Inference of Global Progress Properties for Dynamically Interleaved Multiparty Sessions

Mario Coppo¹ Mariangiola Dezani-Ciancaglini¹ Luca Padovani¹ Nobuko Yoshida²

Dipartimento di Informatica, Università di Torino, Italy
 Department of Computing, Imperial College London, UK

BEAT 2013

The problem

$$a(y).b(z).y?(x).z!\langle x\rangle$$

$$\overline{a}(y).\overline{b}(z).z?(x).y!\langle x\rangle$$

- two distinct sessions
- each session is well typed
- the system gets stuck

The problem

$$a(y).b(z).y?(x).z!\langle x\rangle$$
 $y:?int$ $z:!int$ $\overline{a}(y).\overline{b}(z).z?(x).y!\langle x\rangle$ $y:!int$ $z:?int$

- two distinct sessions
- each session is well typed
- the system gets stuck

The "interaction" type system

If $\vdash P$, then P never gets stuck

- © Bettini, Coppo, D'Antoni, De Luca, Dezani-Ciancaglini, Yoshida, Global Progress in Dynamically Interleaved Multiparty Sessions, CONCUR 2008
- s not syntax-directed

Outline

Progress

Key ideas of the type system

3 Two examples

4 Remarks

Progress 1/2

If
$$P \rightarrow^* \mathcal{E} [s?(x).P']$$

Then $\rightarrow^* \mathcal{E}' [s?(x).P' \mid s: m \cdot h]$

If
$$P \to^* \mathcal{E} [s: m \cdot h]$$

Then $\to^* \mathcal{E}' [s: m \cdot h \mid s?(x).P']$

A process without progress

$$a(y).b(z).y?(x).z!\langle x\rangle\mid \overline{a}(y).\overline{b}(z).z?(x).y!\langle x\rangle$$

A process without progress

$$a(y).b(z).y?(x).z!\langle x\rangle \mid \overline{a}(y).\overline{b}(z).z?(x).y!\langle x\rangle$$

$$\downarrow_*$$

$$(\nu s)(\nu s')(s?(x).s'!\langle x\rangle \mid s'?(x).s!\langle c\rangle \mid s:\varnothing \mid s':\varnothing)$$

A process without progress

$$a(y).b(z).y?(x).z!\langle x\rangle \mid \overline{a}(y).\overline{b}(z).z?(x).y!\langle x\rangle$$

$$\downarrow_{*}$$

$$(\nu s)(\nu s)(s?(x)).s'!\langle x\rangle \mid s'?(x).s!\langle c\rangle \mid s:\varnothing \mid s':\varnothing)$$

Progress 2/2

A good process that looks like a bad one

$$P \rightarrow^* \mathcal{E}[s?(x).P' \mid \overline{b}(y).s!\langle 3 \rangle.Q']$$

A bad process that looks like a good one

c(y).(a process that gets stuck)

Progress 2/2

A good process that looks like a bad one

$$P \rightarrow^* \mathcal{E}[s?(x).P' \mid \overline{b}(y).s!\langle 3 \rangle.Q']$$

A bad process that looks like a good one

$$c(y)$$
.(a process that gets stuck)

Idea

- define progress modulo catalyzers
- catalyzer = missing participant that never gets stuck

Consequence

session initiation can be considered non-blocking

Interaction type system: basic ideas

1 associate processes with dependencies $a \prec b$

"an action of service a blocks an action of service b"

2 a process is well typed if it yields no circular dependencies

Computing service dependencies

$$a(y).b(z).y?(x).z!\langle x\rangle$$
 $a \prec b$
 $\overline{a}(y).\overline{b}(z).z?(x).y!\langle x\rangle$ $b \prec a$

$$a(y).b(z).y?(x).z!\langle x\rangle \qquad a \prec b$$

$$\overline{c}(t).t?(x).\overline{x}(y).\overline{b}(z).z?(x).y!\langle x\rangle$$

$$c(t).t!\langle a\rangle$$

$$a(y).b(z).y?(x).z!\langle x\rangle \qquad a \prec b$$

$$t?(x).\overline{x}(y).\overline{b}(z).z?(x).y!\langle x\rangle$$

$$t!\langle a\rangle$$

$$a(y).b(z).y?(x).z!\langle x\rangle$$
 $a \prec b$

$$\overline{a}(y).\overline{b}(z).z?(x).y!\langle x\rangle$$
 $b \prec a$

$$a(y).b(z).y?(x).z!\langle x\rangle$$
 $a \prec b$
 $\overline{a}(y).\overline{b}(z).z?(x).y!\langle x\rangle$

Idea

- identify a class of safe services even if mutually dependent
- restrict messages to services in this class

Nested services

Definition

a is a nested service if $\lambda \prec a$ implies that λ is a nested service

		Nested?
$\overline{a}(y).\overline{a}(z).z?(x).y?(x')$	$a \prec a$	✓
$\overline{a}(y).\overline{b}(z).z?(x).y?(x')$ $ \overline{b}(z).\overline{a}(y).y?(x).z?(x')$	$b \prec a$ $a \prec b$	✓
$\overline{a}(y).\overline{b}(z).y?(x).z?(x')$	$y \prec b$	×

Private services

$$a(y).(\nu b)(b(z).z?(x).y!\langle x\rangle)$$

ullet no catalyzer can help starting the session on b

Private services

$$a(y).(\nu b)(b(z).z?(x).y!\langle x\rangle)$$

no catalyzer can help starting the session on b

Definition

a is boundable if it is never followed by free channels

• b is nested but not boundable

- each service can have up to three features . . .
- ... which the interaction type system guesses

- each service can have up to three features . . .
- ... which the interaction type system guesses

- each service can have up to three features . . .
- ... which the interaction type system guesses

- each service can have up to three features . . .
- ... which the interaction type system guesses

Algorithm judgments

$$P \Rightarrow D; R; N; B$$

$$a(y).b(z).y?(x).z!\langle x\rangle \Rightarrow$$

$$\frac{0 \Rightarrow}{z!\langle x\rangle \Rightarrow}$$

$$\frac{y?(x).z!\langle x\rangle \Rightarrow}{b(z).y?(x).z!\langle x\rangle \Rightarrow}$$

$$\frac{a(y).b(z).y?(x).z!\langle x\rangle \Rightarrow}{a(y).z!\langle x\rangle \Rightarrow}$$

all services have all features

$$\frac{0 \Rightarrow \emptyset; \mathcal{S}; \mathcal{S}}{z! \langle x \rangle \Rightarrow}$$

$$\frac{y?(x).z! \langle x \rangle \Rightarrow}{b(z).y?(x).z! \langle x \rangle \Rightarrow}$$

$$\frac{a(y).b(z).y?(x).z! \langle x \rangle \Rightarrow}{a(y).z! \langle x \rangle \Rightarrow}$$

$$\frac{0 \mapsto \emptyset; \mathcal{S}; \mathcal{S}; \mathcal{S}}{z! \langle x \rangle \mapsto \emptyset; \mathcal{S}; \mathcal{S}; \mathcal{S}}$$

$$\frac{y?(x).z! \langle x \rangle \mapsto}{b(z).y?(x).z! \langle x \rangle \mapsto}$$

$$\frac{a(y).b(z).y?(x).z! \langle x \rangle \mapsto}{a(y).b(z).y?(x).z! \langle x \rangle \mapsto}$$

$$\frac{0 \Rightarrow \emptyset; \mathcal{S}; \mathcal{S}; \mathcal{S}}{z! \langle x \rangle \Rightarrow \emptyset; \mathcal{S}; \mathcal{S}; \mathcal{S}}$$

$$\frac{y?(x).z! \langle x \rangle \Rightarrow \{y \prec z\}; \mathcal{S}; \mathcal{S}; \mathcal{S}}{b(z).y?(x).z! \langle x \rangle \Rightarrow}$$

$$\frac{a(y).b(z).y?(x).z! \langle x \rangle \Rightarrow}{a(y).b(z).y?(x).z! \langle x \rangle \Rightarrow}$$

$$\frac{0 \mapsto \emptyset; \mathcal{S}; \mathcal{S}; \mathcal{S}}{z! \langle x \rangle \mapsto \emptyset; \mathcal{S}; \mathcal{S}; \mathcal{S}}$$

$$\frac{y?(x).z! \langle x \rangle \mapsto \{y \prec z\}; \mathcal{S}; \mathcal{S}}{b(z).y?(x).z! \langle x \rangle \mapsto \{y \prec b\}; \mathcal{S}; \mathcal{S} \setminus \{b\}; \mathcal{S} \setminus \{b\}}$$

$$\frac{b(z).y?(x).z! \langle x \rangle \mapsto \{y \prec b\}; \mathcal{S}; \mathcal{S} \setminus \{b\}; \mathcal{S} \setminus \{b\}}{a(y).b(z).y?(x).z! \langle x \rangle \mapsto}$$

$$D \downarrow N \subseteq N$$

$$\frac{0 \Rightarrow \emptyset; \mathcal{S}; \mathcal{S}; \mathcal{S}}{z! \langle x \rangle \Rightarrow \emptyset; \mathcal{S}; \mathcal{S}; \mathcal{S}}$$

$$\frac{y?(x).z! \langle x \rangle \Rightarrow \{y \prec z\}; \mathcal{S}; \mathcal{S}; \mathcal{S}}{b(z).y?(x).z! \langle x \rangle \Rightarrow \{y \prec b\}; \mathcal{S}; \mathcal{S} \setminus \{b\}; \mathcal{S} \setminus \{b\}}$$

$$\frac{a(y).b(z).y?(x).z! \langle x \rangle \Rightarrow \{a \prec b\}; \mathcal{S}; \mathcal{S} \setminus \{b\}; \mathcal{S} \setminus \{b\}}{a(y).b(z).y?(x).z! \langle x \rangle \Rightarrow \{a \prec b\}; \mathcal{S}; \mathcal{S} \setminus \{b\}; \mathcal{S} \setminus \{b\}}$$

$$\overline{\overline{a}(y).\overline{b}(z).z?(x).y!\langle x\rangle}$$

$$a(y) \cdots \mid \overline{a}(y) \cdots \Rightarrow$$

$$\frac{0 \Rightarrow \emptyset; \mathcal{S}; \mathcal{S}; \mathcal{S}}{y! \langle x \rangle \Rightarrow \emptyset; \mathcal{S}; \mathcal{S}; \mathcal{S}}$$

$$\frac{z?(x).y! \langle x \rangle \Rightarrow \{z \prec y\}; \mathcal{S}; \mathcal{S}; \mathcal{S}}{\overline{b}(z).z?(x).y! \langle x \rangle \Rightarrow \{b \prec y\}; \mathcal{S}; \mathcal{S}; \mathcal{S}}$$

$$\overline{a}(y).\overline{b}(z).z?(x).y! \langle x \rangle \Rightarrow \{b \prec a\}; \mathcal{S}; \mathcal{S}; \mathcal{S}}$$

$$a(y)\cdots \mid \overline{a}(y)\cdots \Rightarrow$$

$$\frac{0 \Rightarrow \emptyset; \mathcal{S}; \mathcal{S}; \mathcal{S}}{y! \langle x \rangle \Rightarrow \emptyset; \mathcal{S}; \mathcal{S}; \mathcal{S}}$$

$$\overline{z?(x).y! \langle x \rangle \Rightarrow \{z \prec y\}; \mathcal{S}; \mathcal{S}; \mathcal{S}}$$

$$\overline{b}(z).z?(x).y! \langle x \rangle \Rightarrow \{b \prec y\}; \mathcal{S}; \mathcal{S}; \mathcal{S}$$

$$\overline{a}(y).\overline{b}(z).z?(x).y! \langle x \rangle \Rightarrow \{b \prec a\}; \mathcal{S}; \mathcal{S}; \mathcal{S}$$

$$\frac{a(y)\cdots \mapsto \{a \prec b\}; \mathcal{S}; \mathcal{S} \setminus \{b\}; \mathcal{S} \setminus \{b\}}{a(y)\cdots \mid \overline{a}(y)\cdots \mapsto}$$

$$\frac{0 \Rightarrow \emptyset; \mathcal{S}; \mathcal{S}; \mathcal{S}}{y! \langle x \rangle \Rightarrow \emptyset; \mathcal{S}; \mathcal{S}; \mathcal{S}}$$

$$\frac{z?(x).y! \langle x \rangle \Rightarrow \{z \prec y\}; \mathcal{S}; \mathcal{S}; \mathcal{S}}{\overline{b}(z).z?(x).y! \langle x \rangle \Rightarrow \{b \prec y\}; \mathcal{S}; \mathcal{S}; \mathcal{S}}$$

$$\overline{a}(y).\overline{b}(z).z?(x).y! \langle x \rangle \Rightarrow \{b \prec a\}; \mathcal{S}; \mathcal{S}; \mathcal{S}}$$

$$\frac{a(y)\cdots \mapsto \{a \prec b\}; \mathcal{S}; \mathcal{S} \setminus \{b\}; \mathcal{S} \setminus \{b\} \quad \overline{a}(y)\cdots \mapsto \{b \prec a\}; \mathcal{S}; \mathcal{S}; \mathcal{S}}{a(y)\cdots \mid \overline{a}(y)\cdots \mapsto}$$

Example 1 (cont.)

$$\frac{0 \Rightarrow \emptyset; \mathcal{S}; \mathcal{S}; \mathcal{S}}{y! \langle x \rangle \Rightarrow \emptyset; \mathcal{S}; \mathcal{S}; \mathcal{S}}$$

$$\frac{z?(x).y! \langle x \rangle \Rightarrow \{z \prec y\}; \mathcal{S}; \mathcal{S}; \mathcal{S}}{\overline{b}(z).z?(x).y! \langle x \rangle \Rightarrow \{b \prec y\}; \mathcal{S}; \mathcal{S}; \mathcal{S}}$$

$$\overline{a}(y).\overline{b}(z).z?(x).y! \langle x \rangle \Rightarrow \{b \prec a\}; \mathcal{S}; \mathcal{S}; \mathcal{S}}$$

$$\frac{a(y)\cdots \mapsto \{a \prec b\}; \mathcal{S}; \mathcal{S} \setminus \{b\}; \mathcal{S} \setminus \{b\}}{a(y)\cdots \mid \overline{a}(y)\cdots \mapsto \{a \prec b, b \prec a\}; \mathcal{S} \setminus \{a, b\}; \mathcal{S} \setminus \{b\}; \mathcal{S} \setminus \{b\}}$$

Example 1 (cont.)

$$\frac{0 \Rightarrow \emptyset; \mathcal{S}; \mathcal{S}; \mathcal{S}}{y! \langle x \rangle \Rightarrow \emptyset; \mathcal{S}; \mathcal{S}; \mathcal{S}}$$

$$\overline{z?(x).y! \langle x \rangle \Rightarrow \{z \prec y\}; \mathcal{S}; \mathcal{S}; \mathcal{S}}$$

$$\overline{b}(z).z?(x).y! \langle x \rangle \Rightarrow \{b \prec y\}; \mathcal{S}; \mathcal{S}; \mathcal{S}$$

$$\overline{a}(y).\overline{b}(z).z?(x).y! \langle x \rangle \Rightarrow \{b \prec a\}; \mathcal{S}; \mathcal{S}; \mathcal{S}$$

$$\frac{a(y)\cdots \mapsto \{a \prec b\}; \mathcal{S}; \mathcal{S} \setminus \{b\}; \mathcal{S} \setminus \{b\} \quad \overline{a}(y)\cdots \mapsto \{b \prec a\}; \mathcal{S}; \mathcal{S}; \mathcal{S}}{a(y)\cdots \mid \overline{a}(y)\cdots \mapsto \{a \prec b, b \prec a\}; \mathcal{S} \setminus \{a, b\}; \mathcal{S} \setminus \{b\}; \mathcal{S} \setminus \{b\}}$$

$$\overline{\overline{c}(t).t?(x).\overline{x}(y).\overline{b}(z).z?(x).y!\langle x\rangle} \Rightarrow$$

$$\frac{a(y)\cdots \mapsto \{a \prec b\}; \mathcal{S}; \mathcal{S} \setminus \{b\}; \mathcal{S} \setminus \{b\} \quad \overline{c}(t)\cdots \mapsto \emptyset; \mathcal{S} \setminus \{b\}; \mathcal{S}; \mathcal{S}}{a(y)\cdots \mid \overline{c}(t)\cdots \mapsto \{a \prec b\}; \mathcal{S} \setminus \{b\}; \mathcal{S} \setminus \{b\}; \mathcal{S} \setminus \{b\}}$$

$$\frac{\overline{b}(z).z?(x).y!\langle x\rangle \mapsto \{b \prec y\}; \mathcal{S}; \mathcal{S}; \mathcal{S}}{\overline{x}(y).\overline{b}(z).z?(x).y!\langle x\rangle \mapsto}$$

$$\frac{t?(x).\overline{x}(y).\overline{b}(z).z?(x).y!\langle x\rangle \mapsto}{\overline{c}(t).t?(x).\overline{x}(y).\overline{b}(z).z?(x).y!\langle x\rangle \mapsto}$$

$$\frac{a(y)\cdots \mapsto \{a \prec b\}; \mathcal{S}; \mathcal{S} \setminus \{b\}; \mathcal{S} \setminus \{b\}}{a(y)\cdots \mid \overline{c}(t)\cdots \mapsto \{a \prec b\}; \mathcal{S} \setminus \{b\}; \mathcal{S} \setminus \{b\};$$

$$\frac{a(y)\cdots \mapsto \{a \prec b\}; \mathcal{S}; \mathcal{S} \setminus \{b\}; \mathcal{S} \setminus \{b\} \quad \overline{c}(t)\cdots \mapsto \emptyset; \mathcal{S} \setminus \{b\}; \mathcal{S}; \mathcal{S}}{a(y)\cdots \mid \overline{c}(t)\cdots \mapsto \{a \prec b\}; \mathcal{S} \setminus \{b\}; \mathcal{S} \setminus \{b\}; \mathcal{S} \setminus \{b\}}$$

$$\frac{\overline{b}(z).z?(x).y!\langle x\rangle \mapsto \{b \prec y\}; \mathcal{S}; \mathcal{S}; \mathcal{S}}{\overline{x}(y).\overline{b}(z).z?(x).y!\langle x\rangle \mapsto \emptyset; \mathcal{S} \setminus \{b\}; \mathcal{S}; \mathcal{S}}$$

$$\frac{\overline{t?(x).\overline{x}(y).\overline{b}(z).z?(x).y!\langle x\rangle \mapsto \emptyset; \mathcal{S} \setminus \{b\}; \mathcal{S}; \mathcal{S}}}{\overline{c}(t).t?(x).\overline{x}(y).\overline{b}(z).z?(x).y!\langle x\rangle \mapsto \emptyset; \mathcal{S} \setminus \{b\}; \mathcal{S}; \mathcal{S}}$$

$$\frac{a(y)\cdots \mapsto \{a \prec b\}; \mathcal{S}; \mathcal{S} \setminus \{b\}; \mathcal{S} \setminus \{b\}}{a(y)\cdots \mid \overline{c}(t)\cdots \mapsto \{a \prec b\}; \mathcal{S} \setminus \{b\}; \mathcal{S} \setminus \{b\};$$

$$\overline{\overline{b}(z).z?(x).y!\langle x\rangle} \mapsto \{b \prec y\}; \mathcal{S}; \mathcal{S}; \mathcal{S}$$

$$\overline{\overline{x}(y).\overline{b}(z).z?(x).y!\langle x\rangle} \mapsto \emptyset; \mathcal{S} \setminus \{b\}; \mathcal{S}; \mathcal{S}$$

$$\overline{t?(x).\overline{x}(y).\overline{b}(z).z?(x).y!\langle x\rangle} \mapsto \emptyset; \mathcal{S} \setminus \{b\}; \mathcal{S}; \mathcal{S}$$

$$\overline{\overline{c}(t).t?(x).\overline{x}(y).\overline{b}(z).z?(x).y!\langle x\rangle} \mapsto \emptyset; \mathcal{S} \setminus \{b\}; \mathcal{S}; \mathcal{S}$$

$$a(y) \cdots \mapsto \{a \prec b\}; \mathcal{S}; \mathcal{S} \setminus \{b\}; \mathcal{S} \setminus \{b\} \quad \overline{c}(t) \cdots \mapsto \emptyset; \mathcal{S} \setminus \{b\}; \mathcal{S}; \mathcal{S}$$

 $a(y)\cdots \mid \overline{c}(t)\cdots \Rightarrow \{a \prec b\}; S \setminus \{b\}; S \setminus \{b\}; S \setminus \{b\}\}$

$$\vdots$$

$$\overline{\overline{b}(z).z?(x).y!\langle x\rangle} \mapsto \{b \prec y\}; \mathcal{S}; \mathcal{S}; \mathcal{S}$$

$$\overline{\overline{x}(y).\overline{b}(z).z?(x).y!\langle x\rangle} \mapsto \emptyset; \mathcal{S} \setminus \{b\}; \mathcal{S}; \mathcal{S}$$

$$\overline{t?(x).\overline{x}(y).\overline{b}(z).z?(x).y!\langle x\rangle} \mapsto \emptyset; \mathcal{S} \setminus \{b\}; \mathcal{S}; \mathcal{S}$$

$$\overline{\overline{c}(t).t?(x).\overline{x}(y).\overline{b}(z).z?(x).y!\langle x\rangle} \mapsto \emptyset; \mathcal{S} \setminus \{b\}; \mathcal{S}; \mathcal{S}$$

$$\frac{a(y)\cdots \mapsto \{a \prec b\}; \mathcal{S}; \mathcal{S} \setminus \{b\}; \mathcal{S} \setminus \{b\} \quad \overline{c}(t)\cdots \mapsto \emptyset, \mathcal{S} \setminus \{b\}; \mathcal{S}; \mathcal{S}}{a(y)\cdots \mid \overline{e}(t)\cdots \mapsto \{a \prec b\}; \mathcal{S} \setminus \{b\}; \mathcal{S} \setminus \{$$

Result

Theorem

If $P \Rightarrow D$; R; N; B, then P has progress

Proof.

The algorithm is sound and complete wrt the inference type system (cf. CONCUR 2008) \Box

Result

Theorem

If $P \Rightarrow D$; R; N; B, then P has progress

Proof.

The algorithm is sound and complete wrt the inference type system (cf. CONCUR 2008) (for finite processes only)

Soon to come

Inference for recursive processes

Wrap up

static analysis for (multiparty) session interleaving

- ullet progress eq absence of deadlock
 - diverging systems do not necessarily have progress
 - catalyzers may help reduction

• efficient inference algorithm

Future work

- many simple program patterns are ill typed
 - more flexible type discipline is required

- π -calculus \neq programming language
 - richer/more compositional types are needed

- type systems for liveness properties are complex
 - traditional concepts/techniques (fairness, subtyping, coinductive reasoning, ...) must be revisited

A simple ill-typed process with progress

$$\begin{array}{lll} \operatorname{def} \ X(y,z) = y! \langle 3 \rangle.z?(x).X(y,z) \ \operatorname{in} & b \prec a \\ \operatorname{def} \ Y(y,z) = y?(x).z! \langle x \rangle.Y(y,z) \ \operatorname{in} & a \prec b \\ a(y).b(z).X(y,z) \mid \overline{a}(y).\overline{b}(z).Y(y,z) \end{array}$$