Машинное обучение Практические задания №4

Задача 1. Дан набор данных

Tid	Itemset
1	ACD
2	BCD
3	AC
4	ABD
5	ABCD
6	BCD

Найдите все минимальные генераторы для минимального уровня поддержки = 1. Множество является минимальным генератором, когда оно не имеет подмножеств с тем же уровнем поддержки.

Решение. Построим решетку наборов и их частот.

Наборы, которые являются минимальными генераторами обведены. Жирным выделены ребра, которые указывают на подмножества с такой же поддержкой. Множество минимальных генераторов: $\{A, B, C, D, AB, AC, AD, BC, CD, ABC, ACD\}$.

Задача 2. Дана решетка наборов и их частоты.

Выполните следущие задания:

- A. Выпишите список всех замкнутых наборов (closed itemsets). Множество замкнутое, когда нет надмножеств с тем же уровнем поддержки.
- B. Является ли набор BCD выводимым? Является ли набор ABCD выводимым? Какие границы их поддержки?

Решение.

А. На графе выделены ребра, которые ведут кнадмножествам с такой же поддержкой. Множество замкнутых наборов: $\{A, AB, AC, AD, ABC, ABD, ACD, ABCD\}$.

В.

sup(BCD)	≥ 0	Y = BCD
	$\leq sup(BC) = 3$	Y = BC
	$\leq sup(BD) = 2$	Y = BD
	$\leq sup(CD) = 2$	Y = CD
	$\geq sup(BC) + sup(BD) - sup(B) = 0$	Y = B
	$\geq sup(BC) + sup(CD) - sup(C) = 0$	Y = C
	$\geq sup(BD) + sup(CD) - sup(D) = 0$	Y = D
	$\leq sup(BC) + sup(BD) + sup(CD) -$	$Y = \emptyset$
	$-sup(B) - sup(C) - sup(D) + sup(\emptyset) = 1$	$I = \emptyset$

$$\begin{split} \operatorname{LB}(BCD) &= \{0,1\}, \operatorname{UB}(BCD) = \{1,2,3\} \\ \max(\operatorname{LB}(BCD)) &= \min(\operatorname{UB}(BCD)) = 1, \Rightarrow \text{ набор выводим}. \end{split}$$

	$\leq sup(ABC) = 3$	Y = ABC
		1 0
	$\leq sup(ABD) = 2$	Y = ABD
	$\leq sup(ACD) = 2$	Y = ACD
	$\leq sup(BCD) = 1$	Y = BCD
	$\geq sup(ABC) + sup(ABD) - sup(AB) = 0$	Y = AB
	$\geq sup(ABC) + sup(ACD) - sup(AC) = 1$	Y = AC
sup(ABCD)	$\geq sup(ABD) + sup(ACD) - sup(AD) = 1$	Y = AD
	$\geq sup(ABC) + sup(BCD) - sup(BC) = 1$	Y = BC
	$\geq sup(ABD) + sup(BCD) - sup(BD) = 1$	Y = BD
	$\geq sup(ACD) + sup(VCD) - sup(CD) = 1$	Y = CD
	$\leq sup(ABC) + sup(ABD) + sup(ACD) -$	Y = A
	-sup(AB) - sup(AC) - sup(AD) + sup(A) = 1	1 - 21
	$\leq sup(ABC) + sup(ABD) + sup(BCD) -$	Y = B
	-sup(AB) - sup(BC) - sup(BD) + sup(B) = 1	I - D
	$\leq sup(ABC) + sup(ACD) + sup(BCD) -$	Y = C
	-sup(AC) - sup(BC) - sup(CD) + sup(C) = 1	
	$\leq sup(ABD) + sup(ACD) + sup(BCD) -$	Y = D
	-sup(AD) - sup(BD) - sup(CD) + sup(D) = 1	I = D
<u> </u>	$\geq sup(ABC) + sup(ABD) + sup(ACD) + sup(BCD) -$	
-	-sup(AB) - sup(AC) - sup(AD) - sup(BC) -	$Y = \emptyset$
-	-sup(BD) - sup(CD) + sup(A) + sup(B) + sup(C) +	Ι — Ψ
+	$-sup(D) - sup(\emptyset) = 1$	

$$\label{eq:lb} \begin{split} \operatorname{LB}(ABCD) &= \{0,1\}, \operatorname{UB}(ABCD) = \{1,2,3\} \\ \max(\operatorname{LB}(ABCD)) &= \min(\operatorname{UB}(ABCD)) = 1, \Rightarrow \text{ набор выводим}. \end{split}$$

Задача 3. Для алфавита $\{A,C,G,T\}$ посчитайте, сколько всего может быть разных последовательностей длины k. Даны последовательности

Id	Sequence
s_1	AATACAAGAAC
s_2	GTATGGTGAT
s_3	AACATGGCCAA
s_4	AAGCGTGGTCAA

Hайдите все подпоследовательности с минимальным уровнем поддержки = 4.

Peшение. Возможных последовательностей длины k может быть 4^k .

Для поиска всех подпоследовательностей построим деревья, где каждое следующее дерево является продолжением предыдущего.

