Aula 4

15 Outelero

2 um = ll1 + ll2 + · + lln + · · A soma está lem defuneda? (Um) ~ successão geradora (Mon) -> successão das somas parciais 1 = U1 12 = M1 + M2 Sm = 161 + 162 + - · + 16 m

Levil geométrice de rayers re $\sum_{m \ge 1} m^{-1}$ I ren le geométrica de rayon re, I ren, connerge se e só se re/(1 Guardo con vergente a sua soma é ろ = 1 1-た

Bremplo:
$$\sum_{n \in \mathbb{N}} \left(\frac{2}{3}\right)^n$$

Temos que:
$$\sum_{n \in \mathbb{N}} \left(\frac{2}{3}\right)^n = \sum_{n \in \mathbb{N}} \left(\frac{2}{3}\right) \left(\frac{2}{3}\right)^{n-1}$$
Ul sérue $\sum_{n \in \mathbb{N}} \left(\frac{2}{3}\right)^n$ é convergente porque $\sum_{n \in \mathbb{N}} \left(\frac{2}{3}\right)^n$ é convergente porque $\sum_{n \in \mathbb{N}} \left(\frac{2}{3}\right)^n$ e convergente $\sum_{n \in \mathbb{N}} \left(\frac{2}{3}\right)^n = 2$

e $|\pi| = \left|\frac{2}{3}\right| = \frac{2}{3}$

e' una sère e geométrica de rayar
$$T = \frac{2}{3}$$
e $|T| = \left|\frac{2}{3}\right| = \frac{2}{3}$ (2)
Entar a sère $\left(\frac{2}{3}\right)\left(\frac{2}{3}\right)^{m-1}$ e

Evento $\sum_{n \in \mathbb{N}} \left(-\frac{5}{4}\right)^n$ a série $\sum_{n \in W} \left(-\frac{s}{4}\right)^n$ é de revergente forque é ema sèrie geométrica de rayão $-\frac{5}{4}$ e $|\mathcal{H}| = |-\frac{5}{4}| = \frac{5}{4} > 1$ de ver gent convergente $\int_{1}^{1} \frac{dx}{x^{2}} dx$

brenflo. $\frac{5}{mEIN}$ A serée $\frac{5}{n^5}$ é ema sérce conver gente forque é ema serce de Riemann de expoente d = 571. é também Enemplo. In ell van Or récel $\frac{1}{\sqrt{m}} = \frac{1}{m^{1/2}}$ é de reergente porque é uma serie de Rumann de expoente d = 1/2 \le 1.

Eventho.
$$\sum_{m \in W} \left(\frac{8}{3n^5} + \frac{1}{4^m}\right)$$

Reserve $\sum_{m \in W} \frac{1}{n^5}$ é con revigente florque é uma seriel de Riemann de expoente $d = 5 > 1$ Entre a seriel $\sum_{m \in W} \frac{8}{3n^5}$ é $\sum_{m \in W} \frac{1}{4^m} = \sum_{m \in W} \left(\frac{1}{4}\right)$

Le seriel $\sum_{m \in W} \frac{1}{4^m} = \sum_{m \in W} \left(\frac{1}{4}\right)$

Le con vergente porque é uma seriel geomé du sa de rayão $x = \frac{1}{4}$ e $|x| = \frac{1}{4} < 1$

Entra a seriel $\sum_{m \in W} \frac{1}{4^m} = \sum_{m \in W} \left(\frac{8}{3n^5} + \frac{1}{4^m}\right)$ é con revergente

Jeorena: L'bondição ne cersaria de convorgência) Le a seriel I len l'convergente ento lem len = 0. 6 Jeorena é vitel quando o parsanos à forma eque valente: Teorema [bondi éau reficiente de di riorgéncia] Le a recessão (ll m) n não dem lemete ou re lem ren = l, com l \(\neq 0 \),
ento a real \(\sum_{n \in W} \) en \(\delta \) dervergente lem lln 7 0 menl Ilm dereezgente lem Mn = 0 -> pale ner (nEW)

Seln derergente
nEM

Con eperto, E de neergente new [] e convergente nelly

Enemplo ①
$$\frac{1}{meW}$$
 $\left(\frac{3}{2}\right)^m$

Cota sérue é derezque forque

lem $Mm = \lim_{m} \left(\frac{3}{2}\right)^m \ge +\infty \neq 0$

Conemblo ② $\frac{1}{meW}$ $\frac{m}{2m+5}$

Temos que $\lim_{m} \frac{m}{2m+5}$ $\frac{m}{m}$
 $\lim_{m} \frac{1}{2+\frac{5}{m}} = \frac{1}{2} \neq 0$

Concluémos que a rérue $\lim_{m \to \infty} \frac{1}{2m+5}$ e du reergente

Enemple 3. 5 (-15 sen m Temos que Mn = Senn se n é infar Mn = Senn se n e par Z lem 12m Como I lem 11 m, demos que a serel I (-1) sen m é de reergente n EW Evenplo 4: Como len 1 = 0, resando o Teorena mada podemos concluer.

Eventlo $\sum_{m \in W} (-1)^m \frac{1}{m}$ Lega an e 1/m, n & W. Jemos que. · (an) n é una successão de cres cente e lem $a_m = lem \frac{1}{m} = 0$ Então, felo breterio de Leibniz concluims que a série $\sum_{n \in IN}^{m} \frac{1}{n}$ é convergente