Schelling Segregation with Neutral Agents

Jamie Faber - Sander Broos - Yke Sijpestijn - Nick van Santen - Wiebe Timmers

Background & Research Question

- Demographic Segregation
- Schelling Segregation Model
 - Neutral agents
 - Social Networks

- Does the introduction of neutral agents in a Schelling segregation model yield decreased segregation in comparison to a Schelling segregation model without neutral agents?
 - Total removal of segregation
 - Neighborhood tipping
 - Sensitivity analysis
 - Effects of social network on tolerance levels

Methods

- Entropy
- Neutral agents
- Decision making
- $\theta = N_s/N$

Methods

Social network

- Regardless of location
- Erdős-Rényi graph
- Neutral agents "convince" neighbors $\theta_{new} = \alpha * \theta_{old}$
- Partly randomize at step

Parameters

Table 1: Parameters with Bounds

Parameter	Name	Bounds	Default
Size of grid (NxN)	Size	[5,101]	20
Proportion grid filled with agents	Density	[0.05,0.99]	0.75
Proportion neutral agents of total agents	Init_Neutral	[0.1,0.9]	0.33
Proportion of similar neighbours desired θ	Similar_Wanted	[0.01,1]	0.75
Distance agent scans neighbourhood	Radius	[1,5]	1
Erdős–Rényi parameter p	Network_p	[0,1]	0.04
Neutral agents "convincing" rate α	Decrease_Intolerance	[0.9,1]	0.99
Random edge swap parameter δ	Randomize_Part	[0,1]	0.5

Results - Verification original Schelling model

- No neutral agents
- Original Schelling model created segregation at $\theta > \frac{3}{8}$

Results - Impact neutrals on entropy I

• No effect on neutrals noted for low values of θ

Results - Impact neutrals on entropy I I

- Steady incline for θ = 0.5 and 0.625
- Drastic entropy drop when neutral agents are add for θ = 0.75, 0.875, and 1

Results - Impact neutrals on happiness

• Neutral agents increase happiness for all values of θ

Results - Sensitivity Analysis OFAT - Entropy

8D parameter space

Aberrations within replicates high for randomize_part and decrease_intolerance

Results - Sensitivity Analysis

OFAT - Happy agents

 Initial values always converge to 100% Happy agents

Results - Sensitivity Analysis

GSA - Entropy

All parameters influential

Results - Sensitivity Analysis

GSA - Happy agents

Keep all parameters

Discussion & Further Research

- Agent moving behavior
- Scope of segregation causality
- Geoschelling
- Neutral agent research