Computational Eigenvector Simulation

Ali Taqi

Step 0: Setup the matrix

```
# Set seed
set.seed(23)
# Set parameters
M <- 2
mu <- 0
sd <- 1
# Generate matrix
P <- RM_stoch(M, symm = T, sparsity = F)

eigen_frame(P)

## Re Im row_i
## 1 -0.72033 0 1
## 2 0.69363 0 1
## 3 -0.69363 0 2
## 4 -0.72033 0 2</pre>
```

Step 1: Get the batch

```
# Set batch parameters
B <- 100
# Create batch
batch <- make_batch(M = M, B = B)
head(batch)

## x1 x2
## 1 0.6388979 -0.1525589
## 2 0.9270891 0.9562608
## 3 0.6810438 0.9932225
## 4 0.7319181 0.4028434
## 5 -0.2190539 -0.3704606</pre>
```

Step 2: Evolve the batch

6 0.6918946 -0.7214430

```
# Set evolution parameters
steps <- 20
# Evolve batch
evolved_batch <- evolve_batch(batch, steps)
# Add indexing to the batch
evolved_batch <- indexed_batch(evolved_batch, steps)
head(evolved_batch)</pre>
```

```
## 1 0.6388979 -0.1525589 1
## 2 0.3178572 0.1817860 1
## 3 0.2662833 0.2362923 1
## 4 0.2583318 0.2454985 1
## 5 0.2574428 0.2473722 1
## 6 0.2576977 0.2480596 1
```

tail(evolved_batch)

##		x1	x2	index_column
##	2095	0.8292696	0.7985288	100
##	2096	0.8308036	0.8000060	100
##	2097	0.8323405	0.8014859	100
##	2098	0.8338802	0.8029685	100
##	2099	0.8354228	0.8044539	100
##	2100	0.8369682	0.8059420	100

Step 3: Analyze the batch

```
# Plot the evolution arrays of the batch elements
batch_data <- evolved_batch
# 2d plot
batch_2d_plot(batch_data, "(Symmetric Stochastic Matrix)")</pre>
```

Evolution of 2D Monte Carlo Batch (Symmetric Stochastic Matrix)

