

Robust Oscillations within the Interlocked Feedback Model of *Drosophila* Circadian Rhythm

Hiroki R. Ueda*†‡\$||, Masatoshi Hagiwara†‡ and Hiroaki Kitano*†**

*ERATO Kitano Symbiotic Systems Group, Suite 6A, M31, 6-31-15 Jinguumae, Shibuya, Tokyo 150-0001, Japan, ‡Department of Functional Genomics, Medical Research Institute, Tokyo Medical and Dental University, Yushima, Tokyo 113-8510, Japan, §Molecular Medicine Research Laboratories, Yamanouchi Institute for Drug Discovery Research, 21 Miyukigaoka, Tsukuba, Ibaraki 305, Japan, and || Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113, Japan **Sony Computer Science Laboratories, Inc., Tokyo, Japan; The Systems Biology Institute, Tokyo, Japan

(Received on 6 June 2000, Accepted in revised form on 28 October 2000)

A mechanism for generating circadian rhythms has been of major interest in recent years. After the discovery of *per* and *tim*, a model with a simple feedback loop involving *per* and *tim* has been proposed. However, it is recognized that the simple feedback model cannot account for phenotypes generated by various mutants. A recent report by Glossop, Lyons & Hardin [*Science* **286**, 766 (1999)] on *Drosophila* suggests involvement of another feedback loop by *dClk* that is interlocked with *per-tim* feedback loop. In order to examine whether interlocked feedback loops can be a basic mechanism for circadian rhythms, a mathematical model was created and examined. Through extensive simulation and mathematical analysis, it was revealed that the interlocked feedback model accounts for the observations that are not explained by the simple feedback model. Moreover, the interlocked feedback model has robust properties in oscillations.

© 2001 Academic Press

Introduction

Along evolution, organisms ranging from cyanobacteria to mammals have developed in themselves molecular clocks of circadian (about 24 hr) period (Dunlap, 1999). In *Drosophila* like other organisms, several genes are involved in sustaining circadian rhythm, namely *period* (*per*), *timeless* (*tim*), *Drosophila Clock* (*dClk*), *Cycle* (*Cyc*) and *doubletime* (*dbt*) (Hardin *et al.*, 1990; Sehgal *et al.*, 1994; Darlington *et al.*, 1998; Allada *et al.*, 1998; Rutila *et al.*, 1998; Price *et al.*, 1998; Kloss

 $\dagger E\text{-mail: hiro@m.u-tokyo.ac.jp; m.hagiwara.end@mri. tmd. ac.jp; kitano@symbio.jst.go.jp$

et al., 1998). Among them, three genes are rhythmically expressed: per, tim and dClk. per and tim mRNA levels peak early in the evening whereas the dClk mRNA level peaks late at night to early in the morning (Hardin et al., 1990; Darlington et al., 1998; Sehgal et al., 1995; Bae et al., 1998).

Analysis of *per* and *tim* oscillatory expression has revealed a negative feedback loop, "*per-tim* feedback loop". Transcription of *per* and *tim* is activated through E-box elements in *per* and *tim* promoters by a heterodimer of basic helix-loophelix transcription factors, dCLK and CYC (Darlington *et al.*, 1998; Allada *et al.*, 1998; Rutila *et al.*, 1998; Hao *et al.*, 1997). Peaks of PER and TIM levels delay several hours from peaks of *per*

402 H. R. UEDA *ET AL*.

and tim mRNA levels. PER and TIM proteins form complex. This complex enters into the nucleus (Saez & Young, 1996) and represses transcription of per and tim by forming a complex with a heterodimer of transcriptional activators dCLK and CYC (Darlington et al., 1998; Lee et al., 1999). PER proteins are periodically phosphorylated (Edery et al., 1994). This phosphorylation is mediated at least partly, if not entirely, by DOUBLETIME protein (DBT), which is closely related to human casein kinase IE. PER phosphorylation by DBT is suggested to regulate stability of PER proteins because in the mutant (dbt^P) abolishing most dbt expression, PER proteins constitutively accumulate and remain hypophosphorylated whereas per mRNA levels are similar to that in the wild type (Price et al., 1998; Kloss et al., 1998).

Several models based on this delayed negative feedback has been proposed (Darlington *et al.*, 1998; Sehgal *et al.*, 1995; Leloup & Goldbeter, 1998), which are called here as "simple feedback model". The simple feedback model shows that a delayed negative feedback loop produces spontaneous oscillation (Leloup & Goldbeter, 1998). However, these models seem to contradict decrease of *per* and *tim* mRNA levels in mutants lacking PER (*per*⁰¹) or TIM (*tim*⁰) function (Hardin *et al.*, 1990; So & Rosbash, 1997) and do not explain *dClk* oscillatory expression (Bae *et al.*, 1998).

On the other hand, analysis of *dClk* expression has revealed another negative feedback loop, "*dClk* feedback loop". *dClk* mRNA level is decreased in *per*⁰¹ and *tim*⁰ mutants, indicating that PER and TIM function as positive regulators probably in *dClk* transcription (Bae *et al.*, 1998; Glossop *et al.*, 1999). The decreased level of *dClk* mRNA in the *per*⁰¹ mutant is restored to the wild-type level in *per*⁰¹; *dClk*^{Jrk} and *per*⁰¹; *Cyc*⁰ double mutants, which suggests that dCLK and CYC have a direct or indirect repressive role in *dClk* transcription (Glossop *et al.*, 1999).

Based on these analyses of *dClk* expression, another type of model has been proposed, which is called here as "interlocked feedback model". The interlocked feedback model is composed of two coupled negative feedback loops: a *per-tim* feedback loop, which is activated by dCLK-CYC and repressed by PER-TIM, and a *dClk*

feedback loop, which is repressed by dCLK-CYC and derepressed by PER-TIM (Glossop *et al.*, 1999).

Results and Discussions

To verify whether the interlocked feedback model explains the observations which the simple feedback model does not, we constructed a mathematical model based on the interlocked feedback model. The interlocked feedback model is schematized in Fig. 1. To consider kinetics of expression of *per*, *tim* and *dClk*, we formulate this scheme to ten-variable differential equations (Fig. 2).

These equations can be integrated numerically once numerical values for all system parameters and initial conditions are specified. Instead of converging toward a stable steady state, the system shows sustained oscillations [Fig. 3(a) and (b)]. The system follows the same trajectories regardless of initial conditions, indicating that our model provides a molecular basis for circadian rhythm of the limit-cycle type. per and tim oscillations are in phase [Fig. 3(c)], whereas the dClk oscillation is almost in antiphase to per and tim oscillations [Fig. 3(d)]. These results are consistent with observations that per and tim mRNA levels oscillate in phase to one another (Sehgal et al., 1995; Bae et al., 1998; So & Rosbash, 1997) and that the dClk mRNA level oscillates in antiphase to per and tim mRNA levels (Bae et al., 1998).

Parameter values in Fig. 3 are chosen to yield a period close to 24 hr in constant darkness conditions. Identical kinetic constants are taken for corresponding processes involving PER and TIM to produce in-phase oscillations of per and tim mRNA levels. These values are a possible set of kinetic constants to yield a circadian period oscillation and in-phase oscillations of per and tim mRNA levels. However, these values yield appropriate phenotypes in the wild type: the correct time course of mRNA and protein levels and the reasonable phase shifts by light. First, we measured the peak time of mRNA and protein levels. per (tim) mRNA level peaks at zeitgeber time (ZT) 15.0 given that per mRNA level bottoms at ZT = 0. The cytoplasmic PER (TIM), cytoplasmic PER-TIM and nuclear PER-TIM

FIG. 1. The interlocked feedback model of Drosophila circadian rhythm. per-tim feedback loop: $per(Per_m)$ and $tim(Tim_m)$ mRNA are transcribed in the nucleus and translated to PER (Per_c) and TIM (Tim_c) in cytoplasm. Degradation of PER is promoted by kinase DBT (Dbt_c) . Translated PER and TIM form a cytoplasmic PER-TIM complex (PT_c) and then enter the nucleus. A nuclear PER-TIM complex (PT_n) represses its own transcription activated by dCLK-CYC (CC_n) . dClk feedback loop: dClk (Clk_m) mRNA is transcribed in the nucleus and translated to dCLK (Clk_c) in cytoplasm. Translated dCLK forms a cytoplasmic dCLK-CYC complex (CC_c) with CYC (Cyc_c) and then enters the nucleus. A nuclear dCLK-CYC complex (CC_n) represses its own transcription activated by dPER-TIM (PT_n) .

FIG. 3. Simulation of the wild type. (a)–(d) Time courses of *per* and *tim* expression (a) and *dClk* expression (b) are simulated. *tim* (c) and *dClk* (d) mRNA levels are plotted against *per* mRNA levels. *tim* and *per* mRNAs reach peak or bottom levels simultaneously (c) whereas *dClk* mRNA approaches the peak level when the *per* mRNA reaches the bottom level (d). Parameter values are: $Cyc_c = 1$ nM, $Dbt_c = 1$ nM. $C_1 = C_2 = C_3 = 0$ nM hr⁻¹, $S_1 = S_3 = 1.45$ nM hr⁻¹, $S_2 = S_4 = 0.48$ hr⁻¹, $S_5 = 1.63$ nM hr⁻¹, $S_6 = 0.47$ hr⁻¹, r = 4, $R_1 = R_2 = 1.02$ nM, $R_3 = 0.89$ nM, $R_3 = 0.89$ nM, $R_4 = 1.63$ nM hr⁻¹, $R_4 = 0.45$ nM hr⁻¹, $R_5 = 0.45$ nM hr⁻¹,

per-tim feedback loop

$$\begin{split} \frac{\mathrm{d}Per_m}{\mathrm{d}t} &= C_1 + S_1 \frac{(CC_n/A_1)^u + B_1}{1 + (PT_n/R_1)^r + (CC_n/A_1)^u + B_1} - D_1 \frac{Per_m}{L_1 + Per_m} - D_0 Per_m, \\ \frac{\mathrm{d}Per_c}{\mathrm{d}t} &= S_2 Per_m - V_1 Per_c Tim_c + V_2 PT_c - D_2 Dbt_c \frac{Per_c}{L_2 + Per_c} - D_0 Per_c, \\ \frac{\mathrm{d}Tim_m}{\mathrm{d}t} &= C_2 + S_3 \frac{(CC_n/A_2)^u + B_2}{1 + (PT_n/R_2)^r + (CC_n/A_2)^u + B_2} - D_3 \frac{Tim_m}{L_3 + Tim_m} - D_0 Tim_m, \\ \frac{\mathrm{d}Tim_c}{\mathrm{d}t} &= S_4 Tim_m - V_1 Per_c Tim_c + V_2 PT_c - D_4 \frac{Tim_c}{L_4 + Tim_c} - D_0 Tim_c, \\ \frac{\mathrm{d}PT_c}{\mathrm{d}t} &= V_1 Per_c Tim_c - V_2 PT_c - T_1 \frac{PT_c}{K_1 + PT_c} + T_2 \frac{PT_n}{K_2 + PT_n} - D_5 \frac{PT_c}{L_5 + PT_c} - D_0 PT_c, \\ \frac{\mathrm{d}PT_n}{\mathrm{d}t} &= T_1 \frac{PT_c}{K_1 + PT_c} - T_2 \frac{PT_n}{K_2 + PT_n} - D_6 \frac{PT_n}{L_6 + PT_n} - D_0 PT_n. \\ \frac{\mathrm{d}Clk_m}{\mathrm{d}t} &= C_3 + S_5 \frac{(PT_n/A_3)^u + B_3}{1 + (CC_n/R_3)^r + (PT_n/A_3)^u + B_3} - D_7 \frac{Clk_m}{L_7 + Clk_m} - D_0 Clk_m, \\ \frac{\mathrm{d}Clk_c}{\mathrm{d}t} &= S_6 Clk_m - V_3 Clk_c Cyc_c + V_4 CC_c - D_8 \frac{Clk_c}{L_8 + Clk_c} - D_0 Clk_c, \\ \frac{\mathrm{d}CC_c}{\mathrm{d}t} &= V_3 Clk_c Cyc_c - V_4 CC_c - T_3 \frac{CC_c}{K_3 + CC_c} + T_4 \frac{CC_n}{K_4 + CC_n} - D_9 \frac{CC_c}{L_9 + CC_c} - D_0 CC_c, \\ \frac{\mathrm{d}CC_n}{\mathrm{d}t} &= T_3 \frac{CC_c}{K_3 + CC_c} - T_4 \frac{CC_n}{K_4 + CC_n} - D_{10} \frac{CC_n}{L_{10} + CC_n} - D_0 CC_n. \end{split}$$

FIG. 2. A mathematical formulation of interlocked feedback model. We constructed ten-variable differential equations to investigate kinetics of concentration of per (Per_m), tim (Tim_m) and dClk (Clk_m ,) mRNA, PER (Perc), TIM (Timc) and dCLK (Clkc) monomers, cytoplasmic (PT_c) and nuclear (PT_n) PER-TIM heterodimers and cytoplasmic (CC_c) and nuclear (CC_n) dCLK-CYC heterodimers. Concentrations of DBT (Dbt_c) and CYC (Cyc_c) are supposed to be constant. To describe transcription, we used Hill equations with slight modification, which are characterized by six parameters representing the maximum velocity S_i (i = 1, 3, 5), two DNA binding constants of an activator $(A_i, i = 1, 2, 3)$ and a repressor $(R_i, i = 1, 2, 3)$ 3), two Hill coeffcients for activation (a) and repression (r) and one constant B_i (i = 1, 2, 3), which indicates transcriptional activation by other transcription factors than PER-TIM or dCLK-CYC. Translation rate is proportional to the mRNA concentration with the proportional constant S_i (i = 2, 4, 6). Association and dissociation of PER-TIM and dCLK-CYC complex are subject to law of mass actions. These processes are characterized with the rate constant V_i (i = 1, 2, ...). Degradation and nuclear transportation are supposed to be mediated by degradation enzymes and transporters, respectively. We described these processes with Michaelis-Menten-type equations characterized by the maximum velocity D_i (i = 1, 2, ...) and T_j (j = 1, 2, ...) and the binding constant L_i (i = 1, 2, ...) and K_j (j = 1, 2, ...). Nonspecific degradation terms are proportional to each variable with the proportional constant D_0 . For rescue experiments (described below), we introduced transcriptional activation from the constitutive promoter, which is characterized by the synthesis rate C_i (i = 1, 2, 3).

FIG. 4. Simulation of single and double mutants. Relative levels of per (blue) and dClk (red) mRNA are shown in the wild type (a) and per^{01} (b), $dClk^{Jrk}$ (c) per^{01} ; $dClk^{Jrk}$ (d) mutants. The peak levels of per and dClk mRNA in the wild type are set to 100%. In per^{01} mutants (b), sustaining oscillations are abolished and per and dClk mRNA levels are decreased to about 42 and 46% of the peak levels in the wild type. In $dClk^{Jrk}$ (c) and per^{01} ; $dClk^{Jrk}$ (d) mutants, sustaining oscillations are also abolished and the per mRNA level is severely decreased whereas the dClk mRNA level is restored to 124% of the peak level in the wild type. Parameter values are as in Fig. 3(a)–(d), except for $S_2 = 0$ hr $^{-1}$ for per^{01} , $S_6 = 0$ hr $^{-1}$ for $dClk^{Jrk}$ and $S_2 = S_6 = 0$ hr $^{-1}$ for per^{01} ; $dClk^{Jrk}$.

FIG. 5. Simulation of rescue experiments in single-mutant backgrounds. (a) per (blue), tim (green) and dClk (red) oscillations in the wild type. (b–d) Restored oscillations in transfected c-per (b), c-tim (c), c-dClk (d) single mutants. Rescued per oscillations (blue), tim oscillation (green) and dClk oscillation (red) are shown in $Per_m - PT_n$, $Tim_m - PT_n$ and $Clk_m - CC_n$ phase planes. (e) Simulated time courses of different forms of PER proteins in the c-per mutant. Parameter values are as in Fig. 3(a)–(d), except for $S_1 = 0$ nM hr⁻¹, $C_1 = 0.846$ nM hr⁻¹ for c-per mutant, $S_3 = 0$ nM hr⁻¹, $C_2 = 0.846$ nM hr⁻¹ for c-tim mutant and $S_5 = 0$ nM hr⁻¹, $C_3 = 0.558$ nM hr⁻¹ for c-dClk mutant.

FIG. 6. Simulation of rescue experiments in double-mutant backgrounds. (a) per (blue), tim (green) and dClk (red) oscillations in the wild type. (b-d) Restored oscillations in transfected c-tim; c-dClk (b), c-per; c-dClk (c), c-per; c-tim (d) double mutants. Parameter values are as in Fig. 3(a)-(d) except for $S_3 = S_5 = 0$ nM hr⁻¹, $C_2 = 0.846$ nM hr⁻¹, $C_3 = 0.558$ nM hr⁻¹ for c-tim; c-dClk mutant, $S_1 = S_5 = 0$ nM hr⁻¹, $C_1 = 0.846$ nM hr⁻¹, $C_3 = 0.558$ nM hr⁻¹ for c-per-; c-dClk mutant and $S_1 = S_3 = 0$ nM hr⁻¹, $C_1 = C_2 = 0.846$ nM hr⁻¹ for c-per; c-tim mutant.

levels peak at ZT = 17.3, 17.9 and 21.6, respectively, while total amounts of PER (TIM) peak at ZT = 18.8. On the other hand, the dClk mRNA level peaks at ZT = 4.0. These results are consistent with observations that per and tim mRNAs reach peak levels early in the evening (ZT =13-16) (Hardin et al., 1990; Sehgal et al., 1994, 1995), that PER and TIM levels do not peak until late evening (ZT = 18-24) (Zerr et al., 1990; Edery et al., 1994) and that the dClk mRNA level peaks late at night to early in the morning (ZT 23)to ZT 4) (Darlington et al., 1998; Bae et al., 1998). Next, we investigated phase shifts by light pulse. It has been reported that TIM is rapidly reduced by light pulse (Hunter-Ensor et al., 1996; Zeng et al., 1996; Myers et al., 1996; Lee et al., 1996). Thus, we emulated light pulse by increasing the rate of TIM degradation by two-, four-, six-, eight-, or ten-fold for 1 h. We applied the same perturbation (promotion of TIM degradation) to the system from 100 different circadian time points and measured the following peak time of per mRNA. By comparing it with the peak time of per mRNA without perturbation, we can obtain phase shifts. Obtained phase shifts are plotted along circadian time at which perturbation is applied [Fig. 3(e)]. They show no phase shift in the middle of subjective day, maximum phase delays in early subjective night, and maximum phase advances in late subjective night. Shapes of the phase shifts-circadian time relationship are maintained in various intensity of perturbation although the magnitude of phase shifts becomes larger along the intensity. These results are also consistent with the observation that light-pulses delay the phase of the circadian activity rhythms during early subjective night and advance the phase during late subjective night whereas light pulses tend to cause minimal or no phase shifts during the subjective day (Hall & Rosbash, 1987).

To verify our model by comparing with phenotypes in reported mutants, we create mathematical "mutants" which correspond to per^{01} , tim^0 , $dClk^{Jrk}$ and Cyc^0 single mutants and per^{01} ; $dClk^{Jrk}$ and per^{01} ; Cyc^0 double mutants. In per^{01} mutants, sustaining oscillations are abolished [Fig. 4(b)]. per, tim and dClk mRNA levels are decreased to about 42, 42 and 46% of the peak levels in the wild type. tim^0 mutant shows similar phenotype to a per^{01} mutant. These results are

consistent with reported observations that in per⁰¹ and tim⁰ mutants, the per and tim transcription is constitutive and per, tim and dClk mRNA levels are relatively low (Hardin et al., 1990; Sehgal et al., 1994; Allada et al., 1998; Bae et al., 1998; So & Rosbash, 1997; Glossop et al., 1999). In dClk^{Jrk} and per⁰¹; dClk^{Jrk} mutants, sustaining oscillations are also abolished [Fig. 4(c) and (d)]. In these mutants, per and tim mRNA transcripts severely decreased whereas the dClk mRNA level is restored to 124% of the peak level in the wild type. Cyc^0 and per^{01} ; Cyc^0 mutants show similar phenotypes to $dClk^{Jrk}$ and per^{01} ; $dClk^{Jrk}$ mutants. These results are also consistent with previous observations that in $dClk^{Jrk}$ and Cvc^0 mutants the per and tim mRNA levels are constant and significantly reduced (Allada et al., 1998; Rutila et al., 1998) and that in $dClk^{Jrk}$ and Cyc^0 single mutants and per^{01} ; $dClk^{Jrk}$ and per^{01} ; Cyc^0 double mutants, dClk mRNA levels are almost restored to the peak level in the wild type (Glossop et al., 1999). The mathematical model based on the interlocked feedback mechanism reproduces decrease of per and tim mRNA levels in mutants lacking PER (per⁰¹) or TIM (tim⁰) function, which seems to contradict the simple feedback mechanism. An intuitive explanation for these phenotypes is that PER and TIM protein knockout will inhibit the transcription of dClk, which will inhibit the transcription of per and tim resulting in low levels of per and tim messages.

per genomic fragments lacking a promoter (Frisch et al., 1994) or driven by constitutively active promoters (Ewer et al., 1988; Vosshall & Young, 1995) rescue locomotor activity rhythms in per⁰¹ flies. To test whether our model explains these observations, we create a mathematical mutant which corresponds a per⁰¹ fly carrying a transgene that constitutively expresses per mRNA (termed as *c-per*). In the *c-per* mutant, tim and dClk oscillations are restored [Fig. 5(b)]. We also find that cytoplasmic PER, cytoplasmic PER-TIM and total PER protein levels show oscillations in the *c-per* mutant [Fig. 5(e)]. Oscillations in cytoplasmic PER and PER-TIM levels occur because a tim feedback loop works and oscillatory expressed TIM proteins form PER-TIM complexes with PER proteins. These oscillations produce the oscillation of the total PER 404 H. R. UEDA ET AL.

protein level because of different degradation rates in different forms of PER and/or nonlinearity of degradation process. These results are consistent with a previously reported observation that the PER protein level oscillates in *per*⁰¹ files carrying a transgene that constantly expresses *per* mRNAs (Cheng & Hardin, 1998).

Similar rescue experiments in other single- or double-mutant backgrounds reveal robust oscillations within the interlocked feedback model. First, we transfect tim⁰ or dClk^{Jrk} single mutant with a transgene expressing tim or dClk mRNAs constitutively (termed as *c-tim* and *c-dClk*). *c-tim* mutant restores per and dClk oscillations [Fig. 5(c)] while c-dClk mutant restores per and tim oscillations [Fig. 5(d)]. Next, we transfect tim⁰; dClk^{Jrk}, per⁰¹; dClk^{Jrk} or per⁰¹; tim⁰ double mutants with two transgenes expressing tim/ dClk, per/dClk or per/tim mRNAs constantly (termed as *c-tim*; *c-dClk*, *c-per*; *c-dClk* and *c-per*; c-tim). In c-tim; c-dClk, c-per; c-dClk and c-per; c-tim mutants, per, tim and dClk oscillations are restored, respectively [Fig. 6(b)-(d)].

The experimental results summarized in Figs. 3-6 show that the interlocked feedback model provides a possible mechanism of *Droso*phila circadian rhythms. First, the interlocked feedback model provides the similar time course of mRNA and protein levels in the wild type and similar mRNA levels in single or double mutants to previously reported observations, including antiphase oscillations of per (tim) and dClk mRNAs and decreased per and tim mRNA levels in per⁰¹ and tim⁰ mutants, which are not explained by one feedback model. The interlocked feedback model also provides light-pulse-type phase shifts induced by temporal promotion of TIM degradation, which is reported to be involved in light-pulse entrainment. Second, the interlocked feedback model shows highly robust oscillations in mutations, which abolish oscillations of one or two mRNAs among per, tim and dClk mRNAs.

One of the most attractive properties of circadian rhythms is the relative constancy of circadian period in the temperature range over 10°C, which is referred to as temperature compensation (Pittendrigh, 1954; Konopka *et al.*, 1989). Temperature compensation poses an important constraint on models of the circadian

rhythms. For, this phenomenon seemingly contradicts the intuitive prediction that increase of temperature by 10°C typically doubles the reaction rate (Segel, 1975), resulting in shortening the period of oscillations to half of the original one. One way to satisfy this constraint has been proposed by Leloup & Goldbeter (1997). They have found that the increase of one system parameter that represents one reaction rate of the circadian oscillator can either increase or decrease the period of oscillation and that magnitude of period change differs with altered parameters. They utilized this dependence of period on parameters and showed that if appropriate set of parameters is more sensitive (or insensitive) to temperature then the period of the circadian oscillators remains constant in the temperature range over 10°C. The interlocked feedback model presented here also shows various dependences of period on system parameters (unpublished data). Thus, in a way similar to that by Leloup and Goldbeter, the interlocked feedback model might show constancy of the period in some temperature range with several possible sets of parameters which are more sensitive to temperature than others. The challenge is to determine the correct parameter set among them and this remains for the future work.

Along evolution, various organism have developed molecular clocks, which seem more complex than simple negative feedback oscillators. In mammals, per homologues Per1, Per2, Per3 and dClk functional homologue Bmal1 mRNA levels oscillate in antiphase (Honma et al., 1998; Shearman et al., 2000). It has been shown that CLOCK and BMAL1 activate vasopressin gene transcription and that all three mouse PERs and TIM repress this activation (Jin et al., 1999). Although this simple negative feedback regulation may explain oscillatory expression of Pers mRNA, it does not explain how BMAL1 mRNA levels oscillate in antiphase to Pers. In Neurosopra, FREQUENCY protein (FRQ) is periodically expressed and represses its own transcription. A positive regulator of frq transcription, WHITE COLOR 1 protein (WC-1) is also rhythmically expressed in antiphase to FRQ from constant wc-1 mRNA by post-transcriptional regulation. WC-1 expression is regulated directly or indirectly by FRQ because driven FRQ expression positively regulates WC-1 synthesis with similar lag time to that seen in the wild type (Lee *et al.*, 2000). Although there are some molecular details which remain to be uncovered and some divergent twists among species, a conserved principal more complicated than simple negative feedback mechanism seems to exist. The mathematical model presented here would provide a means to investigate the design principal of seemingly complex molecular clocks.

This work was performed as a part of the research and development project of Industrial Science and Technology Program supported by NEDO.

REFERENCES

- ALLADA, R., WHITE, N. E., So, W. V., HALL, J. C. & ROSBASH, M. (1998). A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. *Cell* **93**, 791–804.
- BAE, K., LEE, C., SIDOTE, D., CHUANG, K. Y. & EDERY, I. (1998). Circadian regulation of a Drosophila homolog of the mammalian Clock gene: PER and TIM function as positive regulators. *Mol. Cell. Biol.* 18, 6142–6151.
- CHENG, Y. & HARDIN, P. E. (1998). Drosophila photoreceptors contain an autonomous circadian oscillator that can function without period mRNA cycling. *J. Neurosci.* **18**, 741–750.
- DARLINGTON, T. K., WAGER-SMITH, K., CERIANI, M. F., STAKNIS, D., GEKAKIS, N., STEEVES, T. D. L., WEITZ, C. J., TAKAHASHI, J. S. & KAY, S. A. (1998). Closing the circadian loop: CLOCK-induced transcription of its own inhibitors *per* and *tim. Science* **280**, 1599–1603.
- DUNLAP, J. C. (1999). Molecular bases for circadian clocks. *Cell* **96**, 271–290.
- EDERY, I., ZWIEBEL, L. J., DEMBINSKA, M. E. & ROSBASH, M. (1994). Temporal phosphorylation of the Drosophila period protein. *Proc. Natl Acad. Sci. U.S.A.* **91**, 2260–2264.
- EWER, J., ROSBASH, M. & HALL, J. C. (1988). An inducible promoter fused to the period gene in Drosophila conditionally rescues adult per-mutant arrhythmicity. *Nature* 333, 82–84.
- FRISCH, B., HARDIN, P. E., HAMBLEN-COYLE, M. J., ROSBASH, M. & HALL, J. C. (1994). A promoterless period gene mediates behavioral rhythmicity and cyclical per expression in a restricted subset of the Drosophila nervous system. *Neuron* 12, 555–570.
- GLOSSOP, N. R., LYONS, L. C. & HARDIN, P. E. (1999). Interlocked feedback loops within the Drosophila circadian oscillator. *Science* **286**, 766–768.
- HAO, H., ALLEN, D. L. & HARDIN, P. E. (1997). A circadian enhancer mediates PER-dependent mRNA cycling in Drosophila melanogaster. *Mol. Cell. Biol.* 17, 3687–3693.
- HARDIN, P. E., HALL, J. C. & ROSBASH, M. (1990). Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. *Nature* **343**, 563–540.
- HALL, J. C. & ROSBASH, M. (1987). Genes and biological rhythms. *Trends Genet.* **3**, 185–191.
- HONMA, S., IKEDA, M., ABE, H., TANAHASHI, Y., NAMIHIRA, M., HONMA, K. & NOMURA, M. (1998). Circadian oscilla-

- tion of BMAL1, a partner of a mammalian clock gene Clock, in rat suprachiasmatic nucleus. *Biochem. Biophys. Res. Commun.* **250**, 83–87.
- HUNTER-ENSOR, M., OUSLEY, A. & SEHGAL, A. (1996). Regulation of the Drosophila protein timeless suggests a mechanism for resetting the circadian clock by light. *Cell* **84**, 677–685.
- JIN, X., SHEARMAN, L. P., WEAVER, D. R., ZYLKA, M. J., DE VRIES, G. J. & REPPERT, S. M. (1999). A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. *Cell* **96**, 57–68.
- KLOSS, B., PRICE, J. L., SAEZ, L., BLAU, J., ROTHENFLUH, A., WESLEY, C. S. & YOUNG, M. W. (1998). The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iepsilon. *Cell* **94**, 97–107.
- KONOPKA, R. J., PITTENDRIGH, C. & ORR, D. (1989). Reciprocal behaviour associated with altered homeostasis and photosensitivity of Drosophila clock mutants. *J. Neurogenet.* **6**, 1–10.
- LEE, C., PARIKH, V., ITSUKAICHI, T., BAE, K. & EDERY, I. (1996). Resetting the Drosophila clock by photic regulation of PER and a PER-TIM complex. *Science* **271**, 1740–1744.
- LEE, C., BAE, K. & EDERY, I. (1999). PER and TIM inhibit the DNA binding activity of a Drosophila CLOCK-CYC/dBMAL1 heterodimer without disrupting formation of the heterodimer: a basis for circadian transcription. *Mol. Cell. Biol.* **19**, 5316–5325.
- LEE, K., LOROS, J. J. & DUNLAP, J. C. (2000). Interconnected feedback loops in the Neurospora circadian system. *Science* **289**, 107–110.
- LELOUP, J. C. & GOLDBETER, A. (1997). Temperature compensation of circadian rhythms: control of the period in a model for circadian oscillations of the per protein in Drosophila. *Chronobiol. Int.* **14**, 511–520.
- LELOUP, J. C. & GOLDBETER, A. (1998). A model for circadian rhythms in Drosophila incorporating the formation of a complex between the PER and TIM proteins. *J. Biol. Rhythms* **13.** 70–87.
- Myers, M. P., Wager-Smith, K., Rothenfluh-Hilfiker, A. & Young, M. W. (1996). Light-induced degradation of TIMELESS and entrainment of the Drosophila circadian clock. *Science* **271**, 1736–1740.
- PITTENDRIGH, C. S. (1954). On temperature independence in the clock system controlling emergence time in *Drosophila*. *Proc. Natl Acad. Sci. U.S.A.* **40**, 1018–1029.
- PRICE, J. L., BLAU, J., ROTHENFLUH, A., ABODEELY, M., KLOSS, B. & YOUNG, M. W. (1998). Double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. *Cell* **94**, 83–95.
- RUTILA, J. E., SURI, V., LE, M., SO, W. V., ROSBASH, M. & HALL, J. C. (1998). CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. *Cell* **93**, 805–814.
- SAEZ, L. & YOUNG, M. W. (1996). Regulation of nuclear entry of the Drosophila clock proteins period and timeless. *Neuron* 17, 911–920.
- SEGEL, I. H. (1975). Enzyme Kinetics. New York: Wiley.
- SEHGAL, A., PRICE, J. L., MAN, B. & YOUNG, M. W. (1994). Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless. *Science* **263**, 1603–1606.
- Sehgal, A., Rothenfluh-Hilfiker, A., Hunter-Ensor, M., Chen, Y., Myers, M. P. & Young, M. W. (1995).

406 H. R. UEDA ET AL.

Rhythmic expression of timeless: a basis for promoting circadian cycles in period gene autoregulation. *Science* **270**, 808–810.

- Shearman, L. P., Sriram, S., Weaver, D. R., Maywood, E. S., Chaves, I., Zheng, B., Kume, K., Lee, C. C., van der Horst, G. T., Hastings, M. H. & Reppert, S. M. (2000). Interacting molecular loops in the mammalian circadian clock. *Science* **288**, 1013–1019.
- So, W. V. & Rosbash, M. (1997). Post-transcriptional regulation contributes to Drosophila clock gene mRNA cycling. *EMBO J.* **16**, 7146–7155.
- VOSSHALL, L. B. & YOUNG, M. W. (1995). Circadian rhythms in Drosophila can be driven by period expression in a restricted group of central brain cells. *Neuron* **15**, 345–360.
- ZENG, H., QIAN, Z., MYERS, M. P. & ROSBASH, M. (1996). A light-entrainment mechanism for the Drosophila circadian clock. *Nature* **380**, 129–135.
- ZERR, D. M., HALL, J. C., ROSBASH, M. & SIWICKI, K. K. (1990). Circadian fluctuations of period protein immunoreactivity in the CNS and the visual system of Drosophila. *J. Neurosci.* **10**, 2749–2762.