Numărul legitimației de bancă

Numele

Prenumele tatălui

Prenumele

CHESTIONAR DE CONCURS

DISCIPLINA: Algebră și Elemente de Analiză Matematică M1A

VARIANTA **E**

1. Să se calculeze integrala $I = \int_0^1 (x^3 + 2x) dx$. (5 pct.)

a)
$$I = \frac{3}{2}$$
; b) $I = \frac{5}{2}$; c) $I = \frac{7}{2}$; d) $I = \frac{1}{2}$; e) $I = \frac{1}{4}$; f) $I = \frac{5}{4}$.

- 2. Fie polinomul $P = 2X^3 + 4X^2 5X + a$. Să se determine a astfel încât polinomul P să fie divizibil cu X-1. (5 pct.)
 - a) a = -2; b) a = 3; c) a = 0; d) a = -1; e) a = 2; f) a = -3.
- 3. Fie matricea $A = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix}$. Atunci A^2 este: (5 pct.)

a)
$$\begin{pmatrix} 1 & 2 \\ 10 & 31 \end{pmatrix}$$
; b) $\begin{pmatrix} 5 & 10 \\ 15 & 25 \end{pmatrix}$; c) $\begin{pmatrix} 6 & 5 \\ 4 & 3 \end{pmatrix}$; d) $\begin{pmatrix} 7 & 12 \\ 18 & 31 \end{pmatrix}$; e) $\begin{pmatrix} 8 & 10 \\ 18 & 4 \end{pmatrix}$; f) $\begin{pmatrix} 7 & 10 \\ 12 & 15 \end{pmatrix}$.

4. Multimea soluțiilor reale ale ecuației $2\sqrt[3]{2x-1} = x^3 + 1$ este: (5 pct.)

a)
$$\left\{1, \frac{-1 \pm \sqrt[3]{3}}{2}\right\}$$
; b) $\left\{1, \frac{-1 \pm \sqrt[3]{5}}{2}\right\}$; c) $\left\{1, \frac{1 \pm \sqrt{3}}{2}\right\}$; d) $\left\{1, \frac{-2 \pm \sqrt{5}}{2}\right\}$; e) $\left\{1, \frac{-2 \pm \sqrt{7}}{3}\right\}$; f) $\left\{1, \frac{-1 \pm \sqrt{5}}{2}\right\}$.

5. Fie f un polinom de gradul 2014 cu rădăcinile -1, -2, -3, ..., -2014. Pentru $x \in (-2, \infty)$, se consideră ecuația: $\int_{x+1}^{x+2} \frac{f'(t)}{f(t)} dt = \ln(x+2016) - x^2$. Dacă n este numărul soluțiilor negative și m este numărul soluțiilor pozitive ale ecuației date, atunci: (5 pct.)

a)
$$n = 0, m = 1$$
; b) $n + m = 3$; c) $n = 0, m = 2$; d) $2n + m = 4$; e) $n = 1, m = 1$; f) $n = 1, m = 0$.

6. Fie funcția $f:(0,\infty)\to\mathbb{R}$, $f(x)=x\ln x$.

Dacă $M = \{x_0 \in (0, \infty) | \text{dreapta tangentă la graficul lui } f \text{ în punctul de abscisă } x_0 \text{ trece prin A (2,1)} \}$ și

$$S = \sum_{x_0 \in M} x_0$$
, atunci: (5 pct.)

a)
$$S \in \left[1, \frac{3}{2}\right]$$
; b) $S \in (2,3)$; c) $S \in (5,6)$; d) $S \in (3,4)$; e) $S \in (4,5)$; f) $S \in \left(\frac{3}{2}, 2\right)$.

- 7. Suma soluțiilor ecuației $\begin{vmatrix} 2 & x^2 \\ -1 & -8 \end{vmatrix} = 0$ este: (5 pct.)
 - a) $1+\sqrt{2}$; b) 2014; c) -2; d) 0; e) 5; f) $\sqrt{2}$.
- 8. Fie progresia aritmetică 1,4,7,10,.... Să se calculeze al 2014-lea termen al progresiei. (5 pct.)
 - a) 6041; b) 5012; c) 6040; d) 5420; e) 1258; f) 6039.
- 9. Să se calculeze termenul care nu-l conține pe x din dezvoltarea $\left(x + \frac{1}{x}\right)^{10}$. (5 pct.)
 - a) $2C_{10}^{8}$; b) C_{10}^{1} ; c) C_{10}^{2} ; d) C_{10}^{5} ; e) C_{10}^{3} ; f) 3.
- 10. Să se calculeze produsul P al soluțiilor ecuației $3x^2 2x 1 = 0$. (5 pct.)
 - a) P = 2; b) P = -1; c) $P = \frac{1}{2}$; d) P = 3; e) P = 1; f) $P = -\frac{1}{3}$.
- 11. Fie funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = 4x + 3. Să se determine mulțimea $A = \{x \in \mathbb{R} \mid f(x) > 1\}$. (5 pct.)
 - a) $A = \{-2\}$; b) $A = (-\infty, 0)$; c) $A = [-1, \infty)$; d) $A = \mathbb{R}$; e) $A = \emptyset$; f) $A = \left(-\frac{1}{2}, \infty\right)$.
- 12. Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + e^x$. Atunci: (5 pct.)
 - a) $f'(1) = e^2$; b) f'(1) = 0; c) f'(1) = 2; d) f'(1) = e; e) f'(1) = 3e; f) f'(1) = 2 + e.
- 13. Fie $f:(0,\infty)\to\mathbb{R}$, $f(x)=\ln x-x$. Abscisa punctului de extrem al funcției f este: (5 pct.)
 - a) $x = \frac{1}{e}$; b) x = e; c) $x = \frac{1}{2}$; d) $x = \frac{1}{e^2}$; e) x = 1; f) $x = e^2$.
- 14. Mulțimea soluțiilor ecuației $\sqrt{3x+1} = x+1$ este: (5 pct.)
 - a) $\{-1,1\}$; b) $\{1,3\}$; c) $\{\sqrt{2},2\}$; d) $\{-1,3\}$; e) $\{0,1\}$; f) \emptyset .
- 15. Modulul numărului complex $z = \frac{1-i}{1+i}$ este: (5 pct.)
 - a) 3; b) 1; c) $\sqrt{2}$; d) 2; e) $\sqrt{3}$; f) $\sqrt{5}$.
- 16. Multimea soluțiilor ecuației $3^{x^2+x+2} = 9$ este: (5 pct.)
 - a) $\{0,4\}$; b) $\{-1,1\}$; c) \emptyset ; d) $\{-1,0\}$; e) $\{1,3\}$; f) $\{-2,2\}$.
- 17. Soluția ecuației $\log_2(x^2+1)-\log_2 x=1$ este: (5 pct.)
 - a) x = 4; b) x = 0; c) x = 2; d) x = 1; e) $x = \sqrt{2}$; f) x = 3.
- **18.** Fie $S = 2C_{2014}^1 C_{2014}^{2013}$. Atunci: (5 pct.)
 - a) S = 2014; b) S = 2012; c) S = 2010; d) S = 1012; e) S = 2013; f) S = 2020.