1. Write about static channel allocation methods.

MAC (Medium Access Control) sublayer:

The protocols used to determine who goes next on a multiaccess channel belong to a sublayer of the data link layer called the MAC (Medium Access Control) sublayer. The MAC sublayer is especially important in LANs, many of which use a multiaccess channel as the basis for communication

Static Channel Allocation:

The traditional way of allocating a single channel, such as a telephone trunk, among multiple competing users is Frequency Division Multiplexing (FDM). If there are N users, the bandwidth is divided into N equal-sized portions, each user being assigned one portion. Since each user has a private frequency band, there is no interference between users. When there is only a small and constant number of a user, each of which has a heavy (buffered) load of traffic (e.g., carriers' switching offices), FDM is a simple and efficient allocation mechanism

However, when the number of senders is large and continuously varying or the traffic is bursty FDM presents some problems. If the spectrum is cut up into N regions and fewer than N users are currently interested in communicating, a large piece of valuable spectrum will be wasted. If more than N users want to communicate, some of them will be denied permission for lack of bandwidth, even if some of the users who have been assigned a frequency band hardly ever transmit or receive anything.

However, even assuming that the number of users could somehow be held constant at N, dividing the single available channel into static subchannels is inherently inefficient. The basic problem is that when some users are quiescent, their bandwidth is simply lost. They are not using it, and no one else is allowed to use it either. Furthermore, in most computer systems, data traffic is extremely bursty (peak traffic to mean traffic ratios of 1000:1 are common).

Consequently, most of the channels will be idle most of the time. The poor performance of static FDM can easily be seen from a simple queueing theory calculation. Let us start with the mean time delay, T, for a channel of capacity C bps, with an arrival rate of I frames/sec, each frame having a length drawn from an exponential probability density function with mean $1/\mu$ bits/frame. With these parameters the arrival rate is I frames/sec and the service rate is μ C frames/sec. From queueing theory it can be shown that for Poisson arrival and service times,

$$T = \frac{1}{\mu C - \lambda}$$

www.specworld.in 1 www.smartzworld.com

For example, if C is 100 Mbps, the mean frame length, $1/\mu$, is 10,000 bits, and the frame arrival rate, l, is 5000 frames/sec, then T = 200 μ sec. Note that if we ignored the queueing delay and just asked how long it takes to send a 10,000 bit frame on a 100-Mbps network, we would get the (incorrect) answer of 100 μ sec. That result only holds when there is no contention for the channel.

Now let us divide the single channel into N independent subchannels, each with capacity C/N bps. The mean input rate on each of the subchannels will now be l/N. Recomputing T we get Equation.

$$T_{\text{FDM}} = \frac{1}{\mu(C/N) - (\lambda/N)} = \frac{N}{\mu C - \lambda} = NT$$

The mean delay using FDM is N times worse than if all the frames were somehow magically arranged orderly in a big central queue. Precisely the same arguments that apply to FDM also apply to time division multiplexing (TDM). Each user is statically allocated every Nth time slot. If a user does not use the allocated slot, it just lies fallow. The same holds if we split up the networks physically. Using our previous example again, if we were to replace the 100-Mbps network with 10 networks of 10 Mbps each and statically allocate each user to one of them, the mean delay would jump from 200 µsec to 2msec.

2. Briefly discuss five key assumptions in dynamic channel allocation in LANs and MANs.

Dynamic Channel Allocation:

- (i) Station Model: The model consists of N independent stations (e.g., computers, telephones, or personal communicators), each with a program or user that generates frames for transmission. Stations are sometimes called terminals. The probability of a frame being generated in an interval of length Δt is $\lambda \Delta t$, where λ is a constant (the arrival rate of new frames). Once a frame has been generated, the station is blocked and does nothing until the frame has been successfully transmitted.
- (ii)Single Channel Assumption: A single channel is available for all communication. All stations can transmit on it and all can receive from it. As far as the hardware is concerned, all stations are equivalent, although protocol software may assign priorities to them.
- (iii)Collision Assumption: If two frames are transmitted simultaneously, they www.specworldnin time and the resulting signal is garbled. This event is called a collision All stations www.specworldnin

can detect collisions. A collided frame must be transmitted again later. There are no errors other than those generated by collisions.

(iv)Time Slots:

- **a. Continuous Time:** Frame transmission can begin at any instant. There is no master clock dividing time into discrete intervals. 0
- **b. Slotted Time:** Time is divided into discrete intervals (slots). Frame transmissions always begin at the start of a slot. A slot may contain 0, 1, or more frames, corresponding to an idle slot, a successful transmission, or a collision, respectively.

(v)Carrier:

- **a.** Carrier Sense: Stations can tell if the channel is in use before trying to use it. If the channel is sensed as busy, no station will attempt to use it until it goes idle.
- **b. No Carrier Sense:** Stations cannot sense the channel before trying to use it. They just go ahead and transmit. Only later can they determine whether the transmission was successful.
- 3. What is pure ALOHA and slotted ALOHA? Consider the delay of both at low load. Which one is less? Explain your answer.

ALOHA:

In the 1970s, Norman Abramson and his colleagues at the University of Hawaii devised a new and elegant method to solve the channel allocation problem. Their work has been extended by many researchers since then (Abramson, 1985).

Although Abramson's work, called the ALOHA system, used ground-based radio broadcasting, the basic idea is applicable to any system in which uncoordinated users are competing for the use of a single shared channel. There are two versions of ALOHA: pure and slotted. They differ with respect to whether time is divided into discrete slots into which all frames must fit. Pure ALOHA does not require global time synchronization; slotted ALOHA does.

Pure ALOHA:

The basic idea of an ALOHA system is simple: let users transmit whenever they have data to be sent. There will be collisions, of course, and the colliding frames will be damaged. However, due to the feedback property of broadcasting, a sender can always find out whether its frame was destroyed by listening to the channel, the same way other users do. With a LAN, the feedback is immediate; with a satellite, there is a delay of 270 msec before the sender knows if the transmission was successful. If listening while transmitting is not www.specpostleten for some reason, acknowledgements are needed. If the frame was was well accomplete transmission was successful.

sender just waits a random amount of time and sends it again. The waiting time must be random or the same frames will collide over and over, in lockstep. Systems in which multiple users share a common channel in a way that can lead to conflicts are widely known as contention systems.

A sketch of frame generation in an ALOHA system is given in Fig.3.1. We have made the frames all the same length because the throughput of ALOHA systems is maximized by having a uniform frame size rather than by allowing variable length frames.

Fig.3.1 In pure ALOHA, frames are transmitted at completely arbitrary times.

Whenever two frames try to occupy the channel at the same time, there will be a collision and both will be garbled. If the first bit of a new frame overlaps with just the last bit of a frame almost finished, both frames will be totally destroyed and both will have to be retransmitted later. The checksum cannot (and should not) distinguish between a total loss and a near miss.

Let the "frame time" denote the amount of time needed to transmit the standard, fixed-length frame (i.e., the frame length divided by the bit rate). At this point we assume that the infinite population of users generates new frames according to a Poisson distribution with mean N frames per frame time. (The infinite-population assumption is needed to ensure that N does no decrease as users become blocked.) If N > 1, the user community is generating frames at a higher rate than the channel can handle, and nearly every frame will suffer a collision. For reasonable throughput we would expect 0 < N < 1.

In addition to the new frames, the stations also generate retransmissions of frames that previously suffered collisions. Let us further assume that the probability of k transmission attempts per frame time, old and new combined, is also Poisson, with mean G per frame time. Clearly, G≥N. At low load (i.e., N≈0), there will be few collisions, hence few retransmissions, so G≈N. At high load there will be many collisions, so G > N. Under all www.specworld.in the throughput, S, is just the offered load, G, times the probability, P0, of a

transmission succeeding—that is, S = GP0, where P0 is the probability that a frame does not suffer a collision.

A frame will not suffer a collision if no other frames are sent within one frame time of its start, as shown in Fig. 3.2.

Fig.3.2. Vulnerable period for the shaded frame

Under what conditions will the shaded frame arrive undamaged? Let t be the time required to send a frame. If any other user has generated a frame between time t_0 and t_0+t_r , the end of that frame will collide with the beginning of the shaded one. In fact, the shaded frame's fate was already sealed even before the first bit was sent, but since in pure ALOHA a station does not listen to the channel before transmitting, it has no way of knowing that another frame was already underway. Similarly, any other frame started between t_0+t and t_0+t 0 will bump into the end of the shaded frame.

The probability that k frames are generated during a given frame time is given by the Poisson distribution:

Equation

$$\Pr[k] = \frac{G^k e^{-G}}{k!}$$

so the probability of zero frames is just e-G. In an interval two frame times long, the mean number of frames generated is 2G. The probability of no other traffic being initiated during the entire vulnerable period is thus given by P0 = e -2G. Using S = GP0, we get

$$S = Ge^{-2G}$$

The relation between the offered traffic and the throughput is shown in Fig. 4-3. The maximum throughput occurs at G = 0.5, with S = 1/2e, which is about 0.184. In other words, the best we can hope for is a channel utilization of 18 per cent. This result is not very encouraging, but with everyone transmitting at will, we could hardly have expected a 100 per cent success rate.

Slotted ALOHA:

In 1972, Roberts published a method for doubling the capacity of an ALOHA system (Robert, 1972). His proposal was to divide time into discrete intervals, each interval corresponding to one frame. This approach requires the users to agree on slot boundaries. One way to achieve synchronization would be to have one special station emit a pip at the start of each interval, like a clock.

In Roberts' method, which has come to be known as slotted ALOHA, in contrast to Abramson's pure ALOHA, a computer is not permitted to send whenever a carriage return is typed. Instead, it is required to wait for the beginning of the next slot. Thus, the continuous pure ALOHA is turned into a discrete one. Since the vulnerable period is now halved, the probability of no other traffic during the same slot as our test frame is e^{-G} which leads to

Equation

$$S = Ge^{-G}$$

As you can see from Fig.3.3, slotted ALOHA peaks at G = 1, with a throughput of S = 1/e or about 0.368, twice that of pure ALOHA. If the system is operating at G = 1, the probability of an empty slot is 0.368. The best we can hope for using slotted ALOHA is 37 percent of the slots empty, 37 percent successes, and 26 percent collisions. Operating at higher values of G reduces the number of empties but increases the number of collisions exponentially.

To see how this rapid growth of collisions with G comes about, consider the transmission of a test frame. The probability that it will avoid a collision is e^{-G} , the probability that all the other users are silent in that slot. The probability of a collision is then just $1 - e^{-G}$. The probability of a transmission requiring exactly k attempts, (i.e., k - 1 collisions followed by one success) is

Fig.3.3 Throughput versus offered traffic for ALOHA systems.

$$P_k = e^{-G}(1 - e^{-G})^{k-1}$$

The expected number of transmissions, E, per carriage return typed is then

$$E = \sum_{k=1}^{\infty} k P_k = \sum_{k=1}^{\infty} k e^{-G} (1 - e^{-G})^{k-1} = e^{G}$$

As a result of the exponential dependence of E upon G, small increases in the channel load can drastically reduce its performance.

- 4. Explain in detail the following protocols.
- (i) 1-persistance CSMA
- (ii) Non-persistence CSMA
- (iii) P-persistence CSMA.

Carrier Sense Multiple Access Protocols:

With slotted ALOHA the best channel utilization that can be achieved is 1/e. This is www.spedwardlyd.surprising, since with stations transmitting at will, without paying attention to swhart the orld.com

other stations are doing, there are bound to be many collisions. In local area networks, however, it is possible for stations to detect what other stations are doing, and adapt their behaviour accordingly. These networks can achieve a much better utilization than 1/e. In this section we will discuss some protocols for improving performance.

Protocols in which stations listen for a carrier (i.e., a transmission) and act accordingly are called carrier sense protocols. A number of them have been proposed. Kleinrock and Tobagi (1975) have analysed several such protocols in detail. Below we will mention several versions of the carrier sense protocols.

1.1-persistent CSMA:

The first carrier sense protocol that we will study here is called **1-persistent CSMA** (Carrier Sense Multiple Access). When a station has data to send, it first listens to the channel to see if anyone else is transmitting at that moment. If the channel is busy, the station waits until it becomes idle. When the station detects an idle channel, it transmits a frame. If a collision occurs, the station waits a random amount of time and starts all over again. The protocol is called 1-persistent because the station transmits with a probability of 1 when it finds the channel idle.

The propagation delay has an important effect on the performance of the protocol. There is a small chance that just after a station begins sending, another station will become ready to send and sense the channel. If the first station's signal has not yet reached the second one, the latter will sense an idle channel and will also begin sending, resulting in a collision. The longer the propagation delay, the more important this effect becomes, and the worse the performance of the protocol.

Even if the propagation delay is zero, there will still be collisions. If two stations become ready in the middle of a third station's transmission, both will wait politely until the transmission ends and then both will begin transmitting exactly simultaneously, resulting in a collision. If they were not so impatient, there would be fewer collisions. Even so, this protocol is far better than pure ALOHA because both stations have the decency to desist from interfering with the third station's frame. Intuitively, this approach will lead to a higher performance than pure ALOHA. Exactly the same holds for slotted ALOHA.

2. Non-persistent CSMA:

A second carrier sense protocol is **nonpersistent CSMA**. In this protocol, a conscious attempt is made to be less greedy than in the previous one. Before sending, a station senses the channel. If no one else is sending, the station begins doing so itself. However, if the channel is already in use, the station does not continually sense it for the purpose of seizing it immediately upon detecting the end of the previous transmission. Instead, it waits a random period of time and then repeats the algorithm. Consequently, this algorithm leads to better channel utilization but longer delays than 1-persistent CSMA.

3. P-persistent CSMA:

The last protocol is **p-persistent CSMA**. It applies to slotted channels and works as follows. When a station becomes ready to send, it senses the channel. If it is idle, it transmits with a probability p. With a probability q = 1 - p, it defers until the next slot. If that slot is also idle, It either transmits or defers again, with probabilities p and q. This process is repeated until either the frame has been transmitted or another station has begun transmitting. In the latter case, the unlucky station acts as if there had been a collision (i.e., it waits a random time and starts again). If the station initially senses the channel busy, it waits until the next slot and applies the above algorithm. Figure 4 shows the computed throughput versus offered traffic for all three protocols, as well as for pure and slotted ALOHA.

Fig.4 Comparison of the channel utilization versus load for various random access protocols

5. Explain CSMA/CD protocol.

CSMA with Collision Detection:

Persistent and nonpersistent CSMA protocols are clearly an improvement over ALOHA because they ensure that no station begins to transmit when it senses the channel busy. Another improvement is for stations to abort their transmissions as soon as they detect a collision. In other words, if two stations sense the channel to be idle and begin transmitting simultaneously, they will both detect the collision almost immediately. Rather than finish transmitting their frames, which are irretrievably garbled anyway, they should abruptly stop transmitting as soon as the collision is detected. Quickly terminating damaged frames saves

This protocol, known as CSMA/CD (CSMA with Collision Detection) is widely used on LANs in the MAC sublayer. In particular, it is the basis of the popular Ethernet LAN, so it is worth devoting some time to looking at it in detail. CSMA/CD, as well as many other LAN protocols, uses the conceptual model of Fig.5. At the point marked t₀, a station has finished transmitting its frame. Any other station having a frame to send may now attempt to do so. If two or more stations decide to transmit simultaneously, there will be a collision. Collisions can be detected by looking at the power or pulse width of the received signal and comparing it to the transmitted signal.

Fig.5. CSMA/CD can be in one of three states: contention, transmission, or idle

After a station detects a collision, it aborts its transmission, waits a random period of time, and then tries again, assuming that no other station has started transmitting in the meantime. Therefore, our model for CSMA/CD will consist of alternating contention and transmission periods, with idle periods occurring when all stations are quiet (e.g., for lack of work).

Now let us look closely at the details of the contention algorithm. Suppose that two stations both begin transmitting at exactly time t_0 . How long will it take them to realize that there has been a collision? The answer to this question is vital to determining the length of the contention period and hence what the delay and throughput will be. The minimum time to detect the collision is then just the time it takes the signal to propagate from one station to the other.

Based on this reasoning, you might think that a station not hearing a collision for a time equal to the full cable propagation time after starting its transmission could be sure it had seized the cable. By "seized," we mean that all other stations knew it was transmitting and would not interfere. This conclusion is wrong. Consider the following worst-case scenario. Let the time for a signal to propagate between the two farthest stations be τ . At t_0 , one station begins transmitting. At τ - ϵ , an instant before the signal arrives at the most distant station, that station also begins transmitting. Of course, it detects the collision almost instantly and stops, but the little noise burst caused by the collision does not get back to the

that it has seized the channel until it has transmitted for 2τ without hearing a collision. For this reason we will model the contention interval as a slotted ALOHA system with slot width 2τ . On a 1-km long coaxial cable, $\tau \approx 5 \,\mu\text{sec}$. For simplicity we will assume that each slot contains just 1 bit. Once the channel has been seized, a station can transmit at any rate it wants to, of course, not just at 1 bit per 2τ sec.

6. Explain about a Bit-map collision free protocol.

Collision-Free Protocols:

Although collisions do not occur with CSMA/CD once a station has unambiguously captured the channel, they can still occur during the contention period. These collisions adversely affect the system performance, especially when the cable is long (i.e., large t) and the frames are short. And CSMA/CD is not universally applicable.

In the protocols to be described, we assume that there are exactly N stations, each with a unique address from 0 to N - 1 "wired" into it. It does not matter that some stations may be inactive part of the time. We also assume that propagation delay is negligible.

A Bit-Map Protocol:

In our first collision-free protocol, the basic bit-map method, each contention period consists of exactly N slots. If station 0 has a frame to send, it transmits a 1 bit during the zeroth slot. No other station is allowed to transmit during this slot. Regardless of what station 0 does, station 1 gets the opportunity to transmit a 1 during slot 1, but only if it has a frame queued. In general, station j may announce that it has a frame to send by inserting a 1 bit into slot j. After all N slots have passed by, each station has complete knowledge of which stations wish to transmit. At that point, they begin transmitting in numerical order.

Fig.6 The basic bit-map protocol

Since everyone agrees on who goes next, there will never be any collisions. After the last ready station has transmitted its frame, an event all stations can easily monitor, another N bit contention period is begun. If a station becomes ready just after its bit slot has passed by, it is out of luck and must remain silent until every station has had a chance and the bit map has come around again. Protocols like this in which the desire to transmit is broadcast before the actual transmission are called reservation protocols.

Let us briefly analyze the performance of this protocol. For convenience, we will measure time in units of the contention bit slot, with data frames consisting of d time units. Under conditions of low load, the bit map will simply be repeated over and over, for lack of data frames.

Consider the situation from the point of view of a low-numbered station, such as 0 or 1. Typically, when it becomes ready to send, the "current" slot will be somewhere in the middle of the bit map. On average, the station will have to wait N/2 slots for the current scan to finish and another full N slots for the following scan to run to completion before it may begin transmitting. The prospects for high-numbered stations are brighter. Generally, these will only have to wait half a scan (N/2 bit slots) before starting to transmit. High-numbered stations rarely have to wait for the next scan. Since low-numbered stations must wait on average 1.5N slots and high-numbered stations must wait on average 0.5N slots, the mean for all stations is N slots. The channel efficiency at low load is easy to compute. The overhead per frame is N bits, and the amount of data is d bits, for an efficiency of d/(N+d).

At high load, when all the stations have something to send all the time, the N bit contention period is prorated over N frames, yielding an overhead of only 1 bit per frame, or an efficiency of d/(d+1). The mean delay for a frame is equal to the sum of the time it queues inside its station, plus an additional N(d+1)/2 once it gets to the head of its internal queue.

7. What is the binary countdown protocol? Why is it considered as collision free protocol?

Binary Countdown:

A problem with the basic bit-map protocol is that the overhead is 1 bit per station, so it does not scale well to networks with thousands of stations. We can do better than that by using binary station addresses. A station wanting to use the channel now broadcasts its address as a binary bit string, starting with the high-order bit. All addresses are assumed to be the same length. The bits in each address position from different stations are BOOLEAN ORed together. We will call this protocol binary countdown. It was used in Datakit (Fraser, 1987).

It implicitly assumes that the transmission delays are negligible so that all stations see asserted bits essentially instantaneously.

To avoid conflicts, an arbitration rule must be applied: as soon as a station sees that a high-order bit position that is 0 in its address has been overwritten with a 1, it gives up. For example, if stations 0010, 0100, 1001, and 1010 are all trying to get the channel, in the first bit time the stations transmit 0, 0, 1, and 1, respectively. These are ORed together to form a 1. Stations 0010 and 0100 see the 1 and know that a higher-numbered station is competing for the channel, so they give up for the current round. Stations 1001 and 1010 continue. The next bit is 0, and both stations continue. The next bit is 1, so station 1001 gives up. The winner is station 1010 because it has the highest address. After winning the bidding, it may now transmit a frame, after which another bidding cycle starts. The protocol is illustrated in Fig.7. It has the property that higher-numbered stations have a higher priority than lower numbered stations, which may be either good or bad, depending on the context.

Fig.7. The binary countdown protocol. A dash indicates silence.

The channel efficiency of this method is d/(d + log 2 N). If, however, the frame format has been cleverly chosen so that the sender's address is the first field in the frame, even these log 2 N bits are not wasted, and the efficiency is 100 percent.

Mok and Ward (1979) have described a variation of binary countdown using a parallel rather than a serial interface. They also suggest using virtual station numbers, with the virtual station numbers from 0 up to and including the successful station being circularly permuted after each transmission, in order to give higher priority to stations that have been silent unusually long. For example, if stations C, H, D, A, G, B, E, F have priorities 7, 6, 5, 4, 3, 2,

a priority order of C, H, A, G, B, E, F, D. Thus, C remains virtual station 7, but A moves up from 4 to 5 and D drops from 5 to 0. Station D will now only be able to acquire the channel if no other station wants it.

Binary countdown is an example of a simple, elegant, and efficient protocol that is waiting to be rediscovered. Hopefully, it will find a new home some day.

8. Write about limited contention protocols.

Limited-Contention Protocols:

We have now considered two basic strategies for channel acquisition in a cable network: contention, as in CSMA, and collision-free methods. Each strategy can be rated as to how well it does with respect to the two important performance measures, delay at low load and channel efficiency at high load. Under conditions of light load, contention (i.e., pure or slotted ALOHA) is preferable due to its low delay. As the load increases, contention becomes increasingly less attractive, because the overhead associated with channel arbitration becomes greater. Just the reverse is true for the collision-free protocols. At low load, they have high delay, but as the load increases, the channel efficiency improves rather than gets worse as it does for contention protocols.

Obviously, it would be nice if we could combine the best properties of the contention and collision-free protocols, arriving at a new protocol that used contention at low load to provide low delay, but used a collision-free technique at high load to provide good channel efficiency. Such protocols, which we will call limited-contention protocols, do, in fact, exist, and will conclude our study of carrier sense networks. Up to now the only contention protocols we have studied have been symmetric, that is, each station attempts to acquire the channel with some probability, p, with all stations using the same p. Interestingly enough, the overall system performance can sometimes be improved by using a protocol that assigns different probabilities to different stations.

Before looking at the asymmetric protocols, let us quickly review the performance of the symmetric case. Suppose that k stations are contending for channel access. Each has a probability p of transmitting during each slot. The probability that some station successfully acquires the channel during a given slot is then $kp(1 - p)^{k-1}$. To find the optimal value of p, we differentiate with respect to p, set the result to zero, and solve for p. Doing so, we find that the best value of p is 1/k. Substituting p = 1/k, we get

$$\Pr[\text{success with optimal } p] = \left[\frac{k-1}{k}\right]^{k-1}$$

This probability is plotted in Fig.8. For small numbers of stations, the chances of success are good, but as soon as the number of stations reaches even five, the probability has dropped close to its asymptotic value of 1/e.

Fig.8. Acquisition probability for a symmetric contention channel

From Fig.8, it is fairly obvious that the probability of some station acquiring the channel can be increased only by decreasing the amount of competition. The limited-contention protocols do precisely that. They first divide the stations into (not necessarily disjoint) groups. Only the members of group 0 are permitted to compete for slot 0. If one of them succeeds, it acquires the channel and transmits its frame. If the slot lies fallow or if there is a collision, the members of group 1 contend for slot 1, etc. By making an appropriate division of stations into groups, the amount of contention for each slot can be reduced, thus operating each slot near the left end of Fig.8.

The trick is how to assign stations to slots. Before looking at the general case, let us consider some special cases. At one extreme, each group has but one member. Such an assignment guarantees that there will never be collisions because at most one station is contending for any given slot. We have seen such protocols before (e.g., binary countdown). The next special case is to assign two stations per group. The probability that both will try to transmit during a slot is p2, which for small p is negligible. As more and more stations are assigned to the same slot, the probability of a collision grows, but the length of the bit-map scan needed to give everyone a chance shrinks. The limiting case is a single group containing all stations (i.e., slotted ALOHA). What we need is a way to assign stations to slots dynamically, with many stations per slot when the load is low and few (or even just one) station per slot when the load is high.

9. What is the adaptive tree protocol? Why is it considered collision free protocol?

The Adaptive Tree Walk Protocol:

One particularly simple way of performing the necessary assignment is to use the algorithm devised by the U.S. Army for testing soldiers for syphilis during World War II (Dorfman, 1943). In short, the Army took a blood sample from N soldiers. A portion of each sample was poured into a single test tube. This mixed sample was then tested for antibodies. If none were found, all the soldiers in the group were declared healthy. If antibodies were present, two new mixed samples were prepared, one from soldiers 1 through N/2 and one from the rest. The process was repeated recursively until the infected soldiers were determined. For the computerized version of this algorithm (Capetanakis, 1979), it is convenient to think of the stations as the leaves of a binary tree, as illustrated in Fig.9. In the first contention slot following a successful frame transmission, slot 0, all stations are permitted to try to acquire the channel. If one of them does so, fine. If there is a collision, then during slot 1 only those stations falling under node 2 in the tree may compete. If one of them acquires the channel, the slot following the frame is reserved for those stations under node 3. If, on the other hand, two or more stations under node 2 want to transmit, there will be a collision during slot 1, in which case it is node 4's turn during slot 2.

Fig.9 The tree for eight stations

In essence, if a collision occurs during slot 0, the entire tree is searched, depth first, to locate www.speall.ready stations. Each bit slot is associated with some particular node in the tree wife amartzworld.com

collision occurs, the search continues recursively with the node's left and right children. If a bit slot is idle or if only one station transmits in it, the searching of its node can stop because all ready stations have been located. (Were there more than one, there would have been a collision.)

When the load on the system is heavy, it is hardly worth the effort to dedicate slot 0 to node 1, because that makes sense only in the unlikely event that precisely one station has a frame to send. Similarly, one could argue that nodes 2 and 3 should be skipped as well for the same reason. Put in more general terms, at what level in the tree should the search begin? Clearly, the heavier the load, the farther down the tree the search should begin. We will assume that each station has a good estimate of the number of ready stations, q, for example, from monitoring recent traffic.

To proceed, let us number the levels of the tree from the top, with node 1 in Fig.9 at level 0, nodes 2 and 3 at level 1, etc. Notice that each node at level i has a fraction 2^{-i} of the stations below it. If the q ready stations are uniformly distributed, the expected number of them below a specific node at level i is just 2^{-i} q. Intuitively, we would expect the optimal level to begin searching the tree as the one at which the mean number of contending stations per slot is 1, that is, the level at which $2^{-i}q = 1$. Solving this equation, we find that i = log2 q.

Numerous improvements to the basic algorithm have been discovered and are discussed in some detail by Bertsekas and Gallager (1992). For example, consider the case of stations G and H being the only ones wanting to transmit. At node 1 a collision will occur, so 2 will be tried and discovered idle. It is pointless to probe node 3 since it is guaranteed to have a collision (we know that two or more stations under 1 are ready and none of them are under 2, so they must all be under 3). The probe of 3 can be skipped and 6 tried next. When this probe also turns up nothing, 7 can be skipped and node G tried next.

10. Write about 802.3 cabling. What is time domain reflectometry?

Ethernet Cabling:

Four types of cabling are commonly used, as shown in Fig.10.1.

Name	Cable	Max. seg.	Nodes/seg.	Advantages
10Base5	Thick coax	500 m	100	Original cable; now obsolete
10Base2	Thin coax	185 m	30	No hub needed
10Base-T	Twisted pair	100 m	1024	Cheapest system
10Base-F	Fiber optics	2000 m	1024	Best between buildings

Fig.10.1 The most common kinds of Ethernet cabling.

Historically, 10Base5 cabling, popularly called thick Ethernet, came first. It resembles a yellow garden hose, with markings every 2.5 meters to show where the taps go. (The 802.3 standard does not actually require the cable to be yellow, but it does suggest it.) Connections to it are generally made using vampire taps, in which a pin is very carefully forced halfway into the coaxial cable's core. The notation 10Base5 means that it operates at 10 Mbps, uses baseband signalling, and can support segments of up to 500 meters. The first number is the speed in Mbps. Then comes the word "Base" (or sometimes "BASE") to indicate baseband transmission. There used to be a broadband variant, 10Broad36, but it never caught on in the marketplace and has since vanished. Finally, if the medium is coax, its length is given rounded to units of 100 m after "Base."

Historically, the second cable type was 10Base2, or thin Ethernet, which, in contrast to the garden-hose-like thick Ethernet, bends easily. Connections to it are made using industry-standard BNC connectors to form T junctions, rather than using vampire taps. BNC connectors are easier to use and more reliable. Thin Ethernet is much cheaper and easier to install, but it can run for only 185 meters per segment, each of which can handle only 30 machines.

Detecting cable breaks, excessive length, bad taps, or loose connectors can be a major problem with both media. For this reason, techniques have been developed to track them down. Basically, a pulse of known shape is injected into the cable. If the pulse hits an obstacle or the end of the cable, an echo will be generated and sent back. By carefully timing the interval between sending the pulse and receiving the echo, it is possible to localize the origin of the echo. This technique is called **time domain reflectometry.**

The problems associated with finding cable breaks drove systems toward a different kind of wiring pattern, in which all stations have a cable running to a central hub in which they are all connected electrically (as if they were soldered together). Usually, these wires are telephone company twisted pairs, since most office buildings are already wired this way, and normally plenty of spare pairs are available. This scheme is called 10Base-T. Hubs do not buffer incoming traffic. These three wiring schemes are illustrated in Fig.10.2. For 10Base5, a transceiver is clamped securely around the cable so that its tap makes contact with the inner core. The transceiver contains the electronics that handle carrier detection and collision detection. When a collision is detected, the transceiver also puts a special invalid signal on the cable to ensure that all other transceivers also realize that a collision has occurred.

Fig.10.2 Three kinds of Ethernet cabling (a) 10Base5 (b) 10Base2 (c) 10Base-T

With 10Base5, a transceiver cable or drop cable connects the transceiver to an interface board in the computer. The transceiver cable may be up to 50 meters long and contains five individually shielded twisted pairs. Two of the pairs are for data in and data out, respectively. Two more are for control signals in and out. The fifth pair, which is not always used, allows the computer to power the transceiver electronics. Some transceivers allow up to eight nearby computers to be attached to them, to reduce the number of transceivers needed.

The transceiver cable terminates on an interface board inside the computer. The interface board contains a controller chip that transmits frames to, and receives frames from, the transceiver. The controller is responsible for assembling the data into the proper frame format, as well as computing checksums on outgoing frames and verifying them on incoming frames. Some controller chips also manage a pool of buffers for incoming frames, a queue of buffers to be transmitted, direct memory transfers with the host computers, and other aspects of network management.

With 10Base2, the connection to the cable is just a passive BNC T-junction connector. The transceiver electronics are on the controller board, and each station always has its own transceiver.

With 10Base-T, there is no shared cable at all, just the hub (a box full of electronics) to which each station is connected by a dedicated (i.e., not shared) cable. Adding or removing a station is simpler in this configuration, and cable breaks can be detected easily. The disadvantage of 10Base-T is that the maximum cable run from the hub is only 100 meters; maybe 200 meters

if very high quality category 5 twisted pairs are used. Nevertheless, 10Base-T quickly became dominant due to its use of existing wiring and the ease of maintenance that it offers.

A fourth cabling option for Ethernet is 10Base-F, which uses fiber optics. This alternative is expensive due to the cost of the connectors and terminators, but it has excellent noise immunity and is the method of choice when running between buildings or widely-separated hubs. Runs of up to km are allowed. It also offers good security since wiretapping fiber is much more difficult than wiretapping copper wire.

11. Write about cable topologies of Ethernet.

Fig.11. shows different ways of wiring a building. In Fig. 11.(a), a single cable is snaked from room to room, with each station tapping into it at the nearest point. In Fig. 11(b), a vertical spine runs from the basement to the roof, with horizontal cables on each floor connected to the spine by special amplifiers (repeaters). In some buildings, the horizontal cables are thin and the backbone is thick. The most general topology is the tree, as in Fig.11(c), because a network with two paths between some pairs of stations would suffer from interference between the two signals.

Fig.11. Cable topologies (a) Linear. (b) Spine. (c) Tree. (d) Segmented.

Each version of Ethernet has a maximum cable length per segment. To allow larger networks, multiple cables can be connected by repeaters, as shown in Fig.11 (d). A repeater is a physical layer device. It receives, amplifies (regenerates), and retransmits signals in both directions. As far as the software is concerned, a series of cable segments connected by repeaters is no different from a single cable (except for some delay introduced by the repeaters). A system may contain multiple cable segments and multiple repeaters, but no two

transceivers may be more than 2.5 km apart and no path between any two transceivers may traverse more than four repeaters.

12. How Manchester and differential Manchester encoding techniques are used in 803.3?

Manchester Encoding:

None of the versions of Ethernet uses straight binary encoding with 0 volts for a 0 bit and 5 volts for a 1 bit because it leads to ambiguities. If one station sends the bit string 0001000, others might falsely interpret it as 10000000 or 01000000 because they cannot tell the difference between an idle sender (0 volts) and a 0 bit (0 volts). This problem can be solved by using +1 volts for a 1 and -1 volts for a 0, but there is still the problem of a receiver sampling the signal at a slightly different frequency than the sender used to generate it. Different clock speeds can cause the receiver and sender to get out of synchronization about where the bit boundaries are, especially after a long run of consecutive 0s or a long run of consecutive 1s.

What is needed is a way for receivers to unambiguously determine the start, end, or middle of each bit without reference to an external clock. Two such approaches are called Manchester encoding and differential Manchester encoding. With Manchester encoding, each bit period is divided into two equal intervals. A binary 1 bit is sent by having the voltage set high during the first interval and low in the second one. A binary 0 is just the reverse: first low and then high. This scheme ensures that every bit period has a transition in the middle, making it easy for the receiver to synchronize with the sender. A disadvantage of Manchester encoding is that it requires twice as much bandwidth as straight binary encoding because the pulses are half the width. For example, to send data at 10 Mbps, the signal has to change 20 million times/sec

Fig.12 (a) Binary encoding. (b) Manchester encoding. (c) Differential Manchester encoding.

Differential Manchester encoding, shown in Fig.12(c), is a variation of basic Manchester encoding. In it, a 1 bit is indicated by the absence of a transition at the start of the interval. A 0 bit is indicated by the presence of a transition at the start of the interval. In both cases, there is a transition in the middle as well. The differential scheme requires more complex equipment but offers better noise immunity. All Ethernet systems use Manchester encoding due to its simplicity. The high signal is + 0.85 volts and the low signal is - 0.85 volts, giving a DC value of 0 volts. Ethernet does not use differential Manchester encoding, but other LANs (e.g., the 802.5 token ring) do use it.

13. Draw and explain 802.3 frame format.

The original DIX (DEC, Intel, Xerox) frame structure is shown in Fig.13 (a). Each frame starts with a Preamble of 8 bytes, each containing the bit pattern 10101010. The Manchester encoding of this pattern produces a 10-MHz square wave for 6.4 µsec to allow the receiver's clock to synchronize with the sender's. They are required to stay synchronized for the rest of the frame, using the Manchester encoding to keep track of the bit boundaries.

Fig.13. Frame formats. (a) DIX Ethernet. (b) IEEE 802.3.

The frame contains two addresses, one for the destination and one for the source. The standard allows 2-byte and 6-byte addresses, but the parameters defined for the 10-Mbps baseband standard use only the 6-byte addresses. The high-order bit of the destination address is a 0 for ordinary addresses and 1 for group addresses. Group addresses allow multiple stations to listen to a single address. When a frame is sent to a group address, all the stations in the group receive it. Sending to a group of stations is called multicast. The address consisting of all 1 bits is reserved for broadcast. A frame containing all 1s in the destination field is accepted by all stations on the network. The difference between multicast and broadcast is important enough to warrant repeating. A multicast frame is sent to a selected

Multicast is more selective, but involves group management. Broadcasting is coarser but does not require any group management.

Another interesting feature of the addressing is the use of bit 46 (adjacent to the high-order bit) to distinguish local from global addresses. Local addresses are assigned by each network administrator and have no significance outside the local network. Global addresses, in contrast, are assigned centrally by IEEE to ensure that no two stations anywhere in the world have the same global address. With 48 - 2 = 46 bits available, there are about 7×1013 global addresses.

The idea is that any station can uniquely address any other station by just giving the right 48-bit number. It is up to the network layer to figure out how to locate the destination.

Next comes the Type field, which tells the receiver what to do with the frame. Multiple network-layer protocols may be in use at the same time on the same machine, so when an Ethernet frame arrives, the kernel has to know which one to hand the frame to. The Type field specifies which process to give the frame to.

Next comes the data, up to 1500 bytes. This limit was chosen somewhat arbitrarily at the time the DIX standard was cast in stone, mostly based on the fact that a transceiver needs enough RAM to hold an entire frame and RAM was expensive in 1978. A larger upper limit would have meant more RAM, hence a more expensive transceiver.

In addition to there being a maximum frame length, there is also a minimum frame length. While a data field of 0 bytes is sometimes useful, it causes a problem. When a transceiver detects a collision, it truncates the current frame, which means that stray bits and pieces of frames appear on the cable all the time. To make it easier to distinguish valid frames from garbage, Ethernet requires that valid frames must be at least 64 bytes long, from destination address to checksum, including both. If the data portion of a frame is less than 46 bytes, the Pad field is used to fill out the frame to the minimum size.

The final Ethernet field is the Checksum. It is effectively a 32-bit hash code of the data. If some data bits are erroneously received (due to noise on the cable), the checksum will almost certainly be wrong and the error will be detected.

14. Explain the binary exponential backoff algorithm.

The Binary Exponential Backoff Algorithm:

Let us now see how randomization is done when a collision occurs. After a collision, time is divided into discrete slots whose length is equal to the worst-case round-trip propagation time on the ether (2τ). To accommodate the longest path allowed by Ethernet, the slot time has been set to 512 bit times, or 51.2 used as mentioned above.

After the first collision, each station waits either 0 or 1 slot times before trying again. If two stations collide and each one picks the same random number, they will collide again. After the second collision, each one picks 0, 1, 2, or 3 at random and waits that number of slot times. If a third collision occurs (the probability of this happening is 0.25), then the next time the number of slots to wait is chosen at random from the interval 0 to $2^3 - 1$.

In general, after i collisions, a random number between 0 and 2ⁱ - 1 is chosen, and that number of slots is skipped. However, after ten collisions have been reached, the randomization interval is frozen at a maximum of 1023 slots. After 16 collisions, the controller throws in the towel and reports failure back to the computer. Further recovery is up to higher layers.

This algorithm, called binary exponential backoff, was chosen to dynamically adapt to the number of stations trying to send. If the randomization interval for all collisions was 1023, the chance of two stations colliding for a second time would be negligible, but the average wait after a collision would be hundreds of slot times, introducing significant delay. On the other hand, if each station always delayed for either zero or one slots, then if 100 stations ever tried to send at once, they would collide over and over until 99 of them picked 1 and the remaining station picked 0. This might take years.

By having the randomization interval grow exponentially as more and more consecutive collisions occur, the algorithm ensures a low delay when only a few stations collide but also ensures that the collision is resolved in a reasonable interval when many stations collide. Truncating the backoff at 1023 keeps the bound from growing too large.

CSMA/CD provides no acknowledgements. Since the mere absence of collisions does not guarantee that bits were not garbled by noise spikes on the cable, for reliable communication the destination must verify the checksum, and if correct, send back an acknowledgement frame to the source. Normally, this acknowledgement would be just another frame as far as the protocol is concerned and would have to fight for channel time just like a data frame. However, a simple modification to the contention algorithm would allow speedy confirmation of frame receipt. All that would be needed is to reserve the first contention slot following successful transmission for the destination station. Unfortunately, the standard does not provide for this possibility.

15. Write about the frame format of 802.11.

The 802.11 standard defines three different classes of frames on the wire: data, control, and management. Each of these has a header with a variety of fields used within the MAC sublayer.

The format of the data frame is shown in Fig.15. First comes the Frame Control field. It itself has 11 subfields. The first of these is the Protocol version, which allows two versions of the protocol to operate at the same time in the same cell. Then come the Type (data, control, or management) and Subtype fields (e.g., RTS or CTS). The To DS and From DS bits indicate the frame is going to or coming from the intercell distribution system (e.g., Ethernet). The MF bit means that more fragments will follow. The Retry bit marks a retransmission of a frame sent earlier. The Power management bit is used by the base station to put the receiver into sleep state or take it out of sleep state. The More bit indicates that the sender has additional frames for the receiver. The W bit specifies that the frame body has been encrypted using the WEP (Wired Equivalent Privacy) algorithm. Finally, the O bit tells the receiver that a sequence of frames with this bit on must be processed strictly in order.

Fig.15 The 802.11 data frame

The second field of the data frame, the Duration field, tells how long the frame and its acknowledgement will occupy the channel. This field is also present in the control frames and is how other stations manage the NAV mechanism. The frame header contains four addresses, all in standard IEEE 802 format. The source and destination are obviously needed, but what are the other two for? Remember that frames may enter or leave a cell via a base station. The other two addresses are used for the source and destination base stations for intercell traffic.

The Sequence field allows fragments to be numbered. Of the 16 bits available, 12 identify the frame and 4 identify the fragment. The Data field contains the payload, up to 2312 bytes, followed by the usual Checksum.

Management frames have a format similar to that of data frames, except without one of the base station addresses, because management frames are restricted to a single cell.

Control frames are shorter still, having only one or two addresses, no Data field, and no Sequence field. The key information here is in the Subtype field, usually RTS, CTS, or ACK.

16. What are the services provided by 802.11?

Services:

The 802.11 standard states that each conformant wireless LAN must provide nine services. These services are divided into two categories: five distribution services and four station services. The distribution services relate to managing cell membership and interacting with stations outside the cell. In contrast, the station services relate to activity within a single cell.

The five distribution services are provided by the base stations and deal with station mobility as they enter and leave cells, attaching themselves to and detaching themselves from base stations. They are as follows.

- **1. Association:** This service is used by mobile stations to connect themselves to base stations. Typically, it is used just after a station moves within the radio range of the base station. Upon arrival, it announces its identity and capabilities. The capabilities include the data rates supported, need for PCF services (i.e., polling), and power management requirements. The base station may accept or reject the mobile station. If the mobile station is accepted, it must then authenticate itself.
- **2. Disassociation:** Either the station or the base station may disassociate, thus breaking the relationship. A station should use this service before shutting down or leaving, but the base station may also use it before going down for maintenance.
- **3. Reassociation:** A station may change its preferred base station using this service. This facility is useful for mobile stations moving from one cell to another. If it is used correctly, no data will be lost as a consequence of the handover. (But 802.11, like Ethernet, is just a best-efforts service.)
- **4. Distribution:** This service determines how to route frames sent to the base station. If the destination is local to the base station, the frames can be sent out directly over the air. Otherwise, they will have to be forwarded over the wired network.
- **5. Integration:** If a frame needs to be sent through a non-802.11 network with a different addressing scheme or frame format, this service handles the translation from the 802.11 format to the format required by the destination network.

The remaining four services are intra cell (i.e., relate to actions within a single cell). They are www.specusodlafter association has taken place and are 26 follows.

www.smartzworld.com

- 1. Authentication: Because wireless communication can easily be sent or received by unauthorized stations, a station must authenticate itself before it is permitted to send data. After a mobile station has been associated by the base station (i.e., accepted into its cell), the base station sends a special challenge frame to it to see if the mobile station knows the secret key (password) that has been assigned to it. It proves its knowledge of the secret key by encrypting the challenge frame and sending it back to the base station. If the result is correct, the mobile is fully enrolled in the cell. In the initial standard, the base station does not have to prove its identity to the mobile station, but work to repair this defect in the standard is underway.
- **2. Deauthentication:** When a previously authenticated station wants to leave the network, it is deauthenticated. After deauthentication, it may no longer use the network.
- **3. Privacy:** For information sent over a wireless LAN to be kept confidential, it must be encrypted. This service manages the encryption and decryption. The encryption algorithm specified is RC4, invented by Ronald Rivest of M.I.T.
- **4. Data delivery:** Finally, data transmission is what it is all about, so 802.11 naturally provides a way to transmit and receive data. Since 802.11 is modeled on Ethernet and transmission over Ethernet is not guaranteed to be 100% reliable, transmission over 802.11 is not guaranteed to be reliable either. Higher layers must deal with detecting and correcting errors.

17. What is bridge? How does it function? Explain the usage of spanning tree bridges.

Bridges:

Many organizations have multiple LANs and wish to connect them. LANs can be connected by devices called bridges, which operate in the data link layer. Bridges examine the data layer link addresses to do routing. Some common situations in which bridges are used.

First, many university and corporate departments have their own LANs, primarily to connect their own personal computers, workstations, and servers. Since the goals of the various departments differ, different departments choose different LANs, without regard to what other departments are doing. Sooner or later, there is a need for interaction, so bridges are needed. In this example, multiple LANs came into existence due to the autonomy of their owners.

building and connect them with bridges and laser links than to run a single cable over the entire site.

Third, it may be necessary to split what is logically a single LAN into separate LANs to accommodate the load. At many universities, for example, thousands of workstations are available for student and faculty computing. Files are normally kept on file server machines and are downloaded to users' machines upon request. The enormous scale of this system precludes putting all the workstations on a single LAN—the total bandwidth needed is far too high. Instead, multiple LANs connected by bridges are used, as shown in Fig.17.1. Each LAN contains a cluster of workstations with its own file server so that most traffic is restricted to a single LAN and does not add load to the backbone.

Fig.17.1 Multiple LANs connected by a backbone to handle a total load higher than the capacity of a single LAN.

It is worth noting that although we usually draw LANs as multi drop cables as in Fig. 17.1(the classic look), they are more often implemented with hubs or especially switches nowadays. However, a long multi drop cable with multiple machines plugged into it and a hub with the machines connected inside the hub are functionally identical. In both cases, all the machines belong to the same collision domain, and all use the CSMA/CD protocol to send frames.

Fourth, in some situations, a single LAN would be adequate in terms of the load, but the physical distance between the most distant machines is too great (e.g., more than 2.5 km for Ethernet). Even if laying the cable is easy to do, the network would not work due to the excessively long round-trip delay. The only solution is to partition the LAN and install bridges between the segments. Using bridges, the total physical distance covered can be increased.

Fifth, there is the matter of reliability. On a single LAN, a defective node that keeps www.specworld.ing a continuous stream of garbage can cripple the LAN. Bridges can be inserted at order of the continuous stream of garbage can be inserted at order or the continuous stream of garbage can be inserted at order or the continuous stream of garbage can be inserted at order or the continuous stream of garbage can be inserted at order or the continuous stream of garbage can be inserted at order or the continuous stream of garbage can be inserted at order or the continuous stream of garbage can be inserted at order or the continuous stream of garbage can be inserted at order or the continuous stream of garbage can be inserted at order or the continuous stream of garbage can be inserted at order or the continuous stream of garbage can be inserted at order or the continuous stream or the co

critical places, like fire doors in a building, to prevent a single node that has gone berserk from bringing down the entire system. Unlike a repeater, which just copies whatever it sees, a bridge can be programmed to exercise some discretion about what it forwards and what it does not forward.

Sixth, and last, bridges can contribute to the organization's security. Most LAN interfaces have a promiscuous mode, in which all frames are given to the computer, not just those addressed to it. Spies and busybodies love this feature. By inserting bridges at various places and being careful not to forward sensitive traffic, a system administrator can isolate parts of the network so that its traffic cannot escape and fall into the wrong hands.

Operation of Two Port Bridge:

Fig.17.2 illustrates the operation of a simple two-port bridge. Host A on a wireless (802.11) LAN has a packet to send to a fixed host, B, on an (802.3) Ethernet to which the wireless LAN is connected. The packet descends into the LLC sublayer and acquires an LLC header (shown in black in the figure). Then it passes into the MAC sublayer and an 802.11 header is prepended to it (also a trailer, not shown in the figure). This unit goes out over the air and is picked up by the base station, which sees that it needs to go to the fixed Ethernet. When it hits the bridge connecting the 802.11 network to the 802.3 network, it starts in the physical layer and works its way upward. In the MAC sublayer in the bridge, the 802.11 header is stripped off. The bare packet (with LLC header) is then handed off to the LLC sublayer in the bridge. In this example, the packet is destined for an 802.3 LAN, so it works its way down the 802.3 side of the bridge and off it goes on the Ethernet. Note that a bridge connecting k different LANs will have k different MAC sublayers and k different physical layers, one for each type.

Fig.17.2 Operation of a LAN bridge from 802.11 to 802.3

Spanning Tree Bridges:

To increase reliability, some sites use two or more bridges in parallel between pairs of LANs, is shown in Fig.17.3. This arrangement, however, also introduces some additional problems because it creates loops in the topology.

A simple example of these problems can be seen by observing how a frame, F, with unknown destination is handled in Fig.17.3. Each bridge, following the normal rules for handling unknown destinations, uses flooding, which in this example just means copying it to LAN 2. Shortly thereafter, bridge 1 sees F2, a frame with an unknown destination, which it copies to LAN 1, generating F3 (not shown). Similarly, bridge 2 copies F1 to LAN 1 generating F4 (also not shown). Bridge 1 now forwards F4 and bridge 2 copies F3. This cycle goes on forever.

Fig.17.3. Two parallel transparent bridges.

The solution to this difficulty is for the bridges to communicate with each other and overlay the actual topology with a spanning tree that reaches every LAN. In effect, some potential connections between LANs are ignored in the interest of constructing a fictitious loop-free topology. For example, in Fig.17.4 (a) we see nine LANs interconnected by ten bridges. This configuration can be abstracted into a graph with the LANs as the nodes. An arc connects any two LANs that are connected by a bridge. The graph can be reduced to a spanning tree by dropping the arcs shown as dotted lines in Fig. 17.4 (b). Using this spanning tree, there is exactly one path from every LAN to every other LAN. Once the bridges have agreed on the spanning tree, all forwarding between LANs follows the spanning tree. Since

Fig.17.4 (a) Interconnected LANs. (b) A spanning tree covering the LANs. The dotted lines are not part of the spanning tree.

To build the spanning tree, first the bridges have to choose one bridge to be the root of the tree. They make this choice by having each one broadcast its serial number, installed by the manufacturer and guaranteed to be unique worldwide. The bridge with the lowest serial number becomes the root. Next, a tree of shortest paths from the root to every bridge and LAN is constructed. This tree is the spanning tree. If a bridge or LAN fails, a new one is computed.

The result of this algorithm is that a unique path is established from every LAN to the root and thus to every other LAN. Although the tree spans all the LANs, not all the bridges are necessarily present in the tree (to prevent loops). Even after the spanning tree has been established, the algorithm continues to run during normal operation in order to automatically detect topology changes and update the tree.

18. Write a short note on remote bridges.

Remote Bridges:

A common use of bridges is to connect two (or more) distant LANs. For example, a company might have plants in several cities, each with its own LAN. Ideally, all the LANs should be interconnected, so the complete system acts like one large LAN.

This goal can be achieved by putting a bridge on each LAN and connecting the bridges pairwise with point-to-point lines (e.g., lines leased from a telephone company). A simple system, with three LANs, is illustrated in Fig.18. The usual routing algorithms apply here. The simplest way to see this is to regard the three point-to-point lines as hostless LANs. Then we have a normal system of six LANS interconnected by four bridges.

Fig.18. Remote bridges can be used to interconnect distant LANs.

Various protocols can be used on the point-to-point lines. One possibility is to choose some standard point-to-point data link protocol such as PPP, putting complete MAC frames in the payload field. This strategy works best if all the LANs are identical, and the only problem is getting frames to the correct LAN. Another option is to strip off the MAC header and trailer at the source bridge and put what is left in the payload field of the point-to-point protocol. A new MAC header and trailer can then be generated at the destination bridge. A disadvantage of this approach is that the checksum that arrives at the destination host is not the one computed by the source host, so errors caused by bad bits in a bridge's memory may not be detected.

19. Write about the 802.5 frame format.

802.5 Frame Format:

The token frame consists of three fields, SOD, AC and EOD.

Fig.19.1. Token Frame Format

The aim of the starting delimiter and ending delimiter is to indicate whether the frame is at the beginning or ending of the transmission. These two fields consist of one byte each. The Access Control (AC) his eight bits (1 byte). Three bits are used for priority indicator; three bits are used for reservation indicator. 1 bit is used as token bit and the last bit is the monitoring bit (i.e. monitor the ring error for error control).

The IEEE 802.5 frame format as shown in Fig.19.2 below consists of nine different fields. In addition to the SOD, AS and EOD, the 802.5 token ring frame format provides additional fields.

Fig.19.2. 802.5 Frame (Token Ring)

FC:

This field is of one byte used to separate data frame from various control frames.

SA and DA:

The Source Address (SA) is also allotted six bytes and contains the physical address of the last device to forward the packet. That the device can be the sending station or the most recent router to receive and forward the packet. The Destination Address (DA) is also allotted 6 bytes and contains the physical address of the packet's next destination. A system's address is a bit pattern encoded on its Network interface Card (NIC).

Information or Data:

This field contains user data

FCS:

This field is used for error detection.

Frame Status (FS):

It has two bits A and C, when the source station draws the frame from the ring, it cheksout both the bits. Here three combinations are possible

A bit	C bit	Meaning	
0	0	Destination not available.	
1	0	Destination is available but frame is not copied.	
1	1	Destination available and frame copied.	

20. What are the frame control bytes used in 802.4 and explain their functions?

802.4 Frame Format:

This frame format consists of 8 fields. They are, Start delimiter, Frame control, Preamble, Destination address, Source address, Data, Checksum and End delimiter.

Terminology:

P = preamble, SD= Source Delimiter, FC = Frame control

ED = End delimiter

P, SD and FC are one byte fields.

1. Start Delimiter:

This field is one byte used to indicate the beginning of a frame.

2. Frame Control:

This field is also one byte used to distinguish data frames from control frames. For data frames, it gives priorities to the frames, whereas, for frame control field it specifies the type of the frame.

3. Preamble:

This field is also one byte used for synchronizing the receiver's clock.

4. Destination Address:

This field is a 6 byte field which contains the physical address of the next destination.

5. Source Address:

This field is also a 6 byte field. It contains the physical address of the last device to forward the packet. This device can be a sending station or the most recent router to receive and forward packet.

6. Data:

The field can be 8182 bytes or 8174 bytes. If the frame contains 2-bytes address then the data field is 8182 bytes. If 6-bytes address is used then this field will be upto 8174 bytes. The main aim of this field is to prevent the stations from hogging the channels for a long time.

7. Checksum:

This held is a 4 byte used to detect the errors occurred during the transmission of frames from source to the destination. For this purpose it uses some algorithms and various polynomial just like 802.3 frame.

8. ED:

This field is one byte used to indicate the ending of the frame.