# Sentiment Analysis of Restaurant Reviews

Join us on a journey as we explore the fascinating world of sentiment analysis applied to restaurant reviews.



## **Problem Statements**

- Limited Data Exploration: The code doesn't perform much data exploration or analysis of the dataset.
- Stopwords Removal: The code removes common English stopwords, but this might not be suitable for all datasets.
- Text Cleaning Flexibility: The
  The code assumes a specific
  specific text cleaning process.
  process.
- Handling Non-Text Features:

  The dataset is not trained to handle non-text features (e.g., user ratings, timestamps).





## Agenda

- Introduction to sentiment analysis
- Importance of sentiment analysis in the restaurant industry
- Data collection and preprocessing
- Building a sentiment analysis model
- Evaluating and interpreting results

## **Project Review**

#### **1** Data Collection

Imported necessary libraries
like NumPy, pandas, and NLTK.
loaded dataset
('Restaurant\_Reviews.tsv')
containing restaurant reviews
using pandas and displayed
basic information about the
dataset.

#### Data Preprocessing

performed text preprocessing on the reviews, including removing non-alphabetical characters, converting text to lowercase, tokenizing, removing stopwords, and stemming the words.

#### 3 Data Splitting

split the dataset into training and testing sets using 'train\_test\_split'



## **Project Review**

1 Model Training

Trained a Multinomial Naive
Bayes classifier on the training
data.

2 Hyperparameter Tuning

Performed hyperparameter tuning by trying different values of alpha for the Multinomial Naive Bayes classifier.

**3** Model Evaluation

Predicted sentiment labels on the test data and calculated metrics like accuracy, precision, and recall. Created a confusion matrix and displayed it using a heatmap.





## **End Users: Who Can Benefit?**

1 Restaurant Owners & Managers

2

**Food Critics & Bloggers** 

Gain insights on customer sentiment to improve overall dining experience and make data-driven decisions.

Utilize sentiment analysis to support or challenge their own reviews and opinions.

Market Analysts

Extract valuable market trends and consumer preferences from large volumes of restaurant reviews.

## **Solutions and Their Value Proposition**

| Solution                 | Value Proposition                                                                                                                                                           |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data Exploration         | Adding data visualization and summary statistics to gain deeper insights into the reviews and their characteristics.                                                        |
| Feature Engineering      | Exploring more advanced feature engineering techniques, such as using n-grams, sentiment lexicons, or word embeddings, to capture richer information from the text.         |
| Model Evaluation Metrics | Adding additional metrics like F1-score, ROC-AUC, or a receiver operating characteristic (ROC) curve to provide a more comprehensive evaluation of the model's performance. |

## **Solutions and Their Value Proposition**

| Solution              | Value Proposition                                                                                                                    |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Hyperparameter Tuning | Optimize hyperparameter tuning by using techniques like grid search or random search to find the best parameters for the classifier. |
| Model Persistence     | Save the trained model to disk for later use, allowing users to load the model without retraining it.                                |
| User Interface        | Developing a user-friendly interface for users to input text and receive sentiment predictions.                                      |

## **Customization: Making It Our Own**

3

**Model Fine-tuning** 

Perform hyperparameter tuning and model selection specifically optimized for the domain and dataset, considering algorithms tailored to the task.

**Evaluation Metrics** 

Defined domain-specific evaluation metrics that are more meaningful for the particular application, such as customer satisfaction scores or sentiment intensity measures.

Real-Time Sentiment Analysis

Build a real-time sentiment analysis system that continuously monitors and analyzes incoming text data, providing instant feedback or alerts.

## Modelling







#### **Machine Learning Model**

Implemented a multinomial naive bayes model for sentiment analysis, achieving 77% accuracy.

#### **Sentiment Analysis**

The model learns which words are indicative of positive or negative sentiment based on the labeled data and feature importance scores.

#### **Confusion Matrix Evaluation**

Evaluated model performance using a confusion matrix to measure precision and recall



## Results

#### **Accuracy**

Our sentiment analysis model achieved an impressive accuracy rate of 77%, demonstrating its effectiveness.

# **Insightful Visualizations**

Visual representations of sentiment analysis-through confusion matrix heatmaps results provided clear and actionable insights for decision-makers.

#### **Positive Impact**

Our project showcased how sentiment analysis can contribute to enhancing customer satisfaction and business success in the restaurant industry.

## Screenshots

```
from sklearn.metrics import confusion matrix
cm = confusion matrix(y test, y pred)
print ("Confusion Matrix:\n",cm)
from sklearn.metrics import accuracy score
from sklearn.metrics import precision score
from sklearn.metrics import recall_score
score1 = accuracy score(y test,y pred)
score2 = precision score(y test,y pred)
score3= recall score(y test,y pred)
print("\n")
print("Accuracy is ",round(score1*100,2),"%")
print("Precision is ",round(score2,2))
print("Recall is ",round(score3,2))
Confusion Matrix:
[[119 33]
[ 34 114]]
Accuracy is 77.67 %
Precision is 0.78
Recall is 0.77
```

## Screenshots

```
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
plt.figure(figsize=(5, 2))
sns.heatmap(cm, annot=True,cmap="YlGnBu",
            xticklabels=['Negative', 'Positive'],
            yticklabels=['Negative', 'Positive'])
plt.xlabel('Predicted')
plt.ylabel('Actual')
Text(33.2222222222214, 0.5, 'Actual')
    Negative
                                                       100
              1.2e+02
                                      33
 Actual
                                                       80
   Positive
                                                      - 60
                                   1.1e+02
                 34
                                                     - 40
             Negative
                                   Positive
                        Predicted
```

## Screenshots

```
sample_review="The food is really bad"
if predict_sentiment(sample_review):
    print("POSITIVE REVIEW")
else:
    print("NEGATIVE REVIEW")
NEGATIVE REVIEW
sample_review="The food was very good, from preparation to presentation, very pleasing"
if predict_sentiment(sample_review):
    print("POSITIVE REVIEW")
else:
    print("NEGATIVE REVIEW")
POSITIVE REVIEW
```

# THANK YOU