UNIT 5 Portfolio Activity: Jaccard Coefficient Calculations

Murthy Kanuri Machine Learning University of Essex

Table of Contents

1	Wh	What is K-Means Alogirthm logic Error! Bookmark no		
2	Co	mparing the K-Means Algorithm logic w	th both Algorithm Logic3	
	2.1	Shabal.in	3	
	2.2	Naftali Harris	Error! Bookmark not defined.	
	2.3	Legal, Social, Ethical, and Professional C	onsiderations in Machine Learning4	
	2.4	Images for Reference (Shabal.in)	6	
	2.5	Images for Reference (Naftali Harris)	7	

1 Scenario

The table shows the pathological test results for three individuals.

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	М	Υ	N	Р	N	N	Α
Mary	F	Υ	N	Р	Α	Р	N
Jim	М	Υ	Р	М	N	N	N

Calculate Jaccard Coefficient for the following pairs:

- (Jack, Mary)
- (Jack, Jim)
- (Jim, Mary)

2 What is Jaccard Coefficient

- A Commonly used measure of overlap of two sets A and B is the Jaccard coefficient
- Jaccard (A, B) = $\frac{|A \cap B|}{|A \cup B|}$ or Jaccard (J) = $\frac{f_{01} + f_{10}}{(f_{01} + f_{10} + f_{11})}$

3 Calculate Jaccard Coefficient for (Jack, Mary)

Converting asymmetric variables into binary format and re-write the table

Fever: N (0), Y (1)
Cough: N (0), P (1)
Test: N or A (0), P (1)

Attribute	Jack	Mary	Observation
Fever	1	1	f_{11} (1,1)
Cough	0	0	Ignore as both 0
Test-1	1	1	f ₁₁ (1,1)
Test-2	0	0	Ignore as both 0
Test-3	0	1	f_{01} (0.1)
Test-4	0	0	Ignore as both 0

From the above table

•
$$f_{11}$$
 (1,1) = Fever + Test-1 = 2

•
$$f_{01}(0.1) = \text{Test-3} = 1$$

•
$$f_{10} = 0$$

Jaccard Coefficient for (Jack, Mary) =
$$\frac{f_{01} + f_{10}}{(f_{01} + f_{10} + f_{11})} = \frac{1+0}{1+0+2} = \frac{1}{3} = 0.33$$

4 Calculate Jaccard Coefficient for (Jack, Jim)

Converting asymmetric variables into binary format and re-write the table

Fever: N (0), Y (1)
Cough: N (0), P (1)
Test: N or A (0), P (1)

Attribute	Jack	Jim	Observation
Fever	1	1	f_{11} (1,1)
Cough	0	1	f_{01} (0,1)
Test-1	1	0	f_{10} (1,0)
Test-2	0	0	Ignore as both 0
Test-3	0	0	Ignore as both 0
Test-4	0	0	Ignore as both 0

From the above table

•
$$f_{11}$$
 (1,1) = Fever = 1

•
$$f_{01}$$
 (0.1) = Cough = 1

•
$$f_{10}$$
 (1,0) = Test -1 = 1

Jaccard Coefficient for (Jack, Mary) =
$$\frac{f_{01} + f_{10}}{(f_{01} + f_{10} + f_{11})} = \frac{1+1}{1+1+1} = \frac{2}{3} = 0.67$$

5 Calculate Jaccard Coefficient for (Jim, Mary)

Converting asymmetric variables into binary format and re-write the table

Fever: N (0), Y (1)
Cough: N (0), P (1)
Test: N or A (0), P (1)

|--|

Fever	1	1	f ₁₁ (1,1)
Cough	1	0	f_{10} (1,0)
Test-1	0	1	f_{01} (0.1)
Test-2	0	0	Ignore as both 0
Test-3	0	1	f_{01} (0.1)
Test-4	0	0	Ignore as both 0

From the above table

- f_{11} (1,1) = Fever = 1
- f_{01} (0.1) = Test-1 + Test-3 = 2 f_{10} = 0

Jaccard Coefficient for (Jack, Mary) =
$$\frac{f_{01} + f_{10}}{(f_{01} + f_{10} + f_{11})} = \frac{2+0}{2+0+1} = \frac{2}{3} = 0.75$$

5.1 Legal, Social, Ethical, and Professional Considerations in **Machine Learning**

- Ensuring GDPR Compliance or HIPAA in Healthcare clustering
- Data biases can lead to discrimination or unethical profiling
- All the stakeholders should have transparency about the data being used
- Qualified professionals should be made responsible for algorithmic decisions to follow ethical standards
- Ensure that datasets used for clustering are accurate and true representatives.

5.2 Images for Reference (Shabal.in)

5.3 Images for Reference (Naftali Harris)

References

Shabal. (n.d.) K-Means Clustering Visualization. Available at: https://shabal.in/visuals/kmeans/2.html (Accessed: 10 November 2024).

Harris, N. (n.d.) Visualizing K-Means Clustering. Available at: https://www.naftaliharris.com/blog/visualizing-k-means-clustering/ (Accessed: 10 November 2024).

Patel, S. (2019) K-means Clustering Algorithm: Implementation and Critical Analysis. Saarbrücken: Scholars' Press.

Dwivedi, G. (2023) Optimization of K-Means Clustering Using Genetic Algorithm. Saarbrücken: LAP LAMBERT Academic Publishing.