#### PROGRAMMING IN HASKELL



Chapter 3 - Types and Classes (Original slides by Graham Hutton)

# **Types**

## What is a Type?

A <u>type</u> is a name for a collection of related values. For example, in Haskell the basic type

Bool

contains the two logical values:





### **Type Errors**

Applying a function to one or more arguments of the wrong type is called a <u>type error</u>.

1 is a number and False is a logical value, but + requires two numbers.

## **Types in Haskell**

If evaluating an expression e would produce a value of type t, then e has type t, written



Every well formed expression has a type, which can be automatically calculated at compile time using a process called <u>type inference</u>.

- All type errors are found at compile time, which makes programs <u>safer and faster</u> by removing the need for type checks at run time.
- In GHCi, the :type command calculates the type of an expression, without evaluating it:

> not False True

> :type not False not False :: Bool

## **Basic Types**

#### Haskell has a number of <u>basic types</u>, including:

Bool

- logical values

Char

- single characters

String

- strings of characters

Int

- fixed-precision integers

Integer

- arbitrary-precision integers

Float

- floating-point numbers

## **List Types**

A <u>list</u> is sequence of values of the <u>same</u> type:

```
[False,True,False] :: [Bool]
```

['a','b','c','d'] :: [Char]

In general:

[t] is the type of lists with elements of type t.

#### Note:

The type of a list says nothing about its length:

```
[False,True] :: [Bool]
[False,True,False] :: [Bool]
```

The type of the elements is unrestricted. For example, we can have lists of lists:

```
[['a'],['b','c']] :: [[Char]]
```

Note:

Strings in Haskell are just lists of characters!

[['a'],['b','c']] :: [[Char]]

is equivalent to:

["a","bc"] :: [String]

## **Tuple Types**

A <u>tuple</u> is a sequence of values of <u>different</u> types:

```
(False, True) :: (Bool, Bool)

(False, 'a', True) :: (Bool, Char, Bool)
```

In general:

(t1,t2,...,tn) is the type of n-tuples whose ith components have type ti for any i in 1...n.

#### Note:

The type of a tuple encodes its size:

```
(False,True) :: (Bool,Bool)
(False,True,False) :: (Bool,Bool,Bool)
```

The type of the components is unrestricted:

```
('a',(False,'b')) :: (Char,(Bool,Char))
(True,['a','b']) :: (Bool,[Char])
```

## **Function Types**

A <u>function</u> is a mapping from values of one type to values of another type:

```
not :: Bool → Bool
isDigit :: Char → Bool
```

#### In general:

 $t1 \rightarrow t2$  is the type of functions that map values of type t1 to values to type t2.

#### Note:

- ? The arrow  $\rightarrow$  is typed at the keyboard as ->.
- The argument and result types are unrestricted. For example, functions with multiple arguments or results are possible using lists or tuples:

```
add :: (Int,Int) \rightarrow Int add (x,y) = x+y

zeroto :: Int \rightarrow [Int] zeroto n = [0..n]
```

#### **Curried Functions**

Functions with multiple arguments are also possible by returning <u>functions as results</u>:

add' :: Int 
$$\rightarrow$$
 (Int  $\rightarrow$  Int)  
add' x y = x+y

add' takes an integer x and returns a function  $\underline{add' x}$ . In turn, this function takes an integer y and returns the result x+y.

#### Note:

add and add' produce the same final result, but add takes its two arguments at the same time, whereas add' takes them one at a time:

```
add :: (Int,Int) → Int
add' :: Int → (Int → Int)
```

Functions that take their arguments one at a time are called <u>curried</u> functions, celebrating the work of Haskell Curry on such functions. Process of the second of th

mult :: Int 
$$\rightarrow$$
 (Int  $\rightarrow$  (Int  $\rightarrow$  Int))  
mult x y z = x\*y\*z

mult takes an integer x and returns a function  $\underline{\text{mult } x}$ , which in turn takes an integer y and returns a function  $\underline{\text{mult } x}$  y, which finally takes an integer z and returns the result  $x^*y^*z$ .

## Why is Currying Useful?

Curried functions are more flexible than functions on tuples, because useful functions can often be made by <u>partially applying</u> a curried function.

#### For example:

```
add' 1 :: Int → Int

take 5 :: [Int] → [Int]

drop 5 :: [Int] → [Int]
```

## **Currying Conventions**

To avoid excess parentheses when using curried functions, two simple conventions are adopted:

?The arrow  $\rightarrow$  associates to the <u>right</u>.

Int 
$$\rightarrow$$
 Int  $\rightarrow$  Int

Means Int 
$$\rightarrow$$
 (Int  $\rightarrow$  (Int  $\rightarrow$  Int)).

As a consequence, it is then natural for function application to associate to the <u>left</u>.

mult x y z

Means ((mult x) y) z.

Unless tupling is explicitly required, all functions in Haskell are normally defined in curried form.

### **Polymorphic Functions**

A function is called <u>polymorphic</u> ("of many forms") if its type contains one or more type variables.

length :: [a] → Int

for any type a, length takes a list of values of type a and returns an integer.

#### Note:

Type variables can be instantiated to different types in different circumstances:

```
> length [False,True]
2
> length [1,2,3,4]
4
```

Type variables must begin with a lower-case letter, and are usually named a, b, c, etc. Many of the functions defined in the standard prelude are polymorphic. For example:

```
fst :: (a,b) → a
head :: [a] \rightarrow a
take :: Int \rightarrow [a] \rightarrow [a]
zip :: [a] \rightarrow [b] \rightarrow [(a,b)]
id :: a → a
```

## What's the type of sum?

What should be the type of sum (the function that sums a list of numbers)?

```
sum :: [a] -> a
```

We should be able to use sum with various types of numbers:

```
sum [1,2,3] -> 6
sum [1.5,2.3] -> 3.8
```

#### **Overloaded Functions**

A polymorphic function is called <u>overloaded</u> if its type contains one or more class constraints.

sum :: Num 
$$a \Rightarrow [a] \rightarrow a$$

for any numeric type a, sum takes a list of values of type a and returns a value of type a.

#### Note:

Constrained type variables can be instantiated to any types that satisfy the constraints:

> sum [1,2,3]
6

> sum [1.1,2.2,3.3]
6.6

> sum ['a','b','c']
ERROR

a = Int

a = Float

Char is not a numeric type

Haskell has a number of type classes, including:

Num - Numeric types

Eq - Equality types

- Ordered types

For example:

(+) :: Num  $a \Rightarrow a \rightarrow a \rightarrow a$ 

(==) :: Eq  $a \Rightarrow a \rightarrow a \rightarrow Bool$ (<) :: Ord  $a \Rightarrow a \rightarrow a \rightarrow Bool$ 

## **Hints and Tips**

- When defining a new function in Haskell, it is useful to begin by writing down its type;
- Within a script, it is good practice to state the type of every new function defined;
- When stating the types of polymorphic functions that use numbers, equality or orderings, take care to include the necessary class constraints.

#### **Exercises**

(1) What are the types of the following values?

```
['a','b','c']
('a','b','c')
[(False,'0'),(True,'1')]
([False,True],['0','1'])
[tail,init,reverse]
```

(2) What are the types of the following functions?

second xs = head (tail xs)  
swap 
$$(x,y) = (y,x)$$
  
pair x y =  $(x,y)$   
double x =  $x*2$   
palindrome xs = reverse xs == xs  
twice f x = f (f x)

(3) Check your answers using GHCi.

### PROGRAMMING IN HASKELL



Chapter 4 - Defining Functions

## **Conditional Expressions**

As in most programming languages, functions can be defined using <u>conditional expressions</u>.

abs :: Int  $\rightarrow$  Int abs n = if n  $\geq$  0 then n else -n

abs takes an integer n and returns n if it is non-negative and -n otherwise.

#### Conditional expressions can be nested:

```
signum :: Int \rightarrow Int
signum n = if n < 0 then -1 else
if n == 0 then 0 else 1
```

#### Note:

In Haskell, conditional expressions must <u>always</u> have an else branch, which avoids any possible ambiguity problems with nested conditionals.

## **Guarded Equations**

As an alternative to conditionals, functions can also be defined using guarded equations.

abs 
$$n \mid n \ge 0 = n$$
  
  $\mid otherwise = -n$ 

As previously, but using guarded equations.

Guarded equations can be used to make definitions involving multiple conditions easier to read:

```
signum n l n < 0 = -1
l n == 0 = 0
l otherwise = 1
```

#### Note:

The catch all condition <u>otherwise</u> is defined in the prelude by otherwise = True.

## **Pattern Matching**

Many functions have a particularly clear definition using <u>pattern matching</u> on their arguments.

```
not :: Bool → Bool
not False = True
not True = False
```

not maps False to True, and True to False.

Functions can often be defined in many different ways using pattern matching. For example

```
(&&) :: Bool → Bool → Bool

True && True = True

True && False = False

False && True = False

False && False = False
```

can be defined more compactly by

```
True && True = True
_ && _ = False
```

However, the following definition is more efficient, because it avoids evaluating the second argument if the first argument is False:

#### Note:

The underscore symbol \_ is a <u>wildcard</u> pattern that matches any argument value.

Patterns are matched <u>in order</u>. For example, the following definition always returns False:

Patterns may not <u>repeat</u> variables. For example, the following definition gives an error:

### **List Patterns**

Internally, every non-empty list is constructed by repeated use of an operator (:) called "cons" that adds an element to the start of a list.

[1,2,3,4]

Means 1:(2:(3:(4:[]))).

Functions on lists can be defined using x:xs patterns.

```
head :: [a] \rightarrow a
head (x:\_) = x
tail :: [a] \rightarrow [a]
tail (\_:xs) = xs
```

head and tail map any non-empty list to its first and remaining elements.

#### Note:

x:xs patterns only match non-empty lists:

2 x:xs patterns must be <u>parenthesised</u>, because application has priority over (:). For example, the following definition gives an error:

head  $x: \underline{\hspace{0.1cm}} = x$ 

# **Lambda Expressions**

Functions can be constructed without naming the functions by using <u>lambda expressions</u>.



the nameless function that takes a number x and returns the result x+x.

#### Note:

- ? The symbol  $\lambda$  is the Greek letter <u>lambda</u>, and is typed at the keyboard as a backslash \.
- In mathematics, nameless functions are usually denoted using the ? symbol, as in x ? x+x.
- In Haskell, the use of the  $\lambda$  symbol for nameless functions comes from the <u>lambda calculus</u>, the theory of functions on which Haskell is based.

## Why Are Lambda's Useful?

Lambda expressions can be used to give a formal meaning to functions defined using <u>currying</u>.

For example:

add 
$$x y = x+y$$

means

add = 
$$\lambda x \rightarrow (\lambda y \rightarrow x+y)$$

Lambda expressions are also useful when defining functions that return <u>functions as results</u>.

### For example:

const :: 
$$a \rightarrow b \rightarrow a$$
  
const x \_ = x

is more naturally defined by

const :: 
$$a \rightarrow (b \rightarrow a)$$
  
const  $x = \lambda_{-} \rightarrow x$ 

Lambda expressions can be used to avoid naming functions that are only <u>referenced once</u>.

#### For example:

odds n = map f [0..n-1]  
where  
$$f x = x^2 + 1$$

can be simplified to

odds n = map 
$$(\lambda x \rightarrow x^2 + 1) [0..n-1]$$

## **Sections**

An operator written <u>between</u> its two arguments can be converted into a curried function written <u>before</u> its two arguments by using parentheses.

#### For example:



This convention also allows one of the arguments of the operator to be included in the parentheses.

### For example:

In general, if  $\oplus$  is an operator then functions of the form  $(\oplus)$ ,  $(x\oplus)$  and  $(\oplus y)$  are called <u>sections</u>.

## Why Are Sections Useful?

Useful functions can sometimes be constructed in a simple way using sections. For example:

- (1+) successor function
- (1/) reciprocation function
- (\*2) doubling function
- (/2) halving function

### **Exercises**

- (1) Consider a function <u>safetail</u> that behaves in the same way as tail, except that safetail maps the empty list to the empty list, whereas tail gives an error in this case. Define safetail using:
  - (a) a conditional expression;
  - (b) guarded equations;
  - (c) pattern matching.

Hint: the library function null ::  $[a] \rightarrow Bool$  can be used to test if a list is empty.

Give three possible definitions for the logical or operator (||) using pattern matching.

Redefine the following version of (&&) using conditionals rather than patterns:

(4) Do the same for the following version: