Exercises

Exercise: Linear model with continuous and categorical explanatory variables

This exercise builds on the linear model with one continuous explanatory variable, and the linear model with one categorical explanatory variable, by adding these two sources of variation in the same model. The first part of the exercise will explore fitting an 'additive' model and the second part fitting a model with an interaction term.

Part 1: Linear model with additive explanatory variables

- 1. As in previous exercises, either create a new R script (perhaps call it linear_model_3) or continue with your previous R script in your RStudio Project. Again, make sure you include any metadata you feel is appropriate (title, description of task, date of creation etc) and don't forget to comment out your metadata with a # at the beginning of the line.
- 2. Import the data file 'loyn.txt' into R and take a look at the structure of this dataframe using the str() function. We know that the abundance of birds ABUND increases quickly with the area of the patch LOGAREA, and more slowly for the larger patches. We now also know that bird abundance changes in a non-linear way with the grazing intensity FGRAZE. But how do these effects combine together? Would a small patch with low grazing intensity have more birds than a larger patch with high grazing intensity? Could the poor fit of the ABUND ~ LOGAREA model for the large patches be improved if we accounted for grazing intensity in the patches?

3. As previously we want to treat AREA as a log-transformed area to limit the influence of the few disproportionately large patches, and GRAZE as a categorical variable with five levels. So the first thing we need to do is create the corresponding variables in the loyn dataframe, called LOGAREA and FGRAZE.

```
loyn$LOGAREA <- log10(loyn$AREA)
# create factor GRAZE as it was originally coded as an integer
loyn$FGRAZE <- factor(loyn$GRAZE)</pre>
```

4. Explore the relationship between grazing and patch area, using a scatterplot. Hint: you may want to use GRAZE rather than FGRAZE for this. Is there any variability in patch area within each grazing level? Is the sampling design balanced, i.e., is the whole range of patch areas evenly represented at each grazing level?

```
plot(loyn$LOGAREA ~ loyn$GRAZE, xlab = "Grazing level", ylab = "Patch area")
```



```
# There is a good spread of patch areas within each grazing level overall,
# although there is a trend for more grazing the smaller the patch is.
# the lowest level of grazing intensity happens to be predominantly in
# larger patches (including the two monster patches)

# How would we expect adding grazing level to the LOGAREA model to affect
# the predictions of the model? Think particularly of the largest two patches
# which were previously overestimated by the model (negative residuals -
# see the linear model 1 exercise)?
# Since the lowest grazing levels appear to be associated with the highest
```

```
# bird abundances, we could expect a model combining area and grazing level
# to predict an even higher abundance for these patches
# this would not improve the situation for these patches, at least.
# But let's find out if that's the case!
```

5. You could explore the joint effect of FGRAZE and LOGAREA on ABUND, using panel plots. Hint: See the function coplot in the Data exploration lecture, and/or the help page for coplot. Factor levels increase from the bottom-left panel to the top-right panel. What pattern do you see? What do you expect your model results to look like?

```
coplot(ABUND ~ LOGAREA | FGRAZE, data = loyn)
```



```
# There is a lot of variation in there, but:
# The mean abundance seems to decrease as grazing levels increase.
# Most noticeable in the highest grazing level.
# Within a grazing level, abundance seems to increase with the log-patch area.
# It is unclear from this if the slope of the log-area effect is
# different between grazing levels
```

6. Fit an appropriate linear model in R to explain the variation in the response variable, ABUND with the explanatory variables LOGAREA and FGRAZE acting additively. Hint: combine explanatory variables using a +

symbol. Remember to use the data = argument. Assign this linear model to an appropriately named object, like birds.add.1.

```
birds.add.1 <- lm(ABUND ~ LOGAREA + FGRAZE, data = loyn)
```

7. Produce the ANOVA table using the anova() function on the model object. What null hypotheses are being tested? Hint: the anova() function performs sequential tests. Do you reject or fail to reject the null hypotheses?

```
anova(birds.add.1)
## Analysis of Variance Table
##
## Response: ABUND
##
            Df Sum Sq Mean Sq F value
                                          Pr(>F)
## LOGAREA
             1 3471.0 3471.0 100.2944 1.530e-13 ***
## FGRAZE
             4 1136.5
                       284.1
                                8.2101 3.598e-05 ***
## Residuals 50 1730.4
                         34.6
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
# null hypothesis 1: There is no effect of LOGAREA on ABUND
# (the coefficient for LOGAREA is zero)
# null hypothesis 2: There is no effect of FGRAZE on ABUND
# (no difference between grazing levels *after* the effect of LOGAREA)
# the p values are all very small therefore reject both null hypotheses.
```

8. Use the summary() function on the model object to produce the table of parameter estimates. Using this output take each line in turn and answer the following questions: (A) what does this parameter represent? (B) What is the biological interpretation of the corresponding estimate? (C) What is the null hypothesis associated with it? (D) Do you reject or fail to reject this hypothesis?

```
summary(birds.add.1)
##
## lm(formula = ABUND ~ LOGAREA + FGRAZE, data = loyn)
##
## Residuals:
##
       Min
                 1 Q
                     Median
                                   3Q
                                           Max
## -16.0849 -2.4793 -0.0817
                               2.6486 11.6344
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 15.7164
                           2.7674
                                    5.679 6.87e-07 ***
## LOGAREA 7.2472 1.2551 5.774 4.90e-07 ***
```

```
## FGRAZE2
           0.3826
                           2.9123 0.131 0.895993
## FGRAZE3
               -0.1893
                           2.5498 -0.074 0.941119
## FGRAZE4
               -1.5916
                           2.9762 -0.535 0.595182
## FGRAZE5
                           2.9311 -4.058 0.000174 ***
              -11.8938
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 5.883 on 50 degrees of freedom
## Multiple R-squared: 0.727, Adjusted R-squared: 0.6997
## F-statistic: 26.63 on 5 and 50 DF, p-value: 5.148e-13
# Here the intercept (baseline) is *NOT* the mean abundance of birds for
# FGRAZE level 1. It is the estimated ABUND when LOGAREA = 0 & FGRAZE = level 1.
# The null hypothesis for the intercept is that the intercept = 0.
# As the p value (p < 2e-16) is very small we reject this null hypothesis
# and conclude that the intercept is significantly different from 0.
# Not a biologically relevant hypothesis test, in this context
# (in fact totally arbitrary, as the location of the zero is determined
# by the transformation we chose)
# For LOGAREA, the null hypothesis is that the slope of the relationship
# between LOGAREA and ABUND = 0 (no relationship). As the p value (4.90e-07)
# is very small we reject this null hypothesis and conclude that the slope
# is significantly different from 0 (i.e. there is a significant relationship
# between LOGAREA and ABUND). Remember, in this additive model we are assuming
# that the slope of the relationship between LOGAREA and ABUND is the same for
# each level of FGRAZE (i.e. they are parallel) so we only have one estimate
# for the slope.
# The remaining estimates are differences (contrasts) in the intercepts
# between each level of FGRAZE and the reference level, FGRAZE1.
# For example, the FGRAZE2 estimate is 0.38, so there are 0.38 more birds on
# average in graze level 2 compared to graze level 1, when LOGAREA = 0 (so it's
# a difference in the intercepts). This difference is however not significantly
# different from zero (p = 0.89) and we conclude that there is no difference
# in the mean bird ABUND between FGRAZE2 and FGRAZE1 when LOGAREA = 0.
# The difference between FGRAZE5 and the reference FGRAZE1 is
# -11.89 (11.89 fewer birds in FGRAZE5 compared to FGRAZE1),
# when LOGAREA = 0.
# This difference is significantly different from 0 (p = 0.00017) and therefore
# the mean abundance of birds in FGRAZE5 is significantly different than in
# FGRAZE1 when LOGAREA = 0.
# The Adjusted R-squared value is 0.699 and therefore LOGAREA and FGRAZE
# explain 69.9% of the variation in bird abundance.
```

9. Now let's check the assumptions of your linear model by creating plots of the residuals from the model. Remember, that you can split your plotting device into 2 rows and 2 columns using the par() function before you create the plots. Check each of the assumptions using these plots and report whether your model

```
# first split the plotting device into 2 rows and 2 columns
par(mfrow = c(2,2))

# now create the residuals plots
plot(birds.add.1)
```



```
# To test the normality of residuals assumption we use the Normal Q-Q plot.

# The central residuals are not too far from the Q-Q line but the extremes

# are too extreme (the tails of the distribution are too long). Some

# observations, both high and low, are poorly explained by the model.

# The plot of the residuals against the fitted values suggests these

# extreme residuals happen for intermediate fitted values.

# Looking at the homogeneity of variance assumption (Residuals vs

# Fitted and Scale-Location plot), the graphs are mostly messy, with no clear

# pattern emerging. There is a hint of smaller variance with the lowest fitted

# values, which is not ideal. This could mean that the homogeneity of variance

# assumption is not met (i.e. the variances are not equal).

# The observations with the highest leverage don't appear to be overly

# influential, according to the Cook's distances (all < 1) in the Residuals vs

# Leverage plot.

# ABUND being bounded by zero, it wouldn't be too surprising that the
```

```
# variance increases with the mean abundance. This is often improved by
# log-transforming the response variable.

loyn$logABUND<- log(loyn$ABUND + 1) # here the natural log
birds.add.3 <- lm(logABUND ~ LOGAREA + FGRAZE, data = loyn)
par(mfrow = c(2, 2))
plot(birds.add.3)</pre>
```



```
# Not this time! Lots of extreme negative residuals generated.

# Back to `birds.add.1` the other issue was the extreme residuals.

# This could be due to missing important explanatory variables from the model, either # new explanatory variables altogether, or interactions: is it okay to assume # the effect of LOGAREA to be the same for all grazing levels?
```

10. Let's plot the predictions of your initial model to figure out how it really fits the data. Here's a general recipe, using the predict() function. + plot the raw data, using a different colour per FGRAZE level + for each FGRAZE level in turn, + create a sequence of LOGAREA from the minimum value to the maximum within the grazing level (unless you wish to predict outside the range of observed values) + store it in a data frame (e.g. dat4pred) containing the variables FGRAZE and LOGAREA. Remember that FGRAZE is a factor, so it requires quotes. + add a predicted column containing the explanatory variables from the model for the new data frame, using predict() + plot the predictions with the appropriate colours

See the script below, for one of many ways of doing this.

```
par(mfrow=c(1, 1))
plot(loyn$ABUND ~ loyn$LOGAREA, col = loyn$GRAZE, pch = 16)
# Note: # colour 1 means black in R
# colour 2 means red in R
# colour 3 means green in R
# colour 4 means blue in R
# colour 5 means cyan in R
# FGRAZE1
# create a sequence of increasing Biomass within the observed range
LOGAREA.seq <- seq(from = min(loyn$LOGAREA[loyn$FGRAZE == 1]),
                    to = max(loyn$LOGAREA[loyn$FGRAZE == 1]),
                    length = 20)
# create data frame for prediction
dat4pred <- data.frame(FGRAZE= "1", LOGAREA = LOGAREA.seq)</pre>
# predict for new data
dat4pred$predicted <- predict(birds.add.1, newdata = dat4pred)</pre>
# add the predictions to the plot of the data
lines(predicted ~ LOGAREA, data = dat4pred, col = 1, lwd = 2)
# FGRAZE2
LOGAREA.seq <- seq(from = min(loyn$LOGAREA[loyn$FGRAZE == 2]),
                    to = max(loyn$LOGAREA[loyn$FGRAZE == 2]),
                    length = 20)
dat4pred <- data.frame(FGRAZE = "2", LOGAREA = LOGAREA.seq)</pre>
dat4pred$predicted <- predict(birds.add.1, newdata= dat4pred)</pre>
lines(predicted ~ LOGAREA, data = dat4pred, col = 2, lwd = 2)
# FGRAZE3
LOGAREA.seq <- seq(from = min(loyn$LOGAREA[loyn$FGRAZE == 3]),</pre>
                    to = max(loyn$LOGAREA[loyn$FGRAZE == 3]),
                    length = 20)
dat4pred <- data.frame(FGRAZE = "3", LOGAREA = LOGAREA.seq)</pre>
dat4pred$predicted <- predict(birds.add.1, newdata = dat4pred)</pre>
lines(predicted ~ LOGAREA, data = dat4pred, col = 3, lwd = 2)
# FGRAZE4
LOGAREA.seq <- seq(from = min(loyn$LOGAREA[loyn$FGRAZE == 4]),
                    to = max(loyn$LOGAREA[loyn$FGRAZE == 4]),
                    length = 20)
dat4pred <- data.frame(FGRAZE = "4", LOGAREA = LOGAREA.seq)</pre>
dat4pred$predicted <- predict(birds.add.1, newdata= dat4pred)</pre>
lines(predicted ~ LOGAREA, data = dat4pred, col = 4, lwd = 2)
# FGRAZE5
LOGAREA.seq <- seq(from = min(loyn$LOGAREA[loyn$FGRAZE == 5]),</pre>
                    to = max(loyn$LOGAREA[loyn$FGRAZE == 5]),
                    length = 20)
dat4pred <- data.frame(FGRAZE = "5", LOGAREA = LOGAREA.seq)</pre>
dat4pred$predicted <- predict(birds.add.1, newdata = dat4pred)</pre>
lines(predicted ~ LOGAREA, data = dat4pred, col = 5, lwd = 2)
legend("topleft",
```

```
legend= paste("Graze = ", 5:1),
col = c(5:1), bty = "n",
lty = c(1, 1, 1),
lwd = c(1, 1, 1))
```


[Optional] Alternative method using less code:

```
# Okay, that was a long-winded way of doing this.
# If, like me, you prefer more compact code and less risks of errors,
# you can use a loop, to save repeating the sequence 5 times:
par(mfrow = c(1, 1))
plot(loyn$ABUND ~ loyn$LOGAREA, col = loyn$GRAZE, pch = 16)
for(g in levels(loyn$FGRAZE)){ # `g` will take the values "1", "2",..., "5" in turn
    LOGAREA.seq <- seq(from = min(loyn$LOGAREA[loyn$FGRAZE == g]),
                                         to = max(loyn$LOGAREA[loyn$FGRAZE == g]),
                                                         length = 20)
   dat4pred <- data.frame(FGRAZE= g, LOGAREA= LOGAREA.seq)</pre>
   dat4pred$predicted <- predict(birds.add.1, newdata= dat4pred)</pre>
   lines(predicted ~ LOGAREA, data = dat4pred, col = as.numeric(g), lwd = 2)
}
legend("topleft",
legend = paste("Graze = ", 5:1),
col = c(5:1), bty = "n",
lty = c(1, 1, 1),
lwd = c(1, 1, 1))
```


11. What have we learned from this analysis so far?

```
# There is a significant effect of grazing levels, especially the highest
# level with a negative effect on bird abundance

# There is a significant positive effect of patch area, too.

# The relative importance of patch area and grazing is not very clear, as these
# are arguably collinear to some extent, with smaller patches also having
# higher grazing intensity on average, and larger patches lower grazing intensity.

# Some observations are poorly predicted (fitted) using the current set
# of explanatory variables.
```

Part 2: Linear model with interactive explanatory variables

Let's now explore this question left unanswered: "is it okay to assume the effect of LOGAREA to be the same for all grazing levels?" This is effectively asking if we should let the slope of LOGAREA vary for different FGRAZE levels, which is the definition of an interactive effect.

12. Fit a linear model in R to explain the variation in the response variable, ABUND with the explanatory variables LOGAREA and FGRAZE and the interaction between these variables. Hint: this time, the interaction is included using the * symbol instead of +. Remember to use the data = argument. Assign this linear model to an appropriately named object, like birds.inter.1.

```
birds.inter.1 <- lm(ABUND ~ FGRAZE * LOGAREA , data = loyn)

# or you can use the following which is equivalent to the model specification
# above

# birds.inter.1 <- lm(ABUND ~ FGRAZE + LOGAREA + FGRAZE:LOGAREA, data = loyn)</pre>
```

13. Produce the ANOVA table using the anova() function on the model object. What null hypotheses are being tested? Hint: the anova() function performs sequential tests. Which of these hypotheses are relevant to us? Do you reject or fail to reject the null hypotheses?

```
anova(birds.inter.1)
## Analysis of Variance Table
##
## Response: ABUND
                 Df Sum Sq Mean Sq F value
                                              Pr(>F)
                  4 3453.7 863.42 26.8974 1.550e-11 ***
## FGRAZE
## LOGAREA
                  1 1153.8 1153.85 35.9447 2.942e-07 ***
## FGRAZE:LOGAREA 4 253.8 63.44 1.9764
                                               0.1139
## Residuals
                 46 1476.6
                             32.10
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
# null hypothesis 1: There is no effect of LOGAREA on ABUND
# (the coefficient for LOGAREA is zero)
# null hypothesis 2: There is no effect of FGRAZE on ABUND
# (no difference between grazing levels *after* accounting for the effect of LOGAREA)
# null hypothesis 3: There is no effect of an FGRAZE by ABUND interaction
# *after* the effects of LOGAREA and FGRAZE combined).
# A couple of equivalent ways to say this: the effect of LOGAREA doesn't differ
# between FGRAZE levels or: the difference in bird abundance between grazing
# levels is the same for all patch areas.
# As long as there is an interaction in the model, the null hypotheses 1 and 2
# ("main effects") are not relevant to us.
# the p value for the interaction is large, therefore we fail to reject the
# null hypothesis: there is no evidence supporting this interaction.
```

14. Use the summary() function on the model object to produce the table of parameter estimates. Using this output take each line in turn and answer the following questions: (A) what does this parameter represent (B) What is the biological interpretation of the corresponding estimate? (C) What is the null hypothesis associated with it? (D) Do you reject or fail to reject this hypothesis?

```
summary(birds.inter.1)
## Call:
## lm(formula = ABUND ~ FGRAZE * LOGAREA, data = loyn)
##
## Residuals:
##
       Min
                 1Q
                     Median
                                   3Q
                                           Max
## -16.3615 -2.3807 -0.2449
                               2.6181 11.3529
## Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                    21.243
                                3.987 5.329 2.89e-06 ***
                                4.842 -1.273 0.209285
## FGRAZE2
                    -6.165
## FGRAZE3
                    -7.215
                                4.820 -1.497 0.141271
## FGRAZE4
                   -17.910
                                6.701 -2.673 0.010375 *
## FGRAZE5
                   -17.043
                                4.406 -3.868 0.000344 ***
                                       2.014 0.049843 *
## LOGAREA
                     4.144
                                2.057
                                3.108 1.405 0.166593
## FGRAZE2:LOGAREA
                   4.368
## FGRAZE3:LOGAREA 4.989
                                3.531 1.413 0.164374
## FGRAZE4:LOGAREA 15.235
                                5.925 2.572 0.013422 *
## FGRAZE5:LOGAREA
                   1.996
                                3.650
                                      0.547 0.587148
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 5.666 on 46 degrees of freedom
## Multiple R-squared: 0.767, Adjusted R-squared: 0.7214
## F-statistic: 16.83 on 9 and 46 DF, p-value: 8.05e-12
# Here the intercept (baseline) is the predicted `ABUND` for LOGAREA = 0,
# for FGRAZE level 1.
# the null hypothesis for the intercept is that the intercept = 0
# (not biologically relevant).
# LOGAREA represents the slope for LOGAREA, specific to level FGRAZE = 1.
# The null hypothesis is that the slope of the relationship
# between LOGAREA and ABUND = 0, for level FGRAZE = 1 only.
# FGRAZE2...5 estimate differences (contrasts) between the *intercept* of
# each level and the *intercept* of the reference level, FGRAZE = 1.
# FGRAZE2...5:LOGAREA estimate differences (contrasts) between the *slope*
# of LOGAREA for each level and the *slope* of LOGAREA for the reference
# level, FGRAZE = 1.
# The Adjusted R-squared value is 0.72, slightly higher compared to the purely additive
# model (but not much, given that we have added a whole 4 parameters to the
# model, i.e. nearly doubled its complexity)
```

15. Now let's check the assumptions of your linear model by creating plots of the residuals from the model. Remember, that you can split your plotting device into 2 rows and 2 columns using the par() function before you create the plots. Check each of the assumptions using these plots and report whether your model

meets these assumptions.

```
# first split the plotting device into 2 rows and 2 columns
par(mfrow = c(2,2))
# now create the residuals plots
plot(birds.inter.1)
                                                             Standardized residuals
                                                                                    Normal Q-Q
                    Residuals vs Fitted
                                                                   \alpha
Residuals
                                                                   0
      -15
                5
                      10
                           15
                                 20
                                       25
                                             30
                                                   35
                                                                            -2
                                                                                             0
                                                                                                             2
                          Fitted values
                                                                                 Theoretical Quantiles
/Standardized residuals
                                                             Standardized residuals
                      Scale-Location
                                                                              Residuals vs Leverage
                                                                   0
                                                                                         0<sub>14</sub>
                                                                   က
      0.0
                5
                                 20
                                       25
                                             30
                                                   35
                                                                        0.0
                                                                                 0.2
                                                                                          0.4
                                                                                                  0.6
                                                                                                          8.0
                      10
                           15
                          Fitted values
                                                                                        Leverage
```

```
# Not a great deal of an improvement! Just marginally better in every respect,
# thanks to increasing the fit slightly (by throwing lots of new model
# parameters at the data).
```

16. Let's now plot the predictions of the interactive model to figure out how it really fits the data. Hint: the script from question 11 should work all the same, since the predictor variables involved in the equation are the same. Don't forget to update the name of the model!

```
# NOTE: I'm using the loop version of the plot, here.
# If you don't like it, refer to the long-hand code version at Question 11

par(mfrow = c(1, 1))
plot(loyn$ABUND ~ loyn$LOGAREA, col = loyn$GRAZE, pch = 16)

for(g in levels(loyn$FGRAZE)){# `g` will take the values "1", "2",..., "5" in turn
```

```
LOGAREA.seq <- seq(from = min(loyn$LOGAREA[loyn$FGRAZE == g]),

to = max(loyn$LOGAREA[loyn$FGRAZE == g]),

length = 20)

dat4pred <- data.frame(FGRAZE = g, LOGAREA = LOGAREA.seq)

dat4pred$predicted <- predict(birds.inter.1, newdata = dat4pred)

lines(predicted ~ LOGAREA, data = dat4pred, col = as.numeric(g), lwd = 2)

}
legend("topleft",
legend = paste("Graze = ", 5:1),

col = c(5:1), bty = "n",
lty = c(1, 1, 1),
lwd = c(1, 1, 1))
```


17. Do you think the model is biologically plausible? Is it supported statistically?

```
# The slopes of the LOGAREA effect across grazing levels are all over the
# place, without any coherent pattern (for instance, they could have been
# increasing or decreasing gradually from low to high grazing intensity)
# The interaction is non-significant, so isn't supported statistically either.
# Time to revert to the simpler, or a different model? Decisions, decisions!
```

End of the Linear model with continuous and categorical explanatory variables exercise