

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

LOCAL HEAT TRANSFER COEFFICIENTS AROUND A CYLINDER IN OSCILLATING FLOW

bу

Fred W. Brunson, Jr.

December 1981

Thesis Advisors:

J.A. Miller and P.F. Pucci

Approved for Public Release, Distribution Unlimited

82 04 27 081

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION		READ INSTRUCTIONS BEFORE COMPLETING FORM
T. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
	40-A11383	6
4. TITLE (and Substitle)		S. TYPE OF REPORT & PERIOD COVERED
Local Heat Transfer Coeffici		Master's Thesis
a Cylinder in Oscillating Fl	ow	December 1981
		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s)		S. CONTRACT OR GRANT NUMBER(S)
Fred W. Brunson, Jr.		
S. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
		AREA & WORK UNIT NUMBERS
Naval Postgraduate School		
Monterey, California 93940		
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Naval Postgraduate School		December 1981
Monterey, California 93940		13. NUMBER OF PAGES
		146
14. MONITORING AGENCY NAME & ADDRESS(If differen	t from Controlling Office)	18. SECURITY CLASS, (of this report)
		Unclassified
		ISA, DECLASSIFICATION/DOWNGRADING
17. DISTRIBUTION STATEMENT (of the observed entered	In Block 20, If different fro	at Report)
18. SUPPLEMENTARY NOTES		
Heat Transfer, Oscillating : Yawed Cylinder		
20. YETRACT (Continue on reverse elde il necessary on	d (den)(b) be black mesher)	
Local and average heat tra	nsfer coeffic	ients were determined for
a right circular cylinder in		
num heater strips were used t		
the lower 180 degrees from th		
four inch diameter cylinder w		
45 degrees to the flow direct	ion. Data was	s gathered for diameter
Reynolds numbers from 100,000	to 300,000.	Large amplitude oscil-

DD 1 JAN 73 1473

EDITION OF 1 NOV 68 IS OBSOLETE 5/N 0102-014-6601 |

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Then Date Entered)

lations were imposed upon the mean flow using a rotating shutter

SECURITY CLASSIFICATION OF THIS PAGE (West Rose Entered

arrangement. Frequencies of 0, 5, 10, 22, 50, 100 and 126 Hertz were investigated. For normal flows, local heat transfer coefficients in the wake and average Nusselt numbers were enhanced above values for steady flow, for runs having large amplitude. In the 45 degree flows, no significant change in heat transfer was noted with oscillating flow.

Acces	sion For		
NTIS	GRA&I	M	7
DTIC !	TAB		1
Unann	ounced		Į
Justi	fication		-
	ibution/ lability	Codes	DTIC COPY INSPECTED 2
	Avail an	d/or	
Dist	Specia	1	1
A			

Approved for Public Release, Distribution Unlimited

Local Heat Transfer Coefficients Around a Cylinder in Oscillating Flow

bу

Fred W. Brunson, Jr.
Lieutenant, United States Navy
B.S.M.E., University of Illinois, 1974

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL December 1981

Approved by:

Approved by:

Thesis Co-Advisor

Thesis Co-Advisor

Chairman, Department of Machanical Engineering

Dean of Science and Engineering

ABSTRACT

Local and average heat transfer coefficients were determined for a right circular cylinder in an oscillating flow.

Spanwise platinum heater strips were used to heat the cylinder isothermally over the lower 180 degrees from the front to rear stagnation point. The four inch diameter cylinder was positioned both normal to and at 45 degrees to the flow direction.

Data was gathered for diameter Reynolds numbers from 100,000 to 300,000. Large amplitude oscillations were imposed upon the mean flow using a rotating shutter arrangement. Frequencies of 0, 5, 10, 22, 50, 100 and 126 Hertz were investigated.

For normal flows, local heat transfer coefficients in the wake and average Nusselt numbers were enhanced above values for steady flow, for runs having large amplitude. In the 45° flows, no significant change in heat transfer was noted with oscillating flow.

TABLE OF CONTENTS

ı.	INT	RODUCTION	12
	Α.	NORMAL CYLINDER	12
II.	DESC	CRIPTION OF APPARATUS	15
	Α.	MODEL	15
	В.	WIND TUNNEL	16
III.	EXP	ERIMENTAL PROCEDURE	21
	Α.	CALIBRATION OF MODEL	21
	в.	ADJUSTMENT OF SURFACE HEATERS	22
	c.	FREESTREAM CONDITIONS	23
	D.	DATA REDUCTION	23
IV.	RESU	ULTS AND DISCUSSION	25
	Α.	STEADY FLOW	25
	в.	NONSTEADY FLOW	26
	c.	NUSSELT NUMBER CORRELATION	28
v.	CONC	CLUSIONS	29
APPE	XION	A - Data Reduction	30
APPEN	XIDN	B - Sample Calculation	32
APPEN	NDIX	C - Radiation	36
APPEN	NDIX	D - Conduction Losses	38
APPE	XIDIX	E - Uncertainty Analysis	42
APPE	NDIX	F - Predictor - Corrector	
		Barrandara	

LIST	OF	REFERENCES .	•	•	•	•	•	•	•	•	٠	•	•	•	٠	•	•	•	•	•	•	14:
INITI	AL	DISTRIBUTION	L	ISI	ľ																	146

LIST OF TABLES

I.	Summary	of	Averag	;e Hea	at Transfe	er Resul	Lts	•	•	•	•	•	•	•	103
II.	Summary	of	Local	Heat	Transfer	Results	3.								105

LIST OF FIGURES

<u>Figure</u>		
1.	Sketch of the Model	50
2.	Cross Sectional Sketch of the Model	51
3.	Photograph of the Model	52
4.	Photograph of the Wind Tunnel Test Facility	53
5.	Photograph of the Wind Tunnel Test Section and Instrumentation	54
6.	Plan View of the Wind Tunnel	55
7.	Photograph of the Rotating Shutter Valves	56
8.	Photograph of the Model Mounted in the Tunnel	57
9.	Sketch of Calibration and Working Circuits	58
10.	Typical Velocity Waveforms	59
11.	Sketch of Teledeltos Paper Model	60
12.	Sketch of the Lumped Resistance Model	61
13.	Local Heat Transfer Coefficients in Steady Flow	62
14.	Local Heat Transfer Coefficients in Steady Flow	63
15.	Local Heat Transfer Coefficients in Steady Flow	64
16.	Local Heat Transfer Coefficients in Steady Flow	65
17.	Local Heat Transfer Coefficients in Steady Flow	66
18.	Local Heat Transfer Coefficients in Steady	67

19.	Comp																											
	to E	Exp	er	ime	nt	:a1	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	68
20.	Loca	1	Нe	at	Tr	an	sf	er	C	oei	ff:	ic	ie	en i	ts	i	n											
	Osci	111	a t	ing	g F	710	W	t h	at	SI	ho	we	d	U	na	1 t	e	re	đ	Re	sı	11	ts	•	•	•	•	69
21.	Loca																											
	0sci	11	at	ing	g E	10	W	th.	at	SI	ho	we	ď	Uı	na	1 t	e	re	d	Re	St	11	ts		•	•	•	70
22.	Loca	1	Нe	аt	Tı	an	sf	er	C	o e :	ff	íc	íε	ent	ts	i	n											
	Osci	111	at	ing	ţ E	10	W	th.	at	SI	ho	we	ď	Uı	na	1 t	e	re	d	Re	St	11	ts		•	•	•	71
23.	Loca	1	Нe	at	Tr	an	sf	er	C	o e i	ff	ic	ie	en 1	ts	í	n											
	0sci	111	.at	ing	z I	10	W	th.	at	SI	ho	we	d	Uı	na	1 t	e	re	d	Re	Sι	11	ts		•	•	•	72
24.	Loca	11	Нe	at	Tı	an	sf	er	C	oe:	ff	íc	ie	eni	ts	i	n											
	0sci	111	.at	ing	3 F	10	W	th	at	SI	ho	we	d	Uı	na	1 t	:e:	re	d	Re	sι	11	ts		•	•	•	73
25.	Loca																											
	0sci	111	.at	ing	g F	10	W	th	at	Sh	OW	ed	l	Jna	a l	tε	er	ed	R	es	u I	Lt	S	•	•	•	•	74
26.	Loca																											
	Osci	111	at	ing	g E	10	W	th.	at	SI	ho	we	d	Uı	na	1 t	e	re	d	Re	St	11	ts		•	•	•	7 5
27.	Loca																						٠					
	0sci	11	at	ing	g E	10	W	th.	at	SI	ho	we	d	Uı	na	1 t	:e	re	d	Re	sı	11	ts		•	•	•	76
28.	Loca																											
	0sci	111	at	ing	g I	lo	W	th.	at	SI	ho	we	d	Uı	na	1 t	e	re	d	Re	sι	11	ts		•	•	•	77
29.	Loca	1	Нe	at	Tı	an	sf	er	C	o e :	ff:	ic	ie	en i	ts	i	n											
	Osci	11	a t	ing	g F	10	W	th	at	SI	ho	we	d	Uı	na	1 t	:e:	re	d	Re	St	ı 1	ts		•	•	•	78
30.	Loca																											
	0sci	111	a t	ing	, F	10	W	th.	at	SI	ho	we	đ	Uı	na	1 t	e	re	d	Re	sı	ı 1	ts		•	•	•	79
31.	Loca																											
	0sci	111	at	ing	ţ F	10	W	th.	at	SI	ho	we	đ	Uı	na	1 t	e	re	d	Re	Sl	11	ts		•	•	•	80
32.	Loca																											
	Osci	[11	.at	ing	ţ I	710	W	t h	at	SI	ho	we	d	Uı	na	1 t	:e	re	d	Re	St	:1	ts		•	•	•	81
33.	Loca																											
	Osci	[11	.a t	ing	g E	10	W	th	at	SI	ho	we	d	Uı	na	1 t	e	re	d	Re	St	11	ts		•	•	•	82
34.	Loca																			_		_						
	Osci	111	.at	ing	g F	lo	W	th	a t	SI	ho	we	ď	Uı	na	1 t	e	re	đ	Re	St	:1	ts		•	٠	•	83
35.	Loca	a 1	Нe	at	Tı	an	sf	er	C	oe:	f f	íc	ie	en i	ts	1	ln											
	Osci	111	at	ing	z E	10	W	th	at	SI	ho	we	ď	Ü۱	na	1 t	: e :	re	d	Rе	sι	11	t s					84

36.	Local Heat Transfer Coefficients in Oscillating Flow that Showed Unaltered Results 8.
37.	Local Heat Transfer Coefficients in
37.	Oscillating Flow that Showed Unaltered Results 80
38.	Local Heat Transfer Coefficients in Oscillating Flow that Showed Unaltered Results 8
39.	Local Heat Transfer Coefficients in Oscillating Flow that Showed Unaltered Results 8
40.	Local Heat Transfer Coefficients in Oscillating Flow that Showed Enhanced Heat Transfer . 8
41.	Local Heat Transfer Coefficients in Oscillating Flow that Showed Enhanced Heat Transfer . 9
42.	Local Heat Transfer Coefficients in Oscillating Flow that Showed Enhanced Heat Transfer . 9
43.	Local Heat Transfer Coefficients in Oscillating Flow that Showed Enhanced Heat Transfer . 9
44.	Local Heat Transfer Coefficients in Oscillating Flow that Showed Enhanced Heat Transfer . 9
45.	Local Heat Transfer Coefficients in Oscillating Flow that Showed Enhanced Heat Transfer . 9
46.	Local Heat Transfer Coefficients in Oscillating Flow that Showed Enhanced Heat Transfer . 9
47.	Local Heat Transfer Coefficients in Oscillating Flow that Showed Enhanced Heat Transfer . 9
48.	Local Heat Transfer Coefficients in Oscillating Flow that Showed Degraded Heat Transfer 9
49.	Local Heat Transfer Coefficients in Oscillating Flow that Showed Degraded Heat Transfer
50.	Local Heat Transfer Coefficients in Oscillating Flow that Showed Degraded Heat Transfer 9
51.	Local Heat Transfer Coefficients in Oscillating Flow that Showed Degraded Heat Transfer 100
52.	Variation of Average Nusselt number with Reynolds number

53.	ariation of Average Nusselt number with	
	Reynolds number	102

I. INTRODUCTION

A. NORMAL CYLINDER

Forced convective heat transfer from a cylinder in uniform flow has been a topic of interest to researchers since the turn of the century. In 1914 Professor L.V. King presented his relationship to describe the heat transfer from a cylinder in laminar crossflow as a function of air velocity:

$$Nu = A_1 + B_1 N_{Re}^{0.5}$$

Although slightly modified by Collis and Williams in 1959, it still serves today and is the basic equation of hot wire anemometery. Numerous other correlations are available and are a standard part of the heat transfer literature [Ref. 1].

A topic of increasingly greater interest to researchers and designers is the effect of an oscillating flow on forced convection. Gas turbine designers are intensely interested in upgrading the performance of gas turbine blades through materials research and blade cooling. Gas turbine blades experience a hot, oscillating flow environment as they pass through the wakes of upstream blades.

Heat exchange designers involved in waste heat recovery from diesel engine exhausts are also concerned with the effect of flow oscillations on the exchange of heat to and from cylinders.

Little data has been made available to date for a cylinder in oscillating flow. Data is available for heat transfer from a flat plate in oscillating flow [Refs. 1, 2 and 3] and for an airfoil in oscillating flow [Ref. 4]. Data for a cylinder in other than uniform flow is generally for a vibrating cylinder with or without a net flow [Ref. 5] or for a cylinder with screen induced turbulence of less than about ten percent [Refs. 6, 7, 8 and 9]. This study concerns itself with the effect of oscillations on the order of fifty percent of the freestream velocity on local heat transfer rates.

Yawed cylinders are of interest to aerodynamicists because of the correlation of a yawed cylinder to a swept back aircraft wing. Researchers and designers may also encounter yawed cylinders in heat exchangers and other applications.

No information is currently available on the effect of flow oscillations on a yawed cylinder. Viteri [Ref. 10] determined the average heat transfer coefficients of yawed cylinders in uniform flow, and Kraabel [Ref. 11] determined the local heat transfer coefficients around yawed cylinders in uniform flow. These papers provide a basis for validation of the yawed cylinder results reported here.

It has been demonstrated by Miller [Ref. 2] that augmented convective heat transfer can be attributed to the reduction of laminar to turbulent transition Reynolds numbers. Despard [Ref. 12] showed that freestream oscillations promote laminar boundary layer separation in the presence of an adverse pressure

gradient. Banning [Ref. 13] produced data that revealed that the starting vortex associated with periodic separation from an airfoil in oscillating flow produced an unexpectedly strong boundary layer reattachment which markedly improved the aerodynamic performance of the foil.

In summary, the effects of early laminar to turbulent boundary layer transition and the destabilized boundary layer produced slightly augmented heat transfer while periodic vortices shed from the separation point can cause periodic reattachment of the hydrodynamic boundary layer. This can be expected to greatly enhance the heat transfer in the afterbody region.

The purpose of this investigation is to determine the effect of large flow oscillations on the local heat transfer coefficients around both normal and yawed cylinders. Additionally it is desired to develop a correlation formula for the average Nusselt number in oscillating flow that includes the effect of yaw angle, Reynolds number, and flow frequency and amplitude.

II. DESCRIPTION OF APPARATUS

A. MODEL

The model used in the investigation was a four inch diameter cylinder. It was fabricated from one half inch wall thickness fiberglass-phenolic tubing two feet long. The 12 inch mid-span section was instrumented with 16 platinum heater/resistance thermometers oriented parallel to the axis of the cylinder and spaced 12 degrees apart from center-to-center. A sketch of the model showing the orientation of the heater strips is shown in Figure 1.

The platinum strips used were 12 inches long by one-quarter of an inch wide by one-thousandth of an inch thick. Each strip subtended an arc of 7.16 degrees of the circumference of the cylinder. The strips were spot welded to brass studs that were machined flush with the cylinder on the outside and protruded into the interior of the model for attachment of the voltage sensing and current carrying wires. Figure 2 shows a cross section of the cylinder wall through the studs and strips.

Voltage drop across the platinum strip was measured using the voltage sensing wires attached to each stud. Platinum was used to both heat the cylinder and determine the surface temperature of the cylinder because of its large linear resistivity-temperature relationship. The resistance of the strips was determined from the voltage drop across the strip which was

then to be used to find the temperature. The amount of heat convected at each location was proportional to the power dissipated by the strip which was equal to the product of the current squared and the strip resistance.

The entire outside of the cylinder, including the platinum strips, was covered with a thin layer of hard epoxy. The hard epoxy layer was machined and polished on a lathe to reduce the thickness over the strips to less than one-hundredth of an inch and to produce a smooth heat transfer surface. A photograph of the completed model showing the mounting stud and bracket and electrical leads is shown in Figure 3.

Two copper-constantan thermocouples were mounted on the inside surface of the cylinder at 90 degrees and 270 degrees from the front stagnation point. These thermocouples were used to monitor the interior wall temperature of the cylinder in order to estimate the heat loss to the inside of the cylinder.

B. WIND TUNNEL

The experiment was carried out in the oscillating flow wind tunnel of the Naval Postgraduate School. Photographs of the facility are shown in Figures 4 and 5. The oscillating flow wind tunnel is a low speed, open circuit wind tunnel with the inlet bell extending out of the building. The tunnel inlet bell is eight feet square and the test section is two feet square, providing a 16.1 contraction ratio. Three high solidity screens located in the inlet section upstream of the nozzle

produce freestream turbulence intensities of less than 0.5 percent of the freestream velocity for uniform flow.

The wind tunnel drive consists of two axial flow fans in series, each of which has an internal, 100 horsepower, direct connected, 1750 RPM motor. The fan blades are internally adjustable through a pitch range of 25 to 55 degrees, providing a wide operating base. A set of variable inlet vanes, located immediately upstream of each fan, are externally adjusted to provide control of test section velocity. These vanes, of radial configuration, preswirl the air in the direction of fan rotation to reduce fan capacity. The total range of freestream velocities possible is from ten to 250 feet per second.

A plan view sketch of the wind tunnel showing the location of the fans and inlet vanes in relation to the test section is shown in Figure 6.

Two fundamental methods are available to superimpose oscillating flow, on a mean velocity. Both Nickerson [14] and Hori [15] introduced oscillations by oscillating their models in a steady flow environment. This method severely restricts the range of attainable frequencies because of mechanical complications and instrumentation difficulties.

The other approach is to provide an oscillating flow environment over a stationary model. Hill [16] used a sliding shutter to impose oscillations on the freestream but was limited to low frequencies because of mechanical difficulties. Feiler and Yeager [17] used a siren mounted upstream of an eight inch

diameter wind tunnel to expose small models to frequencies ranging from 34 to 300 Hz. with root-mean-squared amplitudes of up to 65 percent of the mean velocity. The most successful method of obtaining oscillating flows with a large range of frequencies, amplitudes and flow velocities in a moderate sized tunnel is that employed by Karlson [18] and later by Miller [19]. A rotating shutter valve, immediately downstream of the test section is used to superimpose a periodic variation of velocity on the mean flow. The method used in this investigation is identical to that used by Miller.

The shutters consist of four horizontal, equally spaced, shafts mounted in a plane just downstream of the test section. The shafts are slotted to receive blades of various widths, forming a set of four butterfly valves spanning the wind tunnel. Figure 7 is a picture of the shutter valve assembly. The shutters are driven synchronously by a pulley and belt arrangement and a vari-drive motor and gearcase, and can be varied from 0.1 - 250 Hz. The amplitude of the oscillation is a function of the width of shutter blades, frequency of rotation of the shutters and the freestream velocity. Five sets of blades are available producing tunnel blockages of 33, 50, 66, 83 and 100 percent of the flow area in the fully closed position. In this investigation blades providing 66 and 100 percent blockage were used resulting in amplitudes of 5 to 69 percent of the mean freestream velocity.

The test section of the tunnel is fabricated from two-two inch thick, 25 inch wide by 18 feet long pieces of aluminum as the upper and lower walls and three-two inch thick stress relieved lucite panels on each side as side walls. The front panels are hinged at the top and can be hydraulically opened and closed for access to the test section.

For this investigation the rear center, lucite panel has been replaced by a two inch thick plywood panel to facilitate mounting the model. The model was mounted by a chordwise extension held in a rotatable clamp mounted flush in the center of the plywood panel. The other end of the model is supported by a 3/8 inch thick "Y" shaped, faired bracket, that is affixed to the tunnel ceiling and floor, and rests against the front lucite panel. The model is shown in place with the "Y" bracket clearly visible in Figure 8. Electrical leads were taken out through the plywood back panel where they were connected to the power supplies and the voltage drop sensing circuits. The model was yawed by affixing extension pieces to each end that were angled and sized to completely span the tunnel at each angle of yaw.

Power to heat the strips was controlled by sixteen variacs that powered 16 individual DC power supplies (see working circuit, Figure 9). A precision shunt (R=0.001) was placed in series with each strip and the voltage drop across the known resistance was used to determine the current. The voltage drop across each strip was measured using the potential sensing

leads that were attached to the studs on the inside of the model. Instantaneous velocity measurements for the purpose of free-stream turbulence determination in uniform flows and amplitude and frequency measurement in oscillating flows were made using a linearized constant temperature hot-wire anemometer described in Reference 20. An oscilloscope and a Ballantine True R.M.S. meter were used to monitor hot-wire signals. Mean velocity of the free stream was measured using a Prandtl Probe and a water-filled micromanometer.

Figure 10 shows a pair a typical velocity wave forms. The vertical axis is velocity and the horizontal axis is time. The roughness of the upper tracing is typical of low amplitude oscillations which are significantly more difficult to produce in true sinusodial form.

The freestream temperature and the model internal wall temperature were measured using copper-constantan thermocouples and a Newport digital temperature indicator.

The frequency of oscillation was also monitored with an optical chopper driven by a shutter valve shaft and a digital counter.

III. EXPERIMENTAL PROCEDURE

A. CALIBRATION OF MODEL

The platinum strips were calibrated as resistance thermometers by determining their electrical resistance as a function of temperature in an electric oven. Seven separate temperatures were used, evenly spaced between ambient (60°F) and 200°F. Although the platinum heater-thermometer strips were extremely pure and are expected to have a linear resistance-temperature characteristic, calibration was carried out to determine the exact slope and intercept of each strip.

The calibration circuit employed (see Figure 9) was powered by a low impedance DC voltmeter calibration standard. This proved to be an extremely precise, drift free power supply. The voltage drop across the precision resistance (1.0 ± 0.15%) was recorded as was the voltage drop across the heater strip itself. The current was then computed from the voltage drop across the precision resistance divided by one ohm, and the resistance of the strip for that temperature was computed from the voltage drop across the strip divided by the current. Temperatures in the oven were monitored with a Newport Laboratories Digital Temperature Indicator and a copper-constantan thermocouple.

After determining the resistances as a function of the temperature a straight line was fitted to the data using linear regression. The resulting equations were used throughout the

subsequent experimentation and data reduction to determine surface temperatures.

B. ADJUSTMENT OF SURFACE HEATERS

Before each series of runs the heater strips were energized and the wind tunnel was run with a low velocity uniform flow in order to allow the model substrate to come to thermal equilibrium. Once this was accomplished the shutters were turned on and adjusted to the desired frequency and the velocity was adjusted to the magnitude corresponding to the Reynolds number desired. At this point the model was again allowed to come to thermal equilibrium.

Once this initial thermal equilibrium was achieved the voltage drop and current through each strip was recorded and inserted into a predictor-corrector program (see Appendix F). This program calculated a new required voltage drop based on desired strip temperature, current strip temperature, and the known resistance-temperature calibration curve for that strip; the strip was then adjusted to the new desired voltage drop through adjustment of its power supply. Following adjustment of the strips the model was again allowed to return to thermal equilibrium.

These adjustments were performed as many times as necessary until all the strips were at the same temperature, ensuring an isothermal heat transfer surface that minimized heat conduction between strips.

The temperature for a particular run was determined from a sampling of the strip temperatures before the first set of adjustments was made and was selected to minimize the number of adjustments required. In every case however the temperature was chosen to be over 110° F in order to maintain at least a 50° temperature difference between the strip and the ambient temperature.

C. FREESTREAM CONDITIONS

A series of runs was made with both the 45° yawed model and the normal model covering a wide range of operating conditions. Each model was tested with both the six inch blades (100 percent tunnel blockage) and the four inch blades (66 percent tunnel blockage), resulting in oscillation amplitudes from five to 69 percent of freestream mean velocity. Each combination of frequency and amplitude was run at two freestream velocities corresponding to nominal diametral Reynolds numbers of 300,000 and 150,000. Frequencies investigated were 0, 5, 10, 22, 50, 100 and 125 Hz.

D. DATA REDUCTION

The data reduction technique is described in Appendix A and a sample calculation is presented in Appendix B. A detailed energy balance is necessary in order to determine what portion of the total Joulian heat generated by platinum resistance heater is transferred from the surface by convection. Part of the energy was conducted through the thin epoxy coating and

convected directly to the freestream or was radiated into the environment. The balance of the energy was conducted into the substrate of the cylinder where some was conducted and convected into the center of the cylinder, some was lost to the ends of the cylinder, and some was conducted to the gaps between the strips where it was convected to the freestream or was radiated to the environment.

The energy lost from the substrate side of the surface heaters is hard to determine analytically since it consists of both conduction to the intraheater gaps and subsequent loss by convection and radiation as well as conduction to the inner surface of the model. Therefore a two-dimensional Teledeltos paper model was constructed to determine the relationship between the thermal resistances to the inner and outer surfaces. This procedure and the results are discussed in Appendix D. The results of the Teledeltos paper experiment were placed in equation form and solved interatively for the external covection heat transfer coefficient, h, for each strip.

The other major loss of energy from the system is by radiation to the environment. These losses can be appreciable and an accounting for this loss was developed as part of the data reduction program. Details are described in Appendix C.

IV. RESULTS AND DISCUSSION

A. STEADY FLOW

Six steady flow runs were made, two with the model normal to the flow at N_{Re} = 150,000 and 300,000 and four runs with the model at 45° to the flow at N_{Re} = 35,000, 100,000, 150,000, and 300,000. The results of these runs are shown graphically in Figures 13 through 18. Results of the model at 90° (normal to the flow) at N_{Re} = 150,000 are compared in Figure 19 with the theory of Froessling [Ref. 24] and the experimental results of Schmidt [Ref. 25] for N_{Re} = 170,000. The discrepancy between theory and both of the experimental results is expected and is a consequence of the effect of freestream turbulence near the stagnation point [Ref. 26].

Comparison of the results of the present experiment with those of Schmidt indicates two interesting points. The two agree within 20 percent up to an angle of 150° from the stagnation point, beyond which they diverge markedly, differing by 70 percent at 180°. This sharp increase in heat transfer above that noted by Schmidt is typical of all the results observed in the present investigation and shows no correlation with frequency number or Reynolds number. Agreement within 20 percent is good however and this lends a high degree of confidence in the experimental techniques and results.

No local heat transfer data is available for the steady flow case with 45° yaw. However, the data of Viteri [Ref. 10] can be interpolated to arrive at an average Nusselt number of 128.3 at a Reynolds number of 31,900. At a Reynolds number of 35,630 the present experiment produced an average Nusselt number of 122.1. This close agreement lends confidence in at least the average Nusselt Numbers obtained in the 45° yawed case.

B. NONSTEADY FLOW

Two thirds of the nonsteady freestream conditions did not produce substantial alteration in heat transfer when compared to the steady flow case. Figures 20 through 25 depict the cases with the 90° model that show little or no altered heat transfer, and Figures 26 through 39 depict those of the 45° model. In each of these figures the steady flow data has been plotted along with the nonsteady data for comparison.

Twelve of the 38 freestream conditions investigated produced substantially altered local heat transfer rates. These results are shown graphically in Figures 40 through 49 for the 90° model, and Figures 50 and 51 for the 45° model. The changes in local Nusselt number took place almost exclusively in the afterbody region of the model, and resulted from altered separation and flow patterns in the wake of the cylinder. Figure 40 is a typical example of these results and demonstrates enhanced heat transfer in the wake area of the 90° model. The data reported in Figures 48 through 51 exhibit dimimshed heat transfer rates. Figure 50 is typical of this class of data.

In order to simplify the analysis of the results, the average Nusselt number was calculated for each freestream condition (see Table I). Figures 52 and 53 report average Nusselt numbers versus Reynolds number for the 90° model and the 45° model respectively. In the 90° case (Figure 52) a curve has been drawn representing $Nu = N_{Re}^{0.5716}$ and the Amplitude and Storuhal numbers have been annotated for each data point. Of interest is the fact that data with higher Amplitude numbers are those which tend to exhibit augmented average heat transfer rates. Moreover, higher Amplitude numbers seem to correspond to greater heat transfer augmentation. Although the data is sparse, a pattern of larger Nusselt numbers for larger Amplitude numbers at the same Reynolds number seems to exist. Three apparent anomalies exist associated with the data from run numbers 15, 17 and 20. It is possible that an error in recording the amplitude data was made and that the Amplitude numbers for runs 17 and 20 were reversed. If this were true then both runs 17 and 20 would conform to the apparent pattern. When the Frequency numbers, Nusselt numbers and Reynolds numbers of runs 15 and 17 are compared, it is seen that they are very similar but that the Amplitude numbers are considerably different. the previously noted pattern for higher Nusselt number for higher Amplitude number is true then the Amplitude number of run 15 is suspect and may be too low.

Average Nusselt number data taken for the 45° model is shown in Figure 53. No apparent pattern of heat transfer alteration is evident in this plot even though Amplitude numbers as high as 0.44 and 0.65 appear in the data.

C. NUSSELT NUMBER CORRELATION

The data obtained in this investigation is too sparse to allow a correlation between heat transfer rate and freestream conditions to emerge. Only a possible pattern is suggested by the results and more data covering a wide range of Reynolds numbers and Amplitude numbers is necessary to produce such a correlation.

V. CONCLUSIONS

Although there is insufficient data to draw any definite conclusions or to derive a correlation, several trends may be observed. In the 90° case, significant increases in the local Nusselt numbers are seen in the wake region and are due to changes in the separation and wake structure. Moreover, augmentation of local Nusselt numbers seems to increase with increasing frequency as suggested by the data shown in Figures 40 through 47. Increases in average Nusselt numbers is apparently related to the Amplitude numbers as discussed above and shown in Figure 52. With the exception of the three points associated with runs 15, 17 and 20, discussed in Chapter IV, the pattern exhibited is for higher average Nusselt numbers to be associated with greater amplitudes.

In the case of the 45° yawed cylinder, no general patterns are discernable and it appears that local Nusselt numbers exhibit no significant change over a wide range of frequencies and amplitudes.

This investigation has served to initiate a study of heat transfer from a cylinder in oscillating flow. Additionally it has validated the techniques to be used for further study. More extensive data collection will be required before definitive conclusions can be drawn or correlations made.

APPENDIX A

DATA REDUCTION

The data was reduced to the form shown in Table 2 by a specially written Fortran computer program on an IBM 360 computer at the Naval Postgraduate School.

The raw data consisted of pitot-static tube ΔP (inches H_2^{0}), freestream temperature, T_F , (^{0}F), internal model temperatures (heater side and "other" side, ^{0}F), frequency of oscillation (H_Z), amplitude ratio (%) and the voltage drop across (volts) and current passing through (amperes) each strip. The total power dissipated by each strip is simply:

$$P = 3.4149 \times E \times I$$

where 3.4149 is a conversion factor from watts to BTU/Hr.

From the measured current (I) and voltage drop (E) each individual strip temperature is determined by comparing its resistance to its known temperature versus resistance characteristics. The resistance of a strip is:

$$R = \frac{E}{I}$$

From the linear temperature-resistance relationship obtained during calibration, the strip temperature can be obtained:

$$T_S = \frac{R-C}{S}$$

where C and S are the known ordinate intercept and slope obtained from the individual resistance versus temperature calibration curve.

The other unknown temperature required by the data reduction program is the inner wall temperature, $T_{\rm I}$. The inner wall temperatures are known at two points. Thermocouples are mounted on the wall at locations $90^{\rm O}$ and $270^{\rm O}$ from the stagnation point at mid-span (see Figure 2). The inner wall temperature is assumed to vary linearly between these two measured values.

With this information h, the heat transfer coefficient may be calculated. The following formula (developed in Appendix D) is used:

$$q_{s} = \frac{T_{s} - T_{f}}{R_{D}} \left[1 + \frac{R_{D}}{R_{O}} \right] + \frac{T_{S} - T_{I}}{R_{D}} \left[\frac{R_{I}}{R_{D}} \right]$$

h is contained in the expressions for R_D , R_O/R_D , and R_I/R_D as is shown in Appendix D. This equation was solved iteratively to obtain h.

With the local h for each strip, the local Nusselt number is calculated from:

$$Nu = \frac{hD}{k}$$

APPENDIX B

SAMPLE CALCULATION

For the purpose of this sample calculation strip Nr 6 from data run Nr 20 was selected.

The information recorded is:

Voltage drop E = 1.62 Volts

Current I = 7.47 Amps

Pitot-Static Pressure HW = 4.16 inches H_2O

Ambient Temperature $TA = 64.0^{\circ}F$

Inside Temperature:
Heater Side TIHTR = 105.0°F

Other Side $TIOTH = 77.0^{\circ}F$

Frequency Freq = 50.0 CPS

Amplitude Ratio $N_{\Lambda} = 0.31$

Blades Medium (4")

Model 90° to stream

Barometric Pressure 30.04 inches Hg

Freestream Mean Velocity

$$V = \left[2gHW \left(\frac{y_{air}}{y_{air}}\right) - 1\right]^{1/2}$$

$$= \left[2(32.2 \frac{ft}{s^2})(4.16 \text{ in } H_20)\left(\frac{1. ft}{12. in}\right) \left\{\frac{62.4 \frac{1bf}{ft^3}}{0.07654 \frac{1bf}{ft^3}} - 1\right\}\right]^{1/2}$$

 $= 134.4 \frac{ft}{sec}$

Freestream Reynolds number:

$$N_{Re} = \frac{VD}{\nu} = \frac{134.8 \frac{ft}{s} (0.333 ft)}{0.000166 ft2/s}$$

= 269,800

Temperature of the strip:

$$T = \frac{\frac{E}{I} - C}{S}$$

$$\frac{E}{I} = \frac{1.622 \text{ Volts}}{7.47 \text{ Amps}} = 0.2171 \text{ ohms}$$

$$C = 0.173955807$$

$$S = 0.000390625$$

Therefore,

$$T = \frac{0.2171 - 0.173955807}{0.000390625} = 110.5$$
°F

Total Heat Dissipated by the strip:

$$q_s = EI = (3.4149 \frac{Btu}{Volt-Amp-hr})(1.622 Volts)(7.47 Amps)$$
= 41.38 Btu

Also:

$$q_{s} = \frac{1}{R_{D}} \left[(T_{S} - T_{F})(1 + \frac{R_{D}}{R_{O}}) + (T_{S} - T_{I})(\frac{R_{D}}{R_{I}}) \right]$$

$$R_{D} = \frac{k + 1h_{F}}{kh_{T}A}$$

$$\frac{R_{O}}{R_{D}} = a_{1} + a_{2} h_{T}$$

$$\frac{R_{I}}{R_{D}} = b_{1} h_{T} + b_{2} h_{T}^{2} + b_{3} h_{T}^{3}$$

After substitution, the equation may be solved for h_T . (the constants a_1 , a_2 , b_1 , b_2 and b_3 are given in Appendix D). By iteration:

$$h_t = 36.9 \frac{Btu}{hr - ft^2 - {}^{\circ}F}$$

The radiant heat transfer coefficient:

$$h_r = \epsilon s (T_S + T_A) (T_S^2 + T_A^2)$$

Assuming $\boldsymbol{T}_{\boldsymbol{A}}$ is the same as the fluid temperature:

$$h_r = (0.73)(0.1718 \times 10^{-8})(570.5 + 524.0)$$

$$x (570.5^2 + 524.0^2)$$

$$= 0.824 \frac{Btu}{hr - ft^2 - {}^{\circ}F}$$

Therefore, the local convective heat transfer coefficient is:

$$h = h_T - h_T$$

$$= 36.9 - 0.824$$

$$= 36.1 \frac{Btu}{hr - ft^2 - {}^{\circ}F}$$

The local Nusselt number:

$$Nu = \frac{hd}{k} = \frac{(36.1)(0.333)}{0.014738}$$

= 815.9

APPENDIX C

RADIATION

For a uniformly convex gray body with emissivity ϵ , at a temperature T, radiating into an enclosure of temperature T_{\bullet} , the net radiant heat exchange is:

$$q_r = G \in A(T^4 - T_{\infty}^4)$$

where G is the Stefan-Boltzmann constant, and A is the surface area of the emitter.

The above equation can be put in the same form as the convection equation:

$$q_r = h_r A (T - T_{\infty})$$

where h_{r} is the effective radiation heat transfer coefficient given by:

$$h_r = \epsilon < (T + T_{op})(T^2 + T_{op}^2)$$

$$T = 120^{\circ}F = 580^{\circ}R$$

$$T_{\bullet} = 60^{\circ} F = 520^{\circ} R$$

Gives:

in the second of the second of

Ì

$$h_r = 0.73 (0.1714)(10^{-8})(580 + 520)(580^2 + 520^2)$$

= 0.835 $\frac{Btu}{he \cdot ft^2 \cdot F}$

This value falls within two to 10 percent of the total heat transfer coefficient and therefore cannot be neglected. Therefore, the convective heat transfer coefficient, h, is obtained by subtracting the radiant heat transfer coefficient, h_r , from the experimentally derived total heat transfer coefficient, that is,

$$h = h_T - h_r$$
.

APPENDIX D

CONDUCTION LOSSES

Although the thermal resistance of the fiberglass substrate is very high compared to the thermal resistance between the strip and the fluid, some heat is lost to the interior of the model. This heat loss must be deducted from the total heat input in order to arrive at the actual heat transferred to the air. Heat loss due to conduction in the longitudinal axis direction and radially through the small brass studs was neglected.

A Teledeltos paper model was used to estimate the heat loss to the interior of the model. Symmetry was used to reduce the size of the required model (see Figure 11).

Teledeltos paper is a graphite covered paper having a nominal resistivity of 1000 ohms per inch square and is highly isotropic. Teledeltos paper is extremely useful for two-dimensional heat conduction modeling in cases such as this which have boundary conditions and a physical shape that are inconvenient for an exact solution.

The heater strip itself is simulated with a strip of silver conductive paint that is placed on the paper in exactly the same position as the platinum strip is on the actual model. The inside of the model segment is considered isothermal so the analogous surface of the Teledeltos paper model was

held at uniform potential with a conductive strip of silver paint. The left and right hand adiabatic boundaries, between strips, are easily modeled by leaving them bare. The convective boundary at the gap between strips is modeled by allowing the Teledeltos paper to extend beyond the actual cylinder surface for a distance to simulate the convection resistance. The required distance is determined by:

$$L = \frac{k}{h} S$$

where k is the conductivity of the actual substrate, h, is the convective coefficient being modeled and S is the scale factor, in this case, S = 48. Additionally the excess length was slit into eight equal width strips lengthwise to force the flux lines parallel to each other and perpendicular to the surface. In order to model h's of 10, 20, 50 and 100 Btu/hr·ft²·F, L's of 14.4, 7.2, 2.88 and 1.44 inches respectively were used.

A strip temperature of 120° F with an inner temperature of 100° F and a fluid temperature of 60° F were used. These temperatures were scaled to appropriate voltages that would avoid excessive Joulian heating of the Teledeltos paper.

In operation the voltages were measured at 17 equally spaced intervals along the line corresponding to the cylinder surface and at five equally spaced points along a line corresponding to 0.08 inches from the inner surface. This allows the determination of the ratio of heat loss to the inside of

the model, compared to the heat loss indirectly through the air (via the substrate).

Considering the lumped electrical resistance network analogous to the heat transfer problem (see Figure 12) it is noted that the power input to the strip is equal to the sum of the losses to the air, to the inside of the cylinder to the gap between the strips, or:

$$q_s = q_D + q_0 + q_I$$

since in general:

$$q = \frac{\Delta T}{R_{TH}}$$

this becomes:

$$q_s = \frac{T_S - T_F}{R_D} + \frac{T_S - T_F}{R_0} + \frac{T_S - T_I}{R_I}$$

Where T_S , T_F and T_I are the temperatures of the strip, the fluid and the inside respectively and R_D , R_O and R_I are the thermal resistances from the strip to the air, from the strip through the gap to the air $(R_O = R_a + R_b)$ and through the substrate to the inside of the cylinder respectively (see Figure 12).

This equation can be manipulated into the following form:

$$q_{s} = \frac{T_{S} - T_{F}}{R_{D}} \left[1 + \frac{R_{D}}{R_{O}} \right] + \frac{T_{S} - T_{I}}{R_{D}} \left[\frac{R_{D}}{R_{I}} \right]$$

The resistance to heat loss from the strip directly to the air, R_D , is due to the thin layer of epoxy on the strip and the convection film resistance. The conduction resistance due to the epoxy is equal to \mathcal{L}/kA where \mathcal{L} is the thickness of the epoxy layer, k is the thermal conductivity of the epoxy and A is the surface area of the strip. The convective resistance is equal to 1/hA, where h is the convection heat transfer coefficient. Summing these we obtain:

$$R_{D} = \frac{k + lh}{khA}$$

The quantities R_0/R_D and R_I/R_D are derived experimentally from the Teledeltos paper analogue and are in the form of polynomial equations in h:

$$\frac{R_0}{R_D} = 1.546744 + 0.0320672 \text{ h}$$

$$\frac{R_{I}}{R_{D}} = 0.106105h + 0.0047559h^{2} + 0.0000079h^{3}$$

These resistances were used in the heat transfer equation to solve for h (see Appendix B).

APPENDIX E

UNCERTAINTY ANALYSIS

For the purpose of this analysis, the method of Kline and McClintock [Ref. 23] will be used, assuming that all variables have a normal Gaussian distribution. Possible dimensional error in strip size, placement and other dimensions were considered so small as to be negligible. The tabulated values of k and e were assumed to be correct. All temperatures measured with thermocouples were assumed to have an uncertainty, due to readout error, of 0.1 degree F.

The strip temperature uncertainties derive from the ± 0.003 mV uncertainty in reading the digital voltmeter used in calibration and the ± 0.002 V and ± 0.01 amp uncertainty in reading the meters during data runs.

The uncertainty in measured resistances during calibration is

$$\Delta R = R \left[\left(\frac{\Delta I}{I} \right)^2 + \left(\frac{-\Delta V}{V} \right)^2 \right]^{1/2}$$

 $= \pm 0.00031$ ohms

The resistances obtained in calibration are used to obtain a straight line equation for temperature vs resistance.

$$R = S \cdot T + C$$

The uncertainty of C is assumed to be of the same order as R. The uncertainty of S is:

$$\Delta S = S \left[\left(\frac{\Delta R}{R} \right)^2 + \left(\frac{-\Delta T}{T} \right)^2 \right]^{1/2}$$

$$= +0.00000064$$

Since the strip temperature during a data run is given by:

$$T = \frac{\frac{E}{I} - C}{S}$$

The uncertainty of T is given by:

$$\Delta T_{S} = T_{S} \left[\left(\frac{\Delta E}{E} \right)^{2} + \left(\frac{-\Delta I}{I} \right)^{2} + \left(\frac{-\Delta S}{S} \right)^{2} \right]^{1/2} + T \left[\left(\frac{\Delta C}{C} \right)^{2} + \left(\frac{-\Delta S}{S} \right)^{2} \right]^{1/2}$$

$$= +0.54^{\circ} F$$

The values of R_0/R_D were obtained from a Teledeltos paper model. Uncertainties in measuring a potential difference between any two points on the Teledeltos paper was ± 0.02 volts. This corresponds to a uncertainty in temperature of $\pm 0.2^\circ$. For R_0/R_D is given by:

$$\frac{R_O}{R_D} = \frac{ADT}{SADT}$$

where ADT is the direct convection surface area times $(T_S - T_F)$ and SADT is the indirect convection area times $(T local - T_F)$. (T local is determined from the Teledeltos paper model.)

The uncertainty of SADT is given by:

SADT = SADT
$$(\frac{\Delta(\Delta T)}{\Delta T})$$

= +0.0011

Similarly for ADT:

$$\triangle$$
 ADT = ADT $(\frac{\triangle \Delta T}{\triangle T})$
= ± 0.0021

Now

$$\Delta \frac{R_0}{R_D} = \frac{R_0}{R_D} \left[\left(\frac{\Delta ADT}{ADT} \right)^2 + \left(\frac{\Delta SADT}{SADT} \right)^2 \right]^{1/2}$$

$$= \pm 0.0088$$

 R_{I}/R_{D} is given by:

$$\frac{R_{I}}{R_{D}} = \frac{ADT}{IADT} \quad \frac{h}{k} \frac{(T_{S} - T_{I})}{(T_{S} - T_{F})} \Delta y$$

The uncertainty of IADT is given by:

$$\triangle$$
 IADT = IADT $(\frac{\triangle(\triangle T)}{\triangle T})$
= ± 0.032

Thus the uncertainty of R_{1}/R_{D} is given by:

$$\Delta \frac{R_{I}}{R} = \frac{R_{I}}{R_{D}} \left[\left(\frac{\Delta ADT}{ADT} \right)^{2} + \left(\frac{\Delta IADT}{IADT} \right)^{2} + \left(\frac{\Delta \Delta T}{T_{S} - T_{I}} \right)^{2} + \left(\frac{\Delta \Delta T}{T_{S} - T_{F}} \right)^{2} \right]^{1/2}$$

$$= +0.024$$

q is given by:

$$q = EI$$

The uncertainty in q is given by:

$$\Delta q = q \left[\left(\frac{\Delta E}{E} \right)^2 + \left(\frac{\Delta I}{I} \right)^2 \right]^{1/2}$$

$$= \pm 0.052 \frac{Btu}{hr}$$

Because of the complexity of the formula used to determine h, h was found by iteration of the following implicit equation:

$$q = \frac{hkA}{k+hL} \left[(T_S - T_F) (1 + \frac{1}{A1 + A2h}) + (T_S - T_I) (\frac{1}{B1h + B2h^2 + B3h^3}) \right]$$

The uncertainty of h was determined by:

$$\Delta h = \left[\left(\frac{\Delta T_{S2h}}{2T_{S}} \right)^{2} + \left(\frac{\Delta T_{F2h}}{2T_{F}} \right)^{2} + \left(\frac{\Delta T_{I2h}}{2T_{I}} \right)^{2} + \left(\frac{\Delta T_{I2h}}{2T_{I}} \right)^{2} + \left(\frac{\Delta (\frac{R_{O}}{R_{D}}) \frac{2h}{2(R_{O}/R_{D})}}{2(R_{O}/R_{D})} \right)^{2} + \left(\frac{\Delta (\frac{R_{I}}{R_{D}}) \frac{2h}{2(R_{I}/R_{D})}}{2(R_{I}/R_{D})} \right)^{2} \right]^{1/2}$$

The partial derivatives were evaluated numerically and were found to be:

$$\frac{2h}{2T_{S}} = -0.9137 \qquad \frac{2h}{2T_{F}} = 1.375$$

$$\frac{2h}{2T_{F}} = 0.0698 \qquad \frac{2h}{2(R_{O}/R_{D})} = 4.7619$$

$$\frac{2h}{2(R_{I}/R_{D})} = 0.01$$

therefore:

$$\Delta h = \pm 0.51 \frac{Btu}{Hr \cdot ft^2 \cdot F}$$

The mean velocity is given by:

$$V_{M} = \left[2gH \left(\frac{y \text{ water}}{sair} - 1\right)\right]^{1/2}$$

The only parameter here that is open to uncertainty (due to the assumption that property values are correct) is the H, or height of water column in the micromanometer. Since $\Delta H = \pm 0.02$ inches:

$$\Delta V_{M} = \frac{V_{M}}{2} \left(\frac{\Delta H}{H}\right)$$

$$= +0.324 \text{ ft/s}$$

since:

$$N_{Re} = \frac{VD}{\nu}$$

$$\Delta N_{Re} = N_{Re} (\frac{\Delta^{V}M}{V_{M}})$$

$$= \pm 635.$$

Nusselt number is by definition:

$$Nu = \frac{hD}{k}$$

therefore:

$$\Delta Nu = Nu \left(\frac{\Delta h}{h}\right)$$

APPENDIX F

PREDICTOR - CORRECTOR EQUATION

In order to simplify and shorten the process of adjusting strip voltages to obtain an isothermal surface as described in Chapter 3, a predictor-corrector program was developed and implemented on a TI-59 with PC-100C thermal printer. The program listing is included at the end of this Appendix.

The program requires entry of the ambient temperature and desired temperature of the strips. Then the strip number is entered and the program prompts for initial voltage drop and initial current of the strip. The program computes strip temperature using the formula:

$$T = \frac{\frac{E}{I} - C}{S}$$

where C and S are taken from the calibration curves.

Next the program calculates the voltage drop that would be expected at the desired strip temperature using:

$$E_{D} = \begin{bmatrix} \frac{R_{D}^{E_{i}I_{i}}(T_{D}-T_{F})}{T_{D}-T_{F}} & \frac{E_{i}R_{D}}{S} \end{bmatrix}^{1/2}$$

Where R_{n} = required resistance, from calibration

 $T_F = Fluid temperature$

S = Slope of calibration curve

The variac on the test rig is then adjusted to produce this voltage drop across the strip. The strip must be allowed to come to thermal equilibrium after an adjustment is made. The calibration curves assume thermal equilibrium and are meaningless when temperature transients are taking place.

The program listed requires 204 program storage locations and 76 memory storage registers. The TI-59 must be repartitioned to obtain adequate storage registers by entering 8 (2nd) OP 17. This provides 319 program storage locations and 79 data registers. All of the data listed must be entered to take advantage of the full capability of the program.

After the program and stored data are loaded the ambient temperature is specified by entering the temperature and pressing key "B". The desired strip temperature can then be entered and the key "C" depressed. The program is now ready for use.

In use the number of the desired strip is entered and key
"A" depressed. The printer will then prompt "E?" and the initial
voltage drop should be entered and the "R/S" key depressed. The
program will echo the current on the printer and will proceed
to print the current temperature and desired voltage drop. The
program will then pause and is ready for the next strip number.

FIGURE 1 - SKETCH OF THE MODEL

FIGURE 2 - CROSS-SECTIONAL SKETCH OF THE MODEL

The second secon

52

FIGURE 6 - PLAN VIEW OF THE WIND TUNNEL

CALIBRATION CIRCUIT

$$I = \frac{\Delta V_I}{R}$$

$$R_{HTR} = \frac{\Delta V_i R_i}{\Delta V_2}$$

WORKING CIRCUIT

FIGURE 9 - SKETCH OF CALIBRATION AND WORKING CIRCUITS

FIGURE 10 - TYPICAL VELOCITY WAVEFORMS

$$L = \frac{k}{h}S$$
$$S = 48$$

$$S = 48$$

FIGURE 11 - SKETCH OF TELEDELTOS PAPER MODEL

FIGURE 12 - SKETCH OF THE LUMPED RESISTANCE MODEL

REYNOLDS NR = 157029

FREQUENCY NR = 0.0

FIGURE 13 - LOCAL HEAT TRANSFER COEFFICIENTS IN STEADY FLOW

REYNOLDS NR = 314058

FREQUENCY NR = 0.0

FIGURE 14 - LOCAL HEAT TRANSFER COEFFICIENTS IN STEADY FLOW

REYNOLDS NR = 155314

FREQUENCY NR = 0.0

FIGURE 15 - LOCAL HEAT TRANSFER COEFFICIENTS IN STEADY FLOW

REYNOLDS NR = 314058

FREQUENCY NR = 0.0

FIGURE 16 - LOCAL HEAT TRANSFER COEFFICIENTS IN STEADY FLOW

REYNOLDS NR = 110648

FREQUENCY NR = 0.0

FIGURE 17 - LOCAL HEAT TRANSFER COEFFICIENTS IN STEADY FLOW

REYNOLDS NR = 35630

FREQUENCY NR = 0.0

FIGURE 18 - LOCAL HEAT TRANSFER COEFFICIENTS IN STEADY FLOW

- FIGURE 19 - COMPARISON OF PUBLISHED STEADY FLOW RESULTS TO EXPERIMENTAL

REYNOLDS NR = 283130

FREQUENCY NR = 1.166×10^{-6}

AMPLITUDE NR = 0.115

FIGURE 20 - LOCAL HEAT TRANSFER COEFFICIENTS IN OSCILLATING FLOW THAT SHOWED UNALTERED RESULTS

REYNOLDS NR = 212769

FREQUENCY NR = 1.115×10^{-6}

FIGURE 21 - LOCAL HEAT TRANSFER COEFFICIENTS IN OSCILLATING FLOW THAT SHOWED UNALTERED RESULTS

REYNOLDS NR = 213960

FREQUENCY NR = 0.464×10^{-6}

FIGURE 22 - LOCAL HEAT TRANSFER COEFFICIENTS IN OSCILLATING FLOW THAT SHOWED UNALTERED RESULTS

REYNOLDS NR = 154471

FREQUENCY NR = 17.719×10^{-6}

FIGURE 23 - LOCAL HEAT TRANSFER COEFFICIENTS IN OSCILLATING FLOW THAT SHOWED UNALTERED RESULTS

REYNOLDS NR = 151995

FREQUENCY NR = 3.962×10^{-6}

AMPLITUDE NR = 0.060

FIGURE 24 - LOCAL HEAT TRANSFER COEFFICIENTS IN OSCILLATING FLOW THAT SHOWED UNALTERED RESULTS

REYNOLDS NR = 152811

FREQUENCY NR = 2.149×10^{-6}

FIGURE 25 - LOCAL HEAT TRANSFER COEFFICIENTS IN OSCILLATING FLOW THAT SHOWED UNALTERED RESULTS

REYNOLDS NR = 259877

FREQUENCY NR = 8.030×10^{-6}

FIGURE 26 - LOCAL HEAT TRANSFER COEFFICIENTS IN OSCILLATING FLOW THAT SHOWED UNALTERED RESULTS

REYNOLDS NR = 217175

FREQUENCY NR = 9.013×10^{-6}

FIGURE 27 - LOCAL HEAT TRANSFER COEFFICIENTS IN OSCILLATING FLOW THAT SHOWED UNALTERED RESULTS

REYNOLDS NR = 280040

FREQUENCY NR = 2.685×10^{-6}

AMPLITUDE NR = 0.220

FIGURE 28 - LOCAL HEAT TRANSFER COEFFICIENTS IN OSCILLATING FLOW THAT SHOWED UNALTERED RESULTS

45 DEGREE MØDEL RUN NR 22

REYNOLDS NR = 254242

FREQUENCY NR = 1.439×10^{-6}

FIGURE 29 - LOCAL HEAT TRANSFER COEFFICIENTS IN OSCILLATING FLOW THAT SHOWED UNALTERED RESULTS

REYNOLDS NR = 203254

FREQUENCY NR = 1.023×10^{-6}

AMPLITUDE NR = 0.115

FIGURE 30 - LOCAL HEAT TRANSFER COEFFICIENTS IN OSCILLATING FLOW THAT SHOWED UNALTERED RESULTS

REYNOLDS NR = 221461

FREQUENCY NR = 0.436×10^{-6}

AMPLITUDE NR = 0.120

FIGURE 31 - LOCAL HEAT TRANSFER COEFFICIENTS IN OSCILLATING FLOW THAT SHOWED UNALTERED RESULTS

REYNOLDS NR = 155314

FREQUENCY NR = 21.852×10^{-6}

FIGURE 32 - LOCAL HEAT TRANSFER COEFFICIENTS IN OSCILLATING FLOW THAT SHOWED UNALTERED RESULTS

REYNOLDS NR = 154891

FREQUENCY NR = 17.671×10^{-6}

FIGURE 33 - LOCAL HEAT TRANSFER COEFFICIENTS IN OSCILLATING FLOW THAT SHOWED UNALTERED RESULTS

REYNOLDS NR = 154053

FREQUENCY NR = 8.883×10^{-6}

FIGURE 34 - LOCAL HEAT TRANSFER COEFFICIENTS IN OSCILLATING FLOW THAT SHOWED UNALTERED RESULTS

REYNOLDS NR = 155739

FREQUENCY NR = 3.866×10^{-6}

FIGURE 35 - LOCAL HEAT TRANSFER COEFFICIENTS IN OSCILLATING FLOW THAT SHOWED UNALTERED RESULTS

REYNOLDS NR = 155739

FREQUENCY NR = 1.757×10^{-6}

FIGURE 36 - LOCAL HEAT TRANSFER COEFFICIENTS IN OSCILLATING FLOW THAT SHOWED UNALTERED RESULTS

REYNOLDS NR = 156167

FREQUENCY NR = 0.876×10^{-6}

FIGURE 37 - LOCAL HEAT TRANSFER COEFFICIENTS IN OSCILLATING FLOW THAT SHOWED UNALTERED RESULTS

REYNOLDS NR = 149789

FREQUENCY NR = 3.769×10^{-6}

AMPLITUDE NR = 0.240

FIGURE 38 - LOCAL HEAT TRANSFER COEFFICIENTS IN OSCILLATING FLOW THAT SHOWED UNALTERED RESULTS

REYNOLDS NR = 110895

FREQUENCY NR = 3.452×10^{-6}

FIGURE 39 - LOCAL HEAT TRANSFER COEFFICIENTS IN OSCILLATING FLOW THAT SHOWED UNALTERED RESULTS

REYNOLDS NR = 232762

FREQUENCY NR = 9.725×10^{-6}

AMPLITUDE NR = 0.690

FIGURE 40 - LOCAL HEAT TRANSFER COEFFICIENTS IN OSCILLATING FLOW THAT SHOWED ENHANCED HEAT TRANSFER

REYNOLDS NR = 204847

FREQUENCY NR = 9.861×10^{-6}

AMPLITUDE NR = 0.052

FIGURE 41 - LOCAL HEAT TRANSFER COEFFICIENTS IN OSCILLATING FLOW THAT SHOWED ENHANCED HEAT TRANSFER

REYNOLDS NR = 269246

FREQUENCY NR = 2.885×10^{-6}

FIGURE 42 - LOCAL HEAT TRANSFER COEFFICIENTS IN OSCILLATING FLOW THAT SHOWED ENHANCED HEAT TRANSFER

REYNOLDS NR = 149597

FREQUENCY NR = 23.053×10^{-6}

FIGURE 43 - LOCAL HEAT TRANSFER COEFFICIENTS IN OSCILLATING FLOW THAT SHOWED ENHANCED HEAT TRANSFER

REYNOLDS NR = 154471

FREQUENCY NR = 8.859×10^{-6}

AMPLITUDE NR = 0.150

FIGURE 44 - LOCAL HEAT TRANSFER COEFFICIENTS IN OSCILLATING FLOW THAT SHOWED ENHANCED HEAT TRANSFER

REYNOLDS NR = 94381

FREQUENCY NR = 25.149×10^{-6}

AMPLITUDE NR = 0.330

FIGURE 45 - LOCAL HEAT TRANSFER COEFFICIENTS IN OSCILLATING FLOW THAT SHOWED ENHANCED HEAT TRANSFER

REYNOLDS NR = 150388

FREQUENCY NR = 4.004×10^{-6}

FIGURE 46 - LOCAL HEAT TRANSFER COEFFICIENTS IN OSCILLATING FLOW THAT SHOWED ENHANCED HEAT TRANSFER

REYNOLDS NR = 105536

FREQUENCY NR = 3.638×10^{-6}

FIGURE 47 - LOCAL HEAT TRANSFER COEFFICIENTS IN OSCILLATING FLOW THAT SHOWED ENHANCED HEAT TRANSFER

REYNOLDS NR = 149597

FREQUENCY NR = 0.914×10^{-6}

AMPLITUDE NR = 0.100

FIGURE 48 - LOCAL HEAT TRANSFER COEFFICIENTS IN OSCILLATING FLOW THAT SHOWED DEGRADED HEAT TRANSFER

REYNOLDS NR = 109599

FREQUENCY NR = 1.736×10^{-6}

FIGURE 49 - LOCAL HEAT TRANSFER COEFFICIENTS IN OSCILLATING FLOW THAT SHOWED DEGRADED HEAT TRANSFER

REYNOLDS NR = 108954

FREQUENCY NR = 20.024×10^{-6}

FIGURE 50 - LOCAL HEAT TRANSFER COEFFICIENTS IN OSCILLATING FLOW THAT SHOWED DEGRADED HEAT TRANSFER

REYNOLDS NR = 107462

FREQUENCY NR = 1.846×10^{-6}

FIGURE 51 - LOCAL HEAT TRANSFER COEFFICIENTS IN OSCILLATING FLOW THAT SHOWED DEGRADED HEAT TRANSFER

FIGURE 52 - VARIATION OF AVERAGE NUSSELT NUMBER WITH REYNOLDS NUMBER

TABLE I
SUMMARY OF AVERAGE HEAT TRANSFER RESULTS

Run Number	Yaw Angle	Average Nu	N R e	$\mathtt{N}_{\mathbf{F}}$	^N s	NA
5	90°	565.49	314057	0.0	0.0	0.0
6	90°	380.50	157028	0.0	0.0	0.0
7	90°	304.32	109598	1.736×10^{-6}	0.190	0.105
8	90°	431.65	213959	0.464×10^{-6}	0.099	0.180
9	90°	517.54	283129	1.166×10^{-6}	0.330	0.115
10	90°	359.58	151994	3.962×10^{-6}	0.602	0.060
11	90°	415.10	154470	8.859×10^{-6}	1.369	0.150
12	90°	387.19	154470	17.719×10^{-6}	2.737	0.070
13	90°	309.30	149596	0.914×10^{-6}	0.137	0.100
15	90°	530.16	204846	9.861×10^{-6}	2.020	0.052
16	90°	418.60	149596	23.053×10^{-6}	3.449	0.340
17	90°	594.91	232762	9.725×10^{-6}	2.264	0.690
18	90°	450.24	212769	1.115×10^{-6}	0.237	0.150
19	90°	400.49	152811	2.149×10^{-6}	0.328	0.110
20	90°	717.90	269246	2.885×10^{-6}	0.777	0.310
21	45°	360.71	155739	3.866×10^{-6}	0.852	0.040
22	45°	515.02	254242	1.439×10^{-6}	0.517	0.055
23	45°	362.85	154891	17.671×10^{-6}	3.871	0.045
24	45°	460.74	217174	9.013×10^{-6}	2.768	0.049
25	45°	356.32	156166	0.876×10^{-6}	0.194	0.100
26	45°	462.35	221461	0.436×10^{-6}	0.137	0.120
27	45°	567.89	314057	0.0	0.0	0.0
28	45°	343.13	154052	8.883×10^{-6}	1.935	0.110
29	45°	556.50	280040	2.685×10^{-6}	1.063	0.220
30	45°	497.50	259876	8.030×10^{-6}	2.951	0.095
31	45°	335.60	155314	21.852×10^{-6}	4.800	0.048
32	45°	453.45	203253	1.023×10^{-6}	0.295	0.115
33	45°	374.23	155739	1.757×10^{-6}	0.381	0.090
34	45°	357.48	155314	0.0	0.0	0.0

TABLE I Continued

Run Number	Yaw Angle	Average Nu	N _{Re}	N _F	^N s	N _A
35	45°	289.59	110894	3.452×10^{-6}	0.541	0.440
36	45°	341.41	149788	3.769×10^{-6}	0.798	0.240
37	45 ⁰	272.71	107462	1.846×10^{-6}	0.280	0.650
38	45°	256.67	108953	20.024×10^{-6}	3.085	0.410
39	45 ⁰	273.36	110647	0.0	0.0	0.0
40	45°	122.07	35630	0.0	0.0	0.0
41	90°	419.91	150387	4.004×10^{-6}	0.602	0.110
42	90°	350.94	94381	25.149×10^{-6}	2.374	0.330
43	90°	348.06	105535	3.638×10^{-6}	0.384	0.290

TABLE II - SUMMARY OF LOCAL HEAT TRANSFER RESULTS

The second secon

KUN NE	2	06	JEGREE	- 90 DEGREE MODEL, HIGH FLOW RATE	H FLOW R	ATE	
SFRIP	3		_	DI	I	NUS	NUSREN
7	62.214	=	118.043	59.043	45.372	1035.10547	1.84706
7	54.445	7	118.631	59.631	36.370	825.74829	1.48061
7	47.258	13	121.180	62.180	27.664	631-13013	1.12620
4	45.155	=	118.952	59.995	27.469	626.68481	1.11826
5	40.269	7	119.968	895.09	22.767	519.40723	0.92684
٥	38.666	=	118.801	59.801	22.370	510.34399	0.91066
1	39.668	=	118.810	59.810	23.270	530.87598	0.94730
20	48.536	=	118.576	59.576	31.470	711.96289	1.28114
6	29.077	7	120.635	61.635	14.466	330.01563	0.58888
10	26.592	=	119.914	60.914	12.867	293.55200	0.52382
11	33-131	=	119.655	60.655	17.468	398.50977	0.71111
12	36.312	=	916.611	916.09	19.567	446.40186	0.19657
13	39-172	=	0116.110	60.710	21.868	81888*365	0.89022
14	39.194	=	119.734	60.734	21.368	487.48022	186981
15	44.083	7	118.211	59.211	26.671	608.47543	1.06577
10	44.263	=	119.832	60.832	25.567	583.29346	1.04084

STROUHAL NK = 0.0 AMPLITUDE NR =0.0 BLADES = 6.0 INCHES

314057.68750 153.04166 FI/S 0.0 CPS

REYNOLDS NR = VELCCITY = FRICUENCY = FREQUENCY NR = 0.0

TABLE II - CONTINUED

The state of the s

KUN NR	9	- 90 DEGREE	MODEL, LOW	FLOW RATE	<u>u</u>	
SIKIP	œ	j ena	10	I	NUS	NUSREN
-	51.710	121.650	62.650	31.363	715.51660	1.80564
~	46.466	120.643	61.643	27.665	631.15918	1.59276
8	39.637	119.218	60.218	22.969	524.00977	1.32236
4	36-652	120.479	61.419	20.066	457.78198	1.15523
s	31.750	126.412	67.412	14.352	327.42163	0.82626
9	33.382	120.568	61.568	996.11	469.86768	1.03432
1	29.053	119.382	60.382	15.568	355.17822	0.89631
20	23.758	119.113	60.113	12.269	275.90674	0.70636
6	15.333	118.307	59.307	7.071	161.31740	0.40709
01	18.723	119.067	60.067	8.769	200,06038	0.50486
11	23.544	120.391	61.391	11.266	257.02417	0.64861
71	27.256	122.844	63.844	12.660	288.83154	0.72888
13	28.056	121.246	62.246	13.564	305.45020	0. 78091
14	29.595	119.722	60.722	14.968	341.47168	0.86172
15	33.126	120.001	61.001	17.167	391.64697	0.98834
91	35.476	119.185	60.185	19.169	437.31885	1.10359

STRUUHAL NK = 0.0 AMPLITUDE NK = 0.0 BLADES = 6.0 INCHES

157028. 81250 76. 52080 F1/S 0.0 CPS

REYNOLUS NR = VELUCITY = FREQUENCY = FREQUENCY NR = 0.0

TABLE II - CONTINUED

	NUSREN	1.53228	1.24595	1.06855	0.99321	0.91141	0.89112	0.85008	0.78198	0.51599	0.59103	0.76859	0.84336	0.79534	0.85017	0.98677	1.08198	0.190 -0.105 6.0 INCHES
<u>~</u>	SUN	507.27075	412.47998	353.75049	328.80786	301.72998	295.00977	281.42310	258.87891	170.82118	61599.561	254.44662	279.20093	263.30249	281.45483	326.67700	358.19727	STRGUFAL NR = 0.190 AMPLITUDE NR =0.105 BLADES = 6.0 INCHES
FLOW RATE	I	22.448	18.254	15.655	14.551	13,353	13.055	12.454	11.456	7.559	8.659	11.260	12.356	11.652	12.455	14.457	158.81	8 8 8
MODEL, LOW	10	58.222	56.036	55.615	57.213	56.493	55.392	55.925	54.930	53.599	53.841	53.300	55.218	56.721	55.327	54.808	996.95	FI / S CP S
90 DEGREE MO	 	122.722	120.536	120.115	121.713	120.993	119.852	120.422	119.430	118.099	118.341	117.800	119.718	121.221	119.827	119.308	121.466	KEYNDLUS NR = 109598.56250 VELUCITY = 55.02930 FREQUENCY = 5.00 FREQUENCY NR = 1.736 x 10 ⁻⁶
	3	192.8E	31.566	27.813	27.105	24.729	23.476	22.584	20.386	14.254	10.256	20.028	22.122	22.673	23.621	26.170	29.414	NK = Y = NR = 1.73
KUN NK	STRIP		7	٦	4	5	Ĵ	1	æ	6	07	11	17	13	14	15	71	KE YNDLUS VELUCITY FRECUENC FREQUENCY

The second of th

XUN NOX	1 80	90 DEGREF MODEL, HIGH FLUW RAFE	DDEL, HIG	H FLUW R	VFE	
STRIP	3	 	10	I	SON	NUSREN
~	54.670	126.321	65.321	31.748	721.77002	1.56039
~	45.357	122.014	61.014	26.958	612.87720	1.32497
m	38.560	120.341	59.341	25.662	515.20850	1.11382
4	36.059	119.513	58.513	20.864	474.33032	1.02545
\$	32.016	120.227	59.227	17.562	355.26758	0.86317
•	38.297	127.419	614.99	19.045	432.98071	9098600
_	34.645	122.828	61.828	18.856	424.68286	0.92677
33	34.087	116.871	55.871	21.570	490.38550	1.06016
~	19.065	122.571	61.571	8.457	192.25676	0.41564
10	21.459	120.099	59.099	10.462	237.85901	0.51423
11	27.201	119.694	58.694	14.363	326.54565	0.70596
12	29.015	118.660	57.660	15.966	362.97667	0.78472
13	30.492	118.919	616.15	16.765	381.14990	0.82401
51	32.004	118.100	57.100	18.167	413.02271	0.89291
15	33,420	116.649	55.649	19.870	451-74854	0.57663
16	35.651	118.639	57.639	20.466	465.28320	1.00589
REYNDLDS N VELUCITY = FREGUENCY : FREQUENCY NR	× " "	= 213959.62500 105.41451 5.00 0.464 x 10 ⁻⁶	0 FT/S CP S	SAB	STROUHAL NR = 0.059 AMPLITUDE NR =0.180 BLADES = 4.0 INCHES	0.059 0.180 4.0 INCHES

TABLE II - CONTINUED

	NUSREN	1.63062	1.33609	1.04118	0.99416	0.85767	0.58546	1.19159	1.27725	0.52065	0.56750	0.71690	0.80679	0.80235	0.87912	0.93052	1.02449	= 0.330 =0.115 4.0 INCHES
RATE	SON	867.65356	710.93018	554.01123	528.99219	456.36450	524.36499	634.04224	675.62573	277.03491	301.96558	381.45923	425.29468	426.93091	467.78149	495.12793	545.13086	STROUPAL NR = AMPLITUDL NR = BLADES =
HIGH FLOW RA	I	38.164	31.271	24.369	23.268	20.074	23.065	27.889	29.894	12.186	13.282	16.179	18.833	18.779	20.576	21.179	23.978	S A S
MODEL. HIG	10	58.255	55.519	56.457	50.664	54.348	58.167	47.144	45.545	49.152	50.628	52.093	50.337	52.046	53.406	52,183	52.431	H7/S CPS
90 DEGREE MO	}	119.255	116.519	117.457	117.664	115.348	119.167	108.744	106.545	110.152	111.628	113.093	111.337	113.046	114.406	113.183	113.431	283129.5C000 139.49338 22.00 5 x 10-6
1	3	54.762	45.532	38.969	37.643	32.215	30.173	35.681	34.842	15.168	21.528	26.789	28.258	29.510	32.516	33.308	35.941	KEYNULUS NK = 283129, VELCCITY = 139, FREGUENCY = 22, FREQUENCY NR = 1.166 x 10 ⁻⁶
KUN NX	STRIP		~	~ 1	4	2	٥	~	3 0	3 5	10	11	77	13	14	15	16	KEYNULUS N VELCCITY " FREGUENCY "

TABLE II - CONTINUED

H NUS 538 30.529 689.26196 1. 698 25.526 576.30981 1. 369 19.829 447.69043 1. 755 19.428 438.63794 1. 764 16.130 364.18530 0. 235 14.532 328.09106 0. 235 14.532 328.09106 0. 225 7.924 178.91470 0. 428 13.629 307.70605 0. 428 13.629 318.95731 0. 625 15.028 339.30396 0. 739 16.026 361.81982 0. 739 16.026 361.81982 0.	KUN ER	2	90	90 DEGREE	MODE	FLO		•
130.536 65.538 30.529 689.26196 131.698 66.698 25.526 576.30981 130.369 65.369 19.829 447.69043 130.369 65.369 19.829 447.69043 130.755 65.755 19.428 438.63794 129.784 64.784 16.130 364.18530 134.334 69.338 16.819 379.73877 129.235 64.235 14.532 328.09106 133.767 68.912 5.620 126.89305 133.912 68.912 5.620 126.89305 131.406 66.406 11.526 260.23926 130.428 65.428 13.629 307.70605 130.382 65.428 14.129 318.95731 130.625 65.625 15.028 339.30396 131.739 66.739 16.026 361.81942 132.291 67.291 17.124 386.62524		9		_	n	I	RUS	NUSREN
131.698 66.698 25.526 576.30981 130.369 65.369 19.829 447.69043 130.755 65.755 19.428 438.63794 129.784 64.784 16.130 364.18530 134.338 69.338 16.819 379.73877 129.235 64.235 14.532 328.09106 133.767 68.767 11.021 248.82037 133.912 68.912 5.620 126.89365 132.225 67.225 7.924 178.91470 131.406 66.406 11.526 260.23926 130.428 65.428 13.629 307.70605 130.382 65.382 14.129 318.95731 130.625 65.625 15.028 339.30396 131.739 66.739 16.026 361.81942 132.291 67.291 17.124 386.62524		52.894		130.538	65-538	30.529	689.26196	1.76795
130.36965.36919.829447.69043130.75565.75519.428438.63794129.78464.78416.130364.18530134.33869.33816.819379.73877129.23564.23514.532328.09106133.76768.76711.021248.82037133.91268.9125.620126.89305132.22567.2257.924178.91470131.40666.40611.526260.23926130.42865.42813.629307.70605130.62565.38214.129318.95731130.62565.62515.028339.30396131.73966.73916.026361.81942132.29167.29117.124386.62524		47.515	-	131.698	869*99	25.526	576.30981	1.47823
130.755 65.755 19.428 438.63794 129.784 64.784 16.130 364.18530 134.338 69.338 16.819 379.73877 129.235 64.235 14.532 328.09106 133.767 68.767 11.021 248.82037 133.912 68.912 5.620 126.89305 132.225 67.225 7.924 178.91470 131.406 66.406 11.526 260.23926 130.428 65.428 13.629 307.70605 130.382 65.382 14.129 318.95731 130.625 65.625 15.028 339.30396 131.739 66.739 16.026 361.81942 132.291 67.291 17.124 386.62524		38.655		130.369	65.369	19.829	447.69043	1.14832
129.78464.78416.130364.18530134.33869.33816.819379.73877129.23564.23514.532328.09106133.76768.76711.021248.82037133.91268.9125.620126.89305132.22567.2257.924178.91470131.40666.40611.526260.23926130.42865.42813.629307.70605130.62565.38214.129318.95731130.62565.73916.026361.81942132.29167.29117.124386.62524		38.155		130.755	65.755	19.428	438.63794	1.12510
134.33869.33816.819379.73877129.23564.23514.532328.09106133.76768.76711.021248.82037133.91268.9125.620126.89305132.22567.2257.924178.91470131.40666.40611.526260.23926130.42865.42813.629307.70605130.38265.38214.129318.95731130.62565.62515.028339.30396131.73966.73916.026361.81942132.29167.29117.124386.62524		32.571		129.784	64.784	16.130	364.18530	0.93413
129.23564.23514.532328.09106133.76768.76711.021248.82037133.91268.9125.620126.89305132.22567.2257.924178.91470131.40666.40611.526260.23926130.42865.42813.629307.70605130.38265.38214.129318.94731130.62565.73916.026351.81942131.73966.73916.026361.81942132.29167.29117.124386.62524		35.660		134.338	69.338	16.819	379.73877	0.97403
133.76768.76711.021248.82037133.91268.9125.620126.89305132.22567.2257.924178.91470131.40666.40611.526260.23926130.42865.42813.629307.70605130.38265.38214.129318.95731130.62565.62515.028339.30396131.73966.73916.026361.81942132.29167.29117.124386.62524		29.633	_	129.235	64.235	14.532	328.09106	0.84155
133.912 68.912 5.620 126.89305 132.225 67.225 7.924 178.91470 131.406 66.406 11.526 260.23926 130.428 65.428 13.629 307.70605 130.382 65.382 14.129 318.94731 130.625 65.625 15.028 339.30396 131.739 66.739 16.026 361.81942 132.291 67.291 17.124 386.62524		25.315		133.767	68.767	11.021	248.82037	0.63822
132.225 67.225 7.924 178.91470 131.406 66.406 11.526 260.23926 130.428 65.428 13.629 307.70605 130.382 65.382 14.129 318.95731 130.625 65.625 15.028 339.30396 131.739 66.739 16.026 361.81942 132.291 67.291 17.124 386.62524		15.420	,	133.912	68.912	5.620	126.89305	0.32548
131.406 66.406 11.526 260.23926 130.428 65.428 13.629 307.70605 130.382 65.382 14.129 318.95731 130.625 65.625 15.028 339.30396 131.739 66.739 16.026 361.81942 132.291 67.291 17.124 386.62524		19.624		132.225	67.225	7.924	178.91470	0.45891
130.428 65.428 13.629 307.70605 130.382 65.382 14.129 318.95731 130.625 65.625 15.028 339.30396 131.739 66.739 16.026 361.81942 132.291 67.291 17.124 386.62524		25.768		131.406	905.99	11.526	260.23926	0.66751
130.382 65.382 14.129 318.95731 130.625 65.625 15.028 339.30396 131.739 66.739 16.026 361.81942 132.291 67.291 17.124 386.62524		29.612		130.428	65.428	13.629	307.70605	0.78926
130.625 £5.625 15.028 339.30396 131.739 £6.739 16.026 361.81942 132.291 £7.291 17.124 386.62524		30.167		130.382	65.382	14.129	318.95731	0.81823
131.739 66.739 16.026 361.81942 132.291 67.291 17.124 386.62524		126.18		130.625	65.625	15.028	339.30396	0.87031
132.291 67.291 17.124 386.62524		34.438	•	131.739	66.139	16.026	361-81942	0.92806
		36.635	_	132.291	67.291	17.124	386.62524	69156.0

The section of the se

110

REYNULUS NR = 151994.75000 VELCCIFY = 76.52080 FI/S FRECUENCY = 22.00 FREQUENCY NR = 3.962 x 10⁻⁶

RUN NR	- 11	90 DEGREE MODEL, LOW	DEL, LOW	FLUW RATE	ш	
STRIP	J	-	DI	I	NUS	NUSREN
-	53.476	123.059	61.059	34.453	181.92090	1.98948
7	46.042	121.251	59.251	29.057	659.46450	1.67791
٣	39.424	120.177	58.777	23.659	536.93604	1.36615
4	150.65	118.246	56.246	25.265	573.38354	1.45889
5	34.449	117.847	55.847	21.566	489.43286	1.24529
9	36.760	118.679	56.679	23.264	527.97046	1.34334
1	29.437	117.755	55.755	17.966	407.73486	1.03742
30	25.293	117.956	55.956	14.865	337.36963	0.85839
ઝ	15.528	117.935	55.935	8.065	183.04361	0.46573
01	18.809	121.628	59.628	8.957	203.27144	0.51719
11	24.182	123.333	61.333	11.653	264.45530	0.67287
12	25.915	122.078	60.078	13.056	296.29736	0.75388
13	27.420	122.267	60.267	13.855	314.44336	0.80005
14	28.189	123.232	61.232	13.753	312.12183	0.79415
51	31.039	122.712	60.712	15.854	359.80957	0.91548
16	31.652	119.810	57.810	17.361	394,00830	1.00249
REYAULDS NK VELUCITY = FRECUENCY =	REYALLDS NK = 154470. VELUCITY = 76. FRECUENCY = 50.	154470.75000 76.52080 50.00	FF/S CPS	ST AM BL	STROUFAL NA = 1.369 AMPLITUDE NR =0.150 BLADES = 4.0 INCHES	1.369 -0.150 4.0 INCHE

111

FREQUENCY NR = 8.859×10^{-6}

TABLE II - CONTINUED

	NUSREN	1.85056	1.58511	1.39423	1.19219	1.03672	1.05999	0.95043	0.75984	0.37285	0.53467	0.69615	0.75967	0.79423	0.82895	0.94441	1.00243	= 2.737 =0.070 4.0 INCHES
ı	NUS	727.32202	622.99194	547.96948	468.56519	461.45898	416.60645	373.54468	298.63843	146.53973	210.13976	273.60645	298.57178	312-15552	325.79834	371.17993	393.98241	SIROUHAL NR = AMPLITUDE NR = BLADES =
FLOW RATE	I	32.047	27.450	24.145	20.646	17.954	18.357	16.459	13.159	154.9	9.259	12.056	13.156	13.754	14.355	16,355	17.360	S & B
MODEL, LOW	10	63.471	62.221	64.590	64.059	006.09	59.614	58.516	58.749	59.511	58.515	000.09	686.55	60.605	161.09	60.293	58.282	cPS CPS
DEGREE	-	125.471	124.221	126.590	126.059	122.900	121.614	120.516	120.749	121.511	120.515	122.000	121.985	122.605	122.131	122.293	120.282	154470.75000 76.52080 100.00 19 x 10 ⁻⁶
- 90		801	249	234	R R J	552	544	20 6	382	343	949	124	655	27.5	411	554	915	= 15 17.719
71	Э	53.188	46.647	44.234	39.684	33.255	32.644	29.206	24.382	14.343	18.846	24-124	25.559	27.527	28.411	31.554	31.576	NR = NR
RUN NR	STRIP		~	r	4	5	9	1	ಇ	σ	10	1	12	13	71	15	16	KLYNULDS NR = 15 VELOCITY = FREQUENCY = FREQUENCY NR = 17.719

TABLE 11 - CONTINUED

FLOW KATE	H NUS NUSREN	22.539 506.25439 1.30890	18.238 409.65259 1.05914	15.143 340.12085 0.87937	15.141 340.08545 0.87928	12.643 283.97339 0.73420	13.752 308.89697 0.79864	13.350 299.86426 0.77529	12.145 272.78760 0.70528	5.946 133.56023 0.34532	6.940 155.88998 0.40305	11.747 263.85352 0.68218	12.644 284.00928 0.73430	13.449 302.07642 0.78101	13.749 308.81226 0.75842	16.349 367.21826 0.94943	16.550 371.72412 0.96108	STROUFAL NR = 0.137 AMPLITUDE NR =0.100 BLADES = 4.0 INCHES
LOW FL																		
MODEL, 1	DI	55.421	55.758	53.938	54.595	53.831	49.778	50.684	52.992	52.380	54.833	52.048	53.160	£1.323	51.370	51.244	50.990	0 FT/S CPS
90 DEGREE M	_	123.421	123.758	121.538	122.595	121.831	117.778	118.684	120.992	120.380	122.833	120.048	121.160	119.323	119.370	119.244	118.990	149596. 87500 76. 52080 5. 00 4 x 10
13 -	œ	36.717	31.691	26.131	26.781	22.514	21.985	21.617	21.C78	12.154	14.819	20.581	22.425	22.176	23.602	26.727	27.141	4K = = = 0.91
KUN NR	SIRIP		~	~	4	s	J	1	70	3	01	11	7.1	13	14	15	91	KEYNJLUS N VELCCITY = FREQUENCY FREQUENCY N

KUN NK	- 51	90 DEGREE	MODEL, HIGH FLOW RATE	4 FLUW R	ATE	
STRIP	0	_	DI	I	NUS	NUSREN
•	53.216	118.990	55.990	45.554	955.11255	2.11912
7	49.036	119.729	53.729	36.852	830.60254	1.83518
m	40.564	117.661	51.661	29.757	670.64750	1.48185
4	38.135	115.366	49.366	29.463	664.04736	1.46718
S	37.343	118.006	52.006	26.556	598.54541	1.32246
9	39.197	119.932	53.532	27.152	611.96582	1.35211
1	38.378	118.968	52.968	27.254	614.27100	1.35720
80	36.227	121.314	55.314	23.748	535.26001	1.18263
σ	18.111	120.515	54.515	9.850	222.01488	0.49053
10	24.417	123.786	57.786	12.943	291-70898	0.64452
1.1	25.031	119.022	53.022	15.154	341.54980	0.75464
71	28.525	119.942	53.945	17.352	391.08594	0.86409
13	27.514	118.729	52.729	16.955	382.13477	0.84431
14	29.330	118.244	52.244	18.556	418.22266	0.92404
15	32.701	119.490	53.490	20.53	463.23389	1.02349
16	33.256	118.180	\$2.180	21.656	488.09644	1.07843
KEYNOLDS NR VELCCITY = . FRECUENCY = .	X "	204846.93750 103.67555 100.00	9 F1/S CPS	S A S	STROUFAL NR = 2.020 AMPLITUDE NR =0.052 BLADES = 4.0 INCHES	2.020 -0.052 4.0 INCHES

KEYNJLUS NR = 204846.93750 VELCCITY = 103.67555 F1/S FREQUENCY = 100.00 FREQUENCY NR = 9.861 x 10⁻⁶

TABLE II - CONTINUED

KUN NK	¥	16 -	90	DEGREE	- 90 DEGREE MODEL, LOW FLUW RATE	W FLUW RAT	T.E.	
SIRIP	۵.	IJ		-	10	I	SON	NLSREN
	_	48.339		125.107	57.107	33.035	742.00757	1.91843
	2	41.523	- •	124.832	56.832	27.236	611.74658	1.58165
	8	36.614	_	125.275	57.275	21.835	490.43164	1.26799
	4	37.540		125.312	57.312	23.734	533.10596	1.37833
	2	33.400	•	123.582	55.582	21.039	472.55396	1.22177
	J	36.546		123.154	55.154	24.640	553.43774	1.43089
		34.C17	-	124.330	56.330	21.537	483.74414	1.25070
	70	26.409		124.744	56.744	15.636	351.20044	0.90802
	5	14.075		123.925	55.929	7.438	167.06168	0.43193
-4	70	18.324		124.967	26.967	6.635	216.42055	0.55955
~	11	22.762	_	123.844	55.844	12.838	288.35718	0.74554
-	71	25.866		124.809	56.809	14.536	326.48950	0.84413
	13	24.823	_	123.401	55.401	14.039	315.33472	0.81529
-	5 1	27.058	•	124.410	56.410	15.137	339.98779	0.87903
~	51	30.506		125.210	57.210	17.135	344.86694	90556 °C
-	91	32.545		124.943	56.943	18.735	420.81958	1.0880.1
							į	

STROUHAL NK = 3.449
AMPLITUDE NK = 0.340
BLADES = 4.0 INCHES 149596.47500 76.52080 FI/S 126.00 CPS FREQUENCY NR = 23.053×10^{-6} REYNULUS NR : VELUCITY = FREQUENCY =

TABLE II - CONTINUED

KUN NR	- 11	90	- 90 DEGREE	MODEL, HIGH FLOW KATE	H FLOW R	ATE	
SINIE	ગ		-	υT	I	NUS	NUSREN
	53.CCB	-	118.118	51.118	44.854	1009.20923	2.05182
7	45.415		117.938	50.938	35.754	804.46899	1.66745
*	39.591	-	117.106	50.106	30.156	678.51367	1.40638
*	42.265	-	115.656	48.656	34.860	784.34009	1.62573
<u>ب</u>	36.626	7	113.620	46.620	30.564	687.69751	1.42541
9	41.484	7	115.124	48.124	34.961	186.61792	1.63045
1	39.616	-	113.275	46.275	35.165	791.21558	1.63998
20	33.972		115.038	48.038	26.861	604.37280	1.25270
~	18.455		115.204	48.204	12.261	275.86499	0.57179
10	20.553		115.123	48.123	14.161	318.61938	0.66041
11	24.526		110.936	43.936	20.071	451.58862	0.93602
12	27.555		117.511	50.911	18.454	415.22095	0.86064
13	21.089		115.620	48.620	18.760	422.09253	0.87489
14	29.518		117.602	50.602	19.755	444.48730	0.92130
15	32.705	-	117.891	50.891	22.254	500.72192	1.03786
10	33.430	-	116.036	49.036	24.159	543.57056	1.12668

STROUHAL NR = 2.264 AMPLITUDL NR =0.690 BLADES = 4.0 INCHES

232762.25000 118.43491 FT/S 128.00 CPS

KLYNOLUS NK = VELUCIIY = FREQUENCY =

FREQUENCY NR = 9.725×10^{-6}

TABLE II - CONTINUED

RUN NK	1 81	90 DEGREE M	MODEL, HIGH FLOW RATE	H FLOW RA	ATE	
SIRIP	Œ	-	10	I	S ON	NUSREN
-	64.125	134.826	71.826	35.223	151.99767	1.73000
2	53.669	131.741	141.89	28.530	646.37329	1.40129
m	45.854	130.359	61.359	24.033	544.49805	1.18043
4	44.283	129.869	698.99	23.335	528.66632	1.14611
ŝ	38.564	126.421	63.421	21.043	416.74585	1.03355
9	35.662	127.768	64.768	18.540	420.03247	0.91060
1	36.076	129.176	66.176	18.436	417.68994	0.90552
10	39.061	128.324	65.324	21.038	476.64185	1.03333
3	22.845	128.577	65.577	10.438	236.47633	0.51266
01	22.625	129.167	66.167	9.636	225.11609	0.48804
11	30.024	127.336	64.336	14.841	336.22974	0.72892
71	33.171	128.743	65.743	16.137	365.60547	0.79261
13	34.433	130.665	61.605	16.033	363.23755	0.78747
14	36.481	129.558	856.99	17.534	397.25708	0.86123
15	42.840	131.522	68.522	21.031	476-46655	1.03295
91	41.763	127.899	64.899	21.839	494. 79004	1.07267
REYNULUS 1 VELCCITY 3 FREQUENCY	N N II	212769.18750 105.97266 12.00	6 F1 / S CP S	S A B	STROUHAL NR = AMPLITUDE NR = BLADES =	= 0.237 =0.150 4.0 INCHES

FREQUENCY NR = 1.115×10^{-6} REYNULDS NR = VELCCITY = FREGUENCY =

	IS NUSREN	561 2.08422	733 1.66975	91808 1 076	1.19866	499 1.04785	86656.0 161	914 0.90936	045 0.67780	1162 0.35416	174 0.53367	434 0.78264	572 0.88093	69088.0 761.	079 0.87440	100 1.14098	634 1.12365	NR = 0.328 NR =0.110 4.0 INCHES
ATE	NUS	814.74561	625.26733	509.42920	466.57007	409.61499	371.35791	355.47974	264.96045	154.08162	208.61174	305.94434	344.36572	344.27197	341.81079	446.02100	439.24634	STRUUFAL NR AMPLITUDE NR BLADES =
M FLOW RATE	I	36.024	27.823	22.524	20.718	18.111	16.420	15.718	11.715	6.813	9.224	13.527	15.226	15.222	15.113	19.721	19.421	3743
MODEL, LOW	10	69.275	69.69	69.117	71.805	74.531	71.090	71.931	72.879	13.904	69.294	67.935	68.422	70.117	13.710	70.584	10.357	S FT/S
90 DEGREE MI	-	133.275	133.663	133.117	135.805	138.531	135.090	135.931	136.879	137.904	133.294	131.935	132.422	134.117	137.710	134.584	134.357	152811.25000 76.52080 12.00
- 61	C	62.428	52.548	44.157	43.676	495.04	35.567	34.823	28.009	18.836	22.129	29.402	32.685	34.035	36.228	45.048	41.183	: X
KUN NX	STRIP	-	7	ST)	4	Ç	9	7	3	ፓ	01		17	13	14	15	91	KEYNJEDS P VELOCITY = FRECUENCY =

FREQUENCY NR = 2.149×10^{-6}

TABLE II - CONTINUED

KUN NK	20 -	- 90 DEGREE	MODEL, HIGH FLOW RATE	H FLOW R	ATE	
SIRIP	ø	-	DI	I	SON	NLSREN
-	65-58	114.462	50.462	58.969	1333.68311	2.57026
2	53.776	111.880	47.880	50.175	1148.36255	2.21312
en.	45.254	110.958	856.94	40.177	908.67505	1.75119
4	45.207	110.452	46.452	40.978	926.79443	1.78611
S	42.145	112.768	48.768	34.273	775.14111	1.49385
9	41.376	110.539	46.539	36.078	815.96826	1.57253
1	48.236	107.283	43.283	51.086	1155.38818	2.22666
ສ	34.561	109.183	45.183	34.281	175.32886	1.49421
5	20.187	110.267	46.287	13.779	311.62964	0.60057
01	21.836	111.368	47.368	14.576	329.66650	0.63533
11	28.101	115.709	51.709	17.766	401.81055	0.17437
71	30.193	114.392	50.392	20.269	458.42188	0.88347
11	32.001	115.053	51.053	21.368	483.26563	0.93135
14	33.236	115.536	51.536	22.067	459.07178	0.96181
51	36.871	116.560	52.560	24.764	560.08252	1.07939
91	37.665	115.215	51.215	26.667	603.12549	1.16234

FREQUENCY NR = 2.885×10^{-6}

TABLE II - CONTINUED

	NUSREN	1.75962	1.41997	1.21202	1.28148	1.26381	1.21206	0.91171	0.59956	0.34643	0.44470	0.56599	0.64068	0.64633	0.66948	0.76748	0.88294	0.852 -0.040 4.0 INCHES
	NUS	644.41479	560.37280	478.31104	505.71948	496.74951	478.32446	359.79614	236.60916	136.71429	175.49452	223.36282	252,83563	255.06540	264.20410	302.87549	348.44336	STRDUHAL NK = 0.852 AMPLITUDE NR =0.040 BLADES = 4.0 INCHES
FLOW RATE	I	30.518	24.627	21.021	22.225	21.919	21.021	15.812	10.398	800.9	7.713	918.6	111.111	11.209	119.11	13.311	15.313	NA B
MODEL, LOW	DI	78.542	74.801	77.414	15.559	78.134	77.173	80.833	86.349	82.402	80.673	19.181	160.13	81.906	81.249	81.448	80.400	FT/S CPS
45 DEGREE MO	-	139.042	135.301	137.914	136.059	138.634	137.673	141.333	146.849	142.902	141.173	139.681	141.557	142.406	141.749	141.948	143.900	155739.25000 76.52080 22.00
51 - 4	ગ	63.046	51.172	47.167	47.427	48.460	45.870	38.655	29.948	18.061	21.937	26.416	30.429	31.504	32.539	36.317	39.853	" " " " " " " " " " " " " " " " " " "
RUN NR	STRIP	-	7	~	+	5	s	1	ဢ	3	0.1	11	71	1.3	14	15	Io	KLYNOLOS VELOLÍTY FREGUENCY

FREQUENCY NR = 3.866×10^{-6}

Trans.

120

TABLE 11 - CONTINUED

SIRIP U I 1 62.531 126.574 2 51.782 121.344 3 47.407 122.436 4 47.572 120.644 5 48.785 122.577 6 49.036 123.349 7 38.828 122.351 8 28.C71 123.380 9 18.218 119.270 10 22.545 118.982 11 26.535 120.887 12 28.875 121.305 13 29.715 122.003 14 30.5C8 121.057 15 34.157 122.826 16 38.356 125.570 KEYNALDS NR = 254242.06250 VELCCITY = 22.006 22.006	MODEL, HIGH FLOW RATE DT H 64.574 40.445 9 59.344 34.957 7 60.436 29.955 6 58.644 32.059 7 60.977 31.153 7 61.349 31.152 7 61.349 31.152 7 61.380 14.952 3 57.270 9.762 2 56.982 12.663 2 58.887 14.558 3 59.097 17.158 3 60.003 16.056 3 60.826 18.654 4 63.570 20.347 4	H FLOW R 40.445 34.957 29.955 32.059 31.153 31.153 31.152 14.952 12.663 14.558 15.857 16.056 17.158 18.654 20.347	NUS 17.90137 93.36084 79.82617 27.58276 07.03149 07.01147 30.04297 39.34790 39.34790 30.40405 59.88550 64.38672 89.40039 23.35010 61.78320	NUSREN 1.82042 1.57343 1.34826 1.44297 1.40222 1.40222 1.40218 1.05120 0.67301 0.43940 0.56996 0.65527 0.71374 0.71228 0.91583 == 0.517 == 0.517 0.91583 4.0 INCHES
---	---	--	---	---

TABLE II - CONTINUED

	NUSREN	1.81958	1.44419	1.25344	1.14941	1.08573	1.17252	0.58205	0.64717	0.31787	0.46229	0.61883	0.69387	0.69953	0.10532	J. 80936	0.89019	3.871 0.345 4.0 INCHES
ı.	SON	716.11792	568.37842	493.30762	452.36328	427.30298	461.45996	386.43854	254.70082	125.10112	181.94038	243.54755	273.08179	215.30884	277.58643	318.53418	350-34424	STRUUHAL NR = 3.871 AMPLITUDE NR =0.345 BLADES = 4.0 INCHES
FLOW RATE	I	31.526	25.022	21.717	19.915	18.812	20.315	17.015	11.213	5.507	8.010	10.722	12.022	12.120	12.220	14.023	15.424	ST
MODEL, LOW	DI	13.143	14.806	76.803	77.828	19.147	77.645	77.681	78.604	80.819	19.897	14.557	74.870	15.665	15.553	14.461	14.291	FT/S CPS
45 DEGREE MO	-	134.643	136.306	138.303	139.328	140.647	139.145	139.181	140.104	142.319	141.357	136.457	136.370	137.165	137.053	135.961	135.791	154891.31250 76.52080 100.00
23 -	9	59.639	52.025	48.647	45.497	44.212	45.389	39.327	28.546	16.944	22.176	26.124	29.477	30.534	31.090	34.183	36.568	A
RUN NR	SIRIP		~	m	4	5	•	~	30	5	10	11	12	13	14	15	16	KEYNULDS I VELUCITY : FRECUENCY :

FREQUENCY NR = 17.671×10^{-6}

TABLE II - CONTINUED

KUN NR	- 57	45 DEGREE	MODEL, HIGH FLOW		RATE	
STRIP	ပ	 	10	I	SUN	NUSREN
	51.502	122.115	611.115	38.958	885.68726	1.90053
~	50.771	122.580	61.580	32.257	733,34033	1.57362
*	46.634	124.507	63.507	27.352	621-43643	1.33435
*	44.107	121.580	ec. 580	27.459	624.26782	1.33957
5	43.052	124.349	63.349	24.952	567.28174	1.21729
٥	43.408	121.048	60.048	27.560	626.56982	1.34451
1	37.688	119.837	58.837	23.763	540.24341	1.15927
70	27.130	126.565	65.565	13.447	305.71338	0.65601
5	16.039	126.085	680 • 69	7.148	162.51114	0.34872
01	21.492	123.060	62.060	558.01	246.79349	0.52958
11	25.452	125.334	64.334	12.450	233.04565	0.60737
71	28.030	124.686	63.686	14.052	319.45630	0.68550
13	28.568	125.593	64.593	14.049	319.40698	0.68539
14	25.674	125.035	64.035	14.651	333.07813	0.71473
15	32.761	123.858	62.858	16.953	385.43091	0.82707
16	35-383	124.305	63.305	18.352	417.23560	0.89532
RLYNDLDS NO VELUCITY = FRECUENCY : FREQUENCY NR	S NR = 2 LY = NR = 9.013	217174.81250 106.99857 100.00 13 x 10 ⁻⁶	50 FT/S 57 CPS	P. P	STROUBAL VR = AMPLITUDE NR = BLADES =	= 2.766 =0.049 4.0 INCHES

TABLE II - CONTINUED

KUN NR	25 -	- 45 DEGREE MODEL, LOW FLOW RATE	MODEL, LOW	FLOW RA	. E.	
SIRIP	Ü	1	DI .	I	NUS	NUSREN
-1	54.111	127.254	67.254	30.748	700.25244	1.77199
7	46.687	127.089	61.089	25.348	577.28052	1.46081
m	40.105	127.166	67.166	20.448	465.68237	1.17841
4	39.240	126.657	66.657	20.349	463.43286	1.17271
જ	37.625	125.207	65.207	20.052	456.67944	1.15563
3	39.C12	128.342	68.342	19.845	451.95361	1.14367
~	33.222	126.255	66.255	17.050	388.29980	0.98259
æ	22.525	128.741	68.741	10.144	231.02235	0.58460
T	13.636	129.953	69.953	5.241	115.36212	0.30205
10	19.537	129.695	69.695	8.042	183.14417	0.46345
11	23.724	128.716	68.716	10.344	235.57857	0.59613
12	25.046	128.031	68.031	11.046	251.55800	0.63657
13	25.623	127.574	67.574	11.247	256.13770	0.64816
71	26.543	127.708	67.708	11.747	267.51758	0.67695
15	29.167	128.005	68.005	13.146	299.38525	0.75759
16	36.558	132.764	72.764	15.534	353.78149	0.89524
REYNOLDS N VELOCIIY = FREGUENCY	X " "	156166.75000 76.52080 5.00	00 80 FT/S CPS	EPN	STROUFAL NR = AMPLITUDE NR : BLADES =	JR = 0.194 NR =0.100 4.0 INCHES

FREQUENCY NR = 0.876×10^{-6}

TABLE II - CONFINUED

KUN NK	7 97	45 DEGREE	- 45 DEGREE MODEL, HIGH FLOW RATE	FLOW R	11 E	
SIKIP	3	-	DT	I	SPN	NLSREN
	58.197	121-188	61.688	38.763	883.56885	1.87755
7	52.020	121.207	61.107	32.963	751.36230	1.59662
~	45.420	119.832	60.332	29.166	642.02490	1.36428
4	46.241	121.614	62.114	27.862	635.09058	1.34954
5	42.227	120.999	61.499	25.064	571.30054	1.21399
9	45.969	122.540	63.040	27.360	623.64380	1.32522
7	37.259	119.776	60.276	22.166	505.26367	1.07367
20	25.376	117.870	58.370	14.371	327.57178	0.69608
\$	15.154	119.235	59.735	7.368	167.94046	0.35687
2	21.229	120.347	60.847	10.565	246.82187	0.51174
11	25.502	120.727	61.227	13.264	302.34521	0.64247
12	56.919	118.873	55.373	14.469	329.79761	0.70081
13	27.168	119.016	59.516	14.368	327.51050	0.69595
14	28.264	119.206	59.706	14.868	338.89746	0.72014
15	30-244	120.410	60.910	15.565	354.78857	0.75391
16	34.921	123.605	901-49	17.357	395.64551	0.84073
				į	CI O - ON TAUMONTS	

REYNULDS NK = 221461.06250 VELUCITY = 108.21678 FT/S FREQUENCY = 5.00 CPS FREQUENCY NR = 0.436 x 10⁻⁶

TABLE II - CONTINUED

KUN EK	- 12	45 DEGREE	- 45 DEGREE MODEL, HIGH FLOW RATE	H FLOW R.	ATE	
STRIP	3	-	10	I	SUN	NUSREN
í	61.017	117.604	58.604	44.973	1026.00317	1.83081
~	53.532	117.350	58.350	37.573	857.19360	1.52959
3	45.804	113,355	54.355	33.083	154.74268	1.34677
4	46.281	113.450	54.450	33.682	768.42651	1.37119
2	42.713	111.502	\$2.502	31.887	727.46381	1.29810
•	46.186	109.448	50.448	38.092	869.01807	1.55069
1	34.250	114.590	55.590	25.480	581.29126	1.03726
3	21.031	115.666	56.666	11.377	259.55811	0.46316
20	16.721	106.523	47.523	11.498	262.31982	0.46809
10	23,233	107.961	48.907	16.095	367-19189	0.65522
11	25.591	110.279	\$1.279	16.690	380.75510	0.67943
71	26.582	109,352	50.352	18.192	415.02563	0.74058
13	27.402	109.410	50.410	18.292	417.30371	0.74464
ţ.]	28.153	109.146	50.746	18.591	424.13062	0.75682
15	30,355	110.445	51.445	19.989	456.03296	0.81375
16	35.279	112.844	53.844	22.784	519.78613	0.92751

FREQUENCY NR = 0.0

STROUHAL NA = 0.0 AMPLITUDE NR =0.0 BLADES = 4.0 INCHES

314057.6£750 153.04166 FI/S 0.0 CPS

REYNOLDS NR = VELCCITY = FREQUENCY =

TABLE II - CONTINUED

RUN NR	28 -	45 DEGREE	28 ' - 45 DEGREE MODEL, LOW	FLOW RATE	<u> </u>	
STRIP	3	 -	10	I	SON	NUSKEN
-	50.02	129.213	66.713	27.837	631.22534	1.60824
7	43.815	129.326	66.826	23.237	526.91162	1.34247
٠,	38.676	128.543	66.043	20.039	454.39307	1.15770
4	39.787	131.340	68.840	19.732	447.43677	1.13998
s	38.319	130.647	68.147	19.234	436.13721	1.11119
9	38.666	132.656	70.156	18.929	429.22388	1.09358
1	34.414	131.881	69.381	16.631	377-11304	18095-0
20	21.557	128.136	65.636	10.340	234.46313	0.59737
6	16.494	131.959	69.459	6.731	152.62151	0.38885
01	20.149	135.268	12.768	8.023	181.91660	0.46349
11	23.513	133.226	70.726	9.428	225.11319	0.57354
12	25.576	131.934	69.434	10.931	247.86005	0.63150
13	26-645	132,309	608.69	11.230	254.64203	0.64378
14	71.990	132.358	858.69	11.730	265.97705	0.67766
15	30.08	131.490	066.89	13.032	295.50293	0.75288
16	32.543	131.805	69.305	14.531	329.49878	0.83950

STROUMAL NR = 1.935 AMPLITUDE NR =0.110 BLADES = 4.0 INCHES 154052-50000 76-52080 FT/S 50-60 CPS KEYNOLDS NK = VFLOCITY = FRECUENCY =

FREQUENCY NR = 8.883×10^{-6}

TABLE II - CONTINUED

KUN NK	- 67	45 DEGREE	- 45 DEGREE MUDEL, HIGH FLUW KATE	H FLOW R	ATE	
SIRIP	•	-	10	I	NUS	NUSRFN
7	48.510	108.902	46.152	46.285	1049.07324	1.98242
7	43.279	108.663	45.913	39.385	892.69263	1.68691
m	37.563	110.810	48.060	30.580	693.12231	1.30978
4	39.053	109.845	47.099	32.982	747.57007	1.41267
ž.	38.053	107.169	615-55	34.989	793.04126	1.49860
9	40.884	106.877	44-127	39.289	08815.068	1.68280
1	34.252	110.035	41.285	27.882	631.96558	1.19422
20	21.223	114.472	51.722	13.372	303.38338	0.57273
~	16.159	113,423	50.673	416.6	226.07230	0.42721
01	20.393	112.639	688.65	13.276	300.91040	0.56863
71	43.519	113.288	50.538	15.375	348.47388	0.65851
71	25.451	114.098	51.348	16.373	371.09692	0.70126
13	26.258	114.962	52.212	16.371	371.05127	0.70117
14	27.105	11.5.328	52.578	17.270	391.43091	0.73968
15	195.62	115.209	52.459	19.070	432.23535	0.81679
10	32.55	116.476	53.726	20.367	461.63379	0.87234
4				•	6.70 6 - 6.0 000000000000000000000000000000	

KEYNILUS NA = 280040.25000 VELUCITY = 139.28961 FI/S FALCUENCY = 50.00 CPS FREQUENCY NR = 2.685 x 10

TABLE II - CONTINUED

SIKIP SIKIP 2 2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	30 - 0 0 50.675 44.560 38.556 39.255	45 D	45 DEGREE MOI T 112.964 113.826 112.817 111.153	MODEL, HIGH FLUW RATE DI H 54.214 38.484 8 55.076 31.582 7 54.067 26.684 6 52.403 28.488 6 50.787 29.992 6	FLUW RA H 38.484 31.582 26.684 28.488	NUS 878.35425 72C.82373 605.04004 650.21069 684.53101	NLSREN 1.72300 1.41399 1.19471 1.27547
2 ~ 2 7	41.253 34.654 21.763 16.512	11	107.400 111.567 111.960 111.155		34.597 24.437 13.586 9.988	789.63306 558.89307 310.09229 227.96663	1.54896 1.09634 0.66829 0.44719
10 11 12 13 14 16	21.013 24.C21 25.530 27.C48 28.£16 30.689		112.574 113.726 114.987 114.789 115.065 115.004	53.824 54.976 56.237 56.039 56.319 55.990	12.485 14.082 14.779 15.480 16.279 17.980	284.95361 321.41113 337.32104 353.30811 371.55200 410.37012 451.43921	0.55897 0.63049 0.66170 0.65306 0.72885 0.80499
KEYNDLDS I VELUCITY : FRECUENCY I	WEYNDLDS NH = 259876. VELUCITY = 126. FREQUENCY NR = 8.030 x 10 ⁻⁶	2598 1 1 30 x 1	259876.68750 126.46426 126.00 0 x 10 ⁻⁶	FI/S CPS	NA B	STROUHAL NR = AMPLITUDE NR = BLADES =	* 2.951 =0.095 4.0 INCHES

129

TABLE 11 - CONTINUED

RUN NR	31 -	- 45 DEGREE	MUDEL, LOW FLOW RATE	FLOW RAT	m	
STRIP	Œ	 	10	I	NUS	NUSREN
-	48.558	127.711	66.711	26.544	603.47437	1.53127
~	42.385	123.425	62.425	24.455	555.96436	1.41072
æ	37.604	127.554	66.554	18.545	421.60571	1.06980
•	38.171	130.399	66.399	18.338	416.90308	1.05786
Ś	37.052	130.849	658.69	17.637	400.96411	1.01742
•	39.788	128.454	67.454	20.643	469.29956	1.19082
7	33.655	127.422	66.422	17.145	389.78467	0.98905
30	20.488	124.288	€3.288	10.252	233.08624	0.59144
6	14.667	132-157	711.157	5.434	123.52975	0.31345
0.1	18.551	131.580	10.580	7.435	169.03079	0.42890
11	75.100	128.252	67,252	6.643	219.22972	0.55628
12	24.552	128.646	67.646	10.742	244.21631	0.61968
13	25.702	129.301	68.301	10.940	248.72733	0.63113
14	26.661	129.408	68.408	11.240	255.54139	0.64842
51	29-125	127.674	66.674	13.044	296.55908	0.75250
91	31.208	127.733	66.133	14.144	321.56372	0.81595

STRCUMAL NR = 4.800 AMPLITUDE NR =0.048 BLADES = 4.0 INCHES FREQUENCY NR = 21.852×10^{-6}

TABLE II - CONTINUED

	NUSREN	1.77058	1.66028	1.36318	1.36815	1.27730	1.36783	1.16668	0.66859	0.39133	0.51707	0.66332	0.71346	0.70825	0.75362	0.82387	0.87921	0.294 -0.115 4.0 INCHES
1TE	SON	798.24097	748.51318	614.56958	616.81421	575.85303	616.66870	525.98339	301.42285	116.42496	233.11400	295.04967	321.65161	319,30713	339.76074	371.43286	356,38086	STROUFAL NR = 0.294 AMPLITUDE NR =0.115 BLADES = 4.0 INCHES
MODEL, HIGH FLOW RATE	r	35.172	32.581	27.079	27.178	25.373	27.172	23.176	13.281	7.114	10.272	13.177	14.173	14.069	14.971	16.366	17.465	BAS
DEL, HIG	TO.	£2.958	49.126	46.933	50.408	52.489	53.163	51.347	49.045	\$2,358	53.282	51.029	52.782	54.195	53.671	55.568	55.880	FF/S CPS
45 DEGREE	-	114.558	111.126	111.933	112.408	114.489	115.163	113.347	111.045	114.358	115.282	113.029	114.782	116.155	115.671	117.568	117.880	203253.43750 100.68649 10.00
32 -	3	46.855	41.337	36.414	36.758	36.374	38.544	32.650	15.518	14.027	18.301	21.350	23.770	24-755	25.846	015.87	30.766	N N II
KUN NK	SIRIP	-	~3	~	4	2	9		30	Э	01	11	. 21	13	51	15	lo	KEYNOLDS NR VELCCIIY = FRECUENCY =

KEYNULUS NR = 203253.43750 VELCCITY = 100.68649 FF/S FREQUENCY = 1.023 x 10⁻⁶

TABLE 11 - CONTINUED

	NUSREN	1.83722	1.49105	1.24884	1.22554	1.20244	1.31198	1.05229	0.59111	0.34850	0.48708	0.61986	0.66593	0.68895	0.70623	0.75858	0.89682	= 0.387 =0.090 4.0 INCHES
IE	NUS	725.03931	588.42480	492.83960	483.64673	414.52905	517.75586	415.27271	233.27626	137.52956	192.22200	244.62231	262.80176	271.88428	278.70483	315.15112	353.91992	STROUFAL NR = AMPLITUDE NR = BLADES =
FLUW RATE	I	31.864	25.860	21.659	21.255	20.854	22.754	18.250	10.252	6.044	8.448	10.751	11.549	11.949	12.248	13.850	15.554	S A B
MODEL, LOW	10	59.521	61.158	194.19	63.148	63.445	63.571	65.194	64.487	67.757	66.257	65.061	65.503	65.855	65.960	65.242	63.648	FT/S CPS
DEGREE	-	120.021	121.658	121.967	123.648	123.945	124.071	125.694	124.987	128.257	126.757	125.561	126.003	126.355	126.460	125.742	124.148	155739.25000 76.52080 10.00 7 x 10 ⁻⁶
- 45		25	76	10	£ 3	23	77	14	63	09	09	52	11	79	46	7.0	00	. 757
3.3	3	48.552	43.392	38.110	38.463	37.857	40.144	34.714	21.353	15.060	19.360	23-252	25.217	26.362	27.246	25.870	31.800	# # XN
KUN NR	STRIP	-	7	en.	4	9	9	~	83	6	0.1	11	12	า	14	15	16	REYNOLDS NR = 155739. VELUCITY = 76. FRECUENCY = 10.

TABLE II - CONTINUED

. . .

The same of the sa

KUN NA	34 -	45 DEGREE	MODEL, LOW	FLOW RATE	<u></u>	
STRIP	7	 	τα	I	NUS	NUSREN
	50.640	130.074	*10.69	26.839	610.16504	1.54825
7	44.056	125.701	64.701	24.349	553.56763	1-40464
3	38.662	125.255	64.255	20.750	471-74707	1.19703
4	38.561	125.810	64.810	20.949	476.26367	1.20849
2	38.517	128.379	67.379	19.843	451-11572	1.14468
9	41.339	128.322	67.322	21.843	496.58813	1.26006
	35.031	132.526	11.526	16.133	366.76953	0.93065
30	21.651	129.532	68.532	9.540	216.88617	0.55033
6	15.485	133.751	12.751	5.530	125.71498	0.31899
2	19.575	129.070	68.070	8.541	194.17686	0.49271
11	23.587	127.480	66.480	10.745	244.28004	0.61984
71	25.733	127.658	66.658	11.644	264.73145	0.67174
13	26.997	128.369	67.369	12.043	273.78638	0.69471
14	27.537	127.490	96.490	12.645	287.47510	0.72945
15	30.550	126.010	65.010	14.548	330.75171	0.83926
16	33.058	126.797	161.59	15.646	355.71680	0.90261
KEYNULDS N VELCCITY = FREQUENCY	* " " \	155314.12500 76.52080 0.0	60 80 FT/S CPS	S A S	STROUHAL NR = 0.0 AMPLITUDE NR =0.0 BLADES = 4.0	0.0 -0.0 4.0 INCHES

FREQUENCY NR = 0.0

TABLE II - CONTINUED

The second secon

RUN NR	35 -	45 DEGREE	- 45 DEGREE MODEL, LOW FLOW RATE	FLOW RAT	ie.	
STRIP	3	- -	10	I	SUN	NUSREN
~	51.573	138.359	77.109	23.318	525.89136	1.59122
2	46.857	142.851	81.601	18.807	427.37720	1.28338
7	40.653	140.902	79.652	16.212	368.40259	1.10628
4	41.126	140.731	79.481	16.712	379.77466	1.14043
Z	40.504	141.464	80.214	16.310	370.64355	1.11301
9	39.283	142.244	80.994	15.608	354.69238	1.06511
7	34.482	142.370	81.120	13.308	302.41846	0.90814
10	22.621	137.327	76.077	8.820	200.44046	0.60191
3	17.176	137.771	76.521	61119	139.05881	0.41758
10	21.679	139.958	78.708	7.314	166.20593	0.44910
11	24.721	141.982	80.732	8.409	191.08967	0.57383
77	26.561	142.305	81.055	9.208	209.25060	0.62836
13	27.533	141.528	80.678	605.6	216.08937	0.64390
14	29.528	142.492	81.242	806.6	225.14740	0.67610
15	31.767	140.018	78.768	11.414	259.37378	0.17888
16	34.514	139.171	77.921	12.916	293.50854	0.88138
	 	OREGO SOROLL - AN VOLUMY BU	0.50	5	CTUCHEN IN B C 521	175 0

STRGUFAL NR = 0.541 AMPLITUDE NR =0.440 BLADES = 6.0 INCHES 110894.53750 54.71074 F1/S 10.00 CPS FREQUENCY NR = 3.452×10^{-6}

134

TABLE 11 - CONTINUED

	NUS NUSREN	11.65571	11126 1.32111	0732 1.08651	19541 1.15702	0435 1.13353	1.21023	359.35059 0.52849	0,0009.0 61011	164.25810 0.42441	13600 0.48843	14982 0.57632	0.61728	7758 0.63478	17188 0.67587	1748 0.75813	7949 0.84614	NR = 0.798 NE NR =0.240 6.0 INCHES
16	2	640.80176	511.30176	420.50732	447.79541	438.70435	468.39111	359.3	232.37079	164.2	189.03600	223.04982	238.90497	245.67758	261.57788	293.41748	327.47949	STROUPAL N AMPLIJUDE BLADES =
FLOW RATE	I	28.235	22.529	18.528	19.731	19.330	20.638	15.834	10.239	7.238	8.329	9.828	10.527	10.825	11.526	12.929	14.429	୬₹₫
MODEL, LOW	10	68.572	11.065	71.317	70.334	70.574	67.251	69.138	61.079	67.573	70.966	71.490	12.059	12.708	12.457	71.260	70.914	F1/S CPS
45 DEGREE MC	Ė	130.572	133.065	133.317	132.334	132.574	129.251	131.138	129.079	129.573	132.966	133.490	134.059	134.768	134.457	133.260	132.914	149788.75000 74.20145 20.00
36 -	IJ	52.266	46.181	40.108	40.587	40.199	39.733	33.205	22.290	17.673	20.964	24.358	26.390	27.671	28.219	31.334	34.035	" * "
X ON NX	SIRIP	-	2	3	4	5	9	1	φ.	ブ	10	11	12	13	14	41	10	REYNOLUS I VELUCITY : FREQUENCY

FREQUENCY NR = 3.769×10^{-6}

TABLE II - CONFINUED

KUN NK	37 -	- 45 DEGREE	MODEL, LOW	FLUW RATE	4	
SIKIP	9	-	10	I	NUS	NLSREN
-	53.016	141.743	81.243	22.711	516.77808	1.57643
~	46.527	146.291	161.53	17.500	358.19727	1.21470
.51	40.594	147.958	67.458	14.196	323.01245	0.98535
*	40.845	148.226	87.726	14.495	329.82349	1.00613
S	40.605	150.429	89.929	14.089	320.59497	0.97798
o	40.524	150.572	90.072	14.089	320.58667	0.97795
	34.566	148.069	635.23	12.095	275.22192	0.83957
20	25.211	147.398	868.88	8.397	191.06900	0.58286
~	23.574	150.672	90.172	7.189	163.57559	0.49899
10	24.934	147.960	67.460	1.996	181.93509	0.55499
11	25.649	145.277	84.777	8.602	195.74097	0.59711
71	28.245	145.833	£5.333	9.301	211.63737	0.64560
113	27.901	145.092	84.592	6.103	207.12868	0.63185
14	23.447	146.626	86.126	651.6	209.31665	0.63852
15	31,943	146.089	65.589	10.300	234.37718	0.71497
91	37.590	147.118	919.98	12.498	284.37793	0.86750

KEYNULDS NR = 107462.31250 VELCC [TY = 52.86045 FT/S FREQUENCY = 5.00 FREQUENCY NR = 1.846 x 10⁻⁶

STROUHAL NR = 0.280 AMPLITUDE NR =0.650 BLADES = 6.0 INCHES

TABLE II - CONTINUED

	NUSREN	1.05635	0.84755	0.78512	0.93086	1.01377	1.11090	0.94482	0.72336	0.52200	0.50097	0.54986	0.61922	0.62609	0.63959	0.71613	0.85440
TE	SUN	348.68091	279.76001	259.15259	307.25903	334.62549	366.68799	311.86865	238.76730	172,30309	165.35962	181.49808	204.39380	206.66077	211.24872	236.38231	282.02148
FLOW RATE	Ξ	15.257	12.241	11.340	13.445	14.642	16.045	13.646	10.448	7.539	7.236	7.342	8.944	9.043	9.243	10.343	12.340
- 45 DEGREE MODEL, LOW	10	67.150	73.713	14.420	72.363	73.416	12.197	71.655	71.096	14.511	76.086	13.543	72.783	73.118	72.806	12.908	14.146
45 DEGREE	 	125.150	131.713	132.420	130,363	131.416	130.197	129.655	129.056	132.511	134.086	131.543	130.783	131,118	130.806	130,908	132.146
38	IJ	32.442	30.469	28-814	31.675	33.473	34.772	25.875	23.294	19.118	19.457	20.444	22.664	23.269	24.081	26.719	31.352
KUN NR	STRIP	7	~	*	4	2	•	1	æ	7	2	11	12	13	14	15	16

STROUHAL NR = 3.085 AMPLITUDE NR =0.410 BLADES = 6.0 INCHES

REYNULUS NR = 108953.5CCC0 VELCCITY = 52.80045 F1/S FREQUENCY = 55.00 FREQUENCY NR = 20.024 x 10⁻⁶

TABLE II - CONTINUED

	NUS NUSREN	571.48999 1.71805	436.77051 1.31305	329.54395 0.99070	336.44946 1.01146	327.25076 0.98390	336.69287 1.01820	251.96687 0.75748	181.35721 0.54521	99.15692 0.29809	135.64716 0.46779	190.48082 0.57264	203.96310 0.61317	213.12097 0.64070	222.31319 0.66833	245.61577 0.75041	285.99634 0.85978	SIRCUHAL NR = 0.0 AMPLITUDE NR = 0. BLADES = 6.0 INCHES
TE		571.	436.	329.	336.	327.	336.	251.	181.	66	135.	196.	203.	213.	222.	245.	285.	SIRCUHA MPL ITU SLADES
FLOW RATE	I	25.072	19.162	14.457	14.760	14.358	14.859	11.054	7.956	4.350	5.951	8.357	8.948	9.350	9.753	10.951	12.547	o) d
DEL, LOW	DT	57.956	62.339	64.084	62.842	63.785	63.510	65.513	64.555	67.161	661.99	64.445	68.013	67.277	906*59	66.831	68.477	F1/S CPS
- 45 DEGREE MODEL, LOW	h-a	117.456	121.839	123.584	122.342	123.285	123.010	125.013	124.055	126.661	126.299	123.945	127.513	126.777	125.466	126.331	127.977	110647.87500 54.06801 0.0
- 5€	9	40.059	35.522	29.664	29.002	28.579	28.555	23.525	17.259	11.327	14.511	18.780	21.814	22.606	23.012	25.683	29.661	XX
KUN NX	STRIP		8	€	4	\$	٥	1	20	6	20	11	71	13	14	5	91	KEYNOLDS VELCCITY FREDUENCY

FREQUENCY NR = 0.0

TABLE II - CONTINUED

A CONTRACTOR OF THE PROPERTY O

RUN RK	40 -	45 DEGREE	MODEL, LOW	FLOW RATE	<u> </u>	
SIKIP	•	-	10	I	SON	NUSREN
~	37.622	156.425	51.675	10.878	248.28012	1.31532
7	28.429	162.076	103.326	6.663	152.08690	0.86571
æ	24.364	162.875	164.125	5.361	122.36848	0.64827
*	24.212	161.130	162.380	5.766	131.60141	61259.0
5	23.401	158.436	989.66	6.013	138-60748	0.73430
9	20.116	160.590	101.840	5.067	115.65665	0.61272
1	16.643	163.911	105.161	3.659	83.50626	0.44239
73	13.679	162.714	103.964	2.962	67.60071	0.35813
6	10.705	158.964	100.214	2.372	54.12794	0.28675
n	15.083	156.357	100.607	3.571	81.49353	0.43173
11	18.857	159.466	100.736	4.570	104.30984	0.55260
12	21.438	161.108	102.358	996.4	113.34360	0.60046
13	22.016	160.040	101.290	5.169	117.97145	0.62498
14	22.642	161.533	102.783	4.865	1111.03634	0.58824
15	25.642	160.913	102.163	5.767	131.61427	0.69726
91	31.665	160.304	101.554	7.868	179.58044	0.95137
REYNCLUS P VELCCITY = FRECUENCY	X 11 1	35630.42569 17.33890 0.0	890 FT/S	S A B	STRGUHAL NR = 0.0 AMPLITUDE NR =0.0 BLADES = 6.0	0.0 =0.0 6.0 INCHES

139

FREQUENCY NR = 0.0

TABLE II - CONTINUED

47.641 40.260 35.640 36.611 35.711 33.568 19.502 14.583	T 120.612 119.253 117.988 118.225 121.608 120.930	53.612 52.253 50.988 51.225 54.608 53.930	H 28.651 25.154 25.154 26.154 23.046 22.047 16.754	NUS 797.57617 644.64941 565.96680 588.45410 518.52344 496.05981	NUSREN 2.05668 1.66233 1.45943 1.51742 1.33709 1.27917
47.641 40.260 35.640 36.611 35.711 33.568 19.502 14.583	120.612 119.253 1117.988 1118.225 121.608 120.930	53.612 52.253 50.988 51.225 54.608 53.930	35.448 28.651 25.154 26.154 23.046 22.047 16.754	797.57617 644.64941 565.96680 588.45410 518.52344 496.05981	2.05668 1.66233 1.45943 1.51742 1.33709 1.27917
40.260 35.640 36.611 35.711 33.568 19.502 14.583	119, 253 117,988 118, 225 121,608 120,930	52,253 50,988 51,225 54,608 53,930	28.651 25.154 26.154 23.046 22.047 16.754	644.64941 565.96680 588.45410 518.52344 496.05981	1.66233 1.45943 1.51742 1.33709 1.27917
35.640 36.611 35.711 33.568 25.627 19.502	117.988 118.225 121.608 120.930 117.922	50.988 51.225 54.608 53.930	25.154 26.154 23.046 22.047 16.754	565.96680 588.45410 518.52344 496.05981	1.45943 1.51742 1.33709 1.27917
36.611 33.511 33.518 25.627 19.502	118.225 121.608 120.930 117.922	51.225 54.608 53.930 50.922	26.154 23.046 22.047 16.754	588,45410 518,52344 496,05981 376,97046	1.51742 1.33709 1.27917
35.711 33.5CB 25.627 19.502 14.583	121.608 120.930 117.922	54.608 53.930 50.922	23.046 22.047 16.754 11.653	518-52344 496-05981 376-97046	1.33709
33.5CB 25.627 19.502 14.583	120.930	53.930	22.047 16.754 11.653	496.05981	1.27917
25.627 19.502 14.583	117.922	50.922	16.754	376.97046	0 27 0 G
19.502	1	;	11.653		00 71 6 00
14.583	118.598	51.598		262.18536	0.67609
	118.025	51.025	8.254	185.71577	0.47890
10 17.667 1	118.192	51.192	10.254	236.70679	0.59491
11 21.569 1;	120.565	53.565	12.348	277.83008	0.71643
12 23.840 1;	120.237	53.237	13.749	305.34741	0.79770
13 25-138 13	120.821	53.821	14.347	322.81616	0.83243
14 25.543 1	120.551	53.551	14.848	334.08057	0.86148
15 28.654 17	120.358	53.358	16.949	381,34058	0.98335
lo 31.303 12	120.594	53.594	18.948	426.32764	1.09935

KEYNULUS NR = 150387.68750 VELCCIIY = 76.52080 FI/S FRECUENCY = 22.00 CPS

FREQUENCY NR = 4.004×10^{-6}

TABLE II - CONTINUED

	NUSREN	16 1.68750	10 1.41034	12 1.33018	31 1.45812	82 1.58543	22 1.60718	71 1.20542	10 0.91370	60 0.80375	12 0.73111	75 0.78925	57 0.81895	53 0.87737	76 0.89931	95 1.01605	32 1.10372	NA = 2.374 NR =0.330 6.0 INCHES
VIE .	SUN	518.42676	433.27710	408.65112	460.24731	487.06982	493.75122	370.32471	280.70410	246.92560	224.60912	242.47075	251.59557	265.54053	276.28076	312.14795	335,08032	STROUHAL N AMPLITUDE BLADES =
FLOW RATE	I	23.121	19.323	18.225	20.526	21.122	22.020	16.516	12.519	11.012	10.017	10.814	11.221	12.021	12.321	13.921	15.122	5,42
MODEL, LOW	DI	61.117	60.072	59.350	58.918	60.473	£1°309	63.145	61.867	964.49	£2.5 62	63.956	811.19	60.995	60.748	60.920	60.460	S FT/S CPS
90 DEGREE ME	-	130.117	129.072	128.350	127.918	129.473	130.309	132.145	130.867	133.496	131.562	132.956	130.118	129.995	129.748	129.920	129.460	94381.43750 48.53128 55.00
45 -	•	40.620	34.835	32.644	35.114	37.384	38.057	31.466	24.358	23.347	21.172	23.472	23.075	24.686	25.252	28.126	29.835	A 11
KUN NK	SIRIP	-	~	٢	4	v	•3	1	20	2	9	11	12	13	14	15	91	KEYNULUS N VELCCITY : FREQUENCY

141

FREQUENCY NR = 25.149×10^{-6}

TABLE II - CONTINUED

FLUW RATE	1 NUS NUSREN	24 651.93115 2.00679	119 513.03223 1.57923	220 430,23608 1,32436	117 450,31226 1,38616	114 392.03320 1.20677	14 383.08081 1.17921	113 309,20654 0,95181	119 246.65025 0.75924	.13 181.60420 0.55902	15 210,75629 0,64875	19 260,08325 0,80059	20 273.52710 0.84198	19 280,22583 0,86260	19 295,90625 0,91087	19 322,75977 0,99353	20 367.55396 1.13141	SIRDUHAL NK = 0.384 AMPLITUDE NK =0.290 BLADES = 6.0 INCHES
FLUN	I	29.124	516.27	19.220	20.117	17.514	17.114	13.813	11.019	8.113	9.415	11.619	12.220	12.519	13.219	14.419	16.420	
DEL, LOW	10	57.623	59.738	59.256	60.539	1966-13	196-19	62.073	59.881	62.276	61.322	59.836	59.593	59.900	59.692	59.834	59.364	F1/S CPS
90 DEGREE MODEL, LOW		127.623	129.738	129.256	130.539	131.994	131.967	132.073	129.881	132.276	131.322	129.836	129.593	129.900	129.692	129.834	129.364	105535.81250 54.55C77 10.00
43 -	•	44.154	39.045	33.503	35.593	32.866	21.835	26.131	21.037	17.376	19.516	22.668	23.819	24.768	26.046	28.214	30.503	Y N N N N N N N N N N N N N N N N N N N
KUN ZK	STRIP		~	7	4	5	9	1	20	3 ^	70	11	7.7	13	14	15	91	KEYNULUS VELCCITY FRECUENCY

FREQUENCY NR = 3.638×10^{-6}

LIST OF REFERENCES

- 1. F.J. Bayley, P.A. Edwards, and P.P. Singh, "The Effect of Flow Pulsations on Heat Transfer by Forced Convection from a Flat Plate", <u>International Developments in Heat Transfer</u>, International Heat Transfer Conference, 2d 1961.
- 2. Miller, J.A., "Heat Transfer in the Oscillating Turbulent Boundary Layer", <u>Journal of Engineering for Power</u>, p 239, October 1969.
- Feiler, C.E. and Heager, E.B., NASA Technical Report R-142, "Effect of Large - Amplitude Oscillations on Heat Transfer", 1962.
- 4. Miller, J.A. and Pucci, P.F., "Heat Transfer to an Airfoil in Oscillating Flow", <u>Journal of Engineering for Power</u>, p 461, October 1971.
- 5. Kezios, S.P. and Prasanna, K.V., "Effect of Vibration on Heat Transfer from a Cylinder in Normal Flow", ASME Paper G6-WA/HT-43, December 1966.
- 6. Seban, R.A., "The Influence of Freestream Turbulence on the Local Heat Transfer from Cylinders", <u>Journal of Heat Transfer</u>, May 1960, p. 101.
- 7. Kestin, J., Maeder, P.F., and Sogin, H.H., "The Influence of Turbulence on the Transfer of Heat to Cylinders Near the Stagnation Point", Zamp, Vol XII, 1961, p 115.
- 8. Van Der Hegge Zijnen, B.G., "Heat Transfer from Horizontal Cylinders to a Turbulent Air Flow", Applied Scientific Research, Section A, Vol 7, August 1957.
- 9. Boulos, M.I. and Pei, D.C.T., "Dynamics of Heat Transfer from Cylinders in a Turbulent Air Stream", <u>International</u> <u>Journal of Heat and Mass Transfer</u>, Vol 17, p 767, July 1979.
- 10. Viteri, M.A., "Experimental Determination of the Average Heat Transfer Coefficient for Yaw Cylinders", M.S. Thesis, Naval Postgraduate School, Monterey, California, 1969.

- 11. Kraabel, J.S., "Heat Transfer to Air from a Yawed Isothermal Cylinder", Ph.D. Thesis, University of California, Davis, 1979.
- 12. Despard, R.A., "Laminar Boundary Layer Separation in Oscillating Flow", Ph.D. Thesis, Naval Postgraduate School, Monterey, California, June 1969.
- 13. Banning, R.M., "The Unsteady Normal Force on an Airfoil in Oscillating Flow", Engineer's Thesis, Naval Postgraduate School, Monterey, California, December 1969.
- 14. Nickerson, R.J., The Effect of Freestream Oscillations on the Laminar Boundary Layer on a Flat Plate, ScD Thesis, MIT, 1958.
- 15. Hori, E., "Experiments on the Boundary Layer of an Oscillating Circular Cylinder", Bulletin of the Japan Society of Mechanical Engineers, V.G., NR22, p 201-209, 1963.
- 16. Hill, P.G., Laminar Boundary Layers in Oscillatory Flow, Sc.D. Thesis, MIT, 1958.
- 17. Feiler, C.E. and Yeager, E.B., "Effect of Large Amplitude Oscillations on Heat Transfer", NASA Technical Report R-142, 1962.
- 18. Karlsson, S.F., An Unsteady Turbulent Boundary Layer, Ph.D. Thesis, Johns Hopkins University, 1958.
- 19. Miller, J.A., <u>Transition in Oscillating Blasius Flow</u>, Ph.D. Thesis, Illinois Institute of Technology, June 1963.
- 20. Miller, J.A., "A Simple Linearred Hot-Wire Anemometer", <u>Journal of Fluids Enginearing</u>, V. 98, p 749-752, December 1976.
- 21. Sandborn, V.A., Resistance Temperature Transducers, Meteorology Press, 1972.
- 22. Toullokian, Y.S. et al, <u>Thermophysical Properties of Matter</u>, Thermophysical Properties Research Center, Purdue University, IFI/Plenum, New York, 1970.
- 23. Kline, S.J. and McClintock, F.A., "Describing Uncertainties in Single Sample Experiments", Mechanical Engineering, V 75, p 3-8, January 1953.
- 24. Froessling, N. in Schlichting, H., <u>Boundary Layer Theory</u>, Translated by J. Kestin, McGraw-Hill, 1955, p 305.

25. Schmidt, E. and Wenner, K. in Schlichting, H., <u>Boundary</u> <u>Layer Theory</u>, Translated by J. Kestin, McGraw-Hill 1955, p 312.

INITIAL DISTRIBUTION LIST

		No.	of	Copies
1.	Defense Technical Information Center Cameron Station Alexandría, Virginia 22314		2	
2.	Library, Code 0142 Naval Postgraduate School Monterey, California 93940		2	
3.	Department Chairman, Code 69 Department of Mechanical Engineering Naval Postgraduate School Monterey, California 93940		1	
4.	Professor J.A. Miller, Code 67Mo Department of Aeronautics Naval Postgraduate School Monterey, California 93940		1	
5.	Professor P.F. Pucci, Code 69Pc Department of Mechanical Engineering Naval Postgraduate School Monterey, California 93940		1	
6.	Fred W. Bunson, Jr. 1524 Kiskiak Circle, NWS Yorktown, Virginia 23691		1	