

Introdução à Teoria dos Números

Laboratório de Programação Competitiva I

Pedro Henrique Paiola

Rene Pegoraro

Wilson M Yonezawa

Arissa Yoshida

Nicolas Barbosa Gomes

Luis Henrique Morelli

- Certos problemas da Maratona de Programação recebem como entrada números inteiros que extrapolam o limite de variáveis do tipo long long int
- Tamanho de uma variável long long int: 8 bytes
- Intervalo de números que podem ser armazenados em uma variável desse tipo:
 - -9.223.372.036.854.775.808 à 9.223.372.036.854.775.807
 - 0 à 18.446.744.073.709.551.615 (unsigned long long int)

 Certos problemas da Maratona de Programação recebem como entrada números inteiros que extrapolam o limite de variáveis do tipo long long int

• Exemplo: 2667 - Jogo de Boca

• Entrada: $N (3 \le N \le 10^{100})$

• 1ª Situação: dependendo das operações necessárias de se fazer com o número, podemos ler o número como sendo uma string e trabalhar com essa string.

- Exemplos:
 - Operações simples com dígitos
 - Uso de Aritmética Modular

- 2ª Situação: se precisarmos fazer operações com esse número como soma, subtração, multiplicação e divisão, o problema se torna mais complexo.
- Nesses casos, não recomendamos usar a linguagem C++. É possível trabalhar com BigInteger em C++ (a biblioteca do Thiago traz códigos para isso), porém a quantidade de código necessária é relativamente grande.
- Sugestões: Java ou Python

• Em Java podemos usar a classe **BigInteger** da biblioteca java.math

```
String Num;
BigInteger NumGrande;
Scanner S = new Scanner(System.in);
Num = S.nextLine();

NumGrande = new BigInteger(Num);
NumGrande = NumGrande.mod(new BigInteger("3"));
System.out.println(NumGrande);
```


• Em Python, não precisamos nos preocupar muito com o tamanho de um inteiro, a memória é alocada conforme o necessário para comportar o tamanho do número.

Entrada e Saída em Python

Python em Programação Competitiva

Muita coisa sobre Python

• Em Python, não precisamos nos preocupar muito com o tamanho de um inteiro, a memória é alocada conforme o necessário para comportar o tamanho do número.

```
U = int(input())
print(U % 3)
```


Teoria dos Números

- A Teoria dos Números é o ramo da matemática que se preocupa com as propriedades dos **números inteiros**.
- Existe uma coleção de algoritmos interessantes derivados de estudos da Teoria dos Números que solucionam problemas de forma inteligente e eficiente.
- Aqui faremos uma breve introdução à alguns tópicos relativos à Teoria dos Números.

- Diversos problemas envolvem o uso de números primos.
- Dessa forma, precisamos, inicialmente, de uma forma de testar se um número é primo ou não.
- Recordando: números primos são **números naturais** que têm **apenas dois divisores**: 1 e ele mesmo.

• Algoritmo ingênuo O(n)

```
bool ehPrimo(int n)
{
    for(int i = 2; i < n; i++)
        if (n % i == 0)
            return false;
    return true;
}</pre>
```


- Porém, na verdade só precisamos testar até \sqrt{n}
- Demonstração:

Suponha que não, nesse caso existe n tal que o menor fator primo p de n é maior que \sqrt{n} .

Se p divide n, então $\frac{n}{p}$ também divide n, e $\frac{n}{p}$ deve ser maior que \sqrt{n} .

Mas se $p > \sqrt{n}$ e $\frac{n}{p} > \sqrt{n}$, então $p \cdot \frac{n}{p} > n$, o que é um absurdo!

• Algoritmo $O(\sqrt{n})$

```
bool ehPrimo(int n)
{
    int raiz = sqrt(n);
    for(int i = 2; i <= raiz; i++)
        if (n % i == 0)
            return false;
    return true;
}</pre>
```


• Algoritmo $O(\sqrt{n})$

```
bool ehPrimo(int n)
{
    for(int i = 2; i*i <= n; i++)
        if (n % i == 0)
            return false;
    return true;
}</pre>
```


- O Crivo de Eratóstenes é um método de encontrar os números primos até um certo valor limite.
- Útil em casos que faremos vários testes de primalidade e na fatoração de números.
- Ideia geral: dado que um número p é primo, marcamos os múltiplos de p como não sendo números primos.

- Algoritmo:
 - Cria-se uma lista de 2 a MAX, marcando todos como primos
 - Para cada número i de 2 até \sqrt{MAX}
 - Se *i* está marcado como primo
 - Marcar todos os números múltiplos de i a partir de <u>i.i</u> como compostos (não primos)

- Algoritmo:
 - Cria-se uma lista de 2 a MAX, marcando todos como primos
 - Para cada número i de 2 até \sqrt{MAX}
 - Se *i* está marcado como primo
 - Marcar todos os números múltiplos de i a partir de i.i como compostos (não primos)

Por que podemos marcar só a partir de i.i?

- Antes de *i*. *i* temos: *i*. 2, *i*. 3, *i*. 4, ... i. (i-1). Ou ainda, i. $j \mid 2 \le j < i$
- Seja x = i, j, x é múltiplo de i e também é múltiplo de j

- Antes de *i*. *i* temos: *i*. 2, *i*. 3, *i*. 4, ... i. (i 1). Ou ainda, i. $j \mid 2 \le j < i$
- Seja x = i, j, x é múltiplo de i e também é múltiplo de j
- Todo j ou é primo, ou é múltiplo de um número primo menor que i, ou seja, um primo já "descoberto" pelo algoritmo

- Antes de *i*. *i* temos: *i*. 2, *i*. 3, *i*. 4, ... *i*. (i-1). Ou ainda, *i*. $j \mid 2 \le j < i$
- Seja x = i, j, x é múltiplo de i e também é múltiplo de j
- Todo j ou é primo, ou é múltiplo de um número primo menor que i, ou seja, um primo já "descoberto" pelo algoritmo
- Se *j* é primo
 - Todos os seus múltiplos foram marcados como não primo, inclusive i. j

- Antes de *i*. *i* temos: *i*. 2, *i*. 3, *i*. 4, ... *i*. (i-1). Ou ainda, *i*. $j \mid 2 \le j < i$
- Seja x = i, j, x é múltiplo de i e também é múltiplo de j
- Todo j ou é primo, ou é múltiplo de um número primo menor que i, ou seja, um primo já "descoberto" pelo algoritmo
- Se *j* é primo
 - Todos os seus múltiplos foram marcados como não primo, inclusive i. j
- Se j é múltiplo de um primo p < i
 - Então ele já foi marcado como composto, por ser múltiplo de $m{p}$, assim como todos os seus múltiplos

- Antes de *i*. *i* temos: *i*. 2, *i*. 3, *i*. 4, ... *i*. (i-1). Ou ainda, *i*. $j \mid 2 \le j < i$
- Seja x = i, j, x é múltiplo de i e também é múltiplo de j
- Todo j ou é primo, ou é múltiplo de um número primo menor que i, ou seja, um primo já "descoberto" pelo algoritmo
- Se *j* é primo
 - Todos os seus múltiplos foram marcados como não primo, inclusive i.j
- Se j é múltiplo de um primo p < i
 - Então ele já foi marcado como composto, por ser múltiplo de $m{p}$, assim como todos os seus múltiplos
- Logo, todos os números $i.j \mid 2 \le j < i$ já foram marcados


```
bool ehPrimo[MAX];
vector<int> primos;
void crivo(int n){
    memset(ehPrimo, true, sizeof(ehPrimo));
    for(int p = 2; p * p <= n; p++){
        if (ehPrimo[p]){
            primos.push_back(p); //Lista incompleta, primos até sqrt(n)
            for(int i = p*p; i <= n; i += p)</pre>
                ehPrimo[i] = false;
```


	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110
111	112	113	114	115	116	117	118	119	120

Números primos:

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110
111	112	113	114	115	116	117	118	119	120

Números primos: 2

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110
111	112	113	114	115	116	117	118	119	120

Números primos: 2 3

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	1110
111	112	113	114	1145	116	117	118	119	120

Números primos: 2 3 5

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	1110
111	112	113	114	145	116	117	118	119	120

Números primos: 2 3 5 7

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	1110
111	112	113	114	145	116	117	118	119	120

Números primos:

2	3	5	7	11
13	17	19	23	29
31	37	41	43	47
53	59	61	67	71
73	79	83	89	97
101	103	107	109	113

- Este algoritmo possui complexidade $O(n \log \log n)$
- Esta demonstração não é muito simples. Caso queira conferir, veja o artigo do CP-Algorithms.
- Com certas otimizações ainda é possível obter um <u>algoritmo de</u> <u>complexidade linear</u>.

• Fatoração em $O(\sqrt{n})$

```
vector<int> fatorar(int n) {
    vector<int> fator;
    for (int i = 2; i*i <= n; i++){
        while (n \% i == 0){
            fator.push_back(i);
            n /= i;
    if (n > 1)
       fator.push_back(n);
    return fator;
```


- Também é possível obter um algoritmo de fatoração com complexidade $O(\log n)$, baseando-se no Crivo de Eratóstenes.
- Primeiramente, ao invés de utilizarmos o crivo para descobrirmos todos os primos, faremos uma pequena alteração para computar para cada número o seu Menor Fator Primo (Shortest Prime Factor SPF).

Crivo para Fatoração

```
int spf[MAXN];
void crivo(){
    for(int i=2; i < MAXN; i++){</pre>
        if(spf[i] == 0){
             spf[i] = i;
             for(int j=i*i; j<MAXN; j+=i){</pre>
                 if(spf[j] == 0) spf[j] = i;
```


- A partir do vetor SPF pré-calculado, podemos realizar a fatoração de um número qualquer seguindo o seguinte algoritmo:
 - fatores = []
 - enquanto n > 1
 - Inserir spf[n] em fatores
 - n = n/spf[n]

• Fatoração em $O(\log n)$

```
vector<int> fatorar(int n){
    vector<int> fator;
    while(n > 1){
        fator.push_back(spf[n]);
        n /= spf[n];
    }
    return fator;
}
```


Look-up tables

- Existem casos onde podemos gerar um vetor ou matriz de consulta manualmente (ou previamente por outro programa), e inseri-los prontos no nosso código. Dessa forma, economiza-se o tempo de gerar tal vetor/matriz.
- Por exemplo, se para resolver um problema precisamos de todos os primos até N, podemos embutir um vetor de primos já dentro do código.

```
int primos[] = {2, 3, 5, 7, 11, 13, ... }
```

• Isso também pode ser gerado por um programa auxiliar.

Look-up tables

"The judge can't look into your heart or your program to see your intentions - it only checks the results." (Skiena & Revilla, 2003; p. 129)

Máximo Divisor Comum

- Problema: encontrar o maior divisor comum de um par de números.
- Algoritmo de Euclides

• OBS: se mdc(x,y) = 1, então dizemos que x e y são coprimos ou primos entre si.

Máximo Divisor Comum

nos garante que:

$$mdc(a,b)=mdc(b,r_1)=mdc(r_1,r_2)=\cdots=mdc(r_{n-2},r_{n-1})=mdc(r_{n-1},r_n)=mdc(r_n,0)=r_n$$

Esse processo pode ser efetuado usando-se o seguinte dispositivo prático:

	$ q_1 $	q_2	q_3			q_n	q_{n+1}
а	b	r_1	r 2	***	rn-2	r _{n-1}	rn
r_1	r ₂	r3			rn	0	

Observe que o mdc (a,b) é o último resto não nulo do processo das divisões sucessivas.

Máximo Divisor Comum

• MDC/GCD em O(log(a + b))
int gcd(int a, int b){
 if (a == 0)
 return b;
 return gcd(b % a, a);
}

Mínimo Múltiplo Comum

- Problema: encontrar o menor múltiplo comum entre um par de inteiros.
- Para encontrar o mmc(x, y), podemos calcular o mdc(x, y) e utilizar a seguinte fórmula:

```
mmc(x,y) * mdc(x,y) = x * y
Ou seja:
mmc(x,y) = x * y / mdc(x,y)
```


Mínimo Múltiplo Comum

• MMC/LCM em O(log(a + b))
int lcm(int a, int b){
 return a * (b / gcd(a, b));
}

 Podemos definir uma equação diofantina linear como uma equação da forma

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n = c$$

sendo $a_1, ..., a_n$ coeficientes inteiros não nulos, $x_1 ..., x_n$ as variáveis inteiras a serem determinadas e c uma constante inteira.

Diversos problemas podem ser modelados usando equações diofantinas.
 Em especial, vamos nos preocupar com equações diofantinas de duas variáveis

$$ax + by = c$$

Equações diofantinas - Fantastic Beasts

- Exemplo de Problema: <u>Fantastic Beasts</u> (Final da Maratona SBC de Programação 2018)
- Resumindo: considere um **grafo direcionado** em que os vértices representam zoológicos, e cada zoológico aponta para apenas para um outro zoológico (grau de saída = 1). Temos animais espalhados por esses zoológicos, e **a cada unidade de tempo todos os animais avançam para o próximo** zoológico.
- Objetivo: determinar onde e quando TODOS os animais se encontrarão, no mesmo zoológico ao mesmo tempo (se isso puder ocorrer em diversos momentos e locais, determinar o primeiro deles)

Equações diofantinas - Fantastic Beasts

• Supondo que já estamos em uma fase um pouco mais avançada no problema, onde conseguimos modelar para cada **zoológico z** uma **equação** que determina os momentos em que um animal a passa por lá (os animais vão acabar presos em ciclos).

$$t = t_0 + k.i$$

Equações diofantinas - Fantastic Beasts

• Se quisermos saber quando que os animais a_1 e a_2 se encontram no zoológico z temos:

Para animal
$$a_1$$
: $t_1 = t_0^1 + k_1 i$

Para animal
$$a_2$$
: $t_2 = t_0^2 + k_2 j$

Como queremos saber o momento de encontro, $t_1 = t_2$

$$t_0^1 + \underline{k_1 i} = t_0^2 + k_2 j$$

$$k_1 i - k_2 j = t_0^2 - t_0^1$$

Equação diofantina com $a=k_1$, $b=-k_2$, $c=t_0^2-t_0^1$ e com variáveis i,j

- Proposição 1: ax + by = c admite solução sse $gcd(a,b) \mid c$ \Rightarrow
 - Sendo (x_0, y_0) uma solução da equação
 - Seja $d = \gcd(a, b)$, então $d|a \in d|b$. Logo podemos reescrever $a = Ad \in b = Bd$

- Proposição 1: ax + by = c admite solução sse $gcd(a,b) \mid c$
 - Sendo (x_0, y_0) uma solução da equação
 - Seja $d = \gcd(a, b)$, então $d|a \in d|b$. Logo podemos reescrever $a = Ad \in b = Bd$

$$c = ax_0 + by_0 = (Ad)x_0 + (Bd)y_0$$

 $c = d(Ax_0 + By_0)$

- Proposição 1: ax + by = c admite solução sse $gcd(a,b) \mid c$ \Rightarrow
 - Sendo (x_0, y_0) uma solução da equação
 - Seja $d = \gcd(a, b)$, então $d|a \in d|b$. Logo podemos reescrever $a = Ad \in b = Bd$

$$c=ax_0+by_0=(Ad)x_0+(Bd)y_0$$

 $c=d(Ax_0+By_0)$
Denotando $q=Ax_0+By_0$
 $c=dq$
Portanto, $d|c$

• Proposição 1: ax + by = c admite solução sse $gcd(a,b) \mid c$

```
\leftarrow
```

- Seja $d = \gcd(a, b)$
- Pelo Teorema de Bézout, existe solução (x_0, y_0) para ax + by = d
- Por hipótese, $d|c \Rightarrow \exists t / c = dt$

• Proposição 1: ax + by = c admite solução sse $gcd(a,b) \mid c$

 \leftarrow

- Seja $d = \gcd(a, b)$
- Pelo Teorema de Bézout, existe solução (x_0, y_0) para ax + by = d
- Por hipótese, $d|c \Rightarrow \exists t / c = dt$

$$c = dt$$

$$c = (ax_0 + by_0)t$$

$$c = a(x_0t) + b(y_0t)$$

Portanto, se $d \mid c$, então a equação ax + by = c admite solução

- Como determinar uma solução?
 - 1. Obter uma solução (x_0, y_0) para $ax + by = \gcd(a, b)$
 - 2. Para ax + by = c:
 - a) t = c/d em que $d = \gcd(a, b)$
 - $b) \quad x = x_0 t$
 - $c) \quad y = y_0 t$
 - 3. Se uma equação diofantina tem uma solução, então ela tem infinitas:

$$S = \left\{ \left(x + rac{b}{d}k, y - rac{a}{d}k
ight), k \in \mathbb{Z}
ight\}$$

- Solução para $ax + by = \gcd(a, b)$
- 1. Caso base (a = 0):
 - Se a = 0 então temos $by = \gcd(0, b)$
 - Sabemos que gcd(0, b) = b

- Solução para $ax + by = \gcd(a, b)$
- 1. Caso base (a = 0):
 - Se a = 0 então temos $by = \gcd(0, b)$
 - Sabemos que gcd(0, b) = b
 - Então by = b, logo y = 1

- Solução para $ax + by = \gcd(a, b)$
- 1. Caso base (a = 0):
 - Se a = 0 então temos $by = \gcd(0, b)$
 - Sabemos que gcd(0, b) = b
 - Então by = b, logo y = 1
 - Nesse caso x pode assumir qualquer valor. Como queremos uma solução qualquer, por motivos de simplificação, faremos x=0
 - Solução base: (0, 1)

• Solução para $ax + by = \gcd(a, b)$

2. Passo da indução:

- Temos $ax + by = \gcd(a, b)$
- Pelo Algoritmo de Euclides, sabemos que gcd(a,b) = gcd(b%a,a) = d
- Logo, podemos obter outra equação diofantina:

$$(b\%a)x_1 + ay_1 = d (*)$$

- Solução para $ax + by = \gcd(a, b)$
 - Considerando o resultado da divisão inteira, podemos dizer que:

$$b = \frac{b}{a}a + b\%a$$

$$b\%a = b - \frac{b}{a}a$$

- Solução para $ax + by = \gcd(a, b)$
 - Considerando o resultado da divisão inteira, podemos dizer que:

$$b = \frac{b}{a}a + b\%a$$

$$b\%a = b - \frac{b}{a}a$$
Substituindo a

• Substituindo em (*)

$$\left(b - \frac{b}{a}a\right)x_1 + ay_1 = d$$

$$bx_1 - \frac{b}{a}ax_1 + ay_1 = d$$

$$a\left(y_1 - \frac{b}{a}x_1\right) + bx_1 = d$$

- Solução para $ax + by = \gcd(a, b)$
 - Considerando o resultado da divisão inteira, podemos dizer que:

$$b = \frac{b}{a}a + b\%a$$
$$b\%a = b - \frac{b}{a}a$$

• Substituindo em (*)

$$bx_1 - \frac{b}{a}ax_1 + ay_1 = d$$

$$bx_1 - \frac{b}{a}ax_1 + ay_1 = d$$

$$a\left(y_1 - \frac{b}{a}x_1\right) + bx_1 = d$$

$$ax + by = d$$

• Implementação

```
int gcd(int a, int b, int &x, int &y){
    if (a == 0){
        x = 0;
        y = 1;
        return b;
    int x1, y1;
    int d = \gcd(a, b \% a, x1, y1);
    x = y1 - x1 * (b/a);
    y = x1;
    return d;
```

$$ax+by=gcd(a,b)$$

• Implementação

```
bool solve(int a, int b, int c, int &x0, int &y0, int &g) {
   g = gcd(abs(a), abs(b), x0, y0);
    if (c % g) {
        return false;
   x0 *= c / g;
   y0 *= c / g;
    if (a < 0) \times 0 = -x0;
    if (b < 0) y0 = -y0;
   return true;
```


- Em vários problemas precisamos operar com os restos de divisões de inteiros.
- A aritmética modular permite fazer cálculos com restos de divisões de modo eficiente, e é especialmente útil quando estamos trabalhando com números grandes (BigInteger).
- Na verdade, a Aritmética Modular pode nos ajudar a evitar ter que trabalhar com números muito grandes.

• A aritmética modular se baseia nas seguintes propriedades:

$$(x + y) \% n = ((x \% n) + (y \% n)) \% n$$

$$(x - y) \% n = ((x \% n) - (y \% n)) \% n$$

$$(x * y) \% n = ((x \% n) * (y \% n)) \% n$$

$$(x ^ y) \% n = ((x \% n) ^ y) \% n$$

- UVa 374 Big Mod
 - Calcule $R = B^P \mod M$
 - $0 \le B, P \le 2147483647 e 1 \le M \le 46340$

• Parte da solução do problema UVA 374 - Big Mod

```
long long pow(long long x, long long y, long long mod) {
   if (y == 0)
      return 1;

   long long p = pow(x, y/2, mod);
   if (y % 2 == 0)
      return (p * p) % mod;
   else
      return (((p * p) % mod) * (x % mod)) % mod;
}
```


- A aritmética modular não se aplica a divisão. Porém, temos o conceito de inverso multiplicativo modular.
- Lembre-se que um número multiplicado pelo seu inverso é igual a 1

- A aritmética modular não se aplica a divisão. Porém, temos o conceito de inverso multiplicativo modular.
- Lembre-se que um número multiplicado pelo seu inverso é igual a 1
- Da aritmética básica, sabemos que:
 - O inverso de um número $A ext{ \'e} \frac{1}{A}$
 - Todos os reais diferentes de 0 têm um inverso
 - Multiplicar um número pelo inverso de A é o mesmo que dividir por A

•
$$X * A^{-1} = X * \frac{1}{A} = \frac{X}{A}$$

- O inverso modular de $A \pmod{C}$ é A^{-1} .
 - $(A * A^{-1}) \equiv 1 \pmod{C}$ ou de modo equivalente $(A * A^{-1}) \pmod{C} = 1$
- OBS: Apenas os números coprimos de C têm um inverso modular (mod C)

- O inverso modular de $A \pmod{C}$ é A^{-1} .
 - $(A * A^{-1}) \equiv 1 \pmod{C}$ ou de modo equivalente $(A * A^{-1}) \pmod{C} = 1$
- Exemplo: A=3 e C=7 $(3*5) \mod 7 = 15 \mod 7 = 1$ $\therefore (3*5) \equiv 1 \pmod 7$
- Logo, 5 é o inverso modular de 3 (mod 7).

- Como encontrar um inverso multiplicativo?
 - Determinar um $x \in \mathbb{Z}$ tal que $Ax \equiv 1 \pmod{C} \Rightarrow x = A^{-1}$

- Como encontrar um inverso multiplicativo?
 - Determinar um $x \in \mathbb{Z}$ tal que $Ax \equiv 1 \pmod{C} \Rightarrow x = A^{-1}$
 - Da congruência, temos que
 - C | (Ax 1)
 - Logo, $\exists y \in \mathbb{Z} | Ax 1 = Cy$

$$Ax - Cy = 1$$

• Equação diofantina!

• Maratona SBC de Programação - Regional 2021 - C - Criando Múltiplos

• Maratona SBC de Programação - Regional 2021 - C - Criando Múltiplos

(D₁. B^{L-1} + D₂. B^{L-2} + ... + D_L. B°) /. (B+1) = O₁

Gueromos substitui algum Di por
$$\times$$
 < Di tal que

S-Di. B^{L-i} + \times . B^{L-i} = O (mod B+1)

×. By = Di By - S

× = Di By - S

× = Di - S. By multiplication

N. π -1 = 1 (mod π)

Referências

Biblioteca de códigos de Thiago Alexandre Domingues de Souza.

Matemática Discreta e Suas Aplicações. Kenneth H. Rosen.

Programming Challenges: The Programming Contest Training Manual. Stevem S. Skiena e Miguel A. Revilla.

https://www.geeksforgeeks.org/sieve-of-eratosthenes/

http://www.lcad.icmc.usp.br/~jbatista/scc210/AulaTeoriadosNumeros1.pdf

http://www.lcad.icmc.usp.br/~jbatista/scc210/AulaTeoriadosNumeros2.pdf

https://www.ufsj.edu.br/portal2-repositorio/File/comat/tcc_Ricardo.pdf

https://cp-algorithms.com/algebra/linear-diophantine-equation.html

https://noic.com.br/materiais-informatica/curso/math-02/

https://noic.com.br/materiais-informatica/curso/math-03/

Referências

https://pt.khanacademy.org/computing/computer-science/cryptography/modarithmetic/pi/fast-modular-exponentiation

https://www.cin.ufpe.br/~gdcc/matdis/aulas/aritmeticaModular_parte2.pdf