III B. Tech II Semester Supplementary Examinations, November -2018 **HEAT TRANSFER**

(Mechanical Engineering)

Time: 3 hours Max. Marks: 70

		2. Answering the question in Part-A is compulsory 3. Answer any THREE Questions from Part-B *****	
		PART –A	
1	a)	State the Newton's law of cooling.	[3M]
	b)	Under what conditions can a plane wall be treated as a semi-infinite medium?	[4M]
	c)	How is Reynolds analogy expressed? What is the value of it? What are its limitations?	[3M]
	d)	What is forced convection? How does it differ from natural convection? Is convection caused by winds forced or natural convection?	[4M]
	e)	Can the logarithmic mean temperature difference of a heat exchanger be a negative quantity? Explain	[4M]
	f)	State and explain Planck, Wien, Kirchoff laws.	[4M]
		<u>PART -B</u>	
2	a)	Distinguish between the basic laws of heat transfer with examples?	[4M]
	b)	An insulated pipe of 50 mm outside diameter (€=0.8) is laid in a room at 30°C. If the surface temperature is 250°C and the convective heat transfer coefficient is 10 W/m ² K. Calculate the heat loss per unit length of pipe.	[8M]
	c)	Consider an alloy of two metals whose thermal conductivities are k_1 and k_2 will the thermal conductivity of the alloy be less than k_1 , greater than k_2 , or between k_1 and k_2 . Explain.	[4M]
3	a)	Explain how biot number help in transient conduction problem.	[3M]
	b)	Derive expression for critical thickness of insulation for a cylinder.	[8M]
	c)	What are heisleir charts? Under what conditions heislier charts are used in heat transfer problems.	[5M]
4	a)	Discuss the formation of velocity boundary layer for flow of fluid through a circular cross section pipe.	[8M]
	b)	Air at 1atm and 30°C is forced through a horizontal 30mm diameter 0.5m Long at an average velocity of 0.25m/s. The tube wall is maintained at 137°C. Calculate i) the heat transfer coefficient and ii) percentage error if the calculation is made strictly on the basis of laminar forced convention.	[8M]
5	a) b)	Derive NTU of parallel flow and counter flow heat exchangers. A flow of 0.1kg/s of exhaust gases at 70^{0} K from a gas turbine is used to preheat the incoming air, which is at the ambient temperature of 30^{0} K. It is desired to cool the exhaust to 40^{0} K and it is estimated that an overall heat coefficient of 30 W/m ² K can be achieved in an appropriate exchanger. Determine the area required for a counter flow heat exchanger. Take the specific heat of exhaust gasses the same as for air, Which is 1000 J/kg.K.	[8M] [8M]
		1 of 2	

- 6 a) Distinguish between filmwise and dropwise condensation. Which of the two gives a [8M] higher heat transfer coefficient? Why?
 - b) Determine the stable film boiling heat transfer coefficient for the film boiling of saturated water at atmospheric pressure on an electrically heated 1.6 mm diameter horizontal platinum wire with a temperature difference T_s T_{sat} = 225 °C. What would be power dissipation per unit length of the heater?
- 7 a) Distinguish between

[8M]

- i) A black body Vs gray body
- ii) Specular Vs diffuse surfaces
- iii) Absorptivity Vs emissivity of a surface
- iv) Total emissivity Vs equilibrium emissivity
- b) A pipe carrying steam having an outside diameter 20cm runs in a large room, and is exposed to air at a temperature of 30°C. The pipe surface temperature is 200°C. Find the heat loss per meter length of the pipe by convection and radiation taking the emissivity of the pipe surface as 0.8.

2 of 2