AMENDMENT

Subject matter to be added is in bold and underlined.

Subject matter to be deleted is in bold and strikethrough.

In the Claims:

Please enter rewritten claims 1-2 as follows.

This listing of claims will replace all prior versions and listings of claims in the application.

Listing of Claims:

1. (Currently amended) A compound of Formula (I):

$$X^{2}$$
 X^{3}
 X^{4}
 X^{3}
 X^{4}
 X^{4}
 X^{5}
 X^{4}
 X^{5}
 X^{6}
 X^{7}
 X^{7

or a stereoisomer or pharmaceutically acceptable salts, hydrates, or prodrugs thereof, wherein:

W is -CH₂CH₂-, -CH₂CR⁴R⁵-, -CR⁴R⁵CH₂-, -CHR⁴CHR⁵-, -CH=CH-, or -CR⁴=CR⁵-:

 L_1 is -CH₂-;

L₂ is a bond;

A is phenyl substituted with 0-3 R^{11} and 0-1 R^{12} , or pyridyl substituted 0-3 R^{11} and 0-1 R^{12} :

B is phenyl substituted with 0-3 R^{11} and 0-1 R^{12} , or pyridyl substituted with 0-3 R^{11} and 0-1 R^{12} ;

X¹, X³ and X⁴ independently represent CR²;

 X^2 is CR^1 :

 R^{1} is -C(=NH)NH₂, -C(O)NH₂, or -CH₂NH₂;

 R^2 is H, F, Cl, Br, I, OCF₃, CF₃, OR^a, SR^a, CN, NO₂, -NR⁷R⁸, -C(O)NR^{7a}R⁸, -NR¹⁰C(O)R^b, -S(O)_DNR⁸R⁹, -S(O)R^c, -S(O)₂R^c, C₁₋₆ alkyl substituted with 0-2 R^{2a},

 C_{2-6} alkenyl substituted with 0-2 R^{2a} , C_{2-6} alkynyl substituted with 0-2 R^{2a} , $-(CH_2)_r-C_{3-10}$ carbocycle substituted with 0-3 R^{2b} , or $-(CH_2)_r-5-10$ membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and $S(O)_p$, and substituted with 0-3 R^{2b} ;

each R^{2a} is, independently at each occurrence, H, F, OCF₃, CF₃, OR^a, SR^a, CN, -NR⁷R⁸, -C(O)NR^{7a}R⁸, -NR¹⁰C(O)R^b, -S(O)_pNR⁸R⁹, -S(O)R^c, or -S(O)₂R^c;

each R^{2b} is, independently at each occurrence, H, F, Cl, Br, I, OR^a , SR^a , CN, NO_2 , CF_3 , $-SO_2R^c$, $-NR^7R^8$, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-6} cycloalkyl, C_{1-4} haloalkyl, C_{1-4} haloalkyloxy-, C_{1-4} alkyloxy-, C_{1-4} alkyl-C(O)NH-;

 R^4 is H, F, ORa, SRa, -NR7R8, -NR10C(O)NR7aR8, -NR10SO₂Rc, -C(O)ORa, -(CH₂)_r-C(O)NR^{7a}R8, C₁₋₄ haloalkyl, C₁₋₆ alkyl substituted with 0-3 R^{4a}, C₂₋₆ alkenyl substituted with 0-3 R^{4a}, -(CH₂)_r-C₃₋₁₀ carbocycle substituted with 0-3 R^{4b}, or -(CH₂)_r-5-10 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p, and substituted with 0-3 R^{4b};

each R^{4a} is, independently at each occurrence, H, C_{1-4} alkyl, OR^a , F, =O, CF_3 , CN, $-C(O)R^a$, $-C(O)OR^a$, $-C(O)NR^{7a}R^8$, $-NR^{10}COR^c$, or $-S(O)_nR^b$;

each R^{4b} is, independently at each occurrence, H, OH, Cl, F, Br, I, CN, NO₂, CF₃, -C(O)OR^a, -SO₂R^c, -NR⁷R⁸, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₆ cycloalkyl, C₁₋₄ haloalkyl, C₁₋₄ haloalkyloxy-, C₁₋₄ alkyloxy-, C₁₋₄ alkylthio-, C₁₋₄ alkyl-C(O)-, C₁₋₄ alkyl-C(O)NH-, -C(O)NR^{7a}R⁸, -NR¹⁰C(O)R^c, -NR¹⁰S(O)₂NR⁸R⁹, or -S(O)₂NR⁸R⁹;

 R^5 is H, F, C_{1-4} haloalkyl, C_{1-6} alkyl substituted with 0-3 R^{5a} , C_{2-6} alkenyl substituted with 0-3 R^{5a} , $-(CH_2)_r$ - C_{3-10} carbocycle substituted with 0-3 R^{5b} , or $-(CH_2)_r$ -5-10 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and $S(O)_p$, and substituted with 0-3 R^{5b} ;

each R^{5a} is, independently at each occurrence, H, C_{1-4} alkyl, OR^a , F, =O, CF_3 , CN, $-C(O)R^a$, $-C(O)OR^a$, $-C(O)NR^{7a}R^8$, or $-S(O)_nR^c$;

each R^{5b} is, independently at each occurrence, H, OH, Cl, F, Br, I, CN, NO₂, CF₃, -C(O)OR^a, -SO₂R^c, -NR⁷R⁸, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₆ cycloalkyl, C₁₋₄ haloalkyl, C₁₋₄ haloalkyloxy-, C₁₋₄ alkyloxy-, C₁₋₄ alkylthio-, C₁₋₄ alkyl-C(O)NH-;

each R^6 is, independently at each occurrence, H, C_{1-4} alkyl, $-(CH_2)_rC(O)OR^a$, $-(CH_2)_rS(O)_2NR^{7a}R^8$, or $-(CH_2)_rOR^a$;

each R^{6a} is, independently at each occurrence, H or C₁₋₄ alkyl;

each R^7 is, independently at each occurrence, H, C_{1-6} alkyl, $-(CH_2)_n$ -phenyl,

 $(C_{1-6} \text{ alkyl})C(O)$ -, $(C_{6-10} \text{ aryl})$ - $C_{0-4} \text{ alkyl}$ -C(O)-, $(C_{3-6} \text{ cycloalkyl})$ - $C_{0-4} \text{ alkyl}$ -C(O)-,

(5-10 membered heteroaryl)-C₀₋₄ alkyl-C(O)-, (C₁₋₄ alkyl)OC(O)-,

 $(C_{6-10} \text{ aryl})-C_{1-4} \text{ alkyl}-OC(O)-, (C_{1-4} \text{ alkyl})-C(O)O-(C_{1-4} \text{ alkyl})-OC(O)-,$

 $(C_{6-10} \text{ aryl})-C(O)O-(C_{1-4} \text{ alkyl})-OC(O)-$, (5-10 membered heteroaryl)-CH₂-OC(O)-,

 $(C_{1-6} \text{ alkyl})-NHC(O)-, (C_{6-10} \text{ aryl})-C_{0-4} \text{ alkyl}-NHC(O)-,$

(5-10 membered heteroaryl)-C₀₋₄ alkyl-NHC(O)-, (C₁₋₆ alkyl)-S(O)₂-,

 $(C_{6-10} \text{ aryl})-(C_{0-4} \text{ alkyl})-S(O)_2-$, (5-10 membered heteroaryl)- $C_{0-4} \text{ alkyl}-S(O)_2-$,

 $(C_{1-6} \text{ alkyl})_2 NC(O)$ -, phenyl-NHC(O)-, or (phenyl)($C_{1-6} \text{ alkyl}$)NHC(O)-, wherein said phenyl, aryl and heteroaryl are substituted with 0-2 R^f ;

each R^{7a} is, independently at each occurrence, H, C_{1-4} alkyl substituted with 0-2 R^{7b} and/or 0-2 R^{7c} , - $(CH_2)_r$ - C_{3-10} carbocycle substituted with 0-3 R^f , or a - $(CH_2)_r$ -5-12 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and $S(O)_p$, and substituted 0-3 R^f ;

each R^{7b} is, independently at each occurrence, =O, ORg, F, CN, NO₂, -NR⁷R⁸, -C(O)Rg, -C(O)ORg, -NR⁸C(O)Rg, -C(O)NR⁸R⁹, -NR⁸C(O)NR⁸R⁹, -SO₂NR⁸R⁹, -NR⁸SO₂NR⁸R⁹, -NR⁸SO₂-C₁₋₄ alkyl, -NR⁸SO₂CF₃, -NR⁸SO₂-phenyl, -S(O)₂CF₃, -S(O)_p-C₁₋₄ alkyl, -S(O)_p-phenyl, or -(CF₂)_rCF₃;

with $0-2 R^f$;

each R^{7c} is, independently at each occurrence, C_{3-10} carbocycle substituted with 0-3 R^f ; or a 5-12 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and $S(O)_p$, and substituted 0-3 R^f ;

selected from the group consisting of N, O, and S(O)_p, and substituted 0-3 R^T;

each R⁸ is, independently at each occurrence, H, C₁₋₆ alkyl, or -(CH₂)_n-phenyl;

each R^{8a} is, independently at each occurrence, H, OH, C₁₋₆ alkyl, C₁₋₄ alkoxy,

(C₆₋₁₀ aryl)-C₁₋₄ alkoxy, -(CH₂)_n-phenyl, (C₁₋₆ alkyl)C(O)-, (C₆₋₁₀ aryl)-C₀₋₄ alkyl-C(O)-,

(C₃₋₆ cycloalkyl)-C₀₋₄ alkyl-C(O)-, (5-10 membered heteroaryl)-C₀₋₄ alkyl-C(O)-,

(C₁₋₄ alkyl)OC(O)-, (C₆₋₁₀ aryl)-C₁₋₄ alkyl-OC(O)-,

(C₁₋₄ alkyl)-C(O)O-(C₁₋₄ alkyl)-OC(O)-, (C₆₋₁₀ aryl)-C(O)O-(C₁₋₄ alkyl)-OC(O)-,

(5-10 membered heteroaryl)-C₀₋₄ alkyl-OC(O)-, C₁₋₄ alkoxy, (C₁₋₄ alkyl)C(O)O-, or

(C₆₋₁₀ aryl)-(C₀₋₄ alkyl)-C(O)O-; wherein said phenyl, aryl and heteroaryl are substituted

alternatively, R^7 and R^8 , or R^{7a} and R^8 , when attached to the same nitrogen, combine to form a 5-10 membered heterocyclic ring consisting of carbon atoms and 0-2 additional heteroatoms selected from the group consisting of N, O, and $S(O)_p$, and optionally substituted with 0-2 R^d ;

each R⁹ is, independently at each occurrence, H, C₁₋₆ alkyl, or -(CH₂)_n-phenyl; each R¹⁰ is, independently at each occurrence, H, C₁₋₆ alkyl substituted with 0-2 R^{10a}, C₂₋₆ alkenyl substituted with 0-2 R^{10a}, C₂₋₆ alkynyl substituted with 0-2 R^{10a}, -(CH₂)_r-C₃₋₁₀ carbocycle substituted with 0-3 R^d, or -(CH₂)_r-5-10 membered heterocycle consisting of carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p, and substituted with 0-3 R^d;

each R^{10a} is, independently at each occurrence, H, C_{1-4} alkyl, OR^a , F, =O, CF_3 , CN, NO_2 , -C(O) R^a , -C(O) R^a , -C(O) R^a , -C(O) R^a , or -S(O) R^a , or -S(O) R^a ;

each R^{11} is, independently at each occurrence, H, =O, -(CH_2)_r-ORa, F, Cl, Br, I, CF_3 , CN, NO₂, -(CH_2)_r-NR⁷R⁸, -(CH_2)_r-C(=NR⁸)NR⁷R⁹, -C(O)Ra, -C(O)ORa, -(CH_2)_r-NR⁸C(O)Ra, -NR⁸C(O)ORc, -NR⁸CO(CH₂)_rCO₂Ra, -C(O)NR⁷aR⁸, -NR⁸C(O)NR⁸R¹⁰, -SO₂NR⁸R¹⁰, -NR⁸SO₂NR⁸R¹⁰, -NR⁸SO₂-C₁₋₄ alkyl,

-NR⁸SO₂CF₃, -NR⁸SO₂-phenyl, -S(O)₂CF₃, -S(O)_p-C₁₋₄ alkyl, -S(O)_p-phenyl, -(CF₂)_rCF₃, C_{1-6} alkyl substituted with 0-2 R^{11a}, C_{2-6} alkenyl substituted with 0-2 R^{11a}, C_{2-6} alkynyl substituted with 0-2 R^{11b}, C_{2-6} alkenyl substituted with 0-2 R^{11b}, C_{2-6} alkenyl substituted with 0-2 R^{11b}, phenyl substituted with 0-3 R^c and/or 0-3 R^d, or a 5-7 membered heterocycle consisting of carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p, and substituted with 0-3 R^c and/or 0-3 R^d;

each R^{11a} is, independently at each occurrence, =O, OR^a , F, Cl, Br, I, CN, NO_2 , -NR⁷R⁸, -C(O)Ra, -C(O)ORa, -NR⁸C(O)Ra, -C(O)NR⁷aR8, -NR⁸C(O)NR⁸R¹⁰, -SO₂NR⁸R¹⁰, -NR⁸SO₂NR⁸R¹⁰, -NR⁸SO₂-Cl₋₄ alkyl, -NR⁸SO₂CF₃, -NR⁸SO₂-phenyl, -S(O)₂CF₃, -S(O)_p-Cl₋₄ alkyl, -S(O)_p-phenyl, or -(CF₂)_rCF₃;

each R^{11b} is, independently at each occurrence, C_{3-10} carbocycle substituted with 0-3 R^d , or a 5-12 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and $S(O)_p$, and substituted 0-3 R^d ;

each R^{12} is, independently at each occurrence, OR^{12a} , $-CH_2OR^{12a}$, $-C(O)NR^{7a}R^8$, $-(CH_2)_rCO_2R^{12a}$, $-(CH_2)_rSO_3H$, $-OSO_3H$, $-(CH_2)_rPO_3H$, $-OPO_3H_2$, $-PO_3H_2$, $-NHCOCF_3$, $-NHSO_2CF_3$, $-CONHNHSO_2CF_3$, $-C(CF_3)_2OH$, $-SO_2NHR^{12a}$, $-CONHSO_2NHR^{12a}$, $-SO_2NHCOR^{12a}$, $-SO_2NHCO_2R^{12a}$, $-CONHSO_2R^{12b}$, $-NHSO_2R^{12b}$, $-CONHOR^{12b}$,

$$-(CH2)r - N-N N-N N-N CF3 - (CH2)r - N+N Rd NH$$

each R^{12a} is, independently at each occurrence, H, C_{1-6} alkyl, $-(CH_2)_r$ - C_{3-10} carbocycle substituted with 0-3 R^d , or $-(CH_2)_r$ -5-10 membered heterocycle consisting of carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and $S(O)_p$, and substituted with 0-3 R^d ;

each R^{12b} is, independently at each occurrence, C_{1-6} alkyl substituted with 0-2 R^{12c} , C_{2-6} alkenyl substituted with 0-2 R^{12c} , C_{2-6} alkynyl substituted with R^{12c} ,

- $(CH_2)_r$ - C_{3-10} carbocycle substituted with 0-3 R^{12c}, or - $(CH_2)_r$ -5-10 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p, and substituted with 0-3 R^{12c};

each R^{12c} is, independently at each occurrence, H, F, Cl, Br, I, CF₃, OCF₃, CN, NO₂, OR^a, -CO₂R^a, -NR⁷R⁸, -SO₂R^c, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl,

- $(CH_2)_r$ - C_{3-10} carbocycle substituted with 0-3 R^d, or - $(CH_2)_r$ -5-10 membered heterocycle consisting of carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p, and substituted with 0-3 R^d;

each R^a is, independently at each occurrence, H, C_{1-4} alkyl, $-(CH_2)_r$ - C_{3-7} cycloalkyl, $-(CH_2)_r$ - C_{6-10} aryl, or $-(CH_2)_r$ -5-10 membered heteroaryl, wherein said aryl or heteroaryl groups are optionally substituted with 0-2 R^f ;

each R^b is, independently at each occurrence, CF_3 , OH, C_{1-4} alkoxy, C_{1-6} alkyl, $-(CH_2)_r$ - C_{3-10} carbocycle substituted with 0-2 R^d , or $-(CH_2)_r$ -5-10 membered heterocycle containing from 1-4 heteroatoms selected from the group consisting of N, O, and $S(O)_p$ and substituted with 0-2 R^d ;

each R^c is, independently at each occurrence, C_{1-4} alkyl, C_{6-10} aryl, 5-10 membered heteroaryl, (C_{6-10} aryl)- C_{1-4} alkyl, or (5-10 membered heteroaryl)- C_{1-4} alkyl, wherein said aryl and heteroaryl groups are substituted with 0-2 R^d;

each R^d is, independently at each occurrence, H, =0, OR^a , F, Cl, Br, I, CN, NO_2 , $-NR^7R^8$, $-C(O)R^a$, $-C(O)OR^a$, $-NR^8C(O)R^a$, $-C(O)NR^{7a}R^8$, $-SO_2NR^8R^9$, $-NR^8SO_2NR^8R^9$, $-NR^8SO_2-C_{1-4}$ alkyl, $-NR^8SO_2CF_3$, $-NR^8SO_2$ -phenyl, $-S(O)_2CF_3$, $-S(O)_p$ - C_{1-4} alkyl, $-S(O)_p$ -phenyl, $-(CF_2)_rCF_3$, C_{1-6} alkyl substituted with 0-2 R^e , C_{2-6} alkenyl substituted with 0-2 R^e , or C_{2-6} alkynyl substituted with 0-2 R^e ;

each R^e is, independently at each occurrence, =O, OR^a , F, Cl, Br, I, CN, NO_2 , -NR⁸R⁹, -C(O)Ra, -C(O)ORa, -NR⁸C(O)Ra, -C(O)NR⁷aR8, -SO₂NR⁸R9, -NR⁸SO₂NR⁸R9, -NR⁸SO₂-Cl₋₄ alkyl, -NR⁸SO₂CF₃, -NR⁸SO₂-phenyl, -S(O)₂CF₃, -S(O)_p-Cl₋₄ alkyl,

 $-S(O)_p$ -phenyl, or $-(CF_2)_rCF_3$;

each R^f is, independently at each occurrence, H, =0, -(CH_2)_r-ORg, F, Cl, Br, I, CN, NO_2 , - NR^8R^9 , -C(O)Rg, -C(O)Rg, - $R^8C(O)Rg$, - $C(O)NR^8R^9$, - $SO_2NR^8R^9$, - $NR^8SO_2NR^8R^9$, - $NR^8SO_2-C_{1-4}$ alkyl, - $NR^8SO_2CF_3$, - NR^8SO_2 -phenyl, - $S(O)_2CF_3$, - $S(O)_p-C_{1-4}$ alkyl, - $S(O)_p$ -phenyl, -(CF_2)_r CF_3 , C_{1-6} alkyl, C_{2-6} alkenyl, or C_{2-6} alkynyl; each R^g is, independently at each occurrence, H, C_{1-6} alkyl, or -(CH_2)_n-phenyl; R0, at each occurrence, is selected from 0, 1, 2, 3, and 4; R1, at each occurrence, is selected from 0, 1, and 2; and R2, and R3, and 4.

2. (Currently amended) A compound according to Claim 1, wherein the compound is of Formula (Ia):

$$R^2$$
 N A L_2 B (Ia)

or a stereoisomer or pharmaceutically acceptable salts, hydrates, or prodrugs thereof, wherein:

W is $-CH_2CH_2$ -, $-CH_2CR^4R^5$ -, $-CR^4R^5CH_2$ -, or $-CR^4$ =CH-;

L₂ is a bond;

A is phenyl substituted with 0-2 R^{11} and 0-1 R^{12} , or pyridyl substituted 0-2 R^{11} and 0-1 R^{12} :

B is phenyl substituted with 0-2 R^{11} and 0-1 R^{12} , or pyridyl substituted with 0-2 R^{11} and 0-1 R^{12} ;

R¹ is -C(=NH)NH₂, -C(O)NH₂, or -CH₂NH₂;

 $R^2 \text{ is H, F, ORa, CN, -NR}^7 R^8, -C(O)NR^{7a}R^8, -NR^{10}C(O)R^b, -S(O)_pNR^8R^9, -S(O)R^c, \\ -S(O)_2R^c, C_{1-6} \text{ alkyl substituted with 0-2 } R^{2a}, -(CH_2)_r-C_{3-7} \text{ carbocycle substituted with 0-2 } R^{2a}, -(CH_2)_r-C_{3-7} R^{2a}, -(CH_2)_r-C_{3-7} R^{2a}, -(CH_2)_r-C_{3-7} R^{2a}, -(CH_2)_r-C_{3-7} R^{2a}, -(CH_2)_r-C_{3-7}$

 R^{2b} , or -(CH₂)_r-5-7 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p, and substituted with 0-2 R^{2b} ;

each R^{2a} is, independently at each occurrence, H, F, OCF₃, CF₃, OR^a, SR^a, CN,
-NR⁷R⁸, -C(O)NR^{7a}R⁸, -S(O)_pNR⁸R⁹, -NR¹⁰C(O)R^b, -S(O)_pNR⁸R⁹, -S(O)R^c, or -S(O)₂R^c;
each R^{2b} is, independently at each occurrence, H, F, OR^a, SR^a, CN, NO₂, CF₃,
-SO₂R^c, -NR⁷R⁸, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₆ cycloalkyl, C₁₋₄ haloalkyl,
C₁₋₄ haloalkyloxy-, C₁₋₄ alkyloxy-, C₁₋₄ alkylthio-, C₁₋₄ alkyl-C(O)-, or
C₁₋₄ alkyl-C(O)NH-;

 R^4 is H, F, C_{1-4} haloalkyl, $-(CH_2)_r$ - $C(O)NR^{7a}R^8$, C_{1-6} alkyl substituted with 0-3 R^{4a} , C_{2-6} alkenyl substituted with 0-3 R^{4a} , $-(CH_2)_r$ - C_{3-8} carbocycle substituted with 0-3 R^{4b} , or $-(CH_2)_r$ -5-6 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and $S(O)_p$, and substituted with 0-3 R^{4b} ;

each R^{4a} is, independently at each occurrence, H, C_{1-4} alkyl, OR^a , F, =O, CF_3 , CN, -C(O) R^a , -C(O) OR^a , -C(O) OR^a , -C(O) OR^a , -NR OR^a , -NR OR^a , or -S(O) OR^a , respectively.

each R^{4b} is, independently at each occurrence, H, OH, Cl, F, Cl, Br, CN, NO₂, CF₃, -C(O)OR^a, -SO₂R^c, -NR⁷R⁸, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₆ cycloalkyl, C₁₋₄ haloalkyl, C₁₋₄ haloalkyloxy-, C₁₋₄ alkyloxy-, C₁₋₄ alkylthio-, C₁₋₄ alkyl-C(O)-, C₁₋₄ alkyl-C(O)NH-, -C(O)NR^{7a}R⁸, -NR¹⁰C(O)R^c, -NR¹⁰S(O)₂NR⁸R⁹, or -S(O)₂NR⁸R⁹;

each R^5 is, independently at each occurrence, H, F, C_{1-4} haloalkyl, C_{1-6} alkyl substituted with 0-2 R^{5a} , C_{2-6} alkenyl substituted with 0-2 R^{5a} , C_{2-6} alkynyl substituted with 0-2 R^{5a} , $-(CH_2)_r$ - C_{3-7} cycloalkyl substituted with 0-2 R^{5b} , $-(CH_2)_r$ -phenyl substituted with 0-2 R^{5b} , or $-(CH_2)_r$ -5-6 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and $S(O)_p$, and substituted with 0-2 R^{5b} ;

each R^{5a} is, independently at each occurrence, H, C_{1-4} alkyl, OR^a , F, =O, CF_3 , CN, $-C(O)R^a$, $-C(O)OR^a$, $-C(O)NR^{7a}R^8$, or $-S(O)_pR^c$;

each R5b is, independently at each occurrence, H, OH, Cl, F, Br, CN, NO2, CF3,

-C(O)OR^a, -SO₂R^c, -NR⁷R⁸, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-6} cycloalkyl, C_{1-4} haloalkyl, C_{1-4} haloalkyloxy-, C_{1-4} alkyloxy-, C_{1-4} alkyl-C(O)-, or C_{1-4} alkyl-C(O)NH-;

each R^6 is, independently at each occurrence, H, C_{1-4} alkyl, $-(CH_2)_rC(O)OR^n$, $-(CH_2)_rS(O)_2NR^{7n}R^8$, or $-(CH_2)_rOR^n$;

each R^{6a} is, independently at each occurrence, H or C_{1-4} alkyl;

each R⁷ is, independently at each occurrence, H, C₁₋₆ alkyl, -(CH₂)_n-phenyl, (C₁₋₆ alkyl)C(O)-, (C₆₋₁₀ aryl)-C₀₋₄ alkyl-C(O)-, (C₃₋₆ cycloalkyl)-C₀₋₄ alkyl-C(O)-, (5-10 membered heteroaryl)-C₀₋₄ alkyl-C(O)-, (C₁₋₄ alkyl)OC(O)-, (C₆₋₁₀ aryl)-C₁₋₄ alkyl-OC(O)-, (C₁₋₄ alkyl)-C(O)O-(C₁₋₄ alkyl)-OC(O)-, (C₆₋₁₀ aryl)-C(O)O-(C₁₋₄ alkyl)-OC(O)-, (5-10 membered heteroaryl)-CH₂-OC(O)-, (C₁₋₆ alkyl)-NHC(O)-, (C₆₋₁₀ aryl)-C₀₋₄ alkyl-NHC(O)-, (C₁₋₆ alkyl)-S(O)₂-, (C₆₋₁₀ aryl)-(C₀₋₄ alkyl)-S(O)₂-, (5-10 membered heteroaryl)-C₀₋₄ alkyl-S(O)₂-, (C₁₋₆ alkyl)₂NC(O)-, phenyl-NHC(O)-, benzyl-NHC(O)-, or (phenyl)(C₁₋₆ alkyl)NC(O)-, wherein said phenyl, aryl and heteroaryl are substituted with 0-2 R^f;

each R^{7a} is, independently at each occurrence, H, C_{1-4} alkyl substituted with 0-1 R^{7b} or 0-1 R^c , C_{3-7} cycloalkyl substituted with 0-2 R^d , phenyl substituted with 0-3 R^f , or a 5-6 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and $S(O)_p$, and substituted 0-3 R^f ;

each R^{7b} is, independently at each occurrence, =O, ORg, F, Cl, Br, I, CN, NO₂, -NR⁷R⁸, -C(O)Rg, -C(O)ORg, -NR⁸C(O)Rg, -C(O)NRg, -NRgC(O)NRgg, -NRgC(O)NRgg, -SO₂NRgg, -NRgSO₂NRgg, -NRgSO₂NRgg, -NRgSO₂-Cl₋₄ alkyl, -NRgSO₂CF₃, -NRgSO₂-phenyl, -S(O)₂CF₃, -S(O)_p-Cl₋₄ alkyl, -S(O)_p-phenyl, or -(CF₂)_rCF₃;

each R^{7c} is, independently at each occurrence, C_{3-10} carbocycle substituted with 0-3 R^f ; or a 5-12 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and $S(O)_p$, and substituted 0-3 R^f ;

each R^8 is, independently at each occurrence, H, C_{1-6} alkyl, or -(CH₂)_n-phenyl;

each R^{8a} is, independently at each occurrence, H, OH, C_{1-6} alkyl, $-(CH_2)_n$ -phenyl, $(C_{1-6}$ alkyl)C(O)-, $(C_{6-10}$ aryl) $-C_{1-4}$ alkyl-C(O)-, $(C_{3-6}$ cycloalkyl) $-C_{0-4}$ alkyl-C(O)-, $(S_{1-6}$ alkyl) $-S_{0-6}$ alkyl- $-S_{0-6}$ al

alternatively, R⁷ and R⁸, or R^{7a} and R⁸, when attached to the same nitrogen, combine to form a 5-10 membered heterocyclic ring consisting of carbon atoms and 0-2 additional heteroatoms selected from the group consisting of N, O, and S(O)_p;

each R⁹ is, independently at each occurrence, H, C₁₋₆ alkyl, or -(CH₂)_n-phenyl; each R¹⁰ is, independently at each occurrence, H, C₁₋₆ alkyl substituted with 0-2 R^{10a}, C₂₋₆ alkenyl substituted with 0-2 R^{10a}, C₂₋₆ alkynyl substituted with 0-2 R^{10a}, (C₁₋₆ alkyl)C(O)-, (C₃₋₆ cycloalkyl)C₁₋₃ alkyl-C(O)-, (C₃₋₆ cycloalkyl)C(O)-, phenyl-C(O)-, benzyl-C(O)-, benzyl-S(O)₂-, (C₁₋₆ alkyl)NHC(O)-, (C₁₋₆ alkyl)₂NC(O)-, phenyl-NHC(O)-, benzyl-NHC(O)-, (phenyl)(C₁₋₆ alkyl)NC(O)-, (benzyl)(C₁₋₆ alkyl)NC(O)-, (C₁₋₆ alkyl)-S(O)₂-, phenyl-S(O)₂-, -(CH₂)_r-C₃₋₁₀ carbocycle substituted with 0-3 R^d, or -(CH₂)_r-5-10 membered heterocycle consisting of carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_D, and substituted with 0-3 R^d;

each R^{10a} is, independently at each occurrence, H, C_{1-4} alkyl, OR^a , Cl, F, Cl, Br, I, =O, CF₃, CN, NO₂, -C(O)R^a, -C(O)OR^a, -C(O)NR^{7a}R⁸, or -S(O)_pR^c;

each R^{11} is, independently at each occurrence, H, =O, -(CH_2)_r-ORa, F, Cl, Br, I, CF_3 , CN, NO₂, -(CH_2)_r-NR⁷R⁸, -(CH_2)_r-C(=NR⁸)NR⁷R⁹, -C(O)Ra, -C(O)ORa, -C(O)ORa, -(CH_2)_r-NR⁸C(O)Ra, -NHC(O)(CH_2)_rC(O)ORa, -NR⁸C(O)ORc, -C(O)NR⁷aR⁸, -NR⁸C(O)NR⁸R¹⁰, -SO₂NR⁸R¹⁰, -NR⁸SO₂NR⁸R¹⁰, -NR⁸SO₂-C₁₋₄ alkyl, -NR⁸SO₂CF₃, -NR⁸SO₂-phenyl, -S(O)₂CF₃, -S(O)_p-C₁₋₄ alkyl, -S(O)_p-phenyl, -(CF_2)_rCF₃, C₁₋₆ alkyl substituted with 0-2 R^{11a}, C₂₋₆ alkenyl substituted with 0-2 R^{11a}, C₁₋₆ alkyl substituted with 0-2 R^{11b}, or C₂₋₆ alkynyl substituted with 0-2 R^{11b};

each R^{11a} is, independently at each occurrence, =O, ORa, F, Cl, Br, I, CN, NO₂, -NR⁷R⁸, -C(O)Ra, -C(O)ORa, -NR⁸C(O)Ra, -C(O)NR⁷aR⁸, -NR⁸C(O)NR⁸R¹⁰, -SO₂NR⁸R¹⁰, -NR⁸SO₂NR⁸R¹⁰, -NR⁸SO₂CF₃, -NR⁸SO₂-phenyl, -S(O)₂CF₃, -S(O)_p-C₁₋₄ alkyl, -S(O)_p-phenyl, or -(CF₂)_rCF₃;

each R^{11b} is, independently at each occurrence, C₃₋₁₀ carbocycle substituted with 0-3 R^d, or a 5-12 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p, and substituted 0-3 R^d;

each R^{12} is, independently at each occurrence, OR^{12a} , $-CH_2OR^{12a}$, $-C(O)NR^{7a}R^8$, $-(CH_2)_rCO_2R^{12a}$, $-(CH_2)_rSO_3H$, $-OSO_3H$, $-(CH_2)_rPO_3H$, $-OPO_3H_2$, $-PO_3H_2$, $-NHCOCF_3$, $-NHSO_2CF_3$, $-CONHNHSO_2CF_3$, $-C(CF_3)_2OH$, $-SO_2NHR^{12a}$, $-CONHSO_2NHR^{12a}$, $-SO_2NHCOR^{12a}$, $-SO_2NHCO_2R^{12a}$, $-CONHSO_2R^{12b}$, $-NHSO_2R^{12b}$, $-CONHOR^{12b}$,

$$-(CH_2)_r - (CH_2)_r - (CH_2)_r$$

each R^{12a} is, independently at each occurrence, H, C_{1-6} alkyl, $-(CH_2)_r$ - C_{3-10} carbocycle substituted with 0-3 R^d , or $-(CH_2)_r$ -5-10 membered heterocycle consisting of carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and $S(O)_p$, and substituted with 0-3 R^d ;

each R^{12b} is, independently at each occurrence, C_{1-6} alkyl substituted with 0-2 R^{12c} , C_{2-6} alkenyl substituted with 0-2 R^{12c} , C_{2-6} alkynyl substituted with 0-2 R^{12c} , $-(CH_2)_r-C_{3-10}$ carbocycle substituted with 0-3 R^{12c} , or $-(CH_2)_r-5-10$ membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and $S(O)_p$, and substituted with 0-3 R^{12c} ;

each R^{12c} is, independently at each occurrence, H, F, Cl, Br, I, CF₃, OCF₃, CN, NO₂, OR^a, -CO₂R^a, -NR⁷R⁸, -SO₂R^c, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, -(CH₂)_r-C₃₋₁₀

carbocycle substituted with 0-3 R^d, or - $(CH_2)_r$ -5-10 membered heterocycle consisting of carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p, and substituted with 0-3 R^d;

each R^a is, independently at each occurrence, H, C_{1-4} alkyl, - $(CH_2)_r$ - C_{3-7} cycloalkyl, - $(CH_2)_r$ - C_{6-10} aryl, or - $(CH_2)_r$ -5-10 membered heteroaryl, wherein said aryl or heteroaryl groups are optionally substituted with 0-2 R^f ;

each R^b is, independently at each occurrence, CF_3 , OH, C_{1-4} alkoxy, C_{1-6} alkyl, $-(CH_2)_r-C_{3-10}$ carbocycle substituted with 0-2 R^d , or $-(CH_2)_r-5-10$ membered heterocycle containing from 1-4 heteroatoms selected from the group consisting of N, O, and $S(O)_p$ and substituted with 0-2 R^d ;

each R^c is, independently at each occurrence, C_{1-4} alkyl, C_{6-10} aryl, 5-10 membered heteroaryl, (C_{6-10} aryl)- C_{1-4} alkyl, or (5-10 membered heteroaryl)- C_{1-4} alkyl, wherein said aryl and heteroaryl groups are substituted with 0-2 R^d;

each R^d is, independently at each occurrence, H, =0, OR^a , F, Cl, Br, I, CN, NO_2 , $-NR^7R^8$, $-C(O)R^a$, $-C(O)OR^a$, $-NR^8C(O)R^a$, $-C(O)NR^{7a}R^8$, $-SO_2NR^8R^9$, $-NR^8SO_2NR^8R^9$, $-NR^8SO_2-C_{1-4}$ alkyl, $-NR^8SO_2CF_3$, $-NR^8SO_2$ -phenyl, $-S(O)_2CF_3$, $-S(O)_p$ - C_{1-4} alkyl, $-S(O)_p$ -phenyl, $-(CF_2)_rCF_3$, C_{1-6} alkyl substituted with 0-2 R^e , or C_{2-6} alkynyl substituted with 0-2 R^e ;

each Re is, independently at each occurrence, =O, ORa, F, Cl, Br, I, CN, NO₂, -NR⁸R⁹, -C(O)Ra, -C(O)ORa, -NR⁸C(O)Ra, -C(O)NR⁷aR⁸, -SO₂NR⁸R⁹, -NR⁸SO₂NR⁸R⁹, -NR⁸SO₂-Cl₋₄ alkyl, -NR⁸SO₂CF₃, -NR⁸SO₂-phenyl, -S(O)₂CF₃, -S(O)_p-Cl₋₄ alkyl, -S(O)_p-phenyl, or -(CF₂)_rCF₃;

each Rf is, independently at each occurrence, H, =O, -(CH₂)_r-ORg, F, Cl. Br, I, CN, NO₂, -NR⁸R⁹, -C(O)Rg, -C(O)ORg, -NR⁸C(O)Rg, -C(O)NR⁸R⁹, -SO₂NR⁸R⁹, -NR⁸SO₂NR⁸R⁹, -NR⁸SO₂-C₁₋₄ alkyl, -NR⁸SO₂CF₃, -NR⁸SO₂-phenyl, -S(O)₂CF₃, -S(O)_p-C₁₋₄ alkyl, -S(O)_p-phenyl, -(CF₂)_rCF₃, C₁₋₆ alkyl, C₂₋₆ alkenyl, or C₂₋₆ alkynyl; each Rg is, independently at each occurrence, H, C₁₋₆ alkyl, or -(CH₂)_n-phenyl; n, at each occurrence, is selected from 0, 1, 2, 3, and 4;

L₂ is a bond;

p, at each occurrence, is selected from 0, 1, and 2; and r, at each occurrence, is selected from 0, 1, 2, 3, and 4.

3. (Previously presented) A compound according to Claim 2, wherein the compound is of Formula (Ib):

$$R^1$$
 N
 A
 L_2
 B
 (Ib)

or a stereoisomer or pharmaceutically acceptable salts, hydrates, or prodrugs thereof, wherein:

W is -CH₂CH₂-, -CH=CH-, -C(benzyl)=CH-, -C(C₁₋₄ alkyl)=CH-, -CH(benzyl)CH₂-, -C(3,5-diMe-benzyl)=CH-, -C(CH₂OH)=CH, -C(CONHMe)=CH-, -C(CONHPh)=CH-, -C(4-CO₂H-benzyl)=CH-, or -C(CH₂CONHMe)=CH-;

A is phenyl substituted with 0-2 R^{11} , or pyridyl substituted with 0-2 R^{11} ;

B is phenyl substituted with 0-2 R^{11} and 0-1 R^{12} , or pyridyl substituted with 0-2 R^{11} and 0-1 R^{12} ;

 R^1 is $-C(=NH)NH_2$, $-C(=O)NH_2$, or $-CH_2NH_2$;

each R⁷ is, independently at each occurrence, H, C₁₋₆ alkyl, or benzyl;

each R^{7a} is, independently at each occurrence, H, C_{1-4} alkyl substituted with 0-1 R^{7b} or 0-1 R^c , C_{3-7} cycloalkyl substituted with 0-2 R^d , phenyl substituted with 0-3 R^f , or a 5-6 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and $S(O)_p$, and substituted 0-3 R^f ;

each R^{7b} is, independently at each occurrence, =O, ORg, F, Cl, Br, I, CN, NO₂, -NR⁷R⁸, -C(O)Rg, -C(O)ORg, -NR⁸C(O)Rg, -C(O)NR⁸R⁹, -NR⁸C(O)NR⁸R⁹, -SO₂NR⁸R⁹, -NR⁸SO₂NR⁸R⁹, -NR⁸SO₂-Cl₁₋₄ alkyl, -NR⁸SO₂CF₃, -NR⁸SO₂-phenyl, -S(O)₂CF₃, -S(O)_p-Cl₁₋₄ alkyl, -S(O)_p-phenyl, or -(CF₂)_rCF₃;

each R^{7c} is, independently at each occurrence, C₃₋₁₀ carbocycle substituted with 0-3 Rf; or a 5-12 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p, and substituted 0-3 R^f; each R⁸ is, independently at each occurrence, H, C₁₋₆ alkyl, or benzyl; each R⁹ is, independently at each occurrence, H, C₁₋₆ alkyl, or benzyl; each R¹¹ is, independently at each occurrence, H, F, Cl, CF₃, C₁₋₆ alkyl, $-(CH_2)_r$ -ORa, CN, $-(CH_2)_r$ -NR⁷R⁸, $-(CH_2)_r$ -C(=NR⁸)NR⁷R⁹, -C(O)Ra, -C(O)ORa, $-(CH_2)_r-NR^8C(O)R^a$, $-NR^8C(O)OR^c$, $-C(O)NR^{7a}R^8$, $-NR^8C(O)NR^8R^{10}$, $-SO_2NR^8R^{10}$. $-NR^8SO_2NR^8R^{10}$, or $-NR^8SO_2-C_{1-4}$ alkyl; R¹² is -C(O)NR⁷aR⁸, -(CH₂)_rCO₂R¹²a, -CH₂OR¹²a, -SO₂NHR¹²a, -SO₂NHCOR¹²a, $-SO_2NHCO_2R^{12a}$, $-CONHSO_2R^{12b}$, $-NHSO_2R^{12b}$, or $-(CH_2)_r$ -5-tetrazolyl; each R^{12a} is, independently at each occurrence, H or C₁₋₆ alkyl; each R^{12b} is, independently at each occurrence, C₁₋₄ alkyl substituted with 0-1 R^{12c}, C₂₋₄ alkenyl substituted with 0-1 R^{12c}, C₂₋₄ alkynyl substituted with R^{12c}, -(CH₂)_r-C₃₋₇ carbocycle substituted with 0-2 R^{12c}, or -(CH₂)_r-5-6 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and $S(O)_p$, and substituted with 0-2 R^{12c} ; each R^{12c} is, independently at each occurrence, H, F, Cl, Br, I, CF₃, OCF₃, CN, NO₂, OR^a , $-CO_2R^a$, $-NR^7R^8$, $-SO_2R^c$, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, -(CH₂)_r-C₃₋₁₀ carbocycle substituted with 0-3 R^d; or -(CH₂)_r-5-10 membered heterocycle

consisting of carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and $S(O)_p$, and substituted with 0-3 R^d ;

each Ra is, independently at each occurrence, H, C₁₋₄ alkyl, -(CH₂)_r-C₃₋₇ cycloalkyl, -(CH₂)_r-C₆₋₁₀ aryl, or -(CH₂)_r-5-10 membered heteroaryl, wherein said aryl or heteroaryl groups are optionally substituted with 0-2 Rf;

each R^c is, independently at each occurrence, C₁₋₄ alkyl, phenyl or benzyl; each Rf is, independently at each occurrence, H, =0, -(CH₂)_r-ORg, F, Cl, Br, CF₃, $CN, NO_2, -NR^8R^9, -C(O)Rg, -C(O)ORg, -NR^8C(O)Rg, -C(O)NR^8R^9, -SO_2NR^8R^9,$

-NR 8 SO₂-C₁₋₄ alkyl, -NR 8 SO₂CF₃, -S(O)₂CF₃, -S(O)_p-C₁₋₄ alkyl, C₁-C₆ alkyl, C₂-C₆ alkenyl, or C₂-C₆ alkynyl;

each Rg is, independently at each occurrence, H or C₁₋₄ alkyl;

p, at each occurrence, is selected from 0, 1, and 2; and

r, at each occurrence, is selected from 0, 1, 2, 3, and 4.

4. (Previously presented) A compound according to Claim 3, wherein:

- -CH(benzyl)CH₂-, -C(3,5-diMe-benzyl)=CH-, -C(CH₂OH)=CH, -C(CONHMe)=CH-,
- -C(CONHPh)=CH-, -C(4-CO₂H-benzyl)=CH-, or -C(CH₂CONHMe)=CH-;

L₂ is a bond;

A is phenyl substituted with 0-2 R¹¹, or pyridyl substituted with 0-2 R¹¹;

B is phenyl substituted with 0-2 R^{11} and 0-1 R^{12} , or pyridyl substituted with 0-2 R^{11} and 0-1 R^{12} ;

 R^1 is $-C(=NH)NH_2$, $-C(=O)NH_2$, or $-CH_2NH_2$;

each R¹¹ is, independently at each occurrence, H, F, CF₃, C₁₋₄ alkyl, OH, -CH₂OH,

OMe, OEt, CN, -NH₂, -CH₂NH₂, -CH₂NMe₂, -C(=NH)NH₂, -CH₂C(=NH)NH₂,

- -CH2NHAc, -CO2H, -CO2Me, -NHAc, -NHCOEt, -NHCOPr, -NHCO(i-Pr),
- -NHC(O)(i-Bu), -NHCO(phenyl), -NHCO(benzyl), -NHCO(tetrazol-5-yl),
- $NHCOCH_2(tetrazol 5 yl), NHCO(CH_2)_2(tetrazol 5 yl), CO(1 morpholino), \\$
- -CO[4-(2-OH-ethyl)-1-piperdinyl], -CO[4-(2-OMe-ethyl)-1-piperdinyl],
- $-CO[4-(2-CO_2Et-ethyl)-1-piperdinyl], -C(O)NH_2, -C(O)NHMe, -C(O)NHEt, -C(O)NHPr,\\$
- $-\mathsf{C}(\mathsf{O})\mathsf{NH}(i\text{-}\mathsf{Bu}), -\mathsf{C}(\mathsf{O})\mathsf{NH}\mathsf{isoamyl}, -\mathsf{C}(\mathsf{O})\mathsf{NH}(\mathsf{CH}_2\mathsf{CH}_2\mathsf{N}(\mathsf{Me})_2), -\mathsf{CONHCH}_2\mathsf{CO}_2\mathsf{H},$
- -CONH(CH₂)₂CO₂H, -CONH(CH₂)₃CO₂H, -CONH(CH₂)₃OH,
- -CONH cyclopropyl methyl, -CONH cyclohexyl methyl, -CONH phenyl, -CONH (benzyl),
- -CONHCH(Me)phenyl, -CONH(4-OMe-benzyl), -CONH(3,5-diOMe-benzyl),
- -CONH(4-Cl-benzyl), -CONH(phenethyl), -CONH(3-Cl-phenethyl), -CONH(phenylpropyl),
- -CONH[(2-pyridyl)-methyl], -CONH[(3-pyridyl)-methyl], -CONH[2-(2-pyridyl)-ethyl],

- -CONHCH₂(4-tetrahydropyranyl), -CONHCH₂(1-indanyl), -CONH(1-naphthyl),
- -NHSO₂Me, or -NHSO₂Et; and

R¹² is OH, -CH₂OH, -CO₂H, -CH₂(CO₂H), -CO₂Me, -SO₂NH₂, or -CONH₂.

5. (Previously amended) A compound according to Claim 4, wherein:

W is -CH₂CH₂-, -CH=CH-, -C(benzyl)=CH-, -CH(benzyl)CH₂-, or

 $-C(C_{1-4} \text{ alkyl})=CH-;$

 L_2 is a bond;

A is 1,2-phenylene, 3-carboxy-1,2-phenylene, 4-methyl-1,2-phenylene,

4-methoxy-1,2-phenylene, 4-aminomethyl-1,2-phenylene, 4-amidino-1,2-phenylene,

4-amidinomethyl-1,2-phenylene, 4-acetoamidomethyl-1,2-phenylene,

5-(N,N-dimethylaminoethylcarbamoyl)-1,2-phenylene, 5-carboxy-1,2-phenylene,

5-hydroxymethyl-1,2-phenylene, 5-acetylamino-1,2-phenylene,

5-propionylamino-1,2-phenylene, 5-butyrylamino-1,2-phenylene,

5-(3-methylbutyrylamino)-1,2-phenylene, 5-(2,2-dimethylpropionylamino)-1,2-phenylene,

5-benzylcarbonylamino-1,2-phenylene, 4-methoxy-5-hydroxy-1,2-phenylene,

5-carbamoyl-1,2-phenylene, 5-methylcarbamoyl-1,2-phenylene,

5-ethylcarbamoyl-1,2-phenylene, 5-propylcarbamoyl-1,2-phenylene,

5-isopropylcarbamoyl-1,2-phenylene, 5-isobutylcarbamoyl-1,2-phenylene,

5-t-butylcarbamoyl-1,2-phenylene, 5-isoamylcarbamoyl-1,2-phenylene,

5-carboxymethylcarbamoyl-1,2-phenylene, 5-(2-carboxyethyl)carbamoyl-1,2-phenylene,

5-(3-hydroxypropyl)carbamoyl-1,2-phenylene,

5-(3-carboxypropyl)carbamoyl-1,2-phenylene,

5-cyclopropylmethylcarbamoyl-1,2-phenylene,

5-cyclohexylmethylcarbamoyl-1,2-phenylene, 5-phenylcarbamoyl-1,2-phenylene,

5- benzylcarbamoyl-1,2-phenylene, 5-(1-phenylethyl)carbamoyl-1,2-phenylene,

5-phenethylcarbamoyl-1,2-phenylene, 5-(3-phenylpropylcarbamoyl)-1,2-phenylene,

5-(4-methoxybenzyl)carbamoyl-1,2-phenylene,

5-(3,5,dimethoxybenzyl)carbamoyl-1,2-phenylene,

- 5-(4-chlorobenzyl)carbamoyl-1,2-phenylene,
- 5-[2-(3-chloropheny)ethyl]carbamoyl-1,2-phenylene,
- 5-(2-pyridylmethyl)carbamoyl-1,2-phenylene,
- 5-(3-pyridylmethyl)carbamoyl-1,2-phenylene,
- 5-[2-(2-pyridyl)ethyl]carbamoyl-1,2-phenylene,
- 5-(4-tetrahydropyranyl)methylcarbamoyl-1,2-phenylene,
- 5-(morpholine-4-carbonyl)-1,2-phenylene,
- 5-[4-(2-hydroxyethyl)-piperdine-1-carbonyl]-1,2-phenylene,
- 5-[4-(2-methoxyethyl)-piperdine-1-carbonyl]-1,2-phenylene,
- 5-[4-(ethoxycarbonylmethyl)-piperdine-1-carbonyl]-1,2-phenylene,
- 5-(1-naphthyl)carbamoyl-1,2-phenylene, 5-(1-indanyl)carbamoyl-1,2-phenylene,
- 1,3-phenylene, 5-amino-1,3-phenylene, 5-acetylamino-1,3-phenylene,
- 5-propionylamino-1,3-phenylene, 5-butyrylamino-1,3-phenylene,
- 5-(3-methylbutyrylamino)-1,2-phenylene,
- 5-(2,2-dimethylpropionylamino)-1,2-phenylene, or 6-amino-2,3-pyridylene; wherein the attachment to L₂ is at carbon 1 of said phenylene rings;
 - B is 2-carboxy-phenyl, 2-aminosulfonyl-phenyl, 3-carboxymethyl-phenyl,
- 2.4-dicarboxy-phenyl, 2.4-dimethoxycarbonyl-phenyl, 2,4-dicarbamoyl-phenyl,
- 2-carboxy-4-methoxycarbonyl-phenyl, 2-carboxy-4-methyl-phenyl,
- 2-carboxy-4-methoxy-phenyl, 2-carboxy-4-ethoxy-phenyl, 2-carboxy-4-fluoro-phenyl,
- 2-carboxy-4-amino-phenyl, 2-carboxy-4-cyano-phenyl, 2-carboxy-4-acetylamino-phenyl,
- 2-carboxy-4-carbamoyl-phenyl, 2,5-dicarboxy-phenyl, 2,5-dicarboxy-4-methoxy-phenyl,
- 2-carboxy-4.5-dimethoxy-phenyl, 2-carboxy-4-trifluoromethyl-phenyl,
- 5-carboxy-4-methoxy-phenyl, 3-carboxy-4-pyridyl, or 2-carboxy-6-methoxy-3-pyridyl; and R^1 is $-C(=NH)NH_2$, $-C(=O)NH_2$, or $-CH_2NH_2$.
- 6. (Original) A compound of Claim 1 selected from:
 - 2'-(5-carbamimidoyl-2,3-dihydroindol-1-ylmethyl)-biphenyl-2-carboxylic acid;
 - 2'-(5-carbamimidoyl-2,3-dihydroindol-1-ylmethyl)-biphenyl-2,4-dicarboxylic acid;

- 2'-(5-carbamimidoyl-2,3-dihydroindol-1-ylmethyl)-4-isobutylcarbamoyl-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydroindol-1-ylmethyl)-4-methoxybiphenyl-2-carboxylic acid;
- 4-acetylamino-2'-(5-carbamimidoyl-2,3-dihydroindol-1-ylmethyl)-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydroindol-1-ylmethyl)-4'-methoxy-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-carbamoyl-biphenyl-2-carboxylic acid;
 - 3'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-biphenyl-2-carboxylic acid;
 - 3'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-biphenyl-2,4-dicarboxylic acid;
 - 1-(2'-sulfamoyl-biphenyl-3-ylmethyl)-2,3-dihydro-1H-indole-5-carboxamidine;
 - [2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-biphenyl-3-yl]-acetic acid;
- 5'-acetylamino-2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-5'-phenethylcarbamoyl-biphenyl-2-carboxylic acid;
- 5'-benzylcarbamoyl-2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-5'-(3-phenylpropylcarbamoyl)-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-5'-(2-pyridin-2-ylethylcarbamoyl)-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methoxy-5'-phenethylcarbamoyl-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methoxy-5'-(3-chloro-phenethyl)carbamoyl-biphenyl-2-carboxylic acid;
 - 2'-(5-carbamimidoyl-indol-1-ylmethyl)-biphenyl-2-carboxylic acid;
- 2'-(3-benzyl-5-carbamimidoyl-indol-1-ylmethyl)-4-methoxy-biphenyl-2-carboxylic acid;

- 2'-(3-benzyl-5-carbamimidoyl-indol-1-ylmethyl)-4-methoxy-5'-phenethylcarbamoyl-biphenyl-2-carboxylic acid;
- 2'-(3-benzyl-5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(3-benzyl-5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methoxy-5'-phenethylcarbamoyl-biphenyl-2-carboxylic acid;
- 2'-(6-carbamimidoyl-3,4-dihydro-2H-quinolin-1-ylmethyl)-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-5'-phenethylcarbamoyl-biphenyl-2-carboxylic acid;
- 5'-benzylcarbamoyl-2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methoxy-5'-phenethylcarbamoyl-biphenyl-2-carboxylic acid;
- 5'-benzylcarbamoyl-2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methoxy-biphenyl-2-carboxylic acid;
 - 2-benzyloxy-5-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-benzoic acid;
 - 2-benzyloxy-3-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-benzoic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methoxy-4'-methyl-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-indol-1-ylmethyl)-4-methoxy-4'-methyl-biphenyl-2-carboxylic acid;
- 2'-(3-benzyl-5-carbamimidoyl-indol-1-ylmethyl)-4-methoxy-4'-methyl-biphenyl-2-carboxylic acid;
- 2'-(3-benzyl-5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methoxy-4'-methyl-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-indol-1-ylmethyl)-4-methoxy-5'-(2-pyridin-2-ylethylcarbamoyl)-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-ethoxy-biphenyl-2-carboxylic acid;

- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-fluoro-biphenyl-2-carboxylic acid;
- 5'-benzylcarbamoyl-2'-(5-carbamimidoyl-indol-1-ylmethyl)-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(3-benzyl-5-carbamimidoyl-indol-1-ylmethyl)-4'-carbamimidoyl-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methoxy-5'-phenylacetylamino-biphenyl-2-carboxylic acid;
 - 2'-(5-carbamimidoyl-indol-1-ylmethyl)-4-methoxy-biphenyl-2-carboxylic acid;
- 6'-(3-benzyl-5-carbamimidoyl-indol-1-ylmethyl)-4-methoxy-biphenyl-2,3'-dicarboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4,5-dimethoxy-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methyl-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-indol-1-ylmethyl)-5'-[2-(3-chloro-phenyl)-ethylcarbamoyl]-4-methoxy-biphenyl-2-carboxylic acid;
- 6'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methoxy-biphenyl-2,3'-dicarboxylic acid;
 - 2'-(5-carbamimidoyl-indol-1-ylmethyl)-4-carbamoyl-biphenyl-2-carboxylic acid;
- 4'-aminomethyl-2'-(3-benzyl-5-carbamimidoyl-indol-1-ylmethyl)-4-methoxy-biphenyl-2-carboxylic acid;
- 4'-(acetylamino-methyl)-2'-(3-benzyl-5-carbamimidoyl-indol-1-ylmethyl)-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(3-benzyl-5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4'-carbamimidoyl-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methoxy-5'-propylcarbamoyl-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoylindol-1-ylmethyl)-4-methoxy-5'-propylcarbamoyl-biphenyl-2-carboxylic acid;

- 2'-[5-carbamimidoyl-3-(3,5-dimethyl-benzyl)-indol-1-ylmethyl]-4-methoxy-biphenyl-2-carboxylic acid;
- 4'-aminomethyl-2'-(3-benzyl-5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-[5-carbamimidoyl-3-(3,5-dimethyl-benzyl)-2,3-dihydro-indol-1-ylmethyl]-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoylindol-1-ylmethyl)-5'-(carboxymethyl-carbamoyl)-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-5'-(carboxymethyl-carbamoyl)-4-methoxy-biphenyl-2-carboxylic acid;
 - 2'-(5-carbamimidoylindol-1-ylmethyl)-biphenyl-2,5-dicarboxylic acid;
 - 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-biphenyl-2,5-dicarboxylic acid;
- 5'-benzylcarbamoyl-2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methyl-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-trifluoromethyl-biphenyl-2-carboxylic acid;
 - 2'-(5-carbamimidoylindol-1-ylmethyl)- 4-methoxy-biphenyl-2,5-dicarboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methyl-5'-propylcarbamoyl-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-5'-(cyclohexylmethyl-carbamoyl)-4-methyl-biphenyl-2-carboxylic acid;
- 2-[6-amino-2-(5-carbamimidoyl-indol-1-ylmethyl)-pyridin-3-yl]-5-methoxy-benzoic acid;
- 2-[6-amino-2-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-pyridin-3-yl]-5-methoxy-benzoic acid;
- 2'-(3-benzyl-5-carbamimidoyl-indol-1-ylmethyl)-5'-carbamoyl-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(3-benzyl-5-carbamimidoyl-indol-1-ylmethyl)-4-methoxy-5'-methylcarbamoyl-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methyl-5'-[(pyridin-2-ylmethyl)-carbamoyl]-biphenyl-2-carboxylic acid;

- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-5'-isobutylcarbonylamino-4-methoxy-biphenyl-2-carboxylic acid;
- 5'-benzylcarbamoyl 2'-(5-carbamimidoyl-indol-1-ylmethyl)-4-methyl-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-3-methylcarbamoyl-indol-1-ylmethyl)-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-3-phenylcarbamoyl-indol-1-ylmethyl)-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-5'-(3,5-dimethoxy-benzylcarbamoyl)-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methoxy-5'-[(naphthalen-1-ylmethyl)-carbamoyl]-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-5'-(2-carboxy-ethylcarbamoyl)-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methoxy-biphenyl-2,5-dicarboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methoxy-5'-(4-methoxy-benzylcarbamoyl)-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-3-hydroxymethyl-indol-1-ylmethyl)-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-5'-(cyclopropylmethyl-carbamoyl)-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-5'-(4-chloro-benzylcarbamoyl)-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(3-benzyl-5-carbamimidoyl-indol-1-ylmethyl)-4-methyl-5'-methylcarbamoyl-biphenyl-2-carboxylic acid;
- 2'-(3-benzyl-5-carbamimidoyl-indol-1-ylmethyl)-4-carbamoyl-5'-methylcarbamoyl-biphenyl-2-carboxylic acid;
- 2'-(3-benzyl-5-carbamimidoyl-indol-1-ylmethyl)-4-methoxy-biphenyl-2,5-dicarboxylic acid;

- 2'-(3-benzyl-5-carbamimidoyl-indol-1-ylmethyl)- 4-methoxy-5'-methylcarbamoyl-biphenyl-2,5-dicarboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methoxy-5'-(morpholine-4-carbonyl)-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methoxy-5'-[4-(2-methoxy-ethyl)-piperazine-1-carbonyl]-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-5'-isobutylcarbamoyl-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methoxy-5'-(3-methyl-butylcarbamoyl)-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methoxy-5'-[(pyridin-3-ylmethyl)-carbamoyl]-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methoxy-5'-[(tetrahydropyran-4-ylmethyl)-carbamoyl]-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-5'-[4-(ethoxycarbonylmethyl)]-piperazine-1-carbonyl-4-methoxy-biphenyl-2-carboxylic acid;
 - 2'-(5-carbamimidoyl-indol-1-ylmethyl)-4-methoxy-biphenyl-2,6-dicarboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methoxy-5'-((S)-1-phenyl-ethylcarbamoyl)-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methoxy-5'-((R)-1-phenyl-ethylcarbamoyl)-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-5'-(indan-1-ylcarbamoyl)-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(3-benzyl-5-carbamimidoyl-indol-1-ylmethyl)-5'-ethylcarbamoyl-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(3-benzyl-5-carbamimidoyl-indol-1-ylmethyl)-4-methoxy-5'-propylcarbamoyl-biphenyl-2-carboxylic acid;
- 2'-(3-benzyl-5-carbamimidoyl-indol-1-ylmethyl)-5'-(cyclopropylmethyl-carbamoyl)-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(3-benzyl-5-carbamimidoyl-indol-1-ylmethyl)-5'-isobutylcarbamoyl-4-methoxy-biphenyl-2-carboxylic acid;

- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-5'-(3-hydroxypropylcarbamoyl)-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-5'-methylcarbamoyl-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-5'-(3-carboxypropylcarbamoy)l-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-5'-(4-(2-hydroxyethyl)-piperazine-1-carbonyl)-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-5'-[2-(N,N-dimethylamino)ethyl]carbamoyl-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(3-benzyl-5-carbamimidoyl-indol-1-ylmethyl)-5'-methylcarbamoyl-4-methoxy-biphenyl-3-carboxylic acid;
- 2'-(3-(4-carboxybenzyl)-5-carbamimidoyl-indol-1-ylmethyl)-4-methoxy-5'-methylcarbamoyl-biphenyl-2-carboxylic acid;
- 3-{2-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-5-[(pyridin-2-ylmethyl)-carbamoyl]-phenyl}-6-methoxy-pyridine-2-carboxylic acid;
- 2'-(5-carbamimidoyl-3-methylcarbamoylmethyl-indol-1-ylmethyl)-5'-methylcarbamoyl-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-5'-[(pyridin-2-ylmethyl)-carbamoyl]-biphenyl-2-carboxylic acid;
- 3'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-carbamoyl-biphenyl-2-carboxylic acid;
- 4-{2-[5-carbamimidoylindol-1-ylmethyl)-5-[(pyridin-2-ylmethyl)-carbamoyl]-phenyl}-nicotinic acid;
- 2'-(5-carbamoyl-2,3-dihydro-indol-1-ylmethyl)-5'-(3-chlorophenethyl-carbamoyl)-4-methoxy-biphenyl-2-carboxylic acid;
- 5'-benzylcarbamoyl-2'-(5-carbamoyl-2,3-dihydro-indol-1-ylmethyl)- -4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(5-aminomethyl-3-benzyl-indol-1-ylmethyl)-4-methyl-5'-methylcarbamoyl-biphenyl-2-carboxylic acid; and

2'-(5-carbamimidoyl-3-benzyl-indol-1-ylmethyl)-5'-dimethylcarbamoyl-4-methoxy-biphenyl-2-carboxylic acid;

or a stereoisomer or a pharmaceutically acceptable salt, hydrate or prodrug form thereof.

- 7. (Original) A pharmaceutical composition, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of Claim 1 or a pharmaceutically acceptable salt or hydrate thereof.
- 8. (Original) A method for treating thromboembolic disorders, comprising: administering to a patient in need thereof a therapeutically effective amount of a compound of Claim 1 or a pharmaceutically acceptable salt or hydrate thereof.
- 9. (Original) A method according to Claim 8, wherein the thromboembolic disorder is selected from the group consisting of arterial cardiovascular thromboembolic disorders, venous cardiovascular thromboembolic disorders, and thromboembolic disorders in the chambers of the heart.
- 10. (Original) A method according to Claim 9, wherein the thromboembolic disorder is selected from unstable angina, an acute coronary syndrome, first myocardial infarction, recurrent myocardial infarction, ischemic sudden death, transient ischemic attack, stroke, atherosclerosis, peripheral occlusive arterial disease, venous thrombosis, deep vein thrombosis, thrombophlebitis, arterial embolism, coronary arterial thrombosis, cerebral arterial thrombosis, cerebral embolism, kidney embolism, pulmonary embolism, and thrombosis resulting from (a) prosthetic valves or other implants, (b) indwelling catheters, (c) stents, (d) cardiopulmonary bypass, (e) hemodialysis, or (f) other procedures in which blood is exposed to an artificial surface that promotes thrombosis.

11-23. (Canceled)

24. (Previously presented) A pharmaceutical composition, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of Claim 2 or a pharmaceutically acceptable salt or hydrate thereof.

- 25. (Previously presented) A pharmaceutical composition, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of Claim 3 or a pharmaceutically acceptable salt or hydrate thereof.
- 26. (Previously presented) A pharmaceutical composition, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of Claim 4 or a pharmaceutically acceptable salt or hydrate thereof.
- 27. (Previously presented) A pharmaceutical composition, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of Claim 5 or a pharmaceutically acceptable salt or hydrate thereof.
- 28. (Previously presented) A pharmaceutical composition, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of Claim 6 or a pharmaceutically acceptable salt or hydrate thereof.
- 29. (Previously presented) A method for treating thromboembolic disorders, comprising: administering to a patient in need thereof a therapeutically effective amount of a compound of Claim 2 or a pharmaceutically acceptable salt or hydrate thereof.

30. (Previously presented) A method according to Claim 29, wherein the thromboembolic disorder is selected from the group consisting of arterial cardiovascular thromboembolic disorders, venous cardiovascular thromboembolic disorders, and thromboembolic disorders in the chambers of the heart.

- 31. (Previously presented) A method according to Claim 30, wherein the thromboembolic disorder is selected from unstable angina, an acute coronary syndrome, first myocardial infarction, recurrent myocardial infarction, ischemic sudden death, transient ischemic attack, stroke, atherosclerosis, peripheral occlusive arterial disease, venous thrombosis, deep vein thrombosis, thrombophlebitis, arterial embolism, coronary arterial thrombosis, cerebral arterial thrombosis, cerebral embolism, kidney embolism, pulmonary embolism, and thrombosis resulting from (a) prosthetic valves or other implants, (b) indwelling catheters, (c) stents, (d) cardiopulmonary bypass, (e) hemodialysis, or (f) other procedures in which blood is exposed to an artificial surface that promotes thrombosis.
- 32. (Previously presented) A method for treating thromboembolic disorders, comprising: administering to a patient in need thereof a therapeutically effective amount of a compound of Claim 3 or a pharmaceutically acceptable salt or hydrate thereof.
- 33. (Previously presented) A method according to Claim 32, wherein the thromboembolic disorder is selected from the group consisting of arterial cardiovascular thromboembolic disorders, venous cardiovascular thromboembolic disorders, and thromboembolic disorders in the chambers of the heart.
- 34. (Previously presented) A method according to Claim 33, wherein the thromboembolic disorder is selected from unstable angina, an acute coronary syndrome, first myocardial

infarction, recurrent myocardial infarction, ischemic sudden death, transient ischemic attack, stroke, atherosclerosis, peripheral occlusive arterial disease, venous thrombosis, deep vein thrombosis, thrombophlebitis, arterial embolism, coronary arterial thrombosis, cerebral arterial thrombosis, cerebral embolism, kidney embolism, pulmonary embolism, and thrombosis resulting from (a) prosthetic valves or other implants, (b) indwelling catheters, (c) stents, (d) cardiopulmonary bypass, (e) hemodialysis, or (f) other procedures in which blood is exposed to an artificial surface that promotes thrombosis.

- 35. (Previously presented) A method for treating thromboembolic disorders, comprising: administering to a patient in need thereof a therapeutically effective amount of a compound of Claim 4 or a pharmaceutically acceptable salt or hydrate thereof.
- 36. (Previously presented) A method according to Claim 35, wherein the thromboembolic disorder is selected from the group consisting of arterial cardiovascular thromboembolic disorders, venous cardiovascular thromboembolic disorders, and thromboembolic disorders in the chambers of the heart.
- 37. (Previously presented) A method according to Claim 36, wherein the thromboembolic disorder is selected from unstable angina, an acute coronary syndrome, first myocardial infarction, recurrent myocardial infarction, ischemic sudden death, transient ischemic attack, stroke, atherosclerosis, peripheral occlusive arterial disease, venous thrombosis, deep vein thrombosis, thrombophlebitis, arterial embolism, coronary arterial thrombosis, cerebral arterial thrombosis, cerebral embolism, kidney embolism, pulmonary embolism, and thrombosis resulting from (a) prosthetic valves or other implants, (b) indwelling catheters, (c) stents, (d) cardiopulmonary bypass, (e) hemodialysis, or (f) other procedures in which blood is exposed to an artificial surface that promotes thrombosis.

38. (Previously presented) A method for treating thromboembolic disorders, comprising: administering to a patient in need thereof a therapeutically effective amount of a compound of Claim 5 or a pharmaceutically acceptable salt or hydrate thereof.

- 39. (Previously presented) A method according to Claim 38, wherein the thromboembolic disorder is selected from the group consisting of arterial cardiovascular thromboembolic disorders, venous cardiovascular thromboembolic disorders, and thromboembolic disorders in the chambers of the heart.
- 40. (Previously presented) A method according to Claim 39, wherein the thromboembolic disorder is selected from unstable angina, an acute coronary syndrome, first myocardial infarction, recurrent myocardial infarction, ischemic sudden death, transient ischemic attack, stroke, atherosclerosis, peripheral occlusive arterial disease, venous thrombosis, deep vein thrombosis, thrombophlebitis, arterial embolism, coronary arterial thrombosis, cerebral arterial thrombosis, cerebral embolism, kidney embolism, pulmonary embolism, and thrombosis resulting from (a) prosthetic valves or other implants, (b) indwelling catheters, (c) stents, (d) cardiopulmonary bypass, (e) hemodialysis, or (f) other procedures in which blood is exposed to an artificial surface that promotes thrombosis.
- 41. (Previously presented) A method for treating thromboembolic disorders, comprising: administering to a patient in need thereof a therapeutically effective amount of a compound of Claim 6 or a pharmaceutically acceptable salt or hydrate thereof.
- 42. (Previously presented) A method according to Claim 41, wherein the thromboembolic disorder is selected from the group consisting of arterial cardiovascular thromboembolic disorders, venous cardiovascular thromboembolic disorders, and thromboembolic disorders in the chambers of the heart.

43. (Previously presented) A method according to Claim 42, wherein the thromboembolic disorder is selected from unstable angina, an acute coronary syndrome, first myocardial infarction, recurrent myocardial infarction, ischemic sudden death, transient ischemic attack, stroke, atherosclerosis, peripheral occlusive arterial disease, venous thrombosis, deep vein thrombosis, thrombophlebitis, arterial embolism, coronary arterial thrombosis, cerebral arterial thrombosis, cerebral embolism, kidney embolism, pulmonary embolism, and thrombosis resulting from (a) prosthetic valves or other implants, (b) indwelling catheters, (c) stents, (d) cardiopulmonary bypass, (e) hemodialysis, or (f) other procedures in which blood is exposed to an artificial surface that promotes thrombosis.