Colle 18 - MPSI Polynômes - Fractions rationnelles

Polynômes

Exercice 1

Résoudre dans $\mathbb{K}[X]$ les équations suivantes :

1.
$$Q^2 = XP^2$$
 d'inconnues P et Q .

2.
$$P \circ P = P$$
 d'inconnu P .

3.
$$P(X^2) = (X^2 + 1)P(X)$$
 d'inconnu P .

Exercice 2 (X PC Centrale MP)

Trouver les $P \in \mathbb{C}[X]$ vérifiant

$$P(X^2) = P(X)P(X+1).$$

Fractions rationnelles

Exercice 3

Effectuer la décomposition en éléments simples dans $\mathbb{C}(X)$ des fractions rationnelles suivantes :

1.
$$\frac{X^2 + 2X + 5}{X^2 - 3X + 2}$$
, $\frac{2X}{X^2 + 1}$.

1.
$$\frac{X^2 + 2X + 5}{X^2 - 3X + 2}$$
, $\frac{2X}{X^2 + 1}$.
2. $\frac{X^2 + 1}{(X - 1)(X - 2)(X - 3)}$, $\frac{4}{(X^2 + 1)^2}$.

3.
$$\frac{3X-1}{X^2(X+1)^2}$$
, $\frac{1}{X^2+X+1}$.

Montrer qu'il n'existe pas de fraction rationnelle F telle que $F^2 = X$.

Exercice 5

Soit $F \in \mathbb{K}(X)$. Montrer que

$$\deg F' < \deg F - 1 \Rightarrow \deg F = 0.$$

Exercice 6

Soit $F \in \mathbb{K}(X)$.

- 1. Soit a un zéro d'ordre $\alpha \geq 1$ de F. Montrer que a est un zéro d'ordre $\alpha 1$ de F'.
- 2. Comparer les pôles de F et de F', ainsi que leur ordre de multiplicité.

Exercice 7 (Mines MP)

Décomposer en éléments simples dans $\mathbb{C}(X)$ la fraction rationnelle

$$\frac{X^{n-1}}{X^n - 1}.$$

Polynômes

Correction de l'exercice 1

1. Si (P,Q) est un couple de solution de polynômes non nuls alors $Q^2 = XP^2$ donne $2 \deg Q = 1 + 2 \deg P$ avec $\deg P$; $\deg Q \in \mathbb{N}$ ce qui est impossible.

Il reste le cas où l'un des polynômes est nul, alors l'autre l'est aussi.

Réciproquement ...

2. Si $\deg P \ge 2$ alors $\deg P \circ P = (\deg P)^2 > \deg P$ et donc P n'est pas solution. Sinon, P = aX + b et alors

$$P \circ P = P$$

$$\Leftrightarrow a(aX + b) + b = aX + b$$

On obtient (a = 1 et b = 0) ou (a = 0 et b quelconque). P = X ou P = constant.

Correction de l'exercice 2

Le polynôme nul est solution. Soit P une solution non nulle.

Soit a une racine de P, alors a^2 l'est aussi, puis a^4, a^8, \dots

Or les racines de P sont en nombres fini, donc les a^{2^n} sont redondants. a=0 ou a est une racine de l'unité.

De plus si a est racine de P alors (a-1) l'est aussi. Donc $(a-1)^2$ à nouveau.

On en déduit que a-1=0 ou a-1 est racine de l'unité.

Si $a \neq 0, 1$ alors |a| = |a - 1| = 1 d'où l'on tire a = -j ou $-j^2$.

Au final, les racines possibles de P sont 0, 1-j et $-j^2$.

Le polynôme P s'écrit donc :

$$P(X) = \lambda X^{\alpha} (X - 1)^{\beta} (X + j)^{\gamma} (x + j^{2})^{\delta}$$

avec $\lambda \neq 0, \alpha, \beta, \gamma, \delta \in \mathbb{N}$.

En injectant cette expression dans l'équation

$$P(X^2) = P(X)P(X+1)$$

on obtient

$$\lambda^2 = \lambda, \alpha = \beta, \text{ et } \gamma = \delta = 0$$

soit

$$P(x) = \left[X(X-1)\right]^{\alpha}.$$

Fractions rationnelles

$$\begin{array}{l} \textbf{Correction de l'exercice 3}_{1}, & \frac{X_{2}+2X_{1}+5}{X^{2}-3X+2}=1-\frac{8}{X-1}+\frac{13}{X-2}, & \frac{2X}{X^{2}+1}=\frac{1}{X-i}+\frac{1}{X+i}. \end{array}$$

2.
$$\frac{X^2 + 1}{(X - 1)(X - 2)(X - 3)} = \frac{1}{X - 1} - \frac{5}{X - 2} + \frac{5}{X - 3}, \qquad \frac{4}{(X^2 + 1)^2} = -\frac{1}{(X - i)^2} - \frac{i}{X - i} - \frac{1}{(X + i)^2} + \frac{i}{X + i}.$$

3.
$$\frac{3X-1}{X^2(X+1)^2} = -\frac{1}{X^2} + \frac{5}{X} - \frac{4}{(X+1)^2} - \frac{5}{(X+1)}, \qquad \frac{1}{X^2 + X + 1} = -\frac{i/\sqrt{3}}{X-j} + \frac{i/\sqrt{3}}{X-j^2}.$$

Correction de l'exercice 4

Si F est solution alors $\deg F^2 = 2 \deg F = 1$ avec $\deg F \in \mathbb{Z}$. C'est impossible.

Correction de l'exercice 5

Posons $F = \frac{A}{B}$.

Supposons $\deg F' < \deg F - 1$.

 $F' = \frac{A'B - AB'}{B^2}$. Si A ou B sont constants c'est assez rapide. Sinon,

$$\deg F' < \deg F - 1$$

$$\Rightarrow \deg \frac{A'B - AB'}{B^2} < \deg \frac{A}{B}$$

$$\Rightarrow \deg(A'B - AB') - 2\deg B < \deg A - \deg B - 1$$

$$\Rightarrow \deg(A'B - AB') < \deg A + \deg B - 1$$

$$\Rightarrow \deg(A'B - AB') < \deg A'B = \deg AB'$$

Donc $\operatorname{coeff}(A'B) = \operatorname{coeff}(AB')$ en effet, en posant $A = a_n x^n + \ldots + a_0$, et $B = b_m x^m + \ldots + b_0$ on a : $\operatorname{coef}(A'B) = na_n B_m$ et $\operatorname{coef}(AB') = mA_n B_m$ donc n = m. D'où deg $A = \deg B$ puis $\deg F = 0$.

Correction de l'exercice 6

Posons $F = \frac{1}{Q}$.

1. Soit a zéro de multiplicité $\alpha \geq 1$. On a $P = (X - a)^{\alpha} \widetilde{P}$ avec $\widetilde{P}(a) \neq 0$ et $Q(a) \neq 0$.

$$F' = \frac{(X-a)^{\alpha-1}(\alpha \widetilde{P}Q + (X-a)\widetilde{P}'Q - (X-a)\widetilde{P}Q')}{Q^2}.$$

a n'est pas racine de $\alpha \widetilde{P}Q + (X-a)\widetilde{P}'Q - (X-a)\widetilde{P}Q'$, donc a racine de F de multiplicité $\alpha-1$ de F'.

2. Soit a un pôle de F multiplicité α . On a $P(a) \neq 0$ et $Q = (X - a)^{\alpha} \widetilde{Q}$ avec $\widetilde{Q}(a) \neq 0$.

$$F' = \frac{(X-a)P'\widetilde{Q} - \alpha P\widetilde{Q} - (X-a)P\widetilde{Q}'}{(X-a)^{\alpha+1}\widetilde{Q}^2}.$$

a n'est pas racine de $(X-a)P'\widetilde{Q} - \alpha P\widetilde{Q} - (X-a)P\widetilde{Q}'$ donc a un pôle de multiplicité $\alpha+1$ de F'.

Correction de l'exercice 7 (Mines MP)

Les pôles de cette fraction rationnelle sont simples et sont les racines n-ièmes de l'unité $\omega_0, \omega_1, ..., \omega_{n-1}$. Sachant que la fraction rationnelle est de degré strictement négatif, sa partie entière est nulle et sa décomposition en éléments simples cherchée s'écrit

$$\frac{X^{n-1}}{X^n - 1} = \sum_{k=0}^{n-1} \frac{\alpha_k}{X - \omega_k}.$$

La partie polaire

$$\lambda = X - a$$

d'un pôle simple en a d'une fraction rationnelle P/Q s'obtient par la relation

$$\lambda = \frac{P(a)}{Q'(a)}.$$

En effet si Q(X) = (X - a)R(X) on a Q'(a) = R(a).

Ici

$$\alpha_k = \left(\frac{X^{n-1}}{(X^n - 1)'}\right)(\omega_k) = \frac{1}{n}$$

et donc

$$\frac{X^{n-1}}{X^n-1} = \frac{1}{n} \sum_{k=0}^{n-1} \frac{1}{X - \omega_k}.$$