VARIABLE LEGEND

t = timestep

 a_t = selected action a at time t

 $Q_t(a)$ = estimated value of action a at time t

 $U_t(a)$ = uncertainty of action a at time t

 $N_t(a)$ = number of times action a has been selected

R = reward generated by S_{check} , S_{infer} and C

 S_{check} = binary of ± 1 based on S_{infer} and S_{real}

 S_{infer} = state inferred by the user

 S_{real} = real state of the robot

HYPER-PARAMETER LEGEND

= 0.5 = degree of exploration vs exploitation

B = **60** = budget for max iterations of algorithm

 $F_{conv} = 3$ = threshold F must reach to converge

 $\Delta Q_{conv} = 2.0 = \Delta Q$ threshold used to increment F

C = user's self-scored confidence in response $\in [0, 10]$

F = convergence counter

 ΔQ = difference in Q-value between $Q_t(a)$ and $Q_{t+1}(a)$

INITIALIZE $Q_t(a)$ for all values in Q-value table

INITIALIZE t = 0 , F = 0

SET hyper-parameter z, B, F_{conv} , ΔQ_{conv}

FOR iterations in budget B:

INCREMENT t = t + 1

CALCULATE uncertainty for <u>each</u> action $U_t(a) = \mathbf{z} \cdot \sqrt{\frac{2log(t)}{N_t(a)}}$

SELECT action with max value $a_t = \arg\max_{a \in A} (Q_t(a) + U_t(a))$

INCREMENT $N_t(a) = N_t(a) + 1$

EXECUTE action a_t

PROBE user for feedback S_{infer} and C

CALCULATE $S_{check} = \begin{cases} +1 & \text{if infers correct } (S_{infer} = S_{real}) \\ -1 & \text{if infers incorrect } (S_{infer} \neq S_{real}) \end{cases}$

CALCULATE reward signal $R = S_{check} \cdot C$

UPDATE $Q_{t+1}(a) = \left[\left(1 - \frac{1}{N_t(a)}\right) \cdot Q_t(a)\right] + \left[\frac{1}{N_t(a)} \cdot R\right]$

CALCULATE $\Delta Q = Q_{t+1}(a) - Q_t(a)$

 $\begin{array}{l} \textbf{CALCULATE} \ \, \textbf{\textit{F}} = \begin{cases} \textbf{\textit{F}} + \textbf{1} \ \, \text{if} \left(S_{infer} = S_{real} \right) \oplus (a_t = a_{t-1}) \\ \textbf{\textit{F}} + \textbf{1} \ \, \text{if} \left(S_{infer} = S_{real} \right) \oplus (\Delta Q = \Delta Q_{conv}) \\ \textbf{\textit{0}} \quad \, \text{othewise} \\ \end{array}$

IF $F \geq F_{conv}$:

BREAK

END loop

Uninformed or Informed

Time and convergence counter

Defined in hyper-param table

Number times we probe user

Increment time step counter

Calculate all action uncertainties

Select action based on argmax

Increment action a counter

Present sound to user

Ask users two questions

Check if state inferred correctly

Generate reward signal

Update value for selected action

Increment time step

Adjust convergence counter

Check for convergence