

Bjanka Bašić, Ivan Knezić i Jelena Lončar

Detekcija raka na temelju histoloških preparata

Opis problema

- Problem: detekcija prisutnosti metastatskog raka na temelju fotografija histoloških preparata tkiva
- Dijagnostička procedura dugotrajna je i naporna za patologe
 - potrebno ispitati veliko područje tkiva
 - malene se metastaze lako mogu previdjeti
- Svodi se na problem binarne klasifikacije oznaka klase (y)
 može poprimiti samo dvije vrijednosti
 - y=1 pozitivan primjer
 - y=0 negativan primjer
- Naš zadatak: izgraditi binarni klasifikator za prepoznavanje tumornog tkiva

Opis podataka

 Podaci: fotografije(96x96px) koje predstavljaju mikroskopske snimke tkiva limfnih čvorova, na koje je primjenjeno HE bojenje

- Primjer se smatra pozitivnim primjerom ako centralno područje fotografije dimenzija 32x32px sadrži barem jedan piksel tumorskog tkiva – okolno područje ne utječe
- Skup podataka kombinacija je podataka prikupljenih na:
 - Radboud University Medical Center (Nijmegen, Nizozemska)
 - University Medical Center Utrecht (Utrecht, Nizozemska)
- Koristimo verziju sa Kaggle-a ne sadrži duplikate

Eksploratorna analiza - zaključci

- U datasetu se nalazi: 220025 primjera za treniranje
 57458 primjera za testiranje
- Omjer negativnih i pozitivnih je 59/41

Negativni primjer

Pozitivni primjer

Cili

- Cilj: primjenom adekvatnih algoritama strojnog učenja postići da model bude što bolji prediktor za vrijednost ciljne varijable odgovarajućeg elementa prostora primjera
- Za dani primjer, odnosno fotografiju, odrediti što točnije je li oznaka klase:
 - y=1 na slici se nalazi barem jedan pixel tumorskog tkiva
 - y=0 na slici se ne nalazi tumorsko tkivo

Metodologija

- Problem ćemo rješavati primjenom metoda i algoritama nadziranog učenja – konvolucijske neuronske mreže (duboko učenje)
- Nastojat ćemo dobiti što uspješniji model istraživanjem raznolikih mogućnosti za arhitekture KNM te hiperparametre
- Planiramo:
 - Koristiti Python i razne biblioteke za njega:
 - Numpy, Randas, Scikit-learn, Keras, Fast.ai
 - Kao razvojno okruženje koristiti Jupyter
 - Na fotografije (primjere) primijeniti augmentacijske transformacije

Evaluacija modela

Evaluirat ćemo sa površinom ispod ROC krivulje (AUC)

• Uz to još ćemo odrediti matricu konfuzije te konkretne vrijednosti osjetljivosti, preciznosti te F_{β} -mjere (β >1)

