Universidade Federal do Paraná Curso de Verão UFPR 2019

Curso: Introdução à Análise na Reta

Professores: Bruno de Lessa e Ricardo Paleari

2º Lista de Exercícios - 14/01

- 1. Dados X, Y conjuntos finitos, prove as seguintes propriedades:
 - $\bullet |X \cup Y| = |X| + |Y \setminus X|.$
 - $\bullet \ |X \cup Y| = |X| + |Y| |X \cap Y|.$
- 2. Considere X,Y conjuntos finitos, ambos com n elementos. Mostre que uma função $f:X\to Y$ será injetora se, e somente se for sobrejetora.
- 3. Suponha X, Y conjuntos finitos, com p e q elementos, respectivamente. Encontre o número de aplicações injetoras de X a Y. Utilize o exercício anterior para encontrar a quantidade de aplicações bijetoras entre X e Y na situação em que p=q.
- 4. Tome X, Y conjuntos finitos, com r e s elementos, respectivamente.
 - Mostre que, para haver uma função $f: X \to Y$ sobrejetora, é necessário e suficiente que $r \ge s$.
 - Quando s=2 e $r\geq 2$, encontre o número de funções sobrejetoras $f:X\to Y$.
- 5. Seja X conjunto finito, tal que |X| = n. Verifique que $|P(X)| = 2^n$, com P(X) sendo o conjunto das partes de X.

 $oldsymbol{Dica}$: Indução finita em n.

6. Dados A,B conjuntos finitos, com k e ℓ elementos respectivamente, prove que $A\times B$ é finito e possui $k\cdot\ell$ elementos.

Dica: Se $\varphi: A \to J_k$ e $\Psi: B \to J_\ell$ são bijeções, verifique que

$$\Xi: A \times B \to J_k \times J_\ell; \ \Xi(a,b) = (\varphi(a), \Psi(b))$$

é uma bijeção. Mostre então que

$$h: J_k \times J_\ell \to J_{k \cdot \ell}; \quad h(m,n) = m + (n-1) \cdot k$$

também é bijetora e conclua o resultado.

7. Considere $X_1, X_2, ... X_k$ conjuntos finitos, com $m_1, m_2, ... m_k$ elementos, respectivamente. Prove que $X_1 \times X_2 \times ... \times X_k$ é finito e possui $\prod_{j=1}^k m_j$ elementos.

Dica: Indução finita, utilizando o exercício anterior.

- 8. Suponha X um conjunto finito e Y um conjunto infinito. Mostre que existem funções $f: X \to Y$ e $g: Y \to X$ injetora e sobrejetora, respectivamente.
- 9. Tome X um conjunto não enumerável. Definimos

$$A = \{E \subset X; E \text{ \'e finito/enumer\'avel ou } E^c \text{ \'e finito/enumer\'avel } \}.$$

Verifique as seguintes afirmações sobre A:

- \emptyset , $X \in A$.
- $Y \in A \Leftrightarrow Y^c \in A$.
- Se $\{Z_n\}_{n\in\mathbb{N}}$ é uma família de conjuntos, como cada um deles pertencendo a A, então

$$Z:=\bigcup_{n\in\mathbb{N}}Z_n\in A.$$

10. Definimos, para cada $k \in \mathbb{N}$, o seguinte subconjunto de $P(\mathbb{N})$:

$$F_k = \{A \subset \mathbb{N}; |A| = k\}.$$

- Prove que F_k é enumerável, para todo k.
- Conclua que o subconjunto de $P(\mathbb{N})$ formado pelos subconjuntos finitos de \mathbb{N} é enumerável.
- Deduza que o subconjunto de $P(\mathbb{N})$ formado pelos subconjuntos **infinitos** de \mathbb{N} não é enumerável.
- 11. Sejam X conjunto finito e Y conjunto enumerável. Demonstre que o conjunto $\mathfrak{F}(X,Y)$ das funções com domínio em X e contradomínio em Y é enumerável.
- 12. Mostre que é possível decompor \mathbb{N} em uma união enumerável de conjuntos não vazios e enumeráveis $\{X_n\}_{n\in\mathbb{N}}$, tais que

$$X_i \cap X_j = \emptyset$$
, se $i \neq j$.

Dica: Utilize o Teorema Fundamental da Aritmética e o fato de o conjuntos dos naturais primos ser infinito.

13. Encontre uma função $f: \mathbb{N} \to \mathbb{N}$ sobrejetora, de modo que:

$$f^{-1}(\{n\})$$
 é infinito, para cada n natural.

Explique porque este exercício também resolve o problema anterior.

14. Neste exercício, provaremos que o conjunto dos números algébricos é enumerável.

Definição: Dado $x \in \mathbb{R}$, diremos que x é **algébrico** se existirem $n \in \mathbb{N}$ e $a_1, a_2, \ldots a_n \in \mathbb{Q}$ de modo que

$$x^{n} + a_{n} \cdot x^{n-1} + a_{n-1} \cdot x^{n-2} + \dots + a_{2} \cdot x + a_{1} = 0.$$

Isto é, x é raiz de um polinômio mônico com coeficientes racionais.

As raízes enésimas de números naturais, por exemplo, são números algébricos, visto que são raízes de polinômios da forma $p(x) = x^n - a$. Sigamos para a demonstração.

- Usando o Teorema Fundamental da Álgebra e o fato de \mathbb{Q} ser enumerável, verifique que o conjunto das raízes dos polinômios com coeficientes em \mathbb{Q} de grau m é enumerável, para cada $m \in \mathbb{N}$.
- Conclua que o conjunto dos números algébricos é enumerável, usando o fato de a união enumerável de conjuntos enumeráveis ser também um conjunto enumerável.
- 15. Neste exercício, provaremos que o produto cartesiano de uma família enumerável de conjuntos não necessariamente será enumerável.

Definição: Seja Λ um conjunto qualquer e $\{X_{\lambda}\}$ uma família de conjuntos indexados por Λ . Definimos:

$$\prod_{\lambda\in\Lambda}X_{\lambda}:=\left\{f:\Lambda\to\bigcup_{\lambda\in\Lambda}X_{\lambda};\ f(\alpha)\in X_{\alpha},\ \forall\alpha\in\Lambda\right\}.$$

Suponha então $\Lambda=\mathbb{N}$ e que X_n possui pelo menos dois elementos distintos, para cada n natural. Prove que neste caso $\prod^{\infty} X_n$ não é enumerável.

Dica: Aplique um argumento do tipo Diagonal de Cantor.