Hardware - Tutorial 2 - Correction Boolean Algebra and Karnaugh Maps

Exercice 1: Boolean Algebra

- 1) Simplify the following expressions:
 - $S_1 = (A + B) \cdot (\bar{A} + \bar{B})$
 - $S_2 = A \cdot B + \bar{A} \cdot \bar{B} + \bar{A} \cdot B$
 - $S_3 = (A + \bar{B}) \cdot (A + B) + C \cdot (\bar{A} + B)$
 - $S_4 = (A + C + D) \cdot (B + C + D)$

- $S_5 = (A \cdot \overline{B} + A \cdot B + A \cdot C) \cdot (\overline{A} \cdot \overline{B} + A \cdot B + A \cdot \overline{C})$
- $S_6 = (A + \bar{B} + C) \cdot (A + \bar{C}) \cdot (\bar{A} + \bar{B})$
- $S_7 = A \cdot B \cdot C + A \cdot \bar{B} \cdot \bar{C} + \bar{A} \cdot B \cdot \bar{C} + \bar{A} \cdot B \cdot \bar{C}$
- $S_8 = A \cdot B \cdot C + A \cdot \bar{B} \cdot C + A \cdot B \cdot \bar{C} \cdot D$

Solutions:

$$S_{1} = (A + B) \cdot (\bar{A} + \bar{B})$$

$$S_{1} = A \cdot \bar{A} + A \cdot \bar{B} + \bar{A} \cdot B + B \cdot \bar{B}$$

$$S_{1} = A \cdot \bar{A} + A \cdot \bar{B} + \bar{A} \cdot B + B \cdot \bar{B}$$

$$S_{1} = A \cdot \bar{B} + \bar{A} \cdot B$$

$$S_{1} = A \cdot \bar{B} + \bar{A} \cdot B$$

$$S_{1} = A \oplus B$$

$$S_2 = A \cdot B + \bar{A} \cdot \bar{B} + \bar{A} \cdot B$$

$$S_2 = A \cdot B + \bar{A} \cdot (B + \bar{B})$$

$$S_2 = A \cdot B + \bar{A} \cdot 1$$

$$S_2 = A \cdot B + \bar{A}$$

$$S_2 = B + \bar{A}$$

$$S_{3} = (A + \overline{B}) \cdot (A + B) + C \cdot (\overline{A} + B)$$

$$S_{3} = A \cdot \overline{A} + A \cdot B + A \cdot \overline{B} + B \cdot \overline{B} + \overline{A} \cdot C + B \cdot C$$

$$S_{3} = A + A \cdot B + A \cdot \overline{B} + \overline{A} \cdot C + B \cdot C$$

$$S_{3} = A + \overline{A} \cdot C + B \cdot C$$

$$S_{3} = A + C + B \cdot C$$

$$S_{3} = A + C$$

$$\begin{split} S_4 &= (A+C+D) \cdot (B+C+D) \\ S_4 &= A \cdot B + A \cdot C + A \cdot D + B \cdot C + C \cdot \mathcal{C} + C \cdot D + B \cdot D + \mathcal{C} \cdot \mathcal{D} + D \cdot \mathcal{D} \\ S_4 &= A \cdot B + A \cdot C + A \cdot D + B \cdot C + C \cdot \mathcal{C} + C \cdot D + B \cdot D + C \cdot \mathcal{D} + B \cdot \mathcal{D} + D \\ \hline S_4 &= A \cdot B + C + D \end{split}$$

$$\begin{split} S_5 &= (A \cdot \bar{B} + A \cdot B + A \cdot C) \cdot (\bar{A} \cdot \bar{B} + A \cdot B + A \cdot \bar{C}) \\ S_5 &= (A \cdot (\bar{B} + B) + A \cdot C) \cdot (\bar{A} \cdot \bar{B} + A \cdot B + A \cdot \bar{C}) \\ S_5 &= A \cdot (\bar{A} \cdot \bar{B} + A \cdot B + A \cdot \bar{C}) \\ S_5 &= A \cdot \bar{A} \cdot \bar{B} + A \cdot A \cdot B + A \cdot A \cdot \bar{C} \\ \hline S_5 &= A \cdot B + A \cdot \bar{C} \end{split}$$

$$S_{6} = (A + \bar{B} + C) \cdot (A + \bar{C}) \cdot (\bar{A} + \bar{B})$$

$$S_{6} = (A \cdot A + A \cdot \bar{C} + A \cdot \bar{B} + \bar{B} \cdot \bar{C} + A \cdot C + C \cdot \bar{C}) \cdot (\bar{A} + \bar{B})$$

$$S_{6} = (A + \bar{B} \cdot \bar{C}) \cdot (\bar{A} + \bar{B})$$

$$S_{6} = A \cdot \bar{A} + A \cdot \bar{B} + \bar{A} \cdot \bar{B} \cdot \bar{C} + \bar{B} \cdot \bar{B} \cdot \bar{C}$$

$$S_{6} = A \cdot \bar{B} + \bar{A} \cdot \bar{B} \cdot \bar{C} + \bar{B} \cdot \bar{C}$$

$$S_{6} = A \cdot \bar{B} + \bar{A} \cdot \bar{B} \cdot \bar{C}$$

$$S_{6} = A \cdot \bar{B} + \bar{B} \cdot \bar{C}$$

$$S_{7} = A \cdot B \cdot C + A \cdot \bar{B} \cdot \bar{C} + \bar{A} \cdot B \cdot \bar{C} + \bar{A} \cdot B \cdot C$$

$$S_{7} = B \cdot (A \cdot C + \bar{A} \cdot \bar{C} + \bar{A} \cdot C) + A \cdot \bar{B} \cdot \bar{C}$$

$$S_{7} = B \cdot (A \cdot C + \bar{A}) + A \cdot \bar{B} \cdot \bar{C}$$

$$S_{7} = B \cdot (\bar{A} + C) + A \cdot \bar{B} \cdot \bar{C}$$

$$S_{7} = B \cdot (\bar{A} + \bar{C}) + A \cdot \bar{B} \cdot \bar{C}$$

$$S_{7} = B \cdot (\bar{A} \cdot \bar{C}) + \bar{B} \cdot (A \cdot \bar{C})$$

$$S_{7} = B \oplus A \cdot \bar{C}$$

$$S_{8} = A \cdot B \cdot C + A \cdot \bar{B} \cdot C + A \cdot B \cdot \bar{C} \cdot D$$

$$S_{8} = A \cdot C \cdot (B + \bar{B}) + A \cdot B \cdot \bar{C} \cdot D$$

$$S_{8} = A \cdot C + A \cdot B \cdot \bar{C} \cdot D$$

$$S_{8} = A \cdot (C + B \cdot \bar{C} \cdot D)$$

$$S_{8} = A \cdot (C + B \cdot D)$$

$$S_{8} = A \cdot C + A \cdot B \cdot D$$

2) Calculate and simplify the complement of S1, S5 and S6.

Solutions:

$$\begin{split} \overline{S_1} &= \overline{A \cdot \bar{B}} + \overline{A} \cdot B \\ \overline{S_1} &= \overline{A \cdot \bar{B}} \cdot \overline{\bar{A}} \cdot B \\ \overline{S_1} &= (\bar{A} + B) \cdot (A + \bar{B}) \\ \overline{S_1} &= \overline{A} \cdot \overline{B} + A \cdot B \\ \hline \overline{S_1} &= \overline{A} \oplus \overline{B} = \overline{A} \oplus B = A \oplus \overline{B} \end{split}$$

$$\begin{split} \overline{S_5} &= \overline{A \cdot B + A \cdot \bar{C}} \\ \overline{S_5} &= \overline{A \cdot (B + \bar{C})} \\ \overline{S_5} &= \bar{A} + (B + \bar{C}) \\ \hline \overline{S_5} &= \bar{A} + \bar{B} \cdot C \end{split}$$

$$\begin{split} \overline{\frac{S_6}{S_6}} &= \overline{A \cdot \bar{B}} + \bar{B} \cdot \bar{C} \\ \overline{S_6} &= \overline{B} \cdot (A \cdot \bar{C}) \\ \overline{S_6} &= B + (\overline{A} + \bar{C}) \\ \overline{S_6} &= B + \bar{A} \cdot C \end{split}$$

3) Design the NOT, AND and OR gates by using only NAND gantes, then only NOR gates.

Solutions:

NAND gates only:

 $\bar{A} = \overline{A \cdot A}$

$$A \cdot B = \overline{\overline{A \cdot B}} \\ A \cdot B = (\overline{A \cdot B}) \cdot (\overline{A \cdot B})$$

$$\begin{array}{l} A+B=\overline{\overline{A+B}}\\ A+B=\overline{\overline{A\cdot B}}\\ A+B=\overline{(A\cdot A)\cdot (\overline{B\cdot B})} \end{array}$$

NOR gates only:

$$\bar{A} = \overline{A + A}$$

$$\begin{aligned} A \cdot B &= \overline{\overline{A \cdot B}} \\ A \cdot B &= \overline{\overline{A} + \overline{B}} \\ A \cdot B &= \overline{(\overline{A} + \overline{A}) + (\overline{B} + \overline{B})} \end{aligned}$$

$$A + B = \overline{\overline{A + B}}$$

$$A + B = (\overline{A + B}) + (\overline{A + B})$$

Exercice 2: Equality

Demonstrate the following equalities:

- $\overline{A \cdot C + B \cdot \bar{C}} = \bar{A} \cdot C + \bar{B} \cdot \bar{C}$
- $\bullet (A+B)\cdot (\bar{A}+C)\cdot (B+C) = (A+B)\cdot (\bar{A}+C)$

Solution:

Let's demonstrate that $\overline{A \cdot C} + \overline{B \cdot C} = \overline{A \cdot C} + \overline{B \cdot C}$ by changing the left part of the equation into the right part:

$$\frac{\overline{A \cdot C} + \overline{B \cdot \overline{C}}}{\overline{A \cdot C} + \overline{B \cdot \overline{C}}} = \overline{A \cdot C} \cdot \overline{B \cdot \overline{C}}$$

$$\frac{\overline{A \cdot C} + \overline{B \cdot \overline{C}}}{\overline{A \cdot C} + \overline{B \cdot \overline{C}}} = (\overline{A} + \overline{C}) \cdot (\overline{B} + C)$$

$$\frac{\overline{A \cdot C} + \overline{B \cdot \overline{C}}}{\overline{A \cdot C} + \overline{B \cdot \overline{C}}} = \overline{A \cdot \overline{B}} \cdot \overline{C} + \overline{A \cdot C} + \overline{B \cdot \overline{C}}$$

$$\overline{A \cdot C} + \overline{B \cdot \overline{C}} = \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot \overline{C} + \overline{B} \cdot \overline{C}$$

$$\overline{A \cdot C} + \overline{B \cdot \overline{C}} = \overline{A} \cdot \overline{C} + \overline{B} \cdot \overline{C}$$

Now let's demonstrate that
$$(A+B)\cdot(\bar{A}+C)\cdot(B+C)=(A+B)\cdot(\bar{A}+C)$$
 by developping each side of the equation: $(A+B)\cdot(\bar{A}+C)\cdot(B+C)=(A+B)\cdot(\bar{A}+C)$ $(A+B)\cdot(\bar{A}+C)\cdot(B+C)=(A+B)\cdot(\bar{A}+C)$ $(A+B)\cdot(B+C)\cdot(B+C)=\bar{A}\cdot\bar{A}+A\cdot C+\bar{A}\cdot B+B\cdot C$ $A\cdot B\cdot C+A\cdot C\cdot \not C+\bar{A}\cdot B\cdot \not B+\bar{A}\cdot B\cdot C+\not B\cdot B\cdot C+B\cdot C\cdot \not C=A\cdot C+\bar{A}\cdot B+B\cdot C$ $A\cdot B\cdot C+\bar{A}\cdot B+B\cdot C=A\cdot C+\bar{A}\cdot B+B\cdot C$ $A\cdot C+\bar{A}\cdot B+B\cdot C=A\cdot C+\bar{A}\cdot B+B\cdot C$

Exercice 3: Problem

Given 3 binary variables A, B and C, design an expression S that is true only if the number of true variables is odd.

Solution:

In order to extract a boolean expression from a given problem, we first need to fill a truth table of that problem. Then we can extract the terms of the expression from the truth table by simply finding the expression of each line where S is true.

\mathbf{A}	В	\mathbf{C}	\mathbf{S}	
0	0	0	0	
0	0	1	1	$\rightarrow \bar{A} \cdot \bar{B} \cdot C$
0	1	0	1	$\rightarrow \bar{A} \cdot B \cdot \bar{C}$
0	1	1	0	
1	0	0	1	$\rightarrow A \cdot \bar{B} \cdot \bar{C}$
1	0	1	0	
1	1	0	0	
1	1	1	1	$\rightarrow A \cdot B \cdot C$

Finaly we have to compute and simplify the full expression:

$$S = \bar{A} \cdot \bar{B} \cdot C + \bar{A} \cdot B \cdot \bar{C} + A \cdot \bar{B} \cdot \bar{C} + A \cdot B \cdot C$$

$$S = \bar{A} \cdot (\bar{B} \cdot C + B \cdot \bar{C}) + \bar{A} \cdot (\bar{B} \cdot \bar{C} + B \cdot C)$$

$$S = \bar{A} \cdot (B \oplus C) + A \cdot (\bar{B} \oplus \bar{C})$$

$$S = A \oplus B \oplus C$$

Exerice 4: 3 variables Karnaugh maps

Given a number N encoded in 3 bits binary (C, B, A) with C the most significant bit, find the most simplified boolean expression of S = f(N) using Karnaugh maps for each of the following:

- $S_1 = 1$ when N >= 3
- $S_2 = 1$ when 2 < N <= 6
- $S_3 = 1$ when N = 1, 3, 5
- $S_4 = 1$ when N = 1, 3, 5 and S is undefined when N = 0 or 7

Solution:

To solve theses problems, we will first fill a truth table for each S, then fill and solve some Karnaugh Maps and finally extract the expressions from the Karnaugh Maps:

C	B	A	S_1	S_2	S_3	S_4
0	0	0	0	0	0	Ø
0	0	1	0	0	1	1
0	1	0	0	0	0	0
0	1	1	1	1	1	1
1	0	0	1	1	0	0
1	0	1	1	1	1	1
1	1	0	1	1	0	0
1	1	1	1	0	0	Ø

S	S_1		В	A	
5	1	00	01	11	10
\mathbf{C}	0	0	0	1	0
	1	1	1	1	1

C	S_2		В	\mathbf{A}	
5	2	00	01	11	10
C	0	0	0	1 0	0

S	_		В	A	
5	3	00	01	11	10
C	0	0 0	1	1 0	0 0

S_4			В	A	
Δ.	4	00 01 11 10			
\mathbf{C}	0	Ø 0	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	1 Ø	0

$$S_1 = B \cdot A + C$$

$$S_2 = \bar{C} \cdot B \cdot A + C \cdot \bar{B} + C \cdot \bar{A}$$

$$S_3 = \bar{C} \cdot A + \bar{B} \cdot A$$

$$S_4 = A$$

$$S_2 = \bar{C} \cdot (B \cdot A) + C \cdot (\bar{B} + \bar{A})$$

$$S_2 = \bar{C} \cdot (B \cdot A) + C \cdot \overline{(B \cdot A)}$$

$$S_2 = C \oplus B \cdot A$$

Exercice 5: Problem

We want to design a circuit that can perform the two's complement of a 3 bits binary number. This circuit has 3 inputs (C, B, A) and 3 outputs (C', B', A') with C and C' their most significant bits.

1) Write down the truth table of each of theses outputs.

Solution:

C	B	A	C'	B'	A'
0	0	0	0	0	0
0	0	1	1	1	1
0	1	0	1	1	0
0	1	1	1	0	1
1	0	0	1	0	0
1	0	1	0	1	1
1	1	0	0	1	0
1	1	1	0	0	1

2) Find their most simplified expression using Karnaugh maps.

Solution:

C'			В	\mathbf{A}	
		00	01	11	10
\mathbf{C}	0	0	1	(1)	1)
	1	1	0	0	0

B'			\mathbf{B}	A	
		00	01	11	10
$oldsymbol{C}$	0	0	1	0	1

$ _{\Lambda'} $			В	\mathbf{A}	
	-	00	01	11	10
$oldsymbol{C}$	0	0	1	1	0
	1	0	1	1	0

A' = A

$$C' = C \cdot \overline{B} \cdot \overline{A} + \overline{C} \cdot A + \overline{C} \cdot B$$

$$C' = C \cdot (\overline{B} \cdot \overline{A}) + \overline{C} \cdot (B + A)$$

$$C' = C \cdot \overline{(B + A)} + \overline{C} \cdot (B + A)$$

$$C' = C \oplus (B + A)$$

$$B' = \bar{B} \cdot A + B \cdot \bar{A}$$

$$B'=B\oplus A$$

Exercice 6: 4 variables Karnaugh maps

Given a number N encoded in 4 bits binary (D, C, B, A) with D the most significant bit, find the most simplified boolean expression of S = f(N) using Karnaugh maps for each of the following:

- $S_1 = 1$ when N >= 10
- $S_2 = 1$ when N = 0, 4, 8, 10, 12 or 14
- $S_3 = 1$ when N = 0, 2, 5, 7, 8, 10, 13 or 15
- $S_4 = 1$ when N = 2, 10, 11 or 14
- $S_5 = 1$ when N = 2, 10, 11 or 14 and S is undefined when N = 6, 9, 13 or 15

Solution:

Let's fill directly the Karnaugh Maps for each expression:

S			В	A	
S_1		00	01	11	10
	00	0	0	0	0
\mathbf{DC}	01	0	0	0	0
	11	(1	1	1	1
	10	0	0	1	1

S	S_2		$\mathbf{B}\mathbf{A}$				
\mathcal{S}_2		00	01	11	10		
DC	00 01 11 10	1 1 1 1	0 0 0 0	0 0 0 0	0 0 1 1		

S_3		BA				
		00	01	11	10	
	00	1	0	0	1_	
DC	01	0	1	1	0	
	11	0	1	1	0	
	10	1	0	0	1	

S_4		BA				
		00	01	11	10	
	00	0	0	0	1	
\mathbf{DC}	01	0	0	0	0	
	11	0	0	0	1	
	10	0	0	(1	1	

S_5		BA				
		00	01	11	10	
DC	00 01 11 10	0 0 0 0	0 0 Ø Ø	0 0 Ø 1	$\begin{bmatrix} 1 \\ \emptyset \\ 1 \\ 1 \end{bmatrix}$	

Then we can extract the boolean expression of each of the maps:

$$S_1 = D \cdot C + D \cdot B$$

$$S_2 = \bar{B} \cdot \bar{A} + D \cdot \bar{A}$$

$$S_3 = \bar{C} \cdot \bar{A} + C \cdot A$$

$$S_1 = D \cdot C + D \cdot B \qquad \qquad S_2 = \bar{B} \cdot \bar{A} + D \cdot \bar{A} \qquad \qquad S_3 = \bar{C} \cdot \bar{A} + C \cdot A \qquad \qquad S_4 = D \cdot B \cdot \bar{A} + \\ S_3 = \overline{C \oplus A} \qquad \qquad \bar{C} \cdot B \cdot \bar{A} + D \cdot \bar{C} \cdot B$$

$$S_5 = D \cdot A + B \cdot \bar{A}$$