Московский физико-технический институт (госудраственный университет)

Лабораторная работа по общему курсу физики Электричество и магнетизм

3.3.6. Влияние магнитного поля на проводиомость полупроводников

Глаз Роман Сергеевич Группа Б01-007

Долгопрудный 2021

Содержание

1	Теоретическое введение	1					
2	Экспериментальная установка	2					
3	Ход работы	2					
	3.1 Построение калибровочной кривой	2					
	3.2 Диск Корбино	3					
	3.3 Прямоугольная пластина	6					
4	Заключение						
5	5 Список используемой литературы						

Цель работы: измерение зависимости сопротивления полупроводниковых образцов различной формы от индукции магнитного поля.

Используемое оборудование: электромагнит, милливеберметр или миллитесламетр (на основе датчика Холла), вольтметр, амперметр, миллиамперметр, реостат, образцы монокристаллического антимонида индия (InSb) *n*-типа.

1. Теоретическое введение

В работе исследуется эффект зависимости электрического сопротивления от магнитного поля на примере диска Корбино (см. рис.).

Рис. 1: Диск Корбино

При отстутствии магнитного поля, направленного перпендикулярно плоскости диска, по диску течёт ток, определяемый по закону

$$I = \frac{U}{R_0}, \ R_0 = \frac{\ln \frac{r_2}{r_1}}{\sigma_0 2\pi r h}$$
 (1)

Однако при включении магнитного поля индукции B на частицыпереносчики тока начинает действовать сила Лоренца, из-за чего траектория частиц увеличивается в расстоянии, проходимом между двумя точками с фиксированной разницей потенциалов U.

В этом случае проводимость равна

$$\sigma_r = \frac{\sigma_0}{1 + (\mu B)^2} \tag{2}$$

Закон Ома преобразовывается в следующий вид:

$$I = \frac{U}{R}, \ R = R_0(1 + (\mu B)^2) \tag{3}$$

Таким образом, зависимость I(U) поменялась из-за геометрических особенностей диска Корбино. Такой эффект называют геометрическим магнетосопротивлением. В этой работе будут исследоваться зависимость сопротивления диска от магнитного поля, проверяться выше записанные формулы и исследоваться как влияет характер зависимости геометрических форм на зависимость R(B).

2. Экспериментальная установка

Для исследование зависимости R(B) используется следующая методика:

- 1. Используется калибровка электромагнита (источника магнитного поля): находится зависимость индукции создаваемого магнитного поля от тока в контуре электродвигателя $B(I_m)$ (или $I_m(B)$), который регистрируется амперметром A_1 , чтобы в дальнейшем считать величину магнитного поля с помощью тока в контуре I_m .
- 2. При постоянной силе тока I_0 , которая настривается с помощью сопротивления реостата в контуре с источником питания, меняется величина индукции магнитного поля, тем самым меняется напряжение U, подаваемое на диск Корбино. Исследуется зависимость R(B) через калибровочную кривую и зависимость $U(I_m)$.
- 3. Проводится тот же самый опыт с прямоугольной пластинкой с исследованием зависимости её сопротивления R(B).

3. Ход работы

3.1. Построение калибровочной кривой

Включим милливеберметр и будем снимать зависимость в контуре электродвигателя $I_m(B)$. В нашем случае милливеберметр измеряет не поток магнитного поля, а сразу же напрямую индукцию магнитного поля.

Построим калибровочный график:

В дальнейшем нужно учесть, что значения индукции магнитного поля сняты с точностью 2, а сила тока 5 мА.

Рис. 2: Схемы экспериментальных установок

3.2. Диск Корбино

Вставим диск Корбино в зазор выключенного электромагнита и измерим падение напряжения U_0 в образце при токе $I_0=22,5\pm0,5$ мА (максимально возможный ток в контуре) через образец: $U_0=695\pm2$ мВ. Теперь зафиксируем ток в основном контуре (с источником питания) $I_0=22,5\pm0,5$ мА и будем исследовать $U(I_m)$:

На графике учтено, что погрешность мультиметра равна $\Delta U = 4$ мВ (учтены данные производителя, ошибка округления и колебания мультиметра около среднего значения), а погрешность амперметра $\Delta I_m = 5$ мА.

Воспользуемся калибровочной кривой и величиной тока I_0 , чтобы найти зависимость R(B) (учтена погрешность $\Delta I_0 = 1$ мА).

Теперь построим график $\frac{U-U_0}{U_0}(B^2)$

Из графика и коэффициента корреляции видно, что график – прямая. Значит теоретическая зависимость верна и можно посчитать подвижность

I, мА	0	10	20	30	40	50
B , м \mathbf{T} л	10,1	12,0	20,8	28,3	35,9	45,1
<i>I</i> , мА	60	70	80	90	100	-
B , м \mathbf{T} л	54,4	65,0	75,7	84,9	94,6	-
<i>I</i> , мА	120	140	160	180	200	220
B , м \mathbf{T} л	113,9	131,3	148,7	167,0	184,9	204,0
<i>I</i> , мА	240	260	280	300	320	-
B , м \mathbf{T} л	220	237	254	269	287	-
<i>I</i> , мА	340	360	380	400	420	440
B , м \mathbf{T} л	303,0	315,0	324,0	335,0	343,0	349,0
<i>I</i> , мА	460	480	500	520	540	-
B , м \mathbf{T} л	353,0	358,0	363,0	367,0	371,0	-

Таблица 1: Таблица данных для калибровочной кривой

Рис. 3: Калибровочная кривая $B(I_m)$

зарядов (так как известны погрешности отдельных измерений, но не выполянется $\Delta y \gg \Delta x$, то не получится воспользоваться методом хиквадрат, используем МНК):

$$k = \mu^2 = 26, 3 \pm 1, 8 \text{ Tr}^{-2} \Rightarrow \mu = 5, 13 \pm 0, 17 \text{ Tr}^{-1}$$
 (4)

Рис. 4: График $U(I_m)$ для диска Корбино

Рис. 5: График R(B) для диска Корбино

Заметим, что табличное значение этой величины равно $\mu_{theor} = 7,7~{\rm Tr}^{-1}$. Возможно, на результат повлияли условия, которые не были устены во время проведения измерений.

Рис. 6: График $\frac{U-U_0}{U_0}(B^2)$ для диска Корбино

При отсутствии магнитного поля сопротивление диска равно $R_0 = 30,9\pm1,7$ Ом. Отсюда легко найти удельную проводимость из формулы

$$R_0 = \frac{\ln \frac{D}{d}}{\sigma_0 2\pi h} \Rightarrow \sigma_0 = \frac{\ln \frac{D}{d}}{R_0 2\pi h} = 513 \pm 18 \; (\text{Om} \cdot \text{cm})^{-1}$$
 (5)

Здест были использованы геометрические размеры диска: d=3 мм, D=18 мм, h=1,8 мм.

Теперь найдём концентрацию носителей тока:

$$n = \frac{\sigma_0}{e\mu} \approx 6.2 \cdot 10^{18} \text{ m}^{-3} \tag{6}$$

3.3. Прямоугольная пластина

Найдём все аналогичные параметры для прямоугольной пластины так же, как и для диска Корбино. Посчитаем сразу линеаризованную зависимость $\frac{U-U_0}{U_0}(B^2)$:

Из коэффициента корреляции понятно, что зависимость нельзя считать линейной. Значит изначальная теоретическая зависимость тоже не выполняется.

Рис. 7: График $\frac{U-U_0}{U_0}(B^2)$ для прямоугольной пластины (параллельное расположение)

Выходит, что она специфична для геометрической формы диска Корбино. Построим аналогичный график для перпендикулярного расположения пластины:

Понятно, что этот случай и должен был отличаться только коэффициентами зависимости.

4. Заключение

Теоретическая зависимость R(B) действительно выполняется для диска Корбино. Полученный коэффициент зависимости, который равен подвижности носителей зарядов, отличается от табличного даже с учётом погрешности ($\mu=5,13\pm0,17~{\rm Tr}^{-1},~\mu_{theor}=7,7~{\rm Tr}^{-1}$). Отсюда можно сделать вывод, что либо не были учтены какие-то внешние факторы при снятии данных, либо исследуемый материал не является монокристаллическим антимонидом индия (InSb).

Квадратичная зависимость R(B) действительно специфична для диска Корбино из-за его геометрических форм, так как для прямоугольной пластинки эта зависимость неверна (в любом её расположении).

Рис. 8: График $\frac{U-U_0}{U_0}(B^2)$ для прямоугольной пластины (перпендикулярное расположение)

5. Список используемой литературы

- Лабораторный практикум по общей физике. Электричество и магнетизм
- Описание лабораторных работ на кафедре общей физики МФТИ