DM 19 Une construction de \mathbb{R} .

- Les ensembles de nombres \mathbb{N} , \mathbb{Z} et \mathbb{Q} sont supposés connus, avec leurs additions, multiplications et relations d'ordre usuels. En particulier, la notion de valeur absolue dans \mathbb{Q} est connue, avec son inégalité triangulaire.
- Au contraire, l'ensemble \mathbb{R} des réels n'est pas supposé connu. En effet, l'objectif de ce problème est de construire \mathbb{R} à partir de \mathbb{Q} . En particulier, la théorie des séries de réels n'est pas utilisable.

Partie I : Non complétude de $\mathbb Q$

Si $(u_n)_{n\in\mathbb{N}}\in\mathbb{Q}^{\mathbb{N}}$, on dit que (u_n) est une suite de Cauchy si et seulement si

$$\forall \varepsilon \in \mathbb{Q}_+^*, \ \exists N \in \mathbb{N}, \ \forall p \ge N, \ \forall q \ge N, \ |u_p - u_q| \le \varepsilon.$$

- 1°) Soit (u_n) une suite de Cauchy de rationnels. Montrer que cette suite est bornée, c'est-à-dire qu'il existe $M \in \mathbb{Q}$ tel que, pour tout $n \in \mathbb{N}$, $|u_n| \leq M$.
- **2°)** Montrer que l'ensemble des suites de Cauchy de $\mathbb{Q}^{\mathbb{N}}$ est un \mathbb{Q} -espace vectoriel. Soit $(u_n) \in \mathbb{Q}^{\mathbb{N}}$ et $\ell \in \mathbb{Q}$. On dit que u_n tend vers ℓ lorsque n tend vers $+\infty$, et on note $u_n \underset{n \to +\infty}{\longrightarrow} \ell$ (dans \mathbb{Q}) si et seulement si

$$\forall \varepsilon \in \mathbb{Q}_+^*, \ \exists N \in \mathbb{N}, \ \forall n \ge N, \ |u_n - \ell| \le \varepsilon.$$

- **3°)** Montrer que $\frac{1}{n} \xrightarrow[n \to +\infty]{} 0$ (dans \mathbb{Q}).
- **4°)** Soit $(u_n) \in \mathbb{Q}^{\mathbb{N}}$ et $\ell \in \mathbb{Q}$. Si $u_n \underset{n \to +\infty}{\longrightarrow} \ell$ (dans \mathbb{Q}), montrer que (u_n) est une suite de Cauchy de $\mathbb{Q}^{\mathbb{N}}$.
- Si $(u_n) \in \mathbb{Q}^{\mathbb{N}}$, on dit que la suite (u_n) de rationnels est convergente dans \mathbb{Q} si et seulement si il existe $\ell \in \mathbb{Q}$ tel que $u_n \xrightarrow[n \to +\infty]{} \ell$ (dans \mathbb{Q}). On note alors $\ell = \lim_{n \to +\infty} u_n$.

5°) a) Montrer que l'ensemble \mathcal{C} des suites convergentes de rationnels est un \mathbb{Q} -espace vectoriel.

b) Pour tout
$$(u_n)_{n\in\mathbb{N}}\in\mathcal{C}$$
, on pose $f((u_n)_{n\in\mathbb{N}})=\lim_{n\to+\infty}u_n$.

Montrer que f est une forme linéaire.

c) Si (u_n) et (v_n) sont deux suites de $\mathbb{Q}^{\mathbb{N}}$, on convient que

$$(u_n) \le (v_n) \iff [\forall n \in \mathbb{N}, \ u_n \le v_n].$$

Montrer que l'on définit ainsi un ordre partiel sur $\mathbb{Q}^{\mathbb{N}}$.

Montrer que f est croissante de \mathcal{C} dans \mathbb{Q} lorsque l'on munit \mathcal{C} de la restriction de cet ordre à \mathcal{C} .

Pour tout
$$n \in \mathbb{N}$$
, posons $s_n = \sum_{k=0}^n \frac{(-1)^k}{k!}$.

 6°) Montrer que (s_n) est une suite de Cauchy.

Afin de montrer que (s_n) ne converge pas dans \mathbb{Q} , on raisonne par l'absurde. On suppose donc qu'il existe $a \in \mathbb{Z}$ et $b \in \mathbb{N}^*$ tel que $s_n \xrightarrow[n \to +\infty]{a} \frac{a}{b}$ dans \mathbb{Q} .

- **7°)** Montrer que, pour tout $n \in \mathbb{N}$, $0 \le s_{2n+1} \le \frac{a}{b} \le s_{2n}$.
- 8°) En multipliant ces inégalités par (2n)!b, obtenir une contradiction et conclure.

Partie II : définition du corps des réels

On note $\mathcal S$ l'ensemble des suites de Cauchy de $\mathbb Q^{\mathbb N}.$

Lorsque $(u_n), (v_n) \in \mathcal{S}$, on pose $(u_n) \times (v_n) = (u_n v_n)$.

9°) Montrer que l'on vient de définir une loi interne sur \mathcal{S} .

En déduire que ${\mathcal S}$ est une ${\mathbb Q}$ -algèbre commutative.

On pose
$$I = \{(u_n) \in \mathbb{Q}^{\mathbb{N}} / u_n \underset{n \to +\infty}{\longrightarrow} 0 \text{ (dans } \mathbb{Q})\}.$$

10°) Montrer que I est un idéal et un sous-espace vectoriel de S.

11°) Soit A une \mathbb{Q} -algèbre commutative et J une partie de A.

On suppose que J est un idéal ainsi qu'un sous-espace vectoriel de A.

Pour tout $a, b \in A$, on convient que $a R b \iff b - a \in J$.

a) Montrer que R est une relation d'équivalence sur A.

Pour tout $a \in A$, préciser la classe d'équivalence de a, que l'on notera \overline{a} .

On note A/J l'ensemble des classes d'équivalence de R.

Pour tout $a, b \in A$ et $\alpha \in \mathbb{Q}$, on convient que $\overline{a} + \overline{b} = \overline{a+b}$, $\overline{a} \times \overline{b} = \overline{a \times b}$ et $\alpha.\overline{a} = \overline{\alpha.a}$.

b) Montrer que A/J muni de ces trois lois est une \mathbb{Q} -algèbre commutative.

En particulier, \mathcal{S}/I est une \mathbb{Q} -algèbre commutative.

Pour toute la suite, on pose $\mathbb{R} = \mathcal{S}/I$.

Les éléments de \mathbb{R} seront appelés des réels.

- 12°) Soit $(x_n) \in \mathcal{S}$. On suppose que la suite (x_n) ne converge pas vers 0 dans \mathbb{Q} .
- a) Montrer qu'il existe $\alpha \in \mathbb{Q}_+^*$ et $n_0 \in \mathbb{N}$ tels que, pour tout $n \geq n_0$, $\alpha \leq |x_n|$.
- b) On définit la suite (y_n) de rationnels en convenant que :

pour tout $n < n_0, y_n = 0$ et pour tout $n \ge n_0, y_n = \frac{1}{x_n}$. Montrer que $(y_n) \in \mathcal{S}$.

13°) Montrer que \mathbb{R} est un corps.

Pour tout $x \in \mathbb{Q}$, on note j(x) la classe d'équivalence de la suite constante égale à x.

14°) Montrer que j est un morphisme injectif de \mathbb{Q} -algèbres de \mathbb{Q} dans \mathbb{R} .

Pour la suite, on identifie \mathbb{Q} et $j(\mathbb{Q})$. Plus précisément, on identifie le rationnel x avec le réel j(x), c'est-à-dire que l'on accepte d'écrire x = j(x). Ainsi, \mathbb{Q} est une partie de \mathbb{R} et même un sous-corps de \mathbb{R} (on ne demande pas de le démontrer).

Partie III: l'ordre naturel sur \mathbb{R}

Soit $x \in \mathbb{R}$. Il existe donc $(x_n) \in \mathcal{S}$ tel que $x = \overline{(x_n)}$. On convient que x est strictement positif si et seulement si il existe $\alpha \in \mathbb{Q}_+^*$ et $n_0 \in \mathbb{N}$ tels que, pour tout $n \geq n_0$, $x_n \geq \alpha$.

15°) Montrer que cette définition est correcte.

Soit $x, y \in \mathbb{R}$. On convient que $x \leq y$ si et seulement si x = y ou bien y - x est un réel strictement positif.

- 16°) Montrer que l'on définit ainsi une relation d'ordre sur \mathbb{R} .
- 17°) Montrer que j est une application croissante de \mathbb{Q} dans \mathbb{R} .

Ainsi, après identification de \mathbb{Q} avec $j(\mathbb{Q})$, l'ordre que l'on vient de définir sur \mathbb{R} prolonge l'ordre naturel sur \mathbb{Q} .

- 18°) Soit $(x_n) \in \mathcal{S}$ et $\varphi : \mathbb{N} \longrightarrow \mathbb{N}$ une application strictement croissante. Montrer que $(x_{\varphi(n)}) \in \mathcal{S}$ et que $\overline{(x_n)} = \overline{(x_{\varphi(n)})}$.
- 19°) Soit $x \in \mathbb{R}$.

On suppose que x et -x ne sont pas strictement positifs. Montrer que x est nul. En déduire que l'ordre que l'on a construit sur \mathbb{R} est total.

- **20°)** a) Montrer que, pour tout $x, y, z \in \mathbb{R}$, $x \leq y \Longrightarrow x + z \leq y + z$.
- **b)** Montrer que, pour tout $x, y \in \mathbb{R}$, $(x \ge 0) \land (y \ge 0) \Longrightarrow xy \ge 0$.

On en déduit facilement, et on ne demande pas de le démontrer, que la relation \leq sur \mathbb{R} vérifie les propriétés usuelles relativement à l'addition, la soustraction, la multiplication et la division.

- **21**°) Montrer que $\mathbb Q$ est dense dans $\mathbb R$, c'est-à-dire que, pour tout $x,y\in\mathbb R$ avec x< y, il existe $\alpha\in\mathbb Q$ tel que $x<\alpha< y$.
- **22**°) Pour tout $x \in \mathbb{R}$, montrer qu'il existe un unique entier relatif, que l'on notera |x| tel que $|x| \le x < |x| + 1$.

Remarque : cette propriété est bien sûr supposée connue lorsque $x \in \mathbb{Q}$.

23°) Montrer que \mathbb{R} est archimédien, c'est-à-dire que, pour tout $x, y \in \mathbb{R}$ avec x > 0 et y > 0, il existe $n \in \mathbb{N}$ tel que nx > y.