

Bront Applying quotient rule to de w/ relation (+)? de = dm +(+) - m(+) d+ d+ (5) where dma = mar(7) and ma(+) = Pair ta(+) (8) Ingeneral: tair = trot - to so: dtain - - dte but the = Me and de = 0 so: dtar = -1 dine = mexit (9)

Substituting (3,7,8,9) into (6) then into (5) of dP - 4 [mairRT - Pair mexit] (10) From Q, : Pair(0) = 9.8 (1000) 0.15 + 101325 ICo: Paro = 107.8 KPa, Ho = 0.15m, H30 = 0.1m, mexito = 0 Functions: Mexit (Parr, Hi), dr (Hz, mexit, Parr Beydocode: Use of Calc P Use mexito cale Hi, Hz - Loop until +3=0,5m

(5)	Solving answer from problem 2 for Pair yields
0	Parr = Patm + 9 Hilt) pe + (mexit) (11)
9	Petips2)
14	
	Where dlam = 0 and if flow rate is constant?
	dimenst =0, where by continuity fair = te.
-	
	Also
0	H3+H=C 50: dH= dH2
11.5	Also: Hz+H,=C so: dHk=dHz dt dt
	Att = 4 dte = 4 dme = 4 mexit so: OH TD, TD PR OH TD, PR
	OH MDZ OH MDZDO
2 ⁷ 2	dt, - 4 mexix
	dt, - 4 mexit At 70,2 pl
	therefore.
	dPair - 49 mexit
	of TD2
	p 3
(6)	$\overline{U(r)} = \frac{1}{R} \int_{-R^2}^{R} 1 - \frac{r^2}{R^2} dr = R - \frac{R^3}{3R^2} = 1 - \frac{1}{3} = \frac{2}{3} U_{\text{max}}$
	R) R
	U(r) - 2/3 Umge = 2
d. H.	Umax Umax 1:3

Temperature constant Viscous reffects negligible

Air treated as ideal gas

In the base of parabolic flow profile: Flow knings

Weight of gir in pump negligible

- If instead of air the pumped gas was more dense, the weight of the 995 would tend to help pump the water out.

All cylinders are right cylinders