CMPSC/Math 451, Numerical Computation

Wen Shen

Department of Mathematics, Penn State University

Iterative methods for systems of linear equations in Matlab

Example: We wish to solve a system: Ax = b where A is a 6×6 matrix

and the rhs vector is: b = [1; 5; 0; 3; 1; 5].

The exact solution becomes: x = [1; 2; 1; 2; 1; 2].

We solve the system with iterative methods, with the initial value:

$$x^{(0)} = [0.25; 1.25; 0; 0.75; 0.25; 1.25].$$

Jacobi iterations: tolerance $\varepsilon=10^{-5}$, with $\|\cdot\|_{\infty}$

k	x1	x2	хЗ	x4	x5	х6
1	0.2500	1.2500	0	0.7500	0.2500	1.2500
2	0.5625	1.5000	0.3125	1.3750	0.5625	1.5000
3	0.7031	1.7344	0.6250	1.5781	0.7031	1.7344
4	0.8398	1.8203	0.7461	1.7734	0.8398	1.8203
5	0.8916	1.9033	0.8633	1.8467	0.8916	1.9033
6	0.9417	1.9346	0.9075	1.9175	0.9417	1.9346
7	0.9605	1.9648	0.9502	1.9442	0.9605	1.9648
8	0.9787	1.9762	0.9663	1.9699	0.9787	1.9762
9	0.9856	1.9872	0.9819	1.9797	0.9856	1.9872
10	0.9923	1.9913	0.9877	1.9890	0.9923	1.9913
18	0.9999	1.9998	0.9998	1.9998	0.9999	1.9998
19	0.9999	1.9999	0.9999	1.9999	0.9999	1.9999
20	1.0000	1.9999	0.9999	1.9999	1.0000	1.9999

One needs more iterations to get the convergence.

Gauss-Seidal iterations:

k	x1	x2	x3	x4	x5	x6	
1	0.2500	1.2500	0	0.7500	0.2500	1.2500	
2	0.5625	1.5781	0.3906	1.5547	0.6602	1.8037	
3	0.7422	1.8242	0.7393	1.8418	0.8857	1.9319	
4	0.8909	1.9332	0.9046	1.9424	0.9591	1.9754	
5	0.9594	1.9755	0.9652	1.9790	0.9852	1.9910	
6	0.9852	1.9911	0.9873	1.9924	0.9946	1.9967	
7	0.9946	1.9967	0.9954	1.9972	0.9980	1.9988	
8	0.9980	1.9988	0.9983	1.9990	0.9993	1.9996	
9	0.9993	1.9996	0.9994	1.9996	0.9997	1.9998	
10	0.9997	1.9998	0.9998	1.9999	0.9999	1.9999	
11	0.9999	1.9999	0.9999	2.0000	1.0000	2.0000	
12	1.0000	2.0000	1.0000	2.0000	1.0000	2.0000	
===	======		======	======	======	=======	
13	1.0000	2.0000	1.0000	2.0000	1.0000	2.0000	

We see that after 12 iterations the method converges.

SOR iterations with $\omega=1.12$:

```
k
   x1
           x2
                   x3
                            x4
                                     x5
                                              x6
0.2500
         1.2500
                          0.7500
                                   0.2500
                                           1.2500
0.6000
         1.6280
                          1.6813
                                   0.7254
                 0.4480
                                           1.9239
0.7893
         1.8964
                 0.8411
                          1.9434
                                   0.9671
                                            1.9841
0.9518
         1.9831
                 0.9805
                          1.9922
                                   0.9940
                                           1.9980
0.9956
                                   0.9994
         1.9986
                 0.9972
                          1.9992
                                           1.9998
0.9994
         1.9998
                 0.9998
                          1.9999
                                   1.0000
                                           2.0000
0.9999
        2.0000
                 1.0000
                          2.0000
                                   1.0000
                                           2.0000
1,0000
        2,0000
                 1,0000
                          2,0000
                                   1,0000
                                           2,0000
                 1,0000
                          2,0000
                                   1,0000
1.0000
        2.0000
                                           2,0000
```

We see that after 8 iterations the method converges.

Error against number of iterations

