Quiz-I Solutions

nivi Ellin				
size Rangelum)	Avg. Paxticle dia (Dpillum)	Mass(g)	Mass fraction(Xi)	(xi/Dpi)
-704+352	$=\frac{704+352}{2}=528$	25	$=\frac{25}{250}=0.10$	1.8939X10
-352 + 176 .	264	37.5	0.15	5.6818X10
-176 + 88	132	62-5	6.25	18.939 XIO
-88 +44	66 P-11	75	0.30	45.454X10
- 44 +0 (Pan)	22 101 x 00 F 2	50	0.20	90.909 XIO-Y
Poolo Salvaj	21-01 X 1/11-010	≤m=250g	5x1=1	\$ \frac{\infty}{\overline{D}_{\rho_1}} = 162-878
200,000 44-01	- ALVESTON	C.		VC

Volume Surface mean Diameter, Ds,

$$\overline{D}_{S} = \frac{1}{\sum_{i=1}^{2} \left(\frac{x_{i}}{\overline{D}_{p_{i}}}\right)^{n-1/2}} \sum_{i=1}^{n-1/2} \left(\frac{x_{i}}{\overline{D}_{p_{i}}}\right)^{n-1/2} \sum_{i=1}^{n-1/2} \left(\frac{x_{i}}{\overline{D}_{p_{i}}}\right)$$

AW = 0-126x10 m/m2 /

Volume of scheek. Ye = T. To = T. (E. 264x

Avg. diameter (Dpi) (Um)	No. of Particles	Mass, (m), kg = $S_p \cdot V_p \cdot n$ = $S_p \cdot (\overline{U} \overline{D}_p^3) \cdot n$	Mass fraction (%)	$\left(\frac{\overline{D}^{b_i}}{x^{l_i}}\right) \times 10^{-c}$
$=\frac{0+2}{2}=1$	2000	2.77×10-12	0.011	0.011
3	600	22-5 × 10-12 0	0.090	0.030
6	140	41-93×10-12	0.168	0.028
10	40	55.47X10-12	0-222	0.022
14	15	57.00 X10-12	0-229	0.016
18 NS 1030	5	40.44×10-12	0.162	0.009
22	2	29.53×10-12	0.118	0.005
	meter, i Di	$2m = 249.72 \times 10^{-12}$	PROG :	$\leq \left(\frac{\overline{\Delta_i}}{\overline{D}\rho_i}\right) = 0.121 \times 10^6$
	(\widehat{D}_{Ri}) (μ m) $= \frac{0+2}{2} = 1$ 3 6 10 14	$\begin{array}{c cccc} (D_{pi}) & (\mu m) & Particles \\ \hline (D_{pi}) & (\mu m) & Particles \\ \hline & & 2000 \\ \hline & & & 2000 \\ \hline & & & & 600 \\ \hline & & & & 140 \\ \hline & & & & 10 \\ \hline & & & & 15 \\ \hline & & & & 18 \\ \hline & & & & 22 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Volume swiface mean cliameter,

$$\overline{D_S} = \frac{1}{\frac{S}{S}(\frac{\chi_1}{\overline{D_{P_1}}})} = \frac{1}{0.151 \times 10^6}$$

$$\bar{D}_{S} = 8.264 \times 10^{-6} \, \text{m} = 8.264 \, \mu \text{m}$$

Swiface area of Sphere $Sp = (TT \cdot D_s^2) = TT \cdot (8.264 \times 10^{-6})^2$

Volume of sphere, $V_p = \overline{U} \cdot \overline{D}_s^3 = \overline{U} \cdot (8.264 \times 10^{-6})^2$

Specific Swiface area, $Aw = \frac{Sp}{Vp} = \frac{214.44\times10^{-12}}{295.36\times10^{-18}}$

$$V_{P} = \frac{\pi}{6} \left(\frac{1}{4}\right)^{3} - \frac{\pi}{4} \left(\frac{1}{16}\right)^{2} \left(\frac{1}{4}\right)$$

$$V_{\rho} = 0.00741 \text{ inch}^3$$

Surface area of spherical bead = (sportanezarea alestrone) = (Student of continuon)

$$S_p = \frac{\mathbb{I}}{[4]^2} - \left[2(\frac{\pi}{6})(\frac{1}{6})^2 + \left[\frac{\pi}{4}(\frac{1}{6})(\frac{1}{4})\right]\right]$$

$$S_p = 0.196 - (0.0061) + (0.0491)$$

$$S_p = 0.239 \text{ inch}^2$$

Volume of equivalent sphere = Volume of spherical bead $\frac{\pi}{6} D_p^3 = 0.00741$ $\frac{\pi}{6} D_p = 0.2418 \text{ inch}$

Sphericity,
$$\phi_s = \frac{6Vp}{Sp Dp} = \frac{6 \times 0.00741}{0.239 \times 0.2418}$$

		A.
	14.	4
-	1 -	-1
CI	dr-	1
7	-	

Mesh	Fraction of	Fraction of Mass	Fraction of Mass	cumulative mass fraction		
No-	Mass in feed (XF)	retained in oversize (xp)	retained in undersize (xg)	feed (xf	Oversize	
4	0.0107	0.018	0	6.0107	0.018	0
6	0.0235	6.033	0	0.0342	0.051	0
8	0.0672	6.088	0 (4)	0-1014	0.139	0
10	0.0864	0.112	0	0.1878	0.251	0
14	0.1007	0.142	0 11100-0	0.2965	0.393	0
20	0.1759	0.229	0	0.4724	0.622	0
28	0.1397	0.102	0	0-6121	0.004	0
35	0.1077	0.104	0.1195	0.7198	809.0	0.1195
48	0.1013	0.065	0-2198	0.0211	0.973	0.3393
65	0.0746	0.025	6 · 23 91	D. 8957	0.998	0.5784
100	0.0501	6.002		0.9458	1	0.7661
150	0.033	0	0.1427	0.9788	1	0.4088
200	0.0212	0	0.0912	10	1	1

for 40 - mesh screen,

$$x_{f} = 0.0211$$
, $x_{D} = 0.973$, $x_{B} = 0.3393$

Overall Screen efficiency/effectiveness (%)

$$E = \frac{(\chi^{D} - \chi^{B})_{5} (1 - \chi^{D}) (\chi^{D})}{(\chi^{D} - \chi^{D}) (\chi^{D}) (1 - \chi^{B})} \times 100$$

$$= \frac{(0.0211 - 0.3393)(0.973 - 0.8211)(0.973)(1-0.3393)}{(0.973 - 0.3393)^2(1-0.8211)(0.8211)}$$

