

MAPREDUCE TSQR

AUSTIN R. BENSON arbenson@berkelev.edu

TSQR

$A = QR, Q^{T}Q = I, R$ upper triangular Many more rows than columns → "tall and skinny" (TS) Lots of embarrassingly parallel work

Two methods for computing R

"TSQR" algorithm by Demmel et. al [5] (slower, more stable) Cholesky decomposition on ATA (faster, less stable) Both algorithms scale well

Make these algorithms run fast in the cloud [1], [4], [6] Implementations with Apache Hadoop MapReduce How does numerical stability factor in?

MapReduce schemes for TSQR (left) and Cholesky QR (right)

Data Serialization

TypedBytes storage [2], [3] Different data types in sequence file String format yields great improvement over list format

Packed rows

Store 2 or 4 rows per record Performance can be significantly better, stay the same,

Strong Scaling

Difficult to control processor allocation

In Hadoop, use mapred, min, split, size parameter

Embarrassingly parallel work greedily consumes any extra resources

For TSQR, computation time small

Hadoop overhead and disk reads dominate time

Peak Performance

How close to peak performance?

1-3% peak for large matrices

For a MapReduce architecture, this is about what we except

Refining the model

- ~60 seconds for launch, cleanup overhead
- ~60 MB/s disk reads (1 TB SATA disks)
- → 7-11% peak

Fault Tolerance

Key advantage to Hadoop and other MapReduce architectures

How does this affect performance? How does P(fault) affect performance?

Noticeable but manageable

Faults quickly introduce a 25% performance hit P(fault) \sim = 1/5 \rightarrow only 50% performance hit

Numerical Experiments

How stable are our algorithms? Compute R with TSQR and Cholesky $Q = AR^{-1}$, check $IQ^{T}Q - I_{n}I_{n}$

Streaming: C++ vs. Python

Use Hadoop streaming

Python provides easy prototyping for testing algorithms at a large scale (both algorithms implemented in 100 lines of code)

C++ can give us better performance

Number of columns matters

10 columns → about the same performance 200 columns → C++ takes 4x faster than Python

Future work

Implement customized data storage

Expand to other areas of linear algebra (e.g., LU) and

Explicit formulation of Q

Experiment with other MapReduce frameworks (e.g., Spark, Twister)

References

[1] Austin Benson. MapReduce TSQR code. https://github.com/arbe

[2] Klaas Bosteels. Dumbo. https://github.com/kibostee/dumbo.
[3] Klaas Bosteels. TypedBytes. https://github.com/kibostee/dypedbytes.
[4] Paul G. Constantine and David F. Gleich. Tall and skinny QR factorizations in MagReduce architectures. In Proceedings of the second international workshop on MagReduce and its a MagReduce '11, pages 43-50. New York, NY, USA, 2011. ACM.
[3] James Dermolt, Laura Grigolt, MAR F. Hoemmen, and Julien Langou. Communication-parallel and sequential QR and LU factorizations. UCSEECS-2008-98. August 2008.
[9] David Gleich, MagReducin ESPJO code. https://jipub.com/digleichmisto.