Eksamen på Økonomistudiet sommer 2018

Lineære Modeller - Sommerskole

Tirsdag d.14 august 2018.

(3-timers prøve med hjælpemidler)

Dette eksamenssæt består af 3 sider incl. denne forside.

OBS: Bliver du syg under selve eksamen på Peter Bangsvej, skal du kontakte et tilsyn for at blive registreret som syg. I den forbindelse skal du udfylde en blanket. Derefter afleverer du en blank besvarelse i systemet og forlader eksamen. Når du kommer hjem, skal du kontakte din læge og indsende lægeerklæring til Det Samfundsvidenskabelige Fakultet senest en uge efter eksamensdagen.

Pas på, du ikke begår eksamenssnyd!

Det er eksamenssnyd, hvis du under prøven

- Bruger hjælpemidler, der ikke er tilladt
- Kommunikerer med andre eller på anden måde modtager hjælp fra andre
- \bullet Kopierer andres tekster uden at sætte citationstegn eller kildehenvise, så det ser ud som om det er din egen tekst
- Bruger andres idéer eller tanker uden at kildehenvise, så det ser ud som om det er din egen idé eller dine egne tanker
- Eller hvis du på anden måde overtræder de regler, der gælder for prøven

Du kan læse mere om reglerne for eksamenssnyd på Din Uddannelsesside og i Rammestudieordningens afs. 4.12.

KØBENHAVNS UNIVERSITETS ØKONOMISKE INSTITUT

LM August 2018

Eksamen i Lineære Modeller - Sommerskole.

Tirsdag d.14 august 2018.

Dette er en 3-timers eksamen (2 sider med i alt 4 opgaver).

Brug af bøger, noter og lignende er tilladt, men brug af lommeregner og casværktøjer er ikke tilladt.

Opgave 1.

Vi betragter den lineære afbildning $L: \mathbf{R}^n \to \mathbf{R}^m$, som med hensyn til standardbaserne i begge rum har afbildningsmatricen

$$L = \begin{pmatrix} 1 & 4 \\ 1 & 3 \\ 0 & 2 \\ 0 & 1 \end{pmatrix} .$$

- (1) Bestem tallene n og m.
- (2) Bestem nulrummet for L. Er L injektiv?
- (3) Bestem en basis for billedrummet, R(L), for L. Er L surjektiv? Hvad siger dimensionsætningen om denne situation?
- (4) Det oplyses at vektoren (3, 2, a, b) tilhører billedrummet R(L). Bestem tallene a og b.
- (5) Bestem løsningsmængden til ligningen Lx = y, hvor $y = (y_1, y_2, y_3, y_4)$ tilhører billedrummet R(L).
- (6) Bestem koordinaterne til vektoren (3, 2, a, b) med hensyn til den basis for billedrummet som blev bestemt i tredje spørgsmål, og hvor tallene a og b er bestemt i fjerde spørgsmål.
- (7) En vektor i billedrummet R(L) har koordinaterne (t,s) med hensyn til den basis for billedrummet som blev bestemt i tredje spørgsmål. Bestem vektorens koordinater med hensyn til standardbasen.

Opgave 2.

Om en symmetrisk, 3×3 -matrix A, vides, at den har egenværdierne 1, -1, og 2, med tilhørende egenvektorer $v_1 = (1, -1, 1)$ og $v_2 = (1, -1, -2)$ og hørende til egenværdien 2, $v_3 = (x_1, x_2, x_3)$.

- (1) Bestem en mulig egenvektor v_3
- (2) Bestem det karakteristiske polynomium $p_A(\lambda)$ for matricen A.
- (3) Gør rede for, at matricen A er invertibel.
- (4) Bestem vektoren $A^{-1}v_3$.
- (5) Bestem vektoren $e^A(v_1 + v_2 + v_3)$.

Opgave 3.

- (1) Beregn integralet $\int (\cos(x) + \sin(2x)) \sin(3x) dx$.
- (2) Løs den komplekse førstegradsligning (3+i2)z+7-i10=i8(1-i). Løsningen ønskes angivet på rektangulær form a+ib.

Opgave 4.

Vi betragter funktionen f, som er sumfunktion for rækken

$$\sum_{n=0}^{\infty} \left(\frac{1}{x^2 - 4x + 5}\right)^n.$$

- (1) Bestem de værdier af x, for hvilke funktionen f er veldefineret.
- (2) Bestem en regneforskrift for funktionen f.
- (3) Bestem monotoniforholdene for funktionen f.
- (4) Bestem værdimængden for funktionen f, og undersøg om funktionen er injektiv.
- (5) Løs ligningen f(x) = y (med hensyn til x) for et givet y beliggende i værdimængden for funktionen f.