Domaći zadatak br. 8

- 1. Data je redukovana QR faktorizacija matrice A punog ranga kolona. Neka je rešenje problema najmanjih kvadrata Ax = b označeno sa \widehat{x} . Pokazati da je $A\widehat{x} = QQ^Tb$ i $||A\widehat{x}-b||^2 = ||b||^2 ||Q^Tb||^2$.
- 2. Neka je $Q \in \mathcal{M}_{n \times m}$ matrica sa ortonormiranim kolonama i $b \in \mathbb{R}^n$ vektor. Pokazati da je $\hat{x} = Q^T b$ vektor koji minimizira normu $\|Qx b\|^2$.
- 3. Odrediti najbolju aproksimaciju b_{aprox} vektora b duž pravca određenog vektorom a. Aproksimacija je najbolja ukoliko minimizira normu $||b b_{aprox}||$.
- 4. Pokazati da je srednja vrednost $\mu(y) = \frac{y_1 + y_2 + \dots + y_n}{n}$ rešenje problema najmanjih kvadrata kojim se pronalazi horizontalna linija najbliža podacima y_1, y_2, \dots, y_n .
- 5. a) Izraziti $\sigma(v+u)$ za svaki od slučaja $\rho(v,u)=0, \, \rho(v,u)=1$ i $\rho(v,u)=-1.$
 - b) Neka su vektori u i v sa jednakim parametrima $\mu(u)=\mu(v)=\mu$ i $\sigma(u)=\sigma(v)=\sigma$. Ukoliko je $\rho(u,v)=\rho$, odrediti $\mu(w)$ i $\sigma(w)$ za $w=\frac{u+v}{2}$. Uporediti vrednosti $\sigma(w)$ i σ .