Working Thesis Outline

Part I: Introduction and Context

- 1. What is reionization? Why do we care?
- 2. How did reionization proceed? Figures, simulations
 - A. CMB tells us that Universe is neutral at $z \sim 1080$
 - → How do we know this? Easy to explain?
 - B. Nearby quasar spectra tell us hydrogen is ionized today
 - C. How did this happen? Interesting in its own right
 - D. Timing and nature of reionization affects structure formation as well
- 3. Selected summary of EoR probes
 - A. Ly α Forest
 - → More detail here, since you have a paper using this
 - \rightarrow Ideal interpretations, complications with large τ
 - \rightarrow Gunn-Peterson trough
 - \rightarrow Damping wing redward of Ly α
 - \rightarrow Dark pixel covering fraction
 - B. CMB Constraints
 - $\rightarrow \tau_e$
 - $\rightarrow kSZ$
 - C. Ly α Emitters (Lidz, Taylor)
 - \rightarrow Ly α fraction
 - \rightarrow Ly α clustering
 - D. 21-cm Line
 - \rightarrow More detail of theory here since you have a paper using this
 - \rightarrow 21 cm intensity mapping
 - → Power Spectrum (Lidz, Aguirre, Moore)
 - \rightarrow Global 21 cm
 - → Provide context for what will be achievable when
 - E. Luminosity Function Measurements
 - \rightarrow Something short here
 - → Photon counting to constrain reionization
 - \rightarrow GRBs
- 4. Summary of Constraints
 - A. Timing
 - \rightarrow A good plot to show might be Figure 3 of Robertson et al. (2015)
 - B. Sources
 - → Could describe arguments against quasars (due to insufficient abundance)
 - \rightarrow and X-ray sources due to lack of presence in X-ray background

- \rightarrow Robertson et al. (2013/2015) support galaxies primarily sourcing EoR
- \rightarrow Could mention temperature/heating scenarios ruled out by PAPER

Part II: The Ly α Forest is Lovely, Dark, and Deep...

- A. Stacking spectra to constrain $\langle x_{\rm HI} \rangle$
- B. Wavelet analysis to measure IGM temperature

Part III: The 21-cm Line

A. Blindly Identifying Ionized Regions in Noisy Redshifted 21cm Observations

Part IV: Conclusions

- \rightarrow Briefly summarize results of work contained
- \rightarrow Describe future direction, concerns that need to be addressed

Papers to Review

Part I: -

- Furlanetto, Oh, and Briggs review
- Robertson et al. 2013/2015
- Loeb and Furlanetto Books
- Mieksin IGM review
- Burkana & Loeb?
- Furlanetto, Lidz, Loeb, et al.

Part II: