Type of Query	SQL	Description	Python code
Create table	CREATE TABLE table_name (A1D1, AnDn, IC1, ICn)	Create DataFrame from par das series	
Delete relation	DROP TABLE table_name	das series	df = pd.DataFrame(data)
Add column	ALTER TABLE table_name ADD COLUMN column_name	Create DataFrame from dat matrix	ta data = $[[11, 21,31],[12,22,32],[13,23,33]]$
Add record	INSERT INTO table_name(A1,An) VALUES (V1,Vn) DELETE FROM table_name WHERE condi-		cols = [col1,col2,col3] df = pd.DataFrame(data, columns = cols)
Delete record based on condition Delete all records	tion DELETE FROM table_name WHERE condition DELETE FROM table_name	Create DataFrame from CSV file	
Update records based on	UPDATE table_name SET Ai = Vi WHERE	Create DataFrame from Excel file	
condition Select records based on condition	Aj = Vj SELECT A1, An FROM table_name WHERE condition	Get index and datatype	df = workbook.parse(sheet_name) df.info()
Select without duplicates	SELECT DISTINCT A1, An FROM table_name WHERE condition	from DataFrame Get first n rows from DataFrame	m df.head(n)
Select with duplicates	SELECT ALL A1, An FROM table_name WHERE condition	Get last n rows from DataFrame	m df.tail(n)
Select all attributes	SELECT * FROM table_name WHERE condition		or df.describe()
Selection resulting in a	SELECT 'value'	Extract row n by index	df.iloc[n,:]
1 by 1 relation of given		Extract column n by index	
value Selection resulting in a	SELECT 'value' FROM table_name	Extract column by name	df.col_name or df["col_name"]
n-row relation containing	SELECT value FILOM table-halle	Extract rows based on cond tion	, , , , , , , , , , , , , , , , , , , ,
given value Rename attribute name	SELECT A1 AS name	Display number of columns	
Selection with arithmetic expression	SELECT A1 (+,-,*,/) FROM table_name	Display number of rows Find number of non-null va- ues for each column	$\begin{array}{c} \operatorname{print}(\operatorname{len}(\operatorname{df})) \\ \operatorname{df.count}() \end{array}$
Logical operators Comparisons	AND, NOT, OR =, <>, <, >, <=, >=	Display number of distinct	ct print(len(df.unique()))
Select Cartesian product	SELECT * FROM table1, tablen	values for column Date type of column	df['column'].dtype
Rename table name	SELECT * FROM table AS name	Aggregate query	df['column'].mean() (.min(), .max(), .me-
Left outer join	SELECT * FROM t1 LEFT OUTER JOIN t2 ON t1.a = t2.a	Concatenate row-wise	dian(), .std()) union_df = pd.concat([df1, df2])
Right outer join	SELECT* FROM t1 RIGHT OUTER JOIN t2 ON t1.a = $t2.a$	Concatenate row-wise Concatenate column-wise Join operation	union_df = $pd.concat([df1, df2])$ union_df = $pd.concat([df1, df2], axis=1)$ merge_df = $pd.merge(df1, df2, on='col')$
Full outer join	SELECT * FROM t1 FULL OUTER JOIN t2 ON t1.a = t2.a	John operation	merge_df = pd.merge(df1, df2, left_on='df1_col', right_on='df2_col')
Inner join	SELECT * FROM t1 INNER JOIN t2 ON t1.a = t2.a	Find column name by inde Find number of missing va	x df.columns(n)
String matching	SELECT * FROM table WHERE a LIKE "_abc%"	ues in col	
Range query	SELECT * FROM table WHERE a BETWEEN x AND y	Functional dependencies	
Set operations	UNION, INTERSECT, EXCEPT	Reflexivity Axiom Augmentation Axiom	If $X \subset Y$, then $Y \longmapsto X$ If $X \longmapsto Y$, then $AX \longmapsto AY$
Select where attribute is null	SELECT * FROM table WHERE a IS NULL	Transivity Axiom If $X \longmapsto Y$ and $Y \longmapsto W$, then $X \longmapsto$	
Select record where at- tribute matches one of	SELECT * FROM table WHERE a IN (v1, vn)	First Normal Form (1NF)	Relation contains only atomic values (no multiple values in one cell)
multiple values	AVC MIN MAY CHM COUNT	Second Normal Form (2NF)	Relation is in 1NF and all non-key attributes are fully functional dependent on the primary
Aggregate values Select average value of an	AVG, MIN, MAX, SUM, COUNT SELECT AVG(a) FROM table	, ,	key
attribute Group by values within	SELECT * FROM table GROUP BY a	Third Normal Form (3NF)	Relation is in 2NF and there is no transitive dependency
an attribute		Boyce Codd Normal Forme (BCNF)	Relation is in 3NF and for functional dependency $X \longmapsto Y, XmustbeaSuperKey$
Group by values within	SELECT * FROM table GROUP BY a HAV-	Forme (BCNF)	dency $X \mapsto I$, Amusioeas uper $X \in \mathcal{A}$
an attribute and specify condition	ING condition	String similar-	
Data types	CHAR(n), VARCHAR(n), INT, SMALLINT,	ity	
J I	NUMERIC(p,d), REAL, FLOAT(n)		number of single-character edits required to
Specify primary key	CREATE TABLE table_name (A1D1, AnDn,	distance change or	ne string into the other
upon creation Specify foreign key upon	PRIMARY KEY (Ai)) CREATE TABLE table name (A1D1 AnDn	Jaro Similar- JaroSim	$(S1,S2) = \frac{1}{3}(\frac{C}{S1} + \frac{C}{S2} + \frac{C-T}{C})$, C=number of characters, T=number of transpositions/2, S1
Specify foreign key upon creation	CREATE TABLE table_name (A1D1, AnDn, FOREIGN KEY Ai REFERENCES table2)		respective lengths of the strings
Referential integrity	FOREIGN KEY AI REFERENCES ta- ble2 ON DELETE/UPDATE NO AC-	Jaro-Winkler $Jw(S1, S$	2) = $JaroSim*P*L*(1-JaroSim)$,P=Scaling 1 default), L=length of common prefix up to
	TION/CASCADE/SET DEFAULT	maximum	
Check clause	CREATE TABLE table_name (A1D1 CHECK condition)	l l	algorithm that indexes names by their sounds nounced in English
Relational algebra symbo	le·	Set similarity	
	Relational algebra symbols: Union, \cap intersection, - difference, σ select, π projection, \times cartesian		similarity between sets by dividing the intersec-
	ρ rename, δ duplicate elimination, γ grouping	Jaccard Similarity Finds the tion over t	the union, $J_{sim}(C_1, C_2) = \frac{ C_1 \cap C_2 }{ C_1 \cup C_2 }$
and aggregation, τ sorting		Jaccard Dis- Finds the	dissimilarity (or distance) between sets by divid-
Relational algebra examp	les:	tance ing de diff	erence over the union, $J_{sim}(C_1, C_2) = \frac{ C_1 - C_2 }{ C_1 \cup C_2 }$

 $\overline{\text{Q: Find the titles of courses}}$ in the Comp. Sci. department that have 3 credits. A: $\pi_{title}(\sigma_{dept_name='Comp.Sci.' \land credits=3}(course))$

Q: Find the IDs of all students who were taught by an instructor named

A: $\pi_{ID}(takes \bowtie \pi_{course_id}(teaches \bowtie \sigma_{name='Einstein'}(instructor)))$

Q: Find the highest salary of any instructor.

A: $\gamma_{max(salary)}(instructor)$ Q: Find all instructors earning the highest salary (there may be more than one with the same salary).

A: $\sigma_{salary=\gamma_{max(salary)}(instructor)}(instructor)$

ing de difference over the union, $J_{sim}(C_1, C_2) = \frac{|C_1 - C_2|}{|C_1 \cup C_2|}$ Jaccard Bag Counts the repitition of elements (The similarity between Similarity ${a,a,a,b}$ and ${a,a,b,b,c} = 3/9 = 1/3$

Sørensen Co-Finds the similarity between sets by dividing two times efficient

Overlap Co-

Finds the similarity between sets by dividing two times the intersection over the total number of elements, $CC(C_1, C_2) = \frac{2*|C_1 \cap C_2|}{|C_1| + |C_2|}$ Finds the similarity between sets by dividing the intersection over the amount of elements of the set with the least amount of elements, $OC(C_1, C_2) = \frac{|C_1 \cap C_2|}{MIN(|C_1|, |C_2|)}$ A generalized form of Jaccard and Sørensen $S(C_1, C_2) = \frac{|C_1 \cap C_2|}{|C_1 \cap C_2|}$ Laccard similarity: $\alpha = \beta = \frac{|C_1 \cap C_2|}{|C_1 \cap C_2|}$ efficient Tversky

 $\frac{|C_1\cap C_2|}{|C_1\cap C_2|+\alpha|C_1-C_2|+\beta|C_2-C_1|}, \text{Jaccard similarity: } \alpha=\beta=1, \text{Sørensen: } \alpha=\beta=0.5$

Index

Hashing example $h3 = 2x+4 \mod 5$		Visualtization & EDA		
$h4 = 3x-1 \mod 5$		Grammar of	Map raw data to: Aesthetics, Geometric objects, Scales	
Element 0	S1 S2 S3 S4 h3 h4 0 1 0 1 4 4	Graphics	Facets. Additionaly can apply: Statistical transformation, Coordinate system	
) <u> </u>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Gestalt princi-	Proximity, Smilarity, Connection, Continuity, Closure	
2	1 0 0 1 3 0	ples of relat- edness	Figure and ground, Common fate	
3 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tufte data to	The ratio between the amount of information the plo	
<u> </u>		ink ratio prin- ciple	shows and the amount of "ink" being used, principle is to maximize this ratio (within reason)	
h3	3 1 0 2	Types of anal-	Exploratory Analysis and Confirmatory Analysis	
h4		ysis Exploratory	Generate new insights, Create new hypotheses, Analysis	
		Analysis	may depend on data	
Data preparation Handling Missing	Ignore, Fill in (manually, automatically (global con-	Confirmatory Analysis	Test theory, A priori hypotheses, Analysis predefined	
Data	stant, mean, etc.))	Tukey's ap-	Look at center and spread. Find comparisons. "Straight	
Handling Noisy Data	Binning, Regression, Clustering, Combined computer and human inspection	proach to EDA	ening and flattening": use logarithms and other trans forms, use models and residuals	
Equidepth bins	Each bin has same amount of elements and different	Peng's EDA	1. Formulate your question, 2. Read in your data, 3	
Equidistance bins	range Each bin has same range and different amount of elements	checklist	Check the packaging, 4. Look at the top and bottom of your data, 5. Check your "n"s, 6. Validate with at least one external source, 7. Try the easy solution first, 8 Challenge your solution, 9. Follow up	
Outlier detection				
Outlier	Observation which deviates so much from other observations as to arouse suspicions that it was	R	$ggplot(data = df) + geom_point(mapping =$	
T. 6	generated by a different mechanism		aes(x=a1, y=a2, color=a3, size=a4))	
Types of outliers Outlier Detection	Global, contextual, collective Statistical approach, Distance-based approach,	$\begin{array}{c} { m Subplots} \\ { m Head} \end{array}$	+ facet_wrap(~a1 nrow=n) df %>% head	
Approaches	Density-based approach, Model-Based approach	Check n	df %>% group_by (a1) %>% summarize(n())	
Local Outlier Facto (LOF)	or Quantifies the local density of a data point, with the use of a neighborhood of size k	Filter Create df	df %>% filter(a1 == value) $df <- tibble(col1 = data1, coln = datan)$	
,		Create formula	formula $<$ - outcome \sim pred1 + pred2	
Data normalization	n Formula	Create linear r object	$\begin{array}{c c} model & lm_ses <- lm(formula = medv \sim lstat, data = data) \end{array}$	
nethod Min-max normaliza	$v' = \frac{v - min}{max - min}(new_max - new_min) + new_min$	Predict from mo	. ,	
tion		Read CSV Other geoms	df <- read_csv('file.csv') geom_density, geom_bar, geom_line	
Z-score normalization Decimal scaling nor nalization			geom_histogram, geom_rug, geom_boxplot geom_col, geom_smooth, geom_ribbon	
D : 1 ::		Term	Definition	
Data reduction Principal Componen	nt Dimensionality reduction by finding a projection	OSEMN framew CRISP-DM	ork Obtain, Scrub, Explore, Model, iNterpret Cross Industry Standard Process for Data Mining	
Analysis (PCA)	that captures the largest amount of variation in	KDD Process	Knowledge Discovery in Databases	
Attribute Subset Se	data. Works for numeric data only. Dimensionality reduction by removing redundant	Data Wrangling	An iterative process to convert the raw data into a more understandable format. Discovering, Struc	
lection Model-Based Dat	attributes and removing irrelevant attributes a Data reduction by modeling to a straight line		turing, Cleaning & Transformation, Enriching	
Reduction Dat	(linear regression, multiple regression, log-linear	Data Formats	Validating, Publishing Structured Data, Unstructured Data, Semistruc	
Historyon for Dat	model) a Divide data into buckets and store the average for	M () (tred Data	
Histogram for Dat Reduction	each bucket	Metadata Data Models	Data about data Mathematical representation of the data. Collec	
Clustering-Based Data Reduction	Partition dataset into clusters based on similarity, and store cluster representation		tion of tools describing relationships, semantics	
Sampling-Based	Obtain a small sample to represent the whole	Main Componer	constraints, operations. nts of Structures, Constraints, Operations	
Oata Reduction Simple random sam	dataset - Equal probability of selecting any particular item	a Data Model	Dala Justania Calania	
oling	Equal probability of selecting any particular item	Parts of the tional Model	Rela- Instance, Schema	
Sampling without replacement	Once an object is selected, it is removed from the population	Types of keys Constraints	Superkey, Candidate key, Primary key, Foreign key Guard against accidental damage to the data, En	
Sampling with re	* *	Constraints	sure that authorized changes to the data don't vi	
placement	tion	D 1 1 CC1	olate consistency	
Stratified sampling Cluster sampling Concept Hierarch Generation	partition. Used in conjunction with skewed data.	Drawback of file tem as data stor	0 0	
	hierarchies can be automatically generated based on the analysis of the number of distinct values per attribute in the data set	Databases	offer solutions to all these problems. Traditionally: systems that contain records about real world entities Today: covers all the larges	
S1 1 ···		Database levels	sources of data (web search, data mining, etc.) of ab- Physical level, Logical level, View level	
Cloud computing 5Vs of Big Data	Big Data Characteristics: Volume, Variety, Veloc-	straction Data Definition		
J	ity, Veracity, Value	guage (DDL)	schema	
Cloud Computing	A compilation of technologies, packaged within a infrastructure paradigm that offers improved scal- ability, elasticity, business agility, faster startup time, reduced management costs and just-in-time	Data Manipul Language (DML Supervised learn	Also known as query language	
	availability of resources	Unsupervised	*	
Chamati-ti Dil		*		
	rs Efficiency, Accessibility, Ultra-Reliability, On-	ing	ingful information Develop an agent that improves its performance	
Characteristic Pillar of Cloud Computing Cloud Deploymen Models Cloud delivery mod	Efficiency, Accessibility, Ultra-Reliability, Ondemand, Elasticity, Scalability, Sustainability Public Cloud, Private Cloud, Hybrid Cloud, Community Cloud	*		