

Schletter, Inc.		35° Tilt w/o Seismic Design
HCV	Standard PVMini Racking System	
	Representative Calculations - ASCE 7-10	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMini ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 1 Module Tilt = 35°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
$g_{MIN} =$	1.75 psf

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 14.43 psf (ASCE 7-10, Eq. 7.4-1)
$$I_s =$$
 1.00
$$C_s =$$
 0.64

 $C_e = 0.90$ $C_t = 1.20$

2.3 Wind Loads

Design Wind Speed, V =	130 mph	Exposure Category = C
Heiaht ≤	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 26.53 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ TOP	=	1.2 (Pressure)	Provided pressure coefficients are the result of wind tunnel
Cf+ BOTTOM	=	2 (Pressure)	testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP	=	-2.4 -1.2 (Suction)	located in test report # 1127/0611-1e. Negative forces are
Cf- BOTTOM	=	-1.2 (Suction)	applied away from the surface.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
$T_a =$	0.00	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R (ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2) 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ^O 1.1785D + 0.65625E + 0.75S ^O 0.362D + 0.875E ^O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	<u>Location</u>	<u>Diagonal Struts</u>	<u>Location</u>	Front Reactions	<u>Location</u>
M13	Тор	M3	Outer	N7	Outer
M16	Bottom	M7	Inner	N15	Inner
		M11	Outer	N23	Outer
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions	Location
M1	Outer	M2	Outer	N8	Outer
M5	Inner	M6	Inner	N16	Inner
M9	Outer	M10	Outer	N24	Outer
Front Struts	Location	Bracing	1		
M4	Outer	M15	5		
M8	Inner	M16A	4		
M12	Outer				

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

^o Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

Purlin Type =	ProfiPlus	
Aluminum Type =	6105-T5	
$F_{ty} =$	35	ksi
$L_b =$	<u>63</u>	in
$\Phi F_{ty STRONG-AXIS} =$	29.20	ksi
$\Phi F_{ty WEAK-AXIS} =$	28.47	ksi
$S_y =$	0.51	in ³
$S_x =$	0.37	in ³
E =	10100	ksi
I _y =	0.60	in ⁴
I _x =	0.29	in ⁴
A =	0.90	in ²
g =	1.08	lbs/ft
M _v =	0.570	k-ft
$M_z =$	0.053	k-ft
M _{y allowable} =	1.243	k-ft
$M_{z \text{ allowable}} =$	0.871	k-ft
Utilization =	<u>52%</u>	

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M8 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M8 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M8 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

4.6 Cross Brace Design

In order to resist weak side loading, aluminum cross bracing kits are provided. The cross bracing is attached at one end of a rear aluminum strut diagonally down to the bottom end of an adjacent strut. Single M10 bolts are provided at each of the cross bracing. Section units are in (mm).

Brace Type = Aluminum Type =	1.5x0.25 6061-T6
$F_{ty} =$	35 ksi
Φ =	0.90
$S_y =$	0.02 in^3
E =	10100 ksi
$I_y =$	33.25 in ⁴
A =	0.38 in^2
g =	0.45 lbs/ft
$M_y =$	0.003 k-ft
P _n =	0.093 k
M _{y allowable} =	0.046 k-ft
P _{n allowable} =	11.813 k
Utilization =	<u>7%</u>

A cross brace kit is required every 27 bays and is to be installed in centermost bays.

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	Front	<u>Rear</u>
Tensile Load =	<u>25.26</u>	<u>1886.98</u> k
Compressive Load =	1027.54	<u>1292.84</u> k
Lateral Load =	<u>2.31</u>	<u>1273.65</u> k
Moment (Weak Axis) =	0.00	0.00 k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 27418.9 in-lbs Resisting Force Required = 913.96 lbs A minimum 60in long x 21in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 1523.27 lbs to resist overturning. Minimum Width = 21 in in Weight Provided = 1903.13 lbs Sliding 293.75 lbs Force = Use a 60in long x 21in wide x 18in tall Friction = 0.4 Weight Required = 734.38 lbs ballast foundation to resist sliding. Resisting Weight = 1903.13 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 293.75 lbs Cohesion = 130 psf Use a 60in long x 21in wide x 18in tall 8.75 ft² Area = ballast foundation. Cohesion is OK. Resisting = 951.56 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c =

Bearing Pressure

Length =

8 in

 $\frac{\text{Ballast Width}}{21 \text{ in}} = \frac{22 \text{ in}}{23 \text{ in}} = \frac{24 \text{ in}}{2175 \text{ lbs}}$ $P_{\text{ftg}} = (145 \text{ pcf})(5 \text{ ft})(1.5 \text{ ft})(1.75 \text{ ft}) = \frac{1903 \text{ lbs}}{2193 \text{ lbs}} = \frac{2084 \text{ lbs}}{2175 \text{ lbs}}$

ASD LC	1.0D + 1.0S				1.0D + 0.6W			1.0D + 0.75L + 0.45W + 0.75S			0.6D + 0.6W					
Width	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in
FA	378 lbs	378 lbs	378 lbs	378 lbs	337 lbs	337 lbs	337 lbs	337 lbs	498 lbs	498 lbs	498 lbs	498 lbs	28 lbs	28 lbs	28 lbs	28 lbs
F _B	250 lbs	250 lbs	250 lbs	250 lbs	552 lbs	552 lbs	552 lbs	552 lbs	575 lbs	575 lbs	575 lbs	575 lbs	-869 lbs	-869 lbs	-869 lbs	-869 lbs
F _V	44 lbs	44 lbs	44 lbs	44 lbs	533 lbs	533 lbs	533 lbs	533 lbs	429 lbs	429 lbs	429 lbs	429 lbs	-588 lbs	-588 lbs	-588 lbs	-588 lbs
P _{total}	2531 lbs	2621 lbs	2712 lbs	2802 lbs	2792 lbs	2883 lbs	2973 lbs	3064 lbs	2976 lbs	3066 lbs	3157 lbs	3248 lbs	301 lbs	355 lbs	410 lbs	464 lbs
M	322 lbs-ft	322 lbs-ft	322 lbs-ft	322 lbs-ft	447 lbs-ft	447 lbs-ft	447 lbs-ft	447 lbs-ft	547 lbs-ft	547 lbs-ft	547 lbs-ft	547 lbs-ft	705 lbs-ft	705 lbs-ft	705 lbs-ft	705 lbs-ft
е	0.13 ft	0.12 ft	0.12 ft	0.12 ft	0.16 ft	0.16 ft	0.15 ft	0.15 ft	0.18 ft	0.18 ft	0.17 ft	0.17 ft	2.34 ft	1.98 ft	1.72 ft	1.52 ft
L/6	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft
f _{min}	245.0 psf	243.8 psf	242.6 psf	241.6 psf	257.7 psf	255.9 psf	254.2 psf	252.7 psf	265.1 psf	263.0 psf	261.0 psf	259.2 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	333.4 psf	328.1 psf	323.3 psf	318.9 psf	380.4 psf	373.0 psf	366.3 psf	360.1 psf	415.1 psf	406.1 psf	397.9 psf	390.4 psf	727.8 psf	250.3 psf	182.8 psf	157.7 psf

Maximum Bearing Pressure = 728 psf Allowable Bearing Pressure = 1500 psf Use a 60in long \times 21in wide \times 18in tall ballast foundation for an acceptable bearing pressure.

Weak Side Design

Overturning Check

 $M_0 = 162.6 \text{ ft-lbs}$

Resisting Force Required = 185.88 lbs S.F. = 1.67 Weight Required = 309.80 lbs

Minimum Width = 21 in in Weight Provided = 1903.13 lbs

A minimum 60in long x 21in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785	D+0.65625E	+ 0.75S	0.362D + 0.875E			
Width		21 in			21 in		21 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	66 lbs	160 lbs	62 lbs	193 lbs	526 lbs	189 lbs	19 lbs	47 lbs	18 lbs	
F _V	0 lbs	0 lbs	0 lbs	3 lbs	2 lbs	1 lbs	0 lbs	0 lbs	0 lbs	
P _{total}	2422 lbs	2516 lbs	2418 lbs	2436 lbs	2769 lbs	2432 lbs	708 lbs	736 lbs	707 lbs	
M	1 lbs-ft	0 lbs-ft	0 lbs-ft	6 lbs-ft	4 lbs-ft	1 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft	
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	
L/6	0.29 ft	1.75 ft	1.75 ft	1.74 ft	1.75 ft	1.75 ft	1.75 ft	1.75 ft	1.75 ft	
f _{min}	276.5 sqft	287.4 sqft	276.3 sqft	275.9 sqft	315.1 sqft	277.7 sqft	80.9 sqft	84.0 sqft	80.8 sqft	
f _{max}	277.1 psf	287.8 psf	276.5 psf	280.8 psf	317.8 psf	278.3 psf	81.0 psf	84.1 psf	80.8 psf	

Maximum Bearing Pressure = 318 psf Allowable Bearing Pressure = 1500 psf

Use a 60in long x 21in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 60in long x 21in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6. DESIGN OF JOINTS AND CONNECTIONS

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of a Schletter, Inc. Klicktop connector. The reliability of calculations is uncertain due to limited standards, therefore the strength of the fasteners has been evaluated by load testing.

6.2 Bolted Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Cross bracing is attached to rear struts to provide lateral stability. Single M8 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	0.790 k	Maximum Axial Load =	1.164 k
M8 Bolt Capacity =	5.692 k	M8 Bolt Capacity =	5.692 k
Strut Bearing Capacity =	7.952 k	Strut Bearing Capacity =	7.952 k
Utilization =	<u>14%</u>	Utilization =	<u>20%</u>
Diagonal Strut		Bracing	
Maximum Axial Load =	0.778 k	Maximum Axial Load =	0.093 k
M8 Bolt Shear Capacity =	5.692 k	M10 Bolt Capacity =	8.894 k
Strut Bearing Capacity =	7.952 k	Strut Bearing Capacity =	7.952 k
Utilization =	<u>14%</u>	Utilization =	<u>1%</u>

Bolt and bearing capacities are accounting for double shear (ASCE 8-02, Eq. 5.3.4-1). Struts under compression are shown to demonstrate the load transfer from the girder. Single M8 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

$$\label{eq:mean_hamiltonian} \begin{split} & \text{Mean Height, h}_{\text{sx}} = & 33.11 \text{ in} \\ & \text{Allowable Story Drift for All Other} \\ & \text{Structures, } \Delta = \{ & 0.020 h_{\text{sx}} \\ & 0.662 \text{ in} \\ & \text{Max Drift, } \Delta_{\text{MAX}} = & 0.018 \text{ in} \\ & \frac{N\!/\!A}{2} \end{split}$$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **ProfiPlus**

Strong Axis:

3.4.14

$$L_{b} = 63.00 \text{ in}$$

$$J = 0.255$$

$$164.048$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{C_c}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$φF_L$$
= $φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$
 $φF_L$ = 29.2 ksi

$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

 $\phi F_L = 1.17 \phi y F c y$

$$\phi F_L = 38.9 \text{ ksi}$$

Weak Axis:

3.4.14

4.14
$$L_{b} = 63.00 \text{ in}$$

$$J = 0.255$$

$$170.354$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}}]$$

$$\phi F_1 = 29.1$$

3.4.16

$$b/t = 23.9$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.5 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

SCHLETTER

3.4.18

$$h/t = 23.9$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 30$$

$$Cc = 30$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.2 \text{ ksi}$$

$$k = 250988 \text{ mm}^4$$

$$0.603 \text{ in}^4$$

$$y = 30 \text{ mm}$$

 $\phi F_L = 1.3 \phi y F c y$

77.3

0.511 in³

1.243 k-ft

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 20$$

$$Cc = 20$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.5 \text{ ksi}$$

$$\psi = 120291 \text{ mm}^4$$

$$0.289 \text{ in}^4$$

$$x = 20 \text{ mm}$$

$$Sy = 0.367 \text{ in}^3$$

$$M_{max}Wk = 0.871 \text{ k-ft}$$

Compression

y =

Sx =

 $M_{max}St =$

S2 =

3.4.9

b/t =7.4

S1 = 12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula)

 $\phi F_L = \phi y F c y$

 $\phi F_L =$ 33.3 ksi

b/t =23.9 S1 = 12.21 S2 = 32.70

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

 $\phi F_L =$ 28.5 ksi

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\begin{array}{lll} \phi F_{L} = & 28.47 \text{ ksi} \\ A = & 578.06 \text{ mm}^2 \\ & 0.90 \text{ in}^2 \\ P_{max} = & 25.51 \text{ kips} \end{array}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = Flex Profi

Strong Axis:

3.4.11

$$\begin{array}{ll} L_b = & 33.78 \text{ in} \\ ry = & 1.374 \\ Cb = & 1.20 \\ & 22.3976 \end{array}$$

$$S1 = \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc}$$

$$S1 = 1.37733$$

$$S2 = 1.2C_c$$

S2 = 79.2

$$\phi$$
F_L= ϕ b[Bc-Dc*Lb/(1.2*ry* $\sqrt{(Cb)}$)

3.4.15

N/A for Strong Direction

 $\phi F_L = 29.6 \text{ ksi}$

Weak Axis:

3.4.11

$$\begin{array}{lll} L_b &=& 33.78 \text{ in} \\ ry &=& 1.374 \\ Cb &=& 1.20 \\ &=& 24.5845 \\ S1 &=& \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc} \\ S1 &=& 1.37733 \\ S2 &=& 1.2C_c \\ S2 &=& 79.2 \\ \phi F_L &=& \phi b [Bc - Dc^*Lb/(1.2^*ry^*\sqrt{(Cb)})] \end{array}$$

3.4.15

b/t = 24.46

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{5.1Dp}$$

$$S1 = 3.8$$

$$S2 = \frac{k_1 Bp}{5.1Dp}$$

$$S2 = 14.7$$

$$F_{UT} = (\phi bk2^* \sqrt{(BpE)})/(5.1b/t)$$

$$F_{LIT} = 9.4 ksi$$

 $\phi F_1 = 29.6 \text{ ksi}$

3.4.16

$$b/t = 4.29$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16

N/A for Strong Direction

3.4.16

N/A for Weak Direction

$$b/t = 24.46$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$F_{ST} = \phi b [Bp-1.6Dp*b/t]$$

$$F_{ST} = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t =
$$0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.16.2

N/A for Strong Direction

3.4.16.2

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 9.37 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 13.5 \text{ ksi} \end{array}$$

3.4.18

$$h/t = 24.46$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 34.4$$

$$m = 0.70$$

$$C_0 = 34.23$$

$$Cc = 37.77$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 72.1$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.6 \text{ ksi}$$
 $Ix = 364470 \text{ mm}^4$
 0.876 in^4
 $y = 37.77 \text{ mm}$
 $Sx = 0.589 \text{ in}^3$
 $M_{max} St = 1.452 \text{ k-ft}$

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 29$$

$$Cc = 29$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi F cy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L Wk = 13.5 \text{ ksi}$$

Sy =

 $M_{max}Wk =$

0.457 in³

0.513 k-ft

Compression

$$\lambda = 0.46067$$

$$r = 1.374 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.90326$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 30.1251 \text{ ksi}$$

3.4.8

$$\begin{array}{lll} b/t = & 24.46 \\ S1 = & 3.83 \\ S2 = & 10.30 \\ \phi F_L = & (\phi ck2^* \sqrt{(BpE))/(5.1b/t)} \\ \phi F_L = & 10.4 \text{ ksi} \end{array}$$

3.4.9

b/t = 4.29
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi y F c y$$

 $\phi F_L = 33.3 \text{ ksi}$
b/t = 24.46
S1 = 12.21
S2 = 32.70
 $\phi F_L = \phi c [Bp-1.6Dp*b/t]$
 $\phi F_L = 28.2 \text{ ksi}$

3.4.9.1

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 10.43 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 14.3 \text{ ksi} \end{array}$$

0.0

3.4.10

Rb/t =

$$S1 = \left(\frac{\theta_b}{Dt}\right)$$

 $S1 = 6.87$
 $S2 = 131.3$
 $\phi F_L = \phi y F c y$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 14.29 \text{ ksi}$
 $A = 576.21 \text{ mm}^2$
 0.89 in^2
 $P_{\text{max}} = 12.76 \text{ kips}$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_{b} = 18.00 \text{ in}$$

$$J = 0.16$$

$$47.2194$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

$$\phi F_L = 31.2 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

Not Used 0.0 3.4.16.1

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2 \\ \text{S1} &= & 1.1 \\ S2 &= & C_t \\ \text{S2} &= & 141.0 \\ \phi \text{F}_{\text{L}} &= & 1.7 \phi \text{yFcy} \\ \phi \text{F}_{\text{L}} &= & 38.9 \text{ ksi} \end{aligned}$$

7.75

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 31.2 \text{ ksi}$$

 $lx = 39958.2 \text{ mm}^4$ 0.096 in⁴

15 mm

0.163 in³

Weak Axis:

3.4.14

$$\begin{array}{ll} L_b = & 18.00 \text{ in} \\ J = & 0.16 \\ & 47.2194 \\ \\ S1 = & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 = & 0.51461 \\ S2 = & \left(\frac{C_c}{1.6}\right)^2 \\ S2 = & 1701.56 \\ \phi F_L = & \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)})}] \\ \phi F_L = & 31.2 \end{array}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t =

$$\begin{array}{rcl} m = & 0.65 \\ C_0 = & 15 \\ S2 = & 15 \\ S2 = & 77.3 \\ \phi F_L = & 1.3 \phi F c y \\ \phi F_L = & 43.2 \text{ ksi} \\ \phi F_L W k = & 31.2 \text{ ksi} \\ \phi F_L W k = & 31.2 \text{ ksi} \\ \psi = & 39958.2 \text{ mm}^4 \\ & 0.096 \text{ in}^4 \\ & x = & 15 \text{ mm} \\ Sy = & 0.163 \text{ in}^3 \\ M_{max}W k = & 0.423 \text{ k-ft} \\ \end{array}$$

7.75

mDbr

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{1.3Fcy}$

y =

 $M_{max}St = 0.423 \text{ k-ft}$

Sx=

SCHLETTER

Compression

3.4.7

$$\lambda = 0.77182$$

$$r = 0.437 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.83792$$

$$\varphi E = \varphi cc(Bc - Dc^*)$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 24.5226 \text{ ksi}$$

3.4.9

b/t = 7.75
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi y F c y$$

 $\phi F_L = 33.3 \text{ ksi}$

$$S2 = 32.70$$

$$\phi F_L = \phi y F c y$$
 $\phi F_L = 33.3 \text{ ksi}$

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 24.52 \text{ ksi}$$
 $A = 323.87 \text{ mm}^2$

$$P_{\text{max}} = 12.31 \text{ kips}$$

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14
$$L_b = 46.38 \text{ in}$$

$$J = 0.16$$

$$121.663$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$
$$S1 = 0.51461$$

$$51 = 0.5146$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 29.8 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_{b} = 46.38 \text{ in}$$

$$J = 0.16$$

$$121.663$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$\phi F_L =$ 29.8

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 1.17 \phi y F C y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$\begin{aligned} \text{h/t} &= 7.75 \\ S1 &= \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr} \\ \text{S1} &= 36.9 \\ \text{m} &= 0.65 \\ \text{C}_0 &= 15 \\ \text{Cc} &= 15 \\ S2 &= \frac{k_1Bbr}{mDbr} \\ \text{S2} &= 77.3 \\ \text{\phiF}_\text{L} &= 1.3\text{\phiyFcy} \\ \text{\phiF}_\text{L} &= 43.2 \text{ ksi} \end{aligned}$$

$$\phi F_L St = 29.8 \text{ ksi}$$

 $Ix = 39958.2 \text{ mm}^4$

$$0.096 \text{ in}^4$$

 $y = 15 \text{ mm}$
 $Sx = 0.163 \text{ in}^3$

$$M_{max}St = 0.404 \text{ k-ft}$$

h/t = 7.75

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 33.3 \text{ ksi}$$
 $ly = 39958.2 \text{ mm}^4$
 0.096 in^4
 $x = 15 \text{ mm}$
 $Sy = 0.163 \text{ in}^3$

SCHLETTER

Compression

3.4.7

$$\lambda = 1.98863$$

 $r = 0.437$ in
 $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$
 $S1^* = 0.33515$
 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$

$$32^* = \frac{\pi}{\pi} \sqrt{FCY/I}$$

$$S2^* = 1.23671$$

 $\phi cc = 0.85841$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 7.59722 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

Rb/t = 0.0
$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)$$

$$\phi F_L {=} \; \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.60 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 3.81 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_{b} = 42.32 \text{ in}$$

$$J = 0.16$$

$$111.025$$

$$(D \theta_{V} D)$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

S2 = 1701.56

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}}]$$

$$\varphi F_L = 30.0 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_{b} = 42.32 \text{ in}$$

$$J = 0.16$$

$$111.025$$

$$\left(Bc - \frac{\theta_{y}}{2}Fcy\right)^{2}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\begin{split} \phi F_L &= \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}] \\ \phi F_L &= 30.0 \end{split}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

$$\varphi F_1 = 33.3 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2 \\ \text{S1} &= & 1.1 \\ S2 &= & C_t \\ \text{S2} &= & 141.0 \\ \phi \text{F}_{\text{L}} &= & 1.17 \phi \text{yFcy} \end{aligned}$$

 $\phi F_L = 38.9 \text{ ksi}$

Not Used

3.4.18

h/t = 7.75

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 30.0 \text{ ksi}$$

 $lx = 39958.2 \text{ mm}^4$

0.096 in⁴

0.163 in³

0.406 k-ft

15 mm

3.4.16.1

N/A for Weak Direction

3.4.18

h/t =

S1 =

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{1.3Fcy}$

7.75

$$\begin{array}{rcl} m = & 0.65 \\ C_0 = & 15 \\ C_0 = & 15 \\ C_0 = & 15 \\ S2 = & 15 \\ S2 = & 77.3 \\ \varphi F_L = & 1.3 \varphi y F c y \\ \varphi F_L = & 43.2 \text{ ksi} \\ \varphi F_L \text{WK} = & 33.3 \text{ ksi} \\ \text{Iy} = & 39958.2 \text{ mm}^4 \\ & 0.096 \text{ in}^4 \\ \text{X} = & 15 \text{ mm} \\ \end{array}$$

 $Sy = 0.163 \text{ in}^3$

0.450 k-ft

 $M_{max}Wk =$

 $M_{max}St =$

y = Sx =

SCHLETTER

Compression

$\begin{array}{lll} \textbf{3.4.7} \\ \lambda = & 1.81475 \\ \textbf{r} = & 0.437 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ \textbf{S1}^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ \textbf{S2}^* = & 1.23671 \\ & \phi \textbf{cc} = & 0.83406 \\ & \phi \textbf{F}_{L} = & (\phi \textbf{ccFcy})/(\lambda^2) \\ & \phi \textbf{F}_{L} = & 8.86409 \text{ ksi} \\ \end{array}$

3.4.9

$$\begin{array}{lll} b/t = & 7.75 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \\ b/t = & 7.75 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

 $S1 = 6.87$
 $S2 = 131.3$
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 8.86 \text{ ksi}$
 $A = 323.87 \text{ mm}^2$
 0.50 in^2

4.45 kips

APPENDIX B

 $P_{max} =$

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

Model Name

Schletter, Inc.HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				2	,	,
2	Dead Load, Min	DL		-1				2		
3	Snow Load	SL						2		
4	Wind Load - Pressure	WL						2		
5	Wind Load - Suction	WL						2		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-40.249	-40.249	0	0
2	M16	Υ	-40.249	-40.249	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-88.797	-88.797	0	0
2	M16	V	-147.995	-147.995	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	177.594	177.594	0	0
2	M16	V	88.797	88.797	0	0

Load Combinations

	Description	S	P	S	B	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	262.137	2	301.972	2	001	15	0	15	0	1	0	1
2		min	-312.232	3	-448.159	3	122	3	0	3	0	1	0	1
3	N7	max	.025	3	306.059	1	041	15	0	15	0	1	0	1
4		min	149	2	12.559	15	848	1	001	1	0	1	0	1
5	N15	max	.18	3	790.416	1	.415	1	0	1	0	1	0	1
6		min	-1.475	2	27.641	15	642	3	001	3	0	1	0	1
7	N16	max	903.556	2	994.492	2	0	10	0	1	0	1	0	1
8		min	-979.73	3	-1451.526	3	-75.632	3	0	3	0	1	0	1
9	N23	max	.026	3	305.936	1	1.775	1	.003	1	0	1	0	1
10		min	149	2	12.681	15	.09	15	0	15	0	1	0	1
11	N24	max	262.171	2	304.866	2	76.243	3	0	1	0	1	0	1
12		min	-312.623	3	-446.7	3	.005	10	0	3	0	1	0	1
13	Totals:	max	1426.092	2	2738.678	2	0	3						
14		min	-1604.354	3	-2155.723	3	0	1						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	v Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	I C	y-y Mome	LC	z-z Mome	. LC
1	M2	1	max	212.663	1	.678	4	.24	1	0	15	0	15	0	1
2			min	-370.314	3	.159	15	048	3	0	1	0	1	0	1
3		2	max	212.798	1	.621	4	.24	1	0	15	0	15	0	15
4			min	-370.213	3	.146	15	048	3	0	1	0	1	0	4
5		3	max	212.933	1	.563	4	.24	1	0	15	0	15	0	15
6			min	-370.111	3	.132	15	048	3	0	1	0	1	0	4
7		4	max	213.068	1	.506	4	.24	1	0	15	0	15	0	15
8			min	-370.01	3	.119	15	048	3	0	1	0	3	0	4
9		5	max	213.203	1	.448	4	.24	1	0	15	0	9	0	15
10			min	-369.909	3	.105	15	048	3	0	1	0	3	0	4
11		6	max	213.337	1	.391	4	.24	1	0	15	0	1	0	15
12			min	-369.808	3	.092	15	048	3	0	1	0	3	0	4
13		7	max	213.472	1	.333	4	.24	1	0	15	0	1	0	15
14			min	-369.707	3	.078	15	048	3	0	1	0	3	0	4
15		8	max	213.607	1	.276	4	.24	1	0	15	0	1	0	15
16			min	-369.606	3	.065	15	048	3	0	1	0	3	0	4
17		9	max	213.742	1	.218	4	.24	1	0	15	0	1	0	15
18			min	-369.505	3	.051	15	048	3	0	1	0	3	0	4
19		10	max	213.877	1	.161	4	.24	1	0	15	0	1	0	15
20			min	-369.403	3	.038	15	048	3	0	1	0	3	0	4
21		11	max	214.012	1	.11	2	.24	1	0	15	0	1	0	15
22			min	-369.302	3	.016	12	048	3	0	1	0	3	0	4
23		12	max	214.147	1_	.065	2	.24	1	0	15	0	1	0	15
24			min	-369.201	3	014	3	048	3	0	1	0	3	0	4
25		13	max	214.281	1	.02	2	.24	1	0	15	0	1	0	15
26			min	-369.1	3	047	3	048	3	0	1	0	3	0	4
27		14	max	214.416	1_	016	15	.24	1	0	15	0	1_	0	15
28			min	-368.999	3	081	3	048	3	0	1	0	3	0	4
29		15	max	214.551	1_	03	15	.24	1	0	15	0	1_	0	15
30			min	-368.898	3	127	4	048	3	0	1	0	3	0	4
31		16	max	214.686	1	043	15	.24	1	0	15	0	1	0	15
32			min	-368.796	3	184	4	048	3	0	1	0	3	0	4
33		17	max	214.821	1_	057	15	.24	1	0	15	0	1	0	15
34			min	-368.695	3	242	4	048	3	0	1	0	3	0	4
35		18	max	214.956	1	07	15	.24	1	0	15	0	1	0	15
36			min	-368.594	3	299	4	048	3	0	1	0	3	0	4
37		19	max	215.091	1	084	15	.24	1	0	15	0	1	0	15

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

38		Member	Sec		Axial[lb]				z Shear[lb]		Torque[k-ft]	L LC	y-y Mome		z-z Mome	_LC_
A0				min												_
42		<u>M3</u>	1													
A2														_		
43			2	max						15			0		0	
44				min								-				
46			3	max												
46				min	-219.269			15			0	_	0	15	0	3
AF	45		4			2		4	013	15	0	15	0		0	15
AB	46			min	-219.322	3	.284	15		1	0	1	0	15	0	4
49	47		5	max	220.2	2	1.03			15	0	15	0		0	15
50	48			min	-219.374	3	.242	15	27	1	0	1	0	15	0	4
ST	49		6	max	220.13	2	.854	4	013	15	0	15	0	1	0	15
Second Color	50			min	-219.427	3	.201	15	27	1	0	1	0	15	0	4
Same	51		7	max	220.06	2	.677	4	013	15	0	15	0	1	0	15
Same	52			min	-219.479	3	.159	15	27	1	0	1	0	15	0	4
S4			8	max		2		4	013	15	0	15	0	1	0	15
55				min		3		15			0	1	0	15	001	
Second			9									15	0			15
57													0	15	001	
See			10							15		15				_
11																
60			11									15				
61 12 max 219.71 2 048 15 013 15 0 15 0 1 0 15 62 min -219.742 3 205 4 27 1 0 1 0 15 001 4 63 13 max 219.64 2 089 15 013 15 0 15 0 1 0 15 0.01 4 65 14 max 219.57 2 131 15 013 15 0 15 0 1 0 15 .001 4 66 min -219.847 3 557 4 27 1 0 1 0 15 .001 4 67 15 max 219.89 3 734 4 27 1 0 1 0 15 0 15 0 1 0																
62 min -219.64 2.089 4 27 1 0 1 0 15 001 4 63 13 max 219.64 2 089 15 013 15 0 15 0 1 0 15 .001 4 64 min -219.794 3 381 4 27 1 0 1 0 15 .001 4 65 14 max 219.57 2 131 15 .013 15 0 15 0 1 0 15 66 min -219.847 3 557 4 27 1 0 1 0 15 0 15 0 1 0 15 0 15 0 1 0 1 0 15 0 1 0 1 0 1 0 1 0 1 0 1			12					_						_		
63			12													
64 min -219.794 3 381 4 27 1 0 1 0 15 001 4 65 14 max 219.57 2 131 15 013 15 0 15 0 1 0 15 66 min -219.847 3 557 4 27 1 0 1 0 15 .001 4 67 15 max 219.5 2 172 15 013 15 0 15 0 1 0 15 68 min -219.899 3 734 4 27 1 0 1 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 1			13									•				_
65			13													
66			1/									_				
67			14													
68			15													
69 16 max 219.43 2 214 15 013 15 0 15 0 1 0 15 70 min -219.952 3 91 4 27 1 0 1 0 10 0 4 71 17 max 219.36 2 255 15 013 15 0 1 <t< td=""><td></td><td></td><td>13</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			13													
TO			16													
71 17 max 219.36 2 255 15 013 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 4 22 0 4 4 27 1 0 1 0 2 0 4 4 27 1 0 1 0 1 0 4 27 1 0 1 0 1 0 4 27 1 0			10													
72 min -220.004 3 -1.087 4 27 1 0 1 0 2 0 4 73 18 max 219.29 2 297 15 013 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 1 0 4 -27 1 0 1			17			_										
73 18 max 219.29 2 297 15 013 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 4 75 19 max 219.22 2 338 15 013 15 0 15 0 1 0 4 76 min -220.109 3 -1.439 4 27 1 0 <t< td=""><td></td><td></td><td>17</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			17													
74 min -220.057 3 -1.263 4 27 1 0 1 0 4 75 19 max 219.22 2 338 15 013 15 0 15 0 1 76 min -220.109 3 -1.439 4 27 1 0 1 0 1 77 M4 1 max 304.895 1 0 1 041 15 0 1 0 3 0 1 79 2 max 304.959 1 0 1 893 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0			10									•		_		_
75 19 max 219.22 2 338 15 013 15 0 15 0 15 0 1 76 min -220.109 3 -1.439 4 27 1 0			10													
76 min -220.109 3 -1.439 4 27 1 0 1 0 1 77 M4 1 max 304.895 1 0 1 041 15 0 1 0 3 0 1 78 min 12.208 15 0 1 893 1 0 1 0 2 0 1 79 2 max 304.959 1 0 1 041 15 0 1			40									_		_		
77 M4 1 max 304.895 1 0 1 041 15 0 1 0 3 0 1 78 min 12.208 15 0 1 893 1 0 1 0 2 0 1 79 2 max 304.959 1 0 1 041 15 0 1 0 1 0 1 80 min 12.227 15 0 1 893 1 0 1 0 1 0 1 81 3 max 305.024 1 0 1 041 15 0 1 0 1 0 1 82 min 12.247 15 0 1 893 1 0 1 0 1 83 4 max 305.089 1 0 1 893 1 0			19													-
78 min 12.208 15 0 1 893 1 0 1 0 2 0 1 79 2 max 304.959 1 0 1 041 15 0 1 0 1 0 15 0 1 80 min 12.227 15 0 1 893 1 0 1		N 4 4								-						
79 2 max 304.959 1 0 1 041 15 0 1 0 15 0 1 80 min 12.227 15 0 1 893 1 0 1 0 1 0 1 81 3 max 305.024 1 0 1 041 15 0 1 0 15 0 1 82 min 12.247 15 0 1 893 1 0		<u>IVI4</u>	1													
80 min 12.227 15 0 1 893 1 0 1 0 1 81 3 max 305.024 1 0 1 041 15 0 1 0 15 0 1 82 min 12.247 15 0 1 893 1 0 1																_
81 3 max 305.024 1 0 1 041 15 0 1 0 15 0 1 82 min 12.247 15 0 1 893 1 0 1 0 1 0 1 83 4 max 305.089 1 0 1 041 15 0 1 0 <td></td>																
82 min 12.247 15 0 1 893 1 0 1 0 1 0 1 83 4 max 305.089 1 0 1 041 15 0 1 0 15 0 1 84 min 12.267 15 0 1 893 1 0 1						-		-				_		_		1
83 4 max 305.089 1 0 1 041 15 0 1 0 15 0 1 84 min 12.267 15 0 1 893 1 0 1 0 1 0 1 85 5 max 305.153 1 0 1 041 15 0 1 0 <td></td> <td></td> <td>3</td> <td></td> <td>1</td>			3													1
84 min 12.267 15 0 1 893 1 0 1 0 1 0 1 85 5 max 305.153 1 0 1 041 15 0 1 0 15 0 1 86 min 12.286 15 0 1 893 1 0 1																_
85 5 max 305.153 1 0 1 041 15 0 1 0 15 0 1 86 min 12.286 15 0 1 893 1 0 1 0 1 87 6 max 305.218 1 0 1 041 15 0 1 0 15 0 1 88 min 12.306 15 0 1 893 1 0			4					_								<u> </u>
86 min 12.286 15 0 1 893 1 0 1 0 1 0 1 87 6 max 305.218 1 0 1 041 15 0 1 0 15 0 1 88 min 12.306 15 0 1 893 1 0 1								-				_				
87 6 max 305.218 1 0 1041 15 0 1 0 15 0 1 88 min 12.306 15 0 1893 1 0 1 0 15 0 1 89 7 max 305.283 1 0 1041 15 0 1 0 15 0 1 90 min 12.325 15 0 1893 1 0 1 0 1 0 1 91 8 max 305.348 1 0 1041 15 0 1 0 15 0 1 92 min 12.345 15 0 1893 1 0 1 0 15 0 1 93 9 max 305.412 1 0 1041 15 0 1 0 15 0 1			5													_
88 min 12.306 15 0 1 893 1 0 1 0 1 0 1 89 7 max 305.283 1 0 1 041 15 0 1 0 1 0 1 90 min 12.325 15 0 1 893 1 0 1 0 1 91 8 max 305.348 1 0 1 041 15 0 1 0 1 0 1 92 min 12.345 15 0 1 893 1 0 1 0 1 93 9 max 305.412 1 0 1 041 15 0 1 0 1 0 1				min		<u> 15</u>	-	1								-
89 7 max 305.283 1 0 1 041 15 0 1 0 15 0 1 90 min 12.325 15 0 1 893 1 0 1 0 1 0 1 91 8 max 305.348 1 0 1 041 15 0 1 0 15 0 1 92 min 12.345 15 0 1 893 1 0 1 0 1 0 1 93 9 max 305.412 1 0 1 041 15 0 1 0 15 0 1			6					_				_				
90 min 12.325 15 0 1 893 1 0 1 0 1 0 1 91 8 max 305.348 1 0 1 041 15 0 1 0 1 0 1 92 min 12.345 15 0 1 893 1 0 1 0 1 93 9 max 305.412 1 0 1 041 15 0 1 0 1							_	•								-
91 8 max 305.348 1 0 1 041 15 0 1 0 15 0 1 92 min 12.345 15 0 1 893 1 0 1 0 1 0 1 93 9 max 305.412 1 0 1 041 15 0 1 0 15 0 1			7				0	1		15		1		15		_
92 min 12.345 15 0 1 893 1 0 1 0 1 0 1 93 9 max 305.412 1 0 1 041 15 0 1 0 1	90					15	0	1	893	1	0	1	0	_	0	1
93 9 max 305.412 1 0 1041 15 0 1 0 15 0 1	91		8	max	305.348	1	0	1	041	15	0	1	0	15	0	1
93 9 max 305.412 1 0 1041 15 0 1 0 15 0 1	92			min	12.345	15	0	1	893	1		1	0		0	1
94 min 12.364 15 0 1893 1 0 1 0 1 0 1			9			1	0	1		15	0	1	0	15	0	1
	94			min	12.364	15	0	1	893	1	0	1	0	1	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
95		10	max	305.477	_1_	0	1	041	15	0	1	0	15	0	1
96			min	12.384	15	0	1	893	1	0	1	0	1	0	1
97		11	max		_1_	0	1	041	15	0	1	00	15	0	1
98			min	12.403	15	0	1	893	1	0	1	0	1	0	1
99		12	max	305.606	_1_	0	1	041	15	0	1	0	15	0	1
100		40	min	12.423	15	0	1	893	1	0	1	0	1	0	1
101		13	max	305.671	1_	0	1	041	15	0	1	0	15	0	1
102		4.4	min	12.442	<u>15</u>	0	1	893	1	0	1	0	1	0	1
103		14	max		1_	0	1	<u>041</u>	15	0	1	0	15	0	1
104		15	min	12.462	<u>15</u>	0	1	893	15	0	1	001	1 15	0	1
105		15	max	305.801	<u>1</u> 15	0	1	041		0	1	0 001		0	1
106 107		16	min	12.481 305.865	<u>15</u> 1	0	1	893 041	15	0	1	<u>001</u> 0	1 15	0	1
107		10	max min	12.501	15	0	1	893	1	0	1	001	1	0	1
109		17	max	305.93	<u>15</u> 1	0	1	093 041	15	0	1	<u>001</u> 0	15	0	1
110		17	min	12.52	15	0	1	893	1	0	1	001	1	0	1
111		18	max		1	0	1	0 <u>95</u> 041	15	0	1	0	15	0	1
112		10	min	12.54	15	0	1	893	1	0	1	001	1	0	1
113		19	max		1	0	1	041	15	0	1	0	15	0	1
114		10	min	12.559	15	0	1	893	1	0	1	001	1	0	1
115	M6	1	max	675.227	1	.681	4	.06	9	0	3	0	3	0	1
116			min	-1163.949	3	.16	15	215	3	0	10	0	9	0	1
117		2	max		1	.623	4	.06	9	0	3	0	3	0	15
118			min	-1163.847	3	.146	15	215	3	0	10	0	9	0	4
119		3	max	675.497	1	.566	4	.06	9	0	3	0	3	0	15
120			min	-1163.746	3	.133	15	215	3	0	10	0	9	0	4
121		4	max	675.631	1	.508	4	.06	9	0	3	0	3	0	15
122			min	-1163.645	3	.119	15	215	3	0	10	0	10	0	4
123		5	max	675.766	_1_	.451	4	.06	9	0	3	0	3	0	15
124			min	-1163.544	3	.099	12	215	3	0	10	0	2	0	4
125		6		675.901	_1_	.402	2	.06	9	0	3	0	1	0	15
126			min	-1163.443	3	.076	12	215	3	0	10	0	2	0	4
127		7	max		_1_	.357	2	.06	9	0	3	0	1	0	15
128			min	-1163.342	3	.054	12	215	3	0	10	0	2	0	4
129		8	max	676.171	1	.312	2	.06	9	0	3	0	1	0	12
130				-1163.241	3	.032	12	21 <u>5</u>	3	0	10	0	3	0	4
131		9	max		1	.267	2	.06	9	0	3	0	1	0	12
132		40	min	-1163.139	3	.001	3	215	3	0	10	0	3	0	4
133		10		676.441 -1163.038	1	.223	2	.06	9	0	3	0	1	0	12
134 135		11	min	676.576	<u>3</u>	032 .178	2	215 .06	9	0	10 3	<u> </u>	3	0	12
136		11		-1162.937	3	066	3	215	3	0	10	0	3	0	2
137		12			<u> </u>	.133	2	.06	9	0	3	0	1	0	12
138		14		-1162.836	3	099	3	215	3	0	10	0	3	0	2
139		13		676.845	_ <u></u>	.088	2	.06	9	0	3	0	1	0	12
140		'0	min		3	133	3	215	3	0	10	0	3	0	2
141		14		676.98	1	.043	2	.06	9	0	3	0	1	0	12
142				-1162.634	3	167	3	215	3	0	10	0	3	0	2
143		15		677.115	1	001	2	.06	9	0	3	0	1	0	12
144		1	min	-1162.532	3	2	3	215	3	0	10	0	3	0	2
145		16		677.25	1	043	15	.06	9	0	3	0	1	0	3
146			min		3	234	3	215	3	0	10	0	3	0	2
147		17		677.385	1	056	15	.06	9	0	3	0	1	0	3
148			min	-1162.33	3	267	3	215	3	0	10	0	3	0	2
149		18	max	677.52	1	07	15	.06	9	0	3	0	1	0	3
150				-1162.229	3	301	3	215	3	0	10	0	3	0	2
151		19	max	677.654	1	083	15	.06	9	0	3	0	1	0	3

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
152			min	-1162.128	3	354	4	215	3	0	10	0	3	0	2
153	M7	1	max	778.215	2	1.739	4	.041	3	0	1	0	2	0	2
154			min	-668.462	3	.409	15	017	2	0	3	0	3	0	3
155		2	max	778.145	2	1.563	4	.041	3	0	1	0	2	0	2
156			min	-668.514	3	.367	15	017	2	0	3	0	3	0	3
157		3	max	778.075	2	1.387	4	.041	3	0	1	0	2	0	2
158			min	-668.567	3	.326	15	017	2	0	3	0	3	0	3
159		4	max	778.005	2	1.21	4	.041	3	0	1	0	2	0	2
160			min	-668.619	3	.284	15	017	2	0	3	0	3	0	3
161		5	max	777.935	2	1.034	4	.041	3	0	1	0	1	0	15
162			min	-668.672	3	.243	15	017	2	0	3	0	3	0	3
163		6	max	777.865	2	.857	4	.041	3	0	1	0	1	0	15
164			min	-668.724	3	.201	15	017	2	0	3	0	3	0	4
165		7	max	777.795	2	.681	4	.041	3	0	1	0	1	0	15
166			min	-668.777	3	.16	15	017	2	0	3	0	3	0	4
167		8	max	777.725	2	.505	4	.041	3	0	1	0	1	0	15
168			min	-668.829	3	.118	15	017	2	0	3	0	3	001	4
169		9	max	777.655	2	.346	2	.041	3	0	1	0	1	0	15
170			min	-668.882	3	.057	12	017	2	0	3	0	3	001	4
171		10	max	777.585	2	.208	2	.041	3	0	1	0	1	0	15
172			min	-668.934	3	03	3	017	2	0	3	0	3	001	4
173		11	max	777.515	2	.071	2	.041	3	0	1	0	1	0	15
174			min	-668.987	3	133	3	017	2	0	3	0	3	001	4
175		12	max	777.445	2	047	15	.041	3	0	1	0	1	0	15
176		1-	min	-669.039	3	236	3	017	2	0	3	0	3	001	4
177		13	max	777.375	2	089	15	.041	3	0	1	0	1	0	15
178		10	min	-669.092	3	377	4	017	2	0	3	0	3	001	4
179		14	max	777.305	2	13	15	.041	3	0	1	0	1	0	15
180		1 1 7	min	-669.144	3	554	4	017	2	0	3	0	3	001	4
181		15	max	777.235	2	172	15	.041	3	0	1	0	1	0	15
182		10	min	-669.197	3	73	4	017	2	0	3	0	3	0	4
183		16	max	777.165	2	213	15	.041	3	0	1	0	1	0	15
184		10	min	-669.249	3	906	4	017	2	0	3	0	3	0	4
185		17	max	777.095	2	255	15	.041	3	0	1	0	1	0	15
186		1 '	min	-669.302	3	-1.083	4	017	2	0	3	0	3	0	4
187		18	max	777.025	2	296	15	.041	3	0	1	0	1	0	15
188		10	min	-669.354	3	-1.259	4	017	2	0	3	0	3	0	4
189		19	max	776.955	2	338	15	.041	3	0	1	0	1	0	1
190		13	min	-669.407	3	-1.435	4	017	2	0	3	0	3	0	1
191	M8	1	max	789.251	1	0	1	.476	1	0	1	0	10	0	1
192	IVIO		min		15	0	1	653	3	0	1	0	3	0	1
193		2	max		1	0	1	.476	1	0	1	0	1	0	1
194			min	27.309	15	0	1	653	3	0	1	0	3	0	1
195		3	max	789.38	1	0	1	.476	1	0	1	0	1	0	1
196		3	min	27.329	15	0	1	653	3	0	1	0	3	0	1
197		4	max	789.445	1	0	1	.476	1	0	1	0	1	0	1
198		+		27.348	15	0	1	653	3	0	1	0	3	0	1
		E	min								1				_
199		5	max	789.51	1	0	1	.476	1	0	1	0	1	0	1
200		6	min	27.368	15	0		653	3	0	-	0	3	0	
201		6	max	789.575	1	0	1	.476	1	0	1	0	1	0	1
202		7	min	27.387	15	0		653	3	0		0	3	0	
203		7	max		1	0	1	.476	1	0	1	0	1	0	1
204			min	27.407	15	0	1	653	3	0	1	0	3	0	1
205		8	max		1	0	1	.476	1	0	1	0	1	0	1
206			min	27.426	15	0	1	653	3	0	1	0	3	0	1
207		9	max	789.769	1	0	1	.476	1	0	1	0	1	0	1
208			min	27.446	15	0	1	653	3	0	1	0	3	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
209		10	max	789.833	1	0	1	.476	1	0	1	0	1	0	1
210			min	27.465	15	0	1	653	3	0	1	0	3	0	1
211		11	max	789.898	1	0	1	.476	1	0	1	0	1	0	1
212			min	27.485	15	0	1	653	3	0	1	0	3	0	1
213		12	max	789.963	1	0	1	.476	1	0	1	0	1	0	1
214			min	27.504	15	0	1	653	3	0	1	0	3	0	1
215		13	max	790.027	1	0	1	.476	1	0	1	0	1	0	1
216			min	27.524	15	0	1	653	3	0	1	0	3	0	1
217		14	max	790.092	1	0	1	.476	1	0	1	0	1	0	1
218			min	27.544	15	0	1	653	3	0	1	0	3	0	1
219		15	max	790.157	1	0	1	.476	1	0	1	0	1	0	1
220			min	27.563	15	0	1	653	3	0	1	0	3	0	1
221		16	max	790.222	1	0	1	.476	1	0	1	0	1	0	1
222			min	27.583	15	0	1	653	3	0	1	0	3	0	1
223		17	max	790.286	1	0	1	.476	1	0	1	0	1	0	1
224			min	27.602	15	0	1	653	3	0	1	0	3	0	1
225		18	max	790.351	1	0	1	.476	1	0	1	0	1	0	1
226			min	27.622	15	0	1	653	3	0	1	0	3	0	1
227		19	max	790.416	1	0	1	.476	1	0	1	0	1	0	1
228			min	27.641	15	0	1	653	3	0	1	001	3	0	1
229	M10	1		215.058	1	.675	4	.007	3	0	1	0	1	0	1
230			min	-318.376	3	.159	15	139	1	0	3	0	3	0	1
231		2	max		1	.617	4	.007	3	0	1	0	1	0	15
232				-318.274	3	.145	15	139	1	0	3	0	3	0	4
233		3	max	215.328	1	.56	4	.007	3	0	1	0	1	0	15
234				-318.173	3	.132	15	139	1	0	3	0	3	0	4
235		4	max		1	.502	4	.007	3	0	1	0	1	0	15
236				-318.072	3	.118	15	139	1	0	3	0	3	0	4
237		5		215.598	1	.445	4	.007	3	0	1	0	1	0	15
238		ľ	min	-317.971	3	.105	15	139	1	0	3	0	3	0	4
239		6	max	215.733	1	.387	4	.007	3	0	1	0	1	0	15
240		Ĭ	min	-317.87	3	.091	15	139	1	0	3	0	3	0	4
241		7	max	215.867	1	.33	4	.007	3	0	1	0	1	0	15
242		'		-317.769	3	.078	15	139	1	0	3	0	3	0	4
243		8	max	216.002	1	.272	4	.007	3	0	1	0	1	0	15
244				-317.668	3	.064	15	139	1	0	3	0	3	0	4
245		9	max		1	.215	4	.007	3	0	1	0	1	0	15
246		3		-317.566	3	.051	15	139	1	0	3	0	3	0	4
247		10	max	216.272		.157	4	.007	3	0	1	0	9	0	15
248		10	min	-317.465	3	.037	15	139	1	0	3	0	3	0	4
249		11	may	216.407	<u> </u>	.11	2	.007	3	0	1	0	9	0	15
250				-317.364	3	.024	15	139	1	0	3	0	3	0	4
251		12		216.542	_ <u>3</u> 1	.065	2	.007	3	0	1	0	15	0	15
252		12		-317.263	3	.005	12	139	1	0	3	0	3	0	4
253		13		216.677	<u> </u>	.008	2	.007	3	0	1	0	15	0	15
254		13		-317.162	3	027	3	139	1	0	3	0	3	0	4
255		14		216.811	_ <u>3</u> 1	027	15	.007	3	0	1	0	15	0	15
256		14		-317.061	3	073	4	139	1	0	3	0	3	0	4
257		15		216.946			15	.007	3	0	1	0	15		15
		13		-316.96	1	03			1	0		0	3	0	
258 259		16	min	217.081	<u>3</u> 1	13 044	15	139 .007	3	0	1	0	15	0	15
		10									_	0	3		
260		17		-316.858	3	188	15	139	1	0	3	-		0	4
261		17		217.216	1	057	15	.007	3	0	1	0	15	0	15
262		40		-316.757	3_	245	4	139	1	0	3	0	3	0	4
263		18		217.351	1	071	15	.007	3	0	1	0	15	0	15
264		40		-316.656	3	303	4	139	1	0	3	0	1	0	4
265		19	max	217.486	1	084	15	.007	3	0	1	0	15	0	15

Model Name

Schletter, Inc.HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC		LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
266			min	-316.555	3	36	4	139	1	0	3	0	1	0	4
267	M11	1	max	219.995	2	1.738	4	.289	1	0	3	0	3	0	4
268			min	-219.887	3	.409	15	049	3	0	15	0	1	0	12
269		2	max	219.925	2	1.562	4	.289	1	0	3	0	3	0	2
270			min	-219.94	3	.367	15	049	3	0	15	0	1	0	3
271		3	max	219.855	2	1.386	4	.289	1	0	3	0	3	0	2
272			min	-219.992	3	.326	15	049	3	0	15	0	1	0	3
273		4	max	219.785	2	1.209	4	.289	1	0	3	0	3	0	15
274			min	-220.045	3	.284	15	049	3	0	15	0	1	0	3
275		5	max	219.715	2	1.033	4	.289	1	0	3	0	3	0	15
276		5		-220.097	3	.243	15	049	3	0	15	0	1	0	4
			min												_
277		6	max	219.645	2	.856	4	.289	1	0	3	0	3	0	15
278		_	min	-220.15	3	.201	15	049	3	0	15	0	1	0	4
279		7	max	219.575	2	.68	4	.289	1	0	3	0	3	0	15
280			min	-220.202	3	.16	15	049	3	0	15	0	1	0	4
281		8	max	219.505	2	.504	4	.289	1	0	3	0	3	0	15
282			min	-220.255	3	.118	15	049	3	0	15	0	1	001	4
283		9	max	219.435	2	.327	4	.289	1	0	3	0	3	0	15
284			min	-220.307	3	.077	15	049	3	0	15	0	1	001	4
285		10	max	219.365	2	.151	4	.289	1	0	3	0	3	0	15
286			min	-220.36	3	.028	12	049	3	0	15	0	1	001	4
287		11	max	219.295	2	.005	2	.289	1	0	3	0	3	0	15
288			min	-220.412	3	067	3	049	3	0	15	0	1	001	4
289		12	max	219.225	2	047	15	.289	1	0	3	0	3	0	15
290		12	min	-220.465	3	202	4	049	3	0	15	0	1	001	4
291		13		219.155	2	089	15	.289	1	0	3	0	3	0	15
		13	max						3		15				_
292		4.4	min	-220.517	3	378	4	049		0		0	1	001	4
293		14	max	219.085	2	13	15	.289	1	0	3	0	3	0	15
294			min	-220.57	3	554	4	049	3	0	15	0	1	001	4
295		15	max	219.015	2	172	15	.289	1	0	3	0	3	0	15
296			min	-220.622	3	731	4	049	3	0	15	0	1_	0	4
297		16	max		2	213	15	.289	1	0	3	0	3	0	15
298			min	-220.675	3	907	4	049	3	0	15	0	2	0	4
299		17	max	218.875	2	255	15	.289	1	0	3	0	3	0	15
300			min	-220.727	3	-1.084	4	049	3	0	15	0	15	0	4
301		18	max	218.805	2	296	15	.289	1	0	3	0	3	0	15
302			min	-220.78	3	-1.26	4	049	3	0	15	0	15	0	4
303		19	max	218.735	2	338	15	.289	1	0	3	0	3	0	1
304			min	-220.832	3	-1.436	4	049	3	0	15	0	15	0	1
305	M12	1	max	304.771	1	0	1	1.869	1	0	1	0	2	0	1
306	2		min		15	0	1	.09	15		1	0	3	0	1
307		2	max		1	0	1	1.869	1	0	1	0	1	0	1
308			min	12.349	15	0	1	.09	15	0	1	0	15	0	1
309		3	max	304.9	1	0	1	1.869	1	0	1	0	1	0	1
310		3	min	12.369	15	0	1	.09	15	0	1	0	15	0	1
		4					1				-				<u> </u>
311		4	max		1	0		1.869	1	0	1	0	1_	0	1
312		_	min	12.388	15	0	1	.09	15	0	1	0	15	0	1
313		5	max	305.03	1	0	1	1.869	1	0	1	0	1	0	1
314			min	12.408	15	0	1	.09	15	0	1	0	15	0	1
315		6	max	305.095	1	0	1	1.869	1_	0	1	00	1_	0	1
316			min	12.427	15	0	1	.09	15	0	1	0	15	0	1
317		7	max	305.159	1	0	1	1.869	1	0	1	.001	1	0	1
318			min	12.447	15	0	1	.09	15	0	1	0	15	0	1
319		8	max	305.224	1	0	1	1.869	1	0	1	.001	1	0	1
320			min	12.466	15	0	1	.09	15	0	1	0	15	0	1
321		9	max	305.289	1	0	1	1.869	1	0	1	.001	1	0	1
322			min	12.486	15	0	1	.09	15	0	1	0	15	0	1
ULL			1111111	12.700	10	U		.00	IU			U	10	U	

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
323		10	max	305.353	1	0	1	1.869	1	0	1	.002	1	0	1
324			min	12.506	15	0	1	.09	15	0	1	0	15	0	1
325		11	max	305.418	1	0	1	1.869	1	0	1	.002	1	0	1
326			min	12.525	15	0	1	.09	15	0	1	0	15	0	1
327		12	max	305.483	1	0	1	1.869	1	0	1	.002	1	0	1
328			min	12.545	15	0	1	.09	15	0	1	0	15	0	1
329		13	max	305.548	1	0	1	1.869	1	0	1	.002	1	0	1
330			min	12.564	15	0	1	.09	15	0	1	0	15	0	1
331		14	max	305.612	1	0	1	1.869	1	0	1	.002	1	0	1
332		17	min	12.584	15	0	1	.09	15	0	1	0	15	0	1
333		15	max	305.677	1	0	1	1.869	1	0	1	.002	1 1	0	1
334		13	min	12.603	15	0	1	.09	15	0	1	0	15	0	1
335		16					1	1.869			1	.003			1
		16	max	305.742	1	0	1		1	0	1		<u>1</u> 15	0	1
336		47	min	12.623	15	0		.09	15	0	_	0		0	
337		17	max	305.806	1	0	1	1.869	11	0	1	.003	1_	0	1
338		4.0	min	12.642	15	0	1	.09	15	0	1_	0	15	0	1
339		18	max	305.871	1	0	1	1.869	1	0	1	.003	_1_	0	1
340			min	12.662	15	0	1	.09	15	0	1	0	15	0	1
341		19	max	305.936	1_	0	1	1.869	1_	0	_1_	.003	_1_	0	1
342			min	12.681	15	0	1	.09	15	0	1	0	15	0	1
343	M1	1	max	106.242	1_	346.194	3	-1.784	15	0	2	.074	_1_	0	2
344			min	4.855	15	-229.612	2	-37.758	1	0	3	.003	15	0	3
345		2	max	106.402	1	346.023	3	-1.784	15	0	2	.066	1	.05	2
346			min	4.904	15	-229.841	2	-37.758	1	0	3	.003	15	075	3
347		3	max	117.421	3	5.243	9	-1.773	15	0	12	.057	1	.099	2
348			min	-18.617	10	-29.625	2	-37.666	1	0	1	.003	15	149	3
349		4	max	117.541	3	5.053	9	-1.773	15	0	12	.049	1	.106	2
350			min	-18.484	10	-29.854	2	-37.666	1	0	1	.002	15	147	3
351		5	max	117.661	3	4.862	9	-1.773	15	0	12	.041	1	.112	2
352			min	-18.35	10	-30.083	2	-37.666	1	0	1	.002	15	145	3
353		6	max	117.781	3	4.671	9	-1.773	15	0	12	.033	1	.119	2
354		Ĭ	min	-18.217	10	-30.311	2	-37.666	1	0	1	.002	15	143	3
355		7	max	117.901	3	4.481	9	-1.773	15	0	12	.025	1	.125	2
356		<u> </u>	min	-18.083	10	-30.54	2	-37.666	1	0	1	.001	15	141	3
357		8	max	118.021	3	4.29	9	-1.773	15	0	12	.016	1	.132	2
358		0	min	-17.95	10	-30.769	2	-37.666	1	0	1	0	15	139	3
		9		118.141	3	4.099	9		15		12	.008	1 <u>3</u>	.139	2
359		9	max	-17.816		-30.997		-1.773 -37.666	1	0	1		15	137	3
360		40	min		10		2			0	-	0			
361		10	max	118.261	3	3.909	9	-1.773	15	0	12	.002	3	.145	2
362		4.4	min	-17.683	10	-31.226	2	-37.666	1_	0	1	0	10	134	3
363		11		118.382	3	3.718	9	-1.773	15	0	12		3	.152	2
364		40	min	-17.549	10	-31.455	2	-37.666	1_	0	1	008	1_	132	3
365		12	max		3	3.528	9	-1.773	15	0	12	0	12	.159	2
366			min	-17.416	10	-31.684	2	-37.666	1	0	1	016	1_	13	3
367		13		118.622	3	3.337	9	-1.773	15	0	12	001	<u>15</u>	.166	2
368			min	-17.282	10	-31.912	2	-37.666	1	0	1	024	_1_	128	3
369		14		118.742	3	3.146	9	-1.773	15	0	12	002	15	.173	2
370			min	-17.149	10	-32.141	2	-37.666	1	0	1	033	1_	125	3
371		15		118.862	3	2.956	9	-1.773	15	0	12	002	15	.18	2
372			min	-17.015	10	-32.37	2	-37.666	1	0	1	041	1	123	3
373		16	max	89.06	2	160.783	2	-1.786	15	0	1	002	15	.185	2
374			min	2.004	15	-205.948	3	-37.893	1	0	12	049	1	119	3
375		17	max	89.22	2	160.554	2	-1.786	15	0	1	003	15	.15	2
376			min	2.052	15	-206.12	3	-37.893	1	0	12	057	1	074	3
377		18	max	-4.901	15	347.542	2	-1.827	15	0	3	003	15	.076	2
378		'	min	-106.392	1	-170.367	3	-38.858	1	0	2	066	1	037	3
379		19		-4.853	15	347.313	2	-1.827	15	0	3	003	15	0	2
010		- 10	max	1.000	- 0	317.010		1.021					- 0		

Model Name

Schletter, Inc.HCV

:

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	
380			min	-106.232	1_	-170.539	3	-38.858	1	0	2	074	1	0	3
381	M5	1	max	243.958	1	1129.822	3	0	2	0	1	.009	3	0	3
382			min	6.228	12	-745.183	2	-68.269	3	0	3	0	2	0	2
383		2	max	244.118	1	1129.651	3	0	2	0	1	0	1	.161	2
384			min	6.308	12	-745.412	2	-68.269	3	0	3	006	3	245	3
385		3	max	356.74	3	4.883	9	7.661	3	0	3	0	1	.32	2
386			min	-84.892	2	-104.369	2	525	1	0	1	02	3	484	3
387		4	max		3	4.693	9	7.661	3	0	3	0	1	.343	2
388		_	min	-84.732	2	-104.597	2	525	1	0	1	019	3	477	3
389		5			3	4.502	9	7.661	3	0	3	0	1	.366	2
390		3	min	-84.572	2	-104.826	2	525	1	0	1	017	3	469	3
		_													
391		6	max		3_	4.311	9	7.661	3	0	3	0	1	.388	2
392		_	min	-84.411	2	-105.055	2	525	1	0	1	<u>015</u>	3	<u>461</u>	3
393		7	max	357.221	3	4.121	9	7.661	3	0	3	0	1	.411	2
394			min	-84.251	2	-105.284	2	525	1	0	1	014	3	453	3
395		8	max		3_	3.93	9	7.661	3	0	3	0	1	.434	2
396			min	-84.091	2	-105.512	2	525	1	0	1	012	3	445	3
397		9	max	357.461	3	3.739	9	7.661	3	0	3	0	1	.457	2
398			min	-83.931	2	-105.741	2	525	1	0	1	01	3	437	3
399		10	max	357.581	3	3.549	9	7.661	3	0	3	0	2	.48	2
400			min	-83.771	2	-105.97	2	525	1	0	1	009	3	429	3
401		11	max	357.701	3	3.358	9	7.661	3	0	3	0	2	.503	2
402			min	-83.611	2	-106.199	2	525	1	0	1	007	3	421	3
403		12	max	357.822	3	3.168	9	7.661	3	0	3	0	2	.526	2
404		1	min	-83.45	2	-106.427	2	525	1	0	1	005	3	413	3
405		13	max		3	2.977	9	7.661	3	0	3	0	10	.549	2
406		10	min	-83.29	2	-106.656	2	525	1	0	1	004	3	404	3
407		14	max		3	2.786	9	7.661	3	0	3	0	10	.572	2
408		14	min	-83.13	2	-106.885	2	525	1	0	1	002	3	396	3
		15				2.596		7.661	3		3			- <u>.396</u> .596	2
409		15	max	358.182	3		9			0	1	0	10		3
410		4.0	min	-82.97	2	-107.114	2	525	1	0		0	-	388	
411		16	max		2	581.829	2	7.641	3	0	3	0	3	.613	2
412			min	4.607	<u>15</u>	-630.278	3	546	1	0	10	0	1	<u>374</u>	3
413		17	max	282.644	2	581.601	2	7.641	3	0	3	.003	3	.487	2
414			min	4.655	15	-630.449	3	546	1	0	10	0	1	238	3
415		18	max	-8.552	12	1128.189	2	6.982	3	0	10	.004	3	.244	2
416			min	-244.133	_1_	-548.148	3	12	1	0	1	0	1	118	3
417		19	max	-8.472	12	1127.96	2	6.982	3	0	10	.006	3	0	3
418			min	-243.973	1	-548.319	3	12	1	0	1	0	1	0	2
419	M9	1	max	105.891	1	346.126	3	73.648	3	0	3	003	15	0	2
420			min	4.835	15	-229.612	2	1.852	15	0	2	073	1	0	3
421		2	max	106.051	1	345.955	3	73.648	3	0	3	001	12	.05	2
422			min	4.883	15	-229.841	2	1.852	15	0	2	065	1	075	3
423		3		117.243	3	5.224	9	36.844	1	0	1	.013	3	.099	2
424			min	-18.158	10	-29.629	2	-1.593	3	0	12	056	1	149	3
425		4		117.363	3	5.033	9	36.844	1	0	1	.013	3	.105	2
426			min		10	-29.858	2	-1.593	3	0	12	048	1	147	3
427		5		117.483	3	4.843	9	36.844	1	0	1	.013	3	.112	2
428		J	min		10	-30.086	2	-1.593	3	0	12	04	1	145	3
		6								_	1		-		
429		6		117.603	3	4.652	9	36.844	1	0	12	.012	3	.119	2
430		-	min	-17.757	10	-30.315	2	-1.593	3	0		032	-	<u>143</u>	3
431		7		117.723	3	4.462	9	36.844	1	0	1	.012	3	.125	2
432				-17.624	10	-30.544	2	-1.593	3	0	12	024	1	<u>141</u>	3
433		8	max	117.844	3_	4.271	9_	36.844	1	0	1	.011	3	.132	2
434			min	-17.49	10	-30.772	2	-1.593	3	0	12	016	1	139	3
435		9	max		3	4.08	9	36.844	1	0	1	.011	3	.138	2
436			min	-17.357	10	-31.001	2	-1.593	3	0	12	008	1	137	3

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
437		10	max	118.084	3	3.89	9	36.844	1	0	1	.011	3	.145	2
438			min	-17.223	10	-31.23	2	-1.593	3	0	12	0	1	134	3
439		11	max	118.204	3	3.699	9	36.844	1	0	1	.01	3	.152	2
440			min	-17.09	10	-31.459	2	-1.593	3	0	12	0	15	132	3
441		12	max	118.324	3	3.509	9	36.844	1	0	1	.016	1	.159	2
442			min	-16.956	10	-31.687	2	-1.593	3	0	12	0	15	13	3
443		13	max	118.444	3	3.318	9	36.844	1	0	1	.024	1	.166	2
444			min	-16.823	10	-31.916	2	-1.593	3	0	12	.001	15	128	3
445		14	max	118.564	3	3.127	9	36.844	1	0	1	.032	1	.173	2
446			min	-16.689	10	-32.145	2	-1.593	3	0	12	.002	15	126	3
447		15	max	118.684	3	2.937	9	36.844	1	0	1	.04	1	.18	2
448			min	-16.556	10	-32.374	2	-1.593	3	0	12	.002	15	123	3
449		16	max	89.368	2	160.352	2	37.087	1	0	15	.048	1	.185	2
450			min	2.093	15	-206.494	3	-1.644	3	0	3	.002	15	119	3
451		17	max	89.528	2	160.123	2	37.087	1	0	15	.056	1	.15	2
452			min	2.141	15	-206.666	3	-1.644	3	0	3	.003	15	074	3
453		18	max	-4.883	15	347.542	2	38.988	1	0	2	.065	1	.076	2
454			min	-106.048	1	-170.359	3	-1.115	3	0	3	.003	15	037	3
455		19	max	-4.834	15	347.313	2	38.988	1	0	2	.073	1	0	2
456			min	-105.888	1	-170.53	3	-1.115	3	0	3	.003	15	0	3
457	M13	1	max	73.642	3	229.478	2	-4.835	15	0	2	.073	1	0	2
458			min	1.852	15	-346.156	3	-105.882	1	0	3	.003	15	0	3
459		2	max	73.642	3	162.649	2	-3.691	15	0	2	.019	1	.172	3
460			min	1.852	15	-244.936	3	-80.544	1	0	3	0	10	114	2
461		3	max	73.642	3	95.819	2	-2.547	15	0	2	.008	3	.286	3
462			min	1.852	15	-143.717	3	-55.205	1	0	3	021	1	19	2
463		4	max	73.642	3	28.99	2	-1.404	15	0	2	.004	3	.34	3
464			min	1.852	15	-42.498	3	-29.867	1	0	3	046	1	226	2
465		5	max	73.642	3	58.722	3	.757	10	0	2	.002	3	.335	3
466			min	1.852	15	-37.84	2	-4.528	1	0	3	056	1	224	2
467		6	max	73.642	3	159.941	3	20.81	1	0	2	0	3	.272	3
468			min	1.852	15	-104.669	2	-2.063	3	0	3	051	1	182	2
469		7	max	73.642	3	261.16	3	46.149	1	0	2	0	12	.149	3
470		-	min	1.852	15	-171.499	2	399	3	0	3	031	1	101	2
471		8	max	73.642	3	362.38	3	71.487	1	0	2	.004	2	.018	1
472			min	1.852	15	-238.329	2	1.068	12	0	3	0	3	033	3
473		9	max	73.642	3	463.599	3	96.826	1	0	2	.052	1	.177	2
474			min	1.852	15	-305.158	2	2.177	12	0	3	0	12	274	3
475		10	max	73.642	3	564.818	3	122.164	1	0	2	.116	1	.374	2
476			min	1.852	15	-345.962	1	-52.658	2	0	3	006	3	574	3
477		11	max		1	305.158	2	-1.822	12	0	3	.051	1	.177	2
478			min	1.784	15		3	-96.475	1	0	2	008	3	274	3
479		12	max		1	238.329	2	681	3	0	3	.004	2	.018	1
480			min	1.784	15	-362.379	3	-71.136	1	0	2	009	3	033	3
481		13		37.853	1	171.499	2	.984	3	0	3	001	15	.149	3
482			min	1.784	15	-261.16	3	-45.798	1	0	2	032	1	101	2
483		14	max		1	104.669	2	2.648	3	0	3	002	15	.272	3
484			min	1.784	15	-159.941	3	-20.459	1	0	2	051	1	182	2
485		15		37.853	1	37.84	2	4.879	1	0	3	002	15	.335	3
486			min	1.784	15	-58.722	3	757	10	0	2	055	1	224	2
487		16	max	37.853	1	42.498	3	30.218	1	0	3	002	12	.34	3
488			min	1.784	15	-28.99	2	1.424	15	0	2	045	1	226	2
489		17	max		1	143.717	3	55.556	1	0	3	.002	3	.286	3
490		17	min	1.784	15	-95.819	2	2.568	15	0	2	02	1	19	2
491		18		37.853	1	244.936	3	80.895	1	0	3	.02	1	.172	3
491		10	min	1.784	15	-162.649	2	3.712	15	0	2	0	10	114	2
493		10	max		1	346.156	3	106.233	1	0	3	.074	1	114 0	2
493		l 19	шах	31.003		340.130	J	100.233		U	J	.074		U	

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC			z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	. LC	z-z Mome	<u>LC</u>
494			min	1.784	15	-229.478	2	4.855	15	0	2	.003	15	0	3
495	M16	1	max	1.119	3	347.486	2	-4.834	15	0	3	.073	1	0	2
496			min	-38.889	1	-170.562	3	-105.897	1	0	2	.003	15	0	3
497		2	max	1.119	3	246.124	2	-3.691	15	0	3	.019	1	.085	3
498			min	-38.889	1	-121.141	3	-80.559	1	0	2	0	10	173	2
499		3	max	1.119	3	144.762	2	-2.547	15	0	3	0	12	.141	3
500			min	-38.889	1	-71.72	3	-55.22	1	0	2	021	1	287	2
501		4	max	1.119	3	43.401	2	-1.403	15	0	3	002	15	.169	3
502			min	-38.889	1	-22.299	3	-29.882	1	0	2	046	1	342	2
503		5	max	1.119	3	27.122	3	.74	10	0	3	003	15	.167	3
504			min	-38.889	1	-57.961	2	-4.543	1	0	2	056	1	338	2
505		6	max	1.119	3	76.543	3	20.795	1	0	3	002	15	.137	3
506			min	-38.889	1	-159.323	2	925	3	0	2	051	1	274	2
507		7	max	1.119	3	125.964	3	46.134	1	0	3	001	15	.078	3
508			min	-38.889	1	-260.685	2	.641	12	0	2	031	1	152	2
509		8	max	1.119	3	175.385	3	71.472	1	0	3	.004	2	.03	2
510			min	-38.889	1	-362.046	2	1.75	12	0	2	006	3	01	3
511		9	max	1.119	3	224.806	3	96.811	1	0	3	.052	1	.271	2
512			min	-38.889	1	-463.408	2	2.86	12	0	2	004	3	127	3
513		10	max	-1.828	15	-9.111	15	122.149	1	0	15	.116	1	.57	2
514			min	-38.889	1	-564.77	2	-6.627	3	0	2	.003	12	272	3
515		11	max	-1.827	15	463.408	2	-3.393	12	0	2	.051	1	.271	2
516			min	-38.764	1	-224.806	3	-96.467	1	0	3	0	12	127	3
517		12	max	-1.827	15	362.046	2	-2.284	12	0	2	.004	2	.03	2
518		12	min	-38.764	1	-175.385	3	-71.128	1	0	3	001	3	01	3
519		13	max	-1.827	15	260.685	2	-1.174	12	0	2	001	15	.078	3
520		10	min	-38.764	1	-125.964	3	-45.79	1	0	3	032	1	152	2
521		14	max	-1.827	15	159.323	2	.031	3	0	2	002	12	.137	3
522		17	min	-38.764	1	-76.543	3	-20.451	1	0	3	051	1	274	2
523		15	max	-1.827	15	57.961	2	4.887	1	0	2	002	12	.167	3
524		13	min	-38.764	1	-27.122	3	74	10	0	3	055	1	338	2
525		16	max	-1.827	15	22.299	3	30.226	1	0	2	0	12	.169	3
526		10	min	-38.764	1	-43.401	2	1.422	15	0	3	045	1	342	2
527		17	max	-1.827	15	71.72	3	55.564	1	0	2	.001	3	.141	3
528		17	min	-38.764	1	-144.762	2	2.565	15	0	3	02	1	287	2
529		18	max	-1.827	15	121.141	3	80.903	1	0	2	.02	1	.085	3
530		10	min	-38.764	1	-246.124	2	3.709	15	0	3	0	10	173	2
531		19	max	-1.827	15	170.562	3	106.241	1	0	2	.074	1	0	2
532		19	min	-38.764	1	-347.486	2	4.853	15	0	3	.003	15	0	3
533	M15	1		.771	13	1.86	4	.086	3	0	9	0	9	0	1
534	IVITO	-	max min	-91.278	3	0	1	019	9	0	3	0	3	0	1
535		2		.668	13	1.653	4	.086	3		9		9	0	_
			max	-91.354	3	_	1	019	9	0	3	0	3	0	4
536		2	min			1 446				0	9				$\overline{}$
537 538		3	max	.564 -91.429	13	1.446	4	.086 019	3	0	3	0	9	001	4
		1	min		3							0			
539		4	max	.46	13	1.24	4	.086	3	0	9	0	9	0	1
540		-	min	-91.505	3	1 022	1_4	019	9	0	3	0	3	002	4
541		5	max	.356	13	1.033	4	.086	3	0	9	0	9	0	1
542			min	<u>-91.58</u>	3	0	1	019	9	0	3	0	3	002	4
543		6	max	.252	13	.827	4	.086	3	0	9	0	9	0	1
544		-	min	<u>-91.656</u>	3	0	1_	019	9	0	3	0	3	002	4
545		7	max	.148	13	.62	4	.086	3	0	9	0	3	0	1
546			min	-91.731	3	0	1_	019	9	0	3	0	9	003	4
547		8	max	.044	13	.413	4	.086	3	0	9	0	3	0	1
548			min	-91.807	3	0	1_	019	9	0	3	0	9	003	4
549		9	max	0	1	.207	4	.086	3	0	9	0	3	0	1
550			min	-91.882	3	0	1	019	9	0	3	0	9	003	4

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
551		10	max	0	1	0	1	.086	3	0	9	0	3	0	1
552			min	-91.958	3	0	1	019	9	0	3	0	9	003	4
553		11	max	0	1	0	1	.086	3	0	9	0	3	0	1
554			min	-92.034	3	207	4	019	9	0	3	0	9	003	4
555		12	max	0	1	0	1	.086	3	0	9	0	3	0	1
556			min	-92.109	3	413	4	019	9	0	3	0	9	003	4
557		13	max	0	1	0	1	.086	3	0	9	0	3	0	1
558			min	-92.185	3	62	4	019	9	0	3	0	9	003	4
559		14	max	0	1	0	1	.086	3	0	9	0	3	0	1
560			min	-92.26	3	827	4	019	9	0	3	0	9	002	4
561		15	max	0	1	0	1	.086	3	0	9	0	3	0	1
562			min	-92.336	3	-1.033	4	019	9	0	3	0	9	002	4
563		16	max	0	1	0	1	.086	3	0	9	0	3	0	1
564		1	min	-92.411	3	-1.24	4	019	9	0	3	0	9	002	4
565		17	max	0	1	0	1	.086	3	0	9	0	3	0	1
566			min	-92.487	3	-1.446	4	019	9	0	3	0	9	001	4
567		18	max	0	1	0	1	.086	3	0	9	0	3	0	1
568		10	min	-92.562	3	-1.653	4	019	9	0	3	0	9	0	4
569		19	max	0	1	0	1	.086	3	0	9	0	3	0	1
570		13	min	-92.638	3	-1.86	4	019	9	0	3	0	9	0	1
571	M16A	1	max	0	10	1.86	4	.03	2	0	3	0	3	0	1
572	WITOA		min	-91.411	3	0	10	035	3	0	2	0	2	0	1
573		2	max	0	10	1.653	4	.03	2	0	3	0	3	0	10
574			min	-91.336	3	0	10	035	3	0	2	0	2	0	4
575		3		0	10	1.446	4	.03	2	0	3	0	3	0	10
576		-3	max min	-91.26	3	0	10	035	3	0	2	0	2	001	4
577		4		0	10	1.24	4	.03	2		3	0	3	0	10
578		+	max min	-91.185	3	0	10	035	3	0	2	0	2	002	4
579		5		0	10	1.033	4	.03	2	0	3	0	3	0	10
580		1 3	max min	-91.109	3	0	10	035	3	0	2	0	1	002	4
581		6	max	0	10	.827	4	.03	2	0	3	0	3	0	10
582		-	min	-91.033	3	0	10	035	3	0	2	0	1	002	4
583		7		0	10	.62	4	.03	2	0	3	0	3	0	10
584		+ ′	max min	-90.958	3	.02	10	035	3	0	2	0	1	003	4
585		8	max	0	10	.413	4	.03	2	0	3	0	3	0	10
586		-	min	-90.882	3	0	10	035	3	0	2	0	1	003	4
587		9	max	0	10	.207	4	.03	2	0	3	0	3	0	10
588		1 3	min	-90.807	3	0	10	035	3	0	2	0	1	003	4
589		10	max	0	10	0	1	.03	2	0	3	0	3	0	10
590		10	min	-90.731	3	0	1	035	3	0	2	0	1	003	4
591		11			2	0	10	.03	2	0		_	3	0	10
592		11	max	-90.656	3	207	4	035	3	0	2	0	1	003	4
		12	min				10	.03			3			003 0	10
593		12	max	.191	2	413	4		3	0	2	0	1		
594		12	min	-90.58	3			035				0		003 0	4
595 596		13	max	.292 -90.505	2	0	10	.03	3	0	2	0	3		10
		1.1	min		3	62	4	035		0		0		003	4
597		14	max	.393 -90.429	2	0	10	.03	3	0	2	0	3	0	10
598		15	min		3	827 0	10	035 .03	2		3	_	2	002 0	_
599		15		.493	2					0		0			10
600		16	min	<u>-90.354</u>	3	-1.033	4	035	3	0	2	0	3	002	4
601		16	max	.594	2	0	10	.03	2	0	3	0	2	0	10
602		17	min	-90.278	3	-1.24	4	035	3	0	2	0	3	002	4
603		17	max	.695	2	0	10	.03	2	0	3	0	2	0	10
604		40	min	-90.203	3	-1.446	4	035	3	0	2	0	3	001	4
605		18		.795	2	1 652	10	.03	2	0	3	0	2	0	10
606		10	min	-90.127	3	-1.653	4	035	3	0	2	0	3	0	4
607		19	max	.896	2	0	10	.03	2	0	3	0	2	0	1

Model Name

: Schletter, Inc. : HCV

TICV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
608			min	-90.052	3	-1.86	4	035	3	0	2	0	3	0	1

Envelope Member Section Deflections

	siope incili			on Dene											
	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M2	1	max	.002	1	.011	2	.007	1	-2.891e-5	15	NC	3	NC	2
2			min	004	3	011	3	002	3	-6.159e-4	1	3958.882	2	5786.387	1
3		2	max	.002	1	.01	2	.007	1	-2.764e-5	15	NC	3	NC	2
4			min	004	3	011	3	002	3	-5.888e-4	1	4330.489	2	6212.26	1
5		3	max	.002	1	.009	2	.006	1	-2.637e-5	15	NC	3	NC	2
6			min	003	3	01	3	002	3	-5.616e-4	1	4774.244	2	6716.88	1
7		4	max	.002	1	.008	2	.002	1	-2.51e-5	15	NC	1	NC	2
8		_	min	003	3	01	3	001	3	-5.344e-4	1	5307.803	2	7318.769	1
9		-		.002			2		1	-3.344e-4 -2.383e-5		NC	1	NC	2
		5	max		1	.007		.005			<u>15</u>	5954.771			4
10			min	003	3	009	3	001	3	-5.072e-4	1_		2	8042.676	1
11		6	max	.002	1	.006	2	.005	1	-2.257e-5	<u>15</u>	NC 0747.000	1_	NC	2
12			min	003	3	009	3	001	3	-4.8e-4	1_	6747.208	2	8922.238	1
13		7	max	.001	1	.005	2	.004	1	-2.13e-5	<u>15</u>	NC	_1_	NC	1
14			min	003	3	008	3	0	3	-4.528e-4	<u>1</u>	7729.482	2	NC	1
15		8	max	.001	1	.005	2	.004	1	-2.003e-5	15	NC	_1_	NC	1
16			min	002	3	008	3	0	3	-4.257e-4	1	8964.365	2	NC	1
17		9	max	.001	1	.004	2	.003	1	-1.876e-5	15	NC	1_	NC	1
18			min	002	3	007	3	0	3	-3.985e-4	1	NC	1	NC	1
19		10	max	.001	1	.003	2	.003	1	-1.75e-5	15	NC	1	NC	1
20			min	002	3	007	3	0	3	-3.713e-4	1	NC	1	NC	1
21		11	max	0	1	.003	2	.002	1	-1.623e-5	15	NC	1	NC	1
22			min	002	3	006	3	0	3	-3.441e-4	1	NC	1	NC	1
23		12	max	0	1	.002	2	.002	1		15	NC	1	NC	1
24		12	min	002	3	005	3	0	3	-3.169e-4	1	NC	1	NC	1
25		13	max	0	1	.002	2	.002	1	-1.369e-5	15	NC	1	NC	1
26		13	min	001	3	005	3	0	3	-2.897e-4	1	NC	1	NC	1
27		14		<u>001</u> 0	1	.003	2	.001	1	-1.242e-5	15	NC	1	NC	1
		14	max		3				3			NC	1	NC	1
28		4.5	min	001		004	3	0		-2.626e-4	1_				
29		15	max	0	1	0	2	0	1	-1.116e-5	<u>15</u>	NC	1	NC	1
30			min	0	3	003	3	0	3	-2.354e-4	1_	NC	1_	NC	1
31		16	max	0	1	0	2	0	1	-9.888e-6	<u>15</u>	NC	_1_	NC	1
32			min	0	3	002	3	0	3	-2.082e-4	1_	NC	1_	NC	1
33		17	max	0	1	00	2	0	1	-8.62e-6	<u>15</u>	NC	_1_	NC	1
34			min	0	3	002	3	0	3	-1.81e-4	1_	NC	1_	NC	1
35		18	max	0	1	0	2	0	1	-7.353e-6	<u>15</u>	NC	_1_	NC	1
36			min	0	3	0	3	0	3	-1.538e-4	1	NC	1	NC	1
37		19	max	0	1	0	1	0	1	-5.807e-6	12	NC	1_	NC	1
38			min	0	1	0	1	0	1	-1.267e-4	1	NC	1	NC	1
39	M3	1	max	0	1	0	1	0	1	6.066e-5	1	NC	1	NC	1
40			min	0	1	0	1	0	1		15	NC	1	NC	1
41		2	max	0	3	0	2	0	12		1	NC	1	NC	1
42			min	0	2	0	3	0	1	3.52e-6	15	NC	1	NC	1
43		3	max	0	3	0	2	0	12		1	NC	-	NC	1
44			min	0	2	002	3	0	1	4.126e-6	15	NC	1	NC	1
45		4			3	<u>002</u> 0	2		3	1.007e-4	1	NC NC	+	NC	1
		4	max	0				0			15				
46		_	min	0	2	003	3	0	1	4.733e-6	<u>15</u>	NC NC	1_	NC NC	1
47		5	max	0	3	0	2	0	3	1.141e-4	1_	NC	1	NC	1
48			min	0	2	004	3	0	1	5.339e-6	<u>15</u>	NC	1_	NC	1
49		6	max	0	3	0	2	0	3	1.274e-4	1_	NC	1	NC	1
50			min	0	2	005	3	0	1	5.946e-6	15	NC	1_	NC	1
51		7	max	0	3	0	2	0	3	1.408e-4	1	NC	1	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC				LC	(n) L/z Ratio	
52			min	0	2	005	3	0	1	6.553e-6	15	NC	1	NC	1
53		8	max	0	3	.001	2	0	3	1.541e-4	<u>1</u>	NC	_1_	NC	1
54			min	0	2	006	3	0	1	7.159e-6	15	NC	1	NC	1
55		9	max	.001	3	.001	2	0	3	1.675e-4	1	NC	1	NC	1
56			min	001	2	007	3	0	9	7.766e-6	15	NC	1	NC	1
57		10	max	.001	3	.002	2	0	2	1.809e-4	1	NC	1	NC	1
58			min	001	2	007	3	0	15	8.372e-6	15	NC	1	NC	1
59		11	max	.001	3	.002	2	0	1	1.942e-4	1	NC	1	NC	1
60			min	001	2	008	3	0	15	8.979e-6	15	NC	1	NC	1
61		12	max	.002	3	.003	2	0	1	2.076e-4	1	NC	1_	NC	1
62			min	002	2	008	3	0	15	9.585e-6	15	NC	1	NC	1
63		13	max	.002	3	.004	2	.001	1	2.209e-4	1_	NC	1	NC	1
64			min	002	2	008	3	0	15	1.019e-5	15	NC	1	NC	1
65		14	max	.002	3	.005	2	.002	1	2.343e-4	1	NC	1	NC	1
66			min	002	2	009	3	0	15	1.08e-5	15	NC	1	NC	1
67		15	max	.002	3	.005	2	.002	1	2.476e-4	1	NC	1	NC	1
68			min	002	2	009	3	0	15	1.14e-5	15	8523.619	2	NC	1
69		16	max	.002	3	.006	2	.003	1	2.61e-4	1	NC	1	NC	1
70			min	002	2	009	3	0	15	1.201e-5	15	7235.804	2	NC	1
71		17	max	.002	3	.007	2	.003	1	2.743e-4	1	NC	1	NC	1
72			min	002	2	009	3	0	15	1.262e-5	15	6237.12	2	NC	1
73		18	max	.002	3	.008	2	.003	1	2.877e-4	1	NC	1	NC	1
74			min	002	2	009	3	0	15	1.322e-5	15	5453.925	2	NC	1
75		19	max	.002	3	.01	2	.004	1	3.01e-4	1	NC	3	NC	1
76			min	002	2	009	3	0	15	1.383e-5	15	4834.303	2	NC	1
77	M4	1	max	.001	1	.013	2	0		-1.746e-5	12	NC	1	NC	2
78			min	0	15	011	3	003	1	-4.832e-4	1	NC	1	6701.921	1
79		2	max	.001	1	.012	2	0	15	-1.746e-5	12	NC	1	NC	2
80			min	0	15	01	3	003	1	-4.832e-4	1	NC	1	7311.371	1
81		3	max	.001	1	.011	2	0	15	-1.746e-5	12	NC	1	NC	2
82			min	0	15	01	3	002	1	-4.832e-4	1	NC	1	8036.706	1
83		4	max	.001	1	.01	2	0	15		12	NC	1	NC	2
84			min	0	15	009	3	002	1	-4.832e-4	1	NC	1	8908.493	
85		5	max	.001	1	.01	2	0	15	-1.746e-5	12	NC	1	NC	2
86			min	0	15	009	3	002	1	-4.832e-4	1	NC	1	9968.375	
87		6	max	.001	1	.009	2	0	15	-1.746e-5	12	NC	1	NC	1
88			min	0	15	008	3	002	1	-4.832e-4	1	NC	1	NC	1
89		7	max	0	1	.008	2	0		-1.746e-5	12	NC	1	NC	1
90			min	0	15	007	3	001	1	-4.832e-4	1	NC	1	NC	1
91		8	max	0	1	.008	2	0	•	-1.746e-5	•	NC	1	NC	1
92			min	0	15	007	3	001		-4.832e-4		NC	1	NC	1
93		9	max	0	1	.007	2	0		-1.746e-5		NC	1	NC	1
94		Ť	min	0	15	006	3	001	1	-4.832e-4	1	NC	1	NC	1
95		10	max	0	1	.006	2	0	15	-1.746e-5		NC	1	NC	1
96		- 10	min	0	15	006	3	0	1	-4.832e-4	1	NC	1	NC	1
97		11	max	0	1	.006	2	0	15	-1.746e-5	12	NC	1	NC	1
98			min	0	15	005	3	0	1	-4.832e-4	1	NC	1	NC	1
99		12	max	0	1	.005	2	0	15		12	NC	1	NC	1
100		12	min	0	15	004	3	0	1	-4.832e-4	1	NC	1	NC	1
101		13	max	0	1	.004	2	0		-1.746e-5	•	NC	1	NC	1
102		13	min	0	15	004	3	0	1	-4.832e-4	1	NC	1	NC	1
103		14	max	0	1	.003	2	0		-1.746e-5	•	NC	1	NC	1
104		14	min	0	15	003	3	0	1	-4.832e-4	1	NC	1	NC	1
105		15		0	1	.003	2	0	15	-4.632e-4 -1.746e-5	12	NC NC	1	NC NC	1
106		10	max	0	15	003	3	0	1	-1.746e-5 -4.832e-4	1	NC NC	1	NC NC	1
107		16		0	1	.002	2	0		-4.832e-4 -1.746e-5	12	NC NC	1	NC NC	1
		10	max								-				
108			min	0	15	002	3	0	1	-4.832e-4	<u> 1</u>	NC	1_	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
109		17	max	0	1	.001	2	0	15	-1.746e-5	12	NC	1_	NC	1
110			min	0	15	001	3	0	1	-4.832e-4	1_	NC	1_	NC	1
111		18	max	0	1	0	2	0	15	-1.746e-5	12	NC	1	NC	1
112			min	0	15	0	3	0	1	-4.832e-4	1	NC	1	NC	1
113		19	max	0	1	0	1	0	1	-1.746e-5	12	NC	1	NC	1
114			min	0	1	0	1	0	1	-4.832e-4	1	NC	1	NC	1
115	M6	1	max	.007	1	.036	2	.003	1	4.743e-4	3	NC	3	NC	1
116			min	012	3	035	3	006	3	-2.028e-7	2	1163.36	2	7106.513	3
117		2	max	.007	1	.034	2	.003	1	4.586e-4	3	NC	3	NC	1
118			min	011	3	033	3	006	3	-1.694e-6	1	1245.767	2	7516.469	
119		3	max	.006	1	.032	2	.002	1	4.429e-4	3	NC	3	NC	1
120			min	011	3	031	3	005	3	-4.88e-6	1	1340.309	2	8006.948	
121		4		.006	1	.029	2	.002	1	4.273e-4	3	NC	3	NC	1
122		4	max		3	029	3		3				2		3
		-	min	01				005		-8.067e-6	1_	1449.406		8594.546	
123		5	max	.006	1	.027	2	.002	1	4.116e-4	3	NC	3_	NC	1
124			min	009	3	028	3	005	3	-1.125e-5	1_	1576.177	2	9301.366	
125		6	max	.005	1	.025	2	.002	1	3.959e-4	3	NC	3	NC	1
126			min	009	3	026	3	004	3	-1.444e-5	1_	1724.703	2	NC	1
127		7	max	.005	1	.022	2	.002	1	3.802e-4	3	NC	3	NC	1
128			min	008	3	024	3	004	3	-1.763e-5	1_	1900.426	2	NC	1
129		8	max	.004	1	.02	2	.001	1	3.646e-4	3	NC	3	NC	1
130			min	007	3	022	3	003	3	-2.081e-5	1	2110.766	2	NC	1
131		9	max	.004	1	.018	2	.001	1	3.489e-4	3	NC	3	NC	1
132			min	007	3	02	3	003	3	-2.4e-5	1	2366.107	2	NC	1
133		10	max	.004	1	.016	2	.001	1	3.332e-4	3	NC	3	NC	1
134			min	006	3	018	3	003	3	-2.719e-5	1	2681.442	2	NC	1
135		11	max	.003	1	.014	2	0	1	3.176e-4	3	NC	3	NC	1
136			min	005	3	016	3	002	3	-3.037e-5	1	3079.24	2	NC	1
137		12	max	.003	1	.012	2	0	1	3.019e-4	3	NC	3	NC	1
138		12	min	005	3	014	3	002	3	-3.356e-5	1	3594.792	2	NC	1
139		13	max	.002	1	.01	2	<u>.002</u>	1	2.862e-4	3	NC	3	NC	1
140		10	min	004	3	012	3	002	3	-3.675e-5	1	4286.875	2	NC	1
		14		.002	1	.008	2		1	2.705e-4		NC		NC	1
141		14	max		3	01	3	0	3		<u>3</u> 1	5261.237	2	NC NC	1
		4.5	min	003				001		-3.993e-5	-				
143		15	max	.002	1	.006	2	0	1	2.549e-4	3	NC C700 000	1	NC NC	1
144		40	min	003	3	008	3	0	3	-4.312e-5	1_	6729.282	2	NC NC	1
145		16	max	.001	1	.005	2	0	1	2.392e-4	3	NC	1_	NC NC	1
146			min	002	3	006	3	0	3	-4.631e-5	1_	9184.155	2	NC	1
147		17	max	0	1	.003	2	0	1	2.235e-4	3	NC	1_	NC	1
148			min	001	3	004	3	0	3	-4.949e-5	1_	NC	1_	NC	1
149		18	max	0	1	.001	2	0	1	2.078e-4	3	NC	1_	NC	1
150			min	0	3	002	3	0	3	-5.268e-5	1_	NC	1_	NC	1
151		19	max	0	1	0	1	0	1	1.922e-4	3	NC	_1_	NC	1
152			min	0	1	0	1	0	1	-5.587e-5	1_	NC	1_	NC	1
153	M7	1	max	0	1	0	1	0	1	2.655e-5	1	NC	1	NC	1
154			min	0	1	0	1	0	1	-9.153e-5	3	NC	1	NC	1
155		2	max	0	3	.002	2	0	3	2.269e-5	1	NC	1	NC	1
156			min	0	2	002	3	0	1	-6.76e-5	3	NC	1	NC	1
157		3	max	0	3	.003	2	0	3	1.883e-5	1	NC	1	NC	1
158			min	0	2	004	3	0	1	-4.367e-5	3	NC	1	NC	1
159		4	max	.001	3	.004	2	.001	3	1.497e-5	1	NC	1	NC	1
160		Ľ	min	001	2	006	3	0	1	-1.975e-5	3	NC	1	NC	1
161		5	max	.002	3	.006	2	.002	3	1.112e-5	1	NC	1	NC	1
162			min	002	2	008	3	<u>.002</u>	1	0	10	7835.427	2	NC	1
163		G			3		2			2.81e-5		NC	1	NC NC	1
		6	max	.002	2	.007		.002	3		3		2		1
164		7	min	002		01	3	0		0 5 2020 5	10	6273.529		NC NC	
165		7	max	.003	3	.009	2	.002	3	5.203e-5	3	NC	3	NC	1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r					LC
166			min	003	2	012	3	0	1	-1.938e-7		5208.433	2	NC	1
167		8	max	.003	3	.01	2	.002	3	7.595e-5	3	NC	3	NC	1
168			min	003	2	014	3	0	1	-1.043e-6	4	4429.897	2	NC	1
169		9	max	.003	3	.012	2	.003	3	9.988e-5	3	NC	3	NC	1
170		1.0	min	004	2	<u>016</u>	3	0	1	-4.315e-6	1_	3833.073	2	NC	1
171		10	max	.004	3	.014	2	.003	3	1.238e-4	3	NC	3	NC	1
172		4.4	min	004	2	017	3	0	1	-8.173e-6	1_	3359.805	2	NC	1
173		11	max	.004	3	.015	2	.003	3	1.477e-4	3	NC 0075.40	3	NC NC	1
174		40	min	005	2	019	3	001	1	-1.203e-5	1	2975.16	2	NC NC	1
175		12	max	.005	3	.017 02	3	.003 001	1	1.717e-4	<u>3</u>	NC 2656.797	2	NC NC	1
176 177		13	min	005 .005	3	<u>02</u> .019	2	.003	3	-1.589e-5		NC	3	NC NC	1
178		13	max	006	2	022	3	003	1	1.956e-4 -1.975e-5	<u>3</u>	2389.673	2	NC NC	1
179		14	max	.005	3	.022	2	.003	3	2.195e-4	3	NC	3	NC NC	1
180		14	min	006	2	023	3	003	1	-2.36e-5	1	2163.211	2	NC	1
181		15	max	.006	3	.023	2	.003	3	2.434e-4	3	NC	3	NC	1
182		10	min	007	2	024	3	001	1	-2.746e-5	1	1969.707	2	NC	1
183		16	max	.006	3	.026	2	.003	3	2.674e-4	3	NC	3	NC	1
184		10	min	007	2	025	3	001	1	-3.132e-5	1	1803.373	2	NC	1
185		17	max	.007	3	.028	2	.003	3	2.913e-4	3	NC	3	NC	1
186			min	008	2	026	3	001	1	-3.518e-5	1	1659.755	2	NC	1
187		18	max	.007	3	.03	2	.003	3	3.152e-4	3	NC	3	NC	1
188			min	008	2	027	3	002	1	-3.904e-5	1	1535.359	2	NC	1
189		19	max	.008	3	.032	2	.003	3	3.391e-4	3	NC	3	NC	1
190			min	009	2	028	3	002	1	-4.289e-5	1	1427.399	2	NC	1
191	M8	1	max	.004	1	.042	2	.002	1	-1.104e-7	10	NC	1	NC	1
192			min	0	15	035	3	002	3	-2.617e-4	3	NC	1	9368.236	3
193		2	max	.004	1	.04	2	.001	1	-1.104e-7	10	NC	1	NC	1
194			min	0	15	033	3	002	3	-2.617e-4	3	NC	1	NC	1
195		3	max	.003	1	.038	2	.001	1	-1.104e-7	10	NC	1_	NC	1_
196			min	0	15	031	3	002	3	-2.617e-4	3	NC	1	NC	1
197		4	max	.003	1	.035	2	.001	1	-1.104e-7	10	NC	_1_	NC	1
198			min	0	15	029	3	002	3	-2.617e-4	3	NC	1_	NC	1
199		5	max	.003	1	.033	2	.001	1	-1.104e-7	10	NC	_1_	NC	1
200			min	0	15	027	3	001	3	-2.617e-4	3	NC	_1_	NC	1
201		6	max	.003	1	.03	2	0	1	-1.104e-7	10	NC	_1_	NC	1
202		_	min	0	15	025	3	001	3	-2.617e-4	3	NC	1_	NC	1
203		7	max	.003	1	.028	2	0	1	-1.104e-7	10	NC	1_	NC	1
204			min	0	15	023	3	001	3	-2.617e-4	3_	NC	_1_	NC	1
205		8	max	.002	1	.026	2	0	1	-1.104e-7	10	NC NC	1_	NC NC	1
206			min		15	021	3	0		-2.617e-4		NC NC	1	NC NC	1
207		9	max	.002	1	.023	2	0	1	-1.104e-7	10	NC NC	1	NC	1
208		10	min	0	15	019	2	0	1	-2.617e-4 -1.104e-7	3	NC NC	<u>1</u> 1	NC NC	1
209		10	max	.002	1 15	.021	3	<u> </u>		-1.104e-7 -2.617e-4		NC NC	1	NC NC	1
210		11	min max	.002	1	<u>017</u> .019	2	0	1	-2.617e-4 -1.104e-7	<u>3</u>	NC NC	1	NC NC	1
212		11	min	0	15	015	3	0	3	-1.104e-7	3	NC	1	NC	1
213		12	max	.001	1	.016	2	0	1	-1.104e-7	10	NC	1	NC	1
214		12	min	0	15	013	3	0	3	-2.617e-4	3	NC	1	NC	1
215		13	max	.001	1	.013 .014	2	0	1	-2.617e-4 -1.104e-7	<u> </u>	NC NC	1	NC NC	1
216		13	min	0	15	012	3	0	3	-1.104e-7	3	NC NC	1	NC	1
217		14	max	.001	1	.012	2	0	1	-1.104e-7	10	NC	1	NC	1
218		-	min	0	15	01	3	0	3	-2.617e-4	3	NC	1	NC	1
219		15	max	0	1	.009	2	0	1	-1.104e-7	_	NC	1	NC	1
220		10	min	0	15	008	3	0	3	-2.617e-4	3	NC	1	NC	1
221		16	max	0	1	.007	2	0	1	-1.104e-7		NC	1	NC	1
222		<u>,</u>	min	0	15	006	3	0	3	-2.617e-4	3	NC	1	NC	1
			117011			.000			_	U.7U T		.,,			

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

000	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r			LC		
223		17	max	0	1 15	.005	3	0	1	-1.104e-7 -2.617e-4	<u>10</u> 3	NC NC	1	NC NC	1
224 225		18	min	<u> </u>	1	004 .002	2	<u> </u>	1	-2.617e-4 -1.104e-7	<u>၂</u>	NC NC	1	NC NC	1
226		10	max	0	15	002	3	0	3	-2.617e-4	3	NC NC	1	NC NC	1
227		19			1		1		1	-2.617e-4 -1.104e-7		NC NC	1	NC NC	1
		19	max	<u>0</u> 	1	<u> </u>	1	<u>0</u> 	1	-1.104e-7	<u>10</u>		1		1
228	M40	1	min								3	NC NC		NC NC	•
229	M10	1	max	.002	1	.011	2	0	3	6.107e-4	1	NC	3	NC NC	1
230			min	003	3	011	3	002	1	-5.297e-4	3	3963.376	2	NC NC	1
231		2	max	.002	1	.01	2	0	3	5.792e-4	1_	NC	3	NC NC	1
232		_	min	003	3	011	3	002	1	-5.109e-4	3	4335.568	2	NC NC	1
233		3	max	.002	1	.009	2	0	3	5.476e-4	1_	NC 4700.050	3_	NC NC	1
234		-	min	003	3	01	3	001	1	-4.922e-4	3	4780.052	2	NC NC	1
235		4	max	.002	1	.008	2	0	3	5.161e-4	1_	NC	1_	NC NC	1
236		_	min	003	3	01	3	001	1	-4.734e-4	3	5314.533	2	NC NC	1
237		5_	max	.002	1	.007	2	0	3	4.845e-4	1_	NC 5000.075	1_	NC	1
238			min	003	3	009	3	001	1	-4.546e-4	3	5962.675	2	NC	1
239		6	max	.002	1	.006	2	0	3	4.53e-4	1_	NC	1	NC	1
240		_	min	002	3	009	3	001	1	-4.358e-4	3	6756.628	2	NC	1
241		7	max	.002	1	.005	2	0	3	4.215e-4	1_	NC	1_	NC	1
242			min	002	3	008	3	001	1	-4.17e-4	3	7740.891	2	NC	1
243		8	max	.001	1	.005	2	0	3	3.899e-4	1_	NC	1_	NC	1
244			min	002	3	008	3	001	1	-3.982e-4	3	8978.429	2	NC	1
245		9	max	.001	1	.004	2	0	3	3.584e-4	_1_	NC	_1_	NC	1
246			min	002	3	007	3	0	1	-3.795e-4	3	NC	1	NC	1
247		10	max	.001	1	.003	2	0	3	3.268e-4	_1_	NC	_1_	NC	1
248			min	002	3	007	3	0	1	-3.607e-4	3	NC	1	NC	1
249		11	max	.001	1	.003	2	0	3	2.953e-4	<u>1</u>	NC	_1_	NC	1
250			min	001	3	006	3	0	1	-3.419e-4	3	NC	1	NC	1
251		12	max	0	1	.002	2	0	3	2.637e-4	1	NC	1	NC	1
252			min	001	3	006	3	0	1	-3.231e-4	3	NC	1	NC	1
253		13	max	0	1	.002	2	0	3	2.322e-4	1_	NC	1_	NC	1
254			min	001	3	005	3	0	1	-3.043e-4	3	NC	1	NC	1
255		14	max	0	1	.001	2	0	3	2.006e-4	1	NC	1	NC	1
256			min	0	3	004	3	0	1	-2.855e-4	3	NC	1	NC	1
257		15	max	0	1	0	2	0	3	1.691e-4	1	NC	1	NC	1
258			min	0	3	003	3	0	1	-2.668e-4	3	NC	1	NC	1
259		16	max	0	1	0	2	0	3	1.375e-4	1	NC	1	NC	1
260			min	0	3	003	3	0	1	-2.48e-4	3	NC	1	NC	1
261		17	max	0	1	0	2	0	3	1.06e-4	1	NC	1	NC	1
262			min	0	3	002	3	0	1	-2.292e-4	3	NC	1	NC	1
263		18		0	1	0	2	0	3	7.446e-5	1	NC	1	NC	1
264			min	0	3	0	3	0	1	-2.104e-4	3	NC	1	NC	1
265		19	max	0	1	0	1	0	1	4.291e-5	1	NC	1	NC	1
266			min	0	1	0	1	0	1	-1.916e-4	3	NC	1	NC	1
267	M11	1	max	0	1	0	1	0	1	9.173e-5	3	NC	1	NC	1
268			min	0	1	0	1	0	1	-2.1e-5	1	NC	1	NC	1
269		2	max	0	3	0	2	0	1	6.799e-5	3	NC	1	NC	1
270			min	0	2	0	3	0	3	-4.226e-5	1	NC	1	NC	1
271		3	max	0	3	0	2	0	2	4.424e-5	3	NC	1	NC	1
272		Ť	min	0	2	002	3	0	3	-6.351e-5	1	NC	1	NC	1
273		4	max	0	3	0	2	0	2	2.05e-5	3	NC	1	NC	1
274			min	0	2	003	3	001	3	-8.477e-5	1	NC	1	NC	1
275		5	max	0	3	0	2	0	2	-2.553e-6	12	NC	1	NC	1
276			min	0	2	004	3	002	3	-1.06e-4	1	NC	1	NC	1
277		6	max	0	3	0	2	0	10	-6.327e-6	15	NC	1	NC	1
278			min	0	2	005	3	002	3	-1.273e-4	1	NC	1	NC	1
279		7	max	0	3	0	2	0		-7.352e-6	•	NC	1	NC	1
<u></u>			IIIUA						10	1.0026-0	-10	110		110	

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC				
280			min	0	2	005	3	002	3 -1.486e-4	1	NC	1_	NC	1
281		8	max	0	3	.001	2	0	10 -8.378e-6	15	NC	1	NC	1
282			min	0	2	006	3	002	3 -1.698e-4	1	NC	1	NC	1
283		9	max	.001	3	.001	2	0	10 -9.403e-6	15	NC	1	NC	1
284			min	001	2	007	3	002	3 -1.911e-4	1	NC	1	NC	1
285		10	max	.001	3	.002	2	0		15	NC	1	NC	1
286			min	001	2	007	3	003	3 -2.123e-4	1	NC	1	NC	1
287		11	max	.001	3	.002	2	0		15	NC	1	NC	1
288			min	001	2	008	3	003	3 -2.336e-4	1	NC	1	NC	1
289		12	max	.002	3	.003	2	0		15	NC	1	NC	1
290		12		002	2	008	3	003	1 -2.548e-4	1	NC NC	1	NC	1
		40	min									•		-
291		13	max	.002	3	.004	2	0		<u>15</u>	NC	1	NC	1
292			min	002	2	009	3	004	1 -2.761e-4	1_	NC	1	NC	1_
293		14	max	.002	3	.005	2	0		<u>15</u>	NC	1_	NC	1
294			min	002	2	009	3	004	1 -2.974e-4	1	NC	1_	NC	1
295		15	max	.002	3	.005	2	0		15	NC	_1_	NC	2
296			min	002	2	009	3	005	1 -3.186e-4		8539.629	2	9630.367	1
297		16	max	.002	3	.006	2	0	15 -1.658e-5	15	NC	1	NC	2
298			min	002	2	009	3	005	1 -3.399e-4	1	7248.16	2	8586.68	1
299		17	max	.002	3	.007	2	0	15 -1.761e-5	15	NC	1	NC	2
300			min	002	2	009	3	006	1 -3.611e-4	1	6246.908	2	7748.932	1
301		18	max	.002	3	.008	2	0		15	NC	1	NC	2
302			min	002	2	009	3	007	1 -3.824e-4	1	5461.875	2	7068.429	1
303		19	max	.003	3	.01	2	0		15	NC	3	NC	2
304		13	min	002	2	009	3	007	1 -4.037e-4	1	4840.914	2	6510.59	1
305	M12	1		.002	1	.012	2	.006	1 3.904e-4	1	NC	1	NC	2
	IVIIZ		max		15		3					1		1
306		-	min	0		<u>011</u>		0		<u>15</u>	NC NC	•	3241.864	
307		2	max	.001	1	.012	2	.005	1 3.904e-4	4.5	NC	1	NC	2
308			min	0	15	01	3	0		15	NC	1_	3535.564	1
309		3	max	.001	1	.011	2	.005	1 3.904e-4	1_	NC	1	NC	2
310			min	0	15	01	3	0		15	NC	1_	3885.162	1
311		4	max	.001	1	.01	2	.004	1 3.904e-4	1_	NC	_1_	NC	2
312			min	0	15	009	3	0		15	NC	1_	4305.394	1
313		5	max	.001	1	.01	2	.004	1 3.904e-4	1_	NC	1_	NC	2
314			min	0	15	009	3	0	15 1.863e-5	15	NC	1	4816.331	1
315		6	max	.001	1	.009	2	.004	1 3.904e-4	1	NC	1	NC	2
316			min	0	15	008	3	0	15 1.863e-5	15	NC	1	5445.895	1
317		7	max	0	1	.008	2	.003	1 3.904e-4	1	NC	1	NC	2
318			min	0	15	007	3	0		15	NC	1	6233.854	1
319		8	max	0	1	.008	2	.003	1 3.904e-4	1	NC	1	NC	2
320			min	0	15	007	3	0	15 1.863e-5		NC	1	7238.446	
321		9	max	0	1	.007	2	.002	1 3.904e-4	1	NC	1	NC	2
322			min	0	15	006	3	0		15	NC	1	8547.766	1
323		10		0	1	.006	2	.002	1 3.904e-4	1	NC	1	NC	1
		10	max	0	15		3				NC	1	NC	1
324		4.4	min			006		0		<u>15</u>		_		_
325		11	max	0	1	.006	2	.002	1 3.904e-4	1_	NC	1	NC	1
326		1.0	min	0	15	005	3	0		<u>15</u>	NC	_1_	NC	1
327		12	max	0	1	.005	2	.001	1 3.904e-4	1_	NC	_1_	NC	1_
328			min	0	15	004	3	0		15	NC	1	NC	1
329		13	max	0	1	.004	2	0	1 3.904e-4	1	NC	_1_	NC	1_
330			min	0	15	004	3	0		15	NC	1	NC	1
331		14	max	0	1	.003	2	0	1 3.904e-4	1	NC	1	NC	1
332			min	0	15	003	3	0	15 1.863e-5	15	NC	1	NC	1
333		15	max	0	1	.003	2	0	1 3.904e-4	1	NC	1	NC	1
334		1	min	0	15	002	3	0		15	NC	1	NC	1
335		16	max	0	1	.002	2	0	1 3.904e-4	1	NC	1	NC	1
336		10	min	0	15	002	3	0		15	NC	1	NC	1
550			1111111	U	IJ	002	J	U	10 1.0006-0	IU	INC		INC	

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
337		17	max	0	1	.001	2	0	1	3.904e-4	1_	NC	1_	NC	1
338			min	0	15	001	3	0	15	1.863e-5	15	NC	1	NC	1
339		18	max	0	1	0	2	0	1	3.904e-4	1	NC	1	NC	1
340			min	0	15	0	3	0	15	1.863e-5	15	NC	1	NC	1
341		19	max	0	1	0	1	0	1	3.904e-4	1	NC	1	NC	1
342			min	0	1	0	1	0	1	1.863e-5	15	NC	1	NC	1
343	M1	1	max	.01	3	.027	3	.003	3	9.429e-3	2	NC	1	NC	1
344			min	01	2	023	2	003	1	-1.382e-2	3	NC	1	NC	1
345		2	max	.01	3	.017	3	.003	3	4.62e-3	2	NC	4	NC	1
346			min	01	2	014	2	006	1	-6.834e-3	3	5117.376	2	NC	1
347		3		.01	3	.007	3	.002	3	1.924e-5	3	NC	4	NC	2
		- 3	max												4
348		-	min	01	2	005	2	007	1	-3.767e-4	1_	2625.197	2	9889.011	1
349		4	max	.01	3	.003	2	.002	3	2.263e-5	3	NC 10015	4_	NC NC	2
350		_	min	01	2	002	3	008	1	-3.258e-4	1_	1834.315	2	8203.18	1
351		5	max	.01	3	.009	2	.001	3	2.602e-5	3	NC	_4_	NC	2
352			min	01	2	009	3	008	1	-2.748e-4	_1_	1452.023	2	7903.973	1
353		6	max	.01	3	.015	2	0	3	2.94e-5	3	NC	4_	NC	2
354			min	01	2	014	3	008	1	-2.239e-4	1	1234.239	2	8500.411	1
355		7	max	.009	3	.02	2	0	3	3.279e-5	3	NC	4	NC	1
356			min	01	2	019	3	007	1	-1.729e-4	1	1100.753	2	NC	1
357		8	max	.009	3	.023	2	0	3	3.617e-5	3	NC	4	NC	1
358			min	01	2	022	3	006	1	-1.22e-4	1	1018.164	2	NC	1
359		9	max	.009	3	.025	2	0	3	3.956e-5	3	NC	4	NC	1
360		Ť	min	01	2	023	3	004	1	-7.103e-5	1	970.887	2	NC	1
361		10	max	.009	3	.026	2	<u>.004</u>	3	4.295e-5	3	NC	4	NC	1
362		10	min	01	2	024	3	002	1	-2.007e-5	1	951.807	2	NC	1
363		11		.009	3	.026	2	.002	3	4.633e-5	3	NC	4	NC	1
			max												
364		40	min	01	2	023	3	0	1	1.144e-6	<u>15</u>	958.976	2	NC NC	1
365		12	max	.009	3	.024	2	.001	3	8.183e-5	1_	NC	4_	NC NC	1
366		10	min	01	2	021	3	0	15	3.562e-6	<u>15</u>	994.937	2	NC	1
367		13	max	.009	3	.021	2	.002	1	1.328e-4	_1_	NC	4_	NC	1
368			min	01	2	018	3	0	15	5.979e-6	15		2	NC	1
369		14	max	.009	3	.016	2	.003	1	1.837e-4	_1_	NC	_4_	NC	2
370			min	01	2	014	3	0	15	8.396e-6	15	1197.855	2	8639.183	
371		15	max	.009	3	.01	2	.004	1	2.347e-4	1_	NC	4	NC	2
372			min	01	2	008	3	0	15	1.081e-5	15	1429.516	2	8006.336	1
373		16	max	.009	3	.002	2	.004	1	2.692e-4	1	NC	4	NC	2
374			min	01	2	002	3	0	15	1.245e-5	15	1874.033	3	8286.803	1
375		17	max	.009	3	.006	3	.003	1	5.511e-5	3	NC	4	NC	2
376			min	01	2	008	2	0	15	-8.76e-5	1	2719.951	3	9973.358	
377		18	max	.009	3	.014	3	.001	1	6.995e-3	2	NC	2	NC	1
378		10	min	01	2	019	2	0	15		3	5334.252	3	NC	1
379		19	max	.009	3	.023	3	0	3	1.412e-2	2	NC	1	NC	1
380		13	min	01	2	031	2	002	1	-7.254e-3	3	5718.141	2	NC	1
	NAE	4													
381	<u>M5</u>	1_	max	.03	3	.087	3	.003	3	5.103e-6	3	NC	1	NC NC	1
382			min	033	2	075	2	003	1	0	2	3598.275	3	NC NC	1
383		2	max	.03	3	.053	3	.005	3	1.354e-4	3	NC 4504 040	4	NC NC	1
384			min	033	2	045	2	003	1	-4.572e-5	1_	1561.816	2	NC	1
385		3	max	.03	3	.021	3	.006	3	2.631e-4	3	NC	5	NC	1
386			min	033	2	017	2	003	1	-9.069e-5	1_	800.842	2	NC	1
387		4	max	.03	3	.009	2	.007	3	2.527e-4	3	NC	5	NC	1
388			min	033	2	006	3	003	1	-8.652e-5	1	559.171	2	NC	1
389		5	max	.03	3	.031	2	.008	3	2.423e-4	3	NC	5	NC	1
390			min	033	2	028	3	003	1	-8.235e-5	1	442.325	2	9800.915	3
391		6	max	.03	3	.05	2	.008	3	2.319e-4	3	NC	5	NC	1
392		Ĭ	min	033	2	046	3	003	1	-7.818e-5	1	375.743	2	8827.321	3
393		7	max	.03	3	.065	2	.008	3	2.215e-4	3	NC	5	NC	1
UUU			πιαλ	.00	J	.000		.000		L.2 100-4	<u> </u>	110	<u> </u>	110	

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		
394			min	033	2	06	3	003	1	-7.402e-5	1_	334.916	2	8367.71	3
395		8	max	.029	3	.076	2	.008	3	2.112e-4	3	NC	5_	NC	1
396			min	033	2	069	3	002	1	-6.985e-5	1_	309.636	2	8247.756	3
397		9	max	.029	3	.084	2	.008	3	2.008e-4	3	NC	5	NC	1
398			min	033	2	075	3	002	1	-6.568e-5	1	295.139	2	8400.139	3
399		10	max	.029	3	.087	2	.007	3	1.904e-4	3	NC	5	NC	1
400			min	033	2	077	3	002	1	-6.151e-5	1_	289.247	2	8814.036	3
401		11	max	.029	3	.086	2	.007	3	1.8e-4	3	NC	5	NC	1
402			min	033	2	074	3	002	1	-5.734e-5	1	291.364	2	9521.898	3
403		12	max	.029	3	.08	2	.006	3	1.696e-4	3	NC	5	NC	1
404			min	033	2	068	3	002	1	-5.317e-5	1	302.264	2	NC	1
405		13	max	.029	3	.069	2	.005	3	1.592e-4	3	NC	5	NC	1
406			min	033	2	058	3	002	1	-4.9e-5	1	324.523	2	NC	1
407		14	max	.029	3	.054	2	.005	3	1.488e-4	3	NC	5	NC	1
408			min	033	2	044	3	002	1	-4.484e-5	1	364.057	2	NC	1
409		15	max	.029	3	.033	2	.004	3	1.384e-4	3	NC	5	NC	1
410			min	033	2	027	3	002	1	-4.067e-5	1	434.788	2	NC	1
411		16	max	.029	3	.006	2	.002	3	1.228e-4	3	NC	5	NC	1
412		10	min	033	2	006	3	002	1	-3.999e-5	1	575.994	2	NC	1
413		17	max	.029	3	.019	3	.002	3			NC	5	NC	1
414		17	min	033	2	026	2	002	1	-1.223e-4	1	855.501	3	NC	1
415		18	max	.029	3	.046	3	.002	3	-9.371e-8	10	NC	4	NC	1
416		10			2		2		1	-6.253e-5		1677.693		NC	1
		40	min	033		063		001			1_		3		1
417		19	max	.029	3	.074	3	0	3	-3.417e-8	<u>15</u>	NC	3	NC NC	_
418	MO	1	min	033	2	103	2	001	1	-9.318e-7	3	1708.002	2	NC NC	1
419	<u>M9</u>	1	max	.01	3	.027	3	.003	3	1.383e-2	3_	NC	1	NC NC	1
420			min	01	2	023	2	003	1	-9.429e-3	2	NC	1_	NC NC	1
421		2	max	.01	3	.016	3	.001	3	6.804e-3	3	NC	4	NC NC	1
422			min	01	2	014	2	0	9	-4.628e-3	2	5120.472	2	NC	1
423		3	max	.01	3	.006	3	.002	1	1.798e-4	_1_	NC	4_	NC	1
424			min	01	2	005	2	0	3	-9.007e-5	3	2626.827	2	NC	1
425		4_	max	.01	3	.003	2	.003	1	1.367e-4	_1_	NC	_4_	NC	1
426			min	01	2	002	3	001	3	-9.217e-5	3	1835.471	2	NC	1
427		5	max	.01	3	.009	2	.003	1	9.361e-5	_1_	NC	_4_	NC	1
428			min	01	2	009	3	002	3	-9.427e-5	3	1445.796	3	9839.376	
429		6	max	.01	3	.015	2	.003	1	5.05e-5	_1_	NC	4_	NC	1
430			min	01	2	015	3	003	3	-9.637e-5	3	1232.392	3	8510.118	3
431		7	max	.01	3	.02	2	.002	1	2.201e-5	2	NC	4	NC	1
432			min	01	2	019	3	004	3	-9.847e-5	3	1101.404	2	7729.411	3
433		8	max	.009	3	.023	2	.001	2	6.375e-6	2	NC	4	NC	1
434			min	01	2	022	3	004	3	-1.006e-4	3	1018.744	2	7280.537	3
435		9	max	.009	3	.025	2	0	2	-7.932e-7	10	NC	4	NC	1
436			min	01	2	024	3	005	3	-1.027e-4	3	971.417	2	7064.615	3
437		10	max	.009	3	.026	2	0	10	-4.527e-6		NC	4	NC	1
438			min	01	2	024	3	005	3	-1.219e-4	1	952.299	2	7038.104	3
439		11	max	.009	3	.026	2	0	10	-8.254e-6	15	NC	4	NC	1
440			min	01	2	023	3	005	3	-1.65e-4	1	959.441	2	7190.841	3
441		12	max	.009	3	.024	2	0	15			NC	4	NC	1
442		12	min	01	2	021	3	005	1	-2.081e-4	1	995.379	2	7540.883	3
443		13	max	.009	3	.021	2	<u>.003</u>		-1.236e-5		NC	4	NC	2
444		10	min	01	2	018	3	006	1	-2.512e-4	1	1068.542	2	8141.24	3
445		14	max	.009	3	.016	2	<u>000</u> 0	15			NC	4	NC	2
445		14							-						
		1 =	min	01	2	<u>014</u>	3	007	1 1 5	-2.943e-4	1_	1198.241	2	7889.496	
447		15	max	.009	3	.01	2	0	15		<u>15</u>	NC	4	NC 7542 220	2
448		40	min	01	2	008	3	007	1	-3.374e-4	1_	1429.824	2	7513.236	
449		16	max	.009	3	.002	2	0		-1.801e-5		NC	4_	NC 7045,005	2
450			min	01	2	002	3	007	1	-3.702e-4	<u> 1</u>	1864.206	3	7915.095	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
451		17	max	.009	3	.006	3	0		1.074e-4	3	NC	4	NC	2
452			min	01	2	008	2	006		-1.567e-4	1_	2706.177	3	9642.487	1
453		18	max	.009	3	.015	3	0		3.648e-3	3	NC	2	NC	1
454		40	min	01	2	019	2	004		-7.001e-3	2	5307.77	3	NC NC	1
455		19	max	.009	3	.023	3	0		7.252e-3	3	NC 5733.322	1_	NC NC	1
456	M42	1	min	01	2	031 .027	2	001		-1.412e-2	2		2	NC NC	1
457	M13	1	max	.003	3		3	.01		3.982e-3 -3.477e-3	2	NC NC	1	NC NC	1
458 459		2	min	003 .003	1	023 .12	3	<u>01</u> .01		4.968e-3	3	NC NC	4	NC NC	2
460			max min	003	3	087	2	005		-4.357e-3	2	1347.235	3	8488.804	1
461		3	max	.003	1	067 .197	3	.029		5.954e-3	3	NC	5	NC	2
462		3	min	003	3	14	2	004		-5.238e-3	2	737.236	3	3734.267	1
463		4	max	.003	1	.248	3	.044	1	6.94e-3	3	NC	5	NC	3
464		_	min	003	3	175	2	003		-6.118e-3	2	569.555	3	2586.233	1
465		5	max	.003	1	.266	3	.05		7.926e-3	3	NC	5	NC	3
466			min	003	3	189	2	004		-6.998e-3	2	526.669	3	2300.171	1
467		6	max	.003	1	.252	3	.045		8.912e-3	3	NC	5	NC	2
468			min	003	3	181	2	007	10	-7.878e-3	2	558.988	3	2525.164	1
469		7	max	.003	1	.213	3	.03		9.898e-3	3	NC	5	NC	2
470			min	003	3	156	2	01		-8.758e-3	2	677.869	3	3596.525	1
471		8	max	.003	1	.159	3	.024		1.088e-2	3	NC	5	NC	2
472			min	003	3	122	2	019		-9.639e-3	2	951.05	3	8237.139	9
473		9	max	.003	1	.11	3	.027	3	1.187e-2	3	NC	4	NC	1
474			min	003	3	09	2	028		-1.052e-2	2	1522.428	3	6682.299	2
475		10	max	.003	1	.087	3	.03	3	1.286e-2	3	NC	4	NC	4
476			min	003	3	075	2	033	2	-1.14e-2	2	2102.47	3	5412.282	2
477		11	max	.003	1	.11	3	.033		1.187e-2	3	NC	4	NC	1
478			min	003	3	09	2	028		-1.052e-2	2	1522.426	3	5454.063	3
479		12	max	.003	1	.159	3	.034		1.089e-2	3	NC	5_	NC	2
480			min	003	3	122	2	019		-9.639e-3	2	951.049	3	5177.655	3
481		13	max	.003	1	.213	3	.034		9.904e-3	3	NC	5_	NC	2
482			min	003	3	1 <u>56</u>	2	01		-8.759e-3	2	677.868	3	3579.345	1
483		14	max	.003	1	.252	3	.045	1	8.92e-3	3_	NC	5_	NC 2500 074	2
484		4.5	min	003	3	181	2	007		-7.879e-3	2	558.987	3_	2522.671	1
485		15	max	.003	1	.266	3	.05		7.936e-3	3	NC FOC.CCO	5_	NC	5
486		4.0	min	003	3	189	2	004		-6.999e-3	2	526.668	3	2303.882	1
487		16	max	.003	3	.248	3	.044		6.952e-3	3	NC FGO FFF	5	NC 2507.064	5
488		17	min	003	1	175	3	003		-6.119e-3	2	569.555 NC	3	2597.064	1
489 490		17	max min	.003 003	3	<u>.198</u> 14	2	.029 004		5.968e-3 -5.239e-3	2	737.235	<u>5</u>	NC 3762.627	2
491		10	max	.003	1	.121	3	.013	3	4.984e-3		NC	4	NC	2
492		10	min	003	3	087	2	005		-4.359e-3	2	1347.234	3	8604.946	
493		19		.003	1	.027	3	.01	3	4.e-3	3	NC	1	NC	1
494		13	min	003	3	023	2	01		-3.479e-3	2	NC	1	NC	1
495	M16	1	max	.001	1	.023	3	.009		4.528e-3	2	NC	1	NC	1
496	IVIIO	•	min	0	3	031	2	01		-3.363e-3	3	NC	1	NC	1
497		2	max	.001	1	.073	3	.013		5.683e-3	2	NC	4	NC	2
498			min	0	3	127	2	005		-4.171e-3	3	1318.405	2	8492.395	
499		3	max	.001	1	.114	3	.029		6.837e-3	2	NC	5	NC	2
500			min	0	3	206	2	003		-4.979e-3	3	720.293	2	3735.225	
501		4	max	.001	1	.142	3	.044		7.992e-3	2	NC	5	NC	5
502			min	0	3	258	2	003		-5.787e-3	3	554.852	2	2586.706	1
503		5	max	.001	1	.153	3	.05		9.146e-3	2	NC	5	NC	5
504			min	0	3	278	2	004		-6.596e-3	3	510.625	2	2300.542	1
505		6	max	.001	1	.149	3	.045	1	1.03e-2	2	NC	5	NC	2
506			min	0	3	265	2	007		-7.404e-3	3	537.67	2	2525.678	
507		7	max	.001	1	.132	3	.031	3	1.146e-2	2	NC	5	NC	2

Model Name

: Schletter, Inc. : HCV

....

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
508			min	0	3	227	2	01	10	-8.212e-3	3	642.986	2	3598.037	
509		8	max	.001	1	.108	3	.031	3	1.261e-2	2	NC	5	NC	2
510			min	0	3	<u>174</u>	2	<u>019</u>	2	-9.02e-3	3	878.587	2	5749.648	3
511		9	max	.001	1	.085	3	.03	3	1.376e-2	2	NC	_4_	NC	1
512		40	min	0	3	125	2	028	2	-9.828e-3	3	1337.496	2	5986.39	3
513		10	max	.001	1	.074	3	.029	3	1.492e-2	2	NC	4_	NC	4
514		.	min	0	3	103	2	033	2	-1.064e-2	3	1761.059	2	5458.373	2
515		11	max	.001	1	.085	3	.027	3	1.376e-2	2	NC	4_	NC	1
516		40	min	0	3	125	2	028	2	-9.826e-3	3	1337.496	2	6750.477	2
517		12	max	.001	1	.108	3	.026	3	1.261e-2	2	NC 070.507	5_	NC 7500 044	2
518		40	min	0	3	174	2	019	2	-9.016e-3	3	878.587	2	7500.344	
519		13	max	.001	1	.132	3	.03	1	1.146e-2	2	NC C40.000	5	NC 2500 470	2
520		4.4	min	0	3	227	2	01	10	-8.206e-3	3	642.986	2	3592.176	
521		14	max	.002	1	.149	3	.045	1	1.03e-2	2	NC 507.07	_5_	NC occordance	2
522		4.5	min	0	3	265	2	007	10	-7.396e-3	3	537.67	2	2529.289	1
523		15	max	.002	1	.153	3	.05	1	9.148e-3	2	NC 540,005	5_	NC	3
524		40	min	0	3	278	2	004	10	-6.586e-3	3	510.625	2	2309.224	1
525		16	max	.002	1	.141	3	.044	1	7.994e-3	2	NC FF4.050	5_	NC	3
526		47	min	0	3	258	2	003	10	-5.776e-3	3	554.852	2	2603.088	
527		17	max	.002	1	.114	3	.029	1	6.84e-3	2	NC 700,000	5	NC	2
528		40	min	0	3	206	2	003	10	-4.966e-3	3	720.293	2	3772.435	
529		18	max	.002	3	.072	3	.011	3	5.685e-3	2	NC	4	NC 0C24 207	2
530		40	min	0		127	2	005	10	-4.156e-3	3	1318.405	2	8634.397	1
531		19	max	.002	1	.023	3	.009	3	4.531e-3	2	NC	1_	NC NC	1
532	NAA C	1	min	0	3	031	2	<u>01</u>	2	-3.346e-3	3	NC NC	1_	NC NC	1
533	M15		max	0	1	0	1	0	1	4.197e-4	3		1		
534		2	min	0	3	0	15	0	1	-6.106e-5	2	NC NC	1_	NC NC	1
535			max	0	2	002	4	.001	3	8.959e-4	3	NC NC	1	NC NC	1
536		3	min	0		007		0	1	-5.314e-4 1.372e-3	2	NC NC	_	NC NC	1
537 538		3	max	0	3	003 013	15 4	.003 004	3	-1.002e-3	2	5853.948	<u>3</u> 4	9634.994	
539		4	min		3	013 004	15	.007	2	1.848e-3	3	NC	5	NC	4
540		4	max	0	2	004 019	4	00 <i>1</i>	3	-1.472e-3	2	4016.15	4	5364.485	
541		5		0	3	019 006	15	.011	2	2.325e-3	3	NC	15	NC	4
542)	max	0	2	024	4	013	3	-1.942e-3	2	3133.843	4	3541.991	3
543		6	min max	0	3	024 007	15	.016	2	2.801e-3	3	NC	15	NC	4
544		0	min	001	2	029	4	019	3	-2.413e-3	2	2637.46	4	2589.723	
545		7	max	0	3	008	15	.021	2	3.277e-3	3	9950.234	15	NC	4
546			min	001	2	033	4	025	3	-2.883e-3	2	2338.951	4	2030.621	3
547		8	max	0	3	008	15	.025	2	3.753e-3	3	9188.103	15	NC	4
548			min	_	2	036	4	031		-3 3536-3	2	2159.801	4	1678.166	
549		9	max	0	3	009	15	.029	2	4.229e-3	3	8777.88	15	NC	4
550		 	min	002	2	037	4	036	3	-3.824e-3	2	2063.372	4	1447.112	_
551		10	max	0	3	009	15	.033	2	4.706e-3	3	8648.105	15	NC	4
552		10	min	002	2	038	4	04	3	-4.294e-3	2	2032.866	4	1294.506	
553		11	max	.001	3	009	15	.035	2	5.182e-3	3	8777.88	15	NC	5
554			min	002	2	037	4	043	3	-4.764e-3	2	2063.372	4	1197.769	
555		12	max	.001	3	008	15	.035	2	5.658e-3	3	9188.103	15	NC	5
556		12	min	002	2	036	4	043	3	-5.235e-3	2	2159.801	4	1145.729	
557		13	max	.002	3	008	15	.033	2	6.134e-3	3	9950.234	15	NC	5
558		10	min	003	2	033	4	042	3	-5.705e-3	2	2338.951	4	1135.248	
559		14	max	.003	3	007	15	.029	2	6.611e-3	3	NC	15	NC	4
560		17	min	003	2	029	4	038	3	-6.175e-3	2	2637.46	4	1171.418	
561		15	max	.003	3	006	15	.024	1	7.087e-3	3	NC	15	NC	4
562		10	min	003	2	025	4	031	3	-6.646e-3	2	3133.843	4	1272.564	
563		16	max	.002	3	025 005	15	.017	1	7.563e-3	3	NC	5	NC	4
564		1.0	min	003	2	02	4	02	3	-7.116e-3	2	4016.15	4	1488.279	
JU -1			11/011	.000		.02	7	.02	J	7.1106-3		TO 10.13		1700.213	

Company Designer Job Number Model Name : Schletter, Inc. : HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
565		17	max	.002	3	003	2	.006	1	8.039e-3	3	NC	3	NC	4
566			min	003	2	014	4	005	3	-7.586e-3	2	5853.948	4	1974.028	3
567		18	max	.002	3	.003	2	.014	3	8.515e-3	3	NC	1_	NC	4
568			min	004	2	008	4	016	2	-8.057e-3	2	NC	1	3516.122	3
569		19	max	.002	3	.008	2	.037	3	8.992e-3	3	NC	1	NC	1
570			min	004	2	002	9	036	2	-8.527e-3	2	NC	1	NC	1
571	M16A	1	max	0	10	.002	2	.011	3	2.574e-3	3	NC	1	NC	1
572			min	002	3	002	3	011	2	-2.478e-3	2	NC	1_	NC	1
573		2	max	0	10	002	15	.003	3	2.476e-3	3	NC	1_	NC	1
574			min	002	3	007	4	004	2	-2.369e-3	2	NC	1	9977.315	3
575		3	max	0	10	003	15	.006	1	2.379e-3	3	NC	3	NC	4
576			min	002	3	014	4	003	3	-2.26e-3	2	5853.948	4	5654.56	3
577		4	max	0	10	005	15	.01	1	2.281e-3	3	NC	5	NC	4
578			min	002	3	019	4	008	3	-2.151e-3	2	4016.15	4	4308.888	3
579		5	max	0	10	006	15	.012	1	2.184e-3	3	NC	15	NC	4
580			min	001	3	025	4	012	3	-2.042e-3	2	3133.843	4	3729.496	3
581		6	max	0	10	007	15	.014	1	2.086e-3	3	NC	15	NC	4
582			min	001	3	029	4	014	3	-1.933e-3	2	2637.46	4	3481.572	3
583		7	max	0	10	008	15	.015	1	1.988e-3	3	9950.234	15	NC	4
584			min	001	3	033	4	015	3	-1.824e-3	2	2338.951	4	3429.646	3
585		8	max	0	10	008	15	.015	1	1.891e-3	3	9188.103	15	NC	4
586			min	001	3	036	4	015	3	-1.715e-3	2	2159.801	4	3528.655	3
587		9	max	0	10	009	15	.014	1	1.793e-3	3	8777.88	15	NC	4
588			min	001	3	037	4	014	3	-1.606e-3	2	2063.372	4	3775.034	3
589		10	max	0	10	009	15	.013	1	1.696e-3	3	8648.105	15	NC	4
590			min	0	3	038	4	012	3	-1.496e-3	2	2032.866	4	4196.335	3
591		11	max	0	10	009	15	.011	1	1.598e-3	3	8777.88	15	NC	4
592			min	0	3	037	4	011	3	-1.387e-3	2	2063.372	4	4858.519	3
593		12	max	0	10	008	15	.009	1	1.501e-3	3	9188.103	15	NC	4
594			min	0	3	035	4	008	3	-1.278e-3	2	2159.801	4	5893.581	3
595		13	max	0	10	008	15	.007	1	1.403e-3	3	9950.234	<u>15</u>	NC	2
596			min	0	3	033	4	006	3	-1.169e-3	2	2338.951	4	7571.468	3
597		14	max	0	10	007	15	.005	1	1.306e-3	3	NC	15	NC	1
598			min	0	3	029	4	004	3	-1.06e-3	2	2637.46	4	NC	1
599		15	max	0	10	006	15	.003	1	1.208e-3	3	NC	<u>15</u>	NC	1_
600			min	0	3	024	4	002	3	-9.511e-4	2	3133.843	4	NC	1_
601		16	max	0	10	004	15	.002	9	1.11e-3	3	NC	5	NC	1_
602			min	0	3	019	4	0	3	-8.42e-4	2	4016.15	4	NC	1
603		17	max	0	10	003	15	0	4	1.013e-3	3	NC	3	NC	1
604			min	0	3	013	4	0	2	-7.33e-4	2	5853.948	4	NC	1
605		18	max	0	10	002	15	0	3	9.153e-4	3	NC	1_	NC	1_
606			min	0	3	007	4	0	2	-6.239e-4	2	NC	1_	NC	1
607		19	max	0	1	0	1	0	1	8.178e-4	3	NC	1_	NC	1
608			min	0	1	0	1	0	1	-5.148e-4	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

<Figure 1>

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	405.0	6.0	101.0	101.2	
Sum	405.0	6.0	101.0	101.2	_

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 405

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{vy} (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N _b (lb)			
17.0	1.00	2500	5.333	10469			
$\phi N_{cb} = \phi (A_N)$	$_{Nc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,n}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
253.92	256.00	0.995	1.00	1.000	10469	0.65	6717

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 K_{sat}

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

f_{short-term}

 $\tau_{k,cr}$ (psi)

1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a))		
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	<i>N</i> _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

 $\tau_{k,cr}$ (psi)

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

le (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)	
4.00	0.50	1.00	2500	8.00	8488	
$\phi V_{cby} = \phi (A_V$	$_{/c}/A_{Vco})\Psi_{ed,V}\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)		
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ
238.44	288.00	0.897	1.000	1.000	8488	0.70

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

I _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	$_{Vc}$ / A_{Vco}) $\Psi_{ed,V}$ $\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
188.88	278.72	0.903	1.000	1.000	8282	0.70	3549

Shear parallel to edge in x-direction:

I _e (in)	da (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.00	8488		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) Yed, v	$\mathcal{V}_{c,V} \mathcal{V}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
238.44	288.00	1.000	1.000	1.000	8488	0.70	9838

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

- 2/ - (-0	,	(-4 /						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)(2)$	$A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{bx} (lb)	ϕ	ϕV_{cby} (lb)	
188.88	278.72	1.000	1.000	1.000	8282	0.70	7858	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\mathit{CP}} = \phi \min |k_{\mathit{CP}} N_{\mathit{a}} \; ; \; k_{\mathit{CP}} N_{\mathit{Cb}}| = \phi \min |k_{\mathit{CP}} (A_{\mathit{Na}} / A_{\mathit{NaO}}) \, \Psi_{\mathit{ed},\mathit{Na}} \, \Psi_{\mathit{P},\mathit{Na}} N_{\mathit{aO}} \; ; \; k_{\mathit{CP}} (A_{\mathit{Nc}} / A_{\mathit{NcO}}) \, \Psi_{\mathit{ed},\mathit{N}} \, \Psi_{\mathit{CP},\mathit{N}} N_{\mathit{b}}| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A _{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{ m extsf{p},Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
A _{Nc} (in ²)	A _{Nco} (in²)	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	N _{cb} (lb)	ϕ	ϕV_{cp} (lb)
253.92	256.00	0.995	1.000	1.000	10469	10334	0.70	13657

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	405	6071	0.07	Pass
Concrete breakout	405	6717	0.06	Pass
Adhesive	405	5365	0.08	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	101	3156	0.03	Pass (Governs)
T Concrete breakout y+	101	4411	0.02	Pass
T Concrete breakout x+	6	3549	0.00	Pass
Concrete breakout y+	6	9838	0.00	Pass
Concrete breakout x+	101	7858	0.01	Pass
Concrete breakout, combined	-	-	0.02	Pass
Pryout	101	13657	0.01	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rati	o Permissible	Status
Sec. D.7.1 0.0	8 0.00	7.5 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Fastening description:

Base Material

State: Cracked

 $\Psi_{c,V}$: 1.0

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

Compressive strength, f'c (psi): 2500

Reinforcement provided at corners: No

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable

Do not evaluate concrete breakout in tension: No

Do not evaluate concrete breakout in shear: No

Location:

Project description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Hole condition: Dry concrete Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 9.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	732.5	499.5	0.0	499.5	
2	732.5	499.5	0.0	499.5	
Sum	1465.0	999.0	0.0	999.0	

Maximum concrete compression strain (%): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 1465 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00

Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}} \text{ (Eq. D-7)}$

Kc	λ	ř _c (psi)	n _{ef} (in)	N_b (ID)
17.0	1.00	2500	5.333	10469
$\phi N_{cbg} = \phi (A_{Nc}/A_{Nco}) \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_b$ (Sec. D.4.1 & Eq. D-5)				

A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
314.72	256.00	1.000	0.865	1.00	1.000	10469	0.65	7233

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / $A_{Na0})$ $\Psi_{ed,Na}$ Ψ_{g}	,Na $\Psi_{ec,Na}\Psi_{p,Na}N$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$arPsi_{ m extsf{p},Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
177.03	109.66	0.952	1.021	1.000	1.000	9755	0.55	8418

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/a$	$(a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}C_{a1}^{1.5}$	⁵ (Eq. D-24)					
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	12.00	15593		
$\phi V_{cbx} = \phi (A_1)$	$_{/c}$ / A $_{Vco}$) $\Psi_{ed,V}$ $\Psi_{c,}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
288.00	648.00	0.833	1.000	1.000	15593	0.70	4043

Shear parallel to edge in x-direction:

•	-							
$V_{by} = 7(I_e/a$	$(J_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.2}$	⁵ (Eq. D-24)						
I _e (in)	d _a (in)	λ	f_c' (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	8.00	8488			
$\phi V_{cbgx} = \phi (2$	$2)(A_{Vc}/A_{Vco})\Psi_{ec}$	v $\Psi_{ed, V} \Psi_{c, V} \Psi_{h, V}$	V _{by} (Sec. D.4.1, [D.6.2.1(c) & Eq.	D-22)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{ed,V}$	$\Psi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbgx} (lb)
284.04	288.00	1.000	1.000	1.000	1.000	8488	0.70	11720

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{\textit{cpg}} = \phi \min k_{\textit{cp}} N_{\textit{ag}} \; ; \; k_{\textit{cp}} N_{\textit{cbg}} = \phi \min k_{\textit{cp}} (A_{\textit{Na}} / A_{\textit{Na0}}) \; \Psi_{\textit{ed},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; N_{\textit{a0}} \; ; \; k_{\textit{cp}} (A_{\textit{Nc}} / A_{\textit{Nco}}) \; \Psi_{\textit{ed},\textit{N}} \; \Psi_{\textit{cp},\textit{N}} N_{\textit{b}} \; (\text{Eq. D-30b})$								
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	177.03	109.66	0.952	1.021	1.000	1.000	9755	15305
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
314.72	256.00	1.000	0.865	1.000	1.000	10469	11128	0.70

φV_{cpg} (lb) 15580

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	733	6071	0.12	Pass
Concrete breakout	1465	7233	0.20	Pass (Governs)
Adhesive	1465	8418	0.17	Pass
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	500	3156	0.16	Pass
T Concrete breakout x+	999	4043	0.25	Pass (Governs)
Concrete breakout y-	999	11720	0.09	Pass (Governs)
Pryout	999	15580	0.06	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

Sec. D.7.3 0.20 0.25 45.0 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.