Topic: Mean Value Theroem

Chapter: Calculus

- 1. If $f(x) = x^3 6x^2 + 11x 6$ is on [1, 3], then the point $c \leftrightarrow 1$, 3 such that f'(c) = 0 is given by

 - (a) $c = 2 \pm \frac{1}{\sqrt{2}}$ (b) $c = 2 \pm \frac{1}{\sqrt{3}}$

 - (c) $c = 2 \pm \frac{1}{2}$ (d) None of these
- 2. Let $f(x) = \sin 2x$, $0 \le x \le \frac{\pi}{2}$ and f'(c) = 0 for $c \leftrightarrow 0, \frac{\pi}{2}$. Then, c is equal to

- (d) None
- 3. Let $f(x) = x(x+3) e^{-x/2}$, $-3 \le x \le 0$. Let $c \leftrightarrow -3$, 0 such that f'(c) = 0. Then, the value of c is
 - (a) 3
- (b) -3
- (c) -2
- (d) -1/2
- If Rolle's theorem holds for $f(x) = x^3 6x^2 + kx + 5$ on [1, 3] with $c = 2 + \frac{1}{\sqrt{3}}$, then value of k is
 - (a) -3
- (b) 3
- (c) 7
- (d) 11
- A point on the parabola $y = (x 3)^2$, where the tangent is parallel to the chord joining A (3, 0) and B (4, 1) is
 - (a) (7, 1)

- (c) $\left(\frac{7}{2}, \frac{1}{4}\right)$ (d) $\left(-\frac{1}{2}, \frac{1}{2}\right)$
- A point on the curve $y = \sqrt{x-2}$ on [2, 3] where the tangent is parallel to the chord joining the end points of the curve is
 - (a) $\left(\frac{9}{4}, \frac{1}{2}\right)$ (b) $\left(\frac{7}{2}, \frac{1}{4}\right)$

 - (c) $\left(\frac{7}{4}, \frac{1}{2}\right)$ (d) $\left(\frac{9}{2}, \frac{1}{4}\right)$
- 7. Let f(x) = x (x 1) (x 2) be defined in $\left[0, \frac{1}{2} \right]$. Then,

the value of c of the mean value theorem is

- (a) 0.16
- (b) 0.20
- (c) 0.24
- (d) None
- **8.** Let $f(x) = \sqrt{x^2 4}$ be defined in [2, 4]. Then, the value of c of the mean value theorem is
 - (a) $-\sqrt{6}$ (b) $\sqrt{6}$
- - (c) $\sqrt{3}$ (d) $2\sqrt{3}$

Answer Key

1. (b)

2. (a)

3. (c)

4. (d)

5. (c)

6. (a)

7. (d)

8. (b)

Any issue with DPP, please report by clicking here:- $\frac{https://forms.gle/t2SzQVvQcs638c4r5}{for more questions, kindly visit the library section: Link for web: } \frac{https://smart.link/sdfez8ejd80if}{https://smart.link/sdfez8ejd80if}$

PW Mobile APP: https://smart.link/7wwosivoicgd4