

aussian Random Vectors

- very important in detection/estimation/stoch. processes
 - 1) Noise reasonably modeled as Gaussian
 - 2) easy to work with involves only means and covariances
 - 3) Gaussian case bounds performance for other v.v.'s with same means/covariances.

-MMSE estimator for Granss, case some and has same MSE as LLSE estimator for other probs with same mean and covariance.

simple and linear in observations.

MMSE estimator for non-Gaussian case has better performance.

than that for Gauss. problems with same mean/covariance.

Gauss. case illuminates other probs.

Gaussian v.V.

W is normalized Gaussian v.v. if pdf $f_{W}(w) = \frac{1}{\sqrt{2\pi}} e^{-w^2/2}$

Easy to verify E[w] = 0, Var[w] = 1. (f $Z = \sigma w$, then $P(Z \le 3) = P(\sigma w \le 3) = P(w \le \frac{3}{\sigma})$ $F_{Z}(3)$ $F_{W}(\frac{3}{\sigma})$

 $f_{\frac{1}{2}}(z) = \frac{d}{dz} F_{\frac{1}{2}}(z) = \frac{d}{dz} F_{w}(\frac{3}{\sigma}) = \frac{1}{\sigma} f_{w}(\frac{3}{\sigma})$ $= \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{3^{2}}{2\sigma^{2}}}$ 0 - mean Gaussian r.v.

 $Var(z) = \sigma^2$ As $\sigma^2 \rightarrow 0$: density $\rightarrow \delta(z)$ impulse i.e. P(z=0) = 1.

write: $u \sim n(m, \sigma^2)$

- often easier to work with the 0-mean part: u= mu+ u

where \tilde{u} is 0-mean Gauss. v.v.

(MGF)

Moment Generating In. of Gaussian v.v. \tilde{n} (0, σ^2)

$$g_{z}(s) = E[e^{sz}] = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} e^{sz} e^{-\frac{3^2}{2\sigma^2}} dz$$

= e s²0^{7/2}
by completing square in MGF used to generate moments of 7 | exponent (see notes)

- can verify (Ex. 2.2)

$$E[z^{2k}] = \frac{(2k)! o^{2k}}{k! 2k} = (2k-1)(2k-3)(2k-5)...(3)(1)o^{2k}$$

$$E[Z^4] = 3\sigma^4$$
, $E[Z^b] = 15\sigma^b$...

3° 2k+1 odd for and Gamss. is even. This, $E[z^{2h+1}] = 0$ all $h = 0, 1, \dots$ odd moment = 0.

- For
$$u \sim n(m, \sigma^2)$$
, $u = m + \tilde{u}$

 $g_{u}(s) = E[e^{s(m+\overline{u})}] = E[e^{sm}e^{s\overline{u}}] = e^{sm}e^{s^2\sigma^2/2}$

f 13) uniquely determined by Juls). (up to set of measure 0) Thus $f_u(n) = n(m, \sigma^2)$ iff $g_u(s) = \exp(sm + \frac{s^2\sigma^2}{2})$

Gaussian Random Victors and MGE's

- view as
$$v$$
 vetor of $v \cdot v \cdot s = \frac{\pi}{2}$

Pub. density
$$f_{\frac{1}{2}}(\frac{1}{2})$$
 - joint pdf of components $\frac{1}{2}$,..., $\frac{1}{2}$ n.

Mean
$$E[z] = \begin{bmatrix} m_{z_i} \\ \vdots \end{bmatrix}$$
, $m_{z_i} = E[z_i]$

covariance
$$K_{\overline{t}} = E[(\overline{t} - m_{\overline{t}})(\overline{t} - m_{\overline{t}})^T]$$

$$(K_{\overline{t}})_{ij} = E[(\overline{t}_i - m_{\overline{t}_i})(\overline{t}_{j} - m_{\overline{t}_i})$$

$$MGF = g_{\overline{z}}(\underline{s}) = E(exp(\underline{s}^{T}\underline{z})]$$

- 11 components of random vector are iid, call random vector iid.

$$\underline{EX}: \underline{W} = \begin{bmatrix} v_1 \\ \vdots \\ w_n \end{bmatrix} \quad \text{where} \quad W_i \text{ iid } \sim \mathcal{N}(0,1)$$

$$f_{w}(w) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} e^{-w_{i}^{2}/2} = \frac{1}{(2\pi)^{n/2}} \exp\left(-\frac{w^{T}w}{2}\right) = \frac{1}{(2\pi)^{n/2}} \exp\left(-\frac{||w||^{2}}{2}\right)$$

So fulw) is splenically symmetric around origin

equal prob contours are lie on concentric spheres. around origin.

$$g_{\underline{w}}(\underline{s}) = E[e^{\underline{s}^T\underline{w}}] = E[e^{S_iw_i} + ... + S_nw_n] = E[\prod_{i=1}^n e^{S_iw_i}]$$

$$= \prod_{i=1}^n E[e^{S_iw_i}] = \prod_{i=1}^n e^{S_i^2/2} = \exp[\frac{\underline{s}^T\underline{s}}{2}]$$

$$= \exp[\frac{\|\underline{s}\|^2}{2}]$$

Definition $\{\bar{z}_1, ..., \bar{z}_n\}$ a ret of jointly Gaussian v.v.'s and $\bar{z} = \begin{bmatrix} \bar{z}_1 \\ \bar{z}_n \end{bmatrix}$ is a Gaussian random vector if for all real vectors $\mathbf{z} = \begin{bmatrix} s_1 \\ \bar{z}_n \end{bmatrix}$, the linear combination $\mathbf{z} = \begin{bmatrix} s_1 \\ s_n \end{bmatrix}$, the linear combination $\mathbf{z} = \begin{bmatrix} s_1 \\ s_n \end{bmatrix}$

Intuition: By CLT, Sum of large # of small indep. v. v. 's

is Gaussian. e.g. broadland wine passed through a

narrowband brear filter: output at given time is Gaussian

Linear comb. of outputs at diff. times also sum of small

set of underlying v.v.'s. Thus, sum is again ~ Gaussian

Thus, set of outputs at diff. times is jointly Gaussian

- $13 \left\{ \frac{2}{3}, \dots, \frac{2}{3} n \right\} JG$, then Z_i is Gaussian r.v. for each i Take $S_i = 1$, $S_i = 0$ May $j \neq i$. Any subset of $Z_i, \dots, Z_n = 1$ Z_i . - However, Z_i 's individually Gaussian Z_i Z_i

Since Gaussian is symmetric about 0, z_1 is Gaussian. $\sim n(0,1)$.

But $z_1 + z_2 = 0$ w.p. y_2 . Thus, $\{z_1, z_2\}$ not JG.

(A150, $E[z_1 z_2] = E[z_1 z_1 x] = E[z_1^2] E[x] = 0 \Rightarrow z_1, z_2$ uncorrelated that not indep. However, if $\{z_1, z_2\}$ were JG, then uncorrelated \Rightarrow indep.)

MGF of 0-mean Gaussian random vector
$$\vec{z} = \begin{bmatrix} \vec{z} \\ \vdots \\ \vec{z} n \end{bmatrix}$$

$$g_{\vec{z}}(\underline{s}) = E[e^{\underline{s}T\underline{z}}] = E[e^{\underline{\Sigma}s;\vec{z};\vec{z}}]$$

Let
$$X = S^T = S^$$

Now
$$g_{x}(s) = \exp\left[s^{2}\sigma_{x}^{2}/2\right] \Rightarrow g_{x}(1) = \exp\left(\sigma_{x}^{2}/2\right)$$

 $g_{z}(\underline{s}) = E\left[e^{x}\right] = \exp\left(\sigma_{x}^{2}/2\right)$

$$\sigma_{x}^{2} = \varepsilon \left(\frac{x^{2}}{2} \right) = \varepsilon \left[\underline{s}^{T} \underline{z} \underline{z}^{T} \underline{s} \right] = \underline{s}^{T} \underline{k}_{\underline{z}} \underline{s}$$

$$\Rightarrow g_{z}(\underline{s}) = \exp \left[\underline{\underline{s}^{T} \underline{k}_{\underline{z}} \underline{s}} \right]$$

For non-zero mean JGRV.
$$u = \begin{bmatrix} u_1 \\ u_n \end{bmatrix}$$
 $m_i = E[u_i]$ $m = \begin{bmatrix} m_1 \\ \vdots \\ m_n \end{bmatrix}$

Let
$$U = m + \frac{1}{2}$$
 where $\frac{1}{2}$ is 0-mean JGRV.
 $g_{U}(\underline{s}) = E[\exp(\underline{s}^{T}\underline{m} + \underline{s}^{T}\underline{z})] = \exp(\underline{s}^{T}\underline{m})g_{\underline{z}}(\underline{s})$

Now
$$K_{\underline{u}} = K_{\underline{z}}$$
 = $exp\left(\underline{s}^T\underline{m} + \underline{\underline{s}^T}\underline{K}_{\underline{u}}\underline{\underline{s}}\right)$ (1)

completely specified by m, ku

- Denote 4 ~ n(m, ku)
- conversely, can show if U has MGF in (1), then each linear cont. of components of U is Gaussian.

Thm: Unn(m, Ku) if gu(s) is given by (1).

Note if
$$W_1, ..., W_n$$
 iid $\sim n(0,1)$, then $W = \begin{bmatrix} W_1 \\ W_n \end{bmatrix}$ is $JGRV. K_{\underline{w}} = I$

$$g_{\underline{w}}(\underline{s}) = \exp\left(\frac{\underline{s}^T\underline{s}}{2}\right) \quad \text{as before.}$$

nt Probability Densities for Gaussian Random Vectors

Let A be $n \times n$, W iid normalized Gaussian random vector $\frac{1}{2} = AW \qquad K_{\frac{1}{2}} = E[\underbrace{2}_{\frac{1}{2}}^{T}] = E[A_{\underline{W}} \underbrace{w}^{T} A^{T}] = AA^{T} \text{ since } K_{\underline{W}} = I$ $g_{\frac{1}{2}}(\underline{s}) = E[e^{\underline{s}^{T}}] = E[exp(\underline{s}^{T} A\underline{w})] = E[exp(A^{T}\underline{s})^{T}\underline{w}]$ $= g_{\underline{W}}(A^{T}\underline{s}) = exp[\underbrace{\underline{s}^{T} A A^{T}\underline{s}}_{2}] = exp[\underbrace{\underline{s}^{T} K_{\frac{1}{2}}\underline{s}}_{2}]$

Thus, 3 is 0-mean GRV.

for some A and iid normalized GRV W.

Joint pdf of & = AW:

Let $\underline{a}_1, \dots, \underline{a}_n$ be n colo q AThen $\underline{z} = \begin{bmatrix} z_1 \\ \vdots \\ z_n \end{bmatrix} = \begin{bmatrix} \underline{a}_1 \dots \underline{a}_n \end{bmatrix} \begin{bmatrix} w_1 \\ \vdots \\ w_n \end{bmatrix} = \sum_j \underline{a}_j w_j.$

- For any sample values wi, ..., won of w, value of \(\frac{7}{2} \) is $3 = \sum_{j} = 2 \) w_{j}$.
- Assume A invertile, i.e. $\exists A^{-1} st. AA^{-1} = A^{-1}A = In$
 - =) a,,.., an forms basis for Rn.

If A not invertible, then possible sample values for Ξ lie in proper subspace of \mathbb{R}^n and Ξ would not have post.

- Consider small cube S on a side of sample values for \underline{W} i.e. Consider set BS of vectors for which $0 \le w_j \le S$ for $1 \le j \le n$ Set BS' of vectors 3 = Aw S.t. $w \in BS$

maps into parallelopiped whose sides are $a_1 \delta_1, \ldots, a_n \delta_n$ $|\det(A)| = vol. of parall. with sides <math>a_j$, $i \leq j \leq n$ (See Strang) If det A = 0, then singular case

Cube Bs with vol.
$$5^{n} \xrightarrow{A}$$
 parall. with vol. Idet A15ⁿ
Let 3 be sample value of $\frac{3}{2}$

$$w = A^{-1}3$$

Then
$$f_{\frac{1}{2}}(\frac{1}{2})|d\frac{3}{2}| = f_{w}(w)|dw|$$
 (2)
 $S^{n}|dvt A|$ $S^{n}=vol.qBS$
 $=vol.qparall.$

So $\left|\frac{d_3}{d_1}\right| \left|\frac{d_1}{d_2}\right| = \left|\frac{d_1}{d_1}\right|$ Use in (2) and $f_{1}(w) = f_{1}(A^{-1}3)$

$$f_{\frac{7}{2}}(3) = f_{w}(A^{-1}3) = \exp\left[-\frac{1}{2}3^{T}(A^{-1})^{T}A^{-1}3\right]$$

$$\frac{1}{|dut A|} = \exp\left[-\frac{1}{2}3^{T}(A^{-1})^{T}A^{-1}3\right]$$

Since $K_{\frac{7}{2}} = AA^{T}$, $K_{\frac{3}{2}} = (A^{-1})^{T}A^{-1}$ $det(K_{\frac{7}{2}}) = det(A) detA^{T} = (detA)^{\frac{1}{2}} > 0$, (A | mer tible)Then $f_{\frac{3}{2}}(\frac{3}{2}) = \frac{exp\left[-\frac{1}{2} \frac{3}{3}^{T}K_{\frac{3}{2}}^{-1}\frac{3}{3}^{*}\right]}{(2\pi)^{N/2}}$ (3)

- (3) has no meaning when $k \geq is$ singular, then $k \geq is$ does not exist. Aw maps set of n-dim w to subspace $P_{\frac{1}{2}}(\frac{1}{2}) = 0$ of dim n. Some components of $\frac{1}{2}$ can be expressed subspace, as his comb of others. Define lin indep, components impulsive as random vector $\frac{1}{2}$ and work with this.
 - Now generalize: $U = M + AW = M + \widetilde{U}$ where $\widetilde{U} = AW$ Assume dut $A \neq 0$

$$f_{\underline{u}}(\underline{u}) = \exp \left[\frac{-\frac{1}{2} (\underline{u} - \underline{m})^{\mathsf{T}} K_{\underline{u}}^{\mathsf{T}} (\underline{u} - \underline{m})}{(2\pi)^{n/2}} \sqrt{dut \, K_{\underline{u}}} \right]$$

Ku = E[ũũT] = Kỹ.

- general form of density for U ~ n(m, ky) if det (Ky) \$0.

- Assume & 0-mean for simplicity.
- f=(3) depends on KZ, not directly on A
 - 3 T Kz 3 is quadratic in 3. {3: 3 T Kz 3 = c}

is an ellipsoid centered at origin

=) contours of equal prot. forms set of concentric ellipsoids

Axis of ellipsoids are eigenverters of tz.

2-D example: 0-mean GRV 3

$$\underline{z} = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \qquad E[z_i^2] = \sigma_i^2$$

$$k_{\bar{z}} = \begin{bmatrix} \sigma_1^2 & k_{12} \\ k_{12} & \sigma_2^2 \end{bmatrix}$$

 $E[t_1,t_2]=k_{12}$. Let f=normalized covariance = $k_{12}/(\sigma_1\sigma_2)$

For any joint distr. r.v. 5 7,72,

(E(+, +,]) ' \(E(+, 2] \(E(+, 2]).

Thmo , 1 Pl = 1.

Now dut (kz) = 5,202 - k12 = 5,202 (1-42) >0 iff 101 <1

$$\kappa_{\bar{e}}^{-1} = \frac{1}{1 - \rho^2} \begin{bmatrix} 1/\sigma_1^2 & -\rho/(\sigma_1 \sigma_2) \\ -\rho/(\sigma_1 \sigma_2) & 1/\sigma_2^2 \end{bmatrix}$$

$$f_{\frac{7}{2}}(3) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left[-\frac{\left(\frac{3}{\sigma_1}\right)^2}{\sigma_1^2}\right]$$

$$f_{\frac{7}{2}}(3) = \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}} \exp\left[-\frac{\left(\frac{3_{1}}{\sigma_{1}}\right)^{2}+2\rho\left(\frac{3_{1}}{\sigma_{1}}\right)\left(\frac{3_{1}}{\sigma_{2}}\right)-\left(\frac{3_{1}}{\sigma_{2}}\right)^{2}}{2\left(1-\rho^{2}\right)}\right]$$

11 P=0 and 0, >02

Much better to deal with vector notation!

(variance Matrices

- following applies to Baussian as well in Gaussian case.
- K is <u>crvanance matrix</u> if 3 o-mean RV & s.t. $K = E[EE^T]$
- nxn matrix k positive remidquite (psd) if symmetric and bTKb≥0 & b∈R". It is positive definite (pd) if psd and bTKb>0 + b + 0

Properties of covariance matrices

- 1) Every Cov. matrix K is psd.
 - symmetric: $K = E[\frac{3}{2}\frac{3}{2}^{T}]$ for 0-mean RV $\frac{3}{2}$ $K_{ij} = E[z_i z_j] = E[z_i z_i]$ =Kji Vi,j

Let $b \in \mathbb{R}^n$, $X = b^T \ge 0 \le E[x^2] = E[b^T \ge \ge Tb] = b^T K b$

- Recall $\lambda \in \Phi$ is eigenvalue of K and $g \neq 0$ is eigenvector of K $V_q = \lambda q$
 - all eigenvalues of K are im-negative (positive) if K psd (pd)
 - eigenvectors can be taken to be real
 - eigenvectors of diff. eigenvalues are orthogonal
 - If eigenvalue of multiplings, then it has is orthogonal eigenvectors
 - =) can chose n orthogral eigenvectors. Can normalize to orthonormal orthonormal orthograph (orthogonal) matrix whose colo 9,,..., 9 n are orthonormal = eigenvectors above 5.t. $KQ = Q\Lambda$ $\Lambda = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_n \end{bmatrix}$ $\lambda_i = \text{eigenvalue for } g_i$

 $\mathcal{Q}^{\mathsf{T}}\mathcal{Q} = \mathcal{I}$, $\mathcal{Q}^{-1} = \mathcal{Q}^{\mathsf{T}}$.

 $\kappa^{-1} = \alpha \Lambda^{-1} \alpha^{T}$ Thus, K=QAQT + Kpd 17 Kpd, then since all li >0 (4) det $K = \prod_{i=1}^{n} \lambda_i$, $\lambda_1, \ldots, \lambda_n$ eigenvalues.

18 K pd, det K >0 since 1:>0 (psd) (>0) 1:>0

- 5) If K pd (psd), then \exists unique pd (psd) square = root

 matrix R s.t. $R^2 = K$. $R = Q \Lambda^{1/2} Q^T$ $\Lambda^{1/2} = \begin{bmatrix} \sqrt{\lambda_1} & 0 \\ 0 & \sqrt{\lambda_2} \end{bmatrix}$
- b) $K psd \Rightarrow K a$ covariance matrix $K is cov. matrix q = RW where <math>R = Q \Lambda^{1/2} Q^T$ and W iid normalized GRV. $K = E[RWW^TR] = R6^2$
- For any nxn matrix A, $K = AA^T$ to a cov. matrix. K is cov. matrix of $\frac{3}{2} = AW$ $K = E[AWW^TA] = AA^T$ e.g. can take $A = R = 0.1^{1/2} 0^T$

Corollary for Gaussian case:

For any cov. matrix K, a 0-mean GRV $\frac{1}{2} \sim \mathcal{N}(0, K)$ exists and $\frac{1}{2} = AW$, where $K = AA^T$ and $W \sim \mathcal{N}(0, I_n)$

Geometry and Principle Axes

Let ₹ ~ n(0, K). where K is nonsingular.

$$f_{\frac{7}{2}}(3) = e_{x_1} \left[-\frac{1}{2} \frac{3}{3}^T K_{\frac{7}{2}} \frac{3}{3} \right]$$

Contour of equal prob density = $\{3/3^T k_{\overline{z}}^{-1} \} = c \}$ is an ellipsoid centered at origin.

Let $K = Q \Lambda Q^T$ where Q is orthonormal, $\Lambda = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $Y = Q^T Z$ also 0-mean GRV.

$$K_{V} = E[\underline{V}\underline{V}^{T}] = E[\underline{0}^{T}\underline{2}\underline{2}^{T}\underline{0}] = \underline{0}^{T}\underline{K}\underline{0} = \Lambda$$

$$f_{\mathcal{V}}(\underline{v}) = \frac{\exp\left[-\frac{1}{2} \underline{v}^{\mathsf{T}} \underline{k}_{v}^{\mathsf{T}} \underline{v}^{\mathsf{T}}\right]}{(2\pi)^{N/2} \sqrt{\det k_{v}}} = \frac{\exp\left[-\frac{\sum v_{i}^{2}}{(2\lambda_{i})}\right]}{(2\pi)^{N/2} \prod \sqrt{\lambda_{i}}}$$

$$= \frac{n}{m} \exp\left[-\frac{v_{i}^{2}}{2\lambda_{i}}\right]$$

$$= \prod_{i=1}^{n} \exp\left[-\frac{v_{i}^{2}}{2\lambda_{i}}\right]$$

- $v = Q^T = 0$ is a change of basis Crotation since Q is orthonormal)
- In v-system

$$\{ \underline{v} : f_{\underline{v}}(\underline{v}) = C \} = \{ \underline{v} : \frac{\sum v_i^2}{\widehat{v}_{\lambda_i}} = c \}$$
 is an ellipsoid

axès of ellipsoid are the eigenvectors $g_1, ..., g_n$ (colo of a)

2-1 example:

Back to i coordinates : 3 = Q⊻

Conditional Probabilities

X, Y jointly Gaussian O-mean random variables

with nonsingular cov. matrix.

 $f_{X|Y}(x|y) = f_{X|Y}(x,y) \in use expression from before$ $<math>f_{Y}(y) \in Y \sim n(0, \sigma_Y^2)$

$$= \frac{1}{\sigma_{X} \sqrt{2\pi(1-\rho^{2})}} \exp \left[-\frac{(x-\rho(\sigma_{X}/\sigma_{Y})y)^{2}}{2\sigma_{X}^{2}(1-\rho^{2})}\right]$$

where $P = \frac{E[XY]}{\sigma_X \sigma_Y}$

Given
$$y = y$$
,
 $f_{X|Y}(x|y) = n\left(P\left(\frac{\sigma_X}{\sigma_Y}\right)y, \sigma_X^2(1-P^2)\right)$!

- Given Y = y, X is conditionally Gaussian, with mean $f(\frac{\delta_X}{\delta_Y})y$ linear in y

the fluctuation X of X (with mean $P(\frac{\partial X}{\partial y})y$ removed)

has same density for all y. i.e. x ~ n(0, ox (1-p2))

very important for estimation

- Generalize to higher domensions:

$$\underline{u} = \begin{bmatrix} u_1 \\ \vdots \\ u_{n+m} \end{bmatrix} \quad \partial RV = \begin{bmatrix} x_1 \\ \vdots \\ x_m \\ y_1 \\ y_n \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} \quad x, y \quad JGRV's.$$

17 Ku is non-singular, X, Y are jointly non-singular.

X, Y JGRV, Joutly non-sing, o-mean

 $k_{\times} = ECXX^{T}$ $K_{u} = \begin{bmatrix} K_{X} & K_{XY} \\ T & K_{XY} & K_{Y} \end{bmatrix}$ $K_{Y} = F(YY^{T})$

 $k_{xy} = ECXY^T$

$$K_{u}^{-1} = \left[\begin{array}{cc} B & C \\ C^{T} & D \end{array} \right]$$

Ku symmetric Ku symmetric B, D also symmetric

can also show kx, ky, B, D nonsing.

$$f_{\underline{x},\underline{y}}(\underline{x},\underline{y}) = \frac{\exp\left[-\frac{1}{2}\left(\underline{x}^{T}\underline{y}^{T}\right)K_{u}^{-1}\left(\underline{x}^{Y}\underline{y}\right)\right]}{(2-)^{(n+m)/2}}$$

(27) (n+m)/2 V det Ku

$$= \frac{\exp\left[-\frac{1}{2}\left(z^{T}Bz+y^{T}C^{T}z+z^{T}Cy+y^{T}Dy\right)\right]}{\left(2\pi\right)^{(n+m)/2}\sqrt{\det Ku}}$$

= appears only in first 3 terms in exponent $f_{X|Y}(x|y) =$ fy(y) - does not involve x

$$= \operatorname{per}_{g(\underline{y})} \operatorname{exp} \left[- \left(\frac{\underline{x}^{\mathsf{T}} \underline{B} \underline{x} + \underline{y}^{\mathsf{T}} \underline{c}^{\mathsf{T}} \underline{x} + \underline{x}^{\mathsf{T}} \underline{c}^{\mathsf{T}} \underline{y}}{2} \right) \right]$$

some fr. of y

Complete square in exporent around B:

$$f_{\underline{x}|\underline{x}}(\underline{x}|\underline{y}) = g(\underline{y}) \exp \left[-\frac{(\underline{x} + B^{-1}c\underline{y})^T B(\underline{x} + B^{-1}c\underline{y}) + \underline{y}^T c^T B^{-1}c\underline{y}}{2} \right]$$

Last term close out depend on x, absorb into g(y):

$$f_{X|X}(X|Y) = g'(Y) \exp \left[-\frac{1}{2}(X+B^{-1}CY)^TB(X+B^{-1}CY)\right]$$

Since fx1x(x1y) is a pdf for each y, g'(y) must be s.t.

$$f_{X|Y}(x|y) = \exp\left[-\frac{1}{2}(x+B^{-1}Cy)^{T}B(x+B^{-1}Cy)\right]$$

$$(2\pi)^{m/2} \sqrt{dvt} B^{-1}$$

Thus, for any given y, $f_{X|X}(x|y) = n(-B^{-1}Cy, B^{-1})$ Covariance B^{-1} does not depend on yMean $-B^{-1}Cy$ linear in y

- Given Y = Y, $X = -B^{-1}Cy + Y$ where Y is the fluctuation of the covariance B^{-1} a Gaussian indep of Y

V indep of Y

- Thus,
$$X = GY + Y$$
 Y, Y indep.
 $G = -B^{-1}C, Y \sim n(0, B^{-1}).$

innovation (part of X indep of Y)

or wise term

Call $K_{\underline{V}} = B^{-1}$ conditional covariance of \underline{X} given any sample value \underline{Y} of \underline{Y}

unconditional covariance of X = Kx upper left block of Ku conditional " of $X = Kv = B^{-1}$ " of Ku