Normalization

Advanced Compiler Construction and Program Analysis

Lecture 5

The topics of this lecture are covered in detail in...

Benjamin C. Pierce.

Types and Programming Languages

MIT Press 2002

12 Normalization 149
12.1 Normalization for Simple Types 149
12.2 Notes 152

Normalizable terms

If evaluation of a term t halts in a finite number of steps, then we say that term t is *normalizable*.

We will see that **every well-typed term is normalizable** in simply typed λ -calculus over a single base type.

Turing-completeness vs Normalization

Unlike type safety, normalization property is not common to programming languages (indeed, it is incompatible with Turing completeness). However, it is still Turing completeness is **undesirable** in many places, e.g.:

- 1. Configuration languages (e.g. YAML, Ansible)
- 2. Markup languages (e.g. HTML, CSS, Markdown)
- 3. Excel formulas
- 4. Types (in more advanced type systems) and more

Check out some surprisingly Turing-complete systems at https://www.gwern.net/Turing-complete

Simply typed λ -calculus over a single base type

```
(\lambda x.t_1) t_2 \longrightarrow [x \mapsto t_2]t_1
                    terms
                 variable
                                                \Gamma, x:T \vdash x : T
λx:T.t abstraction
           application
                                              \Gamma, X:T_1 \vdash t : T_2
                                        \Gamma \vdash (\lambda x : T_1 \cdot t) : T_1 \rightarrow T_2
                    types
            base type A
         function type
```

Goal: show that if \vdash t : T, then t is normalizable.

Simply typed λ -calculus over a single base type

Exercise 5.1. Show why it is impossible to prove normalization for simply typed λ -calculus using induction on the size of terms.

Simply typed λ -calculus over a single base type

Exercise 5.1. Show why it is impossible to prove normalization for simply typed λ -calculus using induction on the size of terms.

We need a stronger inductive hypothesis!

Reducibility candidates

Definition 5.2. For each type T, we define a set R[T] of closed normalizing terms of type T:

Reducibility candidates

Definition 5.2. For each type T, we define a set R[T] of closed normalizing terms of type T:

1. $t \in R[A]$ iff that type A and thalts;

Reducibility candidates

Definition 5.2. For each type T, we define a set R[T] of closed normalizing terms of type T:

- 1. $t \in R[A]$ iff that type A and thalts;
- 2.t $\in R[T_1 \rightarrow T_2]$ iff
 - \circ t has type T₁→T₂,
 - t halts,
 - o for any $s \in R[T_1]$, we have $(t s) \in R[T_2]$.

Reducibility candidates halt

Lemma 5.3. If $t \in R[T]$, then t halts.

Proof. Follows directly from the definition of R[T].

Reducibility candidates: preservation

Lemma 5.4. If t:T and t \longrightarrow u, then $t \in R[T]$ iff $u \in R[T]$.

Proof. By induction on the structure of type **T**.

Note that **t** halts iff **u** halts. If **T=A**, then there is nothing else to prove.

If $T=T_1 \rightarrow T_2$, then

1. Suppose $t \in R[T_1 \rightarrow T_2]$ and $s \in R[T_1]$, then $(t s) \in R[T_2]$.

But $(t s) \longrightarrow (u s)$, so by induction hypothesis, $(u s) \in R[T_2]$.

Thus, we have $u \in R[T_1 \rightarrow T_2]$.

2. In the "only if" direction the proof is analogous.

Reducibility candidates: open terms

Lemma 5.5. If $x_1:T_1,...,x_n:T_n \vdash t:T$ and $v_1,...,v_n$ are values of types $T_1,...,T_n$, such that $v_i \in R[T_i]$ for each i, then

$$[x_1 \mapsto v_1]...[x_n \mapsto v_n]t \in R[T].$$

Reducibility candidates: open terms

Lemma 5.5. If $x_1:T_1,...,x_n:T_n \vdash t:T$ and $v_1,...,v_n$ are values of types $T_1,...,T_n$, such that $v_i \in R[T_i]$ for each i, then

$$[x_1 \mapsto v_1]...[x_n \mapsto v_n]t \in R[T].$$

Proof. By induction on the derivation of the *typing relation*.

Reducibility candidates: open terms (case 1)

```
Lemma 5.5. If x_1:T_1,...,x_n:T_n \vdash t:T and v_1,...,v_n are values of types T_1,...,T_n, such that v_i \in R[T_i] for each i, then [x_1 \mapsto v_1]...[x_n \mapsto v_n]t \in R[T].
```

 Γ , x:T \vdash x : T

Case 1 (variables)

Proof is immediate (can you articulate exactly how?).

Reducibility candidates: open terms (case 2)

Lemma 5.5. If $x_1:T_1,...,x_n:T_n \vdash t:T$ and $v_1,...,v_n$ are values of types $T_1,...,T_n$, such that $v_i \in R[T_i]$ for each i, then $[x_1 \mapsto v_1]...[x_n \mapsto v_n]t \in R[T]$.

Case 2 (abstraction)

Complete the proof.

$$\frac{\Gamma, X : T_1 \vdash t : T_2}{\Gamma \vdash (\lambda X : T_1. t) : T_1 \rightarrow T_2}$$

Reducibility candidates: open terms (case 2)

Lemma 5.5. If $x_1:T_1,...,x_n:T_n \vdash t:T$ and $v_1,...,v_n$ are values of types $T_1,...,T_n$, such that $v_i \in R[T_i]$ for each i, then $[x_1 \mapsto v_1]...[x_n \mapsto v_n]t \in R[T]$.

Case 3 (application)

Complete the proof.

Strong normalization of simply typed λ -calculus

Theorem 5.6. If \vdash t : T, then t is normalizable.

Proof. Direct corollary of Lemma 5.5 and Lemma 5.3.

Strong normalization proof exercise

Exercise 5.7. Extend the proof of Theorem 5.6 to simply typed lambda calculus extended with **booleans** and **tuples**.

Five stages of YAML

- Configuration languages are too complex;
 YAML is much simpler and easier to understand.
- 2. Declarative YAML configuration is brilliant.
- 3. Lots of our things look similar, we have too much copy and pasted YAML.
- 4. We've written a tool which uses templates and parameters to dynamically generate our YAML
- 5. The declarative YAML format now supports conditional, iteration, and inheritance syntax; it is now turing complete.

https://brokenco.de/2018/08/15/five-stages-of-yaml.html

Dhall: a non-repetitive alternative to YAML

Dhall

YAML

```
1
2 - home: /home/bill
3 privateKey: /home/bill/.ssh/id_ed25519
4 publicKey: /home/bill/.ssh/id_ed25519.pub
5 - home: /home/jane
6 privateKey: /home/jane/.ssh/id_ed25519
7 publicKey: /home/jane/.ssh/id_ed25519.pub
8
```

Summary

- ☐ Normalization vs Turing-completeness
- ☐ Normalization proof for simple types

See you next time!