Ideas of mathematical proof

Slides Week 30

Arithmetic of infinite limits of sequences. Limits of functions: arithmetic and sandwich theorems. Infinite limits of functions. Limits as $x \to \infty$. Continuous functions.

Infinite limits

Intuitively, $\lim_{n\to\infty} a_n = +\infty$

if a_n becomes arbitrarily large for all sufficiently large n.

Definitions

- $\lim_{n\to\infty} a_n = +\infty$ if for any Mthere exists N(M) (depending on M) such that $a_n > M$ for all n > N(M).
- $\lim_{n \to \infty} a_n = -\infty$ if for any Mthere exists N(M) (depending on M) such that $a_n < M$ for all n > N(M).

Graph of a sequence with infinite limit

 $\lim_{n\to\infty} a_n = \infty$ means: for any M there is N(M) such that all points (n, a_n) of the graph on the right of N(M) are in the area $(N(M), \infty) \times (M, \infty)$ (blue and green).

For bigger M_1 possibly bigger $N(M_1)$ (green area); and so on.

Example

Prove that $\lim_{n\to\infty} \log n = +\infty$ from first principles.

For any M we must find N(M) such that $\log n > M$ for all n > N(M).

Solve inequality for *n*:

using that log is an increasing function:

$$\Leftrightarrow n > 10^{M}$$
.

So we put $N(M) = 10^M$, then $\log n > M$ for all n > N(M), as required.

Example

Prove that
$$\lim_{n\to\infty}\frac{2^n}{n^2}=+\infty$$
 from first principles.

For any M must find N(M)

such that
$$\frac{2^n}{n^2} > M$$
 for all $n > N(M)$.

Use inequality $2^n \ge n^3$ for all $n \ge 10$

(can be proved by induction, omitted here).

So for
$$n \ge 10$$
 we have $\frac{2^n}{n^2} > \frac{n^3}{n^2} = n$.

Then easy to ensure ... > M for all n > N(M):

just take $N(M) = \max\{10, M\}$.

OPTIONAL: some famous limits

$$\lim_{n\to\infty}\frac{a^n}{n^k}=\infty$$

for any constant a > 1 and any constant k.

E.g.,
$$\lim_{n\to\infty} \frac{1.00001^n}{n^{1000000}} = \infty.$$

'Any exponential is greater than any polynomial'.

Arithmetic of infinite limits of sequences

Theorem (arithmetic of infinite limits of sequences)

Suppose that
$$\lim_{n\to\infty} a_n = +\infty$$
 and $\lim_{n\to\infty} b_n = +\infty$, while $\lim_{n\to\infty} f_n = L$ (finite). Then

- (a) $\lim_{n\to\infty} (a_n + b_n) = +\infty$;
- (b) $\lim_{n\to\infty}(a_n+f_n)=+\infty;$
- (c) $\lim_{n\to\infty} (a_n \cdot b_n) = +\infty;$

CONTINUED: arithmetic of infinite limits

$$\lim_{n \to \infty} a_n = +\infty$$
 and $\lim_{n \to \infty} b_n = +\infty$, while $\lim_{n \to \infty} f_n = L$ (finite). Then

- (d) $\lim_{n\to\infty}\frac{1}{a_n}=0;$
- (e) if in addition L > 0, then $\lim_{n \to \infty} a_n f_n = +\infty$; if in addition L < 0, then $\lim_{n \to \infty} a_n f_n = -\infty$;
- (f) if in addition L=0 and $f_n>0$ for all n, then $\lim_{n\to\infty}\frac{1}{f_n}=+\infty;$

Dots — several other combinations.

We will prove only some parts (only those proved may appear as 'bookwork' questions).

But all parts can be used in examples.

Warning against using $\infty \cdot 0$, $\frac{1}{0}$, $\frac{\infty}{\infty}$

$$\infty - \infty$$
, etc.

Example

For
$$\lim_{n\to\infty} a_n = +\infty$$
 and $\lim_{n\to\infty} b_n = 0$,

the sequence $a_n \cdot b_n$ may not have a limit:

e.g., let
$$a_n = n$$
 and $b_n = \frac{(-1)^n}{n}$;

then
$$a_n b_n = (-1)^n$$
.

Here,
$$a_n \to \infty$$
, $b_n \to 0$,

but $a_n b_n = (-1)^n$, so does not have a limit.

Example

$$a_n = \frac{(-1)^n}{n} \to 0 \text{ as } n \to \infty.$$

But the sequence $\frac{1}{a_n}$ has no limit (not even an infinite limit), since it has arbitrarily large absolute values

both negative and positive.

" $\infty-\infty$ " limit may not exist at all, or may be 0, or may be any other number, etc.

Example

• Let $a_n=(-1)^n+n$ and $b_n=n;$ then $a_n\to\infty$ and $b_n\to\infty,$ while $a_n-b_n=(-1)^n$ does not have a limit.

• Let $a_n=n$ and $b_n=n;$ then $a_n\to\infty$ and $b_n\to\infty,$ while $a_n-b_n=0\to0.$

Example (continued)

• Let $a_n = n + 7$ and $b_n = n$; then $a_n \to \infty$ and $b_n \to \infty$, while $a_n - b_n = 7 \to 7$.

• Let $a_n=n^2$ and $b_n=n;$ then $a_n\to\infty$ and $b_n\to\infty,$ while $a_n-b_n=n^2-n\to\infty.$

Bounded sequences

Before proving part (b), we prove that a convergent sequence is bounded.

Definition

A sequence (a_n) is said to be **bounded** if there are numbers B_1, B_2 such that $B_1 \leq a_n \leq B_2$ for all n.

Convergent is bounded

Theorem

Suppose that $\exists \lim_{n\to\infty} a_n = L$ (finite).

Then the sequence (a_n) is bounded:

there are constants B_1, B_2

such that $B_1 \leq a_n \leq B_2$ for all n.

Proof: Take $\varepsilon = 1$: there exists N_1 such that

$$L-1 < a_n < L+1$$
 for all $n > N_1$.

Let
$$B_2 = \max\{L+1, a_1, a_2, \dots, a_{N_1}\};$$

then $a_n \leq B_2$ for all n.

Convergent is bounded continued

Recall:
$$L-1 < a_n < L+1$$
 for all $n > N_1$.

Similarly, let
$$B_1 = \min\{L-1, a_1, a_2, \dots, a_{N_1}\}$$
; then $B_1 \leq a_n$ for all n .

Together,
$$B_1 \leq a_n \leq B_2$$
 for all n .

Not every bounded sequence is convergent

Remark: Every convergent sequence is bounded,

but not every bounded sequence is convergent:

e.g.:
$$a_n = (-1)^n$$
.

Proof of part (b) on arithmetic of ∞ limits

$$\lim_{n\to\infty} a_n = \infty \& \lim_{n\to\infty} f_n = L < \infty \Rightarrow \lim_{n\to\infty} (a_n + f_n) = \infty.$$

For any M need N(M) s.t. $a_n + f_n > M$ for n > N(M).

Use earlier theorem: convergent is bounded:

there are B_1, B_2 such that $B_1 < f_n < B_2$ for all n.

Since
$$\lim_{n\to\infty} a_n = +\infty$$
, for $M - B_1$ there is $N_1(M - B_1)$

such that $M - B_1 < a_n$ for all $n > N_1(M - B_1)$.

Choose $N(M) = N_1(M - B_1)$. Take the sum:

$$M = M - B_1 + B_1 < a_n + f_n$$
 for all $n > N(M)$, as required.

Proof of part (d) on arithmetic of ∞ limits

$$\lim_{n\to\infty} a_n = +\infty \quad \Rightarrow \quad \lim_{n\to\infty} \frac{1}{a_n} = 0.$$

For any $\varepsilon > 0$ we need to find $N(\varepsilon)$

such that $|1/a_n - 0| < \varepsilon$ for all $n > N(\varepsilon)$.

Since
$$\lim_{n \to \infty} a_n = +\infty$$
, there is $N_1(1/\varepsilon)$

such that $a_n > 1/\varepsilon$ for all $n > N_1(1/\varepsilon)$.

Then $\varepsilon > 1/a_n > 0$, whence $|1/a_n - 0| < \varepsilon$.

So we can put $N(\varepsilon) = N_1(1/\varepsilon)$ to satisfy the definition:

$$|1/a_n - 0| < \varepsilon$$
 for all $n > N(\varepsilon)$, as required.

Example

We had
$$\lim_{n\to\infty}\frac{2^n}{n^2}=+\infty$$
.

Now, $\lim_{n\to\infty} \frac{n^2}{2^n} = 0$ by Arithmetic of infinite limits.

Example

We had
$$\lim_{n\to\infty} \frac{1}{\sqrt{n}} = 0$$

and all terms are positive.

Hence, $\lim_{n\to\infty} \sqrt{n} = +\infty$ by Arithmetic of infinite limits.

Tricky example

Example

Is there a limit $\lim (\sqrt{n+1} - \sqrt{n})$?

Both $\rightarrow +\infty$,

so Arithmetic Theorem cannot be applied.

Instead, some preparation first will help.

Example

Is there a limit $\lim (\sqrt{n+1} - \sqrt{n})$?

$$\sqrt{n+1} - \sqrt{n} = \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}}$$

$$= \frac{(\sqrt{n+1})^2 - (\sqrt{n})^2}{\sqrt{n+1} + \sqrt{n}} = \frac{(n+1) - n}{\sqrt{n+1} + \sqrt{n}}$$

$$= \frac{1}{\sqrt{n+1} + \sqrt{n}}$$

On the right, both $\sqrt{n+1} \to +\infty$ and $\sqrt{n} \to +\infty$. Apply Arithmetic of infinite limits: sum $\to +\infty$, then ratio $\to 0$. Thus, $\exists \lim (\sqrt{n+1} - \sqrt{n}) = 0$.

Limits of functions

```
Informally: \lim_{x\to a} f(x) = L if f(x) "approaches" L "arbitrarily closely" for x "sufficiently close to a" (but x\neq a).
```

Definition of a limit of a function

Definition

A function f has a finite limit L at point a, denoted $\lim_{x \to a} f(x) = L$ (other notation: $f(x) \to L$ as $x \to a$) if for any $\varepsilon > 0$ there exists $\delta(\varepsilon) > 0$ such that $|f(x) - L| < \varepsilon$ for any x such that $0 < |x - a| < \delta(\varepsilon)$.

Picture for a limit of a function

$$\lim_{x \to a} f(x) = L$$
 (other notation: $f(x) \to L$ as $x \to a$)

if for any $\varepsilon > 0$ there exists $\delta(\varepsilon) > 0$

for any x such that $0 < |x - a| < \delta(\varepsilon)$.

Slides Week 30 (Arithmetic of infinite limits

Logical quantifiers for $\lim f(x)$

.....In other words: $\forall \, \varepsilon > 0 \ \exists \, \delta(\varepsilon) > 0$

such that
$$L - \varepsilon < f(x) < L + \varepsilon$$

whenever $a - \delta(\varepsilon) < x < a + \delta(\varepsilon)$ and $x \neq a$;

that is, when $x \in (a - \delta(\varepsilon), a) \cup (a, a + \delta(\varepsilon))$.

The set $(a - \delta, a) \cup (a, a + \delta)$ is often called the **punctured** δ -neighbourhood of a.

$$\forall \varepsilon > 0 \,\exists \delta(\varepsilon) > 0 \, \left(0 < |x - a| < \delta(\varepsilon) \Rightarrow |L - f(x)| < \varepsilon\right).$$

Why not for x = a?

Recall: $\lim_{x\to a} f(x) = L$ if for any $\varepsilon > 0$

there is $\delta(\varepsilon) > 0$ such that $\lim L - \varepsilon < f(x) < L + \varepsilon$

whenever $a - \delta(\varepsilon) < x < a + \delta(\varepsilon)$ and $\underline{x \neq a}$.

Deliberately no requirement on f(x) for x = a.

Function is allowed to be not defined at x = a:

important for derivative:
$$g'(a) = \lim_{x \to a} \frac{g(x) - g(a)}{x - a}$$

so this is
$$\lim_{x\to a} f(x)$$
 where $f(x) = \frac{g(x) - g(a)}{x - a}$,

and f(x) is not defined at x = a.

Limits from 1st principles

There are rules for deriving limits from known limits, but there must be some basic limits, from 1st principles.

Example

Prove from 1st principles: $\lim_{x\to a} x = a$.

Given any $\varepsilon > 0$ need $\delta(\varepsilon)$ such that $|x - a| < \varepsilon$ when $0 \neq |x - a| < \delta(\varepsilon)$.

Easy: we can put $\delta(\varepsilon) = \varepsilon$.

More from 1st principles

Example

Prove from 1st principles: $\lim_{x\to 4} \sqrt{x} = 2$.

Remark: If we know that a function is continuous,

then
$$\lim_{x\to a} f(x) = f(a)$$
,

as this is definition of continuous!

So, 'easy':
$$\lim_{x\to 4} \sqrt{x} = \sqrt{4} = 2$$
.

But to prove that \sqrt{x} is continuous,

we need these limits, from 1st principles.

Remark on continuous functions

If it is already known that f(x) is continuous at x = a, then it is OK to write straight away $\lim_{x \to a} f(x) = f(a)$.

But this only works if f(x) is continuous at x = a.

There can still be a limit if it is not, like

$$f(x) = \begin{cases} x^2 & \text{if } x \neq 2\\ 3 & \text{if } x = 2 \end{cases}$$

has a limit at x = 2 not equal to f(2),

or $f(x) = x \sin(1/x)$ has a limit at x = 0, although f(x) is undefined at x = 0.

More from 1st principles

Example

Prove from 1st principles: $\lim_{x\to 4} \sqrt{x} = 2$.

Proof. For any $\varepsilon > 0$ need to find $\delta(\varepsilon) > 0$ such that $|\sqrt{x} - 2| < \varepsilon$ whenever $0 < |x - 4| < \delta(\varepsilon)$.

Solve inequality for x.

Takes different forms for $x \ge 4$ and $x \le 4$.

In the area
$$x \ge 4$$
: $\sqrt{x} - 2 < \varepsilon \Leftrightarrow \sqrt{x} < \varepsilon + 2$

$$\Leftrightarrow x < 4 + 4\varepsilon + \varepsilon^2$$
.

$$\lim_{x\to 4} \sqrt{x} = 2$$
 continued

Recall: need $|\sqrt{x} - 2| < \varepsilon$

In the area
$$x \le 4$$
: $2 - \sqrt{x} < \varepsilon \Leftrightarrow 2 - \varepsilon < \sqrt{x}$

Can assume ε < 2: if satisfied with small ε , then also for bigger ε with the same δ .

Then $2 - \varepsilon$ is positive and we can square the inequality: $\Leftrightarrow x > 4 - 4\varepsilon + \varepsilon^2$.

For
$$\varepsilon < 2$$
 we can put $\delta(\varepsilon) = 4\varepsilon - \varepsilon^2 > 0$.

Then for
$$|x-4| < \delta(\varepsilon)$$
: both $x < 4 + 4\varepsilon + \varepsilon^2$

and
$$x > 4 - 4\varepsilon + \varepsilon^2$$
, so $|\sqrt{x} - 2| < \varepsilon$ (in both areas),

as required by the definition.

Example

$$\lim_{x\to 0}\frac{\sin x}{x}=1.$$

Not continuous, even undefined at x = 0, so cannot just take its value at x = 0.

l'Hospital's rule:

$$\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{(\sin x)'}{x'} = \lim_{x \to 0} \frac{\cos x}{1} = \cos 0 = 1.$$

This is not OK, because proving $(\sin x)' = \cos x$ requires this very limit!

(Proof later, without derivative.)

Theorem (on arithmetic of finite limits of functions)

Suppose that
$$\lim_{x \to a} f(x) = L$$
 (finite) and $\lim_{x \to a} g(x) = M$ (finite). Then

(a)
$$\lim_{x\to a}(f(x)+g(x))=L+M;$$

- (b) $\lim_{x \to a} (f(x) \cdot g(x)) = L \cdot M;$ in particular, $\lim_{x \to a} kf(x) = kL$ for a constant k;
- (c) if in addition $M \neq 0$ and $g(x) \neq 0$, then $\lim_{x \to a} f(x)/g(x) = L/M$.

Not all parts proved in these lectures: only (a) for sum.

But all parts can be used in examples when reducing limits to previously known limits

(unless the question specifies "from 1st principles" ...).

Limit of a sum

Proof of part (a) for sum. For any $\varepsilon > 0$ need $\delta(\varepsilon)$ such that $L + M - \varepsilon < f(x) + g(x) < L + M + \varepsilon$ when $0 < |x - a| < \delta(\varepsilon)$.

Using $\lim f(x) = L$, for $\varepsilon/2$ find δ_1

Using
$$\lim_{x \to a} f(x) = L$$
, for $\varepsilon/2$ find δ_1 such that $L - \varepsilon/2 < f(x) < L + \varepsilon/2$ when $0 < |x - a| < \delta_1$.

Using
$$\lim_{x \to a} g(x) = M$$
, for $\varepsilon/2$ find δ_2 such that $M - \varepsilon/2 < g(x) < M + \varepsilon/2$ when $0 < |x - a| < \delta_2$.

Limit of a sum continued

when $0 < |x - a| < \delta(\varepsilon)$, as required.

Put
$$\delta(\varepsilon) = \min\{\delta_1, \delta_2\}$$
. Then for $0 < |x - a| < \delta(\varepsilon)$ $\frac{\text{both}}{0} < |x - a| < \delta_1$ and $0 < |x - a| < \delta_2$, so both $L - \varepsilon/2 < f(x) < L + \varepsilon/2$ and $M - \varepsilon/2 < g(x) < M + \varepsilon/2$. Take the sum: $L + M - \varepsilon < f(x) + g(x) < L + M + \varepsilon$

Use Arithm. of limits to show limit exists and find it:

$$\lim_{x\to 3}\frac{x^2-2x}{2x+5}$$

$$= \frac{\lim_{x \to 3} x^2 - \lim_{x \to 3} 2x}{\lim_{x \to 3} 2x + 5} = \frac{\left(\lim_{x \to 3} x\right)^2 - 2\lim_{x \to 3} x}{2\lim_{x \to 3} x + 5}$$

by Arithmetic of limits, since limits on the right exist

$$=\frac{3^2-2\cdot 3}{2\cdot 3+5}\ =\ \frac{9-6}{6+5}\ =\ \frac{3}{11},$$

since, e.g., $\lim_{x\to 3} x^2 = \lim_{x\to 3} x \cdot \lim_{x\to 3} x = \text{known} = 3 \cdot 3$.

Sandwich theorem for functions

Theorem (Sandwich theorem for functions)

Suppose that
$$\lim_{x \to a} f(x) = L = \lim_{x \to a} g(x)$$
.

If $f(x) \le h(x) \le g(x)$ for all x in some punctured δ_0 -neighbourhood of a (for some $\delta_0 > 0$),

then $\exists \lim_{x \to a} h(x) = L$.

Note: all three "as $x \to a$ ", for the same a.

Proof of Sandwich theorem for functions

Proof. For any
$$\varepsilon > 0$$
 need $\delta(\varepsilon) > 0$ such that $L - \varepsilon < h(x) < L + \varepsilon$ whenever $0 < |x - a| < \delta(\varepsilon)$.

Using
$$\lim_{x \to a} f(x) = L$$
, for this ε we find $\delta_1 > 0$ such that $L - \varepsilon < f(x) < L + \varepsilon$ when $0 < |x - a| < \delta_1$.

Using $\lim_{x \to a} g(x) = L$, for the same ε we find $\delta_2 > 0$ such that $L - \varepsilon < g(x) < L + \varepsilon$ when $0 < |x - a| < \delta_2$.

Proof of Sandwich theorem continued

Put
$$\delta(\varepsilon) = \min\{\delta_0, \delta_1, \delta_2\}$$
.
Then for $0 < |x - a| < \delta(\varepsilon)$ both $0 < |x - a| < \delta_0$, and $0 < |x - a| < \delta_1$, and $0 < |x - a| < \delta_2$.
Hence all these ineq's hold: $f(x) \le h(x) \le g(x)$, and $L - \varepsilon < f(x)$, and $g(x) < L + \varepsilon$ (only need 'halves' for $f(x)$ and $g(x)$).
Then $L - \varepsilon < f(x) \le h(x) \le g(x) < L + \varepsilon$,

Then $L - \varepsilon < f(x) \le h(x) \le g(x) < L + \varepsilon$, so $L - \varepsilon < h(x) < L + \varepsilon$ when $0 < |x - a| < \delta(\varepsilon)$, as required.

Prove
$$\lim_{x\to 0} \left(x^2 \sin\left(\frac{1}{x}\right) \right) = 0.$$

Note: not continuous (undefined) at 0, cannot take f(0).

We have
$$-1 \le \sin(1/x) \le 1$$
.

Hence
$$-x^2 \le x^2 \sin(1/x) \le x^2$$
.

By Arithmetic and known limits: $x^2 \to 0$ as $x \to 0$, and $-x^2 \to -0 = 0$ as $x \to 0$.

By Sandwich theorem middle term has the same limit:

$$\exists \lim_{x \to 0} \left(x^2 \sin \left(\frac{1}{x} \right) \right) = 0.$$

$$\operatorname{Limit} \lim_{x \to 0} \frac{\sin x}{x}$$

Theorem

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

We use Sandwich theorem, and continuity of $\cos x$ (which we assume here; not difficult to prove from 1st principles).

 $\angle AOP = x$ radians, OA = 1, then $PB = \sin x$, where PB is perpendicular to OA.

Next: CA is perpendicular to OA.

By similar triangles:
$$\tan x = \frac{PB}{OB} = \frac{CA}{OA} = \frac{CA}{1} = CA$$
, so, $CA = \tan x$. Since $\triangle OAP \subseteq \text{sector } OAP \subseteq \triangle OAC$, areas: $\frac{OA \cdot PB}{2} \le \frac{1 \cdot x}{2} \le \frac{OA \cdot CA}{2} = \frac{1 \cdot \tan x}{2}$, times 2: $1 \cdot \sin x \le 1 \cdot x \le 1 \cdot \tan x = \frac{\sin x}{2}$,

the same: $\sin x \le x \le \frac{\sin x}{\cos x}$.

From the left inequality: $\frac{\sin x}{x} \le 1$.

From the right inequality: $\cos x \le \frac{\sin x}{x}$.

Thus:
$$\cos x \le \frac{\sin x}{x} \le 1$$
.

Since $\cos x$ is continuous, we have $\lim_{x\to 0} \cos x = \cos 0 = 1$, and of source $\lim_{x\to 0} 1 = 1$

and of course, $\lim_{x\to 0} 1 = 1$.

Then by the Sandwich theorem the middle term also converges to the same limit: $\lim_{x\to 0} \frac{\sin x}{x} = 1$, as required.

Above we only considered $0 < x < \pi/2$;

but this is sufficient, because $\frac{\sin(-x)}{-x} = \frac{-\sin x}{-x} = \frac{\sin x}{x}$ and the Sandwich theorem only requires the inequality in some punctured δ_0 -neighbourhood.

Here can take $\delta_0 = \pi/2$:

on
$$(-\pi/2, 0) \cup (0, \pi/2)$$
.

Infinite limits of functions

Definition

A function f(x) has limit $+\infty$ at point a, denoted $\lim_{x\to a} f(x) = +\infty$ (other notation: $f(x)\to +\infty$ as $x\to a$) if for any M there is $\delta=\delta(M)>0$ such that f(x)>M whenever $0<|x-a|<\delta$.

Geometrically: vertical asymptote x = a

Again: f(x) may not be defined at x = a.

From 1st principles:
$$\lim_{x\to 2} \frac{1}{(x-2)^2} = +\infty$$
.

Proof. For any M we need $\delta(M)>0$ such that $\frac{1}{(x-2)^2}>M$ when $0<|x-2|<\delta(M)$.

Solve inequality for x.

Can assume M > 0, as automatically true for $M \le 0$.

Then divide by M and multiply by $(x-2)^2$:

$$\cdots \Leftrightarrow \frac{1}{M} > (x-2)^2 \Leftrightarrow \frac{1}{\sqrt{M}} > |x-2|.$$

Just put $\delta(M) = 1/\sqrt{M}$; then inequality holds, as req.

Theorem (on arithmetic of infinite limits of functions)

Suppose that
$$\lim_{x\to a} f(x) = +\infty$$
 and $\lim_{x\to a} g(x) = +\infty$, while $\lim_{x\to a} h(x) = L$ (finite). Then

- (a) $\lim_{x\to a} (f(x)+g(x)) = +\infty;$
- (b) if L > 0, then $\lim_{x \to a} (f(x) \cdot h(x)) = +\infty$;
- (c) if in addition L = 0 and h(x) > 0, then $\lim_{x \to a} 1/h(x) = +\infty$;

We assume the theorem without proof, can use in examples/problems

(unless specified to prove from 1st principles, by verifying the definition).

Examples show that 'limits' of type

$$+\infty+(-\infty)$$
, $0\cdot\infty$, etc.,

may have various values, often do not exist at all.

$$f(x) = \frac{1}{(x-2)^2} + \sin\left(\frac{1}{x-2}\right), \quad g(x) = \frac{-1}{(x-2)^2}.$$

Claim:
$$\lim_{x\to 2} f(x) = +\infty$$
, $\lim_{x\to 2} g(x) = -\infty$,

but $\lim_{x\to 2} f(x) + g(x)$ does not exist.

For
$$\lim_{x\to 2} f(x) = +\infty$$
: for any M need $\delta(M)$

such that
$$f(x) > M$$
 whenever $0 < |x - 2| < \delta(M)$.

Since
$$|\sin| < 1$$
, enough to have $\frac{1}{(x-2)^2} > M+1$.

Can assume
$$M > 1$$
, solve $\frac{1}{(x-2)^2} > M+1$

$$\Leftrightarrow \frac{1}{M+1} > (x-2)^2 \Leftrightarrow |x-2| < \frac{1}{\sqrt{M+1}}.$$

Thus, we can put $\delta(M)=rac{1}{\sqrt{M+1}}.$

For
$$g$$
: using $\lim_{x\to 2} \frac{1}{(x-2)^2} = +\infty$ proved before,

by Arithmetic of limits,
$$\lim_{x\to 2} \frac{-1}{(x-2)^2} = -\infty$$
.

The sum $f(x) + g(x) = \sin\left(\frac{1}{x-2}\right)$ has no limit as $x \to 2$, since in any δ -neighbourhood of 2

there are points with values +1 and -1:

$$\frac{1}{x-2} = n\pi + \frac{\pi}{2} \text{ for } n \text{ even and odd}$$

$$\Leftrightarrow x = 2 + \frac{1}{n\pi + \frac{\pi}{2}},$$

arbitrarily close to 2 for large enough n.

$$f(x) = \frac{1}{(x-2)^2}$$
 and $g(x) = \sin(\frac{1}{x-2})(x-2)^2$.

Then
$$\lim_{x\to 2} f(x) = +\infty$$
, $\lim_{x\to 2} g(x) = 0$

but $\lim_{x\to 2} f(x)g(x)$ does not exist.

We already know $\lim_{x\to 2} f(x) = +\infty$.

For g(x), we have

$$-(x-2)^2 \le \sin\left(\frac{1}{x-2}\right)(x-2)^2 \le (x-2)^2$$
.

Since $(x-2)^2$ is continuous, we have

$$\lim_{x \to 2} (x-2)^2 = 0 = \lim_{x \to 2} (-(x-2)^2).$$

Hence, $\lim_{x\to 2} g(x) = 0$ by Sandwich Theorem.

For the product: $f(x)g(x) = \sin\left(\frac{1}{x-2}\right)$, which has no limit as $x \to 2$, as we saw above.

Limits of functions as $x \to \infty$

Definition

```
\lim_{x\to +\infty} f(x) = L \text{ (finite)}, other notation: f(x)\to L \text{ as } x\to +\infty, if for any \varepsilon>0 there is N(\varepsilon) such that |f(x)-L|<\varepsilon whenever x>N(\varepsilon).
```

(Geometrically: y = L is a **horizontal asymptote** of the graph y = f(x) as $x \to +\infty$.)

Prove from 1st principles: $\lim_{x \to +\infty} \frac{1}{x} = 0$.

Proof. For any $\varepsilon > 0$ we need $N(\varepsilon)$

such that $|1/x - 0| < \varepsilon$ for all $x > N(\varepsilon)$.

Solving the inequality: $\Leftrightarrow 1/|x| < \varepsilon \Leftrightarrow 1/\varepsilon < |x|$.

Thus we can put $N(\varepsilon) = 1/\varepsilon$:

then $x > 1/\varepsilon > 0 \Rightarrow |x| > 1/\varepsilon$, as required.

Theorems on arithmetic of limits as $x \to \infty$

Sandwich theorem

Infinite limits as $x \to \infty$, with similar definitions and properties......

Similar definition for limits of functions as $x \to -\infty$

Negation of existence of a limit

$$\lim_{x \to a} f(x) = L$$
 means

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in (a - \delta, a) \cup (a, a + \delta) \ |f(x) - L| < \varepsilon$$

Negation: *L* is not a limit:

$$\exists \varepsilon > 0 \ \forall \delta > 0 \ \exists x \in (a - \delta, a) \cup (a, a + \delta) \ |f(x) - L| \ge \varepsilon$$

Negation: there is no (finite) limit at all:

$$\forall L \exists \varepsilon > 0 \ \forall \delta > 0 \ \exists x \in (a-\delta, a) \cup (a, a+\delta) \ |f(x)-L| \ge \varepsilon$$

Or one can use proof by contradiction.

Prove that $\sin \frac{1}{x}$ has no limit as $x \to 0$.

Proof by contradiction: suppose there is a limit *L*.

Then for
$$\varepsilon = 0.3$$
 there is $\delta > 0$ such that $x \in (-\delta, 0) \cup (0, \delta) \Rightarrow |\sin \frac{1}{x} - L| < 0.3$. Then

$$|\sin\frac{1}{x_1} - \sin\frac{1}{x_2}| \le |\sin\frac{1}{x_1} - L| + |L - \sin\frac{1}{x_2}| < 0.3 + 0.3 = 0.6$$

for any
$$x_1, x_2 \in (-\delta, 0) \cup (0, \delta)$$
.

But whatever δ , there are points $0 \neq x_{1,2} \in (-\delta, \delta)$

where
$$\sin \frac{1}{x}$$
 has values $+1$ and -1 . Namely $\frac{1}{x} = n\pi + \frac{\pi}{2}$

for *n* even and odd, $x = \frac{1}{n\pi + \frac{\pi}{2}}$, when *n* is large enough.

Then $|\sin \frac{1}{x_1} - \sin \frac{1}{x_2}| = 2$ for such $x_{1,2}$ for $n_{1,2}$ even, odd.

Contradiction: hence there is no limit.

Continuous functions

Informally: f(x) is continuous if you can 'draw the graph without taking the pen off the paper'.

Definition

f(x) is continuous at a point x = a if $\exists \lim_{x \to a} f(x)$ and it is = f(a).

f(x) is continuous everywhere (or on an interval) if it is continuous at every point (of this interval).

Expanding definition of continuous

Using the definition of limit:

Definition

f(x) is continuous at a point x=a if $\forall \ \varepsilon > 0 \ \exists \ \delta(\varepsilon) > 0$ such that $|f(x) - f(a)| < \varepsilon$ when $|x-a| < \delta(\varepsilon)$.

Verifying from 1st principles similar to finding those limits (solving inequality $|f(x) - f(a)| < \varepsilon$ for x....)

Examples of continuous functions

$$f(x) = x$$
, $\sin x$, 2^x , ... are continuous everywhere;

$$\frac{1}{x}$$
 is continuous on $(-\infty,0)$ and on $(0,+\infty)$.

Some must be basic;

then Arithmetic, Sandwich theorems give more:

e.g.:
$$f(x) = 3x^3 - 2x + \cos x$$
 is continuous.

Arithmetic of continuous functions

Arithmetic for limits ⇒ Arithmetic of continuous functions:

Theorem (Arithmetic of continuous functions)

Suppose f(x) and g(x) are continuous at x = a.

Then

- (a) f(x) + g(x) is continuous at x = a;
- (b) $f(x) \cdot g(x)$ is continuous at x = a;
- (c) if in addition $g(x) \neq 0$, then f(x)/g(x) is continuous at x = a.

Proof for sum of continuous

Sum of continuous is continuous

If f(x) and g(x) are continuous at x = a, then f(x) + g(x) is continuous at x = a.

Proof: We have
$$\lim_{x\to a} f(x) = f(a)$$
 and $\lim_{x\to a} g(x) = g(a)$.

Then by Arithmetic for limits

$$\exists \lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$
$$= f(a) + g(a),$$

= value of
$$f(x) + g(x)$$
 at $x = a$, as required.

Definition of continuity via sequences

Definition

f(x) is continuous at x=a if for every sequence a_i such that $\exists \lim_{i\to\infty} a_i=a$, we have $\lim_{i\to\infty} f(a_i)=f(a)$.

Theorem (assumed without proof)

The two definitions above are equivalent.

Useful for limits of sequences:

combining known limits and known continuous functions.

We know $\lim_{n\to\infty} (1/n) = 0$ and assume $\cos x$ is continuous.

Then $\lim_{n\to\infty} \cos(1/n) = \cos 0 = 1$.

Example

Assume that $\log x$ and \sqrt{x} are continuous.

Then

$$\lim_{n \to \infty} \sqrt{(\log(1+1/n) + 2} = \sqrt{(\log(1+0) + 2} = \sqrt{2}.$$

Theorem (composite of continuous is continuous)

If f(x) is continuous at x = a, and g(x) is continuous at x = f(a), then $g \circ f$ is continuous at x = a.

Proof. Use Def-2: if a sequence $a_i \to a$ as $i \to \infty$, then $f(a_i) \to f(a)$ as $i \to \infty$, since f is continuous at x = a. Then $g(f(a_i)) \to g(f(a))$ as $i \to \infty$, since g is continuous at x = f(a). This means that $a_i \to a \Rightarrow (g \circ f)(a_i) \to (g \circ f)(a)$, as required for $g \circ f$ to be continuous at x = a.

We assume many functions as known to be continuous:

$$f(x) = x$$
, $\sin x$, 2^x , ... continuous everywhere;

$$\frac{1}{x}$$
 continuous on $(-\infty,0)$ and on $(0,+\infty)$, ...

Example of application of Theorem above:

$$\sin(1/x)$$
 is continuous on $(0, +\infty)$.

(But
$$\lim_{x\to 0} \sin(1/x)$$
 does not exist!)