1 Results

1.1 2×2 lattice, analytical expressions

If we scale the value of β from $1/k_BT$ to 1/J (Scaling factor k_BT/J) in the analytical expression from section ??, we will get a good benchmark for computer computations to come. These values are listed in table 1 below. Note that all values are divided by four, since we want the values per bond, and not for the entire lattice.

Mean energy, $\langle E \rangle$:	-1.9960
Mean absolute magnetization, $\langle \mathcal{M} \rangle$:	0.9987
Specific heat capacity, C_V :	0.0321
Susceptibility, χ :	3.9933

Table 1: Benchmark for material characteristics per bond for a 2×2 lattice

1.2 Ising model: simulation over temperature

We ran the program for different amounts of Monte Carlo cycles and plottet the error (analytical - simulated) in figure 1 below. It seems we want to use around 10^7 MC cycles or more to get a good simulation.

Figure 1: Shows the accuracy of different amount of MC cycles over temperature.

1.3 20×20 lattice, analytical expressoins

T=1.0(kT/J): Mean energy and magnetization func of MC cycles: Ordnet orientering: Program initilize.cpp (For T $_{\rm i}$ 1.5 så er alle spinn opp, ellers spinn ned)

sett inn følgende bilder fra mappe M+E under img
: T1_1.pngT1_2.pngTekst : ordnetspinnorienteringfor
T = 1.0

Random spinn orientering: Program initilize $_r$ and om(Setter spinnned(-1)hvisver dienvif år mellom <math>0og1ern sett inn følgende bilder fra mappe M+E under img: L20T1random $_1.pngL20T1random _2.pngTekst$:

Random spinnorientering for T = 1.0

Likevekt:

T=2.4(kT/J): Mean energy and magnetization func of MC cycles: Ordnet orientering: Program initilize.cpp (For T $_{\rm i}$ 1.5 så er alle spinn opp, ellers spinn ned)

sett inn følgende bilder fra mappe M+E(ligger inni img): T21.pngT22.pngTekst: ordnetspinnorienteringforT=2.4

Random spinn orientering: Program initilize random(Setterspinnned(-1)hvisverdienvif årmellom 0 og 1 ern L20 T1 random 1. png L20 T1 random 2. png Tekst: Random spinn orientering for T =

2.4

Likevekt:

Oversiktelig tabell med når likevekt nås ca. (antall mcs)

Ordnet magnetisering Random magnetisering Ordnet energi Random energi T1: T2:

Estimat av equilibration time:

Antall aksepterte spinn per montecarlocycle

Diskusjon/resultater Aksepterte spinn som funksjon av T: Økt temperatur gir flere aksepterte flips. Setter man startpoint til random går den fortere mot likevekt ?