Solutions to final exam in CRYPTOGRAPHY on 15 December 2004.

Problem 1:

(a) This corresponds to a simple substitution cipher. The number of different keys is |K| = 26!. Then

$$N_0 = \frac{H(K)}{D} = \frac{\log 26!}{3.2} \approx 28,$$

assuming D = 3.2 for English text.

- (b) A simple substitution cipher contains all different permutations on \mathbb{Z}_{26} . If we concatenate a substitution cipher with fixed key K and Caesar cipher with the key K, the result is still a permutation on \mathbb{Z}_{26} . The number of nonequivalent keys denot increase and $N_0 = 28$ as in (a).
- (c) The given system cannot increase N_0 by double encryption or something similar (it is not possible to increase H(K)). Instead, we must decrease D. This can be done by either source compression or homophonic coding.

Problem 2:

(a) The sequence is $s = (1, 0, 1, 2\alpha, 2\alpha, \alpha + 1, 2)$ over \mathbf{F}_{3^2} with $p(x) = x^2 + x + 2$. First let us make a table of elements in this field:

$$lpha^1 = lpha$$
 $lpha^5 = 2lpha$ $lpha^2 = 2lpha + 1$ $lpha^6 = lpha + 2$ $lpha^7 = lpha + 1$ $lpha^4 = 2$ $lpha^8 = 1$

To find the shortest linear feedback shift register we use Berlekamp-Massey's algorithm:

S_N	d	$\overline{C_1(z)}$	C(z)	L	Shift Register	$C_0(z)$	d_0	e	N
-			1	0	-	1	1	1	0
1	1	1	$1 + 2z^{-1}$	1		1	1	1	1
0	2	*	1	*	-	*	*	2	2
1	1	1	$1 + 2z^{-2}$	2		1	1	1	3
2α	2α	*	$1 + \alpha z^{-1} + 2z^{-2}$	*	- 29	*	*	2	4
2α	prod.	$1 + \alpha z^{-1} + 2z^{-2}$	$1 + \alpha z^{-1} + z^{-2}$	3	2 29	$1 + \alpha z^{-1} + 2z^{-2}$	1	1	5
$\alpha+1$	α	*	$1 + \alpha z^{-2} + \alpha z^{-3}$	*	29 29	*	*	2	6
2	2α	$1 + \alpha z^{-2} + \alpha z^{-3}$	$1 + 2\alpha z^{-2} + z^{-3} + 2\alpha z^{-4}$	4		$1 + \alpha z^{-2} + \alpha z^{-3}$	2α	1	7

So, the final feedback shift register is

(b) The given sequence is $s = [0, 0, 0, 1, 1]^{\infty}$.

$$S(z) = \frac{z^{-3} + z^{-4}}{1 + z^{-5}} = \frac{z^{-3}(1 + z^{-1})}{(1 + z^{-1} + z^{-2} + z^{-3} + z^{-4})(1 + z^{-1})} = \frac{z^{-3}}{1 + z^{-1} + z^{-2} + z^{-3} + z^{-4}}.$$

Hence, the answer is $C(z) = 1 + z^{-1} + z^{-2} + z^{-3} + z^{-4}$.

Problem 3:

(a) We consider the (3,5) Shamir's scheme over \mathbf{F}_{101}

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} a_2 x_1^2 + a_1 x_1 + a_0 \\ a_2 x_2^2 + a_1 x_2 + a_0 \\ a_2 x_3^2 + a_1 x_3 + a_0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 1 & 1 & | & 40 \\ 1 & 2 & 4 & | & 50 \\ 1 & 3 & 9 & | & 60 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 1 & 1 & | & 40 \\ 0 & 1 & 3 & | & 10 \\ 0 & 2 & 8 & | & 20 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 0 & -2 & | & 30 \\ 0 & 1 & 3 & | & 10 \\ 0 & 0 & 2 & | & 0 \end{pmatrix} \Rightarrow K = a_0 = 30$$

(b) $M = (m_1, m_2), K = (k_1, k_2), C = (m_1, m_2, t)$ over \mathbf{F}_3 , where $t = k_1 + m_1 k_1 + m_2 k_2$

(b)
$$M = (m_1, m_2), K = (k_1, k_2), C = (m_1, m_2, t)$$
 over 13, $\frac{1}{1}$ $\frac{1}{1}$

$$P_{S} = \max_{C_{i}, C'} P(C'valid/Cvalid) = \max_{C_{i}, C'} \frac{\left| \{(k_{1i}k_{2}) : t = k_{1} + m_{1}k_{1} + m_{2}k_{2} \} \right|}{\left| \{(k_{1i}k_{2}) : t = k_{1} + m_{1}k_{1} + m_{2}k_{2} \} \right|} = \lim_{C_{i} = 1, m_{2} = 0} \frac{3}{3} = 1$$

Problem 4:

We need to factorize the number n = 44384521.

$$1883840^2 \equiv 3 \mod n$$

 $6521874^2 \equiv 2 \cdot 3 \cdot 5 \mod n$
 $13519124^2 \equiv 13 \mod n$
 $16006155^2 \equiv 2 \cdot 5 \mod n$

We calculate X and Y as follows

$$\begin{cases} X = 1883840 \cdot 6521874 \cdot 16006155 \equiv 37147551 \mod n \\ Y = 2^1 \cdot 3^1 \cdot 5^1 \equiv 30 \mod n \end{cases}$$

Then we have $X^2 \equiv Y^2 \mod n$. If $n = p \cdot q$, then one of the factors q.

$$p = \gcd(44384521, 37147551 + 30) \Rightarrow$$

$$44384521 = 1 \cdot 37147581 + 7236940$$

$$37147581 = 5 \cdot 7236940 + 962881$$

$$7236940 = 7 \cdot 962881 + 496773$$

$$962881 = 1 \cdot 496773 + 466108$$

$$496773 = 1 \cdot 466108 + 30665$$

$$466108 = 15 \cdot 30665 + 6133$$

$$30665 = 5 \cdot 6133$$

$$\Rightarrow p = 6133; q = \frac{n}{p} = 7237$$

Problem 5: $p(x) = 1 + x^2 + x^3 + x^4 + x^5$, P(x) = 0.

(a) If p(x) over \mathbf{F}_2 is irreducible?

$$\begin{cases} p(0) = 1 \\ p(1) = 1 \end{cases} \Rightarrow \text{No factors of degree 1.}$$
Check if $x^2 + x + 1 \mid x^3 + x^3 + x^3 + x^3 + 1 \text{ by long division.} \quad \text{No!} \Rightarrow p(x) \text{ irreducible.}$

- (b) We need to check the order of the element α in the extention field \mathbf{F}_{2^5} . By Lagrange theorem the order of any element from this field must divide $2^5 - 1 = 31$. Since 31 is a prime number, and $\operatorname{order}(\alpha) \neq 1$, then $\operatorname{order}(\alpha)$ must be 31, i.e., p(x) is a primitive polynomial.
 - (c) We need to find the cycle set of p(x) over \mathbf{F}_3 .
 - (1) Factorization of p(x) over \mathbf{F}_3 .

$$\begin{cases} p(0) = 1 \\ p(1) = 5 & 2 \\ p(2) = 1 + 4 + 8 + 16 + 32 = 61 & 1 \end{cases} \Rightarrow \text{No factors of degree 1}.$$

Check for factors of degree 2: $p(x) = (x^3 + ax^2 + bx + c)(x^2 + dx + e)$

Assume
$$c = e = 1$$
 Assume $c = e = 2$
$$\begin{cases} c \cdot e = 1 \\ c \cdot d + b \cdot e = 0 \\ c + b \cdot d + a = 1 \Rightarrow \\ b + a \cdot d + e = 1 \\ a + d = 1 \end{cases} \begin{cases} d + b = 0 \\ b \cdot d + a = 0 \\ b + a \cdot d = 0 \\ a + d = 1 \end{cases} \Rightarrow \text{no solutions!} \Rightarrow \text{The solution is}$$

Hence, the polynomial is factorized as $p(x) = (x^3 + 2x + 2)(x^2 + x + 2)$. None of the factors can be factorized again since p(x) has no factors of degree 1, as shown in the previous step.

(a, b, c, d, e) = (0, 2, 2, 1, 2)

(2) Consider $a(\alpha) = \alpha^3 + 2\alpha + 2 = 0$ (i.e., $\alpha^3 = \alpha + 1$) as a generating polynomial for F_{3^3} . To construct a cycle set for $a(\alpha)$ we need to find the period $T_a = \operatorname{order}(\alpha)$. The extension field has $3^3 = 27$ elements, i.e., the order(α) can only be one of $\{1, 2, 13, 26\}$.

$$\begin{split} \alpha^1 &= \not \prec \neq 1 \\ \alpha^2 &= \not <^2 \neq 1 \\ \alpha^4 &= \not \prec \cdot \not <^3 = \not <^2 + \not < \\ \alpha^8 &= (\alpha^4)^2 = 2 \not <^2 + 2 \\ \alpha^{12} &= \alpha^4 \cdot \alpha^8 = (\not <^2 + \not <)(2\cdot^2 + \not <) = \not <^2 + 2 \\ \alpha^{13} &= \alpha \cdot \alpha^{12} = \not < \cdot (\not <^2 + 2) = 1(!) \, . \end{split}$$

Hence, $T_a = \operatorname{order}(\alpha) = 13$, and the cycle set is $1(1) \oplus \frac{3^3-1}{13}(13)$.

(3) Consider $b(x) = x^2 + x + 2$, $C(z) = \frac{b(z)}{z^2} = 1 + z^{-1} + 2z^{-2}$. We can find the period T_b via long division as follows.

(4) Multiplication of cycle sets:

$$(1(1) \oplus 2(13)) \otimes (1(1) \oplus 1(8)) = 1(1) \oplus 1(8) \oplus 2(13) \oplus 2(104)$$

(5) Check the sum: $3^5 = 243$; $1 \cdot 1 + 1 \cdot 8 + 2 \cdot 13 + 2 \cdot 104 = 243$