Devoir Surveillé n° 4 (4h)

Correction du problème – Groupe fondamental de \mathbb{C}^* .

Questions préliminaires

1. Soit $t_0 \in [0,1]$, et $\varepsilon > 0$. Il existe donc δ tel que pour tout $t \in [0,1]$,

$$|t - t_0| < \delta \Longrightarrow |f(t) - f(t_0)| < \varepsilon.$$

Soit donc $t \in [0, 1]$ tel que $|t - t_0| < \delta$. Par l'inégalité triangulaire, on a alors

$$||f(t)| - |f(t_0)|| < |f(t) - f(t_0)| < \varepsilon.$$

Ainsi, $t \mapsto |f(t)|$ est bien continue en t_0 , et ceci pour tout $t_0 \in [0,1]$.

- 2. Soit $\varepsilon > 0$ et $(t_0, x_0) \in [0, 1]^2$.
 - On note $J = \{i \in I \mid (t_0, x_0) \in F_i\}$ et $K = \{i \in I \mid (t_0, x_0) \notin F_i\}$.
 - Comme F_i est fermé, si $i \in K$, il existe $\delta_i > 0$ tel que $B((t_0, x_0), \delta_i) \cap F_i = \emptyset$. Par ailleurs, par continuité de $H_{|F_i}$, pour tout $i \in J$, il existe δ_i tel que pour tout $(t, x) \in [0, 1]$, si $(t, x) \in F_i$,

$$||(t,x) - (t_0,x_0)|| < \delta_i \Longrightarrow |H(t,x) - H(t_0,x_0)| < \varepsilon$$

On définit $\delta = \min \delta_i$.

• Soit $(t,x) \in [0,1]^2$ tel que $||(t,x)-(t_0,x_0)|| < \delta$. Par hypothèse, il existe $i_0 \in I$ tel que $(t,x) \in F_{i_0}$. Puisque $\delta < \delta_i$, on ne peut pas avoir $i_0 \in K$ (cela contredirait la définition de δ_i), donc $i_0 \in J$. Comme $\delta < \delta_{i_0}$, on en déduit que

$$|H(t,x)-H(t_0,x_0)|<\varepsilon.$$

Ainsi, H est continue

Partie I – Lacets, homotopie et groupe fondamental

1. Produit de lacets

- L'application $t \mapsto \gamma_1(2t)$ est continue sur $[0,\frac{1}{2}]$ (composée de fonctions continues), et coïncide sur l'ouvert] $-\infty, \frac{1}{2}$ [avec $\gamma_1 \cdot \gamma_2$. Donc $\gamma_1 \cdot \gamma_2$ est continue sur l'intersection de son domaine et de] $-\infty, \frac{1}{2}$ [, donc sur
- De même, l'application $t \mapsto \gamma_2(2t-1)$ est continue sur $\left[\frac{1}{2},1\right]$ et coïncide sur l'ouvert $\left[\frac{1}{2},+\infty\right[$ avec $\gamma_1 \cdot \gamma_2$. Ainsi, $\gamma_1 \cdot \gamma_2$ est continue sur $]\frac{1}{2}$, $+\infty[\cap[0,1]=]\frac{1}{2}$, 1[.
- On détermine la continuité en $\frac{1}{2}$ en considérant les limites à gauche et à droite, qu'on trouve grâce à la continuité de γ_1 en 1 et de γ_2 en 0 :

Ainsi, $\gamma_1 \cdot \gamma_2$ est continue en $\frac{1}{2}$.

On en déduit que $\gamma_1 \cdot \gamma_2$ est continue, et $\gamma_1 \cdot \gamma_2(0) = \gamma_1 \cdot \gamma_2(1) = z_0$, donc $\gamma_1 \cdot \gamma_2 \in \mathcal{L}_{z_0}$

2. La relation d'homotopie

(a) On définit H par :

$$\forall (t, x) \in [0, 1]^2, \ H(t, x) = (\gamma(t), x).$$

- L'application H est continue en chacune de ses coordonnées, donc d'après les résultats rappelés, H est continue sur $[0,1]^2$.
- Pour tout $t \in [0, 1], H(t, 0) = \gamma(t)$
- Pour tout $t \in [0, 1], H(t, 1) = \gamma(t)$
- Pour tout $x \in [0,1]$, $H(0,x) = \gamma(0) = z_0$ et $H(1,x) = \gamma(1) = z_0$.

Ainsi, H est bien une homotopie de γ sur lui-même, donc $\gamma \sim \gamma$.

(b) Soit γ_0 et γ_1 homotopes, et H une homotopie de γ_0 à γ_1 . On définit H' par :

$$\forall (t, x) \in [0, 1]^2, \ H'(t, x) = H(t, 1 - x).$$

- D'après la propriété de composition admise dans l'énoncé, H' est bien continue sur $[0,1]^2$.
- Pour tout $t \in [0,1]$, $H'(t,0) = H(t,1) = \gamma_1(t)$
- Pour tout $t \in [0,1]$, $H'(t,1) = H(t,0) = \gamma_0(t)$
- Pour tout $x \in [0,1]$, $H'(0,x) = H(0,1-x) = z_0$ et $H'(1,x) = H(1,1-x) = z_0$.

Ainsi, H' est une homotopie de γ_1 à γ_0 , donc $\boxed{\gamma_1 \underset{H}{\sim} \gamma_0}$

(c) Soit $\gamma_0, \gamma_1, \gamma_2$ trois lacets dans \mathcal{L}_{z_0} , et H_1 une homotopie de γ_0 à γ_1 et H_2 une homotopie de γ_1 à g_2 . On définit H sur $[0,1]^2$ par :

$$H(t,x) = \begin{cases} H_1(t,2x) & \text{si } x \in [0,\frac{1}{2}] \\ H_2(t,2x-1) & \text{si } x \in]\frac{1}{2},1] \end{cases}$$

• D'après la propriété de composition, les applications $x \mapsto 2x$ et $x \mapsto 2x-1$ étant continues, $H_{|[0,1]\times[0,\frac{1}{2}]}$ et $H_{|[0,1]\times[\frac{1}{2},1]}$ sont continues. On vérifie qu'on peut bien fermer l'intervalle en $\frac{1}{2}$ pour la deuxième puisque la définition de H par H_2 est aussi valable pour $x=\frac{1}{2}$:

$$H_2\left(t, 2 \cdot \frac{1}{2} - 1\right) = H_2(t, 0) = \gamma_1(t) = H_1(t, 1) = H\left(t, \frac{1}{2}\right).$$

• Les ensembles $[0,1] \times [0,\frac{1}{2}]$ et $[0,1] \times [\frac{1}{2},1]$ sont fermés (produits d'intervalles fermés, ou via la propriété admise, ces ensembles étant déterminés par les inéquations larges $0 \le t \le 1$ et $0 \le x \le \frac{1}{2}$ pour la première et $0 \le t \le 1$ et $\frac{1}{2} \le x \le 1$ pour la deuxième).

Ainsi, d'après la question préliminaire 2, H est continue sur $[0,1]^2$.

- Pour tout $t \in [0,1]$, $H(t,0) = H_1(t,0) = \gamma_0(t)$ et $H(t,1) = H_2(t,1) = \gamma_2(t)$
- Pour tout $x \in [0, 1]$,
 - * $H(0,x) = H_1(0,x) = z_0 \text{ si } x \in [0,\frac{1}{2}]$
 - * $H(0,x) = H_1(0,x) = z_0 \text{ si } x \in]\frac{1}{2},1].$
- De même, pour tout $x \in [0,1]$, $H(1,x) = z_0$.

Ainsi, H est une homotopie de γ_0 à γ_2

- (d) Les trois questions précédentes montrent successivement la réflexivité, la symétrie et la transitivité de \sim Ainsi, c'est une relation d'équivalence.
- 3. Le groupe fondamental $\Pi_1(\mathbb{C}^*)$
 - (a) Soit $\gamma_0, \gamma_1, \gamma'_0, \gamma'_1$ quatre lacets de \mathcal{L}_{z_0} . On suppose $\gamma_0 \sim \gamma'_0$ et $\gamma_1 \sim \gamma'_1$, et on se donne H_0 une homotopie de γ_0 à γ'_0 et H_1 une homotopie de γ_1 à γ'_1 .
 - \bullet On définit H par :

$$\forall (t,x) \in [0,1]^2 \ H(t,x) = \begin{cases} H_0(2t,x) & \text{si } t \in [0,\frac{1}{2}] \\ H_1(2t-1,x) & \text{si } t \in [\frac{1}{2},1] \end{cases}$$

Cette définition n'est pas contradictoire, puisque pour $t = \frac{1}{2}$,

$$H_0(2t,x) = H_0(1,x) = z_0 = H_1(0,x) = H_1(2t-1,x).$$

• Ainsi, les applications $(x,t) \mapsto 2t$ et $(x,t) \mapsto x$ étant continues, par la propriété de composition, $(x,t) \mapsto H_0(2t,x)$ est continue sur $F_1 = [0,\frac{1}{2}] \times [0,1]$ et de même, $(x,t) \mapsto H_1(2t-1,x)$ est continue sur $F_2 = [\frac{1}{2},1] \times [0,1]$ Par conséquent, $H_{|F_1}$ et $H_{|F_2}$ sont continues. Comme F_1 et F_2 sont fermés (de même que dans la question I-1), et $F_1 \cup F_2 = [0,1]^2$, on déduit de la QP 2 que H est continue sur $[0,1]^2$.

• Pour tout $t \in [0,1]$,

$$H(t,0) = \begin{cases} H_0(2t,0) = \gamma_0(2t) = \gamma_0 \cdot \gamma_1(t) & \text{si } t \leq \frac{1}{2} \\ H_1(2t-1,0) = \gamma_1(2t-1) = \gamma_0 \cdot \gamma_1(t) & \text{si } t \geq \frac{1}{2} \end{cases}$$

Ainsi, $H(t,0) = \gamma_0 \cdot \gamma_1(t)$.

- On montre de même que $H(t,1) = \gamma'_0 \cdot \gamma'_1(t)$.
- Pour tout $x \in [0, 1]$,

$$H(0,x) = H_0(0,x) = z_0$$
 et $H(1,x) = H_1(1,x) = z_0$.

 $H(0,x)=H_0(0,x)=z_0 \qquad \text{et} \qquad H(1,x)=H_1(1,x)=z_0.$ On en déduit que $\fbox{$H$ est une homotopie de $\gamma_0\cdot\gamma_1$ vers $\gamma_0'\cdot\gamma_1'$}.$ Ainsi, le produit des lecete pages qui que $\raiset = 1.00$

- (b) Soit $\gamma \in \mathcal{L}_{x_0}$ et e le lacet de \mathcal{L}_0 constant de valeur z_0 .
 - Soit H définie sur $[0,1]^2$ par :

$$H(t,x) = \begin{cases} z_0 & \text{si } 0 \le t \le \frac{1}{2}(1-x) \\ \gamma \left(\frac{2}{x+1} \left(t - \frac{1}{2}(1-x)\right)\right) & \text{si } \frac{1}{2}(1-x) \le t \le 1, \end{cases}$$

Cette définition n'est pas contradictoire puisque, lorsque $t = \frac{1}{2}(1-x)$

$$\gamma\left(\frac{2}{x+1}\left(t-\frac{1}{2}(1-x)\right)\right) = \gamma(0) = z_0.$$

- Ainsi, $(x,t) \mapsto \frac{2}{x+1} \left(t \frac{1}{2} (1-x) \right)$ étant continue par propriété admise (fraction rationnelle en $t, x, t \in \mathbb{R}$ bien définie sur tout le domaine qui nous intéresse), et γ étant continue, la restriction de H est continue sur F_1 défini par les inégalités affines larges $0 \le x \le 1$ et $\frac{1}{2}(x-1) \le t \le 1$ (ce qui assure que F_1 est
- De même, en considérant F_2 le fermé défini par les inégalités larges $0 \le x \le 1$ et $0 \le t \le \frac{1}{2}(x-1)$, $H_{|F_2|}$ est continue (puisque constante).
- D'après QP2, on en déduit que H est continue sur $[0,1]^2$.
- Par ailleurs, pour tout $t \in [0, 1]$,

$$H(t,0) = \begin{cases} z_0 = e(2t) & \text{si } 0 \leqslant t \leqslant \frac{1}{2} \\ \gamma(2t-1) & \text{si } \frac{1}{2} \leqslant t \leqslant 1. \end{cases}$$

Ainsi, $H(t,0) = e \cdot \gamma(t)$.

- On vérifie facilement que pour tout $t \in [0,1]$, $H(t,1) = \gamma(t)$.
- Enfin, pour tout $x \in [0,1]$:

$$H(0,x) = z_0$$
 et $H(1,x) = \gamma \left(\frac{2}{x+1} \left(1 - \frac{1}{2}(1-x)\right)\right) = \gamma(1) = z_0.$

Ainsi, H est bien une homotopie de $e \cdot g$ vers g. On en déduit que $e \cdot \gamma \sim \gamma$

(c) On fait une construction similaire en définissant H de la manière suivante

$$\forall (t, x) \in [0, 1]^2 \ H(t, x) = \begin{cases} z_0 & \text{si } t \ge \frac{1}{2}(x+1) \\ \gamma\left(\frac{2t}{x+1}\right) & \text{si } t \le \frac{1}{2}(x+1). \end{cases}$$

• La définition n'est pas contradictoire puisque lorsque $t=\frac{1}{2}(x+1)$,

$$\gamma\left(\frac{2t}{x+1}\right) = \gamma(1) = z_0.$$

ullet Le même argument que dans la question précédente assure la continuité de H

3

• Pour tout $t \in [0,1]$,

$$H(t,0) = \begin{cases} \gamma(2t) & \text{si } t \leq \frac{1}{2} \\ z_0 & \text{si } t \geqslant \frac{1}{2}. \end{cases}$$

Ainsi, $H(t,0) = \gamma \cdot e(t)$.

- Pour tout $t \in [0,1], H(t,1) = \gamma(t)$

• Pour tout $x \in [0,1]$, on vérifie facilement $H(0,x) = H(1,x) = z_0$. Ainsi, H est une homotopie de $\gamma \cdot e$ vers e. Donc $\boxed{\gamma \cdot e \underset{H}{\sim} \gamma}$

(d) • Pour commencer, on décrit $(\gamma_1\cdot\gamma_2)\cdot\gamma_3$ en itérant la construction de I-1 :

$$\forall t \in [0, 1], \quad (\gamma_1 \cdot \gamma_2) \cdot \gamma_3 = \begin{cases} \gamma_1(4t) & \text{si } 0 \leqslant t \leqslant \frac{1}{4} \\ \gamma_2(4t - 1) & \text{si } \frac{1}{4} \leqslant t \leqslant \frac{1}{2} \\ \gamma_3(2t - 1) & \text{si } \frac{1}{2} \leqslant t \leqslant 1. \end{cases}$$

• De même :

$$\begin{cases} \forall t \in [0,1], & \gamma_1 \cdot (\gamma_2 \cdot \gamma_3) \gamma_1(2t) & \text{si } 0 \leqslant t \leqslant \frac{1}{2} \\ \gamma_2(4t-2) & \text{si } \frac{1}{2} \leqslant t \leqslant \frac{3}{4} \\ \gamma_3(4t-3) & \text{si } \frac{3}{4} \leqslant t \leqslant 1. \end{cases}$$

 \bullet On définit cette fois H par :

$$H(t,x) = \begin{cases} \gamma_1 \left(\frac{4t}{x+1}\right) & \text{si } 0 \leqslant t \leqslant \frac{1}{4}(x+1) \\ \gamma_2 \left(4t - (x+1)\right) & \text{si } 14(x+1) \leqslant t \leqslant \frac{1}{4}(x+2) \\ \gamma_3 \left(\frac{4}{2-x} \left(t - \frac{1}{4}(x+2)\right)\right) & \text{si } \frac{1}{4}(x+2) \leqslant t \leqslant 1 \end{cases}$$

Je vous laisse faire les vérifications (faciles) du fait que H est bien une homotopie de $(\gamma_1 \cdot \gamma_2) \cdot \gamma_3$ vers $\gamma_1 \cdot (\gamma_2 \cdot g_3)$. Ainsi :

$$(\gamma_1 \cdot \gamma_2) \cdot \gamma_3 \underset{H}{\sim} \gamma_1 \cdot (\gamma_2 \cdot g_3).$$

(e) On définit cette fois (c'est la dernière homotopie à décrire!) :

$$\forall (t,x) \in [0,1]^2 \quad H(t,x) = \begin{cases} \gamma(2t) & \text{si } 0 \le t \le \frac{1}{2}(1-x) \\ \gamma\left(\frac{1}{2}(1-x)\right) = \gamma^{-1}\left(\frac{1}{2}(1+x)\right) & \text{si } \frac{1}{2}(1-x) \le t \le \frac{1}{2}(1+x) \\ \gamma^{-1}(2t+1) & \text{si } \frac{1}{2}(1+x) \le t \le 1. \end{cases}$$

Là encore une vérification facile du même type de les précédentes montrent que H est une homotopie de $\gamma \cdot \gamma^{-1}$ sur le lacet e. Donc $\boxed{\gamma \cdot \gamma^{-1}}_H \stackrel{e}{\sim} e$ En remarquant que $(\gamma^{-1})^{-1} = \gamma$, on a alors aussi $\boxed{\gamma^{-1} \cdot \gamma \stackrel{e}{\sim} e}_H e$.

(f) Les questions précédentes nous assurent que la loi de $\Pi_1(\mathbb{C}^*)$ obtenue en passant le produit des lacets au quotient est associative, que \overline{e} est neutre, et que toute classe $\overline{\gamma}$ admet un inverse γ^{-1} . Ainsi, $\overline{\Pi_1(\mathbb{C}^*)}$ est un groupe

Partie II - Théorème de relèvement et indice d'un lacet

1. Théorème de relèvement.

(a) Soit $z \in \mathbb{C}$ et $\varepsilon > 0$. On pose $\delta = \varepsilon$. Pour tout $z' \in \mathbb{C}$ tel que $|z - z'| < \varepsilon$, on a alors

$$|\operatorname{Re}(z) - \operatorname{Re}(z')| = |\operatorname{Re}(z - z')| \le |z - z'| < \varepsilon$$

et de même

$$|\operatorname{Im}(z) - \operatorname{Im}(z')| = |\operatorname{Im}(z - z')| \le |z - z'| < \varepsilon$$

 $|\operatorname{Im}(z)-\operatorname{Im}(z')|=|\operatorname{Im}(z-z')|\leqslant |z-z'|<\varepsilon$ Ainsi, $z\mapsto \operatorname{Re}(z)$ et $z\mapsto \operatorname{Im}(z)$ sont continues sur $\mathbb C$.

(b) La réciproque de φ_1 est la fonction argument principale. On sait comment elle s'exprime en fonction de Arctan pour les nombres complexes de partie réelle strictement positive :

$$\forall z \in \mathbb{U}_1, \quad \xi_1(z) = \operatorname{Arctan}\left(\frac{\operatorname{Im}(z)}{\operatorname{Re}(z)}\right).$$

La fonction $z \mapsto \frac{\operatorname{Im}(z)}{\operatorname{Re}(z)}$ est bien définie et continue sur \mathbb{U}_1 d'après la question précedente. Par ailleurs Arctan est continue sur \mathbb{R} . On en déduit, par composition, que $\boxed{\xi_1$ est continue sur \mathbb{R} .

- (c) On fait rapidement de même sur les autres parties de $\mathbb U$:
 - Sur \mathbb{U}_2 , $\varphi_2:]0,\pi[\to\mathbb{U}_2$ est bijective, et sa réciproque s'exprime ainsi :

$$\forall z \in \mathbb{U}_2, \quad \xi_2(z) = \frac{\pi}{2} + \psi_1\left(e^{-\frac{pi}{2}}z\right) = \frac{\pi}{2} + \psi_1\left(-iz\right) = \frac{\pi}{2} - \operatorname{Arctan}\left(\frac{\operatorname{Re}(z)}{\operatorname{Im}(z)}\right).$$

On obtient la continuité de même que dans le premier cas.

• De même, $\varphi_3:]\frac{\pi}{2}, \frac{3\pi}{2}[\to \mathbb{U}_3$ est bijective et sa réciproque vérifie :

$$\forall z \in \mathbb{U}_3, \ \xi_3(z) = \pi + \operatorname{Arctan}\left(\frac{\operatorname{Im}(z)}{\operatorname{Re}(z)}\right),$$

et est donc continue.

• Enfin, $\varphi_4:]\frac{3\pi}{2}, 2\pi[\to \mathbb{U}_4$ est bijective et sa réciproque vérifie :

$$\forall z \in \mathbb{U}_4, \quad \xi_4(z) = \frac{3\pi}{2} - \operatorname{Arctan}\left(\frac{\operatorname{Re}(z)}{\operatorname{Im}(z)}\right)$$

et est donc continue.

(d) D'après le théorème de Heine, f est uniformément continue. On peut remarquer que, du fait du chevauchement important entre les ensembles \mathbb{U}_{ℓ} , si ε est suffisamment petit, pour tout $z \in \mathbb{U}$, il existera ℓ tel que pour tout $z' \in \mathbb{U}$ tel que $|z'-z| < \varepsilon$, $z' \in \mathbb{U}_{\ell}$. En effet, on peut trouver ℓ tel que z soit à distance angulaire supérieure à $\frac{\pi}{4}$ du bord de \mathbb{U}_{ℓ} et par connséquent, on peut prendre $\varepsilon = |e^{i\frac{\pi}{4}} - 1|$, c'est-à-dire le côté d'un octogone régulier innscrit dans le cercle unité.

Ainsi, en considérant ε de la sorte, et en définissant η un module de continuité uniforme pour f associé à ε , on peut considérer n tel que $\frac{1}{n} < \eta$ et considérer la subdivision définie par :

$$\forall k \in [0, n], \quad \sigma_k = \frac{1}{n}.$$

On considère, pour $k \in [0, n-1]$, U_{ℓ} une des portions de \mathbb{U} vérifiant la propriété énoncée ci-dessus pour $z = f(\sigma_k)$ et ε . Ainsi, pour tout $t \in [\sigma_k, \sigma_{k+1}]$, puisque $|t - \sigma_k| \leq \frac{1}{n} < \eta$, $|f(t) - f(\sigma_k)| < \varepsilon$, et par définition de \mathbb{U}_{ℓ} , $f(t) \in \mathbb{U}_{\ell}$.

On a donc bien trouvé ℓ tel que $f([\sigma_k, \sigma_{k+1}]) \subset \mathbb{U}_{\ell}$

- (e) On montre par récurrence sur $k \in [1, n]$ l'existence d'un relèvement sur $[0, \sigma_k]$ tel que souhaité.
 - Pour k = 1, on considère ℓ tel que $[\sigma_0, \sigma_1] \subset \mathbb{U}_{\ell}$. Puisque $\xi_{\ell}(e^{i\theta_0}) \equiv \theta_0$ $[2\pi]$, on peut considérer $a_1 \in \mathbb{Z}$ tel que

$$\theta_0 = 2a_1\pi + \xi_{\ell}(f(0)).$$

La fonction $t \mapsto \xi_{\ell}(f(t))$ est alors un relèvement continu de f sur $[1, \sigma_1]$, d'après la question 1.

• On suppose un relèvement continu \tilde{f} obtenu sur $[0, \sigma_k], k \in [1, n-1]$. En particulier,

$$\tilde{f}(\sigma_k) \equiv \arg(f(s_k)) [2\pi].$$

On considère ell tel que $[\sigma_k, \sigma_{k+1}] \subset \mathbb{U}_\ell$. Puisque $\xi_\ell(f(\sigma_k)) \equiv \arg(f(s_k))$ $[2\pi]$, il existe $a_k \in \mathbb{Z}$ tel que

$$\tilde{f}(\sigma_k) = \xi_\ell(f(\sigma_k)) + 2a_k\pi.$$

On prolonge \tilde{f} en définissant

$$\forall t \in [\sigma_k, \sigma_{k+1}] \quad \xi_\ell(f(t)) + 2a_k \pi.$$

La fonction \tilde{f} obtenue est alors continue sur $[0, \sigma_k[$ et à gauche en σ_k (par hypothèse de récurrence), ainsi que sur $]\sigma_k, \sigma_{k+1}]$ et à droite en σ_k (par continuité de ξ_ℓ). Elle est donc continue, et par définition même de ξ_ℓ (ainsi que par HR pour la première partie du domaine) :

$$\forall t \in [0, \sigma_{k+1}], \quad e^{i\tilde{f}(t)} = f(t).$$

- Par principe de récurrence, la propriété est vraie pour tout $k \in [1, n]$. En particulier, pour k = n, on obtient l'existence d'un relèvement continue défini sur [0, 1].
- (f) Soit \tilde{f}_1 et \tilde{f}_2 sont deux relèvements continus de f tels que $\tilde{f}_1(0) = \tilde{f}_2(0) = \theta_1$. Pour tout $t \in [0, 1]$,

$$e^{i \tilde{f}_1(t)} = e^{i \tilde{f}_2(t)} = f(t),$$

donc

$$\tilde{f}_1(t) \equiv \tilde{f}_2(t) [2\pi].$$

Par conséquent,

$$(\tilde{f}_2 - \tilde{f}_1)([0,1]) \subset 2\pi \mathbb{Z}$$

Supposons qu'il existe $a \neq 0$ et $t \in [0, 1]$ tel que

$$(\tilde{f}_2 - \tilde{f}_1)(t) = 2\pi a.$$

Puisque $(\tilde{f}_2 - \tilde{f}_1)(0) = 0$, et puisque $\tilde{f}_2 - \tilde{f}_1$ est continue, d'après le TVI, elle prend toutes les valeurs entre 0 et $2\pi a$, ce qui contredit la description obtenue pour son image.

Ainsi, pour tout $t \in [0, 1]$, $(\tilde{f}_2 - \tilde{f}_1)(t) = 0$, donc $\tilde{f}_1 = \tilde{f}_2$

2. Indice d'un lacet

- (a) D'après la QP1, $z \mapsto |z|$ est continue, donc par composition, $t \mapsto |\gamma(t)|$ est continue sur [0,1]. De plus, elle ne s'anule pas, donc $\frac{1}{|\gamma(t)|}$ est continue aussi. Par propriété de continuité d'un produit, on en déduit que ψ_{γ} est continue.
- (b) Soit $\theta_1 \equiv \theta_0$ [2 π]. Alors de façon évidente, si $\tilde{\psi_{\gamma}}$ désigne le relèvement obtenu avec θ_0 , l'application

$$\tilde{\psi_{\gamma}}': t \mapsto \tilde{\psi_{\gamma}}(t) + \theta_1 - \theta_0$$

est un relèvement tel que $\tilde{\psi_{\gamma}}'(0) = \theta_1$. C'est donc l'unique relèvement de ce type. Or, on a

$$\frac{1}{2\pi} (\tilde{\psi_{\gamma}}'(1) - \tilde{\psi_{\gamma}}'(0)) = \frac{1}{2\pi} (\tilde{\psi_{\gamma}}(1) + (\theta_1 - \theta_0) - \tilde{\psi_{\gamma}}(0) - (\theta_1 - \theta_0))
= \frac{1}{2\pi} (\tilde{\psi_{\gamma}}(1) - \tilde{\psi_{\gamma}}(0))$$

et les deux relèvements définissent bien le même indice

(c) Par définition du relèvement et du fait que γ est un lacet :

$$e^{i \tilde{\psi}_{\gamma}(0)} = \psi_{\gamma}(0) = e^{i \theta_0} = \psi_{\gamma}(1) = e^{i \tilde{\psi}_{\gamma}(1)}.$$

Ainsi,

$$\tilde{\psi_{\gamma}}(0) \equiv \tilde{\psi_{\gamma}}(1) \quad [2\pi],$$

donc

$$\boxed{ \operatorname{Ind}(\gamma) = \frac{1}{2\pi} (\tilde{\psi}_{\gamma}(1) - \tilde{\psi}_{\gamma}(0)) \in \mathbb{Z} }.$$

(d) Puisque γ est à valeurs dans \mathbb{U} , $\gamma = \psi_{\gamma}$. De plus, $\gamma(0) = 1$. On peut donc prendre $\theta_0 = 0$. Ainsi, par définition même d'un relèvement, $\tilde{\psi_{\gamma}}: t \mapsto 2\pi nt$ est le relèvement de ψ_{γ} s'annulant en 0. Par conséquent,

$$\operatorname{Ind}(\gamma) = \frac{1}{2\pi}(2\pi n - 0)$$
 donc: $\operatorname{Ind}(\gamma) = n$

Partie III - Invariance de l'indice par homotopie

1. Soit $x_0 \in [0,1]$. Soit $\varepsilon > 0$. Puisque H est continue sur le carrée fermé $[0,1]^2$, d'après le résultat admis (généralisation du théorème de Heine), H est uniformément continue. On en déduit qu'il existe η tel que pour tous (x,t) et (x',t') dans $[0,1]^2$,

$$\|(x,t)-(x',t')\|<\eta\Longrightarrow |H(x,t)-H(x',t')|<\varepsilon.$$

En particulier, pour tout $x \in [0,1]$ tel que $|x-x_0| < \eta$, on aura :

$$\forall t \in [0, 1], \|(x, t) - (x_0, t)\| = |x - x_0| < \eta,$$

et par conséquent,

$$|H(x,t) - H(x_0,t)| < \varepsilon$$
 soit: $|\gamma_x(t) - \gamma_{x_0}(t)| < \varepsilon$.

Ceci étant vrai pour tout $t \in [0, 1]$, en passant au sup, on obtient :

$$d_{\infty}(\gamma_x, \gamma_{x_0}) < \varepsilon$$
.

Cela prouve bien la continuité de $x \mapsto \gamma_x$ sur [0,1].

- 2. On utilise les notations de la partie II.
 - (a) Soit γ et ζ deux lacets de \mathcal{L}_{z_0} , et soit $t \in [0,1]$:

$$\begin{split} |\psi_{\gamma}(t) - \psi_{\zeta}(t)| &= \left| \frac{\gamma(t)}{|\gamma(t)|} - \frac{\zeta(t)}{|\zeta(t)|} \right| \\ &= \left| \frac{\gamma(t)|\zeta(t)| - \zeta(t)|\gamma(t)|}{|\gamma(t)\zeta(t)|} \right| \\ &\leqslant \frac{1}{|\gamma(t)\zeta(t)|} \left(|\gamma(t) - \zeta(t)| \cdot |\zeta(t)| + ||\zeta(t)| - |\gamma(t)|| \cdot |\zeta(t)| \right) \\ &\leqslant \frac{1}{|\gamma(t)|} \left(|\gamma(t) - \zeta(t)| + ||\zeta(t)| - |\gamma(t)|| \right), \end{split}$$

l'avant dernière inégalité étant obtenue en ajoutant et retranchant $\zeta(t)|\zeta(t)|$ et en utilisant l'inégalité triangulaire.

(b) L'application $t \mapsto |\gamma(t)|$ est continue sur le segment [0,1], donc, d'après le théorème de compacité, elle admet un minimum m_0 . Comme ce minimum est atteint et que γ ne s'annule pas, $m_0 > 0$. On a alors, par définition de m_0 et par inégalité triangulaire :

$$\forall t \in [0,1], \quad |\psi_{\gamma}(t) - \psi_{\zeta}(t)| \leqslant \frac{2}{m_0} |\zeta(t) - \gamma(t)| \leqslant \frac{2}{m_0} d_{\infty}(\zeta, \gamma).$$

Soit maintenant γ fixé et $\varepsilon > 0$. On pose $\delta = \frac{m_0 \varepsilon}{2}$. Pour tout ζ tel que $d_{\infty}(\zeta, \gamma) < \delta$, on a donc

$$\forall t \in [0,1], \ |\psi_{\gamma}(t) - \psi_{\zeta}(t)| \leqslant \varepsilon, \quad \text{donc:} \quad d_{\infty}(\psi_{\gamma}, \psi_{\zeta}) \leqslant \varepsilon.$$

Cela prouve bien la continuité de l'application $\gamma \mapsto \psi_{\gamma}$.

3. (a) Un petit calcul de géométrie élémentaire montre qui si $\delta < \pi$ et si [AB] est une corde du cercle trigonométrique définissant un angle au centre de δ , alors la longueur de [AB] est $2\sin\left(\frac{\delta}{2}\right)$.

Ainsi, lorsque $\delta < \pi$, si A et B sont deux points du cercle tels que $[AB] < 2\sin\left(\frac{\delta}{2}\right)$, ils sont tous deux sur un même arc d'angle au centre δ . Ainsi, leurs arguments diffèrent d'au plus δ modulo 2π .

Cela équivaut à dire que

$$|\tilde{\psi}_2(t) - \tilde{\psi}_1(t)| \in \bigcup_{k \in \mathbb{Z}}]2k\pi - \delta, 2k\pi + \delta[$$

(b) Soit alors $\psi_1 \in \mathcal{C}^0([0,1], \mathbb{U})$, et $0 < \varepsilon < 2\pi$. On pose $\delta = \frac{\varepsilon}{2}$ et $\eta = 2\sin\left(\frac{\delta}{2}\right) > 0$. On se donne ψ_2 telle que $d_{\infty}(\psi_1, \psi_2) < \eta$. On a donc, d'après la question précédente, pour tout $t \in [0,1]$

$$|\tilde{\psi}_2(t) - \tilde{\psi}_1(t)| \in \bigcup_{k \in \mathbb{Z}}]2k\pi - \delta, 2k\pi + \delta[.$$

Or, ces intervalles sont disjoints et séparés (il existe des réels entre deux intervalles). Ainsi, puisque $t \mapsto |\tilde{\psi}_2(t) - \tilde{\psi}_1(t)|$ est continue sur l'intervalle [0,1], son image est entièrement contenue dans l'un des intervalles $[2k\pi - \delta, 2k\pi + \delta[$ (le contraire contredirait le TVI, par un argument similaire à celui de la question II-1(f)). Ainsi, la longueur de cet intervalle étant $2\delta = \varepsilon$,

$$\forall t \in [0,1], \ |\tilde{\psi}_2(t) - \tilde{\psi}_1(t)| \leq \varepsilon \quad \text{donc:} \quad d_{\infty}(\tilde{\psi}_1, \tilde{\psi}_2) \leq \varepsilon.$$

Cela montre bien la continuité de l'application qui à ψ associe son relèvement

4. On remarque pour terminer que

$$d_{\infty}(\tilde{\psi}_1, \tilde{\psi}_2) < \varepsilon \Longrightarrow |\tilde{\psi}_2(1) - \tilde{\psi}_1(1)| < \varepsilon.$$

Ainsi $\tilde{\psi} \mapsto \tilde{\psi}(1)$ est aussi continue. Et comme $\tilde{\psi}(0) = \theta_0$ est constante (tous nos lacets sont basés sur le même point),

$$\tilde{\psi} \mapsto \frac{1}{2\pi} (\tilde{\psi}(1) - \tilde{\psi}(0))$$

est continue. Ainsi, Φ est continue en tant que composée de fonctions continues : $x \mapsto \gamma_x$, $\gamma \mapsto \psi_{\gamma}$, $\psi \mapsto \tilde{\psi}$ et $\tilde{\psi} \mapsto \frac{1}{2\pi}(\tilde{\psi}(1) - \tilde{\psi}(0))$.

5. On utilise un argument similaire à celui de II-1(f) : d'après le TVI, l'application Φ définie sur l'intervalle [0, 1] étant continue, et à valeurs dans \mathbb{Z} , elle est nécessairement constante. On en déduit que $\Phi(0) = \Phi(1)$, c'est-à-dire $\boxed{\operatorname{Ind}(\gamma_0) = \operatorname{Ind}(\gamma_1)}$.

Partie IV – Groupe fondamental de \mathbb{C}^*

Ainsi, Ind passe au quotient et définit une application $\alpha: \Pi_1(\mathbb{C}^*) \to \mathbb{Z}$.

- 1. La surjectivité provient de la question 2(d).
- 2. Pour montrer que α est un morphisme de groupe, il faut montrer que si γ_1 et γ_2 sont deux lacets,

$$\operatorname{Ind}(\gamma_1 \cdot \gamma_2) = \operatorname{Ind}(\gamma_1) + \operatorname{Ind}(\gamma_2).$$

Or, soit $\tilde{\psi}_{\gamma_1}$ un relèvement continu de ψ_{γ_1} et $\tilde{\psi}_{\gamma_2}$ un relèvement continu de ψ_{γ_2} . On considère alors :

$$\tilde{\psi}(t) = \begin{cases} \tilde{\psi}_{\gamma_1}(2t) & \text{si } t \in [0, \frac{1}{2}] \\ \tilde{\psi}_{\gamma_2}(2t - 1) + 2\pi \text{Ind}(\gamma_1) & \text{si } t \in]\frac{1}{2}, 1]. \end{cases}$$

L'application $\tilde{\psi}$ est bien continue sur $[0,1]\setminus\{\frac{1}{2}\}$, et elle admet des limites à gauche et à droite en $\frac{1}{2}$ égales à $\theta_0 + 2\pi \operatorname{Ind}(\gamma_1)$, qui est également la valeur au point. Elle est donc continue sur [0,1]. De plus,

$$\forall t \in [0, 1], e^{i\tilde{\psi}(t)} = \begin{cases} e^{i\tilde{\psi}_{\gamma_1}(2t)} = \psi_{\gamma_1}(2t) = \frac{\gamma_1(2t)}{|\gamma_1(2t)|} & \text{si } t \in [0, \frac{1}{2}] \\ e^{i\tilde{\psi}_{\gamma_2}(2t-1) + 2\pi \operatorname{Ind}(\gamma_1)} = \psi_{\gamma_2}(2t-1) = \frac{\gamma_2(2t-1)}{|\gamma_2(2t-1)|} & \text{si } t \in [\frac{1}{2}, 1] \end{cases}$$

On a donc bien

$$\tilde{\psi} = \tilde{\psi}_{\gamma_1 \cdot \gamma_2},$$

et par conséquent,

$$\begin{aligned} 2\pi \mathrm{Ind}(\gamma_1 \cdot \gamma_2) &= \tilde{\psi}(1) - \tilde{\psi}(0) \\ &= \tilde{\psi}_{\gamma_2}(1) + 2\pi \mathrm{Ind}(\gamma_1) - \tilde{\psi}_{\gamma_1}(0) \\ &= \tilde{\psi}_{\gamma_2}(1) - \theta_0 + 2\pi \mathrm{Ind}(\gamma_1) \\ &= 2\pi \mathrm{Ind}(\gamma_2) + 2\pi \mathrm{Ind}(\gamma_1). \end{aligned}$$

On en déduit que $\operatorname{Ind}(\gamma_1 \cdot \gamma_2) = \operatorname{Ind}(\gamma_1) + \operatorname{Ind}(\gamma_2)$, donc α est un morphisme de groupes

3. Soit γ d'indice nul, et $\tilde{\psi}$ le relèvement associé à de γ , vérifiant donc $\tilde{\psi}(0) = \tilde{\psi}(1) = \theta_0$. On considère alors l'homotopie (et non, il y en avait encore une, je vous avais menti, et même encore deux autres dans la partie V):

$$H(t,x) = \left((1-x)|\gamma(t)| + x|\gamma(0)| \right) \cdot e^{i(1-x)(\tilde{\psi}(t) - \theta_0) + \theta_0}$$

La fonction H est clairement continue sur $[0,1]^2$, à valeurs dans \mathbb{C}^* et :

- pour tout $t \in [0, 1]$, $H(t, 0) = |\gamma(t)| e^{i \tilde{\psi}(t)} = |\gamma(t)| \psi(t) = \gamma(t)$;
- pour tout $t \in [0,1]$, $H(t,1) = |\gamma(0)| e^{i\theta_0} = z_0 = e(t)$
- pour tout $x \in [0,1], H(0,x) = |\gamma(0)| e^{i(1-x)\cdot 0 + \theta_0} = z_0$
- pour tout $x \in [0,1]$, $H(0,x) = |\gamma(0)|e^{i(1-x)\cdot 0+\theta_0} = z_0$, car $\tilde{\psi}(1) = \theta_0$, puisque $\operatorname{Ind}(\gamma) = 0$. C'est pour ce point qu'on utilise l'hypothèse. De l'importance de faire toutes les vérifications!

Ainsi, H est une homotopie de γ sur le lacet constant e. Par conséquent, $\operatorname{Ind}(\gamma) = 0$ si et seulement si $\gamma \sim e$.

- 4. Nous avons déjà montré que α est un morphisme surjectif. Il reste à montrer l'injectivité. La question précédente nnous assure que le noyau de α (c'est-à-dire les éléments envoyés sur l'élément neutre par le morphisme α) est réduit à un unique élément (l'élément neutre du groupe de départ). Nous montrerons plus tard que cela suffit à caractériser l'injectivité. Nous développons une preuve indépendante de ce résultat ici (qui est est fait la démonnstration dans ce cas particulier de la caractérisation générale).
 - Pour commencer, de façon évidente, $\alpha(\overline{e}) = 0$ (cela est un fait général pour un morphisme de groupe : le neutre est envoyé sur le neutre).
 - Soit γ_1 et γ_2 deux lacets tels que $\alpha(\overline{\gamma_1}) = \alpha(\overline{\gamma_2})$. Alors

$$\alpha(\overline{\gamma_1}) + \alpha(\overline{\gamma_2^{-1}}) = \alpha(\overline{\gamma_2}) + \alpha(\overline{\gamma_2^{-1}}),$$

donc, α étant un morphisme,

$$\alpha(\overline{\gamma_1 \cdot \gamma_2^{-1}}) = \alpha(\overline{\gamma_2 \cdot \gamma_2^{-1}}) = \alpha(\overline{e}) = 0.$$

• D'après la question précédente, $\overline{\gamma_1 \cdot \gamma_2^{-1}} = \overline{e}$, et donc, en multipliant par $\overline{\gamma_2}$, on obtient $\overline{\gamma_1} = \overline{\gamma_2}$. Ainsi, α est injective.

Partie V - Application : une démonstration du théorème de d'Alembert-Gauss

Pour tout polynôme R tel que pour tout $z \in \mathbb{U}$, $R(z) \neq 0$, on définit : $\gamma_R : t \mapsto \frac{R(e^{2i\pi t})}{R(1)}$.

1. Le fait que R ne s'annule pas nous assure que γ_R est bien à valeurs dans \mathbb{C}^* . Par ailleurs, γ_R est continue, comme composée de fonctions continues, et $\gamma_R(0) = \gamma_R(1) = 1$.

Ainsi, γ_R est un lacet de \mathcal{L}_1 .

2. On note $Q = \sum_{k=1}^{n-1} a_k X^k$. Pour tout $z \in \mathbb{C}$,

$$|Q(z)| = \left| \sum_{k=1}^{n-1} a_k z^k \right| \le \sum_{k=1}^{n-1} |a_k| |z|^k.$$

Ainsi,

$$\frac{|Q(z)|}{|z|^n} \leqslant \sum_{k=1}^{n-1} |a_k||z|^{k-n} \underset{|z| \to +\infty}{\longrightarrow} 0.$$

Par définition de la limite, il existe donc $r_0 > 0$ tel que pour tout $z \in \mathbb{C}$ tel que |z| > r,

$$\frac{|Q(z)|}{|z|^n} < 1 \qquad \text{soit:} \qquad \boxed{|z^n| > |Q(z)|}.$$

En particulier, en posant $r > r_0$, cette inégalité est vraie pour tout z de module r.

- 3. Pour $x \in [0,1]$, on note P_x le polynôme défini par $z \mapsto P_x(z) = P(xrz)$.
 - On remarque pour commencer que P_x est un polynôme ne s'annulant pas, car P ne s'annule pas. Ainsi on peut définit γ_{P_x} pour tout $x \in [0, 1]$. C'est donc un lacet de \mathcal{L}_1 .

- Lorsque x=1, P_0 est le polynôme constant de valeur $P(0) \neq 0$. Ainsi, γ_{P_0} est le lacet constant, donc $\boxed{\operatorname{Ind}(\gamma_0) = 0}$
- L'application

$$(t,x) \mapsto H(t,x) = \gamma_{P_x}(t) = \frac{P(xre^{2i\pi t})}{P(xr)}$$

est une homotopie de γ_{P_0} à γ_{P_1} . En effet,

- *~H est continue d'après son expression explicite
- * $H(\bullet,0) = \gamma_{P_0}$ par définition, et $H(\bullet,1) = \gamma_{P_1}$
- * les γ_{P_x} étant des lacets de \mathcal{L}_1 , pour tout $x \in [0,1]$.

$$H(0,x) = \gamma_{P_x}(0) = 1 = \gamma_{P_x}(1) = H(1,x).$$

- Ainsi, d'après la partie III, $\overline{\operatorname{Ind}(\gamma_{P_1}) = \operatorname{Ind}(\gamma_{P_0}) = 0}$.
- 4. On définit pour tout $x \in [0,1]$, le polynôme Q_x par : $Q_x(z) = (rz)^n + xQ(rz)$.
 - D'après la question 2, pour tout z de module 1, rz est de module r, donc, pour tout $x \in [0,1]$,

$$|rz|^n > |Q(rz)| \ge x|Q(rz)|,$$
 donc: $Q(z) = (rz)^n + xQ(rz) \ne 0$

- Ainsi, γ_{Q_x} est bien définie pour tout $x \in [0,1]$ et est un lacet de \mathcal{L}_1 .
- \bullet On définit l'application H par :

$$(t,x) \mapsto H(t,x) = \gamma_{Q_x}(t).$$

De même que plus haut, on montre sans difficulté que H est une homotopie de γ_{Q_0} à γ_{Q_1} .

• Or, $Q_0(z) = (rz)^n$, donc pour tout $t \in [0, 1]$,

$$\gamma_{Q_0}(t) = \frac{r^n e^{2\pi i nt}}{r^n} = e^{2i \pi n}.$$

D'après la question II-2d, $Ind(\gamma_{Q_0}) = n$.

- Puisque γ_{Q_0} et γ_{Q_1} sont homotopes, on en déduit que $\operatorname{Ind}(\gamma_{Q_1}) = n$.
- 5. Or, $P_1 = Q_1$, donc on déduit des questions 3 et 4 que n = 0. Ainsi, si P est un polynôme à coefficients complexes sans racine complexe, alors P est de degré 1, c'est-à-dire constant non nul. C'est bien la contraposée du théorème de d'Alembert-Gauss.

Nous avons donc bien démontré le théorème de d'Alembert-Gauss

Partie VI – Complément : expression intégrale de l'indice d'un lacet de classe \mathcal{C}^1

1. Soit $t \in [0, 1]$. On a:

$$\frac{\gamma'(t)}{\gamma(t)} = \frac{\gamma'_r(t) + i\gamma'_i(t)}{\gamma_r(t) + i\gamma_i(t)}$$

$$= \frac{(\gamma'_r(t) + i\gamma'_i(t))(\gamma_r(t) - i\gamma_i(r))}{\gamma_r(t)^2 + \gamma_i(t)^2}$$

$$= \frac{\gamma'_r(t)\gamma_r(t) + \gamma'_i(t)\gamma_i(r)}{\gamma_r(t)^2 + \gamma_i(t)^2} + i\frac{\gamma'_i(t)\gamma_r(t) - \gamma'_r(t)\gamma_i(r)}{\gamma_r(t)^2 + \gamma_i(t)^2}$$

Ainsi,

$$\operatorname{Re}\left(\frac{\gamma'(t)}{\gamma(t)}\right) = \frac{\gamma'_r(t)\gamma_r(t) + \gamma'_i(t)\gamma_i(t)}{\gamma_r^2(t) + \gamma_i^2(t)} \qquad \text{et} \qquad \left[\operatorname{Im}\left(\frac{\gamma'(t)}{\gamma(t)}\right) = \frac{\gamma_r(t)\gamma'_i(t) - \gamma_i(t)\gamma'_r(t)}{\gamma_r^2(t) + \gamma_i^2(t)}\right]$$

2. La fonction $t \mapsto \operatorname{Re}\left(\frac{\gamma'(t)}{\gamma(t)}\right)$ est définie sur [0,1], et admet une primitive simple (puisqu'elle est de la forme $\frac{u'}{u}$). Ainsi,

$$\operatorname{Re}\left(\int_{0}^{1} \frac{\gamma'(t)}{\gamma(t)} dt\right) = \int_{0}^{1} \operatorname{Re}\left(\frac{\gamma'(t)}{\gamma(t)}\right) dt$$
$$= \left[\ln(\gamma_{r}(t)^{2} + \gamma_{i}(t)^{2})\right]_{0}^{1}$$
$$= \ln(|\gamma(1)|^{2}) - \ln(|\gamma(0)|^{2})$$
$$= \ln(|z_{0}|^{2}) - \ln(|z_{0}|^{2}) = 0.$$

Ainsi,
$$\operatorname{Re}\left(\int_0^1 \frac{\gamma'(t)}{\gamma(t)} dt\right) = 0.$$

3. Soit $[a,b] \subset [0,1]$ un intervalle tel que $\psi_{\gamma}([a,b]) \subset \mathbb{U}_1$. On a alors en particulier $\gamma_r(t) > 0$. Or, pour tout $t \in [0,1]$,

$$\frac{\gamma_r(t)\gamma_i'(t) - \gamma_i(t)\gamma_r'(t)}{\gamma_r^2(t) + \gamma_i^2(t)} = \frac{\gamma_i'(t)\gamma_r(t) - \gamma_i(t)\gamma_r'(t)}{g_r(t)^2} \cdot \frac{1}{1 + \left(\frac{\gamma_i(t)}{\gamma_r(t)}\right)^2},$$

donc

$$\operatorname{Im}\left(\int_{a}^{b} \frac{\gamma'(t)}{\gamma(t)} dt\right) = \left[\operatorname{Arctan}\left(\frac{\gamma_{i}(t)}{\gamma_{r}(t)}\right)\right]_{a}^{b}$$

$$= \operatorname{Arctan}\left(\frac{\gamma_{i}(b)}{\gamma_{r}(b)}\right) - \operatorname{Arctan}\left(\frac{\gamma_{i}(a)}{\gamma_{r}(a)}\right)$$

$$\equiv \left[\operatorname{arg}(\gamma(b)) - \operatorname{arg}(\gamma(a))\right][2\pi]$$

d'après la description de l'argument dans \mathbb{U}_1 .

- 4. On peut faire de même sur les autres sous-ensembles de $\mathbb U$ définis en partie $\mathrm II$:
 - Si $\psi_{\gamma}([a,b]) \subset \mathbb{U}_2$,

$$\operatorname{Im}\left(\int_{a}^{b} \frac{\gamma'(t)}{\gamma(t)} dt\right) = \int_{a}^{b} \frac{\gamma'_{i}(t)\gamma_{r}(t) - \gamma_{i}(t)\gamma'_{r}(t)}{g_{i}(t)^{2}} \cdot \frac{1}{1 + \left(\frac{\gamma_{r}(t)}{\gamma_{i}(t)}\right)^{2}} dt$$

$$= \left[-\operatorname{Arctan}\left(\frac{\gamma_{i}(t)}{\gamma_{r}(t)}\right)\right]_{a}^{b}$$

$$= -\operatorname{Arctan}\left(\frac{\gamma_{i}(b)}{\gamma_{r}(b)}\right) + \operatorname{Arctan}\left(\frac{\gamma_{i}(a)}{\gamma_{r}(a)}\right)$$

$$= \frac{\pi}{2} - \operatorname{Arctan}\left(\frac{\gamma_{i}(b)}{\gamma_{r}(b)}\right) - \left(\frac{\pi}{2} - \operatorname{Arctan}\left(\frac{\gamma_{i}(a)}{\gamma_{r}(a)}\right)\right)$$

$$\equiv \left[\operatorname{arg}(\gamma(b)) - \operatorname{arg}(\gamma(a)) \left[2\pi\right],\right]$$

d'après la formule obtenue en partie II pour l'argument d'un élément de \mathbb{U}_2 .

• On démontre de même que si $\psi_{\gamma}([a,b]) \subset \mathbb{U}_3$ ou si $\psi_{\gamma}([a,b]) \subset \mathbb{U}_4$, alors

$$\operatorname{Im}\left(\int_{a}^{b} \frac{\gamma'(t)}{\gamma(t)} dt\right) \equiv \arg(\gamma(b)) - \arg(\gamma(a)) [2\pi].$$

On considère alors une subdivision $0 = \sigma_0 < \cdots < \sigma_n = 1$ comme en partie II. Soit $x \in [0,1]$, et k_0 tel que $k_0 \le x \le k_0 + 1$. Puisque l'image de chaque $[\sigma_i, \sigma_{i+1}]$ par ψ est contenue dans l'un des \mathbb{U}_i , ainsi que l'image de $[k_0, x]$, on obtient :

$$\operatorname{Im}\left(\int_{a}^{b} \frac{\gamma'(t)}{\gamma(t)} dt\right) = \sum_{k=0}^{k_{0}-1} \operatorname{Im}\left(\int_{\sigma_{k}}^{\sigma_{k+1}} \frac{\gamma'(t)}{\gamma(t)} dt\right) + \operatorname{Im}\left(\int_{\sigma_{k_{0}}}^{x} \frac{\gamma'(t)}{\gamma(t)} dt\right)$$

$$\equiv \left(\sum_{k=0}^{k_{0}-1} \operatorname{arg}(\gamma(\sigma_{k+1})) - \operatorname{arg}(\gamma(\sigma_{k}))\right) + \operatorname{arg}(\gamma(x)) - \operatorname{arg}(\gamma(\sigma_{k_{0}})) \qquad [2\pi]$$

$$\equiv \operatorname{arg}(\gamma(\sigma_{k_{0}})) - \operatorname{arg}(\gamma(0)) + \operatorname{arg}(\gamma(x)) - \operatorname{arg}(\gamma(\sigma_{k_{0}})) \qquad [2\pi]$$

$$\equiv \operatorname{arg}(\gamma(x)) - \operatorname{arg}(\gamma(0)) \qquad [2\pi]$$

5. On définit, pour tout $t \in [0,1]$

$$\tilde{\psi}(t) = \theta_0 + \operatorname{Im}\left(\int_0^t \frac{\gamma'(u)}{\gamma(u)} du\right).$$

L'intégrale étant une primitive de son intégrande, elle est dérivable, donc continue. Ainsi, $\tilde{\psi}$ est continue sur [0,1], et d'après la question précédente,

$$\begin{aligned} \forall t \in [0,1], & & e^{i\tilde{\psi}(t)} = e^{i\theta_0} e^{i\arg(\gamma(x)) - i\arg(\gamma(0))} \\ & = e^{i\theta_0} e^{i\arg(\gamma(x)) - i\theta_0} \\ & = e^{i\arg(\gamma(x))} = \psi_{\gamma}(x). \end{aligned}$$

Ainsi, $\tilde{\psi}$ est le relèvement continu associé au lacet $\gamma.$ On en déduit que

$$\operatorname{Ind}(\gamma) = \frac{1}{2\pi} (\tilde{\psi}(1) - \tilde{\psi}(0))$$
$$= \frac{1}{2\pi} \left(\theta_0 + \int_0^1 \frac{\gamma'(t)}{\gamma(t)} dt - \theta_0 \right),$$

ce qui nous donne finalement la formule intégrale de l'indice :

$$\frac{1}{2 i \pi} \int_0^1 \frac{\gamma'(t)}{\gamma(t)} dt$$