Project 4 (0.2 points)

- Input: non-zero natural numbers k and n with $k \leq n$
- Output:
 - 1. the number of k-dimensional subspaces of the vector space \mathbb{Z}_2^n over \mathbb{Z}_2
 - 2. a basis of each such subspace (for $1 \le k \le n \le 6$)

Example: The vector space \mathbb{Z}_2^3 over \mathbb{Z}_2 has 8 vectors, namely (0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1). Any 2-dimensional subspace has a basis with two vectors. There are $C_7^2 = 21$ possibilities to choose 2 vectors out of the 8 vectors of \mathbb{Z}_2^3 , but some of them will generate the same subspace. Only 7 choices will generate different subspaces.

- Input: k = 2, n = 3
- Output:
 - 1. the number of 2-dimensional subspaces of the vector space \mathbb{Z}_2^3 over \mathbb{Z}_2 is 7
 - 2. a basis of each such subspace is:

$$\begin{array}{c|c} ((0,0,1),(0,1,0)) & & & & & & & \\ ((0,0,1),(1,0,0)) & & & & & & \\ ((0,0,1),(1,1,0)) & & & & & & \\ ((0,1,0),(1,0,0)) & & & & & \\ ((0,1,0),(1,0,0)) & & & & & \\ \end{array}$$

Project 5 (0.2 points)

- Input: natural numbers $m, n \geq 2$
- Output:
 - 1. the number of matrices $A \in M_{m,n}(\mathbb{Z}_2)$ in reduced (that is, each column containing a leading 1 has zeros everywhere else) echelon form
 - 2. the matrices $A \in M_{m,n}(\mathbb{Z}_2)$ in reduced echelon form (for $2 \leq m, n \leq 5$)

Example:

- Input: m = 2, n = 3
- Output:
 - 1. the number of matrices $A \in M_{2,3}(\mathbb{Z}_2)$ in reduced echelon form is 15
 - 2. the matrices $A \in M_{2,3}(\mathbb{Z}_2)$ in reduced echelon form are (the leading 1's are framed):