© Eskil Johnson, Göteborg 2001.

1. Använd Tisons metod för att bestämma primimplikatorerna. Endast *t*, *u* och *w* är biforma variabler. Börja med variabeln *t* och fortsätt därefter med variablerna *u* och *w*.

Primimplikatorer: uw', w'xy, t'uz, tuv och uvz.

Använd en primimplikatortabell enligt Reusch för att bestämma en minimal disjunktiv form.

	t'uwz	tuvw	u'w'xy	uw'
uw'	0	0	0	1
w'xy	0	0	1	xy
t'uz	1	0	0	t'z
tuv	0	1	0	tv
uvz	ν	Z	0	vz

Minimal disjunktiv form: f(t,u,v,w,x,y,z) = t'uz + tuv + w'xy + uw'

Anmärkning: Variablerna x och y uppträder endast under formen xy. Införes variablen s = xy övergår funktionen f i en funktion av 6 variabler och kan behandlas med Karnaughdiagram.

2.

	00	01	<i>יz</i> 11	10		00	01 J	<i>VZ</i> 11	10		00	01	<i>'Z</i> 11	₁ 10 ₁
00	1	0	(1)	1	00	0	0	1	1	00	<u>-</u>	0	1	1
01 wx _		1	0	0	01 wx	-	1	0	0	01 <i>wx</i>	1	0	0	0
11_	1	0	0	1	11	1	1	0	0	11	0	0	0	0
10	0	0	0	1	10	0	0	-	1	10	0	1	1	1
	f					g			'		h			1 1

Fortsättning

Uppgift 2 fortsättning.

$$f = w'x'y + x'yz' + w'y'z' + w'xy' + wxz' = x'y \cdot (wz)' + w'y' \cdot (z x')' + wxz'$$

$$g = w'x'y + x'yz' + xy' = x'y \cdot (wz)' + xy'$$

$$h = w'x'y + x'yz' + w'y'z' + wx'z = x'y \cdot (wz)' + w'y'z' + wx'z$$

3.
$$f(x,y,z,w) = xy \cdot (yz)' + yzw$$

$$f(1,y,1,1) = 1 \cdot y \cdot (y \cdot 1)' + y \cdot 1 \cdot 1 = yy' + y$$

Dynamisk hasard vid övergången mellan insymbolerna (1011) och (1111).

$$f(1,y,1,0) = 1 \cdot y \cdot (y \cdot 1)' + y \cdot 1 \cdot 0 = yy'$$

Statisk 0-hasard vid övergången mellan insymbolerna (1010) och (1110).

$$f(1,1,z,1) = 1 \cdot 1 \cdot (1 \cdot z)' + 1 \cdot z \cdot 1 = z' + z$$

Statisk 1-hasard vid övergången mellan insymbolerna (1101) och (1111).

Förenkling av uttrycket för f(x,y,z,w) ger f(x,y,z,w) = xyz' + yzw.

För att erhålla hasardfrihet adderas konsensustermen xyw.

Detta ger f(x,y,z,w) = xyz' + yzw + xyw.

4.

Tillståndskodning:

		$q_2^{}q_3^{}$						
		00	01	11	10			
a	0	A	D	-	1			
q_1	1	В	Е	С	ı			

δ(λ)	x = 0	x = 1
A = 000	000 (0)	100 (0)
010	-	-
110	-	-
B = 100	000 (0)	111 (0)
D = 001	000 (1)	100 (1)
011	-	-
C = 111	001 (1)	101 (0)
E = 101	000 (0)	101 (0)

	00	q_{01}	3^{x}_{11}	10	
00	0	0	1	1	
$a = 0\overline{1}$	-	-	-		
$q_{1}^{01}q_{2_{11}}^{01}$		-	0	1	
10	0	0	0	0	

$$u = q_1' q_3 + q_2 x'$$

		C	$1_3^{\mathbf{X}}$				
	00	01	11	10	_	00	01
$q_{1}q_{2}^{01}$ $q_{1}q_{2}^{01}$ $q_{1}q_{2}^{01}$ $q_{1}q_{2}^{01}$	0	1	1	0	00	0	0
	-	-	-	-	q 1q 01 11	-	-
	-	-	1	0		-	[-
	0	1	1	0	10	0	1
	q_1^+ =	= <i>x</i>			-	q_2^+	=q

			Ç	1 3 ^X				
		00	01	11	10			
	00	0	0	0	0			
q ₁ q	01	<u> </u>	-	-	-			
111	11	L_		1	1			
	10	0	1	1	0			
$q_3^+ = q_2 + q_1 x$								

5.

Uppgift 5 fortsättning.

$\delta(\lambda)$	00	01	11	10
$A = \{1,4\}$	A (1)	D (-)	A (1)	A (1)
$B = \{2,3,6,7\}$	A (1)	B (1)	B (1)	A (1)
$C = \{5\}$	C (0)	B (-)	B (-)	C (0)
$D = \{8\}$	D (0)	D (0)	B (-)	C (0)

Maximala förenlighetsmängder: {1,4}, {2,3,6,7}, {5}, {8}.

6.

δ(λ)	00	01	11	10
000	000(0)	100(0)	-	000(0)
001	001(0)	101(-)	-	000(0)
011	001(0)	-	-	011(0)
010	010(0)	110(0)	-	011(0)
100	100(0)	100(0)	-	110(0)
101	100(-)	101(1)	-	-
111	-	-	-	-
110	010(0)	100(0)	-	110(0)

		λ	сy			xy				
	00	01	11	10		00	01	11	10	
$q_{2}q_{3}$	0	1	-	0	$q_{2}q_{3}$	Π	1	F		
	0	1	-	0		1	1	-		
	0	-	-	0		-	-	-	-	
10	0	1	-	0	10	0	1	Ē	1	
		q_1	= ()	. '		q_1	= 1		

$$q_1^+ = y + q_1 q_2' + q_1 x$$

Fortsättning nästa sida

Uppgift 6 fortsättning.

$$q_2^+ = q_1 x + q_2 x + q_1' q_2 q_3' + q_2 q_3' y'$$

		λ	cy.			xy				
	00	01	11	10		00	01	11	10	
00	0	0	-	0	00	0	0	-	0	
$q_{2}q_{3}^{01}$	1	1	-	0	$q_{2}q_{3}^{01}$	0	1	('	-	
11	1		[-]	1	121 3	-	<u></u>		1	
10	0	0	ŀ	1	10	0	0	1	0	
		q_1	= 0		$q_1 = 1$					

$$q_3^+ = q_3 y + q_1' q_3 x' + q_1' q_2 x$$

		λ	сy			xy			
	00	01	11	10	_	00	01	11	10
00	0	0	-	0	00	0	0	-	0
	0	-	-	0	a = 01	-	1	-	-
q_2q_3	0	-	-	0	$q_2 q_3$	-	-	-	_
10	0	0	-	0	10	0	0	-	0
		q_1	= 0	·	$q_1 = 1$				

$$u = q_1 q_3 \text{ eller } u = q_3 y$$