1

- n 次正方行列 A に対し, (1) $A\vec{v} = k\vec{v}$ を満たす数 k を A の固有値とよび,ベクトル \vec{v} を固有値 k に関する固有ベクトルとよぶ.
- 固有値 k に関する固有ベクトルは連立方程式

$$(kE_n - A)\vec{x} = \vec{0}$$

- の(2) 非自明 (な) 解,または $\vec{0}$ でない解 である.
- この事実から固有値 k に対し、行列 (kE_n-A) の (3) 行列式 は 0 となる.
- ② 各ベクトル \vec{v} に行列 A をかけて, $A\vec{v}=k\vec{v}$ となるかどうか確かめればよい.答えは (\mathcal{P}) と (\mathfrak{T}) .

レポート作成のポイント: すべてのベクトルに A をかけて,固有ベクトルになっているかどうか確かめなさい. (ア) と (エ) については固有値も答えなさい.

3

- (1) $\Phi_A(t) = t^2 + 3t 4 = (t-1)(t+4)$
- (2) -4, 1
- (3) -4 に関する固有ベクトルは $c\begin{pmatrix} -1\\1 \end{pmatrix}$, 1 に関する固有ベクトルは $c\begin{pmatrix} -6\\1 \end{pmatrix}$. (ただし,c は 0 でない実数)

この授業に関する情報