Đề thi thử cuối kì môn Giải tích 2

Câu 1: Viết phương trình tiếp diện và pháp tuyến tại A(1;2;-1) của mặt cong $2x^4 + y^2 - z^3 = 7$.

Câu 2: Cho hàm số
$$u=x^2+\ln(y+e^z)$$
 và hai điểm $A(-1;1;0),\ B(1;3;1)$. Tính $\overrightarrow{\frac{\partial u}{\partial \ l}}(A)$ theo hướng \overrightarrow{AB}

Câu 3: Tính
$$\iiint\limits_V z dx dy dz$$
 xác định bởi $\begin{cases} x^2+y^2+z^2 \leq 20 \\ x^2+y^2 \leq z \end{cases}$

Câu 4: Tính
$$\int_{0}^{\frac{\pi}{2}} \sqrt[3]{\tan x} \, dx.$$

Câu 5: Tính
$$I = \int\limits_C \frac{(x+1)^2 + y^2}{x^2 + y^2 + 1} dx + \frac{x^2 + (y+1)^2}{x^2 + y^2 + 1} dy$$

trong đó C là đường cong $y=\sqrt[4]{1-x^2}$ đi từ điểm A(-1;0) đến điếm B(1;0).

Câu 6: Tính tích phân mặt $I=\iint\limits_{S}xdydz+ydzdx+zdxdy$ trong đó S là mặt : $z^2=x^2+y^2;~0\leq z\leq 2$ hướng xuống dưới.

Câu 7: Chứng minh rằng trường vecto

$$\overrightarrow{F} = \left(\frac{y}{1+x^2y^2} + 2xy^2ze^{x^2z}\right)\overrightarrow{i} + \left(\frac{x}{1+x^2y^2} + 2ye^{x^2z}\right)\overrightarrow{j} + \left(x^2y^2e^{x^2z} + 2z\right)\overrightarrow{k}$$

là trường thế, tìm hàm thế vị u.

Câu 8: Tính tích phân mặt $\iint_S yz^2 dS$ trong đó S là biên của miền được bao bởi hình trụ $x^2 + z^2 = 9$ và các mặt phẳng y = 0 và x + y = 5.