Fondamenti di elettronica

Corso di laurea in Ingegneria Biomedica

Prima prova di accertamento – 22/06/2023 – Canale 1 – Prof. Meneghesso

COGNOME: NOME: MATRICOLA:

DA LEGGERE CON ATTENZIONE PRIMA DI INIZIARE LA PROVA

- 1) Bisogna consegnare il testo del compito anche in caso di ritiro
- 2) Risposte non chiare o non adequatamente giustificate saranno penalizzate
- 3) Nei conti e nei risultati, i valori numerici <u>**DEVONO**</u> essere accompagnati dalla <u>**relativa unità di misura**</u>. I risultati senza unità di misura saranno considerati sbagliati.
- 4) L'elaborato deve essere scritto e consegnato in forma ORDINATA e COMPRENSIBILE.
- 5) Il tempo a disposizione è di 2 ore

Problema 1

DATI: $R_1 = 8k\Omega$, $R_i = 250\Omega$, $R_L = 750\Omega$, $V_B = 4V$, $V_{DD} = 10V$ Parametrati dei MOS: M_1 : $k_{n1} = 0.5 mA/V^2$, $V_{TN1} = 2V$, $\lambda_{n1} = 0$ M_2 : $k_{n2} = 4 mA/V^2$, $V_{TN2} = 2V$, $\lambda_{n2} = 0$ M_3 : $k_{n3} = 0.5 mA/V^2$, $V_{TN3} = 2V$, $\lambda_{n3} = 0.005 V^{-1}$

 M_4 : $k_{n4} = 1 \text{mA/V}^2$, $V_{TN4} = 2 \text{V}$, $\lambda_{n4} = 0.005 \text{V}^{-1}$

Dato il circuito in figura, calcolare:

- 1. Il punto di polarizzazione di tutti i MOSFET
- 2. Disegnare il modello ai piccoli segnali e calcolare la transconduttanza g_{m1} e g_{m2} di M_1 e M_2 .

Dal modello ai piccoli segnali calcolare:

- 3. La resistenza di ingresso
- 4. La resistenza di uscita
- 5. Il guadagno di tensione dall'ingresso v_i all'uscita v_o.
- 6. (facoltativo) il guadagno di corrente i_L/i_L

Problema 2

Dato il filtro in figura realizzato con un amplificatore operazionale ideale:

- 1. Trovare la funzione di trasferimento del filtro
- 2. Tracciare il diagramma asintotico di Bode del modulo e della fase
- 3. Dato il segnale di ingresso $v_S = V_{S0} + V_{S1} \sin(\omega_S t + \phi_S)$ con $V_{S0} = 1V$, $V_{S1} = 0.1V$ $\phi_S = 30^\circ$ trovare il segnale di uscita nei due casi:
 - a. $\omega_{S1} = 10^3 \text{rad/s}$,
 - b. $\omega_{S2} = 10^5 \text{rad/s}$

DATI: $R_1 = 2k\Omega$, $R_2 = 20k\Omega$, $R_3 = 10k\Omega$, $R_4 = 90k\Omega$, $C_1 = 5uF$, $C_2 = 50pF$, $C_3 = 1nF$.

Problema 3

Dato il circuito in figura realizzato con un amplificatore operazionale ideale e un diodo zener con $V_{ON} = 0V$ e $V_Z = 8V$:

- 1. Tracciare la transcaratteristica di v_0 in funzione di v_S calcolando e indicando chiaramente nel piano v_S v_0 le coordinate dei punti di spezzamento della curva
- 2.
- 3. Calcolare il valore di v_0 con:
 - a. $v_S = 2.5V$
 - b. $v_S = -2V$
 - c. $v_S = -9V$

