

15

16

Concentration dependent diffusivity (2)

$$\frac{\partial C}{\partial t} = \frac{\partial}{\partial x} \left(D^{eff} \frac{\partial C}{\partial x} \right)$$

$$D^{\rm eff} = D^o + D^- \frac{n}{n_i} + D^{--} \left(\frac{n}{n_i}\right)^2$$
 ; for n-type dopants

$$D^{eff} = D^o + D^+ \frac{p}{n_i} + D^{++} \left(\frac{p}{n_i}\right)^2$$
 ; for p-type dopants

$$D^{eff} = D^o + D^- + D^-$$
; for intrinsic case

Each diffusivity:
$$D = D_0 \exp \left(-\frac{E_D}{kT}\right)$$

For values of concentration dependent diffusivities, see supplementary J. D. Plummer, M. D. Deal, P. G. Griffin, Silicon VLSI Technology, Pearson Education, 2001

EE669: Dopant Diffusion in Silicon; Anil Kottantharayil

18

2024 Monsoon

Segregation

- Due to the difference in solid solubility in the different materials on either sides of an interface, dopants can segregate
- Interface between thermal oxide and silicon is a frequently encountered example

$$K = \frac{C_{Si}}{C_{SiO_2}} \approx \begin{bmatrix} 0.3 \text{ for B} \\ 10 \text{ for As} \\ 10 \text{ for Sb} \\ 10 \text{ for P} \end{bmatrix}$$

J. D. Plummer, M. D. Deal, P. G. Griffin, Silicon VLSI Technology, Pearson Education, 2001

2024 Monsoon

EE669: Dopant Diffusion in Silicon; Anil Kottantharayil

19

19

20

Microscopic model of diffusion: Observations (5)

TABLE II. Summary of interface processes on diffusion.

	Oxidation $I \uparrow V \downarrow$	Oxynitridation $I \uparrow V \downarrow$	Nitridation $I \downarrow V \uparrow$
Stacking faults	Grow	Grow	Shrink
P,B diffusion			
intrinsic	Enhanced	Enhanced	Retarded
extrinsic	Enhanced	Enhanced	Retarded
Sb diffusion			
intrinsic	Enhancement precedes retardation	Enhancement precedes retardation	Enhanced
As diffusion			
intrinsic	Enhanced	Enhanced	Enhanced
extrinsic	Retarded	Enhanced	Enhanced
	or		
	no effect		
Ga diffusion			
intrinsic	Enhanced	Enhanced	Retarded

Fahey, Griffin and Plummer, Reviews of Modern Physics, vol. 61, pp. 289, 1989

2024 Monsoon EE669: Dopant Diffusion in Silicon; Anil Kottantharayil

23

23

Interstitial and vacancy assisted diffusion (2)

	fı	f _V
Silicon	0.6	0.4
Boron	1.0	0
Phosphorous	1.0	0
Arsenic	0.4	0.6
Antimony	0.02	0.98

J. D. Plummer, M. D. Deal, P. G. Griffin, Silicon VLSI Technology, Pearson Education, 2001

2024 Monsoon EE669: Dopant Diffusion in Silicon; Anil Kottantharayil

25

Interstitial and vacancy assisted diffusion

- In general, a diffusion process can be thought to have a vacancy assisted component and an interstitial assisted component
- ullet Suppose a fraction, f_v of the mobile dopants diffuse by vacancy mechanism and f_l by the interstitial mechanism

$$f_v + f_1 = 1$$

• The effective diffusivity can be expressed as:

$$D_{A_{-}eff} = D_{A0} \left(f_{I} \frac{C_{I}}{C_{I0}} + f_{V} \frac{C_{V}}{C_{V0}} \right)$$

 $D_{A\text{-eff}}$ is the effective diffusivity, C_{10} and C_{V0} are the interstitial and vacancy concentration respectively at equilibrium and, C_{I} and C_{V} are the interstitial and vacancy concentration respectively under the processing condition.

J. D. Plummer, M. D. Deal, P. G. Griffin, Silicon VLSI Technology, Pearson Education, 2001

2024 Monsoon

EE669: Dopant Diffusion in Silicon; Anil Kottantharayil

24

24

Dopant - defect interactions

$$A + I \Leftrightarrow AI$$

$$I + V \Leftrightarrow Si_{S}$$

$$Si_{S} + A_{I} \Leftrightarrow A_{S} + I$$

$$F_{AI} = -d_{AI} \frac{\partial C_{AI}}{\partial x} = -d_{AI} \left(kC_I \frac{\partial C_A}{\partial x} + kC_A \frac{\partial C_I}{\partial x} \right)$$

$$kC_I = \frac{C_{AI}}{C_A}; kC_A = \frac{C_{AI}}{C_I}$$

 $C_{AI} = kC_A C_I$

$$F_{AI} = -d_{AI} \left(\frac{C_{AI}}{C_A} \frac{\partial C_A}{\partial x} + \frac{C_{AI}}{C_I} \frac{\partial C_I}{\partial x} \right) = -d_{AI} C_{AI} \frac{\partial}{\partial x} \ln(C_A C_I)$$

J. D. Plummer, M. D. Deal, P. G. Griffin, Silicon VLSI Technology, Pearson Education, 2001

2024 Monsoon

26

EE669: Dopant Diffusion in Silicon; Anil Kottantharayil

26

25

Field enhancement

$$F_{AI} = -d_{AI}C_{AI} \frac{\partial}{\partial x} \ln \left(C_A C_I \frac{n}{n_i} \right)$$
$$\frac{\partial C_A}{\partial t} = -\frac{\partial}{\partial x} (F_A + F_{AI}) \approx -\frac{\partial F_{AI}}{\partial x}$$

J. D. Plummer, M. D. Deal, P. G. Griffin, Silicon VLSI Technology, Pearson Education, 2001 More details in Fahey, Griffin and Plummer, Reviews of Modern Physics, vol. 61, pp. 289, 1989.

2024 Monsoon

EE669: Dopant Diffusion in Silicon; Anil Kottantharayil

27

27

Sheet resistance: Definition & Calculation

$$R = \frac{\rho l}{wt} = \left(\frac{\rho}{t}\right) \left(\frac{l}{w}\right) = R_{sheet} \left(\frac{l}{w}\right)$$

$$R_{sheet} = \frac{\rho}{t} = \frac{1}{\sigma t} = \frac{1}{q \int_{0}^{t} (n\mu_{n} + p\mu_{p}) dt}$$

Units of R_{sheet} is ohms/square

Measurement of sheet resistance

When $S_1 = S_2 = S_3 > t$

$$R_{sheet} = 4.532 \frac{V}{I}$$

D. K. Schroeder, Semiconductor Material and Device Characterization (Wiley-IEEE)

2024 Monsoon

29

EE669: Dopant Diffusion in Silicon; Anil Kottantharayil

29

Summary of the chapter

- · Solution of diffusion equations for one simple case, applicable in intrinsic diffusion
- · Concept of thermal budget
- Deviations from simple theory
 - Field enhancement
 - Concentration dependent diffusion
 - Microscopic model of diffusion:
 - · Role of interstitials and vacancies
 - Generalized model of diffusion in silicon
- Explaining anomalous diffusion of phosphorous

2024 Monsoon EE669: Dopant Diffusion in Silicon; Anil Kottantharayil

30

30