Типовой расчет по алгебре и геометрии (4 семестр).

Задача 1.

- 1) Перечислите все собственные идеалы кольца \mathbb{Z}_n .
- 2) Укажите среди них максимальные идеалы и найдите факторкольца по ним.
 - 3) Найдите нильрадикал $Rad\mathbb{Z}_n$ и факторкольцо $\mathbb{Z}_n/Rad\mathbb{Z}_n$.
- 4) Найдите в \mathbb{Z}_n пару идемпотентов и соответствующее им разложение \mathbb{Z}_n во внутреннюю прямую сумму подколец.
- 5) Выпишите явные формулы прямого и обратного изоморфизма \mathbb{Z}_n и внешней прямой суммы соотвествующих колец.

```
Вариант 1
            n = 250.
                        Вариант 13
                                     n = 45.
                        Вариант 14
Вариант 2
            n = 99.
                                     n = 68.
Вариант 3
            n = 242.
                        Вариант 15
                                     n = 104.
Вариант 4
                        Вариант 16
                                     n = 63.
            n = 147.
Вариант 5
                        Вариант 17
            n = 88.
                                     n = 80.
Вариант 6
            n = 117.
                        Вариант 18
                                     n = 363.
                        Вариант 19
Вариант 7
            n = 56.
                                     n = 50.
Вариант 8
                        Вариант 20
            n = 63.
                                     n = 245.
Вариант 9
                        Вариант 21
            n = 135.
                                     n = 153.
Вариант 10
                        Вариант 22
             n = 76.
                                     n = 54.
Вариант 11
                        Вариант 23
             n = 275.
                                     n = 175.
Вариант 12
             n = 75.
                        Вариант 24
                                     n = 98.
```

Задача 2.

- 1) Докажите, что множество R матриц вида $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ является коммутативным подкольцом кольца матриц $\mathfrak{gl}(2,\mathbb{F}_p)$.
 - 2) Сколько в нем элементов?
 - 3) Является ли кольцо R полем?

Если R не является полем, выполните пункты задания A. Если R является полем, выполните пункты задания B.

- А4) Изоморфно ли кольцо R кольцу \mathbb{Z}_n при некотором n?
- А5) Опишите группу R^* обратимых элементов кольца R.
- A6) Найдите все идеалы R.
- A7) Найдите нильрадикал R.
- A8) Представьте R в виде внутренней прямой суммы его подколец и изоморфной внешней прямой суммы колец или докажите, что это невозможно.
 - B4) Найдите характеристику R и его простое подполе F.
 - В5) Найдите базис и степень расширения поля R над полем F.
- В6) Укажите какой-нибудь примитивный элемент расширения поля R над F, найдите его порядок в мультипликативной группе поля R.
- В7) Найдите минимальный многочлен указанного примитивного элемента.
- В8) Укажите изоморфное полю R факторкольцо кольца многочленов $\mathbb{F}_p[x]$ по некоторому идеалу.

Вариант 1
$$p = 5$$
 $\begin{cases} \gamma = 2\beta \\ \delta = \alpha - \gamma \end{cases}$ Вариант 2 $p = 3$ $\begin{cases} \beta + \gamma = 0 \\ -\alpha + \delta = \beta \end{cases}$ Вариант 3 $p = 7$ $\begin{cases} \gamma + 3\beta = 0 \\ \delta = \alpha + 2\beta \end{cases}$ Вариант 4 $p = 5$ $\begin{cases} \gamma + \beta = 0 \\ \delta - \alpha = 3\beta \end{cases}$ Вариант 5 $p = 7$ $\begin{cases} \gamma = 2\beta \\ \delta = \alpha + \beta \end{cases}$ Вариант 6 $p = 5$ $\begin{cases} \beta = \gamma \\ \alpha = \beta + \delta \end{cases}$

-

Вариант 7
$$p=3$$
 $\begin{cases} \gamma-\beta=0 \\ \alpha+\beta=\delta \end{cases}$ Вариант 8 $p=7$ $\begin{cases} \gamma=4\beta \\ \delta+5\beta=\alpha \end{cases}$ Вариант 9 $p=5$ $\begin{cases} \gamma=2\beta \\ \delta=\alpha+\beta \end{cases}$ Вариант 10 $p=3$ $\begin{cases} \gamma-\beta=0 \\ \delta+\beta=\alpha \end{cases}$ Вариант 11 $p=5$ $\begin{cases} \gamma+2\beta=0 \\ \alpha-\delta=-\beta \end{cases}$ Вариант 12 $p=3$ $\begin{cases} \gamma+\beta=0 \\ \alpha-\delta=-\beta \end{cases}$ Вариант 13 $p=5$ $\begin{cases} \beta-\gamma=0 \\ \delta-\alpha=\beta \end{cases}$ Вариант 14 $p=5$ $\begin{cases} \beta-\gamma=0 \\ \delta-\alpha=\beta \end{cases}$ Вариант 15 $p=7$ $\begin{cases} \gamma-3\beta=0 \\ \alpha+4\delta=4\beta \end{cases}$ Вариант 16 $p=3$ $\begin{cases} \beta-\gamma=0 \\ \alpha-\delta=\beta \end{cases}$ Вариант 17 $p=3$ $\begin{cases} \beta-\gamma=0 \\ \alpha-\delta=\beta \end{cases}$ Вариант 18 $p=5$ $\begin{cases} \beta-\gamma=0 \\ \alpha-\delta=\beta \end{cases}$ Вариант 19 $p=7$ $\begin{cases} \gamma+3\beta=0 \\ \alpha-\alpha=-2\beta \end{cases}$ Вариант 20 $p=5$ $\begin{cases} \gamma+2\beta=0 \\ \alpha-\delta=-\beta \end{cases}$ Вариант 21 $p=5$ $\begin{cases} \gamma+2\beta=0 \\ \alpha-\delta=-\beta \end{cases}$ Вариант 22 $p=3$ $\begin{cases} \gamma=\beta \\ \delta-\alpha=\beta \end{cases}$ Вариант 24 $p=3$ $\begin{cases} \beta+2\gamma=0 \\ 3(\delta-\alpha)=\beta \end{cases}$ Вариант 24 $p=3$ $\begin{cases} \beta+2\gamma=0 \\ 3(\delta-\alpha)=\beta \end{cases}$ Вариант 24 $p=3$ $\begin{cases} \beta+2\gamma=0 \\ \beta-\beta=0 \\ \alpha=\beta+\delta \end{cases}$

Задача 3.

Пусть A — наименьшее целостное подкольцо поля \mathbb{R} , содержащее число $\alpha = \sqrt[s]{d} \ (\alpha$ — корень $f(x) = x^s - d$). K = Quot A — его поле отношений.

- 1) Найдите общий вид элементов кольца A. Покажите, что $A = \mathbb{Z}[\alpha]$, где α корень f(x).
 - 2) Докажите, что $\mathbb{Z}[\alpha] \simeq \mathbb{Z}[x]/(f(x))$.
- 3) Найдите общий вид элементов $\mathbb{Q}[\alpha]$, где α корень f(x). Докажите, что $\mathbb{Q}[\alpha]\simeq \mathbb{Q}[x]/(f(x))$.
 - 4) Докажите, что $\mathbb{Q}[\alpha] \simeq \mathbb{Q}[x]/(f(x))$ является полем.
 - 5) Докажите, что $K = \mathbb{Q}[\alpha]$.
 - 6) Найдите простое подполе поля K.
 - 7) Найдите степень расширения поля K над его простым подполем.
 - 8) Найдите все подполя поля K.
- 9) Найдите минимальный многочлен $\gamma = 1 + \alpha \in K$ над простым подполем поля K.
 - 10) Найдите явную формулу для обратного элемента в K^* .

Вариант 1	s=2	d = 6	Вариант 13	s=2	d = 13
Вариант 2	s = 3	d=4	Вариант 14	s = 3	d = 19
Вариант 3	s=2	d = 15	Вариант 15	s=2	d = 7
Вариант 4	s = 3	d = 5	Вариант 16	s = 3	d = 21
Вариант 5	s = 2	d = 10	Вариант 17	s = 3	d = 17
Вариант 6	s = 2	d = 5	Вариант 18	s = 3	d = 12
Вариант 7	s = 2	d = 8	Вариант 19	s=2	d = 22
Вариант 8	s = 3	d = 6	Вариант 20	s = 3	d = 7
Вариант 9	s = 2	d=3	Вариант 21	s = 3	d = 10
Вариант 10	s = 3	d = 15	Вариант 22	s = 3	d = 13
Вариант 11	s = 2	d = 35	Вариант 23	s = 3	d = 11
Вариант 12	s = 3	d = 9	Вариант 24	s=2	d = 19

Задача 4.

Пусть R = A/(p), где A — кольцо из задачи 3.

- 1) Найдите общий вид элементов кольца R. Покажите, что $R = \mathbb{F}_p[\beta]$, где β корень $g(x) = x^s [d]_p \in \mathbb{F}_p[x]$.
 - (2) Найдите |R|.
 - 3) Докажите, что $R \simeq \mathbb{F}_p[x]/(g(x)).$
 - 4) Выясните, является ли R полем.

Если R не является полем, выполните пункты задания A. Если R является полем, выполните пункты задания B.

- A5) Найдите нильрадикал Rad R.
- A6) Представьте R в виде внутренней прямой суммы его подколец и изоморфной внешней прямой суммы колец или докажите, что это невозможно.
 - А7) Найдите порядок группы R^{\star} обратимых элементов кольца.
- В5) Найдите в поле R его простое подполе и степень расширения R над простым подполем. Найдите минимальный многочлен элемента β .
- В6) Какой известной группе изоморфна мультипликативная группа поля R^* ? Найдите порядок элемента β в R^* .
- В7) Разложите многочлен g(x) на линейные множители над R. Докажите, что R является полем разложения многочлена g(x).

Вариант 1	p = 5.	Вариант 13	p = 7.
Вариант 2	p = 7.	Вариант 14	p = 2.
Вариант 3	p = 3.	Вариант 15	p = 11.
Вариант 4	p = 7.	Вариант 16	p = 3.
Вариант 5	p = 7.	Вариант 17	p=2.
Вариант 6	p = 3.	Вариант 18	p=2.
Вариант 7	p = 7.	Вариант 19	p = 3.
Вариант 8	p = 3.	Вариант 20	p=2.
Вариант 9	p = 5.	Вариант 21	p = 5.
Вариант 10	p=2.	Вариант 22	p=2.
Вариант 11	p = 5.	Вариант 23	p = 11.
Вариант 12	p = 7.	Вариант 24	p = 3.

Задача 5.

Даны многочлены $f(x), g(x) \in \mathbb{F}_3[x].$

- 1) Разложите f(x) на неприводимые множители над \mathbb{F}_3 . Найдите поле разложения K многочлена f(x).
 - 2) Найдите $dim_{\mathbb{F}_3}K$ и |K|.
 - 3) Решите в поле K уравнение g(x) = 0.
 - 4) Докажите, что K является полем разложения многочлена g(x).
- 5) Найдите какой-нибудь неприводимый многочлен $h(x) \in \mathbb{F}_3[x]$, не имеющий корней в K.

Вариант1	$f(x) = x^3 + x^2 + x + 1$	$g(x) = x^3 + x - 1$
Вариант2	$f(x) = x^3 - x^2 + x - 1$	$g(x) = x^3 + x^2 + 1$
Вариант3	$f(x) = x^4 - x^3 - x^2 - x + 1$	$g(x) = x^3 - x^2 - x$
Вариант4	$f(x) = x^4 + x^3 - x^2 + x + 1$	$g(x) = x^4 + x^2 - x$
Вариант5	$f(x) = x^4 - 1$	$g(x) = x^4 + x^3 + x$
Вариант6	$f(x) = x^3 + x$	$g(x) = x^4 - x^2 + x - 1$
Вариант7	$f(x) = x^4 + x^3 + x^2 + x$	$g(x) = x^4 + x^3 + x^2 - 1$
Вариант8	$f(x) = x^4 - x^3 + x^2 - x$	$g(x) = x^4 - x^3 + x^2 + x + 1$
Вариант9	$f(x) = x^3 - x^2 - 1$	$g(x) = x^3 + x^2 + x + 1$
Вариант10	$f(x) = x^3 + x + 1$	$g(x) = x^3 - x^2 + x - 1$
Вариант11	$f(x) = x^3 + x^2 - x$	$g(x) = x^4 - x^3 - x^2 - x + 1$
Вариант12	$f(x) = x^4 - x^3 - x$	$g(x) = x^4 + x^3 - x^2 + x + 1$
Вариант13	$f(x) = x^4 + x^3 + x$	$g(x) = x^4 - 1$
Вариант14	$f(x) = x^4 - x^2 - x - 1$	$g(x) = x^3 + x$
Вариант15	$f(x) = x^4 + x^3 + x^2 - x + 1$	$g(x) = x^4 + x^3 + x^2 + x$
Вариант16	$f(x) = x^4 - x^3 + x^2 - 1$	$g(x) = x^4 - x^3 + x^2 - x$

-

Вариант17
$$f(x) = x^3 + x - 1$$
 $g(x) = x^3 - x^2 - 1$ Вариант18 $f(x) = x^3 + x^2 + 1$ $g(x) = x^3 + x + 1$ Вариант19 $f(x) = x^3 - x^2 - x$ $g(x) = x^3 + x^2 - x$ Вариант20 $f(x) = x^4 + x^2 - x$ $g(x) = x^4 - x^3 - x$ Вариант21 $f(x) = x^4 + x^3 + x$ $g(x) = x^4 + x^2 + x$ Вариант22 $f(x) = x^4 - x^2 + x - 1$ $g(x) = x^4 - x^2 - x - 1$ Вариант23 $f(x) = x^4 + x^3 + x^2 - 1$ $g(x) = x^4 - x^3 + x^2 - x + 1$ Вариант24 $f(x) = x^4 - x^3 + x^2 + x + 1$ $g(x) = x^4 - x^3 + x^2 - 1$