Estymacja punktowa

Estymacja punktowa

- Niech $X=(X_1,X_2,\dots,X_n)'$ będzie próbą z populacji o rozkładzie P_θ , gdzie $\theta\in\Theta$ jest parametrem
- **Estymatorem** parametru θ nazywamy statystykę T(X) o wartościach w zbiorze Θ , której wartość dla konkretnej realizacji x próby X, przyjmujemy za ocenę nieznanej wartości parametru θ
- Estymator ten oznaczamy

$$\hat{\theta}(X)$$
 lub $\hat{\theta}$

Estymacja punktowa

Popularne metody wyznaczania estymatorów punktowych:

- Metoda momentów
- Metoda największej wiarygodności

Metoda momentów

- Niech $X=(X_1,X_2,\ldots,X_n)'$ będzie próbą z populacji o rozkładzie P_θ , gdzie $\theta\in\Theta\subset R^d$
- Ponadto, niech rozkłady P_{θ} posiadają skończone momenty do rzędu dwłącznie
- Metoda momentów polega na przyrównaniu kolejnych d momentów z próby

$$m_i = \frac{1}{n} \sum_{k=1}^n X_k^i \,, \qquad i = 1, 2, \dots, d$$
 do odpowiednich momentów rozkładu populacji
$$E(X^i), \qquad i = 1, 2, \dots, d$$

$$E(X^i)$$
, $i=1,2,...,d$

Metoda momentów

- Rozwiązując otrzymany w ten sposób układ równań uzyskujemy estymatory metody momentów (EMM)
- **Uwaga:** W metodzie momentów możemy zamiast momentów zwykłych wykorzystać momenty centralne

Metoda największej wiarygodności

- Niech $X=(X_1,X_2,\dots,X_n)'$ będzie próbą z populacji o rozkładzie P_{θ} , gdzie $\theta\in\Theta\subset R^d$
- Ponadto, niech rozkłady P_{θ} opisane będą za pomocą funkcji prawdopodobieństwa (gęstości) p_{θ}

Definicja:

Funkcję *L* określoną wzorem

$$L(\theta, x) = p_{\theta}(x)$$

nazywamy funkcją wiarygodności

• Uwaga: Funkcją wiarygodności nazywamy czasem funkcję $\ln p_{\theta}(x)$

Metoda największej wiarygodności

• Definicja: Estymatorem największej wiarygodności (ENW) parametru θ nazywamy statystykę $\hat{\theta}(X)$, której wartości $\hat{\theta}(x)$ spełniają warunek $\forall \ x \in X \quad L(\hat{\theta}(x), x) = \sup L(\theta, x)$

- Uwaga: Dla każdego parametru θ , ENW może nie istnieć lub może być wyznaczony niejednoznacznie
- Uwaga: Zazwyczaj, podczas wyznaczania ENW, wygodniej jest operować funkcją $\ln L$ niż funkcją L

Estymacja parametru λ w modelu wykładniczym

• Fakt:

Estymatorem metody momentów (EMM) oraz estymatorem największej wiarygodności (ENW) parametru λ , w modelu jednej próby prostej z rozkładu wykładniczego, jest statystyka

$$\hat{\lambda} = \frac{1}{\overline{X}}$$

Estymacja parametrów μ i σ^2 w modelu normalnym

• Fakt:

Estymatorami metody momentów (EMM) oraz estymatorami największej wiarygodności (ENW) parametrów μ i σ^2 , w modelu jednej próby prostej z rozkładu normalnego, są statystyki

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{k=1}^n (X_k - \bar{X})^2$$

 $\hat{\mu} = \bar{X}$

Estymatory nieobciążone

Estymatory nieobciążone

- Niech $\theta \in \Theta$ oznacza parametr modelu statystycznego
- Definicja:

Statystykę $\hat{\theta}$ nazywamy **estymatorem nieobciążonym** parametru θ , gdy dla każdego $\theta \in \Theta$ zachodzi równość

$$E(\hat{\theta}) = \theta$$

 Uwaga: Klasa estymatorów nieobciążonych danego parametru może być pusta. Zazwyczaj jednak, dla danego parametru istnieje wiele różnych estymatorów nieobciążonych. Najlepszym z nich jest ten, który ma minimalną wariancję. Nazywamy go estymatorem nieobciążonym o minimalnej wariancji (ENMW)

Estymatory nieobciążone o minimalnej wariancji

• Twierdzenie:

Jeżeli dla parametru θ istnieje estymator nieobciążony o minimalnej wariancji, to jest on wyznaczony jednoznacznie (z dokładnością do zbioru miary zero)

Estymatory nieobciążone

• Fakt:

W modelu jednej próby prostej z rozkładu wykładniczego, EMM i ENW parametru λ postaci

$$\hat{\lambda} = \frac{1}{\overline{X}}$$

jest obciążonym estymatorem tego parametru Estymator nieobciążony (o minimalnej wariancji) parametru λ ma postać

$$\hat{\lambda} = \frac{n-1}{n} \frac{1}{\bar{X}}$$

Operatory nieobciążone

Fakt:

W modelu jednej próby prostej z rozkładu normalnego, EMM i ENW parametru μ postaci

 $\hat{\mu} = \overline{X}$

iest nieobciążonym (o minimalnej wariancji) estymatorem tego parametru

Ponadto, statystyka

$$\hat{\sigma}^2 = S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

 $\hat{\sigma}^2=S^2=\frac{1}{n-1}\sum_{i=1}^n(X_i-\bar{X})^2$ jest nieobciążonym estymatorem (o minimalnej wariancji) parametru