Previously in Molecularity...

$$\psi(x,t) = A\sin\left(\frac{n\pi x}{d}\right), \ n = 4$$

Waves!

Tro, Fig. 7.24

Waves in two dimensions

No nodes: lowest in energy

Ernst Chladni www.hps.cam.ac.uk chladni.jpg

In two dimensions, nodes can be radial: https://www.youtube.com/watch?v=CGiiSIMFFII

Or they can be more interesting geometries with angular components: https://www.youtube.com/watch?v=wMlvAsZvBiw

Degenerate waves

Degenerate waves

Degenerate waves

Review before we get to 3D

- Allowed waves are limited by the physical boundary conditions:
 Tie down ends, Stay inside box, etc.
- Higher Number of Nodes means Higher Energy
- In 2-D (and 3-D), Degenerate Sets are found for waves with angular nodes

Standing waves in three dimensions

Tro, Fig. 7.24

Boundary condition is

$$\psi_{1s}(r=\infty)=0$$

How do we "find" the electron?

Tro, Fig. 7.23

Wavefunction is $\psi_{1s} \propto e^{-r/a_0}$

But the likelihood of "finding" the electron in a particular region is given by ψ_{1s}^2 .

Using ψ to localize electrons

Tro, Fig. 7.24 and 7.25

Probability of finding an e⁻ in an area dτ:

$$\int \psi_{1s}^2 d\tau$$

In spherical coordinates, that's:

$$\int_{r} \int_{\theta} \int_{\phi} \psi_{1s}^{2} r^{2} \sin \theta \, dr \, d\theta \, d\phi$$

• If you only have radial parts (s-orbitals):

$$\int R_{1s}^2 r^2 dr \quad \text{or} \quad \int 4\pi \psi_{1s}^2 r^2 dr$$

One kind of electron orbital

Tro, Fig. 7.26

Tro, Fig. 7.24

How to we define the differences between them?

Principal quantum number, n

In one dimension:

$$\psi(x,t) = A\sin\left(\frac{n\pi x}{d}\right), \ n = 3$$

In three dimensions:

- Takes positive integer values $n = 1, 2, 3, 4, ..., \infty$
- Conveys information about orbital size and energy.

Fig. 7.26 Tro

Now you try...

What is the dimensionality of the nodes for 3-dimensional waves?

 For the orbitals above, what geometrical shape describes the nodes?

 How do the number of nodes relate to the principle quantum number, n?

Fig. 7.26 Tro

Now you try...

What is the dimensionality of the nodes for 3-dimensional waves?

2-dimensional

 For the orbitals above, what geometrical shape describes the nodes?

Sphere (surface)

 How do the number of nodes relate to the principle quantum number, n?

total nodes = n-1

Mathematica images credit

Nathan S. Lewis Professor, Caltech

Image from nsl.caltech.edu