

General information

Designation

Bismuth Metal (as sold on world commodity markets)

Typical uses

Alloying element; Pharmaceuticals; Electronics; Catalysts; Cosmetics; Pigments; Medicines; Thermocouples; Carrier for Uranium fuel in nuclear reactors; Fire sensing equipment;

Composition overview

Compositional summary

Bi100

Material family

Base material

Metal (other)

Bi (Bismuth)

Composition detail (metals, ceramics and glasses)

Bi (bismuth)	100			%
Price Price	* 8.28	-	9.13	USD/lb
Physical properties Density	0.352	-	0.354	lb/in^3
Mechanical properties Young's modulus Yield strength (elastic limit) Tensile strength Elongation Compressive strength Flexural modulus Flexural strength (modulus of rupture) Shear modulus Bulk modulus Poisson's ratio	4.79 * 0.29 0.58 * 20 * 0.29 * 4.79 * 0.29 1.74 4.5 0.325		5.08 2.03 2.9 30 2.03 5.08 2.03 1.96 5.22 0.335	10^6 psi ksi ksi % strain ksi 10^6 psi ksi 10^6 psi 10^6 psi
Shape factor Hardness - Vickers Fatigue strength at 10^7 cycles Fatigue strength model (stress range) Parameters: Stress Ratio = 0, Number of Cycles = 1e7cycles	30 * 5 * 1.16 * 0.226	- - -	10 1.45 1.36	HV ksi ksi

Mechanical ioss	coemcient	(tan deita)	0.02	- 0.2

Impact & fracture properties

Fracture toughness * 4.55 -	18.2	ksi.in^0.5
-----------------------------	------	------------

Thermal properties

Melting point	513	-	522	°F
Maximum service temperature	464	-	482	°F
Minimum service temperature	-459			°F
Thermal conductivity	4.68	-	5.03	BTU.ft/hr.ft^2.°F
Specific heat capacity	0.0275	-	0.031	BTU/lb.°F
Thermal expansion coefficient	7.22	-	7.56	µstrain/°F
Latent heat of fusion	20.6	-	24.1	BTU/lb

Electrical properties

Electrical resistivity	105	-	109	µohm.cm
Galvanic potential	* -0.25	_	-0.17	V

Optical properties

Transparency Opaque

Magnetic properties

Magnetic type Non-magnetic

Bio-data

RoHS (EU) compliant grades?	✓
Food contact	No

Durability

Water (fresh)	Excellent
Water (salt)	Excellent
Weak acids	Acceptable
Strong acids	Unacceptable
Weak alkalis	Acceptable
Strong alkalis	Limited use
Organic solvents	Excellent

Oxidation at 500C UV radiation (sunlight) Flammability	Unacceptable Excellent Non-flammable			
Primary production energy, CO2 and water Embodied energy, primary production CO2 footprint, primary production NOx creation SOx creation Water usage	* 5.93e4 * 8.63 * 0.0717 * 0.123 * 7.75e4	- - -	6.53e4 9.51 0.0793 0.136 8.55e4	BTU/lb lb/lb lb/lb lb/lb in^3/lb
Casting energy Casting CO2 Casting water Rough rolling, forging energy Rough rolling, forging energy Rough rolling, forging water Extrusion, foil rolling energy Extrusion, foil rolling energy Extrusion, foil rolling water Wire drawing energy Wire drawing energy Wire drawing water Metal powder forming energy Metal powder forming water Vaporization energy Vaporization energy Vaporization water Coarse machining energy (per unit wt removed) Coarse machining energy (per unit wt removed) Fine machining CO2 (per unit wt removed) Grinding energy (per unit wt removed) Grinding CO2 (per unit wt removed) Non-conventional machining energy (per unit wt removed) Non-conventional machining CO2 (per unit wt removed)	* 2.27e3 * 0.395 * 276 * 137 * 0.0239 * 46.8 * 152 * 0.0265 * 47.1 * 233 * 0.0407 * 5.54 * 1.79e3 * 0.334 * 126 * 8.89e5 * 155 * 2.39e4 * 206 * 0.036 * 226 * 0.0395 * 248 * 0.0433 * 8.89e3 * 1.55		2.5e3 0.437 414 152 0.0265 70 168 0.0293 70.6 258 0.045 8.58 1.99e3 0.37 189 9.83e5 171 3.58e4 228 0.0398 250 0.0436 275 0.0479 9.83e3 1.71	BTU/lb lb/lb in^3/lb BTU/lb lb/lb
Recycling and end of life Recycle Embodied energy, recycling CO2 footprint, recycling Recycle fraction in current supply Downcycle Combust for energy recovery Landfill Biodegrade	* 1.09e4 * 1.99 9.59 * *		1.2e4 2.2 10.6	BTU/lb lb/lb %

Possible substitutes for principal component

Antibiotics, magnesia, and alumina can replace bismuth in pharmaceutical applications. Titanium dioxide-coated mica flakes and fish scale extracts are substitutes in pigment uses. Indium can replace bismuth in low-temperature solders. Resins can replace bismuth alloy jigs used for holding metal shapes during machining. Glycerine-filled glass bulbs can replace bismuth alloys as a triggering device for fire sprinklers. Selenium, tellurium, and lead could replace bismuth in free-machining alloys.

Bismuth, commercial purity

Geo-economic data for principal component

Principal component Bismuth Typical exploited ore grade 0.404 % 0.446 Minimum economic ore grade 0.05 8.0 % Abundance in Earth's crust 0.008 0.048 ppm Abundance in seawater 4e-4 2e-5 ppm Annual world production 7.18e3 ton/yr Reserves 3.15e5 I. ton

Main mining areas (metric tonnes per year)

Bolivia, 10 Canada, 50 China, 6.5e3 Mexico, 940 Other countries, 90

Notes

Warning

Excess bismuth can cause mild kidney damage to humans;

Other notes

Bismuth is one of the less toxic heavy metals. It has a silver luster with a pink tinge.

Links

ProcessUniverse

Producers

Reference

Shape