DAIT Project

Trajectory Preduiction for Human-Human Interaction

 ${\sf Rodolphe\ Farrando,\ Romain\ Gratier}$

23.05.2018

EPFL

Table of contents

- 1. Introduction
- 2. Preprocessing and Postprocessing
- 3. Models
- 4. Results
- 5. Representation

Introduction

Introduction

Motivation:

• Trajectory prediction is crucial for improving autonomous vehicles behaviour

Introduction

Motivation:

- Trajectory prediction is crucial for improving autonomous vehicles behaviour
- Could avoid situations seen in the ethical lectures

Previous work: Social LSTM

Social LSTM explaination

Difference between what Social LSTM and our CNN and LSTM

- One CNN
- One LSTM

The parameters of both models are standard.

Preprocessing and

Postprocessing

Preprocessing

The preprocessing step is crucial in our models

- What we have: files with pedestrians id, frame number and coordinates
- What we want: future coordinates

Each trajectories are divided in two (two sets of $10 \times 10 \times 10^{-5}$ x and y coordinates):

- Training coordinates
- Ground truth
- \bullet We want to predict a sequence of 10 x and y coordinates such that they are close to the ground truth

Preprocessing

The preprocessing is divided in 4 steps:

- 1. We isolate each trajectory along with his interaction, that is the other trajectories that are around within the same frames
- 2. We normalize the trajectories such that the first point is at (0,0) and the second is at $(0,y_1)$
- 3. We calculate axis velocities V_x and V_y
- 4. For each frame, if there is a interacting pedestrian we add its coordinates and speed otherwise zeros are added

Finally our inputs have the following shape: $[10, N, 4 * N_{inter}]$, with

- 10: sequence length
- N: The number of data
- 4 * N_{inter}: 4 (being the x and y coordinates and V_x and V_y velocities) times the number of pedestrians interacting with the one of interest.

Outputs shape

- The models can predict either coordinate or speed or both
- We test our two models for 4 different cases

The four different cases are:

- 1. Predict coordinates with loss defines as $L_1 = (X X_{pred})^2$ with X = [x, y]
- 2. Predict speeds with loss defines as $L_2 = (V V_{pred})^2$ with $V = [V_x, V_y]$
- 3. Predict both coordinates and speeds with loss defines as $L=L_1+L_2$
- 4. Predict both coordinates and speeds with loss defines as $L=L_1+L_2+L_3$, with $L_3=(X-X_{t-1}+V_t*0.4)^2$

The fourth case ensure that coordinates and speeds are not predicted independently.

Models

CNN

Define CNN

LSTM

Inputs: sequence of coordinates and velocities of the trajectory of interest and of the interacting trajectories

Outputs: sequence of predicted coordinates and velocities for the trajectory of interest

Results

Results: Introduction

To calculate the correctness of the prediction two indicators are used:

- 1. The final displacement error: $e_{fin} = \sqrt{(X_n X_{pred,n})^2}$
- 2. The mean displacement error: $e_{\mathit{fin}} = \sqrt{\frac{\sum_{i=0}^{n}(X_{\mathit{gt},i} X_{\mathit{pred},i})^2}{(n)}}$

Depending on the inputs two ways are possible to find the predicted coordinates:

- 1. If the coordinates are predicted: directly use them
- 2. If the velocities are predicted: $X_t = X_{t-1} + V_t \cdot 0.4$, with 0.4 the time between two frames in seconds

Results: LSTM

	Model 3 Traj type			Model 4		
				Traj type		
	1	2	3	1	2	3
Mean disp. L2	0.519	0.484	0.568	0.537	0.473	0.576
Final disp. L2	0.979	0.871	1.093	0.992	0.86	1.125

Representation