

FPGA-BASED DESIGN AND IMPLEMENTATION OF AN (8:2) COMPRESSOR FOR OPTIMIZED 8X8 MULTIPLICATION

[Industry, Innovation and Infrastructure (I3)]

Team Members

Krithika M (RA2211004050021) Suba Lakshmi R (RA2211004050048)

Guided by,

Dr. S Aditya Assistant Professor ECE Dept

ABSTRACT

- **Efficient Multiplier Design** –Our proposed design is a FPGA-based approximate multiplier using a novel (8:2) compressor architecture for improved speed, power efficiency, and resource utilization.
- **Compressor Architecture** We are utilizing (4:2) and (4:3) compressors in the first stage and a (5:2) compressor in the second stage to optimize delay, power, and area.
- **FPGA Implementation** It will be designed, simulated, and verified using Xilinx Vivado, and implemented on the Artix-7 FPGA board.
- **Performance & Impact** –Our design ensures energy-efficient, high-speed computing with scalability and hardware-aware optimization for next-generation FPGA systems.

INTRODUCTION

- The growing demand for high-performance computing in applications like image processing and real-time systems has led to the adoption of approximate computing techniques. These techniques help balance speed, power efficiency, and resource utilization, making them essential for modern digital systems.
- Traditional multipliers struggle with power consumption and delay, making it necessary to explore optimized designs for low-power, high-speed computations.
- To improve multiplier efficiency, compressors like (4:2), (4:3), and (5:2) are used to reduce the number of partial products. The (8:2) compressor architecture further enhances performance by minimizing computational complexity while maintaining acceptable accuracy.
- This work presents an (8:2) compressor-based multiplier designed for high-speed and low-power applications. The architecture is implemented and validated on the Artix-7 FPGA, where its performance is evaluated in terms of delay, power consumption, and hardware utilization.

ALGORITHM

• Partial Product Generation

Compression using 8:2compressor

• Final Summation

• FPGA Implementation & Verification

BLOCK DIAGRAM

FLOWCHART

16-04-2025

RESULT

16-04-2025

RESULT TEST CASES

TEST CASES	INPUT A[8 bit]	INPUT B[8 bit]	COMPRESSOR STAGE OUTPUT	FINAL PRODUCT
1	00001111 (15)	00000011 (3)	S = 45, C = 0	45
2	00010101 (21)	00000101 (5)	S = 105, C = 0	105
3	11110000 (240)	00001111 (15)	S = 3600, C = 0	3600
4	1111111 (255)	1111111 (255)	S = 65025, C = 0	65025
5	00011000 (24)	00000010 (2)	S = 48, C = 0	48
6	10000000 (128)	0000001 (1)	S = 128, C = 0	128

THANK YOU!