Name:

Entry Number:

1. (5 marks) Let Q(x,y) be the proposition that x has appeared on the quiz show y, where the domain of x is the set of all students in your class (call this set A) and the domain of y is the set of all quiz shows on TV (call this set B). Express the following sentence using logical quantifiers. Any quantifiers \exists or \forall must appear at the beginning of the statement. Besides these quantifiers and A, B, Q, you can use: \in , \notin , \vee , \wedge , \rightarrow , =, \neq , \neg (the Boolean negation operator):

"No two students in your class have appeared in the same quiz show."

No reasoning is required, just write the expression.

Solution: : Here one we are saying that for every pair of distinct students and for every pair quiz show, both have not appeared. So one of way of saying this is:

$$\forall x \in A \forall x' \in A \forall y \in BQ(x,y) \land Q(x',y) \to (x=x').$$

2. (5 marks) Write a recurrence for the number of ternary strings (i.e., strings over the alphabet {0,1,2}) that do not contain 00, i.e., two consecutive 0. Give a short explanation why the recurrence is correct.

Solution: Let X_n be the number of ternary strings which do not contain 00. Consider such a string s. If the last digit is 0, then the second last digit has to be 1 or 2 – for each such choice of the second last digit the remaining string of length (n-2) satisfies the condition that it does not contain 00. Thus there are $2X_{n-2}$ such strings. Finally, if the last digit is 1 or 2, then the remaining n-1 digits can be any ternary string which does not contain 00. There are $2X_{n-1}$ such strings. Thus, we get:

$$X_n = 2X_{n-1} + 2X_{n-2}.$$

As base cases, we have $X_0 = 1, X_1 = 3$.

3. (10 marks) You are given 2n + 1 distinct numbers from the set $\{1, 2, ..., 3n\}$. Prove that there must be 3 consecutive numbers in this set (for example, if n = 3, and you are given any 7 numbers from $\{1, 2, ..., 9\}$, there must be 3 consecutive numbers in this set). [Hint: You may want to use pigeonhole Principle]

Solution: Let A be the set of 2n+1 distinct numbers selected from the set $\{1,2,\ldots,3n\}$. Let B be a set of size n consisting of triplets $(1,2,3),(4,5,6),\ldots,(3n-2,3n-1,3n)$. We define a function $f:A\to B$ as follows. For any $x\in A$, there is a unique triplet $(t_1,t_2,t_3)\in B$ such that $x\in\{t_1,t_2,t_3\}$. We define f(x)=t. Now, A is a set of size 2n+1, and B is a set of size n. Therefore there must exists a triplet (t_1,t_2,t_3) such that $f^{-1}(t_1,t_2,t_3)$ has size a. But then a is a thus, a has three consecutive numbers.

4. (10 marks) Suppose that for every pair of cities in a country, there is a direct one way road connecting them in one direction or the other, i.e., if A, B are two cities, then there is either a road from A to B, or from B to A (but not both). Use mathematical induction to show that there is a city that can be reached from every other city either directly or via exactly one other city.

Solution: First write the induction hypothesis S(n): in any set of n cities, where we have one way road between every pair of cities, there is a city that can be reached from every other city either directly or via exactly one other city.

As base case, S(1) is trivially true: there is only one city, and hence, it can be directly reached from itself.

Now assume S(n) is true, and we need to prove that S(n+1) is true. Let A be a set of n+1 cities. Let c be any city in A, and let B be the set $A \setminus \{c\}$, i.e., cities in A other than c. Since B has size n, we can imply induction hypothesis on B – there is a city $c^* \in B$ such that every city in B has a one way road to c^* or has a one way road to c^* via some other city in B. If there is a one way road from c to c^* , then c^* is the desired city and we are done.

Hence, the trickier case is when there is a one way road from c^* to c. Let B_1 be the set of cities in B which have one way road to c, and B_2 be the remaining cities in B for which there is a one way road from c to these cities. Note that $c^* \in B_1$. Now, two cases arise:

- There is a city $x \in B_2$ such that there is a road from x to c^* . Then we can go from c to x to c^* . Hence, c^* is the desired city.
- For every city $x \in B_2$ there is a road from c^* to x. But now, consider a city $x \in B_2$. We know that either there is a direct road to c^* or via some other city y. The first option is ruled out by assumption. For the second case to happen, y must lie in B_1 (otherwise we won't have a road from y to c_1^*). Since $y \in B_1$, we have a road from y to c. Thus every city in B_2 can reach c in two steps. Every city in B_1 can reach c in 1 step. Thus, c is the desired city.