Devoir surveillé n°1: corrigé

SOLUTION 1.

- 1. On montre par récurrence que $u_n=3^{2^n}$. En effet, $u_0=3=3^1=3^{2^0}$. Si $u_n=3^{2^n}$ pour un certain $n\in\mathbb{N}$, alors $u_n=(3^{2^n})^2=3^{2^n\times 2}=3^{2^{n+1}}$. Ceci prouve par récurrence que $u_n=3^{2^n}$ pour tout $n\in\mathbb{N}$.
- 2. Une récurrence évidente montre que $u_n>0$ pour tout $n\in\mathbb{N}$. Alors $\frac{u_{n+1}}{u_n}=\frac{1}{1+u_n^2}\leqslant 1$ pour tout $n\in\mathbb{N}$ donc (u_n) est décroissante. De plus (u_n) est minorée par 0 donc (u_n) converge vers un réel ℓ vérifiant $\ell=\frac{\ell}{1+\ell^2}$ ou encore $\ell(1+\ell^2)=\ell$ ce qui implique $\ell^3=0$ et donc $\ell=0$.
- 3. On utilise les quantités conjuguées.

$$\begin{split} \sqrt{n+1} - \sqrt{n} &= \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}} \\ \sqrt{n+2} - \sqrt{n} &= \frac{(\sqrt{n+2} - \sqrt{n})(\sqrt{n+2} + \sqrt{n})}{\sqrt{n+2} + \sqrt{n}} = \frac{2}{\sqrt{n+2} + \sqrt{n}} \end{split}$$

Ainsi

$$u_n = \frac{1}{2} \cdot \frac{\sqrt{n+2} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{2} \cdot \frac{\sqrt{1 + \frac{2}{n}} + 1}{\sqrt{1 + \frac{1}{n}} + 1}$$

Par opérations sur les limites, $\lim_{n\to+\infty} u_n = \frac{1}{2}$.

4. Il s'agit d'une somme de termes d'une suite géométrique.

$$S_n = \frac{(2+2n) \cdot n}{2} = n(n+1)$$

5. Il s'agit d'une somme de termes d'une suite géométrique

$$S_n = 2 \cdot \frac{2^n - 1}{2 - 1} = 2^{n+1} - 2$$

6.

$$z = \overline{\left(\frac{5-3i}{-2+i}\right)} = \frac{\overline{5-3i}}{\overline{-2+i}} = -\frac{5+3i}{2+i} = -\frac{(5+3i)(2-i)}{(2+i)(2-i)} = -\frac{1}{5}(13+i)$$

7.

$$z = 2\sqrt{2}\left(-\frac{\sqrt{3}}{2} + \frac{1}{2}i\right) = 2\sqrt{2}e^{\frac{5i\pi}{6}}$$

8. L'équation

$$\sin(x)\cos(x) = \frac{1}{4}$$

équivaut à

$$\sin(2x) = \frac{1}{2}$$

ou encore

$$\sin(2x) = \sin\frac{\pi}{6}$$

Un réel x est donc solution s'il existe $k \in \mathbb{Z}$ tel que

$$2x = \frac{\pi}{6} + 2k\pi$$
 ou $2x = \frac{5\pi}{6} + 2k\pi$

ce qui équivaut à

$$x = \frac{\pi}{12} + k\pi$$
 ou $x = \frac{5\pi}{12} + k\pi$

L'ensemble des solutions sur $[-\pi, \pi]$ est donc

$$\left\{-\frac{11\pi}{12}, -\frac{7\pi}{12}, \frac{\pi}{12}, \frac{5\pi}{12}\right\}$$

9. L'inéquation

$$\frac{2x+1}{x+2} \geqslant \frac{3x-1}{x+1}$$

équivaut à

$$\frac{2x+1}{x+2} - \frac{3x-1}{x+1} \ge 0$$

ou encore

$$\frac{(2x+1)(x+1) - (3x-1)(x+2)}{(x+2)(x+1)} \geqslant 0$$

ou enfin

$$\frac{(x-1)(x+3)}{(x+2)(x+1)} \leqslant 0$$

A l'aide d'un tableau de signes, on trouve que l'ensemble des solutions est

$$[-3, -2[\cup] - 1, 1]$$

10. Puisque les deux membres ont positifs, l'inéquation

$$|x+3| \leq |2x-1|$$

équivaut à

$$|x+3|^2 \le |2x-1|^2$$

ou encore

$$0 \le (2x-1)^2 - (x+3)^2$$

Via une identité remarquable, ceci équivaut à

$$0 \le ((2x-1) + (x+3))((2x-1) - (x+3))$$

et finalement à

$$0 \leqslant (3x+2)(x-4)$$

L'ensemble des solutions est donc

$$\left]-\infty,-\frac{2}{3}\right]\cup[4,+\infty[$$

11. f est clairement dérivable en tant que produit de fonctions dérivables et pour tout $x \in \mathbb{R}$

$$f'(x) = 2(2x^2 + 2x - 31)e^{2x} + (4x + 2)e^{2x} = 4(x^2 + 2x - 15)e^{2x} = 4(x + 5)(x - 3)e^{2x}$$

On en déduit que $f' \ge 0$ sur $]-\infty, -5] \cup [3, +\infty[$ et $f' \ge 0$ sur [-5, 3]. Ainsi f est croissante sur $]-\infty, -5] \cup [3, +\infty[$ et décroissante sur [-5, 3].

- 12. La fonction $u \mapsto \ln(1+u)$ étant croissante le sens de variation de f est le même que celui de $g: x \mapsto |x^2-1|$. Pour $x \in [-1,1], g(x) = 1-x^2$ donc g est croissante sur [-1,0] et décroissante sur [0,1]. Pour $x \in]-\infty,-1] \cup [1,+\infty[,g(x)=x^2-1]$ donc g est décroissante sur $]-\infty,-1]$ et croissante sur $[1,+\infty[.$ Finalement, f est décroissante sur $]-\infty,-1]$, croissante sur [-1,0], décroissante sur [0,1] et croissante sur $[1,+\infty[.$
- 13. On définit une fonction f par $f(x)=2x^3-9x^2+12x-\frac{9}{2}$ pour $x\in\mathbb{R}$. Cette fonction est clairement dérivable sur \mathbb{R} et pour tout $x\in\mathbb{R}$,

$$f'(x) = 6x^2 - 18x + 12 = 6(x - 1)(x - 2)$$

On en déduit que f est strictement croissante sur] $-\infty$, 1], strictement décroissante sur [1, 2] et strictement croissante sur [2, $+\infty$ [. Par ailleurs, f(1) = $\frac{1}{2}$ > 0 et f(2) = $-\frac{1}{2}$, $\lim_{-\infty}$ f = $-\infty$ et $\lim_{+\infty}$ f = $+\infty$. La continuité de f et le corollaire du théorème des valeurs intermédiaires pour les fonctions strictement monotones permet alors d'affirmer que f s'annule trois fois (une fois sur chacun des intervalles] $-\infty$, 1], [1, 2] et [2, $+\infty$ [. L'équation $2x^3 - 9x^2 + 12x = \frac{9}{2}$ admet donc exactement trois solutions sur \mathbb{R} .

14. On remarque que $\frac{\pi}{12} = \frac{\pi}{3} - \frac{\pi}{4}$. Ainsi

$$\cos \frac{\pi}{12} = \cos \frac{\pi}{3} \cos \frac{\pi}{4} + \sin \frac{\pi}{3} \sin \frac{\pi}{4} = \frac{\sqrt{2} + \sqrt{6}}{4}$$
$$\sin \frac{\pi}{12} = \sin \frac{\pi}{3} \cos \frac{\pi}{4} - \cos \frac{\pi}{3} \sin \frac{\pi}{4} = \frac{\sqrt{6} - \sqrt{2}}{4}$$

15.

$$I = \left[\ln(t^2 + t + 1) \right]_0^1 = \ln 3 - \ln 1 = \ln 3$$

- **16.** Il suffit par exemple de prendre la fonction F telle que $F(x) = -\frac{1}{2}e^{\cos(2x)}$ pour tout $x \in \mathbb{R}$.
- **17.** Pour tout $x \in \mathbb{R}^*$,

$$f(x) = \frac{\sin(x^3)}{x^3} \cdot x^2$$

On effectue le changement de variable $u=x^3$. Alors $u \xrightarrow[x \to 0]{} 0$ donc

$$\lim_{x\to 0} \frac{\sin(x^3)}{x^3} = \lim_{u\to 0} \frac{\sin u}{u} = 1$$

Par ailleurs, $\lim_{x\to 0} x^2 = 0$, donc, par opérations sur les limites,

$$\lim_{x\to 0} f(x) = 1 \times 0 = 0$$

18. Pour $x \notin \pi \mathbb{Z}$,

$$f(x) = \frac{e^x - 1}{x} \cdot \frac{\sin x}{x}$$

On reconnaît en le premier facteur le taux de variation de exp en 0 de sorte que

$$\lim_{x \to 0} \frac{e^x - 1}{x} = \exp'(0) = \exp(0) = 1$$

Or on sait également que $\lim_{x\to 0}\frac{\sin x}{x}=1$. Par opérations, $\lim_{x\to 0}f(x)=\frac{1}{1}=1$.

19. Lorsque les tirages s'effectuent avec remise, la probabilité de ne pas piocher la boule n à chaque tirage est 1 - 1/n. Les tirages étant implicitement indépendants, la probabilité de ne pas tirer la boule n au cours des n - 1 tirages est (1 - 1/n)ⁿ⁻¹. La probabilité de tirer la boule n est donc 1 - (1 - 1/n)ⁿ⁻¹. Lorsque les tirages s'effectuent avec remise, la formule des probabilités composées montre que la probabilité de ne pas tirer la boule n est

$$\frac{n-1}{n} \times \frac{n-2}{n-1} \times \dots \times \frac{1}{2} = \prod_{k=1}^{n-1} \frac{k}{k+1} = \frac{1}{n}$$

La probabilité de tirer la boule n est donc $1 - \frac{1}{n}$.

20. Comme toutes les boules ont une probabilité $\frac{1}{2n}$ d'être tirées, l'espérance recherchée est

$$\frac{1}{2n} \left(\sum_{k=1}^{n} 2k - \sum_{k=1}^{n} 2k - 1 \right) = \frac{1}{2n} \left(\frac{n(2n+2)}{2} - \frac{2n^2}{2} \right) = 1$$