

243 Jubug-Ri, Yangji-Myeon, Yongin-Si, Gyeonggi-Do, Korea 449-822 Tel: +82-31-323-6008 Fax: +82-31-323-6010 http://www.ltalab.com

Dates of Tests: June 01~08, 2010 Test Report S/N: LR500191006A Test Site: LTA CO., LTD.

CERTIFICATION OF COMPLIANCE

FCC ID.

U8D-FZ750BS

APPLICANT

Firmtech co., Ltd

Equipment Class : **Digital Transmission System (DTS)**

Manufacturing Description : Zigbee Embedded Module

Manufacturer : Firmtech co.,Ltd

Model name : FZ750BS

Variant Model name : FZ760BS,FZ770BS

Test Device Serial No.: : Identical prototype

Rule Part(s) : FCC Part 15.247 Subpart C; ANSI C-63.4-2003

Frequency Range : 2405MHz ~ 2475MHz

Max. Output Power : Max 10.65dBm – Conducted

Data of issue : June 7, 2010

This test report is issued under the authority of:

The test was supervised by:

Kyung-Taek LEE, Technical Manager

Hyun-Chae You, Test Engineer

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. This report must not be used by the applicant to claim product endorsement by any agency.

NVLAP

NVLAP LAB Code.: 200723-0

TABLE OF CONTENTS

1. GENERAL INFORMATION'S	3
2. INFORMATION'S ABOUT TEST ITEM	4
3. TEST REPORT	5
3.1 SUMMARY OF TESTS	5
3.2 TECHNICAL CHARACTERISTICS TEST	6
3.2.1 6dB BANDWIDTH	6
3.2.2 PEAK OUTPUT POWER	9
3.2.3 POWER SPECTRAL DENSITY	12
3.2.4 BAND – EDGE & SPURIOUS	15
3.2.5 FIELD STRENGTH OF HARMONICS	21
3.2.6 AC CONDUCTED EMISSIONS	27
APPENDIX	
APPENDIX TEST EQUIPMENT USED FOR TESTS	30

1. General information's

1-1 Test Performed

Company name : LTA Co., Ltd.

Address : 243, Jubug-ri, Yangji-Myeon, Youngin-Si, Kyunggi-Do, Korea. 449-822

Web site : http://www.ltalab.com
E-mail : chahn@ltalab.com
Telephone : +82-31-323-6008
Facsimile +82-31-323-6010

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

1-2 Accredited agencies

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

Agency	Country	Accreditation No.	Validity	Reference
NVLAP	U.S.A	200723-0	2010-09-30	ECT accredited Lab.
RRL	KOREA	KR0049	2011-06-20	EMC accredited Lab.
FCC	U.S.A	610755	2011-04-22	FCC filing
VCCI	JAPAN	R2133, C2307	2011-06-21	VCCI registration
IC	CANADA	IC5799	2012-05-14	IC filing

2. Information's about test item

2-1 Client & Manufacturer

Company name : Firmtech co., Ltd.

Address B-606, Ssang IT Twin Tower, Sangdaewon-dong, 442-5, Jungwon-gu,

Seongnam-si, Gyeonggi-do, Korea 462-120

Tel / Fax : TEL No: +82-31-719-4812 / FAX No: +82-31-719-4834

2-2 Equipment Under Test (EUT)

Trade name : Zigbee Embedded Module

FCC ID : U8D-FZ750BS

Model name : FZ750BS

Variant Model name : FZ760BS,FZ770BS Serial number : Identical prototype

Date of receipt : June 1, 2010

EUT condition : Pre-production, not damaged

Antenna type : Helical antenna (M/N: WE-2400PO) Max Gain 2.85 dBi

Frequency Range : 2405MHz ~ 2475MHz (DSSS) RF output power : Max 10.65dBm - Conducted

Number of channels : 15

Type of Modulation : O-QPSK Channel spacing : 5MHz

Power Source : 3.3Vdc by Main System

2-3 Tested frequency

	LOW	MID	HIGH
Frequency (MHz)	2405	2445	2475

2-4 Ancillary Equipment

Equipment	Model No.	Serial No.	Manufacturer
Notebook	PP17L	04465	DELL

3. Test Report

3.1 Summary of tests

FCC Part Section(s)	Parameter	Limit	Test Conditio n	Status (note 1)
15.247(a)	6 dB Bandwidth	> 500kHz		С
15.247(b)	Transmitter Peak Output Power	< 1Watt	Conducted	С
15.247(d)	15.247(d) Transmitter Power Spectral Density < 8dBm @ 3kHz		Conducted	С
15.247(d)	Band Edge & Spurious	> 20 dBc		С
15.209 Field Strength of Harmonics Emission		Radiated	С	
15.207	15.207 AC Conducted Emissions Emissions		Conducted	С
15.203	Antenna requirement	-	-	С
Note 1: C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable				

Note 2: The data in this test report are traceable to the national or international standards.

→ Antenna Requirement

The Firmtech co., Ltd. FCC ID: U8D-FZ750BS unit complies with the requirement of §15.203.

The antenna connector is the reverse SMA connector.

The sample was tested according to the following specification:

FCC Parts 15.247; ANSI C-63.4-2003

3.2 Technical Characteristics Test

3.2.1 6 dB Bandwidth

Procedure:

The bandwidth at 6dB below the highest in-band spectral density was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate frequencies.

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 6dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 6 dB bandwidth of the emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

RBW = 100 kHz Span = 10 MHz

 $VBW = 100 \text{ kHz} (VBW \ge RBW)$ Sweep = auto

Trace = max hold Detector function = peak

Measurement Data:

Frequency (MHz)	Test Res	sults
	Measured Bandwidth (MHz)	Result
2405	1.592	Complies
2440	1.606	Complies
2475	1.606	Complies

⁻ See next pages for actual measured spectrum plots.

Minimum Standard:

6 dB Bandwidth > 500kHz

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

Low Channel

Mid Channel

High Channel

3.2.2 Peak Output Power Measurement

Procedure:

The maximum peak output power was measured with the spectrum analyzer connected to the antenna output of the EUT. The spectrum analyzer's internal channel power integration function is used to integrate the power over a bandwidth greater than or equal to the 99% bandwidth. The EUT was operating in transmit mode at the appropriate center frequency.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

RBW = 1MHz Span = auto

 $VBW = 1MHz (VBW \ge RBW)$ Sweep = auto

Detector function = peak

Measurement Data:

Frequency		Test Results		
(MHz)	dBm	mW	Result	
2405	10.50	11.22	Complies	
2440	10.65	11.61	Complies	
2475	10.57	11.40	Complies	

⁻ See next pages for actual measured spectrum plots.

Minimum Standard:

Peak output power	< 1W

Low Channe

Mid Channel

High Channel

3.2.3 Power Spectral Density

Procedure:

The peak power density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

The spectrum analyzer is set to:

RBW = 3 kHz	Span = 300 kHz
VBW = 3 kHz	Sweep = 100 sec
Detector function = peak	Trace = max hold

Measurement Data:

Frequency (MHz)	Test Res	sults
	dBm	Result
2405	-3.38	Complies
2440	-3.19	Complies
2475	-3.89	Complies

⁻ See next pages for actual measured spectrum plots.

Minimum Standard:

Power Spectral Density	< 8dBm @ 3kHz BW
------------------------	------------------

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

Power Density Measurement Low Channel

Mid Channel

High Channel

3.2.4 Band - edge & Spurious

Procedure:

The bandwidth at 20dB down from the highest inband spectral density is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate frequencies.

After the trace being stable, Use the marker-to-peak function to measure 20 dB down both sides of the intentional emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

RBW = 100 kHz VBW = 100 kHz

Span = 40 MHz Detector function = peak

Trace = \max hold Sweep = auto

Radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a)

The spectrum analyzer is set to:

Center frequency = the highest, the lowest channels

PEAK: RBW = VBW = 1MHz, Sweep=Auto

Average: RBW = 1MHz, VBW=10Hz, Sweep=Auto

Measurement Distance: 3m

Polarization: Horizontal / Vertical

Measurement Data: Complies

- All conducted emission in any 100kHz bandwidth outside of the spread spectrum band was at least 20dB lower than the highest inband spectral density. Therefore the applying equipment meets the requirement.
- See next pages for actual measured spectrum plots.

Minimum Standard:	> 20 dBc

Minimum Standard: FCC Part 15.209(a)

Frequency (MHz)	Limit (uV/m) @ 3m
30 ~ 88	100 **
88 ~ 216	150 **
216 ~ 960	200 **
Above 960	500

Band-edge

Band-edges in the restricted band 2310-2390 MHz measurement

Frequency	Reading	Reading Correction		Limits	Result	Margin		
	[dBuV/m]		Factor		[dBuV/m]	[dBuV/m]	[dB]	
[MHz]	AV / Peak	Pol.	Antenna	Amp. Gain	Cable	AV / Peak	AV / Peak	AV / Peak
2389	44.25 58.00	V	26.0	36.5	8.2	54.0 74.0	42.0 55.7	12.0 18.3

Band-edges in the restricted band 2483.5-2500 MHz measurement

Frequency	Reading		(Correction		Limits	Result	Margin
	[dBuV/m]	Pol.	Factor		[dBuV/m]	[dBuV/m]	[dB]	
[MHz]	AV / Peak	POI.	Antenna	Amp. Gain	Cable	AV / Peak	AV / Peak	AV / Peak
2490.5	44.12 57.67	V	26.0	36.5	8.2	54.0 74.0	41.8 55.4	12.2 18.6

Note: This EUT was tested in 3 orthogonal positions and the worst-case data was presented.

$\label{eq:Low channel} Low channel $$ Frequency Range = 30 MHz \sim 10^{th} \ harmonic.$

$\label{eq:midchannel} Mid \ channel$ $Frequency \ Range = 30 \ MHz \sim 10^{th} \ harmonic.$

$High \ channel$ $Frequency \ Range = 30 \ MHz \sim 10^{th} \ harmonic.$

3.2.5 Field Strength of Harmonics

Procedure:

The EUT was placed on a 0.8m high wooden table inside a shielded enclosure. An antenna was placed near the EUT and measurements of frequencies and amplitudes of field strengths were recorded for reference during final measurements. For final radiated testing, measurements were performed in OATS. Measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

The spectrum analyzer is set to:

Center frequency = the worst channel

Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}} \text{ harmonic.}$

 $RBW = 100 \text{ kHz} (30 \text{MHz} \sim 1 \text{ GHz})$ $VBW \geq RBW$

= 1 MHz $(1 \text{ GHz} \sim 10^{\text{th}} \text{ harmonic})$

Span = 100 MHz Detector function = peak

Trace = \max hold Sweep = auto

Measurement Data: Complies

- See next pages for actual measured data.

Minimum Standard: FCC Part 15.209(a)

Frequency (MHz)	Limit (uV/m) @ 3m
30 ~ 88	100 **
88 ~ 216	150 **
216 ~ 960	200 **
Above 960	500

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

Minimum Standard: FCC Part 15.109

Frequency (MHz)	Limit (uV/m) @ 10m
30 ~ 88	90
88 ~ 216	150
216 ~ 960	210
Above 960	300

Measurement Data:

Frequency	Reading [dBuV/m] AV / Peak			(Correction		Limits		Result			rgin
			Pol.	Factor			[dBuV/m]		[dBuV/m]		[dB]	
[MHz]				Antenna	Amp. Gain	Cable	AV /	' Peak	AV /	' Peak	AV /	Peak
1926.00	44.5	58.3	V	26.0	38.2	6.0	54.0	74.0	38.3	52.1	15.7	21.9
-	-	_	_	-	-	-	-	-	-	_	-	-
-	-	_	_	-	-	-	-	-	-	-	-	_
-	-	-	-	-	-	-	-	-	-	-	-	-
Frequency	Rea	ding		(Correction		Limits		Res	sult	Mai	rgin
Frequency	[dBuV/m]		Pol.	Factor		[dBuV/m]		[dBuV/m]		[dB]		
[MHz]	AV / Peak		Poi.	Antenna	Amp. Gain	Cable	AV / Peak		AV / Peak		AV / Peak	
1964.00	44.8	58.9	V	26.0	38.2	6.0	54.0	74.0	38.6	52.7	15.4	21.3
-	-	_	_	-	-	-	-	-	-	_	-	-
-	-	_	_	-	-	-	-	-	-	-	-	_
-	-	-	-	-	-	-	-	-	-	-	-	-
Francis mass	Rea	ding		Correction			Limits		Result		Mai	rgin
Frequency	[dBu	V/m]	Pol.		Factor		[dBuV/m] [dBuV		V/m]] [dB]		
[MHz]	AV / Peak		POI.	Antenna	Amp. Gain	Cable	AV /	' Peak	AV /	' Peak	AV /	Peak
2003	43.4	57.6	V	26.0	38.2	6.0	54.0	74.0	37.2	51.4	16.8	22.6
-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	_	-	-	-	-	-	-	-	_	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-

No other emissions were detected at a level greater than 20dB below limit.

Radiated Emissions - Zigbee

243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-3236008,9 Fax:+82-31-3236010

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

3.2.6 AC Conducted Emissions

Procedure:

The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its hopping function disabled at the middle channels in line with Section 15.31(m). Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

Measurement Data: Complies

- See next pages for actual measured spectrum plots.
- No emissions were detected at a level greater than 10dB below limit.

Minimum Standard: FCC Part 15.207(a)/EN 55022

Class B

Frequency Range	quasi-peak	Average		
0.15 ~ 0.5	66 to 56 *	56 to 46 *		
0.5 ~ 5	56	46		
5 ~ 30	60	50		

^{*} Decreases with the logarithm of the frequency

AC Conducted Emissions - Zigbee - Line

243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-3236008,9 Fax:+82-31-3236010

EUT / Model No. : FZ750BS Phase : LINE

Test Mode : ZIGBEE mode Test Power : 120 / 60

Temp./Humi. : 25 / 52 Test Engineer : LEE.K.H

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss

AC Conducted Emissions - Zigbee - Neutral

243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-3236008,9 Fax:+82-31-3236010

EUT / Model No. : F2750BS Phase : NEUTRAL

Test Mode : ZIGBEE mode Test Power : 120 / 60

Temp./Humi. : 25 / 52 Test Engineer : LEE.K.H

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss

APPENDIX

TEST EQUIPMENT USED FOR TESTS

	Description	Model No.	Serial No.	Manufacturer	Next Cal. Date
1	Spectrum Analyzer	FSV-30	100757	R&S	Feb-11
2	Spectrum Analyzer	8563E	3425A02505	НР	Mar-11
3	Spectrum Analyzer	8594E	3710A04074	НР	Oct-10
4	Signal Generator	8648C	3623A02597	НР	Mar-11
5	Signal Generator	83711B	US34490456	НР	Mar-11
6	Attenuator (3dB)	8491A	37822	НР	Oct-10
7	Attenuator (10dB)	8491A	63196	НР	Oct-10
8	Attenuator (30dB)	8498A	1801A06689	НР	Oct-10
9	EMI Test Receiver	ESVD	843748/001	R&S	Mar-11
10	Horn Antenna(18 ~ 40GHz)	SAS-574	154	Schwarzbeck	Nov-10
11	Horn Antenna(18 ~ 40GHz)	SAS-574	155	Schwarzbeck	Nov-10
12	RF Amplifier	8447D	2949A02670	НР	Oct-10
13	RF Amplifier	8449B	3008A02126	НР	Mar-11
14	Test Receiver	ESHS10	828404/009	R&S	Mar-11
15	TRILOG Antenna	VULB 9160	9160-3212	SCHWARZBECK	Apr-11
16	LogPer. Antenna	VULP 9118	9118 A 401	SCHWARZBECK	Apr-11
17	Biconical Antenna	BBA 9106	VHA 9103-2315	SCHWARZBECK	Apr-11
18	Horn Antenna	3115	00055005	ETS LINDGREN	Mar-11
19	Horn Antenna	BBHA 9120D	9120D122	SCHWARZBECK	Dec-11
20	Dipole Antenna	VHA9103	2116	SCHWARZBECK	Nov-10
21	Dipole Antenna	VHA9103	2117	SCHWARZBECK	Nov-10
22	Dipole Antenna	VHA9105	2261	SCHWARZBECK	Nov-10
23	Dipole Antenna	VHA9105	2262	SCHWARZBECK	Nov-10
24	Hygro-Thermograph	THB-36	0041557-01	ISUZU	Mar-11
25	Splitter (SMA)	ZFSC-2-2500	SF617800326	Mini-Circuits	-
26	RF Switch	MP59B	6200414971	ANRITSU	-
27	Power Divider	11636A	6243	НР	Oct-10
28	DC Power Supply	6622A	3448A03079	НР	Oct-10
29	Frequency Counter	5342A	2826A12411	НР	Mar-11
30	Power Meter	EPM-441A	GB32481702	НР	Mar-11
31	Power Sensor	8481A	2702A64048	НР	Mar-11
32	Audio Analyzer	8903B	3729A18901	НР	Oct-10
33	Modulation Analyzer	8901B	3749A05878	НР	Oct-10
34	TEMP & HUMIDITY Chamber	YJ-500	LTAS06041	JinYoung Tech	Oct-10
35	LOOP-ANTENNA	FMZB 1516	151602/94	SCHWARZBECK	Mar-11
36	Stop Watch	HS-3	601Q09R	CASIO	Mar-11
37	LISN	ENV216	100408	R&S	Oct-10
38	UNIVERSAL RADIO COMMUNICATION TESTER	CMU200	106243	R&S	May-12