Universidade Federal de Uberlândia Faculdade de Matemática

Cálculo Numérico: Ajuste de Curvas e Interpolação Polinomial Professor: Dr. Alessandro Alves Santana

Aluno(a):												
Matrícu	la:												
Curso:_								_					
1. A tab	ela												
	t (s)	0.0	0.6	1.6	2.5	3.1	4.8	5.9	6.6	7.9	8.5	9.9	10.0
	v(t) (m/s)	0.00	0.04	0.74	2.50	4.24	9.56	10.88	10.14	5.94	3.50	0.02	0.00

apresenta a velocidade (em metros por segundo) de um corpo em função do tempo (em segundos). Esse corpo saiu do repouso até atingir uma velocidade máxima e depois essa velocidade começou a reduzir até atingir o repouso conforme pode-se notar na tabela. Ajuste a função velocidade dessa tabela por uma função da forma

$$\tilde{v}(t) = \alpha_1 + \alpha_2 t \cos\left(\frac{\pi t}{5}\right)$$

Trabalhe com 4 casas decimais em todo processo de resolução. Utilize a função de ajuste $\tilde{v}(t)$ obtida, trabalhando sempre com 4 casas decimais, para responder os itens abaixo.

- (a) Obtenha uma aproximação para a velocidade do corpo em t = 3 segundos.
- (b) Obtenha uma aproximação para a aceleração do corpo em t = 5 segundos.
- (c) Obtenha uma aproximação da distância percorrida pelo corpo no intervalo [2,8].
- 2. Obtenha uma aproximação para a integral definida

$$\int_{-1}^{1} e^{-x^2} dx$$

ajustando o integrando por uma função da forma

$$\tilde{f}(x) = \alpha_1 \phi_1(x) + \alpha_2 \phi_2(x) + \alpha_3 \phi_3(x) + \alpha_4 \phi_4(x)$$

onde $\phi_1(x)=1$, $\phi_2(x)=x$, $\phi_3(x)=\frac{1}{2}(3x^2-1)$ e $\phi_4(x)=\frac{1}{2}(5x^3-3x)$ utilizando os pontos do conjunto

$$S = \{-0.861136, -0.339981, 0.339981, 0.861136\}$$

utilizando 6 casas decimais em todo processo de resolução. O sistema linear deve ser resolvido utilizando o MEGPP, também utilizado 6 casas decimais em todo processo de resolução.

3. A tabela

t (s)	0.09	0.27	0.55	0.72	0.86	0.98	1.23	1.32
s(t) (m)	0.37	0.58	0.75	0.82	0.87	0.91	0.97	0.99

fornece a posição de um corpo (em metros) em função do tempo (em segundos). Trabalhando com 4 casas decimais em todo processo de resolução, usando essa tabela responda os itens abaixo:

- (a) Ajuste a função da tabela por uma função da forma $s_1(t) = ax^b$.
- (b) Usando a função de ajuste obtida no item (a) obtenha uma aproximação para posição do corpo em t=1.
- (c) Usando a função de ajuste obtida no item (a) obtenha uma aproximação para a velocidade do corpo em t=0.2.
- (d) Usando a função de ajuste obtida no item (a) obtenha uma aproximação para a aceleração do corpo em t = 0.6.
- (e) Ajuste a função da tabela por uma função da forma $s_2(t) = \arctan(ax^b)$.
- (f) Usando a função de ajuste obtida no item (e) obtenha uma aproximação para posição do corpo em t = 1.
- (g) Usando a função de ajuste obtida no item (e) obtenha uma aproximação para a velocidade do corpo em t=0.2.
- (h) Usando a função de ajuste obtida no item (e) obtenha uma aproximação para a aceleração do corpo em t=0.6.
- (i) Qual das duas funções de ajuste obtidas é a melhor escolha para ser utilizada no processo de análise do fenômeno físico representado na função da tabela? Sugestão: Compare os resíduos

$$r_1 = \sum_{k=1}^{n} [s(t_k) - s_1(t_k)]^2$$
 e $r_2 = \sum_{k=1}^{n} [s(t_k) - s_2(t_k)]^2$

4. Considere a tabela

x	-1.53	-1.08	-0.96	-0.49	0.45	0.72	1.10	1.90
f(x)	0.74	0.45	0.37	0.11	0.10	0.23	0.46	0.95

por uma função da forma

$$f(x) = \frac{a x^2}{b + x^2}$$

e obtenha uma aproximação para a integral

$$\int_{-1}^{1} f(x)dx.$$

Trabalhe com 4 casas decimais em todo processo de resolução.

5. A tabela

t (s)	0	0.59	2.47	2.63	4.22	5.13	6.49	7.58	8.76	10
v(t) (m/s)	0	0.20	12.12	14.22	39.72	51.21	51.69	36.00	12.63	0

apresenta a velocidade de um corpo que partiu do repouso, ficou 10 segundos em movimento, e depois parou. De posse dessas informações, responda os itens a seguir:

- (a) Utilizando interpolação polinomial via Forma de Lagrange, obtenha por meio de um polinômio de grau 2 uma aproximação v(3). Trabalhe com 4 casas decimais em todo processo de resolução.
- (b) Utilizando o polinômio obtido no item (a), obtenha uma aproximação para a(4) onde a(t) é a função aceleração do corpo em questão. Trabalhe com 4 casas em questão.

- (c) Utilizando interpolação polinomial via Forma de Newton, obtenha por meio de um polinômio de grau 3 uma aproximação para a distância percorrida pelo corpo no intervalo de tempo [3, 5]. Trabalhe com 4 casas decimais em todo processo de resolução.
- (d) Existe um único instante \overline{t} onde a velocidade do corpo parou de aumentar e começou a decrescer (diminuir). Utilizando interpolação polinomial via Forma de Newton, obtenha por meio de um polinômio de grau 3 uma aproximação para o instante \overline{t} onde a velocidade parou de aumentar. Trabalhe com 4 casas decimais em todo processo de resolução.
- (e) Utilizando o polinômio obtido no intem (d) obtenha uma aproximação para a velocidade do corpo no instante em que a velocidade parou de aumentar. Trabalhe com 4 casas decimais em todo processo de resolução.
- 6. Deseja-se obter $f(x) = e^{-x^2}$, para $x \in [-0.5, 1.5]$, com duas casas decimais corretas, através de interpolação linear usando uma tabela de pontos igualmente espaçados com tamanho h. Quantos valores deve ter essa tabela?
- 7. Deseja-se obter $f(x) = e^{\arctan(x)}$, para $x \in [1,2]$, com três casas decimais corretas, através de interpolação linear usando uma tabela de pontos igualmente espaçados com tamanho h. Quantos valores deve ter essa tabela?
- 8. Deseja-se obter $f(x) = e^{\cos(x)}$, para $x \in [1, 4]$, com duas casas decimais corretas, através de interpolação linear usando uma tabela de pontos igualmente espaçados com tamanho h. Quantos valores deve ter essa tabela?
- 9. Deseja-se obter $f(x) = \arctan(\text{sen}(x))$, para $x \in [2,3]$, com duas casas decimais corretas, através de interpolação linear usando uma tabela de pontos igualmente espaçados com tamanho h. Quantos valores deve ter essa tabela?

10. Considere a tabela abaixo

x	0.03	0.27	0.45	0.76	0.89	1.13	1.29	1.48
f(x)	0.50	0.43	0.32	0.06	-0.05	-0.22	-0.31	-0.39

e obtenha, usando interpolação inversa, uma aproximação:

- (a) Para \overline{x} tal que $f(\overline{x}) = 0.25$ usando a Forma de Lagrange por meio de um polinômio de grau 2. Trabalhe com 4 casas decimais.
- (b) Uma aproximação para o único zero \overline{x} da função da tabela usando a Forma de Newton por meio de um polinômio de grau 3. Trabalhe com 4 casas decimais.