[Summary]

The rotation ${\bf R}$ of the vector ${\bf r}$ through an angle ψ about some unit vector $\hat{\boldsymbol{\omega}}$ can be computed with

$$\mathbf{R}(\mathbf{r}, \hat{\boldsymbol{\omega}}, \psi) = \sin \psi \cdot [\hat{\boldsymbol{\omega}} \times \mathbf{r}] + \cos \psi \cdot \mathbf{r} + \hat{\boldsymbol{\omega}} (1 - \cos \psi) (\hat{\boldsymbol{\omega}} \cdot \mathbf{r})$$

The matrix form of this result is

$$\mathbf{R}\left(\mathbf{r},\hat{\boldsymbol{\omega}},\psi\right) = \mathbf{\Psi}\mathbf{r}$$

where Ψ is the rotation matrix

$$\Psi = \begin{bmatrix} c + \omega_x \omega_x (1 - c) & -\omega_z s + \omega_x \omega_y (1 - c) & +\omega_y s + \omega_x \omega_z (1 - c) \\ +\omega_z s + \omega_y \omega_x (1 - c) & c + \omega_y \omega_y (1 - c) & -\omega_x s + \omega_y \omega_z (1 - c) \\ -\omega_y s + \omega_z \omega_x (1 - c) & +\omega_x s + \omega_z \omega_y (1 - c) & c + \omega_z \omega_z (1 - c) \end{bmatrix}$$

Note that we have used the shorthand $c = \cos \psi$ and $s = \sin \psi$.

[Discovery]

We will consider the problem of taking any point in space \mathbf{r} and rotating it through some angle ψ about the unit vector $\hat{\boldsymbol{\omega}}$. To begin, let us use label θ to denote the angle between \mathbf{r} and $\boldsymbol{\omega}$. We will split \mathbf{r} into \mathbf{r}_{\parallel} and \mathbf{r}_{\perp} . We will form \mathbf{r}_{\parallel} by projecting \mathbf{r} onto $\hat{\boldsymbol{\omega}}$ and we will form \mathbf{r}_{\perp} by taking whatever is left over after the projection

$$\mathbf{r}_{\parallel} = r \cos \theta \cdot \hat{\boldsymbol{\omega}}$$

= $\hat{\boldsymbol{\omega}} (\hat{\boldsymbol{\omega}} \cdot \mathbf{r})$

$$\mathbf{r}_{\perp} = \mathbf{r} - \mathbf{r}_{\parallel} \ = \mathbf{r} - \hat{\boldsymbol{\omega}} \left(\hat{\boldsymbol{\omega}} \cdot \mathbf{r} \right)$$

We now consider the plane which is perpendicular \mathbf{r}_{\parallel} and drawn at the tip of \mathbf{r}_{\parallel} . We wish to find basis vectors in that plane. The vector \mathbf{r}_{\perp} is already one such basis vector. We know that our second basis vector $\boldsymbol{\rho}$ will be perpendicular to both \mathbf{r}_{\perp} and $\hat{\boldsymbol{\omega}}$. We can therefore find $\boldsymbol{\rho}$ as follows

$$oldsymbol{
ho} = oldsymbol{\hat{\omega}} imes \mathbf{r}_{\perp} = oldsymbol{\hat{\omega}} imes \left(\mathbf{r} - \mathbf{r}_{\parallel}
ight) = oldsymbol{\hat{\omega}} imes \mathbf{r}$$

Notice that ρ is conveniently of the same magnitude as \mathbf{r}_{\perp} . To find where \mathbf{r} goes when rotated about $\hat{\boldsymbol{\omega}}$ we make a circular combination of \mathbf{r}_{\perp} and ρ , which we then add back to \mathbf{r}_{\parallel} , as follows:

$$\begin{aligned} \mathbf{R}(\mathbf{r}, \hat{\boldsymbol{\omega}}, \psi) &= \mathbf{r}_{\parallel} + \mathbf{r}_{\perp} \cos \psi + \boldsymbol{\rho} \sin \psi \\ &= \hat{\boldsymbol{\omega}} \left(\hat{\boldsymbol{\omega}} \cdot \mathbf{r} \right) + \cos \psi \cdot \left[\mathbf{r} - \hat{\boldsymbol{\omega}} \left(\hat{\boldsymbol{\omega}} \cdot \mathbf{r} \right) \right] + \sin \psi \cdot \left[\hat{\boldsymbol{\omega}} \times \mathbf{r} \right] \\ &= \sin \psi \cdot \left[\hat{\boldsymbol{\omega}} \times \mathbf{r} \right] + \cos \psi \cdot \mathbf{r} + \hat{\boldsymbol{\omega}} \left(1 - \cos \psi \right) \left(\hat{\boldsymbol{\omega}} \cdot \mathbf{r} \right) \end{aligned}$$

We give the component expansion of this result below. For the sake of readability we will use c and s for $\cos \psi$ and $\sin \psi$.

$$R_x = s\left(\omega_y r_z - \omega_z r_y\right) + c r_x + \omega_x \left(1 - c\right) \left(\omega_x r_x + \omega_y r_y + \omega_z r_z\right)$$

$$R_y = s\left(\omega_z r_x - \omega_x r_z\right) + c r_y + \omega_y \left(1 - c\right) \left(\omega_x r_x + \omega_y r_y + \omega_z r_z\right)$$

$$R_z = s\left(\omega_x r_y - \omega_y r_x\right) + c r_z + \omega_z \left(1 - c\right) \left(\omega_x r_x + \omega_y r_y + \omega_z r_z\right)$$

It is clear that each of these components can be written as a linear combination of r_x , r_y , and r_z . In order to see this explicitly we first expand out all multiplications

$$\begin{split} R_x &= s\omega_y r_z - s\omega_z r_y + cr_x + \omega_x \omega_x r_x + \omega_x \omega_y r_y + \omega_x \omega_z r_z - c\omega_x \omega_x r_x - c\omega_x \omega_y r_y - c\omega_x \omega_z r_z \\ R_y &= s\omega_z r_x - s\omega_x r_z + cr_y + \omega_y \omega_x r_x + \omega_y \omega_y r_y + \omega_y \omega_z r_z - c\omega_y \omega_x r_x - c\omega_y \omega_y r_y - c\omega_y \omega_z r_z \\ R_z &= s\omega_x r_y - s\omega_y r_x + cr_z + \omega_z \omega_x r_x + \omega_z \omega_y r_y + \omega_z \omega_z r_z - c\omega_z \omega_x r_x - c\omega_z \omega_y r_y - c\omega_z \omega_z r_z \end{split}$$

Then we collect the terms in order to make the linear combinations stand out

$$\begin{split} R_x &= r_x \left(\omega_x \omega_x + c - c \omega_x \omega_x \right) + r_y \left(\omega_x \omega_y - c \omega_x \omega_y - s \omega_z \right) + r_z \left(\omega_x \omega_z - c \omega_x \omega_z + s \omega_y \right) \\ R_y &= r_x \left(\omega_x \omega_y - c \omega_x \omega_y + s \omega_z \right) + r_y \left(\omega_y \omega_y + c - c \omega_y \omega_y \right) + r_z \left(\omega_y \omega_z - c \omega_y \omega_z - s \omega_x \right) \\ R_z &= r_x \left(\omega_x \omega_z - c \omega_x \omega_z - s \omega_y \right) + r_y \left(\omega_y \omega_z - c \omega_y \omega_z + s \omega_x \right) + r_z \left(\omega_z \omega_z + c - c \omega_z \omega_z \right) \end{split}$$

This result is best written in matrix form as

$$\mathbf{R}(\mathbf{r}, \hat{\boldsymbol{\omega}}, \psi) = \mathbf{\Psi}\mathbf{r}$$

where Ψ is the rotation matrix

$$\Psi = \begin{bmatrix} c + \omega_x \omega_x (1 - c) & -\omega_z s + \omega_x \omega_y (1 - c) & +\omega_y s + \omega_x \omega_z (1 - c) \\ +\omega_z s + \omega_y \omega_x (1 - c) & c + \omega_y \omega_y (1 - c) & -\omega_x s + \omega_y \omega_z (1 - c) \\ -\omega_y s + \omega_z \omega_x (1 - c) & +\omega_x s + \omega_z \omega_y (1 - c) & c + \omega_z \omega_z (1 - c) \end{bmatrix}$$