

Amendments To The Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1 1. (cancelled)

1 2. (previously presented) The method of Claim 48 wherein a ratio of a duration of the
2 groups of sounds to a ratio of a duration of the long silent periods is less than 1:1.

1 3. (previously presented) The method of Claim 48 wherein at least one of the plurality of
2 different groups of audible sounds includes a plurality of sounds at different audible
3 frequencies.

1 4. (previously presented) The method of Claim 3 wherein at least one of the plurality of
2 different groups of audible sounds includes a plurality of sounds at different audible
3 frequencies separated by short silent periods between the sounds within the group of sounds,
4 said short silent periods having a duration similar to the duration of the sounds included in the
5 group of sounds.

1 5. (cancelled)

1 6. (previously presented) The method of Claim 48 wherein the groups of sounds include
2 sounds in the audible frequency range of 1 kHz to 10 kHz.

1 7. (original) The method of Claim 6 wherein the groups of sounds include sounds in the
2 audible frequency range of 1 kHz to 5 kHz.

1 8. (previously presented) The method of Claim 48 comprising additionally determining
2 a speed of the moving vehicle and adjusting a volume of the sound pattern projected from the
3 moving vehicle based on the determined speed of the moving vehicle.

1 9. (original) The method of Claim 8 comprising automatically initiating the projection
2 of the sound pattern from the moving vehicle when the determined speed of the moving
3 vehicle exceeds a selected threshold speed and automatically terminating the projection of the
4 sound pattern from the moving vehicle when the determined speed of the moving vehicle is
5 less than the selected threshold speed.

1 10. (original) The method of Claim 8 wherein determining a speed of the moving vehicle
2 includes determining a speed of the moving vehicle from an on-board vehicle computer.

1 11. (previously presented) The method of Claim 48 comprising additionally determining
2 a location of the moving vehicle and automatically adjusting the sound pattern projected from
3 the moving vehicle in response to the determined location of the moving vehicle.

1 12. (original) The method of Claim 11 wherein determining a location of the moving
2 vehicle includes determining a location of the moving vehicle using a global positioning
3 system.

1 13. (cancelled)

1 14. (previously presented) The animal alerting device of Claim 49 wherein the control
2 circuit includes a microprocessor and memory, wherein the memory includes data defining
3 the plurality of different groups of audible sounds, and wherein the microprocessor is
4 programmed to select randomly from among the data defining the plurality of different
5 groups of audible sounds to generate the sound generation control signals.

1 15. (previously presented) The animal alerting device of Claim 49 wherein a ratio of a
2 duration of the groups of sounds to a duration of the long silent periods is less than 1:1.

1 16. (original) The animal alerting device of Claim 14 wherein the data defining a
2 plurality of different groups of audible sounds defines at least one of the plurality of different
3 groups of sounds including a plurality of sounds at different audible frequencies.

1 17. (previously presented) The animal alerting device of Claim 16 wherein the data
2 defining at least one of the plurality of different groups of audible sounds includes data
3 defining at least one of the plurality of different groups of sounds including a plurality of
4 sounds at different audible frequencies separated by short silent periods between the sounds
5 within the group of sounds, said short silent periods having a duration similar to a duration of
6 the sounds included in the group of sounds.

1 18. (cancelled)

1 19. (previously presented) The animal alerting device of Claim 49 wherein the groups of
2 sounds include sounds in the audible frequency range of 1 kHz to 10 kHz.

1 20. (original) The animal alerting device of Claim 19 wherein the groups of sounds
2 include sounds in the audible frequency range of 1 kHz to 5 kHz.

1 21. (previously presented) The animal alerting device of Claim 49 wherein the control
2 circuit is adapted to determine a speed of the vehicle and to adjust a volume of the sound
3 pattern produced from the speaker based on the determined speed of the vehicle.

1 22. (original) The animal alerting device of Claim 21 wherein the control circuit is
2 adapted automatically to initiate the production of the sound pattern from the speaker when
3 the determined speed of the vehicle exceeds a selected threshold speed and automatically to
4 terminate the production of the sound pattern from the speaker when the determined speed of
5 the vehicle is less than the selected threshold speed.

1 23. (original) The animal alerting device of Claim 21 wherein the control circuit is
2 coupled to an on-board vehicle computer to determine a speed of the vehicle.

1 24. (original) The animal alerting device of Claim 23 wherein the control circuit is
2 coupled to an on-board vehicle computer via an OBD-II port connection.

1 25. (previously presented) The animal alerting device of Claim 49 wherein the control
2 circuit is adapted to determine a location of the moving vehicle and automatically to adjust
3 the sound pattern produced from the speaker in response to the determined location of the
4 vehicle.

1 26. (original) The animal alerting device of Claim 25 wherein the control circuit is
2 coupled to a global positioning system receiver to determine a location of the moving vehicle.

1 27. (previously presented) The animal alerting device of Claim 49 wherein the speaker is
2 a piezo-electric speaker.

1 28. (original) A method for alerting animals to prevent animal-vehicle crashes,
2 comprising: projecting from a moving vehicle a sound pattern comprising groups of sounds
3 separated by silent periods, wherein each group of sounds includes one or more sounds in an
4 audible frequency range, and wherein a ratio of a duration of the groups of sounds to a
5 duration of the silent periods in the sound pattern is less than 1:1.

1 29. (original) The method of Claim 28 wherein the groups of sounds included in the
2 sound pattern include a plurality of different groups of sounds.

1 30. (original) The method of Claim 29 comprising additionally including the groups of
2 sounds in the sound pattern in a random sequence.

1 31. (original) The method of Claim 28 wherein at least one of the plurality of different
2 groups of sounds includes a plurality of sounds at different frequencies.

1 32. (original) The method of Claim 31 wherein at least one of the plurality of different
2 groups of sounds includes a plurality of sounds at different frequencies separated by second
3 silent periods between the sounds within the group of sounds, said second silent periods
4 having a duration similar to a duration of the sounds included in the group of sounds.

1 33. (original) The method of Claim 28 wherein the groups of sounds include sounds in
2 the audible frequency range of 1 kHz to 10 kHz.

1 34. (original) The method of Claim 33 wherein the groups of sounds include sounds in
2 the audible frequency range of 1 kHz to 5 kHz.

1 35. (original) An animal alerting device adapted for mounting on a vehicle to prevent
2 animal-vehicle crashes, comprising:

3 a speaker;

4 a driver circuit coupled to the speaker for driving the speaker in response to sound
5 generation control signals received thereby; and

6 a control circuit coupled to the driver circuit and adapted to generate the sound
7 generation control signals for producing via the driver circuit and speaker a sound pattern
8 comprising groups of sounds separated by silent periods, wherein each group of sounds
9 includes one or more sounds in an audible frequency range, and wherein a ratio of a duration
10 of the groups of sounds to a duration of the silent periods in the sound pattern is less than 1:1.

1 36. (original) The animal alerting device of Claim 35 wherein the control circuit includes
2 a microprocessor and memory, wherein the memory includes data defining a plurality of
3 different groups of sounds, and wherein the microprocessor is programmed to select
4 randomly from among the data defining the plurality of different groups of sounds to
5 generated the sound generation control signals.

1 37. (original) The animal alerting device of Claim 36 wherein the data defining a
2 plurality of different groups of sounds defines at least one of the plurality of different groups
3 of sounds including a plurality of sounds at different frequencies.

1 38. (original) The animal alerting device of Claim 37 wherein the data defining at least
2 one of the plurality of different groups of sounds includes data defining at least one of the
3 plurality of different groups of sounds including a plurality of sounds at different frequencies
4 separated by second silent periods between the sounds within the group of sounds, said
5 second silent periods having a duration similar to the duration of the sounds included in the
6 group of sounds.

1 39. (original) The animal alerting device of Claim 35 wherein the groups of sounds
2 include sounds in the audible frequency range of 1 kHz to 10 kHz.

1 40. (original) The animal alerting device of Claim 39 wherein the groups of sounds
2 include sounds in the audible frequency range of 1 kHz to 5 kHz.

1 41. (original) The animal alerting device of Claim 35 wherein the speaker is a
2 piezoelectric speaker.

1 42. (original) A method for alerting animals to prevent animal-vehicle crashes,
2 comprising:
3 (a) projecting from a moving vehicle a sound pattern;
4 (b) determining a location of the moving vehicle; and
5 (c) adjusting automatically the sound pattern projected from the moving vehicle in
6 response to the determined location of the moving vehicle.

1 43. (original) The method of Claim 42 wherein the sound pattern comprises a plurality of
2 randomly selected different groups of audible sounds separated by silent periods between the
3 groups of sounds, wherein each group of sounds includes one or more sounds in an audible
4 frequency range.

1 44. (original) The method of Claim 42 wherein determining a location of the moving
2 vehicle includes determining a location of the moving vehicle using a global positioning
3 system receiver.

1 45. (original) An animal alerting device adapted for mounting on a vehicle to prevent
2 animal-vehicle crashes, comprising

3 (a) a speaker;
4 (b) a driver circuit coupled to the speaker for driving the speaker in response to
5 sound generation control signals;
6 (c) location determining means for determining a location of the vehicle; and
7 (d) a control circuit coupled to the driver circuit and to the location determining
8 means and adapted to generate the sound generation control signals for producing via the
9 driver circuit and speaker a sound pattern and to adjust automatically the sound pattern
10 produced from the speaker in response to the determined location of the vehicle.

1 46. (original) The animal alerting device of Claim 45 wherein the location determining
2 means includes a global positioning system receiver.

1 47. (original) The animal alerting device of Claim 45 wherein the speaker is a piezo-
2 electric speaker.

1 48. (previously presented) A method for alerting animals to prevent animal-vehicle
2 crashes, comprising:

3 projecting from a moving vehicle a sound pattern comprising a plurality of different
4 groups of sounds, wherein each of the plurality of different groups of sounds includes a
5 plurality of sounds in an audible frequency range separated by short silent periods, including
6 automatically randomly selecting a one of the plurality of different groups of sounds to be
7 projected from the moving vehicle followed by a long silent period that is longer in duration
8 than the short silent periods and repeating the automatic random selection of sound groups
9 followed by long silent periods to generate the sound pattern projected from the moving
10 vehicle.

1 49. (previously presented) An animal alerting device adapted for mounting on a vehicle
2 to prevent animal-vehicle crashes, comprising:

3 a speaker;
4 a driver circuit coupled to the speaker for driving the speaker in response to sound
5 generation control signals received thereby; and
6 a control circuit coupled to the driver circuit and adapted to generate the sound
7 generation control signals for producing via the driver circuit and speaker a sound pattern

8 comprising a plurality of different groups of sounds, wherein each of the plurality of different
9 groups of sounds includes a plurality of sounds in an audible frequency range separated by _____
10 short silent periods, wherein the control circuit is adapted to automatically randomly select a
11 one of the plurality of different groups of sounds followed by a long silent period that is
12 longer in duration than the short silent periods and to repeat the automatic random selection
13 of sound groups followed by long silent periods.