

UnB - Universidade de Brasília FGA - Faculdade UnB Gama Graduação - ciclo básico

UnB - Universidade de Brasília FGA - Faculdade UnB Gama Graduação - ciclo básico

UnB - Universidade de Brasília FGA - Faculdade UnB Gama Graduação - ciclo básico

Probabilidade e Estatística aplicada à Engenharia

Profa. Marília Miranda

- Medidas de posição e dispersão para dados brutos

Probabilidade e Estatística aplicada à Engenharia

Profa. Marília Miranda

- Distribuição de frequência
- Histograma

Probabilidade e Estatística aplicada à Engenharia

Profa. Marília Miranda

- Medidas de posição e dispersão para dados agrupados (Parte I)

MEDIDAS RESUMO

DISTRIBUIÇÕES DE **FREQUÊNCIA**

- · A distribuição de frequência é uma tabela que mostra classes ou intervalos das entradas de dados de uma contagem do número de entradas em cada classe.
- As classes são pequenos intervalos mutuamente exclusivos, tais que, quando reunidos, abrangem todo o conjunto de dados.
- A frequência f(i) de uma classe é o número de entrada de dados em uma classe.

RELEMBRANDO...

• Dados brutos: 24, 26, 24, 21, 27, 27, 30, 41, 32, 38

Classe	Freqüência
15 25	3
25 — 35	5
35 — 45	2

NOTAÇÃO PADRÃO

Medida	Amostra	População
	(Estatística)	(Parâmetro)
Média	\overline{X}	μ
Desvio padrão	S	σ
Variância	S²	σ^2
Tamanho	n	N

DISTRIBUIÇÕES DE FREQUÊNCIA

• Dados brutos: 24, 26, 24, 21, 27, 27, 30, 41, 32, 38

Classe	Freqüência
15 25	3
25 35	5
35 — 45	2

MEDIDAS PARA TABELAS DE **FREQUÊNCIA**

 Média e Desvio Padrão ponderados pelas frequências:

$$\overline{X} = \frac{\sum (X \cdot f)}{n}$$

$$S = \sqrt{\frac{\sum (X^2 \cdot f) - n \cdot \overline{X}^2}{n - 1}}$$

MÉDIA

- Medida de tendência central:
- Medida mais comum;
- Funciona como um "ponto de equilíbrio";
- Afetada por valores extremos ('outliers')
- Definição: soma dos valores, dividida pelo número de valores observados.

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

MÉDIA

Exemplo:

Notas finais dos alunos de três turmas

Turma	Notas dos alunos						Média da turma		
A	4	5	5	6	6	7	7	8	6,00
В	1	2	4	6	6	9	10	10	6,00
С	0	6	7	7	7	7,5	7,5		6,00

PEDRO A. BARBETTA - Estatística Aplicada às Clências Sociais 6ed. Editora da UFSC, 2006.

- DISTRIBUIÇÕES DE FREQUÊNCIA
- Conceitos importantes:
- (1)Limite inferior de classe: é o menor número que pode pertencer à classe;
- (2) Limite superior de classe: é o maior que pode pertencer à classe;
- (3) Largura (ou amplitude) da classe h: distância entre os limites inferiores (ou superiores) de suas consecutivas classes;

DISTRIBUIÇÕES DE **FREQUÊNCIA**

- Conceitos importantes:
- (4) Amplitude Total A: diferença entre o maior e o menor valor observado no conjunto de dados.

COEFICIENTE DE **VARIAÇÃO**

- Medida de dispersão relativa;
- Pode ser expresso como uma %;
- Mostra a variação relativa a média;
- Usado para comparar 2 ou mais grupos.
- Fórmula:

$$CV = \left(\frac{S}{\overline{X}}\right) \cdot 100\%$$

EXEMPLO

• Encontre a idade média das crianças com diarreia crônica da tabela abaixo

Idade (Meses)	Número de crianças
1.0 — 20	69///
120 — 40	26
140 — 60	13 77
160 — 80	9///
180 —100	6
1100—140	
Total	130
Fonte: Dr. Paulo Cost	

VARIÂNCIA E DESVIO **PADRÃO**

- · São medidas de dispersão;
- Considera dados como os estão distribuídos:
- Mostra a variação em torno da média;
- · Para calcular estas medidas, deve-se considerar os desvios de cada valor em relação à média aritmética. Depois obtémse uma média desses desvios.

DISTRIBUIÇÕES DE **FREQUÊNCIA**

- · Características adicionais que podem ser incluídas em uma tabela de frequências:
- (1) Ponto médio de uma classe x(i): soma dos limites inferiores e superiores da classe dividida por dois.
 - exemplo: classe = 0 |- 10

ponto médio =
$$(0+10)/2 = 5$$

EXEMPLO

$$x_{1} = \frac{0+20}{2} = 10 \quad e \quad f_{1} = 69 \qquad x_{4} = \frac{60+80}{2} = 70 \quad ; \quad f_{4} = 9$$

$$x_{2} = \frac{20+40}{2} = 30 \quad ; \quad f_{2} = 26 \qquad x_{5} = \frac{80+100}{2} = 90 \quad ; \quad f_{5} = 6$$

$$x_{3} = \frac{40+60}{2} = 50 \quad ; \quad f_{3} = 13 \qquad x_{6} = \frac{100+140}{2} = 120 \quad ; \quad f_{6} = 7$$

A média é:
$$\bar{x} = \frac{69.10 + 26.30 + 13.50 + 9.70 + 6.90 + 7.120}{130} = \frac{4130}{130} = 31,77$$

VARIÂNCIA E DESVIO **PADRÃO**

MODA

- Medida de tendência central;
- Valor que ocorre com maior frequência em uma frequência ordenada;
- Não é afetado por valores extremos;
- Pode não existir moda (série amodal) como pode existir várias modas (bimodal ou multimodal);
- Pode ser usada para dados quantitativos e qualitativos.

MEDIANA

- · Medida de tendência central;
- Divide a distribuição ao meio, deixando os 50% menores valores de um lado e os 50% majores valores do outro
- Não é afetada por valores extremos.

DISTRIBUIÇÕES DE **FREQUÊNCIA**

- (2) Frequência relativa de uma classe fr(i): porção ou porcentagem de dados que está em determinada classe.
 - Para calculá-la, divida a frequência f(i) pelo tamanho **n** da amostra.
 - exemplo: 0 |- 10 \rightarrow f(i) = 20

n = 160

freq. relativa = 20/150

= 0.124

DISTRIBUIÇÕES DE **FREQUÊNCIA**

- (3) Frequência acumulada de uma classe -F(i): é a soma da frequência para aquela classe e todas as anteriores.
 - a frequência acumulada da última classe é igual ao tamanho n da amostra.

Tabela 1. Notas da primeira prova de Estatística Aplicada Universidade Fictícia, 2010

Classes de					
Notas	fi	xi	fri	fri%	Fi
0 10	5	5	0,01	1	5
10 20	15	15	0,03	3	20
20 30	20	25	0,04	4	40
30 40	45	35	0,09	9	85
40 50	100	45	0,20	20	185
50 60	130	55	0,26	26	315
60 70	100	65	0,20	20	415
70 80	60	75	0,12	12	475
80 90	15	85	0,03	3	490
90 100	10	95	0,02	2	500
-	$\sum_{i=1}^{10} fi = 500$	-	-	-	-

Fonte: www.supercatalogo.com.br/unit/Distribuicao_de_Frequencia.pdf

HISTOGRAMA

EXEMPLO

E qual seria o valor do desvio padrão?

$$\sum_{i} f_{i} \cdot x_{i}^{2} = 69.10^{2} + 26.30^{2} + 13.50^{2} + 9.50^{2} + 6.90^{2} + 7.120^{2}$$

$$\sum_{i} f_{i} \cdot x_{i}^{2} = 256300$$

abaixo, Substituindo na fórmula encontramos S = 31,1 (CV = 97,8%)

$$S = \sqrt{\frac{\sum (X^2 \cdot f) - n \cdot \overline{X}^2}{n - 1}}$$

- Medida de tendência não central;
- Divide os dados ordenados em 4 quartos

Q₁: separa os 25% inferiores dos 75% superiores;

Q₂: é a mediana;

Q₃: separa os 75% inferiores dos 25% superiores

QUARTIS

• Posição do *i-ésimo* quartil:

Posição
$$Q_i = \frac{i \cdot (n+1)}{4}$$

QUARTIS

• Exemplo:

Dados Brutos: 10.3 4.9 8.9 11.7 6.3 7.7 Ordenado: 4.9 6.3 7.7 8.9 10.3 11.7 Posição: 1 2 3 4 5 6

Q₁ Posição =
$$\frac{1 \cdot (n+1)}{4} = \frac{1 \cdot (6+1)}{4} = 1.75 \approx 2$$

Q₁ = 6.3

Exemplo:

- Um histograma é um diagrama de barras que representa a distribuição frequência de um conjunto de dados.
- · Propriedades:
- a escala horizontal é quantitativa e mede os valores dos dados;
- a escala vertical mede as frequências das classes;
- as barras consecutivas devem estar encostadas umas nas outras (colunas justapostas).

HISTOGRAMA

ensidade de = Freqüência da classe Freqüência Amplitude da classe

Dados Brutos: 10.3 4.9 8.9 11.7 6.3 7.7 Ordenado: 4.9 6.3 7.7 8.9 10.3 11.7 1 2 3 4 Posição:

Q₂ Posição =
$$\frac{2 \cdot (n+1)}{4} = \frac{2 \cdot (6+1)}{4} = 3.5$$

Q₂ = $\frac{7.7 + 8.9}{2} = 8.3$

QUARTIS

• Exemplo:

Dados Brutos: 10.3 4.9 8.9 11.7 6.3 7.7 4.9 6.3 7.7 8.9 10.3 11.7 Ordenado: 1 2 3 4 5 6 Posição:

Q₃ Posição =
$$\frac{3 \cdot (n+1)}{4} = \frac{3 \cdot (6+1)}{4} = 5.25 \cong 5$$

Q₃ = 10.3

AMPLITUDE TOTAL

- É uma medida que mede variabilidade (dispersão);
- · Diferença entre o maior e o menor valor observado:

$$Amplitude\ Total = X_{máx} - X_{mín}$$

- · Para encontrar a amplitude, os dados devem ser quantitativos;
- Não considera a distribuição dos dados.

AMPLITUDE INTERQUARTÍLICA

- É uma medida de dispersão que pode ser utilizada para comparar grupos de dados;
- Também conhecida como dispersão

central;

- Dispersão dos 50% centrais;
- Não afetado por valores extremos.
- Fórmula:

Amplitude Interquartílica = $Q_3 - Q_1$

COEFICIENTE DE VARIAÇÃO

- Medida de dispersão relativa;
- Pode ser expresso como uma %;
- Mostra a variação relativa a média;
- Usado para comparar 2 ou mais grupos.
- Fórmula:

$$CV = \left(\frac{S}{\overline{X}}\right) \cdot 100\%$$

