Probability Theory and Random Processes (MA225)

Lecture SLIDES
Lecture 07

Indian Institute of Technology Guwahati

July-Nov 2022

Properties of PDF

 $f_X(x) \ge 0$ for all $x \in \mathbb{R}$.

Theorem: Suppose a real valued function $g: \mathbb{R} \to \mathbb{R}$ satisfies the following conditions:

Then $g(\cdot)$ is a probability density function of some continuous random variable.

RV which is neither discrete nor continuous

Consider the random variable X whose distribution function is given by

$$F_X(x) = \begin{cases} 0 & \text{if} & x < -1 \\ x+1 & \text{if} & -1 \le x < -1/2 \\ 1 & \text{if} & x \ge -1/2. \end{cases}$$

Observe that $F_X=\frac{1}{2}F_1+\frac{1}{2}F_2$ where F_1 and F_2 are distribution functions given by

$$F_1(x) = \begin{cases} 0 & \text{if} & x < -1 \\ 2(x+1) & \text{if} & -1 \le x < -1/2 \\ 1 & \text{if} & x \ge -1/2. \end{cases}$$

$$F_2(x) = \begin{cases} 0 & \text{if} & x < -1/2 \\ 1 & \text{if} & x \ge -1/2. \end{cases}$$

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ ■ 釣۹ペ

July-Nov 2022

Expectation of DRV

Def: Let X be a discrete RV with PMF $f_X(\cdot)$ and support S_X . The expectation or mean of X is defined by

$$E(X) = \sum_{x \in S_X} x f_X(x) \quad \text{provided} \quad \sum_{x \in S_X} |x| f_X(x) < \infty \,.$$

- \blacktriangleright E(X) is the weighted average of the values taken by X.
- ▶ If $\sum_{x \in S_X} |x| f_X(x) = \infty$ then we say that expectation does not exist.

MA225

Example 1: X = outcome of a roll of a fair die. What is E(X) ?

Example 2: $X \sim Bin(n, p)$. What is E(X) ?

Example 3: $X \sim Geo(p)$. What is E(X) ?

Example 4: $X \sim Poi(\lambda)$. What is E(X) ?

Example 5:

$$f_X(x) = \begin{cases} \frac{c}{x^2}, & x \in \mathbb{N}, \quad \text{where} \quad c = \left(\sum_{n=1}^\infty \frac{1}{n^2}\right)^{-1} \\ 0 \quad \text{otherwise} \ . \end{cases}$$

Let X be a DRV having the above PMF, then E(X) does not exist.

<ロ > 4回 > 4回 > 4 直 > 4 直 > 1 回 の へ ()

MA225

Expectation of CRV

Def: Let X be a CRV with PDF $f_X(.)$. The expectation of X is defined by

$$E(X) = \int_{-\infty}^{\infty} x f_X(x) dx \quad \text{provided} \quad \int_{-\infty}^{\infty} |x| f_X(x) dx < \infty \,.$$

Example 6: $X \sim U(a, b)$, what is E(X) ?

Example 7: $X \sim Exp(\lambda)$, what is E(X) ?

Example 8: $X \sim N(\mu, \sigma^2)$, what is E(X) ?

Example 9: Let X be a CRV having PDF $f_X(x) = \frac{1}{\pi(1+x^2)}, \forall x \in \mathbb{R}$. What is

E(X) ?

MA225