

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Facultad de Ingeniería Mecánica y Eléctrica PE Doctorado en Ingeniería de Sistemas

	PROGRAMA ANALÍTICO										
I. Datos de Identificación d	. Datos de Identificación de la Unidad de Aprendizaje:										
1. lave y nombre de la Unidad de	Aprendizaje: PD135 Complejidad computacional										
2. Frecuencia semanal: horas de t	2. Frecuencia semanal: horas de trabajo presencial 4										
3. Horas de trabajo extra aula por semana: 2											
4. Modalidad: ⊠ Escolarizada □ N	lo escolarizada □ Mixto										
5. Período académico: ⊠ Semestr	ral □ Tetramestral □ Modular										
6. LGAC: Sistemas estocásticos y s	simulación										
7. Ubicación semestral: 1–8											
8. Área curricular: formación, libre	e elección										
9. Créditos: 4											
10. Requisito: Ninguno											
11. Fecha de elaboración: 20/01	/2010										
12. Fecha de la última actualizac	ión: 10/06/2021										
13. Responsable(s) del diseño:	095012 Dr. José Arturo Berrones Santos 096633 Dra. Satu Elisa Schaeffer										

Revisión: 1 Página 1 de 8

II. Presentación:

La complejidad computacional que es el campo de la teoría de la computación que estudia teóricamente la complejidad inseparable a la resolución de un problema.

III. Propósito(s):

Introducir al estudiante con conceptos básicos de la complejidad computacional acorde de las necesidades que presenta su trabajo de tesis.

IV. Competencias del perfil de egreso:

14. Competencias del perfil de egreso

P1) Realizar investigación original y resolver problemas en el área de toma de decisiones en ambientes operativos que pueden ser dinámicos o inciertos para lograr una asignación más efectiva de recursos y decidir el curso de acción óptimo para lograr objetivos establecidos.

15. Competencias generales a que se vincula la Unidad de Aprendizaje:

Declaración de la competencia general vinculada a la unidad de aprendizaje	Evidencia
C2) Utiliza los lenguajes lógico, formal, matemático, icónico, verbal y no verbal de	Tareas
acuerdo a su etapa de vida en el área de las ciencias para comprender, interpretar	
y expresar ideas, sentimientos, teorías y corrientes de pensamiento con un enfoque	
ecuménico.	
C3) Maneja las tecnologías de la información de acuerdo a los usos del campo de las	Tareas
ciencias y la comunicación como herramientas para el acceso a la información y su	
transformación en conocimiento, así como para el aprendizaje y trabajo colaborativo	
con técnicas de vanguardia que le permitan su participación constructiva en la	
sociedad.	
C5) Emplea pensamiento lógico, crítico, creativo y propositivo, siguiendo los mo-	Tareas, proyecto
delos de pensamiento científico para analizar fenómenos naturales y sociales que le	
permitan tomar decisiones pertinentes en su ámbito de influencia con responsabi-	
lidad social.	_
C12) Construye propuestas innovadoras basadas en la comprensión holística de la	Tareas, proyecto
realidad incluyendo los diferentes campos científicos para contribuir a superar los	
retos del ambiente global interdependiente.	
C13) Asume el liderazgo que le ha otorgado el dominio de las ciencias, compro-	Tareas, proyecto
metido con las necesidades sociales y profesionales para promover el cambio social	
pertinente.	

Revisión: 1 Página 2 de 8

16. Competencias específicas y nivel de dominio a que se vincula la unidad de aprendizaje:

Competencia Espe- cífica	Nivel I Inicial	Evidencia	Nivel II Básico	Evidencia	Nivel III Autónomo	Evidencia	Nivel IV Estratégico	Evidencia
E1) Realizar investigación original y resolver problemas en el área de toma de decisiones en ambientes operativos que pueden ser dinámicos o inciertos para lograr una asignación más efectiva de recursos y decidir el curso de acción óptimo para lograr objetivos establecidos.			Resuelve problemas de libro de texto en el área de toma de decisiones con bases científicas.	Tareas.	Encuentra soluciones para la consecución de objetivos establecidos para un problema dado, revisando literatura científica de frontera.	Tareas, proyec- to.		

Revisión: 1 Vigente a partir del: 01 de agosto del 2016

Página 4 de 8

V Representación gráfica:

Competencias generales

VI. Estructuración en capítulos, etapas o fases de la unidad de aprendizaje:

17. Desarrollo de las fases de la Unidad de Aprendizaje:

Se cubren los principios teóricos de la complejidad computacional. Se busca desarrollar habilidades en la resolución en casos prácticos concretos. Se necesita contar con un buen entendimiento de varios los conceptos matemáticos, especialmente de matemáticas discretas y probabilidad, o en el caso contrario, estar preparado a estudiarlos según necesidad. También se necesita conocimiento de programación.

Unidades temáticas

UT1 Principios téoricos de la complejidad computacional (7 semanas)

UT2 Clases de complejidad (P, NP, PSPACE, etc.; 9 semanas)

UT3 Aproximabilidad (1 semana)

Temario semanal

La sesiones son de cuatro horas cada una y son veinte semanas en total. La primera semana es introductoria y las últimas dos semanas combinan elementos de las tres unidades temáticas en el contexto del proyecto integrador.

- 1. Introducción; selección de temas de proyecto (1 semana)
- 2. UT1: Problemas y algoritmos (2 semanas)
- 3. UT1: Lógica (2 semanas)
- 4. UT1: Máquinas Turing (3 semanas)
- 5. UT2: Clases de complejidad (9 semanas)
- 6. UT3: Esquemas de aproximación (1 semana)

Revisión: 1

Página 5 de 8

- 7. Presentaciones de proyectos (1 semana)
- 8. Revisión de portafolios de evidencia (1 semana)

Revisión: 1

Unidad temática 1: Principios téoricos de la complejidad computacional

Periodo: 7 semanas

Elementos de competencia:

Evidencias de	Criterios de desem-	Actividades de	Contenidos	Recursos
aprendizaje	peño	aprendizaje		
Siete (7) tareas se-	Calidad de la redac- ción científica de los reportes.	Lectura de material de apoyo; modifi- cación de ejemplos; análisis y reportaje de ejercicios realiza- dos.	Conceptos fundamentales de la complejidad computacional.	Material en la página web de la unidad y la literatura citada; paquete LATEX para redacción científica; repositorios de Git Hub.

Unidad temática 2: Clases de complejidad

Periodo: 9 semanas

Elementos de competencia:

Evidencias de	Criterios de desem-	Actividades de	Contenidos	Recursos
aprendizaje	peño	aprendizaje		
Nueve (9) ta- reas semanales consistiendo en reportes escritos de la demostración	Calidad de la redac- ción científica de los reportes; validez y claridad de las de- mostraciones.	Lectura de material de apoyo; modifi- cación de ejemplos; análisis y reportaje de ejercicios realiza-	Definiciones de las clases de compleji- dad computacional.	Material en la pági- na web de la uni- dad y la literatura ci- tada; paquete LATEX para redacción cien-
de complejidad computacional de problemas.		dos.		tífica; repositorios de GitHub.

Revisión: 1

Unidad temática 3: Aproximabilidad

Periodo: 1 semana

Elementos de competencia:

Evidencias de	Criterios de desem-	Actividades de	Contenidos	Recursos
aprendizaje	peño	aprendizaje		
Una tarea con- sistiendo en un reporte escrito de la demostración de	Calidad de la redac- ción científica del re- porte; validez y clari- dad de la demostra-	Lectura de material de apoyo; modifi- cación de ejemplos; análisis y reportaje	Conceptos teóricos de esquemas de aproximación.	Material en la pági- na web de la uni- dad y la literatura ci- tada; paquete LATEX
aproximabilidad de un problema.	ción.	de ejercicios realiza- dos.		para redacción cien- tífica; repositorios de GitHub.

VII. Evaluación integral de procesos y productos:

Las tareas son individuales; se recomienda estudiar juntos y discutir las soluciones, pero no se tolera ningún tipo de plagio en absoluto, ni de otros estudiantes ni de la red ni de libros — toda referencia bibliográfica tiene que ser apropiadamente citada. La entrega se realiza por un repositorio público que debe reflejar todas las fases del trabajo.

No habrá examen. Son 17 tareas (A1–A17) que reportan avances semanales de aplicación de la lectura de la semana para el proyecto del estudiante, otorgando por máximo 5 puntos por tarea:

NP = tarea omitida

5 =excede lo que se esperaba

4 = cumple con lo que se esperaba

3 = débil en alcance y/o calidad

2 = débil en ambos alcance y calidad

 $1 = \sin$ contribuciones o méritos aunque fue entregada

0 = completamente inadecuado en alzance y calidad

El proyecto final (A18) otorga un máximo de 15 puntos, evaluados en los siguientes rubros

- 1. Variedad de técnicas de empleadas
- 2. Cobertura y validez de la experimentación
- 3. Claridad y relevancia de los resultados
- 4. Calidad de visualización científica
- 5. Calidad de redacción científica

con la escala:

3 = cumple con lo que se esperaba

2 = débil en alcance y/o calidad

1 = débil en ambos alcance y calidad

 $\mathbf{0} = \mathsf{inadecuado} \; \mathsf{en} \; \mathsf{alzance} \; \mathsf{y} \; \mathsf{calidad}$

Revisión: 1 Vigente a partir del: 01 de agosto del 2016

Página 7 de 8

Ponderación específica

Actividad	A1	A2	А3	A4	A5	A 6	A7	A8	A9	A10	A11	A12	A13	A14	A15	A16	A17	A18	Total
Ponderación	5%	5 %	5 %	5 %	5 %	5 %	5 %	5 %	5 %	5 %	5 %	5 %	5 %	5 %	5 %	5 %	5 %	15 %	100 %

VIII. Producto integrador de aprendizaje de la unidad:

18. Producto integrador de Aprendizaje:

Portafolio en un repositorio digital público que contiene los reportes escritos y los códigos de la implementación de todas las tareas y el proyecto integrador.

IX. Fuentes de apoyo y consulta:

19. Fuentes de apoyo y consulta

Básicas

- C.H. PAPADIMITRIOU: Computational complexity. John Wiley and Sons Ltd., 2003.
- S. Arora & B. Boaz: Computational complexity: a modern approach. Cambridge University Press, 2009.
- M.R. GAREY & D.S. JOHNSON: Computers and intractability. Vol. 29. New York: Freeman, 2002.

Complementarias Artículos científicos especializados relacionados a los temas tratados, de preferencia publicados en revistas internacionales indizados recientes.

Revisión: 1 Página 8 de 8