Computación Gráfica 2019

Intersecciones y Ordenamiento Espacial

Recta vs Rayo vs Segmento

$$P = P_0 + \alpha v = P_0 + \alpha (P_1 - P_0) = (1 - \alpha)P_0 + \alpha P_1 = \alpha^0 P_0 + \alpha^1 P_1$$

(Siempre: $\alpha^0 + \alpha^1 = 1$)

Segmento: $\alpha \in [0,1]$ Rayo: $\alpha \ge 0$

Recta ∀α ∈ R

Plano - Triángulo

Plano
$$\{P_0, P_1, P_2\}$$
 $\{Q, v_0, v_1\}$ $\{Q, n\}$ $\{a, b, c, d\}$

$$P = P_2 + \alpha^0 (P_0 - P_2) + \alpha^1 (P_1 - P_2) = \alpha^0 P_0 + \alpha^1 P_1 + (1 - \alpha^0 - \alpha^1) P_2 = \alpha^0 P_0 + \alpha^1 P_1 + \alpha^2 P_2 = Q + \alpha^0 \mathbf{v}_0 + \alpha^1 \mathbf{v}_1$$

Triángulo: $\alpha^i \in [0,1]$ plano $\alpha^i \in R$ siempre: $\alpha^0 + \alpha^1 + \alpha^2 = 1$

$${Q,n} \setminus (P-Q) \cdot n = 0$$

$$Q = P_2$$
; $\mathbf{n} = \mathbf{v}_0 \times \mathbf{v}_1 = (P_0 - P_2) \times (P_1 - P_2)$

$$\{a,b,c,d\} \setminus aP^x + bP^y + cP^z + d = 0$$

$$\mathbf{n} = \{a,b,c\}; Q = -d\mathbf{n}/n^2$$

Proyecciones Ortogonales

Distancia (Mínima) Entre Objetos

Distancia de Punto a Recta/Plano

Parte 1: Intersecciones

Nos interesan sólo: Rayos contra objetos – Clipping – Detección de Colisiones

Intersección de Segmentos

$$I = (1-\alpha)P_0 + \alpha P_1 = (1-\beta)Q_0 + \beta Q_1$$

$$I = P_0 + \alpha (P_1 - P_0) = Q_0 + \beta (Q_1 - Q_0)$$

$$I = P_0 + \alpha \Delta P = Q_0 + \beta \Delta Q$$

$$I = P_0 + \alpha \mathbf{t}_P = Q_0 + \beta \mathbf{t}_Q$$

 \rangle 2e/2i en el plano → α,β ∈ [0,1]?

$$\mathbf{n} = \Delta \mathbf{P} \times \Delta \mathbf{Q}, \, \mathbf{n}^2 = \mathbf{n} \cdot \mathbf{n}.$$

Si $n^2 = 0 \Rightarrow$ paralelas o coincidentes

$$\mathbf{A}(P) = (P - Q_0) \times \Delta Q/2 \setminus \mathbf{A}(I) = 0 \Rightarrow \mathbf{A}(P) = 2\mathbf{A}(P) \cdot \mathbf{n}$$

$$\mathbf{A}(I) = 0 = (P - Q_0) \times \Delta Q \cdot \mathbf{n} = (P_0 + \alpha \Delta P - Q_0) \times \Delta Q \cdot \mathbf{n}$$

$$= \alpha n^2 - \Delta_0 \times \Delta Q \cdot \mathbf{n}$$

Del mismo modo: $\alpha = \mathbf{n} \times \Delta_0 \cdot \Delta Q/n^2 \quad \alpha \in [0,1]$? $\beta = \mathbf{n} \times \Delta_0 \cdot \Delta P/n^2 \quad \beta \in [0,1]$?

Algoritmo:

a)
$$\Delta P = P_1 - P_0$$
, $\Delta Q = Q_1 - Q_0$, $\mathbf{n} = \Delta P \times \Delta Q$, $\mathbf{n}^2 = \mathbf{n} \cdot \mathbf{n}$ Si $\mathbf{n}^2 \neq 0 \Rightarrow \mathbf{b}$)

b)
$$\Delta_0 = Q_0 - P_0$$

c)
$$\mathbf{b} = \mathbf{n} \times \Delta_0$$
, $\alpha' = \mathbf{b} \cdot \Delta Q$, $\beta' = \mathbf{b} \cdot \Delta P$ Si $\{\alpha', \beta'\} \in [0, n^2]^2 \Rightarrow d$

d)
$$I = P_0 + \alpha'/n^2 \Delta P$$
 (n² \neq 0, comprobado antes)

Intersección de Segmentos

Algoritmo:

a)
$$\Delta P = P_1 - P_0$$
, $\Delta Q = Q_1 - Q_0$, $\mathbf{n} = \Delta P \times \Delta Q$, $\mathbf{n}^2 = \mathbf{n} \cdot \mathbf{n}$ Si $\mathbf{n}^2 \neq 0 \Rightarrow \mathbf{b}$)

b)
$$\Delta_0 = Q_0 - P_0$$

c)
$$\mathbf{b} = \mathbf{n} \times \Delta_0$$
, $\alpha' = \mathbf{b} \cdot \Delta Q$, $\beta' = \mathbf{b} \cdot \Delta P$ Si $\{\alpha', \beta'\} \in [0, n^2]^2 \Rightarrow d$)

d)
$$I = P_0 + \alpha'/n^2 \Delta P$$
 (n²\neq 0, comprobado antes)

Intersección entre Segmento y Triángulo

$$I = (1-\alpha)P_0 + \alpha P_1 = (1-\beta-\gamma)Q_0 + \beta Q_1 + \gamma Q_2 \qquad 3e/3i \rightarrow \alpha, \beta, \gamma \quad (\in [0,1] ?)$$

I \ vol_tetraedro(P,Q₀,Q₁,Q₂) = 0 equiv. : I \ dist(P, plano(Q₀,Q₁,Q₂)) = 0

$$\mathbf{n} = (\mathbf{Q}_1 - \mathbf{Q}_0) \times (\mathbf{Q}_2 - \mathbf{Q}_0)$$

$$(P_0 + \alpha \Delta P - Q_0) \cdot \mathbf{n} = 0 \Rightarrow \alpha = \Delta_0 \cdot \mathbf{n} / \Delta P \cdot \mathbf{n} \Rightarrow I = P_0 + \alpha \Delta P$$

 (β, γ) por coordenadas baricéntricas de I)

¿Potenciales problemas numéricos? ¿Consecuencias?

Intersección entre un Plano y Muchos Segmentos

Un plano vs. muchos segmentos/triángulos/tetraedros

Plano $\{Q, \mathbf{n}\}$ o $\{Q_0, Q_1, Q_2\}$ con $\mathbf{n} = (Q_1 - Q_0) \times (Q_2 - Q_0)$ (no hace falta normalizar) Para cada vértice P_i : $\mathbf{v}_i = |\mathbf{n}| \mathbf{d}_i = (P_i - Q) \cdot \mathbf{n} = P_i \cdot \mathbf{n} - Q \cdot \mathbf{n}$ ($Q \cdot \mathbf{n} = \text{cte.}$)

En cada arista (P_i, P_j) cuyos extremos tengan valores de distinto signo $(v_i \ v_j < 0)$, el punto en que v=0 es: $I_{ij} = P_j + v_j/(v_j - v_i) (P_i - P_j)$

Intersección de Triángulos

- b) Hasta dos intersecciones I_i^p de aristas P dentro de Q al menos una \Rightarrow c)
- c) Hasta dos intersecciones I_i^q de aristas Q dentro de P al menos una \Rightarrow d)
- d) Los I están alineados, dos "centrales" forman la intersección: $(I_1^p I_0^p)^2 > (I_1^q I_0^q)^2$? (elegimos el más largo)

Si
$$\Rightarrow$$
 t = $I_1^p - I_0^p$; $\alpha_p^0 = 0$; $\alpha_p^1 = 1$; $\alpha_q^0 = (I_0^q - I_0^p) \cdot \mathbf{t}$; $\alpha_q^1 = (I_1^q - I_0^p) \cdot \mathbf{t}$

No
$$\Rightarrow$$
 t = $I_1^q - I_0^q$; $\alpha_q^0 = 0$; $\alpha_q^1 = 1$; $\alpha_p^0 = (I_0^p - I_0^q) \cdot \mathbf{t}$; $\alpha_p^1 = (I_1^p - I_0^q) \cdot \mathbf{t}$

e)
$$[\alpha_{I}^{0}, \alpha_{I}^{1}] = [\alpha_{p}^{0}, \alpha_{p}^{1}] \cap [\alpha_{q}^{0}, \alpha_{q}^{1}] \neq \emptyset \Rightarrow I = I_{?}^{0}(\alpha=0) + \alpha_{I}^{i} \mathbf{t}$$

Intersección de Rayo o Plano con Esfera

- a) Esfera $\{C, r\}$ y plano (P_0, \mathbf{n}) en el espacio, vemos el plano de canto.
- b) Esfera $\{C, r\}$ y recta (P_0, t) en el espacio, vemos el plano que forman la recta y el centro.
- d) Circunferencia {C, r} y recta (P_0 , t) en el plano.

1) Plano:
$$C_{\perp} = P_0 + \mathbf{c} - (\mathbf{c} \cdot \mathbf{n}) \mathbf{n} / n^2$$

2)
$$r'^2 = r^2 - (C_\perp - C)^2 > 0$$

3) Plano: I = Disco
$$\{C_{\perp}, r', n\}$$
 en el plano

Recta:
$$C_{\perp} = P_0 + (\mathbf{c} \cdot \mathbf{t}) \mathbf{t}/t^2$$

Recta:
$$I_i = C_{\perp} \pm r' t/|t|$$

Intersección de Rayo con Cilindro

Recta $\{P_0, \mathbf{t}'\}$ contra Cilindro $\{C, \mathbf{e}, \mathbf{r}\}$ $entre \ C+h_0\mathbf{e} \ \mathbf{y} \ C+h_1\mathbf{e}$ $C_\perp \ \mathbf{r'}$ $\mathbf{c} = \mathbf{C} - P_0$ \mathbf{c} $\mathbf{c} = \mathbf{C} - P_0$ \mathbf{c}

1) Proyección:
$$\mathbf{c} = \mathbf{c}' - (\mathbf{c}' \cdot \mathbf{e}) \mathbf{e} / \mathbf{e}^2 \neq \mathbf{0}$$
 $\mathbf{t} = \mathbf{t}' - (\mathbf{t}' \cdot \mathbf{e}) \mathbf{e} / \mathbf{e}^2 \neq \mathbf{0}$ $C_{\perp} = P_0 + (\mathbf{c} \cdot \mathbf{t}) \mathbf{t} / \mathbf{t}^2$

2)
$$r'^2 = r^2 - (C_{\perp} - C)^2 > 0$$

3) Intersecciones Proyectadas:
$$I_i = C_{\perp} \pm r' t/|t|$$

4)
$$\alpha^i = (I_i - P_0) \cdot t/t^2$$
 Intersecciones: $I'_i = P_0 + \alpha^i t'$

5) Verificar:
$$\min(h_0, h_1) < (I'_i - C) \cdot \mathbf{e}/e^2 < \max(h_0, h_1)$$
(Normalmente, $\mathbf{e} = \mathbf{e}_z \Rightarrow \mathbf{c} = \{c'^x, c'^y\}; \mathbf{v} = \{v'^x, v'^y\}; h_{\min} < I'_i^z < h_{\max}$)

Parte 2: Optimización

Ejemplo: Detección de Colisiones

https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch29.html

Linea Separadora y Envoltorio Convexo

Ordenamiento Espacial

Divide and Conquer: $\sum pocos*pocos << todos*todos$

Ejemplo: Rendering Ordenado con BSP

Nearest Neighbour K-D Tree

Diagrama de Voronoï

Diagrama de Voronoï

Triangulación de Delaunay

Construcción de la Triangulación Delaunay

Centro de Esfera o Circunsferencia

$$r^2 = (C - P_i)^2 = C^2 - 2 C \cdot P_i + P_i^2$$

Con origen en P_2 ; $\mathbf{c} = C - P_2$; $\mathbf{p}_i = P_i - P_2$:

$$r^2 = (C - P_2)^2 = c^2$$

$$c^2 = c^2 - 2 c \cdot p_i + p_i^2 \Rightarrow 2 c \cdot p_i = p_i^2 \quad (i \in \{0,1\} \text{ o } i \in \{0,1,2\} \text{ en } 3D)$$

Ecuaciones cerradas (sin sistema de ecuaciones):

$$2a^2 \mathbf{c} = \mathbf{a}x(\mathbf{p}_1^2 \mathbf{p}_0 - \mathbf{p}_0^2 \mathbf{p}_1)$$
 (Circunferencia, se restó \mathbf{P}_2 ; $\mathbf{a} = \mathbf{p}_0 x \mathbf{p}_1$)

$$2\mathbf{v} \ \mathbf{c} = \sum \mathbf{p}_{i}^{2} \mathbf{p}_{i}^{*}$$
 (Esfera: se restó \mathbf{P}_{3} ; $\mathbf{p}_{i}^{*} = \mathbf{p}_{(i+1)\%3} \times \mathbf{p}_{(i+2)\%3}$; $\mathbf{v} = \mathbf{p}_{0} \times \mathbf{p}_{1} \cdot \mathbf{p}_{2}$)

Lineal Walk / Búsqueda Lineal

Ejemplo: Triangulación en Interpolación

Ejemplo: Free-Form Deformation

