

数字电路课程设计

课程		数号	字电路与数字逻辑 D I	
设计名	称:		十字路口道路交通等状态控制电路	
ţ	生	名 _	<u>凌智城</u>	
È	学	号 _	201806061211	
7	专业理		通信工程 1803 班	
ā	芒	师	李如春	
<u> </u>	学	院 _	信息工程学院	

完成日期 2020年6月3日

一、 设计任务与要求

1、 任务:设计一个十字路口道路交通等状态控制器电路

2、 要求:

- 1) 主干道和支干道交替通行,主干道和支干道均设有红、黄、绿三种灯:
- 2) 绿灯亮则表示可以通行, 红灯亮则表示禁止通行;
- 3)每次绿灯变红灯之前,黄灯亮作为过渡(此时另一干道上的红灯处于 闪烁状态);
- 4) 干道上的红、黄、绿灯用发光二极管模拟输出;
- 5) 完成电路设计,电路设计可采用基本逻辑门单元或中规模的数字集成芯片,电路设计完成后,在 Quartus II 软件平台上对所设计电路进行仿真分析以验证设计的正确性。

二、设计框图

三、概述

首先,整个控制电路由脉冲发生电路,计数系统,控制系统,译码系统以及主干道和支干道两组 LED 红绿灯和两组显示时间的数码二极管构成。控制系统是整个电路的核心,控制着红绿灯的亮灭、数码管的时间显示等。计数系统用 74LS161 来实现,采用同步置数或者异步清零的方法来实现要求。译码系统是用来将计数系统所记的时间用数码二极管先输出来,以便让我们知道红绿灯的亮灭时间,最后用两组三只红绿黄LED 发光二极管来讲电路功能直观的展现出来。

四、 具体分析

1、 逻辑功能:

- 1)为了方便,主干道和支干道在下文均中用甲车道和乙车道表示,绿灯表示通行,红灯表示禁止通行,黄灯表示缓行;
- 2) T_G : 表示甲车道或乙车道绿灯亮的时间间隔为 20s,即车辆正常通行

的时间间隔,定时时间到则 $T_{G=1}$,否则 $T_{G=0}$;

- 3) T_{γ} :表示甲车道或乙车道黄灯亮的时间间隔为 5s,定时时间到则 T_{γ} =1, 否则 T_{Y} =0;
- 4) S_T : 表示定时器到了规定时间后,由控制器发出状态转换信号,控制 交通信号灯状态转换。
- 交通信号灯控制器分析共有四种状态: 2,
 - 甲绿, 乙红 甲车道通行, 乙车道禁止通行; 1) S0 表示 00
 - 甲绿,乙红 甲车道通行,乙车道禁止通行; 甲黄,乙红 甲车道缓行,乙车道禁止通行; 2) S1 表示 01
 - 3) S3 表示 104) S4 表示 11甲红,乙绿 甲车道禁止通行,乙车道通行;甲红,乙黄 甲车道禁止通行,乙车道缓行。

为了简便起见,对应车道和灯做出如下规定:

控制状态	信号灯状态	车道运行状态
S0 (00)	甲绿,乙红	甲车道通行, 乙车道禁止通行
S1 (01)	甲黄,乙红	甲车道缓行, 乙车道禁止通行
S3 (10)	甲红,乙绿	甲车道禁止通行,乙车道通行
S2 (11)	甲红,乙黄	甲车道禁止通行, 乙车道缓行
AG=1	甲车道绿灯亮	甲车道通行
BG=1	乙车道绿灯亮	乙车道通行
AY=1	甲车道黄灯亮	甲车道缓行
BY=1	乙车道黄灯亮	乙车道缓行
AR=1	甲车道红灯亮	甲车道禁止通行
BR=1	乙车道红灯亮	乙车道禁止通行

五、 单元电路的设计

1、 脉冲信号发生器

采用 555 定时器组成周期 T=1s 的脉冲信号发生器

$$T_1 = 0.7(R_1 + R_2)C$$
 $T_2 = 0.7R_2C$ $T = 0.7(R_1 + 2R_2)C$

$$f = \frac{1}{T} = \frac{1}{0.7(R_1 + 2R_2)C}$$
 $q = \frac{T_1}{T} = \frac{R_1 + R_2}{R_1 + 2R_2}$

取 R_1 为 15K Ω , R_2 为 68K Ω ,C 取 10uf,则 T=1.057s \approx 1s

2、 定时器

由系统的时钟脉冲产生器提供的同步计数器构成,要求计数器在状态转换信号 ST 作用下,先清零,然后在时钟上升沿作用下,计数器从零开始进行增 1 计数,向控制器提供模 5 的定时信号 TY 和模 25 的定时信号 TG。

计数器采用集成电路 74LS163 设计。74LS163 是 4 位二进制同步计数器,它具有同步清零、同步置数的功能,引脚图和功能表如下图。

时钟 CP 和四个数据输入端 P0~P3

清零/MR

使能 CEP, CET

置数 PE

数据输出端 Q0~Q3

以及进位输出 TC. (TC=Q0·Q1·Q2·Q3·CET)

	输 入							输 出				
$C_{\mathbb{R}}$	СР	$L_{ m D}$	EP	ET	D_3	D_2	D_1	D_0	Q_3	Q_2	Q_1	Q_0
0	1	x	x	x	x	x	x	x	0	0	0	0
1	1	0	x	x	D	С	В	A	D	С	В	A
1	1	1	0	x	x	x	x	x	Q ₃	Q_2	Q ₁	Q_0
1	1	1	x	0	x	x	x	x	Q ₃	Q_2	Q ₁	Q_0
1	1	1	1	1	x	x	x	x	状态码加 1			

工作原理:两个 74LS163U1、U2,由秒脉冲信号发生器产生的秒脉冲信号 CP 接到 U1 和 U2 的 2 脚 CLK,状态转换信号 S_T 经过一个 74LS00与非门后接到 U1 和 U2 的 SR 清零端(低电平有效),故只有状态转换信号为 1 时,定时器清零重新开始计时。U1 和 U2 的 4 个信号输入端都接地,U1 的 7 和 10 引脚接到 U2 的进位输出 15 引脚 TC,当 TC 产生高电平脉冲即 U2 产生进位信号时 U1 状态码+1,U1 的 Q0 和 U2 的 Q3 经过两个与非门接到 T_G 输出,U2 的 Q2 直接接到 T_V 输出。则 T_G 为 000000000到 00011000,为 8+16=24,同步置数,为模 25 的计时器, T_V 为 000000000

到 00000100, 为 4, 同步置数, 为模 5 的计数器, 计数器验证完毕。

仿真结果显示,在ST在第一次时钟脉冲输入一个高电平后,计时器清零,TY在第五次时钟脉冲时输出高电平,TG在第二十五次时钟脉冲时输出高电平。

3、 控制器

控制器是交通灯控制系统的核心,它能够按照交通灯控制信号规则控制 信号灯工作。

由秒脉冲发生器产生的周期性变化的 CP 脉冲信号,一部分送到了定时器的 74LS163 芯片,另一部分送到了控制器的 74LS74 芯片。在脉冲 S_T 加到定时器 74LS163 芯片的情况下,通过芯片 74LS00 输出 T_G 和 T_Y , T_G 和 T_G 的周期是秒脉冲的 25 倍, T_Y 和 T_Y 的周期是秒脉冲的 5 倍,前者输出的信号周期是后者的 5 倍。

将定时器输出的 T_G 、 $\overline{T_G}$ 、 T_Y 、 $\overline{T_Y}$ 分别作用于控制器的 74LS153 芯片中,在 CP 脉冲置于 74LS74 芯片中会输出高低变化的电平。控制器中的信号再送给 74LS00 组成的译码器后再通过电路中的指示灯和 200 Ω 的电阻从而得到交通灯的逻辑电路,这种电路的结果最终通过 LED 灯的闪烁来实现。

成加工人们从心里以入门内,加口了为由上次: 1五时曲 从心里以及									
	输	入		输出					
现	,态	状态转	换条件	次	态	状态转换信号			
Q_1^n	Q_0^n	T_G	$T_{\scriptscriptstyle Y}$	Q_1^{n+1}	Q_0^{n+1}	S_T			
0	0	0	Х	0	0	0			
0	0	1	Χ	0	1	1			
0	1	Χ	0	0	1	0			
0	1	Χ	1	1	1	1			
1	1	0	Χ	1	1	0			
1	1	1	Χ	1	0	1			
1	0	Χ	0	1	0	0			
1	0	Х	1	0	0	1			

根据上文的状态转换具体分析图可列出下表: 控制器状态转换表

注: 若状态转换信号 S_T 为 0,则不发生状态转化,即 $Q_1^{n+1}=Q_1^n$, $Q_0^{n+1}=Q_0^n$

$$\overline{Q_1^n}$$
 $\overline{Q_0^n}$

列出状态方程:
$$Q_1^{n+1} = \overline{Q_1^n} \ Q_0^n \ T_Y + Q_1^n \ Q_0^n + Q_1^n \ \overline{Q_0^n} \ \overline{T_Y}$$

$$Q_0^{n+1} = \overline{Q_1^n} \ \overline{Q_0^n} \ T_{G+} \overline{Q_1^n} \ Q_0^n + Q_1^n \ Q_0^n \ \overline{T_G}$$

$$S_T = \overline{Q_1^n} \ \overline{Q_0^n} \ T_{G+} \overline{Q_1^n} \ Q_0^n \ T_{Y+} Q_1^n \ Q_0^n \ T_{G+} Q_1^n \ \overline{Q_0^n} \ T_Y$$

根据状态方程,选用数据选择器 74LS153 来实现每个 D 触发器 74LS74 的输入函数,将触发器的现态值加到数据选择器 74LS153 的输入端作为控制信号,即可实现控制器的功能。

控制器原理: CP 送到 U3 的 3 和 11 时钟端 CLK,将 T_y 接入 U2 的 5 引脚与 U2 的 4 和 5 引脚, T_q 接入 U1 的 4 引脚, T_G 接入 U1 的 10 引脚与 U2 的 3 和 6 引脚, T_G 接入 U1 的 13 引脚。(.dbf 文件中 TYN 表示 T_q , TGN 表示 T_g) 74LS153 是双 4 选 1 数据选择器,在一块集成芯片上由两个 4 选 1 数据选择器。74LS74 是一个双 D 触发器,触发器记录四种状态,多路转换器与触发器配合实现四种状态的相互转化。

4、 LED 红绿灯译码器

译码器的主要任务是将控制器的输出 Q_1 、 Q_0 的 4 种工作状态翻译成甲、乙车道上的 6 个信号等的工作状态。控制器的状态编号与信号灯控制信号之间的关系如下表所示。

V-C1 VIIIV VIVI V V VIVI V									
Q_1Q_0	AG	AY	AR	BG	BY	BR			
00	1	0	0	0	0	1			
01	0	1	0	0	0	1			
10	0	0	1	1	0	0			
11	0	0	1	0	1	0			

通过控制器输出的 Q_1Q_0 四种信号可以产生 AG,AY,AR,BG,BY,BR 六种信号的四种不同状态,经过红绿黄三种 LED 二极管以及电阻、供电电源组成最终的交通灯。

5、 显示时间译码系统

将计数器的输出接到两个 74LS48 译码器上, 再将译码器的输出端接到两个七段 LED 数码管, 就可以实现最终的倒计时显示。

总原理图

联调波形

六、 心得与体会

- 这次设计的十字路口交通灯状态控制转换电路,主要能够实现两组交通灯的状态转换和倒计时时间显示,基本能够满足东西、南北支干道和主干道两条路上的交通控制。
- 2、 许多不足之处:

现实中的交通灯出了直行还有左转右转信号,因此这个设计仍有较大的提升空间;现实生活中夜晚和白天的主干道支干道交通灯控制可以手动调整,并且能实现两组交通灯的同时黄灯闪烁提醒;交通灯控制电路的初始状态和如 遇突发状况重启交通灯的情况没有考虑在设计之内等。