

Aeronautical Engineering A Continuing Bibliography with Indexes

(NASA-SP-7037 (227)) AERCNAUTICAL ENGINEERING: A CONTINUING BIBLIOGRAPHY WITH INDEXES (SUPPLEMENT 227)

N88-24578

CSCL 01B

Unclas 0148177

00/01

National Aeronautics and Space Administration

Aeronautical Engineering Aeron Aeronautical Enginee ng Aeronautica gineering Aero

ACCESSION NUMBER RANGES

Accession numbers cited in this Supplement fall within the following ranges.

STAR (N-10000 Series) N88-16624 - N88-18548

IAA (A-10000 Series) A88-24827 — A88-28711

This bibliography was prepared by the NASA Scientific and Technical Information Facility operated for the National Aeronautics and Space Administration by RMS Associates.

AERONAUTICAL ENGINEERING

A CONTINUING BIBLIOGRAPHY WITH INDEXES

(Supplement 227)

A selection of annotated references to unclassified reports and journal articles that were introduced into the NASA scientific and technical information system and announced in May 1988 in

- Scientific and Technical Aerospace Reports (STAR)
- · International Aerospace Abstracts (IAA).

INTRODUCTION

This issue of *Aeronautical Engineering -- A Continuing Bibliography* (NASA SP-7037) lists 418 reports, journal articles and other documents originally announced in May 1988 in *Scientific and Technical Aerospace Reports (STAR)* or in *International Aerospace Abstracts (IAA)*.

The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

Each entry in the bibliography consists of a standard bibliographic citation accompanied in most cases by an abstract. The listing of the entries is arranged by the first nine *STAR* specific categories and the remaining *STAR* major categories. This arrangement offers the user the most advantageous breakdown for individual objectives. The citations include the original accession numbers from the respective announcement journals. The *IAA* items will precede the *STAR* items within each category

Seven indexes -- subject, personal author, corporate source, foreign technology, contract number, report number, and accession number -- are included.

An annual cummulative index will be published.

Information on the availability of cited publications including addresses of organizations and NTIS price schedules is located at the back of this bibliography.

TABLE OF CONTENTS

		Page
Category 01 Aeronautics (General)	269
Category 02 Aerodynamics Includes aerodynamics o and internal flow in duct	of bodies, combinations, wings, rotors, and control surfaces;	270
	ation and Safety cargo air transport operations; and aircraft accidents.	282
	nunications and Navigation e communication with aircraft; air navigation systems (satel- and air traffic control.	285
Category 05 Aircraft Desig Includes aircraft simulati	in, Testing and Performance ion technology.	286
Category 06 Aircraft Instru Includes cockpit and cat	mentation bin display devices; and flight instruments.	294
	ulsion and Power on systems components, e.g., gas turbine rs; and onboard auxiliary power plants for aircraft.	296
— •	lity and Control g qualities; piloting; flight controls; and autopilots.	304
Includes airports, hangai	Support Facilities (Air) rs and runways; aircraft repair and overhaul facilities; wind ad aircraft engine test stands.	309
facilities (space); launch communications, spaced	general); astrodynamics; ground support systems and vehicles and space vehicles; space transportation; space craft communications, command and tracking; spacecraft ormance; spacecraft instrumentation; and spacecraft pro-	311
	materials (general); composite materials; inorganic and allic materials; nonmetallic materials; propellants and fuels;	311

Category 12 Engineering Includes engineering (general); communications and radar; electronics and electrical engineering; fluid mechanics and heat transfer; instrumentation and photography; lasers and masers; mechanical engineering; quality assurance and relia-		
bility; and structural mechanics.	323	
Category 13 Geosciences Includes geosciences (general); earth resources and remote sensing; energy production and conversion; environment pollution; geophysics; meteorology and climatology; and oceanography.		
Category 14 Life Sciences Includes life sciences (general); aerospace medicine; behavioral sciences; man/system technology and life support; and space biology.		
Category 15 Mathematical and Computer Sciences Includes mathematical and computer sciences (general); computer operations and hardware; computer programming and software; computer systems; cybernetics; numerical analysis; statistics and probability; systems analysis; and theoretical mathematics.		
Category 16 Physics Includes physics (general); acoustics; atomic and molecular physics; nuclear and high-energy physics; optics; plasma physics; solid-state physics; and thermodynamics and statistical physics.		
Category 17 Social Sciences Includes social sciences (general); administration and management; documentation and information science; economics and cost analysis; law, political science, and space policy; and urban technology and transportation.	330	
Category 18 Space Sciences Includes space sciences (general); astronomy; astrophysics; lunar and planetary exploration; solar physics; and space radiation.	N.A.	
Category 19 General	N.A.	
Subject Index Personal Author Index		
Corporate Source Index		
Report Number Index	F-1	
Accession Number Index	G-1	

TYPICAL REPORT CITATION AND ABSTRACT

TYPICAL JOURNAL ARTICLE CITATION AND ABSTRACT

ACCESSION NUMBER — A88-10095#

TITLE — SYNTHESES OF REDUCED-ORDER CONTROLLERS FOR

ACTIVE FLUTTER SUPPRESSION

ATSUSHI FUJIMORI and HIROBUMI OHTA Japan Society for — JOURNAL TITLE

Aeronautical and Space Sciences, Journal (ISSN 0021-4663), vol.

35, no. 402, 1987, p. 353-362. In Japanese, with abstract in English. refs

ON MICROFICHE

Reduced-order controllers for active flutter suppression of a two-dimensional airfoil are studied using two design approaches. One is based on the generalized Hessenberg representation (GHR) in the time domain, and the other, called the Nyquist frequency approximation (NFA), is a method in the frequency domain. In the NFA method, the reduced-order controllers are designed so that the stability margin of the Nyquist plot may be increased over a specific frequency range. To illustrate and to make a comparison between the two methods, numerical simulations are carried out using a thirteenth-order controlled plant. It is to be noted that the GHR method can yield quasi-optimal controllers in the sense of minimizing quadratic performance indices. The designed controllers, however, do not have enough stability margin, and the order reduction resulting from full state controllers may not be satisfactory. On the other hand, reduced-order controllers in the NFA method can be designed with increased stability margin at the expense of the performance index. For all simulation cases, the NFA method yields second-order controllers with a better stability margin than those by the GHR method. Thus, the NFA method provides an effective method for synthesizing robust reduced-order controllers.

AERONAUTICAL ENGINEERING

A Continuing Bibliography (Suppl. 227)

JUNE 1988

01

AERONAUTICS (GENERAL)

A88-26175* National Aeronautics and Space Administration. Ames Research Center, Moffett Field, Calif.

EUROPEAN/U.S. COOPERATIVE FLIGHT TESTING - SOME FOOD FOR THOUGHT

RONALD M. GERDES (NASA, Ames Research Center, Moffett Field, CA) Cockpit (ISSN 0742-1508), July-Sept. 1987, p. 4-9.

Increasing numbers of flight test teams are participating in cooperative European/U.S. flight test programs due to the growth in international aircraft R&D. Preparing for and participating in these overseas assignments can be complicated by such factors as language barriers, unfamiliar flight test procedures, lack of adequate flight experience and unexpected weather trends. A visiting test pilot's checklist is presented which outlines the tasks of the various phases (i.e., concept, planning, preparation, execution, analysis, and data presentation).

A88-26646#

KEEPING A SHARP TECHNOLOGY EDGE

JAY C. LOWNDES Aerospace America (ISSN 0740-722X), vol. 26, Feb. 1988, p. 24-28.

The erosion of the U.S. share of the world aircraft maket may be taken as evidence of a narrowing of technical preeminence. Attention is presently given to NASA, Federal Government and industry efforts to validate advanced technologies for expeditious commercial application. These technologies encompass advanced structural materials, advanced propulsion system thermodynamic cycles and configurations, and efforts to reduce boundary layer drag in both subsonic airliners and post-Concorde SSTs. Attention is given to the economic support required for suitable R&D. O.C.

N88-16624# Air Force Inst. of Tech., Wright-Patterson AFB, Ohio. School of Systems and Logistics.

A MODEL FOR ESTIMATING DEPOT MAINTENANCE COSTS FOR AIR FORCE FIGHTER AND ATTACK AIRCRAFT M.S. Thesis

MICHAEL P. WAKER Sep. 1987 84 p (AD-A187097; AFIT/GSM/LSQ/87S-36) Avail: NTIS HC A05/MF A01 CSCL 05C

The model developed in this study has two cost estimating relationships (CERs) for estimating depot maintenance costs in its two categories: depot maintenance cost per Primary Authorized Aircraft (PAA); and, depot maintenance cost per flying hour. The data source used for depot maintenance costs is the Weapon Systems Cost Retrieval System (WSCRS) as developed by HQ AFLC. The CERs developed used empty weight of fighter and attack aircraft to predict the cost of depot maintenance per PAA. For depot maintenance cost per flying hour, the variables used were combat radius, thrust-to-weight ratio, and empty weight. The study found that the F-111 was a significant outlier with respect to the data set, but even when included in the data base the F-111 enhanced the values of the statistics for the model and improved the ability of the model to predict. The relationship found

for depot maintenance cost per PAA in the CER developed, was not as strong a predictor as was the CER developed for depot maintenance cost per flying hour. This conclusion agrees with previous studies that have tried to determine significant relationships between depot maintenance costs and those costs attributed to the number of PAA.

N88-16625*# National Aeronautics and Space Administration, Washington, D.C.

NASA/ARMY ROTORCRAFT TECHNOLOGY. VOLUME 1: AERODYNAMICS, AND DYNAMICS AND AEROELASTICITY
Feb. 1988 537 p Conference held at Moffett Field, Calif., 17-19 Mar. 1987

(NASA-CP-2495-VOL-1; NAS 1.55:2495-VOL-1) Avail: NTIS HC A23/MF A01 CSCL 01B

The Conference Proceedings is a compilation of over 30 technical papers presented at this milestone event which reported on the advances in rotorcraft technical knowledge resulting from NASA, Army, and industry rotorcraft research programs over the last 5 to 10 years. The Conference brought together over 230 government, industry, and allied nation conferees to exchange technical information and hear invited technical papers by prominent NASA, Army, and industry researchers covering technology topics which included: aerodynamics, dynamics and elasticity, propulsion and drive systems, flight dynamics and control, acoustics, systems integration, and research aircraft.

N88-16626*# Army Aerostructures Directorate, Hampton, Va. ACCOMPLISHMENTS AT NASA LANGLEY RESEARCH CENTER IN ROTORCRAFT AERODYNAMICS TECHNOLOGY

JOHN C. WILSON $\it In$ NASA, Washington, NASA/Army Rotorcraft Technoloology. Volume 1: Aerodynamics, and Dynamics and Aeroelasticity p 7-33 Feb. 1988

Avail: NTIS HC A23/MF A01 CSCL 01B

In recent years, the development of aerodynamic technology for rotorcraft has continued successfully at NASA LaRC. Though the NASA Langley Research Center is not the lead NASA center in this area, the activity was continued due to facilities and individual capabilities which are recognized as contributing to helicopter research needs of industry and government. Noteworthy accomplishments which contribute to advancing the state of rotorcraft technology in the areas of rotor design, airfoil research, rotor aerodynamics, and rotor/fuselage interaction aerodynamics are described. Rotor designs were defined for current helicopters and evaluated in wind tunnel testing. These designs have incorporated advanced airfoils defined analytically and also proven in wind tunnel tests. A laser velocimetry system has become a productive tool for experimental definition of rotor inflow/wake and is providing data for rotorcraft aerodynamic code validation.

Author

N88-16632*# National Aeronautics and Space Administration, Washington, D.C.

NASA/ĀRMY ROTORCRAFT TECHNOLOGY. VOLUME 2: MATERIALS AND STRUCTURES, PROPULSION AND DRIVE SYSTEMS, FLIGHT DYNAMICS AND CONTROL, AND ACOUSTICS

Feb. 1988 587 p Conference held at Moffett Field, Calif., 17-19 Mar. 1987

(NASA-CP-2495-VOL-2; NAS 1.55:2495-VOL-2) Avail: NTIS HC A25/MF A01 CSCL 01B

The Conference Proceedings is a compilation of over 30 technical papers presented which report on the advances in rotorcraft technical knowledge resulting from NASA, Army, and industry research programs over the last 5 to 10 years. Topics addressed in this volume include: materials and structures; propulsion and drive systems; flight dynamics and control; and acoustics.

N88-16650*# National Aeronautics and Space Administration, Washington, D.C.

NASA/ĀRMY ROTORCRAFT TECHNOLOGY. VOLUME 3: SYSTEMS INTEGRATION, RESEARCH AIRCRAFT, AND INDUSTRY

Feb. 1988 387 p Conference held at Moffett Field, Calif., 17-19 Mar. 1987

(NASA-CP-2495-VOL-3; NAS 1.55:2495-VOL-3) Avail: NTIS HC A17/MF A01 CSCL 01B

This is part 3 of the conference proceedings on rotorcraft technology. This volume is divided into areas on systems integration, research aircraft, and industry. Representative titles from each area are: system analysis in rotorcraft design, the past decade; rotorcraft flight research with emphasis on rotor systems; and an overview of key technology thrusts at Bell Helicopter Textron.

N88-17847# Messerschmitt-Boelkow-Blohm G.m.b.H., Hamburg (West Germany). Unternehmensgruppe Transport- und Verkehrsflugzeuge.

AIRBUS, THE SUCCESSFUL EUROPEAN COOPERATION [AIRBUS - DIE ERFOLGREICHE EUROPAEISCHE KOOPERATION]

HARTMUT MEHDORN *In its* Research and Development. Technical-Scientific Publications (1956-1987): Retrospective View and Prospects. Jubilee Edition on the Occasion of the 75th Anniversary of Dipl.-Engr. Dr.-Engr. E.H. Ludwig Boelkow p 179-182 1987 In GERMAN

(MBB-UT-005/87) Avail: NTIS HC A14/MF A01

The history of the European Airbus project is depicted. The structure, organization, responsibilities, and goals of Airbus Industry are explained.

N88-17849# Messerschmitt-Boelkow-Blohm G.m.b.H., Hamburg (West Germany). Unternehmensgruppe Transport- und Verkehrsflugzeuge.

PRODUCT PLANNING IN CIVIL AIRCRAFT CONSTRUCTION [PRODUKTPLANUNG IM ZIVILEN FLUGZEUGBAU]

WERNER ZABKA In its Research and Development. Technical-Scientific Publications (1956-1987): Retrospective View and Prospects. Jubilee Edition on the Occasion of the 75th Anniversary of Dipl.-Engr. Dr.-Engr. E.H. Ludwig Boelkow p 187-196 1987 In GERMAN

(MBB-UT-002/87; VDI-619) Avail: NTIS HC A14/MF A01

Planning in the production of civil passenger aircraft is described. The general economic boundary conditions are given. The procurement of a new aircraft is discussed from the point of view of an airline company. The risks involved in the development of a new passenger aircraft are presented on the basis of the essential planning parameters and their mutual dependencies. The influence of the development domain on the efficiency of an aircraft program, and the use of value analysis are explained.

02

AERODYNAMICS

Includes aerodynamics of bodies, combinations, wings, rotors, and control surfaces; and internal flow in ducts and turbomachinery.

A88-25300#

OBLIQUE SHOCK/LAMINAR BOUNDARY LAYER INTERACTIONS IN HYPERSONIC FLOW

G. R. INGER and A. A. RANGWALLA (lowa State University of Science and Technology, Ames) AIAA, Aerospace Sciences Meeting, 26th, Reno, NV, Jan. 11-14, 1988. 49 p. refs (AIAA PAPER 88-0603)

This paper analyzes the weakly-hypersonic interaction of an oblique shock with an adiabatic laminar boundary layer (in 2-D) by means of a non-asymptotic triple deck approach which is essentially an extension of Lighthill's work for supersonic flow to include second order effects. The disturbance flow field is obtained analytically for a range of free stream Mach numbers and Reynolds numbers. In particular, the first and second order wall pressure and skin friction perturbations are obtained and their far upstream and downstream asymptotic behavior are deduced as a function of Mach number and Reynolds number. The relative importance of the hypersonic effects to those of the supersonic are then obtained as a function of both Mach number and Reynolds number. Also, the upstream influence distance is obtained and the onset of separation is predicted.

A88-25561

CALCULATION OF NONPOTENTIAL FLOWS OF AN IDEAL GAS IN AXISYMMETRIC NOZZLES BY THE APPROXIMATE FACTORIZATION METHOD [RASCHET NEPOTENTSIAL'NYKH TECHENII IDEAL'NOGO GAZA V OSESIMMETRICHNYKH SOPLAKH METODOM PRIBLIZHENNOI FAKTORIZATSII]

V. G. BUTOV and S. B. KHALIMOV Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki (ISSN 0044-4669), vol. 27, Dec. 1987, p. 1861-1867. In Russian. refs

The approximate factorization method is applied to the analysis of mixed stationary subsonic nonpotential flows of an ideal gas in axisymmetric nozzles. The system of equations is written in solution-referenced orthogonal coordinates and converted (by increasing its order) to a form convenient for approximate factorization. The efficiency of the approach is demonstrated for flows in nozzles of complex geometry, flow of a given vorticity at the inlet of a nozzle, and a nonadiabatic flow.

A88-25617

COMPARISON OF THE AERODYNAMIC CHARACTERISTICS OF ANNULAR AND ELLIPTIC WINGS [SRAVNENIE AERODINAMICHESKIKH KHARAKTERISTIK KOL'TSEVYKH I ELLIPTICHESKIKH KRYL'EV]

M. D. ZHURAVLEV and S. A. MATVEENKO Aviatsionnaia Tekhnika (ISSN 0579-2975), no. 4, 1987, p. 29-31. In Russian. refs

Results of experimental studies of annular and elliptic wings of varying sweep are reported for low subsonic flow velocities. The experimental data cover several different configurations based on wings of these types. The advantages of sweptforward wings and of the canard configuration are demonstrated.

V.L.

A88-25632

THREE-DIMENSIONAL PROBLEM OF THE CONSTRAINED TORSION OF A THIN-WALLED ROD OF THE TRAPEZOIDAL WING TYPE [PROSTRANSTVENNAIA ZADACHA STESNENNOGO KRUCHENIIA TONKOSTENNOGO STERZHNIA TIPA TRAPETSEIDAL'NOGO KRYLA]

V. I. KOROL'KOV Aviatsionnaia Tekhnika (ISSN 0579-2975), no. 4, 1987, p. 79-82. In Russian. refs

An analytical solution is presented for the three-dimensional problem of the constrained bending of a weakly conical hollow rod, with one end of the rod fixed and a torque applied to its

other end. The results obtained confirm the conclusion of Grossman (1947) that the constraint and conicity give rise to normal stresses of opposite signs. The accuracy of the solution obtained here is verified experimentally by the photoelasticity method using models of an epoxy-based photosensitive material.

A88-25633

CALCULATION OF A WING WITH ALLOWANCE FOR FUSELAGE ELASTICITY [RASCHET KRYLA S UCHETOM UPRUGOSTI FIUZELIAZHA]

V. V. KUZ'MIN and V. I. FIGUROVSKII Aviatsionnaia Tekhnika (ISSN 0579-2975), no. 4, 1987, p. 82-85. In Russian.

A model allowing for fuselage elasticity is proposed for wing calculations by the finite element method in displacements. In the analysis presented here, a cylindrical fuselage is considered, with the wing located at an arbitrary height; variable frame spacing and stiffness and an arbitrary number of frame elements are permitted. It is shown that, for the wing design scheme considered here, displacements increase substantially when fuselage elasticity is taken into account, whereas stresses change only slightly.

V.L

A88-25835

LASER DOPPLER VELOCITY BIAS IN SEPARATED TURBULENT FLOWS

H. L. PETRIE (Pennsylvania State University, State College), M. SAMIMY (Ohio State University, Columbus), and A. L. ADDY (Illinois, University, Urbana) Experiments in Fluids (ISSN 0723-4864), vol. 6, no. 2, 1988, p. 80-88. refs (Contract DAAG29-79-C-0184; DAAG29-83-K-0043)

Velocity bias effects on data obtained with a coincident two channel laser Doppler velocimeter in a highly turbulent separated supersonic flow are presented. Probability distributions of the fluctuating velocities were distorted by velocity bias in a manner consistent with theory and a two-dimensional velocity inverse weighting function bias correction produced reasonable appearing velocity probability distributions. The addition of an approximate correction term to account for the effects of the unmeasured third velocity component improved these results but had little effect on the velocity statistics. Experimental factors that could partially compensate or falsely add to the velocity bias, conditions for the bias to occur, and conditions for which the bias may also be observed and corrected for are discussed.

A88-25842

TIME DEPENDENT FLOW VISUALIZATION IN THE SEPARATED REGION OF AN APPENDAGE-FLAT PLATE JUNCTION

S. C. DICKINSON (U.S. Navy, David W. Taylor Naval Ship Research and Development Center, Bethesda, MD) Experiments in Fluids (ISSN 0723-4864), vol. 6, no. 2, 1988, p. 140-143. Navy-supported research. refs

Flow visualizations of the complex 'horseshoe root' vortex secondary flow of an appendage-flat plate junction are presented, with application to the study of the flow around an aircraft wing-fuselage junction. The oil film flow visualization studies show the presence of a significant three-dimensional separated zone. Time dependent oil film techniques indicate large differences in surface shear stress on the flat plate. The oil dot flow visualizations reveal the upstream reversed flow near the leading edge, in addition to the outwardly directed surface streamlines under the vortex alongside of the appendage.

A88-25988#

STRONG COUPLING BETWEEN INVISCID FLUID AND BOUNDARY LAYER FOR AIRFOILS WITH SHARP LEADING EDGE. I - 2-D INCOMPRESSIBLE STEADY CASE

J. J. ANGELINI and C. SOIZE (ONERA, Chatillon-sous-Bagneux, France) La Recherche Aerospatiale (English Edition) (ISSN 0379-380X), no. 4, 1987, p. 19-36. refs

The strong coupling between inviscid fluid and two-dimensional boundary layer in cascade aeroelasticity problems is considered. The upper surface boundary layer separated at the leading edge and reattached before the trailing edge is taken as a significant situation. In this first part, the incompressible steady case is studied. The aim is to develop the mathematical and physical model using experiments made on a flat plate with sharp leading edge with four degrees of incidence at a Reynolds number of 400,000. The assumptions and the construction of the physical and mathematical model are given along with the numerical analysis, and the experiments are compared with numerical results.

A88-26120

DISTRIBUTED GAS INJECTION INTO HYPERSONIC FLOW [RASPREDELENNYI VDUV GAZA V GIPERZVUKOVOI POTOK] I. I. LIPATOV Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki (ISSN 0044-4626), Nov.-Dec. 1987, p. 57-61. In Russian. refs

The effect of evenly distributed injection on flow in a laminar boundary layer is investigated for the case of strong hypersonic interaction. Results of the numerical integration of the boundary value problem are presented which make it possible to determine the dependence of the aerodynamic characteristics on the injection intensity, surface temperature, and bottom pressure gradient. The characteristic features distinguishing the case investigated from the case of weak interaction in the boundary layer are examined.

VΙ

A88-26129

NUMERICAL SOLUTION OF THE PROBLEM OF SUPERSONIC GAS FLOW FROM A NARROW SLOT IN HODOGRAPH VARIABLES [K CHISLENNOMU RESHENIIU ZADACHI O SVERKHZVUKOVOM ISTECHENII GAZA IZ PLOSKOI SHCHELI V PEREMENNYKH GODOGRAFA]

IU. S. KOSOLAPOV Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki (ISSN 0044-4669), vol. 28, Jan. 1988, p. 137-141. In Russian. refs

The paper presents a modified version of a method for calculating, in the hodograph plane, stationary subsonic and transonic flows of an ideal gas in converging plane and axisymmetric nozzles with a straight-line generatrix. The modified version proposed here is shown to be more accurate than the original method, making it possible to obtain a numerical solution with second-order accuracy. The advantages of the proposed version of the method are demonstrated for the case of supersonic gas flow from a plane slot.

A88-26163

EXCESS STREAMWISE VORTICITY AND ITS ROLE IN SECONDARY FLOW

P. W. JAMES (Plymouth Polytechnic, England) Institution of Mechanical Engineers, Proceedings, Part C - Mechanical Engineering Science (ISSN 0263-7154), vol. 201, no. C6, 1987, p. 413-420 refs

The purpose of this paper is, first, to show how the concept of excess secondary vorticity arises naturally from attempts to recover three-dimensional flow details lost in passage-averaging the equations governing the flow through gas turbines. An equation for the growth of excess streamwise vorticity is then derived. This equation, which allows for streamwise entropy gradients through a prescribed loss term, could be integrated numerically through a blade-row to provide the excess vorticity at the exit to a blade-row. The second part of the paper concentrates on the approximate methods of Smith (1955) and Came and Marsh (1974) for estimating this quantity and demonstrates their relationship to each other and to the concept of excess streawise vorticity. Finally the relevance of the results to the design of blading for gas turbines, from the point of view of secondary flow, is discussed.

A88-26358#

QUASI-CONICAL AERODYNAMIC LOADINGS DUE TO KINKED PLANFORM WINGS

KYOKO NITTA, SHIGENORI ANDO, and SETSUYA KINUGAWA Japan Society for Aeronautical and Space Sciences, Journal (ISSN 0021-4663), vol. 35, no. 407, 1987, p. 586-595. In Japanese, with abstract in English. refs

Aerodynamic loadings over kinked-planform wings are investigated using lifting-surface theories. In using conventional

mode methods, kinked edges of the planform should be rounded in some way. The effects of roundings on loadings are investigated through BIS-QS, which is a discrete method developed in the authors' laboratory. Another discrete method, DLM, is used supplementarily. Two kinds of roundings are used. It is found that the influence of roundings remains spanwise considerably far from the rounded region. Conventional mode methods are thus less efficient than discrete methods for investigating kinked-planform wings. Modified aerodynamic loading (MAL) is introduced to be kept free from the conventional square-foot edge-singularities. It is noteworthy that quasi-conical distributions of MAL appear near kinks. Thus the well known peculiar loadings of swept-back, or forward-swept wings can be explained essentially and naturally. This quasi-conical MAL would serve for rapid convergence of mode methods in lifting-surface theory.

A88-26359#

AERODYNAMIC CHARACTERISTICS OF THE WEIS-FOGH MECHANISM. II - NUMERICAL COMPUTATIONS BY THE DISCRETE VORTEX METHOD

MICHIHISA TSUTAHARA and TAKEYOSHI KIMURA Japan Society for Aeronautical and Space Sciences, Journal (ISSN 0021-4663), vol. 35, no. 407, 1987, p. 596-604. In Japanese, with abstract in English. refs

Aerodynamic characteristics of the Weis-Fogh (1973) mechanism, which is a lift-generating mechanism of hovering flight of small insects, were studied by the discrete-vortex method. Two flat wings were approximated by a finite number of bound vortices, and the unsteady force due to the change of the strengths of these vortices was estimated by a contour of integration including newly introduced nascent vortices. A sufficient lift is generated in all the stages of the wing motion. Especially at the final stage of the closing motion, the moment for closing the wing becomes very large while the lift remains moderate. At the same stage, a jet is produced between the two wings, and a region of high-speed flow also appears in the back side of each wing.

A88-26388

AN EXPERIMENTAL INVESTIGATION ON AERODYNAMIC INTERBLADE INTERACTIONS OF A VIBRATING CASCADE IN TRANSONIC FLOW

YOJI HANAMURA and KAZUO YAMAGUCHI (Tokyo, University, Japan) JSME International Journal (ISSN 0913-185X), vol. 30, Dec. 1987, p. 1919-1927.

The aerodynamic interblade interaction of a cascade blade row in a transonic flow is investigated in a Freon gas wind tunnel. A one-blade oscillation method is introduced which experimentally clarifies some previously hidden aspects of the conventional all-blade oscillation method. The unsteady moment induced at the center of the vibrating blade itself lags behind the blade displacement, implying that the flutter of one blade only in a cascade does not occur. The time lag increases with the increment of Mach number and reduced frequency. In a highly staggered cascade, the effects of the center vibrating blade becomes less on the upstream neighboring blades than on the downstream neighboring blades. The amplitude of an unsteady moment becomes smaller and its phase lag against the displacement of the center vibrating blade becomes larger at blades situated farther upstream.

A88-26421

WING TIP SAILS - PROGRESS TO DATE AND FUTURE DEVELOPMENTS

J. J. SPILLMAN (Cranfield Institute of Technology, England) Aeronautical Journal (ISSN 0001-9240), vol. 91, Dec. 1987, p. 445-453. refs

An account is given of the accumulating evidence (derived from wind tunnel research and full scale aircraft flight tests) that the swirling flow about the tips of lifting wings can be redirected by small 'sail' airfoils to reduce overall lift-dependent drag. Variable incidence sails can be effectively used to furnish roll power for maneuvering. Sails can reduce aircraft drag in all flight regimes to the extent of fuel savings extimated at \$225/year per 1000 lbs of

takeoff weight, per 1000 hours of annual utilization; in the case of a 300,000 lb airliner operating for 3000 hours, this represents a fuel saving of over \$200,000/year.

O.C.

A88-26422

THE TIP FLOW OF A PART SPAN SLOTTED FLAP

A. C. WILLMER (British Aerospace, PLC, London, England), R. V. BARRETT, and J. D. COLEMAN (Bristol, University, England) Aeronautical Journal (ISSN 0001-9240), vol. 91, Dec. 1987, p. 453-469.

An experimental study into the overall influence of the end region of a flap on the flow of a high lift wing has attempted to furnish a body of data on this aspect of the overall three-dimensional problem posed by high lift device-incorporating wing systems. Extensive pressure surveys and minituft flow visualization records were obtained, together with detailed boundary layer and wake surveys. It is hoped that these data will aid the formulation of mathematical models for high lift configurations.

O.C.

A88-26423

A FIRST ORDER THEORY FOR NEWTONIAN FLOW OVER TWO-DIMENSIONAL AIRFOILS

HAMDI T. HEMDAN (King Saud University, Riyadh, Saudi Arabia) Aeronautical Journal (ISSN 0001-9240), vol. 91, Dec. 1987, p. 471-478. Research supported by King Saud University. refs

A simple closed-form formula for the coefficient of surface pressure, Cp, is given in this paper. The formula is based on first and second approximations of the full problem, and can be used for the Newtonian flow past two-dimensional thin airfoils at small angles of attack and with attached shock waves. It thus extends Cole's (1957) zero-order theory to the effects of nonzero (gamma -1) and finite values of freestream Mach number where gamma is the ratio of the specific heats of the gas. The results are compared with other approximate methods and the agreement is found to be generally good.

A88-26424

INVISCID THEORY OF TWO-DIMENSIONAL AEROFOIL/ SPOILER CONFIGURATIONS AT LOW SPEED. V - STEADY AND OSCILLATORY AEROFOIL-SPOILER-FLAP CHARAC-TERISTICS

H. B. TOU and G. J. HANCOCK (Queen Mary College, London, England) Aeronautical Journal (ISSN 0001-9240), vol. 91, Dec. 1987, p. 479-498. refs

An inviscid model for a steady two-dimensional airfoil/spoiler at low speeds is applied to an airfoil/spoiler/plain-flap configuration. The model is extended to an airfoil/spoiler/slotted-flap configuration. The flow through a slotted flap can result in either attached flow or separated flow about the flap. The location of the separation point on the flap has to be assumed; it is taken empirically to fit experimental data. The inviscid model is extended to the airfoil/spoiler/slotted-flap configuration with the spoiler oscillating in small amplitude simple harmonic motion about a mean spoiler angle. Although both the steady and unsteady models for the airfoil/spoiler/flap configuration are crude, the results look encouraging.

A88-26433

IMPROVED RELAXATION SCHEMES FOR TRANSONIC POTENTIAL CALCULATIONS

M. HAFEZ (California, University, Davis) and D. LOVELL (Flow Research, Inc., Kent, WA) International Journal for Numerical Methods in Fluids (ISSN 0271-2091), vol. 8, Jan. 1988, p. 1-16. refs

A block relaxation scheme, grouped in a red-black ordering, is applied to transonic aerofoil calculations using body-fitted coordinates. The scheme is simple and easily vectorizable. Detailed comparisons with the approximate factorization method (AF2) are presented and it is shown that the new scheme is competitive in all cases considered. Transonic results, of engineering accuracy, on an O-type grid of 149 x 30 points, are usually obtained within 200 iterations (about 40s on a Cyber 175).

A88-26434

COMPUTATION OF THREE-DIMENSIONAL TRANSONIC FLOWS USING TWO STREAM FUNCTIONS

A. SHERIF (Cairo University, Egypt) and M. HAFEZ (California, University, Davis) International Journal for Numerical Methods in Fluids (ISSN 0271-2091), vol. 8, Jan. 1988, p. 17-29. refs

A computational method for three-dimensional flows is presented in terms of two stream functions, which may be considered as two components of a generalized vector potential. An iterative scheme is developed such that only a sequence of two-dimensional-like problems, for each function, is solved. The convergence of the iterative scheme is studied based on von Neumann linear analysis. For transonic flow calculation, numerical methods used for potential flows are readily applied, namely artificial density and Zebra relaxation. Results of transonic flow calculations around a wing are presented.

A88-26435* California Univ., Davis.

ENTROPY AND VORTICITY CORRECTIONS FOR TRANSONIC FLOWS

M. HAFEZ (California, University, Davis) and D. LOVELL (Flow Research, Inc., Kent, WA) International Journal for Numerical Methods in Fluids (ISSN 0271-2091), vol. 8, Jan. 1988, p. 31-53. NASA-supported research. refs

NASA-supported research. refs
Different models for inviscid transonic flows are examined. The common assumptions that the flow is isentropic and irrotational are critically evaluated. Entropy and vorticity correction procedures for potential and stream function formulations are presented, together with the details of the treatment of shocks and wakes, and drag and lift calculations. The non-uniqueness problem of the potential formulation is studied using different artificial viscosity forms. Numerical results are compared with Euler solutions.

Author

A88-26584#

NUMERICAL CALCULATION OF 3-D TURBULENT FLOW IN A STRAIGHT COMPRESSOR CASCADE WITH CIRCULAR-ARC BLADES

DEYONG JIAO and HONGWEI YANG (Harbin Institute of Technology, People's Republic of China) Journal of Engineering Thermophysics (ISSN 0253-231X), vol. 8, Nov. 1987, p. 329-335. In Chinese, with abstract in English. refs

In this paper, the 'parabolic method' is used to calculate three-dimensional incompressible turbulent flow in a straight compressor cascade with circular-arc blades adopting k-epsilon turbulence model. The comparison with the quasi-laminar calculating results and experimental data shows that the k-epsilon turbulence model will be appropriate for the calculation of turbulent flow in the cascade.

A88-26586#

STREAM FUNCTION SOLUTION OF TRANSONIC FLOW ALONG AN ARBITRARY TWISTED S1 STREAM SURFACE

XIAOLU ZHAO and LISEN QIN (Chinese Academy of Sciences, Institute of Engineering Thermophysics, Beijing, People's Republic of China) Journal of Engineering Thermophysics (ISSN 0253-231X), vol. 8, Nov. 1987, p. 340-342. In Chinese, with abstract in English. refs

The effects of the fully three-dimensional flow in the transonic turbo-machine's passage are stronger than in a subsonic one. In this case, the full three-dimensional solution may be more exact than the quasi-three-dimensional one. Based on a streamsurface coordinate system, in which a coordinate surface coincides with the arbitrary twisted S1 stream surface, a principal stream function equation governing the transonic flow has been established. The mixed type equation can be solved by a traditional artificial compressibility method. The standard conservative differences were used to discretized the obtained equation, and a constant coefficients matrix decomposition method has been used to speed up the calculation. In terms of the integration velocity gradient equation, the velocity distribution can be determined first, then the densities are updated. Sample calculations are presented to illustrate the method's capabilities.

A88-26587#

THE EFFECT OF THE BOUNDARY LAYER ON TRANSONIC CASCADE FLOW

YAONAN HUA and BAOGUO WANG (Chinese Academy of Sciences, Institute of Engineering Thermophysics, Beijing, People's Republic of China) Journal of Engineering Thermophysics (ISSN 0253-231X), vol. 8, Nov. 1987, p. 343-345. In Chinese, with abstract in English. refs

A computational method to take account of viscosity in transonic cascade flow is presented. The stream function method was used to calculate the inviscid blade-to-blade transonic flow. On the assumption that the viscous effect only occurs in boundary layer on the blade surface, the reference enthalpy method was used to calculate the characteristic parameters of the compressible boundary layer. The inviscid-viscous interaction procedure was used to calculate the entire blade-to-blade flow field. The effect of the boundary layer on the computation results of inviscid flow was investigated. The results show that the effect of the boundary layer on the inviscid flow is considerable. The calculation results of the inviscid-viscous interaction are closer to the experimentad data than the inviscid calculation. The present method can be used to improve the computation results of inviscid flow. It is an effective and convenient method in engineering practice. Author

A88-26629#

STUDY OF PERFORMANCE OF ROTATING STALL IN BLADE ROW

ZHIWEI LIU, JUNJIANG ZHU, and ZHUNSHENG WANG (Northwestern Polytechnical University, Xian, People's Republic of China) Journal of Aerospace Power, vol. 3, Jan. 1988, p. 18-22, 88, 89. In Chinese, with abstract in English. refs

The tendency of the performances in rotating stall to vary with the stagger angles and the solidities is observed. Blockage ratio, the performance loss, and the hysteresis in stall rise with the increase of the stagger angles and the solidities. Both blockage ratio and performance loss in stall for a stage are larger than those for an isolated rotor, but the hysteresis effect of the stage is weakened due to the presence of the stator. The flow model (with an active cell structure) is discussed and evaluated on the basis of the experimental data. The results show that the features of the active-cell model should involve two aspects: (1) the mass interchange between the stall and unstall flow regions as well as between the stall cells from the outlet to the inlet of the blade row, and (2) the momentum interchange in the tangential direction of the rotor between the fluid in the stall cell and the rotor.

Author

A88-26630#

A COMPUTATIONAL METHOD OF EXCITING FORCES GENERATED BY NOZZLE WAKES ON TURBINE BLADES

LING LIU and QINGJI MENG (Xian Jiaotong University, Xian, People's Republic of China) Journal of Aerospace Power, vol. 3, Jan. 1988, p. 23-26, 89. In Chinese, with abstract in English.

A computational method has been developed to solve the problem of two-dimensional compressible unsteady flow passing through the rotating blade row of a turbine. This work aims at determining the exciting forces generated by nozzle wakes on the blades. The numerical results obtained show that the distribution of the exciting forces is different from that of the nozzle wakes.

Autho

A88-26631#

AN ANALYSIS SYSTEM FOR TRANSONIC FLOW IN CASCADE

CHUNJUN JI and XINHAI ZHOU (Northwestern Polytechnical University, Xian, People's Republic of China) Journal of Aerospace Power, vol. 3, Jan. 1988, p. 27-30, 89, 90. In Chinese, with abstract in English. refs

A central-difference algorithm is developed for the analysis of inviscid blade-to-blade flow and coupled inviscid/boundary-layer flow in a transonic turbine cascade. A relaxed linear interpolation procedure for the y direction is combined with the opposed-difference scheme of Denton (1974) for the

quasi-streamline direction. The stability of the method for all relaxation coefficients greater than 1 is demonstrated; a procedure for coupling the inviscid and boundary-layer flows is given; and results from sample computations are presented in graphs and shown to be in good agreement with published experimental data.

A88-26640#

A CONTOUR LINE PLOTTING SYSTEM WITH POLAR COORDINATES FOR AEROENGINE INLET FLOW FIELD

ZHANXIAN WANG (Flight Test Research Centre, People's Republic of China) Journal of Aerospace Power, vol. 3, Jan. 1988, p. 67-69, 94. In Chinese, with abstract in English.

A88-26643#

3D-COMPUTATIONAL MESH GENERATION AROUND A PROPELLER BY ELLIPTIC DIFFERENTIAL EQUATION SYSTEM

MAKOTO KOBAYAKAWA and ICHIRO HATANO (Kyoto University, Japan) Journal of Aerospace Power, vol. 3, Jan. 1988, p. 81-86. refs

In this paper, an analytic method is applied for the generation of a three-dimensional mesh system for the Navier-Stokes equations around an ATP propfan. One of the advantages of this method is that mesh lines have strong differentiability. The differential equation used is Poisson type, and the right-hand side is called the control function. This function is able to control the degree of meshline clustering. Here, the form of the control function was contrived to cluster near the solid surfaces. By this method, several mesh lines are laid in the boundary layer above the blade surfaces.

Author

A88-26696

AERODYNAMIC CALCULATION OF THIN BODIES IN A RAREFIED GAS [AERODINAMICHESKII RASCHET TONKIKH TEL V RAZREZHENNOM GAZE]

V. S. NARITSA Leningradskii Universitet, Vestnik, Matematika, Mekhanika, Astronomiia (ISSN 0024-0850), Oct. 1987, p. 46-50. In Russian. refs

An approximation is proposed for the dependence of local transfer coefficients on the local Reynolds number, with allowance made for the nonmonotonic change of the aerodynamic characteristics. This approximation is then used to obtain formulas for calculating the aerodynamic coefficients of thin bodies, such as semiinfinite and triangular plates and a cone. By using regression analysis, it is shown that, in the transition region, the dependence of local transfer coefficients on the Reynolds number is determined by a single parameter, which should be determined from experimental data. A comparison is made with experimental data.

V.L.

A88-26731#

GEOMETRY/GRID GENERATION IN N + 1 EASY STEPS

B. K. SONI, M. D. MCCLURE (Sverdrup Technology, Inc., Arnold Air Force Station, TN), and C. WAYNE MASTIN (Mississippi State University, Mississsippi State) IN: Numerical grid generation in computational fluid dynamics; Proceedings of the International Conference, Landshut, Federal Republic of Germany, July 14-17, 1986. Swansea, Wales, Pineridge Press, 1986, p. 83-94.

Progress concerning efforts designed to generate 'optimal' three-dimensional computational grids for real world engineering problems related to propulsion ground testing is presented. This progress has been brought about through enhancements incorporated into a procedure which uses several techniques either separately or in combination to quickly and economically generate three-dimensional computational grids for arbitrary geometries. Improvements in grid generation strategies for complex geometries have been made along with the development of grid refinement algorithms which are used to make an existing grid smoother and more nearly orthogonal. Examples of three-dimensional grids are provided to illustrate the success of these methods.

ARR-26743

GENERATION OF PATCHED MULTIPLE-REGION GRIDS USING ELLIPTIC EQUATIONS

D. M. SCHUSTER (Lockheed-Georgia Co., Marietta) IN: Numerical grid generation in computational fluid dynamics; Proceedings of the International Conference, Landshut, Federal Republic of Germany, July 14-17, 1986. Swansea, Wales, Pineridge Press, 1986, p. 259-270. refs

This paper deals with the numerical generation of two-dimensional grids, in multiple regions, using elliptic grid generation equations. The method involves the patching together of simple two-dimensional grids about components of complicated geometries into one large composite grid about the complete geometry. A number of solution strategies have been used to obtain global smoothness of these multiple-region grids, and the relative merits of each of these methods is discussed. The particular application addressed in this paper is the generation of grids about multiple-component airfoil high-lift systems for Navier-Stokes computations. However, the method is general, and it can be applied to a number of problems requiring the analysis of complicated or multiple component geometries.

A88-26745

GENERATION OF BODY-FITTED GRIDS AROUND AIRFOILS USING MULTIGRID METHOD

R. K. JAIN (Gesellschaft fuer Mathematik und Datenverarbeitung mbH, Sankt Augustin, Federal Republic of Germany) IN: Numerical grid generation in computational fluid dynamics; Proceedings of the International Conference, Landshut, Federal Republic of Germany, July 14-17, 1986. Swansea, Wales, Pineridge Press, 1986, p. 305-317. BMFT-supported research. refs

To generate a body-fitted grid about an airfoil, a system of partial differential equations is solved using a multigrid technique. Full approximation scheme has been used with the starting solution obtained by full multigrid (FMG) algorithm. Gauss-Seidel successive line relaxation is used as a smoother in finer grids and as a solver in the coarsest grid. Implementation of the boundary condition on the cut is done implicitly when using horizontal line relaxation. Pure injection and full weighting are used for the restriction of the solution and the residuals, respectively. Prolongation uses linear interpolation. Cubic interpolation is used when the final solution is transferred from coarser to finer grids in the FMG algorithm. V- and W-cycles with various relaxation steps have been analyzed. Best results were obtained using V-cycle with one relaxation step each before restriction and after prolongation, and it required less than 15 work units (WUs) for an accuracy of 0.00001. An asymptotic convergence rate of 0.67/WU was attained. Author

A88-26747

A BLOCK STRUCTURED MESH GENERATION TECHNIQUE FOR AERODYNAMIC GEOMETRIES

J. SHAW, C. R. FORSEY, N. P. WEATHERILL, and K. E. ROSE (Aircraft Research Association, Ltd., Bedford, England) IN: Numerical grid generation in computational fluid dynamics; Proceedings of the International Conference, Landshut, Federal Republic of Germany, July 14-17, 1986. Swansea, Wales, Pineridge Press, 1986, p. 329-340. Research supported by the Ministry of Defense Procurement Executive and British Aerospace, PLC. refs

A method is described for calculating the flowfield around aerodynamic geometries, based upon a block structured grid generation technique, coupled with an Euler flow algorithm. The flow domain is subdivided into a number of nonoverlapping blocks and grids generated either by the solution of a set of partial differential equations, or by transfinite interpolation. Details of the surface and field grid generators are given and techniques to control the position of grid points are highlighted. Examples are shown of grids on and around aircraft geometries together with flow calculations on block structured grids.

A88-26751

ALGEBRAIC GRID GENERATION FOR ANNULAR NOZZLE FLOWFIELD PREDICTION

B. N. WANG and J. D. HOFFMAN (Purdue University, West Lafayette, IN) IN: Numerical grid generation in computational fluid dynamics; Proceedings of the International Conference, Landshut, Federal Republic of Germany, July 14-17, 1986. Swansea, Wales, Pineridge Press, 1986, p. 399-409. refs

A two-dimensional algebraic grid generation procedure is presented for annular nozzle flow-field prediction. The grid distribution on the physical boundaries is determined by two piecewise polynomials. The grid distribution within the physical domain is determined from the boundary grid points by a quadratic connection function. The grid generation procedure is used with a numerical method of characteristics algorithm to calculate inviscid trisonic flow fields in annular propulsive nozzles. An example is presented to illustrate the grid generation procedure. Results of a nozzle flow-field analysis are presented and compared with experimental data to verify the overall numerical procedure.

Author

A88-26753

APPLICATION OF A FEM MOVING NODE ADAPTIVE METHOD TO ACCURATE SHOCK CAPTURING

B. PALMERIO (Nice, Universite, France) and A. DERVIEUX (Institut National de Recherche en Informatique et en Automatique, Valbonne, France) IN: Numerical grid generation in computational fluid dynamics; Proceedings of the International Conference, Landshut, Federal Republic of Germany, July 14-17, 1986. Swansea, Wales, Pineridge Press, 1986, p. 425-433.

A 'spring method' is applied to mesh adaptation for the calculation of compressible steady Euler flows. Two-dimensional triangulations are used in combination with an upwind Finite Element scheme. Several examples of shocked transonic flow calculations are presented.

Author

A88-26796#

SIDEWALL EFFECT FOR TRANSONIC AIRFOIL TESTING

YAOXI SU Northwestern Polytechnical University, Journal (ISSN 1000-2758), vol. 6, Jan. 1988, p. 63-71. In Chinese, with abstract in English. refs

The mechanism of the sidewall effect for airfoil testing is investigated based on the results of oil flow visualization, and a systematic description of the mechanism in both subcritical and supercritical flow conditions is given. Five types of oil flow patterns are identified, and features characteristic of supercritical flow conditions are stated and described. The origin of all the sidewall effects observed experimentally can be traced back to the displacement effect of the sidewall boundary laver. The two-dimensional wind tunnel with solid sidewall is entirely improper for transonic airfoil testing due to the strong influence of oblique shocks. Wind tunnels of larger width may reduce the sidewall effect, but even for tunnels with width of 3.4 chord lengths, there is still an evident effect in the middle section for some test conditions. The proper application of suction provides a promising answer to the problem, since it both reduces and compensates for the displacement effect. C.D.

A88-27715*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

AN EXPLICIT RUNGE-KUTTA METHOD FOR UNSTEADY ROTOR/STATOR INTERACTION

PHILIP C. E. JORGENSON and RODRICK V. CHIMA (NASA, Lewis Research Center, Cleveland, OH) AIAA, Aerospace Sciences Meeting, 26th, Reno, NV, Jan. 11-14, 1988. 15 p. refs (AIAA PAPER 88-0049)

A quasi-three-dimensional rotor/stator analysis has been developed for blade-to-blade flows in turbomachinery. The analysis solves the unsteady Euler or thin-layer Navier-Stokes equations in a body-fitted coordinate system. It accounts for the effects of rotation, radius change, and stream-surface thickness. The Baldwin-Lomax eddy-viscosity model is used for turbulent flows. The equations are integrated in time using a four-stage Runge-Kutta

scheme with a constant timestep. Results are shown for the first stage of the Space Shuttle Main Engine high pressure fuel turbopump. Euler and Navier-Stokes results are compared on the scaled single- and multi-passage machine. The method is relatively fast and the quasi-three-dimensional formulation is applicable to a wide range of turbomachinery geometries.

A88-27717*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

NUMERICAL SIMULATION OF HYPERSONIC INLET FLOWS WITH EQUILIBRIUM OR FINITE RATE CHEMISTRY

SHENG-TAO YU, KWANG-CHUNG HSIEH, JIAN-SHUN SHUEN (NASA, Lewis Research Center; Sverdrup Technology, Inc., Cleveland, OH), and BONNIE J. MCBRIDE (NASA, Lewis Research Center, Cleveland, OH) AIAA, Aerospace Sciences Meeting, 26th, Reno, NV, Jan. 11-14, 1988. 14 p. refs (AIAA PAPER 88-0273)

An efficient numerical program incorporated comprehensive high temperature gas property models has been developed to simulate hypersonic inlet flows. The computer program employs an implicit lower-upper time marching scheme to solve the two-dimensional Navier-Stokes equations with variable thermodynamic and transport properties. Both finite-rate and local-equilibrium approaches are adopted in the chemical reaction model for dissociation and ionization of the inlet air. In the finite rate approach, eleven species equations coupled with fluid dynamic equations are solved simultaneously. In the local-equilibrium approach, instead of solving species equations, an efficient chemical equilibrium package has been developed and incorporated into the flow code to obtain chemical compositions directly. Gas properties for the reaction products species are calculated by methods of statistical mechanics and fit to a polynomial form for C(p). In the present study, since the chemical reaction time is comparable to the flow residence time, the local-equilibrium model underpredicts the temperature in the shock layer. Significant differences of predicted chemical compositions in shock layer between finite rate and local-equilibrium approaches have been observed. Author

A88-27884*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, Calif.

THEORETICAL ANALYSIS OF AIRCRAFT AFTERBODY FLOW GEORGE S. DEIWERT, ALISON E. ANDREWS (NASA, Ames Research Center, Moffett Field, CA), and KAZUHIRO NAKAHASHI (National Aerospace Laboratory, Tokyo, Japan) Journal of Spacecraft and Rockets (ISSN 0022-4650), vol. 24, Nov.-Dec. 1987, p. 496-503. refs

Computational methods solving the thin shear layer formulation of the compressible, Reynolds-averaged Navier-Stokes equations are presently used to investigate the strongly interactive flow field about aircraft afterbodies. Solutions for a variety of axisymmetric afterbody and nozzle geometries are solved by means of a time-dependent implicit numerical algorithm for both subsonic and supersonic external flows, and the results obtained are compared with experimental data. A novel adaptive-grid technique is used to resolve flow regimes having large gradients, as well as to improve the accuracy and efficiency of the computational scheme. O.C.

A88-28033#

VORTEX/SEPARATED BOUNDARY-LAYER INTERACTIONS AT TRANSONIC MACH NUMBERS

RABINDRA D. MEHTA (Stanford University, CA) AIAA Journal (ISSN 0001-1452), vol. 26, Jan. 1988, p. 15-26. refs

An experimental study has been completed on the effect of a single longitudinal vortex on a separated, transonic, turbulent boundary layer. The vortex was generated by a half-delta wing mounted at the upstream end of an axisymmetric 'bump' model. A flow visualization study was conducted using vapor screen and surface oilflow techniques. In addition surface pressures were measured and mean flow and turbulence data obtained using a two-component laser velocimeter. At precritical Mach numbers, the vortex delayed or eliminated boundary-layer separation on the downwash side and enhanced it on the upwash side, thus

converting a nominally two-dimensional separation into a three-dimensional one. At the postcritical Mach number, the effect of the vortex was to reduce the size and extent of the shock-induced boundary-layer sepration throughout the region of interaction. The boundary-layer turbulence in both cases was found to reorganize accordingly, although in a rather complex manner. The onset of three-dimensionality in the separation line produced by the vortex resulted in secondary vortices (foci), the sign and number being strongly dependent on the freestream Mach number.

A88-28034#

INFLUENCE OF NOZZLE ASYMMETRY ON SUPERSONIC JETS R. W. WLEZIEN and V. KIBENS (McDonnell Douglas Research Laboratories, Saint Louis, MO) AIAA Journal (ISSN 0001-1452), vol. 26, Jan. 1988, p. 27-33. Research sponsored by the McDonnell Douglas Independent Research and Development Program. Previously cited in issue 07, p. 832, Accession no. A86-19787. refs

A88-28050#

COMMENT ON 'COMPUTATION OF THE POTENTIAL FLOW OVER AIRFOILS WITH CUSPED OR THIN TRAILING EDGES' H. N. V. DUTT (National Aeronautical Laboratory, Bangalore, India) AIAA Journal (ISSN 0001-1452), vol. 26, Jan. 1988, p. 122, 123.

A88-28356

THERMODYNAMIC NONEQUILIBRIUM OF A FAR HYPERSONIC WAKE [O TERMODINAMICHESKOI NERAVNOVESNOSTI DAL'NEGO GIPERZVUKOVOGO SLEDA]

IU. P. SAVEL'EV and M. M. STEPANOV (Leningradskii Mekhanicheskii Institut, Leningrad, USSR) Zhurnal Tekhnicheskoi Fiziki (ISSN 0044-4642), vol. 57, Nov. 1987, p. 2178-2183. In Russian. refs

The flow of a low-temperature plasma of a far hypersonic wake is studied theoretically with allowance for nonequilibrium chemical reactions as well as the possible absence of thermodynamic equilibrium. The investigation is based on a numerical analysis of simplified parabolic Navier-Stokes equations for a multicomponent mixture of reacting gases. Numerical results indicate the range of the greatest effect of thermodynamic nonequilibrium on the far-wake parameters.

B.J.

N88-16630*# Army Aviation Systems Command, Moffett Field,

COMPREHENSIVE ROTORCRAFT ANALYSIS METHODS

WENDELL B. STEPHENS and EDWARD E. AUSTIN (Army Research and Technology Labs., Fort Eustis, Va.) In NASA, Washington, NASA/Army Rotorcraft Technology. Volume 1: Aerodynamics, and Dynamics and Aeroelasticity p 312-352 Feb. 1988

Avail: NTIS HC A23/MF A01 CSCL 01A

The development and application of comprehensive rotorcraft analysis methods in the field of rotorcraft technology are described. These large scale analyses and the resulting computer programs are intended to treat the complex aeromechanical phenomena that describe the behavior of rotorcraft. They may be used to predict rotor aerodynamics, acoustic, performance, stability and control, handling qualities, loads and vibrations, structures, dynamics, and aeroelastic stability characteristics for a variety of applications including research, preliminary and detail design, and evaluation and treatment of field problems. The principal comprehensive methods developed or under development in recent years and generally available to the rotorcraft community because of US Army Aviation Research and Technology Activity (ARTA) sponsorship of all or part of the software systems are the Rotorcraft Flight Simulation (C81), Dynamic System Coupler (DYSCO), Coupled Rotor/Airframe Vibration Analysis Program (SIMVIB), Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD), General Rotorcraft Aeromechanical Stability Program (GRASP), and Second Generation Comprehensive Helicopter Analysis System (2GCHAS). Author

N88-16664# Brown Univ., Providence, R. I. Div. of Applied Mathematics.

NEW TECHNIQUES IN COMPUTATIONAL AERODYNAMICS Final Report, 1 Jun. 1983 - 28 Feb. 1987

LAWRENCE SIROVICH 6 Aug. 1987 95 p

(Contract AF-AFOSR-0336-83)

(AD-A186719; AFOSR-87-1419TR) Avail: NTIS HC A05/MF A01 CSCL 20D

A wide range of problems in gas dynamics have been considered. Advances in subsonic, transonic, and supersonic gas dynamics have been made. The emphasis has been made on computational procedures both numerical and algebraic. This work has a strong basis in analytical methods, and goal has been to produce computational efficient codes which made optimal use of analytically known results.

N88-16666# Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt, Goettingen (West Germany). Inst. fuer Experimentelle Stroemungsmechanik.

EXPERIMENTAL INVESTIGATION OF SHOCK-INDUCED DISTURBANCES ON TRANSONIC AIRFOILS Ph.D. Thesis - Goettingen Univ., Fed. Republic of Germany

DIETER BASLER Jul. 1987 128 p In GERMAN; ENGLISH summary Report will also be announced as translation (ESA-TT-1097)

(DFVLR-FB-87-28; ISSN-0171-1342; ETN-88-91450) Avail: NTIS HC A07/MF A01; DFVLR, Cologne, Fed. Republic of Germany DM 38

The mechanism of buffeting was investigated in a wind tunnel on a transonic airfoil. A holographic high speed real time interferometer was developed to observe and analyze the entire flow field surrounding the airfoil. The information from interferograms was compared with results from hot film and pressure measurements. The results show that the shock oscillation can be described by an interaction of the shock with the boundary layer and the flow conditions at the trailing edge of the airfoil. The observed buffet frequencies are higher for an initially laminar boundary layer than for a turbulent boundary layer. Buffer frequency decreases with increasing Reynolds number in the case of a turbulent boundary layer.

N88-16667# Royal Aircraft Establishment, Farnborough (England).

THE AERODYNAMIC PERFORMANCE OF PROPELLERS SUITABLE FOR UNMANNED AIRCRAFT (UMAS)

W. J. G. TREBLE Jan. 1987 25 p

(RAE-TM-AERO-2094; BR102328; ETN-88-91530) Avail: NTIS HC A03/MF A01

The aerodynamic performance of 13 cheap fixed-pitch 0.512 m diameter pusher-propellers suitable for powering unmanned aircraft for low speed missions (i.e., less than 50 m/sec) was investigated. Ten of them were twin-bladed and three of them had four blades. Thrust and torque at rotational speeds between 3000 and 9000 rpm in the 1.5 m acoustic tunnel at airspeeds from 10 to 50 m/sec were measured. As expected, propellers with coarser blade settings require more power and produce more thrust than those with finer pitch, and peak efficiency is delayed to higher values of the advance ratio (J). The peak efficiency is between 70 and 80 percent measured efficiency over the normal operating range (J=0.4 to 0.6) is 80 to 85 percent of the ideal efficiency, for a propeller of a different design performance is degraded by a further 10 percent.

N88-16668*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

COMPUTATIONAL UNSTEADY AERODYNAMICS FOR AEROELASTIC ANALYSIS

WOODROW WHITLOW, JR. Dec. 1987 29 p

(NASA-TM-100523; NAS 1.15:100523) Avail: NTIS HC A03/MF A01 CSCL 01A

This report summarizes the status of computational unsteady aerodynamics methods for aeroelastic analysis and makes recommendations for future research activities. The flight conditions

for which various types of flows exist are described and the aeroelastic phenomena that can occur in those flight regimes are discussed. Some important aeroelastic problems of current interest are described, and the aerodynamic methods needed to analyze them are presented. The capabilities and limitations of existing unsteady aerodynamics methods are discussed. Computer resources required to perform aeroelastic analysis of various flight vehicle configurations are presented. Recommendations for future research are made, and schedules for completion of proposed research tasks are presented.

N88-16670# Association Aeronautique et Astronautique de France, Paris.

EFFECT OF A MODEL SUPPORT STRUT ON MEASUREMENT OF AERODYNAMIC LONGITUDINAL AND LATERAL COEFFICIENTS

M. QUEMARD, M. VANDEKREEKE, and M. VERRIERE Nov. 1986 32 p. In FRENCH Sponsored by Direction des Recherches, Etudes et Techniques, Paris, France Prepared in cooperation with ONERA, Paris, France and Centre d'Essais Aeronautique de Toulouse, France

Lateral stability tests were run in wind tunnels on civilian airplane models mounted on a single strut. The model was balanced atop a vertical strut tied in with the devices regulating the angles of attack and sideslip. Significant discrepancies in lateral stability were noted during testing of the ATR 42 models in the two wind tunnels. It was shown that the very visible interaction of the ATR 42 strut with the landing gear fairing was responsible and that the effect was proportional to the relative thickness of the strut. Ground effects are studied by lowering the model toward the floor with a telescoping mask. Measurements also furnished the figures needed to correct the absolute values of the lift and pitching moment coefficients.

N88-16671# Association Aeronautique et Astronautique de France, Paris.

TESTING OF A SCHEMATIC TRANSPORT PLANE MODEL IN SEVERAL EUROPEAN WINDTUNNELS

V. SCHMITT Nov. 1986 30 p In FRENCH Presented at the 23rd Colloque d'Aerodynamique Appliquee, Modane, France, 12-14 Nov. 1986 Sponsored by Direction des Recherches, Etudes et Techniques, Paris, France Prepared in cooperation with Office National d'Etudes et de Recherches Aerospatiales, Paris, France (PB87-170270; NOTE-TECHNIQUE-86-08; ISBN-2-7170-0856-X) Avail: NTIS HC E04/MF E04 CSCL 01A

An international program was carried out to improve design methods for three dimensional configurations and to increase confidence in experimental data. The selected configuration was the DFVLR-F4 wing body incorporating a high aspect ratio supercritical wing and an Airbus type fuselage. For the experimental part of the exercise, a single model was tested in the major European wind tunnels. The transonic test consisted mainly of global force and moment measurements and measurement of pressure distributions on the wing and fuselage. The results were analyzed and compared.

N88-16672# Association Aeronautique et Astronautique de France, Paris.

DESCRIPTION OF TESTS RUN IN THE T2 CRYOGENIC WIND TUNNEL

A. SERAUDIE, A. BLANCHARD, and J. B. DOR Nov. 1986 51 p Sponsored by Direction des Recherches, Etudes et Techniques, Paris, France Prepared in cooperation with ONERA, Paris, France and Centre d'Etudes et de Recherches, Toulouse, France (PB87-170296; NOTE-TECHNIQUE-86-07; ISBN-2-7170-0855-1) Avail: NTIS HC E04/MF E04 CSCL 01A

Research done on the testing techniques and measurement methods to be used in the T2 pressurized cryogenic wind tunnel is described. It was found that the model temperature must be established before measuring the gust. Several rounds of cryogenic tests provided valuable experience in conducting cold flow

measurements. Cross checking was done to validate the tests. However, some experimental snags related to high unit Reynolds numbers were encountered during natural transition tests. It was found necessary to take the level of flow turbulence into account and to improve the condition of the model surfaces to maintain a laminar state in the boundary layers of most of the airfoils.

Author

N88-16674*# Florida Univ., Gainesville. Dept. of Engineering Sciences.

A JET IN A CROSSFLOW Final Report, 1 Jan. 1978 - 31 Jul. 1987

RICHARD L. FEARN 3 Mar. 1988 8 p

(Contract NSG-2288)

(NASA-CR-182469; NAS 1.26:182469) Avail: NTIS HC A02/MF A01 CSCL 01A

In the transition from hover to wingborn flight, V/STOL aircraft rely on the direct thrust of lift jets to supplement wing generated lift. The lifting jets interact with the flow over the aerodynamic surface to produce a complex flow around the aircraft. The simplest configuration which retains the essential characteristics of the jet/aerodynamic-surface interaction problem is a subsonic round jet exhausting perpendicularly through a large flat plate into a uniform crossflow. This configuration was studied extensively, both by experiment and by analysis. As a result, a fairly complete experiment data base exists for comparison with the numerical calculations. Research publications and presentations in this area are included. Each citation is followed by an abstract of the work.

N88-16675*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

MACH NUMBER EFFECTS ON TRANSONIC AEROELASTIC FORCES AND FLUTTER CHARACTERISTICS

ROSS W. MOHR, JOHN T. BATINA, and HENRY T. Y. YANG (Purdue Univ., West Lafayette, Ind.) Feb. 1988 13 p Proposed for presentation at the AIAA/ASME/ASCE/AHS/ASC 29th Structures, Structural Dynamics and Materials Conference, Williamsburg, Va.

(NASA-TM-100547; NAS 1.15:100547; AIAA-88-2304) Avail: NTIS HC A03/MF A01 CSCL 01A

Transonic aeroelastic stability analysis and flutter calculations are presented for a generic transport-type wing based on the use of the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) finite-difference code. The CAP-TSD code was recently developed for transonic unsteady aerodynamic and aeroelastic analysis of complete aircraft configurations. A binary aeroelastic system consisting of simple bending and torsion modes was used to study aeroelastic behavior at transonic speeds. Generalized aerodynamic forces are presented for a wide range of Mach number and reduced frequency. Aeroelastic characteristics are presented for variations in freestream Mach number, mass ratio, and bending-torsion frequency ratio. Flutter boundaries are presented which have two transonic dips in flutter speed. The first dip is the usual transonic dip involving a bending-dominated flutter mode. The second dip is characterized by a single degree-of-freedom torsion oscillation. These aeroelastic results are physically interpreted and shown to be related to the steady state shock location and changes in generalized aerodynamic forces due to freestream Mach number. Author

N88-16677# Aeronautical Research Labs., Melbourne (Australia).

A NOTÉ ON THE AERODYNAMIC DESIGN OF THIN PARALLEL-SIDED AEROFOIL SECTIONS

N. POLLOCK Sep. 1987 28 ρ

(ARL-AERO-TM-388; AR-004-551) Avail: NTIS HC A03/MF A01

There are many situations where parallel-sided airfoil sections with leading and trailing edge fairings of limited chordwise extent have advantages over conventional sections. The design of these unconventional sections was investigated using two potential flow plus boundary layer computer programs. Guidelines for the

selection of the leading and trailing edge fairing shapes are

N88-16678*# Bolt, Beranek, and Newman, Inc., Cambridge,

AN EXPERIMENTAL INVESTIGATION OF THE CHOPPING OF HELICOPTER MAIN ROTOR TIP VORTICES BY THE TAIL ROTOR, PART 2: HIGH SPEED PHOTOGRAPHIC STUDY Final Report, Sep. 1985 - Aug. 1987

CHARLES M. CARY 8 Sep. 1987 62 p

(Contract NAS2-12256)

(NASA-CR-177457; NAS 1.26:177457; TM-977) Avail: NTIS HC

A04/MF A01 CSCL 01A

The interaction of a free vortex and a rotor was recorded photographically using oil smoke and stroboscopic illumination. The incident vortex is normal to the plane of the rotor and crosses the rotor plane. This idealized aerodynamic experiment most nearly corresponds to helicopter flight conditions in which a tip vortex from the main rotor is incident upon the tail rotor while hovering. The high speed photographs reveal important features not observed using conventional photography where the image is the time average of varying instantaneous images. Most prominent is the strong interaction between the rotor tip vortex system and the incident vortex, resulting in the roll-up of the incident vortex around the (stronger) tip vortices and the resulting rapid destabilization of the deformed incident vortex. The viscous interaction is clearly shown also. Other forms of instabilities or wave-like behavior may be apparent from further analysis of the photographs.

National Aeronautics and Space Administration. N88-16679*# Lewis Research Center, Cleveland, Ohio.

CFD VALIDATION EXPERIMENTS FOR INTERNAL FLOWS

LOUIS A. POVINELLI 1988 22 p Proposed for presentation at the Symposium on Validation of Computational Fluid Dynamics, Lisbon, Portugal, 2-5 May 1988; sponsored by AGARD

(NASA-TM-100797; E-3973; NAS 1.15:100797) Avail: NTIS HC A03/MF A01 CSCL 01A

Computational Fluid Dynamics (CFD) validation experiments at NASA Lewis Research Center are described. The material presented summarizes the research in three areas: Inlets, Ducts and Nozzles; Turbomachinery; and Chemically Reacting Flows. The specific validation activities are concerned with shock-boundary layer interactions, vortex generator effects, large low speed centrifugal compressor measurements, transonic fan shock structure, rotor/stator kinetic energy distributions, stator wake shedding characteristics, boundary layer transition, multiphase flow and reacting shear layers. These experiments are intended to provide CFD validation data for the internal flow fields within aerospace propulsion system components. Author

National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

LOADS AND AEROELASTICITY DIVISION RESEARCH AND **TECHNOLOGY ACCOMPLISHMENTS FOR FY 1987 AND PLANS FOR FY 1988**

S. C. DIXON and JAMES E. GARDNER Jan. 1988 143 p (NASA-TM-100534; NAS 1.15:100534) Avail: NTIS HC A07/MF

The purpose of this paper is to present the Loads and Aeroelasticity Division's research accomplishments for FY87 and research plans for FY88. The work under each Branch (technical area) is described in terms of highlights of accomplishments during the past year and highlights of plans for the current year as they relate to five year plans for each technical area. This information will be useful in program coordination with other government organizations and industry in areas of mutual interest.

N88-17579 Princeton Univ., N. J.

SOLUTION OF THE THREE-DIMENSIONAL NAVIER-STOKES EQUATIONS FOR TRANSONIC FLOW USING A MULTIGRID METHOD Ph.D. Thesis

MOHAN JAYARAM 1987 132 p

Avail: Univ. Microfilms Order No. DA8722569

Solutions are obtained for steady, transonic flow over airplane wings by solving the three dimensional Reynolds averaged Navier-Stokes equations. Both laminar and turbulent flows, both attached and separated, are addressed. Emphasis is placed on efficiency and accuracy. The three dimensional Navier-Stokes equations are discretized by a finite volume technique. This offers flexibility in treating arbitrary geometries. A central differencing procedure is used to approximate spatial derivatives thereby ensuring second order accuracy. The resulting set of ordinary differential equations is integrated in time to reach a steady state using an explicit hybrid multistage scheme. Author

N88-17580 Stanford Univ., Calif.

CONTROL OF VORTICAL SEPARATION ON CONICAL BODIES Ph.D. Thesis

NIKOS JOHN MOURTOS 1987 200 p Avail: Univ. Microfilms Order No. DA8723056

In a variety of aeronautical applications, the flow around conical bodies at incidence is of interest. For such conical bodies, starting at moderate angles of attack, the flow separates from the lee side, forming two vortices. Although the vortex lift contribution is highly desirable, as the angle of attack increases, the vortex system becomes asymmetric, and eventually the vortices breakdown. This causes problems with stability in all directions. Thus, some control of the separation process is necessary if the vortex lift is to be exploited at higher angles of attack. The theoretical model which is used in this analysis has three parts. First, the single line vortex model is used within the framework of slender body theory to compute the outer inviscid field for specified separation lines. Next, the three-dimensional boundary layer is represented by a momentum equation for the cross flow, analogous to that for a plane boundary layer. Thirdly, control of separation is achieved by blowing tangentially from a slot located along a cone generator. For very small blowing coefficients, the separation can be postponed or suppressed completely. Dissert. Abstr.

N88-17581*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, Calif.

APPLICATION OF EMPIRICAL AND LINEAR METHODS TO **VSTOL POWERED-LIFT AERODYNAMICS**

RICHARD MARGASON and RICHARD KUHN (Kuhn, Richard E., Valencia, Calif) Feb. 1988 34 p

(NASA-TM-100048; A-88038; NAS 1.15:100048) Avail: NTIS HC A03/MF A01 CSCL 01A

Available prediction methods applied to problems of aero/propulsion interactions for short takeoff and vertical landing (STOVL) aircraft are critically reviewed and an assessment of their strengths and weaknesses provided. The first two problems deal with aerodynamic performance effects during hover: (1) out-of-ground effect, and (2) in-ground effect. The first can be evaluated for some multijet cases; however, the second problem is very difficult to evaluate for multijets. The ground-environment effects due to wall jets and fountain flows directly affect hover performance. In a related problem: (3) hot-gas ingestion affects the engine operation. Both of these problems as well as jet noise affect the ability of people to work near the aircraft and the ability of the aircraft to operate near the ground. Additional problems are: (4) the power-augmented lift due to jet-flap effects (both inand out-of-ground effects), and (5) the direct jet-lift effects during short takeoff and landing (STOL) operations. The final problem: (6) is the aerodynamic/propulsion interactions in transition between hover and wing-borne flight. Areas where modern CFD methods can provide improvements to current computational capabilities are identified.

N88-17583*# Imperial Coll. of Science and Technology, London (England). Dept. of Aeronautics.

BURST VORTEX/BOUNDARY LAYER INTERACTION Progress Report, 1 Sep. 1987 - 29 Feb. 1988

P. BRADSHAW and M. NAASERI 14 Mar. 1988 27 p. (Contract NAGW-581)

(NASA-CR-182510; NAS 1.26:182510) Avail: NTIS HC A03/MF A01 CSCL 01A

Several configurations of delta wing vortex generator and boundary layer test plate were tested, and two final ones selected. Sample measurements and flow visualizations in the candidate configurations, together with more detailed measurements in one of the two final arrangements, which were selected so that a pure vortex bursts repeatably and then interacts, in as simple fashion as possible, with a simple turbulent boundary layer, are included. It is concluded that different intensities of bursting or breakdown, like different strengths of shock wave or hydraulic jump, can be produced by minor changes of configuration. The weaker breakdowns do not produce flow reversal. The initial measurements were done with a fairly weak, but repeatable, breakdown. Basic measurements on the second final arrangement, with a stronger breakdown, are in progress.

N88-17585*# Kuhn (Richard E.), Newport News, Va. RECOMMENDATIONS FOR GROUND EFFECTS RESEARCH FOR V/STOL AND STOL AIRCRAFT AND ASSOCIATED **EQUIPMENT FOR LARGE SCALE TESTING**

RICHARD E. KUHN Mar. 1986 110 p

(Contract NAS2-11912)

(NASA-CR-177429; NAS 1.26:177429) Avail: NTIS HC A06/MF CSCL 01A

The current understanding of the effects of ground proximity on V/STOL and STOL aircraft is reviewd. Areas covered include (1) single jet suckdown in hover, (2) fountain effects on multijet configurations, (3) STOL ground effects including the effect of the ground vortex flow field, (4) downwash at the tail, and (5) hot gas ingestion in both hover and STOL operation. The equipment needed for large scale testing to extend the state of the art is reviewed and developments in three areas are recommended as follows: (1) improve methods for simulating the engine exhaust and inlet flows; (2) develop a model support system that can simulate realistic rates of climb and descent as well as steady height operation; and (3) develop a blowing BLC ground board as an alternative to a moving belt ground board to properly simulate the flow on the around. Author

N88-17586*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, Calif.

PROCEEDINGS OF THE CIRCULATION-CONTROL WORKSHOP,

JACK N. NIELSEN, comp. May 1987 591 p Workshop held at Moffett Field, Calif., 19-21 Feb. 1986 Original contains color illustrations

(NASA-CP-2432; .A-86314; NAS 1.55:2432) Avail: NTIS HC A25/MF A01 CSCL 01A

A Circulation Control Workshop was held at NASA Ames by respresentatives of academia, industry, and government. A total of 32 papers were given in six technical sessions covering turbulence, circulation control airfoil theory, circulation control airfoil wing experiments, circulation control rotor theory, x-wing technology, fixed wing technology, and other concepts. The last session of the workshop was devoted to circulation research planning.

N88-17591*# Lockheed-Georgia Co., Marietta. Advanced Flight Sciences Dept.

EVALUATION OF A RESEARCH CIRCULATION CONTROL **AIRFOIL USING NAVIER-STOKES METHODS**

GEORGE D. SHREWSBURY In NASA, Ames Research Center Proceedings of the Circulation-Control Workshop, 1986 p 115-134 May 1987 Previously announced in IAA as A87-22754 Avail: NTIS HC A25/MF A01 CSCL 01A

The compressible Reynolds time averaged Navier-Stokes equations were used to obtain solutions for flows about a two dimensional circulation control airfoil. The governing equations were written in conservation form for a body-fitted coordinate system and solved using an Alternating Direction Implicit (ADI) procedure. A modified algebraic eddy viscosity model was used to define the turbulent characteristics of the flow, including the wall jet flow over the Coanda surface at the trailing edge. Numerical results are compared to experimental data obtained for a research circulation control airfoil geometry. Excellent agreement with the experimental results was obtained.

N88-17592*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, Calif.

NAVIER-STOKES COMPUTATIONS CIRCULATION **CONTROL AIRFOILS**

THOMAS H. PULLIAM, DENNIS C. JESPERSEN, and TIMOTHY J. BARTH In its Proceedings of the Circulation-Control Workshop, 1986 p 135-163 May 1987 Previously announced as N86-30995

Avail: NTIS HC A25/MF A01 CSCL 01A

Navier-Stokes computations of subsonic to transonic flow past airfoils with augmented lift due to rearward jet blowing over a curved trailing edge are presented. The approach uses a spiral grid topology. Solutions are obtained using a Navier-Stokes code which employs an implicit finite difference method, an algebraic turbulence model, and developments which improve stability, convergence, and accuracy. Results are compared against experiments for no jet blowing and moderate jet pressures and demonstrate the capability to compute these complicated flows.

N88-17593*# Analytical Methods, Inc., Redmond, Wash. ANALYSIS FOR CIRCULATION CONTROL WALL JET AERODYNAMICS. PART 2: ZONAL MODELING CONCEPTS FOR WALL JET/POTENTIAL FLOW COUPLING

FRANK A. DVORAK and SANFORD M. DASH (Science Applications International Corp., Princeton, N.J.) *In* NASA. Ames Research Center Proceedings of the Circulation-Control Workshop, 1986 p 165-181 May 1987 Avail: NTIS HC A25/MF A01 CSCL 01A

Work currently in progress to update an existing transonic circulation control airfoil analysis method is described. Existing methods suffer from two dificiencies: the inability to predict the shock structure of the underexpanded supersonic jets; and the insensitivity of the calculation to small changes in the Coanda surface geometry. A method developed for the analysis of jet exhaust plumes in supersonic flow is being modified for the case of the underexpanded wall jet. In the subsonic case, the same wall jet model was modified to include the calculation of the normal pressure gradient. This model is currently being coupled with the transonic circulation control airfoil analysis.

N88-17594*# Stanford Univ., Calif.

THE FURTHER DEVELOPMENT OF CIRCULATION CONTROL **AIRFOILS**

N. J. WOOD In NASA. Ames Research Center Proceedings of the Circulation-Control Workshop, 1986 p 183-196 Avail: NTIS HC A25/MF A01 CSCL 01A

The performance trends of circulation control airfoils are reviewed and observations are made as to where improvements in performance and expansion of the flight envelope may be feasible. A new analytically defined family of airfoils is suggested, all of which maintain the fore and aft symmetry required for stopped rotor application. It is important to recognize that any improvements in section capabilities may not be totally applicable to the present vehicle operation. It remains for the designers of the rotor system to reappraise the three dimensional operating environment in view of the different airfoil operating characteristics and for the airfoil definitions to be flexible while maintaining satisfactory levels of performance. Author

N88-17595*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, Calif.

ON THE EFFECT OF LEADING EDGE BLOWING ON CIRCULATION CONTROL AIRFOIL AERODYNAMICS

B. G. MCLACHLAN In its Proceedings of the Circulation-Control Workshop, 1986 p 199-208 May 1987

Avail: NTIS HC A25/MF A01 CSCL 01A

In the present context the term circulation control is used to denote a method of lift generation that utilizes tangential jet blowing over the upper surface of a rounded trailing edge airfoil to determine the location of the boundary layer separation points, thus setting an effective Kutta condition. At present little information exists on the flow structure generated by circulation control airfoils under leading edge blowing. Consequently, no theoretical methods exist to predict airfoil performance under such conditions. An experimental study of the flow field generated by a two dimensional circulation control airfoil under steady leading and trailing edge blowing was undertaken. The objective was to fundamentally understand the overall flow structure generated and its relation to airfoil performance. Flow visualization was performed to define the overall flow field structure. Measurements of the airfoil forces were also made to provide a correlation of the observed flow field structure to airfoil performance. Preliminary results are presented, specifically on the effect on the flow field structure of leading edge blowing, alone and in conjunction with trailing edge

N88-17596*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, Calif.

PRESSURE DISTRIBUTIONS AND OIL-FLOW PATTERNS FOR A SWEPT CIRCULATION-CONTROL WING

EARL R. KEENER, DWIGHT T. SANDERFER, and NORMAN J. WOOD (Stanford Univ., Calif.) In its Proceedings of the Circulation-Control Workshop, 1986 p 209-238 May 1987 Avail: NTIS HC A25/MF A01 CSCL 01A

Pressure distributions and photographs of oil flow patterns are presented for a circulation control wing. The model was an aspect ratio four semispan wing mounted on the side wall of the NASA Ames Transonic Wind Tunnel. The airfoil was a 20 percent thick ellipse, modified with circular leading and trailing edges of 4 percent radius, and had a 25.4 cm constant chord. This configuration does not represent a specific wing design, but is generic. A full span, tangetial, rearward blowing, circulation control slot was incorporated ahead of the trailing edge on the upper surface. The wing was tested at Mach numbers from 0.3 to 0.75 at sweep angle of 0 to 45 deg with internal to external pressure ratios of 1.0 to 3.0. Lift and pitching momemt coefficients were obtained from measured pressure distributions at five span stations. When the conventional corrections resulting from sweep angle are applied to the lift and moment of circulation control sections, no additional corrections are necessary to account for changes in blowing efficiency. This is demonstrated for an aft sweep angle of 45 deg. An empirical technique for estimating the downwash distribution of a swept wing was validated. Author

N88-17597*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, Calif.

BOUNDARY-LAYER AND WAKE MEASUREMENTS ON A SWEPT, CIRCULATION-CONTROL WING

FRANK W. SPAID (McDonnell-Douglas Research Labs., St. Louis, Mo.) and EARL R. KEENER In its Proceedings of the Circulation-Control Workshop, 1986 p 239-266 May 1987 Previously announced in IAA as A87-22449

Avail: NTIS HC A25/MF A01 CSCL 01A

Wind tunnel measurements of boundary layer and wake velocity profiles and surface static pressure distributions are presented for a swept, circulation control wing. The model is an aspect ratio four semispan wing mounted on the tunnel side wall as a sweep angle of 45 deg. A full span, tangetial, rearward blowing, circulation control slot is located ahead of the trailing edge on the upper surface. Flow surveys were obtained at mid-semispan at freestream Mach numbers of 0.425 and 0.70. Boundary layer profiles measured on the forward portions of the wing are approximately streamwise and two dimensional. The flow in the vicinity of the jet exit and in the near wake is highly three dimensional. The jet flow near the slot on the Coanda surface is directed normal to the slot. Near wake surveys show large outboard flows at the center of the wake. At Mach 0.425 and a 5 deg angle of attack, a range of jet blowing rates was found for which an abrupt transition from incipient separation to attached flow occurs in the boundary layer upstream of the slot. The variation in the lower surface separation location with blowing rate was determined from the boundary layer measurements at Mach 0.425.

N88-17598*# Air Force Inst. of Tech., Wright-Patterson AFB, Ohio.

WIND TUNNEL STUDIES OF CIRCULATION CONTROL **ELLIPTICAL AIRFOILS**

M. E. FRANKE and J. K. HARVELL In NASA. Ames Research Center Proceedings of the Circulation-Control Workshop, 1986 p 267-287 May 1987

Avail: NTIS HC A25/MF A01 CSCL 01A

Effects of blown jets on the lift and drag of cambered elliptical airfoils are described. Performance changes due to a splitter plate attached to the lower surface of an elliptical airfoil near the trailing edge with and without blowing are indicated. Lift and drag characteristics of airfoils with two blown jets are compared with airfoils with single blowing jets. Airfoil designs that vary the location of a second jet relative to a fixed jet are described. Author

N88-17600*# Maryland Univ., College Park.

FLAP-LAG-TORSION AEROELASTIC STABILITY OF **CIRCULATION CONTROL ROTOR IN FORWARD FLIGHT**

INDERJIT CHOPRA and CHANG-HO HONG In NASA. Ames Research Center Proceedings of the Circulation-Control Workshop, 1986 p 315-352 May 1987 Sponsored in part by David Taylor Naval Ship Research and Develop Center

(Contract N0016785-M-4464)

Avail: NTIS HC A25/MF A01 CSCL 01A

The aeroelastic stability of a circulation control rotor blade undergoing three degrees of motion (flap, lag, and torsion) is investigated in forward flight. Quasi-steady strip theory is used to evaluate the aerodynamics forces; and the airfoil characteristics are from data tables. The propulsive and the auxiliary power trims are calculated from vehicle and rotor equilibrium equations through the numerical integration of element forces in azimuth as well as in radial directions. The nonlinear time dependent periodic blade response is calculated using an iterative procedure based on Floquet theory. The periodic perturbation equations are solved for stability using Floquet transition matrix theory. The effects of several parameters on blade stability are examined, including advance ratio, collective pitch, thrust level, shaft tilt, structural stiffnesses Author variation, and propulsive and auxiliary power trims.

N88-17602*# Naval Ship Research and Development Center, Bethesda, Md.

ANALYSIS OF A FIXED-PITCH X-WING ROTOR EMPLOYING LOWER SURFACE BLOWING

ALAN W. SCHWARTZ and ERNEST O. ROGERS Ames Research Center Proceedings of the Circulation-Control Workshop, 1986 p 363-380 May 1987

Avail: NTIS HC A25/MF A01 CSCL 01A

Lower surface blowing (LSB) is investigated as an alternative to the variable blade pitch requirement for the X-wing Circulation Control (CC) rotor concept. Addition trailing edge blowing slots on the lower surfaces of CC airfoils provide a bidirectional lift capability that effectively doubles the control range. The operational requirements of this rotor system are detailed and compared to the projected performance attributes of LSB airfoils. Analysis shows

that, aerodynamically, LSB supplies a fixed pitch rotor system with the equivalent lift efficiency and rotor control of present CC rotor designs that employ variable blade pitch. Aerodynamic demands of bidirectional lift production are predicted to be within the capabilities of current CC airfoil design methodology. Emphasis in this analysis is given to the high speed rotary wing flight regime unique to stoppable rotor aircraft. The impact of a fixed pitch restriction in hover and low speed flight is briefly discussed.

Author

N88-17603*# Sikorsky Aircraft, Stratford, Conn. PREDICTION OF AEROELASTIC RESPONSE OF A MODEL X-WING ROTOR

ROBERT DOPHER and JAMES E. DUH In NASA. Ames Research Center Proceedings of the Circulation-Control Workshop, 1986 p 383-398 May 1987 Previously announced in IAA as A88-20000

Avail: NTIS HC A25/MF A01 CSCL 01A

The rotorcraft dynamics analysis was used to predict the aeroelastic responses of a representative X-wing model with a 10 ft diameter rotor. The aeroelastic methodology used and the tests and assumptions involved are reviewed. Results are reported on the findings concerning control power and higher harmonic control in hover, transition flight, vibratory loads at forward speed, and responses in conversion. It is concluded that the analysis can give satisfactory predictions of X-wing behavior.

N88-17604*# Sikorsky Aircraft, Stratford, Conn. X-WING POTENTIAL FOR NAVY APPLICATIONS

ARTHUR W. LINDEN and JAMES C. BIGGERS (Naval Ship Research and Development Center, Bethesda, Md.) In NASA. Ames Research Center Proceedings of the Circulation-Control Workshop, 1986 p 399-425 May 1987

Avail: NTIS HC A25/MF A01 CSCL 01A

The X-wing provides a VTOL aircraft which has a low disc loading hover capability, similar to a conventional helicopter, combined with a high subsonic cruise speed capability. As a result, it hovers with low fuel flow rates which make extended hover duration missions practical. Its low hover power requirements also permit hovering and low speed flight on only one engine in a high speed twin engine aircraft design. The NASA DARPA Sikorsky RSRA X-wing program developed flightworthy X-wing hardware. All design activity and the majority of its component fabrication is completed. A design study was performed on an X-wing concept demonstrator aircraft which is based on the RSRA X-wing components, combined with two MTE engines and a new fuselage.

N88-17605*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, Calif.

REDUCTION OF TILT ROTOR DOWNLOAD USING CIRCULATION CONTROL

FORT F. FELKER, JEFFREY S. LIGHT, and ROBERT E. FAYE (California Polytechnic State Univ., San Luis Obispo.) In its Proceedings of the Circulation-Control Workshop, 1986 p 429-447 May 1987

Avail: NTIS HC A25/MF A01 CSCL 01A

The effect of boundary layer control blowing on the download of a wing in the wake of a hovering rotor was measured in a small scale experiment. The objective was to evaluate the potential of boundary layer control blowing for reducing tilt rotor download. Variations were made in rotor thrust coefficient, blowing pressure ratio, and blowing slot height. The effect of these parameter variations on the wing download and wing surface pressures is presented. The boundary layer control blowing caused reductions in the wing download of 25 to 55 percent.

N88-17606*# Grumman Aerospace Corp., Bethpage, N.Y.
AN AERODYNAMIC COMPARISON OF BLOWN AND
MECHANICAL HIGH LIFT AIRFOILS

JOHN E. CARR In NASA. Ames Research Center Proceedings of the Circulation-Control Workshop, 1986 p 449-477 May 1987 Avail: NTIS HC A25/MF A01 CSCL 01A

Short takeoff and landing (STOL) performance utilizing a circulation control airfoil was successfully demonstrated on the A-6 CCW (circulation control wing). Controlled flight at speeds as slow as 67 knots was demonstrated. Takeoff ground run and liftoff speed reductions in excess of 40 and 20 percent respectively were achieved. Landing ground roll and approach speeds were similarly reduced. The technology demonstrated was intended to be useable on modern high performance aircraft. STOL performance would be achieved through the combination of a 2-D vectored nozzle and a circulation control type of high lift system. The primary objective of this demonstration was to attain A-6 CCW magnitude reductions in takeoff and landing flight speed and ground distance requirements using practical bleed flow rates from a modern turbofan engine for the blown flap system. Also, cruise performance could not be reduced by the wing high lift system. The A-6 was again selected as the optimum demonstration vehicle. The procedure and findings of the study to select the optimum high lift wing design are documented. Some findings of a supercritical airfoil and a comparison of 2-D and 3-D results are also described.

N88-17607*# Naval Ship Research and Development Center, Bethesda, Md.

FIXED WING CCW AERODYNAMICS WITH AND WITHOUT SUPPLEMENTARY THRUST DEFLECTION

J. H. NICHOLS and M. J. HARRIS *In* NASA. Ames Research Center Proceedings of the Circulation-Control Workshop, 1986 p 479-489 May 1987

Avail: NTIS HC A25/MF A01 CSCL 01A

The concept of circulation control was successfully demonstrated in flight using an A-6 aircraft. Circulation control can provide an aircraft with STOL performance of heavy lift capability. For ship based Naval aircraft the lower takeoff and landing velocities result in reduced deck gear and wind over the deck requirements. Circulation control airfoils can be mechanically less complex and lightweight compared to multi-element high lift airfoils.

N88-17610*# West Virginia Univ., Morgantown. Dept. of Mechanical and Aerospace Engineering.

CIRCULATION CONTROL STÖL AIRČRAFT DESIGN ASPECTS JOHN L. LOTH *In* NASA. Ames Research Center, Proceedings of the Circulation-Control Workshop, 1986 p 569-588 May 1987 (Contract MDA-53-108444630)

Avail: NTIS HC A25/MF A01 CSCL 01A

Since Davidson patented Circulation Control Airfoils in 1960, there have been only 2 aircraft designed and flown with circulation control (CC). Designing with CC is complex for the following reasons: the relation between lift increase and blowing momentum is nonlinear; for good cruise performance one must change the wing geometry in flight from a round to a sharp trailing edge. The bleed air from the propulsion engines or an auxiliary compressor. must be used efficiently. In designing with CC, the propulsion and control aspects are just as important as aerodynamics. These design aspects were examined and linearized equations are presented in order to facilitate a preliminary analysis of the performance potential of CC. The thrust and lift requirements for takeoff make the calculated runway length very sensitive to the bleed air ratio. Thrust vectoring improves performance and can offset nose down pitching moments. The choice of blowing jet to free stream velocity ratio determines the efficiency of applying bleed air power. Author

N88-17611# Naval Postgraduate School, Monterey, Calif.
INVESTIGATION OF DYNAMIC STALL USING LDV (LASER
DOPPLER VELOCIMETRY): MEAN FLOW STUDIES M.S.
Thesis

RICHARD RANDOLPH RYLES Sep. 1987 80 p Sponsored in part by Army Research Office and AFOSR

(AD-A187629) Avail: NTIS HC A05/MF A01 CSCL 20D

This thesis lays the foundation for the dynamic stall investigation being conducted at the Fluid Mechanics Laboratory at NASA-Ames Research Center. Using existing optical and electrical equipment, a new dedicated Micro-VAX computer and Labstar software, an Indraft transonic wind tunnel and able technicians to make the proper interface hardware, the project came together in a new test facility at the Fluid Mechanics Laboratory. The goal of the thesis was to obtain both qualitative and quantitative information about the wake profiles of an airfoil in steady state operations at varying angles of attack and tunnel conditions. To accomplish this task, schlieren photography was used to obtain a qualitative picture of the flow field. With this information, a two component Laser Doppler Velocimeter was set up to accurately measure the velocity profiles that correspond to the schlieren photographs. Once this preliminary work is completed, the same apparatus will be used to further investigate the unsteady dynamic stall phenomenon. GRA

N88-17612*# Kansas Univ. Center for Research, Inc., Lawrence. Flight Research Lab.

CALCULATION OF AERODYNAMIC CHARACTERISTICS OF AIRPLANE CONFIGURATIONS AT HIGH ANGLES OF ATTACK Final Report

J. B. TSENG and C. EDWARD LAN Sep. 1987 115 p (Contract NAG1-635)

(NASA-CR-182541; NAS 1.26:182541; CRINC-FRL-730-1) Avail: NTIS HC A06/MF A01 CSCL 01A

Calculation of the longitudinal and lateral-directional aerodynamic characteristics of airplanes by the VORSTAB code is examined. The numerical predictions are based on the potential flow theory with the corrections of high angle-of-attack phenomena, i.e., vortex flow and boundary layer separation effects. To account for the vortex flow effect, vortex lift, vortex action point, augmented vortex lift, and vortex breakdown effect through the method of suction analogy are included. The effect of boundary layer separation is obtained by matching the nonlinear section data with the 3-D lift characteristics iteratively. Through correlation with results for nine fighter configurations, it is concluded that reasonably accurate prediction of longitudinal and static lateral-directional aerodynamics can be obtained with the VORSTAB code up to an angle of attack at which wake interference and forebody vortex effect are not important. Possible reasons for discrepancy at high angles of attack are discussed. Author

N88-17613# National Aerospace Lab., Tokyo (Japan).
LIFTING-SURFACE THEORY OF OSCILLATING PROPELLERS
IN COMPRESSIBLE FLOW

TERUO ICHIKAWA Aug. 1987 25 p In JAPANESE; ENGLISH summary

(NAL-TR-943; ISSN-0389-4010) Avail: NTIS HC A03/MF A01

Linear simultaneous integral equations are derived for computing aerodynamic loads of oscillating propellers in a compressible flow. It is shown that the integral over the boundary surface at infinity in Green's formula vanishes by virtue of conditions at infinity which must be satisfied by the acceleration potential and the fundamental solution of the adjoint governing equation. A study is also made on the Mach cone in supersonic sections regarded as a characteristic surface belonging to the steady case governing differential equation. This makes it possible to distinguish subsonic and supersonic trailing edges.

N88-17614*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

A TRANSONIC-SMALL-DISTURBANCE WING DESIGN METHODOLOGY

PAMELA S. PHILLIPS, EDGAR G. WAGGONER, and RICHARD L. CAMPBELL Mar. 1988 32 p

(NASA-TP-2806; L-16393; NAS 1.60:2806) Avail: NTIS HC A03/MF A01 CSCL 01A

An automated transonic design code has been developed which modifies an initial airfoil or wing in order to generate a specified pressure distribution. The design method uses an iterative approach that alternates between a potential-flow analysis and a design algorithm that relates changes in surface pressure to changes in geometry. The analysis code solves an extended small-disturbance potential-flow equation and can model a fuselage, pylons, nacelles, and a winglet in addition to the wing. A two-dimensional option is available for airfoil analysis and design. Several two- and three-dimensional test cases illustrate the capabilities of the design code.

N88-17615*# National Aeronautics and Space Administration.
Langley Research Center, Hampton, Va.
SUPERSONIC AERODYNAMICS OF DELTA WINGS

RICHARD M. WOOD Mar. 1988 106 p

(NASA-TP-2771; L-16212; NAS 1.60:2771) Avail: NTIS HC A06/MF A01 CSCL 01A

Through the empirical correlation of experimental data and theoretical analysis, a set of graphs has been developed which summarize the inviscid aerodynamics of delta wings at supersonic speeds. The various graphs which detail the aerodynamic performance of delta wings at both zero-lift and lifting conditions were then employed to define a preliminary wing design approach in which both the low-lift and high-lift design criteria were combined to define a feasible design space.

Author

03

AIR TRANSPORTATION AND SAFETY

Includes passenger and cargo air transport operations; and aircraft accidents.

A88-27640#
DESIGN DEFICIENCY - PROBABLE CAUSE OF FATAL
AIRCRAFT ACCIDENT

P. TYAGI Aviation Medicine, vol. 30, June 1986, p. 38-40.

This paper describes an aircraft accident where a design deficiency was the probable primary cause. In the case described, an accident occurred immediately after take off, when the sleeve of the pilot, whose hand moved blindly to select flap switches, inadvertently pulled up the HP cock handle, causing the engine to flame out. The pilot landed successfully on a lake, unstrapped himself, disconnected the oxygen tube, and removed his oxygen mask, but has drowned in weed-infested water. As a result of an investigation, suitable modifications to provide a safety guard for the HP cock handle, when in fully down position, were recommended together with the use of an inflatable vest while flying and a provision of rope ladder and other flotation gear, since the only forced-landing area for take off emergencies was close to the lake.

N88-16635*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

HELICOPTER CRASHWORTHINESS RESEARCH PROGRAM
GARY L. FARLEY, RICHARD L. BOITNOTT (Army Research and
Technology Labs., Fort Eustis, Va.), and HUEY D. CARDEN In
NASA, Washington, NASA/Army Rotorcraft Technology. Volume
2: Materials and Structures, Propulsion and Drive Systems, Flight
Dynamics and Control, and Acoustics p 606-655 Feb. 1988
Avail: NTIS HC A25/MF A01 CSCL 01C

Results are presented from the U.S. Army-Aerostructures Directorate/NASA-Langley Research Center joint research program on helicopter crashworthiness. Through the on-going research program an in-depth understanding was developed on the cause/effect relationships between material and architectural variables and the energy-absorption capability of composite material and structure. Composite materials were found to be efficient energy absorbers. Graphite/epoxy subfloor structures were more efficient energy absorbers than comparable structures fabricated from Kevlar or aluminum. An accurate method predicting the energy-absorption capability of beams was developed.

N88-16641*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

NASA'S ROTORCRAFT ICING RESEARCH PROGRAM

ROBERT J. SHAW, JOHN J. REINMANN, and THOMAS L. MILLER (Sverdrup Technology, Inc., Cleveland, Ohio.) In NASA, Washington, NASA/Army Rotorcraft Technology. Volume 2: Materials and Structures, Propulsion and Drive Systems, Flight Dynamics and Control, and Acoustics p 802-832 Feb. 1988

Avail: NTIS HC A25/MF A01 CSCL 01C

The objective of the NASA aircraft icing research program is to develop and make available icing technology to support the needs and requirements of industry for all weather aircraft designs. While a majority of the technology being developed is viewed to be generic (i.e., appropriate to all vehicle classes), vehicle specific emphasis is being placed on the helicopter due to its unique icing problems. In particular, some of the considerations for rotorcraft icing are indicated. The NASA icing research program emphasizes technology development in two key areas: ice protection concepts and icing simulation (analytical and experimental). The NASA research efforts related to rotorcraft icing in these two technology areas will be reviewed.

N88-16682# Federal Aviation Administration, Oklahoma City, Okla. Civil Aeromedical Inst.

SUDDEN IN-FLIGHT INCAPACITATION IN GENERAL AVIATION Final Report

CHARLES F. BOOZE, JR. Aug. 1987 12 p (AD-A187044; DOT/FAA/AM-87/7) Avail: NTIS HC A03/MF A01 CSCL 06E

Incapacitation in the general aviation flight environment is a matter of utmost concern to the Federal Aviation Administration since the likelihood of accident is greater due to lack of redundant pilot skills in most instances. The purpose of this study was to appraise the adequacy of medical standards in minimizing the risk of sudden incapacitation. This study considers NTSB data and postcrash medical data received by the Medical Statistical Section of the Civil Aeromedical Institute (CAMI), Oklahoma City, Oklahoma, during the time period from 1975 to the present and other related literature to estimate the probability of incapacitation in general aviation. The occurrence of incapacitation for obvious medical reasons is less than would be expected based on general population morbidity/mortality data; however, the need for continued vigilance in certification and education regarding flying with known or suspected medical problems is emphasized. GRA

N88-16683# National Aerospace Lab., Amsterdam (Netherlands). Informatics Div.

VERIFICATION OF OBSTACLE ACCOUNTABILITY AREAS USING A SIMPLE MATHEMATICAL MODEL. PART 1: DESCRIPTION OF GENERAL MODEL AND APPLICATION FOR A SPECIFIC CASE

G. MOEK 2 May 1985 54 p (Contract RB-RLD-1985-2.1/VZ)

(NLR-TR-85069-U; ETN-88-90184) Avail: NTIS HC A04/MF

A probabilistic model for the lateral displacement of an aircraft after the occurrence of an engine failure during take-off is described. A lateral boundary is calculated, for any point of time after the engine failure, such that the probability of being within the (two sided) lateral boundary meets a specified value. Probability distributions for the three model parameters are considered. The model is elaborated for a specific set of probability distributions. The resulting lateral boundaries are compared with the present ICAO annex 6 obstacle accountability area. The duration of the (deterministic) first phase, when in the range of 10 to 15 sec does not significantly influence the magnitude of the computed boundary. The magnitude of the angle between flight direction and runway center line and the aircraft speed, however, have a considerable effect on the magnitude of the boundary.

N88-16684 Civil Aviation Authority, London (England). Safety Data and Analysis Unit.

ANALYSIS OF BIRD STRIKES TO UK REGISTERED AIRCRAFT 1985 (CIVIL AIRCRAFT OVER 5700 KG MAXIMUM WEIGHT

J. THORPE Sep. 1987 20 p

(CAA-PAPER-87012; ISBN-0-86039-323-2; ISSN-0269-4956;

ETN-88-91517) Avail: Issuing Activity

Bird strikes reported throughout the world in 1985 by UK airlines were analyzed. The analysis includes strike rates for aircraft types and operators based on aircraft movements. It also covers aerodromes, bird species, and effect of strike. Strike rate in 1985 is slightly less than in 1984. Gulls (Larus spp.) were involved in 39 percent of incidents where the bird species were identified. The major effect was damage to 20 engines, and there were 5 cases in which more than 1 engine on an aircraft suffered ingestion.

N88-17616*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

AIRBORNE WIND SHEAR DETECTION AND WARNING SYSTEMS: FIRST COMBINED MANUFACTURERS' AND TECHNOLOGISTS' CONFERENCE

AMOS A. SPADY, JR., comp., ROLAND L. BOWLES, comp., and HERBERT SCHLICKENMAIER, comp. (Federal Aviation Administration, Washington, D.C.) Jan. 1988 558 p Conference held in Hampton, Va., 22-23 Oct. 1987

(NASA-CP-10006; NAS 1.55:10006; DOT/FAA/PS-88/7) Avail: NTIS HC A24/MF A01 CSCL 01C

The purpose of the meeting was to transfer significant, ongoing results gained during the first year of the joint NASA/FAA Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided forum for manufacturers to review forward-looking technology concepts and for technologists to gain an understanding of FAA certification requirements and the problems encountered by the manufacturers during the development of airborne equipment.

N88-17618*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

RESPONSE OF WIND SHEAR WARNING SYSTEMS TO TURBULENCE WITH IMPLICATION OF NUISANCE ALERTS

ROLAND L. BOWLES In its Airborne Wind Shear Detection and Warning Systems: First Combined Manufacturers and Technologists Conference p 67-86 Jan. 1988

Avail: NTIS HC A24/MF A01 CSCL 01C

The objective was to predict the inherent turbulence response characteristics of candidate wind shear warning system concepts and to assess the potential for nuisance alerts. Information on

the detection system and associated signal processing, physical and mathematical models, wind shear factor root mean square turbulence response and the standard deviation of the wind shear factor due to turbulence is given in vugraph form.

N88-17619*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

INVESTIGATION OF THE INFLUENCE OF WIND SHEAR ON THE AERODYNAMIC CHARACTERISTICS OF AIRCRAFT USING A VORTEX-LATTICE METHOD

DAN D. VICROY In its Airborne Wind Shear Detection and Warning Systems: First Combined Manufacturers and Technologists Conference p 91-136 Jan. 1988

Avail: NTIS HC A24/MF A01 CSCL 01C

The objective was to investigate and characterize the aerodynamic effect of shear flow through a series of sensitivity studies of the wind velocity gradients and wing planform geometry parameters. The wind shear effect was computed using a modified vortex-lattice computer program and characterized through the formulation of wind shear aerodynamic coefficients. The magnitude of the aerodynamic effect was demonstrated by computing the resultant change in the aerodynamics of a conventional wing and tail combination on a fixed flight path through a simulated microburst. The results of the study indicate that a significant amount of the control authority of an airplane may be required to counteract the wind shear induced forces and moments in the microburst environment.

National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

WINDSHEAR WARNING AEROSPATIALE APPROACH

J. L. BONAFE In its Airborne Wind Shear Detection and Warning Systems: First Combined Manufacturers and Technologists Conference p 137-163 Jan. 1988 Avail: NTIS HC A24/MF A01 CSCL 01C

Vugraphs and transcribed remarks of a presentation on Aerospatiale's approach to windshear warning systems are given. Information is given on low altitude wind shear probability, wind shear warning models and warning system false alarms.

N88-17621*# Sundstrand Data Control, Inc., Redmond, Wash. WINDSHEAR DETECTION EFFECT OF STATIC **TEMPERATURE BIAS**

HOWARD GLOVER In NASA. Langley Research Center, Airborne Wind Shear Detection and Warning Systems: First Combined Manufacturers and Technologists Conference p 165-175 1988

Avail: NTIS HC A24/MF A01 CSCL 01C

Data in vugraph form is given on vertical winds, atmospheric temperature bias output and simulation with and without temperature bias. A block diagram of a windshear detection algorithm is given. R.J.F.

National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

AIRBORNE DOPPLER RADAR TECHNOLOGY FOR WIND **SHEAR DETECTION**

In its Airborne Wind Shear Detection and Warning Systems: First Combined Manufacturers and Technologists Conference p 177-181

Avail: NTIS HC A24/MF A01 CSCL 01C

The objectives of the Airborne Doppler Radar Technology Development Program, the technical approach and program status are given in vugraph form. R.J.F.

N88-17628*# Turbulence Prediction Systems, Boulder, Colo. INFRARED LOW-LEVEL WIND SHEAR WORK

PAT ADAMSON In NASA. Langley Research Center, Airborne Wind Shear Detection and Warning Systems: First Combined Manufacturers and Technologists Conference p 283-321 1988

Avail: NTIS HC A24/MF A01 CSCL 01C

Results of field experiments for the detection of clear air disturbance and low level wind shear utilizing an infrared airborne system are given in vugraph form. The hits, misses and nuisance alarms scores are given. Information is given on the infrared spatial resolution technique. The popular index of aircraft hazard (F= WX over g - VN over AS) is developed for a remote temperature sensor. R.J.F.

N88-17629*# Delco Systems Operations, Milwaukee, Wis. FORWARD LOOKING WIND SHEAR DETECTION Status Report,

In NASA. Langley Research Center, Airborne Wind Shear Detection and Warning Systems: First Combined Manufacturers and Technologists Conference p 323-334 Jan. 1988 Avail: NTIS HC A24/MF A01 CSCL 01C

Information on forward looking wind shear detection is presented in vugraph form. Information is given on system concept development, signal characterization, the field test program, typical radiance fluctuations vs time and radiometric temperatures vs azimuth headings.

N88-17630*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

SIMULATOR INVESTIGATION OF WIND SHEAR RECOVERY TECHNIQUES M.S. Thesis - George Washington Univ.

DAVID A. HINTON In its Airborne Wind Shear Detection and Warning Systems: First Combined Manufacturers and Technologists Conference p 335-363 Jan. 1988

Avail: NTIS HC A24/MF A01 CSCL 01C

The objective was the development of practical flight procedures and guidance for near-optimal trajectories during inadvertent wind shear encounters following takeoff. The approach was to conduct preliminary development of candidate strategies using batch simulation of the point mass B737-100 performance model and to evaluate candidate guidance strategies in piloted, real time, six degrees of freedom simulation.

N88-17631*# Boeing Commercial Airplane Co., Seattle, Wash. Flight Deck Research.

CREW INTERFACE WITH WINDSHEAR SYSTEMS

DAVE CARBAUGH In NASA. Langley Research Center, Airborne Wind Shear Detection and Warning Systems: First Combined Manufacturers and Technologists Conference p 365-397

Avail: NTIS HC A24/MF A01 CSCL 01C

A review is given of the areas within Boeing that are working on the NASA contract to conduct windshear studies. A synopsis is given of the work that Boeing Flight Deck Research is doing. A short review of nuisance and alerts is given in light of upcoming forward look technology. R.J.F.

N88-17633*# National Center for Atmospheric Research, Boulder, Colo. Atmospheric Technology Div.

THE ADVANCED LOW-LEVEL WINDSHEAR ALERT SYSTEM OPERATIONAL DEMONSTRATION RESULTS, SUMMER, 1987, **DENVER STAPLETON INTERNATIONAL AIRPORT**

JAMES MOORE In NASA. Langley Research Center, Airborne Wind Shear Detection and Warning Systems: First Combined Manufacturers and Technologists Conference p 481-506 1988

Avail: NTIS HC A24/MF A01 CSCL 01C

Operational results of the Advanced Low-Level Windshear Alert System operational demonstration results are presented in vugraph form and are followed by a transcribed question and answer session R.J.F.

N88-17635*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, Calif.

ARE WINDSHEAR TRAINING AID RECOMMENDATIONS APPROPRIATE FOR OTHER THAN LARGE JET TRANSPORTS? PILOT PROCEDURES: SHEAR MODELS

R. S. BRAY In NASA. Langley Research Center, Airborne Wind Shear Detection and Warning Systems: First Combined Manufacturers and Technologists Conference p 517-524 Jan. 1988

Avail: NTIS HC A24/MF A01 CSCL 01C

Information is given in vugraph form on pilot procedures in windshear, typical winds in a downburst, a downburst encounter at takeoff by a large jet transport and a light turboprop twin, and a comparison of pitch algorithms in an approach encounter with downburst shear. It is observed that the light turboprop appears no less tolerant of a downburst encounter than the large jet.

RJ.F

N88-17636*# Federal Aviation Administration, Seattle, Wash. AIRWORTHINESS CONSIDERATIONS

RAY STOER *In* NASA. Langley Research Center, Airborne Wind Shear Detection and Warning Systems: First Combined Manufacturers and Technologists Conference p 525-531 Jan. 1988

Avail: NTIS HC A24/MF A01 CSCL 01C

Guidance is provided for the airworthiness approval of both annunciation only and annunciation with guidance airborne windshear warning systems. Characteristics of a comprehensive certification plan, the criticality of certain system failure cases for windshear warning with and without escape guidance, software based systems, and probability analysis are among the topics covered.

R.J.F.

N88-17638# National Transportation Safety Board, Washington, D. C. Bureau of Safety Program.

ANNUAL REVIEW OF AIRCRAFT ACCIDENT DATA: US AIR CARRIER OPERATIONS CALENDAR YEAR 1985

27 Nov. 1987 121 p

(PB88-135843; NTSB/ARC-87/03) Avail: NTIS HC A06/MF A01 CSCL 01C

The record of aviation accidents involving revenue operations of U.S. Air Carriers including Commuter Air Carriers and On Demand Air Taxis for calender year 1985 is presented. The report is divided into three major sections according to federal regulations under which the flight was conducted: 14 CFR 121, 125, 127, Scheduled 14 CFR 135, or Nonscheduled 14 CFR 135. In each section of the report tables are presented to describe the losses and characteristics of the 1985 accidents to enable comparison with prior years.

N88-17639# National Transportation Safety Board, Washington, D. C. Bureau of Accident Investigation.

AIRCRAFT ACCIDENT/INCIDENT, NEWARK, NEW JERSEY, NOVEMBER 13, 1986 Summary Report

30 Dec. 1987 14 p

(NTSB/AAR-87/04-SUMM) Avail: NTIS HC A03/MF A01

A summary is presented of an aircraft accident investigated by the National Transportation Safety Board. The accident location and date is Newark, New Jersey, November 13, 1986. Author

04

AIRCRAFT COMMUNICATIONS AND NAVIGATION

Includes digital and voice communication with aircraft; air navigation systems (satellite and ground based); and air traffic control.

A88-25755

RAY ANALYSIS OF A CLASS OF HYBRID CYLINDRICAL AIRCRAFT WINGS

R. M. JHA, S. A. BOKHARI, V. SUDHAKAR, and P. R. MAHAPATRA (Indian Institute of Science, Bangalore, India) Electronics Letters (ISSN 0013-5194), vol. 24, Jan. 7, 1988, p. 21, 22.

With the growing trend toward the utilization of higher frequencies of the electromagnetic spectrum, aircraft wings have become electrically large scatterers, and their curvature and thickness can no longer be ignored in the mutual coupling calculations between antennas located over them. A realistic hybrid quadric cylinder model is developed here for an aircraft wing of finite thickness. A surface ray treatment in closed form is used, permitting direct evaluation of mutual coupling between antennas located arbitrarily on the wing.

A88-27363

TRACKING AIRCRAFT BY ACOUSTIC SENSORS - MULTIPLE HYPOTHESIS APPROACH APPLIED TO POSSIBLY UNRESOLVED MEASUREMENTS

SHOZO MORI, KUO-CHU CHANG, and CHEE-YEE CHONG (Advanced Decision Systems, Mountain View, CA) IN: 1987 American Control Conference, 6th, Minneapolis, MN, June 10-12, 1987, Proceedings. Volume 2. New York, Institute of Electrical and Electronics Engineers, 1987, p. 1099-1105. refs (Contract MDA903-86-C-0011)

Poor resolution of acoustic sensors frequently lead to merged measurements for closely spaced targets. This paper considers tracking low-altitude aircraft by a network of acoustic sensors. Merging measurement outputs from sensors are probabilistically analyzed. A multiple hypothesis approach is then used to derive an algorithm for tracking the targets. The likelihood functions used in hypothesis evaluation are derived assuming two-way merging and a simulated example is used to illustrate the algorithm.

Author

A88-27412

DISTRIBUTED MIXED SENSOR AIRCRAFT TRACKING

RICHARD T. LACOSS (MIT, Lexington, MA) IN: 1987 American Control Conference, 6th, Minneapolis, MN, June 10-12, 1987, Proceedings. Volume 3. New York, Institute of Electrical and Electronics Engineers, 1987, p. 1827-1830. DARPA-sponsored research.

A combination of geographically distributed, small acoustic arrays, and imaging sensors can be used to detect passively and track low-flying aircraft. Detection and tracking algorithms developed to illustrated this concept have been developed and demonstrated in real-time using an experimental test bed. This paper describes the algorithms, the test bed system, and the experimental results.

A88-27413

TRACKING MULTIPLE AIR TARGETS WITH DISTRIBUTED ACOUSTIC SENSORS

CHEE-YEE CHONG, KUO-CHU CHANG, and SHOZO MORI (Advanced Decision Systems, Mountain View, CA) IN: 1987 American Control Conference, 6th, Minneapolis, MN, June 10-12, 1987, Proceedings. Volume 3. New York, Institute of Electrical and Electronics Engineers, 1987, p. 1831-1836. refs (Contract ARPA ORDER 4272-07; MDA903-86-C-0011)

The tracking of multiple air targets by a network of distributed acoustic sensor/processor nodes is considered. Since each sensor measures only the acoustic azimuths of the targets, cooperation among nodes in the distributed sensor network (DSN) is needed. A multiple-hypothesis approach to distributed tracking is used. Each

sensor/processor forms hypotheses consisting of local azimuth and azimuth rate tracks for targets. When the nodes communicate, hypotheses consisting of global position and velocity tracks are then formed. Simulation results for a network of several nodes are presented to illustrate the algorithms.

A88-27587#

AVSAT - A NEW GLOBAL SATELLITE SYSTEM FOR AIRCRAFT COMMUNICATIONS

DONALD K. DEMENT (Aeronautical Radio, Inc., Annapolis, MD) IN: AIAA International Communication Satellite Systems Conference, 12th, Arlington, VA, Mar. 13-17, 1988, Technical Papers . Washington, DC, American Institute of Aeronautics and Astronautics, 1988, p. 526-534. refs (AIAA PAPER 88-0846)

A global aeronautical satellite communications system is now a practical and needed development. It will enable improved operations worldwide for both commercial and private aircraft and provide new services for their crew and passengers. Leading members of industry and regulatory bodies worldwide have joined forces to define such a global system. Plans call for initiation of a thin-route data operation in 1989, upgrading to establish voice communications via shared spot-beam transponders launched on other satellites, and deploying six dedicated multichannel satellites by 1994. The needs, users, and characteristics of such a system are described, and steps to achieve its operational deployment are shown to be under way.

A88-27599#

WORLD-WIDE AERONAUTICAL SATELLITE COMMUNICATIONS

PETER WOOD and KEITH SMITH (International Maritime Satellite Organization, London, England) IN: AIAA International Communication Satellite Systems Conference, 12th, Arlington, VA, Mar. 13-17, 1988, Technical Papers . Washington, DC, American Institute of Aeronautics and Astronautics, 1988, p. 603-611. (AIAA PAPER 88-0865)

The aeronautical industry's interest in satellite communications goes back more than twenty-five years. Many tests and demonstrations have confirmed the feasibility of using satellites for both voice and data communications with aircraft. However, for most of this time, the high costs associated with the introduction of a satellite communication system dedicated to aeronautical services have presented the introduction of an operational system. In contrast, satellite communications for maritime services have been in general use for many years, and have proved to be commercially successful. The introduction of new, higher capacity, satellites capable of serving both maritime and aeronautical users now make it possible for operational aeronautical satellite services to be introduced. Within the next year, communications for air traffic services, aeronautical operational and administrative communications, and public correspondence (telephone) will be available on a world-wide basis.

N88-16686# Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt, Cologne (West Germany). Hauptabteilung Verkehrsforschung.

ADDITIONAL INVESTIGATIONS IN LANDING PROCESS OF AIRCRAFT: TEST DISTRIBUTIONS

HANNS-JUERGEN PETERS Jun. 1987 76 p In GERMAN; ENGLISH summary Report will also be announced as translation (ESA-TT-1099)

(DFVLR-MITT-87-13; ISSN-0176-7739; ETN-88-91452) Avail: NTIS HC A05/MF A01; DFVLR, Colog ne, Fed. Republic of Germany DM 25.50

The landing times for the 10 German civil airports, without waiting times due to aircraft allocations to holding areas, were investigated using a simulation model for the landing process. Test distributions were developed. Results are synthetic landing time distributions with waiting times, the adaptation of which to the empirical landing time distribution was evaluated using the Chi-square test. Further improvements of the adaptation of the simulated distribution to the empirical one can be obtained by

structural changes of the test distribution, e.g., by limitation of the maximum landing time.

N88-16687*# Ohio State Univ., Columbus. Dept. of Electrical Engineering.

A STUDY OF THE TCAS 2 COLLISION AVOIDANCE SYSTEM MOUNTED ON A BOEING 737 AIRCRAFT

B. GRANDCHAMP, W. D. BURNSIDE, and R. G. ROJAS Dec. 1987 175 p

(Contract NSG-1498)

(NASA-CR-182457; NAS 1.26:182457; TR-716199-10) Avail: NTIS HC A08/MF A01 CSCL 17G

The purpose of this report is to determine the effects of scattering from major aircraft structures on the TCAS 2 collision avoidance system mounted on a Boeing 737. It is found that the major source of scattering for angles of observation above the horizon is the vertical stabilizer and that its effect may be greatly reduced by mounting the TCAS 2 array close to the nose of the aircraft. In addition, by mounting the array close to the nose, the effects of fuselage blockage on the array patterns at elevation angles below the horizon may be greatly reduced in the forward direction.

N88-16688*# Douglas Aircraft Co., Inc., Long Beach, Calif. CREW PROCEDURES FOR MICROWAVE LANDING SYSTEM OPERATIONS

LELAND G. SUMMERS Nov. 1987 49 p

(Contract NAS1-18028)

(NASA-CR-178359; NAS 1.26:178359) Avail: NTIS HC A03/MF A01 CSCL 17G

The objective of this study was to identify crew procedures involved in Microwave Landing System (MLS) operations and to obtain a preliminary assessment of crew workload. The crew procedures were identified for three different complements of airborne equipment coupled to an autopilot. Using these three equipment complements, crew tasks were identified for MLS approaches and precision departures and compared to an ILS approaches and a normal departure. Workload comparisons between the approaches and departures were made by using a task-timeline analysis program that obtained workload indexes, i.e., the radio of time required to complete the tasks to the time available. The results showed an increase in workload for the MLS scenario for one of the equipment complements. However, even this workload was within the capacity of two crew members.

05

AIRCRAFT DESIGN, TESTING AND PERFORMANCE

Includes aircraft simulation technology.

A88-25792

FOKKER 50 MARKS A FRESH START

JACQUES CLOSTERMANN Interavia (ISSN 0020-5168), vol. 43, Jan. 1988, p. 39-43.

The Fokker 50 is a commuter airliner carrying 50 passengers at 32-in pitch; it is powered by two PW125 turboprops of 2250 shp at takeoff, which drive six-blade propellers. The noise level is noted to be exceptionally low, averaging 77 dB over three-quarters of the passenger cabin, and has been achieved through the use of vibration-absorbing panels and careful synchronization of propeller frequencies. The flight deck is arranged according to the 'dark cockpit' principle, so that all indicator lights are off when all is well. If the engine-control computer fails, the engines can be controlled manually without limitations.

A88-25793

THINKING BIG IN RPVS - AN AFFORDABLE GIANT AMONG THE MINIS

BRIAN WANSTALL Interavia (ISSN 0020-5168), vol. 43, Jan. 1988, p. 53, 54.

The TRA Model 410 Unmanned Air Vehicle attempts to furnish RPV users with a broader range of capabilities for all-weather surveillance than the more highly specialized mini-RPVs currently in use. The 410's 160-hp piston engine yields 190 kt top speed, and the airframe accomodates an 0.68-cu m payload bay. The 410 is able to stay on station for 8 hr at 1000 km from base while carrying a 135-kg multisensor payload; it may alternatively orbit for 19 hr at 30,000 ft over any area of interest. Navigational accuracy will be ensured by the use of GPS. The wings of the 410 fold back for stowage and carriage.

A88-25794

BULLSEYE FOR SKYEYE - THE RPV WITH PARAFOIL, SKID AND SALES

BRIAN WANSTALL Interavia (ISSN 0020-5168), vol. 43, Jan. 1988, p. 57-59.

Skyeye is a large reconnaissance RPV whose planform is a modification (with wingtip extensions) of the Aquila RPV wing; to this wing are mated a deeper, squarer cross-section fuselage than that of the Aquila, with a twin-boom/tailplane empenage, that renders Skyeye more accomodating of payload volumes and less center-of-gravity-sensitive. Skyeye has a retractable, shock-absorbent skid allowing it to land off a steep approach without flaring on sand, dirt, grass, or hard surfaces. A recently-incorporated novel feature is a parafoil for controlled spot-landings in very difficult or confined terrain.

A88-25809

XT-4 - POTENT WITH POTENTIAL

PETER MIDDLETON and JANICE LOWE Flight International (ISSN 0015-3710), vol. 133, Jan. 2, 1988, p. 17-21.

The Japanese XT-4 aircraft built solely for the training of pilots is the highest performance subsonic trainer now flying. Airframe integrity proved by static and fatigue tests as well as good high-angle-of-attack and spin characteristics predicted from free-flight model tests and vertical wind-tunnel trials are described. Design policy and engine technology, low stalling speeds, and reduction of the lerxes to vestigial proportions are discussed. Other specifications of the XT-4 aircraft include a ceiling of more than 50,000 ft, 3,680-lb thrust, a bypass ratio of 0.9, a sea-level static specific fuel consumption of 0.68 lb/hr lb, and digital avionics. Quoted range, in clear configuration with its full 1,600 kg of internal fuel, is over 700 nmi. The aircraft costs are in the range of \$18 million per unit.

A88-26415

THE BOEING HELICOPTER MODEL 360 ADVANCED TECHNOLOGY HELICOPTER

KEN GRINA Vertiflite (ISSN 0042-4455), vol. 34, Jan.-Feb. 1988, p. 29-33.

The Model 360 transport helicopter incorporates all-composite primary fuselage structure, elastomeric rotor bearings and dampers, very smooth aerodynamic surfaces (by comparison with metallic airframes), state-of-the-art digital avionics and displays, and advanced flight controls. Nomex honeycomb paneling is used throughout the fuselage structure to minimize weights, costs, and parts counts, while maximizing damage resistance and ease of repair. The use of such technology in future rotorcraft will result in 35-percent higher cruise speeds, 20-percent lower structural weights, a 50-percent reduction in maintenance costs, and a 70-percent improvement in dynamic system component fatigue.

A88-26644#

FLIGHT TESTING KEEPS PACE

SHAHID SIDDIQI (Aviation Advanced Technology Applications, Orlando, FL) and ROY ROBSON (McDonnell Douglas Corp., Saint Louis, MO) Aerospace America (ISSN 0740-722X), vol. 26, Feb. 1988, p. 14-16, 19.

The flight test requirements of laminar flow airframes, propfan engines, and high agility marginal stability control systems are primary drivers for flight test technology and methodology evolution. Typifying the state-of-the-art is a high speed data-acquisition system gathering noise and vibration data during ultrahigh bypass turbofan engine testing on an MD-80 test aircraft; the system employs 256 channels, and is capable of 1.6 million samples/sec. In conjunction with advanced ground data processing, the system has reduced the time for dynamic data reduction from the 6-8 weeks typical of analog recording and processing to two days.

A88-26645#

SQUEEZING THE TEST CYCLE

ORVILLE WRIGHT, JR. (IBM, Federal Systems Div., Bethesda, MD) Aerospace America (ISSN 0740-722X), vol. 26, Feb. 1988, p. 17-19.

A development history is presented for aircraft flight testing methods, in order to furnish perspective for an account of contemporary practices. Since the mid-1970s, 'single-site' testing has allowed company pilots to demonstrate a given aircraft's flight envelope, while military crews fly a combined flight test program to prove specification compliance and operational effectiveness. As the testing cycle has been thus shortened, flight testing has come to stress reliability and maintainability; avionics testing has also become a primary challenge.

A88-26647#

CONTROL MUSCLE FOR AGILE AIRCRAFT

RICHARD DEMEIS Aerospace America (ISSN 0740-722X), vol. 26, Feb. 1988, p. 32-35.

An evaluation is made of the design features, development and implementation status, and performance characteristics of the 8000-psi pressure/nonflammable hydraulic fluid actuators, electromechanical actuators (EMAs), and electrohydrostatic actuators that will be incorporated into next-generation combat aircraft. The USAF hopes that the 8000-psi hydraulics technology will be sufficiently advanced for integration into the forthcoming Advanced Tactical Fighter, which requires such control features to fully realize relaxed stability maneuvering. All three types of actuators are highly responsive to computer-controlled command inputs.

A88-26749* National Aeronautics and Space Administration. Ames Research Center, Moffett Field, Calif.

ELLIPTIC GENERATION OF COMPOSITE THREE-DIMENSIONAL GRIDS ABOUT REALISTIC AIRCRAFT

REESE L. SORENSON (NASA, Ames Research Center, Moffett Field, CA) IN: Numerical grid generation in computational fluid dynamics; Proceedings of the International Conference, Landshut, Federal Republic of Germany, July 14-17, 1986. Swansea, Wales, Pineridge Press, 1986, p. 353-371. refs

An elliptic method for generating composite grids about realistic aircraft is presented. A body-conforming grid is first generated about the entire aircraft by the solution of Poisson's differential equation. This grid has relatively coarse spacing, and it covers the entire physical domain. At boundary surfaces, cell size is controlled and cell skewness is nearly eliminated by inhomogeneous terms, which are found automatically by the program. Certain regions of the grid in which high gradients are expected, and which map into rectangular solids in the computational domain, are then designated for zonal refinement. Spacing in the zonal grids is reduced by adding points with a simple, algebraic scheme. Details of the grid-generation method are presented along with results of the present application, a wing/body configuration based on the F-16 fighter aircraft.

Author

A88-26875

F-16 FLIGHT TESTS WITH THE F110 ENGINE - LESSONS LEARNED

GARALD K. ROBINSON (USAF, Washington, DC) Cockpit (ISSN 0742-1508), Oct.-Dec. 1987, p. 5-21. refs

The F-16C aircraft and the F110 engine are described. The flight test plan objectives such as primary operating mode (PRI) control throttle transients (dry and afterburner), secondary control mode (SEC) transients and transfers, and PRI and SEC airstarts are discussed. The various organizations that participated in the test program, the significant problems and challenges encountered during the course of testing, and the constraints imposed on the test program are considered. A summary of the lessons learned is presented so other test programs may benefit from them. It is concluded that the engine has a substantial increase in thrust that provides quicker acceleration and higher top speeds than previously achievable, and without paying a fuel-consumption penalty; the normal and emergency procedures are much simpler, and there are no restrictions on normal-throttle operation or the use of afterburner anywhere in the flight envelope.

A88-26893

FINITE ELEMENT ANALYSIS FOR SHOCK ABSORBERS OF PILOT SEATS

SHOUMEI WANG (Beijing Institute of Aeronautics and Astronautics, People's Republic of China) Computers and Structures (ISSN 0045-7949), vol. 28, no. 2, 1988, p. 217-222.

The mechanical response of a pilot-seat shock absorber and support structure is investigated analytically by means of a nonlinear FEM. The shock absorbers and their sliding motion along the seat rail are treated using a truss element with a nonlinear history-dependent material model and a nonlinear three-node beam, respectively, and the nonlinearity due to the moving node is described by specialized shape functions. Numerical results for a sample problem are presented in tables and graphs and briefly characterized.

A88-27496

AGILE FALCON AND HORNET 2000

BILL SWEETMAN Interavia (ISSN 0020-5168), vol. 43, Feb. 1988, p. 161-164.

The Agile Falcon (based on the 1991-production Block 50 F-16C/D but with a new wing) and proposals for updating of the F-18 Super Hornet are discussed, with an emphasis on the cost/technology advantages these updated aircraft will have over advanced fighters being developed in Europe. The baseline configuration for Agile Falcon includes an 1100-module electronically scanning radar which can be produced for about the same price as the APG-68 radar. The engine for the F-16 will probably be a derivative of the current F100 or F110 developed under the Improved Performance Engine program. No final decisions have been made regarding the F-18, but four new configurations are being studied: (1) a baseline version with 10-percent improved thrust, (2) a heavier, longer-range version, (3) a more maneuverable stretched version of (2), and (4) a radical design with cranked-arrow wing, foreplanes, and new vertical stabilizers. T.K.

A88-28251*# Stanford Univ., Calif.

OPTIMAL LANDING OF A HELICOPTER IN AUTOROTATION

ALLAN Y. LEE, ARTHUR E. BRYSON, JR., and WILLIAM S. HINDSON (Stanford University, CA) Journal of Guidance, Control, and Dynamics (ISSN 0731-5090), vol. 11, Jan.-Feb. 1988, p. 7-12. Previously cited in issue 23, p. 3399, Accession no. A86-47705. refs

(Contract NCC2-106)

A88-28252#

INTERIOR TRANSITION LAYERS IN FLIGHT-PATH OPTIMIZATION

MARK D. ARDEMA (Santa Clara, University, CA) and L. YANG (Sterling Software, Inc., Palo Alto, CA) Journal of Guidance, Control, and Dynamics (ISSN 0731-5090), vol. 11, Jan.-Feb. 1988, p. 13-18. Previously cited in issue 23, p. 3402, Accession no. A86-48576. refs

N88-16627*# Army Aviation Systems Command, Moffett Field, Calif.

THE DEVELOPMENT OF CFD METHODS FOR ROTOR APPLICATIONS

F. X. CARADONNA and W. J. MCCROSKEY In NASA, Washington, NASA/Army Rotorcraft Technology. Volume 1: Aerodynamics, and Dynamics and Aeroelasticity p 34-65 Feb. 1988

Avail: NTIS HC A23/MF A01 CSCL 01C

The optimum design of the advancing helicopter rotor for high-speed forward flight always involves a tradeoff between transonic and stall limitations. However, the preoccupation of the rotor industry was primarily concerned with stall until well into the 1970s. This emphasis on stall resulted from the prevalent use of low-solidity rotors with rather outdated airfoil sections. The use of cambered airfoil sections and higher-solidity rotors substantially reduced stall and revealed the advancing transonic flow to be a more persistent limitation to high-speed rotor performance. Work in this area was spurred not only by operational necessity but also by the development of a tool for the prediction of these flows (the method of computational fluid dynamics). The development of computational fluid dynamics for these rotor problems was a major Army and NASA achievement. This work is now being extended to other rotor flow problems. The developments are outlined. Author

N88-16629*# Army Aviation Systems Command, Moffett Field, Calif

A REVIEW OF RESEARCH IN ROTOR LOADS

WILLIAM G. BOUSMAN and WAYNE R. MANTAY (Army Aerostructures Directorate, Hampton, Va.) In NASA, Washington, NASA/Army Rotorcraft Technology. Volume 1: Aerodynamics, and Dynamics and Aeroelasticity p 180-311 Feb. 1988

Avail: NTIS HC A23/MF A01 CSCL 01C

The research accomplished in the area of rotor loads over the last 13 to 14 years is reviewed. The start of the period examined is defined by the 1973 AGARD Milan conference and the 1974 hypothetical rotor comparison. The major emphasis of the review is research performed by the U.S. Army and NASA at their laboratories and/or by the industry under government contract. For the purpose of this review, two main topics are addressed: rotor loads prediction and means of rotor loads reduction. A limited discussion of research in gust loads and maneuver loads is included. In the area of rotor loads predictions, the major problem areas are reviewed including dynamic stall, wake induced flows, blade tip effects, fuselage induced effects, blade structural modeling, hub impedance, and solution methods. It is concluded that the capability to predict rotor loads has not significantly improved in this time frame. Future progress will require more extensive correlation of measurements and predictions to better understand the causes of the problems, and a recognition that differences between theory and measurement have multiple sources, yet must be treated as a whole. There is a need for high-quality data to support future research in rotor loads, but the resulting data base must not be seen as an end in itself. It will be useful only if it is integrated into firm long-range plans for the use of the data.

N88-16636*# Army Research and Technology Labs., Fort Eustis, Va. Aviation Applied Technology Directorate.

ADVANCED COMPOSITE AÏRFRAME PROGRAM: TODAY'S TECHNOLOGY

DANNY E. GOOD and L. THOMAS MAZZA In NASA, Washington, NASA/Army Rotorcraft Technology. Volume 2: Materials and Structures, Propulsion and Drive Systems, Flight Dynamics and Control, and Acoustics p 656-678 Feb. 1988

Avail: NTIS HC A25/MF A01 CSCL 01C

The Advanced Composite Airframe Program (ACAP) was undertaken to demonstrate the advantages of the application of advanced composite materials and structural design concepts to the airframe structure on helicopters designed to stringent military requirements. The primary goals of the program were the reduction of airframe production costs and airframe weight by 17 and 22 percent respectively. The ACAP effort consisted of a preliminary design phase, detail design, and design support testing, full-scale fabrication, laboratory testing, and a ground/flight test demonstration. Since the completion of the flight test demonstration programs follow-on efforts were initiated to more fully evaluate a variety of military characteristics of the composite airframe structures developed under the original ACAP advanced development contracts. An overview of the ACAP program is provided and some of the design features, design support testing, manufacturing approaches, and the results of the flight test evaluation, as well as, an overview of Militarization Test and Evaluation efforts are described. Author

N88-16652*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, Calif.

SYSTEM ANALYSIS IN ROTORCRAFT DESIGN: THE PAST DECADE

THOMAS L. GALLOWAY In NASA, Washington, NASA/Army Rotorcraft Technology. Volume 3: Systems Integration, Research Aircraft, and Industry p 1154-1166 Feb. 1988

Avail: NTIS HC A17/MF A01 CSCL 01C

Rapid advances in the technology of electronic digital computers and the need for an integrated synthesis approach in developing future rotorcraft programs has led to increased emphasis on system analysis techniques in rotorcraft design. The task in systems analysis is to deal with complex, interdependent, and conflicting requirements in a structured manner so rational and objective decisions can be made. Whether the results are wisdom or rubbish depends upon the validity and sometimes more importantly, the consistency of the inputs, the correctness of the analysis, and a sensible choice of measures of effectiveness to draw conclusions. In rotorcraft design this means combining design requirements, technology assessment, sensitivity analysis and reviews techniques currently in use by NASA and Army organizations in developing research programs and vehicle specifications for rotorcraft. These procedures span simple graphical approaches to comprehensive analysis on large mainframe computers. Examples of recent applications to military and civil missions are highlighted.

N88-16656*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, Calif.

ROTORCRAFT FLIGHT RESEARCH WITH EMPHASIS ON ROTOR SYSTEMS

WILLIAM J. SNYDER /n NASA, Washington, NASA/Army Rotorcraft Technology. Volume 3: Systems Integration, Research Aircraft, and Industry p 1235-1273 Feb. 1988

Avail: NTIS HC A17/MF A01 CSCL 01C

Over fifty years of contributions by NASA and the Army through rotor systems flight research were examined with an emphasis on the last 25 years. During this time, the helicopter has gone from an abnormality that did a few useful things to a vehicle that is a necessity to life in this country and a major part of all military forces in the world. Major data acquisition programs like the H-34 and White Cobra have been undertaken that have increased the understanding of the aerodynamic behavior of the rotor system. Specialized programs like the Ogee tip on the UH-1 and the flight tests of the hingeless rotor helicopters, the XH-13 and XH-51N, contributed greatly to the understanding of these technologies.

The extensive airfoil test program also undertaken on the White Cobra provided valuable data on advanced airfoil configurations.

N88-16657*# Textron Bell Helicopter, Fort Worth, Tex. AN OVERVIEW OF KEY TECHNOLOGY THRUSTS AT BELL HELICOPTER TEXTRON

JAMES H. HARSE, JING G. YEN, and RODNEY S. TAYLOR In NASA, Washington, NASA/Army Rotorcraft Technology. Volume 3: Systems Integration, Research Aircraft, and Industry p 1279-1340 Feb. 1988

Avail: NTIS HC A17/MF A01 CSCL 01C

Insight is provided into several key technologies at Bell. Specific topics include the results of ongoing research and development in advanced rotors, methodology development, and new configurations. The discussion on advanced rotors highlight developments on the composite, bearingless rotor, including the development and testing of full scale flight hardware as well as some of the design support analyses and verification testing. The discussion on methodology development concentrates on analytical development in aeromechanics, including correlation studies and design application. New configurations, presents the results of some advanced configuration studies including hardware development.

N88-16658*# Boeing Vertol Co., Philadelphia, Pa. ROTORCRAFT TECHNOLOGY AT BOEING VERTOL: RECENT

JOHN SHAW, LEO DADONE, and ROBERT WIESNER In NASA, Washington, NASA/Army Rotorcraft Technology. Volume 3: Systems Integration, Research Aircraft, and Industry p 1341-1394 Feb. 1988

Avail: NTIS HC A17/MF A01 CSCL 01C

An overview is presented of key accomplishments in the rotorcraft development at Boeing Vertol. Projects of particular significance: high speed rotor development and the Model 360 Advanced Technology Helicopter. Areas addressed in the overview are: advanced rotors with reduced noise and vibration, 3-D aerodynamic modeling, flight control and avionics, active control, automated diagnostics and prognostics, composite structures, and drive systems.

Author

N88-16659*# Sikorsky Aircraft, Stratford, Conn. RECENT SIKORSKY R AND D PROGRESS

In NASA, Washington, NASA/Army Rotorcraft Technology. Volume 3: Systems Integration, Research Aircraft, and Industry p 1395-1449 Feb. 1988

Avail: NTIS HC A17/MF A01 CSCL 01C

The recent activities and progress in four specific areas of Sikorsky's research and development program are summarized. Since the beginning of the S-76 design in 1974, Sikorsky has been aggressively developing the technology for using composite materials in helicopter design. Four specific topics are covered: advanced cockpit/controller efforts, fly-by-wire controls on RSRA/X-Wing, vibration control via higher harmonic control, and main rotor aerodynamic improvements.

N88-16660*# McDonnell-Douglas Helicopter Co., Mesa, Ariz. MCDONNELL DOUGLAS HELICOPTER COMPANY INDEPENDENT RESEARCH AND DEVELOPMENT: PREPARING FOR THE FUTURE

ALLEN C. HAGGERTY In NASA, Washington, NASA/Army Rotorcraft Technology. Volume 3: Systems Integration, Research Aircraft, and Industry p 1450-1481 Feb. 1988

Avail: NTIS HC A17/MF A01 CSCL 01C

During the 1970's and 80's, research has produced the technology that is seen in aircraft such as the LHX and future models. The technology is discussed that is reaching maturity and moving into the application stage of future programs. Technology is discussed in six major areas: advanced concepts, analysis techniques, structures, systems, simulation, and research and development facilities. The partnership of McDonnell Douglas

Helicopter Co. and the government in developing these technologies is illustrated in several programs. Author

N88-16689# Naval Postgraduate School, Monterey, Calif.
A PILOTED SIMULATION INVESTIGATING HANDLING
QUALITIES AND PERFORMANCE REQUIREMENTS OF A
SINGLE-PILOT HELICOPTER IN AIR COMBAT EMPLOYING A
HELMET-DRIVEN TURRETED GUN M.S. Thesis

JEFFREY N. WILLIAMS Sep. 1987 113 p

(AD-A186878) Avail: NTIS HC A06/MF A01 CSCL 01B

The development, implementation, and results of a pilot-in-the-loop fixed-base simulation investigating yaw-axis handling qualities and vehicle maneuverability requirements for the task of single-pilot helicopter air combat at terrain-flight altitudes are presented. Experimental variables included yaw-axis natural frequency and damping. Weapon system type was also varied to include a full- and limited-traverse turret driven by a helmet-mounted sight and a fixed-forward gun. Results indicated that a high yaw natural frequency (omega n = 1.5 to 2.0 rad/sec) and high yaw natural frequency (omega n = 1.5 to 2.0 rad/sec) and high yaw natural frequency (omega n = et a.5 to 2.0 rad/sec) and high yaw damping (z eta approx. 1.4) were desirable for Level 1 handling qualities. Pilot ratings generally decreased and the effect of the yaw dynamic characteristics became more pronounced and the weapon system became more restrictive. Other analyses discussed are the vehicle maneuver envelope usage, turret envelope usage, tracking performance, and pilot commentary.

N88-16690# Air Force Inst. of Tech., Wright-Patterson AFB, Ohio. School of Systems and Logistics.

A COST AND BÉNEFIT ANALYSIS OF HYDRAULIC FLUID SYSTEMS FOR THE NEXT GENERATION OF TACTICAL AIRCRAFT M.S. Thesis

MICHAEL P. MAHONY Sep. 1987 79 p

(AD-A186911; AFIT/GSM/LSY/87S-18) Avail: NTIS HC A05/MF A01 CSCL 11H

This study analyzed the life cycle costs, cost of fires, and benefits of using a new nonflammable hydraulic fluid (CTFE) in future tactical aircraft versus a fire retardant fluid (Mil-H-83282) currently used, assuming a future hydraulic systems pressure of 8000 psi. A McDonnell Douglas Corporation study compared Mil-H-83282 and CTFE at 8000 psi showing weight as the primary difference. Therefore, this weight difference, the fluid price difference, and the fuel consumption of an F-15 were used to determine the life cycle cost difference between the two systems. Since the added weight was slight, only the additional fuel consumption to fly the extra weight was significant. The added life cycle costs for using CTFE was estimated at \$11.4 million in FY87 dollars. Since CTFE will prevent hydraulic fires, an estimate of Mil-H-83282 fire costs was attempted. The differences in the benefits were primarily in the survivability and capability of the aircraft. Taking these differences together CTFE is slightly better than Mil-H-83282 in peacetime. This difference becomes more pronounced in wartime. Finally, a sensitivity analysis was conducted, concluding that CTFE was a viable alternative at 8000 psi. GRA

N88-16691# Analytical Methods, Inc., Redmond, Wash.
PREDICTING DYNAMIC SEPARATION CHARACTERISTICS OF
GENERAL CONFIGURATIONS Final Report, Apr. 1984 - Jul.
1987

B. MASKEW and F. A. DVORAK Jul. 1987 48 p (Contract F49620-82-C-0033)

(AD-A186689; AMI-8706; AFOSR-87-1418TR) Avail: NTIS HC A03/MF A01 CSCL 01A

A procedure has been developed for treating the dynamic interaction between a separated wake and a surface undergoing an unsteady motion. The basis of the method is an unsteady (time-stepping) panel method coupled with unsteady integral boundary layer codes. Pilot codes have been developed for both two and three dimensional conditions. Results presented here are mainly from the two-dimensional code in which the various routines for controlling the dynamic wake model have been developed. Some viscous/inviscid three-dimensional results are shown. The

long term objective is to treat complete aircraft configurations through high angle-of-attack maneuvers.

N88-16692# Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt, Brunswick (West Germany). Inst. fuer Flugfuehrung.

HELICOPTERS AS TEST CARRIERS FOR AVIONICS SYSTEMS (HETAS) Final Report [HETAS: HUBSCHRAUBER ALS ERPROBUNGSTRAEGER FUER AVIONIK-SYSTEME]

K. BENDER, E. DANNEBERG, R. DIERKE, G. HAEHNLEIN, G. MANSFELD, and J. TERSTEEGEN 9 Oct. 1985 28 p In GERMAN

(DFVLR-IB-112-85/18; LVL-8302-I-2; ETN-88-91013) Avail: NTIS HC A03/MF A01

The HETAS integrated test bed for avionics systems in human engineering, digital control engineering, and sensors is presented. The flight test system, including helicopter test carrier, systems concept, and integrated flight test system, is described. The ground test system, including helicopter simulation, cockpit, and redundant fly-by-wire system are described.

N88-16694*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, Calif.

A FLIGHT-TEST METHODOLOGY FOR IDENTIFICATION OF AN AERODYNAMIC MODEL FOR A V/STOL AIRCRAFT

RALPH E. BACH, JR. and B. DAVID MCNALLY Mar. 1988 12 p Submitted for publication

(NASA-TM-100067; A-88095; NAS 1.15:100067) Avail: NTIS HC A03/MF A01 CSCL 01C

Described is a flight test methodology for developing a data base to be used to identify an aerodynamic model of a vertical and short takeoff and landing (V/STOL) fighter aircraft. The aircraft serves as a test bed at Ames for ongoing research in advanced V/STOL control and display concepts. The flight envelope to be modeled includes hover, transition to conventional flight, and back to hover, STOL operation, and normal cruise. Although the aerodynamic model is highly nonlinear, it has been formulated to be linear in the parameters to be identified. Motivation for the flight test methodology advocated in this paper is based on the choice of a linear least-squares method for model identification. The paper covers elements of the methodology from maneuver design to the completed data base. Major emphasis is placed on the use of state estimation with tracking data to ensure consistency among maneuver variables prior to their entry into the data base. The design and processing of a typical maneuver is illustrated.

Author

N88-16696# Oak Ridge National Lab., Tenn.
ANALYSIS OF TASKS FOR DYNAMIC MAN/MACHINE LOAD
BALANCING IN ADVANCED HELICOPTERS

C. C. JORGENSEN Oct. 1987 33 p (Contract DE-AC05-84OR-21400)

(DE88-003735; ORNL/TM-10558; CESAR-87/44) Avail: NTIS HC A03/MF A01

This report considers task allocation requirements imposed by advanced helicopter designs incorporating mixes of human pilots and intelligent machines. Specifically, it develops an analogy between load balancing using distributed non-homogeneous multiprocessors and human team functions. A taxonomy is presented which can be used to identify task combinations likely to cause overload for dynamic scheduling and process allocation mechanisms. Designer criteria are given for function decomposition, separation of control from data, and communication handling for dynamic tasks. Possible effects of n-p complete scheduling problems are noted and a class of combinatorial optimization methods are examined.

N88-17069# Air Force Wright Aeronautical Labs., Wright-Patterson AFB, Ohio. Flight Dynamics Lab.

A NEW LOOK AT THE USE OF LINEAR METHODS TO PREDICT AIRCRAFT DYNAMIC RESPONSE TO TAXI OVER BOMB DAMAGED AND REPAIRED AIRFIELDS

JAMES J. OLSEN In Shock and Vibration Information Center The Shock and Vibration Bulletin. Part 4: Structural Dynamics and Modal Test and Analysis p 65-82 Jan. 1987 Avail: NTIS HC A07/MF A01 CSCL 01C

The dynamic response of an aircraft that taxies over two arbitrary disturbances, under the assumption that the aircraft can be represented as a linear, one degree-of-freedom system is discussed. That analysis produces the concept of the BUMP MULTIPLIER which explicitly and simply determines whether a second discrete disturbance will amplify or attenuate the response from the first disturbance. The BUMP MULTIPLIER also simplifies the understanding and presentation of the results. While the assumptions are very severe, the resulting formulas can be very useful in gaining physical insight, as guides to more elaborate nonlinear calculations, and in planning test programs.

N88-17252*# Texas Instruments, Inc., Dallas. VEHICLE. **BLENDING ARTIFICIAL** AIR. INTELLIGENCE WITH CONVENTIONAL SOFTWARE

CHRISTA MCNULTY, JOYCE GRAHAM, and PAUL ROEWER In NASA. Lyndon B. Johnson Space Center, Houston, Texas, First Annual Workshop on Space Operations Automation and Robotics (SOAR 87) p 335-340 Oct. 1987

Avail: NTIS HC A23/MF A01 CSCL 01C

The Robotic Air Vehicle (RAV) system is described. The program's objectives were to design, implement, and demonstrate cooperating expert systems for piloting robotic air vehicles. The development of this system merges conventional programming used in passive navigation with Artificial Intelligence techniques such as voice recognition, spatial reasoning, and expert systems. The individual components of the RAV system are discussed as well as their interactions with each other and how they operate as a system. Author

N88-17433# Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt, Cologne (West Germany). Inst. fuer Flugmechanik.

FLIGHT TEST TECHNIQUE, ILLUSTRATED BY ADVANCED TECHNOLOGIES TESTING AIRCRAFT SYSTEM (ATTAS) [FLUGVERSUCHSTECHNIK AM BEISPIEL ATTAS]

PETER HAMEL and HEINZ WINTER In its Scientific Colloquium in Honor of Prof. Dr. Rer. Nat. Hermann L. Jordan p 9-36 1987 In GERMAN

Avail: NTIS HC A07/MF A01; DFVLR, Cologne, Fed. Republic of Germany DM 29

The systems techniques of the flying simulator ATTAS are described. The flexibility of the simulator is obtained by the installation of an electro-optical control system, in parallel with mechanical, conventional control. Software flexibility is obtained by a complex onboard computer system. The ATTAS has electrically manipulable control surfaces. Hardware, such as computers and avionics systems can easily be connected to the onboard data processing system. The technological applications of ATTAS, such as systems identification, the flying simulation technique, active flight control system, man-machine systems, sensor-avionics systems, air traffic management, and pilot qualification are presented.

N88-17608*# Lockheed-Georgia Co., Marietta. Advanced Flight Sciences Dept.

DEVELOPMENT OF CIRCULATION CONTROL TECHNOLOGY FOR POWERED-LIFT STOL AIRCRAFT

ROBERT J. ENGLAR In NASA. Ames Research Center Proceedings of the Circulation-Control Workshop, 1986 p 491-537 May 1987

Avail: NTIS HC A25/MF A01 CSCL 01C

The flow entraining capabilities of the Circulation Control Wing high lift system were employed to provide an even stronger STOL potential when synergistically combined with upper surface mounted engines. The resulting configurations generate very high supercirculation lift in addition to a vertical component of the pneumatically deflected engine thrust. A series of small scale wind tunnel tests and full scale static thrust deflection tests are discussed which provide a sufficient data base performance. These tests results show thrust deflections of greater than 90 deg produced pneumatically by nonmoving aerodynamic surfaces, and the ability to maintain constant high lift while varying the propulsive force from high thrust recovery required for short takeoff to high drag generation required for short low speed landings.

N88-17609*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, Calif.

EVALUATION POTENTIAL FLIGHT ΩF AN UPPER-SURFACE-BLOWING/CIRCULATION-CONTROL-WING CONCEPT

DENNIS W. RIDDLE and JOSEPH C. EPPEL In its Proceedings of the Circulation-Control Workshop, 1986 p 539-567 May 1987 Avail: NTIS HC A25/MF A01 CSCL 01C

The technology data base for powered lift aircraft design has advanced over the last 15 years. NASA's Quiet Short Haul Research Aircraft (QSRA) has provided a flight verification of upper surface blowing (USB) technology. The A-6 Circulation Control Wing flight demonstration aricraft has provide data for circulation control wing (CCW) technology. Recent small scale wind tunnel model tests and full scale static flow turning test have shown the potential of combining USB with CCW technology. A flight research program is deemed necessary to fully explore the performance and control aspects of CCW jet substitution for the mechanical USB Coanda flap. The required hardware design would also address questions about the development of flight weight ducts and CCW jets and the engine bleed-air capabilities vs requirements. NASA's QSRA would be an optimum flight research vehicle for modification to the USB/CCW configuration. The existing QSRA data base, the design simplicity of the QSRA wing trailing edge controls, availability of engine bleed-air, and the low risk, low cost potential of the suggested program is discussed.

N88-17641# Essex Corp., Alexandria, Va.
HELICOPTER EXTERNAL VISION REQUIREMENTS AND VIS-UAL DISPLAY CHARACTERISTICS: A REPORT/BIBLIOG-RAPHY, REVISION A Final Report

STEVEN HALE Oct. 1987 28 p

(Contract DAAK11-85-C-0031; DA PROJ. 1L1-62716-AH-70) (AD-A187075; EFR-010-REV-A; HEL-TN-6-87-REV-A) Avail: NTIS HC A03/MF A01 CSCL 01C

A literature review was conducted to examine helicopter external vision requirements and related visual display characteristics. Several articles are summarized in annotated bibliography format. A subsequent discussion section addresses the information contained in those articles as well as relevant information contained in other documents. Suggestions are made for future research.

GRA

N88-17642# International Technical Associates Ltd., Drexel Hill, Pa

ROTORCRAFT WEIGHT TRENDS IN LIGHT OF STRUCTURAL MATERIAL CHARACTERISTICS Final Report, 6 Sep. 1984 - 31 May 1987

W. Z. STEPNIEWSKI 1987 113 p

(Contract DAAJ09-84-M-0706)

(AD-A186576; AVSCOM-TR-87-A-10) Avail: NTIS HC A06/MF CSCL 01C

Variations in weight of rotorcraft and their major components due to the use of advanced materials are examined. The impact of new materials on component weights is illustrated by historical weight trends. The influences of structural material characteristics on relative weight levels of major rotorcraft components and the weight effectiveness for both static and fatigue-type loadings are reviewed. Cursory expressions are developed to permit estimation of how the strength effectiveness values or structural materials affect the relative weights of components. Special constraints which

could limit the possible weight reductions achievable are considered briefly. A survey of advanced structural materials is also included.

N88-17643 Stanford Univ., Calif.

FREQUENCY-RESPONSE IDENTIFICATION OF XV-15 TILT-ROTOR AIRCRAFT DYNAMICS Ph.D. Thesis

MARK B. TISCHLER 1987 191 p

Avail: Univ. Microfilms Order No. DA8723101

The timely design and development of the next generation of tilt-rotor aircraft (JVX) depend heavily on the in-depth understanding of existing XV-15 dynamics and the availability of fully validated simulation models. The objectives of this study include the following: documentation and evaluation of XV-15 bare-airframe dynamics; comparison of aircraft and simulation responses; and development of a validated transfer function description of the XV-15 needed for future studies. A nonparametric frequency response approach is used which does not depend on assumed model order or structure. Transfer function representations are subsequently derived which fit the frequency-responses in the bandwidth of greatest concern for piloted handling-qualities and control-system applications. Flight tests on the XV-15 aircraft and piloted-simulation for four flight conditions from hover to cruise were planned and executed. Improved test techniques and pilot-training procedures were devised. Analytical software tools were developed which allow the identification of high-resolution spectral responses and the derivation and validation of multi-input/multi-output transfer function models. These techniques were applied in an extensive evaluation of the open-loop flight dynamics of the XV-15 aircraft and simulation mathematical models. Deficiencies were exposed and documented. A new, fully validated transfer function model was then derived for hover and cruise flight conditions. Dissert Abstr.

N88-17644*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, Calif.

X-29A FORWARD-SWEPT-WING FLIGHT RESEARCH PROGRAM STATUS

GARY A. TRIPPENSEE and DAVID P. LUX Nov. 1987 11 p Presented at the SAE International Pacific Air and Space Technology Conference, Melbourne, Australia, 13-17 Nov. 1987 (NASA-TM-100413; H-1432; NAS 1.15:100413) Avail: NTIS HC A03/MF A01 CSCL 01C

The X-29A aircraft is a fascinating combination of integrated technologies incorporated into a unique research aircraft. The X-29A program is multiple agency program with management and other responsibilities divided among NASA, DARPA, the U.S. Air Force, and the Grumman Corporation. An overview of the recently completed X-29A flight research program, objectives achieved, and a discussion of its future is presented. Also discussed are the flight test approach expanding the envelope, typical flight maneuvers performed, X-29A program accomplishments, lessons learned for the Number One aircraft, and future plans with the Number Two aircraft. A schedule for both aircraft is presented. A description of the unique technologies incorporated into the X-29A aircraft is given, along with descriptions of the onboard instrumentation system. The X-29A aircraft research program has proven highly successful. Using high fly rates from a very reliable experimental aircraft, the program has consistently met or exceeded its design and research goals.

N88-17645*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, Calif.

TRANSPORT DELAY COMPENSATION FOR COMPUTER-GENERATED IMAGERY SYSTEMS

RICHARD E. MCFARLAND Jan. 1988 29 p

(NASA-TM-100084; A-87385; NAS 1.15:100084) Avail: NTIS HC A03/MF A01 CSCL 01C

In the problem of pure transport delay in a low-pass system, a trade-off exists with respect to performance within and beyond a frequency bandwidth. When activity beyond the band is attenuated because of other considerations, this trade-off may be used to improve the performance within the band. Specifically, transport delay in computer-generated imagery systems is reduced to a

manageable problem by recognizing frequency limits in vehicle activity and manual-control capacity. Based on these limits, a compensation algorithm has been developed for use in aircraft simulation at NASA Ames Research Center. For direct measurement of transport delays, a beam-splitter experiment is presented that accounts for the complete flight simulation environment. Values determined by this experiment are appropriate for use in the compensation algorithm. The algorithm extends the bandwidth of high-frequency flight simulation to well beyond that of normal pilot inputs. Within this bandwidth, the visual scene presentation manifests negligible gain distortion and phase lag. After a year of utilization, two minor exceptions to universimilation applicability have been identified and subsequently resolved.

N88-17646*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, Calif.

USING FREQUENCY-DOMAIN METHODS TO IDENTIFY XV-15 AEROELASTIC MODES

C. W. ACREE, JR. and MARK B. TISCHLER (Army Aviation Research and Development Command, Moffett Field, Calif.) Nov. 1987 25 p

(NASA-TM-100033; A-87364; NAS 1.15:100033;

USAAVSCOM-TR-87-A-17) Avail: NTIS HC A03/MF A01 CSCL 01C

The XV-15 Tilt-Rotor wing has six major aeroelastic modes that are close in frequency. To precisely excite individual modes during flight test, dual flaperon exciters with automatic frequency-sweep controls were installed. The resulting structural data were analyzed in the frequency domain (Fourier transformed) with cross spectral and transfer function methods. Modal frequencies and damping were determined by performing curve fits to transfer function magnitude and phase data and to cross spectral magnitude data. Results are given for the XV-15 with its original metal rotor blades. Frequency and damping values are also compared with earlier predictions.

N88-17822# Entwicklungsring Sud, Munich (West Germany). Projektabteilung.

DEVELOPMENT OF VERTICAL TAKEOFF AIRCRAFT WITH TURBOJET ENGINES IN GERMANY [DIE ENTWICKLUNG VON SENKRECHTSTARTFLUGZEUGEN MIT TURBINENSTRAHLTRIEBWERKEN IN DEUTSCHLAND]

KARL SCHWAERZLER *In* MBB GmbH, Research and Development. Technical-Scientific Publications (1956-1987): Retrospective View and Prospects. Jubilee Edition on the Occasion of the 75th Anniversary of Dipl.-Engr. Dr.-Engr. E.H. Ludwig Boelkow p 33-40 1987 In GERMAN Avail: NTIS HC A14/MF A01

The history of the development of vertical takeoff aircraft with turbojet engines in Germany is depicted. The different engine arrangements used in VTOL aircraft are described. The different designs for the tilting of the engine nacelle are discussed. The thrust control and stabilization of VTOL aircraft are explained, and test methods are described. The effects of the soil on VTOL aircraft are outlined. The test aircraft X1 and the aircraft VJ101C are described.

N88-17823# Entwicklungsring Sud, Munich (West Germany). Projektabteilung.

VARIABLE SWEEP WINGS [VARIABLE PFEILUNG DES FLUEGELS]

HELMUT LANGFELDER *In* MBB GmbH, Research and Development. Technical-Scientific Publications (1956-1987): Retrospective View and Prospects. Jubilee Edition on the Occasion of the 75th Anniversary of Dipl.-Engr. Dr.-Engr. E.H. Ludwig Boelkow p 41-46 1987 In GERMAN Presented at the 6th Europaeischen Luftfahrtkongress, Munich, Fed. Republic of Germany, 1-4 Sep. 1965

Avail: NTIS HC A14/MF A01

The adaptation of the aircraft form to the use of variable sweep wings is treated. The use of variable sweep wings results in a possible increase of the aerodynamic lift for takeoff and landing,

and a simultaneous optimization of the maximum flight range at all speeds, and hence in a substantial improvement of the payload-range characteristics. Variable sweep wings also allow an improved maneuverability at low speed and a remarkable flight comfort. Although variable sweep wings are heavier, the aircraft can be smaller and more efficient.

N88-17824# Deutsche Airbus G.m.b.H., Munich (West Germany). Technische Geschaeftsfuehrung.

THE EUROPEAN AIRBUS A-300 [DER EUROPAEISCHE AIRBUS A 300]

HANS WOCKE In MBB GmbH Research and Development. Technical-Scientific Publications (1956-1987): Retrospective View and Prospects. Jubilee Edition on the Occasion of the 75th Anniversary of Dipl.-Engr. Dr.-Engr. E.H. Ludwig Boelkow p 47-50 1987 In GERMAN Presented at the WGLR/DGRR-Jahrestagung, Karlsruhe, Fed. Republic of Germany, Oct. 1967 Avail: NTIS HC A14/MF A01

The aims of the European Airbus are given. The main characteristics of the A-300 aircraft are discussed. The main requirements which determine the aircraft are presented. The operational data of the A-300 aircraft are given.

N88-17825# Messerschmitt-Boelkow-Blohm G.m.b.H., Ottobrunn (West Germany). Projektabteilung.

SPECIAL FLIGHT MECHANICAL FEATURES OF THE BEARINGLESS HELICOPTER ROTOR [FLUGMECHANISCHE BESONDERHEITEN DES GELENKLOSEN HUBSCHRAUBER-ROTORS]

GUENTER REICHERT In its Research and Development. Technical-Scientific Publications (1956-1987): Retrospective View and Prospects. Jubilee Edition on the Occasion of the 75th Anniversary of Dipl.-Engr. Dr.-Engr. E.H. Ludwig Boelkow p 51-58 1987 In GERMAN Presented at the 6th WGLR Europaeischen Luftfahrtkongress, Munich, Fed. Republic of Germany, 1-4 Sep. 1965

(MBB-FM-315/O) Avail: NTIS HC A14/MF A01

Features of a bearingless helicopter rotor resulting from the fact that substantially higher moments can be reached than with a normal rotor, thereby changing the flight characteristics, i.e., control as well as stability characteristics, are discussed. The control time behavior is substantially improved by the higher damping, and, simultaneously, control efficiency is enhanced. Rotor gust sensitivity is increased by the introduction of a bearingless blade connection, imposing extreme care in the design of the stiffness of blade connection and rotor blades.

N88-17839# Messerschmitt-Boelkow-Blohm G.m.b.H., Ottobrunn (West Germany). Abteilung Technologie-Entwicklungen.

MODERN MATERIALS FOR LIGHT CONSTRUCTIONS [MODERNE WERKSTOFFE FUER DEN LEICHTBAU]

JUERGEN BRANDT, HELMUT KELLERER, and PETER J. WINKLER In its Research and Development. Technical-Scientific Publications (1956-1987): Retrospective View and Prospects. Jubilee Edition on the Occasion of the 75th Anniversary of Dipl.-Engr. Dr.-Engr. E.H. Ludwig Boelkow p 131-134 1987 In GERMAN

(MBB-Z-136/86) Avail: NTIS HC A14/MF A01

Materials and materials technologies for the light construction of primary aircraft structural members are discussed. The cost criteria for the use of light materials are outlined. Materials characteristics used to evaluate applicability of each material are discussed. The properties and possible applications of fiber reinforced composites, fiber reinforced metals, and light alloys are presented.

N88-17842# Messerschmitt-Boelkow-Blohm G.m.b.H., Ottobrunn (West Germany). Unternehmensgruppe Hubschrauber und Flugzeuge.

PURPOSES AND TASKS OF HIGH-PERFORMANCE AIRCRAFT CONSTRUCTION [ZIELE UND AUFGABEN DES HOCHLEISTUNGSFLUGZEUGBAUS]

OSKAR FRIEDRICH *In its* Research and Development. Technical-Scientific Publications (1956-1987): Retrospective View and Prospects. Jubilee Edition on the Occasion of the 75th Anniversary of Dipl.-Engr. Dr.-Engr. E.H. Ludwig Boelkow p 147-150 1987 In GERMAN

(MBB/LK-S/PUB/296) Avail: NTIS HC A14/MF A01

The purposes of the German aircraft industry in high-grade components are outlined. Program planning concerning life time increase and combat value enhancement is presented. The requirements for the European fighter aircraft (JF90 or EFA) are given. The challenges for Germany in the fields of manned spacecraft systems and spacecraft, and cooperation programs with third-party countries are discussed.

N88-17844# Messerschmitt-Boelkow-Blohm G.m.b.H., Ottobrunn (West Germany). Helicopter and Military Aircraft Group.

FLIGHT TESTING OF FIGHTER AIRCRAFT

ARNIM KNAUS *In its* Research and Development. Technical-Scientific Publications (1956-1987): Retrospective View and Prospects. Jubilee Edition on the Occasion of the 75th Anniversary of Dipl.-Engr. Dr.-Engr. E.H. Ludwig Boelkow p 157-166

(MBB/LKE-62/S/PUB/292) Avail: NTIS HC A14/MF A01

The categories of flight test are overviewed. A typical full scale flight development plan, onboard data acquisition system, flight test data production and data flow, flight test control room, and performance data analysis software network are presented. The test procedure and sequential course of flight trials, and the characteristics of fighter aircraft testing are discussed. The basic ground test prior to flight test, in-flight thrust/drag determination, flutter testing, flying qualities, integrated avionics testing, weapons trials, and operational aspects are explained.

N88-17848# Messerschmitt-Boelkow-Blohm G.m.b.H., Bremen (West Germany). Unternehmensgruppe Transport- und Verkehrsflugzeuge.

THE INTELLIGENT WING. AERODYNAMIC DEVELOPMENT DIRECTION FOR FUTURE PASSENGER AIRCRAFT [DER INTELLIGENTE TRAGFLUEGEL - AERODYNAMISCHE ENTWICKLUNGSRICHTUNGEN FUER ZUKUENFTIGE VERKEHRSFLUGZEUGE]

REINHARD HILBIG and JOACHIM SZODRUCH In its Research and Development. Technical-Scientific Publications (1956-1987): Retrospective View and Prospects. Jubilee Edition on the Occasion of the 75th Anniversary of Dipl.-Engr. Dr.-Engr. E.H. Ludwig Boelkow p 183-186 1987 In GERMAN

(MBB-UT-006/87) Avail: NTIS HC A14/MF A01

The status of aerodynamic technology is presented. The development potentials for passenger and transport aircraft are described. Aerodynamic solutions, leading to the realization of technologies which open the way to the forecast potential of large-aircraft construction, are illustrated by the wing with controlled flow and the transonic laminar wing. The examples demonstrate the necessity of medium and long range research programs and of longer term industrial strategies.

N88-17850# Messerschmitt-Boelkow-Blohm G.m.b.H., Bremen (West Germany). Unternehmensgruppe Transport- und Verkehrsflugzeuge.

THE APPLICATION OF MODERN AEROELASTIC DEVELOPMENTS FOR FUTURE PROJECTS [DIE ANWENDUNG MODERNER AEROELASTISCHER ENTWICKLUNGEN FUER ZUKUENFTIGE PROJEKTE]

HELMUT ZIMMERMANN and JENS HINRICHSEN *In its* Research and Development. Technical-Scientific Publications (1956-1987): Retrospective View and Prospects. Jubilee Edition on the Occasion of the 75th Anniversary of Dipl.-Engr. Dr.-Engr. E.H. Ludwig Boelkow p 197-202 1987 In GERMAN

(MBB-UT-007/87) Avail: NTIS HC A14/MF A01

The use of aeroelastic techniques and testing methods in aircraft construction is outlined. The history of aeroelasticity in aircraft construction is depicted. The aeroelastic treatment of the bending-torsion flutter of a wing is discussed. Aids for flutter optimization are explained. Aeroelastic problems in wing boxes made of carbon fiber reinforced plastics are presented. Flutter margin augmentation systems are outlined. Transonic aerodynamic forces in aerodynamics are treated.

N88-17853# Messerschmitt-Boelkow-Blohm G.m.b.H., Ottobrunn (West Germany). Helicopter and Military Aircraft Group.

HELICOPTER ACTIVITIES IN GERMANY

VOLKER VONTEIN *In its* Research and Development. Technical-Scientific Publications (1956-1987): Retrospective View and Prospects. Jubilee Edition on the Occasion of the 75th Anniversary of Dipl.-Engr. Dr.-Engr. E.H. Ludwig Boelkow p 213-224 1987 Presented at the 12th European Rotorcraft Forum, Garmisch-Partenkirchen, Fed. Republic of Germany, 22-25 Sep. 1986 Previously announced in IAA as A87-43401 (MBB-UD-487/86) Avail: NTIS HC A14/MF A01

The history of German helicopter technology is depicted. The update of the BO 105 and BK117 programs is given. Statistical information about all types of helicopters operating in Germany and the related infrastructure is presented. The most important technology programs covering rotor technology, vibration suppression, advanced composite airframes, avionics/cockpits, and flight control are presented. The most important future helicopter projects with German participation, such as the PAH2, NH90, and ALH are described.

N88-17854# Messerschmitt-Boelkow-Blohm G.m.b.H., Ottobrunn (West Germany). Unternehmensgruppe Hubschrauber und Flugzeuge.

TESTING OF A TAIL ROTOR SYSTEM IN A FIBER COMPOSITE TYPE OF CONSTRUCTION [ERPROBUNG EINES HECKROTORSYSTEMES IN FASERVERBUNDBAUWEISE]

VALENTI KLOEPPEL and BERNHARD ENENKEL *In its* Research and Development. Technical-Scientific Publications (1956-1987): Retrospective View and Prospects. Jubilee Edition on the Occasion of the 75th Anniversary of Dipl.-Engr. Dr.-Engr. E.H. Ludwig Boelkow p 225-234 1987 In GERMAN Presented at the BMFT-Status-Seminar, Munich, Fed. Republic of Germany, Apr. 1986

(MBB-UD-472/86) Avail: NTIS HC A14/MF A01

An experimental version of a fiber composite, bearingless helicopter tail rotor was developed and tested, to improve aerodynamic efficiency, simplicity of construction, weight, and costs. A four-blade, bearingless, smooth rotation rotor was chosen. The design is based on a glass fiber torsion element that takes the impact and rotation bending as well as angular acceleration of the blades. The dynamic characteristics, mechanical and aeroelastic stability phenomena, as well as the loading and strain levels were determined. The test stand and test program are described. The test results were used to determine the dynamic loading due to a precession motion, and to simulate the ground resonance conditions required to verify aeromechanical stability.

N88-17863# Messerschmitt-Boelkow-Blohm G.m.b.H., Ottobrunn (West Germany). Unternehmensgruppe Wehrtechnik.

AERODYNAMIC ASPECTS OF THE CONFIGURATIONAL SYSTEMS LAYOUT OF A DISPENSER [AERODYNAMISCHE GESICHTSPUNKTE DER KONFIGURATIVEN SYSTEMAUSLEGUNG EINES DISPENSERS]

HORST SCHNEIDER In its Research and Development. Technical-Scientific Publications (1956-1987): Retrospective View and Prospects. Jubilee Edition on the Occasion of the 75th Anniversary of Dipl.-Engr. Dr.-Engr. E.H. Ludwig Boelkow p 289-292 1987 In GERMAN

(MBB-UA-1047/87) Avail: NTIS HC A14/MF A01

Details of the configurational development of a dispenser system are treated. The design was based on experience in dispenser development and on preliminary investigations, taking into account geometrical compatibility requirements. The different investigated fin forms are presented. The aerodynamic stability behavior of the investigated fuselage-wing-fin configurations is discussed.

06

AIRCRAFT INSTRUMENTATION

Includes cockpit and cabin display devices; and flight instruments.

A88-25366

SIMPLIFYING FLIGHT TEST

JAMES H. BRAHNEY Aerospace Engineering (ISSN 0736-2536), vol. 8, Jan. 1988, p. 20-25.

State-of-the-art computers, sensors, and data-transmission systems facilitate the extraction of enormous amounts of test data from a single instrumented flight. Attention is presently given to an integrated airborne data acquisition/ground-based data analysis flight test system in which all test process steps, from data acquisition to data analysis, are directly controlled by the test engineers. The system operates more simply, weighs and costs less, and requires less sophisticated technical support than existing systems. The flight test software employed proceeds through two phases: one down to the flight test database, and the other to final test results.

A88-25367

VIBRATION MONITORING - A KEY CONTRIBUTION TO FLIGHT

Aerospace Engineering (ISSN 0736-2536), vol. 8, Jan. 1988, p. 27-30.

An airborne vibration monitoring (AVM) system encompasses such key elements as an accelerometer, interconnecting cable, processing electronics, and displays. An accelerometer mounted on a bearing housing will furnish a frequency spectrum closely related to the vibration of the rotating shaft. MTBFs of more than 200,000 hours are obtainable for engine fan bearing accelerometers. The value of AVM system data reflecting the health of an engine or other rotating component is noted to be a function of its filtering technique's sophistication.

A88-26247

STATE ESTIMATION OF MANOEUVRING TARGETS FROM NOISY RADAR MEASUREMENTS

K. V. RAMACHANDRA (Electronics and Radar Development Establishment, Radar 'C', Div., Bangalore, India) IEE Proceedings, Part F - Communications, Radar and Signal Processing (ISSN 0143-7070), vol. 135, pt. F, no. 1, Feb. 1988, p. 82-84. refs

Analytical results for tracking maneuvering targets from noisy radar measurements are presented. A three-dimensional mathematical model based on the Kalman filtering technique is discussed for the tracking of a maneuvering aircraft using noisy measurements obtained from a three-dimensional radar. The measurement uncertainties and the maneuver characteristics are assumed to be known in polar co-ordinates, and are also assumed

to be white Gaussian with zero mean and constant variance. These are coupled to the cartesian co-ordinate system selected for tracking operation. The elements of the covariance and Kalman gain matrices are expressed in terms of those which apply for tracking in polar co-ordinates. The steady-state results are expressed in compact form by appropriately partitioning the covariance matrices. The numerical computations of the steady-state filter parameters of the model are in excellent agreement with those obtained from the recursive Kalman filter matrix equations. Hence these results are of practical interest in developing trackers for tracking maneuvering aircraft and to eliminate the real-time execution of the complete filter equations.

A88-26648

MEASURING AIRCRAFT FLUID QUANTITIES

JAMES H. BRAHNEY Aerospace Engineering (ISSN 0736-2536), vol. 8, Feb. 1988, p. 12-15.

The accurate measurement of aircraft fuel, oil, and hydraulic fluid levels in a way that compensates for fluid displacement during aircraft maneuvers is being accomplished by means of gaging systems in which electronic circuitry is integral to the fluid-measurement probes. Gage capacitance can then be measured locally, rather than transmitted in the form of weak signals through long cables in a high-noise environment, as formerly done. Wiring can accordingly dispense with shielding. Also noted are systems for the measurement of such conductive fluids as the phosphate ester hydraulic fluids employed in many commercial aircraft.

A88-26670

A FAULT-TOLERANT MULTISENSOR NAVIGATION SYSTEM DESIGN

BRIAN D. BRUMBACK (General Dynamics Corp., Fort Worth, TX) and MANDYAM D. SRINATH (Southern Methodist University, Dallas, TX) IEEE Transactions on Aerospace and Electronic Systems (ISSN 0018-9251), vol. AES-23, Nov. 1987, p. 738-756. refs

The problem of soft-failure tolerant estimation in navigation systems composed of multiple inertial measurement clusters and one or more reference sensors is addressed. A new approach is presented that achieves containment of failed sensor data, and isolates the historic good data provided by the unfailed sensors. Multiple (local) estimates are computed where the estimates are conditioned on different subsets of the sensors. A statistical overlap test is used to determine the validity of the local estimates, and a failed sensor can be identified from analysis of the invalid local estimates. After the time of detection, the most accurate estimate based on all but the failed sensor, is identified. The results are applied to a dual-inertial/Doppler radar navigation system and simulation results are presented.

A88-27329

INTEGRATED CONTROLS DESIGN AND SIMULATION

RICHARD DEAN COLGREN (Lockheed-California Co., Burbank) IN: 1987 American Control Conference, 6th, Minneapolis, MN, June 10-12, 1987, Proceedings. Volume 1. New York, Institute of Electrical and Electronics Engineers, 1987, p. 561-565.

A workstation is proposed which integrates the design, analysis, and simulation methods employed in flight control system synthesis. The method involves the interface of aerodynamic, propulsion, and structural models. Results are transferred to a flight simulator and to the dynamic structural model. An executive is employed to implement the modular workstation, internally handling most of the input/output operations to mimimize data management. The method allows new techniques to be easily implemented as executives or as additional modules.

A88-27399

MODERN CONTROL METHODS APPLIED TO A LINE-OF-SIGHT STABILIZATION AND TRACKING SYSTEM

DAVID HAESSIG, JR. and JAMES DECOTIIS (Singer Co., Kearfott Div., Little Falls, NJ) IN: 1987 American Control Conference, 6th, Minneapolis, MN, June 10-12, 1987, Proceedings. Volume 2. New York, Institute of Electrical and Electronics Engineers, 1987, p. 1491-1498. Research supported by the Singer Co. and Texas Instruments, Inc.

Modern control methods are used to develop compensators for a precise optical positioning system designed to track a commanded line-of-sight (LOS) position while rejecting the vibrational environment of an F-16 fighter aircraft, the vehicle upon which the device will be mounted. The physical system being controlled consists of two gimbals that effect large changes in the LOS position, and a mirror assembly that is used, because of its fast dynamic response (but limited range of motion), to reduce LOS jitter (i.e. angular disturbances above 5 HZ that cause blurring). Compensators are designed that include models of the motion to reject and of the motion to track. These models become part of each compensator and enable them to distinguish aircraft vibration from aircraft maneuvers, rejecting the former and tracking the latter. The vibrational disturbance that must be rejected has a magnitude of 560 microrads rms, which is magnified by the optical system to 1400 microrads of LOS motion. Simulation of closed-loop performance with a nonlinear dynamic model of the system demonstrated that LOS jitter is reduced to about 130 microrads rms. A tradeoff between stabilization and tracking is demonstrated. Compensator robustness to unmodelled disturbances is increased using the Loop-Transfer-Recovery technique.

A88-27478

PERFORMANCE OF OPTICAL SENSORS IN HYPERSONIC FLIGHT

WILLIAM J. TROPF, MICHAEL E. THOMAS, TERRY J. HARRIS, and STEVEN A. LUTZ (Johns Hopkins University, Laurel, MD) Johns Hopkins APL Technical Digest (ISSN 0270-5214), vol. 8, Oct.-Dec. 1987, p. 370-385. refs

The high pressure and temperature, radiation, and heat transfer to sensor windows associated with hypersonic flow alter the resolution, focus, and boresight of sensors by generating sharp gas density gradients, shock interactions, turbulence, and active coolant mixing effects. It is presently shown that flow calculations can be coupled with ray-tracing programs to estimate optical aberrations and boresight shifts in hypersonic conditions. More complex flow conditions, such as shock-shock interactions, must be examined experimentally. Attention is given to the effects of aerodynamic convective heat transfer on sensors. As flight speed increases, the active cooling of windows will be needed to operate sensors effectively.

A88-27639#

INFLIGHT THERMAL DATA RECORDING FROM IAF AIRCRAFT

N. S. BABOO, P. BANDOPADHYAY, P. K. BANERJEE, and M. B. DIKSHIT Aviation Medicine, vol. 30, June 1986, p. 33-37. refs

This paper describes the results of measurements of inflight thermal data, by a modified commercial digital heat stress monitor, obtained for several types of aircraft. The system was successfully employed in Chetak helicopter, Chitra (HS-748), Kiran, and Trishul and Shamsher trainers, for which it obtaining temperatures during the start-up, taxying, take off, start-climb, flight, landing, and switch off phases of the flight. The results indicated the maximum cabin temperature to be at the ground, with the temperature falling as soon as an aircraft is airborne, except in Chetak, where the cabin temperature showed continuous rise throughout the duration of sortie.

A88-27731

COOLING OF AIRBORNE EQUIPMENT [OKHLAZHDENIE BORTOVOI APPARATURY AVIATSIONNOI TEKHNIKI]

IGOR' VALENTINOVICH GLUSHITSKII Moscow, Izdatel'stvo Mashinostroenie, 1987, 184 p. In Russian.

Methods for the efficient cooling of airborne navigation, control, and communication equipment are presented which make it possible to maintain the electronic equipment at its normal working temperature under various service conditions. Engineering methods are proposed for solving thermophysical problems arising during the design of airborne electronic equipment, and experimental results are presented to demonstrate the validity of these methods. The cooling systems discussed include air, liquid, and evaporative systems.

N88-16654*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

AVIONICS SYSTEMS INTEGRATION TECHNOLOGY

GEORGE STECH and JAMES R. WILLIAMS /n NASA, Washington, NASA/Army Rotorcraft Technology. Volume 3: Systems Integration, Research Aircraft, and Industry p 1189-1210 Feb. 1988

Avail: NTIS HC A17/MF A01 CSCL 01D

A very dramatic and continuing explosion in digital electronics technology has been taking place in the last decade. The prudent and timely application of this technology will provide Army aviation the capability to prevail against a numerically superior enemy threat. The Army and NASA have exploited this technology explosion in the development and application of avionics systems integration technology for new and future aviation systems. A few selected Army avionics integration technology base efforts are discussed. Also discussed is the Avionics Integration Research Laboratory (AIRLAB) that NASA has established at Langley for research into the integration and validation of avionics systems, and evaluation of advanced technology in a total systems context.

N88-16655*# Army Research and Technology Labs., Fort Eustis, Va. Aviation Applied Technology Directorate.

INTEGRATED DIAGNOSTICS

ROGER J. HUNTHAUSEN In NASA, Washington, NASA/Army Rotorcraft Technology. Volume 3: Systems Integration, Research Aircraft, and Industry p 1211-1230 Feb. 1988

Avail: NTIS HC A17/MF A01 CSCL 01D

Recently completed projects in which advanced diagnostic concepts were explored and/or demonstrated are summarized. The projects begin with the design of integrated diagnostics for the Army's new gas turbine engines, and advance to the application of integrated diagnostics to other aircraft subsystems. Finally, a recent project is discussed which ties together subsystem fault monitoring and diagnostics with a more complete picture of flight domain knowledge.

07

AIRCRAFT PROPULSION AND POWER

Includes prime propulsion systems and systems components, e.g., gas turbine engines and compressors; and on-board auxiliary power plants for aircraft.

A88-25618

CALCULATION OF THE PATH OF A DROPLET IN THE COMBUSTION CHAMBER OF A HELICOPTER RAMJET ENGINE [O RASCHETE TRAEKTORII DVIZHENIIA KAPLI V KAMERE SGORANIIA VERTOLETNOGO PVRD]

IU. N. ZOTOV and A. P. MERKULOV Aviatsionnaia Tekhnika (ISSN 0579-2975), no. 4, 1987, p. 32-35. In Russian. refs

A method for calculating the path of a droplet is proposed which is based on the analysis of the absolute motion of the droplet. Results of an analytical investigation of the parameters of

an evaporating droplet in the vortex combustion chamber of a helicopter ramjet engine are then presented. It is shown that the approach proposed here makes it possible to identify the principal physical effects and to estimate quantitatively the effect of flow swirling on the motion and heat and mass transfer parameters of droplets and gas.

V.L.

A88-25628

A STUDY OF THE AUTOROTATION REGIMES OF GAS TURBINE ENGINES [K VOPROSU ISSLEDOVANIIA REZHIMOV AVTOROTATSII GTD]

V. I. DAINEKO Aviatsionnaia Tekhnika (ISSN 0579-2975), no. 4, 1987, p. 72, 73. In Russian.

The autorotation of a gas turbine is investigated experimentally using a full-scale 750-kW aircraft gas turbine engine with a seven-stage axial-centrifugal compressor (six axial stages and one centrifugal stage). It is found that, under conditions of steady-state autorotation, at air flow rates up to 0.2 of the nominal value and flow velocities less than M 0.5, the compressor uses mechanical energy and offers resistance to the incoming air flow, which results in a partial loss of pressure. The torque at the turbocompressor shaft is created by the turbine.

A88-25638

REPRESENTATION OF FAN CHARACTERISTICS IN A MATHEMATICAL MODEL OF THE BYPASS ENGINE [PREDSTAVLENIE KHARAKTERISTIKI VENTILIATORA S MATEMATICHESKOI MODELI TRDD]

B. D. FISHBEIN and V. I. TIKHONOV Aviatsionnaia Tekhnika (ISSN 0579-2975), no. 4, 1987, p. 95, 96. In Russian.

The problems associated with the representation of fan characteristics in the mathematical modeling of bypass engines are briefly examined, and a form of representation is proposed which provides an adequate description of the modeled system in a wide variety of design problems, particularly with the introduction of computer-aided design. The representation of fan characteristics proposed here applies, in particular, to a fan design with common exit guide vanes and a separator shifted downstream.

A88-26168#

THEORETICAL ANALYSIS OF ROTATIONAL-SPEED FLUCTUATIONS OF TWO-SPOOL TURBOJET ENGINES [TEORETYCZNA ANALIZA WAHAN PREDKOSCI OBROTOWEJ DWUWALOWYCH SILNIKOW ODRZUTOWYCH]

PAWEL LINDSTEDT Technika Lotnicza i Astronautyczna (ISSN 0040-1145), vol. 42, Oct. 1987, p. 19-22. In Polish. refs

Results of a theoretical analysis of the impeller speed fluctuation effect in a two-spool turbojet engine are presented. It is shown how these results can be used to identify the cause of the fluctuations and to correct the problem in the course of engine service. A mathematical model is used to describe the mechanism of speed fluctuations resulting from typical pump failures.

B.J.

A88-26414

IMPLICATION OF MODEL REDUCTION IN THE ACTIVE CONTROL OF TURBOMACHINERY VIBRATIONS

R. FIROOZIAN (Sheffield, University, England) (EUROMECH Colloquium on Active Noise and Vibration Control, 213th, Marseille, France, Sept. 8-11, 1986) Journal de Mecanique Theorique et Appliquee, Supplement (ISSN 0750-7240), vol. 6, 1987, p. 183-202. refs

The problem of designing an actively controlled suspension system for a multimode rotor running on fluid-film bearings is considered. In principle, it is shown that by employing a control law any mode of vibration can be controlled by a single control force along the rotor. The problem of measuring all the state variables for active control can be overcome using a reduced-order model and a state observer. The use of the reduced-order model and cause oscillation or instability in the response due to the residual modes. It is shown that this problem indeed occurs for an undamped system but is insignificant when there is structural damping (as by fluid-film bearings).

A88-26588#

THE AFFECTION OF INTERBLADE PHASE ANGLE IN OSCILLATING CASCADE ON UNSTEADY AERODYNAMIC FORCE

ZUOYI CHEN and SHAN ZHONG (Tsinghua University, Beijing, People's Republic of China) Journal of Engineering Thermophysics (ISSN 0253-231X), vol. 8, Nov. 1987, p. 346-348. In Chinese, with abstract in English.

A lot of numerical experiments on the affection of interblade phase angle in oscillating cascade on unsteady aerodynamic force is presented in this article. The comparison of the unsteady aerodynamic force and corresponding aerodynamic safety analysis under different conditions, such as different flow, different oscillating mode etc., are also given.

Author

A88-26589#

A RIG TESTING METHOD OF ANNULAR COMBUSTOR IN AEROENGINE

BAOCHENG ZHANG (Shenying Aeronautic Institute, People's Republic of China) Journal of Engineering Thermophysics (ISSN 0253-231X), vol. 8, Nov. 1987, p. 382-385. In Chinese, with abstract in English.

A rig testing method appropriate to the development of the combustion chamber in lot production aeroengines is described in this paper. An example is used to demonstrate rig testing, which includes start-up performance, combustion efficiency, temperature distribution and stability of annular combustor. Comprehensive analyses are made of thrust, fuel rate, rotation rate in the operation condition, and temperature at the outlet in turbine and areas of exhaust outlet at jet nozzle in the run. The effectiveness of the rig testing method was proved in life runnings and test flights.

Author

A88-26628#

EXPERIMENTAL INVESTIGATION OF THE INFLUENCE OF DIFFUSER SHELL SHAPES ON PERFORMANCE OF DUMP DIFFUSERS IN COMBUSTOR

GUANGSHI HUA, WEIBIN WANG, MING TANG, and BINGLU CHEN (Northwestern Polytechnical University, Xian, People's Republic of China) Journal of Aerospace Power, vol. 3, Jan. 1988, p. 13-17, 88. In Chinese, with abstract in English. refs

The performance of a two-dimensional symmetric straight-wall diffuser at inlet Mach number 0.277 and flow split ratio 1 is investigated experimentally, varying the shape of the diffuser shell and the dump gap. The results are presented in graphs, and the shell shape is shown to have a greater effect on the overall pressure loss than on the optimal dump gap, which is found to be 40-50 mm in all cases. Zones with external static pressure lower than the pressure in the flame tube are observed under some conditions.

T.K.

A88-26638#

A DYNAMICAL MATHEMATICAL MODEL AND DIGITAL SIMULATION FOR ANTI-SURGE CONTROL SYSTEM OF A TURBOFAN ENGINE

HUIZHU HE (Northwestern Polytechnical University, Xian, People's Republic of China) Journal of Aerospace Power, vol. 3, Jan. 1988, p. 55-58, 93. In Chinese, with abstract in English. refs

An antisurge control system for a turbofan engine is investigated. A dynamical mathematical model of this system has been developed, and a simulation has been done on a digital computer. In the first step of the simulation, the linear system is studied and the dynamical performance is calculated under four conditions to determine the main parameters influencing dynamical performance. In the second step, the effects of nonlinearities of the dead region and backlash are studied. The results indicate that the nonlinearities enhance the relative stability of the system, but the backlash reduces it. Both effects appear not to be in agreement with the superposition principle. Finally, ways of improving the quality of the system are presented based on the results of the calculation.

Author

A88-26649

DOUBLING THRUST-TO-WEIGHT RATIO

JAMES H. BRAHNEY Aerospace Engineering (ISSN 0736-2536), vol. 8, Feb. 1988, p. 22-26.

The USAF High Performance Turbine Engine Technologies (HPTET) Program has as its primary goal the doubling of turbomechanical aircraft propulsion systems' thrust/weight ratio by the year 2000, through the integration of advanced materials, novel structural concepts, and breakthroughs in aerothermodynamic cycle design. Advanced materials are judged to hold the key to the achievement of program goals; the most promising and intensively researched materials are carbon/carbon, ceramic-matrix and metal-matrix composites, high temperature Al alloys, and high-temperature nonstructural substances for lubrication and bearings. Attention is given to the potential advantages of integrally-bladed or 'blisk' disk rotors.

A88-27166

TURBULENT HYDROGEN COMBUSTION IN A WALL JET ISSUING INTO A COMOVING SUPERSONIC STREAM OF AIR [TURBULENTNOE GORENIE VODORODA V PRISTENNOI STRUE, ISTEKAIUSHCHEI V SPUTNYI SVERKHZVUKOVOI POTOK VOZDUKHA]

V. G. GROMOV, O. B. LARIN, and V. A. LEVIN Fizika Goreniia i Vzryva (ISSN 0430-6228), vol. 23, Nov.-Dec. 1987, p. 3-9. In Russian. refs

The ignition and combustion of low-temperature hydrogen in a turbulent wall jet issuing from a plane slot into a comoving supersonic stream of heated air are investigated numerically. The numerical analysis uses a multilayer algebraic model based on a mixing length hypothesis and a differential parametric k-epsilon-model. It is shown that the modification of the 'nonmixing' model proposed here improves agreement with experimental data. V.L.

A88-27291#

FLOWFIELD IN A DUAL-INLET SIDE-DUMP COMBUSTOR

T.-M. LIOU (National Tsing Hua University, Hsinchu, Republic of China) and S.-M. WU Journal of Propulsion and Power (ISSN 0748-4658), vol. 4, Jan.-Feb. 1988, p. 53-60. refs

The cold flowfield of a side-dump combustor, which consisted of a plexiglass, circular duct with two 60-deg curved inlets located radially at an angle of 180 deg, is measured quantitatively using laser-Doppler velocimetry. Air was used as a flow medium. The Reynolds number, based on the combustor diameter and bulk velocity, was 26,000. Detailed profiles of mean velocities and turbulence intensities are reported. The impinging stagnation point of the inlet jets, the lengths needed to reach both one-way flow and fully developed mean-velocity profile, and the primary combustor flow regions are determined. In addition, the homogeneity and isotropy of the turbulence are documented. Furthermore, the results also identify the part of fluid dynamic characteristics unable to be predicted by two-dimensional models. This information will be useful to test and develop combustor modeling in this area.

A88-27295*# Purdue Univ., West Lafayette, Ind. TRANSIENT ENGINE PERFORMANCE WITH WATER INGESTION

T. HAYKIN and S. N. B. MURTHY (Purdue University, West Lafayette, IN) Journal of Propulsion and Power (ISSN 0748-4658), vol. 4, Jan.-Feb. 1988, p. 81-88. Previously cited in issue 20, p. 2921, Accession no. A86-42755. refs (Contract NAG3-481)

A88-27296*# Clarkson Univ., Potsdam, N.Y.

SOOT LOADING IN A GENERIC GAS TURBINE COMBUSTOR W. A. ECKERLE (Clarkson University, Potsdam, NY) and T. J. ROSFJORD (United Technologies Research Center, East Hartford, CT) Journal of Propulsion and Power (ISSN 0748-4658), vol. 4, Jan.-Feb. 1988, p. 89-96. Previously cited in issue 08, p. 1051, Accession no. A87-22544. refs

(Contract NAS3-24223)

A88-27730

DATA PROCESSING AND ANALYSIS DURING THE AUTOMATED TESTING OF GAS TURBINE ENGINES [OBRABOTKA | ANALIZ INFORMATSI| PRI AVTOMATIZIROVANNYKH ISPYTANIIAKH GTD]

RAVIL' ISKANDEROVICH ADGAMOV, VLADLEN ONISIMOVICH BOROVNIK, SERGEI VASIL'EVICH DMITRIEV, IU. V. KOZHEVNIKOV, and G. P. SHIBANOV Moscow, Izdatel'stvo Mashinostroenie, 1987, 216 p. In Russian.

The book is concerned with various aspects of data processing and analysis during the automatic computerized bench testing of gas turbine engines. In particular, attention is given to the structure and software and hardware implementation of the automatic testing process; types and sources of data in gas turbine engines testing; determination of the characteristics of gas turbine engines using a mathematical model; and the validity of the test-bench performance characteristics of gas turbine engines. The discussion also covers the organizational aspects of the computerization of experimental studies.

A88-27742

MULTIFREQUENCY NONLINEAR VIBRATIONS IN A GAS-TURBINE ENGINE [MNOGOCHASTOTNYE NELINEINYE KOLEBANIIA V GAZOTURBINNOM DVIGATELE]

IOSIF L'VOVICH PIS'MENNYI Moscow, Izdatel'stvo Mashinostroenie, 1987, 128 p. In Russian. refs

The book focuses on theoretical and experimental studies of oscillatory processes in gas-turbine engines, including subharmonic and superharmonic surge phenomena. Particular attention is given to methods of protection against dangerous oscillatory regimes. Formulas and characteristics of two- and three-frequency harmonic linearization are presented for the most typical nonlinear elements. The discussion also covers protection against vibrational combustion in the afterburner and some manifestations of the nonlinear effects of vibrations.

N88-16637*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

TECHNOLOGY DEVELOPMENTS FOR A COMPOUND CYCLE ENGINE

GEORGE A. BOBULA, WILLIAM T. WINTUCKY, and J. G. CASTOR (Garrett Turbine Engine Co., Phoenix, Ariz.) In NASA, Washington, NASA/Army Rotorcraft Technology. Volume 2: Materials and Structures, Propulsion and Drive Systems, Flight Dynamics and Control, and Acoustics p 683-697 Feb. 1988

Avail: NTIS HC A25/MF A01 CSCL 21E

The Compound Cycle Engine (CCE) is a highly turbocharged, power compounded power plant which combines the light weight pressure rise capability of a gas turbine with the high efficiency of a diesel. When optimized for a rotorcraft, the CCE will reduce fuel burned for a typical 2 hour (plus 30 min reserve) mission by 30 to 40 percent when compared to a conventional advanced technology gas turbine. The CCE can provide a 50 percent increase in range-payload product on this mission. Results of recent activities in a program to establish the technology base for a CCE are presented. The objective of this program is to research and develop those critical technologies which are necessary for the demonstration of a multicylinder diesel core in the early 1990s. A major accomplishment was the initial screening and identification of a lubricant which has potential for meeting the material wear rate limits of the application. An in-situ wear measurement system also was developed to provide accurate, readily obtainable, real time measurements of ring and liner wear. Wear data, from early single cylinder engine tests, are presented to show correlation of the in-situ measurements and the system's utility in determining parametric wear trends. A plan to demonstrate a compound cycle engine by the mid 1990s is included. Author

N88-16638*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

SMALL GAS TURBINE ENGINE TECHNOLOGY

RICHARD W. NIEDZWIECKI and PETER L. MEITNER (Army Research and Technology Labs., Cleveland, Ohio.) In NASA, Washington, NASA/Army Rotorcraft Technology. Volume 2: Materials and Structures, Propulsion and Drive Systems, Flight Dynamics and Control, and Acoustics p 698-736 Feb. 1988 Avail: NTIS HC A25/MF A01 CSCL 21E

Performance of small gas turbine engines in the 250 to 1,000 horsepower size range is significantly lower than that of large engines. Engines of this size are typically used in rotorcraft, commutercraft, general aviation, and cruise missile applications. Principal reasons for the lower efficiencies of a smaller engine are well known: component efficients are lower by as much as 8 to 10 percentage points because of size effects. Small engines are designed for lower cycle pressures and temperatures because of smaller blading and cooling limitations. The highly developed analytical and manufacturing techniques evolved for large engines are not directly transferrable to small engines. Thus, it was recognized that a focused effort addressing technologies for small engies was needed and could significantly impact their performance. Recently, in-house and contract studies were undertaken at the NASA Lewis Research Center to identify advanced engine cycle and component requirements for substantial performance improvement of small gas turbines for projected year 2000 applications. The results of both in-house research and contract studies are presented. In summary, projected fuel savings of 22 to 42 percent could be obtained. Accompanying direct operating cost reductions of 11 to 17 percent, depending on fuel cost, were also estimated. High payoff technologies are identified for all engine applications, and recent results of experimental research to evolve the high payoff technologies are described.

Author

N88-16639*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

THE CONVERTIBLE ENGINE: A DUAL-MODE PROPULSION SYSTEM

JACK G. MCARDLE *In* NASA, Washington, NASA/Army Rotorcraft Technology. Volume 2: Materials and Structures, Propulsion and Drive Systems, Flight Dynamics and Control, and Acoustics p 737-768 Feb. 1988

Avail: NTIS HC A25/MF A01 CSCL 21E

A variable inlet guide vane (VIGV) convertible engine that could be used to power future high-speed rotorcraft was tested on an outdoor stand. The engine ran stably and smoothly in the turbofan, turboshaft, and dual (combined fan and shaft) power modes. In the turbofan mode with the VIGV open, fuel consumption was comparable to that of a conventional turbofan engine. In the turboshaft mode with the VIGV closed, fuel consumption was higher than that of present turboshaft engines because power was wasted in churning fan-tip air flow. In dynamic performance tests with a specially built digital engine control and using a waterbrake dynamometer for shaft load, the engine responded effectively to large steps in thrust command and shaft torque. Previous mission analyses of a conceptual X-wing rotorcraft capable of 400-knot cruise speed were revised to account for more fan-tip churning power loss that was originally estimated. The calculations confirm that using convertible engines rather than separate life and cruise engines would result in a smaller, lighter craft with lower fuel use and direct operating cost.

N88-16640*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

RESULTS OF NASA/ARMY TRANSMISSION RESEARCH

JOHN J. COY (Army Research and Technology Labs., Cleveland, Ohio.), DENNIS P. TOWNSEND, and HAROLD H. COE In NASA, Washington, NASA/Army Rotorcraft Technology. Volume 2: Materials and Structures, Propulsion and Drive Systems, Flight Dynamics and Control, and Acoustics p 769-801 Feb. 1988 Avail: NTIS HC A25/MF A01 CSCL 21E

Since 1970 the NASA Lewis Research Center and the U.S. Army Aviation Systems Command have shared an interest in advancing the technology for helicopter propulsion systems. In particular, that portion of the program that applies to the drive train and its various mechanical components are outlined. The major goals of the program were (and continue to be) to increase the life, reliability, and maintainability, reduce the weight, noise, and vibration, and maintain the relatively high mechanical efficiency of the gear train. Major historical milestones are reviewed, significant advances in technology for bearings, gears, and transmissions are discussed, and the outlook for the future is presented. The reference list is comprehensive.

N88-16698*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

IMPACT AND PROMISE OF NASA AEROPROPULSION TECHNOLOGY

NEAL T. SAUNDERS and DAVID N. BOWDITCH *In its* Aeropropulsion '87. Session 1: Aeropropulsion Materials Research 30 p Nov. 1987

Avail: NTIS HC A06/MF A01 CSCL 21E

The aeropropulsion industry in the United States has established an enviable record of leading the world in aeropropulsion for commercial and military aircraft. The NASA aeropropulsion propulsion propulsion program (primarily conducted through the Lewis Research Center) has significantly contributed to that success through research and technology advances and technology demonstrations such as the Refan, Engine Component Improvement, and the Energy Efficient Engine Programs. Some past NASA contributions to engines in current aircraft are reviewed, and technologies emerging from current research programs for the aircraft of the 1990's are described. Finally, current program thrusts toward improving propulsion systems in the 2000's for subsonic commercial aircraft and higher speed aircraft such as the High-Speed Civil Transport and the National Aerospace Plane (NASP) are discussed.

N88-16706# Air Force Inst. of Tech., Wright-Patterson AFB, Ohio. School of Systems and Logistics.

TURBINE ENGINE MONITORING SYSTEMS: CAN THEY BENEFIT COMPONENT IMPROVEMENT PROGRAM MANAGEMENT? M.S. Thesis

LEN J. NEIST Sep. 1987 72 p

The purpose is to verify if the data collected by Turbine Engine Monitoring Systems (TEMS) could benefit an engine's Component Improvement Program (CIP) management. The initial plan was to identify and assess any benefits by comparing an engine with a CIP (PWA TF30) but not TEMS against an engine with a CIP and a TEMS (GE TF34). This was not possible, however, because the TEMS data were not being used to assist with TF34 CIP management due to the lack of a Central Data Base to collate and transform the data. The engine duty cycle was identified as the key to many important areas of a CIP, including engine component life usage and failure replication and diagnosis. As mentioned above, the current methods used to identify an engine's duty cycle lack the accuracy and reliability required to manage modern gas turbine engines. The main thrust of the recommendations is that a central data base be established so that the TF34 CIP manager can utilize TEMS data. In addition, a comparison use cost analysis is recommended to firmly establish the benefits to both long and short term engine management.

GRA

N88-17210*# Systems Control Technology, Inc., Palo Alto, Calif.

KNOWLEDGE BASED JET ENGINE DIAGNOSTICS

TIMOTHY G. JELLISON and RONALD L. DEHOFF In NASA. Lyndon B. Johnson Space Center, Houston, Texas, First Annual Workshop on Space Operations Automation and Robotics (SOAR 87) p 25-30 Oct. 1987

Avail: NTIS HC A23/MF A01 CSCL 21E

A fielded expert system automates equipment fault isolation and recommends corrective maintenance action for Air Force jet engines. The knowledge based diagnostics tool was developed as an expert system interface to the Comprehensive Engine Management System, Increment IV (CEMS IV), the standard Air Force base level maintenance decision support system. XMAM (trademark), the Expert Maintenance Tool, automates procedures for troubleshooting equipment faults, provides a facility for interactive user training, and fits within a diagnostics information feedback loop to improve the troubleshooting and equipment maintenance processes. The application of expert diagnostics to the Air Force A-10A aircraft TF-34 engine equipped with the Turbine Engine Monitoring System (TEMS) is presented.

N88-17647# Advisory Group for Aerospace Research and Development, Neuilly-Sur-Seine (France). Propulsion and Energetics Panel.

ADVANCED TECHNOLOGY FOR AERO GAS TURBINE COMPONENTS

Sep. 1987 541 p In ENGLISH and FRENCH Symposium held in Paris, France, 4-8 May 1987

(AGARD-CP-421; ISBN-92-835-0433-X) Avail: NTIS HC A23/MF A01

The Symposium is aimed at highlighting the development of advanced components for new aero gas turbine propulsion systems in order to provide engineers and scientists with a forum to discuss recent progress in these technologies and to identify requirements for future research. Axial flow compressors, the operation of gas turbine engines in dust laden atmospheres, turbine engine design, blade cooling, unsteady gas flow through the stator and rotor of a turbomachine, gear systems for advanced turboprops, transonic blade design and the development of a plenum chamber burner system for an advanced VTOL engine are among the topics discussed.

N88-17648# Air Force Wright Aeronautical Labs., Wright-Patterson AFB, Ohio. Turbine Engine Div.

THE COMING REVOLUTION IN TURBINE ENGINE TECHNOLOGY

JAMES S. PETTY and ROBERT E. HENDERSON In AGARD Advanced Technology for Aero Gas Turbine Components 10 p Sep. 1987

Avail: NTIS HC A23/MF A01

A major change in turbopropulsion technology development philosophy is now being pursued by the U.S. Air Force Wright Aeronautical Laboratories (AFWAL) which will provide revolutionary advancements in overall operational performance capability for future military aircraft and aerospace weapon systems. An historical perspective illustrates the significance of the advancements being pursued, with engine thrust-to-weight used as the principal performance figure-of-merit. The High Performance Turbine Engine Technologies (HPTET) effort, begun in 1982, is discussed. The overall goal of the effort is to provide the advanced materials, innovative structural concepts and advanced aerothermodynamics to double turbopropulsion capability by the year 2000.

N88-17649# Rolls-Royce Ltd., Bristol (England). Lift Engines and Future Technology Demonstrators.

OPTIMISATION OF MILITARY COMPRESSORS FOR WEIGHT AND VOLUME

K. R. GARWOOD *In* AGARD Advanced Technology for Aero Gas Turbine Components 7 p Sep. 1987 Sponsored by Procurement Executive Ministry of Defence, United Kingdom Avail: NTIS HC A23/MF A01

The high pressure compression system for future fighter engines has been projected at two different proven technology standards. For a given cycle of approximately 175 lbs. and 25:1 overall pressure ratio, three compressors have been evaluated, ranging from a seven stage unit with medium loading, to a five and a four stage unit with high loading. Test data of the original research parent compressors and two project specific units was commonised to the engine size and conditions. It is shown that apparent benefits between machines are negated and no significant advantage for lower work per stage could be identified at a given blading technology standard. Relative to the seven stage unit, a weight advantage of 20 percent is gained by the adoption of a four stage unit, and it is associated with an airfoil count reduction of 15 percent.

N88-17650# Royal Aircraft Establishment, Farnborough (England).

AN EXAMINATION OF THE IMPACT OF POTENTIAL ADVANCES IN COMPONENT TECHNOLOGY FOR FUTURE MILITARY ENGINES

M. R. LITCHFIELD and M. G. PHILPOT In AGARD Advanced Technology for Aero Gas Turbine Components 13 p Sep. 1987 Avail: NTIS HC A23/MF A01

The prospects for major advances in gas turbine engine component technology over the next 20 years are examined. For future military engines and aircraft, these advances could lead to considerably higher thrust/weight ratios than are currently available. The gains in engine performance resulting from various specific technology advances are outlined and their impact on sizing and performance of a typical combat aircraft are considered. In conjunction with these future projections, an examination is also made of the influences of the main engine cycle parameters such as overall pressure ratio, bypass ratio, and rating philosophy on the mass and performance of the aircraft/engine combination.

Author

N88-17651# Societe Nationale d'Etudes et de Construction de Moteurs d'Aviation, Moissy-Cramayel (France).

SPECIFICATION OF AN ENGINE AND ITS COMPONENTS STARTING FROM A CONSIDERATION OF AIRCRAFT MISSIONS [SPECIFICATION DU MOTEUR ET DE SES COMPOSANTS A PARTIR DES MISSIONS DE L'AVION]

A. LARDELLIER and J. DUFAU *In* AGARD Advanced Technology for Aero Gas Turbine Components 13 p Sep. 1987 In FRENCH

Avail: NTIS HC A23/MF A01

A computer implemented methodology for the optimization of engine cycles is described. The integrated technique considers engine size and mechanical design features, basic aircraft aerodynamic and weight/size characteristics, and aircraft mission operational requirements. Three applications of the method are discussed: the influence of engine weight on the aircraft and mission characteristics; the influence of afterburn on supersonic cruise missions; and the influence of mission parameters on engine cycle and aircraft size.

Author

N88-17652# Technische Hochschule, Aachen (West Germany). Inst. fuer Strahlantriebe und Turboarbeitsmaschinen.

APPLICATION OF HIGHLY LOADED SINGLE-STAGE MIXED-FLOW COMPRESSORS IN SMALL JET-ENGINES

R. MOENIG, K. D. BROICHHAUSEN (Motoren- und Turbinen-Union Muenchen G.m.b.H., West Germany), and H. E. GALLUS *In* AGARD Advanced Technology for Aero Gas Turbine Components 11 p Sep. 1987 Sponsored by Bundesamt fuer Wehrtechnik und Beschaffung, Fed. Republic of Germany Avail: NTIS HC A23/MF A01

The predominant requirements on small jet engines are high power-to-weight ratio and low specific fuel consumption in combination with structural simplicity. The consequent demands on the compressor can be fulfilled either by a conventional two-stage unit or by an extremely loaded single stage. This single stage compressor has to be able to perform at a sufficiently large massflow and total pressure ratio. Consequently, the application of a mixed flow compressor with supersonic flow at rotor-or stator-inlet (supersonic mixed-flow compressor) turns out to be advantageous. The conception of a jet engine with a supersonic combustor demonstrates the significantly reduced size compared with other engines of the same thrust class.

N88-17653# Societe Turbomeca, Bordes (France).

THE ADVANTAGE OF VARIABLE GEOMÈTRY FOR TURBINE ENGINES AT LOW POWER [INTERET DE LA GEOMETRIE VARIABLE POUR LES TURBOMOTEURS DE FAIBLE PUISSANCE]

H. VIGNAU, R. RODELLAR, and J. SILET In AGARD Advanced Technology for Aero Gas Turbine Components 10 p Sep. 1987 In FRENCH

Avail: NTIS HC A23/MF A01

To reduce the specific fuel consumption of gas turbines at low power, various cycles of free and bound turbine engines were studied. A variable output engine permits a significant reduction of specific consumption at partial capacity. The variation in power is obtained through the change in the variable geometry component output; engine operating pressure, turbine intake temperature, and rotation velocity constants. The models which take variable geometry systems into account should be improved to specify the potential gains of such techniques. The results of a study on a centrifugal compressor with a compression rate of 8.5 and with a variable-setting radial diffuser show that an output variation of 50 percent can be obtained with a slight variation in efficiency and low sensitivity.

N88-17654# Calspan Advanced Technology Center, Buffalo, N.Y.

OPERATION OF GAS TURBINE ENGINES IN DUST-LADEN ENVIRONMENTS

M. G. DUNN, C. PADOVA, and R. M. ADAMS (Defense Nuclear Agency, Washington, D.C.) *In* AGARD Advanced Technology for Aero Gas Turbine Components 16 p Sep. 1987 (Contract DNA001-83-C-0182)

Avail: NTIS HC A23/MF A01

Results are reported for a measurement program designed to investigate the performance deterioration of gas turbine engines and the associated auxiliary equipment difficulties when operating in dust laden environments. Three TF33 turbofan engines and one J57 turbojet engine have been tested with two different dust blends. The predominant damage mechanism in all the engines was compressor blade erosion. The length of dust exposure time required to cause engine damage was dependent upon power setting and dust concentration. The turbine inlet temperature for these engines was too low to realize deposition of glassy material on the hot section components. The Environmental Control System (ECS) was monitored to ascertain the amount of injested material and the size distribution of material that makes its way to the ECS. A significant fraction of the dust is not centrifuged out of the flow and does end up in the control system air. These particles have a mean size on the order of 6 microns. The engine parameters most indicative of degradation were identified and are discussed.

Author

N88-17655# National Research Council of Canada, Ottawa (Ontario). Gas Dynamics Lab.

A RESEARCH PROGRAM ON THE AERODYNAMICS OF A HIGHLY LOADED TURBINE STAGE

R. G. WILLIAMSON, S. H. MOUSTAPHA, J. P. HUOT, and U. OKAPUU (Pratt and Whitney Aircraft of Canada Ltd., Longueuil, Quebec) In AGARD Advanced Technology for Aero Gas Turbine Components 17 p Sep. 1987

Avail: NTIS HC A23/MF A01

The main conclusions drawn from recent work in an on-going experimental program of research on the aerodynamics of a highly loaded turbine stage are discussed. Detailed data have been secured relating to the aerodynamic performance of transonic nozzles of high turning angle (tested with two outer wall contours) and the influence of the stage environment on such measurements. Further work addresses rotor performance (as affected by blade loading), and also overall stage performance. The ultimate objective of the work is the extension of turbine design methods to regimes combining high stage loadings with high pressure ratios, with special emphasis on small blade sizes.

N88-17656*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

EXPERIMENTAL EVALUATION OF A TRANSLATING NOZZLE SIDEWALL RADIAL TURBINE

RICHARD J. ROELKE and CASIMIR ROGO (Teledyne CAE, Toledo, Ohio.) /n AGARD Advanced Technology for Aero Gas Turbine Components 13 p Sep. 1987
Avail: NTIS HC A23/MF A01 CSCL 21E

An experimental performance evaluation was made of two movable sidewall variable area radial turbines. The turbine designs were representative of the gas generator turbine of a variable flow capacity rotorcraft engine. The first turbine was an uncooled design while the second turbine had a cooled nozzle but an uncooled rotor. The cooled nozzle turbine was evaluated both with and without coolant flow. The test results showed that the movable nozzle wall is a viable and efficient means to effectively control the flow capacity of a radial turbine. Peak efficiencies of the second turbine with and without nozzle coolant were 86.5 and 88 percent respectively. These values are comparable to pivoting vane variable geometry turbines; however, the decrease in efficiency as the flow was varied from the design value was much less for the movable wall turbine. Several design improvements which should increase the turbine efficiency one or two more points are identified. These design improvements include reduced leakage losses and relocation of the vane coolant ejection holes to reduce mainstream disturbance. Author

N88-17657# Motoren- und Turbinen-Union Muenchen G.m.b.H. (West Germany).

AN INTEGRATED AERO/MECHANICAL PERFORMANCE APPROACH TO HIGH TECHNOLOGY TURBINE DESIGN

J. HOURMOUZIADIS and G. ALBRECHT In AGARD Advanced Technology for Aero Gas Turbine Components 12 p Sep. 1987 Sponsored by German Ministry for Research and Technology, Fed. Republic of Germany

Avail: NTIS HC A23/MF A01

Analytical and experimental experience from an advanced technology gas generator program is used to define the requirements on the engineering sciences involved in the design of gas turbine engines. Some aerodynamic, performance and cooling problems to be solved in a common approach with mechanical design for radial clearance control, hot gas path sealing and life are discussed.

N88-17658# Royal Aircraft Establishment, Farnborough (England).

DESIGN AND TEST OF A HIGH BLADE SPEED, HIGH WORK CAPACITY TRANSONIC TURBINE

R. C. KINGCOMBE, J. D. BRYCE, and N. P. LEVERSUCH In AGARD Advanced Technology for Aero Gas Turbine Components 17 p Sep. 1987

Avail: NTIS HC A23/MF A01

A high rim-speed turbine was designed and tested. A major objective in the design was to achieve high aerodynamic efficiency at high work capacity by way of reduced stage loading facilitated by high blade speed. The design includes three dimensional features such as a parabolic distribution of exit angle and compound trailing edge lean on the nozzle guide vane and a thick root, highly tapered rotor blade - necessary in an engine turbine to reduce blade stress.

N88-17659# Rolls-Royce Ltd., Bristol (England). Advanced Turbine Technology Dept.

ADVANCED TECHNIQUES EMPLOYED IN BLADE COOLING RESEARCH

H. E. ROGERS, C. GRAHAM, and K. MCNICHOLAS In AGARD Advanced Technology for Aero Gas Turbine Components 13 p Sep. 1987 Sponsored by Procurement Executive Ministry of Defence, United Kingdom

Avail: NTIS HC A23/MF A01

The design of an advance cooling system for moderately cooled second stage gas turbine engine blades was undertaken as part of a demonstration project. The design process involving complex computer modeling and hot rig testing of the blades is described. The test results confirmed that substantial increases in cooling efficiency can be gained by introducing small scale turbulators into radial hole cooling systems. A development temperating in the near infrared region is described. The results of video pyrometry were validated from results obtained from a series of demonstrator hot rig tests. Also discussed are a number of problems relating to surface temperature measurement.

N88-17660# Stuttgart Univ. (West Germany). Inst. fuer Aerodynamik und Gasdynamik.

THE UNSTEADY GAS FLOW THROUGH STATOR AND ROTOR OF A TURBOMACHINE

K. M. FOERSTER In AGARD Advanced Technology for Aero Gas Turbine Components 10 p Sep. 1987

Avail: NTIS HC A23/MF A01

The difficulties of computing unsteady transonic flow in multiple connected domains with a minimum of neglections and approximations have been overcome by using individual computational grids fixed to each cascade, a novel gridless finite difference scheme, and physically real inflow and outflow boundaries. The resulting computer program is capable of computing the inviscid, plane gas flow through the stator and rotor of a turbomachine stage made from arbitrarily shaped (thick, round nosed) blades of arbitrary spacing, up to local Mach numbers of 1.8.

N88-17662# Pratt and Whitney Aircraft of Canada Ltd., Longueuil (Quebec). Turbine Aerodynamics.

DESIGN AND AERODYNAMIC PERFORMANCE OF A SMALL MIXED-FLOW GAS GENERATOR TURBINE

U. OKAPUU *In* AGARD Advanced Technology for Aero Gas Turbine Components 11 p Sep. 1987

Avail: NTIS HC A23/MF A01

Design details and results from aerodynamic rig tests are presented for four variants of a mixed flow turbine having a design target pressure ratio of 3:1. This experimental turbine, designed to satisfy the aerodynamic requirements of a gas generator turbine in a hypothetical small turboprop engine, demonstrated a design point efficiency substantially in excess of that predicted for a single stage axial turbine of equivalent duty. Design and material implications are discussed and potential constraints identified.

Author

N88-17663# Ecole Centrale de Lyon (France).

NUMERICAL SIMULATION OF DIFFUSER/CÓMBUSTOR DOME INTERACTION [SIMULATION NUMERIQUE DE L'INTERACTION DIFFUSEUR TETE DE CHAMBRE]

D. JEANDEL, G. BRUN, S. MEUNIER, and M. DESAULTY (Societe Nationale d'Etudes et de Construction de Moteurs d'Aviation, Moissy-Cramayel, France) In AGARD Advanced Technology for Aero Gas Turbine Components 10 p Sep. 1987 In FRENCH Avail: NTIS HC A23/MF A01

The design of a turbojet diffuser and combustion chamber dome can be realized, not only by researching low pressure loss, but also by assuring flow stability around a flame tube. A finite element method developed by Ecole Centrale de Lyon is described. The method employs an elliptic logic and a triangular type mesh which is well adapted for simulating complex geometric configurations. The application of the algorithm to various elementary and industrial configurations demonstrates the method's robustness and its ability to describe the principal flow characteristics in combustion dome regions.

N88-17664# Rolls-Royce Ltd., Bristol (England).

DEVELOPMENT OF A PLENUM CHAMBER BURNER SYSTEM FOR AN ADVANCED VTOL ENGINE

J. S. LEWIS, T. W. MURRAY, and D. STEELE In AGARD Advanced Technology for Aero Gas Turbine Component 10 p Sep. 1987 Sponsored by Procurement Executive Ministry of Defence, United Kingdom

Avail: NTIS HC A23/MF A01

The research and development programs that were carried out on model and full size rigs to design and evaluate advanced concepts to meet the anticipated thrust requirements for a plenum chamber burner system for an advanced vertical takeoff and landing (VTOL) aircraft are described. The system characteristics of pressure loss, ignition, efficiency, thermal integrity and velocity profiles at nozzle exit under non-combusting (dry) and combusting conditions are discussed.

N88-17665# Lucas Aerospace Ltd., Birmingham (England). Engine Systems Div.

PUMPING SYSTEMS AND FLOW INTERFACES FOR RAPID RESPONSE ELECTRONIC REHEAT CONTROLS

THOMAS C. YATES and TREVOR S. SMITH In AGARD Advanced Technology for Aero Gas Turbine Components 20 p Sep. 1987 Sponsored by Procurement Executive Ministry of Defence, United Kingdom

Avail: NTIS HC A23/MF A01

The problems of fuel pumping and metering which are associated with digital electronic reheat controls are discussed. A survey is carried out of various pumping options including reheat and main engine fuel pumping. A technical description of single, twin, and three pump systems, including rotodynamic and positive displacement pumps is given together with comments on the relative advantages and disadvantages of the various options. A fuel flow interface designed for rapid response reheat control systems is described. The application is a digital electronic control for a future bypass engine. Comparison is made between computer simulation of the control characteristics and test results of the hardware.

N88-17666*# General Electric Co., Cincinnati, Ohio. Aircraft Engine Business Group.

AERODYNAMIC PERFORMANCE OF A SCALE-MODEL, COUNTER-ROTATING UNDUCTED FAN

THOMAS J. SULLIVAN *In* AGARD Advanced Technology for Aero Gas Turbine Components 16 p Sep. 1987 Sponsored by NASA, Washington, D.C.

Avail: NTIS HC A23/MF A01 CSCL 21E

The aerodynamic performance of a scale model, counter-rotating unducted fan has been determined and the results are discussed. Experimental investigations were conducted using the scale model propulsor simulator and uniquely shaped fan blades. The blades, designed for a high disk loading at Mach 0.72 at 35,000 feet altitude maximum climb condition are

aft-mounted on the simulator in a pusher configuration. Data are compared with analytical predictions at the design point and show good agreement.

N88-17667*# General Motors Corp., Indianapolis, Ind. Gas Turbine Div.

GEAR SYSTEMS FOR ADVANCED TURBOPROPS

DOUGLAS A. WAGNER In AGARD Advanced Technology for Aero Gas Turbine Components 9 p Sep. 1987 Sponsored by NASA, Washington, D.C.

Avail: NTIS HC A23/MF A01 CSCL 21E

A new generation of transport aircraft will be powered by efficient, advanced turboprop propulsion systems. Systems that develop 5,000 to 15,000 horsepower have been studied. Reduction gearing for these advanced propulsion systems is discussed. Allison Gas Turbine Division's experience with the 5,000 horsepower reduction gearing for the T56 engine is reviewed and the impact of that experience on advanced gear systems is considered. The reliability needs for component design and development are also considered. Allison's experience and their research serve as a basis on which to characterize future gear systems that emphasize low cost and high reliability.

N88-17668# Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt, Brunswick (West Germany). Inst. fuer Entwurfsaerodynamik.

NUMERICAL METHODS FOR PROPELLER AERODYNAMICS AND ACOUSTICS AT DFVLR

N. KROLL, D. LOHMANN, and J. SCHOENE *In* AGARD Advanced Technology for Aero Gas Turbine Components 15 p Sep. 1987 Avail: NTIS HC A23/MF A01

Linear and nonlinear analysis methods for flow fields around propellers were developed. Here, two singularity methods are presented. In the first, a doublet point scheme was formulated for the calculation of steady and unsteady loads on surfaces having helical motion in an incompressible medium, e.g., propellers in uniform and nonuniform inflows and counter rotating propellers. The second is a surface panel method for computations of steady subsonic flows around propeller blades moving in a compressible medium. The method has been extended for the prediction of acoustic quantities. In order to predict the characteristics of transonic propeller flow fields, a Euler code for solving the three dimensional Euler equations was extended. The equations are formulated in a rotating cartesian reference frame. The solution procedure is based on a finite volume method using an explicit Runge-Kutta time stepping scheme. Numerical results for various propeller geometries are presented and compared experimental data. Author

N88-17669# Office National d'Etudes et de Recherches Aerospatiales, Paris (France).

ANALYSIS OF HIGHSPEED PROPELLERS AERODYNAMICS

J. M. BOUSQUET In AGARD Advanced Technology for Aero Gas Turbine Components 12 p Sep. 1987 In FRENCH; ENGLISH summary

Avail: NTIS HC A23/MF A01

Highspeed propellers are studied. A synthesis of aerodynamic developments leading to the HT3 propeller definition and test in the S1 Modane wind tunnel is presented. The validity of the main calculation methods used in this research is analyzed. Counterrotating highspeed propellers are also studied. Their performance benefits against single rotation propellers are presented.

N88-17670# Fiat Aviazione S.p.A., Turin (Italy). Direzione Progettazione.

ANALYSIS OF POSSIBLE TRANSMISSION ARRANGEMENTS APPLICABLE FOR **DRIVING** SINGLE OR **COUNTERROTATING FANS ON PROPFAN ENGINES**

L. BATTEZZATO and S. TURRA In AGARD Advanced Technology for Aero Gas Turbine Components 11 p Sep. 1987 Avail: NTIS HC A23/MF A01

A number of different designs of propfan engines are now being defined by the main engine manufacturers in the world. Some of these designs require a reduction gearbox between the LP turbine and the propfan; the propfan itself is conceived as single stage, variable pitch blade or double counterrotating stage variable pitch solution. In order to satisfy these requirements, the authors propose different mechanical arrangements of the reduction gearbox and, for given engine interfaces, compare their relative merits in order to eventually show the optimum solution. The comparison is made on the basis of various aspects: lightness, quietness, life, reliability, safety and maintainability.

N88-17672# Von Karman Inst. for Fluid Dynamics, Rhode-Saint-Genese (Belgium).

INVESTIGATION OF DIHEDRAL EFFECTS IN COMPRESSOR **CASCADES**

F. A. E. BREUGELMANS In AGARD Advanced Technology for Aero Gas Turbine Components 14 p Sep. 1987 Avail: NTIS HC A23/MF A01

An experimental investigation of the influence of blade dihedral on the secondary flow in the two dimensional NACA 65-series compressor cascade is performed. Different inlet boundary layer thicknesses are used on the endwalls. Three different stacking lines have been chosen, namely a straight line inclined at 15, 25 and 35 degrees, a circular arc and an elliptic arc. The incidence range up to stall has been investigated and the local and overall losses are compared. The obtuse angle between the blade suction surface and the endwall has a beneficial effect on overall and secondary flow loss. Some limitations have to be accepted. depending on boundary layer thickness and incidence.

N88-17674# Technische Univ., Hanover (West Germany). Inst. fuer Stroemungsmaschinen.

POSSIBILITIES FOR ON-LINE SURGE SUPPRESSION BY FAST **GUIDE VANE ADJUSTMENT IN AXIAL COMPRESSORS**

W. RIESS and U. BLOECKER In AGARD Advanced Technology for Aero Gas Turbine Components 15 p Sep. 1987 Avail: NTIS HC A23/MF A01

The usual surge suppression regulation is realized by integration of a fixed limit line into the regulation system at a safe distance from the stability limit of the compressor. With appropriate means for detection of stall and surge in addition to fast response of the guide vane adjustment, an adaptive system for surge suppression which takes into account the actual state of the compressor could be realized. Experimental results for stall detection and for different modes of guide vane adjustment are presented. A six stage axial compressor is equipped with fast acting guide vane adjustment in all stages. Author

Norges Tekniske Hoegskole, Trondheim. Div. of N88-17675# Hydro- and Gas Dynamics,

RADIAL COMPRESSOR DESIGN USING AN EULER SOLVER JAN TORE BILLDAL and ANDREW WILSON In AGARD Advanced Technology for Aero Gas Turbine Components 12 p Avail: NTIS HC A23/MF A01

The steady inviscid flow through a radial compressor is computed by solving the three dimensional Euler equations on both an H-type and O-type grid. The centered finite volume method with an explicit integration scheme is used to solve the equations. The numerical programs were developed as a tool in the design process of new, high pressure radial compressors with complex geometries and spitterblades.

N88-17676# Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt, Cologne (West Germany). Inst. fuer Antriebstechnik.

SECONDARY FLOW MEASUREMENTS WITH L2F-TECHNIQUE IN CENTRIFUGAL COMPRESSORS

H. KRAIN In AGARD Advanced Technology for Aero Gas Turbine Components 10 p Sep. 1987 Avail: NTIS HC A23/MF A01

The flow characteristics of a 30 degree backswept impeller are analyzed by means of the L2F measurement technique. Significant cross flows, noticeable distortions of the through flow patterns and considerable velocity fluctuations were found inside the blade passages of the impeller. The distortions of the velocity patterns are smoothing towards the impeller exit. A detailed analysis of the measured data reveals the existence of two counter rotating channel vortices that are significantly influencing the overall flow character.

N88-17677# Centre National de la Recherche Scientifique, Marseilles (France).

METHOD FOR PREDICTING PERFORMANCE LIMITS OF CENTRIFUGAL COMPRESSORS [METHODE DE PREVISION DES LIMITES DE FONCTIONNEMENT EN DEBIT DES COMPRESSEURS CENTRIFUGES

H. MILTON, G. SENATORE, and J. CHAUVIN (LEMFI, Orsay, France) In AGARD Advanced Technology for Aero Gas Turbine Components 12 p Sep. 1987 In FRENCH Avail: NTIS HC A23/MF A01

Currently, the phenomena which impose performance limits in centrifugal compressors are not clearly identifiable. If pumping and rotating stall are frequently observed at partial output, it is not certain whether the pumping limit is imposed by purely nonstationary phenomena. The approach described here consists of determining that limit by specifically applying the load criteria in the axial region of the moving impeller and the diffuser semi-blade section. The performance limit is assumed to be reached when impeller and diffuser are simultaneously stalled. The results of a simple analysis method, applied to two compressors having very different geometric characteristics, show a fairly good agreement between the performance limit defined with this criterion and the experimental pumping limit.

N88-17678# Pratt and Whitney Aircraft, West Palm Beach, Fla. Engineering Div.

DESIGN AND DEVELOPMENT OF AN ADVANCED F100 **COMPRESSOR**

CHARLES M. LOVE In AGARD Advanced Technology for Aero Gas Turbine Components 12 p Sep. 1987 Avail: NTIS HC A23/MF A01

The aerodynamic and mechanical design features of an advanced F100 compressor are described. The design objectives were to increase the efficiency and stability, along with simplifying the mechanical configuration in order to reduce the number of parts. Test results from a compressor rig and core engine are shown. Comparisons of the performance to the current F100 compressor are made. Results of testing with inlet pressure distortion are shown. Configuration features to improve reliability, durability, maintainability and producibility are shown.

N88-17679# Societe Nationale d'Etudes et de Construction de Moteurs d'Aviation, Moissy-Cramayel (France).

DESIGN AND TESTING OF A FRONT STAGE FOR AN ADVANCED HIGH PRESSURE COMPRESSOR [CONCEPTION ET ESSAIS D'UN ETAGE DE TETE D'UN COMPRESSEUR HP **AVANCE**1

MARIUS GOUTINES and HENRI NAVIERE In AGARD Advanced Technology for Aero Gas Turbine Components 15 p In FRENCH Sponsored by Direction des Recherches, Etudes et Techniques du Ministere de la Defense, France Avail: NTIS HC A23/MF A01

Studies of an advanced high pressure compressor show that the front stage rotor is supersonic all along the span of the blades. SNECMA designed and constructed a monostage compressor to evaluate performances, especially secondary flows. The approach used in the compressor project, the design configuration, and velocity triangles selected for nominal operation level are described. The supersonic profiles were optimized by the direct solution of the three dimensional Euler equations. The subsonic profiles were optimized by a direct potential method coupled with a boundary layer calculation. The global performances are addressed. The measured aerodynamic fields and azimuthal means are compared to the theoretical predictions for the front wall secondary flow region.

N88-17680# Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt, Cologne (West Germany). Inst. fuer Antriebstechnik.

EXPERIMENTAL INVESTIGATION OF A SUPERCRITICAL COMPRESSOR ROTOR BLADE SECTION

R. FUCHS, R. KAYMAZ, H. STARKEN, and W. STEINERT In AGARD Advanced Technology for Aero Gas Turbine Components 11 p Sep. 1987

Avail: NTIS HC A23/MF A01

A controlled diffusion rotor blade section was designed for a supercritical inlet Mach number of M sub 1 equals 0.85 and a flow turning of 29 degrees. The blade section has been tested in a cascade wind tunnel under various inlet flow conditions and axial velocity density ratios. A detailed investigation about transition and separation points was carried out at the design and at two off-design inlet flow conditions. The results are presented and discussed.

Author

N88-17681# Societe Nationale d'Etudes et de Construction de Moteurs d'Aviation, Moissy-Cramayel (France).

COMPUTATION OF SECONDARY FLOWS IN AN AXIAL MULTISTAGE COMPRESSOR [CALCUL DES ECOULEMENTS SECONDAIRES DANS UN COMPRESSEUR AXIAL MULTIETAGE]

F. FALCHETTI and J. BROCHET *In* AGARD Advanced Technology for Aero Gas Turbine Components 13 p Sep. 1987 In FRENCH; ENGLISH summary Sponsored by Direction des Recherches, Etudes et Techniques, France and Societe National d'Etude et de Construction de Moteurs d'Aviation, France

Avail: NTIS HC A23/MF A01

SNECMA has developed and extended the use of a secondary flow computation method for axial flow compressors. This method takes into account the secondary phenomena through a viscous correction applied to a through flow calculation. This correction is calculated to the complete meridan plane, including the bladerows. A set of equations deduced from three dimensional parabolized and pitchwise averaged Navier-Stokes equations are solved. A classical coupling process between the secondary flow and the through flow computations is insured through mass flow injection. After reviewing the main features of the method, an application to a multistage compressor is presented. The application of this method to the design of end-bend blades is shown.

08

AIRCRAFT STABILITY AND CONTROL

Includes aircraft handling qualities; piloting; flight controls; and autopilots.

A88-25622

ESTIMATION OF AIRCRAFT MOTION PARAMETERS WITH ALLOWANCE FOR ATMOSPHERIC TURBULENCE [OTSENKA PARAMETROV DVIZHENIIA SAMOLETA S UCHETOM TURBULENTNOSTI ATMOSFERY]

T. K. SIRAZETDINOV and P. V. SMIRNOV Aviatsionnaia Tekhnika (ISSN 0579-2975), no. 4, 1987, p. 53-57. In Russian. refs

A method and an algorithm are presented for solving the problem of estimating the aircraft state vector from measurement

data during a flight in a turbulent atmosphere, with constraints in the form of inequalities imposed on the estimation error variance. The algorithm described here has been implemented in a set of computer programs written in FORTRAN IV.

V.L.

A88-27320

AIRCRAFT GUIDANCE FOR FORMATION FLYING BASED ON OPTIMAL CONTROL THEORY

S. J. FU (Boeing Military Airplane Co., Wichita, KS) IN: 1987 American Control Conference, 6th, Minneapolis, MN, June 10-12, 1987, Proceedings. Volume 1. New York, Institute of Electrical and Electronics Engineers, 1987, p. 393, 394.

Application of Linear Quadratic Regulator (LQR) theory to aircraft guidance and control for formation flying is discussed in this paper. Based on a second order mathematical model, the guidance law provides the reference acceleration command to the flight and propulsion control system of the wingman aircraft.

Author

A88-27321

AN OPTIMIZED YAW DAMPER FOR ENHANCED PASSENGER RIDE COMFORT

T. J. GOSLIN, F. H. ANSARI, and A. CHAKRAVARTY (Boeing Commercial Airplane Co., Seattle, WA) IN: 1987 American Control Conference, 6th, Minneapolis, MN, June 10-12, 1987, Proceedings. Volume 1. New York, Institute of Electrical and Electronics Engineers, 1987, p. 395, 396.

An optimized yaw damper for the enhancement of passenger ride comfort is discussed which aims at improving dutch roll damping for low dynamic pressure flight conditions without increasing the rms rudder deflection. A robust low-order controller design algorithm, SANDY, is combined with a root locus method in order to achieve a good design. For conditions under which the dutch roll damping coefficient is lowest, a 6-15 percent improvement in dutch roll damping is obtained.

A88-27322

ON THE DESIGN OF ROBUST COMPENSATORS FOR AIRPLANE MODAL CONTROL

JOHN K. HO, STEVE R. COOPER, CHUONG B. TRAN, and ABHIJIT CHAKRAVARTY (Boeing Commercial Airplane Co., Seattle, WA) IN: 1987 American Control Conference, 6th, Minneapolis, MN, June 10-12, 1987, Proceedings. Volume 1. New York, Institute of Electrical and Electronics Engineers, 1987, p. 397, 398.

A design procedure for a modal suppression system is proposed which enhances the capability of a classical yaw damper by suppressing some of the vibration due to structural modes in addition to controlling the dutch roll response. The plant model for the compensator design consists of an airplane structural model, a control law with a fast frame time, a wide bandwidth servo, and a power control actuator. Comparison of results obtained with both the basic airplane and the closed-loop airplane illustrates the improved airplane performance.

A88-27352

ACCURATE MODELING OF NONLINEAR SYSTEMS USING VOLTERRA SERIES SUBMODELS

HAROLD STALFORD, WILLIAM T. BAUMANN, FREDERICK E. GARRETT, and TERRY L. HERDMAN (Virginia Polytechnic Institute and State University, Blacksburg) IN: 1987 American Control Conference, 6th, Minneapolis, MN, June 10-12, 1987, Proceedings. Volume 2. New York, Institute of Electrical and Electronics Engineers, 1987, p. 886-891. refs (Contract F33615-86-K-3617)

The problem of accurately modeling nonlinear systems (such as aircraft flight in high angle-of-attack/sideslip flight) using simple low-order Volterra submodels is investigated. First, this technique is applied to a simplified nonlinear stall/post-stall aircraft model for the case of a longitudinal limit cycle. The simulation study demonstrates that the responses of the Volterra submodels

accurately match the responses of the original nonlinear model, whereas the responses of a piecewise-linear model do not. Next,

the technique is applied to a simplified high alpha nonlinear model of wing rock. The simulation study demonstrates that the second-order Volterra approximation predicts the wing rock limit cycle, while a linear approximation does not. Third-, fourth- and fifth-order Volterra approximations are observed to give wing rock amplitudes that converge quadratically to the nonlinear value.

Author

A88-27365

FLIGHT CONTROL FOR THE F-8 OBLIQUE WING RESEARCH AIRCRAFT

DALE F. ENNS, DANIEL J. BUGAJSKI (Honeywell Systems and Research Center, Minneapolis, MN), and MARTIN J. KLEPL (Rockwell International Corp., El Segundo, CA) IN: 1987 American Control Conference, 6th, Minneapolis, MN, June 10-12, 1987, Proceedings. Volume 2. New York, Institute of Electrical and Electronics Engineers, 1987, p. 1112-1117. refs

This paper will discuss multivariable flight control laws for the F-8 Oblique Wing Research Aircraft. The control laws were developed using a loopshaping methodology to support the NASA/Navy program to ultimately flight test a supersonic aircraft with an oblique wing with as much as 65 degress wing skew. The objective of the control laws is to obtain decoupling of the longitudinal and lateral-directional motions of the unsymmetrical aircraft, as well as to satisfy conventional flight control objectives including gust attenuation, good command tracking, good handling qualities, and stability robustness with respect to model uncertainty. A multivariable proportional plus integral element is the basic ingredient of the control laws, along with sensor blending into regulated variables, and pilot command precompensation. Various analyses including frequency and time responses will be presented. Stability robustness properties of the control laws will be presented using singular value and structured singular value techniques. Handling qualities will be analyzed using the equivalent systems technique. Responses of the controlled aircraft to pilot inputs will be presented using time histories.

A88-27370

AN MRAC SYSTEM FOR AIRCRAFT LONGITUDINAL CONTROL

D. G. RAO, M. M. KULKARNI, and J. CHANDRASEKHAR (Indian Institute of Technology, Bombay, India) IN: 1987 American Control Conference, 6th, Minneapolis, MN, June 10-12, 1987, Proceedings. Volume 2. New York, Institute of Electrical and Electronics Engineers, 1987, p. 1133, 1134. Research supported by the Aeronautical Research and Development Board of India.

A model reference adaptive pitch rate controller is reported which is suitable for aircraft applications. The controller has fast model matching characteristics and is differentiator-free. Hybrid simulation results show excellent error convergence both in terms of speed and output voltage.

C.D.

A88-27727

ADAPTIVE PREDICTION FLIGHT CONTROL SYSTEMS [ADAPTIVNYE PROGNOZIRUIUSHCHIE SISTEMY UPRAV-LENIIA POLETOM]

VALENTIN NIKOLAEVICH BYKOV Moscow, Izdatel'stvo Nauka, 1987, 232 p. In Russian. refs

Algorithms for the adaptive control of dynamic processes are considered which combine optimal control synthesis with the use of prediction models and real-time estimation of the controlled process parameters. The algorithms make it possible to allow, in a complete and natural manner, for both a priori and in-service information on the dynamic characteristics of the system. Control of an essentially nonlinear process does not require model simplification. The adaptive prediction algorithms proposed here are not limited to problems of flight control and are applicable to most manufacturing processes, control of moving systems, and other problems.

488-27754

APPLICATIONS OF SINGULAR PERTURBATION TECHNIQUES TO AIRCRAFT TRAJECTORY OPTIMIZATION [APPLICATIONS DES TECHNIQUES DE PERTURBATIONS SINGULIERES A L'OPIMIZATION DES TRAJECTOIRES D'AVION]

A. J. FOSSARD (Ecole Nationale Superieure de l'Aeronautique et de l'Espace, Toulouse; ONERA, Centre d'Etudes et de Recherches de Toulouse, France) and A. FREITAS (IPD, Rio de Janeiro, Brazil) IN: Automatic systems in aeronautics; National Colloquium, Paris, France, Mar. 17-19, 1986, Proceedings. Toulouse, Cepadues-Editions, 1986, p. 105-127. In French. DRET-supported research.

The method of forced singular perturbation is applied to various aeronautical problems for which a closed loop solution can be obtained as a function of the instantaneous state. The method involves the separation of problem variables into distinct dynamic classes. With the system equations written in this form, a real-time or closed-loop optimal global control law can be obtained providing that the solution in the external boundary can be obtained. It is shown that in certain critical cases it is possible to improve the degree of optimization by a different classification. Given two dynamic classifications, the switching of one to the other is made automatically on a surface of the state-space.

A88-27759

ACTIVE CONTROL OF HELICOPTER VIBRATIONS BY SELF-ADAPTIVE MULTICYCLIC CONTROL [CONTROLE ACTIF DES VIBRATIONS SUR HELICOPTERE PAR COMMANDES MULTICYCLIQUES AUTO-ADAPTIVES]

MARC ACHACHE (Aerospatiale, Division Helicopteres, Marignane, France) IN: Automatic systems in aeronautics; National Colloquium, Paris, France, Mar. 17-19, 1986, Proceedings. Toulouse, Cepadues-Editions, 1986, p. 227-268. In French. Research supported by the Service Technique des Programmes Aeronautiques, Direction Generale de l'Aviation Civile, and DRET.

A self-adaptive multicyclic control system for the active control of helicopter rotor blade vibrations has been developed and tested aboard the Gazelle SA 349. The system architecture consists of vibration sensors, an analog computer, a digital computer to determine the optimal control vectors, and a system of multicyclic actuators. Tests performed with a rotor test rig have demonstrated satisfactory functioning of the system and have led to improvements in the self-adaptive deterministic and stochastic control algorithms. Flight tests have validated the present concept and provided data which can be used to refine helicopter structure and rotor models.

A88-27761

STABILITY OF HELICOPTER BLADE MOTION IN THE CASE OF TURBULENT AIR FLOW [STABILITE DU MOUVEMENT DES PALES D'HELICOPTERE DANS LE CAS D'UN ECOULEMENT TURBULENT DE L'AIR]

E. PARDOUX (Aix-Marseille I, Universite, Marseille; Institut National de Recherche en Informatique et en Automatique, Rocquencourt, France) IN: Automatic systems in aeronautics; National Colloquium, Paris, France, Mar. 17-19, 1986, Proceedings. Toulouse, Cepadues-Editions, 1986, p. 295-303. In French. refs

Recent mathematical results are used to investigate the stability of linear differential systems subjected to random perturbation. For the case of forward motion, helicopter blade movement is studied as a function of flutter and torsion. The system is subjected to random aerodynamic forces when the angle between the blade plane and that of the wind velocity becomes sufficiently great. The results illustrate both the effect of random fluctuations on the critical velocity, and the sensitivity of the critical velocity to bandwidth. Liapunov exponents are used to describe the stability of helicopter blade movement.

A88-27762

DESIGN OF A HELICOPTER AUTOMATIC FLIGHT CONTROL SYSTEM [CONCEPTION D'UN SYSTEME DE PILOTAGE AUTOMATIQUE POUR HELICOPTERE]

THUY LAN VU and ALAIN VAISSIERE (Societede Fabrication d'Instruments de Mesure, Massy, France) IN: Automatic systems in aeronautics; National Colloquium, Paris, France, Mar. 17-19, 1986, Proceedings. Toulouse, Cepadues-Editions, 1986, p. 305-337. In French. refs (Contract DRET-84-428)

Multivariable synthesis methods are applied to the design of a helicopter automatic flight control system. The characteristic Nyquist/Bode loci design methods are extended to the multivariable case, and the synthesis method is implemented in a tangent linearized model based on a mathematical formulation for an equilibrium point. Simulation results are presented for a nonlinear helicopter model and for models of sensors and actuators. The present approach is aimed at obtaining satisfactory stabilization of the system, excellant dynamic characteristics, and a reduction in coupling between the axes.

A88-27763

NONLINEAR CONTROL FOR LEVEL FLIGHT OF A HELICOPTER [COMMANDE NON-LINEAIRE POUR LE VOL EN PALIER D'UN HELICOPTERE]

DANIEL CLAUDE (CNRS, Laboratoire des Signaux et Systemes, Gif-sur-Yvette, France) IN: Automatic systems in aeronautics; National Colloquium, Paris, France, Mar. 17-19, 1986, Proceedings . Toulouse, Cepadues-Editions, 1986, p. 339-355. In French. refs

(Contract DRET-81-492)

Nonlinear decoupling techniques have been applied to the multivariable control of helicopters for the case of level flight, and a physical interpretation of the singularities encountered is presented. The decoupling and immersion of nonlinear systems are first considered. The level flight of a helicopter is modeled by obtaining a fourth degree polynomial approximation with tangent linear-model coefficients as a function of translation velocity. Control laws are determined for a range of applicable translation velocites, and a singularity is noted in the neighborhood of 347 km/hr.

A88-27764

NONLINEAR IDENTIFICATION TECHNIQUE FOR HELICOPTER FLIGHT MECHANICS [TECHNIQUE D'IDENTIFICATION NON-LINEAIRE DE LA MECANIQUE DE VOL D'UN HELICOPTERE]

H. DANG VAN MIEN (Electricite de France, Clamart), F. DEBLON, and MR. NORMAND-CYROT (CNRS, Laboratoire des Signaux et Systemes, Gif-sur-Yvette, France) IN: Automatic systems in aeronautics; National Colloquium, Paris, France, Mar. 17-19, 1986, Proceedings . Toulouse, Cepadues-Editions, 1986, p. 357-368. In French. refs

(Contract DRET-83-34-231-00-470-750-1)

Helicopter flight mechanics are modeled using a black-box method that employs an input-output approximation. The present identification technique leads to equations which have linear differences in state but which are nonlinear in control and output. The method is applied to the case of stabilized level flight for velocities of between 140 and 300 km/h with respect to the ground. A linear identification in canonical form is presented, following which a nonlinear identification is performed. The results demonstrate the ability of the refined-state model to faithfully reproduce oscillating and exponential-type dynamics.

A88-27765

IDENTIFICATION TECHNIQUES IN FLIGHT MECHANICS (TECHNIQUES D'IDENTIFICATION EN MECANIQUE DU VOL)

PIERRE MEREAU (ADERSA/GERBIOS, Verrieres-le-Buisson, France) IN: Automatic systems in aeronautics; National Colloquium, Paris, France, Mar. 17-19, 1986, Proceedings. Toulouse, Cepadues-Editions, 1986, p. 369-415. In French. refs

Identification techniques for determining the flight mechanics of rigid aircraft are discussed which have application to flight simulation, aircraft flight quality, control systems, and breakdown detection. The mathematical basis of flight mechanics modeling is first reviewed. The identification process consists of five steps: (1) data acquisition using both measured aerodynamic values and optimized test data from open-loop (pilot controlled) and closed-loop (autopiloted) aircraft; (2) data processing, including data correction and the reconstitution of nonmeasured variables; (3) the characterization of linear and nonlinear aerodynamic coefficients; (4) the identification of structural parameters using estimation and optimization techniques; and (5) model validation.

R.R.

A88-27769

PROBLEMS RELATED TO THE APPLICATION OF FLIGHT CONTROL TO THE FIELD OF COMBAT AIRCRAFT GUIDANCE [PROBLEMES LIES AUX APPLICATIONS DE L'AUTOMATIQUE DANS LE DOMAINE DU PILOTAGE DES AVIONS DE COMBAT]

JEAN CHOPLIN and JEAN-PIERRE BELMONT (Avions Marcel Dassault Breguet Aviation, Division des Etudes Avancees, Saint-Cloud, France) IN: Automatic systems in aeronautics; National Colloquium, Paris, France, Mar. 17-19, 1986, Proceedings . Toulouse, Cepadues-Editions, 1986, p. 495-510. In French.

The evolution of flight control systems for combat aircraft is reviewed and is illustrated with the examples of the Mirage 1, Mirage 2000, and Rafale aircraft. Requirements for the development of flight control systems in the areas of modelization of complex aerodynamic phenomena, signal processing, and control are identified. Adaptation control techniques for closed-loop and open-loop systems are considered. Various flight control systems are evaluated and compared with respect to such criteria as global cost, robustness of the compensator obtained, and ability to conform to production specifications and implementation constraints.

A88-27770

TREATMENT METHODS FOR THE ALLEVIATION OF GUSTS ON AIRCRAFT [METHODES DE TRAITEMENT CONCERNANT L'ABSORPTION DE RAFALES SUR AVION]

G. COULON (ADERSA/GERBIOS, Verrieres-le-Buisson, France) and R. HIRSCH IN: Automatic systems in aeronautics; National Colloquium, Paris, France, Mar. 17-19, 1986, Proceedings. Toulouse, Cepadues-Editions, 1986, p. 531-540. In French. refs

The detection, alleviation, and simulation of gusts on aircraft are discussed. Three different simulation programs are considered: (1) a program simulating longitudinal aircraft motion and taking into acount the effects of lift on the wings and tail; (2) a variant of (1) developed for rigid aircraft which includes tail motion for gust alleviation; and (3) a variant of (1) for canard aircraft, taking into account canard-wing, wing-tail, and canard-tail deflections. Simulation results are found to compare well with results obtained with a GH80 aircraft.

A88-27889#

FLAT SPIN OF AXISYMMETRIC BODIES IN THE CRITICAL REYNOLDS NUMBER REGION

L. E. ERICSSON (Lockheed Missiles and Space Co., Inc., Sunnyvale, CA) Journal of Spacecraft and Rockets (ISSN 0022-4650), vol. 24, Nov.-Dec. 1987, p. 532-538. Previously cited in issue 23, p. 3385, Accession no. A86-47671.

National Aeronautics and Space Administration. A88-28261*# Ames Research Center, Moffett Field, Calif.

ROBUST ADAPTIVE FLIGHT-PATH RECONSTRUCTION TECHNIQUE FOR NONSTEADY LONGITUDINAL FLIGHT TEST **MANEUVERS**

M. H. VERHAEGEN (NASA, Ames Research Center, Moffett Field, Journal of Guidance, Control, and Dynamics (ISSN 0731-5090), vol. 11, Jan.-Feb. 1988, p. 73-79. Previously cited in issue 23, p. 3412, Accession no. A86-47653, refs

National Aeronautics and Space Administration. Ames Research Center, Moffett Field, Calif.

APPROACH TRAJECTORY GUIDANCE FOR MAXIMUM CONCEALMENT

DAVID N. WARNER, JR. (NASA, Ames Research Center, Moffett Journal of Guidance, Control, and Dynamics (ISSN Field, CA) 0731-5090), vol. 11, Jan.-Feb. 1988, p. 94, 95.

An energy-management concept is examined with a view to provision of a near-optimum maneuver guidance system for military aircraft tactical operations. The data thus obtained indicate that the Quiet Short-Haul Research Aircraft, as modeled in the aircraft-specific energy-rate tables, could fly the flight paths in question. The fuel-conservative guidance system's ability to minimize pop-up flight time and carefully coordinate the aircraft's performance-oriented requirement controls for this demonstrated.

National Aeronautics and Space Administration. N88-16628*# Langley Research Center, Hampton, Va.

A SUMMARY OF RECENT NASA/ARMY CONTRIBUTIONS TO ROTORCRAFT VIBRATIONS AND STRUCTURAL DYNAMICS **TECHNOLOGY**

RAYMOND G. KVATERNIK, FELTON D. BARTLETT, JR., and JOHN H. CLINE (Army Aerostructures Directorate, Hampton, Va.) In NASA, Washington, NASA/Army Rotorcraft Technology. Volume 1: Aerodynamics, and Dynamics and Aeroelasticity p 71-179 Feb.

Avail: NTIS HC A23/MF A01 CSCL 01C

The requirement for low vibrations has achieved the status of a critical design consideration in modern helicopters. There is now a recognized need to account for vibrations during both the analytical and experimental phases of design. Research activities in this area were both broad and varied and notable advances were made in recent years in the critical elements of the technology base needed to achieve the goal of a jet smooth ride. The purpose is to present an overview of accomplishments and current activities of govern and government-sponsored research in the area of rotorcraft vibrations and structural dynamics, focusing on NASA and Army contributions over the last decade or so. Specific topics addressed include: airframe finite-element modeling for static and dynamic analyses, analysis of coupled rotor-airframe vibrations, optimization of airframes subject to vibration constraints, active and passive control of vibrations in both the rotating and fixed systems, and integration of testing and analysis in such guises as modal analysis, system identification, structural modification, and vibratory loads measurement. Author

N88-16631*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, Calif.

ROTORCRAFT AEROELASTIC STABILITY

ROBERT A. ORMISTON, WILLIAM G. WARMBRODT, DEWEY H. HODGES, and DAVID A. PETERS (Georgia Inst. of Tech., Atlanta.) In NASA, Washington, NASA/Army Rotorcraft Technology. Volume 1: Aerodynamics, and Dynamics and Aeroelasticity p 353-529 Feb. 1988
Avail: NTIS HC A23/MF A01 CSCL 01C

Theoretical and experimental developments in the aeroelastic and aeromechanical stability of helicopters and tilt-rotor aircraft are addressed. Included are the underlying nonlinear structural mechanics of slender rotating beams, necessary for accurate modeling of elastic cantilever rotor blades, and the development of dynamic inflow, an unsteady aerodynamic theory for low-frequency aeroelastic stability applications. Analytical treatment

of isolated rotor stability in hover and forward flight, coupled rotor-fuselage stability in hover and forward flight, and analysis of tilt-rotor dynamic stability are considered. Results of parametric investigations of system behavior are presented, and correlation between theoretical results and experimental data from small and large scale wind tunnel and flight testing are discussed.

N88-16642*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, Calif.

HELICOPTER MATHEMATICAL MODELS AND CONTROL LAW DEVELOPMENT FOR HANDLING QUALITIES RESEARCH

ROBERT T. N. CHEN, J. VICTOR LEBACQZ, EDWIN W. AIKEN, and MARK B. TISCHLER (Army Aviation Systems Command, Moffett Field, Calif.) In NASA, Washington, NASA/Army Rotorcraft Technology. Volume 2: Material and Structures, Propulsion and Drive Systems, Flight Dynamics and Control, and Acoustics p 837-899 Feb. 1988

Avail: NTIS HC A25/MF A01 CSCL 01C

Progress made in joint NASA/Army research concerning rotorcraft flight-dynamics modeling, design methodologies for rotorcraft flight-control laws, and rotorcraft parameter identification is reviewed. Research into these interactive disciplines is needed to develop the analytical tools necessary to conduct flying qualities investigations using both the ground-based and in-flight simulators, and to permit an efficient means of performing flight test evaluation of rotorcraft flying qualities for specification compliance. The need for the research is particularly acute for rotorcraft because of their mathematical complexity, high order dynamic characteristics, and demanding mission requirements. The research in rotorcraft flight-dynamics modeling is pursued along two general directions: generic nonlinear models and nonlinear models for specific rotorcraft. In addition, linear models are generated that extend their utilization from 1-g flight to high-g maneuvers and expand their frequency range of validity for the design analysis of high-gain flight control systems. A variety of methods ranging from classical frequency-domain approaches to modern time-domain control methodology that are used in the design of rotorcraft flight control laws is reviewed. Also reviewed is a study conducted to investigate the design details associated with high-gain, digital flight control systems for combat rotorcraft. Parameter identification techniques developed for rotorcraft applications are reviewed.

N88-16643*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. ROTORCRAFT FLIGHT-PROPULSION CONTROL INTEGRA-

TION JAMES R. MIHALOEW, MARK G. BALLIN, and D. G. C. RUTTLEDGE (Sikorsky Aircraft, Stratford, Conn.) Washington, NASA/Army Rotorcraft Technology. Volume 2: Materials and Structures, Propulsion and Drive Systems, Flight

Dynamics and Control, and Acoustics p 900-928 Avail: NTIS HC A25/MF A01 CSCL 01C

The NASA Ames and Lewis Research Centers, in conjunction with the Army Research and Technology Laboratories have initiated and completed, in part, a joint research program focused on improving the performance, maneuverability, and operating characteristics of rotorcraft by integrating the flight and propulsion controls. The background of the program, its supporting programs, its goals and objectives, and an approach to accomplish them are discussed. Results of the modern control governor design of the T700 and the Rotorcraft Integrated Flight-Propulsion Control Study, which were key elements of the program, are also presented. Author

National Aeronautics and Space Administration. Ames Research Center, Moffett Field, Calif.

ROTORCRAFT HANDLING-QUALITIES DESIGN CRITERIA DEVELOPMENT

EDWIN W. AIKEN, J. VICTOR LEBACQZ, ROBERT T. N. CHEN, and DAVID L. KEY (Army Aviation Systems Command, Moffett Field, Calif.) In NASA, Washington, NASA/Army Rotorcraft Technology. Volume 2: Materials and Structures, Propulsion and Drive Systems, Flight Dynamics and Control, and Acoustics p 948-998 Feb. 1988

Avail: NTIS HC A25/MF A01 CSCL 01C

Joint NASA/Army efforts at the Ames Research Center to develop rotorcraft handling-qualities design criteria began in earnest in 1975. Notable results were the UH-1H VSTOLAND variable stability helicopter, the VFA-2 camera-and-terrain-board simulator visual system, and the generic helicopter real-time mathematical model, ARMCOP. An initial series of handling-qualities studies was conducted to assess the effects of rotor design parameters, interaxis coupling, and various levels of stability and control augmentation. The ability to conduct in-flight handling-qualities research was enhanced by the development of the NASA/Army CH-47 variable-stability helicopter. Research programs conducted using this vehicle include vertical-response investigations, hover augmentation systems, and the effects of control-force characteristics. The handling-qualities data base was judged to be sufficient to allow an update of the military helicopter handling-qualities specification, MIL-H-8501. These efforts, including not only the in-house experimental work but also contracted research and collaborative programs performed under the auspices of various international agreements. The report concludes by reviewing the topics that are currently most in need of work, and the plans for addressing these topics.

National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

IDENTIFICATION AND PROPOSED CONTROL OF HELICOPTER

TRANSMISSION NOISE AT THE SOURCE JOHN J. COY, ROBERT F. HANDSCHUH, DAVID G. LEWICKI (Army Research and Technology Labs., Cleveland, Ohio.), RONALD G. HUFF, EUGENE A. KREJSA, and ALLAN M. KARCHMER In NASA, Washington, NASA/Army Rotorcraft Technology. Volume 2: Materials and Structures, Propulsion and Drive Systems, Flight Dynamics and Control, and Acoustics p 1045-1065 Previously announced as N87-16816

Avail: NTIS HC A25/MF A01 CSCL 01C

Helicopter cabin interiors require noise treatment which is expensive and adds weight. The gears inside the main power transmission are major sources of cabin noise. Work conducted by the NASA Lewis Research Center in measuring cabin interior noise and in relating the noise spectrum to the gear vibration of the Army OH-58 helicopter is described. Flight test data indicate that the planetary gear train is a major source of cabin noise and that other low frequency sources are present that could dominate the cabin noise. Companion vibration measurements were made in a transmission test stand, revealing that the single largest contributor to the transmission vibration was the spiral bevel gear mesh. The current understanding of the nature and causes of gear and transmission noise is discussed. It is believed that the kinematical errors of the gear mesh have a strong influence on that noise. The completed NASA/Army sponsored research that applies to transmission noise reduction is summarized. The continuing research program is also reviewed. Author

N88-16707*# Integrated Systems, Inc., Palo Alto, Calif. AIRCRAFT FLIGHT TEST TRAJECTORY CONTROL Final **Contractor Report**

P. K. A. MENON and R. A. WALKER Jan. 1988 197 p (Contract NAS2-11877)

(NASA-CR-179428; H-1345; NAS 1.26:179428) Avail: NTIS HC A09/MF A01 CSCL 01C

Two design techniques for linear flight test trajectory controllers (FTTCs) are described: Eigenstructure assignment and the minimum error excitation technique. The two techniques are used to design FTTCs for an F-15 aircraft model for eight different maneuvers at thirty different flight conditions. An evaluation of the FTTCs is presented.

N88-16708# National Aerospace Lab., Tokyo (Japan). EXPERIMENTAL STUDY ON THE EFFECT OF ON FLUTTER CHARACTERISTICS ORIENTATION HIGH-ASPECT-RATIO TRANSPORT WING

HIROSHI EJIRI, JIRO NAKAMICHI, TAKAO KIKUCHI, and MASAKATSU MINEGISHI 1987 13 p In JAPANESE; ENGLISH summary

(NAL-TR-936; ISSN-0389-4010) Avail: NTIS HC A03/MF A01

The basic effects of aeroelastic tailoring on flutter velocity are investigated. Six different models of high aspect ratio swept back wings were designed. The models consisted of composite plate-spars and wing sections of balsa wood. The dominant lamination angle of each spar was changed in a parametric manner. A vibration test was performed for each model. The frequencies and the vibration modes were measured to check the variations of the vibration characteristics due to differences of the laminate angle of the spars. The flutter tests were conducted in a low-speed tunnel and the hard flutter points are found for all models. It was shown that the flutter velocity of a model which was the wash-in type of the first bending mode is larger by 50 percent than that of a model of which the first bending mode is the wash-out type.

N88-16709# National Aerospace Lab., Tokyo (Japan). EFFECT OF AN OPTIMIZED FIBER ORIENTATION ON TRANSONIC FLUTTER CHARACTERISTICS HIGH-ASPECT-RATIO COMPOSITE WING

K. ISOGAI, H. EJIRI, T. KIKUCHI, K. YAMANE, I. KUMAKURA, T. SOTOZAKI, M. MINEGISHI, and Y. NOGUCHI 1987 12 p
JAPANESE; ENGLISH summary

(NAL-TR-930; ISSN-0389-4010) Avail: NTIS HC A03/MF A01

The feasibility is examined of using a direct search method, which does not depend on the flutter velocity derivative, to find the optimum fiber orientations which maximize the flutter velocity of a composite wing. The Sequential Simplex Method, as one candidate for such a method, was applied to the design of a transonic flutter model of a high-aspect-ratio transport wing, and was proven to be very effective in finding the optimum fiber orientation to give the maximum flutter velocity. The experimental verification of this has also been conducted in the National Aerospace Laboratory (NAL) 0.6 m x 0.6 m transonic blow down tunnel, by flutter tests with two kinds of models; i.e., one with an optimum fiber orientation, and one without. The experimental results have shown that the flutter velocities of the optimized model are about 60 percent higher than those of the non-optimized model over the entire transonic Mach number range tested. Author

N88-17601*# Sikorsky Aircraft, Stratford, Conn.
THE IMPACT OF CIRCULATION CONTROL ON ROTARY AIRCRAFT CONTROLS SYSTEMS

R. F. KINGLOFF and D. E. COOPER In NASA. Ames Research Center Proceedings of the Circulation-Control Workshop, 1986 p 353-362 May 1987

Avail: NTIS HC A25/MF A01 CSCL 01C

Application of circulation to rotary wing systems is a new development. Efforts to determine the near and far field flow patterns and to analytically predict those flow patterns have been underway for some years. Rotary wing applications present a new set of challenges in circulation control technology. Rotary wing sections must accomodate substantial Mach number, free stream dynamic pressure and section angle of attack variation at each flight condition within the design envelope. They must also be capable of short term circulation blowing modulation to produce control moments and vibration alleviation in addition to a lift augmentation function. Control system design must provide this primary control moment, vibration alleviation and lift augmentation function. To accomplish this, one must simultaneously control the compressed air source and its distribution. The control law algorithm must therefore address the compressor as the air source, the

plenum as the air pressure storage and the pneumatic flow gates or valves that distribute and meter the stored pressure to the rotating blades. Also, mechanical collective blade pitch, rotor shaft angle of attack and engine power control must be maintained.

Advisory Group for Aerospace Research and N88-17682# Development, Neuilly-Sur-Seine (France).

EFFECTIVENESS OF VARIOUS CONTROL SURFACES IN QUASI-STEADY AND UNSTEADY CONDITIONS [EFFICACITE DE DIFFERENTES SURFACES DE CONTROLE EN QUASI-STATIONNAIRE ET INSTATIONNAIRE]

R. DESTUYNER, R. BARREAU, and G. ANDERS Apr. 1986 26 p In FRENCH Presented at the 6th Meeting of the AGARD Panel on Structures and Materials, Oberammergau, Fed. Republic of Germany, 8-13 Sept. 1985

(AGARD-R-735; ISBN-92-835-2113-7) Avail: NTIS HC A03/MF A01

This report describes tests conducted in the Modane S1 wind tunnel in France to measure the unsteady pressures on two half-models of wings outfitted with different control surfaces such as vented or unvented spoilers, flaperons, or ailerons. One of the wings, the ZKP model, is a standard configuration from the AGARD-SMP Compendium of Unsteady Pressure Measurements. The movements imposed on the control surfaces could be white noise, fixed frequency harmonics and ramp. A data base with a very wide range of parameters such as the Mach number, wing angle of attack, deflection of one or several control surfaces, and reduced frequencies was obtained. One of the goals was to establish semiempirical corrections to the theory of the efficiency of control surfaces. All of the excitation tests and acquisition and processing work for the unsteady condition studies were completely directed by a computer. Author

N88-17684*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

AN APPLICATION OF EIGENSPACE METHODS TO SYMMETRIC **FLUTTER SUPPRESSION Final Report**

ROBERT E. FENNELL (Clemson Univ., S.C.) Jan. 1988 22 p Submitted for publication

(Contract NAS1-18107; N00014-86-K-0693)

(NASA-CR-181618; ICASE-88-9; NAS 1.26:181618) Avail: NTIS HC A03/MF A01 CSCL 01C

An eigenspace assignment approach to the design of parameter insensitive control laws for linear multivariable systems is presented. The control design scheme utilizes flexibility in eigenvector assignments to reduce control system sensitivity to changes in system parameters. The methods involve use of the singular value decomposition to provide an exact description of allowable eigenvectors in terms of a minimum number of design parameters. In a design example, the methods are applied to the problem of symmetric flutter suppression in an aeroelastic vehicle. In this example the flutter mode is sensitive to changes in dynamic pressure and eigenspace methods are used to enhance the performance of a stabilizing minimum energy/linear quadratic regulator controller and associated observer. Results indicate that the methods provide feedback control laws that make stability of the nominal closed loop systems insensitive to changes in dynamic pressure. Author

N88-17836# Messerschmitt-Boelkow-Blohm G.m.b.H., Hamburg (West Germany). Unternehmensgruppe Transport- und

Verkehrsflugzeuge.

ELECTRONIC CONTROL SYSTEM (LECOS): A PROPOSAL FOR A INTERCONNECTED ERROR-TOLERANT, OPTOELECTRONIC CONTROL SYSTEM [LECOS - EIN VORSCHLAG FUER EIN VERMASCHTES, FEHLERTOLER-ANTES, LICHTELEKTRONISCHES STEUERUNGSSYSTEM] HANS-JOACHIM WENDT In its Research and Development. Technical-Scientific Publications (1956-1987): Retrospective View

and Prospects. Jubilee Edition on the Occasion of the 75th Anniversary of Dipl.-Engr. Dr.-Engr. E.H. Ludwig Boelkow p 115-118

1987 In GERMAN

(MBB-UT-004/87) Avail: NTIS HC A14/MF A01

A flight control system, based on optical waveguide technology, is presented. The system aims at the replacement of cables in fly-by-wire systems, at the consequent use of microprocessor techniques with bus and sensor technology, as well as at developments in actuators. **ESA**

N88-17845# Messerschmitt-Boelkow-Blohm G.m.b.H., Ottobrunn (West Germany). Unternehmensgruppe Hubschrauber und Flugzeuge.

ACTIVE CONTROL TECHNOLOGY WITH ADAPTIVE CONTROL CONCEPT IN THE AIRCRAFT CONSTRUCTION [AKTIVE KONTROLL TECHNOLOGIE MIT ADAPTIVEM REGLERKON-**ZEPT IM FLUGZEUGBAU]**

HEINZ HOENLINGER In its Research and Development. Technical-Scientific Publications (1956-1987): Retrospective View and Prospects. Jubilee Edition on the Occasion of the 75th Anniversary of Dipl.-Engr. Dr.-Engr. E.H. Ludwig Boelkow p 167-172 1987 In GERMAN

(MBB/LKE-294/S/PUB/295) Avail: NTIS HC A14/MF A01

An adaptive control concept for active control techniques in structural dynamics was developed. The applicability of active control techniques in structural dynamics, the control principle for shimmy damping and loading reduction, and conventional electronics for active control technology are discussed. Wind tunnel tests of the adaptive control concept for active shimmy damping show that even the experimental, nonoptimized version has the same performances as the conventional systems. The use of an optimized target function for phase as well as for amplification can substantially improve performance and robustness.

09

RESEARCH AND SUPPORT FACILITIES (AIR)

Includes airports, hangars and runways; aircraft repair and overhaul facilities; wind tunnels; shock tube facilities; and engine test blocks.

A88-25010

FLIGHT SIMULATORS FOR UNDER \$100,000

MICHAEL J. ZYDA, ROBERT B. MCGHEE, RON S. ROSS, DOUGLAS B. SMITH, and DALE G. STREYLE (U.S. Naval Postgraduate School, Monterey, CA) IEEE Computer Graphics and Applications (ISSN 0272-1716), vol. 8, Jan. 1988, p. 19-27. Army-Navy-supported research, refs

To demonstrate the feasibility and practicability of designing and building 'low-cost' flight simulators, a prototype system has been developed to model the performance of a new U.S. Army remotely piloted missile system. This article presents the results of the design, development, and implementation of the flight simulation system, focusing on the relevant hardware, software, and data base issues. The capabilities and limitations of the prototype system are also discussed, as are the potential uses of such devices. C.D.

A88-25750*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

NASA-LANGLEY RESEARCH CENTER SHAPES TOMORROW THROUGH INNOVATIVE RESEARCH

JEAN DRUMMOND CLOUGH (NASA, Langley Research Center, Hampton, VA) AIAA Student Journal (ISSN 0001-1460), vol. 25, Fall 1987, p. 34-36.

NASA-Langley is the home of the world's most advanced wind tunnel, the National Transonic Facility, which uses crygenic nitrogen vapor to test models of advanced aircraft and spacecraft. Langley also employs hundreds of computers of every type and capacity in order both to gather and analyze wind tunnel data and to undertake mathematical visualizations of complex flow phenomena. Langley has been involved in every major NASA space program, and had primary responsibility for the development of the Viking Mars probes. Currently, Langley is involved in the National Aerospace Plane Program and in the development of erectable space structures.

A88-26172

DEVELOPMENT OF AN ALGORITHM FOR EVALUATING CALIBRATION DATA FOR SIX-COMPONENT STRAIN-GAGE BALANCES [ENTWICKLUNG EINES ALGORITHMUS ZUR AUSWERTUNG DER EICHVERSUCHE AN 6-KOMPONENTEN DMS-WAAGEN]

F. SCHNABL (Darmstadt, Technische Hochschule, Federal Republic of Germany) Zeitschrift fuer Flugwissenschaften und Weltraumforschung (ISSN 0342-068X), vol. 11, Nov.-Dec. 1987, p. 342-346. In German.

The response of a six-component wind-tunnel balance employing strip-type strain gages to typical loading conditions is investigated analytically, and a numerical algorithm for the reduction and processing of balance calibration data is developed. A nonlinear system of 206 equations is obtained by a least-squares procedure and solved by a Newton algorithm. Diagrams, drawings, and graphs are provided.

T.K.

A88-27158

SOME METHODOLOGICAL ASPECTS OF THE STUDY OF GASDYNAMIC MODELS WITH HEAT AND MASS TRANSFER IN AN IMPULSE WIND TUNNEL [NEKOTORYE METODICHESKIE ASPEKTY ISSLEDOVANIIA GAZODINAMICHESKIKH MODELEI S TEPLOMASSOPODVODOM V IMPUL'SNOI AERODINAMICHESKOI TRUBE]

V. K. BAEV, V. V. SHUMSKII, and M. I. IAROSLAVTSEV Fizika Goreniia i Vzryva (ISSN 0430-6228), vol. 23, Sept.-Oct. 1987, p. 45-54. In Russian. refs

With reference to experimental results obtained for a variety of problems involving heat and mass transfer in gasdynamic paths under conditions of hypersonic flow, it is shown that such problems can be efficiently solved by using high-enthalpy blowdown wind tunnels. The possibility of achieving a highly efficient process in complex channels of small length under conditions of impulse hypersonic flow is demonstrated experimentally. Results obtained for various models with combustion in the Mach range 5-8 are presented.

N88-16651*# National Aeronautics and Space Administration.

Ames Research Center, Moffett Field, Calif.

STATUS OF NASA/ARMY ROTORCRAFT RESEARCH AND DEVELOPMENT PILOTED FLIGHT SIMULATION

GREGORY W. CONDON and TERRENCE D. GOSSETT (Army Aviation Systems Command, Moffett Field, Calif.) In NASA, Washington, NASA/Army Rotorcraft Technology. Volume 3: Systems Integration, Research Aircraft, and Industry p 1119-1153 Feb. 1988

Avail: NTIS HC A17/MF A01 CSCL 14B

The status of the major NASA/Army capabilities in piloted rotorcraft flight simulation is reviewed. The requirements for research and development piloted simulation are addressed as well as the capabilities and technologies that are currently available or are being developed by NASA and the Army at Ames. The application of revolutionary advances (in visual scene, electronic

cockpits, motion, and modelling of interactive mission environments and/or vehicle systems) to the NASA/Army facilities are also addressed. Particular attention is devoted to the major advances made in integrating these individual capabilities into fully integrated simulation environment that were or are being applied to new rotorcraft mission requirements. The specific simulators discussed are the Vertical Motion Simulator and the Crew Station Research and Development Facility.

N88-16710# Aeronautical Research Labs., Melbourne (Australia).

CALIBRATION OF THE ARL (AERONAUTICAL RESEARCH LABORATORIES) RAIN AND ICING FACILITY

P. N. DOOGOOD Jan. 1987 21 p (Contract ARL-AERO-PROP-TM-442)

(AD-A186776; DODA-AR-004-527) Avail: NTIS HC A03/MF A01 CSCL 14B

A rain and icing test facility was set up at the Aeronautical Research Laboratories in the early seventies to test anti-icing systems for aircraft engine air intakes. This report describes modifications made to facility to meet a specific test requirement and analyses the effect that these have made on its performance.

N88-16711# Karlsruhe Univ. (West Germany). Sonderforschungsbereich 210.

WIND TUNNEL MODELING TECHNIQUES [MODELLIERUNGS-TECHNIKEN IM WINDKANAL]

J. MAIER-ERBACHER and TH. ELSAESSER Nov. 1986 87 p In GERMAN

(KU-SFB-210/E/33; ETN-88-91054) Avail: NTIS HC A05/MF A01

Wind tunnel measurements were performed in order to simulate an atmospheric boundary layer. The requirements for the simulation of the natural boundary, wind tunnel techniques, and the Aylesbury comparative experiment are outlined. The required boundary layer (scale 1:100) was simulated in a 10 m long wind tunnel using the roughness-vortex-threshold technique. The boundary layer parameters can be systematically modified by simulation techniques. The simulation of the degree of turbulence is difficult with standard techniques and requires active production mechanisms at the tunnel entrance. The measured average pressure coefficients agree well with results from other wind tunnels. Larger deviations are found for the coefficients of the fluctuating pressures. Proposals for a better comparison with other wind tunnel data and with natural data are given.

N88-16712# National Aerospace Lab., Amsterdam (Netherlands). Aerodynamics Dept.

THE WIND TUNNEL AS A YARDSTICK FOR AIRCRAFT DESIGN

A. ELSENAAR Apr. 1985 20 p In DUTCH; ENGLISH summary Presented at the NVvL-VSV Symposium on Recente Ontwikkelingen op Aerodynamisch Gebied, Delft, Netherlands, 26 Apr. 1985

(NLR-MP-85032-U; ETN-88-91325) Avail: NTIS HC A03/MF A01

The accuracy of the measurement of drag is used to illustrate problems in wind tunnel testing, like balance performance, determination of angle of incidence, wall and support interference, scale effects, and engine simulation. Flexible walls, cryogenic testing, and the application of turbine powered engine simulators are discussed. The increasing role of computers to determine or eliminate wind tunnel corrections is noted. It is concluded that the wind tunnel and the computer are essentially complementary in aerodynamic design and verification and in data reduction and data handling.

Eidgenoessisches Flugzeugwerk, Emmen

(Switzerland). Abteilung Versuchs- und Forschungsanlage.
TRANSONIC WIND TUNNEL CALIBRATION 1986: FORCE MEASUREMENTS ON THREE ONERA-C5 MODELS AND THREE HALF SPHERE CYLINDER CALIBRATION BODIES IN THE F+W TRANSONIC TEST SECTION

HEINZ BLAETTLER 19 Jan. 1987 138 p In GERMAN; **ENGLISH summary**

(F+W-FO-1854; ETN-88-91687) Avail: NTIS HC A07/MF A01

Force measurements were taken on three C5 calibration models and three half-sphere-cylinder calibration bodies of different size to establish the effect of blockage on drag. The C5 model is a body of revolution with the same distribution of cross-sectional area as a civil airplane model. The blockage-ratio of the three models is: 0.5 percent; 1 percent and 2 percent. Good coincidence with previous measurements are observed with the 0.5 percent and 1 percent models. Measurements in the region of Ma less than or equal 0.5 diverge considerably from measurements taken elsewhere.

N88-16715# Eidgenoessisches Flugzeugwerk, Emmen (Switzerland). Abteilung Aerodynamik und Flugmechanik INFLUENCE OF THE WALL BOUNDARY LAYER ON FORCE MEASUREMENTS ON HALF MODELS IN THE TRANSONIC WIND TUNNEL

PHILIPPE BLATTER and FELIX HIRT 21 Apr. 1987 Partly in GERMAN and ENGLISH

(F+W-TF-1876; ETN-88-91688) Avail: NTIS HC A05/MF A01

Characteristics of the lateral wall boundary layer in relation to the Mach number are experimentally determined and their effect on systematic measuring errors on a half model is investigated. A linear flow model together with the boundary layer characteristics is used to determine the optimal thickness of the lateral plate.

N88-16717*# Eloret Corp., Sunnyvale, Calif.

UPGRADING OF NASA-AMES HIGH-ENERGY HYPERSONIC FACILITIES: A STUDY Final Technical Report, 1 Oct. 1987 -

CHARLES E. SHEPARD and WILLIAM C. A. CARLSON 24 Feb. 1988 80 p

(Contract NCC2-503)

(NASA-CR-182475; NAS 1.26:182475) Avail: NTIS HC A05/MF A01 CSCL 14B

This study reviews facility capabilities of NASA, Ames Research Center to simulate hypersonic flight with particular emphasis on arc heaters. Scaling laws are developed and compared with ARCFLO II calculations and with existing data. The calculations indicate that a 300 MW, 100 atmosphere arc heater is feasible. Recommendations for the arc heater, which will operate at voltages up to 50 kilovolts, and the associated elements needed for a test facility are included.

N88-17687# Oak Ridge Gaseous Diffusion Plant, Tenn. ULTRA-LOW FREQUENCY VIBRATION DATA ACQUISITION **CONCERNS IN OPERATING FLIGHT SIMULATORS**

B. W. VANHOY 1988 20 p Presented at the 6th International Modal Analysis Conference, Orlando, Fla., 1 Feb. 1988 Prepared in cooperation with ORNL, Tenn.

(Contract DE-AC05-84OT-21400)

(DE88-004795; K/D-5739; CONF-880220-13) Avail: NTIS HC

The measurement of ultra-low frequency vibration (.01 to 1.0 Hz) in motion based flight simulators was undertaken to quantify the energy and frequencies of motion present during operation. Methods of measurement, the selection of transducers, recorders, and analyzers and the development of a test plan, as well as types of analysis are discussed. Analysis of the data using a high-speed minicomputer and a comparison of the computer analysis with standard FFT analysis are also discussed. Measurement of simulator motion with the pilot included as part of the control dynamics had not been done up to this time. The data are being used to evaluate the effect of low frequency energy

on the vestibular system of the air crew, and the incidence of simulator induced sickness. DOE

10

ASTRONAUTICS

Includes astronautics (general); astrodynamics; ground support systems and facilities (space); launch vehicles and space vehicles; space transportation; spacecraft communications, command and tracking; spacecraft design, testing and performance; spacecraft instrumentation; and spacecraft propulsion and power.

N88-17215*# Air Force Human Resources Lab., Wright-Patterson AFB, Ohio. Manpower and Personnel Div.

TROUBLESHOOTING TUTORING ELECTRONIC SIMULATED MAINTENANCE WORK ENVIRONMENT

SHERRIE P. GOTT In NASA. Lyndon B. Johnson Space Center, Houston, Texas, First Annual Workshop on Space Operations Automation and Robotics (SOAR 87) p 61-69 Oct. 1987 Avail: NTIS HC A23/MF A01 CSCL 14B

series of intelligent tutoring systems, or intelligent maintenance simulators, is being developed based on expert and novice problem solving data. A graded series of authentic troubleshooting problems provides the curriculum, and adaptive instructional treatments foster active learning in trainees who engage in extensive fault isolation practice and thus in conditionalizing what they know. A proof of concept training study involving human tutoring was conducted as a precursor to the computer tutors to assess this integrated, problem based approach task analysis and instruction. Statistically significant improvements in apprentice technicians' troubleshooting efficiency were achieved after approximately six hours of training. Author

11

CHEMISTRY AND MATERIALS

Includes chemistry and materials (general); composite materials; inorganic and physical chemistry; metallic materials; nonmetallic materials; and propellants and fuels.

A88-25106

THE METALLURGICAL ASPECTS OF ALUMINUM-LITHIUM ALLOYS IN VARIOUS PRODUCT FORMS FOR HELICOPTER STRUCTURAL APPLICATIONS

A. F. SMITH (Westland Helicopters, Ltd., Materials Laboratory, Yeovil, England) (Societe Française de Metallurgie, International Aluminium Lithium Conference, 4th, Paris, France, June 10-12, 1987) Journal de Physique (Colloque C3), Supplement (ISSN 0449-1947), vol. 48, Sept. 1987, p. C3-49 to C3-59. Research supported by the Ministry of Defence Procurement Executive. refs

An account is given of the results of metallurgical investigations of low density/high elastic modulus Al-Li alloys for helicopter applications. Attention is given to the 8090, 8091, and 9052XL Al-Li alloys' tensile, compressive, fatigue, and fracture-toughness characteristics; these are generally found to be comparable to those of current, conventional Al aircraft alloys. The Al-Li alloys are, however, noted to be more sensitive to the surface anodization conditions required for adhesive bonding. O.C.

A88-25176

FATIGUE CRACK PROPAGATION BEHAVIOR OF 2091 T8 AND 2024 T3 UNDER CONSTANT AND VARIABLE AMPLITUDE LOADING

N. OHRLOFF (Messerschmitt-Boelkow-Blohm GmbH, Hamburg, Federal Republic of Germany), A. GYSLER, and G. LUETJERING (Hamburg, Technische Universitaet, Federal Republic of Germany) (Societe Francaise de Metallurgie, International Aluminium Lithium Conference, 4th, Paris, France, June 10-12, 1987) Journal de Physique (Colloque C3), Supplement (ISSN 0449-1947), vol. 48, Sept. 1987, p. C3-801 to C3-807. BMFT-supported research.

The fatigue crack propagation behavior of the damage tolerant 2091 T8 was compared with that of 2024 T3. Constant amplitude tests were performed in vacuum, air, and NaCl solution at R = 0.175 and in air at R = 0.7. The variable amplitude tests included periodic underloads superimposed on constant amplitude tests at R = 0.7, and periodic overloads in combination with low R-ratio tests. In general it was found that the crack propagation resistance of 2091 was slightly inferior in the lower Delta K-region as compared to 2024, but somewhat better at higher Delta K-values. For both alloys predicted propagation rates based on constant amplitude tests were lower than the experimentally measured values with periodic underloads. Periodic overloads resulted in crack growth retardation.

A88-25178

FATIGUE CRACK INITIATION AND PROPAGATION PROPERTIES OF AL-LI-CU ALLOYS IN AIR AND IN AQUEOUS CORROSIVE SOLUTIONS

T. MAGNIN, P. RIEUX (Saint Etienne, Ecole Nationale Superieure des Mines, France), C. LESPINASSE, and C. BATHIAS (Compiegne, Universite de Technologie, France) (Societe Francaise de Metallurgie, International Aluminium Lithium Conference, 4th, Paris, France, June 10-12, 1987) Journal de Physique (Colloque C3), Supplement (ISSN 0449-1947), vol. 48, Sept. 1987, p. C3-817 to C3-822. refs

Fatigue tests are performed on an Al-Li-Cu CP271 alloy in air and in different corrosive solutions on smooth and notched specimens to determine the crack initiation and crack propagation properties of the CP271 alloy in the peak aged conditions. Crack propagation properties are shown to be very interesting in regards with the conventional Al-Zn-Mg alloys. Crack initiation properties are shown to be very sensitive to the texture of the specimens both in air and in a 3.5 pct NaCl solution. The anodic dissolution accelerates crack initiation in the corrosive solution but the corresponding reduction of the fatigue life is less important than for conventional Al-Zn-Mg alloys.

A88-25266

STRUCTURAL PROPERTIES OF BRAIDED GRAPHITE/EPOXY COMPOSITES

LEE W. GAUSE and JAMES M. ALPER (U.S. Navy, Naval Air Development Center, Warminster, PA) Journal of Composites Technology and Research (ISSN 0885-6804), vol. 9, no. 4, Winter 1987, p. 141-150. U.S. Navy-supported research. refs

The mechanical, impact, and fatigue properties of graphite/epoxy composites manufactured using a general braiding process are being evaluated for possible flight vehicle applications. This new process achieves a fully integrated, multidimensional orientation of the fibers and allows the braiding of complex shapes, such as I-beams and cylinders. Motivating this study is the desire to improve the impact resistance, thickness-direction strength, and overcome the delamination tendencies of conventional laminated composites. Two styles of braided test coupons have been fabricated and tested. Style I is the basic (1 x 1 x 1) braid pattern. Style II is constructed by holding half of the yarns as straight columns and braiding the rest of the yarns about the fixed yarns. Some difficulties were encountered developing the processing methods to vacuum draw the hot melt Hercules 3501 resin into the Celion 12,000 graphite braided preforms and obtain a satisfactory autoclave cure. Results show the braid to have similar strength and elastic properties to corresponding, angle-plied laminates while greatly limiting the extent of impact damage. The braid does not increase the impact damage threshold, however. Tests performed on braided specimens with 6.35 mm diameter open holes show no tensile strength reduction because of the hole. Bearing strength, transverse strength, and transverse stiffness properties are lower than laminated composites. Tensile fatigue properties are similar to conventional laminates, but compressive fatigue performance is worse.

A88-27285#

FLAME STABILIZATION USING LARGE FLAMEHOLDERS OF IRREGULAR SHAPE

A. H. LEFEBVRE (Purdue University, West Lafayette, IN) and R. M. STWALLEY, III Journal of Propulsion and Power (ISSN 0748-4658), vol. 4, Jan.-Feb. 1988, p. 4-13. Previously cited in issue 08, p. 1066, Accession no. A87-22656. refs

A88-28299

EFFECT OF HIGH TEMPERATURE SPIKES ON A CARBON FIBRE-REINFORCED EPOXY LAMINATE

T. A. COLLINGS and D. L. MEAD (Royal Aircraft Establishment, Farnborough, England) Composites (ISSN 0010-4361), vol. 19, Jan. 1988, p. 61-66. refs

Carbon fiber-reinforced epoxy composite laminates were exposed to programs of temperature and humidity intended to represent the high temperature excursions (thermal spikes) caused by ground-reflected engine efflux experienced by VTOL aircraft. Measurement of the laminate weight change during the tests indicated a change in the laminate moisture kinetics resulting in increased moisture equilibrium levels at spike temperatures up to 175 C. Spiking at temperatures of 200-300 C showed a marked loss of laminate weight which cannot be attributed to loss of water alone. Permanent damage such as cracking was evident in some cases. The contribution of moisture to laminate degradation is discussed.

N88-16634*# Army Research and Technology Labs., Fort Eustis, Va. Aerostructures Directorate.

DELAMINATION DURABILITY OF COMPOSITE MATERIALS FOR ROTORCRAFT

T. KEVIN OBRIEN *In* NASA, Washington, NASA/Army Rotorcraft Technology. Volume 2: Materials and Structures, Propulsion and Drive Systems, Flight Dynamics and Control, and Acoustics p 573-605 Feb. 1988

Avail: NTIS HC A25/MF A01 CSCL 11D

Delamination is the most commonly observed failure mode in composite rotorcraft dynamic components. Although delamination may not cause immediate failure of the composite part, it often precipitates component repair or replacement, which inhibits fleet readiness, and results in increased life cycle costs. A fracture mechanics approach for analyzing, characterizing, and designing against delamination will be outlined. Examples of delamination problems will be illustrated where the strain energy release rate associated with delamination growth was found to be a useful generic parameter, independent of thickness, layup, and delamination source, for characterizing delamination failure. Several analysis techniques for calculating strain energy release rates for delamination from a variety of sources will be outlined. Current efforts to develop ASTM standard test methods for measuring interlaminar fracture toughness and developing delamination failure criteria will be reviewed. A technique for quantifying delamination durability due to cyclic loading will be presented. The use of this technique for predicting fatigue life of composite laminates and developing a fatigue design philosophy for composite structural components will be reviewed. Author

N88-16700*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

HIGH TEMPERATURE POLYMER MATRIX COMPOSITES

MICHAEL A. MEADOR In its Aeropropulsion '87. Session 1: Aeropropulsion Materials Research 15 p Avail: NTIS HC A06/MF A01 CSCL 11D Nov. 1987

With the increased emphasis on high performance aircraft the need for lightweight, thermal/oxidatively stable materials is growing. Because of their ease of fabrication, high specific strength, and ability to be tailored chemically to produce a variety of mechanical and physical properties, polymers and polymer matrix composites present themselves as attractive materials for a number of aeropropulsion applications. In the early 1970s researchers at the NASA Lewis Research Center developed a highly processable, thermally stable (600 F) polyimide, PMR-15. Since that time, PMR-15 has become commercially available and has found use in military aircraft, in particular, the F-404 engine for the Navy's F/A-18 strike fighter. The NASA Lewis'contributions to high temperature polymer matrix composite research will be discussed as well as current and future directions.

N88-16703*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

SELF-LUBRICATING COATINGS FOR HIGH-TEMPERATURE **APPLICATIONS**

HAROLD E. SLINEY In its Aeropropulsion '87. Session 1: Aeropropulsion Materials Research 13 p Nov. 1987 Avail: NTIS HC A06/MF A01 CSCL 11C

Some present-day aeropropulsion systems impose severe demands on the thermal and oxidative stability of lubricant, bearing, and seal materials. These demands will be much more severe for operational systems around the turn of the century. Solid lubricants with maximum temperature capabilities of about 1100 C are known. Unfortunately, none of the solid lubricants with the highest temperature capabilities are effective below approximately 400 C. However, research shows that silver and stable fluorides, such as calcium and barium fluoride act synergistically to provide lubrication from below room temperature to approximately 900 C. Plasma-sprayed, self-lubricating composite coatings that were developed at Lewis are described. Background information is given on coatings, designed as PS100 and PS101, that contain the solid lubricants in a Nichrome matrix. These coatings have low friction coefficients over a wide temperature range, but they have inadequate wear resistance for some long-duration applications. Wear resistance was dramatically improved in a recently developed coating PS200, by replacing the Nichrome matrix material with metal-bonded chromium carbide containing dispersed silver and calcium fluoride/barium fluoride eutectic (CaF2/BaF2). The lubricants control friction and the carbide matrix provides excellent wear resistance. Successful tests of these coatings are discussed.

N88-16823# Messerschmitt-Boelkow-Blohm G.m.b.H., Bremen (West Germany).

MOISTURE PLOTTING OF CARBON FIBER COMPOSITE IN FLIGHT OPERATIONS [FEUCHTEAUFNAHME VON CFK IM FLUGBETRIEB]

I. KROEBER 1987 26 p In GERMAN Presented at the DGLR Symposium on Entwicklung und Anwendung von Faserverbund-Strukturen', Berlin, Federal Republic of Germany, 14-15 May 1987

(MBB-UT-119/87; ETN-88-90793) Avail: NTIS HC A03/MF A01

The data of the proposed flight simulation model agree with those of the samples fixed on the aircraft. The maximal moisture content of the composite material depends mostly on the relative humidity of the air. The annual variations in the climates cause a difference in the moisture content of carbon fiber composite of 1.4 mm in depth. The upper limit of the relative humidity is 86 percent.

N88-16827# National Aerospace Lab., Tokyo (Japan). MECHANICAL PROPERTIES OF CARBON FIBER REINFORCED THERMOPLASTIC MATRIX COMPOSITES

YOSHIO NOGUCHI In JAPANESE: ENGLISH 1987 15 p summary

(NAL-TR-934; ISSN-0389-4010) Avail: NTIS HC A03/MF A01

Carbon fiber reinforced thermoplastic (CFRTP) composites have a great potential for use in aircraft structures especially where toughness is concerned. In this study, experiments are conducted on a fabric-CFRTP and fabric CFRP composites subjected to the effect of elevated temperature on short beam shear strength and flexural fatigue strength. Composites were fabricated from carbon fiber 8-harness satin fabric reinforced with two thermoplastic matrices, polyethersulphon (PES) and polyetheretherketon (PEEK) and compared with those of an epoxy matrix system. The CFTRP laminates were prepared by the film stacking method, namely thermoplastic resin films and carbon fiber fabric were stacked alternately then consolidated into a laminate by heat and pressure. Short beam shear tests were performed under environmental conditions at temperatures of 25 to 180 C. Flexural fatigue tests were performed at a room temperature of 25 C and elevated temperatures of 80 to 90 and 130 to 140 C. Short beam shear strength under elevated temperature conditions for fabric-CFRTP is comparable to that obtained with most fabric-CFRP. The fatigue failure specimens indicated that the tough thermoplastic matrix system shows an improved fatigue behavior compared to the brittle epoxy matrix system, mainly due to resistance to the initiation and growth of fatigue damage related to the matrix.

N88-16859# Construcciones Aeronauticas S.A., Madrid (Spain). LOW FREQUENCY EDDY CURRENT DETECTION AND **EVALUATION OF CORROSION IN AIRCRAFT SKINS**

J. M. BERNARDO, B. SAINZ, C. VALDECANTOS, and V. CORTES 1987 7 p Presented at the 4th European Conference on Nondestructive Testing, London, United Kingdom, 13-18 Sep.

(ETN-88-91664) Avail: NTIS HC A02/MF A01

Applicability of low frequency eddy current test for the detection and evaluation of corrosion on aircraft fuselage skins was evaluated with two different commercially available eddy current instruments, one with needle indicator and the other with flying dot CRT display. Experiments carried out on laboratory samples 1.8 mm thick chemically milled to simulated corrosion, show that results are quite good when only 1 sheet is involved and frequencies between 4 and 10 KHz are applied. But when corrosion is under doubler areas the separation between skin and doubler is a major variable in quantitative measurements.

N88-16878*# Virginia Polytechnic Inst. and State Univ.,

Blacksburg. Center for Adhesion Science.
FACTORS AFFECTING THE STICKING OF INSECTS ON MODIFIED AIRCRAFT WINGS Annual Report, 1 Jan. - 31 Jul.

O. YI, M. R. CHITSAZ-Z, N. S. EISS, and J. P. WIGHTMAN 8 Feb. 1988 31 p

(Contract NAG1-300)

(NASA-CR-182451; NAS 1.26:182451; REPT-102;

CAS/CHEM/ME-18-87) Avail: NTIS HC A03/MF A01 CSCL

Previous work showed that the total number of insects sticking to an aluminum surface was reduced by coating the aluminum surface with elastomers. Due to a large number of possible experimental errors, no correlation between the modulus of elasticity, the elastomer, and the total number of insects sticking to a given elastomer was obtained. One of the errors assumed to be introduced during the road test is a variable insect flux so the number of insects striking one surface might be different from that striking another sample. To eliminate this source of error, the road test used to collect insects was simulated in a laboratory by development of an insect impacting technique using a pipe and high pressure compressed air. The insects are accelerated by a compressed air oun to high velocities and are then impacted with a stationary target on which the sample is mounted. The velocity of an object exiting from the pipe was determined and further improvement of the technique was achieved to obtain a uniform air velocity distribution.

N88-16884*# Boeing Aerospace Co., Seattle, Wash.
EVALUATION OF HIGH TEMPERATURE STRUCTURAL
ADHESIVES FOR EXTENDED SERVICE, PHASE 5 Final Report
C. L. HENDRICKS, S. G. HILL, J. N. HALE, and W. G. DUMARS
Feb. 1987 68 p
(Contract NAS1-15605)

(NASA-CR-178176; NAS 1.26:178176) Avail: NTIS HC A04/MF A01 CSCL 11B

The evaluation of 3 experimental polymers from NASA-Langley and a commercially produced polymer from Mitsui Toatsu Chemicals as high temperature structural adhesives is presented. A polyphenylquinoxaline (PPQ), polyimide (STPI/LaRC-2), and a polyarylene ether (PAE-SO2) were evaluated as metal-to-metal adhesives. Lap shear, crack extension, and climbing drum peel specimens were fabricated from all three polymers and tested after thermal, combined thermal/humidity, and stressed hydraulic fluid (Skydrol) exposure. The fourth polymer, LARC-TPI was evaluated as an adhesive for titanium honeycomb sandwich structure. All three experimental polymers performed well as metal-to-metal adhesives from 219 K (-65 F) to 505 K (450 F), including humidity exposure. Structural adhesive strength was also maintained at 505 K for a minimum of 3000 hours. LaRC-TPI was evaluated as a high temperature (505 K) adhesive for titanium honeycomb sandwich structure. The LaRC-TPI bonding process development concentrated on improving the honeycomb core-to-skin bond. The most promising approach of those evaluated combined a LaRC-TPI polymer solution with a semi-crystalline LaRC-TPI powder for adhesive film fabrication and fillet formation. Author

N88-16890# Air Force Wright Aeronautical Labs., Wright-Patterson AFB, Ohio.

MILITARY JET FUELS, 1944-1987 Summary Report, Oct. 1985 - Oct. 1987

CHARLES R. MARTEL Nov. 1987 67 p (AD-A186752; AFWAL-TR-87-2062) Avail: NTIS HC A04/MF A01 CSCL 21D

This report consists of a brief history of US military fuels for aircraft turbine jet engines and ramjet engines. The report discusses the requirements of past and current US military jet fuel specifications, when and why the specification requirements originated, and the importance of these requirements today. The purpose and origin of the various specification test methods are presented, and an extensive discussion of jet fuel additives is provided. This report should be of value to anyone involved in research and development, logistics, and use of jet fuels. We hope that it will serve as a handy reference for the jet fuel specialist.

N88-17813# Chevron Research Co., Richmond, Calif.
HIGH-DENSITY JET FUELS FROM COAL SYNCRUDES,
APPENDIX 4

R. F. SULLIVAN 1987 12 p Presented at the 193rd National Meeting of the American Chemical Society, Denver, Colo., 5 Apr. 1987

(Contract DE-AC22-76ET-10532)

(DE88-003132; CONF-870410-40-APP-4) Avail: NTIS HC A03/MF A01

Very dense jet-boiling-range hydrocarbons can be obtained by hydrotreating and hydrocracking syncrudes made from coal in direct liquefaction processes. Heteroatom impurities must be removed, and most of the aromatics must be hydrogenated at high severity in order to produce kerosene jet fuels from coal syncrudes that meet smoke point and stability specifications. The resulting hydrotreated products consist mainly of naphthenes containing from one to three rings. If hydrocracking is added as a conversion step, some four-ring naphthenes are found in the 250 to 550 F jet fuel products. Polycyclic naphthenes are desirable components for jet fuel because of their high volumetric energy contents and

low freezing points. Products from the ITSL liquefaction process from bituminous coal had the lowest paraffin contents and the highest densities (for a given boiling range and aromatic content) of any of the coal liquids studied. Actual engine tests, however, would be needed to demonstrate that these fuels qualify for service in jet aircraft.

12

ENGINEERING

Includes engineering (general); communications; electronics and electrical engineering; fluid mechanics and heat transfer; instrumentation and photography; lasers and masers; mechanical engineering; quality assurance and reliability; and structural mechanics.

A88-24847#

PRESSURE LOSSES AND FLOW FIELD DISTORTION INDUCED BY TIP CLEARANCE OF CENTRIFUGAL AND AXIAL COMPRESSORS

YASUTOSHI SENOO (Kyushu University, Fukuoka, Japan) Kyushu University, Research Institute of Industrial Science, Reports (ISSN 0368-6841), no. 82, 1987, p. 1-13. In Japanese, with abstract in English. refs

The flow field near the tip of compressor rotor blades is distorted by leakage through the tip clearance, and the performance of the compressor deteriorates. Empirical equations expressing the pressure loss and the efficiency drop are varied. They are related to the lift coefficient in different ways such as proportional to C(L), C(L) exp 1.5, C(L) sq, or the sum of two terms, depending upon the ways of understanding the mechanics of pressure losses. These methods are examined and compared. Also included is a brief discussion on the optimum value of the tip clearance.

Author

A88-25566

ANALYSIS OF THE TWO-RING SUSPENSION OF A DYNAMICALLY TUNABLE GYROSCOPE [ANALIZ DVUKHKO-LECHNOGO PODVESA DINAMICHESKI NASTRAIVAEMOGO GIROSKOPA]

IU. I. KUZNETSOV (Permskii Politekhnicheskii Institut, Perm, USSR) Priborostroenie (ISSN 0021-3454), vol. 30, Dec. 1987, p. 42-45. In Russian.

Structural and static analyses are carried out for the two-ring suspension of a dynamically tunable gyroscope. Formulas are obtained for estimating the drift due to the specific properties of the two-ring suspension. Possible ways of improving the accuracy of dynamically tunable gyroscopes with a two-ring suspension are discussed.

V.L.

A88-25614

EFFECT OF THE BLADE NUMBER RATIO OF THE ROTOR AND THE NOZZLE RING ON THE VIBRATION ACTIVITY OF AXIAL-FLOW AND RADIAL-FLOW TURBINES [VLIIANIE SOOTNOSHENIIA CHISEL LOPATOK RABOCHEGO KOLESA I SOPLOVOGO APPARATA NA VIBROAKTIVNOST' OSEVYKH I RADIAL'NYKH TURBIN]

B. I. BOROVSKII, A. I. CHUCHEROV, and V. L. KHITRIK Aviatsionnaia Tekhnika (ISSN 0579-2975), no. 4, 1987, p. 14-18. In Russian.

The paper is concerned with the problem of determining the ratio between the number of rotor blades and nozzle ring blades that would minimize the vibration activity of axial-flow and radial-flow turbines. Blade number ratios are determined for which no aerodynamic forces are transferred to either the rotor or the nozzle ring. The relationships obtained here are also valid for pumps and compressors.

A88-25621

DEFORMATIONS AXISYMMETRIC OF **AIRCRAFT TRANSPARENCIES** WITH **ALLOWANCE** FOR THE **COMPLIANCE** OF SUPPORT **FASTENINGS** THE [OSESIMMETRICHNYE **DEFORMATSII ELEMENTOV** OSTEKLENII LETATEL'NYKH APPARATOV S UCHETOM PODATLIVOSTI OPORNYKH ZAKREPLENII]

V. N. PAIMUSHIN, V. A. FIRSOV, and KH. B. MAMEDOV Aviatsionnaia Tekhnika (ISSN 0579-2975), no. 4, 1987, p. 43-48. In Russian.

Mathematical models and algorithms are developed for investigating the axisymmetric deformations of aircraft transparencies under static loading. The models and algorithms presented here are based on the statement of problems of contact interaction between thin shells and discrete-continuous supports. Results of a parametric analysis of the effect of the characteristics of elastic supports on the stress-strain state of shell structures are presented.

A88-25623

STABILITY OF A WING BOX WITH ELASTIC RIBS [OB USTOICHIVOSTI KESSONA S UPRUGIMI NERVIURAMI]

V. I. SHALASHILIN, V. N. MARTYNOV, S. M. NAUMOV, and V. K. SIBIRIAKOV Aviatsionnaia Tekhnika (ISSN 0579-2975), no. 4, 1987, p. 57-61. In Russian. refs

The effect of the elastic properties of stiffening ribs on the critical load of the general loss of stability of wing box panels is investigated analytically. The results obtained are compared with experimental data and with critical loads for the case of absolutely stiff ribs. It is shown that the insufficient stiffness of the ribs results in a significantly lower critical load of the general loss of stability of wing box panels.

A88-25630

A STUDY OF THE EFFECT OF LEAKAGE FLOW ON THE MAIN FLOW AHEAD OF THE ROTOR OF A CENTRIFUGAL PUMP OR A COMPRESSOR [ISSLEDOVANIE VLIIANIIA POTOKA UTECHKI NA OSNOVNOI POTOK PERED RABOCHIM KOLESOM TSENTROBEZHNOGO NASOSA ILI KOMPRESSORA]

S. S. EVGEN'EV Aviatsionnaia Tekhnika (ISSN 0579-2975), no. 4, 1987, p. 76, 77, In Russian.

The relationship between the principal geometrical parameters of multistage centrifugal pump or compressor stages is investigated experimentally using the static blow test method in the Mach and Reynolds number ranges 0.2-0.3 and (0.5-1) x 10 to the 6th, respectively. The experimental results obtained are approximated by two simple formulas. The validity of the formulas is verified experimentally for an actual final stage of a centrifugal pump.

V.L.

A88-25637

AN EXPERIMENTAL STUDY OF THE EFFECT OF THE LOWER AND UPPER OVERLAP ON THE EFFICIENCY OF RADIAL INWARD-FLOW MICROTURBINES WITH AN ENCLOSED ROTOR [EKSPERIMENTAL'NOE ISSLEDOVANIE VLIIANIIA VELICHIN VERKHNEI I NIZHNEI PEREKRYSH NA EKONOMICHNOST' RADIAL'NYKH TSENTROSTREMITEL'NYKH MIKROTURBIN S ZAKRYTYM RABOCHIM KOLESOM]

N. T. TIKHONOV and V. N. MATVEEV Aviatsionnaia Tekhnika (ISSN 0579-2975), no. 4, 1987, p. 92-94. In Russian.

As shown in earlier studies, the efficiency of axial-flow and inward-flow microturbines can be increased by 12-20 percent by optimizing the upper and lower overlaps. The objective of the experimental study reported here was to determine optimal overlap values for radial inward-flow microturbines with an enclosed rotor. Based on the results obtained, upper and lower overlaps of 0.2-0.4 and 0.1-0.3, respectively, are recommended for this type of turbines.

A88-25640

CHARACTERISTICS OF FLOW AROUND A HEMISPHERE MOUNTED ON A PLANE [OB OSOBENNOSTIAKH OBTEKANIIA POLUSFERY, USTANOVLENNOI NA PLOSKOSTI]

N. A. SHUSHIN Aviatsionnaia Tekhnika (ISSN 0579-2975), no. 4, 1987, p. 99-101. In Russian.

Wind tunnel experiments were carried out at Mach 2.02 and Reynolds numbers up to 3 x 10 to the 6th to investigate flow around a hemisphere mounted on a plane. The model hemisphere, made of Plexiglas, had a diameter of 38 mm, with the ratio of the boundary layer thickness ahead of the model to its radius equal to 0.2-0.3. It is shown that flow around a hemisphere on a plane represents a synthesis of flows behind a cylinder and a sphere and flows ahead of and behind steps. Pressure pulsations, which are particularly strong behind a hemisphere, can be significantly reduced by tangential injection.

A88-26158

INFLUENCE OF TRANSFORMATION SEQUENCE ON NONLINEAR BENDING AND TORSION OF ROTOR BLADES

V. T. NAGARAJ and NIRANJAN SAHU (Helicopter Design Bureau, Bangalore, India) Vertica (ISSN 0360-5450), vol. 11, no. 4, 1987, p. 649-664, refs

An essential ingredient in the modeling of helicopter rotor blades undergoing moderately large deformations is the transformation matrix relating the orientations of the deformed and undeformed blade cross-sections. The use of modified Euler angles for this purpose is shown to lead to sequence-dependent equations of equilibrium. A sequence-free transformation matrix is proposed and the influence of the different matrices is demonstrated with respect to two problems. The first is the static response of an end-loaded cantilever beam for which an approximate closed-form solution is derived for the tip deflections and tip rotation. In the second problem, the various transformation matrices are used to obtain the stability boundaries of a rigid, centrally hinged rotor blade. Both these problems demonstrate the importance of the transformation matrix in the adequate modelling of the nonlinear behavior of slender rotor blades. Author

A88-26159

ELASTIC HINGELESS SCISSOR DESIGN

MELVIN NIEDERER and DANIEL B. GOETSCHEL (Rensselaer Polytechnic Institute, Troy, NY) Vertica (ISSN 0360-5450), vol. 11, no. 4, 1987, p. 761-764. Army-supported research.

This paper discusses the development of a graphite epoxy hingeless scissor mechanism. Structural concepts are discussed and the design solution is described. The selected solution provides a structural member which is stiff in torsion and soft bending. This type of structural concept has apparently not been addressed before. Analysis is presented along with stiffness and strength test data to verify the concept. The results are very positive, showing the structure to be extremely promising. Continuing areas of development are also discussed.

A88-26171

SIMPLIFIED CALCULATION OF THE CRUSHING PROCESS IN STRUCTURAL ELEMENTS [VEREINFACHTE BERECHNUNG DES KNAUTSCHVORGANGS VON BAUELEMENTEN]

E. GIENCKE (Berlin, Technische Universitaet, Federal Republic of Germany)

Zeitschrift fuer Flugwissenschaften und Weltraumforschung (ISSN 0342-068X), vol. 11, Nov.-Dec. 1987, p. 329-341. In German. DFG-supported research. refs

The crash-absorbing elements in aircraft structures, especially helicopter structures, consist of thin-walled beams and sheets which buckle locally due to the crash forces and then fold. The deformation pattern starts with the usual linear-elastic behavior, which is followed by the folding range with very large deformations. The solution of such problems with FEM programs for large deformations and inelastic material behavior is normally very expensive. The analysis becomes simpler if different structural models are used in the elastic and folding range. In the initial linear phase, elastic behavior is assumed. During folding, the panels are assumed to be subdivided into rigid elements connected by

12 ENGINEERING

plastic links, with deformation occurring only at the fold lines and only slight distortion of the central surface. The different folding processes for corrugated sheets, hollow profiles, and stringer-stiffened panels are discussed. Analytical force deformation functions are also derived. The results are compared with other calculations and with experiments.

A88-26173

A CLOSE COUPLING PROCEDURE FOR ZONAL SOLUTIONS OF THE NAVIER-STOKES, EULER AND BOUNDARY-LAYER EQUATIONS

K. M. WANIE (Muenchen, Technische Universitaet, Munich, Federal Republic of Germany), M. A. SCHMATZ, and F. MONNOYER (Messerschmitt-Boelkow-Blohm GmbH, Munich, Federal Republic of Germany) Zeitschrift fuer Flugwissenschaften und Weltraumforschung (ISSN 0342-068X), vol. 11, Nov.-Dec. 1987, p. 347-359. refs

(Contract DFG-HI-342/1-3; DFG-HI-342/1-4)

The steady high-Re flow of a viscous fluid around an arbitrary three-dimensional body is investigated analytically, applying a close coupling procedure to link solutions of the Euler, potential, and boundary-layer equations for zones with weak interactions with solutions of the Navier-Stokes equations for strong-interaction zones. The zonal solution concept and the derivation of the governing equations are explained; the fundamental principles of close coupling are reviewed; the numerical implementation is described; and results for the subsonic and transonic two-dimensional flow past elliptical bodies and airfoils at various angles of attack are presented in extensive graphs and characterized in detail. Good agreement with global Navier-Stokes solutions is obtained when the coupling analysis is based on second-order boundary-layer theory.

A88-26253

A SUBMILLIMETER HETERODYNE RECEIVER FOR THE KUIPER AIRBORNE OBSERVATORY AND THE DETECTION OF THE 372 MICRON CARBON MONOXIDE LINE J=7-6 IN OMC-1 AND W3

H. P. ROESER, F. SCHAEFER, J. SCHMID-BURGK, G. V. SCHULTZ, P. VAN DER WAL (Max-Planck-Institut fuer Radioastronomie, Bonn, Federal Republic of Germany) et al. International Journal of Infrared and Millimeter Waves (ISSN 0195-9271), vol. 8, Dec. 1987, p. 1541-1556. refs

A compact heterodyne receiver system used in the Kuiper Airborne Observatory is described, and calibration techniques for the elimination of standing wave effects are discussed. Results for the detection of the J=7-6 rotational transition of CO in OMC-1 and W3 are presented. The peak antenna temperature of OMC-1 is 55 K, and the relatively high total line flux of 7.8 x 10 to the -13th W/sq m suggests that OMC-1 might be extended over several arcmin in CO (J=7-6). In W3, the peak antenna temperature is found to be 6+ or - 2 K, with the line center at -42 + or - 2 km/sec and a FWHM of about 9 km/sec.

A88-26256

GRAPHICAL DESIGN OF MILLIMETER-WAVE FINLINE BANDPASS FILTERS

CAM NGUYEN (Martin Marietta Corp., Orlando, FL) International Journal of Infrared and Millimeter Waves (ISSN 0195-9271), vol. 8, Dec. 1987, p. 1581-1603. refs

A very simple yet accurate design procedure for the finline bandpass filters at millimeter wavelengths is presented. The technique enables the geometry of finline bandpass filters to be obtained accurately from simple closed-form equations and curves. Using this graphical approach, various millimeter-wave finline bandpass filters have been designed. Results in V-band (50 to 75 GHz) and W-band (75 to 110 GHz) are presented and indicate a good agreement between the calculated and measured performances.

A88-26344

NONLINEAR EQUATIONS OF LAMINATED PANELS WITH LAMINATED STIFFENERS

IZHAK SHEINMAN (Technion - Israel Institute of Technology, Haifa) Composite Structures (ISSN 0263-8223), vol. 8, no. 4, 1987, p. 287-292. refs

The nonlinear equations for a stiffened laminated panel, which modeled by plate and beam elements, are derived by applying the variational principle on the potential energy. The equations include the equation for the panel sections between the stiffeners, the continuity requirements and the boundary conditions. These nonlinear equations by which the post-buckling behavior is characterized are exact in terms of Von Karman's kinematic relations.

Author

A88-26419

KNOWLEDGE-BASED MULTI-SENSOR IMAGE FUSION

THOMAS C. REARICK (Lockheed Aeronautical Systems Co., Marietta, GA) Lockheed Horizons (ISSN 0459-6773), Dec. 1987, p. 22-30.

A technique for generating a composite, synergistic image from multispectral sensors is described, with an emphasis on several aerospace applications (besides multisensor fusion) including target detection using scene context, navigation by terrain landmarks, and piloting by spatial reasoning. It is concluded that while a typical image contains thousands of generalized cylinder pixels (gyxels) and hundreds of homogeneous regions, data parallelism may be sufficient to account for an execution time improvement of at least 100:1. However another 100:1 improvement may be gained by exploiting pipeline and control parallelism, reduction of overhead, and use of faster microelectronic technologies. A.S.

A88-26571

AN EXACT SOLUTION FOR COUPLED BENDING AND TORSION VIBRATIONS OF UNIFORM BEAMS HAVING SINGLE CROSS-SECTIONAL SYMMETRY

E. DOKUMACI (Dokuz Eylul University, Bornova, Turkey) Journal of Sound and Vibration (ISSN 0022-460X), vol. 119, Dec. 22, 1987, p. 443-449. refs

This paper presents an exact determination of coupled bending and torsion vibration characteristics of uniform beams having single cross-sectional symmetry. A novel feature of the analysis is the expression of the exact solutions in terms of real functions, as is usual in more elementary vibration problems of beams. Numerical results are given to explain the effect of the shear center offset on the natural frequencies.

A88-26632#

INVESTIGATION ON STEADY-STATE RESPONSE OF A ROTOR-SUPPORT SYSTEM WITH TWO SQUEEZE-FILM DAMPERS

XIFAN LI and CAIGAO FU (Gas Turbine Establishment, People's Republic of China) Journal of Aerospace Power, vol. 3, Jan. 1988, p. 31-34, 90. In Chinese, with abstract in English.

The rotor investigated is supported on two major ball bearings with squeeze-film dampers in the absence of centralizing retaining springs. The coefficients of the film forces are linearized using the dynamical performance of the damper in the fixed coordinate system (four oil-film stiffness and four oil-film damping coefficients). The steady-state unbalance response of an asymmetrical flexible rotor system has been easily determined by means of transfer-matrix and linear iterative methods. Generally speaking, for the rotor system with nonlinear squeeze-film dampers, the optimum damper design with a suitable rotor unbalance level (i.e., mass eccentricity e = 0.01 cm) will achieve vibration suppression. The calculations show that the vibration suppression with two-squeeze-film dampers is better than that with one. This conclusion has also been proved using measured vibration data for a jet engine.

A88-26641#

DYNAMIC FLEXIBILITY COEFFICIENT MATRIX AND ITS MEASUREMENT FOR AEROENGINE SUPPORTING SYSTEM

ZHIWEI LI and SHENJI YANG (Northwestern Polytechnical University, Xian, People's Republic of China) Journal of Aerospace Power, vol. 3, Jan. 1988, p. 73-75, 95. In Chinese, with abstract in English. refs

A88-26793#

CALCULATION OF METAL FLOW STRESS IN PRECISION CLOSED-DIE FORGING OF BLADE

JIN ZHU and ZHIWEN ZHANG Northwestern Polytechnical University, Journal (ISSN 1000-2758), vol. 6, Jan. 1988, p. 11-19. In Chinese, with abstract in English.

It is pointed out here that, in order to obtain fine-quality aeromotor blade forging quality, the distribution of flow stress over the blade airfoil and the influence of the temperature field on the forging finish must be determined. It is found that, when deformation, strain, and temperature field reach a certain degree, flow stress is mainly affected by the rate of strain. A computer program based on this finding is presented which gives a method for calculating strain rate, flow stress, and temperature field in both forging and flash. The experimental measurement of temperature field on blade airfoil during the precision closed-die forging process is reported, and temperature distribution graphs based on the resulting data are presented.

A88-26890

BUCKLING OF DELAMINATED, LONG, CYLINDRICAL PANELS UNDER PRESSURE

GEORGE J. SIMITSES and ZIQI CHEN (Georgia Institute of Technology, Atlanta) Computers and Structures (ISSN 0045-7949), vol. 28, no. 2, 1988, p. 173-184. refs (Contract AF-AFOSR-86-0038)

Delamination is one of the basic defects inherent to laminar materials. The investigation of the buckling characteristics of delaminated cylindrical shells or panels, when subjected to external pressure, is presented herein. The geometry is such that it covers a wide range of length to radius ratios as well as panels of different widths. Results are presented only for very long cylinders and panels. The boundaries are either simply supported or clamped. Furthermore, the material is such that it leads to (quasi)isotropic laminates for all sections involved, the overall as well as the ones separated by the delamination. Finally, the geometry is free of initial geometric imperfections. Because of the last two assumptions, a primary membrane state exists and bifurcational buckling is possible. Buckling loads are calculated for a wide range of parameters. The width and the through-the-thickness position of delamination greatly affect the bifurcation load. Author

A88-26972

A CONICAL ELEMENT FOR FINITE ELEMENT ROTOR DYNAMICS

G. GENTA and A. GUGLIOTTA (Torino, Politecnico, Turin, Italy) Journal of Sound and Vibration (ISSN 0022-460X), vol. 120, Jan. 8, 1988, p. 175-182. refs

A conical beam element for rotor dynamic analysis is proposed. The element, with circular or annular cross-section, is based on the Timoshenko beam theory. It has two complex degrees of freedom at each node. The procedure for the computation of the stiffness, mass, gyroscopic damping matrices and of the unbalance vector is fully described.

Author

A88-27248

STRESS-STRAIN STATE OF AN OPENING PARACHUTE [NAPRIAZHENNO-DEFORMIROVANNOE SOSTOIANIE RAS-KRYVAIUSHCHEGOSIA PARASHIUTA]

N. L. GORSKII, I. V. DNEPROV, IU. V. MOSEEV, A. T. PONOMAREV, and O. V. RYSEV IN: Statics and dynamics of flexible systems . Moscow, Izdatel'stvo Nauka, 1987, p. 194-201. In Russian. refs

A method for the stress-strain analysis of an opening parachute is proposed which is based on the use of aeroelasticity models of

different levels. A version of the finite element method developed for the problem in question is examined. The approach proposed here is illustrated by a specific example.

A88-27482

FINE-SCALE MEASUREMENTS OF MICROWAVE REFRACTIVITY PROFILES WITH HELICOPTER AND LOW-COST ROCKET PROBES

JOHN R. ROWLAND and STEVEN M. BABIN (Johns Hopkins University, Laurel, MD) Johns Hopkins APL Technical Digest (ISSN 0270-5214), vol. 8, Oct.-Dec. 1987, p. 413-417.

The recent development of computer models that can accurately predict radar performance under ducting or other anomalous propagation conditions has produced a need for high-resolution profiles of microwave refractivity in the lower troposphere. This article contains a brief description of two systems that can make the required meteorological measurements for use in those models. The first system is helicopter-based and has been used for research purposes to verify model performance. The second uses a low-cost rocket to carry a lightweight telemetry package to the desired altitudes. The rocket system shows promise for shipboard use where accurate, high-resolution refractivity profiles near the ocean surface are required.

A88-27775#

A STUDY OF THE DYNAMIC BEHAVIOR OF ROTOR-BEARING SYSTEMS BY THE FINITE ELEMENT METHOD

SHIH-SHYN J. WU (National Chunghsing University, Taichung, Republic of China) Chinese Society of Mechanical Engineers, Journal (ISSN 0257-9731), vol. 8, Aug. 1987, p. 239-250. refs

Natural characteristics of the rotor-bearing systems were investigated. On the basis of Jeffcott's flexible rotor theory and the finite element method, equations of motion for the rotor-bearing systems with respect to either the fixed frame or the rotary frame were presented. Illustrations included a single, uniform rotor with bearing supports, a stepped rotor with bearings and rigid disks, and a dual rotor system. Numerical results include the whirl modes and whirl speeds. Physical meanings concerning the dynamic behavior of the rotor-bearing systems were discussed in detail, and the critical speeds related to the excitations were introduced. The computational procedures and results shown in this paper are significant for the understanding of the dynamic behavior of the rotor-bearing systems and helpful for the design of a turbine engine.

A88-28042#

OPTIMUM DESIGN OF STRUCTURES WITH MULTIPLE CONSTRAINTS

R. A. CANFIELD, V. B. VENKAYYA (USAF, Wright-Patterson AFB, OH), and R. V. GRANDHI (Wright State University, Dayton, OH) (Structures, Structural Dynamics, and Materials Conference, 27th, San Antonio, TX, May 19-21, 1986, Technical Papers. Part 1, p. 398-408) AIAA Journal (ISSN 0001-1452), vol. 26, Jan. 1988, p. 78-85. USAF-supported research. Previously cited in issue 18, p. 2617, Accession no. A86-38845. refs

A88-28046#

VAN LEER FLUX VECTOR SPLITTING IN MOVING COORDINATES

IJAZ H. PARPIA (Texas, University, Arlington) AIAA Journal (ISSN 0001-1452), vol. 26, Jan. 1988, p. 113-115.

The present derivation of split-flux vectors referred to moving curvilinear coordinates makes possible the application of the split-flux method of van Leer (1982) to problems in which it might be convenient or necessary to use moving grids, such as helicopter-blade calculations in which the grid is attached to a blade undergoing translation, rotation, and deformation. The time-accurate calculation of flows on solution-adaptive grids is a further instance of the necessity of allowing for grid-point motion.

O.C.

A88-28047#

TURBULENT NEAR WAKE OF A SYMMETRICAL BODY

R. H. PAGE and C. OSTOWARI (Texas A & M University, College Station) AIAA Journal (ISSN 0001-1452), vol. 26, Jan. 1988, p. 115, 116. refs

(Contract NSF CBT-84-18493)

Attention is given to the near-wake profile of a symmetrical body immersed in uniform flow at zero angle-of-attack, for cases in which vortex-shedding is negligible. It is demonstrated by the centerline velocity values which provide the most probable equilibrium solution, that there exists a unique value of the time-averaged centerline velocity, in the near wake of this body, that represents the limiting case for turbulent high Re number flow.

O.C.

N88-16633*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

REVIEW OF FATIGUE AND FRACTURE RESEARCH AT NASA LANGLEY RESEARCH CENTER

RICHARD A. EVERETT, JR. *In* NASA, Washington, NASA/Army Rotorcraft Technology. Volume 2: Materials and Structures, Propulsion and Drive Systems, Flight Dynamics and Control, and Acoustics p 535-572 Feb. 1988

Avail: NTIS HC A25/MF A01 CSCL 20K

Most dynamic components in helicopters are designed with a safe-life constant-amplitude testing approach that has not changed in many years. In contrast, the fatigue methodology in other industries has advanced significantly in the last two decades. Recent research at the NASA Langley Research Center and the U.S. Army Aerostructures Directorate at Langley are reviewed relative to fatigue and fracture design methodology for metallic components. Most of the Langley research was directed towards the damage tolerance design approach, but some work was done that is applicable to the safe-life approach. In the areas of testing, damage tolerance concepts are concentrating on the small-crack effect in crack growth and measurement of crack opening stresses. Tests were conducted to determine the effects of a machining scratch on the fatigue life of a high strength steel. In the area of analysis, work was concentrated on developing a crack closure model that will predict fatigue life under spectrum loading for several different metal alloys including a high strength steel that is often used in the dynamic components of helicopters. Work is also continuing in developing a three-dimensional, finite-element stress analysis for cracked and uncracked isotropic and anisotropic structures. A numerical technique for solving simultaneous equations called the multigrid method is being pursued to enhance the solution schemes in both the finite-element analysis and the boundary element analysis. Finally, a fracture mechanics project involving an elastic-plastic finite element analysis of J-resistance curve is also being pursued. Author

N88-16701*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

CREEP AND FATIGUE RESEARCH EFFORTS ON ADVANCED MATERIALS

JOHN GAYDA *In its* Aeropropulsion '87. Session 1: Aeropropulsion Materials Research 18 p Nov. 1987

Avail: NTIS HC A06/MF A01 CSCL 20K

Two of the more important materials problems encountered in turbine blades of aircraft engines are creep and fatigue. To withstand these high-temperature phenomena modern engines utilize single-crystal, nickel-based superalloys as the material of choice in critical applications. Recent research activities at Lewis on single-crystal blading material as well as future research initiatives on metal matrix composites related to creep and fatigue are discussed. The goal of these research efforts is improving the understanding of microstructure-property relationships and thereby guide material development.

N88-16893# Rolls-Royce Ltd., Derby (England). Precision Casting Facility.

DEVELOPMENT OF A SHELL SYSTEM FOR DS MOULDS AT RR PRECISION CASTING FACILITY

K. L. HARRISON 24 Apr. 1987 8 p Submitted for publication (PNR-90400; ETN-88-91529) Avail: NTIS HC A02/MF A01

Shells used in directional solidification casting of aircraft engine parts are described. Zircon flour slurry is used. Refractory stucco grains are still not ideal, and require two coats of shell to achieve the required thickness. Binder is hydrolyzed ethyl silicate, containing 24 percent silica.

N88-16901# Naval Postgraduate School, Monterey, Calif. OPTIMIZING HF ANTENNA SYSTEMS ON THE DOLPHIN AND SEA HAWK HELICOPTERS M.S. Thesis

JAMES B. CRAWFORD Sep. 1987 394 p

(AD-A186552) Avail: NTIS HC A17/MF A01 CSCL 01C

Making an aircraft available and modifying it to test various antenna systems and configurations is extremely costly. The computer model is an excellent alternative means of analyzing antenna systems for optimum communication system performance. In this study electromagnetic wire grid computer models of two helicopters and eight HF antenna configurations are developed using Interactive Graphics Utility for Automated NEC Analysis (IGUANA). Numerical Electromagnetics Code (NEC) is used to obtain radiation patterns, and the Advanced Prophet program is used to develop the criteria for judging system effectiveness. These computer results compare favorably with test range data, showing great savings of cost. They provide the additional advantage of showing radiation patterns at an elevated angle for sky wave propagation analysis (patterns which cannot be obtained on an antenna test range).

N88-16951# Naval Postgraduate School, Monterey, Calif. FLOW FIELD MEASUREMENTS USING HOTWIRE ANEMOMETRY M.S. Thesis

GREGORY J. DOREMUS Sep. 1987 105 p

(AD-A187029) Avail: NTIS HC A06/MF A01 CSCL 01A

A computer controlled data acquisition system utilizing hotwire anemometry has been designed, built, and installed at the Low Speed Wind Tunnel Facility. All relevant wind tunnel data is obtained by the use of a computer guided data acquisition system. Two computer programs were written to coordinate hotwire system calibration with hotwire experimentation. An experiment, Wake Velocity Profile Analysis and Drag Coefficient Measurement of an Airfoil, was used as a vehicle to test the system. The final output of the data acquisition system, including graphical information, compared favorably with previous results from an older data acquisition system already in use. Drag coefficient output compared very favorably to data supplied by the National Advisory Committee on Aeronautics.

N88-16956*# Nebraska Univ., Lincoln. Lab. for Electro-Optical Measurements.

COMPARISON OF UNL LASER IMAGING AND SIZING SYSTEM AND A PHASE/DOPPLER SYSTEM FOR ANALYZING SPRAYS FROM A NASA NOZZLE Final Report, 1 Apr. 1985 - 19 Aug. 1987

DENNIS R. ALEXANDER 14 Feb. 1988 139 p (Contract NAG3-634)

(NASA-CR-182437; NAS 1.26:182437) Avail: NTIS HC A07/MF A01 CSCL 20D

Aerosol spray characterization was done using a P/DPA and a laser imaging/video processing system on a NASA MOD-1 air-assist nozzle being evaluated for use in aircraft icing research. Benchmark tests were performed on monodispersed particles and on the NASA MOD-1 nozzle under identical laboratory operating conditions. The laser imaging/video processing system and the P/DPA showed agreement on calibration tests in monodispersed aerosol sprays of + or - 2.6 microns with a standard deviation of + or - 2.6 microns. Tests were performed on the NASA MOD-1 nozzle on the centerline and radially at one-half inch increments to the outer edge of the spray plume at a distance two feet (0.61

m) downstream from the exit of the nozzle. Comparative results at two operating conditions of the nozzle are presented for the two instruments. For the first case, the deviation in arithmetic mean diameters determined by the two instruments was in a range of 0.1 to 2.8 microns, and the deviation in Sauter mean diameters varied from 0 to 2.2 microns. Operating conditions in the second case were more severe which resulted in the arithmetic mean diameter deviating from 1.4 to 7.1 microns and the deviation in the Sauter mean diameters ranging from 0.4 to 6.7 microns.

Author

N88-16966# Aeronautical Research Inst. of Sweden, Stockholm. Dept. of Aerodynamics.

NAVIER-STOKES SOLUTIONS FOR LAMINAR INCOMPRESSI-BLE FLOW OVER A NACA 0012 AIRFOIL AND A BACKWARD FACING STEP

PETER ELIASSON 19 Aug. 1987 49 p Sponsored by the Swedish Board for Technical Development

(FFA-TN-1987-50; ETN-88-91668) Avail: NTIS HC A03/MF A01 For the solution of the incompressible Navier-Stokes equation, an explicit Runge-Kutta finite-volume solver was created. The gradients due to the viscous terms were approximated in the cells by surface integrals along the cell boundaries. A stability analysis for the condition of the local time step for the Runge-Kutta scheme was performed. Results for external and internal flow in two dimensions are presented. The code was verified for the external flow over a NACA 0012 airfoil at different Reynolds numbers and angles of attack, and the results were compared to corresponding compressible cases and to experiments. The code was also applied for the internal flow over a backward facing step for different Reynolds numbers, for which experimental data and numerical results are available. The results agree with other numerical results and with experimental data.

N88-16988*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

NUMERICAL MODELING OF MULTIDIMENSIONAL FLOW IN SEALS AND BEARINGS USED IN ROTATING MACHINERY

R. C. HENDRICKS, L. T. TAM, A. PRZEKWAS, A. MUSZYNSKA, M. J. BRAUN, and R. L. MULLEN (Case Western Reserve Univ., Cleveland, Ohio.) 1988 30 p Prepared for presentation at the 2nd International Symposium on Transport Phenomena, Dynamics, and Design of Rotating Machinery, Honolulu, Hawaii, 4-6 Apr. 1988; sponsored in part by ASME and JSME

(NASA-TM-100779; E-3909; NAS 1.15:100779) Avail: NTIS HC A03/MF A01 CSCL 20D

The rotordynamic behavior of turbomachinery is critically dependent on fluid dynamic rotor forces developed by various types of seals and bearings. The occurrence of self-excited vibrations often depends on the rotor speed and load. Misalignment and rotor wobbling motion associated with differential clearance were often attributed to stability problems. In general, the rotative character of the flowfield is a complex three dimensional system with secondary flow patterns that significantly alter the average fluid circumferential velocity. A multidimensional, nonorthogonal, body-fitted-grid fluid flow model is presented that describes the fluid dynamic forces and the secondary flow pattern development in seals and bearings. Several numerical experiments were carried out to demonstrate the characteristics of this complex flowfield. Analyses were performed by solving a conservation form of the three dimensional Navier-Stokes equations transformed to those for a rotating observer and using the general-purpose computer code PHOENICS with the assumptions that the rotor orbit is circular and that static eccentricity is zero. These assumptions have enabled a precise steady-state analysis to be used. Fluid injection from ports near the seal or bearing center increased fluid-film direct dynamic stiffness and, in some cases, significantly increased quadrature dynamic stiffness. Injection angle and velocity could be used for active rotordynamic control; for example, injection, when compared with no injection, increased direct dynamic stiffness, which is an important factor for hydrostatic bearings.

Author

N88-17001# Eidgenoessisches Flugzeugwerk, Emmen (Switzerland). Abteilung Versuchs- und Forschungsanlage.
STRAIN GAGE BALANCE FOR HALF MODELS 302-6.
CALIBRATION REPORT

HEINZ BLAETTLER 28 Feb. 1986 106 p In GERMAN; ENGLISH summary

(F+W-FO-1803; ETN-88-91685) Avail: NTIS HC A06/MF A01

A six-component strain gage balance for half models 302-6 for the transonic wind tunnel was developed and calibrated. The calibration was executed with a special lever, so that forces and moments could be loaded at the point of attack of the model. Point 8 (for recording buffering) was also measured. The balance is conceived for: X = +/-100 (N); Mx = +/-200 (Nm); Y = +/-200 (N); My = +/-35 (Nm); Z = +/-1000 (N); and Z = +/-30 (Nm).

N88-17009# National Aerospace Lab., Tokyo (Japan).
TURBINE FLOW METER WITH OPTICAL FIBER PICK-UP
YUKIO MATSUDA and MASANORI ENDOH 1987 15 p In
JAPANESE; ENGLISH summary

(NAL-TR-923; ISSN-0389-4010) Avail: NTIS HC A03/MF A01

For measurement of the flow rate of liquid and gas, a turbine flow meter is widely used for its easy handling characteristics and high reliability. However, there are still problems of narrow covering range and electric noise. These problems are mainly caused by the electromagnetic pick-up. An optical fiber pick-up turbine flow meter (OTF) has been developed to resolve these problems by using an optical fiber pick-up instead of the conventional electromagnetic pick-up to detect the passage of turbine blades. The OTF output signal is a pulse train with a constant amplitude (1V peak) in all ranges covered. An eminent improvement of linearity is realized in the lower flow rate range. Various kinds of aeroengine start and performance tests have proved the OTF to be very useful.

N88-17010# National Aerospace Lab., Tokyo (Japan).
STUDY ON A UNIDIRECTIONAL RING LASER GYRO. PART 1:
PROPOSITION OF THE PRINCIPLE AND STUDIES ON THE
COMPONENTS

MINORU TAKIZAWA May 1987 39 p In JAPANESE; ENGLISH summary

(NAL-TR-933; ISSN-0389-4010) Avail: NTIS HC A03/MF A01

Study of a Unidirectional Ring Laser Gyro (URLG) is being carried out at NAL (National Aerospace Laboratory) in studies on an advanced automatic flight control system (Fly-By-Light System) for STOL aircraft. The purpose of the study is to develop a laser gyroscope which has such properties as high accuracy, high reliability, a very long service life and low cost. The laser gyro has no lock-in region and no moving parts. The principle of the laser gyro is proposed, and the behavior and the potential performance of the laser gyro are discussed theoretically. Furthermore, the results of the experimental studies of the main components, i.e., a ring laser, a V shaped linear laser, an optical diode and an optical read-out device are described.

N88-17045*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

DYNAMIC ANALYSIS OF MULTIMESH-GEAR HELICOPTER TRANSMISSIONS

FRED K. CHOY, DENNIS P. TOWNSEND, and FRED B. OSWALD Feb. 1988 22 p

(NASA-TP-2789; E-3191; NAS 1.60:2789) Avail: NTIS HC A03/MF A01 CSCL 13I

A dynamic analysis of multimesh-gear helicopter transmission systems was performed by correlating analytical simulations with experimental investigations. The two computer programs used in this study, GRDYNMLT and PGT, were developed under NASA/Army sponsorship. Parametric studies of the numerical model with variations on mesh damping ratios, operating speeds, tip-relief tooth modifications, and tooth-spacing errors were performed to investigate the accuracy, application, and limitations of the two computer programs. Although similar levels of dynamic loading were predicted by both programs, the computer code

GRDYNMLT was found to be superior and broader in scope. Results from analytical work were also compared with experimental data obtained from the U.S. Army's UH-60A Black Hawk 2240-kW (3000-hp) class, twin-engine helicopter transmission tested at the NASA Lewis Research Center. Good correlation in gear stresses was obtained between the analytical model simulated by GRDYNMLT and the experimental measurements. More realistic mesh damping can be predicted through experimental data correlation.

N88-17049# Air Force Inst. of Tech., Wright-Patterson AFB, Ohio. School of Systems and Logistics.

ANALYSIS OF THE RELIABILITY OF ROYAL AUSTRALIAN AIR FORCE NON-DESTRUCTIVE INSPECTION M.S. Thesis

MARK CASSIDY Sep. 1987 96 p

(AD-A186979; AFIT/GLM/LSMA/87S-11) Avail: NTIS HC A05/MF A01 CSCL 14B

The purpose of this research was to establish, via examination of the available literature, and appropriate means of quantifying the reliability of Non-Destructive Inspection (NDI) as practiced by the Royal Australian Air Force (RAAF) NDI technicians. Further, actual measurement of this NDI reliability was to be attempted and the correlation, if any, between the NDI technician's reported and measured results and the actual flaw lengths was to be established.

N88-17062# Shock and Vibration Information Center (Defense), Washington, D. C.

THE SHOCK AND VIBRATION BULLETIN. PART 4: STRUCTURAL DYNAMICS AND MODAL TEST AND ANALYSIS Monthly Report

Jan. 1987 146 p Presented at the 57th Symposium on Shock and Vibration, New Orleans, La., 14-16 Oct. 1986

(AD-A186751; SVIC-BULL-57-PT-4) Avail: NTIS HC A07/MF A01 CSCL 20K

Various topics related to shock and vibration are discussed. Qualification by analysis of Inertial Upper Stage plume deflectors, the analysis of reinforced concrete structures under the effects of localized detonations, reinforced concrete arches under blast and shock environments, reliability of structures with stiffness and strength degradation, frequency response functions of a nonlinear system, and system optimization in nonlinear random vibration are among the topics covered.

N88-17073# Concordia Univ., Montreal (Quebec). Dept. of Mechanical Engineering.

DYNAMIC RESPONSE OF A GEARED TRAIN OF ROTORS SUBJECTED TO RANDOM SUPPORT EXCITATIONS

S. V. NERIYA, R. B. BHAT, and T. S. SANKAR *In* Shock and Vibration Information Center The Shock and Vibration Bulletin. Part 4: Structural Dynamics and Modal Test and Analysis p 107-119 Jan. 1987

Avail: NTIS HC A07/MF A01 CSCL 13I

The response of a geared train of rotors subjected to random support excitations is investigated. Support excitations occur, for instance, on board moving vehicles. These excitations are, in general, random in nature, and the response can be obtained using a statistical analysis. Here, the geared train of rotors is modeled using finite elements and the coupling between torsion and flexure is considered. The geared rotor system is excited by a displacement type of support excitation which is the output of a filter, the input to which is a Gaussian stationary process with a white noise type of power spectral density. The excitation is assumed to be in the vertical direction only, and the excitations through the supports are assumed to be uncorrelated. Results for the response power spectral densities are presented for two kinds of filters.

N88-17084# Aeronautical Research Inst. of Sweden, Stockholm. Aerodynamics Dept.

SELF-ADAPTIVE ANALYSIS OF THREE-DIMENSIONAL STRUCTURES USING A P-VERSION OF FINITE ELEMENT METHOD

BOERJE ANDERSSON and URBAN FALK Aug. 1987 47 p Presented at the First World Congress on Computational Mechanics, Austin, Tex., 22-26 Sep. 1986 Sponsored by the Swedish Material (Material Dept.) Air Administration of Armed Forces

(FFA-TN-1987-31; ETN-88-91666) Avail: NTIS HC A03/MF A01 The self-adaptive finite element program STRIPE for solution of problems in three-dimensional elastomechanics is described. It uses a p-version of the finite element method where each finite element automatically is assigned an order of approximation pi for the xi-displacements to obtain the lowest error in the energy norm given the number of degrees of freedom. A simple energy error estimator used to terminate the adaptive process is outlined. A method for calculating the mode 1, 2, and 3 stress intensity factors in solids of isotropic materials was developed. The high accuracy obtained using this method is demonstrated. The rates of convergence to expect from the p-version of the finite element method when solving three-dimensional problems are illustrated. The computational efficiency of the p-version of the finite element method for solving real-life problems is demonstrated by analyzing a complex main frame fuselage of fighter aircraft.

N88-17090*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, Calif.

ACCURACIES OF SOUTHWELL AND FORCE/STIFFNESS METHODS IN THE PREDICTION OF BUCKLING STRENGTH OF HYPERSONIC AIRCRAFT WING TUBULAR PANELS

WILLIAM L. KO Nov. 1987 28 p

(NASA-TM-88295; H-1415; NAS 1.15:88295) Avail: NTIS HC A03/MF A01 CSCL 20K

Accuracies of the Southwell method and the force/stiffness (F/S) method are examined when the methods were used in the prediction of buckling loads of hypersonic aircraft wing tubular panels, based on nondestructive buckling test data. Various factors affecting the accuracies of the two methods were discussed. Effects of load cutoff point in the nondestructive buckling tests on the accuracies of the two methods were discussed in great detail. For the tubular panels under pure compression, the F/S method was found to give more accurate buckling load predictions than the Southwell method, which excessively overpredicts the buckling load. It was found that the Southwell method required a higher load cutoff point, as compared with the F/S method. In using the F/S method for predicting the buckling load of tubular panels under pure compression, the load cutoff point of approximately 50 percent of the critical load could give reasonably accurate predictions. Author

N88-17434# Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt, Cologne (West Germany). Inst. fuer Theoretische Stroemungsmechanik.

NUMERICAL FLUID MECHANICS [NUMERISCHE STROEMUNGSMECHANIK]

HERBERT OERTEL In its Scientific Colloquium in Honor of Prof. Dr. Rer. Nat. Hermann L. Jordan p 37-55 Jun. 1987 In GERMAN

Avail: NTIS HC A07/MF A01; DFVLR, Cologne, Fed. Republic of Germany DM 29

Solutions of fluid-mechanical model equations are treated. The dynamics of nonlinear systems is discussed. The flow transition process and the production of turbulence are explained. It is discussed to what extent the nonlinear interaction between a few modes can describe the transition to turbulent flow, and hence show the way towards transition and turbulence modeling. The use of numerical methods for the practical calculation of transonic passenger aircraft wings, and for the aerothermodynamic design of reentry vehicles, is presented.

N88-17623*# Environmental Research Inst. of Michigan, Ann Arbor. Radar Science Lab.

RADAR BACKSCATTER FROM AIRPORTS AND SURROUNDING AREAS

ROBERT G. ONSTOTT In NASA. Langley Research Center, Airborne Wind Shear Detection and Warning Systems: First Combined Manufacturers and Technologists Conference p 183-191 Jan. 1988

Avail: NTIS HC A24/MF A01 CSCL 17B

Vugraphs used in a presentation to describe the ground clutter environment at or near airports are given. R.J.F.

N88-17624*# Northeastern Univ., Boston, Mass. RADAR RETURNS FROM GROUND CLUTTER IN VICINITY OF AIRPORTS

H. R. RAEMER, R. RAHGAVAN, and A. BHATTACHARYA In NASA. Langley Research Center, Airborne Wind Shear Detection and Warning Systems: First Combined Manufacturers and Technologists Conference p 193-205 Jan. 1988

Avail: NTIS HC A24/MF A01 CSCL 17B

The objective of this project is to develop a dynamic simulation of the received signals from natural and man-made ground features in the vicinity of airports. The simulation is run during landing and takeoff stages of a flight. Vugraphs of noteworthy features of the simulation, ground clutter data bases, the development of algorithms for terrain features, typical wave theory results, and a gravity wave height profile are given.

R.J.F.

N88-17632*# Massachusetts Inst. of Tech., Lexington. STATUS OF FAA TERMINAL DOPPLER WEATHER RADAR PROGRAMS

MARK W. MERRITT In NASA. Langley Research Center, Airborne Wind Shear Detection and Warning Systems: First Combined Manufacturers and Technologists Conference p 411-444 Jan.

Avail: NTIS HC A24/MF A01 CSCL 17I

The status of the Federal Aviation Administration (FAA) Doppler weather radar programs are presented in vugraph form. Abstracts of relevant reports are given.

R.J.F.

N88-17819# Messerschmitt-Boelkow-Blohm G.m.b.H., Ottobrunn (West Germany). Zentralbereich Technik.

RESEARCH AND DEVELOPMENT. TECHNICAL-SCIENTIFIC PUBLICATIONS (1956-1987): RETROSPECTIVE VIEW AND PROSPECTS. JUBILEE EDITION ON THE OCCASION OF THE 75TH BIRTHDAY OF DIPL.-ENGR. DR.-ENGR. E. H. LUDWIG BOELKOW [FORSCHUNG UND ENTWICKUNG. TECHNISCHWISSENSCHAFTLICHE VEROEFFENTLICHUNGEN 1956-1987 EIN RUECK- UND AUSBLICK. JUBILAEUMSAUSGABE ANALAESSLICH DES 75 GEBURTSTAGES VON DIPL.-ING. DR.-ING. E. H. LUDWIG BOELKOW]

1987 319 p Partly in GERMAN and ENGLISH

(ISSN-0931-9751; ETN-88-91025) Avail: NTIS HC A14/MF A01 Fighter aircraft, transport aircraft, helicopters, astronautics, and military techniques are discussed.

N88-17855# Messerschmitt-Boelkow-Blohm G.m.b.H., Ottobrunn (West Germany). Unternehmensgruppe Wehrtechnik.

ROTOR SAR (ROSAR): A NEW HIGH-RESOLUTION ALL-WEATHER VISION METHOD FOR HELICOPTERS [ROSAR - EIN NEUES HOCHAUFLOESENDES ALLWETTERSICHTVERFAHREN FUER HUBSCHRAUBER]

HORST KALTSCHMIDT and HELMUT KLAUSING (Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt, Oberpfaffenhofen, West Germany) In its Research and Development. Technical-Scientific Publications (1956-1987): Retrospective View and Prospects. Jubilee Edition on the Occasion of the 75th Anniversary of Dipl.-Engr. Dr.-Engr. E.H. Ludwig Boelkow p 235-240 1987 In GERMAN

(MBB-UA-1046/87) Avail: NTIS HC A14/MF A01

The concept of an all-weather, high-resolution SAR system, based on rotating antennas integrated in helicopter blade tips (ROSAR) is presented. The opposition between resolution and transparency at several wavelengths, and antenna aperture increase as a solution are discussed. The principle of synthetic aperture radar, and determination of the resolution by theoretical signal recognition methods are explained. The fundamentals of the ROSAR concept are presented. As a systems design example, the SAR parameters for the frequencies 35 and 94 GHz are given.

N88-17871# New Mexico Univ., Albuquerque. Engineering Research Inst.

EVALUATION OF BITUMINOUS MATERIALS USED IN PAVEMENT RECYCLING PROJECTS AT TYNDALL, MACDILL, AND HURLBURT AIR FORCE BASES Final Report, Feb. 1985 - Dec. 1986

B. KIGGUNDU, R. MARTINEZ, B. HUMPHREY, and T. SHULER Jul. 1987 212 p

(Contract F2901-84-C-0080)

(AD-A188068; NMERI-WA5-11(5.07); AFESC/ESL-TR-86-50)

Avail: NTIS HC A10/MF A01 CSCL 13C

This report presents results of a study involving bituminous materials from Tyndall and MacDill Air Force Bases and Hurlburt Field. These materials included Reclaimed Asphalt Pavement (RAP), modifiers, virgin asphalts, and new aggregates. A tentative modifier selection criterion was used to judge the quality of materials used in the recycling efforts at the respective sites. The results showed that independent adequacy of physical properties from chemical properties in selection of modifiers could not be established. However, some of the results showed that physical properties were more sensitive indicators of changes in binders due to aging. In addition, this report includes the tentative modifier selection criteria and results of an interlaboratory study from which variability limits to parameters determined using modified Clay-Gel and Heithaus procedures are established. The modified Clay-Gel and Heithaus procedures are included.

N88-17929 Stanford Univ., Calif.

A COMPUTATIONAL STUDY OF THRUST AUGMENTING EJECTORS BASED ON A VISCOUS-INVISCID APPROACH Ph.D. Thesis

THOMAS SCOTT LUND 1987 165 p

Avail: Univ. Microfilms Order No. DA8723044

Today's VSTOL designer is in need of an accurate theoretical model that can swiftly evaluate various ejector configurations. A viscous-inviscid interaction technique is advocated as both an efficient and accurate means of predicting the performance of two-dimensional thrust augmenting ejectors. The flowfield is divided into a viscous region that contains the turbulent jet, and an inviscid region that contains the ambient fluid drawn into the device. The inviscid region is computed with a higher order panel method, while an integral method is used for the description of the viscous part. The strong viscous-inviscid interaction present within the injector is simulated in an iterative process where two regions influence each other en route to a converged solution. This formulation retains much of the essential physics of the problem, but at the same time requires only a small amount of computing effort. The model is applied to a variety of parametric and

optimization studies involving ejectors having either one or two primary jets. In all cases, it was found that the dual-jet ejector out performs its single jet counterpart. This fact is attributed to enhanced mixing due to an increase in effective ejector length.

Dissert. Abstr.

Pennsylvania State Univ., University Park. Dept. N88-17957# of Mechanical Engineering.

RESEARCH **EXPERIMENTAL** ON **SWEPT** SHOCK WAVE/BOUNDARY LAYER INTERACTIONS Interim Technical Report, 1 Apr. 1986 - 31 Mar. 1987

GARY S. SETTLES Jun. 1987 29 p

(Contract AF AFOSR-0082-86)

(AD-A187250; PSU/ME-R-86/87-0034; AFOSR-87-1453TR)

Avail: NTIS HC A03/MF A01 CSCL 20D

Experiments were carried out to assess Mach number effects on boundary layer due to generic fin and swept compression corner geometries. An extensive set of fin interaction experiments was carried out at constant Reynolds number over the Mach number range of 2.5 to 4.0. Data thus far consist of surface flow visualization photographs and laser light-screen visualizations of flowfield structure. Additional experiments were conducted to assess the possibility that experimental data of this type might depend on the wind tunnel facility in which the experiments were performed. That was not found to be the case. Results of the parametric Mach number study revealed that Mach number effects over the range considered are essentially inviscid. These were accounted for simply by referencing measured quantities to the freestream Mach angle. The interaction growth with increasing shock strength was found to be nonlinear, contrary to previous results. Initial results from swept compression corner experiments are also reported.

N88-17962# Oxford Univ. (England). Dept. of Engineering Science.

WAKE INTERACTION EFFECTS ON THE TRANSITION PROCESS ON TURBINE BLADES Report, 1 Sep. 1986 - 31

R. W. AINSWORTH and J. E. LAGRAFF 30 Oct. 1987 33 p Prepared in cooperation with Syracuse Univ., N.Y.

(Contract AF AFOSR-0295-85)

(AD-A188020; AFOSR-87-1919TR; SR-2) Avail: NTIS HC A03/MF A01 CSCL 20D

The characterization of the nozzle guide vane inlet and exit conditions in the Oxford University Isentropic Light Piston Tunnel fully 3-D annular rotating stage has been undertaken. Measurements included hot wire anemometry and pressure/Mach number distributions. Preparations for the rotor heat transfer instrumentation/data acquisition hardware and software are also in progress. Further development of a numerical model to predict the effects of wake passing and transition is reported. The convection of the wake through the passage is predicted, allowing for estimations of the expected times for which the boundary layer is disturbed by the wake fluid. The new model for the random generation and subsequent growth and convection of the turbulent spots produces a time-resolved prediction of the intermittent heat transfer signals by use of a time-marching procedure. By superimposing the two numerical models it is possible to simulate the measured instantaneous heat transfer characteristics and to estimate the effective average intermittency along the blade surface and compare the results to the measured intermittency values. GRA

N88-18007*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

CERAMIC BEARINGS FOR USE IN GAS TURBINE ENGINES

ERWIN V. ZARETSKY 1988 15 p Proposed for presentation at the 33rd International Gas Turbine and Aeroengine Congress and Exposition, Amsterdam, Netherlands, 5-9 Jun. 1988; sponsored by ASME

(NASA-TM-100288; E-3934; NAS 1.15:100288) Avail: NTIS HC A03/MF A01 CSCL 13I

Three decades of research by U.S. industry and government laboratories have produced a vast body of data related to the use of ceramic rolling element bearings and bearing components for aircraft gas turbine engines. Materials such as alumina, silicon carbide, titanium carbide, silicon nitride, and a crystallized glass ceramic have been investigated. Rolling-element endurance tests and analysis of full-complement bearings have been performed. Materials and bearing design methods have continuously improved over the years. This paper reviews a wide range of data and analyses with emphasis on how early NASA contributions as well as more recent data can enable the engineer or metallurgist to determine just where ceramic bearings are most applicable for gas turbines.

N88-18013# Northrop Corp., Hawthorne, Calif. Aircraft Div. DURABILITY AND DAMAGE TOLERANCE OF ALUMINUM CASTINGS Interim Report No 1, Sep. 1985 - 31 May 1987

M. W. OZELTON and G. R. TURK Sep. 1987 108 p Prepared in cooperation with Ohio State Univ., Columbus, Aluminum Co. of America, Corona, Calif., Hitchcock Industries, Inc., Minneapolis, Minn. and Fansteel Wellman Dynamics, Creston, Iowa (Contract F33615-85-C-5015)

(AD-A186444; NOR-87-85) Avail: NTIS HC A06/MF A01 CSCL

The results from the initial 21 months of the program are presented. They include: (1) an assessment of nondestructive methods for castings, and (2) the effect of process variables on the mechanical properties and microstructure of A357-Tb and A201-T7. A new ultrasonic nondestructive inspection (NDI) method called Frequency Attenuation Inflection (FAI) was evaluated for determining the type and amount defects in A357 and A201 aluminum castings. A low frequency eddy current method for detecting the presence of cracks through face sheet and fasteners was assessed. Relationship among chemical composition, heat treatment, solidification rate, microstructure, and mechanical properties of the premium quality casting alloys A357-T6 and A201-T7 were investigated.

N88-18036*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

VIBRATION AND FLUTTER CHARACTERISTICS OF THE SR7L LARGE-SCALE PROPFAN

RICHARD AUGUST (Sverdrup Technology, Inc., Cleveland, Ohio.) and KRISHNA RAO V. KAZA Jan. 1988 22 p (NASA-TM-100272; E-3908; NAS 1.15:100272) Avail: NTIS HC

A03/MF A01 CSCL 20K

An investigation of the vibration characteristics and aeroelastic stability of the SR7L Large-Scale Advanced Propfan was performed using a finite element blade model and an improved aeroelasticity code. Analyses were conducted for different blade pitch angles, blade support conditions, number of blades, rotational speeds, and freestream Mach numbers. A finite element model of the blade was used to determine the blade's vibration behavior and sensitivity to support stiffness. The calculated frequencies and mode shape obtained with this model agreed well with the published experimental data. A computer code recently developed at NASA Lewis Research Center and based on three-dimensional, unsteady, lifting surface aerodynamic theory was used for the aeroelastic analysis to examine the blade's stability at a cruise condition of Mach 0.8 at 1700 rpm. The results showed that the blade is stable for that operating point. However, a flutter condition was predicted if the cruise Mach number was increased to 0.9.

Author

13

GEOSCIENCES

Includes geosciences (general); earth resources; energy production and conversion; environment pollution; geophysics; meteorology and climatology; and oceanography.

A88-27456* Harvard Univ., Cambridge, Mass.

MIDLATITUDE CLO BELOW 22 KM ALTITUDE - MEASUREMENTS WITH A NEW AIRCRAFT-BORNE INSTRUMENT

WM. H. BRUNE, E. M. WEINSTOCK, and J. G. ANDERSON (Harvard University, Cambridge, MA) Geophysical Research Letters (ISSN 0094-8276), vol. 15, Feb. 1988, p. 144-147. refs (Contract NASW-3960; NAG2-443)

Midlatitude stratospheric CIO at altitudes below 22 km has been measured for the first time. Measurements were made at latitudes between 27 and 48 deg N during three flights from Moffett Field, CA, in June and July of 1987, with a new instrument flown on the NASA ER-2 aircraft. The result from these flights is that the CIO mixing ratio increases from less than 0.5 pptv at 16.8 km to 2.0 pptv at 18.3 km and 10.1 pptv at 21 km. These altitude profiles agree with an extrapolated profile from a May 1986 balloon-borne experiment (Brune and Anderson, 1986).

N88-17617*# Mesoscale Environmental Simulations, Inc., Hampton, Va.

NASA WIND SHEAR MODEL: SUMMARY OF MODEL ANALYSES

FRED PROCTOR In NASA. Langley Research Center, Airborne Wind Shear Detection and Warning Systems: First Combined Manufacturers and Technologists Conference p 29-66 Jan. 1988

Avail: NTIS HC A24/MF A01 CSCL 04B

A summary of an analysis of, a wind shear model is presented in the form of vugraphs. Information is given on the Terminal Area Simulation System, two dimensional axisymmetric simulations, precipitation, ambient temperature and humidity profiles over Denver, and the structure of microbursts. It was concluded that the intensity of microbursts depends upon the environment temperature and humidity profile, the diameter of the microburst downdraft, the type of precipitation and the precipitation rate. The depth of the outflow layer depends primarily upon the diameter of the downdraft. Dry microbursts are more likely to be produced by precipitation initially falling as snow.

15

MATHEMATICAL AND COMPUTER SCIENCES

Includes mathematical and computer sciences (general); computer operations and hardware; computer programming and software; computer systems; cybernetics; numerical analysis; statistics and probability; systems analysis; and theoretical mathematics.

A88-25627

THE PROBLEM OF THE DEVELOPMENT OF FORMAL-LOGIC MODELS OF AIRCRAFT ASSEMBLY [K VOPROSU O POSTROENII FORMAL'NO-LOGICHESKIKH MODELEI SBORKI LETATEL'NYKH APPARATOV]

R. I. GUSEVA and E. N. RYZHOV Aviatsionnaia Tekhnika (ISSN 0579-2975), no. 4, 1987, p. 70-72. In Russian.

An approach to the development of aircraft assembly models is proposed which emphasizes the set-theory concept, with the identification and formal description of the common assembly elements followed by an analysis of the resulting formal structure and logical relations between the elements of the structure. A

set-theory model is synthesized using the analogy principle whereby mathematical analogies and relations are established between the elements of the actual assembly process. A proof is presented for the theorem of forbidden combinations of assembly bases, and its use in assembly process modeling is discussed.

A88-25878

ON THE IMPROVEMENT OF AN ADAPTIVE OBSERVER FOR MULTI-OUTPUT SYSTEMS

NORIYUKI HORI, PETER N. NIKIFORUK (Saskatchewan, University, Saskatoon, Canada), KIMIO KANAI, and SHIGERU UCHIKADO (Defence Academy, Yokosuka, Japan) IEE Proceedings, Part D - Control Theory and Applications (ISSN 0143-7054), vol. 135, pt. D, no. 1, Jan. 1988, p. 67-71. refs

The paper proposes a design for an adaptive observer for multivariable systems and considers possible improvements for the identification of the unknown parameters. An orthogonalized projection algorithm which provides good convergence is described for identifying the unknown parameters of an aircraft. An adaptive observer which does not identify the plant's initial state vector, and which differs in design from one presented in an earlier paper, is also presented. Simulation studies are carried out using the data for the Japanese T-2 CCV aircraft to show that the orthogonalized projection method has better parameter convergence, and gives a better insight of how well the system is excited for parameter identification, than the least-squares method in ideal cases.

A88-26264

A GEOMETRIC APPROACH TO NONLINEAR SINGULARLY PERTURBED CONTROL SYSTEMS

R. MARINO (Roma II, Universita, Rome, Italy) and P. V. KOKOTOVIC (Illinois, University, Urbana) Automatica (ISSN 0005-1098), vol. 24, Jan. 1988, p. 31-41. refs (Contract NSF ECS-87-15811; N00014-84-C-0149)

Applications of two-time-scale singular perturbation methods have been limited to the class of models appearing in a 'standard form'. Many nonlinear control systems, such as models of aircraft and robotic manipulators with flexible joints, are two-time-scale systems, but do not appear in the standard form. The main result of this paper is a coordinate-free characterization of time-scales in terms of invariant manifolds which express conservation and equilibrium properties of the control system. A procedure for finding slow and fast states is given. Previously developed slow-fast composite control designs are thus made applicable to a wider class of nonlinear systems.

A88-26627#

A SYSTEM OF DATA ACQUISITION AND PROCESSING IN AEROENGINE TESTING

WENQING HAN, LONGQIANG LI, and ZHIQING HUANG (Nanjing Aeronautical Institute, People's Republic of China) Journal of Aerospace Power, vol. 3, Jan. 1988, p. 9-12, 87, 88. In Chinese, with abstract in English. refs

The design and performance of a comprehensive computer-controlled system for acquiring and processing aircraft-engine test data are described. The specialized hardware and PL/M-based software permit measurement rates of up to 5 kHz, real-time calibration and analog/digital signal conversion, and reliable and easy operation. Compared with manual processing, the system reduces test-run time (by about 20 percent), processing time (from several hours to a few minutes), and measurement error (from 0.8 to 0.3 percent).

A88-26726

NUMERICAL GRID GENERATION IN COMPUTATIONAL FLUID DYNAMICS; PROCEEDINGS OF THE INTERNATIONAL CONFERENCE, LANDSHUT, FEDERAL REPUBLIC OF GERMANY, JULY 14-17, 1986

J. HAEUSER, ED. (Landshut, College, Federal Republic of Germany) and C. TAYLOR, ED. (Swansea, University College, Wales) Swansea, Wales, Pineridge Press, 1986, 805 p. For individual items see A88-26727 to A88-26765.

The present conference on numerical flow visualization grid-generation techniques and their application to fluid flow problems discusses adaptive and orthogonal techniques, composite methods, grid generation for aircraft design and for internal flow problems, triangular grid generation. The use of multigrids, the solution of the Navier-Stokes equations, computational hydraulics, thermal and fluid-flow problems, and the application of grid generation to technical problems. Attention is given to one-parameter mesh-generation for spheroidal domains. the evaluation of algebraic adaptive grid strategies, interface procedures for overlapping grids, the elliptic generation of three-dimensional grids, adaptive triangular meshes compressible flow solutions, numerical grid generation in coastal hydrodynamics, and grid generation for gas lubrication.

A88-26732

SURFACE MESH GENERATION USING ELLIPTIC EQUATIONS

Z. U. A. WARSI and W. N. TIARN (Mississippi State University, Mississippi State) IN: Numerical grid generation in computational fluid dynamics; Proceedings of the International Conference, Landshut, Federal Republic of Germany, July 14-17, 1986. Swansea, Wales, Pineridge Press, 1986, p. 95-110. refs (Contract AF-AFOSR-85-0143)

This paper is devoted to a computational method of mesh generation in arbitrary surfaces by utilizing a set of elliptic partial diffferential equations. These equations depend explicitly on the mean curvature and the unit normal vector of the surface in which the coordinates are to be generated. To determine the mean curvature for a given surface in global coordinates, first a piecewise least-squares method is used to fit a surface through the given data points. Next, mesh generation results for various geometrically complicated shapes have been obtained to demonstrate the versatility of the proposed equations. An example of a monoclinic coordinate system with contraction in the coordinate leaving the surface has also been presented.

A88-26746

AN APPROACH TO THE INTERACTIVE GENERATION OF BLOCKSTRUCTURED VOLUME GRIDS USING COMPUTER GRAPHICS DEVICES

WERNER SEIBERT (Dornier GmbH, Friedrichshafen, Federal Republic of Germany) IN: Numerical grid generation in computational fluid dynamics; Proceedings of the International Conference, Landshut, Federal Republic of Germany, July 14-17, 1986. Swansea, Wales, Pineridge Press, 1986, p. 319-328.

An account is given of a novel approach to easy, fast grid generation with great geometric complexity, enlisting advanced, menue-driven interactive computer graphics to create a 'block-structured' grid. Implementation involves a combination of existing CAD software and application-oriented programs. The illustrative examples presented are taken from external aerodynamic and internal, pipe-flow problems; attention is given to the geometry-preparation and grid-generation subtasks, as well as to the method of topological description.

A88-26748

ELLIPTIC GRID GENERATION SYSTEM FOR THREE-DIMENSIONAL CONFIGURATIONS USING POISSON'S EQUATION

W. SCHWARZ (Messerschmitt-Boelkow-Blohm GmbH, Munich, Federal Republic of Germany) IN: Numerical grid generation in computational fluid dynamics; Proceedings of the International Conference, Landshut, Federal Republic of Germany, July 14-17, 1986. Swansea, Wales, Pineridge Press, 1986, p. 341-352. refs

Two higher-order elliptic grid generation systems for three-dimensional applications have been developed. The fourth-order (biharmonic) system is implemented as a set of two second-order equations (Poisson's and Laplace's equation) while the sixth-order system is solved as a system of three second-order equations. These higher-order grid generation systems allow two (or three) boundary conditions at each boundary. Therefore it is possible to fully specify the geometry of the first, or even the first two grid cells off the boundary. A grid quality check which includes graphic display of cell volume and cells skewness quantities, even for three-dimensional configurations, is also included. This grid generation method has been applied successfully to a number of two-and three-dimensional problems, including airfoils, ducts, cars, wings, wing-body configurations and even a complete fighter aircraft.

A88-27148

SYNTHESIS OF THE FLEXIBLE STRUCTURES OF COMPLEX SYSTEMS [SINTEZ GIBKIKH STRUKTUR SLOZHNYKH SISTEM]

M. A. MUZIUKIN and V. K. AKINFIEV IN: Methods for the optimization of complex systems . Moscow, Izdatel'stvo Nauka, 1987, p. 54-63. In Russian.

The problem of improving the structure and increasing the efficiency of globally distributed information/control systems is examined with particular reference to the automatic control systems of flight vehicles. The problem of the synthesis of the flexible structure of complex systems is formulated as a nonlinear mathematical programming problem. An optimization-simulation approach to the solution of such problems is proposed which involves the development of procedures using optimization and simulation or computational models for the synthesis of the optimal version of the structure.

A88-27312

LOOP SHAPING WITH OUTPUT FEEDBACK

B. L. STEVENS, P. VESTY (Lockheed-Georgia Co., Marietta), B. S. HECK, and F. L. LEWIS (Georgia Institute of Technology, Atlanta) IN: 1987 American Control Conference, 6th, Minneapolis, MN, June 10-12, 1987, Proceedings. Volume 1 . New York, Institute of Electrical and Electronics Engineers, 1987, p. 146-149. refs

It is shown how to use output feedback design in the frequency domain to achieve desired robustness and performance criteria. A low-frequency bound is derived which shows the robustness of the design to plant parameter variations, and can therefore be used to help minimize the number of gain-scheduling points.

Author

A88-27318

ROBUSTNESS/PERFORMANCE TRADEOFFS IN EIGENSTRUCTURE ASSIGNMENT WITH FLIGHT CONTROL APPLICATION

K. M. SOBEL (City College, New York) and E. Y. SHAPIRO (HR Textron, Inc., Valencia, CA) IN: 1987 American Control Conference, 6th, Minneapolis, MN, June 10-12, 1987, Proceedings. Volume 1. New York, Institute of Electrical and Electronics Engineers, 1987, p. 380-385. refs

A constrained optimization is employed to tradeoff the desired eigenvector assignments and the eigenvalue sensitivity, with application to the development of flight control systems. The sum of the 2-norms of the differences between each desired eigenvector and its corresponding closed loop eigenvector is used as a measure of eigenvector assignment. The sum of the squares of the 2-norms of the left eigenvectors is proposed for eigenvalue sensitivity. The

example of a yaw pointing/lateral translation controller is discussed, revealing some possible undesirable consequences of attempting to obtain the minimum sensitivity solution.

R.R.

A88-27326

DESIGNING STABILIZING CONTROLLERS FOR UNCERTAIN SYSTEMS USING THE RICCATI EQUATION APPROACH

W. E. SCHMITENDORF (Northwestern University, Evanston, IL) IN: 1987 American Control Conference, 6th, Minneapolis, MN, June 10-12, 1987, Proceedings. Volume 1. New York, Institute of Electrical and Electronics Engineers, 1987, p. 502-505. refs (Contract NSF ECS-84-15591; AF-AFOSR-ISSA-85-00051)

The Riccati approach of Petersen and Hollot (1986) for computing the gains in a linear controller are generalized to include problems with time-varying uncertainty in the input connection matrix. The method is illustrated for examples including the dynamics of a helicopter in a vertical plane and the problem of stabilizing the longitudinal short period of a F4E fighter aircraft at two operating points. It is noted that the Riccati method has previously been extended to problems where the complete state is not available for feedback.

A88-27327

CONTROL OF LINEAR SYSTEMS BY OUTPUT PROPORTIONAL PLUS DERIVATIVE FEEDBACK

A. HARALDSDOTTIR, P. T. KABAMBA, and A. G. ULSOY (Michigan, University, Ann Arbor) IN: 1987 American Control Conference, 6th, Minneapolis, MN, June 10-12, 1987, Proceedings. Volume 1. New York, Institute of Electrical and Electronics Engineers, 1987, p. 526-531. refs

This paper presents a control design procedure for linear time invariant systems using output proportional plus derivative feedback. The traditional linear quadratic performance index is used with additional terms to penalize disturbance and noise response and eigenvalue and response sensitivities. The sensitivity terms represent measures of stability robustness. It is shown that the derivative feedback improves the measure of performance. This design procedure has been applied to obtain an improved autopilot for the lateral dynamics of an L1011 aircraft.

A88-27381

NON-LINEAR INVERSE DYNAMICS CONTROL LAWS - A SAMPLED DATA APPROACH

ROBERT F. STENGEL (Princeton University, NJ) and STEPHEN H. LANE IN: 1987 American Control Conference, 6th, Minneapolis, MN, June 10-12, 1987, Proceedings. Volume 2. New York, Institute of Electrical and Electronics Engineers, 1987, p. 1224-1226. Research sponsored by the Schultz Foundation.

A sampled-data approach for the implemantation of Nonlinear Inverse Dynamics (NID) control laws in real time is presented. The control laws developed place the same number of poles as their continuous-time counterparts, take into accout the system dynamics in between the sample points, and embed the computational delays associated with the inverse calculations directly into their design.

Author

A88-27405

AN ARCHITECTURE FOR REAL-TIME RULE-BASED CONTROL

ROBERT F. STENGEL (Princeton University, NJ) and DAVID A. HANDELMAN IN: 1987 American Control Conference, 6th, Minneapolis, MN, June 10-12, 1987, Proceedings. Volume 3. New York, Institute of Electrical and Electronics Engineers, 1987, p. 1636-1642. refs

(Contract DAAG29-84-K-0048)

A method for control employing rule-based search is reviewed, and a Rule-Based Controller achieving economical real-time performance is described. Code optimization, in the form of LISP-to-Pascal knowledge base translation, provides real-time search execution speed and a processing environment enabling highly integrated symbolic and numeric computation. With a multiprocessor software architecture specifying rule-based protocol for control task communication, and a hardware architecture

providing concurrent implementation within a multimicroprocessor system, the controller realizes a set of cooperating real-time expert systems. Based on experience gained through the design and implementation of a Rule-Based Flight Control System, the proposed approach appears applicable to a large class of complex control problems.

A88-27406

FAILURE MODEL DETERMINATION IN A KNOWLEDGE-BASED CONTROL SYSTEM

CHIEN Y. HUANG (Grumman Aerospace Corp., Bethpage, NY) and ROBERT F. STENGEL (Princeton University, NJ) IN: 1987 American Control Conference, 6th, Minneapolis, MN, June 10-12, 1987, Proceedings. Volume 3. New York, Institute of Electrical and Electronics Engineers, 1987, p. 1643-1648. refs (Contract DAAG29-84-K-0048)

A technique for determining the most probable failure state of a restructurable control system is presented. The approach is to build a knowledge base that contains and makes use of inference mechanisms to deduce the most likely failures given the symptoms. The analysis is first carried out in a local sense, where only probabilistic information and causality are used to generate failure models, then in a global sense, where the models are grouped and heuristics are used to prune the number of candidate models. Procedures are illustrated using failure patterns of a generic database as well as a fault scenario for a hypothetical helicopter flight control system. It is concluded that the methods are potentially capable of handling generic failures and thus are useful in truly restructurable control systems.

A88-27410

EXPERIMENTAL IMPLEMENTATION AND EVALUATION OF THE RMI FAILURE DETECTION ALGORITHM

D. T. HORAK and B. H. ALLISON (Bendix Aerospace Technology Center, Columbia, MD) IN: 1987 American Control Conference, 6th, Minneapolis, MN, June 10-12, 1987, Proceedings. Volume 3. New York, Institute of Electrical and Electronics Engineers, 1987, p. 1803-1810. refs

This paper describes laboratory experiments with the Reachable Measurement Intervals (RMI) failure detection algorithm for systems with imperfect models. It was implemented on a multiprocessor computer system and used to detect and isolate failures in an aircraft simulator in the presence of modeling errors. The failure detection computer and the monitored system resembled a commercial system and provided a good vehicle for assessing the suitability of RMI for industrial applications. The algorithm performed very well with real hardware, matching its performance in simulations. It did so because it has been designed specifically to handle imperfect dynamic models. The algorithm is fast enough to monitor large industrial systems when implemented on a single-board computer. Its structure is suitable for parallel processing implementation which makes it fast enough for even very large systems.

A88-27411

EXPERT SYSTEM ALLOCATION FOR THE ELECTRONICALLY SCANNED ANTENNA RADAR

ROBERT POPOLI and SAMUEL BLACKMAN (Hughes Aircraft Co., Radar Systems Group, El Segundo, CA) IN: 1987 American Control Conference, 6th, Minneapolis, MN, June 10-12, 1987, Proceedings. Volume 3. New York, Institute of Electrical and Electronics Engineers, 1987, p. 1821-1826. refs

The battle effectiveness of the next generation of fighter aircraft will rely on efficient deployment of modern electronically scanned antenna (ESA) radar. ESA requires the development of intelligent allocation algorithms. An expert systems approach for situation-driven sensor management is presented in this paper. The ESA allocation problem is defined, and a set of heuristic guidelines for a specific subset of the ESA allocation problem is presented. It is shown how to represent and reason with these heuristic guidelines using fuzzy sets, and simulation results demonstrating the operation of such an approach are presented.

C.D.

A88-27417

CONTROL OF AN AXIAL PISTON PUMP USING A SINGLE-STAGE ELECTROHYDRAULIC SERVOVALVE

A. AKERS (lowa State University of Science and Technology, Ames) and S. J. LIN (Moorhead State University, MN) IN: 1987 American Control Conference, 6th, Minneapolis, MN, June 10-12, 1987, Proceedings. Volume 3 . New York, Institute of Electrical and Electronics Engineers, 1987, p. 1865-1870. Research supported by the Iowa State University of Science and Technology. refs

Optimal control theory is applied to the design of a pressure regulator for an axial piston pump and single-stage electrohydraulic valve combination. The control valve has been modeled and an optimal control law has been formulated. The time response curves due to a step input in flow rate and in current input to the servovalve have been obtained for the open loop and for the optimal control system. The results have been compared to those in which the supply valve to the swashplate actuators was not modeled. Controlled system modeling of the servovalve significantly improves the system's response frequency and pressure peaks.

A88-27418

PLACEMENT OF FAILURE-PRONE COMPONENTS ON FLEXIBLE STRUCTURES - A DEGREE OF CONTROLLABILITY APPROACH

M. MARITON (CNRS, Laboratoire des Signaux et Systemes, Gif-sur-Yvette, France) IN: 1987 American Control Conference, 6th, Minneapolis, MN, June 10-12, 1987, Proceedings. Volume 3. New York, Institute of Electrical and Electronics Engineers, 1987, p. 1883, 1884. refs

A suitable framework for the design of reliable flight control systems is discussed. The degree of controllability is proposed as a criterion for the choice of actuators and sensors. The placement of failure-prone actuators in order to maximize a degree of controllability is discussed in some detail.

C.D.

A88-27419

ON ROBUST CONTROL OF WING ROCK USING NONLINEAR CONTROL

HAROLD STALFORD (Virginia Polytechnic Institute and State University, Blacksburg) IN: 1987 American Control Conference, 6th, Minneapolis, MN, June 10-12, 1987, Proceedings. Volume 3. New York, Institute of Electrical and Electronics Engineers, 1987, p. 1890-1899. refs

Nonlinear control theory of uncertain systems is applied to the high angle-of-attack flight dynamic phenomenon of wing rock. Wing rock, an unsteady aerodynamic effect, is an undamped oscillation primarily in the roll axis and is exhibited by many modern combat aircraft. It causes maneuver limitations ranging in severity from degradation in tracking effectiveness to loss of control. Robust control is investigated for a generic nonlinear wind tunnel model of a modern combat aircraft that exhibits wing rock. Feedback ocntrol is derived using the nonlinear control approach of uncertain systems. A typical example is presented.

A88-27751

AUTOMATIC SYSTEMS IN AERONAUTICS; NATIONAL COLLOQUIUM, PARIS, FRANCE, MAR. 17-19, 1986, PROCEEDINGS [L'AUTOMATIQUE POUR L'AERONAUTIQUE; COLLOQUE NATIONAL, PARIS, FRANCE, MAR. 17-19, 1986, ACTES]

Colloquium sponsored by the Societe de Mathematiques Appliquees et Industrielles, Association Aeronautique et Astronautique de France, Delegation Generale pour l'Armement, et al. Toulouse, Cepadues-Editions, 1986, 552 p. In French. For individual items see A88-27752 to A88-27771.

Papers are presented on optimal control of a solar sail along the earth-moon trajectory, the application of singular perturbation techniques to aircraft trajectory optimization, the application of optimal feedback laws to satellite control, and CAD packages for control systems. Also considered are modelization and identification in helicopter science, the design of a helicopter automatic flight control system, the stability of helicopter blade motion in the case

of turbulent air flow, and nonlinear identification techniques for helicopter flight mechanics. Other topics include the identification and control of flexible structures, breakdown detection and flight control system reconfiguration, and problems related to the application of flight control systems to combat aircraft guidance.

R R

A88-27752

TECHNOLOGICAL LEAPS OCCURRING IN THE AERONAUTICAL AND SPACE FIELDS [SAUTS TECHNOLOGIQUES EN COURS DANS LES DOMAINES AERONAUTIQUE ET ESPACE]

MARC J. PELEGRIN (ONERA, Centre d'Etudes et de Recherches de Toulouse, France) IN: Automatic systems in aeronautics; National Colloquium, Paris, France, Mar.17-19, 1986, Proceedings Toulouse, Cepadues-Editions, 1986, p. 9-58. In French. refs

Recent advances in automation in the aeronautical and space fields are reviewed. Test results concerning the electrical transmission of signals for automated flight systems have been obtained during flight testing of the Concord and the A300. The Generalized Active Command system is designed to increase stability and maneuverability and to suppress buffeting and flutter effects. Other topics discussed include military aeronautical applications, the multicyclic control of helicopter blades, and the man-machine interface. Problems encountered during signal transmission, multisensor measurement, and signal processing are reviewed, in addition to problems involved with system flexibility. Advances in AI are also considered.

A88-27755

ALPHA-DEGREE STABILITY AND ROBUSTNESS - APPLICATION TO THE DEVELOPMENT OF A REGULATOR [STABILITE ET ROBUSTESSE DE DEGRE ALPHA - APPLICATION A LA MISE AU POINT D'UN REGULATEUR]

H. BOURLES (ESIEA, France) IN: Automatic systems in aeronautics; National Colloquium, Paris, France, Mar. 17-19, 1986, Proceedings . Toulouse, Cepadues-Editions, 1986, p. 151-169. In French. refs

A general stability theory has been used to study the robustness of a regulator, with application to the problem of aircraft control. A method is first presented for analyzing the alpha-degree stability of a controlled-aircraft system which is governed by a differential equation. The method is then applied to the development of a regulator with the desired dynamics and degree of robustness, accurately predicting the gain margin and the regulator phase margin for a given structural perturbation.

A88-27756

THEORY AND DEVELOPMENT OF DISCRETE MULTIVARIABLE REGULATORS ASSURING ROBUST TRACKING [THEORIE ET MISE AU POINT DE REGULATEURS MULTIVARIABLES DISCRETS ASSURANT UNE POURSUITE ROBUSTE]

Y. JOANNIC (Matra, S.A., Velizy-Villacoublay, France) and O. MERCIER (Bertin et Cie., Plaisir, France) IN: Automatic systems in aeronautics; National Colloquium, Paris, France, Mar. 17-19, 1986, Proceedings . Toulouse, Cepadues-Editions, 1986, p. 171-191. In French. DRET-supported research. refs

A discrete-time robust multivariable control law which enables asymptotic cancellation of tracking errors even under persistent exterior perturbations is presented. A solution to the problem of regulating the robust optimal tracking is given, in addition to the minimal, necessary, and sufficient conditions for the convergence towards zero of tracking errors. The intrinsic robustness and the excellent convergence properties of the control law are demonstrated for the multivariable problem of the lateral movement of a combat aircraft in the presence of model defects and applied perturbations.

A88-27760

MODELING AND IDENTIFICATION IN HELICOPTER SCIENCE [MODELISATION ET IDENTIFICATION DANS LA SCIENCE DE L'HELICOPTERE]

MARCEL KRETZ (Giravions Dorand Industries, Suresnes, France) IN: Automatic systems in aeronautics; National Colloquium, Paris, France, Mar. 17-19, 1986, Proceedings . Toulouse, Cepadues-Editions, 1986, p. 269-293. In French. refs

A generalized automatic control (GAC) technique for regulating helicopter functions which have not yet been subjected to automated control is discussed. GAC is applied to the example of multicyclic piloting via identification of a mathematical model, implementation of the model in a self-adaptive system, and optimization under physical constraints in order to achieve desired objectives such as vibration reduction. Examples given include the modeling of a hydrodynamic actuator, based on considerations of dynamical behavior, and the modeling of dynamic stalling. For the case of applying the GAC to the automated elimination of stalling, a divergence of solutions is found.

A88-27766

REDUNDANT CONTROL SYSTEMS - FLEXIBILITY AND OPTIMALITY [LES SYSTEMES DE COMMANDE REDONDANTS - FIABILITE ET OPTIMALITE]

M. MARITON and P. BERTRAND (CNRS, Laboratoire des Signaux et Systemes, Gif-sur-Yvette, France) IN: Automatic systems in aeronautics; National Colloquium, Paris, France, Mar. 17-19, 1986, Proceedings . Toulouse, Cepadues-Editions, 1986, p. 417-430. In French. refs

Quadratic linear systems with Markovian jumps are considered, with application to achieving the high-performance and flexibility necessary for fault tolerance in aircraft. The present analysis leads to both a new derivation of optimal control laws, based upon automated control reconfiguration, and an integrated theory which globally accounts for the three stages performed in obtaining control systems: (1) the selection of components, (2) the selection of their position; and (3) the synthesis of the control system itself. Components such as sensors, actuators, and computers are taken into account, making possible the automated prediction of breakdowns and control system degradation.

A88-27771

POINTS OF VIEW ON LINEAR AND NONLINEAR FILTERING IN AERONAUTICS [QUELQUES POINTS DE VUE SUR LE FILTRAGE LINEAIRE ET NON-LINEAIRE EN AERONAUTIQUE] J. LEVINE (Paris, Ecole des Mines, Fontainebleau, France) IN: Automatic systems in aeronautics; National Colloquium, Paris, France, Mar. 17-19, 1986, Proceedings . Toulouse, Cepadues-Editions, 1986, p. 541-551. In French. refs

The advantages and disadvantages of the Kalman filter for linear systems, the extended Kalman filter for nonlinear systems, and other filtering methods for nonlinear systems are considered. Reference is given to aeronautical applications such as navigation and missile guidance. Difficulties encountered in the linear case include the regulation of noise levels, the compensation for biases due to modeling errors, and the selection of suboptimal filters. Two categories of linear filtering methods which are exact or approximate are discussed: (1) methods using the conditional law to obtain approximations of moments or the existence properties of finite-dimension filters; and (2) methods using an appropriate choice of coordinates to describe the system in a more agreeable form.

A88-28617#

AN IMPROVEMENT ON THE ADAPTIVE MODEL FOLLOWING CONTROL

YUN ZHANG and JIQIN PAN (Beijing Institute of Technology, People's Republic of China) Acta Automatica Sinica (ISSN 0254-4156), vol. 13, Nov. 1987, p. 401-407. In Chinese, with abstract in English. refs

In this paper, an improvement on adaptive model-following control (AMFC) is developed. Compared with AMFC, the improved AMFC (IAMFC) can be applied to a larger class of cor.trolled

objects and has a larger class of adaptive control laws. An IAMFC system has been designed for flight roll stabilization. Simulation results indicate that the system satisfies requirements and that the IAMFC can overcome difficulties which AMFC cannot overcome.

N88-17218*# Air Force Systems Command, Wright-Patterson AFB, Ohio.

NEURAL NETWORK BASED ARCHITECTURES FOR AEROSPACE APPLICATIONS

RICHARD RICART In NASA. Lyndon B. Johnson Space Center, Houston, Texas, First Annual Workshop on Space Operations Automation and Robotics (SOAR 87) p 85-91 Oct. 1987 Avail: NTIS HC A23/MF A01 CSCL 09B

A brief history of the field of neural networks research is given and some simple concepts are described. In addition, some neural network based avionics research and development programs are reviewed. The need for the United States Air Force and NASA to assume a leadership role in supporting this technology is stressed.

Author

N88-17253*# Systems Research and Applications, Inc., Arlington, Va

SWAN: AN EXPERT SYSTEM WITH NATURAL LANGUAGE INTERFACE FOR TACTICAL AIR CAPABILITY ASSESSMENT ROBERT M. SIMMONS In NASA. Lyndon B. Johnson Space Center, Houston, Texas, First Annual Workshop on Space Operations Automation and Robotics (SOAR 87) p 341-348 Oct. 1987

Avail: NTIS HC A23/MF A01 CSCL 09B

SWAN is an expert system and natural language interface for assessing the war fighting capability of Air Force units in Europe. The expert system is an object oriented knowledge based simulation with an alternate worlds facility for performing what-if excursions. Responses from the system take the form of generated text, tables, or graphs. The natural language interface is an expert system in its own right, with a knowledge base and rules which understand how to access external databases, models, or expert systems. The distinguishing feature of the Air Force expert system is its use of meta-knowledge to generate explanations in the frame and procedure based environment.

N88-17260*# Worcester Polytechnic Inst., Mass. Intelligent Machines Group.

REAL-TIME ARTIFICIAL INTELLIGENCE ISSUES IN THE DEVELOPMENT OF THE ADAPTIVE TACTICAL NAVIGATOR PETER E. GREEN, DOUGLAS P. GLASSON, JEAN-MICHEL L. POMAREDE, and NARAYAN A. ACHARYA (Analytic Sciences Corp., Reading, Mass.) In NASA. Lyndon B. Johnson Space Center, Houston, Texas, First Annual Workshop on Space Operations Automation and Robotics (SOAR 87) p 389-396 Oct. 1987

Avail: NTIS HC A23/MF A01 CSCL 09B

Adaptive Tactical Navigation (ATN) is a laboratory prototype of a knowledge based system to provide navigation system management and decision aiding in the next generation of tactical aircraft. ATN's purpose is to manage a set of multimode navigation equipment, dynamically selecting the best equipment to use in accordance with mission goals and phase, threat environment, equipment malfunction status, and battle damage. ATN encompasses functions as diverse as sensor data interpretation, diagnosis, and planning. Real time issues that were identified in ATN and the approaches used to address them are addressed. Functional requirements and a global architecture for the ATN system are described. Decision making with time constraints are discussed. Two subproblems are identified; making decisions with incomplete information and with limited resources. Approaches used in ATN to address real time performance are described and simulation results are discussed.

National Aeronautics and Space Administration. N88-17313*# Ames Research Center, Moffett Field, Calif.

GENERAL ROTORCRAFT AEROMECHANICAL STABILITY PROGRAM (GRASP) VERSION 1.03: USER'S MANUAL
A. STEWART HOPKINS and DONALD L. KUNZ (Army Aviation

Research and Development Command, Moffett Field, Calif.) Feb. 1988 64 p

(NASA-TM-100043; A-88028; NAS 1.15:100043;

USAAVSCOM-TR-87-A-12) Avail: NTIS HC A04/MF A01 CSCL 09B

The Rotorcraft Dynamics Division, Aeroflightdynamics Directorate, U.S. Army Aviation Research and Technology Activity has developed the General Rotorcraft Aeromechanical Stability Program (GRASP) to perform calculations that will assess the stability of rotorcraft in hovering flight and ground contact conditions. The program is designed to be state-of-the-art, hybrid, finite-element/multibody code that can be applied to all existing and future helicopter configurations. While GRASP was specifically designed to solve rotorcraft stability problems, its innovative structure and formulation allow for application to a wide range of structures. This manual describes the preparation of the input file required by Version 1.03 of GRASP, the procedures used to invoke GRASP on the NASA Ames Research Center CRAY X-MP 48 computer, and the interpretation of the output produced by GRASP. The parameters used by the input file are defined, and summaries of the input file and the job control language are included.

Author

N88-17314# Association Aeronautique et Astronautique de France, Paris.

METHODS FOR EVALUATING THE QUALITY AND RELIABILITY OF AERODYNAMIC SOFTWARE PROGRAMS

G. HECKMANN Nov. 1986 51 p in FRENCH Presented at the 23rd Colloque d'Aerodynamique Appliquee, Modane, France, 12-14 Nov. 1986 Sponsored by Direction des Recherches, Etudes et Techniques, Paris, France Prepared in cooperation with Avions Marcel Dassault-Breguet Aviation, Saint-Cloud, France (PB87-169793; NOTE-TECHNIQUE-86-02; ISBN-2-7170-0850-0)

Avail: NTIS HC E04/MF E04 CSCL 09B

Industrial calculation codes in the sixties, seventies, and today; industrial needs; types and levels of needs; types and levels of programs; the reliability of conversational codes; and mesh programs are discussed. It is suggested that codes be evaluated by observing discrepancies between software calculations and data obtained during flight tests and wind tunnel trials of planes under development. Specific tests can also be developed for the express purpose of evaluating software and the data used in the same way as that obtained from ordinary wind tunnel tests. Author

N88-17363# Messerschmitt-Boelkow-Blohm G.m.b.H., Ottobrunn (West Germany). Abteilung Hubschrauber und Flugzeuge.

REDUCTION OF TIME DELAYS IN **RUNGE-KUTTA** INTEGRATION METHODS

S. NOWACK and FEIL 15 Apr. 1986 20 p (MBB/LKE-132/S/PUB/241/A; ETN-88-91438) Avail: NTIS HC A03/MF A01

A fourth order accurate Runge-Kutta (RK4) method for real time system simulation is proposed, where data must be sampled from input signals and incorporated into the numerical integration algorithms in order to evaluate the derivatives of the state variables. The method is compared to a standard RK4 for a flight simulation. Simulation of a one DOF-system with varying damping ratios shows that the accuracy of the proposed routine is equal (in the case of constant input function) or slightly superior (in the case of sinusoidal input) to the RK4 standard method. The results are for a system requiring no extrapolation. Simulation of a complex real time system (approach and touchdown of aircraft) shows that the proposed routine provides an increase in accuracy over the RK4 standard method even beyond decreasing the size of steps in output signals. This is particularly important when system variables change with high frequency and large increments.

N88-18300*# Syracuse Univ., N. Y. Dept. of Mechanical and Aerospace Engineering.

COMPREHENSIVE ANALYSIS OF HELICOPTERS WITH **BEARINGLESS ROTORS Status Report**

V. R. MURTHY Mar. 1988 110 p

(Contract NAG1-759)

(NASA-CR-182537; NAS 1.26:182537) Avail: NTIS HC A06/MF A01 CSCL 09B

A modified Galerkin method is developed to analyze the dynamic problems of multiple-load-path bearingless rotor blades. The development and selection of functions are quite parallel to CAMRAD procedures, greatly facilitating the implementation of the method into the CAMRAD program. A software is developed implementing the modified Galerkin method to determine free vibration characteristics of multiple-load-path rotor undergoing coupled flapwise bending, chordwise bending, twisting, and extensional motions. Results are in the process of being obtained by debugging the software.

PHYSICS

Includes physics (general); acoustics; atomic and molecular physics; nuclear and high-energy physics; optics; plasma physics; solid-state physics; and thermodynamics and statistical physics.

N88-16646*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

RECENT LANGLEY HELICOPTER ACOUSTICS CONTRIBU-TIONS

HOMER G. MORGAN, S. P. PAO, and C. A. POWELL In NASA, Washington, NASA/Army Rotorcraft Technology. Volume 2: Materials and Structures, Propulsion and Drive Systems, Flight Dynamics and Control, and Acoustics p 1003-1044 Avail: NTIS HC A25/MF A01 CSCL 20A

The helicopter acoustics program at NASA Langley has included technology for elements of noise control ranging from sources of noise to receivers of noise. The scope of Langley contributions for about the last decade is discussed. Specifically, the resolution of two certification noise quantification issues by subjective acoustics research, the development status of the helicopter system noise prediction program ROTONET are reviewed and the highlights from research on blade rotational, broadband, and blade vortex interaction noise sources are presented. Finally, research contributions on helicopter cabin (or interior) noise control are presented. A bibliography of publications from the Langley helicopter acoustics program for the past 10 years is included.

Author

N88-16648*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, Calif.

A DECADE OF AEROACOUSTIC RESEARCH AT NASA AMES **RESEARCH CENTER**

FREDERIC H. SCHMITZ, M. MOSHER, CAHIT KITAPLIOGLU, J. CROSS, and I. CHANG In NASA, Washington, NASA/Army Rotorcraft Technology. Volume 2: Materials and Structures, Propulsion and Drive Systems, Flight Dynamics and Control, and Acoustics p 1066-1090 Feb. 1988

Avail: NTIS HC A25/MF A01 CSCL 20A

The rotorcraft aeroacoustic research accomplishments of the past decade at Ames Research Center are reviewed. These include an extensive sequence of flight, ground, and wind tunnel tests that have utilized the facilities to guide and pioneer theoretical research. Many of these experiments were of benchmark quality. The experiments were used to isolate the inadequacies of linear theory in high-speed impulsive noise research, have led to the development of theoretical approaches, and have guided the emerging discipline of computational fluid dynamics to rotorcraft aeroacoustic problems. **Author**

N88-16649*# National Aeronautics and Space Administration.

Ames Research Center, Moffett Field, Calif.

AEROACOUSTIC RESEARCH PROGRAMS AT THE ARMY AVIATION RESEARCH AND TECHNOLOGY ACTIVITY

YUNG H. YU, FREDRIC H. SCHMITZ, and H. ANDREW MORSE (Army Aviation Systems Command, Moffett Field, Calif.) In NASA, Washington, NASA/Army Rotorcraft Technology. Volume 2: Materials and Structures, Propulsion and Drive Systems, Flight Dynamics and Control, and Acoustics p 1091-1113 Feb. 1988 Avail: NTIS HC A25/MF A01 CSCL 20A

The Army rotorcraft aeroacoustic programs are reviewed, highlighting the theoretical and experimental progress made by Army researchers in the physical understanding of helicopter impulsive noise. The two impulsive noise sources addressed over this past decade are high-speed impulsive noise and blade-vortex interaction noise, both of which have had and will continue to have an increasing influence on Army rotorcraft design and operations. The advancements discussed are in the areas of in-flight data acquisition techniques, small-scale-model tests in wind tunnels, holographic interferometry/tomographic techniques. and the expanding capabilities of computational fluid dynamics in rotorcraft acoustic problems. Current theoretical prediction methods are compared with experimental data, and parameters that govern model scaling are established. The very successful cooperative efforts between the Army, NASA, and industry are also addressed

N88-17440*# National Aeronautics and Space Administration. Langlev Research Center, Hampton, Va.

MEASURED AND CALCULATED ACOUSTIC ATTENUATION RATES OF TUNED RESONATOR ARRAYS FOR TWO SURFACE IMPEDANCE DISTRIBUTION MODELS WITH FLOW

TONY L. PARROTT, A. LOUIS ABRAHAMSON, and MICHAEL G. JONES (PRC Kentron, Inc., Hampton, Va.) Jan. 1988 51 p (NASA-TP-2766; L-16352; NAS 1.60:2766) Avail: NTIS HC A04/MF A01 CSCL 20A

An experiment was performed to validate two analytical models for predicting low frequency attenuation of duct liner configurations built from an array of seven resonators that could be individually tuned via adjustable cavity depths. These analytical models had previously been developed for high frequency aero-engine inlet duct liner design. In the low frequency application, the liner surface impedance distribution is unavoidably spatially varying by virtue of available fabrication techniques. The characteristic length of this spatial variation may be a significant fraction of the acoustic wavelength. Comparison of measured and predicted attenuation rates and transmission losses for both modal decomposition and finite element propagation models were in good to excellent agreement for a test frequency range that included the first and second cavity resonance frequencies. This was true for either of two surface impedance distribution modeling procedures used to simplify the impedance boundary conditions. In the presence of mean flow, measurements revealed a fine scale structure of acoustic hot spots in the attenuation and phase profiles. These details were accurately predicted by the finite element model. Since no impedance changes due to mean flow were assumed, it is concluded that this fine scale structure was due to convective effects of the mean flow interacting with the surface impedance nonuniformities. Author

N88-17441*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

ANNOYANCE CAUSED BY ADVANCED TURBOPROP AIRCRAFT FLYOVER NOISE: SINGLE-ROTATING PROPELLER CONFIGURATION

DAVID A. MCCURDY Mar. 1988 43 p (NASA-TP-2782; L-16301; NAS 1.60:2782) Avail: NTIS HC A03/MF A01 CSCL 20A

Two experiments were conducted to quantify the annoyance of people to advanced turboprop (propfan) aircraft flyover noise. The objectives were to: (1) determine the effects on annoyance of various tonal characteristics; and (2) compare annoyance to advanced turboprops with annoyance to conventional turboprops

and jets. A computer was used to produce realistic, time-varying simulations of advanced turboprop aircraft takeoff noise. In the first experiment, subjects judged the annoyance of 45 advanced turboprop noises in which the tonal content was systematically varied to represent the factorial combinations of five fundamental frequencies, three frequency envelope shapes, and three tone-to-broadband noise ratios. Each noise was presented at three sound levels. In the second experiment, 18 advanced turboprop takeoffs, 5 conventional turboprop takeoffs, and 5 conventional jet takeoffs were presented at three sound pressure levels to subjects. Analysis indicated that frequency envelope shape did not significantly affect annoyance. The interaction of fundamental frequency with tone-to-broadband noise ratio did have a large and complex effect on annoyance. The advanced turboprop stimuli were slightly less annoying than the conventional stimuli. Author

N88-17445# Aeronautical Research Labs., Melbourne (Australia).

LABORATORY STUDIES RELATED TO IN-FLIGHT ACOUSTIC EMISSION MONITORING

S. R. LAMB Apr. 1987 23 p

(AD-A186714; ARL-MAT-TM-393; DODA-AR-004-531) Avail: NTIS HC A03/MF A01 CSCL 20A

Programmed load testing of a structural member from a MACCHI aircraft was undertaken in an attempt to determine the source of the acoustic emission previously recorded during in-flight monitoring of the same component and to compare results obtained from different equipment. Although crack growth during laboratory testing appeared similar to in-flight crack growth, the pattern of recorded AE was markedly different. The laboratory tests are described and an explanation of the test results sought.

N88-17453# National Aerospace Lab., Tokyo (Japan).

AERODYNAMIC AND ACOUSTIC CHARACTERISTICS OF AN ADVANCED PROPELLER UNDER TAKE-OFF AND LANDING CONDITIONS

HIDEO NISHIWAKI and KATSUMI TAKEDA 1987 13 p In JAPANESE; ENGLISH summary

(NAL-TR-935; ISSN-0389-4010) Avail: NTIS HC A03/MF A01

Three configurations of six-bladed, 400 mm diameter, scale-model advanced propellers such as backward-, forward-, and back-forward alternately installed swept blades were tested in anechoic environments with an incoming main flow velocity up to 68 m/s. Under no incoming-flow conditions, the blade separated flow was also discussed from an academic point of view. The data for the advance ratio of 0.43 to 1.15 were obtained in the aeroacoustic aspects. The alternatively swept blades arrangement showed the best performance in spanwise load distribution among the three configurations. The forward swept blades did not exhibit any aeroacoustic advantage. The alternately swept configuration as a tandem rotation has the potential for decreasing the sound levels at the blade passage frequencies by the dispersion of sound with no sacrifice of aerodynamic performance and no additional mechanical complexity. Author

N88-18373# Aerospace Medical Research Labs., Wright-Patterson AFB, Ohio.

SUPERSONIC AND SUBSONIC AIRCRAFT NOISE EFFECTS ON ANIMALS: A LITERATURE SURVEY Final Report, 15 Oct. 1985 - 15 Oct. 1986

ROBERT C. KULL, JR. and ALAN D. FISHER 1 Dec. 1986 57

(AD-A186922; AAMRL-TR-87-032) Avail: NTIS HC A04/MF A01

We searched the literature concerning the effects of supersonic and subsonic aircraft noise on animals. Our search revealed many review papers of prior research accomplished, but few actual research papers. Out of all the reviews, Dufour's work is the most comprehensive. Many of the papers are anecdotal in nature and add little to our scientific knowledge - strictly circumstantial evidence. The literature reveals few effects on animals due to sonic booms. The effects of subsonic noise, however, needs much more investigation. One of the biggest problems with the research

in this area is the lack of controls, lack of standardized ways of recording data and evaluating behaviors, and the number of variables involved. Specific recommendations to fill some of the technological gaps include a sonic boom study on a ground-nesting shorebird, effects of subsonic aircraft noise on endangered species, long term physiological effects causing immunosuppression, and noise versus visual aircraft stimuli effects.

N88-18376*# Purdue Univ., West Lafayette, Ind. School of Mechanical Engineering.

SOUND TRANSMISSION THROUGH THE WALLS OF LIGHT AIRCRAFT: AN INVESTIGATION OF STRUCTURE-BORNE NOISE IN A HANDLEY PAGE 137 JETSTREAM 3 AIRCRAFT R. J. BERNHARD and C. WOHLEVER Jan. 1988 164 p (Contract NAG1-58)

(NASA-CR-182509; NAS 1.26:182509; REPT-0353-10; HL-88-5; PRF-520-1288-0353) Avail: NTIS HC A08/MF A01 CSCL 20A

This study indicates that the structureborne noise due to wing/vortex interation for the Handley Page-137 Jetstream may be significant at frequencies above 500 Hz. It was found that by preventing such interaction, noise reductions between 1 to 3 dB were attainable. However, this study did not show any significant contribution due to this phenomena at the first blade passage tone. It is suspected that the wing/vortex interaction effect varies from plane to plane.

17

SOCIAL SCIENCES

Includes social sciences (general); administration and management; documentation and information science; economics and cost analysis; law and political science; and urban technology and transportation.

A88-25749#

BECOME A CREATIVE FORCE FOR FUTURE AIRCRAFT JACK D. MATTINGLY AIAA Student Journal (ISSN 0001-1460), vol. 25, Fall 1987, p. 7-15.

AIAA, starting in 1988, will sponsor the Air-Breathing Propulsion Team Design Competition: for which, starting with a request-for-proposal for an aircraft system, a student team will determine the required aircraft configuration and such aspects of its propulsion system as the engine's size and cycle and its major components' design. This design competition is modeled after the three existing AIAA-sponsored undergraduate design competitions, with cash awards being given to first (\$1000), second (\$500), and third (\$250) place teams. Specific design tasks to be undertaken by students are a constraint analysis, a mission analysis, a cycle analysis, an engine cycle selection, engine sizing and performance projection, component design, and engine integration.

A88-26183

FREEDOM IN EUROPEAN AIR TRANSPORT - THE BEST OF BOTH WORLDS?

EMILY E. TEGELBERG-ABERSON (Rijksluchtvaartdienst, The Hague, Netherlands) Air Law (ISSN 0165-2079), vol. 12, Dec. 1987, p. 282-295. refs

Consideration is given to the following features of the existing air transport system within Europe: (1) State sovereignty, as dictated by the Chicago Convention; (2) bilateralism, standardized according to the Bermuda agreements; and (3) interairline cooperation. The question of how to achieve a fully liberalized Europe without allowing the benefits of the existing system to slip away is examined. It is believed that, so long as the principle of State sovereignty is adhered to, there is no way of achieving a multilateral liberalization within the EEC.

A88-26546

SOMETHING SPECIAL IN THE AIR AND ON THE GROUND THE POTENTIAL FOR UNLIMITED LIABILITY OF
INTERNATIONAL AIR CARRIERS FOR TERRORIST ATTACKS
UNDER THE WARSAW CONVENTION AND ITS REVISIONS
H. L. SILETS Journal of Air Law and Commerce (ISSN 0021-8642),
vol. 53, Winter 1987, p. 321-374. refs

A88-26547

THE ENVIRONMENTAL CONSEQUENCES OF MUNICIPAL AIRPORTS - A SUBJECT OF FEDERAL MANDATE?

LEE L. BLACKMAN and ROGER P. FREEMAN. Journal of Air Law and Commerce (ISSN 0021-8642), vol. 53, Winter 1987, p. 375-400. refs

The allocation of authority over noise-based restrictions on access to the nation's airports is described in detail. The FAA's Chief Counsel believes that the FAA's refusal to adopt the proposal for complete preemption will permit a continuation of local restrictions which effectively raise the costs of interstate transportation. It is suggested in the present paper that these costs will inevitably be passed on to the traveling public, resulting in a system in which the cost of an airline ticket will more closely approach the true cost of air transportation by encompassing the economic and human burdens of noise together with the value of facilities, equipment, salaries, and fuel.

N88-16699*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

LEWIS MATERIALS RESEARCH AND TECHNOLOGY: AN OVERVIEW

SALVATORE J. GRISAFFE In its Aeropropulsion '87. Session 1: Aeropropulsion Materials Research 8 p Nov. 1987 Avail: NTIS HC A06/MF A01 CSCL 05A

The Materials Division at the Lewis Research Center has a long record of contributions to both materials and process technology as well as to the understanding of key high-temperature phenomena. An overview of the division staff, facilities, past history, recent progress, and future interests is presented.

Author

N88-17207*# Air Force Human Resources Lab., Wright-Patterson AFB, Ohio.

IMIS: INTEGRATED MAINTENANCE INFORMATION SYSTEM. A MAINTENANCE INFORMATION DELIVERY CONCEPT

JOSEPH C. VONHOLLE In NASA. Lyndon B. Johnson Space Center, Houston, Texas, First Annual Workshop on Space Operations Automation and Robotics (SOAR 87) p 1-9 Oct. 1987

Avail: NTIS HC A23/MF A01 CSCL 05B

The Integrated Maintenance Information System (IMIS) will optimize the use of available manpower, enhance technical performance, improve training, and reduce the support equipment and documentation needed for deployment. It will serve as the technician's single, integrated source of all the technical information required to perform modern aircraft maintenance.

Author

N88-17634*# National Aeronautics and Space Administration. Armes Research Center, Moffett Field, Calif.

INFORMATION TRANSFER IN THE NATIONAL AIRSPACE SYSTEM

ALFRED T. LEE In NASA. Langley Research Center, Airborne Wind Shear Detection and Warning Systems: First Combined Manufacturers and Technologists Conference p 507-515 Jan. 1988

Avail: NTIS HC A24/MF A01 CSCL 05B

An informal overview is given of the work in progress and the planned work in the area of information transfer that specifically addresses human factors issues in National Airspace System (NAS). The issues of how weather information will be displayed on the flight deck, the development of appropriate decision making technology, and digital datalink transmission are also briefly discussed.

R.J.F.

June 1988

Typical Subject Index Listing

The subject heading is a key to the subject content of the document. The title is used to provide a description of the subject matter. When the title is insufficiently descriptive of document content, a title extension is added, separated from the title by three hyphens. The (NASA or AIAA) accession number and the page number are included in each entry to assist the user in locating the abstract in the abstract section. If applicable, a report number is also included as an aid in identifying the document. Under any one subject heading, the accession numbers are arranged in sequence with the AIAA accession numbers appearing first.

A-300	AIRCRAFT	

The European Airbus A-300 p 293 N88-17824

ACCIDENT INVESTIGATION

Aircraft accident/incident, New Jersey, November 13, 1986

[NTSB/AAR-87/04-SUMM] p 285 N88-17639 **ACOUSTIC ATTENUATION** Measured and calculated acoustic attenuation rates of

tuned resonator arrays for two surface impedance distribution models with flow [NASA-TP-2766] p 329 N88-17440

ACOUSTIC EMISSION

Laboratory studies related to in-flight acoustic emission monitoring
[AD-A186714] p 329 N88-17445

ACOUSTIC IMPEDANCE

Measured and calculated acoustic attenuation rates of tuned resonator arrays for two surface impedance distribution models with flow

p 329 N88-17440

[NASA-TP-2766] **ACOUSTIC MEASUREMENT**

Tracking aircraft by acoustic sensors - Multiple hypothesis approach applied to possibly unresolved measurements p 285 A88-27363

ACOUSTIC PROPERTIES

Aerodynamic and acoustic characteristics of an under take-off and landing advanced propeller

[NAL-TR-935] p 329 N88-17453

conditions **ACOUSTICS**

Recent Langley helicopter acoustics contributions p.328 N88-16646

ACTIVE CONTROL

Implication of model reduction in the active control of turbomachinery vibrations p 296 A88-26414 Active control of helicopter vibrations by self-adaptive multicyclic control p 305 A88-27759

Active control technology with adaptive control concept in the aircraft construction

ACTUATORS

[MBB/LKE-294/S/PUB/295] p 309 N88-17845

Control muscle for agile aircraft --- flight control p 287 ctuators

ADAPTIVE CONTROL

On the improvement of an adaptive observer for multi-output systems p 323 A88-25878 Adaptive prediction flight control systems --- Russian book p 305 A88-27727 Robust adaptive flight-path reconstruction technique for

nonsteady longitudinal flight test maneuvers

A88-28261 p 307 An improvement on the adaptive model following p 327 A88-28617

Real-time artificial intelligence issues in the development of the adaptive tactical navigator p 327 N88-17260 ADHESIVES

Evaluation of high temperature structural adhesives for extended service, phase 5

[NASA-CR-178176] p 314 N88-16884

ADJUSTING

Possibilities for on-line surge suppression by fast guide vane adjustment in axial compressors

p 303 N88-17674

A88-26647

AEROACOUSTICS

Distributed mixed sensor aircraft tracking

p 285 A88-27412 Tracking multiple air targets with distributed acoustic p 285 A88-27413

NASA/Army Rotorcraft Technology. Volume 2: Materials and Structures, Propulsion and Drive Systems, Flight Dynamics and Control, and Acoustics

[NASA-CP-2495-VOL-2] p 270 N88-16632 A decade of aeroacoustic research at NASA Ames Research Center p 328 N88-16648 Aeroacoustic research programs at the Army Aviation

Research and Technology Activity p 329 N88-16649 An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor. Part 2: High speed photographic study [NASA-CR-177457]

p 278 N88-16678

AERODYNAMIC CHARACTERISTICS

Comparison of the aerodynamic characteristics of p 270 A88-25617 annular and elliptic wings Distributed gas injection into hypersonic flow

p 271 of # A88-26120 Aerodynamic characteristics Weis-Fogh mechanism. II - Numerical computations by the discrete vortex method p 272 A88-26359

The tip flow of a part span slotted flap p 272 A88-26422

Aerodynamic calculation of thin bodies in a rarefied p 274 A88-26696 A note on the aerodynamic design of thin parallel-sided

p 277 N88-16677 [ARL-AERO-TM-388] A flight-test methodology for identification of an serodynamic model for a V/STOL aircraft

[NASA-TM-100067] p 290 N88-16694 Aerodynamic and acoustic characteristics of an advanced propeller under take-off and landing conditions

[NAL-TR-9351 p 329 N88-17453 Calculation of aerodynamic characteristics of airplane configurations at high angles of attack

NASA-CR-182541] p 282 N88-17612 Investigation of the influence of wind shear on the INASA-CR-1825411 aerodynamic characteristics aircraft p 284 N88-17619 vortex-lattice method

AERODYNAMIC COFFFICIENTS

Pressure losses and flow field distortion induced by tip clearance of centrifugal and axial compressors

p 314 A88-24847 Newtonian first order theory for flow over two-dimensional airfoits p 272 A88-26423

Identification techniques in flight mechanics p 306 A88-27765

Comment on 'Computation of the potential flow over airfoils with cusped or thin trailing edges p 276 A88-28050 [KU-SFB-210/E/33] p 310 N88-16711 Investigation of the influence of wind shear on the characteristics of aircraft using aerodvnamic vortex-lattice method p 284 N88-17619

AERODYNAMIC CONFIGURATIONS

Wind tunnel modeling techniques

Inviscid theory of two-dimensional aerofoil/spoiler configurations at low speed. V - Steady and oscillatory p 272 A88-26424 aerofoil-spoiler-flap characteristics

Geometry/grid generation in n + 1 easy steps --- for flows involving flight vehicles embedded within ground test facility p 274 A88-26731

A block structured mesh generation technique for aerodynamic geometries p 274 A88-26747 An overview of key technology thrusts at Bell Helicopter Textron p 289 N88-16657

Burst vortex/boundary layer interaction [NASA-CR-182510] p 279 N88-17583 The intelligent wing. Aerodynamic development direction

for future passenger aircraft [MBB-UT-006/87] p 293 N88-17848

Aerodynamic aspects of the configurational systems layout of a dispenser [MRR-UA-1047/87]

p 294 N88-17863

AERODYNAMIC DRAG

Flame stabilization using large flameholders of irregular

Transonic wind tunnel calibration 1986: Force measurements on three ONERA-C5 models and three half sphere cylinder calibration bodies in the F+W transonic test section

[F+W-FO-1854] p 311 N88-16714 Wind tunnel studies of circulation control elliptical p 280 N88-17598

AERODYNAMIC FORCES

The affection of interblade phase angle in oscillating cascade on unsteady aerodynamic force

p 297 A88-26588

AERODYNAMIC LOADS

Development of an algorithm for evaluating calibration data for six-component strain-gage balances p 310 A88-26172

Quasi-conical aerodynamic loadings due to kinked p 271 A88-26358 planform wings Stress-strain state of an opening parachute

p 317 A88-27248

A review of research in rotor loads

p 288 N88-16629 Loads and aeroelasticity division research and technology accomplishments for FY 1987 and plans for FY 1988 p 278 N88-16680

[NASA-TM-100534] X-wing potential for Navy applications p 281 N88-17604

AERODYNAMIC NOISE

Rotorcraft flight research with emphasis on rotor systems p 289 N88-16656 Laboratory studies related to in-flight acoustic emission monitoring

[AD-A186714] p 329 N88-17445

AÉRODYNAMIĆ STABILITY

Stability of helicopter blade motion in the case of turbulent air flow p 305 A88-27761 Flap-lag-torsion aeroelastic stability of a circulation

control rotor in forward flight p 280 An application of eigenspace methods to symmetric flutter suppression [NASA-CR-181618] p 309 N88-17684

Special flight mechanical features of the bearingless helicopter rotor p 293 N88-17825

AERODYNAMIC STALLING

Study of performance of rotating stall in blade row

p 273 A88-26629 Accurate modeling of nonlinear systems using Volterra series submodels --- applied to stall/post-stall aircraft flight

p 304 A88-27352 and wing rock development of CFD methods applications p 288 N88-16627 Investigation of dynamic stall using LDV (Laser Doppler Velocimetry): Mean flow studies

p 282 N88-17611 (AD-A1876291

AERODYNAMICS SUBJECT INDEX

AERODYNAMICS AIR DEFENSE An optimized yaw damper for enhanced passenger ride Computational unsteady aerodynamics for aeroelastic A piloted simulation investigating handling qualities and p 304 A88-27321 comfort performance requirements of a single-pilot helicopter in On the design of robust compensators for airplane modal analysis p 276 N88-16668 p 304 A88-27322 INASA-TM-1005231 air combat employing a helmet-driven turreted gun control p 290 N88-16689 Mach number effects on transonic aeroelastic forces [AD-A186878] Integrated controls design and simulation and flutter characteristics p 295 A88-27329 AIR INTAKES p 277 N88-16675 [NASA-TM-100547] An MRAC system for aircraft longitudinal control Calibration of the ARL (Aeronautical Research p 305 A88-27370 Methods for evaluating the quality and reliability of Laboratories) rain and icing facility aerodynamic software programs Non-linear inverse dynamics control laws - A sampled [AD-A186776] n 310 N88-16710 [PB87-169793] p 325 A88-27381 p 328 N88-17314 data approach AIR LAW Application of empirical and linear methods to VSTOL Agile Falcon and Hornet 2000 n 288 A88-27496 Something special in the air and on the ground - The powered-lift aerodynamics Automatic systems in aeronautics: National Colloquium. potential for unlimited liability of international air carriers [NASA-TM-100048] p 278 N88-17581 Paris, France, Mar. 17-19, 1986, Proceedings for terrorist attacks under the Warsaw convention and its p 326 A88-27751 Fixed wing CCW aerodynamics with and without revisions p 330 A88-26546 supplementary thrust deflection p 281 N88-17607 Applications of singular perturbation techniques to The environmental consequences of municipal airports p 305 A88-27754 Supersonic aerodynamics of delta wings aircraft trajectory optimization p 330 A88-26547 A subject of federal mandate? [NASA-TP-2771] p ž82 N88-17615 Alpha-degree stability and robustness - Application to AIR PIRACY A research program on the aerodynamics of a highly p 326 A88-27755 the development of a regulator Something special in the air and on the ground - The loaded turbine stage p 301 N88-17655 Identification techniques in flight mechanics potential for unlimited liability of international air carriers Design and aerodynamic performance of a small p 306 A88-27765 for terrorist attacks under the Warsaw convention and its mixed-flow gas generator turbine p 301 N88-17662 Problems related to the application of flight control to p 330 A88-26546 Aerodynamic performance of scale-model, the field of combat aircraft guidance а AIRBORNE EQUIPMENT counter-rotating unducted fan p 302 N88-17666 p 306 A88-27769 Helicopters as test carriers for avionics systems Treatment methods for the alleviation of gusts on reraft p 306 A88-27770 Numerical methods for propeller aerodynamics and acoustics at DFVLR (HETAS) p 302 N88-17668 aircraft p 290 N88-16692 [DFVLR-IB-112-85/18] Analysis of highspeed propellers aerodynamics A flight-test methodology for identification of an Airborne Wind Shear Detection and Warning Systems: p 302 N88-17669 aerodynamic model for a V/STOL aircraft p 290 N88-16694 First Combined Manufacturers' and Technologists **AEROELASTICITY** [NASA-TM-100067] Aircraft flight test trajectory control Conference Calculation of a wing with allowance for fuselage p 271 A88-25633 [NASA-CP-10006] p 283 N88-17616 elasticity [NASA-CR-179428] p 308 N88-16707 Proceedings of the Circulation-Control Workshop, Influence of transformation sequence on nonlinear Forward looking wind shear detection p 284 N88-17629 bending and torsion of rotor blades p 315 A88-26158 [NASA-CP-24321 p 279 N88-17586 Stress-strain state of an opening parachute Crew interface with windshear systems p 317 A88-27248 The impact of circulation control on rotary aircraft p 284 N88-17631 NASA/Army Rotorcraft Technology. Volume 1: controls systems p 308 N88-17601 AIRBORNE/SPACEBORNE COMPUTERS potential Aerodynamics, and Dynamics and Aeroelasticity [NASA-CP-2495-VOL-1] p 269 N8 flight evaluation of Airworthiness considerations p 285 N88-17636 an upper-surface-blowing/circulation-control-wing concept p 291 N88-17609 p 269 N88-16625 AIRCRAFT ACCIDENT INVESTIGATION Rotorcraft aeroelastic stability p 307 N88-16631 Design deficiency - Probable cause of fatal aircraft Rotorcraft flight research with emphasis on rotor p 282 A88-27640 Airborne Wind Shear Detection and Warning Systems: First Combined Manufacturers' and Technologists systems p 289 N88-16656 AIRCRAFT ACCIDENTS Computational unsteady aerodynamics for aeroelastic Conference Annual review of aircraft accident data: US air carrier p 283 N88-17616 operations calendar year 1985 [NASA-CP-10006] p 283 N88-17616 Investigation of the influence of wind shear on the analysis [NASA-TM-100523] p 276 N88-16668 [PB88-135843] p 285 N88-17638 Mach number effects on transonic aeroelastic forces aerodynamic characteristics of aircraft Aircraft accident/incident, Newark, New Jersey, November 13, 1986 p 284 N88-17619 and flutter characteristics vortex-lattice method [NASA-TM-100547] p 277 N88-16675 p 285 N88-17639 wind shear recovery [NTSB/AAR-87/04-SUMM] Simulator investigation of p 284 N88-17630 Loads and aeroelasticity division research and techniques AIRCRAFT ANTENNAS Active control technology with adaptive control concept technology accomplishments for FY 1987 and plans for Ray analysis of a class of hybrid cylindrical aircraft wings in the aircraft construction **FV 1988** for EM coupling of airborne antenna pairs p 285 A88-25755 [MBB/LKE-294/S/PUB/295] p 309 N88-17845 [NASA-TM-100534] p 278 N88-16680 AIRCRAFT APPROACH SPACING AIRCRAFT DESIGN Experimental study on the effect of fiber orientation on Calculation of a wing with allowance for fuselage flutter characteristics of high-aspect-ratio transport wing Approach trajectory guidance p 271 A88-25633 elasticity [NAL-TR-936] p 308 N88-16708 concealment p 307 A88-28265 Ray analysis of a class of hybrid cylindrical aircraft wings AIRCRAFT COMMUNICATION Flap-lag-torsion aeroelastic stability of a circulation AvSat - A new global satellite system for aircraft --- for EM coupling of airborne antenna pairs p 280 N88-17600 control rotor in forward flight p 285 A88-25755 communications Prediction of aeroelastic response of a model X-wing Fokker 50 marks a fresh start p 286 A88-25792 [AIAA PAPER 88-08461 p 286 A88-27587 p 281 N88-17603 rotor World-wide aeronautical satellite communications Thinking big in RPVs - An affordable giant among the Using frequency-domain methods to identify XV-15 p 286 A88-27599 minis p 287 A88-25793 [AIAA PAPER 88-0865] aeroelastic modes XT-4 - Potent with potential p 287 A88-25809 Optimizing HF antenna systems on the Dolphin and Sea p 292 N88-17646 [NASA-TM-100033] vk helicopters Wing tip sails - Progress to date and future The application of modern aeroelastic developments for A88-26421 developments p 272 [AD-A186552] p 318 N88-16901 future projects Keeping a sharp technology edge p 269 A88-26646 Information transfer in the National Airspace System [MBB-UT-007/87] p 294 N88-17850 p 330 N88-17634 Measuring aircraft fluid quantities p 295 A88-26648 Vibration and flutter characteristics of the SR7L Design deficiency - Probable cause of fatal aircraft AIRCRAFT COMPARTMENTS p 282 A88-27640 large-scale propfan Inflight thermal data recording from IAF aircraft INASA-TM-1002721 p 322 N88-18036 p 295 A88-27639 NASA/Army Rotorcraft Technology, Volume 2: Materials and Structures, Propulsion and Drive Systems, Flight **AERONAUTICAL ENGINEERING** AIRCRAFT CONFIGURATIONS Dynamics and Control, and Acoustics Impact and promise of NASA aeropropulsion Elliptic generation of composite three-dimensional grids p 287 A88-26749 [NASA-CP-2495-VOL-2] p 270 N88-16632 technology p 299 N88-16698 about realistic aircraft NASA's rotorcraft icing research program Predicting dynamic separation characteristics of general **AEROSOLS** Comparison of UNL laser imaging and sizing system configurations Rotorcraft flight-propulsion control integration [AD-A186689] p 290 N88-16691 and a phase/Doppler system for analyzing sprays from a NASA nozzle Calculation of aerodynamic characteristics of airplane p 318 N88-16956 [NASA-CR-182437] configurations at high angles of attack p 282 N88-17612 Research and Technology Activity [NASA-CR-182541] **AEROSPACE INDUSTRY** An examination of the impact of potential advances in Keeping a sharp technology edge p 269 A88-26646 Integration, Research Aircraft, and Industry component technology for future military engines AEROSPACE MEDICINE [NASA-CP-2495-VOL-3] p 300 N88-17650 Sudden in-flight incapacitation in general aviation AIRCRAFT CONSTRUCTION MATERIALS Integrated diagnostics [AD-A187044] p 283 N88-16682 The metallurgical aspects of aluminum-lithium alloys in **AEROTHERMODYNAMICS** various product forms for helicopter structural research and development: Preparing for the future Thermodynamic nonequilibrium of a far hypersonic applications p 311 A88-25106 p 276 A88-28356 wake The Boeing Helicopter Model 360 advanced technology AFTERBODIES

Force Bases

[AD-A188068]

AGING (MATERIALS)

AIR BREATHING ENGINES

Become a creative force for future aircraft --- AIAA Air-breathing Propulsion Team Design Competition p 330 A88-25749

Evaluation of bituminous materials used in pavement

recycling projects at Tyndall, MacDill, and Hurlburt Air

Theoretical analysis of aircraft afterbody flow

p 275 A88-27884

p 321 N88-17871

AIRCRAFT CONTROL Control muscle for agile aircraft --- flight control actuators Loop shaping with output feedback

p 283 N88-16641 p 307 N88-16643 Aeroacoustic research programs at the Army Aviation p 329 N88-16649 NASA/Army Rotorcraft Technology. Volume 3: Systems p 270 N88-16650 p 296 N88-16655 McDonnell Douglas Helicopter Company independent p 289 N88-16660 Testing of a schematic transport plane model in several helicopter p 287 A88-26415 European windtunnels p 297 A88-26649 Doubling thrust-to-weight ratio p 277 N88-16671 [PB87-170270] Moisture plotting of carbon fiber composite in flight The wind tunnel as a yardstick for aircraft design operations INLR-MP-85032-U1 p 310 N88-16712 [MBB-UT-119/87] p 313 N88-16823 Development of vertical takeoff aircraft with turbojet Modern materials for light constructions -- aircraft engines in Germany p 292 N88-17822 p 293 N88-17839 [MBB-Z-136/86] Variable sweep wings p 292 N88-17823 The European Airbus A-300 p 293 N88-17824 p 287 A88-26647 Purposes and tasks of high-performance aircraft p 324 A88-27312 [MBB/LK-S/PUB/296] p 293 N88-17842

SUBJECT INDEX

AIRFOIL PROFILES

AIRCRAFT DETECTION Crew interface with windshear systems The application of modern aeroelastic developments for Tracking aircraft by acoustic sensors - Multiple hypothesis approach applied to possibly unresolved p 284 N88-17631 future projects AIRCRAFT INDUSTRY [MBB-UT-007/87] p 294 N88-17850 p 285 A88-27363 measurements Purposes and tasks of high-performance aircraft **AIRCRAFT PRODUCTION COSTS** Distributed mixed sensor aircraft tracking p 285 A88-27412 construction Advanced composite airframe program: Today's [MBB/LK-\$/PUB/296] p 293 N88-17842 p 289 N88-16636 technology AIRCRAFT INSTRUMENTS Tracking multiple air targets with distributed acoustic Product planning in civil aircraft construction State estimation of manoeuvring targets from noisy radar p 285 A88-27413 [MBB-UT-002/87] p 270 N88-17849 sensors p 294 A88-26247 AIRCRAFT ENGINES AIRCRAFT RELIABILITY Midlatitude CIO below 22 km altitude - Measurements A study of the autorotation regimes of gas turbine Airworthiness considerations p 285 N88-17636 with a new aircraft-borne instrument p 296 A88-25628 AIRCRAFT SAFETY engines p 323 A88-27456 Something special in the air and on the ground - The potential for unlimited liability of international air carriers Become a creative force for future aircraft --- AIAA AIRCRAFT LANDING Air-breathing Propulsion Team Design Competition Optimal landing of a helicopter in autorotation p 330 A88-25749 for terrorist attacks under the Warsaw convention and its p 288 A88-28251 p 330 A88-26546 XT-4 - Potent with potential p 287 A88-25809 revisions Additional investigations in landing process of aircraft: Sudden in-flight incapacitation in general aviation A rig testing method of annular combustor in Test distributions p 297 A88-26589 p 283 N88-16682 aeroengine [DFVLR-MITT-87-13] [AD-A187044] p 286 N88-16686 A system of data acquisition and processing in AIRCRAFT LIGHTS Annual review of aircraft accident data: US air carrier operations calendar year 1985 p 323 A88-26627 Axisymmetric deformations of aircraft transparencies aeroengine testing with allowance for the compliance of the support [PB88-135843] p 285 N88-17638 A contour line plotting system with polar coordinates p 274 A88-26640 p 315 A88-25621 Aircraft accident/incident, Newark, New Jersey, for aeroengine inlet flow field AIRCRAFT MAINTENANCE Dynamic flexibility coefficient November 13, 1986 matrix and its A model for estimating depot maintenance costs for Air [NTSB/AAR-87/04-SUMM] p 285 N88-17639 measurement for aeroengine supporting system A88-26641 Force fighter and attack aircraft AIRCRAFT SPECIFICATIONS p 317 (AD-A1870971 p 269 N88-16624 p 297 A88-26649 Doubling thrust-to-weight ratio The European Airbus A-300 p 293 N88-17824 IMIS: Integrated Maintenance Information System. A F-16 flight tests with the F110 - Lessons engine AIRCRAFT STABILITY maintenance information delivery concept p 288 A88-26875 learned An optimized yaw damper for enhanced passenger ride p 330 N88-17207 Flame stabilization using large flame olders of irregular p 304 A88-27321 comfort p 312 A88-27285 Knowledge based let engine diagnostics On the design of robust compensators for airplane modal Transient engine performance with water ingestion p 299 N88-17210 control p 304 A88-27322 p 297 A88-27295 Tutoring electronic troubleshooting in a simulated General Rotorcraft Aeromechanical Stability Program maintenance work environment p 311 N88-17215 Technology developments for a compound cycle (GRASP) version 1.03: User's manual AIRCRAFT MANEUVERS engine p 298 N88-16637 p 328 N88-17313 INASA-TM-1000431 Small gas turbine engine technology On the improvement of an adaptive observer for AIRCRAFT STRUCTURES p 298 N88-16638 multi-output systems p 323 A88-25878 The metallurgical aspects of aluminum-lithium alloys in Approach trajectory guidance for Creep and fatigue research efforts on advanced maximum various product forms for helicopter materials p 318 N88-16701 concealment p 307 A88-28265 p 311 A88-25106 applications Turbine engine monitoring systems: Can they benefit Rotorcraft flight-propulsion control integration formal-logic models The problem of the development of p 307 N88-16643 component improvement program management? p 323 A88-25627 p 299 N88-16706 Rotorcraft handling-qualities design criteria p 308 N88-16645 of aircraft assembly [AD-A186992] Calibration of the ARL (Aeronautical Research development Characteristics of flow around a hemisphere mounted Predicting dynamic separation characteristics of general p 315 A88-25640 on a plane Laboratories) rain and icing facility configurations [AD-A186689] Simplified calculation of the crushing process in tructural elements p 315 A88-26171 [AD-A186776] p 310 N88-16710 p 290 N88-16691 Development of a shell system for DS moulds at RR structural elements AIRCRAFT MODELS precision casting facility --- directional solidification (DS) Optimum design of structures with multiple constraints A geometric approach to nonlinear singularly pert [PNR-90400] p 318 N88-16893 p 317 A88-28042 p 323 A88-26264 control systems Advanced Technology for Aero Gas Turbine Experimental study on the effect of fiber orientation on Identification techniques in flight mechanics Components flutter characteristics of high-aspect-ratio transport wing p 306 A88-27765 [AGARD-CP-421] p 299 N88-17647 p 308 N88-16708 [NAL-TR-936] AIRCRAFT NOISE The coming revolution in turbine engine technology Evaluation of high temperature structural adhesives for p 299 N88-17648 The environmental consequences of municipal airports xtended service, phase 5 subject of federal mandate? p 330 A88-26547 Optimisation of military compressors for weight and [NASA-CR-178176] p 314 N88-16884 p 300 N88-17649 Recent Langley helicopter acoustics contributions volume Modern materials for light constructions --- aircraft An examination of the impact of potential advances in p 328 N88-16646 p 293 N88-17839 Identification and proposed [MBB-Z-136/86] control of helicopter component technology for future military engines p 308 N88-16647 Purposes and tasks of high-performance aircraft p 300 N88-17650 transmission noise at the source construction A decade of aeroacoustic research at NASA Ames Specification of an engine and its components starting p 293 N88-17842 Research Center p 328 N88-16648 [MBB/LK-S/PUB/296] from a consideration of aircraft missions p 300 N88-17651 Aeroacoustic research programs at the Army Aviation The application of modern aeroelastic developments for p 329 N88-16649 Application of highly loaded single-stage mixed-flow Research and Technology Activity p 329 N88-16649 Laboratory studies related to in-flight acoustic emission future projects [MBB-UT-007/87] p 294 N88-17850 compressors in small jet-engines p 300 N88-17652 A research program on the aerodynamics of a highly Sound transmission through the walls of light aircraft: loaded turbine stage p 301 N88-17655 [AD-A186714] p 329 N88-17445 An investigation of structure-borne noise in a Handley Page Supersonic and subsonic aircraft noise effects on Design and aerodynamic performance of a small 137 Jetstream 3 aircraft animals: A literature survey p 301 N88-17662 [NASA-CR-182509] p 330 N88-18376 mixed-flow gas generator turbine p 329 N88-18373 Development of a plenum chamber burner system for [AD-A186922] AIRCRAFT SURVIVABILITY Sound transmission through the walls of light aircraft: an advanced VTOL engine p 302 N88-17664 SWAN: An expert system with natural language interface An investigation of structure-borne noise in a Handley Page scale-model, for tactical air capability assessment Aerodynamic performance counter-rotating unducted fan p 302 N88-17666 137 Jetstream 3 aircraft p 327 N88-17253 [NASA-CR-182509] p 330 N88-18376 Gear systems for advanced turboprops AIRCRAFT WAKES Predicting dynamic separation characteristics of general p 302 N88-17667 AIRCRAFT PARTS Lewis materials research and technology: An overview Ceramic bearings for use in gas turbine engines configurations p 322 N88-18007 INASA-TM-1002881 p 290 N88-16691 p 330 N88-16699 [PRABBLA TA High temperature polymer matrix composites AIRCRAFT EQUIPMENT AIRFIELD SURFACE MOVEMENTS Cooling of airborne equipment --- Russian book p 313 N88-16700 A new look at the use of linear methods to predict aircraft p 296 A88-27731 AIRCRAFT PERFORMANCE dynamic response to taxi over bomb damaged and repaired p 291 N88-17069 Information transfer in the National Airspace System Fokker 50 marks a fresh start p 286 A88-25792 airfields p 330 N88-17634 AIRFOIL OSCILLATIONS SWAN: An expert system with natural language interface AIRCRAFT FUEL SYSTEMS Inviscid theory of two-dimensional aerofoil/spoiler for tactical air capability assessment configurations at low speed. V - Steady and oscillatory aerofoil-spoiler-flap characteristics p 272 A88-26424 Measuring aircraft fluid quantities p 295 A88-26648 p 327 N88-17253 Pumping systems and flow interfaces for rapid response Development of vertical takeoff aircraft with turbojet electronic reheat controls p 302 N88-17665 AIRFOIL PROFILES p 292 N88-17822 engines in Germany AIRCRAFT GUIDANCE Inviscid theory of two-dimensional aerofoil/spoiler Variable sweep wings p 292 N88-17823 Aircraft quidance for formation flying based on optimal configurations at low speed. V - Steady and oscillatory Purposes and tasks of high-performance aircraft p 304 A88-27320 p 272 A88-26424 control theory aerofoil-spoiler-flap characteristics construction Simulator investigation of wind shear recovery chniques p 284 N88-17630 Generation of patched multiple-region grids using elliptic quations p 274 A88-26743 [MBB/LK-S/PUB/296] p 293 N88-17842 techniques equations Flight testing of fighter aircraft Airworthiness considerations p 285 N88-17636 Generation of body-fitted grids around airfoils using [MBB/LKE-62/S/PUB/292] p 293 N88-17844 AIRCRAFT HAZARDS multigrid method p 274 A88-26745 NASA wind shear model: Summary of model analyses AIRCRAFT PILOTS Flow field measurements using hotwire anemometry Crew interface with windshear systems p 323 N88-17617 [AD-A187029] p 318 N88-16951 p 284 N88-17631 Response of wind shear warning systems to turbulence The further development of circulation control airfoils with implication of nuisance alerts AIRCRAFT PRODUCTION p 283 N88-17618 p 279 N88-17594 Forward looking wind shear detection Product planning in civil aircraft construction Circulation control STOL aircraft design aspects p 284 N88-17629 IMBB-UT-002/87 p 270 N88-17849 p 281 N88-17610

AIRFOILS SUBJECT INDEX

AIDEOUS	ANNUL AD ELOW	ATTACK AIDODAFT
AIRFOILS Strong coupling between inviscid fluid and boundary	ANNULAR FLOW A rig testing method of annular combustor in	ATTACK AIRCRAFT Problems related to the application of flight control to
layer for airfoils with sharp leading edge. I - 2-D	aeroengine p 297 A88-26589	the field of combat aircraft guidance
incompressible steady case p 271 A88-25988	ANNULAR NOZZLES	p 306 A88-27769
Wing tip sails - Progress to date and future developments p 272 A88-26421	Algebraic grid generation for annular nozzle flowfield	A model for estimating depot maintenance costs for Air Force fighter and attack aircraft
Improved relaxation schemes for transonic potential	prediction p 275 A88-26751 Wake interaction effects on the transition process on	[AD-A187097] p 269 N88-16624
calculations p 272 A88-26433	turbine blades	AUSTRALIA
Sidewall effect for transonic airfoil testing	[AD-A188020] p 322 N88-17962	Analysis of the reliability of Royal Australian Air force
p 275 A88-26796 Experimental investigation of shock-induced	ANNULI	non-destructive inspection [AD-A186979] p 320 N88-17049
disturbances on transonic airfoils	Comparison of the aerodynamic characteristics of	AUTOMATIC CONTROL
[DFVLR-FB-87-28] p 276 N88-16666	annular and elliptic wings p 270 A88-25617 ANTENNA DESIGN	Synthesis of the flexible structures of complex
A note on the aerodynamic design of thin parallel-sided	Optimizing HF antenna systems on the Dolphin and Sea	systems p 324 A88-27148
aerofoil sections [ARL-AERO-TM-388] p 277 N88-16677	Hawk helicopters	Data processing and analysis during the automated testing of gas turbine engines Russian book
Navier-Stokes solutions for laminar incompressible flow	[AD-A186552] p 318 N88-16901	p 298 A88-27730
over a NACA 0012 airfoil and a backward facing step	ANTENNAS	Modeling and identification in helicopter science
[FFA-TN-1987-50] p 319 N88-16966	Optimizing HF antenna systems on the Dolphin and Sea Hawk helicopters	p 327 A88-27760
AIRFRAMES Advanced composite airframe program: Today's	[AD-A186552] p 318 N88-16901	Redundant control systems - Flexibility and optimality p 327 A88-27766
technology p 289 N88-16636	APPENDAGES	AUTOMATIC FLIGHT CONTROL
Durability and damage tolerance of aluminum castings	Time dependent flow visualization in the separated	Adaptive prediction flight control systems Russian
[AD-A186444] p 322 N88-18013	region of an appendage-flat plate junction p 271 A88-25842	book p 305 A88-27727
AIRLINE OPERATIONS Freedom in European air transport - The best of both	APPLICATIONS PROGRAMS (COMPUTERS)	Automatic systems in aeronautics; National Colloquium, Paris, France, Mar. 17-19, 1986, Proceedings
worlds? p 330 A88-26183	Accomplishments at NASA Langley Research Center	p 326 A88-27751
Analysis of bird strikes to UK registered aircraft 1985	in rotorcraft aerodynamics technology	Technological leaps occurring in the aeronautical and
(civil aircraft over 5700 kg maximum weight	p 269 N88-16626	space fields p 326 A88-27752
[CAA-PAPER-87012] p 283 N88-16684 Annual review of aircraft accident data: US air carrier	Comprehensive rotorcraft analysis methods	Design of a helicopter automatic flight control system p 306 A88-27762
operations calendar year 1985	p 276 N88-16630 A jet in a crossflow	Problems related to the application of flight control to
[PB88-135843] p 285 N88-17638	[NASA-CR-182469] p 277 N88-16674	the field of combat aircraft guidance
AIRPORTS	Numerical modeling of multidimensional flow in seals	p 306 A88-27769
The environmental consequences of municipal airports - A subject of federal mandate? p 330 A88-26547	and bearings used in rotating machinery	Study on a unidirectional ring laser gyro. Part 1: Proposition of the principle and studies on the
NASA wind shear model: Summary of model analyses	[NASA-TM-100779] p 319 N88-16988	components
p 323 N88-17617	Vibration and flutter characteristics of the SR7L	[NAL-TR-933] p 319 N88-17010
Radar backscatter from airports and surrounding	large-scale propfan [NASA-TM-100272] p 322 N88-18036	AUTONOMOUS NAVIGATION
areas p 321 N88-17623	APPROXIMATION	Real-time artificial intelligence issues in the development
Radar returns from ground clutter in vicinity of airports p 321 N88-17624	Calculation of nonpotential flows of an ideal gas in	of the adaptive tactical navigator p 327 N88-17260 AUTOROTATION
Status of FAA terminal Doppler weather radar	axisymmetric nozzles by the approximate factorization	A study of the autorotation regimes of gas turbine
programs p 321 N88-17632	method p 270 A88-25561	engines p 296 A88-25628
The advanced low-level windshear alert system	AQUEOUS SOLUTIONS Fatigue crack initiation and propagation properties of	Optimal landing of a helicopter in autorotation
operational demonstration results, Summer, 1987, Denver Stapleton International Airport p 284 N88-17633	Al-Li-Cu alloys in air and in aqueous corrosive solutions	p 288 A88-28251
Evaluation of bituminous materials used in pavement	p 312 A88-25178	AVIONICS Cooling of airborne equipment Russian book
recycling projects at Tyndall, MacDill, and Hurlburt Air	ARC HEATING	p 296 A88-27731
Force Bases	Upgrading of NASA-Ames high-energy hypersonic	Avionics systems integration technology
[AD-A188068] p 321 N88-17871 AIRSPACE	facilities: A Study [NASA-CR-182475] p 311 N88-16717	p 296 N88-16654
Information transfer in the National Airspace System	ARCHITECTURE	Helicopters as test carriers for avionics systems
p 330 N88-17634	Helicopter crashworthiness research program	(HETAS) [DFVLR-IB-112-85/18] p 290 N88-16692
ALGORITHMS	p 283 N88-16635	Neural network based architectures for aerospace
Development of an algorithm for evaluating calibration data for six-component strain-gage balances	ARMED FORCES (UNITED STATES)	applications p 327 N88-17218
p 310 A88-26172	IMIS: Integrated Maintenance Information System, A maintenance information delivery concept	Helicopter activities in Germany
Experimental implementation and evaluation of the RMI	p 330 N88-17207	[MBB-UD-487/86] p 294 N88-17853
failure detection algorithm Reachable Measurement	ARRAYS	AXIAL FLOW
Intervals p 325. A88-27410 ALL-WEATHER AIR NAVIGATION	A study of the TCAS 2 collision avoidance system	Computation of secondary flows in an axial multistage compressor p 304 N88-17681
Rotor SAR (ROSAR): A new high-resolution all-weather	mounted on a Boeing 737 aircraft	AXIAL FLOW TURBINES
vision method for helicopters	[NASA-CR-182457] p 286 N88-16687 ARTIFICIAL INTELLIGENCE	Effect of the blade number ratio of the rotor and the
[MBB-UA-1046/87] p 321 N88-17855	An architecture for real-time rule-based control	nozzle ring on the vibration activity of axial-flow and
ALUMINUM Durability and damage tolerance of aluminum castings	p 325 A88-27405	radial-flow turbines p 314 A88-25614
[AD-A186444] p 322 N88-18013	Tutoring electronic troubleshooting in a simulated	An experimental study of the effect of the lower and upper overlap on the efficiency of radial inward-flow
ALUMINUM ALLOYS	maintenance work environment p 311 N88-17215	microturbines with an enclosed rotor
The metallurgical aspects of aluminum-lithium alloys in	Neural network based architectures for aerospace applications p 327 N88-17218	p 315 A88-25637
various product forms for helicopter structural applications p 311 A88-25106	Robotic air vehicle. Blending artificial intelligence with	AXIAL LOADS
Fatigue crack propagation behavior of 2091 T8 and 2024	conventional software p 291 N88-17252	Axisymmetric deformations of aircraft transparencies with allowance for the compliance of the support
T3 under constant and variable amplitude loading	Real-time artificial intelligence issues in the development	fastenings p 315 A88-25621
p 312 A88-25176	of the adaptive tactical navigator p 327 N88-17260	AXISYMMETRIC BODIES
Fatigue crack initiation and propagation properties of	ASSEMBLY The problem of the development of formal-logic models	Flat spin of axisymmetric bodies in the critical Reynolds
Al-Li-Cu alloys in air and in aqueous corrosive solutions p 312 A88-25178	of aircraft assembly p 323 A88-25627	number region p 306 A88-27889
ANGLE OF ATTACK	ATMOSPHERIC BOUNDARY LAYER	AXISYMMETRIC FLOW
Turbulent near wake of a symmetrical body	Wind tunnel modeling techniques	New techniques in computational aerodynamics [AD-A186719] p 276 N88-16664
p 318 A88-28047	[KU-SFB-210/E/33] p 310 N88-16711	[/B///30//0] P2/0 //00//
Predicting dynamic separation characteristics of general	ATMOSPHERIC COMPOSITION Midlatitude CIO below 22 km altitude - Measurements	D
configurations	with a new aircraft-borne instrument	В
[AD-A186689] p 290 N88-16691 Calculation of aerodynamic characteristics of airplane	p 323 A88-27456	BACKWARD FACING STEPS
configurations at high angles of attack	ATMOSPHERIC OPTICS	Navier-Stokes solutions for laminar incompressible flow
[NASA-CR-182541] p 282 N88-17612	Performance of optical sensors in hypersonic flight p 295 A88-27478	over a NACA 0012 airfoil and a backward facing step
ANGLES (GEOMETRY)	ATMOSPHERIC TURBULENCE	[FFA-TN-1987-50] p 319 N88-16966
The affection of interblade phase angle in oscillating	Estimation of aircraft motion parameters with allowance	BALL BEARINGS
cascade on unsteady aerodynamic force	for atmospheric turbulence p 304 A88-25622	Investigation on steady-state response of a rotor-support
p 297 A88-26588 Animals	Response of wind shear warning systems to turbulence with implication of nuisance alerts p 283 N88-17618	system with two squeeze-film dampers p 316 A88-26632
Supersonic and subsonic aircraft noise effects on	ATOMIZING	BANDPASS FILTERS
animals: A literature survey	Military jet fuels, 1944-1987	Graphical design of millimeter-wave finline bandpass
[AD-A186922] p 329 N88-18373	[AD-A186752] p 314 N88-16890	filters p 316 A88-26256

BARRIERS

Verification of obstacle accountability areas using a simple mathematical model. Part 1: Description of general model and application for a specific case -- engine failure at takeoff

[NLR-TR-85069-U] BEAMS (SUPPORTS) p 283 N88-16683

Simplified calculation of the crushing process in tructural elements p 315 A88-26171 structural elements

An exact solution for coupled bending and torsion vibrations of uniform beams having single cross-sectional p 316 A88-26571

BEARINGLESS ROTORS

An overview of key technology thrusts at Bell Helicopter p 289 N88-16657 Textron Special flight mechanical features of the bearingless helicopter rotol

[MBB-FM-315/O] p 293 N88-17825 Testing of a tail rotor system in a fiber composite type

of construction [MBB-UD-472/86] p 294 N88-17854 Comprehensive analysis of helicopters with bearingless

[NASA-CR-182537] n 328 N88-18300

BEARINGS

Results of NASA/Army transmission research

p 299 N88-16640 Self-lubricating coatings high-temperature applications p 313 N88 16703 Numerical modeling of multidimensional flow in seals

and bearings used in rotating machinery p 319 N88-16988 [NASA-TM-100779]

BENDING MOMENTS

Influence of transformation sequence on nonlinear bending and torsion of rotor blades p 315 A88-26158 BENDING VIBRATION

An exact solution for coupled bending and torsion vibrations of uniform beams having single cross-sectional p 316 A88-26571 symmetry

Laser Doppler velocity bias in separated turbulent p 271 A88-25835 flows

BIRD-AIRCRAFT COLLISIONS

Analysis of bird strikes to UK registered aircraft 1985 (civil aircraft over 5700 kg maximum weight

p 283 N88-16684 [CAA-PAPER-87012] BITUMENS

Evaluation of bituminous materials used in pavement recycling projects at Tyndall, MacDill, and Hurlburt Air

[AD-A188068] p 321 N88-17871

BLADE TIPS

Pressure losses and flow field distortion induced by tip clearance of centrifugal and axial compressors

p 314 A88-24847 An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor. Part 2: High speed photographic study

p 278 N88-16678 [NASA-CR-177457]

BLADE-VORTEX INTERACTION

Stream function solution of transonic flow along an p 273 A88-26586 arbitrary twisted S1 stream surface The affection of interblade phase angle in oscillating cascade on unsteady aerodynamic force

p 297 A88-26588 The development of CFD methods for rotor pplications p 288 N88-16627 applications

Recent Langley helicopter acoustics contributions p 328 N88-16646 An experimental investigation of the chopping of

helicopter main rotor tip vortices by the tail rotor. Part 2: High speed photographic study

p 278 N88-16678 [NASA-CR-177457]

BLADES

Vibration and flutter characteristics of the SR7L large-scale propfan [NASA-TM-100272]

p 322 N88-18036

BLOWDOWN WIND TUNNELS

Some methodological aspects of the study of gasdynamic models with heat and mass transfer in an p 310 A88-27158 impulse wind tunnel BLOWING

An aerodynamic comparison of blown and mechanical high lift airfoils p 281 N88-17606

BLUFF BODIES

Flame stabilization using large flameholders of irregular p 312 A88-27285 shape

BODY-WING AND TAIL CONFIGURATIONS

Investigation of the influence of wind shear on the aerodynamic characteristics of aircraft using vortex-lattice method p 284 N88-17619 BODY-WING CONFIGURATIONS

Testing of a schematic transport plane model in several European windtunnels

p 277 N88-16671 [PB87-170270]

ROFING AIRCRAFT

The Boeing Helicopter Model 360 advanced technology p 287 A88-26415

BOEING 737 AIRCRAFT

A study of the TCAS 2 collision avoidance system mounted on a Boeing 737 aircraft [NASA-CR-182457]

p 286 N88-16687 **BOUNDARY LAYER CONTROL**

Control of vortical separation on conical bodies

p 278 N88-17580 Reduction of tilt rotor download using circulation N88-17605 p 281

ROUNDARY LAYER EQUATIONS

A close coupling procedure for zonal solutions of the Navier-Stokes, Euler and boundary-layer equations p 316 A88-26173

BOUNDARY LAYER FLOW

Strong coupling between inviscid fluid and boundary layer for airfoils with sharp leading edge. I - 2-D incompressible steady case p 271 A88-25988 An analysis system for transonic flow in cascade

p 273 A88-26631 The further development of circulation control airfoils p 279 N88-17594

Boundary-layer and wake measurements on a swept, p 280 N88-17597 circulation-control wing

BOUNDARY LAYER SEPARATION

Vortex/separated boundary-layer interactions transonic Mach numbers p 275 A88-28033 Burst vortex/boundary layer interaction

p 279 N88-17583 [NASA-CR-182510] Pressure distributions and oil-flow patterns for a swent circulation-control wing p 280 N88-17596 Experimental research on swept shock wave/boundary layer interactions

[AD-A187250]

p 322 N88-17957 **BOUNDARY LAYER TRANSITION**

Flight testing keeps pace n 287 A88-26644 Wake interaction effects on the transition process on turbine blades

[AD-A188020] p 322 N88-17962

BOUNDARY LAYERS

Interior transition layers in flight-path optimization p 288 A88-28252 Influence of the wall boundary layer on force

measurements on half models in the transonic wind

[F+W-TF-1876] p 311 N88-16715 Experimental research on swept shock wave/boundary layer interactions

[AD-A187250] p 322 N88-17957

BOUNDARY VALUE PROBLEMS

Geometry/grid generation in n + 1 easy steps --- for flows involving flight vehicles embedded within ground test p 274 A88-26731 facility

BUCKLING Buckling of delaminated, long, cylindrical panels under p 317 A88-26890 pressure

Accuracies of southwell and force/stiffness methods in the prediction of buckling strength of hypersonic aircraft wing tubular panels INASA-TM-882951 p 320 N88-17090

BUFFFTING

Experimental investigation of shock-induced disturbances on transonic airfoils p 276 N88-16666 [DFVLR-FB-87-28]

BURNERS

Development of a plenum chamber burner system for p 302 N88-17664 an advanced VTOL engine

C

C-141 AIRCRAFT

A submillimeter heterodyne receiver for the Kuiper Airborne Observatory and the detection of the 372 micron carbon monoxide line J = 7-6 in OMC-1 and W3 p 316 A88-26253

CALIBRATING

Calibration of the ARL (Aeronautical Research Laboratories) rain and icing facility [AD-A186776] p 310 N88-16710

CANTILEVER BEAMS

Influence of transformation sequence on nonlinear bending and torsion of rotor blades p 315 A88-26158

CARBON FIBER REINFORCED PLASTICS Effect of high temperature spikes on a carbon

p 312 A88-28299 fibre-reinforced epoxy laminate Moisture plotting of carbon fiber composite in flight operations

p 313 N88-16823 (MBR-UT-119/87) Mechanical properties of carbon fiber reinforced thermoplastic matrix composites [NAL-TR-9341 p 313 N88-16827

CARBON MONOXIDE

A submillimeter heterodyne receiver for the Kuiper Airborne Observatory and the detection of the 372 micron carbon monoxide line J = 7-6 in OMC-1 and W3

p 316 A88-26253

CASCADE FLOW

An experimental investigation on aerodynamic interblade interactions of a vibrating cascade in transonic flow p 272 A88-26388

Numerical calculation of 3-D turbulent flow in a straight compressor cascade with circular-arc blades

p 273 A88-26584 The effect of the boundary layer on transonic cascade p 273 A88-26587 An analysis system for transonic flow in cascade

p 273 A88-26631 The unsteady gas flow through stator and rotor of a turbomachine p 301 N88-17660 Investigation of dihedral effects in compressor p 303 N88-17672 cascades CAST ALLOYS

Durability and damage tolerance of aluminum castings [AD-A186444] p 322 N88-18013

CASTING

Development of a shell system for DS moulds at RR precision casting facility --- directional solidification (DS) PNR-904001 p 318 N88-16893

CAVITY RESONATORS

Measured and calculated acoustic attenuation rates of tuned resonator arrays for two surface impedance distribution models with flow

INASA-TP-27661 p 329 N88-17440

CENTRIFUGAL COMPRESSORS

Pressure losses and flow field distortion induced by tip clearance of centrifugal and axial compressors

p 314 A88-24847

p 285 N88-17636

p 318 N88-16956

A study of the effect of leakage flow on the main flow ahead of the rotor of a centrifugal pump or a compressor p 315 A88-25630 The advantage of variable geometry for turbine engines at low power

p 300 N88-17653 Secondary flow measurements with L2F-technique in centrifugal compressors p 303 N88-17676 Method for predicting performance limits of centrifugal

p 303 N88-17677 compressors

CENTRIFUGAL PUMPS

A study of the effect of leakage flow on the main flow ahead of the rotor of a centrifugal pump or a compressor p 315 A88-25630

Ceramic bearings for use in gas turbine engines [NASA-TM-100288] p 322 N88-18007 CERTIFICATION

Airworthiness considerations

CHANNEL FLOW Experimental investigation of the influence of diffuser shell shapes on performance of dump diffusers in combustor p 297 A88-26628

CHARACTERIZATION

Comparison of UNL laser imaging and sizing system and a phase/Doppler system for analyzing sprays from a NASA nozzle

[NASA-CR-182437] CHEMICAL EQUILIBRIUM

Numerical simulation of hypersonic inlet flows with equilibrium or finite rate chemistry

p 275 A88-27717 [AIAA PAPER 88-0273] CHLORINE OXIDES Midlatitude CIO below 22 km altitude - Measurements

with a new aircraft-borne instrument p 323 A88-27456

CIRCULAR CYLINDERS

Ray analysis of a class of hybrid cylindrical aircraft wings --- for EM coupling of airborne antenna pairs

p 285 A88-25755

CIRCULATION CONTROL AIRFOILS Proceedings of the Circulation-Control Workshop, 1986

[NASA-CP-2432] p 279 N88-17586 Evaluation of a research circulation control airfoil using Navier-Stokes methods p 279 N88-17591 Navier-Stokes computations for circulation control airfoils p 279 N88-17592

Wall jet analysis for circulation control aerodynamics. Part 2: Zonal modeling concepts for wall jet/potential flow p 279 N88-17593

coupling The further development of circulation control airfoils p 279 N88-17594

On the effect of leading edge blowing on circulation control airfoil aerodynamics p 280 N88-17595 Pressure distributions and oil-flow patterns for a swept p 280 N88-17596 circulation-control wing Boundary-layer and wake measurements on a swept.

p 280 N88-17597 circulation-control wing Wind tunnel studies of circulation control elliptical p 280 N88-17598 airfoils

Volume 1:

CIRCULATION CONTROL RO	DIOH	S	
An aerodynamic comparison of blo	wn and	mechanical	COMMUNICATIO
high lift airfoils	p 281	N88-17606	AvSat - A ne
Fixed wing CCW aerodynamics	with a		communications
supplementary thrust deflection		N88-17607	[AIAA PAPER 8
Development of circulation con			COMMUNICATIO
powered-lift STOL aircraft	p 291	N88-17608	AvSat - A n
A potential flight evalu upper-surface-blowing/circulation-con		of an	communications
upper-surface-blownig/circulation-con	p 291	N88-17609	(AIAA PAPER 8 COMPENSATION
Circulation control STOL aircraft de			Transport dela
	p 281	N88-17610	imagery systems
IRCULATION CONTROL ROTORS			[NASA-TM-1000
Proceedings of the Circulation-C	ontrol	Workshop,	COMPENSATORS
1986			On the design
[NASA-CP-2432]		N88-17586	· control
Flap-lag-torsion aeroelastic stab			COMPENSATORY
control rotor in forward flight		N88-17600	Modern contr
The impact of circulation control controls systems		N88-17601	stabilization and
Analysis of a fixed-pitch X-wing rot			COMPETITION
surface blowing		N88-17602	Become a co Air-breathing Pro
Prediction of aeroelastic response			All-breauling Fit
rotor		N88-17603	COMPLEX SYSTE
X-wing potential for Navy applicatio	ns		Synthesis of
	p 281	N88-17604	systems
Reduction of tilt rotor download			COMPONENT RE
control	p 281	N88-17605	Measuring aird
IVIL AVIATION	Th		Results of NA
Freedom in European air transport worlds?		A88-26183	COMPOSITE MAT
Something special in the air and or			COMPOSITE MAT
potential for unlimited liability of interior			Advanced co technology
for terrorist attacks under the Warsaw			Recent Sikors
		A88-26546	Trocom omore
Product planning in civil aircraft con		n	COMPOSITE STR
	p 270	N88-17849	Buckling of de
LEAR AIR TURBULENCE			pressure
Infrared low-level wind shear work	- 004	NOO 47000	Delamination
LUTTER	p 284	N88-17628	rotorcraft
Radar backscatter from airports	and s	urrounding	Helicopter cras
		N88-17623	Experimental s
Radar returns from ground clutter in			flutter characteri
		N88-17624	[NAL-TR-936]
OAL			Mechanical p
High-density jet fuels from coal syn			thermoplastic ma
	p 314	N88-17813	[NAL-TR-934]
DAL LIQUEFACTION			Rotorcraft wei
High-density jet fuels from coal syn [DE88-003132]		appendix 4 N88-17813	characteristics
DANDA EFFECT	p 314	N00-1/013	[AD-A186576]
Proceedings of the Circulation-C	Control	Workshop	COMPRESSIBILIT Investigation
1986		vv ornonop,	cascades
[NASA-CP-2432]	p 279	N88-17586	COMPRESSIBLE I
DATINGS	•	-	The effect of t
Self-lubricating coatings for		emperature	flow
	p 313	N88-16703	COMPRESSIBLE I
DCKPIT SIMULATORS			A computation
Status of NASA/Army rotorcra	m rese	earch and	by nozzle wakes
development piloted flight simulation	p 310	N88-16651	New technique
ODING	p 510	1100-10031	[AD-A186719] Lifting-surface
New techniques in computational as	erodyna	mics	compressible flo
		N88-16664	[NAL-TR-943]
A transonic-small-disturbance	wing	-	COMPRESSOR BE
methodology	_		Numerical calc
	p 282	N88-17614	compressor case
OLD PLASMAS			
Thermodynamic nonequilibrium of	a tar t	ypersonic	Operation of

ressible flow -TR-9431 RESSOR BLADES ressor cascade with circular-arc blades eration of gas turbine engines environments p 276 A88-28356 **COLD WEATHER TESTS** Radial compressor design using an Euler solver Calibration of the ARL (Aeronautical Research p 303 Laboratories) rain and icing facility [AD-A186776] p 310 N88-16710 centrifugal compressors COLLISION AVOIDANCE A study of the TCAS 2 collision avoidance system high pressure compressor mounted on a Boeing 737 aircraft [NASA-CR-182457] p 286 N88-16687 rotor blade section COMBAT p 304 N88-17681 compressor COMPRESSOR EFFICIENCY

A piloted simulation investigating handling qualities and performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun AD-A1868781

p 290 N88-16689

COMBUSTION CHAMBERS

A rig testing method of annular combustor in p 297 A88-26589 aeroengine Experimental investigation of the influence of diffuser shell shapes on performance of dump diffusers in combustor p 297 A88-26628

Soot loading in a generic gas turbine combustor p 297 A88-27296 Numerical simulation of diffuser/combustor dome interaction p 302 N88-17663

COMBUSTION VIBRATION

Multifrequency nonlinear vibrations in a gas-turbine ngine --- Russian book p 298 A88-27742 engine --- Russian book

```
IUNICATION NETWORKS
Sat - A new global satellite system for aircraft
nunications
A PAPER 88-08461
                             p 286 A88-27587
IUNICATION SATELLITES
Sat - A new global satellite system for aircraft
nunications
                             p 286 A88-27587
A PAPER 88-08461
```

ansport delay compensation for computer-generated ery systems SA-TM-1000841 p 292 N88-17645

the design of robust compensators for airplane modal p 304 A88-27322

ENSATORY TRACKING

dem control methods applied to a line-of-sight p 295 A88-27399 lization and tracking system ETITION

come a creative force for future aircraft --- AIAA reathing Propulsion Team Design Competition p 330 A88-25749

LEX SYSTEMS

nthesis of the flexible structures of complex p 324 A88-27148

ONENT RELIABILITY

asuring aircraft fluid quantities n 295 A88-26648 sults of NASA/Army transmission research p 299 N88-16640

OSITE MATERIALS

vanced composite airframe program: Today's p 289 N88-16636 noloav cent Sikorsky R and D progress p 289 N88-16659

SITE STRUCTURES

ckling of delaminated, long, cylindrical panels under p 317 A88-26890 sure lamination durability of composite materials for p 312 N88-16634 licopter crashworthiness research program

p 283 N88-16635 perimental study on the effect of fiber orientation on characteristics of high-aspect-ratio transport wing p 308 N88-16708 chanical properties of carbon fiber reinforced noplastic matrix composites

p 313 N88-16827 torcraft weight trends in light of structural material cteristics

1865761 p 291 N88-17642

RESSIBILITY EFFECTS

estigation of dihedral effects in compressor p 303 N88-17672

RESSIBLE BOUNDARY LAYER

e effect of the boundary layer on transonic cascade p 273 A88-26587

RESSIBLE FLOW

computational method of exciting forces generated p 273 A88-26630 zzle wakes on turbine blades techniques in computational aerodynamics

186719] p 276 N88-16664 ting-surface theory of oscillating propellers in

p 282 N88-17613

merical calculation of 3-D turbulent flow in a straight

p 273 A88-26584

p 300 N88-17654

N88-17675 Secondary flow measurements with L2F-technique in p 303 N88-17676 Design and testing of a front stage for an advanced p 303 N82-17679 Experimental investigation of a supercritical compressor p 304 N88-17680 Computation of secondary flows in an axial multistage

Method for predicting performance limits of centrifugal p 303 N88-17677 compressors

COMPRESSORS

Computation of secondary flows in an axial multistage p 304 N88-17681 compressor

COMPUTATION

A computational study of thrust augmenting ejectors based on a viscous-inviscid approach p 321 N88-17929

COMPUTATIONAL FLUID DYNAMICS

Numerical calculation of 3-D turbulent flow in a straight compressor cascade with circular-arc blades p 273 A88-26584

An analysis system for transonic flow in cascade p 273 A88-26631

Numerical grid generation in computational fluid dynamics; Proceedings of the International Conference, Landshut, Federal Republic of Germany, July 14-17, 1986 p 324 A88-26726 approach to the interactive generation of blockstructured volume grids using computer graphics devices p 324 A88-26746 A block structured mesh generation technique for aerodynamic geometries p 274 A88-26747 Elliptic generation of composite three-dimensional grids about realistic aircraft p 287 A88-26749 Algebraic grid generation for annular nozzle flowfield prediction p 275 A88-26751 Numerical simulation of hypersonic inlet flows with equilibrium or finite rate chemistry [AIAA PAPER 88-0273] p 275 A88-27717

Comment on 'Computation of the potential flow over airfoils with cusped or thin trailing edges p 276 A88-28050

NASA/Army Rotorcraft Technology. erodynamics, and Dynamics and Aeroelasticity [NASA-CP-2495-VOL-11 p 269 N88-16625 The development of CFD methods for rotor p 288 N88-16627 applications A summary of recent NASA/Army contributions to

rotorcraft vibrations and structural dynamics technology p 307 N88-16628

A review of research in rotor loads

p 288 N88-16629 Comprehensive rotorcraft analysis methods

p 276 N88-16630 p 307 N88-16631 Rotorcraft aeroelastic stability A decade of aeroacoustic research at NASA Ames Research Center p 328 N88-16648

Aeroacoustic research programs at the Army Aviation Research and Technology Activity p 329 N88-16649 New techniques in computational aerodynamics

(AD-A186719) p 276 N88-16664 Computational unsteady aerodynamics for aeroelastic

[NASA-TM-100523] p 276 N88-16668 CFD validation experiments for internal flows

[NASA-TM-100797] p 278 N88-16679 p 320 N88-17434 Numerical fluid mechanics Solution of the three-dimensional Navier-Stokes equations for transonic flow using a multigrid method

p 278 N88-17579 Application of empirical and linear methods to VSTOL powered-lift aerodynamics

NASA-TM-100048) p 278 N88-17581 Computation of secondary flows in an axial multistage compresso p 304 N88-17681

COMPUTATIONAL GRIDS

3D-computational mesh generation around a propeller by elliptic differential equation system

p 274 A88-26643 Numerical grid generation in computational fluid dynamics; Proceedings of the International Conference, Landshut, Federal Republic of Germany, July 14-17, 1986 p 324 A88-26726 Geometry/grid generation in n + 1 easy steps --- for flows involving flight vehicles embedded within ground test facility p 274 A88-26731 Surface mesh generation using elliptic equations

p 324 A88-26732 Generation of patched multiple-region grids using elliptic equations p 274 A88-26743 Generation of body-fitted grids around airfoils using p 274 A88-26745 multigrid method An approach to the interactive generation of blockstructured volume grids using computer graphics p 324 A88-26746 A block structured mesh generation technique for p 274 A88-26747 aerodynamic geometries Elliptic grid generation system for three-dimensional configurations using Poisson's equation

p 324 A88-26748 Elliptic generation of composite three-dimensional grids about realistic aircraft p 287 A88-26749 Algebraic grid generation for annular nozzle flowfield prediction p 275 A88-26751 Review of fatigue and fracture research at NASA Langley
Research Center p 318 N88-16633 p 318 N88-16633

COMPUTER AIDED DESIGN

XT-4 - Potent with potential p 287 A88-25809 Optimum design of structures with multiple constraints p 317 A88-28042

System analysis in rotorcraft design: The past decade p 289 N88-16652

COMPUTER AIDED MANUFACTURING

XT-4 - Potent with potential p 287 A88-25809 COMPUTER ASSISTED INSTRUCTION

IMIS: Integrated Maintenance Information System. A maintenance information delivery concept

p 330 N88-17207

C

C

C

SUBJECT INDEX **CREEP PROPERTIES**

Tutoring electronic troubleshooting in a simulated CONTROL STABILITY Helicopter mathematical models and control law p 311 N88-17215 Alpha-degree stability and robustness - Application to maintenance work environment development for handling qualities research the development of a regulator p 326 p 307 COMPUTER GRAPHICS A88-27755 N88-16642 Points of view on linear and nonlinear filtering in Flight simulators for under \$100,000 handling-qualities design criteria p 327 A88-27771 p 309 A88-25010 development p 308 N88-16645 CONTROL SURFACES An approach to the interactive generation of CONTROLLERS Effectiveness of various control surfaces in quasi-steady Designing stabilizing controllers for uncertain systems blockstructured volume grids using computer graphics and unsteady conditions p 324 A88-26746 using the Riccati equation approach (AGARD-R-735) p 309 N88-17682 COMPUTER PROGRAMS p 325 A88-27326 CONTROL SYSTEMS DESIGN Robotic air vehicle. Blending artificial intelligence with Pumping systems and flow interfaces for rapid response Loop shaping with output feedback p 291 N88-17252 conventional software electronic reheat controls p 302 N88-17665 p 324 A88-27312 Methods for evaluating the quality and reliability of Possibilities for on-line surge suppression by fast guide Robustness/performance tradeoffs in eigenstructure aerodynamic software programs vane adjustment in axial compressors assignment with flight control application [PB87-169793] n 328 N88-17314 p 303 N88-17674 p 324 A88-27318 Investigation of dynamic stall using LDV (Laser Doppler COOLING On the design of robust compensators for airplane modal Description of tests run in the T2 cryogenic wind Velocimetry): Mean flow studies p 304 A88-27322 control [AD-A187629] p 282 N88-17611 tunnel Designing stabilizing controllers for uncertain systems wing design [PR87-170296] p 277 N88-16672 transonic-small-disturbance using the Riccati equation approach methodology **COOLING SYSTEMS** p 325 A88-27326 INASA-TP-28061 p 282 N88-17614 Control of linear systems by output proportional plus Cooling of airborne equipment --- Russian book p 325 A88-27327 p 296 A88-27731 Transport delay compensation for computer-generated derivative feedback Integrated controls design and simulation Advanced techniques employed in blade cooling imagery systems p 292 N88-17645 [NASA-TM-100084] p 295 A88-27329 p 301 N88-17659 An MRAC system for aircraft longitudinal control COMPUTER TECHNIQUES **COPPER ALLOYS** p 305 A88-27370 Flow field measurements using hotwire anemometry Fatigue crack initiation and propagation properties of p 318 N88-16951 Non-linear inverse dynamics control laws - A sampled (AD-A187029) Al-Li-Cu alloys in air and in aqueous corrosive solutions D 325 A88-27381 p 312 A88-25178 data approach COMPUTER VISION Modern control methods applied to a line-of-sight Flight simulators for under \$100,000 stabilization and tracking system p 295 A88-27399 p 309 A88-25010 Low frequency eddy current detection and evaluation An architecture for real-time rule-based control COMPUTERIZED SIMULATION of corrosion in aircraft skins p 325 A88-27405 [ETN-88-91664] p 313 N88-16859 On the improvement of an adaptive observer for Failure model determination in a knowledge-based p 323 A88-25878 CORROSION TESTS multi-output systems ontrol system p 325 A88-27406 Automatic systems in aeronautics; National Colloquium, control system Optimizing HF antenna systems on the Dolphin and Sea Fatigue crack initiation and propagation properties of Al-Li-Cu alloys in air and in aqueous corrosive solutions Hawk helicopters Paris, France, Mar. 17-19, 1986, Proceedings p 312 A88-25178 p 318 N88-16901 [AD-A186552] p 326 A88-27751 COST ANALYSIS SWAN: An expert system with natural language interface Technological leaps occurring in the aeronautical and A model for estimating depot maintenance costs for Air for tactical air capability assessment p 326 A88-27752 p 327 N88-17253 Force fighter and attack aircraft Active control of helicopter vibrations by self-adaptive [AD-A187097] p 269 N88-16624 Radar returns from ground clutter in vicinity of airports multicyclic control p 305 A88-27759 A cost and benefit analysis of hydraulic fluid systems p 321 N88-17624 Design of a helicopter automatic flight control system for the next generation of tactical aircraft Simulator investigation of wind shear recovery p 306 A88-27762 p 290 N88-16690 [AD-A186911] p 284 N88-17630 techniques Redundant control systems - Flexibility and optimality Turbine engine monitoring systems: Can they benefit p 327 A88-27766 Numerical simulation of diffuser/combustor dome p 302 N88-17663 Aircraft flight test trajectory control component improvement program management? interaction p 299 N88-16706 [AD-A186992] p 308 N88-16707 CONCRETE STRUCTURES [NASA-CR-179428] The Shock and Vibration Bulletin. Part 4: Structural Dynamics and Modal Test and Analysis COST EFFECTIVENESS The impact of circulation control on rotary aircraft p 308 N88-17601 Flight simulators for under \$100,000 controls systems p 309 A88-25010 p 320 N88-17062 An application of eigenspace methods to symmetric p 294 A88-25366 flutter suppression Simplifying flight test p 294 A88-25366 A cost and benefit analysis of hydraulic fluid systems CONFERENCES [NASA-CR-181618] Numerical grid generation in computational fluid Light Electronic Control System (LECOS): A proposal dynamics; Proceedings of the International Conference, for the next generation of tactical aircraft p 290 N88-16690 Landshut, Federal Republic of Germany, July 14-17, 1986 p 324 A88-26726 [AD-A186911] p 290 N88-16690 Evaluation of bituminous materials used in pavement for a interconnected error-tolerant, optoelectronic control p 309 N88-17836 Automatic systems in aeronautics; National Colloquium, [MBB-UT-004/87] recycling projects at Tyndall, MacDill, and Hurlburt Air Paris, France, Mar. 17-19, 1986, Proceedings p 326 A88-27751 Active control technology with adaptive control concept Force Bases [AD-A188068] in the aircraft construction p 321 N88-17871 NASA/Army Rotorcraft Technology. Volume 1: [MBB/LKE-294/S/PUB/295] p 309 N88-17845 COST ESTIMATES Aerodynamics, and Dynamics and Aeroelasticity
[NASA-CP-2495-VOL-1] p 269 N88-16625 A model for estimating depot maintenance costs for Air CONTROL THEORY [NASA-CP-2495-VOL-11 Force fighter and attack aircraft Aircraft guidance for formation flying based on optimal NASA/Army Rotorcraft Technology. Volume 2: Materials p 269 N88-16624 control theory p 304 A88-27320 and Structures, Propulsion and Drive Systems, Flight COST REDUCTION Non-linear inverse dynamics control laws - A sampled Dynamics and Control, and Acoustics Small gas turbine engine technology p 325 A88-27381 data approach p 270 N88-16632 [NASA-CP-2495-VOL-2] p 298 N88-16638 Control of an axial piston pump using a single-stage The Shock and Vibration Bulletin. Part 4: Structural COUNTER ROTATION p 326 A88-27417 electrohydraulic servovalve Dynamics and Modal Test and Analysis Secondary flow measurements with L2F-technique in On robust control of wing rock using nonlinear control p 320 N88-17062 centrifugal compressors p 303 N88-17676 FAD-A1867511 p 326 A88-27419 Airborne Wind Shear Detection and Warning Systems: COUPLED MODES Alpha-degree stability and robustness - Application to First Combined Manufacturers' and Technologists the development of a regulator p 326 A88-27755 Conference p 283 N88-17616 Theory and development of discrete multivariable [NASA-CP-10006] regulators assuring robust tracking p 326 A88-27756 CRACK INITIATION Advanced Technology for Aero Gas Turbine Modeling and identification in helicopter science Components p 299 N88-17647 Al-Li-Cu alloys in air and in aqueous corrosive solutions p 327 A88-27760 CONICAL BODIES Nonlinear control for level flight of a helicopter CRACK PROPAGATION A conical element for finite element rotor dynamics p 306 A88-27763 p 317 A88-26972 Points of view on linear and nonlinear filtering in Control of vortical separation on conical bodies T3 under constant and variable amplitude loading p 327 A88-27771 aeronautics p 278 N88-17580 An improvement on the adaptive model following CONSERVATION LAWS p 327 A88-28617 control van Leer flux vector splitting in moving coordinates ---Al-Li-Cu alloys in air and in aqueous corrosive solutions Helicopter mathematical models and control law for helicopter rotor blade calculations development for handling qualities research p 317 A88-28046

for aeroengine inlet flow field

Integrated controls design and simulation

Flight test technique, illustrated by Technologies Testing Aircraft System (ATTAS)

CONTROL EQUIPMENT

CONTROL SIMULATION

An exact solution for coupled bending and torsion vibrations of uniform beams having single cross-sectional p 316 A88-26571 Fatigue crack initiation and propagation properties of p 312 A88-25178 Fatigue crack propagation behavior of 2091 T8 and 2024 p 312 A88-25176 Fatigue crack initiation and propagation properties of p 312 A88-25178 CRACKS p 307 N88-16642 Durability and damage tolerance of aluminum castings **CONTROL VALVES** A contour line plotting system with polar coordinates [AD-A186444] p 322 N88-18013 Control of an axial piston pump using a single-stage lectrohydraulic servovalve p 326 A88-27417 CRASHWORTHINESS p 274 A88-26640 electrohydraulic servovalve Helicopter crashworthiness research program CONTROLLABILITY p 283 N88-16635 Cooling of airborne equipment --- Russian book Placement of failure-prone components on flexible p 296 A88-27731 CRATERING structures - A degree of controllability approach A new look at the use of linear methods to predict aircraft p 326 A88-27418 dynamic response to taxi over bomb damaged and repaired p 295 A88-27329 NASA/Army Rotorcraft Technology. Volume 2: Materials p 291 N88-17069 airfields and Structures, Propulsion and Drive Systems, Flight Dynamics and Control, and Acoustics Advanced **CREEP PROPERTIES** Creep and fatigue research efforts on advanced p 291 N88-17433 [NASA-CP-2495-VOL-2] p 270 N88-16632 p 318 N88-16701 materials **A-7**

CROSS FLOW	DESIGN ANALYSIS	DOPPLER RADAR
A jet in a crossflow [NASA-CR-182469] p 277 N88-16674	Review of fatigue and fracture research at NASA Langley Research Center p 318 N88-16633	A fault-tolerant multisensor navigation system design p 295 A88-26670
Control of vortical separation on conical bodies	A note on the aerodynamic design of thin parallel-sided	Airborne Wind Shear Detection and Warning Systems
p 278 N88-17580	aerofoil sections	First Combined Manufacturers' and Technologists' Conference
CRYOGENIC WIND TUNNELS Description of tests run in the T2 cryogenic wind	[ARL-AERO-TM-388] p 277 N88-16677 A transonic-small-disturbance wing design	[NASA-CP-10006] p 283 N88-17616
tunnel	methodology	Airborne Doppler radar technology for wind shear
[PB87-170296] p 277 N88-16672 CURVE FITTING	[NASA-TP-2806] p 282 N88-17614	detection p 284 N88-17622 Crew interface with windshear systems
Using frequency-domain methods to identify XV-15	An integrated aero/mechanical performance approach to high technology turbine design p 301 N88-17657	p 284 N88-17631
aeroelastic modes	Design and test of a high blade speed, high work capacity	Status of FAA terminal Doppler weather radar
[NASA-TM-100033] p 292 N88-17646 CURVED PANELS	transonic turbine p 301 N88-17658	programs . p 321 N88-17632 The advanced low-level windshear alert system
Buckling of delaminated, long, cylindrical panels under	Design and development of an advanced F100 compressor p 303 N88-17678	operational demonstration results, Summer, 1987, Denver
pressure p 317 A88-26890 CUSPS (MATHEMATICS)	compressor p 303 N88-17678 Design and testing of a front stage for an advanced	Stapleton International Airport p 284 N88-17633 DOWNWASH
Comment on 'Computation of the potential flow over	high pressure compressor p 303 N88-17679	Reduction of tilt rotor download using circulation
airfoils with cusped or thin trailing edges'	A computational study of thrust augmenting ejectors	control p 281 N88-17605
p 276 A88-28050 CYCLIC LOADS	based on a viscous-inviscid approach p 321 N88-17929	DRAG MEASUREMENT Flow field measurements using hotwire anemometry
Fatigue crack propagation behavior of 2091 T8 and 2024	DETECTION	[AD-A187029] p 318 N88-16951
T3 under constant and variable amplitude loading p 312 A88-25176	Low frequency eddy current detection and evaluation	DRAG REDUCTION Wing tip sails - Progress to date and future
CYLINDRICAL SHELLS	of corrosion in aircraft skins [ETN-88-91664] p 313 N88-16859	developments p 272 A88-26421
Buckling of delaminated, long, cylindrical panels under	Airborne Wind Shear Detection and Warning Systems:	DRIFT (INSTRUMENTATION)
pressure p 317 A88-26890	First Combined Manufacturers' and Technologists' Conference	Analysis of the two-ring suspension of a dynamically tunable gyroscope p 314 A88-25566
D	[NASA-CP-10006] p 283 N88-17616	DROPS (LIQUIDS)
D	Windshear detection effect of static air temperature bias p 284 N88-17621	Calculation of the path of a droplet in the combustion chamber of a helicopter ramjet engine
DAMAGE ASSESSMENT	bias p 284 N88-17621 The advanced low-level windshear alert system	p 296 A88-25618
Review of fatigue and fracture research at NASA Langley Research Center p 318 N88-16633	operational demonstration results, Summer, 1987, Denver	DUCTED FANS
Mechanical properties of carbon fiber reinforced	Stapleton International Airport p 284 N88-17633 DIAGNOSIS	Aerodynamic performance of a scale-model, counter-rotating unducted fan p 302 N88-17666
thermoplastic matrix composites [NAL-TR-934] p 313 N88-16827	Integrated diagnostics p 296 N88-16655	DUMP COMBUSTORS
[NAL-TR-934] p 313 N88-16827 DAMPING	Knowledge based jet engine diagnostics p 299 N88-17210	Flowfield in a dual-inlet side-dump combustor p 297 A88-27291
Active control technology with adaptive control concept	DIFFUSERS	DUST
in the aircraft construction [MBB/LKE-294/S/PUB/295] p 309 N88-17845	Experimental investigation of the influence of diffuser	Operation of gas turbine engines in dust-laden environments p 300 N88-17654
DATA ACQUISITION	shell shapes on performance of dump diffusers in combustor p 297 A88-26628	DYNAMIC CHARACTERISTICS
Simplifying flight test . p 294 A88-25366 A system of data acquisition and processing in	The advantage of variable geometry for turbine engines	Predicting dynamic separation characteristics of general
aeroengine testing p 323 A88-26627	at low power p 300 N88-17653 Numerical simulation of diffuser/combustor dome	configurations [AD-A186689] p 290 N88-16691
Inflight thermal data recording from IAF aircraft p 295 A88-27639	interaction p 302 N88-17663	Dynamic analysis of multimesh-gear helicopter
Flow field measurements using hotwire anemometry	DIGITAL DATA	transmissions
[AD-A187029] p 318 N88-16951	Information transfer in the National Airspace System p 330 N88-17634	[NASA-TP-2789] p 319 N88-17045 DYNAMIC LOADS
DATA BASES Rotorcraft handling-qualities design criteria	DIGITAL ELECTRONICS	Analysis of tasks for dynamic man/machine load
development p 308 N88-16645	Avionics systems integration technology p 296 N88-16654	balancing in advanced helicopters [DE88-003735] p 290 N88-16696
DATA LINKS Information transfer in the National Airspace System	DIGITAL SIMULATION	DYNAMIC MODELS
p 330 N88-17634	A dynamical mathematical model and digital simulation for anti-surge control system of a turbofan engine	A dynamical mathematical model and digital simulation
DATA PROCESSING A system of data acquisition and processing in	p 297 A88-26638	for anti-surge control system of a turbofan engine p 297 A88-26638
aeroengine testing p 323 A88-26627	DIGITAL SYSTEMS Inflight thermal data recording from IAF aircraft	DYNAMIC MODULUS OF ELASTICITY
Data processing and analysis during the automated testing of gas turbine engines — Russian book	p 295 A88-27639	Dynamic flexibility coefficient matrix and its measurement for aeroengine supporting system
p 298 A88-27730	Transport delay compensation for computer-generated imagery systems	p 317 A88-26641
DATA REDUCTION Data processing and analysis during the automated	[NASA-TM-100084] p 292 N88-17645	DYNAMIC RESPONSE
testing of gas turbine engines Russian book	DIRECTIONAL SOLIDIFICATION (CRYSTALS) Development of a shell system for DS moulds at RR	A new look at the use of linear methods to predict aircraft dynamic response to taxi over bomb damaged and repaired
p 298 A88-27730	precision casting facility directional solidification (DS)	airfields p 291 N88-17069
DATA TRANSMISSION Information transfer in the National Airspace System	[PNR-90400] p 318 N88-16893	Dynamic response of a geared train of rotors subjected to random support excitations p 320 N88-17073
p 330 N88-17634	DIRECTIVITY Study on a unidirectional ring laser gyro. Part 1:	Vibration and flutter characteristics of the SR7L
DECISION MAKING Real-time artificial intelligence issues in the development	Proposition of the principle and studies on the	large-scale propfan
of the adaptive tactical navigator p 327 N88-17260	components [NAL-TR-933] p 319 N88-17010	[NASA-TM-100272] p 322 N88-18036 DYNAMIC STRUCTURAL ANALYSIS
DEFENSE PROGRAM	DISPENSERS	A summary of recent NASA/Army contributions to
Squeezing the test cycle improving flight-test efficiency p 287 A88-26645	Aerodynamic aspects of the configurational systems	rotorcraft vibrations and structural dynamics technology
DEFLECTORS	layout of a dispenser [MBB-UA-1047/87] p 294 N88-17863	p 307 N88-16628 Rotorcraft aeroelastic stability p 307 N88-16631
The Shock and Vibration Bulletin. Part 4: Structural Dynamics and Modal Test and Analysis	DISPLAY DEVICES	DYNAMIC TESTS
[AD-A186751] p 320 N88-17062	The advanced low-level windshear alert system operational demonstration results, Summer, 1987, Denver	Comprehensive analysis of helicopters with bearingless
DEFORMATION A review of research in rotor loads	Stapleton International Airport p 284 N88-17633	rotors [NASA-CR-182537] p 328 N88-18300
p 288 N88-16629	Information transfer in the National Airspace System: p 330 N88-17634	DYNAMICAL SYSTEMS
DEGRADATION Congration of and truting angles in duct lades	Helicopter external vision requirements and visual	Non-linear inverse dynamics control laws - A sampled
Operation of gas turbine engines in dust-laden environments p 300 N88-17654	display characteristics: A report/bibliography, revision A	data approach p 325 A88-27381 A study of the dynamic behavior of rotor-bearing systems
DEICERS	[AD-A187075] p 291 N88-17641 DISTRIBUTED PARAMETER SYSTEMS	by the finite element method p 317 A88-27775
Calibration of the ARL (Aeronautical Research Laboratories) rain and icing facility	Synthesis of the flexible structures of complex	
[AD-A186776] p 310 N88-16710	systems p 324 A88-27148 DISTRIBUTED PROCESSING	E
DELAMINATING Buckling of delaminated, long, cylindrical panels under	Analysis of tasks for dynamic man/machine load	EDDY CURRENTS
pressure p 317 A88-26890	balancing in advanced helicopters [DE88-003735] p 290 N88-16696	EDDY CURRENTS Low frequency eddy current detection and evaluation
Delamination durability of composite materials for	DOPPLER EFFECT	of corrosion in aircraft skins
rotorcraft p 312 N88-16634 DELTA WINGS	Comparison of UNL laser imaging and sizing system and a phase/Doppler system for analyzing sprays from	[ETN-88-91664] p 313 N88-16859 EDDY VISCOSITY
Supersonic aerodynamics of delta wings	a NASA nozzle	Evaluation of a research circulation control airfoil using
[NASA-TP-2771] p 282 N88-17615	[NASA-CR-182437] p 318 N88-16956	Navier-Stokes methods p 279 N88-17591

EIGENVALUES Advanced Technology for Aero Gas Turbine Airbus, the successful European cooperation Robustness/performance tradeoffs in eigenstructure Components [MBB-UT-005/87] p 270 N88-17847 p 299 N88-17647 assignment with flight control application [AGARD-CP-421] **EVALUATION** p 324 A88-27318 The coming revolution in turbine engine technology Evaluation of bituminous materials used in pavement p 299 N88-17648 **EIGENVECTORS** recycling projects at Tyndall, MacDill, and Hurlburt Air An examination of the impact of potential advances in Robustness/performance tradeoffs in eigenstructure Force Bases assignment with flight control application component technology for future military engines [AD-A188068] p 321 N88-17871 p 324 A88-27318 p 300 N88-17650 **EVASIVE ACTIONS** Specification of an engine and its components starting guidance An application of eigenspace methods to symmetric Approach trajectory for maximum from a consideration of aircraft missions p 307 A88-28265 flutter suppression concealment p 300 N88-17651 [NASA-CR-181618] p 309 N88-17684 EXHAUST NOZZLES Experimental evaluation of a translating nozzle sidewall **EJECTORS** Advanced Technology for Aero Gas Turbine radial turbine p 301 N88-17656 A computational study of thrust augmenting ejectors Components An integrated aero/mechanical performance approach [AGARD-CP-421] p 299 N88-17647 based on a viscous-inviscid approach p 301 N88-17657 to high technology turbine design p 321 N88-17929 Experimental evaluation of a translating nozzle sidewall adial turbine p 301 N88-17656 Design and aerodynamic performance of a small **ELASTIC BODIES** radial turbine p 301 N88-17662 mixed-flow gas generator turbine Elastic hingeless scissor design ρ 315 A88-26159 A computational study of thrust augmenting ejectors Development of a plenum chamber burner system for **ELASTIC BUCKLING** based on a viscous-inviscid approach an advanced VTOL engine p 302 N88-17664
Analysis of possible transmission arrangements applicable for driving single or twin counterrotating fans p 321 N88-17929 Simplified calculation of the crushing process in structural elements p 315 A88-26171 EXPERT SYSTEMS **ELASTIC DEFORMATION** p 303 N88-17670 Knowledge-based multi-sensor image fusion on propfan engines Simplified calculation of the crushing process in ENGINE FAILURE p 316 A88-26419 p 315 A88-26171 structural elements Verification of obstacle accountability areas using a An architecture for real-time rule-based control p 325 A88-27405 **ELASTIC PROPERTIES** simple mathematical model. Part 1: Description of general Stability of a wing box with elastic ribs model and application for a specific case --- engine failure Expert system allocation for the electronically scanned p 315 A88-25623 antenna radar p 325 A88-27411 p 283 N88-16683 [NLR-TR-85069-U] **ELASTOMERS** Knowledge based jet engine diagnostics Factors affecting the sticking of insects on modified **ENGINE NOISE** p 299 N88-17210 Measured and calculated acoustic attenuation rates of aircraft wings SWAN: An expert system with natural language interface tuned resonator arrays for two surface impedance distribution models with flow [NASA-CR-182451] p 313 N88-16878 for tactical air capability assessment **ELECTRIC CONTROL** p 327 N88-17253 INASA-TP-27661 Control of an axial piston pump using a single-stage **EXTREMELY LOW RADIO FREQUENCIES** Annoyance caused by advanced turboprop aircraft p 326 A88-27417 electrohydrautic servovatve Ultra-low frequency vibration data acquisition concerns flyover noise: Single-rotating propeller configuration in operating flight simulators [DE88-004795] **ELECTROMAGNETIC INTERFERENCE** [NASA-TP-2782] p 329 N88-17441 p 311 N88-17687 State estimation of manoeuvring targets from noisy radar **ENGINE PARTS** measurements p 294 A88-26247 Turbine engine monitoring systems: Can they benefit **ELECTRONIC CONTROL** component improvement program management? Pumping systems and flow interfaces for rapid response p 299 N88-16706 electronic reheat controls p 302 N88-17665 Development of a shell system for DS moulds at RR precision casting facility --- directional solidification (DS) F-16 AIRCRAFT **ELECTRONIC EQUIPMENT** F-16 flight tests with the F110 engine - Lessons A study of the TCAS 2 collision avoidance system p 318 N88-16893 learned p 288 A88-26875 mounted on a Boeing 737 aircraft An examination of the impact of potential advances in Modern control methods applied to a line-of-sight [NASA-CR-182457] p 286 N88-16687 component technology for future military engines stabilization and tracking system A88-27399 p 295 **ELLIPTIC DIFFERENTIAL EQUATIONS** p 300 N88-17650 Agile Falcon and Hornet 2000 p 288 A88-27496 Surface mesh generation using elliptic equations Specification of an engine and its components starting F-18 AIRCRAFT p 324 A88-26732 from a consideration of aircraft missions Agile Falcon and Hornet 2000 A88-27496 p 288 p 300 N88-17651 Generation of patched multiple-region grids using elliptic F-8 AIRCRAFT p 274 A88-26743 equations Ceramic bearings for use in gas turbine engines Flight control for the F-8 Oblique Wing Research [NASA-TM-100288] p 322 N88-18007 Elliptic grid generation system for three-dimensional p 305 A88-27365 **ENGINE TESTS** FABRICATION configurations using Poisson's equation A rig testing method of annular combustor in p 324 A88-26748 The problem of the development of formal-logic models aeroengine p 297 A88-26589 Elliptic generation of composite three-dimensional grids of aircraft assembly p 323 A88-25627 about realistic aircraft p 287 A88-26749 A system of data acquisition and processing in **FACILITIES** p 323 A88-26627 ELLIPTICITY aeroengine testing Lewis materials research and technology: An overview Transient engine performance with water ingestion p 330 N88-16699 Comparison of the aerodynamic characteristics of nnular and elliptic wings p 270 A88-25617
Wind tunnel studies of circulation control elliptical annular and elliptic wings p 297 A88-27295 **FACTORIZATION** Data processing and analysis during the automated Calculation of nonpotential flows of an ideal gas in testing of gas turbine engines --- Russian book o 280 N88-17598 axisymmetric nozzles by the approximate factorization p 298 A88-27730 p 270 A88-25561 **EMERGENCIES** method Design and development of an advanced F100 **FAILURE ANALYSIS** Sudden in-flight incapacitation in general aviation [AD-A187044] p 283 N88-16682 p 303 N88-17678 Failure model determination in a knowledge-based p 325 A88-27406 **ENERGY ABSORPTION** ENTROPY control system Entropy and vorticity corrections for transonic flows Helicopter crashworthiness research program Experimental implementation and evaluation of the RMI p 273 A88-26435 p 283 N88-16635 failure detection algorithm --- Reachable Measurement **ENGINE CONTROL ENVIRONMENT PROTECTION** p 325 A88-27410 The environmental consequences of municipal airports A dynamical mathematical model and digital simulation Delamination durability of composite materials for A subject of federal mandate? p 330 A88-26547 p 312 N88-16634 for anti-surge control system of a turbofan engine rotorcraft p 297 A88-26638 Mechanical properties of carbon fiber reinforced **EPOXY MATRIX COMPOSITES** Pumping systems and flow interfaces for rapid response Effect of high temperature spikes on a carbon p 312 A88-28299 thermoplastic matrix composites electronic reheat controls p 302 N88-17665 fibre-reinforced epoxy laminate [NAL-TR-934] p 313 N88-16827 Possibilities for on-line surge suppression by fast guide **EQUILIBRIUM FOUATIONS** vane adjustment in axial compressors Effect of a model support strut on measurement of Flap-lag-torsion aeroelastic stability of a circulation aerodynamic longitudinal and lateral coefficients p 303 N88-17674 p 280 N88-17600 control rotor in forward flight [PB87-170288] p 277 N88-16670 EROSION Become a creative force for future aircraft --- AIAA FALSE ALARMS Operation of gas turbine engines in dust-laden Air-breathing Propulsion Team Design Competition Response of wind shear warning systems to turbulence p 300 N88-17654 environments p 330 A88-25749 with implication of nuisance alerts p 283 N88-17618 **ESTIMATING** Doubling thrust-to-weight ratio p 297 A88-26649 Windshear warning aerospatiale approach A model for estimating depot maintenance costs for Air p 284 N88-17620 F-16 flight tests with the F110 engine - Lessons Force fighter and attack aircraft p 288 A88-26875 p 285 N88-17636 learned Airworthiness considerations (AD-A1870971 p 269 N88-16624 FAN BLADES NASA/Army Rotorcraft Technology. Volume 2: Materials **EULER EQUATIONS OF MOTION** and Structures, Propulsion and Drive Systems, Flight Dynamics and Control, and Acoustics Aerodynamic performance counter-rotating unducted fan of а scale-model A close coupling procedure for zonal solutions of the p 302 N88-17666 Navier-Stokes, Euler and boundary-layer equations [NASA-CP-2495-VOL-2] p 270 N88-16632 FATIGUE (MATERIALS) p 316 A88-26173 Technology developments for a compound cycle Mechanical properties of carbon fiber reinforced van Leer flux vector splitting in moving coordinates --p 298 N88-16637 thermoplastic matrix composites for helicopter rotor blade calculations Small gas turbine engine technology [NAL-TR-934] p 313 N88-16827 p 317 A88-28046 p 298 N88-16638 **FATIGUE TESTS** The convertible engine: A dual-mode propulsion p 298 N88-16639 Radial compressor design using an Euler solver Structural properties of braided graphite/epoxy p 303 N88-17675 composites p 312 A88-25266 Impact and promise of NASA **EUROPEAN AIRBUS** FAULT TOLERANCE aeropropulsion p 299 N88-16698 Testing of a schematic transport plane model in several A fault-tolerant multisensor navigation system design technology

European windtunnels

p 277 N88-16671

Integrated diagnostics

[PB87-170270]

High temperature polymer matrix composites

p 313 N88-16700

p 295 A88-26670

p 296 N88-16655

FEEDBACK CONTROL SUBJECT INDEX

FEEDBACK CONTROL

A geometric approach to nonlinear singularly perturbed p 323 A88-26264 control systems Loop shaping with output feedback

p 324 A88-27312

Designing stabilizing controllers for uncertain systems using the Riccati equation approach

p 325 A88-27326 Control of linear systems by output proportional plus p 325 A88-27327 derivative feedback Active control of helicopter vibrations by self-adaptive multicyclic control p 305 A88-27759

Nonlinear control for level flight of a helicopter p 306 A88-27763

FIRER COMPOSITES

Structural properties of braided graphite/epoxy p 312 A88-25266 composites Effect of an optimized fiber orientation on transonic flutter characteristics of a high-aspect-ratio composite

[NAL-TR-930] p 308 N88-16709 Testing of a tail rotor system in a fiber composite type

of construction p 294 N88-17854 [MBB-UD-472/86]

FIBER ORIENTATION

Experimental study on the effect of fiber orientation on flutter characteristics of high-aspect-ratio transport wing [NAL-TR-936] p 308 N88-16708 Effect of an optimized fiber orientation on transonic flutter characteristics of a high-aspect-ratio composite

wina [NAL-TR-930] p 308 N88-16709

FIGHTER AIRCRAFT

Squeezing the test cycle --- improving flight-test ficiency p 287 A88-26645 efficiency Expert system allocation for the electronically scanned antenna radar p 325 A88-27411 p 288 A88-27496

Agile Falcon and Hornet 2000 A model for estimating depot maintenance costs for Air Force fighter and attack aircraft

[AD-A187097] p 269 N88-16624 A cost and benefit analysis of hydraulic fluid systems for the next generation of tactical aircraft

[AD-A186911] p 290 N88-16690 Neural network based architectures for aerospace applications p 327 N88-17218

Calculation of aerodynamic characteristics of airplane configurations at high angles of attack [NASA-CR-182541] p 282 N88-17612

An examination of the impact of potential advances in component technology for future military engines

p 300 N88-17650 Technical-scientific Research and development. publications (1956-1987): Retrospective view prospects. Jubilee edition on the occasion of the 75th birthday of Dipl.-Engr. Dr.-Engr. E. H. Ludwig Boelkow [ISSN-0931-9751] p 321 N88-17819

Flight testing of fighter aircraft [MBB/LKE-62/S/PUB/292] p 293 N88-17844

FINITE DIFFERENCE THEORY

van Leer flux vector splitting in moving coordinates --for helicopter rotor blade calculations

p 317 A88-28046 Navier-Stokes computations for circulation control p 279 N88-17592 airfoils

FINITE ELEMENT METHOD

Application of a FEM moving node adaptive method to accurate shock capturing p 275 A88-26753 Finite element analysis for shock absorbers of pilot p 288 A88-26893 A conical element for finite element rotor dynamics

p 317 A88-26972 A study of the dynamic behavior of rotor-bearing systems

p 317 A88-27775 by the finite element method Dynamic response of a geared train of rotors subjected

p 320 N88-17073 to random support excitations Self-adaptive analysis of three-dimensional structures using a p-version of finite element method

(FFA-TN-1987-311 p 320 N88-17084 Measured and calculated acoustic attenuation rates of tuned resonator arrays for two surface impedance distribution models with flow

[NASA-TP-2766] p 329 N88-17440 Vibration and flutter characteristics of the SR7L

large-scale propfan [NASA-TM-100272] o 322 N88-18036

FINITE VOLUME METHOD

Numerical simulation of hypersonic inlet flows with equilibrium or finite rate chemistry

[AIAA PAPER 88-0273] p 275 A88-27717 Solution of the three-dimensional Navier-Stokes equations for transonic flow using a multigrid method p 278 N88-17579

Radial compressor design using an Euler solver p 303 N88-17675

Graphical design of millimeter-wave finline bandpass p 316 A88-26256 filters

FIXED WINGS

Analysis of a fixed-pitch X-wing rotor employing lower p 280 N88-17602 surface blowing p 280 N88-17602
Fixed wing CCW aerodynamics with and without supplementary thrust deflection p 281 N88-17607

FLAME HOLDERS Flame stabilization using large flameholders of irregular

shape FLAME PROPAGATION

Experimental investigation of the influence of diffuser shell shapes on performance of dump diffusers in combustor p 297 A88-26628

p 312 A88-27285

FLAME STABILITY

Flame stabilization using large flameholders of irregular p 312 A88-27285

FLAT PLATES

Time dependent flow visualization in the separated region of an appendage-flat plate junction p 271 A88-25842

FLEXIBLE BODIES

Investigation on steady-state response of a rotor-support system with two squeeze-film dampers p 316 A88-26632 Synthesis of the flexible structures of complex

p 324 A88-27148 systems Placement of failure-prone components on flexible structures - A degree of controllability approach

p 326 A88-27418 FLEXIBLE WINGS

Calculation of a wing with allowance for fuselage p 271 A88-25633 elasticity FLEXING

Mechanical properties of carbon fiber reinforced

thermoplastic matrix composites (NAL-TR-934) p 313 N88-16827

FLIGHT CHARACTERISTICS

Estimation of aircraft motion parameters with allowance for atmospheric turbulence p 304 A88-25622 FLIGHT CONTROL

Control muscle for agile aircraft flight control p 287 A88-26647 actuators Robustness/performance tradeoffs in eigenstructure

assignment with flight control application p 324 A88-27318 Aircraft guidance for formation flying based on optimal p 304 A88-27320

Integrated controls design and simulation

A88-27329 p 295 Flight control for the F-8 Oblique Wing Research p 305 A88-27365 Aircraft Failure model determination in a knowledge-based control system p 325 A88-27406 Placement of failure-prone components on flexible structures - A degree of controllability approach

p 326 A88-27418 An improvement on the adaptive model following control p 327 A88-28617 NASA/Army Rotorcraft Technology. Volume

Aerodynamics, and Dynamics and Aeroelasticity p 269 N88-16625 [NASA-CP-2495-VOL-1]

Helicopter mathematical models and control law development for handling qualities research N88-16642 p 307

Rotorcraft flight-propulsion control integration p 307 N88-16643

Rotorcraft technology at Boeing Vertol: Recent p 289 N88-16658 advances

A piloted simulation investigating handling qualities and performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun

[AD-A186878] p 290 N88-16689 Flight test technique, illustrated by Advanced Technologies Testing Aircraft System (ATTAS) [AD-A186878]

p 291 N88-17433 Light Electronic Control System (LECOS): A proposal for a interconnected error-tolerant, optoelectronic control

[MBB-UT-004/87] p 309 N88-17836

FLIGHT CREWS

Ultra-low frequency vibration data acquisition concerns in operating flight simulators

[DE88-004795] p 311 N88-17687

FLIGHT HAZARDS

Analysis of bird strikes to UK registered aircraft 1985 (civil aircraft over 5700 kg maximum weight [CAA-PAPER-87012] p 283 N88-16684

FLIGHT MECHANICS

Estimation of aircraft motion parameters with allowance for atmospheric turbulence p 304 A88-25622 Nonlinear identification technique for helicopter flight p 306 A88-27764 mechanics Identification techniques in flight mechanics

p 306 A88-27765

An overview of key technology thrusts at Bell Helicopter p 289 N88-16657 Textron Special flight mechanical features of the bearingless

helicopter rotor p 293 N88-17825 [MBB-FM-315/O]

FLIGHT OPERATIONS

Moisture plotting of carbon fiber composite in flight operations [MBB-UT-119/87] p 313 N88-16823

FLIGHT OPTIMIZATION Optimal landing of a helicopter in autorotation

p 288 A88-28251 Interior transition layers in flight-path optimization p 288 A88-28252

FLIGHT PATHS

Applications of singular perturbation techniques to aircraft trajectory optimization p 305 A88-27754 Interior transition layers in flight-path optimization

p 288 A88-28252 Robust adaptive flight-path reconstruction technique for nonsteady longitudinal flight test maneuvers

p 307 A88-28261 Verification of obstacle accountability areas using a simple mathematical model. Part 1: Description of general model and application for a specific case --- engine failure

INLR-TR-85069-U1 p 283 N88-16683

FLIGHT SAFETY

Vibration monitoring - A key contribution to flight p 294 A88-25367 safety Technological leaps occurring in the aeronautical and p 326 A88-27752 Annual review of aircraft accident data: US air carrier operations calendar year 1985 p 285 N88-17638

FLIGHT SIMULATION

Treatment methods for the alleviation of gusts on create p 306 A88-27770 aircraft Rotorcraft handling-qualities design criteria p 308 N88-16645 development Status of NASA/Army rotorcraft research and development piloted flight simulation

p 310 N88-16651 Helicopters as test carriers for avionics systems

(HETAS) [DFVLR-IB-112-85/18] p 290 N88-16692 Upgrading of NASA-Ames high-energy hypersonic facilities: A Study

[NASA-CR-182475] p 311 N88-16717 Frequency-response identification of XV-15 tilt-rotor aircraft dynamics p 292 N88-17643

Transport delay compensation for computer-generated imagery systems

[NASA-TM-100084] p 292 N88-17645 FLIGHT SIMULATORS

Flight simulators for under \$100,000

p 309 A88-25010 Experimental implementation and evaluation of the RMI failure detection algorithm --- Reachable Measurement Intervals p 325 A88-27410 Flight test technique, illustrated bv Advanced Technologies Testing Aircraft System (ATTAS)

p 291 N88-17433 Investigation of the influence of wind shear on the aerodynamic characteristics of aircraft using vortex-lattice method p 284 N88-17619 Ultra-low frequency vibration data acquisition concerns

in operating flight simulators [DE88-004795] p 311 N88-17687

FLIGHT TEST INSTRUMENTS

Flight test technique, illustrated by Advanced Technologies Testing Aircraft System (ATTAS)

p 291 N88-17433

FLIGHT TESTS

Simplifying flight test p 294 A88-25366 European/U.S. cooperative flight testing - Some food for thought p 269 A88-26175 Flight testing keeps pace A88-26644 p 287 Squeezing the test cycle improving flight-test p 287 A88-26645 p 287 efficiency Keeping a sharp technology edge p 269 A88-26646 F-16 flight tests with the F110 engine - Lessons arned p 288 A88-26875 NASA/Army Rotorcraft Technology. Volume 3: Systems leamed Integration, Research Aircraft, and Industry [NASA-CP-2495-VOI -31 p 270 N88-16650

Rotorcraft flight research with emphasis on rotor p 289 N88-16656

McDonnell Douglas Helicopter Company independent research and development: Preparing for the future

p 289 N88-16660 A flight-test methodology for identification of an aerodynamic model for a V/STOL aircraft

[NASA-TM-100067] p 290 N88-16694 Aircraft flight test trajectory control p 308 N88-16707 [NASA-CR-179428]

SUBJECT INDEX		
Flight test technique, illustrat	ad hv	Advanced
Technologies Testing Aircraft System		
	p 291	
Recommendations for ground ef V/STOL and STOL aircraft and associated associ		
large scale testing		
[NASA-CR-177429]		N88-17585
A potential flight evaluripper-surface-blowing/circulation-cor	Jation	of ar
upper-surface-blownig/circulation-cor	p 291	
X-29A forward-swept-wing fligh	t resea	
status [NASA-TM-100413]	p 292	N88-17644
Flight testing of fighter aircraft	p ESE	1100-170-
[MBB/LKE-62/S/PUB/292]	p 293	N88-17844
FLIGHT VEHICLES		_6
Synthesis of the flexible struct systems	p 324	
FLOW CHARACTERISTICS		
A study of the effect of leakage flo		
ahead of the rotor of a centri compressor	p 315	A88-25630
Numerical simulation of diffuser	/comb	ustor dome
interaction	p 302	N88-17663
FLOW DEFLECTION Stream function solution of trans	eonic flo	w along ar
arbitrary twisted S1 stream surface		
FLOW DISTORTION		
Pressure losses and flow field distorclearance of centrifugal and axial con		
clearance of centinogal and axial col		A88-24847
Characteristics of flow around a h	emisphe	ere mounted
on a plane	p 315	A88-25640
FLOW DISTRIBUTION A contour line plotting system with	h nolar	coordinates
for aeroengine inlet flow field		A88-26640
A block structured mesh genera	tion te	chnique for
aerodynamic geometries		A88-26747
Algebraic grid generation for annu prediction	וומד חסב 275 מ	A88-26751
Flowfield in a dual-inlet side-dump		
	p 297	A88-27291
Theoretical analysis of aircraft after		
Thousand analysis of another arts		
	p 275	ow A88-27884 ock-induced
Experimental investigation of disturbances on transonic airfoils	p 275 of sh	A88-27884 ock-induced
Experimental investigation of disturbances on transonic airfoils [DFVLR-FB-87-28]	p 275 of sh p 276	A88-27884 ock-induced N88-16666
Experimental investigation of disturbances on transonic airfoils [DFVLR-FB-87-28] CFD validation experiments for inte [NASA-TM-100797]	p 275 of sh p 276 ernal flow p 278	A88-27884 ock-induced N88-16666 ws N88-16679
Experimental investigation of disturbances on transonic airfoils [DFVLR-FB-87-28] CFD validation experiments for inte [NASA-TM-100797] Flow field measurements using h	p 275 of sh p 276 ernal flor p 278 notwire	A88-27884 ock-induced N88-16666 ws N88-16679 anemometry
Experimental investigation of disturbances on transonic airfoils [DFVLR-FB-87-28] CFD validation experiments for inte [NASA-TM-100797] Flow field measurements using f [AD-A187029]	p 275 of sh p 276 ernal floo p 278 notwire : p 318	A88-27884 ock-induced N88-16666 ws N88-16679 anemometry N88-16951
Experimental investigation of disturbances on transonic airfoils [DFVLR-FB-87-28] CFD validation experiments for inte [NASA-TM-100797] Flow field measurements using In [AD-A187029] Evaluation of a research circulation Navier-Stokes methods	p 275 of sh p 276 ernal floo p 278 notwire i p 318 control p 279	A88-27884 ock-induced N88-16666 ws N88-16679 anemometry N88-16951 airfoil using N88-17591
Experimental investigation of disturbances on transonic airfoils [DFVLR-FB-87-28] CFD validation experiments for inte [NASA-TM-100797] Flow field measurements using flad-A187029] Evaluation of a research circulation Navier-Stokes methods On the effect of leading edge blooms.	p 275 pf sh p 276 ernal flor p 278 notwire : p 318 control p 279 owing or	A88-27884 ock-induced N88-16666 ws N88-16679 anemometry N88-16951 airfoil using N88-17591 n circulation
Experimental investigation of disturbances on transonic airfoils [DFVLR-FB-87-28] CFD validation experiments for inte [NASA-TM-100797] Flow field measurements using it [AD-A187029] Evaluation of a research circulation Navier-Stokes methods On the effect of leading edge blocontrol airfoil aerodynamics	p 275 of sh p 276 ernal flor p 278 notwire p 318 control p 279 owing or p 280	A88-27884 ock-induced N88-16666 ws N88-16679 anemometry N88-16951 airfoil using N88-17591 n circulation N88-17595
Experimental investigation of disturbances on transonic airfoils [DFVLR-FB-87-28] CFD validation experiments for inte [NASA-TM-100797] Flow field measurements using head of the control airfoil aerodynamics On the effect of leading edge blocontrol airfoil aerodynamics Pressure distributions and oil-flow procupation-control wing	p 275 of sh p 276 ernal floo p 278 notwire : p 318 control p 279 owing or p 280 oatterns p 280	A88-27884 ock-induced N88-16666 ws N88-16679 anemometry N88-16951 airfoil using N88-17591 n circulation N88-17596 for a swept N88-17596
Experimental investigation of disturbances on transonic airfoils [DFVLR-FB-87-28] CFD validation experiments for inte [NASA-TM-100797] Flow field measurements using h [AD-A187029] Evaluation of a research circulation Navier-Stokes methods On the effect of leading edge blocontrol airfoil aerodynamics Pressure distributions and oil-flow priculation-control wing The impact of circulation control	p 275 of sh p 276 ernal flor p 278 notwire i p 318 control p 279 owing or p 280 oatterns p 280 ol on ro	A88-27884 ock-induced N88-16666 ws N88-16679 anemometry N88-16951 airfoil using N88-17591 n circulation N88-17595 for a swept N88-17596 otary aircraft
Experimental investigation of disturbances on transonic airfoils [DFVLR-FB-87-28] CFD validation experiments for inte [NASA-TM-100797] Flow field measurements using head of the control airfoil aerodynamics On the effect of leading edge blocontrol airfoil aerodynamics Pressure distributions and oil-flow procupation-control wing	p 275 of sh p 276 ernal flov p 278 notwire : p 318 control p 279 owing or p 280 oatterns p 280 ol on ro p 308	A88-27884 ock-induced N88-16669 ws N88-16679 anemometry N88-16951 airfoil using N88-17595 for a swept N88-17596 for a swept N88-17596 bary aircraft
Experimental investigation of disturbances on transonic airfoils [DFVLR-FB-87-28] CFD validation experiments for inte [NASA-TM-100797] Flow field measurements using flad-A187029] Evaluation of a research circulation Navier-Stokes methods On the effect of leading edge blocontrol airfoil aerodynamics Pressure distributions and oil-flow priculation-control wing The impact of circulation control systems Investigation of dynamic stall using Velocimetry): Mean flow studies	p 275 of sh p 276 p 278 notwire : p 318 control p 279 owing or p 280 oatterns p 280 od on ro p 308 LDV (La	A88-27884 ock-induced N88-16666 ws N88-16679 anemometry N88-16951 airfoil using N88-17591 or circulation N88-17595 for a swept N88-17596 otary aircraft N88-17501 aser Doppler
Experimental investigation of disturbances on transonic airfoils [DFVLR-FB-87-28] CFD validation experiments for inte [NASA-TM-100797] Flow field measurements using h [AD-A187029] Evaluation of a research circulation Navier-Stokes methods On the effect of leading edge blocontrol airfoil aerodynamics Pressure distributions and oil-flow p circulation-control wing The impact of circulation control systems Investigation of dynamic stall using Velocimetry): Mean flow studies [AD-A187629]	p 275 of sh p 276 ernal flor p 278 notwire : p 318 control p 279 op 280 oatterns p 280 ol on ro p 308 LDV (La	A88-27884 ock-induced N88-16666 ws N88-16679 anemometry N88-16951 airfoil using N88-17591 n circulation N88-17595 for a swept N88-17595 totary aircraft N88-17601 aser Doppler
Experimental investigation of disturbances on transonic airfoils [DFVLR-FB-87-28] CFD validation experiments for inte [NASA-TM-100797] Flow field measurements using it [AD-A187029] Evaluation of a research circulation Navier-Stokes methods On the effect of leading edge blocontrol airfoil aerodynamics Pressure distributions and oil-flow priculation-control wing The impact of circulation control systems Investigation of dynamic stall using Velocimetry): Mean flow studies [AD-A187629] Numerical methods for propeller acoustics at DFVLR	p 275 of sh p 276 rmal flor p 278 notwire: p 318 i control p 279 owing or p 280 oatterns p 280 ol on ro p 308 LDV (La p 282 aerodyr p 302	A88-27884 ock-induced N88-16666 ws N88-16679 anemometry N88-16951 airfoil using N88-17591 for a swept N88-17596 otary aircraft N88-17601 aser Doppler N88-17611 anmics and N88-17668
Experimental investigation of disturbances on transonic airfoils [DFVLR-FB-87-28] CFD validation experiments for inte [NASA-TM-100797] Flow field measurements using head of the control airfoil aerodynamics On the effect of leading edge blocontrol airfoil aerodynamics Pressure distributions and oil-flow pricioulation-control wing The impact of circulation control systems Investigation of dynamic stall using Velocimetry): Mean flow studies [AD-A187629] Numerical methods for propeller acoustics at DFVLR Investigation of dihedral effect	p 275 of sh p 276 rmal flor p 278 notwire: p 318 i control p 279 owing or p 280 oatterns p 280 ol on ro p 308 LDV (La p 282 aerodyr p 302	A88-27884 ock-induced N88-16666 ws N88-16679 anemometry N88-16951 airfoil using N88-17591 for a swept N88-17596 otary aircraft N88-17601 aser Doppler N88-17611 anmics and N88-17668
Experimental investigation of disturbances on transonic airfoils [DFVLR-FB-87-28] CFD validation experiments for inte [NASA-TM-100797] Flow field measurements using in [AD-A187029] Evaluation of a research circulation Navier-Stokes methods On the effect of leading edge blocontrol airfoil aerodynamics Pressure distributions and oil-flow picirculation-control wing The impact of circulation control controls systems Investigation of dynamic stall using Velocimetry): Mean flow studies [AD-A187629] Numerical methods for propeller acoustics at DFVLR Investigation of dihedral effect cascades	p 275 of sh p 276 ernal flov p 278 notwire p 318 notwire p 280 p 279 p 280 p 280 p 280 p 308 LDV (La p 282 aerodyr p 302 ts in p 303	A88-27884 ock-induced N88-16666 ws N88-16679 anemometry N88-16951 airfoil using N88-17591 for a swept N88-17596 otary aircraft N88-17601 aser Doppler N88-17611 amics and N88-17688 compressor N88-17672
Experimental investigation of disturbances on transonic airfoils [DFVLR-FB-87-28] CFD validation experiments for inte [NASA-TM-100797] Flow field measurements using h [AD-A187029] Evaluation of a research circulation Navier-Stokes methods On the effect of leading edge blocontrol airfoil aerodynamics Pressure distributions and oil-flow p circulation-control wing The impact of circulation control systems Investigation of dynamic stall using Velocimetry): Mean flow studies [AD-A187629] Numerical methods for propeller a acoustics at DFVLR Investigation of dihedral effect cascades Secondary flow measurements with centrifugal compressors	p 275 sh f sh p 276 small flow p 278 notwire: p 318 notwire: p 308 LDV (La p 282 p 282 s in p 303 th L2F-1 p 303	A88-27884 ock-induced N88-16666 ws N88-16679 anemometry N88-16951 airfoil using N88-17591 n circulation N88-17595 for a swept N88-17596 dary aircraft N88-17501 ser Doppler N88-17611 namics and N88-17666 compressor N88-17672 etchnique in N88-17672
Experimental investigation of disturbances on transonic airfoils [DFVLR-FB-87-28] CFD validation experiments for inte [NASA-TM-100797] Flow field measurements using head of the control airfoil aerodynamics On the effect of leading edge blocontrol airfoil aerodynamics Pressure distributions and oil-flow picirculation-control wing The impact of circulation control control systems Investigation of dynamic stall using Velocimetry): Mean flow studies [AD-A187629] Numerical methods for propeller acoustics at DFVLR Investigation of dihedral effect cascades Secondary flow measurements with centrifugal compressors A computational study of thrust a	p 275 of sh p 276 rmal flov p 278 notwire p 318 icontrol p 279 owing or p 280 oatterns p 280 ol on rc p 280 exp 280 ol on rc p 280 in p 280 in p 302 in p 302 in p 303 in p 30	A88-27884 ock-induced N88-16666 ws N88-16679 anemometry N88-16951 airfoil using N88-17591 n circulation N88-17595 for a swept N88-17596 dary aircraft N88-17501 ser Doppler N88-17611 namics and N88-17666 compressor N88-17672 etchnique in N88-17672
Experimental investigation of disturbances on transonic airfoils [DFVLR-FB-87-28] CFD validation experiments for inte [NASA-TM-100797] Flow field measurements using h [AD-A187029] Evaluation of a research circulation Navier-Stokes methods On the effect of leading edge blocontrol airfoil aerodynamics Pressure distributions and oil-flow p circulation-control wing The impact of circulation control systems Investigation of dynamic stall using Velocimetry): Mean flow studies [AD-A187629] Numerical methods for propeller a acoustics at DFVLR Investigation of dihedral effect cascades Secondary flow measurements with centrifugal compressors	p 275 sh f sh p 276 rrad filo p 276 rrad filo p 276 rounting p 318 p 280 p 280 p 280 p 302 sh p 302 sh p 302 sh p 303 sh L2F-t p 303 sh L2F-t p 303	A88-27884 ock-induced N88-16666 ws N88-16679 anemometry N88-16951 airfoil using N88-17591 n circulation N88-17595 for a swept N88-17596 dary aircraft N88-17501 ser Doppler N88-17611 namics and N88-17666 compressor N88-17672 etchnique in N88-17672
Experimental investigation of disturbances on transonic airfoils [DFVLR-FB-87-28] CFD validation experiments for inte [NASA-TM-100797] Flow field measurements using h [AD-A187029] Evaluation of a research circulation Navier-Stokes methods On the effect of leading edge blocontrol airfoil aerodynamics Pressure distributions and oil-flow picirculation-control wing The impact of circulation control controls systems Investigation of dynamic stall using Velocimetry): Mean flow studies [AD-A187629] Numerical methods for propeller acoustics at DFVLR Investigation of dihedral effect cascades Secondary flow measurements wit centrifugal compressors A computational study of thrust a based on a viscous-inviscid approach	p 275 sh p 276 sh p 276 formal floor p 279 p 279 p 279 p 280	A88-27884 ock-induced N88-16666 ws N88-16679 anemometry N88-16951 airfoil using N88-17591 n circulation N88-17595 for a swept N88-17596 dary aircraft N88-17596 ser Doppler N88-17611 namics and N88-17676 compressor N88-17676 ing ejectors N88-17672
Experimental investigation of disturbances on transonic airfoils [DFVLR-FB-87-28] CFD validation experiments for inte [NASA-TM-100797] Flow field measurements using in [AD-A187029] Evaluation of a research circulation Navier-Stokes methods On the effect of leading edge blocontrol airfoil aerodynamics Pressure distributions and oil-flow proceedings of the processor of the proces	p 275 sh f sh p 276 rraal floor p 276 rraal floor p 276 p 318 p 318 p 280 p 280 p 280 p 300 p 280 p 302 p 303	A88-27884 ock-induced N88-16666 ws N88-16679 anemometry N88-16951 airfoil using N88-17591 or circulation N88-17596 for a swept N88-17596 stary aircraft N88-17601 aser Doppler N88-17611 namics and N88-17668 compressor N88-17672 technique in N88-17676 ing ejectors N88-17929 ve/boundary
Experimental investigation of disturbances on transonic airfoils [DFVLR-FB-87-28] CFD validation experiments for inte [NASA-TM-100797] Flow field measurements using h [AD-A187029] Evaluation of a research circulation Navier-Stokes methods On the effect of leading edge blocontrol airfoil aerodynamics Pressure distributions and oil-flow picirculation-control wing The impact of circulation control controls systems Investigation of dynamic stall using Velocimetry): Mean flow studies [AD-A187629] Numerical methods for propeller acoustics at DFVLR Investigation of dihedral effect cascades Secondary flow measurements wit centrifugal compressors A computational study of thrust a based on a viscous-inviscid approach	p 275 sh f sh p 276 rraal floor p 276 rraal floor p 276 p 318 p 318 p 280 p 280 p 280 p 300 p 280 p 302 p 303	A88-27884 ock-induced N88-16666 ws N88-16679 anemometry N88-16951 airfoil using N88-17591 n circulation N88-17595 for a swept N88-17596 dary aircraft N88-17596 ser Doppler N88-17611 namics and N88-17676 compressor N88-17676 ing ejectors N88-17672
Experimental investigation of disturbances on transonic airfoils [DFVLR-FB-87-28] CFD validation experiments for inte [NASA-TM-100797] Flow field measurements using head of the control airfoil aerodynamics On the effect of leading edge blocontrol airfoil aerodynamics Pressure distributions and oil-flow policiculation-control wing The impact of circulation controcontrols systems Investigation of dynamic stall using Velocimetry): Mean flow studies [AD-A187629] Numerical methods for propeller acoustics at DFVLR Investigation of dihedral effect cascades Secondary flow measurements with centrifugal compressors A computational study of thrust abased on a viscous-inviscid approach Experimental research on swept shelayer interactions [AD-A187250] FLOW EQUATIONS Geometry/grid generation in n +	p 275 sh f sh p 276 rrad floor p 276 rrad floor p 276 p 278 notwire i p 318 p 280 p 280 p 280 p 280 p 280 p 308 LDV (La p 282 p 308 LDV (La p 303 h L2F-r p 303 h L2F-r p 303 p 303 h 27 p 303 p 303 h 27 p 303 p 303 h 27 p 303	A88-27884 ock-induced N88-16666 ws N88-16679 anemometry N88-16951 airfoil using N88-17591 or circulation N88-17596 for a swept N88-17596 stary aircraft N88-17601 aser Doppler N88-17611 amics and N88-17667 indeed to the service of t
Experimental investigation of disturbances on transonic airfoils [DFVLR-FB-87-28] CFD validation experiments for inte [NASA-TM-100797] Flow field measurements using it [AD-A187029] Evaluation of a research circulation Navier-Stokes methods On the effect of leading edge blocontrol airfoil aerodynamics Pressure distributions and oil-flow priculation-control wing The impact of circulation control controls systems Investigation of dynamic stall using Velocimetry): Mean flow studies [AD-A187629] Numerical methods for propeller acoustics at DFVLR Investigation of dihedral effect cascades Secondary flow measurements with centrifugal compressors A computational study of thrust abased on a viscous-inviscid approach Experimental research on swept shelayer interactions [AD-A187250] FLOW EQUATIONS Geometry/grid generation in n + flows involving flight vehicles embeddets	p 275 sh p 276 sh p 276 sh p 276 sh p 276 sh p 278 sh p 278 sh p 278 sh p 278 sh p 280 sh p 308 sh p 303 sh p 3	A88-27884 ock-induced N88-16666 ws N88-16679 anemometry N88-16951 airfoil using N88-17591 for a swept N88-17595 for a swept N88-17596 steps-17601 ser Doppler N88-17601 ser Doppler N88-17676 ing ejectors N88-17676 ing ejectors N88-17929 re/boundary N88-17957 steps for ground test
Experimental investigation of disturbances on transonic airfoils [DFVLR-FB-87-28] CFD validation experiments for inte [NASA-TM-100797] Flow field measurements using head of the control airfoil aerodynamics On the effect of leading edge blocontrol airfoil aerodynamics Pressure distributions and oil-flow policiculation-control wing The impact of circulation controcontrols systems Investigation of dynamic stall using Velocimetry): Mean flow studies [AD-A187629] Numerical methods for propeller acoustics at DFVLR Investigation of dihedral effect cascades Secondary flow measurements with centrifugal compressors A computational study of thrust abased on a viscous-inviscid approach Experimental research on swept she layer interactions [AD-A187250] FLOW EQUATIONS Geometry/grid generation in n + flows involving flight vehicles embedde facility FLOW MEASUREMENT	p 275 sh p 276 sh p 278 sh p 280 sh p 2	A88-27884 ock-induced N88-16666 ws N88-16679 anemometry N88-16951 airfoil using N88-17591 or circulation N88-17596 for a swept N88-17596 ora yaircraft N88-17601 aser Doppler N88-17611 amics and N88-17666 ing ejectors N88-17672 we/boundary N88-17929 ve/boundary N88-17929 steps for a ground test A88-26731
Experimental investigation of disturbances on transonic airfoils [DFVLR-FB-87-28] CFD validation experiments for inte [NASA-TM-100797] Flow field measurements using it [AD-A187029] Evaluation of a research circulation Navier-Stokes methods On the effect of leading edge blocontrol airfoil aerodynamics Pressure distributions and oil-flow priculation-control wing The impact of circulation control controls systems Investigation of dynamic stall using Velocimetry): Mean flow studies [AD-A187629] Numerical methods for propeller acoustics at DFVLR Investigation of dihedral effect cascades Secondary flow measurements with centrifugal compressors A computational study of thrust abased on a viscous-inviscid approach Experimental research on swept shelayer interactions [AD-A187250] FLOW EQUATIONS Geometry/grid generation in n + flows involving flight vehicles embedde facility FLOW MEASUREMENT Laser Doppler velocity bias in see	p 275 sh p 276 sh p 276 sh p 276 sh p 276 sh p 278 sh p 278 sh p 278 sh p 280 sh p 308 sh p 303 sh p 3	A88-27884 ock-induced N88-16666 ws N88-16679 anemometry N88-16951 airfoil using N88-17591 for a swept N88-17595 for a swept N88-17596 stary aircraft N88-17596 stary aircraft N88-17601 ser Doppler N88-17676 ing ejectors N88-17662 ing ejectors N88-17676 ing ejectors N88-17929 re/boundary N88-17957 steps for tground test A88-26731 d turbulent
Experimental investigation of disturbances on transonic airfoils [DFVLR-FB-87-28] CFD validation experiments for inte [NASA-TM-100797] Flow field measurements using head of the control airfoil aerodynamics On the effect of leading edge blocontrol airfoil aerodynamics Pressure distributions and oil-flow policiculation-control wing The impact of circulation control systems Investigation of dynamic stall using Velocimetry): Mean flow studies [AD-A187629] Numerical methods for propeller acoustics at DFVLR Investigation of dihedral effect cascades Secondary flow measurements wit centrifugal compressors A computational study of thrust a based on a viscous-inviscid approach Experimental research on swept sh layer interactions (AD-A187250] FLOW EQUATIONS Geometry/grid generation in n + flows involving flight vehicles embedde facility FLOW MEASUREMENT Laser Doppler velocity bias in set flows	p 275 sh p 276 sh p 278 sh p 279 sh p 280 sh p 2	A88-27884 ock-induced N88-16666 ws N88-16679 anemometry N88-16951 airfoil using N88-17595 for a swept N88-17595 for a swept N88-17596 otary aircraft namics and N88-17601 ser Doppler N88-17611 namics and N88-17666 ing ejectors N88-17676 ing ejectors N88-17676 ing ejectors N88-17959 ve/boundary N88-17957 at ground test A88-26731 d turbulent A88-25835
Experimental investigation of disturbances on transonic airfoils [DFVLR-FB-87-28] CFD validation experiments for inte [NASA-TM-100797] Flow field measurements using it [AD-A187029] Evaluation of a research circulation Navier-Stokes methods On the effect of leading edge blocontrol airfoil aerodynamics Pressure distributions and oil-flow priculation-control wing The impact of circulation control controls systems Investigation of dynamic stall using Velocimetry): Mean flow studies [AD-A187629] Numerical methods for propeller acoustics at DFVLR Investigation of dihedral effect cascades Secondary flow measurements with centrifugal compressors A computational study of thrust abased on a viscous-inviscid approach Experimental research on swept shelayer interactions [AD-A187250] FLOW EQUATIONS Geometry/grid generation in n + flows involving flight vehicles embedde facility FLOW MEASUREMENT Laser Doppler velocity bias in seflows Transonic wind tunnel calibrat measurements on three ONERA-C5 metalions	p 275 sh p 276 sh p 276 sh p 276 sh p 276 sh p 278 sh p 278 sh p 280 sh p 302 sh p 303 sh p 304 sh p 305 sh p 3	A88-27884 ock-induced N88-16666 ws N88-16679 nemometry N88-16951 airfoil using N88-17591 for a swept N88-17595 for a swept N88-17595 for a swept N88-17596 stary aircraft N88-17596 compressor N88-17601 ser Doppler N88-17666 compressor N88-17666 ing ejectors N88-17676 ing ejectors N88-17929 re/boundary N88-17957 steps for tground test A88-26731 d turbulent A88-25835 s66: Force od three half
Experimental investigation of disturbances on transonic airfoils [DFVLR-FB-87-28] CFD validation experiments for inte [NASA-TM-100797] Flow field measurements using head of the control airfoil aerodynamics Dressure distributions and oil-flow procirculation-control wing The impact of circulation control systems Investigation of dynamics tall using Velocimetry): Mean flow studies [AD-A187629] Numerical methods for propeller acoustics at DFVLR Investigation of dihedral effect cascades Secondary flow measurements with centrifugal compressors A computational study of thrust abased on a viscous-inviscid approach Experimental research on swept she layer interactions (AD-A187250) FLOW EQUATIONS Geometry Grid generation in n + flows involving flight vehicles embedded facility FLOW MEASUREMENT Laser Doppler velocity bias in seflows Transonic wind tunnel calibrat measurements on three ONERA-C5 m sphere cylinder calibration bodies in	p 275 sh p 276 sh p 276 sh p 276 sh p 276 sh p 278 sh p 278 sh p 280 sh p 302 sh p 303 sh p 304 sh p 305 sh p 3	A88-27884 ock-induced N88-16666 ws N88-16679 nemometry N88-16951 airfoil using N88-17591 for a swept N88-17595 for a swept N88-17595 for a swept N88-17596 stary aircraft N88-17596 compressor N88-17601 ser Doppler N88-17666 compressor N88-17666 ing ejectors N88-17676 ing ejectors N88-17929 re/boundary N88-17957 steps for tground test A88-26731 d turbulent A88-25835 s66: Force od three half
Experimental investigation of disturbances on transonic airfoils [DFVLR-FB-87-28] CFD validation experiments for inte [NASA-TM-100797] Flow field measurements using head of the control airfoil aerodynamics on the effect of leading edge blocontrol airfoil aerodynamics pressure distributions and oil-flow procured to the control airfoil aerodynamics pressure distributions and oil-flow procured to the control airfoil aerodynamics pressure distributions and oil-flow procured to the control airfoil aerodynamics pressure distributions and oil-flow procured to the control airfoil aerodynamics pressure distributions and oil-flow procured to the control airfoil aerodynamics and oil-flow procured to the effect of the control airfoil aerodynamics and flow studies [AD-A187629] Numerical methods for propeller accounties at DFVLR Investigation of dihedral effect cascades accondary flow measurements with centrifugal compressors a computational study of thrust abased on a viscous-inviscid approach Experimental research on swept shalayer interactions [AD-A187250] FLOW EQUATIONS Geometry/grid generation in n + flows involving flight vehicles embedded facility FLOW MEASUREMENT Laser Doppler velocity bias in sefflows Transonic wind tunnel calibrat measurements on three ONERA-C5 m sphere cylinder calibration bodies in test section	p 275 sh p 276 frail filo filo final filo filo filo final filo filo filo filo filo filo filo fil	A88-27884 ock-induced N88-16666 ws N88-16679 anemometry N88-16951 airfoil using N88-17591 or circulation N88-17595 for a swept N88-17595 otary aircraft N88-17601 aser Doppler N88-17601 aser Doppler N88-17660 ing ejectors N88-17672 technique in N88-17676 ing ejectors N88-17959 we/boundary N88-17957 steps for ground test A88-26331 d turbulent A88-25835 e86: Force nd three half W transonic
Experimental investigation of disturbances on transonic airfoils [DFVLR-FB-87-28] CFD validation experiments for inte [NASA-TM-100797] Flow field measurements using head of the control airfoil aerodynamics Dressure distributions and oil-flow procirculation-control wing The impact of circulation control systems Investigation of dynamics tall using Velocimetry): Mean flow studies [AD-A187629] Numerical methods for propeller acoustics at DFVLR Investigation of dihedral effect cascades Secondary flow measurements with centrifugal compressors A computational study of thrust abased on a viscous-inviscid approach Experimental research on swept she layer interactions (AD-A187250) FLOW EQUATIONS Geometry Grid generation in n + flows involving flight vehicles embedded facility FLOW MEASUREMENT Laser Doppler velocity bias in seflows Transonic wind tunnel calibrat measurements on three ONERA-C5 m sphere cylinder calibration bodies in	p 275 for shall fill for shall fill for shall fill for shall for shall fill fill fill fill fill fill fill f	A88-27884 ock-induced N88-16666 ws N88-16679 anemometry N88-16951 airfoil using N88-17595 for a swept N88-17595 for a swept N88-17595 dary aircraft N88-17601 aser Doppler N88-17611 namics and N88-17676 compressor N88-17676 ing ejectors N88-17676 ing ejectors N88-17676 ary aircraft N88-17676 ing ejectors N88-17676 ing ejectors N88-17676 ing ejectors N88-17676 ing ejectors N88-17959 de Judient A88-25835 see: Force in ground test A88-25835 see: Force in d three half w transonic N88-16714 on force

[F+W-TF-1876]

circulation-control wing

echnologies Testing Aircraft System (ATTAS)
p 291 N88-17433 Recommendations for ground effects research for
/STOL and STOL aircraft and associated equipment for
rge scale testing NASA-CR-177429] p 279 N88-17585
A potential flight evaluation of an
pper-surface-blowing/circulation-control-wing concept
p 291 N88-17609 X-29A forward-swept-wing flight research program
tatus
NASA-TM-100413) p 292 N88-17644 Flight testing of fighter aircraft
MBB/LKE-62/S/PUB/292] p 293 N88-17844
GHT VEHICLES
Synthesis of the flexible structures of complex ystems p 324 A88-27148
DW CHARACTERISTICS
A study of the effect of leakage flow on the main flow head of the rotor of a centrifugal pump or a
ompressor p 315 A88-25630
Numerical simulation of diffuser/combustor dome steraction p 302 N88-17663
OW DEFLECTION
Stream function solution of transonic flow along an
rbitrary twisted S1 stream surface p 273 A88-26586 DW DISTORTION
Pressure losses and flow field distortion induced by tip
learance of centrifugal and axial compressors p 314 A88-24847
Characteristics of flow around a hemisphere mounted
n a plane p 315 A88-25640 DW DISTRIBUTION
A contour line plotting system with polar coordinates
or aeroengine inlet flow field p 274 A88-26640
A block structured mesh generation technique for erodynamic geometries p 274 A88-26747
Algebraic grid generation for annular nozzle flowfield
rediction p 275 A88-26751
Flowfield in a dual-inlet side-dump combustor p 297 A88-27291
Theoretical analysis of aircraft afterbody flow
p 275 A88-27884 Experimental investigation of shock-induced
sturbances on transonic airfoils
DFVLR-FB-87-28] p 276 N88-16666 CFD validation experiments for internal flows
NASA-TM-100797] p 278 N88-16679
Flow field measurements using hotwire anemometry AD-A187029] p 318 N88-16951
Evaluation of a research circulation control airfoil using
avier-Stokes methods p 279 N88-17591 On the effect of leading edge blowing on circulation
ontrol airfoil aerodynamics p 280 N88-17595
Pressure distributions and oil-flow patterns for a swept roulation-control wing p 280 N88-17596
The impact of circulation control on rotary aircraft
ontrols systems p 308 N88-17601 Investigation of dynamic stall using LDV (Laser Doppler
elocimetry): Mean flow studies
AD-A187629] p 282 N88-17611 Numerical methods for propeller aerodynamics and
coustics at DFVLR p 302 N88-17668
Investigation of dihedral effects in compressor ascades p 303 N88-17672
Secondary flow measurements with L2F-technique in
entrifugal compressors p 303 N88-17676 A computational study of thrust augmenting ejectors
ased on a viscous-inviscid approach
p 321 N88-17929 Experimental research on swept shock wave/boundary
yer interactions
ND-A187250] p 322 N88-17957
Geometry/grid generation in n + 1 easy steps for
ows involving flight vehicles embedded within ground test cility p 274 A88-26731
W MEASUREMENT
Laser Doppler velocity bias in separated turbulent bws p 271 A88-25835
Transonic wind tunnel calibration 1986: Force
easurements on three ONERA-C5 models and three half
here cylinder calibration hodies in the F±W transcolo
phere cylinder calibration bodies in the F+W transonic st section

```
FLOW STABILITY
  vane adjustment in axial compressors
FLOW THEORY
FLOW VELOCITY
  [NAL-TR-923]
  vane adjustment in axial compressors
FLOW VISUALIZATION
  region of an appendage-flat plate junction
  transonic Mach numbers
  helicopter main rotor tip vortices by the tail rotor. Part 2:
  High speed photographic study
  [NASA-CR-177457]
  layer interactions
  (AD-A1872501
FLUID DYNAMICS
  layer interactions
  [AD-A187250]
FLUID FLOW
  electronic reheat controls
FLUTTER
  future projects
[MBB-UT-007/87]
FLUTTER ANALYSIS
  flutter characteristics of high-aspect-ratio transport wing
  flutter characteristics of a high-aspect-ratio composite
  wing
  [NAL-TR-930]
  flutter suppression
  [NASA-CR-181618]
FLY BY WIRE CONTROL
FOKKER AIRCRAFT
FORGING
  forging of blade
FRACTIONATION
  [DE88-003132]
FRACTURE MECHANICS
  and Structures, Propulsion and Drive Systems, Flight
  Dynamics and Control, and Acoustics
 [NASA-CP-2495-VOL-2]
  Research Center
  rotorcraft
FUEL COMBUSTION
  gasdynamic models with heat and mass transfer in an
  impulse wind tunnel
```

```
Turbulent hydrogen combustion in a wall jet issuing into
  a comoving supersonic stream of air
FUEL CONSUMPTION
    X-wing potential for Navy applications
```

p 311 N88-16715

p 280 N88-17597

+W-1F-1870]
Turbine flow meter with optical fiber pick-up

P 319 N88-17009

P 319 N88-17009

Boundary-layer and wake measurements on a swept

electronic reheat controls

p 281 N88-17604 The advantage of variable geometry for turbine engines at low power p 300 N88-17653 **FUEL GAGES**

Control of vortical separation on conical bodies

Theoretical analysis of aircraft afterbody flow

Turbine flow meter with optical fiber pick-up

Flight testing keeps pace

Vortex/separated boundary-layer

Possibilities for on-line surge suppression by fast guide

Possibilities for on-line surge suppression by fast guide

Time dependent flow visualization in the separated

An experimental investigation of the chopping of

Experimental research on swept shock wave/boundary

Experimental research on swept shock wave/boundary

Pumping systems and flow interfaces for rapid respons

The application of modern aeroelastic developments for

Experimental study on the effect of fiber orientation on

Effect of an optimized fiber orientation on transonic

An application of eigenspace methods to symmetric

Technological leaps occurring in the aeronautical and

Calculation of metal flow stress in precision closed-die

High-density jet fuels from coal syncrudes, appendix 4

NASA/Army Rotorcraft Technology. Volume 2: Materials

Review of fatigue and fracture research at NASA Langley

Delamination durability of composite materials for

Some methodological aspects of the study of

Recent Sikorsky R and D progress

Fokker 50 marks a fresh start

p 278 N88-17580

p 303 N88-17674

p 275 A88-27884

p 319 N88-17009

p 303 N88-17674

p 287 A88-26644

p 275 A88-28033

p 278 N88-16678

p 322 N88-17957

p 322 N88-17957

p 302 N88-17665

p 294 N88-17850

p 308 N88-16708

p 308 N88-16709

p 309 N88-17684

p 326 A88-27752

p 289 N88-16659

p 286 A88-25792

p 317 A88-26793

p 314 N88-17813

p 270 N88-16632

p 318 N88-16633

p 312 N88-16634

p 310 A88-27158

p 297 A88-27166

p 302 N88-17665

interactions

p 271

Measuring aircraft fluid quantities p 295 A88-26648 FUEL PUMPS Pumping systems and flow interfaces for rapid response

FUSELAGES Calculation of a wing with allowance for fuselage p 271 A88-25633 Low frequency eddy current detection and evaluation of corrosion in aircraft skins [ETN-88-91664] p 313 N88-16859

G

GALERKIN METHOD

Comprehensive analysis of helicopters with bearingless

[NASA-CR-182537] GAS DYNAMICS

p 328 N88-18300 Calculation of nonpotential flows of an ideal gas in

axisymmetric nozzles by the approximate factorization method p 270 A88-25561 Some methodological aspects of the study of gasdynamic models with heat and mass transfer in an

impulse wind tunnel p 310 A88-27158 van Leer flux vector splitting in moving coordinates --for helicopter rotor blade calculations

p 317 A88-28046

New techniques in computational aerodynamics [AD-A186719] p 276 N88-16664 GAS FLOW

Numerical solution of the problem of supersonic gas flow from a narrow slot in hodograph variables p 271 A88-26129

GAS GENERATORS

Experimental evaluation of a translating nozzle sidewall p 301 N88-17656 radial turbine Design and aerodynamic performance of a small p 301 N88-17662 mixed-flow gas generator turbine GAS INJECTION

Distributed gas injection into hypersonic flow p 271 A88-26120

GAS TURBINE ENGINES

radial turbine

A study of the autorotation regimes of gas turbine p 296 A88-25628 Soot loading in a generic gas turbine combustor

p 297 A88-27296 Data processing and analysis during the automated testing of gas turbine engines --- Russian book

p 298 A88-27730 Multifrequency nonlinear vibrations in a gas-turbine engine --- Russian book p 298 A88-27742

Small gas turbine engine technology p 298 N88-16638 Self-lubricating coatings high-temperature applications p 313 N88-16703

Advanced Technology for Aero Gas Turbine p 299 N88-17647 [AGARD-CP-421]

The advantage of variable geometry for turbine engines p 300 N88-17653 at low power A research program on the aerodynamics of a highly p 301 N88-17655 loaded turbine stage Experimental evaluation of a translating nozzle sidewall p 301 N88-17656

An integrated aero/mechanical performance approach to high technology turbine design p 301 N88-17657 Advanced techniques employed in blade cooling research p 301 N88-17659 Design and aerodynamic performance of a small

p 301 N88-17662 mixed-flow gas generator turbine Possibilities for on-line surge suppression by fast guide

vane adjustment in axial compressors p 303 N88-17674

Ceramic bearings for use in gas turbine engines [NASA-TM-100288] p 322 N88-18007 **GAS TURBINES**

Excess streamwise vorticity and its role in secondary p 271 A88-26163 flow Turbine engine monitoring systems: Can they benefit component improvement program management?

[AD-A186992] p 299 N88-16706 Turbine flow meter with optical fiber pick-up

[NAL-TR-923] p 319 N88-17009 Wake interaction effects on the transition process on

turbine blades [AD-A188020] p 322 N88-17962 GEARS

Results of NASA/Army transmission research

p 299 N88-16640 Dynamic analysis of multimesh-gear helicopter

transmissions [NASA-TP-2789] p 319 N88-17045 Dynamic response of a geared train of rotors subjected

p 320 N88-17073 to random support excitations Gear systems for advanced turboprops p 302 N88-17667

Analysis of possible transmission arrangements applicable for driving single or twin counterrotating fans on propfan engines p 303 N88-17670 GENERAL AVIATION AIRCRAFT

Sudden in-flight incapacitation in general aviation

p 283 N88-16682 AD-A1870441 GLOBAL POSITIONING SYSTEM

A fault-tolerant multisensor navigation system design p 295 A88-26670 GOVERNMENT/INDUSTRY RELATIONS

Keeping a sharp technology edge p 269 A88-26646

GRAPHITE-EPOXY COMPOSITES	van Leer flux vector splitting in moving coordinates	Status of NASA/Army rotorcraft research and
Structural properties of braided graphite/epoxy	for helicopter rotor blade calculations	development piloted flight simulation
composites p 312 A88-25266 Elastic hingeless scissor design p 315 A88-26159	p 317 A88-28046 Accomplishments at NASA Langley Research Center	p 310 N88-16651 Helicopters as test carriers for avionics systems
GRAZING FLOW	in rotorcraft aerodynamics technology	(HETAS)
Measured and calculated acoustic attenuation rates of	p 269 N88-16626	(DFVLR-IB-112-85/18) p 290 N88-16692
tuned resonator arrays for two surface impedance	Rotorcraft aeroelastic stability p 307 N88-16631	Optimizing HF antenna systems on the Dolphin and Sea Hawk helicopters
distribution models with flow [NASA-TP-2766] p 329 N88-17440	System analysis in rotorcraft design: The past decade	[AD-A186552] p 318 N88-16901
GROUND EFFECT (AERODYNAMICS)	p 289 N88-16652	General Rotorcraft Aeromechanical Stability Program
Recommendations for ground effects research for	An overview of key technology thrusts at Bell Helicopter Textron p 289 N88-16657	(GRASP) version 1.03: User's manual
V/STOL and STOL aircraft and associated equipment for large scale testing	Rotorcraft technology at Boeing Vertol: Recent	[NASA-TM-100043] p 328 N88-17313 Helicopter external vision requirements and visual
[NASA-CR-177429] p 279 N88-17585	advances p 289 N88-16658	display characteristics: A report/bibliography, revision A
GUIDE VANES	Recent Sikorsky R and D progress	[AD-A187075] p 291 N88-17641
Possibilities for on-line surge suppression by fast guide	p 289 N88-16659	Research and development. Technical-scientific publications (1956-1987): Retrospective view and
vane adjustment in axial compressors p 303 N88-17674	Analysis of tasks for dynamic man/machine load balancing in advanced helicopters	prospects. Jubilee edition on the occasion of the 75th
GUN TURRETS	[DE88-003735] p 290 N88-16696	birthday of DiplEngr. DrEngr. E. H. Ludwig Boelkow
A piloted simulation investigating handling qualities and	Helicopter activities in Germany	[ISSN-0931-9751] p 321 N88-17819
performance requirements of a single-pilot helicopter in air combat employing a helr. et-driven turreted gun	[MBB-UD-487/86] p 294 N88-17853	Special flight mechanical features of the bearingless helicopter rotor
[AD-A186878] p 290 N88-16689	Testing of a tail rotor system in a fiber composite type of construction	[MBB-FM-315/O] p 293 N88-17825
GUNS (ORDNANCE)	[MBB-UD-472/86] p 294 N88-17854	Comprehensive analysis of helicopters with bearingless
A piloted simulation investigating handling qualities and	HELICOPTER ENGINES	rotors
performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun	Calculation of the path of a droplet in the combustion	[NASA-CR-182537] p 328 N88-18300 HELMET MOUNTED DISPLAYS
[AD-A186878] p 290 N88-16689	chamber of a helicopter ramjet engine p 296 A88-25618	Modern control methods applied to a line-of-sight
GUST ALLEVIATORS	Dynamic analysis of multimesh-gear helicopter	stabilization and tracking system p 295 A88-27399
Treatment methods for the alleviation of gusts on aircraft p 306 A88-27770	transmissions	A piloted simulation investigating handling qualities and performance requirements of a single-pilot helicopter in
aircraft p 306 A88-27770 GUST LOADS	[NASA-TP-2789] p 319 N88-17045	air combat employing a helmet-driven turreted gun
Treatment methods for the alleviation of gusts on	HELICOPTER PERFORMANCE	[AD-A186878] p 290 N88-16689
aircraft p 306 A88-27770	NASA/Army Rotorcraft Technology. Volume 3: Systems Integration, Research Aircraft, and Industry	Helicopter external vision requirements and visual
GUSTS Status of FAA terminal Doppler weather radar	[NASA-CP-2495-VQL-3] p 270 N88-16650	display characteristics: A report/bibliography, revision A [AD-A187075] p 291 N88-17641
programs p 321 N88-17632	System analysis in rotorcraft design: The past decade	HEMISPHERES
GYROSCOPIC STABILITY	p 289 N88-16652	Characteristics of flow around a hemisphere mounted
Analysis of the two-ring suspension of a dynamically	Rotorcraft flight research with emphasis on rotor	on a plane p 315 A88-25640
tunable gyroscope p 314 A88-25566	systems p 289 N88-16656 Helicopters as test carriers for avionics systems	HETERODYNING A submillimeter heterodyne receiver for the Kuiper
Н	(HETAS)	Airborne Observatory and the detection of the 372 micron
П	[DFVLR-IB-112-85/18] p 290 N88-16692	carbon monoxide line J = 7-6 in OMC-1 and W3
HANDLEY PAGE AIRCRAFT	Optimizing HF antenna systems on the Dolphin and Sea	p 316 A88-26253 HIGH ASPECT RATIO
Sound transmission through the walls of light aircraft:	Hawk helicopters [AD-A186552] p 318 N88-16901	Testing of a schematic transport plane model in several
An investigation of structure-borne noise in a Handley Page	Rotorcraft weight trends in light of structural material	European windtunnels
137 Jetstream 3 aircraft [NASA-CR-182509] p. 330 N88-18376	characteristics	[PB87-170270] p 277 N88-16671
137 Jetstream 3 aircraft [NASA-CR-182509] p 330 N88-18376 HARMONIC EXCITATION	characteristics [AD-A186576] p 291 N88-17642	Experimental study on the effect of fiber orientation on
[NASA-CR-182509] p 330 N88-18376 HARMONIC EXCITATION Dynamic response of a geared train of rotors subjected	characteristics	
[NASA-CR-182509] p 330 N88-18376 HARMONIC EXCITATION Dynamic response of a geared train of rotors subjected to random support excitations p 320 N88-17073	characteristics [AD-A186576] p 291 N88-17642 Helicopter activities in Germany [MBB-UD-487/86] p 294 N88-17853 HELICOPTER TAIL ROTORS	Experimental study on the effect of fiber orientation on flutter characteristics of high-aspect-ratio transport wing [NAL-TR-936] p 308 N88-16708 HIGH PRESSURE
[NASA-CR-182509] p 330 N88-18376 HARMONIC EXCITATION Dynamic response of a geared train of rotors subjected to random support excitations p 320 N88-17073 HARMONIC OSCILLATION	characteristics [AD-A186576] p 291 N88-17642 Helicopter activities in Germany [MBB-UD-487/86] p 294 N88-17853 HELICOPTER TAIL ROTORS An experimental investigation of the chopping of	Experimental study on the effect of fiber orientation on flutter characteristics of high-aspect-ratio transport wing [NAL-TR-936] p 308 N88-16708 HIGH PRESSURE Radial compressor design using an Euler solver
[NASA-CR-182509] p 330 N88-18376 HARMONIC EXCITATION Dynamic response of a geared train of rotors subjected to random support excitations p 320 N88-17073	characteristics [AD-A186576] p 291 N88-17642 Helicopter activities in Germany [MBB-UD-487/86] p 294 N88-17853 HELICOPTER TAIL ROTORS An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor. Part 2:	Experimental study on the effect of fiber orientation on flutter characteristics of high-aspect-ratio transport wing [NAL-TR-936] p 308 N88-16708 HIGH PRESSURE
[NASA-CR-182509] p 330 N88-18376 HARMONIC EXCITATION Dynamic response of a geared train of rotors subjected to random support excitations p 320 N88-17073 HARMONIC OSCILLATION Multifrequency nonlinear vibrations in a gas-turbine engine Russian book p 298 A88-27742 HEART FUNCTION	characteristics [AD-A186576] p 291 N88-17642 Helicopter activities in Germany [MBB-UD-487/86] p 294 N88-17853 HELICOPTER TAIL ROTORS An experimental investigation of the chopping of	Experimental study on the effect of fiber orientation on flutter characteristics of high-aspect-ratio transport wing [NAL-TR-936] p 308 N88-16708 HIGH PRESSURE Radial compressor design using an Euler solver p 303 N88-17675 Design and testing of a front stage for an advanced high pressure compressor p 303 N88-17679
[NASA-CR-182509] p 330 N88-18376 HARMONIC EXCITATION Dynamic response of a geared train of rotors subjected to random support excitations p 320 N88-17073 HARMONIC OSCILLATION Multifrequency nonlinear vibrations in a gas-turbine engine Russian book p 298 A88-27742 HEART FUNCTION Sudden in-flight incapacitation in general aviation	characteristics [AD-A186576] p 291 N88-17642 Helicopter activities in Germany [MBB-UD-487/86] p 294 N88-17853 HELICOPTER TAIL ROTORS An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor. Part 2: High speed photographic study [NASA-CR-177457] p 278 N88-16678 Testing of a tail rotor system in a fiber composite type	Experimental study on the effect of fiber orientation on flutter characteristics of high-aspect-ratio transport wing [NAL-TR-936] p 308 N88-16708 HIGH PRESSURE Radial compressor design using an Euler solver p 303 N88-17675 Design and testing of a front stage for an advanced high pressure compressor p 303 N88-17679 HIGH RESOLUTION
[NASA-CR-182509] p 330 N88-18376 HARMONIC EXCITATION Dynamic response of a geared train of rotors subjected to random support excitations p 320 N88-17073 HARMONIC OSCILLATION Multifrequency nonlinear vibrations in a gas-turbine engine Russian book p 298 A88-27742 HEART FUNCTION Sudden in-flight incapacitation in general aviation [AD-A187044] p 283 N88-16682	characteristics [AD-A186576] p 291 N88-17642 Helicopter activities in Germany [MBB-UD-487/86] p 294 N88-17853 HELICOPTER TAIL ROTORS An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor. Part 2: High speed photographic study [NASA-CR-177457] p 278 N88-16678 Testing of a tail rotor system in a fiber composite type of construction	Experimental study on the effect of fiber orientation on flutter characteristics of high-aspect-ratio transport wing [NAL-TR-936] p 308 N88-16708 HIGH PRESSURE Radial compressor design using an Euler solver p 303 N88-17675 Design and testing of a front stage for an advanced high pressure compressor p 303 N88-17679
[NASA-CR-182509] p 330 N88-18376 HARMONIC EXCITATION Dynamic response of a geared train of rotors subjected to random support excitations p 320 N88-17073 HARMONIC OSCILLATION Multifrequency nonlinear vibrations in a gas-turbine engine Russian book p 298 A88-27742 HEART FUNCTION Sudden in-flight incapacitation in general aviation	characteristics [AD-A186576] p 291 N88-17642 Helicopter activities in Germany [MBB-UD-487/86] p 294 N88-17853 HELICOPTER TAIL ROTORS An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor. Part 2: High speed photographic study [NASA-CR-177457] p 278 N88-16678 Testing of a tail rotor system in a fiber composite type	Experimental study on the effect of fiber orientation on flutter characteristics of high-aspect-ratio transport wing [NAL-TR-936] p 308 N88-16708 HIGH PRESSURE Radial compressor design using an Euler solver p 303 N88-17675 Design and testing of a front stage for an advanced high pressure compressor p 303 N88-17679 HIGH RESOLUTION Rotor SAR (ROSAR): A new high-resolution all-weather vision method for helicopters [MBB-UA-1046/87] p 321 N88-17855
[NASA-CR-182509] p 330 N88-18376 HARMONIC EXCITATION Dynamic response of a geared train of rotors subjected to random support excitations p 320 N88-17073 HARMONIC OSCILLATION Multifrequency nonlinear vibrations in a gas-turbine engine Russian book p 298 A88-27742 HEART FUNCTION Sudden in-flight incapacitation in general aviation [AD-A187044] p 283 N88-16682 HEAT TRANSFER Distributed gas injection into hypersonic flow p 271 A88-26120	characteristics [AD-A185576] p 291 N88-17642 Helicopter activities in Germany [MBB-UD-487/86] p 294 N88-17853 HELICOPTER TAIL ROTORS An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor. Part 2: High speed photographic study [NASA-CR-177457] p 278 N88-16678 Testing of a tail rotor system in a fiber composite type of construction [MBB-UD-472/86] p 294 N88-17854 HELICOPTERS The metallurgical aspects of aluminum-lithium alloys in	Experimental study on the effect of fiber orientation on futter characteristics of high-aspect-ratio transport wing [NAL-TR-936] p 308 N88-16708 HIGH PRESSURE Radial compressor design using an Euler solver p 303 N88-17675 Design and testing of a front stage for an advanced high pressure compressor p 303 N88-17679 HIGH RESOLUTION Rotor SAR (ROSAR): A new high-resolution all-weather vision method for helicopters [MBB-UA-1046/87] p 321 N88-17855 HIGH TEMPERATURE
[NASA-CR-182509] p 330 N88-18376 HARMONIC EXCITATION Dynamic response of a geared train of rotors subjected to random support excitations p 320 N88-17073 HARMONIC OSCILLATION Multifrequency nonlinear vibrations in a gas-turbine engine Russian book p 298 A88-27742 HEART FUNCTION Sudden in-flight incapacitation in general aviation [AD-A187044] p 283 N88-16682 HEAT TRANSFER Distributed gas injection into hypersonic flow p 271 A88-26120 HEAT TRANSFER COEFFICIENTS	characteristics [AD-A186576] p 291 N88-17642 Helicopter activities in Germany [MBB-UD-487/86] p 294 N88-17853 HELICOPTER TAIL ROTORS An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor. Part 2: High speed photographic study [NASA-CR-177457] p 278 N88-16678 Testing of a tail rotor system in a fiber composite type of construction [MBB-UD-472/86] p 294 N88-17854 HELICOPTERS The metallurgical aspects of aluminum-lithium alloys in various product forms for helicopter structural	Experimental study on the effect of fiber orientation on flutter characteristics of high-aspect-ratio transport wing [NAL-TR-936] p 308 N88-16708 HIGH PRESSURE Radial compressor design using an Euler solver p 303 N88-17675 Design and testing of a front stage for an advanced high pressure compressor p 303 N88-17679 HIGH RESOLUTION Rotor SAR (ROSAR): A new high-resolution all-weather vision method for helicopters [MBB-UA-1046/87] p 321 N88-17855 HIGH TEMPERATURE High temperature polymer matrix composites
[NASA-CR-182509] p 330 N88-18376 HARMONIC EXCITATION Dynamic response of a geared train of rotors subjected to random support excitations p 320 N88-17073 HARMONIC OSCILLATION Multifrequency nonlinear vibrations in a gas-turbine engine Russian book p 298 A88-27742 HEART FUNCTION Sudden in-flight incapacitation in general aviation [AD-A187044] p 283 N88-16682 HEAT TRANSFER Distributed gas injection into hypersonic flow p 271 A88-26120 HEAT TRANSFER COEFFICIENTS Some methodological aspects of the study of	characteristics [AD-A186576] p 291 N88-17642 Helicopter activities in Germany [MBB-UD-487/86] p 294 N88-17853 HELICOPTER TAIL ROTORS An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor. Part 2: High speed photographic study [NASA-CR-177457] p 278 N88-16678 Testing of a tail rotor system in a fiber composite type of construction [MBB-UD-472/86] p 294 N88-17854 HELICOPTERS The metallurgical aspects of aluminum-lithium alloys in various product forms for helicopter structural applications p 311 A88-25106	Experimental study on the effect of fiber orientation on flutter characteristics of high-aspect-ratio transport wing [NAL-TR-936] p 308 N88-16708 HIGH PRESSURE Radial compressor design using an Euler solver p 303 N88-17675 Design and testing of a front stage for an advanced high pressure compressor p 303 N88-17679 HIGH RESOLUTION Rotor SAR (ROSAR): A new high-resolution all-weather vision method for helicopters [MBB-UA-1046/87] p 321 N88-17855 HIGH TEMPERATURE High temperature polymer matrix composites p 313 N88-16700
[NASA-CR-182509] p 330 N88-18376 HARMONIC EXCITATION Dynamic response of a geared train of rotors subjected to random support excitations p 320 N88-17073 HARMONIC OSCILLATION Multifrequency nonlinear vibrations in a gas-turbine engine Russian book p 298 A88-27742 HEART FUNCTION Sudden in-flight incapacitation in general aviation [AD-A187044] p 283 N88-16682 HEAT TRANSFER Distributed gas injection into hypersonic flow p 271 A88-26120 HEAT TRANSFER COEFFICIENTS	characteristics [AD-A186576] p 291 N88-17642 Helicopter activities in Germany [MBB-UD-487/86] p 294 N88-17853 HELICOPTER TAIL ROTORS An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor. Part 2: High speed photographic study [NASA-CR-177457] p 278 N88-16678 Testing of a tail rotor system in a fiber composite type of construction [MBB-UD-472/86] p 294 N88-17854 HELICOPTERS The metallurgical aspects of aluminum-lithium alloys in various product forms for helicopter structural	Experimental study on the effect of fiber orientation on flutter characteristics of high-aspect-ratio transport wing [NAL-TR-936] p 308 N88-16708 HIGH PRESSURE Radial compressor design using an Euler solver p 303 N88-17675 Design and testing of a front stage for an advanced high pressure compressor p 303 N88-17679 HIGH RESOLUTION Rotor SAR (ROSAR): A new high-resolution all-weather vision method for helicopters [MBB-UA-1046/87] p 321 N88-17855 HIGH TEMPERATURE High temperature polymer matrix composites p 313 N88-16700 Evaluation of high temperature structural adhesives for extended service, phase 5
[NASA-CR-182509] p 330 N88-18376 HARMONIC EXCITATION Dynamic response of a geared train of rotors subjected to random support excitations p 320 N88-17073 HARMONIC OSCILLATION Multifrequency nonlinear vibrations in a gas-turbine engine Russian book p 298 A88-27742 HEART FUNCTION Sudden in-flight incapacitation in general aviation [AD-A187044] p 283 N88-16682 HEAT TRANSFER Distributed gas injection into hypersonic flow p 271 A88-26120 HEAT TRANSFER COEFFICIENTS Some methodological aspects of the study of gasdynamic models with heat and mass transfer in an	characteristics [AD-A186576] p 291 N88-17642 Helicopter activities in Germany [MBB-UD-487/86] p 294 N88-17853 HELICOPTER TAIL ROTORS An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor. Part 2: High speed photographic study [NASA-CR-177457] p 278 N88-16678 Testing of a tail rotor system in a fiber composite type of construction [MBB-UD-472/86] p 294 N88-17854 HELICOPTERS The metallurgical aspects of aluminum-lithium alloys in various product forms for helicopter structural applications p 311 A88-25106 Simplified calculation of the crushing process in structural elements p 315 A88-26171 NASA/Army Rotorcraft Technology. Volume 1:	Experimental study on the effect of fiber orientation on flutter characteristics of high-aspect-ratio transport wing [NAL-TR-936] p 308 N88-16708 HIGH PRESSURE Radial compressor design using an Euler solver p 303 N88-17675 Design and testing of a front stage for an advanced high pressure compressor p 303 N88-17679 HIGH RESOLUTION Rotor SAR (ROSAR): A new high-resolution all-weather vision method for helicopters [MBB-UA-1046/87] p 321 N88-17855 HIGH TEMPERATURE High temperature polymer matrix composites p 313 N88-16700 Evaluation of high temperature structural adhesives for extended service, phase 5 [NASA-CR-178176] p 314 N88-16884
[NASA-CR-182509] p 330 N88-18376 HARMONIC EXCITATION Dynamic response of a geared train of rotors subjected to random support excitations p 320 N88-17073 HARMONIC OSCILLATION Multifrequency nonlinear vibrations in a gas-turbine engine Russian book p 298 A88-27742 HEART FUNCTION Sudden in-flight incapacitation in general aviation [AD-A187044] p 283 N88-16682 HEAT TRANSFER Distributed gas injection into hypersonic flow p 271 A88-26120 HEAT TRANSFER COEFFICIENTS Some methodological aspects of the study of gasdynamic models with heat and mass transfer in an impulse wind tunnel p 310 A88-27158 HEATING Pumping systems and flow interfaces for rapid response	characteristics [AD-A186576] p 291 N88-17642 Helicopter activities in Germany [MBB-UD-487/86] p 294 N88-17853 HELICOPTER TAIL ROTORS An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor. Part 2: High speed photographic study [NASA-CR-177457] p 278 N88-16678 Testing of a tail rotor system in a fiber composite type of construction [MBB-UD-472/86] p 294 N88-17854 HELICOPTERS The metallurgical aspects of aluminum-lithium alloys in various product forms for helicopter structural applications p 311 A88-25106 Simplified calculation of the crushing process in structural elements p 315 A88-26171 NASA/Army Rotorcraft Technology. Volume 1: Aerodynamics, and Dynamics and Aeroelasticity	Experimental study on the effect of fiber orientation on flutter characteristics of high-aspect-ratio transport wing [NAL-TR-936] p 308 N88-16708 HIGH PRESSURE Radial compressor design using an Euler solver p 303 N88-17675 Design and testing of a front stage for an advanced high pressure compressor p 303 N88-17679 HIGH RESOLUTION Rotor SAR (ROSAR): A new high-resolution all-weather vision method for helicopters [MBB-UA-1046/87] p 321 N88-17855 HIGH TEMPERATURE High temperature polymer matrix composites p 313 N88-16700 Evaluation of high temperature structural adhesives for extended service, phase 5
[NASA-CR-182509] p 330 N88-18376 HARMONIC EXCITATION Dynamic response of a geared train of rotors subjected to random support excitations p 320 N88-17073 HARMONIC OSCILLATION Multifrequency nonlinear vibrations in a gas-turbine engine — Russian book p 298 A88-27742 HEART FUNCTION Sudden in-flight incapacitation in general aviation [AD-A187044] p 283 N88-16682 HEAT TRANSFER Distributed gas injection into hypersonic flow p 271 A88-26120 HEAT TRANSFER COEFFICIENTS Some methodological aspects of the study of gasdynamic models with heat and mass transfer in an impulse wind tunnel p 310 A88-27158 HEATING Pumping systems and flow interfaces for rapid response electronic reheat controls p 302 N88-17665	characteristics [AD-A186576] p 291 N88-17642 Helicopter activities in Germany [MBB-UD-487/86] p 294 N88-17853 HELICOPTER TAIL ROTORS An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor. Part 2: High speed photographic study [NASA-CR-177457] p 278 N88-16678 Testing of a tail rotor system in a fiber composite type of construction [MBB-UD-472/86] p 294 N88-17854 HELICOPTERS The metallurgical aspects of aluminum-lithium alloys in various product forms for helicopter structural applications p 311 A88-25106 Simplified calculation of the crushing process in structural elements p 315 A88-26171 NASA/Army Rotorcraft Technology. Volume 1:	Experimental study on the effect of fiber orientation on flutter characteristics of high-aspect-ratio transport wing [NAL-TR-936] p 308 N88-16708 HIGH PRESSURE Radial compressor design using an Euler solver p 303 N88-17675 Design and testing of a front stage for an advanced high pressure compressor p 303 N88-17679 HIGH RESOLUTION Rotor SAR (ROSAR): A new high-resolution all-weather vision method for helicopters [MBB-UA-1046/87] p 321 N88-17855 HIGH TEMPERATURE High temperature polymer matrix composites p 313 N88-16700 Evaluation of high temperature structural adhesives for extended service, phase 5 [NASA-CR-178176] p 314 N88-16884 HIGH TEMPERATURE ENVIRONMENTS Effect of high temperature spikes on a carbon fibre-reinforced epoxy laminate p 312 A88-28299
[NASA-CR-182509] p 330 N88-18376 HARMONIC EXCITATION Dynamic response of a geared train of rotors subjected to random support excitations p 320 N88-17073 HARMONIC OSCILLATION Multifrequency nonlinear vibrations in a gas-turbine engine — Russian book p 298 A88-27742 HEART FUNCTION Sudden in-flight incapacitation in general aviation [AD-A187044] p 283 N88-16682 HEAT TRANSFER Distributed gas injection into hypersonic flow p 271 A88-26120 HEAT TRANSFER COEFFICIENTS Some methodological aspects of the study of gasdynamic models with heat and mass transfer in an impulse wind tunnel p 310 A88-27158 HEATING Pumping systems and flow interfaces for rapid response electronic reheat controls p 302 N88-17665 HELICOPTER CONTROL	characteristics [AD-A186576] p 291 N88-17642 Helicopter activities in Germany [MBB-UD-487/86] p 294 N88-17853 HELICOPTER TAIL ROTORS An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor. Part 2: High speed photographic study [NASA-CR-177457] p 278 N88-16678 Testing of a tail rotor system in a fiber composite type of construction [MBB-UD-472/86] p 294 N88-17854 HELICOPTERS The metallurgical aspects of aluminum-lithium alloys in various product forms for helicopter structural applications p 311 A88-25106 Simplified calculation of the crushing process in structural elements p 315 A88-26107 NASA/Army Rotorcraft Technology. Volume 1: Aerodynamics, and Dynamics and Aeroelasticity [NASA-CP-2495-VOL-1] p 269 N88-16625 The development of CFD methods for rotor applications p 288 N88-16627	Experimental study on the effect of fiber orientation on flutter characteristics of high-aspect-ratio transport wing [NAL-TR-936] p 308 N88-16708 HIGH PRESSURE Radial compressor design using an Euler solver p 303 N88-17675 Design and testing of a front stage for an advanced high pressure compressor p 303 N88-17679 HIGH RESOLUTION Rotor SAR (ROSAR): A new high-resolution all-weather vision method for helicopters [MBB-UA-1046/87] p 321 N88-17855 HIGH TEMPERATURE High temperature polymer matrix composites Y p 313 N88-16700 Evaluation of high temperature structural adhesives for extended service, phase 5 [NASA-CR-178176] p 314 N88-16884 HIGH TEMPERATURE ENVIRONMENTS Effect of high temperature spikes on a carbon fibre-reinforced epoxy laminate p 312 A88-28299 An integrated aero/mechanical performance approach
[NASA-CR-182509] p 330 N88-18376 HARMONIC EXCITATION Dynamic response of a geared train of rotors subjected to random support excitations p 320 N88-17073 HARMONIC OSCILLATION Multifrequency nonlinear vibrations in a gas-turbine engine — Russian book p 298 A88-27742 HEART FUNCTION Sudden in-flight incapacitation in general aviation [AD-A187044] p 283 N88-16682 HEAT TRANSFER Distributed gas injection into hypersonic flow p 271 A88-26120 HEAT TRANSFER COEFFICIENTS Some methodological aspects of the study of gasdynamic models with heat and mass transfer in an impulse wind tunnel p 310 A88-27158 HEATING Pumping systems and flow interfaces for rapid response electronic reheat controls p 302 N88-17665 HELICOPTER CONTROL	characteristics [AD-A186576] p 291 N88-17642 Helicopter activities in Germany [MBB-UD-487/86] p 294 N88-17853 HELICOPTER TAIL ROTORS An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor. Part 2: High speed photographic study [NASA-CR-177457] p 278 N88-16678 Testing of a tail rotor system in a fiber composite type of construction [MBB-UD-472/86] p 294 N88-17854 HELICOPTERS The metallurgical aspects of aluminum-lithium alloys in various product forms for helicopter structural applications p 311 A88-25106 Simplified calculation of the crushing process in structural elements p 315 A88-26171 NASA/Army Rotorcraft Technology. Volume 1: Aerodynamics, and Dynamics and Aeroelasticity [NASA-CP-2495-VOL-1] p 269 N88-16625 The development of CFD methods for rotor applications p 288 N88-16627 A summary of recent NASA/Army contributions to	Experimental study on the effect of fiber orientation on flutter characteristics of high-aspect-ratio transport wing [NAL-TR-936] p 308 N88-16708 HIGH PRESSURE Radial compressor design using an Euler solver p 303 N88-17675 Design and testing of a front stage for an advanced high pressure compressor p 303 N88-17679 HIGH RESOLUTION Rotor SAR (ROSAR): A new high-resolution all-weather vision method for helicopters [MBB-UA-1046/87] p 321 N88-17855 HIGH TEMPERATURE High temperature polymer matrix composites p 313 N88-16700 Evaluation of high temperature structural adhesives for extended service, phase 5 [NASA-CR-178176] p 314 N88-16884 HIGH TEMPERATURE ENVIRONMENTS Effect of high temperature spikes on a carbon fibre-reinforced epoxy laminate p 312 A88-28299 An integrated aero/mechanical performance approach to high technology turbine design p 301 N88-17657
[NASA-CR-182509] p 330 N88-18376 HARMONIC EXCITATION Dynamic response of a geared train of rotors subjected to random support excitations p 320 N88-17073 HARMONIC OSCILLATION Multifrequency nonlinear vibrations in a gas-turbine engine Russian book p 298 A88-27742 HEART FUNCTION Sudden in-flight incapacitation in general aviation [AD-A187044] p 283 N88-16682 HEART TRANSFER Distributed gas injection into hypersonic flow p 271 A88-26120 HEART TRANSFER COEFFICIENTS Some methodological aspects of the study of gasdynamic models with heat and mass transfer in an impulse wind tunnel p 310 A88-27158 HEATING Pumping systems and flow intertaces for rapid response electronic reheat controls p 302 N88-17665 HELICOPTER CONTROL Elastic hingeless scissor design p 315 A88-26159 Failure model determination in a knowledge-based control system p 325 A88-27406	characteristics [AD-A186576] p 291 N88-17642 Helicopter activities in Germany [MBB-UD-487/86] p 294 N88-17853 HELICOPTER TAIL ROTORS An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor. Part 2: High speed photographic study [NASA-CR-177457] p 278 N88-16678 Testing of a tail rotor system in a fiber composite type of construction [MBB-UD-472/86] p 294 N88-17854 HELICOPTERS The metallurgical aspects of aluminum-lithium alloys in various product forms for helicopter structural applications p 311 A88-25106 Simplified calculation of the crushing process in structural elements p 315 A88-26107 NASA/Army Rotorcraft Technology. Volume 1: Aerodynamics, and Dynamics and Aeroelasticity [NASA-CP-2495-VOL-1] p 269 N88-16625 The development of CFD methods for rotor applications p 288 N88-16627	Experimental study on the effect of fiber orientation on flutter characteristics of high-aspect-ratio transport wing [NAL-TR-936] p 308 N88-16708 HIGH PRESSURE Radial compressor design using an Euler solver p 303 N88-17675 Design and testing of a front stage for an advanced high pressure compressor p 303 N88-17679 HIGH RESOLUTION Rotor SAR (ROSAR): A new high-resolution all-weather vision method for helicopters [MBB-UA-1046/87] p 321 N88-17855 HIGH TEMPERATURE High temperature polymer matrix composites Y p 313 N88-16700 Evaluation of high temperature structural adhesives for extended service, phase 5 [NASA-CR-178176] p 314 N88-16884 HIGH TEMPERATURE ENVIRONMENTS Effect of high temperature spikes on a carbon fibre-reinforced epoxy laminate p 312 A88-28299 An integrated aero/mechanical performance approach
[NASA-CR-182509] p 330 N88-18376 HARMONIC EXCITATION Dynamic response of a geared train of rotors subjected to random support excitations p 320 N88-17073 HARMONIC OSCILLATION Multifrequency nonlinear vibrations in a gas-turbine engine — Russian book p 298 A88-27742 HEART FUNCTION Sudden in-flight incapacitation in general aviation [AD-A187044] p 283 N88-16682 HEAT TRANSFER Distributed gas injection into hypersonic flow p 271 A88-26120 HEAT TRANSFER COEFFICIENTS Some methodological aspects of the study of gasdynamic models with heat and mass transfer in an impulse wind tunnel p 310 A88-27158 HEATING Pumping systems and flow interfaces for rapid response electronic reheat controls p 302 N88-17665 HELICOPTER CONTROL Elastic hingeless scissor design p 315 A88-26159 Failure model determination in a knowledge-based control system p 325 A88-27406 Active control of helicopter vibrations by self-adaptive	characteristics [AD-A185576] p 291 N88-17642 Helicopter activities in Germany [MBB-UD-487/86] p 294 N88-17853 HELICOPTER TAIL ROTORS An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor. Part 2: High speed photographic study [NASA-CR-177457] p 278 N88-16678 Testing of a tail rotor system in a fiber composite type of construction [MBB-UD-472/86] p 294 N88-17854 HELICOPTERS The metallurgical aspects of aluminum-lithium alloys in various product forms for helicopter structural applications p 311 A88-25106 Simplified calculation of the crushing process in structural elements p 315 A88-26171 NASA/Army Rotorcraft Technology. Volume 1: Aerodynamics, and Dynamics and Aeroelasticity [NASA-CP-2495-VOL-1] p 269 N88-16625 The development of CFD methods for rotor applications p 288 N88-16627 A summary of recent NASA/Army contributions to rotorcraft vibrations and structural dynamics technology p 30 N88-16628 NASA/Army Rotorcraft Technology. Volume 2: Materials	Experimental study on the effect of fiber orientation on futter characteristics of high-aspect-ratio transport wing [NAL-TR-936] p 308 N88-16708 HIGH PRESSURE Radial compressor design using an Euler solver p 303 N88-17675 Design and testing of a front stage for an advanced high pressure compressor p 303 N88-17679 HIGH RESOLUTION Rotor SAR (ROSAR): A new high-resolution all-weather vision method for helicopters [MBB-UA-1046/87] p 321 N88-17855 HIGH TEMPERATURE High temperature polymer matrix composites p 313 N88-16700 Evaluation of high temperature structural adhesives for extended service, phase 5 [NASA-CR-178176] p 314 N88-16884 HIGH TEMPERATURE ENVIRONMENTS Effect of high temperature spikes on a carbon fibre-reinforced epoxy laminate p 312 A88-28299 An integrated aero/mechanical performance approach to high technology turbine design p 301 N88-17657 HIGH THRUST Development of circulation control technology for powered-lift STOL aircraft
[NASA-CR-182509] p 330 N88-18376 HARMONIC EXCITATION Dynamic response of a geared train of rotors subjected to random support excitations p 320 N88-17073 HARMONIC OSCILLATION Multifrequency nonlinear vibrations in a gas-turbine engine Russian book p 298 A88-27742 HEART FUNCTION Sudden in-flight incapacitation in general aviation [AD-A187044] p 283 N88-16682 HEAT TRANSFER Distributed gas injection into hypersonic flow p 271 A88-26120 HEAT TRANSFER COEFFICIENTS Some methodological aspects of the study of gasdynamic models with heat and mass transfer in an impulse wind tunnel p 310 A88-27158 HEATING Pumping systems and flow interfaces for rapid response electronic reheat controls p 302 N88-17665 HELICOPTER CONTROL Elastic hingeless scissor design p 315 A88-26159 Failure model determination in a knowledge-based control system p 305 A88-27406 Active control of helicopter vibrations by self-adaptive multicyclic control	characteristics [AD-A186576] p 291 N88-17642 Helicopter activities in Germany [MBB-UD-487/86] p 294 N88-17853 HELICOPTER TAIL ROTORS An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor. Part 2: High speed photographic study [NASA-CR-177457] p 278 N88-16678 Testing of a tail rotor system in a fiber composite type of construction [MBB-UD-472/86] p 294 N88-17854 HELICOPTERS The metallurgical aspects of aluminum-lithium alloys in various product forms for helicopter structural applications p 311 A88-25106 Simplified calculation of the crushing process in structural elements p 315 A88-26171 NASA/Army Rotorcraft Technology. Volume 1: Aerodynamics, and Dynamics and Aeroelasticity [NASA-CP-2495-VOL-1] p 269 N88-16625 The development of CFD methods for rotor applications p 288 N88-16627 A summary of recent NASA/Army contributions to rotorcraft vibrations and structural dynamics technology p 307 N88-16628 NASA/Army Rotorcraft Technology. Volume 2: Materials and Structures, Propulsion and Drive Systems, Flight	Experimental study on the effect of fiber orientation on flutter characteristics of high-aspect-ratio transport wing [NAL-TR-936] p 308 N88-16708 HIGH PRESSURE Radial compressor design using an Euler solver p 303 N88-17675 Design and testing of a front stage for an advanced high pressure compressor p 303 N88-17679 HIGH RESOLUTION Rotor SAR (ROSAR): A new high-resolution all-weather vision method for helicopters [MBB-UA-1046/87] p 321 N88-17855 HIGH TEMPERATURE High temperature polymer matrix composites p 313 N88-16700 Evaluation of high temperature structural adhesives for extended service, phase 5 [NASA-CR-178176] p 314 N88-16884 HIGH TEMPERATURE ENVIRONMENTS Effect of high temperature spikes on a carbon fibre-reinforced epoxy laminate p 312 A88-28299 An integrated aero/mechanical performance approach to high technology turbine design p 301 N88-17657 HIGH THRUST Development of circulation control technology for powered-lift STOL aircraft p 291 N88-17608
[NASA-CR-182509] p 330 N88-18376 HARMONIC EXCITATION Dynamic response of a geared train of rotors subjected to random support excitations p 320 N88-17073 HARMONIC OSCILLATION Multifrequency nonlinear vibrations in a gas-turbine engine Russian book p 298 A88-27742 HEART FUNCTION Sudden in-flight incapacitation in general aviation [AD-A187044] p 283 N88-16682 HEAT TRANSFER Distributed gas injection into hypersonic flow p 271 A88-26120 HEAT TRANSFER COEFFICIENTS Some methodological aspects of the study of gasdynamic models with heat and mass transfer in an impulse wind tunnel p 310 A88-27158 HEATING Pumping systems and flow interfaces for rapid response electronic reheat controls p 302 N88-17665 HELICOPTER CONTROL Elastic hingeless scissor design p 315 A88-26159 Failure model determination in a knowledge-based control system p 325 A88-27406 Active control of helicopter vibrations by self-adaptive multicyclic control p 305 A88-27759 Modeling and identification in helicopter science	characteristics [AD-A186576] p 291 N88-17642 Helicopter activities in Germany [MBB-UD-487/86] p 294 N88-17853 HELICOPTER TAIL ROTORS An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor. Part 2: High speed photographic study [NASA-CR-177457] p 278 N88-16678 Testing of a tail rotor system in a fiber composite type of construction [MBB-UD-472/86] p 294 N88-17854 HELICOPTERS The metallurgical aspects of aluminum-lithium alloys in various product forms for helicopter structural applications p 311 A88-25106 Simplified calculation of the crushing process in structural elements p 315 A88-26171 NASA/Army Rotorcraft Technology. Volume 1: Aerodynamics, and Dynamics and Aeroelasticity [NASA-CP-2495-VOL-1] p 269 N88-16625 The development of CFD methods for rotor applications and structural dynamics technology volume 1: A summany of recent NASA/Army contributions to rotorcraft vibrations and structural dynamics technology p 307 N88-16628 NASA/Army Rotorcraft Technology, Volume 2: Materials and Structures, Propulsion and Drive Systems, Flight Dynamics and Control, and Acoustics	Experimental study on the effect of fiber orientation on flutter characteristics of high-aspect-ratio transport wing [NAL-TR-936] p 308 N88-16708 HIGH PRESSURE Radial compressor design using an Euler solver p 303 N88-17675 Design and testing of a front stage for an advanced high pressure compressor p 303 N88-17679 HIGH RESOLUTION Rotor SAR (ROSAR): A new high-resolution all-weather vision method for helicopters [MBB-UA-1046/87] p 321 N88-17855 HIGH TEMPERATURE High temperature polymer matrix composites p 313 N88-16700 Evaluation of high temperature structural adhesives for extended service, phase 5 [NASA-CR-178176] p 314 N88-16884 HIGH TEMPERATURE ENVIRONMENTS Effect of high temperature spikes on a carbon fibre-reinforced epoxy laminate p 312 A88-28299 An integrated aero/mechanical performance approach to high technology turbine design p 301 N88-17657 HIGH THRUST Development of circulation control technology for powered-lift STOL aircraft p 291 N88-17608 HIGHLY MANEUVERABLE AIRCRAFT Control muscle for agile aircraft — flight control
[NASA-CR-182509] p 330 N88-18376 HARMONIC EXCITATION Dynamic response of a geared train of rotors subjected to random support excitations p 320 N88-17073 HARMONIC OSCILLATION Multifrequency nonlinear vibrations in a gas-turbine engine Russian book p 298 A88-27742 HEART FUNCTION Sudden in-flight incapacitation in general aviation [AD-A187044] p 283 N88-16682 HEAT TRANSFER Distributed gas injection into hypersonic flow p 271 A88-26120 HEAT TRANSFER COEFFICIENTS Some methodological aspects of the study of gasdynamic models with heat and mass transfer in an impulse wind tunnel p 310 A88-27158 HEATING Pumping systems and flow interfaces for rapid response electronic reheat controls p 302 N88-17665 HELICOPTER CONTROL Elastic hingeless scissor design p 315 A88-26159 Failure model determination in a knowledge-based control system p 305 A88-27406 Active control of helicopter vibrations by self-adaptive multicyclic control	characteristics [AD-A186576] p 291 N88-17642 Helicopter activities in Germany [MBB-UD-487/86] p 294 N88-17853 HELICOPTER TAIL ROTORS An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor. Part 2: High speed photographic study [NASA-CR-177457] p 278 N88-16678 Testing of a tail rotor system in a fiber composite type of construction [MBB-UD-472/86] p 294 N88-17854 HELICOPTERS The metallurgical aspects of aluminum-lithium alloys in various product forms for helicopter structural applications p 311 A88-25106 Simplified calculation of the crushing process in structural elements p 315 A88-26171 NASA/Army Rotorcraft Technology. Volume 1: Aerodynamics, and Dynamics and Aeroelasticity [NASA-CP-2495-VOL-1] p 269 N88-16625 The development of CFD methods for rotor applications p 288 N88-16627 A summary of recent NASA/Army contributions to rotorcraft vibrations and structural dynamics technology p 307 N88-16628 NASA/Army Rotorcraft Technology. Volume 2: Materials and Structures, Propulsion and Drive Systems, Flight	Experimental study on the effect of fiber orientation on flutter characteristics of high-aspect-ratio transport wing [NAL-TR-936] p 308 N88-16708 HIGH PRESSURE Radial compressor design using an Euler solver p 303 N88-17675 Design and testing of a front stage for an advanced high pressure compressor p 303 N88-17679 HIGH RESOLUTION Rotor SAR (ROSAR): A new high-resolution all-weather vision method for helicopters [MBB-UA-1046/87] p 321 N88-17855 HIGH TEMPERATURE High temperature polymer matrix composites p 313 N88-16700 Evaluation of high temperature structural adhesives for extended service, phase 5 [NASA-CR-178176] p 314 N88-16884 HIGH TEMPERATURE ENVIRONMENTS Effect of high temperature spikes on a carbon fibre-reinforced epoxy laminate p 312 A88-28299 An integrated aero/mechanical performance approach to high technology turbine design p 301 N88-17657 HIGH THRUST Development of circulation control technology for powered-lift STOL aircraft p 291 N88-17608
[NASA-CR-182509] p 330 N88-18376 HARMONIC EXCITATION Dynamic response of a geared train of rotors subjected to random support excitations p 320 N88-17073 HARMONIC OSCILLATION Multifrequency nonlinear vibrations in a gas-turbine engine Russian book p 298 A88-27742 HEART FUNCTION Sudden in-flight incapacitation in general aviation [AD-A187044] p 283 N88-16682 HEAT TRANSFER Distributed gas injection into hypersonic flow p 271 A88-26120 HEAT TRANSFER COEFFICIENTS Some methodological aspects of the study of gasdynamic models with heat and mass transfer in an impulse wind tunnel p 310 A88-27158 HEATING Pumping systems and flow interfaces for rapid response electronic reheat controls p 302 N88-17665 HELICOPTER CONTROL Elastic hingeless scissor design p 315 A88-26159 Failure model determination in a knowledge-based control system p 325 A88-27406 Active control of helicopter vibrations by self-adaptive multicyclic control p 305 A88-27750 Modeling and identification in helicopter science p 327 A88-27760 Stability of helicopter blade motion in the case of turbulent air flow p 305 A88-27761	characteristics [AD-A186576] p 291 N88-17642 Helicopter activities in Germany [MBB-UD-487/86] p 294 N88-17853 HELICOPTER TAIL ROTORS An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor. Part 2: High speed photographic study [NASA-CR-177457] p 278 N88-16678 Testing of a tail rotor system in a fiber composite type of construction [MBB-UD-472/86] p 294 N88-17854 HELICOPTERS The metallurgical aspects of aluminum-lithium alloys in various product forms for helicopter structural applications p 311 A88-25106 Simplified calculation of the crushing process in structural elements p 315 A88-26171 NASA/Army Rotorcraft Technology. Volume 1: Aerodynamics, and Dynamics and Aeroelasticity [NASA-CP-2495-VOL-1] p 269 N88-16625 The development of CFD methods for rotor applications and structural dynamics technology p 307 N88-16627 A summary of recent NASA/Army contributions to rotorcraft vibrations and structural dynamics technology p 307 N88-16628 NASA/Army Rotorcraft Technology, Volume 2: Materials and Structures, Propulsion and Drive Systems, Flight Dynamics and Control, and Acoustics [NASA-CP-2495-VOL-2] p 270 N88-16632 Review of fatigue and fracture research at NASA Langley Research Center p 318 N88-16633	Experimental study on the effect of fiber orientation on flutter characteristics of high-aspect-ratio transport wing [NAL-TR-936] p 308 N88-16708 HIGH PRESSURE Radial compressor design using an Euler solver p 303 N88-17675 Design and testing of a front stage for an advanced high pressure compressor p 303 N88-17679 HIGH RESOLUTION Rotor SAR (ROSAR): A new high-resolution all-weather vision method for helicopters [MBB-UA-1046/87] p 321 N88-17855 HIGH TEMPERATURE High temperature polymer matrix composites p 313 N88-16700 Evaluation of high temperature structural adhesives for extended service, phase 5 [NASA-CR-178176] p 314 N88-16884 HIGH TEMPERATURE ENVIRONMENTS Effect of high temperature spikes on a carbon fibre-reinforced epoxy laminate p 312 A88-28299 An integrated aero/mechanical performance approach to high technology turbine design p 301 N88-17657 HIGH THRUST Development of circulation control technology for powered-lift STOL aircraft p 291 N88-17608 HIGHLY MANEUVERABLE AIRCRAFT Control muscle for agile aircraft — flight control actuators p 287 A88-26647
[NASA-CR-182509] p 330 N88-18376 HARMONIC EXCITATION Dynamic response of a geared train of rotors subjected to random support excitations p 320 N88-17073 HARMONIC OSCILLATION Multifrequency nonlinear vibrations in a gas-turbine engine Russian book p 298 A88-27742 HEART FUNCTION Sudden in-flight incapacitation in general aviation [AD-A187044] p 283 N88-16682 HEART TRANSFER Distributed gas injection into hypersonic flow p 271 A88-26120 HEAT TRANSFER COEFFICIENTS Some methodological aspects of the study of gasdynamic models with heat and mass transfer in an impulse wind tunnel p 310 A88-27158 HEATING Pumping systems and flow interfaces for rapid response electronic reheat controls p 302 N88-17665 HELICOPTER CONTROL Elastic hingeless scissor design p 315 A88-26159 Failure model determination in a knowledge-based control system p 325 A88-27406 Active control of helicopter vibrations by self-adaptive multicyclic control Modeling and identification in helicopter science p 327 A88-27760 Stability of helicopter blade motion in the case of turbulent air flow p 305 A88-27761 Design of a helicopter automatic flight control system	characteristics [AD-A186576] p 291 N88-17642 Helicopter activities in Germany [MBB-UD-487/86] p 294 N88-17853 HELICOPTER TAIL ROTORS An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor. Part 2: High speed photographic study [NASA-CR-177457] p 278 N88-16678 Testing of a tail rotor system in a fiber composite type of construction [MBB-UD-472/86] p 294 N88-17854 HELICOPTERS The metallurgical aspects of aluminum-lithium alloys in various product forms for helicopter structural applications p 311 A88-25106 Simplified calculation of the crushing process in structural elements p 315 A88-26171 NASA/Army Rotorcraft Technology. Volume 1: Aerodynamics, and Dynamics and Aeroelasticity [NASA-CP-2495-VOL-1] p 269 N88-16625 The development of CFD methods for rotor applications and structural dynamics technology p 307 N88-16627 A summary of recent NASA/Army contributions to rotorcraft vibrations and structural dynamics technology p 307 N88-16628 NASA/Army Rotorcraft Technology. Volume 2: Materials and Structures, Propulsion and Drive Systems, Flight Dynamics and Control, and Acoustics [NASA-CP-2495-VOL-2] p 270 N88-16632 Review of fatigue and fracture research at NASA Langley Research Center p 318 N88-16633 Helicopter crashworthiness research program	Experimental study on the effect of fiber orientation on flutter characteristics of high-aspect-ratio transport wing [NAL-TR-936] p 308 N88-16708 HIGH PRESSURE Radial compressor design using an Euler solver p 303 N88-17675 Design and testing of a front stage for an advanced high pressure compressor p 303 N88-17679 HIGH RESOLUTION Rotor SAR (ROSAR): A new high-resolution all-weather vision method for helicopters [MBB-UA-1046/87] p 321 N88-17855 HIGH TEMPERATURE High temperature polymer matrix composites p 313 N88-16700 Evaluation of high temperature structural adhesives for extended service, phase 5 [NASA-CR-178176] p 314 N88-16884 HIGH TEMPERATURE ENVIRONMENTS Effect of high temperature spikes on a carbon fibre-reinforced epoxy laminate p 312 A88-28299 An integrated aero/mechanical performance approach to high technology turbine design p 301 N88-17657 HIGH THRUST Development of circulation control technology for powered-lift STOL aircraft p 291 N88-17608 HIGHLY MANEUVERABLE AIRCRAFT Control muscle for agile aircraft — flight control actuators p 287 A88-26647 HINGES Elastic hingeless scissor design p 315 A88-26159 HISTORIES
[NASA-CR-182509] p 330 N88-18376 HARMONIC EXCITATION Dynamic response of a geared train of rotors subjected to random support excitations p 320 N88-17073 HARMONIC OSCILLATION Multifrequency nonlinear vibrations in a gas-turbine engine — Russian book p 298 A88-27742 HEART FUNCTION Sudden in-flight incapacitation in general aviation [AD-A187044] p 283 N88-16682 HEART FUNCTION Sudden in-flight incapacitation in general aviation [AD-A187044] p 283 N88-16682 HEART TRANSFER Distributed gas injection into hypersonic flow p 271 A88-26120 HEART TRANSFER COEFFICIENTS Some methodological aspects of the study of gasdynamic models with heat and mass transfer in an impulse wind tunnel p 310 A88-27158 HEATING Pumping systems and flow interfaces for rapid response electronic reheat controls p 302 N88-17665 HELICOPTER CONTROL Elastic hingeless scissor design p 315 A88-26159 Failure model determination in a knowledge-based control system p 325 A88-27406 Active control of helicopter vibrations by self-adaptive multicyclic control p 305 A88-27760 Modeling and identification in helicopter science p 327 A88-27760 Stability of helicopter blade motion in the case of turbulent air flow p 305 A88-27761 Design of a helicopter automatic flight control system p 306 A88-27762	characteristics [AD-A186576] p 291 N88-17642 Helicopter activities in Germany [MBB-UD-487/86] p 294 N88-17853 HELICOPTER TAIL ROTORS An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor. Part 2: High speed photographic study [NASA-CR-177457] p 278 N88-16678 Testing of a tail rotor system in a fiber composite type of construction [MBB-UD-472/86] p 294 N88-17854 HELICOPTERS The metallurgical aspects of aluminum-lithium alloys in various product forms for helicopter structural applications p 311 A88-25106 Simplified calculation of the crushing process in structural elements p 315 A88-26171 NASA/Army Rotorcraft Technology. Volume 1: Aerodynamics, and Dynamics and Aeroelasticity [NASA-CP-2495-VOL-1] p 269 N88-16625 The development of CFD methods for rotor applications and structural dynamics technology p 307 N88-16627 A summary of recent NASA/Army contributions to rotorcraft vibrations and structural dynamics technology p 307 N88-16628 NASA/Army Rotorcraft Technology, Volume 2: Materials and Structures, Propulsion and Drive Systems, Flight Dynamics and Control, and Acoustics [NASA-CP-2495-VOL-2] p 270 N88-16632 Review of fatigue and fracture research at NASA Langley Research Center p 318 N88-16633	Experimental study on the effect of fiber orientation on flutter characteristics of high-aspect-ratio transport wing [NAL-TR-936] p 308 N88-16708 HIGH PRESSURE Radial compressor design using an Euler solver p 303 N88-17675 Design and testing of a front stage for an advanced high pressure compressor p 303 N88-17679 HIGH RESOLUTION Rotor SAR (ROSAR): A new high-resolution all-weather vision method for helicopters [MBB-UA-1046/87] p 321 N88-17855 HIGH TEMPERATURE High temperature polymer matrix composites p 313 N88-16700 Evaluation of high temperature structural adhesives for extended service, phase 5 [NASA-CR-178176] p 314 N88-16884 HIGH TEMPERATURE ENVIRONMENTS Effect of high temperature spikes on a carbon fibre-reinforced epoxy laminate p 312 A88-28299 An integrated aero/mechanical performance approach to high technology turbine design p 301 N88-17657 HIGH THRUST Development of circulation control technology for powered-lift STOL aircraft p 291 N88-17608 HIGHLY MANEUVERABLE AIRCRAFT Control muscle for agile aircraft — flight control actuators p 287 A88-26647 HINGES Elastic hingeless scissor design p 315 A88-26159 HISTORIES NASA-Langley Research Center shapes tomorrow
[NASA-CR-182509] p 330 N88-18376 HARMONIC EXCITATION Dynamic response of a geared train of rotors subjected to random support excitations p 320 N88-17073 HARMONIC OSCILLATION Multifrequency nonlinear vibrations in a gas-turbine engine Russian book p 298 A88-27742 HEART FUNCTION Sudden in-flight incapacitation in general aviation [AD-A187044] p 283 N88-16682 HEART TRANSFER Distributed gas injection into hypersonic flow p 271 A88-26120 HEAT TRANSFER COEFFICIENTS Some methodological aspects of the study of gasdynamic models with heat and mass transfer in an impulse wind tunnel p 310 A88-27158 HEATING Pumping systems and flow interfaces for rapid response electronic reheat controls p 302 N88-17665 HELICOPTER CONTROL Elastic hingeless scissor design p 315 A88-26159 Failure model determination in a knowledge-based control system p 325 A88-27406 Active control of helicopter vibrations by self-adaptive multicyclic control Modeling and identification in helicopter science p 327 A88-27760 Stability of helicopter blade motion in the case of turbulent air flow p 305 A88-27761 Design of a helicopter automatic flight control system	characteristics [AD-A186576] p 291 N88-17642 Helicopter activities in Germany [MBB-UD-487/86] p 294 N88-17853 HELICOPTER TAIL ROTORS An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor. Part 2: High speed photographic study [NASA-CR-177457] p 278 N88-16678 Testing of a tail rotor system in a fiber composite type of construction [MBB-UD-472/86] p 294 N88-17854 HELICOPTERS The metallurgical aspects of aluminum-lithium alloys in various product forms for helicopter structural applications p 311 A88-25106 Simplified calculation of the crushing process in structural elements p 315 A88-26171 NASA/Army Rotorcraft Technology. Volume 1: Aerodynamics, and Dynamics and Aeroelasticity [NASA-CP-2495-VOL-1] p 269 N88-16625 The development of CFD methods for rotor applications and structural dynamics technology p 307 N88-16627 A summary of recent NASA/Army contributions to rotorcraft vibrations and structural dynamics technology p 307 N88-16628 NASA/Army Rotorcraft Technology. Volume 2: Materials and Structures, Propulsion and Drive Systems, Flight Dynamics and Control, and Acoustics [NASA-CP-2495-VOL-2] p 270 N88-16632 Review of fatigue and fracture research at NASA Langley Research Center p 318 N88-16635 Results of NASA/Army transmission research	Experimental study on the effect of fiber orientation on flutter characteristics of high-aspect-ratio transport wing [NAL-TR-936] p 308 N88-16708 HIGH PRESSURE Radial compressor design using an Euler solver p 303 N88-17675 Design and testing of a front stage for an advanced high pressure compressor p 303 N88-17679 HIGH RESOLUTION Rotor SAR (ROSAR): A new high-resolution all-weather vision method for helicopters [MBB-UA-1046/87] p 321 N88-17855 HIGH TEMPERATURE High temperature polymer matrix composites p 313 N88-16700 Evaluation of high temperature structural adhesives for extended service, phase 5 [NASA-CR-178176] p 314 N88-16884 HIGH TEMPERATURE ENVIRONMENTS Effect of high temperature spikes on a carbon fibre-reinforced epoxy laminate p 312 A88-28299 An integrated aero/mechanical performance approach to high technology turbine design p 301 N88-17657 HIGH THRUST Development of circulation control technology for powered-lift STOL aircraft p 291 N88-17608 HIGHLY MANEUVERABLE AIRCRAFT Control muscle for agile aircraft — flight control actuators p 287 A88-26647 HINGES Elastic hingeless scissor design p 315 A88-26159 HISTORIES NASA-Langley Research Center shapes tomorrow through innovative research
[NASA-CR-182509] p 330 N88-18376 HARMONIC EXCITATION Dynamic response of a geared train of rotors subjected to random support excitations p 320 N88-17073 HARMONIC OSCILLATION Multifrequency nonlinear vibrations in a gas-turbine engine — Russian book p 298 A88-27742 HEART FUNCTION Sudden in-flight incapacitation in general aviation [AD-A187044] p 283 N88-16682 HEART FRANSFER Distributed gas injection into hypersonic flow p 271 A88-26120 HEART TRANSFER COEFFICIENTS Some methodological aspects of the study of gasdynamic models with heat and mass transfer in an impulse wind tunnel p 310 A88-27158 HEATING Pumping systems and flow interfaces for rapid response electronic reheat controls p 302 N88-17665 HELICOPTER CONTROL Elastic hingeless scissor design p 315 A88-27406 Active control of helicopter vibrations by self-adaptive multicyclic control Modeling and identification in helicopter science p 327 A88-27760 Stability of helicopter blade motion in the case of turbulent air flow Design of a helicopter automatic flight control system p 306 A88-27762 Nonlinear identification technique for helicopter flight	characteristics [AD-A186576] p 291 N88-17642 Helicopter activities in Germany [MBB-UD-487/86] p 294 N88-17853 HELICOPTER TAIL ROTORS An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor. Part 2: High speed photographic study [NASA-CR-177457] p 278 N88-16678 Testing of a tail rotor system in a fiber composite type of construction [MBB-UD-472/86] p 294 N88-17854 HELICOPTERS The metallurgical aspects of aluminum-lithium alloys in various product forms for helicopter structural applications p 311 A88-25106 Simplified calculation of the crushing process in structural elements p 315 A88-26171 NASA/Army Rotorcraft Technology. Volume 1: Aerodynamics, and Dynamics and Aeroelasticity [NASA-CP-2495-VOL-1] p 269 N88-16625 The development of CFD methods for rotor applications p 288 N88-16627 A summary of recent NASA/Army contributions to rotorcraft vibrations and structural dynamics technology p 307 N88-16628 NASA/Army Rotorcraft Technology. Volume 2: Materials and Structures, Propulsion and Drive Systems, Flight Dynamics and Control, and Acoustics [NASA-CP-2495-VOL-2] p 270 N88-16632 Review of fatigue and fracture research at NASA Langley Research Center p 318 N88-16633 Helicopter crashworthiness research program p 283 N88-16640 NASA's rotorcraft cing research program	Experimental study on the effect of fiber orientation on flutter characteristics of high-aspect-ratio transport wing [NAL-TR-936] p 308 N88-16708 HIGH PRESSURE Radial compressor design using an Euler solver p 303 N88-17675 Design and testing of a front stage for an advanced high pressure compressor p 303 N88-17679 HIGH RESOLUTION Rotor SAR (ROSAR): A new high-resolution all-weather vision method for helicopters [MBB-UA-1046/87] p 321 N88-17855 HIGH TEMPERATURE High temperature polymer matrix composites p 313 N88-16700 Evaluation of high temperature structural adhesives for extended service, phase 5 [NASA-CR-178176] p 314 N88-16884 HIGH TEMPERATURE ENVIRONMENTS Effect of high temperature spikes on a carbon fibre-reinforced epoxy laminate p 312 A88-28299 An integrated aero/mechanical performance approach to high technology turbine design p 301 N88-17657 HIGH THRUST Development of circulation control technology for powered-lift STOL aircraft p 291 N88-17608 HIGHLY MANEUVERABLE AIRCRAFT Control muscle for agile aircraft — flight control actuators p 287 A88-26647 HINGES Elastic hingeless scissor design p 315 A88-26159 HISTORIES NASA-Langley Research Center shapes tomorrow
[NASA-CR-182509] p 330 N88-18376 HARMONIC EXCITATION Dynamic response of a geared train of rotors subjected to random support excitations p 320 N88-17073 HARMONIC OSCILLATION Multifrequency nonlinear vibrations in a gas-turbine engine — Russian book p 298 A88-27742 HEART FUNCTION Sudden in-flight incapacitation in general aviation [AD-A187044] p 283 N88-16682 HEAT TRANSFER Distributed gas injection into hypersonic flow p 271 A88-26120 HEAT TRANSFER COEFFICIENTS Some methodological aspects of the study of gasdynamic models with heat and mass transfer in an impulse wind tunnel p 310 A88-27158 HEATING Pumping systems and flow interfaces for rapid response electronic reheat controls p 302 N88-17665 HELICOPTER CONTROL Elastic hingeless scissor design p 315 A88-26159 Failure model determination in a knowledge-based control system p 325 A88-27406 Active control of helicopter vibrations by self-adaptive multicyclic control p 305 A88-27769 Modeling and identification in helicopter science p 327 A88-27760 Stability of helicopter blade motion in the case of turbulent air flow p 305 A88-27761 Design of a helicopter automatic flight control system p 306 A88-27762 Nonlinear identification technique for helicopter flight mechanics p 306 A88-27761	characteristics [AD-A186576] p 291 N88-17642 Helicopter activities in Germany [MBB-UD-487/86] p 294 N88-17853 HELICOPTER TAIL ROTORS An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor. Part 2: High speed photographic study [NASA-CR-177457] p 278 N88-16678 Testing of a tail rotor system in a fiber composite type of construction [MBB-UD-472/86] p 294 N88-17854 HELICOPTERS The metallurgical aspects of aluminum-lithium alloys in various product forms for helicopter structural applications p 311 A88-25106 Simplified calculation of the crushing process in structural elements p 315 A88-26171 NASA/Army Rotorcraft Technology. Volume 1: Aerodynamics, and Dynamics and Aeroelasticity [NASA-CP-2495-VOL-1] p 269 N88-16625 The development of CFD methods for rotor applications p 288 N88-16627 A summary of recent NASA/Army contributions to rotorcraft vibrations and structural dynamics technology p 307 N88-16628 NASA/Army Rotorcraft Technology. Volume 2: Materials and Structures, Propulsion and Drive Systems, Flight Dynamics and Control, and Acoustics [NASA-CP-2495-VOL-2] p 270 N88-16632 Review of fatigue and fracture research at NASA Langley Research Center p 318 N88-16635 Results of NASA/Army transmission research p 299 N88-16640 NASA's rotorcraft icing research program p 283 N88-16641	Experimental study on the effect of fiber orientation on flutter characteristics of high-aspect-ratio transport wing [NAL-TR-936] p 308 N88-16708 HIGH PRESSURE Radial compressor design using an Euler solver p 303 N88-17675 Design and testing of a front stage for an advanced high pressure compressor p 303 N88-17679 HIGH RESOLUTION Rotor SAR (ROSAR): A new high-resolution all-weather vision method for helicopters [MBB-UA-1046/87] p 321 N88-17855 HIGH TEMPERATURE High temperature polymer matrix composites p 313 N88-16700 Evaluation of high temperature structural adhesives for extended service, phase 5 [NASA-CR-178176] p 314 N88-16884 HIGH TEMPERATURE ENVIRONMENTS Effect of high temperature spikes on a carbon fibre-reinforced epoxy laminate p 312 A88-28299 An integrated aero/mechanical performance approach to high technology turbine design p 301 N88-17657 HIGH THRUST Development of circulation control technology for powered-lift STOL aircraft p 291 N88-17608 HIGHLY MANEUVERABLE AIRCRAFT Control muscle for agile aircraft — flight control actuators p 287 A88-26647 HINGES Elastic hingeless scissor design p 315 A88-26159 HISTORIES NASA-Langley Research Center shapes tomorrow through innovative research p 310 A88-25750 Lewis materials research and technology An overview p 330 N88-16699 The coming revolution in turbine engine technology
[NASA-CR-182509] p 330 N88-18376 HARMONIC EXCITATION Dynamic response of a geared train of rotors subjected to random support excitations p 320 N88-17073 HARMONIC OSCILLATION Multifrequency nonlinear vibrations in a gas-turbine engine Russian book p 298 A88-27742 HEART FUNCTION Sudden in-flight incapacitation in general aviation [AD-A187044] p 283 N88-16682 HEAT TRANSFER Distributed gas injection into hypersonic flow p 271 A88-26120 HEAT TRANSFER COEFFICIENTS Some methodological aspects of the study of gasdynamic models with heat and mass transfer in an impulse wind tunnel p 310 A88-27158 HEATING Pumping systems and flow interfaces for rapid response electronic reheat controls p 302 N88-17665 HELICOPTER CONTROL Elastic hingeless scissor design p 315 A88-26159 Failure model determination in a knowledge-based control system p 325 A88-27406 Active control of helicopter vibrations by self-adaptive multicyclic control p 305 A88-27760 Stability of helicopter blade motion in the case of turbulent air flow p 305 A88-27760 Design of a helicopter automatic flight control system p 306 A88-27762 Nonlinear control for level flight of helicopter flight mechanics p 306 A88-27764 Optimal landing of a helicopter in autorotation	characteristics [AD-A186576] p 291 N88-17642 Helicopter activities in Germany [MBB-UD-487/86] p 294 N88-17853 HELICOPTER TAIL ROTORS An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor. Part 2: High speed photographic study [NASA-CR-177457] p 278 N88-16678 Testing of a tail rotor system in a fiber composite type of construction [MBB-UD-472/86] p 294 N88-17854 HELICOPTERS The metallurgical aspects of aluminum-lithium alloys in various product forms for helicopter structural applications p 311 A88-25106 Simplified calculation of the crushing process in structural elements p 315 A88-26171 NASA/Army Rotorcraft Technology. Volume 1: Aerodynamics, and Dynamics and Aeroelasticity [NASA-CP-2495-VOL-1] p 269 N88-16625 The development of CFD methods for rotor applications p 288 N88-16627 A summary of recent NASA/Army contributions to rotorcraft vibrations and structural dynamics technology p 307 N88-16628 NASA/Army Rotorcraft Technology. Volume 2: Materials and Structures, Propulsion and Drive Systems, Flight Dynamics and Control, and Acoustics [NASA-CP-2495-VOL-2] p 270 N88-16632 Review of fatigue and fracture research at NASA Langley Research Center p 318 N88-16633 Helicopter crashworthiness research program p 283 N88-16640 NASA's rotorcraft cing research program p 283 N88-16640 NASA's rotorcraft cing research program p 283 N88-16640 NASA's rotorcraft control law development for handling qualities research	Experimental study on the effect of fiber orientation on flutter characteristics of high-aspect-ratio transport wing [NAL-TR-936] p 308 N88-16708 HIGH PRESSURE Radial compressor design using an Euler solver p 303 N88-17675 Design and testing of a front stage for an advanced high pressure compressor p 303 N88-17679 HIGH RESOLUTION Rotor SAR (ROSAR): A new high-resolution all-weather vision method for helicopters [MBB-UA-1046/87] p 321 N88-17855 HIGH TEMPERATURE High temperature polymer matrix composites p 313 N88-16700 Evaluation of high temperature structural adhesives for extended service, phase 5 [NASA-CR-178176] p 314 N88-16884 HIGH TEMPERATURE ENVIRONMENTS Effect of high temperature spikes on a carbon fibre-reinforced epoxy laminate p 312 A88-28299 An integrated aero/mechanical performance approach to high technology turbine design p 301 N88-17657 HIGH THRUST Development of circulation control technology for powered-lift STOL aircraft p 291 N88-17608 HIGHLY MANEUVERABLE AIRCRAFT Control muscle for agile aircraft — flight control actuators p 287 A88-26647 HINGES Elastic hingeless scissor design p 315 A88-26159 HISTORIES NASA-Langley Research Center shapes tomorrow through innovative research p 310 A88-25750 Lewis materials research and technology: An overview p 330 N88-16699 The coming revolution in turbine engine technology p 299 N88-17648
[NASA-CR-182509] p 330 N88-18376 HARMONIC EXCITATION Dynamic response of a geared train of rotors subjected to random support excitations p 320 N88-17073 HARMONIC OSCILLATION Multifrequency nonlinear vibrations in a gas-turbine engine — Russian book p 298 A88-27742 HEART FUNCTION Sudden in-flight incapacitation in general aviation [AD-A187044] p 283 N88-16682 HEART TRANSFER Distributed gas injection into hypersonic flow p 271 A88-26120 HEAT TRANSFER COEFFICIENTS Some methodological aspects of the study of gasdynamic models with heat and mass transfer in an impulse wind tunnel p 310 A88-27158 HEATING Pumping systems and flow intertaces for rapid response electronic reheat controls p 302 N88-17665 HELICOPTER CONTROL Elastic hingeless scissor design p 315 A88-26159 Failure model determination in a knowledge-based control system p 325 A88-27406 Active control of helicopter vibrations by self-adaptive multicyclic control Modeling and identification in helicopter science p 327 A88-27759 Modeling and identification in helicopter science p 327 A88-27760 Stability of helicopter blade motion in the case of turbulent air flow p 305 A88-27762 Nonlinear control for level flight of a helicopter p 306 A88-27762 Nonlinear identification technique for helicopter flight mechanics p 308 A88-28251	characteristics [AD-A186576] p 291 N88-17642 Helicopter activities in Germany [MBB-UD-487/86] p 294 N88-17853 HELICOPTER TAIL ROTORS An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor. Part 2: High speed photographic study [NASA-CR-177457] p 278 N88-16678 Testing of a tail rotor system in a fiber composite type of construction [MBB-UD-472/86] p 294 N88-17854 HELICOPTERS The metallurgical aspects of aluminum-lithium alloys in various product forms for helicopter structural applications p 311 A88-25106 Simplified calculation of the crushing process in structural elements p 315 A88-26101 NASA/Army Rotorcraft Technology. Volume 1: Aerodynamics, and Dynamics and Aeroelasticity [NASA-CP-2495-VOL-1] p 269 N88-16625 The development of CFD methods for rotor applications p 288 N88-16627 A summary of recent NASA/Army contributions to rotorcraft vibrations and structural dynamics technology p 307 N88-16628 NASA/Army Rotorcraft Technology. Volume 2: Materials and Structures, Propulsion and Drive Systems, Flight Dynamics and Control, and Acoustics [NASA-CP-2495-VOL-2] p 270 N88-16632 Review of fatigue and fracture research at NASA Langley Research Center p 281 N88-16633 Helicopter crashworthiness research program p 283 N88-16640 NASA's rotorcraft icing research program p 283 N88-16641 Helicopter mathematical models and control law development for handling qualities research	Experimental study on the effect of fiber orientation on flutter characteristics of high-aspect-ratio transport wing [NAL-TR-936] p 308 N88-16708 HIGH PRESSURE Radial compressor design using an Euler solver p 303 N88-17675 Design and testing of a front stage for an advanced high pressure compressor p 303 N88-17679 HIGH RESOLUTION Rotor SAR (ROSAR): A new high-resolution all-weather vision method for helicopters [MBB-UA-1046/87] p 321 N88-17855 HIGH TEMPERATURE High temperature polymer matrix composites p 313 N88-16700 Evaluation of high temperature structural adhesives for extended service, phase 5 [NASA-CR-178176] p 314 N88-16884 HIGH TEMPERATURE ENVIRONMENTS Effect of high temperature spikes on a carbon fibre-reinforced epoxy laminate p 312 A88-28299 An integrated aero/mechanical performance approach to high technology turbine design p 301 N88-17657 HIGH THRUST Development of circulation control technology for powered-lift STOL aircraft p 291 N88-17608 HIGHLY MANEUVERABLE AIRCRAFT Control muscle for agile aircraft — flight control actuators p 287 A88-26647 HINGES Elastic hingeless scissor design p 315 A88-26159 HISTORIES NASA-Langley Research Center shapes tomorrow through innovative research p 310 A88-25750 Lewis materials research and technology: An overview p 330 N88-16699 The coming revolution in turbine engine technology p 299 N88-17648 Airbus, the successful European cooperation
[NASA-CR-182509] p 330 N88-18376 HARMONIC EXCITATION Dynamic response of a geared train of rotors subjected to random support excitations p 320 N88-17073 HARMONIC OSCILLATION Multifrequency nonlinear vibrations in a gas-turbine engine Russian book p 298 A88-27742 HEART FUNCTION Sudden in-flight incapacitation in general aviation [AD-A187044] p 283 N88-16682 HEAT TRANSFER Distributed gas injection into hypersonic flow p 271 A88-26120 HEAT TRANSFER COEFFICIENTS Some methodological aspects of the study of gasdynamic models with heat and mass transfer in an impulse wind tunnel p 310 A88-27158 HEATING Pumping systems and flow interfaces for rapid response electronic reheat controls p 302 N88-17665 HELICOPTER CONTROL Elastic hingeless scissor design p 315 A88-26159 Failure model determination in a knowledge-based control system p 325 A88-27406 Active control of helicopter vibrations by self-adaptive multicyclic control p 305 A88-27760 Stability of helicopter blade motion in the case of turbulent air flow p 305 A88-27760 Design of a helicopter automatic flight control system p 306 A88-27762 Nonlinear control for level flight of helicopter flight mechanics p 306 A88-27764 Optimal landing of a helicopter in autorotation	characteristics [AD-A186576] p 291 N88-17642 Helicopter activities in Germany [MBB-UD-487/86] p 294 N88-17853 HELICOPTER TAIL ROTORS An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor. Part 2: High speed photographic study [NASA-CR-177457] p 278 N88-16678 Testing of a tail rotor system in a fiber composite type of construction [MBB-UD-472/86] p 294 N88-17854 HELICOPTERS The metallurgical aspects of aluminum-lithium alloys in various product forms for helicopter structural applications p 311 A88-25106 Simplified calculation of the crushing process in structural elements p 315 A88-26171 NASA/Army Rotorcraft Technology. Volume 1: Aerodynamics, and Dynamics and Aeroelasticity [NASA-CP-2495-VOL-1] p 269 N88-16625 The development of CFD methods for rotor applications and structural dynamics technology p 307 N88-16627 A summary of recent NASA/Army contributions to rotorcraft vibrations and structural dynamics technology p 307 N88-16628 NASA/Army Rotorcraft Technology. Volume 2: Materials and Structures, Propulsion and Drive Systems, Flight Dynamics and Control, and Acoustics [NASA-CP-2495-VOL-2] p 270 N88-16632 Review of fatigue and fracture research at NASA Langley Research Center p 318 N88-16633 Helicopter crashworthiness research program p 283 N88-16635 Results of NASA/Army transmission research p 299 N88-16640 NASA's rotorcraft icing research program p 283 N88-16640 NASA's rotorcraft icing research pr	Experimental study on the effect of fiber orientation on flutter characteristics of high-aspect-ratio transport wing [NAL-TR-936] p 308 N88-16708 HIGH PRESSURE Radial compressor design using an Euler solver p 303 N88-17675 Design and testing of a front stage for an advanced high pressure compressor p 303 N88-17679 HIGH RESOLUTION Rotor SAR (ROSAR): A new high-resolution all-weather vision method for helicopters [MBB-UA-1046/87] p 321 N88-17855 HIGH TEMPERATURE High temperature polymer matrix composites p 313 N88-16700 Evaluation of high temperature structural adhesives for extended service, phase 5 [NASA-CR-178176] p 314 N88-16884 HIGH TEMPERATURE ENVIRONMENTS Effect of high temperature spikes on a carbon fibre-reinforced epoxy laminate p 312 A88-28299 An integrated aero/mechanical performance approach to high technology turbine design p 301 N88-17657 HIGH THRUST Development of circulation control technology for powered-lift STOL aircraft p 291 N88-17608 HIGHLY MANEUVERABLE AIRCRAFT Control muscle for agile aircraft — flight control actuators p 287 A88-26647 HINGES Elastic hingeless scissor design p 315 A88-26159 HISTORIES NASA-Langley Research Center shapes tomorrow through innovative research p 310 A88-25750 Lewis materials research and technology: An overview p 330 N88-16699 The coming revolution in turbine engine technology p 299 N88-17648 Airbus, the successful European cooperation [MBB-UT-005/87] p 270 N88-17847
[NASA-CR-182509] p 330 N88-18376 HARMONIC EXCITATION Dynamic response of a geared train of rotors subjected to random support excitations p 320 N88-17073 HARMONIC OSCILLATION Multifrequency nonlinear vibrations in a gas-turbine engine — Russian book p 298 A88-27742 HEART FUNCTION Sudden in-flight incapacitation in general aviation [AD-A187044] p 283 N88-16682 HEART TRANSFER Distributed gas injection into hypersonic flow p 271 A88-26120 HEAT TRANSFER COEFFICIENTS Some methodological aspects of the study of gasdynamic models with heat and mass transfer in an impulse wind tunnel p 310 A88-27158 HEATING Pumping systems and flow intertaces for rapid response electronic reheat controls p 302 N88-17665 HELICOPTER CONTROL Elastic hingeless scissor design p 315 A88-26159 Failure model determination in a knowledge-based control system p 325 A88-27406 Active control of helicopter vibrations by self-adaptive multicyclic control Modeling and identification in helicopter science p 327 A88-27769 Modeling and identification in helicopter science p 305 A88-27762 Nonlinear control for level flight control system p 306 A88-27762 Nonlinear identification technique for helicopter flight mechanics P 306 A88-27763 Nonlinear identification technique for helicopter flight mechanics p 306 A88-27764 Rotor SAR (ROSAR): A new high-resolution all-weather vision method for helicopters [MBB-UA-1046/87] p 321 N88-17855	characteristics [AD-A186576] p 291 N88-17642 Helicopter activities in Germany [MBB-UD-487/86] p 294 N88-17853 HELICOPTER TAIL ROTORS An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor. Part 2: High speed photographic study [NASA-CR-177457] p 278 N88-16678 Testing of a tail rotor system in a fiber composite type of construction [MBB-UD-472/86] p 294 N88-17854 HELICOPTERS The metallurgical aspects of aluminum-lithium alloys in various product forms for helicopter structural applications p 311 A88-25106 Simplified calculation of the crushing process in structural elements p 315 A88-26101 NASA/Army Rotorcraft Technology. Volume 1: Aerodynamics, and Dynamics and Aeroelasticity [NASA-CP-2495-VOL-1] p 269 N88-16625 The development of CFD methods for rotor applications p 288 N88-16627 A summary of recent NASA/Army contributions to rotorcraft vibrations and structural dynamics technology p 307 N88-16628 NASA/Army Rotorcraft Technology. Volume 2: Materials and Structures, Propulsion and Drive Systems, Flight Dynamics and Control, and Acoustics [NASA-CP-2495-VOL-2] p 270 N88-16632 Review of fatigue and fracture research at NASA Langley Research Center p 281 N88-16633 Helicopter crashworthiness research program p 283 N88-16640 NASA's rotorcraft icing research program p 283 N88-16641 Helicopter mathematical models and control law development for handling qualities research	Experimental study on the effect of fiber orientation on flutter characteristics of high-aspect-ratio transport wing [NAL-TR-936] p 308 N88-16708 HIGH PRESSURE Radial compressor design using an Euler solver p 303 N88-17675 Design and testing of a front stage for an advanced high pressure compressor p 303 N88-17679 HIGH RESOLUTION Rotor SAR (ROSAR): A new high-resolution all-weather vision method for helicopters [MBB-UA-1046/87] p 321 N88-17855 HIGH TEMPERATURE High temperature polymer matrix composites p 313 N88-16700 Evaluation of high temperature structural adhesives for extended service, phase 5 [NASA-CR-178176] p 314 N88-16884 HIGH TEMPERATURE ENVIRONMENTS Effect of high temperature spikes on a carbon fibre-reinforced epoxy laminate p 312 A88-28299 An integrated aero/mechanical performance approach to high technology turbine design p 301 N88-17657 HIGH THRUST Development of circulation control technology for powered-lift STOL aircraft p 291 N88-17608 HIGHLY MANEUVERABLE AIRCRAFT Control muscle for agile aircraft — flight control actuators p 287 A88-26647 HINGES Elastic hingeless scissor design p 315 A88-26159 HISTORIES NASA-Langley Research Center shapes tomorrow through innovative research p 310 A88-25750 Lewis materials research and technology: An overview p 330 N88-16699 The coming revolution in turbine engine technology p 299 N88-17648 Airbus, the successful European cooperation
[NASA-CR-182509] p 330 N88-18376 HARMONIC EXCITATION Dynamic response of a geared train of rotors subjected to random support excitations p 320 N88-17073 HARMONIC OSCILLATION Multifrequency nonlinear vibrations in a gas-turbine engine — Russian book p 298 A88-27742 HEART FUNCTION Sudden in-flight incapacitation in general aviation [AD-A187044] p 283 N88-16682 HEART FUNCTION Sudden in-flight incapacitation in general aviation [AD-A187044] p 283 N88-16682 HEART TRANSFER Distributed gas injection into hypersonic flow p 271 A88-26120 HEART TRANSFER COEFFICIENTS Some methodological aspects of the study of gasdynamic models with heat and mass transfer in an impulse wind tunnel p 310 A88-27158 HEATING Pumping systems and flow interfaces for rapid response electronic reheat controls p 302 N88-17665 HELICOPTER CONTROL Elastic hingeless scissor design p 315 A88-26159 Failure model determination in a knowledge-based control system p 325 A88-27406 Active control of helicopter vibrations by self-adaptive multicyclic control Modeling and identification in helicopter science p 327 A88-27760 Stability of helicopter blade motion in the case of turbulent air flow p 305 A88-27761 Design of a helicopter automatic flight control system p 306 A88-27762 Nonlinear control for level flight of a helicopter p 306 A88-27763 Nonlinear identification technique for helicopter flight mechanics p 306 A88-27764 Optimal landing of a helicopter in autorotation p 288 A88-28251 Rotor SAR (ROSAR): A new high-resolution aff-weather vision method for helicopters [MBB-UA-1046/87] HELICOPTER DESIGN	characteristics [AD-A186576] p 291 N88-17642 Helicopter activities in Germany [MBB-UD-487/86] p 294 N88-17853 HELICOPTER TAIL ROTORS An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor. Part 2: High speed photographic study [NASA-CR-177457] p 278 N88-16678 Testing of a tail rotor system in a fiber composite type of construction [MBB-UD-472/86] p 294 N88-17854 HELICOPTERS The metallurgical aspects of aluminum-lithium alloys in various product forms for helicopter structural applications p 311 A88-25106 Simplified calculation of the crushing process in structural elements p 315 A88-26171 NASA/Army Rotorcraft Technology. Volume 1: Aerodynamics, and Dynamics and Aeroelasticity [NASA-CP-2495-VOL-1] p 269 N88-16625 The development of CFD methods for rotor applications and structural dynamics technology rotorcraft vibrations and structural dynamics technology NASA/Army Rotorcraft Technology, Volume 2: Materials and Structures, Propulsion and Drive Systems, Flight Dynamics and Control, and Acoustics [NASA-CP-2495-VOL-2] p 270 N88-16632 Review of fatigue and fracture research at NASA Langley Research Center p 318 N88-16635 Helicopter crashworthiness research program p 283 N88-16635 Results of NASA/Army transmission research p 299 N88-16640 NASA's rotorcraft icing research program p 283 N88-16640 NASA's rotorcraft light-propulsion control integration p 307 N88-16642 Rotorcraft flight-propulsion control integration p 307 N88-16642 Rotorcraft flight-propulsion control integration p 307 N88-16645	Experimental study on the effect of fiber orientation on flutter characteristics of high-aspect-ratio transport wing [NAL-TR-936] p 308 N88-16708 HIGH PRESSURE Radial compressor design using an Euler solver p 303 N88-17675 Design and testing of a front stage for an advanced high pressure compressor p 303 N88-17679 HIGH RESOLUTION Rotor SAR (ROSAR): A new high-resolution all-weather vision method for helicopters [MBB-UA-1046/87] p 321 N88-17855 HIGH TEMPERATURE High temperature polymer matrix composites p 313 N88-16700 Evaluation of high temperature structural adhesives for extended service, phase 5 [NASA-CR-178176] p 314 N88-16884 HIGH TEMPERATURE ENVIRONMENTS Effect of high temperature spikes on a carbon fibre-reinforced epoxy laminate p 312 A88-28299 An integrated aero/mechanical performance approach to high technology turbine design p 301 N88-17657 HIGH THRUST Development of circulation control technology for powered-lift STOL aircraft p 291 N88-17608 HIGHLY MANEUVERABLE AIRCRAFT Control muscle for agile aircraft — flight control actuators p 287 A88-26647 HINGES Elastic hingeless scissor design p 315 A88-26159 HISTORIES NASA-Langley Research Center shapes tomorrow through innovative research p 310 A88-25750 Lewis materials research and technology: An overview p 330 N88-16699 The coming revolution in turbine engine technology p 299 N88-17648 Airbus, the successful European cooperation [MBB-UT-005/87] p 270 N88-17847 HODOGRAPHS Numerical solution of the problem of supersonic gas flow from a narrow slot in hodograph variables
[NASA-CR-182509] p 330 N88-18376 HARMONIC EXCITATION Dynamic response of a geared train of rotors subjected to random support excitations p 320 N88-17073 HARMONIC OSCILLATION Multifrequency nonlinear vibrations in a gas-turbine engine — Russian book p 298 A88-27742 HEART FUNCTION Sudden in-flight incapacitation in general aviation [AD-A187044] p 283 N88-16682 HEAT TRANSFER Distributed gas injection into hypersonic flow p 271 A88-26120 HEAT TRANSFER COEFFICIENTS Some methodological aspects of the study of gasdynamic models with heat and mass transfer in an impulse wind tunnel p 310 A88-27158 HEATING Pumping systems and flow interfaces for rapid response electronic reheat controls p 302 N88-17665 HELICOPTER CONTROL Elastic hingeless scissor design p 315 A88-26159 Failure model determination in a knowledge-based control system p 325 A88-27406 Active control of helicopter vibrations by self-adaptive multicyclic control whodeling and identification in helicopter science p 327 A88-27760 Stability of helicopter blade motion in the case of turbulent air flow p 305 A88-27760 Design of a helicopter automatic flight control system p 306 A88-27762 Nonlinear control for level flight of a helicopter p 306 A88-27763 Nonlinear identification technique for helicopter flight mechanics p 306 A88-27764 Optimal landing of a helicopter in autorotation p 288 A88-28251 Rotor SAR (ROSAR): A new high-resolution alf-weather vision method for helicopters (MBB-UA-1046/87) p 321 N88-17855 HELICOPTER DESIGN The Boeing Helicopter Model 360 advanced technology	characteristics [AD-A186576] p 291 N88-17642 Helicopter activities in Germany [MBB-UD-487/86] p 294 N88-17853 HELICOPTER TAIL ROTORS An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor. Part 2: High speed photographic study [NASA-CR-177457] p 278 N88-16678 Testing of a tail rotor system in a fiber composite type of construction [MBB-UD-472/86] p 294 N88-17854 HELICOPTERS The metallurgical aspects of aluminum-lithium alloys in various product forms for helicopter structural applications product forms for helicopter structural applications product forms p 311 A88-25106 Simplified calculation of the crushing process in structural elements p 315 A88-26171 NASA/Army Rotorcraft Technology. Volume 1: Aerodynamics, and Dynamics and Aeroelasticity [NASA-CP-2495-VOL-1] p 269 N88-16625 The development of CFD methods for rotor applications possible for the crushing process in the development of CFD methods for rotor applications of rotorcraft vibrations and structural dynamics technology. A summary of recent NASA/Army contributions to rotorcraft vibrations and structural dynamics technology. NASA/Army Rotorcraft Technology. Volume 2: Materials and Structures, Propulsion and Drive Systems, Flight Dynamics and Control, and Acoustics [NASA-CP-2495-VOL-2] p 270 N88-16628 Review of fatigue and fracture research at NASA Langley Research Center p 318 N88-16635 Results of NASA/Army transmission research p 283 N88-16640 NASA's rotorcraft icing research program p 283 N88-16640 NASA-GEROMASA-GEROMA p 299 N88-16640 Rotorcraft flight-propulsion control integration p 307 N88-16643 Rotorcraft handling-qualities research at NASA Ames	Experimental study on the effect of fiber orientation on flutter characteristics of high-aspect-ratio transport wing [NAL-TR-936] p 308 N88-16708 HIGH PRESSURE Radial compressor design using an Euler solver p 303 N88-17675 Design and testing of a front stage for an advanced high pressure compressor p 303 N88-17679 HIGH RESOLUTION Rotor SAR (ROSAR): A new high-resolution all-weather vision method for helicopters [MBB-UA-1046/87] p 321 N88-17855 HIGH TEMPERATURE High temperature polymer matrix composites p 313 N88-16700 Evaluation of high temperature structural adhesives for extended service, phase 5 [NASA-CR-178176] p 314 N88-16884 HIGH TEMPERATURE ENVIRONMENTS Effect of high temperature spikes on a carbon fibre-reinforced epoxy laminate p 312 A88-28299 An integrated aero/mechanical performance approach to high technology turbine design p 301 N88-17657 HIGH THRUST Development of circulation control technology for powered-lift STOL aircraft p 291 N88-17608 HIGHLY MANEUVERABLE AIRCRAFT Control muscle for agile aircraft — flight control actuators p 287 A88-26647 HINGES Elastic hingeless scissor design p 315 A88-26159 HISTORIES NASA-Langley Research Center shapes tomorrow through innovative research p 310 A88-25750 Lewis materials research and technology: An overview p 330 N88-16699 The coming revolution in turbine engine technology p 299 N88-17648 Airbus, the successful European cooperation [MBB-UT-005/87] p 270 N88-17847 HODOGRAPHS Numerical solution of the problem of supersonic gas flow from a narrow slot in hodograph variables p 271 A88-26129
[NASA-CR-182509] p 330 N88-18376 HARMONIC EXCITATION Dynamic response of a geared train of rotors subjected to random support excitations p 320 N88-17073 HARMONIC OSCILLATION Multifrequency nonlinear vibrations in a gas-turbine engine — Russian book p 298 A88-27742 HEART FUNCTION Sudden in-flight incapacitation in general aviation [AD-A187044] p 283 N88-16682 HEART FUNCTION Sudden in-flight incapacitation in general aviation [AD-A187044] p 283 N88-16682 HEART TRANSFER Distributed gas injection into hypersonic flow p 271 A88-26120 HEART TRANSFER COEFFICIENTS Some methodological aspects of the study of gasdynamic models with heat and mass transfer in an impulse wind tunnel p 310 A88-27158 HEATING Pumping systems and flow interfaces for rapid response electronic reheat controls p 302 N88-17665 HELICOPTER CONTROL Elastic hingeless scissor design p 315 A88-26159 Failure model determination in a knowledge-based control system p 325 A88-27406 Active control of helicopter vibrations by self-adaptive multicyclic control Modeling and identification in helicopter science p 327 A88-27760 Stability of helicopter blade motion in the case of turbulent air flow p 305 A88-27761 Design of a helicopter automatic flight control system p 306 A88-27762 Nonlinear control for level flight of a helicopter p 306 A88-27763 Nonlinear identification technique for helicopter flight mechanics p 306 A88-27764 Optimal landing of a helicopter in autorotation p 288 A88-28251 Rotor SAR (ROSAR): A new high-resolution aff-weather vision method for helicopters [MBB-UA-1046/87] HELICOPTER DESIGN	characteristics [AD-A186576] p 291 N88-17642 Helicopter activities in Germany [MBB-UD-487/86] p 294 N88-17853 HELICOPTER TAIL ROTORS An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor. Part 2: High speed photographic study [NASA-CR-177457] p 278 N88-16678 Testing of a tail rotor system in a fiber composite type of construction [MBB-UD-472/86] p 294 N88-17854 HELICOPTERS The metallurgical aspects of aluminum-lithium alloys in various product forms for helicopter structural applications p 311 A88-25106 Simplified calculation of the crushing process in structural elements p 315 A88-26171 NASA/Army Rotorcraft Technology. Volume 1: Aerodynamics, and Dynamics and Aeroelasticity [NASA-CP-2495-VOL-1] p 269 N88-16625 The development of CFD methods for rotor applications and structural dynamics technology rotorcraft vibrations and structural dynamics technology NASA/Army Rotorcraft Technology, Volume 2: Materials and Structures, Propulsion and Drive Systems, Flight Dynamics and Control, and Acoustics [NASA-CP-2495-VOL-2] p 270 N88-16632 Review of fatigue and fracture research at NASA Langley Research Center p 318 N88-16635 Helicopter crashworthiness research program p 283 N88-16635 Results of NASA/Army transmission research p 299 N88-16640 NASA's rotorcraft icing research program p 283 N88-16640 NASA's rotorcraft light-propulsion control integration p 307 N88-16642 Rotorcraft flight-propulsion control integration p 307 N88-16642 Rotorcraft flight-propulsion control integration p 307 N88-16645	Experimental study on the effect of fiber orientation on flutter characteristics of high-aspect-ratio transport wing [NAL-TR-936] p 308 N88-16708 HIGH PRESSURE Radial compressor design using an Euler solver p 303 N88-17675 Design and testing of a front stage for an advanced high pressure compressor p 303 N88-17679 HIGH RESOLUTION Rotor SAR (ROSAR): A new high-resolution all-weather vision method for helicopters [MBB-UA-1046/87] p 321 N88-17855 HIGH TEMPERATURE High temperature polymer matrix composites p 313 N88-16700 Evaluation of high temperature structural adhesives for extended service, phase 5 [NASA-CR-178176] p 314 N88-16884 HIGH TEMPERATURE ENVIRONMENTS Effect of high temperature spikes on a carbon fibre-reinforced epoxy laminate p 312 A88-28299 An integrated aero/mechanical performance approach to high technology turbine design p 301 N88-17657 HIGH THRUST Development of circulation control technology for powered-lift STOL aircraft p 291 N88-17608 HIGHLY MANEUVERABLE AIRCRAFT Control muscle for agile aircraft — flight control actuators p 287 A88-26647 HINGES Elastic hingeless scissor design p 315 A88-26159 HISTORIES NASA-Langley Research Center shapes tomorrow through innovative research p 310 A88-25750 Lewis materials research and technology: An overview p 330 N88-16699 The coming revolution in turbine engine technology p 299 N88-17648 Airbus, the successful European cooperation [MBB-UT-005/87] p 270 N88-17847 HODOGRAPHS Numerical solution of the problem of supersonic gas flow from a narrow slot in hodograph variables

HOT-WIRE ANEMOMETERS IMMUNOLOGY An experimental investigation of the chopping of Flow field measurements using hotwire anemometry Supersonic and subsonic aircraft noise effects on helicopter main rotor tip vortices by the tail rotor. Part 2: [AD-A187029] p 318 N88-16951 animals: A literature survey High speed photographic study INASA-CR-1774571 HOVERING [AD-A186922] n 329 N88-18373 n 278 N88-16678 Aerodynamic characteristics of the Weis-Footh INTERFACES mechanism. II - Numerical computations by the discrete Factors affecting the sticking of insects on modified Crew interface with windshear systems aircraft wings A88-26359 p 284 N88-17631 vortex method p 272 [NASA-CR-182451] o 313 N88-16878 INTERFERENCE **HUMAN FACTORS ENGINEERING** IMPACT TESTS Design deficiency - Probable cause of fatal aircraft Effect of a model support strut on measurement of Structural properties of braided graphite/epoxy p 282 A88-27640 aerodynamic longitudinal and lateral coefficients accident composites p 312 A88-25266 [PB87-170288] Information transfer in the National Airspace System p 277 N88-16670 IMPELLERS p 330 N88-17634 INTERNATIONAL COOPERATION Theoretical analysis of rotational-speed fluctuations of **HUMAN PERFORMANCE** European/U.S. cooperative flight testing - Some food two-spool turbojet engines p 296 A88-26168 Tutoring electronic troubleshooting in a simulated for thought p 269 A88-26175 Secondary flow measurements with L2F-technique in Freedom in European air transport The best of both n 311 N88-17215 maintenance work environment p 303 N88-17676 centrifugal compressors worlds? p 330 A88-26183 p 288 A88-27496 HYBRID PROPULSION IN-FLIGHT MONITORING Agile Falcon and Hornet 2000 convertible engine: A dual-mode propulsion Inflight thermal data recording from IAF aircraft rbus, the successful European cooperation p 298 N88-16639 system p 295 A88-27639 [MBB-UT-005/87] p 270 N88-17847 HYDRAULIC CONTROL Flight testing of fighter aircraft INTERNATIONAL TRADE [MBB/LKE-62/S/PUB/292] Control of an axial piston pump using a single-stage p 293 N88-17844 Agile Falcon and Hornet 2000 p 288 A88-27496 electrohydraulic servovalve p 326 A88-27417 INCOMPRESSIBLE FLOW INVISCID ELOW HYDRAULIC EQUIPMENT Numerical calculation of 3-D turbulent flow in a straight Strong coupling between inviscid fluid and boundary layer for airfoils with sharp leading edge. I - 2-D A cost and benefit analysis of hydraulic fluid systems compressor cascade with circular-arc blades p 273 A88-26584 for the next generation of tactical aircraft incompressible steady case p 271 A88-25988 p 290 N88-16690 Navier-Stokes solutions for laminar incompressible flow [AD-A186911] Excess streamwise vorticity and its role in secondary over a NACA 0012 airfoil and a backward facing step [FFA-TN-1987-50] p.319 N88-16966 HYDRAULIC FLUIDS p 271 A88-26163 p 319 N88-16966 Measuring aircraft fluid quantities p 295 A88-26648 Inviscid theory of two-dimensional aerofoil/spoiler **INERTIAL NAVIGATION** A cost and benefit analysis of hydraulic fluid systems configurations at low speed. V - Steady and oscillatory A fault-tolerant multisensor navigation system design for the next generation of tactical aircraft aerofoil-spoiler-flap characteristics p 272 A88-26424 p 295 A88-26670 p 290 N88-16690 [AD-A186911] The effect of the boundary layer on transonic cascade INFORMATION SYSTEMS HYDROCRACKING flow p 273 A88-26587 IMIS: Integrated Maintenance Information System. A High-density jet fuels from coal syncrudes, appendix 4 An analysis system for transonic flow in cascade maintenance information delivery concept p 314 N88-17813 [DE88-003132] p 273 A88-26631 p 330 N88-17207 HYDROGEN FUELS Supersonic aerodynamics of delta wings INFORMATION TRANSFER [NASA-TP-2771] p 282 N88-17615 Turbulent hydrogen combustion in a wall jet issuing into Airborne Wind Shear Detection and Warning Systems: The unsteady gas flow through stator and rotor of a a comoving supersonic stream of air First Combined Manufacturers' and Technologists p 301 N88-17660 p 297 A88-27166 turbomachine Conference ISENTROPIC PROCESSES HYDROGENATION INASA-CP-100061 p 283 N88-17616 Entropy and vorticity corrections for transonic flows High-density jet fuels from coal syncrudes, appendix 4 Information transfer in the National Airspace System p 273 A88-26435 [DE88-003132] p 314 N88-17813 . p 330 N88-17634 ITERATIVE SOLUTION HYPERSONIC AIRCRAFT INFRARED INSTRUMENTS Computation of three-dimensional transonic flows using Accuracies of southwell and force/stiffness methods in Infrared low-level wind shear work two stream functions p 273 A88-26434 the prediction of buckling strength of hypersonic aircraft p 284 N88-17628 wing tubular nanels INFRARED RADIOMETERS INASA-TM-882951 p 320 N88-17090 Forward looking wind shear detection HYPERSONIC FLIGHT p 284 N88-17629 Performance of optical sensors in hypersonic flight INGESTION (ENGINES) J-57 ENGINE p 295 A88-27478 Transient engine performance with water ingestion Operation of gas turbine engines in dust-laden p 297 A88-27295 p 300 N88-17654 Upgrading of NASA-Ames high-energy hypersonic environmente JACOBI MATRIX METHOD facilities: A Study **INLET FLOW** [NASA-CR-182475] p 311 N88-16717 A contour line plotting system with polar coordinates van Leer flux vector splitting in moving coordinates --p 274 A88-26640 HYPERSONIC FLOW for aeroengine inlet flow field for helicopter rotor blade calculations p 317 A88-28046 Oblique shock/laminar boundary layer interactions in Flowfield in a dual-inlet side-dump combustor JET AIRCRAFT NOISE p 297 A88-27291 hypersonic flow Annoyance caused by advanced turboprop aircraft [AIAA PAPER 88-0603] p 270 A88-25300 Numerical simulation of hypersonic inlet flows with flyover noise: Single-rotating propeller configuration [NASA-TP-2782] p 329 N88-17441 equilibrium or finite rate chemistry Distributed gas injection into hypersonic flow [NASA-TP-2782] p 271 A88-26120 [AIAA PAPER 88-0273] p 275 A88-27717 JET ENGINE FUELS Some methodological aspects of the study of Experimental investigation of a supercritical compressor Military jet fuels, 1944-1987 [AD-A186752] gasdynamic models with heat and mass transfer in an p 304 N88-17680 rotor blade section p 314 N88-16890 impulse wind tunnel p 310 A88-27158 INSECTS High-density jet fuels from coal syncrudes, appendix 4 Numerical simulation of hypersonic inlet flows with Aerodynamic characteristics of the Weis-Fogh [DE88-003132] p 314 N88-17813 equilibrium or finite rate chemistry mechanism. II - Numerical computations by the discrete JET ENGINES [AIAA PAPER 88-0273] p 275 A88-27717 vortex method p 272 A88-26359 Investigation on steady-state response of a rotor-support HYPERSONIC WAKES Factors affecting the sticking of insects on modified Thermodynamic nonequilibrium of a far hypersonic system with two squeeze-film dampers p 316 A88-26632 aircraft wings p 276 A88-28356 [NASA-CR-182451] p 313 N88-16878 Dynamic flexibility coefficient matrix INSPECTION measurement for aeroengine supporting system Analysis of the reliability of Royal Australian Air force p 317 A88-26641 non-destructive inspection Transient engine performance with water ingestion p 297 A88-27295 [AD-A186979] p 320 N88-17049 ICE FORMATION NASA's rotorcraft icing research program INTAKE SYSTEMS Optimisation of military compressors for weight and p 300 N88-17649 p 283 N88-16641 The advantage of variable geometry for turbine engines volume p 300 N88-17653 Calibration of the ARL (Aeronautical Research An examination of the impact of potential advances in at low power Laboratories) rain and icing facility Investigation of dihedral effects component technology for future military engines in compresso p 300 N88-17650 (AD-A186776) p 310 N88-16710 p 303 N88-17672 cascades ICE PREVENTIÓN Specification of an engine and its components starting Wake interaction effects on the transition process on NASA's rotorcraft icing research program from a consideration of aircraft missions turbine blades p 300 N88-17651 p 283 N88-16641 [AD-A188020] p 322 N88-17962 Application of highly loaded single-stage mixed-flow **IDEAL GAS** INTERACTIONAL AERODYNAMICS Calculation of nonpotential flows of an ideal gas in compressors in small jet-engines p 300 N88-17652 Oblique shock/laminar boundary layer interactions in hypersonic flow axisymmetric nozzles by the approximate factorization of scale-model, Aerodynamic performance а p 270 A88-25561 counter-rotating unducted fan p 302 N88-17666 p 270 A88-25300 [AIAA PAPER 88-0603] IMAGE PROCESSING Design and development of an advanced F100 Strong coupling between inviscid fluid and boundary Knowledge-based multi-sensor image fusion p 303 N88-17678 compressor layer for airfoils with sharp leading edge. p 316 A88-26419 JET FLOW incompressible steady case p 271 A88-25988 Transport delay compensation for computer-generated Wind tunnel studies of circulation control elliptical An experimental investigation on aerodynamic interblade imagery systems [NASA-TM-100084] airfoils p 280 N88-17598 interactions of a vibrating cascade in transonic flow p 292 N88-17645 JET LIFT p 272 A88-26388 A jet in a crossflow [NASA-CR-182469] IMAGERY Comparison of UNL laser imaging and sizing system The effect of the boundary layer on transonic cascade p 277 N88-16674 and a phase/Doppler system for analyzing sprays from flow p 273 A88-26587 a NASA nozzle Theoretical analysis of aircraft afterbody flow Influence of nozzle asymmetry on supersonic jets

p 275 A88-27884

[NASA-CR-182437]

p 318 N88-16956

p 276 A88-28034

JOINTS (JUNCTIONS) SUBJECT INDEX

JOINTS (JUNCTIONS)

Time dependent flow visualization in the separated region of an appendage-flat plate junction

p 271 A88-25842

KALMAN FILTERS

State estimation of manoeuvring targets from noisy radar p 294 A88-26247 measurements Points of view on linear and nonlinear filtering in aeronautics p 327 A88-27771

KEROSENE

High-density jet fuels from coal syncrudes, appendix 4 IDE88-0031321 p 314 N88-17813

KNOWLEDGE

Tutoring electronic troubleshooting in a simulated maintenance work environment D 311 N88-17215

LAMINAR BOUNDARY LAYER

Oblique shock/laminar boundary layer interactions in hypersonic flow

[AIAA PAPER 88-0603] p 270 A88-25300 Distributed gas injection into hypersonic flow

p 271 A88-26120

LAMINAR FLOW

Flight testing keeps pace p 287 A88-26644 Navier-Stokes solutions for laminar incompressible flow over a NACA 0012 airfoil and a backward facing step [FFA-TN-1987-50] p 319 N88-16966 Solution of the three-dimensional Navier-Stokes equations for transonic flow using a multigrid method

p 278 N88-17579

LAMINATES

Nonlinear equations of laminated panels with laminated p 316 A88-26344 Effect of high temperature spikes on a carbon bre-reinforced epoxy (aminate p 312 A88-28299 fibre-reinforced epoxy (aminate

Aerodynamic and acoustic characteristics of an advanced propeller under take-off and landing

p 329 N88-17453 [NAL-TR-935] Radar returns from ground clutter in vicinity of airports p 321 N88-17624

LANDING AIDS

Optimal landing of a helicopter in autorotation

p 288 A88-28251

LANDING SIMULATION

Additional investigations in landing process of aircraft: Test distributions [DFVLR-MITT-87-13] p 286 N88-16686

LARGE SPACE STRUCTURES

Optimum design of structures with multiple constraints p 317 A88-28042

LASER DOPPLER VELOCIMETERS

Laser Doppler velocity bias in separated turbulent p 271 A88-25835

Investigation of dynamic stall using LDV (Laser Doppler Velocimetry): Mean flow studies

[AD-A1876291 p 282 N88-17611

LASER GYROSCOPES

Study on a unidirectional ring laser gyro. Part 1: Proposition of the principle and studies on the components

[NAL-TR-9331 p 319 N88-17010

LASER OUTPUTS

Comparison of UNL laser imaging and sizing system and a phase/Doppler system for analyzing sprays from a NASA nozzle

[NASA-CR-182437] p 318 N88-16956

LATERAL CONTROL

An optimized yaw damper for enhanced passenger ride p 304 A88-27321

LATERAL STABILITY

Effect of a model support strut on measurement of aerodynamic longitudinal and lateral coefficients

[PB87-170288] p 277 N88-16670 Investigation of dihedral effects in compressor cascades p 303 N88-17672

LAYOUTS

Aerodynamic aspects of the configurational systems layout of a dispenser

[MBB-UA-1047/87] p 294 N88-17863

LEADING EDGES

On the effect of leading edge blowing on circulation control airfoil aerodynamics p 280 N88-17595

LEAKAGE

A study of the effect of leakage flow on the main flow ahead of the rotor of a centrifugal pump or a compressor p 315 A88-25630 **LEAST SQUARES METHOD**

On the improvement of an adaptive observer for p 323 A88-25878 multi-output systems

LEGAL LIABILITY

Something special in the air and on the ground - The potential for unlimited liability of international air carriers for terrorist attacks under the Warsaw convention and its p 330 A88-26546 revisions

LIAPUNOV FUNCTIONS

Stability of helicopter blade motion in the case of p 305 A88-27761 turbulent air flow

LIFE (DURABILITY)

Delamination durability of composite materials for p 312 N88-16634 Creep and fatigue research efforts on advanced p 318 N88-16701 materials

LIFE CYCLE COSTS

A cost and benefit analysis of hydraulic fluid systems for the next generation of tactical aircraft

p 290 N88-16690 [AD-A186911]

Aerodynamic characteristics of the Weis-Footh mechanism. II - Numerical computations by the discrete vortex method p 272 A88-26359

Wind tunnel studies of circulation control elliptical p 280 N88-17598 airfoils

Lifting-surface theory of oscillating propellers in compressible flow [NAL-TR-943] p 282 N88-17613

LIFT AUGMENTATION

Evaluation of a research circulation control airfoil using p 279 N88-17591 Navier-Stokes methods On the effect of leading edge blowing on circulation p 280 N88-17595 control airfoil aerodynamics The impact of circulation control on rotary aircraft

p 308 N88-17601 controls systems Analysis of a fixed-pitch X-wing rotor employing lower

p 280 N88-17602 surface blowing An aerodynamic comparison of blown and mechanical p 281 N88-17606 high lift airfoils

Fixed wing CCW aerodynamics with and without p 281 N88-17607 supplementary thrust deflection

Circulation control STOL aircraft design aspects p 281 N88-17610

LIFTING BODIES

Quasi-conical aerodynamic loadings due to kinked p 271 A88-26358

LIGHT AIRCRAFT

Modern materials for light constructions --- aircraft [MBB-Z-136/86] p 293 N88-17839 LINE OF SIGHT

Modern control methods applied to a line-of-sight

p 295 A88-27399 abilization and tracking system **LINEAR FILTERS** Points of view on linear and nonlinear filtering in

p 327 A88-27771

LINEAR QUADRATIC REGULATOR

Aircraft guidance for formation flying based on optimal p 304 A88-27320 LINEAR SYSTEMS

A dynamical mathematical model and digital simulation for anti-surge control system of a turbofan engine

p 297 A88-26638 Control of linear systems by output proportional plus derivative feedback p 325 A88-27327 On robust control of wing rock using nonlinear control

D 326 A88-27419

p 278 N88-17581

Application of empirical and linear methods to VSTOL powered-lift aerodynamics

[NASA-TM-100048] LINKAGES

Dynamic response of a geared train of rotors subjected p 320 N89-17073 random support excitations LIQUID SLOSHING

Measuring aircraft fluid quantities p 295 A88-26648 LITHIUM ALLOYS

The metallurgical aspects of aluminum-lithium alloys in various product forms for helicopter structural applications p 311 A88-25106 Fatigue crack propagation behavior of 2091 T8 and 2024 T3 under constant and variable amplitude loading

p 312 A88-25176 Fatigue crack initiation and propagation properties of Al-Li-Cu alloys in air and in aqueous corrosive solutions p 312 A88-25178

LOAD DISTRIBUTION (FORCES)

Quasi-conical aerodynamic loadings due to kinked p 271 A88-26358 planform wings

LOAD TESTS

Elastic hingeless scissor design p 315 A88-26159 LOADS (FORCES)

A research program on the aerodynamics of a highly p 301 N88-17655 loaded turbine stage

LOGICAL ELEMENTS

The problem of the development of formal-logic models p 323 A88-25627 of aircraft assembly

LONGITUDINAL CONTROL An MRAC system for aircraft longitudinal control

p 305 A88-27370 Robust adaptive flight-path reconstruction technique for

nonsteady longitudinal flight test maneuvers p 307 A88-28261

LOW DENSITY MATERIALS

Fatigue crack propagation behavior of 2091 T8 and 2024 T3 under constant and variable amplitude loading

p 312 A88-25176 **LUBRICANTS**

Technology developments for a compound cycle p 298 N88-16637

М

MACH NUMBER

Vortex/separated boundary-layer interactions transonic Mach numbers p 275 A88-28033 Mach number effects on transonic aeroelastic forces and flutter characteristics

[NASA-TM-100547] p 277 N88-16675

MAN MACHINE SYSTEMS

Design deficiency - Probable cause of fatal aircraft accident p 282 A88-27640 Technological leaps occurring in the aeronautical and

space fields p 326 A88-27752 Rotorcraft handling-qualities desian criteria

p 308 N88-16645 development A piloted simulation investigating handling qualities and performance requirements of a single-pilot helicopter in

air combat employing a helmet-driven turreted gun [AD-A186878] p 290 N88-16689 Analysis of tasks for dynamic man/machine load

balancing in advanced helicopters [DE88-003735] p 290 N88-16696

Crew interface with windshear systems

p 284 N88-17631

MANEUVERS Aircraft flight test trajectory control

[NASA-CR-179428] p 308 N88-16707

MASS TRANSFER

Some methodological aspects of the study of gasdynamic models with heat and mass transfer in an impulse wind tunnel p 310 A88-27158

MATERIALS RECOVERY

Evaluation of bituminous materials used in pavement recycling projects at Tyndall, MacDill, and Hurlburt Air

[AD-A188068] p 321 N88-17871

MATHEMATICAL MODELS

Representation of fan characteristics in a mathematical p 296 A88-25638 model of the bypass engine Theoretical analysis of rotationalspeed fluctuations of p 296 A88-26168 two-spool turbojet engines A dynamical mathematical model and digital simulation

for anti-surge control system of a turbofan engine p 297 A88-26638 Accurate modeling of nonlinear systems using Volterra series submodels --- applied to stall/post-stall aircraft flight and wing rock p 304 A88-27352

Robust adaptive flight-path reconstruction technique for nonsteady longitudinal flight test maneuvers

p 307 A88-28261 An improvement on the adaptive model following control p 327 A88-28617

Comprehensive rotorcraft analysis methods

p 276 N88-16630

p 307 N88-16631 Rotorcraft aeroelastic stability Helicopter mathematical models and control law development for handling qualities research

p 307 N88-16642

Verification of obstacle accountability areas using a simple mathematical model. Part 1: Description of general model and application for a specific case --- engine failure at takeoff

p 283 N88-16683 [NLR-TR-85069-U] Numerical modeling of multidimensional flow in seals

and bearings used in rotating machinery p 319 N88-16988 [NASA-TM-100779]

Numerical fluid mechanics p 320 N88-17434 Wall jet analysis for circulation control aerodynamics. Part 2: Zonal modeling concepts for wall jet/potential flow coupling p 279 N88-17593

Frequency-response identification of XV-15 tilt-rotor aircraft dynamics p 292 N88-17643

MATHEMATICAL PROGRAMMING

Optimum design of structures with multiple constraints p 317 A88-28042 SUBJECT INDEX NUMERICAL CONTROL

MCDONNELL DOUGLAS AIRCRAFT

McDonnell Douglas Helicopter Company independent research and development: Preparing for the future o 289 N88-16660

MECHANICAL DRIVES

Analysis of possible transmission arrangements applicable for driving single or twin counterrotating fans on propfan engines n 303 N88-17670

MECHANICAL PROPERTIES

Structural properties of braided graphite/epoxy p 312 A88-25266 composites

High temperature polymer matrix composites p 313 N88-16700

MECHANICAL SHOCK

The Shock and Vibration Bulletin. Part 4: Structural Dynamics and Modal Test and Analysis

p 320 N88-17062 [AD-A186751]

METAL FATIGUE

Fatigue crack propagation behavior of 2091 T8 and 2024 T3 under constant and variable amplitude loading

p 312 A88-25176 Fatigue crack initiation and propagation properties of

Al-Li-Cu alloys in air and in aqueous corrosive solutions p 312 A88-25178 Review of fatigue and fracture research at NASA Langley

Research Center p 318 N88-16633

METAL-METAL BONDING

Evaluation of high temperature structural adhesives for extended service, phase 5

[NASA-CR-178176] p 314 N88-16884

METEOROLOGICAL INSTRUMENTS

Fine-scale measurements of microwave refractivity profiles with helicopter and low-cost rocket probes

METEOROLOGICAL RADAR

Airborne Doppler radar technology for wind shear detection p 284 N88-17622 Status of FAA terminal Doppler weather radar p 321 N88-17632 programs Information transfer in the National Airspace System p 330 N88-17634

METEOROLOGY

NASA wind shear model: Summary of model analyses p 323 N88-17617

METHODOL OGY

A flight-test methodology for identification of an aerodynamic model for a V/STOL aircraft p 290 N88-16694 [NASA-TM-100067]

MICROPHONES Tracking multiple air targets with distributed acoustic

sensors MICROSTRUCTURE

Durability and damage tolerance of aluminum castings [AD-A186444] p 322 N88-18013 p 322 N88-18013 MICROWAVE COUPLING

Ray analysis of a class of hybrid cylindrical aircraft wings --- for EM coupling of airborne antenna pairs

MICROWAVE FILTERS

Graphical design of millimeter-wave finline bandpass p 316 A88-26256

p 285 A88-25755

p 323 A88-27456

MICROWAVE LANDING SYSTEMS

Crew procedures for microwave landing system operations p 286 N88-16688

INASA-CR-1783591 MICROWAVE TRANSMISSION

Fine-scale measurements of microwave refractivity profiles with helicopter and low-cost rocket probes p 317 A88-27482

MIDLATITUDE ATMOSPHERE

Midlatitude CIO below 22 km altitude - Measurements with a new aircraft-borne instrument

MILITARY AIR FACILITIES

Evaluation of bituminous materials used in pavement recycling projects at Tyndall, MacDill, and Hurlburt Air

[AD-A188068] p 321 N88-17871

MILITARY AIRCRAFT

Bullseye for Skyeye - The RPV with parafoil, skid and p 287 A88-25794 sales trajectory guidance maximum Approach p 307 A88-28265

MILITARY HELICOPTERS

A piloted simulation investigating handling qualities and performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun p 290 N88-16689 [AD-A186878]

Helicopter activities in Germany p 294 N88-17853 [MRR-LID-487/86]

MILITARY OPERATIONS Analysis of the reliability of Royal Australian Air force

non-destructive inspection p 320 N88-17049 [AD-A186979]

MILITARY TECHNOLOGY

Advanced composite airframe Todav's program: technology
MILLIMETER WAVES p 289 N88-16636

Graphical design of millimeter-wave finline bandpass filtore p 316 A88-26256 MIXING

A computational study of thrust augmenting ejectors based on a viscous-inviscid approach p 321 N88-17929

MOBILE COMMUNICATION SYSTEMS

AvSat - A new global satellite system for aircraft communications

[AIAA PAPER 88-0846] p 286 A88-27587 World-wide aeronautical satellite communication
[AIAA PAPER 88-0865] 0 286 A88o 286 A88-27599

MODEL REFERENCE ADAPTIVE CONTROL

An MRAC system for aircraft longitudinal control p 305 A88-27370

MOISTURE CONTENT

Moisture plotting of carbon fiber composite in flight operations p 313 N88-16823

[MBB-UT-119/87] MOLDING MATERIALS

Development of a shell system for DS moulds at RR precision casting facility --- directional solidification (DS) [PNR-90400] p 318 N88-16893 MOLDS

Development of a shell system for DS moulds at RR precision casting facility --- directional solidification (DS) p 318 N88-16893 [PNR-90400]

MOLECULAR SPECTRA

A submillimeter heterodyne receiver for the Kuiper Airborne Observatory and the detection of the 372 micron carbon monoxide line J = 7-6 in OMC-1 and W3

p 316 A88-26253

MONITORS

Knowledge based jet engine diagnostics p 299 N88-17210

MOUNTING

A study of the TCAS 2 collision avoidance system nounted on a Boeing 737 aircraft

INASA-CR-182457 p 286 N88-16687

MULTISENSOR APPLICATIONS

Knowledge-based multi-sensor image fusion p 316 A88-26419

NASA SPACE PROGRAMS

NASA-Langley Research Center shapes tomorrow research p 310 A88-25750 NATURAL LANGUAGE (COMPUTERS)

SWAN: An expert system with natural language interface for tactical air capability assessment p 327 N88-17253

NAVIER-STOKES EQUATION

A close coupling procedure for zonal solutions of the Navier-Stokes, Euler and boundary-layer equations p 316 A88-26173

3D-computational mesh generation around a propeller by elliptic differential equation system p 274 A88-26643

Generation of patched multiple-region grids using elliptic p 274 A88-26743 Navier-Stokes solutions for laminar incompressible flow

over a NACA 0012 airfoil and a backward facing step [FFA-TN-1987-50] p 319 N88-16966 Numerical modeling of multidimensional flow in seals

and bearings used in rotating machinery p 319 N88-16988 [NASA-TM-100779]

Solution of the three-dimensional Navier-Stokes equations for transonic flow using a multigrid method p 278 N88-17579

Evaluation of a research circulation control airfoil using p 279 N88-17591 Navier-Stokes methods Navier-Stokes computations for circulation control p 279 N88-17592 airfoils

NEAR WAKES

Turbulent near wake of a symmetrical body p 318 A88-28047

NEURAL NETS

Neural network based architectures for aerospace p 327 N88-17218 applications **NEWTONIAN FLUIDS**

A first order theory for Newtonian flow over two-dimensional airfoils p 272 A88-26423

NOISE GENERATORS

Influence of nozzle asymmetry on supersonic jets p 276 A88-28034

NOISE INTENSITY

Annoyance caused by advanced turboprop aircraft flyover noise: Single-rotating propeller configuration [NASA-TP-2782] p 329 N88-17441 NOISE MEASUREMENT

Identification and proposed control of helicopter transmission noise at the source p 308 N88-16647

NOISE POLLUTION

Supersonic and subsonic aircraft noise effects on animals: A literature survey [AD-A186922] p 329 N88-18373

NOISE REDUCTION

Recent Langley helicopter acoustics contributions

p 328 N88-16646 Identification and proposed control of helicopter transmission noise at the source p 308 N88-16647 A decade of aeroacoustic research at NASA Ames p 328 N88-16648 Research Center Rotorcraft technology at Boeing Vertol: Recent n 289 N88-16658 advances Measured and calculated acoustic attenuation rates of

tuned resonator arrays for two surface impedance distribution models with flow

INASA-TP-27661 0.329 NRR-17440

NOISE TOLERANCE Annoyance caused by advanced turboprop aircraft

flyover noise: Single-rotating propeller configuration p 329 N88-17441 INASA-TP-27821

NONDESTRUCTIVE TESTS

Analysis of the reliability of Royal Australian Air force non-destructive inspection

[AD-A186979] p 320 N88-17049 Durability and damage tolerance of aluminum castings [AD-A186444] n 322 N88-18013

NONEQUILIBRIUM PLASMAS

Thermodynamic nonequilibrium of a far hypersonic p 276 A88-28356

NONEQUILIBRIUM THERMODYNAMICS

Thermodynamic nonequilibrium of a far hypersonic p 276 A88-28356

NONLINEAR EQUATIONS

Nonlinear equations of laminated panels with laminated stiffeners p 316 A88-26344

NONLINEAR FILTERS

Points of view on linear and nonlinear filtering in p 327 A88-27771 aeronautics

NONLINEAR SYSTEMS

A geometric approach to nonlinear singularly perturbed control systems p 323 A88-26264 Accurate modeling of nonlinear systems using Volterra series submodels --- applied to stall/post-stall aircraft flight p 304 A88-27352 and wing rock

Non-linear inverse dynamics control laws - A sampled data approach p 325 A88-27381

Multifrequency nonlinear vibrations in a gas-turbine engine --- Russian book p 298 A88-27742 Nonlinear control for level flight of a helicopter

p 306 A88-27763 Nonlinear identification technique for helicopter flight p 306 A88-27764

p 320 N88-17434

p 301 N88-17656

Numerical fluid mechanics

NOZZLE FLOW Calculation of nonpotential flows of an ideal gas in axisymmetric nozzles by the approximate factorization p 270 A88-25561

A computational method of exciting forces generated by nozzle wakes on turbine blades p 273 A88-26630 Algebraic grid generation for annular nozzle flowfield prediction p 275 A88-26751

Experimental evaluation of a translating nozzle sidewall

radial turbine NOZZLE GEOMETRY

Influence of nozzle asymmetry on supersonic jets

p 276 A88-28034 Experimental evaluation of a translating nozzle sidewall radial turbine p 301 N88-17656

NOZZLE WALLS

Experimental evaluation of a translating nozzle sidewall p 301 N88-17656 radial turbine

NOZZLES

Effect of the blade number ratio of the rotor and the nozzle ring on the vibration activity of axial-flow and radial-flow turbines p 314 A88-25614

Comparison of UNL laser imaging and sizing system and a phase/Doppler system for analyzing sprays from a NASA nozzle

[NASA-CR-182437] p 318 N88-16956

NUMERICAL ANALYSIS

Numerical solution of the problem of supersonic gas flow from a narrow slot in hodograph variables

p 271 A88-26129 Comprehensive rotorcraft analysis methods

p 276 N88-16630

NUMERICAL CONTROL

Theory and development of discrete multivariable regulators assuring robust tracking p 326 A88-27756 **OBLIQUE SHOCK WAVES** SUBJECT INDEX

OBLIQUE SHOCK WAVES

Oblique shock/laminar boundary layer interactions in hypersonic flow

[AIAA PAPER 88-0603] p 270 A88-25300 OBLIQUE WINGS

Flight control for the F-8 Oblique Wing Research Aircraft p 305 A88-27365

OCEAN SURFACE

Radar returns from ground clutter in vicinity of airports p 321 N88-17624 **OH-58 HELICOPTER**

Identification and proposed control of helicopter p 308 N88-16647 transmission noise at the source ONBOARD EQUIPMENT

Vibration monitoring - A key contribution to flight safety p 294 A88-25367

OPERATOR PERFORMANCE

Crew procedures for microwave landing system operations

[NASA-CR-178359] p 286 N88-16688

OPTICAL FIBERS

Turbine flow meter with optical fiber pick-up INAL-TR-9231 p 319 N88-17009

OPTICAL MEASURING INSTRUMENTS

Performance of optical sensors in hypersonic flight p 295 A88-27478

OPTICAL RADAR

Airborne Wind Shear Detection and Warning Systems: First Combined Manufacturers' and Technologists' Conference

[NASA-CP-10006] p 283 N88-17616

OPTICAL WAVEGUIDES

Light Electronic Control System (LECOS): A proposal for a interconnected error-tolerant, optoelectronic control

[MRR-LIT-004/87] p 309 N88-17836

OPTIMAL CONTROL

Loop shaping with output feedback

p 324 A88-27312

Aircraft guidance for formation flying based on optimal p 304 A88-27320 control theory

An optimized yaw damper for enhanced passenger ride comfort p 304 A88-27321

Control of an axial piston pump using a single-stage p 326 A88-27417 electrohydraulic servovalve Applications of singular perturbation techniques to aircraft trajectory optimization p 305 A88-27754

Theory and development of discrete multivariable p 326 A88-27756 regulators assuring robust tracking Redundant control systems - Flexibility and optimality p 327 A88-27766

Optimal landing of a helicopter in autorotation

p 288 A88-28251

OPTIMIZATION

Synthesis of the flexible structures of complex /stems p 324 A88-27148 systems

Effect of an optimized fiber orientation on transonic flutter characteristics of a high-aspect-ratio composite

[NAL-TR-930] p.308 N88-16709

The Shock and Vibration Bulletin, Part 4: Structural Dynamics and Modal Test and Analysis

p 320 N88-17062 [AD-A186751] Optimisation of military compressors for weight and p 300 N88-17649 volume

Specification of an engine and its components starting from a consideration of aircraft missions p 300 N88-17651

OPTOELECTRONIC DEVICES

Light Electronic Control System (LECOS): A proposal for a interconnected error-tolerant, optoelectronic control

MBB-UT-004/871 p 309 N88-17836

OSCILLATING FLOW

The affection of interblade phase angle in oscillating cascade on unsteady aerodynamic force

p 297 A88-26588 **OSCILLATIONS**

Lifting-surface theory of oscillating propellers in compressible flow [NAL-TR-943] p 282 N88-17613

PARACHUTE DESCENT

Bullseye for Skyeye - The RPV with parafoil, skid and sales p 287 A88-25794

PARACHUTES

Stress-strain state of an opening parachute

p 317 A88-27248

PARALLEL PLATES

A note on the aerodynamic design of thin parallel-sided aerofoil sections [ARL-AERO-TM-388] p 277 N88-16677

PARAMETER IDENTIFICATION

On the improvement of an adaptive observer for multi-output systems p 323 A88-25878

PARTIAL DIFFERENTIAL FOUATIONS

Surface mesh generation using elliptic equations p 324 A88-26732

Generation of body-fitted grids around airfoils using p 274 A88-26745 multigrid method

PARTICLE TRAJECTORIES

Calculation of the path of a droplet in the combustion chamber of a helicopter ramjet engine

p 296 A88-25618

PASSENGER AIRCRAFT

p 286 A88-25792 Fokker 50 marks a fresh start An optimized yaw damper for enhanced passenger ride p 304 A88-27321

The intelligent wing. Aerodynamic development direction for future passenger aircraft [MBB-UT-006/87]

p 293 N88-17848

PAVEMENTS

Evaluation of bituminous materials used in pavement recycling projects at Tyndall, MacDill, and Hurlburt Air Force Bases (AD-A188068) p 321 N88-17871

PERFORMANCE PREDICTION

Method for predicting performance limits of centrifugal p 303 N88-17677 compressors

PERFORMANCE TESTS

improving flight-test p 287 A88-26645 Squeezing the test cycle --efficiency avionics systems Helicopters as test carriers for (HETAS)

[DFVLR-IB-112-85/18] p 290 N88-16692 Design and test of a high blade speed, high work capacity p 301 N88-17658 transonic turbine Design and testing of a front stage for an advanced p 303 N88-17679 high pressure compressor

Development of vertical takeoff aircraft with turbojet p 292 N88-17822 engines in Germany Flight testing of fighter aircraft

[MBB/LKE-62/S/PUB/292] p 293 N88-17844 Testing of a tail rotor system in a fiber composite type of construction

[MBB-UD-472/86] p 294 N88-17854

PERSONNEL

Lewis materials research and technology: An overview p 330 N88-16699

PERSONNEL DEVELOPMENT Tutoring electronic troubleshooting in a simulated p 311 N88-17215

PERTURBATION THEORY

A geometric approach to nonlinear singularly perturbed ontrol systems p 323 A88-26264
Applications of singular perturbation techniques to aircraft trajectory optimization p 305 A88-2 Interior transition layers in flight-path optimization p 305 A88-27754

p 288 A88-28252

PHOTOINTERPRETATION

Knowledge-based multi-sensor image fusion

p 316 A88-26419 PHYSIOLOGICAL EFFECTS

Ultra-low frequency vibration data acquisition concerns in operating flight simulators

p 311 N88-17687 [DE88-004795]

PHYSIOLOGICAL RESPONSES

Supersonic and subsonic aircraft noise effects on

animals: A literature survey AD-A186922] p 329 N88-18373

PHYSIOLOGY

Ultra-low frequency vibration data acquisition concerns in operating flight simulators IDE88-0047951 p 311 N88-17687

PILOT PERFORMANCE

Rotorcraft flight-propulsion control integration

p 307 N88-16643 Status of NASA/Army rotorcraft research and development piloted flight simulation

p 310 N88-16651

Are windshear training aid recommendations appropriate for other than large jet transports? Pilot procedures: Shear p 285 N88-17635 models

PILOT TRAINING

Are windshear training aid recommendations appropriate for other than large jet transports? Pilot procedures: Shear p 285 N88-17635 models

PILOTLESS AIRCRAFT

The aerodynamic performance of propellers suitable for unmanned aircraft (UMAs)

[RAE-TM-AERO-2094] p 276 N88-16667 Robotic air vehicle. Blending artificial intelligence with onventional software p 291 N88-17252 conventional software

PIPES (TUBES)

Accuracies of southwell and force/stiffness methods in the prediction of buckling strength of hypersonic aircraft wing tubular pane

p 320 N88-17090 [NASA-TM-88295]

PLANNING

Loads and aeroelasticity division research and technology accomplishments for FY 1987 and plans for FY 1988

[NASA-TM-100534] p 278 N88-16680

PLASMA SPRAYING Self-lubricating coatings for high-temperature applications p 313 N88-16703

PLASTIC AIRCRAFT STRUCTURES

The Boeing Helicopter Model 360 advanced technology helicopter p 287 A88-26415

PLASTIC DEFORMATION

Axisymmetric deformations of aircraft transparencies with allowance for the compliance of the support fastenings p 315 A88-25621

PLENUM CHAMBERS

Advanced Technology for Aero Gas Turbine

[AGARD-CP-421] n 299 N88-17647 Development of a plenum chamber burner system for an advanced VTOL engine p 302 N88-17664

POISSON EQUATION

Elliptic grid generation system for three-dimensional configurations using Poisson's equation

p 324 A88-26748

POLAR COORDINATES

A contour line plotting system with polar coordinates p 274 A88-26640 for aeroengine inlet flow field
POLYMER MATRIX COMPOSITES

High temperature polymer matrix composites

p 313 N88-16700

POTENTIAL FLOW Improved relaxation schemes for transonic potential calculations p 272 A88-26433 Entropy and vorticity corrections for transonic flows

p 273 A88-26435 Wall jet analysis for circulation control aerodynamics. Part 2: Zonal modeling concepts for wall jet/potential flow p 279 N88-17593

POWER EFFICIENCY

An experimental study of the effect of the lower and upper overlap on the efficiency of radial inward-flow microturbines with an enclosed rotor

p 315 A88-25637 POWERED LIFT AIRCRAFT

Application of empirical and linear methods to VSTOL powered-lift aerodynamics

[NASA-TM-100048] p 278 N88-17581 Development of circulation control technology for powered-lift STOL aircraft p 291 N88-17608 evaluation potential flight upper-surface-blowing/circulation-control-wing concept

p 291 N88-17609 PREDICTION ANALYSIS TECHNIQUES

Adaptive prediction flight control systems --- Russian p 305 A88-27727 book A review of research in rotor loads

p 288 N88-16629 Comprehensive rotorcraft analysis methods

p 276 N88-16630 Helicopter crashworthiness research program

p 283 N88-16635

Recent Langley helicopter acoustics contributions p 328 N88-16646 A decade of aeroacoustic research at NASA Ames p 328 N88-16648 Research Center

Aeroacoustic research programs at the Army Aviation Research and Technology Activity p 329 N88-16649 PREDICTIONS

Accuracies of southwell and force/stiffness methods in the prediction of buckling strength of hypersonic aircraft wing tubular panels

[NASA-TM-88295] p 320 N88-17090 PRESSURE DISTRIBUTION

The further development of circulation control airfoils

p 279 N88-17594 Pressure distributions and oil-flow patterns for a swept p 280 N88-17596 circulation-control wing

PRESSURE DROP Pressure losses and flow field distortion induced by tip clearance of centrifugal and axial compressors

p 314 A88-24847

PRESSURE FEFFCTS Buckling of delaminated, long, cylindrical panels under

PROBABILITY THEORY

Response of wind shear warning systems to turbulence with implication of nuisance alerts p 283 N88-17618 PROBLEM SOLVING

Tutoring electronic troubleshooting in a simulated maintenance work environment p 311 N88-17215

	EDI	

Are windshear training aid recommendations appropriate for other than large jet transports? Pilot procedures: Shear p 285 N88-17635 models

PRODUCT DEVELOPMENT

The intelligent wing. Aerodynamic development direction for future passenger aircraft

p 293 N88-17848 [MBB-UT-006/87]

PRODUCTION PLANNING

Product planning in civil aircraft construction

(MBB-UT-002/87) p 270 N88-17849

PROP-FAN TECHNOLOGY

3D-computational mesh generation around a propeller by elliptic differential equation system

p 274 A88-26643

Analysis of possible transmission arrangements applicable for driving single or twin counterrotating fans p 303 N88-17670 on propfan engines Vibration and flutter characteristics of the SR7L

large-scale propfan [NASA-TM-100272] p 322 N88-18036

PROPELLER BLADES

Aerodynamic and acoustic characteristics of an advanced propeller under take-off and landing conditions

[NAL-TR-935] p 329 N88-17453 Numerical methods for propeller aerodynamics and p 302 N88-17668 acoustics at DFVLR

PROPELLER DRIVE

Fokker 50 marks a fresh start p 286 A88-25792

PROPELLER EFFICIENCY

The aerodynamic performance of propellers suitable for unmanned aircraft (UMAs)

p 276 N88-16667 [RAF-TM-AFRO-2094] Numerical methods for propeller aerodynamics and acoustics at DFVLR p 302 N88-17668

PROPELLER FANS

Annoyance caused by advanced turboprop aircraft flyover noise: Single-rotating propeller configuration [NASA-TP-2782] p 329 N88-17441

Analysis of possible transmission arrangements applicable for driving single or twin counterrotating fans on propfan engines p 303 N88-17670

PROPELLERS

3D-computational mesh generation around a propeller by elliptic differential equation system

p 274 A88-26643

The aerodynamic performance of propellers suitable for unmanned aircraft (UMAs)

p 276 N88-16667 [RAE-TM-AERO-2094] Lifting-surface theory of oscillating propellers in compressible flow

[NAL-TR-943] p 282 N88-17613 Aerodynamic performance scale-model, counter-rotating unducted fan p 302 N88-17666

Numerical methods for propeller aerodynamics and acoustics at DFVLR p 302 N88-17668 Analysis of highspeed propellers aerodynamics

p 302 N88-17669

PROPORTIONAL CONTROL

Control of linear systems by output proportional plus derivative feedback p 325 A88-27327 PROPULSION

Rotorcraft flight-propulsion control integration

p 307 N88-16643 Impact and promise of NASA aeropropulsion p 299 N88-16698 technology

PROPULSION SYSTEM CONFIGURATIONS CFD validation experiments for internal flows

p 278 N88-16679 [NASA-TM-100797] Lewis materials research and technology: An overview p 330 N88-16699

PROPULSIVE EFFICIENCY

Gear systems for advanced turboprops

p 302 N88-17667 PROVING

CFD validation experiments for internal flows

p 278 N88-16679 [NASA-TM-100797] Methods for evaluating the quality and reliability of aerodynamic software programs

[PB87-169793] p 328 N88-17314

PSYCHOMETRICS

Tutoring electronic troubleshooting in a simulated maintenance work environment p 311 N88-17215 PUMPS

Control of an axial piston pump using a single-stage p 326 A88-27417 electrohydraulic servovalve

RADAR ANTENNAS

Expert system allocation for the electronically scanned antenna radar p 325 A88-27411

RADAR DETECTION

Airborne Doppler radar technology for wind shear p 284 N88-17622

RADAR MEASUREMENT

State estimation of manoeuvring targets from noisy radar p 294 A88-26247 RADAR NAVIGATION

A fault-tolerant multisensor navigation system design p 295 A88-26670

RADAR SCATTERING

Radar returns from ground clutter in vicinity of airports p 321 N88-17624

RADAR TRACKING

State estimation of manoeuvring targets from noisy radar measurements p 294 A88-26247 Expert system allocation for the electronically scanned antenna radar p 325 A88-27411

RADIATION DISTRIBUTION

Optimizing HF antenna systems on the Dolphin and Sea Hawk helicopters [AD-A186552] p 318 N88-16901

RADIOGRAPHY

Durability and damage tolerance of aluminum castings [AD-A186444] p 322 N88-18013

Calibration of the ARL (Aeronautical Research Laboratories) rain and icing facility

[AD-A1867761 p 310 N88-16710

RAMJET ENGINES

Calculation of the path of a droplet in the combustion chamber of a helicopter ramjet engine

p 296 A88-25618 Flowfield in a dual-inlet side-dump combustor

p 297 A88-27291

Military jet fuels, 1944-1987 p 314 N88-16890 [AD-A186752]

RAREFIED GAS DYNAMICS

Aerodynamic calculation of thin bodies in a rarefied p 274 A88-26696

RAY TRACING

Ray analysis of a class of hybrid cylindrical aircraft wings --- for EM coupling of airhorne antenna pairs

REACTION KINETICS

Numerical simulation of hypersonic inlet flows with equilibrium or finite rate chemistry

p 285 A88-25755

[AIAA PAPER 88-0273] p 275 A88-27717 Thermodynamic nonequilibrium of a far hypersonic wake p 276 A88-28356

REAL TIME OPERATION

Flight simulators for under \$100,000

p 309 A88-25010 A system of data acquisition and processing in p 323 A88-26627 aeroengine testing

An architecture for real-time rule-based control

p 325 A88-27405 Real-time artificial intelligence issues in the development p 327 N88-17260 of the adaptive tactical navigator Reduction of time delays in Runge-Kutta integration methods --- systems simulation

p 328 N88-17363 [MBB/LKE-132/S/PUB/241/A]

RECYCLING

Evaluation of bituminous materials used in pavement recycling projects at Tyndall, MacDill, and Hurlburt Air Force Bases [AD-A188068] p 321 N88-17871

REDUNDANCY

Redundant control systems - Flexibility and optimality

p 327 A88-27766 REFINING

High-density jet fuels from coal syncrudes, appendix 4 [DE88-003132] p 314 N88-17813 REFRACTIVITY

Fine-scale measurements of microwave refractivity profiles with helicopter and low-cost rocket probes p 317 A88-27482

REGULATIONS

Freedom in European air transport - The best of both p 330 A88-26183 worlds? REGULATORS

Alpha-degree stability and robustness - Application to the development of a regulator p 326 A88-27755 Theory and development of discrete multivariable regulators assuring robust tracking p 326 A88-27756 REINFORCED PLATES

Nonlinear equations of laminated panels with laminated p 316 A88-26344 etiffenere

REINFORCEMENT (STRUCTURES)

Stability of a wing box with elastic ribs

p 315 A88-25623 The Shock and Vibration Bulletin. Part 4: Structural Dynamics and Modal Test and Analysis [AD-A186751] p 320 N88-17062

RELAXATION METHOD (MATHEMATICS)

Improved relaxation schemes for transonic potential calculations p 272 A88-26433

Computation of three-dimensional transonic flows using

two stream functions RELIABILITY

Analysis of the reliability of Royal Australian Air force non-destructive inspection

[AD-A1869791 p 320 N88-17049 Methods for evaluating the quality and reliability of

aerodynamic software programs p 328 N88-17314 [PB87-169793]

RELIABILITY ANALYSIS

Redundant control systems - Flexibility and optimality p 327 A88-27766

RELIABILITY ENGINEERING

Placement of failure-prone components on flexible structures - A degree of controllability approach

p 326 A88-27418

REMOTE SENSING

Infrared low-level wind shear work

p 284 N88-17628

p 273 A88-26434

REMOTELY PILOTED VEHICLES

Thinking big in RPVs - An affordable giant among the p 287 A88-25793 Bullseye for Skyeye - The RPV with parafoil, skid and

p 287 A88-25794 Robotic air vehicle. Blending artificial intelligence with

p 291 N88-17252 conventional software REQUIREMENTS

Crew interface with windshear systems

p 284 N88-17631 Helicopter external vision requirements and visual display characteristics: A report/bibliography, revision A [AD-A187075] p 291 N88-17641 Specification of an engine and its components starting

from a consideration of aircraft missions p 300 N88-17651 An integrated aero/mechanical performance approach p 301 N88-17657 to high technology turbine design RESEARCH AIRCRAFT

Flight control for the F-8 Oblique Wing Research Aircraft p 305 A88-27365

RESEARCH AND DEVELOPMENT

Loads and aeroelasticity division research and technology accomplishments for FY 1987 and plans for

p 278 N88-16680 [NASA-TM-100534] Impact and promise of NASA aeropropulsion p 299 N88-16698 technology Lewis materials research and technology: An overview

p 330 N88-16699 Technical-scientific Research and development. publications (1956-1987): Retrospective view and prospects. Jubilee edition on the occasion of the 75th birthday of Dipl.-Engr. Dr.-Engr. E. H. Ludwig Boelkow [ISSN-0931-9751] p 321 N88-17819

RESEARCH FACILITIES

NASA-Langley Research Center shapes tomorrow p 310 A88-25750 through innovative research

RESEARCH MANAGEMENT

X-29A forward-swept-wing flight research program status [NASA-TM-100413] p 292 N88-17644

RESONANT FREQUENCIES Using frequency-domain methods to identify XV-15

eroelastic modes p 292 N88-17646 [NASA-TM-1000331 REYNOLDS NUMBER

Aerodynamic calculation of thin bodies in a rarefied p 274 A88-26696 Flat spin of axisymmetric bodies in the critical Reynolds p 306 A88-27889 number region Turbulent near wake of a symmetrical body

RICCATI EQUATION

Designing stabilizing controllers for uncertain systems using the Riccati equation approach

p 325 A88-27326 RIGGING

A rig testing method of annular combustor in aeroengine

RING LASERS Study on a unidirectional ring laser gyro. Part 1: Proposition of the principle and studies on the components

p 319 N88-17010 [NAL-TR-933] RISK

Sudden in-flight incapacitation in general aviation p 283 N88-16682

[AD-A187044] ROBOTICS

A geometric approach to nonlinear singularly perturbed ontrol systems p 323 A88-26264
Robotic air vehicle. Blending artificial intelligence with control systems p 291 N88-17252 conventional software

ROBUSTNESS (MATHEMATICS) On robust control of wing rock using nonlinear control

p 326 A88-27419

p 318 A88-28047

p 297 A88-26589

Alpha-degree stability and robustness - Application to Special flight mechanical features of the bearingless SEALS (STOPPERS) the development of a regulator p 326 A88-27755 helicopter roto Numerical modeling of multidimensional flow in seals Theory and development of discrete multivariable p 293 N88-17825 IMBB-FM-315/O1 and bearings used in rotating machinery regulators assuring robust tracking p 326 A88-27756 [NASA-TM-100779] p 319 N88-16988 ROTOR BLADES Robust adaptive flight-path reconstruction technique for Influence of transformation sequence on nonlinear nonsteady longitudinal flight test maneuvers bending and torsion of rotor blades p 315 A88-26158 Finite element analysis for shock absorbers of pilot p 307 A88-28261 p 288 A88-26893 seats Study of performance of rotating stall in blade row **ROCKET EXHAUST** SECONDARY FLOW p 273 A88-26629 The Shock and Vibration Bulletin. Part 4: Structural Excess streamwise vorticity and its role in secondary Design and test of a high blade speed, high work capacity Dynamics and Modal Test and Analysis p 271 A88-26163 p 301 N88-17658 transonic turbine ΓÁD.Δ1867511 p 320 N88-17062 Investigation of dihedral effects in compressor Experimental investigation of a supercritical compressor ROCKET SOUNDING p 303 N88-17672 cascades p 304 N88-17680 rotor blade section Fine-scale measurements of microwave refractivity Secondary flow measurements with L2F-technique in ROTOR BLADES (TURBOMACHINERY) profiles with helicopter and low-cost rocket probes centrifugal compressors p 303 N88-17676 explicit Runge-Kutta method for p 317 A88-27482 Design and testing of a front stage for an advanced rotor/stator interaction high pressure compressor p 303 N88-17679 Three-dimensional problem of the constrained torsion p 275 A88-27715 [AJAA PAPER 88-0049] Computation of secondary flows in an axial multistage of a thin-walled rod of the trapezoidal wing type Accomplishments at NASA Langley Research Center p 304 N88-17681 SELF ADAPTIVE CONTROL SYSTEMS p 270 A88-25632 in rotorcraft aerodynamics technology p 269 N88-16626 Active control of helicopter vibrations by self-adaptive An improvement on the adaptive model following A review of research in rotor loads multicyclic control p 327 A88-28617 p 288 N88-16629 SELF LUBRICATION ROLLER BEARINGS Self-lubricating coatings NASA's rotorcraft icing research program for high-temperature Ceramic bearings for use in gas turbine engines p 283 N88-16641 applications p 313 N88-16703 NASA-TM-100288] p 322 N88-18007 SENSORS **ROTOR SPEED ROOT-MEAN-SQUARE ERRORS** Tracking aircraft by acoustic sensors - Multiple Theoretical analysis of rotational-speed fluctuations of Response of wind shear warning systems to turbulence hypothesis approach applied to possibly unresolved two-spool turbojet engines p 296 A88-26168 rith implication of nuisance alerts p 283 N88-17618 p 285 A88-27363 Measurements Investigation on steady-state response of a rotor-support ROTARY GYROSCOPES Turbine flow meter with optical fiber pick-up system with two squeeze-film dampers Analysis of the two-ring suspension of a dynamically [NAL-TR-923] p 319 N88-17009 p 316 A88-26632 unable gyroscope p 314 A88-25566 SEPARATED FLOW ROTORCRAFT AIRCRAFT ROTARY STABILITY Laser Doppler velocity bias in separated turbulent Delamination durability of composite materials for Vibration monitoring - A key contribution to flight ρ 271 A88-25835 rotorcraft p 312 N88-16634 p 294 A88-25367 Time dependent flow visualization in the separated ROTORS **ROTARY WING AIRCRAFT** region of an appendage-flat plate junction Vibration monitoring - A key contribution to flight NASA/Army Rotorcraft Technology. Volume 3: Systems p 271 A88-25842 Integration, Research Aircraft, and Industry safety p 294 A88-25367 Vortex/separated boundary-layer interactions [NASA-CP-2495-VOL-3] p 270 N88-16650 Effect of the blade number ratio of the rotor and the transonic Mach numbers p 275 A88-28033 McDonnell Douglas Helicopter Company independent Solution of the three-dimensional Navier-Stokes nozzle ring on the vibration activity of axial-flow and research and development: Preparing for the future radial-flow turbines p 314 A88-25614 equations for transonic flow using a multigrid method An experimental study of the effect of the lower and p 289 N88-16660 p 278 N88-17579 General Rotorcraft Aeromechanical Stability Program upper overlap on the efficiency of radial inward-flow Control of vortical separation on conical bodies (GRASP) version 1.03: User's manual p 278 N88-17580 microturbines with an enclosed rotor NASA-TM-1000431 p 328 N88-17313 p 315 A88-25637 SERVICE LIFE Helicopter external vision requirements and visual A conical element for finite element rotor dynamics Turbine engine monitoring systems: Can they benefit display characteristics: A report/bibliography, revision A component improvement program management? p 317 A88-26972 [AD-A187075] p 291 N88-17641 JAD-A1869921 p 299 N88-16706 A study of the dynamic behavior of rotor-bearing systems Rotorcraft weight trends in light of structural material Evaluation of bituminous materials used in pavement p 317 A88-27775 by the finite element method recycling projects at Tyndall, MacDill, and Hurlburt Air Rotorcraft flight research with emphasis on rotor [AD-A186576] p 291 N88-17642 Force Bases p 289 N88-16656 systems **ROTARY WINGS** [AD-A188068] p 321 N88-17871 Dynamic response of a geared train of rotors subjected Vibration monitoring - A key contribution to flight SERVOCONTRÓL to random support excitations p 320 N88-17073 safety p 294 A88-25367 Modern control methods applied to a line-of-sight Influence of transformation sequence on nonlinear The further development of circulation control airfoils stabilization and tracking system ρ 295 A88-27399 bending and torsion of rotor blades p 315 A88-26158 p 279 N88-17594 SHARP LEADING EDGES Calculation of metal flow stress in precision closed-die A research program on the aerodynamics of a highly Strong coupling between inviscid fluid and boundary layer for airfoils with sharp leading edge. I - 2-D loaded turbine stage p 301 N88-17655 p 317 A88-26793 forging of blade Stability of helicopter blade motion in the case of p 271 A88-25988 The unsteady gas flow through stator and rotor of a incompressible steady case turbulent air flow p 301 N88-17660 SHEAR FLOW p 305 A88-27761 turbomachine van Leer flux vector splitting in moving coordinates ---**RUN TIME (COMPUTERS)** Investigation of the influence of wind shear on the for helicopter rotor blade calculations aerodynamic characteristics of aircraft using a p 284 N88-17619 An approach to the interactive generation of p 317 A88-28046 blockstructured volume grids using computer graphics devices p 324 A88-26746 vortex-lattice method **ROTATING SHAFTS** SHEAR LAYERS Dynamic response of a geared train of rotors subjected Theoretical analysis of aircraft afterbody flow **RUNGE-KUTTA METHOD** to random support excitations p 275 A88-27884 p 320 N88-17073 An explicit Runge-Kutta method for unsteady ROTOR AERODYNAMICS SHELLS (STRUCTURAL FORMS) rotor/stator interaction Modeling and identification in helicopter science Development of a shell system for DS moulds at RR p 275 A88-27715 [AIAA PAPER 88-0049] p 327 A88-27760 precision casting facility --- directional solidification (DS) Nonlinear control for level flight of a helicopter Reduction of time delays in Runge-Kutta integration PNR-90400] p 318 N88-16893 methods --- systems simulation [MBB/LKE-132/S/PUB/241/A] p 306 A88-27763 p 328 N88-17363 SHOCK ABSORBERS NASA/Army Rotorcraft Technology. Volume 1: Finite element analysis for shock absorbers of pilot RUNWAY CONDITIONS Aerodynamics, and Dynamics and Aeroelasticity A new look at the use of linear methods to predict aircraft p 288 A88-26893 seats [NASA-CP-2495-VOL-1] p 269 N88-16625 dynamic response to taxi over bomb damaged and repaired SHOCK WAVE INTERACTION Accomplishments at NASA Langley Research Center airfields p 291 N88-17069 in rotorcraft aerodynamics technology Oblique shock/laminar boundary layer interactions in RUNWAYS hypersonic flow p 269 N88-16626 A new look at the use of linear methods to predict aircraft [AIAA PAPER 88-0603] p 270 A88-25300 The development of CFD methods for rotor dynamic response to taxi over bomb damaged and repaired Experimental research on swept shock wave/boundary applications p 288 N88-16627 p 291 N88-17069 laver interactions A summary of recent NASA/Army contributions to Evaluation of bituminous materials used in pavement [AD-A187250] p 322 N88-17957 rotorcraft vibrations and structural dynamics technology recycling projects at Tyndall, MacDill, and Hurlburt Air SHOCK WAVE PROPAGATION p 307 N88-16628 Application of a FEM moving node adaptive method to A review of research in rotor loads p 321 N88-17871 [AD-A188068] accurate shock capturing p 275 A88-26753 p 288 N88-16629 SHOCK WAVES Comprehensive rotorcraft analysis methods Experimental investigation shock-induced p 276 N88-16630 disturbances on transonic airfoils Rotorcraft aeroelastic stability p 307 N88-16631 [DFVLR-FB-87-28] p 276 N88-16666 SATELLITE COMMUNICATION NASA/Army Rotorcraft Technology, Volume 2: Materials SHORT TAKEOFF AIRCRAFT World-wide aeronautical satellite communications and Structures, Propulsion and Drive Systems, Flight IAIAA PAPER 88-0865] p 286 A88-27599 Study on a unidirectional ring laser gyro. Part 1: Proposition of the principle and studies on the Dynamics and Control, and Acoustics SATELLITE NETWORKS [NASA-CP-2495-VOL-2] p 270 N88-16632 AvSat - A new global satellite system for aircraft Numerical modeling of multidimensional flow in seals [NAL-TR-933] communications p 319 N88-17010 and bearings used in rotating machinery [AIAA PAPER 88-0846] p 286 A88-27587 Recommendations for ground effects research for [NASA-TM-100779] p 319 N88-16988 SCALE MODELS V/STOL and STOL aircraft and associated equipment for Frequency-response identification of XV-15 tilt-rotor

performance

of

Aerodynamic

counter-rotating unducted fan

p 292 N88-17643

scale-model.

[NASA-CR-177429]

p 279 N88-17585

p 302 N88-17666

aircraft dynamics

SWEPT WINGS SUBJECT INDEX

An aerodynamic comparison of blown and mechanical STEADY FLOW SUBSONIC FLOW p 281 N88-17606 high lift airfoils A close coupling procedure for zonal solutions of the Calculation of nonpotential flows of an ideal gas in Navier-Stokes, Euler and boundary-layer equations Development of circulation control technology for axisymmetric nozzles by the approximate factorization p 270 A88-25561 powered-lift STOL aircraft p 291 N88-17608 STRAIN GAGE BALANCES Improved relaxation schemes for transonic potential Circulation control STOL aircraft design aspects Development of an algorithm for evaluating calibration calculations p 272 A88-26433 p 281 N88-17610 data for six-component strain-gage balances Navier-Stokes computations for circulation control SIGNAL PROCESSING p 310 A88-26172 p 279 N88-17592 Response of wind shear warning systems to turbulence STRAIN GAGES SUPERCHARGERS p 283 N88-17618 with implication of nuisance alerts Strain gage balance for half models 302-6. Calibration Technology developments for a compound cycle SIKORSKY AIRCRAFT report --- wind tunnels p 298 N88-16637 Recent Sikorsky R and D progress [F+W-FO-1803] p 319 N88-17001 SUPERCRITICAL AIRFOILS p 289 N88-16659 STRATOSPHERE An aerodynamic comparison of blown and mechanical SIMILIATION Midlatitude CIO below 22 km altitude - Measurements p 281 N88-17606 NASA wind shear model: Summary of model analyses with a new aircraft-borne instrument SUPERCRITICAL WINGS p 323 N88-17617 p 323 A88-27456 Testing of a schematic transport plane model in several SIMULATORS STREAM FUNCTIONS (FLUIDS) European windtunnels Tutoring electronic troubleshooting in a simulated [PB87-170270] Computation of three-dimensional transonic flows using p 277 N88-16671 p 311 N88-17215 maintenance work environment two stream functions p 273 A88-26434 SUPERHETERODYNE RECEIVERS SINGULARITY (MATHEMATICS) Entropy and vorticity corrections for transonic flows A submillimeter heterodyne receiver for the Kuiper p 273 A88-26435 A geometric approach to nonlinear singularly perturbed Airborne Observatory and the detection of the 372 micron Stream function solution of transonic flow along an p 323 A88-26264 control systems carbon monoxide line J = 7-6 in OMC-1 and W3 SKIN (STRUCTURAL MEMBER) arbitrary twisted S1 stream surface p 273 A88-26586 p 316 A88-26253 Low frequency eddy current detection and evaluation The effect of the boundary layer on transonic cascade SUPERSONIC AIRFOILS of corrosion in aircraft skins flow p 273 A88-26587 Supersonic aerodynamics of delta wings [NASA-TP-2771] p 28: STRESS ANALYSIS p 282 N88-17615 p 313 N88-16859 (FTN-88-91664) Nonlinear equations of laminated panels with laminated SUPERSONIC COMBUSTION SLOTS stiffeners p 316 A88-26344 Turbulent hydrogen combustion in a wall jet issuing into Numerical solution of the problem of supersonic gas Finite element analysis for shock absorbers of pilot a comoving supersonic stream of air flow from a narrow slot in hodograph variables p 288 A88-26893 p 271 A88-26129 seats p 297 A88-27166 Review of fatigue and fracture research at NASA Langley SUPERSONIC COMPRESSORS SMALL PERTURBATION FLOW Research Cente p 318 N88-16633 Application of highly loaded single-stage mixed-flow compressors in small jet-engines p 300 N88-17652 design transonic-small-disturbance wing STRESS DISTRIBUTION methodology Calculation of metal flow stress in precision closed-die Design and testing of a front stage for an advanced INASA-TP-28061 p 282 N88-17614 forging of blade p 317 A88-26793 p 303 N88-17679 high pressure compressor SMOKE ABATEMENT STRESS-STRAIN RELATIONSHIPS SUPERSONIC FLOW Military jet fuels, 1944-1987 [AD-A186752] Stress-strain state of an opening parachute Characteristics of flow around a hemisphere mounted p 314 N88-16890 p 317 A88-27248 n a plane p 315 A88-25640 Laser Doppler velocity bias in separated turbulent on a plane SOOT STRESSES Soot loading in a generic gas turbine combustor Creep and fatigue research efforts on advanced p 271 A88-25835 p 297 A88-27296 p 318 N88-16701 materials New techniques in computational aerodynamics SOUND TRANSMISSION STRUCTURAL ANALYSIS [AD-A186719] p 276 N88-16664 Identification and proposed control of helicopter Optimum design of structures with multiple constraints Application of highly loaded single-stage mixed-flow p 308 N88-16647 transmission noise at the source p 317 A88-28042 p 300 N88-17652 compressors in small jet-engines Sound transmission through the walls of light aircraft: The Shock and Vibration Bulletin. Part 4: Structural Experimental research on swept shock wave/boundary Dynamics and Modal Test and Analysis An investigation of structure-borne noise in a Handley Page laver interactions [AD-A186751] p 320 N88-17062 137 Jetstream 3 aircraft [AD-A187250] p 322 N88-17957 [NASA-CR-182509] Self-adaptive analysis of three-dimensional structures p 330 N88-18376 SUPERSONIC JET FLOW using a p-version of finite element method SPACECRAFT CONTROL Numerical solution of the problem of supersonic gas [FFA-TN-1987-31] p 320 N88-17084 Automatic systems in aeronautics; National Colloquium, flow from a narrow slot in hodograph variables Rotorcraft weight trends in light of structural material p 271 A88-26129 Paris, France, Mar. 17-19, 1986, Proceedings p 326 A88-27751 characteristics Influence of nozzle asymmetry on supersonic jets [AD-A186576] p 291 N88-17642 p 276 A88-28034 **SPECIFICATIONS** STRUCTURAL DESIGN Specification of an engine and its components starting SUPERSONIC SPEED Optimum design of structures with multiple constraints Supersonic aerodynamics of delta wings from a consideration of aircraft missions n 317 A88-28042 [NASA-TP-2771] p 282 N88-17615 p 300 N88-17651 Comprehensive rotorcraft analysis methods SUPERSONIC TURBINES SPIN DYNAMICS p 276 N88-16630 Design and test of a high blade speed, high work capacity Flat spin of axisymmetric bodies in the critical Reynolds program: Today's Advanced composite airframe transonic turbine p 301 N88-17658 p 306 A88-27889 number region p 289 N88-16636 technology SUPPORT SYSTEMS **SPOILERS** STRUCTURAL DESIGN CRITERIA Dynamic flexibility coefficient matrix and its Inviscid theory of two-dimensional aerofoil/spoiler Rotorcraft handling-qualities design criteria measurement for aeroengine supporting system configurations at low speed. V - Steady and oscillatory p 308 N88-16645 p 317 A88-26641 development aerofoil-spoiler-flap characteristics p 272 A88-26424 STRUCTURAL MEMBERS SUPPORTS SPRAYING Laboratory studies related to in-flight acoustic emission Dynamic response of a geared train of rotors subjected Comparison of UNL laser imaging and sizing system p 320 N88-17073 monitorina to random support excitations and a phase/Doppler system for analyzing sprays from [AD-A186714] p 329 N88-17445 SURFACE GEOMETRY a NASA nozzle Modern materials for light constructions --- aircraft Surface mesh generation using elliptic equations p 318 N88-16956 [NASA-CR-182437] [MBB-Z-136/86] p 293 N88-17839 p 324 A88-26732 Flame stabilization using large flameholders of irregular SQUEEZE FILMS STRUCTURAL RELIABILITY Investigation on steady-state response of a rotor-support p 312 A88-27285 The Shock and Vibration Bulletin, Part 4: Structural shape system with two squeeze-film dampers SURFACE PROPERTIES Dynamics and Modal Test and Analysis p 316 A88-26632 [AD-A186751] p 320 N88-17062 A jet in a crossflow [NASA-CR-182469] STALLING p 277 N88-16674 STRUCTURAL STABILITY Possibilities for on-line surge suppression by fast guide SURFACE ROUGHNESS Stability of a wing box with elastic ribs vane adjustment in axial compressors A new look at the use of linear methods to predict aircraft p 315 A88-25623 p 303 N88-17674 dynamic response to taxi over bomb damaged and repaired STRUCTURAL VIBRATION STATE ESTIMATION p 291 N88-17069 Effect of the blade number ratio of the rotor and the State estimation of manoeuvring targets from noisy radar SURGES nozzle ring on the vibration activity of axial-flow and Possibilities for on-line surge suppression by fast guide measurements p 294 A88-26247 radial-flow turbines p 314 A88-25614 Reduction of time delays in Runge-Kutta integration vane adjustment in axial compressors The Shock and Vibration Bulletin. Part 4: Structural p 303 N88-17674 methods --- systems simulation [MBB/LKE-132/S/PUB/241/A] Dynamics and Modal Test and Analysis p 328 N88-17363 SUSPENSIONS p 320 N88-17062 [AD-A186751] STATISTICAL ANALYSIS Analysis of the two-ring suspension of a dynamically A new look at the use of linear methods to predict aircraft p 314 A88-25566 Helicopter activities in Germany IMBB-UD-487/861 tunable gyroscope SWEPT FORWARD WINGS dynamic response to taxi over bomb damaged and repaired p 294 N88-17853 p 291 N88-17069 STATISTICAL DISTRIBUTIONS airfields X-29A forward-swept-wing flight research program STRUTS status Additional investigations in landing process of aircraft: [NASA-TM-100413] Effect of a model support strut on measurement of p 292 N88-17644 Test distributions aerodynamic longitudinal and lateral coefficients [DFVLR-MITT-87-13] SWEPT WINGS p 286 N88-16686 p 277 N88-16670 [PB87-170288] STATORS The tip flow of a part span slotted flap SUBMILLIMETER WAVES p 272 A88-26422 An explicit Runge-Kutta method for unsteady

A submillimeter heterodyne receiver for the Kuiper

p 316 A88-26253

Airborne Observatory and the detection of the 372 micron

carbon monoxide line J = 7-6 in OMC-1 and W3

rotor/stator interaction

turbomachine

[AIAA PAPER 88-0049]

The unsteady gas flow through stator and rotor of a

p 275 A88-27715

p 301 N88-17660

p 280 N88-17596

p 280 N88-17597

Pressure distributions and oil-flow patterns for a swept

Boundary-layer and wake measurements on a swept

circulation-control wing

circulation-control wing

SWEPTBACK WINGS SUBJECT INDEX

SWEPTBACK WINGS	Mechanical properties of carbon fiber reinforced	THRUST DISTRIBUTION
Variable sweep wings p 292 N88-17823 SYMMETRICAL BODIES	thermoplastic matrix composites [NAL-TR-934] p 313 N88-16827	Fixed wing CCW aerodynamics with and without supplementary thrust deflection p 281 N88-17607
Turbulent near wake of a symmetrical body	TEMPERATURE MEASUREMENT	Development of circulation control technology for
p 318 A88-28047	A system of data acquisition and processing in	powered-lift STOL aircraft p 291 N88-17608
SYMMETRY An application of eigenspace methods to symmetric	aeroengine testing p 323 A88-26627 Inflight thermal data recording from IAF aircraft	THRUST-WEIGHT RATIO Doubling thrust-to-weight ratio p 297 A88-26649
flutter suppression	p 295 A88-27639	TILT ROTOR AIRCRAFT
[NASA-CR-181618] p 309 N88-17684 SYNTHETIC APERTURE RADAR	TEMPERATURE MEASURING INSTRUMENTS	Rotorcraft aeroelastic stability p 307 N88-16631 Reduction of tilt rotor download using circulation
Radar backscatter from airports and surrounding	Forward looking wind shear detection p 284 N88-17629	control p 281 N88-17605
areas p 321 N88-17623	TENSILE PROPERTIES	Frequency-response identification of XV-15 tilt-rotor aircraft dynamics p 292 N88-17643
Rotor SAR (ROSAR): A new high-resolution all-weather vision method for helicopters	Durability and damage tolerance of aluminum castings	aircraft dynamics p 292 N88-17643 TILTING ROTORS
[MBB-UA-1046/87] p 321 N88-17855	[AD-A186444] p 322 N88-18013 TERRAIN	Using frequency-domain methods to identify XV-15
SYSTEM FAILURES Airworthiness considerations p 285 N88-17636	Radar returns from ground clutter in vicinity of airports	aeroelastic modes [NASA-TM-100033] p 292 N88-17646
SYSTEMS ANALYSIS	p 321 N88-17624	TIME DEPENDENCE
System analysis in rotorcraft design: The past decade p 289 N88-16652	TEST FACILITIES NASA-Langley Research Center shapes tomorrow	Time dependent flow visualization in the separated region of an appendage-flat plate junction
Dynamic analysis of multimesh-gear helicopter	through innovative research p 310 A88-25750	p 271 A88-25842
transmissions	Squeezing the test cycle improving flight-test	Additional investigations in landing process of aircraft:
[NASA-TP-2789] p 319 N88-17045 Comprehensive analysis of helicopters with bearingless	efficiency p 287 A88-26645 Calibration of the ARL (Aeronautical Research	Test distributions [DFVLR-MITT-87-13] p 286 N88-16686
rotors	Laboratories) rain and icing facility	TIMOSHENKO BEAMS
[NASA-CR-182537] p 328 N88-18300 SYSTEMS INTEGRATION	[AD-A186776] p 310 N88-16710	A conical element for finite element rotor dynamics p 317 A88-26972
F-16 flight tests with the F110 engine - Lessons	TEST PILOTS European/U.S. cooperative flight testing - Some food	TOLERANCES (PHYSIOLOGY)
learned p 288 A88-26875	for thought p 269 A88-26175	Annoyance caused by advanced turboprop aircraft flyover noise: Single-rotating propeller configuration
Rotorcraft flight-propulsion control integration p 307 N88-16643	TEST STANDS A rig testing method of annular combustor in	[NASA-TP-2782] p 329 N88-17441
NASA/Army Rotorcraft Technology. Volume 3: Systems	aeroengine p 297 A88-26589	TORQUE
Integration, Research Aircraft, and Industry [NASA-CP-2495-VOL-3] p 270 N88-16650	TF-34 ENGINE	Elastic hingeless scissor design p 315 A88-26159 TORSION
Avionics systems integration technology	Knowledge based jet engine diagnostics p 299 N88-17210	Three-dimensional problem of the constrained torsion
p 296 N88-16654 Integrated diagnostics p 296 N88-16655	THERMAL FATIGUE	of a thin-walled rod of the trapezoidal wing type p 270 A88-25632
SYSTEMS SIMULATION	Creep and fatigue research efforts on advanced	Influence of transformation sequence on nonlinear
Reduction of time delays in Runge-Kutta integration methods systems simulation	materials p 318 N88-16701 THERMAL STABILITY	bending and torsion of rotor blades p 315 A88-26158 TORSIONAL VIBRATION
[MBB/LKE-132/S/PUB/241/A] p 328 N88-17363	Self-lubricating coatings for high-temperature	An exact solution for coupled bending and torsion
SYSTEMS STABILITY	applications p 313 N88-16703	vibrations of uniform beams having single cross-sectional
Designing stabilizing controllers for uncertain systems using the Riccati equation approach	THIN AIRFOILS A first order theory for Newtonian flow over	symmetry p 316 A88-26571 TRACKING (POSITION)
p 325 A88-27326	two-dimensional airfoils p 272 A88-26423	Tracking aircraft by acoustic sensors - Multiple
Modern control methods applied to a line-of-sight stabilization and tracking system p 295 A88-27399	Comment on 'Computation of the potential flow over airfoils with cusped or thin trailing edges'	hypothesis approach applied to possibly unresolved measurements p 285 A88-27363
	p 276 A88-28050	A piloted simulation investigating handling qualities and
Т	THIN BODIES	performance requirements of a single-pilot helicopter in
TAKEOFE	THIN BODIES Aerodynamic calculation of thin bodies in a rarefied gas p 274 A88-26696	performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-A186878] p 290 N88-16689
TAKEOFF Verification of obstacle accountability areas using a	THIN BODIES Aerodynamic calculation of thin bodies in a rarefied gas p 274 A88-26696 THIN PLATES	performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-A186878] p 290 N88-16689 TRACKING NETWORKS
Verification of obstacle accountability areas using a simple mathematical model. Part 1: Description of general	THIN BODIES Aerodynamic calculation of thin bodies in a rarefied gas p 274 A88-26696 THIN PLATES A note on the aerodynamic design of thin parallel-sided aerofoil sections	performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-A186878] p 290 N88-16689 TRACKING NETWORKS Distributed mixed sensor aircraft tracking p 285 A88-27412
Verification of obstacle accountability areas using a	THIN BODIES Aerodynamic calculation of thin bodies in a rarefied gas p 274 A88-26696 THIN PLATES A note on the aerodynamic design of thin parallel-sided aerofoil sections [ARL-AERO-TM-388] p 277 N88-16677	performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-A166878] p 290 N88-16689 TRACKING NETWORKS Distributed mixed sensor aircraft tracking p 285 A88-27412 Tracking multiple air targets with distributed acoustic
Verification of obstacle accountability areas using a simple mathematical model. Part 1: Description of general model and application for a specific case engine failure at takeoff [NLR-TR-85069-U] p 283 N88-16683	THIN BODIES Aerodynamic calculation of thin bodies in a rarefied gas p 274 A88-26696 THIN PLATES A note on the aerodynamic design of thin parallel-sided aerofoil sections	performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-A186878] p 290 N88-16689 TRACKING NETWORKS Distributed mixed sensor aircraft tracking p 285 A88-27412 Tracking multiple air targets with distributed acoustic sensors p 285 A88-27413 TRAILING EDGES
Verification of obstacle accountability areas using a simple mathematical model. Part 1: Description of general model and application for a specific case engine failure at takeoff	THIN BODIES Aerodynamic calculation of thin bodies in a rarefied gas p 274 A88-26696 THIN PLATES A note on the aerodynamic design of thin parallel-sided aerofoil sections [ARL-AERO-TM-388] p 277 N88-16677 THIN WALLS Simplified calculation of the crushing process in structural elements p 315 A88-26171	performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-A166878] p 290 N88-16689 TRACKING NETWORKS Distributed mixed sensor aircraft tracking p 285 A88-27412 Tracking multiple air targets with distributed acoustic sensors p 285 A88-27413 TRAILING EDGES Comment on 'Computation of the potential flow over
Verification of obstacle accountability areas using a simple mathematical model. Part 1: Description of general model and application for a specific case engine failure at takeoff [NLR-TR-85069-U] p 283 N88-16683 Aerodynamic and acoustic characteristics of an advanced propeller under take-off and landing conditions	THIN BODIES Aerodynamic calculation of thin bodies in a rarefied gas p 274 A88-26696 THIN PLATES A note on the aerodynamic design of thin parallel-sided aerofoil sections [ARL-AERO-TM-388] p 277 N88-16677 THIN WALLS Simplified calculation of the crushing process in	performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-A186878] p 290 N88-16689 TRACKING NETWORKS Distributed mixed sensor aircraft tracking p 285 A88-27412 Tracking multiple air targets with distributed acoustic sensors p 285 A88-27413 TRAILING EDGES Comment on 'Computation of the potential flow over airfoils with cusped or thin trailing edges' p 276 A88-28050
Verification of obstacle accountability areas using a simple mathematical model. Part 1: Description of general model and application for a specific case engine failure at takeoff [NLR-TR-85069-U] p 283 N88-16683 Aerodynamic and acoustic characteristics of an advanced propeller under take-off and landing	THIN BODIES Aerodynamic calculation of thin bodies in a rarefied gas p 274 A88-26696 THIN PLATES A note on the aerodynamic design of thin parallel-sided aerofoil sections [ARL-AERO-TM-388] p 277 N88-16677 THIN WALLS Simplified calculation of the crushing process in structural elements p 315 A88-26171 THREE DIMENSIONAL BODIES Elliptic grid generation system for three-dimensional configurations using Poisson's equation	performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-A186878] p 290 N88-16689 TRACKING NETWORKS Distributed mixed sensor aircraft tracking p 285 A88-27412 Tracking multiple air targets with distributed acoustic sensors p 285 A88-27413 TRAILING EDGES Comment on 'Computation of the potential flow over airfoils with cusped or thin trailing edges' TRAINING AIRCRAFT
Verification of obstacle accountability areas using a simple mathematical model. Part 1: Description of general model and application for a specific case engine failure at takeoff [NLR-TR-85069-U] p 283 N88-16683 Aerodynamic and acoustic characteristics of an advanced propeller under take-off and landing conditions [NAL-TR-935] p 329 N88-17453 Radar returns from ground clutter in vicinity of airports p 321 N88-17624	THIN BODIES Aerodynamic calculation of thin bodies in a rarefied gas p 274 A88-26696 THIN PLATES A note on the aerodynamic design of thin parallel-sided aerofoil sections [ARL-AERO-TM-388] p 277 N88-16677 THIN WALLS Simplified calculation of the crushing process in structural elements p 315 A88-26171 THREE DIMENSIONAL BODIES Elliptic grid generation system for three-dimensional configurations using Poisson's equation p 324 A88-26748	performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-A186878] p 290 N88-16689 TRACKING NETWORKS Distributed mixed sensor aircraft tracking p 285 A88-27412 Tracking multiple air targets with distributed acoustic sensors p 285 A88-27413 TRAILING EDGES Comment on 'Computation of the potential flow over airfoils with cusped or thin trailing edges' p 276 A88-28050
Verification of obstacle accountability areas using a simple mathematical model. Part 1: Description of general model and application for a specific case engine failure at takeoff [NLR-TR-85069-U] p 283 N88-16683 Aerodynamic and acoustic characteristics of an advanced propeller under take-off and landing conditions [NAL-TR-935] p 329 N88-17453 Radar returns from ground clutter in vicinity of airports p 321 N88-17624 Simulator investigation of wind shear recovery	THIN BODIES Aerodynamic calculation of thin bodies in a rarefied gas p 274 A88-26966 THIN PLATES A note on the aerodynamic design of thin parallel-sided aerofoil sections [ARL-AERO-TM-388] p 277 N88-16677 THIN WALLS Simplified calculation of the crushing process in structural elements p 315 A88-26171 THREE DIMENSIONAL BODIES Elliptic grid generation system for three-dimensional configurations using Poisson's equation p 324 A88-26748 Self-adaptive analysis of three-dimensional structures using a p-version of finite element method	performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-A186878] p 290 N88-16689 TRACKING NETWORKS Distributed mixed sensor aircraft tracking p 285 A88-27412 Tracking multiple air targets with distributed acoustic sensors p 285 A88-27413 TRAILING EDGES Comment on 'Computation of the potential flow over airfoils with cusped or thin trailing edges' p 276 A88-28050 TRAINING AIRCRAFT XT-4 - Potent with potential p 287 A88-25809 TRAJECTORIES Simulator investigation of wind shear recovery
Verification of obstacle accountability areas using a simple mathematical model. Part 1: Description of general model and application for a specific case engine failure at takeoff [NLR-TR-85069-U] p 283 N88-16683 Aerodynamic and acoustic characteristics of an advanced propeller under take-off and landing conditions [NAL-TR-935] p 329 N88-17453 Radar returns from ground clutter in vicinity of airports p 321 N88-17624 Simulator investigation of wind shear recovery techniques p 284 N88-17630 TARGET ACQUISITION	THIN BODIES Aerodynamic calculation of thin bodies in a rarefied gas p 274 A88-26696 THIN PLATES A note on the aerodynamic design of thin parallel-sided aerofoil sections [ARL-AERO-TM-388] p 277 N88-16677 THIN WALLS Simplified calculation of the crushing process in structural elements p 315 A88-26171 THREE DIMENSIONAL BODIES Elliptic grid generation system for three-dimensional configurations using Poisson's equation p 324 A88-26748 Self-adaptive analysis of three-dimensional structures	performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-A186878] p 290 N88-16689 TRACKING NETWORKS Distributed mixed sensor aircraft tracking p 285 A88-27412 Tracking multiple air targets with distributed acoustic sensors p 285 A88-27413 TRAILING EDGES Comment on 'Computation of the potential flow over airfolls with cusped or thin trailing edges' p 276 A88-28050 TRAINING AIRCRAFT XT-4 - Potent with potential p 287 A88-25809 TRAJECTORIES
Verification of obstacle accountability areas using a simple mathematical model. Part 1: Description of general model and application for a specific case engine failure at takeoff [NLR-TR-85069-U] p 283 N88-16683 Aerodynamic and acoustic characteristics of an advanced propeller under take-off and landing conditions [NAL-TR-935] p 329 N88-17453 Radar returns from ground clutter in vicinity of airports p 321 N88-17624 Simulator investigation of wind shear recovery techniques p 284 N88-17630 TARGET ACQUISITION A piloted simulation investigating handling qualities and	THIN BODIES Aerodynamic calculation of thin bodies in a rarefied gas p 274 A88-2696 THIN PLATES A note on the aerodynamic design of thin parallel-sided aerofoil sections [ARL-AERO-TM-388] p 277 N88-16677 THIN WALLS Simplified calculation of the crushing process in structural elements p 315 A88-26171 THREE DIMENSIONAL BODIES Elliptic grid generation system for three-dimensional configurations using Poisson's equation p 324 A88-26748 Self-adaptive analysis of three-dimensional structures using a p-version of finite element method [FFA-TN-1987-31] p 320 N88-17084 THREE DIMENSIONAL COMPOSITES Structural properties of braided graphite/epoxy	performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-A186878] p 290 N88-16689 TRACKING NETWORKS Distributed mixed sensor aircraft tracking p 285 A88-27412 Tracking multiple air targets with distributed acoustic sensors p 285 A88-27413 TRAILING EDGES Comment on 'Computation of the potential flow over airfoils with cusped or thin trailing edges' p 276 A88-28050 TRAINING AIRCRAFT XT-4 - Potent with potential p 287 A88-25809 TRAJECTORIES Simulator investigation of wind shear recovery techniques p 284 N88-17630 TRAJECTORY ANALYSIS Aircraft flight test trajectory control
Verification of obstacle accountability areas using a simple mathematical model. Part 1: Description of general model and application for a specific case engine failure at takeoff [NLR-TR-85069-U] p 283 N88-16683 Aerodynamic and acoustic characteristics of an advanced propeller under take-off and landing conditions [NAL-TR-935] p 329 N88-17453 Radar returns from ground clutter in vicinity of airports p 321 N88-17624 Simulator investigation of wind shear recovery techniques p 284 N88-17630 TARGET ACQUISITION A piloted simulation investigating handling qualities and performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun	THIN BODIES Aerodynamic calculation of thin bodies in a rarefied gas p 274 A88-26696 THIN PLATES A note on the aerodynamic design of thin parallel-sided aerofoil sections [ARL-AERO-TM-388] p 277 N88-16677 THIN WALLS Simplified calculation of the crushing process in structural elements p 315 A88-26171 THREE DIMENSIONAL BODIES Elliptic grid generation system for three-dimensional configurations using Poisson's equation p 324 A88-26748 Self-adaptive analysis of three-dimensional structures using a p-version of finite element method [FFA-TN-1987-31] p 320 N88-17084 THREE DIMENSIONAL COMPOSITES Structural properties of braided graphite/epoxy composites p 312 A88-25266	performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-A186878] p 290 N88-16689 TRACKING NETWORKS Distributed mixed sensor aircraft tracking p 285 A88-27412 Tracking multiple air targets with distributed acoustic sensors p 285 A88-27413 TRAILING EDGES Comment on 'Computation of the potential flow over airdrails with cusped or thin trailing edges' p 276 A88-28050 TRAINING AIRCRAFT XT-4 - Potent with potential p 287 A88-25809 TRAJECTORIES Simulator investigation of wind shear recovery techniques p 284 N88-17630 TRAJECTORY ANALYSIS
Verification of obstacle accountability areas using a simple mathematical model. Part 1: Description of general model and application for a specific case engine failure at takeoff [NLR-TR-85069-U] p 283 N88-16683 Aerodynamic and acoustic characteristics of an advanced propeller under take-off and landing conditions [NAL-TR-935] p 329 N88-17453 Radar returns from ground clutter in vicinity of airports p 321 N88-17624 Simulator investigation of wind shear recovery techniques p 284 N88-17630 TARGET ACQUISITION A piloted simulation investigating handling qualities and performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-A186878] p 290 N88-16689	THIN BODIES Aerodynamic calculation of thin bodies in a rarefied gas p 274 A88-26966 THIN PLATES A note on the aerodynamic design of thin parallel-sided aerofoil sections [ARL-AERO-TM-388] p 277 N88-16677 THIN WALLS Simplified calculation of the crushing process in structural elements p 315 A88-26171 THREE DIMENSIONAL BODIES Elliptic grid generation system for three-dimensional configurations using Poisson's equation p 324 A88-26748 Self-adaptive analysis of three-dimensional structures using a p-version of finite element method [FFA-TN-1987-31] p 320 N88-17084 THREE DIMENSIONAL COMPOSITES Structural properties of braided graphite/epoxy composites p 312 A88-25266 THREE DIMENSIONAL FLOW Excess streamwise vorticity and its role in secondary	performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-A186878] p 290 N88-16689 TRACKING NETWORKS Distributed mixed sensor aircraft tracking p 285 A88-27412 Tracking multiple air targets with distributed acoustic sensors p 285 A88-27413 TRAILING EDGES Comment on 'Computation of the potential flow over airfoils with cusped or thin trailing edges' p 276 A88-28050 TRAINING AIRCRAFT XT-4 - Potent with potential p 287 A88-25809 TRAJECTORIES Simulator investigation of wind shear recovery techniques p 284 N88-17630 TRAJECTORY ANALYSIS Aircraft flight test trajectory control [NASA-CR-179428] p 308 N88-16707 TRAJECTORY OPTIMIZATION Applications of singular perturbation techniques to
Verification of obstacle accountability areas using a simple mathematical model. Part 1: Description of general model and application for a specific case — engine failure at takeoff [NLR-TR-85069-U] p 283 N88-16683 Aerodynamic and acoustic characteristics of an advanced propeller under take-off and landing conditions [NAL-TR-935] p 329 N88-17453 Radar returns from ground clutter in vicinity of airports p 321 N88-17624 Simulator investigation of wind shear recovery techniques p 284 N88-17630 TARGET ACQUISITION A piloted simulation investigating handling qualities and performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-4186878] p 290 N88-16689 TASKS Crew procedures for microwave landing system	THIN BODIES Aerodynamic calculation of thin bodies in a rarefied gas p 274 A88-26696 THIN PLATES A note on the aerodynamic design of thin parallel-sided aerofoil sections [ARL-AERO-TM-388] p 277 N88-16677 THIN WALLS Simplified calculation of the crushing process in structural elements p 315 A88-26171 THREE DIMENSIONAL BODIES Elliptic grid generation system for three-dimensional configurations using Poisson's equation p 324 A88-26748 Self-adaptive analysis of three-dimensional structures using a p-version of finite element method [FFA-TN-1987-31] p 320 N88-17084 THREE DIMENSIONAL COMPOSITES Structural properties of braided graphite/epoxy composites p 312 A88-2566 THREE DIMENSIONAL FLOW Excess streamwise vorticity and its role in secondary flow p 271 A88-26163	performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-A166878] p 290 N88-16689 TRACKING NETWORKS Distributed mixed sensor aircraft tracking p 285 A88-27412 Tracking multiple air targets with distributed acoustic sensors p 285 A88-27413 TRAILING EDGES Comment on 'Computation of the potential flow over airfoils with cusped or thin trailing edges' p 276 A88-28050 TRAINING AIRCRAFT XT-4 - Potent with potential p 287 A88-25809 TRAJECTORIES Simulator investigation of wind shear recovery techniques p 284 N88-17630 TRAJECTORY ANALYSIS Aircraft flight test trajectory control [NASA-CR-179428] p 308 N88-16707 TRAJECTORY OPTIMIZATION Applications of singular perturbation techniques to aircraft trajectory optimization p 305 A88-27754
Verification of obstacle accountability areas using a simple mathematical model. Part 1: Description of general model and application for a specific case engine failure at takeoff [NLR-TR-85069-U]	THIN BODIES Aerodynamic calculation of thin bodies in a rarefied gas p 274 A88-2696 THIN PLATES A note on the aerodynamic design of thin parallel-sided aerofoil sections [ARL-AERO-TM-388] p 277 N88-16677 THIN WALLS Simplified calculation of the crushing process in structural elements p 315 A88-26171 THREE DIMENSIONAL BODIES Elliptic grid generation system for three-dimensional configurations using Poisson's equation p 324 A88-26748 Self-adaptive analysis of three-dimensional structures using a p-version of finite element method [FFA-TN-1987-31] p 320 N88-17084 THREE DIMENSIONAL COMPOSITES Structural properties of braided graphite/epoxy composites p 312 A88-25266 THREE DIMENSIONAL FLOW Excess streamwise vorticity and its role in secondary flow p 271 A88-26163 The tip flow of a part span slotted flap p 272 A88-26422	performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-A186878] p 290 N88-16689 TRACKING NETWORKS Distributed mixed sensor aircraft tracking p 285 A88-27412 Tracking multiple air targets with distributed acoustic sensors p 285 A88-27413 TRAILING EDGES Comment on 'Computation of the potential flow over airfoils with cusped or thin trailing edges' TRAILING AIRCRAFT XT-4 - Potent with potential p 287 A88-25809 TRAILECTORIES Simulator investigation of wind shear recovery techniques p 284 N88-17630 TRAJECTORY ANALYSIS Aircraft flight test trajectory control [NASA-CR-179428] p 308 N88-16707 TRAJECTORY OPTIMIZATION Applications of singular perturbation techniques to aircraft trajectory optimization p 305 A88-27754 Approach trajectory guidance for maximum concealment p 307 A88-28265
Verification of obstacle accountability areas using a simple mathematical model. Part 1: Description of general model and application for a specific case — engine failure at takeoff [NLR-TR-85069-U] p 283 N88-16683 Aerodynamic and acoustic characteristics of an advanced propeller under take-off and landing conditions [NAL-TR-935] p 329 N88-17453 Radar returns from ground clutter in vicinity of airports p 321 N88-17624 Simulator investigation of wind shear recovery techniques p 284 N88-17630 TARGET ACQUISITION A piloted simulation investigating handling qualities and performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-4186878] p 290 N88-16689 TASKS Crew procedures for microwave landing system	THIN BODIES Aerodynamic calculation of thin bodies in a rarefied gas p 274 A88-26966 THIN PLATES A note on the aerodynamic design of thin parallel-sided aerofoil sections [ARL-AERO-TM-388] p 277 N88-16677 THIN WALLS Simplified calculation of the crushing process in structural elements p 315 A88-26171 THREE DIMENSIONAL BODIES Elliptic grid generation system for three-dimensional configurations using Poisson's equation p 324 A88-26748 Self-adaptive analysis of three-dimensional structures using a p-version of finite element method [FFA-TN-1987-31] p 320 N88-17084 THREE DIMENSIONAL COMPOSITES Structural properties of braided graphite/epoxy composites p 312 A88-25266 THREE DIMENSIONAL FLOW Excess streamwise vorticity and its role in secondary flow p 271 A88-26163 The tip flow of a part span slotted flap p 272 A88-26422 Computation of three-dimensional transonic flows using	performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-A186878] p 290 N88-16689 TRACKING NETWORKS Distributed mixed sensor aircraft tracking p 285 A88-27412 Tracking multiple air targets with distributed acoustic sensors p 285 A88-27413 TRAILING EDGES Comment on 'Computation of the potential flow over airfoils with cusped or thin trailing edges' p 276 A88-28050 TRAINING AIRCRAFT XT-4 - Potent with potential p 287 A88-25809 TRAJECTORIES Simulator investigation of wind shear recovery techniques p 284 N88-17630 TRAJECTORY ANALYSIS Aircraft flight test trajectory control [NASA-CR-179428] p 308 N88-16707 TRAJECTORY OPTIMIZATION Applications of singular perturbation techniques to aircraft trajectory optimization p 305 A88-27754 Approach trajectory guidance for maximum p 307 A88-28265 TRANSFER FUNCTIONS
Verification of obstacle accountability areas using a simple mathematical model. Part 1: Description of general model and application for a specific case engine failure at takeoff [NLR-TR-85069-U]	THIN BODIES Aerodynamic calculation of thin bodies in a rarefied gas p 274 A88-2696 THIN PLATES A note on the aerodynamic design of thin parallel-sided aerofoil sections [ARL-AERO-TM-388] p 277 N88-16677 THIN WALLS Simplified calculation of the crushing process in structural elements p 315 A88-26171 THREE DIMENSIONAL BODIES Elliptic grid generation system for three-dimensional configurations using Poisson's equation p 324 A88-26748 Self-adaptive analysis of three-dimensional structures using a p-version of finite element method [FFA-TN-1987-31] p 320 N88-17084 THREE DIMENSIONAL COMPOSITES Structural properties of braided graphite/epoxy composites p 312 A88-25266 THREE DIMENSIONAL FLOW Excess streamwise vorticity and its role in secondary flow p 271 A88-26163 The tip flow of a part span slotted flap p 272 A88-26422	performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-A186878] p 290 N88-16689 TRACKING NETWORKS Distributed mixed sensor aircraft tracking p 285 A88-27412 Tracking multiple air targets with distributed acoustic sensors p 285 A88-27413 TRAILING EDGES Comment on 'Computation of the potential flow over airfoils with cusped or thin trailing edges' TRAILING AIRCRAFT XT-4 - Potent with potential p 287 A88-25809 TRAJECTORIES Simulator investigation of wind shear recovery techniques p 284 N88-17630 TRAJECTORY ANALYSIS Aircraft flight test trajectory control [NASA-CR-179428] p 308 N88-16707 TRAJECTORY OPTIMIZATION Applications of singular perturbation techniques to aircraft trajectory optimization p 305 A88-27754 Approach trajectory guidance for maximum concealment p 307 A88-28265
Verification of obstacle accountability areas using a simple mathematical model. Part 1: Description of general model and application for a specific case engine failure at takeoff [NLR-TR-85089-U] p 283 N88-16683 Aerodynamic and acoustic characteristics of an advanced propeller under take-off and landing conditions [NAL-TR-935] p 329 N88-17453 Radar returns from ground clutter in vicinity of airports p 321 N88-17624 Simulator investigation of wind shear recovery techniques p 284 N88-17630 TARGET ACQUISITION A piloted simulation investigating handling qualities and performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-A186878] p 290 N88-16689 TASKS Crew procedures for microwave landing system operations [NASA-CR-178359] p 286 N88-16688	THIN BODIES Aerodynamic calculation of thin bodies in a rarefied gas p 274 A88-2696 THIN PLATES A note on the aerodynamic design of thin parallel-sided aerofoil sections [ARL-AERO-TM-388] p 277 N88-16677 THIN WALLS Simplified calculation of the crushing process in structural elements p 315 A88-26171 THREE DIMENSIONAL BODIES Elliptic grid generation system for three-dimensional configurations using Poisson's equation p 324 A88-26748 Self-adaptive analysis of three-dimensional structures using a p-version of finite element method [FFA-TN-1987-31] p 320 N88-17084 THREE DIMENSIONAL COMPOSITES Structural properties of braided graphite/epoxy composites p 312 A88-25266 THREE DIMENSIONAL FLOW Excess streamwise vorticity and its role in secondary flow p 271 A88-26163 The tip flow of a part span slotted flap p 272 A88-26422 Computation of three-dimensional transonic flows using two stream functions p 273 A88-26434 Numerical calculation of 3-D turbulent flow in a straight compressor cascade with circular-arc blades	performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-A186878] p 290 N88-16689 TRACKING NETWORKS Distributed mixed sensor aircraft tracking p 285 A88-27412 Tracking multiple air targets with distributed acoustic sensors p 285 A88-27413 TRAILING EDGES Comment on 'Computation of the potential flow over airfoils with cusped or thin trailing edges' p 276 A88-28050 TRAINING AIRCRAFT
Verification of obstacle accountability areas using a simple mathematical model. Part 1: Description of general model and application for a specific case engine failure at takeoff [NLR-TR-85699-U] p 283 N88-16683 Aerodynamic and acoustic characteristics of an advanced propeller under take-off and landing conditions [NAL-TR-935] p 329 N88-17453 Radar returns from ground clutter in vicinity of airports p 321 N88-17624 Simulator investigation of wind shear recovery techniques p 284 N88-17630 TARGET ACQUISITION A piloted simulation investigating handling qualities and performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-A186878] p 290 N88-16689 TASKS Crew procedures for microwave landing system operations [NASA-CR-178359] p 286 N88-16688 TAXIING A new look at the use of linear methods to predict aircraft dynamic response to taxi over bomb damaged and repaired airfields p 291 N88-17069	THIN BODIES Aerodynamic calculation of thin bodies in a rarefied gas p 274 A88-2696 THIN PLATES A note on the aerodynamic design of thin parallel-sided aerofoil sections [ARL-AERO-TM-388] p 277 N88-16677 THIN WALLS Simplified calculation of the crushing process in structural elements p 315 A88-26171 THREE DIMENSIONAL BODIES Elliptic grid generation system for three-dimensional configurations using Poisson's equation p 324 A88-26748 Self-adaptive analysis of three-dimensional structures using a p-version of finite element method [FFA-TN-1987-31] p 320 N88-17084 THREE DIMENSIONAL COMPOSITES Structural properties of braided graphite/epoxy composites p 312 A88-25266 THREE DIMENSIONAL FLOW Excess streamwise vorticity and its role in secondary flow p 271 A88-26163 The tip flow of a part span slotted flap p 272 A88-26422 Computation of three-dimensional transonic flows using two stream functions p 273 A88-26434 Numerical calculation of 3-D turbulent flow in a straight	performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-A186878] p 290 N88-16689 TRACKING NETWORKS Distributed mixed sensor aircraft tracking p 285 A88-27412 Tracking multiple air targets with distributed acoustic sensors p 285 A88-27413 TRAILING EDGES Comment on 'Computation of the potential flow over airfoils with cusped or thin trailing edges' p 276 A88-28050 TRAINING AIRCRAFT XT-4 - Potent with potential p 287 A88-28050 TRAJECTORIES Simulator investigation of wind shear recovery techniques p 284 N88-17630 TRAJECTORY ANALYSIS Aircraft flight test trajectory control [NASA-CR-179428] p 308 N88-16707 TRAJECTORY OPTIMIZATION Applications of singular perturbation techniques to aircraft trajectory optimization p 305 A88-2754 Approach trajectory guidance for maximum p 307 A88-28265 TRANSFER FUNCTIONS Frequency-response identification of XV-15 tilt-rotor aircraft dynamics p 292 N88-17643 TRANSITION LAYERS Interior transition layers in flight-path optimization
Verification of obstacle accountability areas using a simple mathematical model. Part 1: Description of general model and application for a specific case — engine failure at takeoff [NLR-TR-85069-U] p 283 N88-16683 Aerodynamic and acoustic characteristics of an advanced propeller under take-off and landing conditions [NAL-TR-935] p 329 N88-17453 Radar returns from ground clutter in vicinity of airports p 321 N88-17624 Simulator investigation of wind shear recovery techniques p 284 N88-17630 TARGET ACQUISITION A piloted simulation investigating handling qualities and performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-A186878] p 290 N88-16689 TASKS Crew procedures for microwave landing system operations [NASA-CR-178359] p 286 N88-16688 TAXING A new look at the use of linear methods to predict aircraft dynamic response to taxi over bomb damaged and repaired airfields p 291 N88-17069 TECHNOLOGY ASSESSMENT An overview of key technology thrusts at Bell Helicopter	THIN BODIES Aerodynamic calculation of thin bodies in a rarefied gas p 274 A88-2696 THIN PLATES A note on the aerodynamic design of thin parallel-sided aerofoil sections [ARL-AERO-TM-388] p 277 N88-16677 THIN WALLS Simplified calculation of the crushing process in structural elements p 315 A88-26171 THREE DIMENSIONAL BODIES Elliptic grid generation system for three-dimensional configurations using Poisson's equation p 324 A88-26748 Self-adaptive analysis of three-dimensional structures using a p-version of finite element method [FFA-TN-1987-31] p 320 N88-17084 THREE DIMENSIONAL COMPOSITES Structural properties of braided graphite/epoxy composites p 312 A88-25266 THREE DIMENSIONAL FLOW Excess streamwise vorticity and its role in secondary flow p 271 A88-26163 The tip flow of a part span slotted flap p 272 A88-26422 Computation of three-dimensional transonic flows using two stream functions p 273 A88-26434 Numerical calculation of 3-D turbulent flow in a straight compressor cascade with circular-arc blades p 273 A88-26584 Stream function solution of transonic flow along an arbitrary twisted S1 stream surface p 273 A88-26586	performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-A186878] p 290 N88-16689 TRACKING NETWORKS Distributed mixed sensor aircraft tracking p 285 A88-27412 Tracking multiple air targets with distributed acoustic sensors p 285 A88-27413 TRAILING EDGES Comment on 'Computation of the potential flow over airfoils with cusped or thin trailing edges' p 276 A88-28050 TRAINING AIRCRAFT
Verification of obstacle accountability areas using a simple mathematical model. Part 1: Description of general model and application for a specific case engine failure at takeoff [NLR-TR-85699-U] p 283 N88-16683 Aerodynamic and acoustic characteristics of an advanced propeller under take-off and landing conditions [NAL-TR-935] p 329 N88-17453 Radar returns from ground clutter in vicinity of airports p 321 N88-17624 Simulator investigation of wind shear recovery techniques TARGET ACQUISITION A piloted simulation investigating handling qualities and performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-A186878] p 290 N88-16689 TASKS Crew procedures for microwave landing system operations [NASA-CR-178359] p 286 N88-16688 TAXIING A new look at the use of linear methods to predict aircraft dynamic response to taxi over bomb damaged and repaired airfields TECHNOLOGY ASSESSMENT An overview of key technology thrusts at Bell Helicopter Textron The wind tunnel as a yardstick for aircraft design	THIN BODIES Aerodynamic calculation of thin bodies in a rarefied gas p 274 A88-26696 THIN PLATES A note on the aerodynamic design of thin parallel-sided aerofoil sections [ARL-AERO-TM-388] p 277 N88-16677 THIN WALLS Simplified calculation of the crushing process in structural elements p 315 A88-26171 THREE DIMENSIONAL BODIES Elliptic grid generation system for three-dimensional configurations using Poisson's equation Self-adaptive analysis of three-dimensional structures using a p-version of finite element method [FFA-TN-1987-31] p 320 N88-17084 THREE DIMENSIONAL COMPOSITES Structural properties of braided graphite/epoxy composites p 312 A88-25266 THREE DIMENSIONAL FLOW Excess streamwise vorticity and its role in secondary flow p 271 A88-26163 The tip flow of a part span slotted flap p 272 A88-26424 Computation of three-dimensional transonic flows using two stream functions p 273 A88-26434 Numerical calculation of 3-D turbulent flow in a straight compressor cascade with circular-arc blades p 273 A88-26584 Stream function solution of transonic flow along an arbitrary twisted S1 stream surface p 273 A88-26586 Geometry/grid generation in n + 1 easy steps for	performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-A186878] p 290 N88-16689 TRACKING NETWORKS Distributed mixed sensor aircraft tracking p 285 A88-27412 Tracking multiple air targets with distributed acoustic sensors p 285 A88-27413 TRAILING EDGES Comment on 'Computation of the potential flow over airfoils with cusped or thin trailing edges' p 276 A88-28050 TRAINING AIRCRAFT XT-4 - Potent with potential p 287 A88-28050 TRAJECTORIES Simulator investigation of wind shear recovery techniques p 284 N88-17630 TRAJECTORY ANALYSIS Aircraft flight test trajectory control [NASA-CR-179428] p 308 N88-16707 TRAJECTORY OPTIMIZATION Applications of singular perturbation techniques to aircraft trajectory optimization p 305 A88-28754 Approach trajectory guidance for maximum p 307 A88-28265 TRANSFER FUNCTIONS Frequency-response identification of XV-15 tilt-rotor aircraft dynamics p 292 N88-17643 TRANSTION LAYERS Interior transition layers in flight-path optimization p 288 A88-28252 TRANSMISSIONS (MACHINE ELEMENTS) Results of NASA/Army transmission research
Verification of obstacle accountability areas using a simple mathematical model. Part 1: Description of general model and application for a specific case — engine failure at takeoff [NLR-TR-85069-U] p 283 N88-16683 Aerodynamic and acoustic characteristics of an advanced propeller under take-off and landing conditions [NAL-TR-935] p 329 N88-17453 Radar returns from ground clutter in vicinity of airports p 321 N88-17624 Simulator investigation of wind shear recovery techniques p 284 N88-17630 TARGET ACQUISITION A piloted simulation investigating handling qualities and performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-A186878] p 290 N88-16689 TASKS Crew procedures for microwave landing system operations [NASA-CR-178359] p 286 N88-16688 TAXING A new look at the use of linear methods to predict aircraft dynamic response to taxi over bomb damaged and repaired airfields p 291 N88-17069 TECHNOLOGY ASSESSMENT An overview of key technology thrusts at Bell Helicopter Textron p 289 N88-16657 The wind tunnel as a yardstick for aircraft design [NLR-MP-85032-U] p 310 N88-16712	THIN BODIES Aerodynamic calculation of thin bodies in a rarefied gas p 274 A88-26966 THIN PLATES A note on the aerodynamic design of thin parallel-sided aerofoil sections [ARL-AERO-TM-388] p 277 N88-16677 THIN WALLS Simplified calculation of the crushing process in structural elements p 315 A88-26171 THREE DIMENSIONAL BODIES Elliptic grid generation system for three-dimensional configurations using Poisson's equation p 324 A88-26748 Self-adaptive analysis of three-dimensional structures using a p-version of finite element method [FFA-TN-1987-31] p 320 N88-17084 THREE DIMENSIONAL COMPOSITES Structural properties of braided graphite/epoxy composites THREE DIMENSIONAL FLOW Excess streamwise vorticity and its role in secondary flow p 271 A88-26163 The tip flow of a part span slotted flap p 272 A88-26422 Computation of three-dimensional transonic flows using two stream functions p 273 A88-26434 Numerical calculation of 3-D turbulent flow in a straight compressor cascade with circular-arc blades p 273 A88-26584 Stream function solution of transonic flow along an arbitrary twisted S1 stream surface p 273 A88-26586 Geometry/grid generation in n + 1 easy steps for flows involving flight vehicles embedded within ground test facility p 274 A88-26731	performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-A186878] p 290 N88-16689 TRACKING NETWORKS Distributed mixed sensor aircraft tracking p 285 A88-27412 Tracking multiple air targets with distributed acoustic sensors p 285 A88-27413 TRAILING EDGES Comment on 'Computation of the potential flow over airfoils with cusped or thin trailing edges' p 276 A88-28050 TRAINING AIRCRAFT XT-4 - Potent with potential p 287 A88-28050 TRAJECTORIES Simulator investigation of wind shear recovery techniques p 284 N88-17630 TRAJECTORY ANALYSIS Aircraft flight test trajectory control [NASA-CR-179428] p 308 N88-16707 TRAJECTORY OPTIMIZATION Applications of singular perturbation techniques to aircraft trajectory optimization p 305 A88-28265 TRANSFER FUNCTIONS Frequency-response identification of XV-15 tilt-rotor aircraft dynamics p 292 N88-17643 TRANSITION LAYERS Interior transition layers in flight-path optimization p 288 A88-28252 TRANSMISSIONS (MACHINE ELEMENTS) Results of NASA/Army transmission research p 299 N88-16640
Verification of obstacle accountability areas using a simple mathematical model. Part 1: Description of general model and application for a specific case engine failure at takeoff [NLR-TR-85069-U] p 283 N88-16683 Aerodynamic and acoustic characteristics of an advanced propeller under take-off and landing conditions [NAL-TR-935] p 329 N88-17453 Radar returns from ground clutter in vicinity of airports p 321 N88-17624 Simulator investigation of wind shear recovery techniques p 284 N88-17630 TARGET ACQUISITION A piloted simulation investigating handling qualities and performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-A186878] p 290 N88-16689 TASKS Crew procedures for microwave landing system operations [NASA-CR-178359] p 286 N88-16688 TAXIING A new look at the use of linear methods to predict aircraft dynamic response to taxi over bomb damaged and repaired airfields p 291 N88-17069 TECHNOLOGY ASSESSMENT An overview of key technology thrusts at Bell Helicopter Textron p 289 N88-16657 The wind tunnel as a yardstick for aircraft design [NLR-MP-85032-U] p 310 N88-16712 An examination of the impact of potential advances in component technology for future military engines	THIN BODIES Aerodynamic calculation of thin bodies in a rarefied gas p 274 A88-26696 THIN PLATES A note on the aerodynamic design of thin parallel-sided aerofoil sections [ARL-AERO-TM-388] p 277 N88-16677 THIN WALLS Simplified calculation of the crushing process in structural elements p 315 A88-26171 THREE DIMENSIONAL BODIES Elliptic grid generation system for three-dimensional configurations using Poisson's equation Self-adaptive analysis of three-dimensional structures using a p-version of finite element method [FFA-TN-1987-31] p 320 N88-17084 THREE DIMENSIONAL COMPOSITES Structural properties of braided graphite/epoxy composites p 312 A88-25266 THREE DIMENSIONAL FLOW Excess streamwise vorticity and its role in secondary flow p 271 A88-26163 The tip flow of a part span slotted flap p 272 A88-26424 Computation of three-dimensional transonic flows using two stream functions p 273 A88-26434 Numerical calculation of 3-D turbulent flow in a straight compressor cascade with circular-arc blades p 273 A88-26584 Stream function solution of transonic flow along an arbitrary twisted S1 stream surface p 273 A88-26586 Geometry/grid generation in n + 1 easy steps for flows involving flight vehicles embedded within ground test facility p 274 A88-26731 Elliptic generation of composite three-dimensional grids	performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-A186878] p 290 N88-16689 TRACKING NETWORKS Distributed mixed sensor aircraft tracking p 285 A88-27412 Tracking multiple air targets with distributed acoustic sensors p 285 A88-27413 TRAILING EDGES Comment on 'Computation of the potential flow over airfoils with cusped or thin trailing edges' p 276 A88-28050 TRAINING AIRCRAFT
Verification of obstacle accountability areas using a simple mathematical model. Part 1: Description of general model and application for a specific case — engine failure at takeoff [NLR-TR-8069-U] p 283 N88-16683 Aerodynamic and acoustic characteristics of an advanced propeller under take-off and landing conditions [NAL-TR-935] p 329 N88-17453 Radar returns from ground clutter in vicinity of airports p 321 N88-17624 Simulator investigation of wind shear recovery techniques p 284 N88-17630 TARGET ACQUISITION A piloted simulation investigating handling qualities and performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-A186878] p 290 N88-16689 TASKS Crew procedures for microwave landing system operations [NASA-CR-178359] p 286 N88-16688 TAXING A new look at the use of linear methods to predict aircraft dynamic response to taxi over bomb damaged and repaired airfields p 291 N88-17069 TECHNOLOGY ASSESSMENT An overview of key technology thrusts at Bell Helicopter Textron p 289 N88-16657 The wind tunnel as a yardstick for aircraft design [NLR-MP-85032-U] p 310 N88-16712 An examination of the impact of potential advances in component technology for future military engines p 300 N88-17650	THIN BODIES Aerodynamic calculation of thin bodies in a rarefied gas p 274 A88-2696 THIN PLATES A note on the aerodynamic design of thin parallel-sided aerofoil sections [ARL-AERO-TM-388] p 277 N88-16677 THIN WALLS Simplified calculation of the crushing process in structural elements p 315 A88-26171 THREE DIMENSIONAL BODIES Elliptic grid generation system for three-dimensional configurations using Poisson's equation p 324 A88-26748 Self-adaptive analysis of three-dimensional structures using a p-version of finite element method [FFA-TN-1987-31] p 320 N88-17084 THREE DIMENSIONAL COMPOSITES Structural properties of braided graphite/epoxy composites THREE DIMENSIONAL FLOW Excess streamwise vorticity and its role in secondary flow p 271 A88-26163 The tip flow of a part span slotted flap p 272 A88-26422 Computation of three-dimensional transonic flows using two stream functions p 273 A88-26422 Computation of three-dimensional transonic flow a using two stream functions p 273 A88-26434 Numerical calculation of 3-D turbulent flow in a straight compressor cascade with circular-arc blades p 273 A88-26584 Stream function solution of transonic flow along an arbitrary twisted S1 stream surface p 273 A88-26586 Geometry/grid generation in n + 1 easy steps for flows involving flight vehicles embedded within ground test facility p 274 A88-26731 Elliptic generation of composite three-dimensional grids about realistic aircraft p 287 A88-26749 Numerical modeling of multidimensional flow in seals	performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-A186878] p 290 N88-16689 TRACKING NETWORKS Distributed mixed sensor aircraft tracking p 285 A88-27412 Tracking multiple air targets with distributed acoustic sensors p 285 A88-27413 TRAILING EDGES Comment on 'Computation of the potential flow over airfoils with cusped or thin trailing edges' p 276 A88-28050 TRAINING AIRCRAFT XT-4 - Potent with potential p 287 A88-28050 TRAJECTORIES Simulator investigation of wind shear recovery techniques p 284 N88-17630 TRAJECTORY ANALYSIS Aircraft flight test trajectory control [NASA-CR-179428] p 308 N88-16707 TRAJECTORY OPTIMIZATION Applications of singular perturbation techniques to aircraft trajectory optimization p 305 A88-28265 TRANSFER FUNCTIONS Frequency-response identification of XV-15 tilt-rotor aircraft dynamics p 289 N88-17643 TRANSITION LAYERS Interior transition layers in flight-path optimization p 288 A88-28252 TRANSMISSIONS (MACHINE ELEMENTS) Results of NASA/Army transmission research p 299 N88-16640 Dynamic analysis of multimesh-gear helicopter transmissions [NASA-TP-2789] p 319 N88-17045
Verification of obstacle accountability areas using a simple mathematical model. Part 1: Description of general model and application for a specific case engine failure at takeoff [NLR-TR-85069-U] p 283 N88-16683 Aerodynamic and acoustic characteristics of an advanced propeller under take-off and landing conditions [NAL-TR-935] p 329 N88-17453 Radar returns from ground clutter in vicinity of airports p 321 N88-17624 Simulator investigation of wind shear recovery techniques p 284 N88-17630 TARGET ACQUISITION A piloted simulation investigating handling qualities and performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-A186878] p 290 N88-16689 TASKS Crew procedures for microwave landing system operations [NASA-CR-178359] p 286 N88-16688 TAXIING A new look at the use of linear methods to predict aircraft dynamic response to taxi over bomb damaged and repaired airfields p 291 N88-17069 TECHNOLOGY ASSESSMENT An overview of key technology thrusts at Bell Helicopter Textron p 289 N88-16657 The wind tunnel as a yardstick for aircraft design [NLR-MP-85032-U] p 310 N88-16712 An examination of the impact of potential advances in component technology for future military engines p 300 N88-17650 Helicopter activities in Germany [MBB-UD-487/86] p 294 N88-17853	THIN BODIES Aerodynamic calculation of thin bodies in a rarefied gas p 274 A88-26966 THIN PLATES A note on the aerodynamic design of thin parallel-sided aerofoil sections [ARL-AERO-TM-388] p 277 N88-16677 THIN WALLS Simplified calculation of the crushing process in structural elements p 315 A88-26171 THREE DIMENSIONAL BODIES Elliptic grid generation system for three-dimensional configurations using Poisson's equation p 324 A88-26748 Self-adaptive analysis of three-dimensional structures using a p-version of finite element method [FFA-TN-1987-31] p 320 N88-17084 THREE DIMENSIONAL COMPOSITES Structural properties of braided graphite/epoxy composites p 312 A88-25266 THREE DIMENSIONAL FLOW Excess streamwise vorticity and its role in secondary flow Excess streamwise vorticity and its role in secondary p 271 A88-26163 The tip flow of a part span slotted flap p 272 A88-26422 Computation of three-dimensional transonic flows using two stream functions p 273 A88-26434 Numerical calculation of 3-D turbulent flow in a straight compressor cascade with circular-arc blades p 273 A88-26584 Stream function solution of transonic flow along an arbitrary twisted S1 stream surface p 273 A88-26586 Geometry/grid generation in n + 1 easy steps — for flows involving flight vehicles embedded within ground test facility p 274 A88-26731 Elliptic generation of composite three-dimensional grids about realistic aircraft p 287 A88-26749 Numerical modeling of multidimensional flow in seals and bearings used in rotating machinery	performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-A186878] p 290 N88-16689 TRACKING NETWORKS Distributed mixed sensor aircraft tracking p 285 A88-27412 Tracking multiple air targets with distributed acoustic sensors p 285 A88-27413 TRAILING EDGES Comment on 'Computation of the potential flow over airfoils with cusped or thin trailing edges' p 276 A88-28050 TRAINING AIRCRAFT
Verification of obstacle accountability areas using a simple mathematical model. Part 1: Description of general model and application for a specific case — engine failure at takeoff [NLR-TR-8569-U] p 283 N88-16683 Aerodynamic and acoustic characteristics of an advanced propeller under take-off and landing conditions [NAL-TR-935] p 329 N88-17453 Radar returns from ground clutter in vicinity of airports p 321 N88-17624 Simulator investigation of wind shear recovery techniques p 284 N88-17630 TARGET ACQUISITION A piloted simulation investigating handling qualities and performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-4186878] p 290 N88-16689 TASKS Crew procedures for microwave landing system operations [NASA-CR-178359] p 286 N88-16688 TAXIING A new look at the use of linear methods to predict aircraft dynamic response to taxi over bomb damaged and repaired airfields p 291 N88-1709 TECHNOLOGY ASSESSMENT An overview of key technology thrusts at Bell Helicopter Textron p 289 N88-16657 The wind tunnel as a yardstick for aircraft design [NLR-MP-85032-U] p 310 N88-16712 An examination of the impact of potential advances in component technology for future military engines p 300 N88-17650 Helicopter activities in Germany [MBB-UD-487/86] p 294 N88-17853	THIN BODIES Aerodynamic calculation of thin bodies in a rarefied gas p 274 A88-26966 THIN PLATES A note on the aerodynamic design of thin parallel-sided aerofoil sections [ARL-AERO-TM-388] p 277 N88-16677 THIN WALLS Simplified calculation of the crushing process in structural elements p 315 A88-26171 THREE DIMENSIONAL BODIES Elliptic grid generation system for three-dimensional configurations using Poisson's equation p 324 A88-26748 Self-adaptive analysis of three-dimensional structures using a p-version of finite element method [FFA-TN-1987-31] p 320 N88-17084 THREE DIMENSIONAL COMPOSITES Structural properties of braided graphite/epoxy composites p 312 A88-25266 THREE DIMENSIONAL FLOW Excess streamwise vorticity and its role in secondary flow p 271 A88-26163 The tip flow of a part span slotted flap p 273 A88-26432 Computation of three-dimensional transonic flows using two stream functions p 273 A88-26432 Numerical calculation of 3-D turbulent flow in a straight compressor cascade with circular-arc blades p 273 A88-26584 Stream function solution of transonic flow along an arbitrary twisted S1 stream surface p 273 A88-26586 Geometry/grid generation in n + 1 easy steps - for flows involving flight vehicles embedded within ground test facility p 274 A88-26731 Elliptic generation of composite three-dimensional grids about realistic aircraft p 287 A88-26749 Numerical modelling of multidimensional flow in seals and bearings used in rotating machinery [NASA-TM-100779] p 319 N88-16988	performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-A186878] p 290 N88-16689 TRACKING NETWORKS Distributed mixed sensor aircraft tracking p 285 A88-27412 Tracking multiple air targets with distributed acoustic sensors p 285 A88-27413 TRAILING EDGES Comment on 'Computation of the potential flow over airfoils with cusped or thin trailing edges' p 276 A88-28050 TRAINING AIRCRAFT
Verification of obstacle accountability areas using a simple mathematical model. Part 1: Description of general model and application for a specific case engine failure at takeoff [NLR-TR-85069-U] p 283 N88-16683 Aerodynamic and acoustic characteristics of an advanced propeller under take-off and landing conditions [NAL-TR-935] p 329 N88-17453 Radar returns from ground clutter in vicinity of airports p 321 N88-17624 Simulator investigation of wind shear recovery techniques p 284 N88-17630 TARGET ACQUISITION A piloted simulation investigating handling qualities and performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-A186878] p 290 N88-16689 TASKS Crew procedures for microwave landing system operations [NASA-CR-178359] p 286 N88-16688 TAXIING A new look at the use of linear methods to predict aircraft dynamic response to taxi over bomb damaged and repaired airfields p 291 N88-17069 TECHNOLOGY ASSESSMENT An overview of key technology thrusts at Bell Helicopter Textron p 289 N88-16657 The wind tunnel as a yardstick for aircraft design [NLR-MP-85032-U] p 310 N88-16712 An examination of the impact of potential advances in component technology for future military engines p 300 N88-17650 Helicopter activities in Germany [MBB-UD-487/86] p 294 N88-17853	THIN BODIES Aerodynamic calculation of thin bodies in a rarefied gas p 274 A88-26696 THIN PLATES A note on the aerodynamic design of thin parallel-sided aerofoil sections [ARL-AERO-TM-388] p 277 N88-16677 THIN WALLS Simplified calculation of the crushing process in structural elements p 315 A88-26171 THREE DIMENSIONAL BODIES Elliptic grid generation system for three-dimensional configurations using Poisson's equation p 324 A88-26748 Self-adaptive analysis of three-dimensional structures using a p-version of finite element method [FFA-TN-1987-31] p 320 N88-17084 THREE DIMENSIONAL COMPOSITES Structural properties of braided graphite/epoxy composites p 312 A88-25266 THREE DIMENSIONAL FLOW Excess streamwise vorticity and its role in secondary flow flow of a part span slotted flap p 271 A88-26163 The tip flow of a part span slotted flap p 272 A88-26424 Computation of three-dimensional transonic flows using two stream functions p 273 A88-26434 Numerical calculation of 3-D turbulent flow in a straight compressor cascade with circular-arc blades p 273 A88-26584 Stream function solution of transonic flow along an arbitrary twisted S1 stream surface p 273 A88-26586 Geometry/grid generation in n + 1 easy steps - for flows involving flight vehicles embedded within ground test facility p 274 A88-26731 Elliptic generation of composite three-dimensional grids about realistic aircraft p 287 A88-26749 Numerical modeling of multidimensional flow in seals and bearings used in rotating machinery [NASA-TM-100779] p 319 N88-16988 THRUST AUGMENTATION Reduction of tilt rotor download using circulation	performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-A186878] p 290 N88-16689 TRACKING NETWORKS Distributed mixed sensor aircraft tracking p 285 A88-27412 Tracking multiple air targets with distributed acoustic sensors p 285 A88-27413 TRAILING EDGES Comment on 'Computation of the potential flow over airfoils with cusped or thin trailing edges' p 276 A88-28050 TRAINING AIRCRAFT
Verification of obstacle accountability areas using a simple mathematical model. Part 1: Description of general model and application for a specific case engine failure at takeoff [NLR-TR-85069-U] p 283 N88-16683 Aerodynamic and acoustic characteristics of an advanced propeller under take-off and landing conditions [NAL-TR-935] p 329 N88-17453 Radar returns from ground clutter in vicinity of airports p 321 N88-17624 Simulator investigation of wind shear recovery techniques p 284 N88-17630 TARGET ACQUISITION A piloted simulation investigating handling qualities and performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-A186878] p 290 N88-16689 TASKS Crew procedures for microwave landing system operations [NASA-CR-178359] p 286 N88-16688 TAXIING A new look at the use of linear methods to predict aircraft dynamic response to taxi over bomb damaged and repaired airfields p 291 N88-17069 TECHNOLOGY ASSESSMENT An overview of key technology thrusts at Bell Helicopter Textron p 289 N88-16657 The wind tunnel as a yardstick for aircraft design [NLR-MP-85032-U] p 310 N88-16712 An examination of the impact of potential advances in component technology for future military engines p 300 N88-17650 Helicopter activities in Germany [MBB-UD-487/86] p 294 N88-17853 TECHNOLOGY UTILIZATION Simplifying flight test p 294 A88-25366 TEMPERATURE EFFECTS Effect of high temperature spikes on a carbon	THIN BODIES Aerodynamic calculation of thin bodies in a rarefied gas p 274 A88-26966 THIN PLATES A note on the aerodynamic design of thin parallel-sided aerofoil sections [ARL-AERO-TM-388] p 277 N88-16677 THIN WALLS Simplified calculation of the crushing process in structural elements p 315 A88-26171 THREE DIMENSIONAL BODIES Elliptic grid generation system for three-dimensional configurations using Poisson's equation p 324 A88-26748 Self-adaptive analysis of three-dimensional structures using a p-version of finite element method [FFA-TN-1987-31] p 320 N88-17084 THREE DIMENSIONAL COMPOSITES Structural properties of braided graphite/epoxy composites p 312 A88-25266 THREE DIMENSIONAL FLOW Excess streamwise vorticity and its role in secondary flow p 271 A88-26163 The tip flow of a part span slotted flap p 273 A88-26422 Computation of three-dimensional transonic flows using two stream functions p 273 A88-26422 Computation of three-dimensional transonic flow a using two stream functions of the p 273 A88-26584 Stream function solution of transonic flow along an arbitrary twisted S1 stream surface p 273 A88-26584 Stream function solution of transonic flow along an arbitrary twisted S1 stream surface p 273 A88-26586 Geometry/grid generation in n + 1 easy steps - for flows involving flight vehicles embedded within ground test facility p 274 A88-26731 Elliptic generation of composite three-dimensional grids about realistic aircraft p 287 A88-26749 Numerical modelling of multidimensional flow in seals and bearings used in rotating machinery [NASA-TM-100779] p 319 N88-16988 THRUST AUGMENTATION Reduction of tilt rotor download using circulation control P 281 N88-17605	performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-A186878] p 290 N88-16689 TRACKING NETWORKS Distributed mixed sensor aircraft tracking p 285 A88-27412 Tracking multiple air targets with distributed acoustic sensors p 285 A88-27413 TRAILING EDGES Comment on 'Computation of the potential flow over airfoils with cusped or thin trailing edges' p 276 A88-28050 TRAINING AIRCRAFT
Verification of obstacle accountability areas using a simple mathematical model. Part 1: Description of general model and application for a specific case — engine failure at takeoff [NLR-TR-85069-U] p 283 N88-16683 Aerodynamic and acoustic characteristics of an advanced propeller under take-off and landing conditions [NAL-TR-935] p 329 N88-17453 Radar returns from ground clutter in vicinity of airports p 321 N88-17624 Simulator investigation of wind shear recovery techniques p 284 N88-17630 TARGET ACQUISITION A piloted simulation investigating handling qualities and performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-A186878] p 290 N88-16689 TASKS Crew procedures for microwave landing system operations [NASA-CR-178359] p 286 N88-16689 TAXING A new look at the use of linear methods to predict aircraft dynamic response to taxi over bomb damaged and repaired airfields p 291 N88-17069 TECHNOLOGY ASSESSMENT An overview of key technology thrusts at Bell Helicopter Textron p 289 N88-16657 The wind tunnel as a yardstick for aircraft design [NLR-MP-85032-U] p 310 N88-16712 An examination of the impact of potential advances in component technology for future military engines p 300 N88-17650 Helicopter activities in Germany [MBB-UD-487/86] TECHNOLOGY UTILIZATION Simplifying flight test p 294 A88-25366 TEMPERATURE EFFECTS Effect of high temperature spikes on a carbon fibre-reinforced epoxy laminate p 312 A88-28299	THIN BODIES Aerodynamic calculation of thin bodies in a rarefied gas p 274 A88-26696 THIN PLATES A note on the aerodynamic design of thin parallel-sided aerofoil sections [ARL-AERO-TM-388] p 277 N88-16677 THIN WALLS Simplified calculation of the crushing process in structural elements p 315 A88-26171 THREE DIMENSIONAL BODIES Elliptic grid generation system for three-dimensional configurations using Poisson's equation p 324 A88-26748 Self-adaptive analysis of three-dimensional structures using a p-version of finite element method [FFA-TN-1987-31] p 320 N88-17084 THREE DIMENSIONAL COMPOSITES Structural properties of braided graphite/epoxy composites p 312 A88-25266 THREE DIMENSIONAL FLOW Excess streamwise vorticity and its role in secondary flow [FFA-TN-1987-31] p 271 A88-26163 The tip flow of a part span slotted flap [P 272 A88-26422] Computation of three-dimensional transonic flows using two stream functions p 273 A88-26434 Numerical calculation of 3-D turbulent flow in a straight compressor cascade with circular-arc blades [P 273 A88-26584] Stream function solution of transonic flow along an arbitrary twisted S1 stream surface p 273 A88-26586 Geometry/grid generation in n + 1 easy steps for flows involving flight vehicles embedded within ground test facility p 274 A88-26731 Elliptic generation of composite three-dimensional grids about realistic aircraft p 287 A88-26749 Numerical modeling of multidimensional flow in seals and bearings used in rotating machinery [NASA-TM-100779] p 319 N88-16988 THRUST AUGMENTATION Reduction of tilt rotor download using circulation control p 281 N88-17605 Circulation control STOL aircraft design aspects	performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-A186878] p 290 N88-16689 TRACKING NETWORKS Distributed mixed sensor aircraft tracking p 285 A88-27412 Tracking multiple air targets with distributed acoustic sensors p 285 A88-27413 TRAILING EDGES Comment on 'Computation of the potential flow over airfoils with cusped or thin trailing edges' p 276 A88-28050 TRAINING AIRCRAFT XT-4 - Potent with potential p 287 A88-28050 TRAJECTORIES Simulator investigation of wind shear recovery techniques p 284 N88-17630 TRAJECTORY ANALYSIS Aircraft flight test trajectory control [NASA-CR-179428] p 308 N88-16707 TRAJECTORY OPTIMIZATION Applications of singular perturbation techniques to aircraft trajectory optimization p 305 A88-28754 Approach trajectory guidance for maximum p 307 A88-28265 TRANSFER FUNCTIONS Frequency-response identification of XV-15 tilt-rotor aircraft dynamics p 292 N88-17643 TRANSTION LAYERS Interior transition layers in flight-path optimization p 288 A88-28252 TRANSMISSIONS (MACHINE ELEMENTS) Results of NASA/Army transmission research p 299 N88-16640 Dynamic analysis of multimesh-gear helicopter transmissions [NASA-TP-2789] p 319 N88-17045 TRANSONIC COMPRESSORS Radial compressor design using an Euler solver p 303 N88-17675 TRANSONIC FLOW Improved relaxation schemes for transonic potential calculations p 272 A88-26433 Computation of three-dimensional transonic flows using
Verification of obstacle accountability areas using a simple mathematical model. Part 1: Description of general model and application for a specific case engine failure at takeoff [NLR-TR-85069-U] p 283 N88-16683 Aerodynamic and acoustic characteristics of an advanced propeller under take-off and landing conditions [NAL-TR-935] p 329 N88-17453 Radar returns from ground clutter in vicinity of airports p 321 N88-17624 Simulator investigation of wind shear recovery techniques p 284 N88-17630 TARGET ACQUISITION A piloted simulation investigating handling qualities and performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-A186878] p 290 N88-16689 TASKS Crew procedures for microwave landing system operations [NASA-CR-178359] p 286 N88-16688 TAXIING A new look at the use of linear methods to predict aircraft dynamic response to taxi over bomb damaged and repaired airfields p 291 N88-17069 TECHNOLOGY ASSESSMENT An overview of key technology thrusts at Bell Helicopter Textron p 289 N88-16657 The wind tunnel as a yardstick for aircraft design [NLR-MP-85032-U] p 310 N88-16712 An examination of the impact of potential advances in component technology for future military engines p 300 N88-17650 Helicopter activities in Germany [MBB-UD-487/86] p 294 N88-17853 TECHNOLOGY UTILIZATION Simplifying flight test p 294 A88-25366 TEMPERATURE EFFECTS Effect of high temperature spikes on a carbon	THIN BODIES Aerodynamic calculation of thin bodies in a rarefied gas p 274 A88-26966 THIN PLATES A note on the aerodynamic design of thin parallel-sided aerofoil sections [ARL-AERO-TM-388] p 277 N88-16677 THIN WALLS Simplified calculation of the crushing process in structural elements p 315 A88-26171 THREE DIMENSIONAL BODIES Elliptic grid generation system for three-dimensional configurations using Poisson's equation p 324 A88-26748 Self-adaptive analysis of three-dimensional structures using a p-version of finite element method [FFA-TN-1987-31] p 320 N88-17084 THREE DIMENSIONAL COMPOSITES Structural properties of braided graphite/epoxy composites p 312 A88-25266 THREE DIMENSIONAL FLOW Excess streamwise vorticity and its role in secondary flow p 271 A88-26163 The tip flow of a part span slotted flap p 273 A88-26422 Computation of three-dimensional transonic flows using two stream functions p 273 A88-26422 Computation of three-dimensional transonic flow a using two stream functions of the p 273 A88-26584 Stream function solution of transonic flow along an arbitrary twisted S1 stream surface p 273 A88-26584 Stream function solution of transonic flow along an arbitrary twisted S1 stream surface p 273 A88-26586 Geometry/grid generation in n + 1 easy steps - for flows involving flight vehicles embedded within ground test facility p 274 A88-26731 Elliptic generation of composite three-dimensional grids about realistic aircraft p 287 A88-26749 Numerical modelling of multidimensional flow in seals and bearings used in rotating machinery [NASA-TM-100779] p 319 N88-16988 THRUST AUGMENTATION Reduction of tilt rotor download using circulation control P 281 N88-17605	performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun [AD-A186878] p 290 N88-16689 TRACKING NETWORKS Distributed mixed sensor aircraft tracking p 285 A88-27412 Tracking multiple air targets with distributed acoustic sensors p 285 A88-27413 TRAILING EDGES Comment on 'Computation of the potential flow over airfoils with cusped or thin trailing edges' p 276 A88-28050 TRAINING AIRCRAFT

SUBJECT INDEX UNSTEADY FLOW

Design and aerodynamic performance of a small Stream function solution of transonic flow along an Advanced Technology for Aero Gas Turbine arbitrary twisted S1 stream surface p 273 A88-26586 Components mixed-flow gas generator turbine p 301 N88-17662 [AGARD-CP-421] p 299 N88-17647 The effect of the boundary layer on transonic cascade Gear systems for advanced turboprops A research program on the aerodynamics of a highly p 273 A88-26587 p 302 N88-17667 p 301 N88-17655 loaded turbine stage **TURBOSHAFTS** An analysis system for transonic flow in cascade Advanced techniques employed in blade cooling p 273 A88-26631 The convertible engine: A dual-mode propulsion p 301 N88-17659 Application of a FEM moving node adaptive method to svstem p 298 N88-16639 Wake interaction effects on the transition process on accurate shock capturing p 275 A88-26753 TURBULENCE EFFECTS turbine blades Sidewall effect for transonic airfoil testing Estimation of aircraft motion parameters with allowance [AD-A188020] p 322 N88-17962 for atmospheric turbulence p 304 A88-25622 p 275 A88-26796 **TURBINE ENGINES** On the design of robust compensators for airplane modal Vortex/separated boundary-layer interactions p 297 A88-26649 Doubling thrust-to-weight ratio transonic Mach numbers p 275 A88-28033 p 304 A88-27322 Turbine engine monitoring systems: Can they benefit TURBULENT BOUNDARY LAYER Experimental investigation of shock-induced component improvement program management? disturbances on transonic airfoils Vortex/separated boundary-layer interactions [AD-A186992] p 299 N88-16706 p 276 N88-16666 transonic Mach numbers p 275 A88-28033 (DFVLR-FB-87-281 Turbine flow meter with optical fiber pick-up Mach number effects on transonic aeroelastic forces (NAL-TR-923) p 319 N88-17009 Burst vortex/boundary layer interaction [NASA-CR-182510] p 279 N88-17583 and flutter characteristics TURBINE WHEELS [NASA-TM-100547] p 277 N88-16675 Effect of the blade number ratio of the rotor and the TURBULENT FLOW nozzle ring on the vibration activity of axial-flow and Solution of the three-dimensional Navier-Stokes Laser Doppler velocity bias in separated turbulent p 271 A88-25835 p 314 A88-25614 . flows equations for transonic flow using a multigrid method radial-flow turbines p 278 N88-17579 TURBOCOMPRESSORS Numerical calculation of 3-D turbulent flow in a straight Pressure losses and flow field distortion induced by tip compressor cascade with circular-arc blades Navier-Stokes computations for circulation control clearance of centrifugal and axial compressors p 273 A88-26584 p 279 N88-17592 airfoils p 314 A88-24847 An analysis system for transonic flow in cascade Wall jet analysis for circulation control aerodynamics. Technology developments for a compound cycle p 273 A88-26631 Part 2: Zonal modeling concepts for wall jet/potential flow p 298 N88-16637 p 279 N88-17593 Flowfield in a dual-inlet side-dump combustor coupling Advanced Technology for Aero Gas Turbine transonic-small-disturbance wing p 297 A88-27291 methodology Stability of helicopter blade motion in the case of [AGARD-CP-4211 p 299 N88-17647 [NASA-TP-2806] p 282 N88-17614 p 305 A88-27761 Optimisation of military compressors for weight and Solution of the three-dimensional Navier-Stokes The unsteady gas flow through stator and rotor of a p 300 N88-17649 equations for transonic flow using a multigrid method p 301 N88-17660 Operation of gas turbine engines in dust-laden p 278 N88-17579 TRANSONIC FLUTTER p 300 N88-17654 environments Evaluation of a research circulation control airfoil using An experimental investigation on aerodynamic interblade Investigation of dihedral effects in compressor Navier-Stokes methods p 279 N88-17591 interactions of a vibrating cascade in transonic flow p 303 N88-17672 cascades **TURBULENT HEAT TRANSFER** p 272 A88-26388 Possibilities for on-line surge suppression by fast guide Wake interaction effects on the transition process on TRANSONIC NOZZLES vane adjustment in axial compressors turbine blades p 303 N88-17674 A research program on the aerodynamics of a highly AD-A1880201 p 322 N88-17962 Inaded turbine stage p 301 N88-17655 Design and development of an advanced F100 **TURBULENT JETS** p 303 N88-17678 compressor TRANSONIC WIND TUNNELS Turbulent hydrogen combustion in a wall jet issuing into Experimental investigation of a supercritical compresso Effect of an optimized fiber orientation on transonic a comoving supersonic stream of air p 304 N88-17680 rotor blade section flutter characteristics of a high-aspect-ratio composite p 297 A88-27166 **TURBOFAN ENGINES** A computational study of thrust augmenting ejectors [NAL-TR-930] p 308 N88 Transonic wind tunnel calibration 1986: XT-4 - Potent with potential p 287 A88-25809 p 308 N88-16709 based on a viscous-inviscid approach A dynamical mathematical model and digital simulation p 321 N88-17929 measurements on three ONERA-C5 models and three half for anti-surge control system of a turbofan engine TURBULENT WAKES p 297 A88-26638 sphere cylinder calibration bodies in the F+W transonic A computational method of exciting forces generated The convertible engine: A dual-mode propulsion test section p 273 A88-26630 by nozzle wakes on turbine blades ystem p 298 N88-16639 Impact and promise of NASA aeropropulsion [F+W-FO-1854] p 311 N88-16714 system Turbulent near wake of a symmetrical body Influence of the wall boundary layer on force measurements on half models in the transonic wind p 318 A88-28047 p 299 N88-16698 technology Wake interaction effects on the transition process on Turbine engine monitoring systems: Can they benefit turbine blades component improvement program management? [F+W-TF-1876] p 311 N88-16715 [AD-A188020] p 322 N88-17962 TRANSPORT AIRCRAFT AD-A1869921 p 299 N88-16706 TWO DIMENSIONAL FLOW TURBOFANS Freedom in European air transport - The best of both Strong coupling between inviscid fluid and boundary p 330 A88-26183 Representation of fan characteristics in a mathematical layer for airfoils with sharp leading edge. I - 2-D incompressible steady case p 271 A88-25988 Experimental study on the effect of fiber orientation on model of the bypass engine p 296 A88-25638 flutter characteristics of high-aspect-ratio transport wing **TURBOJET ENGINES** A close coupling procedure for zonal solutions of the p 308 N88-16708 [NAL-TR-936] Representation of fan characteristics in a mathematical Navier-Stokes, Euler and boundary-layer equations model of the bypass engine p 296 A88-25638 Are windshear training aid recommendations appropriate p 316 A88-26173 for other than large jet transports? Pilot procedures: Shear Theoretical analysis of rotational-speed fluctuations of A first order energy, two-dimensional airfolds p 272 Acceptance A computational method of exciting forces generated to make an turbine blades p 273 A88-26630 A first order theory for Newtonian flow p 296 A88-26168 p 285 N88-17635 two-spool turbojet engines Gear systems for advanced turboprops The coming revolution in turbine engine technology p 302 N88-17667 Technical-scientific p 299 N88-17648 Research and development. Numerical simulation of diffuser/combustor dome publications (1956-1987): Retrospective view and prospects. Jubilee edition on the occasion of the 75th interaction p 302 N88-17663 Development of vertical takeoff aircraft with turbojet p 292 N88-17822 birthday of Dipl.-Engr. Dr.-Engr. E. H. Ludwig Boelkow engines in Germany p 321 N88-17819 TURBOMACHINE BLADES [ISSN-0931-9751] ULTRASONICS TRANSPORT PROPERTIES An experimental investigation on aerodynamic interblade Durability and damage tolerance of aluminum castings Transport delay compensation for computer-generated interactions of a vibrating cascade in transonic flow [AD-A186444] p 322 N88-18013 p 272 A88-26388 UNDER SURFACE BLOWING imagery systems [NASA-TM-100084] p 292 N88-17645 The unsteady gas flow through stator and rotor of a Wind tunnel studies of circulation control elliptical turbomachine p 301 N88-17660 TRAPEZOIDAL WINGS p 280 N88-17598 TURBOMACHINERY Three-dimensional problem of the constrained torsion Analysis of a fixed-pitch X-wing rotor employing lower Implication of model reduction in the active control of of a thin-walled rod of the trapezoidal wing type surface blowing p 280 N88-17602 turbomachinery vibrations p 270 A88-25632 p 296 A88-26414 UNIVERSITIES TRENDS Stream function solution of transonic flow along an Become a creative force for future aircraft --- AIAA arbitrary twisted S1 stream surface p 273 A88-26586 Lewis materials research and technology: An overview Air-breathing Propulsion Team Design Competition Numerical modeling of multidimensional flow in seals р 330 A88-25749 p 330 N88-16699 and bearings used in rotating machinery
[NASA-TM-100779] p 319 N88-16988 UNSTEADY AERODYNAMICS TROPOSPHERE Fine-scale measurements of microwave refractivity The affection of interblade phase angle in oscillating The unsteady gas flow through stator and rotor of a profiles with helicopter and low-cost rocket probes cascade on unsteady aerodynamic force turbomachine p 301 N88-17660 p 297 A88-26588 p 317 A88-27482 TURBOPROP AIRCRAFT **TURBINE BLADES** Identification techniques in flight mechanics An experimental study of the effect of the lower and Are windshear training aid recommendations appropriate p 306 A88-27765 upper overlap on the efficiency of radial inward-flow for other than large jet transports? Pilot procedures: Shear Investigation of dynamic stall using LDV (Laser Doppler microturbines with an enclosed rotor models n 285 N88-17635 Velocimetry): Mean flow studies

Sound transmission through the walls of light aircraft:

p 330 N88-18376

aeropropulsion

p 299 N88-16698

An investigation of structure-borne noise in a Handley Page

Impact and promise of NASA

137 Jetstream 3 aircraft

[NASA-CR-182509]

TURBOPROP ENGINES

technology

AD-A1876291

[AGARD-R-735]

UNSTEADY FLOW

and unsteady conditions

by nozzle wakes on turbine blades

p 315 A88-25637

p 271 A88-26163

p 318 N88-16701

Excess streamwise vorticity and its role in secondary

A computational method of exciting forces generated by nozzle wakes on turbine blades p 273 A88-26630

materials

Creep and fatigue research efforts on advanced

p 282 N88-17611

p 309 N88-17682

p 273 A88-26630

Effectiveness of various control surfaces in quasi-steady

A computational method of exciting forces generated

Wall jet analysis for circulation control aerodynamics. An explicit Runge-Kutta method for unsteady VIBRATION DAMPING Effect of the blade number ratio of the rotor and the Part 2: Zonal modeling concepts for wall jet/potential flow rotor/stator interaction [AIAA PAPER 88-0049] p 275 A88-27715 nozzle ring on the vibration activity of axial-flow and coupling WARNING SYSTEMS Computational unsteady aerodynamics for aeroelastic p 314 A88-25614 radial-flow turbines Airborne Wind Shear Detection and Warning Systems: analvsis An experimental investigation on aerodynamic interblade [NASA-TM-100523] p 276 N88-16668 First Combined Manufacturers' and Technologists' interactions of a vibrating cascade in transonic flow Mach number effects on transonic aeroelastic forces p 272 A88-26388 Conference [NASA-CP-10006] p 283 N88-17616 and flutter characteristics Implication of model reduction in the active control of [NASA-TM-100547] Response of wind shear warning systems to turbulence p 277 N88-16675 p 296 A88-26414 turbomachinery vibrations p 283 N88-17618 The unsteady gas flow through stator and rotor of a with implication of nuisance alerts Investigation on steady-state response of a rotor-support p 301 N88-17660 turbomachine Windshear warning aerospatiale approach system with two squeeze-film dampers **UPPER SURFACE BLOWING** p 284 N88-17620 p 316 A88-26632 Infrared low-level wind shear work On the effect of leading edge blowing on circulation On the design of robust compensators for airplane modal p 284 N88-17628 control airfoil aerodynamics p 280 N88-17595 control p 304 A88-27322 Crew interface with windshear systems evaluation of potential flight an Active control of helicopter vibrations by self-adaptive upper-surface-blowing/circulation-control-wing concept p 284 N88-17631 p 305 A88-27759 multicyclic control p 291 N88-17609 Status of FAA terminal Doppler weather radar Rotorcraft flight research with emphasis on rotor p 321 N88-17632 **USER MANUALS (COMPUTER PROGRAMS)** programs p 289 N88-16656 systems General Rotorcraft Aeromechanical Stability Program The advanced low-level windshear alert system Rotorcraft technology at Boeing Vertol: Recent operational demonstration results, Summer, 1987, Denver (GRASP) version 1.03: User's manual p 289 N88-16658 advances p 328 N88-17313 Stapleton International Airport p 284 N88-17633 [NASA-TM-100043] Recent Sikorsky R and D progress Information transfer in the National Airspace System p 289 N88-16659 p 330 N88-17634 Using frequency-domain methods to identify XV-15 Airworthiness considerations p 285 N88-17636 aeroelastic modes WATER INJECTION [NASA-TM-100033] p 292 N88-17646 V/STOL AIRCRAFT Transient engine performance with water ingestion VIBRATION SIMULATORS A jet in a crossflow [NASA-CR-182469] p 297 A88-27295 Ultra-low frequency vibration data acquisition concerns p 277 N88-16674 **WEAPON SYSTEMS** in operating flight simulators A flight-test methodology for identification of an Integrated diagnostics p 296 N88-16655 A piloted simulation investigating handling qualities and p 296 N88-16655 IDE88-004795] p 311 N88-17687 aerodynamic model for a V/STOL aircraft VIBRATION TESTS p 290 N88-16694 [NASA-TM-100067] performance requirements of a single-pilot helicopter in Vibration monitoring - A key contribution to flight Application of empirical and linear methods to VSTOL air combat employing a helmet-driven turreted gun p 294 A88-25367 safetv powered-lift aerodynamics VISCOUS FLOW [AD-A186878] p 290 N88-16689 [NASA-TM-100048] p 278 N88-17581 Neural network based architectures for aerospace Distributed gas injection into hypersonic flow Recommendations for ground effects research for p 327 N88-17218 Technical-scientific applications p 271 A88-26120 Research and development. Technical-sci ublications (1956-1987): Retrospective view V/STOL and STOL aircraft and associated equipment for A close coupling procedure for zonal solutions of the Navier-Stokes, Euler and boundary-layer equations large scale testing publications p 279 N88-17585 prospects. Jubilee edition on the occasion of the 75th birthday of Dipl.-Engr. Dr.-Engr. E. H. Ludwig Boelkow p 316 A88-26173 A computational study of thrust augmenting ejectors VISUAL SIGNALS based on a viscous-inviscid approach ISSN-0931-9751] p 321 N88-17819 Helicopter external vision requirements and visual p 321 N88-17929 WEAR display characteristics: A report/bibliography, revision A [AD-A187075] p 291 N88-17641 VANES Technology developments for a compound cycle [AD-A187075] Experimental evaluation of a translating nozzle sidewall p 298 N88-16637 engine **VOLTERRA EQUATIONS** p 301 N88-17656 adial turbine WEATHER FORECASTING Accurate modeling of nonlinear systems using Volterra **VARIABLE PITCH PROPELLERS** Status of FAA terminal Doppler weather radar series submodels --- applied to stall/post-stall aircraft flight Analysis of possible transmission arrangements p 321 N88-17632 programs p 304 A88-27352 applicable for driving single or twin counterrotating fans and wing rock WEIGHT INDICATORS **VORTEX BREAKDOWN** on propfan engines
VARIABLE SWEEP WINGS p 303 N88-17670 Strain gage balance for half models 302-6. Calibration report --- wind tunnels Control of vortical separation on conical bodies p 278 N88-17580 Comparison of the aerodynamic characteristics of [F+W-FO-1803] p 319 N88-17001 Burst vortex/boundary layer interaction p 270 A88-25617 annular and elliptic wings WEIGHT REDUCTION p 279 N88-17583 [NASA-CR-182510] p 292 N88-17823 Variable sweep wings Rotorcraft weight trends in light of structural material VORTEX GENERATORS VARIATIONS characteristics Vortex/separated boundary-layer interactions The advantage of variable geometry for turbine engines p 291 N88-17642 [AD-A186576] transonic Mach numbers p 275 A88-28033 p 300 N88-17653 at low power Modern materials for light constructions --- aircraft **VECTOR SPACES** Burst vortex/boundary layer interaction [MBB-Z-136/86] p 293 N88-17839 p 279 N88-17583 An application of eigenspace methods to symmetric WIND (METEOROLOGY) **VORTEX SHEDDING** flutter suppression Airborne Doppler radar technology for wind shear Turbulent near wake of a symmetrical body [NASA-CR-181618] p 309 N88-17684 detection p 284 N88-17622 p 318 A88-28047 **VELOCITY DISTRIBUTION** Radar backscatter from airports and surrounding VORTICES Boundary-layer and wake measurements on a swept p 321 N88-17623 Aerodynamic characteristics of the Weis-Fogh areas circulation-control wing p 280 N88-17597 mechanism. II - Numerical computations by the discrete WIND SHEAR **VELOCITY MEASUREMENT** Airborne Wind Shear Detection and Warning Systems: p 272 A88-26359 vortex method Flow field measurements using hotwire anemometry First Combined Manufacturers' and Technologists' A jet in a crossflow [AD-A187029] p 318 N88-16951 Conference [NASA-CR-182469] p 277 N88-16674 **VERTICAL AIR CURRENTS** [NASA-CP-10006] Investigation of the influence of wind shear on the p 283 N88-17616 NASA wind shear model: Summary of model analyses aerodynamic characteristics of aircraft using NASA wind shear model: Summary of model analyses p 323 N88-17617 p 284 N88-17619 p 323 N88-17617 vortex-lattice method Windshear detection effect of static air temperature Secondary flow measurements with L2F-technique in Response of wind shear warning systems to turbulence bias p 284 N88-17621 p 303 N88-17676 p 283 N88-17618 centrifugal compressors Are windshear training aid recommendations appropriate with implication of nuisance alerts VORTICIŤY for other than large jet transports? Pilot procedures: Shear Investigation of the influence of wind shear on the Excess streamwise vorticity and its role in secondary p 285 N88-17635 models aerodynamic characteristics of aircraft using p 271 A88-26163 p 284 N88-17619 flow VERTICAL MOTION SIMULATORS vortex-lattice method Entropy and vorticity corrections for transonic flows Status of NASA/Army rotorcraft research and Windshear warning aerospatiale approach p 273 A88-26435 development piloted flight simulation p 284 N88-17620 Comment on 'Computation of the potential flow over p 310 N88-16651 Windshear detection effect of static air temperature airfoils with cusped or thin trailing edges' VERTICAL TAKEOFF AIRCRAFT bias p 284 N88-17621 p 276 A88-28050 European/U.S. cooperative flight testing - Some food Airborne Doppler radar technology for wind shear etection p 284 N88-17622 for thought p 269 A88-26175 detection Effect of high temperature spikes on W Radar backscatter from airports and surrounding fibre-reinforced epoxy laminate p 312 A88-28299 p 321 N88-17623 areas Development of a plenum chamber burner system for WAKES an advanced VTOL engine p 302 N88-17664 Infrared low-level wind shear work Boundary-layer and wake measurements on a swept, p 284 N88-17628 Development of vertical takeoff aircraft with turbojet p 280 N88-17597 circulation-control wing engines in Germany p 292 N88-17822 Forward looking wind shear detection WALL FLOW p 284 N88-17629 **VERY LARGE SCALE INTEGRATION** Sidewall effect for transonic airfoil testing Flight simulators for under \$100,000 p 275 A88-26796 Simulator investigation of wind shear recovery p 284 N88-17630 p 309 A88-25010 techniques influence of the wall boundary layer on force VIBRATION Crew interface with windshear systems measurements on half models in the transonic wind p 284 N88-17631 A summary of recent NASA/Army contributions to tunnel rotorcraft vibrations and structural dynamics technology [F+W-TF-1876] Status of FAA terminal Doppler weather radar p 311 N88-16715 p 307 N88-16628 p 321 N88-17632 WALL JETS programs

Turbulent hydrogen combustion in a wall jet issuing into

p 297 A88-27166

a comoving supersonic stream of air

The advanced low-level windshear alert system operational demonstration results, Summer, 1987, Denver

Stapleton International Airport

p 284 N88-17633

large-scale propfan

[NASA-TM-100272]

Vibration and flutter characteristics of the SR7L

p 322 N88-18036

SUBJECT INDEX YAW

Are windshear training aid recommendations appropriate Inviscid theory of two-dimensional aerofoil/spoiler configurations at low speed. V - Steady and oscillatory for other than large jet transports? Pilot procedures: Shear p 285 N88-17635 aerofoil-spoiler-flap characteristics p 272 A88-26424 WING LOADING p 285 N88-17636 Airworthiness considerations Stability of a wing box with elastic ribs WIND TUNNEL APPARATUS p 315 A88-25623 Development of an algorithm for evaluating calibration Aerodynamic characteristics of Weis-Fogh data for six-component strain-gage balances the mechanism. II - Numerical computations by the discrete p 310 A88-26172 vortex method p 272 A88-26359 Effect of a model support strut on measurement of Reduction of tilt rotor download using circulation aerodynamic longitudinal and lateral coefficients control p 281 N88-17605 [PB87-170288] p 277 N88-16670 WING OSCILLATIONS Strain gage balance for half models 302-6. Calibration Accurate modeling of nonlinear systems using Volterra report --- wind tunnels [F+W-FO-1803] series submodels — applied to stall/post-stall aircraft flight p 319 N88-17001 p 304 A88-27352 WIND TUNNEL CALIBRATION On robust control of wing rock using nonlinear control Development of an algorithm for evaluating calibration p 326 A88-27419 data for six-component strain-gage balances WING PANELS p 310 A88-26172 Factors affecting the sticking of insects on modified Transonic wind tunnel calibration 1986: Force aircraft wings measurements on three ONERA-C5 models and three half [NASA-CR-182451] p 313 N88-16878 sphere cylinder calibration bodies in the F+W transonic Accuracies of southwell and force/stiffness methods in the prediction of buckling strength of hypersonic aircraft [F+W-FO-1854] p 311 N88-16714 wing tubular panels Strain gage balance for half models 302-6. Calibration report --- wind tunnels p 320 N88-17090 INASA-TM-882951 WING PLANFORMS [F+W-FO-1803] p 319 N88-17001 Quasi-conical aerodynamic loadings due to kinked p 271 A88-26358 WIND TUNNEL MODELS planform wings WING PROFILES Effect of a model support strut on measurement of Comparison of the aerodynamic characteristics of aerodynamic longitudinal and lateral coefficients annular and elliptic wings p 270 A88-25617 [PB87-170288] p 277 N88-16670 Ray analysis of a class of hybrid cylindrical aircraft wings Testing of a schematic transport plane model in several --- for EM coupling of airborne antenna pairs European windtunnels p 285 A88-25755 [PB87-170270] p 277 N88-16671 Wind tunnel modeling techniques Computation of three-dimensional transonic flows using two stream functions p 273 A88-26434 [KU-SFB-210/E/33] p 310 N88-16711 Influence of the wall boundary layer on force WING TIPS measurements on half models in the transonic wind Wing tip sails - Progress to date and future p 272 A88-26421 developments tunnel [F+W-TF-1876] The tip flow of a part span slotted flap p 311 N88-16715 p 272 A88-26422 Strain gage balance for half models 302-6. Calibration WINGS report --- wind tunnels [F+W-FO-1803] p 319 N88-17001 Effect of an optimized fiber orientation on transonic WIND TUNNEL TESTS flutter characteristics of a high-aspect-ratio composite Comparison of the aerodynamic characteristics of p 308 N88-16709 annular and elliptic wings p 270 A88-25617 Characteristics of flow around a hemisphere mounted Solution of the three-dimensional Navier-Stokes p 315 A88-25640 equations for transonic flow using a multigrid method p 278 N88-17579 An experimental investigation on aerodynamic interblade transonic-small-disturbance interactions of a vibrating cascade in transonic flow wing desian p 272 A88-26388 methodology [NASA-TP-2806] p 282 N88-17614 Wing tip sails - Progress to date and future The intelligent wing. Aerodynamic development direction developments p 272 A88-26421 Flight testing keeps pace for future passenger aircraft [MBB-UT-006/87] p 287 A88-26644 Sidewall effect for transonic airfoil testing p 293 N88-17848 WORKLOADS (PSYCHOPHYSIOLOGY) p 275 A88-26796 Identification and proposed control of helicopter Flat spin of axisymmetric bodies in the critical Reynolds p 306 A88-27889 number region transmission noise at the source p 308 N88-16647 Testing of a schematic transport plane model in several Crew procedures for microwave landing system European windtunnels [NASA-CR-178359] [PB87-170270] p 277 N88-16671 p 286 N88-16688 Description of tests run in the T2 cryogenic wind tunnel [PB87-170296] p 277 N88-16672 Wind tunnel modeling techniques X RAY SPECTROSCOPY [KU-SFB-210/E/33] p 310 N88-16711 Durability and damage tolerance of aluminum castings The wind tunnel as a yardstick for aircraft design p 322 N88-18013 AD-A1864441 p 310 N83-16712 INI R-MP-85032-U1 X WING ROTORS Flow field measurements using hotwire anemometry Proceedings of the Circulation-Control Workshop, [AD-A187029] p 318 N88-16951 1986 Prediction of aeroelastic response of a model X-wing [NASA-CP-2432] p 279 N88-17586 p 281 N88-17603 rotor Analysis of a fixed-pitch X-wing rotor employing lower Analysis of highspeed propellers aerodynamics p 280 N88-17602 surface blowing p 302 N88-17669 Prediction of aeroelastic response of a model X-wing Experimental investigation of a supercritical compressor p 281 N88-17603 rotor blade section p 304 N88-17680 X-wing potential for Navy applications Effectiveness of various control surfaces in quasi-steady p 281 N88-17604 and unsteady conditions X-29 AIRCRAFT [AGARD-R-735] p 309 N88-17682 X-29A forward-swept-wing flight research program WIND TUNNEL WALLS status influence of the wall boundary layer on force [NASA-TM-100413] p 292 N88-17644 measurements on half models in the transonic wind XV-15 AIRCRAFT tunnel Using frequency-domain methods to identify XV-15 [F+W-TF-1876] p 311 N88-16715 aeroelastic modes WIND TUNNELS [NASA-TM-100033] p 292 N88-17646 NASA-Langley Research Center shapes tomorrow through innovative research p 310 A88-25750 WIND VELOCITY NASA wind shear model: Summary of model analyses p 323 N88-17617 WINDOWS (APERTURES) An optimized yaw damper for enhanced passenger ride Performance of optical sensors in hypersonic flight p 304 A88-27321 p 295 A88-27478 WING FLAPS The tip flow of a part span slotted flap

p 272 A88-26422

Typical Personal Author Index Listing

Listings in this index are arranged alphabetically by personal author. The title of the document provides the user with a brief description of the subject matter. The report number helps to indicate the type of document listed (e.g., NASA report, translation, NASA contractor report). The page and accession numbers are located beneath and to the right of the title. Under any one author's name the accession numbers are arranged in sequence with the AIAA accession numbers appearing first.

ABRAHAMSON, A. LOUIS

Measured and calculated acoustic attenuation rates of tuned resonator arrays for two surface impedance distribution models with flow [NASA-TP-2766] p 329 N88-17440

ACHACHE, MARC

Active control of helicopter vibrations by self-adaptive multicyclic control p 305 A88-27759

ACHARYA, NARAYAN A.

Real-time artificial intelligence issues in the development of the adaptive tactical navigator p 327 N88-17260

ACREE, C. W., JR.

Using frequency-domain methods to identify XV-15 aeroelastic modes

[NASA-TM-100033] p 292 N88-17646

ADAMS, R. M.

Operation of gas turbine engines in dust-laden environments p 300 N88-17654

ADAMSON, PAT

Infrared low-level wind shear work

p 284 N88-17628

ADDY, A. L.

Laser Doppler velocity bias in separated turbulent p 271 A88-25835

ADGAMOV, RAVIL' ISKANDEROVICH

Data processing and analysis during the automated testing of gas turbine engines p 298 A88-27730

AIKEN, FDWIN W.

Helicopter mathematical models and control law development for handling qualities research

p 307 N88-16642

design criteria p 308 N88-16645 Rotorcraft handling-qualities development

AINSWORTH, R. W.

Wake interaction effects on the transition process on

p 322 N88-17962 [AD-A188020] AKERS, A.

Control of an axial piston pump using a single-stage electrohydraulic servovalve p 326 A88-27417

AKINFIEV. V. K.

Synthesis of the flexible structures of complex p 324 A88-27148 systems

ALBRECHT, G.

An integrated aero/mechanical performance approach to high technology turbine design p 301 N88-17657 ALEXANDER, DENNIS R.

Comparison of UNL laser imaging and sizing system and a phase/Doppler system for analyzing sprays from a NASA nozzte

[NASA-CR-1824371 ALLISON, B. H.

p 318 N88-16956

Experimental implementation and evaluation of the RMI failure detection algorithm p 325 A88-27410

ALPER, JAMES M.

graphite/epox Structural properties of braided composites p 312 A88-25266

ANDERS, G.

Effectiveness of various control surfaces in quasi-steady and unsteady conditions

(AGARD-R-735) p 309 N88-17682

ANDERSON J. G.

Midlatitude CIO below 22 km altitude - Measurements with a new aircraft-borne instrument

p 323 A88-27456

ANDERSSON, BOERJE

Self-adaptive analysis of three-dimensional structures using a p-version of finite element method (FFA-TN-1987-31) p 320 N88-17084

ANDO, SHIGENORI

Quasi-conical aerodynamic loadings due to kinked p 271 A88-26358 planform wings

ANDREWS, ALISON E.

Theoretical analysis of aircraft afterbody flow p 275 A88-27884

ANGELINI, J. J.

Strong coupling between inviscid fluid and boundary layer for airfoils with sharp leading edge. p 271 A88-25988 incompressible steady case ANSARI, F. H.

An optimized yaw damper for enhanced passenger ride p 304 A88-27321

ARDEMA, MARK D.

Interior transition layers in flight-path optimization p 288 A88-28252

AUGUST, RICHARD

Vibration and flutter characteristics of the SR7L large-scale propfan [NASA-TM-100272] p 322 N88-18036

AUSTIN, EDWARD E.

Comprehensive rotorcraft analysis methods

p 276 N88-16630

В

BABIN, STEVEN M.

Fine-scale measurements of microwave refractivity profiles with helicopter and low-cost rocket probes p 317 A88-27482

Inflight thermal data recording from IAF aircraft p 295 A88-27639

BACH, RALPH E., JR.

A flight-test methodology for identification of an aerodynamic model for a V/STOL aircraft p 290 N88-16694

NASA-TM-100067] BAEV. V. K. Some methodological aspects of the study of

gasdynamic models with heat and mass transfer in an p 310 A88-27158 impulse wind tunnel BALLIN, MARK G.

Rotorcraft flight-propulsion control integration p 307 N88-16643

BANDOPADHYAY, P.

Inflight thermal data recording from IAF aircraft

p 295 A88-27639 BANERJEE, P. K.

Inflight thermal data recording from IAF aircraft p 295 A88-27639 BARREAU, R.

Effectiveness of various control surfaces in quasi-steady and unsteady conditions

[AGARD-R-735] p 309 N88-17682 BARRETT, R. V.

The tip flow of a part span slotted flap

BARTH, TIMOTHY J.

p 272 A88-26422

Navier-Stokes computations for circulation control p 279 N88-17592

BARTLETT, FELTON D., JR.

A summary of recent NASA/Army contributions to rotorcraft vibrations and structural dynamics technology p 307 N88-16628

BASLER, DIETER

investigation shock-induced disturbances on transonic airfoils

[DFVLR-FB-87-28]

p 276 N88-16666

BÀTHIAS, C. Fatigue crack initiation and propagation properties of

Al-Li-Cu alloys in air and in aqueous corrosive solutions p 312 A88-25178

BATINA, JOHN T.

Mach number effects on transonic aeroelastic forces and flutter characteristics [NASA-TM-100547] p 277 N88-16675

BATTEZZATO, L.

Analysis of possible transmission arrangements applicable for driving single or twin counterrotating fans p 303 N88-17670

on proptan engines BAUMANN, WILLIAM T.

Accurate modeling of nonlinear systems using Volterra series submodels p 304 A88-27352

BELMONT, JEAN-PIERRE

Problems related to the application of flight control to the field of combat aircraft guidance

p 306 A88-27769

BENDER K.

Helicopters as test carriers for avionics systems (HETAS) p 290 N88-16692

[DFVLR-IB-112-85/18]

BERNARDO, J. M. Low frequency eddy current detection and evaluation of corrosion in aircraft skins

p 313 N88-16859 [ETN-88-91664]

BERNHARD, R. J.

Sound transmission through the walls of light aircraft: An investigation of structure-borne noise in a Handley Page 137 Jetstream 3 aircraft p 330 N88-18376 INASA-CR-1825091

BERTRAND, P.

Redundant control systems - Flexibility and optimality p 327 A88-27766

BHAT, R. B.

Dynamic response of a geared train of rotors subjected p 320 N88-17073 to random support excitations

BHATTACHARYA, A.

Radar returns from ground clutter in vicinity of airports p 321 N88-17624

BIGGERS, JAMES C.

X-wing potential for Navy applications

p 281 N88-17604

p 325 A88-27411

BILLDAL, JAN TORE

Radial compressor design using an Euler solver p 303 N88-17675

BLACKMAN, LEE L. The environmental consequences of municipal airports

p 330 A88-26547 A subject of federal mandate? BLACKMAN, SAMUEL Expert system allocation for the electronically scanned

antenna radar BLAETTLER, HEINZ

Transonic wind tunnel calibration 1986: Force measurements on three ONERA-C5 models and three half sphere cylinder calibration bodies in the F+W transonic

p 311 N88-16714 [F+W-FO-1854] Strain gage balance for half models 302-6. Calibration

report [F+W-FO-1803] p 319 N88-17001

BLANCHARD, A.

Description of tests run in the T2 cryogenic wind tunnel [PB87-170296] p 277 N88-16672

BURNSIDE, W. D. CHONG. CHEE-YEE **BLATTER, PHILIPPE** Influence of the wall boundary layer on force A study of the TCAS 2 collision avoidance system Tracking aircraft by acoustic sensors - Multiple measurements on half models in the transonic wind mounted on a Boeing 737 aircraft hypothesis approach applied to possibly unresolved [NASA-CR-182457] p 286 N88-16687 measurements p 285 A88-27363 tunnel [F+W-TF-1876] BUTOV. V. G. Tracking multiple air targets with distributed acoustic BLOECKER, U. Calculation of nonpotential flows of an ideal gas in p 285 A88-27413 sensors Possibilities for on-line surge suppression by fast guide axisymmetric nozzles by the approximate factorization CHOPLIN, JEAN p 270 A88-25561 vane adjustment in axial compressors Problems related to the application of flight control to p 303 N88-17674 BYKOV, VALENTIN NIKOLAEVICH the field of combat aircraft guidance BOBULA, GEORGE A. Adaptive prediction flight control systems p 306 A88-27769 p 305 A88-27727 Technology developments for a compound cycle **CHOPRA, INDERJIT** p 298 N88-16637 Flap-lag-torsion aeroelastic stability of a circulation BOITNOTT, RICHARD L. p 280 N88-17600 control rotor in forward flight Helicopter crashworthiness research program CHOY, FRED K. p 283 N88-16635 Dynamic analysis of multimesh-gear helicopter CAMPBELL, RICHARD L. BOKHARI, S. A. Α transonic-small-disturbance wing design Ray analysis of a class of hybrid cylindrical aircraft p 319 N88-17045 methodology [NASA-TP-2789] p 285 A88-25755 wings p 282 N88-17614 [NASA-TP-2806] CHUCHEROV, A. I. BONAFE, J. L Effect of the blade number ratio of the rotor and the CANFIELD R. A. Windshear warning aerospatiale approach Optimum design of structures with multiple constraints nozzle ring on the vibration activity of axial-flow and p 284 N88-17620 p 317 A88-28042 radial-flow turbines p 314 A88-25614 BOOZE, CHARLES F., JR. CARADONNA, F. X. CLAUDE, DANIEL Sudden in-flight incapacitation in general aviation The development of CFD methods for rotor Nonlinear control for level flight of a helicopter [AD-A187044] p 283 N88-16682 p 288 N88-16627 p 306 A88-27763 BOROVNIK, VLADLEN ONISIMOVICH CARBAUGH, DAVE CLINE, JOHN H. Data processing and analysis during the automated Crew interface with windshear systems A summary of recent NASA/Army contributions to testing of gas turbine engines p 298 A88-27730 p 284 N88-17631 rotorcraft vibrations and structural dynamics technology BOROVŠKII. B. I. CARDEN, HUEY D p 307 N88-16628 Effect of the blade number ratio of the rotor and the Helicopter crashworthiness research program **CLOSTERMANN, JACQUES** nozzle ring on the vibration activity of axial-flow and p 283 N88-16635 p 286 A88-25792 radial-flow turbines p 314 A88-25614 Fokker 50 marks a fresh start CARLSON, WILLIAM C. A. BOURLES, H. CLOUGH, JEAN DRUMMOND Upgrading of NASA-Ames high-energy hypersonic Alpha-degree stability and robustness - Application to NASA-Langley Research Center shapes tomorrow facilities: A Study the development of a regulator p 326 A88-27755 p 310 A88-25750 through innovative research p 311 N88-16717 [NASA-CR-182475] BOUSMAN, WILLIAM G. COE. HAROLD H. CARR, JOHN E. A review of research in rotor loads Results of NASA/Army transmission research An aerodynamic comparison of blown and mechanical p 288 N88-16629 p 299 N88-16640 p 281 N88-17606 high lift airfoils BOUSQUET, J. M. COLEMAN, J. D. CARY, CHARLES M. Analysis of highspeed propellers aerodynamics The tip flow of a part span slotted flap An experimental investigation of the chopping of p 302 N88-17669 p 272 A88-26422 helicopter main rotor tip vortices by the tail rotor. Part 2: BOWDITCH, DAVID N. COLGREN, RICHARD DEAN High speed photographic study Impact and promise of NASA aeropropulsion Integrated controls design and simulation [NASA-CR-177457] p 278 N88-16678 technology p 299 N88-16698 p 295 A88-27329 CASSIDY, MARK BOWLES, ROLAND L. COLLINGS, T. A. Analysis of the reliability of Royal Australian Air force Airborne Wind Shear Detection and Warning Systems: Effect of high temperature spikes on a carbon non-destructive inspection First Combined Manufacturers' and Technologists' fibre-reinforced epoxy laminate p 312 A88-28299 (AD-A186979) p 320 N88-17049 Conference CONDON, GREGORY W. CASTOR, J. G. [NASA-CP-10006] p 283 N88-17616 Status of NASA/Army rotorcraft research and Technology developments for a compound cycle Response of wind shear warning systems to turbulence development piloted flight simulation p 298 N88-16637 p 283 N88-17618 with implication of nuisance alerts p 310 N88-16651 CHAKRAVARTY, A. BRADSHAW, P. COOPER. D. E. An optimized yaw damper for enhanced passenger ride Burst vortex/boundary layer interaction The impact of circulation control on rotary aircraft p 304 A88-27321 comfort INASA-CR-1825101 p 279 N88-17583 p 308 N88-17601 controls systems CHAKRAVARTY, ABHIJIT BRAHNEY, JAMES H. COOPER, STEVE R. On the design of robust compensators for airplane modal p 294 Simplifying flight test A88-25366 On the design of robust compensators for airplane modal p 304 A88-27322 Measuring aircraft fluid quantities p 295 A88-26648 p 304 A88-27322 control CHANDRASEKHAR, J. Doubling thrust-to-weight ratio p 297 A88-26649 CORTES, V. An MRAC system for aircraft longitudinal control **BRANDT, JUERGEN** p 305 A88-27370 Low frequency eddy current detection and evaluation Modern materials for light constructions of corrosion in aircraft skins CHANG. I. [MBB-Z-136/86] p 293 N88-17839 p 313 N88-16859 (ETN-88-916641 A decade of aeroacoustic research at NASA Ames BRAUN, M. J. COULON, G. Research Center p 328 N88-16648 Numerical modeling of multidimensional flow in seals Treatment methods for the alleviation of gusts on CHANG, KUO-CHU and bearings used in rotating machinery p 306 A88-27770 aircraft Tracking aircraft by acoustic sensors - Multiple p 319 N88-16988 [NASA-TM-100779] COY, JOHN J. hypothesis approach applied to possibly unresolved BRAY, R. S. Results of NASA/Army transmission research measurements p 285 A88-27363 Are windshear training aid recommendations appropriate p 299 N88-16640 Tracking multiple air targets with distributed acoustic for other than large jet transports? Pilot procedures: Shear Identification and proposed control of helicopter p 285 A88-27413 p 285 N88-17635 p 308 N88-16647 transmission noise at the source CHAUVIN. J. BREUGELMANS, F. A. E. CRAWFORD, JAMES B. Method for predicting performance limits of centrifugal Investigation of dihedral effects in compressor Optimizing HF antenna systems on the Dolphin and Sea p 303 N88-17677 compressors p 303 N88-17672 Hawk helicopters CHEN, BINGLU BROCHET, J. [AD-A186552] p 318 N88-16901 Experimental investigation of the influence of diffuser Computation of secondary flows in an axial multistage shell shapes on performance of dump diffusers in combustor p 297 A88-26628 p 304 N88-17681 A decade of aeroacoustic research at NASA Ames BROICHHAUSEN, K. D. p 328 N88-16648 CHEN, ROBERT T. N. Research Center Application of highly loaded single-stage mixed-flow Helicopter mathematical models and control law pressors in small jet-engines p 300 N88-17652 development for handling qualities research D BRUMBACK, BRIAN D. p 307 N88-16642 A fault-tolerant multisensor navigation system design Rotorcraft handling-qualities design p 295 A88-26670 DADONE, LEO p 308 N88-16645 development BRUN, G. Rotorcraft technology at Boeing Vertol: Recent CHEN. ZIQI Numerical simulation of diffuser/combustor dome p 289 N88-16658 advances Buckling of delaminated, long, cylindrical panels unde interaction p 302 N88-17663 DAINEKO, V. I. p 317 A88-26890 pressure BRUNE, WM. H. A study of the autorotation regimes of gas turbine CHEN. ZUOYI Midlatitude CIO below 22 km altitude - Measurements engines p 296 A88-25628 The affection of interblade phase angle in oscillating with a new aircraft-borne instrument DANG VAN MIEN, H. cascade on unsteady aerodynamic force p 323 A88-27456 Nonlinear identification technique for helicopter flight p 297 A88-26588 BRYCE, J. D. p 306 A88-27764 mechanics Design and test of a high blade speed, high work capacity CHIMA, RODRICK V. DANNEBERG, E. p 301 N88-17658 An explicit Runge-Kutta method for unsteady transonic turbine Helicopters as test carriers for avionics systems otor/stator interaction BRYSON, ARTHUR E., JR. (HETAS) p 275 A88-27715 Optimal landing of a helicopter in autorotation [AIAA PAPER 88-00491 [DFVLR-IB-112-85/18] p 290 N88-16692 p 288 A88-28251

CHITSAZ-Z, M. R.

aircraft wings

[NASA-CR-182451]

Factors affecting the sticking of insects on modified

p 313 N88-16878

DÀSH, SANFORD M.

Wall jet analysis for circulation control aerodynamics.

p 279 N88-17593

Part 2: Zonal modeling concepts for wall jet/potential flow

Aircraft

BUGAJSKI, DANIEL J.

Flight control for the F-8 Oblique Wing Research

p 305 A88-27365

PERSONAL AUTHOR INDEX E DEBLON, F. FISHBEIN, B. D. Nonlinear identification technique for helicopter flight Representation of fan characteristics in a mathematical p 306 A88-27764 p 296 A88-25638 mechanics ECKERLE, W. A. model of the bypass engine DECOTIIS, JAMES FISHER, ALAN D. Soot loading in a generic gas turbine combustor Modern control methods applied to a line-of-sight Supersonic and subsonic aircraft noise effects on p 297 A88-27296 animals: A literature survey stabilization and tracking system p 295 A88-27399 DEHOFF, RONALD L [AD-A186922] n 329 N88-18373 Factors affecting the sticking of insects on modified Knowledge based jet engine diagnostics FOERSTER, K. M. aircraft wings p 299 N88-17210 The unsteady gas flow through stator and rotor of a [NASA-CR-182451] p 313 N88-16878 DEIWERT, GEORGE S. p 301 N88-17660 turbornachine EJIRI. H. Theoretical analysis of aircraft afterbody flow FORSEY, C. R. Effect of an optimized fiber orientation on transonic p 275 A88-27884 A block structured mesh generation technique for flutter characteristics of a high-aspect-ratio composite DEMEIS, RICHARD p 274 A88-26747 aerodynamic geometries wina FOSSARD, A. J. Control muscle for agile aircraft p 287 A88-26647 [NAL-TR-930] p 308 N88-16709 DEMENT DONALD K Applications of singular perturbation techniques to EJIRI, HIROSHÍ aircraft trajectory optimization AvSat - A new global satellite system for aircraft p 305 A88-27754 Experimental study on the effect of fiber orientation on communications FRANKE, M. E. flutter characteristics of high-aspect-ratio transport wing p 286 A88-27587 [AIAA PAPER 88-0846] Wind tunnel studies of circulation control elliptical p 308 N88-16708 (NAL-TR-936) DÈRVIEUX. A. p 280 N88-17598 airfoils ELIASSON, PETER FREEMAN, ROGER P. Application of a FEM moving node adaptive method to Navier-Stokes solutions for laminar incompressible flow p 275 A88-26753 accurate shock capturing The environmental consequences of municipal airports over a NACA 0012 airfoil and a backward facing step DESAULTY, M. A subject of federal mandate? p 330 A88-26547 [FFA-TN-1987-50] p.319 N88-16966 Numerical simulation of diffuser/combustor dome FREITAS, A. ELSAESSER, TH. p 302 N88-17663 Applications of singular perturbation techniques to Wind tunnel modeling techniques DESTUYNER, R. aircraft trajectory optimization p 305 A88-27754 TKU-SFB-210/E/331 p 310 N88-16711 Effectiveness of various control surfaces in quasi-steady FRIEDRICH, OSKAR ELSENAAR, A. and unsteady conditions Purposes and tasks of high-performance aircraft The wind tunnel as a yardstick for aircraft design [AGARD-R-735] p 309 N88-17682 construction [NLR-MP-85032-U] p 310 N88-16712 DICKINSON, S. C. [MBB/LK-S/PUB/296] n 293 N88-17842 ENDOH, MASANORI Time dependent flow visualization in the separated FU, CAIGAO Turbine flow meter with optical fiber pick-up region of an appendage-flat plate junction Investigation on steady-state response of a rotor-support p 319 N88-17009 INAL-TR-9231 p 271 A88-25842 system with two squeeze-film dampers ENENKEL, BERNHARD p 316 A88-26632 Testing of a tail rotor system in a fiber composite type Helicopters as test carriers for avionics systems of construction [MBB-UD-472/86] Aircraft guidance for formation flying based on optimal (HETAS) n 294 N88-17854 DFVLR-IB-112-85/18] p 290 N88-16692 control theory p 304 A88-27320 ENGLAR, ROBERT J. DIKSHIT, M. B. FUCHS, R. Development of circulation control technology for Inflight thermal data recording from IAF aircraft Experimental investigation of a supercritical compressor powered-lift STOL aircraft p 291 N88-17608 p 295 A88-27639 rotor blade section p 304 N88-17680 ENNS, DALE F. DIXON, S. C. Flight control for the F-8 Oblique Wing Research Loads and aeroelasticity division research and G Aircraft p 305 A88-27365 technology accomplishments for FY 1987 and plans for EPPEL, JOSEPH C. potential fliaht evaluation p 278 N88-16680 GALLOWAY, THOMAS L. [NASA-TM-100534] upper-surface-blowing/circulation-control-wing concept System analysis in rotorcraft design: The past decade DMITRIEV, SERGEI VASIL'EVICH p 291 N88-17609 Data processing and analysis during the automated p 289 N88-16652 ERICSSON, L. E. GALLUS, H. F. testing of gas turbine engines p 298 A88-27730 Flat spin of axisymmetric bodies in the critical Reynolds Application of highly loaded single-stage mixed-flow DNEPROV. I. V. p 306 A88-27889 number region compressors in small jet-engines p 300 N88-17652 Stress-strain state of an opening parachute EVERETT, RICHARD A., JR. GARDNER, JAMES E. p 317 A88-27248 Review of fatigue and fracture research at NASA Langley Loads and aeroelasticity division research and technology accomplishments for FY 1987 and plans for DOKUMACI, E. Research Center p 318 N88-16633 EVGEN'EV, S. S. An exact solution for coupled bending and torsion A study of the effect of leakage flow on the main flow vibrations of uniform beams having single cross-sectional [NA\$A-TM-100534] p 278 N88-16680 ahead of the rotor of a centrifugal pump or a compressor p 315 A88-25630 p 316 A88-26571 GARRETT, FREDERICK E. DOOGOOD, P. N. Accurate modeling of nonlinear systems using Volterra Calibration of the ARL (Aeronautical Research series submodels p 304 A88-27352 Laboratories) rain and icing facility GARWOOD, K. R. [AD-A186776] n 310 N88-16710 Optimisation of military compressors for weight and DOPHER, ROBERT FALCHETTI, F. volume p 300 N88-17649 Prediction of aeroelastic response of a model X-wing Computation of secondary flows in an axial multistage p 281 N88-17603 GAUSE, LEE W. rotor compressor p 304 N88-17681 Structural properties of braided graphite/epoxy omposites p 312 A88-25266 DOR J. R composites Description of tests run in the T2 cryogenic wind Self-adaptive analysis of three-dimensional structures **GAYDA, JOHN** using a p-version of finite element method Creep and fatigue research efforts on advanced p 277 N88-16672 [FFA-TN-1987-31] [PB87-170296] p 320 N88-17084 materials p 318 N88-16701 DOREMUS, GREGORY J. FARLEY, GARY L GENTA, G. Flow field measurements using hotwire anemometry Helicopter crashworthiness research program A conical element for finite element rotor dynamics [AD-A1870291 p 318 N88-16951 p 283 N88-16635 p 317 A88-26972 DUFAU. J. FAYE, ROBERT E. GERDES, RONALD M. Specification of an engine and its components starting Reduction of tilt rotor download using circulation European/U.S. cooperative flight testing - Some food p 281 N88-17605 from a consideration of aircraft missions control FEARN, RICHARD L for thought p 269 A88-26175 p 300 N88-17651 A jet in a crossflow GIENCKE, E. DUH, JAMES E. [NASA-CR-182469] p 277 N88-16674 Simplified calculation of the crushing process in tructural elements p 315 A88-26171 Prediction of aeroelastic response of a model X-wing structural elements p 281 N88-17603 rotor Reduction of time delays in Runge-Kutta integration GLASSON, DOUGLAS P. DUMARS, W. G. methods Real-time artificial intelligence issues in the development Evaluation of high temperature structural adhesives for [MBB/LKE-132/S/PUB/241/A] p 328 N88-17363 p 327 N88-17260 of the adaptive tactical navigator extended service, phase 5 FELKER, FORT F. GLOVER, HOWARD [NASA-CR-178176] p 314 N88-16884 Reduction of tilt rotor download using circulation Windshear detection effect of static air temperature DUNN, M. G. p 281 N88-17605 p 284 N88-17621 Operation of gas turbine engines in dust-laden FENNELL, ROBERT E. GLUSHITSKII, IGOR' VALENTINOVICH p 300 N88-17654 environments An application of eigenspace methods to symmetric Cooling of airborne equipment p 296 A88-27731 DUTT. H. N. V. flutter suppression GOETSCHEL, DANIEL B. Comment on 'Computation of the potential flow over [NASA-CR-181618] p 309 N88-17684 airfoils with cusped or thin trailing edges' p 315 A88-26159 Elastic hingeless scissor design

FIGUROVSKII, V. I.

urbomachinery vibrations

FIROOZIAN, R.

FIRSOV. V. A.

Calculation of a wing with allowance for fuselage

Implication of model reduction in the active control of

Axisymmetric deformations of aircraft transparencies

with allowance for the compliance of the support

p 271 A88-25633

p 296 A88-26414

p 315 A88-25621

p 276 A88-28050

p 290 N88-16691

p 279 N88-17593

Predicting dynamic separation characteristics of general

Wall jet analysis for circulation control aerodynamics.

Part 2: Zonal modeling concepts for wall jet/potential flow

DVORAK, F. A.

onfigurations

[AD-A186689]

DVORAK, FRANK A.

program: Today's

p 289 N88-16636

p 304 A88-27321

GOOD, DANNY E.

technology

GOSLIN, T. J.

Advanced composite airframe

Stress-strain state of an opening parachute p 317 A88-27248

An optimized yaw damper for enhanced passenger ride

GOSSETT, TERRENCE D.

Status of NASA/Army rotorcraft research and development piloted flight simulation

p 310 N88-16651

GOTT, SHERRIE P.

Tutoring electronic troubleshooting in a simulated maintenance work environment p 311 N88-17215 GOUTINES, MARIUS

Design and testing of a front stage for an advanced high pressure compressor p 303 N88-17679 GRAHAM, C.

Advanced techniques employed in blade cooling research p 301 N88-17659 GRAHAM, JOYCE Robotic air vehicle. Blending artificial intelligence with

conventional software p 291 N88-17252 GRANDCHAMP, B. A study of the TCAS 2 collision avoidance system

mounted on a Boeing 737 aircraft

(NASA-CR-1824571 p 286 N88-16687 GRANDHI, R. V.

Optimum design of structures with multiple constraints p 317 A88-28042

GREEN, PETER E.

Real-time artificial intelligence issues in the development of the adaptive tactical navigator p 327 N88-17260 GRINA. KEN

The Boeing Helicopter Model 360 advanced technology p 287 A88-26415 helicopter

GRISAFFE, SALVATORE J.

Lewis materials research and technology: An overview p 330 N88-16699

GROMOV, V. G.

Turbulent hydrogen combustion in a wall jet issuing into a comoving supersonic stream of air

p 297 A88-27166

GUGLIOTTA, A.

A conical element for finite element rotor dynamics p 317 A88-26972

GUSEVA, R. I.

The problem of the development of formal-logic models p 323 A88-25627 of aircraft assembly

Fatigue crack propagation behavior of 2091 T8 and 2024 T3 under constant and variable amplitude loading

p 312 A88-25176

н

HAEHNLEIN, G.

Helicopters as test carriers for avionics systems [DFVLR-IB-112-85/18] p 290 N88-16692

HAESSIG, DAVID, JR.

Modern control methods applied to a line-of-sight p 295 A88-27399 stabilization and tracking system HAEUSER, J.

Numerical grid generation in computational fluid dynamics; Proceedings of the International Conference, Landshut, Federal Republic of Germany, July 14-17, 1986 p 324 A88-26726

HAFEZ. M.

Improved relaxation schemes for transonic potential p 272 A88-26433 Computation of three-dimensional transonic flows using two stream functions p 273 A88-26434

Entropy and vorticity corrections for transonic flows p 273 A88-26435

HAGGERTY, ALLEN C.

McDonnell Douglas Helicopter Company independent research and development: Preparing for the future p 289 N88-16660

Evaluation of high temperature structural adhesives for extended service, phase 5

NASA-CR-178176) p 314 N88-16884

HALF, STEVEN

Helicopter external vision requirements and visual display characteristics: A report/bibliography, revision A [AD-A187075] p 291 N88-17641

HAMEL, PETER

Flight test technique, illustrated by Advanced Technologies Testing Aircraft System (ATTAS) p 291 N88-17433

HAN, WENGING

A system of data acquisition and processing in aeroengine testing p 323 A88-26627 HANAMURA, YOJI

An experimental investigation on aerodynamic interblade interactions of a vibrating cascade in transonic flow p 272 A88-26388

HANCOCK, G. J.

Inviscid theory of two-dimensional aerofoil/spoiler configurations at low speed. V - Steady and oscillatory aerofoil-spoiler-flap characteristics p 272 A88-26424

HANDELMAN, DAVID A.

An architecture for real-time rule-based control

p 325 A88-27405

p 295 A88-27478

p 299 N88-17648

p 314 N88-16884

HANDSCHUH, ROBERT F. Identification and proposed control of helicopter p 308 N88-16647 transmission noise at the source HARALDSDOTTIR. A.

Control of linear systems by output proportional plus p 325 A88-27327 derivative feedback

HARRIS, M. J. Fixed wing CCW aerodynamics with and without supplementary thrust deflection p 281 N88-17607

HARRIS, TERRY J. Performance of optical sensors in hypersonic flight

HARRISON, K. L.

Development of a shell system for DS moulds at RR precision casting facility p 318 N88-16893 PNR-904001

HÀRSE, JAMES H.

An overview of key technology thrusts at Bell Helicopter p 289 N88-16657 Textron HARVELL J. K.

Wind tunnel studies of circulation control elliptical airfoils p 280 N88-17598 HATANO, ICHIRO

3D-computational mesh generation around a propeller by elliptic differential equation system p 274 A88-26643

HAYKIN, T.

Transient engine performance with water ingestion p 297 A88-27295

A dynamical mathematical model and digital simulation for anti-surge control system of a turbofan engine p 297 A88-26638

HECK, B. S.

Loop shaping with output feedback p 324 A88-27312

HECKMANN, G.

Methods for evaluating the quality and reliability of aerodynamic software programs IPB87-1697931 p 328 N88-17314

HEMDAN, HAMDI T.

A first order theory for Newtonian flow over p 272 A88-26423

HENDERSON, ROBERT E. The coming revolution in turbine engine technology

HENDRICKS, C. L.

Evaluation of high temperature structural adhesives for extended service, phase 5

[NASA-CR-178176] HENDRICKS, R. C.

Numerical modeling of multidimensional flow in seals and bearings used in rotating machinery

p 319 N88-16988 [NASA-TM-100779] HERDMAN, TERRY L.

Accurate modeling of nonlinear systems using Volterra

series submodels p 304 A88-27352 HILBIG, REINHARD The intelligent wing. Aerodynamic development direction

for future passenger aircraft [MBB-UT-006/87] p 293 N88-17848 HILL, S. G.

Evaluation of high temperature structural adhesives for extended service, phase 5

p 314 N88-16884 [NASA-CR-178176]

HINDSON, WILLIAM S.

Optimal landing of a helicopter in autorotation p 288 A88-28251

HINRICHSEN, JENS

The application of modern aeroelastic developments for future projects [MBB-UT-007/87] p 294 N88-17850

HINTON, DAVID A.

Simulator investigation of wind shear recovery p 284 N88-17630 techniques HIRSCH, R.

Treatment methods for the alleviation of gusts on p 306 A88-27770

influence of the wall boundary layer on force measurements on half models in the transonic wind tunnel

p 311 N88-16715 {F+W-TF-1876} HO, JOHN K.

On the design of robust compensators for airplane modal p 304 A88-27322 control

HODGES, DEWEY H. Rotorcraft aeroelastic stability

p 307 N88-16631 HOENLINGER, HEINZ Active control technology with adaptive control concept

in the aircraft construction [MBB/LKE-294/S/PUB/295] p 309 N88-17845 HOFFMAN, J. D.

Algebraic grid generation for annular nozzle flowfield p 275 A88-26751 prediction

HONG, CHANG-HO

Flap-lag-torsion aeroelastic stability of a circulation p 280 N88-17600 control rotor in forward flight

HOPKINS, A. STEWART

General Rotorcraft Aeromechanical Stability Program (GRASP) version 1.03: User's manual [NASA-TM-100043] p 328 N88-17313

HORAK, D. T. Experimental implementation and evaluation of the RMI

p 325 A88-27410 failure detection algorithm HORI, NORIYUKI On the improvement of an adaptive observer for multi-output systems p 323 A88-25878

HOURMOUZIADIS, J.

An integrated aero/mechanical performance approach p 301 N88-17657 to high technology turbine design HSIEH, KWANG-CHUNG

Numerical simulation of hypersonic inlet flows with equilibrium or finite rate chemistry

[AIAA PAPER 88-0273] p 275 A88-27717

HÙA, GUANGSHI

Experimental investigation of the influence of diffuser shell shapes on performance of dump diffusers in combustor p 297 A88-26628

HUA, YAQNAN The effect of the boundary layer on transonic cascade p 273 A88-26587

HUANG, CHIEN Y.

Failure model determination in a knowledge-based p 325 A88-27406

HUANG, ZHIQING A system of data acquisition and processing in p 323 A88-26627 aeroengine testing

HUFF, RONALD G. Identification and proposed control of helicopter transmission noise at the source p 308 N88-16647

HUMPHREY, B. Evaluation of bituminous materials used in pavement recycling projects at Tyndall, MacDill, and Hurlburt Air Force Bases

o 321 N88-17871

p 308 N88-16709

p 278 N88-17579

[AD-A188068] HÜNTHAUSEN, ROGER J.

p 296 N88-16655 Integrated diagnostics HUOT, J. P.

A research program on the aerodynamics of a highly p 301 N88-17655 loaded turbine stage

IAROSLAVTSEV. M. I.

Some methodological aspects of the study of gasdynamic models with heat and mass transfer in an impulse wind tunnel p 310 A88-27158

ICHIKAWA, TERUO Lifting-surface theory of oscillating propellers in compressible flow

[NAL-TR-943] p 282 N88-17613 INGER. G. R.

Oblique shock/laminar boundary layer interactions in hypersonic flow p 270 A88-25300 AIAA PAPER 88-0603]

ISOGAL K. Effect of an optimized fiber orientation on transonic flutter characteristics of a high-aspect-ratio composite wing [NAL-TR-930]

JAIN, R. K.

Generation of body-fitted grids around airfoils using p 274 A88-26745 multigrid method

JAMES, P. W. Excess streamwise vorticity and its role in secondary p 271 A88-26163

JAYARAM, MOHAN Solution of the three-dimensional Navier-Stokes equations for transonic flow using a multigrid method

JEANDEL, D. Numerical simulation of diffuser/combustor dome p 302 N88-17663

JELLISON, TIMOTHY G.

Knowledge based jet engine diagnostics

p 299 N88-17210

JESPERSEN, DENNIS C.

Navier-Stokes computations for circulation control p 279 N88-17592

JHA, R. M.

Ray analysis of a class of hybrid cylindrical aircraft p 285 A88-25755

JI. CHUNJUN

An analysis system for transonic flow in cascade p 273 A88-26631

Numerical calculation of 3-D turbulent flow in a straight compressor cascade with circular-arc blades

p 273 A88-26584

JOANNIC V

Theory and development of discrete multivariable regulators assuring robust tracking p 326 A88-27756 JONES, MICHAEL G.

Measured and calculated acoustic attenuation rates of tuned resonator arrays for two surface impedance distribution models with flow

INASA-TP-27661 JORGENSEN, C. C.

p 329 N88-17440

Analysis of tasks for dynamic man/machine load balancing in advanced helicopters IDE88-0037351 p 290 N88-16696

JORGENSON, PHILIP C. E.

An explicit Bunge-Kutta method for unsteady rotor/stator interaction TAIAA PAPER 88-00491 p 275 A88-27715

K

KABAMBA, P. T.

Control of linear systems by output proportional plus derivative feedback p 325 A88-27327

KALTSCHMIDT, HORST

Rotor SAR (ROSAR): A new high-resolution all-weather vision method for helicopters p 321 N88-17855

[MBB-UA-1046/87]

KANAI, KIMIO

On the improvement of an adaptive observer for multi-output systems p 323 A88-25878

KARCHMER, ALLAN M.

Identification and proposed control of helicopter transmission noise at the source p 308 N88-16647 KAYMAZ. R.

Experimental investigation of a supercritical compressor p 304 N88-17680 rotor blade section

KAZA, KRISHNA RAO V.

Vibration and flutter characteristics of the SR7L

large-scale propfan [NASA-TM-100272]

p 322 N88-18036

KEENER, EARL R. Pressure distributions and oil-flow patterns for a swept circulation-control wing p 280 N88-17596 Boundary-layer and wake measurements on a swept circulation-control wing p 280 N88-17597

KELLERER, HELMUT

Modern materials for light constructions [MBB-Z-136/86] p 293 N88-17839

KEY, DAVID L.

Rotorcraft handling-qualities design p 308 N88-16645 development

KHALIMOV, S. B.

Calculation of nonpotential flows of an ideal gas in axisymmetric nozzles by the approximate factorization method n 270 A88-25561

KHITRIK, V. I

Effect of the blade number ratio of the rotor and the nozzle ring on the vibration activity of axial-flow and radial-flow turbines p 314 A88-25614

Influence of nozzle asymmetry on supersonic jets p 276 A88-28034

KIGGUNDU, B.

Evaluation of bituminous materials used in pavement recycling projects at Tyndall, MacDill, and Hurlburt Air p 321 N88-17871

[AD-A188068] KIKUCHI, T.

wing

Effect of an optimized fiber orientation on transonic flutter characteristics of a high-aspect-ratio composite

[NAL-TR-930] p 308 N88-16709

KIKUCHI, TAKAO

Experimental study on the effect of fiber orientation on flutter characteristics of high-aspect-ratio transport wing [NAL-TR-936] p 308 N88-16708

KIMURA TAKEYOSHI

Aerodynamic characteristics of the Weis-Fogh mechanism. II - Numerical computations by the discrete vortex method p 272 A88-26359

KINGCOMBE, R. C.

Design and test of a high blade speed, high work capacity transonic turbine p 301 N88-17658

KINGLOFF, R. F.

The impact of circulation control on rotary aircraft controls systems p 308 N88-17601

KINUGAWA, SETSUYA

Quasi-conical aerodynamic loadings due to kinked p 271 A88-26358 planform wings

KITAPLIOGLU, CAHIT

A decade of aeroacoustic research at NASA Ames Research Center p 328 N88-16648

KI ALISING HELMRIT

Rotor SAR (ROSAR): A new high-resolution all-weather vision method for helicopters n 321 N88-17855 [MRR-114-1046/87]

KLEPL, MARTIN J.

Flight control for the F-8 Oblique Wing Research Aircraft p 305 A88-27365

KLOEPPEL, VALENTI

Testing of a tail rotor system in a fiber composite type of construction p 294 N88-17854 IMBB-UD-472/861

KNAUS, ARNIM

Flight testing of fighter aircraft

p 293 N88-17844 IMBB/IKE-62/S/PUB/2921

KO. WILLIAM L.

Accuracies of southwell and force/stiffness methods in the prediction of buckling strength of hypersonic aircraft wing tubular panels n 320 NRR-17090

INASA-TM-882951

KOBAYAKAWA, MAKOTO

3D-computational mesh generation around a propeller by elliptic differential equation system p 274 A88-26643

KOKOTOVIC, P. V.

A geometric approach to nonlinear singularly perturbed p 323 A88-26264 control systems

KOROL'KOV. V. I.

Three-dimensional problem of the constrained torsion of a thin-walled rod of the trapezoidal wing type p 270 A88-25632

KOSOLAPOV, IU. S.

Numerical solution of the problem of supersonic gas flow from a narrow slot in hodograph variables

p 278 N88-17581

KOZHEVNIKOV. IU. V.

Data processing and analysis during the automated testing of gas turbine engines p 298 A88-27730

KRAIN, H.

Secondary flow measurements with L2F-technique in centrifugal compressors p 303 N88-17676

KREJSA, EUGENE A.

Identification and proposed control of helicopter transmission noise at the source p 308 N88-16647

KRETZ, MARCEL

Modeling and identification in helicopter science p 327 A88-27760

Moisture plotting of carbon fiber composite in flight operations IMBB-UT-119/871 p 313 N88-16823

KROLL, N.

Numerical methods for propeller aerodynamics and acoustics at DFVLR p 302 N88-17668

KUHN RICHARD

Application of empirical and linear methods to VSTOL ered-lift aerodynamics

[NASA-TM-100048]

KUHN, RICHARD E. Recommendations for ground effects research for

V/STOL and STOL aircraft and associated equipment for large scale testing [NASA-CR-177429] p 279 N88-17585

KULKARNI, M. M.

An MRAC system for aircraft longitudinal control p 305 A88-27370

KULL, ROBERT C., JR.

Supersonic and subsonic aircraft noise effects on animals: A literature survey

[AD-A186922] p 329 N88-18373

KUMAKURA, I.

Effect of an optimized fiber orientation on transonic flutter characteristics of a high-aspect-ratio composite

[NAL-TR-930] p 308 N88-16709

KUNZ, DONALD L.

General Rotorcraft Aeromechanical Stability Program (GRASP) version 1.03: User's manual [NASA-TM-100043] p 328 N88-17313

KUZ'MIN, V. V.

Calculation of a wing with allowance for fuselage elasticity p 271 A88-25633

KUZNETSOV, IU. I.

Analysis of the two-ring suspension of a dynamically tunable gyroscope p 314 A88-25566

KVATERNIK, RAYMOND G.

A summary of recent NASA/Army contributions to rotorcraft vibrations and structural dynamics technology p 307 N88-16628

LACOSS, RICHARD T.

Distributed mixed sensor aircraft tracking p 285 A88-27412

Wake interaction effects on the transition process on

turbine blades

[AD-A188020] p 322 N88-17962 LAMB, S. R.

Laboratory studies related to in-flight acoustic emission monitorina

[AD-A186714] p 329 N88-17445 LAN C. FOWARD

Calculation of aerodynamic characteristics of airplane configurations at high angles of attack

p 282 N88-17612 [NASA-CR-182541] LANE, STEPHEN H. Non-linear inverse dynamics control laws - A sampled

p 325 A88-27381 data annroach LANGFELDER, HELMUT p 292 N88-17823

Variable sweep wings LARDELLIER A

Specification of an engine and its components starting

from a consideration of aircraft missions p 300 N88-17651 LARIN, O. B.

Turbulent hydrogen combustion in a wall jet issuing into a comoving supersonic stream of air

p 297 A88-27166 LEBACQZ, J. VICTOR Helicopter mathematical models and control law

development for handling qualities research p 307 N88-16642 Rotorcraft handling-qualities design criteria

p 308 N88-16645 development LEF. ALFRED T.

Information transfer in the National Airspace System p 330 N88-17634 LEE, ALLAN Y.

Optimal landing of a helicopter in autorotation

p 288 A88-28251 LEFEBVRE, A. H.

Flame stabilization using large flameholders of irregular p 312 A88-27285 shape

LESPINASSE, C. Fatigue crack initiation and propagation properties of

Al-Li-Cu alloys in air and in aqueous corrosive solutions p 312 A88-25178 LEVERSUCH, N. P.

Design and test of a high blade speed, high work capacity p 301 N88-17658 transonic turbine

LEVIN. V. A.

Turbulent hydrogen combustion in a wall jet issuing into a comoving supersonic stream of air

p 297 A88-27166 LEVINE, J.

Points of view on linear and nonlinear filtering in

p 327 A88-27771 aeronautics LEWICKI, DAVID G.

Identification and proposed control of helicopter transmission noise at the source p 308 N88-16647

LEWIS. F. L. Loop shaping with output feedback

p 324 A88-27312

LEWIS, J. S.

Development of a plenum chamber burner system for an advanced VTOL engine p 302 N88-17664

LI. LONGQIANG

A system of data acquisition and processing in p 323 A88-26627 aeroengine testing LI XIFAN

Investigation on steady-state response of a rotor-support system with two squeeze-film dampers

LI. ZHIWEI

Dynamic flexibility coefficient matrix and its measurement for aeroengine supporting system

p 317 A88-26641

LIGHT, JEFFREY S. Reduction of tilt rotor download using circulation control p 281 N88-17605 control

LIN. S. J.

Control of an axial piston pump using a single-stage p 326 A88-27417 electrohydraulic servovalve

LINDEN, ARTHUR W.

X-wing potential for Navy applications p 281 N88-17604

LINDSTEDT, PAWEL Theoretical analysis of rotational-speed fluctuations of p 296 A88-26168 two-spool turbojet engines

LIOU, T.-M. Flowfield in a dual-inlet side-dump combustor

p 297 A88-27291

n 316 A88-26632

Vortex/separated boundary-layer interactions

A computational method of exciting forces generated

Theory and development of discrete multivariable

Calculation of the path of a droplet in the combustion

regulators assuring robust tracking p 326 A88-27756

Identification techniques in flight mechanics

by nozzle wakes on turbine blades p 273 A88-26630

p 275 A8ú-28033

p 298 N88-16638

p 308 N88-16707

p 306 A88-27765

p 296 A88-25618

transonic Mach numbers

Small gas turbine engine technology

Aircraft flight test trajectory control

chamber of a helicopter ramjet engine

MEITNER, PETER L.

MENG, QINGJI

MENON, P. K. A.

MEREAU, PIERRE

MERKULOV. A. P.

MERCIER, O.

[NASA-CR-179428]

LIPATOV. I. I. LIPATOV, I. I. MARTYNOV, V. N. Distributed gas injection into hypersonic flow Stability of a wing box with elastic ribs p 315 A88-25623 p 271 A88-26120 LITCHFIELD, M. R. An examination of the impact of potential advances in Predicting dynamic separation characteristics of general component technology for future military engine configurations [AD-A186689] p 290 N88-16691 p 300 N88-17650 MASTIN. C. WAYNE LIII. LING Geometry/grid generation in n + 1 easy steps A computational method of exciting forces generated p 274 A88-26731 by nozzle wakes on turbine blades p 273 A88-26630 MATSUDA, YUKIO LIU, ZHIWEI Turbine flow meter with optical fiber pick-up Study of performance of rotating stall in blade row p 319 N88-17009 [NAL-TR-923] p 273 A88-26629 MATTINGLY, JACK D. LOHMANN, D. Become a creative force for future aircraft Numerical methods for propeller aerodynamics and p 330 A88-25749 acoustics at DFVLR p 302 N88-17668 MATVEENKO, S. A. Comparison of the aerodynamic characteristics of Circulation control STOL aircraft design aspects annular and elliptic wings p 281 N88-17610 MATVEEV, V. N. LOVE, CHARLES M. Design and development of an advanced F100 compressor p 303 N88-17678 microturbines with an enclosed rotor LOVELL. D. Improved relaxation schemes for transonic potential MAZZA, L. THOMAS calculations p 272 A88-26433 Advanced composite airframe Entropy and vorticity corrections for transonic flows technology p 273 A88-26435 MCARDLE, JACK G. LOWE, JANICE XT-4 - Potent with potential p 287 A88-25809 system LOWNDES, JAY C. MCBRIDE, BONNIE J. Keeping a sharp technology edge p 269 A88-26646 LUETJERING, G. equilibrium or finite rate chemistry Fatigue crack propagation behavior of 2091 T8 and 2024 [AIAA PAPER 88-0273] T3 under constant and variable amplitude loading MCCLURE, M. D. p 312 A88-25176 **LUND. THOMAS SCOTT** A computational study of thrust augmenting ejectors MCCROSKEY, W. J. based on a viscous-inviscid approach p 321 N88-17929 applications LUTZ. STEVEN A. MCCURDY, DAVID A. Performance of optical sensors in hypersonic flight p 295 A88-27478 LUX. DAVID P. [NASA-TP-2782] X-29A forward-swept-wing flight research program MCFARLAND, RICHARD E. etatus [NASA-TM-100413] p 292 N88-17644 imagery systems NASA-TM-1000841 М MCGHEE, ROBERT B. Flight simulators for under \$100,000 MAGNIN, T. MCLACHLAN, B. G. Fatigue crack initiation and propagation properties of Al-Li-Cu alloys in air and in aqueous corrosive solutions ontrol airfoil aerodynamics p 312 A88-25178 MCNALLY, B. DAVID MAHAPATRA, P. R. Ray analysis of a class of hybrid cylindrical aircraft aerodynamic model for a V/STOL aircraft [NASA-TM-100067] p 29 p 285 A88-25755 vinas MAHONY, MICHAEL P. MCNICHOLAS, K. A cost and benefit analysis of hydraulic fluid systems for the next generation of tactical aircraft [AD-A186911] p 290 N88-16690 research MAIER-ERBACHER, J. MCNULTY, CHRISTA Wind tunnel modeling techniques [KU-SFB-210/E/33] p 310 N88-16711 conventional software MEAD, D. L. MAMEDOV, KH. B. Axisymmetric deformations of aircraft transparencies with allowance for the compliance of the support

Effect of an optimized fiber orientation on transonic flutter characteristics of a high-aspect-ratio composite p 270 A88-25617 [NAL-TR-930] p 308 N88-16709 An experimental study of the effect of the lower and MINEGISHI, MASAKATSU upper overlap on the efficiency of radial inward-flow Experimental study on the effect of fiber orientation on flutter characteristics of high-aspect-ratio transport wing p 315 A88-25637 p 308 N88-16708 [NAL-TR-936] MITON, H. program: Today's p 289 N88-16636 Method for predicting performance limits of centrifugal compressors p 303 N88-17677 The convertible engine: A dual-mode propulsion MOEK, G. p 298 N88-16639 Verification of obstacle accountability areas using a simple mathematical model. Part 1: Description of general Numerical simulation of hypersonic inlet flows with model and application for a specific case INLR-TR-85069-U1 p 283 N88-16683 p 275 A88-27717 MOENIG, R. Application of highly loaded single-stage mixed-flow Geometry/grid generation in n + 1 easy steps compressors in small jet-engines p 300 N88-17652 p 274 A88-26731 MOHR, ROSS W. Mach number effects on transonic aeroelastic forces The development of CFD methods for rotor p 288 N88-16627 and flutter characteristics [NASA-TM-100547] p 277 N88-16675 Annoyance caused by advanced turboprop aircraft MONNOYER, F. flyover noise: Single-rotating propeller configuration A close coupling procedure for zonal solutions of the p 329 N88-17441 Navier-Stokes, Euler and boundary-layer equations p 316 A88-26173 Transport delay compensation for computer-generated MOORE, JAMES The advanced low-level windshear alert system p 292 N88-17645 operational demonstration results, Summer, 1987, Denver Stapleton International Airport p 284 N88-17633 MORGAN, HOMER G. p 309 A88-25010 Recent Langley helicopter acoustics contributions p 328 N88-16646 On the effect of leading edge blowing on circulation MORI, SHOZO p 280 N88-17595 Tracking aircraft by acoustic sensors - Multiple hypothesis approach applied to possibly unresolved A flight-test methodology for identification of an measurements p 285 A88-27363 Tracking multiple air targets with distributed acoustic p 290 N88-16694 p 285 A88-27413 sensors MORSE, H. ANDREW Advanced techniques employed in blade cooling Aeroacoustic research programs at the Army Aviation p 301 N88-17659 Research and Technology Activity p 329 N88-16649 MOSEEV. IU. V. Robotic air vehicle. Blending artificial intelligence with p 291 N88-17252 Stress-strain state of an opening parachute p 317 A88-27248 Effect of high temperature spikes on a carbon MOSHER, M. p 312 A88-28299 fibre-reinforced epoxy laminate MEADOR, MICHAEL A. A decade of aeroacoustic research at NASA Ames Research Center p 315 A88-25621 p 328 N88-16648 High temperature polymer matrix composites MOURTOS, NIKOS JOHN Helicopters as test carriers for avionics systems p 313 N88-16700 Control of vortical separation on conical bodies p 278 N88-17580 MEHDORN, HARTMUT p 290 N88-16692 Airbus, the successful European cooperation MOUSTAPHA, S. H. p 270 N88-17847 [MBB-UT-005/87] A research program on the aerodynamics of a highly MEHTA, RABINDRA D. loaded turbine stage p 301 N88-17655 p 288 N88-16629

MERRITT, MARK W.

MIDDLETON, PETER

MILLER, THOMAS I.

MINEGISHI, M.

MULLEN, R. L.

MURRAY, T. W.

MURTHY, S. N. B.

MURTHY, V. R.

MUSZYNSKA, A.

MUZIUKIN, M. A.

systems

rotors

[NASA-TM-100779]

[NASA-CR-182537]

[NASA-TM-100779]

an advanced VTOL engine

Numerical modeling of multidimensional flow in seals

Development of a plenum chamber burner system for

Comprehensive analysis of helicopters with bearingless

Numerical modeling of multidimensional flow in seals

Synthesis of the flexible structures of complex

Transient engine performance with water ingestion

p 319 N88-16988

p 302 N88-17664

p 297 A88-27295

p 328 N88-18300

p 319 N88-16988

p 324 A88-27148

and bearings used in rotating machinery

and bearings used in rotating machinery

MIHALOEW, JAMES R.

XT-4 - Potent with potential

programs

MEUNIER, S.

interaction

Status of FAA terminal Doppler weather radar

Numerical simulation of diffuser/combustor dome

Rotorcraft flight-propulsion control integration

NASA's rotorcraft icing research program

p 321 N88-17632

p 302 N88-17663

p 287 A88-25809

p 307 N88-16643

p 283 N88-16641

fasteninos MANSFELD, G.

(HETAS)

MARINO, R.

MARITON, M.

MARTINEZ. R.

Force Bases

[AD-A188068]

[DFVLR-IB-112-85/18]

A review of research in rotor loads

Application of empirical and linear methods to VSTOL

A geometric approach to nonlinear singularly perturbed

Placement of failure-prone components on flexible

Redundant control systems - Flexibility and optimality

Evaluation of bituminous materials used in pavement

recycling projects at Tyndall, MacDill, and Hurlburt Air

structures - A degree of controllability approach

p 278 N88-17581

p 323 A88-26264

p 326 A88-27418

p 314 N88-16890

p 321 N88-17871

MÀNTAY, WAYNE R.

MARGASON, RICHARD

[NASA-TM-100048]

control systems

MARTEL, CHARLES R. Military jet fuels, 1944-1987 [AD-A186752]

powered-lift aerodynamics

A		

Burst vortex/boundary layer interaction

[NASA-CR-182510] p 279 N88-17583 NAGARAJ, V. T.

Influence of transformation sequence on nonlinear bending and torsion of rotor blades p 315 A88-26158 NAKAHASHI, KAZUHIRO

Theoretical analysis of aircraft afterbody flow

p 275 A88-27884

NAKAMICHI, JIRO Experimental study on the effect of fiber orientation on flutter characteristics of high-aspect-ratio transport wing INAL-TR-9361 p 308 N88-16708

NARITSA, V. S. Aerodynamic calculation of thin bodies in a rarefied p 274 A88-26696

NAUMOV S. M.

Stability of a wing box with elastic ribs

p 315 A88-25623

NAVIERE, HENRI Design and testing of a front stage for an advanced p 303 N88-17679 high pressure compressor NEIST, LEN J.

Turbine engine monitoring systems: Can they benefit component improvement program management?

p 299 N88-16706 [AD-A186992] NERIYA, S. V.

Dynamic response of a geared train of rotors subjected p 320 N88-17073 to random support excitations NGUYEN, CAM

Graphical design of millimeter-wave finline bandpass p 316 A88-26256 filters

NICHOLS, J. H. Fixed wing CCW aerodynamics with and without p 281 N88-17607 supplementary thrust deflection NIEDERER, MELVIN

p 315 A88-26159 Elastic hingeless scissor design NIEDZWIECKI, RICHARD W.

Small gas turbine engine technology

p 298 N88-16638

NIELSEN, JACK N. Proceedings of the Circulation-Control Workshop,

p 279 N88-17586 [NASA-CP-2432] NIKIFORUK, PETER N.

On the improvement of an adaptive observer for multi-output systems p 323 A88-25878 NISHIWAKI, HIDEO

Aerodynamic and acoustic characteristics of an advanced propeller under take-off and landing conditions

[NAL-TR-935] p 329 N88-17453

NITTA, KYOKO

Quasi-conical aerodynamic loadings due to kinked planform wings p 271 A88-26358

Effect of an optimized fiber orientation on transonic flutter characteristics of a high-aspect-ratio composite

(NAL-TR-930) p 308 N88-16709 NOGUCHI, YOSHIO

Mechanical properties of carbon fiber reinforced thermoplastic matrix composites

p 313 N88-16827 [NAL-TR-934]

NORMAND-CYROT, MR.

Nonlinear identification technique for helicopter flight mechanics p 306 A88-27764

NOWACK, S.

Reduction of time delays in Runge-Kutta integration methods

[MBB/LKE-132/S/PUB/241/A] p 328 N88-17363

OBRIEN, T. KEVIN

Delamination durability of composite materials for p 312 N88-16634

OERTEL, HERBERT

p 320 N88-17434 Numerical fluid mechanics

OHRLOFF, N.

Fatigue crack propagation behavior of 2091 T8 and 2024 T3 under constant and variable amplitude loading

p 312 A88-25176

OKAPUU, U.

A research program on the aerodynamics of a highly paded turbine stage p 301 N88-17655 loaded turbine stage Design and aerodynamic performance of a small p 301 N88-17662 mixed-flow gas generator turbine

OLSEN, JAMES J. A new look at the use of linear methods to predict aircraft

dynamic response to taxi over bomb damaged and repaired p 291 N88-17069 airfields

ONSTOTT, ROBERT G.

Radar backscatter from airports and surrounding areae p 321 N88-17623

ORMISTON, ROBERT A.

Rotorcraft aeroelastic stability p 307 N88-16631 OSTOWARI, C.

Turbulent near wake of a symmetrical body p 318 A88-28047

OSWALD, FRED B.

Dynamic analysis of multimesh-gear helicopter [NASA-TP-2789] p 319 N88-17045

OZELTON, M. W.

Durability and damage tolerance of aluminum castings [AD-A186444] p 322 N88-18013

PADOVA, C.

Operation of gas turbine engines in dust-laden environments p 300 N88-17654

PAGE. R. H.

Turbulent near wake of a symmetrical body p 318 A88-28047

PAIMUSHIN, V. N.

Axisymmetric deformations of aircraft transparencies with allowance for the compliance of the support fastenings p 315 A88-25621

PALMERIO, B.

Application of a FEM moving node adaptive method to p 275 A88-26753 accurate shock capturing

PAN. JIQIN

An improvement on the adaptive model following control p 327 A88-28617

PAO S P

Recent Langley helicopter acoustics contributions p 328 N88-16646

PARDOUX, E.

Stability of helicopter blade motion in the case of turbulent air flow p 305 A88-27761

PARPIA, IJAZ H. van Leer flux vector splitting in moving coordinates

p 317 A88-28046

PARROTT, TONY L. Measured and calculated acoustic attenuation rates of tuned resonator arrays for two surface impedance distribution models with flow [NASA-TP-2766] p 329 N88-17440

PELEGRIN, MARC J. Technological leaps occurring in the aeronautical and

space fields p 326 A88-27752

PETERS, DAVID A.

Rotorcraft aeroelastic stability
PETERS. HANNS-JUERGEN p 307 N88-16631

Additional investigations in landing process of aircraft: Test distributions p 286 N88-16686 [DFVLR-MITT-87-13]

PETRIE, H. L. Laser Doppler velocity bias in separated turbulent

flows p 271 A88-25835 PETTY, JAMES S.

The coming revolution in turbine engine technology p 299 N88-17648 PHILLIPS, PAMELA S.

transonic-small-disturbance wing design methodology

[NASA-TP-2806] p 282 N88-17614

An examination of the impact of potential advances in component technology for future military engines p 300 N88-17650

PIS'MENNYI, (OSIF L'VOVICH

Multifrequency nonlinear vibrations in a gas-turbine p 298 A88-27742 POLĽOCK, N.

A note on the aerodynamic design of thin parallel-sided aerofoil sections

(ARL-AERO-TM-388) p 277 N88-16677

POMAREDE, JEAN-MICHEL L. Real-time artificial intelligence issues in the development

of the adaptive tactical navigator p 327 N88-17260 PONOMAREV. A. T.

Stress-strain state of an opening parachute

p 317 A88-27248 POPOLI, ROBERT

Expert system allocation for the electronically scanned p 325 A88-27411 POVINELLI, LOUIS A.

CFD validation experiments for internal flows

[NASA-TM-100797] p 278 N88-16679 POWELL, C. A.

Recent Langley helicopter acoustics contributions

p 328 N88-16646

PROCTOR, FRED

NASA wind shear model: Summary of model analyses p 323 N88-17617

Numerical modeling of multidimensional flow in seals and bearings used in rotating machinery
[NASA-TM-100779] p 319 N88-16988

PULLIAM, THOMAS H.

Navier-Stokes computations for circulation control p 279 N88-17592 airfoils

Q

QIN, LISEN

Stream function solution of transonic flow along an arbitrary twisted S1 stream surface p 273 A88-26586 QUEMARD. M.

Effect of a model support strut on measurement of aerodynamic longitudinal and lateral coefficients [PB87-170288] p 277 N88-16670

R

RAEMER, H. R.

Radar returns from ground clutter in vicinity of airports p 321 N88-17624

RAHGAVAN, R.

Radar returns from ground clutter in vicinity of airports p 321 N88-17624

RAMACHANDRA, K. V.

State estimation of manoeuvring targets from noisy radar measurements D 294 A88-26247

RANGWALLA, A. A.

Oblique shock/laminar boundary layer interactions in hypersonic flow p 270 A88-25300

[AIAA PAPER 88-0603]

RAO, D. G.

An MRAC system for aircraft longitudinal control p 305 A88-27370

REARICK, THOMAS C.

Knowledge-based multi-sensor image fusion

p 316 A88-26419

REICHERT, GUENTER Special flight mechanical features of the bearingless helicopter rotor

[MBB-FM-315/O]

REINMANN, JOHN J. NASA's rotorcraft icing research program

p 283 N88-16641

RICART, RICHARD Neural network based architectures for aerospace p 327 N88-17218

applications RIDDLE, DENNIS W.

flight potential evaluation upper-surface-blowing/circulation-control-wing concept p 291 N88-17609

RIESS, W.

Possibilities for on-line surge suppression by fast guide vane adjustment in axial compressors

p 303 N88-17674

p 293 N88-17825

Fatigue crack initiation and propagation properties of Al-Li-Cu alloys in air and in aqueous corrosive solution p 312 A88-25178

ROBINSON, GARALD K

F-16 flight tests with the F110 engine - Lessons p 288 A88-26875

ROBSON, ROY

Flight testing keeps pace p 287 A88-26644 RODELLAR, R.

The advantage of variable geometry for turbine engines

p 300 N88-17653 at low power ROELKE, RICHARD J. Experimental evaluation of a translating nozzle sidewall

p 301 N88-17656 radial turbine ROESER H. P. A submillimeter heterodyne receiver for the Kuiper Airborne Observatory and the detection of the 372 micron

carbon monoxide line J = 7-6 in OMC-1 and W3 p 316 A88-26253

ROEWER, PAUL Robotic air vehicle. Blending artificial intelligence with p 291 N88-17252

conventional software ROGERS, ERNEST O.

Analysis of a fixed-pitch X-wing rotor employing lower urface blowing p 280 N88-17602 surface blowing

ROGERS, H. E.

Advanced techniques employed in blade cooling p 301 N88-17659 research

ROGO, CASIMIR

Experimental evaluation of a translating nozzle sidewall radial turbine p 301 N88-17656 ROJAS, R. G.

A study of the TCAS 2 collision avoidance system mounted on a Boeing 737 aircraft

[NASA-CR-182457] p 286 N88-16687

ROSE, K. E.

A block structured mesh generation technique for p 274 A88-26747 aerodynamic geometries ROSFJORD, T. J.

Soot loading in a generic gas turbine combustor p 297 A88-27296

ROSS, RON S.

Flight simulators for under \$100,000

p 309 A88-25010

ROWLAND, JOHN R.

Fine-scale measurements of microwave refractivity profiles with helicopter and low-cost rocket probes p 317 A88-27482

RUTTLEDGE, D. G. C.

Rotorcraft flight-propulsion control integration

p 307 N88-16643

RYLES, RICHARD RANDOLPH

Investigation of dynamic stall using LDV (Laser Doppler Velocimetry): Mean flow studies p 282 N88-17611 [AD-A187629]

RYSEV. O. V.

Stress-strain state of an opening parachute

p 317 A88-27248

RYZHOV. E. N.

The problem of the development of formal-logic models of aircraft assembly p 323 A88-25627

SAHU, NIRANJAN

Influence of transformation sequence on nonlinear bending and torsion of rotor blades p 315 A88-26158 SAINZ, B.

Low frequency eddy current detection and evaluation of corrosion in aircraft skins

p 313 N88-16859 [ETN-88-91664]

SAMIMY, M.

Laser Doppler velocity bias in separated turbulent flows p 271 A88-25835

SANDERFER, DWIGHT T.

Pressure distributions and oil-flow patterns for a swept circulation-control wing p 280 N88-17596

SANKAR, T. S.

Dynamic response of a geared train of rotors subjected p 320 N88-17073 to random support excitations

SAUNDERS, NEAL T. Impact and promise of NASA aeropropulsion p 299 N88-16698 technology

SAVEL'EV. IU. P.

Thermodynamic nonequilibrium of a far hypersonic p 276 A88-28356 wake

SCHAEFER, F.

A submillimeter heterodyne receiver for the Kuiper Airborne Observatory and the detection of the 372 micron carbon monoxide line J = 7-6 in OMC-1 and W3

p 316 A88-26253

SCHLICKENMAIER, HERBERT

Airborne Wind Shear Detection and Warning Systems: First Combined Manufacturers' and Technologists' Conference

[NASA-CP-10006]

p 283 N88-17616

SCHMATZ, M. A.

A close coupling procedure for zonal solutions of the Navier-Stokes, Euler and boundary-layer equations p 316 A88-26173

SCHMID-BURGK, J.

A submillimeter heterodyne receiver for the Kuiper Airborne Observatory and the detection of the 372 micron carbon monoxide line J = 7-6 in OMC-1 and W3

p 316 A88-26253

SCHMITENDORF, W. E.

Designing stabilizing controllers for uncertain systems using the Riccati equation approach

p 325 A88-27326

SCHMITT, V.

Testing of a schematic transport plane model in several European windtunnels [PB87-170270]

SCHMITZ, FREDERIC H.

p 277 N88-16671

A decade of aeroacoustic research at NASA Ames p 328 N88-16648 Research Center

SCHMITZ, FREDRIC H.

Aeroacoustic research programs at the Army Aviation Research and Technology Activity p 329 N88-16649

Development of an algorithm for evaluating calibration data for six-component strain-gage balances

p 310 A88-26172

SCHNEIDER, HORST

Aerodynamic aspects of the configurational systems layout of a dispenser

MBB-UA-1047/871 p 294 N88-17863 SCHOENE, J.

Numerical methods for propeller aerodynamics and coustics at DFVLR p 302 N88-17668 SCHULTZ G. V. A submillimeter heterodyne receiver for the Kuiper

Airborne Observatory and the detection of the 372 micron carbon monoxide line J = 7-6 in OMC-1 and W3 p 316 A88-26253

Generation of patched multiple-region grids using elliptic p 274 A88-26743 equations

SCHWAERZLER, KARL

Development of vertical takeoff aircraft with turbojet p 292 N88-17822 engines in Germany SCHWARTZ, ALAN W.

Analysis of a fixed-pitch X-wing rotor employing lower surface blowing p 280 N88-17602 SCHWARZ, W.

Elliptic grid generation system for three-dimensional configurations using Poisson's equation p 324 A88-26748

SEIBERT, WERNER

An approach to the interactive generation of blockstructured volume grids using computer graphics p 324 A88-26746

SENATORE, G.

Method for predicting performance limits of centrifugal p 303 N88-17677

SENOO, YASUTOSHI

Pressure losses and flow field distortion induced by tip clearance of centrifugal and axial compressors

p 314 A88-24847

SERAUDIE. A. Description of tests run in the T2 cryogenic wind tunnel

[PB87-170296] p 277 N88-16672

SETTLES, GARY S.

Experimental research on swept shock wave/boundary laver interactions p 322 N88-17957

SHALASHILIN, V. I.

Stability of a wing box with elastic ribs

p 315 A88-25623 SHAPIRO, E. Y.

Robustness/performance tradeoffs in eigenstructure assignment with flight control application p 324 A88-27318

SHAW, J.

A block structured mesh generation technique for p 274 A88-26747 aerodynamic geometries SHAW, JOHN

Rotorcraft technology at Boeing Vertol: Recent p 289 N88-16658 advances SHAW, ROBERT J.

NASA's rotorcraft icing research program p 283 N88-16641

SHEINMAN, IZHAK

Nonlinear equations of laminated panels with laminated p 316 A88-26344 stiffeners SHEPARD, CHARLES E.

Upgrading of NASA-Ames high-energy hypersonic facilities: A Study p 311 N88-16717

[NASA-CR-182475]

SHERIF, A. Computation of three-dimensional transonic flows using p 273 A88-26434

two stream functions

SHIBANOV, G. P. Data processing and analysis during the automated esting of gas turbine engines p 298 A88-27730 testing of gas turbine engines

SHREWSBURY, GEORGE D. Evaluation of a research circulation control airfoil using p 279 N8C-17591 Navier-Stokes methods

SHUEN, JIAN-SHUN

Numerical simulation of hypersonic inlet flows with equilibrium or finite rate chemistry p 275 A88-27717

[AIAA PAPER 88-0273] SHULER, T.

Evaluation of bituminous materials used in pavement recycling projects at Tyndall, MacDill, and Hurlburt Air

p 321 N88-17871 [AD-A188068] SHUMSKII, V. V.

Some methodological aspects of the study of gasdynamic models with heat and mass transfer in an p 310 A88-27158 impulse wind tunnel

SHUSHIN, N. A. Characteristics of flow around a hemisphere mounted

p 315 A88-25640 on a plane

SIBIRIAKOV, V. K.

Stability of a wing box with elastic ribs p 315 A88-25623 SIDDIQI, SHAHID

p 287 A88-26644 Flight testing keeps pace SILET, J.

The advantage of variable geometry for turbine engines at low power p 300 N88-17653

SILETS, H. L.

Something special in the air and on the ground - The potential for unlimited liability of international air carriers for terrorist attacks under the Warsaw convention and its p 330 A88-26546 revisions

SIMITSES, GEORGE J.

Buckling of delaminated, long, cylindrical panels under p 317 A88-26890 pressure

SIMMONS, ROBERT M.

SWAN: An expert system with natural language interface for tactical air capability assessment p 327 N88-17253

SIRAZETDINOV, T. K.

Estimation of aircraft motion parameters with allowance p 304 A88-25622 for atmospheric turbulence

SIROVICH, LAWRENCE

New techniques in computational aerodynamics [AD-A186719] p 276 N88-16664

SLINEY, HAROLD E.

Self-lubricating coatings high-temperature applications p 313 N88-16703

SMIRNOV, P. V.

Estimation of aircraft motion parameters with allowance p 304 A88-25622 for atmospheric turbulence SMITH, A. F.

The metallurgical aspects of aluminum-lithium alloys in various product forms for helicopter structural p 311 A88-25106 applications

SMITH, DOUGLAS B.

Flight simulators for under \$100,000 p 309 A88-25010

SMITH, KEITH World-wide aeronautical satellite communications

[AIAA PAPER 88-0865]

SMITH, TREVOR S. Pumping systems and flow interfaces for rapid response electronic reheat controls p 302 N88-17665

p 286 A88-27599

p 283 N88-17616

p 295 A88-26670

SNYDER, WILLIAM J. Rotorcraft flight research with emphasis on rotor

p 289 N88-16656 systems SOBEL, K. M.

Robustness/performance tradeoffs in eigenstructure assignment with flight control application

p 324 A88-27318

Strong coupling between inviscid fluid and boundary

layer for airfoils with sharp leading edge. I - 2-D incompressible steady case Geometry/grid generation in n + 1 easy steps

p 274 A88-26731 SORENSON, REESE L. Elliptic generation of composite three-dimensional grids about realistic aircraft p 287 A88-26749

SOTOZAKI, T. Effect of an optimized fiber orientation on transonic flutter characteristics of a high-aspect-ratio composite

[NAL-TR-930] p 308 N88-16709

SPADY, AMOS A., JR.

Airborne Wind Shear Detection and Warning Systems: First Combined Manufacturers' and Technologists' Conference

[NASA-CP-10006]

SPAID FRANK W.

Boundary-layer and wake measurements on a swept, circulation-control wing p 280 N88-17597 SPILLMAN, J. J.

Wing tip sails - Progress to date and future p 272 A88-26421

SRINATH MANDYAM D. STALFORD, HAROLD

Accurate modeling of nonlinear systems using Volterra series submodels p 304 A88-27352 On robust control of wing rock using nonlinear control p 326 A88-27419

A fault-tolerant multisensor navigation system design

STARKEN, H.

Experimental investigation of a supercritical compressor rotor blade section p 304 N88-17680

STECH, GEORGE Avionics systems integration technology

p 296 N88-16654

Development of a plenum chamber burner system for an advanced VTOL engine p 302 N88-17664

Experimental investigation of a supercritical compressor p 304 N88-17680 rotor blade section

STENGEL, ROBERT F.

Non-linear inverse dynamics control laws - A sampled data approach p 325 A88-27381 An architecture for real-time rule-based control

p 325 A88-27405 Failure model determination in a knowledge-based p 325 A88-27406 control system

Thermodynamic nonequilibrium of a far hypersonic p 276 A88-28356 wake

STEPHENS, WENDELL B.

Comprehensive rotorcraft analysis methods

p 276 N88-16630

p 324 A88-27312

STEPNIEWSKI, W. Z. Rotorcraft weight trends in light of structural material characteristics p 291 N88-17642 IAD-A1865761

STEVENS, B. L.

Loop shaping with output feedback

STOER, RAY p 285 N88-17636 Airworthiness considerations STREYLE, DALE G.

Flight simulators for under \$100,000

p 309 A88-25010 STWALLEY, R. M., III

Flame stabilization using large flameholders of irregular shape p 312 A88-27285

SU, YAOXI Sidewall effect for transonic airfoil testing

p 275 A88-26796

SUDHAKAR, V. Ray analysis of a class of hybrid cylindrical aircraft p 285 A88-25755

SULLIVAN, R. F.

High-density jet fuels from coal syncrudes, appendix 4 p 314 N88-17813

[DE88-003132] SULLIVAN, THOMAS J.

Aerodynamic performance scale-model p 302 N88-17666 counter-rotating unducted fan

SUMMERS, LELAND G. Crew procedures for microwave landing system

INASA-CR-1783591 p 286 N88-16688

SWEETMAN, BILL Agile Falcon and Hornet 2000 p 288 A88-27496

SZODRUCH, JOACHIM

The intelligent wing. Aerodynamic development direction for future passenger aircraft

(MBB-UT-006/87) p 293 N88-17848

T

TAKEDA, KATSUMI

Aerodynamic and acoustic characteristics of an advanced propeller under take-off and landing conditions p 329 N88-17453

[NAL-TR-935] TAKIZAWA, MINORU

Study on a unidirectional ring laser gyro. Part 1: Proposition of the principle and studies on the components

p 319 N88-17010 [NAL-TR-933]

TAM, L. T.

Numerical modeling of multidimensional flow in seals and bearings used in rotating machinery

p 319 N88-16988 [NASA-TM-100779]

TANG. MING

Experimental investigation of the influence of diffuser shell shapes on performance of dump diffusers in combustor p 297 A88-26628

TAYLOR, C.

Numerical grid generation in computational fluid dynamics; Proceedings of the International Conference, Landshut, Federal Republic of Germany, July 14-17 p 324 A88-26726 1986

TAYLOR, RODNEY S.

An overview of key technology thrusts at Bell Helicopter Textron p 289 N88-16657

TEGELBERG-ABERSON, EMILY E.

Freedom in European air transport - The best of both p 330 A88-26183 worlde?

TERSTEEGEN, J.

Helicopters as test carriers for avionics systems

[DFVLR-IB-112-85/18] p 290 N88-16692

THOMAS, MICHAEL E.

Performance of optical sensors in hypersonic flight p 295 A88-27478

THORPE, J.

Analysis of bird strikes to UK registered aircraft 1985 (civil aircraft over 5700 kg maximum weight [CAA-PAPER-87012] p 283 p 283 N88-16684 TIARN, W. N.

Surface mesh generation using elliptic equations p 324 A88-26732

TIKHONOV, N. T.

An experimental study of the effect of the lower and upper overlap on the efficiency of radial inward-flow microturbines with an enclosed rotor p 315 A88-25637

TIKHONOV, V. I.

Representation of fan characteristics in a mathematical p 296 A88-25638 model of the bypass engine TISCHLER MARK R.

Helicopter mathematical models and control law development for handling qualities research

p 307 N88-16642 Frequency-response identification of XV-15 tilt-rotor p 292 N88-17643 aircraft dynamics

Using frequency-domain methods to identify XV-15 aeroelastic modes

p 292 N88-17646 [NASA-TM-100033]

TOU. H. B.

inviscid theory of two-dimensional aerofoil/spoiler configurations at low speed. V - Steady and oscillatory aerofoil-spoiler-flap characteristics p 272 A88-26424 TOWNSEND, DENNIS P.

Results of NASA/Army transmission research

p 299 N88-16640 Dynamic analysis of multimesh-gear helicopter transmissions [NASA-TP-2789]

p 319 N88-17045 TRAN, CHUONG B.

On the design of robust compensators for airplane modal p 304 A88-27322 control

TREBLE, W. J. G. The aerodynamic performance of propellers suitable for

unmanned aircraft (UMAs) [RAE-TM-AERO-2094] p 276 N88-16667

TRIPPENSEE, GARY A. X-29A forward-swept-wing flight research program

status [NASA-TM-100413] p 292 N88-17644 TROPF, WILLIAM J.

Performance of optical sensors in hypersonic flight

p 295 A88-27478

TSENG, J. B.

Calculation of aerodynamic characteristics of airplane configurations at high angles of attack

NASA-CR-182541] p 282 N88-17612 TSUTAHARA, MICHIHISA Aerodynamic characteristics of the

Weis-Foah mechanism. II - Numerical computations by the discrete p 272 A88-26359 vortex method TURK, G. R.

Durability and damage tolerance of aluminum castings [AD-A186444] p 322 N88-18013

TURRA S Analysis possible transmission arrangements applicable for driving single or twin counterrotating fans

p 303 N88-17670 on propfan engines Design deficiency - Probable cause of fatal aircraft

p 282 A88-27640 accident

UCHIKADO, SHIGERU

On the improvement of an adaptive observer for p 323 A88-25878 multi-output systems ULSOY, A. G.

Control of linear systems by output proportional plus derivative feedback p 325 A88-27327

VAISSIERE, ALAIN

Design of a helicopter automatic flight control system p 306 A88-27762

VALDECANTOS, C.

Low frequency eddy current detection and evaluation of corrosion in aircraft skins p 313 N88-16859

[ETN-88-91664]

VÀN DER WAL, P.

A submillimeter heterodyne receiver for the Kuiper Airborne Observatory and the detection of the 372 micron carbon monoxide line J = 7-6 in OMC-1 and W3 p 316 A88-26253

VANDEKREEKE, M.

Effect of a model support strut on measurement of erodynamic longitudinal and lateral coefficients (PB87-1702881 p 277 N88-16670

VANHOY, B. W.

Ultra-low frequency vibration data acquisition concerns in operating flight simulators

[DE88-004795] p 311 N88-17687 VENKAYYA, V. B.

Optimum design of structures with multiple constraints p 317 A88-28042

VERHAEGEN, M. H.

Robust adaptive flight-path reconstruction technique for nonsteady longitudinal flight test maneuvers

p 307 A88-28261

VERRIERE, M.

Effect of a model support strut on measurement of erodynamic longitudinal and lateral coefficients p 277 N88-16670 [PB87-170288]

VESTY, P. Loop shaping with output feedback

p 324 A88-27312

VICROY, DAN D. Investigation of the influence of wind shear on the aerodynamic characteristics of aircraft using p 284 N88-17619 vortex-lattice method

The advantage of variable geometry for turbine engine p 300 N88-17653 at low power VONHOLLE, JOSEPH C.

IMIS: Integrated Maintenance Information System. A maintenance information delivery concept

p 330 N88-17207

VONTEIN, VOLKER

Helicopter activities in Germany [MBB-UD-487/86] p 294 N88-17853

VU. THUY LAN

Design of a helicopter automatic flight control system p 306 A88-27762

WAGGONER, EDGAR G.

transonic-small-disturbance design wing methodology

[NASA-TP-2806] WAGNER, DOUGLAS A.

Gear systems for advanced turboprops

p 302 N88-17667

p 282 N88-17614

WAKER, MICHAEL P.

A model for estimating depot maintenance costs for Air Force fighter and attack aircraft p 269 N88-16624

[AD-A187097] WALKER, R. A.

Aircraft flight test trajectory control p 308 N88-16707

[NASA-CR-179428] WANG, B. N.

Algebraic grid generation for annular nozzle flowfield p 275 A88-26751 prediction

WANG, BAOGUO

The effect of the boundary layer on transonic cascade p 273 A88-26587 flow

WANG, SHOUME!

Finite element analysis for shock absorbers of pilot p 288 A88-26893 seats

WANG, WEIBIN

Experimental investigation of the influence of diffuser shell shapes on performance of dump diffusers in combustor p 297 A88-26628 WANG, ZHANXIAN

A contour line plotting system with polar coordinates for aeroengine inlet flow field p 274 A88-26640

WANG, ZHUNSHENG

Study of performance of rotating stall in blade row p 273 A88-26629

WANIE, K. M.

A close coupling procedure for zonal solutions of the Navier-Stokes, Euler and boundary-layer equations p 316 A88-26173

WANSTALL, BRIAN

Thinking big in RPVs - An affordable giant among the p 287 A88-25793 Bullseye for Skyeye - The RPV with parafoil, skid and

WARMBRODT, WILLIAM G. Rotorcraft aeroelastic stability p 307 N88-16631

WARNER, DAVID N., JR.

Approach guidance trajectory for maximum concealment p 307 A88-28265

WARSI, Z. U. A. Surface mesh generation using elliptic equations

p 324 A88-26732 WEATHERILL, N. P. A block structured mesh generation technique for

aerodynamic geometries

WEINSTOCK, E. M. Midlatitude CIO below 22 km altitude - Measurements

with a new aircraft-borne instrument p 323 A88-27456

p 274 A88-26747

p 287 A88-25794

PERSONAL AUTHOR INDEX WENDT, HANS-JOACHIM

WENDT, HANS-JOACHIM

Light Electronic Control System (LECOS): A proposal for a interconnected error-tolerant, optoelectronic control

[MBB-UT-004/87] p 309 N88-17836

WHITLOW, WOODROW, JR.

Computational unsteady aerodynamics for aeroelastic analysis

[NASA-TM-100523] n 276 N88-16668

WIESNER, ROBERT

Rotorcraft technology at Boeing Vertol: Recent p 289 N88-16658 advances

WIGHTMAN, J. P.

Factors affecting the sticking of insects on modified

aircraft wings p 313 N88-16878 [NASA-CR-182451]

WILLIAMS, JAMES R.

Avionics systems integration technology p 296 N88-16654

WILLIAMS, JEFFREY N.

A piloted simulation investigating handling qualities and performance requirements of a single-pilot helicopter in air combat employing a helmet-driven turreted gun

[AD-A186878] p 290 N88-16689 WILLIAMSON, R. G.

A research program on the aerodynamics of a highly p 301 N88-17655 loaded turbine stage WILLMER, A. C.

The tip flow of a part span slotted flap

p 272 A88-26422

WILSON, ANDREW

Radial compressor design using an Euler solver p 303 N88-17675

WILSON, JOHN C.

Accomplishments at NASA Langley Research Center in rotorcraft aerodynamics technology

p 269 N88-16626

WINKLER, PETER J.

Modern materials for light constructions p 293 N88-17839 [MBB-Z-136/86]

WINTER HEINZ

Flight test technique, illustrated by Advanced Technologies Testing Aircraft System (ATTAS) p 291 N88-17433

WINTUCKY, WILLIAM T.

Technology developments for a compound cycle engine

WLEZIEN, R. W.

Influence of nozzle asymmetry on supersonic jets

p 276 A88-28034 WOCKE, HANS

The European Airbus A-300 p 293 N88-17824 WOHLEVER, C.

Sound transmission through the walls of light aircraft: An investigation of structure-borne noise in a Handley Page 137 Jetstream 3 aircraft

[NASA-CR-182509] p 330 N88-18376

WOOD, N. J.

The further development of circulation control airfoils p 279 N88-17594

WOOD, NORMAN J.

Pressure distributions and oil-flow patterns for a swept circulation-control wing p 280 N88-17596 WOOD, PETER

World-wide aeronautical satellite communications [AIAA PAPER 88-0865] p 286 A88-2

p 286 A88-27599 WOOD, RICHARD M.

Supersonic aerodynamics of delta wings
[NASA-TP-2771] p 28

p 282 N88-17615

WRIGHT, ORVILLE, JR.

Squeezing the test cycle p 287 A88-26645 WU, S.-M.

Flowfield in a dual-inlet side-dump combustor

p 297 A88-27291 WU. SHIH-SHYN J.

A study of the dynamic behavior of rotor-bearing systems by the finite element method p 317 A88-27775

YAMAGUCHI, KAZUO

An experimental investigation on aerodynamic interblade interactions of a vibrating cascade in transonic flow p 272 A88-26388

Effect of an optimized fiber orientation on transonic flutter characteristics of a high-aspect-ratio composite

p 308 N88-16709 INAL TR-0301

YANG, HENRY T. Y.

Mach number effects on transonic aeroelastic forces and flutter characteristics

[NASA-TM-100547] p 277 N88-16675 YANG, HONGWEI

Numerical calculation of 3-D turbulent flow in a straight compressor cascade with circular-arc blades p 273 A88-26584

Interior transition layers in flight-path optimization p 288 A88-28252

Dynamic flexibility coefficient matrix and its measurement for aeroengine supporting system p 317 A88-26641

YATES, THOMAS C.

Pumping systems and flow interfaces for rapid response lectronic reheat controls p 302 N88-17665 p 302 N88-17665 YEN, JING G.

An overview of key technology thrusts at Bell Helicopter p 289 N88-16657 Textron

Factors affecting the sticking of insects on modified aircraft wings

[NASA-CR-182451] p 313 N88-16878

YU. SHENG-TAO Numerical simulation of hypersonic inlet flows with

equilibrium or finite rate chemistry p 275 A88-27717 [AIAA PAPER 88-0273]

YU, YUNG H.

Aeroacoustic research programs at the Army Aviation Research and Technology Activity p 329 N88-16649

ZABKA, WERNER

Product planning in civil aircraft construction

p 270 N88-17849 IMBB-UT-002/871

ZARETSKY, ERWIN V.

Ceramic bearings for use in gas turbine engines
[NASA-TM-100288] p 322 N88

p 322 N88-18007

ZHANG, BAOCHENG A rig testing method of annular combustor in

p 297 A88-26589 aeroengine ZHANG, YUN

An improvement on the adaptive model following control p 327 A88-28617

ZHANG, ZHIWEN

Calculation of metal flow stress in precision closed-die forging of blade p 317 A88-26793

ZHAO, XIAOLU

Stream function solution of transonic flow along an arbitrary twisted S1 stream surface p 273 A88-26586 ZHONG, SHAN

The affection of interblade phase angle in oscillating cascade on unsteady aerodynamic force

ZHOU, XINHAI

An analysis system for transonic flow in cascade

p 273 A88-26631

p 297 A88-26588

Calculation of metal flow stress in precision closed-die p 317 A88-26793

forging of blade ZHU, JUNJIANG

Study of performance of rotating stall in blade row p 273 A88-26629

ZHURAVLEV. M. D.

Comparison of the aerodynamic characteristics of annular and elliptic wings p 270 A88-25617
ZIMMERMANN, HELMUT

The application of modern aeroelastic developments for future projects

[MBB-UT-007/87] p 294 N88-17850

ZOTOV, IU. N. Calculation of the path of a droplet in the combustion chamber of a helicopter ramjet engine

p 296 A88-25618 ZYDA, MICHAEL J.

Flight simulators for under \$100,000

p 309 A88-25010

June 1988

Typical Corporate Source Index Listing

Listings in this index are arranged alphabetically by corporate source. The title of the document is used to provide a brief description of the subject matter. The page number and the accession number are included in each entry to assist the user in locating the abstract in the abstract section. If applicable, a report number is also included as an aid in identifying the document.

Advisory Group for Aerospace Research and Development, Neuilly-Sur-Seine (France).

Advanced Technology for Aero Gas Turbine Components [AGARD-CP-421] p 299 N88-17647 Effectiveness of various control surfaces in quasi-steady

and unsteady conditions [AGARD-R-735] p 309 N88-17682

Aeronautical Research Inst. of Sweden, Stockholm. Navier-Stokes solutions for laminar incompressible flow over a NACA 0012 airfoil and a backward facing step [FFA-TN-1987-50] p 319 N88-16966

Self-adaptive analysis of three-dimensional structures using a p-version of finite element method

p 320 N88-17084 [FFA-TN-1987-31]

Aeronautical Research Labs., Melbourne (Australia), A note on the aerodynamic design of thin parallel-sided

p 277 N88-16677 [ARL-AFRO-TM-388] Calibration of the ARL (Aeronautical Research Laboratories) rain and icing facility

(AD-A1867761 p 310 N88-16710 Laboratory studies related to in-flight acoustic emission

[AD-A186714] p 329 N88-17445

Aerospace Medical Research Labs., Wright-Patterson

AFB. Onlo. Supersonic and subsonic aircraft noise effects on animals: A literature survey

[AD-A186922] o 329 N88-18373 Air Force Human Resources Lab., Wright-Patterson

AFB. Ohio.

IMIS: Integrated Maintenance Information System, A maintenance information delivery concept

p 330 N88-17207 Tutoring electronic troubleshooting in a simulated maintenance work environment p 311 N88-17215 Air Force Inst. of Tech., Wright-Patterson AFB, Ohio. A model for estimating depot maintenance costs for Air Force fighter and attack aircraft

[AD-A187097] p 269 N88-16624 A cost and benefit analysis of hydraulic fluid systems for the next generation of tactical aircraft

[AD-A186911] p 290 N88-16690 Turbine engine monitoring systems: Can they benefit component improvement program management?

[AD-A186992] p 299 N88-16706 Analysis of the reliability of Royal Australian Air force non-destructive inspection

[AD-A186979] p 320 N88-17049 Wind tunnel studies of circulation control elliptical

airfoils p 280 N88-17598

Air Force Systems Command, Wright-Patterson AFR

Neural network based architectures for aerospace applications p 327 N88-17218

Air Force Wright Aeronautical Labs., Wright-Patterson AFB, Ohlo.

Military jet fuels, 1944-1987 [AD-A186752]

p 314 N88-16890 A new look at the use of linear methods to predict aircraft dynamic response to taxi over bomb damaged and repaired p 291 N88-17069

The coming revolution in turbine engine technology p 299 N88-17648

Aluminum Co. of America, Corona, Calif.

Durability and damage tolerance of aluminum castings [AD-A186444] p 322 N88-18013 Analytical Methods, Inc., Redmond, Wash.

Predicting dynamic separation characteristics of general configurations p 290 N88-16691 [AD-A1866891 Wall jet analysis for circulation control aerodynamics.

Part 2: Zonal modeling concepts for wall jet/potential flow coupling p 279 N88 17593 Army Aerostructures Directorate, Hampton, Va.

Accomplishments at NASA Langley Research Center in rotorcraft aerodynamics technology n 269 N88-16626

Army Aviation Systems Command, Moffett Field, Calif. The development of CFD methods p 288 N88-16627 applications

A review of research in rotor loads

p 288 N88-16629 Comprehensive rotorcraft analysis methods

p 276 N88-16630 Army Research and Technology Labs., Fort Eustis, Va. Delamination durability of composite materials for rotorcraft p 312 N88-16634 Advanced composite airframe program: Today's technology p 289 N88-16636 Integrated diagnostics p 296 N88-16655

Association Aeronautique et Astronautique de France,

Effect of a model support strut on measurement of erodynamic longitudinal and lateral coefficients

[PB87-170288] p 277 N88-16670 Testing of a schematic transport plane model in several European windtunnels

[PB87-170270] p 277 N88-16671 Description of tests run in the T2 cryogenic wind

[PB87-170296] p 277 N88-16672 Methods for evaluating the quality and reliability of aerodynamic software programs

(PB87-1697931 p 328 N88-17314 Avions Marcel Dassault-Breguet Aviation, Saint-Cloud (France).

Methods for evaluating the quality and reliability of aerodynamic software programs [PB87-169793] p 328 N88-17314

Boeing Aerospace Co., Seattle, Wash.

Evaluation of high temperature structural adhesives for extended service, phase 5 [NASA-CR-178176] p 314 N88-16884

Boeing Commercial Airplane Co., Seattle, Wash, Crew interface with windshear systems

p 284 N88-17631

Boeing Vertol Co., Philadelphia, Pa.

Rotorcraft technology at Boeing Vertol: Recent advances p 289 N88-16658 Bolt, Beranek, and Newman, Inc., Cambridge, Mass.

An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor. Part 2: High speed photographic study [NASA-CR-177457] p 278 N88-16678

Brown Univ., Providence, R. I.

New techniques in computational aerodynamics [AD-A186719] p 276 N88-16664

C

California Univ., Davis

Entropy and vorticity corrections for transonic flows p 273 A88-26435

Calspan Advanced Technology Center, Buffalo, N.Y. in dust-laden

Operation of gas turbine engines environments n 300 N88-17654 Centre d'Essais Aeronautique Toulouse (France).

Effect of a model support strut on measurement of aerodynamic longitudinal and lateral coefficients [PB87-170288] p 277 N88-16670

Centre d'Etudes et de Recherches, Toulouse (France). Description of tests run in the T2 cryogenic wind

p 277 N88-16672 [PB87-1702961 Centre National de la Recherche Scientifique,

Marseilles (France).

Method for predicting performance limits of centrifugal Chevron Research Co., Richmond, Calif.
High-density int first for

High-density jet fuels from coal syncrudes, appendix 4

[DE88-003132] p 314 N88-17813 Civil Aviation Authority, London (England). Analysis of bird strikes to UK registered aircraft 1985

(civil aircraft over 5700 kg maximum weight [CAA-PAPER-87012] p 283 N88-16684 Clarkson Univ., Potsdam, N.Y.

Soot loading in a generic gas turbine combustor p 297 A88-27296

Concordia Univ., Montreal (Quebec).

Dynamic response of a geared train of rotors subjected p 320 N88-17073 to random support excitations Construcciones Aeronauticas S.A., Madrid (Spain).

Low frequency eddy current detection and evaluation of corrosion in aircraft skins [ETN-88-91664] n 313 N88-16859

ח

Delco Systems Operations, Milwaukee, Wis.

Forward looking wind shear detection

p 284 N88-17629 Deutsche Airbus G.m.b.H., Munich (West Germany). The European Airbus A-300 p 293 N88-17824

Deutsche Forschungs- und Versuchsanstalt fuer Luftund Raumfahrt, Brunswick (West Germany).

Helicopters as test carriers for avionics systems (DFVLR-IB-112-85/181 p 290 N88-16692

Numerical methods for propeller aerodynamics and acoustics at DFVLR p 302 N88-17668 p 302 N88-17668 Deutsche Forschungs- und Versuchsanstalt fuer Luft-

und Raumfahrt, Cologne (West Germany). Additional investigations in landing process of aircraft: Test distributions

p 286 N88-16686 [DFVLR-MITT-87-13] Flight test technique, illustrated by Advanced Technologies Testing Aircraft System (ATTAS)

p 291 N88-17433 Numerical fluid mechanics p 320 N88-17434 Secondary flow measurements with L2F-technique in centrifugal compressors p 303 N88-17676

Experimental investigation of a supercritical compressor N88-17680 rotor blade section D 304

Helicopter external vision requirements and visual display characteristics: A report/bibliography, revision (AD-A187075) F Fansteel Wellman Dynamics, Creston, Iowa. Durability and damage tolerance of aluminum casting (AD-A186444) Page Nash 1801 Federal Aviation Administration, Oklahoma City, Okia Sudden in-flight incapacitation in general aviation (AD-A187044) Federal Aviation Administration, Seattle, Wash. Airworthiness considerations Flat Aviazione S.p.A., Turin (Italy). Analysis of possible transmission arrangement applicable for driving single or twin counterrotating fan on propfan engines Florida Univ., Gainesville. A jet in a crossflow [NASA-CR-182469] Flow Research, Inc., Kent, Wash. Entropy and vorticity corrections for transonic flows p 273 A88-2643 G General Electric Co., Cincinnati, Ohio. Aerodynamic performance of a scale-mode counter-rotating unducted fan p 302 N88-1766 General Motors Corp., Indianapolis, Ind. Gear systems for advanced turboprops p 302 N88-1766 Grumman Aerospace Corp., Bethpage, N.Y. An aerodynamic comparison of blown and mechanica high lift airfoils p 281 N88-1760 H Harvard Univ., Cambridge, Mass. Midlatitude CiO below 22 km attitude - Measurement	Deutsche Forschungs- und	Versu	ıchsans
disturbances on transonic airfoils [DFVLR-FB-87-28] p 276 N88-1666 Douglas Aircraft Co., Inc., Long Beach, Calif. Crew procedures for microwave landing syste operations [NASA-CR-178359] p 286 N88-1666 E Ecole Centrale de Lyon (France). Numerical simulation of diffuser/combustor dominteraction p 302 N88-1766 Eldgenoessisches Flugzeugwerk, Emmen (Switzerland). Transonic wind tunnel calibration 1986: For measurements on three ONERA-C5 models and three he sphere cylinder calibration bodies in the F+W transon test section [F+W-FC-1854] p 311 N88-1671 Influence of the wall boundary layer on for measurements on half models in the transonic win tunnel [F+W-FC-1803] p 311 N88-1671 Strain gage balance for half models 302-6. Calibratic report [F+W-FC-1803] p 319 N88-1760 Eloret Corp., Sunnyvale, Calif. Upgrading of NASA-Ames high-energy hyperson facilities: A Study [NASA-CR-182475] p 311 N88-1671 Entwicklungsring Sud, Munich (West Germany). Development of vertical takeoff aircraft with turboje engines in Germany p 292 N88-1782 Environmental Research Inst. of Michigan, Ann Arbo Radar backscatter from airports and surroundin areas p 321 N88-1764 Essex Corp., Alexandria, Va. Helicopter external vision requirements and visu display characteristics: A report/bibliography, revision. [AD-A187075] p 291 N88-1764 F Fansteel Wellman Dynamics, Creston, Iowa. Durability and damage tolerance of aluminum casting [AD-A186444] p 322 N88-1801 Federal Aviation Administration, Oklahoma City, Okla Sudden in-flight incapacitations in general aviation (AD-A1870744] p 283 N88-1667 Federal Aviation Administration, okathoma city, Okla Sudden in-flight incapacitations p 285 N88-1764 Federal Aviation Administration, Seattle, Wash. Ainworthiness considerations p 285 N88-1766 Federal Aviation Administration of transonic flows p 273 A88-2643 G General Electric Co., Cincinnati, Ohio. Aerodynamic performance of a scale-mode counter-rotating unducted fan p 302 N88-1766 General Electric Co., Cincinnati, Ohio. Aerodynamic performance of a	und Raumfahrt, Goettingen (West	Germa	ny).
Douglas Aircraft Co., Inc., Long Beach, Calif. Crew procedures for microwave landing syste operations [NASA-CR-178359] p 286 N88-1688 E E Ecole Centrale de Lyon (France). Numerical simulation of diffuser/combustor dominteraction p 302 N88-1768 Eidgenoessisches Flugzeugwerk, Emmen (Switzerland). Transonic wind tunnel calibration 1986: For measurements on three ONERA-C5 models and three he sphere cylinder calibration bodies in the F+W transon test section [F+W-FC-1854] p 311 N88-1671 Influence of the wall boundary layer on for measurements on half models in the transonic win tunnel [F+W-FC-1854] p 311 N88-1671 Strain gage balance for half models 302-6. Calibratic report [F+W-FC-1803] p 319 N88-1700 Eioret Corp., Sunnyvale, Calif. Upgrading of NASA-Ames high-energy hyperson facilities: A Study [NASA-CR-182475] p 311 N88-1671 Entwicklungsring Sud, Munich (West Germany). Development of vertical takeoff aircraft with turboje engines in Germany p 292 N88-1782 Environmental Research Inst. of Michigan, Ann Arbo Radar backscatter from airports and surroundin areas p 321 N88-1764 Environmental Research Inst. of Michigan, Ann Arbo Radar backscatter from airports and surroundin areas Essex Corp., Alexandria, Va. Helicopter external vision requirements and visu display characteristics: A report/bibliography, revision. [AD-A187075] Fansteel Wellman Dynamics, Creston, Iowa. Durability and damage tolerance of aluminum casting [AD-A187044] p 283 N88-1764 Federal Aviation Administration, Oklahoma City, Okla Sudden in-flight incapacitation in general aviation Applicable for driving single or twin counterrotating far on proprian engines p 285 N88-1767 Federal Aviation Administration, Seattle, Wash. Airworthiness considerations p 285 N88-1769 Federal Aviation Administration, Seattle, Wash. Airworthiness considerations p 285 N88-1769 Federal Aviation Administration, Seattle, Wash. Airworthiness considerations p 285 N88-1769 Federal Federic Co., Cincinnati, Ohio. Aerodynamic performance of a scale-mode counter-rotating undu	disturbances on transonic airfoils		
Ecole Centrale de Lyon (France). Numerical simulation of diffuser/combustor dom interaction Eldgenoessisches Flugzeugwerk, Emmen (Switzerland). Transonic wind tunnel calibration 1986: Ford measurements on three ONERA-C5 models and three he sphere cylinder calibration bodies in the F+W transon test section [F+W-FO-1854] p311 N88-1671 Influence of the wall boundary layer on ford measurements on half models in the transonic wirtunnel [F+W-FC-1876] p311 N88-1671 Strain gage balance for half models 302-6. Calibration report [F+W-FO-1803] p319 N88-1700 Eloret Corp., Sunnyvale, Calif. Upgrading of NASA-Ames high-energy hyperson facilities: A Study [NASA-CR-182475] p311 N88-1671 Entwicklungsring Sud, Munich (West Germany). Development of vertical takeoff aircraft with turboje engines in Germany p292 N88-1782 Environmental Research Inst. of Michigan, Ann Arbo. Radar backscatter from airports and surroundin areas p321 N88-1762 Essex Corp., Alexandria, Va. Helicopter external vision requirements and visual display characteristics: A report/bibliography, revision. [AD-A187044] p283 N88-1764 Federal Aviation Administration, Oklahoma City, Okti. Sudden in-flight incapacitation in general aviation (AD-A187044] p283 N88-1764 Federal Aviation Administration, Seattle, Wash. Airworthiness considerations p285 N88-1763 Federal Aviation Administration, Seattle, Wash. Airworthiness considerations p285 N88-1763 Florda Univ. Gainesville. A jet in a crossflow [NASA-CR-182469] p277 N88-1667 General Electric Co., Cincinnati, Ohio. Aerodynamic performance of a scale-mode counter-rotating unducted fan p302 N88-1766 General Electric Co., Cincinnati, Ohio. Aerodynamic performance of a scale-mode counter-rotating unducted fan p302 N88-1766 General Electric Co., Cincinnati, Ohio. Aerodynamic performance of a scale-mode counter-rotating unducted fan p302 N88-1766 General Electric Co., Cincinnati, Ohio. Aerodynamic comparison of blown and mechanica p101 p281 N88-1760 Grumman Aerospace Corp., Bethagae, N.Y. An ae	Douglas Aircraft Co., Inc., Long Bea Crew procedures for microway	ch, Cali	f.
Ecole Centrale de Lyon (France). Numerical simulation of diffuser/combustor dom interaction p 302 N88-1766 Eidgenoessisches Flugzeugwerk, Emmen (Switzerland). Transonic wind tunnel calibration 1986: Ford measurements on three ONERA-CS models and three he sphere cylinder calibration bodies in the F+W transon test section [F+W-FO-1854] p 311 N88-1671 Influence of the wall boundary layer on ford measurements on half models in the transonic wire tunnel [F+W-FO-1803] p 311 N88-1671 Strain gage balance for half models 302-6. Calibration report [F+W-FO-1803] p 319 N88-1700 Eloret Corp., Sunnyvale, Calif. Upgrading of NASA-Ames high-energy hyperson facilities: A Study [NASA-CR-182475] p 311 N88-1671 Entwicklungsring Sud, Munich (West Germany). Development of vertical takeoff aircraft with turboje engines in Germany p 292 N88-1782 Environmental Research Inst. of Michigan, Ann Arbo Radar backscatter from airports and surroundin areas p 321 N88-1762 Essex Corp., Alexandria, Va. Helicopter external vision requirements and visus display characteristics: A report/bibliography, revision. [AD-A187075] p 291 N88-1764 F Fansteel Wellman Dynamics, Creston, lowa. Durability and damage tolerance of aluminum casting [AD-A186444] p 283 N88-1801 Federal Aviation Administration, Oklahoma City, Okla Sudden in-flight incapacitation in general aviation (AD-A187044] p 283 N88-1667 Federal Aviation Administration, Seattle, Wash. Ainworthiness considerations p 285 N88-1763 Fiat Aviazione S.p.A., Turin (Italy). Analysis of possible transmission arrangement applicable for driving single or twin counterrotating fan on propfan engines p 303 N88-1767 Fiorida Univ., Gainesville. A jet in a crossflow [NASA-CR-182469] p 277 N88-1667 General Electric Co., Cincinnati, Ohio. Aerodynamic performance of a scale-mode counter-rotating unducted fan p 302 N88-1766 General Motors Corp., Indianapolis, Ind. Gear systems for advanced turboprops p 302 N88-1766 Grumman Aerospace Corp., Bethpage, N.Y. An aerodynamic comparison of blown a		р 286	N88-1668
Numerical simulation of diffuser/combustor dom interaction p 302 N88-1766 Eidgenoessisches Flugzeugwerk, Emmen (Switzerland). Transonic wind tunnel calibration 1986: Force measurements on three ONERA-C5 models and three he sphere cylinder calibration bodies in the F+W transon test section [F+W-FO-1854] p 311 N88-1671 Influence of the wall boundary layer on force measurements on half models in the transonic wire tunnel [F+W-FO-1854] p 311 N88-1671 Strain gage balance for half models 302-6. Calibratic report [F+W-FO-1803] p 319 N88-1700 [F+W-FO-1803] p 319 N88-1700 [F+W-FO-1803] p 319 N88-1700 [F+W-FO-1803] p 311 N88-1671 [F+W-FO-1803] p 311 N88-1671 [F+W-FO-1803] p 311 N88-1671 [F-W-FO-1803] p 321 N88-1671 [F-W-FO-1803] p 321 N88-1762 [F-W-FO-1803] p 321 N88-1762 [F-W-FO-1803] p 321 N88-1762 [F-W-FO-1803] p 321 N88-1763 [F-W-FO-1803] p 321 N88-1764 [F-W-FO-1803] p 322 N88-1801 [F-W-FO-1803] p 323 N88-1668 [F-W-FO-1803] p 323 N88-1668 [F-W-FO-1803] p 324 N88-1763 [F-W-FO-1803] p 325 N88-1763 [F-W-FO-1803] p 326 N88-1763 [F-W-FO-1803] p 327 N88-1763 [F-W-FO-1803] p 328 N88-1668 [F-W-FO-1803] p 329 N88-1763 [F-W-FO-1803] p 320 N88-	E		
(Switzerland). Transonic wind tunnel calibration 1986: Force measurements on three ONERA-C5 models and three he sphere cylinder calibration bodies in the F+W transon test section [F+W-FO-1854] p 311 N88-1671 Influence of the wall boundary layer on force measurements on half models in the transonic wire tunnel [F+W-TF-1876] p 311 N88-1671 Strain gage balance for half models 302-6. Calibratic report [F+W-FO-1803] p 319 N88-1700 Eloret Corp., Sunnyvale, Calif. Upgrading of NASA-Ames high-energy hyperson facilities: A Study [NASA-CR-182475] p 311 N88-1671 Entwicklungsring Sud, Munich (West Germany). Development of vertical takeoff aircraft with turboje engines in Germany p 292 N88-1782 Environmental Research Inst. of Michigan, Ann Arbo Radar backscatter from airports and surroundin areas p 321 N88-1762 Essex Corp., Alexandria, Va. Helicopter external vision requirements and visus display characteristics: A report/bibliography, revision. p 291 N88-1764 F Fansteel Wellman Dynamics, Creston, Iowa. Durability and damage tolerance of aluminum casting [AD-A187075] p 322 N88-1801 [AD-A187044] p 322 N88-1668 Federal Aviation Administration, Oklahoma City, Oklahoma C	Numerical simulation of diffuse		
measurements on three ONERA-C5 models and three has phere cylinder calibration bodies in the F+W transon test section [F+W-FO-1854] p 311 N88-1671 Influence of the wall boundary layer on forth measurements on half models in the transonic wirtunnel [F+W-FI-1876] p 311 N88-1671 Strain gage balance for half models 302-6. Calibratic report [F+W-FO-1803] p 319 N88-1700 Floret Corp., Sunnyvale, Calit. Upgrading of NASA-Ames high-energy hyperson facifities: A Study [NASA-CR-182475] p 311 N88-1671 Funtwicklungsring Sud, Munich (West Germany). Development of vertical takeoff aircraft with turboje engines in Germany p 292 N88-1782 Funvironmental Research Inst. of Michigan, Ann Arbo Radar backscatter from airports and surroundin areas p 321 N88-1762 Floret external vision requirements and visual display characteristics: A report/bibliography, revision p 291 N88-1764 FF Fansteel Wellman Dynamics, Creston, Iowa. Durability and damage tolerance of aluminum casting [AD-A187075] p 291 N88-1764 Federal Aviation Administration, Oklahoma City, Okla Sudden in-flight incapacitation in general aviation (AD-A187044] p 283 N88-1668 Federal Aviation Administration, Seattle, Wash. Airworthiness considerations p 285 N88-1763 Federal Aviation Administration, Seattle, Wash. Airworthiness considerations p 285 N88-1763 Florida Univ., Gainesville. A jet in a crossflow [NASA-CR-182469] p 277 N88-1667 Florida Univ., Gainesville. A jet in a crossflow [NASA-CR-182469] p 277 N88-1667 Flor Research, Inc., Kent, Wash. Entropy and vorticity corrections for transonic flows p 273 A88-2643 GGeneral Electric Co., Cincinnati, Ohio. Aerodynamic performance of a scale-mode counter-rotating unducted fan p 302 N88-1766 General Motors Corp., Indianapolis, Ind. Gear systems for advanced turboprops p 302 N88-1766 General Motors Corp., Indianapolis, Ind. Gear systems for advanced turboprops p 302 N88-1766 Grumman Aerospace Corp., Bethpage, N.Y. An aerodynamic comparison of blown and mechanical high lift airfoils p 281 N88-1760		nmen	
F+W-FO-1854 p 311 N88-1671 Influence of the wall boundary layer on formeasurements on half models in the transonic wirtunnel F+W-FT-1876 p 311 N88-1671 Strain gage balance for half models 302-6. Calibratic report F+W-FO-1803 p 319 N88-1700 F+W-FO-1803 p 319 N88-1700 F+W-FO-1803 p 319 N88-1700 F+W-FO-1803 p 311 N88-1671 Eloret Corp., Sunnyvale, Calif. Upgrading of NASA-Ames high-energy hyperson facilities: A Study [NASA-CR-182475] p 311 N88-1671 Entwicklungsring Sud, Munich (West Germany) Development of vertical takeoff aircraft with turboje engines in Germany p 292 N88-1782 N88-1784 N88-1785 N88-178	measurements on three ONERA-C5 r sphere cylinder calibration bodies in	nodels a	ind three ha
measurements on half models in the transonic wir tunnel [F+W-TF-1876] p 311 N88-1671 Strain gage balance for half models 302-5. Calibratic report [F+W-FO-1803] p 319 N88-1700 [F+W-FO-1803] p 319 N88-1700 [F+W-FO-1803] p 319 N88-1700 [F+W-FO-1803] p 319 N88-1700 [F+W-FO-1803] p 311 N88-1671 [F+W-FO-1803] p 311 N88-1671 [F+W-FO-1803] p 311 N88-1671 [F-W-FO-1803] p 311 N88-1671 [F-W-FO-1804] p 292 N88-1762 [F-W-FO-1804] p 292 N88-1762 [F-W-FO-1804] p 292 N88-1762 [F-W-FO-1804] p 291 N88-1764 [F-W-FO-1804] p 322 N88-1801 [AD-A187044] p 322 N88-1801 [AD-A187044] p 322 N88-1668 [F-Ederal Aviation Administration, Oktahoma City, Oktahoma Cit	[F+W-FO-1854]		
Strain gage balance for half models 302-6. Calibration report [F+W-FO-1803] p 319 N88-1700 Eloret Corp., Sunnyvale, Calif. Upgrading of NASA-Ames high-energy hyperson facilities: A Study [NASA-CR-182475] p 311 N88-1671 Entwicklungsring Sud, Munich (West Germany). Development of vertical takeoff aircraft with turboje engines in Germany p 292 N88-1782 Environmental Research Inst. of Michigan, Ann Arbonadar backscatter from airports and surroundin areas p 321 N88-1762 Essex Corp., Alexandria, Va. Helicopter external vision requirements and visuadisplay characteristics: A report/bibliography, revision. [AD-A187075] p 291 N88-1764 F Fansteel Wellman Dynamics, Creston, Iowa. Durability and damage tolerance of aluminum casting [AD-A187044] p 322 N88-1801 [AD-A187044] p 322 N88-1801 [AD-A187044] p 283 N88-1668 Federal Aviation Administration, Oktahoma City, Okta Sudden in-flight incapacitation in general aviation p 283 N88-1668 Federal Aviation Administration, Seattle, Wash. Airworthiness considerations p 285 N88-1763 Flat Aviazione S.p.A., Turin (Italy). Analysis of possible transmission arrangement applicable for driving single or twin counterrotating fan on propfan engines p 303 N88-1767 Florida Univ., Gainesville. A jet in a crossflow [NASA-CR-182469] p 277 N88-1667 Flor Research, Inc., Kent, Wash. Entropy and vorticity corrections for transonic flows p 273 A88-2643 G General Electric Co., Cincinnati, Ohio. Aerodynamic performance of a scale-mode counter-rotating unducted fan p 302 N88-1766 General Motors Corp., Indianapolis, Ind. Gear systems for advanced turboprops p 302 N88-1766 General Motors Corp., Indianapolis, Ind. Gear systems for advanced turboprops p 302 N88-1760 Grumman Aerospace Corp., Bethpage, N.Y. An aerodynamic comparison of blown and mechanica high lift airfoils p 281 N88-1760	measurements on half models in tunnel	the tra	insonic win
Eloret Corp., Sunnyvale, Calif. Upgrading of NASA-Ames high-energy hyperson facilities: A Study [NASA-CR-182475] p 311 N88-1671 Entwicklungsring Sud, Munich (West Germany). Development of vertical takeoff aircraft with turboje engines in Germany p 292 N88-1782 Variable sweep wings p 292 N88-1782 Environmental Research Inst. of Michigan, Ann Arbo Radar backscatter from airports and surroundin areas p 321 N88-1762 Essex Corp., Alexandria, Va. Helicopter external vision requirements and visual display characteristics: A report/bibliography, revision [AD-A187075] p 291 N88-1764 F Fansteel Wellman Dynamics, Creston, Iowa. Durability and damage tolerance of aluminium casting [AD-A186444] p 322 N88-1801 Federal Aviation Administration, Oklahoma City, Okla Sudden in-flight incapacitation in general aviation [AD-A187044] p 325 N88-1668 Fiat Aviazione S.p.A., Turin (Italy). Analysis of possible transmission arrangement applicable for driving single or twin counterrotating fan on propfan engines p 303 N88-1767 Florida Univ., Galnesville. A jet in a crossflow [NASA-CR-182469] p 277 N88-1667 Flow Research, Inc., Kent, Wash. Entropy and vorticity corrections for transonic flows p 273 A88-2643 G General Electric Co., Cincinnati, Ohio. Aerodynamic performance of a scale-mode counter-rotating unducted fan p 302 N88-1766 General Motors Corp., Indianapolis, Ind. Gear systems for advanced turboprops p 302 N88-1766 General Motors Corp., Indianapolis, Ind. Gear systems for advanced turboprops p 302 N88-1766 Grumman Aerospace Corp., Bethpage, N.Y. An aerodynamic comparison of blown and mechanica high lift airfoils p 281 N88-1760	Strain gage balance for half mode	•	
Upgrading of NASA-Ames high-energy hyperson facilities: A Study [NASA-CR-182475] p 311 N88-1671 Entwicklungsring Sud, Munich (West Germany). Development of vertical takeoff aircraft with turboje engines in Germany p 292 N88-1782 Environmental Research Inst. of Michigan, Ann Arbo Radar backscatter from airports and surroundin areas p 321 N88-1762 Essex Corp., Alexandria, Va. Helicopter external vision requirements and visuadisplay characteristics: A report/bibliography, revision (AD-A187075) p 291 N88-1764 F Fansteel Wellman Dynamics, Creston, Iowa. Durability and damage tolerance of aluminum casting [AD-A187044] p 322 N88-1801 Federal Aviation Administration, Oklahoma City, Okla Sudden in-flight incapacitation in general aviation p 283 N88-1668 Federal Aviation Administration, Seattle, Wash. Airworthiness considerations p 285 N88-1763 Flat Aviazione S.p.A., Turin (Italy). Analysis of possible transmission arrangement applicable for driving single or twin counterrotating fan on propfan engines p 303 N88-1767 Florida Univ., Gainesville. A jet in a crossflow [NASA-CR-182469] p 277 N88-1667 Flow Research, Inc., Kent, Wash. Entropy and vorticity corrections for transonic flows p 273 A88-2643 G General Electric Co., Cincinnati, Ohio. Aerodynamic performance of a scale-mode counter-rotating unducted fan p 302 N88-1766 General Motors Corp., Indianapolis, Ind. Gear systems for advanced turboprops p 302 N88-1766 General Motors Corp., Indianapolis, Ind. Gear systems for advanced turboprops p 302 N88-1766 Grumman Aerospace Corp., Bethpage, N.Y. An aerodynamic comparison of blown and mechanica high lift airfoils p 281 N88-1760	[F+W-FO-1803]	р 319	N88-1700
[NASA-CR-182475] p 311 N88-1671 Entwicklungsring Sud, Munich (West Germany). Development of vertical takeoff aircraft with turboje engines in Germany p 292 N88-1782 Variable sweep wings p 292 N88-1782 Environmental Research Inst. of Michigan, Ann Arbo Radar backscatter from airports and surroundin areas p 321 N88-1762 Essex Corp., Alexandria, Va. Helicopter external vision requirements and visus display characteristics: A report/bibliography, revision. [AD-A187075] [AD-A187075] [AD-A186444] p 322 N88-1801 Federal Aviation Administration, Oklahoma City, Okla Sudden in-flight incapacitation in general aviation [AD-A187044] p 283 N88-1668 Federal Aviation Administration, Seattle, Wash. Airworthiness considerations p 285 N88-1763 Flat Aviazione S.p.A., Turin (Italy). Analysis of possible transmission arrangement applicable for driving single or twin counterrotating fan on propfan engines p 303 N88-1767 Florida Univ., Gainesville. A jet in a crossflow [NASA-CR-182469] p 277 N88-1667 Flow Research, Inc., Kent, Wash. Entropy and vorticity corrections for transonic flows p 273 A88-2643 General Electric Co., Cincinnati, Ohio. Aerodynamic performance of a scale-mode counter-rotating unducted fan p 302 N88-1766 General Motors Corp., Indianapolis, Ind. Gear systems for advanced turboprops p 302 N88-1766 General Motors Corp., Indianapolis, Ind. Gear systems for advanced turboprops p 302 N88-1766 General Motors Corp., Indianapolis, Ind. Gear systems for advanced turboprops p 302 N88-1766 Grumman Aerospace Corp., Bethpage, N.Y. An aerodynamic comparison of blown and mechanica high lift airfoils p 281 N88-1760 Harvard Univ., Cambridge, Mass. Midlatitude CiO below 22 km attitude - Measurement	Upgrading of NASA-Ames high-	energy	hyperson
Development of vertical takeoff aircraft with turboje engines in Germany p 292 N88-1782 Variable sweep wings p 292 N88-1782 N88-1782 Pariable sweep wings p 292 N88-1762 Pariable sweep wings p 291 N88-1762 Passex Corp., Alexandria, Va. Helicopter external vision requirements and visuadisplay characteristics: A report/bibliography, revision. [AD-A187075] p 291 N88-1764 Pariable sweep p 292 N88-1801 Pariable sweep p 293 N88-1668 Pederal Aviation Administration, Oklahoma City, Okla Sudden in-flight incapacitation in general aviation p 283 N88-1668 Pederal Aviation Administration, Seattle, Wash. Airworthiness considerations p 285 N88-1763 Pariable for driving single or twin counterrotating far on propfan engines p 303 N88-1767 Piorida Univ., Gainesville. A jet in a crossflow [NASA-CR-182469] p 277 N88-1667 Piorida Univ., Gainesville. A jet in a crossflow [NASA-CR-182469] p 277 N88-1667 Piorida Univ., Gainesville, P 273 A88-2643 P 274 N88-1766 P 275 A88-2643 P 275 A88-2643 P 276 P 277 N88-1766 P 277	[NASA-CR-182475]	•	
Variable sweep wings p 292 N88-1782 Environmental Research Inst. of Michigan, Ann Arbo Radar backscatter from airports and surroundin areas p 321 N88-1762 Essex Corp., Alexandria, Va. Helicopter external vision requirements and visus display characteristics: A report/bibliography, revision. [AD-A187075] p 291 N88-1764 F Fansteel Wellman Dynamics, Creston, Iowa. Durability and damage tolerance of aluminum casting [AD-A186444] p 322 N88-1801 Federal Aviation Administration, Oklahoma City, Okla Sudden in-flight incapacitation in general aviation [AD-A187044] P 328 N88-1668 Federal Aviation Administration, Seattle, Wash. Airworthiness considerations p 285 N88-1763 Flat Aviazione S.p.A., Turin (Italy). Analysis of possible transmission arrangement applicable for driving single or twin counterrotating fan on propfan engines p 303 N88-1767 Florida Univ., Galnesville. A jet in a crossflow [NASA-CR-182469] p 277 N88-1667 Flow Research, Inc., Kent, Wash. Entropy and vorticity corrections for transonic flows p 273 A88-2643 G General Electric Co., Cincinnati, Ohio. Aerodynamic performance of a scale-mode counter-rotating unducted fan p 302 N88-1766 General Motors Corp., Indianapolis, Ind. Gear systems for advanced turboprops p 302 N88-1766 Grumman Aerospace Corp., Bethpage, N.Y. An aerodynamic comparison of blown and mechanica high lift airfoils p 281 N88-1760 H Harvard Univ., Cambridge, Mass. Midlatitude CiO below 22 km attitude - Measurement	Development of vertical takeoff	aircraft	with turboje
Environmental Research Inst. of Michigan, Ann Arbo Radar backscatter from airports and surroundin areas p321 N88-1762 Essex Corp., Alexandria, Va. Helicopter external vision requirements and visus display characteristics: A report/bibliography, revision . [AD-A187075] p291 N88-1764 F Fansteel Wellman Dynamics, Creston, Iowa. Durability and damage tolerance of aluminum casting [AD-A18704] p322 N88-1801 Federal Aviation Administration, Oklahoma City, Okis Sudden in-flight incapacitation in general aviation [AD-A187044] p285 N88-1668 Federal Aviation Administration, Seattle, Wash. Airworthiness considerations p285 N88-1763 Flat Aviazione S.p.A., Turin (Italy). Analysis of possible transmission arrangement applicable for driving single or twin counterrotating fan on propfan engines p303 N88-1767 Florida Univ., Galnesville. A jet in a crossflow [NASA-CR-182469] p277 N88-1667 Flow Research, Inc., Kent, Wash. Entropy and vorticity corrections for transonic flows p273 A88-2643 G General Electric Co., Cincinnati, Ohio. Aerodynamic performance of a scale-mode counter-rotating unducted fan p302 N88-1766 General Motors Corp., Indianapolis, Ind. Gear systems for advanced turboprops p302 N88-1766 Grumman Aerospace Corp., Bethpage, N.Y. An aerodynamic comparison of blown and mechanica high lift airfoils p281 N88-1760 H Harvard Univ., Cambridge, Mass. Midlatitude CiO below 22 km attitude - Measurement	•		
areas p 321 N88-1762 Essex Corp., Alexandria, Va. Helicopter external vision requirements and visus display characteristics: A report/bibliography, revision [AD-A187075] Fansteel Wellman Dynamics, Creston, Iowa. Durability and damage tolerance of aluminum casting [AD-A186444] p 322 N88-1801 Federal Aviation Administration, Oklahoma City, Okla Sudden in-flight incapacitation in general aviation [AD-A187044] p 283 N88-1668 Federal Aviation Administration, Seattle, Wash. Aiworthiness considerations p 285 N88-1763 Flat Aviazione S.p.A., Turin (Italy). Analysis of possible transmission arrangement applicable for driving single or twin counterrotating far on propfan engines p 303 N88-1767 Florida Univ., Gainesville. A jet in a crossflow [NASA-CR-182469] p 277 N88-1667 Flow Research, Inc., Kent, Wash. Entropy and vorticity corrections for transonic flows p 273 A88-2643 G General Electric Co., Cincinnati, Ohio. Aerodynamic performance of a scale-mode counter-rotating unducted fan p 302 N88-1766 General Motors Corp., Indianapolis, Ind. Gear systems for advanced turboprops p 302 N88-1766 Grumman Aerospace Corp., Bethpage, N.Y. An aerodynamic comparison of blown and mechanica high lift airfoils p 281 N88-1760 H Harvard Univ., Cambridge, Mass. Midlatitude CiO below 22 km attitude - Measurement	Environmental Research Inst. of Mi	chigan,	Ann Arbo
Helicopter external vision requirements and visual display characteristics: A report/bibliography, revision (AD-A187075) F Fansteel Wellman Dynamics, Creston, Iowa. Durability and damage tolerance of aluminum casting (AD-A186444) Page Nash 1801 Federal Aviation Administration, Oklahoma City, Okia Sudden in-flight incapacitation in general aviation (AD-A187044) Federal Aviation Administration, Seattle, Wash. Airworthiness considerations Flat Aviazione S.p.A., Turin (Italy). Analysis of possible transmission arrangement applicable for driving single or twin counterrotating fan on propfan engines Florida Univ., Gainesville. A jet in a crossflow [NASA-CR-182469] Flow Research, Inc., Kent, Wash. Entropy and vorticity corrections for transonic flows p 273 A88-2643 G General Electric Co., Cincinnati, Ohio. Aerodynamic performance of a scale-mode counter-rotating unducted fan p 302 N88-1766 General Motors Corp., Indianapolis, Ind. Gear systems for advanced turboprops p 302 N88-1766 Grumman Aerospace Corp., Bethpage, N.Y. An aerodynamic comparison of blown and mechanica high lift airfoils p 281 N88-1760 H Harvard Univ., Cambridge, Mass. Midlatitude CiO below 22 km attitude - Measurement	Radar backscatter from airport areas	s and s	surroundin
display characteristics: A report/bibliography, revision. [AD-A187075] F Fansteel Wellman Dynamics, Creston, Iowa. Durability and damage tolerance of aluminum casting [AD-A186444] Federal Aviation Administration, Oklahoma City, Okli. Sudden in-flight incapacitation in general aviation [AD-A187044] Federal Aviation Administration, Seattle, Wash. Airworthiness considerations p 285 N88-1763 Federal Aviation Administration, Seattle, Wash. Airworthiness considerations p 285 N88-1763 Flat Aviazione S.p.A., Turin (Italy). Analysis of possible transmission arrangement applicable for driving single or twin counterrotating far on propfan engines p 303 N88-1767 Florida Univ., Gainesville. A jet in a crossflow [NASA-CR-182469] p 277 N88-1667 Flow Research, Inc., Kent, Wash. Entropy and vorticity corrections for transonic flows p 273 A88-2643 G General Electric Co., Cincinnati, Ohio. Aerodynamic performance of a scale-mode counter-rotating unducted fan p 302 N88-1766 General Motors Corp., Indianapolis, Ind. Gear systems for advanced turtoprops p 302 N88-1766 Grumman Aerospace Corp., Bethpage, N.Y. An aerodynamic comparison of blown and mechanica high lift airfoils p 281 N88-1760 H Harvard Univ., Cambridge, Mass. Midlatitude CiO below 22 km attitude - Measurement	Essex Corp., Alexandria, Va. Helicopter external vision requ	irements	s and visua
Fansteel Wellman Dynamics, Creston, Iowa. Durability and damage tolerance of aluminum casting [AD-A186444] p 322 N88-1801 Federal Aviation Administration, Oklahoma City, Okla Sudden in-flight incapacitation in general aviation [AD-A187044] p 283 N88-1668 Federal Aviation Administration, Seattle, Wash. Airworthiness considerations p 285 N88-1763 Fiat Aviazione S.p.A., Turin (Italy). Analysis of possible transmission arrangement applicable for driving single or twin counterrotating fan on propfan engines p 303 N88-1767 Florida Univ., Galnesville. A jet in a crossflow [NASA-CR-182469] p 277 N88-1667 Flow Research, Inc., Kent, Wash. Entropy and vorticity corrections for transonic flows p 273 A88-2643 G General Electric Co., Cincinnati, Ohio. Aerodynamic performance of a scale-mode counter-rotating unducted fan p 302 N88-1766 General Motors Corp., Indianapolis, Ind. Gear systems for advanced turboprops p 302 N88-1766 Grumman Aerospace Corp., Bethpage, N.Y. An aerodynamic comparison of blown and mechanica high lift airfoils p 281 N88-1760 H Harvard Univ., Cambridge, Mass. Midlatitude CiO below 22 km attitude - Measurement	display characteristics: A report/bibl	iography	, revision
Durability and damage tolerance of aluminum casting [AD-A186444] p 9 22 N88-1801 Federal Aviation Administration, Oktahoma City, Okia Sudden in-flight incapacitation in general aviation p 283 N88-1668 Federal Aviation Administration, Seattle, Wash. Airworthiness considerations p 285 N88-1763 Federal Aviation S.p.A., Turin (Italy). Analysis of possible transmission arrangement applicable for driving single or twin counterrotating fan on propfan engines p 303 N88-1767 Florida Univ., Gainesville. A jet in a crossflow [NASA-CR-182469] p 277 N88-1667 Flow Research, Inc., Kent, Wash. Entropy and vorticity corrections for transonic flows p 273 A88-2643 G General Electric Co., Cincinnati, Ohio. Aerodynamic performance of a scale-mode counter-rotating unducted fan p 302 N88-1766 General Motors Corp., Indianapolis, Ind. Gear systems for advanced turboprops p 302 N88-1766 Grumman Aerospace Corp., Bethpage, N.Y. An aerodynamic comparison of blown and mechanica high lift airfoils p 281 N88-1760 H Harvard Univ., Cambridge, Mass. Midlatitude CiO below 22 km attitude - Measurement	F		
[AD-A186444] p 322 N88-1801 Federal Aviation Administration, Oklahoma City, Okis Sudden in-flight incapacitation in general aviation [AD-A187044] p 283 N88-1668 Federal Aviation Administration, Seattle, Wash. Airworthiness considerations p 285 N88-1763 Flat Aviazione S.p.A., Turin (Italy). Analysis of possible transmission arrangement applicable for driving single or twin counterrotating fan on propfan engines p 303 N88-1767 Florida Univ., Gainesville. A jet in a crossflow [NASA-CR-182469] p 277 N88-1667 Flow Research, Inc., Kent, Wash. Entropy and vorticity corrections for transonic flows p 273 A88-2643 G General Electric Co., Cincinnati, Ohio. Aerodynamic performance of a scale-mode counter-rotating unducted fan p 302 N88-1766 General Motors Corp., Indianapolis, Ind. Gear systems for advanced turboprops p 302 N88-1766 Grumman Aerospace Corp., Bethpage, N.Y. An aerodynamic comparison of blown and mechanics high lift airfoils p 281 N88-1760 H Harvard Univ., Cambridge, Mass. Midlatitude CiO below 22 km attitude - Measurement			um castino
Sudden in-flight incapacitation in general aviation [AD-A187044] p 283 N88-1668 Federal Aviation Administration, Seattle, Wash. Airworthiness considerations p 285 N88-1763 Flat Aviazione S.p.A., Turin (Italy). Analysis of possible transmission arrangement applicable for driving single or twin counterrotating fan on propfan engines p 303 N88-1767 Florida Univ., Galnesville. A jet in a crossflow [NASA-CR-182469] p 277 N88-1667 Flow Research, Inc., Kent, Wash. Entropy and vorticity corrections for transonic flows p 273 A88-2643 G General Electric Co., Cincinnati, Ohio. Aerodynamic performance of a scale-mode counter-rotating unducted fan p 302 N88-1766 General Motors Corp., Indianapolis, Ind. Gear systems for advanced turboprops p 302 N88-1766 Grumman Aerospace Corp., Bethpage, N.Y. An aerodynamic comparison of blown and mechanica high lift airfoils p 281 N88-1760 H Harvard Univ., Cambridge, Mass. Midlatitude CiO below 22 km attitude - Measurement	[AD-A186444]	p 322	N88-1801
Federal Aviation Administration, Seattle, Wash. Airworthiness considerations p 285 N88-1763 Flat Aviazione S.p.A., Turin (Italy). Analysis of possible transmission arrangement applicable for driving single or twin counterrotating fan on propfan engines p 303 N88-1767 Florida Univ., Gainesville. A jet in a crossflow [NASA-CR-182469] p 277 N88-1667 Flow Research, Inc., Kent, Wash. Entropy and vorticity corrections for transonic flows p 273 A88-2643 G General Electric Co., Cincinnati, Ohio. Aerodynamic performance of a scale-mode counter-rotating unducted fan p 302 N88-1766 General Motors Corp., Indianapolis, Ind. Gear systems for advanced turboprops p 302 N88-1766 Grumman Aerospace Corp., Bethpage, N.Y. An aerodynamic comparison of blown and mechanica high lift airfoils p 281 N88-1760 H Harvard Univ., Cambridge, Mass. Midlatitude CiO below 22 km attitude - Measurement	Sudden in-flight incapacitation in g	eneral a	viation
Airworthiness considerations p 285 N88-1763 Flat Avlazione S.p.A., Turin (Italy). Analysis of possible transmission arrangement applicable for driving single or twin counterrotating fan on propfan engines p 303 N88-1767 Florida Univ., Galnesville. A jet in a crossflow [NASA-CR-182469] p 277 N88-1667 Flow Research, Inc., Kent, Wash. Entropy and vorticity corrections for transonic flows p 273 A88-2643 G General Electric Co., Cincinnati, Ohio. Aerodynamic performance of a scale-mode counter-rotating unducted fan p 302 N88-1766 General Motors Corp., Indianapolis, Ind. Gear systems for advanced turboprops p 302 N88-1766 Grumman Aerospace Corp., Bethpage, N.Y. An aerodynamic comparison of blown and mechanica high lift airfoils p 281 N88-1760 H Harvard Univ., Cambridge, Mass. Midlatitude CiO below 22 km attitude - Measurement		ttle. Wa	
Analysis of possible transmission arrangement applicable for driving single or twin counterrotating fan on propfan engines p 303 N88-1767 Florida Univ., Galnesville. A jet in a crossflow [NASA-CR-182469] p 277 N88-1667 Flow Research, Inc., Kent, Wash. Entropy and vorticity corrections for transonic flows p 273 A88-2643 G General Electric Co., Cincinnati, Ohio. Aerodynamic performance of a scale-mode counter-rotating unducted fan p 302 N88-1766 General Motors Corp., Indianapolis, Ind. Gear systems for advanced turboprops p 302 N88-1766 Grumman Aerospace Corp., Bethpage, N.Y. An aerodynamic comparison of blown and mechanica high lift airfoils p 281 N88-1760 H Harvard Univ., Cambridge, Mass. Midlatitude CiO below 22 km attitude - Measurement	Airworthiness considerations	p 285	
on propfan engines p 303 N88-1767 Florida Univ., Gainesville. A jet in a crossflow [NASA-CR-182469] p 277 N88-1667 Flow Research, Inc., Kent, Wash. Entropy and vorticity corrections for transonic flows p 273 A88-2643 G General Electric Co., Cincinnati, Ohio. Aerodynamic performance of a scale-mode counter-rotating unducted fan p 302 N88-1766 General Motors Corp., Indianapolis, Ind. Gear systems for advanced turboprops p 302 N88-1766 Grumman Aerospace Corp., Bethpage, N.Y. An aerodynamic comparison of blown and mechanica high lift airfoils p 281 N88-1760 H Harvard Univ., Cambridge, Mass. Midlatitude CiO below 22 km attitude - Measurement	Analysis of possible transmiss		rrangement
A jet in a crossflow [NASA-CR-182469] p 277 N88-1667 Flow Research, Inc., Kent, Wash. Entropy and vorticity corrections for transonic flows p 273 A88-2643 G General Electric Co., Cincinnati, Ohio. Aerodynamic performance of a scale-mode counter-rotating unducted fan p 302 N88-1766 General Motors Corp., Indianapolis, Ind. Gear systems for advanced turboprops p 302 N88-1766 Grumman Aerospace Corp., Bethpage, N.Y. An aerodynamic comparison of blown and mechanics high lift airfoils p 281 N88-1760 H Harvard Univ., Cambridge, Mass. Midlatitude CiO below 22 km attitude - Measurement	on propfan engines		
General Electric Co., Cincinnati, Ohio. Aerodynamic performance of a scale-mode counter-rotating unducted fan p 302 N88-1766 General Motors Corp., Indianapolis, Ind. Gear systems for advanced turboprops p 302 N88-1766 Grumman Aerospace Corp., Bethpage, N.Y. An aerodynamic comparison of blown and mechanica high lift airfoils p 281 N88-1760 H Harvard Univ., Cambridge, Mass. Midlatitude CIO below 22 km attitude - Measurement	A jet in a crossflow	p 277	N88-1667
General Electric Co., Cincinnati, Ohio. Aerodynamic performance of a scale-mode counter-rotating unducted fan p 302 N88-1766 General Motors Corp., Indianapolis, Ind. Gear systems for advanced turboprops p 302 N88-1766 Grumman Aerospace Corp., Bethpage, N.Y. An aerodynamic comparison of blown and mechanica high lift airfolts p 281 N88-1760 H Harvard Univ., Cambridge, Mass. Midlatitude CIO below 22 km altitude - Measurement	Flow Research, Inc., Kent, Wash. Entropy and vorticity corrections to	r transo	nic flows
General Electric Co., Cincinnati, Ohio. Aerodynamic performance of a scale-mode counter-rotating unducted fan p 302 N88-1766 General Motors Corp., Indianapolis, Ind. Gear systems for advanced turboprops p 302 N88-1766 Grumman Aerospace Corp., Bethpage, N.Y. An aerodynamic comparison of blown and mechanica high lift airfoils p 281 N88-1760 H Harvard Univ., Cambridge, Mass. Midlatitude CIO below 22 km altitude - Measurement		p 273	A88-2643
Aerodynamic performance of a scale-mode counter-rotating unducted fan p 302 N88-1766 General Motors Corp., Indianapolis, Ind. Gear systems for advanced turboprops p 302 N88-1766 Grumman Aerospace Corp., Bethpage, N.Y. An aerodynamic comparison of blown and mechanics high lift airfoils p 281 N88-1760 H Harvard Univ., Cambridge, Mass. Midlatitude CIO below 22 km attitude - Measurement			
General Motors Corp., Indianapolis, Ind. Gear systems for advanced turboprops p 302 N88-1766 Grumman Aerospace Corp., Bethpage, N.Y. An aerodynamic comparison of blown and mechanica high lift airfoils p 281 N88-1760 H Harvard Univ., Cambridge, Mass. Midlatitude CIO below 22 km altitude - Measurement			scale-mode
p 302 N88-1766 Grumman Aerospace Corp., Bethpage, N.Y. An aerodynamic comparison of blown and mechanica high lift airfoils p 281 N88-1760 H Harvard Univ., Cambridge, Mass. Midlatitude CiO below 22 km attitude - Measurement	General Motors Corp., Indianapolis, I	nd.	N88-1766
An aerodynamic comparison of blown and mechanica high lift airfoils p 281 N88-1760 H Harvard Univ., Cambridge, Mass. Midlatitude CIO below 22 km altitude - Measurement		p 302	N88-1766
Harvard Univ., Cambridge, Mass. Midlatitude CIO below 22 km altitude - Measurement	An aerodynamic comparison of blo	wn and	
Midlatitude CIO below 22 km altitude - Measurement	H,		
with a new allicalityonic pismiment	Harvard Univ., Cambridge, Mass. Midlatitude CIO below 22 km altitu with a new aircraft-borne instrument	ide - Me	asurement

talt ed 66 m 88 ne 63 nic 14 ce nd 15 nc 01 ic 17 jet 22 23 or. 1g 23 al A 41 gs 13 a. 32 36 ts 35 el, 66 37 al)6

p 323 A88-27456 Hitchcock Industries, Inc., Minneapolis, Minn. Durability and damage tolerance of aluminum castings [AD-A186444] p 322 N88-18013

	CORPORATE SOUR
1	Purposes and tasks of high-performance air
Invested Call of Science and Technology Lander	construction [MBB/LK-S/PUB/296] p 293 N88-17
Imperial Coll. of Science and Technology, London (England).	Flight testing of fighter aircraft
Burst vortex/boundary layer interaction [NASA-CR-182510] p 279 N88-17583	[MBB/LKE-62/S/PUB/292] p 293 N88-17 Active control technology with adaptive control con
Integrated Systems, Inc., Palo Alto, Calif. Aircraft flight test trajectory control	in the aircraft construction [MBB/LKE-294/S/PUB/295] p 309 N88-17
[NASA-CR-179428] p 308 N88-16707 International Technical Associates Ltd., Drexel Hill, Pa.	Helicopter activities in Germany
Rotorcraft weight trends in light of structural material	[MBB-UD-487/86] p 294 N88-17 Testing of a tail rotor system in a fiber composite
characteristics [AD-A186576] p 291 N88-17642	of construction [MBB-UD-472/86] p 294 N88-17
K	Rotor SAR (ROSAR): A new high-resolution all-wea
	vision method for helicopters [MBB-UA-1046/87] p 321 N88-17
Kansas Univ. Center for Research, Inc., Lawrence. Calculation of aerodynamic characteristics of airplane	Aerodynamic aspects of the configurational systematic and a dispenser
configurations at high angles of attack [NASA-CR-182541] p 282 N88-17612	[MBB-UA-1047/87] p 294 N88-17 Motoren- und Turbinen-Union Muenchen G.m.b.H.
Karlsruhe Univ. (West Germany). Wind tunnel modeling techniques	(West Germany).
[KU-SFB-210/E/33] p 310 N88-16711	An integrated aero/mechanical performance approto high technology turbine design p 301 N88-17
Kuhn (Richard E.), Newport News, Va. Recommendations for ground effects research for	Al
V/STOL and STOL aircraft and associated equipment for large scale testing	N .
[NASA-CR-177429] p 279 N88-17585	National Aeronautics and Space Administration, Washington, D.C.
L	NASA/Army Rotorcraft Technology. Volume
Lockheed-Georgia Co., Marietta.	Aerodynamics, and Dynamics and Aeroelasticity [NASA-CP-2495-VOL-1] p 269 N88-16
Evaluation of a research circulation control airfoil using Navier-Stokes methods p 279 N88-17591	NASA/Army Rotorcraft Technology. Volume 2: Mater and Structures, Propulsion and Drive Systems, Fit
Development of circulation control technology for powered-lift STOL aircraft p 291 N88-17608	Dynamics and Control, and Acoustics [NASA-CP-2495-VOL-2] p 270 N88-16
Lucas Aerospace Ltd., Birmingham (England). Pumping systems and flow interfaces for rapid response	NASA/Army Rotorcraft Technology. Volume 3: Syste Integration, Research Aircraft, and Industry
electronic reheat controls p 302 N88-17665	[NASA-CP-2495-VOL-3] p 270 N88-16 National Aeronautics and Space Administration. An
M	Research Center, Moffett Field, Calif. European/U.S. cooperative flight testing - Some f
	for thought p 269 A88-26
Maryland Univ., College Park. Flap-lag-torsion aeroelastic stability of a circulation	Elliptic generation of composite three-dimensional g about realistic aircraft p 287 A88-26
control rotor in forward flight p 280 N88-17600 Massachusetts Inst. of Tech., Lexington.	Theoretical analysis of aircraft afterbody flow p 275 A88-27
Status of FAA terminal Doppler weather radar programs p 321 N88-17632	Robust adaptive flight-path reconstruction technique nonsteady longitudinal flight test maneuvers
McDonnell-Douglas Helicopter Co., Mesa, Ariz. McDonnell Douglas Helicopter Company independent	p 307 A88-28 Approach trajectory guidance for maxim
research and development: Preparing for the future	concealment p 307 A88-28 Rotorcraft aeroelastic stability p 307 N88-16
p 289 N88-16660 Mesoscale Environmental Simulations, Inc., Hampton,	Helicopter mathematical models and control development for handling qualities research
Va. NASA wind shear model: Summary of model analyses	p 307 N88-16
ρ 323 N88-17617 Messerschmitt-Boelkow-Blohm G.m.b.H., Bremen	development p 308 N88-16
(West Germany).	A decade of aeroacoustic research at NASA Ar Research Center p 328 N88-16
Moisture plotting of carbon fiber composite in flight operations	Aeroacoustic research programs at the Army Avia Research and Technology Activity p 329 N88-16
[MBB-UT-119/87] p 313 N88-16823 The intelligent wing. Aerodynamic development direction	Status of NASA/Army rotorcraft research development piloted flight simulation
for future passenger aircraft [MBB-UT-006/87] p 293 N88-17848	p 310 N88-16 System analysis in rotorcraft design: The past deca
The application of modern aeroelastic developments for future projects	p 289 N88-16 Rotorcraft flight research with emphasis on ro
[MBB-UT-007/87] p 294 N88-17850	systems p 289 N88-16 A flight-test methodology for identification of
Messerschmitt-Boelkow-Blohm G.m.b.H., Hamburg (West Germany).	aerodynamic model for a V/STOL aircraft
Light Electronic Control System (LECOS): A proposal for a interconnected error-tolerant, optoelectronic control	[NASA-TM-100067] p 290 N88-16 Accuracies of southwell and force/stiffness method
system [MBB-UT-004/87] p 309 N88-17836	the prediction of buckling strength of hypersonic airc wing tubular panels
Airbus, the successful European cooperation [MBB-UT-005/87] p 270 N88-17847	[NASA-TM-88295] p 320 N88-17 General Rotorcraft Aeromechanical Stability Progr
Product planning in civil aircraft construction	(GRASP) version 1.03: User's manual [NASA-TM-100043] p 328 N88-17
[MBB-UT-002/87] p 270 N88-17849 Messerschmitt-Boelkow-Blohm G.m.b.H., Ottobrunn	Application of empirical and linear methods to VST
(West Germany). Reduction of time delays in Runge-Kutta integration	powered-lift aerodynamics [NASA-TM-100048] p 278 N88-17
methods	Proceedings of the Circulation-Control Worksh 1986
Research and development. Technical-scientific	[NASA-CP-2432] p 279 N88-17 Navier-Stokes computations for circulation cor
publications (1956-1987): Retrospective view and prospects. Jubilee edition on the occasion of the 75th	airfoils p 279 N88-17 On the effect of leading edge blowing on circula
birthday of DiplEngr. DrEngr. E. H. Ludwig Boelkow [ISSN-0931-9751] p 321 N88-17819	control airfoil aerodynamics p 280 N88-17 Pressure distributions and oil-flow patterns for a sw
•	

helicopter rotor

Special flight mechanical features of the bearingless

[AIAA PAPER 88-0049]

[AIAA PAPER 88-0273]

engine

equilibrium or finite rate chemistry

transmission noise at the source

[NASA-TM-100797]

Small gas turbine engine technology

The convertible engine: A dual-mode

NASA's rotorcraft icing research program

Results of NASA/Army transmission research

Rotorcraft flight-propulsion control integration

CFD validation experiments for internal flows

Identification and proposed control of helicopter

p 275 A88-27715

p 275 A88-27717

p 298 N88-16638

p 298 N88-16639

p 283 N88-16641

p 307 N88-16643

p 308 N88-16647

p 278 N88-16679

N88-16637

propulsion

N88-16640

p 298

p 299

Numerical simulation of hypersonic inlet flows with

Technology developments for a compound cycle

p 318 N88-16956

p 321 N88-17871

p 303 N88-17675

p 311 N88-17687

p 290 N88-16696

p 311 N88-17687

p 277 N88-16671

flight evaluation Impact and promise of NASA aeropropulsion Nebraska Univ., Lincoln. potential an . technology Comparison of UNL laser imaging and sizing system upper-surface-blowing/circulation-control-wing concept p 299 N88-16698 p 291 N88-17609 and a phase/Doppler system for analyzing sprays from Lewis materials research and technology: An overview a NASA nozzle Information transfer in the National Airspace System p 330 N88-16699 p 330 N88-17634 [NASA-CR-182437] High temperature polymer matrix composites New Mexico Univ., Albuquerque. Evaluation of bituminous materials used in pavement Are windshear training aid recommendations appropriate p 313 N88-16700 for other than large jet transports? Pilot procedures: Shear Creep and fatique research efforts on advanced recycling projects at Tyndall, MacDill, and Hurlburt Air p 285 N88-17635 p 318 N88-16701 X-29A forward-swept-wing flight research program Force Bases Self-lubricating coatings for high-temperature [AD-A188068] status applications p 313 N88-16703 [NASA-TM-100413] p 292 N88-17644 Norges Tekniske Hoegskole, Trondheim. Numerical modeling of multidimensional flow in seals Transport delay compensation for computer-generated Radial compressor design using an Euler solver and bearings used in rotating machinery
[NASA-TM-100779] p 319 N88-16988 imagery systems [NASA-TM-100084] Northeastern Univ., Boston, Mass p 292 N88-17645 Using frequency-domain methods to identify XV-15 Dynamic analysis of multimesh-gear helicopter Radar returns from ground clutter in vicinity of airports transmissions aeroelastic modes p 321 N88-17624 [NASA-TP-2789] Northrop Corp., Hawthorne, Calif. [NASA-TM-100033] p 292 N88-17646 p 319 N88-17045 Experimental evaluation of a translating nozzle sidewall Durability and damage tolerance of aluminum castings [AD-A186444] p 322 N88-18013 National Aeronautics and Space Administration. Langley Research Center, Hampton, Va. p 301 N88-17656 radia) turbine NASA-Langley Research Center shapes tomorrow Ceramic bearings for use in gas turbine engines through innovative research p 310 A88-25750 [NASA-TM-100288] p 322 N88-18007 O A summary of recent NASA/Army contributions to Vibration and flutter characteristics of the SR7L rotorcraft vibrations and structural dynamics technology large-scale propfan [NASA-TM-100272] Oak Ridge Gaseous Diffusion Plant, Tenn. p 307 N88-16628 p 322 N88-18036 Review of fatigue and fracture research at NASA Langley Ultra-low frequency vibration data acquisition concerns National Aerospace Lab., Amsterdam (Netherlands). in operating flight simulators p 318 N88-16633 Research Center Verification of obstacle accountability areas using a [DE88-004795] Helicopter crashworthiness research program
p 283 N88-16635 simple mathematical model. Part 1: Description of general Oak Ridge National Lab., Tenn.
Analysis of tasks for dynamic man/machine load model and application for a specific case Recent Langley helicopter acoustics contributions p 283 N88-16683 [NLR-TR-85069-U] balancing in advanced helicopters p 328 N88-16646 The wind tunnel as a yardstick for aircraft design [DE88-003735] Avionics systems integration technology [NLR-MP-85032-U] p 310 N88-16712 Ultra-low frequency vibration data acquisition concerns p 296 N88-16654 National Aerospace Lab., Tokyo (Japan). in operating flight simulators Computational unsteady aerodynamics for aeroelastic Theoretical analysis of aircraft afterbody flow [DE88-004795] analysis p 275 A88-27884 Office National d'Etudes et de Recherches [NASA-TM-100523] p 276 N88-16668 Experimental study on the effect of fiber orientation on Aerospatiales, Paris (France).

Effect of a model support strut on measurement of Mach number effects on transonic aeroelastic forces flutter characteristics of high-aspect-ratio transport wing and flutter characteristics p 308 N88-16708 [NASA-TM-100547] p 277 N88-16675 [NAL-TR-936] aerodynamic longitudinal and lateral coefficients Loads and aeroelasticity division research and technology accomplishments for FY 1987 and plans for p 277 N88-16670 Effect of an optimized fiber orientation on transonic IPB87-1702881 flutter characteristics of a high-aspect-ratio composite Testing of a schematic transport plane model in several European windtunnels p 278 N88-16680 [NAL-TR-930] p 308 N88-16709 [NASA-TM-100534] [PB87-170270] Measured and calculated acoustic attenuation rates of Mechanical properties of carbon fiber reinforced Description of tests run in the T2 cryogenic wind tuned resonator arrays for two surface impedance thermoplastic matrix composites distribution models with flow [NAL-TR-934] p 313 N88-16827 p 277 N88-16672 [PB87-170296] [NASA-TP-2766] p 329 N88-17440 Turbine flow meter with optical fiber pick-up Analysis of highspeed propellers aerodynamics Annoyance caused by advanced turboprop aircraft p 319 N88-17009 [NAL-TR-923] p 302 N88-17669 flyover noise: Single-rotating propeller configuration Study on a unidirectional ring laser gyro. Part 1: Ohio State Univ., Columbus. p 329 N88-17441 [NASA-TP-2782] Proposition of the principle and studies on the A study of the TCAS 2 collision avoidance system transonic-small-disturbance wina desian components mounted on a Boeing 737 aircraft nethodology [NAL-TR-933] p 319 N88-17010 [NASA-CR-182457] p 286 N88-16687 p 282 N88-17614 [NASA-TP-2806] Aerodynamic and acoustic characteristics of an Durability and damage tolerance of aluminum castings Supersonic aerodynamics of delta wings advanced propeller under take-off and landing p 282 N88-17615 [AD-A186444] p 322 N88-18013 conditions Oxford Univ. (England). Airborne Wind Shear Detection and Warning Systems: (NAL-TR-935) p 329 N88-17453 Wake interaction effects on the transition process on First Combined Manufacturers' and Technologists' Lifting-surface theory of oscillating propellers in turbine blades Conference p 283 N88-17616 compressible flow [AD-A188020] p 322 N88-17962 [NASA-CP-10006] p 282 N88-17613 [NAI-TR-943] Response of wind shear warning systems to turbulence p 283 N88-17618 National Center for Atmospheric Research, Boulder, with implication of nuisance alerts Investigation of the influence of wind shear on the advanced low-level windshear alert system aerodynamic characteristics of aircraft using operational demonstration results, Summer, 1987, Denver Stapleton International Airport p 284 N88-17633 vortex-lattice method p 284 N88-17619 Pennsylvania State Univ., University Park. Stanteton International Airport Windshear warning aerospatiale approach p 284 N88-17620 National Research Council of Canada, Ottawa laver interactions [AD-A187250] Airborne Doppler radar technology for wind shear (Ontario). etection p 284 N88-17622 Simulator investigation of wind shear recovery chniques p 284 N88-17630 A research program on the aerodynamics of a highly detection p 301 N88-17655 loaded turbine stage techniques National Transportation Safety Board, Washington, D. compressor An application of eigenspace methods to symmetric C. flutter suppression [NASA-CR-181618] Annual review of aircraft accident data: US air carrier (Quebec). p 309 N88-17684 operations calendar year 1985 National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

An explicit Runge-Kutta method for unsteady p 285 N88-17638 [PB88-135843] mixed-flow gas generator turbine Aircraft accident/incident, Newark, New Jersey, Princeton Univ., N. J. November 13, 1986 rotor/stator interaction [NTSB/AAR-87/04-SUMM] p 285 N88-17639

Naval Postgraduate School, Monterey, Calif.

[AD-A186878]

Hawk helicopters

[AD-A186552]

[AD-A187029]

Bethesda, Md.

surface blowing

Velocimetry): Mean flow studies

suppleme.ntary thrust deflection

A piloted simulation investigating handling qualities and performance requirements of a single-pilot helicopter in

Optimizing HF antenna systems on the Dolphin and Sea

Flow field measurements using hotwire anemometry

Investigation of dynamic stall using LDV (Laser Doppler

Analysis of a fixed-pitch X-wing rotor employing lower

Fixed wing CCW aerodynamics with and without

p 290 N88-16689

p 318 N88-16901

p 318 N88-16951

p 282 N88-17611

p 280 N88-17602

p 281 N88-17607

air combat employing a helmet-driven turreted gun

Naval Ship Research and Development Center,

Experimental research on swept shock wave/boundary p 322 N88-17957 Pratt and Whitney Aircraft, West Palm Beach, Fla. Design and development of an advanced F100 p 303 N88-17678 Pratt and Whitney Aircraft of Canada Ltd., Longueuil

Design and aerodynamic performance of a small p 301 N88-17662

Solution of the three-dimensional Navier-Stokes equations for transonic flow using a multigrid method p 278 N88-17579

Purdue Univ., West Lafayette, Ind.

Transient engine performance with water ingestion p 297 A88-27295

Sound transmission through the walls of light aircraft: An investigation of structure-borne noise in a Handley Page 137 Jetstream 3 aircraft [NASA-CR-182509] p 330 N88-18376

Rolls-Royce Ltd., Bristol (England).

Optimisation of military compressors for weight and p 300 N88-17649 volume Advanced techniques employed in blade cooling p 301 N88-17659 research Development of a plenum chamber burner system for p 302 N88-17664 an advanced VTOL engine

Rolls-Royce Ltd., Derby (England).

Rolls-Royce Ltd., Derby (England).

Development of a shell system for DS moulds at RR precision casting facility p 318 N88-16893 PNR-904001

Royal Aircraft Establishment, Farnborough (England). The aerodynamic performance of propellers suitable for unmanned aircraft (UMAs) p 276 N88-16667 [RAE-TM-AERO-2094]

An examination of the impact of potential advances in component technology for future military engines

p 300 N88-17650 Design and test of a high blade speed, high work capacity p 301 N88-17658

Shock and Vibration Information Center (Defense),

Washington, D. C.

The Shock and Vibration Bulletin. Part 4: Structural Dynamics and Modal Test and Analysis [AD-A186751] p 320 N88-17062

Sikorsky Aircraft, Stratford, Conn.

Recent Sikorsky R and D progress

p 289 N88-16659 The impact of circulation control on rotary aircraft p 308 N88-17601 controls systems

Prediction of aeroelastic response of a model X-wing p 281 N88-17603 rotor

X-wing potential for Navy applications

p 281 N88-17604

Societe Nationale d'Etudes et de Construction de Moteurs d'Aviation, Moissy-Cramayel (France).

Specification of an engine and its components starting from a consideration of aircraft missions p 300 N88-17651

Design and testing of a front stage for an advanced p 303 N88-17679 high pressure compressor Computation of secondary flows in an axial multistage p 304 N88-17681 compressor

Societe Turbomeca, Bordes (France).

The advantage of variable geometry for turbine engines p 300 N88-17653 at low power

Stanford Univ., Calif.

Optimal landing of a helicopter in autorotation

p 288 A88-28251

Control of vortical separation on conical bodies p 278 N88-17580

The further development of circulation control airfoils

p 279 N88-17594

Frequency-response identification of XV-15 tilt-rotor p 292 N88-17643

A computational study of thrust augmenting ejectors based on a viscous-inviscid approach

p 321 N88-17929

Stuttgart Univ. (West Germany).

The unsteady gas flow through stator and rotor of a p 301 N88-17660 turbomachine Sundstrand Data Control, Inc., Redmond, Wash.

Windshear detection effect of static air temperature p 284 N88-17621 bias

Sverdrup Technology, Inc., Cleveland, Ohio. Numerical simulation of hypersonic inlet flows with equilibrium or finite rate chemistry

[AIAA PAPER 88-0273] p 275 A88-27717

Syracuse Univ., N. Y.

Wake interaction effects on the transition process on

(AD-A188020) p 322 N88-17962 Comprehensive analysis of helicopters with bearingless

p 328 N88-18300 [NASA-CR-182537] Systems Control Technology, Inc., Palo Alto, Calif.

Knowledge based jet engine diagnostics

p 299 N88-17210 Systems Research and Applications, Inc., Arlington,

Va.

SWAN: An expert system with natural language interface for tactical air capability assessment

p 327 N88-17253

Technische Hochschule, Aachen (West Germany).

Application of highly loaded single-stage mixed-flow compressors in small jet-engines p 300 N88-17652 Technische Univ., Hanover (West Germany).

Possibilities for on-line surge suppression by fast guide vane adjustment in axial compressors p 303 N88-17674

Texas Instruments, Inc., Dallas,

Robotic air vehicle. Blending artificial intelligence with p 291 N88-17252 conventional software

Textron Bell Helicopter, Fort Worth, Tex.

An overview of key technology thrusts at Bell Helicopter p 289 N88-16657

Turbulence Prediction Systems, Boulder, Colo. Infrared low-level wind shear work

p 284 N88-17628

United Technologies Research Center, East Hartford, Conn

Soot loading in a generic gas turbine combusto p 297 A88-27296

Virginia Polytechnic Inst. and State Univ., Blacksburg. Factors affecting the sticking of insects on modified aircraft wings

[NASA-CR-182451] p 313 N88-16878

Von Karman Inst. for Fluid Dynamics, Rhode-Saint-Genese (Belgium).

effects in compressor p 303 N88-17672 Investigation of dihedral cascades

West Virginia Univ., Morgantown.

Circulation control STOL aircraft design aspects

p 281 N88-17610

Worcester Polytechnic Inst., Mass.

Real-time artificial intelligence issues in the development of the adaptive tactical navigator p 327 N88-17260

Typical Foreign Technology Index Listing

Listings in this index are arranged alphabetically by country of intellectual origin. The title of the document is used to provide a brief description of the subject matter. The page number and the ac-*cession number are included in each entry to assist the user in locating the citation in the abstract section. If applicable, a report number is also included as an aid in identifying the document.

AUSTRALIA

A note on the aerodynamic design of thin parallel-sided erofoil sections [ARL-AERO-TM-388] p 277 N88-16677

Calibration of the ARL (Aeronautical Research Laboratories) rain and icing facility

{AD-A186776} p.310 N88-16710 Laboratory studies related to in-flight acoustic emission monitoring

[AD-A186714] p 329 N88-17445

BELGIUM

Investigation of dihedral effects compres p 303 N88-17672 cascades

C

CANADA

On the improvement of an adaptive observer for p 323 A88-25878 multi-output systems Dynamic response of a geared train of rotors subjected p 320 N88-17073 to random support excitations A research program on the aerodynamics of a highly loaded turbine stage p 301 N88-17655 Design and aerodynamic performance of a small

p 301 N88-17662 mixed-flow gas generator turbine

CHINA, PEOPLE'S REPUBLIC OF

Numerical calculation of 3-D turbulent flow in a straight compressor cascade with circular-arc blades p 273 A88-26584

Stream function solution of transonic flow along an arbitrary twisted S1 stream surface p 273 A88-26586 The effect of the boundary layer on transonic cascade flow p 273 A88-26587

The affection of interblade phase angle in oscillating cascade on unsteady aerodynamic force

p 297 A88-26588

A rig testing method of annular combustor in p 297 A88-26589 aeroengine A system of data acquisition and processing in aeroengine testing p 323 A88-26627

Experimental investigation of the influence of diffuser shell shapes on performance of dump diffusers in p 297 A88-26628 combustor

Study of performance of rotating stall in blade row p 273 A88-26629

A computational method of exciting forces generated by nozzle wakes on turbine blades p 273 A88-26630 An analysis system for transonic flow in cascade

p 273 A88-26631 Investigation on steady-state response of a rotor-support system with two squeeze-film dampers

p 316 A88-26632 A dynamical mathematical model and digital simulation for anti-surge control system of a turbofan engine

A88-26638 p 297 A contour line plotting system with polar coordinates for aeroengine inlet flow field p 274 A88-26640 flexibility matrix coefficient and measurement for aeroengine supporting system

p 317 A88-26641 Calculation of metal flow stress in precision closed-die p 317 A88-26793 forging of blade

Sidewall effect for transonic airfoil testing p 275 A88-26796 Finite element analysis for shock absorbers of pilot

p 288 A88-26893 seats An improvement on the adaptive model following p 327 A88-28617

EGYPT

Computation of three-dimensional transonic flows using two stream functions p 273 A88-26434

FRANCE

Fatigue crack initiation and propagation properties of Al-Li-Cu alloys in air and in aqueous corrosive solutions p 312 A88-25178

Strong coupling between inviscid fluid and boundary layer for airfoils with sharp leading edge. I - 2-D incompressible steady case p 271 A88-25988 Application of a FEM moving node adaptive method to p 275 A88-26753 accurate shock capturing Placement of failure-prone components on flexible structures - A degree of controllability approach

p 326 A88-27418 Automatic systems in aeronautics; National Colloquium, Paris, France, Mar. 17-19, 1986, Proceedings p 326 A88-27751

Technological leaps occurring in the aeronautical and space fields p 326 A88-27752 Applications of singular perturbation techniques to p 305 A88-27754 aircraft trajectory optimization Alpha-degree stability and robustness - Application to p 326 A88-27755 the development of a regulator Theory and development of discrete multivariable regulators assuring robust tracking p 326 A88-27756 Active control of helicopter vibrations by self-adaptive p 305 A88-27759 multicyclic control

Modeling and identification in helicopter science p 327 A88-27760 Stability of helicopter blade motion in the case of p 305 A88-27761

Design of a helicopter automatic flight control system p 306 A88-27762 Nonlinear control for level flight of a helicopter

p 306 A88-27763 Nonlinear identification technique for helicopter flight p 306 A88-27764 mechanics Identification techniques in flight mechanics

p 306 A88-27765

Redundant control systems - Flexibility and optimality

Problems related to the application of flight control to the field of combat aircraft guidance p 306 A88-27769

Treatment methods for the alleviation of gusts on ircraft p 306 A88-27770 aircraft

Points of view on linear and nonlinear filtering in p 327 A88-27771 aeronautics Effect of a model support strut on measurement of

aerodynamic longitudinal and lateral coefficients [PB87-170288] p 277 N88-16670 Testing of a schematic transport plane model in several

European windtunnels

[PB87-170270] p 277 N88-16671 Description of tests run in the T2 cryogenic wind

[PB87-170296] p 277 N88-16672

Methods for evaluating the quality and reliability of aerodynamic software programs

[PB87-169793] p 328 N88-17314 Turbine Advanced Technology for Aero Gas Components

[AGARD-CP-421] p 299 N88-17647 Specification of an engine and its components starting from a consideration of aircraft missions

p 300 N88-17651 The advantage of variable geometry for turbine engines p 300 N88-17653

Numerical simulation of diffuser/combustor dome p 302 N88-17663 interaction

Analysis of highspeed propellers aerodynamics p 302 N88-17669

Method for predicting performance limits of centrifugal compressors p 303 N88-17677

Design and testing of a front stage for an advanced high pressure compressor p 303 N88-17679

an axial multistage Computation of secondary flows p 304 N88-17681 compressor

Effectiveness of various control surfaces in quasi-steady and unsteady conditions [AGARD-R-735] p 309 N88-17682

G

GERMANY, FEDERAL REPUBLIC OF

structural elements

Fatigue crack propagation behavior of 2091 T8 and 2024 T3 under constant and variable amplitude loading p 312 A88-25176

Simplified calculation of the crushing process in p 315 A88-26171

Development of an algorithm for evaluating calibration data for six-component strain-gage balances

p 310 A88-26172 A close coupling procedure for zonal solutions of the

Navier-Stokes, Euler and boundary-layer equations p 316 A88-26173

A submillimeter heterodyne receiver for the Kuiper Airborne Observatory and the detection of the 372 micron carbon monoxide line J = 7-6 in OMC-1 and W3

p 316 A88-26253

Numerical grid generation in computational fluid dynamics, Proceedings of the International Conference, Landshut, Federal Republic of Germany, July 14-17 p 324 A88-26726

Generation of body-fitted grids around airfoils using p 274 A88-26745 multigrid method

approach to the interactive generation of blockstructured volume grids using computer graphics p 324 A88-26746

Elliptic grid generation system for three-dimensional configurations using Poisson's equation

p 324 A88-26748 of shock-induced

Experimental investigation disturbances on transonic airfoils

[DFVLR-FB-87-28] p 276 N88-16666 Additional investigations in landing process of aircraft: Test distributions

[DEVLR-MITT-87-13] p 286 N88-16686

Helicopters as test carriers for avionics systems	Comment on 'Computation of the potential flow over	Self-adaptive analysis of three-dimensional structures using a p-version of finite element method
(HETAS) [DFVLR-IB-112-85/18] p 290 N88-16692	airfoils with cusped or thin trailing edges' p 276 A88-28050	[FFA-TN-1987-31] ρ 320 N88-17084
Wind tunnel modeling techniques	INTERNATIONAL ORGANIZATION	SWITZERLAND
[KU-SFB-210/E/33] p 310 N88-16711	World-wide aeronautical satellite communications	Fokker 50 marks a fresh start p 286 A88-25792
Moisture plotting of carbon fiber composite in flight	[AIAA PAPER 88-0865] p 286 A88-27599 ISRAEL	Thinking big in RPVs - An affordable giant among the
operations [MBB-UT-119/87] p 313 N88-16823	Nonlinear equations of laminated panels with laminated	minis p 287 A88-25793
Reduction of time delays in Runge-Kutta integration	stiffeners p 316 A88-26344	Bullseye for Skyeye - The RPV with parafoil, skid and sales p 287 A88-25794
methods	ITALY	Agile Falcon and Hornet 2000 p 288 A88-27496
[MBB/LKE-132/S/PUB/241/A] p 328 N88-17363	A geometric approach to nonlinear singularly perturbed control systems p 323 A88-26264	Transonic wind tunnel calibration 1986: Force
Flight test technique, illustrated by Advanced	A conical element for finite element rotor dynamics	measurements on three ONERA-C5 models and three half
Technologies Testing Aircraft System (ATTAS) p 291 N88-17433	p 317 A88-26972	sphere cylinder calibration bodies in the F+W transonic test section
Numerical fluid mechanics p 320 N88-17434	Analysis of possible transmission arrangements	[F+W-FO-1854] p 311 N88-16714
Application of highly loaded single-stage mixed-flow	applicable for driving single or twin counterrotating fans on propfan engines p 303 N88-17670	Influence of the wall boundary layer on force
compressors in small jet-engines p 300 N88-17652	- Proprietor and a second a second and a second a second and a second	measurements on half models in the transonic wind
An integrated aero/mechanical performance approach	J	tunnel
to high technology turbine design p 301 N88-17657	•	[F+W-TF-1876] p 311 N88-16715 Strain gage balance for half models 302-6. Calibration
The unsteady gas flow through stator and rotor of a turbomachine p 301 N88-17660	JAPAN	report
Numerical methods for propeller aerodynamics and	Pressure losses and flow field distortion induced by tip	[F+W-FO-1803] p 319 N88-17001
acoustics at DFVLR p 302 N88-17668	clearance of centrifugal and axial compressors p 314 A88-24847	
Possibilities for on-line surge suppression by fast guide	Quasi-conical aerodynamic loadings due to kinked	T
vane adjustment in axial compressors p 303 N88-17674	planform wings p 271 A88-26358	-
Secondary flow measurements with L2F-technique in	Aerodynamic characteristics of the Weis-Fogh mechanism. II - Numerical computations by the discrete	TAIWAN
centrifugal compressors p 303 N88-17676	vortex method p 272 A88-26359	Flowfield in a dual-inlet side-dump combustor
Experimental investigation of a supercritical compressor	An experimental investigation on aerodynamic interblade	p 297 A88-27291 A study of the dynamic behavior of rotor-bearing systems
rotor blade section p 304 N88-17680	interactions of a vibrating cascade in transonic flow	by the finite element method p 317 A88-27775
Research and development. Technical-scientific	p 272 A88-26388 3D-computational mesh generation around a propeller	TURKEY
publications (1956-1987): Retrospective view and prospects. Jubifee edition on the occasion of the 75th	by elliptic differential equation system	An exact solution for coupled bending and torsion
birthday of DiplEngr. DrEngr. E. H. Ludwig Boelkow	p 274 A88-26643	vibrations of uniform beams having single cross-sectional symmetry p 316 A88-26571
[ISSN-0931-9751] p 321 N88-17819	Experimental study on the effect of fiber orientation on	symmetry p 316 A88-26571
Development of vertical takeoff aircraft with turbojet engines in Germany p 292 N88-17822	flutter characteristics of high-aspect-ratio transport wing [NAL-TR-936] p 308 N88-16708	U
engines in Germany p 292 N88-17822 Variable sweep wings p 292 N88-17823	Effect of an optimized fiber orientation on transonic	0
The European Airbus A-300 p 293 N88-17824	flutter characteristics of a high-aspect-ratio composite	U.S.S.R.
Special flight mechanical features of the bearingless	wing [NAL-TR-930] p 308 N88-16709	Calculation of nonpotential flows of an ideal gas in
helicopter rotor	Mechanical properties of carbon fiber reinforced	axisymmetric nozzles by the approximate factorization method p 270 A88-25561
[MBB-FM-315/O] p 293 N88-17825 Light Electronic Control System (LECOS): A proposal	thermoplastic matrix composites	method p 270 A88-25561 Analysis of the two-ring suspension of a dynamically
for a interconnected error-tolerant, optoelectronic control	[NAL-TR-934] p 313 N88-16827 Turbine flow meter with optical fiber pick-up	tunable gyroscope p 314 A88-25566
system	[NAL-TR-923] p 319 N88-17009	Effect of the blade number ratio of the rotor and the
[MBB-UT-004/87] p 309 N88-17836	Study on a unidirectional ring laser gyro. Part 1:	nozzle ring on the vibration activity of axial-flow and radial-flow turbines p 314 A88-25614
Modern materials for light constructions [MBB-Z-136/86] p 293 N88-17839	Proposition of the principle and studies on the	Comparison of the aerodynamic characteristics of
Purposes and tasks of high-performance aircraft	components [NAL-TR-933] p 319 N88-17010	annular and elliptic wings p 270 A88-25617
construction	Aerodynamic and acoustic characteristics of an	Calculation of the path of a droplet in the combustion
[MBB/LK-S/PUB/296] p 293 N88-17842 Flight testing of fighter aircraft	advanced propeller under take-off and landing	chamber of a helicopter ramjet engine p 296 A88-25618
[MBB/LKE-62/S/PUB/292] p 293 N88-17844	conditions [NAL-TR-935] p 329 N88-17453	Axisymmetric deformations of aircraft transparencies
Active control technology with adaptive control concept	Lifting-surface theory of oscillating propellers in	with allowance for the compliance of the support
in the aircraft construction	compressible flow	fastenings p 315 A88-25621 Estimation of aircraft motion parameters with allowance
[MBB/LKE-294/S/PUB/295] p 309 N88-17845 Airbus, the successful European cooperation	[NAL-TR-943] p 282 N88-17613	for atmospheric turbulence p 304 A88-25622
[MBB-UT-005/87] p 270 N88-17847	A.I	Stability of a wing box with elastic ribs
The intelligent wing. Aerodynamic development direction	N	p 315 A88-25623 The problem of the development of formal-logic models
for future passenger aircraft [MBB-UT-006/87] p 293 N88-17848	NETHERLANDS	of aircraft assembly p 323 A88-25627
Product planning in civil aircraft construction	Freedom in European air transport - The best of both	A study of the autorotation regimes of gas turbine
[MBB-UT-002/87] p 270 N88-17849	worlds? p 330 A88-26183	engines p 296 A88-25628 A study of the effect of leakage flow on the main flow
The application of modern aeroelastic developments for future projects	Verification of obstacle accountability areas using a simple mathematical model. Part 1: Description of general	ahead of the rotor of a centrifugal pump or a
[MBB-UT-007/87] p 294 N88-17850	model and application for a specific case	compressor p 315 A88-25630
Helicopter activities in Germany	[NLR-TR-85069-U] p 283 N88-16683	Three-dimensional problem of the constrained torsion
[MBB-UD-487/86] p 294 N88-17853	The wind tunnel as a yardstick for aircraft design [NLR-MP-85032-U] p 310 N88-16712	of a thin-walled rod of the trapezoidal wing type p 270 A88-25632
Testing of a tail rotor system in a fiber composite type of construction	[NLR-MP-85032-U] p 310 N88-16712 NORWAY	Calculation of a wing with allowance for fuselage
[MBB-UD-472/86] p 294 N88-17854	Radial compressor design using an Euler solver	elasticity p 271 A88-25633
Rotor SAR (ROSAR): A new high-resolution all-weather	p 303 N88-17675	An experimental study of the effect of the lower and upper overlap on the efficiency of radial inward-flow
vision method for helicopters [MBB-UA-1046/87] p 321 N88-17855	•	microturbines with an enclosed rotor
Aerodynamic aspects of the configurational systems	P	p 315 A88-25637
layout of a dispenser	POLAND	Representation of fan characteristics in a mathematical
[MBB-UA-1047/87] p 294 N88-17863	Theoretical analysis of rotational-speed fluctuations of	model of the bypass engine p 296 A88-25638 Characteristics of flow around a hemisphere mounted
ı	two-spool turbojet engines p 296 A88-26168	on a plane p 315 A88-25640
§	_	Distributed gas injection into hypersonic flow
INDIA	S	p 271 A88-26120 Numerical solution of the problem of supersonic gas
Ray analysis of a class of hybrid cylindrical aircraft		flow from a narrow slot in hodograph variables
wings p 285 A88-25755	SAUDI ARABIA A first order theory for Newtonian flow over	p 271 A88-26129
Influence of transformation sequence on nonlinear bending and torsion of rotor blades p 315 A88-26158	two-dimensional airfoils p 272 A88-26423	Aerodynamic calculation of thin bodies in a rarefied
State estimation of manoeuvring targets from noisy radar	SPAIN	gas p 274 A88-26696 Synthesis of the flexible structures of complex
measurements p 294 A88-26247	Low frequency eddy current detection and evaluation	systems p 324 A88-27148
An MRAC system for aircraft longitudinal control	of corrosion in aircraft skins [ETN-88-91664] p 313 N88-16859	Some methodological aspects of the study of
p 305 A88-27370 Inflight thermal data recording from IAF aircraft	SWEDEN p 313 1486-16659	gasdynamic models with heat and mass transfer in an impulse wind tunnel p 310 A88-27158
p 295 A88-27639	Navier-Stokes solutions for laminar incompressible flow	Turbulent hydrogen combustion in a wall jet issuing into
Design deficiency - Probable cause of fatal aircraft	over a NACA 0012 airfoil and a backward facing step	a comoving supersonic stream of air
accident p 282 A88-27640	[FFA-TN-1987-50] p 319 N88-16966	ρ 297 A88-27166

FOREIGN TECHNOLOGY INDEX
UNITED KINGDOM

p 317 A88-27248 Adaptive prediction flight control systems Data processing and analysis during the automated p 298 A88-27730 p 296 A88-27731 testing of gas turbine engines Cooling of airborne equipment Multifrequency nonlinear vibrations in a gas-turbine engine p 298 A88-27742
Thermodynamic nonequilibrium of a far hypersonic wake p 276 A88-28356 UNITED KINGDOM The metallurgical aspects of aluminum-lithium alloys in various product forms for helicopter structural applications p 311 A88-25106 XT-4 - Potent with potential p 287 A88-25809 Excess streamwise vorticity and its role in secondary p 271 A88-26163 Implication of model reduction in the active control of rbornachinery vibrations p 296 A88-26414 Wing tip sails - Progress to date and future turbomachinery vibrations developments p 272 A88-26421 The tip flow of a part span slotted flap p 272 A88-26422 Inviscid theory of two-dimensional aerofoil/spoiler configurations at low speed. V - Steady and oscillatory aerofoil-spoiler-flap characteristics p 272 A88-26424 p 272 A88-26424 Something special in the air and on the ground - The potential for unlimited liability of international air carriers for terrorist attacks under the Warsaw convention and its p 330 A88-26546 A block structured mesh generation technique for aerodynamic geometries p 274 A88-26747
Effect of high temperature spikes on a carbon p 312 A88-28299 fibre-reinforced epoxy laminate The aerodynamic performance of propellers suitable for unmanned aircraft (UMAs) [RAE-TM-AERO-2094] p 276 N88-16667 Analysis of bird strikes to UK registered aircraft 1985 (civil aircraft over 5700 kg maximum weight [CAA-PAPER-87012] p 283 N88-16684 Development of a shell system for DS moulds at RR precision casting facility [PNR-90400] p 318 N88-16893 Burst vortex/boundary layer interaction [NASA-CR-182510] p 279 N88-17583 Optimisation of military compressors for weight and olume p 300 N88-17649
An examination of the impact of potential advances in volume component technology for future military engines p 300 N88-17650
Design and test of a high blade speed, high work capacity p 301 N88-17658 Advanced techniques employed in blade cooling esearch p 301 N88-17659 research Development of a plenum chamber burner system for an advanced VTOL engine p 302 N88-17664
Pumping systems and flow interfaces for rapid response p 302 N88-17665 electronic reheat controls Wake interaction effects on the transition process on turbine blades [AD-A188020] p 322 N88-17962

Stress-strain state of an opening parachute

COZFRACE

Typical Contract Number Index Listing

Listings in this index are arranged alphanumerically by contract number. Under each contract number, the accession numbers denoting documents that have been produced as a result of research done under that contract are arranged in ascending order with the AIAA accession numbers appearing first. The accession number denotes the number by which the citation is identified in the abstract section. Preceding the accession number is the page number on which the citation may be found.

AF AFOSR-0082-86	p 322	N88-17957
AF AFOSR-0295-85	p 322	N88-17962
AF-AFOSR-ISSA-85-00051	p 325	A88-27326
AF-AFOSR-0336-83	p 276	N88-16664
AF-AFOSR-85-0143	p 324	A88-26732
AF-AFOSR-86-0038	p 317	A88-26890
ARL-AFRO-PROP-TM-442	p 310	N88-16710
	p 285	A88-27413
ARPA ORDER 4272-07		
DA PROJ. 1L1-62716-AH-70	p 291	N88-17641
DAAG29-79-C-0184	p 271	A88-25835
DAAG29-83-K-0043	p 271	A88-25835
DAAG29-84-K-0048	p 325	A88-27405
	p 325	A88-27406
DAAJ09-84-M-0706	p 291	N88-17642
DAAK11-85-C-0031	p 291	N88-17641
DE-AC05-84OR-21400	p 290	N88-16696
DE-AC05-84OT-21400	p 311	N88-17687
DE-AC22-76ET-10532	p 314	N88-17813
DFG-HI-342/1-3	p 316	A88-26173
DFG-HI-342/1-4	p 316	A88-26173
DNA001-83-C-0182	p 300	N88-17654
DRET-81-492	p 306	A88-27763
DRET-83-34-231-00-470-750-1	p 306	A88-27764
DRET-84-428	p 306	A88-27762
	p 321	N88-17871
		N88-18013
F33615-85-C-5015	p 322	
F33615-86-K-3617	p 304	A88-27352
F49620-82-C-0033	p 290	N88-16691
MDA-53-108444630	p 281	N88-17610
MDA903-86-C-0011	p 285	A88-27363
		A88-27363 A88-27413
	p 285	A88-27363
MDA903-86-C-0011	p 285 p 285	A88-27363 A88-27413
MDA903-86-C-0011 NAGW-581	p 285 p 285 p 279	A88-27363 A88-27413 N88-17583
MDA903-86-C-0011 NAGW-581 NAG1-300	p 285 p 285 p 279 p 313	A88-27363 A88-27413 N88-17583 N88-16878
MDA903-86-C-0011 NAGW-581 NAG1-300 NAG1-58 NAG1-635	p 285 p 285 p 279 p 313 p 330 p 282	A88-27363 A88-27413 N88-17583 N88-16878 N88-18376
MDA903-86-C-0011 NAGW-581 NAG1-300 NAG1-58 NAG1-635 NAG1-759	p 285 p 285 p 279 p 313 p 330 p 282 p 328	A88-27363 A88-27413 N88-17563 N88-16878 N88-18376 N88-17612 N88-18300
MDA903-86-C-0011 NAGW-581 NAGT-300 NAG1-58 NAG1-635 NAG1-759 NAG2-443	p 285 p 285 p 279 p 313 p 330 p 282 p 328 p 323	A88-27363 A88-27413 N88-17583 N88-16878 N88-18376 N88-17612 N88-18300 A88-27456
MDA903-86-C-0011 NAGW-581 NAG1-300 NAG1-58 NAG1-635 NAG1-759 NAG2-443 NAG3-481	p 285 p 285 p 279 p 313 p 330 p 282 p 328 p 323 p 297	A88-27363 A88-27413 N88-17583 N88-16878 N88-18376 N88-17612 N88-18300 A88-27456 A88-27295
MDA903-86-C-0011 NAGW-581 NAG1-300 NAG1-58 NAG1-635 NAG1-759 NAG2-443 NAG3-481 NAG3-684	p 285 p 285 p 279 p 313 p 330 p 282 p 328 p 323 p 297 p 318	A88-27363 A88-27413 N88-17583 N88-16878 N88-18376 N88-18300 A88-27456 A88-27456 A88-27295 N88-16956
MDA903-86-C-0011 NAGW-581 NAGT-300 NAGT-58 NAGT-635 NAGT-759 NAG2-443 NAG3-841 NAG3-634 NASW-3960	p 285 p 285 p 279 p 313 p 330 p 282 p 328 p 323 p 297 p 318 p 323	A88-27363 A88-27413 N88-17583 N88-16878 N88-18376 N88-18300 A88-27456 A88-27295 N88-16956 A88-27456
MDA903-86-C-0011 NAGW-581 NAG1-300 NAG1-58 NAG1-635 NAG1-759 NAG2-443 NAG3-481 NAG3-634 NAG3-634 NASW-3960 NAS1-15605	p 285 p 285 p 279 p 313 p 330 p 282 p 328 p 323 p 297 p 318 p 323 p 314	A88-27363 A88-27413 N88-17563 N88-16878 N88-18376 N88-17612 N88-18300 A88-27456 A88-27295 A88-27456 A88-27456 N88-16864
MDA903-86-C-0011 NAGW-581 NAG1-300 NAG1-58 NAG1-635 NAG1-759 NAG2-443 NAG3-634 NAG3-634 NASW-3960 NAS1-15605 NAS1-18028	p 285 p 285 p 279 p 313 p 330 p 282 p 328 p 323 p 297 p 318 p 323 p 314 p 286	A88-27363 A88-27413 N88-17583 N88-16878 N88-18376 N88-18376 N88-18300 A88-27456 A88-27456 A88-27456 A88-27456 A88-16688
MDA903-86-C-0011 NAGW-581 NAG1-300 NAG1-58 NAG1-635 NAG1-759 NAG2-443 NAG3-481 NAG3-634 NASW-3960 NAS1-15605 NAS1-18028 NAS1-18107	p 285 p 285 p 279 p 313 p 330 p 282 p 328 p 323 p 297 p 318 p 323 p 314 p 286 p 309	A88-27363 A88-27413 N88-17583 N88-18376 N88-18376 N88-18300 A88-27456 A88-27456 A88-27456 N88-16894 N88-16688 N88-17684
MDA903-86-C-0011 NAGW-581 NAGT-300 NAG1-58 NAG1-635 NAG1-759 NAG2-443 NAG3-811 NAG3-634 NASW-3960 NAS1-15605 NAS1-18107 NAS2-11877	P 285 P 285 P 279 P 313 P 330 P 282 P 328 P 323 P 297 P 318 P 323 P 298 P 323 P 298 P 309 P 308	A88-27363 A88-27413 N88-17583 N88-16878 N88-18376 N88-18300 A88-27456 A88-27295 N88-16956 A88-27456 N88-16688 N88-16688 N88-16688 N88-16688
MDA903-86-C-0011 NAGW-581 NAG1-300 NAG1-58 NAG1-635 NAG1-759 NAG2-443 NAG3-481 NAG3-634 NASW-3960 NAS1-15605 NAS1-18028 NAS1-18107 NAS2-11877 NAS2-11912	P 285 P 285 P 279 P 313 P 330 P 282 P 328 P 323 P 297 P 318 P 323 P 314 P 286 P 309 P 309 P 308 P 279	A88-27363 A88-27413 N88-17583 N88-16878 N88-18376 N88-18300 A88-27456 A88-27456 A88-27456 M8-16956 A88-27456 N88-16688 N88-16688 N88-17684 N88-16707 N88-17585
MDA903-86-C-0011 NAGW-581 NAG1-300 NAG1-58 NAG1-635 NAG1-635 NAG2-443 NAG2-443 NAG3-841 NAG3-634 NASW-3960 NAS1-15605 NAS1-18028 NAS1-18107 NAS2-11877 NAS2-11912 NAS2-11912	P 285 P 285 P 279 P 313 P 330 P 328 P 323 P 297 P 318 P 323 P 314 P 286 P 308 P 308 P 308 P 279 P 278	A88-27363 A88-27413 N88-17583 N88-16878 N88-18376 N88-18376 N88-18300 A88-27456 A88-27456 A88-27456 N88-16956 A88-27456 N88-16956 N88-16688 N88-16688 N88-16688 N88-15678
MDA903-86-C-0011 NAGW-581 NAG1-300 NAG1-58 NAG1-635 NAG1-759 NAG2-443 NAG3-481 NAG3-634 NASW-3960 NAS1-15605 NAS1-18028 NAS1-18107 NAS2-11877 NAS2-11912	P 285 P 285 P 279 P 313 P 330 P 282 P 328 P 323 P 297 P 318 P 323 P 314 P 286 P 309 P 309 P 308 P 279	A88-27363 A88-27413 N88-17583 N88-16878 N88-18376 N88-18300 A88-27456 A88-27456 A88-27456 M8-16956 A88-27456 N88-16688 N88-16688 N88-17684 N88-16707 N88-17585
MDA903-86-C-0011 NAGW-581 NAG1-300 NAG1-58 NAG1-635 NAG1-635 NAG2-443 NAG2-443 NAG3-841 NAG3-634 NASW-3960 NAS1-15605 NAS1-18028 NAS1-18107 NAS2-11877 NAS2-11912 NAS2-11912	P 285 P 285 P 279 P 313 P 330 P 328 P 323 P 297 P 318 P 323 P 314 P 286 P 308 P 308 P 308 P 279 P 278	A88-27363 A88-27413 N88-17583 N88-16878 N88-18376 N88-18376 N88-18300 A88-27456 A88-27456 A88-27456 N88-16956 A88-27456 N88-16956 N88-16688 N88-16688 N88-16688 N88-15678
MDA903-86-C-0011 NAGW-581 NAGT-300 NAGT-58 NAGT-59 NAG2-443 NAG3-634 NAG3-634 NASW-3960 NAST-15605 NAST-18028 NAST-18107 NAS2-11817 NAS2-11877 NAS2-118912 NAS2-12256 NAST-24223 NCC2-106	P 285 P 285 P 279 P 313 P 330 P 282 P 328 P 323 P 314 P 286 P 309 P 309 P 279 P 278 P 297 P 288	A88-27363 A88-27413 N88-17583 N88-16878 N88-18376 N88-18300 A88-27456 A88-27295 N88-16956 A88-27456 N88-16698 N88-16698 N88-17684 N88-17684 N88-17684 N88-17684 N88-17684 N88-17684 N88-17684
MDA903-86-C-0011 NAGW-581 NAG1-300 NAG1-58 NAG1-855 NAG1-759 NAG2-443 NAG3-841 NAG3-634 NASW-3960 NAS1-15605 NAS1-18028 NAS1-18107 NAS2-11877 NAS2-11912 NAS2-12255 NAS3-24223 NCC2-106 NCC2-503	P 285 P 285 P 279 P 313 P 330 P 282 P 328 P 323 P 318 P 323 P 314 P 286 P 309 P 308 P 279 P 279 P 279 P 288 P 321	A88-27363 A88-27413 N88-17583 N88-16878 N88-16878 N88-18376 N88-17612 N88-18300 A88-27495 N88-16956 A88-27295 N88-16688 N88-17585 N88-17585 N88-17585 N88-18678 A88-27296 A88-27296 A88-27296 N88-18678 A88-28251 N88-16717
MDA903-86-C-0011 NAGW-581 NAGT-300 NAGT-58 NAGT-59 NAG2-443 NAG3-634 NAG3-634 NASW-3960 NAST-15605 NAST-18028 NAST-18107 NAS2-11817 NAS2-11877 NAS2-118912 NAS2-12256 NAST-24223 NCC2-106	P 285 P 285 P 279 P 313 P 330 P 282 P 328 P 323 P 314 P 286 P 309 P 309 P 279 P 278 P 297 P 288	A88-27363 A88-27413 N88-17583 N88-16878 N88-18376 N88-18300 A88-27456 A88-27295 N88-16956 A88-27456 N88-16698 N88-16698 N88-17684 N88-17684 N88-17684 N88-17684 N88-17684 N88-17684 N88-17684

NSF ECS-87-15811	p 323	A88-26264
NSG-1498	p 286	N88-16687
NSG-2288	p 277	N88-16674
N00014-84-C-0149	p 323	A88-26264
N00014-86-K-0693	p 309	N88-17684
N0016785-M-4464	p 280	N88-17600
RB-RLD-1985-2.1/VZ	p 283	N88-16683
505-43-01	p 279	N88-17585
505-45-35-56	p 286	N88-16688
505-60-21-02	p 282	N88-17614
505-61-11-02	p 329	NB8-17440
505-61-51	p 278	N88-16678
	p 292	N88-17646
505-61-71-01	p 282	N88-17615
505-61-71	p 278	N88-17581
	p 279	N88-17586
505-62-21	p 278	N88-16679
	p 319	N88-16988
505-62-51	p 319	N88-17045
505-63-1B	p 322	N88-18007
505-63-21-01	p 276	N88-16668
	p 277	N88-16675
505-63-21-02	p 278	N88-16680
505-66-11	p 308	N88-16707
505-66-41	p 290	N88-16694
505-67-41-03	p 283	N88-17616
505-67-51	p 292	N88-17645
505-90-21-01	p 309	N88-17684
506-53-51	p 320	N88-17090
533-51-02	p 292	N88-17644
535-03-01	p 322	N88-18036
535-03-11-03	p 329	N88-17441
992-21-01	p 328	N88-17313

Typical Report Number Index Listing

Listings in this index are arranged alphanumerically by report number. The page number indicates the page on which the citation is located. The accession number denotes the number by which the citation is identified. An astreisk (*) indicates that the item is a NASA report. A pound sign (#) indicates that the item is available on microfiche.

		•	
A-86314	p 279	N88-17586 * #	
A-87364	p 292	N88-17646 * #	
A-87385	p 292	N88-17645 * #	
A-88028	p 328	N88-17313 * #	
A-88038	p 278	N88-17581 * #	
	p 290	N88-16694 * #	
A-88095	p 290	1100-10094 #	
AAMRL-TR-87-032	p 329	N88-18373 #	
AD-A186444	p 322	N88-18013 #	
AD-A186552	p 318	N88-16901 #	
AD-A186576	p 291	N88-17642 #	
AD-A186689	p 290	N88-16691 #	
AD-A186714	p 329	N88-17445 #	
AD-A186719	p 276	N88-16664 #	
AD-A186751	p 320	N88-17062 #	
AD-A186752	p 314	N88-16890 #	
AD-A186776	p 310	N88-16710 #	
AD-A186878	p 290	N88-16689 #	
AD-A186911	p 290	N88-16690 #	
AD-A186922	p 329	N88-18373 #	
AD-A186979	p 320	N88-17049 #	
AD-A186992	p 299	N88-16706 #	
AD-A187029	p 318	N88-16951 #	
AD-A187044	p 283	N88-16682 #	
AD-A187075	p 291	N88-17641 #	
AD-A187097	p 269	N88-16624 #	
AD-A187250	p 322	N88-17957 #	
AD-A187629	p 282	N88-17611 #	
AD-A188020	p 322	N88-17962 #	
AD-A188068	p 321	N88-17871 #	
AFESC/ESL-TR-86-50	p 321	N88-17871 #	
AFIT/GLM/LSM/87S-51	р 299	N88-16706 #	
AFIT/GLM/LSMA/87S-11	p 320	N88-17049 #	
AFIT/GSM/LSQ/87S-36	p 269	N88-16624 #	
AFIT/GSM/LSY/87S-18	p 290	N88-16690 #	
AFOSR-87-1418TR	p 290	N88-16691 #	
AFOSR-87-1419TR	p 276	N88-16664 #	
AFOSR-87-1453TR	p 322	N88-17957 #	
AFOSR-87-1919TR	p 322	N88-17962 #	
AFWAL-TR-87-2062	p 314	N88-16890 #	
AGARD-CP-421	p 299	N88-17647 #	
AGARD-R-735	р 309	N88-17682 #	
AIAA PAPER 88-0049	p 275	A88-27715 * #	
444 A DADED 00 0070		100 07717 + #	

AIAA PAPER 88-0273 p 275 A88-27717 * #

AIAA PAPER 88-0603	n 270	A88-25300 #	
AIAA PAPER 88-0846		A88-27587 #	
AIAA PAPER 88-0865		A88-27599 #	
7477174 E1100 0000	P 200	7100-27000 #	
AIAA-88-2304	p 277	N88-16675 * #	
	•		
AMI-8706	p 290	N88-16691 #	
AR-004-551	p 277	N88-16677 #	
		"	
ARL-AERO-TM-388	p 277	N88-16677 #	
ARL-MAT-TM-393	n 220	N88-17445 #	
Ant-MA1-1 M-030	p szs	1100-11443 #	
AVSCOM-TR-87-A-10	p 291	N88-17642 #	
	•		
BR102328	p 276	N88-16667 #	
		1	
CAA-PAPER-87012	p 283	N88-16684	
CAS/CHEM/ME-18-87	- 212	N88-16878 * #	
CAS/CHEM/ME/10-0/	.р э і э	1100-10070 #	
CESAR-87/44	p 290	N88-16696 #	
020/11/07/7/	p 200	.100 10000 #	
CONF-870410-40-APP-4	p 314	N88-17813 #	
CONF-880220-13	p 311	N88-17687 #	
CRINC-FRL-730-1	p 282	N88-17612 * #	
BE			
DE88-003132	p 314	N88-17813 #	
DE88-003735		N88-16696 #	
DE88-004795	рэп	N88-17687 #	
DFVLR-FB-87-28	n 276	N88-16666 #	
D, V2.11 D 01 20	p 2.0	1100 10000 #	
DFVLR-IB-112-85/18	p 290	N88-16692 #	
	-		
DFVLR-MITT-87-13	p 286	N88-16686 #	
DODA-AR-004-527	p 310	N88-16710 #	
DODA-AR-004-531	p 329	N88-17445 #	
DOT/FAA/AM-87/7		NIOO 40000 #	
2017170074410777	p 283	N88-16682 #	
	-		
DOT/FAA/PS-88/7	-	N88-17616 * #	
DOT/FAA/PS-88/7	p 283		
DOT/FAA/PS-88/7	p 283 p 319	N88-17616 * #	
DOT/FAA/PS-88/7 E-3191 E-3908	p 283 p 319 p 322	N88-17616 * # N88-17045 * # N88-18036 * # N88-16988 * #	
DOT/FAA/PS-88/7 E-3191 E-3908 E-3909	p 283 p 319 p 322 p 319	N88-17616 * # N88-17045 * # N88-18036 * # N88-16988 * # N88-18007 * #	
DOT/FAA/PS-88/7 E-3191 E-3908	p 283 p 319 p 322 p 319 p 322	N88-17616 * # N88-17045 * # N88-18036 * # N88-16988 * #	
DOT/FAA/PS-88/7	p 283 p 319 p 322 p 319 p 322 p 278	N88-17616 * # N88-17045 * # N88-18036 * # N88-16988 * # N88-18007 * # N88-16679 * #	
DOT/FAA/PS-88/7 E-3191 E-3908 E-3909	p 283 p 319 p 322 p 319 p 322 p 278	N88-17616 * # N88-17045 * # N88-18036 * # N88-16988 * # N88-18007 * #	
DOT/FAA/PS-88/7	p 283 p 319 p 322 p 319 p 322 p 278 p 291	N88-17616 * # N88-17045 * # N88-18036 * # N88-180807 * # N88-18679 * # N88-17641 #	
DOT/FAA/PS-88/7	p 283 p 319 p 322 p 319 p 322 p 378 p 291 p 283	N88-17616 * # N88-17045 * # N88-18036 * # N88-18988 * # N88-18679 * # N88-17641 * # N88-16683 * #	
DOT/FAA/PS-88/7	p 283 p 319 p 322 p 319 p 322 p 278 p 291 p 283 p 313	N88-17616 * # N88-17045 * # N88-18036 * # N88-1898 * # N88-16679 * # N88-17641 # N88-16683 # N88-16823 #	
DOT/FAA/PS-88/7 E-3191 E-3908 E-3909 E-3934 E-3973 EFR-010-REV-A ETN-88-90184 ETN-88-90793 ETN-88-91013	p 283 p 319 p 322 p 319 p 322 p 278 p 291 p 283 p 313 p 290	N88-17616 * # N88-17045 * # N88-18036 * # N88-16988 * # N88-16679 * # N88-17641 # N88-16683 # N88-16683 # N88-16692 #	
DOT/FAA/PS-88/7	p 283 p 319 p 322 p 319 p 322 p 278 p 291 p 283 p 313 p 290 p 321	N88-17616 * # N88-17045 * # N88-18036 * # N88-180807 * # N88-16679 * # N88-16683 # N88-16823 # N88-16823 # N88-16823 # N88-17819 #	
DOT/FAA/PS-88/7 E-3191 E-3908 E-3909 E-3934 E-3973 EFR-010-REV-A ETN-88-90184 ETN-88-90793 ETN-88-91013 ETN-88-91025 ETN-88-91054	p 283 p 319 p 322 p 319 p 322 p 278 p 291 p 283 p 313 p 390 p 321 p 310	N88-17616 * # N88-17045 * # N88-18036 * # N88-1898 * # N88-18679 * # N88-17641 # N88-16683 # N88-16823 # N88-16692 # N88-16892 # N88-17819 # N88-16711 #	
DOT/FAA/PS-88/7 E-3191 E-3908 E-3909 E-3934 E-3973 EFR-010-REV-A ETN-88-90184 ETN-88-90793 ETN-88-91013 ETN-88-91025 ETN-88-91054 ETN-88-91054 ETN-88-91325	p 283 p 319 p 322 p 319 p 322 p 278 p 291 p 283 p 313 p 290 p 321 p 310 p 310	N88-17616 * # N88-17045 * # N88-18036 * # N88-18007 * # N88-16679 * # N88-16683 # N88-16683 # N88-16692 # N88-17819 # N88-17819 # N88-16711 # N88-16711 #	
DOT/FAA/PS-88/7 E-3191 E-3908 E-3909 E-3934 E-3973 EFR-010-REV-A ETN-88-90184 ETN-88-90793 ETN-88-91013 ETN-88-91013 ETN-88-91054 ETN-88-91054 ETN-88-91054 ETN-88-91055 ETN-88-91055 ETN-88-91438	p 283 p 319 p 322 p 319 p 322 p 278 p 291 p 283 p 313 p 290 p 310 p 310 p 328	N88-17616 * # N88-17045 * # N88-18036 * # N88-16908 * # N88-16679 * # N88-16683 # N88-16683 # N88-16692 # N88-17819 # N88-16692 # N88-17819 # N88-16711 # N88-16711 #	
DOT/FAA/PS-88/7 E-3191 E-3908 E-3909 E-3934 E-3973 EFR-010-REV-A ETN-88-90184 ETN-88-90793 ETN-88-91013 ETN-88-91013 ETN-88-91054 ETN-88-91054 ETN-88-91054 ETN-88-91055 ETN-88-91055 ETN-88-91438	p 283 p 319 p 322 p 319 p 322 p 278 p 291 p 283 p 313 p 290 p 310 p 310 p 328	N88-17616 * # N88-17045 * # N88-18036 * # N88-18098 * # N88-16690 * # N88-16679 * # N88-16683 # N88-16823 # N88-16823 # N88-16823 # N88-16821 # N88-16823 #	
DOT/FAA/PS-88/7 E-3191 E-3908 E-3909 E-3934 E-3973 EFR-010-REV-A ETN-88-90184 ETN-88-90193 ETN-88-91013 ETN-88-91013 ETN-88-91054 ETN-88-91054 ETN-88-91325 ETN-88-91450 ETN-88-91450 ETN-88-91450 ETN-88-91450	P 283 P 319 P 322 P 319 P 322 P 278 P 291 P 283 P 313 P 290 P 321 P 310 P 328 P 276 P 286	N88-17616 * # N88-17045 * # N88-18036 * # N88-1808 * # N88-16679 * # N88-16679 * # N88-16683 # N88-16823 # N88-16823 # N88-16829 # N88-17819 # N88-16711 # N88-16712 # N88-167363 # N88-16666 # N88-16666 #	
DOT/FAA/PS-88/7 E-3191 E-3908 E-3909 E-3934 E-3973 EFR-010-REV-A ETN-88-90184 ETN-88-90193 ETN-88-91013 ETN-88-91025 ETN-88-91054 ETN-88-91525 ETN-88-91450 ETN-88-91450 ETN-88-91450 ETN-88-91527 ETN-88-91529	p 283 p 319 p 322 p 319 p 322 p 278 p 291 p 283 p 313 p 290 p 310 p 310 p 328 p 276 p 286 p 283 p 283 p 318	N88-17616 * # N88-17045 * # N88-18036 * # N88-1808 * # N88-1807 * # N88-16679 * # N88-16683 # N88-16823 # N88-16823 # N88-16823 # N88-16692 # N88-16712 # N88-16712 # N88-16712 # N88-16666 # N88-16666 # N88-16684 # N88-16684 # N88-16684 # N88-16684 # N88-16689 #	
DOT/FAA/PS-88/7 E-3191 E-3908 E-3908 E-3999 E-3934 E-3973 EFR-010-REV-A ETN-88-90184 ETN-88-90793 ETN-88-91013 ETN-88-91013 ETN-88-91054 ETN-88-91054 ETN-88-91825 ETN-88-91438 ETN-88-91438 ETN-88-91450 ETN-88-91450 ETN-88-91530	p 283 p 319 p 322 p 319 p 322 p 278 p 291 p 283 p 313 p 290 p 321 p 310 p 310 p 310 p 326 p 276 p 286 p 286 p 286 p 288 p 276	N88-17616 * # N88-17045 * # N88-18036 * # N88-18007 * # N88-16679 * # N88-16683 # N88-16683 # N88-16823 # N88-16823 # N88-16892 # N88-17819 # N88-16711 # N88-16712 # N88-16712 # N88-16666 # N88-16666 # N88-16686 # N88-16689 # N88-16689 # N88-16687 #	
DOT/FAA/PS-88/7 E-3191 E-3908 E-3909 E-3934 E-3973 EFR-010-REV-A ETN-88-90184 ETN-88-90193 ETN-88-91013 ETN-88-91025 ETN-88-91054 ETN-88-91325 ETN-88-91452 ETN-88-91450 ETN-88-91450 ETN-88-91452 ETN-88-91517 ETN-88-91530 ETN-88-91530 ETN-88-91664	P 283 P 319 P 322 P 319 P 322 P 319 P 283 P 278 P 291 P 283 P 310 P 310 P 310 P 310 P 326 P 286 P 286 P 287 P 287 P 288	N88-17616 * # N88-17045 * # N88-18036 * # N88-18098 * # N88-16988 * # N88-16679 * # N88-16679 * # N88-16683 # N88-16692 # N88-16692 # N88-16711 # N88-16712 # N88-16712 # N88-16666 # N88-16686 # N88-16686 # N88-16686 # N88-16686 # N88-16687 # N88-16687 # N88-16859 #	
DOT/FAA/PS-88/7 E-3191 E-3908 E-3908 E-3909 E-3934 E-3973 EFR-010-REV-A ETN-88-90184 ETN-88-90193 ETN-88-91013 ETN-88-91025 ETN-88-91054 ETN-88-91054 ETN-88-91540 ETN-88-91540 ETN-88-91550 ETN-88-9157 ETN-88-91590 ETN-88-91590 ETN-88-91590 ETN-88-91590 ETN-88-91590 ETN-88-91590 ETN-88-91590 ETN-88-91590 ETN-88-91666	p 283 p 319 p 322 p 319 p 322 p 278 p 291 p 283 p 310 p 310 p 310 p 310 p 310 p 318 p 276 p 288 p 283 p 218 p 276 p 286 p 287 p 283 p 318 p 276 p 318 p 276 p 318 p 318 p 318 p 310	N88-17616 * # N88-17045 * # N88-18036 * # N88-18037 * # N88-16679 * # N88-17641 # N88-16683 # N88-16823 # N88-16893 # N88-16666 # N88-16666 # N88-16683 # N88-166893 # N88-166893 # N88-166893 # N88-166894 # N88-16893 # N88-16893 # N88-16894 # N88-16894 #	
DOT/FAA/PS-88/7 E-3191 E-3908 E-3908 E-3999 E-3934 E-3973 EFR-010-REV-A ETN-88-90184 ETN-88-90193 ETN-88-91013 ETN-88-91013 ETN-88-91054 ETN-88-91054 ETN-88-91450 ETN-88-91450 ETN-88-91450 ETN-88-91450 ETN-88-91517 ETN-88-91517 ETN-88-91529 ETN-88-91530 ETN-88-91530 ETN-88-91664 ETN-88-91666 ETN-88-91666	P 283 P 319 P 329 P 329 P 322 P 278 P 291 P 283 P 313 P 290 P 310 P 310 P 310 P 318 P 276 P 286 P 287 P 313 P 310 P 313 P 310 P 313 P 310 P 313 P 310 P 313	N88-17616 * # N88-17045 * # N88-18036 * # N88-1808 * # N88-18007 * # N88-16679 * # N88-16683 # N88-16683 # N88-16823 # N88-16829 # N88-17819 # N88-17819 # N88-16666 # N88-16666 # N88-16666 # N88-16689 #	
DOT/FAA/PS-88/7 E-3191 E-3908 E-3908 E-3999 E-3934 E-3973 EFR-010-REV-A ETN-88-90184 ETN-88-90193 ETN-88-91013 ETN-88-91025 ETN-88-91054 ETN-88-91505 ETN-88-91452 ETN-88-91450 ETN-88-9150 ETN-88-9150 ETN-88-9150 ETN-88-9150 ETN-88-9150 ETN-88-9150 ETN-88-9150 ETN-88-9150 ETN-88-9150 ETN-88-91666 ETN-88-91666 ETN-88-91666 ETN-88-91666	p 283 p 319 p 322 p 319 p 322 p 319 p 322 p 278 p 291 p 283 p 290 p 321 p 310 p 310 p 310 p 318 p 276 p 283 p 318 p 319 p 319 p 319 p 319	N88-17616 * # N88-17045 * # N88-18036 * # N88-180807 * # N88-16679 * # N88-16679 * # N88-16683 # N88-16692 # N88-16692 # N88-16711 # N88-16712 # N88-16666 # N88-16686 # N88-16686 # N88-16686 # N88-16686 # N88-16687 # N88-16687 # N88-16893 # N88-16893 # N88-16893 # N88-16894 # N88-16896 # N88-17004 #	
DOT/FAA/PS-88/7 E-3191 E-3908 E-3908 E-3908 E-3934 E-3973 EFR-010-REV-A ETN-88-90184 ETN-88-90793 ETN-88-91013 ETN-88-91025 ETN-88-91025 ETN-88-91054 ETN-88-91054 ETN-88-91438 ETN-88-91450 ETN-88-91450 ETN-88-91517 ETN-88-91530 ETN-88-91530 ETN-88-91664 ETN-88-91666 ETN-88-91666 ETN-88-91668 ETN-88-91668 ETN-88-91668 ETN-88-91685 ETN-88-91685	p 283 p 319 p 322 p 278 p 291 p 283 p 313 p 290 p 310	N88-17616 * # N88-17045 * # N88-18036 * # N88-18036 * # N88-1808 * # N88-16670 * # N88-16671 # N88-16682 # N88-16682 # N88-16686 # N88-16684 # N88-16684 # N88-16685 # N88-16685 # N88-16685 # N88-17084 # N88-17084 # N88-17084 # N88-17084 # N88-16966 # N88-16960 # N88-16960 # N88-16960 # N88-17084 # N88-17084 # N88-17084 # N88-16966 # N88-17084 # N88-17084 # N88-17084 # N88-17084 # N88-17084 # N88-17084 # N88-16966 # N88-17084 # N88-17084 # N88-17084 # N88-16966 #	
DOT/FAA/PS-88/7 E-3191 E-3908 E-3908 E-3999 E-3934 E-3973 EFR-010-REV-A ETN-88-90184 ETN-88-90193 ETN-88-91013 ETN-88-91025 ETN-88-91054 ETN-88-91505 ETN-88-91452 ETN-88-91450 ETN-88-9150 ETN-88-9150 ETN-88-9150 ETN-88-9150 ETN-88-9150 ETN-88-9150 ETN-88-9150 ETN-88-9150 ETN-88-9150 ETN-88-91666 ETN-88-91666 ETN-88-91666 ETN-88-91666	p 283 p 319 p 322 p 278 p 291 p 283 p 313 p 290 p 310	N88-17616 * # N88-17045 * # N88-18036 * # N88-180807 * # N88-16679 * # N88-16679 * # N88-16683 # N88-16692 # N88-16692 # N88-16711 # N88-16712 # N88-16666 # N88-16686 # N88-16686 # N88-16686 # N88-16686 # N88-16687 # N88-16687 # N88-16893 # N88-16893 # N88-16893 # N88-16894 # N88-16896 # N88-17004 #	
DOT/FAA/PS-88/7 E-3191 E-3908 E-3908 E-3999 E-3934 E-3973 EFR-010-REV-A ETN-88-90184 ETN-88-90193 ETN-88-91013 ETN-88-91025 ETN-88-91054 ETN-88-91505 ETN-88-91452 ETN-88-91450 ETN-88-9157 ETN-88-9157 ETN-88-91580 ETN-88-91666 ETN-88-91666 ETN-88-91668	p 283 p 319 p 322 p 319 p 322 p 319 p 322 p 278 p 291 p 283 p 313 p 290 p 321 p 310 p 310 p 310 p 310 p 310 p 311 p 311 p 311 p 311	N88-17616 * # N88-17045 * # N88-18036 * # N88-18080 * # N88-16680 * # N88-16671 # N88-16692 # N88-16692 # N88-16692 # N88-16692 # N88-16694 # N88-16666 # N88-16666 # N88-16666 # N88-16689 # N88-16690 # N88-16691 # N88-1691 # N88-1691 # N88-1691 # N88-1691 # N88-1691 # N88-16715 #	
DOT/FAA/PS-88/7 E-3191 E-3908 E-3908 E-3908 E-3934 E-3973 EFR-010-REV-A ETN-88-90184 ETN-88-90793 ETN-88-91013 ETN-88-91025 ETN-88-91025 ETN-88-91054 ETN-88-91054 ETN-88-91438 ETN-88-91450 ETN-88-91450 ETN-88-91517 ETN-88-91530 ETN-88-91530 ETN-88-91664 ETN-88-91666 ETN-88-91666 ETN-88-91668 ETN-88-91668 ETN-88-91668 ETN-88-91685 ETN-88-91685	p 283 p 319 p 322 p 278 p 291 p 283 p 313 p 290 p 310 p 311 p 311 p 311 p 311	N88-17616 * # N88-17045 * # N88-18036 * # N88-18036 * # N88-1808 * # N88-16679 * # N88-17641 # N88-16683 # N88-16692 # N88-16692 # N88-16692 # N88-16712 # N88-16712 # N88-16666 # N88-16666 # N88-16668 # N88-16699 # N88-16893 # N88-16893 # N88-16894 # N88-16906 # N88-16910 # N88-16910 # N88-1695 # N88-16915 # N88-16714 # N88-16715 # N88-16715 #	
DOT/FAA/PS-88/7 E-3191 E-3908 E-3908 E-3999 E-3934 E-3973 EFR-010-REV-A ETN-88-90184 ETN-88-90793 ETN-88-91013 ETN-88-91055 ETN-88-91054 ETN-88-9125 ETN-88-91438 ETN-88-91450 ETN-88-91530 ETN-88-9157 ETN-88-9159 ETN-88-91664 ETN-88-91666 ETN-88-91666 ETN-88-91668 ETN-88-91668 ETN-88-91668 ETN-88-91668 ETN-88-91668 ETN-88-91668 ETN-88-91668 ETN-88-91668 ETN-88-91668 ETN-88-91685 ETN-88-91687 ETN-88-91688 F+W-FO-1803 F+W-FO-1803	p 283 p 319 p 322 p 319 p 322 p 278 p 291 p 283 p 313 p 290 p 321 p 310 p 310 p 310 p 310 p 310 p 310 p 311 p 311 p 311 p 311 p 311 p 311	N88-17616 * # N88-17045 * # N88-18036 * # N88-18088 * # N88-16688 * # N88-16671 # N88-16683 # N88-16692 # N88-16692 # N88-16692 # N88-16694 # N88-16666 # N88-16666 # N88-16666 # N88-16667 # N88-16693 # N88-16694 # N88-16695 # N88-16696 # N88-16696 # N88-16696 # N88-16914 # N88-16714 # N88-16714 # N88-16714 #	
DOT/FAA/PS-88/7 E-3191 E-3908 E-3908 E-3908 E-3934 E-3973 EFR-010-REV-A ETN-88-90184 ETN-88-90793 ETN-88-91013 ETN-88-91025 ETN-88-91025 ETN-88-91054 ETN-88-9154 ETN-88-9154 ETN-88-91550 ETN-88-9157 ETN-88-9157 ETN-88-91530 ETN-88-91530 ETN-88-91664 ETN-88-91664 ETN-88-91664 ETN-88-91668 ETN-88-91668 ETN-88-91668 ETN-88-91687 ETN-88-91687 ETN-88-91688 F+W-FO-1803	p 283 p 319 p 322 p 319 p 322 p 278 p 291 p 283 p 313 p 290 p 321 p 310 p 310 p 310 p 310 p 310 p 310 p 311 p 311 p 311 p 311 p 311 p 311	N88-17616 * # N88-17045 * # N88-18036 * # N88-18088 * # N88-16688 * # N88-16671 # N88-16683 # N88-16692 # N88-16692 # N88-16692 # N88-16694 # N88-16666 # N88-16666 # N88-16666 # N88-16667 # N88-16693 # N88-16694 # N88-16695 # N88-16696 # N88-16696 # N88-16696 # N88-16914 # N88-16714 # N88-16714 # N88-16714 #	
DOT/FAA/PS-88/7 E-3191 E-3908 E-3908 E-3999 E-3934 E-3973 EFR-010-REV-A ETN-88-90184 ETN-88-90193 ETN-88-91013 ETN-88-91013 ETN-88-91054 ETN-88-91525 ETN-88-91545 ETN-88-91545 ETN-88-91517 ETN-88-91529 ETN-88-91530 ETN-88-91530 ETN-88-91666 ETN-88-91666 ETN-88-91668 ETN-88-91668 ETN-88-91668 ETN-88-91687 ETN-88-91687 ETN-88-91688 FTN-88-91688 FTN-88-91688 FTN-88-91688 FTN-88-91688 FTN-88-91688 FTN-88-91688 FTN-88-91688 FTN-88-91688 FTN-88-91688 F+W-FO-1803 F+W-FO-1854	p 283 p 319 p 329 p 329 p 329 p 278 p 291 p 283 p 313 p 290 p 310 p 310 p 310 p 310 p 310 p 310 p 311 p 311 p 311 p 311	N88-17616 * # N88-17045 * # N88-18036 * # N88-18037 * # N88-16679 * # N88-16679 * # N88-16683 # N88-16682 # N88-16823 # N88-16692 # N88-16692 # N88-16711 # N88-16712 # N88-16666 # N88-16666 # N88-16666 # N88-16689 # N88-16689 # N88-16667 # N88-16859 # N88-16667 # N88-16666 # N88-16671 # N88-16714 #	
DOT/FAA/PS-88/7 E-3191 E-3908 E-3908 E-3999 E-3934 E-3973 EFR-010-REV-A ETN-88-90184 ETN-88-90193 ETN-88-91013 ETN-88-91055 ETN-88-91054 ETN-88-91054 ETN-88-91505 ETN-88-91550 ETN-88-91517 ETN-88-91517 ETN-88-91517 ETN-88-9159 ETN-88-91664 ETN-88-91666 ETN-88-91668 ETN-88-91668 ETN-88-91668 ETN-88-91668 ETN-88-91685 ETN-88-91687 ETN-88-91687 ETN-88-91688 F+W-FO-1854 F+W-FO-1854 F+W-FO-1854	P 283 P 319 P 322 P 329 P 322 P 278 P 291 P 283 P 313 P 290 P 321 P 326 P 276 P 313 P 316 P 317 P 317 P 311 P 311 P 311 P 320	N88-17616 * # N88-17045 * # N88-18036 * # N88-18037 * # N88-16688 * # N88-16679 * # N88-16683 # N88-16683 # N88-16682 # N88-16692 # N88-17819 # N88-16712 # N88-16712 # N88-16666 # N88-16666 # N88-16666 # N88-16684 # N88-16689 # N88-16689 # N88-16689 # N88-16694 # N88-16714 # N88-16714 # N88-16715 # N88-16715 #	
DOT/FAA/PS-88/7 E-3191 E-3908 E-3908 E-3999 E-3934 E-3973 EFR-010-REV-A ETN-88-90184 ETN-88-90193 ETN-88-91013 ETN-88-91013 ETN-88-91054 ETN-88-91525 ETN-88-91545 ETN-88-91545 ETN-88-91517 ETN-88-91529 ETN-88-91530 ETN-88-91530 ETN-88-91666 ETN-88-91666 ETN-88-91668 ETN-88-91668 ETN-88-91668 ETN-88-91687 ETN-88-91687 ETN-88-91688 FTN-88-91688 FTN-88-91688 FTN-88-91688 FTN-88-91688 FTN-88-91688 FTN-88-91688 FTN-88-91688 FTN-88-91688 FTN-88-91688 F+W-FO-1803 F+W-FO-1854	P 283 P 319 P 322 P 329 P 322 P 278 P 291 P 283 P 313 P 290 P 321 P 326 P 276 P 313 P 316 P 317 P 317 P 311 P 311 P 311 P 320	N88-17616 * # N88-17045 * # N88-18036 * # N88-18037 * # N88-16688 * # N88-16679 * # N88-16683 # N88-16683 # N88-16682 # N88-16692 # N88-17819 # N88-16712 # N88-16712 # N88-16666 # N88-16666 # N88-16666 # N88-16684 # N88-16689 # N88-16689 # N88-16689 # N88-16694 # N88-16714 # N88-16714 # N88-16715 # N88-16715 #	
DOT/FAA/PS-88/7 E-3191 E-3908 E-3908 E-3908 E-3904 E-3973 EFR-010-REV-A ETN-88-90184 ETN-88-90184 ETN-88-91051 ETN-88-91025 ETN-88-91054 ETN-88-91054 ETN-88-91525 ETN-88-91545 ETN-88-91545 ETN-88-91545 ETN-88-91545 ETN-88-91666 ETN-88-91666 ETN-88-91668 F+W-FO-1803 F+W-FO-1803 F+W-FO-1803 F+W-FO-1805 FFA-TN-1987-31	p 283 p 319 p 322 p 278 p 291 p 283 p 319 p 322 p 278 p 291 p 283 p 313 p 290 p 310 p 310 p 310 p 310 p 310 p 310 p 311	N88-17616 * # N88-17045 * # N88-18036 * # N88-18036 * # N88-1808 * # N88-16679 * # N88-16679 * # N88-16683 # N88-16683 # N88-16682 # N88-16692 # N88-16696 # N88-16684 # N88-16684 # N88-166859 # N88-166859 # N88-16686 # N88-16696 # N88-16712 # N88-16714 # N88-16715 # N88-16714 # N88-16714 # N88-16715 # N88-16714 # N88-16715 # N88-16715 # N88-16715 #	
DOT/FAA/PS-88/7 E-3191 E-3908 E-3908 E-3999 E-3934 E-3973 EFR-010-REV-A ETN-88-90184 ETN-88-90193 ETN-88-91013 ETN-88-91055 ETN-88-91054 ETN-88-91054 ETN-88-91505 ETN-88-91550 ETN-88-91517 ETN-88-91517 ETN-88-91517 ETN-88-9159 ETN-88-91664 ETN-88-91666 ETN-88-91668 ETN-88-91668 ETN-88-91668 ETN-88-91668 ETN-88-91685 ETN-88-91687 ETN-88-91687 ETN-88-91688 F+W-FO-1854 F+W-FO-1854 F+W-FO-1854	P 283 P 319 P 322 P 278 P 291 P 283 P 313 P 310 P 311 P 318	N88-17616 * # N88-17045 * # N88-18036 * # N88-18036 * # N88-1808 * # N88-16679 * # N88-16679 * # N88-16683 # N88-16683 # N88-16682 # N88-16692 # N88-16696 # N88-16684 # N88-16684 # N88-166859 # N88-166859 # N88-16686 # N88-16696 # N88-16712 # N88-16714 # N88-16715 # N88-16714 # N88-16714 # N88-16715 # N88-16714 # N88-16715 # N88-16715 # N88-16715 #	

...... p 320 N88-17090 * #

H-1432	p 292	N88-17644 * #
HEL-TN-6-87-REV-A	p 291	N88-17641 #
HL-88-5	p 330	N88-18376 * #
ICASE-88-9	p 309	N88-17684 * #
ISBN-0-86039-323-2	p 283	N88-16684
ISBN-2-7170-0850-0		N88-17314 #
ISBN-2-7170-0855-1	p 277	N88-16672 #
ISBN-2-7170-0856-X		N88-16671 #
ISBN-2-7170-0857-8	p 277	N88-16670 #
ISBN-92-835-0433-X	p 299	N88-17647 #
ISBN-92-835-2113-7	p 309	N88-17682 #
ISSN-0171-1342	p 276	N88-16666 #
ISSN-0176-7739		N88-16686 #
ISSN-0269-4956	p 283	N88-16684
ISSN-0389-4010		N88-16708 #
ISSN-0389-4010		N88-16709 #
10011 0000 1010		
1001.0000	p 319	N88-17009 #
ISSN-0389-4010		N88-17010 #
ISSN-0389-4010	p 329	N88-17453 #
ISSN-0389-4010	p 282	N88-17613 #
ISSN-0931-9751	p 321	N88-17819 #
K/D-5739		N88-17687 #
KU-SFB-210/E/33	p 310	N88-16711 #
L-16212		N88-17615 * #
L-16301	p 329	N88-17441 * #
L-16352		N88-17440 * #
L-16393	p 282	N88-17614 * #
LVL-8302-I-2	p 290	N88-16692 #
MBB-FM-315/O	•	N88-17825 #
MBB-UA-1046/87MBB-UA-1047/87	p 321 p 294	N88-17855 # N88-17863 #
MBB-UD-472/86MBB-UD-487/86	p 294 p 294	N88-17854 # N88-17853 #
MBB-UT-002/87	p 270	N88-17849 #
MBB-UT-004/87	p 309	N88-17836 #
MBB-UT-005/87	p 270	N88-17847 #
MBB-UT-006/87		N88-17848 #
MBB-UT-007/87	p 294	N88-17850 #
MBB-UT-119/87	p 313	N88-16823 #
	•	
MBB-Z-136/86	p 293	N88-17839 #
MBB/LK-S/PUB/296	•	N88-17842 #
MBB/LKE-132/S/PUB/241/A		N88-17363 #
MBB/LKE-294/S/PUB/295		N88-17845 #
MBB/LKE-62/S/PUB/292	p 293	N88-17844 #
NAL-TR-923	p 319	N88-17009 #
NAL-TR-930		N88-16709 #
NAL-TR-933		N88-17010 #
NAL-TR-934		N88-16827 #
NAL-TR-935		N88-17453 #
NAL-TR-936		N88-16708 #
NAL-TR-943		N88-17613 #
NAS 1.15:100033		N88-17646 * #
NAS 1.15:100043		N88-17313 * #
NAS 1.15:100048	p 278	N88-17581 * #
NAS 1.15:100067		N88-16694 * #
	n 202	N88-17645 * #
NAS 1.15:100084		A100 1000C * #
NAS 1.15:100084 NAS 1.15:100272	p 322	N88-18036 * #
NAS 1.15:100084 NAS 1.15:100272 NAS 1.15:100288	p 322 p 322	N88-18007 * #
NAS 1.15:100084 NAS 1.15:100272 NAS 1.15:100288 NAS 1.15:100413	p 322 p 322 p 292	N88-18007 * # N88-17644 * #
NAS 1.15:100084 NAS 1.15:100272 NAS 1.15:100288 NAS 1.15:100413 NAS 1.15:100523	p 322 p 322 p 292 p 276	N88-18007 * # N88-17644 * # N88-16668 * #
NAS 1.15:100084 NAS 1.15:100272 NAS 1.15:100288 NAS 1.15:100413 NAS 1.15:100523 NAS 1.15:100534	p 322 p 322 p 292 p 276 p 278	N88-18007 * # N88-17644 * # N88-16668 * # N88-16680 * #
NAS 1.15:100084 NAS 1.15:100272 NAS 1.15:100288 NAS 1.15:100413 NAS 1.15:100523 NAS 1.15:100534 NAS 1.15:100547	p 322 p 322 p 292 p 276 p 278 p 277	N88-18007 * # N88-17644 * # N88-16668 * # N88-16680 * # N88-16675 * #
NAS 1.15:10084 NAS 1.15:100272 NAS 1.15:100288 NAS 1.15:100413 NAS 1.15:100523 NAS 1.15:100524 NAS 1.15:100577 NAS 1.15:100779	p 322 p 322 p 292 p 276 p 278 p 277 p 319	N88-18007 * # N88-17644 * # N88-16668 * # N88-16680 * # N88-16675 * # N88-16988 * #
NAS 1.15:100084 NAS 1.15:100272 NAS 1.15:100288 NAS 1.15:100413 NAS 1.15:100523 NAS 1.15:100534 NAS 1.15:100547	p 322 p 322 p 292 p 276 p 278 p 277 p 319	N88-18007 * # N88-17644 * # N88-16668 * # N88-16680 * # N88-16675 * #

NAS 1.15:88295

NAS 1.15:88295	p 320	N88-17090 * #	PRF-520-1288-0353
NAS 1.26:177429		N88-17585 * #	
NAS 1.26:177457		N88-16678 * #	PSU/ME-R-86/87-0034
NAS 1.26:178176		N88-16884 * #	DAE TH AFEC 2004
NAS 1.26:178359		N88-16688 * #	RAE-TM-AERO-2094
NAS 1.26:179428		N88-16707 * # N88-17684 * #	REPT-0353-10
NAS 1.26:181618		N88-16956 * #	REPT-102
NAS 1,26:182437 NAS 1,26:182451	D 313	N88-16878 * #	11LT 1-102
		N88-16687 * #	SR-2
NAS 1.26:182457 NAS 1.26:182469	D 277	N88-16674 * #	0112
NAS 1.26:182475		N88-16717 * #	SVIC-BULL-57-PT-4
NAS 1.26:182509		N88-18376 * #	0770 0022 07 7 7 7 7 7 7 7 7 7 7 7 7 7 7
NAS 1.26:182510		N88-17583 * #	TM-977
NAS 1.26:182537		N88-18300 * #	
NAS 1.26:182541		N88-17612 * #	TR-716199-10
NAS 1.55:10006	p 283	N88-17616 * #	
NAS 1.55:2432		N88-17586 * #	USAAVSCOM-TR-87-A-12
NAS 1.55:2495-VOL-1	p 269	N88-16625 * #	USAAVSCOM-TR-87-A-17
NAS 1.55:2495-VOL-2		N88-16632 * #	
NAS 1.55:2495-VOL-3		N88-16650 * #	VDI-619
NAS 1.60:2766		N88-17440 * #	
NAS 1.60:2771		N88-17615 * #	
NAS 1.60:2782		N88-17441 * #	
NAS 1.60:2789	p 319	N88-17045 * #	
NAS 1.60:2806	p 282	N88-17614 * #	
NASA-CP-10006	n 200	N88_17646 * #	
NASA-CP-10006		N88-17616 * # N88-17586 * #	
NASA-CP-2492		N88-16625 * #	
		N88-16632 * #	
NASA-CP-2495-VOL-2			
NASA-CP-2495-VOL-3	p 2/0	N88-16650 * #	
NASA-CR-177429	0 270	N88-17585 * #	
NASA-CR-177457		N88-16678 * #	
NASA-CR-178176		N88-16884 * #	
NASA-CR-178359		N88-16688 * #	
NASA-CR-179428		N88-16707 * #	
NASA-CR-181618		N88-17684 * #	
NASA-CR-182437	p 318	N88-16956 * #	
NASA-CR-182451		N88-16878 * #	
NASA-CR-182457		N88-16687 * #	
NASA-CR-182469		N88-16674 * #	
NASA-CR-182475		N88-16717 * #	
NASA-CR-182509		N88-18376 * #	
NASA-CR-182510		N88-17583 * #	
NASA-CR-182537	p 328	N88-18300 * #	
NASA-CR-182541	p 282	N88-17612 * #	
NASA-TM-100033	p 292	N88-17646 * #	
NASA-TM-100043	p 328	N88-17313 * #	
NASA-TM-100048	p 278	N88-17581 * #	
NASA-TM-100067	p 290	N88-16694 * #	
NASA-TM-100084	p 292	N88-17645 * #	
NASA-TM-100272	p 322	N88-18036 * #	
NASA-TM-100288		N88-18007 * #	
NASA-TM-100413		N88-17644 * #	
NASA-TM-100523	p 276	N88-16668 * #	
NASA-TM-100534	p 278	N88-16680 * #	
NASA-TM-100547	p 277	N88-16675 * #	
NASA-TM-100779	p 319	N88-16988 * #	
NASA-TM-100797	p 278	N88-16679 * #	
NASA-TM-88295		N88-17090 * #	
NASA-TP-2766		N88-17440 * #	
NASA-TP-2771		N88-17615 * #	
NASA-TP-2782		N88-17441 * #	
NASA-TP-2789			
NASA-TP-2806	p 282	N88-17614 * #	
AH D AND ADDRESS		NO. 4	
NLR-MP-85032-U	р 310	N88-16712 #	
NLR-TR-85069-U	p 283	N88-16683 #	
AIMEDI MAS 4455 AT		NI00 4-0-4 "	
NMERI-WA5-11(5.07)	p 321	N88-17871 #	
NOD 07 05	- ^	NIDO 40040 "	
NOR-87-85	p 322	N88-18013 #	
NOTE TECUNIOUS OF SE		NIDO 47044 "	
NOTE-TECHNIQUE-86-02		N88-17314 #	
NOTE-TECHNIQUE-86-07		N88-16672 #	
NOTE-TECHNIQUE-86-08		N88-16671 #	
NOTE-TECHNIQUE-86-09	p 277	N88-16670 #	
NTCD/AAD 07/04 CURANA	0.005	NIDO 17000 #	
NTSB/AAR-87/04-SUMM	p 285	N88-17639 #	
NTSP (ARC 97/02	n 205	N99.17600 #	
NTSB/ARC-87/03	p 285	N88-17638 #	
ORNL/TM-10558	n 200	N88-16696 #	
OTHER 10000	μ 2 3 0	1400-10030 #	
PB87-169793	D 328	N88-17314 #	
PB87-170270		N88-16671 #	
PB87-170288		N88-16670 #	
PB87-170296		N88-16672 #	
PB88-135843		N88-17638 #	
1 500-133043	p 200	1100-1700D #	
848	n 210	N88-16893 #	
PNR-90400			

PRF-520-1288-0353	р 330	N88-18376 * #
PSU/ME-R-86/87-0034	p 322	N88-17957 #
RAE-TM-AERO-2094	p 276	N88-16667 #
REPT-0353-10		
SR-2	p 322	N88-17962 #
SVIC-BULL-57-PT-4	p 320	N88-17062 #
TM-977	p 278	N88-16678 * #
TR-716199-10	p 286	N88-16687 * #
USAAVSCOM-TR-87-A-12USAAVSCOM-TR-87-A-17		
VDI-619	p 270	N88-17849 #

ACCESSION NUMBER INDEX

AERONAUTICAL ENGINEERING / A Continuing Bibliography (Supplement 227)

June 1988

p 320

p 320

p 291

p 320

N88-17045 * # N88-17049 #

N88-17062

N88-17069

N88-17073

N88-17084

Typical Accession Number Index Listing

Listings is this index are arranged alpha-numerically by accession number. The page number listed to the right indicates the page on which the citation is located. An asterisk (*) indicates that the item is a NASA report. A pound sign (#) indicates that the item is available on microfiche.

A88-24847	#	p 314	A88-26414		p 296
A88-25010		p 309	A88-26415		p 287
A88-25106		p 311	A88-26419		p 316
A88-25176		p 312	A88-26421		p 272
		•	A88-26422		p 272
A88-25178		p 312	A88-26423		p 272
A88-25266		p 312	A88-26424		p 272
A88-25300	#	p 270	A88-26433		p 272
A88-25366		p 294	A88-26434		p 273
A88-25367		p 294	A88-26435 *		p 273
A88-25561		p 270	A88-26546		p 330
A88-25566		p 314	A88-26547		p 330
A88-25614		p 314	A88-26571		p 316
A88-25617		p 270	A88-26584	#	p 273
A88-25618		p 296	A88-26586	#	p 273
A88-25621		p 315	A88-26587	#	p 273
A88-25622		p 304	A88-26588	#	p 297
A88-25623		p 315	A88-26589	#	p 297
A88-25627		p 323	A88-26627	#	p 323
A88-25628		p 296	A88-26628	#	p 297
A88-25630		p 315	A88-26629	#	p 273
A88-25632		p 270	A88-26630	#	p 273
A88-25633		p 271	A88-26631	#	p 273
A88-25637		p 315	A88-26632	#	p 316
A88-25638		p 296	A88-26638	#	p 297
A88-25640		p 315	A88-26640	#	p 274
A88-25749	#	p 330	A88-26641	#	p 317
A88-25750	• #	p 310	A88-26643	#	p 274
A88-25755		p 285	A88-26644	#	p 287
A88-25792		p 286	A88-26645	#	p 287
A88-25793		p 287	A88-26646	#	p 269
AØ8-25794		p 287	A88-26647	#	p 287
A88-25809		p 287	A88-26648		p 295
A88-25835		p 271	A88-26649		p 297
A88-25842		p 271	A88-26670		p 295
A88-25878		p 323	A88-26696		p 274
A88-25988	#	p 271	A88-26726		p 324
A\$8-26120		p 271	A88-26731	#	p 274
A88-26129		p 271	A88-26732		p 324
A88-26158		p 315	A88-26743		p 274
A88-26159		p 315	A88-26745		p 274
A88-26163		p 271	A88-26746		p 324
A88-26168	#	p 296	A88-26747		p 274
A88-26171		p 315	A88-26748		p 324
A88-26172		p 310	A88-26749 *		p 287
A88-26173		p 316	A88-26751		p 275
A88-26175	•	p 269	A88-26753		p 275
A88-26183		p 330	A88-26793	#	p 317
A88-26247		p 294	A88-26796	#	p 275
A88-26253		p 316	A88-26875		p 288
A88-26256		p 316	A88-26890		p 317
A88-26264		p 323	A88-26893		p 288
A88-26344		p 316	A88-26972		p 317
A88-26358	#	p 271	A88-27148		p 317
A88-26359	#	p 272	A88-27159		p 324

A88-26388

p 272

A88-27158

p 310

A88-27166 A88-27248 A88-27295 # A88-27295 * A88-27296 * A88-27312 A88-27312 A88-27320 A88-27320 A88-27322 A88-27326 A88-27327 A88-27326 A88-27352 A88-27352 A88-27352 A88-27353 A88-27353 A88-27353	p 297 p 317 p 312 p 297 p 297 p 297 p 297 p 324 p 304 p 304 p 304 p 305 p 305 p 305 p 305 p 305
A88-27399 A88-27405 A88-27406 A88-27410 A88-27411 A88-27412 A88-27417 A88-27418 A88-27418 A88-27478 A88-27478 A88-27478 A88-27496 A88-27567 #A88-27569 # A88-27690 # A88-27717 *# A88-27717 *# A88-2777 A88-27730	p 295 p 325 p 325 p 325 p 325 p 325 p 326 p 327 p 285 p 317 p 288 p 286 p 285 p 275 p 275 p 275 p 275 p 375
A88-27731 A88-27751 A88-27751 A88-27755 A88-27755 A88-27755 A88-27756 A88-27760 A88-27760 A88-27762 A88-27762 A88-27763 A88-27763 A88-27765 A88-27766 A88-27766 A88-27776 A88-27776 A88-27770 A88-27770 A88-27771 A88-27771 A88-27771 A88-27771 A88-27775 # A88-27889 # #	p 296 p 298 p 326 p 326 p 326 p 326 p 326 p 326 p 327 p 305 p 305 p 306 p 307 p 307 p 307 p 307
A88-28033 # A88-28034 # A88-28042 # A88-28047 # A88-28251 # A88-28251 * A88-28252 # A88-28265 * A88-28265 * A88-28356 A88-28617 #	P 275 0 276 0 276 P 317 P 317 P 318 P 276 P 288 P 288 P 307 P 307 P 312 P 276 P 327
N88-16624 # N88-16625 * # N88-16626 * # N88-16627 * # N88-16628 * # N88-16630 * #	p 269 p 269 p 269 p 288 p 307 p 288 p 276

N88-16631 * # N88-16632 * #	р 307 р 270
N88-16633 *#	р 270 р 318
N88-16634 * #	p 312
N88-16635 * # N88-16636 * #	p 283 p 289
N88-16637 * #	p 298
N88-16638 *#	p 298
N88-16639 * # N88-16640 * #	p 298 p 299
N88-16641 *#	p 283
N88-16642 * # N88-16643 * #	p 307
N88-16643 * # N88-16645 * #	р 307 р 308
N88-16646 * #	p 328
N88-16647 * # N88-16648 * #	р 308 р 328
N88-16649 * #	p 328 p 329
N88-16650 * #	p 270
N88-16651 * # N88-16652 * #	p 310 p 289
N88-16654 * #	p 296
N88-16655 *#	p 296
N88-16656 * # N88-16657 * #	p 289 p 289
N88-16658 * #	p 289
N88-16659 * # N88-16660 * #	p 289
N88-16660 * # N88-16664 #	р 289 р 276
N88-16666 #	p 276
N88-16667 #	p 276
N88-16668 * # N88-16670 #	р 276 р 277
N88-16671 #	p 277
N88-16672 # N88-16674 * #	p 277 p 277
N88-16675 * #	p 277
N88-16677 #	p 277
N88-16678 * # N88-16679 * #	р 278 р 278
N88-16680 * #	p 278
N88-16682 #	p 283
N88-16683 # N88-16684	p 283 p 283
N88-16686 #	p 286
N88-16687 * # N88-16688 * #	p 286 p 286
N88-16689 #	p 290
N88-16690 #	p 290
N88-16691 # N88-16692 #	p 290 p 290
N88-16694 * #	p 290
N88-16696 #	p 290
N88-16698 * # N88-16699 * #	p 299 p 330
N88-16700 * #	p 313
N88-16701 * # N88-16703 * #	р 318 р 313
N88-16703 * # N88-16706 #	p 299
N88-16707 * #	p 308
N88-16708 # N88-16709 #	р 308 р 308
N88-16710 #	p 310
N88-16711 #	p 310
N88-16712 # N88-16714 #	p 310 p 311
N88-16715 #	p 311
N88-16717 * #	p 311
N88-16823 # N88-16827 #	р 313 р 313
N88-16859 #	p 313
N88-16878 * # N88-16884 * #	p 313
N88-16884 * # N88-16890 #	р 314 р 314
N88-16893 #	p 318
N88-16901 # N88-16951 #	р 318 р 318
N88-16951 # N88-16956 * #	p 318 p 318
N88-16966 #	p 319
N88-16988 * #	p 319
N88-17001 # N88-17009 #	р 319 р 319
N88-17009 #	p 319

N88-17010 #

INDO-	I / UO4	#	D 321
NRR.	7090	*#	D 320
NICO-	7007	· π	- 000
1400-	7207	#	p 330
M88-	1/210	******************	p 299
N88-1	17215	*#	p 311
N88-	17218	•#	p 327
N88-1	7252	• #	p 291
N88-1	7253	- #	n 327
MOR 1	7260	• "#	2 327
1400-	7200	. "	p 321
1499-	1/313	#	p 320
N88-	7314	#	p 328
N88-1	7363	#	p 328
N88-1	7433	#	p 291
NRR.	7434	#	2300
NIGO .	7440	• #	0 330
1100-	7440	. #	P 320
MRR-	1/441	#	p 325
N88-1	7445	#	p 329
N88-1	17453	#	p 329
N88-1	7579		p 278
N88-	7580		n 278
NIGO.	7591	• #	D 276
AIGO -	7507	• 4	- 070
1400-	7303	. #	p 2/3
M88-	7585	#	p 2/
N88-1	17586	* #	p 279
N88-	17591	*#	p 279
NAA-	17592	• #	p 279
NIGO.	7503	• #	2 270
NOO-	17555	. #	- 07
1498-	17594	#	P 2/3
N88-	17595	*#	p 280
N88-	17596	• #	p 280
N88-	17597	* #	p 280
NAA-	17598	• #	n 280
NRA.	17600	• #	0 280
NOO.	7000	• #	- 200
1400-	17001	. #	p 300
N88-	7602	#	p 280
N88-	17603	•#	p 281
N88-1	17604	*#	p 281
N88-	7605	• #	p 281
N88-	7606	• #	n 281
NAR.	7607	• #	D 281
NIDO 1	7600	• #	P 201
1400-	7000	. #	p 29
NRR-	7609	#	p 291
N88-1	7610	*#	p 281
N88-1	17611	#	p 282
N88-	17612	* #	p 282
NAA.	17613	#	n 282
NIDO -	17614	• "#	0 283
1400-	7017	• #	P 202
M88-	7615	#	p 204
N88-1	7616	*#	p 283
N88-	17617	•#	p 323
N88-	17618	• #	p 283
N88-	7619	• #	D 284
NAA -	7620	• #	0 28/
Nee -	7624	• #	200
1400-	1/021	.#.	h 50
N98-	/622	#	p 284
N88-	17623	•#	p 321
N88-	17624	•#	p 321
N88-	7628	* #	p 284
NAA.	7629	•#	n 284
NIGO	17620	• "#	200
1100-	17030	# • #	h 504
NSS-	1/031	#	p 284
N88-	17632	-#	p 32
N88-	17633	•#	p 284
N88-	17634	* #	p 330
N88-	17635	• #	p 28
NAA	17636	• #	D 284
NIGO	17620	#	P 200
1100-	17000	#	P 200
MSS-	1/039	#	p 28
N88-	17641	#	p 29
N88-	17642	#	p 29
N88-	17643		p 292
N88-	17644	• #	p 29
NAR	17090 17207 17216 17217 17218 17218 17218 17218 17218 17218 17253 17260 17313 17363 17434 17440 17441 17581 17581 17581 17581 17581 17581 17581 17593 17594 17601	。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。	P 3219 P
NIGO	17646	• #	P 200
1100-	17040	T L	P 284
	1/64/	#	0.299

р 299 р 300 р 300

N88-17648 N88-17649

N88-17650

N88-17651 ACCESSION NUMBER INDEX

p 300 p 300 p 300 p 300 p 301 N88-17651 N88-17652 N88-17653 N88-17654 N88-17655 N88-17656 N88-17657 p 301 p 301 p 301 p 301 p 301 p 301 p 302 p 302 N88-17658 N88-17659 N88-17660 N88-17662 N88-17663 N88-17664 P 302 P 302 P 302 P 302 P 303 P 303 P 303 P 303 P 303 P 303 P 304 P 304 P 304 P 304 P 309 P 311 P 314 P 322 P 292 P 292 P 292 P 293 P 293 P 293 P 293 N88-17665 N88-17666 N88-17667 N88-17668 N88-17669 N88-17670 N88-17672 N88-17674 N88-17675 N88-17676 N88-17677 N88-17678 N88-17679 N88-17680 N88-17681 N88-17682 N88-17684 * N88-17687 N88-17813 N88-17819 N88-17822 N88-17823 N88-17824 N88-17825 N88-17836 N88-17839 N88-17842 N88-17844 N88-17845 N88-17847 p 309 p 270 p 293 N88-17848 p 270 p 294 p 294 N88-17849 N88-17850 N88-17853 p 294
p 321
p 294
p 321
p 322
p 322
p 322
p 322
p 322
p 322
p 328
p 329
p 330 N88-17854 N88-17855 N88-17863 N88-17871 N88-17929 N88-17929 N88-17957 # N88-17962 # N88-18007 *# N88-18013 # N88-18036 *# N88-18370 *# N88-18376 *#

AVAILABILITY OF CITED PUBLICATIONS

IAA ENTRIES (A88-10000 Series)

Publications announced in *IAA* are available from the AIAA Technical Information Service as follows: Paper copies of accessions are available at \$10.00 per document (up to 50 pages), additional pages \$0.25 each. Microfiche⁽¹⁾ of documents announced in *IAA* are available at the rate of \$4.00 per microfiche on demand. Standing order microfiche are available at the rate of \$1.45 per microfiche for *IAA* source documents and \$1.75 per microfiche for AIAA meeting papers.

Minimum air-mail postage to foreign countries is \$2.50. All foreign orders are shipped on payment of pro-forma invoices.

All inquiries and requests should be addressed to: Technical Information Service, American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York, NY 10019. Please refer to the accession number when requesting publications.

STAR ENTRIES (N88-10000 Series)

One or more sources from which a document announced in *STAR* is available to the public is ordinarily given on the last line of the citation. The most commonly indicated sources and their acronyms or abbreviations are listed below. If the publication is available from a source other than those listed, the publisher and his address will be displayed on the availability line or in combination with the corporate source line.

Avail: NTIS. Sold by the National Technical Information Service. Prices for hard copy (HC) and microfiche (MF) are indicated by a price code preceded by the letters HC or MF in the STAR citation. Current values for the price codes are given in the tables on NTIS PRICE SCHEDULES.

Documents on microfiche are designated by a pound sign (#) following the accession number. The pound sign is used without regard to the source or quality of the microfiche.

Initially distributed microfiche under the NTIS SRIM (Selected Research in Microfiche) is available at greatly reduced unit prices. For this service and for information concerning subscription to NASA printed reports, consult the NTIS Subscription Section, Springfield, Va. 22161.

NOTE ON ORDERING DOCUMENTS: When ordering NASA publications (those followed by the * symbol), use the N accession number. NASA patent applications (only the specifications are offered) should be ordered by the US-Patent-Appl-SN number. Non-NASA publications (no asterisk) should be ordered by the AD, PB, or other *report number* shown on the last line of the citation, not by the N accession number. It is also advisable to cite the title and other bibliographic identification.

Avail: SOD (or GPO). Sold by the Superintendent of Documents, U.S. Government Printing Office, in hard copy. The current price and order number are given following the availability line. (NTIS will fill microfiche requests, as indicated above, for those documents identified by a # symbol.)

⁽¹⁾ A microfiche is a transparent sheet of film, 105 by 148 mm in size containing as many as 60 to 98 pages of information reduced to micro images (not to exceed 26.1 reduction).

- Avail: BLL (formerly NLL): British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England. Photocopies available from this organization at the price shown. (If none is given, inquiry should be addressed to the BLL.)
- Avail: DOE Depository Libraries. Organizations in U.S. cities and abroad that maintain collections of Department of Energy reports, usually in microfiche form, are listed in *Energy Research Abstracts*. Services available from the DOE and its depositories are described in a booklet, *DOE Technical Information Center Its Functions and Services* (TID-4660), which may be obtained without charge from the DOE Technical Information Center.
- Avail: ESDU. Pricing information on specific data, computer programs, and details on ESDU topic categories can be obtained from ESDU International Ltd. Requesters in North America should use the Virginia address while all other requesters should use the London address, both of which are on the page titled ADDRESSES OF ORGANIZATIONS.
- Avail: Fachinformationszentrum, Karlsruhe. Sold by the Fachinformationszentrum Energie, Physik, Mathematik GMBH, Eggenstein Leopoldshafen, Federal Republic of Germany, at the price shown in deutschmarks (DM).
- Avail: HMSO. Publications of Her Majesty's Stationery Office are sold in the U.S. by Pendragon House, Inc. (PHI), Redwood City, California. The U.S. price (including a service and mailing charge) is given, or a conversion table may be obtained from PHI.
- Avail: NASA Public Document Rooms. Documents so indicated may be examined at or purchased from the National Aeronautics and Space Administration, Public Documents Room (Room 126), 600 Independence Ave., S.W., Washington, D.C. 20546, or public document rooms located at each of the NASA research centers, the NASA Space Technology Laboratories, and the NASA Pasadena Office at the Jet Propulsion Laboratory.
- Avail: Univ. Microfilms. Documents so indicated are dissertations selected from *Dissertation Abstracts* and are sold by University Microfilms as xerographic copy (HC) and microfilm. All requests should cite the author and the Order Number as they appear in the citation.
- Avail: US Patent and Trademark Office. Sold by Commissioner of Patents and Trademarks, U.S. Patent and Trademark Office, at the standard price of \$1.50 each, postage free. (See discussion of NASA patents and patent applications below.)
- Avail: (US Sales Only). These foreign documents are available to users within the United States from the National Technical Information Service (NTIS). They are available to users outside the United States through the International Nuclear Information Service (INIS) representative in their country, or by applying directly to the issuing organization.
- Avail: USGS. Originals of many reports from the U.S. Geological Survey, which may contain color illustrations, or otherwise may not have the quality of illustrations preserved in the microfiche or facsimile reproduction, may be examined by the public at the libraries of the USGS field offices whose addresses are listed in this Introduction. The libraries may be queried concerning the availability of specific documents and the possible utilization of local copying services, such as color reproduction.
- Avail: Issuing Activity, or Corporate Author, or no indication of availability. Inquiries as to the availability of these documents should be addressed to the organization shown in the citation as the corporate author of the document.

PUBLIC COLLECTIONS OF NASA DOCUMENTS

DOMESTIC: NASA and NASA-sponsored documents and a large number of aerospace publications are available to the public for reference purposes at the library maintained by the American Institute of Aeronautics and Astronautics, Technical Information Service, 555 West 57th Street, 12th Floor, New York, New York 10019.

EUROPEAN: An extensive collection of NASA and NASA-sponsored publications is maintained by the British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England for public access. The British Library Lending Division also has available many of the non-NASA publications cited in *STAR*. European requesters may purchase facsimile copy or microfiche of NASA and NASA-sponsored documents, those identified by both the symbols # and * from ESA – Information Retrieval Service European Space Agency, 8-10 rue Mario-Nikis, 75738 CEDEX 15, France.

FEDERAL DEPOSITORY LIBRARY PROGRAM

In order to provide the general public with greater access to U.S. Government publications, Congress established the Federal Depository Library Program under the Government Printing Office (GPO), with 50 regional depositories responsible for permanent retention of material, inter-library loan, and reference services. At least one copy of nearly every NASA and NASA-sponsored publication, either in printed or microfiche format, is received and retained by the 50 regional depositories. A list of the regional GPO libraries, arranged alphabetically by state, appears on the inside back cover. These libraries are *not* sales outlets. A local library can contact a Regional Depository to help locate specific reports, or direct contact may be made by an individual.

STANDING ORDER SUBSCRIPTIONS

NASA SP-7037 and its supplements are available from the National Technical Information Service (NTIS) on standing order subscription as PB 88-914100 at the price of \$8.50 domestic and \$17.00 foreign. The price of the annual index is \$14.50. Standing order subscriptions do not terminate at the end of a year, as do regular subscriptions, but continue indefinitely unless specifically terminated by the subscriber.

ADDRESSES OF ORGANIZATIONS

American Institute of Aeronautics and Astronautics Technical Information Service 555 West 57th Street, 12th Floor New York, New York 10019

British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England

Commissioner of Patents and Trademarks U.S. Patent and Trademark Office Washington, D.C. 20231

Department of Energy Technical Information Center P.O. Box 62 Oak Ridge, Tennessee 37830

ESA-Information Retrieval Service ESRIN Via Galileo Galilei 00044 Frascati (Rome) Italy

ESDU International, Ltd. 1495 Chain Bridge Road McLean, Virginia 22101

ESDU International, Ltd. 251-259 Regent Street London, W1R 7AD, England

Fachinformationszentrum Energie, Physik, Mathematik GMBH 7514 Eggenstein Leopoldshafen Federal Republic of Germany

Her Majesty's Stationery Office P.O. Box 569, S.E. 1 London, England

NASA Scientific and Technical Information Facility P.O. Box 8757 B.W.I. Airport, Maryland 21240 National Aeronautics and Space Administration Scientific and Technical Information Division (NTT-1) Washington, D.C. 20546

National Technical Information Service 5285 Port Royal Road Springfield, Virginia 22161

Pendragon House, Inc. 899 Broadway Avenue Redwood City, California 94063

Superintendent of Documents U.S. Government Printing Office Washington, D.C. 20402

University Microfilms A Xerox Company 300 North Zeeb Road Ann Arbor, Michigan 48106

University Microfilms, Ltd. Tylers Green London, England

U.S. Geological Survey Library National Center - MS 950 12201 Sunrise Valley Drive Reston, Virginia 22092

U.S. Geological Survey Library 2255 North Gemini Drive Flagstaff, Arizona 86001

U.S. Geological Survey 345 Middlefield Road Menlo Park, California 94025

U.S. Geological Survey Library Box 25046 Denver Federal Center, MS914 Denver, Colorado 80225

NTIS PRICE SCHEDULES

(Effective January 1, 1988)

Schedule A STANDARD PRICE DOCUMENTS AND MICROFICHE

PRICE CODE	NORTH AMERICAN PRICE	FOREIGN PRICE	
A01	\$ 6.95	\$13.90	
A02	9.95	19.90	
A03	12.95	25.90	
A04-A05	14.95	29.90	
A06-A09	19.95	39.90	
A10-A13	25.95	51.90 65.90	
A14-A17	32.95		
A18-A21	38.95	77.90	
A22-A25	44.95	89.90	
A99	•	*	
NO1	49.50	89.90	
NO2	48.00	80.00	

Schedule E EXCEPTION PRICE DOCUMENTS AND MICROFICHE

PRICE CODE	NORTH AMERICAN PRICE	FOREIGN PRICE	
E01	\$ 8.50	17.00	
E02	11.00	22.00	
E03	12.00	24.00	
E04	14.50	29.00	
E05	16.50	33.00	
E06	19.00	38.00	
E07	21.50	43.00	
E08	24.00	48.00	
E09	26.50	53.00	
E10	29.00	58.00	
E11	31.50	63.00	
E12	34.00	68.00	
E13	36.50	73.00	
E14	39.50	79.00	
E15	43.00	86.00	
E16	47.00	94.00	
E17	51.00	102.00	
E18	55.00	110.00	
E19	61.00	122.00	
E20	71.00	142.00	
E99	*	*	

^{*} Contact NTIS for price quote.

IMPORTANT NOTICE

NTIS Shipping and Handling Charges
U.S., Canada, Mexico — ADD \$3.00 per TOTAL ORDER
All Other Countries — ADD \$4.00 per TOTAL ORDER

Exceptions — Does NOT apply to:
ORDERS REQUESTING NTIS RUSH HANDLING
ORDERS FOR SUBSCRIPTION OR STANDING ORDER PRODUCTS ONLY

NOTE: Each additional delivery address on an order requires a separate shipping and handling charge.

1. Report No.	2. Government Accession	n No.	3. Recipient's Catalog	No.	
NASA SP-7037 (227)					
4. Title and Subtitle			5. Report Date		
Aeronautical Engineering			June, 1988	·	
A Continuing Bibliography (Supplement 227)			6. Performing Organization Code		
7. Author(s)	· -		8. Performing Organiza	ation Report No.	
			10. Work Unit No.		
Performing Organization Name and Address					
National Aeronautics and Space Admi Washington, DC 20546	nistration		11. Contract or Grant N	lo.	
			13. Type of Report and	Period Covered	
12. Sponsoring Agency Name and Address					
		ļ	14. Sponsoring Agency	/ Code	
45 0					
15. Supplementary Notes					
16. Abstract				·	
This bibliography lists 418 reports, a	rticles and other docu	ments introduced into	the NASA scientif	ic	
and technical information system in					
	,,,				
				-	
				· · · · · · · · · · · · · · · · · · ·	
17. Key Words (Suggested by Authors(s))		18. Distribution Statement			
Aeronautical Engineering		Unclassified - Unlimited			
Aeronautics					
Bibliographies					
19. Security Classif. (of this report)	20. Security Classif. (of	this page)	21. No. of Pages	22. Price *	
Unclassified	Unclassified		124	A06/HC	

FEDERAL REGIONAL DEPOSITORY LIBRARIES

ALABAMA

AUBURN UNIV. AT MONTGOMERY LIBRARY

Documents Department Montgomery, AL 36193 (205) 271-9650

UNIV. OF ALABAMA LIBRARY

Documents Dept.-Box S University, AL 35486 (205) 348-6046

ARIZONA

DEPT. OF LIBRARY, ARCHIVES AND PUBLIC RECORDS

Third Floor-State Cap. 1700 West Washington Phoenix, AZ 85007

UNIVERSITY OF ARIZONA LIB.

Government Documents Dept. Tucson, AZ 85721

ARKANSAS

ARKANSAS STATE LIBRARY

One Capitol Mall Little Rock, AR 72201 (501) 371-2326

CALIFORNIA

CALIFORNIA STATE LIBRARY

Govt. Publications Section P.O. Box 2037 Sacramento, CA 95809 (916) 324-4863

COLORADO

UNIV OF COLORADO LIB.

Government Pub. Division Campus Box 184 Boulder, CO 80309 (303) 492-8834

DENVER PUBLIC LIBRARY

Govt. Pub. Department 1357 Broadway Denver, CO 80203 (303) 571-2131

CONNECTICUT

CONNECTICUT STATE LIBRARY

Government Documents Unit 231 Capitol Avenue Hartford, CT 06106 (203) 566-7029

FLORIDA

UNIV. OF FLORIDA LIBRARIES

Library West Documents Department Gainesville, FL 32611 (904) 392-0367

GEORGIA

UNIV. OF GEORGIA LIBRARIES

Government Reference Dept. Athens, GA 30602

HAWAII

UNIV. OF HAWAII LIBRARY

Govt. Documents Collection 2550 The Mall Honolulu, HI 96822 (808) 948-8230

IDAHO

UNIV. OF IDAHO LIBRARY

Documents Section Moscow, ID 83843 (208) 885-6344

ILLINOIS

ILLINOIS STATE LIBRARY

Information Services Branch Centennial Building Springfield, IL 62756 (217) 782-5185

INDIANA

INDIANA STATE LIBRARY

Serials Documents Section 140 North Senate Avenue Indianapolis, IN 46204 (317) 232-3686

UNIV. OF IOWA LIBRARIES

Govt. Documents Department lowa City, IA 52242 (319) 353-3318

KANSAS

UNIVERSITY OF KANSAS

Doc. Collect—Spencer Lib. Lawrence, KS 66045-2800 (913) 864-4662

KENTUCKY

UNIV. OF KENTUCKY LIBRARIES

Govt. Pub. Department Lexington, KY 40506-0039 (606) 257-3139

LOUISIANA

LOUISIANA STATE UNIVERSITY

Middleton Library Govt. Docs. Dept Baton Rouge, LA 70803 (504) 388-2570

LOUISIANA TECHNICAL UNIV. LIBRARY

Documents Department Ruston, LA 71272-0046 (318) 257-4962

MAINE

UNIVERSITY OF MAINE

Raymond H. Fogler Library Tri-State Regional Documents Depository Orono, ME 04469 (207) 581-1680

MARYLAND

UNIVERSITY OF MARYLAND

McKeldin Lib.—Doc. Div. College Park, MD 20742 (301) 454-3034

MASSACHUSETTS

BOSTON PUBLIC LIBRARY

Government Docs. Dept. Boston, MA 02117 (617) 536-5400 ext.226

MICHIGAN

DETROIT PUBLIC LIBRARY

Sociology Department 5201 Woodward Avenue Detroit, MI 48202-4093 (313) 833-1409

MICHIGAN STATE LIBRARY

P.O. Box 30007 Lansing, MI 48909

MINNESOTA

UNIVERSITY OF MINNESOTA

Government Pubs. Division 409 Wilson Library 309 19th Avenue South Minneapolis, MN 55455 (612) 373-7870

MISSISSIPPI

UNIV. OF MISSISSIPPI LIB.

Documents Department University, MS 38677

MONTANA

UNIV. OF MONTANA

Mansfield Library Documents Division Missoula, MT 59812

NEBRASKA

UNIVERSITY OF NEBRASKA - LINCOLN

Love Library
Documents Department
Lincoln, NE 68588-0410
(402) 472-2562

NEVADA

UNIVERSITY OF NEVADA LIB. Govt. Pub. Department Reno, NV 89557-0044

(702) 784-6579 **NEW JERSEY**

NEWARK PUBLIC LIBRARY

5 Washington Street Newark, NJ 07101-0630 (201) 733-7812

NEW MEXICO

UNIVERSITY OF NEW MEXICO

Zimmerman Library Government Pub. Dept Albuquerque, NM 87131 (505) 277-5441

NEW MEXICO STATE LIBRARY

Reference Department 325 Don Gaspar Avenue Santa Fe, NM 87503 (505) 827-3826

NEW YORK

NEW YORK STATE LIBRARY

Empire State Plaza Albany, NY 12230 (518) 474-5563

NORTH CAROLINA

UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL

Davis Library BA/SS Documents Division Chapel Hill, NC 27515 (919) 962-1151

NORTH DAKOTA

UNIVERSITY OF NORTH DAKOTA

Chester Fritz Library Documents Department Grand Forks, ND 58202 (701) 777-4629 In cooperation with North Dakota State Univ. Library

STATE LIBRARY OF OHIO

Documents Department 65 South Front Street Columbus, OH 43266-0334 (614) 462-7051

OKLAHOMA

OKLAHOMA DEPT. OF LIB.

Government Documents 200 NE 18th Street Oklahoma City, OK 73105 (405) 521-2502, ext. 252 OKLAHOMA STATE UNIV. LIB.

Documents Department Stillwater, OK 74078

OREGON

PORTLAND STATE UNIV. LIB.

Documents Department P.O. Box 1151 Portland, OR 97207 (503) 229-3673

PENNSYLVANIA

STATE LIBRARY OF PENN. Government Pub. Section P.O. Box 1601

Harrisburg, PA 17105 (717) 787-3752

TEXAS

TEXAS STATE LIBRARY

Public Services Department P.O. Box 12927—Cap. Sta. Austin, TX 78711 (512) 475-2996

TEXAS TECH. UNIV. LIBRARY

Govt. Documents Department Lubbock, TX 79409 (806) 742-2268

UTAH

UTAH STATE UNIVERSITY

Merrill Library, U.M.C. 30 Logan, UT 84322 (801) 750-2682

VIRGINIA

UNIVERSITY OF VIRGINIA

Alderman Lib. — Public Doc. Charlottesville, VA 22903-2498 (804) 924-3133

WASHINGTON

WASHINGTON STATE LIBRARY

Documents Section Olympia, WA 98504 (206) 753-4027

WEST VIRGINIA

WEST VIRGINIA UNIV. LIB. Documents Department Morgantown, WV 26506-6069 (304) 293-3640

WISCONSIN

MILWAUKEE PUBLIC LIBRARY

814 West Wisconsin Avenue Milwaukee, WI 53233 (414) 278-3065

ST. HIST LIB. OF WISCONSIN Government Pub. Section 816 State Street Madison, WI 53706 (608) 262-4347

WYOMING

WYOMING STATE LIBRARY Supreme Ct. & Library Bld. Cheyenne, WY 82002 (307) 777-5919

National Aeronautics and Space Administration Code NTT-4

Washington, D.C. 20546-0001

Official Business Penalty for Private Use, \$300 BULK RATE
POSTAGE & FEES PAID
NASA
Permit No. G-27

POSTMASTER:

If Undeliverable (Section 158 Postal Manual) Do Not Return