Association Rules

Apriori Algorithm

Training Agendas

- What is Association Rules?
- Frequent itemset
- Naïve Approach
- Apriori Algorithm workflow
- Demo1: Apply Apriori using SPMF tool
- Demo2: Apply Apriori using Python

Machine Learning types

Supervised Learning		Unsupervised Learning		
Regression	Classification	Time Series	Clustering	Association Rules
Linear Regression Polynomial Reg Decision tree Reg Random Forest Reg	Logistic Regression KNN Naïve Bayes Decision tree Random forest SVM	ARIMA SARIMA ARIMAX	K-mean H clustering Optics Chameleon	Apriori Eclat FP-growth

Market Basket Analysis

Market Basket Analysis

Market Basket Analysis is one of the key techniques used by large retailers to uncover associations between items.

Market Basket Analysis

Market Basket Analysis is one of the key techniques used by large retailers to uncover associations between items.

What is Association rules?

Frequent pattern: a pattern (a set of items, subsequences) that occurs frequently in a data set.

- Example: milk and bread, that appear frequently together in a transaction data set is a frequent itemset (frequent itemset).
- Buying first a PC, then a digital camera, and then a memory card (subsequences).

Applications:

- Basket data analysis,
- Cross-marketing,
- Catalog design,
- Sale campaign analysis,

Association Rules Metrics

$$A \implies B$$

$$Support = \frac{freq(A, B)}{N}$$

$$Confidence = \frac{freq(A, B)}{freq(A)}$$

$$Lift = \frac{Support}{Supp(A) \times Supp(B)}$$

Association Rule Mining

Transaction at a Local Market

T1	Α	В	С
T2	Α	С	D
Т3	В	С	D
T4	Α	D	Е
T5	В	С	Е

Association Rule Mining

Rule	Support	Confidence	Lift
A=>D	2/5	2/3	10/9
C=>A	2/5	2/4	5/6
A => C	2/5	2/3	5/6
B, C=>A	1/5	1/3	5/9

Basic Concepts: Frequent Patterns

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

- itemset: A set of one or more items
- k-itemset $X = \{x_1, ..., x_k\}$
- (absolute) support, or, support count of X: Frequency or occurrence of an itemset X
- (relative) support, s, is the fraction of transactions that contains X (i.e., the probability that a transaction contains X)
- An itemset X is *frequent* if X's support is no less than a *minsup* threshold

Basic Concepts: Association Rules

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

- Association rules: (many more!)
 - *Beer* → *Diaper* (60%, 100%)
 - Diaper → Beer (60%, 75%)

- Find all the rules X → Y with minimum support and confidence
 - support, s, probability that a transaction contains X ∪ Y

$$S(x \to y) = \frac{\sigma(x \cup y)}{N}$$

confidence, c, conditional probability that a transaction having X also contains Y

$$S(x \to y) = \frac{\sigma(x \cup y)}{\sigma(x)}$$

Let minsup = 50%, minconf = 50%

Freq. Pat.: Beer:3, Nuts:3, Diaper:4, Eggs:3, {Beer, Diaper}:3

Search Space (Naïve Approach)

Search Space

Apriori Algorithm

Uses a generate-and-test approach – generates candidate itemsets and tests if they are frequent

- Generation of candidate itemsets is expensive (in both space and time)
- Support counting is expensive
 - Subset checking (computationally expensive)
 - Multiple Database scans (I/O)

Frequent Itemset is an itemset whose support value is greater than a threshold value.

Let these be two itemsets X and Y.

If $X \subset Y$, the support of Y is less than or equal to the support of X.

Example:

- The support of {pasta} is 4
- The support of {pasta, lemon} is 3
- The support of {pasta, lemon, orange} is 2

Transaction	Items appearing in the transaction
TI	{pasta, lemon, bread, orange}
T2	{pasta, lemon}
Т3	{pasta, orange, cake}
T4	{pasta, lemon, orange, cake}

Implementation of Apriori

- How to generate candidates?
 - Step 1: self-joining L_k
 - Step 2: pruning
- Example of Candidate-generation
 - *L*₃={*abc, abd, acd, ace, bcd*}
 - Self-joining: $L_3 * L_3$
 - abcd from abc and abd
 - acde from acd and ace
 - Pruning:
 - acde is removed because ade is not in L₃
 - $C_4 = \{abcd\}$

Apriori Algorithm

TID	Items
T1	134
T2	2 3 5
T3	1235
T4	2 5
T5	135

Min. Support count = 2

Apriori Algorithm – 1st Iteration

C1

TID	Items
T1	134
T2	2 3 5
T3	1235
T4	2 5
T5	135

Itemset	Support
{1}	3
{2}	3
{3}	4
{4}	1
{5}	4

Apriori Algorithm – 1st Iteration

C1

F1

Itemset	Support
{1}	3
{2}	3
{3}	4
{4}	1
{5}	4

Itemset	Support
{1}	3
{2}	3
{3}	4
{5}	4

Item sets with support value less than min. support value (i.e. 2) are eliminated

Apriori Algorithm – 2nd Iteration

Only Items present in F1

4	7	Ĭ	7	١
	Ľ	I	4	e

בי
ГС

TID	Items
T1	134
T2	235
T3	1235
T4	2 5
T5	135

Itemset	Support
{1,2}	1
{1,3}	3
{1,5}	2
{2,3}	2
{2,5}	3
{3,5}	3

Itemset	Support
{1,3}	3
{1,5}	2
{2,3}	2
{2,5}	3
{3,5}	3

Item sets with support value less than min. support value (i.e. 2) are eliminated

Apriori Algorithm – Pruning

C3

TID	Items
T1	134
T2	235
T3	1235
T4	2 5
T5	135

Itemset	In F2?
{1,2,3}, <mark>{1,2}</mark> , {1,3}, {2,3}	NO
{1,2,5}, <mark>{1,2}</mark> , {1,5}, {2,5}	NO
{1,3,5},{1,5}, {1,3}, {3,5}	YES
{2,3,5}, {2,3}, {2,5}, {3,5}	YES

Apriori Algorithm – Pruning

TID	Items
T1	134
T2	2 3 5
T3	1235
T4	2 5
T5	135

If any of the subsets of these item sets are not there in F2 then we remove that itemset

Apriori Algorithm – 4th Iteration

TID	Items
T1	134
T2	235
T3	1235
T4	2 5
T5	135

Itemset	Support
{1,2,3,5}	1

C3

Apriori Algorithm – Subset Creation

F3

Itemset	Support
{1,3,5}	2
{2,3,5}	2

For $I = \{1,3,5\}$, subsets are $\{1,3\}$, $\{1,5\}$, $\{3,5\}$, $\{1\}$, $\{3\}$, $\{5\}$

For $I = \{2,3,5\}$, subsets are $\{2,3\}$, $\{2,5\}$, $\{3,5\}$, $\{2\}$, $\{3\}$, $\{5\}$

For every subsets S of I, output the rule:

 $S \rightarrow (I-S)$ (S recommends I-S)

if support(I)/support(S) >= min_conf value

Apriori Algorithm – Applying Rules

Applying Rules to Item set F3

1. {1,3,5}

- ✓ Rule 1: **{1,3}** \rightarrow **({1,3,5} {1,3})** means 1 & 3 \rightarrow 5 Confidence = support(1,3,5)/support(1,3) = 2/3 = 66.66% > 60% Rule 1 is selected
- ✓ Rule 2: {1,5} → ({1,3,5} {1,5}) means 1 & 5 → 3Confidence = support(1,3,5)/support(1,5) = 2/2 = 100% > 60%Rule 2 is selected
- ✓ Rule 3: **{3,5}** \rightarrow **({1,3,5} {3,5})** means 3 & 5 \rightarrow 1 Confidence = support(1,3,5)/support(3,5) = 2/3 = 66.66% > 60% Rule 3 is selected

Apriori Algorithm – Applying Rules

Applying Rules to Item set F3

1. {1,3,5}

- ✓ Rule 4: {1} \rightarrow ({1,3,5} {1}) means 1 \rightarrow 3 & 5 Confidence = support(1,3,5)/support(1) = 2/3 = 66.66% > 60% Rule 4 is selected
- ✓ Rule 5: **(3)** \rightarrow **((1,3,5) (3))** means 3 \rightarrow 1 & 5 Confidence = support(1,3,5)/support(3) = 2/4 = 50% <60% Rule 5 is rejected
- ✓ Rule 6: **{5}** \rightarrow **({1,3,5} {5})** means 5 \rightarrow 1 & 3 Confidence = support(1,3,5)/support(3) = 2/4 = 50% < 60% Rule 6 is rejected

Apriori Workflow (Example 2)

Apriori Workflow (Example 3)

Evaluation

- Execution time
- Memory used
- Scalability

Apriori performance

The performance of Apriori depends on several factors:

- The minsup parameter: the more it is set low, the larger the search space and the number of itemsets will be.
- The number of items
- The number of transactions
- The average transaction length.

Apriori Problems

- Can generate numerous candidates.
- Require to scan the database numerous times.
- Candidates may not exist in the database.

Demo 1.

Apply Apriori Algorithm using SPMF tool.

Demo 2.

Apply Apriori Algorithm using Python.

Thank You!!