Support Vector Machines for Breast Cancer Classification

Optimization Course Project

Diego Rossi 1073945

April 17, 2025

Introduction

- Classification of breast cancer tumors as benign or malignant.
- ► Feature selection using linear SVM (norm 1) to reduce dimensionality.
- ► Implementation of non-linear SVMs (norm 1) with Gaussian, Polynomial, and Sigmoid kernels to classify tumors.
- ▶ Optimization of hyperparameters through grid search.
- K-fold Cross Validation for performance evaluation.
- Comparison based on accuracy, recall, precision, and F1-score.

Wisconsin Diagnostic Dataset

- ▶ 30 numerical features computed from digitized images of fine needle aspirates (FNA) of breast tumors.
- ► Features describe characteristics of cell nuclei:
 - ▶ Radius, Texture, Perimeter, Area, Smoothness, etc.
 - Each measured by: mean, standard error, and worst value.
- ▶ Total: 10 base features \times 3 descriptors = 30 features.
- Label:
 - ▶ B = Benign
 - ▶ M = Malignant

Linear SVM Models

Model 1: Linear SVM (Arbitrary Norm)

$$\min_{w,\gamma,y} \quad \nu \, e^T y + \|w\|$$

s.t.
$$D(Aw - e\gamma) + y \ge e$$
, $y \ge 0$.

Model 2: Linear SVM with L1 Norm (SVM1)

$$\min_{w,\gamma,s,y} \quad \nu e^T y + e^T s$$

s.t.
$$D(Aw - e\gamma) + y \ge e$$
, $-s \le w \le s$, $y \ge 0$.

MATLAB implementation of SVM1

```
cvx begin quiet
    cvx solver Mosek
    variables w(n) gam s(n) y(m)
    minimize (nu*sum(y) + sum(s))
    subject to
        D * (A*w - gam*ones(m,1)) + y >= ones(m,1);
        -S <= W <= S;
        y >= 0;
cvx end
```

Non Linear SVM Models

Model 3: Non Linear SVM

$$\min_{u,\gamma,y} \quad \nu e^T y + \|u\|_p$$

s.t.
$$D(K(A, A^T) D u - e \gamma) + y \ge e, \quad y \ge 0.$$

Model 4: Non Linear SVM with L_1 Norm

$$\min_{u,\gamma,s,y} \quad \nu \, e^T y + e^T s$$

s.t.
$$D(K(A, A^T) D u - e \gamma) + y \ge e, -s \le u \le s, y \ge 0.$$

Separating Surface: $K(x, A)^T D u = \gamma$

MATLAB implementation of GSVM L1 Norm

```
cvx_begin quiet
cvx_solver mosek
variables u(l_train) gam y(l_train) s(l_train)
minimize(nu * sum(y) + sum(s))
subject to
    D_train * (K_train * D_train * u - gam*ones(l_train,1)) + y >= ones(l_train,1);
    -s <= u <= s;
    y >= 0;
cvx_end

y pred = sign(K test * D train * u - gam);
```

Preprocessing and Feature Selection with Linear SVM

- ▶ Initial dataset: 30 features per instance.
- ▶ Label mapping: $B \rightarrow -1$, $M \rightarrow +1$.
- ▶ **Normalization:** Standardized all features to ensure consistent scale.
- ► Feature selection: Performed using a Linear SVM with L1 norm (SVM1).
- Selected features (9):
 - texture1, concave_point1, fractal_dimension1.
 - radius2.
 - radius3,texture3, smoothness3, concavity3, symmetry3.

Kernel Implementations for Classification

Gaussian Kernel:

$$K(x_i, x_j) = \exp(-\sigma ||x_i - x_j||^2)$$

Polynomial Kernel:

$$K(x_i,x_j)=(x_i\cdot x_j+c)^p$$

Sigmoid Kernel:

$$K(x_i, x_i) = \tanh(\gamma x_i \cdot x_i + r)$$

Hyperparameter Optimization

- Grid search approach used to optimize:
 - ▶ Gaussian kernel: σ , ν
 - Polynomial kernel: c, p, ν
 - ightharpoonup Sigmoid kernel: γ , r, ν
- Best hyperparameters selected based on highest accuracy.
- ▶ 10-fold cross-validation to evaluate model performance.

Test Accuracy Performance

Performance Metrics Comparison

Kernel	Train Acc.	Test Acc.	Precision	Recall	F1 Score
Gaussian	97.89%	97.72%	98.59%	95.39%	96.94%
Polynomial	98.59%	96.48%	97.02%	93.35%	95.06%
Sigmoid	98.14%	97.54%	96.84%	96.75%	96.71%

- ► **Gaussian**: Highest test accuracy and precision and F1 score.
- ▶ Polynomial: Lowest test accuracy and Recall.
- ► **Sigmoid**: Most balanced overall performance.
- ► All kernels achieve test accuracy above 95%.

Conclusion

- ► Feature selection reduced dimensionality effectively while maintaining high classification performance.
- All kernels achieved over 95% test accuracy.
- The Gaussian kernel achieved the best test accuracy.
- ► The Sigmoid kernel showed the most balanced trade-off between precision and recall.
- ► The polynomial kernel gives good test accuracy, but the recall is quite low.

GitHub Repository:

github.com/drossi15/Optimization-Project

Thank you for your attention!