$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$A = X D X^{-1}$$

$$\begin{vmatrix} A - \lambda I \\ 1 & 1 \end{vmatrix} = 0$$

$$\begin{vmatrix} 1 - \lambda & 1 \\ 1 & 1 - \lambda \end{vmatrix} = 0$$

$$\begin{vmatrix} 1 & 1 - \lambda \\ 1 & 1 - \lambda \end{vmatrix} = 0$$

$$\begin{vmatrix} \lambda^{3} - 3\lambda^{2} + 0\lambda - \delta = 0 \\ \lambda^{3} - 3\lambda^{2} \\ \lambda^{2} (\lambda - 3) = 0$$

$$\begin{vmatrix} \lambda - 3 \\ \lambda - 3 \end{vmatrix} = 0$$

$$\begin{vmatrix} \lambda - 3 \\ \lambda - 3 \end{vmatrix} = 0$$

$$\begin{vmatrix} \lambda - 3 \\ \lambda - 3 \end{vmatrix} = 0$$

$$\begin{vmatrix} \lambda - 3 \\ \lambda - 3 \end{vmatrix} = 0$$

$$\begin{vmatrix} \lambda - 3 \\ \lambda - 3 \end{vmatrix} = 0$$

$$\begin{vmatrix} \lambda - 3 \\ \lambda - 3 \end{vmatrix} = 0$$

$$\begin{vmatrix} \lambda - 3 \\ \lambda - 3 \end{vmatrix} = 0$$

$$\begin{vmatrix} \lambda - 3 \\ \lambda - 3 \end{vmatrix} = 0$$

$$\begin{vmatrix} \lambda - 3 \\ \lambda - 3 \end{vmatrix} = 0$$

$$\begin{vmatrix} \lambda - 3 \\ \lambda - 3 \end{vmatrix} = 0$$

$$\begin{vmatrix} \lambda - 3 \\ \lambda - 3 \end{vmatrix} = 0$$

$$\begin{cases} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & -2 & 2 \\ 1 & 1 & 2 \\ 2 & 1 & 2 \\$$

$$\frac{2}{3} = \frac{-9}{3} = \frac{2}{3}$$

$$\begin{cases} 1 & 1 \\ 1$$

$$D = P^{-1}AP$$

$$= \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & 2 \\ -1 & 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & -1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 3 & 3 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & -1 & -1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 9 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 9 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

for
$$\lambda = 8$$
 $[A-1]=0$

$$\begin{cases} -7 & 2 & -3 \\ 2 & -4 & -6 \\ -1 & -2 & -5 \end{cases} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\frac{2}{8} = \frac{-9}{-16} = \frac{2}{0}$$

$$\lambda_1 = \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}$$

$$\lambda_2 = \begin{bmatrix} 3 \\ 0 \end{bmatrix} \notin \lambda_3 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

1) Write eigen values in Decreasing order

D) for cramers sule take 2 equations with different ratio

For Single Equation according to and calculate &

least square method of RMSE

$$b_{\gamma} = \frac{2 d n d y}{E d n^2} \frac{d n = (n - n)}{d y = (y - y)}$$

orthogonal
given

[x y z] I [a b c]

or [x]

y

I [a]

c]

and calculate value of a

C=-(antby)

3 linear equations by cramers rule

1 write as
$$AX = B$$

$$D_{x} = \begin{bmatrix} b_{1} & a_{2} & a_{3} \\ b_{2} & a_{5} & a_{6} \\ b_{3} & a_{8} & a_{9} \end{bmatrix}$$

$$0_{2} = \begin{bmatrix} a_{1} & a_{2} & b_{1} \\ a_{4} & a_{5} & b_{2} \\ a_{7} & a_{8} & b_{3} \end{bmatrix}$$

$$x = 0x$$

$$y = \frac{0y}{0}$$

$$xute$$

$$z = \frac{0z}{0}$$

S. Court)

too lengthy.