Memóriafelhasználás optimalizálása kvantumalgoritmusok szimulációja során

Nemkin Viktória

dr. Friedl Katalin Számítástudományi és Információelméleti Tanszék

Motiváció: "Protein folding" megoldása kvantumalgoritmussal

Protein:

- Aminosavakból alkotott lánc.
 - ★ Piros = Hidrofób ("vízkerülő").
 - ★ Kék = Poláris ("vízszerető").
- Hajtogatás: 3D kockarácson elhelyezés.
- Cél: Minimális energiájú elhelyezés megtalálása.

Kódolás:

Origóból, lépésenként 6 irány = 6 "qubit".

Orákulum:

- Energiaviszonyok lepontozása.
- Grover keresés: $O(\sqrt{N})$
 - "Kvantum párhuzamosság"-ot kihasználva.
 - ► Energiaminimum megtalálása.

Egy összehajtogatott protein.

Cél

- Algoritmus kipróbálása és elemzése.
- Eszköztár: Regiszterek + Hadamard, Grover, Sum, MC-NOT
- Kvantumszámítógép: Publikusan nem elérhető (elég nagy).
- Klasszikus szimuláció: Túl sok memóriát fogyaszt.

Probléma: Memóriahasználat

Lánc	Qubitek	Regiszter	Operátor	
n	6(n-1)	$2^{6(n-1)}\cdot 16B$	$2^{12(n-1)} \cdot 16B$	

Probléma: Memóriahasználat

Lánc	Qubitek	Regiszter	Operátor
n	6(n-1)	$2^{6(n-1)} \cdot 16B$	$2^{12(n-1)} \cdot 16B$
2	6	1 KB	64 KB
3	12	64 KB	256 MB
4	18	4 MB	1 TB
5	24	256 MB	4 PB
6	30	16 GB	16384 PB
7	36	1 TB	67108864 PB

Probléma: Memóriahasználat

Lánc	Qubitek	Regiszter	Operátor	
n	6(n-1)	$2^{6(n-1)} \cdot 16B$	$2^{12(n-1)} \cdot 16B$	
2	6	1 KB	64 KB	
3	12	64 KB	256 MB	
4	18	4 MB	1 TB	
5	24	256 MB	4 PB	
6	30	16 GB	16384 PB	
7	36	1 TB	67108864 PB	

- Optimalizációk (regiszer és operátor esetében is):
 - ► Ritka mátrixos tárolás:
 - ★ IBM Qiskit, Google Cirq, stb.
 - * Nem mindig ritkák a mátrixok.
 - Döntési fa alapú adatszerkezet:
 - * Újabb kutatási irány.
 - Nem mindig segít.

Megoldás: "On-the-fly" és "Függvény-alapú" operátorok

Lánc	Qubitek	Regiszter	Operátor	''On-the-fly''	''Függvény-alapú''
n	6(n-1)	$2^{6(n-1)} \cdot 16B$	$2^{12(n-1)} \cdot 16B$	= Regiszter.	Nem kell tárolni.
2	6	1 KB	64 KB	1 KB	0 B
3	12	64 KB	256 MB	64 KB	0 B
4	18	4 MB	1 TB	4 MB	0 B
5	24	256 MB	4 PB	256 MB	0 B
6	30	16 GB	16384 PB	16 GB	0 B
7	36	1 TB	67108864 PB	1 TB	0 B

Megoldás: "On-the-fly" és "Függvény-alapú" operátorok

Lánc	Qubitek	Regiszter	Operátor	"On-the-fly"	''Függvény-alapú''
n	6(n-1)	$2^{6(n-1)} \cdot 16B$	$2^{12(n-1)} \cdot 16B$	= Regiszter.	Nem kell tárolni.
2	6	1 KB	64 KB	1 KB	0 B
3	12	64 KB	256 MB	64 KB	0 B
4	18	4 MB	1 TB	4 MB	0 B
5	24	256 MB	4 PB	256 MB	0 B
6	30	16 GB	16384 PB	16 GB	0 B
7	36	1 TB	67108864 PB	1 TB	0 B

- Qiskit, stb. nyílt forráskódúak...
- ...de szerves része a kódnak az operátor tárolása.
- ullet ightarrow saját szimulátor implementáció.

Kvantumregiszterek állapotának tárolása

- Minden bitsorozathoz egy komplex valószínűségi amplítúdó.
- ullet Szuperpozíció és összefonódás o indexek Descartes-szorzata.
- Méretek: $2^{n_1}, \ldots, 2^{n_s} \rightarrow \prod_{i=1}^s 2^{n_i}$.

Operátor végrehajtás általánosan

Példa: $A_{4\times4}$ (2 qubites) operátor.

Első 2 qubit-re: Utolsó 2 qubit-re:
$$\begin{vmatrix} \blacksquare \blacksquare \square \dots \square \rangle & & |\square \dots \square \blacksquare \blacksquare \rangle \\ \downarrow & & \downarrow & & \downarrow \\ \begin{pmatrix} A & 0 & \dots & 0 \\ 0 & A & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & A \end{pmatrix} & \begin{pmatrix} A_{0,0}I & A_{0,1}I \\ A_{1,0}I & A_{1,1}I \end{pmatrix}$$
 Köztes esetek?
$$\begin{vmatrix} \square \dots \square \blacksquare \square \dots \square \blacksquare \square \dots \square \\ \square \dots \square \blacksquare \square \dots \square \\ \square \dots \square \blacksquare \square \dots \square \\ \end{vmatrix}$$

Mappelés

TODO: zavaros nyilas ábra.

$$\frac{\text{QUBF} \ \text{MAP}:}{|R_1, R_2, R_3, R_{11}, \dots, |R_{s-1}| R_s)} \Rightarrow |R_1, R_{11}, \dots, |R_{s-1}| R_s}{|R_1, R_{11}, \dots, |R_{s-1}| R_s} \Rightarrow |R_1, R_{11}, \dots, |R_s|}$$

$$\frac{\text{INDEX} \ \text{MAP}:}{|0..0, 0..0, 0..0, 0..0, \dots, 0..0} = |0..0, 0..0, \dots, 0..0, \dots, 0..0}{|0..0, 0..0, 0..0, \dots, 0..0, \dots, 0..0}$$

$$\frac{\text{X}}{|11..1, 1..1, 1..1, 1..1, 1..1, 1..1, 1..1, 1..1, 1..1, 1..1, \dots, 1..1}}{|11..1, 1..1, 1..1, 1..1, \dots, 1..1}$$

Végrehajtás (párhuzamosíthatóan)

Tipikus eset.

Operátorok megvalósítása

- Visitor minta (inverzió):
 - Operátornak odaadom a regisztert, végrehajtja magát rajta.
 - ▶ Belső működés eltakarva: mátrix reprezentáció nem szükséges.
- Strategy minta:
 - Egységes algoritmus interfész: több lehetséges implementáció.
- Operátor csak egy handle, példány nem foglal memóriát.

Megvalósítás:

- "On-the-fly" operátorok:
 - A mátrix egy sorát generálom.
 - Hadamard, Grover.
- "Függvény-alapú" operátorok:
 - $u: |0...0, in\rangle \rightarrow |out, in\rangle$
 - ▶ Sum: $\sum : |0...0, in\rangle \rightarrow |count(in), in\rangle$
 - ► MC-NOT: mcnot : $|0, in\rangle \rightarrow |any(in), in\rangle$

Összegzés

- Eredmények:
 - Ritka mátrixosan tárolt regiszterek.
 - ► Regiszterkezelés tetszőleges célregiszterekkel.
 - "On-the-fly" operátorok: Hadamard, Grover.
 - "Függvény-alapú" operátorok: Sum, Multi-Controlled NOT.
 - Könnyű bővíthetőség új operátorral.
- Jövőbeli terv:
 - Protein folding algoritmus implementálása.
 - Döntési fa alapú tárolás kipróbálása.

Bíráló kérdései - 1.

A dolgozat bevezetésében írja, hogy az egyik motivációt a munkához a bioinformatika adja, ezen belül is a fehérje feltekeredés (protein folding) vizsgálata.

A dolgozatban azonban - érthető okokból - egy egyszerűbb problémával, a Sudoku általános változatával dolgozik.

Mégis, meg tudná mondani, hogyan lehetne (milyen jellegű továbbfejlesztésekkel) a kidolgozott eljárást a bioinformatikában használni?

Bíráló kérdései - 2.

Mi a szerző várakozása a kifejlesztett keretrendszer működési korlátait illetően?

Például:

Hány qubites Grover-keresést fog tudni implementálni? Mekkora n esetén tudja implementálni a Sudoku verifiert?

A maximális méretű problémát implementáló kód mennyi idő alatt fog lefutni egy laptopon?

Bíráló kérdései - 3.

A keretrendszer struktúrájában vagy implementációjában meg kell-e különböztetni a CPU-n és a GPU-n való futtatás esetét?

Bíráló kérdései - 4.

Valódi kvantumszámítógépekben a kvantumbitek és a környezet kölcsönhatása dekoherenciához vezet.

A Grover-keresés működőképes marad-e, ha a dekoherenciát figyelembe vesszük a szimuláció során?

Lehetséges-e a dolgozatban kifejlesztett hatékony keretrendszert általánosítani dekoherencia jelenléte esetére, és ha igen, akkor meg lehet-e ezt tenni úgy hogy a hatékonyság is megmarad?