TABELA DE DISPERSIE

Hash Table

- Este o structură de date eficientă pentru implementarea dicționarelor (și nu numai).
- Compilator tabelă de simboluri (cheia = șir de caractere corespunzătoare unui identificator)
- TD poate fi folosită pentru implementarea containerelor pe care operațiile specifice sunt: adăugare element, căutare element, ștergere element. Ex: dicționare, colecții, mulțimi
 - o JAVA HashMap, HashSet.
 - o STL unordered_set, unordered_map
- TD este o generalizare a noțiunii mai simple de tabelă cu adresare directă
- Notații
 - \circ n numărul de elemente din container
 - o un element e din container este o pereche cheie (c) valoare (v) ($TElement = TCheie \times TValoare$)
 - \circ U universul (domeniul) cheilor
 - \circ K domeniul actual al cheilor (multimea cheilor efectiv memorate în container)

Tabelă cu adresare directă

- Notatii
 - o chei numere naturale, chei distincte
 - \cup U = {0,1,2...,m-1} m relativ mic
 - \circ K domeniul actual al cheilor (multimea cheilor efectiv memorate în container)
- Tabela cu adresare directă este memorată sub forma unui vector T[0..*m*-1]
 - o Locația T[c] va corespunde cheii c
 - O Dacă o cheie $c \notin K$, atunci T[c] va conține NIL (sau o valoare specială care marchează locație goală)
 - T[c] poate memora un pointer spre elementul având cheia c sau elementul (cheia şi valoarea asociată)

TElement

TabelaAdresareDirecta

c:TCheie *v*:TValoare

m:Întreg *e*:TElement[0..*m*-1]

CAUTĂ (T, c)

//pre: T este o tabelă cu adresare directă, c este de tip TCheie @ returnează T.e[c]

ADAUGĂ(T, e)

//pre: T este o tabelă cu adresare directă, e este de tip TElement @ $T.e[e.c] \leftarrow e$

STERGE (T, c)

//pre: T este o tabelă cu adresare directă, c este de tip TCheie @ $T.e[e.c] \leftarrow NIL$

- Observaţii
 - o funcționează bine dacă universul cheilor este mic
 - o complexitate atimp a operatiilor este $\phi(1)$
 - o spațiul de memorare este $\phi(|U|)$

Tabela de dispersie

- o spatiul de memorare este $\phi(|K|)$
- o complexitatea timp *medie* pentru toate operațiile pe TD (adăugare, căutare, ștergere) este $\phi(1)$.
 - **căutarea** unui element într-o TD poate necesita $\phi(n)$ în caz *defavorabil* (ca și căutarea în liste)
 - in practică, dispersia functionează foarte bine
 - \triangleright timpul *mediu* preconizat pentru căutare este $\phi(1)$
- o functie de dispersie (hash function) $d: U \rightarrow \{0,1,...m-1\}$
- o **dispersia perfectă** (perfect hashing, perfect hash function)
 - ➤ fără coliziuni (când se cunosc cheile ex. compliatoare)
- o $d(c_1) = d(c_2)$ coliziune
- o adăugarea unui nou element e=(c, v)
 - \triangleright se calculează i = d(c)
 - > dacă locația i este liberă, atunci se adaugă elementul
 - \triangleright dacă la locatia *i* mai e memorat un alt element \Rightarrow **rezolvare coliziune**
- o funcție de dispersie bună
 - \triangleright este ușor de calculat (folosește operații aritmetice simple) $\phi(1)$
 - > produce cât mai putine coliziuni.

Interpretarea cheilor ca numere naturale

- Majoritatea funcțiilor de dispersie presupun universul cheilor din mulțimea numerelor naturale
- În cazul în care cheile nu sunt numere naturale, trebuie găsită o modalitate de a le interpreta ca numere naturale o funcție care asociază fiecărei chei un număr natural (implementare hashCode: TCheie → {0,1,2...})
 - o identificatorul **pt** poate fi interpretat ca un număr în baza **128** (**pt**)₁₂₈=112·128+116=14452.
 - o pentru un sir de caractere putem considera suma codurilor ASCII ale caracterelor.
- > Pp. în cele ce urmează că avem chei naturale.

Funcții de dispersie

➢ O funcție de dispersie bună satisface (aproximativ) ipoteza dispersiei uniforme simple (Simple Uniform Hashing): fiecare cheie se poate dispersa cu aceeași probabilitate în oricare din cele m locații.

$$P(d(c) = j) = \frac{1}{m}, \forall j = 0, ..., m-1 \quad \forall c \in U$$

- O Dacă această ipoteză este verificată, atunci se minimizează numărul de coliziuni
- o în practică se pot folosi tehnici euristice pentru a crea funcții de dispersie care să se comporte bine.

I. Metoda diviziunii

- > Dispersia prin diviziune
- $> d(c) = c \mod m$
- Experimental: valori bune pentru *m* sunt numerele prime nu prea apropiate de puteri exacte ale lui 2 (ex: 13,...)
- $\rightarrow m=13$

$$\circ$$
 $c=63 \Rightarrow d(c)=11$

$$\circ$$
 $c=26 \Rightarrow d(c)=0$

II. Metoda înmulțirii

- $d(c) = [m \cdot (c \cdot A \mod 1)]$ unde " $c \cdot A \mod 1$ " reprezintă $c \cdot A [c \cdot A]$
- ➤ Valoarea lui *m* nu e critică (în general este o putere a lui 2)
- > Knuth: valoarea optimă pentru A este $\frac{\sqrt{5}-1}{2} \approx 0.6180339887$ (golden ratio-1)

$$m = 13, A = 0.6180339887$$
 (Knuth)

o
$$c=63 \Rightarrow d(c) = [13 * frac(63 * A)] = 12$$

o
$$c = 52 \Rightarrow d(c) = [13 * frac(52 * A)] = 1$$

o $c = 129 \Rightarrow d(c) = [13 * frac(129 * A)] = 9$

$$ightharpoonup c = < c_1, c_2, ..., c_k >$$

- \blacktriangleright $d(c) = (\sum_{i=1}^{k} c_i \cdot x_i) \mod m$ unde $\langle x_1, x_2, ..., x_k \rangle$ este o secvență de numere aleatoare fixate (selectate de-a lungul initializării funcției de dispersie)
- Proprietate (foarte bună): oricare ar fi două chei distincte a și b, probabilitatea ca o funcție de dispersie aleatoare d să le mapeze în aceeași locație în tabela de dispersie este $\frac{1}{m}$.

A. Rezolvare coliziuni prin liste independente (înlănțuire) - SEPARATE CHAINING

- Elementele care se dispersează în aceeați locație (sunt într-o coliziune), vor fi puse într-o listă înlănțuită
- Locația *j* conține un pointer către capul listei înlănțuite a elementelor care se dispersează în locația *j* (dacă această listă e vidă, se memorează NIL).
- Ex: m=10, $U=\{c_1,...c_{10}\}$, $K=\{c_1,c_2,c_3,c_4,c_5\}$ și $d(c_1)=d(c_4)=1$, $d(c_2)=5$, $d(c_3)=d(c_5)=7$

Reprezentare și operații

TElementContainerc:TCheiem:Întregv:TValoarel:TListă[0..m-1]

- d este funcția de dispersie
- pp. cheia are o singură valoare asociată
- Container poate fi, de ex., dictionar, multime, colectie.

CAUTĂ(C, ch)

// pre: C este un container reprezentat sub forma unei TD (coliziuni prin înlănțuire), ch este de tip // TCheie

@ caută elementul cu cheia ch în lista C.l[d(ch)]

ADAUGĂ(C, e)

// pre: C este un container reprezentat sub forma unei TD (coliziuni prin înlănțuire), e este de tip // TElement

@ se adaugă elementul e în capul listei înlănțuite C.l[d(e.c)]

ȘTERGE (T, ch)

 $/\!/$ pre: C este un container reprezentat sub forma unei TD (coliziuni prin înlănțuire), ch este de tip $/\!/$ TCheie

@ se șterge elementul cu cheia ch din lista înlănțuită C.l[d(e.c)]

Observații

- Este posibil ca listele independente să fie memorate ordonat după cheie sau valoare
- > Funcția de dispersie este considerată bună dacă listele au aproximativ aceeași lungime
- ➤ Dacă apar multe liste de vide sau liste prea lungi ⇒ redispersare (**rehashing**)

Exemplu

m=10, $d(c)=c \mod m$

С	5	15	13	22	20	35	30	32	2
d(c)	5	5	3	2	0	5	0	2	2

Iterator

Telement	Nod	Container	IteratorContainer
c:TCheie	e:TElement	<i>m</i> :Întreg	c:Container
v:TValoare	<i>urm</i> :↑Nod	<i>l</i> :↑Nod [0m-1]	pozCurent:Intreg
			<i>curent</i> :↑Nod

(a se vedea implementarea operațiilor la http://www.cs.ubbcluj.ro/~gabis/sda/Cursuri/Curs10/).

Timp defavorabil pentru operații

Pp n este numărul elementelor din container.

- CAUT $\check{\mathbf{A}} O(n)$
- ADAUGĂ $\phi(1)$
- **ŞTERGE** presupune (1) căutare nod în lista înlănțuită + (2) ștergere nod O(n)

Analiza dispersiei cu înlănțuire

Notații și presupuneri

- $\Rightarrow \alpha = \frac{n}{m}$ factorul de încărcare al tabelei (numărul mediu de elemente memorate într-o înlănțuire)
- Pp. că timpul de calcul al funcției de dispersie este $\theta(1)$ (!! la timpul de căutare se adaugă și timpul de calcul al funcției de dispersie
- La **căutare** apar 2 cazuri
 - o Căutare cu succes
 - Căutare fără succes

<u>Teorema 1.</u> Într-o TD în care coliziunile sunt rezolvate prin înlănțuire, în *ipoteza dispersiei uniforme simple* (SUH), o căutare **fără succes**, necesită, în *medie*, un timp $\theta(1+\alpha)$.

Teorema 2. Într-o TD în care coliziunile sunt rezolvate prin înlănțuire, în *ipoteza dispersiei uniforme simple* (SUH), o căutare **cu succes**, necesită, în *medie*, un timp $\theta(1+\alpha)$.

CONCLUZII

- Dacă n = O(m) \Rightarrow $\alpha = \frac{O(m)}{m} = O(1)$ \Rightarrow **căutarea** necesită, în *medie*, timp constant $\theta(1)$
- Adăugarea necesită $\theta(1)$
- Dacă listele sunt dublu înlănțuite atunci ștergerea unui nod se poate face în $\theta(1)$
- \Rightarrow TOATE OPERAȚIILE (adăugare, căutare, ștergere) POT FI EXECUTATE ÎN *MEDIE* ÎN θ (1)

PROBLEME

- 1. Presupunem că folosim o funcție de dispersie aleatoare **d** pentru a dispersa n chei distincte într-o tabelă T de dimensiune m. Care este numărul mediu de coliziuni? (cardinalul probabil al mulțimii $\{(x,y) \in TCheie \times TCheie : d(x) = d(y)\}$)
- 2. Presupunem că folosim o TD în care coliziunile sunt rezolvate prin înlănțuire (liste independente), dar fiecare listă este ordonată după cheie. Care va fi timpul de execuție pentru **căutare** (cu succes, fără succes), **adăugare** și **ștergere**?
- 3. Arătați că dacă $|U| > n \cdot m$, atunci există o submulțime a lui U de mărime n ce conține chei care se dispersează toate în aceeași locatie, astfel încât timpul de căutare pentru dispersia cu înlănțuire, în cazul cel mai defavorabil, este $\phi(n)$.