Foundations of Math: Neural Networks

Winter 2023/24

Version 1 (January 30, 2024)

As discussed in class, some of the tasks regarding differentiation and Jacobians in the exam may be inspired by neural networks. Here is a collection of exercises for practicing this. Note that none of this material is specific to neural networks – rather, it reflects applications of partial derivatives, the chain rule, and the Jacobian.

There are a few hints in footnotes to help you in case you get stuck [these are bits of knowledge that we covered and that you should know for the exam].

 $Jac(f) = [2v_1^2x_1, 2v_2^2x_2, \dots, 2v_n^2x_n]$

 $Jac(f) = \begin{bmatrix} 2v_1^2x_1 & 2v_2^2x_2 & \dots & 2v_n^2x_n \end{bmatrix}$

或者写成矩阵形式

I will provide solutions at the beginning of next week.

These exercises are all very similar, and build from a simple calculat complex calculations.

- 1. Let $f(x_1, x_2, x_3) = x_1 + 7x_2 5x_3$. What is Jac(f)?
- 2. Let $a,b,c\in\mathbb{R}$. Let $f(x_1,x_2,x_3)=ax_1+bx_2+cx_3$. What is Jac(f)? 这个结果是一个 1 × n 知時. 因为 f 是一个标题函数. 对 n 个交通求导后会形成一个行向显
- 3. Let $v \in \mathbb{R}^n$ a vector. Let $f(x_1, \dots, x_n) = \sum_{i=1}^n v_i x_i$. What is Jac(f)?
- 4. Let $v \in \mathbb{R}^n$ a vector. Let $f(x_1, \dots, x_n) = \sum_{i=1}^n v_i^2 x_i^2$. What is Jac(f), written as a matrix? Hint: Use the multidimensional chain rule, in one of its several forms that we covered in class.
- 5. Let $v \in \mathbb{R}^n$ a vector. Let $f(x_1, \dots, x_n) = \log(1 + \sum_{i=1}^n v_i^2 x_i^2)$. What is Jac(f)?
- 6. Let $f(x_1, x_2, x_3) = g(x_1)x_1 + g(x_2)x_2 + g(x_3)x_3$, where g is some function. What is Jac(f), in terms of g'?
- 7. Let $g: \mathbb{R} \to \mathbb{R}$ be some function. Let $f(x_1, \dots, x_n) = \sum_{i=1}^n g(x_i) x_i$. What is Jac(f), in terms of g'?
- 8. Let $g: \mathbb{R} \to \mathbb{R}$ be some function. Let $f(x_1, \dots, x_n) = \sum_{i=1}^n g(x_i) x_i$ Note the difference to the preceding question: $g(x_1)$ vs $g(x_i)$. What is Jac(f), in terms of g'?
- 9. Let $g: \mathbb{R} \to \mathbb{R}$ be some function. Let $f(x_1, \dots, x_n) = \log(1 + \sum_{i=1}^n g(x_i))$. What is Jac(f), in terms of g'?
- 10. What is $\frac{\partial}{\partial x_2}(x_1 + 7x_2 5x_3)$?
- 11. What is $\frac{\partial}{\partial x_2}(x_1^2 + 7x_2^2 5x_3^2)$?
- 12. What is $\frac{\partial}{\partial x_2} \log(1 + x_1^2 + 7x_2^2 5x_3^2)$? [assuming the argument to the logarithm is positive]
- 13. Let $x \in \mathbb{R}^n$ be a vector.

What is $\frac{\partial}{\partial x_1} x_1$?

What is $\frac{\partial}{\partial x_1} x_2$?

What is $\frac{\partial}{\partial x_2} x_1$?

Let i be any element of $\{1,\ldots,n\}$. What is $\frac{\partial}{\partial x_i}x_i$?

Let i, j be any element of $\{1, \ldots, n\}$. What is $\frac{\partial}{\partial x_i} x_j$? Give the result separately in the case where i = j and where $i \neq j$.

Let $a \in \mathbb{R}^n$ be a vector. Let i, j be any element of $\{1, \ldots, n\}$. What is $\frac{\partial}{\partial x_i}[a_j x_j]$? Give the result separately in the case where i = j and where $i \neq j$.

Let $a \in \mathbb{R}^n$ be a vector. Let i be any element of $\{1, \ldots, n\}$. What is $\frac{\partial}{\partial x_i} \sum_{j=1}^n a_j x_j$?

14. Let $A \in \mathbb{R}^{n \times n}$ be a matrix. Let $x \in \mathbb{R}^n$ be a vector.

Note that
$$Ax \in \mathbb{R}^n$$
? [why?]

What is $(Ax)_1$, written in terms of the entries of A and x?

What is
$$\frac{\partial}{\partial x_i}((Ax)_1)$$
?

What is
$$\frac{\partial}{\partial x_i}((Ax)_2)$$
?

If
$$f(x) = Ax$$
, then what is $Jac(f)$?

Let $B \in \mathbb{R}^{n \times n}$ be another matrix. If f(x) = BAx, then what is Jac(f)? That is, give its entries by providing a formula for $\frac{\partial}{\partial x_i} f(x)$.

Let $g: \mathbb{R}^n \to \mathbb{R}^n$ be any function. If f(x) = g(Ax), then what is Jac(f), in terms of Jac(g)? That is, give its entries by providing a formula for $\frac{\partial}{\partial x_i} f(x)$.

Let $v \in \mathbb{R}$ be a vector, and g as in the last question. If $f(x) = v \cdot g(Ax)$, then what is Jac(f)? That is, give its entries by providing a formula for $\frac{\partial}{\partial x_i} f(x)$.

What is
$$\frac{\partial}{\partial (A_{12})}((Ax)_1)$$
?

If
$$i, j \in \{1, ..., n\}$$
, then what is $\frac{\partial}{\partial (A_{ij})}((Ax)_1)$?

If
$$i, j, k \in \{1, ..., n\}$$
, then what is $\frac{\partial}{\partial (A_{ij})}((Ax)_k)$?

其中,
$$A_{1j}$$
 是矩阵 A 的第一行第 j 列的元素, x_j 是向量 x 的

(2) $(Ax)_1$ 用 A 和 x 的元素表示

其中, A_{1j} 是矩阵 A 的第一行第 j 列的元素, x_j 是向量 x 的第 j 个分量。

$$(Ax)_i = \sum_{j=1}^n A_{ij}x$$

 $(Ax)_1 = \sum_{i=1}^n A_{1j}x_j$

因此,
$$f(x)$$
 可以写为:

2. 计算雅可比矩阵 雅可比矩阵的定义是

$$\operatorname{Jac}(f) = \left[rac{\partial f_i}{\partial x_j}
ight]_{i,j}$$

f(x) = BAx

由于 f(x)=BAx 是一个线性变换,其对 x 的导数就是矩阵 BA 本身。因此:

$$\operatorname{Jac}(f) = BA$$

3. 结论 所以,函数 f(x)=BAx 的雅可比矩阵 就是 BA 矩阵本身,即:

$$\frac{\partial f}{\partial x} = BA$$

这表明 线性变换的雅可比矩阵就是变换本身的矩阵表达形式。

¹Hint: it is $\sum_{l=1}^{n} A_{1l}x_l$ - why? ²Hint: $\frac{\partial}{\partial x_i} \sum_{l=1}^{n} A_{1l}x_l = A_{1i}$ - why? ³Hint: $\frac{\partial}{\partial x_i} \sum_{l=1}^{n} A_{2l}x_l = A_{2i}$ - why? ⁴Hint: $\frac{\partial}{\partial (A_{12})} \sum_{l=1}^{n} A_{1l}x_l = x_2$ - why?