Simple lower-bounds for small-bias spaces

Preetum Nakkiran Jun 03, 2016

I was reading about PRGs recently, and I think a lemma mentioned last time (used for Johnson-Lindenstrauss lower-bounds) can give simple lower-bounds for ε -biased spaces.

Notice:

- 2^n mutually orthogonal vectors requires dimension at least 2^n , but 2^n "almost orthogonal" vectors with pairwise inner-products $|\langle v_i, v_j \rangle| \leq \varepsilon$ exists in dimension $O(n/\varepsilon^2)$, by Johnson-Lindenstrauss.
- Sampling n iid uniform bits requires a sample space of size 2^n , but $n \in \text{-biased bits can be sampled from a space of size } O(n/\varepsilon^2)$.

First, let's look at k-wise independent sample spaces, and see how the lower-bounds might be extended to the almost k-wise independent case.

Note: To skip the background, just see Lemma 2, and its application in Claim 4.

1 Preliminaries

What "size of the sample space" means is: For some sample space S, and ± 1 random variables X_i , we will generate bits $x_1, \ldots x_n$ as an instance of the r.vs X_i . That is, by drawing a sample $s \in S$, and setting $x_i = X_i(s)$. We would like to have $|S| \ll 2^n$, so we can sample from it using less than n bits.

Also, any random variable X over S can be considered as a vector $\widetilde{X} \in \mathbb{R}^{|S|}$, with coordinates $\widetilde{X}[s] := \sqrt{\Pr[s]}X(s)$. This is convenient because $\langle \widetilde{X}, \widetilde{Y} \rangle = \mathbb{E}[XY]$.

2 Exact k-wise independence

A distribution D on n bits is k-wise independent if any subset of k bits are iid uniformly distributed. Equivalently, the distribution $D: \{\pm 1\}^n \to \mathbb{R}_{\geq 0}$ is k-wise independent iff the Fourier coefficients $\hat{D}(S) = 0$ for all $S \neq 0, |S| \leq k$.

n such k-wise independent bits can be generated from a seed of length $O(k \log n)$ bits, using say Reed-Solomon codes. That is, the size of the sample space is $n^{O(k)}$. For k-wise independent bits, size is optimal, as the below claim shows (adapted from Umesh Vazirani's lecture notes [Vaz99]).

Claim 1. Let D be a k-wise independent distribution on $\{\pm 1\}$ random variables x_1, \ldots, x_n , over a sample space S. Then, $|S| = \Omega_k(n^{k/2})$.

Proof. For subset $T \subseteq [n]$, let $\chi_T(x) = \prod_{i \in T} x_i$ be the corresponding Fourier character. Consider these characters as vectors in $\mathbb{R}^{|S|}$ as described above, with

$$\langle \chi_A, \chi_B \rangle = \underset{x \sim D}{\mathbb{E}} [\chi_A(x)\chi_B(x)]$$

Let J be the family of all subsets of size $\leq k/2$. Note that, for $A, B \in J$, the characters χ_A, χ_B are orthogonal:

$$\begin{split} \langle \chi_A, \chi_B \rangle &= \underset{x \sim D}{\mathbb{E}} [\chi_A(x) \chi_B(x)] \\ &= \underset{x \sim D}{\mathbb{E}} [(\prod_{i \in A \cap B} x_i^2) (\prod_{i \in A \Delta B} x_i)] \\ &= \underset{x \sim D}{\mathbb{E}} [\chi_{A \Delta B}(x)] \qquad \qquad \text{(since } x_i^2 = 1) \\ &= 0 \qquad \qquad \text{(since } |A \Delta B| \le k, \text{ and } D \text{ is } k\text{-wise independent)} \end{split}$$

Here $A\Delta B$ denotes symmetric difference, and the last equality is because $\chi_{A\Delta B}$ depends on $\leq k$ variables, so the expectation over D is the same as over iid uniform bits.

Thus, the characters $\{\chi_A\}_{A\in J}$ form a set of |J| mutually-orthogonal vectors in $\mathbb{R}^{|S|}$. So we must have $|S| \geq |J| = \Omega_k(n^{k/2})$.

The key observation was relating independence of random variables to linear independence (orthogonality). Similarly, we could try to relate ε -almost k-wise independent random variables to almost-orthogonal vectors.

3 Main Lemma

This result is Theorem 9.3 from Alon's paper [Alo03]. The proof is very clean, and Section 9 can be read independently. ¹

Lemma 2. Let $\{v_i\}_{i\in[N]}$ be a collection of N unit vectors in \mathbb{R}^d , such that $|\langle v_i, v_j \rangle| \leq \varepsilon$ for all $i \neq j$. Then, for $\frac{1}{\sqrt{N}} \leq \varepsilon \leq 1/2$,

$$d \geq \Omega\left(\frac{\log N}{\varepsilon^2 \log(1/\varepsilon)}\right)$$

This lower-bound on the dimension of "almost-orthogonal" vectors translates to a nearly-tight lower-bound on Johnson-Lindenstrauss embedding dimension, and will also help us below.

4 Small bias spaces

A distribution D on n bits is ε -biased w.r.t linear tests (or just " ε -biased") if all \mathbb{F}_2 -linear tests are at most ε -biased. That is, for $x \in \{\pm 1\}^n$, the following holds for all subsets $S \subseteq [n]$:

$$\left| \underset{x \sim D}{\mathbb{E}} [\chi_S(x)] \right| = \left| \underset{x \sim D}{\Pr} [\chi_S(x) = 1] - \underset{x \sim D}{\Pr} [\chi_S(x) = -1] \right| \le \varepsilon$$

Similarly, a distribution is ε -biased w.r.t. linear tests of size k (or "k-wise ε -biased) if the above holds for all subsets S of size $\leq k$.

There exists an ε -biased space on n bits of size $O(n/\varepsilon^2)$: a set of $O(n/\varepsilon^2)$ random n-bit strings will be ε -biased w.h.p. Further, explicit constructions exist that are nearly optimal: the such first construction was in [NN93], and was nicely simplified by [AGHP92] (both papers are very readable).

Theorem 9.3 is stated in terms of lower bounding the rank of a matrix $B \in \mathbb{R}^{N \times N}$ where $B_{i,i} = 1$ and $|B_{i,j}| \leq \varepsilon$. The form stated here follows by defining $B_{i,j} := \langle v_i, v_j \rangle$.

These can be used to sample n bits that are k-wise ε -biased, from a space of size almost $O(k \log(n)/\varepsilon^2)$; much better than the size $\Omega(n^k)$ required for perfect k-wise independence. For example², see [AGHP92] or the lecture notes [Vaz99].

4.1 Lower Bounds

The best lower bound on size of an ε -biased space on n bits seems to be $\Omega(\frac{n}{\varepsilon^2 \log(1/\varepsilon)})$, which is almost tight. The proofs of this in the literature (to my knowledge) work by exploiting a nice connection to error-correcting codes: Say we have a sample space S under the uniform measure. Consider the characters $\chi_T(x)$ as vectors $\widetilde{\chi}_T \in \{\pm 1\}^{|S|}$ defined by $\widetilde{\chi}_T[s] = \chi_T(x(s))$, similar to what we did in Section 2. The set of 2^n vectors $\{\widetilde{\chi}_T\}_{T\subseteq [n]}$ defines the codewords of a linear code of length |S| and dimension n. Further, the hamming-weight of each codeword (number of -1s in each codeword, in our context), is within $n(\frac{1}{2}\pm\varepsilon)$, since each parity χ_T is at most ε -biased. Thus this code has relative distance at least $\frac{1}{2}-\varepsilon$, and we can use sphere-packing-type bounds from coding-theory to lower-bound the codeword length |S| required to achieve such a distance. Apparently the "McEliece-Rodemich-Rumsey-Welch bound" works in this case; a more detailed discussion is in [AGHP92, Section 7].

We can also recover this same lower bound using Lemma 2 in a straightforward way.

Claim 3. Let D be an ε -biased distribution on n bits x_1, \ldots, x_n , over a sample space S. Then,

$$|S| = \Omega\left(\frac{n}{\varepsilon^2 \log(1/\varepsilon)}\right)$$

Proof. Following the proof of Claim 1, consider the Fourier characters $\chi_T(x)$ as vectors $\widetilde{\chi}_T \in \mathbb{R}^{|S|}$, with $\widetilde{\chi}_T[s] = \sqrt{\Pr[s]}\chi_T(x(s))$. Then, for all distinct subsets $A, B \subseteq [n]$, we have

$$\langle \widetilde{\chi}_A, \widetilde{\chi}_B \rangle = \underset{x \sim D}{\mathbb{E}} [\chi_A(x) \chi_B(x)] = \underset{x \sim D}{\mathbb{E}} [\chi_{A \Delta B}(x)]$$

Since D is ε -biased, $|\mathbb{E}_{x \sim D}[\chi_{A\Delta B}(x)]| \leq \varepsilon$ for all $A \neq B$. Thus, applying Lemma 2 to the collection of $N = 2^n$ unit vectors $\{\widetilde{\chi}_T\}_{T \subseteq [n]}$ gives the lower bound $|S| = \Omega\left(\frac{n}{\varepsilon^2 \log(1/\varepsilon)}\right)$.

This also nicely generalizes the proof of Claim 1, to give an almost-tight lower bound on spaces that are ε -biased w.r.t linear tests of size k.

Claim 4. Let D be a distribution on n bits that is ε -biased w.r.t. linear tests of size k. Then, the size of the sample space is

$$|S| = \Omega\left(\frac{k\log(n/k)}{\varepsilon^2\log(1/\varepsilon)}\right)$$

Proof. As before, consider the Fourier characters $\chi_T(x)$ as vectors $\widetilde{\chi}_T \in \mathbb{R}^{|S|}$, with $\widetilde{\chi}_T[s] = \sqrt{\Pr[s]}\chi_T(x(s))$. Let J be the family of all subsets $T \subseteq [n]$ of size $\leq k/2$. Then, for all distinct subsets $A, B \in J$, we have

$$\left|\left\langle \widetilde{\chi}_A, \widetilde{\chi}_B \right\rangle \right| = \left| \underset{x \sim D}{\mathbb{E}} \left[\chi_{A\Delta B}(x) \right] \right| \le \varepsilon$$

since $|A\Delta B| \leq k$, and D is ε -biased w.r.t such linear tests. Applying Lemma 2 to the collection of |J| unit vectors $\{\widetilde{\chi}_T\}_{T\in J}$ gives $|S| = \Omega(\frac{k\log(n/k)}{\varepsilon^2\log(1/\varepsilon)})$.

² This can be done by composing an (n, k') ECC with dual-distance k and an ε-biased distribution on $k' = k \log n$ bits. Basically, use a linear construction for generating n exactly k-wise independent bits from k' iid uniform bits, but use an ε-biased distribution on k' bits as the seed instead.

Note: I couldn't find the lower bound given by Claim 4 in the literature, so please let me know if you find a bug or reference.

Also, these bounds do not directly imply nearly tight lower bounds for ε -almost k-wise independent distributions (that is, distributions s.t. their marginals on all sets of k variables are ε -close to the uniform distribution, in ℓ_{∞} or ℓ_1 norm). Essentially because of the loss in moving between closeness in Fourier domain and closeness in distributions.

References

- [AGHP92] Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. Simple constructions of almost k-wise independent random variables. Random Structures & Algorithms, 3(3):289–304, 1992. URL: http://www.tau.ac.il/~nogaa/PDFS/aghp4.pdf.
- [Alo03] Noga Alon. Problems and results in extremal combinatorics, part i. *Discrete Math*, 273:31-53, 2003. URL: http://www.tau.ac.il/~nogaa/PDFS/extremal1.pdf.
- [NN93] Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and applications. SIAM journal on computing, 22(4):838-856, 1993. URL: http://www.wisdom.weizmann.ac.il/~naor/PAPERS/bias.pdf.
- [Vaz99] Umesh Vazirani. k-wise independence and epsilon-biased k-wise indepedence. 1999. URL: https://people.eecs.berkeley.edu/~vazirani/s99cs294/notes/lec4.pdf.

³ Eg, ε -biased $\implies \varepsilon$ -close in ℓ_{∞} , but ε -close in ℓ_{∞} can be up to $2^{k-1}\varepsilon$ -biased. And $2^{-k/2}\varepsilon$ -biased $\implies \varepsilon$ -close in ℓ_1 , but not the other direction.