Study guide

Statistics formulae and important details to remember for the exam

Statistic	Formula	Measure of center; affected by outliers	
Sample mean (average)	$\bar{x} = \frac{\sum x}{n}$		
Median	n odd: middle value of ordered data n even: average of the two middle values	Measure of center; not affected by outliers	
Sample standard deviation	$s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$	Measure of variation; "average" distance from the mean	
Correlation coefficient	$r = \frac{1}{n-1} \sum_{x} \frac{(x-\overline{x})(y-\overline{y})}{s_x s_y}$	Strength and direction of linear relationship between X and Y	

How do you figure out the sample size?

To find the sample size needed to estimate a population mean (μ) , use the following formula:

$$n = \left(\frac{z \cdot \sigma}{MOE}\right)^2$$

In this formula, MOE represents the *desired margin of error* (which you set ahead of time), and σ represents the population standard deviation. If σ is unknown, you can estimate it with the sample standard deviation, s, from a pilot study; z^* is the critical value for the confidence level you need.

What about confidence intervals (CI)?

CI For	Sample Statistic	Margin of Error	Use When
Population mean (µ)	\bar{x}	$\pm z^* \frac{\sigma}{\sqrt{n}}$	X is normal, or $n \ge 30$; σ known
Population mean (µ)	\bar{x}	$\pm t_{n-1}^* \frac{s}{\sqrt{n}}$	$n < 30$, and/or σ unknown
Population proportion (p)	\hat{p}	$\pm z^* \sqrt{rac{\widehat{p}(1-\widehat{p})}{n}}$	$n\hat{\rho}, n(1-\hat{\rho}) \ge 10$
Difference of two population means $(\mu_{\rm I}-\mu_{\rm 2})$	$\overline{x}_1 - \overline{x}_2$	$\pm z^* \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$	Both normal distributions or n_1 , $n_2 \ge 30$; σ_1 , σ_2 known
Difference of two population means $\mu_1 - \mu_2$	$\overline{x}_1 - \overline{x}_2$	$\pm t_{n_1+n_2-2}^* \sqrt{\frac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n_1+n_2-2}}$	n_1 , $n_2 < 30$; and/or $\sigma_1 = \sigma_2$ unknown
Difference of two proportions $(p_1 - p_2)$	$\hat{m{p}}_1 - \hat{m{p}}_2$	$\pm z \cdot \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$	$n\hat{p}, n(1-\hat{p}) \ge 10$ for each group

CI critical values: make sure you know the mapping between CI and z^* -value (the number of standard errors to be added and subtracted in order to achieve your desired confidence level)

Confidence Level	z*- value
90%	1.64
95%	1.96
98%	2.33
99%	2.58

Hypothesis testing

Test For	Null Hypothesis (H ₀)	Test Statistic	Distribution	Use When
Population mean (µ)	$\mu = \mu_0$	$\frac{(\bar{x}-\mu_o)}{\sigma/\sqrt{n}}$	Z	Normal distribution or $n > 30$; σ known
Population mean (μ)	$\mu = \mu_0$	$\frac{(\bar{x}-\mu_o)}{\sqrt[s]{\sqrt{n}}}$	t _{n-1}	n < 30, and/or σ unknown
Population proportion (p)	$p = p_0$	$\frac{\hat{p}-p_o}{\sqrt{\frac{p_o\left(1-p_o\right)}{n}}}$	Z	$n\hat{p}, n(1-\hat{p}) \ge 10$
Difference of two means $(\mu_1 - \mu_2)$	$\mu_1 - \mu_2 = 0$	$\frac{\left(\overline{x}_1 - \overline{x}_2\right) - 0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	Z	Both normal distributions, or n_1 , $n_2 \ge 30$; σ_1 , σ_2 known
Difference of two means $(\mu_1 - \mu_2)$	$\mu_1 - \mu_2 = 0$	$\frac{(\bar{x}_1 - \bar{x}_2) - 0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$	t distribution with $df =$ the smaller of n_1 -1 and n_2 -1	n_1 , $n_2 < 30$; and/or σ_1 , σ_2 unknown
Mean difference μ_d (paired data)	$\mu_d = 0$	$\frac{\left(\overline{d}-\mu_d\right)}{s_d/\sqrt{n}}$	t _{n-1}	n < 30 pairs of data and/or σ_d unknown
Difference of two proportions $(p_1 - p_2)$	$p_1 - p_2 = 0$	$\frac{(\hat{\rho}_1 - \hat{\rho}_2) - 0}{\sqrt{\hat{\rho}(1 - \hat{\rho})\left(\frac{1}{n_1} + \frac{1}{n_z}\right)}}$	Z	$n\hat{p}, n(1-\hat{p}) \ge 10$ for each group

Remember the different kinds of supervised, unsupervised algorithms, and the differences between classification and regression. This public resource is useful:

Don't forget about the critical components of model selection: training, validation and testing!

Sample questions on basic machine learning and inference:

What is cross-validation and why must we do it?

What is k-fold cross validation? Are there other kinds of cross validation?

What is the most standard way of evaluating the goodness of fit for a regression? How do you control for adding more and more variables?

What do ROC and AUC stand for? What is their purpose?

What are some ways we can evaluate clustering and other unsupervised methods?