# Environmental metagenomics

Genome-resolved metagenomics

# What is genome-resolved metagenomics?









MBDP Metagenomics Course 2022 - Antti Karkman

# Metagenomic binning

From **contigs** to **metagenome assembled genomes** (MAGs)



# Sequence composition – kmers



#### GTTTTGGCATGATTAAGGAGTTTCTTTTGTGCTTC

| AA | AC | AG | AT | CÀ | cc | CG | СT | GA | GC | GG | GT | TA | TC | <b>T</b> 4 | TT |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|------------|----|
| 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0          | 0  |











# G1TTTGGCATGATTAAGGAGTTTCTTTTTGTGCTTC AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT O O O O O O O O O O O O O O



# GTTTTGGCATGATTAAGGAGTTTCTTTTTGTGCTTC

| AA | AC | AG | AT | CÀ | cc | CG | CT | GA | GC | GG | GT | TA | TC | <b>T</b> 4 | TT |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|------------|----|
| 1  | 0  | 2  | 2  | 1  | 0  | 0  | 2  | 2  | 2  | 2  | 3  | 1  | 2  | 4          | 10 |



#### GTTTTGGCATGATTAAGGAGTTTCTTTTGTGCTTC

| AA  | AC | AG | AT | CÀ | cc | CG | СT | GA | GC | GG | GT | TA | TC | <b>T</b> 4 | TT |
|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|------------|----|
| - 1 | 0  | 2  | 2  | 1  | 0  | 0  | 2  | 2  | 2  | 2  | 3  | 1  | 2  | 4          | 10 |

#### GAAGCACAAAAGAAACTCCTTAATCATGCCAAAAC

|    | AC |   |   |   |   |   |   |   |   |   |   |   |   |   | TT |
|----|----|---|---|---|---|---|---|---|---|---|---|---|---|---|----|
| 10 | 3  | 2 | 2 | 4 | 2 | 0 | 2 | 2 | 2 | đ | 0 | 1 | 2 | 1 | 1  |



#### GTTTTGGCATGATTAAGGAGTTTCTTTTGTGCT

| AA  | AC | AG | ΑT | CA | CC | CG | CT | GA | GC | GG | GT | ΤA | TC | <b>T</b> G | TT |
|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|------------|----|
| - 1 | 0  | 2  | 2  | 1  | 0  | 0  | 2  | 2  | 2  | 2  | 3  | 1  | 2  | 4          | 10 |

#### GAAGCACAAAAGAAACTCCTTAATCATGCCAAAAC

| AA | AC | AG | ΑT | CÀ | CC | CG | CT | GA | GC | GG | GT | TA | TC | 79 | TT |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 10 | 3  | 2  | 2  | 4  | 2  | 0  | 2  | 2  | 2  | 6  | 0  | 1  | 2  | 1  | 1  |

# GTTTTTGGCATGATTAAGGAGTTTCTTTTTGTGCTTC; GAAGCAGAAAAGAAACTCCTTAATCATGCCAAAAC;





#### GTTTTGGCATGATTAAGGAGTTTCTTTTGTGCTTC

|          | AA | AC | AG | GA | CÀ | CC | CG | ٩c | AT | TA |
|----------|----|----|----|----|----|----|----|----|----|----|
| γ        | 7  | 3  | 5  | 4  | 5  | 2  | Q  | 2  | ત  | -  |
| Y        |    |    |    |    |    |    |    |    |    |    |
| Z        |    |    |    |    |    |    |    |    |    |    |
| <b>L</b> |    |    |    |    |    |    |    |    |    |    |
| K        |    |    |    |    |    |    |    |    |    |    |
| M        |    |    |    |    |    |    |    |    |    |    |



#### ACTTCCGCAGTCGGGCATTACGCGTTGTGGAATGA

|          | AA | AC | AG | GA | CÀ | CC | CG | ٩c | AT | TA |
|----------|----|----|----|----|----|----|----|----|----|----|
| γ        | 11 | 3  | 5  | 4  | 5  | 2  | Q  | 2  | 2  | 1  |
| Y        | 4  | 5  | d  | 4  | 5  | 4  | 4  | 3  | 2  | 1  |
| Z        |    |    |    |    |    |    |    |    |    |    |
| <b>L</b> |    |    |    |    |    |    |    |    |    |    |
| K        |    |    |    |    |    |    |    |    |    |    |
| M        |    |    |    |    |    |    |    |    |    |    |



#### ACTTGCGCAGTCGCGCATTACGCGTAGTGGAATAA

|          | AA | AC | AG | GA | CÀ | CC | CG | ٩c | AT | TA |
|----------|----|----|----|----|----|----|----|----|----|----|
| γ        | 11 | 3  | 5  | 4  | 5  | 2  | Q  | 2  | 2  | 1  |
| Y        | 4  | 5  | d  | 4  | 5  | 4  | 4  | 3  | 2  | ı  |
| Z        | 4  | 5  | 3  | 2  | 4  | -  | 5  | 5  | 2  | 3  |
| <b>L</b> |    |    |    |    |    |    |    |    |    |    |
| K        |    |    |    |    |    |    |    |    |    |    |
| M        |    |    |    |    |    |    |    |    |    |    |



|   | AA | AC | AG         | GA | CÀ | CC | CG | ٩c  | AT | TA |
|---|----|----|------------|----|----|----|----|-----|----|----|
| γ | 7  | 3  | 5          | 4  | 5  | 2  | Q  | 2   | ય  | 1  |
| Y | 4  | 5  | ٧          | 4  | 5  | 4  | 4  | 3   | 2  | 1  |
| Z | 4  | 5  | 3          | 2  | 4  | 1  | 5  | 5   | 2  | 3  |
| 1 | 11 | 6  | $^{\circ}$ | 2  | 2  | 3  | 2  | -   | 1  | 4  |
| K | -  |    | 2          | 2  | 1  | 8  | 9  | 10  | 0  | 0  |
| Μ | 0  | 4  | 4          | 3  | 4  | 10 | 4  | 150 | 0  | 0  |



|          | AA | AC | <b>A</b> 4 | GA | CÀ | CC | CG | ٩c | AT | TA |           |
|----------|----|----|------------|----|----|----|----|----|----|----|-----------|
| γ        | 11 | 3  | 4          | 4  | 5  | 2  | Q  | 2  | 2  | 1  | <b>Y</b>  |
| Y        | 4  | 5  | 2          | 4  | 5  | 4  | 4  | 3  | 2  | T  |           |
| Z        | 4  | S  | 3          | 2  | 4  | 1  | 5  | 5  | 2  | 3  | 2 XL (XL) |
| <b>L</b> | 11 | 6  | S          | 2  | 2  | 3  | 2  | 1  | 1  | 4  | (KM)      |
| K        | 1  | I  | 2          | 2  | 1  | 8  | 9  | 10 | 0  | 0  | PC#1      |
| M        | 0  | 4  | 4          | 3  | 4  | 10 | 4  | 5  | 0  | 0  |           |



# Differential coverage



# CONTIG #1

# CONT14 #2

CONTIG #1

METAGENOMIC READS

CONTIG #2









MBDP Metagenomics Course 2022 - Antti Karkman

## Genome-resolved metagenomics in action

## Genome-resolved metagenomics in action

- Several automatic binning algorithms availabe
  - CONCOCT, MetaBat, MaxBin, BinSanity, Autometa, DAS Tool, ...
  - Various algorithms, but most rely on kmers and coverage
- Manual binning in anvi'o
  - Tetranucleotide frequency and/or differential coverage
  - Also, automatic binning results can be visualised

























## Anvi'o interactive view



## Anvi'o interactive view



## Anvi'o interactive view

