219 Extremums: existence, caractérisation, recherche. Exemples et applications.

I - Existence et unicité

Définition 1. Soient U un ouvert d'un espace vectoriel normé E et $f: U \to \mathbb{R}$.

[R-R] p. 210

— On dit que f admet un **maximum local** (resp. **minimum local**) en $a \in U$ si

$$\exists r > 0 \text{ tel } \forall x \in B(a, r), f(x) \le f(a) (\text{resp. } f(x) \ge f(a))$$

— On dit que f admet un **extremum local** en $a \in U$ si elle admet un minimum ou un maximum local.

1. Utilisation de la compacité

Théorème 2 (Des bornes). Soient E un espace compact et $f: E \to \mathbb{R}$ continue. Alors, il existe deux éléments a et b de E vérifiant

[**GOU20**] p. 31

$$f(a) = \inf_{x \in E} f(x) \text{ et } f(b) = \sup_{x \in E} f(x)$$

Contre-exemple 3. La fonction

[**HAU**] p. 202

$$\mathbb{R} \to \mathbb{R}$$

$$x \mapsto \begin{cases} \frac{(-1)^q (q-1)}{q} & \text{si } x \in \mathbb{Q} \setminus \{0\} \text{ avec } \frac{p}{q} \text{ le représentant irréductible de } x \\ 0 & \text{sinon} \end{cases}$$

est minorée par -1, majorée par 1, mais n'atteint ses bornes sur aucun intervalle d'intérieur non vide de \mathbb{R} .

Corollaire 4. Soient (E, d) un espace métrique et K_1 , K_2 deux compacts de E. Alors,

[**GOU20**] p. 33

$$\exists (x_1,x_2) \in K_1 \times K_2 \text{ tel que } d(x_1,x_2) = \inf_{(x,y) \in K_1 \times K_2} d(x,y)$$

Corollaire 5 (Point fixe dans un compact). Soit (E, d) un espace métrique compact et $f: E \to E$ telle que

$$\forall x, y \in E, x \neq y \implies d(f(x), f(y)) < d(x, y)$$

[**ROU**] p. 171 alors f admet un unique point fixe et pour tout $x_0 \in E$, la suite des itérés

$$x_{n+1} = f(x_n)$$

converge vers ce point fixe.

Exemple 6. \sin admet un unique point fixe \sup [0, 1].

Contre-exemple 7. La fonction

[**GOU20**] p. 35

$$\mathbb{R} \to \mathbb{R}$$

$$x \mapsto \begin{cases} 1 & \text{si } x < 0 \\ x + \frac{1}{1+x} & \text{sinon} \end{cases}$$

est continue, contractante et sans point fixe.

Corollaire 8 (Théorème de Heine). Une application continue sur un compact y est uniformément continue.

p. 31

Application 9 (Théorème de d'Alembert-Gauss). Tout polynôme non constant de $\mathbb C$ admet une racine dans $\mathbb C$.

[**DAN**] p. 58

2. Utilisation de la convexité

Soit $I \subseteq \mathbb{R}$ un intervalle non réduit à un point.

[ROM19-1] p. 234

Proposition 10. Une fonction $f : \mathbb{R} \to \mathbb{R}$ est constante si et seulement si elle est convexe et majorée.

Contre-exemple 11. La fonction f définie sur \mathbb{R}^+ par $f(x) = \frac{1}{1+x}$ est convexe, majorée, mais non constante.

Proposition 12. Si $f: I \to \mathbb{R}$ est convexe et est dérivable en un point $\alpha \in \mathring{I}$ tel que $f'(\alpha) = 0$, alors f admet un minimum global en α .

Proposition 13. Si $f: I \to \mathbb{R}$ est convexe et admet un minimum local, alors ce minimum est global.

3. Utilisation de l'holomorphie

Soient Ω un ouvert connexe de \mathbb{C} et $f: \Omega \to \mathbb{C}$.

[**QUE**] p. 102

Proposition 14 (Inégalités de Cauchy). On suppose f holomorphe au voisinage du disque $\overline{D}(a,R)$. On note c_n les coefficients du développement en série entière de f en a. Alors,

$$\forall n \in \mathbb{N}, \forall r \in [0, R], |c_n| \le \frac{M(r)}{r^n}$$

où $M(r) = \sup_{|z-a|=r} |f(z)|$.

Corollaire 15 (Théorème de Liouville). On suppose f holomorphe sur $\mathbb C$ tout entier. Si f est bornée, alors f est constante.

Théorème 16 (Principe du maximum). On suppose Ω borné et f holomorphe dans Ω et continue dans $\overline{\Omega}$. On note M le sup de f sur la frontière (compacte) de Ω . Alors,

 $\forall z \in \Omega, |f(z)| \le M$

p. 107

4. Utilisation de propriétés hilbertiennes

Soit H un espace de Hilbert de norme $\|.\|$ et on note $\langle .,. \rangle$ le produit scalaire associé.

[LI] p. 32

Lemme 17 (Identité du parallélogramme).

$$\forall x, y \in H, \|x + y\|^2 + \|x - y\|^2 = 2(\|x\|^2 \|y\|^2)$$

et cette identité caractérise les normes issues d'un produit scalaire.

[DEV]

Théorème 18 (Projection sur un convexe fermé). Soit $C \subseteq H$ un convexe fermé non-vide. Alors :

$$\forall x \in H, \exists ! y \in C \text{ tel que } d(x,C) = \inf_{z \in C} \|x-z\| = d(x,y)$$

On peut donc noter $y = P_C(x)$, le **projeté orthogonal de** x **sur** C. Il s'agit de l'unique point de C vérifiant

$$\forall z \in C, \langle x - P_C(x), z - P_C(x) \rangle \leq 0$$

Théorème 19. Si F est un sous espace vectoriel fermé dans H, alors P_F est une application linéaire continue. De plus, pour tout $x \in H$, $P_F(x)$ est l'unique point $y \in F$ tel que $x - y \in F^{\perp}$.

Application 20. Soit F un sous-espace vectoriel de H. Alors,

$$\overline{F} = H \iff F^{\perp} = 0$$

Application 21 (Théorème de représentation de Riesz).

$$\forall \varphi \in H', \exists ! y \in H, \text{ tel que } \forall x \in H, \varphi(x) = \langle x, y \rangle$$

et de plus, $||\varphi|| = ||y||$.

Corollaire 22.

$$\forall T \in H', \exists ! U \in H' \text{ tel que } \forall x, y \in H, \langle T(x), y \rangle = \langle x, U(y) \rangle$$

On note alors $U = T^*$: c'est **l'adjoint** de T. On a alors $|||T||| = |||T^*||$.

Application 23. Soit $J: H \to \mathbb{R}$ une fonction convexe, continue et vérifiant

 $\forall (x_k) \in H^{\mathbb{N}} \text{ telle que } \|x_k\| \longrightarrow_{k \to +\infty} +\infty \text{ alors } J(x_k) \longrightarrow_{k \to +\infty} +\infty$

Alors, il existe $a \in H$ tel que

$$J(a) = \inf_{h \in H} J(h)$$

II - Extrema et calcul différentiel

Soit $f: U \to \mathbb{R}$ différentiable en un point a de U, où U est un ouvert de \mathbb{R}^n .

1. Condition du premier ordre

Définition 24. Si $df_a = 0$, on dit que a est un **point critique** de f.

[**R-R**] p. 210

p. 336

Remarque 25. Cela revient à dire que toutes les dérivées partielles de f s'annulent en a.

Proposition 26. Si f admet un extremum local en a, alors a est un point critique de f.

Contre-exemple 27. $(x, y) \mapsto x^2 - y^2$ a un point critique en (0, 0), mais n'a pas d'extremum en (0, 0).

[**HAU**] p. 281

2. Condition du second ordre

On suppose f de classe \mathscr{C}^2 sur U.

[**GOU20**] p. 336

Définition 28. La matrice **hessienne** de f en a, notée $\operatorname{Hess}(f)_a$, est définie par

$$\operatorname{Hess}(f)_{a} = \left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right)_{i,j \in [\![1,n]\!]}$$

Remarque 29. Pour f de classe \mathscr{C}^2 , $\operatorname{Hess}(f)_a$ est symétrique.

Théorème 30. On suppose $df_a = 0$. Alors :

- (i) Si f admet un minimum (resp. maximum) relatif en a, Hess $(f)_a$ est positive (resp. négative).
- (ii) Si $\operatorname{Hess}(f)_a$ définit une forme quadratique définie positive (resp. définie négative), f admet un minimum (resp. maximum) relatif en a.

Exemple 31. On suppose $df_a = 0$. On pose $(r, s, t) = \left(\frac{\partial^2}{\partial x_i \partial x_j} f\right)_{i+i=2}$. Alors:

- (i) Si $rt s^2 > 0$ et r > 0 (resp. r < 0), f admet une minimum (resp. maximum) relatif en a.
- (ii) Si $rt s^2 < 0$, f n'a pas d'extremum en a.
- (iii) Si $rt s^2 = 0$, on ne peut rien conclure.

Exemple 32. La fonction $(x, y) \mapsto x^4 + y^2 - 2(x - y)^2$ a trois points critiques qui sont des minimum locaux : (0,0), $(\sqrt{2}, -\sqrt{2})$ et $(-\sqrt{2}, \sqrt{2})$.

Contre-exemple 33. $x \mapsto x^3$ a sa hessienne positive en 0, mais n'a pas d'extremum en 0.

3. Extrema liés

Théorème 34 (Extrema liés). Soient $f, g_1, \ldots, g_r : U \to \mathbb{R}$ des fonctions de classe \mathscr{C}^1 . On note $\Gamma = \{x \in U \mid g_1(x) = \cdots = g_r(x) = 0\}$. Si $f_{\mid \Gamma}$ admet un extremum relatif en $a \in \Gamma$ et si les formes linéaires $d(g_1)_a, \ldots, d(g_r)_a$ sont linéairement indépendantes, alors il existe des uniques $\lambda_1, \ldots, \lambda_r$ tels que

$$\mathrm{d}f_a = \lambda_1 \mathrm{d}(g_1)_a + \dots + \lambda_r \mathrm{d}(g_r)_a$$

p. 337

Définition 35. Les $\lambda_1, \dots, \lambda_r$ du théorème précédent sont appelés appelés **multiplicateurs** de Lagrange.

Remarque 36. La relation finale du Théorème 34 équivaut à

[BMP] p. 21

$$\bigcap_{i=1}^{n} \operatorname{Ker}(\operatorname{d}(g_i)_a) \subseteq \operatorname{Ker}(\operatorname{d}f_a)$$

et elle exprime que d f_a est nulle sur l'espace tangent à Γ en a (ie. ∇f_a est orthogonal à l'espace tangent à Γ en a).

Contre-exemple 37. On pose $g:(x,y)\mapsto x^3-y^2$ et on considère $f:(x,y)\mapsto x+y^2$. On cherche à minimiser f sous la contrainte g(x,y)=0.

Alors, le minimum (global) de f sous cette contrainte est atteint en (0,0), la différentielle de g en (0,0) est nulle et la relation finale du Théorème 34 n'est pas vraie.

Application 38 (Théorème spectral). Tout endomorphisme symétrique d'un espace euclidien se diagonalise dans une base orthonormée.

Application 39.

p. 35

$$\mathrm{SO}_n(\mathbb{R}) = \left\{ M \in \mathcal{M}_n(\mathbb{R}) \mid \|M\|^2 = \inf_{P \in \mathrm{SL}_n(\mathbb{R})} \|P\|^2 \right\}$$

où $\|.\|: M \mapsto \sqrt{\operatorname{trace}({}^t M M)}$ (ie. $\operatorname{SO}_n(\mathbb{R})$ est l'ensemble des matrices de $\operatorname{SL}_n(\mathbb{R})$ qui minimisent la norme euclidienne canonique de $\mathcal{M}_n(\mathbb{R})$).

Application 40 (Inégalité arithmético-géométrique).

[**GOU20**] p. 339

$$\forall (x_1, \dots, x_n) \in (\mathbb{R}^+)^n, \left(\prod_{i=1}^n x_i\right)^{\frac{1}{n}} \leq \frac{1}{n} \sum_{i=1}^n x_i$$

Application 41 (Inégalité d'Hadamard).

[**ROU**] p. 409

$$\forall (x_1, ..., x_n) \in \mathbb{R}^n, \det(x_1, ..., x_n) \le ||x_1|| ... ||x_n||$$

avec égalité si et seulement si $(x_1, ..., x_n)$ est une base orthogonale de \mathbb{R}^n .

III - Algorithmes d'optimisation numérique

1. Méthode de Newton

[DEV]

Théorème 42 (Méthode de Newton). Soit $f:[c,d] \to \mathbb{R}$ une fonction de classe \mathscr{C}^2 strictement croissante sur [c,d]. On considère la fonction

$$\varphi: \begin{bmatrix} [c,d] & \to & \mathbb{R} \\ x & \mapsto & x - \frac{f(x)}{f'(x)} \end{bmatrix}$$

(qui est bien définie car f' > 0). Alors :

- (i) $\exists ! a \in [c, d] \text{ tel que } f(a) = 0.$
- (ii) $\exists \alpha > 0$ tel que $I = [a \alpha, a + \alpha]$ est stable par φ .
- (iii) La suite (x_n) des itérés (définie par récurrence par $x_{n+1} = \varphi(x_n)$ pour tout $n \ge 0$) converge quadratiquement vers a pour tout $x_0 \in I$.

Corollaire 43. En reprenant les hypothèses et notations du théorème précédent, et en supposant de plus f strictement convexe sur [c,d], le résultat du théorème est vrai sur I=[a,d]. De plus :

- (i) (x_n) est strictement décroissante (ou constante).
- (ii) $x_{n+1} a \sim \frac{f''(a)}{2f'(a)}(x_n a)^2$ pour $x_0 > a$.

Exemple 44. — On fixe y > 0. En itérant la fonction $F: x \mapsto \frac{1}{2} \left(x + \frac{y}{x} \right)$ pour un nombre de départ compris entre c et d où 0 < c < d et $c^2 < 0 < d^2$, on peut obtenir une approximation du nombre \sqrt{y} .

— En itérant la fonction $F: x \mapsto \frac{x^2+1}{2x-1}$ pour un nombre de départ supérieur à 2, on peut obtenir une approximation du nombre d'or $\varphi = \frac{1+\sqrt{5}}{2}$.

2. Lien avec les systèmes linéaires

Proposition 45. Soient $A \in \mathscr{S}_n^{++}(\mathbb{R})$ et $b \in \mathbb{R}^n$. On pose $f : x \mapsto \frac{1}{2}\langle Ax, x \rangle + \langle b, x \rangle$. Alors, minimiser f sur \mathbb{R}^n revient à résoudre le système linéaire Ax = b.

[BMP] p. 24

[ROU]

p. 152

Bibliographie

Objectif agrégation [BMP]

Vincent BECK, Jérôme Malick et Gabriel Peyré. *Objectif agrégation*. 2^e éd. H&K, 22 août 2005. https://objectifagregation.github.io.

Mathématiques pour l'agrégation

[DAN]

Jean-François Dantzer. *Mathématiques pour l'agrégation. Analyse et probabilités.* De Boeck Supérieur, 20 avr. 2021.

https://www.deboecksuperieur.com/ouvrage/9782807332904-mathematiques-pour-l-agregation-analyse-et-probabilites.

Les maths en tête [GOU20]

Xavier Gourdon. Les maths en tête. Analyse. 3^e éd. Ellipses, 21 avr. 2020.

https://www.editions-ellipses.fr/accueil/10446-les-maths-en-tete-analyse-3e-edition-9782340038561.html.

Les Contre-Exemples en Mathématiques

[HAU]

Bertrand Hauchecorne. Les Contre-Exemples en Mathématiques. $2^{\rm e}$ éd. Ellipses, 13 juin 2007. https://www.editions-ellipses.fr/accueil/5328-les-contre-exemples-en-mathematiques-

L'oral à l'agrégation de mathématiques

[I-P]

Lucas Isenmann et Timothée Pecatte. *L'oral à l'agrégation de mathématiques. Une sélection de développements.* 2^e éd. Ellipses, 26 mars 2024.

https://www.editions-ellipses.fr/accueil/15218-28346-loral-a-lagregation-de-mathematiques-une-selection-de-developpements-2e-edition-9782340086487.html.

Cours d'analyse fonctionnelle

9782729834180.html.

[LI]

Daniel Li. Cours d'analyse fonctionnelle. avec 200 exercices corrigés. Ellipses, 3 déc. 2013.

 $\label{eq:https://www.editions-ellipses.fr/accueil/6558-cours-danalyse-fonctionnelle-avec-200-exercices-corriges-9782729883058.html.$

Analyse complexe et applications

[QUE]

Martine Quefféllec et Hervé Queffélec. *Analyse complexe et applications. Nouveau tirage*. Calvage & Mounet, 13 mai 2017.

http://www.calvage-et-mounet.fr/2022/05/09/analyse-complexe-et-applications/.

Formulaire de maths [R-R]

Olivier Rodot et Jean-Étienne Rombaldi. *Formulaire de maths. Avec résumés de cours.* De Boeck Supérieur, 30 août 2022.

https://www.deboecksuperieur.com/ouvrage/9782807339880-formulaire-de-maths.

Éléments d'analyse réelle

[ROM19-1]

Jean-Étienne Rombaldi. Éléments d'analyse réelle. 2e éd. EDP Sciences, 6 juin 2019.

https://laboutique.edpsciences.fr/produit/1082/9782759823789/elements-d-analyse-reelle.

Petit guide de calcul différentiel

[ROU]

François Rouvière. *Petit guide de calcul différentiel. à l'usage de la licence et de l'agrégation.* 4° éd. Cassini, 27 fév. 2015.

 $\verb|https://store.cassini.fr/fr/enseignement-des-mathematiques/94-petit-guide-de-calcul-differentiel-4e-ed.html|.$