Geoprocessamento

Prof. Diego Camargo

Aula 02 – Fundamentos para utilização do SIG

OBJETIVO DA AULA

1. Fundamentos para utilização do SIG;

 A importância das teorias de DATUM Geodésico, Elipsoides, Sistemas de Coordenadas e Sistemas de Projeções para a manipulação de dados espaciais.

GEODÉSIA

"A geodésia é a ciência da medição e representação da superfície", Helmert, 1880.

Como medir e representar a terra?

Datum (plural: data) é um termo latino cujo significado, para a geomática, é referência geométrica.

Referencial (um ponto, uma linha ou uma superfície) a partir do qual são determinadas as posições de elementos geográficos.

Conjunto de informações que define as formas e o tamanho da terra (superfície de referência), além da origem e a orientação do sistema de coordenadas.

Superfície topográfica ou física: Superfície do terreno (relevo);

Superfície geoidal: Superfície equipotencial do campo gravitacional terrestre (forma real da terra);

Superfície geométrica: Esfera ligeiramente achatada (elipsoide de referência);

esenvolvimento

DATUM GEODÉSICO

ELIPSOIDE

a: semieixo maior

b: semieixo menor

Desenvolvimento

ELIPSOIDE

Nome	Valores dos elementos geométricos		
Bessel 1841	a = 6.377.397 m	$f = \frac{1}{299,15}$	
Clarke 1857	a = 6.378.345 m	$f = \frac{1}{294,26}$	
Everest 1830	a = 6.377.276 m	$f = \frac{1}{300,8}$	
Helmert 1907	$a = 6.378.200 \ m$	$f = \frac{1}{298,3}$	
Geodetic Reference System 1980 (GRS80)	a = 6.378.137 m	$f = \frac{1}{298,257222101}$	
World Geodetic System (WGS84)	a = 6.378.137 m	$f = \frac{1}{298,257223563}$	

ELIPSOIDE

Nome	Sigla	<i>Datum</i> horizontal	Nome e valores dos elementos geométricos do elipsoide de referência
Brasileiro (Antigo)	SGB-CA	Córrego Alegre	Hayford 1924 $a = 6.378.388 m$ $f = \frac{1}{297}$
Brasileiro (Atual)		SIRGAS2000	GRS80 $a = 6.378.137 m \qquad f = \frac{1}{298,257222101}$
Sul Americano	SAD69	VT-CHUÁ	Elipsoide de referência 1967 $a = 6.378.160 m \qquad f = \frac{1}{298,25}$
Europeu	ED50	Potsdam	Internacional de 1924 $a = 6.378.388 \ m$ $f = \frac{1}{297}$

Sistema de Coordenadas Cartesiano Plano ou Sistema Plano-Retangular;

Sistema de Coordenadas Polar Plano;

Sistema de Coordenadas Cartesiano Espacial;

Sistema de Coordenadas Geográficas Geodésicas

<u>Sistema de Coordenadas Plano-</u> Retangular:

Baseado o sistema de coordenadas cartesiano plano criado pelo filósofo francês, Renée Descartes (1569-1650).

Sistema de Coordenadas Polar

Plano:

Determinada a origem é definido a posição de um ponto através de dados de ângulo e distância:

Sistema de Coordenada

Espacial:

Considera-se a altitude dos pontos (coordenadas

apresentam 3 valores, ex. X, Y e

Z).

Sistema de Coordenada

Espacial:

Considera-se a altitude dos

pontos (coordenadas

apresentam 3 valores, ex. X, Y e

Z).

Sistema de Coordenadas

Geodésicas:

Latitude geodésica (ϕ_g) de um ponto na superfície de referência é o valor angular do arco formado pela reta normal a essa superfície, nesse ponto, e o plano equador.

Sistema de Coordenadas

Geodésicas:

Longitude geodésica (λ_g) de um ponto na superfície de referência é o valor do ângulo diedro que forma o plano meridiano.

O uso do Sistema de Coordenadas Plano Retangular na Geomática não pode ser feito sem algumas considerações especiais. Devido a esfericidade da Terra, não é possível representar pontos da sua superfície nesse sistema sem que haja algum tipo de deformação.

Deformação, neste caso, significa deformação dos ângulos entre as direções e/ou deformação das distâncias e/ou deformação da superfície representada. Para resolver esse problema existem duas soluções: a primeira consiste em utilizar uma Projeção Cartográfica.

- 1. Projeções cilíndricas;
- 2. Projeções cônicas;
- 3. Projeções azimutais.

Uma outra solução consiste em representar diretamente os pontos medidos sobre o Sistema do Coordenadas Plano Retangular sem que se aplique qualquer transformação entre a superfície elipsoidal e a superfície plana.

Neste caso, visto que a superfície terrestre é aproximadamente esférica, é preciso restringir as distâncias a serem representadas em função do nível de precisão que se deseja obter.

No Brasil, utiliza-se a Projeção Cartográfica Plano Retangular denominada Projeção Universal Transversa de Mercator – UTM, que no passado também foi denominada Projeção de Gauss-Krüger.

Projeção UTM (Universal Transversa de Mercator)

Pode ser vizualizada como um cilindro secante à superfície de referência;

Cilindro Tangente:

Fator k aumenta na medida em que se afasta do ponto de tangência

Cilindro Secante:

Considerando o mesmo arco na superfície do elipsoide, temos valores de k maiores e menores que 1.

Fator k tem margem de aumento menor

MONOGRAFIA - MGBH

3. Coordenadas oficiais

3.1. SIRGAS2000 (Época 2000.4)

Coordenadas Geodésicas						
Latitude:	- 19° 56' 30,8431"	Sigma:	0,001 m			
Longitude:	- 43° 55' 29,6291"	Sigma:	0,001 m			
Alt. Elip.:	974,86 m	Sigma:	0,006 m			
Alt. Orto.:	981,07 m	Fonte:	GPS/MAPGEO2010			
Coordenadas Cartesianas						
X:	4.320.741,822 m	Sigma:	0,004 m			
Y:	-4.161.560,476 m	Sigma:	0,004 m			
Z :	-2.161.984,249 m	Sigma:	0,002 m			
Coordenadas Planas (UTM)						
UTM (N):	7.794.587,879 m					
UTM (E):	612.507,701 m					
MC:	-45					

MONOGRAFIA - MGBH

Coordenadas Sirgas							
	Latitude(gms)	Longitude(gms)	Altitude Geométrica(m)				
Coordenada Oficial ⁴	-19° 56′ 30,8427″	-43° 55′ 29,6290″	974,82				
Coordenada na data do levantamento ⁵	-19° 56′ 30,8378″	-43° 55′ 29,6303″	974,82				
$Sigma(95\%)^{6} (m)$	0,002	0,005	0,010				
Modelo Geoidal	MAPGEO2010						
Ondulação Geoidal (m)	-6,21						
Altitude Ortométrica (m)	981,02						

Qual a importância?

Elipsóide (WGS84)

Qual a importância?

SIRGAS 2000 (Policonica)

SAD69 (Projeção Cônica)

Geopolítica
Divisão Político
Administrativa
RMBH

Limite da RMBH

SHP

RMBH

Limite da RMBH

Formato da representação: Polígono Projeção/DATUM: SIRGAS 2000 / FUSO 23

Fonte: IBGE (http://downloads.ibge.gov.br/downloads_geociencias.htm)

DOWNLOAD

Infraestrutura Urbana Sistema Viário Pesquisa Origem Destino

Dados absolutos da Pesquisa de Origem-Destino agregados 2000/2010

SHP

RMBH

15/05/2014

Dados absolutos da Pesquisa de Origem-Destino agregados para os anos 2000, 2010 e comparativos por unidade de macromobilidade.

Formato da representação: Polígono Projeção/DATUM: GCS SAD 69

Fonte: Agência de Desenvolvimento da RMBH.

Método de Elaboração: Os dados absolutos da pesquisa de Origem-Destino dos anos 2000 e 2010 foram tabulados com as unidades de macromobilidade.

Como citar: UNIVERSIDADE FEDERAL DE MINAS GERAIS. Macrozoneamento da Região Metropolitana de Belo Horizonte. 2015.

DOWNLOAD

Conclusão

EPSG

European Petroleum Survey Group (EPSG) é uma coletânea de sistemas de referências de coordenadas. A sigla se refere a entidade que utilizou estes códigos numéricos para organizar os dados.

EPSG

Na prática os SRC podem ser organizados pelo número EPSG, veja os exemplos:

EPSG:31983: SIRGAS 2000 / UTM zone 23S

EPSG:4326: WGS 84

EPSG:4291: SAD69

EPSG:4674: SIRGAS 2000