Principles of Economics

Discussion Session 4: Evaluating Welfare

Joe Wilske

Boston College

September 26, 2025

Consumer Surplus

- Consumer Surplus is the difference between a consumer's willingness to pay and the actual price paid.
- The "surplus" value one gets from purchasing a good.

- This consumer is willing to pay \$10 for one unit.
- Since the market price is \$5, he gets 10 5 = 5 of surplus value from that unit.

Consumer Surplus: Continued

- Adding together the surplus from every unit purchased gives the total CS.
- Calculated by finding the area between the demand curve and price paid.

•
$$CS = \frac{1}{2}bh = \frac{1}{2}(6)(6) = 18$$

Producer Surplus

- Producer Surplus is the difference between the actual price received and a producer's willingness to sell.
- Calculated by finding the area between the supply curve and price received.

- This producer is willing to sell one unit for \$1.67, so he receives 5 1.67 = 3.33 of surplus from that unit.
- Summing across all units, $PS = \frac{1}{2}bh = \frac{1}{2}(6)(4) = 12$.

Exercise 1: Consumer & Producer Surplus

Consider the market for Boston College Doug Flutie jerseys:

$$Q^{D} = 250 - P$$

$$Q^{S} = 2P - 50$$

- Find the market equilibrium.
- 2 Calculate the consumer surplus, producer surplus, and total surplus.

Exercise 1: Consumer & Producer Surplus

Solution:

- Market equilibrium price and quantity: $P^* = 100$, $Q^* = 150$
- **Q** $CS = \frac{1}{2}(150)(250 100) = \frac{1}{2}(150)(150) = 11,250$ $PS = \frac{1}{2}(150)(100 - 25) = \frac{1}{2}(150)(75) = 5,625$ TS = CS + PS = 16,875

Welfare Effect of a Tax

We know a tax raises the buyer's price, lowers the seller's price, and reduces quantity.
 Shrinks the CS and PS triangles

- ullet Some CS and PS is converted to tax revenue: TR=t imes Q
- Deadweight Loss is the CS and PS that is simply lost due to the fall in quantity.

Exercise 2: Welfare Effect of a Tax

Suppose a market is described by the following supply and demand equations:

- $Q^D = 200 P$
- $Q^{S} = 2P 100$
- ullet Find the original equilibrium P^* and Q^* . Calculate Consumer Surplus and Producer Surplus.
- 2 Suppose the government imposes a tax of \$30 per unit.
 - **a** Find the new P^S, P^D and Q.
 - O Calculate CS, PS, Tax Revenue, and Deadweight Loss.

Exercise 2: Welfare Effect of a Tax

Solution:

•
$$P^* = 100, \ Q^* = 100$$

 $CS = \frac{1}{2}(100)(100) = 5,000$

$$PS = \frac{1}{2}(100)(50) = 2,500$$

2 a
$$P^S = 90, P^D = 120, Q = 80$$

$$CS = \frac{1}{2}(80)(80) = 3,200$$

$$PS = \frac{1}{2}(80)(40) = 1,600$$

$$TR = (30)(80) = 2,400$$

$$DWL = \frac{1}{2}(20)(30) = 300$$

Optimal Taxation

- A reasonable goal when designing tax policy might be to minimize DWL.
 - ⇒ Tax goods with inelastic demand or supply.

Figure: Mankiw, Principles of Economics 10th Edition, Chapter 8

- But what kinds of goods tend to be inelastic?
- How do we balance DWL minimization with other considerations?

Optimal Taxation: Continued

- Another goal of tax policy might be to maximize tax revenue.
- Economist Arthur Laffer famously brought the Tax Revenue curve to the public eye after sketching it on a napkin during a meeting with Dick Cheney and Donald Rumsfeld in 1974.

The "Laffer Curve"

• We can derive the Laffer Curve with our 'Econ 101' technique!

$$-Q^{D}=200-P$$

$$Q^S = 2P - 100$$

- Just need to solve for tax revenue as usual, but leave t unspecified:
- $TR = -\frac{2}{3}t^2 + 100t$