© Laurent Garcin MP Dumont d'Urville

Devoir surveillé n°01

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1

1 Tout d'abord, $t \mapsto \ln(\sin t)$ est continue sur]0,1]. De plus, pour tout $t \in]0,\pi/2]$,

$$\ln(\sin t) = \ln t + \ln\left(\frac{\sin t}{t}\right)$$

Puisque $\sin t \sim t$, $\lim_{t \to 0^+} \ln \left(\frac{\sin t}{t} \right) = 0$. De plus, $\lim_{t \to 0^+} \ln t = -\infty$ donc $\ln(\sin t) \sim \ln t$. Par croissances comparées, $\ln(t) = 0$ donc $\ln(\sin t) = 0$ donc $\ln($

2 Par le changement de variable $u = \pi - t$,

$$L = -\int_0^{\frac{\pi}{2}} \ln(\sin t) dt = \int_{\pi}^{\frac{\pi}{2}} \ln(\sin(\pi - u)) du = -\int_{\frac{\pi}{2}}^{\pi} \ln(\sin u) du = J$$

Par le changement de variable, $u = \pi/2 - t$,

$$L = -\int_0^{\frac{\pi}{2}} \ln(\sin t) dt = \int_{\frac{\pi}{2}}^0 \ln(\sin(\pi/2 - u)) du = -\int_0^{\frac{\pi}{2}} \ln(\cos u) du = K$$

3

$$K+L = -\int_0^{\frac{\pi}{2}} \ln(\sin t \cos t) dt = -\int_0^{\frac{\pi}{2}} \ln\left(\frac{1}{2}\sin(2t)\right) dt = -\int_0^{\frac{\pi}{2}} \ln(1/2) - \int_0^{\frac{\pi}{2}} \ln(\sin 2t) dt = \frac{\pi \ln 2}{2} - \int_0^{\frac{\pi}{2}} \ln(\sin 2t) dt$$

Par le changement de variable u = 2t,

$$\int_0^{\frac{\pi}{2}} \ln(\sin 2t) dt = \frac{1}{2} \int_0^{\pi} \ln(\sin u) du$$

Via la relation de Chasles, on obtient finalement

$$K + L = \frac{\pi \ln 2}{2} + \frac{1}{2}(L + J)$$

4 Puisque J = K = L, on obtient J = K = L = $\frac{\pi \ln 2}{2}$.

Soit $(x,y) \in (\mathbb{R}_+)^2$. Pour tout $t \in [0,\pi/2]$, $\sin t \in [0,1]$ donc $\sin^y(t) \le \sin^x(t)$ puis, par croissance de l'intégrale, $W(y) \le W(x)$. La fonction W est donc décroissante sur \mathbb{R}_+ .

6.a La fonction φ : $t \mapsto e^{-at}$ est de classe \mathcal{C}^1 sur \mathbb{R}_+ . De plus, pour tout $t \in \mathbb{R}_+$, $|\varphi'(t)| = ae^{-at} \le a$. La fonction φ est donc a-lipschitzienne sur \mathbb{R}_+ . Ainsi

$$\forall (x, y) \in \mathbb{R}^2, \ |\varphi(x) - \varphi(y)| \le a|x - y|$$

ou encore

$$\forall (x, y) \in \mathbb{R}^2, |e^{-ax} - e^{-ay}| \le a|x - y|$$

© Laurent Garcin MP Dumont d'Urville

6.b Soit $(x, y) \in (\mathbb{R}_+)^2$. Par inégalité triangulaire,

$$|W(x) - W(y)| \le \int_0^{\frac{\pi}{2}} |\sin^x(t) - \sin^y(t)| dt$$

Or pour $t \in]0, \pi/2]$,

$$|\sin^{x}(t) - \sin^{y}(t)| = \left| e^{x \ln(\sin t)} - e^{y \ln(\sin t)} \right|$$

donc en posant $a = -\ln(\sin t) \in \mathbb{R}_+$ dans la question précédente, on obtient

$$|\sin^{x}(t) - \sin^{y}(t)| \le -\ln(\sin t)|x - y|$$

Par croissance de l'intégrale, on a donc

$$|W(x) - W(y)| \le -\int_0^{\frac{\pi}{2}} \ln(\sin t)|x - y| dt = L|x - y| = \frac{\pi \ln 2}{2}|x - y|$$

6.c La question précédente montre que W est lipschitzienne sur \mathbb{R}_+ . Elle est notamment continue sur \mathbb{R}_+ .

7 Les applications \sin^{x+1} et – cos sont de classe \mathcal{C}^1 sur $[0, \pi/2]$ de dérivées respectives $(x+1)\cos\sin^x$ et sin donc, par intégration par parties

$$W(x+2) = \int_0^{\frac{\pi}{2}} \sin^{x+1}(t) \sin(t) dt$$

$$= -\left[\sin^{x+1}(t)\cos(t)\right]_0^{\frac{\pi}{2}} + (x+1) \int_0^{\frac{\pi}{2}} \sin^x(t)\cos^2(t) dt$$

$$= (x+1) \int_0^{\frac{\pi}{2}} \sin^x(t)(1-\sin^2 t) dt$$

$$= (x+1)(W(x) - W(x+2))$$

On en déduit que $W(x + 2) = \frac{x+1}{x+2}W(x)$.

8 8.a Soit $x \in \mathbb{R}_+$. D'après la question précédente,

$$g(x + 1) = (x + 2)W(x + 2)W(x + 1) = (x + 1)W(x)W(x + 1) = g(x)$$

Notamment, pour tout $n \in \mathbb{N}$, g(n+1) = g(n) donc $g(n) = g(0) = \frac{\pi}{2}$

8.b Soit $(n, x) \in \mathbb{N} \times [0, 1]$. Puisque $n \le n + x \le n + 1$, on obtient par décroissance de W: W $(n + 1) \le W(n + x) \le W(n)$. Pour les mêmes raisons, $W(n+2) \le W(n+1+x) \le W(n+1)$. On peut multiplier membre à membre ces deux suites d'inégalités car tous leurs membres sont positifs. On obtient alors

$$W(n+1)W(n+2) \le W(n+x)W(n+1+x) \le W(n)W(n+1)$$

c'est-à-dire

$$\frac{g(n+1)}{n+2} \le \frac{g(x+n)}{x+n+1} \le \frac{g(n)}{n+1}$$

Or on a vu dans les questions précédentes que $g(n) = g(n+1) = \frac{\pi}{2}$ et que g était 1-périodique de sorte que g(x+n) = g(x). Ainsi

$$\frac{\pi}{2(n+2)} \le \frac{g(x)}{x+n+1} \le \frac{\pi}{2}(n+1)$$

puis

$$\frac{\pi}{2} \cdot \frac{x+n+1}{n+2} \le g(x) \le \frac{\pi}{2} \cdot \frac{x+n+1}{n+1}$$

Puisque $\lim_{n \to +\infty} \frac{x+n+1}{n+2} = \lim_{n \to +\infty} \frac{x+n+1}{n+1} = 1$, on obtient $g(x) = \frac{\pi}{2}$. g est donc constante égale à $\frac{\pi}{2}$ sur [0,1]. Comme g est 1-périodique, g est constante égale à $\frac{\pi}{2}$ sur \mathbb{R}_+ .

© Laurent Garcin MP Dumont d'Urville

8.c Soit $x \in \mathbb{R}_+$. Par décroissance de W, on a donc bien $W(x+2) \le W(x+1) \le W(x)$. Ceci également que $\frac{x+1}{x+2}W(x) \le W(x+1) \le W(x)$. Or W(x) > 0 comme intégrale d'une fonction continue, positive et non constamment nulle sur $[0, \pi/2]$. Il s'ensuit que

$$\frac{x+1}{x+2} \le \frac{W(x+1)}{W(x)} \le 1$$

Par encadrement, on obtient donc $\lim_{x \to +\infty} \frac{\mathrm{W}(x+1)}{\mathrm{W}(x)} = 1$, c'est-à-dire $\mathrm{W}(x+1) \underset{x \to +\infty}{\sim} \mathrm{W}(x)$.

8.d On sait que pour tout $x \in \mathbb{R}_+$, $(x+1)W(x+1)W(x) = g(x) = \frac{\pi}{2}$. D'après la question précédente, $(x+1)W(x+1)W(x) = g(x) = \frac{\pi}{2}$. D'après la question précédente, $(x+1)W(x+1)W(x) = g(x) = \frac{\pi}{2}$. Or $W(x) = \frac{\pi}{2}$ or $W(x) = \frac{\pi}{2}$. Or $W(x) = \frac{\pi}{2}$.

9 9.a Soient $x \in \mathbb{R}_+^*$ et u > -x. Par concavité de ln, $\ln\left(1 + \frac{u}{x}\right) \le \frac{u}{x}$ puis $x \ln\left(1 + \frac{u}{x}\right) \le u$. Par croissance de l'exponentielle, on obtient alors $\left(1 + \frac{u}{x}\right)^x \le e^u$.

9.b Soit $x \ge 1$. On remarque que pour $t \in [0, \sqrt{x}[, -t^2 > -x]$. D'après la question précédente,

$$\forall t \in [0, \sqrt{x}], \left(1 - \frac{t^2}{x}\right)^x \le e^{-t^2}$$

Par croissance de l'intégrale, on obtient

$$\int_0^{\sqrt{x}} \left(1 - \frac{t^2}{x}\right)^x dt \le \int_0^{\sqrt{x}} e^{-t^2} dt$$

De la même manière,

$$\forall t \in [0, \sqrt{x}], \left(1 + \frac{t^2}{x}\right)^x \le e^{t^2}$$

donc, par décroissance de la fonction inverse,

$$\forall t \in [0, \sqrt{x}], \ e^{-t^2} \le \left(1 + \frac{t^2}{x}\right)^{-x}$$

puis, par croissance de l'intégrale,

$$\int_0^{\sqrt{x}} e^{-t^2} dt \le \int_0^{\sqrt{x}} \left(1 + \frac{t^2}{x}\right)^{-x} dt \le \int_0^{+\infty} \left(1 + \frac{t^2}{x}\right)^{-x} dt$$

Cette dernière intégrale converge car $\left(1 + \frac{t^2}{x}\right)^{-x} = \mathcal{O}\left(\frac{1}{t^{2x}}\right)$ et $2x \ge 2 > 1$.

9.c On effectue le changement de variable $t = \sqrt{x} \cos u$ dans la première intégrale :

$$\int_0^{\sqrt{x}} \left(1 - \frac{t^2}{x} \right)^x dt = -\int_{\frac{\pi}{2}}^0 (1 - \cos^2 u)^x \sqrt{x} \sin u \, du = \sqrt{x} \int_0^{\frac{\pi}{2}} \sin^{2x+1}(u) \, du = \sqrt{x} W(2x+1)$$

La deuxième intégrale étant généralisée, on vérifie que $u\mapsto \sqrt{x}\frac{\cos u}{\sin u}$ est une bijection de classe \mathcal{C}^1 strictement décroissante de $]0,\pi/2]$ sur $[0,+\infty[$ et sa dérivée est $u\mapsto -\frac{\sqrt{x}}{\sin^2 u}.$ Ainsi

$$\int_0^{+\infty} \left(1 + \frac{t^2}{x}\right)^{-x} dt = -\sqrt{x} \int_{\frac{\pi}{2}}^0 \left(1 + \frac{\cos^2 u}{\sin^2 u}\right)^{-x} \frac{du}{\sin^2 u} = \sqrt{x} \int_0^{\frac{\pi}{2}} \sin^{2x-2}(u) dy = \sqrt{x} W(2x - 2)$$

Ainsi

$$\sqrt{x}W(2x+1) \le \int_0^{\sqrt{x}} e^{-t^2} dt \le \sqrt{x}W(2x-2)$$

© Laurent Garcin MP Dumont d'Urville

9.d On a vu précédement que $W(x) \underset{x \to +\infty}{\sim} \sqrt{\frac{\pi}{2x}}$. Ainsi

$$W(2x+1) \underset{x \to +\infty}{\sim} W(2x-2) \underset{x \to +\infty}{\sim} \frac{1}{2} \sqrt{\frac{\pi}{x}}$$

puis

$$\lim_{x \to +\infty} \sqrt{x} W(2x+1) = \lim_{x \to +\infty} \sqrt{x} W(2x-2) = \frac{\sqrt{\pi}}{2}$$

D'après le théorème des gendarmes, $\lim_{x \to +\infty} \int_{0}^{\sqrt{x}} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$. Ceci signifie que l'intégrale G converge et que $G = \frac{\sqrt{\pi}}{2}$.

10. a Soit $x \in \mathbb{R}_+$. Comme indiqué dans l'énoncé, $W(x+2) \le W(x+1) \le W(x)$. En divisant par W(x) > 0, $\frac{\overline{W(x+2)}}{W(x)} \le h(x) \le 1 \text{ ou encore } \frac{x+1}{x+2} \le h(x) \le 1 \text{ i.e. } 0 \le h(x) \le \frac{1}{x+2}.$

10.b Soit $x \ge 2$. Alors

$$h(x) = \frac{W(x+1)}{W(x)} = \frac{\frac{x}{x+1}W(x-1)}{\frac{x-1}{x}W(x-2)} = \frac{x^2}{x^2 - 1}\frac{W(x-1)}{W(x-2)} = \frac{x^2}{x^2 - 1}h(x-2)$$

Alors pour tout $n \in \mathbb{N}^*$, $h(2n) = \frac{4n^2}{4n^2 - 1}h(2n - 2)$. Comme $h(0) = \frac{W(1)}{W(0)} = \frac{2}{\pi}$, on obtient par télescopage

$$h(2n) = h(0) \prod_{k=1}^{n} \frac{h(2k)}{h(2k-2)} = \frac{2}{\pi} \prod_{k=1}^{n} \frac{4k^2}{4k^2 - 1} = \frac{r_n}{\pi}$$

On sait que W(x + 1) $\underset{x \to +\infty}{\sim}$ W(x) donc $\underset{x \to +\infty}{\lim} h(x) = 1$. En particulier, $\underset{n \to +\infty}{\lim} h(2n) = 1$ puis $\underset{n \to +\infty}{\lim} r_n = \pi$. De plus, pour tout $x \in \mathbb{R}_+$, $0 \le 1 - h(x) \le \frac{1}{x+2}$ donc $0 \le 1 - h(2n) \le \frac{1}{2n+2}$ pour tout $n \in \mathbb{N}$ ou encore $0 \le \pi - r_n \le \frac{\pi}{2(n+1)}$

10.c On calcule r_n à l'aide d'une boucle.

```
def r(n):
      for k in range(1, n+1):
    p *= (4*k**2) / (4*k**2-1)
```

```
>>> r(1000)
3.140807746030402
```

11 11.a Par définition de la suite (r_n) ,

$$\frac{\pi}{r_n} = \frac{\pi}{2} \prod_{k=1}^n \frac{4k^2 - 1}{4k^2} = \frac{\pi}{2} \prod_{k=1}^n 1 - \frac{1}{4k^2}$$

Par propriété du logarithme,

$$\ln \frac{\pi}{r_n} = \ln \frac{\pi}{2} + \sum_{k=1}^{n} \ln \left(1 - \frac{1}{4k^2} \right)$$

Or on sait que $\lim_{n \to +\infty} r_n = \pi$ donc la série $\sum_{k \in \mathbb{N}^*} \ln\left(1 - \frac{1}{4k^2}\right)$ converge (on le sait en fait déjà en utilisant un équivalent du terme général) et

$$0 = \ln \frac{\pi}{2} + \sum_{k=1}^{+\infty} \ln \left(1 - \frac{1}{4k^2} \right)$$

Finalement

$$\ln \frac{\pi}{r_n} = \ln \frac{\pi}{2} + \sum_{k=1}^{+\infty} \ln \left(1 - \frac{1}{4k^2} \right) - \sum_{k=n+1}^{+\infty} \ln \left(1 - \frac{1}{4k^2} \right) = -\sum_{k=n+1}^{+\infty} \ln \left(1 - \frac{1}{4k^2} \right)$$

© Laurent Garcin MP Dumont d'Urville

11.b C'est évident :

$$\frac{1}{n-1} - \frac{1}{n} = \frac{1}{n(n-1)} \underset{n \to +\infty}{\sim} \frac{1}{n^2}$$

11.c On sait que

$$-\ln\left(1-\frac{1}{4n^2}\right) \underset{n\to+\infty}{\sim} \frac{1}{4n^2} \underset{n\to+\infty}{\sim} \frac{1}{4} \left(\frac{1}{n-1}-\frac{1}{n}\right)$$

De plus, la suite de terme général $\frac{1}{4} \left(\frac{1}{n-1} - \frac{1}{n} \right)$ est négative donc, d'après le résultat admis,

$$-\sum_{k=n+1}^{+\infty} \ln\left(1 - \frac{1}{4k^2}\right) \underset{n \to +\infty}{\sim} \frac{1}{4} \sum_{k=n+1}^{+\infty} \frac{1}{k-1} - \frac{1}{k} = \frac{1}{4n}$$

car la dernière somme est télescopique et $\lim_{n \to +\infty} \frac{1}{n} = 0$. Autrement dit,

$$\ln \frac{\pi}{r_n} \sim \frac{1}{n \to +\infty} \frac{1}{4n}$$

Posons $\varepsilon_n = \frac{\pi}{r_n} - 1$ de sorte que (ε_n) converge vers 0 et

$$\ln \frac{\pi}{r_n} = \ln(1 + \varepsilon_n) \underset{n \to +\infty}{\sim} \varepsilon_n$$

Ainsi $\varepsilon_n \sim \frac{1}{n \to +\infty}$ i.e. $\pi - r_n \sim \frac{r_n}{n \to +\infty} \frac{r_n}{4n}$

11.d On sait que $\frac{1}{1-u} = 1 + u + O(u^2)$ donc

$$\frac{1}{n-1} = \frac{1}{n} \cdot \frac{1}{1 - \frac{1}{n}} = \frac{1}{n + \infty} \left(1 + \frac{1}{n} + \mathcal{O}\left(\frac{1}{n^2}\right) \right) = \frac{1}{n} + \frac{1}{n^2} + \mathcal{O}\left(\frac{1}{n^3}\right)$$

puis

$$\frac{1}{n-1} - \frac{1}{n} = \frac{1}{n^2} + \mathcal{O}\left(\frac{1}{n^3}\right)$$

De même, comme $(1-u)^{-2} = 1 + 2u + o(u)$

$$\frac{1}{(n-1)^2} = \frac{1}{n^2} \left(1 - \frac{1}{n} \right)^{-2} = \frac{1}{n^2} \left(1 + \frac{2}{n} + o\left(\frac{1}{n}\right) \right) = \frac{1}{n^2} + \frac{2}{n^3} + o\left(\frac{1}{n^3}\right)$$

Par conséquent,

$$\frac{1}{(n-1)^2} - \frac{1}{n^2} \underset{n \to +\infty}{\sim} \frac{2}{n^3}$$

11.e On sait que $\ln(1+u) = u + \mathcal{O}(u^2)$ donc

$$-\ln\left(1 - \frac{1}{4n^2}\right) \underset{n \to +\infty}{=} \frac{1}{4n^2} + \mathcal{O}\left(\frac{1}{n^3}\right)$$

D'après la question précédente, on peut également écrire

$$-\ln\left(1 - \frac{1}{4n^2}\right) = \frac{1}{n \to +\infty} \left(\frac{1}{n-1} - \frac{1}{n}\right) + \mathcal{O}\left(\frac{1}{n^3}\right)$$

et, comme $\sum \frac{1}{n^3}$ est une série à termes positifs convergente, on a d'après le résultat admis

$$-\sum_{k=n+1}^{+\infty} \ln\left(1 - \frac{1}{4k^2}\right) = \frac{1}{4n} + \mathcal{O}\left(\sum_{k=n+1}^{+\infty} \frac{1}{k^3}\right)$$

A nouveau, d'après le résultat admis et la question précédente,

$$\sum_{k=n+1}^{+\infty} \frac{1}{k^3} \underset{n \to +\infty}{\sim} \frac{1}{2} \sum_{k=n+1}^{+\infty} \frac{1}{(k-1)^2} - \frac{1}{k^2} = \frac{1}{2n^2}$$

Finalement,

$$\ln \frac{\pi}{r_n} = -\sum_{k=n+1}^{+\infty} \ln \left(1 - \frac{1}{4k^2} \right) \underset{n \to +\infty}{=} \frac{1}{4n} + \mathcal{O}\left(\frac{1}{n^2} \right)$$

On note à nouveau $\varepsilon_n = \frac{\pi}{r_n} - 1$. Alors

$$\ln \frac{\pi}{r_n} = \ln(1 + \varepsilon_n) = \varepsilon_n + \mathcal{O}(\varepsilon_n^2)$$

Or on a vue précédemment que $\varepsilon_n \sim \frac{1}{n \to +\infty} \frac{1}{4n}$ donc

$$\ln \frac{\pi}{r_n} = \varepsilon_n + \mathcal{O}\left(\frac{1}{n^2}\right)$$

Puisqu'on vient de voir que

$$\ln \frac{\pi}{r_n} = \frac{1}{4n} + \mathcal{O}\left(\frac{1}{n^2}\right)$$

on obtient:

$$\varepsilon_n = \frac{1}{n \to +\infty} \frac{1}{4n} + \mathcal{O}\left(\frac{1}{n^2}\right)$$

c'est-à-dire

$$\frac{\pi - r_n}{r_n} = \frac{1}{4n} + \mathcal{O}\left(\frac{1}{n^2}\right)$$

ou encore

$$\pi - r_n = \frac{r_n}{n \to +\infty} + \mathcal{O}\left(\frac{r_n}{n^2}\right)$$

Comme (r_n) est convergente donc bornée, on a également

$$\pi - r_n \mathop{=}_{n \to +\infty} \frac{r_n}{4n} + \mathcal{O}\left(\frac{1}{n^2}\right)$$

et enfin

$$\left(1 + \frac{1}{4n}\right) r_n \underset{n \to +\infty}{=} \pi + \mathcal{O}\left(\frac{1}{n^2}\right)$$

Remarque. L'encadrement obtenu à la question **10.b** permet d'affirmer que $r_n = \pi + \mathcal{O}\left(\frac{1}{n}\right)$. Comme $\left(1 + \frac{1}{4n}\right)r_n = \pi + \mathcal{O}\left(\frac{1}{n^2}\right)$, on peut raisonnablement penser que la suite $\left(\left(1 + \frac{1}{4n}\right)r_n\right)$ converge plus rapidement vers π que la suite (r_n) . On peut le constater numériquement en représentant graphiquement ces deux suites.

