Final Project Topics

CS6550 Computer Vision

List of Final Topics

Image Classification

Image Saliency Detection

Image Segmentation (Learning Based)

Image Restoration

Object Detection

Facial Expression Recognition

Gesture Recognition

Stereo Matching

Categorize or detect text in the picture.

References: https://blog.acolyer.org/2016/04/20/imagenet-classification-with-deep-convolutional-neural-networks/

- How to do "Classification"?
 - 1. Preprocessing
 - 2. Feature extraction
 - 3. Modeling
 - Description of each class in mathematical form
 - 4. Classification
 - The classifier divides the feature space into class regions

- Datasets
 - ImageNet : http://image-net.org/
 - CIFAR : https://www.cs.toronto.edu/~kriz/cifar.html

References: https://www.cs.toronto.edu/~kriz/cifar.html

References

- https://papers.nips.cc/paper/4824-imagenetclassification-with-deep-convolutional-neuralnetworks.pdf
- http://vision.cse.psu.edu/seminars/talks/2009/random_ _tff/bosch07a.pdf
- http://cs.utsa.edu/~qitian/seminar/Spring11/02_18_11/ECCV10.pdf

• Finding salient objects in the source image.

- Contrast Based Filter Saliency
 - Abstraction: decomposes an image into compact represented by their mean color.
 - Uniqueness: regions which stand out from other regions should be labeled more salient.
 - Distribution: foreground objects are generally more compact, thus we measure the spatial distribution.

References: https://graphics.ethz.ch/~perazzif/saliency_filters/

- Datasets
 - https://graphics.ethz.ch/~perazzif/saliency_filters/files /SF_maps.zip
 - http://saliency.mit.edu/datasets.html

References

- https://graphics.ethz.ch/~perazzif/saliency_filters/files /saliency_filters_cvpr_2012.pdf
- http://www.cse.cuhk.edu.hk/leojia/projects/hsaliency/ papers/hsaliency.pdf
- https://arxiv.org/pdf/1505.01173v1.pdf

Super-Resolution
Inpainting / Completion

Super-Resolution

- What is Super-Resolution?
 - Upscale the image to desire size (x2, x4, x8...)
- Possible solutions
 - Interpolations: Nearest Neighbor / Bicubic / Bilinear
 - Learning-based: Sparse Representation / Deep Learning

Super-Resolution

- Sparse Representation [1]
 - 1. Training: Learned HR-LR pair dictionaries
 - 2. Testing: Solve the sparse coding
 - Reconstruct HR image

References

[1] <u>Image Super-Resolution</u>
<u>via</u>
Sparse Representation

Super-Resolution

- Deep Learning
 - SRCNN [2] Image Super-Resolution Using Deep Convolutional Networks

• VDSR [3] Accurate Image Super-Resolution Using Very Deep Convolutional Networks

Super-Resolution

Training Datasets

The Berkeley Segmentation

Dataset and Benchmark (BSD 200)

Yang 91 Images

ImageNet (Not Suggested)

Super-Resolution

Testing Datasets

Set 5

Set 14

Urban 100

BSD 100

Sun-Hays 80

- **GitHub Resources:**
- Comparison with the state-of-the-art datasets
- Super-Resolution-Benchmarks

Inpainting / Completion

- What is Inpainting or Completion?
 - To fill or complete the lost or unwanted regions in the images
- Related solutions
 - Vision-based (Patch Inpainting) / Numerical Optimization (TNNR)
 - MRF (Field of Experts) / Autoencoders / Deep Learning

Inpainting / Completion

- Autoencoders / Deep Learning
 - Conditional GANs
 - Context Encoder [1] Context Encoders: Feature Learning by Inpainting

Inpainting / Completions

Datasets

TUM-Image Inpainting Database

Google Street View Data Set

CelebA Datasets

<u>The Berkeley Segmentation</u>

<u>Dataset and Benchmark</u> (BSD 200)

Focusing on Learning-based methods

- What is Image Segmentation?
 - the process of partitioning a digital image into multiple segments (sets of pixels, also known as super-pixels).
 - The goal of segmentation is to simplify and/or change the representation of an image into something that is more meaningful and easier to analyze.
- Related solutions
 - Grouping Super-Pixels / Kmeans
 - Deep Learning

- Deep Learning Methods: Directly generate segmentation results
 - SegNet [1]

Fully Convolutional Networks for Semantic Segmentation [2]

Datasets

The Berkeley Segmentation

Dataset and Benchmark (BSD 200)

Visual Object Classes Challenge 2012

<u>Freiburg-Berkeley Motion</u> <u>Segmentation Dataset (FBMS-59)</u>

Problem

-Given an image, find all objects and mark them up with bounding

boxes and categories

Sub-problems

- Object proposal
- Image Classification

Example of detection results

Basic framework of object detection (FER)

Framework of Faster R-CNN

- Deep learning model
- -Shared CNN
- Region Proposal Network
- -Rol pooling

Faster R-CNN, NIPS2015

Evaluation dataset

-MIT Street Scenes

http://cbcl.mit.edu/software-datasets/streetscenes/

-PASCAL VOC dataset

http://host.robots.ox.ac.uk/pascal/VOC/

-KITTI dataset

Example of PASCAL VOC

http://www.xrce.xerox.com/Our-Research/Computer-Vision/Proxy-Virtual-Worlds

Example of MIT Street Scenes

Example of KITTI

Reference

- —Redmon, Joseph, et al. "You only look once: Unified, real-time object detection." *arXiv* preprint arXiv:1506.02640 (2015).
- Girshick, Ross. "Fast r-cnn." *Proceedings of the IEEE International Conference on Computer Vision*. 2015
- —Kye-Hyeon Kim, et al. "PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection" arXiv:1608.08021.
- Dai, Jifeng, et al. "R-FCN: Object Detection via Region-based Fully Convolutional Networks." *arXiv preprint arXiv:1605.06409* (2016).

Tools

- Caffe http://caffe.berkeleyvision.org/
- —Tensorflow https://www.tensorflow.org/
- —Torch http://torch.ch/

Problem

—Predict the emotion category (Anger, Disgust, Fear, Happiness, Sadness or Surprise) from a still-image or an

Approaches

image sequence

- Image based framework
- Sequence based framework
- Preprocess
- Face detection
- —Face alignment

Basic framework of facial expression recognition (FER)

- Framework of image sequence approach
- Deep learning model
- —Appearance feature(CNN)
- Geometry feature(NN)
- Joint fine-tuning

Joint Fine-Tuning Method, ICCV2015

- Evaluation dataset
- -JAFFE database

http://www.kasrl.org/jaffe.html

-The CK+ database

http://www.consortium.ri.cmu.edu/ckagree/

-FER2013 dataset

Example of the FER2013 dataset

https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge/data

Example of the JAFFE dataset

Example of the CK+ dataset

References

- -Jung, Heechul, et al. "Joint fine-tuning in deep neural networks for facial expression recognition." *Proceedings of the IEEE International Conference on Computer Vision*. 2015.
- —Zhao, Xiangyun, et al. "Peak-piloted deep network for facial expression recognition." *European Conference on Computer Vision*. Springer International Publishing, 2016.
- Fabian Benitez-Quiroz, C., Ramprakash Srinivasan, and Aleix M. Martinez. "EmotioNet: An accurate, real-time algorithm for the automatic annotation of a million facial expressions in the wild." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2016.
- —Liu, Ping, et al. "Facial expression recognition via a boosted deep belief network." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2014.

• Tools

- Dlib C++ Library http://dlib.net/
- OpenCV http://opencv.org/

Gesture Recognition

- Problem description
 - Given depth or RGB images with a specific hand pose
 - The goal is to solve a classification problem that seeks the pre-defined gesture classes which is most similar to the input data

- Sensor-based approach
- Vision-based approach
 - Model-based approach
 - Appearance-based approach

- Framework of hand posture recognition
 - Components
 - Training images
 - Testing images
 - Model

- Datasets
 - Multimedia Technology and Telecommunications Laboratory, University of Padova
 - http://lttm.dei.unipd.it/downloads/gesture/
 - ICVL Hand Posture Dataset
 - http://www.iis.ee.ic.ac.uk/~dtang/hand.html
 - IEEE Computer Society Workshop on Observing and understanding hands in action (HANDS 2015)
 - http://www.ics.uci.edu/~jsupanci/HANDS-2015/#

References

- G. Marin, F. Dominio, P. Zanuttigh, "Hand gesture recognition with Leap Motion and Kinect devices", IEEE International Conference on Image Processing (ICIP), Paris, France, 2014
- G. Marin, F. Dominio, P. Zanuttigh, "Hand Gesture Recognition with Jointly Calibrated Leap Motion and Depth Sensor", Multimedia Tools and Applications, 2015
- D. Tang, H.J. Chang*, A. Tejani*, T-K. Kim
 Latent Regression Forest: Structured Estimation of 3D Hand Posture, Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)
- D. Tang, T.H. Yu and T-K. Kim
 Real-time Articulated Hand Pose Estimation using Semi-supervised
 Transductive Regression Forests, Proc. of IEEE Int. Conf. on Computer
 Vision (ICCV), Sydney, Australia, 2013
- Van-Toi NGUYEN et al, A New Hand Representation Based on Kernels for Hand Posture Recognition

- Problem description
 - It is a technique aimed at inferring depth from two or more cameras.
 - The **disparity** is the difference between the x coordinate of two corresponding points.
 - It is typically encoded with greyscale image (closer points are brighter).

 Depth measured by a stereo vision system is discretized into parallel planes (one for each disparity value)

- According to [1] most stereo algorithms perform these steps:
 - 1. Matching cost computation
 - 2. Cost aggregation
 - 3. Disparity computation/optimization
 - 4. Disparity refinement
- Local algorithms
- Global algorithms

Matching cost computation

- Pixel-based matching costs
 - E.g. squared differences

$$E(x, y, d) = (I_R(x, y) - I_T(x + d, y))^2$$

Cost aggregation

- Sum of squared differences (SSD)
 - E.g. squared differences

$$\sum_{(x,y)\in w} (I_R(x,y) - I_T(x+d,y))^2$$

Reference

Target

Disparity computation/optimization

- Energy function $E(d) = E_{data}(d) + E_{smooth}(d)$
- Relevant approaches are:
 - Graph Cuts
 - Belief Propagation

Disparity refinement

- Raw disparity maps computed by correspondence algorithms contain outliers that must be identified and corrected
 - Sub-pixel interpolation
 - Image filtering techniques
 - Bidirectional Matching

- Evaluation & Datasets
 - Middlebury Stereo Datasets:
 - http://vision.middlebury.edu/stereo/data/
 - MPI Sintel Datasets :
 - http://sintel.is.tue.mpg.de/stereo

References

- Q. Yang, L. Wang, R. Yang, H. Stewénius, and D. Nistér. Stereo matching with color-weighted correlation, hierarchical belief propagation and occlusion handling. PAMI 2008.
- X. Mei, X. Sun, M. Zhou, S. Jiao, H. Wang, and X. Zhang. On building an accurate stereo matching system on graphics hardware. GPUCV 2011.
- Z. Wang and Z. Zheng. A region based stereo matching algorithm using cooperative optimization. CVPR 2008.
- D. Scharstein and R. Szeliski, A taxonomy and evaluation of dense two-frame stereo correspondence algorithms
- http://vision.deis.unibo.it/~smatt/Seminars/StereoVision.pdf
- H. Ha. et al High-quality Depth from Uncalibrated Small Motion Clip

End

You can still choose other interesting topics