

M2177.003100 Deep Learning

[7: Convolutional Neural Nets (Part 2)]

Electrical and Computer Engineering Seoul National University

© 2019 Sungroh Yoon. this material is for educational uses only. some contents are based on the material provided by other paper/book authors and may be copyrighted by them.

(last compiled at 18:15:00 on 2019/10/13)

Outline

More on Convolution

 $\begin{array}{l} {\sf Backprop\ over\ Convolution} \\ 1\times1\ {\sf Convolution} \\ {\sf Transposed\ Convolution} \\ {\sf Other\ Types} \end{array}$

Summary

References

- Deep Learning by Goodfellow, Bengio and Courville Link
 - ▶ Chapter 9
- online resources:

 - ► Kunlun Bai's Blog on Convolution Types Link
- note:
 - you should open this file in Adobe Acrobat to see animated images (other types of pdf readers will not work)

Outline

More on Convolution

Backprop over Convolution

 1×1 Convolution Transposed Convolution Other Types

Summary

Recall: convolution

- with kernel flipping
 - commutative

$$\begin{split} Z(i,j) &= (K*V)(i,j) = \sum_{m} \sum_{n} \underbrace{K(m,n)}_{\text{kernel}} \underbrace{V(i-m,j-n)}_{\text{input volume}} \\ &= \sum_{m} \sum_{n} K(i-m,j-n) \, V(m,n) \\ &= (V*K)(i,j) \end{split}$$

- without kernel flipping
 - not commutative

$$Z(i,j) = ({\color{red}K}*V)(i,j) = \sum_{m} \sum_{n} \underbrace{{\color{blue}K(m,n)}}_{\text{kernel}} \underbrace{V(i+m,j+n)}_{\text{input volume}}$$

we stick to this definition of convolution

Backprop over convolution

forward

- $\mathbf{v}, \mathbf{z}, \mathbf{g}$: flattened versions of V, Z, G, respectively
- ightharpoonup C: matrix representation of convolution
- $ightharpoonup \widetilde{K}$: flipped version of kernel K

Running example

- K * V = Z
 - $(k, m, s, p)^1 = (2, 3, 1, 0)$

result

$$\begin{aligned} z_{11} &= k_{11}v_{11} + k_{12}v_{12} + k_{21}v_{21} + k_{22}v_{22} \\ z_{12} &= k_{11}v_{12} + k_{12}v_{13} + k_{21}v_{22} + k_{22}v_{23} \\ z_{21} &= k_{11}v_{21} + k_{12}v_{22} + k_{21}v_{31} + k_{22}v_{32} \\ z_{22} &= k_{11}v_{22} + k_{12}v_{23} + k_{21}v_{32} + k_{22}v_{33} \end{aligned}$$

¹sizes of kernel, input, stride, padding, respectively

Convolution as a matrix operation

= z

where

$$\mathbf{v} = (v_{11}, v_{12}, v_{13}, v_{21}, v_{22}, v_{23}, v_{31}, v_{32}, v_{33})$$

$$\mathbf{z} = (z_{11}, z_{12}, z_{21}, z_{22})$$

C = a sparse matrix

									v_{11}		
									v_{12}		
k ₁₁	k ₁₂	0	k_{21}	k_{22}	0	0	0	0	v_{13}		z_{11}
0	k_{11}	k_{12}	0	k_{21}	k_{22}	0	0	0	v ₂₁	=	z_{12}
0	0	0	k_{11}	k_{12}	0	k_{21}	k_{22}	0	v_{22}	_	z_{21}
0	0	0	0	k_{11}	k_{12}	0	k_{21}	k ₂₂	v ₂₃		z_{22}
				Č					v ₃₁		ž
									v ₃₂		
									-33		

 $\begin{aligned} k_{11} v_{11} + k_{12} v_{12} + k_{21} v_{21} + k_{22} v_{22} &= z_{11} \\ k_{11} v_{12} + k_{12} v_{13} + k_{21} v_{22} + k_{22} v_{23} &= z_{12} \\ k_{11} v_{21} + k_{12} v_{22} + k_{21} v_{31} + k_{22} v_{32} &= z_{21} \\ k_{11} v_{22} + k_{12} v_{23} + k_{21} v_{32} + k_{22} v_{33} &= z_{22} \end{aligned}$

 $\begin{aligned} k_{11}v_{11} + k_{12}v_{12} + k_{21}v_{21} + k_{22}v_{22} &= z_{11} \\ k_{11}v_{12} + k_{12}v_{13} + k_{21}v_{22} + k_{22}v_{23} &= z_{12} \\ k_{11}v_{21} + k_{12}v_{22} + k_{21}v_{31} + k_{22}v_{32} &= z_{21} \\ k_{11}v_{21} + k_{12}v_{22} + k_{21}v_{31} + k_{22}v_{32} &= z_{21} \\ k_{11}v_{22} + k_{12}v_{23} + k_{21}v_{32} + k_{22}v_{33} &= z_{22} \end{aligned}$

$\operatorname{d} V = \widetilde{K} \ast G$

$$\begin{split} \mathrm{d}v_{11} &= k_{11}g_{11} \\ \mathrm{d}v_{12} &= k_{12}g_{11} + k_{11}g_{12} \\ \mathrm{d}v_{13} &= k_{12}g_{12} \\ \mathrm{d}v_{21} &= k_{21}g_{11} + k_{11}g_{21} \\ \mathrm{d}v_{22} &= k_{22}g_{11} + k_{21}g_{12} + k_{12}g_{21} + k_{11}g_{22} \\ \mathrm{d}v_{23} &= k_{22}g_{12} + k_{12}g_{22} \\ \mathrm{d}v_{31} &= k_{21}g_{21} \\ \mathrm{d}v_{32} &= k_{22}g_{21} + k_{21}g_{22} \\ \mathrm{d}v_{33} &= k_{22}g_{22} \\ \end{split}$$

matrix representation (reveals "______

convolution")

forward

$$K * V = Z$$
$$C\mathbf{v} = \mathbf{z}$$

backward

$$dV = \widetilde{K} * G$$
$$d\mathbf{v} = C^{\top}\mathbf{g}$$

dK = G * V

$$\begin{split} \mathrm{d}k_{11} &= g_{11}v_{11} + g_{12}v_{12} + g_{21}v_{21} + g_{22}v_{22} \\ \mathrm{d}k_{12} &= g_{11}v_{12} + g_{12}v_{13} + g_{21}v_{22} + g_{22}v_{23} \\ \mathrm{d}k_{21} &= g_{11}v_{21} + g_{12}v_{22} + g_{21}v_{31} + g_{22}v_{32} \\ \mathrm{d}k_{22} &= g_{11}v_{22} + g_{12}v_{23} + g_{21}v_{32} + g_{22}v_{33} \end{split}$$

Outline

More on Convolution

Backprop over Convolution

 1×1 Convolution

Transposed Convolution Other Types

Summary

1×1 convolution

- aka pointwise convolution
- widely used for adjustment
 - e.g. inception module in GoogeLeNet

(source: Szegedy et al., 2014)

example:

• each filter: size $1 \times 1 \times 64$ (performs a 64-dim dot product)

1×1 convolution on volumes

ullet nonlinearity (e.g. ReLU) can follow 1×1 convolution o "network in network"

Depth adjustment

ullet 1 imes 1 convolution: widely used for depth adjustment

e.g.

(source: cs231n)

- each filter: size $1 \times 1 \times 64$ (performs a 64-dim dot product)
- preserves spatial dimensions and reduces depth
- projects depth to _____ dimension (combination of feature maps)
- in general
 - lacktriangle we can reduce/maintain/increase depth using 1×1 convolution

- ullet a set of 1 imes 1 conv filters: can be interpreted as forming an
 - ▶ input dimension of this FC layer
 - $\hspace{3cm} = \hspace{3cm} \text{ of the input volume to } 1 \times 1 \text{ conv filters}$
 - output dimension of this FC layer
 - = ____ of 1×1 conv filters
- example: $2 \times 2 \times 3$ volume applied to two $1 \times 1 \times 3$ filters
 - ightharpoonup 2 imes 2 = 4 applications of the FC layer that maps 3 neurons to 2 neurons

Network in network

- Mlpconv layer with " " within each conv layer composed of FC layer (with 1×1 conv) + nonlinearity
 - can compute more abstract features for local patches
 - precursor to GoogLeNet and ResNet "bottleneck" layers

(a) linear convolution layer

(b) Mlpconv layer

(source: Lin et al., 2014)

Outline

More on Convolution

Backprop over Convolution

Transposed Convolution

Other Types

Summary

Motivation: upsampling

- desire to use a transform going in opposite direction of normal convolution
 - e.g. _____ layer of a convolutional autoencoder project feature maps to a higher-dim space
- example in cv: semantic segmentation

upsampling: ???

(source: cs231n)

- downsampling: convolution + pooling
- ▶ how to do upsampling?

Rule-based upsampling

nearest neighbor

• "bed of nails"

input: 2 x 2

output: 4 x 4

(source: cs231n)

max unpooling: remember positions from pooling layer

Transposed convolution

- ullet upsampling: smaller map o larger map
 - c.f. regular convolution: downsampling (larger map \rightarrow smaller map)
 - ▶ does not perform the deconvolution (i.e. inverse of convolution)²
 - aka fractionally strided³ conv, upconv, backward strided conv
- example

(source: Theano tutorial)

- ightharpoonup 3 imes 3 filter
- ▶ 2×2 input $\rightarrow 5 \times 5$ output
- note:

 $^{^2}$ thus, transposed convolution is sometimes (inappropriately) called *deconvolution* but is different from the deconvolution in engineering and mathematics

 $^{^{3}}$ stride: gives ratio between movement in output and input (in pixels/out pixels)

more examples:

- 1D transposed convolution $(3 \times 1 \text{ kernel})$
 - output contains copies of kernel weighted by input
 - overlaps are _____

(source: cs231n)

• 2D transposed convolution $(2 \times 2 \text{ kernel})$

(source: dive into DL)

More formally

• recall: backprop over convolution

forward

$$K * V = Z$$
$$C\mathbf{v} = \mathbf{z}$$

backward

$$\mathbf{d}V = \widetilde{K} * G$$
$$\mathbf{d}\mathbf{v} = C^{\top}\mathbf{g}$$

- transposed convolution
 - defined as ______ pass of regular convolution with the same kernel

$$\operatorname{TransposedConv}(K, X) = \widetilde{K} * X$$

more details:

- the kernel K defines a convolution
 - whose forward and backward passes:
 - \triangleright computed by multiplying C and C^{\top} , respectively
- K also defines a transposed convolution
 - whose forward and backward passes:
 - \triangleright computed by multiplying C^{\top} and $(C^{\top})^{\top} = C$, respectively
- implementation of transposed convolution
 - ▶ implement with a normal convolution + (complicated) zero-padding
 - ▶ easy to understand but much less efficient
 - implement as of some convolution wrt its input
 - usually how it is implemented in practice

Outline

More on Convolution

Backprop over Convolution 1×1 Convolution Transposed Convolution Other Types

Summary

Dilated convolution (atrous convolution)

- introduces another convolution parameter: dilation rate
 - defines a spacing between values in a filter
 - e.g. 3×3 filter with dilation rate 2
 - \Rightarrow the same field of view as 5×5 filter (but only uses 9 parameters)
- effect: a field of view at the same computational cost
 - real-time segmentation, speech synthesis
- example
 - ▶ 3×3 filter
 - dilation rate of 2
 - no zero-padding

(source: Theano tutorial)

Separable convolution

- two types
 - spatially separable conv
 - separable conv: popular (e.g. MobileNet, Xception)
- spatially separable convolution
 - operates on 2D spatial dimensions (height and width)
 - decomposes a convolution into two separate operations
 - *i.e.* a 2D kernel \rightarrow two 1D kernels

$$\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$$

- ▶ applies each 1D kernel in turn ▶ example
- ⇒ reduction in computation compared with regular convolution
- rarely used in deep learning (not every 2D kernel is decomposable)

- depthwise separable convolution: two-step process
 - 1. depthwise convolution
 - 2. pointwise (1×1) convolution
- e.g. $7 \times 7 \times 3$ image $\rightarrow 5 \times 5 \times 1$ feature map

$$[(k, m, s, p) = (3, 7, 1, 0)]$$

regular convolution

 $(3\times3\times3)\times(5\times5)=675$ mults

_ computational gain for 1 filter!

depthwise separable convolution

 $(1 \times 1 \times 3) \times (3 \times 3) = 73$

total: 675 + 75 = 750 mults

- how about multiple (e.g. 128) filters?
 - regular convolution

(source: Bai's blog)

 $128\times(3\times3\times3)\times(5\times5)=128\times675=86,400$ mults

depthwise separable convolution

$$3 \times (3 \times 3 \times 1) \times (5 \times 5) + 128 \times (1 \times 1 \times 3) \times (5 \times 5) = 9,600$$
 mults

- ⇒ huge computational gain! (only 11% of regular conv)
- significantly fewer kernel parameters ($128 \times 27 = 3,456$ vs $27 + 128 \times 3 = 411$)
 - ⇒ reduced model (problematic if not properly trained)

3D convolution

- regular (2D) convolution
 - kernel depth = input depth
 - kernel moves only in 2D (width, height)

- 3D convolution
 - kernel depth < input depth</p>
 - kernel moves in all (width, height, depth)

d-dim conv: describes spatial relationships of object in d-dim space

Grouped convolution

- first introduced in AlexNet (2012)
 - ▶ mainly due to limited
 - other advantages also exist
 details

(source: yuchao.us)

regular convolution

grouped convolution (2 groups)

(source: Bai's blog)

Convolution by frequency domain conversion

- convolution: equivalent to the following
 - 1. convert both input/kernel to domain using Fourier transform
 - 2. perform point-wise multiplication of the two signals
 - 3. convert back to time domain using an inverse Fourier transform
- for some problem sizes
 - ▶ this can be faster than the naïve implementation of discrete convolution

Remarks

- active areas of research
 - devising faster ways of performing convolution
 - approximate convolution without harming accuracy of the model
 - fast evaluation of forward propagation
- in commercial setting
 - ▶ typically devote more resources to deployment of a net than its training
 - ⇒ techniques that improve efficiency of only _____ prop are useful
 - e.g. TensorRT, TensorFlowLite, Core ML, Caffe2Go

Outline

More on Convolution

 $\begin{array}{l} {\sf Backprop\ over\ Convolution} \\ 1\times 1\ {\sf Convolution} \\ {\sf Transposed\ Convolution} \\ {\sf Other\ Types} \end{array}$

Summary

Summary

- backprop over convolution
 - forward

$$K * V = Z$$
$$C\mathbf{v} = \mathbf{z}$$

backward

$$\mathbf{d} V = \widetilde{K} * G$$

$$\mathbf{d} \mathbf{v} = C^{\top} \mathbf{g}$$

$$\mathbf{d} K = G * V$$

- various types of convolution operations exist (their fast inference: crucial)
 - **pointwise** (1×1) convolution: for depth adjustment
 - transposed (fractionally strided) convolution: for learnable upsampling
 - dilated convolution, separable convolution: for efficiency (+ alpha)
 - ▶ 3D convolution, grouped convolution, and many others