CSIE Probability Exam I

Tue, Nov 9, 2021

Attempt all the questions. Justify your answers unless otherwise specified. Give your answer in terms of fractions, $\exp(\cdot)$, etc., if needed.

Name: 3 1938/

. Student ID No.: 19 32 00

1. At NCNU, the number of the undergrads (U) is five times the number of the graduate students (G), P[U] = 5P[G]. In addition, the students are equally likely to have no credit $card(C_0)$, one credit $card(C_1)$, or two or more credit cards (C_2) , $P[C_0] = P[C_1] = P[C_2] = 1/3$. Among the students with no credit $card(C_0)$, only 20% are graduate students, and the same is true with the students with one credit $\operatorname{card}(G_1)$, $\operatorname{P}[G]$ $P[G|C_1] = 0.2$. When you meet a graduate student, the chance that she or he has two or more credit cards is 0.2, $\mathbb{R}[C_2|G] = 0.2$. Finish the following table, and find the probability when you meet a student with one or more credit cards, she or he is an undergrad $P[U|C_1 \cup C_2]$. (20pts)

	C_0 C_1	C_2	X N	4/	Y		
5 U	4/15 4/15	3/0	600	30	15		
G	1/15	Han	18	9) /3× 5	-15		
500	117 /15	130	1 5	5030		340 -	17
100	160 160	80	20		PEULGVG	1400	20
	40 40	20	500	20/	97		
1546290				150			

2. Roll a fair ten-sided die five times. The outcome is independent from roll to roll. Let $X_k = \text{the } k\text{-th outcome}, k = 1, 2, ..., 5$. Find $P[\max\{X_1, X_2, ..., X_5\} =$ 7]. (15pts)

P [max { x, , x = ... xs} = 7] = P [max { x, , x = ... xs] <]

3. You roll two fair dice until you get a double. N is the number of the rolls. Find E[N], and the probability that the double shows up in the first, second, or third roll, $P[N \le 3]$. (20pts)

4. At a base station, the number X of the messages it receives during 6:00-6:30am is a Poisson random variable with E[X] = 3. I is an indicator random variable such that I = 1 if at least one message shows up; otherwise I = 0. Find P[I = 0], P[I = 1], and E[I]. (20pts)

$$E[X] = 3 = 4$$

$$P[X] = \frac{d^{x} \cdot e^{-d}}{x!} = \frac{3^{x} \cdot e^{-3}}{x!}$$

$$P[I] = 0] = P[X = 0] = \frac{3^{0} \cdot e^{-3}}{0!} = e^{-3}$$

$$P[I] = 1 - P[X = 0]$$

$$= 1 - e^{-3}$$

$$E[I] = P = P[I = 1] = 1 - e^{-3}$$