000 000 Exila	Devoir de contrôle: Communications numériques	2019/2020
GCR 2	Responsable : M. Abdelhakim KHLIFI	Durée : 1H30

Exercice 1: (4 points)

- 1. Codez la séquence suivante S= 111010 selon :
 - RZ-1/2
 - NRZ unipolaire
 - Manchester différentiel
- 2. Déterminer, avec démonstration, l'expression de la densité spectrale de puissance du codage RZ-1/2 unipolaire. Commentez.

Exercice 2: (16 points)

On note $\{a_k\}_{k=0,1,\dots,N-1}$ la suite binaire à transmettre codé en $\mathbb{R}\mathbb{Z}$ -1/2 unipolaire. On désire étudier la performance d'un signal RZ-1/2 unipolaire d'amplitude A=1mV. Ce signal est transmis à travers un canal BBAG. La variance du bruit b(t) vaut $\sigma^2=2.5\times 10^{-8}\,W$. La source est considérée non équiprobable.

Partie A (13 points)

Le canal est initialement considéré « idéal »

- 1. Schématiser la chaine de transmission numérique complète.
- 2. Schématiser, sur une période T, le filtre d'émission $h_e(t)$.

- Ecrire l'expression du signal reçu y(t) à la sortie du filtre de réception.
- Schématiser, sur une période T, le filtre de réception h_r(t).
- Donner, sans démonstration, l'expression du rapport signal sur bruit RSB_{out} à la sortie du filtre de réception.
- Donnez, avec démonstration, l'expression de la probabilité d'erreur P_e en fonction de A, σ, p₀, p₁ et λ le seuil de détection.
- 7. Donnez, avec démonstration, l'expression de seuil de décision optimal λ_{opt} qui minimise la probabilité d'erreur en fonction A, σ et p_0 .
- 8. Sachant que $\lambda_{opt} = 0.465 \ mV$, calculer la probabilité p_0 .
- Calculer, dans ce cas, la probabilité d'erreur P_e.
- 10. Sachant que la densité spectrale de puissance du bruit vaut $10^{-14} W/Hz$, en déduire la durée du temps bit T_b ainsi la rapidité de modulation R.
- 11. En déduire la valeur de l'énergie d'un bit E_b et la valeur de RSB_{out} en dB.

Partie B (3 points)

Le canal est maintenant considéré « à bande limitée» B = 1 MHz

- 1. Rappeler le critère de Nyquist idéal.
- 2. Est-ce que ce système respecte ce critère ? Justifiez.
- 3. Déterminer la valeur du facteur roll-off α requise permettant d'éliminer les IES.

Annexe

$$erfc(x) = 2.Q(\sqrt{2}x)$$

$$erfc(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{+\infty} e^{-z^{2}} dz$$

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \int_{x}^{+\infty} e^{-\frac{(y-m)^2}{2\sigma^2}} dy$$

$$\frac{d(erfc(u))}{du} = \frac{-2}{\sqrt{\pi}}e^{-u^2} \ \mathbf{k}$$

$$\sigma^2 = \frac{N_0}{2T_b}$$

DSP d'un code en ligne sans mémoire :

$$\gamma_x(f) = \frac{\sigma_a^2}{T} + \frac{m_a^2}{T^2} \sum_k \delta\left(f - \frac{k}{T}\right)$$

aring a constant

0:02

-	ENIG GCR2
	GCR2

Devoir de contrôle Communications numériques A.U : 2017/2018 Durée : 1H30

Exercice 1:

Soit la séquence S= 010100111011

- 1- Donnez les codages suivants :
 - a. RZ
 - b. NRZ
 - c. Manchester
 - d. Manchester différentiel
 - e. Miller
- 2. Donnez les densités spectrales de puissance des codages RZ/et NRZ, Conclure
- 3. Quels sont les critères du choix d'un code en ligne ?-

Exercice 2:

- 1. Soit une ligne de transmission de fréquences extrêmes 200-5200 Hz. La rapidité de modulation est de 2400 bauds et les signaux sont transmis avec une valence de 8. Quel est le débit binaire disponible sur cette ligne?
- 2. Soit une ligne de transmission caractérisée par une bande passante 61-352 kHz, et par un rapport signal sur bruit de 25 dB.
 - a. Quelle est la capacité maximale théorique de cette ligne ?
 - b. Même question avec un rapport signal sur bruit de 12 dB.
- 3. Quelle est la rapidité de modulation nécessaire pour qu'un canal de transmission ait un débit binaire de 2400 bit/s sachant que les signaux transmis sont quadrivalents?

Exercice 3:

On considère une transmission NRZ unipolaire dont la rapidité de modulation $R=2.10^5$ baud . On considère un canal BBAG idéal dont sa densité spectrale de puissance vaut 0.04 W/Hz. On souhaite avoir une probabilité d'erreur $P_e=10^{-5}$.

8-

- Donnez l'expression du seuil de décision optimal qui minimise la probabilité d'erreur.
 - Such ant que α 1 α et α 0 α sont équiprobables, vérifiez que $\lambda_{opt} = \frac{\gamma}{2}$:
 - » et « 0 » sont équiprobables, montrez que : Sachant que g 1

$$e = Q\left(\frac{E_b}{N_0}\right)$$

Déterminez dans ce cas, l'amplitude du signal V et la valeur de λ_{opt}

5. / Tracer in reponse impulsionnelle du filtre adapté et calquier le rapport signal sur bruit

à sa sortie.

The state of the s	A.U: 2017/2018	Durée : 2H
The state of the s		Communications numériques
ANTHE MEDIA CO. NO. MALEULE TO A LANCONDING MEDICAL	r h	GCR2

Exercice 1:

- 1. Donnez les codages suivants:
 - a. NRZ
- b. RZ-1/2
- c. Manchester
- d. Manchester différentiel
 - Miller.
 - f. AMI
- 2. Donnez l'expression de la densité spectrale de puissance du codage NRZ. Conclure

Problème :

Dans ce problème, on étudiera un récepteur numérique constitué d'un filére de récepti détecteur du seuil et un démodulateur.

Partie A : Le filtre de réception

On considère le système suivant:

1º Cas : Cas d'un canal idéal

- Donnez l'expression du signal reçu y(t) à la sortie du filtre.
- Donnez l'expression du filtre adapté h(t) permettant de maximiser le rapport signal sur bruit.
- Si l'énergie par bit vaut 10⁻⁵ watt sec et la densité spectrale de puissance du bruit blanc vaut 2.10⁻⁶ W/Hz, calculer en dB le RSB à la sortie du filtre.
- Schématisez la réponse impulsionnelle du filtre adapté dans le cas d'un codage Manchester.

2ème Cas : Cas d'un canal à bande étroite

On considère maintenant le système de transmission suivant :

- 1. Donnez l'expression du signal reçu y(t) à la sortie du filtre.
- 2. A l'instant de l'échantillonnge nT, donner l'expression de y(nT). Qu'appelle-t-on l'interférence entre symboles?
- 3. Donner les deux critères de Nyquist pour la suppression totale des interférences. Est-ce-que le filtre de Nyquist est réalisable ? Si non, pourquoi ?
- 4. Donnez l'expression de la bande passante d'un filtre en cosinus surélevé défini par son roll-off α . Dans le cas $\alpha = 0$, que trouve-t-on?
- 5. Sachant que la durée du symbole est $T=41.06 \,\mu s$ et la facteur roll-off $\alpha=0.35$, calculer la bande passante du filtre.

Partie II : Détection

Soit un signal NRZ bipolaire transmis à travers un canal BBAG dont le rapport signal sur bruit est 6.8 dB.

- 1. Donnez l'expression de la probabilité d'erreur Pe.
- 2. Donnez l'expression de seuil de décision optimal qui minimise la probabilité d'erreur.
- 3. Sachant que « 1_» et « 0 » sont équiprobables, vérifiez que $\lambda_{opt} = 0$.
- 4. Sachant que « 1 » et « 0 » sont équiprobables, montrez que :

$$Pe = Q\left(\sqrt{\frac{2E_b}{N_0}}\right)$$

5. Calculez dans ce cas sa valeur.

2.2

On suppose un canal AWGN et des symboles équiprobables. La constellation de symboles est = 2^k symboles où k est un entier positif. composée de M

- Rappeler les deux critères de Nyquist pour la suppression totale des interférences.
 - .. Vérifier si ce système respecte le critère Nyquist?
- Sinon, déterminer la valeur de Mmin permettant de répondre aux exigences de Nyquist
- Montrer que la probabilité d'erreur du symbole M-PSK est donnée par :

$$P_{s} pprox erfc \left(\frac{\overline{E_{s}}}{N_{0}}. sin\left(\frac{\pi}{M} \right)
ight)$$

S/2

- Calculer le rapport $\frac{E_s}{N_0}$ et en $\left(\frac{E_b}{N_0}\right)$ (en dB)
 - . Calculer la probabilité d'erreur du symbole Ps.
- En déduire la probabilité d'erreur binaire P_B . Est-ce que cette valeur répond aux exigences demandées.
- Sinon, et en gardant la valeur de M_{min} , chercher la nouvelle de $\frac{E_b}{N_0}$ (en dB) permettant $d'avoir(P_B \le 10^{-5})$
 - 9. En déduire le gain (en dB)

Bonne chance ©

On suppose un canal AWGN et des symboles équiprobables. La constellation de symboles est composée de $M = 2^k$ symboles où k est un entier positif.

- 1. Rappeler les deux critères de Nyquist pour la suppression totale des interférences.
- Vérifier și ce système respecte le critère Nyquist ?
- Sinon, déterminer la valeur de M_{min} permettant de répondre aux exigences de Nyquist
- 4. Montrer que la probabilité d'erreur du symbole M-PSK est donnée par :

$$P_s \approx erfc\left(\sqrt{\frac{E_s}{N_0}}.sin\left(\frac{\pi}{M}\right)\right)$$

Adequire $\frac{E_b}{N_0}$ (en dB)

- 5. Calculer le rapport $\frac{E_s}{N_0}$ et en déduire $\frac{E_b}{N_0}$ (en dB)
 6. Calculer la probabilité d'erreur du symbole P_s :
- 7. En déduire la probabilité d'erreur binaire P_B . Est-ce que cette valeur répond aux exigences demandées.
- 8. Sinon, et en gardant la valeur de M_{min} , chercher la nouvelle de $\frac{E_b}{N_a}$ (en dB) permettant d'avoir $P_B \leq 10^{-5}$
- 9. En déduire le gain (en dB)

Bonne chance @

E Pe(Cx + C1/C3)= 11 11 0 P=ED アナヤケ 7-144-17 =53,04.10-10 ×1,544.106 = 1 enfc (A = (51/3) =

$$\begin{aligned} & \frac{1}{\sqrt{n}} \frac{1}{$$

$$Pe = \frac{1}{2} \operatorname{erfc} \left(\frac{d n^{2} h}{2\sqrt{2} \Gamma} \right) = \frac{1}{2} \operatorname{erfc} \left(\frac{2 h}{2} \frac{s^{\circ}}{\Gamma / H} \right) \frac{2\sqrt{2} \Gamma}{2\sqrt{2} \Gamma}$$

$$= \frac{1}{2} \operatorname{erfc} \left(\frac{A s^{\circ}}{\Gamma / H} \right) \frac{2\sqrt{2} \Gamma}{2\sqrt{2} \Gamma}$$

$$= \frac{1}{2} \operatorname{erfc} \left(\frac{A s^{\circ}}{\Gamma / H} \right) \frac{1}{N_{o}} \frac{1}{$$