实验数据处理

质量和密度的测量 李佩哲 PB21051049

2022 年 4 月 14 日

1 测量记录

原始数据见附件.

整理如下

称量金属圆柱的尺寸和质量: D = 2.480 cm, H = 3.990 cm, m = 163.64 g

排水法测金属圆柱的体积: $\frac{F_{g}}{g}$ = 19.23 g

弹簧振子法测金属片质量: 见表1

转动定律法测小圆柱质量: 小金属块 2m = 29.92 g, 其余见表2

m/g	$t(30T)/\mathrm{s}$
m_0	37.21
$m_0 + 100.01$	52.75
$m_0 + m_x$	45.74

表 1: 弹簧振子法测金属片质量

r/cm	$t(30T)/\mathrm{s}$
10.00	78.72
20.00	61.14
30.00	56.00
40.00	54.63
50.00	55.37
$r_x = 40.00$	$t_x = 48.74$

表 2: 转动定律法测小圆柱质量

2 分析与讨论

2.1 金属圆柱

质量 m=0.16364 kg,体积由 $\rho gV=F_{\mathbb{F}}$ 得 $V=1.9287\times 10^{-5}$ m³。故密度 $\rho=\frac{m}{V}=8.4845\times 10^{3}$ kg/m³.另外卡尺法所测体积 $V'=\pi\left(\frac{D}{2}\right)^{2}H=1.9274\times 10^{-5}$ m³。故此法所得密度 $\rho'=\frac{m}{V'}=8.4903\times 10^{3}$ kg/m³.

2.2 金属片

由 $m_0 + 100.01 = \left(\frac{52.75}{37.21}\right)^2 m_0$ 得 $m_0 = 99.05$ g,从而由 $m_x + m_0 = \left(\frac{45.74}{37.21}\right)^2 m_0$ 得 $m_x = 50.92$ g.

2.3 小圆柱

曲
$$\frac{gr}{4\pi^2}T^2 = r^2 + \frac{I_c}{2m}$$
 得 $I_c = 0.005014$,故 $m = \frac{I_c}{\frac{T^2}{4\pi^2}gR - \frac{1}{12}L^2 - R^2} = 49.59$ g.