Formas Normales para CFG

Alan Reyes-Figueroa Teoría de la Computación

(Aula 15) 21.septiembre.2022

Eliminar variables sobrantes Remover épsilon Remover producciones unarias Forma Normal de Chomsky

Variables que no derivan nada

Consideremos:

$$S \rightarrow AB$$
, $A \rightarrow aA \mid a$, $B \rightarrow AB$

- Observe que A deriva todas las cadenas conteniendo a's, pero B no deriva ningún símbolo terminal.
- □ En este caso, S deriva nada, y el lenguaje generado es vacío.

Testando si una variable deriva alguna cadena terminal

- Base: Si existe una producción A → w, donde w no tiene variables, entonces A deriva una cadena terminal.
- □ Inducción: Si existe una producción $A \rightarrow \alpha$, donde α consiste sólo de terminales y variables que derivan una cadena terminal, entonces A deriva una cadena terminal.

Testando si una variable deriva alguna cadena terminal

- Eventualmente, llegamos a no encontrar más variables.
- □ Haciendo una inducción sobre el orden en que las variables "aparecen" muestra que cada una deriva una cadena terminal.
- Recíprocamente, cualquier variable que deriva una cadena terminal siempre se puede encontrar mediante este algoritmo.

Algoritmo para eliminar variables que no derivan nada

- 1. Descubrir todas las variables que derivan cadenas terminales.
- 2. Para todas las demás variables, remover todas las producciones en donde dichas variables aparecen (ya sea en la izquierda o en la derecha).

Ejemplo: eliminar variables

$$S \rightarrow AB \mid C$$
, $B \rightarrow bB$, $A \rightarrow aA \mid a$, $C \rightarrow c$

- Base: A y C se marcan, ya que A \rightarrow a y C \rightarrow c (ambas derivan terminales).
- □ Inducción: S se marca, ya que S → C (deriva símbolo que deriva terminales).
- Nada más se marca.
- \square Resultado: S \rightarrow C, A \rightarrow aA | a, C \rightarrow c

Símbolos inalcanzables

- Otra forma en que un terminal o variable merece ser eliminada es si no puede aparecer en ninguna derivación desde el símbolo de inicio.
- □ Base: S es alcanzable (S símbolo inicial).
- □ Inducción: Si podemos alcanzar A desde S, y existe una producción A $\rightarrow \alpha$, entonces α es alcanzable desde S.

Símbolos inalcanzables

- □ Se puede mostrar (vía inducción) que cuando no podemos descubrir más símbolos alcanzables, tenemos todos y sólo los símbolos que aparecen en las derivaciones de S.
- □ Algoritmo: Remover de la gramática todos los símbolos no alcanzables desde S y todas las producciones que involucran a dichos símbolos.

Eliminar símbolos sin uso

- Un símbolo es útil (useful) si éste aparece en alguna derivación de alguna cadena terminal desde el símbolo inicial S. En otro caso, es sin uso (useless).
- Eliminamos todos los símbolos sin uso:
 - Eliminar símbolos que derivan cadenas no terminales.
 - 2. Eliminar símbolos no alcanzables.

Ejemplo: Símbolos sin uso

$$S \rightarrow AB$$
, $A \rightarrow C$, $C \rightarrow c$, $B \rightarrow bB$

- Si eliminamos símbolos no alcanzables primero, encontraríamos que todo es alcanzable.
- Luego,A, C, y c nunca serían eliminados.

¿Por qué funciona?

- Luego del paso (1), todo símbolo remanente deriva alguna cadena terminal.
- Luego del paso (2), los únicos símbolos remanentes son aquellos derivables de S.
- Adicionalmente, estos símbolos aún derivan una cadena terminal, ya que tal derivación sólo envuelve símbolos alcanzables desde S.

Produccciones Épsilon

- □ Casi podemos evitar usar producciones del tipo A $\rightarrow \varepsilon$ (llamadas producciones $-\epsilon$).
 - El problema es que ε no puede pertenecer al lenguaje generado por una gramática que no posee producciones-ε.
- □ Teorema: Si L es una gramática CFG, entonces L- $\{\epsilon\}$ posee una CFG sin producciones- ϵ .

Símbolos Anulables

- □ Para eliminar producciones-∈, primero debemos detectar las *variables anulables* = variables A tales que A =>* ∈.
- □ Base: Si hay alguna producción A $\rightarrow \epsilon$, entonces A es anulable.
- □ Inducción: Si existe una producción $A \rightarrow \alpha$, y todos los símbolos de α son anulables, entonces A es anulable.

Ejemplo: Símbolos Anulables

- $S \rightarrow AB$, $A \rightarrow aA \mid \epsilon$, $B \rightarrow bB \mid A$
- \square Base: A es anulable ya que A $\rightarrow \varepsilon$.
- \square Inducción: B es anulable ya que B \rightarrow A.

□ En nuestro ejemplo:Entonces, S es anulable, ya que S → AB.

Eliminar Producciones-e

- □ Idea Clave: Convertir cada producción de la forma $A \rightarrow X_1 ... X_n$ en una familia de producciones.
- Para cada subconjunto de X's anulables, existe una producción con aquellos eliminados del lado derecho "in advance."
 - □ Excepto, si todos los X's son anulables, no crear una producción con ∈ en el lado derecho.

Ejemplo: Eliminar producciones-ε

$$S \rightarrow ABC$$
, $B \rightarrow bB \mid \epsilon$, $A \rightarrow aA \mid \epsilon$, $C \rightarrow \epsilon$

- □ A, B, C, y S son todos anulables.
- □ En la nueva gramática:

Producciones unarias

- Una producción unaria (unit production) es aquella cuyo lado derecho consiste únicamente de una variable.
 - $X \rightarrow A$, A variable no-terminal
- Estas producciones pueden eliminarse.
- □ Idea: Si A =>* B es una serie de producciones unarias, y B $\rightarrow \alpha$ es una producción no-unaria, entonces añadimos A $\rightarrow \alpha$ a la gramática.
- Removemos todas las producciones unarias.

Producciones unarias

- □ Hallar todos los pares (A, B) tales que A
 =>* B mediante una secuencia de producciones unarias.
- □ Base: (A, A) siempre, para todo A.
- Inducción: Si ya hallamos (A, B), y
 B → C es una producción unaria, entonces añadimos el (A, C).

Reduciendo una Gramática

- Teorema: si L es una gramática CFL, entonces existe una CFG para L $\{\epsilon\}$ que satisface:
 - 1. No posee símbolos sin uso (*useless*).
 - 2. No posee producciones- ϵ .
 - 3. No posee producciones unarias.
- □ *i.e.*, todo lado derecho o es un terminal o tiene longitud ≥ 2.

Reduciendo una Gramática

- Algoritmo: (de reducción de CFGs) Input: L, una CFG.
- Hacer los siguientes pasos, en orden:
 - 1. Eliminar producciones-ε. γ
 - 2. Eliminar producciones unarias.
 - 3. Eliminar variables que no derivan símbolos cadenas terminales.
 - 4. Eliminar variables no alcanzables.

Debe hacerse primero. Puede crear producciones unarias o variables sin uso. 30

Forma Normal de Chomsky

- Una CFG está en la Forma Normal de Chomsky (CNF) si todas sus producciones (reglas) son de la forma:
 - 1. $A \rightarrow BC$ (lado derecho son 2 variables).
 - 2. $A \rightarrow a$ (lado derecho es 1 terminal).
- Teorema: Si L es una CFL, entonces $L \{\epsilon\}$ posee una CFG en la Forma Normal de Chomsky.

Ejemplo: Paso 2

- □ Considere la producción A → BcDe.
- □ Creamos variables X_c y X_e , con producciones $X_c \rightarrow c$ y $X_e \rightarrow e$.
 - Nota: creamos máximo una variable para cada símbolo terminal, y lo usamos en todo lugar donde sea necesario.
- □ Reemplazar A \rightarrow BcDe por A \rightarrow BX_cDX_e.

Prueba CNF

□ Paso 3: Dividir los lados derecho con longitud > 2 en producciones cuyos lados derecho sean 2 variables.

□ Ejemplo: A → BCDE
 se reemplaza por la secuencia
 A → BF, F → CG, y G → DE.

□ F y G no pueden usarse en ningún otro lugar.

Ejemplo: Paso 3

□ Recordemos que A → BCDE fue reemplazada por

$$A \rightarrow BF, F \rightarrow CG, y G \rightarrow DE.$$

□ En la nueva gramática:

$$A => BF => BCG => BCDE$$
.

- ☐ Importante: Una vez elegido el reemplazo de A por BF, continuamos to BCG and BCDE.
 - □ Ya que F y G sólo tienen una producción.