LCR

October 4, 2018

1 Idea

Assume that the nodes in the graph G have been partitioned into a set of p disjoint clusters C_1, \dots, C_p .

A node $v \in G$ is defined to be a boundary node if v is adjacent to another node that belongs to a different cluster from v's cluster.

An edge in G is defined to be a boundary edge if its two nodes are boundary nodes. Let B_i denote the set of boundary nodes in cluster C_i .

Given two distinct clusters C_s and C_t in G, we say that C_t is reachable from C_s via a L-cluster-path (v_1, v_2, \cdots, v_k) if (1) for each $i \in [1, k]$, $v_i \in B_i$; (2) $C_s = C_1$, $C_t = C_k$; and (3) for each $i \in [1, k)$, either (a) (v_i, v_{i+1}) is a boundary edge whose label is in L or (b) both v_i and v_{i+1} are boundary nodes in the same cluster (i.e., $C_i = C_{i+1}$), and there is a L-path from v_i to v_{i+1} within C_i .

Lemma 1.1. Given two distinct nodes s and t in G, where $s \in C_s$ and $t \in C_t$, t is reachable from s via a L-path if (1) C_t is reachable from C_s via a L-cluster-path (v_1, v_2, \dots, v_k) ; (2) $v_1 \in C_s$ is reachable from s via a L-path in C_s ; and (3) t is reachable from $v_k \in C_t$ via a L-path in C_t .

2 Approach

Our approach is based on the three conditions in Lemma 1.1.

To support condition (1), we build a reachable cluster boundary pairs, denoted by RCBP, where for clusters C_i , C_j and $L \subseteq \mathcal{L}$,

$$RCBP(C_i, C_i, L) = \{v_s, v_t : v_s \in B_i, v_t \in B_i, v_s \stackrel{L}{\leadsto} v_t\}$$

To facilitate computation, we also build a reverse reachable cluster index, denoted by RRCI, where for each cluster C_i , and $L \subseteq \mathcal{L}$,

$$RRCI(C_i, L) = \{C_i : i \neq j, |RCBP(C_i, C_i, L)| > 0\}$$

To support condition (2), we build a reachable boundary index for each cluster C_i , denoted by RBI_i , where for each node $v \in C_i$ and $L \subseteq \mathcal{L}$,

$$RBI_i(v, L) = \{ w \in B_i : v \stackrel{L}{\leadsto} w \text{ within } C_i \}$$

To support condition (3), we build a reverse reachable boundary index for each cluster C_i , denoted by $RRBI_i$, where for each node $v \in C_i$ and $L \subseteq \mathcal{L}$,

$$RRBI_i(v, L) = \{ w \in B_i : w \stackrel{L}{\leadsto} v \text{ within } C_i \}$$

A LCR query Q = (s, t, L), where $s \in C_s$ and $t \in C_t$, is processed as follows.

- 1. if $C_s = C_t$ then
 - (a) if $(RBI_s(s,L) \cap RRBI_s(t,L) \neq \emptyset)$ then return true
 - (b) otherwise, return the outcome determined by a BFS within C_s
- 2. $X = RRCI(C_t, L)$. $X \subseteq \{C_1, \dots, C_p\}$ denote the clusters that could reach C_t via some L-path in G.
- 3. if $C_s \notin X$, then return false.
- 4. let $BS = RBI_s(s, L)$. $BS \subseteq B_s$ denote the set of boundary nodes in C_s reachable from s via some L-path within C_s .
- 5. if $BS = \emptyset$, then return false.
- 6. let $BT = RRBI_t(t, L)$. $BT \subseteq B_t$ denote the set of boundary nodes in C_t that could reach t via some L-path within C_t .
- 7. if $BT = \emptyset$, then return false.
- 8. $XV = RCBP(C_s, C_t, L)$. $XV = \{v_i, v_j\}, v_i \subseteq B_s, v_j \subseteq B_t$, denote the pairs of boundary nodes that connects cluster C_i and C_j .
- 9. if there exists a pair of (v_i, v_j) , $v_i \in BS$, $v_j \in BT$, $(v_i, v_j) \in XV$, then return true.
- 10. return false

3 Space & Time Complexity

Let the nodes be partitioned into p clusters, n_i denote the number of nodes in cluster C_i , and b_i denote the number of boundary nodes in C_i .

The number of entries in RCBP is $O(2^{\mathcal{L}} \sum_{1 \leq i,j \leq p} b_i b_j)$. The number of entries in RRCI is $O(p^2 2^{\mathcal{L}})$. The number of entries in RBI/RRBI is $O(2^{\mathcal{L}} \sum_{i=1}^p n_i b_i)$.

In the worst case, all possible pairs of boundary nodes $(v_s, v_t), v_s \in B_s, v_t \in B_t$ are checked against $RCBP(C_s, C_t, L)$.