Bret Young

DSC 640

Assignment 5.2

5 November 2020

- heat map
- · spatial map
- contour plot

```
In [1]: # Import required packages
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt

In [50]: # Load dataset
   url = '~/Desktop/DSC 640/ex5-2/ppg2008.csv'
   data_1 = pd.read_csv(url, index_col = 0)
In [51]: data_1.head()
```

G MIN PTS FGM FGA FGP FTM FTA

Out[51]:

	_		•							0	0.7.	U. .	•	
Name														
Dwyane Wade	79	38.6	30.2	10.8	22.0	0.491	7.5	9.8	0.765	1.1	3.5	0.317	1.1	3.9
LeBron James	81	37.7	28.4	9.7	19.9	0.489	7.3	9.4	0.780	1.6	4.7	0.344	1.3	6.3
Kobe Bryant	82	36.2	26.8	9.8	20.9	0.467	5.9	6.9	0.856	1.4	4.1	0.351	1.1	4.1
Dirk Nowitzki	81	37.7	25.9	9.6	20.0	0.479	6.0	6.7	0.890	0.8	2.1	0.359	1.1	7.3
Danny Granger	67	36.2	25.8	8.5	19.1	0.447	6.0	6.9	0.878	2.7	6.7	0.404	0.7	4.4

FTP 3PM 3PA

3PP ORB DRB

```
In [53]: # normalize data so "G" does not dominate colors
          data 1 norm = (data 1 - data 1.mean()) / (data 1.max() - data 1.min())
In [133]: # Import required package
          import seaborn as sns
          # Create axes and figure
          fig = plt.figure()
          ax1 = fig.add subplot(111)
          # Set figure size
          fig.set size inches(8, 11)
          # Add plot to figure
          ax1.pcolor(data 1 norm, cmap=plt.cm.Blues, alpha=0.8)
          # Set titles, caption and axis labels
          fig.suptitle("NBA Player Per Game Stats", x = 0.36, y = 1.09, fontsize
          =20)
          fig.text(.90, .1, 'Source: Data Collected By Nathan Yau from databaseB
          asketball', ha = 'right', color = 'gray')
          ax1.set title("2008-2009 season top 50 scorers.", y = 1.21, loc='left'
          , color = 'gray')
          # Set labels
          labels = ['Games', 'Minutes', 'Points', 'Field Goals Made', 'Field Goa
          1 Attempts', 'Field Goal Percentage', 'Free Throws Made', 'Free Throw
          Attempts', 'Free Throw Percentage',
              'Three-pointers made', 'Three-point Attempts', 'Three-point Percen
          tage', 'Offensive Rebounds', 'Defensive Rebounds', 'Total Rebounds', '
          Assists', 'Steals', 'Blocks', 'Turnovers', 'Personal Fouls']
          ax1.set xticklabels(labels, minor = False)
          ax1.set yticklabels(data 1 norm.index, minor = False)
          # put the major ticks at the middle of each cell
          ax1.set xticks(np.arange(data 1 norm.shape[1]) + 0.8, minor=False)
          ax1.set yticks(np.arange(data 1 norm.shape[0]) + 0.5, minor=False)
          # rotate the x labels and move to top
          ax1.xaxis.tick top()
          plt.xticks(rotation = 75)
          # Turn off ticks
          for t in ax1.xaxis.get major ticks():
              t.tick1line.set visible(False)
              t.tick2line.set visible(False)
          for t in ax1.yaxis.get major ticks():
              t.tick1line.set visible(False)
              t.tick2line.set visible(False)
```

```
# Remove frame
ax1.spines['right'].set_visible(False)
ax1.spines['left'].set_visible(False)
ax1.spines['top'].set_visible(False)
ax1.spines['bottom'].set_visible(False)

# Show plot
plt.show

# save file
fig.savefig("python_heatmap.png", bbox_inches='tight')
```

NBA Player Per Game Stats

2008-2009 season top 50 scorers.

Source: Data Collected By Nathan Yau from databaseBasketball

```
In [109]: # Load dataset
url_2 = '~/Desktop/DSC 640/ex5-2/costcos-geocoded.csv'
data_2 = pd.read_csv(url_2)
```

In [110]: data_2.head()

Out[110]:

	Address	City	State	Zip Code	Latitude	Longitude
0	1205 N. Memorial Parkway	Huntsville	Alabama	35801-5930	34.743095	-86.600955
1	3650 Galleria Circle	Hoover	Alabama	35244-2346	33.377649	-86.812420
2	8251 Eastchase Parkway	Montgomery	Alabama	36117	32.363889	-86.150884
3	5225 Commercial Boulevard	Juneau	Alaska	99801-7210	58.359200	-134.483000
4	330 West Dimond Blvd	Anchorage	Alaska	99515-1950	61.143266	-149.884217

```
In [146]: # import libraries
import folium
from IPython.display import HTML, display

# Make an empty map
m = folium.Map(location = [37.0902, -95.7129], tiles = "OpenStreetMap"
, zoom_start = 3.25)

# add markers
for i in range(0, len(data_2)):
    folium.CircleMarker([data_2.iloc[i]['Latitude'], data_2.iloc[i]['Longitude']], radius = .25, popup = data_2.iloc[i]['Address']).add_to(m)

# display map in notebook
display(m)

# save file
m.save("python spatial map.html")
```

Make this Notebook Trusted to load map: File -> Trust Notebook

```
In [154]: def f(x, y):
    return np.sin(x) ** 10 + np.cos(10 + y * x) * np.cos(x)

In [155]: x = np.linspace(0, 5, 50)
    y = np.linspace(0, 5, 40)

    x, Y = np.meshgrid(x, y)

    z = np.array([f(x, y) for (x,y) in zip(np.ravel(X), np.ravel(Y))])
    z = z.reshape(X.shape)
```

```
In [184]: # import library
          from mpl toolkits.axes grid1 import make axes locatable
          # Create axes and figure
          fig = plt.figure()
          ax1 = fig.add subplot(111)
          # Set figure size
          fig.set size inches(8, 8)
          contours = plt.contour(X, Y, Z, 4, colors = 'black')
          ax1.clabel(contours, inline = True, fontsize = 9)
          ax1.imshow(Z, extent=[0, 5, 0, 5], origin='lower',
                     cmap = 'RdBu', alpha = 0.5)
          divider = make axes locatable(ax1)
          cax = divider.append axes("right", size = "5%", pad = 0.1)
          fig.colorbar(ax1.imshow(Z, extent = [0, 5, 0, 5], origin = 'lower',
                     cmap='RdBu', alpha = 0.5), cax = cax)
          # Set titles, caption and axis labels
          fig.suptitle("Contour Plot", x = 0.23, y = .94, fontsize = 20)
          fig.text(.90, .08, 'Source: Generated data with Numpy in Python', ha =
          'right', color = 'gray')
          # save file
          fig.savefig("python contour.png", bbox inches='tight')
```

Contour Plot

Source: Generated data with Numpy in Python

In []: