Интерполирование. Интерполяционные формулы Лагранжа и Ньютона. Точность интерполяционных формул. Интерполяция кубическими сплайнами

Чеховской Игорь Сергеевич

Понятие интерполяции

Частный случай аппроксимации.

Построение аналитического выражения функции по ее таблице значений и нахождение промежуточных значений (восстановление или доопределение функции).

Пусть y(x) - некоторая функция, для которой известна лишь таблица ее значений:

$$\begin{cases} y(x_0) = y_0 \\ y(x_1) = y_1 \\ \dots \\ y(x_n) = y_n \end{cases}$$

Примеры применения:

- ▶ Экспериментальные данные
- ightharpoonup Аналитическое выражение y(x) очень сложное

 $P_n(x)$ - любая функция, принимающая в заданных точках заданные значения. В общем случае бесконечное количество функций $P_n(x)$.

Формулировка задачи

Задача алгебраической интерполяции:

Для данных **различных** значений $x=x_0,x_1,\ldots,x_n$ и $y=y_0,y_1,\ldots,y_n$ найти алгебраический полином $P_n(x)$ степени n, удовлетворяющий условиям:

$$\begin{cases} P_n(x_0) = y_0 \\ P_n(x_1) = y_1 \\ \dots \\ P_n(x_n) = y_n \end{cases}$$

Точки $x=x_0,x_1,\ldots,x_n$ – узлы интерполяции, $P_n(x)$ – интерполяционный полином, формулы для нахождения $P_n(x)$ – интерполяционные формулы.

Формулировка задачи

Ищем $P_n(x)$ в виде полинома n-ой степени с неизвестными коэффициентами a_0, \ldots, a_n :

$$P_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

Используя условия

$$\begin{cases} P_n(x_0) = a_0 + a_1x_0 + a_2x_0^2 + \dots + a_nx_0^n = y_0 \\ P_n(x_1) = a_0 + a_1x_1 + a_2x_1^2 + \dots + a_nx_1^n = y_1 \\ \dots \\ P_n(x_n) = a_0 + a_1x_n + a_2x_n^2 + \dots + a_nx_n^n = y_n, \end{cases}$$

получим систему n+1 линейных алгебраических уравнений (СЛАУ) с n+1 неизвестными. Решение СЛАУ существует и единственно, так как матрица системы — матрица Вандермонда, ее определитель $\prod_{0\leq i,j\leq n}(x_j-x_i)$ — ненулевой при $x_i\neq x_j,\ i\neq j.$

Решив СЛАУ, получим интерполяционный полином $P_n(x)$.

Формулировка задачи

Пример:

$$x_0=0, x_1=1, x_2=2$$
 и $y_0=1, y_1=1, y_2=3.$ Интерполяционный полином $P_n(x)=1-x+x^2$

Проблемы:

- нужно решать СЛАУ специального вида
- полученная СЛАУ чувствительна к ошибкам округления при решении – плохо обусловлена.

Интерполяционная формула Лагранжа

Ищем

$$P_n(x) = \sum_{i=0}^n y_i \varphi_i(x),$$

где $\varphi_i(x)$ – полином степени n такой, что $\varphi_i(x_j)=\delta_{ij}$. Каковы $\varphi_i(x)$? Имеет место

$$\varphi_i(x) = \Phi_i(x - x_0)(x - x_1) \dots (x - x_{i-1})(x - x_{i+1}) \dots (x - x_n).$$

Подставим $x = x_i$:

$$\Phi_i(x) = \frac{1}{(x_i - x_0)(x_i - x_1) \dots (x_i - x_{i-1})(x_i - x_{i+1}) \dots (x_i - x_n)}.$$

Интерполяционный полином в форме Лагранжа:

$$P_n(x) = \sum_{i=0}^n y_i \frac{\prod\limits_{j \neq i} (x - x_j)}{\prod\limits_{i \neq i} (x_i - x_j)}$$

$$P_{n}(x) = \sum_{i=0}^{n} y_{i} \frac{\omega_{n}(x)}{(x - x_{i})\omega'_{n}(x_{i})}, \ \omega_{n}(x) = \prod_{j} (x - x_{j}), \ \omega'_{n}(x_{i}) = \prod_{j \neq i} (x_{i} - x_{j})$$

Примеры

n = 1 (прямая):

$$P_n(x) = \frac{x-b}{a-b}y_0 + \frac{x-a}{a-b}y_1$$

n = 2 (парабола):

$$P_n(x) = \frac{(x-b)(x-c)}{(a-b)(a-c)}y_0 + \frac{(x-a)(x-c)}{(b-a)(b-c)}y_1 + \frac{(x-a)(x-b)}{(c-a)(c-b)}y_2$$

Недостаток формулы Лагранжа: необходимость перевычисления всего полинома при смене набора узлов интерполяции (например, при добавлении узлов).

Как преодолеть этот недостаток?

Разделенные разности

Определим разделенные разности следующим образом:

$$y(x_{i}, x_{j}) = \frac{y_{i} - y_{j}}{x_{i} - x_{j}},$$

$$y(x_{i}, x_{j}, x_{k}) = \frac{y(x_{i}, x_{j}) - y(x_{j}, x_{k})}{x_{i} - x_{k}},$$

$$y(x_{i}, x_{j}, x_{k}, x_{m}) = \frac{y(x_{i}, x_{j}, x_{k}) - y(x_{j}, x_{k}, x_{m})}{x_{i} - x_{m}}$$

Пример с 4 узлами (разделенная разность 3-го порядка):

<i>x</i> ₀	<i>y</i> ₀			
		$y(x_0,x_1)$		
<i>x</i> ₁	<i>y</i> ₁	\ \(\lambda \cdot	$y(x_0,x_1,x_2)$	
V-	<i>y</i> ₂	$y(x_1,x_2)$	$y(x_1,x_2,x_3)$	$y(x_0, x_1, x_2, x_3)$
<i>x</i> ₂	<i>y</i> 2	$y(x_2,x_3)$	$y(\lambda_1,\lambda_2,\lambda_3)$	
<i>X</i> 3	<i>У</i> 3) (~2, ~3)		

Интерполяционный полином в форме Ньютона

Ищем полином n - ой степени в виде:

$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0)(x - x_1) \dots (x - x_{n-1})$$

Определим коэффициенты:

$$y_{0} = P_{n}(x_{0}) = a_{0},$$

$$y_{1} = P_{n}(x_{1}) = y_{0} + a_{1}(x_{1} - x_{0}) \Rightarrow a_{1} = \frac{y_{1} - y_{0}}{x_{1} - x_{0}} = y(x_{0}, x_{1})$$

$$y_{2} = P_{n}(x_{2}) = y_{0} + \frac{y_{1} - y_{0}}{x_{1} - x_{0}}(x_{2} - x_{0}) + a_{2}(x_{2} - x_{0})(x_{2} - x_{1}) \Rightarrow$$

$$\Rightarrow a_{2} = \frac{1}{x_{2} - x_{0}} \left(\frac{y_{2} - y_{1}}{x_{2} - x_{1}} - \frac{y_{1} - y_{0}}{x_{1} - x_{0}} \right) = y(x_{0}, x_{1}, x_{2})$$
...

Формула Ньютона:

$$P_n(x) = y_0 + y(x_0, x_1)(x - x_0) + y(x_0, x_1, x_2)(x - x_0)(x - x_1) + \dots + y(x_0, x_1, \dots, x_n)(x - x_0)(x - x_1) \dots (x - x_{n-1})$$

Интерполяционный полином в форме Ньютона

Вычисление по схеме Горнера:

$$P_{n}(x) = y_{0} + \dots \dots + (x - x_{0}) \cdot [y(x_{0}, x_{1}) + \dots \dots + (x - x_{1}) \cdot [y(x_{0}, x_{1}, x_{2}) + \dots \dots \dots + (x - x_{n-1}) \cdot y(x_{0}, x_{1}, \dots, x_{n})] \dots]]$$

Удобнее, если узлы не меняются.

Погрешность полинома Ньютона

 $P_n(x)$ - полином степени n. Представим погрешность в виде $y(x)-P_n(x)=\omega_n(x)r(x)$, где $\omega_n(x)=\prod_{i=0}^n(x-x_i)$. Вспомогательная функция $q(\xi)=y(\xi)-P_n(\xi)-\omega_n(\xi)r(x)$ имеет n+2 нуля: $\xi=x_0,x_1,\ldots,x_n,x$. Пусть y(x) имеет n+1 непрерывную производную, тогда

$$q^{(n+1)}(\xi) = y^{(n+1)}(\xi) - (n+1)!r(x).$$

Между двумя нулями гладкой функции лежит нуль ее производной. Поэтому между крайними из n+2 нулей функции лежит нуль n+1-й производной, т. е. $q^{(n+1)}(\xi^*)=0$, тогда $r(x)=\frac{y^{(n+1)}(\xi^*)}{(n+1)!}$ Итоговая оценка погрешности:

$$|y(x) - P_n(x)| \le \frac{M_{n+1}}{(n+1)!} |\omega_n(x)|,$$

где $M_{n+1}=\max |y^{(n+1)}(\xi)|$, а ξ лежит между наименьшим и наибольшим из значений x,x_0,x_1,\ldots,x_n .

Погрешность при равномерном расположении узлов

Пусть n=2k+1. Оценим погрешность в центральном интервале. Экстремум $\omega_n(x)$:

$$\left[\frac{h}{2}\frac{3h}{2}\dots\frac{(2k+1)h}{2}\right]^2 =$$

$$= \left[\frac{(2k+1)!h^{k+1}}{k!2^{2k+1}}\right]^2$$

Пользуясь формулой Стирлинга $p! pprox \sqrt{2\pi p} (p/e)^p$ имеем:

$$|y(x) - P_n(x)| < \sqrt{2/\pi n} M_{n+1} (h/2)^{n+1} = C h^{n+1}$$

Т.е. полином Ньютона имеет погрешность $O(h^{n+1})$, если y(x) имеет n+1 непрерывную производную.

Вычислительная сложность интерполяционных формул

Формула Лагранжа:

$$2n^2 + 2n = O(n^2)$$

Формула Ньютона:

$$n(n+1)/2 = O(n^2)$$

– подготовительный этап с построением таблицы конечных разностей, который выполняется один раз. Вычисление формулы Ньютона по схеме Горнера:

$$3n = O(n)$$

Феномен Рунге

$$f(x) = \frac{1}{1 + 25x^2}$$

$$x_i = \frac{2i}{n} - 1, \quad i \in \{0, 1, \dots, n\}$$

Погрешность растет неограниченно с увеличением числа узлов интерполяции!

Сплайны. Определения

Пусть интервал [a,b] разбит на подынтервалы $[x_{i-1},x_i]$, i=1,2,...,n, причем $a=x_0,\ x_n=b$.

Сплайн на [a,b] – это функция, непрерывная вместе со своими производными вплоть до некоторого порядка на [a,b], и которая на каждом $[x_{i-1},x_i]$ является некоторым полиномом.

Степень сплайна – максимальная из степеней полиномов, задающих сплайн на подынтервалах $[x_{i-1},x_i],\ i=1,2,...,n.$

Дефект сплайна – разность между степенью сплайна и наивысшим порядком производной сплайна, непрерывной на [a,b] (то, сколько сплайну не хватает до "полноценного полинома").

Исторически сплайн (spline) – гибкая металлическая линейка, которая применялась для решения задачи геометрической интерполяции.

Простейшие сплайны – степень 1, дефект 1 (кусочно-линейная функция).

Сплайны. Определения

Сплайны 2-й степени – квадратичные или параболические.

Сплайны 3-й степени – кубические сплайны.

Интерполяционные сплайны – сплайны, используемые для задачи интерполяции.

Узлы сплайна – точки x_i , i=0,1,2,...,n, определяющие отрезки, на которых сплайн – это полином (могут не совпадать с узлами интерполяции!).

Построение

Сплайны степени 1, дефекта 1 однозначно строятся по $x_0, x_1, ..., x_n$ и $f_0, f_1, ..., f_n$.

Далее рассматриваем лишь сплайны дефекта 1, их вполне достаточно во многих приложениях.

Пусть p — степень сплайна, дефект равен 1. Чтобы построить сплайн, нужно знать (p+1)n коэффициентов полиномов на n подынтервалах. Имеем

- ightharpoonup p(n-1) условий непрерывности в узлах для сплайна и его производных до (p-1)-го порядка;
- ▶ (n+1) условие интерполяции.

Не хватает (p+1)n-(p(n-1)+n+1)=p-1 условий! Обычно задают их на границах отрезка [a,b]. Если p - четное, то требуется (p-1) - нечетное число доп. условий, что приводит к асимметрии задачи. Наиболее популярны сплайны нечетной степени, особенно кубические.

Кубические сплайны

Кубический интерполяционный сплайн на отрезке [a,b] с сеткой $a=x_0 < x_1 < ... < x_n = b$ – это функция S(x), удовлетворяющая условиям:

- ightharpoonup S(x) полином 3-й степени на каждом из $[x_{i-1},x_i]$, i=1,2,...,n;
- ► $S(x) \in C^2[a, b]$;
- $> S(x_i) = f_i$ для i = 0, 1, ..., n.

Для однозначного построения нужны еще p-1=3-1=2 доп. условия. Возможные способы задания:

- ightharpoonup даны $S'(a) = f'_0$ и $S'(b) = f'_n$;
- ▶ даны $S''(a) = f_0''$ и $S''(b) = f_n''$;
- ▶ условие периодичности S'(a) = S'(b), S''(a) = S''(b).

Кубические сплайны

Рассмотрим

$$S''(a) = S''(x_0) = c_0, \ S''(b) = S''(x_n) = c_n.$$

Будем искать сплайн в виде

$$S(x) = a_{i-1} + b_{i-1}(x - x_{i-1}) + c_{i-1}\frac{(x - x_{i-1})^2}{2} + d_{i-1}\frac{(x - x_{i-1})^3}{6}$$

для $x \in [x_{i-1}, x_i]$, i = 1, 2, ..., n. При этом $S''(x_i) = c_i$, i = 0, 1, ..., n-1. S''(x) — линейная функция на $[x_{i-1}, x_i]$, определяется однозначно:

$$S''(x) = c_{i-1} \frac{x_i - x}{h_i} + c_i \frac{x - x_{i-1}}{h_i}, \ x \in [x_{i-1}, x_i], \ i = 1, 2, ..., n$$

С учетом $S(x_{i-1}) = f_{i-1}$, $S(x_i) = f_i$, i = 1, 2, ..., n, дважды проинтегрировав, получим:

$$S(x) = f_{i-1} \frac{x_i - x}{h_i} + f_i \frac{x - x_{i-1}}{h_i} + c_{i-1} \frac{(x_i - x)^3 - h_i^2(x_i - x)}{6h_i} + c_i \frac{(x - x_{i-1})^3 - h_i^2(x - x_{i-1})}{6h_i}$$

Кубические сплайны

Используя условие непрерывности

$$S'(x_i - 0) = S'(x_i + 0), i = 1, 2, ..., n - 1,$$

получим СЛАУ:

$$\begin{cases} \frac{h_i}{6}c_{i-1}+\frac{h_i+h_{i+1}}{3}c_i+\frac{h_{i+1}}{6}c_{i+1}=\frac{f_{i+1}-f_i}{h_{i+1}}-\frac{f_i-f_{i-1}}{h_i},\ i=1,2,...,n-1,\\ c_0,c_n-\text{заданы}. \end{cases}$$

Матрица системы – **трехдиагональная**, является матрицей с **диагональным преобладанием**, т.е.

$$\forall i = 1, 2, ..., n: |a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}|.$$

Признак Адамара неособенности матриц: матрица с диагональным преобладанием неособенна ($Det \neq 0$). Таким образом, решение СЛАУ на c_i существует и единственно. Может быть найдено **методом прогонки**, что требует $\mathcal{O}(n)$ арифметических операций.

Оценка погрешности интерполяции сплайнами

Теорема. Пусть $f(x) \in C^p[a,b], \ p=1,2,3$, а S(x) – ее интерполяционный кубический сплайн с краевыми условиями на S''. Тогда

$$\max_{x \in [a,b]} |f^{(k)}(x) - S^{(k)}(x)| = \mathcal{O}(h^{p-k}), \ k = 0, ..., p.$$

Этот результат также справедлив для других типов краевых условий на S.

Вариационное свойство сплайнов

Интерполяционный кубический сплайн S(x), удовлетворяющий условию

$$S''(a) = S''(b) = 0,$$

называется естественным сплайном.

Он минимизирует функционал

$$\mathcal{E}(\phi) = \int_{a}^{b} \left(\phi''(x)\right)^{2} dx,$$

задающий энергию упругой деформации гибкой балки (линейки), закрепленной в $x_0, x_1, ..., x_n$ и принимающий форму $\phi(x) \in C^2[a, b]$.

Ссылки

Шарый С. П.: Курс ВЫЧИСЛИТЕЛЬНЫХ МЕТОДОВ http:

//www.ict.nsc.ru/matmod/files/textbooks/SharyNuMeth.pdf