

Classification with nearest neighbors

Brett Lantz
Instructor

Classification tasks for driverless cars

Understanding Nearest Neighbors

Measuring similarity with distance

$$dist(p,q) = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2 + \dots + (p_n - q_n)^2}$$

Applying nearest neighbors in R

```
library(class)
pred <- knn(training_data, testing_data, training_labels)</pre>
```


Let's practice!

What about the 'k' in kNN?

Brett Lantz
Instructor

Choosing 'k' neighbors

Bigger 'k' is not always better

Choosing 'k'

Let's practice!

Data preparation for kNN

Brett Lantz
Instructor

kNN assumes numeric data

rectangle = 1

diamond = 0

rectangle = 0

diamond = 1

rectangle = 0

diamond = 0

kNN benefits from normalized data

Normalizing data in R

```
# define a min-max normalize() function
normalize <- function(x) {
   return((x - min(x)) / (max(x) - min(x)))
}

# normalized version of r1
summary(normalize(signs$r1))
   Min. 1st Qu. Median Mean 3rd Qu. Max.
   0.0000   0.1935   0.3528   0.4046   0.6129   1.0000

# un-normalized version of r1
summary(signs$r1)
   Min. 1st Qu. Median Mean 3rd Qu. Max.
   3.0   51.0   90.5   103.3   155.0   251.0</pre>
```


Let's practice!