Řešení domácího úkolu z 1. cvičení

Definice Izomorfismus grafů je bijekce $f:V(G)\to V(H)$, kde $\forall u,v\in V(G)$ platí:

$$\{u, v\} \in E(G) \iff \{f(u), f(v)\} \in E(H).$$

Definice Grafy G a H jsou izomorfni, pokud existuje izomorfismus grafů G a H, značíme $G \simeq H$.

Definice Doplněk \overline{G} grafu G = (V, E) je graf $(V, \binom{V}{2} \setminus E)$.

Věta Graf G je izomorfní H právě tehdy, když \overline{G} je izomorfní \overline{H} .

Pozorování Podívejme se na zobrazení dvojic uzlů $e:\binom{V}{2} \to \binom{H}{2}$ definované izomorfismem f:

$$e(\{u,v\}) = \{f(u), f(v)\}, \{u,v\} \in \binom{V}{2}.$$

Protože f je izomorfismus, e bijektivně zobrazuje hrany G na hrany H a "nehrany" G na "nehrany" H. Doplňek však pouze zamění hrany za "nehrany" a naopak. Proto f bude určitě i izomorfismus \overline{G} na \overline{H} .

Důkaz Grafy G a H jsou izomorfní, proto existuje izomorfizmus z G na H, označme jej $f:V(G)\to V(H)$. Z definice každá dvojice vrcholů $u,v\in V(G)$: splňuje:

$$\{u, v\} \in E(G) \iff \{f(u), f(v)\} \in E(H).$$

Protože logický výraz $A \Leftrightarrow B$ je ekvivalentní výrazu $\neg A \Leftrightarrow \neg B$, předchozí tvrzení lze zapsat jako:

$$\{u,v\} \not\in E(G) \iff \{f(u),f(v)\} \not\in E(H).$$

To ale je pouze jinak zapsané tvrzení:

$$\{u,v\} \in E(\overline{G}) \iff \{f(u),f(v)\} \in E(\overline{H}).$$

To je však podmínka izomorfismu, proto f je izomorfizmus \overline{G} na \overline{H} a tyto grafy jsou izomorfní.