IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of: Moshe FINAROV et al.)	Art Unit:
Appln. No.: Not yet assigned))	
Appln. Filed: Even date herewit) :h)	Washington, D.C.
U.S. App. No.: (Not Yet Assigned))))	
National Filing Date: (Not Yet Received))))	August 31, 2001
For METHOD AND ADDARATIS FOR)	Docket No · FINAROV-1A

SUPPLEMENTAL PRELIMINARY AMENDMENT

Commissioner for Patents Washington, D.C. 20231

Sir:

Prior to examination upon the merits, kindly amend as follows:

IN THE CLAIMS

Please cancel claim 1 and add the following claims on the attached sheets:

REMARKS

Claims 20-49 presently appear in this case. The above amendments to the claims are being made in order to cancel claim 1, add new claims and to restore at least partly the varying scope of claims, which was eliminated by the elimination of multiple dependencies in the claims.

Favorable consideration is earnestly solicited.

Respectfully submitted,

BROWDY AND NEIMARK, P.L.L.C. Attorneys for Applicant

By:

Jay M. Finkelstein

Registration No. 21,082

JMF:wrd

Telephone No.: (202) 628-5197 Facsimile No.: (202) 737-3528

F:\Filing\Supplemental Prel. Amendments\New Improved Sup. Pre. Amendment.doc

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of: Moshe FINAROV et al.)	Art Unit:
Appln. No.: Not yet assigned)	
Appln. Filed: Even date herewit	th)	Washington, D.C.
U.S. App. No.: (Not Yet Assigned))))	
National Filing Date: (Not Yet Received))))	August 31, 2001
For: METHOD AND APPARATUS FOR))	Docket No.: FINAROV=1A

PRELIMINARY AMENDMENT

Honorable Commissioner for Patents and Trademarks Washington, D.C. 20231

Sir:

Contemporaneous with the filing of this case and prior to calculation of the filing fee, kindly amend as follows:

IN THE CLAIMS

Cancel claims 2-19 without prejudice.

REMARKS

Claim 1 presently appears in this case. The above amendments to the claims are being made in order to cancel claims 2-19. Please enter this amendment prior to calculation of the filing fee in this case.

Attached hereto is a marked-up version of the changes made to the specification and claims by the current

amendment. The attached page is captioned "Version with Markings to Show Changes Made."

Favorable consideration and allowance are earnestly solicited.

Respectfully submitted, BROWDY AND NEIMARK, P.L.L.C. Attorneys for Applicant

By:____

Jay M. Finkelstein Registration No. 21,082

JMF:wrd

Telephone No.: (202) 628-5197 Facsimile No.: (202) 737-3528

VERSION WITH MARKINGS TO SHOW CHANGES MADE

Claims 2- 19 were canceled.

25

CLAIMS:

20. A method for optical control of the quality of a process of chemical mechanical planarization (CMP) by determining the existence of a residues effect on an article resulting from the CMP process applied to said article, the CMP processed article having a surface with at least one pattern in the form of spaced-apart metal regions, the method comprising the steps of:

- selecting at least one predetermined site on the article to be controlled by analysing a structure which is similar to that of said article to be controlled but under-polished by the CMP process, and detecting the effect of residues on said under-polished structure, said at least one predetermined site being that where the effect of residues is detected;
- illuminating said at least one predetermined site on said article to be controlled, detecting light returned from the illuminated site, and generating data indicative of the detected light; and
- analysing said data for determining the existence of the effects of residues.
- 1). The method according to Claim 20, wherein said selecting of the at least one predetermined site comprises the steps of:
 - providing an image of said structure; and
 - performing image processing of said image.
- 20 Z. The method according to Claim 21, wherein said image processing comprises at least one of the following steps:
 - detecting at least one site of the structure characterised by substantially irregular geometry;
 - detecting at least one site of the structure characterised by predetermined optical properties indicative of a predetermined range of contrast of said image;
 - detecting at least one site of the structure characterised by optical properties different from optical properties of other sites of the structure.
- 23. The method according to Claim 20, wherein said selecting of the at least one predetermined site comprises the steps of:

- providing data indicative of spectral characteristics of said structure; and
- analysing said data indicative of spectral characteristics of said structure.
- 24. The method according to Claim 23 wherein said analysing of the data indicative of spectral characteristics of said structure comprises determining optical properties 5 of a material on top of the structure.
 - 25. The method according to Claim23, wherein said analysing of the data indicative of spectral characteristics of said structure comprises determining a thickness of the uppermost layer of the structure.
- 26. The method according to Claim 20, wherein the CMP process is applied to the 10 article containing stacks each formed by a different layer structure, the method also comprising the step of providing information regarding a location of at least one of erosion and dishing effects on a layer underneath the top layer of the structure, said at least one predetermined site being selected at said location.
- 27. The method according to Claim 20, wherein the analysed structure is an article 15 similar to the article to be controlled.

25

- 28. The method according to Claim 20, wherein the analysed structure is a simulated model of said article to be controlled.
- The method according to Claim 20, wherein said analysing of the generated 29. data comprises image processing of an image of the at least predetermined site 20 formed by the detected light.
 - The method according to Claim 30, wherein said analysing of the 30. generated data comprises at least one of the following steps:
 - detecting the existence of substantially irregular geometry within said at least one predetermined site;
 - detecting predetermined optical properties of said at least one predetermined site indicative of a predetermined range of said image; and
 - detecting difference in optical properties of said at least one predetermined site and other sites of the structure.
- The method according to Claim 21, wherein said analysing of the generated 31. data comprises image processing of an image of the at least predetermined site formed by the detected light.

- 31. The method according to Claim 31, wherein said analysing of the generated data comprises at least one of the following steps:
 - detecting the existence of substantially irregular geometry within said at least one predetermined site;
 - detecting predetermined optical properties of said at least one predetermined site indicative of a predetermined range of said image; and
 - detecting difference in optical properties of said at least one predetermined site and other sites of the structure.
- 33. The method according to Claim 23 wherein said analysing of the generated data comprises image processing of an image of the at least predetermined site formed by the detected light.

5

9949545

##

100

- 34. The method according to Claim 33, wherein said analysing of the generated data comprises at least one of the following steps:
 - detecting the existence of substantially irregular geometry within said at least one predetermined site;
 - detecting predetermined optical properties of said at least one predetermined site indicative of a predetermined range of said image; and
 - detecting difference in optical properties of said at least one predetermined site and other sites of the structure.
- 20 35. The method according to Claim 20, wherein said generated data is indicative of spectral characteristics of said article to be controlled.
 - 36. The method according to Claim 35, wherein said analysing of the generated data comprises determining optical properties of a material on top of the structure.
- 25 37 The method according to Claim 35, wherein said analysing of the generated data comprises determining a thickness of the uppermost layer of said article to be controlled.
 - 38. The method according to Claim 11, wherein said generated data is indicative of spectral characteristics of said article to be controlled.

- 39. The method according to Claim 38, wherein said analysing of the generated data comprises determining optical properties of a material on top of the structure.
- 40. The method according to Claim 38, wherein said analysing of the generated data comprises determining a thickness of the uppermost layer of said article to be controlled.
- The method according to Claim 23, wherein said generated data is indicative of spectral characteristics of said article to be controlled.
- The method according to Claim 41, wherein said analysing of the generated data comprises determining optical properties of a material on top of the structure.
 - The method according to Claim 41, wherein said analysing of the generated data comprises determining a thickness of the uppermost layer of said article to be controlled.
- 15 14. The method according to Claim 37, and also comprising the step of utilising the determined thickness to adjust a working parameter of a processing tool to carry out the CMP processing of a further similar article.
- The method according to Claim 40, and also comprising the step of autilising the determined thickness to adjust a working parameter of a processing to tool to carry out the CMP processing of a further similar article.
 - The method according to Claim 40, and also comprising the step-of utilising the determined thickness to adjust a working parameter of a processing tool to carry out the CMP processing of a further similar article.
- 47. A tool used in manufacturing semiconductor wafers, the tool comprising a polisher to be applied to the wafer for performing a chemical mechanical planarization (CMP) of an uppermost layer of the wafer to define at least one surface pattern in the form of spaced-apart metal regions spaced by non-metal regions, and an optical monitoring system operable to apply optical inspection to at least one predetermined site on the wafer for determining the existence of residues effect caused by the CMP process.

48. The tool according to Claim 47, wherein said optical monitoring system comprises:

5

10

15

- a spectrophotometer for applying to the processed wafer to illuminate at least one predetermined site on the wafer by incident radiation of a pre-set substantially wide wavelength range and detect light reflected from the illuminated site for providing measured data representative of photometric intensities of detected light within said wavelength range;
- an imaging arrangement operable to acquire images formed by light reflected from the wafer.
- a processor unit connectable to the spectrophotometer, the processor unit being preprogrammed with a pattern recognition software for analyzing the acquired image to locate said at least one predetermined site, and being operable to analyse said measured data and generate corresponding data to be used for adjusting a working parameter of the polisher prior to be applied to a further wafer.
- The tool according to Claim \(\eta \), wherein said optical monitoring system comprises an imaging arrangement operable to acquire images formed by light reflected from the wafer and generating measured data indicative thereof; and a processor unit connectable to the imaging arrangement and being preprogrammed with a pattern recognition software for analyzing said measured data and generating corresponding data to be used for adjusting a working parameter of the polisher prior to be applied to a further wafer.