APPLICATION CERTIFICATION On Behalf of Sure Wave(Hong Kong) Limited

Bluetooth Speaker Model No.: CQL1428-B, PBT505

FCC ID: 2AAPLCQL1428-B

Prepared for : Sure Wave(Hong Kong) Limited

Address : A-703, Building 2, TianAn Cyber Park, Huangge North

Road, Longgang District, Shenzhen,518172, China

Prepared by : ACCURATE TECHNOLOGY CO. LTD

Address : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

Tel: (0755) 26503290 Fax: (0755) 26503396

Report Number : ATE20140885

Date of Test : May 27-Jun 10, 2014

Date of Report : Jun 10, 2014

TABLE OF CONTENTS

Description	Page
1	\mathcal{L}

16	est Report (Ce	rtification
1	CENED	١T	INFODM

1.	GF	NERAL INFORMATION	4
	1.1.	Description of Device (EUT)	
	1.1. 1.2.	Description of Test Facility	
	1.2.	Measurement Uncertainty	
		•	
2.		CASURING DEVICE AND TEST EQUIPMENT	
3.		ERATION OF EUT DURING TESTING	
	3.1.	Operating Mode	
	3.2.	Configuration and peripherals	
4.	TE	ST PROCEDURES AND RESULTS	9
5.	201	OB BANDWIDTH TEST	1(
	5.1.	Block Diagram of Test Setup	1(
:	5.2.	The Requirement For Section 15.247(a)(1)	10
:	5.3.	EUT Configuration on Measurement	.10
:	5.4.	Operating Condition of EUT	
	5.5.	Test Procedure	
:	5.6.	Test Result	. 1 1
6.	CA	RRIER FREQUENCY SEPARATION TEST	13
(6.1.	Block Diagram of Test Setup	.13
(6.2.	The Requirement For Section 15.247(a)(1)	13
(6.3.	EUT Configuration on Measurement	.13
(6.4.	Operating Condition of EUT	
	6.5.	Test Procedure	
(6.6.	Test Result	
7.	NU	MBER OF HOPPING FREQUENCY TEST	
,	7.1.	Block Diagram of Test Setup	
,	7.2.	The Requirement For Section 15.247(a)(1)(iii)	
	7.3.	EUT Configuration on Measurement	
	7.4.	Operating Condition of EUT	
	7.5.	Test Procedure	
	7.6.	Test Result	
8.		/ELL TIME TEST	18
		Block Diagram of Test Setup	
	8.2.	The Requirement For Section 15.247(a)(1)(iii)	
	8.3.	EUT Configuration on Measurement	
	8.4.	Operating Condition of EUT	
	8.5.	Test Procedure	
	8.6.	Test Result	
9.		XIMUM PEAK OUTPUT POWER TEST	
	9.1.	Block Diagram of Test Setup	
	9.2.	The Requirement For Section 15.247(b)(1)	
	9.3.	EUT Configuration on Measurement	
	9.4.	Operating Condition of EUT	
,	9.5.	Test Procedure	20

9.6.	Test Result	26
10. R	ADIATED EMISSION TEST	28
10.1.	Block Diagram of Test Setup	28
10.2.	· · · · · · · · · · · · · · · · · · ·	
10.3.	Restricted bands of operation	29
10.4.	Configuration of EUT on Measurement	29
10.5.	Test Procedure	
10.6.	The Field Strength of Radiation Emission Measurement Results	31
11. BA	AND EDGE COMPLIANCE TEST	43
11.1.	Block Diagram of Test Setup	43
11.2.	The Requirement For Section 15.247(d)	43
11.3.	EUT Configuration on Measurement	43
11.4.	· r · · · · · · · · · · · · · · · · · ·	
11.5.	Test Procedure	44
11.6.	Test Result	44
12. A	C POWER LINE CONDUCTED EMISSION FOR FCC PART 15 SECTION 15.20)7(A)52
12.1.	Block Diagram of Test Setup	52
12.2.	The Emission Limit	52
12.3.	Configuration of EUT on Measurement	53
12.4.	Operating Condition of EUT	53
12.5.	Test Procedure	53
12.6.	Power Line Conducted Emission Measurement Results	53
13. Al	NTENNA REQUIREMENT	56
13.1.	The Requirement	56
13.2.	Antenna Construction	

Test Report Certification

Applicant : Sure Wave(Hong Kong) Limited

Manufacturer : Sure Wave(Hong Kong) Limited

EUT Description : Bluetooth Speaker

(A) MODEL NO.: CQL1428-B,PBT505

(B) SERIAL NO.: N/A

(C) POWER SUPPLY: DC 3.7V (Battery) & DC 5V(USB Port)

(D) Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.4- 2009

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247 limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.

Date of Test :	May 27-Jun 10, 2014		
Prepared by :	2-2		
	(Engineer)		
Approved & Authorized Signer :	Lemb		
	(Manager)		

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT : Bluetooth Speaker Model Number : CQL1428-B,PBT505

Note: These samples are same except for the model number is difference. So we prepare the CQL1428-B for

test

Frequency Band : 2402MHz-2480MHz

Number of Channels : 79

Modulation type : GFSK Antenna Gain : 0dBi

Antenna type : PCB Antenna

Power Supply : DC 3.7V(Battery)&DC 5V(USB Port)
Applicant : Sure Wave(Hong Kong) Limited

Address : A-703, Building 2, TianAn Cyber Park, Huangge North

Road, Longgang District, Shenzhen,518172, China

Manufacturer : Sure Wave(Hong Kong) Limited

Address : A-703, Building 2, TianAn Cyber Park, Huangge North

Road, Longgang District, Shenzhen,518172,China

Date of sample received: May 27, 2014

Date of Test : May 27-Jun 10, 2014

1.2.Description of Test Facility

EMC Lab : Accredited by TUV Rheinland Shenzhen

Listed by FCC

The Registration Number is 752051

Listed by Industry Canada

The Registration Number is 5077A-2

Accredited by China National Accreditation Committee

for Laboratories

The Certificate Registration Number is L3193

Name of Firm : ACCURATE TECHNOLOGY CO. LTD

Site Location : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

1.3. Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2

Radiated emission expanded uncertainty = 3.08dB, k=2

(9kHz-30MHz)

Radiated emission expanded uncertainty = 4.42dB, k=2

(30MHz-1000MHz)

Radiated emission expanded uncertainty = 4.06dB, k=2

(Above 1GHz)

2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Type	S/N	Calibrated dates	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 11, 2014	Jan. 10, 2015
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 11, 2014	Jan. 10, 2015
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 11, 2014	Jan. 10, 2015
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 11, 2014	Jan. 10, 2015
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 15, 2014	Jan. 14, 2015
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 15, 2014	Jan. 14, 2015
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 15, 2014	Jan. 14, 2015
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1067	Jan. 15, 2014	Jan. 14, 2015
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 11, 2014	Jan. 10, 2015
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 11, 2014	Jan. 10, 2015

3. OPERATION OF EUT DURING TESTING

3.1. Operating Mode

The mode is used: Transmitting mode

Low Channel: 2402MHz Middle Channel: 2441MHz High Channel: 2480MHz

Hopping

3.2. Configuration and peripherals

EUT

(EUT: Bluetooth Speaker)

4. TEST PROCEDURES AND RESULTS

FCC Rules	Description of Test	Result
Section 15.207	Conducted Emission Test	Compliant
Section 15.247(a)(1)	20dB Bandwidth Test	Compliant
Section 15.247(a)(1)	Carrier Frequency Separation Test	Compliant
Section 15.247(a)(1)(iii)	Number Of Hopping Frequency Test	Compliant
Section 15.247(a)(1)(iii)	Dwell Time Test	Compliant
Section 15.247(b)(1)	Maximum Peak Output Power Test	Compliant
Section 15.247(d) Section 15.209	Radiated Emission Test	Compliant
Section 15.247(d)	Band Edge Compliance Test	Compliant
Section 15.203	Antenna Requirement	Compliant

5. 20DB BANDWIDTH TEST

5.1.Block Diagram of Test Setup

(EUT: Bluetooth Speaker)

5.2. The Requirement For Section 15.247(a)(1)

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

5.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.4. Operating Condition of EUT

- 5.4.1. Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2. Turn on the power of all equipment.
- 5.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

5.5.Test Procedure

- 5.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 5.5.2.Set RBW of spectrum analyzer to 30 kHz and VBW to 100 kHz.
- 5.5.3.The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

5.6.Test Result

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Result
Low	2402	1.002	Pass
Middle	2441	1.008	Pass
High	2480	1.008	Pass

The spectrum analyzer plots are attached as below.

Low channel

Middle channel

High channel

6. CARRIER FREQUENCY SEPARATION TEST

6.1.Block Diagram of Test Setup

(EUT: Bluetooth Speaker)

6.2. The Requirement For Section 15.247(a)(1)

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudorandomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

6.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.4. Operating Condition of EUT

- 6.4.1. Setup the EUT and simulator as shown as Section 6.1.
- 6.4.2. Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

6.5. Test Procedure

- 6.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 6.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz. Adjust Span to 3 MHz.
- 6.5.3.Set the adjacent channel of the EUT maxhold another trace.
- 6.5.4. Measurement the channel separation

6.6.Test Result

Channel	Frequency (MHz)	Channel Separation(MHz)	Limit (MHz)	Result
Low	2402 2403	1.000	25KHz or 20dB bandwidth	PASS
Middle	2440 2441	1.000	25KHz or20dB bandwidth	PASS
High	2479 2480	1.000	25KHz or 20dB bandwidth	PASS

Low channel

The spectrum analyzer plots are attached as below.

Ref

*RBW 30 kHz *VBW 100 kHz 10 dBm * Att 20 dB SWT 2.5 ms 000000000 MHz

Span 2 MHz

-0.04 dB

Middle channel

High channel

7. NUMBER OF HOPPING FREQUENCY TEST

7.1.Block Diagram of Test Setup

(EUT: Bluetooth Speaker)

7.2. The Requirement For Section 15.247(a)(1)(iii)

Section 15.247(a)(1)(iii): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

7.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.4. Operating Condition of EUT

- 7.4.1. Setup the EUT and simulator as shown as Section 7.1.
- 7.4.2. Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX (Hopping on) modes measure it.

7.5.Test Procedure

- 7.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 7.5.2.Set the spectrum analyzer as Span=83.5MHz, RBW=100 kHz, VBW=300 kHz.
- 7.5.3.Max hold, view and count how many channel in the band.

7.6.Test Result

Total number of	Measurement result(CH)	Limit(CH)
hopping channel	79	≥15

The spectrum analyzer plots are attached as below.

Number of hopping channels

8. DWELL TIME TEST

8.1.Block Diagram of Test Setup

(EUT: Bluetooth Speaker)

8.2. The Requirement For Section 15.247(a)(1)(iii)

Section 15.247(a)(1)(iii): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

8.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.4. Operating Condition of EUT

- 8.4.1. Setup the EUT and simulator as shown as Section 8.1.
- 8.4.2. Turn on the power of all equipment.
- 8.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

8.5.Test Procedure

- 8.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 8.5.2.Set center frequency of spectrum analyzer = operating frequency.
- 8.5.3.Set the spectrum analyzer as RBW=100 kHz, VBW=300 kHz, Span=0Hz, Adjust Sweep=1s. Get the burst (in 1 sec.).
- 8.5.4.Set the spectrum analyzer as RBW=1MHz, VBW=3MHz, Span=0Hz, Adjust Sweep=2ms. Get the pulse time.
- 8.5.5.Repeat above procedures until all frequency measured were complete.

8.6.Test Result

Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)	
	2402	0.530	169.60	400	
DH1	2441	0.530	169.60	400	
	2480	0.530	169.60	400	
A period to	ransmit time = $0.4 \times 79 =$	= 31.6 Dwell time = pu	alse time \times (1600/(2*)	79))×31.6	
	2402	1.790	286.40	400	
DH3	2441	1.800	288.00	400	
	2480	1.790	286.40	400	
A period to	A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(4*79)) \times 31.6$			79))×31.6	
	2402	3.070	327.47	400	
DH5	2441	3.070	327.47	400	
	2480	3.070	327.47	400	
A period transr	A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(6*79)) \times 31.6$				

The spectrum analyzer plots are attached as below.

DH1 Low channel

DH1 Middle channel

DH1 High channel

DH3 Low channel

DH3 Middle channel

DH5 Low channel

DH5 Middle channel

9. MAXIMUM PEAK OUTPUT POWER TEST

9.1.Block Diagram of Test Setup

(EUT: Bluetooth Speaker)

9.2. The Requirement For Section 15.247(b)(1)

Section 15.247(b)(1): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

9.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

9.4. Operating Condition of EUT

- 9.4.1. Setup the EUT and simulator as shown as Section 9.1.
- 9.4.2. Turn on the power of all equipment.
- 9.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

9.5.Test Procedure

- 9.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 9.5.2.Set RBW of spectrum analyzer to 1MHz and VBW to 3MHz for GFSK mode
- 9.5.3.Set RBW of spectrum analyzer to 3MHz and VBW to 3MHz for other mode
- 9.5.4. Measurement the maximum peak output power.

9.6.Test Result

Channel	Frequency (MHz)	Peak Output Power (dBm)	Limits dBm / W
Low	2402	-3.43	30/1.0
Middle	2441	-3.89	30/1.0
High	2480	-3.94	30/1.0

The spectrum analyzer plots are attached as below.

Center 2.402 GHz

1 MHz/

Span 10 MHz

Middle channel

High channel

10. RADIATED EMISSION TEST

10.1.Block Diagram of Test Setup

10.1.1.Block diagram of connection between the EUT and simulators

(EUT: Bluetooth Speaker)

10.1.2. Anechoic Chamber Test Setup Diagram

GROUND PLANE (EUT: Bluetooth Speaker)

10.2. The Limit For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

10.3.Restricted bands of operation

10.3.1.FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz		
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15		
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46		
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75		
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5		
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2		
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5		
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7		
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4		
6.31175-6.31225	123-138	2200-2300	14.47-14.5		
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2		
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4		
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12		
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0		
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8		
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5		
12.57675-12.57725	322-335.4	3600-4400	$\binom{2}{}$		
13.36-13.41					

¹Until February 1, 1999, this restricted band shall be 0.490-0.510

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

10.4. Configuration of EUT on Measurement

The equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

²Above 38.6

10.5.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4- 2009 on radiated emission measurement.

The bandwidth of test receiver (R&S ESI26) is set at 120 KHz in 30-1000MHz. and set at 1MHz in above 1000MHz.

The frequency range from 30MHz to 25000MHz is checked.

The final measurement in band 9-90 kHz, 110-490 kHz and above 1000MHz is performed with Average detector. Except those frequency bands mention above, the final measurement for frequencies below 1000MHz is performed with Quasi Peak detector.

The field strength is calculated by adding the antenna factor, and cable loss, and subtracting the amplifier gain from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

10.6. The Field Strength of Radiation Emission Measurement Results

Note:

- 1. The fundamental radiated emissions were reduced by 2.4G Band Reject Filter in the attached plots.
- 2. The 18-25GHz emissions are not reported, because the levels are too low against the limit.

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RICKY #1491

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Buletooth Speaker

Mode: TX 2402MHz

Model: COL1428-B

Manufacturer: Sure Wave

Note: Report No.:ATE20140885

Date: 14/06/05/

Polarization:

Time: 16/26/33

Engineer Signature: Ricky

Power Source: DC 3.7V

Horizontal

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RICKY #1490

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Buletooth Speaker

Mode: TX 2402MHz Model: COL1428-B

Manufacturer: Sure Wave

Note: Report No.:ATE20140885

Polarization: Vertical

Power Source: DC 3.7V

Date: 14/06/05/ Time: 16/25/42

Engineer Signature: Ricky

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	85.2980	30.45	-21.55	8.90	40.00	-31.10	QP			
2	214.5143	29.32	-19.97	9.35	43.50	-34.15	QP		0	
3	264.7457	30.08	-18.87	11.21	46.00	-34.79	QP			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RICKY #1489

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Buletooth Speaker

Mode: TX 2441MHz Model: COL1428-B Manufacturer: Sure Wave

Note: Report No.:ATE20140885

Polarization: Vertical

Power Source: DC 3.7V

Date: 14/06/05/ Time: 16/24/46

Engineer Signature: Ricky

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RICKY #1488

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Buletooth Speaker

Mode: TX 2441MHz

Model: COL1428-B Manufacturer: Sure Wave

Note: Report No.:ATE20140885

Polarization: Horizontal

Power Source: DC 3.7V

Date: 14/06/05/ Time: 16/24/06

Engineer Signature: Ricky

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	32.6340	29.99	-18.70	11.29	40.00	-28.71	QP			
2	38.4809	30.73	-19.93	10.80	40.00	-29.20	QP			
3	361.7139	31.27	-15.91	15.36	46.00	-30.64	QP			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RICKY #1487

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Buletooth Speaker

Mode: TX 2480MHz Model: COL1428-B

Manufacturer: Sure Wave

Note: Report No.:ATE20140885

Polarization: Horizontal

Power Source: DC 3.7V

Date: 14/06/05/ Time: 16/23/15

Engineer Signature: Ricky

Distance: 3m

2

3

57.7962

96.4362

30.15

31.34

-21.01

-22.08

9.14

9.26

40.00

43.50

-30.86

-34.24

QP

QP

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RICKY #1486

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: **Buletooth Speaker**

Mode: TX 2480MHz Model: COL1428-B Manufacturer: Sure Wave

Note: Report No.:ATE20140885 Polarization: Vertical

Power Source: DC 3.7V

Date: 14/06/05/ Time: 16/22/35

Engineer Signature: Ricky

Distance: 3m

(dBuV/m)

40.00

40.00

43.50

(dB) -30.24

-31.35

-36.08

No.

1

2

3

(MHz)

32.9791

37.9450

96.4361

(dBuV/m)

28.57

28.51

29.50

(dB)

-18.81

-19.86

-22.08

(dBuV/m)

9.76

8.65

7.42

Remark

(cm)

QP

QP

QP

(deg.)

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RICKY #1492

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Buletooth Speaker

Mode: TX 2402MHz Model: COL1428-B Manufacturer: Sure Wave

Note: Report No.:ATE20140885

Polarization: Horizontal

Power Source: DC 3.7V

Date: 14/06/05/ Time: 16/30/08

Engineer Signature: Ricky

Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RICKY #1493

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Buletooth Speaker

Mode: TX 2402MHz Model: COL1428-B Manufacturer: Sure Wave

Note: Report No.:ATE20140885

Polarization: Vertical

Power Source: DC 3.7V Date: 14/06/05/

Engineer Signature: Ricky

Distance: 3m

Time: 16/31/16

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	7242.052	43.76	4.41	48.17	54.00	-5.83	peak			
2	10274.238	39.75	10.29	50.04	54.00	-3.96	peak			
3	14618.166	1.17	50.18	51.35	54.00	-2.65	peak			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RICKY #1494

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Buletooth Speaker

Mode: TX 2441MHz Model: COL1428-B

Manufacturer: Sure Wave

Note: Report No.:ATE20140885

Polarization: Vertical

Power Source: DC 3.7V

Date: 14/06/05/ Time: 16/33/43

Engineer Signature: Ricky

Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	7284.038	43.36	4.48	47.84	54.00	-6.16	peak			
2	12290.698	4.41	45.11	49.52	54.00	-4.48	peak			
3	15622.990	2.38	48.53	50.91	54.00	-3.09	peak			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RICKY #1495

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Buletooth Speaker

Mode: TX 2441MHz

Model: COL1428-B Manufacturer: Sure Wave

Note: Report No.:ATE20140885

Polarization: Horizontal

Power Source: DC 3.7V

Date: 14/06/05/ Time: 16/35/36

Engineer Signature: Ricky

Distance: 3m

54.00

-3.64

peak

50.36

50.27

3

14575.975

0.09

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RICKY #1496

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Buletooth Speaker

Mode: TX 2480MHz Model: COL1428-B Manufacturer: Sure Wave

Note: Report No.:ATE20140885

Polarization: Vertical

Power Source: DC 3.7V

Date: 14/06/06/ Time: 8/43/18

Engineer Signature: Ricky

Distance: 3m

2

3

8866.061

13757.267

40.42

2.14

8.79

47.44

49.21

49.58

54.00

54.00

-4.79

-4.42

peak

peak

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RICKY #1497

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Buletooth Speaker

Mode: TX 2480MHz

Model: COL1428-B

Manufacturer: Sure Wave

Note: Report No.:ATE20140885

Polarization: Horizontal

Power Source: DC 3.7V

Date: 14/06/06/ Time: 8/45/44

Engineer Signature: Ricky

Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	6815.551	43.99	5.25	49.24	54.00	-4.76	peak				
2	12872.441	4.23	46.00	50.23	54.00	-3.77	peak		0		
3	18000.000	0.06	51.60	51.66	54.00	-2.34	peak		F10		

11.BAND EDGE COMPLIANCE TEST

11.1.Block Diagram of Test Setup

(EUT: Bluetooth Speaker)

11.2.The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

11.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

11.4. Operating Condition of EUT

- 11.4.1. Setup the EUT and simulator as shown as Section 11.1.
- 11.4.2. Turn on the power of all equipment.
- 11.4.3.Let the EUT work in TX (Hopping off, Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2480MHz TX frequency to transmit.

11.5.Test Procedure

- 11.5.1.The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 11.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz with convenient frequency span including 100 kHz bandwidth from band edge.
- 11.5.3. The band edges was measured and recorded.

11.6.Test Result

Channel	Result of Band Edge (dBc)	Limit of Band Edge (dBc)							
GFSK									
Low channel	49.50	> 20dBc							
High channel	43.41	> 20dBc							

Site: 1# Chamber

Tel:+86-0755-26503290

Fax:+86-0755-26503396

Radiated Band Edge Result

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

3. Display the measurement of peak values.

Non-hopping mode

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Job No.: RICKY #1502 Polarization: Vertical Standard: FCC PK Power Source: DC 3.7V

 Test item:
 Radiation Test
 Date: 14/06/06/

 Temp.(C)/Hum.(%)
 23 C / 49 %
 Time: 10/18/19

EUT: Buletooth Speaker Engineer Signature: Ricky
Mode: TX 2402MHz Distance: 3m

Model: COL1428-B Manufacturer: Sure Wave

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2384.838	46.61	-7.56	39.05	74.00	-34.95	peak			
2	2384.838	40.78	-7.56	33.22	54.00	-20.78	AVG		3	
3	2390.000	44.56	-7.53	37.03	74.00	-36.97	peak			
4	2390.000	38.97	-7.53	31.44	54.00	-22.56	AVG			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RICKY #1503 Polarization: Horizontal Standard: FCC PK Power Source: DC 3.7V

Test item: Radiation Test Date: 14/06/06/
Temp.(C)/Hum.(%) 23 C / 49 % Time: 10/19/25

EUT: Buletooth Speaker Engineer Signature: Ricky Mode: TX 2402MHz Distance: 3m

Model: COL1428-B Manufacturer: Sure Wave

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2373.083	46.43	-7.64	38.79	74.00	-35.21	peak			
2	2373.083	40.67	-7.64	33.03	54.00	-20.97	AVG			
3	2390.000	46.38	-7.53	38.85	74.00	-35.15	peak			
4	2390.000	40.37	-7.53	32.84	54.00	-21.16	AVG			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RICKY #1501 Polarization: Vertical Standard: FCC PK Power Source: DC 3.7V

Test item: Radiation Test Date: 14/06/06/
Temp.(C)/Hum.(%) 23 C / 49 %
Time: 10/17/24

EUT: Buletooth Speaker Engineer Signature: Ricky
Mode: TX 2480MHz Distance: 3m

Mode: TX 2480MHz
Model: COL1428-B
Manufacturer: Sure Wave

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.500	55.33	-7.37	47.96	74.00	-26.04	peak			
2	2483.500	49.48	-7.37	42.11	54.00	-11.89	AVG			
3	2485.617	50.75	-7.38	43.37	74.00	-30.63	peak			
4	2485.617	44.11	-7.38	36.73	54.00	-17.27	AVG			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RICKY #1500 Polarization: Horizontal Standard: FCC PK Power Source: DC 3.7V

Test item: Radiation Test Date: 14/06/06/
Temp.(C)/Hum.(%) 23 C / 49 % Time: 10/16/41

EUT: Buletooth Speaker Engineer Signature: Ricky
Mode: TX 2480MHz Distance: 3m

Mode: TX 2480MHz
Model: COL1428-B
Manufacturer: Sure Wave

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.500	55.75	-7.37	48.38	74.00	-25.62	peak			
2	2483.500	50.03	-7.37	42.66	54.00	-11.34	AVG			
3	2484.573	51.06	-7.38	43.68	74.00	-30.32	peak			
4	2484.573	45.27	-7.38	37.89	54.00	-16.11	AVG			

Hopping mode

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Horizontal

Job No.: RICKY #1498 Standard: FCC PK

Temp.(C)/Hum.(%) 25 C / 55 % EUT: Buletooth Speaker

Mode: HOPPING1 Model: COL1428-B Manufacturer: Sure Wave

Test item: Radiation Test Date: 14/06/06/ Time: 10/10/25

Engineer Signature:

Polarization:

Power Source: DC 3.7V

Distance: 3m

Report No.:ATE2014010885 Note:

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2310.000	46.75	-6.99	39.76	74.00	-34.24	peak			
2	2310.000	38.19	-6.99	31.20	54.00	-22.80	AVG			
3	2390.000	43.54	-6.78	36.76	74.00	-37.24	peak			
4	2390.000	35.33	-6.78	28.55	54.00	-25.45	AVG			
5	2483.500	44.27	-6.54	37.73	74.00	-36.27	peak			
6	2483.500	36.64	-6.54	30.10	54.00	-23.90	AVG			
7	2500.000	44.29	-6.50	37.79	74.00	-36.21	peak			
8	2500.000	37.21	-6.50	30.71	54.00	-23.29	AVG			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RICKY #1499 Polarization: Vertical Standard: FCC PK Power Source: DC 3.7V

Test item: Radiation Test Date: 14/06/06/
Temp.(C)/Hum.(%) 25 C / 55 % Time: 10/11/42
EUT: Buletooth Speaker Engineer Signature:
Mode: HOPPING1 Distance: 3m

Model: COL1428-B Manufacturer: Sure Wave

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2310.000	50.18	-6.99	43.19	74.00	-30.81	peak			
2	2310.000	43.66	-6.99	36.67	54.00	-17.33	AVG			
3	2390.000	47.54	-6.78	40.76	74.00	-33.24	peak			
4	2390.000	41.31	-6.78	34.53	54.00	-19.47	AVG			
5	2483.500	46.67	-6.54	40.13	74.00	-33.87	peak			
6	2483.500	39.59	-6.54	33.05	54.00	-20.95	AVG			
7	2500.000	45.47	-6.50	38.97	74.00	-35.03	peak			
8	2500.000	37.72	-6.50	31.22	54.00	-22.78	AVG			

12.AC POWER LINE CONDUCTED EMISSION FOR FCC PART

15 SECTION 15.207(A)

12.1.Block Diagram of Test Setup

12.1.1.Block diagram of connection between the EUT and simulators

12.1.2.Shielding Room Test Setup Diagram

(EUT: Bluetooth Speaker)

12.2.The Emission Limit

12.2.1.Conducted Emission Measurement Limits According to Section 15.207(a)

Frequency	Limit dB(μV)						
(MHz)	Quasi-peak Level	Average Level					
0.15 - 0.50	66.0 - 56.0 *	56.0 – 46.0 *					
0.50 - 5.00	56.0	46.0					
5.00 - 30.00	60.0	50.0					

^{*} Decreases with the logarithm of the frequency.

12.3.Configuration of EUT on Measurement

The equipment are installed on the Conducted Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

12.4. Operating Condition of EUT

- 12.4.1. Setup the EUT and simulator as shown as Section 11.1.
- 12.4.2. Turn on the power of all equipment.
- 12.4.3.Let the EUT work in TX (Operation) mode measure it.

12.5.Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 500hm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.4- 2009 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESCS30) is set at 9 kHz.

The frequency range from 150 kHz to 30MHz is checked.

12.6.Power Line Conducted Emission Measurement Results

CONDUCTED EMISSION STANDARD FCC PART 15 B

EUT: Buletooth Speaker M/N:COL1428-B

Manufacturer: Sure Wave Operating Condition: Operation

1#Shielding Room Test Site:

Operator: Ricky
Test Specification: N 120V/60Hz

Comment: Report No:ATE20140885 Start of Test: 6/7/2014 / 5:08:01PM

SCAN TABLE: "V 150K-30MHz fin"

______SUB_STD_VTERM2 1.70 Short Description:

Step Detector Meas. Start Stop IF Transducer

Frequency Frequency Width Time Bandw.

150.0 kHz 30.0 MHz 4.5 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Average

MEASUREMENT RESULT: "RY0607-3 fin"

6/7/2014 5	:11PM						
Frequenc	y Level	Transd	Limit	Margin	Detector	Line	PΕ
MH	z dBµV	dB	dΒμV	dB			
0.15000	0 35.90	10.5	66	30.1	QP	N	GND
0.56452	6 26.40	10.7	56	29.6	QP	N	GND
0.88279	5 18.50	10.8	56	37.5	QP	N	GND

MEASUREMENT RESULT: "RY0607-3 fin2"

6/7/2014	5:11P	M						
Frequ	iency	Level	Transd	Limit	Margin	Detector	Line	PE
	MHz	dΒμV	dB	dΒμV	dB			
0.16	54425	17.10	10.5	55	38.1	AV	N	GND
0.48	37008	17.30	10.7	46	28.9	AV	N	GND
0.56	56784	20.30	10.7	46	25.7	AV	N	GND

CONDUCTED EMISSION STANDARD FCC PART 15 B

EUT: Buletooth Speaker M/N:COL1428-B

Manufacturer: Sure Wave Operating Condition: Operation Test Site: 1#Shielding Room

Operator: Ricky

Test Specification: L 120V/60Hz

Report No:ATE20140885 Comment: Start of Test: 6/7/2014 / 5:11:31PM

SCAN TABLE: "V 150K-30MHz fin"

_SUB_STD_VTERM2 1.70 Short Description:

Start Stop Step Detector Meas. ΙF Transducer

Time Bandw. Width

Frequency Frequency 150.0 kHz 30.0 MHz 4.5 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Average

MEASUREMENT RESULT: "RY0607-4 fin"

6/	7/2014 5:13	PM						
	Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
	MHz	dBµV	dB	dBµV	dB			
	0.153024	32.40	10.5	66	33.4	QP	L1	GND
	0.564526	25.50	10.7	56	30.5	QP	L1	GND
	0.911443	18.50	10.8	56	37.5	QP	L1	GND

MEASUREMENT RESULT: "RY0607-4 fin2"

6/7/2	014 5:13P	M						
Fr	equency	Level	Transd	Limit	Margin	Detector	Line	PE
	MHz	dΒμV	dB	dΒμV	dB			
0	.159256	15.40	10.5	56	40.1	AV	L1	GND
0	.504824	16.70	10.7	46	29.3	AV	L1	GND
0	.569051	20.00	10.7	46	26.0	AV	L1	GND

13.ANTENNA REQUIREMENT

13.1.The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

13.2.Antenna Construction

The antenna is PCB Layout antenna, no consideration of replacement. Therefore, the equipment complies with the antenna requirement of Section 15.203.

