

75.12 95.04 ANÁLISIS NUMÉRICO I - 95.13 MÉTODOS MATEMÁTICOS Y NUMERICOS - 95.10 MODELACIÓN NUMÉRICA

GUÍA DE PROBLEMAS

SISTEMAS DE ECUACIONES LINEALES

Ejercicios Requeridos

A. Métodos Directos

1. Resolver el sistema lineal A.x=b utilizando eliminación de Gauss sin pivoteo, donde:

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 9 & 16 \\ 1 & 8 & 27 & 64 \\ 1 & 16 & 81 & 256 \end{bmatrix} \qquad b = \begin{bmatrix} 2 \\ 10 \\ 44 \\ 190 \end{bmatrix}$$

2. Calcular la inversa de la matriz A resolviendo el sistema A. X = I, utilizando eliminación de Gauss, siendo *I* la matriz identidad y *X* la matriz inversa de *A*. ¿Qué es lo que se obtiene si se utiliza pivoteo?

$$A = \begin{bmatrix} 2 & 1 & 2 \\ 1 & 2 & 3 \\ 4 & 1 & 2 \end{bmatrix}$$

3. Dada la siguiente descomposición LU de Doolittle de la matriz A efectuada utilizando pivoteo parcial

$$L = \begin{bmatrix} 1 & 0 & 0 \\ -1/2 & 1 & 0 \\ 1/2 & 1/5 & 1 \end{bmatrix} \qquad U = \begin{bmatrix} 4 & 1 & 0 \\ 0 & 5/2 & 1 \\ 0 & 0 & 4/5 \end{bmatrix} \qquad p = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$$

- a) Resolver el sistema de ecuaciones Ax = b siendo $b = \{1 2 7\}^T$
- b) Obtener la matriz A y verificar la solución obtenida en a).
- 4. Resolver el siguiente sistema:

$$\begin{bmatrix} 3,241 & 160 \\ 10200 & 1540 \end{bmatrix} \cdot \begin{Bmatrix} x \\ y \end{Bmatrix} = \begin{Bmatrix} 163,2 \\ 11740 \end{Bmatrix}$$

- a) Utilizar el método de eliminación de Gauss sin pivoteo y aritmética de punto flotante con t=4 y redondeo simétrico.
- b) Idem a) pero con pivoteo parcial.
- c) Idem a), sin pivoteo.
- d) Obtener conclusiones.

5. Dado el siguiente sistema de ecuaciones lineales

$$\begin{bmatrix} 31,69 & 14,31 \\ 13,11 & 5,890 \end{bmatrix} \cdot \begin{Bmatrix} x \\ y \end{Bmatrix} = \begin{Bmatrix} 45,00 \\ 19,00 \end{Bmatrix}$$

- a) Obtener la solución mediante eliminación de Gauss utilizando cuatro dígitos significativos y redondeo truncado
- b) Estimar el número de dígitos significativos de la solución obtenida previamente (Utilizar doble precisión al calcular el residuo).
- c) Repetir el punto c) sin utilizar doble precisión al evaluar el residuo.
- d) Obtener la solución del problema utilizando toda la precisión de una calculadora. Comparar las soluciones obtenidas y extraer conclusiones
- 6. Considerar la matriz A definida según:

$$a_{i,j} = \frac{1}{i+j-1}$$
 $1 \le i, j \le 4$

Considerar el sistema $A \cdot X = B$ donde:

$$b = \{0,58333 \ 0,21667 \ 0,11666 \ 0,07381\}^T$$

Resolver el sistema utilizando eliminación de Gauss con pivoteo parcial, operando con 5 decimales. Investigar las características de la matriz y obtener conclusiones.

7. Dada la matriz A del problema anterior y:

$$b = \{2,66666 \ 1,50000 \ 1,06666 \ 0,83334\}^T$$

resolver Ax=b aplicando la descomposición LU de A, con 5 decimales. Obtener conclusiones.

8. Resolver el siguiente sistema:

$$\begin{bmatrix} 2,15 & -0,924 & -1,29 \\ -4,12 & 2,29 & 0,294 \\ 1,01 & 0,872 & -3,25 \end{bmatrix} \cdot \begin{pmatrix} x1 \\ x2 \\ x3 \end{pmatrix} = \begin{pmatrix} 1,22 \\ -3,56 \\ -0,972 \end{pmatrix}$$

Utilizar eliminación de Gauss con pivoteo parcial. Hallar la descomposición LU de la matriz de coeficientes y utilizarla para hallar una estimación del error de redondeo. Utilizar aritmética de punto flotante con 3 dígitos.

9. Sea el siguiente sistema de ecuaciones:

$$a_{11}.x + a_{12}.y = b_1$$

 $a_{21}.x + a_{22}.y = b_2$

- a) Hallar la solución por la regla de Cramer y por eliminación de Gauss, con aritmética de punto flotante y 3 dígitos de precisión.
- b) Estimar el error de redondeo en los resultados anteriores utilizando la gráfica de proceso. No considerar los errores de entrada en los coeficientes de las ecuaciones.
- c) Indicar cuál de los dos métodos es más estable y por qué.

Datos:

$$a_{11} = 1,58$$
 $a_{12} = -2,31$ $b_1 = 3,35$ $a_{21} = 0,524$ $a_{22} = 3,42$ $b_2 = -1,37$

10. Sea el siguiente sistema de ecuaciones:

$$0,721. x - 0,352. y = 1,62$$

 $0,836. x - 0,410. y = 1,89$

Resolverlo utilizando eliminación de Gauss con pivoteo parcial. Hallar la descomposición LU de la matriz de coeficientes. Trabajar con una precisión de 3 dígitos.

11. Sea el siguiente sistema de ecuaciones:

$$\begin{bmatrix} 2,50 & 0,14 & 0 & 0 \\ -0,25 & 1,40 & 0,72 & 0 \\ 0 & 0,44 & 3,20 & -0,21 \\ 0,85 & 0 & 0,11 & 1,80 \end{bmatrix} \cdot \begin{cases} x1 \\ x2 \\ x3 \\ x4 \end{cases} = \begin{cases} 3,40 \\ -1,10 \\ 1,60 \\ -2,20 \end{cases}$$

Los coeficientes están correctamente redondeados. Para resolverlo se propone el siguiente método mixto directo/iterativo:

- Se da a x_1 el valor de arranque $x_1=0$
- \bullet Con ese valor de x_1 se pasa el primer término de la última ecuación al miembro derecho, resultando un sistema tridiagonal.
- Se resuelve el sistema por medio del algoritmo tridiagonal.
- Con el nuevo valor hallado para x₁ se corrige el término independiente de la cuarta ecuación y se vuelve a resolver el sistema tridiagonal, utilizando la descomposición LU del punto anterior.
- Se repite el procedimiento descripto en el punto anterior hasta obtener la convergencia.
- a) Resolver el sistema en la forma propuesta, utilizando aritmética de punto flotante con 3 dígitos de precisión, de modo de mantener pequeño el error de redondeo.
- b) Estimar los errores en los resultados debido a los errores de entrada en los coeficientes del sistema. Para ello estimar el número de condición de la matriz de coeficientes.

12. Sea la siguiente matriz:

$$\begin{bmatrix} 2,510 & -0,142 & 0,754 \\ -1,210 & 3,440 & 0,231 \\ 2,510 & -0,142 & 0,754 \end{bmatrix}$$

- a) Hallar la descomposición LU utilizando pivoteo total y aritmética de punto flotante con 3 dígitos de precisión.
- b) Utilizando la descomposición LU obtenida en el punto anterior, calcular la solución de un sistema de ecuaciones lineales cuyo vector de términos independientes es:

$$b = \{3,760 \qquad -2,120 \qquad 2,120\}^T$$

13. Sea el sistema de ecuaciones lineales:

$$0,001325 \cdot x_1 - 5.843 \cdot x_2 = 5,844$$

 $3,128 \cdot x_1 - 2,745 \cdot x_2 = 0,3831$

- a) Obtener las soluciones numéricas utilizando eliminación de Gauss sin y con pivoteo parcial.
- b) Hallar estimaciones de los errores de redondeo en los resultados obtenidos en a). No considerar errores en los coeficientes ni en los términos independientes. Obtener conclusiones.

14. Sea el sistema de ecuaciones lineales:

$$\begin{bmatrix} 0,003152 & -15,28 \\ -0,009413 & 45,60 \end{bmatrix} \cdot \begin{Bmatrix} x1 \\ x2 \end{Bmatrix} = \begin{Bmatrix} 14,98 \\ -44,75 \end{Bmatrix}$$

- a) Obtenerla solución numérica utilizando dos algoritmos: eliminación de Gauss con pivoteo parcial y eliminación de Gauss con pivoteo total.
- b) Estimar el número de condición de la matriz de coeficientes.
- c) En base a los resultados obtenidos en los puntos a) y b), indicar cuales de las siguientes afirmaciones son correctas y por qué:
- El primer algoritmo está mal condicionado.
- El segundo algoritmo está mal condicionado.
- El problema está mal condicionado.

15. Sea el sistema de ecuaciones lineales:

$$\begin{bmatrix} 1,38 & -0,235 \\ 0,742 & -0,125 \end{bmatrix} \cdot \begin{Bmatrix} x1 \\ x2 \end{Bmatrix} = \begin{Bmatrix} 1,66 \\ 0,891 \end{Bmatrix}$$

- a) Hallar la solución mediante eliminación de Gauss, obteniendo la descomposición LU de la matriz de coeficientes.
- b) Analizar la propagación de errores mediante la gráfica de proceso. Descomponer el proceso total en los siguientes subprocesos: obtención del multiplicador, eliminación y sustitución inversa. Obtener estimaciones de los errores finales en los resultados.
- c) Obtener otra estimación de los errores. Estimar el número de condición de la matriz.
- d) Extraer conclusiones sobre los resultados obtenidos en b) y c).

16. Sea el sistema de ecuaciones lineales Ax=b, donde:

$$A = \begin{bmatrix} 3,142 & -2,458 & 0,7542 \\ -1,154 & 5,258 & -0,4385 \\ 2,374 & -7,518 & -3,246 \end{bmatrix} \qquad b = \begin{Bmatrix} 7,177 \\ -6,879 \\ 2,886 \end{Bmatrix}$$

- a) Obtener la solución utilizando eliminación de Gauss con pivoteo parcial. Hallar la descomposición LU de la matriz de coeficientes. Trabajar con 4 dígitos de precisión.
- b) Hallar el factor de amplificación F_B de los errores de entrada en b mediante perturbaciones experimentales. Tomar:

$$\delta b = \{0,1 \quad 0,1 \quad 0,1\}^T$$

utilizar la descomposición LU y el estimador

$$F_B = \frac{\|dx\| \|x\|}{\|db\| \|b\|}$$

- c) Estimar el orden de magnitud de la perturbación que se produciría en x si la matriz A se perturbara en un 5%.
- 17. Programar en pseudolenguaje un algoritmo que resuelva sistemas de ecuaciones lineales mediante eliminación de Gauss con pivoteo total teniendo en cuenta que se dispone de las siguientes subrutinas:
 - a) BUSCA(n,A,apf,apc,i,s,r): Dado el índice i, que indica la posición de pivoteo (i,i), devuelve los índices s y r de fila y columna en donde se encontró el pivote. A es la matriz de coeficientes, n la dimensión, apf y apc son los apuntadores de fila y columna.
 - b) CAMBIO(apf,apc,i,s,r): Dado el índice i, que indica la posición de pivoteo, y los índices s y r, que indican la posición del pivote, efectúa la actualización de los vectores apuntadores de fila y columna.
 - c) ELIMINA(A,b,apf,apc,i,j,m): Dado el índice i de la fila de pivoteo, el índice j de la fila de eliminación y el multiplicador m, efectúa la eliminación sobre los elementos de A y del vector de términos independientes b; apf y apc son los apuntadores de fila y columna.
- 18. Programar en seudolenguaje las subrutinas del problema anterior.
- 19. Repetir los problemas 17 y 18 para el caso de pivoteo parcial
- 20. Describir como se simplifica el algoritmo del método de eliminación de Gauss para el caso particular en que la matriz de coeficientes es simétrica definida positiva.
- 21. Programar en seudolenguaje las subrutinas del problema anterior.

B. Métodos Iterativos

22. Dado el siguiente sistema de ecuaciones lineales donde la matriz A no singular

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \cdot \begin{Bmatrix} x1 \\ x2 \end{Bmatrix} = \begin{Bmatrix} b_1 \\ b_2 \end{Bmatrix}$$

- a) Establecer cuando el método de Jacobi diverge.
- b) Demostrar que si el método de Jacobi converge el método de Gauss Seidel lo hace más rápido.
- 23. Sea el sistema de ecuaciones lineales:

$$\begin{bmatrix} 0.012350 & -2.387 \\ 5.462 & 0.008406 \end{bmatrix} \cdot \begin{Bmatrix} x1 \\ x2 \end{Bmatrix} = \begin{Bmatrix} 1.370 \\ 10.85 \end{Bmatrix}$$

- a) Resolverlo por el método de Jacobi. Efectuar las modificaciones necesarias para garantizar la convergencia. Trabajar con 5 dígitos de precisión.
- b) Explicar la convergencia o no de los algoritmos del punto a) en términos de la norma de la matriz de iteración.
- c) Si el sistema se expresa simbólicamente como Ax=b, escribir en seudolenguaje un algoritmo que evalúe e informe la matriz de iteración a partir de A y b.
- 24. Resolver el siguiente sistema utilizando el método de Gauss-Seidel, iterando hasta que la máxima diferencia entre dos valores sucesivos de x, y ó z sea menor que 0,02. Indicar si esto último significa que la solución obtenida está en un intervalo de radio 0,02 alrededor de la solución exacta.

$$10 x + 2 y + 6 z = 28$$

 $x + 10 y + 4 z = 7$
 $2 x - 7 y - 10 z = -17$

25. Resolver el siguiente sistema utilizando el método de Gauss-Seidel:

$$egin{array}{lll} a & + d = 2 \\ a + 4 b & - d = 4 \\ a + & c & = 2 \\ c + d = 2 \end{array}$$

26. Considerar el sistema poco denso de ecuaciones:

Mostrar que el sistema permanece poco denso cuando se lleva a la forma triangular utilizando el método de eliminación de Gauss. Hallar la solución por Gauss y luego por Gauss-Seidel.

27. Dado el siguiente sistema de ecuaciones:

$$3,210 x_1 + 0,943 x_2 + 1,020 x_3 = 2,300$$

 $0,745 x_{1}$ - $1,290 x_3 = 0,740$
 $0,875 x_1 - 2,540 x_2 + 0,247 x_3 = 3,390$

- a) Efectuar las modificaciones necesarias para poder garantizar la convergencia utilizando el método de Gauss-Seidel.
- b) Resolverlo iterando hasta alcanzar una precisión de 3 dígitos significativos, sin exceder un máximo de 5 iteraciones. Trabajar con una precisión que garantice un error de redondeo despreciable.
- c) Establecer la cantidad de dígitos significativos efectivamente obtenidos en el punto a), para cada una de las 3 componentes del vector solución. Indicar si se verifica el criterio para acotar el error de truncamiento por medio de la norma de la diferencia entre dos vectores solución consecutivos.
- d) Determinar cómo influye un error absoluto de 0,01 en el primer coeficiente de la primera ecuación sobre los valores calculados de x_1 , x_2 y x_3 .
- 28. Construir un algoritmo para hallar experimentalmente el valor óptimo del factor de sobre-relajación para un dado sistema de ecuaciones lineales. Programarlo en seudolenguaje. La precisión requerida para dicho factor es de 2 dígitos.
- 29. Dado el sistema Ax = b, construir un algoritmo que halle el vector solución x mediante el método de Gauss-Seidel.
- 30. Dado el siguiente sistema de ecuaciones:

$$5 x_1 + 2 x_2 + = 25$$

 $2 x_1 + 5 x_2 - x_3 = 30$
 $- x_2 + 5 x_3 = -10$

- a. Demostrar la convergencia utilizando el método SOR para w=1,2.
- b. Calcular el w_{opt} y resolver el sistema garantizando una precisión de al menos 0,001%.
- c. Resolver utilizando los métodos de Gauss-Seidel y Jacobi. Sacar conclusiones sobre las respectivas velocidades de convergencia.
- 31. Dado el siguiente sistema de ecuaciones:

$$5 x1 + 2 x2 + 6 x3 = 15$$

 $x1 + 5 x2 + 4 x3 = 17$
 $-2 x1 + 7 x2 + 5 x3 = -10$

- a. Calcular el w_{opt} de forma experimental y resolver el sistema con el método SOR, garantizando una precisión de al menos 0,001%.
- b. Construir un gráfico donde se represente "nº iteraciones vs w".
- c. Construir un algoritmo que halle el vector solución x mediante el método SOR.

Ejercicios Adicionales

A.1) En la siguiente figura se muestra un grupo de 3 reactores conectados entre sí, por el que circulan determinados caudales de agua $Q_i[m3/seg]$ con distintas concentraciones $c_i[mg/m3]$ de Carbonato de Calcio (CaCO3). Se desean conocer las concentraciones c_1 , c_2 y c_3 .

- a) Desarrolle las ecuaciones de balance de masa para cada reactor, y resuelva el sistema de ecuaciones lineales mediante eliminación de Gauss sin pivoteo trabajado con 4 dígitos.
- b) Estimar el número de condición de la matriz y obtener conclusiones.

Datos:

$$Q_{33} = 120 \text{ [m3/seg]}, Q_{13} = 40 \text{ [m3/seg]}, Q_{12} = 80 \text{ [m3/seg]}, Q_{23} = 60 \text{ [m3/seg]}, Q_{21} = 20 \text{ [m3/seg]}$$

Ec. de balance de masa estacionario para un reactor:

$$\sum Q_e * c_e = \sum Q_s * c_s$$

con Q_s , Q_e y c_s , c_e los caudales y las concentraciones de salida y entrada respectivamente.

A.2) Se desea resolver un problema caracterizado por el siguiente sistema de ecuaciones lineales:

$$\begin{bmatrix} 1,5 & -4,5 & 2,0 \\ 1,0 & 1,0 & -5,0 \\ 16 & 5,0 & 2,4 \end{bmatrix}$$

- a) Analice la convergencia por el método de Gauss Seidel.
- b) Resuelva el sistema, siendo $b = (0.5 \ 3.0 \ 135.8)^T$ hasta lograr un error relativo menor al 1%.
- c) Estimar experimentalmente el orden de convergencia del método.