Homework 7

Michael Pham

Fall 2023

Contents

1	Intersections and Annihilators	3
2	Null and Range	5
3	Primer on Lagrange Interpolation	7
4	Lagrange Interpolation	8
5	Roots	ç

1 Intersections and Annihilators

Problem 1.1. Suppose V is finite-dimensional, and U, W are its subspaces. Prove that

$$(U \cap W)^0 = U^0 + W^0.$$

Solution. To begin with, we will show that

$$U^0 + W^0 \subseteq (U \cap W)^0.$$

First, we observe that, by definition, we have:

$$U^0 = \{ \varphi \in V' : \varphi(u) = 0, \forall u \in U \}$$

$$W^0 = \{ \psi \in V' : \psi(w) = 0, \forall w \in W \}$$

Meanwhile, we note that for any $\gamma \in (U \cap W)^0$, γ annihilate all of $u \in U \cap W$, but not necessarily all $u \in U$. Then, it follows that $U^0 \subseteq (U \cap W)^0$.

Similarly, we have that $W^0 \subseteq (U \cap W)^0$.

From here, suppose we have some $\varphi \in U^0$ and $\psi \in W^0$. Then, for some $a, b \in \mathbb{F}$, we observe the following:

$$(a\varphi + b\psi)(v) = a\varphi(v) + b\psi(v)$$
$$= 0 + 0$$
$$= 0$$

Then, we note that any $\gamma \in (U \cap W)^0$ can be expressed as a linear combination of $\varphi \in U^0$ and $\psi \in W^0$. In other words, we observe that for any $a\varphi + b\psi \in U^0 + W^0$, we also have that it's in $(U \cap W)^0$. Thus, $U^0 + W^0 \subseteq (U \cap W)^0$.

Now, to show that equality holds, we can simply show that $\dim(U \cap W)^0 = \dim U^0 + \dim W^0$. To do this, we introduce the following lemma:

Lemma 1.1.

$$U^0 \cap W^0 = (U + W)^0$$

Proof. We will first show that $U^0 \cap W^0 \subseteq (U+W)^0$.

To do this, suppose we have some $\gamma \in U^0 \cap W^0$. Then, by definition, we observe that $\gamma(u) = 0$ for all $u \in U$, and also that $\gamma(w) = 0$ for all $w \in W$.

Then, suppose we had some $v \in U + W$. By definition of U + W, we observe then that we can rewrite v = u + w, for some $u, w \in U, W$ respectively. From here, we observe the following:

$$\gamma(v) = \gamma(u+w)$$

$$= \gamma(u) + \gamma(w)$$

$$= 0 + 0$$

$$= 0$$

So, we see that $\gamma \in (U+W)^0$ as well, and thus $U^0 \cap W^0 \subseteq (U+W)^0$.

Now, to show that $U^0 \cap W^0 \supseteq (U+W)^0$, we consider some $\gamma \in (U+W)^0$. We observe that, by definition, we have that for any $v \in U+W$,

$$\gamma(v) = 0$$

Now, as U,W are subspaces of V, they must contain the zero vector $\vec{0}$. Then, it follows that $u+\vec{0}=u\in U+W$, and $w+\vec{0}=w\in U+W$. Then, we observe that for any $u,w\in U,W$ we have:

$$\gamma(u) = 0$$
$$\gamma(w) = 0$$

In other words, we see that $\gamma \in U^0 \cap W^0$.

Therefore, we can conclude that we have equality as desired.

Now, with this in mind, we note as well that:

$$\dim(U+W) = \dim U + \dim W - \dim(U \cap W)$$

$$\dim(U \cap W) = \dim U + \dim W - \dim(U+W)$$

observe the following:

$$\dim(U^{0} + W^{0}) = \dim U^{0} + \dim W^{0} - \dim(U^{0} \cap W^{0})$$

$$= \dim U^{0} + \dim W^{0} - \dim(U + W)^{0}$$

$$= (\dim V - \dim U) + (\dim V - \dim W) - (\dim V - \dim(U + W))$$

$$= \dim V - \dim U - \dim W + \dim(U + W)$$

$$= \dim V - (\dim U + \dim W - \dim(U + W))$$

$$= \dim V - \dim(U \cap W)$$

$$= \dim(U \cap W)^{0}$$

Thus, since $\dim(U \cap W)^0 = \dim(U^0 + W^0)$, then, indeed, we see that equality holds as desired.

2 Null and Range

Problem 2.1. Suppose V,W are finite dimensional, and $T\in\mathcal{L}(V,W)$, and $\operatorname{null} T'=\operatorname{span}(\varphi)$ for some $\varphi\in W'$. Prove that $\operatorname{range} T=\operatorname{null}\varphi$.

Solution. To begin with, we will show that range $T \subseteq \text{null } \varphi$.

We first note that $\operatorname{null} T' = \operatorname{span}(\varphi)$. Now, we see then that this means that:

$$T'(\varphi)=0$$

$$\varphi\circ T=0$$

$$(\varphi\circ T)(v)=0$$

$$\varphi(T(v))=0 \qquad \qquad \text{(for all } v\in V\text{)}$$

Then, we see that, in fact, we have that for all $v \in V$, we have that $Tv \in \text{null } \varphi$. Or, in other words, we have that $\text{range } T \subseteq \text{null } \varphi$.

Next, we will show that they are in fact equal.

To do this, we will show that their dimensions are equal.

We have two cases to consider for this. First, consider $\varphi \neq 0$. Then, we note that since $\varphi \in W'$, then it means that $\varphi \in \mathcal{L}(W, \mathbb{F})$. From here, since $\varphi \neq 0$, it follows that $\dim \operatorname{range}(\varphi) = \dim \mathbb{F} = 1$.

Now, we observe:

$$\dim W = \dim \operatorname{range} \varphi + \dim \operatorname{null} \varphi$$
$$\dim \operatorname{null} \varphi = \dim W - \dim \operatorname{range} \varphi$$
$$= \dim W - 1$$

Next, we look at $\dim \operatorname{range} T$. To do this, we recall that since V,W are finite dimensional, it follows then that $\dim \operatorname{range} T = \dim \operatorname{range} T'$. Furthermore, we observe that since $\operatorname{null} T' = \operatorname{span}(\varphi)$, and $\varphi \neq 0$, then $\dim \operatorname{null} T' = 1$, as it's the span of a single vector. Furthermore, note that $T' \in \mathcal{L}(W',V')$, and that since W is finite-dimensional, we have $\dim W' = \dim W$.

Then, with this in mind, we observe the following:

$$\dim W' = \dim \operatorname{range} T' + \dim \operatorname{null} T'$$

$$\dim \operatorname{range} T' = \dim W' - \dim \operatorname{null} T'$$

$$\dim \operatorname{range} T = \dim W - \dim \operatorname{null} T'$$

$$= \dim W - 1$$

So, we see that, in fact, we have $\dim \varphi = \dim \operatorname{range} T$ for $\varphi \neq 0$.

Now, in the case where $\varphi=0$, we note that $\dim\operatorname{range}\varphi=0$, so we have that $\dim\operatorname{null}\varphi=\dim W$. Meanwhile, since $\varphi=0$, then $\dim\operatorname{span}(\varphi)=0$, meaning that $\dim\operatorname{null} T'=0$, so $\dim\operatorname{range} T'=\dim W$.

Thus, their dimensions are equal.

Then, since we see that $\dim \operatorname{range} T = \dim \operatorname{null} \varphi$, and also that $\operatorname{range} T \subseteq \operatorname{null} \varphi$, we can conclude that equality holds.

Problem 2.2. Give an example of such a pair $T, \varphi \neq 0$ for $V = \mathbb{R}^2$ and $W = \mathbb{R}^3$.

Solution. Suppose we have $V = \mathbb{R}^2$ and $W = \mathbb{R}^3$.

Since T is a linear map from V to W, we know that it has some matrix representation $\mathcal{M}(T)$. Now, we define T to have the matrix representation as follows:

$$\mathcal{M}(T) = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Meanwhile, we let φ to be as follow:

$$\mathcal{M}(\varphi) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

Then, we note that $\operatorname{null} \varphi = \operatorname{span} \{(0,1,0),(0,0,1)\}$. Meanwhile, $\operatorname{range} T = \operatorname{span} \{(0,1,0),(0,0,1)\}$. Thus, we see that, in fact, $\operatorname{null} \varphi = \operatorname{range} T$ as desired.

3 Primer on Lagrange Interpolation

Problem 3.1. Let $p \in \mathcal{P}_n(\mathbb{C})$ for some n and suppose there exists distinct real numbers x_0, \ldots, x_n such that $p(x_j) \in \mathbb{R}$ for all $j = 0, \ldots, n$. Prove that all the coefficients of p are real.

Solution. From Question 4, we know that we can construct a unique Langrage Interpolating Polynomial p such that $p(x_i) \in \mathbb{R}$ for each x_0, \dots, x_n .

Let us denote each $p(x_j) = y_j$, and we note that $y_j \in \mathbb{R}$.

Now, we can in fact construct a polynomial $p \in \mathcal{P}_n(\mathbb{C})$ as follows:

$$p(x) \coloneqq \sum_{j=0}^{n} y_j p_j(x),$$

where we define p_i as:

$$p_j(x) \coloneqq \prod_{k=0, k \neq j}^n \frac{(x-x_k)}{(x_j - x_k)}$$

Notice here that at x_j , $p_j(x_j) = 1$ and $p_k(x_j) = 0$ for all $k \neq j$. Then, $p(x_j) = y_j$ as desired.

Now, we note here that the denominator in p_j consists of real numerical values. Furthermore, the numerator consists of n+1 distinct linear terms which, which, when expanded, will result in a degree n polynomial. We note that this polynomial will also only have real coefficients by virtue of x_k being a real number.

Then, we observe that p_j will be a polynomial with only real coefficients. And thus p(x) must contain only real coefficients as well since $y_j \in \mathbb{R}$, so $y_j p_j$ will have real coefficients only, and thus so will the sum of all $y_j p_j$.

Then, we observe that p has coefficients all real. Furthermore, by Question 4, we know that this p is in fact unique.

4 Lagrange Interpolation

Problem 4.1 (Lagrange Interpolation). Prove using linear algebra that, given distinct data sites x_j and arbitrary data y_j , for j = 0, ..., n, there exists a unique polynomial $p \in \mathcal{P}_n(\mathbb{R})$ such that $p(x_j) = y_j$.

Solution. First, we will begin by proving such a polynomial actually exists.

To do this, we can explicitly construct such a polynomial p(x) as follows:

$$p(x) \coloneqq \sum_{j=0}^{n} y_j p_j(x),$$

where we define p_j as:

$$p_j(x) := \prod_{k=0, k \neq j}^{n} \frac{(x - x_k)}{(x_j - x_k)}$$

Then, with this construction, we observe that at each x_j , we have that p_k , where $k \neq j$, will be equal to zero since the numerator will contain a $(x-x_j)$ term, so $p_k(x_j)$ will evaluate to zero. Meanwhile, we note that $p_j(x_j) = y_j$, as desired.

We note as well that for each of our $p_j(x)$, the denominator of our fraction contains numerical values as well. On the other hand, we note that the numerator of our fraction contains n+1 distinct linear terms, and thus they form a degree n polynomial. Furthermore, y_j is some constant. Then, p(x), the sum of each of our $y_j p_j(x)$, must also be a degree n polynomial.

Thus, we have shown that there indeed exists $p \in \mathcal{P}_n(\mathbb{R})$ that satisfies our conditions.

Now, in order to show uniqueness, we will first show that our p_j 's are linearly independent, and thus form a basis for $\mathscr{P}_n(\mathbb{R})$.

By definition, we observe that each p_0, \ldots, p_n is linearly independent if $a_0p_0 + \ldots + a_np_n = 0$ only when $a_0 = \cdots = a_n = 0$ for all $x \in \mathbb{R}$.

With this in mind, we can construct the following system of equations:

$$(a_0p_0 + \dots + a_np_n)(x_0) = 0$$

$$\vdots$$

$$(a_0p_0 + \dots + a_np_n)(x_n) = 0$$

$$a_0p_0(x_0) + \dots + a_np_n(x_0) = 0$$

$$\vdots$$

$$a_0p_0(x_n) + \dots + a_np_n(x_n) = 0$$

$$\vdots$$

$$a_n = 0$$

Thus, we see that p_0, \ldots, p_n are linearly independent. Furthermore, since there are n+1 polynomials, we see that they in fact form a basis for $\mathcal{P}_n(\mathbb{R})$.

This means then that any $p \in \mathscr{P}_n(\mathbb{R})$ can be written as a unique linear combination of our p_j 's. We note now that as y_0, \ldots, y_j are all scalars, then $\sum_{j=0}^n y_j p_j$ must thus be a unique representation of p as desired.

5 Roots

Problem 5.1. Prove that every polynomial of odd degree with real coefficients has a real zero.

Solution. Let us suppose for the sake of contradiction that our polynomial has no real zeros.

Now, suppose that our polynomial has degree of 2n+1. Since our polynomial p must be of odd degree, $\deg p \geq 1$ (i.e. it can't be a constant polynomial). Then, we note that, by the Fundamental Theorem of Algebra, we know that our polynomial must have 2n+1 complex roots z (whose multiplicity can be greater than zero).

Then, with this in mind, we note that as p has real coefficients, then it follows that for each z_i that is a root of p_i its conjugate $\overline{z_i}$ must be as well. Since p can't have a real zero, it must follow that $z_i \neq \overline{z_i}$.

From here, p can be iteratively divided by the real polynomial $(x-z)(x-\overline{z})$. Doing this process will then leave us with a single term (x-z) remaining. However, we note that since (x-z) is a root of p, then its complex conjugate $(x-\overline{z})$ must as well. But for this to be the case, we have that $z=\overline{z}$; p has a real zero. Thus, we have a contradiction.

Therefore, we can conclude that every polynomial of odd degree with real coefficients must have at least one real zero.