

Introduction and Quick Reference for IPAL

Intrusion Detection with IPAL

Introduction to IPAL

- Why an Industrial Protocol Abstraction Layer?
- Idea and Concept of IPAL

Hands-on IPAL

- Transcribing Industrial Protocols into IPAL
- ► Introduction to the IIDS Framework
- ▶ Tooling, Datasets & Development

Where to get an industrial IDS from?

Buy a solution from a vendor ...

- ► Vendors sell closed systems, e.g., an industrial-grade hardware box
- ▶ It is hard to figure out from public sources what the underlying detection models are
 - Often boils down to rule-based IDSs
- May target a single industrial domain only

Figure from omicronenergy.com/

... or deploy state-of-the-art research IIDSs

- ► IIDSs from research are designed for narrow use-cases
- Few IIDSs are available as open-source or on request only
- Mostly built as prototype for scientific evaluation

There is no established IIDSs solution

The problem of protocol pluralism

- Industries developed a huge variety of niche protocols
 - ► Modbus/TCP, CIP, IEC-104, NMEA 0183, ...
- The current state-of-the-art requires a tailored implementation of an IIDS for each protocol
 - ► An IIDS developed for power distribution networks in Europe with the IEC-104 protocol cannot be (re-)used in America leveraging DNP3
- Still, industrial protocols share a lot of common features
 - ► They are all designed to exchange (physical) process values
 - They exhibit only three fundamental communication paradigms

Motivation designing a generic IIDS tool

The heterogeneity of the industrial domain is overrated

- Industries encompass all kinds of applications ...
 - Water treatment, power distribution, manufacturing, and so on
- ... but share great similarities w.r.t. the properties leveraged in IIDSs
 - Repetitiveness of machine-to-machine communication
 - Reoccurring processes leveraged by process-state based IIDSs

Still, IIDSs mostly focus on a single or few domains

- Approaches like DTMC have been proposed twice already for the water treatment domain or gas facilities
- However, IIDSs are inherently meant to be adaptable!
 - E.g., anomaly detection trains the specific behaviors of an ICS

Do not re-invent similar IIDS for different domains!

Idea: The Industrial Protocol Abstraction Layer

- Decouple IIDSs from the underlying industrial protocols
 - ▶ IIDSs do not have to care about the protocol specifics anymore
 - Protocol parsing can be implemented by domain experts
- Protocol-independence promises a seamless translation of IIDSs from one industrial protocol to another domain

Abstracting Industrial Protocols

- IPAL translates every industrial packet into a common format
 - It must contain all information required by state-of-the-art IIDSs

Base
ident

Which packet features relevant for IIDSs can you think of?

IGU		03 6	an you tillik o
Network-based IIDS		Pro	cess state-aware IIDS
1.	Timestamp	1.	Timestamp
2.	Source & Destination	2.	Process Values
3.	Packet Length	3.	Attack Label
4.	Message Type		
5.	Activity (request, response,)		
6.	Process Values		
7.	Attack Label		
8.	Responds to List		
9.	Unique ID		

ifiers	Shang et al. [101] Feng et al. [40] Perez et al. [82]	2016 2017 2018	SVM LSTM SVM, RF, BLSTM	P P P				000	0	•	0000	A/B B A/B A/B
ır	nt for			P P P	0	0	• 0 0	0000	000	:	0000	A/B B A/B
				S S S S	00000	00000	00000	00000		00000	• 0 0 0 •	A A/B B A/B A/B
Critica	Kong et al. [62, 72, 73] Adepu et al. [2] Feng et al. [41] Monzer et al. [85] Das et al. [35]	2016 2016 2019 2019 2020	Iemporal logic Invariants Invariants Rules Data Analysis	S S S S	• • • •	00000	00000	00000		00000	0 • 0 • 0	B B B A/B
Behavior Prediction	Hadžiosmanović et al. [52] Caselli et al. [26] Ahmed et al. [6] PASAD [15, 16] Choi et al. [31] Myers et al. [87] Kravchik et al. [74] TABOR [81] Anton et al. [12] HybTester [28] Kim et al. [67] Denque Anton [13] SAVIOR [94]	2014 2015 2017 2018 2018 2018 2018 2018 2019 2019 2019 2020 2020	Autoregression DTMC Kalman Filter PCA Control Invariants Petri-nets Neural Networks TA, BN Matrix Profiles Hybrid-Automata Neural Networks Matrix Profiles Physical Invariants	s s s s s s s s s	•••••••	00000000000000	00000000000000	00000000000000	••••••	00000000000000	0000000000000	B B B B B B B B B B B B B B B B B B B
Correlations	Krotofil et al. [75] Alippi et al. [10] Aggarwal et al. [3] Hau et al. [53] NoiSense [4] ProcessSkew [8, 9]	2015 2016 2018 2019 2020 2020	Entropy Analysis Hidden Markov Model Hidden Markov Model Statistics Noise Fingerprinting Noise Fingerprinting	S S S S S S	•	000000	000000	000000	•	000000	00000	B B B B B
Classifiers	Nader et al. [88] Junejo et al. [63] Inoue et al. [60] Chen et al. [29] AADS [1] Anton et al. [12] FALCON [100]	2014 2016 2017 2018 2019 2019 2020	SVDD, KPCA Machine-learning SVM, DNN SVM DNN OCVM, Isolation Forest LSTM+ML	S S S S S S	• • • • • • • •	0000000	0000000	0000000		0000000	0000000	B A/B B A/B B B A/B
												-

Detection

Periodicity

Telemetry

2018 Nearest Neighbor

2012

2016

2017

2014

2015 DTMC

2018

2018

Methodology

Flow Periodicity

Inter arrival time

Inter-arrival time

Publication(s)

Valdes et al. [113]

Barbosa et al. [22]

Lin et al. [80]

Lin et al. [79]

Yoon et al. [121]

Ferling et al. [42]

Lin et al. [78]

Yun et al. [122]

Shang et al [101]

Ponomarev et al. [92]

Goldenberg et al. [50]

Caselli et al. [26, 27]

Workflow of the IPAL Framework – Transcriber

Workflow of the IPAL Framework – Rule Files

Workflow of the IPAL Framework – IIDS Framework

Workflow of the IPAL Framework – State Aggregation

Workflow of the IPAL Framework – Evaluation

Chapter 4: Intrusion Detection with IPAL

Introduction to IPAL

- Why an Industrial Protocol Abstraction Layer?
- Idea and Concept of IPAL

Hands-on IPAL

- Transcribing Industrial Protocols into IPAL
- ► Introduction to the IIDS Framework
- ▶ Tooling, Datasets & Development

IPAL Overview

- Transcriber converts network traffic into IPAL messages or process-states
 [1] https://github.com/fkie-cad/ipal transcriber
- IIDS Framework bundles training and execution of IIDS implementations
 [2] https://github.com/fkie-cad/ipal ids framework
- IIDSs' performance can be analyzed and visualized with IPAL Evaluate [3] https://github.com/fkie-cad/ipal_evaluate
- Datasets is a collection of datasets and scripts to convert them to IPAL
 [4] https://github.com/fkie-cad/ipal datasets

Quick Installation Guide

1. Clone the repository

2. Installation

- Installation with pip install . (recommended) OR pip install -e .
- Use it locally pip install —r requirements.txt and ./ipal-transcriber
- Installation as virtual environment ./misc/install.sh
- Building a docker image docker build –t <name>:latest .
- Known Problem: too old packages, e.g., numpy or tshark
 - A quick Internet search may solve dependency issues easily

Optionally install the development tools

- ▶ pip3 install -r requirements-dev.txt
- pre-commit install

Please refer to the README in each repository.

Transcriber Quick References

- Transcribe a packet trace into IPAL format
 - ▶ ipal-transcriber --pcap <pcap> --rules <rules> --ipal.output <ipal>
- State Extraction to generate the process state

 - ipal-transcriber --pcap <pcap> --rules <rules> --ipal.output <ipal> --filter <process variables> timeslice --timeslice.interval <ms>
- Remove process data, e.g. after detection to reduce disc space
 - ipal-minimize --all <ipal file>

- Any file that ends with .gz get automatically compressed
- Files can be pipes with
 - ▶ ipal-transcriber --ipal.output | grep PLC1 | ipal-state-extractor --ipal.input -
- For further information ipal-transcriber –h or ipal-state-extractor -h

IIDS Framework – Behind the Scenes

 The Framework is divided into training (learning a model) and live detection of anomalies

IIDS Inter-arrival Time (Background Tutorial)

- Idea: Attacks (DoS, PitM, PotS) influence timing between network packets
 - Communication is periodic for one packet type
 - E.g., Maritime GNSS positions are broadcasted every two seconds
- Approach: Model packet inter-arrival time
 - Calculate average time between packets of the same type, derive standard deviation and margin of error
 - NMEA/GLL: inter-arrival time 2.006s (stddev 0.051)

Lin et al. "Timing-based anomaly detection in SCADA networks." CRITIS 2017

IIDS Framework Quick References

- Obtaining a default IIDS configuration file
 - ipal-iids --default.config <iids name>
- Train an IIDS
 - ▶ ipal-iids --config <config> --train.ipal <ipal> or --train.state <state>
 - ▶ ipal-visualize-model <config>
 - Retraining requires the --retrain option!
- Performing Intrusion Detection
 - ipal-iids --config <config> --output <output> --live.ipal <ipal> or --live.state <state>

Add --log info or --log debug for additional debugging information

IPAL Evaluate Quick References

Analyze the performance of your IIDS

▶ ipal-evaluate --attacks <attacks.json> <IIDS output>

Visualize the results and alerts

- ▶ ipal-plot-alerts --attacks <attacks.json> <IIDS output>
- ipal-plot-metrics <output of ipal-evaluate>

Lazy searching for an optimal parameter? Use ipal-tune

How to Contribute & Git Merge Request Workflow

- If you have troubles or if you encounter errors
 - Feel free to contact us!
 - For bug reports, please open an issue on Github
- Contributing Code / Bugfixes
- 1. Fork the repository
- 2. Implement fix on a new branch
 - Test your code with pytest
- 3. Push to your forked repository
- 4. Create a merge request

Image: https://www.wireshark.org/docs/wsdg https://www.wir