PEC2. Análisis de datos Ómicos.

Mª de la Vega Rodrigálvarez Chamarro

22 de diciembre, 2024

Abstract

Description of your vignette

Contents

1	Res	umen	ejecutivo	1
2	Inti	roducc	ión y Objetivos	2
3	Mé	todos		2
4	Res	ultado	os .	2
5	Dis	cusión		9
6	Ref	erenci	as	9
7	Ape	éndice	5	17
	7.1	Apend	dice A. Tablas de genes mas significativos por contraste	17
		7.1.1	Linezolid. Genes diferencialmente expresados Infectado y No Infectado	17
		7.1.2	Sin Tratamiento. Genes diferencialmente expresados Infectado y No Infectado	20
		7.1.3	Vancomicina. Genes diferencialmente expresados Infectado y No Infectado	25
	7.2	Apend	lice B. Tablas de genes anotados	29
		7.2.1	Genes significativos anotados para el estudio con Linezolid	29
		7.2.2	Genes significativos anotados para el estudio sin tratamiento	29
		7.2.3	Genes significativos anotados para el estudio con Vancomizina	29
		7.2.4	Genes significativos anotados comunes a los tres estudios	29
	7.3	Apéno	lice C. Código	29

1 Resumen ejecutivo

(breve resumen sobre el proceso y los principales resultados. No debe exceder de una página)

2 Introducción y Objetivos

(Debe de quedar bien claro cuáles son los objetivos de vuestro trabajo. Breves, media página a lo sumo)

3 Métodos

(Con qué y cómo habéis trabajado. Variará según el caso, pero habitualmente contendrá: Origen (fuente) y naturaleza (tipo) de los datos; herramientas informáticas y bioinformáticas utilizadas. procedimiento general de análisis; métodos utilizados; Una o dos páginas como mucho)

Para el presente estudio se utilizan los datos en crudo descargados desde el sitio de GEO https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE38531. Estos datos fueron utilizados por la Universidad de Duke, cuyo investigador principal es Sun Hee Ahn, para determinar la expresión génica de los ratones infectados por *Staphylococcus aureu* una vez que han sido tratados con *linezolid* y *vancomycin*. En el presente estudio se realiza un filtrado de los datos donde se cuenta con los siguientes grupos:

- 24 ratones no infectados los cuales 4 de ellos no an recibido ningún tratamiento, 4 de ellos han sido inyectados con *linezolid* y cuatro de ellos han sido inoculados con *vancomycin*.
- 24 ratones infectados con el virus *Staphylococcus aurea* y, al igual en el grupo anterior, a las 24 h, 4 de ellos fuero inoculados con *linezolid*, cualtro de ellos con *vancomycin* y 4 de ellos no recibieron ningún tipo de tratamiento.

Para cada individuo se ha tomado un total de 1004004 muestras con el objeto de analizar la expresión génica de los diferentes individuos ante las diferentes condiciones generadas. Antes de proceder con la comparación de la expresión génica de los diferentes grupos, se realiza un análisis exploratorio de los mismos para verificar su calidad. Una vez se han verificado los diferentes datos y se han hecho las transformaciones necesarias, se procede con el analisis de la expresión génica.

TODO Detallar mejor los análisis de datos en los diferentes pasos que se an realizado

4 Resultados

(Los resultados deben responder las preguntas planteadas. Si la pregunta es ambigua ("Exploración de los datos") o admite distintas interpretaciones podéis ser flexibles, pero explicad siempre porque hacéis lo que hacéis, y, ante la duda, referiros a los materiales y ejemplos de referencia. La mejor herramienta para redactar el informe es Rmarkdown o Quarto 1 que permiten generar documentos que integran, explicaciones, análisis y resultados y os prepara para el trabajo profesional en bioinformática. Es importante que vuestro informe no sea un volcado de código y salidas de R sin explicaciones, debe de ser un texto legible y fácil de seguir. Obviamente, esto no es una regla estricta. Si, en ocasiones, (de tablas o gráficos que formen parte de la explicación, por el contexto tiene sentido que se vean algunas instrucciones de R, adelante con ellas. pero no deben impedir leer el documento. Extension habitual 5-10 páginas)

Análisis exploratorio y control de calidad

Antes de realizar el análisis de los datos, se procede a realizar un estudio exploratorio de los datos y un control de calidad de los mismos para ver si existe alguna anormalidad en los datos o si es necesario alguna transformación de los mismos.

En el diagrama de cajas que se muestra en la Figura 1, que muestra la distribución de las intensidades en crudo tomadas en las diferentes muestras, se puede observar que no existe ningún dato que difiera en gran medida de los otros. Se puede ver que, independientemente del grupo al que pertenecen los valores, el rango de valores en el que se mueven es muy similar y el valor medio es muy similar entre ellos. Existe una ligera

Distribución intensidad datos en crudo

Figure 1: Intensidad distribución muestras

diferencia en una de las muestras infectadas con el virus que no ha recibido tratamiento, pero esa diferencia se puede considerar despreciable.

En la 2, se ha realizado un agrupamiento de los datos donde se pueden observar 3 grupos distribuidos de las siguiente manera:

- Un primer grupo que contiene 2 muestras GSM944840 y GSM944856 las cuales una ha sido infectado por el virus y otra más. Se puede observar en el diagrama de cajas, el rango de valores de las intensidades es menor y también la mediana.
- Existe un segundo grupo, mucho más extenso, que contiene 11 muestras y que está formado por todas aquellas muestras que no han sido infectadas por el virus.
- Y por último, un tercer grupo que contiene todas aquellas muestras que sí que han sido infectadas con el virus.

Como se puede observar, excepto 2 muestras que han sido clasificadas de forma independiente, se han creado dos grupos uno que contiene todas aquellas muestras que han sido infectadas y otro grupo con aquellas que no lo han sido.

Finalmente, se procede a realizar un análisis de componentes (PCA) con el objeto de reducir la dimensionalidad de la muestra y observar como se agrupan y explican las diferentes muestras.

Una vez realizado el análisis de componentes principales, se puede ver que con las 2 primeras componentes se puede llegar a explicar casi un 55% de la variabilidad. Además, en la 3 se puede ver que hay una clara diferencia entre aquellos grupos que fueron infectado y cuales no. Si se tratase una linea diagonal imaginaria se vería que los grupos infectados quedarían en la parte superior izquierda y los no infectados en la parte inferior derecha.

Para un análisis de calidad de los datos se ha ejecutado el paquete de R arrayQualityMetrics, el cuál ha sido ejecutado y cuyos resultados se pueden ver en el Anexo I. CAlidad de los datos que se adjunta al presente informe y donde se pueden ver unos resultados similares.

Antes de continuar con el análisis y el estudio de los datos se procederá a la normalización de los datos y que todos los valores se encuentren en el mismo rango de valores utilizando el método de RMA.

Clustering jerarquizado datos en crudo

dist(t(exprs(rawData)))
 hclust (*, "average")

Figure 2: Clusterización

Plot of first 2 PCs for expressions in raw data

Figure 3: Análisis PCA

- ## Background correcting
- ## Normalizing
- ## Calculating Expression

Como resultado de la normalización, se ha obtenido un *ExpressionSet* formado por 45101 columnas y 24 columnas, una por cada muestra.

Filtrado de los datos

Una vez que los datos han sido normalizados, se procede a realizar una selección de genes para facilitar el estudio. Se va a proceder a eliminar aquellos genes los cuales tienen poca variabilidad ya que, al variar poco entre los grupos es probable que no sean candidatos para encontrar diferencias con el objeto de poder identificar que genes tienen una mayor representación biológica.

En este estudio se procederá a seleccionar el 10% de las sondas que presentan una mayor variabilidad.

Para poder realizar el filtrado de los datos, hay que indicar la anotación del ExpressionSet. Tal y como índica en el estudio del que los datos han sido obtenidos, la plataforma utilizada ha sido "Affymetrix Affymetrix Mouse430_2 Array annotation data (chip mouse4302) assembled using data from public repositories"Affymetrix Mouse Genome 430 2.0 Array" por lo que la librería de anotación a usar de BioConductor ha sido "mouse4302.db".

El punto de corte del filtrado se ha fijado en 0.9 con el objeto de tener el 10%, en base a cuartiles, de las sondas con más variabilidad e independientemente de que tengan anotación *Entrez* o no, hace que haya un total de 2048 genes más representativos con los que llevar a cabo el análisis de expresión génica. Se han eliminado 24561 elementos duplicados, 18428 elementos de baja variabilidad y 64 features excluidas.

Una vez filtrados los datos, se obtendrá una matriz filtrada para proceder con la selección de genes.

Construcción de la matriz de diseño y contrastes

Para construir la matriz de diseño, hace falta información acerca de los factores experimentales o los grupos del estudio.

En este conjunto de muestras, tras la selección de las mismas, existen 12 ratones que han sido infectados con el virus *Staphylococcus aureas* Y 12 ratones no infectados y considerados de control. Dentro de cada grupo, 4 ratones no han sido tratados con ningún medicamento, 4 ratones han sido tratados con linezolid y 4 con vancomycin, por lo que existen dos factores. Los seis grupos que existen son:

- Grupo 1. Infectado y tratado con Linezolid (INF.LIN)
- Grupo 2. No infectado y tratado con Linezolid (NOINF.LIN)
- Grupo 3. Infectado y sin ningún tratamiento. (INF.NOTTREAT)
- Grupo 4. No infectado y sin ningún tratamiento. (NOINF.NOTTREAT)
- Grupo 5. Infectado y tratado con Vancomycin. (INF.VAN)
- Grupo 6. No infectado y tratado con vancomycin. (NOINF.VAN)

Una vez definidos los grupos se proceder a construir la matriz de diseño que quedará de la siguiente forma:

Table 1: Matriz de diseño

		NOINF	INF	NOINF	INF	NOINF
	INF LIN	LIN	NOTTREAT	NOTTREAT	VAN	VAN
INF.LIN	1	0	0	0	0	0
INF.LIN	1	0	0	0	0	0
INF.LIN	1	0	0	0	0	0
INF.LIN	1	0	0	0	0	0
NOINF.LIN	0	1	0	0	0	0

		NOINF	INF	NOINF	INF	NOINF
	INF LIN	LIN	NOTTREAT	NOTTREAT	VAN	VAN
NOINF.LIN	0	1	0	0	0	0
NOINF.LIN	0	1	0	0	0	0
NOINF.LIN	0	1	0	0	0	0
INF.NOTTREAT	0	0	1	0	0	0
INF.NOTTREAT	0	0	1	0	0	0
INF.NOTTREAT	0	0	1	0	0	0
INF.NOTTREAT	0	0	1	0	0	0
NOINF.NOTTREA	Γ 0	0	0	1	0	0
NOINF.NOTTREA	Γ 0	0	0	1	0	0
NOINF.NOTTREA	Γ 0	0	0	1	0	0
NOINF.NOTTREA	Γ 0	0	0	1	0	0
INF.VAN	0	0	0	0	1	0
INF.VAN	0	0	0	0	1	0
INF.VAN	0	0	0	0	1	0
INF.VAN	0	0	0	0	1	0
NOINF.VAN	0	0	0	0	0	1
NOINF.VAN	0	0	0	0	0	1
NOINF.VAN	0	0	0	0	0	1
NOINF.VAN	0	0	0	0	0	1

El objetivo del estudio es comparar las diferencias en las expresiones génicas de los ratones infectados y de los no infectados dentro del grupo del tratamiento en el que se encuentran. Para ello, se construirá la matriz de contrastes de la siguiente manera:

- INF.LIN vs NOINF.LIN
- INF.NOTTREAT vs NOINF.NOTTREAT
- INF.VAN vs NOINF.VAN

Las filas de la matriz de contrastes representan las comparaciones que se van a realizar, en este caso se tendrían 6 filas que serían los diferentes grupos existentes y 3 columnas, una por cada una de las comparaciones.

Table 2: Matriz de contraste

	LIN_INF_NOINF	NOTTREAT_INF_NOINF	VAN_INF_NOINF
INF.LIN	1	0	0
NOINF.LIN	-1	0	0
INF.NOTTREAT	0	1	0
NOINF.NOTTREAT	0	-1	0
INF.VAN	0	0	1
NOINF.VAN	0	0	-1

Obtención de las listas de genes diferencialmente expresados para cada comparación

Una vez definida la matriz de diseño y los contrastes, se procede a estimar el modelo y los contrastes, así como las pruebas de significación que ayudarán a decidir, para cada gen y para cada comparación, si pueden considerarse de expresión diferencial. Para ello se ha usado el paquete limma.

Una vez que se ha calculado el modelo, se obtiene para cada uno de los contrastes los genes más significativos. El punto de corte se establece con el p-valor, seleccionando únicamente aquella de lista de genes cuyo p-valor es menor de 0.05 y el mínimo cambio de pliegues es igual a 2.

Para aquellos ratones que han sido tratados con Linezolid se han identificado 188 genes. En la siguiente tabla se muestra una representación de los genes más significativos.

Table 3: Genes diferencialmente expresados LINEZOLID

	$\log FC$	AveExpr	t	P Value	adj P Val	В
1421262_at	6.157126	7.175233	16.81011	0	0	21.47320
1427747 _a_at	4.952167	10.693149	14.02125	0	0	18.09290
1419681_a_at	4.798082	7.386037	13.26956	0	0	17.07058
1440865_at	3.362591	11.173847	12.92250	0	0	16.58065
1422953 _at	2.840405	11.192299	12.31129	0	0	15.68883
1448562_at	4.413814	7.599334	12.03517	0	0	15.27333

Además, como se puede ver en el mapa de calor, se puede ver que hay una clara diferencia entre el grupo de infectados (rojo, azul, verde) y los no infectados (rosa, azul claro, verde claro).

Figure 4: Mapa de calor. Linezolid Infectados vs No Infectados

Para aquellos ratones que no han sido tratados, se ha identificado un total de 236, 6 genes diferencialmente expresados.

Table 4: Genes diferencialmente expresados No Tratados

	\log FC	AveExpr	t	P Value	adj P Val	В
1421262_at	7.202325	7.175233	19.66370	0	0	24.64100
1427747_a_at	6.237323	10.693149	17.65996	0	0	22.57310
1422953 _at	3.851164	11.192299	16.69227	0	0	21.48698
1440865_{at}	4.077956	11.173847	15.67166	0	0	20.27224
1418722_at	6.033845	10.981607	15.32034	0	0	19.83648
1429387_at	-2.125765	6.421327	-14.74724	0	0	19.10509

En el mapa de calor, también se puede ver una clara diferencia entre aquellos que están infectados y no están infectados.

Figure 5: Mapa de calor. No tratados. Infectados vs No Infectados

Para aquellos ratones que han sido tratados con Vancomycin, se ha identificado un total de 139, 6 genes diferencialmente expresados.

 ${\it Table 5: Genes \ differencialmente \ expresados. \ Vancomycina.}$

	$\log FC$	AveExpr	t	P Value	adj P Val	В
1421262_at	6.636277	7.175233	18.11828	0	0	22.94343
1427747_a_at	5.162365	10.693149	14.61639	0	0	18.89884
1419681_a_a	5.211970	7.386037	14.41420	0	0	18.63698
1440865 _at	3.638019	11.173847	13.98098	0	0	18.06410
1418722 _at	5.213168	10.981607	13.23659	0	0	17.04063
1436419_a_a	-2.327081	8.574273	-12.36159	0	0	15.77012

En el mapa de calor, también se puede ver una clara diferencia entre aquellos que están infectados y no están infectados.

Las tablas completas de genes expresados diferencialmente se pueden ver de forma completa en el $\bf Apendice$ $\bf A$.

A continuación, se puede ver una tabla con el número de genes que tienen una alta significancia, aquellos que no tienen significancia y los que tienen una baa significancia por estudio realizado.

Table 6: Número de Genes diferencialmente expresados

	Linezolid	Sin Tratamiento	Vancomicina
:Alta Significancia (UP)	:150:	:146:	:61:
:Sin Significancia	:1860:	:1812:	:1909:

	Linezolid	Sin Tratamiento	Vancomicina
:Baja Significancia (DOWN)	:38:	:90:	:78:

Finalmente, se procede a comparar la lista de genes expresados diferencialmente más significativos de los tres contrastes realizados a través de un diagrama de VENN donde se puede observar que de todos los genes diferencialmente expresados, son relevantes en los 3 grupos.

Anotación de los genes*

Se han obtenido las listas de los genes más significativos en los diferentes estudios de contrastes. En todas las tablas, los genes se encuentran anotados con el identificador del proveedor del análisis, que en este ocasión se ha realizado con el chip de Affymetrix mouse 4302. Se anotan los genes con bases de datos publicas tales como "Symbol", "EntrezID" o "EnsemblID" para poder realizar los estudios de relevancia biológica.

A continuación, se muestra un listado de los 10 primeros genes más relevantes expresados significativamente para cada uno de los estudios. En el **Apéndice B** se puede ver la lista completa de genes.

En la siguiente lista se ven los genes representados significativamente que son comunes a los tres estudios.

Análisis de la significación biológica

Una vez que los genes han sido anotados, se realiza el estudio de significación biológica. Para ello se consulta en la base de datos *Gene Ontology* (GO) con el objeto de realizar diferentes análisis estadísticos para identificar que anotaciones tienen una frecuencia sorprendentemente más alta.

Por cada estudio de contraste realizado se va a mostrar un gráfico de barras donde se mostrará los *pathways* más enriquecidos en cada estudio de contraste y una red de genes relacionando los genes con los pathwais más enriquecidos.

Significación biológica - Infectados y no Infectados para LINEZOLID

Significación biológica - Infectados y no Infectados para SIN TRATAMIENTO

Significación biológica - Infectados y no Infectados para VANCOMICINA

Significación biológica - Genes comunes en los tres estudios

5 Discusión

(Incluso si el estudio no es original, puede tener sentido que reflexionéis sobre las limitaciones del estudio y que proporcionéis vuestras conclusiones, más sobre lo que habéis hecho que sobre el problema biológico que acompaña vuestra PEC.; no más de una página.)

6 Referencias

Figure 6: Mapa de calor. No tratados. Infectados vs No Infectados

Figure 7: Diagrama de Venn. Genes comunes

Figure 8: Gráficas significancia biológica LINEZOLID

Figure 9: Gráficas significancia biológica LINEZOLID

Figure 10: Red de genes expresados diferencialmente LINEZOLID

Figure 11: Gráficas significancia biológica SIN TRATAMIENTO

Figure 12: Gráficas significancia biológica SIN TRATAMIENTO

Figure 13: Red de genes expresados diferencialmente SIN TRATAMIENTO

Figure 14: Gráficas significancia biológica VANCOMIZINA

Figure 15: Gráficas significancia biológica VANCOMIZINA

Figure 16: Red de genes expresados diferencialmente VANCOMIZINA

Figure 17: Gráficas significancia biológica GENES COMUNES

Figure 18: Gráficas significancia biológica GENES COMUNES

Figure 19: Red de genes expresados diferencialmente GENES COMUNES

7 Apéndices

7.1 Apendice A. Tablas de genes mas significativos por contraste

7.1.1 Linezolid. Genes diferencialmente expresados Infectado y No Infectado

Table 7: Genes diferencialmente expresados LINEZOLID

	$\log FC$	AveExpr	t	P Value	adj P Val	В	PROBEID
1421262_at	6.157126	7.175233	16.810108	0.0000000	0.0000000	21.4731987	1421262_at
1427747_a_at	4.952167	10.693149	14.021250	0.0000000	0.0000000	18.0928961	1427747_a_at
1419681_a_at	4.798082	7.386037	13.269558	0.0000000	0.0000000	17.0705750	1419681_a_at
1440865_at	3.362591	11.173847	12.922501	0.0000000	0.0000000	16.5806509	1440865_{at}
1422953_at	2.840405	11.192299	12.311293	0.0000000	0.0000000	15.6888281	1422953 _at
1448562 _at	4.413814	7.599334	12.035169	0.0000000	0.0000000	15.2733289	1448562 _at
1436419_a_at	-2.207412	8.574273	-11.725902	0.0000000	0.0000000	14.7982997	1436419_a_at
1427102_at	3.709836	10.546141	11.459946	0.0000000	0.0000000	14.3814229	1427102_at
1417290_at	3.954315	10.034197	11.298972	0.0000000	0.0000000	14.1252584	1417290_at
1457728_at	-2.317387	6.607683	-11.067667	0.0000000	0.0000001	13.7520011	1457728_at
1449366at	3.486627	10.081210	11.015297	0.0000000	0.0000001	13.6666335	1449366 _at
1436530_{at}	4.383425	9.985045	10.672959	0.0000000	0.0000001	13.1006512	1436530_at
1418722 _at	4.142292	10.981607	10.517562	0.0000000	0.0000001	12.8391192	1418722_at
1453568_at	-2.232933	7.823380	-10.402443	0.0000000	0.0000001	12.6434851	1453568_at
1448213_a t	2.479806	12.008671	10.382870	0.0000000	0.0000001	12.6100622	1448213_{at}
1433966_x_at	2.628378	6.040605	10.369701	0.0000000	0.0000001	12.5875475	1433966_x_a
1424254_at	3.819659	11.198672	10.347366	0.0000000	0.0000001	12.5493136	1424254_at
1434484at	3.883814	9.333854	10.106201	0.0000000	0.0000001	12.1325432	1434484_at
1426170_a_a	-2.350623	8.374877	-9.616070	0.0000000	0.0000003	11.2629070	1426170_a_at
1447806_s_at	-2.331375	7.824789	-9.437494	0.0000000	0.0000003	10.9383620	1447806_s_at
1420330_{at}	2.888303	8.000858	9.436457	0.0000000	0.0000003	10.9364653	1420330_{-at}
1450826_a_at	6.307702	9.343178	9.314701	0.0000000	0.0000003	10.7127721	1450826_a_a
1424509_{at}	3.612381	8.943432	9.282374	0.0000000	0.0000004	10.6530505	1424509_{at}
1421366_at	2.251795	6.277268	9.238549	0.0000000	0.0000004	10.5718669	1421366_at
1437060_at	3.879705	7.500708	9.222434	0.0000000	0.0000004	10.5419498	1437060_at
1453181_x_at	2.495037	6.889508	9.195191	0.0000000	0.0000004	10.4912971	1453181_x_a
1456147_at	-2.064406	7.454899	-9.096261	0.0000000	0.0000004	10.3065232	1456147_at
1451537_at	2.782989	7.910675	9.032555	0.0000000	0.0000004	10.1868435	1451537_at
1425289_a_at	-2.097305	7.287404	-8.924858	0.0000000	0.0000005	9.9832824	1425289_a_at
1420591_at	2.523120	6.159378	8.875661	0.0000000	0.0000005	9.8897721	1420591_{at}
1448318_at	2.113868	9.414469	8.747795	0.0000000	0.0000006	9.6452014	1448318_at
1437277_x_at	2.990290	8.237915	8.734620	0.0000000	0.0000006	9.6198762	1437277_x_a
1450808_at	2.866059	8.865072	8.723852	0.0000000	0.0000006	9.5991597	1450808_at
1460330_at	2.576010	7.364740	8.722522	0.0000000	0.0000006	9.5965998	1460330_at
1418762_at	-2.165259	7.039844	-8.607598	0.0000000	0.0000007	9.3744895	1418762_at
1427381_{at}	4.369867	7.134866	8.600227	0.0000000	0.0000007	9.3601811	1427381_at
1434046_at	3.540158	6.815033	8.599599	0.0000000	0.0000007	9.3589628	1434046_at
1434848_at	2.968253	5.824646	8.519662	0.0000000	0.0000008	9.2033180	1434848_at
1434758_at	3.038791	7.534880	8.485081	0.0000000	0.0000008	9.1357135	1434758_at
1418162_at	2.204791	6.345921	8.359111	0.0000000	0.0000009	8.8880600	1418162_at
1424032_at	-2.124322	8.873183	-8.287294	0.0000000	0.0000010	8.7458919	1424032_at
1426112_a_at	-2.055713	7.924286	-8.218896	0.0000000	0.0000011	8.6098283	1426112_a_a
1448293_at	-2.096659	6.568098	-8.191902	0.0000001	0.0000011	8.5559529	1448293_at

	$\log FC$	AveExpr	t	P Value	adj P Val	В	PROBEID
1419907_s_at	-2.130303	7.089150	-8.187564	0.0000001	0.0000011	8.5472848	1419907_s_at
1451006 _at	2.170610	8.700386	8.142361	0.0000001	0.0000012	8.4568144	1451006_at
1423150_{at}	-2.451760	6.578868	-8.114288	0.0000001	0.0000012	8.4004859	1423150_at
1425951 a at	2.120005	5.903867	7.724701	0.0000001	0.0000022	7.6075151	1425951_a_at
1455656 at	-2.015043	9.600563	-7.717835	0.0000001	0.0000022	7.5933518	1455656 at
1427442 a at	2.059765	9.883178	7.655958	0.0000002	0.0000024	7.4654161	1427442 a at
1419043_a_at	3.135755	8.019308	7.619247	0.0000002	0.0000024	7.3892636	1419043_a_at
1419178_at	-2.104665	8.396370	-7.613035	0.0000002	0.0000024	7.3763600	1419178_at
1436317 at	-2.027436	5.830050	-7.533297	0.0000002	0.0000027	7.2102461	1436317_at
1457666 s at	2.914557	8.574042	7.511436	0.0000002	0.0000028	7.1645519	1457666 s at
1423466 at	-2.219533	8.982411	-7.501406	0.0000002	0.0000028	7.1435633	1423466 at
1439831 at	2.246697	5.612036	7.491862	0.0000002	0.0000028	7.1235811	1439831 at
1419647 a at	2.120466	7.239192	7.434923	0.0000002	0.0000031	7.0041047	aat
1417268 at	2.931909	8.704318	7.423364	0.0000002	0.0000031	6.9797957	1417268 at
1425225_at	2.518453	9.422246	7.383601	0.0000003	0.0000033	6.8960333	1425225_at
1448871 at	2.088816	7.329450	7.370113	0.0000003	0.0000033	6.8675721	1448871_at
1448919 at	2.398736	7.822123	7.334685	0.0000003	0.0000035	6.7926946	1448919 at
1433769 at	-2.121151	6.988782	-7.250203	0.0000004	0.0000039	6.6134524	1433769 at
1428719 at	-2.070749	10.972461	-7.244838	0.0000004	0.0000039	6.6020359	1428719 at
1425065_at	2.135773	7.955901	7.223649	0.0000004	0.0000000	6.5569137	1425065 at
1424727_at	2.239457	7.272813	7.185118	0.0000004	0.0000043	6.4747047	1424727 at
1426640_s_at	-2.290909	8.891141	-7.173039	0.0000001	0.0000044	6.4488919	1426640_s_at
1426774 at	3.243168	7.488535	7.079320	0.0000001	0.0000011	6.2479462	1426774 at
1423571 at	-2.136060	8.183482	-7.077146	0.0000005	0.0000049	6.2432698	1423571_at
1419709_at	3.019782	7.006511	7.076688	0.0000005	0.0000049	6.2422846	1419709_at
1426725_s_at	-2.030282	10.430512	-7.065332	0.0000005	0.0000050	6.2178530	1426725_s_at
1450783 at	2.461744	9.228473	7.000660	0.0000006	0.0000056	6.0783810	1450783_at
1448881 at	2.617502	11.024323	6.886039	0.0000008	0.0000066	5.8298271	1448881_at
1422122 at	-2.716503	8.726842	-6.810355	0.0000000	0.0000074	5.6647635	1422122 at
1419599_s_at	2.593394	9.136198	6.807322	0.0000009	0.0000074	5.6581317	1419599_s_at
1456388_at	2.342050	6.745010	6.793888	0.0000003	0.0000074	5.6287496	1456388 at
1460407_at	-2.294426	8.595874	-6.757763	0.0000010	0.0000010	5.5496207	1460407_at
1419532_at	2.624855	8.717034	6.719442	0.0000010	0.0000083	5.4654989	1419532_at
1448575_at	-2.399779	10.233853	-6.691321	0.0000011	0.0000086	5.4036492	1448575_at
1440837 at	-2.482279	9.703369	-6.682394	0.0000012	0.0000087	5.3839924	1440837 at
		9.436586	-6.655644	0.0000012	0.0000001	5.3250330	1426168_a_at
1448291 at	2.130381	9.743778	6.584976	0.0000015	0.0000000	5.1688372	1448291_at
1426276 at	2.024025	7.837287	6.568680	0.0000016	0.0000101	5.1327299	1426276_at
1417640 at	-2.407805	9.967844	-6.541789	0.0000017	0.0000103 0.0000107	5.0730738	1417640 at
1454713 s at	2.745075	8.462184	6.524874	0.0000017	0.0000107	5.0355016	1454713 s at
1417314_at	3.495006	7.303732	6.511246	0.0000017	0.0000110	5.0052061	1417314_at
1417514_at 1452732 at	2.409310	8.218860	6.469225	0.0000018	0.0000111	4.9116449	1452732_at
1429947 a at	2.351035	8.338745	6.403248	0.0000020 0.0000022	0.0000117 0.0000125	4.8090266	1429947 a at
1429947_a_at 1448485 at	2.331033 2.225128	6.744666	6.423248 6.414726	0.0000022	0.0000123 0.0000127	4.7899790	1429947_a_at 1448485 at
1433471 at	-2.241677	9.501703	-6.393938	0.0000022 0.0000023	0.0000127 0.0000132	4.7434760	1433471_at
1455471_at 1417244 a at	2.202229	9.501705	-0.393938 6.364387	0.0000025	0.0000132 0.0000138	4.7454760 4.6772790	1435471_at 1417244_a_at
1417244_a_a_at 1418191 at	3.040075	8.046457	6.361323	0.0000025	0.0000138	4.6704087	1417244_a_a_at 1418191 at
1418191_at 1450570_a_at	-2.053750	8.926450	-6.328506	0.0000025 0.0000027	0.0000138 0.0000145	4.5967614	1418191_at 1450570_a_at
1430370_a_at 1418830 at	-2.033730	8.831048	-6.280304	0.0000027	0.0000145 0.0000156	4.4883561	1418830 at
14188357 at	-2.244213 -2.097579	6.745833	-0.280304 -6.126611	0.0000030 0.0000042	0.0000130 0.0000203	4.4883301	1428357_at
1420337_at 1442023 at	-2.097579		-6.012602	0.0000042 0.0000055		3.8814167	142023 at
		6.781595			0.0000243		· · · · · · · · · · · · · · · · · · ·
1427256_at	2.289390	7.018484	6.004027	0.0000056	0.0000246	3.8618449	1427256_at

	logFC	AveExpr	t	P Value	adj P Val	В	PROBEID
1450424_a_at	2.894223	7.183584	5.999553	0.0000056	0.0000248	3.8516277	1450424_a_at
1450484_a_at	2.561515	7.734381	5.909822	0.0000069	0.0000285	3.6462907	1450484_a_at
1449184 at	2.208918	9.390679	5.831125	0.0000083	0.0000324	3.4655107	1449184 at
1449305 at	2.114562	7.972371	5.820163	0.0000085	0.0000329	3.4402788	1449305 at
1455530 at	-2.425994	9.891386	-5.794401	0.0000090	0.0000344	3.3809348	1455530 at
1420549 at	3.671090	8.906196	5.761013	0.0000098	0.0000364	3.3039265	1420549 at
1417876 at	2.153258	7.106351	5.751082	0.0000100	0.0000368	3.2809996	1417876_at
1453939_x_at	2.186950	7.187889	5.737809	0.0000103	0.0000376	3.2503425	1453939xat
1418930 at	3.216464	6.158199	5.729116	0.0000105	0.0000380	3.2302562	1418930 at
1427164_at	2.039320	6.321680	5.704308	0.0000111	0.0000396	3.1728888	1427164 at
1423954_at	3.541562	8.477378	5.700822	0.0000112	0.0000398	3.1648237	1423954 at
1425958 at	2.098302	8.154949	5.660916	0.0000123	0.0000431	3.0724101	1425958 at
1443698 at	2.125149	8.784935	5.640705	0.0000129	0.0000446	3.0255498	1443698 at
1434380 at	2.247634	9.220107	5.615578	0.0000137	0.0000463	2.9672393	1434380 at
1415897_a_at	2.087755	10.399677	5.614390	0.0000137	0.0000463	2.9644820	1415897_a_at
1435906 x at	3.629073	9.641297	5.552062	0.0000158	0.0000522	2.8195914	1435906_x_at
1429889 at	-2.305647	10.160756	-5.534369	0.0000165	0.0000538	2.7784001	1429889 at
1419769 at	-2.001769	7.258350	-5.457860	0.0000197	0.0000609	2.5999734	1419769_at
1449025 at	2.501537	7.408635	5.454997	0.0000199	0.0000611	2.5932878	1449025 at
1451798 at	2.028525	8.175836	5.413918	0.0000219	0.0000654	2.4972800	1451798 at
1417074 at	2.301829	6.862341	5.344175	0.0000217 0.0000257	0.0000740	2.3339840	1417074 at
1453196 a at	3.236590	8.268527	5.152683	0.0000404	0.000117	1.8838578	1453196_a_at
1418580_at	2.588232	9.369491	5.140658	0.0000416	0.0001017	1.8555113	1418580_at
1419764 at	2.322707	9.974123	5.048081	0.0000518	0.0001015	1.6370205	1419764_at
1418204_s_at	2.604591	7.115411	4.971924	0.0000621	0.0001431	1.4569523	1418204_s_at
1460197_a_at	2.848961	6.630594	4.913577	0.0000713	0.0001191	1.3188186	1460197_a_at
1423555_a_at	2.851298	7.468390	4.886815	0.0000710	0.0001670	1.2554145	1423555_a_at
1422760 at	2.214962	7.482519	4.876035	0.0000780	0.0001706	1.2298655	1422760 at
1456777_at	2.443120	5.332645	4.774463	0.0000100	0.0001100	0.9889662	1456777_at
1418652 at	2.182826	5.101407	4.719715	0.0001133	0.0002002	0.8590024	1418652_at
1452279 at	2.080250	8.100745	4.643745	0.0001155	0.0002235	0.6785684	1452279_at
1450009_at	2.684307	8.963616	4.617350	0.0001333 0.0001447	0.0002773	0.6158592	1450009_at
1417300_at	2.237849	8.109912	4.594513	0.0001111	0.0002880	0.5615969	1417300_at
1418797_at	2.048229	7.568652	4.548301	0.0001708	0.0003154	0.4517872	1418797_at
1416332 at	-2.470103	7.574108	-4.446006	0.0001183	0.0003131	0.2087233	1416332 at
1438037_at	2.608102	7.022837	4.420471	0.0002322	0.0004124	0.1480636	1438037_at
1422557_s_at	4.421303	8.044721	4.202483	0.0002922	0.0004124	-0.3691604	1422557_s_at
1449254 at	4.251129	6.741625	4.135376	0.0004607	0.0007447	-0.5280261	1449254_at
1424923 at	2.155737	8.560016	4.104331	0.0004964	0.0007912	-0.6014405	1424923 at
1450912_at	-2.105868	8.532145	-3.902662	0.0008056	0.0011930	-1.0767311	1450912_at
1421596_s_at	2.561384	7.273576	3.730791	0.0012155	0.0017360	-1.4788683	1421596_s_at
1451054 at	5.145902	6.876501	3.642007	0.0015022	0.0020915	-1.6852280	1451054_at
1451310 a at	2.220766	8.388071	3.613674	0.0016070	0.0022318	-1.7508538	1451310_a_at
1417063_at	2.217716	6.396191	3.538545	0.0010070	0.0022208 0.0026142	-1.9242891	1417063 at
1455393_at	3.848174	5.869949	3.315083	0.0019211 0.0032552	0.0020142 0.0042382	-2.4343866	1455393_at
1450624 at	2.679225	5.848280	3.298365	0.0032352 0.0033854	0.0042382 0.0043881	-2.4721556	1450624 at
1424713 at	2.079225 2.083345	6.033634	3.285362	0.0033694 0.0034901	0.0045096	-2.5014891	1424713_at
1418897 at	2.063343 2.042924	6.092010	3.132417	0.0034901 0.0049845	0.0043090 0.0062898	-2.8436151	1418897_at
1419549 at	3.702927	6.092010 6.175600	3.087318	0.0049843 0.0055328	0.0002898 0.0069135	-2.9433978	1419549_at
1416649 at	3.102921 3.003222	6.598110	3.037313 3.045721	0.0053528 0.0060898	0.0009133 0.0075680	-3.0349488	1416649_at
1417909 at	3.003222 3.063179	5.866157	2.999561	0.0060898 0.0067713	0.0075080 0.0083539	-3.1359790	1417909_at
1428942 at	2.394958	8.254171	2.999301 2.998235	0.0067713 0.0067919	0.0083743	-3.1388724	1417909_at 1428942 at
1420942_at	4.594958	0.2041/1	∠.⊎⊌٥∠∂∂	0.0007919	0.0065745	-3.1300124	1420942_at

	$\log FC$	AveExpr	t	P Value	adj P Val	В	PROBEID
1423944_at	5.620806	7.621359	2.986947	0.0069699	0.0085749	-3.1634829	1423944_at
1416625_at	2.879663	5.805326	2.981422	0.0070586	0.0086771	-3.1755127	1416625_at
1418239_at	2.785833	4.737553	2.941164	0.0077389	0.0094660	-3.2629061	1418239 _at
1418724_at	2.046992	6.637165	2.938529	0.0077855	0.0095136	-3.2686085	1418724 _at
1450788 _at	6.014539	5.814933	2.935997	0.0078306	0.0095583	-3.2740871	1450788 _at
1419059_at	3.602545	6.324564	2.933290	0.0078791	0.0096107	-3.2799412	1419059 _at
1448680_at	5.594216	6.990617	2.829360	0.0099736	0.0119800	-3.5029613	1448680_{at}
1431808_a_at	3.279766	6.883429	2.828051	0.0100030	0.0120083	-3.5057467	1431808_a_
1426225_at	2.794278	5.902705	2.813609	0.0103341	0.0123839	-3.5364514	1426225 _at
1449984_at	2.217507	5.382566	2.806262	0.0105064	0.0125758	-3.5520440	1449984 _at
1417950_a_at	2.807475	7.525052	2.754253	0.0118073	0.0140019	-3.6618876	1417950_a_
1426547 at	3.900228	6.221421	2.751214	0.0118878	0.0140811	-3.6682749	1426547 _at
1424279_at	5.731273	6.032610	2.748793	0.0119524	0.0141494	-3.6733621	1424279_at
1449326 x at	3.545929	6.828842	2.741481	0.0121494	0.0143743	-3.6887157	1449326 _x_
1455093_a_at	2.051812	6.367591	2.738142	0.0122403	0.0144736	-3.6957196	1455093_a_
1416677 at	2.325361	7.392066	2.732676	0.0123906	0.0146428	-3.7071756	1416677 at
1416729 at	2.410025	6.047747	2.682560	0.0138528	0.0162025	-3.8117084	1416729 at
1417246 at	4.082466	6.068173	2.636113	0.0153524	0.0178039	-3.9077416	1417246 at
1448764 a at	2.881667	4.173025	2.631274	0.0155172	0.0179746	-3.9176985	1448764 a
1420484 a at	2.952258	6.682963	2.619231	0.0159344	0.0184371	-3.9424396	1420484 a
1425260 at	4.642587	8.764225	2.614664	0.0160954	0.0186129	-3.9518050	1425260 at
1418771 a at	3.093587	4.743254	2.596179	0.0167628	0.0193083	-3.9896338	1418771 a
1416025_at	3.859548	6.962845	2.593842	0.0168490	0.0193967	-3.9944054	1416025_at
1418021_at	2.120947	8.109064	2.584389	0.0172019	0.0197808	-4.0136893	1418021_at
1418282 x at	4.743895	6.064216	2.573552	0.0176151	0.0202331	-4.0357496	1418282 x
1424599 at	2.213667	5.828415	2.563611	0.0180022	0.0206547	-4.0559434	1424599 at
1415994 at	2.412656	6.767248	2.561177	0.0180982	0.0207416	-4.0608813	1415994 at
1423866_at	5.090571	6.575844	2.558246	0.0182145	0.0208631	-4.0668244	1423866 at
1449123 at	3.311604	5.047686	2.534678	0.0191750	0.0218899	-4.1144848	1449123 at
1455913 x at	4.580775	5.399907	2.528433	0.0194374	0.0221770	-4.1270758	1455913 x
1448470 at	2.264033	5.991722	2.515598	0.0199871	0.0227662	-4.1528979	1448470 at
1419232_a_at	3.176654	6.025441	2.509074	0.0202721	0.0230652	-4.1659966	1419232_a_
1416676_at	2.390451	5.486499	2.476225	0.0217656	0.0246412	-4.2316684	1416676_at
1418278 at	2.712446	5.154527	2.467226	0.0221923	0.0251104	-4.2495785	1418278 at
1428079_at	3.840492	6.186298	2.457470	0.0226637	0.0256296	-4.2689522	1428079_at
1449434_at	2.005947	5.561232	2.438267	0.0236188	0.0266509	-4.3069625	1449434_at
1419093_at	3.058884	4.782866	2.399460	0.0256643	0.0287845	-4.3832682	1419093_at
1423147_at	2.323782	5.064445	2.398635	0.0257095	0.0288194	-4.3848826	1423147_at
1417561 at	2.128913	6.604153	2.362130	0.0277856	0.0309602	-4.4560080	1417561 at
1419100 at	2.057085	6.249279	2.337127	0.0292958	0.0325544	-4.5043589	1419100 at
1421921 at	2.544668	5.488920	2.333648	0.0295118	0.0327589	-4.5110613	1421921 at

7.1.2~ Sin Tratamiento. Genes diferencialmente expresados Infectado y No Infectado

Table 8: Genes diferencialmente expresados No Tratados

	$\log FC$	AveExpr	t	P Value	adj P Val	В	PROBEID
1421262_at	7.202325	7.175233	19.663695	0.0000000	0.0000000	24.6409970	1421262_at
1427747_a_at	6.237323	10.693149	17.659957	0.0000000	0.0000000	22.5731026	1427747_a_a
1422953_at	3.851164	11.192299	16.692270	0.0000000	0.0000000	21.4869762	1422953 _at

	$\log FC$	AveExpr	t	P Value	adj P Val	В	PROBEID
1440865_at	4.077956	11.173847	15.671662	0.0000000	0.0000000	20.2722418	1440865_at
1418722_at	6.033845	10.981607	15.320344	0.0000000	0.0000000	19.8364815	1418722 _at
1429387_at	-2.125765	6.421327	-14.747242	0.0000000	0.0000000	19.1050911	1429387_a t
1419681 a at	5.264941	7.386037	14.560700	0.0000000	0.0000000	18.8613431	1419681_a_
1436419 a at	-2.688060	8.574273	-14.279135	0.0000000	0.0000000	18.4879723	1436419 a
1448213 at	3.362917	12.008671	14.080428	0.0000000	0.0000000	18.2204418	1448213 at
1449366 at	4.425505	10.081210	13.981494	0.0000000	0.0000000	18.0859737	1449366_at
1433939 at	-2.001300	8.351123	-13.979971	0.0000000	0.0000000	18.0838972	1433939 at
1447806 s at	-3.443607	7.824789	-13.939851	0.0000000	0.0000000	18.0291189	1447806_s_
1422438 at	-2.173576	7.524873	-13.554234	0.0000000	0.0000000	17.4953548	1422438 at
1425518 at	-2.772911	6.687270	-13.386359	0.0000000	0.0000000	17.2587990	1425518_at
1453181_x_at	3.626613	6.889508	13.365492	0.0000000	0.0000000	17.2292132	1453181_x_
1426775 s at	2.598049	7.408379	13.240355	0.0000000	0.0000000	17.0509503	1426775 s
1417290 at	4.580057	10.034197	13.086953	0.0000000	0.0000000	16.8304260	1417290 at
1421366 at	3.162701	6.277268	12.975765	0.0000000	0.0000000	16.6691941	1421366 at
1434046 at	5.300588	6.815033	12.875958	0.0000000	0.0000000	16.5234580	1434046 at
1457728_at	-2.689488	6.607683	-12.844798	0.0000000	0.0000000	16.4777613	1457728_at
1448562 at					0.0000000		
	4.670536	7.599334	12.735173	0.0000000		16.3162472	1448562_at
1437060_at	5.346060	7.500708	12.708102	0.0000000	0.0000000	16.2761813	1437060_at
1419647_a_at	3.599225	7.239192	12.619850	0.0000000	0.0000000	16.1450671	1419647_a_
434484_at	4.837274	9.333854	12.587232	0.0000000	0.0000000	16.0964116	1434484_at
419532_at	4.902970	8.717034	12.551254	0.0000000	0.0000000	16.0426222	1419532_at
425289_a_at	-2.944158	7.287404	-12.528552	0.0000000	0.0000000	16.0086147	1425289_a_
1440900_at	-2.418760	6.401088	-12.490856	0.0000000	0.0000000	15.9520326	1440900_at
1434848_at	4.328388	5.824646	12.423607	0.0000000	0.0000000	15.8507375	1434848_at
1420928_at	-2.426497	9.460342	-12.228630	0.0000000	0.0000000	15.5544638	1420928_at
1453568_at	-2.593626	7.823380	-12.082780	0.0000000	0.0000000	15.3302911	1453568_at
1455340_at	-2.775176	5.958534	-11.976888	0.0000000	0.0000000	15.1661495	1455340_at
1451537_at	3.675150	7.910675	11.928181	0.0000000	0.0000000	15.0902547	1451537_at
1434758_at	4.258567	7.534880	11.891006	0.0000000	0.0000000	15.0321617	1434758_at
1427102 _at	3.833378	10.546141	11.841573	0.0000000	0.0000000	14.9546849	1427102_at
1427256 _at	4.510268	7.018484	11.828378	0.0000000	0.0000000	14.9339609	1427256_at
1424509 _at	4.568649	8.943432	11.739600	0.0000000	0.0000000	14.7940395	1424509_at
1424032 _at	-3.003004	8.873183	-11.715161	0.0000000	0.0000000	14.7553745	1424032 _at
1448318_at	2.814746	9.414469	11.648230	0.0000000	0.0000000	14.6491511	1448318 _at
l419709_at	4.903345	7.006511	11.490710	0.0000000	0.0000000	14.3972394	1419709 _at
421479_at	-2.166568	6.564610	-11.398755	0.0000000	0.0000000	14.2489252	1421479 _at
424852_at	-2.431347	7.848753	-11.383977	0.0000000	0.0000000	14.2250040	1424852 _at
.438097_at	2.792513	4.919290	11.367478	0.0000000	0.0000000	14.1982669	1438097_at
1418932_at	2.501998	6.542522	11.334623	0.0000000	0.0000000	14.1449339	1418932 _at
1427844_a_at	2.614481	8.231130	11.320738	0.0000000	0.0000000	14.1223595	$1427844_a_$
.418162_at	2.983758	6.345921	11.312438	0.0000000	0.0000000	14.1088540	1418162_at
426112_a_at	-2.828027	7.924286	-11.306662	0.0000000	0.0000000	14.0994522	1426112_a_
1442023 at	-3.856994	6.781595	-11.208941	0.0000000	0.0000000	13.9398074	1442023 at
1422775 at	-2.303321	8.662078	-11.204887	0.0000000	0.0000000	13.9331612	1422775_at
417460 at	2.527248	11.092336	11.200828	0.0000000	0.0000000	13.9265055	1417460_at
1448293 at	-2.866699	6.568098	-11.200538	0.0000000	0.0000000	13.9260299	1448293_at
1418353 at	-2.560643	7.652456	-11.124261	0.0000000	0.0000000	13.8005998	1418353_at
1437356 at	-2.255072	7.957112	-11.028649	0.0000000	0.0000000	13.6424432	1437356_at
452389 at	-2.270257	7.602245	-11.022272	0.0000000	0.0000000	13.6318586	1457330_at
426170 a at	-2.687824	8.374877	-10.995514	0.0000000	0.0000000	13.5873903	1426170_a
420170_a at 424254 at	4.051952	11.198672	10.976642	0.0000000	0.0000000	13.5559777	1420170_a_ 1424254 at
.444404_dt	4.001902	11.190012	10.970042	0.0000000	0.0000000	19.9999111	1424294_at

	$\log FC$	AveExpr	t	P Value	adj P Val	В	PROBEID
1417268_at	4.317592	8.704318	10.931807	0.0000000	0.0000000	13.4811869	1417268_at
1425951_a_at	2.984234	5.903867	10.873705	0.0000000	0.0000000	13.3839205	1425951_a_a
1460330_{at}	3.206136	7.364740	10.856166	0.0000000	0.0000000	13.3544818	$1460330_{-}at$
1436530 at	4.449165	9.985045	10.833025	0.0000000	0.0000000	13.3155879	1436530 at
1440837 at	-4.016521	9.703369	-10.812635	0.0000000	0.0000000	13.2812635	1440837_at
1447284 at	2.421115	7.993758	10.790074	0.0000000	0.0000000	13.2432294	1447284 at
1434260 at	-2.835632	8.055180	-10.775877	0.0000000	0.0000000	13.2192655	1434260_at
1420697 at	2.218987	7.783796	10.746237	0.0000000	0.0000000	13.1691580	1420697_at
1419907_s_at	-2.790480	7.089150	-10.724878	0.0000000	0.0000000	13.1329867	1419907_s_a
1416381 a at	2.015266	10.724823	10.670483	0.0000000	0.0000000	13.0406260	1416381_a_a
1420361 at	2.127767	8.403552	10.665970	0.0000000	0.0000000	13.0329475	1420361 at
1420330 at	3.263714	8.000858	10.662974	0.0000000	0.0000000	13.0278484	1420330 at
1450357 a at	-2.124252	7.286378	-10.659249	0.0000000	0.0000000	13.0215087	1450357_a_a
1419764 at	4.903326	9.974123	10.656697	0.0000000	0.0000000	13.0171625	1419764 at
1449027_at	2.888700	6.409139	10.596022	0.0000000	0.0000000	12.9136293	1449027 at
1427994_at	2.663202	8.413779	10.574180	0.0000000	0.0000000	12.8762518	1427994 at
1450808 at	3.467791	8.865072	10.555433	0.0000000	0.0000000	12.8441248	1450808_at
1437270_a_at	-2.493420	6.950214	-10.529866	0.0000000	0.0000000	12.8002449	1437270_a_a
1427442_a_at	2.828679	9.883178	10.513939	0.0000000	0.0000000	12.7728709	1427442_a_a
1424831 at	2.615739	6.737744	10.459144	0.0000000	0.0000000	12.6784582	1424831 at
1418762 at	-2.615823	7.039844	-10.398732	0.0000000	0.0000000	12.5739525	1418762 at
1455940 x at	-2.194202	7.338847	-10.386048	0.0000000	0.0000000	12.5519547	1455940_x_a
1422122_at	-4.114244	8.726842	-10.330048	0.0000000	0.0000000	12.3313347 12.4275699	1422122_at
1436941 at	-2.007379	8.027615	-10.267774	0.0000000	0.0000000	12.3458969	1436941_at
1423543 at	-2.432875	7.414502	-10.257774	0.0000000	0.0000000	12.1471054	1423543_at
1420591_at	2.881077	6.159378	10.134859	0.0000000	0.0000000	12.1122988	1420591_at
1442339 at	3.162859	9.640235	10.134659 10.022465	0.0000000	0.0000000	11.9130745	1442339_at
1437277_x_at	3.426254	8.237915	10.022403	0.0000000	0.0000000	11.8874428	1437277_x_a
1416111 at	-2.471484	7.345574	-9.980524	0.0000000	0.0000000	11.8383307	1437277_x_a 1416111_at
1456147 at	-2.261930	7.454899	-9.966598	0.0000000	0.0000000	11.8134644	1456147_at
1455899_x_at	2.493991	9.565020	9.936650	0.0000000	0.0000000	11.7599087	1455147_at 1455899_x_a
	-4.155346	9.891386	-9.924896			11.7388582	
1455530_at 1428719_at	-2.829188		-9.924890 -9.898353	0.0000000	0.0000000		1455530_at 1428719 at
		10.972461	-9.848563	0.0000000	0.0000000	11.6912583 11.6017322	1428719_at 1451780 at
1451780_at	-2.381892	8.271421		0.0000000	0.0000000		_
1450350_a_at	2.044612	7.104754	9.834492	0.0000000	0.0000000	11.5763758	1450350_a_a
	-2.193157	8.578100	-9.833208	0.0000000	0.0000000	11.5740614	1456061_at
1428141_at	-2.514744	8.331805	-9.830346	0.0000000	0.0000000	11.5688996	1428141_at
1438164_x_at	2.532019	8.530278	9.815728	0.0000000	0.0000000	11.5425229	1438164_x_a
1421844_at	2.316376	7.485981	9.811310	0.0000000	0.0000000	11.5345457	1421844_at
1419744_at	-3.121678	8.915592	-9.767663	0.0000000	0.0000000	11.4556042	1419744_at
1439902_at	2.535326	7.585485	9.759146	0.0000000	0.0000000	11.4401718	1439902_at
1448919_at	3.188763	7.822123	9.750371	0.0000000	0.0000000	11.4242637	1448919_at
1451006_at	2.578483	8.700386	9.672368	0.0000000	0.0000000	11.2824149	1451006_at
1425062_at	-2.041411	8.249424	-9.651336	0.0000000	0.0000001	11.2440360	1425062_at
1448871_at	2.731471	7.329450	9.637637	0.0000000	0.0000001	11.2190077	1448871_at
1421375_a_at	2.492555	11.090219	9.542704	0.0000000	0.0000001	11.0449077	1421375_a_a
1424727_at	2.972178	7.272813	9.535995	0.0000000	0.0000001	11.0325602	1424727_at
1419307_at	-2.420701	7.359685	-9.532806	0.0000000	0.0000001	11.0266904	1419307_at
1455660_at	2.619957	10.417394	9.496524	0.0000000	0.0000001	10.9598006	1455660_at
1429889_at	-3.956155	10.160756	-9.496172	0.0000000	0.0000001	10.9591511	1429889 _at
1419406_a_at	-2.592274	6.853303	-9.486255	0.0000000	0.0000001	10.9408385	1419406_a_a
1417894_at	2.083298	6.735836	9.459258	0.0000000	0.0000001	10.8909206	1417894 _at

-							
	$\log FC$	$\operatorname{AveExpr}$	\mathbf{t}	P Value	adj P Val	В	PROBEID
1436317_at	-2.505348	5.830050	-9.309065	0.0000000	0.0000001	10.6114998	1436317 at
1416107 at	-2.012517	8.288487	-9.270321	0.0000000	0.0000001	10.5389446	1416107_at
1455019_x_at	2.289515	8.641795	9.206558	0.0000000	0.0000001	10.4191113	 1455019xa
1419178 at	-2.541475	8.396370	-9.193071	0.0000000	0.0000001	10.3936964	1419178 at
1417933 at	2.663436	6.267192	9.180931	0.0000000	0.0000001	10.3707993	1417933 at
1452463_ x_at	-2.246224	11.660468	-9.179588	0.0000000	0.0000001	10.3682653	1452463_x_a
1450009 at	5.316236	8.963616	9.144604	0.0000000	0.0000001	10.3021695	1450009 at
1449360 at	2.643776	7.740287	9.094906	0.0000000	0.0000001	10.2079961	1449360 at
1460407 at	-3.074280	8.595874	-9.054663	0.0000000	0.0000001	10.1315013	1460407_at
1424302 at	2.074077	8.783015	9.026377	0.0000000	0.0000001	10.0776069	1424302_at
1424936_a_at	-2.086237	7.738755	-8.969432	0.0000000	0.0000001	9.9687878	1424936_a_a
1425895_a_at	2.487371	6.819704	8.912671	0.0000000	0.0000001	9.8598931	1425895_a_a
1420407 at	2.081353	7.543982	8.905737	0.0000000	0.0000001	9.8465610	1420407_at
1429413 at	-2.209586	6.331966	-8.896194	0.0000000	0.0000001	9.8282014	1429413 at
1455656 at	-2.314029	9.600563	-8.862982	0.0000000	0.0000001	9.7642139	1455656_at
1451190_a_at	-2.514029 -2.555460	8.898318	-8.791686	0.0000000	0.0000001	9.6263573	1451190_a_a
1417688 at	2.318607	7.400343	8.777534	0.0000000	0.0000002	9.5989117	1417688 at
1454795 at	-2.122071	5.399669	-8.769492	0.0000000	0.0000002	9.5833032	1454795 at
1421211_a_at	-2.127928	7.046801	-8.727375	0.0000000	0.0000002	9.5014236	1421211_a_a
1416957 at	-2.121928	9.324635	-8.725323	0.0000000	0.0000002	9.4974274	1416957_at
1419769 at	-3.192433	7.258350	-8.704224	0.0000000	0.0000002	9.4563144	1419769 at
1418830 at	-3.192433	8.831048	-8.678553	0.0000000	0.0000002 0.0000002	9.4062103	1418830 at
1450570 a at	-3.101207	8.926450	-8.674120	0.0000000	0.0000002	9.4002103 9.3975490	1450570 a a
1425225 at	2.955350	9.422246	8.664493	0.0000000	0.0000002	9.3787310	1425225 at
1419599 s at	3.296816	9.422240	8.653713	0.0000000	0.0000002 0.0000002	9.3576440	1419599 s a
1454897 at	-2.225094	6.406356	-8.609993	0.0000000	0.0000002 0.0000002	9.3570440 9.2719634	1419399_s_a 1454897 at
 -							_
1419297_at	-2.486573	8.324875	-8.605191	0.0000000	0.0000002	9.2625379	1419297_at
1417640_at	-3.142088	9.967844	-8.536770	0.0000000	0.0000002	9.1278899	1417640_at
1452966_at	-2.112768	7.813384	-8.474629	0.0000000	0.0000003	9.0050521	1452966_at
1422046_at	2.360834	8.451628	8.457850	0.0000000	0.0000003	8.9717954	1422046_at
1452521_a_at	2.166004	8.533052	8.447640	0.0000000	0.0000003	8.9515414	1452521_a_a
1427381_at	4.285011	7.134866	8.433225	0.0000000	0.0000003	8.9229198	1427381_at
1419186_a_at		9.679742	-8.372741	0.0000000	0.0000003	8.8025192	1419186_a_a
1415964_at	-2.208781	9.628260	-8.274886	0.0000000	0.0000004	8.6066795	1415964_at
1448881_at	3.126227	11.024323	8.224376	0.0000000	0.0000004	8.5050852	1448881_at
1423135_at	-2.173900	8.625682	-8.206815	0.0000001	0.0000004	8.4696817	1423135_at
1416871_at	2.263705	8.411615	8.156693	0.0000001	0.0000004	8.3684065	1416871_at
1450826_a_at	5.505143	9.343178	8.129549	0.0000001	0.0000005	8.3134168	1450826_a_a
1449591_at	2.127632	8.359474	8.127077	0.0000001	0.0000005	8.3084037	1449591_at
1439352_at	-2.212372	6.101854	-8.118217	0.0000001	0.0000005	8.2904304	1439352_at
1433966_x_at	2.037602	6.040605	8.038921	0.0000001	0.0000005	8.1290949	1433966_x_a
1425738_at	-2.501467	8.421056	-8.038202	0.0000001	0.0000005	8.1276282	1425738_at
1426725_s_at	-2.294778	10.430512	-7.985772	0.0000001	0.0000006	8.0204777	1426725_s_a
1425065_at	2.349648	7.955901	7.947024	0.0000001	0.0000006	7.9410498	1425065_at
1422003_at	-2.520579	7.398532	-7.916071	0.0000001	0.0000006	7.8774547	1422003_at
1430143_at	-2.263265	6.233731	-7.900657	0.0000001	0.0000006	7.8457365	1430143_at
1451965_at	-2.529037	8.266260	-7.891563	0.0000001	0.0000006	7.8270063	1451965_at
1442219_at	-2.434604	6.256627	-7.852293	0.0000001	0.0000007	7.7460041	1442219_at
1427860_{at}	-3.273203	7.264402	-7.820964	0.0000001	0.0000007	7.6812309	$1427860_{-}at$
1448291_at	2.527293	9.743778	7.811825	0.0000001	0.0000007	7.6623106	1448291_{at}
1456388_at	2.682261	6.745010	7.780781	0.0000001	0.0000008	7.5979585	1456388 _at
1451798_at	2.912415	8.175836	7.772928	0.0000001	0.0000008	7.5816579	1451798_at

	$\log FC$	AveExpr	t	P Value	adj P Val	В	PROBEID
1423466_at	-2.276890	8.982411	-7.695256	0.0000001	0.0000009	7.4199893	1423466_at
1417025_at	-2.287854	10.926377	-7.669885	0.0000001	0.0000009	7.3670034	1417025_at
1425396_a_at	-2.010286	9.807830	-7.659757	0.0000002	0.0000009	7.3458281	1425396_a_a
1430612 at	2.118528	9.143737	7.592671	0.0000002	0.0000010	7.2052109	1430612 at
1420994 at	-2.404627	8.113607	-7.556866	0.0000002	0.0000011	7.1299127	1420994 at
1456887 at	2.310176	6.331927	7.551351	0.0000002	0.0000011	7.1183001	1456887 at
1417741 at	2.273285	10.034698	7.541954	0.0000002	0.0000011	7.0985012	1417741_at
1449184 at	2.843226	9.390679	7.505579	0.0000002	0.0000012	7.0217533	1449184_at
1448700 at	2.337702	6.710594	7.501405	0.0000002	0.0000012	7.0129357	1448700 at
1457666 s at	2.902151	8.574042	7.479462	0.0000002	0.0000012	6.9665392	1457666sa
1416125 at	2.321273	8.499016	7.405935	0.0000003	0.0000014	6.8106026	1416125 at
1454713 s at	3.098864	8.462184	7.365808	0.0000003	0.0000015	6.7251927	1454713_s_a
1456328 at	-3.015900	9.437156	-7.283590	0.0000003	0.0000017	6.5495238	1456328 at
1438802 at	-2.184253	6.445316	-7.196330	0.0000004	0.0000020	6.3620935	1438802_at
1450912_at	-3.871033	8.532145	-7.173920	0.0000004	0.0000021	6.3137946	1450912_at
1425519_a_at	-2.035110	11.736950	-7.157735	0.0000004	0.0000021	6.2788703	1425519_a_a
1421408 at	2.046117	8.459979	7.134863	0.0000005	0.0000022	6.2294605	1421408 at
1451021_a_at	2.047851	6.902159	7.120897	0.0000005	0.0000023	6.1992543	1451021_a_a
1417876 at	2.665685	7.106351	7.119712	0.0000005	0.0000023	6.1966894	1417876 at
1448485 at	2.461295	6.744666	7.095563	0.0000005	0.0000023	6.1443962	1448485 at
1422892_s_at	-2.000835	8.189835	-7.094071	0.0000005	0.0000024	6.1411643	1422892_s_a
1429947 a at	2.594120	8.338745	7.087380	0.0000005	0.0000024	6.1266594	1429947 a a
1423150 at	-2.139218	6.578868	-7.079908	0.0000005	0.0000024	6.1200594 6.1104567	1423150 at
1449305 at	2.571656	7.972371	7.078277	0.0000005	0.0000024	6.1069176	1449305_at
1417074_at	3.043035	6.862341	7.065040	0.0000005	0.0000024 0.0000025	6.0781917	1417074 at
1426640_s_at	-2.249543	8.891141	-7.043519	0.0000006	0.0000025	6.0314374	1426640_s_a
1433769 at	-2.249343	6.988782	-6.976970	0.0000006	0.0000023	5.8864792	1420040_s_a 1433769_at
1428781 at	2.202373	5.420139	6.958792	0.0000007	0.0000028	5.8467853	1428781_at
1428663 at	2.202373 2.055634	7.087229	6.909136	0.0000007	0.0000029 0.0000032	5.7381318	1428663_at
1428700 at	2.053034 2.153943	7.150740	6.897175	0.0000007	0.0000032	5.7119101	1428700_at
1452431_s_at	-2.126072	11.319104	-6.785157	0.0000008	0.0000032 0.0000039	5.4654643	
1424524_at	2.222827	7.635975	6.682212	0.0000010 0.0000012	0.0000039 0.0000047	5.4034043 5.2375739	1452431_s_a 1424524_at
		7.035975	6.679583	0.0000012 0.0000012	0.0000047 0.0000047	5.2317370	
1416021_a_at	2.208213	4.546258					1416021_a_a
1451451_at	2.720187		6.649221	0.0000013	0.0000050	5.1642619	1451451_at
1423571_at	-2.006336	8.183482	-6.647347	0.0000013	0.0000050	5.1600915	1423571_at
1428357_at	-2.275213	6.745833	-6.645444	0.0000013	0.0000050	5.1558593	1428357_at
1427164_at	2.373416	6.321680	6.638827	0.0000013	0.0000050	5.1411348	1427164_at
1426276_at	2.025784	7.837287	6.574389	0.0000016	0.0000056	4.9974646	1426276_at
1419691_at	3.533884	8.663065	6.573737	0.0000016	0.0000056	4.9960083	1419691_at
1428749_at	2.103318	7.046117	6.522333	0.0000017	0.0000062	4.8810305	1428749_at
1428579_at	2.494898	6.233739	6.432309	0.0000021	0.0000073	4.6788942	1428579_at
1437226_x_at	2.537170	9.125270	6.426969	0.0000022	0.0000074	4.6668733	1437226_x_a
1425958_at	2.375421	8.154949	6.408543	0.0000022	0.0000076	4.6253669	1425958_at
1426774_at	2.935315	7.488535	6.407325	0.0000022	0.0000076	4.6226233	1426774_at
1452732_at	2.365700	8.218860	6.352127	0.0000025	0.0000083	4.4980407	1452732_at
1418797_at	2.811781	7.568652	6.243846	0.0000032	0.0000102	4.2526175	1418797_at
1446715_at	2.919699	5.046308	6.014636	0.0000055	0.0000154	3.7287477	1446715_at
1416514_a_at	2.235426	5.246550	5.807536	0.0000088	0.0000229	3.2506147	1416514_a_a
1450424_a_at	2.719067	7.183584	5.636466	0.0000130	0.0000320	2.8525097	1450424_a_a
1417190_at			F 00 F0 10	0.0000100	0.0000000	0.000000	1 4 1 7 1 0 0
	2.075603	7.824623	5.627840	0.0000133	0.0000326	2.8323665	1417190_{at}
1417190_at 1423954_at 1415897 a at	2.075603 3.456579 2.045893	7.824623 8.477378 10.399677	5.627840 5.564025 5.501815	0.0000133 0.0000154 0.0000178	0.0000326 0.0000370 0.0000421	2.8323665 2.6831334 2.5373227	1417190_at 1423954_at 1415897 a a

	$\log FC$	AveExpr	t	P Value	adj P Val	В	PROBEID
1417314_at	2.936548	7.303732	5.470830	0.0000191	0.0000445	2.4645828	1417314_at
1418580_at	2.740025	9.369491	5.442144	0.0000205	0.0000469	2.3971705	1418580_{at}
1419043_a_at	2.228827	8.019308	5.415597	0.0000218	0.0000492	2.3347287	1419043_a_a
1449984_at	4.160767	5.382566	5.265462	0.0000310	0.0000666	1.9806247	1449984_at
1418930_at	2.921167	6.158199	5.203137	0.0000359	0.0000753	1.8331823	1418930_{at}
1417300_at	2.531080	8.109912	5.196544	0.0000364	0.0000762	1.8175705	1417300_{at}
1418204_s_at	2.681387	7.115411	5.118521	0.0000438	0.0000889	1.6326287	1418204_s_a
1420549 _at	3.229554	8.906196	5.068114	0.0000494	0.0000990	1.5129685	1420549_at
1435906_x_a	3.288605	9.641297	5.031185	0.0000539	0.0001066	1.4252242	1435906_x_a
1437870_{at}	2.008097	5.328541	4.911945	0.0000716	0.0001354	1.1414852	1437870_at
1453196_a_at	3.041796	8.268527	4.842568	0.0000845	0.0001565	0.9761511	1453196_a_a
1452279_at	2.012943	8.100745	4.493497	0.0001948	0.0003231	0.1427907	1452279_at
1451310_a_at	2.674945	8.388071	4.352723	0.0002732	0.0004330	-0.1932729	1451310_a_a
1422557_s_at	4.567954	8.044721	4.341876	0.0002804	0.0004438	-0.2191508	1422557_s_a
1438148_at	3.507366	5.034957	4.240569	0.0003578	0.0005551	-0.4606563	1438148_at
1453239_a_a at	2.019992	5.193121	4.203749	0.0003909	0.0006033	-0.5483331	1453239_a_a
1448416_at	2.396912	5.148286	4.146990	0.0004480	0.0006842	-0.6833594	1448416_at
1424923 _at	2.174975	8.560016	4.140958	0.0004546	0.0006932	-0.6976998	1424923_at
1449254_at	4.182301	6.741625	4.068422	0.0005412	0.0008096	-0.8699681	1449254_at
1456777_at	2.075424	5.332645	4.055893	0.0005577	0.0008313	-0.8996903	1456777_at
1426851_a_a	2.055961	3.827763	3.842250	0.0009311	0.0013261	-1.4045411	1426851_a_a
1425295_at	3.425483	5.042037	3.771090	0.0011039	0.0015454	-1.5717083	1425295_at
1451054_at	5.073647	6.876501	3.590869	0.0016966	0.0023026	-1.9922260	1451054_at
1460197_a_at	2.081715	6.630594	3.590316	0.0016988	0.0023041	-1.9935092	1460197_a_a
1428942_at	2.815713	8.254171	3.524977	0.0019839	0.0026625	-2.1447873	1428942_at

7.1.3 Vancomicina. Genes diferencialmente expresados Infectado y No Infectado

Table 9: Genes diferencialmente expresados. Vancomycina.

	logFC	AveExpr	t	P Value	adj P Val	В	PROBEID
1421262_at	6.636277	7.175233	18.118278	0.0000000	0.0000000	22.9434303	1421262_at
1427747_a_at	5.162365	10.693149	14.616391	0.0000000	0.0000000	18.8988440	1427747_a_a
1419681_a_a	5.211970	7.386037	14.414205	0.0000000	0.0000000	18.6369814	1419681_a_a
1440865 _at	3.638019	11.173847	13.980975	0.0000000	0.0000000	18.0641039	1440865_at
1418722_at	5.213168	10.981607	13.236589	0.0000000	0.0000000	17.0406271	1418722_at
1436419_a_at	-2.327081	8.574273	-12.361589	0.0000000	0.0000000	15.7701242	1436419_a_a
1419709_at	5.233992	7.006511	12.265561	0.0000000	0.0000000	15.6260121	1419709_at
1422953 _at	2.798300	11.192299	12.128797	0.0000000	0.0000000	15.4191158	1422953_at
1447806_s_at	-2.954199	7.824789	-11.958706	0.0000000	0.0000000	15.1590602	1447806_s_a
1449366 _at	3.747495	10.081210	11.839458	0.0000000	0.0000000	14.9749026	1449366_at
1425518_at	-2.428115	6.687270	-11.721841	0.0000000	0.0000000	14.7917630	1425518_at
1437060_at	4.818901	7.500708	11.454993	0.0000000	0.0000000	14.3706465	1437060_at
1448213_{at}	2.728242	12.008671	11.423061	0.0000000	0.0000000	14.3197252	1448213_{at}
1437356 _at	-2.304486	7.957112	-11.270315	0.0000000	0.0000000	14.0745652	1437356 _at
1434046 _at	4.636745	6.815033	11.263380	0.0000000	0.0000000	14.0633718	1434046 _at
1420928 _at	-2.215863	9.460342	-11.167113	0.0000000	0.0000000	13.9074293	1420928_at
1436317_at	-2.950700	5.830050	-10.963849	0.0000000	0.0000000	13.5746687	1436317_a t
1424509 _at	4.206020	8.943432	10.807787	0.0000000	0.0000000	13.3159255	1424509 _at
1425289_a_at	-2.531694	7.287404	-10.773358	0.0000000	0.0000000	13.2584571	1425289_a_a

	$\log FC$	AveExpr	t	P Value	adj P Val	В	PROBEID
1455340_at	-2.484658	5.958534	-10.723095	0.0000000	0.0000000	13.1743090	1455340_at
1460330_at	3.165709	7.364740	10.719277	0.0000000	0.0000000	13.1679051	$1460330_{-}at$
1440900 at	-2.073249	6.401088	-10.706583	0.0000000	0.0000000	13.1465998	1440900 at
1419907_s_at	-2.753226	7.089150	-10.581696	0.0000000	0.0000000	12.9359725	1419907_s_a
1448293 at	-2.687156	6.568098	-10.499043	0.0000000	0.0000001	12.7955445	1448293 at
1434848 at	3.644862	5.824646	10.461707	0.0000000	0.0000001	12.7318393	1434848 at
1427102_at	3.379195	10.546141	10.438570	0.0000000	0.0000001	12.6922773	1427102_at
1448562 at	3.771635	7.599334	10.284135	0.0000000	0.0000001	12.4265346	1448562 at
1416630 at	-2.228066	7.077548	-10.172121	0.0000000	0.0000001	12.2319546	1416630 at
1419532 at	3.957625	8.717034	10.131239	0.0000000	0.0000001	12.1605507	1419532_at
1450357_a_at	-2.004817	7.286378	-10.059938	0.0000000	0.0000001	12.0355210	1450357_a_
1416111 at	-2.485629	7.345574	-10.037644	0.0000000	0.0000001	11.9962972	1416111 at
1424032 at	-2.558197	8.873183	-9.979905	0.0000000	0.0000001	11.8944216	1424032 at
1455940 x at	-2.106226	7.338847	-9.969623	0.0000000	0.0000001	11.8762359	1455940 x
1434484 at	3.793765	9.333854	9.871881	0.0000000	0.0000001	11.7026935	1434484 at
1438442_at	-2.086161	6.467229	-9.789604	0.0000000	0.0000001	11.5556715	1438442_at
1424852_at	-2.079566	7.848753	-9.736880	0.0000000	0.0000001	11.4610040	1424852 at
1421366 at	2.370128	6.277268	9.724039	0.0000000	0.0000001	11.4378941	1421366 at
1451780 at	-2.339556	8.271421	-9.673514	0.0000000	0.0000001	11.3467581	1451780_at
1433966 x at	2.439849	6.040605	9.625901	0.0000000	0.0000001	11.2605747	1433966_x_
1417290 at	3.366002	10.034197	9.617940	0.0000000	0.0000001	11.2461357	1417290 at
1457728_at	-2.012430	6.607683	-9.611215	0.0000000	0.0000001	11.2339328	1457728_at
1418762_at	-2.416650	7.039844	-9.606957	0.0000000	0.0000001	11.2262030	1418762_at
1453568 at	-2.058763	7.823380	-9.591043	0.0000000	0.0000001	11.1972924	1453568_at
1453181_x_at	2.595534	6.889508	9.565562	0.0000000	0.0000001	11.1509354	1453181_x_
1418770_at	-2.051861	9.053082	-9.532755	0.0000000	0.0000001	11.0911258	1418770_at
1428719_at	-2.718705	10.972461	-9.511812	0.0000000	0.0000001	11.0528727	1428719_at
1428141_at	-2.384930	8.331805	-9.322892	0.0000000	0.0000001	10.7052135	1428141_at
1434758_at	3.328694	7.534880	9.294563	0.0000000	0.0000002	10.6526788	1434758_at
1424254 at	3.423580	11.198672	9.274396	0.0000000	0.0000002	10.6152150	1424254_at
1456147_at	-2.067838	7.454899	-9.111384	0.0000000	0.0000002	10.3104198	1456147_at
1454795_at	-2.192125	5.399669	-9.058991	0.0000000	0.0000002	10.2117097	1454795 at
1442023_at	-3.114701	6.781595	-9.051738	0.0000000	0.0000002	10.1980160	1442023_at
1434260_at	-2.378914	8.055180	-9.040272	0.0000000	0.0000002	10.1763527	1434260_at
1419406 a at		6.853303	-8.952493	0.0000000	0.0000002	10.0099321	1419406 a
1419307_at		7.359685	-8.944453	0.0000000	0.0000003	9.9946371	1419307_at
1418353 at	-2.056743	7.652456	-8.935157	0.0000000	0.0000003	9.9769419	1418353_at
1442339 at	2.806857	9.640235	8.894367	0.0000000	0.0000003	9.8991623	1442339_at
1426112 a at	-2.213957	7.924286	-8.851565	0.0000000	0.0000003	9.8173048	1426112_a_
1429319_at	-2.215357 -2.085490	8.059202	-8.781035	0.0000000	0.0000003	9.6818794	1429319_at
1455656 at	-2.285492	9.600563	-8.753683	0.0000000	0.0000003	9.6291789	1455656_at
1452463_x_at	-2.260432 -2.131762	11.660468	-8.711819	0.0000000	0.0000003	9.5483238	1452463_x_
1417640 at	-3.178697	9.967844	-8.636231	0.0000000	0.0000003	9.4017332	1417640 at
1426170 a at	-2.087796	8.374877	-8.540883	0.0000000	0.0000004	9.2157120	1426170_a_
1420170_a_at 1418830_at	-3.048152	8.831048	-8.530082	0.0000000	0.0000004	9.2137120	1420170_a_ 1418830_at
1417933 at	-3.046132 2.474143	6.267192	8.528433	0.0000000	0.0000004 0.0000004	9.1943019	1417933 at
1417935_at 1437270 a at	-2.014470	6.207192 6.950214	-8.507232	0.0000000	0.0000004 0.0000005	9.1913308	1417935_at 1437270 a
1437270_a_at 1422122_at	-3.389169	8.726842	-8.307232 -8.496750	0.0000000	0.0000005	9.1497049 9.1291916	1437270_a_ 1422122_at
1422122_at 1440837 at	-3.140946	9.703369	-8.455553	0.0000000	0.0000005	9.1291910	1422122_at 1440837_at
1440857_at 1419744 at	-3.140946			0.0000000	0.0000005	9.0481801 8.9540029	1440837_at 1419744 at
 -		8.915592 6.150279	-8.407801				
1420591_at	2.372844	6.159378	8.347030	0.0000000	0.0000005	8.8336896	1420591_at
1451190_a_at	-2.41/109	8.898318	-8.315710	0.0000000	0.0000006	8.7714843	1451190_a_

		AveExpr	t	P Value	adj P Val	В	PROBEID
1417025_at	-2.477963	10.926377	-8.307213	0.0000000	0.0000006	8.7545850	1417025_at
1419297_at	-2.379136	8.324875	-8.233390	0.0000000	0.0000006	8.6073483	1419297_at
1442219 at	-2.551760	6.256627	-8.230154	0.0000000	0.0000006	8.6008783	1442219 at
1424831 at	2.039248	6.737744	8.154017	0.0000001	0.0000007	8.4482083	1424831 at
1460407 at	-2.755441	8.595874	-8.115586	0.0000001	0.0000007	8.3708425	1460407 at
1450808 at	2.642655	8.865072	8.043843	0.0000001	0.0000007	8.2258766	1450808 at
1449027_at	2.178390	6.409139	7.990540	0.0000001	0.0000008	8.1177116	1449027_at
	-2.254463	11.736950	-7.929228	0.0000001	0.0000009	7.9928111	1425519_a_
1420994 at	-2.513921	8.113607	-7.900336	0.0000001	0.0000009	7.9337746	1420994 at
1450570 a at		8.926450	-7.894407	0.0000001	0.0000009	7.9216459	1450570_a_
1448871 at	2.231166	7.329450	7.872376	0.0000001	0.0000009	7.8765327	1448871 at
1451537 at	2.414537	7.910675	7.836695	0.0000001	0.0000010	7.8033291	1451537 at
1450009 at	4.534943	8.963616	7.800680	0.0000001	0.0000010	7.7292636	1450009 at
1419647 a at	2.218588	7.239192	7.778965	0.0000001	0.0000011	7.6845191	1419647_a_
1420330 at	2.370164	8.000858	7.743629	0.0000001	0.0000011	7.6115707	1420330_at
1415964 at	-2.061860	9.628260	-7.724466	0.0000001	0.0000011	7.5719366	1415964 at
1448485 at	2.670927	6.744666	7.699902	0.0000001	0.0000011	7.5210605	1448485 at
1455530_at	-3.206975	9.891386	-7.659746	0.0000001	0.0000012	7.4377125	1455530 at
1417688 at	2.022483	7.400343	7.656498	0.0000002	0.0000012	7.4309599	1417688_at
1425951_a_at	2.092050	5.903867	7.622840	0.0000002	0.0000012	7.3609139	1425951_a_
1427329_a_at	-2.279496	10.713352	-7.622576	0.0000002	0.0000013	7.3603637	1427329_a_
1450826 a at	5.149836	9.343178	7.604859	0.0000002	0.0000013	7.3234295	1450826 a
1430820_a_a	-2.151971	9.324635	-7.539981	0.0000002	0.0000015	7.1878124	1416957_at
1430143 at	-2.151571	6.233731	-7.535232	0.0000002	0.0000015 0.0000015	7.1778624	1430143_at
1452431_s_at	-2.353826	11.319104	-7.512012	0.0000002	0.0000015 0.0000015	7.1291718	1452431_s_a
1419178 at	-2.072136	8.396370	-7.495368	0.0000002	0.0000013	7.1231716	1432431_s_a 1419178 at
1429889 at	-3.107103	10.160756	-7.458149	0.0000002	0.0000016	7.0942243	1419178_at 1429889_at
1422892_s_at	-2.075839	8.189835	-7.360002	0.0000002	0.0000010	6.8085910	1422892_s_at
1448291 at	2.362931	9.743778	7.303782	0.0000003	0.0000019	6.6892328	1422892_s_s_1448291 at
1436530 at	2.988063	9.145116	7.275470	0.0000003	0.0000020 0.0000021	6.6289620	1436530_at
1426640_s_at	-2.321964	9.965045 8.891141	-7.270277	0.0000003	0.0000021 0.0000021	6.6178964	1430330_at 1426640_s_a
	-2.321904	7.398532	-7.226744		0.0000021 0.0000023	6.5249813	1420040_s_s 1422003_at
1422003_at 1417074_at	3.083629	6.862341	7.159287	0.0000004		6.3805036	
				0.0000004	0.0000025	6.3093338	1417074_at
1452732_at	2.653971	8.218860	7.126162	0.0000005	0.0000026		1452732_at
1426725_s_at		10.430512	-7.089094	0.0000005	0.0000027	6.2295179	1426725_s_s
	-2.204225	8.421056	-7.083045	0.0000005	0.0000028	6.2164759	1425738_at
1417268_at	2.783217	8.704318	7.046889	0.0000006	0.0000029	6.1384199	1417268_at
1423571_at	-2.081538	8.183482	-6.896506	0.0000008	0.0000037	5.8119098	1423571_at
1427256_at	2.629055	7.018484	6.894813	0.0000008	0.0000037	5.8082176	1427256_at
1423466_at	-2.012809	8.982411	-6.802736	0.0000009	0.0000044	5.6068207	1423466_at
1451721_a_at	-2.163640	9.635463	-6.697242	0.0000012	0.0000051	5.3747358	1451721_a_
1428357_at	-2.283564	6.745833	-6.669835	0.0000013	0.0000053	5.3142095	1428357_at
1451965_at	-2.135769	8.266260	-6.664416	0.0000013	0.0000053	5.3022303	1451965_at
1419769_at	-2.427616	7.258350	-6.618937	0.0000014	0.0000057	5.2015507	1419769_at
1456328_at	-2.716776	9.437156	-6.561189	0.0000016	0.0000063	5.0733364	1456328_at
1448700_at	2.015343	6.710594	6.466993	0.0000020	0.0000074	4.8633147	1448700_at
1450912_at	-3.362475	8.532145	-6.231444	0.0000033	0.0000109	4.3334412	1450912_at
1456388_at	2.136135	6.745010	6.196562	0.0000036	0.0000116	4.2544189	1456388_at
1449184_at	2.317500	9.390679	6.117760	0.0000043	0.0000134	4.0753949	1449184_at
1419764_at	2.783230	9.974123	6.048963	0.0000050	0.0000149	3.9185317	1419764_at
1427860_{-} at	-2.517584	7.264402	-6.015492	0.0000054	0.0000158	3.8420278	1427860_at
1419599 s at	2.273227	9.136198	5.966927	0.0000061	0.0000172	3.7308094	1419599 s

	\log FC	AveExpr	t	P Value	adj P Val	В	PROBEID
1417876_at	2.224978	7.106351	5.942637	0.0000064	0.0000178	3.6750909	1417876_at
1419691_{at}	3.153071	8.663065	5.865349	0.0000077	0.0000201	3.4973883	1419691_at
1430523_s_at	-2.681387	8.461592	-5.571565	0.0000151	0.0000346	2.8165723	1430523_s_a
1451451_at	2.230858	4.546258	5.453106	0.0000199	0.0000433	2.5398639	1451451_at
1451798_at	2.014283	8.175836	5.375910	0.0000239	0.0000505	2.3589347	1451798_at
1427381_at	2.724338	7.134866	5.361703	0.0000247	0.0000520	2.3255870	1427381_at
1420699_at	-2.047066	9.533006	-5.317760	0.0000274	0.0000568	2.2223491	1420699_at
1446715_at	2.526318	5.046308	5.204263	0.0000358	0.0000706	1.9550873	1446715_at
1436759_x_at	-2.183333	6.293795	-5.146371	0.0000410	0.0000792	1.8184452	1436759_x_a
1426774_at	2.023646	7.488535	4.417297	0.0002339	0.0003688	0.0867007	1426774_at
1418204_s_at	2.263350	7.115411	4.320526	0.0002952	0.0004542	-0.1434704	1418204_s_a
1449984_at	2.742337	5.382566	3.470434	0.0022574	0.0030316	-2.1380991	1449984 _at
1453196_a_at	2.065262	8.268527	3.287918	0.0034692	0.0045574	-2.5536766	1453196_a_a
1449254_at	3.004684	6.741625	2.922870	0.0080684	0.0101003	-3.3614851	1449254_at
1449434_at	-2.139875	5.561232	-2.601059	0.0165841	0.0200683	-4.0395369	1449434_at
1416809_at	-3.269283	6.008609	-2.395429	0.0258859	0.0306618	-4.4515200	1416809_at

- 7.2 Apendice B. Tablas de genes anotados
- 7.2.1 Genes significativos anotados para el estudio con Linezolid
- 7.2.2 Genes significativos anotados para el estudio sin tratamiento
- 7.2.3 Genes significativos anotados para el estudio con Vancomizina
- 7.2.4 Genes significativos anotados comunes a los tres estudios
- 7.3 Apéndice C. Código

```
knitr::opts_chunk$set(echo = FALSE)
knitr::opts_chunk$set(warning = FALSE, message = FALSE)
# Install packages
# Load packages
library(knitr)
# Librería Bioconductor
if (!require("BiocManager", quietly = TRUE))
  install.packages("BiocManager")
# Lectura de CELFiles
if (!require(oligo)){
   BiocManager::install(oligo)
library(oligo)
# Paquete de calidad
if (!require(arrayQualityMetrics)){
  BiocManager::install(arrayQualityMetrics)
library(arrayQualityMetrics)
# Paquete de anotación
if (!require(mouse4302.db)){
  BiocManager::install("mouse4302.db")
library("mouse4302.db")
# Filtrado y anotación de genes
if (!require(genefilter)){
   BiocManager::install(genefilter)
}
library(genefilter)
if (!require("limma")){
  BiocManager::install("limma")
library("limma")
if (!require(annotate)){
```

```
BiocManager::install(annotate)
}
library(annotate)
if (!require(biomaRt)){
  BiocManager::install(biomaRt)
library(biomaRt)
BiocManager::install(c("clusterProfiler", "org.Mm.eg.db"))
library("clusterProfiler")
library(org.Mm.eg.db)
# Input / Output variables
# Tuning parameters
# ...
# Preparación de los datos. Filtrado de los datos
# Función para realizar el filtrado de los datos
filter_microarray <- function(allTargets, seed = 123) {</pre>
  # Configurar la semilla aleatoria
  print(seed)
  set.seed(seed)
  # Filtrar las filas donde 'time' no sea 'hour 2'
  filtered <- subset(allTargets, time != "hour 2")</pre>
  # Dividir el dataset por grupos únicos de 'infection' + 'aqent'
  filtered$group <- interaction(filtered$infection, filtered$agent)</pre>
  # Seleccionar 4 muestras al azar de cada grupo
  selected <- do.call(rbind, lapply(split(filtered, filtered$group), function(group_data) {</pre>
    if (nrow(group_data) > 4) {
      group_data[sample(1:nrow(group_data), 4), ]
    } else {
      group_data
    }
  }))
  # Obtener los índices originales como nombres de las filas seleccionadas
  original_indices <- match(selected$sample, allTargets$sample)</pre>
  # Modificar los rownames usando 'sample' y los índices originales
  rownames(selected) <- paste0(selected$sample, ".", original_indices)</pre>
  # Eliminar la columna 'group' y devolver el resultado
  selected$group <- NULL</pre>
  return(selected)
}
# Simular el dataset basado en la descripción proporcionada
sample = c("GSM944831", "GSM944838", "GSM944845", "GSM944852", "GSM944859",
```

```
"GSM944833", "GSM944840", "GSM944847", "GSM944854", "GSM944861",
           "GSM944834", "GSM944841", "GSM944848", "GSM944855", "GSM944862",
           "GSM944832", "GSM944839", "GSM944846", "GSM944853", "GSM944860",
           "GSM944835", "GSM944842", "GSM944849", "GSM944856", "GSM944863",
           "GSM944836", "GSM944843", "GSM944850", "GSM944857", "GSM944864",
           "GSM944837", "GSM944844", "GSM944851", "GSM944858", "GSM944865")
allTargets <- data.frame(</pre>
  sample = sample,
  infection = c(rep("uninfected", 15), rep("S. aureus USA300", 20)),
  time = c(rep("hour 0", 15), rep("hour 2", 5), rep("hour 24", 15)),
  agent = c(rep("untreated", 5), rep("linezolid", 5), rep("vancomycin", 5),
            rep("untreated", 5), rep("untreated", 5), rep("linezolid", 5), rep("vancomycin", 5)),
 filename = paste0(sample, ".CEL"),
  color = c(rep("lightblue", 5), rep("pink", 5), rep("lightgreen", 5),
            rep("grey", 5), rep("blue", 5), rep("red", 5), rep("green", 5))
# Aplicar la función (cambiar 123 por vuestro ID de la UOC u otro número que podáis escribir en el docu
result <- filter_microarray(allTargets, seed=25178976)</pre>
result$grupo <- c(rep("INF.LIN",4),rep("NOINF.LIN",4),rep("INF.NOTTREAT",4),
                  rep("NOINF.NOTTREAT",4),rep("INF.VAN",4),rep("NOINF.VAN",4))
# Se crea el objeto AnnotatedDataFrame
targets <- AnnotatedDataFrame(result)</pre>
# Cargar todos los ficheros uno a uno con extensión CEL
celFiles <- result$filename</pre>
rawData <- read.celfiles(file.path(params$data_folder,celFiles),phenoData=targets)</pre>
#Diagrama de cajas
sampleNames <- as.character(result$grupo)</pre>
sampleColor <- as.character(result$color)</pre>
boxplot(rawData, which="all",las=2, main="Distribución intensidad datos en crudo",
        cex.axis=0.6, col=sampleColor, names=sampleNames)
legend("topright", legend = c("US3000 - linezolid", "No infectado - linezolid",
                               "US3000 - sin tratamiento", "No infectado - Sin Tratamiento",
                               "US3000 - vancomycin", "No infectado - vancomycin"),
       fill = c("red", "pink", "blue", "lightblue", "green", "lightgreen"), title = "Grupos")
# Agrupación por clusters
clust.euclid.average <- hclust(dist(t(exprs(rawData))),method="average")</pre>
plot(clust.euclid.average, labels <- sampleNames, main="Clustering jerarquizado datos en crudo", cex=0.7, ha
# Función para realizar una representacion de PCA
plotPCA <- function ( X, labels=NULL, colors=NULL, dataDesc="", scale=FALSE,
                      formapunts=NULL, myCex=0.8,...)
 pcX<-prcomp(t(X), scale=scale) # o prcomp(t(X))</pre>
```

```
loads<- round(pcX$sdev^2/sum(pcX$sdev^2)*100,1)</pre>
  xlab<-c(paste("PC1",loads[1],"%"))</pre>
  ylab<-c(paste("PC2",loads[2],"%"))</pre>
  if (is.null(colors)) colors=1
  plot(pcX$x[,1:2],xlab=xlab,ylab=ylab, col=colors, pch=formapunts,
       xlim=c(min(pcX_x^{1},1)-100000, max(pcX_x^{1},1)+100000), ylim=c(min(pcX_x^{1},2)-100000, max(pcX_x^{1},2)
  text(pcX$x[,1],pcX$x[,2], labels, pos=3, cex=myCex)
  title(paste("Plot of first 2 PCs for expressions in", dataDesc, sep=" "), cex=0.8)
  legend("bottomright", legend = c("US3000 - linezolid", "No infectado - linezolid",
                                 "US3000 - sin tratamiento", "No infectado - Sin Tratamiento",
                                 "US3000 - vancomycin", "No infectado - vancomycin"),
         col = c("red", "pink", "blue", "lightblue", "green", "lightgreen"),
         pch = c(15,22,16,21,17,24), title = "Grupos")
}
# Representación gráfica del Análisis de componentes principales (PCA)
plotPCA(exprs(rawData), labels=sampleNames, dataDesc="raw data", colors=sampleColor,
        formapunts=c(rep(15,4),rep(22,4),rep(16,4),rep(21,4),rep(17,4),rep(24,4)),
        myCex=0.5)
## Control de calidad con el paquete `arrayQualityMetrics`
# Avoid re-running it each time the script is executed.
rerun <- FALSE
if(rerun){
  arrayQualityMetrics(rawData, reporttitle="Anexo I. Calidad de los datos", force=TRUE)
}
# Construcción del Expression set
eset<-rma(rawData)</pre>
write.exprs(eset, file.path(params$results_folder, "NormData.txt"))
# Filtrado de los datos. Variabilidad de más del 90%
annotation(eset)<-"mouse4302.db"</pre>
eset_filtered <- nsFilter(eset, var.func=IQR,</pre>
                           var.cutoff=0.9, var.filter=TRUE, require.entrez=FALSE,
                           filterByQuantile=TRUE)
#Número de genes borrados
print(eset_filtered)
#Número de genes incluidos en el estudio
print(eset_filtered$eset)
dim(eset_filtered$eset)
# Matriz de datos filtrados
filteredEset <- eset_filtered$eset</pre>
filteredData <- exprs(filteredEset)</pre>
colnames(filteredData) <- rownames(pData(eset_filtered$eset))</pre>
# Creación de la matriz de diseño
lev <- factor(result$grupo, levels = unique(result$grupo))</pre>
design <-model.matrix(~0+lev,pData(filteredEset))</pre>
```

```
colnames(design) <- levels(lev)</pre>
rownames(design) <- sampleNames</pre>
# Visualización de la matriz de diseño
knitr::kable(design,
             col.names = gsub("[.]", " ", colnames(design)),
             booktabs = TRUE,
             caption = 'Matriz de diseño')
# Creación de la matriz de contraste
mCont <- makeContrasts(LIN_INF_NOINF = INF.LIN - NOINF.LIN,</pre>
                        NOTTREAT_INF_NOINF = INF.NOTTREAT - NOINF.NOTTREAT,
                        VAN_INF_NOINF = INF.VAN - NOINF.VAN,
                        levels = design)
# Visualización de la matriz de contraste
knitr::kable(mCont,
             col.names = gsub("[.]", " ", colnames(mCont)),
             booktabs = TRUE,
             caption = 'Matriz de contraste')
 # Construcción del modelo lineal
fit <- lmFit(filteredEset,design)</pre>
fit.main <- contrasts.fit(fit,mCont)</pre>
fit.main <- eBayes(fit.main)</pre>
# Función para generar los mapas de calor
plotHeatmap <- function ( X, title="")</pre>
  selectedData <- filteredData[X,]</pre>
  #HEATMAP PLOT
  my_palette <- colorRampPalette(c("yellow", "red"))(n = 299)</pre>
  library(gplots)
  heatmap.2(selectedData,
            Rowv=TRUE,
            Colv=TRUE,
            main=title,
            scale="row",
            col=my_palette,
            sepcolor="white",
            sepwidth=c(0.05,0.05),
            cexRow=0.5,
            cexCol=0.9,
            key=TRUE,
            keysize=1.5,
            density.info="histogram",
            ColSideColors=sampleColor,
            tracecol=NULL,
            srtCol=30)
```

```
# Tratamiento Linezolid - diferencia entre Infectados y no infectados
topTabLIN <- topTable (fit.main, number=nrow(fit.main), coef="LIN_INF_NOINF",
                      adjust="fdr", lfc=2, p.value=0.05)
# Sin tratamiento - diferencia entre Infectados y no infectados
topTabNOTTREAT <- topTable (fit.main, number=nrow(fit.main), coef="NOTTREAT INF NOINF",
                        adjust="fdr", lfc=2, p.value=0.05)
# Vancomycin - diferencia entre Infectados y no infectados
topTabVAN <- topTable (fit.main, number=nrow(fit.main), coef="VAN_INF_NOINF",</pre>
                             adjust="fdr", lfc=2, p.value=0.05)
# Linezolid. Visualización de la tabla Infectados vs No Infectados
knitr::kable(head(topTabLIN),
             col.names = gsub("[.]", " ", colnames(topTabLIN)),
             booktabs = TRUE,
             caption = 'Genes diferencialmente expresados LINEZOLID')
# Tabla de los genes diferencialmente expresados
#Linezolid. Infectados vs No Infectados
selectedRows <- rownames(filteredData) %in% rownames(topTabLIN)</pre>
title <- paste("HeatMap LINEZOLID", "Infectados vs No Infectados FC>=2", sep="\n")
plotHeatmap(selectedRows,title)
# NoTratados. Visualización de la tabla Infectados vs No Infectados
knitr::kable(head(topTabNOTTREAT),
             col.names = gsub("[.]", " ", colnames(topTabNOTTREAT)),
             booktabs = TRUE,
             caption = 'Genes diferencialmente expresados No Tratados')
# Tabla de los genes diferencialmente expresados
#No tratados. Infectados vs No Infectados
selectedRows <- rownames(filteredData) %in% rownames(topTabNOTTREAT)</pre>
title <- paste("HeatMap Sin Tratamiento", "Infectados vs No Infectados FC>=2", sep="\n")
plotHeatmap(selectedRows,title)
# NoTratados. Visualización de la tabla Infectados vs No Infectados
knitr::kable(head(topTabVAN),
             col.names = gsub("[.]", " ", colnames(topTabVAN)),
             booktabs = TRUE,
             caption = 'Genes diferencialmente expresados. Vancomycina.')
# Tabla de los genes diferencialmente expresados
#Vancomycin. Infectados vs No Infectados
selectedRows <- rownames(filteredData) %in% rownames(topTabVAN)</pre>
title <- paste("HeatMap VANCOMYCIN", "Infectados vs No Infectados FC>=2", sep="\n")
plotHeatmap(selectedRows,title)
# Detección de genes expresados diferencialmente
rtdo_contrates <- decideTests(fit.main, method = "separate", adjust.method = "fdr",
                       p.value = 0.05, lfc = 2)
```

```
# LINZENOLID
genes_up_LIN <- rownames(filteredEset)[rtdo_contrates[, "LIN_INF_NOINF"] == 1]</pre>
genes notSig LIN <- rownames(filteredEset)[rtdo contrates[, "LIN INF NOINF"] == 0]</pre>
genes down LIN <- rownames(filteredEset)[rtdo contrates[, "LIN INF NOINF"] == -1]
up_LIN <- length(genes_up_LIN)</pre>
notSign_LIN <- length(genes_notSig_LIN)</pre>
down_LIN <- length(genes_down_LIN)</pre>
# SIN TRATAMIENTO
genes_up_NT <- rownames(filteredEset)[rtdo_contrates[, "NOTTREAT_INF_NOINF"] == 1]</pre>
genes_notSig_NT <- rownames(filteredEset)[rtdo_contrates[, "NOTTREAT_INF_NOINF"] == 0]</pre>
genes_down_NT <- rownames(filteredEset)[rtdo_contrates[, "NOTTREAT_INF_NOINF"] == -1]</pre>
up_NT <- length(genes_up_NT)</pre>
notSign_NT <- length(genes_notSig_NT)</pre>
down_NT <- length(genes_down_NT)</pre>
# VANCOMICINA
genes_up_VAN <- rownames(filteredEset)[rtdo_contrates[, "VAN_INF_NOINF"] == 1]</pre>
genes_notSig_VAN <- rownames(filteredEset)[rtdo_contrates[, "VAN_INF_NOINF"] == 0]</pre>
genes_down_VAN <- rownames(filteredEset)[rtdo_contrates[, "VAN_INF_NOINF"] == -1]</pre>
up VAN <- length(genes up VAN)
notSign_VAN <- length(genes_notSig_VAN)</pre>
down_VAN <- length(genes_down_VAN)</pre>
common_UP_LIN_NT <- intersect(genes_up_LIN, genes_up_NT)</pre>
common_UP_LIN_VAN <- intersect(genes_up_LIN, genes_up_VAN)</pre>
common_UP_NT_VAN <- intersect(genes_up_NT, genes_up_VAN)</pre>
common_UP_LIN_NT_VAN <- intersect(common_UP_LIN_NT,common_UP_LIN_VAN )</pre>
# Genes comunes expresados diferencialmente a los tres estudios
vennTable <- vennCounts(rtdo_contrates,include="up")</pre>
knitr::kable(vennTable[1:dim(vennTable)[1],1:dim(vennTable)[2]],
              col.names = gsub("[.]", " ", c("Linezolid", "Sin Tratamiento",
                                               "Vancomizina", "N Comunes")),
             booktabs = TRUE,
             aption = 'Genes comunes en los diferentes estudios')
# Diagrama de Venn Genes altamente diferenciados entre grupos
vennDiagram(rtdo contrates, include = "up")
# Estudio de contraste Linezolid
topTabLIN$PROBEID <- rownames(topTabLIN)</pre>
myProbes_LIN <- topTabLIN$PROBEID</pre>
# Se realiza la anotación de los genes
geneAnots_LIN <- AnnotationDbi::select(mouse4302.db, keys=myProbes_LIN,</pre>
                     columns = c("SYMBOL", "GENENAME", "ENSEMBL", "ENTREZID"))
# Se mezclan ambas tablas por PROBEID, para ordenarlas se mantiene el valor de B
annotatedTopTab_LIN <- merge(x=geneAnots_LIN, y=topTabLIN, by.x="PROBEID", by.y="PROBEID")
\# Se ordenan las claves en orden descendente pro la columna B
sortAnnotatedTopTabLIn <- annotatedTopTab_LIN[order(-topTabLIN$B),</pre>
                                   c("PROBEID", "SYMBOL", "GENENAME", "ENSEMBL", "ENTREZID",
```

```
sortAnnotatedTopTabLIn <- sortAnnotatedTopTabLIn[!is.na(sortAnnotatedTopTabLIn$SYMBOL),]</pre>
dim(sortAnnotatedTopTabLIn)
# Estudio de contraste Sin tratamiento
topTabNOTTREAT$PROBEID <- rownames(topTabNOTTREAT)</pre>
myProbes_NOTTREAT <- topTabNOTTREAT$PROBEID</pre>
# Se realiza la anotación de los genes
geneAnots_NOTTREAT <- AnnotationDbi::select(mouse4302.db, keys=myProbes_NOTTREAT,</pre>
                         columns = c("SYMBOL","GENENAME","ENSEMBL","ENTREZID"))
\# Se mezclan ambas tablas por PROBEID, para ordenarlas se mantiene el valor de B
annotatedTopTab_NOTTREAT <- merge(x=geneAnots_NOTTREAT, y=topTabNOTTREAT, by.x="PROBEID", by.y="PROBEID"
# Se ordenan las claves en orden descendente pro la columna B
sortAnnotatedTopTabNOTTREAT <- annotatedTopTab_NOTTREAT[order(-topTabNOTTREAT$B),</pre>
                                               c("PROBEID", "SYMBOL", "GENENAME", "ENSEMBL", "ENTREZID",
                                                  "B")]
sortAnnotatedTopTabNOTTREAT <- sortAnnotatedTopTabNOTTREAT[!is.na(sortAnnotatedTopTabNOTTREAT$SYMBOL),]
dim(sortAnnotatedTopTabNOTTREAT)
# Estudio de contraste Vancomicina
topTabVAN$PROBEID <- rownames(topTabVAN)</pre>
myProbes_VAN <- topTabVAN$PROBEID</pre>
# Se realiza la anotación de los genes
geneAnots VAN <- AnnotationDbi::select(mouse4302.db, keys=myProbes VAN,</pre>
                              columns = c("SYMBOL", "GENENAME", "ENSEMBL", "ENTREZID"))
# Se mezclan ambas tablas por PROBEID, para ordenarlas se mantiene el valor de B
annotatedTopTab_VAN <- merge(x=geneAnots_VAN, y=topTabVAN, by.x="PROBEID", by.y="PROBEID")
\# Se ordenan las claves en orden descendente pro la columna B
sortAnnotatedTopTabVAN <- annotatedTopTab_VAN[order(-topTabVAN$B),</pre>
                                                          c("PROBEID", "SYMBOL", "GENENAME", "ENSEMBL", "ENTR
                                                            "B")]
sortAnnotatedTopTabVAN <- sortAnnotatedTopTabVAN[!is.na(sortAnnotatedTopTabVAN$SYMBOL),]
dim(sortAnnotatedTopTabVAN)
# Se realiza la anotación de los genes comunes a los tres estudios
geneAnots_common <- AnnotationDbi::select(mouse4302.db, keys=common_UP_LIN_NT_VAN,
                                        columns = c("SYMBOL", "GENENAME", "ENSEMBL", "ENTREZID"))
# Genes diferencialmente expresados y anotados para el contraste de Linezolid
knitr::kable(head(sortAnnotatedTopTabLIn[,c("PROBEID", "SYMBOL", "GENENAME", "ENSEMBL",
                                               "ENTREZID")],10),
             col.names = gsub("[.]", " ", c("PROBEID", "SYMBOL", "GENENAME", "ENSEMBL",
                                               "ENTREZID")),
             booktabs = TRUE,
             aption = 'Principales genes differencialmente expresados. Linezolid')
# Genes diferencialmente expresados y anotados para el contraste Sin Tratamiento
knitr::kable(head(sortAnnotatedTopTabNOTTREAT[,c("PROBEID", "SYMBOL", "GENENAME", "ENSEMBL",
                                                   "ENTREZID")],10),
             col.names = gsub("[.]", " ", c("PROBEID", "SYMBOL", "GENENAME", "ENSEMBL",
```

```
"ENTREZID")),
             booktabs = TRUE,
             aption = 'Principales genes diferencialmente expresados. Sin tratamiento')
# Genes diferencialmente expresados y anotados para el contraste de Vancomicina
knitr::kable(head(sortAnnotatedTopTabVAN[,c("PROBEID", "SYMBOL", "GENENAME", "ENSEMBL",
                                             "ENTREZID")],10),
             col.names = gsub("[.]", " ", c("PROBEID", "SYMBOL", "GENENAME", "ENSEMBL",
                                              "ENTREZID")),
             booktabs = TRUE,
             aption = 'Principales genes diferencialmente expresados. Vancomizina')
# Genes diferencialmente expresados y anotados para el contraste de Vancomicina
knitr::kable(head(geneAnots_common[,c("PROBEID","SYMBOL","GENENAME","ENSEMBL",
                                             "ENTREZID")],10),
             col.names = gsub("[.]", " ", c("PROBEID", "SYMBOL", "GENENAME", "ENSEMBL",
                                              "ENTREZID")),
             booktabs = TRUE,
             aption = 'Principales genes diferencialmente expresados. Comunes')
genes_ENTREZ_LIN <- sortAnnotatedTopTabLIn$ENTREZID</pre>
ego_LIN <- enrichGO(
 gene = genes_ENTREZ_LIN,
  OrgDb = org.Mm.eg.db,
 keyType = "ENTREZID",
  ont = "BP",
                            # Ontología: BP (Biological Process), MF (Molecular Function), CC (Cellula
  pAdjustMethod = "fdr",
                             # Método de ajuste para múltiples pruebas
 pvalueCutoff = 0.05,
                            # Umbral de significancia
  qvalueCutoff = 0.2
                            # Umbral de Q-valor
# Ver los resultados
head(ego_LIN)
ego_LIN_df <- as.data.frame(ego_LIN)</pre>
head(ego_LIN_df)
# Representación gráfica de la matriz de correlación
par(mfrow=c(1,2))
barplot(ego_LIN, showCategory = 10, title = "Top 10 GO Terms")
dotplot(ego_LIN, showCategory = 10, title = "GO Enrichment Dot Plot")
par(mfrow=c(1,1))
# Representación gráfica de la matriz de correlación
par(mfrow=c(1,1))
cnetplot(ego_LIN, categorySize = "geneNum", schowCategory = 15, vertex.label.cex = 0.75)
par(mfrow=c(1,1))
genes_ENTREZ_NT <- sortAnnotatedTopTabNOTTREAT$ENTREZID</pre>
ego_NT <- enrichGO(
 gene = genes_ENTREZ_NT,
```

```
OrgDb = org.Mm.eg.db,
  keyType = "ENTREZID",
  ont = "BP",
                             # Ontología: BP (Biological Process), MF (Molecular Function), CC (Cellula
                            # Método de ajuste para múltiples pruebas
  pAdjustMethod = "fdr",
 pvalueCutoff = 0.05,
                           # Umbral de significancia
  qvalueCutoff = 0.2
                            # Umbral de Q-valor
# Ver los resultados
head(ego NT)
ego_NT_df <- as.data.frame(ego_NT)</pre>
head(ego_NT_df)
# Representación gráfica de la matriz de correlación
par(mfrow=c(1,2))
barplot(ego_NT, showCategory = 10, title = "Top 10 GO Terms")
dotplot(ego_NT, showCategory = 10, title = "GO Enrichment Dot Plot")
par(mfrow=c(1,1))
# Representación gráfica de la matriz de correlación
par(mfrow=c(1,1))
cnetplot(ego_NT, categorySize = "geneNum", schowCategory = 15, vertex.label.cex = 0.75)
par(mfrow=c(1,1))
# Lista de genes significativos (símbolos)
genes ENTREZ VAN <- sortAnnotatedTopTabVAN$ENTREZID
ego VAN <- enrichGO(
 gene = genes_ENTREZ_VAN,
  OrgDb = org.Mm.eg.db,
  keyType = "ENTREZID",
  ont = "BP",
                            # Ontología: BP (Biological Process), MF (Molecular Function), CC (Cellula
  pAdjustMethod = "fdr",
                            # Método de ajuste para múltiples pruebas
 pvalueCutoff = 0.05, # Umbral de significancia
                            # Umbral de Q-valor
  qvalueCutoff = 0.2
# Ver los resultados
head(ego_VAN)
ego_VAN_df <- as.data.frame(ego_VAN)</pre>
head(ego_VAN_df)
# Representación gráfica de la matriz de correlación
par(mfrow=c(1,2))
barplot(ego_VAN, showCategory = 10, title = "Top 10 GO Terms")
dotplot(ego_VAN, showCategory = 10, title = "GO Enrichment Dot Plot")
par(mfrow=c(1,1))
# Representación gráfica de la matriz de correlación
par(mfrow=c(1,1))
cnetplot(ego_VAN, categorySize = "geneNum", schowCategory = 15, vertex.label.cex = 0.75)
```

```
par(mfrow=c(1,1))
# Lista de genes significativos (símbolos)
genes_ENTREZ_COMMON <- geneAnots_common$ENTREZID</pre>
ego COMMON <- enrichGO(
 gene = genes_ENTREZ_COMMON,
 OrgDb = org.Mm.eg.db,
 keyType = "ENTREZID",
  ont = "BP",
                            # Ontología: BP (Biological Process), MF (Molecular Function), CC (Cellula
  pAdjustMethod = "fdr",
                             # Método de ajuste para múltiples pruebas
 pvalueCutoff = 0.05, # Umbral de significancia
qvalueCutoff = 0.2 # Umbral de O-valor
                            # Umbral de Q-valor
  qvalueCutoff = 0.2
# Ver los resultados
head(ego_COMMON)
ego_COMMON_df <- as.data.frame(ego_COMMON)</pre>
head(ego_COMMON_df)
# Representación gráfica de la matriz de correlación
par(mfrow=c(1,2))
barplot(ego_COMMON, showCategory = 10, title = "Top 10 GO Terms")
dotplot(ego COMMON, showCategory = 10, title = "GO Enrichment Dot Plot")
par(mfrow=c(1,1))
# Representación gráfica de la matriz de correlación
par(mfrow=c(1,1))
cnetplot(ego_COMMON, categorySize = "geneNum", schowCategory = 15, vertex.label.cex = 0.75)
par(mfrow=c(1,1))
# Linezolid. Visualización de la tabla Infectados vs No Infectados
knitr::kable(topTabLIN,
             col.names = gsub("[.]", " ", colnames(topTabLIN)),
             booktabs = TRUE,
             caption = 'Genes diferencialmente expresados LINEZOLID')
# NoTratados. Visualización de la tabla Infectados vs No Infectados
knitr::kable(topTabNOTTREAT,
             col.names = gsub("[.]", " ", colnames(topTabNOTTREAT)),
             booktabs = TRUE,
             caption = 'Genes diferencialmente expresados No Tratados')
# NoTratados. Visualización de la tabla Infectados vs No Infectados
knitr::kable(topTabVAN,
             col.names = gsub("[.]", " ", colnames(topTabVAN)),
             booktabs = TRUE,
             caption = 'Genes diferencialmente expresados. Vancomycina.')
# Genes diferencialmente expresados y anotados para el contraste de Linezolid
knitr::kable(sortAnnotatedTopTabLIn[,c("PROBEID","SYMBOL","GENENAME","ENSEMBL",
                                              "ENTREZID")],
```

```
col.names = gsub("[.]", " ", c("PROBEID", "SYMBOL", "GENENAME", "ENSEMBL",
                                              "ENTREZID")),
             booktabs = TRUE,
             aption = 'Principales genes diferencialmente expresados. Linezolid')
# Genes diferencialmente expresados y anotados para el contraste Sin Tratamiento
knitr::kable(sortAnnotatedTopTabNOTTREAT[,c("PROBEID", "SYMBOL", "GENENAME", "ENSEMBL",
                                                 "ENTREZID")],
             col.names = gsub("[.]", " ", c("PROBEID", "SYMBOL", "GENENAME", "ENSEMBL",
                                              "ENTREZID")).
             booktabs = TRUE,
             aption = 'Principales genes diferencialmente expresados. Sin tratamiento')
# Genes diferencialmente expresados y anotados para el contraste de Vancomicina
knitr::kable(sortAnnotatedTopTabVAN[,c("PROBEID", "SYMBOL", "GENENAME", "ENSEMBL",
                                             "ENTREZID")],
             col.names = gsub("[.]", " ", c("PROBEID", "SYMBOL", "GENENAME", "ENSEMBL",
                                              "ENTREZID")),
             booktabs = TRUE,
             aption = 'Principales genes diferencialmente expresados. Vancomizina')
# Genes diferencialmente expresados y anotados para el contraste de Vancomicina
knitr::kable(geneAnots_common[,c("PROBEID","SYMBOL","GENENAME","ENSEMBL",
                                            "ENTREZID")],
             col.names = gsub("[.]", " ", c("PROBEID", "SYMBOL", "GENENAME", "ENSEMBL",
                                             "ENTREZID")),
             booktabs = TRUE,
             aption = 'Principales genes diferencialmente expresados. Comunes')
```