

DMET 901: Computer Vision

Seif Eldawlatly

Winter 2019

DMET901 – Computer Vision

- Instructor
 - Dr. Seif Eldawlatly
 Associate Professor, Faculty of Media Engineering and Technology
 E-mail: seif.eldawlatly@guc.edu.eg
 - TAs: Mohamed Karam Gabr and Sama EL Baroudy
- Office Hours
 - Sundays 2:00pm to 3:00pm (Office: C7-210)
- Textbook
 - "Image processing, analysis and machine vision" by Milan Sonka,
 Vaclav Hlavac and Roger Boyle, Fourth edition, Thomson Learning,
 London, 2014

DMET901 – Computer Vision

- Course Evaluation
 - 3-4 Assignments (using Python): 20%
 - Mid-term exam: 25%
 - Quizzes: 15%
 - Final exam: 40%

Introduction

Vision allows humans to understand the surrounding world

Human Visual System

- The visual system consists of 5 major parts:
 - Eye: The lens
 - Retina: Converts light to electrical pulses
 - Optic Nerve: Carries electrical pulses to the brain
 - Lateral Geniculate Nucleus (LGN): Relay point of electrical pulses
 - Primary Visual Cortex (V1): Perception

Human Visual System

- Photoreceptors in the retina convert light to electrical pulses
- Two types of photoreceptors:
 - Rods (For low-light vision not sensitive to colors)
 - Cones (For bright-light vision sensitive to colors)

Human Visual System

Each neuron in the retina and the LGN has a "Receptive Field" which is
a region of space in which the presence of light stimulates the neuron

Receptive fields have ON and OFF regions

Computer Vision

 Computer vision aims at duplicating the effect of human vision by electronically perceiving an image

Why is Computer Vision Useful?

Low-level Processing:

Little knowledge about the image contents

- Image Compression
- Noise Filtering
- Image Sharpening

High-level Processing:

More knowledge, uses AI methods

- Face Recognition
- Target Detection

Original Image

Decrease Brightness

Increase Brightness

Original Image

Decrease Contrast

Increase Contrast

Original Image

Rotated by +30°

Rotated by -30°

Noise Filtering

Original Image

Filtered Image1

Noisy Image

Filtered Image2

Edge Detection

Original Image

Edge Image 1

Edge Image 2

Edge Image 3

Segmentation

Original Image

Segmented Image

• 3D Vision: Stereopsis

Images falling onto the retinas

Image 1

Image 2

Depth Image

Bright colors indicate close pixels. Dark colors indicate far pixels

• 3D Vision: Reconstruction from Multiple Images

Motion Analysis

Motion Vectors

Application: Automatic Target Recognition (ATR)

Training Dataset

How many targets are classified correctly?

Why is Computer Vision Difficult?

• Loss of information in 3D → 2D

- Because of the single view, a small object close to the camera appears the same as a larger object far from the camera
- Interpretation of images:
 - Machine learning algorithms can do this job by providing some experience data
 - Examples: Face detection and cancer detection

Why is Computer Vision Difficult?

- Noise:
 - Can be electronic due to defects in the sensor or mechanical due to movement during image capture
- Large size of data:
 - An A4 sheet scanned at 300 dpi at 8 bits/pixel corresponds to 8.5 MB
- Local window vs. need for global view:
 - The computer sees the world through keyholes

Why is Computer Vision Difficult?

What the computer sees

What we see

A lot of a priori information is used by humans to interpret images

Course Outline

- Image Representation and Properties
- Image Pre-processing
- Image Filtering
- Edge Detection
- Image Segmentation
- Interest Points Detection
- Local Feature Extraction
- 3D Vision
- Motion Analysis
- Object Recognition

Image Processing
Basics

Computer Vision