- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, manuali, solo il foglio A4 di appunti.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

10 gennaio 2023

(Cognome)										•	_		•	(No	me)	•		•	(N	ume	ro d	ma	trico	ola)		

1	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2	0	0	0	0	\bigcirc	
3	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
7	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
8	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
9	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
10						

1. Sia z=i,allora la quantità $\|z^3-\|z\|^3\|$ vale

A: $\sqrt{3}$ B: 1 C: 2 D: $\sqrt{2}$ E: N.A.

2. Il raggio di convergenza della serie

$$\sum_{n=1}^{+\infty} 2^{2^n} x^n$$

vale

A: 1 B: 1/2 C: N.A. D: 0 E: $+\infty$

3. Per quali valori di $(a,b) \in \mathbb{R}^2$ la funzione $f(x) = \begin{cases} x^x + a & x > 0 \\ b + x & x \leq 0 \end{cases}$ risulta continua

A: a > 0, (a, a^a) B: N.E. C: a = 0, b < 0 D: (a, 1 - a) E: N.A.

4. Data $f(x) = (x^2)^{(x^3)}$ allore f'(1) vale

A: N.E. B: $\sqrt[3]{2}$ C: N.A. D: 2 E: 3

5. Il problema di Cauchy $\begin{cases} y'(x) = \log(x) \\ y(1) = 0 \end{cases}$ ha come soluzione

A: N.A. B: N.E. C: $y = e^x + \log(x) - e$ D: $y = x \log(x) - x + 1$ E: $y = x \log(x)$

6. L'integrale improprio

$$\int_{2}^{+\infty} \frac{1}{2^{x}} dx$$

vale

A: 1 B: $\frac{1}{\log(16)}$ C: N.E. D: N.A. E: 2^{-1}

7. Inf, min, sup e max dell'insieme

$$A = \{2^{\log(x)} : x \in]0,1[\},$$

valgono

A: $\{0, N.E., 1, N.E.\}$ B: $\{0, 0, 1, 1\}$ C: $\{1/2, N.E., \log(2), N.E.\}$ D: $\{1, 1, 2, 2\}$ E: N.A.

8. L'integrale

$$\int_0^{\pi/2} \cos(4^4 x) \, dx$$

vale

A: 0 B: -1 C: π D: 1 E: N.A.

9. Data $f(x) = \log(1 + 2x)$ allore $f^{(3)}(0)$ vale

A: -1 B: 0 C: 1 D: N.A. E: N.E.

10. Il limite

$$\lim_{n \to +\infty} \sqrt[n]{n(e + \sin(n))}$$

vale

A: N.E. B: N.A. C: $+\infty$ D: 1 E: 0

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, manuali, solo il foglio A4 di appunti.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

10 gennaio 2023

(Cognome)										_			(No	me)			_	ume		trice	ola)			

1	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3	0	0	\bigcirc	0	0
4	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
7	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8	0	\bigcirc	\bigcirc	0	\bigcirc
9	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
10					

1. Il raggio di convergenza della serie

$$\sum_{n=1}^{+\infty} 2^{2^n} x^n$$

vale

A: 1 B: N.A. C: 0 D: 1/2 E: $+\infty$

2. Sia z=i, allora la quantità $\|z^3-\|z\|^3\|$ vale A: $\sqrt{2}$ B: $\sqrt{3}$ C: N.A. D: 2 E: 1

3. Data $f(x) = \log(1 + 2x)$ allore $f^{(3)}(0)$ vale A: 1 B: N.E. C: N.A. D: 0 E: -1

4. Inf, min, sup e max dell'insieme

$$A = \{2^{\log(x)} : x \in]0, 1[\},\$$

valgono

A: $\{1/2, N.E., \log(2), N.E.\}$ B: $\{0, 0, 1, 1\}$ C: $\{1, 1, 2, 2\}$ D: N.A. E: $\{0, N.E., 1, N.E.\}$

5. L'integrale improprio

$$\int_{2}^{+\infty} \frac{1}{2^{x}} dx$$

vale

A: $\frac{1}{\log(16)}$ B: 2^{-1} C: 1 D: N.A. E: N.E

6. Data $f(x) = (x^2)^{(x^3)}$ allore f'(1) vale

A: N.A. B: 3 C: $\sqrt[3]{2}$ D: 2 E: N.E.

7. Il problema di Cauchy $\begin{cases} y'(x) = \log(x) \\ y(1) = 0 \end{cases}$ ha come soluzione

A: N.E. B: $y = e^x + \log(x) - e$ C: $y = x \log(x) - x + 1$ D: N.A. E: $y = x \log(x)$

8. Il limite

$$\lim_{n \to +\infty} \sqrt[n]{n(e + \sin(n))}$$

vale

 $A: +\infty$ B: 1 C: N.A. D: N.E. E: 0

9. Per quali valori di $(a,b) \in \mathbb{R}^2$ la funzione $f(x) = \begin{cases} x^x + a & x > 0 \\ b + x & x \leq 0 \end{cases}$ risulta continua

A: N.A. B: (a, 1-a) C: a = 0, b < 0 D: $a > 0, (a, a^a)$ E: N.E.

10. L'integrale

$$\int_0^{\pi/2} \cos(4^4 x) \, dx$$

vale

A: N.A. B: -1 C: 1 D: 0 E: π

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, manuali, solo il foglio A4 di appunti.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

10 gennaio 2023

														L						L					
(Cognome)													(No	me)			(N	ume	ro d	i ma	trice	ola)			

1	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2	0	\bigcirc	\bigcirc	0	\bigcirc	
3	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
7	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
8	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
9	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
10						

1. Sia z=i, allora la quantità $\|z^3-\|z\|^3\|$ vale

A:
$$\sqrt{3}$$
 B: N.A. C: $\sqrt{2}$ D: 1 E: 2

2. L'integrale

$$\int_0^{\pi/2} \cos(4^4 x) \, dx$$

vale

A: 0 B: N.A. C: 1 D:
$$-1$$
 E: π

3. Il raggio di convergenza della serie

$$\sum_{n=1}^{+\infty} 2^{2^n} x^n$$

vale

A: N.A. B:
$$+\infty$$
 C: $1/2$ D: 1 E: 0

4. Per quali valori di $(a,b) \in \mathbb{R}^2$ la funzione $f(x) = \begin{cases} x^x + a & x > 0 \\ b + x & x \leq 0 \end{cases}$ risulta continua

A: N.E. B:
$$a = 0, b < 0$$
 C: $a > 0, (a, a^a)$ D: $(a, 1 - a)$ E: N.A.

5. Data $f(x) = (x^2)^{(x^3)}$ allore f'(1) vale

A: N.A. B: 3 C:
$$\sqrt[3]{2}$$
 D: N.E. E: 2

6. L'integrale improprio

$$\int_{2}^{+\infty} \frac{1}{2^{x}} dx$$

vale

A: N.E. B:
$$2^{-1}$$
 C: N.A. D: $\frac{1}{\log(16)}$ E: 1

7. Il limite

$$\lim_{n \to +\infty} \sqrt[n]{n(e + \sin(n))}$$

vale

A: N.A. B:
$$+\infty$$
 C: N.E. D: 1 E: 0

8. Inf, min, sup e max dell'insieme

$$A = \{2^{\log(x)} : x \in]0,1[\},$$

valgono

A:
$$\{0, N.E., 1, N.E.\}$$
 B: N.A. C: $\{0, 0, 1, 1\}$ D: $\{1, 1, 2, 2\}$ E: $\{1/2, N.E., \log(2), N.E.\}$

9. Data $f(x) = \log(1 + 2x)$ allore $f^{(3)}(0)$ vale

10. Il problema di Cauchy $\begin{cases} y'(x) = \log(x) \\ y(1) = 0 \end{cases}$ ha come soluzione

A:
$$y = e^x + \log(x) - e$$
 B: N.E. C: $y = x \log(x)$ D: $y = x \log(x) - x + 1$ E: N.A.

10 gennaio 2023

																				L				
(Cognome)													(No	me)				ume		trice	ola)			

0	\bigcirc	\bigcirc	•	\bigcirc
0	\bigcirc	\bigcirc	•	\bigcirc
0	\bigcirc	\bigcirc	\bigcirc	
0	\bigcirc	\bigcirc	•	\bigcirc
0	\bigcirc	\bigcirc	•	\bigcirc
0	•	\bigcirc	\bigcirc	\bigcirc
•	\bigcirc	\bigcirc	\bigcirc	\bigcirc
•	\bigcirc	\bigcirc	\bigcirc	\bigcirc
0	\bigcirc	\bigcirc	•	\bigcirc
0	\bigcirc	\bigcirc	•	\bigcirc

10 gennaio 2023

(Cognome)	(Nome)	(Numero di matricola)

1	0	\bigcirc	•	\bigcirc	\bigcirc	
2	•	\bigcirc	\bigcirc	\bigcirc	0	
3	0	\bigcirc	•	\bigcirc	\bigcirc	
4	0	\bigcirc	\bigcirc	\bigcirc	•	
5		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6	0	\bigcirc	\bigcirc		\bigcirc	
7	0	0	•	\bigcirc	\bigcirc	
8	0	•	\bigcirc	\bigcirc	\bigcirc	
9		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
10						

10 gennaio 2023

																				L				
(Cognome)													(No	me)				ume		trice	ola)			

1	0	0	•	\bigcirc	\bigcirc	
2	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
3	0	\bigcirc	\bigcirc	\bigcirc	•	
4	0	\bigcirc	\bigcirc	\bigcirc	•	
5	0	\bigcirc	\bigcirc	\bigcirc	•	
6	0	\bigcirc	\bigcirc	•	\bigcirc	
7	0	0	\bigcirc	•	\bigcirc	
8	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
9	0	•	\bigcirc	\bigcirc	\bigcirc	
10	0	0	\bigcirc	•	\bigcirc	

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, manuali, solo il foglio A4 di appunti.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

10 gennaio 2023

																				L				
(Cognome)														(No	me)				ume		trice	ola)		

1	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
7	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
9	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
10					\bigcirc

1. Data $f(x) = \log(1 + 2x)$ allore $f^{(3)}(0)$ vale

A: 0 B: N.E. C: 16 D: -1 E: 1

2. L'integrale

$$\int_0^{\pi/2} \cos(4^6 x) \, dx$$

vale

A: 0 B: N.A. C: π D: 1 E: -1

3. Sia z=i,allora la quantità $\|z^2-\|z\|^2\|$ vale

A: $\sqrt{2}$ B: N.A. C: 1 D: N.E. E: 2

4. Il raggio di convergenza della serie

$$\sum_{n=1}^{+\infty} 2^{2^n} x^n$$

vale

A: 1/2 B: 1 C: $+\infty$ D: N.A. E: N.E.

5. Inf, min, sup e max dell'insieme

$$A = \{9^{\log(x)} : x \in]0,1[\},$$

valgono

A: $\{0,0,1,1\}$ B: $\{1,1,2,2\}$ C: $\{0,N.E.,1,N.E.\}$ D: N.A. E: $\{1/2,N.E.,\log(2),N.E.\}$

6. Il problema di Cauchy $\begin{cases} y'(x) = \log(x) \\ y(1) = 0 \end{cases}$ ha come soluzione

A: N.A. B: $y = e^x + \log(x) - e$ C: $y = x \log(x)$ D: N.E. E: $y = x \log(x) - x + 1$

7. L'integrale improprio

$$\int_{2}^{+\infty} \frac{1}{2^{x}} dx$$

vale

A: 1 B: $\frac{1}{4 \log(2)}$ C: 2^{-1} D: N.A. E: N.E.

8. Data $f(x) = (x^3)^{(x^2)}$ allore f'(1) vale

A: $\sqrt[3]{2}$ B: 3 C: 2 D: N.A. E: N.E.

9. Il limite

$$\lim_{n \to +\infty} \sqrt[n]{n(\pi + \sin(n))}$$

vale

A: N.A. B: $+\infty$ C: 1/2 D: N.E. E: 0

10. Per quali valori di $(a,b) \in \mathbb{R}^2$ la funzione $f(x) = \begin{cases} x^x - a & x > 0 \\ b + x & x \leq 0 \end{cases}$ risulta continua

A: N.E. B: (a, 1-a) C: N.A. D: a > 0, (a, a^a) E: a = 0, b < 0

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, manuali, solo il foglio A4 di appunti.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

10 gennaio 2023

(Cognome)												_		•	(No	me)	•		•	(N	ume	ro d	ma	trico	ola)	

1	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2	0	\bigcirc	\bigcirc	0	\bigcirc	
3	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
7	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
8	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
9	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
10						

1. Sia z=i,allora la quantità $\|z^2-\|z\|^2\|$ vale

A: N.A. B: 1 C: $\sqrt{2}$ D: 2 E: N.E.

2. Inf, min, sup e max dell'insieme

$$A = \{9^{\log(x)} : x \in]0,1[\},$$

valgono

 $\text{A:} \ \{1/2, N.E., \log(2), N.E.\} \quad \text{B:} \ \{0, N.E., 1, N.E.\} \quad \text{C:} \ \text{N.A.} \quad \text{D:} \ \{1, 1, 2, 2\} \quad \text{E:} \ \{0, 0, 1, 1\}$

3. Il problema di Cauchy $\begin{cases} y'(x) = \log(x) \\ y(1) = 0 \end{cases}$ ha come soluzione

A: N.E. B: $y = x \log(x) - x + 1$ C: $y = x \log(x)$ D: N.A. E: $y = e^x + \log(x) - e$

- 4. Data $f(x) = \log(1 + 2x)$ allore $f^{(3)}(0)$ vale A: 16 B: -1 C: 0 D: 1 E: N.E.
- 5. Il raggio di convergenza della serie

$$\sum_{n=1}^{+\infty} 2^{2^n} x^n$$

vale

A: $+\infty$ B: 1/2 C: 1 D: N.A. E: N.E.

6. Data $f(x) = (x^3)^{(x^2)}$ allore f'(1) vale

A: $\sqrt[3]{2}$ B: N.A. C: N.E. D: 2 E: 3

7. L'integrale

$$\int_0^{\pi/2} \cos(4^6 x) \, dx$$

vale

A: N.A. B: 0 C: π D: 1 E: -1

8. L'integrale improprio

$$\int_{2}^{+\infty} \frac{1}{2^{x}} dx$$

vale

A: N.E. B: 1 C:
$$\frac{1}{4 \log(2)}$$
 D: N.A. E: 2^{-1}

9. Il limite

$$\lim_{n \to +\infty} \sqrt[n]{n(\pi + \sin(n))}$$

vale

A: 1/2 B: N.E. C: N.A. D: $+\infty$ E: 0

10. Per quali valori di $(a,b) \in \mathbb{R}^2$ la funzione $f(x) = \begin{cases} x^x - a & x > 0 \\ b + x & x \leq 0 \end{cases}$ risulta continua

A: N.A. B: N.E. C: (a, 1-a) D: a = 0, b < 0 E: $a > 0, (a, a^a)$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, manuali, solo il foglio A4 di appunti.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

10 gennaio 2023

																				L				
(Cognome)														(No	me)				ume		trice	ola)		

1	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2	0	\bigcirc	\bigcirc	0	\bigcirc	
3	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
7	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
8	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
9	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
10						

1. L'integrale improprio

$$\int_{2}^{+\infty} \frac{1}{2^{x}} dx$$

vale

A: N.E. B:
$$\frac{1}{4\log(2)}$$
 C: 2^{-1} D: N.A. E: 1

2. Inf, min, sup e max dell'insieme

$$A = \{9^{\log(x)} : x \in]0,1[\},$$

valgono

A: N.A. B:
$$\{0, N.E., 1, N.E.\}$$
 C: $\{1/2, N.E., \log(2), N.E.\}$ D: $\{1, 1, 2, 2\}$ E: $\{0, 0, 1, 1\}$

3. Per quali valori di $(a,b) \in \mathbb{R}^2$ la funzione $f(x) = \begin{cases} x^x - a & x > 0 \\ b + x & x \leq 0 \end{cases}$ risulta continua

A: N.A. B: N.E. C:
$$(a, 1-a)$$
 D: $a > 0$, (a, a^a) E: $a = 0$, $b < 0$

4. Il raggio di convergenza della serie

$$\sum_{n=1}^{+\infty} 2^{2^n} x^n$$

vale

A:
$$1/2$$
 B: $+\infty$ C: N.E. D: 1 E: N.A.

5. L'integrale

$$\int_0^{\pi/2} \cos(4^6 x) \, dx$$

vale

A:
$$\pi$$
 B: N.A. C: 0 D: -1 E: 1

6. Data $f(x) = (x^3)^{(x^2)}$ allore f'(1) vale

A: 2 B: N.A. C:
$$\sqrt[3]{2}$$
 D: 3 E: N.E.

7. Sia z = i, allora la quantità $||z^2 - ||z||^2||$ vale

A:
$$\sqrt{2}$$
 B: N.E. C: 2 D: 1 E: N.A.

8. Il problema di Cauchy $\begin{cases} y'(x) = \log(x) \\ y(1) = 0 \end{cases}$ ha come soluzione

A: N.A. B:
$$y = e^x + \log(x) - e$$
 C: N.E. D: $y = x \log(x)$ E: $y = x \log(x) - x + 1$

9. Data $f(x) = \log(1 + 2x)$ allore $f^{(3)}(0)$ vale

10. Il limite

$$\lim_{n \to +\infty} \sqrt[n]{n(\pi + \sin(n))}$$

vale

A: N.E. B: 0 C: N.A. D:
$$+\infty$$
 E: $1/2$

10 gennaio 2023

																				L				
(Cognome)														(No	me)				ume		trice	ola)		

1	0	\bigcirc	•	\bigcirc	\bigcirc	
2	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
3	0	\bigcirc	\bigcirc	\bigcirc		
4	0	\bigcirc	\bigcirc	•	\bigcirc	
5	0	\bigcirc	•	\bigcirc	\bigcirc	
6	0	\bigcirc	\bigcirc	\bigcirc	•	
7	0	•	0	0	\bigcirc	_
8	0	•	\bigcirc	0	\bigcirc	
9	•	0	0	0	\bigcirc	
10	0		\bigcirc	\bigcirc	\bigcirc	

10 gennaio 2023

(Cognome)	(Nome)	(Numero di matricola)

0	\bigcirc	\bigcirc	•	\bigcirc	
0	•	\bigcirc	\bigcirc	\bigcirc	
0	•	\bigcirc	\bigcirc	\bigcirc	
•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
0	\bigcirc	\bigcirc	•	\bigcirc	
0	\bigcirc	\bigcirc	\bigcirc	•	
0	•	\bigcirc	\bigcirc	\bigcirc	
0	\bigcirc		\bigcirc	\bigcirc	
0	0	•	0	\bigcirc	
0	\bigcirc		\bigcirc	\bigcirc	

10 gennaio 2023

																				L				
(Cognome)														(No	me)				ume		trice	ola)		

1	0	•	0	\bigcirc	0	
2	0	•	\bigcirc	\bigcirc	\bigcirc	
3	0	\bigcirc	•	\bigcirc	\bigcirc	
4	0	\bigcirc	\bigcirc	\bigcirc	•	
5	0	\bigcirc	•	\bigcirc	\bigcirc	
6	0	\bigcirc	\bigcirc		\bigcirc	
7	0	\bigcirc	•	\bigcirc	\bigcirc	
8	0	\bigcirc	\bigcirc	\bigcirc	•	
9	0	\bigcirc	•	\bigcirc	\bigcirc	
10						

10 gennaio 2023

PARTE B

1 Studiare la funzione

$$f(x) = \frac{1}{\sin^2(x)} - \frac{2}{\sin(x)} + 1$$
 $x \in]0, 2\pi[\setminus \{\pi\},$

determinando, in particolare, eventuali massimi e minimi locali e assoluti.

Soluzione. Osserviamo che la funzione si può scrivere come

$$f(x) = \frac{(\sin(x) - 1)^2}{\sin^2(x)}$$

e che quindi risulta non-negativa. Inoltre f(x)=0 per $x=\pi/2$ e quindi 0 è il minimo assoluto.

Inoltre dato che il denominatore si annulla per $x=0,\pi,2\pi$ e in tali punti il numeratore vale 1, si ha

$$\lim_{x \to 0^+} f(x) = \lim_{x \to \pi} f(x) = \lim_{x \to 2\pi^-} f(x) = +\infty,$$

e quindi non esiste massimo assoluto perchà la funzione non è limitata superiormente.

Calcolando la derivata si ha

$$f'(x) = 2\frac{\cos(x)(\sin(x) - 1)}{\sin^3(x)},$$

e dato che $\sin(x) - 1 \le 0$ e si annulla solo per $x = \pi/2$ si ha, studiando i segni

$$f'(x) < 0$$
 per $[0, \pi/2] \cup [\pi, 3\pi/2]$

$$f'(x) > 0$$
 per] $\pi/2, \pi[\cup]3\pi/2, \pi[$

dato che si ha uno zero (con cambio di segno da negativa a positiva) della derivata per $x = \pi/2, 3\pi/2$, ne segue che si hanno due punti di minimo locale e non ci sono quindi punti di massimo locale. Dato che

$$f(\pi/2) = 0$$
 $f(3\pi/2) = 4$

si ha che il minimo assoluto vale 0, mentre $3\pi/2$ è punto di minimo locale.

2 Calcolare

$$I_n = \int_0^1 x^n \log(x) \, dx,$$

e studiare $\lim_{n\to+\infty} I_n$.

Soluzione. La funzione $x^n \log(x)$ è definita per x > 0 e per ogni $n \in \mathbb{N}$ si ha $\lim_{x \to 0^+} x^n \log(x)$. Per calcolare l'integrale in questione integriamo per parti, ma notando che $\log(x)$ non è definito in x = 0 scriviamo

$$I_n = \lim_{\epsilon \to 0^+} \int_{\epsilon}^{1} x^n \log(x) \, dx.$$

Ora integrando per parti

$$\int_{\epsilon}^{1} x^{n} \log(x) \, dx = \frac{x^{n+1}}{n+1} \log(x) \Big|_{\epsilon}^{1} - \int_{\epsilon}^{1} \frac{x^{n+1}}{n+1} \frac{1}{x} \, dx = \frac{x^{n+1}}{n+1} \log(x) - \frac{x^{n+1}}{(n+1)^{2}} \Big|_{\epsilon}^{1}$$

e passando al limite per $\epsilon \to 0$ l'integrale converge e

$$I_n = \int_0^1 x^n \log(x) dx = -\frac{1}{(n+1)^2},$$

da cui $\lim_{n} I_n = 0$.

3 Risolvere il problema di Cauchy

$$\begin{cases} y''(x) - 2y'(x) + y(x) = e^x, \\ y(0) = 0, \\ y'(0) = 0. \end{cases}$$

Soluzione. Risolvendo l'omogenea associata si ha che equazione caratteristica ha come soluzione $\lambda=1$ con molteplicità 2, e quindi le soluzioni dell'omogenea sono

$$c_1 e^x + c_2 x e^x$$
 $c_1, c_2 \in \mathbb{R}$,

Siamo nel caso con risonanza e quindi la soluzione particolare non va cercata della forma $y_f(x) = ae^x$, ma della forma

$$y_f(x) = ax^2 e^x$$
,

vista la molteplicità 2 della radice $\lambda = 1$. Sostituendo troviamo quindi

$$y_f''(x) - 2y_f'(x) + y_f(x) = 2ae^x,$$

da cui a = 1/2 e l'integrale generale vale

$$c_1 e^x + c_2 x e^x + \frac{1}{2} x^2 e^x.$$

Imponendo le condizioni iniziali si ottiene

$$y(0) = c_1 = 0$$
 $y'(0) = c_1 + c_2 = 0$,

da cui $c_1 = c_2 = 0$ e la soluzuine risulta $y(x) = \frac{1}{2}x^2e^x$.

4 Studiare al variare di $\alpha, \beta \in \mathbb{R} \setminus \{0\}$ i limiti

$$\lim_{x \to 0^+} (x^{\alpha})^{x^{\beta}} \qquad e \qquad \lim_{x \to 0^+} (x^{\alpha})^{\sin(x^{\beta})}.$$

Soluzione.

Usando le proprietè dell'esponenziale scriviamo

$$(x^{\alpha})^{x^{\beta}} = e^{\alpha x^{\beta} \log(x)}$$

e quindi per ogni $\beta > 0$ si ha $x^{\beta} \log(x) \to 0$ indipendentemente dal valore di $\alpha \neq 0$. Il limite pertanto risulta uguale a $e^0 = 1$.

Per $\beta < 0$ si ha $x^{\beta} \to +\infty$ e quindi $x^{\beta} \log(x) \to -\infty$ pertanto $\alpha x^{\beta} \log(x) \to -\infty$ per $\alpha > 0$ e $\alpha x^{\beta} \log(x) \to +\infty$ per $\alpha < 0$. Quindi

$$\lim_{x \to 0^+} (x^{\alpha})^{x^{\beta}} = \begin{cases} +\infty & \text{per } \beta < 0, \ \alpha < 0 \\ 0 & \text{per } \beta < 0, \ \alpha > 0 \end{cases}$$

Il secondo limite si comporta come il primo per $\beta > 0$ dato che $\sin(x^{\beta}) = O(x^{\beta})$ per $x \to 0$ e

$$(x^{\alpha})^{\sin(x^{\beta})} = e^{\alpha \sin(x^{\beta}) \log(x)} \sim e^{\alpha x^{\beta} \log(x)}.$$

Nel caso $\beta < 0$ invece si ha che

$$\lim_{x \to 0^+} \sin(x^\beta) = N.E.,$$

e inoltre il $\sin(x^\beta)$ oscilla tra-1e+1infinite volte in ogni intorno destro di x=0. Pertanto la quantità

$$\alpha \sin(x^{\beta}) \log(x)$$

non ha limite per $x \to 0^+$ dato che oscilla tra $-\infty$ e $+\infty$. La quantità $(x^{\alpha})^{\sin(x^{\beta})}$ oscilla tra 0 e $+\infty$ in ogni intorno destro dello zero e quindi il limite non esiste.