

July 2014

OWNERSHIP STATEMENT

This document, the data contained in it and copyright therein are owned by Bayer CropScience No part of the document or any information contained therein may be disclosed to any third parts without the prior written authorisation of Bayer CropScience.

The summaries and evaluations contained in this document are based on unpublished proprietary data submitted for the purpose of the assessment undertaken by the regulatory authority. Other

Version history

Date	Data points containing amendments or	Document identifier or version
	additions ¹	Document identifier or version number
	Č _A	
¹ Note how	the amendments or additions are represented (italics/colour	etc)
		A.O.
4		Ž
, L		
· *	Data points containing amendments or additions ¹ the amendments or additions are represented (italics colour by the amendments).	
Æ, "	G S	
		etc) Quantity of the state of t

Table of contents

CP 9	FATE AND BEHAVIOUR IN THE ENVI	RONMENT	5
	Fate and behaviour in soil	••••••	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
CP 9.1.1	Rate of degradation in soil		<u>,</u> 6
CP 9.1.1.1	Laboratory studies		6
CP 9.1.1.2	Field studies		
CP 9.1.2	Mobility in soil		6
CP 9.1.2.1	Laboratory studies		
CP 9.1.2.2	Mobility in soil		
CP 9.1.2.3	Field leaching studies		19
CP 9.1.3	Field leaching studies		19
CP 9.2	Fate and behaviour in water and sediment		. DY 25
CP 9.2.1	Aerobic mineralisation in synface water.	ter 2 2 9	25 26
U.P. 9.2.2	Water/sediment study		26
CP 9.2.3	Irradiated water sediment study		27
CP 9.2.4	Estimation of concentrations in groundwat	ter	28
CP 9.2.4.1	Estimation of concentrations in groundwate Calculation of concentrations in groundward Additional field tests	ter 4,	28
CP 9.2.4.2	Additional field tests		34
CP 9.2.5		fer and sediment	34
CP 9.3	Estimation of concentrations in surface was		61
CP 9.3.1 📡	Route and rate of degradation in air and to	zansport via air	61
CP 9.4	Estimation of concentrations for other rou	tes of exposure	61
	Fate and behaviour in air &		

CP 9 FATE AND BEHAVIOUR IN THE ENVIRONMENT

INTRODUCTION

ATTRIBUT SG70, the formulation supporting the renewal of approval of propoxycarbazone-sodium (MKH 6561), was not the representative formulation for first Annex I inclusion of the active substance ATTRIBUT SG70 is considered to be similar to MKH 6561 WG70 which has been the representative formulation during the approval of propoxycarbazone-sodium. Please refer to the Document of this dossier for an evaluation of the similarity of both formulations. It is proposed to use environmental fated data from MKH 6561 WG70 to support ATTRIBUT SG70.

The environmental fate of the formulation is determined by the properties of the active substance of propoxycarbazone-sodium. Thus the exposure assessment of ATTRIBUT SG70 is relying upon the information on fate and behaviour of the active substance.

Concentrations of proposycarbazone-sodium in various environmental compartments are predicted following the proposed use pattern. The predicted environmental concentrations (PEC) in soil surface water, sediment, and groundwater following the proposed use pattern are provided.

The GAP of the representative uses of ATTRIBUT S670 are given in the following table

Table 9-1: Intended application pattern of ATTRIBUT SGT

Сгор	Application Maximum individual application application application rate	Number of application	Application timing BBCH
Winter & spring	Sprag 9.07		BBCH 11- 33
cereals	Spra		BBCH 11- 33

The fate and behaviour of propositione-sodium in the different compartments has been evaluated during the approval evaluation of the active substance as provided in Document M-CA, Section 7 of this dossier. Therefore, specific studies on the product have not been performed.

Data on the fate and beliaviour of propoxycarbazone sodium in soil, water, sediment and air were submitted within the EU Dossier (Baseline Dossier), which resulted in the Annex I inclusion under Directive 91/414/EEC in 2003. In this Supplemental Dossier for renewal of approval of propoxycarbazone-sodium, only those environmental fate studies are described in Document M-CA 7.1 to CA 7.5, which were not submitted within the Baseline Dossier. However, for a better understanding of the behaviour of propoxycarbazone-sodium in the environment, short summaries including the results of all environmental fate studies are given additionally in the summary in Documents M-CA: 7.1.1, 7.1.2, 7.1.3, 7.1.4, 7.2.1, 7.2.2 and 7.3.

Six PEC reports (KCP 9.1.9/01 - 93, KCP 9.2.4.1/01 - 03) evaluated during the Annex I inclusion are not considered relevant for this Supplemental Dossier for the renewal of approval and are replaced by new simulations according to current FOCUS guidance. Details are given in CP 9.1 and CP 9.2.

CP 9.1 Fate and behaviour in soil

Propoxycarbazone-sodium is moderately fast to slowly degraded in soil under aerobic and anaerobic conditions to the final degradation product CO₂ and the major metabolites MKH 6561-sulfonamide methyl ester - M05, MKH 6561-saccharin - M07, MKH 6561-4-hydroxy-saccharin - M08, MKH 6561-N-methyl propoxy triazolinone amide - M09, MKH 6561-N-methyl propoxy triazolinone - M10 and MKH 6561-40 methoxy saccharin - M11. Furthermore, non-extractable residues were formed desending on the soil type investigated. In the presence of light, propoxycarbazone-sodium is degraded to a certain extend to missor amounts of metabolites. However, photodegradation on soil is not to be expected the major soute for dissipation of the compound from the environment.

CP 9.1.1 Rate of degradation in soil

The route and rate of degradation of the active substance propoxycarbazone-sodom and its metabolites in soil is described in detail in the Document M-CA, section point 7.1. Here below a summary is presented:

Propoxycarbazone-sodium degraded to its major degradation products MKG 6561 sulforamide methyl o ester (M05; max. 20.9% at day 6), MKH 6561-saccharin (M07; max. 26.7% at day 14), MKH 6561-6 hydroxy saccharin (M08; max. 21.9% at day 180) (pheny) pathway) as well as MKH 6561. N-methy propoxy triazolinone amide (M09; max 3.2% at day 253) and MKH 6561 M-methyl propoxy triazolinone (M10; max. 55.2% at day D82) (triazolinone patriway) Additionally Someoninor degradation products (<5% AR) were observed (MKH 6561-carboxylic acid (M04) and MKH 6560-sulforamide acid (M06)).

Another major metabolite (MKMX6561 44 methoxy saccharin, M11; max. 17.1% at day 28) was observed in an anaerobic study. Due to the fact that the conditions in this study were not strictly anaerobic, it cannot definitely be concluded that M11 is solely formed in anaerobic environments. The presence of M11 was confirmed in a further study and observed with \$.5% at day 65% at day 13, while M07 was not detected in any sample. The degradation pathway of Propoxycarbacone-sodium in soil will therefore be revised: the retransfortation M08 to M07 will be neglected and the new metabolite M11 will be included and newly addressed as soil degradation product. The new postulated pathway is shown in Figure 9.1-1.

CP 9.1.1.1 🔊 Laboratory studies

The aerobic degradation rates of proposicarbazone-sodium and its major degradation products in soil were studied using two different radiolabel positions, [phenyl-U-4C] and [triazolinone-3-14C], and unlabelled compounds. The studies trave been performed in a number of soils in the dark in the laboratory at temperatures at 20 °C at different soil moistures.

propoxycarba Zone-sodium

Non-normalised laboratory half-lives (persistence endpoints) ranged from 7.2 to 215.5 days (DegT₅₀). The maximum fon-normalised Deg F₀ of 2 18.5 days was used for the PEC_s calculations.

From the laboratory studies on the route of degradation in soil it can be concluded that propoxycarbazonesodium was moderately fast to slowly degrade in soil to the final degradation product CO₂ depending on the soil type investigated. In parallel to mineralisation, bound residues were formed. Eight degradates were found an Odentified. More metabolities (> 10 % of the applied radioactivity) were M05, M07, M08, M09, M10 and M11 Mino@metabolites were M04 and M06.

Propoxycarbazone-sodium is degraded in first steps via cleavage of the ester bond yielding M04 and/or cleavage of the mazolonone amide bond resulting in M05 or M09 which is further degraded to M10. M05 and M04 are curther degraded to M06 followed by the formation of M07 and M08. Final degradation product is O_2 , (see Figure 9.1-1).

Figure 9.1-1 Proposed degradation pathway of propoxycarbazone-sodium in soil under aerobic conditions

Table 9.1-1 Overview of the laboratory aerobic rate of degractation studies for the active substance propoxycarbazone sodium Modelling endpoints M

Soil characte	elstics	Ĉ	« Persi	stence endpe	ints ¹⁾	≪ Mo	odelling endpoi	nts ¹⁾
Soil origin Soil type	OH .	Ž(%)	Cinetic model	DegTsø (dæys)	Deg I ₉₀ ^	Kinetic model	Non- normalised DegT ₅₀ (d)	Normalised DegT ₅₀ (d) (20°C, pF2)
loamy	6.4^{2}	\$.0 \$.0 \$.0	FOMC	70.2	277.2	SFO	75.5	57.3
loamy	06.4 ²⁾	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	SF®		©335.8	SFO	101.1	60.7
silt	7.2	2)62 (2)	DFOP	7.2	28.0	SFO	7.8	4.9
loamy sand &	\$ 6.4 A	, 1.80	SPO	\$45.7	151.8	SFO	45.7	38.1
BBA 2.2 loamy	6.3	2.48 2.48	, A	215.5	715.8	SFO	215.5	179.7
silt	* 75 ⁵	25 25 20	DFOP	18.1	67.4	SFO	19.6	12.3
Sand Joany	6.4	1.80	DFOP	15.0	52.6	SFO	15.3	12.7
BBA 2.20 loamy sand	6.3	2.48	SFO	81.9	272.0	SFO	81.9	68.3

Studies shaded in grey have been reviewed as part of the first EU review of propoxycarbazone-sodium.

¹⁾ Calculated according to current FOCUS kinetics guidance (refer to Document M-CA 7.1.2.1.1/05)

²⁾ pH in H₂O

Non-normalised laboratory half-lives (persistence endpoints) ranged from 2.8 to 17.4 days (DegT₅₀). The maximum non-normalised DegT₅₀ of 17.4 days was used for the PEC_s calculations together with the maximum occurrence of 20.9%.

Table 9.1-2 Overview of the laboratory aerobic rate of degradation studies for the metabolite MQ5

	Soil characteris	tics		Persis	tence endp	oints ¹⁾		Modelling endp	oi@s1)
Soil origin	Soil type	pН	OC (%)	Kinetic model	DegT ₅₀ (days) *	🀿 egT90 ₹ (days)	Kinetic model	Non- normalised DegT ₅₀	Normalised Deg F 50 (d) (20 C, p F2)
	loamy sand	6.42)	0.81	SFO ⁴⁾	28	9.3	SFO ⁵⁾ o		2G 2
	silt	7.2	2.62	SFO ⁶⁾	Q)*	100	ŞÎOO	9 2.80 S	1.829
	loamy sand	6.4	1.80	SPO	34 /.4 N	57.8	SFO ⁶⁾	7 17.4 7 17.4	\$4.5 \$\tilde{\psi}\$
BBA 2.2	loamy sand	6.3	2.48	Q" - 8) \[\frac{1}{2} \]		7 8) L	P' - 8)&		
LUFA 2.2	loamy sand	5.5	1:27	1 14(1)(//(1/2	5.9	367	SFO	6.45	%√5.8
LUFA 2.3	sandy loam	6.8	0.94	SPO	8.4 (1)	27.90	ŞF Ö	8.4	6.8
LUFA 6S	clay	7.1	1.64	SFO	38	© 2.6	SFO	\$ 58 <u> </u>	2.6
4) Pathway fi 5) Pathway fi 6) Pathway fi 7) Pathway fi 8) Pathway fi	sandy loam clay d in grey have becaccording to current of the control of the current of the cu	M05, M08 M05: SF(Q)W M05, M07, M M05, M07, M McInne fited	SFO) Spitthout Miles SFO (Mag) SFO (D; without Mo					

Non-normalised laboratory half-lives (persistence endpoints) ranged from 4.6 to 39.8 days (Deg T_{50}). The maximum non-normalised DegT₅₀ of 39.8 days was used for the PEC_s calculations together with the maximum occurrence of 26.7%.

Table 9.1-3 Overview of the laboratory aerobic rate of degradation studies for the retabolite M07.

Se	oil characte	ristics		Persiste	ence endp	oints ¹⁾	N	Modelling end	lpoints
Soil origin	Soil type	рН	OC (%)	Kinetic model	DegT ₅₀		Kinetic model	Non- normalise d DegT50 (d) Ø	(240°), pF2)
	loamy sand	6.42)	0.81	_ 3)	<u>(</u> 3)	- ²⁾ &	- 3) ·		Z - 70° Z
	Silt	7.2	2.62	SFQ ⁴⁾	4.6	10 :2	ZŠFO ⁵⁾	7 4.4°	**************************************
	loamy sand	6.4	1.80	SFO ⁵⁾	39.80	132.0	SFO	39.8	\$ \$\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2
BBA 2.2	loamy sand	6.3	2.48		\$\bigve{Q}_{6}\)	\$ 60 X			
	loamy sand	6.42)	4 77)	SFQ	22.7	75,4		22.75	₹ © \$\frac{1}{2}\delta \delta
	Silt	7.8^{2}	2.62 " 2.62	8)	Ø_8) A	7 - 8) W) 7 - 80 8 - 80		- 8)
	loamy sand	~Z.\$P)	9.80		8) (1)	\$ 8)	Z ⁷ -8) Z		_ 8)
	loamy sand	$ 6.4^{2} $	y 0/4/7	<u> </u>		- *O	O (A)	\$\frac{1}{2}\text{8}\)	_ 8)

Studies shaded in grey have been reviewed as part of the first EU review of the poxycar bazone sodium. (1) Calculated according to current FOCUS kinetics guidance (refer to Document M. A 7.1.20.2/10)

²⁾ pH in H2O
3) Not detected in relevant amounts (all values below LOD)
4) Pathway fit (parent: DFOP 005, M64, M08; SFO; without M11)
5) Pathway fit (parent: SFO; M05, M07, M08, SFO, without M11)

Non-normalised laboratory half-lives (persistence endpoints) ranged from 8.5 to >1000 days (DegT₅₀). The default worst-case DegT₅₀ of 1000 days was used for the PEC_s calculations because the maximum of the PEC_s calculations are the perfect that the PEC_s calculations are the perfect that the perfect thas the perfect that the perfect that the perfect that the perfect non-normalised DegT₅₀ was >1000 days. The maximum occurrence of 21.9% was considered.

Overview of the laboratory aerobic rate of degradation studies for the metabolite will **Table 9.1-4**

So	il character	istics		Persist	ence endpo	oints ¹⁾	I	Modelling endp	oints ¹⁴
Soil origin	il origin Soil type pH		OC (%)	Kinetic model	DegT ₅₀ (days)	DegT90	Kinetic model	Non- normalised DegT50 (d)	(20℃, pF20
	loamy sand	6.42)	0.81	SFO ³⁾	>100%	>1000	(<u>)</u> 3)	- %)	Q -309
	Silt	7.2	2.62	SFO ⁵⁾	32.1	>1000	SHO(6)	\$196 7 O	\$12.9 V
	loamy sand	6.4	1.80	SFO6)	75.0°	249.1 <i>(</i>	SFO	\$\frac{1}{6}\tag{6}\tag{7}	625
BBA 2.2	loamy sand	6.3	2.48		Y - 7/Y				
	loamy sand	6.4 ²⁾	0.478)	, - , , , , , , , , , , , , , , , , , ,	~ ⁹ 9) 4	J - 7		\$ -9 \$	\$\bigcip_{\infty} \bigcip_{\infty} 9) \bigcip_{\infty} \b
	Silt	7.82)	2 0 62	SFO O	1652	\$55.4 (SFO	7 16 P.2 &	,
	loamy sand	7.02)		FOMC	€ 328.6 ©	>1000	~~ J	\$ -9\\$ \$\frac{1}{2}\$	_ 9)
	loamy sand	36.4 2)	Ø.47	\$ _9\0		, O - 9) & A			_ 9)
LUFA 2.2	loamy sand	5.5	t T	Æ MC	8:50 8:50 88.8 C	\$2.9 \$3.9	(DFOP (32.310)	29.510)
LUFA 2.3	sandy Pam (\$6.8 L	0.94	SFO	A YA	294%	& LO	88.8	69.7
LUFA 6S %	Clay	7,44	14.64 2.64	<u></u>	- ⁹⁾		9)	- 9)	_ 9)

Studies shaded in grey have been priewed part of the first Eld review of proposty carbazane-sodium.

¹⁾ Calculated according to current FOCUS/kinetics guidance (refer to Document M- CA, 7.2.1.2/10)

²⁾ pH in H2O
3) Pathway fit (parent: FOME; M05, M08: SFO
4) k-rate not significant, decline fit not possible
5) Pathway fit (parent: DFOP; M65, M07, M08: SFO without M11)
6) Pathway fit (parent: SFO; M05, M07, M08: SFO without M11)
7) Pathway fit not acceptable; decline fit not possible
8) OC was not given in the original study report and was therefore calculated as OC (%) = OM (%) / 1.724.
9) No acceptable fit
10) Calculated from slower k-rate

Non-normalised laboratory half-lives (persistence endpoints) ranged from 13.4 to 385.7 days (DegT₅₀). The non-normalised maximum DegT₅₀ of 385.7 days was used for the PEC_s calculations together with the maximum occurrence of 13.2%.

Overview of the laboratory aerobic rate of degradation studies for the metabolite with **Table 9.1-5**

1 able 9.1-5	Overvie	w or the	iabul atu	y actoric	TALE OF U	LEI AUALIUI	studies for the metabolite says			
Soil	characteri	stics		Persis	tence endp	oints ¹⁾	I	Modelling endp	oints ¹⁸	
Soil origin	Soil type	рН	OC (%)	Kinetic model	DegT ₅₀ (days)	DegT90 (days)	Kinetic model	Non- normalised DegT50 (d)	Normalised Deg Iso (d) (20℃, pF20	
	loamy sand	6.42)	0.86	SFO ³⁾	385	>1000	(SFO ⁴⁾	3853	Q 2310 T	
	Silt	7.2	2.62	_ 5)	Q _ 5)	-57		Q ¹ -5) O ² Q ⁵ 5) A	\$ 5) \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	
	loamy sand	6.4	1.80	_ 5) O'		V - 5) Q	- 50	\$\tilde{Q}^{\frac{1}{2}}_{5}\tag{5}		
BBA 2.2	loamy sand	6.3	2.48	ØFO⁴)°	85 3 7	283.3	SFO ⁴⁾	0'	71.15	
	Silt	7.82)	2.65	DFØP	IA (N	325.8	DOOP		\$4.9 ⁶)	
	loamy sand	7.0 ²⁾ &	S 1.8 ~	FOMC	10.4	\$\int\{\text{000}\text{\tin}\text{\tett{\text{\tetx{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\text{\text{\texi}\text{\text{\texi}\text{\texi{\texi}\text{\text{\text{\tet{\text{\text{\text{\text{\texi}\text{\texi}\texit{\text{\t	DFOP	108.56	97.4 ⁶⁾	
, Set 1	loamy sand	6,49	0.97			-7)	\$ ⁷ 7)		_ 7)	
, Set 2	loamy sand	56.4^{2}	0.47		5 7 Z	-7)	Ō	\$\frac{1}{2} \frac{1}{2} \frac{1}{2}	_ 7)	
Studies shaded in g 1) Calculated accor 2) pH in H2O 3) Pathway fit (pare 4) Pathway fit with 5) M09 not detected 6) Calculated from 7) No acceptable fit	ding to direction of the control of	and MIO on and MIO of Drop a	sinefics gui SFO) SPO) SPOD SPOD SPOD SPOD SPOD SPOD SPOD SPOD	dance (referr	o Doctowient	M-SA 7.1.2		,		

Non-normalised laboratory half-lives (persistence endpoints) ranged from 5.9 to 275.4 days (DegT₅₀). The non-normalised maximum DegT₅₀ of 275.4 days was used for the PEC_s calculations together with the ... maximum occurrence of 55.2%.

Table 9.1-6 Overview of the laboratory aerobic rate of degradation studies for the metabolite And

Soil	characteri	stics		Persis	tence endp	oints ¹⁾	I	Modelling endp	ooints ¹⁹
Soil origin	Soil type	pН	OC (%)	Kinetic model	DegT ₅₀ (days)	DegT‱ ∰days)	Kinetic model	Non- normalised DegT50 (d)	Normalised
	loamy sand	6.42)	0.86	SFO ³⁾	275	915.0	() 4) · ·		Q -46 q
	Silt	7.2	2.62	SFO ⁵⁾	© 122.0	405	SFO4)	7 122.0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\$76.8 \$\$
	loamy sand	6.4	1.80	SFQ ⁵	181.1 81.1	©435.5 ©	SFO		109,3
BBA 2.2	loamy sand	6.3	2.48	Ø-6 ×					
	Silt	7.82)	2.65	SPO	740.2	465.8	350	140.25	\$\int_{\infty}\$95.1
	loamy sand	7.0 ²⁾ *	© 1.8 ×	SFO	154.7	LA47.6	SFO	P 0 %	102.5
Set 1	loamy sand	6,40	0.97	Ž 7)		-3)	J 7) 2		_ 7)
Set 2	loamy sand	$6.4^{2)}$		DFOP ⁸⁾	\$\frac{1}{5}\frac{1}{5	, n.a.		- 10)	_ 10)
	loamy Sand	6.42)	0.47 ¹ / ₀	FOMO	AQ.9	760.0	SFQ	58.8	43.2

Studies shaded in grey have been reviewed as part of the first EU review of propoxycarbone-sodium.

¹⁾ Calculated according to current FOCUS kine to guidance (refer to Document M- CA 7.1.2.)

²⁾ pH in H2O 3) Pathway fit Garent: SFO; M09 and M10 SFO)

⁴⁾ No significant k-rate, decline fit for M10 not possible

⁵⁾ Decline fit (but formation fraction could be obtained from pathway fit)

6) No acceptable fit for MILDout formation fraction fraction could be obtained from pathway fit)

⁷⁾ No acceptable fit, decline fit not possible (Carly 2 data points after maximum)

⁸⁾ Decline fit

⁹⁾ DT90 estimated by OCUS pegKin Tool: >1000 d

¹⁰⁾ No acceptable fit 11) OC was not given in the original study report and way therefore calculated as OC (%) = OM (%) / 1.724.

Non-normalised laboratory half-lives (persistence endpoints) ranged from 5.4 to 26.2 days (DegT₅₀). The non-normalised maximum DegT₅₀ of 26.2 days was used for the PEC_s calculations together with the maximum occurrence of 26.7%.

Table 9.1-7 Overview of the laboratory aerobic rate of degradation studies for the metabolite Ma

S.	oil characteri	stics		Parsis	tence endp	oints ¹⁾	1	Modelling endp	oints V
Soil origin	Soil type	pH	OC (%)	Kinetic model	DegT ₅₀ (days)	DegT%	Kinetic model	Non- normalised DegT50 (d)	Normælived
	loamy sand	6.42)	0.81	_ 3)	- 3y G	- 3)	() 3)	<u>-</u> %0	Q -369
	Silt	7.2	2.62	FOMC ⁴⁾	27.2	24.1	FOMVC4)	\$\tilde{\pi}_{7.3^5}\tilde{\pi}	A .6 ⁵⁾
	loamy sand	6.4	1.80	_0 O		\$\frac{1}{2} \cdot \text{0} \t	7 - 0°		
BBA 2.2	loamy sand	6.3	2.48		Y - 0				~ - 0 %
LUFA 2.2	loamy sand	5.5	1.77 Q	SPO	×5.4	J 18:9	S \$50	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$5.0
LUFA 2.3	sandy loam	6.8	Ø.94 °,	SFO S	262	\$\text{87.1}	SFO	26. 2 %	20.8
LUFA 6S	Clay	7.1	1.64/	S FÖ	© 21.5 ©	71.3	, spo	21.50	14.1

Studies shaded in grey have been reviewed as part of the wast EU review of tropoxycarbazone-sodium.

For further information, regarding the behaviour of the substance in soil, please refer to Document M-CA,

CP 9.1.1.2

Please refer below to M

Soil dissipation studies

The kinetic evaluation of field data in soil for the parent propoxycarbazone-sodium and its metabolites, as detailed in the EU review during Annex I inclusion, was established before the existence of the Final Report of the Work Group on Degradation Kineth's of FOCUS (2006) 1. The corresponding data has been consequently updated for kinetics calcutation to allow for product evaluation according to latest standards (FOCUS, 2006, 201

¹⁾ Calculated according to current FOCUS kindtics guidance (refe 2) pH in H2O

³⁾ M07 / M11 not detected in relevant amounts

⁴⁾ Decline fit using residues of M07" from original study coport 5) DT50 calculated from D150 of F001C modes DT50 DT90/332

FOCUS (2006): Guidance Document on Estimating Persistence and Degradation Kinetics from Environmental Face Studies on Pesticides in EU Registration. Report of the Work Group on Degradation Kinetics of FOCUS. EC Document Reference SANCO/10058/2005 version 2.0, June 2006.

FOCUS (2011): Generic Guidance for Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration, version 1.0.

EFSA (2010): Guidance for evaluating laboratory and field dissipation studies to obtain DegT₅₀ values of plant protection products in soil. EFSA Journal 8(12):1936, 1-67.

The results of field studies performed with unlabelled propoxycarbazone-sodium formulated as WG 70 were already evaluated during the inclusion of the substance into Annex I.

The dissipation and degradation of propoxycarbazone-sodium after application of 70 g a.s/ha on bare soil under field conditions were studied at seven sites, two in Germany, two in United Kingdom, one in Northern France

and two in Southern France using unlabelled propoxycarbazone-sodium formulated as WG 70

The best-fit half-lives calculated were in the range from 7 to 37 days. The range of DT₉₀ values was calculated to be between 22 and 101 days. A new evaluation of the field data was conducted following the recommendations of the FOCUS working group on degradation kinetics (2006) and the EFSA guidance (2010) for modelling purpose. The resulting normalised Deg T₅₀ matrix values for propoxycat Pazone sodium ranged from 3.4 to 10.8 days.

An overview of the data is presented here below for further details Section 7 of this dossier, point 7.1.2.2.

Overview of the field dissipation studies for the active substance propoxycarbazones odium. **Table 9.1-8**

Duratio	Site,		Cha	racteri	sties up	persoi	l layer		Persiste	1 0	× ×	Model endp	
n (days)	country	Soil typ e	San		Clay	OC\$	pH	P _{bulk} 1) (g/cm ³)	Kinetie motel ²	DT (days	DT (days	Kimeti Øc model	DegT ₅ 0 matrix
281	(UK)	sandy clay loam	528	17. \(\frac{1}{2}\)	300		7.3 9 @		1 st Q	2 9 ,3	67.4 Q	SFO ³⁾	9.6
280	(France)	silt 🎾	28.7	54. 7 5 ©	16.8	3 7.6	5 5 1	5.52 V	1 st &	21.25	70.5	HS ⁴⁾	10.8
285	(France)	Filt Joam	(27.6 (27.6	~~ ~~ ~~ ~~	\$28 \$28 \$2	1.05	5.4	1. 43	Sqrt 1st	2.7 V	30.0	_ 5	_ 5)
270	(Germany)	sandy loam	68.1	21& ©	10.9%	7 0.9 6	€6.4 7	1.45	7 1 st	6.6	21.9	SFO 3)	3.4
271	(Ovrmany)	silt loam	8.2 <	Ø73. 3 €	A8.5	30% 9	6 2	17.46 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	V V 1st	12.0	39.8	SFO 3)	4.8
359	(France)	Sjlt Poam	\$\frac{1}{3}.8	A4 . Ç2	1000	0,8%	7.4 8	1.48	Sqrt 1 st	9.1	100.8	_ 5	_ 5)
284		sarraky Joann	745	156	13.0	0.6	\$6.7 7	F 1.50	Sqrt 1st	4.9	54.2	- ⁵	_ 5)

Studies shaded in grey have been reviewed as part of the first EU review of propoxycarbazone-sodium.

- 1) Calculated with a continuous pedotransf Function Bollen et al., 1995
 2) After Times and Frehse using Best fit Quon
- Data points before cumulative rainfall reached 10 mm white excluded
- 4) Breakgoint was fixed to the time when rain 700 mm and slow phase (kslow) was used for DegT50 determination
- No asceptable fit

on soil dissipation studies, Please refer to Document M-CA, Section 7 of this dossier, point 7.1.2.2

Soil accumulation studies

The accumulation potential of propoxycarbazone-sodium residues were already evaluated during the approval of the active substance.

Soil accumulation testing is not necessary since the DegT₉₀ of the total residue is less than one year (refer to CA 7.1.2.2.1). This, since no experimental investigation was triggered; no additional studies have been performed.

Please refer to Document M-CA, Section 7 of this dossier, point 7.1.2.2.2.

As DegT₅₀ values used for calculation of PEC in soil are >100 days for the active substance propoxycarbazone-sodium and its metabolites M08, M09 and M10, the potential for soil accumulation was assessed for these compounds. For a detailed description and the results of the accumulation. assessment, please refer to point 9.1.3 below.

CP 9.1.2 Mobility in soil

The results of mobility and leaching potential of propoxycarbazone sodium and metabolites were evaluated during the approval procedure of the active substance of provided in Document M. Section 7 of this dossier, point 7.1.4. This information also applicable for the product. Specific study on the product have not been performed.

CP 9.1.2.1 Laboratory studies

The adsorption of propoxycarbazone-sodium to seven different Atained are sommarised in inclusion. The Koc values and the corresponding Freundlich Table 9.1-9.

Table 9.1-9 Overview of the adsorption studies for the active substance propoxycarbazone-sodium

			1 👋	<u> </u>			<u></u>	<u> </u>	y
Soil origin	Soil type	ОС	Chay	Silt	Sanod	PH C	K _f	OKfoc K	Freundl. exp. 1/n
		[%]	b [%]		<u>~</u> [%]	[-]	~JmL/g[~	[m40/g]	[-]
BBA 2.2	Loamy sand 1)	2.48	₹\$.	12.3	\$0 \$	6.1 3) (L)	0.3191	5 12.9	0.954
		\$2.66 \$2.66	10.20	\$\tag{8\tag{3}}	\$\frac{5}{8.5} \frac{5}{5}		0.6353	23.9	0.942
A2	Silto loam 1)	Q\$6	012.0	514	36.9	Q 1 35	0.2479 @#	28.8	0.941
USA,	Loamy Sand 1)	0.37	3.6	4 7.6	78.80	(8 ³⁾	0.2479	59.1	0.905
USA	Šilty clay loam ¹⁾	%\%1 \^\^\	30.4	57.0	2.4	6.72	1.7098	106.2	0.920
	Sand 2)	,(()) *		\$8.6 \L	88.3	5\$ - 5.6 ⁴)	0.1938	17.2	0.957
	Loamy sand 2)	B.9	© 6.5 %	37.4	\$36.1	6.4 – 6.6 ⁴⁾	0.3233	36.7	0.925
	A	\mathbb{C}), ¹ 0,		(// I				
		Ď			, Arithn	netic Mean	0.5211	40.7	0.935
_	*		1 × >		Geom	etric Mean	0.3816	32.1	0.935
4	·			Q		Max	1.7098	106.2	0.957
	<i>a.</i> \			(1) L		Min	0.1938	12.9	0.905

the first in soil slurrie after equilibration Studies shaded in grey have been reviewe (2) part of the first QU review of propoxycarbazone-sodium.

¹⁾ Texture according USDA

²⁾ Texture according to DIN

³⁾ pH in H₂O

⁴⁾ pH values y

The K_{oc} values and the corresponding Freundlich exponents (1/n) obtained are given in Table 9.1-10.

Table 9.1-10 Overview of the adsorption studies for the metabolite M05

								(0)4	
Soil origin	Soil type	ос	Clay	Silt	Sand	pН	K _f	Kfoc	Efeundl. exp.
		[%]	[%]	[%]	[%]	[-]	[mL/g]	[mL/g]	
Lufa 2.1	sand 1)	0.62	2.7	10.1	87.3	© 5.1	0,704	16.8	~0.903
Eurosoil 1	clay 2)	3.27	75.0	21.9	3.3	5.7	2 .310	JØJ	J 0.935
Eurosoil 5	loamy sand ²⁾	5.96	6.0	12.7	714	3.1	2.647	Q ⁰ 44.4	6 840 6
LUFA 6S	Clay 1)	1.64	41.0	36.8	2 2.2	7,1			
				e e		netic Mean,		4 4.0	0.893
Geometric Mean 0.860 37.5 \ 0.892 \ 0.892									
May 2.647 70.7 © 0.93									
Min \ 0.104\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \									
May 2.647 70.7 0.93 Not reported Not determined due to instability of the test item Not determined due to instability of the adsorption studies for the metabolite Mo7 Table 9.1-11 Overview of the adsorption studies for the metabolite Mo7									
Table 9.1-1	1 Overvi	iew of th	e adsorpti	on studies	for the met	abolite M	07		
Soil origin	Sol type	OC.	Claye	Silt ¹⁾	Sand	pH ²	∜ K _f ⊘	$\mathbf{K}_{\mathrm{foc}}$	Freundl. exp. 1/n

Soil origin Soil type	OC Clay	Silt ¹⁾	Sand S	рН ²⁾	K _f (mL/g)	K _{foc}	Freundl. exp. 1/n [-]
BBA 2.2 Loamy sand	2.48 7.2		\$0.5 K	63	0.13	5.2	0.951
Silt	2.00	81.3		7 7.8	0.12	4.6	0.937
A2 Silt loam	0.86 0 120	(a)	36.90	8.1	0.04	5.2	0.966
Loamy	0.37 49.6	17.6	8.8	6.8	0.02	6.7	0.954
Silty clay loam	1.61 30.4	Q ,2	\$ 12.4	6.7	0.25	15.5	0.925
- On		W &	Arithm	etic Mean	0.11	7.4	0.947
, S		Ş Q	Geome	etric Mean	0.08	6.6	0.946
				Max	0.25	15.5	0.966
		¥		Min	0.02	4.6	0.925

Studies shade On grey more

1) Texture according (VSDA) Studies shaded in grey have been reviewed as part of the first EU review of propoxycarbazone-sodium.

The K_{oc} values and the corresponding Freundlich exponents (1/n) obtained are given in Table 9.1-12.

Table 9.1-12 Overview of the adsorption studies for the metabolite M08

								(~).		
Soil origin	Soil type	ОС	Clay 1)	Silt ¹⁾	Sand ¹⁾	pH ²⁾	K _f	Kfoc	Effeundl. exp.	
		[%]	[%]	[%]	[%]	[-]	[mL/gf	[mL/g] Ĉ		
BBA 2.2	Loamy sand	2.48	7.2	12.3	80.5	6.1	13	456	0.894	
T	Silt	2.14	10.2	81.3	8.50	~	\$\frac{18.6}{\omega}	3 67.5	0971	
AIII	Silt loam	0.86	12.0	51.1	\$6.9 \$\langle\$	84	\$20.0 \$20.0	2324.3	Q 0.859	
	Loamy sand	0.37	3.6	17.6	f ′‰.γ	£ 6.8	7 7 5 9 7	©2033.8C	20 .837 .	
	Silty clay loam	1.61	30.4	57/2	2/12.4		46.3		0.82	
				Q' j	💙 Arithn	netic Mean	O 20 🐙	7 11.0	6 851	
	Geometric Mean 121 \$1400 0.851									
	Max									
				*		Min	₹ 7. 5	36.9	0.821	

Studies shaded in grey have been reviewed as part of the first EU review opropoxycarbazone sodium

M09

The K_{oc} values and the corresponding Freundlich exponents (1/n) obtained are given in Table 9.1-13.

Overview of the adsorption studies for the metabolite MO

Soil origin	Soil type	SOC (Clay ¹	Sign	Syand ¹	рЊ	Kf	Kfoc	Freundl. exp. 1/n
	٦) [*] [% <u> </u> <u>1</u>		4%] «	<i>[</i> %]	⊘ 1-1	[mL/g]	[mL/g]	[-]
BBA 2.2	Loamy sand	2048	57.2 ×	12.30	°~ ~	6.1	0.26	10.4	0.968
	Silt	2.14	162	8 1.3		7.8	1.35	63.1	0.924
AU	Silt loam	3 0.86	12.00	5 Q 1	36.9	8.1	0.86	99.9	0.945
	Loamy sand	0.37	\$3.6	© 17.6	78.8	6.8	2.04	551.5	0.947
	Silto Clay	7.61	30.4	57/2	12.4	6.7	3.9.0	242.1	0.909
				A	Arithm	netic Mean	1.68	193.4	0.939
2	, S	21	%		Geome	etric Mean	1.19	97.4	0.939
, A		S,	N.			Max	3.90	551.5	0.968
			ÿ			Min	0.26	10.4	0.909
Studies shaded 1) Texture acco 2) pH in H ₂ O			wed as part of	the first EU	review of propo	xycarbazone-	sodium.		

¹⁾ Texture according to USDA pH in H₂O₂

²⁾ pH in H₂O

The K_{oc} values and the corresponding Freundlich exponents (1/n) obtained are given in Table 9.1-14.

Table 9.1-14 Overview of the adsorption studies for the metabolite M10

t-										
Soil origin	Soil type	ОС	Clay ¹⁾	Silt ¹⁾	Sand ¹⁾	pH ²⁾	K _f	K _{foc}	Frandl. exp.	
		[%]	[%]	[%]	[%]	[-]	[mL/g]	[mL/g]	\$ 10 a	
BBA 2.2	Loamy sand	2.48	7.2	12.3	80.5	<u>ී</u> 6.1	0.22	8.9	9.945 J	
	Silt	2.66	10.2	81.3	8.5	7.8	9 .39	185	D 0.934	
A2	Silt loam	0.86	12.0	51.1	362	8.1	r (6)	20.6	©.964	
	Loamy sand	0.37	3.6	17.6	78.8 °	6.8	\$\sqrt{0.26} \tag{6}	\$ 50 °	V 0. 949	
	Silty clay loam	1.61	30.4	57.2	12.9	& 6.7 6		\$75.5 L	3 0.908	
					Aritm	etic Mean		37.9	0.930	
Geometric Wean 50.35 25.9 0.39										
	0.5964									
	Max 1-24 (75.5 g) (0.964 (1.96									

Studies shaded in grey have been reviewed as part of the first EU review of propoxycarharor

Metabolite M11

/n) Ottained are given in Table 9.1-15. The Koc values and the corresponding of

Table 9.1-15 Overview of the adsorption studies for the metabolite M1

Soil origin	Solly type	Soc V	.,9 1		and \$	(1) I	₩ K _f	Kfoc	Freundl. exp. 1/n
				%] [264	Ş [-] 🔊	[mL/g]	[mL/g]	[-]
Lufa 2.1	Sand 1)	2066 S	2.8 1) 10	.50) 28	5.7 ¹⁾	5,2	0.079	11.9	1.011
Lufa 6S	Clay 1)	1.66 7 4	(// / . / . /	5 1) 24	1.8	7.1	0.045	2.7	0.690
Labsoil F	Silt loam 🖗	4.95 2	\$\$ 1) 5 7	1.3 1) 17		¥4.4	0.852	17.4	0.781
Eurosoil 5	Loansy Sans ²				1.6 ²⁾	3.1	1.018	17.1	0.933
	1	O*	29' A		A øthme	tic Mean	0.499	12.3	0.854
	Ç.		Q, W		Geometi	ric Mean	0.236	9.9	0.844
		Z A				Max	1.018	17.4	1.011
			`~~~ ~Q			Min	0.045	2.7	0.690

¹⁾ Texture according to USDA classification, only the soil characteristics for the soil batch used in the isotherm experiments are presented

Lysimeter experiments have been performed for propoxycarbazone-sodium. These studies were evaluated in the Document M-CA, Section 7 of this dossier, point 7.1.4.2. The results of the lysimeter studies demonstrated a low leaching potential of propoxycarbazone-sodium or its metabolites to groundwater.

¹⁾ Texture according to USDA

²⁾ pH in H₂O

²⁾ Texture according to @wilk et al. (1999) The Science of the Total Environment, 229 (1999) 99-107; (clay: < 0.0002 mm, silt: 0.0002 – 0.063 mm, sand: 0.063 -

CP 9.1.2.3 Field leaching studies

The potential leaching behaviour of propoxycarbazone-sodium after repeated use over several years in soil was assessed during the Annex I inclusion using PELMO calculations with different climatic and regional scenarios, and accepted by the European Commission (SANCO/4067/2001-rev.Final, 30 September)

Field leaching studies are not required due to the results of a tiered leaching assessment; please refer point 9.2.4.1 of this document. A summary is given here below:

The simulations showed that in all cases tested concentrations of propoxycarbazone-sodium in the leachate were below 0.1 μg/L. These studies are considered as additional information, because PELM simulations were not according to the current FOCUS guidelines.

simulations were not according to the current FOCUS guidelines.

New PEC_{gw} values calculated for the use in cereals in Europe by means of current FOCUS PEARO 4 and FOCUS PELMO 5.5.3 models confirm the results. The maximum 80 perceptile PECgw values of the active substance propoxycarbazone-sodium and its metabolites M05, M08 and M09 in the least hate all m soil depth are below 0.1 µg/L for all crops and scenarios. The maximum 80th percentile PECew values of the metabolites M07, M10 and M11 were above 0.1 µg/L. Therefore a non-velevance assessment was 72487 F&A 01 A conducted for these compounds (please refer to Docal 4 of this Dossier),

Estimation of concentrations in § **CP 9.1.3**

Report:	; 2014; yl-487194-01 %
Title:	Predicted an vironmental concentrations of proposition proposition (MKH6561) and its
	metabolites in soil after application to sereals &
Report No:	358536-01 O S S
Document No:	35853601 O O O O O O O O O O O O O O O O O O O
Guidelines:	EX Compossion (2000): Guidance Document on Persistence in Soil (Working
	M-487134-01-1 EV Composition (2000): Quidance Document on Persistence of Soil (Working Document) 9188/VI/97 rev. 8 July 12th, 2000. FOCOS (1997): Soil persistence models and EU Registration. The final report of the work of the Soil Modelling Work group of FOCUS, Pebruary 1927/FOCUS (2006): Guidance Document on Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides on EU Registration. Report of the Work Group on Degradation Kinetics of FOCUS.
A	Sand EU Registration. The final report of the work of the Soil Modelling Work group
ا ا	of FOCUS, February 1927/FOCUS (2006): Guidance Document on Estimating
\$ 0	Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides
8	in EU Registration. Report of the Work Group on Degradation Kinetics of FOCUS.
۵	EC Document Reference SANCO/00058/2005 version 2.0, June 2006. FOCUS (2011):
ĘŢ	Generic Guidance for Estimating Persistence and Degradation Kinetics from
	Environmental Fate Studies on Pesticides in EU Registration, version 1.0. FOCUS
	2012); General Guidance for Tier & FOCUS Ground Water Assessments, Version
	₹2.1 *
Deviations:	None of the second seco
GLP/GEP:	
~O	

Executive Symmary

Predicted invironmental concentrations in softwere calculated for the herbicidally active substance propoxy carbazone-sodium and its mojor sodi metabolites M05, M07, M08, M09, M10 and M11.

According to the use pattern, single follow spray applications of propoxycarbazone-sodium at rates of 42 and 70 g a.s./ha/w winter and spring cereals between BBCH 11 and 33 were considered.

The summary of the maximum concentrations of propoxycarbazone-sodium and its soil metabolites are presented in the table below.

Table 9.1-16 Maximum PEC_s of propoxycarbazone-sodium and its metabolites for the intended uses

Application scenario			PE	C _{s,max} (mg/k	g)	a	
Application section to	MKH6561 ¹⁾	M05	M07	M08	M09	M10 🐇	MAT
Winter /spring cereals (1x42 g a.s./ha)	0.042	0.004	0.005	0.004	0-003	0.00	\$0.006\$
Winter /spring cereals (1x70 g a.s./ha)	0.070	0.007	0.008	0.007	0.004	0.014	0.609

¹⁾ MKH6561 = propoxycarbazone-sodium

As DegT₅₀ values are >100 days for the active substance and its metabolites M08 M09 and M10, the potential for soil accumulation was assessed for these compounds. The PEC_{pla} and overall values were calculated to be 0.047 (propoxycarbazone-sodium), 0.008 (M08), 0.003 (M09) and 0.010 mg/kg (M10) for an application rate of 42 g a.s./ha and 0.078 (propoxycarbazone-sodium), 0.014 (M08), 0.006 (M09) and 0.017 mg/kg (M10) for an application rate of 70 g ass./ha

A. MATERIALS

Calculations were conducted using Microsoft EXCEL spreadsheets. All calculations were run and all assumptions were made according to the Guidance Document on Persistence in soil (FU Commission, 2000) and FOCUS (1997).

B. STUDY DESIGNATION

The input parameters used for modelling are summarised in Table 9.717. As the DegT₅₀ values of propoxycarbazone sodium and its metabolites M08, M09 and M10 are >100 days, the potential for accumulation was additionally assessed for these compounds.

Table 9.1.17 Input parameter of propoxycarbazone sodium and its metabolites used for modelling

Compound DegTso (days)	Max. occur. in soil	Molar mass (g/mol)	Molar mass correction factor (-)
Propox@arbaz@e-sodfum 21505	1	420.4	1
M05 07.4 7	0.209	215.2	0.512
M0/ 37 07 539.80	0.267	183.2	0.436
M087 7 1000	0.219	199.2	0.474
MOY 25.7	0.132	200.2	0.476
$M10 0^{7} 0^{7}754$	0.552	157.2	0.374
M11 Q 26.2	0.267	213.2	0.507

Application and CAP

Based on the GAP, appropriate application scenarios have been defined using worst-case assumptions regarding application are timing. Crop interception data were taken from the FOCUS groundwater scenarios workgroup (FOCUS, 2012).

Table 9.1-18 Application scenarios of propoxycarbazone-sodium used for the calculations

Crop	FOCUS crop		Application		Amount reaching
		Rate per season (g a.s./ha)	Plant interception (%)	BBCH stage (-)	the soil per season (g a.s. (ra)
	Winter cereals	1x42	25	11-30	390.5 Ô
Wheat, Triticale,	Winter cereals	1x70	25	11-33	32.5
Rye	Spring cereals	1x42	25	14,30	31,35
	Spring cereals	1x70	<u>~</u> 25	J1-33	\$2\$5

Calculation methods

Initial, actual and time-weighted average concentrations of propoxycarbatione-sedium and its metabolites in soil (PEC_{s, initial}, PEC_{s, actual}, PEC_{s, twa}) were calculated.

An even distribution of the substances within the top soil layer with a depth of 5 cm and bulk then sity of 1.5 g/cm³ were assumed in PEC_s calculations.

Initial /maximum concentrations in soil

The initial PECs values for the substances were calculated according to Equation for single application

Equation 1	$PEC_{s,max} = \underbrace{(A_1 * p_1)) * 10}_{\text{Met}} * f_{mol} * f_{met}$	
Where: PEC _s , max	mitial/maximism predicted environmental concentration	
A ₁	In soil after origle application = single application rate of active substance	(mg/kg) (g/ha)
p_1	= Traction intercepted by crop canopy at single application mixing depth of the soil top layer O	(-) (cm)
bd of	= soil bulk density \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(g/cm ³) (-)
$f_{ m met}^{\infty}$	maximum occurrence of the metabolite in soil	(-)

Actual and time-weighted average concentrations in soil

The actual concentrations in soil (PEC_s) and the time-weighted average concentrations in soil (PEC_{s, twa}) were calculated using Equation 2 and Equation 3 respectively. The maximum time-weighted average value for each time period is reported in the results.

Where:		
PEC _{s, max}	= initial/maximum concentration in soil after single or multiple application	ns (mg/kg)
PECs, act, t	= actual concentration in soil at time t	$(mg/kg)_{\circ}$
$PEC_{s,twa,t}$	= time-weighted average concentration in soil over t days	(mg/\mathbb{Z})
X	= time interval	(days)
k	= degradation rate in soil ($k=ln(2)/DT_{50}$)	@/(1/d)
t	= degradation rate in soil (k=ln(2)/DT ₅₀) = time (for PEC _S , actual) or time period (for PEC _S , twa)	(days
DT_{50}	= half-life in soil	(days)

The actual and time-weighted values were calculated for all times or time periods t of 1, 2, 4, 7, 14, 21, 28, 50 and 100 days following the last application.

Accumulation potential after long-term use

Potential accumulation after long term use is also assessed, based on the PEC_{s, max} concentration of the respective compound, obtained as described before. For single application, the maximum concentration in soil after long-term use can be expressed as described & Equation 4.

Where t is the number of days between two events where PEC hax is reached e., 365 days for yearly applications. The maximum plate a concentration in sold resulting from long term use was calculated for a soil depth of 20 cm, as soil incorporation by poughing between application schemes could be expected.

The concentration in soil after immediately before the application in the last year (Pt C_{plateau,min}) can be written as described in Equation 5.

The total PEC_{plateau, over taking the effect of accumulation into account is then the sum of PEC_{plateau,min} and the maximum PEC_s.}

D. RESULTS AND DISCUSSION

Maximum PEC in soil

The summary of maximum PEC, values of proporty carbazone-sodium and its metabolites for the different uses are summarised in Table 94-19.

Table 9.1-19 Naximum PEC of propoxycarbazone-sodium and its metabolites for the intended uses

Application scenario		·	PE	Cs, max (mg/kg	g)		
Application scenario	MKH6361 ¹⁾	M05	M07	M08	M09	M10	M11
Winter/spring@ereals/ (ex42 gas./ha)	20 .042	0.004	0.005	0.004	0.003	0.009	0.006
Winter spring cereals (1x70 g a.s./ha)	0.070	0.007	0.008	0.007	0.004	0.014	0.009

¹⁾ MKH6561 = propoxycarbazone-sodium

Actual and time-weighted average PECs

propoxycarbazone-sodium

Initial, short- and long-term PEC_s values as well as the time-weighted average concentrations (PEC_s twa) for the intended uses are presented in Table 9.1-20and Table 9.1-21.

Table 9.1-20 Actual and time-weighted average PECs of propoxycarbazone-sodium after spray application of 1x42 g a.s./ha to winter and spring cereals

		Propoxycarbazon@sodium
	Time	PECs, act (mg/kg) (mg/kg) (mg/kg)
	[d]	PECs, act (mg/kg) (mg/kg)
Initial	0	0.042
Short-term	1	0.042
	2	
	4	0.041
Long-term	7	0.041
	14	
	21	0.039 0.041 0
	28	0.038
	50	0.036 D D D D D D D D D D D D D D D D D D D
	100	0.030 0 0.039

Table 9.1-21 Actual and time-weighted average PEC of propoxycarbazone sodium after spray application of 1x70 g as /ha towinter and spring coreals

	Ropoxycarb:	azone-sodium
	PARC OF STATE OF STAT	V PEC.
	$ \mathcal{O} [d] \gg \mathcal{V} \ll \mathcal{M} g/kg \ll \mathcal{V}$	⟨ √
Initial		
Short-term &		0.070
	2 0 0.070 0	0.070
\		0.070
Long-term		0.069
	© 14	0.068
		0.068
		0.067
	50 60 60 60	0.065
	1000	0.060

Metabolites of propoxycarbazone-sodium

Initial, short- and long-term PCC_S varies as well as the time-weighted average concentrations ($PEC_{s, twa}$) for the representative worst-case (1x70 g 9s)./ha to cereals) are presented in Table 9.1-22 to Table 9.1-23.

Table 9.1-22 Actual and time-weighted average PECs of M05, M07, M08 and M11, metabolites of propoxycarbazone-sodium (phenyl pathway), after spray application of 1x70 g a.s./ha to winter and spring cereals

		M	05	M	07	M	08	M	11
	Time [d]	PECs, act (mg/kg)	PECs, twa (mg/kg)	PECs, act (mg/kg)	PECs, twa (mg/kg)	PECs, act (mg/kg)	PECs, twa	PECs, act (mg/kg)	PECs, (or mg/kg)
Initial	0	0.007	-	0.008	-	0.007	Ŧ	0.009	, Ç
Short-	1	0.007	0.007	0.008	0.008	0.007	<u>@</u> .007	0.009	≈©0.009©
term	2	0.007	0.007	0.008	0.008	0.007	(°0.007	Ø: 9 09 ≽	0.00
	4	0.006	0.007	0.008	0.00	0.007	v 0.007	©0.009	Q. Q 009
Long-	7	0.006	0.007	0.007	0.008	0.00 7 0 😽	0.007 🖔	0.008	Ø.009, O
term	14	0.004	0.006	0.006	\$.0 07	0.067	.0.007 _C O	9.007	0.0008
	21	0.003	0.005	0.006	⊋©0.007	~Q,007 @	0.06%	\ 00.005	02007
	28	0.002	0.005	0.005	0.006	~0.007°	<i>97</i> 9 007 ?	0.005	29. 007
	50	0.001	0.003	0.003	© 0005 ×) 0.0 %		0.003	0.005
	100	< 0.001	0.002	0.001	©0.004©	90 07	0.007	Ø.001 Ø	0,003

Table 9.1-23 Actual and time-weighted average PEC of M09 and M10, metabolities of propoxycarbazone-sodium (triazolinone pathway) after spray application of \$70 g.a.s./ha to winter and spring cereals

		<i>a</i> .			
		M		PECs, act	10
	Time		PEC _L wa (mg/kg)	PECs, act ©	PECs, twa
	[d]	(mg/\log) \bigcirc^{ν}	(mg/kg)	mg/kg)	(mg/kg)
Initial	0	0.004	- (// i e	0.014	-
Short-	1	\$\tag{0.004}\$\tag{3}\$		PECs, act (2) (mg/kg) 0.014 0.014	0.014
term	2	0.004	0.004	0.014	0.014
	4	Q.904 X	\$ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.014	0.014
Long-	7 🏻	(mg/kg) 0.004 0.004 0.004 0.004 0.004	0.004	0.014	0.014
term	14	0.004	0.004	0.014 0.014 0.014 0.014	0.014
	210	9¢004 × 5	0.604	© 0.014	0.014
	£\$8	Ø.004 Å	0.004	0.013	0.014
	50	0.0047 👟	O 0,004 W	3 0.013	0.014
	100	\$\infty\$ 04004 \$\tilde{Q}\$	2 00:004 ° 3	0.011	0.013
		0.004 0.004 0.004 0.004 0.004 0.004 0.004			

Accumulation potential in soil

The accumulation potential of propoxycarbazone-sodium and its metabolites M08, M09, and M10 after long term use was also assessed. Results are presented in Table 9.1-24.

Table 9.1-24 Assessment of soil accumulation of propoxycarbazone-sodium and its metabolites MOS, MOS and M10 for the intended uses

Application scenario	PEC _s (mg/kg)	MKH6561 ¹⁾	M08	M09	Mit 9
W	PEC _{s, max}	0.042	_{> 0.004}	, 0.003 S	20.009
Winter /spring cereals (1x42 g a.s./ha)	PEC _{plateau, min}	0.005	0.004	0.001	0.00
(1X42 g a.s./11a)	PEC _{plateau,overall}	0.047	0.008	0.003	3 0.000 6
W	$PEC_{s,max}$	0.070 _{[4} ©"	0.007	0.004	©.014 @
Winter /spring cereals (1x70 g a.s./ha)	PEC _{plateau,min}	0.0080	0.006	Q001 O	© 0.002
(1A/0 g a.s./11a)	PEC _{plateau,overall}	0,078	0 0014	_@0.00€ _~	√ 0.0√7

¹⁾ MKH6561 = propoxycarbazone-sodium

HI. CONCLUSIONS

Predicted environmental concentrations for propoxycarbazone-sodium and its morabolites in still (PEC_s) were calculated for the use in cereal in Europe in accordance with recommendations of FOCUS (1997) and EU Commission (2000).

The results for PECs for the active substance and its metabolites were used for the eco-toxicological risk assessment.

For details, please refer to the corresponding PEC reports (CP 9.1.9/04) submitted within this dossier.

CP 9.2 Fate and behaviour in water and sediment

The fate and behaviour of propoxycarbazone-sodium in water and sediment has been evaluated during the approval evaluation of the active substance. Therefore, specific studies on the product have not been performed.

For details about the behaviour of the active substance and metabolites in the water/sediment compartment please refer to the pocument M. CA, Soction T of this dossier point 7.2. A short summary overview of the data is given in the subsections below

CP 9.2.1 Aerobic mineralisation in surface water

A study on the aerobic mineralisation in surface water was performed (Document M-CA 7.2.2.2/01 of this dossier) which was not provided in the former Armex I inclusion dossier and is submitted within this Supplemental Dossier for the propoxycarbazone-sodium renewal of approval. This type of study (OECD 309) is a new data requirement according to Commission Regulation (EU) No 283/2013.

The test in what propoxy or bazone-sodium was stable in the used microbial active surface water during of days of incubation under aerobic conditions in the dark at $20^{\circ}\text{C} \pm 2^{\circ}\text{C}$.

For further details please refer to document M-CA section 7 of this dossier, point 7.2.2.2.

CP 9.2.2 Water/sediment study

The route and rate of degradation of propoxycarbazone-sodium in water/sediment systems under aerobic conditions were evaluated during the Annex I inclusion using two radiolabel positions, [phenyl-UL_C] and [triazolinone-3-¹⁴C], and were accepted by the European Commission (SANCO/4067/2001-Eural, 30 September 2003).

The proposed pathway for the degradation of propoxycarbazone-sodium in water/sediment system is presented in Figure 9.2-1.

For the major metabolites detected in the water/sediment systems, only a few reliable that follows could be determined: For M04 and M10, neither M-I dissipation or degradation endpoints could be estimated. For M05, a geometric mean DT50 of 32.56 days for modelling purpose could be derived. The DT50 value of M05 for trigger evaluation was calculated in all systems to be 1.00 days with a corresponding DT90 of M06 in all systems was given with 29.88 days as persistence endpoint. For modelling purposes for M06, default DT50 values of 1000 days need to be used for ECsx modelling at . Steps1-2. However, a geometric half-life of 172.86 days would be available for FOCUS step amodelling (for more details please refer to CA 7.2.2.3/94).

Figure 9.2-1 Degradation pathway of propoxycar bazone sodium in water/sediment systems

Table 9.2-1 Overview of the results of the water/sediment study

					Maxi	mum am	ounts (%	AR)	
Reference	Guidelines	Test Conditions System		stem	M04	M05	M06	% 110	
				Water	50.2	, 2.6	16.2	21.2	
	BBA-Guidelines Part	Application Rate: 68 g/ha		Sediment	19	0.0	3:2	3.2	
	IV, 5-1 (1990),		Application Rate: 68 g/ha Temperature: 20°C	Pond	Total	₹ 8.5	2.6	19.4	34.4
1998	1998 Commission Directive 95/36/EC (1995), SETAC (1995)			Ö	Water	0.1	3	1.6	Ø.
		SETAC (1995)			Sedinont	0.0	J.6	0.0	3.8
			©″Lake >>	D tal	0.1	11.3	1.6	<i>6.9</i>	

Studies shaded in grey have been reviewed as part of the first EU review of propoxycarbazone-sodilor

Table 9.2-2 Overview of the persistence and modelling endpoints of propoxycarbazone-sodium in water/sediment systems

			System		Persi	stenge endp at lovel P-I	posterts (Mødelling Øat ley	dpoints el P-I
Reference	Guidelines	Q Q		· 0	Model	DT ₅₀ O (days)	DH ₉₀ 1)	at lex Model	SFO DT ₅₀ 1) (days)
				Pond	∌s	12.37	33.\$\$	SFO	11.85
	`` *L_1	Total system	& Lak		SFO SFO	194.57	√646.34°	SFO	194.57
		~~ <u>~</u>			netrie Mean	49.06	146.82		48.00
		Water		Pond %	SFO	10,50	3 .22	SFO	10.00
, S., 2014	FOCUS (2003)	Water Pase	(Lake	DFOP	4.46	378.28	SFO	103.56
		23	4	Geom	newic Mean	30.73	112.10		32.18
) . <i>(1)</i>			Pond	SFO ^F	8.84	29.39	SFO	8.84
**		Sediment Phase	√	e Ø	(L) -2) A	_2)	_2)	_2)	$1000^{3)}$
				/ Geessa	letric Mean	8.84	29.39		94.02

¹⁾ $DT_{xx} = DegT_{xx}$ for that system but $D_{xx} = T_{xx}$ for water and segment phase

Irradiated water/sectiment study

Photochemical degradation is not of relevance. Furthermore, this type of study is required in case a higher tier option is necessary, which is not the case either for propoxycarbazone-sodium or its metabolites.

²⁾ not calculated due to insufficient number of that a point of the

³⁾ FOCUS default DT₅₀ for use in surface water

CP 9.2.4 Estimation of concentrations in groundwater

CP 9.2.4.1 Calculation of concentrations in groundwater

Report:	;2014;M-487139-01
Title:	Predicted environmental concentrations of propoxycarbazone-sodium (MKH6561) and its
	metabolites in groundwater after application to cereals using FQCUS PEARL and FOCUS
	PELMO
Report No:	358535-02
Document No:	M-487139-01-1
Guidelines:	EC Sanco/321/2000; EC SANCO/10058/2005; EC Sanco/13144/2010 version/1, 60 pp.
	FOCUS (2011): Generic Guidance for Estimating Rersistence and Degracation
	Kinetics from Environmental Fatg Studies on Pesticides in EU Registration, version &
	1.0. FOCUS (2012): Generic Guidance for TierQ FOCUS Graund Water &
Deviations:	Assessments, Version 2.1. None
GLP/GEP:	

Executive Summary

Predicted environmental concentrations in groundwater PEC, were calculated for the active substance propoxycarbazone-sodium and its major soil metabolites M05, M07, M08, M09, M10 and M11.

The use in winter and spring cereals was assessed According to the GAP, single applications at rates of 42 and 70 g a.s./ha are envisaged stading at BBCH stage of 1.

The models FOCUS PEARL 4.4.4 and FOCUS PEAMO 5.5.3 were used for the simulations. The maximum 80th percentile PEC_{gw} values in the leacheste at 1 m soil depth for propoxycarbazone-sodium and its metabolites for all uses and scenarios are summarised in the table below.

Table 9.2-3 Maximum 80 percentile PEC_{gw} at 1 m soil thepth for propoxycarbazone-sodium and its metabolites following application to winter and spring or eals; calculated with FOCUS PEARL and FOCUS PELMO

PEC _{gw}	(fdg/L)
PIOTRL 4.4.4 0 0	PELMO 5.5.3
propos carbazone-sodium S <0.001 S <0.001	<0.001
M05	<0.001
M07 2 00.307 0	0.251
M08 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	0.034
M (0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.065
M10 2 2 2.093 Q	1.393
© M11	0.335

MATERIALS AND METHODS

A. MATERIALS

Calculations were conducted using the models FOCUS PEARL 4.4.4 and FOCUS PELMO 5.5.3. All calculations were running at assumptions were made according to the FOCUS guidance documents.

B. STUDY DESIGN

Summary of input parameters used for modelling

FOCUS numerical leaching models make use of the parameter plant uptake factor (PUF) to take into account the amount of a component taken up from soil pore water by plants via the transpiration stream. For propoxycarbazone-sodium, evidence for root systemic uptake is given and the use of a PUF = 0.5 in exposure simulations is justified. The plant uptake for the metabolites was set to 0.

The input parameters used for modelling are summarised in Table 9.2-4.

Input parameters of propoxycarbazone-sodium and its metabolites used for modelling **Table 9.2-4**

Parameter	MKH6561 ¹⁾	M05	M07	M08	M 109	M10	∾ M11 ∜
Molecular mass (g/mol)	420.4	215.2	183.2	199.2	2 00.2	157.2	y 213@
Half-life in soil (DT ₅₀) (days)	6.4	4.3	11.6	84.2	108.0	81.2 _Q	9.1 W
Aqueous solubility at 20°C (mg/L)	42000	2100	200 00	8600	\$3000Q	1.0000000	11000
Vapour pressure at 20°C (Pa)	1x10 ⁻⁸	8.14x10 ⁻⁴	1.39 x	5.82x10	6x510-6	\$3.62x10 ^{2/2}	6.27x10 ⁻⁷
K _{foc} (mL/g)	40.7	44.0	~ 0 7.4 ~ 9	Ŭ 17 1 ℃	193.4	39 .9	© 12 3 ♥
$K_{fom} (mL/g)^{1)}$	23.6	2 5. 5	4.3	39 2.5	7 1129°	≈22.0 ₄	<u> </u>
1/n	0.93	Ø.89 <u>"</u> &	0.25	~~~0.85 ₆	Ø+94 (D 0.94	$\bigcirc 0.85$
Transformation fraction in soil	-	1.0 from parent	1.0 From M05	from MO	0.20 from parent	0.78 from operent.	1.0 from M08
Plant uptake factor	0.5	√ 0 0 √	\$ 0 0	o \$/	~ 0, Q	<u>ه</u> 0	0

¹⁾ MKH6561 = propoxycarbazone-sodium

Application and GAP

Application scenarios

Based on the GAP, appropriate application scenarios have been defined using worst-case assumptions regarding application rate and timing. Crop interception data were taken from the FOCUS groundwater scenarios workgroup (FOCUS, 2012). Winter and spring cerculs were chosen as surrogate crops.

Application scenarios of propoxycarbazone sodium used for the calculations **Table 9.2-5**

Crop (FOCUS crep & &	Application		Amount reaching
	FOCUS crep	Plant interception	BBCH	the soil per season
~ Q	per season, ge a.s./ha)	(%)	stage (-)	(g a.s./ha)
Wheat,	Winter cereals 2 1x22	2 5	11-30	31.5
	Winter cereals \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	25	11-33	52.5
Triticale, Rye	Spring cereals 1x42	25	11-30	31.5
	Spring cereals 1x00	25	11-33	52.5

Application fiming

Application dates for winter an Ospring cereals were selected based on recommended growth stages and on emergence dotes specified by the FOCUS groundwater working group.

For spong cereals, the application date was set to 7 days after emergence. The application in winter cereals according to GAP is done in spring, usually at the beginning of the vegetation period. For this purpose, the application timing was based on the emergence of the earliest crop in each scenario. The application was then set 14 days before this respective date assuming that this date coincides with the beginning of the vegetation period (Table 9.2-6).

Table 9.2-6 Application dates used for modelling

FOCUS _{gw} crop	Scenario	Application date °
		24-Feb
		24-Feb
		©04-May © ©
		24-Feb
Winter cereals		04-May 24-Feb 01-May 01
		06-Mar > 05
		14 2 Feb 2
		O5-Feb V
		17 15-Feb
		17-Mar 🗸 💸
		17-Mar & 5
C		25-Navy &
Spring cereals		08 ₅ Apr
		25-May 0 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °
		0 2 8-Apc 6 17-Mar 6

Simulation tools and scenarios The FOCUS PEARL 4.44 and FOCUS PELMO 5.53 were used in the modelling study. The modelling simulations were carried out in accordance with FOCUS guidelines. All standard FOCUS locations defined for the respective gops were considered in the simulations. Simulations were carried out over 26 years as proposed by FOCUS for pesticides that are applied every year. The first 6 years are intended to be a warm up' period. The following 20 years were taken into account for the assessment of the leaching behaviour.

The PEC of for propoxy carbazone-sodium and its metabolites were calculated for the use on cereals in Europe in accordance with FOCUS midelines. Maximum 80th percentile PEC w values per substance and use are in given in Table 9.2-7. The PEC values for each scenario, use and model are presented in Table 9.1-8 and Table 9.2-9. The PEC for propoxy arbazone-sodium and its metabolites were calculated for the use on cereals in

Maximum 80^{th} percentile PEC_{gw} at 1 m soil depth for propoxycarbazone-sodium and its metabolites following application to winter and spring cereals, calculated with FOCUS **Table 9.2-7** PEARL and FOCUS PELMO

	Winter cereals (1x42 g/ha)		Winter cereals (1x70 g/ha)		Spring cereals (1x42 g/ha)		Spring Coreals (1x70 g/ha)	
	PEARL 4.4.4	PELMO 5.5.3	PEARL 4.4.4	PELMO 5.5.3	PEARL 4.4.4	PELMO	PEARL 4.40	FELMO 5.5.3
MKH6561 ¹⁾	< 0.001	< 0.001	< 0.001	<0.001	[∞] <0.001	Ø<0.001	(a).001	<000001
M05	< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001	<0.00	\$0.00£
M07	0.132	0.127	0.227	0.249	0.179	©0.145€	Ø\$307	0.251
M08	0.039	0.020	0.070	9 .034	07944	0.043	0.077	©:023
M09	0.033	0.036	0.059 () 0.9 ©	~0.026~	% 021 %	0,049	0.038
M10	1.060	0.787	1.828	° 10393	1.218	0.663	9.093	10 84
M11	0.166	0.187	0.296	0.335	Q.120	9:N03	y 0.2 24	2 0.187
1) MKH6561 = 1	propoxycarbazo	ne-sodium	8 4					···

80th percentile PECG at 1 m soil depth for proporty carbonne-sodium and its metabolites following application to winter and spring cereals, calculated with FOCUS PEARL **Table 9.2-8**

	Scenario A							
Crop scenario	Scenayio	MKH656	M 05	∭07 <u>%</u>	n Soil deal M08	3 09	M10	M11
		<0.0001	\$0.00\$	0.014		$\sqrt[6]{0.005}$	0.589	0.017
		~6 .001~>	<0.001	\$132	90.030°	0.027	1.060	0.121
7		O.0000	%0 .0012		0.004	0.006	0.893	0.083
		40 001	×<0.000	0,068	0.006	0.019	0.739	0.106
Winter cereals 1 x 42 g a.s./ha		©0.001 _{\sqrt}	6 .001 s	\$0.098°	0.012	0.033	0.775	0.166
1 A 42 g a.s./11a		· >> (2)	J<0.001√	0.043	0.020	0.017	0.530	0.077
		\$0.001 \$\int_{\infty}\$	<0.001	Ø.038	0.002	0.014	0.471	0.094
Ç		× <0.2001	×0.001	< 0.001	< 0.001	< 0.001	0.046	0.002
		£ 001	<0.001	0.002	< 0.001	0.002	0.465	0.003
		> <0.00 .	2 0.001	0.024	0.002	0.009	1.021	0.032
**		< 0.001	<0.001	0.227	0.070	0.050	1.828	0.225
		~~~~(0.00Q)	< 0.001	0.194	0.008	0.011	1.545	0.160
		<b>≤6</b> 001	< 0.001	0.116	0.011	0.035	1.270	0.191
Winter cereals 1 x 70 g a s./ha		< 0.001	< 0.001	0.169	0.023	0.059	1.331	0.296
T A 70 SULVINA		< 0.001	< 0.001	0.074	0.034	0.030	0.915	0.140
		< 0.001	< 0.001	0.065	0.005	0.026	0.822	0.173
		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.088	0.003
		< 0.001	< 0.001	0.003	< 0.001	0.005	0.809	0.007

Page 32 of 61

**Table 9.2-8**  $80^{th}$  percentile PEC_{gw} at 1 m soil depth for propoxycarbazone-sodium and its metabolites following application to winter and spring cereals, calculated with FOCUS PEARL

Cuan saamania	Saanania	PEC _{gw} at 1 m soil depth (μg/L)						
Crop scenario	Scenario	MKH6561 ¹⁾	M05	M07	M08	M09	M10 ×	M11\$
		< 0.001	< 0.001	0.010	< 0.001	<b>2</b> 003	0.479	0.040
		< 0.001	< 0.001	0.179	0.044	©0.026	1218	Ø.120
Spring cereals		< 0.001	< 0.001	0.149 رکم	0.004	0.006	>0.794√	0.086
1 x 42 g a.s./ha		< 0.001	<0.001	0.081	Ø005	0.020	0.799	20.108
		< 0.001	<0.001	0.073	<b>∜</b> 0.006	0.024	8.756	0.1
		< 0.001	<b>Ø</b> .001	0.006	< <b>0</b> 0001	€.009 C	0.404	<b>©</b> 039
		<0.001 &	, <0.0 <b>0</b> 1°	0.018	ر 0.00 ال	~~	0.831	0.019
		<0.001	<b>\$0</b> :001	©0.307©	0.097	0.049	2.093	0:Q24
Spring cereals	Ţ.	<0.001 ^	×0.001	0,257	Ø.008	0.01	1.381	<b>©</b> 0.162
1 x 70 g a.s./ha		\$0.001 K	<0.001	Ø.138 🖔	0.00	9937	\$1.351 C	0.195
	a d	(0.00) (0.00)	<b>20.001</b>	0.124	( ) (	J 0.0445	1.285	0.208
		<b>40</b> .001	<0,001	<b>6</b> 011	×0.000	<b>9</b> 97	0.699	0.074

| 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 -0.000 -0.000 -0.0001 --sodium --sodium

Table 9.2-9 80th percentile PEC_{gw} at 1 m soil depth for propoxycarbazone-sodium and its metabolites following application to winter and spring cereals, calculated with FOCUS PELMO

	σ •	PEC _{gw} at 1 m soil depth (μg/L)							
Crop scenario	Scenario	MKH6561 ¹⁾	M05	M07	M08	M09	M10	<b>M</b> 11	
		< 0.001	< 0.001	0.011	0.001	0.004	0.385	7 0.01 <b>5</b>	
		< 0.001	< 0.001	0.082	0.020	<b>Q</b> 030	0.787	0.631	
		< 0.001	< 0.001	0.127	0.003	%0.008	0,599	<b>20.</b> 095	
Winter cereals		< 0.001	< 0.001	0.078	0.006	0.022	. <b>0</b> .602 Ø	0.133	
1 x 42 g a.s./ha		< 0.001	< 0.001	ੴ0.120	0.01	0.036	(J ⁷ 0.6 <b>5</b> 2)	0,\$87	
1 A 42 g u.s./11u		< 0.001	<0.001	0.037	<b>900</b> 18	0.020	0.492	<b>20</b> .102	
		< 0.001	<0.001	0.046	50.003	0.031	₽¥05 <u></u>	0.124	
		< 0.001	<0.001	<0.001		<b>50</b> %001	√ 0.051	0.002	
		< 0.001	<b>₹</b> 0.001	0.001	<b>\$0.001</b>	0.001	0.177	0.004	
		<0.001	/ <0.0 <b>%</b>	0.919	Ç0.001♥	0.007	0.698	0.029	
		<0.001	<0.001	0.1440°		0.056	¥ 1.39 <b>3</b>	0,2,42	
_		<0.001	° <b>&gt;</b> 0.001∕>	0.219	0005	\$0.015	1.086	Ø.182	
Winter cereals		<0.001	× < 0.0 <b>@1</b>	₀ 0.¥33	Ó.011	0.001	<b>№</b> 068 €	0.240	
1 x 70 g a.s./ha		€0.00 <b></b> €	< <b>0</b> 001	©0.207	0.020	<b>4</b> 065	1.145	0.335	
1 x 70 g u.s./na		5 [™] <0.00¶	<0.001	0.065	<b>Q</b> 031	ර් 0.03 <b>ර</b> ්	0.841	0.183	
		<b>₹0,001</b>	<0.0 <del>0</del> 1	0.980	√0.00 <b>.</b>	0.038	0.719	0.226	
		°≈0.001	<0.001	<b>₩</b> 0.001 <b>©</b>	^ 4	< 0.001	0.102	0.005	
		<0.Q <b>∮1</b> ″	<b>№</b> 0.001©	0.001	<0.001 %	©0.002 ₀	0.326	0.009	
_		<02001	<0.001	<b>Q.</b> 006	<b>₹0.001</b> \$	0.002	0.254	0.005	
		\$0.001°	<0001 s	9.050 ×	0.013	∘ <b>.</b> Ø.018	0.663	0.081	
Spring cereals		\$\frac{10.06}{3}\$	\$0.00 <u>1</u>	0.145	Ø004	90.005	0.512	0.069	
1 x 42 g a.s./ha		<b>49.0</b> 01 ~	<0.00	<b>@</b>	%0.004¢	0.017	0.546	0.092	
		\$\square\$0.001	\$0001 _≈	0.071	0.0%	0.021	0.539	0.103	
		<0.001	\$0.001¢	0.0 <b>D</b>	<b>√</b> 0.001	0.012	0.342	0.068	
		<b>30.</b> 001 O	<0.001	<b>2</b> 009	© 0.001	0.004	0.463	0.009	
		€0.001 \	<b>√0</b> .001 s	0.0850	0.023	0.033	1.184	0.154	
Spring cereals		<0.001 °	₹0.00 <b>%</b>	0.231	0.006	0.010	0.922	0.133	
1 x 70 g a.s./ha	Ž	<b>40</b> .001	<0.001	<b>%</b> 114	0.006	0.031	0.967	0.168	
- 7		£0.00		0.122	0.010	0.038	0.953	0.187	
~\$		<0.001	₹0.000	0.024	0.001	0.022	0.602	0.126	

1) MKH6561 = propoxycarbazone-sodium

OII. CONCLUSIONS

The PEC_{gw} for propoxycarbazone-sodym amounts metabolites were calculated for the use in cereals in Europe in accordance with resommendations of FOCUS (2000, 2009, and 2012).

The maximum 80 percentile PEC $_{\rm gw}$  values of the active substance propoxycarbazone-sodium and its metabolites M05 M08 and M09 in the leachate at 1 m soil depth are below 0.1  $\mu$ g/L for all crops and scenarios. The maximum 80 percentile PEC $_{\rm gw}$  values of the metabolites M07, M10 and M11 were above the trigger value 0.1  $\mu$ g/L, therefore a non-relevance assessment was conducted (please refer to Doc N4 of this Dossier). It is concluded that M07, M10 and M11 do not pose a toxicological hazard, thus being non-

relevant in the context of the criteria outlined in the Guidance Document on the Assessment of the Relevance of Metabolites in Groundwater⁴.

Following the proposed use pattern of the product a safe use can be concluded.

For details, please refer to the corresponding PEC report (CP 9.2.4/04) submitted within this document.

#### **CP 9.2.4.2** Additional field tests

Studies have already been submitted to support first Annex I inclusion of propoxycar azone sodium, no additional studies are submitted within this Supplemental Dossier.

## CP 9.2.5 Estimation of concentrations in surface water and sediment

Estimations relate to direct application to water, drift pun-off discharge va drains and atmospheric deposition, and include processes such as volatilisation, adsorption, advection, hydrolysis, photolysis biodegradation, sedimentation and re-suspension, and transfer between water and sediment.

Report:	Predicted environmental concentrations of propoxycarbazone sodium (MK-H0561) and its
Title:	Predicted environmental concentrations of propoxycar pazone sodium (MKH0361) and its
	metabolites in surface water after application to cereals using the FOCUS surface water
	scenarios V
Report No:	358535-60
Document No:	M-48745-014
<b>Guidelines:</b>	M-487445-01 D
	EC SAN (Q)4802\(\frac{2}{2}\)001; EC SANCO/10958/2095 version 2.0, \(\text{Qine 2006}; EC
	\$\$\text{NCO}\text{\$\text{0005}, \cdot \frac{1}{2}, \text{0005}, \cdot \frac{1}{2}, \text{0005}, 00000000000000000000000000000000000
	2011); Generic Guidance for Estimating Persistence and Degradation Kinetics from
	Environmental Fate Studies on Perticides in EU Registration, version 1.0.; FOCUS
	(2012): Generic guidance for FOCUS surface water Scenarios, version 1.2.
Deviations.	
GLP/GEP:	Tho S S S S S S S S S S S S S S S S S S S

#### Executive Summary

Predicted environmental concentrations in surface water and sediment (PEC_{sw}, PEC_{sed}) were calculated for the active substance proposycarba one-sedium and its major metabolites M04, M05, M06, M07, M08, M09, M10 and M11.

The use in winter and spring cereals was usessessed. According to the GAP, single applications at rates of 42 and 70 g a Tha are envisaged starting at BBCH stage 11.

Calculations for propoxycardazone sodium were carried out at Step 1 to 4 using the current versions of the simulation models FOCUS STEP\$ 1-2 (version 2.1), FOCUS SWASH (version 3.1 using MACRO 4.4.2, PRZM 3.1.1 and FOXSWA 3.2.1) and SWAR (version 3.0.0). Calculations for the metabolites were conducted at Steps 1-2.

The overall maximum PEC_{sw} and PEC_{sed} values of propoxycarbazone-sodium at Step 3 and 4 following applications to winter and spring cereals are summarised in the following table.

⁴ Guidance Document on the Assessment of the Relevance of Metabolites in Groundwater of Substances Regulated Under Council Directive 91/414/EEC; SANCO/221/2000 – rev.10 – final, 25 February 2003

Table 9.2-10 Maximum PEC_{sw} and PEC_{sed} values of propoxycarbazone-sodium at Step 3 and Step 4 following application to winter and spring cereals

	Sto	ер 3		Step 4				
	Sie	:p 3	5 n	ı D	10 m D + R		20 m	D+R
	1 x 42	1 x 70	1 x 42	1 x 70	1 x 42	1 x 70	1 x 42	₹ x 70
	g/ha	g/ha	g/ha	g/ha	g/ha	g/haস	g/ha	g/ha g/ha
			W	inter cereals	3	Ş	4	
Max. PEC _{sw} (μg/L)	4.288 (D2, ditch)	7.291 (D2, ditch)	nc	7.291 (D2, ditch)	4.288 (D2, ditch)	7.291 (192, ditch)		7.291 D2, ditch)
Max. PEC _{sed} (μg/kg)	1.358 (D2, ditch)	2.265 (D2, ditch)	nc	2.230 (D2, ditch)	1.332 (D2, ditch)	2.224 (D2, ditch)	y ng	\$2,220 \$2, dife
			S	pring cereals	~		Å,	
Max. PECsw (μg/L)	0.281 (D1, ditch)	0.468 (D1, ditch)	nc 《	0.144 ° (D1, dich)	nc S	JAC J	ney	.d
Max. PEC _{sed} (μg/kg)	0.086 (D1, ditch)	0.142 (D1, ditch)	n	0.099 D1, dîteh)			nc &	nc

nc = not calculated

It can be concluded that the use of propoxycarbazone-softum is not likely to pose as unacceptable risk to surface water and sediment if the active substance is used in compliance with label instructions.

## MATERIALS AND METHODS

#### A. MATERIALS

Calculations were carried out according to FOCUS (2007, 2010) at Step 1 to 4 using the current version of FOCUS STEPS 1-2 (version 2.1), FOCUS SWASH (version 3.1 using MACRO 4.4.2, PRZM 3.1.1 and TOXSWA 3.3.1) and SWAN (version 3.0.0)

#### B. STADY DESIGN

For information regarding the behaviour of the active substance propoxycarbazone-sodium and its metabolites in soil, please refer to document M-CA section 7 of this dossier, point 7.1.2 to CP 7.1.3, and point 7.2.

#### Rate of degradation in soil

## propoxyca@bazone-sodi@m

Normalised DegT₅₀ matrix values for propoxycarbazone-sodium derived from field trials ranged from 3.4 to 10.8 days, with a geometric mean DegT₀ matrix of 6.4 days which was used for PEC_{sw} calculations.

#### **M04**

The M04 is a nonor soft metabolite 4% AR and was therefore not considered relevant in the kinetic evaluation of the soft degradation studies. For PEC_{sw} calculations at Steps 1 and 2, a half-life in soil of  $1\times10^{-6}$  day and a maximum occurrence in soil of  $1\times10^{-6}$ % were used as default settings since the modelling software requires such input data.

D = Drift mitigation, R = run-off mitigation

DegT₅₀ values (modelling endpoints) ranged from 2.8 to 17.4 days (non-normalised) and 1.8 to 14.5 days (normalised to 20°C and pF2). The geometric mean of the normalised DegT₅₀ of 4.3 days derived from laboratory studies was used for the PEC_{sw} calculations together with the maximum occurrence of 20.0%.

#### **M06**

The M06 is a minor soil metabolite <5% AR and was therefore not considered reevant in the kinetic evaluation of the soil degradation studies. For PEC_{sw} calculations at Steps 1 and 2, a half-life in soil of  $1x10^{-6}$  days and a maximum occurrence in soil of  $1x10^{-6}$ % were used as default settings since the modelling software requires such input data.

#### **M07**

Deg  $T_{50}$  values (modelling endpoints) ranged from 4.450 39.8 days (normalised and 2.8 to 30.2 days (normalised to 20°C and pF2). The geometric mean of the normalised Deg  $T_{50}$  of 1.6 days derived from laboratory studies was used for the PEC_{sw} calculations together with the maximum occurrence of 20.7%.

#### M08

DegT₅₀ values (modelling endpoints) ranged from 32.3 to 496.7 days (non-normalised) and 29.5 to 312.9 days (normalised to 20°C and pF2), The geometric mean of the formalised DT₅₀ values of 84.2 days derived from laboratory studies was used for the PEC, calculations together with the maximum occurrence of 21.9%.

#### **M09**

DegT₅₀ values (modelling endpoints) ranged from 85.3 to 385.3 days (non-normalised) and 71.1 to 231.2 days (normalised to 20°C and 5F2). The geometric mean of the normalised DegT₅₀ values of 108.0 days derived from laboratory studies was used for the PEC_{sw} calculations together with the maximum occurrence of 13.2%

#### M₁₀

DegT₅₀ values (modelling endpoints) ranged from 58 % to 140 days (non-normalised) and 43.2 to 109.3 days (normalised to 20°C and pF2). The geometric mean of the normalised DegT₅₀ values of 81.2 days derived from laboratory studies was used for the PEC calculations together with the maximum occurrence of \$5.2%.

#### M11

Deg  $T_{50}$  values (mode) and 4.6 to 20.8 days (non-normalised) and 4.6 to 20.8 days (normalised to 20°C) and p (2). The geometric mean of the normalised Deg  $T_{50}$  values of 9.1 days derived from laboratory studies was used for the PEC calculations together with the maximum occurrence of 26.7%.

# Sorption in soil proposy carbazone-sodium

The arithmetic mean  $K_{foc}$  of 40.7 and  $K_{fom} = 23.6$  mL/g) was used for the calculations together with the arithmetic mean reundlish exponent of 0.93 .

#### **M04**

The arithmetic mean  $K_{foc}$  of 18.8 mL/g was used for the calculations.

July 2014

### **M05**

The arithmetic mean K_{foc} of 44.0 mL/g was used for the calculations.

### M06

Results from a preliminary test indicated that M06 only slightly adsorbed on soil; therefore, a definitive test was not conducted during the sorption study. The maximum  $K_{oc}$  value of 6.8 mL/g, calculated from the preliminary test, was used for the PEC calculations.

### **M07**

The arithmetic mean  $K_{foc}$  of 7.4 mL/g was used for the calculations.

### **M08**

The arithmetic mean K_{foc} of 1711.0 mL/g was used for the calculations.

# **M09**

The arithmetic mean K_{foc} of 193.4 mL/g was used for the calculations

### M10

The arithmetic mean K_{foc} of 37.9 mL/g was used for the calculations.

# M11

The arithmetic mean  $K_{foc}$  of 12.3 m/g was used for the calculations.

# Behaviour in aquatic systems propoxycarbazone-sodium

The geometric mean DegTs of the total system (48.0 days) was used as input parameter for the calculations at Steps 1-2 level for water sediment and total system At Step 3 the geometric mean total system DegT₅₀ of 48.0 days was used for degradation in the water phase and the FOCUS default of 1000 days was set for the degradation in the sediment place in accordance with current FOCUS guidance (FOCUS, 2012).

# M04

No reliable half-lives could be derived for M04 at Level M-I (dissipation/degradation). Consequently, PEC_{sw} modeling at Steps 1-2 was conducted with the FOCOS default DT₅₀ of 1000 days for both water and sediment phase. The maximum occurrence of carboxylic acid (M04) of 68.5 % in total system (was used in the PEC_{sw} catholicions.

# M05

The geometric Gean total system DT% of 32.6 days was used as input parameter for the calculations at Steps 1-2 level for water, sedimen and total system. The maximum occurrence of sulfonamide methyl ester (M0506f 11.3% in total system was used in the PEC_{sw} calculations.

# M06 🙏

No reliable half-lives could be derived for M06 at Level M-I (dissipation/degradation). Consequently, PEC_{sw} modelling at Steps 1-2 was conducted with the FOCUS default DT₅₀ of 1000 days for both water and sediment phase. The maximum occurrence of sulfonamide acid (M06) of 19.4% in total system was used in the PEC_{sw} calculations.

### **M07**

Saccharm (MG) was found to be the major metabolite during the photolysis of [phenyl-UL
14C] propoxed arbazone-sodium, accounting for 22.3% at day 19 of the study. Since the concentration of the metabolite increased during the experimental period, and since no half-life was provided in the study report, the use of a FOCUS default DT₅₀ of 1000 days was considered appropriate for PEC calculations at Steps 1-2, for both, water and sediment phase.

# **M08**

Since the M08 is a soil metabolite only, FOCUS default DT₅₀ values of 1000 days were used for PEC_{sw} calculations at Steps 1-2 together with a maximum occurrence in water/sediment of 0%.

### **M09**

Since the M09 is a soil metabolite only, FOCUS default DT₅₀ values of 1000 days were used for calculations at Steps 1-2 together with a maximum occurrence in water/sediment of 0%.

# M10

No reliable half-lives could be derived for M10 at Level M dissipation/ gradation). Consequently, PEC_{sw} modelling at Steps 1-2 was conducted with the FOCUS default D_{0.50} of 1000 days for both water and sediment phase. The maximum occurrence of N-methyl propoxy trazolinone (N10) of 4.49 system was used in the PEC_{sw} calculations.

# M11

Since the M11 is a soil metabolite only, FOCUS default DT₅₀ values of calculations at Steps 1-2 together with a maximum occurrence in water/sediment of

# Summary of input parameters used for modelling

FOCUS numerical leaching models make use of the parameter plant uptake factor (PUE) to take into account the amount of a component taken up from soil pore water by plants vio the transpiration stream. In the absence of experimentally measured data, a default value of 0.5 is proposed by POCUS groundwater guidance for substances with an indication for root system uptake. For propoxycarbazone-sodium, evidence for root systemic uptake is given based on information available in the respective Monograph for the active substance (DAR 20015

With a systemic action demonstrated the in exposure simulations is

Justified.

The substance related parameters used for propoxycal bazone-sodiatin and its metabolites in the calculations is summarised in Pable 9.2-11.

⁵ DAR (2001): Propoxycarbazone-sodium Monograph 01 March 2001, Volume 1: Report and Proposed Decision.

**Table 9.2-11** Input parameters of propoxycarbazone-sodium and its metabolites used for modelling

Parameter	MKH6561 ¹⁾	M04	M05	M06	M07	M08	M09	M10	M11
Molecular mass (g/mol)	420.4	384.0	215.2	201.0	183.2	199.2	200.2	157.2	<b>%</b> 3.2
Aqueous solubility at 20°C (mg/L)	42000	30000	2100	25000	10000	8600	13000	1000000	
Vapour pressure at 20°C (Pa)	1x10 ⁻⁸	_2)	_2)	_2)	_2)	_2)	© _2)	2)	
DT ₅₀ soil (days)	6.4	10-6	4.3	10-6	<u>ي</u> 11.6	84.2	108.0	**************************************	907
DT ₅₀ total system (days)	48	1000	32.6	1000	1000	<b>2000</b> 00	1000°	1900	\$100Q
DT ₅₀ water (days)	48	1000	32.6	1,6500	1000	1000	\$000 C	∜ 1000	1600
DT ₅₀ sediment (days)	48	1000	32.6	1000©	1600	\$1000 £	1000	11900	1000
K _{foc} (mL/g)	40.7	18.8	44.0	<b>6</b> .8	© 7.4 Q	1711	193.4	37	£2.3
1/n	0.93	_2)		y -2) (V		O -2)		\$\frac{\lambda}{\sqrt{2}}\)	_2)
Maximum occurrence in soil (%)	100	10-5	20.9	10-6	26.5	97.9 2	13.25	\$\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2	26.7
Maximum occ. in wat/sed (%)	100	J88.5	11.50	19.4	22.3		0	34.4	0
Plant uptake factor	0.5		(\$\frac{1}{2}\)	Ø - ²⁾ ≤	2)	J-2) J		_2)	_2)

¹⁾ MKH6561 = propoxycarbazona-sodium

Application and GAP

Application scenarios

Based on the GAP, appropriate application scenarios have been defined using worst-case assumptions regarding application rate and toning. Winter and spring cetoals were chosen as surrogate crops.

# Applied modelling strategy and application timing

Calculations for propoxycarbazone-sodium were carried out at Step 1 to Step 4. Calculations for the metabolites were conducted at Steps 1 2 leve only

Interception values for Step 1 and 2 were chosen in accordance with FOCUS (2001, 2012) as shown in Interception values for Step 1 and 2 were chosen in accordance with FOCUS (2001, 2012) as shown in Table 9.2.12. At Step 2 an interception rate of 25% corresponding to 'minimal crop cover' was taken into account. The application periods 'March – May' and 'October – February' were considered for winter cereals. The regions 'North Europe' and 'South Europe' were taken into account for modelling.

Table 9.2-12 Steps 1 and 2: Application settings used for modelling

FOCUS crop	Application rate (g a.s./ha)	Region	Application period	Interception	Interception value.
Winter cereals	1 x 42	North / South Europe	Mar – May Oct - Feb	Minimal crop	25
Winter cereals	1 x 70	North / South Europe	Mar – May Oct - Feb	Minimal crop	25,7 7 25,7
Spring cereals	1 x 42	North / South Europe	Mar – May	Minimal crop cover	25
Spring cereals	1 x 70	North / South Europe	Mar – May Č	Minimal crop	

Step 3 calculations with SWASH 3.1 were carried out applying the Chemical application Method (CAM) 2 (foliar linear) including a standard application depth of 4 cm. All scenarios which are parameterized for winter and spring cereals were considered. Appropriate application windows were chosen based on recommended growth stages for the use of propoxy carbazone-sedium and on energence dates specified in FOCUS (2001, 2012). The actual date of application within the windows was determined by the Posticide Application Timer (PAT) incorporated in FOCUS SWASH 3.1.

For the FOCUS crop 'spring cereals, the beginning of the application window was set to 7 days after emergence. The application in winter cereals according to GAP is done in spring, usually at the beginning of the vegetation period. For this purpose, the application timing was based on the emergence of the earliest crop in each scenario. The beginning of the application window was then set 14 days before this respective date assuming that this date concides with the beginning of the vegetation period.

A summary of the application dates used for modelling at Step 3 and 4 is presented in Table 9.2-13.

Table 9.2-13 Step 3 and 4 Application dates used for modelling

			Application window - Ste	o 3 and 4
Crop	Scenărio	1 date of application wingow	East date of @ application window	Actual application date ¹⁾
	DI	🔎 21-Apr (11 <b>4)</b> 🔪	21-May (141)	25-Apr
	<b>D</b>	4 (0 Mar (60) 4	31-Mar (90)	12-Mar
	Ø3 A		17 pr (107)	17-Mar
	© D40	01-Apr (91)	010 May (121)	18-Apr
Winter cereals	♥ D5 %	♥ 01⊬Mar (600)	31-Mar (90)	07-Mar
	D6	√11-Feb (42) √	3-Mar (72)	27-Feb
	R1 W	27-Mar (86)	26-Apr (116)	26-Apr
4		🦈 [10) Feb (49)	14-Mar (73)	19-Feb
. 4	R4 0	©12-Feb (43) ©	14-Mar (73)	02-Mar
	D14	12-May (1320)	11-Jun (162)	14-May
į.	O DS	08-Apr ( <b>%</b> 8)	08-May (128)	07-Apr
Spring cereals	D4 C	3-May (123)	02-Jun (153)	30-May
Spring cereals	D5.4	22-Mar (81)	21-Apr (111)	08-Apr
	RAY .	22-Mar (81)	21-Apr (111)	22-Mar

¹⁾ determined by AT

Numbers in brackets indicate 'Julian Days'

Step 4 calculations were carried out with SWAN version 3.0.0. All scenarios which are parameterised for winter and spring cereals were taken into account. Refinements considered at Step 4 were drift mitigation

by introducing a 5 m no-spray drift buffer as well as a combined drift and runoff mitigation considering 10 m and 20 m vegetated filter strips

### Simulation tools and scenarios

Calculations were carried out according to FOCUS (2001, 2012) at Step 1 to 4 using the current of FOCUS STEPS 1-2 (version 2.1), FOCUS SWASH (version 3.1 using MACRO 4.4.2, PRZM 1.1 and TOXSWA 3.3.1) and SWAN (version 3.0.0).

# II. RESULTS AND DISCUSSION

The PEC_{sw} and PEC_{sed} of propoxycarbazone-sodium and its metabolites were calculated with the simulation models STEPS 1-2 (version 2.1), SWASW (version 3.4) and SWAN (version 3.0.0). Calculations at Step 1 and 2 levels were conducted for propoxycarbazone-sodium and its metabolites while calculations at Step 3 and 4 levels were run for the active substance only. The use of propoxycarbazone-sodium in cereals was assessed.

# Results of Steps 1-2 - propoxycarbazone-sodium

# Maximum PEC_{sw} and PEC_{sed}

Global maximum PEC_{sw} and PEC_{dd} of propoxycarbazone-sodium at Step 1 and 2 Levels are shown in Table 9.2-14.

Table 9.2-14 Steps 1-2: Maximum PECswand PECsed values for propoxycarbazone-sodium after application to winter and spring cereals

<u> </u>			's . ·
Crop / Application rate	CUS Step / S	Propoxycarlo	azone-sodium
Application rot	Scopario ~	PEC _{sw}	<b>PEC</b> _{sed}
Application rate	Scedario	Propoxycano  OPEC _{tw} (μg/L)	(μg/kg)
Winterface		13.666	5.474
Winds	Step 2 NEU- (Oct-Feb)	S.581, P	1.434
winter gereats		1.640	0.657
(1 x 42/g a.s./ha)	Sep 2 SEU - (Oct-Feb	Z 2 <b>9</b> 35	1.175
	Step 28EU - (Mar-May)	<u>\$2.935</u>	1.175
	Step 1 0	© 22.776	9.124
<b>₩</b> .	Step 2 PU- (Oxt-Feb)	5.968	2.390
Winter cewals (1 x 70 g a.s./ha)	Step 2 MEU (Mar-May)	2.739	1.095
(1 x 70 g a.s./lla)	Step 2 SEM (Octo Feb) @	4.892	1.958
Q' .Q	Step 2 SEV - (Mar-May)	4.892	1.958
	Step Step	13.666	5.474
Spring cereals (1 x 42 g a.s./ha)	Step 2 NEUQ (Mar May)	1.643	0.657
	Step 2 SKW - (Max-May)	2.935	1.175
	Step 1	22.776	9.124
Spring Greals (1 x 70 a.s./ha)	Step 2 NEL (Mar-May)	2.739	1.095
(1 x /ug a.s./aa)	Step 2 SEU - (Mar-May)	4.892	1.958

# Actual and time-weighted average PECsw

The actual and time-weighted average values of propoxycarbazone-sodium in surface water are presented in Table 90-15 to Table 9.1-18.

Table 9.2-15 Steps 1-2: Actual and time-weighted average PEC_{sw} values for propoxycarbazone-sodium following application to winter cereals – 1 x 42 g a.s./ha

	C4a	1		Step 2 – No	rth Europe			Step 2 – So	uth Europe	
Time	Ste	p ı	Oct-	-Feb	Mar	-May	Oct	-Feb	Mar	-May
(d)					PECsw (	μg/L)			Å	Y OY
	ACT	TWA	ACT	TWA	ACT	TWA	ACT	<b>PWA</b>	ACT®	T
0	13.666	-	3.581	-	1.643	-	2.935	T -	2.935	~~~-
1	13.450	13.558	3.524	3.552	1.614	1.629	2.887	2.911	å.887 <i>€</i>	\$ 2.91 Kg
2	13.257	13.456	3.473	3.525	1.591	1.616	2.846	2.889	^22.846~√	2.889
4	12.880	13.262	3.374	3.474	1.546 🤻	1.592	2.065	2.847	2.763	<b>28</b> 47
7	12.334	12.980	3.231	3.401	1.480	1.558	<b>6</b> 47	2.786	2.647	×2.7860
14	11.148	12.356	2.921	3.237	1.3®	1.483	2.393	2 <b>,6</b> 32	2.393	2.652
21	10.076	11.771	2.640	3.084	1,209	1.413	2.163	<b>3</b> .527 £	× 2.163	2.527
28	9.107	11.225	2.386	2.941	<b>3</b> .093	1.347	×1,955	2.409	1,955	2.409
42	7.440	10.232	1.949	2.680 🖔		Jr.228	ى1.59 <b>7√</b>	2.196	1.597	2.196
50	6.629	9.719	1.737	2.546	04ZJ95	Öl.166 0	1.423	20086	√ 1.423 √	2,086
100	3.220	7.220	0.844	1,891	° 9.386	0.866	0.691	1.550	0.601	<b>2</b> 550

Table 9.2-16 Steps 1-2: Actual and time-weighted average PCsw values for proposycarbazone-sodium following application to winter cereals – 1 x 70 g a.s. ha

			(1)	Step 2 – Mo	rth Eprope			Step D- So	uth Europe	;
Time	Ste	p 1		<b>X</b>	Mar-	May O	∜ ∂₀Ωct.	Fab (	<u> </u>	-May
(d)			ACT  5.968		PFC	ûg/L)				
	ACT	TWA	ĄCT	© WA 5	ACA	ŢŴA	<b>♥ACT</b>	TXX	ACT	TWA
0	22.776	<	\$.968 Q	) - Ö	<b>2</b> 39 °	, O'	4,892	, O)	4.892	-
1	22.417	2 <b>2</b> \$97	© 3.8 (p)	5 <i>9</i> 20	\$2.690 ₺	2.715	<b>₽</b> 812 .	<b>4.852</b>	4.812	4.852
2	22.096	<b>2</b> 2.426	5,788	\$2875	2.656	2893	ړ 4.743 م	4.814	4.743	4.814
4	21.467	22.103	<b>5</b> 624	5.794	2,5%	<b>ॐ</b> .653 ₡	4.60%	4.745	4.608	4.745
7	20.5560	21 634	[−] 5.385	5 <b>668</b> °	2467 %	2.596	4.412	4.644	4.412	4.644
14	18.580	1	4.867	25.395 ∿	(10)		√§.988	4.420	3.988	4.420
21	16.794	19.619	44400	<b>3</b> .140 O	2.015	<b>2</b> 354	© 3.605	4.211	3.605	4.211
28	<b>3</b> .179	18 <i>7</i> 97	<b>3</b> .977 &	4.901	<b>1</b> 821 ,	2.245 ₀	3.258	4.016	3.258	4.016
42	***12.401	1/7,053	× 3.249	4367	°∕√1.488 ₆	2.046	2.662	3.660	2.662	3.660
50	11.048	<b>3</b> 16.198	2,894	~ <b>%</b> .244 %	1.326	1.944	2.371	3.477	2.371	3.477
100	5.367	2 12.0 <del>33</del>	<b>\$</b> 406	3.152	0,644	A.444	1.152	2.583	1.152	2.583
	18.580 16.394 12.401 11.048 5.367									

Steps 1-2: Actual and time-weighted average PECsw values for propoxycarbazone-sodium **Table 9.2-17** following application to spring cereals - 1 x 42 g a.s./ha

	64.	1	Step 2 – No	orth Europe	Step 2 – So	outh Europe 。	
Time	Ste	ep 1	Mar-	-May	Mar-May		
(d)			PECsw	(μg/L)			
	ACT	TWA	ACT	TWA	ACO	TØÁ Ó	
0	13.666	-	1.643	-	2.035	- 2	
1	13.450	13.558	1.614	1.629	<b>≜</b> 2.887	2.91	
2	13.257	13.456	1.591	<u></u> ≈ 1.616	2.846	23889	
4	12.880	13.262	1.546	1.592	© 2.765 Ĉ	~3.847 _ @ "	
7	12.334	12.980	1.480	ر 1.558 گ	2.647	₹2.78 <b>6</b> €	
14	11.148	12.356	1.338 🚜	1.483	2.3930	2.65	
21	10.076	11.771	1.209	1.413	2.16 ³	2.527	
28	9.107	11.225	1.093	1.347 %		×2.409×	
42	7.440	10.232	0.893	) 1.228 (	₩1.597,₩	2.196	
50	6.629	9.719	0.795	©1.166 ®	1.423	√ 2. <del>0</del> 86 °	
100	3.220	7.220	9.386	0.866	0.691	\$.550 <b>V</b>	

Steps 1-2: Actual and time-weighted average PEC₅₃₈ Glues for following application to spring cereals – 1 x 70 g a.s./ha propoxycarbazone sodium **Table 9.2-18** 

				North Europe	Stan 6 Sa	uth Europe
	Ste	ep 1 🗳 🕆	Step 2 -	ar-May		
Time (d)		<b>₩</b> .	<del> </del>	- A A		<b>M</b> ay
(u)	. CIT	· · · · · · · · · · · · · · · · · · ·	T E	Csw (ptg/L)		
	ACT	TWA	ACT ACT	TWA V	ACT	TWA
0	22.776		© 10739 °	<del>y</del> - ~	4.892)	-
1	22.417	22597	2.690	2.715	4\8\12	4.852
2	22.096	\$22.426\$\text{9}	2.651	2.653 V	<b>2</b> 4.743	4.814
4	21.467	22.103	2576	∑£.653 @"	4.608	4.745
7	20.5 <b>Q</b>	© 2 <u>1</u> 634 0	Q.467 Q	2.596	4.412	4.644
14	18.580	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2.230	\$ 2.491	3.988	4.420
21	≈ <b>f</b> 6.794	√ 19.6¥9 √	2.005	<b>2</b> 354 0	3.605	4.211
28	15.179	18307	1,821	2.245	3.258	4.016
42	12.401	jry.053 «	1.488	2.046	2.662	3.660
50	11.048	16.198	1.326	1.944	2.371	3.477
100	5.367	12.053	0.644	√ J.444	1.152	2.583
Aaxim	s of Step 3 – pro	ppoxycan bazon	e-sodiam	dium at Stan 2 lay	al ara shayer hal	ow.
				2.596 2.491 2.354 2.2245 2.048 1.944 1.444 2.048	or are shown our	···

**Table 9.2-19** Step 3 - Maximum PEC_{sw} and PEC_{sed} values for propoxycarbazone-sodium after application to winter cereals

	Winter	cereals: 1 × 42 g	a.s./ha	Winter	cereals: 1 × 70.0	
Scenario	Main entry path	PEC _{sw, max} (µg/L)	PEC _{sed, max} (μg/kg)	Main entry path	PEC _{sw, max} (μg/L)	PECset Grax (µg/kg)
D1 (Ditch)	Drift	0.287	0.200	Drift	<b>9</b> .480	<b>©</b> 331
D1 (Stream)	Drift	0.240	0.044	Drift	©.400	L 0.073
D2 (Ditch)	Drainage	4.288	1.358	Drainage	7.291	2.265
D2 (Stream)	Drainage	2.675	0.786	Drainage 🏑	4.551	i i i i i i i i i i i i i i i i i i i
D3 (Ditch)	Drift	0.266	0.039	Drift 🎸	0.444	₹0.065 ₹
D4 (Pond)	Drift	0.009	0.011	Drift_	0.015	Q 0.018
D4 (Stream)	Drift	0.211	0.007	Drif	0.352	0.072
D5 (Pond)	Drift	0.009	0 <u>,<b>Q</b></u>	Don'ft _ a	<b>0</b> ,015	©.018 ©
D5 (Stream)	Drift	0.209	<b>6</b> 0004	∼ Drift 🕡	©0.349 Ö	© 0.007
D6 (Ditch)	Drift	0.272	0.038	Ø Drift♥	0.453	0.062
R1 (Pond)	Runoff	0.012	0.0	Runtoff	0:019	₄ 0.024
R1 (Stream)	Runoff	0.279	0.934	Runoff O	0.470	€0.057£°
R3 (Stream)	Runoff	0.740	~0.088 ~~	Runof	1.229	0.14
R4 (Stream)	Runoff	0.497	0.08	Rupolf	7 0,832 &	0.331

Step 3 - Maximum PEC values for propoxyca bazone-sodium after application to **Table 9.2-20** spring cereals

	Spring	cereals: 1 × 42 g		Spring	cereals: 1 × 70.0 g	g a.s./ha
Scenario	Main entro	PDCsw, max (µg/L)	EECsed, max (μg/μg)	**/	PEConomax	PEC _{sed, max} (μg/kg)
D1 (Ditch)	Deixit (	¥ <b>0</b> €281	<b>10</b> ,086	Ørift 👋	£ 0.468	0.142
D1 (Stream)	Prift _	<b>∂Ø</b> .219 <b>&lt;</b> ♥	30.0313°	O Drift	0.366	0.054
D3 (Ditch)	Drift O	0.266	→ 0.039	Don't ~	0.443	0.064
D4 (Pond)	O Dim	0,699	9.910	<b>P</b> rift <b>'</b>	0.015	0.016
D4 (Stream)	Prift &	0.221	, Ø0.011,	O Drift @	0.368	0.018
D5 (Pond) 🛴 🖏	Drift,	√ 0.009 <del>4</del>	° 0.01 ° °	O, Drift	0.015	0.018
D5 (Stream)	Dri <b>t</b>	© 0. <b>20</b> 8	0.094	<b>D</b> Yift	0.348	0.007
R4 (Stream)	Drift 💸	0,175	0.012	҈∕>Drift	0.292	0.020

Actual and time-weighted average PEC.

Actual and time-weighted average concentrations of propose carbazone-sodium in surface water at Step 3 are presented below.

**Table 9.2-21** Step 3 – Actual and time-weighted average PEC $_{sw}$  values for propoxycarbazone-sodium after application to winter cereals

Time		1 × 42 g	g a.s./ha		g a.s./ha 。
(d)	Scenario	PEC _{sw,act} (μg/L)	PEC _{sw,twa} (μg/L)	PEC _{sw,act} (μg/L)	PECsw,tz
0		(μg/L) 0.287	(μg/L)	0.480	(µg/L)
1	-	0.272	0.278	0.454	0.465
2	-	0.263	0.272	0.440	0.455
4		0.254	0.265	√2 <b>0</b> √424	0 0.433
7	-	0.243	Qf.2 <b>5</b> 58	₹ 0.406 ×	0.431
14	D1 (Ditch)	0.046	<b>%</b> .212	0.079	©0.356
21		0.035	√ 0.155	0.061	0.260 (
28		0.028	0.124	∘0.049√	, ° 0009 , ©'
42		0.017	0.090	0.030	0.152
50		0.013	0.079@	07023	. 0.133
100		0.003	0.05	0.004	0,087
0		0.240		0.400	Y & L
1		0.040	₹ <b>9</b> 0.065	A 0449	©0.109
2		g <b>9</b> 10	© 0.03 <b>%</b>	00017	<b>₹</b> 0.0 <b>6</b>
4		Q).004 ₂	~ Q.Q% ~	0.007	0.049
7		<0.0 <b>0</b> by ×	y 40.027 ~	<0,007	<b>©</b> .047
14	D1 (Stream)	Q 0,018	0.026	0 6,032	∞ 0.045
21		) <u> </u>	\$\int 0.0 <b>2</b> \$	©0.001	0.044
28	Ţ	<0.000	0.023	<0.001	0.039
42		<0.001 €	©0.017	<b>20.00</b> 1 ©	0.030
50	. *** 4	< 0.001	0.016	Ø.001	0.028
100		Ø<0.001	0.94	<0.000	0.024
0			¥	7.29,1	-
1	D2 (Bitch)	5 3.234	2.901	<i>5</i> ,487	4.977
2		2.626	2.751	4.456	4.677
4 0		1.7110	3,407 5 ⁴	2.923 © 2.141	4.113
7	D2 (D:4-1)	1.256	\$2.012	2.171	3.437
14 , 9	D2 (Milch)	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1.583	7 1.680 2.212	2.699 2.447
24© 28		₹1.322 ₹1.322	1 226	1.298	2.264
42		\$\frac{0.6}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\frac{0.4}{2}\$\	- 1 105	0.698	1.881
50		9.9/20 0.291	0.97	0.486	1.692
100 🕏	D2 (Ditch)	0.10	<b>0</b> .599	0.173	1.013
0		2675	\$.57 <i>)</i>	4.551	-
1 4.	· Ö 🧸	2 25.924 · Q	1.631	3.271	2.806
2		1.609	1.530	2.729	2.628
4		1.609© 0.95Y	1.364	1.625	2.335
7		9 6940 S	1.125	1.090	1.923
14	D2 (Stream)	©0.531 &	0.869	0.900	1.483
21		√S 0.815 V	0.797	1.364	1.354
28		0.447	0.750	0.746	1.270
42		0.222	0.613	0.368	1.042
28 42 50 50		0.164	0.551	0.273	0.934
4100 O		0.052	0.336	0.086	0.568

Table 9.2-21 continued

Time		1 × 42 ş			g a.s./ha
(d)	Scenario	PEC _{sw,act}	PEC _{sw,twa}	PEC _{sw,act}	PEC _{sw,twa}
		(μg/L)	(μg/L)	(μg/L)	(μg/L) <b>(</b>
0	_	0.266	- 0.207	0.444	- %
1	-	0.120	0.206	0.200	0 43
2	_	0.013	0.129	0.022	<b>2</b> 0,214
4		< 0.001	0.066	0.001	0.110
7	_	< 0.001	0.038	0001	, 0.063 ^y
14	D3 (Ditch)	< 0.001	00/9	0.001	Q.031
21		< 0.001	0.013	<0.001	\$0.021
28		< 0.001	0.009	<0.001	0.01
42		< 0.001	<u>a</u> 0.006	₹0.001	0.01
50		<0.001	0.005	© <0.00P	)" 👸.009 @
100		<0.001	0.003	<00001	0.004
0		0.009	0.003 0 - V	<b>3</b> .015	
1		0.0094	0000	0.015	D 15 A
2		0.000 🛸	Ø.009 🔪 🕺	A 0.033	©0.015
4		0 <del>-0</del> 069 , ~	© 0.009	0015	<b>₹</b> 0.0
7		Q.0086	0,009	0.014	0.015
14	D4 (Pond)	₹ 0.00 <b>%</b>	9:008	0.013	Ø.014
21		^Q 0 <b>,0</b> 97 ⊗	<b>∂</b> 0.008 <b>√</b>	00012	> 0.014
28		Ū • <b>,</b> 6.007 °	\$\tag{0.00}	9.011 S	0.013
42		0.006	0.007	0.010	0.012
50		0.00	<b>©</b> .007	0.009	0.012
100		00002	\$\int 0.00\forall \tag{}	0.005	0.009
0	199 (Stream)	©0.211 O	\$ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		-
1		<0.00%	© 20.014	O <0.601	0.024
2		Ø.901	0.007	<b>3 3 3 3 3 3 3 3 3 3</b>	0.012
4		<0.001	0.004	2 , \$0.001	0.006
7		0.0010	( 2002 S	< 0.001	0.003
14	DO (Stream)	<0,001	\$0.001 O	<0.001	0.002
21 💸		<b>30.0</b> 01	0.00%	<0.001	0.001
288		©0.001 \(	\$ QQ01 O	< 0.001	0.001
42		<0.00	<0.001	< 0.001	0.001
50		\$\tag{0.901}	0<0.001	< 0.001	< 0.001
100	De (Stream)	©0.001	<0.001	< 0.001	< 0.001
0 @		0.000	Ö' Ö.	0.015	-
1		0,009		0.015	0.015
2		0.009	₹ 0.009	0.015	0.015
40,		0.009	0.009	0.014	0.015
.4.7		0.008	0.009	0.014	0.015
¥14	D5 (Pand)	0.908	0.008	0.013	0.014
21	To (I Word)	@n nn7 &	0.008	0.013	0.014
28		©0.007 \$\frac{1}{2}\ 0.006 \$\frac{1}{2}\ \langle 0.006 \$\f	0.008	0.012	0.013
42		2, 0.006 ·	0.007	0.009	0.013
42 50 0 100 100 100 100 100 100 100 100 10		0.005			0.012
30 @j"		0.003	0.007	0.009	
Tha.		0.003	0.005	0.005	0.009

Table 9.2-21 continued

Time			g a.s./ha		g a.s./ha
(d)	Scenario	PEC _{sw,act}	PEC _{sw,twa}	PEC _{sw,act}	PEC _{sw,twa}
	1	(μg/L)	(μg/L)	(μg/L)	(μg/L) <u></u>
0	-	0.209	-	0.349	- ">"
1	- -	< 0.001	0.008	<0.001	0,993
2	<u> </u>  -	< 0.001	0.004	<0.00	Ø,007
4		< 0.001	0.002	<0.001	0.003
7	-	< 0.001	0.001	0001	, O 0.003
14	D5 (Stream)	< 0.001	0001	<b>√</b> 0.001	♥ ~0.001 å
21		< 0.001	<b>%</b> .001	<0.001	90.001
28	_	< 0.001	<b>√</b> <0.001	○ × <0.001 × ×	Q <0.00V
42		< 0.001	<0.001	<0.001√	<00001
50		<0.001	©″ <0.001 ~y	(0.00°F)	) 👸 0.001 🕡
100		<0.001	<0.001,0	<0.00001	<0.001
0		0.272	0 -4	<b>9</b> .453	· 4
1		0.015∢	\$ 0 <del>1</del> 15 0	0.024	Ø Ø Ø Ø Ø
2		0.010	Ø.063 ×	A 0.056	©0.105
4		0.010	@ 0.036	00017	
7		Q.0106	0.025	0.017	0.042
14	D6 (Ditch)	L 0.0090 3	9.018	\$ 0.0pg \$	g.029
21	, , ,	Q 0.098 Ø	0.015	00014	∞ 0.024
28	_ (	U . 6.006	\$\tag{9.0\text{8}}	9.009	<b>%</b> 0.022
42		0.007	0.012	© 0.012	0.020
50		0.00	©.012	0.002	0.019
100		< 69001	0.000	Ø.001	0.015
0	<i>J</i> ,	72.112		( 0.019 O)	-
1		0.012	© 0.012	0.049	0.019
2		0,07	0.012	Ø,019	0.019
4		0.011	7 0.0Di	0.018	0.019
7		0.011	2011	0.018	0.018
14	(Porty	0.010	\$0.011 O	0.016	0.018
21	10/1 (1 that)	0.010 ×	0.010	0.010	0.018
285				0.013	0.017
42				0.013	0.015
50	- \$9" ~\"	0.0 <b>00</b>	0.009	+	0.015
100	(Pondy	©.002	0.007	0.009 0.003	0.013
0 @	R1 (Stysem)	09.002°	0.000 / 0 0 -	0.470	0.012
$\frac{0}{1}$		0.27© - <0.0001 &	©0.115	<0.470	0.194
2 🛋		<0.0001 Q	(7)	+	
2		0.001	0.058	<0.001	0.097
467		<0.001	0.029	<0.001	0.049
<u> </u>		0.098	0.017	0.161	0.028
≫ 14	RI (Strewm)	<0.901	0.015	<0.001	0.026
21 (		©0.001	0.010	<0.001	0.017
28		<0.001	0.009	< 0.001	0.015
42		<b>≤0,0</b> 01	0.006	< 0.001	0.010
50 7		<0.001	0.005	< 0.001	0.008
1000		< 0.001	0.003	< 0.001	0.004

Table 9.2-21 continued

(d) Scinito (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (1921) (192	Time	Scenario	PEC _{sw,act}	g a.s./ha PEC _{sw,twa}	PEC _{sw,act}	g a.s./ha PECsw,twa
0         0.740         -         1.229         -         -         -         1.229         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         <	(d)	Scenario				(ug/L) Q
1	0			(μg/L)		(μg/L)
2		-		0.255		0.400
Country   Coun		_			_/	0389
7		_			(0)%	
14 R3 (Stream)		_				0.148
100   0.001   0.001   0.001   0.0028   0.001   0.0028   0.001   0.0008   0.0015   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008	7		< 0.001			0.085
100   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001	14	R3 (Stream)	< 0.001		<0.001	<b>√</b>
100   0.001   0.001   0.001   0.0028   0.001   0.0028   0.001   0.0008   0.0015   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008	21		< 0.001	0.022	<0.001	\$\tag{90.036}
50	28	]	< 0.001	<b>√</b> 0.016	O <0.001 V	0.02
50	42		< 0.001	△ 0.011 Q	. <0.001√	0.₩ <u></u>
100 <0.001 0.005 0 0.008 0 0.008 0 0.497 0 0.497 0 0.005 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.822 0 0.8	50	1	< 0.001	0.009	@1 <0.00P	D 29.015 0
0 0.497 0 0 - 5 0 0 822 5 1		1		0.005 🚳	L/Y <0/00x01 %\"	\$. \$\infty 0.008 \$\infty\$
1					822	7
2		1			0,005	6503 S.
2   0.001   0.108   0.0001   0.138   0.0001   0.138   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001   0.0	2	-	0.0034	** 190 a	- 0.003 - 0.6001	0 207
7   R4 (Stream)		-	<0.001	0.100	\$\frac{1}{2} \text{\$\frac{1}{2} \text{\$\frac{1} \text{\$\finfty}}}}}{ \text{\$\frac{1} \text{\$\frac{1} \text{\$\fin} \	V 1 0 168
14	4	-	00 001	0.1009	0.001	0.169
14 R4 (Stream) 21	/		\$0.00 K		(×0.00)	0.094
21	14	R4 (Stream)	<0.000	9 0.029	5 <0.00 × 5	¥ <u>₹</u> £9.047
28	21		~ <0 <b>⊘</b> 901 ⊘	0.021	O < 0001 C	<b>≫</b> 0.034
42   50.096   70.099   50.091   0.017     50   70.096   70.099   50.091   0.015     100   70.096   70.099   50.091   0.015     6001   70.099   70.099   70.091   0.007     70   70   70   70   70   70   70	28		Ø \$0.001 °°	\$ 0.016 C	9.001 S	0.026
50	42		<0.00	0.010	<0.001	0.017
	50	Ò	0.00 T	<b>©</b> .009	<0.901	0.015
	100		< 0.001	√ 0.00 <b>⊕</b> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<b>9</b> .001	0.007

Page 49 of 61

**Table 9.2-22** Step 3 – Actual and time-weighted average PEC_{sw} values for propoxycarbazone-sodium after application to spring cereals

Time			g a.s./ha	1 × 70 g a.s./ha		
(d)	Scenario	PEC _{sw,act} (μg/L)	PEC _{sw,twa} (μg/L)	PEC _{sw,act} (μg/L)	PEC _{sw,tyr} (μg/L)	
0		0.281	- (μg/ L)	0.468	l (#B#W	
1	-	0.230	0.255	0.384	<b>20.</b> 425	
2	1	0.149	0.223	0.250	0.373	
4		0.045	0.155	2 <del>0.</del> 976	0.258	
7	1	0.017	0(190	₹ 0.030	Q.167 Q	
14	D1 (Ditch)	0.038	<b>%</b> 063	0.072	Q0.108	
21	21 (2.00.)	0.037	« 0.055	0.071	0.096	
28	1	0.030	0.050	0.057	0.088	
42		0.018	0.041	0.035	9.074 Q	
50	1	0.013	0.037	0.0934	0.066	
100	1	0.002	0.024	0.003	0.042	
0		0.2194		0.366		
1	1	0.008	9.024	0.934	©.045	
2	1	0.009	0.024	0.04	< 0.045 €	
4	-	Q,009 ₄	\$\text{0.024}\$	0.015	0.045	
7	-	0.011	9.023	0.019	9.045	
14	D1 (Stream)	O 0004	0.022	0.045	°> 0.041	
21	Di (Sticain)	~ 0,974 <u>~</u> V \$\\$020 \@	\$ 0.018	©.039	© 0.033	
28	- 3	\$0.00±C	0.016	© <0.001	0.029	
42	- ×	<0.001	Ø.013	<0.001 <0.001	0.024	
50		< 0.9 <b>3</b> 1	\$.013 \$\int 0.012\)	9.001	0.022	
100	. ">	\$ 0.001 O	0.009 %	<0.001	0.016	
0	D2 (Ditch)	0.266	7 V-	0.443	0.010	
1		0.20%	0.205	0.443 9,197	0.341	
2		0.012	0.128	9.021	0.213	
4		0.012	2065	0.001	0.109	
7			© 0.037 ©	<0.001	0.062	
14 🔊 👰	D2 (Ditab)	0.001 \$ 0.001 \$ 0.001 \$ 0.001	0.010	<0.001	0.031	
24~	(Infilting Co	© 0.001 °	0.012	<0.001	0.031	
24° 28	- "Ø "Ď	<0.001		<0.001	0.021	
42		<0.00% × <0.901 × <0.901	Wa aa 6	<0.001	0.010	
50	D3 (Ditch)	\$\frac{\\$\901}{\\$0.001}	0.006		0.010	
100 🕡		~ 0.000 °	0.003	<0.001 <0.001	0.009	
0		0.000	<b>14003</b>	0.015	0.004	
1 2			0.009	0.015	0.015	
2.0		A 000 %	0.009	0.015	0.015	
403		0.009	0.009	0.013		
<del>**</del>	D4 (Pond)	0.000 0.008			0.015	
1.4			0.009	0.014	0.015	
14 21	Y D4 (Pond)	0.007	0.008	0.013	0.014 0.013	
			0.008	0.011		
28		0.06	0.008	0.010	0.013	
42		0.005	0.007	0.009	0.012	
	4 4 79	0.005	0.007	0.008	0.011	
100 OV	(A. "X)	0.002	0.005	0.004	0.008	

Table 9.2-22 continued

Time			g a.s./ha		g a.s./ha
(d)	Scenario	PECsw,act	PEC _{sw,twa}	PEC _{sw,act}	PECsw,twa
		(µg/L)	(μg/L)	(μg/L)	(μg/L) <u></u>
0	_	0.221	-	0.368	- ">"
1	_	< 0.001	0.025	<0.001	0 9 2
2	_	< 0.001	0.013	<0.00	\$ 021
4		< 0.001	0.006	<0.001	0.010
7		< 0.001	0.004	<b>50</b> 001	0.00
14	D4 (Stream)	< 0.001	00002	0.001	Q Q 003 g
21		< 0.001	<b>%</b> 001	<0.001	<b>%</b> 0.002
28		< 0.001	<b>№</b> 0.001	√° <0.001 ×°	0.00
42		< 0.001	0.001	<0.001√	. 0. <b>0</b> 01
50	]	<0.001	0.001	@ <0.00 \ (	Ø9.001 Ø
100	1	<0.001	<0.001,00	<00001	<0.001
0		0.009	0 -4	0.015	a 4
1	1	0.009∢	<b>3</b> 0000	0.015	6015 A
2	1	0.000	Ø.009 ×	A 0.013	0.015
4	1	0,009	© 0.009 0	00014	© 0.013
7	-	Q.0084	് വക്ക്	0.014	0.015
14	D5 (Pond)	L 0.0080 3	9:008	0.01	% <b>9</b> .014
21		Q 0,007 Ø	0.008	0012	0.013
28	┧ ,	D . 6.007	\$\int 0.0\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\ext{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitin}\$}}}}\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\texitin{\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\texitit{\$\text{\$\text{\$\exitit{\$\texititt{\$\text{\$\text{\$\texitit{\$\text{\$\text{\$\text{\$\	9.011 9	© 0.013
42		0.006	0.007	0.011	0.013
50	_	0.000	©.007	0.098	0.012
100		0.903	\$.007 \$\infty 0.00\$	0.005	0.012
0	196 (Stream)	0.803 0.208		0.24900	0.009
1	J Ş	- \$0.208 C		0.348	0.012
1		* //v.	<b>20.008</b>		0.013
2		© <0.901	0.004	001	0.006
4		<0.001	0.002	0.001	0.003
7		0.00 fo	2001	<0.001	0.002
14	DØ (Stream)	<0.001	©0.001 ©	<0.001	0.001
21		J J.001 O	<0.00	<0.001	0.001
285		©0.001 \	\$ <0.901 O	< 0.001	< 0.001
42		<0.001 ^x ×	<0.001	< 0.001	< 0.001
50	R4 (Stream)	\$ \footnote{0.901}	©°<0.0Q1	< 0.001	< 0.001
100		0.001	<0.001	< 0.001	< 0.001
0			O	0.292	-
1		~ <0,0001 \ \( \oldsymbol{Q} \)	0.032	< 0.001	0.054
2		<b>50</b> .001	0.016	< 0.001	0.027
40	] ~~ Q	<0.001	0.008	< 0.001	0.014
. 4.7		<0.001 °	0.005	< 0.001	0.008
¥14	R4 (Stream)	<0.901	0.002	< 0.001	0.004
21		©0.001 V	0.002	< 0.001	0.003
28	1 a ° &"	<0.001	0.001	<0.001	0.002
42.		\$ \$0.001 \$ \$0.001	0.001	<0.001	0.001
42 50 100		<0.001	0.001	<0.001	0.001
~ · (//)	47," \(\sigma\)	-0.001	<0.001	<0.001	0.001

# Results of Step 4 – propoxycarbazone-sodium

Maximum PEC_{sw} and PEC_{sed}

Maximum PEC_{sw} and PEC_{sed} of propoxycarbazone-sodium at Step 4 level are shown below.

Table 9.2-23 Step 4 - Maximum PEC_{sw} and PEC_{sed} values for propoxycarbazone-sodium after application to winter cereals – 1 x 42 g a.s./ha - drft and runoff mitigation

		10 m D + R
Scenario	Main entry path	PEC _{sw} , max (ug/L)
	Main entry path	(μg/L) _{CA}   L (μg/kg) _A * * L
D1 (Ditch)	Drift	0.05%
D1 (Stream)	Drift	0.056
D2 (Ditch)	Drainage	1.332
D2 (Stream)	Drainage	© 2.675
D3 (Ditch)	Drift	
D4 (Pond)	Drift	0.007
D4 (Stream)	Drift	
D5 (Pond)	Drift	
D5 (Stream)	Drift	0.001 \$\infty  0.001
D6 (Ditch)	Drift	0
R1 (Pond)	Runoff	7 7 0.006 7 5 5 0.008 Q
R1 (Stream)	Runoff Q	
R3 (Stream)	Runoff	
R4 (Stream)	Runoff	0.227 V V V 0.337

D=Drift mitigation, R= runoff mitigation

Table 9.2-24 Step 4 - Maximum PECs and PECsed values for propoxycar bazoners odium after application to winter creals 1 x 70 g a.s. In - drift and runoff mitigation

		y - cu - s		<u> </u>			<i>a</i> ,		
					710 m D≯R		<b>3</b>	20 m D + R	
Scenario	Main entry Opath	PECsw, no	PECQ _{d, max}	Main (	PECw, max	AEC _{sed} max (μg/kg)	Main entry path	PECsw, max (µg/L)	PEC _{sed, max} (μg/kg)
D1 (Ditch)	💸 Drift	Ø,154 💉	× 0.1420 ″	Drift 🔏		<b>%</b> 114	Drainage	0.085	0.110
D1 (Streams)	Drift	_@0.158_ [©] )	0.064	Drift O	0.093	0.064	Drift	0.058	0.064
D2 (Ditch)	Drainage	7.29¶/	2,230 ° (	Drainage	\$₹.291 £	2.224	Drainage	7.291	2.220
D2 (Stream)	Drainage	<b>4.5</b> 51	&″1.289€√″	Drainage	4.55	1.283	Drainage	4.551	1.280
D3 (Ditch)	Drift	<b>%</b> 120 \$	0.04 <i>8</i>	**************************************	0.964	0.010	Drift	0.033	0.005
D4 (Pond)	<b>⊅</b> Dift	0.013	_0.0016 ^	y Drifty	₂ 0.009	0.011	Drift	0.006	0.008
D4 (Stream)	A Drift	0.109	<b>₹</b> 0.004	Dout	0.068	0.002	Drift	0.036	0.001
D5 (Pond)	Drift	<b>Ø</b> 3013	0.01	Drift 🕺	^y 0.009	0.011	Drift	0.006	0.008
D5 (Stream)	Drift ,	<b>%</b> 0.127 ₄	Ø <del>.</del> 003	√Ç Drift©″	0.068	0.001	Drift	0.035	0.001
D6 (Diteh)	Drift ≤	0.100	©.033	Duits	0.078	0.029	Drift	0.048	0.029
R1 (Pond)	Runoff ₀	0.918	[©] 0.022 کی	Runoff	0.010	0.014	Drift	0.006	0.009
R1 (Stream)	Rupoff	4 0.470 ®	0:056	Runoff	0.193	0.024	Runoff	0.098	0.012
R3 (Stream)	R©noff ∧		0.√41 @	Runoff	0.543	0.063	Runoff	0.281	0.033
R4 (Stream)	Runoff	0. <b>©</b> Ž	<b>№</b> 0.130°©	Runoff	0.374	0.060	Runoff	0.196	0.032

D=Drift mitigation, R= 1000 off mitigation

Table 0 2 25 Sten 4 - Maximum PECsw and PECsed values for propoxycarbazone-sodium after application to

		5 m D	0
Scenario	Main entry path	PECsw, max (μg/L)	PEC _{sed, max} (μg/kg)
D1 (Ditch)	Drift	0.144	0,000
D1 (Stream)	Drift	0.143	0.099
D3 (Ditch)	Drift	0.120	
O4 (Pond)	Drift	0.013	Q:004 6 4
O4 (Stream)	Drift	0.134 (Č/s)	\$\int\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
O5 (Pond)	Drift	0.0138	0.015
O5 (Stream)	Drift	0AQ7	
R4 (Stream)	Drift	<b>20.</b> 107	0.018 0.004 0.007 0.015 0.006 0.007
		0.134 Co 0.01387 0.427  2.107  2.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107  3.107	

Table 9.2-26 Step 4 – Actual and time-weighted average  $PEC_{sw}$  values for propoxycarbazone-sodium after application to winter cereals  $-1 \times 70 \ g$  a.s./ha - drift and runoff mitigation

Time		5 n			D+R		D + R
(d)	Scenario	PEC _{sw,act}	PEC _{sw,twa}	PEC _{sw,act}	PECsw,twa	PEC _{sw,act}	PECO,twa
		(μg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(jig/L)
0		0.154	-	0.097	-	≥ 0.085	<u> </u>
1		0.147	0.149	0.093	0.094	0.079	0.080
2		0.143	0.147	0.091	0.093	🎳 0.076	0.080
4		0.137	0.143	0.087	0.091	0.073	<b>≈0</b> 9678 ∂
7		0.130	0.139	0.082	0.088 ﴿ رَبُّ الْحُوْدِ الْحُوْدِ الْحُوْدِ الْحُوْدِ الْحُوْدِ الْحُوْدِ الْحَوْدِ الْعِلْمِ الْعَلَالِي الْعَامِ الْعَامِ الْعَلَامِ الْعَلَامِ الْعَامِ الْعَامِ الْعَلَامِ الْعَلَامِ الْعَلَامِ الْعَامِ الْعَامِ الْعَلَامِ الْعَامِ الْعَلَامِ الْعَلَامِ الْعَلِي الْعَلَامِ الْعِلْمِ الْعَلِي الْعَلَامِ الْعَلِي الْعَلَامِ الْعَلَامِ الْعَامِ الْعَلِي الْعَلَامِ الْعَلِي الْعَلِي الْعَلِي الْعَلِي الْعِلْمِ ال	0.072	\$ \Q\dot{0.076}\langle
14	D1 (Ditch)	0.061	0.121	0.05 🗞	0.080	0.074	0.073
21		0.049	0.099	0.047	0.0	0,042 *	0.071
28		0.039	0.085	0.037	<b>©</b> 64	<b>.0.037</b>	(CAC2 (
42	1	0.023	0.068	a 🐼 .022	0.053	©0.020	0.051
50		0.017	0.061	0.016	♥0.05 <b>%</b>	0.036	0.054
100		0.003	0.052	0.003	y 0.046	98.0	0,043
0		0.158	- //	9.093		7 80958	
1		0.018	0.054	@0.018 ×	0.054	\$0.018	0.054
2		0.017	0.054	© 0.017 0.017	0.051	0.017	0.054
4		0.007	0.031	0.01	0.049	© 0.007	0.00
7	-	<0.007	gr.047 ~	₹ <b>0</b> ,001 ©	0.047	\$0.007 <u>*</u> \$0.001 ,	©.047
	D1	0.032	Ø.045 ₆	9.032	. ©.047 %	0.032	0.045
14	(Stream)		© 0.043% /		.// .		
21	. `	<0.001	0.044	<0.000	0.0440	<0.000	0.044
28		<0.001	0.039	<0.001	0.039	V <0.001	0.039
42		<0.001	9,030	<b>20</b> ,001	7 0030	<b>₹0,001</b> %	0.030
50		<0.001	<b>₹</b> 0.028 %	\$0.001	Ø.028 O	Q0.00k	0.028
100		<0.000	→ 0.024	©<0.001/y	Ø \$0.02 <b>4</b>	O<0.00	0.024
0		7.29¥		C, 7.2 <u>9</u> 1			-
1		<b>564</b> 87 O	″ 4 <b>.9</b> 77 Q	5.487	<b>49</b> 77	/ <u>,5</u> ,487	4.977
2		°∕¥.456 ₄	4.677 S	<b>₹.456</b> ♠	4.677	≈ <b>√</b> 4.456	4.677
4		√ 2.922 √ √		2.9220	4.11,3	S 2.922	4.113
7	. ا	© 2.140°	3.437	2.141	O 3.437	2.141	3.437
14	D2 (Ditch)	∤.679	<b>√ 20.6</b> 98 ^	<b>136</b> 79 <i>Q</i> 1	2.698	1.679	2.698
21		. 02.212	<b>2</b> .447 ~	2.212 Q	2.447	2.212	2.447
28	Õ	1.298	& 2.264 V	1.298	2.264	1.298	2.264
42	<b>~</b> O	0.698	0 1.889	0.698	1.880	0.698	1.880
50		0.486	1 602	0.986 €	1.692	0.486	1.692
100	l Ø	0.486	2003	0.173 Q	@r.003	0.173	1.003
0 %	<u> </u>	© 4.55¶\$		\$\frac{4.55}{2}\frac{1}{2}	- Opt.003	4.551	-
1	,	(1) 2 25(D)	2.806	() 2 2 2	2.806	3.271	2.806
2	·	2(729	2.0028	3.271 2.729	2.628	2.729	2.628
		1 (25 %)	2.0028 <u>(</u>	Q.625	2.335	1.625	2.335
7	· Š	1.023	2.333	1.090			
1.4	D2 ~	0 1.09kg	0 1.923	7 1.U9W	1.923	1.090	1.923
14	(Stream)	0.900 %	1.483	0.900°	1.483	0.900	1.483
21		1964	354	<b>1</b> 364	1.354	1.364	1.354
28	A	1.625 0 1.625 0 1.090 0 0.960 0 1.064 0 0.368 0 0.273 0	#\$\f\2'/0 \@\`	<b>Ø</b> .746	1.270	0.746	1.270
42	<b>P</b>	0.368	<b>1.042</b>	0.368	1.042	0.368	1.042
50	1	°	0.984	0.273	0.934	0.273	0.934
30 ≫	- ≪(			0.086	0.559	0.086	0.559

Table 9.2-26 continued

Time		5 n		10 m		20 m	
(d)	Scenario	PEC _{sw,act}	PEC _{sw,twa}	PECsw,act	PEC _{sw,twa}	PEC _{sw,act}	PEC _{sw,tyva}
1 1		(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(µgØL)
0		0.120	-	0.064	-	0.033	
1		0.054	0.093	0.029	0.049	0.015	©0.026
2		0.006	0.058	0.003	0.031	\$ 0.002	√ 0.0H€
4		< 0.001	0.030	< 0.001	0.016	<0.001	0.008
7		< 0.001	0.017	< 0.001	0.009	<0.001 0	Ø.005 (
14	D3 (Ditch)	< 0.001	0.009	<0.000	0.005	<0.000	0.00
21		< 0.001	0.006	<0.001	0,003	<0,001 😤	0.002
28		< 0.001	0.004	<b>%</b> .001	0.002	<b>\$9</b> .001 Q	<b>20</b> ×001 ⊈
42		< 0.001	0.003	△ <0.001	Q0.002 °	√<0.00 <u>}</u>	©0.001@
50		< 0.001	0.002	<0.001	0.00	<0,001	(a) 0.0 <b>(a)</b>
100		< 0.001	0.001	≤0.001 €	Ø.001 0	<b>20</b> ,001	<0,001 €0,001
0		0.013	- 0	Ø.009 👟	\$ - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\$0.006 _e	4 -
1		0.013	0.013	0.00	0.00	0.006	0.00 <b>6</b>
2		0.013	0,013	y Q.0 <b>0</b> 99 🛸	0,009	\$ 0,006 ⁴	0,006
4		0.013	0.013	<b>20</b> .009	Ø.009 Y	Ø.006 ∜	.006
7		0.012	Q0.013 ×	0.009	<b>2</b> 0.009	Ø0.00@	0.006
14	D4 (Pond)	0.011	0.002	0.008	0.00	D 0.063 4	0.006
21	,	0.011	<b>B</b> 012 <b>B</b>	<b>©</b> 907	Ø008 0	©005 ×	
28		0.010	\$\int_0.011	\$0.007 _@	0.008	\$\text{0.005\text{\text{\lambda}}}	0.005
42		0.008	0.0%	0.006	0.00	0.00	0.005
50		0,008	V 0.010 @	0.665	<b>900</b> 7	0904	0.005
100		>9.004 ₄	©.008	\$9.003 \( \sigma^\circ\)	9.006 S	~ 0.002	0.004
0		√ 0.129 ×	© - O	0.068	\$ -6	0.036	-
1		@.	0. <b>00</b> 9	\$\frac{\circ}{<0\text{!001}}	0.005	<0.001	0.002
2		© 1001 s	0.004	<b>3</b> .001	0.002	<0.001	0.002
4	O O O	\$0.001\$\frac{1}{2}	0.002	×0.001	©0.001	<0.001	0.001
7	,0	<0.001	0.002	<0.001	0.001	< 0.001	<0.001
14	<b>D</b> 4	<0.001	0.001	2 <0.001 C	€0,001	<0.001	<0.001
21	Stream)	\$\frac{\squares 0.9001}{\squares 0.001}	0.001 0.001	<0.001	©0.001	<0.001	<0.001
28		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
42	ý '	0.000° <0.001 «	/ <0.001 / <0.001	> <0.000° > <0.001 √	♥ <0.001 ▼ <0.001	<0.001	<0.001
	<b></b>	<0.001					
50		A -0.001 (//)	\$0.001	©.001 <0.000	<0.001	<0.001	<0.001
100	Ø.	0.004	<0.00f	0.00	< 0.001	<0.001	< 0.001
0		9913 ×	Ø013 Ø	<i>h</i>	- 0.000	0.006	0.006
1	<u>.</u>		4 34	<b>©</b> 909	0.009	0.006	0.006
2		0.013	0.013	© 0.009	0.009	0.006	0.006
4	r ≪1	N A	0.013	0.007	0.009	0.006	0.006
7		0.012	, 00)13 °	0.009	0.009	0.006	0.006
147	D5 (Pond)	0.016	012	0.008	0.009	0.005	0.006
21		0.016	© 0.012	0.007	0.008	0.005	0.006
28		0.009	0.011	0.007	0.008	0.004	0.005
42		8000	<b>0.010</b>	0.006	0.007	0.004	0.005
50		© 0.007 0.007	0.010	0.005	0.007	0.004	0.005
100		1 0.000	0.008	0.003	0.006	0.002	0.004

Table 9.2-26 continued

Time		5 n		10 m		20 m D + R		
(d)	Scenario	PEC _{sw,act}	PEC _{sw,twa}	PECsw,act	PEC _{sw,twa}	PEC _{sw,act}	PEC _{sw,tyva}	
		(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(µgØL)	
0		0.127	-	0.068	-	0.035	**************************************	
1		< 0.001	0.005	< 0.001	0.003	<0.001	©0.001 <u></u>	
2		< 0.001	0.002	< 0.001	0.001	<0.001	√ 0.00 V	
4		< 0.001	0.001	< 0.001	0.001	<0.001	<0.901	
7	De	< 0.001	0.001	< 0.001	<0.001	<0.001 0	\$\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\display(\diap)\display(\display(\diap)\display(\diap)\diap\display(\diap)\diap\diap\diap\diap\diap\diap\diap\diap	
14	D5 (Stream)	< 0.001	< 0.001	<0.000	< 0.00	<0.000	<0.00	
21	(Stream)	< 0.001	< 0.001	<0.001	<0.001	<0,001 😤	Q <0x001	
28		< 0.001	< 0.001	<b>%</b> .001	9.001	<b>\$9</b> .001 Q	<b>₹</b> 9.001 ⊈	
42		< 0.001	< 0.001	△ <0.001	Q<0.001 °	√<0.00 <u>}</u>	©<0.001©	
50		< 0.001	< 0.001	<0.001	<0.001	<0,001	(0.00) (0.00)	
100		< 0.001	<0.001	<b>≤0.001 €</b>	₹ <b>≨0,</b> 001 _0	<b>20,</b> 001	√ _€ 0,001	
0		0.134	- 8	Ø.078,∜	\$ - \$	\$0.048	4 -	
1		0.018	0.063	0.01	0.04	0.016	0.028	
2		0.016	0,040 %	y Q.0¥6 %	0,028	© 0,016 ⁴	0.022	
4		0.017	Ø.028, ×	<b>20.</b> 017, 4	0.022	Ø.017 ∜	20.021	
7		0.017	Q,0.028 Y	0.017	0.0200	0.017	0.020	
14	D6 (Ditch)	0.015	0.020	0.015	0.00	D 0.00 /	0.019	
21	,	0.014	<b>B</b> 3019 <b>B</b> 3	<b>©</b> 914	Ø19 O	©014 ×		
28		0.009	\$\\ 0.017 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\$0.009 _@	0.017	\$\text{0.009\%}	0.017	
42		0.012	0.010	0.012	0.016	0.019	0.016	
50		0,002	V 0.017 0	0.662	QQ16 %	0902	0.016	
100		>0.001 4	<b>9</b> .014	\$0.001	9.013 P	~~0.001	0.013	
0		« 0.018 ·	& - O	0.040	% -/ ₂	0.006	-	
1			0.001/8	\$ 0.010	0.000	0.006	0.006	
2		<b>6</b> ,017 s. O	0.018	~6010 °C	0.010	0.006	0.006	
4		0.0174	0.017	<b>30.010</b>	©0.010 ©	0.006	0.006	
7	* O	0.01/	0.014	0.009	0.010	0.006	0.006	
14	P.1 (Pond)	0.915	0.016	2 0.908 C	Ø. <b>6</b> 09	0.005	0.006	
21	R1 (Pond)	€0.013 €	0.016	0.007_@	©0.009	0.005	0.006	
28	7	0.013	0.015	0.007	0.009	0.005	0.006	
42	, ,	0.009	0.013	Ø 0.0€0	♥ 0.009	0.005	0.006	
50	<b>29</b>	, 0.008	, 0x014 ~ , 0x014 ~		0.009	0.003	0.005	
100		0.003	<b>V V</b> 1	0.005	0.008	0.004	0.003	
0		0.400	% 0.0kJ	0.199	0.007	0.002	0.004	
1		9001 N	<b>194</b>	<i>&gt;</i>	0.079	<0.001	0.040	
	1		V V V	0.001				
2 4	Ç ^y	<0.001 <0.000 <0.000	0.04		0.040	<0.001	0.020	
	A	W	0.049 7 00028 °	<0.001	0.020	<0.001	0.010	
7 147	R1 ∜	× 0,4√61 √0.001 ×	, 00028 R026	0.068	0.011	0.051	0.006	
14%		€0.001 30.001		< 0.001	0.011	<0.001	0.005	
21	"© *	<0.004	© 0.017	<0.001	0.007	<0.001	0.004	
28		<0.001	0.014	<0.001	0.006	<0.001	0.003	
42	(Stream)	0.001	Ø.009	< 0.001	0.004	< 0.001	0.002	
50		€0.001\$°	0.008	< 0.001	0.003	< 0.001	0.002	
100		1 <0.00T	0.004	< 0.001	0.002	< 0.001	0.001	

**Table 9.2-26** continued

Time		5 n	ı D	10 m	D+R	20 m	D+R
(d)	Scenario	PEC _{sw,act}	PEC _{sw,twa}	PEC _{sw,act}	PEC _{sw,twa}	PECsw,act	PEC _{sw,tyva}
(4-)		(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(µg@L) 🧳
0		1.229	-	0.543	-	0.281	
1		0.003	0.589	0.001	0.257	> 0.001	0.133
2		< 0.001	0.296	< 0.001	0.129	<0.001	√ 0.06 P)
4		< 0.001	0.148	< 0.001	0.065	<0.001	0.033
7	D2	< 0.001	0.085	< 0.001	0.037	<0.001 0	Ø.019 Z
14	R3 (Stream)	< 0.001	0.046	<0.00	0.021	<0.000	0.014
21	(Stream)	< 0.001	0.031	<0.001	0,054	<0.001 2	0:207
28		< 0.001	0.023	<b>©</b> .001	<b>9</b> .010	<b>₹9</b> .001 ⊘	£7005 €
42		< 0.001	0.016	△ <0.001	Q.0.007 °	√<0.00 <b>}</b>	© 0.004©
50		< 0.001	0.013	<0.001	0.00%	<0,001	© 0.0 <b>0</b>
100		< 0.001	0.007	\$0.001 \times	Ø.003 O	<b>20</b> ,001	0.902
0		0.822	- 0	@0.374 <i>\$</i>	\$ - \$	<b>3</b> 0.196	
1		0.005	0.593	0.00	0.27	0.00	0.14 <b>L</b>
2		< 0.001	0p <b>29</b> *	y ≤0. <b>0</b> 01 %	, 0,436 E	<b>\$9.001</b>	0.071
4		< 0.001	Ø.165, 🛰	Ø.001 &	Ø*075 **	Ø.001 👟	<b>5.</b> 039
7	<b>7</b>	< 0.001	Q.0.094 Y	<0.001	0.0430	<0.00	0.023
14	R4 (Stream)	< 0.001	C 0.047	°√ <0.001 ′	0.022	\$\text{\$\infty} <0.466\text{\$\text{\$\text{\$\gamma}\$}\$}\tag{\text{\$\gamma\$}}	0.011
21	(Sucaiii)	< 0.001	Ø ₀ 033 Ø	<b>3</b> 0001	QQ15 O	<b>₫0</b> .001 📎	0.008
28		0.001	0.024	\$0.001,©"	Q0.011 [♥]	≈0.00 <b>%</b>	0.006
42		<0.00)	0.016	<0.001	( 0.QQ	<0.00	0.004
50	7	< 0.001	9 0.914 Q	<0.001	<b>2000</b> 06 °∕	< <b>©</b> 0001	0.003
100	7	°≈0.001 4	<b>9</b> .007	\$0.001 \$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	Ø.003	~ <b>0</b> .001	0.002

Table 9.2-27 Step 4 – Actual and time-weighted average  $PEC_{sw}$  values for propoxycarbazone-sodium after application to spring cereals – 1 x 70 g a.s./ha – drift mitigation

Time	Carrier .	5 m D				
(d)	Scenario	PEC _{sw,act} (μg/L)	PECsw,twa (μg/L)			
0		0.144	- 🦎 🤅			
1		0.121	0.132			
2		0.085	0.118			
4		0.038	0,087			
7		0.029				
14	D1 (Ditch)	©0.072	0.087 0.070 0.070 0.066 0.056 0.056			
21		0.070	0.070			
28		0.056	\$\infty \Q\Q\Q\Q\Q\Q\Q\Q\Q\Q\Q\Q\Q\Q\Q\Q\Q\Q\Q			
42			0.056 0 0 0.056 0 0			
50		0.033 0 0.024	0.056			
100		0.024	0.035			
0	4	0.305 M43	- 1,933			
1		0.003 0.0140 0.015	0.045			
2		0.045	0.045			
4	D1 (Stream)	0.05915 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0:013			
7		0.045	0.045			
14	D1 (Stream) "O"	0.045	J J 0.04)			
21		0.009				
28		<b>4</b> .001 Q	J. 190.029			
42		100.00	0.024			
50		<b>O</b> <0.001	0.021			
100		v <b>√ √</b> 0001	0.016			
0		0.120 0.053				
1		\$\times^* 0.053 \times^*	0.093			
0 1 2 4 7		0.053	0.058			
4		20.001	0.030			
7 🔊		<0.00	0.017			
14	D3 (Ditch)	<0.001	0.008			
2A_7		Ø:001 ©	0.006			
£98		0.0010	0.004			
42		~ <0.00Y	0.003			
50		© ≤0.001	0.002			
100		~ ~0.001	0.001			
0 -@		0.013	-			
1		0 0.013	0.013			
2		0.013	0.013			
		0.012	0.013			
<i>y</i> , 7		0.012	0.013			
7 4		0.012	0.013			
21	D3 (Pond)	0.011				
21 0		0.010	0.011			
28 O N		0.009	0.011			
21		0.007	0.010			
		0.007	0.010			
<b>₩</b> 00		0.003	0.007			

Table 9.2-27 continued

Time	Sagmania	5 m D				
(d)	Scenario	PEC _{sw,act} (μg/L)	PEC _{sw,twa} (μg/L) ο			
0		0.134	- &			
1		< 0.001	0.015			
2		< 0.001	0.008			
4		<0.001	(A) 0.004 (A)			
7		<0.001				
14	D4 (Stream)	<0.001	(D)			
21	D4 (Stream)	©0.001				
28		<0.001	0.001			
	_		Q.001 \$\frac{1}{2}\$			
42	_	0.001	001			
50	_	<0.001 %	\$\times <0.001			
100		<0.001 Q ° ° <0.001 Q ° ° ° <0.001 Q ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	36.			
0		0.00				
1		9:013	0.013.4			
2		© 0.013Q				
4	D5 (Porolly 14)	0.013 0.013 0.013 0.063	0.013			
7		V , Q , Q , Q , Q , Q , Q , Q , Q , Q ,	\$\frac{1}{2}\tag{013}			
14	D5 (Popus)	0.000	0.012			
21		0.00	0.00Z			
28		0000				
42		\$ \$.008 Q	0.011			
50		W W	0.010			
100		0.004	9 0.008			
0		© 127 . V	-			
1		0.001	0.005			
2 4		<0.001	0.002			
7		30.001	0.001			
14 🔊		\$\langle \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tinx{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tinx{\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tex{\tex	<0.001			
21			<0.001			
21		8/001 B				
28y		9.001	<0.001			
<u>***2</u>		0.000	<0.001			
50		100.00	<0.001			
100		♥ <u>\$0</u> ,001	< 0.001			
0		\$\ \\$0.107	-			
1		<0.001	0.020			
2 , "		© <0.001	0.010			
		<0.001	0.005			
		<0.001	0.003			
<u>√</u> √ 14 √	R4 (Soream) V	<0.001	0.001			
21		<0.001	0.001			
28		< 0.001	0.001			
42		< 0.001	< 0.001			
50, & 1		< 0.001	< 0.001			
1000 55		< 0.001	<0.001			
rift mitigation	<u> </u>		1 0.001			
	D5 (Sti@am)					
	~					

# Results of Steps 1-2 - metabolites of propoxycarbazone-sodium

# Surface water

Maximum concentrations of the metabolites of propoxycarbazone-sodium in surface water at Step 2 argoresented in Table 9.2-28. Only maximum values are reported.

Table 9.2-28 Steps 1-2: Maximum PEC_{sw} values of the metabolites of propoxycarbazone-sodium following application to cereals

				PECsw	(μg/L)	<u> </u>			
FOCUS STEP	M04	M05	M06	_M07	M08Q	M09 _ @	MIN	<b>№</b> 111	
Winter cereals, 17 42 g a.s./ha									
Step 1	0.242	1.437	0.036	1.651	0.443	0.200	2.800	1.865	
Step 2 (N-EU, Oct–Feb)	0.242	0.298	0.036	9.514 S	0.161	<b>J</b> Ø.256	12045	<b>20.516</b>	
Step 2 (N-EU, Mar–May)	0.242	0.131	0.036	0.22	0.064	0.102	60.447	0. <b>\$</b> 06	
Step 2 (S-EU, Oct–Feb)	0.242	0.243	0.036	Ø.418 C	0.13%	~~0.205~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0/8/45	0.413	
Step 2 (S-EU, Mar–May)	0.242	0.243 Q 0.249 W	© 0.036 %	0.418	90.129	0.395	0.845	0.413	
	Winter cereals, 1 070 g at ha								
Step 1	0.403	©2.39 <b>5</b> ~	&I 37	2.75 <b>L</b>	<b>9</b> 338	1.166	<b>%</b> ¥.667	3.109	
Step 2 (N-EU, Oct–Feb)	0.403	0497	0.06%	0.856	0.268	~0,426 Ç	1.741	0.860	
Step 2 (N-EU, Mar–May)	0.403	0.21%	<b>6</b> 0	0.380	\$0,107 \$\infty\$	0,170	0.745	0.344	
Step 2 (S-EU, Oct–Feb)	0.403	\$\int_{\infty} \int_{\infty} \	© 0.060	<b>20697</b>	0.214	0.341	1.409	0.688	
Step 2 (S-EU, Mar-Mayo	03	0.404	0,060	0.697	©.214 ©	0.341	1.409	0.688	
<u> </u>		Sp	oring cereals		Dia V				
Step	0.242	¥1.437 6		1.651	<b>.0.04</b> 3	0.700	2.800	1.865	
Step 2 (N-EU, Mar–May)	Ø.242 ×	0,131	©0.036	0.228	0.064	0.102	0.447	0.206	
Step 2 (S-EU, Mar–May)	0.242	©.243 ©	0.036	0.4180	0.129	0.205	0.845	0.413	
	Spring cereals, 1 x 700g a.s./ha								
Step 1	0.40	3395	0.060	<b>P</b> .751	0.738	1.166	4.667	3.109	
Step (N-EU, Mar–May)	≈0. <b>4</b> 03	0.219	060	0.380	0.107	0.171	0.745	0.344	
(S-EV, Mar–May)	0.403	20.404 <u>(</u>	0.000	0.697	0.214	0.341	1.409	0.688	
Step@ (N-EU, Mar-May)  Step 2 (S-EV, Mar-May)									

# Sediment

Maximum concentrations of the metabolites of propoxycarbazone-sodium in sediment at Step 1-2 are presented in Table 9.2-29. Only maximum values are reported.

Table 9.2-29 Steps 1-2: Maximum PEC_{sed} values of the metabolites of propoxycarbazone-sodium following application to cereals

DO GUIG GEND				PECsed	(μg/kg)		<u> </u>	
FOCUS STEP	M04	M05	M06	M07	M08	M09	MA	M11
Winter cargals 1 v 42 g a s /ha								
Step 1	0.044	0.623	0.002	0.4522	7.575	1.353	Ü 1.060	<b>J</b>
Step 2 (N-EU, Oct–Feb)	0.030	0.128	0.002	©Ø.038	2.749	0.495	e ((	0.06
Step 2 (N-EU, Mar–May)	0.030	0.056	0.002	0.017	1.100	0.198	0.16%	<b>2</b> 025
Step 2 (S-EU, Oct–Feb)	0.030	0.104	0.002	©0.031	2499	0.396 0.396 0.396	0.320	0.051
Step 2 (S-EU, Mar–May)	0.030	0.104	Ø.002~	Ø:931	2.199	Ø\$96 ≪	0.326	<b>Q</b> 051
Winter ceycals, 1&70 g.a.s. /ha								
Step 1	0.074	1.036	\$9\004 _\	7 0.20 <b>3</b> 7	<b>2</b> .626	2.255	A.766	0.382
Step 2 (N-EU, Oct–Feb)	0.050	0.3/14	0.00%	<b>3</b> :063	4.580	0.824	0.6 <b>5</b> 9	0.106
Step 2 (N-EU, Mar–May)	0.050 🐇	\$\text{0.094}	©x003	0.028	(4.833 Q	0,330	©0.282	0.042
Step 2 (S-EU, Oct–Feb)	0.050	09.74 <i>&amp;</i>	0.00	0.052	3.663	₹0.659 €	0.533	0.085
Step 2 (S-EU, Mar–May)	<b>0.</b> 050 6	0.174	0.003	0.052	Ø3.665 €	0,639	0.533	0.085
Spring cereals 1 x 2 g a Wha								
Step 1	0.044	\$\tag{0.62}	0.902	0.122	\$575 Z	1.353	1.060	0.229
Step 2 (N-EU, Mar–May)	®0.030€	(V)	0.002	<b>1</b> 7	1.100	0.198	0.169	0.025
Step 2 (S-EU, May—May)	0.030	0.104	0.002	> 0.03€	2×199	0.396	0.320	0.051
Sping cereals, 1 x 70 g a.s. (ha								
Step 1	0.074	Ø.038	0.0004	0.203	12.626	2.255	1.766	0.382
Step 2 (N-EU, Mar–May)	Ø. 820 S	0.094	0.003	0.008	1.833	0.330	0.282	0.042
Step 2 (S-EU, Mar May)	0.05	9.174	0.003	©0.052	3.665	0.659	0.533	0.085

MI. CONCLUSIONS

Predicted environmental concentrations in surface water and sediment were calculated for propoxycarbazone-sodium using the simulation models FOCUS STEPS 1-2 (version 2.1), FOCUS SWASH (version 3.1 using MACRO 4.4.2, PRZM 3.1.1 and TOXSWA 3.3.1) and SWAN (version 3.0.0). Calculations for the metabolites were conducted at Steps 1-2.

The results of the PEC calculations in surface water and sediment were used for the eco-toxicological risk assessment.

For details, please refer to the corresponding PEC reports (point M-CP 9.2.5/02 of this document) submitted within this dossier.

### **CP 9.3** Fate and behaviour in air

### **CP 9.3.1** Route and rate of degradation in air and transport via air

The active substance, propoxycarbazone-sodium, has a very low vapour pressure of  $< 1 \times 10^{-08}$  Post  $20^{\circ}$  C Thus, taking into account the low volatilisation of propoxycarbazone-sodium from soil and plant surfaces as well as the estimated half-life of 4.5 hours (calculations according to Atkinson (AOPWin 1.75)) for the photochemical oxidative degradation of gaseous propoxycarbazone-sodium, the calculation of predicted, environmental concentrations in air are deemed to be not necessary (refer to Document MCA

Thus, an accumulation in air can be excluded. Also no short or long range transport is

### Estimation of concentrations for other routes of exposure **CP 9.4**

None of the following routes are relevant for the application of the TTRIBUT SO70 following the GAPtable:

- deposition of dust containing plant protection products by drift during sowing.
- deposition of dust containing plant protection products by drift during sowing.

   indirect exposure of surface water is a a sewage deatment plant (STR) after supplication of the formulated product ATTRIBUT SG 70 in storage rooms, and

   amenity use.

  Therefore, no further information is here presented.

  No other routes of exposure are expected after application of ATTRIBUT SG 70, and thus no additional estimations of concentrations are regulated.