

CS 422: Data Mining Vijay K. Gurbani, Ph.D., Illinois Institute of Technology

Lecture: The Perceptron

CS 422 vgurbani@iit.edu

Scalar multiplication with vector

Scalar multiplication with vector

Adding vectors
$$\begin{bmatrix} -5 \\ 8 \end{bmatrix} + \begin{bmatrix} 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 0 \\ 14 \end{bmatrix}$$

Adding vectors
$$\begin{bmatrix} -5 \\ 8 \end{bmatrix} + \begin{bmatrix} 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 0 \\ 14 \end{bmatrix}$$

Subtracting $\begin{bmatrix} -5 \\ 8 \end{bmatrix}$ - $\begin{bmatrix} 5 \\ 6 \end{bmatrix}$

Subtracting vectors $\begin{bmatrix} -5 \\ 8 \end{bmatrix}$ - $\begin{bmatrix} 5 \\ 6 \end{bmatrix}$ = $\begin{bmatrix} -10 \\ 2 \end{bmatrix}$

Subtracting vectors

$$\begin{bmatrix} -5 \\ 8 \end{bmatrix} - \begin{bmatrix} 5 \\ 6 \end{bmatrix} = \begin{bmatrix} -5 \\ 8 \end{bmatrix} + \left(-1 * \begin{bmatrix} 5 \\ 6 \end{bmatrix} \right) = \begin{bmatrix} -5 \\ 8 \end{bmatrix} + \begin{bmatrix} -5 \\ -6 \end{bmatrix} = \begin{bmatrix} -10 \\ 2 \end{bmatrix}$$

Recap: Matrices (Dot Product)

The dot product of two vectors $\vec{a} \cdot \vec{b}$ is the projection of \vec{a} onto \vec{b} . We want to see how much of \vec{a} is pointing in the same direction as \vec{b} .

Dot product is positive if vectors are pointing in the same direction (geometrically, acute angle),

... 0 if perpendicular (right angle),

... negative if vectors pointing in nearly opposite direction (obtuse angle).

Mathematical interpretation of dot product: $\vec{a} \cdot \vec{b} = \sum_{i=1}^n a_1 b_1 + a_2 b_2 + ... a_n b_n$ (also called an "inner product")

Geometrical interpretation of the dot product: $\vec{a} \cdot \vec{b} = \|\vec{a}\| \|\vec{b}\| \cos(\theta)$

Ex:
$$\vec{a} = <1$$
, 3, 2>; $\vec{b} = <5$, 1, 8> $\vec{a} \cdot \vec{b} = 24$, $||\vec{a}|| = \sqrt{1^2 + 3^2 + 2^2} = \sqrt{13}$, $||\vec{b}|| = \sqrt{90}$ $\theta = \cos^{-1}\left(\frac{24}{\sqrt{13}\sqrt{90}}\right)$

Introduction

 Neural networks: If computers are to think, why not model them after the human brain?

Introduction

• ... Except, of course, the human brain is in a league of its own.

Organism	Number of neurons
Jellyfish	5,600
Fruit fly	250,000
Frog	16,000,000
Cat	760,000,000
Humans	