Using a hybrid UTXO and account-based state model in a ZK rollup

Goal

Build a **scalable decentralized** rollup with **privacy-enabling** architecture

What is a decentralized Rollup?

Security inherited from Ethereum

Separate L2 chain with its own consensus mechanism

Permissionless set of operators

Challenges of a decentralized rollup

Consensus mechanism

Execution bloat

State bloat

Topic of this talk

What is execution bloat?

All transactions executed by the network

- Block producers execute all transactions in a block
- All other nodes re-execute all transactions in a block

What is state bloat?

State size grows with time

- Nodes need full state to validate blocks
- Nodes need full state to produce new blocks

Why are execution and state bloat bad?

Execution bloat State bloat

Centralization

Need powerful machines

Less privacy

Everyone sees everything

Not sustainable

Ever growing state

What we want to achieve

Minimize execution bloat

- Transactions executed only once
- Transactions executed concurrently by distinct actors

Minimize state bloat

- Can be done with ZKPs
- Requires concurrent state model

- No need to know the full state to validate blocks
- No need to know the full state to produce blocks

State model options

Account-based state

Great for expressive smart contract

Not great for concurrent transaction execution

Bad for anonymity

UTXO-based state

Great for concurrent transaction execution

Needed for anonymity

Not great for expressive smart contracts

Our approach

Account model +

UTXO model +

ZK proofs

Actor-based model with concurrent off-chain state

transaction model

Actor model

- Actors are state machines with "inboxes"
- Actors communicate via message passing
- Messages are produced and consumed asynchronously

Actor model in Miden

- Accounts maintain state and expose interface methods (Miden VM programs)
- Notes carry assets and specify a "spend script" (Miden VM program)
- Two transactions are needed to move assets between two accounts

Anatomy of a transaction

- Executed against a single account
- Consumes 0 or more notes
- Produces 0 or more notes

Executing transactions

- A note is consumed by executing its script
- Note script can call account's interface methods
- Account methods can modify account's state and create new notes
- Note scripts are executed sequentially one after another

Proving transactions

- Correctness of tx execution is proven with a STARK proof
- STARK proofs for all transactions are generated in parallel

Building a block proof

Local vs. network transactions

Local: user prepares, executes, and creates proof

Handling shared state

- Two users independently execute tx1 and tx2 which create notes 1 and 2
- Block producer creates and executes tx3 which consumes notes 1 & 2 and outputs notes 3 and 4
- Two users independently execute tx4 and tx5 which consume notes 4 an 5

Transaction mode comparison

	Local execution	Network execution
Can be used with shared state	No	Yes
Can be private	Yes	No
Client hardware requirements	High	Low
Fees	Low	Higher

state model

Miden rollup state

Account DB

Account DB stores current state of all accounts

For accounts with **on-chain state**, the entire state is stored by the nodes

For accounts with **off-chain state**, only the account hash is stored by the nodes

Sparse Merkle tree

(account id \rightarrow account hash)

Notes DB

Notes DB stores all notes ever created

Notes can be added to the MMR even if **most nodes are discarded**

Inclusion witnesses never become stale, but they may need to be extended

Merkle Mountain Range

(append-only accumulator)

Nullifier DB

Nullifier DB keeps track of **all** consumed notes

Nullifiers are **organized into epochs** - e.g., 4 - 6 months

Nodes are expected to keep nullifiers for **last 2 epochs**

Miden state growth drivers

Λ					10	+	D	D
H	L	L	U	u	П	L	U	D

Primary: number of accounts with on-chain state

Secondary: number of accounts

Pruning: discard on-chain account data (but retain account hash)

Notes DB

Primary: number of unconsumed public notes

Secondary: number unconsumed notes

Pruning: discard on-chain note data

Nullifier DB

Primary: throughput (TPS)

Secondary: nullifier epoch length

Pruning: n/a

conclusion

Flexible transaction modes

	On-chain data	Off-chain data
Network execution	Public transactions	Stateless transactions
Local execution	Local transactions	Private transactions

Addressing execution bloat

No re-execution

All transactions, including network transactions, are executed only once

Concurrent processing

Transactions can be processed concurrently by distinct network participants

Local execution

Transactions not affecting accounts with shared state can be executed and proven locally

% locally-proven transactions

Addressing state bloat

Dynamic pruning

Block producers can independently decide which parts of the state to keep

Light verifying nodes

Verifying nodes can discard vast majority of the state (i.e., the nullifier database)

State size driven by throughput

State size depends primarily on the current TPS rather than total number of accounts or notes

thanks

Using a Hybrid UTXO and Account-Based State Model in a zkRollup

Bobbin Threadbare

Project lead, Polygon Miden

Section 1 title here.

Section 1 title here.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

- Sollicitudin
- Consectetur
 - Condimentum
 - Magna
 - Ligula

Section 1 details with an image. Enter title here.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Enter your main point / statement here.

Section 1 details with a main point. Enter title here.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Section 2 title here.

Section 2 title here.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

- Sollicitudin
- Consectetur
 - Condimentum
 - Magna
 - Ligula

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

- Sollicitudin
- Consectetur
 - Condimentum
 - Magna
 - Ligula

Section 2 details with an image. Enter title here.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Section 2 details with a main point. Enter title here.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Enter your main point / statement here.

Section 3 title here.

Enter your main point / statement here.

Section 3 details with a main point. Enter title here.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Section 4 title here.

Section 4 details with a main point. Enter title here.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Enter your main point / statement here.

Enter your main point / statement here.

Here's the timeline.

Event 1 Event 2 Event 3

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam.

Hallk you

Your Name

Your title, your organization email@emailaddress.com

