prestion 1.1 [2.5 pts]

Answer with TRUE or FALSE next to each of the following statements:

Statement 1. There are some languages that can be decided.	True	False
There are some languages that can be designed by finite automata but not by regular expression. If I is a regular language.		/
 If L is a regular language and F is a finite language, then L ∪ F is a regular language. Define FVEN(w) for S	~	1

2	D.C. minus	
3.	Define $EVEN(w)$, for a finite string w , to be the string consisting of the symbols of w in	
	even-numbered positions. For example, EVEN(1011010) = 011. If L is a regular language,	
	then $\{EVEN(w): w \in L\}$ must be regular.	

400	1011	Toy of the latest transfer of	guage, then $\{ww^R : w \in L\}$ must be a regular language.				
4.	II L is a regular	language,	then (ww	:weL}	must be	a regular	language.

0.0	101	
5.	If L. U Lais a non-regular language	, then both L_1, L_2 must be non-regular languages.
	T - 270 a non-regular ranguage	then both L1, L2 must be non-regular languages.

Question 1.2 [2.5 pts]

Select the correct answer:

d 1. Which of the following languages are not regular:

A.
$$L = \{(01)^n 0^k | n > k, k \ge 0\}$$
 (4) 0

B.
$$L = \{c^n b^k a^{n+k} | n \ge 0, k \ge 0\}$$

C.
$$L = \{0^n 1^k | n \neq k\}$$

- a) A and B only
- c) A and C only
- c 2. Which of the following languages is regular:

a)
$$L = \{a^i b^i \mid i \ge 0\}$$

c)
$$L = \{a^i b^i \mid 0 < i < 5\} \, \star$$

c 3. The reverse of $(0 + 1)^*$ will be:

c) (0+1)*

- (b) B and C only
 - d) A, B and C
 - b) $L = \{a^i b^i | i \ge 1\}$
- d) None of the above.
 - b) ε
 - d) (0+1)
- 4. $L = \{wcx : w, x \in \{a, b\}^* \text{ and the number of } a's \text{ in } w \text{ is equal to the number of } b's \text{ in } x\}$ is a non-regular language. For example, $w = abababcbbb \in L$. We use pumping lemma to prove that the language L is non-regular. Fill in blanks to complete the proof.
 - A. Pick a string $w \in L$ and length $|w| \ge m$, such that m is the critical length. $|w| \ge m$, $|x| \le m$, $|y| \ge 1$.
 - B. $Y = \dots \setminus 1 \le k \le m$

Question 2.1 Construct a context-free grammar that generates $L = \{w \in$

{a,c}* | w contains at least 3 c's}

Question 2.2 Construct a context-free grammar that generates $L = \{\underbrace{0^n \ 1^n}_{} \ \underbrace{0^m \ 1^m}_{} \ | n, \, m \geq 0\}$ and $\Sigma = \{0,1\}$

Question 2.3 Which of the following context-free grammar productions generates words of balanced brackets. An example for the generated string is (())(). B. $P = \{S \rightarrow \lambda, S \rightarrow SS, S \rightarrow ()\}$

A:
$$P = \{S \rightarrow \lambda, S \rightarrow TS, T \rightarrow (T)\}$$

$$C. P = \{S \rightarrow \lambda, S \rightarrow (T)S, T \rightarrow (1)\}$$

B.
$$P = \{S \rightarrow \lambda, S \rightarrow SS, S \rightarrow ()\}$$

$$D.P = \{S \rightarrow \lambda, S \rightarrow (S)S\}$$

Question 2.4 Construct regular expressions representing the following languages. [4 pts]

(1) The language over the alphabet { 0,1 } that doesn't contain the substring 110

(2) The language $\{ w \in \Sigma^* \mid w \text{ ends with a double letter } \}$ over the alphabet $\{ a, b \}$. A double letter over this alphabet is aa or bb.

(3) $L = \{x \in \{a, b\}^* \mid x \text{ ends with } a \text{ and does not contain the substring bb}\}$

D. None of the above

Part 3: Design different machine models (DFA, NFA, PDA, TM)

1. Convert this NFA into an equivalent DFA. Your answer should be the state diagram of a DFA. [3 pts]

What is the language recognize by this DFA. Express your answer as a regular expression. [1 pt] (01+(0+1)*1)

3. Construct an NFA with two states that recognizes the same language. [1 pt]

Part 4: Evaluate the language accepted by a machine, a regular expression, and a context free grammar

Question 4.1: [2 pts]

Describe the language generated by the following Grammar productions.

Grammar		Corresponding L(G)
(1) $S \to ABC$ $A \to 0A1 \mid \varepsilon$ $B \to 1B \mid 1$ $C \to 1C0 \mid \varepsilon$	OAI" 1" I"O"	L={0"1" 12 1"0" 1 91,120 and my 13
(2) $S \to 0Y1 \mid 1Y0$ $Y \to 0Y \mid 1Y \mid \varepsilon$	language that stated and end with defficient alpha bet	L= {(stant with o (every string struct with o o ends with 1) on (every string stant with 1 and ends with 2 and

Question 4.3: [3 pts]

aub

1. Is the grammar below ambiguous? $S \rightarrow aS \mid aSbS \mid c$

A. Yes k

B. No

3. Are CFGs provided in (1) and (2) equivalent?

A. Yes

B. No

End of Exam