

MAKE school

RECURSIVE ALGORITHM ANALYSIS

Wait, so... to find the answer... I have to know the answer?!

ASYMPTOTIC NOTATION

Worst case — upper bound

Algorithm is O(f(n)) — "big oh of f(n)"

Best case — lower bound

Algorithm is $\Omega(f(n))$ – "omega of f(n)"

If both bounds are the same, then

Algorithm is $\Theta(f(n))$ — "theta of f(n)"

BINARY SEARCH

Return index of item in sorted array, or None if not found

```
def binary_search(array, item):
        left, right = 0, len(array)
 3
        while left <= right:</pre>
            middle = (left + right) / 2
            if item == array[middle]:
 5
                return middle # found
 6
            elif item < array[middle]:
                right = middle - 1 # search left half
 8
            else:
                 left = middle + 1  # search right half
10
11
        return None # not found
```


RECURSIVE BINARY SEARCH

Return index of item in sorted array, or None if not found

```
def binary_search(array, item, left, right):
        if left > right:
3
            return None # not found
        middle = (left + right) / 2
        if item == array[middle]:
            return middle # found
 6
        elif item < array[middle]: # search left half</pre>
            return binary_search(..., left, middle-1)
        else: # search right half
9
            return binary_search(..., middle+1, right)
10
```


RECURSIVE ALGORITHMS

Recursive algorithms call themselves with different input values until reaching a base case solution or terminating condition

To account for recursive calls, we can write a recurrence relation to describe running time

e.g., Binary Search: T(n) = 4 + T(n/2)

BINARY SEARCH ANALYSIS

Let's unwrap the recurrence for Binary Search:

$$T(n) = 4 + T(n/2)$$
 after 1 iteration
 $T(n) = 4 + 4 + T(n/4)$ after 2 iterations
 $T(n) = 4 + 4 + 4 + T(n/8)$ after 3 iterations
 $T(n) = 4i + T(n/2^i)$ after *i* iterations

- 2^i can be at most n (terminates with sublist size 1)
- \rightarrow *i* can be at most log_2n (max depth of recursion)
- ∴ Binary Search is $O(log_2n)$ and $\Omega(1)$ (early exit)

MERGE SORT

Merge Sort steps at a high level:

- 1. If list size is 1, return the list (it's trivially sorted)
- 2. Recursively sort each 1/2 of the list (2 calls)
- 3. Merge the **2** sorted **1/2**-lists into a size *n* list

Running time recurrence relation:

$$T(1) = 1$$
 base case (list size 1)
 $T(n) = 2T(n/2) + n$ each recursive iteration

MERGE SORT ANALYSIS

Let's unwrap the recurrence for Merge Sort:

$$T(n) = 2T(n/2) + n$$
 after 1 iteration
 $T(n) = 4T(n/4) + 2n$ after 2 iterations
 $T(n) = 8T(n/8) + 3n$ after 3 iterations
 $T(n) = 2^{i}T(n/2^{i}) + in$ after *i* iterations

- 2^i must reach n (base case with sublist size 1)
- → i must reach log₂n (depth of recursion tree)
- ∴ Merge Sort is $\Theta(n\log_2 n)$

MASTER THEOREM

Given a general recurrence relation:

$$T(n) = aT(n/b) + cn^d$$
 $T(1) = c$
where $a \ge 1$, $b > 1$, $c > 0$, $d \ge 0$

If $a < b^d$ then $T(n)$ is $\Theta(n^d)$

If $a = b^d$ then $T(n)$ is $\Theta(n^d \log_b n)$

If $a > b^d$ then $T(n)$ is $\Theta(n^e)$ where $e = \log_b a$

RESOURCES

Introduction to Algorithms by Cormen, Leiserson, Rivest, and Stein – widely considered the Bible of Algorithms

<u>Algorithms Unlocked</u> by <u>Thomas Cormen</u> — introductory and more accessible, less technical detail than CLRS

Recursion and Recurrences by U. of Dartmouth Math

<u>Sorting-Algorithms.com</u> — animations of common sorting algorithms running in parallel on specific datasets

