Subject: Engineering Mathematics Chapter: Differential Equation

Topic: Solution of higher order linear DE

- The solution of the differential equation $(x y^2)$ dx + 2xydy = 0 is
 - (a) $ye^{2/x} = A$
- (b) $xe^{y^2/x} = A$
- (c)
- $xe^{x/y^2} = A$ (d) $ve^{x/y^2} = A$
- The solution of the differential equation $2x\frac{dy}{dx} = 2 - y$ is
 - (a) $y = 2 \sqrt{\frac{c}{x}}$ (b) $y = 2 + \sqrt{\frac{c}{x}}$
 - (c) $y = 2 c\sqrt{x}$ (d) $y = 2 + c\sqrt{x}$
- The general solution of the differential equation $\frac{dy}{dx} = \frac{y}{x} + \tan \frac{y}{x}$
 - (a) $\cos \frac{y}{x} = c$ (b) $\sin \frac{y}{x} = c$
 - (c) $\sin \frac{y}{x} = cx$ (d) $\cos \frac{y}{x} = cx$
- The DE $xdy ydx + 2x^3 dx = 0$ has the solution
 - $y + x^3 = c_1 x$
 - (b) $-y + x^3 = c_2 x$
 - $v^3 x^3 = c_4 x$ (c)
 - $y-x^3=c_3x$ (d)
- Solution of the *DE* $(2D+1)^2$ $y=4e^{-\frac{x}{2}}$ is
 - $y = (c_1 + c_2 x)e^{-\frac{x}{2}}$
 - (b) $y = \left(c_1 + c_2 x + \frac{1}{2}x^2\right)e^{-\frac{x}{2}}$
 - $y = \left(c_1 + c_2 x + \frac{1}{4}x^2\right)e^{-\frac{x}{2}}$
 - None of these (d)

The solution of the differential equation

$$(D^2 + 1)^2 y = 0$$
, $D = \frac{d}{dx}$, is

- $(A_1 + A_2x)\cos x + (A_3 + A_4x)\sin x$ (a)
- $e^{x}(A\cos x + B\sin x)$ (b)
- $(A_1 + A_2) \cos x + (A_3 + A_4) \sin x$ (c)
- $A\cos x + B\sin x$ (d)
- The solution of the differential equation

$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = e^{3x}$$
 is given by

(a)
$$y = c_1 e^x + c_2 e^{2x} + \frac{1}{2} e^{3x}$$

(b)
$$y = c_1 e^{-x} + c_2 e^{-2x} + \frac{1}{2} e^{3x}$$

(c)
$$y = c_1 e^{-x} + c_2 e^{2x} + \frac{1}{2} e^{3x}$$

(d)
$$y = c_1 e^x + \frac{1}{2} e^{-3x}$$

The particular integral of the differential equation

$$(D^3 - D)y = e^x + e^{-x}, D = \frac{d}{dx}$$
 is

(a)
$$\frac{1}{2} \left(e^x + e^{-x} \right)$$

(b)
$$\frac{1}{2}x(e^x + e^{-x})$$

(c)
$$\frac{1}{2}x^2(e^x + e^{-x})$$

(d)
$$\frac{1}{2}x^2\left(e^x-e^{-x}\right)$$

9. The particular integral for the differential equation

$$\frac{d^3y}{dx^3} - \frac{d^2y}{dx^2} - 6\frac{dy}{dx} = 1 + x^2$$
 is given by

(a)
$$\frac{1}{9}x^3 + \frac{1}{4}x^2 = \frac{25}{12}x$$

(b)
$$-\frac{x^3}{18} + \frac{x^2}{36} - \frac{25}{108}x$$

(c)
$$x^3 - \frac{1}{2}x^2 - \frac{25}{9}x$$

(d)
$$\frac{1}{3}x^2 + \frac{1}{12}x^2 - \frac{25}{36}x$$

10. The solution of the differential equation

$$xdy - ydx = \sqrt{x^2 + y^2} dx$$
 is given by

(a)
$$y = \frac{c_1}{x} + \sqrt{x^2 - y^2}$$

(b)
$$y = c_2 x^2 - \sqrt{x^2 + y^2}$$

(c)
$$y = \frac{c_3}{x^2} + \frac{1}{\sqrt{x^2 + y^2}}$$

(d)
$$y = \frac{c_4}{x} - \frac{1}{\sqrt{x^2 - y^2}}$$

Answer Key

1. (b)

2. (a)

3. (c)

4. (a)

5. (b)

6. (a)

7. (a)

8. (b)

9. (b)

10. (b)

Any issue with DPP, please report by clicking here: $\frac{https://forms.gle/t2SzQVvQcs638c4r5}{https://smart.link/sdfez8ejd80if}$ For more questions, kindly visit the library section: Link for web: $\frac{https://smart.link/sdfez8ejd80if}{https://smart.link/sdfez8ejd80if}$

PW Mobile APP: https://smart.link/7wwosivoicgd4