

Department of Computer Science



# Hit Song Prediction: Leveraging Low- and High-level Audio Features

Eva Zangerle\*, Ramona Huber\*, Michael Vötter\*, Yi-Hsuan Yang\*\*

\* Universität Innsbruck, Austria \* \* Academia Sinica, Taiwan

# Goals and Take-Aways

Q1: How can we predict hit songs based on acoustic features extracted from the song's audio in a deep learning scenario?

Q2: Which role do individual features (groups of features) and the release year of a song play in this task?

- In a Wide-and-Deep neural network, we combine lowand high-level features in a regression task.
- Combining high- and low-level features improves results.
- Release year, mood and vocals are important features.
- Dataset is made available on Zenodo to foster further research on hit song prediction<sup>1</sup>.

# Data and Experiments

#### Million Song Dataset ∩ Billboard Hot 100

- Songs with release year information
- Essentia for feature extraction from audio
- Song is considered a hit if it is featured once in Hot 100
- Undersampling for balanced data; 6k hits and non-hits

### **Regression Experiments**

- Predict highest rank in charts for test songs
- Five-fold cross validation
- MSE as loss function

# Prediction Approach

#### **Acoustic Descriptors**

40 basic low-level features (e.g., MFCCs, dissonance) (LL) 11 rhythm features (e.g., beats per minute or onset-rate) 13 tonal features (e.g., key or harmonic pitch class profiles)

### **Feature Categorization**

| Category       | Features                                                                                                    |
|----------------|-------------------------------------------------------------------------------------------------------------|
| Mood           | acoustic, aggressive, electronic, happy, party, relaxed, sad; Hu and Downie's 5 clusters of mood            |
| Genre          | blues, classic, country, disco, hip-hop, jazz, metal, pop, reggae, rock                                     |
| Voice          | voice, instrumental, female voice, male voice                                                               |
| Rythm/<br>beat | bpm, beats count, bpm histogram, beats loudness, beats loudness band ratio, onset rate, danceability        |
| Chords         | strength, change rate, number rate, key, scale, harmonic pitch class profile, tuning strength and frequency |

#### Regression via Wide-and-Deep Neural Network



## Results

### Highest Rank Prediction Task on Feature Sets

| Features low-level | Features high-level      | RMSE  | MAE   | Acc.   |
|--------------------|--------------------------|-------|-------|--------|
|                    | Year, voice, mood, genre | 57.11 | 48.50 | 72.08% |
| LL, rhythm, chords |                          | 60.82 | 52.09 | 66.94% |
| LL, rhythm, chords | Year, voice, mood, genre | 55.45 | 43.84 | 75.04% |
| LL, rhythm, chords | Year, genre              | 55.93 | 45.80 | 73.84% |
| LL, rhythm, chords | Year, mood               | 57.12 | 45.66 | 73.55% |
| LL, rhythm, chords | Year, voice              | 56.63 | 46.04 | 72.04% |
| LL, rhythm, chords | Genre                    | 64.14 | 52.84 | 65.11% |
| LL, rhythm, chords | Mood                     | 61.77 | 52.82 | 67.92% |
| LL, rhythm, chords | Voice                    | 61.18 | 52.50 | 68.00% |
| LL, rhythm, chords | Year                     | 57.51 | 46.35 | 72.29% |
| LL, rhythm, chords | Year, mood, voice        | 56.22 | 45.53 | 74.46% |
| LL, rhythm, chords | Year, mood, genre        | 57.35 | 45.38 | 73.63% |
| LL, rhythm, chords | Year, genre, voice       | 56.06 | 45.66 | 73.60% |

#### Main Findings

- Combining low- and high-level features improves prediction performance.
- Wide-and-Deep networks are well-suited for this task.
- Release year information is important for temporally contextualizing a song to reflect musical trends and fashion.
- Vocal, mood and genre information also contribute to the performance, in line with previous research.