Mixing Times of the Generalized Rook's Walk

Benjamin Savoie, Ana Wright, and Renjun Zhu University of Michigan-Flint, Willamette University, and University of California, Berkeley

Faculty Advisor: Peter T. Otto, Willamette University

February 4, 2017

As part of the Willamette Consortium REU

Outline

- Background
 - Markov Chains
 - Mixing Time
 - Coupling
 - Path Coupling
- Restricted Rook's Walk
 - Near/Far Restriction
 - Couplings
 - Mixing Time Bounds / Long Term Behavior
 - Circulant Graphs

Motivation

Question: How long does it take for the rook to "forget" its starting position?

Markov Chains

Markov chain: a sequence of random variables/vectors X_1, X_2, \dots such that

$$\mathbb{P}[X_{t+1} = x_{t+1} | X_t = x_t, X_{t-1} = x_{t-1}, \dots, X_0 = x_0] = \mathbb{P}[X_{t+1} = x_{t+1} | X_t = x_t]$$

Where x_0, \ldots, x_t are states at time t, and Ω is the state space.

Distribution at time
$$t$$
: $P^t(x,\cdot) = \mathbb{P}(X_t = \cdot | X_0 = x)$

Convergence Theorem

For irreducible and aperiodic Markov chains

$$P^t(x,\cdot) \Longrightarrow \pi$$
 as $t \to \infty$

where π is the unique stationary distribution of the chain, i.e. $\pi P = \pi$.

Mixing Time

Total variation distance

$$\|\mu - \nu\|_{\mathsf{TV}} := \max_{A \subset \Omega} |\mu(A) - \nu(A)| = \frac{1}{2} \sum_{x \in \Omega} |\mu(x) - \nu(x)|$$

Distance to stationarity

$$d(t) := \max_{\mathbf{x} \in \Omega} \| P^t(\mathbf{x}, \cdot) - \pi \|_{\mathsf{TV}}$$

 Mixing time: a measure of the convergence rate of the chain to its stationary distribution.

$$t_{\mathsf{mix}}(\varepsilon) := \mathsf{min}\{t : d(t) \le \varepsilon\}$$

Coupling

- A **coupling** of two distributions μ and ν is a pair of random variables (X, Y) on a common source of randomness with marginals μ and ν .
- We define a metric ρ to be the minimum moves required for a rook to reach another to measure the distance between the coupled rooks.

Coupling Markov Chains

Mixing Time Theorem:

$$t_{mix}(\varepsilon) \leq \frac{1}{1 - \frac{E[\rho(X_t, Y_t)]}{\rho(X_{t-1}, Y_{t-1})}} \log \left(\frac{\max_{x, y} E[\rho(X_0, Y_0)]}{\varepsilon} \right)$$

Mean Coupling distance: $\frac{E[\rho(X_t, Y_t)]}{\rho(X_{t-1}, Y_{t-1})}$

$$\max_{x,y} E[\rho(X_0, Y_0)] = diam(\Omega)$$

Path Coupling uses the triangle inequality to allow us to only consider neighboring pairs in the mean coupling distance.

Definition: Near Restriction

Legal moves: $K = \{r+1, r+2, ..., \lfloor \frac{n}{2} \rfloor \}$, where r is the restriction.

Example: n = 12, r = 2, so $K = \{3, 4, 5, 6\}$

Coupling: Near Restriction

Coupling Rule: If the white rook moves to a square which is accessible to black, they collapse a dimension.

$$n = 12, r = 2, \text{ so } K = \{3, 4, 5, 6\},\$$

Coupling: Near Restriction

Coupling Rule: If the white rook moves to a square which is inaccessible to black, black moves to maintain their distance $\rho(X_t, Y_t)$.

$$n = 12, r = 2, \text{ so } K = \{3, 4, 5, 6\},$$

Near Restriction: Contraction

$$E[\rho(X_t, Y_t)|\rho(x_{t-1}, y_{t-1}) = 1] = 1$$

Contraction Result [OSWZ'16]

If $n \ge 4r + 4$ for even n and $n \ge 4r + 3$ for odd n, then our defined coupling for near restriction contract.

Definition: Far Restricted Rook's Walk

Legal Moves: $K = \{1, 2, ..., \lfloor \frac{n}{2} \rfloor - r\}$

$$n = 10, r = 2, \text{ so } K = \{1, 2, 3\}$$

Summary: Generalized Rook's Walk

- **No Restriction**: r = 0 $t_{mix}(\varepsilon) \le \left\lceil \frac{d(n-1)}{n-2} log(\frac{2d}{\varepsilon}) \right\rceil$
- **2 Near Restriction**: $r < \frac{n}{4}$ $t_{mix}(\varepsilon) \le \left\lceil \frac{d(n-2r-1)}{n-4r-2} \log \left(\frac{2d}{\varepsilon} \right) \right\rceil$
- **3 Far Restriction**: $r < \frac{n}{6}$ $t_{mix}(\varepsilon) \le \left\lceil \frac{d(n-2r)}{n-4r} \log \left(\frac{2d}{\varepsilon} \right) \right\rceil, \text{ for even } n.$ $t_{mix}(\varepsilon) \le \left\lceil \frac{d(n-2r-1)}{n-4r-2} \log \left(\frac{2d}{\varepsilon} \right) \right\rceil, \text{ for odd } n.$

Remark: As $n \to \infty$, all mixing time bounds converge to the bound of $\left\lceil d \cdot log(\frac{2d}{\varepsilon}) \right\rceil$.

Circulant Graphs

Each rook's walk is isomorphic to a random walk on a Cartesian power of a circulant graph.

$$n = 9, K = \{2, 3, 4\}$$

$$n = 8, K = \{1, 2, 3\}$$

Conclusion and Future Directions

• Generalize the rook's walk to any possible circulant graph.

$$n = 12, K = \{3, 6\}$$

References

- S. Kim,
 Mixing time of a Rook's Walk.
 (2012)
- D. Levin, Y. Peres, E. Wilmer, Markov Chains and Mixing Times. American Mathematical Society, USA (2009)
- C. Mcleman, P. Otto, J. Rahmani, M. Sutter Mixing Times For The Rook's Walk Via Path Coupling (2014)
- R. S. Ellis, Entropy, Large Deviations and Statistical Mechanics 2006