Representations and Complexity of Abelian Automaton Groups

Tim Becker

Advised by: Klaus Sutner

Carnegie Mellon University

May 9, 2018

Table of Contents

Background

Classifying Orbit Complexity

Computing the number field

Flipping Pebbles

Rule: Given a row of pebbles, white on one side, blue on the other. Flip the first pebble. If it was white, skip the next two pebbles; otherwise, skip just one pebble. Keep flipping till you fall off the end.

Invertible Transducers

The previous game is described by a deterministic finite state transducer with invertible output functions.

• States induce a length preserving invertible function on binary strings.

- States induce a length preserving invertible function on binary strings.
- These functions form a group under composition, called an automaton group.

- States induce a length preserving invertible function on binary strings.
- These functions form a group under composition, called an automaton group.
- These have been useful for some recent results in group theory.

- States induce a length preserving invertible function on binary strings.
- These functions form a group under composition, called an automaton group.
- These have been useful for some recent results in group theory.

• $\mathbf{2} = \{0,1\}$ is the binary alphabet.

- $\mathbf{2} = \{0,1\}$ is the binary alphabet.
- ullet \mathcal{A} is an invertible transducer.

- $\mathbf{2} = \{0, 1\}$ is the binary alphabet.
- \bullet \mathcal{A} is an invertible transducer.
- \bullet \mathcal{A}^{-1} is the inverse machine, formed by flipping the edge labels:

$$q_i \xrightarrow{\mathbf{a}/\mathbf{b}} q_j$$
 becomes $q_i^{-1} \xrightarrow{\mathbf{b}/\mathbf{a}} q_j^{-1}$.

- $\mathbf{2} = \{0, 1\}$ is the binary alphabet.
- \bullet \mathcal{A} is an invertible transducer.
- ullet \mathcal{A}^{-1} is the inverse machine, formed by flipping the edge labels:

$$q_i \xrightarrow{\mathbf{a}/\mathbf{b}} q_j$$
 becomes $q_i^{-1} \xrightarrow{\mathbf{b}/\mathbf{a}} q_j^{-1}$.

• $\mathcal{G}(\mathcal{A})$ is the group formed by arbitrary compositions of transductions from \mathcal{A} and \mathcal{A}^{-1} .

- $\mathbf{2} = \{0, 1\}$ is the binary alphabet.
- A is an invertible transducer.
- A^{-1} is the inverse machine, formed by flipping the edge labels:

$$q_i \xrightarrow{\mathbf{a}/\mathbf{b}} q_j$$
 becomes $q_i^{-1} \xrightarrow{\mathbf{b}/\mathbf{a}} q_j^{-1}$.

- $\mathcal{G}(\mathcal{A})$ is the group formed by arbitrary compositions of transductions from A and A^{-1}
- An element of $\mathcal{G}(\mathcal{A})$ is even if it copies the first input bit, and odd if it flips it.

Residuals

Any $f \in \mathcal{G}(A)$ is a word over the states of A:

$$f=q_{i_1}^{d_1} q_{i_2}^{d_2} \cdots q_{i_n}^{d_n},$$

where each $d_i \in \{-1, 1\}$.

Residuals

Any $f \in \mathcal{G}(A)$ is a word over the states of A:

$$f=q_{i_1}^{d_1} q_{i_2}^{d_2} \cdots q_{i_n}^{d_n},$$

where each $d_i \in \{-1, 1\}$.

Hence f can be seen as a state in the product automaton

$$\mathcal{P} = \mathcal{A}^{d_1} \times \mathcal{A}^{d_2} \times \cdots \times \mathcal{A}^{d_n}.$$

Residuals

Any $f \in \mathcal{G}(A)$ is a word over the states of A:

$$f=q_{i_1}^{d_1} q_{i_2}^{d_2} \cdots q_{i_n}^{d_n},$$

where each $d_i \in \{-1, 1\}$.

Hence f can be seen as a state in the product automaton

$$\mathcal{P} = \mathcal{A}^{d_1} \times \mathcal{A}^{d_2} \times \cdots \times \mathcal{A}^{d_n}.$$

For $\mathbf{a} \in \mathbf{2}$, then $f_{\mathbf{a}}$ is the \mathbf{a} -residual of f: the state in \mathcal{P} which f transitions to on input letter \mathbf{a} .

Abelian Automata

We will focus on machines $\mathcal A$ where $\mathcal G(\mathcal A)$ is abelian, i.e. where all transductions commute.

Abelian Automata

We will focus on machines \mathcal{A} where $\mathcal{G}(\mathcal{A})$ is abelian, i.e. where all transductions commute.

Abelian Automata

We will focus on machines \mathcal{A} where $\mathcal{G}(\mathcal{A})$ is abelian, i.e. where all transductions commute.

As functions over binary strings, we have $q_iq_j=q_jq_i$ for $i,j\in\{1,2,3\}$. Hence $\mathcal{G}(\mathcal{A})$ is abelian.

Gap Lemma

Define the gap value of any $f \in \mathcal{G}(A)$ as $\gamma_f = f_0 f_1^{-1}$.

Gap Lemma

Define the gap value of any $f \in \mathcal{G}(A)$ as $\gamma_f = f_0 f_1^{-1}$.

Gap Lemma: $\mathcal{G}(A)$ is abelian if and only if every odd element has the same gap value and every even element has gap value equal to the identity function.

Gap Lemma

Thus in an abelian automaton, there is a global gap value γ such that for all odd $f \in \mathcal{G}(\mathcal{A})$, $f_0 = \gamma f_1$. Also if g is even, then $g_0 = g_1$.

Table of Contents

Background

Classifying Orbit Complexity

3 Computing the number field

Orbits

The orbit of a string $\mathbf{x} \in \mathbf{2}^k$ under f is

 $\{\mathbf{y} \in \mathbf{2}^k \mid \exists t \in \mathbb{Z} \text{ such that } f^t(\mathbf{x})\}.$

Orbits

The orbit of a string $\mathbf{x} \in \mathbf{2}^k$ under f is

$$\{\mathbf{y} \in \mathbf{2}^k \mid \exists t \in \mathbb{Z} \text{ such that } f^t(\mathbf{x})\}.$$

The orbit language of f is

$$\operatorname{orb}(f) = \{ \mathbf{x} : \mathbf{y} \mid \exists t \in \mathbb{Z} \text{ such that } f^t(\mathbf{x}) = \mathbf{y} \}$$

where $\mathbf{x}:\mathbf{y}$ is the convolution two words $\mathbf{x},\mathbf{y}\in\mathbf{2}^k$:

$$\mathbf{x}:\mathbf{y} = \begin{vmatrix} \mathbf{x_1} & \mathbf{x_2} & \dots & \mathbf{x_k} \\ \mathbf{y_1} & \mathbf{y_2} & \dots & \mathbf{y_k} \end{vmatrix} \in (\mathbf{2} \times \mathbf{2})^k.$$

Orbits

The orbit of a string $\mathbf{x} \in \mathbf{2}^k$ under f is

$$\{\mathbf{y} \in \mathbf{2}^k \mid \exists t \in \mathbb{Z} \text{ such that } f^t(\mathbf{x})\}.$$

The orbit language of f is

$$\operatorname{orb}(f) = \{ \mathbf{x} : \mathbf{y} \mid \exists t \in \mathbb{Z} \text{ such that } f^t(\mathbf{x}) = \mathbf{y} \}$$

where $\mathbf{x}:\mathbf{y}$ is the convolution two words $\mathbf{x},\mathbf{y}\in\mathbf{2}^k$:

$$\mathbf{x}:\mathbf{y} = \begin{vmatrix} \mathbf{x_1} & \mathbf{x_2} & \dots & \mathbf{x_k} \\ \mathbf{y_1} & \mathbf{y_2} & \dots & \mathbf{y_k} \end{vmatrix} \in (\mathbf{2} \times \mathbf{2})^k.$$

Orbit Problem: Given $f \in \mathcal{G}(A)$ and $\mathbf{x}, \mathbf{y} \in \mathbf{2}^k$, is $\mathbf{x}: \mathbf{y} \in \text{orb}(f)$.

Orbit Complexity

The orbit problem is clearly decidable: the orbit of a string \mathbf{x} is finite (bounded above by $2^{|\mathbf{x}|}$).

Orbit Complexity

The orbit problem is clearly decidable: the orbit of a string \mathbf{x} is finite (bounded above by $2^{|\mathbf{x}|}$).

Also, this bound is tight. The adding machine achieves it.

Poll

For state q_1 and for $\mathbf{x}, \mathbf{y} \in \mathbf{2}^{1,000,000}$, how quickly can we solve the orbit problem?

- seconds?
- minutes?
- days?
- years?
- longer?

Rationality

Goal: Determine when orb(f) is regular.

Rationality

Goal: Determine when orb(f) is regular.

Brzozowski: it suffices to show $\mathbf{orb}(f)$ has finitely many quotients.

Rationality

Goal: Determine when orb(f) is regular.

Brzozowski: it suffices to show orb(f) has finitely many quotients. We can describe the quotients by adding a translation function. Let

$$\mathbf{R}(f,g) = \{\mathbf{x} : \mathbf{y} \mid \exists t \in \mathbb{Z} \text{ such that } g(f^t(\mathbf{x})) = \mathbf{y}\}$$

Then **R** is closed under quotients: if $f, g \in \mathcal{G}(A)$ and $\mathbf{b} = g(\mathbf{a})$, then

Abelian Orbits

In abelian automaton groups, there are finitely many quotients if and only if there are finitely many first components (because $\mathcal{G}(\mathcal{A})$ is "contracting").

Abelian Orbits

In abelian automaton groups, there are finitely many quotients if and only if there are finitely many first components (because $\mathcal{G}(\mathcal{A})$ is "contracting").

Further, the first components are determined by the simple map

$$\varphi(f) = \begin{cases} f_{\mathbf{a}} & \text{if } f \text{ is even,} \\ f_{\mathbf{a}}^2 & \text{if } f \text{ is odd.} \end{cases}$$

Thus we must only determine if $\varphi^*(f)$ is finite.

Algebra to the Rescue

We can associate to $\mathcal{G}(\mathcal{A})$ an algebraic number α and an embedding $\Psi: \mathcal{G}(\mathcal{A}) \to \mathbb{Q}(\alpha)$ such that if f is even, then $\Psi(f_{\mathbf{a}}) = \alpha \Psi(f)$.

Algebra to the Rescue

We can associate to $\mathcal{G}(\mathcal{A})$ an algebraic number α and an embedding $\Psi:\mathcal{G}(\mathcal{A})\to\mathbb{Q}(\alpha)$ such that if f is even, then $\Psi(f_{\mathbf{a}})=\alpha\Psi(f)$.

Under Ψ , φ has the simple form

$$\Psi(\varphi(f)) = \begin{cases} \alpha \Psi(f) & \text{if } f \text{ is even,} \\ 2\alpha \Psi(f) & \text{if } f \text{ is odd.} \end{cases}$$

Algebra to the Rescue

We can associate to $\mathcal{G}(\mathcal{A})$ an algebraic number α and an embedding $\Psi:\mathcal{G}(\mathcal{A})\to\mathbb{Q}(\alpha)$ such that if f is even, then $\Psi(f_{\mathbf{a}})=\alpha\Psi(f)$.

Under Ψ , φ has the simple form

$$\Psi(\varphi(f)) = \begin{cases} \alpha \Psi(f) & \text{if } f \text{ is even,} \\ 2\alpha \Psi(f) & \text{if } f \text{ is odd.} \end{cases}$$

Using a few more tricks, the following theorem follows:

Theorem: orb(f) is rational if and only if some power of α is rational.

Table of Contents

Background

Classifying Orbit Complexity

Computing the number field

Goal

Embed $\mathcal{G}(\mathcal{A})$ in some algebraic object, while preserving residuation structure in a useful way.

System of Equations

Want to find a map $\Psi: \mathcal{G}(\mathcal{A}) \to \mathbb{Q}(\alpha)$ where residuation is given by

$$\Psi(f_{\mathbf{a}}) = egin{cases} lpha \Psi(f) & ext{if } f ext{ is even,} \\ lpha \Psi(f) + (-1)^a & ext{if } f ext{ is odd.} \end{cases}$$

System of Equations

Want to find a map $\Psi: \mathcal{G}(\mathcal{A}) \to \mathbb{Q}(\alpha)$ where residuation is given by

$$\Psi(f_{\mathbf{a}}) = \begin{cases} \alpha \Psi(f) & \text{if } f \text{ is even,} \\ \alpha \Psi(f) + (-1)^{\mathbf{a}} & \text{if } f \text{ is odd.} \end{cases}$$

Solving this system equations will produce suitable values for α , $\Psi(q_1), \dots, \Psi(q_n)$.

How to solve it

This system can interpreted as an ideal of a polynomial ring with unknowns for α and for each state in \mathcal{A} . Computing a Gröbner basis of this ideal gives an easy way to enumerate the solutions.

How to solve it

This system can interpreted as an ideal of a polynomial ring with unknowns for α and for each state in \mathcal{A} . Computing a Gröbner basis of this ideal gives an easy way to enumerate the solutions.

In general, Gröbner bases are expensive to compute (EXPSPACE-complete), but because our equations are "nearly linear", we can compute a Gröbner basis in time $O(n^6)$.

Solution

 α has minimal polynomial $\chi(z) = z^2 + z + 1/2$.

(The embeddings shown are scaled by 5 for simplicity)

Summary

By computing an algebraic number associated to $\mathcal{G}(\mathcal{A})$, we can check if \mathcal{A} has a rational orbit relation in time $O(n^6)$.

Summary

By computing an algebraic number associated to $\mathcal{G}(\mathcal{A})$, we can check if \mathcal{A} has a rational orbit relation in time $O(n^6)$.

We expect this algebraic tool to assist in other computational problems arising in these automata.

Summary

By computing an algebraic number associated to $\mathcal{G}(\mathcal{A})$, we can check if \mathcal{A} has a rational orbit relation in time $O(n^6)$.

We expect this algebraic tool to assist in other computational problems arising in these automata.

All algorithms discussed were implemented in Sage; code is available at

https://github.com/tim-becker/thesis-code.

Acknowledgements

Klaus Sutner for advising this project.

Evan Bergeron for many helpful conversations.

Questions?