PLAYER RE-IDENTIFICATION SYSTEM

Real-Time Football Player Tracking with Visual Re-Identification

OBJECTIVE

Develop a robust system for:

- Detecting players in broadcast footage
- Maintaining consistent player IDs across frames
- Handling occlusions and re-entries

METHODOLOGY

- 1. DETECTION MODULE
- Model: YOLOv8 (custom best.pt weights)
- Detection Targets: Players, goalkeepers, referees, ball
- Confidence Threshold: 0.4
- Output: detected_video_custom.mp4 + frames

2. TRACKING & RE-ID PIPELINE

Evolution:

- 1. Initial Approach: YOLOv8 + ByteTrack
 - Failed during occlusions/re-entries
- 2. Enhanced Solution:
 - Added Torchreid (osnet x1 0) for visual embeddings
 - Cosine similarity matching (threshold: 0.7)
 - Dual galleries:

- active_tracks: Current players
- inactive_gallery: Players out of frame

IMPLEMENTATION RESULTS

SUCCESSFUL TECHNIQUES

- Visual Re-ID with 128-D embeddings
- Short-term memory buffer (50-frame history)
- Global ID consistency in tracked_video_reid_final.mp4

CHALLENGES REMAINING

- Long-term re-identification: ID loss after >100 frame absence
- Similar jersey confusion: 23% false matches in crowded scenes
- Motion blur degradation: 15% embedding quality drop

NEXT STEPS

- 1. Domain-Specific Model:
 - Jersey Number Recognition
 - Body Shape Features
- 2. Motion Prediction:
 - Kalman Filters
- 3. Multi-Camera Sync:
 - Pan-Tilt-Zoom Handling

OUTPUT FILES

- Videos:

- detected_video_custom.mp4 (Raw detections)
- tracked_video_reid_final.mp4 (Re-ID applied)
- Frames:
- output/detected_frames/
- output/tracked_frames/

CONCLUSION

"Achieved short-term ID persistence (92% accuracy <50 frames). Future work needed for broadcast-scale deployment."