UNIVERSIDADE FEDERAL DO MARANHÃO CURSO DE CIÊNCIAS DA COMPUTAÇÃO

2ª – AVALIAÇÃO (RESOLUÇÃO)

1ª Questão. O produto escalar possui diversas aplicações na geometria, álgebra e na física. Entre as
alternativas abaixo aquela que não corresponde uma aplicação direta da definição de produto
escalar é:

- a) () Módulo de vetor
- b) () Ortogonalidade entre vetores.
- c) (X) Área de um paralelogramo
- d) () Ângulos entre retas.
- e) () Projeção de um vetor.

SOLUCÃO:

A área de um paralelogramo é dado diretamente pelo produto vetorial

$$|\vec{u} \times \vec{v}| = |\vec{u}| |\vec{v}| sen\theta$$

Onde: \vec{u} , \vec{v} são os lados do paralelogramo e θ é ângulo entre \vec{u} , \vec{v} .

2ª Questão. O duplo produto vetorial usualmente denotado por $\vec{u} \times (\vec{v} \times \vec{w})$ possui algumas características diferenciadas do produto escalar. Dado o duplo produto $(\vec{v} \times \vec{w}) \times \vec{u}$. Qual alternativa correta:

- a) () $(\vec{v} \times \vec{w}) \times \vec{u} = \vec{u} \times (\vec{v} \times \vec{w})$.
- b) () \vec{u} é ortogonal a \vec{v} e \vec{u} é ortogonal a \vec{w} .
- c) () $|\vec{u} \times (\vec{v} \times \vec{w})|$ é o volume do paralelepípedo de arestas \vec{u} , \vec{v} e \vec{w} .
- d) () $\vec{u} \times (\vec{v} \times \vec{w}) = \vec{0}$, então \vec{u} , \vec{v} e \vec{w} são coplanares.
- e) $(\mathbf{X})\vec{u} \times (\vec{v} \times \vec{w})$ é um vetor coplanar com \vec{v} e \vec{w} , com \vec{v} não colinear com e \vec{w} .

SOLUÇÃO:

Se \vec{v} , \vec{w} forem linearmente independentes, qualquer outro vetor \vec{z} é coplanar com \vec{v} , \vec{w} em particular tomando $\vec{z} = \vec{u} \times (\vec{v} \times \vec{w})$. Assim, $\vec{u} \times (\vec{v} \times \vec{w})$ é coplanar com \vec{v} , \vec{w} .

3ª Questão. Dada a equação r: $\begin{cases} y = -3 \\ \frac{x-1}{4} = \frac{z}{1} \end{cases}$. A afirmação correta em relação a reta r é:

- a) () O vetor diretor de r é $\vec{v} = (4, -3, -1)$.
- b) () A reta r é paralela ao eixo Oy.
- c) () A reta r intercepta o plano xOz no ponto $P\left(-\frac{1}{4}, -3, 0\right)$. d) () Paralela com reta $s: \begin{cases} y = -3 \\ \frac{z-1}{4} = \frac{x}{-1} \end{cases}$.
- e) (X) O vetor diretor tem módulo $\sqrt{17}$.

SOLUÇÃO:

Dado a reta r, o vetor diretor de r é $\vec{v} = (4, 0, -1)$ e um ponto de r é A(5, -3, -1) fazendo x = 5. Assim

$$|\vec{v}| = \sqrt{(4)^2 + (0)^2 + (-1)^2} = \sqrt{16 + 0 + 1} = \sqrt{17}.$$

4ª Questão. O torque é uma grandeza física vetorial (representada por $\vec{\tau}$) e está relacionada com a possibilidade de um corpo sofrer uma torção ou alterar seu movimento de rotação. O cálculo do torque

- a) $(X)(-13\vec{\imath} 2\vec{\jmath} + 3\vec{k})N$.
- b) () $(3\vec{\imath} 2\vec{\jmath} + 9\vec{k})N$.
- c) $(-2\vec{j} + 9\vec{k})N$.
- d) () $(3\vec{i} 2\vec{j})N$.
- e) () $(3\vec{\imath} 2\vec{\jmath} 13\vec{k})N$.

SOLUÇÃO:

Sejam

1 - $\vec{F} = (x, y, z)$, temos que y = -2, componente na direção \vec{j} .

$$2 - \vec{t} = \vec{r} \times \vec{F} \to (3, -6, 9) = \begin{vmatrix} \vec{t} & \vec{j} & \vec{k} \\ 2 & 1 & 0 \\ x & -2 & z \end{vmatrix} \to (3, -6, 9) = (z, -2z, -4 - x) \to \begin{cases} z = 3 \\ -2z = -6 \\ -4 - x = 9 \end{cases}$$

$$\rightarrow \begin{cases} z = 3 \\ x = -13 \end{cases}$$

Portanto, $\vec{F} = (-13, -2, 3) = (-13\vec{\imath} - 2\vec{\jmath} + 3\vec{k})N$.

5ª Questão. Analise as seguintes afirmações:

- I − O produto **VETORIAL** não é associativo.
- II O resultado do produto ESCALAR é número.
- III O produto **ESCALAR** pode ser definido no \mathbb{R}^2 , \mathbb{R}^3 .
- IV O produto **VETORIAL/MISTO** é zero se um dos vetores nulo.

É correto afirmar:

- a) () VETORIAL ESCALAR MISTO MISTO.
- b) () MISTO ESCALAR MISTO MISTO.
- c) (X) VETORIAL ESCALAR ESCALAR MISTO.
- d) () MISTO- ESCALAR VETORIAL MISTO.
- e) () MISTO- ESCALAR MISTO VETORIAL.

6ª Questão. Usando as propriedades de produto escalar. Mostre que:

Se
$$\vec{u} \cdot \vec{v} = 0$$
 para todo \vec{v} , então $\vec{u} = \vec{0}$.

SOLUÇÃO:

Se $\vec{u} \cdot \vec{v} = 0$ para todo \vec{v} , tomando $\vec{v} = \vec{u}$, temos $\vec{u} \cdot \vec{u} = 0$ pela propriedade (I) de produto escalar temos $\vec{u} = \vec{0}$.

 7^a Questão. Mostre que os símbolos de produto escalar (·) e produto vetorial (×) podem ser permutados, ou seja:

$$\vec{u} \cdot (\vec{v} \times \vec{w}) = (\vec{u} \times \vec{v}) \cdot \vec{w}$$

SOLUÇÃO:

Tomando

$$\vec{\boldsymbol{u}}\cdot(\vec{\boldsymbol{v}}\times\vec{\boldsymbol{w}})\overset{1}{\stackrel{\triangle}{=}}(\vec{\boldsymbol{u}},\vec{\boldsymbol{v}},\vec{\boldsymbol{w}})\overset{2}{\stackrel{\triangle}{=}}-(\vec{\boldsymbol{w}},\vec{\boldsymbol{v}},\vec{\boldsymbol{u}})\overset{3}{\stackrel{\triangle}{=}}(\vec{\boldsymbol{w}},\vec{\boldsymbol{u}},\vec{\boldsymbol{v}})\overset{4}{\stackrel{\triangle}{=}}\vec{\boldsymbol{w}}\cdot(\vec{\boldsymbol{u}}\times\vec{\boldsymbol{v}})\overset{5}{\stackrel{\triangle}{=}}(\vec{\boldsymbol{u}}\times\vec{\boldsymbol{v}})\cdot\vec{\boldsymbol{w}}$$

Em: 1 – usamos a definição produto misto de vetores.

- 2 usamos a propriedade cíclica do produto misto.
- 3 usamos a propriedade cíclica do produto misto.
- 4 usamos a definição de produto misto de vetores.
- 5 usamos a propriedade comutativa do produto escalar.

8ª Questão. Calcular o volume do tetraedro A(1,0,2), B(-1,0,3), C(2, 4, 1) e D(-1, -2, 2). E para este calcule a medida da altura traçada do vértice A.

SOLUÇÃO:

O volume do tetraedro é $V = \frac{|(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD})|}{6}$. Calculando os vetores \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} , temos:

$$\overrightarrow{AB} = B - A = (-1,0,3) - (1,0,2) = (-2,0,1).$$

$$\overrightarrow{AC} = C - A = (2,4,1) - (1,0,2) = (1,4,-1).$$

$$\overrightarrow{AD} = D - A = (-1, -2, 2) - (1, 0, 2) = (-2, -2, 0).$$

Logo,
$$\left| (\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}) \right| = \begin{vmatrix} -2 & 0 & 1 \\ 1 & 4 & -1 \\ -2 & -2 & 0 \end{vmatrix} = |\mathbf{10}| = \mathbf{10} \rightarrow V = \frac{\left| (\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}) \right|}{6} \rightarrow V = \frac{10}{6} = \frac{5}{3} u.v.$$

A altura $h = \frac{V}{A_b}$, onde A_b é a área da base, ou seja $A_b = \frac{|\overrightarrow{BC} \times \overrightarrow{BD}|}{2}$.

$$\overrightarrow{BC} = C - B = (2,4,1) - (-1,0,3) = (3,4,-2).$$

$$\overrightarrow{BD} = D - B = (-1, -2, 2) - (-1, 0, 3) = (0, -2, -1)$$
. Assim,

$$\left| \overrightarrow{BC} \times \overrightarrow{BD} \right| = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 3 & 4 & -2 \\ 0 & -2 & -1 \end{vmatrix} = \left| (-8, 3, -6) \right| = \sqrt{(-8)^2 + (3)^2 + (-6)^2} = \sqrt{109}$$

Logo,
$$A_b = \frac{|\overrightarrow{BC} \times \overrightarrow{BD}|}{2} = \frac{\sqrt{109}}{2}$$
.

Portanto,
$$h = \frac{V}{A_b} \to h = \frac{\frac{5}{3}}{\frac{\sqrt{109}}{2}} = \frac{10\sqrt{109}}{327}$$
 u. c..

9ª Questão. Verifique se os pontos A(1, 2, -1), B(2, 1, -3) e C(1, 4, 0) não são colineares pela definição de reta e calcule a área do triângulo ABC.

SOLUÇÃO:

Sejam A(1, 2, -1) o ponto onde a reta r passa e o vetor diretor dado por $\vec{v} = \overrightarrow{AB}$. Logo,

$$\overrightarrow{AB} = B - A = (2, 1, -3) - (1, 2, -1) = (1, -1, -2)$$
. Assim a equação da reta na forma simétrica é:

$$r: \frac{x-1}{1} = \frac{y-2}{-1} = \frac{z+1}{-2}$$

Tomando o ponto C(1,4,0), x = 1, y = 4, z = 0, temos: $\frac{1-1}{1} = \frac{4-2}{-1} = \frac{0+3}{-2} \rightarrow 0 = -2 = -\frac{3}{2}$ (Falso)

Logo, os pontos A,B e C não são colineares.

A área do triangulo ABC é A = $\frac{|\overrightarrow{AB} \times \overrightarrow{AC}|}{2}$

O vetor $\overrightarrow{AC} = C - A = (1,4,0) - (1,2,-1) = (0,2,1)$ e

$$|\overrightarrow{AB} \times \overrightarrow{AC}| = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -1 & -2 \\ 0 & 2 & 1 \end{vmatrix} = |(3, -1, 2)| = \sqrt{(3)^2 + (-1)^2 + (2)^2} = \sqrt{9 + 1 + 4} = \sqrt{14}$$

Logo, a área do triângulo ABC é $A = \frac{\sqrt{14}}{2}$ u.a..

10^a Questão. Determine a equação simétrica da reta que passa por ponto médio M do segmento de extremidades A(-1,0,2) e B(4,-1,5) e tem direção do vetor $\vec{v} = \overrightarrow{OA} \times \overrightarrow{OB}$.

SOLUÇÃO:

Seja M o ponto médio de AB, temos que $M(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2})$. Assim,

$$M(\frac{3}{2}, -\frac{1}{2}, \frac{7}{2})$$
. e \overrightarrow{OA} = (-1, 0, 2), \overrightarrow{OB} = (4, -1, 5). Assim:

$$\vec{v} = \overrightarrow{OA} \times \overrightarrow{OB} = \begin{vmatrix} \vec{\iota} & \vec{j} & \vec{k} \\ -1 & 0 & 2 \\ 4 & -1 & 5 \end{vmatrix} = (2, 13, 1).$$

Logo, a equação simétrica da reta r é:

$$r: \frac{x-\frac{3}{2}}{2} = \frac{y+\frac{1}{2}}{13} = \frac{z-\frac{7}{2}}{1}$$