

Das c-mix Verfahren

Prof. Dr. Hannes Federrath

UHU <u>#</u>

Agenda

- 1. Motivation
 - Chaumsche Mixe
 - Probleme
 - Idee
- 2. c-mix Verfahren
 - Übersicht
 - Precomputation Phase
 - Realtime Phase
- 3. Analyse
 - Sicherheit
 - Performance
- 4. Andwendung
 - Privategrety
 - Kritik

Probleme bisheriger Mix Verfahren

- Zweck
 - Nur mit berechtigten Partnern weiter kommunizieren
 - Verhindert unbefugte Inanspruchnahme von Betriebsmitteln

Idee von David Chaum

- Zweck
 - Nur mit berechtigten Partnern weiter kommunizieren
 - Verhindert unbefugte Inanspruchnahme von Betriebsmitteln

Kommunkationsübersicht

- Zweck
 - Nur mit berechtigten Partnern weiter kommunizieren
 - Verhindert unbefugte Inanspruchnahme von Betriebsmitteln

Übersicht der zwei Phasen

- Zweck
 - Nur mit berechtigten Partnern weiter kommunizieren
 - Verhindert unbefugte Inanspruchnahme von Betriebsmitteln

Vorbereitung

- Zweck
 - Nur mit berechtigten Partnern weiter kommunizieren
 - Verhindert unbefugte Inanspruchnahme von Betriebsmitteln

Precomputation - Step 1

- Pre Processing
- Knoten N_1 , ... N_n erzeugen einen zufälligen Vektor r_i
 - Vektor enthält einen zufälligen Wert für jeden Nachrichtenslot
- Verschlüsselung mittes ElGamal $\rightarrow E(r_i^{-1})$, Resultat wird an den Network Handler gesendet
 - Diese Verschlüsselung muss dann in der Echzeitphase nicht mehr durchgeführt werden
- NH berechnet Produkt aus allen $E(r_n) \to E(R_n^{-1})$

Precomputation - Step 2

- Mixing
 - Jeder Knoten erzeugt einen weiteren zufälligen Vektor si
 - 2. $E(R_n^{-1})$ wird von jedem Knoten nacheinander mit der jeweils festgelegten Permutation permutiert (Mixing) und gleichzeit der erzeugte s_i^{-1} hineinmultipliziert
 - 3. Der letzte Knoten erzeugt damit $E(P_n(R_n^{-1}) \times S_n^{-1})$

Precomputation - Step 3

- Post Processing
 - 1. Jeder Knoten berechnet nun aus $E(P_n(R_n^{-1}) \times S_n^{-1})$ seinen Entschlüsselungsanteil D(i,r) für den zufälligen Vektor r_i aus Schritt 1.
 - Das jeder Knoten einen eigenen Entschlüsselungsanteil berechnen kann, liegt an der ElGamal Verschlüsselung, die diese Möglichkeit bietet.

Precomputation - Return Path

- Step 1
 - 1. Nodes erzeugen zufällige Vektoren $E(s_i^{\prime -1})$ (ElGamal verschlüsselt).
 - 2. Permutation rückwärts, der letzte Knoten beginnt, gleichzeitig werden s'^{-1} dazumultipliziert
 - 3. Der erste Knoten erhält $E(S_1^{-1})$
- Step 2
 - 1. Wie vorher werden wieder Entschüsselungsanteile für $E(S_1^{\prime -1})$ von allen Knoten berechnet

Echzeit Phase - Step 1

- Preprocessing
 - 1. Ein User verschüsselt seine Nachricht M mit seinem Schüssel $M \times ka_i^{-1}$ und sendet diese an den NH, dieser erhält also $M \times Ka^{-1}$
 - 2. Nun sendet jeder Knoten N_i seinen Wert $ka_i \times r_i$ an den NH.
 - 3. Der NH kann damit die Ka^{-1} mit den zufälligen Vektoren r_i der Knoten austauschen
 - 4. $M \times Ka^{-1} \times \sum_{i=1}^{n} ka_i \times r_i = M \times R_n$

Echzeit Phase - Step 2

- Mixing
 - Jeder Knoten permutiert nacheinander $M \times R_n$ und multipliziert den zufälligen Vektor S_i mit ein
 - Der letzte Knoten erhält damit $P_n(M \times R_n) \times S_n$

Echzeit Phase - Step 3

- Entschlüsselungsanteil
 - Die Knoten N_1 bis N_i senden ihren Entschlüsselungsanteil D(i,x) an den NH
 - Entschlüsselung
 - Der NH Entschlüsselt $E(P_n(R_n^{-1}) \times S_n^{-1})$ mittels D(n,x)
 - $P_n(M \times R_n) \times S_n \times P_n(R_n^{-1}) \times S_n^{-1} = P_n(M)$

Anonymität

- Zweck
 - Nur mit berechtigten Partnern weiter kommunizieren
 - Verhindert unbefugte Inanspruchnahme von Betriebsmitteln

Integrität

- Zweck
 - Nur mit berechtigten Partnern weiter kommunizieren
 - Verhindert unbefugte Inanspruchnahme von Betriebsmitteln

Vertraulichkeit

- Zweck
 - Nur mit berechtigten Partnern weiter kommunizieren
 - Verhindert unbefugte Inanspruchnahme von Betriebsmitteln

Protoyp

- Zweck
 - Nur mit berechtigten Partnern weiter kommunizieren
 - Verhindert unbefugte Inanspruchnahme von Betriebsmitteln

Einbettung in PrivaTegrity

- Zweck
 - Nur mit berechtigten Partnern weiter kommunizieren
 - Verhindert unbefugte Inanspruchnahme von Betriebsmitteln

Backdoor

- Zweck
 - Nur mit berechtigten Partnern weiter kommunizieren
 - Verhindert unbefugte Inanspruchnahme von Betriebsmitteln

Der Arbeitsbereich Sicherheit in Verteilten Systemen (SVS)

Lorem ipsum dolor

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

- Themen
 - Privacy Enhancing Technologies (PET)
 - 2. Security Management & Risk Management
 - 3. Security of Mobile Systems
- Weitere Informationen
 - http://www.informatik.uni-hamburg.de/svs

Beispiel für eine Abbildung

- Zweck
 - Nur mit berechtigten Partnern weiter kommunizieren
 - Verhindert unbefugte Inanspruchnahme von Betriebsmitteln

Beispiel für eine Abbildung

- Zweck
 - Nur mit berechtigten Partnern weiter kommunizieren
 - Verhindert unbefugte Inanspruchnahme von Betriebsmitteln

Dienstanbieter

Beispiel für eine Abbildung

Zweck

 Einem Kunden K einen Inhalt I in einer bestimmten Weise zugänglich machen, ihn aber daran hindern, alles damit tun zu können.

