OR Pset 1 26 January 2021 Sets N Set of all nutrients F set of all foods 1 Stigler's Diet Problem Parameters aij amount of nutrient j per \$ for food 1, tjEN, i & F b; recommended intake of nutrient j, t j EN Decision Variables Xi spend on food i tiEF, XiER (since no information is available on the nature Objective function of the food items) $f(x_1...x_n) = x_1 + x_2 + ... + x_n$ Constraints $\geq a_{ij} z_{i} \geq b_{j}, \forall j \in N$ $i \in F$ Ki 20 tiEF The Complete Problem $min(x_1+x_2+...+x_n)$ $\chi_1 \dots \chi_n$ Zayxi ≥ 6j, \JEN i=0 1; 20 # i EF The Solution Ascorbic Acid Spend Calcium Iron Thiamine Riboflavin Niacin Vit A Calories Protein 0 0.0295 15.1 23.5 26000 0.6

5 2200 333 0.2 139 169200 6.4 50.8 316 525 0.0019 6 2400 138 3.7 80 69000 4.3 5.8 37 862 0 7 2600 125 4 36 7200 9 4.5 26 5369 0.0112 8 5800 166 3.8 59 16600 4.7 5.9 21 1184 0 9 14300 336 1.8 118 6700 29.4 7.1 198 2522 0 10 1100 106 0 138 918400 5.7 13.8 33 2755 0.0050 11 9600 138 2.7 54 290700 8.4 5.4 83 1912 0 12 8500 87 1.7 173 86800 1.2 4.3 55 57 0 13 12800 99 2.5 154 85700 3.9 4.3 65 257 0 14 17400 1055 3.7 459 5100 26.9 38.2 93 0 0 15 26900 1691 11.4 792 0 38.4 24.6 217 0 0.0610 Rec Intake 3000 70 0.8 12 5000 1.8 2.7 18 75 0.1087 TOTAL COST Act Intake 3000 147.4135 0.8 60.4669 5000 4.1204 2.7 27.3160 75		4	7400	448	16.4	19	28100	0.8	10.3	4	0	0		
7 .2600 125 4 36 7200 9 4.5 26 5369 0.0112 8 5800 166 3.8 59 16600 4.7 5.9 21 1184 0 9 14300 336 1.8 118 6700 29.4 7.1 198 2522 0 10 1100 106 0 138 918400 5.7 13.8 33 2755 0.0050 11 9600 138 2.7 54 290700 8.4 5.4 83 1912 0 12 8500 87 1.7 173 86800 1.2 4.3 55 57 0 13 12800 99 2.5 154 85700 3.9 4.3 65 257 0 14 17400 1055 3.7 459 5100 26.9 38.2 93 0 0 15 26900 1691 11.4 792 0 38.4 24.6 217 0 0.0610 Rec Intake 3000 70 0.8 12 5000 1.8 2.7 18 75 0.1087 TOTAL COST Act Intake 3000 147.4135 0.8 60.4669 5000 4.1204 2.7 27.3160 75		5	2200	333	0.2	139	169200	6.4	50.8	316	525	0.0019		
8 5800 166 3.8 59 16600 4.7 5.9 21 1184 0 9 14300 336 1.8 118 6700 29.4 7.1 198 2522 0 10 1100 106 0 138 918400 5.7 13.8 33 2755 0.0050 11 9600 138 2.7 54 290700 8.4 5.4 83 1912 0 12 8500 87 1.7 173 86800 1.2 4.3 55 57 0 13 12800 99 2.5 154 85700 3.9 4.3 65 257 0 14 17400 1055 3.7 459 5100 26.9 38.2 93 0 0 15 26900 1691 11.4 792 0 38.4 24.6 217 0 0.0610 Rec Intake 3000 70 0.8 12 5000 1.8 2.7 18 75 0.1087 TOTAL COST Act Intake 3000 147.4135 0.8 60.4669 5000 4.1204 2.7 27.3160 75		6	2400	138	3.7	80	69000	4.3	5.8	37	862	0		
9 14300 336 1.8 118 6700 29.4 7.1 198 2522 0 10 1100 106 0 138 918400 5.7 13.8 33 2755 0.0050 11 9600 138 2.7 54 290700 8.4 5.4 83 1912 0 12 8500 87 1.7 173 86800 1.2 4.3 55 57 0 13 12800 99 2.5 154 85700 3.9 4.3 65 257 0 14 17400 1055 3.7 459 5100 26.9 38.2 93 0 0 15 26900 1691 11.4 792 0 38.4 24.6 217 0 0.0610 Rec Intake 3000 70 0.8 12 5000 1.8 2.7 18 75 0.1087 TOTAL COST Act Intake 3000 147.4135 0.8 60.4669 5000 4.1204 2.7 27.3160 75		7	.2600	125	4	36	7200	9	4.5	26	5369	0.0112		
10 1100 106 0 138 918400 5.7 13.8 33 2755 0.0050 11 9600 138 2.7 54 290700 8.4 5.4 83 1912 0 12 8500 87 1.7 173 86800 1.2 4.3 55 57 0 13 12800 99 2.5 154 85700 3.9 4.3 65 257 0 14 17400 1055 3.7 459 5100 26.9 38.2 93 0 0 0 15 26900 1691 11.4 792 0 38.4 24.6 217 0 0.0610 Rec Intake 3000 70 0.8 12 5000 1.8 2.7 18 75 0.1087 TOTAL COST Act Intake 3000 147.4135 0.8 60.4669 5000 4.1204 2.7 27.3160 75		8	5800	166	3.8	59	16600	4.7	5.9	21	1184	0		
11 9600 138 2.7 54 290700 8.4 5.4 83 1912 0 12 8500 87 1.7 173 86800 1.2 4.3 55 57 0 13 12800 99 2.5 154 85700 3.9 4.3 65 257 0 14 17400 1055 3.7 459 5100 26.9 38.2 93 0 0 15 26900 1691 11.4 792 0 38.4 24.6 217 0 0.0610 Rec Intake 3000 70 0.8 12 5000 1.8 2.7 18 75 0.1087 TOTAL COST Act Intake 3000 147.4135 0.8 60.4669 5000 4.1204 2.7 27.3160 75		9	14300	336	1.8	118	6700	29.4	7.1	198	2522	0	\ .	
11 9600 138 2.7 54 290700 8.4 5.4 83 1912 0 12 8500 87 1.7 173 86800 1.2 4.3 55 57 0 13 12800 99 2.5 154 85700 3.9 4.3 65 257 0 14 17400 1055 3.7 459 5100 26.9 38.2 93 0 0 15 26900 1691 11.4 792 0 38.4 24.6 217 0 0.0610 Rec Intake 3000 70 0.8 12 5000 1.8 2.7 18 75 0.1087 TOTAL COST Act Intake 3000 147.4135 0.8 60.4669 5000 4.1204 2.7 27.3160 75		10	1100	106	0	138	918400	5.7	13.8	33	2755	0.0050	> 2	C_{i}
13 12800 99 2.5 154 85700 3.9 4.3 65 257 0 14 17400 1055 3.7 459 5100 26.9 38.2 93 0 0 15 26900 1691 11.4 792 0 38.4 24.6 217 0 0.0610 Rec Intake 3000 70 0.8 12 5000 1.8 2.7 18 75 0.1087 TOTAL COST Act Intake 3000 147.4135 0.8 60.4669 5000 4.1204 2.7 27.3160 75		11	9600	138	2.7	54	290700	8.4	5.4	83	1912	0	/	•
14 17400 1055 3.7 459 5100 26.9 38.2 93 0 0 0 15 26900 1691 11.4 792 0 38.4 24.6 217 0 0.0610 Rec Intake 3000 70 0.8 12 5000 1.8 2.7 18 75 0.1087 TOTAL COST Act Intake 3000 147.4135 0.8 60.4669 5000 4.1204 2.7 27.3160 75		12	8500	87	1.7	173	86800	1.2	4.3	55	57	0		
15 26900 1691 11.4 792 0 38.4 24.6 217 0 0.0610 Rec Intake 3000 70 0.8 12 5000 1.8 2.7 18 75 0.1087 TOTAL COST Act Intake 3000 147.4135 0.8 60.4669 5000 4.1204 2.7 27.3160 75		13	12800	99	2.5	154	85700	3.9	4.3	65	257	0		
Rec Intake 3000 70 0.8 12 5000 1.8 2.7 18 75 0.1087 TOTAL COST Act Intake 3000 147.4135 0.8 60.4669 5000 4.1204 2.7 27.3160 75		14	17400	1055	3.7	459	5100	26.9	38.2	93	0	0		
Act Intake 3000 147.4135 0.8 60.4669 5000 4.1204 2.7 27.3160 75		15	26900	1691	11.4	792	0	38.4	24.6	217	0	0.0610)	
	b : →	Rec Intake	3000	70	0.8	12	5000	1.8	2.7	18	75	0.1087	TOTAL COST	T
	7	Act Intake	3000	147.4135	0.8	60.4669	5000	4.1204	2.7	27.3160	75			
	4				1		· *							

Some assumptions: 1 Investors maximize their experted returns

2) Investors' knowledge of the probability of events is governed by a -(ixed prior 3) All three sets are played irrespective of the result in the first two and the odds and beliefs are common across sets.

Parameters 6: budget PN: better's belief that N wins

a set $(0 \le P_N \le 1)$ 2_N : better's belief that N wins a: odds of a set win for N B: odds of a match win for N the match (0 \le 2n \le 1) Décision variables

XIN: amount bet on N winning set 1 X1J: — 1 — 1 — 1

22N, 2J, 23N, 23J (as above)

24N: amount bet on N winning the match

Objective function

 $\mathbb{E}[R] = P_N \left(\frac{\chi_{IN}}{\alpha} - \chi_{IJ}\right) + \left((-P_N)(\alpha_{\chi_{IJ}} - \chi_{IN})\right)$

prob. of N winning +

 $E[R] = t_N \left(\frac{\chi_{IN}}{\chi} - \chi_{IJ} \right) + (1-t_N)(\chi_{IJ} - \chi_{IN}) + t_N \left(\frac{\chi_{IN}}{\chi} - \chi_{IN} \right) + t_N$ PN (22N - X2J) + (1-PN) (X76J - 72N) +

PN (23N - 73T) + (1- PN) (XX3T-X3N)+ 2N (X4N - X4J) + (1-2N) (XX4J - X4N)

 $\chi_{IN} + \chi_{IJ} + \chi_{IJ} \leq b$

 $\chi_{lN}, \chi_{lJ} \dots \geq 0$ The problem

Constraints

this ensures that we max ElRJ to not make a loss (zero is always feasible) ~1N+ x1J+... ≤ 6

Comments: Investing according to the odds i.e. $p_N = \frac{\alpha}{1+\alpha}$ and $q_N = \frac{\beta}{1+\beta}$, will lead to zero expected return. Hence one needs to "believe better" than the bookmaker in order to make money.