

Soutenance de stage

Problème Inverse : Transfert Radiatif et Apprentissage

Roussel Desmond NZOYEM

Université de Strasbourg UFR de mathématiques et d'informatque Master 1 CSMI

24 août 2020

Simulation 2D de l'équation du transfert radiatif et reconstruction de la densité par un réseau de neurones

Roussel Desmond NZOYEM

Ensignant referent Christophe PRUD'HOMME Maitre de stage Emmanuel FRANCK Laurent NAVORET Vincent VIGON

Annee Academique 2019/2020

Introduction	Principe	Resultats 1D	Resultats 2D	Conclusion
● ○ ○○○	000000			0
L'IRMA				

L'equipe MOCO compte plusieurs membres parmi lesquels MM. :

■ Emmanuel FRANCK

■ Laurent NAVORET

Responsables des seminaires en EDP

L'IRMA

L'equipe MOCO compte plusieurs membres parmi lesquels MM. :

- Emmanuel FRANCK
- Laurent NAVORET

Responsables des seminaires en EDP

- Partenariats internationaux (Portugal, Allemagne, USA, etc.)
- Partenariats indutriels
- Modélisation des plasmas

Resultats 2D

L'equipe Probabilités compte plusieurs membres parmi lesquels M. :

■ Vincent VIGON

Principe

Introduction

o• ○○○

L'IRMA

0

Introduction

L'equipe Probabilités compte plusieurs membres parmi lesquels M. :

■ Vincent VIGON

Des activites diverses :

- Partenariats internationaux (Allemagne, Autralie, Chine, etc)
- Séminaire (de calcul) stochastique.

Resultats 2D

Conclusion

24 août 2020

5 / 19

Introduction

Le sujet du stage

Roussel Desmond NZOYEM

00 ●00

Principe

000000

Introduction

Le sujet du stage

oo ●00 Principe

Probleme direct

(Resolution de l'EDP du transfer radiatif)

Resultats 2D

Probleme inverse

(Reconstruction de la densite par un ANN)

Introduction	000000	Nesuitats 1D	Nesuitats 2D	0
○●○	00000			

Le sujet du stage

Trois point cles pour situer le stage :

- 1 Explosion du deep learning
- 2 APplications dans le secteur medical (Imagerie medicale)
- 3 Reevaluation des methode de resolution de problemes inverse

Sommaire

- 1 Introduction
 - L'IRMA■ Le sujet du stage
- 2 Principe
 - Simulation de l'ETR
 - Reseau de neurones
- Resultats 1D
 Simulation
 - Apprentissage
 - 4 Resultats 2D
 - Simulation
 Apprentissage
 - Apprentissage
- 5 Conclusion■ Sur l'apprentissage
 - Sur le stage

Introduction

Le transfer radiatif

Lorsque la photons se trouvent en presence de la matière, Trois phenomènes majeures (caratises par leurs opacites) se produisent :

- Emission (σ_e) : Plus la temperature matiere est elevee, plus l'emission est importante
- Absorption (σ_a) : Lorsqu'on est a l'equilibre thermique, $\sigma_a = \sigma_e$
- Scattering (σ_c) : Il faut aussi tenir compte de la fonction de distribution angulaire de \ll scattering $\gg p(\Omega' \to \Omega)$.

Introduction

L'equation du transfert radiatif est bilan d'energie lie au rayonnement au niveau mesoscopique.

Resultats 1D

$$\begin{split} \frac{1}{c} \frac{\partial}{\partial t} I(t, \mathbf{x}, \Omega, \nu) + \Omega \cdot \nabla_{\mathbf{x}} I(t, \mathbf{x}, \Omega, \nu) \\ &= \sigma_{a}(\rho, \Omega, \nu) \left(B(\nu, T) - I(t, \mathbf{x}, \Omega, \nu) \right) \\ &+ \frac{1}{4\pi} \int_{0}^{\infty} \int_{S^{2}} \sigma_{c}(\rho, \Omega, \nu) \rho(\Omega' \to \Omega) \left(I(t, \mathbf{x}, \Omega', \nu) - I(t, \mathbf{x}, \Omega, \nu) \right) \ d\Omega' \ d\nu \end{split}$$

Οù

- $I(t, \mathbf{x}, \Omega, \nu)$ designe l'intensité radiative specifique;
- $B(\nu, T)$ la fonction de Planck;

Principe

Le modele P1

Principe

000000

Introduction

$$\begin{cases} \partial_t E + c & \text{div } \mathbf{F} = c\sigma_a (aT^4 - E) \\ \partial_t \mathbf{F} + c & \nabla E = -c\sigma_c \mathbf{F} \\ \rho C_v \partial_t T = c\sigma_a (E - aT^4) \end{cases}$$

Ou :

$$E(t, \mathbf{x}) = \frac{4\pi}{c} \int_0^\infty \int_{S^2} I(t, \mathbf{x}, \mathbf{\Omega}, \nu) \, d\mathbf{\Omega} \, d\nu$$
$$\mathbf{F}(t, \mathbf{x}) = \frac{4\pi}{c} \int_0^\infty \int_{S^2} \mathbf{\Omega} I(t, \mathbf{x}, \mathbf{\Omega}, \nu) \, d\mathbf{\Omega} \, d\nu$$

Resultats 2D

Le schema de « splitting » : Etape 1

On pose $\Theta = aT^4$

$$\begin{cases} E_j^{q+1} = \frac{\alpha E_j^n + \beta \gamma \Theta_j^n}{1 - \beta \delta} \\ \Theta_j^{q+1} = \frac{\gamma \Theta_j^n + \alpha \delta E_j^n}{1 - \beta \delta} \end{cases}$$

En posant

$$\mu_q = \frac{1}{T^{3,n} + T^n T^{2,q} + T^q T^{2,n} + T^{3,q}}$$

$$\alpha = \frac{1}{\Delta t \left(\frac{1}{\Delta t} + c\sigma_a\right)}, \quad \beta = \frac{c\sigma_a}{\frac{1}{\Delta t} + c\sigma_a}, \quad \gamma = \frac{\rho_j C_v \mu_q}{\Delta t \left(\frac{\rho_j C_v \mu_q}{\Delta t} + c\sigma_a\right)} \quad \text{et} \quad \delta = \frac{c\sigma_a}{\frac{\rho_j C_v \mu_q}{\Delta t} + c\sigma_a}.$$

COnvergence ver E_i^* et Θ_i^* . \mathbf{F}_j reste constant egale a $\overline{F_i^*}$.

Principe

000000

Resultats 1D

$$\begin{cases} E_j^{n+1} = E_j^* + \alpha \sum_k (\mathbf{F}_{jk}, \mathbf{n}_{jk}) \\ \mathbf{F}_j^{n+1} = \beta \mathbf{F}_j^* + \gamma E_j^n + \delta \sum_k E_{jk} \mathbf{n}_{jk} \end{cases}$$
Avec:
$$\alpha = -\frac{c\Delta t}{|\Omega_j|},$$

$$\begin{split} &\text{Avec}: \\ &\alpha = -\frac{c\Delta t}{|\Omega_j|}, \\ &\beta = \frac{1}{\Delta t} \left(\frac{1}{\Delta t} + c\sum_k M_{jk}\sigma_{jk}\right)^{-1}, \\ &\gamma = \frac{c}{|\Omega_j|} \left(\frac{1}{\Delta t} + c\sum_k M_{jk}\sigma_{jk}\right)^{-1} \left(\sum_k I_{jk}M_{jk}\mathbf{n}_{jk}\right) \end{split}$$

$$\left(\mathbf{F}_{jk}, \mathbf{n}_{jk}\right) = l_{jk} M_{jk} \left(\frac{\mathbf{F}_{j}^{n} \cdot \mathbf{n}_{jk} + \mathbf{F}_{k}^{n} \cdot \mathbf{n}_{jk}}{2} - \frac{\mathbf{E}_{k}^{n} - \mathbf{E}_{j}^{n}}{2}\right)$$

Resultats 2D

$$\begin{split} E_{jk}\mathbf{n}_{jk} &= l_{jk}M_{jk}\left(\frac{E_j^n + E_k^n}{2} - \frac{\mathbf{F}_k^n \cdot \mathbf{n}_{jk} - \mathbf{F}_j^n \cdot \mathbf{n}_{jk}}{2}\right)\mathbf{n}_{jk} \\ M_{jk} &= \frac{2}{2 + \Delta \times \sigma_{jk}} \\ \sigma_{jk} &= \frac{1}{2}\left(\sigma_{\mathbf{c}}(\rho_j, T_j^n) + \sigma_{\mathbf{c}}(\rho_k, T_k^n)\right) \end{split}$$

Conclusion

 $\delta = -\frac{c}{|\Omega_i|} \left(\frac{1}{\Delta t} + c \sum_k M_{jk} \sigma_{jk} \right)^{-1}$

Introduction

Simulation de l'FTR

Simulation de l'ETR

Implementation C++

- Temps final = 0.01 sh
- c = 299 [cm/sh]
- $a = 0.01372 [g/cm/sh^2/keV]$
- $C_v = 0.14361 [Jerk/g/keV]$
- La densité ρ est un signal créneau [g cm⁻³]
- $\sigma_a = \rho T \text{ [cm}^{-1]}$
- $\sigma_c = \rho T \ [\text{cm}^{-1}]$
- $T_0, T_{gauche} = 5 \text{ [keV]}$
- $E_0 = aT_0^4 [g/cm/sh^2]$
- $E_{gauche^*} = aT_0^4 + 5\sin(2k\pi t) [g/cm/sh^2]$
- $\blacksquare \ \, \textbf{F}_0, \textbf{F}_{gauche} = \textbf{0} \, \left[\text{g/sh}^2 \right]$
- Sorties libres sur les autres bords

```
x min 0
                                     E u neumann
x max 1
                                     E u x neumann
y_min 0
                                     F_u_v neumann
u_nax 1
                                     T_u neumann
N 90
                                     E d neumann
c 299
                                     E d x neumann
                                    F_d_y neumann
a 0.01372
C_v 0.14361
                                     T_d neumann
                                     E l ponctuel (0.4.0.6)
precision 1e-6
                                    F_1_y 0
t_f 0.01
rho crenau(0.5.0.5.0.1.10)
                                     Er neumann
sigma_a rho∗T
                                     Erx neumann
                                    F_r_y neumann
sigma_c rho*T
                                     T_r neumann
E 0 0.01372*(5^4)
                                     export file data/df simu.csv
F_0_y 0
                                     export_mode dataframe
                                     write_mode truncate
```

Introduction Principe Resultats 1D Resultats 2D Conclusion •0000

Reseau de neurones

L'architecture sous Keras

FIGURE - Architecture generale utilisee

Reseau de neurones

Les couches utilisees : Convolutions (Cross-correlation)

$$S(i) = (I * K)(i) = \sum I(i+m)K(m)$$

FIGURE - En 1D (GANESH, 2019)

FIGURE - En 2D (PACKT, s.d)

 Introduction
 Principe
 Resultats 1D
 Resultats 2D
 Conclusion

 00
 000000
 0
 0
 0
 0

Reseau de neurones

Les couches utilisees : Flatten et Dense

 $\mathrm{Figure} - \textbf{Flatten}$

FIGURE – Des couches denses

Coefficient de determination

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

Avec

$$SS_{res} = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

 $SS_{tot} = \sum_{i=1}^{n} (y_i - \bar{y})^2$

Ou $\bar{y} = \sum_{i=1}^{n} y_i$ représente la moyenne des valeurs observées

Score personalise

Pourcentage des prédiction correcte si la prediction et le label sont suffsament proche:

- au dixième près pour la position (suivant x ou y)
- à l'unité près pour la hauteur

 Introduction
 Principe
 Resultats 1D
 Resultats 2D
 Conclusion

 ○○
 ○○○○○
 ○○○○
 ○○○○

Reseau de neurones

Les hyper-parametres

TABLE - Liste des paramètres les plus influents pour l'entrainement

Hyper-paramètre	Définition	Valeur 1D / 2D
learning rate batch size optimizer activation patience	taux d'apprentissage taille d'un batch a chaque epoque algorithme d'optimisation type de fonction d'activation patience pour l'early stopping	1e-4 / 1e-5 32 Adam relu, linear, sigmoid 10
epochs kernel size	nombre d'époques taille du noyau de convolution	100 3 / (6,2)

Resultats 2D

Introduction

Sur l'apprentissage

00

Principe

000000

19 / 19

Introduction Principe Resultats 1D Resultats 2D Conclusion
○○ ○○○○○
Sur l'apprentissage

Le probleme en 1D Le probleme en 2D

(La 1D est facile si on veut etudier juste la hauteur) la classification petmet de savoir s'il y a un obstacle a un endroit specifique La regression 2D permet de tout savoir

GANESH, Prakhar (oct. 2019). \ll Types of Convolution Kernels: Simplified \gg . In: URL: https://towardsdatascience.com/types-of-convolution-kernels-

URL: https://towardsdatascience.com/types-of-convolution-kernelssimplified-f040cb307c37.

Packt (s.d). « Convolutional neural networks ». In : URL : https://subscription.packtpub.com/book/game_development/

9781789138139/4/ch04lvl1sec31/convolutional-neural-networks.