امتحان شهادة ختم التعليم الأساسي دورة 2003

المادة : الرياضيات

الجمهوريــة الـتونسيــة وزارة الـتربيــة والتكوين ♦♦۞ الإدارة العامة للامتحانات

���

إصــــــــــــــــــــــــــــــــــــ			
مقياس إسناد الأعداد	الإصــــــــــــــــــــــــــــــــــــ		
0,5	. $A = 8$ إذا كان $x = 2$ فإن $x = 2$ إذا كان $x = 2$		
0,5	$A = \frac{1}{2}$ يَذَا كَانَ $x = -\frac{1}{2}$ غَلِنَ $x = -\frac{1}{2}$ يَذَا كَانَ $x = -\frac{1}{2}$ غَلِنَ $x = -\frac{1}{2}$		
0,75	$S_{IR}\left[-rac{2}{3};+\infty \left[icc ight] x ight] > -2$ يعني $3x ight] x ight] > -2$ يعني $3x ight] > -2$		
	$-\frac{1}{3}$	<u>التمرين الأول</u>	
0,75	B = $(x-1)^2 + x((2x+4) - 1)$ -1 (2 = $x^2 - 2x + 1 + 2x^2 + 4x - 1$ = $3x^2 + 2x$		
0,5	$B = x(3 x + 2)$ يعني $B = 3x^2 + 2x$		
1	$x = -\frac{2}{3}$ و نا به $x = 0$ يعني $x = 0$		
	$S_{IR} = \left\{-\frac{2}{3}, 0\right\}$ إذن		
	$a = \sqrt{125} - \sqrt{20} - 1 - 1(1)$		
0,75	$=5\sqrt{5}-2\sqrt{5}-1$		
	$=3\sqrt{5}-1$	التمرين الثاني	
0,5	ب- 1√5√5 إذن a عدد موجب	<u>-</u>	
0.75	$a \times b = (3\sqrt{5} - 1)(6 + 4\sqrt{5}) - 1(2$		
0,75	$= 18\sqrt{5} + 60 - 6 - 4\sqrt{5}$		
11200	$= 14\sqrt{5} + 54$ $(b-a)^2 = (6+4\sqrt{5}-3\sqrt{5}+1)^2 - 4$		
1	$(6-a) = (6+4\sqrt{5}-3\sqrt{5}+1)^{2}$ $= (7+\sqrt{5})^{2}$		
	$=(7+\sqrt{3})$ = $49+14\sqrt{5}+5$		
	$=54 + 14\sqrt{5}$		
	= a b.		
1	$\frac{1}{a} - \frac{1}{b} = \frac{b-a}{ab} - \varepsilon$		
	$=\frac{b-a}{(b-a)^2} = \frac{1}{b-a}$		

	B K M M O I A	<u>التمرين الثالث</u>
1,5	1) أ- رسم النفاط A و B و C.	
0,5 0,75	ب− (2,3) و (2,-3) إذن (B) C = S _o (B) وبالتالي فإنَّ O منتصف (BC] . 2) أ− (K(0,3).	
0,75	2) ۱۰۰۰ (۵,0) ب- في المثلث BCM لدينا O منتصف [BC] و (OA) // (OA) إذن OA = 2 OA و بالنالي EM = 2 ×3 إذن BM = 2 في BM - 5 ج- M(4,3)	
	B O C C	المسألة

0,5	[BC] الموسّط العمودي لـــ $[BC]$.
0,5	ب- تعيين النقطة Λ على Δ بحيث OA = 3 .
0,75	ج- $AB^2 = OB^2 + OA^2$. (تطبيق نظرية بيناغور في المثلث القائم $AB^2 = OB^2 + OA^2$ إذن $AB^2 = 4^2 + 3^2$ وبالتالي $AB^2 = 4^2 + 3^2$
1	2) أ- في المثلث BCE لدينا O منتصف (BC) و A منتصف (BE) إذن (OA) // (EC) و CE = 2 OA = 6.
0,5	ب- Δ = (OA) ، و (BC) ، و (CA) (BC) إذن (EC) عمودي على (BC)
0,75	3) أ− "تعلم أنَّ (EC) £ (EC)، إذن المثلث BCE مثلث قائم في C . ©D و [BC] قطر لــــــــــــــــــــــــــــــــــــ
0,75	ب ــ بــــما أنّ CD x BE = CB x CE و CE = 2 OA = 6 و CD x BE = 2BA و CB = 8 و CD x D = 8 x 6
0,75	4) أ- CED مثلث قائم الزّاوية في C ، إذن بتطبيق نظرية بيتاغور نتحصّل على CED = CE² = CE² - CD² مثلث قائم الزّاوية في C ، إذن بتطبيق نظرية بيتاغور نتحصّل على ED² = 36 - 23,04 ، ED² = 6² - (4,8)² ذن ED² = 12,96
0,75	ب- D ∈ [AE] ، و AD = 5 - 3,6 و AD = AE - ED إذن AD = AE - ED ، إذن AD = 5 - 3,6 و AD = 5 - 3,6 و AD = 1,4
0,75	5) أ- (AF) = (AF) ، و (CE) // (CE) إذن (AF) // (AF) ، بتطبيق نظريسة طالسس ننحصل على على <u>DF</u> = <u>DA</u> = <u>AF</u> .
0,75	$AF = \frac{1.4}{6}$ باذن $AF = \frac{1.4}{3.6}$ باذن $AF = \frac{1.4}{6}$ باذن $AF = \frac{1.4}{6}$ باذن $AF = \frac{7}{3}$ ملاحظة : يستند 0.25 للرسم الكامل