TRANSMISIÓN DE DATOS Y REDES DE COMPUTADORES II

- 4º curso de Ingeniería Informática -Examen de teoría¹ - 17 de Septiembre de 2008

Apellidos y nombre: JORGE NAVARRO ORTIZ

1. (2 puntos) Una red tiene la topología y configuración (direcciones físicas e IP, MTU de cada red) mostrada en la figura.

Se pide:

- a) Mostrar el intercambio de tramas entre el equipo X y el servidor WEB. Suponga que las tablas ARP están actualizadas, que el equipo X sólo conoce el nombre de dominio del servidor WEB, y que tanto la solicitud como la respuesta ocupan 1460 bytes. Para cada trama generada detalle la siguiente información:
 - Direcciones hardware origen y destino.
 - Direcciones IP origen y destino.
 - En su caso, los puertos origen y destino.
 - En su caso, los flags activos y campos de secuencia y ACK.
 - El tipo de mensaje del que se trata.
- b) ¿Qué pasaría si el campo TTL de los paquetes IP generados por el equipo X tuviese un valor igual a 3? Describa las tramas intercambiadas (puede hacer referencia a las tramas del apartado a).
- c) ¿Qué ocurriría si el campo DF (don't fragment) de los paquetes IP generados por el equipo X valiese 1? Describa las tramas intercambiadas (puede hacer referencia a las tramas del apartado a).

¹ → La calificación de esta parte de la asignatura supondrá 7 puntos sobre el total de 10.

- 2. (2 puntos) Un alumno desea enviar, desde su cuenta alumno@micorreo.es, un correo electrónico a su profesor <u>profesor@ugr.es</u>. Indique los elementos por los que pasa el correo electrónico y los protocolos involucrados, desde que se crea el correo hasta que lo lee el destinatario. ¿Cómo podría una tercera persona interceptar el correo electrónico, y evitar que le llegue al profesor?. Proponga soluciones para evitar estos ataques.
- 3. (2 puntos) Dadas dos entidades TCP (A y B) conectadas por una red cuya velocidad de transmisión es 100 Mbps, suponga segmentos de 1024 bytes y un RTT (Round Trip Time) constante de 2 mseg. Si A transmite masivamente datos a B ¿En qué instante empezará a transmitirse el octavo segmento? Haga las suposiciones que estime necesarias.
- **4.** (1 puntos) Suponga que en instante t = 300 milisegundos (medidos desde una referencia local) se recibe un mensaje ICMP de sello de tiempo. Si en el mensaje recibido los campos de tiempo de *emisión, recepción* y *respuesta* son respectivamente 50, 110 y 120 milisegundos, ¿están sincronizados los relojes de las dos entidades involucradas? En su caso, ¿cuál es el desajuste?

MAC origen

MAC_X

MAC-RCO

MAC-EDI

MAC_ RB1

* Tebbs ARP actualizades

MAC dostivo

MAC-RCI

MAC_RDO

MAC_RBO

MAC. DNS

MAC-RCI

MAC_WOB

MAC-REG MAC-RIDO

MAC_RD, MAC_RBO

57

MAC_X

MAC-RB1

Respuesta DNS 172.16.1.5 192.168.0.2 53 MAC_DNS MAC_RB1 IP-servidor well MAC_RD MAC-RBO HAC-RG MAC_RDO MAC_BC1 MAC_X Estab. TCP 5YN 172.16.1.3 (*31 80 B2.168.02 MAC_RC1 MAC_X XEXA MAC-RGO MAC-RDO MAC_RD MAC-RBO MAC-WEB MAC-BBY Estab. TCP SYNTACK 192.68.0.2 172.16.1.3 MAC-RB1 MAC-WEB 7 = seg MAC_RD MAC. RBO X+1 & acuse MAC-RCO MAC_RDO MAC MAC_RC1

AZ.161.3

(*4)

(84)

80

80

MFLI

MF=O

KCK

ident=u

ident=u

affect = 760780 "

ESTOB. TOP

Petician web (1460 bytes)

Zª frogu

Intercombio de tromas entre el egugo X y el servidor web.

Solo se conoce el nombre del servidor

192.168.0.2

Petician/ respuesta del servidor -> 1460 bytes

IP arigen IP destino destina destina

172.16.15 (21)

7 lags

53

Meusole

Careulta DNS sobre UDP

nombre dominio -

- servidor-wel

< 800 bytes)

19 2. 68.0.2

192.168.02 172.16.1.3

^{*1 -&}gt; Dado por el s.o. | #3 -> Dado por s.o. *2 -> el mismo que *1 | #4 -> Igual que #3.

.

,	MAC	MAC J	IP orgen	IP dest.	Puerto Origon	Puenta Dest.	Flogs	. News	r'e	_	
RESPUESTA WERS	MAC. WEB	MAC-RB1	172.16.1.3	197.180.2	80	(44)	ident= an		presta	wel (1765)	
	u	L	~	u	~	4 41	offset = 0 MF=0 ident = m offset=98	KCK	<u> </u>	(480P) 280	
	MACLBO	MACRDI	ů.	u.	u	u	MF=1 ident=n offset=	KK O	u	(4804)	
	u	u	u	u,	u	u de	MF=1 ident=1	ACK 780	~	(2006)	
	v	u.	L	4	u	Z 01	MF=0 ; deuf= u	ACK	L	(4805)	
	MAC-RDO	MAC_RC	a	u.		ŭ (-	<			
	MAC_RC,	, MAC_)	× u		<u>.</u>	~ ,	<i>(</i>	4			
) u	u u	u u		u.	u		— G			
	CON DCK de la resp. HTTP.										
Si se cerrara la comexian seria igual que el costablecimiento activando el flag FIN en lugar del flag SYN. El número de secuencia serra X+1460 y 7+1460 respectivamente.									to pero		
									inero	de	
NOTA: Suparemos que los ACK se hacon con piggybacking. b) Si TTL=3, antonces sób llegaria hasta RB (coda router decrementa											
						RB). Asi					
). RB de					
				p for ,							
		Primera	s 3 tr	sama s				ICMP	retien Flags		
IC ti	MP	MAC_RB	o MA	C-RDV	172.16.	2.1 (92.	1680.2			Mengaje ICMP time	
	ive ceeded		DO MAC		u		u	u	u	ч ч	
	TTL)	MAC_R	Ca M.	AC_X							

c) Si DF=1, RD no padria transmitir y mandaria a X un mensoje

ICMP destino inalianzable por fragmentación. Esto sería en

b petición melo suponiendo que el resto de mensojes (DNS#...)

TTZ

turiesen menos de III bytes (800 - 28 de cabacero (P+UDP).

... basto que la portición uel llega basta RD ...

ICMP MAC_RDO MAC_RCO 172.63.1 (92.168.0.2 — ICMP destination unreaded.
Frague. MAC_RC1 MAC-X " " " " unreadedle - frague.

- 1. Euro del correr a través del spod de correr saliente del MUA del alumno al MTA del alumno protocolo SMTP.
- 2. Envio del MTA del alumno al MTA del profesor -> SMTP.
- 3. EUVIO del MTA del profesor al MUA del profesor -> 707.

Se vention be peticiones / respuestos DNS que fuesen mecesorias Comexión al DNS correspondientel.

- 1) Posibles ataques.
 - suplantación de DNS por unhacrobilidades de un DNG se le meter entradas falsas -> se propaga a atros DNS (DNS poisoning).
 - Atogres RIP a source routing rutas comprometidas.
 - Mail spaqfing: suplantación en el corres electrónico de la dirección de otras personas o entidades. Usado para SPAM.

Esta ua permitiria leer el corres de atro.

Solvaines:

- = Suplantación de DNS: dos preguntos, a la inversa y directa y comparar las respuestas.
- Ataques RIP: proteger les paquetes de actualización (cufrodo).

 + Uso de nonces (para evitar repetición).
- Mail spaafing: comprolor la P del remitente y la dirección del servidor SMTP usado. Dimbién el usa de firmas digitales.
- En general uso de ssi.

El inicio lanto de TCP se debe al control de congestión. Suponiendo que la ventana de congestión vale inicialmentes:

Si hay un desfase entre los religes => Ti(t) = Tz(t) + effset Suparemas que el tiempo de ida y ruelta son iguales:

$$T_{1DA} = T_{2} \left(\frac{1}{1} \operatorname{Execution} \right) - T_{2} \left(\frac{1}{1} \operatorname{Execution} \right) = 110 - (50 - \operatorname{offset}) = \frac{1}{1} =$$