

Apêndice

Gabaritos comentados com resposta-padrão

Unidade 2

Álgebra de conjuntos

Gabarito 1. Faça valer a pena - Seção 2.1

1. Alternativa B.

O símbolo \in é utilizado para representar uma relação de pertinência entre um objeto e um conjunto. Por exemplo, seja o conjunto $A = \{1,2,3,4,7,8,10,13\}$, podemos afirmar que $4 \in A$ e que $6 \notin A$. Já o símbolo \subseteq é utilizado para representar uma relação de continência (subconjunto) entre conjuntos, portanto, na terceira afirmação, o correto seria escrever $B \subseteq A$.

2. Alternativa C.

Para responder a essa questão iremos recorrer a um teorema que relaciona a cardinalidade de um conjunto com o número de subconjuntos derivados.

Seja A um conjunto finito, o número de subconjuntos de A é $2^{|A|}$ (SCHEINERMAN, 2015).

Como, neste caso, a cardinalidade do conjunto A é igual a 6, tem-se que o número de subconjuntos de A é igual a $2^{|A|} = 2^6 = 64$.

3. Alternativa E.

Os elementos pertencentes ao conjunto A são determinados de acordo com os possíveis valores atribuídos a y. Assim, os elementos de A podem ser encontrados fazendo com que y assuma cada um dos valores 0, 1 e 2, tomando, então, a terceira potência desses valores. Logo, $A = \{0,1,8\}$.

Gabarito 2. Faça valer a pena - Seção 2.2

1. Alternativa E.

A operação de intersecção de A e B pode ser denotada como $A \cap B = \{x \mid x \in A \text{ e } x \in B\}$, ou seja, essa operação considera apenas os elementos pertencentes

simultaneamente aos conjuntos A e B. Há situações em que a intersecção entre os conjuntos é vazia. Nesse caso, dizemos que os conjuntos são disjuntos.

2. Alternativa C.

Essa situação problema pode ser resolvida por meio um Diagrama de Venn. Vale ressaltar que devemos iniciar o preenchimento do Diagrama de Venn pelas intersecções mais específicas e subtrair esses valores das intersecções mais gerais, até chegarmos ao número de elementos pertencentes exclusivamente aos conjuntos determinados.

Figura | Diagrama de Venn

Fonte: elaborada pelo autor.

Também é importante destacar que, nesse problema, existem elementos que não pertencem a nenhum dos três conjuntos A, B e C, mas que devem ser considerados ao se contabilizar o número de jovens que responderam a essa pesquisa.

$$20+40+50+30+100+120+150+100=610$$

Portanto, 610 jovens responderam a essa pesquisa.

3. Alternativa D.

Vamos, inicialmente, organizar os dados do problema em um quadro:

Quadro | Dados do problema

	A	В	Σ
desktops	7		35
laptops		15	
Σ	18		

Fonte: elaborado pelo autor.

A partir dessas informações, é possível completar o quadro com os valores que estão faltando. O quadro completo ficará da seguinte forma:

Quadro | Valores complementares

	A	В	Σ
Desktops	7	28	35
Laptops	11	15	26
Σ	18	43	61

Fonte: elaborado pelo autor.

Portanto, o número de computadores do tipo desktop é igual a 35 e o número de computadores fabricados por A é igual a 18. Não podemos esquecer que há 7 computadores do tipo desktop que foram fabricados por A (intersecção dos conjuntos), logo, o número de computadores desktops ou fabricados por A é igual a 46 (35+18-7).

Gabarito 3. Faça valer a pena - Seção 2.3

1. Alternativa E.

O produto cartesiano de A e B, denotado por $A \times B$, é o conjunto de todos os pares ordenados (listas de dois elementos) formados, tomando-se um elemento de A juntamente com um elemento de B todas as maneiras possíveis. Ou seja, $A \times B = \{(a,b) | a \in A, b \in B\}$ (SCHEINERMAN, 2015). Assim, sendo $A = \{1,2,3\}$, o quadrado cartesiano de A, representado por A^2 , corresponde ao conjunto $A^2 = A \times A = \{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)\}$.

2. Alternativa D.

Quando os matemáticos falam de complementos de conjuntos, eles em geral têm em mente um conjunto mais **abrangente**. Isso porque para que haja o cálculo do conjunto complementar de A em relação a U, A deve ser subconjunto de U. Por exemplo, no decorrer de uma prova ou discussão, se A é um conjunto que contém apenas números inteiros, A^c corresponde ao conjunto de todos os inteiros que **não estão** em A. Lembre-se de que complementar um conjunto significa preencher o que falta. Se U é o conjunto de todos os objetos em consideração e $A \subseteq U$, então o **complemento** de A é o conjunto de todos os objetos de U que não estão em A. O complemento de um conjunto também pode ser chamado de complementar.

3. Alternativa B.

A diferença simétrica entre os conjuntos A e B corresponde a $A \Delta B = (A - B) \cup (B - A) = (A \cup B) - (A \cap B)$. Logo, a primeira afirmativa é verdadeira. O produto cartesiano $A \times B$ é definido como $A \times B = \{(a,b) | a \in A, b \in B\}$. Portanto, a segunda afirmativa também é verdadeira. Porém, é necessário ressaltar que o produto $A \times B$ não é necessariamente igual ao produto $B \times A$, ou seja, não se pode afirmar que a operação produto cartesiano é comutativa, o que significa que a terceira afirmativa é falsa.