Step-by-Step FULD Algorithm

Trần Khắc Bình

15-20/07/2024

1 Dữ liệu

TID	AA	BB	CC	DD	EE	tu
T_1	0	0	7	1	1	41
T_2	1	0	2	0	2	31
T_3	0	6	4	3	7	149
T_4	0	5	3	9	0	121
T_5	3	0	10	3	0	85
T_6	0	0	5	0	9	83
T_7	6	0	9	2	5	137
T_8	1	6	2	5	3	134

Table 1: A Transaction Database

Item	External Utility			
AA	9			
BB	11			
CC	4			
DD	6			
EE	7			

Table 2: An External Utility Table

Kiểm tra độ chính xác của cột **tu** trong Table 1:

$$tu(T_n) = \sum_{i_{\nu}T_n} u(i_{\nu}, T_n)$$

•
$$tu(T_1) = u(E, T_1) + u(C, T_1) + u(D, T_1) = 1 \times 7 + 7 \times 4 + 1 \times 6 = 41$$

•
$$tu(T_2) = u(A, T_2) + u(C, T_2) + u(E, T_2) = 1 \times 9 + 2 \times 4 + 2 \times 7 = 31$$

•
$$tu(T_3) = u(B, T_3) + u(C, T_3) + u(D, T_3) + u(E, T_3) = 6 \times 11 + 4 \times 4 + 3 \times 6 + 7 \times 7 = 149$$

•
$$tu(T_4) = u(B, T_4) + u(C, T_4) + u(D, T_4) = 5 \times 11 + 3 \times 4 + 9 \times 6 = 121$$

•
$$tu(T_5) = u(A, T_5) + u(C, T_5) + u(D, T_5) = 3 \times 9 + 10 \times 4 + 3 \times 6 = 85$$

•
$$tu(T_6) = u(C, T_6) + u(E, T_6) = 5 \times 4 + 9 \times 7 = 83$$

•
$$tu(T_7) = u(A, T_7) + u(C, T_7) + u(D, T_7) + u(E, T_7) = 6 \times 9 + 9 \times 4 + 2 \times 6 + 5 \times 7 = 137$$

•
$$tu(T_8) = u(A, T_8) + u(B, T_8) + u(C, T_8) + u(D, T_8) + u(E, T_8) = 1 \times 9 + 6 \times 11 + 2 \times 4 + 5 \times 6 + 3 \times 7 = 134$$

Itemset	Utility	Itemset	Utility	Itemset	Utility	Itemset	Utility
ACDE	205	ACD	234	BE	202	BDE	250
BCDE	274	BCE	226	BD	289	BCD	325
BC	223	CDE	266	CE	305	CD	278

Table 3: HUIs Table

Kiểm tra độ chính xác của Table 3:

$$u(X) = \sum_{i_{v} \in X, X \subseteq T_{n}} u(X, T_{n})$$

•
$$u(ACDE) = u(ACDE, T_7) + u(ACDE, T_8) = (6 \times 9 + 9 \times 4 + 2 \times 6 + 5 \times 7) + (1 \times 9 + 2 \times 4 + 5 \times 6 + 3 \times 7) = 205$$

•
$$u(BCDE) = u(BCDE, T_3) + u(BCDE, T_8) = (6 \times 11 + 4 \times 4 + 3 \times 6 + 7 \times 7) + (6 \times 11 + 2 \times 4 + 5 \times 6 + 3 \times 7) = 274$$

•
$$u(BC) = u(BC, T_3) + u(BC, T_4) + u(BC, T_8) = (6 \times 11 + 4 \times 4) + (5 \times 11 + 3 \times 4) + (6 \times 11 + 2 \times 4) = 223$$

•
$$u(ACD) = u(ACD, T_5) + u(ACD, T_7) + u(ACD, T_8) =$$

 $(3 \times 9 + 10 \times 4 + 3 \times 6) + (6 \times 9 + 9 \times 4 + 2 \times 6) + (1 \times 9 + 2 \times 4 + 5 \times 6) = 234$

•
$$u(BCE) = u(BCE, T_3) + u(BCE, T_8) = (6 \times 11 + 4 \times 4 + 7 \times 7) + (6 \times 11 + 2 \times 4 + 3 \times 7) = 226$$

•
$$u(CDE) = u(CDE, T_1) + u(CDE, T_3) + u(CDE, T_7) + u(CDE, T_8) = (7 \times 4 + 1 \times 6 + 1 \times 7) + (4 \times 4 + 3 \times 6 + 7 \times 7) + (9 \times 4 + 2 \times 6 + 5 \times 7) + (2 \times 4 + 5 \times 6 + 3 \times 7) = 266$$

•
$$u(BE) = u(BE, T_3) + u(BE, T_8) = (6 \times 11 + 7 \times 7) + (6 \times 11 + 3 \times 7) = 202$$

•
$$u(BD) = u(BD, T_3) + u(BD, T_4) + u(BD, T_8) = (6 \times 11 + 3 \times 6) + (5 \times 11 + 9 \times 6) + (6 \times 11 + 5 \times 6) = 289$$

•
$$u(CE) = u(CE, T_1) + u(CE, T_2) + u(CE, T_3) + u(CE, T_6) + u(CE, T_7) + u(CE, T_8) = (7 \times 4 + 1 \times 7) + (2 \times 4 + 2 \times 7) + (4 \times 4 + 7 \times 7) + (5 \times 4 + 9 \times 7) + (9 \times 4 + 5 \times 7) + (2 \times 4 + 3 \times 7) = 305$$

•
$$u(BDE) = u(BDE, T_3) + u(BDE, T_8) = (6 \times 11 + 3 \times 6 + 7 \times 7) + (6 \times 11 + 5 \times 6 + 3 \times 7) = 250$$

•
$$u(BCD) = u(BCD, T_3) + u(BCD, T_4) + u(BCD, T_8) =$$

 $(6 \times 11 + 4 \times 4 + 3 \times 6) + (5 \times 11 + 3 \times 4 + 9 \times 6) + (6 \times 11 + 2 \times 4 + 5 \times 6) = 325$

•
$$u(CD) = u(CD, T_1) + u(CD, T_3) + u(CD, T_4) + u(CD, T_5) + u(CD, T_7) + u(CD, T_8) = (7 \times 4 + 1 \times 6) + (4 \times 4 + 3 \times 6) + (3 \times 4 + 9 \times 6) + (10 \times 4 + 3 \times 6) + (9 \times 4 + 2 \times 6) + (2 \times 4 + 5 \times 6) = 278$$

——— Table 3 hoàn toàn chính xác.

2 Thuật toán xây dựng UTLDic

Algorithm 1 Construct UTLDic Algorithm

Require: the database D, the sensitive high-utility itemsets S, the non-sensitive high-utility itemsets NS **Ensure:** the utility-list dictionary UTLDic

```
1: SItem = \{\}
 2: for each S_i \in S do
 3:
       SItem = SItem \cup S_i
 4: end for
 5: SItem = set(SItem)
 6: UTLDic = \phi
 7: for each item \in SItem do
       create a new node UTList
 8:
 9:
       UTList.item\_name = item, UTList.sum\_utility = 0
       UTList.ULElems = \phi, UTList.SINS = 0
10:
11:
       calculate SINS(item) according to Definition 14
       UTLDic[item] = UTList
12:
13: end for
14: for each T_i \in DB do
       calculate tns(T_i) using Eq. c
15:
       get sensitive items SI of T_i
16:
       for each item \in SI do
17:
           create a new ULElem node ULE
18:
           ULE.TID = the TID of T_i, ULE.utility = q(item, T_i) \times p(item)
19:
           ULE.tns = tns(T_i)
20:
           UTLDic[item].ULElems.append(ULE)
21:
           UTLDic[item].sum\_utility+=ULE.utility
22:
       end for
23:
24: end for
25: return UTLDic
```


Figure 4: An example of the UTlists

Tiến hành Step-by-Step Algorithm 1 để kiểm tra đô chính xác của Figure 4

```
• HUIs = \{ACDE, ACD, BE, BDE, BCDE, BCE, BD, BCD, BC, CDE, CE, CD\} (Theo Table 3)
• S = \{ACD, BC\} (Theo trang 6 của paper)
• NS = HUIs - S = \{ACDE, BE, BDE, BCDE, BCE, BD, BCD, CDE, CE, CD\}
• SItem = \{\} (Bắt đầu thuật toán)
• S_i = ACD \in S (Bắt đầu for ở dòng 2)
• SItem = SItem \cup S_i = \{\} \cup ACD = \{ACD\}
• S_i = BC \in S (Lặp lại for ở dòng 2)
• SItem = SItem \cup S_i = \{ACD\} \cup BC = \{ABCD\} (Kết thúc for ở dòng 2)
• SItem = set(\{ABCD\}) = \{A, B, C, D\}
• UTLDic = \phi
• item = A \in SItem (Bắt đầu for ở dòng 7)
• UTList = \{item\_name = A, sum\_utility = 0, ULElems = \phi, SINS = 0\}
• SINS(item) = SINS(A) = 1 (\{ACDE\} \in NS)
• UTLDic = \{A : \{item\_name = A, sum\_utility = 0, ULElems = \phi, SINS = 1\}\}
• item = B \in SItem (Lặp lại for ở dòng 7)
• UTList = \{item\_name = B, sum\_utility = 0, ULElems = \phi, SINS = 0\}
• SINS(item) = SINS(B) = 6 (\{BE, BDE, BCDE, BCE, BD, BCD\} \in NS)
• UTLDic = {
  A: \{item\_name = A, sum\_utility = 0, ULElems = \phi, SINS = 1\},
  B: \{item\_name = B, sum\_utility = 0, ULElems = \phi, SINS = 6\}
• item = C \in SItem (Lặp lại for ở dòng 7)
• UTList = \{item\_name = C, sum\_utility = 0, ULElems = \phi, SINS = 0\}
• SINS(item) = SINS(C) = 7 (\{ACDE, BCDE, BCE, BCD, CDE, CE, CD\} \in NS)
• UTLDic = {
  A: \{item\_name = A, sum\_utility = 0, ULElems = \phi, SINS = 1\},
  B: \{item\_name = B, sum\_utility = 0, ULElems = \phi, SINS = 6\},
  C: \{item\_name = C, sum\_utility = 0, ULElems = \phi, SINS = 7\}
• item = D \in SItem (Lăp lai for ở dòng 7)
• UTList = \{item\_name = D, sum\_utility = 0, ULElems = \phi, SINS = 0\}
• SINS(item) = SINS(D) = 7 (\{ACDE, BDE, BCDE, BD, BCD, CDE, CD\} \in NS)
• UTLDic = {
  A: \{item\_name = A, sum\_utility = 0, ULElems = \phi, SINS = 1\},
  B: \{item\_name = B, sum\_utility = 0, ULElems = \phi, SINS = 6\},
  C: \{item\_name = C, sum\_utility = 0, ULElems = \phi, SINS = 7\},
  D: \{item\_name = D, sum\_utility = 0, ULElems = \phi, SINS = 7\}
  } (Kết thúc for ở dòng 7)
```

• $T_i = T_1 \in DB$ (Bắt đầu for ở dòng 14)

- $SI = set(\{S_i \in S, S_i \subseteq T_1\}) = set(\{\}) = \{\}$
- $T_i = T_2 \in DB$ (Lặp lại for ở dòng 14)
- $SI = set(\{S_i \in S, S_i \subseteq T_2\}) = set(\{\}) = \{\}$
- $T_i = T_3 \in DB$ (Lặp lại for ở dòng 14)
- $SI = set(\{S_i \in S, S_i \subseteq T_3\}) = set(\{BC\}) = \{B, C\}$
- $item = B \in SI$ (Bắt đầu for ở dòng 17)
- $ULE = \{TID : T_3, tns : tns(T_3) = 0.1, utility : q(B, T_3) \times p(B) = 6 \times 11 = 66\}$
- $UTLDic[B] = \{item_name = B, sum_utility + = 66 = 66, ULElems = [\{T_3, 0.1, 66\}], SINS = 6\}$
- $item = C \in SI$ (Lặp lại for ở dòng 17)
- $ULE = \{TID : T_3, tns : tns(T_3) = 0.1, utility : q(C, T_3) \times p(C) = 4 \times 4 = 16\}$
- $UTLDic[C] = \{item_name = C, sum_utility + = 16 = 16, ULElems = [\{T_3, 0.1, 16\}], SINS = 7\}$ (Kết thúc for ở dòng 17)
- $T_i = T_4 \in DB$ (Lặp lại for ở dòng 14)
- $SI = set(\{S_i \in S, S_i \subseteq T_4\}) = set(\{BC\}) = \{B, C\}$
- $item = B \in SI$ (Bắt đầu for ở dòng 17)
- $ULE = \{TID : T_4, tns : tns(T_4) = 0.25, utility : q(B, T_4) \times p(B) = 5 \times 11 = 55\}$
- $UTLDic[B] = \{item_name = B, sum_utility + = 55 = 121, ULElems = [\{T_3, 0.1, 66\}, \{T_4, 0.25, 55\}], SINS = 6\}$
- $item = C \in SI$ (Lặp lại for ở dòng 17)
- $ULE = \{TID : T_4, tns : tns(T_4) = 0.25, utility : q(C, T_4) \times p(C) = 3 \times 4 = 12\}$
- $UTLDic[C] = \{item_name = C, sum_utility + = 12 = 28, ULElems = [\{T_3, 0.1, 16\}, \{T_4, 0.25, 12\}], SINS = 7\}$ (Kết thúc for ở dòng 17)
- $T_i = T_5 \in DB$ (Lặp lại for ở dòng 14)
- $SI = set(\{S_i \in S, S_i \subseteq T_5\}) = set(\{ACD\}) = \{A, C, D\}$
- $item = A \in SI$ (Bắt đầu for ở dòng 17)
- $ULE = \{TID : T_5, tns : tns(T_5) = 0.5, utility : q(A, T_5) \times p(A) = 3 \times 9 = 27\}$
- $UTLDic[A] = \{item_name = A, sum_utility + = 27 = 27, ULElems = [\{T_5, 0.5, 27\}], SINS = 1\}$
- $item = C \in SI$ (Lăp lai for ở dòng 17)
- $ULE = \{TID : T_5, tns : tns(T_5) = 0.5, utility : q(C, T_5) \times p(C) = 10 \times 4 = 40\}$
- $UTLDic[C] = \{item_name = C, sum_utility + = 40 = 68, ULElems = [\{T_3, 0.1, 16\}, \{T_4, 0.25, 12\}, \{T_5, 0.5, 40\}], SINS = 7\}$
- $item = D \in SI$ (Lặp lại for ở dòng 17)
- $ULE = \{TID : T_5, tns : tns(T_5) = 0.5, utility : q(D, T_5) \times p(D) = 3 \times 6 = 18\}$
- $UTLDic[D] = \{item_name = D, sum_utility + = 18 = 18, ULElems = [\{T_5, 0.5, 18\}], SINS = 7\}$ (Kết thúc for ở dòng 17)
- $T_i = T_6 \in DB$ (Lặp lại for ở dòng 14)
- $SI = set(\{S_i \in S, S_i \subseteq T_6\}) = set(\{\}) = \{\}$
- $T_i = T_7 \in DB$ (Lặp lại for ở dòng 14)
- $SI = set(\{S_i \in S, S_i \subseteq T_7\}) = set(\{ACD\}) = \{A, C, D\}$

- $item = A \in SI$ (Bắt đầu for ở dòng 17)
- $ULE = \{TID : T_7, tns : tns(T_7) = 0.2, utility : q(A, T_7) \times p(A) = 6 \times 9 = 54\}$
- $UTLDic[A] = \{item_name = A, sum_utility + = 54 = 81, ULElems = [\{T_5, 0.5, 27\}, \{T_7, 0.2, 54\}], SINS = 1\}$
- $item = C \in SI$ (Lăp lai for ở dòng 17)
- $ULE = \{TID : T_7, tns : tns(T_7) = 0.2, utility : q(C, T_7) \times p(C) = 9 \times 4 = 36\}$
- $UTLDic[C] = \{item_name = C, sum_utility + = 36 = 104, ULElems = [\{T_3, 0.1, 16\}, \{T_4, 0.25, 12\}, \{T_5, 0.5, 40\}, \{T_7, 0.2, 36\}], SINS = 7\}$
- $item = D \in SI$ (Lăp lai for ở dòng 17)
- $ULE = \{TID : T_7, tns : tns(T_7) = 0.2, utility : q(D, T_7) \times p(D) = 2 \times 6 = 12\}$
- $UTLDic[D] = \{item_name = D, sum_utility + = 12 = 30, ULElems = [\{T_5, 0.5, 18\}, \{T_7, 0.2, 12\}], SINS = 7\}$ (Kết thúc for ở dòng 17)
- $T_i = T_8 \in DB$ (Lăp lai for ở dòng 14)
- $SI = set(\{S_i \in S, S_i \subseteq T_8\}) = set(\{ACD, BC\}) = \{A, B, C, D\}$
- $item = A \in SI$ (Bắt đầu for ở dòng 17)
- $ULE = \{TID : T_8, tns : tns(T_8) = 0.09, utility : q(A, T_8) \times p(A) = 1 \times 9 = 9\}$
- $UTLDic[A] = \{item_name = A, sum_utility + = 9 = 90, ULElems = [\{T_5, 0.5, 27\}, \{T_7, 0.2, 54\}, \{T_8, 0.09, 9\}], SINS = 1\}$
- $item = B \in SI$ (Lặp lại for ở dòng 17)
- $ULE = \{TID : T_8, tns : tns(T_8) = 0.09, utility : q(B, T_8) \times p(B) = 6 \times 11 = 66\}$
- $UTLDic[B] = \{item_name = B, sum_utility + = 66 = 187, ULElems = [\{T_3, 0.1, 66\}, \{T_4, 0.25, 55\}, \{T_8, 0.09, 66\}], SINS = 6\}$
- $item = C \in SI$ (Lặp lại for ở dòng 17)
- $ULE = \{TID : T_8, tns : tns(T_8) = 0.09, utility : q(C, T_8) \times p(C) = 2 \times 4 = 8\}$
- $UTLDic[C] = \{item_name = C, sum_utility + = 8 = 112, ULElems = [\{T_3, 0.1, 16\}, \{T_4, 0.25, 12\}, \{T_5, 0.5, 40\}, \{T_7, 0.2, 36\}, \{T_8, 0.09, 8\}], SINS = 7\}$
- $item = D \in SI$ (Lăp lai for ở dòng 17)
- $ULE = \{TID : T_8, tns : tns(T_8) = 0.09, utility : q(D, T_8) \times p(D) = 5 \times 6 = 30\}$
- $UTLDic[D] = \{item_name = D, sum_utility + = 30 = 60, ULE lems = [\{T_5, 0.5, 18\}, \{T_7, 0.2, 12\}, \{T_8, 0.09, 30\}], SINS = 7\}$ (Kết thúc for ở dòng 17) (Kết thúc for ở dòng 14) (Kết thúc thuật toán)

```
 \begin{split} &UTLDic = \{\\ &A: \{item\_name = A, sum\_utility = 90, ULElems = [\{T_5, 0.5, 27\}, \{T_7, 0.2, 54\}, \{T_8, 0.09, 9\}], SINS = 1\},\\ &B: \{item\_name = B, sum\_utility = 187, ULElems = [\{T_3, 0.1, 66\}, \{T_4, 0.25, 55\}, \{T_8, 0.09, 66\}], SINS = 6\},\\ &C: \{item\_name = C, sum\_utility = 112,\\ &ULElems = [\{T_3, 0.1, 16\}, \{T_4, 0.25, 12\}, \{T_5, 0.5, 40\}, \{T_7, 0.2, 36\}, \{T_8, 0.09, 8\}], SINS = 7\},\\ &D: \{item\_name = D, sum\_utility = 60, ULElems = [\{T_5, 0.5, 18\}, \{T_7, 0.2, 12\}, \{T_8, 0.09, 30\}], SINS = 7\}\\ \} \end{split}
```

——— Figure 4 hoàn toàn chính xác.

3 Thuật toán ẩn itemset tiện ích cao nhạy cảm

Algorithm 2 Hide Sensitive High-utility Itemsets Algorithm

```
Require: UTLDic, min_util, the sensitive high-utility itemsets S, the database D
Ensure: the sanitized UTLDic
 1: sort S in descending order of u(S_i) (S_i \in S)
 2: for each S_i \in S do
        sort S_i in ascending order of SINS(item) (item \in S_i)
 3:
        calculate l = L(S_i) according to Definition 19
 4:
        targetUtil = u(S_i) - min\_util + 1
 5:
        while targetUtil > 0 do
 6:
            for each item \in S_i do
 7:
                UTlist = UTLDic[item].UTList
 8:
                sort ULElems of UTlist order by tns desc, utility asc
 9:
                for each elem \in UTlist and elem \in l and targetUtil > 0 do
10:
                    if elem.utility \leq targetUtil then
11:
                        targetUtil -= elem.utility
12:
                        elem.utility = 0
13:
                    else
14:
                        count = q(item, elem.TID) - \lceil \frac{targetUtil}{p(item)} \rceil
15:
                        elem.utility = count \times p(item)
16:
                        targetUtil = 0
17:
                    end if
18:
                    update UTLDic[item].sum_utility
19:
                end for
20:
21:
            end for
22:
        end while
23: end for
```


Figure 6: An example of the sanitized UTLDic

Tiến hành Step-by-Step Algorithm 2 để kiểm tra độ chính xác của Figure 6

- $min_util = \delta = 200$ (Theo trang 9 của paper)
- $S = \{ACD, BC\}$ (Sau khi sort giảm dần theo $u(S_i)$ ($S_i \in S$)) (Bắt đầu thuật toán)
- $S_i = ACD \in S$ (Bắt đầu for ở dòng 2)
- $S_i = ACD$ (Sau khi sort tăng dần theo SINS(item) ($item \in S_i$))
- $l = L(S_i) = L(ACD) = UTList_1 \cap UTList_3 \cap UTList_4 = \{5, 7, 8\}$
- $targetUtil = u(S_i) min_util + 1 = u(ACD) \delta + 1 = 234 200 + 1 = 35$
- targetUtil = 35 > 0 (Bắt đầu while ở dòng 6)
- $item = A \in S_i$ (Bắt đầu for ở dòng 7)
- $UTLDic[A] = \{item_name = A, sum_utility = 90, ULElems = [\{T_5, 0.5, 27\}, \{T_7, 0.2, 54\}, \{T_8, 0.09, 9\}], SINS = 1\}$ (Sau khi sort ULElems giảm dần theo tns, tăng dần theo utility)
- $elem = \{T_5, 0.5, 27\}$ (Bắt đầu for ở dòng 10)
- elem.utility $\leq targetUtil$ (27 \leq 35)
- targetUtil -= elem.utility = 8, elem.utility = 0
- $UTLDic[A] = \{item_name = A, sum_utility = 63, ULElems = [\{T_5, 0.5, 0\}, \{T_7, 0.2, 54\}, \{T_8, 0.09, 9\}], SINS = 1\}$ (cập nhật UTLDic[A])
- $elem = \{T_7, 0.2, 54\}$ (Lặp lại for ở dòng 10)
- elem.utility $\leq targetUtil$ (54 ≤ 8)
- $count = q(A, T_7) \lceil \frac{targetUtil}{p(A)} \rceil = 6 \lceil \frac{8}{9} \rceil = 5$
- $elem.utility = count \times p(A) = 5 \times 9 = 45, targetUtil = 0$
- $UTLDic[A] = \{item_name = A, sum_utility = 54, ULElems = [\{T_5, 0.5, 0\}, \{T_7, 0.2, 45\}, \{T_8, 0.09, 9\}], SINS = 1\}$ (cập nhật UTLDic[A]) (Kết thúc for ở dòng 10 do targetUtil = 0)
- $item = C \in S_i$ (Lăp lai for ở dòng 7)
- $UTLDic[C] = \{item_name = C, sum_utility = 112, ULElems = [\{T_5, 0.5, 40\}, \{T_4, 0.25, 12\}, \{T_7, 0.2, 36\}, \{T_3, 0.1, 16\}, \{T_8, 0.09, 8\}], SINS = 7\}$ (Sau khi sort ULElems giảm dần theo tns, tăng dần theo utility)
- $item = D \in S_i$ (Lặp lại for ở dòng 7)
- $UTLDic[D] = \{item_name = D, sum_utility = 60, \\ ULElems = [\{T_5, 0.5, 18\}, \{T_7, 0.2, 12\}, \{T_8, 0.09, 30\}], SINS = 7\}$ (Sau khi sort ULElems giảm dần theo tns, tăng dần theo utility) (Kết thúc for ở dòng 7) (Kết thúc while ở dòng 6)
- $S_i = BC \in S$ (Lặp lại for ở dòng 2)
- $S_i = BC$ (Sau khi sort tăng dần theo SINS(item) ($item \in S_i$))
- $l = L(S_i) = L(BC) = UTList_2 \cap UTList_3 = \{3, 4, 8\}$
- $targetUtil = u(S_i) min_util + 1 = u(BC) \delta + 1 = 223 200 + 1 = 24$
- targetUtil = 24 > 0 (Bắt đầu while ở dòng 6)
- $item = B \in S_i$ (Bắt đầu for ở dòng 7)
- $UTLDic[B] = \{item_name = B, sum_utility = 187, \\ ULElems = [\{T_4, 0.25, 55\}, \{T_3, 0.1, 66\}, \{T_8, 0.09, 66\}], SINS = 6\}$ (Sau khi sort ULElems giảm dần theo tns, tăng dần theo utility)

```
• elem = \{T_4, 0.25, 55\} (Bắt đầu for ở dòng 10)
• elem.utility \leq targetUtil (55 \leq 24)
• count = q(B, T_4) - \lceil \frac{targetUtil}{p(B)} \rceil = 5 - \lceil \frac{24}{11} \rceil = 2
• elem.utility = count \times p(B) = 2 \times 11 = 22, targetUtil = 0
• UTLDic[B] = \{item\_name = B, sum\_utility = 154,
  ULElems = [\{T_4, 0.25, 22\}, \{T_3, 0.1, 66\}, \{T_8, 0.09, 66\}], SINS = 6\}
  (câp nhât UTLDic[B]) (Kết thúc for ở dòng 10 do targetUtil = 0)
• item = C \in S_i (Lặp lại for ở dòng 7)
• UTLDic[C] = \{item\_name = C, sum\_utility = 112,
  ULElems = [\{T_5, 0.5, 40\}, \{T_4, 0.25, 12\}, \{T_7, 0.2, 36\}, \{T_3, 0.1, 16\}, \{T_8, 0.09, 8\}], SINS = 7\}
  (Sau khi sort ULElems giảm dần theo tns, tăng dần theo utility)
  (Kết thúc for ở dòng 7) (Kết thúc while ở dòng 6) (Kết thúc for ở dòng 2) (Kết thúc thuật toán)
sanitized\_UTLDic = \{
A: \{item\_name = A, sum\_utility = 54, ULElems = [\{T_5, 0.5, 0\}, \{T_7, 0.2, 45\}, \{T_8, 0.09, 9\}], SINS = 1\},
B: \{item\_name = B, sum\_utility = 154, ULE lems = [\{T_4, 0.25, 22\}, \{T_3, 0.1, 66\}, \{T_8, 0.09, 66\}], SINS = 6\},
C: \{item\_name = C, sum\_utility = 112,
ULElems = [\{T_5, 0.5, 40\}, \{T_4, 0.25, 12\}, \{T_7, 0.2, 36\}, \{T_3, 0.1, 16\}, \{T_8, 0.09, 8\}], SINS = 7\},
```

 $D: \{item_name = D, sum_utility = 60, ULElems = [\{T_5, 0.5, 18\}, \{T_7, 0.2, 12\}, \{T_8, 0.09, 30\}], SINS = 7\}$

}