The Opus Research Group

Identifying Design Problems with Code Smell Agglomerations

Basic Concepts

Benedicte Agbachi, Eduardo Fernandes, and Alessandro Garcia

Basics of Software Design

Software design is...

Organization of concerns (features) in a program

Components and their relationships

Notation of software design

An example of software design

Cross-cutting concern

One feature scattered in several components

It cross-cuts other concerns, just like an "intruder"

Design Principles versus Design Problems

Design principles

How to **well design** components and relationships

Aimed at reducing efforts with maintenance

Some well-known design principles

Open-Clos ed

A class should be **extensible** without need to change it

Single responsibility

Each class should have only one reason to change

Interface segregation

Each interface should target a specific type of client components

Design problems are caused by...

Violations of well-known design principles

Unintended decisions that violate the original software design

Example 1: Component Concern Overload

Ideal component room cerns arsing to each common architecture.

Concerns:

Example 2: Scattered Concern

Scattered concern: not only Component A ldeal case: on concern per component implements, but also B, C, and D

Concerns:

Example 3: Ambiguous Interface

Code Smells and Agglomerations

What is a code smell?

A symptom of maintenance problems in the source code

Different smell types help identify design problems

Jan - 2018

Example 1: Feature Envy

MAethod 42 sales to the median so Class & B

Feature Envy affects Method A2

Example 2: Dispersed Coupling

Dispersed Coupling affects Method A1

Example 3: Intensive Coupling

Intensive Coupling affects Method A1

Code smell agglomeration

Group of code smells that interrelate in the source code

Relationships might be **explicit** (in the code) or **implicit** (concern)

Example 1: Intra-component Agglomeration

A and assers Affended be the sense ampelhey tec

Feature Envy instances affecting A2 and B1 form an agglomeration

Example 2: Hierarchical Agglomeration

A, C, and assess a sessificated by in the ristainers make I type

Feature Envy instances affecting A1, C1, and D2 form an agglomeration

Example 3: Concern Overload Agglomeration

Smells affecting B1, B2, B3, and B4 form an agglomeration

The Opus Research Group

Identifying Design Problems with Code Smell Agglomerations

Basic Concepts

Benedicte Agbachi, Eduardo Fernandes, and Alessandro Garcia

