ESVerify Theory: Definitions, Axioms and Theorems

1 Logic

```
P \in \text{Propositions} \qquad ::= \quad t \mid \neg P \mid P \land P \mid P \lor P \mid pre_1(\otimes, t) \mid pre_2(\oplus, t, t) \mid pre(t, t) \mid post(t, t) \mid call(t) \mid \forall x. \{call(x)\} \Rightarrow P \mid \exists x. P t \in \text{Terms} \qquad ::= \quad v \mid x \mid \otimes t \mid t \oplus t \mid t(t) \otimes \in \text{UnaryOperators} \qquad ::= \quad \neg \mid isInt \mid isBool \mid isFunc \oplus \in \text{BinaryOperators} \qquad ::= \quad + \mid -\mid \times\mid /\mid \wedge\mid \vee\mid =\mid < v \in \text{Values} \qquad ::= \quad true \mid false \mid n\mid \langle \text{function } f(x) \text{ req } R \text{ ens } S \mid e \mid >, \sigma \rangle \sigma \in \text{Environments} \qquad ::= \quad \emptyset \mid \sigma[x \mapsto v] f, x, y, z \in \text{Variables} n \in \mathbb{N}
```

The meaning of unary and binary operators is specified by the partial function δ , e.g. $\delta(+,2,3) = 5$. Validity of logical propositions is axiomatized as follows.

Notation 1 (Implication). $P \Rightarrow Q \equiv \neg P \lor Q$.

Axiom 1 (L-True). ⊢ true.

Axiom 2 (L-And). Iff $(\vdash P)$ and $(\vdash Q)$ then $(\vdash P \land Q)$.

Axiom 3 (L-Or-Left). If $(\vdash P)$ then $\vdash P \lor Q$.

Axiom 4 (L-Or-Right). If $(\vdash Q)$ then $\vdash P \lor Q$.

Axiom 5 (L-Or-Elim). If $(\vdash P \lor Q)$ then $\vdash P$ or $\vdash Q$.

Axiom 6 (L-No-Contradictions). $(\vdash P \land \neg P)$ is not true.

Axiom 7 (L-Excluded-Middle). $(\vdash P \lor \neg P)$.

Axiom 8 (L-Terms). Iff $(\vdash t)$ then $(\vdash t = true)$.

Axiom 9 (L-Forall). If $(\vdash P[x \mapsto v])$ for all values v, then $\vdash \forall x.P$.

Axiom 10 (L-Implicit-Universally-Quantified). If *x* is free in *P* and $(\vdash P)$ then $\vdash \forall x.P$.

Axiom 11 (L-Forall-Elim). If $\vdash \forall x.P$ then $\vdash P[x \mapsto t]$ for all terms t.

Axiom 12 (L-Unary-Op). Iff $\delta(\otimes, v_x) = v$ then $\vdash v = \otimes v_x$.

Axiom 13 (L-Binary-Op). Iff $\delta(\oplus, v_x, v_y) = v$ then $\vdash v = v_x \oplus v_y$.

Axiom 14 (L-Unary-Op-Pre). Iff $(\otimes, v_x) \in dom(\delta)$ then $\vdash pre_1(\otimes, v_x)$.

Axiom 15 (L-Binary-Op-Pre). Iff $(\otimes, v_x, v_y) \in dom(\delta)$ then $\vdash pre_2(\otimes, v_x, v_y)$.

Axiom 16 (L-Binary-Op-Pre). Iff $(\otimes, v_x, v_y) \in dom(\delta)$ then $\vdash pre_2(\otimes, v_x, v_y)$.

Definition 1 (Lookup). $\sigma(x)$ looks up x is the environment σ .

Definition 2 (Substitution). $\sigma(t)$ and $\sigma(P)$ substitute free variables in t and P with values from σ .

Notation 2 (Models). $\sigma \models P \equiv \vdash \sigma(P)$.

 $\sigma \vdash P$

 $\vdash P$

2 Quantifier Instantiation Algorithm

The following quantifier instantiation algorithm manipulates propositions. The resulting propositions are quantifier-free and checked with an SMT solver.

$$\begin{array}{lll} P^{+}[\circ] &::= & \circ \mid \neg P^{-}[\circ] \mid P^{+}[\circ] \land P \mid P \land P^{+}[\circ] \mid P^{+}[\circ] \lor P \mid P \lor P^{+}[\circ] \\ P^{-}[\circ] &::= & \neg P^{+}[\circ] \mid P^{-}[\circ] \land P \mid P \land P^{-}[\circ] \mid P^{-}[\circ] \lor P \mid P \lor P^{-}[\circ] \\ \hline P^{-}[\circ] &::= & \neg P^{+}[\circ] \mid P^{-}[\circ] \land P \mid P \land P^{-}[\circ] \mid P^{-}[\circ] \lor P \mid P \lor P^{-}[\circ] \\ \hline calls^{+}(P) &:= & \{ call(t) \mid P = P^{+}[call(t)] \} \\ \\ lift^{+}(P) &:= & \text{match } P \text{ with} \\ P^{-}[\exists x.P'] & \rightarrow lift^{+}(P^{-}[P'[x \mapsto y]]) & (y \text{ fresh}) \\ P^{+}[\forall x.\{call(x)\} \Rightarrow P'] \rightarrow lift^{+}(P^{+}[call(y) \Rightarrow P'[x \mapsto y]]) & (y \text{ fresh}) \\ \\ otherwise & \rightarrow P \\ \\ erase^{-}(P) &:= P \bigg[P^{-} \bigg[(\forall x.\{call(x)\} \Rightarrow P') \bigg] \mapsto P^{-} \bigg[\text{true} \bigg], P^{-} \bigg[call(t) \bigg] \mapsto P^{-} \bigg[\text{true} \bigg] \bigg] \\ \\ instOnce^{-}(P) &:= \\ P \bigg[P^{-} \bigg[(\forall x.\{call(x)\} \Rightarrow P') \bigg] \mapsto P^{-} \bigg[(\forall x.\{call(x)\} \Rightarrow P') \land \bigwedge_{call(t) \in calls^{-}(P)} P'[x \mapsto t] \bigg] \bigg] \\ \\ inst^{-}(P,0) &:= erase^{-}(lift^{+}(P)) \\ inst^{-}(P,n) &:= inst^{-}(instOnce^{-}(lift^{+}(P)), n-1) \\ \\ \langle P \rangle &:= & \text{let } n = \text{maximum level of quantifier nesting of } lift^{+}(P) \\ &\text{in } \neg Sat (\neg inst^{-}(P,n)) \\ \end{array}$$

Definition 3 (Satisfiability). Sat(P) denotes that the SMT solver found a model that satisfies P.

Axiom 17 (SMT-Solver Checking). If $\neg Sat(\neg P)$ then $\vdash P$.

Theorem 1 (Quantifier Instantiation Soundness). If $\langle P \rangle$ then $\vdash P$.

Proof. See formalized LEAN proof in https://github.com/levjj/esverify-theory.

3 Operational Semantics

Programs are assumed to be in A Normal Form. The dynamic semantics of programs are specified as a small-step evaluation relation over stack configurations to avoid substitution in expressions.

$$e \in \operatorname{Expressions} \quad ::= \begin{array}{ll} \operatorname{let} x = \operatorname{true} \operatorname{in} e \mid \operatorname{let} x = \operatorname{false} \operatorname{in} e \mid \operatorname{let} x = n \operatorname{in} e \mid \\ \operatorname{let} f(x) \operatorname{req} R \operatorname{ens} S = e \operatorname{in} e \mid \operatorname{let} y = \otimes x \operatorname{in} e \mid \operatorname{let} z = x \oplus y \operatorname{in} e \mid \\ \operatorname{let} y = f(x) \operatorname{in} e \mid \operatorname{if} (x) e \operatorname{else} e \mid \operatorname{return} x \\ R, S \in \operatorname{Specs} \quad ::= t \mid \neg R \mid R \land R \mid R \lor R \mid \operatorname{spec} t(x) \operatorname{req} R \operatorname{ens} S \\ \kappa \in \operatorname{Configurations} \quad ::= (\sigma, e) \mid \kappa \cdot (\sigma, \operatorname{let} y = f(x) \operatorname{in} e) \\ \hline (\sigma, \operatorname{let} y = \operatorname{true} \operatorname{in} e) \quad \hookrightarrow \quad (\sigma[x \mapsto \operatorname{true}], e) \\ (\sigma, \operatorname{let} y = \operatorname{false} \operatorname{in} e) \quad \hookrightarrow \quad (\sigma[x \mapsto \operatorname{false}], e) \\ (\sigma, \operatorname{let} y = n \operatorname{in} e) \quad \hookrightarrow \quad (\sigma[x \mapsto \operatorname{false}], e) \\ (\sigma, \operatorname{let} y = n \operatorname{in} e) \quad \hookrightarrow \quad (\sigma[x \mapsto n], e) \\ \hline (\sigma, \operatorname{let} y = \otimes x \operatorname{in} e) \quad \hookrightarrow \quad (\sigma[f \mapsto \lozenge \operatorname{function} f(x) \operatorname{req} R \operatorname{ens} S \ \{e_1\}, \sigma)], e_2) \\ \hline (\sigma, \operatorname{let} y = \otimes x \operatorname{in} e) \quad \hookrightarrow \quad (\sigma[f \mapsto \lozenge \operatorname{function} f(x) \operatorname{req} R \operatorname{ens} S \ \{e_1\}, \sigma)], e_2) \\ \hline (\sigma, \operatorname{let} y = \otimes x \operatorname{in} e) \quad \hookrightarrow \quad (\sigma[g \mapsto v], e) \\ \hline (\sigma, \operatorname{let} y = \otimes x \operatorname{in} e) \quad \hookrightarrow \quad (\sigma[x \mapsto v], e) \\ \hline (\sigma, \operatorname{let} y = f(x) \operatorname{in} e) \quad \hookrightarrow \quad (\sigma[x \mapsto v], e) \\ \hline (\sigma, \operatorname{let} y = f(x) \operatorname{in} e) \quad \hookrightarrow \quad (\sigma[x \mapsto v], e) \\ \hline (\sigma, \operatorname{return} z) \cdot (\sigma_2, \operatorname{let} y = f(x) \operatorname{in} e) \quad \hookrightarrow \quad (\sigma_2[y \mapsto \sigma(f), x \mapsto \sigma(y)], e_f) \cdot (\sigma, \operatorname{let} z = f(y) \operatorname{in} e) \\ \hline (\sigma, \operatorname{return} z) \cdot (\sigma_2, \operatorname{let} y = f(x) \operatorname{in} e) \quad \hookrightarrow \quad (\sigma_2[y \mapsto \sigma(z)], e_2) \\ \hline (\sigma, \operatorname{return} z) \cdot (\sigma_2, \operatorname{let} y = f(x) \operatorname{in} e) \quad \hookrightarrow \quad (\sigma_2[y \mapsto \sigma(z)], e_2) \\ \hline (\sigma, \operatorname{return} z) \cdot (\sigma, \operatorname{let} y = \operatorname{lese} e_2) \quad \hookrightarrow \quad (\sigma, e_1) \\ \hline (\sigma, \operatorname{return} z) \cdot (\sigma, \operatorname{let} y = f(x) \operatorname{in} e) \quad \hookrightarrow \quad \kappa' \cdot (\sigma, \operatorname{let} y = f(x) \operatorname{in} e) \quad \operatorname{if} \sigma(x) = \operatorname{false} \\ \hline (x \cdot (\sigma, \operatorname{let} y = f(x) \operatorname{in} e) \quad \hookrightarrow \quad \kappa' \cdot (\sigma, \operatorname{let} y = f(x) \operatorname{in} e) \quad \operatorname{if} \sigma(x) = \operatorname{false} \\ \hline (x \cdot (\sigma, \operatorname{let} y = f(x) \operatorname{in} e) \quad \hookrightarrow \quad \kappa' \cdot (\sigma, \operatorname{let} y = f(x) \operatorname{in} e) \quad \operatorname{if} \kappa \hookrightarrow \kappa' \\ \hline \kappa \cdot (\sigma, \operatorname{let} y = f(x) \operatorname{in} e) \quad \hookrightarrow \quad \kappa' \cdot (\sigma, \operatorname{let} y = f(x) \operatorname{in} e) \quad \operatorname{if} \kappa \hookrightarrow \kappa' \\ \hline \kappa \cdot (\sigma, \operatorname{let} y = f(x) \operatorname{in} e) \quad \hookrightarrow \quad \kappa' \cdot (\sigma, \operatorname{let} y = f(x) \operatorname{in} e) \quad \operatorname{if} \kappa \hookrightarrow \kappa' \\ \hline \kappa \cdot (\sigma, \operatorname{let} y = f(x) \operatorname{in} e) \quad \hookrightarrow \quad \kappa' \cdot (\sigma, \operatorname{let} y = f(x) \operatorname{in} e) \quad \operatorname{if} \kappa \hookrightarrow \kappa'$$

Definition 4 (Value). If $isValue(\kappa)$ then there exists σ and x such that $\kappa = (\sigma, \text{return } x)$ and $x \in \sigma$.

4 Program Verification

$$Q[\bullet] \in \mathsf{PropositionContexts} \quad ::= P \mid \tau[\bullet] \mid \neg Q[\bullet] \mid Q[\bullet] \land Q[\bullet] \mid Q[\bullet] \lor Q[\bullet] \mid pre_1(\otimes, \tau[\bullet]) \mid pre_2(\oplus, \tau[\bullet]) \mid pre_2(\oplus, \tau[\bullet], \tau[\bullet]) \mid pre_2(\oplus, \tau[\bullet]) \mid$$

Notation 3 (Function Specs).

 $\operatorname{spec} t(x) \operatorname{req} R \operatorname{ens} S \equiv \operatorname{isFunc}(t) \wedge \forall x. \{\operatorname{call}(x)\} \Rightarrow ((R \Rightarrow \operatorname{pre}(t, x)) \wedge (\operatorname{post}(t, x) \Rightarrow S))$

Axiom 18 (L-Function-Application). If $(\sigma[f \mapsto \langle \text{function } f(x) \text{ req } R \text{ ens } S \{e\}, \sigma \rangle, x \mapsto v_x], e \longrightarrow^* \sigma', y)$ and $\sigma'(y) = v$ then $\vdash \langle \text{function } f(x) \text{ req } R \text{ ens } S \{e\}, \sigma \rangle (v_x) = v$.

Axiom 19 (L-Function-Precondition). Iff $\sigma[f \mapsto \langle \text{function } f(x) \text{ req } R \text{ ens } S \{e\}, \sigma \rangle, x \mapsto v_x] \models R \text{ then } \vdash pre(\langle \text{function } f(x) \text{ req } R \text{ ens } S \{e\}, \sigma \rangle, v_x).$

Axiom 20 (L-Function-Postcondition). If $\vdash \sigma : Q_1$ and $Q_1 \land \operatorname{spec} f(x)$ req R ens $S \land R \vdash e : Q_2[\bullet]$ and $\sigma[f \mapsto \langle \operatorname{function} f(x) \operatorname{req} R \operatorname{ens} S \{e\}, \sigma \rangle, x \mapsto v_x] \models Q_2[f(x)] \land S$ then $\vdash \operatorname{post}(\langle \operatorname{function} f(x) \operatorname{req} R \operatorname{ens} S \{e\}, \sigma \rangle, v_x)$.

Axiom 21 (L-Function-Postcondition-Inv). If $\vdash \sigma : Q_1$ and $Q_1 \land \operatorname{spec} f(x)$ req R ens $S \land R \vdash e : Q_2[\bullet]$ and $\vdash \operatorname{post}(\langle \operatorname{function} f(x) \operatorname{req} R \operatorname{ens} S \{e\}, \sigma \rangle, v_x)$ then $\sigma[f \mapsto \langle \operatorname{function} f(x) \operatorname{req} R \operatorname{ens} S \{e\}, \sigma \rangle, x \mapsto v_x] \models Q_2[f(x)] \land S$

Theorem 2 (Verification Safety). If $true \vdash e : Q$ and $(\emptyset, e) \hookrightarrow^* \kappa$ then $isValue(\kappa)$ or $\kappa \hookrightarrow \kappa'$ for some κ' .

Proof. See formalized LEAN proof in https://github.com/levjj/esverify-theory.