GSMDC3908Z

30V N-Channel MOSFETs

Product Description

These N-Channel enhancement mode power field effect transistors are using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode.

These devices are well suited for high efficiency fast switching applications.

Features

- 30V, 48A, $R_{DS(ON)}=7.8m\Omega@V_{GS}=10V$
- Improved dv/dt capability
- Fast switching
- 100% EAS guaranteed
- Green Device Available
- DFN3X3-8L package design

Applications

- MB / VGA / Vcore
- POL Applications
- SMPS 2nd SR

Packages & Pin Assignments

Ordering Information

Part Number	Package	Quantity
GSMDC3908ZFF	DFN3X3-8L	5000PCS

Marking Information

Absolute Maximum Ratings T_C=25°C Unless otherwise noted

Symbol	Parameter		Typical	Unit
V_{DS}	Drain-Source Voltage		30	V
V _{GS}	Gate –Source Voltage		±20	V
.	Continuous Drain Current	Tc=25°C	48	A
lσ		Tc=100°C	30	
I _{DM}	Pulsed Drain Current ¹		192	Α
EAS	Single Pulse Avalanche Energy ²		45	mJ
IAS	Single Pulse Avalanche Current ²		30	A
	Power Dissipation ($T_C=25^{\circ}C$)		35	W
P _D	Power Dissipation (Derate above 25°C)		0.28	W /℃
TJ	Operating Junction Temperature Range		-55 to +150	$^{\circ}\mathbb{C}$
T _{STG}	Storage Temperature Range		-55 to +150	${\mathbb C}$
$R_{\theta JA}$	Thermal Resistance-Junction to Ambient		62	°C/W
$R_{ heta JC}$	Thermal Resistance-Junction to Case		3.6	°C/W

Electrical Characteristics

T_J=25°C Unless otherwise noted

Symbol	Parameter	Conditions	Min	Тур	Max	Uni	
		Static					
$V_{(BR)DSS}$	Drain-Source Breakdown Voltage	V _{GS} =0V,I _D =250uA	30			V	
∆BV _{DSS} /∆T _J	BV _{DSS} Temperature Coefficient	Reference to 25°ℂ, I _D =1mA		0.04		V/°C	
$V_{\text{GS(th)}}$	Gate Threshold Voltage		1.2	1.6	2.5	V	
$\triangle V_{\text{GS(th)}}$	V _{GS(th)} Temperature Coefficient	V _{DS} =V _{GS} ,I _D =250uA		-4		mV ℃	
I _{GSS}	Gate-Source Leakage Current	V _{DS} =0V,V _{GS} =±20V			±100	nA	
		V _{DS} =30V,V _{GS} =0V			1	uA	
I _{DSS}	Drain-Source Leakage Current	V _{DS} =24V,V _{GS} =0V, T _J =125°C			10		
Is	Continuous Source Current	V _G =V _D =0V,			48	A	
Ism	Pulsed Source Current	Force Current			192		
R _{DS(on)}	Drain-Source On-Resistance	V _{GS} =10V,I _D =16A		6.5	7.8	i	
		V _{GS} =4.5V,I _D =8A		9.2	12	mΩ	
g FS	Forward Transconductance	V _{DS} =10V,I _D =8A		9.5		S	
$V_{ extsf{SD}}$	Diode Forward Voltage	V _{GS} =0V,I _S =1A			1	V	
EAS	Single Pulse Avalanche Energy	V _{DD} =25V,L=0.1mH, IAS=15A	V _{DD} =25V,L=0.1mH,			m	
t _{rr}	Reverse Recovery Time	Vgs=0V,ls=1A,		8.1		ns	
Q _{rr}	Reverse Recovery Charge	di/dt=100A/μs, T _J =25°C		1.6		nC	
		Dynamic					
Q_g	Total Gate Charge ^{3,4}			7.5	12		
Q_{gs}	Gate-Source Charge ^{3,4}	V _{DS} =15V,V _{GS} =4.5V, I _D =20A		1.3	2.6	nC	
Q_{gd}	Gate-Drain Charge ^{3,4}	10-2071		4.5	8		
Ciss	Input Capacitance			850	1700		
Coss	Output Capacitance	V _{DS} =25V,V _{GS} =0V, f=1MHz		133	260	pF	
Crss	Reverse Transfer Capacitance	1-1101112		78	160		
t _{d(on)}				4.8	9	ns	
tr	Turn-On Time ^{3,4}	V _{DD} =15V,I _D =15A,		12.5	24		
t _{d(off)}	Turn-Off Time ^{3,4}	$V_{GS}=10V,R_{G}=3.3\Omega$		27.6	52		
t f	Turn-Oil Time ^{s,-}			8.2	16		
R_g	Gate Resistance	V _{GS} =0V,V _{DS} =0V, f=1MHz		2.7	5.4	Ω	

Note

- ${\bf 1.}\ Repetitive\ Rating: Pulsed\ width\ limited\ by\ maximum\ junction\ temperature.$
- 2. V_{DD} =25V, V_{GS} =10V,L=0.1mH,IAS=30A., R_{G} =25 Ω ,Starting T_{J} =25 $^{\circ}$ C.
- 3. The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%.
- 4. Essentially independent of operating temperature.

Typical Performance Characteristics

Fig.1 Continuous Drain Current vs. Tc

Fig.3 Normalized V_{th} vs. T_J

Fig.5 Normalized Transient Impedance

Fig.2 Normalized RDSON vs. T,

Fig.4 Gate Charge Waveform

Fig.6 Maximum Safe Operation Area

Typical Performance Characteristics (Continue)

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching Test Circuit & Waveforms

Package Dimension

	Dimensions				
Cymphol	Millin	neters	Inches		
Symbol	Min	Max	Min	Max	
Α	0.700	0.800	0.028	0.031	
b	0.250	0.350	0.010	0.013	
С	0.100	0.250	0.004	0.009	
D	3.250	3.450	0.128	0.135	
D1	3.000	3.200	0.119	0.125	
D2	1.780	1.980	0.070	0.077	
D3	0.130 (REF)		0.005 (REF)		
E	3.200	3.400	0.126	0.133	
E1	3.000	3.200	0.119	0.125	
E2	2.390	2.590	0.094	0.102	
е	0.650	(BSC)	0.026 (BSC)		
Н	0.300	0.500	0.011	0.019	
L	0.300	0.500	0.011	0.019	
L1	0.130 (REF)		0.005 (REF)		
θ	0 °	12 °	0 °	12°	
М	0.150	(REF)	0.006	(REF)	

NOTICE

Information furnished is believed to be accurate and reliable. However Globaltech Semiconductor assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Globaltech Semiconductor. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information without express written approval of Globaltech Semiconductor.

CONTACT US

	GS Headquarter		
	4F.,No.43-1,Lane11,Sec.6,Minquan E.Rd Neihu District Taipei City 114, Taiwan (R.O.C)		
Ç.	886-2-2657-9980		
	886-2-2657-3630		
<u> </u>	sales_twn@gs-power.com		

	RD Division
	824 Bolton Drive Milpitas. CA. 95035
Fo	1-408-457-0587

