### **Project Summary – Fraud Data Analysis & Segmentation**

**Dataset:** Canadian Anti-Fraud Centre (CAFC), ~329k reports (2021–2025). **Goal:** Explore large-scale fraud and cybercrime reports, clean and prepare the dataset, and apply statistical/ML methods to identify meaningful victim and fraud profiles.

**Note:** This document is the main analysis notebook (Colab). An additional Exploratory Data Analysis (EDA) Q&A notebook is attached as a supplement, showing descriptive fraud breakdowns by theme, province, age, gender, and solicitation method.

#### 1. Data Preparation

- Downloaded raw CAFC dataset (70MB+).
- Cleaned mixed French/English duplicates, standardized currency, parsed dates.
- Extracted and imputed victim age midpoints (30% missing), using stratified random imputation by fraud category.
- Constructed numeric + categorical features: dollar losses, number of victims, solicitation methods, fraud themes, gender, complaint type, and province.

#### 2. Exploratory Data Analysis

- Univariate: Distribution of losses, age, gender, and complaint type.
- **Bivariate:** Fraud theme  $\times$  gender, solicitation method  $\times$  loss, age  $\times$  report type.
- Geography: Province-level fraud intensity per 100k population.
- **Temporal:** Monthly reports with 12-month rolling averages, quarterly loss trends.
- Highlights:
  - Investments and Romance scams caused the largest total losses (>C\$1.4B combined).
  - o Per-capita risk highest in Quebec, Manitoba, and Yukon.
  - o Romance fraud peaked in ages 60–69, with women showing higher aggregate losses.

#### 3. Segmentation & Clustering

- Preprocessed data via one-hot encoding, scaling, and dimensionality reduction (PCA
   → UMAP).
- Applied K-Means and HDBSCAN for unsupervised segmentation.
  - $\circ$  K-Means suggested 3 stable macro-clusters (silhouette  $\approx$ 0.40).
  - o HDBSCAN found 42 finer sub-clusters, ~28% noise filtered out.
- Clusters interpreted by top fraud types, solicitation channels, and dollar loss distributions.
- Example: Cluster enriched in *Extortion/Phishing* with "Direct Call/Text" methods vs. Cluster dominated by *Investment scams* with higher losses.

#### 4. Skills Demonstrated

- Data wrangling: Pandas, NumPy, regex, datetime, imputation.
- EDA & visualization: Plotly, seaborn, ECDFs, heatmaps, rolling trends.
- Unsupervised ML: PCA, UMAP, K-Means, HDBSCAN, cluster validity metrics.
- Analytical communication: Markdown summaries, plots, and interpretable tables.

#### 5. Outcomes

- Produced actionable fraud profiles linking demographics, solicitation methods, and loss intensity.
- Demonstrated ability to take a raw, messy national dataset and transform it into insights using advanced statistical and machine learning techniques.
- Ready to adapt the workflow for operational fraud detection, policy insights, or business risk analytics.

### **Project Summary – Exploratory Fraud Q&A (EDA Supplement)**

**Dataset:** Canadian Anti-Fraud Centre (CAFC), ~329k reports (2021–2025). **Goal:** Provide a stakeholder-friendly exploratory analysis of fraud and cybercrime reports, answering key descriptive questions with clear statistics and tables.

#### 1. Key Questions Answered

#### • What are the most common fraud types?

o Identity Fraud (23% of reports), Extortion (9.6%), Phishing (8.7%).

#### • Which scams cause the largest losses?

- o Investments (C\$1.18B), Romance (C\$256M), Spear Phishing (C\$246M).
- o Highest average loss per case: Investments, Spear Phishing, Timeshare.

#### Who is most affected?

- Romance scams peak in ages 60–69, especially for women (C\$130M vs men C\$69M).
- o Complaint type split shows meaningful differences across fraud themes ( $\chi^2$  test p<0.00001).

#### How do fraudsters reach victims?

- Major channels by loss: Internet-Social (C\$717M), Internet (C\$596M), Email (C\$305M), Direct Call (C\$252M).
- Door-to-door is rare but has the **highest average loss per case** (~C\$51k).

#### • Where are the geographic hot spots?

- o Ontario leads in both reports (96k) and total losses (C\$871M).
- British Columbia and Alberta also high in losses; Quebec ranks 2nd in report volume (67k).
- Adjusted for population, Quebec and Manitoba show high per-capita exposure.

#### 2. Skills Demonstrated

- Data summarization: Cross-tabbing by theme, method, age, gender, and province.
- Statistical testing: Chi-square for complaint type distributions.
- Stakeholder communication: Direct Q&A style with concise tables and percentages.
- Geographic insights: Provincial ranking by reports and dollar losses.

#### 3. Outcomes

- Clear profiles of high-impact fraud types (Investments, Romance, Spear Phishing).
- Identified vulnerable demographics (seniors, women in romance scams).
- Exposed **channel risk differences** (door-to-door vs online).

# **Exploratory Questions to Answer**

### What are the most common types of fraud in Canada?

Identity fraud (23%), extortion (9.57%), phishing (8.65%), personal info (8.1%)

Fraud & Cybercrime Thematic Categories - Count



### Which fraud types lead to the highest financial losses?

Top 10 Fraud Themes by TOTAL and Average Loss

| Fraud Theme       | Total Loss (CAD) | Fraud Theme         | Average Loss (CAD) |  |
|-------------------|------------------|---------------------|--------------------|--|
| Investments       | 1,184,422,761.23 | Investments         | 65,351.07          |  |
| Romance           | 255,597,741.36   | Spear Phishing      | 41,680.26          |  |
| Spear Phishing    | 246,288,673.31   | Timeshare           | 41,542.15          |  |
| Job               | 119,282,927.19   | Romance             | 41,218.79          |  |
| Service           | 80,662,586.69    | Recovery Pitch      | 16,482.91          |  |
| Extortion         | 74,161,485.99    | Foreign Money Offer | 11,836.45          |  |
| Unknown           | 56,247,004.75    | Loan                | 9,242.42           |  |
| Bank Investigator | 45,606,678.45    | Job                 | 9,181.26           |  |
| Merchandise       | 44,067,543.44    | Psychics            | 7,879.12           |  |
| Other             | 41,676,461.88    | Unknown             | 6,132.47           |  |



Top 10 Fraud Themes by Total Dollar Loss







### How does fraud vary across age groups and genders?





#### What are the most common fraudster solicitation methods?

Solicitation Method – Reports, Total Loss, Avg Loss (positive only)

| Solicitation Method     | reports | total_loss     | avg_loss_pos |
|-------------------------|---------|----------------|--------------|
| Direct call             | 77299   | 252,135,791.54 | 24,313.96    |
| Door to door/in person  | 3916    | 59,805,950.29  | 51,335.58    |
| Email                   | 37102   | 304,831,567.39 | 47,078.23    |
| Fax                     | 167     | 16,039.98      | 5,346.66     |
| Internet                | 31204   | 595,958,584.70 | 31,172.64    |
| Internet-social network | 36537   | 717,042,504.87 | 29,289.76    |
| Mail                    | 2951    | 2,167,736.14   | 15,483.83    |
| Not Available           | 17387   | 54,081,627.27  | 4,706.84     |
| Other/unknown           | 95692   | 208,915,074.13 | 63,269.25    |
| Print                   | 57      | 690,794.48     | 36,357.60    |
| Radio                   | 7       | 512,143.78     | 102,428.76   |
| Television              | 71      | 2,540,684.38   | 55,232.27    |
| Text message            | 26140   | 99,532,515.20  | 26,345.29    |
| Video Call              | 119     | 1,284,226.30   | 22,932.61    |

Total Dollar Loss by Solicitation Method





# Are there geographic hot spots for certain types of fraud?

Top 10 Provinces by Number of Reports and Total Dollar Loss

| Province/State            | reports | Province/State            | total_loss     |
|---------------------------|---------|---------------------------|----------------|
| Ontario                   | 96150   | Ontario                   | 870,710,149.23 |
| Quebec                    | 67041   | British Columbia          | 302,740,382.25 |
| British Columbia          | 31604   | Alberta                   | 218,334,432.59 |
| Alberta                   | 26189   | Quebec                    | 198,507,196.26 |
| Manitoba                  | 9014    | Manitoba                  | 77,431,085.95  |
| Saskatchewan              | 5889    | Saskatchewan              | 43,153,564.20  |
| Nova Scotia               | 5334    | Nova Scotia               | 23,974,554.28  |
| New Brunswick             | 4408    | New Brunswick             | 19,516,396.28  |
| Newfoundland And Labrador | 1912    | Newfoundland And Labrador | 9,963,503.26   |
| Prince Edward Island      | 857     | Prince Edward Island      | 3,350,559.50   |

# What are the top fraud categories in each province?

Total Dollar Loss (CAD) in Top 10 Provinces



Top 10 Provinces by Report Count



Fraud-Theme Mix in Top 10 Provinces (Top 10 Themes Only)





### **Side Questions:**

- 1- romance x age x gender: when romance fraud is the highest aka at what age is each gender most susceptible to romance fraud?
- total loss \$ by gender
- susceptibility
- 2- complaint type (victim or attempt) by sex, age, category

#### Romance Fraud - Peak Age Bucket & Total Loss by Gender

| Gender | peak_age_bucket | reports | total_loss     |
|--------|-----------------|---------|----------------|
| Female | 60 - 69         | 558     | 129,870,493.35 |
| Male   | 60 - 69         | 350     | 68,990,292.37  |

#### **Complaint Type × Gender (Filtered to Victim / Attempt & Male / Female)**

| Complaint Type | Male  | Female |  |  |
|----------------|-------|--------|--|--|
| Victim         | 85143 | 85938  |  |  |
| Attempt        | 31869 | 35518  |  |  |





# Are specific complaint types (Victim, Attempt) more frequent in some fraud types?

Chi-square test across themes:  $\chi^2$ =122058.7, dof=38, p< 0.00001

#### **Victim vs Attempt Counts by Fraud Theme**

| Fraud and Cybercrime Thematic Categories | Attempt | Victim | Victim % |
|------------------------------------------|---------|--------|----------|
| Bank Investigator                        | 8835    | 5120   | 0.366894 |
| Charity / Donation                       | 259     | 160    | 0.381862 |
| Collection Agency                        | 1180    | 209    | 0.150468 |
| Counterfeit Merchandise                  | 157     | 13066  | 0.988127 |
| Credit Card                              | 4       | 54     | 0.931034 |
| Directory                                | 38      | 11     | 0.22449  |

| Fraud and Cybercrime Thematic Categories   | Attempt | Victim | Victim % |
|--------------------------------------------|---------|--------|----------|
| Emergency (Jail, Accident, Hospital, Help) | 4419    | 3227   | 0.422051 |
| Extortion                                  | 23181   | 7966   | 0.255755 |
| False Billing                              | 1313    | 683    | 0.342184 |
| Foreign Money Offer                        | 1062    | 274    | 0.20509  |
| Fraudulent Cheque                          | 3       | 1      | 0.25     |
| GRANT                                      | 762     | 976    | 0.561565 |
| Health                                     | 52      | 24     | 0.315789 |
| Identity Fraud                             | 732     | 74633  | 0.990287 |
| Incomplete                                 | 226     | 93     | 0.291536 |
| Investments                                | 1283    | 16672  | 0.928544 |
| Job                                        | 3985    | 8907   | 0.690894 |
| Loan                                       | 345     | 1448   | 0.807585 |
| Merchandise                                | 2891    | 14211  | 0.830955 |
| Modem-Hijacking                            | 0       | 1      | 1        |
| Office Supplies                            | 7       | 1      | 0.125    |
| Other                                      | 3660    | 2307   | 0.386626 |
| Personal Info                              | 7154    | 19504  | 0.731638 |
| Phishing                                   | 21628   | 6732   | 0.237377 |
| Prize                                      | 3107    | 1371   | 0.306163 |
| Psychics                                   | 43      | 104    | 0.707483 |
| Pyramid                                    | 49      | 230    | 0.824373 |
| Recovery Pitch                             | 624     | 902    | 0.591088 |
| Romance                                    | 1295    | 4869   | 0.789909 |
| Service                                    | 7116    | 17942  | 0.716019 |
| Spear Phishing                             | 2672    | 3138   | 0.540103 |
| Spoofing                                   | 38      | 39     | 0.506494 |
| Survey                                     | 93      | 19     | 0.169643 |
| Telecom Fraud                              | 43      | 44     | 0.505747 |
| Timeshare                                  | 51      | 148    | 0.743719 |
| Unauthorized Charge                        | 8       | 91     | 0.919192 |
| Unknown                                    | 6029    | 1599   | 0.209622 |

| Fraud and Cybercrime Thematic Categories | Attempt | Victim | Victim % |
|------------------------------------------|---------|--------|----------|
| Vacation                                 | 42      | 93     | 0.688889 |
| Vendor Fraud                             | 3652    | 6115   | 0.626088 |

Complaint Type Distribution Across Fraud Themes



### **Remaining questions**

What percent of reports have missing key fields (age, gender, loss)?

### **Predictive Modeling**

| Can we predict v | whether a fra | ud report will  | lead to financ | ial loss?   |
|------------------|---------------|-----------------|----------------|-------------|
| Which features ( | (e.g., method | , age, fraud ty | ype) are most  | predictive? |

| Are there | fraud typ | es with o | disproportio | nately high | loss-to-cas | e ratios? |
|-----------|-----------|-----------|--------------|-------------|-------------|-----------|

|   | _   |        |           |               |       |         |         |         |          |          |
|---|-----|--------|-----------|---------------|-------|---------|---------|---------|----------|----------|
| 1 | ( ) |        | sa amaunt | + accordiated | with  | ortoin  | domogra | anhia   | aamhin   | ation of |
| J | U   | 15 103 | ss amoun  | t associated  | willi | Ellalli | aemogra | aprilic | COHIDING | วแบบร :  |

### **Clustering & Pattern Mining**

|  | Are there | recognizable | fraud/victim | personas | (e.g., | "retired investor | scammed | via phone | ?("÷ |
|--|-----------|--------------|--------------|----------|--------|-------------------|---------|-----------|------|
|  |           |              |              |          |        |                   |         |           |      |

- Can we group reports based on shared patterns (fraud type + method + victim traits)?
- Do certain fraud types cluster by province or language?
- Do some solicitation methods target specific age groups?

### **Policy & Impact Insights**

| _ |                                   |                |                |                |                       |
|---|-----------------------------------|----------------|----------------|----------------|-----------------------|
|   | \ \ \ /   (   (     -   -   -   - | C' 1'          | 1.1 1 1        | f - 1.P        |                       |
|   | UVVnat actionania                 | ווחמוחמפ במוו  | IIA NAIN TARAA | t niiniic awar | eness campaigns?      |
|   | VVII at attititiable              | illiullius cou | iu iicib laiuc | i bublic awaii | tiicoo caiiibaidiio : |
|   |                                   |                |                |                |                       |

- Are there underserved or high-risk groups that could be protected?
- ☐ Which fraud types should receive investigative priority based on loss impact?

Can we identify regions or fraud styles where enforcement/prevention may be weak?

# **Analysis Ideas (post first EDA)**

# 1. Temporal Dynamics

| Idea             | What to show                                                                       | Why it matters                                                 |  |
|------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------|--|
| MonthlyTrend     | Line chart of total reports per month since 2021; overlay 12-month rolling average | Detect seasonality or growth spikes                            |  |
| ThemeSeasonality | Faceted heat-map (month × fraud theme) of report counts                            | Pinpoint holiday scams, tax-<br>season phishing, etc.          |  |
| LossTrend        | Line chart of <b>median</b> (or 90th-pct)<br>Dollar Loss per quarter               | Reveals whether fraudsters are netting bigger scores over time |  |

Median & 90th-Percentile Dollar Loss per Quarter (Log-Y)



Monthly Reports (raw) with 12-Month Rolling Average





# 2. Geographic Deep-Dives

| Idea                    | What to show                                                      | Why it matters                                   |
|-------------------------|-------------------------------------------------------------------|--------------------------------------------------|
| Per-Capita Hot<br>Spots | Per province reports vs total loss                                | Adjusts for population size; flags true outliers |
| Theme-<br>Specific Maps | Mini maps of top 3 themes' per-capita intensity                   | Targeted regional interventions                  |
| Loss vs Count<br>Bubble | Scatter: province (x=reports, y=total loss, bubble=size=avg loss) | Separates "many small" vs "few huge" provinces   |

Province Fraud Landscape – Reports vs Total Loss (bubble = Avg Loss)





Personal Info - Reports per 100 k Population (2025)



Identity Fraud - Reports per 100 k Population (2025)



Fraud Reports per 100 k Population (2025)



# 3. Demographic Interactions

| Idea                   | What to show                                                    | Why it matters                                            |
|------------------------|-----------------------------------------------------------------|-----------------------------------------------------------|
| Age ×<br>Solicitation  | Stacked bar or mosaic showing which methods hit each age bucket | Tailor awareness campaigns (e.g., phone scams vs seniors) |
| Gender × Loss<br>Boxen | Boxen plot (log-Y) of Dollar Loss split by gender               | Identifies risk profile differences                       |
| Non-Person<br>Victims  | Table: Business/Deceased counts & losses by fraud theme         | Gauge corporate fraud vs individual fraud impact          |

### 4. Behavioural & Structural Patterns

| Idea                      | What to show                                                                                              | Why it matters                                                   |
|---------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Method →<br>Theme Sankey  | Sankey diagram from Solicitation Method to Fraud Theme Visualise common "channels leading into scam types |                                                                  |
| Number of Victims vs Loss | 2-D density or scatter (log-log)                                                                          | Exposes whether multi-victim events correlate with higher losses |
| Outlier Drill-<br>down    | Table of top 1 % loss cases with IDs, theme, province                                                     | Case studies for law-enforcement attention                       |

# 5. Missingness & Data Quality

| Idea                     | What to show                                | Why it matters                                           |
|--------------------------|---------------------------------------------|----------------------------------------------------------|
| Missingness Heat-<br>map | Seaborn matrix sorted by theme              | See if certain fraud themes systematically skip age/loss |
| MCAR vs MAR<br>Tests     | For Language, Province,<br>Loss missingness | Decide if imputation is safe or biasing                  |

# 6. Unsupervised Segmentation

| Idea                                   | What to show                                  | Why it matters                       |
|----------------------------------------|-----------------------------------------------|--------------------------------------|
| UMAP + HDBSCAN                         | 2-D projection coloured by discovered cluster | Unearth latent victim/fraud personas |
| Feature Importance (SHAP) for Clusters | Bar of top drivers per cluster                | Tells you why clusters differ        |

# 7. Predictive Modeling Prep

| Idea                                            | What to show                           | Why it matters                                        |
|-------------------------------------------------|----------------------------------------|-------------------------------------------------------|
| Binary Classifier: Will a report incur \$ loss? | ROC curve, precision-recall, SHAP      | Proactive alerting; understand drivers                |
| Loss Severity Regression                        | Quantile regression (median, 90th-pct) | Predict potential exposure even if loss not yet known |
| Pipeline w/ KNN Imputer & One-Hot               | Code + cross-val metrics               | Ensures no leakage & clean feature handling           |

# 8. Risk-Weighted KPIs

| Idea                      | What to show                           | Why it matters                                 |
|---------------------------|----------------------------------------|------------------------------------------------|
| Loss per Report<br>Ratio  | Bar: (total_loss / reports) by theme   | Highlights "high payoff" scams                 |
| Theme Gini<br>Coefficient | Inequality of losses within each theme | Shows whether a few huge cases dominate totals |

### 9. Interactive Dashboard Plan

| Idea            | Component                        | Data source     |
|-----------------|----------------------------------|-----------------|
| Global Filters  | Year, Province, Theme            | Parquet         |
| KPI Cards       | Total Loss, Reports, Median Loss | Live aggregates |
| Linked Plots    | Map, Time-series, ECDF           | Cached rollups  |
| Download Button | CSV of filtered subset           | UI convenience  |

# 10. Documentation & Reporting

| Idea                     | Deliverable                                               | Purpose                    |
|--------------------------|-----------------------------------------------------------|----------------------------|
| Methodology Note         | Obsidian page summarising cleaning & imputation decisions | Transparency for reviewers |
| One-pager<br>Infographic | Canva or Figma visual of key stats                        | Exec storytelling          |

| Idea        | Deliverable                                        | Purpose                    |
|-------------|----------------------------------------------------|----------------------------|
| Repro Steps | Makefile or run_all.sh to rebuild parquet, run EDA | Easy hand-off to teammates |