Linear Regression

EECS 349

slides from Bryan Pardo, Mark Cartwright; (also contains ideas and a few images from wikipedia and books by Alpaydin, Duda/Hart/ Stork, and Bishop.)

Outline

- Announcements
 - Homework #2 assigned Wednesday (due Wednesday)
- Linear regression

Regression Learning

There is a set of possible examples $X = \{x_1, ..., x_n\}$

Each example is a **vector** of k **real valued attributes**

$$\mathbf{x}_{i} = \langle x_{i1}, ..., x_{ik} \rangle$$

There is a target function that maps X onto some **real value** Y

$$f: X \to Y$$

The DATA is a set of tuples <example, response value>

$$\{\langle \mathbf{x}_1, y_1 \rangle, ... \langle \mathbf{x}_n, y_n \rangle\}$$

Find a hypothesis **h** such that...

$$\forall \mathbf{x}, h(\mathbf{x}) \approx f(\mathbf{x})$$

Why *Linear* Regression?

- Easily understood/interpretable
- Well-studied
- Computationally Efficient

Linear Regression Assumption

Response is a linear function of input, plus Gaussian Noise

Observed response
$$y = f(\mathbf{x}) + \boldsymbol{\varepsilon}$$
Where $\varepsilon \sim \mathcal{N}(0, \sigma^2)$

Hypothesis Space

Each hypothesis characterized by a weight vector w

$$h(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_k x_k$$

$$\mathbf{w} = \langle w_0, w_1, ... w_k \rangle$$

- ▶ Goal: Find a good w
 - One that minimizes some error criterion)

One-dimensional LR

- x has 1 attribute a (predictor variable)
- Hypothesis function is a line:

Example:

$$\hat{y} = h(x) = w_0 + w_1 x$$

Minimize RSS (sum of squared residuals)

Multivariate Linear Regression

$$h(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_k x_k$$

Create a new 0 dimension with 1 and append it to the beginning of every example vector \mathbf{X}_i

This placeholder corresponds to the offset \mathcal{W}_0

$$\mathbf{x}_{i} = <1, x_{i,1}, x_{i,2}, ..., x_{i,k}>$$

Format the data as a matrix of examples \mathbf{x} and a vector of response values y...

	One training example						
	1	$X_{1,1}$		$\mathcal{X}_{1,k}$		y_1	
=	1	$x_{2,1}$		$X_{2,k}$	y =	y_2	
	 1	$X_{n,k}$		$\mathcal{X}_{n,k}$		y_n	
		1 = 1 1	$= \begin{array}{ c c c c c }\hline 1 & x_{2,1} \\ & \cdots & \cdots \\ \hline \end{array}$	$= \begin{bmatrix} 1 & x_{1,1} & \dots \\ 1 & x_{2,1} & \dots \\ \dots & \dots & \dots \end{bmatrix}$	$= \begin{bmatrix} 1 & x_{1,1} & \dots & x_{1,k} \\ 1 & x_{2,1} & \dots & x_{2,k} \\ \dots & \dots & \dots \end{bmatrix}$	$= \begin{bmatrix} 1 & x_{1,1} & \dots & x_{1,k} \\ 1 & x_{2,1} & \dots & x_{2,k} \\ \dots & \dots & \dots \end{bmatrix} \mathbf{y} =$	$= \begin{bmatrix} 1 & x_{1,1} & \dots & x_{1,k} \\ 1 & x_{2,1} & \dots & x_{2,k} \\ \dots & \dots & \dots \end{bmatrix} \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{bmatrix}$

One training example

Closed-form solution

Our goal is to find the weights of a function....

$$h(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_k x_k$$

...that minimizes the sum of squared residuals:

$$RSS = \sum_{i}^{n} (y_i - h(\mathbf{x}_i))^2$$

It turns out that there is a close-form solution to this problem!

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

$$RSS(\mathbf{w}) = \sum_{i=1}^{n} (y_i - h(\mathbf{x}_i))^2$$

$$= \sum_{i=1}^{n} (y_i - w_0 - \sum_{j=1}^{k} x_{ij} w_j)^2$$

$$= (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w})$$

$$RSS(\mathbf{w}) = (\mathbf{y} - \mathbf{X}\mathbf{w})^{T} (\mathbf{y} - \mathbf{X}\mathbf{w})$$

$$\frac{\partial RSS}{\partial \mathbf{w}} = -2\mathbf{X}^{T} (\mathbf{y} - \mathbf{X}\mathbf{w})$$

$$0 = -2\mathbf{X}^{T} (\mathbf{y} - \mathbf{X}\mathbf{w})$$

$$0 = \mathbf{X}^{T} (\mathbf{y} - \mathbf{X}\mathbf{w})$$

$$0 = \mathbf{X}^{T} \mathbf{y} - \mathbf{X}^{T} \mathbf{X}\mathbf{w}$$

$$\mathbf{X}^{T} \mathbf{X} \mathbf{w} = \mathbf{X}^{T} \mathbf{y}$$

$$\mathbf{w} = (\mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{X}^{T} \mathbf{y}$$

You're familiar with linear regression where the input has k dimensions.

$$h(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_k x_k$$

We can use this same machinery to make polynomial regression from a one-dimensional input.....

$$h(x) = w_0 + w_1 x + w_2 x^2 + \dots + w_k x^k$$

$h(x) = w_0 + w_1 z + w_2 z^2 + w_3 z^3$

Parameter estimation (analytically minimizing sum of squared residuals):

One training example
$$\mathbf{X} = \begin{bmatrix} 1 & z_1^1 & \dots & z_1^k \\ 1 & z_2^1 & \dots & z_2^k \\ \dots & \dots & \dots \\ 1 & z_n^1 & \dots & z_n^k \end{bmatrix} \mathbf{y} = \begin{bmatrix} y_2 \\ y_2 \\ \dots \\ y_n \end{bmatrix}$$

(Note, there is only 1 attribute z for each training example. Those superscripts are powers, since we're doing polynomial regression)

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

What is your hypothesis for f(x)?

--- cross validation

What happens if we fit to more data?

What happens if we fit to more data?

Bias and Variance of an Estimator

- Let X be a sample from a population specified by a true parameter θ
- Let d=d(X) be an estimator for θ

$$\mathbb{E}[(d-\theta)^2] = \mathbb{E}[(d-\mathbb{E}[d])^2] + (\mathbb{E}[d]-\theta)^2$$
mean square error variance bias²

Bias and Variance

As we increase complexity, bias decreases (a better fit to data) and variance increases (fit varies more with data)

Reading

- Chapter 3 from Elements of Statistical Learning
 - https://web.stanford.edu/~hastie/ElemStatLearn/