# The Aggregate Effects of the Great Black Migration

Motoaki Takahashi

# Population Shares in the South by Race



South: confederate states

### Outline

- ► Four million Black Americans moved from the South to the North of the US between 1940 and 1970.
- How did it impact aggregate US output and the welfare of cohorts of Black and non-Black Americans?
- ▶ I quantify a dynamic general equilibrium model that comprises migration behavior of Black and non-Black Americans.

#### Preview

- Shutting down the migration of Black Americans across the North and the South between 1940 and 1970
  - decreases aggregate US output in 1970 by 0.7%,
  - decreases the welfare of Black Americans born in the South in the 1930s by 2.2%,
  - ▶ increases the welfare of Black Americans born in the North in the 1930s by 0.1%.
- ► Shutting down the migration of non-Black Americans across the North and the South for the same period
  - decreases aggregate US output in 1970 by 0.3%.

#### Contribution to Literature

- 1. Economic geography of Black Americans
  - Myrdal (1944)
  - Boustan (2009, 2010, 2017), Derenoncourt (2022), Althoff and Reichardt (2022)
- 2. Dynamic spatial models
  - Caliendo, Dvorkin, and Parro (2019), Allen and Donaldson (2022), Kleinman, Liu, and Redding (2022)
- ► This paper is the first to quantify the aggregate, general equilibrium effects of the great Black migration.

# **Empirical Facts**

### Movers and Stayers

For each cohort c, birthplace (the North or the South), race (Black or non-Black Americans),

- $\triangleright$  stayers live in the birthplace as of year c + 50,
- movers live in the other place than the birthplace as of year c+50.

### Fractions of Movers

for Cohort c as of Year c + 50



# Mover-Stayer Wage Ratios

Cohort c as of year c + 50



gaps in dollar value

ratios in per capita payrolls

# Wage and Rent Gaps between Movers and Stayers

for Black Americans from the South



# Summary of Facts

- 1. The migration rate of Black Americans from the South was higher than any other group of people.
- Black Americans who moved from the South to the North earned much higher wages than Black Americans who stayed in the South.
- 3. The mover-stayer rent gap was about one-fourth of the mover-stayer wage gap for Black Americans from the South.

# Model

### **Environment**

- ightharpoonup Time  $t = 0, 1, \cdots$
- ► There are J locations.
- ▶ Individuals of cohort c are born in period c and live through at most period  $c + \bar{a}$ .
- ► Ages range from 0 to ā.
- ▶ A race is either Black or non-Black (r = b, n).

### Preferences and Location Choices

► The period utility of individuals is

$$u_{r,a,t}^i = \begin{cases} 0 & \text{for } a = 0, \\ \log\left(\frac{w_{r,a,t}^i}{(r_t^i)^\gamma}\right) + \log B_{r,a,t}^i, & \text{for } a = 1, \dots, \bar{a}. \end{cases}$$

▶ For  $a \le \bar{a} - 1$ , the value is

$$v_{r,a,t}^{i} = u_{r,a,t}^{i} + \max_{j=1,\cdots,J} \left\{ s_{r,a,t} E[v_{r,a+1,t+1}^{j}] - \tau_{r,a,t}^{j,i} + v \varepsilon_{r,a,t}^{j} \right\}.$$

For  $a = \bar{a}$ , the value is

$$v_{r,a,t}^i = u_{r,a,t}^i.$$

Assuming  $\mathcal{E}_{r,a,t}^{j}$  draws a type-I extreme value, for  $a \leq \bar{a} - 1$ , the expected value is

$$V_{r,a,t}^i = u_{r,a,t}^i + v \log \left( \sum_{j=1}^J \exp(s_{r,a,t} V_{r,a+1,t+1}^j - \tau_{r,a,t}^{j,i})^{1/v} \right).$$

(1)

# Migration Flows and Populations

▶ The migration share of (r, a, t) from i to j is

$$\mu_{r,a,t}^{j,i} = \frac{\exp(s_{r,a,t}V_{r,a+1,t+1}^{j} - \tau_{r,a,t}^{j,i})^{1/\nu}}{\sum_{k=1}^{J} \exp\left(s_{r,a,t}V_{r,a+1,t+1}^{k} - \tau_{r,a,t}^{k,i}\right)^{1/\nu}}.$$
 (2)

▶ Population in each demographic group next period is

$$L_{r,a+1,t+1}^{j} = \sum_{i=1}^{J} \mu_{r,a,t}^{j,i} s_{r,a,t} L_{r,a,t}^{j} + I_{r,a+1,t+1}^{j}.$$
 (3)

### Production

Output is

$$Y_t^i = A_t^i L_t^i.$$

 $ightharpoonup L_t^i$  aggregates labor of various ages

$$L_t^i = \left(\sum_{a=1}^{\bar{a}} (\kappa_{a,t}^i)^{\frac{1}{\sigma_0}} (L_{a,t}^i)^{\frac{\sigma_0-1}{\sigma_0}}\right)^{\frac{\sigma_0}{\sigma_0-1}}.$$

 $\triangleright$   $L_{a,t}^{i}$  aggregates labor of different races

$$L_{a,t}^{i} = \left(\sum_{r=b,n} (\kappa_{r,a,t}^{i})^{\frac{1}{\sigma_{1}}} (L_{r,a,t}^{i})^{\frac{\sigma_{1}-1}{\sigma_{1}}}\right)^{\frac{\sigma_{1}-1}{\sigma_{1}-1}}.$$

Wages are priced at the marginal product of labor

$$w_{r,a,t}^{i} = A_{t}^{i} (L_{t}^{i})^{\frac{1}{\sigma_{0}}} (\kappa_{a,t}^{i})^{\frac{1}{\sigma_{0}}} (L_{a,t}^{i})^{-\frac{1}{\sigma_{0}} + \frac{1}{\sigma_{1}}} (\kappa_{r,a,t}^{i})^{\frac{1}{\sigma_{1}}} (L_{r,a,t}^{i})^{-\frac{1}{\sigma_{1}}}.$$
(4)

# **Fertility**

Newborns in period t are

$$L_{r,0,t}^{i} = \sum_{a=1}^{\bar{a}} \alpha_{r,a,t} L_{r,a,t}^{i}.$$
 (5)

 $ightharpoonup lpha_{r,a,t}$ : how many babies are born per one person of (r,a,t).

#### Rent

Rent depends on a location-specific shifter and local income

$$r_t^i = \bar{r}^i \left( \gamma \sum_{r=b, n} \sum_{a=1}^{\bar{a}} L_{r,a,t}^i w_{r,a,t}^i \right)^{\eta}. \tag{6}$$

▶ Absentee landlords receive rent (or rent is dumped).

### Equilibrium

Given  $\{L_{r,a,0}^i\}$ , an equilibrium is

- $\blacktriangleright$  { $V_{r,a,t}^i$ } such that (1),
- $\blacktriangleright$   $\{w_{r,a,t}^i\}$  such that (4),
- $\blacktriangleright$  { $L_{r,a,t}^i$ } such that (3) and (5),
- $\blacktriangleright \{\mu_{r,a,t}^{i,j}\}$  such that (2),
- $ightharpoonup \{r_t^i\}$  such that (6).

### Steady State

A steady state is an equilibrium in which all endogenous variables are time-invariant:

- $\triangleright$  { $V_{r,a}^i$ } such that (1),
- $\blacktriangleright$   $\{w_{r,a}^i\}$  such that (4),
- $\blacktriangleright$  { $L_{r,a}^i$ } such that (3) and (5),
- $\blacktriangleright \{\mu_{r,a}^{i,j}\} \text{ such that (2)},$
- $ightharpoonup \{r^i\}$  such that (6),

dropping time subscripts t from the equations.

# Quantification

### Data and Units of Observations

- ▶ I obtain wages, populations, and migration shares from US censuses 1940-2000 and American Community Survey 2010.
- Races are Black or non-Black.
- Age bins are:

- Locations are 36 US states, DC, and the constructed rest of the North.
  - ► The rest of the North accounts for
    - ▶ 0.1% of the Black population in 1940.
    - ▶ 1% of the Black population in 2010.

### Elasticity of Substitution across Races

► For location *n*, age *a*, period *t*, the CES production function implies

$$\frac{w_{b,a,t}^{i}}{w_{n,a,t}^{i}} = \frac{\left(\kappa_{b,a,t}^{i}\right)^{\frac{1}{\sigma_{1}}} \left(L_{b,a,t}^{i}\right)^{-\frac{1}{\sigma_{1}}}}{\left(\kappa_{n,a,t}^{i}\right)^{\frac{1}{\sigma_{1}}} \left(L_{n,a,t}^{i}\right)^{-\frac{1}{\sigma_{1}}}}.$$

► Taking logs of both sides,

$$\log \left(\frac{w_{b,a,t}^i}{w_{n,a,t}^i}\right) = -\frac{1}{\sigma_1} \log \left(\frac{L_{b,a,t}^i}{L_{n,a,t}^i}\right) + \frac{1}{\sigma_1} \log \left(\frac{\kappa_{b,a,t}^i}{\kappa_{n,a,t}^i}\right).$$

### Estimation

#### Following Card (2009)

► The main specification is

$$\log\left(\frac{w_{b,a,t}^i}{w_{n,a,t}^i}\right) = -\frac{1}{\sigma_1}\log\left(\frac{L_{b,a,t}^i}{L_{n,a,t}^i}\right) + f_a + f_t + f_{a,t} + \varepsilon_{a,t}^i.$$

Construct an IV using shift-share predicted populations

$$\hat{L}_{r,a,t}^{i} = \sum_{i=1}^{J} \mu_{r,a-1,t-1-X}^{i,j} \cdot s_{r,a-1,t-1} L_{r,a-1,t-1}^{j}.$$

▶ I set X = 2: the migration shares 20 years before.

### Results

| Dependent variable:                       | $\log(w_{b,a,t}^n/w_{o,a,t}^n)$ |              |
|-------------------------------------------|---------------------------------|--------------|
| Model:                                    | OLS                             | ÍV           |
| $\frac{1}{\log(L_{b,a,t}^n/L_{o,a,t}^n)}$ | -0.1154***                      | -0.1108***   |
| , , , , ,                                 | (0.0120)                        | (0.0127)     |
| fixed effects:                            |                                 |              |
| year-age                                  | $\checkmark$                    | $\checkmark$ |
| Observations                              | 1,368                           | 1,368        |
| First-stage <i>F</i> -statistic           |                                 | 91.24        |

Block bootstrap standard errors are in parentheses. \*\*\*: 0.01.

### **Elasticities**

$$\begin{array}{c|c} 1/v = 0.8 & \text{migration elasticity} \\ \sigma_1 = 9.0 & \text{substitutability across races} \\ \sigma_0 = 2.9 & \text{substitutability across ages} \\ \eta = 0.4 & \text{rent elasticity} \end{array}$$

### Other Parameters

- ► Given the elasticities, inverting the model yields productivity, amenities, and migration costs.
- ▶ Fertility  $\alpha_{r,a,t}$  is directly observed in census/ACS data.
- $\triangleright$  Survival probabilities  $s_{r,a,t}$  are taken from life tables of CDC.

# Migration Costs by Year



### Amenities in 1960

**Black Americans** 



# Productivity in 1960



# Model Fit

# US output: Model vs Data



# Populations of Race-Age-Locations: Model vs Data



# Counterfactuals

### Counterfactuals

- 1. Black Americans cannot move across the North and the South from 1940 to 1960.
- 2. Non-Black Americans cannot move across the North and the South for the same period.

### US output relative to the Baseline Equilibrium



Welfare
Black Immobility Relative to the Baseline



# Welfare Non-Black Immobility Relative to the Baseline





# Average Real Wage Ratios

between Black and non-Black Americans



#### Conclusion

- ▶ I quantify the aggregate effects of the great Black migration with a dynamic spatial model.
- Black Americans migrated from the South to the North for higher wages despite their high migration costs and low amenities in the North.
- ► The mobility of Black and non-Black Americans increased aggregate output in 1970 by 0.7 and 0.3%, respectively.
- ► The mobility of Black Americans induced
  - ➤ a 2.2 percent increase in the welfare of Black Americans in the South,
  - a 0.1 percent decrease in the welfare of Black Americans in the North.

### Mover-Stayer Wage Gaps

Cohort x as of year x + 50





### Mover-Stayer Ratios in Per Capita Payroll

Cohort x as of year x + 50





#### Gaps in Per Capita Payroll and Rent

for Black Americans from the South





# Relative Wages of Races within Ages

► The relative wages within cohorts are

$$\frac{w_{b,a,t}^n}{w_{o,a,t}^n} = \frac{\left(\kappa_{b,a,t}^n\right)^{\frac{1}{\sigma_1}} \left(L_{b,a,t}^n\right)^{-\frac{1}{\sigma_1}}}{\left(\kappa_{o,a,t}^n\right)^{\frac{1}{\sigma_1}} \left(L_{o,a,t}^n\right)^{-\frac{1}{\sigma_1}}}$$



# Migration Elasticity

▶ If real wage  $_{r,a,t+1}^{j}$  increases by 1% ceteris paribus,  $\mu_{r,a,t}^{j,i}$  increases by  $\frac{1}{v}$ %.



#### Rewriting Expected Values

Toward the estimation of the migration elasticity

▶ The expected value is the period utility plus the option value.

$$V_{r,a,t}^{i} = u_{r,a,t}^{i} + v \log \left( \sum_{j=1}^{J} \exp(s_{r,a,t} V_{r,a+1,t+1}^{j} - \tau_{r,a,t}^{j,i})^{1/v} \right)$$
$$= u_{r,a,t}^{i} + \Omega_{r,a,t}^{i}.$$

#### **Decomposing Migration**

• Using  $\Omega_{r,a,t}^j$ , I can write migrants of (r,a,t) from i to j as

$$L_{r,a,t}^{i}\mu_{r,a,t}^{j,i} = \exp\left\{\frac{1}{v}(s_{r,a,t}V_{r,a+1,t+1}^{j} - \tau_{r,a,t}^{j,i}) - \frac{1}{v}\Omega_{r,a,t}^{i} + \log(L_{r,a,t}^{i})\right\}$$

▶ Destination and origin fixed effects capture  $V_{r,a+1,t+1}^{j}$  and  $\Omega_{r,a,t}^{i}$  respectively:

$$L_{r,a,t}^{i}\mu_{r,a,t}^{j,i} = \exp\{v_{r,a,t}^{j} + \omega_{r,a,t}^{i} + \tilde{\tau}_{r,a,t}^{j,i}\},$$

where

$$\begin{aligned} v_{r,a,t}^{j} &= \frac{1}{v} s_{r,a,t} V_{r,a+1,t+1}^{j}, \\ \omega_{r,a,t}^{i} &= -\frac{1}{v} \Omega_{r,a,t}^{i} + \log(L_{r,a,t}^{i}), \\ \tilde{\tau}_{r,a,t}^{j,i} &= -\frac{1}{v} \tau_{r,a,t}^{j,i}. \end{aligned}$$

### Recovering Period Utility

 Arranging destination and origin fixed effects backs out period utilities

$$\begin{split} & \frac{v_{r,a,t}^{j}}{s_{r,a,t}} + \omega_{r,a+1,t+1}^{j} - \log(L_{r,a+1,t+1}^{j}) \\ &= \frac{1}{v} u_{r,a,t}^{j} \\ &= \frac{1}{v} \left\{ \log\left(\frac{w_{r,a+1,t+1}^{j}}{(r_{t+1}^{j})^{\gamma}}\right) + \log(B_{r,a+1,t+1}^{j}) \right\}. \end{split}$$

#### Two-Step Estimation of 1/v

#### Following Artuc and McLaren (2015)

1. Regress the number of migrants on the destination and origin fixed effects and the terms capturing migration costs

$$L_{r,a,t}^{i}\mu_{r,a,t}^{j,i} = \exp\left\{v_{r,a,t}^{j} + \omega_{r,a,t}^{i} + \tilde{\tau}_{t}^{j\neq i} + \tilde{\tau}_{r,G(t)}^{\{i,j\}} + \tilde{\tau}_{a,G(t)}^{\{i,j\}}\right\} + \varepsilon_{r,a,t}^{j,i}.$$

- $\triangleright$   $G(\cdot)$  classifies years to groups.
- 2. Regress the induced period utilities times the migration elasticity on wages and the terms capturing amenities

$$\begin{split} &\frac{\hat{V}_{r,a,t}^{j}}{s_{r,a,t}} + \hat{\omega}_{r,a+1,t+1}^{j} - \log(\mathcal{L}_{r,a+1,t+1}^{j}) \\ = &\frac{1}{v} \log(w_{r,a+1,t+1}^{j}) + \tilde{B}_{r,a+1}^{j} + \tilde{B}_{r,t+1}^{j} + \varepsilon_{r,a,t}^{j}. \end{split}$$

▶ I instrument  $w_{r,a+1,t+1}^j$  by  $w_{r,a+1,t}^j$ .

# Estimates of Migration Elasticity

| Dependent variable: | period utility × migration elasticity |              |              |
|---------------------|---------------------------------------|--------------|--------------|
| •                   | (1)                                   | (2)          | (3)          |
| log(real wage)      | 0.4976***                             | 0.6129***    | 0.7676***    |
|                     | (0.1323)                              | (0.1665)     | (0.1952)     |
| fixed effects:      |                                       |              |              |
| race-location       | $\checkmark$                          | $\checkmark$ | $\checkmark$ |
| age-location        | $\checkmark$                          | $\checkmark$ | $\checkmark$ |
| year-location       | $\checkmark$                          | $\checkmark$ | $\checkmark$ |
| age-race            | $\checkmark$                          | $\checkmark$ | $\checkmark$ |
| year-race           | $\checkmark$                          | $\checkmark$ | $\checkmark$ |
| age-race-location   |                                       | $\checkmark$ | $\checkmark$ |
| year-race-location  |                                       |              | $\checkmark$ |
| Observations        | 2,660                                 | 2,660        | 2,660        |

Robust standard errors clustered at locations. \*\*\*: 0.01.

# Migration Elasticities in Literature

|                           | location  | value              |
|---------------------------|-----------|--------------------|
| Bryan and Morten          | Indonesia | 3.18               |
|                           | US        | 2.69               |
| Tombe and Zhu             | China     | 1.50               |
| Fajgelbaum, Morales,      | US        | 2.10               |
| Suarez Serrato, and Zider |           |                    |
| Caliendo, Opromolla       | EU        | 0.50               |
| Parro, and Sforza         |           |                    |
| Suzuki                    | Japan     | 2.01               |
|                           |           | $(1.57 \sim 3.32)$ |

# Migration Costs by Age





# Estimates of Elasticity of Substitution across Races

|                | $-1/\sigma_1$          | implied $\sigma_1$  |
|----------------|------------------------|---------------------|
| This paper     | -0.111                 | 9.0                 |
| Boustan (2009) | -0.120                 | 8.3                 |
|                | $(-0.186 \sim -0.090)$ | $(5.38 \sim 11.11)$ |

# Elasticity of Substitution across Ages

▶ The nested CES production function implies

$$\frac{w_{a,t}^{i}}{w_{a',t}^{i}} = \frac{\left(\kappa_{a,t}^{i}\right)^{\frac{1}{\sigma_{0}}} \left(L_{a,t}^{i}\right)^{-\frac{1}{\sigma_{0}}}}{\left(\kappa_{a,t}^{i}\right)^{\frac{1}{\sigma_{0}}} \left(L_{a',t}^{i}\right)^{-\frac{1}{\sigma_{0}}}},$$

where

$$w_{a,t}^{i} = \left[\sum_{r'} \kappa_{r',a,t}^{i} (w_{r',a,t}^{i})^{1-\sigma_{1}}\right]^{\frac{1}{1-\sigma_{1}}},$$
 $L_{a,t}^{i} = \left[\sum_{r'} (\kappa_{r',a,t}^{i})^{\frac{1}{\sigma_{1}}} (L_{r',a,t}^{i})^{\frac{\sigma_{1}-1}{\sigma_{1}}}\right]^{\frac{\sigma_{1}}{\sigma_{1}-1}}.$ 

back

# Estimation of Elasticity of Substitution across Ages

- Fix age bin a'.
- ▶ The main specification is, for any  $a \neq a'$ ,

$$\log\left(\frac{w_{a,t}^i}{w_{a',t}^i}\right) = -\frac{1}{\sigma_0}\log\left(\frac{L_{a,t}^i}{L_{a',t}^i}\right) + f_a + f_t + f_{a,t} + \varepsilon_{a,t}^i.$$

 $\hat{L}_{a,t}^i$  aggregates the shift-share predicted populations for (r,a,t,n)

$$\hat{\mathcal{L}}_{a,t}^i = \left[\sum_r (\kappa_{r,a,t}^i)^{\frac{1}{\sigma_1}} (\hat{\mathcal{L}}_{r,a,t}^i)^{\frac{\sigma_1-1}{\sigma_1}}\right]^{\frac{\sigma_1}{\sigma_1-1}}.$$

▶ Construct an IV using  $\hat{L}_{a,t}^i$ .

### Elasticity of Substitution across Ages

| Dependent variable:             | $\log(w_{a,t}^i)$ | $/w_{a',t}^i)$ |
|---------------------------------|-------------------|----------------|
| Model:                          | OLS               | ÍV             |
| $\log(L_{a,t}^i/L_{a',t}^i)$    | -0.2978***        | -0.3401*       |
| ,                               | (0.0672)          | (0.1922)       |
| fixed effects                   |                   |                |
| year-age                        | $\checkmark$      | $\checkmark$   |
| Weights                         | -                 | -              |
| Observations                    | 1,140             | 1,140          |
| First-stage <i>F</i> -statistic |                   | 426.8          |
|                                 |                   |                |

Block bootstrap standard errors are in parentheses. \*\*\*: 0.01, \*\*: 0.05.

# Estimates of Elasticity of Substitution across Ages

|                  | -1 $/\sigma_0$         | implied $\sigma_1$ |
|------------------|------------------------|--------------------|
| my estimate      | -0.340                 | 2.9                |
| Card and Lemieux | -0.203                 | 4.9                |
|                  | $(-0.233 \sim -0.165)$ | $(4.3 \sim 6.1)$   |

- ▶ Ottaviano and Peri (2012) and Manacorda et. al. (2012) found estimates similar to Card and Lemieux (2001).
- ▶ My age bin is 10 years but the literature's age bin is 5 years.

# Amenities in 1960 Others





#### Estimation: Rent Elasticity $\eta$

- $\triangleright$  Assume that the rent elasticity  $\eta$  is common in all locations.
- ► Taking logs of the rent equation:

$$\log r_t^i = \log \bar{r}^i + \eta \log \left( \gamma \sum_r \sum_c L_{r,c,t}^i w_{r,c,t}^i \right).$$

Take time differences:

$$\Delta \log r^i = \eta \Delta \log(\text{income}^i).$$

- ▶ Then I can use states as a sample.
- For state i, the econometric specificaiton is

$$\Delta \log r^i = \eta \Delta \log(\text{income}^i) + \varepsilon_i$$
.

- ▶ The time differences are taken between 1970 and 2010.
- ▶ I instrument  $\Delta \log(\text{income}^i)$  by the manufacturing shares and college graduates shares as of 1950.



# Estimates: Rent Elasticity $\eta$

| Dependent variable:             | ΔΙα            | og r <sup>i</sup>              |
|---------------------------------|----------------|--------------------------------|
| Model:                          | OLS            | IV                             |
| $\Delta \log(\text{income}^i)$  | 0.3948***      | 0.4092***                      |
|                                 | (0.0254)       | (0.0264)                       |
| Weights                         | $L_{1970}^{i}$ | L <sup>i</sup> <sub>1970</sub> |
| Observations                    | 38             | 38                             |
| First-stage <i>F</i> -statistic |                | 162.4                          |

Robust standard errors are in parentheses. \*\*\*: 0.01.

# Goodness of Fit: Nation-wide Rent Elasticity



correlation: 0.944

#### The Welfare of Black Americans Born in the 1930s

Black immobility relative to the baseline





#### The Welfare of non-Black Americans Born in the 1930s

Black immobility relative to the baseline





#### The Welfare of Black Americans Born in the 1930s

Non-Black immobility relative to the baseline





#### The Welfare of Non-Black Americans Born in the 1930s

Non-Black immobility relative to the baseline





#### Parameters in the Baseline Equilibrium

- ▶ I have parameter values from 1940 to 2010.
- From 2020 onward, I assume all parameters are as of 2010.
- But I use fertility such that the populations of Black and non-Black Americans smoothly converge from 2010 to the (final) steady state.
- ▶ So that the economy will converge to the steady state.

#### Value Function Iteration

- 1. Load the expected values of the final steady state  $V^i_{r,a,\infty}$ . Assume the economy converges to the steady state in period  $T\colon V^i_{r,a,T}=V^i_{r,a,\infty}$ .
- 2. Load the populations in the initial period  $L_{r,a,0}^{i}$ .
- 3. Guess the expected values from period 0 to T-1  $V_{r,a,t}^i$  for  $t=0,\cdots,T-1$ .
- 4. Compute migration shares  $\mu_{r,a,t}^{j,i}$  given the guessed expected values  $V_{r,a,t}^{i}$ .
- 5. Compute the populations  $L_{r,a,t}^{i}$  forward given the migration shares  $\mu_{r,a,t}^{j,i}$ .
- 6. Compute wages  $w_{r,a,t}^i$ , rent  $r_t^i$ , and eventually period utility  $u_{r,a,t}^i$  given the populations  $L_{r,a,t}^i$ .
- 7. Compute the expected values  $V_{r,a,t}^i$  backward given the period utility  $u_{r,a,t}^i$ .

#### Welfare

#### Consumption Equivalent

- ► Two expected values  $V_{r,0,t}^{j}$  (baseline) and  $\tilde{V}_{r,0,t}^{j}$  (counterfactual).
- ▶ Define the compensating variation  $\delta_{r,0,t}^{j}$  by

$$\tilde{V}_{r,0,t} = V_{r,0,t}^j + \sum_{a=0}^{\bar{a}} \left[ \prod_{a'=-1}^{a-1} s_{r,a',t+a'} \log(\delta_{r,0,t}^j) \right].$$

- $ightharpoonup s_{r,-1,t-1}=1$  for any r and t for notational convenience.
- Solving this,

$$\delta_{r,0,t}^{j} = \exp\left\{\frac{\tilde{V}_{r,0,t}^{j} - V_{r,0,t}^{j}}{\sum_{a=0}^{\bar{a}} \prod_{a'=-1}^{a-1} s_{r,a',t+a'}}\right\}.$$

Note that the welfare of the counterfactual is higher than that of the baseline if  $\delta_{r,0,t}^{j} > 1$ .