Probabilidad II Primer semestre de 2019 Ejercicios sobre Teoremas del Límite Central y otros

- 1. Se lanza un dado 180 veces. Hallar un valor aproximado para la probabilidad de que salga seis menos de 25 veces.
- 2. (Ley Débil de los Grandes Números de A. Ya. Khinchin (1894–1959)) Sea $\{X_n\}_{n\geq 1}$ una sucesión de v.a. i.i.d. con $EX_1=\mu$. Utilizar las funciones características para probar que $\overline{X}_n \stackrel{P}{\longrightarrow} \mu$ (que equivale a probar que $\overline{X}_n \stackrel{d}{\longrightarrow} X$ con $P(X=\mu)=1$)
- 3. Estudiar la convergencia en distribución de la sucesión $\left\{Y_n = \frac{\lambda}{\sqrt{n}} Z_n \sqrt{n}\right\}_{n \geq 1}$, con $Z_n \sim \operatorname{Gamma}(n,\lambda), f_{Z_n}(x) = \frac{\lambda^n}{\Gamma(n)} e^{-\lambda x} x^{n-1} \mathbb{I}_{[0,\infty)}(x)$,
 - (a) a partir del cálculo de la función característica,
 - (b) utilizando el Teorema del Límite Central.
- 4. (Aproximación normal a la distribución de Poisson) Probar que si $Z_{\lambda} \sim Pois(\lambda)$ entonces $\frac{Z_{\lambda} - \lambda}{\sqrt{\lambda}} \xrightarrow{d} Z$ $(Z \sim N(0, 1))$ cuando $\lambda \to \infty$.
- 5. Sean X_1, \ldots, X_n v.a. N(0,1) independientes, y $Y_i = X_i^2$ $1 \le i \le n$. Entonces $\sum_{i=1}^n Y_i \sim \chi_n^2$.
 - (i) Estudiar la convergencia en distribución de $\sqrt{n}(\overline{Y}_n 1)$.
 - (ii) Probar que para cada r > 0, $\sqrt{n}(\overline{Y}_n^r 1) \xrightarrow{d} N(0, V^2(r))$, y hallar $V^2(r)$ como función de r.
 - (iii) Probar que $\frac{\sqrt{n}(\overline{Y}_n^{1/3}-(1-\frac{2}{9n}))}{\sqrt{2/9}}$ $\xrightarrow{d} Z$ con $Z \sim N(0,1)$. ¿ Este resultado concuerda con lo que se ha obtenido en (ii)?
- 6. Sea $\{X_n\}_{n\geq 1}$ una sucesión de v.a. i.i.d. con $EX_1=0$ y $EX_1^2=\sigma^2,\ 0<\sigma^2<\infty$. Probar que $\sum_{j=1}^n X_j/\sqrt{\sum_{j=1}^n X_j^2} \stackrel{d}{\longrightarrow} Z,\ Z\sim N(0,1)$.
- 7. Si X_{n1}, \ldots, X_{nn} son variables aleatorias independientes tal que $\mathbf{E}(X_{nk}) = m_{nk}$ y $\operatorname{Var}(X_{nk}) = \sigma_{nk}^2 < \infty$. Denotemos $S_n = \sum_{k=1}^n X_{nk}$ y $V_n^2 = \sum_{k=1}^n \sigma_{nk}^2$. Probar que la condición

$$\lim_{n \to +\infty} \frac{1}{V_n^2} \sum_{k=1}^n \mathbf{E}\left((X_{nk} - m_{nk})^2 \mathbb{I}_{\{|X_{nk} - m_{nk}| \ge \varepsilon V_n\}} \right) = 0 \tag{1}$$

implica que $\frac{1}{V_n^2}$ máx_{i=1,...,n} $\sigma_{ni}^2 \to 0$. Probar que esto último implica que máx_{i=1,...,n} $P(|X_{nk} - m_{nk}| > \varepsilon V_n) \to 0$.

8. Sean X_1, \ldots, X_n variables aleatorias independientes tal que para todo $n \geq 1 |X_n| \leq K$, donde K es una constante, supongamos que $V_n = Var(S_n) \to \infty$, probar que en este caso vale el TCL para las X_i . Sugerencia probar que vale la condición de Lindeberg.

9. (TLC $(2+\delta)$ de Alexandre M. Liapunov (1857-1918))

Supongamos que, para cada $n \ge 1$, las v.a. X_{n1}, \ldots, X_{nn} son independientes, $EX_{nj} =$

o y
$$VarX_{nj} = \sigma_{nj}^2$$
 $(1 \le j \le n)$, y que para algún $0 < \delta (\le 1)$
$$\frac{1}{B_n^{1+\frac{\delta}{2}}} \sum_{j=1}^n E|X_{nj}|^{2+\delta} \to 0 \text{ cuando } n \to \infty, \text{ donde } B_n := \sum_{j=1}^n \sigma_{nj}^2.$$

Probar que $\frac{1}{\sqrt{B_n}}\sum_{j=1}^n X_{nj} \xrightarrow{d} Z$, $Z \sim N(0,1)$. Sugerencia: tratar como caso particular del teorema de Lindeberg.

10. Sea $\{X_j\}_{j\geq 1}$ una sucesión de v.a. independientes con $EX_j = \mu_j$, $VarX_j = \sigma_j^2$, $B_n :=$ $\sum_{j=1}^{n} \sigma_j^2$ y tal que $P(a \le X_j \le b) = 1$ para algunas constantes finitas a < b.

Probar que $\frac{1}{\sqrt{B_n}} \sum_{j=1}^n (X_j - EX_j) \xrightarrow{d} Z$, $Z \sim N(0,1)$, si y sólo si $\sqrt{B_n} \to \infty$ cuando

Sugerencia: para probar que $\sqrt{B_n} \to \infty$ es suficiente para $\stackrel{d}{\longrightarrow}$ puede emplearse el teorema de Liapunov con $\delta = 1$. Parte necesaria: probar por absurdo suponiendo que $\sqrt{B_n} \to b < \infty$.

11. (Teorema del Límite de Poisson)

Supongamos que, para cada $n \geq 1$, las v.a. X_{n1}, \ldots, X_{nn} son independientes, $X_{nj} \sim$ $Ber(\lambda_{nj})$ $(1 \leq j \leq n)$, y que los parámetros cumplen las condiciones $\lambda_n := \sum_{j=1}^n \lambda_{nj} \to \infty$ $\lambda \text{ y } \sum_{j=1}^{n} \lambda_{n j}^{2} \to 0.$

Probar que $T_n := X_{n\,1} + \cdots + X_{n\,n} \xrightarrow{d} Pois(\lambda)$ cuando $n \to \infty$. Sugerencia: emplear funciones características y el resultado siguiente: si para cada $n \ge 1$ los números complejos $z_{n\,1},\ldots,z_{n\,n}$ cumplen las condiciones

- (i) $\sum_{j=1}^{n} z_{nj} \to z$ cuando $n \to \infty$;
- (ii) $\delta_n := \max_{1 \le j \le n} |z_{nj}| \to 0;$
- (iii) $\delta_n \sum_{j=1}^n |z_{nj}| \to 0$,

entonces $\prod_{i=1}^{n} (1 + z_{n,i}) \to e^z$ cuando $n \to \infty$.

- 12. Supongamos que se cumplen las hipótesis del Teorema del Límite de Poisson. Probar que $M_n := \max_{1 \le j \le n} |X_{n,j}| \xrightarrow{d} Ber(1 - e^{-\lambda}).$
- 13. (Método delta)

Probar que si $\{Y_n\}_{n\in\mathbb{N}}$ es una sucesión de variables aleatorias que cumplen que $\sqrt{n}(Y_n-\mu) \stackrel{d}{\longrightarrow} V \sim N(0,\sigma^2)$, con $\mu \in \mathbb{R}$ y f es una función derivable en μ con derivada continua en un entorno de μ , entonces $\sqrt{n}(f(Y_n)-f(\mu)) \stackrel{d}{\longrightarrow} W \sim N(0,\sigma^2 f'(\mu)^2)$. Sugerencia: hacer un desarrollo de Taylor de f en un entorno de μ y usar el Lema de Slutsky.

14. a) Demostrar que si $E(|X|^n) < \infty$, entonces:

$$E(|X|^n) = n \int_0^\infty x^{n-1} (1 - F(x) + F(-x)) dx.$$

Sugerencia: utilizar el método de integración por partes y el Lema 3.16 de las notas.

b) Utilizar la parte anterior para demostrar la desigualdad que aparece en el **Teorema** 3.14 (C.N. y S. de Lindeberg) de las notas:

$$\int_{-\infty}^{\infty} |x| |F_{nk}(x) - \Phi_{nk}(x)| dx \le 2\sigma_{nk}^2$$