Estudio de estructuras de banda prohibida electromagnética (EBG) para la reducción de acoplamiento mutuo entre antenas *microstrip*

Federico Luna

Facultad de Ingeniería, Universidad de Buenos Aires

fluna@fi.uba.ar

Tutores: Dr. Ing. W. Gustavo Fano y Mg. Ing. Silvina Boggi

Resumen

- Presentación del problema
- 2 Conceptos básicos de electromagnetismo
- Fundamentos de EBGs
- Modelado
- 5 Análisis y modelado de la celda de Yang
- 6 Construcción del algoritmo de simulación en el dominio del tiempo

Objetivo

- Propagación de ondas de superficie.
- Estructuras periódicas.
- Comportamiento de EBGs uniplanares.
- Modelo circuital equivalente de una celda unitaria.
- Programa de simulación en el dominio del tiempo.
- Introducción al uso de EBGs en antenas.

Reseña histórica

- 1873: **Maxwell**. Bases de teoría electromagnética clásica.
- 1885-1887: Heaviside. Simplificación de expresiones: Notación vectorial.
- 1886-1891: **Hertz**. Validación de teoría de ondas electromagnéticas. Primer antena dipolo y parabólica.
- 1897: Rayleigh. Propagación de ondas en guías metálicas.
- 1926: Yagi-Uda. Conjunto de antenas, fase fija.
- 1938-1945: Antenas de fase variable.
- 1953: **Deschamps**. Antenas *microstrip*.
- 1970': Uso en aplicaciones prácticas. Solución a problemas de dispersión y modos indeseados.

Ventajas de las estructuras microstrip

- Bajo costo.
- Bajo peso.
- Construcción sencilla (fotolitografía).
- Cómodas para implantación de componentes discretos.
- Alto Q (resonantes).

Aplicaciones: filtros microondas, acopladores direccionales, transformadores de impedancia, planos de tierra y redes de distribución de circuitos impresos.

Problemas de las estructuras microstrip

El tamaño de las antenas y estructuras *microstrip* depende de la permitividad dieléctrica del sustrato y de la longitud de onda de trabajo.

- $\downarrow D \Rightarrow \uparrow \epsilon_r, \uparrow SW$.
- $\uparrow \epsilon_r \Rightarrow \uparrow Q, \downarrow BW$.
- $\bullet \downarrow Q \Rightarrow \uparrow h.$
- $\uparrow h \Rightarrow \uparrow SW$, \uparrow modos.

Las ondas de superficie:

- ↓ potencia radiada.
- † acoplamiento.
- Diagrama de radiación:
 † lóbulos secundarios.

Ancho del sustrato

SW: Ondas de superficie. BW: Ancho de banda. D: Tamaño de la estructura. h: Ancho del sustrato.

Federico Luna Tesis de grado 6 / 66

Soluciones propuestas en la literatura

- Separación del plano de tierra de las estructuras.
- Modificar la altura o la permitividad del sustrato a corta distancia.
- Estructuras periódicas: EBG, DGS.

F. Yang e Y. Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering, Cambridge University Press, 2009.

Conceptos básicos de electromagnetismo

- Presentación del problema
- Conceptos básicos de electromagnetismo
 - Ecuaciones de Maxwell
 - Ondas electromagnéticas
 - Antenas
 - Ondas de superficie
 - Antenas microstrip
- Fundamentos de EBGs
- 4 Modelado
- 5 Análisis y modelado de la celda de Yang

Ecuaciones de Maxwell

$$\begin{array}{ll} \mathsf{Faraday} & \nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t} - \boldsymbol{M} \\ \mathsf{Amp\`ere} & \nabla \times \boldsymbol{H} = \frac{\partial \boldsymbol{D}}{\partial t} + \boldsymbol{J} \\ \mathsf{Gauss} & \nabla \cdot \boldsymbol{D} = \rho \\ \mathsf{Gauss} & \nabla \cdot \boldsymbol{B} = 0 \end{array} \right\} \quad \Longrightarrow \quad \left\{ \begin{array}{ll} \nabla \times \boldsymbol{E} = -j\omega \boldsymbol{B} - \boldsymbol{M} \\ \nabla \times \boldsymbol{H} = j\omega \boldsymbol{D} + \boldsymbol{J} \\ \nabla \cdot \boldsymbol{D} = \rho \\ \nabla \cdot \boldsymbol{B} = 0 \end{array} \right.$$

Si:

- No hay dispersión. (ϵ y μ independientes de ω).
- Material isotrópico.
- Estudio macroscópico.
- Comportamiento armónico.
- Régimen permanente.

Campos en medios materiales

Si el medio es lineal, isotrópico y homogéneo:

$$D = \epsilon_0 \mathbf{E} + \mathbf{P}_e = \epsilon_0 (1 + \chi_e) \mathbf{E} = \epsilon \mathbf{E} = (\epsilon' - j\epsilon'') \mathbf{E}$$
$$\mathbf{B} = \mu_0 (\mathbf{H} + \mathbf{P}_m) = \mu_0 (1 + \chi_m) \mathbf{H} = \mu \mathbf{H} = (\mu' - j\mu'') \mathbf{H}.$$

Si el material posee una conductividad σ independiente del campo eléctrico aplicado, se cumple la Ley de Ohm:

$$J = \sigma E \Rightarrow D = \left(\epsilon' - j\epsilon'' - j\frac{\sigma}{\omega}\right) E.$$

Tangente de pérdidas

$$\tan \delta = \frac{\omega \epsilon'' + \sigma}{\omega \epsilon'}.$$

Ondas electromagnéticas (I)

En una región libre de fuentes, se pueden deducir las ecuaciones de Helmholtz para ondas monocromáticas, a partir de las ecuaciones de Maxwell.

$$\nabla^{2} \mathbf{E} + \gamma^{2} \mathbf{E} = 0
\nabla^{2} \mathbf{H} + \gamma^{2} \mathbf{H} = 0$$

$$\Longrightarrow \begin{cases}
\mathbf{E}(x, y, z) = \mathbf{E}_{0} e^{\pm j \gamma \cdot \mathbf{r}}. \\
\mathbf{H}(x, y, z) = \mathbf{H}_{0} e^{\pm j \gamma \cdot \mathbf{r}}.
\end{cases}$$

$$\begin{split} \gamma &= -j\alpha + \beta = j\omega\sqrt{\mu(\epsilon' - j\epsilon'') - j\sigma\epsilon/\omega}.\\ \gamma &= \gamma_x + \gamma_y + \gamma_z. \end{split}$$

Ondas electromagnéticas (II)

Para las ondas planas,

$$m{H}(m{r},t) = \pm rac{\hat{eta} imes m{E}(m{r},t)}{\eta}.$$

Impedancia de onda

$$\eta = \frac{j\omega\mu}{\gamma}.$$

Prof. penetración

$$\delta_s = -1/\alpha = \sqrt{\frac{2}{\omega\mu\sigma}}.$$

Velocidad de fase

$$v_p = \omega/\beta = c/\sqrt{\mu_r \epsilon_r}.$$

Velocidad de grupo

$$v_g = d\omega/d\beta.$$

Componentes del campo eléctrico que se desplaza en dirección \boldsymbol{z}

$$E_i(z) = E_i e^{-j\gamma z} = E_i e^{-\alpha z} e^{-j\beta z}, \quad i = x, y.$$

Fuentes de ondas electromagnéticas: Antenas

Antena

Interfaz para las ondas electromagnéticas entre el espacio libre y un dispositivo de guía, generalmente metálico.

Objetivo: Recibir y transmitir energía eficientemente.

Fuentes de ondas electromagnéticas: Antenas

Antena

Interfaz para las ondas electromagnéticas entre el espacio libre y un dispositivo de guía, generalmente metálico.

Objetivo: Recibir y transmitir energía eficientemente.

Se suelen utilizar en conjuntos radiantes, dispuestas geométricamente.

- -1926: Yagi-Uda.
- -Segunda guerra mundial: Conjuntos de antena de fase variable.
- -1950: Desfasadores de ferrita, fase completa.

Acoplamiento entre antenas

Responsables

- Acoplamiento espacial entre elementos por onda espacial $(\downarrow \propto 1/\rho)$.
- Acoplamiento espacial por onda de superficie ($\downarrow \propto 1/\sqrt{\rho}$).
- Acoplamiento por red de alimentación (alimentación no independiente).

$$\begin{bmatrix} V_1 \\ V_2 \\ \vdots \\ V_N \end{bmatrix} = \underbrace{\begin{bmatrix} Z_{11} & Z_{12} & \cdots & Z_{1N} \\ Z_{12} & Z_{22} & \cdots & Z_{2N} \\ \vdots & \vdots & \cdots & \vdots \\ Z_{1N} & Z_{2N} & \cdots & Z_{NN} \end{bmatrix}}_{Z} \begin{bmatrix} I_1 \\ I_2 \\ \vdots \\ I_N \end{bmatrix}$$

Ondas de superficie

Se propagan en un plano. Comportamiento evanescente en la dirección normal.

- Planos conductores.
- Planos conductores recubiertos de dieléctrico.
- Planos corrugados.
- Interfaz entre dos medios distintos.

Ondas de Zenneck

- TM.
- Bajas pérdidas.
- Ángulo de Brewster: $Z_1 = Z_2$

$$Z_1 = \frac{E_{z_1}}{H_{y_1}} = \eta_0 \cos \theta_i = \frac{\gamma_{x_1}}{\gamma_1} \eta_0$$
$$Z_2 = \frac{E_{z_2}}{H_{y_2}} = \eta_2 \cos \theta_t = \frac{\gamma_{x_2}}{\gamma_2} \eta_2$$

 γ a uno y otro lado de la interfaz es complejo.

Impedancia de superficie y constante de propagación (TM)

Si se asume una impedancia de superficie $Z_s=R_s+jX_s$, al igualar la impedancia de onda a la de superficie:

TM

$$\gamma_{x_1} = \gamma_1 \frac{Z_1}{\eta_0} = \gamma_1 Z_s = \gamma_1 R_s + j \gamma_1 X_s,$$

$$\gamma_z = \beta_z - j \alpha_z = \sqrt{(\gamma_1^2 - \gamma_{x_1}^2)} = \gamma_1 \sqrt{1 + X_s^2 - R_s^2 - 2jR_s X_s}.$$

- $X_s > 0$: Reactancia inductiva:
 - $\uparrow \alpha_x$: Decrecimiento exponencial en x.
 - $\alpha_z > 0$: Decrecimiento exponencial en z.
 - Menor v_p .

• Si $R_s X_s$ es pequeño: Baja atenuación en z.

Para ondas de superficie TM:

- $\bullet \uparrow X_s$
- $\bullet \downarrow R_s$.

Impedancia de superficie y constante de propagación (TM)

Si se asume una impedancia de superficie $Z_s=R_s+jX_s$, al igualar la impedancia de onda a la de superficie:

TM

$$\begin{split} \gamma_{x_1} &= \gamma_1 \frac{Z_1}{\eta_0} = \gamma_1 Z_s = \gamma_1 R_s + j \gamma_1 X_s, \\ \gamma_z &= \beta_z - j \alpha_z = \sqrt{(\gamma_1^2 - \gamma_{x_1}^2)} = \gamma_1 \sqrt{1 + X_s^2 - R_s^2 - 2j R_s X_s}. \end{split}$$

TE

$$\begin{split} \gamma_{x_1} &= -\frac{\gamma_1}{Z_s} = -\gamma_1 \frac{R_s}{R_s^2 + X_s^2} - j \frac{X_s}{R_s^2 + X_s^2}, \\ \gamma_z &= \beta_z - j \alpha_z = \sqrt{(\gamma_1^2 - \gamma_{x_1}^2)} = \frac{\gamma_1}{R_s^2 + X_s^2} \sqrt{1 + X_s^2 - R_s^2 + 2jR_sX_s}. \end{split}$$

Valor de $\gamma_z = \beta_z - ja_z$ en función de la reactancia de superficie para distintas resistencias de superficie, en TM

Condiciones para la propagación sobre un plano conductor

Polarización TM

- Comportamiento inductivo.
 - Resistividad baja.

Polarización TE

- Comportamiento capacitivo.
 - Resistividad baja.

Para volver más inductiva a la superficie, se puede recubrir al plano conductor con un dieléctrico.

Federico Luna Tesis de grado 19/66

Comportamiento para plano de tierra cubierto por un dieléctrico fino

$$(\gamma_{x_2}h)^2 + (\alpha_{x_1}h)^2 = (\epsilon_{r_2} - 1)(\gamma_1h)^2$$

$$\begin{cases} (\gamma_{x_2}h)^2 + (\alpha_{x_1}h)^2 = (\epsilon_{r_2} - 1)(\gamma_1h)^2 \\ \gamma_{x_2}h\tan(\gamma_{x_2}h) = |\alpha_{x_1}|\epsilon_{r_2}h. \end{cases} \begin{cases} (\gamma_{x_2}h)^2 + (\alpha_{x_1}h)^2 = (\epsilon_{r_2} - 1)(\gamma_1h) \\ \gamma_{x_2}h\cot(\gamma_{x_2}h) = -|\alpha_{x_1}|\epsilon_{r_2}h. \end{cases}$$

Federico Luna Tesis de grado 20 / 66

Impedancia de superficie: GND+FR4

$$Z_s^{TM} = j \frac{\cos \theta_t}{\sqrt{\epsilon_{r_2}}} \tan(\gamma_2 h \cos \theta_t) = j \frac{\cos \theta_t}{\sqrt{\epsilon_{r_2}}} \tan(\omega \sqrt{\epsilon_{r_2} \mu_0 \epsilon_0} h \cos \theta_t)$$

Impedancia de superficie vs. ancho

Impedancia de superficie vs. permitividad

Federico Luna Tesis de grado 22 / 66

En resúmen

No existirán ondas de superficie de polarización TE en el plano de tierra recubierto por 1.6 mm de espesor de FR4, hasta los 25 GHz.

 \uparrow ancho del sustrato \Rightarrow \uparrow ondas de superficie (TM)

 \uparrow permitividad eléctrica del sustrato \Rightarrow \uparrow ondas de superficie (TM)

Antenas *microstrip*

- Bajo costo, peso y perfil.
- Construcción sencilla.
- Alto Q (resonantes).
- Bajo acoplamiento con elementos cercanos. Campos contenidos en el sustrato.

$$\uparrow \epsilon_r \Rightarrow \downarrow$$
 acoplamiento.

- Baja eficiencia.
- Baja potencia.
- Polarización impura.
- Alto acoplamiento con elementos ubicados sobre la superficie.

 $\uparrow \epsilon_r \Rightarrow \uparrow$ acoplamiento.

Modelo de líneas de transmisión

Antena rectangular: Dos aperturas radiantes de ancho W y altura h, sepadas una distancia L por una línea de trasmisión de impedancia característica conocida Z_0 .

Fringing: Considerado mediante el uso de una $L_{eff} = L + 2\Delta L$.

Modelo de cavidades multimodo

Antena rectangular: Cavidad cargada dieléctricamente, limitada por conductores eléctricos en sus caras superior e inferior, y por conductores magnéticos en sus caras laterales.

$$(f_r)_{nmp} = \frac{1}{2\pi\sqrt{\mu\epsilon}}\sqrt{\left(\frac{m\pi}{h}\right)^2 + \left(\frac{n\pi}{L}\right)^2 + \left(\frac{p\pi}{W}\right)^2}$$

Federico Luna Tesis de grado 26 / 66

Acoplamiento mutuo en antenas microstrip

Fundamentos básicos de EBGs

- Presentación del problema
- 2 Conceptos básicos de electromagnetismo
- Fundamentos de EBGs
 - Bragg, Bloch-Floquet y espacio recíproco
 - Dispersión
- Modelado
- 5 Análisis y modelado de la celda de Yang
- 6 Construcción del algoritmo de simulación en el dominio del tiempo

Metamateriales y EBGs

Metamateriales

Estructuras artificiales **efectivamente homogéneas** para la longitud de onda de interés, que presentan propiedades electromagnéticas que no se encuentran en la naturaleza.

EBGs, PBGs, cristales fotónicos

Estructuras articiales con capacidades para controlar (en general, atenuar) ondas electromagnéticas a partir de la variación periódica en el espacio de las propiedades del medio respecto de la propagación electromagnética.

- Fines del siglo XVIII:
 Rittenhouse observó que algunos colores desaparecían cuando se veía luz a través de un pañuelo.
- 1919: Guglielmo Marconi, Charles Samuel Franklin: Conductores horizontales como superficie reflectiva para cierta frecuencia (¿Primer FSS?)

Reseña histórica

- 1946: Louis **Brillouin**: Wave propagacion in periodic structures: Electric filters and crystal lattices. Restricciones a los vectores de onda γ en un medio periódico.
- 1968: Viktor **Veselago**: Descripción teórica de LHS, velocidad de grupo antiparalela a la velocidad de fase.

- 1990: **Smith**: Split Ring Resonators en base a los trabajos de Pendry. Se construyó en 2000.
- 1990: **Ho, Chan, Soukulis**: Conjunto periódico de esferas dieléctricas. Banda prohibida.
- 1990: **Yablonovitch**. Estructura cristalina. Agujeros cilíndricos.

Reseña histórica

Reseña histórica

• 1999: **Sievenpiper**: HIS. Mushrooms. AMC + EBG.

• 2001: Yang: Uniplanar EBG (¿FSS o EBG?)

Difracción de Bragg

$$\Gamma_t = \Gamma e^{-j\gamma x} + \Gamma e^{-2j\gamma a} e^{-j\gamma x} + \Gamma e^{-4j\gamma a} e^{-j\gamma x} + \dots = \Gamma e^{-j\gamma x} \frac{1}{1 - e^{-2j\gamma a}},$$

Si $e^{-2j\gamma a} = 1$, la expresión diverge.

Condición de Bragg

$$\gamma = n\pi/a$$

Teorema de Bloch y armónicos espaciales

Federico Luna Tesis de grado 32 / 66

Espacio recíproco

Dispersión en materiales comunes

Federico Luna Tesis de grado 34/66

Representación de la dispersión en 2D

Bandgap electromagnético

Federico Luna Tesis de grado 36 / 66

Treatments	Response 1	Response 2
Treatment 1	0.0003262	0.562
Treatment 2	0.0015681	0.910
Treatment 3	0.0009271	0.296

Cuadro: Table caption

Theorem

Theorem (Mass-energy equivalence)

$$E=mc^2$$

Verbatim

Example (Theorem Slide Code)

```
\begin{frame}
\frametitle{Theorem}
\begin{theorem}[Mass--energy equivalence]
$E = mc^2$
\end{theorem}
\end{frame}
```

Figure

Uncomment the code on this slide to include your own image from the same directory as the template .TeX file.

Citation

An example of the \cite command to cite within the presentation:

This statement requires citation [Smith, 2012].

References

John Smith (2012)

Title of the publication

Journal Name 12(3), 45 - 678.

The End

Ecuación de dispersión partir de una línea de transmisión

Federico Luna Tesis de grado 44 / 66

Diagrama de dispersión

Métodos numéricos

Resultados de simulaciones para celda sencilla

Federico Luna Tesis de grado 47 / 66

Análisis de diagrama de dispersión típico

Variación del ancho del puente

Variación del tamaño de la celda unitaria

Federico Luna Tesis de grado 50 / 66

Variación del lado del parche

Variación del ancho del sustrato

Federico Luna Tesis de grado 52 / 66

Celda de Yang

Comportamiento

Federico Luna Tesis de grado 54 / 66

Modelo I

Modelo I: Resultados

Federico Luna Tesis de grado 56 / 66

Modelo II

Modelo II: Resultados

Federico Luna Tesis de grado 58 / 66

Modelo II: Diagrama de dispersión

Federico Luna Tesis de grado 59 / 66

Modelo III

Federico Luna Tesis de grado 60 / 66

Modelo III: Resultados

Federico Luna Tesis de grado 61 / 66

Modelo III: Diagrama de dispersión

Comportamiento de una fila

Comportamiento de una estructura

Federico Luna Tesis de grado 64 / 66

Definiciones

Federico Luna Tesis de grado 65 / 66

Resultados

Federico Luna Tesis de grado 66 / 66