MA10174 - Semester 1, 2021/22

Problem Sheet 2

- 1. Using the principle of induction, prove that:
 - a. 5 is a factor of $6^n 1$ for all $n \in \mathbb{N}$
 - b. Homework $2+5+8+\ldots+(3n-1)=\frac{n(3n+1)}{2}$, for all $n\in\mathbb{N}.$
- 2. Homework Solve

a.
$$-1 \le \frac{x-1}{2x+1} \le 1$$
, b. $x^2 - 5x + 6 \le 0$

3. Solve the inequalities

a.
$$\frac{2x}{|x-1|} \ge 1$$
, b. $\frac{x-1}{|2x|} \le 1$.

4. Solve

a.
$$|-3x+7| \le 1$$
, b. $|x^2-x| > 1$, c. $|x-1|-3 > -1$.

5. Homework

- a. Find all values of x satisfying |x-3|+|x-1|=3.
- b. Find all values of x satisfying $|3x 17| \ge |3x 17| + 4$.
- 6. a. Show that for any $a, b \in \mathbb{R}$

$$2ab \le a^2 + b^2$$

and that equality holds only if a = b.

b. Show that for any $a,b\geq 0$

$$\sqrt{\frac{a}{2}} + \sqrt{\frac{b}{2}} \le \sqrt{a+b} \le \sqrt{a} + \sqrt{b}$$

c. Show that for all $x,y \geq 0$

$$|\sqrt{x} - \sqrt{y}| \le \sqrt{|x - y|}$$

- 7. Homework Find c and r so that |x-c|=r if and only if |x-1|=2|x-2|.
- 8. Let $S \subset \mathbb{R}$ be a non-empty set and let $s_0 \in \mathbb{R}$. We say that s_0 is the maximum of S if $s_0 \in S$ and $s \leq s_0$ for all $s \in S$. We say that s_0 is the minimum of S if $s_0 \in S$ and $s \geq s_0$ for all $s \in S$. For each of the following sets in \mathbb{R} , decide which has i) a maximum, ii) a supremum, iii) a minimum, iv) an infimum.
 - a. $\mathbb{Q} \cap [0, \sqrt{2}]$.
 - b. $\{3^n | n \in \mathbb{Z}\}.$
 - c. $\{1/n|n=1,2,\ldots\}$.
- 9. **Homework** Let $A \subseteq B$ be non-empty subsets of \mathbb{R} .
 - a. Prove that if B has a supremum, then A has a supremum and $\sup(A) \leq \sup(B)$.
 - b. Prove that if B has an infimum, then A has an infimum and $\inf(B) \leq \inf(A)$.
- 10. **Homework** Let $A = \{\frac{2n}{2n+1} : n \in \mathbb{N}\}$. Show that A is bounded. Find $\sup(A)$ and $\inf(A)$.