

$$\cos t = \frac{\text{adj}}{\text{hyp}}$$

$$\sin t = \frac{\text{opp}}{\text{hyp}}$$

Cosine and sine

For any real t, the **cosine** of t (abbreviated cos t) and the **sine** of t (abbreviated $\sin t$) are the x- and y-coordinates of the point P_t .

 $\cos t = \text{the } x\text{-coordinate of } P_t$ $\sin t = \text{the } y\text{-coordinate of } P_t$

EXAMPLE

Examining the coordinates of $P_0 = A$, $P_{\pi/2}$, P_{π} , and $P_{-\pi/2} = P_{3\pi/2}$ we obtain the following values:

$$\cos 0 = 1$$
 $\cos \frac{\pi}{2} = 0$ $\cos \pi = -1$ $\cos \left(-\frac{\pi}{2}\right) = \cos \frac{3\pi}{2} = 0$
 $\sin 0 = 0$ $\sin \frac{\pi}{2} = 1$ $\sin \pi = 0$ $\sin \left(-\frac{\pi}{2}\right) = \sin \frac{3\pi}{2} = -1$

The range of cosine and sine. For every real number t,

$$-1 \le \cos t \le 1$$
 and $-1 \le \sin t \le 1$.

The Pythagorean identity. The coordinates $x = \cos t$ and $y = \sin t$ of P_t must satisfy the equation of the circle. Therefore, for every real number t,

$$\cos^2 t + \sin^2 t = 1.$$

(Note that $\cos^2 t$ means $(\cos t)^2$, not $\cos(\cos t)$. This is an unfortunate notation, but it is used everywhere in technical literature, so you have to get used to it!)

Periodicity. Since C has circumference 2π , adding 2π to t causes the point P_t to go one extra complete revolution around C and end up in the same place: $P_{t+2\pi} = P_t$. Thus, for every t,

$$cos(t + 2\pi) = cos t$$
 and $sin(t + 2\pi) = sin t$.

Cosine is an even function. Sine is an odd function. Since the circle $x^2 + y^2 = 1$ is symmetric about the x-axis, the points P_{-t} and P_t have the same x-coordinates and opposite y-coordinates

$$\cos(-t) = \cos t$$
 and $\sin(-t) = -\sin t$.

Complementary angle identities. Two angles are complementary if their sum is $\pi/2$ (or 90°). The points $P_{(\pi/2)-t}$ and P_t are reflections of each other in the line y=x so the x-coordinate of one is the y-coordinate of the other and vice versa. Thus,

$$\cos\left(\frac{\pi}{2}-t\right)=\sin t$$
 and $\sin\left(\frac{\pi}{2}-t\right)=\cos t$.

Supplementary angle identities. Two angles are supplementary if their sum is π (or 180°). Since the circle is symmetric about the y-axis, $P_{\pi-t}$ and P_t have the same y-coordinates and opposite x-coordinates. Thus,

$$cos(\pi - t) = -cos t$$
 and $sin(\pi - t) = sin t$.

Some Special Angles

Cosines and sines of special angles

Degrees	0°	30°	45°	60°	90°	120°	135°	150°	180°
Radians	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
Cosine	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{1}{\sqrt{2}}$	$-\frac{\sqrt{3}}{2}$	-1
Sine	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0

The Addition Formulas

$$\cos(s + t) = \cos s \cos t - \sin s \sin t$$

$$\sin(s + t) = \sin s \cos t + \cos s \sin t$$

$$\cos(s - t) = \cos s \cos t + \sin s \sin t$$

$$\sin(s - t) = \sin s \cos t - \cos s \sin t$$

The Addition Formulas

$$\cos(s + t) = \cos s \cos t - \sin s \sin t$$

$$\sin(s + t) = \sin s \cos t + \cos s \sin t$$

$$\cos(s - t) = \cos s \cos t + \sin s \sin t$$

$$\sin(s - t) = \sin s \cos t - \cos s \sin t$$

EXAMPLE

Find the value of $\cos(\pi/12) = \cos 15^{\circ}$.

The double-angle formulas:

$$\sin 2t = 2\sin t \cos t \qquad \text{and}$$

$$\cos 2t = \cos^2 t - \sin^2 t$$

$$= 2\cos^2 t - 1 \qquad \text{(using } \sin^2 t + \cos^2 t = 1\text{)}$$

$$= 1 - 2\sin^2 t$$

Solving the last two formulas for $\cos^2 t$ and $\sin^2 t$, we obtain

$$\cos^2 t = \frac{1 + \cos 2t}{2} \quad \text{and} \quad \sin^2 t = \frac{1 - \cos 2t}{2},$$

Other Trigonometric Functions

Tangent, cotangent, secant, and cosecant

$$tan t = \frac{\sin t}{\cos t}$$

$$\cot t = \frac{\cos t}{\sin t} = \frac{1}{\tan t}$$

$$\sec t = \frac{1}{\cos t}$$

$$\csc t = \frac{1}{\sin t}$$

Other Trigonometric Functions

Other Trigonometric Functions

The CAST rule for signs of trigonometric functions

EXAMPLE

Find the sine and tangent of the angle θ in $\left[\pi, \frac{3\pi}{2}\right]$ for which we

have
$$\cos \theta = -\frac{1}{3}$$
.

Other Trigonometric Identities

$$tan(x+\pi) = tan x$$

$$1 + tan^{2}x = sec^{2}x$$

$$1 + cot^{2}x = csc^{2}x$$

$$tan(s+t) = tans + tant$$

$$tan(s7t) = tans 7 tant$$

$$1 tans.tant$$

THEOREM

Sine Law:

Cosine Law:

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$b^2 = a^2 + c^2 - 2ac \cos B$$

$$c^2 = a^2 + b^2 - 2ab \cos C$$

A function f is **one-to-one** if $f(x_1) \neq f(x_2)$ whenever x_1 and x_2 belong to the domain of f and $x_1 \neq x_2$ or, equivalently, if

$$f(x_1) = f(x_2) \implies x_1 = x_2.$$

A function f is **one-to-one** if $f(x_1) \neq f(x_2)$ whenever x_1 and x_2 belong to the domain of f and $x_1 \neq x_2$ or, equivalently, if

$$f(x_1) = f(x_2) \implies x_1 = x_2.$$

If f is one-to-one, then it has an **inverse function** f^{-1} . The value of $f^{-1}(x)$ is the unique number y in the domain of f for which f(y) = x. Thus,

$$y = f^{-1}(x) \iff x = f(y).$$

If f is one-to-one, then it has an **inverse function** f^{-1} . The value of $f^{-1}(x)$ is the unique number y in the domain of f for which f(y) = x. Thus,

$$y = f^{-1}(x) \iff x = f(y).$$

EXAMPLE

Show that f(x) = 2x - 1 is one-to-one, and find its inverse $f^{-1}(x)$.

Properties of inverse functions

- 1. $y = f^{-1}(x) \iff x = f(y)$.
- 2. The domain of f^{-1} is the range of f.
- 3. The range of f^{-1} is the domain of f.
- 4. $f^{-1}(f(x)) = x$ for all x in the domain of f. $f^{-1} \circ f = I_{\mathcal{D}(f)}$,
- 5. $f(f^{-1}(x)) = x$ for all x in the domain of f^{-1} . $f \circ f^{-1} = I_{\mathcal{D}(f^{-1})}$
- 6. $(f^{-1})^{-1}(x) = f(x)$ for all x in the domain of f.

7. The graph of f^{-1} is the reflection of the graph of f in the line x = y.

EXAMPLE. Show that the function

$$f(x) = \frac{1 - 2x}{1 + x}$$

is one-to-one, and calculate the inverse function f'. Specify the domains and ranges of both f and f'.

An exponential function is a function of the form

$$f(x) = a^x,$$

where a is a positive constant which is not 1.

But how can we raise a number to an irrational number?

If x is a positive integer, then

$$a^x = \underbrace{a \dots a}_{x \text{ factors}}$$

If x is a positive integer, then

$$a^x = \underbrace{a \dots a}_{x \text{ factors}}$$

We assume $a^0 = 1$, and if x is a negative integer, then

$$a^x = \frac{1}{a^{-x}}$$

If x is a positive integer, then

$$a^x = \underbrace{a \dots a}_{x \text{ factors}}$$

We assume $a^0 = 1$, and if x is a negative integer, then

$$a^x = \frac{1}{a^{-x}}$$

If x = p/q is a rational number where p and q > 0 are integers, then

$$a^x = a^{p/q} = \sqrt[q]{a^p} = \left(\sqrt[q]{a}\right)^p.$$

Irrational powers can be calculated by approximating the irrational exponent by rational powers.

For a concrete example, lets consider the number 2 vaised to the power \$3, i.e., $2^{\sqrt{3}}$.

there is exactly one number that is greater than all of the numbers

$$2^{1.7}$$
, $2^{1.73}$, $2^{1.732}$, $2^{1.73205}$, ...

and less than all the numbers

$$2^{1.8}$$
, $2^{1.74}$, $2^{1.733}$, $2^{1.7321}$, $2^{1.73206}$,...

Laws of exponents

If a > 0 and b > 0, and x and y are any real numbers, then

(i)
$$a^0 = 1$$

(ii)
$$a^{x+y} = a^x a^y$$

(iii)
$$a^{-x} = \frac{1}{a^x}$$

(v) $(a^x)^y = a^{xy}$

(iv)
$$a^{x-y} = \frac{a^x}{a^y}$$

(vi) $(ab)^x = a^x b^x$

$$(v) \quad (a^x)^y = a^{xy}$$

$$(vi) \quad (ab)^x = a^x b^x$$

The Natural Exponential Function

Logarithms

If a > 0 and $a \ne 1$, the function $\log_a x$, called **the logarithm of** x **to the base** a, is the inverse of the one-to-one function a^x :

$$y = \log_a x \iff x = a^y, \quad (a > 0, a \neq 1).$$

$$a^{x}$$
 is a function $|R \rightarrow (0, \infty)|$
 $\log_{a} x$ is a function $(0, \infty) \rightarrow |R|$

Logarithms

cancellation identities

$$\log_a(a^x) = x$$
 for all real x and $a^{\log_a x} = x$ for all $x > 0$.

Logarithms

cancellation identities

$$\log_a(a^x) = x$$
 for all real x and $a^{\log_a x} = x$ for all $x > 0$.

Laws of logarithms

If x > 0, y > 0, a > 0, b > 0, $a \ne 1$, and $b \ne 1$, then

(i)
$$\log_a 1 = 0$$

(ii)
$$\log_a(xy) = \log_a x + \log_a y$$

(iii)
$$\log_a \left(\frac{1}{x}\right) = -\log_a x$$

(iii)
$$\log_a \left(\frac{1}{x}\right) = -\log_a x$$
 (iv) $\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y$

(v)
$$\log_a (x^y) = y \log_a x$$
 (vi) $\log_a x = \frac{\log_b x}{\log_b a}$

(vi)
$$\log_a x = \frac{\log_b x}{\log_b a}$$

Logarithms

Logarithms

EXAMPLE

Solve the equation $3^{x-1} = 2^x$.