Jennifer Cafiero

CS 135 Homework 4

I pledge my honor that I have abided by the Stevens Honor System

Section 2.3

1.

- a. The function is undefined at x = 0. The function approaches the y-axis but never touches it.
- b. The function's bounds are $[0, \infty)$. The function is undefined for anything x value less than zero.
- c. The function does not pass the vertical line test.

12.

- a. Yes
- b. No
- c. Yes
- d. No

13.

- a. Yes
- b. No
- c. Yes
- d. Yes

Section 2.4

4.

a.
$$a_0 = 1$$
, $a_1 = -2$, $a_2 = 4$, $a_3 = -8$

b.
$$a_0 = 3$$
, $a_1 = 3$, $a_2 = 3$, $a_3 = 3$

c.
$$a_0 = 8$$
, $a_1 = 11$, $a_2 = 23$, $a_3 = 71$

d.
$$a_0 = 2$$
, $a_1 = 0$, $a_2 = 8$, $a_3 = 0$

9.

a.
$$a_0 = 2$$
, $a_1 = 12$, $a_2 = 72$, $a_3 = 432$, $a_4 = 2592$, $a_5 = 15552$, $a_6 = 93312$

b.
$$a_1 = 2$$
, $a_2 = 4$, $a_3 = 16$, $a_4 = 256$, $a_5 = 65536$, $a_6 = 4294967296$

c.
$$a_0 = 1$$
, $a_1 = 2$, $a_2 = 5$, $a_3 = 11$, $a_4 = 26$, $a_5 = 59$

Section 5.4

8. The algorithm for summing the first n positive integers states that $S_n = n + S_{(n-1)}$ with a base condition of $S_0=0$.

```
#lang eopl
```

```
(define (recursive_sum n)
 (cond
  [(eq? n 0) 0]
  [(eq? n 1) 1]
  [else (+ (recursive_sum (- n 1)) n)]
  )
 )
(define (build-seq start step end)
(cond
  [(< step 0) '()]
  [(< end start) '()]
  [else (append (list start) (build-seq (+ start step) step end))]
  )
 )
```