Matematika Diskrit [KOMS124210] - 2024/2025

9.2 - Permutasi

Dewi Sintiari

Program Studi S1 Ilmu Komputer Universitas Pendidikan Ganesha

Week 9 & 10 (April 2025)

Bagian 4: Permutasi

Contoh motivasi 1

Misalkan ada 3 bola dengan warna berbeda yaitu:

Bola akan dimasukkan ke dalam tiga kotak, dimana setiap kotak terdiri dari 1 bola.

Tentukan banyaknya urutan berbeda untuk menempatkan bola ke dalam kotak.

Contoh motivasi 1 (solusi)

Urutan berbeda ditentukan oleh banyaknya permutasi.

Permutasi *n* objek dari *n* objek

Misalkan diberikan *n* objek, maka banyaknya permutasi adalah:

$$n(n-1)(n-2)\cdots 3\cdot 2\cdot 1=n!$$

- Urutan pertama dapat dipilih dari n objek
- ightharpoonup Urutan pertama dapat dipilih dari n-1 objek
- **>** ...
- Urutan terakhir dapat dipilih dari 1 objek

Contoh motivasi 2

Diberikan 6 bola dengan warna yang berbeda:

```
merah (m), biru (b), putih (p), hijau (h), kuning (k), dan
jingga (j)
```

Keenam bola tersebut akan dimasukkan ke dalam **tiga kotak**, dimana setiap kotak dapat diisi oleh 1 bola.

Tentukan banyaknya urutan berbeda yang mungkin dibuat dari penempatan bola ke dalam kotak.

Contoh motivasi 2

Diberikan 6 bola dengan warna yang berbeda:

```
merah (m), biru (b), putih (p), hijau (h), kuning (k), dan
jingga (j)
```

Keenam bola tersebut akan dimasukkan ke dalam **tiga kotak**, dimana setiap kotak dapat diisi oleh 1 bola.

Tentukan banyaknya urutan berbeda yang mungkin dibuat dari penempatan bola ke dalam kotak.

Solusi:

- Kotak 1 diisi oleh salah satu dari 6 bola (6 pilihan)
- Kotak 1 diisi oleh salah satu dari 5 bola (5 pilihan)
- Kotak 1 diisi oleh salah satu dari 4 bola (4 pilihan)

Banyaknya urutan berbeda untuk menempatkan bola adalah:

$$6 \cdot 5 \cdot 4 = 120$$

Permutasi r objek dari n objek

- Urutan pertama dapat dipilih dari n objek
- ▶ Urutan pertama dapat dipilih dari n-1 objek
- **...**
- lacksquare Urutan terakhir dapat dipilih dari n-(r-1) objek

Banyaknya urutan berbeda adalah:

$$P(n,r) = n(n-1)(n-2)\cdots(n-(r-1)) = \frac{n!}{(n-r)!}$$

Catatan: Jika r = n, maka:

$$P(n,n) = \frac{n!}{(n-n)!} = \frac{n!}{0!} = n!$$

(sama dengan permutasi n objek dari n objek)

Contoh

Tentukan banyaknya "kata" yang dapat dibentuk dari huruf-huruf "B O S A N".

Contoh

Tentukan banyaknya "kata" yang dapat dibentuk dari huruf-huruf "B O S A N".

Solusi:

► Cara 1, dengan aturan perkalian, yaitu:

$$5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120$$

Contoh

Tentukan banyaknya "kata" yang dapat dibentuk dari huruf-huruf "B O S A N".

Solusi:

Cara 1, dengan aturan perkalian, yaitu:

$$5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120$$

Cara 2, dengan aturan permutasi *n* objek dari *n* objek, yaitu:

$$P(5,5) = 5! = 120$$

Contoh

Tentukan banyaknya cara mengurutkan nama 25 orang mahasiswa

Contoh

Tentukan banyaknya cara mengurutkan nama 25 orang mahasiswa

Solusi:

Asumsi: tidak ada dua mahasiswa yang memiliki nama yang sama.

Analogi: mengisi 25 kotak dengan 25 huruf berbeda, dimana setiap kotak diisi 1 huruf.

Banyaknya cara pengurutan nama mahasiswa:

$$P(25,25) = 25!$$

Contoh

Diberikan tiga ujian dalam suatu periode enam hari (Senin s.d. Sabtu).

Tentukan banyaknya pengaturan jadwal sehingga tidak ada dua ujian atau lebih yang dilakukan pada hari yang sama.

Contoh

Diberikan tiga ujian dalam suatu periode enam hari (Senin s.d. Sabtu).

Tentukan banyaknya pengaturan jadwal sehingga tidak ada dua ujian atau lebih yang dilakukan pada hari yang sama.

Solusi:

Cara 1, dengan aturan perkalian, yaitu:

$$6 \cdot 5 \cdot 4 = 120$$

Contoh

Diberikan tiga ujian dalam suatu periode enam hari (Senin s.d. Sabtu).

Tentukan banyaknya pengaturan jadwal sehingga tidak ada dua ujian atau lebih yang dilakukan pada hari yang sama.

Solusi:

Cara 1, dengan aturan perkalian, yaitu:

$$6 \cdot 5 \cdot 4 = 120$$

Cara 2, dengan aturan permutasi 3 objek dari 6 objek, yaitu:

$$P(6,3) = \frac{6!}{(6-3)!} = 120$$

Contoh

Tentukan banyaknya string yang dapat dibentuk, yang terdiri dari 4 huruf berbeda diikuti dengan 3 angka berbeda.

Contoh

Tentukan banyaknya string yang dapat dibentuk, yang terdiri dari 4 huruf berbeda diikuti dengan 3 angka berbeda.

Solusi:

- ▶ Terdapat P(26,4) banyaknya susunan 4 huruf berbeda
- ightharpoonup Terdapat P(10,3) banyaknya susunan 3 angka berbeda

Jadi, banyaknya string yang memenuhi syarat tersebut adalah:

$$P(26,4) \cdot P(10,3) = 258,336,000$$

Contoh

Tentukan banyaknya kemungkinan membentuk 3 angka dari 5 angka: 1,2,3,4,5, sehingga:

- 1. tidak boleh ada pengulangan angka;
- 2. boleh ada pengulangan angka.

Contoh

Tentukan banyaknya kemungkinan membentuk 3 angka dari 5 angka: 1,2,3,4,5, sehingga:

- 1. tidak boleh ada pengulangan angka;
- 2. boleh ada pengulangan angka.

Solusi:

- 1. Dapat digunakan kaidah perkalian atau metode permutasi, yaitu: $6 \cdot 5 \cdot 4 = 120$, atau P(5,3) = 120.
- 2. Tidak dapat menggunakan metode permutasi, namun dapat digunakan kaidah perkalian, yaitu: $5 \cdot 5 \cdot = 125$.

Contoh

Tentukan banyaknya string yang dapat dibentuk dari permutasi huruf "SARUNG" sehingga huruf-huruf vokal terletak pada posisi saling bersebelahan.

Contoh

Tentukan banyaknya string yang dapat dibentuk dari permutasi huruf "SARUNG" sehingga huruf-huruf vokal terletak pada posisi saling bersebelahan.

Solusi:

Kita mencari string yang memuat "au" atau "ua".

- Jadi huruf "au" atau "ua" dapat dilihat sebagai satu blok.
- Banyaknya permutasi huruf: au, s, r, n, g adalah P(5,5) = 5! = 120.
- Banyaknya permutasi huruf: ua, s, r, n, g adalah P(5,5) = 5! = 120.

Jadi, banyaknya string yang dapat dibuat adalah: 120 + 120 = 240.

Bagian 5: Permutasi melingkar

Contoh motivasi permutasi melingkar

Diberikan 10 orang yang duduk pada suatu barisan yang terdiri dari 10 kursi.

Bagaimana jika kursi-kursi dalam posisi melingkar?

Contoh motivasi permutasi melingkar

Diberikan 10 orang yang duduk pada suatu barisan yang terdiri dari 10 kursi.

Bagaimana jika kursi-kursi dalam posisi melingkar?

- Satu orang pertama dapat duduk di posisi manapun.
- 9 orang lainnya dapat duduk dalam cara sebanyak:

$$9\times 8\times \cdots \times 3\times 2\times 1=9!$$

Contoh motivasi permutasi melingkar

Diberikan 10 orang yang duduk pada suatu barisan yang terdiri dari 10 kursi.

Bagaimana jika kursi-kursi dalam posisi melingkar?

- Satu orang pertama dapat duduk di posisi manapun.
- 9 orang lainnya dapat duduk dalam cara sebanyak:

$$9\times8\times\cdots\times3\times2\times1=9!$$

Definisi (Permutasi melingkar)

Permutasi melingkar dari n objek adalah penyusunan objek-objek dalam urutan melingkar. Banyaknya susunan adalah (n-1)!.

Suatu pesta dihadiri oleh 7 orang yang duduk mengelilingi meja bundar. Berapa banyak cara mereka dapat duduk sehingga setiap susunan yang hanya berbeda karena rotasi dianggap sama?

Suatu pesta dihadiri oleh 7 orang yang duduk mengelilingi meja bundar. Berapa banyak cara mereka dapat duduk sehingga setiap susunan yang hanya berbeda karena rotasi dianggap sama?

Solusi:

Untuk permutasi melingkar, jumlah susunan yang berbeda adalah:

(n-1)! dengan n adalah jumlah orang.

Dalam kasus ini, n = 7, sehingga banyaknya susunan adalah:

$$(7-1)! = 6! = 720.$$

Jadi, terdapat 720 cara bagi 7 orang untuk duduk mengelilingi meja bundar.

Dalam suatu pertemuan, terdapat 5 tamu yang duduk melingkar di sekitar meja bundar. Namun, dua orang tertentu harus duduk bersebelahan. Berapa banyak cara untuk mengatur tempat duduk mereka?

Dalam suatu pertemuan, terdapat 5 tamu yang duduk melingkar di sekitar meja bundar. Namun, dua orang tertentu harus duduk bersebelahan. Berapa banyak cara untuk mengatur tempat duduk mereka?

Solusi:

Kita anggap dua orang yang harus duduk bersebelahan sebagai satu kelompok yang tidak terpisahkan. Maka, jumlah objek yang disusun melingkar menjadi 5-1=4 (kelompok ini dihitung sebagai satu objek). Jumlah susunan melingkar dari 4 objek adalah:

$$(4-1)! = 3! = 6.$$

Di dalam kelompok, dua orang dapat bertukar tempat dengan 2! = 2 cara.

Oleh karena itu, jumlah total susunan adalah:

$$6 \times 2 = 12.$$

Jadi, terdapat 12 cara untuk mengatur tempat duduk mereka sehingga dua orang tertentu selalu duduk bersebelahan.

bersambung...