A

Zadanie	1	2	3	4	5	6	7	8	9	10	Σ
Punkty											
(maks)	(2)	(2)	(2)	(2)	(2)	(6)	(6)	(6)	(6)	(6)	(40)

Uwaga: ta część zostanie wypełniona przez egzaminatora!

NAZWISKO I IMIĘ:	NR. INDEKSU:						
${\bf Systemy}{\bf Uczące}{\bf się}-{\bf SUS'2011}$							
— Czas pisania pracy: 75 minut —							
1. Chcemy oszacować bład klasyfikatorów typu k NN za pomoca algorytmu k	walidacii Leave-One-						

0 0 + +

_			•
0	0	+	4

Out (1-CV). Używamy do tego celu następującego zbioru danych w \mathbb{R}^2 (z metryką euklidesową).

Wybierz T (tak) lub N (nie) przy następujących stwierdzeniach:

a) 1NN jest lepszym klasykatorem niż 3NN (jak zwykle);

b) 1NN jest gorszy niż 9NN;

c) Na tych danych 1NN nie może być lepszy niż jakikolwiek inny klasyfikator;

2. Dla następującego zbioru danych na płaszczyźnie, który z wymienionych klasyfikatorów może mieć zerowy błąd treningowy?

a) 3NN;
b) SVM (z jądrem kwadratowym);
c) Dwupoziomowe drzewo decyzyjne (z użyciem cięć na pojedyńczych atrybutach)

3. Który z poniższych algorytmów można zaimplementować dla uczenia "online", t.j. mając na wejściu nieskończony strumień przykładów, ale mając do dyspozycji skończoną pamięć?

a) kNN (z metryką Euklidesową i dowolnym parametrem k).
b) SVM, jeśli tylko punkty należące do różnych klas są separowalne.
c) AdaBoost.

4. Wyniki testów dwóch filtrów antyspamowych F_1 i F_2 na tej samej próbce testowej są przedstawione w poniższych tabelach:

	Prawdziwa decyzja		
	spam	$not\ spam$	
$F_1 = spam$	15	15	
$F_1 = not spam$	5	65	

	Prawdziwa decyzja		
	spam	$not\ spam$	
$F_2 = spam$	10	0	
$F_2 = not \ spam$	10	80	

a) $FP(F_1) > FP(F_2)$;
c) Który z filtrów jest lepszy? Odpowiedź uzasadnij
5. Które z poniższych algorytmów klastrowania nie wymagają znajomości wartości atrybutów p szczególnych obserwacji, a jedynie macierzy odległości między obserwacjami?
a) k -Means (algorytm k -centroidów lub k -średnich)
b) Grupowanie hierarchiczne z odległością między klastrami complete linkage (najbardzi odległe obserwacje).
c) SVM.
6. Dany jest zbiór S zawierający 6 punktów na płaszczyźnie (z odległością euklidesową): a $(0,0), b=(8,0), c=(16,0), d=(0,6), e=(8,6), f=(16,6)$. Chcemy znaleźć 3 klastry pomocą algorytmu k -means (k -centroidów). Podział zbioru S na trzy klastry nazywamy począ $kowym$ jeśli jest wyznaczony przez jakiś początkowy układ środków, zaś $stabilnym$ jeśli algoryt k -means już nie zmieni tego podziału. Wykonanie algorytmu k -means sprowadza podziały początkowe do jednego z podziałów stabilnych.
\bullet Wyznacz wszystkie podziały stabilne dla $S;$
 Dla każdego podziału stabilnego dla S, wyznacz liczbę podziałów początkowych, z któryc możemy otrzymać ten podział stabilny;
Jaka jest maksymalna liczba iteracji potrzebna do osiągnięcia podziału stabilnego z podzia początkowego?
<u>. </u>

7. Rozpatrzmy tablicę decyzyjną dla problemu rozpoznawania grzybów trujących. Obiekty od 1 do 8 są treningowymi, lecz obiekty od 9 do 11 – testowymi.

LP.	ciężki?	śmierdzący?	kropeczki?	gładki?	trujący?
1	0	0	0	0	0
2	0	0	1	0	0
3	1	1	0	1	0
4	1	0	0	1	1
5	0	1	1	0	1
6	1	1	0	0	1
7	0	0	1	1	1
8	0	0	0	1	1
9	1	1	1	1	?
10	0	1	0	1	?
11	1	1	0	0	?

- (a) Chcemy skonstruować drzewo decyzyjne dla tej tablicy. Który test, według Ciebie, powinien być używany w korzeniu drzewa? Odpowiedź uzasadnij
- (b) Policz wszystkie potrzebne rozkłady prawdopodobieństw warunkowych i klasyfikuj obiekty 9, 10 i 11 metodą Naive Bayes.

8. Rozpatrzmy algorytm AdaBoost z użyciem prostych cięć na atrybutach jako słabe klasyfikatory na następującym zbiorze danych:

- (a) Który obiekt będzie miał zwiększoną wagę po pierwszej iteracji?
- (b) Île iteracji trzeba wykonać, aby osiągnąć zerowy błąd treningowy?

9. (a) Dla funkcji jądrowej $K(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle + 4(\langle \mathbf{x}, \mathbf{y} \rangle)^2$, gdzie \mathbf{x}, \mathbf{y} są wektorami w przestrzeni dwuwymiarowej, znaleźć wartość k oraz odpowiednie zanurzenie $\Phi:\mathbb{R}^2\to\mathbb{R}^k$ tak, aby

$$\langle \Phi(\mathbf{x}), \Phi(\mathbf{y}) \rangle = K(\mathbf{x}, \mathbf{y})$$

(b) Niech $K_1, K_2: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ będą funkcjami jądrowymi. Udowodnij, że

$$K(\mathbf{x}, \mathbf{y}) = a_1 K_1(\mathbf{x}, \mathbf{y}) + a_2 K_2(\mathbf{x}, \mathbf{y})$$

też jest funkcją jądrową dla dowolnych dodatnich liczb rzeczywistych a_1 , a_2 .

- 10. Niech \mathcal{H}_1 będzie przestrzenią hipotez o wymiarze Vapnika-Chervonenkisa $VCdim(\mathcal{H}_1)=3$ i niech $\mathcal{H}_2 = \{f_1, ..., f_k\}$ będzie dowolnym zbiorem klasyfikatorów. Niech $\mathcal{H}_3 = \mathcal{H}_1 \cup \mathcal{H}_2$, oraz niech $m = VCdim(\mathcal{H}_3)$.
 - (a) Uzasadnij, że $m < \infty$.

(b) Udowodnij (np. za pomocą lematu Sauera), że $2^m \leq m^3 + k$.

(c) Za pomocą oszacowania z (b) znajdź górne ograniczenie dla $VCdim(\mathcal{H}_3)$, gdy k=20.