Chapter 4: Special Probability Distributions

1 DISCRETE DISTRIBUTIONS

- Recall that for a discrete random variable X, the number of possible values (i.e., R_X) is **finite** or **countable**.
- The elements of R_X can be listed as x_1, x_2, x_3, \ldots
- In this section, we study some classes of discrete random variables.

Discrete Uniform Distribution

DEFINITION 1

- If RV X assumes the values $x_1, x_2, ..., x_k$ with equal probability, then X follows a **discrete uniform distribution**.
- *The p.f. for X is given by*

$$f_X(x) = \frac{1}{k}, \qquad x = x_1, x_2, \dots, x_k,$$

and 0 otherwise.

THEOREM 2

Suppose X follows the discrete uniform distribution with $R_X = \{x_1, x_2, ..., x_k\}$, we have

• The expectation is given by

$$\mu_X = E(X) = \sum_{i=1}^k x_i f_X(x_i) = \frac{1}{k} \sum_{i=1}^k x_i.$$

• *The variance is given by*

$$\sigma_X^2 = V(X) = E(X^2) - (E(X))^2 = \frac{1}{k} \sum_{i=1}^k x_i^2 - \mu_X^2.$$

Example 4.1

- A bulb is selected at random from a box that contains a 40-watt bulb, a 60-watt bulb, an 80-watt bulb, and a 100-watt bulb.
- Each bulb has 1/4 probability of being selected.
- Let X = the watts of the bulb being selected. Then X follows a uniform distribution, and

$$R_X = \{40, 60, 80, 100\}.$$

$$f_X(x) = 1/4$$
, for $x = 40, 60, 80, 100$,

and 0 otherwise.

• We can compute the expectation:

Variance can also be computed:

$$E(X) = \sum_{i} x_i f_X(x_i) = 40 \cdot (1/4) + 60 \cdot (1/4) + 80 \cdot (1/4) + 100 \cdot (1/4) = 70$$

l

$$V(X) = E(X^{2}) - (E(X))^{2}$$

$$= 40^{2} \cdot (1/4) + 60^{2} \cdot (1/4) + 80^{2} \cdot (1/4) + 100^{2} (1/4) - 70^{2}$$

$$= 500.$$

Bernoulli Trial, Bernoulli Random Variable and Bernoulli Process

DEFINITION 3 (BERNOULLI TRIAL)

- A **Bernoulli Trial** is a random experiment with only two possible outcomes.
- One is called a "success", and the other a "failure".
- We code the two outcomes as "1" (success) and "0" (failure).

DEFINITION 4 (BERNOULLI RANDOM VARIABLE)

- Let X = number of success in a Bernoulli trial; then X has only two possible values: 1 or 0, and is called a **Bernoulli random variable**.
- Denote by p ($0 \le p \le 1$) the probability of success of the Bernoulli trial. Then X has the p.f.:

$$f_X(x) = P(X = x) = \begin{cases} p & x = 1 \\ (1-p) & x = 0 \end{cases}$$

and = 0 for other values of x.

• This p.f. can also be written by

$$f_X(x) = p^x (1-p)^{1-x}$$
, for $x = 0$ or 1.

• We often denote $X \sim \text{Bernoulli}(p)$, and denote q = 1 - p. Then the p.f. becomes $f_X(1) = p$ and $f_X(0) = q$.

THEOREM 5

For a Bernoulli RV defined above, we have

$$\mu_X = E(X) = p$$
 $\sigma_X^2 = V(X) = p(1-p) = pq.$

REMARK (PARAMETERS)

- In occasions, $f_X(x)$ may rely on one or more unknown quantities; different values of the quantities lead to different probability distributions.
- Such a quantity is called a **parameter** of the distribution.
- *p* is the parameter in the Bernoulli distribution.
- The collection of the distributions that are determined by one or more unknown parameters is called a **family of probability distributions**.
- So the aforementioned Bernoulli distributions determined by the parameter *p* is a family of probability distributions.

Example 4.2 The following are all examples of Bernoulli trials:

- A coin toss Say we want heads, then H="heads" is success, and T="tails" is failure.
- Rolling a die Say we only care about rolling a 6. The outcome space is binarized to "success"= $\{6\}$ and "failure" = $\{1,2,3,4,5\}$.
- Polls
 Choosing a voter at random to ascertain whether that voter will vote "yes" in an upcoming referendum.

Example 4.3

- A box contains 4 blue and 6 red balls.
- Draw a ball from the box at random.
- What is the probability that a blue ball is chosen?

Solution:

- Let X = 1 if a blue ball is drawn; and X = 0 otherwise.
- Then *X* is a Bernoulli random variable.
- P(X = 1) = 4/10 = 0.4.
- Furthermore, the p.f. for *X* is given by

$$f_X(x) = \begin{cases} 0.4 & x = 1 \\ 0.6 & x = 0 \end{cases}.$$

DEFINITION 6 (BERNOULLI PROCESS)

- A Bernoulli process consists of a sequence of repeatedly performed independent and identical Bernoulli trials.
- Correspondingly, a Bernoulli process generates a sequence of **independent and identically distributed, i.i.d.** Bernoulli random variables: $X_1, X_2, X_3, ...$

We are able to define several useful distributions based on Bernoulli trial and Bernoulli process. These distributions include:

- Binomial distribution;
- Negative Binomial distribution; Geometric distribution;
- Poisson distribution.

Binomial Distribution

If we have several (say n) i.i.d. Bernoulli trials, we can establish the binomial distribution to address some interesting questions. For example,

- A student randomly guesses at 5 multiple-choice questions. What is the number of questions the student guessed correctly?
- Randomly pick a family with 4 kids. What is the number of girls amongst the kids?
- Urn has 4 black balls and 3 white balls, draw 5 balls with replacement. How many black balls will there be?

DEFINITION 7 (BINOMIAL RANDOM VARIABLE)

A **Binomial random variable** counts the number of successes in n trials in a Bernoulli Process. That is, suppose we have n trials where

- the probability of success for each trial is the same p,
- the trials are independent.

Then the number of successes, denoted by X, in the n trials is a Binomial random variable.

We say X has a binomial distribution and write it as $X \sim B(n, p)$.

The probability of getting exactly x successes is given as

$$P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$$
, for $x = 0, 1, 2, ..., n$.

It can be shown that E(X) = np, and V(X) = np(1-p).

The theoretical development for Binomial distribution will be given in a lecture meeting.

REMARK

• When n = 1, the p.f. for the binomial RV X is reduced to

$$f_X(x) = p^x (1-p)^{1-x}$$
, for $x = 0, 1$.

• It is the p.f. for the Bernoulli distribution. Therefore Bernoulli distribution is a special case of the binomial distribution.

The p.f. for B(10,0.2), B(10,0.5), and B(10,0.8) are compared below.

Example 4.4

- Flip a fair coin 10 independent times.
- What is the probability of observing exactly 6 heads?

Solution:

- Let X = number of heads in 10 flips.
- Each flip of the coin can be observed as a Bernoulli trial, with probability of getting head (success) p = 0.5.
- Then *X* is the number success out of 10 Bernoulli trials; so $X \sim B(10, 0.5)$.
- We can compute

$$P(X=6) = {10 \choose 6} (0.5)^6 (1-0.5)^{10-6} = 0.205.$$

Negative Binomial Distribution

- Consider a Bernoulli process, where the Bernoulli experiments can be repeated an arbitrary number of times.
- The interest could be how many trials are needed so that a certain number of successes occur.
- Set X = number of trials until the kth success occurs. Then X follows a **negative binomial distribution**; denoted by $X \sim NB(k, p)$, where p is probability of success for each Bernoulli trial.
- In comparison with binomial distribution: the random variable "X" is the number of successes out of a fixed number *n* of trials.

DEFINITION 8 (NEGATIVE BINOMIAL DISTRIBUTION)

- $X = number \ of \ i.i.d.$ Bernoulli(p) trials until the kth success occurs; then X follows a **negative binomial distribution**, denoted by $X \sim NB(k,p)$.
- The p.f. of X is given by

$$f_X(x) = P(X = x) = {x-1 \choose k-1} p^k (1-p)^{x-k},$$

for
$$x = k, k + 1, k + 2, ...$$

• It can be shown that E(X) = k/p and $V(X) = (1-p)k/p^2$.

Example 4.5

- Keep rolling a fair die, until the 6th time we get the number 6.
- What is the probability that we need to roll the die 10 times?

Solution:

- Let X = number of rolls to get the 6th number 6. $X \sim NB(6, 1/6)$.
- Using the p.f. of negative binomial distribution:

$$P(X = 10) = {10 - 1 \choose 6 - 1} (1/6)^6 (1 - 1/6)^4 = 0.001302.$$

Geometric Distribution

Geometric distribution is a special case of the negative binomial distribution.

DEFINITION 9 (GEOMETRIC DISTRIBUTION)

- $X = number \ of \ i.i.d.$ Bernoulli(p) trials until the first success occurs; then X follows a **geometric distribution**, denote by $X \sim G(p)$.
- The p.f. of X is given by

$$f_X(x) = P(X = x) = (1 - p)^{x-1}p.$$

• We have E(X) = 1/p and $V(X) = (1-p)/p^2$.

Poisson Distribution

DEFINITION 10 (POISSON RANDOM VARIABLE)

The **Poisson random variable** X denotes the number of events occurring in a **fixed period of time or fixed region**.

We denote $X \sim \text{Poisson}(\lambda)$ where parameter $\lambda > 0$ is the expected number of occurrences during the given period/region; its p.m.f. is given by

$$f_X(k) = P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}$$

where k = 0, 1, ... is the number of occurrences of events.

It can be shown that $E(X) = \lambda$, and $V(X) = \lambda$.

The p.f. for Poisson(1), Poisson(4), and Poisson(9) are compared below.

8 9 10 11 12 13 14 15 16 17 18 19 20

Example 4.6 The "fixed period of time or fixed region" given in the definition can be time period of any length, e.g., a minute, a day, a week, a month etc., and region of any size.

Examples of events that may be modeled by the Poisson Distribution:

- (a) The number of spelling mistakes one makes while typing a single page.
- (b) The number of times a web server is accessed per minute.
- (c) The number of road kill (animals killed) found per unit length of road.

- (d) The number of mutations in a given stretch of DNA after a certain amount of radiation exposure.
- (e) The number of unstable atomic nuclei that decayed within a given period of time in a piece of radioactive substance.
- (f) The distribution of visual receptor cells in the retina of the human eye.
- (g) The number of light bulbs that burn out in a certain amount of time.

DEFINITION 11 (POISSON PROCESS)

The **Poisson Process** is a continuous time process. We count the number of occurrences within some interval of time. The defining properties of a Poisson Process with rate parameter α are

- the expected number of occurrences in an interval of length T is αT ;
- there are no simultaneous occurrences;
- the number of occurrences in disjoint time intervals are independent.

The number of occurrences in any interval T of a Poisson Process follows a Poisson(αT) distribution.

Example 4.7

- The average number of robberies in a day is four in a certain big city.
- What is the probability that six robberies occurring in two days?

Solution:

- Let X_1 = number of robberies in one day. Then $X_1 \sim \text{Poisson}(4)$ from the condition.
- Let X = number of robberies in two days. Then $X \sim \text{Poisson}(2 \times 4) = \text{Poisson}(8)$.
- We have

$$P(X=6) = \frac{e^{-8}8^6}{6!} = 0.1222.$$

Proposition 12 (Poisson Approx. of Binomial Distribution)

Let $X \sim B(n,p)$. Suppose that $n \to \infty$ and $p \to 0$ in such a way that $\lambda = np$ remains a constant. Then approximately, $X \sim \text{Poisson}(np)$. That is

$$\lim_{p\to 0; n\to\infty} P(X=x) = \frac{e^{-np}(np)^x}{x!}.$$

The approximation is good when $n \ge 20$ and $p \le 0.05$, or if $n \ge 100$ and $np \le 10$.

Example 4.8

- The probability, *p*, of an individual car having an accident at a junction is 0.0001.
- If there are 1000 cars passing through the junction during certain period of a day, what is the probability of two or more accidents occurring during that period?

Solution:

- Let X = number of accidents among the 1000 cars.
- Then $X \sim B(1000, 0.0001)$. If we compute using binomial distribution,

$$P(X \ge 2) = \sum_{x=2}^{1000} {1000 \choose x} 0.0001^{x} 0.9999^{1000-x}.$$

Computing these numbers is not easy.

• We solve the question using Poisson approximation.

 $P(X \ge 2) = 1 - P(X = 0) - P(X = 1)$

= 0.0047.

 $= 1 - e^{-0.1} - e^{-0.1}(0.1)^{1}/1!$

- n = 1000 and p = 0.0001, hence, $np = \lambda = 0.1$.

2 CONTINUOUS DISTRIBUTION

- For a continuous random variable X, its range R_X is an interval or a collection of multiple intervals.
- In this section, we study some classes of continuous random variables.

Continuous Uniform Distribution

DEFINITION 13 (CONTINUOUS UNIFORM DISTRIBUTION)

A random variable X is said to follow a **uniform distribution** over the interval (a,b) if its probability density function is given by

$$f_X(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & otherwise \end{cases}$$
.

We denote this by $X \sim U(a,b)$.

It can be shown that
$$E(X) = \frac{a+b}{2}$$
 and $V(X) = \frac{(b-a)^2}{12}$.

The p.d.f. for the continuous uniform distribution can be drawn as a figure below.

The c.d.f. for the continuous uniform distribution is given by

$$F_X(x) = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a \le x \le b \\ 1 & x > b \end{cases}$$

Example 4.9

- A point is chosen at random on the line segment [0,2].
- What is the probability that the chosen point lies between 1 and 3/2?

Solution:

- Let $X = \text{position of the point. } X \sim U(0,2)$.
- We have

$$f_X(x) = \frac{1}{2}$$
, for $0 \le x \le 2$,

and 0 otherwise.

$$P\left(1 \le X \le \frac{3}{2}\right) = \int_{1}^{3/2} \frac{1}{2} dx = \frac{1}{2} x \Big|_{1}^{3/2} = 1/4.$$

Exponential Distribution

DEFINITION 14 (EXPONENTIAL DISTRIBUTION)

A continuous RV X is said to follow an **exponential distribution** with parameter $\lambda > 0$ if its p.d.f. is given by

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \ge 0 \\ 0, & \text{if } x < 0 \end{cases}.$$

We denote $X \sim \text{Exp}(\lambda)$.

It can be shown that $E(X) = \frac{1}{\lambda}$ and $V(X) = \frac{1}{\lambda^2}$.

The exponential p.d.f. with $\lambda = 1$ is shown below.

The shapes of the p.d.f.s of $Exp(\lambda)$ for $\lambda = 1, 2, 4$.

The c.d.f. of $X \sim \text{Exp}(\lambda)$ is given by

$$F_X(x) = \begin{cases} 1 - e^{-\lambda x}, & x > 0 \\ 0, & x \le 0 \end{cases}$$

REMARK

• The p.d.f. can be written in the form

$$f_X(x) = \frac{1}{\mu} e^{-x/\mu}, \text{ for } x > 0,$$

and 0 elsewhere.

- The parameters have the relationship $\mu = 1/\lambda$.
- We have

$$E(X) = \mu$$
, $V(X) = \mu^2$, and $F_X(x) = 1 - e^{-x/\mu}$ for $x > 0$.

Example 4.10

- Suppose that the failure time, T, of a system is exponentially distributed, with a mean of 5 years.
- What is the probability that at least two out of five of these systems are still functioning at the end of 8 years?

Solution:

- Since E(T) = 5, therefore $\lambda = 1/5$.
- We have $T \sim \text{Exp}(1/5)$,

$$P(T > 8) = 1 - P(T \le 8) = 1 - F_X(8) = e^{-(1/5) \times 8} = e^{-1.6} \approx 0.2.$$

- Let X = # of systems out of 5 that are still functioning after 8 years.
- Then $X \sim B(5, 0.2)$. Hence,

$$P(X \ge 2) = 0.2627.$$

THEOREM 15

Suppose that X has an exponential distribution with parameter $\lambda > 0$. Then for any two positive numbers s and t, we have

$$P(X > s + t | X > s) = P(X > t).$$

REMARK

The above theorem states that the exponential distribution has "**no memory**" in the sense:

- Let *X* denote the life length of a bulb.
- Given that the bulb has lasted s time units, i.e., X > s,
- the probability that it will last for the next t units, i.e., X > s + t, is the same as the probability that it will last for the first t units as brand new.

Normal Distribution

DEFINITION 16 (NORMAL DISTRIBUTION)

A random variable X is said to follow a **normal distribution** with parameters μ and σ^2 if its probability density function is given by

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu)^2/(2\sigma^2)}, \quad -\infty < x < \infty.$$

We denote $X \sim N(\mu, \sigma^2)$.

It can be shown that $E(X) = \mu$ and $V(X) = \sigma^2$.

The p.d.f. of normal distribution is positive over the whole real line, symmetric about $x = \mu$, and bell-shaped; see below.

We give some properties of normal distribution.

(1) The total area under the curve and above the horizontal axis is equal to 1.

$$\int_{-\infty}^{\infty} f_X(x) dx = \int_{-\infty}^{\infty} \frac{1}{\sigma \sqrt{2\pi}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right] dx = 1.$$

This validates that $f_X(\cdot)$ is a p.d.f.

(2) Two normal curves are identical in shape if they have the same σ^2 . But they are centered at different positions when their means are different.

(3) As σ increases, the curve flattens; and vice versa.

(4) If $X \sim N(\mu, \sigma^2)$ and let

$$Z = \frac{X - \mu}{\sigma},$$

then Z follows the N(0,1) distribution. Thus E(Z) = 0 and V(Z) = 1.

We say that *Z* has a standardized normal distribution; the p.d.f. of *Z* is given by

$$f_Z(z) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^2}{2}\right).$$

REMARK

- The importance of the standardized normal distribution is that it can be tabulated.
- Consider $X \sim N(\mu, \sigma^2)$; if we are to compute $P(x_1 < X < x_2)$ for any real values x_1, x_2 , we can use the transformation $Z = (X \mu)/\sigma$. In particular,

$$x_1 < X < x_2 \Longleftrightarrow \frac{x_1 - \mu}{\sigma} < \frac{X - \mu}{\sigma} < \frac{x_2 - \mu}{\sigma}$$

• Let $z_1 = (x_1 - \mu)/\sigma$ and $z_2 = (x_2 - \mu)/\sigma$; then

$$P(x_1 < X < x_2) = P(z_1 < Z < z_2).$$

• By convention, we use $\phi(\cdot)$ and $\Phi(\cdot)$ to denote the p.d.f. and c.d.f. of the standard normal distribution respectively. That is,

of the standard normal distribution respectively. That is,
$$\phi(z) = f_{z}(z) = \frac{1}{z^{2}/2}$$

$$\phi(z) = f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}$$

$$\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} \phi(t) dt = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-t^2/2} dt.$$

• Therefore, for $X \sim N(\mu, \sigma^2)$ and any real numbers x_1, x_2 ,

Therefore, for
$$X \sim N(\mu, \sigma^2)$$
 and any real numbers x_1, \dots

$$P(x_1 < X < x_2) = \Phi\left(\frac{x_2 - \mu}{\sigma}\right) - \Phi\left(\frac{x_1 - \mu}{\sigma}\right).$$

- However, calculating the probabilities for the normal probabilities is challenging because
 - there is no close formula for $\Phi(z)$;
 - so the computation relies on numerical integration.
- Instead, $\Phi(z)$ can be tabulated, or computed based on some statistical software.

• The standard normal distribution has the following properties:

$$\mathbf{p}(\mathbf{z} > 0) \quad \mathbf{p}(\mathbf{z} < 0) \quad \mathbf{f}(0) \quad 0.5$$

$$\star P(Z \ge 0) = P(Z \le 0) = \Phi(0) = 0.5;$$

* For any z, $\Phi(z) = P(Z \le z) = P(Z \ge -z) = 1 - \Phi(-z)$;

* If $Z \sim N(0,1)$, then $\sigma Z + \mu \sim N(\mu, \sigma^2)$.

 $\star -Z \sim N(0,1);$

Example 4.11 Given $X \sim N(50, 100)$, find P(45 < X < 62).

Solution: We have $\mu = 50$, $\sigma = 10$.

$$P(45 < X < 62) = P\left(\frac{45 - 50}{10} < \frac{X - 50}{10} < \frac{62 - 50}{10}\right)$$

$$= P(-0.5 < Z < 1.2)$$

$$= P(Z < 1.2) - P(Z \le -0.5)$$

$$= \Phi(1.2) - \Phi(-0.5),$$

where $\Phi(1.2)$ and $\Phi(-0.5)$ can either be computed from some statistical software or obtained from a table.

DEFINITION 17 (QUANTILE)

The α th (upper) quantile (0 $\leq \alpha \leq$ 1) of the RV X is the number x_{α} that satisfies

$$P(X \ge x_{\alpha}) = \alpha$$
.

• Specifically, we denote by z_{α} the α th (upper) quantile (or 100α percentage point) of $Z \sim N(0,1)$. That is

percentage point) of
$$Z \sim N(0,1)$$
. That is
$$P(Z > z_{\alpha}) = \alpha.$$

- For example, $z_{0.05} = 1.645$, $z_{0.01} = 2.326$.
- Since the p.d.f. of Z, i.e., $\phi(z)$, is symmetrical about 0, therefore

$$P(Z \ge z_{\alpha}) = P(Z \le -z_{\alpha}) = \alpha.$$

Example 4.12 Find *z* such that

- (a) P(Z < z) = 0.95;
- (b) $P(|Z| \le z) = 0.98$.

Solution:

(a) We need *z* such that

$$P(Z > z) = 1 - P(Z < z) = 0.05;$$

therefore $z = z_{0.05} = 1.645$.

(b) We have

$$0.98 = P(|Z| \le z) = 1 - P(|Z| > z)$$

= 1 - P(Z > z) - P(Z < -z) = 1 - 2P(Z > z),

which implies P(Z > z) = 0.01; therefore $z = z_{0.01} = 2.326$.

- Recall that when $n \to \infty$, $p \to 0$, and np remains a constant, we can use **Poisson distribution to approximate the binomial distribution**.
- When $n \to \infty$, but p remains a constant (practically, p is not very close to 0 or 1), we can use **normal distribution to approximate** the binomial distribution.
- A good rule of thumb is to use the normal approximation only when

$$np > 5$$
 and $n(1-p) > 5$.

PROPOSITION 18 (NORMAL APPROX. TO BINOMIAL DISTRIBUTION)

Let $X \sim B(n, p)$; so that E(X) = np and V(X) = np(1-p). Then as $n \to \infty$,

$$Z = \frac{X - E(X)}{\sqrt{V(X)}} = \frac{X - np}{\sqrt{np(1-p)}}$$
 is approximately $\sim N(0,1)$.

Normal Approximation to the Binomial Distribution

Normal Approximation to a Binomial Distribution

Normal Approximation to a Binomial Distribution

