TP Numérique Acoustique musicale

KANG Jiale

December 8, 2024

1 Premiers sons

- 1 $\gamma_m(\zeta = 0.5) = 1/3$.
- 2 γ_m est la valeur critique qui délimite le seuil entre le silence (pas de vibration) et le son (vibrations établies). Pour un musicien, γ_m est signifié la pression minimale nécessaire pour initier la vibration de l'anche.
- $3 \zeta_m(\gamma = 0.5) = 0.1.$
- 4 Pour un musicien, ζ_m représente la limite critique d'amortissement au-delà de laquelle l'anche cesse de produire des vibrations stables. Il traduit l'équilibre entre stabilité et instabilité.

2 Dynamique

1 Présenter sur le figure 1.

Figure 1: $\zeta - \gamma$

- $2 \gamma(\zeta=0.1)=0.6$, la valeur maximale de γ est 1.05, $p_m=\gamma P_p$ donc cette valeur représente la limite où la pression appliquée dans la bouche du musicien devient trop élevée pour que les oscillations auto-entretenues puissent se maintenir.
- 3 $\gamma_{max}(\zeta=0.2)=1.3,\ \gamma_p(\zeta=0.2)=1,$ ce phénomène s'appelle bifurcation, ce type s'appelle Hopf.
- 4 Présenter sur le figure 2.

Figure 2: Amplitude- γ

- 5 La taille de l'intervalle est diminuée, $\zeta=0.07.$
- 6 Présenter sur le figure 3.

Figure 3: Non-périodique

3 Fréquence de jeu, justesse

- 1 Fréquence est diminuée.
- 2 Ces fréquences sont toujours plus petite que la première fréquence modale.
- 3 On note que lorsque l'on augmente ζ , la fréquence non harmonique diminue et que lorsque l'on augmente γ , la fréquence harmonique augmente. Par conséquent, on augmente la fréquence modale, on augmente γ et on diminue ζ .

4 Timbre et géométrie du résonateur

- 1 Oui. Les fréquences harmoniques sont différentes.
- 2 Les amplitudes de configuration 2 sont plus hautes que les configurations 1.
- 3 Clarinettes sont respectés la configuration 1, avec le résonateur cylindrique; Saxophones sont respectés la configuration 2, avec le résonateur conique.

5 Jouabilité et justesse des registres supérieurs

- 1 En fixant $C_2 = 2000$, $C_3 = 0$, en fixant ζ et en augmentant γ , on trouve que la fréquence augmente puis diminue à travers le diagramme de bifurcation. En augmentant le ζ , on trouve que le graphique de bifurcation comporte deux points de bifurcation, le deuxième point est le deuxième registre. En fixant $C_2 = 0$, $C_3 = 2000$, en continuant à augmenter le ζ comme precede, on trouve que le graphique de bifurcation comporte un deuxième point de bifurcation, ce point est le troisième registre.
- 2 Non, parce que une partie de γ ne produissent pas de son. Pour les autres γ , elles mènent à un second registre.
- 3 Pour $\zeta \leq 0.5$, elle peut produir le son plus proche d'un second registre.

6 Conclusion

En réglant C_2 , C_3 , on peut changer la fréquence fondamentale. En réglant γ et ζ , on peut changer la fréquence autour de la fréquence fondamentale et changer la pitch. Mais les interconnexions entre ces paramètres limitent l'indépendance complète.