $\lim_{n \to +\infty} \left(\frac{x_n}{y_n} \right) = \frac{\lim_{n \to +\infty} x_n}{\lim_{n \to +\infty} y_n}$, siempre que $y_n \neq 0$.

Ejercicios

Determine el valor de los siguientes límites de sucesiones:

1.
$$\lim_{n \to +\infty} \frac{n^2 + 5n - 1}{n^2 + 9}$$

2.
$$\lim_{n \to +\infty} \frac{8n^3 + 1}{n^5 + 4n^4 - n}$$

$$3. \lim_{n \to +\infty} \sqrt{\frac{n}{3n-1}}$$

$$4. \lim_{n \to +\infty} \left(\sqrt{n^2 + n} - n \right)$$

Ejercicios

Solución 1): Notemos lo siguiente:

$$\lim_{n \to +\infty} \frac{n^2 + 5n - 1}{n^2 + 9} \stackrel{\left(\frac{\infty}{\infty}\right)}{=} \lim_{n \to +\infty} \frac{n^2 \left(1 + \frac{5}{n} - \frac{1}{n^2}\right)}{n^2 \left(1 + \frac{9}{n^2}\right)}$$

$$= \lim_{n \to +\infty} \frac{1 + \frac{5}{n} - \frac{1}{n^2}}{1 + \frac{9}{n^2}}$$

$$= 1$$

Ejercicios

Solución 3): Notemos lo siguiente:

$$\lim_{n\to +\infty} \sqrt{\frac{n}{3n-1}} \stackrel{\left(\frac{\infty}{\infty}\right)}{=} \sqrt{\lim_{n\to +\infty} \frac{n}{3n-1}} = \sqrt{\frac{1}{3}} = \frac{\sqrt{3}}{3}$$

Solución 4): Observemos lo siguiente:

$$\lim_{n \to +\infty} \left(\sqrt{n^2 + n} - n \right) \stackrel{(\infty - \infty)}{=} \lim_{n \to +\infty} \sqrt{n^2 + n} - n \cdot \frac{\sqrt{n^2 + n} + n}{\sqrt{n^2 + n} + n}$$

$$= \lim_{n \to +\infty} \frac{n}{\sqrt{n^2 + n} + n}$$

$$\stackrel{\left(\frac{\infty}{\infty}\right)}{=} \lim_{n \to +\infty} \frac{n}{n \left(\sqrt{1 + \frac{1}{n}}\right) + 1} = \frac{1}{2}$$

Teorema

Si $(x_n)_{n\in\mathbb{N}}$ es convergente y $\lim_{n\to+\infty} x_n = L$, con $L\in\mathbb{R}^+$, entonces $(\sqrt{x_n})_{n\in\mathbb{N}}$ es convergente y $\lim_{n\to+\infty} \sqrt{x_n} = \sqrt{L}$.

Idea de Demostración: Para $\varepsilon > 0$ dado, debemos encontrar un $N \in \mathbb{N}$ tal que:

$$\forall n \in \mathbb{N} : n \ge N \Rightarrow \left| \sqrt{x_n} - \sqrt{L} \right| < \varepsilon$$

Considerando lo anterior, podemos notar que:

$$\left| \sqrt{x_n} - \sqrt{L} \right| = \left| \sqrt{x_n} - \sqrt{L} \right| \left| \frac{\sqrt{x_n} + \sqrt{L}}{\sqrt{x_n} + \sqrt{L}} \right| = \frac{|x_n - L|}{\sqrt{x_n} + \sqrt{L}} \le \frac{|x_n - L|}{\sqrt{L}}$$

Teorema del Acotamiento

Sean $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ y $(z_n)_{n\in\mathbb{N}}$ successones tales que:

$$\forall n \in \mathbb{N} : x_n \le y_n \le z_n$$

Si $\lim_{n\to+\infty} x_n = \lim_{n\to+\infty} z_n = L$, entonces $(y_n)_{n\in\mathbb{N}}$ converge a L.

Ejemplos: Determinar el valor del límite $\lim_{n\to+\infty} \frac{(-1)^n}{n}$ usando el teorema precedente.

En el estudio de las sucesiones de números reales existen algunas que se denominan sucesiones notables. A continuación, presentaremos algunas de ellas:

1. Si
$$0 < a < 1$$
, entonces $\lim_{n \to +\infty} a^n = 0$ y $\lim_{n \to +\infty} na^n = 0$.

2. Si
$$a > 0$$
, entonces $\lim_{n \to +\infty} \sqrt[n]{a} = 1$ y $\lim_{n \to +\infty} \sqrt[n]{n} = 1$.

$$3. \lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n = e$$

Demostración 3): Consideremos lo siguiente:

$$\forall x > 0 : \ln(x) = \int_1^x \frac{1}{t} \, dt$$

Sea $t \in \left[1, 1 + \frac{1}{n}\right]$ con $n \in \mathbb{N}$, luego:

$$\frac{1}{1+\frac{1}{n}} \le \frac{1}{t} \le 1$$

podemos aplicar la propiedad de comparación y obtenemos:

$$\int_{1}^{1+\frac{1}{n}} \frac{1}{1+\frac{1}{n}} dt \le \int_{1}^{1+\frac{1}{n}} \frac{1}{t} dt \le \int_{1}^{1+\frac{1}{n}} 1 dt$$

Resolviendo las integrales, se tiene lo siguiente:

$$\frac{1}{n+1} \le \ln\left(1 + \frac{1}{n}\right) \le \frac{1}{n}$$

Luego, considerando que la función exponencial es una función estrictamente creciente en todo \mathbb{R} , tenemos que;

$$e^{\frac{1}{n+1}} \le 1 + \frac{1}{n} \le e^{\frac{1}{n}}$$

Ahora bien, podemos considerar ambos extremos de la desigualdad y obtener cotas para e, como sigue:

$$e \le \left(1 + \frac{1}{n}\right)^{n+1} \quad \land \quad \left(1 + \frac{1}{n}\right)^n \le e$$

En consecuencia, se obtiene:

$$\frac{e}{1+\frac{1}{n}} \le \left(1+\frac{1}{n}\right)^n \le e$$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● めので

Finalmente, podemos notar que:

$$\lim_{n \to +\infty} \frac{e}{1 + \frac{1}{n}} = e = \lim_{n \to +\infty} \epsilon$$

luego, por el Teorema del Acotamiento podemos concluir que:

$$\lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n = e$$

Observación:

Definición

Una sucesión $(x_n)_{n\in\mathbb{N}}$ se dice acotada si existe $M\in\mathbb{R}^+$ tal que:

$$\forall n \in \mathbb{N} : |x_n| \le M$$

- 1. La sucesión $\left(\frac{1}{n}\right)_{n\in\mathbb{N}}$ es acotada pues $\forall n\in\mathbb{N}: 0<\frac{1}{n}\leq 1$.
- 2. La sucesión $(3n-1)_{n\in\mathbb{N}}$ no es acotada pues, para todo M > 1, se tiene:

$$x_{[M]} = 3[M] - 1 \ge M$$

notar que [M] hace referencia a la oarte entera de [M].

Teorema

Toda sucesión convergente es acotada.

Demostración: Notemos que si $(x_n)_{n\in\mathbb{N}}$ es convergente, entonces existe $L\in\mathbb{R}$ tal que $\lim_{n\to+\infty}x_n=L$. Luego, para $\varepsilon>0$ dado, existe

 $N \in \mathbb{N}$ tal que:

$$\forall n \in \mathbb{N} : n \ge N \Rightarrow |x_n - L| < \varepsilon$$

de aquí, se tiene:

$$\forall n \in \mathbb{N} : n \ge N \Rightarrow |x_n| < \varepsilon + |L|$$

esto es, el conjunto $\{x_N, x_{N+1}, x_{N+2}, ...\}$ es acotado por el número real $\varepsilon + |L|$. Además, el conjunto $x_1, x_2, ..., x_{N-1}$ es finito y por consiguiente acotado por $M = \max\{|x_1|, |x_2|, ..., |x_{N-1}|\}$. En consecuencia, para todo $n \in \mathbb{N}$, se tiene que $|x_n| \le \max\{M, \varepsilon + |L|\}$, es decir, $(x_{n \in \mathbb{N}})_{n \in \mathbb{N}}$ es acotada.

Observación: El recíproco del teorema anterior no es cierto. De hecho, $((-1)^n)_{n\in\mathbb{N}}$ es acotada, pero no convergente. Pero el contrarrecíproco si se cumple, es decir, si $(x_n)_{n\in\mathbb{N}}$ no es acotada, entonces $(x_n)_{n\in\mathbb{N}}$ es divergente.

Definición

Una sucesión $(x_n)_{n\in\mathbb{N}}$ de números reales, se dice:

- 1. **creciente** si para todo $n \in \mathbb{N}$, se cumple que $x_n \leq x_{n+1}$.
- 2. decreciente si para todo $n \in \mathbb{N}$, se cumple que $x_n \geq x_{n+1}$.

Ejemplos:

- 1. La sucesión $(n+1)_{n\in\mathbb{N}}$ es
 - 2. La sucesión $\left(\frac{1}{n+5}\right)_{n\in\mathbb{N}}$ es
 - 3. La sucesión $((-1)^n)_{n\in\mathbb{N}}$ es

Observación: Una sucesión que es creciente o decreciente es llamada también sucesión monótona.

Teorema

Si $(x_n)_{n\in\mathbb{N}}$ es una sucesión monótona creciente y acotada superiormente, entonces $(x_n)_{n\in\mathbb{N}}$ es una sucesión convergente.

Demostración: Puesto que el conjunto $\{x_n : n \in \mathbb{N}\}$ es no vacío y acotado superiormente, existe $L \in \mathbb{R}$ tal que:

$$L = \sup\{x_n : n \in \mathbb{N}\}$$

Sea ahora $\varepsilon > 0$ dado. Como $L - \varepsilon$ no es cota superior del conjunto $\{x_n : n \in \mathbb{N}\}$, existe $N \in \mathbb{N}$ tal que:

$$L - \varepsilon < x_n \le L$$

Luego, se tiene:

$$\forall n \in \mathbb{N} : n \ge N \Rightarrow L - \varepsilon < x_N \le x_n \le L < L + \varepsilon$$

dado lo anterior, podemos deducir que:

$$\forall n \in \mathbb{N} : n \ge N \Rightarrow |x_n - L| < \varepsilon$$

y de aquí se puede concluir que $\lim_{n\to+\infty}x_n=L$, por ende $(x_n)_{n\in\mathbb{N}}$ es convergente.

Corolario

Si $(x_n)_{n\in\mathbb{N}}$ es una sucesión monótona decreciente y acotada inferiormente, entonces $(x_n)_{n\in\mathbb{N}}$ es una sucesión convergente.

◆□▶ ◆□▶ ◆≧▶ ◆≧▶ ○ ≧ · から○

Ejemplos:

- 1. La sucesión $\left(\left(1+\frac{1}{n}\right)^n\right)_{n\in\mathbb{N}}$ es monótona creciente y acotada superiormente por 3, luego es convergente y como se mostró en un ejemplo anterior, $\lim_{n\to+\infty}\left(1+\frac{1}{n}\right)^n=e$
 - 2. La sucesión $\left(\frac{1}{n}\right)_{n\in\mathbb{N}}$ es monótona decreciente y acotada inferiormente por 0, luego ella es convergente y $\lim_{n\to+\infty}\frac{1}{n}=0$.

Ejercicio

Considere la siguiente sucesión

$$a_1 = 0$$
, $a_{n+1} = \sqrt{6 + a_n}$, $n \ge 1$

- (a) Determine los 5 primeros términos de la sucesión.
- (b) Mostrar que $(a_n)_{n\in\mathbb{N}}$ es una sucesión de términos no negativos.
- (c) Mostrar que $(a_n)_{n\in\mathbb{N}}$ es monótona creciente.
- (d) Mostrar que $(a_n)_{n\in\mathbb{N}}$ es acotada superiormente por 3.
- (e) ¿Es $(a_n)_{n\in\mathbb{N}}$ una sucesión convergente?
- (f) Si la respuesta anterior es afirmativa, determine el valor del límite de $(a_n)_{n\in\mathbb{N}}$.

Ejercicio

Solución:

Como ya hemos sabemos, si una sucesión de números reales $(x_n)_{n\in\mathbb{N}}$ no es acotada, entonces ella es divergente. A continuación, desarrollaremos un poco mas este hecho.

Definición

Sea $(x_n)_{n\in\mathbb{N}}$ una sucesión de números reales. Diremos que la sucesión $(x_n)_{n\in\mathbb{N}}$ diverge a $+\infty$ si

$$\forall M > 0, \exists N_M \in \mathbb{N}, \forall n \in \mathbb{N} : n \ge N_M \Rightarrow x_n > M$$

En este caso escribimos que $\lim_{n\to+\infty} x_n = +\infty$.

Definición

Sea $(x_n)_{n\in\mathbb{N}}$ una sucesión de números reales. Diremos que la sucesión $(x_n)_{n\in\mathbb{N}}$ diverge a $-\infty$ si

$$\forall M < 0, \exists N_M \in \mathbb{N}, \forall n \in \mathbb{N} : n \ge N_M \Rightarrow x_n < M$$

En este caso escribimos que $\lim_{n\to+\infty} x_n = -\infty$.

Ejemplos:

- $1. \lim_{n \to +\infty} n =$
- 2. $\lim_{n \to +\infty} 2^{n^3 + n} =$
- $3. \lim_{n \to +\infty} -n^2 =$

Observaciones:

1. Si $(x_n)_{n\in\mathbb{N}}$ diverge a $+\infty$ e $(y_n)_{n\in\mathbb{N}}$ acotada, entonces $(x_n+y_n)_{n\in\mathbb{N}}$ diverge a $+\infty$.

- 2. Si $(x_n)_{n\in\mathbb{N}}$ diverge a $+\infty$ e $(y_n)_{n\in\mathbb{N}}$ converga a L, con $L\in\mathbb{R}$, entonces $(x_n\cdot y_n)_{n\in\mathbb{N}}$ diverge a $+\infty$ cuando L>0 y a $-\infty$ cuando L<0.
- 3. Si $(x_n)_{n\in\mathbb{N}}$ es una sucesión creciente y no acotada superiormente, entonces $(x_n)_{n\in\mathbb{N}}$ diverge a $+\infty$.
- 4. Si $(x_n)_{n\in\mathbb{N}}$ es una sucesión decreciente y no acotada inferiormente, entonces $(x_n)_{n\in\mathbb{N}}$ diverge a $-\infty$.
- 5. Si $(x_n)_{n\in\mathbb{N}}$ e $(y_n)_{n\in\mathbb{N}}$ divergen a $+\infty$, entonces $(x_n+y_n)_{n\in\mathbb{N}}$ y $(x_n\cdot y_n)_{n\in\mathbb{N}}$ divergen a $-\infty$.

6. Si $(x_n)_{n\in\mathbb{N}}$ e $(y_n)_{n\in\mathbb{N}}$ divergen a $+\infty$ y $-\infty$ respectivamente, entonces **no podemos** concluir **nada** con respecto a la convergencia o divergencia de la sucesión $(x_n + y_n)_{n\in\mathbb{N}}$.

Ejemplos:

(a) Si consideramos las sucesiones $(3n)_{n\in\mathbb{N}}$ y $(-2n)_{n\in\mathbb{N}}$, entonces tenemos que $\lim_{n\to+\infty}3n=+\infty, \lim_{n\to+\infty}-2n=-\infty$ y

$$\lim_{n \to +\infty} 3n - 2n = \lim_{n \to +\infty} n = +\infty$$

(b) Si consideramos las sucesiones $(n)_{n\in\mathbb{N}}$ y $(1-n)_{n\in\mathbb{N}}$, entonces tenemos que $\lim_{n\to+\infty} n=+\infty$, $\lim_{n\to+\infty} 1-n=-\infty$ y

$$\lim_{n \to +\infty} n + 1 - n = \lim_{n \to +\infty} 1 = 1$$

7. Si $(x_n)_{n\in\mathbb{N}}$ diverge a $+\infty$ e $(y_n)_{n\in\mathbb{N}}$ converge a 0, entonces **no podemos** concluir **nada** con respecto a la convergencia o divergencia de la sucesión $(x_n \cdot y_n)_{n\in\mathbb{N}}$.

Ejemplos:

(a) Si consideramos las sucesiones $(n^3)_{n\in\mathbb{N}}$ y $\left(\frac{1}{n^2}\right)_{n\in\mathbb{N}}$, entonces tenemos que $\lim_{n\to+\infty} n^3 = +\infty$, $\lim_{n\to+\infty} \frac{1}{n^2} = 0$ y

$$\lim_{n \to +\infty} n^3 \cdot \frac{1}{n^2} = \lim_{n \to +\infty} n = +\infty$$

(b) Si consideramos las sucesiones $(n)_{n\in\mathbb{N}}$ y $(\frac{1}{n})_{n\in\mathbb{N}}$, entonces tenemos que $\lim_{n\to+\infty} n=+\infty$, $\lim_{n\to+\infty} \frac{1}{n}=0$ y

$$\lim_{n \to +\infty} n \cdot \frac{1}{n} = \lim_{n \to +\infty} 1 = 1$$

Límite de Funciones Reales

Definición

Sea $I \in \mathbb{R}$ un intervalo abierto y $x_0 \in I$. Consideremos a f una función definida en I, excepto posiblemente en x_0 . Un número real L se dice límite de f cuando x tiende a x_0 , si se verifica que:

"cualquiera sea la sucesión $(x_n)_{n\in\mathbb{N}}$ de puntos de $I-\{x_0\}$ que converge a x_0 , se tiene que la sucesión de imagenes $(f(x_n))_{n\in\mathbb{N}}$ converge a L."

Límite de Funciones Reales

Ejemplos: Mostrar que $\lim_{x\to 0} \sin\left(\frac{1}{x}\right)$ no existe.

Solución: Notar que $x_0 = 0$ y $f: I \subseteq \mathbb{R} \to \mathbb{R}$ con $f(x) = \sin(\frac{1}{x})$, luego podemos consideremos dos sucesiones:

$$x_n = \frac{1}{2n\pi} \qquad e \qquad y_n = \frac{1}{2n\pi + \frac{\pi}{2}}$$

notemos además, que $\lim_{n\to+\infty} x_n = 0$ y $\lim_{n\to+\infty} y_n = 0$. Ahora bien:

$$\lim_{n \to +\infty} f(x_n) = \lim_{n \to +\infty} \sin(2n\pi) = 0$$
$$\lim_{n \to +\infty} f(y_n) = \lim_{n \to +\infty} \sin\left(2n\pi + \frac{\pi}{2}\right) = 1$$

Dado lo anterior, podemos concluir que el límote solicitado no