Семинар 13

1 Бодлого, Дасгал

- 1-4. Муруй шугаман интегралыг бод.а. Шууд b. Грийний теоремыг ашигла
 - 1. $\phi_C(x^2-y)dx+y^2dy$, $C: x^2+y^2=1$ цагийн зүүний эсрэг чиглэлтэй тойрог
 - 2. $\oint_C (y^2+x) dx + (3x+2xy) dy$, C: $x^2+y^2=4$ цагийн зүүний эсрэг чиглэлтэй тойрог
 - 3. $\oint_C (x^2 dx x^3 dy,\, C\colon$ квадратын (0,0)-ooc (0,2),(2,2),(2,0),(0,0)хүртэл
 - 4. $\oint_C (y^2-2x)dx+x^2dy$, C: квадратын (0,0)-оос (1,0),(1,1),(0,1),(0,0) хүртэл
- 5-12. Грийний теоремыг ашиглан өгөгдсөн интегралыг бод. (Муруй эерэг чиглэлтэй)
 - 5. $\oint_C xe^{2x}dx 3x^2ydy$, C: тэгш өнцөгтийн (0,0)-оос (3,0),(3,2),(0,2),(0,0) хүртэл
 - 6. $\oint_C y e^{2x} dx + x^2 y^2 dy,$ C: тэгш өнцөгтийн (-2,0)-оос (3,0),(3,2),(-2,2),(-2,0) хүртэл
 - 7. $\oint_C \left(\frac{x}{x^2+1}-y\right) dx+(3x-4\tan\frac{y}{2}) dy$, C: $y=x^2$ -ийн (-1,1)-оос (1,1) хүртэлх, $y=2-x^2$ -ийн (1,1)-ээс (-1,1) хүртэлх хэсэг
 - 8. $\int_C (xy-e^{2x})dx + (2x^2-4y^2)dy$, C: $y=x^2$ ба $y=8-x^2=4$ цагийн зүүний дагуу чиглэлтэй
 - 9. $\oint_C (\tan x y^3) dx + (x^3 \sin y) dy$, $C: x^2 + y^2 = 2$ тойрог
 - 10. $\int_C (\sqrt{x^2+1}-x^2y)dx+(xy^2-y^{\frac{5}{3}})dy,$ C: $x^2+y^2=4$ цагийн зүүний дагуу чиглэлтэй тойрог
 - 11. $\int_C {\bf F} \cdot d{\bf r},$ Энд ${\bf F} = \langle x^3-y, x+y^3 \rangle$ болон $C: y=x^2$ ба y=x
 - 12. $\int_C {\bf F} \cdot d{\bf r},$ Энд ${\bf F} = \langle y^2 + 3x^2y, xy + x^3 \rangle$ болон $C: y = x^2$ ба y = 2x
- 13-16. Вектор орны дивергенц, роторыг ол.
 - 13. $x^2 \mathbf{i} 3xy \mathbf{j}$
- 14. y^2 **i** + $4x^2y$ **j**
- 15. 2xzi 3yk
- 16. $x^2 \mathbf{i} 3xy \mathbf{i} + x \mathbf{k}$
- 17. Хэрэв f нь скаляр функц, ${\bf F}$ нь вектор функц бол дараах илэрхийлэл тодорхойгүй эсвэл скаляр, вектор хэмжигдэхүүн болохыг тотоо.
 - a. $\nabla(\nabla f)$
 - b. $\nabla \times (\nabla \cdot \mathbf{F})$
 - c. $\nabla(\nabla \times \mathbf{F})$
 - d. $\nabla(\nabla \cdot \mathbf{F})$
 - e. $\nabla \times (\nabla f)$

18-20. $\mathbf{r} = \langle x, y, z \rangle, \mathbf{r} = \|\mathbf{r}\|$ ба f скаляр функц бол дараах илэрхийллийг батал.

18.
$$\nabla \times \mathbf{r} = \mathbf{0}$$
 fa $\nabla \cdot \mathbf{r} = 3$

19.
$$\nabla \cdot (r\mathbf{r}) = 4r$$

20.
$$\nabla f(r) = f'r\frac{\mathbf{r}}{r}$$

2 Бодлого, Дасгал

- 1-6. Өгөгдсөн гадаргуунуудын гадаргуугийн талбайг ол.
 - 1. z=4 хавтгайгаас доош $z=\sqrt{x^2+y^2}$ конусын хэсэг
 - 2. z=4 хавтгайгаас доош $z=x^2+y^2$ параболойдын хэсэг
 - 3. $x^2 + y^2 = 4$ цилиндрийн дотор, 3x + y + z = 6 хавтгайн хэсэг
 - 4. $y=x^2$ ба y=1 хязгаарлагдсан мужаас дээш x+2y+z=4 хавтгайн хэсэг
 - 5. $x^2 + y^2 = 4$ цилиндрийн дотор, $z = x^2 + y^2$ параболойдын хэсэг
 - 6. z=1 хавтгайгаас дээш $z=\sqrt{4-x^2-y^2}$ тал бөмбөрцгийн хэсэг
- 7-12. $\int_{S} \int g(x,y,z) dS$ хэлбэрийн гадаргуугийн интегралыг бод.
 - 7. $\int_S \int xz dS$, S: $1 \le x \le 2, 1 \le y \le 3$ тэгш өнцөгтөөс дээш z = 2x + 3y хавтгайн хэсэг
 - 8. $\int_S \int (z-y^2)dS$, S: z=4 хавтгайгаас дээш $z=x^2+y^2$ параболойдын хэсэг
 - 9. $\int_{S} \int (x^2 + y^2 + z^2)^{\frac{3}{2}} dS$, $S: z = \sqrt{9 x^2 y^2}$ доод тал бөмбөрцөг
 - 10. $\int_{S}\int\sqrt{x^{2}+y^{2}+z^{2}}dS,\,S$: $x^{2}+y^{2}+z^{2}=9$ хавтгайн хэсэг
 - 11. $\int_S \int (x^2 + y^2 z) dS$, S: z = 1 ба z = 2 хооронд орших $z = 4 x^2 y^2$ параболойдын хэсэг
 - 12. $\int_{S} \int z dS$, S: $z = -\sqrt{9 x^2 y^2}$ тал бөмбөрцөг
- 13-16. $\int_S \int \mathbf{F} \cdot \mathbf{n} dS$ урсгалыг ол.
 - 13. $\mathbf{F} = \langle x, y, z \rangle$, S: xy- хавтгайгаас дээш $z = 4 x^2 y^2$ параболойдын хэсэг (\mathbf{n} дээш чиглэлтэй)
- 14. $\mathbf{F} = \langle y, -x, 1 \rangle$, S: z = 4- хавтгайгаас дээш $z = x^2 + y^2$ параболойдын хэсэг (\mathbf{n} доош чиглэлтэй)
- 15. $\mathbf{F}=\langle y,-x,z\rangle,\,S$: z=3- хавтгайгаас дээш $z=\sqrt{x^2+y^2}$ конусы хэсэг (\mathbf{n} доош чиглэлтэй)
- 16. $\mathbf{F} = \langle 0, 1, y \rangle$, $S: x^2 + y^2 = 4$ дотор $z = -\sqrt{x^2 + y^2}$ конусы хэсэг (**n** дээш чиглэлтэй)
- 17-20. Гаргуугийн интегралыг бод.
 - 17. $\int_{S} \int z dS$, S: z нь z = 1 ба z = 2 хоорнд $x \ge 0$ бүхий $x^2 + y^2 = 1$ -ийн хэсэг
 - 18. $\int_S \int yzdS$, S: z нь z=1 ба z=4-y хоорнд $x\geq 0$ бүхий $x^2+y^2=1$ -ийн хэсэг
 - 19. $\int_{S} \int y^{2} + z^{2} dS$, S: z нь yz хавтгайн урд хэсэг дэх $x = 9 y^{2} z^{2}$ параболойдын хэсэг
 - 20. $\int_{S} \int y^2 + z^2 dS$, $S: x = \sqrt{4 y^2 z^2}$ тал бөмбөрцөг