Определение 1. Циклической перестановкой из k элементов c шагом s будем называть такую циклическую перестановку, в которой элемент c номером i переходит в элемент c номером i+s ($\mod k$).

Далее будем считать, что элементы перестановки длины k - это числа от 0 до k-1.

Пемма 1. Существуют такие перестановки x и y из S_k , что xy - циклическая перестановка c шагом -1, a yx - циклическая перестановка c шагом 1.

Доказательство. Рассмотрим перестановку $x: i \to -i \pmod k$ и $y: i \to -i + 1 \pmod k$.

$$x = \begin{pmatrix} 0 & 1 & 2 & 3 & \dots & k-3 & k-2 & k-1 \\ 0 & k-1 & k-2 & k-3 & \dots & 3 & 2 & 1 \end{pmatrix}$$

$$y = \begin{pmatrix} 0 & 1 & 2 & 3 & \dots & k-3 & k-2 & k-1 \\ 1 & 0 & k-1 & k-2 & \dots & 4 & 3 & 2 \end{pmatrix}$$

Тогда

$$xy: i \xrightarrow{y} (-i+1) \xrightarrow{x} (-(-i+1)) == i-1,$$

$$yx: i \xrightarrow{x} (-i) \xrightarrow{y} (-(-i)+1) == i+1$$

Лемма 2. Пусть $(xy)^a(yx)^b(xy)^c=(yx)^c(xy)^b(yx)^a$ - тождество в S_k , где k - нечетное. Тогда $a-b+c\equiv 0\pmod k$.

Доказательство. Зафиксируем перестановки xy и yx из Леммы 1. Рассмотрим перестановочный автомат, в котором переход по символам осуществляется соответствующими перестановками x и y. Тогда, чтобы $(xy)^a(yx)^b(xy)^c = (yx)^c(xy)^b(yx)^a$ было тождеством для такого автомата, требуется, чтобы автомат закончил читать обе части равенства в одном состоянии, то есть

$$(-a) + b + (-c) \equiv c + (-b) + a \pmod{k}$$
 (1)

что эквивалентно

$$2(a - b + c) \equiv 0 \pmod{k} \tag{2}$$

Из того, что k нечетно, следует

$$(a-b+c) \equiv 0 \pmod{k}$$

Пемма 3. Существуют такие перестановки x и y, что xy - циклическая перестановка c шагом 1, а yx - циклическая перестановка c шагом 1, в которой поменяли местами элементы a u b.

Доказательство. Без ограничения общности a < b. Требуется, чтобы xy = (0, 1, 2, ..., k-1), а yx = (0, 1, ..., a-1, b, a+1, ..., b-1, a, b+1, ..., k-1).

Пусть y переводит a-1 в $b,\,b-1$ в $a,\,$ а любой другой элемент в следующий, то есть

$$y = \begin{pmatrix} 0 & \dots & a-2 & a-1 & a & \dots & b-2 & b-1 & b & \dots \\ 1 & \dots & a-1 & b & a+1 & \dots & b-1 & a & b+1 & \dots \end{pmatrix}$$

а x переводит a в b и наоборот, а остальные элементы оставляет на месте:

$$x = \begin{pmatrix} 0 & \dots & a-1 & a & a+1 & \dots & b-1 & b & b+1 & \dots \\ 0 & \dots & a-1 & b & a+1 & \dots & b-1 & a & b+1 & \dots \end{pmatrix}$$

Откуда получим

$$xy = \begin{pmatrix} 0 & \dots & a-2 & a-1 & a & \dots & b-2 & b-1 & b & \dots \\ 1 & \dots & a-1 & a & a+1 & \dots & b-1 & b & b+1 & \dots \end{pmatrix}$$

$$yx = \begin{pmatrix} 0 & \dots & a-2 & a-1 & a & \dots & b-2 & b-1 & b & \dots \\ 1 & \dots & a-1 & b & b+1 & \dots & b-1 & a & a+1 & \dots \end{pmatrix}$$

Что и требовалось найти.

Теорема 1. Пусть $(xy)^a(yx)^b(xy)^c = (yx)^c(xy)^b(yx)^a$ - тождество в S_k , k - нечетное число, k > 3. Тогда выполняется хотя бы одно из следующих правил:

$$k|a$$
 u $k|(b-c)$

$$k|c$$
 u $k|(b-a)$

$$k|b \quad u \quad k|(a+c)$$

Доказательство. От противного. Допустим, ни одно из перечисленных правил не выполняется, то есть ни одно из чисел a, b, c не делится на k. Тогда с учетом Леммы 2 на k не делятся и числа b-a, b-c, a+c. Тогда найдутся автоматы, различающие строки справа и слева от знака равенства. Рассмотрим несколько случаев.

В представленных ниже автоматах удобно будет оперировать не только значением состояния в автомате, но и номером этого состояния в цикле. Существование рассматриваемых автоматов доказано Леммой 3.

1.
$$a+b \not\equiv 0 \pmod{k}$$

Рассмотрим перестановочный автомат $\mathscr A$ такой, что xy действует на него как циклическая перестановка из k элементов с шагом 1, а yx-как циклическая перестановка из k элементов с шагом 1, в которой поменяли местами элементы a+b и b (см. Рис. 1). a+b и b не равны 0 по модулю $k,\ a+b\neq b$, так как a не делится на k. Начальное состояние 0.

Покажем, что такой автомат различит слова $(xy)^a(yx)^b(xy)^c$ и $(yx)^c(xy)^b(yx)^a$.

Рис. 1: Перестановка yx автомата $\mathscr A$

Рис. 2: Чтение автоматом $\mathscr A$ слова $(xy)^a(yx)^b(xy)^c$

Рис. 3: Чтение автоматом \mathscr{A} слова $(yx)^c(xy)^b(yx)^a$

Автомат $\mathscr A$ закончит читать слово $(xy)^a(yx)^b(xy)^c$ в состоянии b+c (см. Рис 2).

Корректность переходов при чтении $(xy)^a(yx)^b(xy)^c$:

- $\bullet \ 0 \xrightarrow{(xy)^a} a$
 - $-a \not\equiv a+b$, так как $b \not\equiv 0 \mod k$
 - $-a\not\equiv b$, так как $b-a\not\equiv 0\mod k$
- $a \xrightarrow{(yx)^b} b$
 - Из состояния с номером a делаем b шагов, оказываемся в состоянии с номером a+b, которым в данном цикле является b, т.к. мы так задали автомат.

Теперь покажем, что \mathscr{A} не закончит читать слово $(yx)^c(xy)^b(yx)^a$ в состоянии b+c (см. Рис 3).

Корректность переходов при чтении $(yx)^c(xy)^b(yx)^a$:

- $0 \xrightarrow{(yx)^c} c$
 - $-c \not\equiv a+b$.

От противного. Пусть $c \equiv a+b \pmod k$. Тогда $a+b-c \equiv 0 \pmod k$ и $a-b+c \equiv 0 \pmod k$ по Лемме 2. Сложив оба равенства получим $2a \equiv 0 \pmod k$. Но k нечетно, поэтому $a \equiv 0 \pmod k$. Противоречие.

- $-c \not\equiv b$, так как $b-c \not\equiv 0 \mod k$
- Переход $c \xrightarrow{(xy)^b} b + c$ осуществляется в обычном цикле без ловушки. Последний переход выполняется из состояния b+c. Поскольку $a \not\equiv 0 \pmod{k}$, переход по $(yx)^a$ не вернет автомат обратно в состояние b+c.

Рис. 4: Перестановка yx автомата \mathscr{B}

2. $a+b \equiv 0 \pmod{k}$ и $a \not\equiv c \pmod{k}$

Из того, что $a+b\equiv 0 \pmod k$, следует $a+c\not\equiv 0 \pmod k$ (иначе, выразив a из первого утверждения и подставив его во второе, получили бы $c-b\equiv 0 \pmod k$, что противоречит нашему предположению).

Рассмотрим перестановочный автомат \mathcal{B} , в котором перестановка xy - это циклическая перестановка из k элементов с шагом 1, а yx - циклическая перестановка из k элементов с шагом 1, в которой состояния a и a+c поменяли местами (см. Рис. 4). Начальное состояние 0.

Покажем, что такой автомат различит слова $(xy)^a(yx)^b(xy)^c$ и $(yx)^c(xy)^b(yx)^a$.

Автомат \mathscr{B} закончит читать слово $(xy)^a(yx)^b(xy)^c$ в состоянии 2c (см. Рис. 5).

Корректность переходов:

• $a \xrightarrow{(yx)^b} c$ $-a+c+b \equiv c \pmod k \text{ потому что } a+b \equiv 0 \pmod k$ $-c \not\equiv a \pmod k \text{ по выбранному ограничению}$ $-c \not\equiv a+c \pmod k \text{ потому что } a \not\equiv 0 \pmod k$

Теперь покажем, что автомат \mathscr{B} закончит читать слово $(yx)^c(xy)^b(yx)^a$ в состоянии c, которое, очевидно, не совпадает с состоянием 2c (см. Рис. 6)

Рис. 5: Чтение автоматом \mathscr{B} слова $(xy)^a(yx)^b(xy)^c$

Рис. 6: Чтение автоматом $\mathscr B$ слова $(yx)^c(xy)^b(yx)^a$

Корректность переходов:

- $0 \xrightarrow{(yx)^c} c$
 - $-c \not\equiv a \pmod{k}$ по выбранному ограничению
 - $-\ c\not\equiv a+c \pmod k$ потому что $a\not\equiv 0 \pmod k$, поэтому не попадаем в "ловушку"
- $c \xrightarrow{(xy)^b} b + c$
 - $-b+c\not\equiv a+c\pmod k$, т.к. $b-a\not\equiv 0\pmod k$ по предположению
 - $-b+c \not\equiv a \pmod{k}$

От противного. Пусть $b+c\equiv a \pmod k$, тогда $b+c-a\equiv 0 \pmod k$. Сложим с $a-b+c\equiv 0 \pmod k$, получим $2c\equiv 0 \pmod k$. Поскольку k нечетное, имеем $c\equiv 0 \pmod k$ и получаем противоречие.

- $b + c \xrightarrow{(yx)^a} c$
 - $-\ b+c+a\equiv c(\mod k),$ т.к. $a+b\equiv 0(\mod k)$ по ограничению. А c не попадает в "ловушку".
- 3. $a+b\equiv 0(\mod k)$ и $a\equiv c(\mod k)$

Из того, что $a+b\equiv 0 \pmod k$ следует, что $b\equiv -a \pmod k$.

Из того, что $a-b+c\equiv 0(\mod k)$ и $a\equiv c(\mod k)$ следует, что $b\equiv 2a(\mod k)$.

To есть $2a \equiv -a$ или $3a \equiv 0 \pmod{k}$.

Если k не делится на 3, получаем $a \equiv 0 \pmod k$, что противоречит предположению.

Пусть $k = 3m, m \in \mathbb{N}$. Тогда $a \equiv c \equiv m \pmod{k}, b \equiv 2m \pmod{k}$.

Рассмотрим перестановочный автомат $\mathscr C$ с начальным состоянием m, такой, что xy - циклическая перестановка из k элементов с шагом 1, а yx - циклическая перестановка из k элементов с шагом 1, в которой поменяли местами состояния 2m и z, где $z\not\equiv 0\pmod k$, $z\not\equiv m\pmod k$ и $z\not\equiv 2m\pmod k$ (см. Рис. 7). Такое z существует, если k>3.

Покажем, что автомат $\mathscr C$ закончит читать слова $(xy)^a(yx)^b(xy)^c$ и $(yx)^c(xy)^b(yx)^a$ в разных состояниях.

При чтении слова $(xy)^a(yx)^b(xy)^c$ автомат $\mathscr C$ остановится в состоянии z (см. Рис. 8)

Корректность переходов:

- $2m \xrightarrow{(yx)^b} 2m + z$
 - $-2m+z \not\equiv x \pmod{k}$, т.к. 2m < k, а значит $2m \not\equiv 0 \pmod{k}$
 - $-2m+z \not\equiv 2m \pmod{k}$ по выбору z

Рис. 7: Циклyxавтомата $\mathscr C$

Рис. 8: Чтение слова $(xy)^a(yx)^b(xy)^c$ автоматом $\mathscr C$

Рис. 9: Чтение слова $(yx)^c(xy)^b(yx)^a$ автоматом $\mathscr C$

$$\bullet \ z + 2m \xrightarrow{(xy)^c} z$$

$$- z + 2m + m \equiv z + k \equiv z \pmod{k}$$

При чтении слова $(yx)^c(xy)^b(yx)^a$ автомат $\mathscr C$ остановится в состоянии 2m, которое не совпадает с z (см. Рис. 9)

Корректность переходов:

- $z + 2m \xrightarrow{(yx)^c} 2m$ $-z + 2m + m \equiv z + k \equiv z \pmod{k}$
 - Под номером z в цикле yx находится состояние 2m по выбору автомата

В итоге, три рассмотренных случая покрывают всевохможные варианты a, b и c, и ни один не привел к успеху. Значит, наше предположение о невыполнении правил было ложным.