Algorithms for Convex Optimization Suggested Solutions to A.1

1. (a) If $\mu = 1$, then

$$x \in \Omega_1$$

$$\Leftrightarrow ||x - a|| \le ||x - b||$$

$$\Leftrightarrow ||x - a||^2 \le ||x - b||^2$$

$$\Leftrightarrow 0 \ge ||x - a||^2 - ||x - b||^2 = -2(a - b)^T x + ||a||^2 - ||b||^2.$$

Then Ω_1 is a half-space.

(b) If $0 \le \mu < 1$, then

$$x \in \Omega_{1}$$

$$\Leftrightarrow 0 \ge \|x - a\|^{2} - \mu^{2} \|x - b\|^{2} = (1 - \mu^{2}) \left[\left\| x - \frac{a - \mu^{2}b}{1 - \mu^{2}} \right\|^{2} - \frac{\mu^{2}}{(1 - \mu^{2})^{2}} \|a - b\|^{2} \right]$$

$$\Leftrightarrow \left\| x - \frac{a - \mu^{2}b}{1 - \mu^{2}} \right\|^{2} \le \frac{\mu^{2}}{(1 - \mu^{2})^{2}} \|a - b\|^{2}.$$

Then Ω_{μ} is the closed ball with center $\frac{a-\mu^2 b}{1-\mu^2}$ and radius $\frac{\mu}{1-\mu^2} \|a-b\|$.

(c) If $\mu > 1$, then Ω_{μ} is the complement of the open ball with center $\frac{a-\mu^2b}{1-\mu^2}$ and radius $\frac{\mu}{1-\mu^2} \|a-b\|$.

Quick Fact: Recall the definition of the so-called Apollonius circle.

5. Recall that $dom(\partial f) \neq \emptyset$, then choose $\tilde{x} \in dom(\partial f)$ and $g \in \partial f(\tilde{x})$, we have

$$f(x) + \alpha \|x\|^2 \ge g^T(x - \tilde{x}) + \alpha \|x\|^2 \ge \alpha \|x\|^2 - \|g\| \cdot \|x\| - \|g\| \cdot \|\tilde{x}\|.$$

6. For any $x \in \operatorname{int}(\operatorname{dom} f)$, we have

$$0 \le \frac{f(x) - f(x^*) - g(x^*)^T (x - x^*)}{\|x - x^*\|} \le \frac{(g(x) - g(x^*))^T (x - x^*)}{\|x - x^*\|} \le \|g(x) - g(x^*)\|,$$

taking a limit as $x \to x^*$, we get f is differential at x^* with $\nabla f(x^*) = g(x^*)$. Then $\partial f(x^*) = {\nabla f(x^*)} = {g(x^*)}$.

7. Choose $g \in \cap_{x \in \Omega} \partial f$ and fixed $\bar{x} \in \Omega$, we have for any $x \in \Omega$.

$$f(x) \ge f(\bar{x}) + g^T(x - \bar{x})$$

$$f(\bar{x}) \ge f(x) + g^T(\bar{x} - x).$$

Then
$$f(x) = f(\bar{x}) + g^T(x - \bar{x})$$

8. Recall that both $\partial f'(x^*;\cdot)(0)$ and $\partial f(x^*)$ are closed and convex sets. Just show for any $d \in \mathbb{R}^n$,

$$\sigma_{\partial f'(x^*;\cdot)(0)}(d) = \sigma_{\partial f(x^*)}(d),$$

Claim 1: we get $\partial f(x^*) \subset \partial f'(x^*;\cdot)(0)$, and so $\sigma_{\partial f'(x^*;\cdot)(0)}(d) \geq \sigma_{\partial f(x^*)}(d)$.

Claim 2: we get $f'(x^*;d) \ge \sigma_{\partial f'(x^*;\cdot)(0)}(d)$.

Then Claim 1, Claim 2 and the max formula $f'(x;d) = \sigma_{\partial f(x^*)}(d)$ imply the desired conclusion.

- 9. For any $y \in \Omega$, we define $F_y : \mathbb{R}^n \to \overline{\mathbb{R}}$ with the form $F_y = \sum_{i=1}^m y_i f_i$. Then F_y is closed convex (think of why). Moreover, the sup-function $f = \sup_{y \in \Omega} F_y$ is closed convex (think of why).
- 10. It's easy to show that $\min f_{\max} \ge \min \varphi(\cdot, \lambda)$ for any $\lambda \in [0, 1]$. Next we show that

$$\min f_{\max} = \sup_{0 \le \lambda \le 1} (\min \varphi(\cdot, \lambda)).$$

Define $\varphi_{\min}: \mathbb{R} \to (-\infty, \infty]$ with the values $\varphi_{\min}(\lambda) = \min \varphi(\cdot, \lambda)$ if $0 \le \lambda \le 1$, while $\varphi_{\min}(\lambda) = \infty$ otherwise.

Define x_{λ} as the point with $\varphi(x_{\lambda}, \lambda) = \min \varphi(\cdot, \lambda)$ for any $0 \le \lambda \le 1$.

Claim 1: φ_{\min} is univariate concave and continuous on [0,1], and $\exists \lambda^* \in [0,1]$ such that

$$\varphi_{\min}(\lambda^*) = \varphi(x_{\lambda^*}, \lambda^*) = \sup_{0 \le \lambda \le 1} \varphi_{\min}(\lambda) = \sup_{0 \le \lambda \le 1} (\min \varphi(\cdot, \lambda)).$$

Claim 2: Let $g_{\lambda} = f_1(x_{\lambda}) - f_2(x_{\lambda})$ for any $0 \le \lambda \le 1$. Then we get

$$\varphi_{\min}(\lambda') \le \varphi_{\min}(\lambda) + g_{\lambda}(\lambda' - \lambda)$$

and g_{λ} is decreasing on λ .

Claim 3: We have

$$g_{\lambda^*}^+ \ge \max\{g_{\lambda^*}, 0\} \ge g_{\lambda^*} \ge \min\{g_{\lambda^*}, 0\} \ge g_{\lambda^*}^-,$$

where
$$g_{\lambda^*}^+ = \lim_{\lambda \to \lambda^* +} g_{\lambda} = \inf_{0 \le \lambda \le \lambda^*} g_{\lambda}$$
 and $g_{\lambda^*}^- = \lim_{\lambda \to \lambda^* -} g_{\lambda} = \sup_{\lambda^* \le \lambda \le 1} g_{\lambda}$.

For any $\eta \in [0,1]$,

$$\varphi_{\min}(\lambda^*) = \eta \lim_{\lambda \to \lambda^* +} \varphi_{\min}(\lambda) + (1 - \eta) \lim_{\lambda \to \lambda^* -} \varphi_{\min}(\lambda)$$

$$= \eta \lim_{\lambda \to \lambda^* +} [\lambda f_1(x_{\lambda}) + (1 - \lambda) f_2(x_{\lambda})] + (1 - \eta) \lim_{\lambda \to \lambda^* -} [\lambda f_1(x_{\lambda}) + (1 - \lambda) f_2(x_{\lambda})]$$

$$= \eta \lim_{\lambda \to \lambda^* +} [f_2(x_{\lambda}) + \lambda g_{\lambda}] + (1 - \eta) \lim_{\lambda \to \lambda^* -} [f_2(x_{\lambda}) + \lambda g_{\lambda}]$$

$$= \lambda^* \left[\eta g_{\lambda^*}^+ + (1 - \eta) g_{\lambda^*}^- \right] + \eta \lim_{\lambda \to \lambda^* +} f_2(x_{\lambda}) + (1 - \eta) \lim_{\lambda \to \lambda^* -} f_2(x_{\lambda})$$

$$\geq \lambda^* \left[\eta g_{\lambda^*}^+ + (1 - \eta) g_{\lambda^*}^- \right] + f_2(x_{\lambda^*}).$$

Similarly,

$$\begin{split} \varphi_{\min}(\lambda^{*}) &= \eta \lim_{\lambda \to \lambda^{*}+} \varphi_{\min}(\lambda) + (1-\eta) \lim_{\lambda \to \lambda^{*}-} \varphi_{\min}(\lambda) \\ &= \eta \lim_{\lambda \to \lambda^{*}+} \left[\lambda f_{1}(x_{\lambda}) + (1-\lambda) f_{2}(x_{\lambda}) \right] + (1-\eta) \lim_{\lambda \to \lambda^{*}-} \left[\lambda f_{1}(x_{\lambda}) + (1-\lambda) f_{2}(x_{\lambda}) \right] \\ &= \eta \lim_{\lambda \to \lambda^{*}+} \left[f_{1}(x_{\lambda}) - (1-\lambda) g_{\lambda} \right] + (1-\eta) \lim_{\lambda \to \lambda^{*}-} \left[f_{1}(x_{\lambda}) - (1-\lambda) g_{\lambda} \right] \\ &= - (1-\lambda^{*}) \left[\eta g_{\lambda^{*}}^{+} + (1-\eta) g_{\lambda^{*}}^{-} \right] + \eta \lim_{\lambda \to \lambda^{*}+} f_{1}(x_{\lambda}) + (1-\eta) \lim_{\lambda \to \lambda^{*}-} f_{1}(x_{\lambda}) \\ &\geq - (1-\lambda^{*}) \left[\eta g_{\lambda^{*}}^{+} + (1-\eta) g_{\lambda^{*}}^{-} \right] + f_{1}(x_{\lambda^{*}}). \end{split}$$

(a) Case I: If $g_{\lambda^*}^- = g_{\lambda^*}^+$.

Then $g_{\lambda^*}^- = g_{\lambda^*}^+ = 0$ and so

$$\varphi_{\min}(\lambda^*) \ge \max\{f_1(x_{\lambda^*}), f_2(x_{\lambda^*})\} = f(x_{\lambda^*}) \ge \min f_{\max}.$$

(b) Case II: If $g_{\lambda^*}^- < g_{\lambda^*}^+$.

Then pick $\eta = \frac{-g_{\lambda*}^-}{g_{\lambda*}^+ - g_{\lambda*}^-}$ (check $0 \le \eta \le 1$) and so

$$\varphi_{\min}(\lambda^*) \ge \max\{f_1(x_{\lambda^*}), f_2(x_{\lambda^*})\} = f(x_{\lambda^*}) \ge \min f_{\max}.$$

11. (a) i. $R(\Omega)$ is a cone. If $d \in R(\Omega)$, then for any $\beta \geq 0$ we have

$$\Omega + \alpha (\beta d) = \Omega + (\alpha \beta) d \subset \Omega, \quad \alpha \ge 0,$$

where the last equality holds since $d \in R(\Omega)$.

ii. $R(\Omega)$ is convex. For any $d_1, d_2 \in R(\Omega)$ and $0 \le \lambda \le 1$, just show

$$w + \alpha \left[\lambda d_1 + (1 - \lambda) d_2\right] \in \Omega, \quad \forall w \in \Omega, \alpha \ge 0.$$
 (*)

Notice that $w + \alpha [\lambda d_1 + (1 - \lambda) d_2] = \lambda (w + \alpha d_1) + (1 - \lambda) (w + \alpha d_2), w + \alpha d_1, w + \alpha d_2 \in \Omega$ and Ω is convex, then (*) holds.

iii. $R(\Omega)$ is closed. If $d \leftarrow \left\{d^k\right\} \subset R(\Omega)$, then

$$w + \alpha d^k \in \Omega, \quad \forall w \in \Omega, \alpha > 0, k = 1, 2, \cdots$$

Observing that $w + \alpha d^k \to w + \alpha d$ as $k \to \infty$ and Ω is closed, $w + \alpha d \in \Omega$ holds. Hence $d \in R(\Omega)$.

(b) i. Sufficiency. For any $\bar{w} \in \Omega$, we show that $\bar{w} + \alpha d \in \Omega$ holds for any $\alpha \geq 0$. Fix \bar{w} and α , we show that

$$\bar{w} + \alpha d + \frac{w - \bar{w}}{k} \in \Omega \quad \forall k.$$

Actually,

$$\bar{w} + \alpha d + \frac{w - \bar{w}}{k} = \left(1 - \frac{1}{k}\right)\bar{w} + \frac{1}{k}\left(w + k\alpha d\right),$$

and $w + k\alpha d \in \Omega$. Then $\bar{w} + \alpha d \in \Omega$ since Ω is closed.

- ii. Necessity.
- (c) $d \in R(\cap_i \Omega_i) \Leftrightarrow$ for some $w^* \in \cap_i \Omega_i$, $w^* + \alpha d \in \cap_i \Omega_i \Rightarrow$ for any i, we have $w^* \in \Omega_i$ and $w + \alpha d \in \Omega_i$.

 $d \in \cap_i R(\Omega_i) \Rightarrow \text{choose } w^* \in \cap_i \Omega_i, \text{ for any } i \text{ we have } w^* + \alpha d \in \Omega_i \Rightarrow w^* + \alpha d \in \cap_i \Omega_i \Rightarrow d \in R(\cap_i \Omega_i).$

(d) i. Necessity. Pick $w \in \Omega$ and set $w^k = w + kd_u$, then for k sufficiently large,

$$\left\| \frac{w + kd_u}{\|w^k\|} - d_u \right\| \le \frac{\|w\|}{\|w^k\|} + \left| \frac{k}{\|w^k\|} - 1 \right|.$$

Then we show $\frac{\|w^k\|}{k} \to 1$ as $k \to \infty$. Actually,

$$\frac{\left\| w^k \right\|^2}{k^2} = \frac{\langle w + k d_u, w + k d_u \rangle}{k^2} = \frac{w^T w + 2k w^T d_u + k^2}{k^2} \to 1.$$

ii. Sufficiency. Fix $w \in \Omega$ and $\alpha \geq 0$, just show that $w + \alpha d_u \in \Omega$. Actually,

$$w + \alpha d_u \leftarrow \left(1 - \frac{\alpha}{\|w^k\|}\right) w + \frac{\alpha}{\|w^k\|} w^k \in \Omega.$$

- 13. (a)
 - (b) i. Necessity.
 - ii. Sufficiency. If there exists x^* such that $f(x^*) < f(\bar{x})$, consider the function $\varphi_{x^*-\bar{x}}$, let $0 < \alpha < 1$,

$$\varphi_{x^* - \bar{x}}(\alpha) = f(\bar{x} + \alpha(x^* - \bar{x})) = f((1 - \alpha)\bar{x} + \alpha x^*)$$

$$\leq (1 - \alpha)f(\bar{x}) + \alpha f(x^*)$$

$$< f(\bar{x}) = \varphi_{x^* - \bar{x}}(0).$$

Then 0 is not a local minimizer of $\varphi_{x^*-\bar{x}}$.

14. (a) There exists $\delta > 0$ such that for any $x \in \mathbb{B}_{\delta}(\bar{x}) \cap \Omega$,

$$f(x) \ge f(\bar{x}).$$

Next we show for any $z \in \mathbb{B}_{\frac{\delta}{2}}(\bar{x})$, $f_L(z) \geq f_L(\bar{x}) = f(\bar{x})$. Actually, choose $z_{\Omega} \in P_{\Omega}(z)$ (think of why $P_{\Omega}(z) \neq \emptyset$), we have

$$f_{L}(z) - f_{L}(\bar{x}) = f(z) - f(\bar{x}) + L \|z - z_{\Omega}\|$$

$$= f(z) - f(z_{\Omega}) + L \|z - z_{\Omega}\| + f(z_{\Omega}) - f(\bar{x})$$

$$\geq -L_{f} \|z - z_{\Omega}\| + L \|z - z_{\Omega}\| + f(z_{\Omega}) - f(\bar{x})$$

$$\geq (L - L_{f}) \|z - z_{\Omega}\| + f(z_{\Omega}) - f(\bar{x})$$

$$> 0.$$

where the last inequality holds since $z_{\Omega} \in \mathbb{B}_{\delta}(\bar{x}) \cap \Omega$, noticing that

$$||z_{\Omega} - \bar{x}|| \le ||z_{\Omega} - z|| + ||z - \bar{x}|| \le 2 ||z - \bar{x}|| \le \delta.$$

(b) It's sufficient to show $\bar{x} \in \Omega$. If not, choose $\bar{x}_{\Omega} \in P_{\Omega}(\bar{x})$, then

$$f_{L}(\bar{x}) - f_{L}(\bar{x}_{\Omega}) = f(\bar{x}) - f(\bar{x}_{\Omega}) + L \|\bar{x} - \bar{x}_{\Omega}\|$$

$$\geq -L_{f} \|\bar{x} - \bar{x}_{\Omega}\| + L \|\bar{x} - \bar{x}_{\Omega}\|$$

$$>0.$$

- 15. Let $(x, \alpha) \in \operatorname{epi}(f)$, then $(x, \alpha) \leftarrow \{(x, \alpha + \frac{1}{k})\} \subset E_f$. So $(x, \alpha) \in \operatorname{cl}(E_f)$.
- 17. Choose $y \in \text{int}(\Omega^{\circ})$,

Case I: y = 0, then $\Omega = \{0\}$. Trivial.

Case II: $y \neq 0$, then there exists $\delta > 0$ such that $\mathbb{B}_{\delta}(y) \subset \operatorname{int}(\Omega^{\circ})$. For any $0 \neq x \in \Omega$, notice that $y + \delta \frac{x}{\|x\|} \in \Omega^{\circ}$, i.e,

$$\langle y + \delta \frac{x}{\|x\|}, x \rangle \le 0.$$

i.e,

$$\langle -y, x \rangle \ge \delta \|x\|$$
.

Obviously, $\langle -y, 0 \rangle \geq \delta ||0||$. So p = -y.

18. • (heuristic)

Recall that $\partial f(x)$ is nonempty, closed, convex and bounded. Need to show a closed convex and bounded subset of \mathbb{R} is a compact interval.

Quick Facts:

- Every closed set in \mathbb{R} is a countable union of disjoint closed intervals.
- Every convex set in \mathbb{R} is a connected set.

$$f'(x;1) = \max\{g: g \in \partial f(x)\}; \text{ while } f'(x;-1) = \max\{-g: g \in \partial f(x)\} = -\min\{g: g \in \partial f(x)\}, \text{ so } \partial f(x) = [-f'(x;-1), f'(x;1)].$$

• (formal)

$$\begin{split} g \in \partial f(x) \Leftrightarrow & f(y) - f(x) \geq g(y-x), \quad \forall y \neq x \\ \Leftrightarrow & g \leq \varphi(y) \quad \forall y > x \text{ and } g \geq \varphi(y) \quad \forall y < x \\ \Leftrightarrow & \sup_{(-\infty,x)} \varphi(y) \leq g \leq \inf_{(x,\infty)} \varphi(y). \end{split}$$

where

$$\varphi(y) = \frac{f(y) - f(x)}{y - x}.$$

Notice that φ is increasing in (x, ∞) and decreasing in $(-\infty, x)$. So

$$\sup_{(-\infty,x)} \varphi(y) = \lim_{y \to x^{-}} \varphi(y) = \lim_{y \to x^{-}} \frac{f(y) - f(x)}{y - x} \quad \text{let } y = x - \alpha$$

$$= \lim_{\alpha \to 0^{+}} \frac{f(x - \alpha) - f(x)}{-\alpha} = -f'(x; -1).$$

Similarly,

$$\inf_{(x,\infty)} \varphi(y) = f'(x;1).$$