02-03 范畴当中的箭头

LATEX Definitions are here.

沿用上一节提到的自由变量。我们规定:

• $c_1 \xrightarrow{c} c_2 =$ 所有从 c_1 射向 c_2 的箭头构成的集 。

(i) Note

上述断言仅对于**局部小范畴**成立, 其他范畴里 $c_1 \xrightarrow{c} c_2$ 未必构成集。

范畴 C 中特定的箭头可以进行复合运算:

$$\overset{\mathsf{C}}{\circ} : \underbrace{ (\mathsf{c}_1 \overset{\mathsf{C}}{\to} \mathsf{c}_2) | \overset{\mathsf{Set}}{\times} [(\mathsf{c}_2 \overset{\mathsf{C}}{\to} \mathsf{c}_3)] \overset{\mathsf{Set}}{\to} [(\mathsf{c}_1 \overset{\mathsf{C}}{\to} \mathsf{c}_3)] }_{ (j_1 \overset{\mathsf{C}}{\circ} j_2) |}$$

如果我们还知道箭头 f_1 , j , f_2 分别属于 $c_1 \rightarrow c_1'$, $c_1 \rightarrow c_2$, $c_2 \rightarrow c_2'$ 那么便可知

(f₁^{op} ○ j) ○ f₂ = f₁^{op} ○ (j ○ f₂),
 即箭头复合运算具有结合律。

另外固定住一侧实参便可获得新的函数:

$$\bullet \quad \overbrace{(f_1^{\mathrm{op}} \circ _)}^{\, \subset} : \underbrace{(c_1 \xrightarrow{\mathsf{c}} _)}^{\, \subset} \xrightarrow{\overset{\mathsf{Cat}}{\mathsf{c}} \to \mathsf{Set}} \underbrace{(c_1' \xrightarrow{\mathsf{c}} _)}_{\, \ \ } \\ j \quad \longmapsto \underbrace{(f_1^{\mathrm{op}} \circ j)}_{\, \ \ \ \ \ \ \ } \\ [c_1 \xrightarrow{\mathsf{c}}]$$

称作**前复合**。下图有助于形象理解:

 $\bullet \quad \overbrace{(_ \circ f_2)}^{\mathsf{C}} : \overbrace{(_ \to \mathsf{c}_2)}^{\mathsf{C}} \xrightarrow{\overset{\mathsf{Call}}{\longrightarrow} \mathsf{Set}} \overbrace{(_ \to \mathsf{c}_2')}^{\mathsf{C}}$ $j \quad \longmapsto \quad \overbrace{(j \circ f_2)}^{\mathsf{C}}$

称作后复合。 下图有助于形象理解:

根据上面的定义不难得出下述结论:

- $(f_1^{\text{op}} \circ _) \circ (_ \circ f_2) = (_ \circ f_2) \circ (f_1^{\text{op}} \circ _)$ $(f_1^{\text{op}} \circ _) \circ (f_1^{\text{op}} \circ _)$ $(f_1^{\text{op}} \circ _) \circ (f_1^{\text{op}} \circ _)$
- $(-\circ j)$ \circ $(-\circ f_2)$ = $(-\circ (j\circ f_2))$ 前复合与复合运算的关系
- $(j \circ _)$ \circ $(f_1^{\text{op}} \circ _) = ((f_1^{\text{op}} \circ j) \circ _)$ 后复合与复合运算的关系

箭头对实参的应用

范畴论里函数的应用亦可视作复合。 假如 a_1 为 c_1 的全局元素则可规定

 $\bullet \quad \overline{c_1 j} = \overline{c_1 \circ j}$

恒等箭头

范畴 C 内的每个对象都有恒等映射:

$$\bullet \quad _{:\mathsf{c}_1}\mathrm{id} : \boxed{\mathsf{c}_1 \overset{\mathsf{C}}{\rightarrow} \mathsf{c}_1} \\ \boxed{c_1 \mapsto c_1}$$

如此我们便可以得出下述重要等式:

$$\begin{array}{ccc}
\bullet & \begin{bmatrix} c & c \\ c_1 & o & j \end{bmatrix} = j \\
& = j & c \\
& = j & c$$

此外还可以得知

- $(\underline{c_1} \operatorname{id} \circ \underline{}) : (\underline{c_1} \to \underline{}) \xrightarrow{\underline{c} \to \operatorname{Set}} (\underline{c_1} \to \underline{})$ 为恒等自然变换,可记成是 $\underline{c}_{\operatorname{cai}}(\underline{c_1} \to \underline{})$
- $(-\circ : c_2 id): (-\to c_2) \xrightarrow{C^{op} \to Set} (-\to c_2)$ 为恒等自然变换,可记成是 $(-\to c_2)$ id 。

单满态以及同构

接下来给出单/满态和同构的定义。

• \boldsymbol{j} 为**单态**当且仅当对任意 c_1' 若有 $\boldsymbol{f_1}, \boldsymbol{f_1'}: c_1 \xrightarrow{c} c_1'$ 满足 $\boldsymbol{f_1}^{\mathrm{op}} \circ \boldsymbol{j} = \boldsymbol{f_1'}^{\mathrm{op}} \circ \boldsymbol{j}$ 则有 $\boldsymbol{f_1}^{\mathrm{op}} = \boldsymbol{f_1'}^{\mathrm{op}} \circ \boldsymbol{j}$ 。详情见下图:

• j 为**满态**当且仅当对任意 \mathbf{c}_2' 若有 \mathbf{f}_2 , \mathbf{f}_2' : $\mathbf{c}_2 \to \mathbf{c}_2'$ 满足 $\mathbf{j} \circ \mathbf{f}_2 = \mathbf{j} \circ \mathbf{f}_2'$ 则有 $\mathbf{f}_2 = \mathbf{f}_2'$ 。详情见下图:

• i 为**同构**当且仅当存在 j': $c_2 \xrightarrow{c} c_1$ 使得 $j \circ j' = {}_{:c_1} id$ 且 $j' \circ j = {}_{:e_2} id$ 。 此时 c_1, c_2 间的关系可记作 $c_1 \cong c_2$ 。

若还知道 $j = j_1$ 且 $j_2 : c_2 \rightarrow c_3$ 则有

- 若 j₁, j₂ 为单态 / 满态 / 同构
 则 j₁ j₂ 为单态 / 满态 / 同构;
- 若 j_1 j_2 为同构 且 j_1 , j_2 中有一个为同构 则 j_1 , j_2 两者皆构成同构。

不仅如此我们还可以得出下述结论:

- c₁ 为单态 ,
 由 :c₁! 的唯一性可知 ;
- $_{:0}!=_{:1}$;为同构,
 因为 $0 \to 0=\{_{:0}\mathrm{id}\}$ 并且 $1 \to 1=\{_{:1}\mathrm{id}\}$

同构与自然性

下图即为自然性对应的形象解释。 后面会将自然性进行进一步推广。

现提供自然变换 η_2 满足自然性 —— 即对

任意 C 中对象 c, c' 以及

任意 C 中映射 $f: c \to c'$ 都有 $(f^{op} \to c_2)$ $c \to c'$ $c'^{\eta_2} = c^{\eta_2} \circ (f^{op} \to c'_2)$:

那么我们便会有下述结论:

• $c_2 \cong c_2'$ 当且仅当对任意 C 中的对象 cc⁷² 都是同构 。此时称 <mark>72</mark> 为**自然同构** 。

现提供自然变换 η_1 满足自然性 —— 即对

任意 C 中对象 c, c' 以及 任意 C 中映射 $f: c \xrightarrow{c} c'$ 都有 $(c_1 \xrightarrow{c} f) \circ c'^{\eta_1} = c^{\eta_1} \circ (c_1' \xrightarrow{c} f)$:

那么我们便会有下述结论:

 $c_1 \cong c_1'$ 当且仅当对任意 C 中的对象 $c_2 \cong c_1'$ c⁷1 都是同构 。此时称 <mark>7</mark>1 为**自然同构** 。

上一页的第一条定理若用交换图表示则应为

⇒ 易证, \leftarrow 用到了米田技巧 将 c 换成 c₂:

为了方便就用 etc 表示 $\frac{1}{100}$ 。由上图 知 $f^{\text{op}}(c'^{\frac{\eta_2}{2}}) = (f^{\text{op}} \circ \text{etc}) (见右图底部和右侧箭头),$ 故 $c'^{\frac{\eta_2}{2}} = c' \longrightarrow \text{etc} (注意到箭头 <math>f^{\text{op}} : c' \longrightarrow c_2);$

而 $c'^{\frac{\eta_2}{2}} = c' \xrightarrow{c} \text{etc} = c'^{\frac{c}{(-\text{oetc})}}$ 始终是同构 故 $\text{etc}: c_2 \xrightarrow{c} c'_2$ 也是同构 。

(i) Note

高亮部分省去了部分推理过程, 具体在米田嵌入处会详细介绍。

上一页的第二条定理若用交换图表示则应为

 \Rightarrow 易证, \Leftarrow 用到了米田技巧 将 c 换成 c_1 :

为了方便就用 etc 表示 $\frac{1}{|c_1|} id(c_1^{\eta_1})$ 。由上图

知 $f(c'^{\eta_1}) = (etc \circ f)$ (见右图底部和右侧箭头),

故 $\mathbf{c'}^{n_1} = \mathbf{etc} \xrightarrow{\mathbf{c}} \mathbf{c'}$ (注意到箭头 $\mathbf{f} : \mathbf{c_1} \xrightarrow{\mathbf{c}} \mathbf{c'}$);

而 c'ⁿ1 = etc → c' = c' (etc°) 始终是同构

故 $\operatorname{etc}: \operatorname{c}_1 \to \operatorname{c}_1'$ 也是同构 。

(i) Note

高亮部分省去了部分推理过程,

具体在米田嵌入处会详细介绍。