Documento soporte de desarrollo

Periodo académico	2024-2
Tema	Parámetros y diseño geotérmico e hidráulico
Subtema	Caso de Estudio de realineamiento y Parámetros generales requeridos para el diseño de la modelación.
Fecha / hora	20240817-5:33p.m
Nombre completo	David Leonardo Lozada Cedeño – Heiler Alexander Figueroa Rincón.
Código Enlace	N/A
Repositorio OneDrive	HCMC0001
GitHub	https://github.com/superfil
R.HydroTools	R.HydroTools.DisenoCaucesParametros_20240818

Contenido

1.	Investigación Canal de derivación del Río Rojo Manitoba – Canadá	
1.1.	Resumen general	
1.2.	Parámetros Técnicos construcción y de Operación	
1.3.		
1.4.		
1.5.		
2. Sele	ección de parámetros técnicos requeridos	
	idación parámetros Normativos	
	idación parámetros GeotécnicoAmbientalSocial (GAS)	
	o de archivos	
	o de anexos	
	encias bibliográficas	

1. Investigación Canal de derivación del Río Rojo Manitoba – Canadá.

1.1. Resumen general

El canal de derivación del Rio Rojo "Red River Floodway" fue construido entre 1962 y 1968 al este de Winnipeg, Manitoba, Canadá, con el fin de proteger la ciudad de las amenazas de inundación originadas por las crecientes del Rio Rojo puesto que la ciudad en si se encuentra localizada en la confluencia de los ríos Rojo y Assiniboine dando origen a una llanura aluvial o valle de inundación (Manitoba Government Inquiry, 2024).

Durante 1977, Manitoba sufrió una gran inundación, conocida como la inundación del siglo, esta obligo a la evacuación de las comunidades del valle del Rió Rojo y estuvo cerca de alcanzar la capacidad del canal de derivación y colapsar la protección de Winnipeg "Red River Floodway". Posterior al evento extraordinario de 1977 la Comisión conjunta internacional (IJC - International Joint Commission) reviso las medidas de protección y encontró que en condiciones similares de flujo experimentadas a las del año de 1977, el riesgo de falla del Canal de derivación del Río Rojo era inminente, por lo tanto, se recomendó para asegurar la salud pública ampliar dicha estructura e incrementar drásticamente el periodo de retorno de diseño (Eric-Lorne Blais *et al.*, 2016).

De acuerdo con la sugerencia de la IJC la capacidad del canal de derivación incremento de un caudal de diseño relacionado a un periodo de retorno de 160 años a un evento de 700 años. La expansión del "**Red River Floodway"** permite en la actualidad controlar un caudal pico equivalente a 4.000 m³/s. Así mismo, como parte del proyecto de expansión se realizaron mejoras en los cruces de puentes, la estructura de entrada y salida, los diques de protección y optimización en la prestación de los servicios públicos y de drenaje de la ciudad (Goverment of Canada, 2024).

Documento soporte de desarrollo 1/6

1.2. Parámetros Técnicos construcción y de Operación.

Área de cuenca	288.000 km ²
Caudal de diseño	4.000 m ³ /s
Periodo de retorno	700 años
Longitud Total	47 Km
Lecho del cauce	Natural sin revestimiento
Sección	Trapezoidal
Ancho superior	300 m
Base inferior	160 m
Yc (tirante hidráulico)	8 m
Volumen de excavación	21.0000.000 m ³

Tabla 1. Parámetros generales de diseño y construcción canal de derivación "Red River Floodway". Fuente (Doug McNeil, 2024) - (Farlinger Consulting Group INC, 2015)

Operación bajo condiciones de flujo bajo:

En condiciones de flujo bajo, el nivel del agua proveniente del afluente del Río Rojo transita por la parte superior de la entrada del canal de derivación, en este caso la gran parte del caudal del Rio Rojo pasa a través de la ciudad de Winnipeg, no obstante, alguna pequeña porción del flujo comienza a fluir en el canal de inundación, generando de este modo un transito permanente en la estructura de control y una reducción del caudal del Rio Rojo.

Operación bajo condiciones de flujo normal:

Bajo condiciones de control de inundaciones, el nivel del agua en el Río Rojo continúa aumentando, muy por encima de la parte superior de la compuerta entrada del canal de derivación. A medida que los niveles de agua aumentan, el flujo comienza a ingresar al canal de derivación a través de los espacios del terraplén del mismo.

Operación bajo condiciones de la alarma de inundación:

Durante inundaciones extremas, los niveles de agua aguas arriba de la estructura de control de entrada del canal de derivación se elevan por encima de los niveles naturales del Rio Rojo debido al funcionamiento de las compuertas, de desviando el caudal el rio rojo

Tabla 2. Descripción de operación "Red River Floodway". Fuente (Manitoba Government Inquiry, 2024) - (Farlinger Consulting Group INC, 2015)

Documento soporte de desarrollo 2 / 6

1.3. Registro de caudales picos del Canal de derivación del Rio Rojo desde 1969

Año	Caudal	Caudal	Fecha	
	pico (cfs)	pico		
		(m3/s)		
1969	22100	625,8	3/05/1969	
1970	22800	645,62	1/05/1970	
1971	9100	257,68	14/04/2024	
1972	1200	33,98	18/04/2024	
1974	36700	1039,23	24/04/1974	
1975	9400	266,18	7/05/1975	
1976	10300	291,66	11/04/1976	5000
1978	18100	512,53	16/04/1978	4500
1979	42000	1189,31	9/05/1979	4000
1982	600	16,99	18/04/1982	3500
1983	900	25,49	11/04/1983	3000 © 2500 o 2000 1500
1987	17900	506,87	10/04/1987	
1989	4800	135,92	24/04/1989	
1995	13700	387,94	29/03/1995	1000
1996	38800	1098,69	2/05/1996	500
1997	66400	1880,24	4/05/1997	1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
1998	6700	189,72	1/04/1998	Año
1999	157000	4445,74	16/04/1999	
2001	21100	597,48	28/04/2001	
2002	3200	90,61	8/04/2002	
2005	23400	662,61	4/06/2005	
2006	33200	940,12	15/04/2006	
2007	4200	118,93	12/04/2007	
2009	43100	1220,45	21/04/2009	
2010	16000	453,07	6/04/2010	
2011	36700	1039,23	5/05/2011	

Tabla 3. Registro de caudales picos del Canal de derivación del Rio Rojo desde 1969. Fuente (Farlinger Consulting Group INC, 2015)

Documento soporte de desarrollo 3 / 6

1.4. Ubicación geográfica y georreferenciación.

A continuación, se registra la ubicación del inicio y final del canal derivación "Red River Floodway", de igual forma se procede con su georreferenciación a partir de una imagen satelital con el software Google Earth Pro.

INICIO	50.0915°, 96.9374° (50° 5' 29.72" N, 96° 56' 14.85" O)
FIN	49.7469°, 97.1267° (49° 44′ 49.46″ N, 97° 07′ 36.20″ O).

Tabla 4. Coordenadas de inicio y final del canal de derivación "Red River Floodway". Fuente (Autor, 2024)

Imagen 1. Georreferenciación coordenada de inicio canal de derivación "Red River Floodway". Fuente (Autor, 2024)

1.5. Mapa de localización.

Tabla 5. Link de mapa de localización canal de derivación "Red River Floodway". Fuente (Autor, 2024)

Documento soporte de desarrollo 4 / 6

2. Selección de parámetros técnicos requeridos

De acuerdo con el caso de estudio, validación de la normativa y verificación los aspectos geotécnico ambientales y sociales presentes en las hojas de cálculo, se registran los parámetros técnicos para el modelo propuesto para la clase según la validación hecha en el archivo formato XIs. "R.HydroTools.DisenoCaucesParametros_20240818" y estableciendo los valores de diseño en la hoja de cálculo "TecnicoRequerido".

3. Validación parámetros Normativos

Por parte del grupo de trabajo se ingresó al archivo Excel *"R.HydroTools.DisenoCaucesParametros_20240817"* a identificar y verificar los aspectos normativos en la hoja de cálculo *"Normativo"*.

4. Validación parámetros Geotécnico Ambiental Social (GAS)

Por parte del grupo de trabajo se ingresó al archivo Excel "R.HydroTools.DisenoCaucesParametros_20240817" a identificar y verificar los aspectos Geotécnicos, Ambientales y Sociales presentes en la hoja de cálculo "GeotécnicoAmbientalSocial".

Listado de archivos

Archivo	Descripción	Aplicación
R.HydroTools.DisenoCaucesParametros_20240818	Contiene los parámetros necesarios y valores de los mismos para el diseño y modelación de cauces, en consideración del documento Excel se definen los parámetros técnicos requeridas, técnicos estimados, normativos, geotécnicos, ambientales, sociales y territorios.	18-08-2024

Listado de anexos

Archivo	Descripción
Background to flood control measures in the Red and Assiniboine River Basins [Archivo PDF].	Paper donde se describe el canal, su funcionamiento y otras obras hidráulicas hechas para mitigas las inundaciones presentadas en el área de estudio.
Red River Floodway Public Consultation on the Rules of Operation [Archivo PDF].	Describe de manera detalla la operación del canal de derivación del Río Rojo Manitoba – Canadá y datos históricos de la estructura de protección de la ciudad de Winnipeg.

Documento soporte de desarrollo 5 / 6

Herramientas Computacionales para el Diseño y Modelación de Cauces Maestría en Ingeniería Civil – Énfasis en recursos hidráulicos y medio ambiento

Referencias bibliográficas

https://normas-apa.org/referencias/

- Doug McNeil, R. C. (17 de 08 de 2024). *The Red River Floodway Expansion Project*. Obtenido de The Red River Floodway Expansion Project: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/http://www.ifi-home.info/isfd4/docs/May7/Session_4pm/Room_E_4pm/Carson/4th_ISFD_2008_Floodway_RWC_May0308.pdf
- Eric-Lorne Blais, S. C. (2016). Background to flood control measures in the Red and Assiniboine River Basins. *anadian Water Resources Journal / Revue canadienne des ressources hydriques*, 31-43.
- Farlinger Consulting Group INC . (2015). *Red River Floodway Public Consultation of the rules of operation*. Manitoba: HN Westdal & Associates.
- Goverment of Canada. (17 de 08 de 2024). *Parks Canada Directory of Federal Heritage*. Obtenido de Parks Canada Directory of Federal Heritage: https://www.pc.gc.ca/apps/dfhd/page_nhs_eng.aspx?id=1933
- Manitoba Government Inquiry. (16 de 08 de 2024). *Manitoba Infrastructure*. Obtenido de Manitoba Infrastructure: https://www.gov.mb.ca/mti/wms/rrf/index.html

Documento soporte de desarrollo 6 / 6