CTRL SEA CTRL VISION

목차 🗩

- 1. 프로젝트 소개
- 2. 안개 제거 Dehazing
- 3. 이상 감지 Anomaly Detection
- 4. 낙상 감지 Fall Detection
- 5. 상황실 Ctrl Room

프로젝트 개요 •

"AI 기반 선박 제어실 보조 On-Device 시스템"

안개 너머 객체 탐지 및 이상 감지

선원 안전 확보

자동 항해 일지 작성 및 브리핑

HW & SW 🖵

팀원 소개 🚭

문두르

PM G.O.D. 류균봉

Image Enhancement Dehazing 김찬미

Pose Estimation Fall Detection

나지훈

Server MQTT GUI LLM STT TTS 이환중

Object Detection Anomaly Detection

안개 제거 Dehazing 📤

이미지 복원 Image Restoration

CLAHE

지역적 히스토그램 평활화 LAB 형식 → L(밝기)만 조정 히스토그램 클리핑

Dehazing

DCP

물리 기반 모델 (대기 산란 모델) 활용 통계적 관찰 기반

$$J(x) = \frac{I(x) - A}{t(x)} + A$$

안개 제거 Dehazing ①

모델	방식	장점	단점	
DCP	물리 기반	빠름, 학습 불필요	밝은 배경에서 오류 가능성	
AOD-Net	딥러닝	자동화, 품질 좋음	학습 필요 계산량 많음 호환성 문제	
DCPDN	물리 + 딥러닝	두 방식 장점 결합		
LD-Net	CNN	고해상도 대응	1채널 포맷, 성능 부적합	
DehazeDDPM	DDPM	뛰어난 복원 품질	느림, 자원 소모 큼	
DCP_GAN	DCP + GAN	자연스러운 디테일	불안정성, 성능 우위 X	

Original

DCP_GAN (SOTS)

DCP_GAN (frida2)

DCP_GAN (NH_HAZE)

DCP

111

안개 제거 Dehazing 📤

색상공간변환

RGB → LAB

CLAHE L채널 / 이미지 대비↑

 $LAB \rightarrow RGB$

Dark Channel

각 패치 min(R,G,B)

대기광(A) 추정

전송률(t) 추정

복원식 적용

Dark Channel 내 밝은 픽셀

$$J(x) = \frac{I(x) - A}{t(x)} + A$$

이상 감지 Anomaly Detection 🗆

비지도 학습

라벨(정상/이상) 정보 없음 (모든 데이터 정상)

준지도 학습

일부 데이터만 라벨 정보 있음 (대부분의 데이터 정상)

지도 학습

모든 입력마다 라벨 정보 존재 (모든 데이터 라벨)

이상 감지 Anomaly Detection **

분류 모델	파라미터	FLOPs (연산량)	정확도	장점	단점
ResNet-18	11.7M	18억	69.8%	빠른 학습, 구현 간단	낮은 정확도
ResNet-50	25.6M	41억	76.0%	널리 사용, 전이학습 용이	EfficientNet 대비 비효율적
EfficientNet-B0	5.3M	3.9억	77.1%	매우 가벼움, 적은 연산량	복잡한 구조
EfficientNet-B3	12M	1.8억	81.6%	적은 연산량 + 높은 정확도 과적합 위험 낮음	학습시간 다소 증가

Detection	Classification	
🖺 YOLOX-S	€ EfficientNet-B3	
∮실시간 처리	♂ 객체 라벨링Q 정확한 분류	

이상 감지 Anomaly Detection 🕳

Jetson Nano TroubleShooting

Parsing ONNX file...
[10/18/2025-16:33:04] [TRT] [W] onnx2trt_utils.cpp:366: Your ONNX model has been generated with INT64 weights, while TensorRT does not natively support INT64. Attempting to cast down to INT32.
[10/18/2025-16:35:05] [TRT] [W] onnx2trt_utils.cpp:392: One or more weights outside the range of INT32 was clamped [10/18/2025-16:35:05] [TRT] [W] onnx2trt_utils.cpp:392: One or more weights outside the range of INT32 was clamped [10/18/2025-16:35:05] [TRT] [W] ElementWiselayer with inputs /ReduceMax_output_0_2 and /Mul_9_output_0: first input has type Float but second input has type Int32.
[10/18/2025-16:35:06] [TRT] [E] [layers.cpp::validate::2385] Error Code 4: Internal Error (/Add_4: operation SUM has incompatible input types Float and Int32)
ERROR: Failed to parse ONNX file

ERROR: Falled to parse OMXX file inDut types Float and Int32)

ⓒ 목표

GPU 활용

▲ 주요 이슈

- ① ONNX → Engine 변환
 - ② INT64 타입 문제
 - ❸ 타입 혼합 문제

່★결과

버전 호환성 문제 => PC 환경 대체

낙상 감지 Fall Detection ★

Real-time Fall Detection on Edge device

낙상 감지 Fall Detection

상황실 Ctrl Room ₽

상황실 Ctrl Room ▶

LLM (GPT-4o-mini)

TTS 출력

비상 상황

GPT-40 mini

```
STT-THREAD] You said: 최근 5분 요약해 줘
[2025-10-20 00:37:41] command/summary \rightarrow 5
[STT-THREAD] MQTT Published: command/summary -> 5
[2025-10-20 00:37:41] [CMD] Summary request received \rightarrowGenerating report...
[2025-10-20 00:37:41] [DB-OK] Log saved to events: (STT) SUMMARY REQUEST
[2025-10-20 00:37:41] Fetching logs for the last 5 minutes.
[2025-10-20 00:37:41] [DB] Retrieved 30 event logs.
[2025-10-20 00:37:41] [DB] Retrieved IMU statistics.
[LLM] Summarizing logs using GPT-4o mini...
[STT-THREAD] Listening for command (Sav '최근 N분 요약해줘')...
[LLM OK] Response received.
[SUMMARY]
선박의 일반적인 상태는 최대 기울기가 137.72도이며 현재 추정 방향은 13.94도입니다 최근 5분간
NU 모듈에서 10회 이상 롤각이 30도를 초과하는 심각한 경고가 발생했습니다 이로 인해 선박의 기울
기가 매우 불안정한 상태임을 알 수 있습니다 또한 AD 모듈에서 선박 충돌 위험이 감지되어 1개 이상
  징후가 발견되었습니다 현재 조치된 사항은 없습니다
```

상황실 Ctrl Room ▲

Thanks!

