

General syntax

- corpus_* manage text collections/metadata
- tokens_* create/modify tokenized texts
- **dfm_*** create/modify doc-feature matrices
- fcm_* work with co-occurrence matrices
- textstat * calculate text-based statistics
- textmodel_* fit (un-)supervised models
- **textplot** * create text-based visualizations

Consistent grammar:

- **object()** constructor for the object type
- **object verb()** inputs & returns object type

Extensions

quanteda works well with these companion packages:

- quanteda.textmodels: Text scaling and classification models
- readtext: an easy way to read text data
- **spacyr**: NLP using the spaCy library
- quanteda.corpora: additional text corpora
- **stopwords**: multilingual stopword lists in R

Create a corpus from tent Pro

```
Read texts (txt, pdf, csv, doc, docx, json, xml)
```

my_texts <- readtext::readtext("~/link/to/path/*")</pre>

Construct a corpus from a character vector

x <- corpus(data_char_ukimmig2010, text_field = "text")

Explore a corpus

summary(data_corpus_inaugural, n = 2) ## Corpus consisting of 58 documents, showing 2 documents:

Text Types Tokens Sentences Year President FirstName Party ## 1789-Washington 625 1537 23 1789 Washington George none ## 1793-Washington 96 147 4 1793 Washington

Extract or add document-level variables

party <- data_corpus_inaugural\$Party x\$serial_number <- seq_len(ndoc(x))

docvars(x, "serial_number") <- seq_len(ndoc(x)) # alternative</pre>

Bind or subset corpora

corpus(x[1:5]) + corpus(x[7:9])corpus_subset(x, Year > 1990)

Change units of a corpus

corpus_reshape(x, to = "sentences")

Segment texts on a pattern match

corpus_segment(x, pattern, valuetype, extract_pattern = TRUE)

Take a random sample of corpus texts

corpus_sample(x, size = 10, replace = FALSE)

Extract features (dfm_*; fcm_*)

```
Create a document-feature matrix (dfm) from a corpus
x <- dfm(data_corpus_inauaural.
         tolower = TRUE, stem = FALSE, remove_punct = TRUE,
```

remove = stopwords("en"))

print(x, max_ndoc = 2, max_nfeat = 4) ## Document-feature matrix of: 58 documents, 9,210 features (92.6% sparse) and 4 docvars.

docs fellow-citizens senate house representatives 1789-Washington 1 1793-Washington 0

[reached max_ndoc ... 56 more documents, reached max_nfeat ... 9,206 more features]

Create a dictionary

dictionary(list(negative = c("bad", "awful", "sad"), positive = c("good", "wonderful", "happy")))

Apply a dictionary

dfm_lookup(x, dictionary = data_dictionary_LSD2015)

Select features

ectles(x gargern - lead inctionary_LSD2015, selection = "keep")

Randomly sample documents or features

dfm_sample(x, what = c("documents", "features"))

Weight or smooth the feature frequencies

deficient(schame = "prop") | dfm_smooth(x, smoothing = 0.5)

Sort or group a dfm

dfm_sort(x, margin = c("features", "documents", "both")) Combine identical dimension elements of a dfm

dfm_compress(x, margin = c("both", "documents", "features"))

Create a feature co-occurrence matrix (fcm)

x <- fcm(data_corpus_inaugural, context = "window", size = 5)</pre> fcm_compress/remove/select/toupper/tolower are also available

Useful additional functions

Locate keywords-in-context

kwic(data_corpus_inaugural, pattern = "america*")

Utility functions

texts(corpus) Show texts of a corpus ndoc(corpus / dfm / tokens) Count documents/features

nfeat(corpus / dfm / tokens) Count features summary(corpus / dfm) Print summary head(corpus / dfm) Return first part tail(corpus / dfm) Return last part

Tokenize a set of texts (tokens_*)

Tokenize texts from a character vector or corpus

x <- tokens("Powerful tool for text analysis.".</pre> $remove_punct = TRUE$

Convert sequences into compound tokens

myseqs <- phrase(c("text analysis"))</pre> tokens_compound(x, myseas)

Select tokens

tokens_select(x, c("powerful", "text"), selection = "keep")

Create ngrams and skipgrams from tokens

 $tokens_ngrams(x, n = 1:3)$ tokens_skipgrams(x, n = 2, skip = 0:1)

Convert case of tokens or features

tokens_tolower(x) tokens_toupper(x) dfm_tolower(x)

Fit text models based on a dfm (textmodel_*)

These functions require the quanteda.textmodels package

Correspondence Analysis (CA)

textmodel_ca(x, threads = 2, sparse = TRUE, residual_floor = 0.1)

Naïve Bayes classifier for texts

textmodel_nb(x, y = training_labels, distribution = "multinomial")

SVM classifier for texts

textmodel_svm(x, y = training_labels)

Wordscores text model

refscores <- c(seq(-1.5, 1.5, .75), NA))textmodel_wordscores(data_dfm_lbgexample, refscores)

Wordfish Poisson scaling model

 $textmodel_wordfish(dfm(data_corpus_irishbudget2010), dir = c(6,5))$

 $\begin{array}{c} \text{Stem tokens or features} \\ \text{tokens_wordstem(x)} \end{array} \\ \begin{array}{c} \text{Assignment } \\ Project \\ Exam \\ Help \end{array}, \\ \text{summary(), print()} \\ \end{array}$

Calculate text statistics (textstat_*)

Tabulate feature frequencies from a dfm

textstat frequency(x) topfeatures(x)

Identify and score collocations from a tokenized text toks <- tokens(c("quanteda is a pkg for quant toks")

"quant text analysis is a growing field")) textstat_collocations(toks, size = 3, min_count = 2)

Calculate readability of a corpus

textstat_readability(x, measure = c("Flesch", "FOG"))

Calculate lexical diversity of a dfm

textstat_lexdiv(x, measure = "TTR")

Measure distance or similarity from a dfm

textstat_simil(x, "2017-Trump", method = "cosine", margin = c("documents", "features")) textstat_dist(x, "2017-Trump", margin = c("documents", "features"))

Calculate keyness statistics

textstat_keyness(x, target = "2017-Trump")

Plot features or models (textplot_*)

data corpus inauaural %>% corpus_subset(President == "Obama") %>% dfm(remove = stopwords("en")) %>%

1attphowconer

Plot word kevness

data_corpus_inaugural %>% corpus_subset(President %in% c("0bama", "Trump")) %>% dfm(groups = "President", remove = stopwords("en")) %>% textstat_keyness(target = "Trump") %>% textplot_keyness()

Plot Wordfish, Wordscores or CA models

(requires the **quanteda.textmodels** package) scaling_model %>% textplot_scale1d(groups = party,

```
margin = "documents")
```


Convert dfm to a non-quanteda format

by **Stefan Müller** and **Kenneth Benoit** • smueller@quanteda.org, kbenoit@quanteda.org https://creativecommons.org/licenses/by/4.0/ Learn more at: http://quanteda.io • updated: 05/2020