Unit 04 Review (Forces & Newton's Laws)

 $F_{NET} = ma$ $F_{NET} = \pm F_1 \pm F_2 \pm \cdots$ $F_G = mg$ $g = 9.8 \,\mathrm{m/s^2}$

1. A penguin by the name of Pickles (m=23 kg) is standing on a scale in an elevator on the top floor of a building. The elevator begins to go down towards the ground floor and does so by accelerating downward at 2.7 m/s^2 . What is the normal force?

2. A new sports car (m = 980 kg) is capable of applying a force of 5500 N with its engine. If the force of friction on the car is 500 N, what is the car's acceleration (assume no air resistance)?

3. You are pushing a large tub of chocolate, which has a mass of 455 kg, with an acceleration of 0.4 m/s^2 . The force of friction is 88 N. What is the force with which you are pushing the tub?

4. A fish (m = 9.1 kg) is pulled straight up out of the water by a fisherman. What is the acceleration of the fish if the force applied by the fisherman is 120 N?

Answers: (1) 163.3 N; (2) 5.10 m/s²; (3) 270 N; (4) 3.39 m/s²

Na:	Name:	Number:	Date:
5.	5. Definitions:		
	(a) mechanical equilibrium		
	(b) inertia		
	(c) weight		
	(d) mass		
	(e) F_G		
	(f) <i>g</i>		
6.	6. List each of Newton's Laws		
7.	7. If Newton's third law is correct, then the two have a head on collision. Why		
8.	8. Explain which of Newton's 3 laws best (a) You are drinking a cup of coffee w		am on the brakes, your coffee spills out
	(b) If you are standing in a boat, and	d step out onto the dock, t	he boat moves away from you.
	(c) As you add more items to a groce	erv cart, you notice its acc	eleration decreases.

(d) You are wearing roller blades and stand facing a brick wall. You push forward, against the wall,

but end up traveling backwards. Why?