## TheAnalyticsTeam



# Sprocket Central Pty Ltd

Data Analytics Approach

[Division Name] - [Engagement Manager], [Senior Consultant], [Junior Consultant]

Presented by:

Joaquim Bolós Fernández

**Date Submitted:** 

July 31th, 2023

0

This presentation has live translations.

# Agenda



- 1. Introduction
- 2. Data Exploration
- 3. Model Development
- 4. Interpretation

## Introduction



#### **Company Description**

Sprocket Central Pty Ltd, a long-standing KPMG client, is a company that specializes in high-quality bikes and cycling accessories.

#### Overall Objective

Their marketing team aims to boost business sales by analyzing their existing customer dataset to identify customer trends and behaviours.

#### **Project Aim**

Utilizing the labelled dataset of three existing datasets (Customer demographic, Customer address, and Transactions), the project's goal is to recommend the most valuable new customers, out of the 1000, to be targeted by the marketing team for effective marketing campaigns and improved business growth.

# Problem Statement

## 01

Target New Customers for the marketing Team to drive higher value for the company

**Strategic Objective** 

02

Capacity to determine which clients should be targeted by the marketing Team

**Tactical Objectives** 

03

Perform EDA and develop a classification model to determine relevant clients

**Operational Objectives** 

## Project Outline / Operational Objectives

Perform EDA and develop a classification model to determine relevant clients

**Exploratory Data Analysis** 

**Model Development** 

Data Quality
Assessment

#### **Data Exploration**

- Age Distributions
- Purchases Over the last 3
   Years
- Job Industry Distribution
- Wealth Segmentation by Age
- Number of Cars by State

#### RFM Analysis and Customer Classification

- Scatter Plots of RFM Analysis
  - Recency vs Monetary
  - Frequency vs Monetary
  - Recency vs Frequency
- Customer Title Definition List with RFM values
- Customer Title Distributions in Dataset

- Multi Classification Sci-Kit Learn Model
  - Data Preparation
  - Models
  - Results

## Data Exploration - Data Quality Assessment



|                         | <b>Accuracy</b> Correct Values                                                                  | <b>Completeness</b> Data Fields with Values                                                                        | Consistency Values Free From Contradiction                                                   | <b>Currency</b><br>Values Up to Date                                    | Relevancy Data Items with Value Meta- Data | <b>Validity</b> Data Containing Allowable Values                           | <b>Uniqueness</b> Values that are Duplicated |
|-------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------|
| Customer<br>Demographic | One value in the<br>Date of Birth (DOB)<br>column is incorrect,<br>showing the year as<br>1843. | Data fields have missing values, including: last_name, DOB, job_title, job_industry_category, default, and tenure. | Inconsistencies between the job_title and job_industry_cate gory columns, and gender column. | Columns such as deceased_indicat or and owns_car may not be up to date. |                                            | The default column does<br>not contain any allowable<br>values.            |                                              |
| Customer<br>Address     |                                                                                                 | Customers with IDs [3, 10, 22,<br>23] do not have address<br>data.                                                 | Inconsistencies in<br>State naming                                                           | The address data<br>may not be up to<br>date.                           | Country column<br>irrelevant.              |                                                                            |                                              |
| Transactions            | Profit is missing                                                                               | The online_order column has missing data.  The product_id 0 has missing data in multiple columns                   |                                                                                              |                                                                         |                                            | The product_first_sold_date values and list price are in the wrong format. |                                              |

## Data Exploration - Age Distributions



- Most customers are in their 40's.
- The lowest age group is over 70 for the old customer list.
- The new customer list suggests that people in their 20's and 40-60's are the most populated.
- Most of the old customer list clients are between 20-70 years old.
- There is a steep drop in customers in the age 30-40 for the new customers.



50

Age Category

**New Customer Age Distribution** 

20

30

200

150

100

50

0

Number of People



Source: Tableau

## Data Exploration - Job Industry Distribution



## Both New and Old Customers datasets have similar Job Industry Distribution.

- Almost 50% of the customers are in manufacturing and financial services.
- The next big group (37.5%) of customers works in Health, Retail and Property.
- Finally, the smallest percentage of customers work in Telecommunications, Agriculture, Entertainment and IT.

Source: Tableau

#### **New Customers Job Industry Distribution**



#### **Old Customers Job Industry Distribution**



#### Job Industry Category

- ☐ Financial Services
- Manufacturing
- Health
- Retail
- Property
- Entertainment
- Argiculture
- Telecommunications

## Data Exploration - Purchases Over the last 3 Years by Gender



- Over the last 3 years, about 51% of purchases were made by females, to 49% of purchases were made by males.
- Numerically, females almost have
   2000 purchases more than males
- Females make up the majority of sales.

#### Old customer bike related purhases over the past 3 years



#### Old Customer past 3 years bike related purchases by Gender (%)



Source: Tableau

## Data Exploration - Purchases Over the last 3 Years by Job Industry



- The amount of sales by job industry corresponds to the job industry distribution.
- Consequently, the job industry from new customers provably gives us little indication of the potential as a customer.



Source: Tableau

## Data Exploration - Wealth Segmentation by Age



80

16

13

- In all age categories, the most significant number of customers are classified as "Mass customers".
- The "High Net Worth" Customers comprise the second highest number of customers in the dataset and are generally more than "Affluent Customers" for each age category.

Number of People 1000 500 • The "Affluent Customer" outperform the "High Net Worth" Customers in the 50's age group for the 20 30 70 80 90 Age Category New Customers dataset and the 20's and 60's age Mass Customer group for the Old Customers dataset. 105 163 270 151 131 122 165 Affluent Customer 137 238 126 Wealth Segment ■ Affluent Customer Mass Customer High Net Worth Source: Tableau Back to Agenda

New Customer Wealth Segment by Age

20

Old Customer Wealth Segment by Age

30

41

50

Age Category

51

37

45

70

70

30

60

49

35

40

20

200

Number of People

Mass Customer

## Data Exploration - Number of Cars by State



- New South Wales has more customers in both New and Old datasets. It also has the largest number of people that do not own a car in numbers and percentages.
- Victoria is split relatively evenly, but the number of customers in this state is significantly lower than in New South Wales.
- Queensland has even fewer customers than Victoria, but a relatively high number of customers own a car.







Source: Tableau

## Model Development - RFM Analysis



- RFM analysis determines which
   customers a business should target
   to increase its revenue and value.
   Consequently, it will be helpful to
   target the "best customers" in the
   New Customers DataSet.
- The RFM (Recency, Frequency and Monetary) model shows customers with high levels of engagement within the business in the three categories mentioned.



## Model development - RFM Customer Title Definition List



| RANK | CUSTOMER TITLE | CUSTOMER SUBTITLE       | DESCRIPTION                                                                 | R SCORE | F SCORE | M SCORE | RFM VALUES |
|------|----------------|-------------------------|-----------------------------------------------------------------------------|---------|---------|---------|------------|
| 1    | Platinum       | Platinum Customer       | Most recent buy, buys often, most spent                                     | 4       | 4       | 4       | 444        |
| 2    | Platinum       | Very Loyal              | Most recent, buys often, spends large amount of money                       |         | 3       | 3       | 433        |
| 3    | Platinum       | Becoming Loyal          | Relatively recent, bought more than once, spends large amount of money      |         | 2       | 2       | 422        |
| 4    | Gold           | Recent Customer         | Bought recently, not very often, average money spent                        | 3       | 2       | 3       | 323        |
| 5    | Gold           | Potential Customer      | Bought recently, never bought before, spent small amount                    | 3       | 1       | 2       | 312        |
| 6    | Gold           | Late bloomer            | No purchase recently, but RFM value is higher than average                  | 3       | 1       | 1       | 311        |
| 7    | Silver         | Losing Customer         | Purchase was a while ago, below average RFM value                           | 2       | 2       | 3       | 223        |
| 8    | Silver         | High Risk Customer      | Purchase was a long time ago, frequency is quite high, amount spent is high | 2       | 2       | 2       | 222        |
| 9    | Bronze         | Almost Lost<br>Customer | Very low recency, low frequency, but high amount spent                      |         | 1       | 4       | 114        |
| 10   | Bronze         | Evasive Customer        | Very low recency, very low frequency, small amount spent                    | 1       | 1       | 2       | 112        |
| 11   | Bronze         | Lost Customer           | Very low RFM                                                                | 1       | 1       | 1       | 111        |

## Model Development - RFM Analysis - Scatter Plots



- The chart shows that customers
   who purchased more recently have
   generated more revenue than
   those who visited a while ago.
- Customers from the recent past (50-100 days) also generate moderate revenue.
- After 200 days, the customers generate low revenue.



Source: Tableau

## Model Development - RFM Analysis - Scatter Plots



- Customers classified as
   Platinum correlate with
   increased revenue for the
   business
- Naturally, there is a positive relationship btw frequency and monetary gain for the business.



Source: Tableau

## Model Development - RFM Analysis - Scatter Plots



- Shallow frequency (0-2 number of purchases) correlates with high recency values.
- Customers that have visited more recently (0-50 days) have a higher chance of seeing more frequently(6+).
- Higher frequency has a
   negative relationship with
   recency values. Such that very
   recent customers are also
   frequent customers.



Source: Tableau

## Model Development - RFM Analysis - Customer Title Distribution

Source: Tableau





#### **Predictive Multi Classification Model**

#### **Data Preparation**

- Format & Filter Data
- Split Data into training and testing datasets
- Standardise Data
- Label Encoding / One Hot Encoding

### Sci-Kit Learn ML Models

- Decision Tree Classifier
- Random Forest Classifier
- SVC
- K-Neighbors Classifier
- Gaussian Naive Bayes
- Gradient Boosting Classifier

Github Repo: Quimbolos/KPMG\_Internship

## **Decision Tree Classifier**

#### **Confusion Matrix**

#### **Predicted Label**

|            |   | 0   | 1  | 2  | 3  |
|------------|---|-----|----|----|----|
| True Label | 0 | 123 | 19 | 42 | 12 |
|            | 1 | 108 | 10 | 27 | 4  |
|            | 2 | 93  | 12 | 40 | 5  |
|            | 3 | 104 | 13 | 30 | 10 |

#### Metrics

F1 score - 0.21

Precision - 0.27

**Recall - 0.26** 

Accuracy - 0.28

#### **GridSearchCV Scoring Method**

F1 Score - harmonic mean(average) of the precision and recall.

#### Best Hyperparameters

criterion': 'gini' 'max\_depth': 5

max\_features': 'log2'

#### **Cross-Validation Method**

Stratified K Fold

## Findings & Recommendations

The Models perform poorly, currently making it unfeasible to classify new customer data into correct customer titles. However, the performance may improve with more resources allocated to the modelling. Things to look at would be:

- 1. Feature Selection and Engineering: Analyze and select relevant features for classification. Consider feature importance analysis and PCA for dimensionality reduction. Create new features to improve customer title distinction.
- 2. Data Encoding: Properly encode data before feeding the model. Use one-hot or label encoding or advanced techniques like embeddings for categorical variables.
- 3. Data Augmentation: Benefit from data augmentation with limited data. Generate synthetic samples through perturbations to improve model generalization and reduce overfitting.
- 4. External Data Sources: Incorporate relevant external data to enrich the dataset, providing valuable context and improving model performance.
- 5. Neural Network Models: Explore different architectures (CNNs, RNNs, Transformers like BERT or GPT-3) for specific data types (images, sequential, NLP).
- 6. Hyperparameter Tuning: Optimize model performance by fine-tuning hyperparameters using grid search, random search, or Bayesian optimization.
- 7. Regularization and Dropout: Implement regularization techniques (L1, L2) and dropout layers to prevent overfitting.
- 8. Cross-Validation: Assess model generalization using cross-validation, identifying overfitting and data leakage issues.
- 9. Ensemble Methods: Combine predictions from multiple models (bagging, boosting) to create a stronger ensemble model.
- 10. Hardware and Parallelism: Use powerful hardware and parallelism (multiple GPUs, distributed systems) to accelerate training and experimentation.
- 11. Data Preprocessing: Correctly preprocess data, handling missing values, and outliers, and scaling numerical features as needed.

## Interpretation



Once the Model is completed, it can be used to classify customers in the new customers dataset and report it to the marketing team to devise their strategy



# Appendix

## Appendix





# Get In Touch

Back to Agenda

**Email** 

GitHub

bolosfernandez@hotmail.es

Quimbolos/KPMG\_Internship