Tao Analysis Solutions

Segun

21 de febrero de 2019

Pg 24 Prove that the sum of two natural numbers is again a natural number?

Solution: Let n and m be natural numbers. Using induction on n and keeping m fixed,we have the base case to be 0 + m := m which is a natural number as desired (by definition of addition and **Axiom 2.1**).

Now we assume inductively n+m is a natural number. We have to show that (n++)+m is also a natural number. But (n++)+m=(n+m)++ by definition of addition and **Axiom 2.2**. However, n+m is a natural number according to the inductive hypothesis and therefore (n+m)++ is also a natural number by **Axiom 2.2**. \square

Pg 26 Prove that n + + = n + 1

Solution 1: Let n be a natural number, then n++=(n++)+0=(n+0)++=n+(0++)=n+1 according to **Lemma 2.2.2**, definition of addition, **Lemma 2.2.3** and definition of increment respectively. \Box

Solution 2: Using induction on n, we have to show that 0 + + = 0 + 1 for the base case. However, 0 + + = 1 = 0 + 1 by definitions of increment, and addition respectively and so the base case is done.

Now suppose inductively that n + + = n + 1, we have to show that (n + +) + + = (n + +) + 1.

From the RHS, (n++)+1=(n+1)++=(n++)++ by definition of addition and the inductive hypothesis repectively. \Box

Exercise 2.2.1. (Addition is associative). Prove that for any natural numbers a, b, c, we have (a + b) + c = a + (b + c).

Solution: Using induction on a and keeping a and c fixed. For the base case, we want to show that (0+b)+c=0+(b+c). However, (0+b)+c=b+c=0+(b+c) by the definition of addition.

Now suppose inductively that (a+b)+c=a+(b+c), we have to show that ((a++)+b)+c=(a++)+(b+c).

From the RHS, we have that (a++)+(b+c)=(a+(b+c))++=((a+b)+c)++ by the definition of addition and the inductive hypothesis respectively. Furthermore, ((a+b)+c)++=(((a+b)+c)+c)=((a+c)+b)+c by definition of addition. \Box

Exercise 2.2.2. Let a be a positive number. Then there exists exactly one natural number b such that b++=a.

Solution: First we prove the existence of a natural number b such that b++=a for $a \in \mathbb{N}^+$ using induction on a. For the base case a=1, we want to show that there exists a natural number b such that b++=1. Clearly, 0++=1 so b=0.

Now suppose inductively that for any positive number a, there exists a natural number b such that b++=a.

We have to show that there exists a natural number q such that q + + = a + +. But a + + = (b + +) + + by the inductive hypothesis, so that q + + = (b + +) + + and by **Axiom 2.4**, q = b + +. So that completes the induction and the proof existence.

Now we have to prove the uniqueness of the natural number b such that b++=a for $a\in\mathbb{N}^+$. Suppose for the sake of contradiction that there exist $b,c\in\mathbb{N}$ with $b\neq c$ such that b++=a and c++=a. Then b++=c++ and by **Axiom 2.4** b=c which is a contradiction. Consequently, there exists exactly one natural number b such that b++=a for $a\in\mathbb{N}^+$. \square

Exercise 2.2.3. Basic properties of order for natural numbers). Let a, b, c be natural numbers. Then *Solution:*

- 1. (Order is reflexive) $a \ge a$.
 - a = a + 0 by **Lemma 2.2.3**, therefore, $a \ge a$ by definition. \square
- 2. (Order is transitive) If $a \ge b$ and $b \ge c$, then $a \ge c$.

By definition, $a \ge b$ implies that a = b + d and $b \ge c$ implies b = c + e, for some $d, e \in \mathbb{N}$. Therefore, $a = b + d = (c + e) + d = c + (e + d) \ge c$ by ordering of natural numbers and associativity of addition. \square .

3. (Order is anti-symmetric) If $a \ge b$ and $b \ge a$, then a = b.

Since $a \ge b$ and $b \ge a$, we have that a = b + c and b = a + d for some $c, d \in \mathbb{N}$. Thus a = a + c + d which implies that c + d = 0 by **Lemma 2.2.2** and that further implies c = 0 and d = 0 by **Corollary 2.2.9**. Consequently, a = b. \square

4. (Addition preserves order) $a \ge b$ if and only if $a + c \ge b + c$.

Because $a \ge b$, a = b + d for some $d \in \mathbb{N}$. Hence $a + c = (b + d) + c = (b + c) + d \ge b + c$ by the cancellation law, associativity of addition and ordering of natural numbers respectively.

Likewise, $a+c \ge b+c$ implies a+c=(b+c)+e, for some $e \in \mathbb{N}$. Consequently, a+c=(b+e)+c by associativity of addition. By cancellation law, a=b+e so $a \ge b$. \square

5. a < b if and only if $a++ \le b$

Proof. Since a < b, then b = a + n, for some $n \in \mathbb{N}$ and $b \neq a$. Consequently, $n \neq 0$ by **Lemma 2.2.2**. Then there exists a number say $m \in \mathbb{N}$ such that m++=n by **Lemma 2.2.10**. So b=a+n=a+m++=(a++)+m by **Lemma 2.2.3**. So $a++\leq b$.

Likewise $a++ \le b$ implies b=(a++)+n for some $n \in \mathbb{N}$. Consequently, b=a+(n++) by **Lemma 2.2.3** and by **Definition 2.2.1** (Addition of natural numbers). But we know that $n++ \ne 0$ by **Axiom 2.3** and by implication $b \ne a$. So a < b. \square

6. a < b if and only if b = a + d for some positive number d.

Proof. If a < b, then b = a + d for some $d \in \mathbb{N}$ and $b \neq a$ by definition. We need to show that $d \neq 0$. Now suppose for the sake of contradiction that d = 0. Then b = a + d implies a = b which is a contradiction so $d \neq 0$.

Likewise, b=a+d, $d\neq 0$ implies $a\leq b$ by **Definition 2.2.11** (Ordering of the natural numbers). We need to show that $b\neq a$. Suppose for the sake of contradiction that b=a, then b=a+d implies d=0 by **Lemma 2.2.2** which is a contradiction. Hence $b\neq a$ and $a\leq b$ so a< b. \square

Exercise 2.2.4. Justify the three statements marked (why?) in the proof of Proposition 2.2.13.

1. $0 \le b$ for all $b \in \mathbb{N}$.

Proof. Since $b \in \mathbb{N}$, then b = 0 + b by **Definition 2.2.1** (Addition of natural numbers) so $0 \le b$.

Exercise 2.2.5.

Exercise 2.2.6.