TRUST/TrioCFD 1.7.3 user's training session

TRUST/TrioCFD 1.7.3 user's training session

Presentations

TRUST/TrioCFD (1st day)
 Automated test case with TRUST (2nd day AM)

Mesh with tools (Xprepro, Salomé or Gmsh) (2[™] day PM)

Practice:

• TRUST/TrioCFD (1st day PM/2nd day AM)

• Automated test case with TRUST (2nd day AM)

Xprepro/Salomé/Gmsh (2nd day PM)

We provide also:

Advanced TRUST/TrioCFD user sessions (optional, 3rd day)

• TRUST/TrioCFD developer sessions (optional, 4th and 5th days)

Céline CAPITAINE (CS) - Marthe ROUX (CS) TRUST/TrioCFD support team triou@cea.fr

Table of contents

•	TRUST/TrioCFD historic	p4
•	Modeling flow with TRUST/TrioCFD	р9
•	Examples of performed calculations	p17
•	Models, schemes, numerical methods	p21
•	Data files & calculation	p45
•	Command lines	p74
•	Parallel calculation	p79
•	Automating validation test case	p98
•	Mesh generators: Salomé/Gmsh	p111
•	TRUST/TrioCFD support	p123
•	Recommendations	p126
•	Examples of data files	p149

Table of contents

- TRUST/TrioCFD historic
- Modeling flow with TRUST/TrioCFD
- Examples of performed calculations
- Models, schemes, numerical methods
- Data files & calculation
- Command lines
- Parallel calculation
- Automating validation test case
- Mesh generators: Salomé/Gmsh
- TRUST/TrioCFD support
- Recommendations
- Examples of data files

TRUST/TrioCFD historic (1/4)

- Trio_U code: CFD code for incompressible monophasic / diphasic flow
- Developed at the CEA/DEN/DANS/DM2S/STMF service
 - LMSF lab's chief: anne.burbeau@cea.fr
 - TRUST project leader : gauthier.fauchet@cea.fr
 - TrioCFD project leader: mathieu.peybernes@cea.fr
 - Trio U, a software brick used by other CEA applications:

TRUST/TrioCFD historic (2/4)

- 1994: start of the project Trio_U
- 01/1997 : v1.0 (VDF only)
- 06/1998 : v1.1 (VEF version)
- 04/2000 : v1.2 (parallel version)
- 07/2001 : v1.3 (compressible version)
- 11/2002 : v1.4 (new LES turbulence models)
- 02/2006 : v1.5 (VDF/VEF Front Tracking)
- 10/2009 : v1.6 (data structure revamped)
- 06/2015 : v1.7 (cut into TRUST and TrioCFD
 - + switch to open source)

TRUST/TrioCFD historic (3/4)

Recently, Trio_U was divided in two parts:

a BALTIK project named TrioCFD based on new platform named TRUST,

Trio_U = TRUST + TrioCFD (FT, Radiation, LES, zoom)

- Where :
 - TRUST: "TRio_U Software for Thermohydraulics",
 - BALTIK: "Build an Application Linked to Trio U Kernel".

 The kernel contains the equations, space discretizations, numerical schemes, parallelism...

TRUST/TrioCFD historic (4/4)

- Main CEA goals:
 - R&D platform for fluid mechanics
 - To advocate LES turbulence models or RANS-LES coupling for nuclear safety studies
 - Codes coupling (fluid, structure, neutronic...)
 - Alternative to commercial CFD software
 - To base on advanced technology (C++, COO, //...)

Table of contents

- TRUST/TrioCFD historic
- Modeling flow with TRUST/TrioCFD
- Examples of performed calculations
- Models, schemes, numerical methods
- Data files & calculation
- Command lines
- Parallel calculation
- Automating validation test case
- Mesh generators: Salomé/Gmsh
- TRUST/TrioCFD support
- Recommendations
- Examples of data files

Modeling flow with TRUST/TrioCFD (1/7)

- Incompressible single phase flow
 - Laminar or Turbulent flow
 - Navier Stokes with or without energy equation
 - Incompressible fluid or with low variation for volumic mass
 - Boussinesq hypothesis: $\rho = \rho(T) \sim \rho_0 \beta(T-T0)$
 - Quasi-compressible model: $\rho=\rho(P,T)$ for low mach numbers

$$\begin{aligned} &Div(\vec{u}) = 0 \\ &\frac{\partial \vec{u}}{\partial t} + \vec{u} \nabla \vec{u} = -\nabla P^* + Div(v \nabla \vec{u}) \\ &P^* = \frac{P}{\rho} + gz \\ &\frac{\partial T}{\partial t} + \vec{u} \nabla T = Div(\alpha \nabla T) \end{aligned}$$

Modeling flow with TRUST/TrioCFD (2/7)

Description of the Quasi Compressible model used

Accounts for space and time variations of density due to high changes of temperature:

Idealgaslaw:
$$\rho(\vec{x},t) = \frac{P_0(t)}{RT(\vec{x},t)}$$

• Filters acoustic waves in order to avoid too small time-step:

Total pressure:
$$P(\vec{x},t) = P_0(t) + P_1(\vec{x},t)$$
 Thermodynamic pressure: $P_0(t)$ Hydrodynamic pressure: $P_1(x,t)$ with $P_1 \approx M^2 P_0$ and $M = Mach << 1$

Set of equations solved:

$$\begin{split} \frac{\partial \rho}{\partial t} + \operatorname{div}(\rho \vec{u}) &= 0 \\ \frac{\partial}{\partial t} (\rho u_i) + \operatorname{div}(\rho u u_i) - \sum_{j=1}^N \frac{\partial}{\partial x_j} \left[\mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \right] + \frac{\partial P_1^*}{\partial x_i} &= -\rho g_i \\ P_1^* &= P_1 + \frac{2}{3} \mu \operatorname{div}(\vec{u}) \\ P_0 &= \rho RT \\ \rho C_p \frac{dT}{dt} - \sum_{j=1}^N \frac{\partial}{\partial x_j} \left(K \frac{\partial T}{\partial x_j} \right) &= Q + \frac{dP_0}{dt} \end{split}$$

Modeling flow with TRUST/TrioCFD (3/7)

- Heat exchange
 - Conduction
 - Radiation in transparent medium
 - Radiation in semi-transparent medium
- Transport of passive scalars $\frac{\partial C_i}{\partial t} + \vec{u} \nabla C_i = Div(D_i \nabla C_i)$
- Porous Media
 - Surface or volume porosities
 - Singular or regular pressure loss

Modeling flow with TRUST/TrioCFD (4/7)

- Particles transport model:
 - One way coupling
 - Particle motion affected by the flow
 - Two way coupling
 - As above but particle disturbances also affect the flow
 - Possible to convert droplet/bubble below a given size into particles during a Front Tracking calculation

Modeling flow with TRUST/TrioCFD (5/7)

Two phases flow (Front tracking model)

- Eulerian mesh where Navier Stokes equations are solved
- Lagrangian moving mesh for the interface locations
- Coalescence or breakup models for bubbles and drops

Modeling flow with TRUST/TrioCFD (6/7)

Front tracking model

 Can be declined in TrioCFD to use an Immersed Boundary Method using IBC (Immersed Boundary Conditions)

Example of a flow around a rotating body defined by an IBC

Modeling flow with TRUST/TrioCFD (7/7)

- 2D calculation
 - Plane, Cartesian coordinates (x,y)
 - Axi-symmetric, coordinates (r,z) (VDF only)
- 3D calculation
 - Cartesian coordinates (x,y,z)
 - Cylindrical coordinates (r, θ, z) (VDF only)
- Transient flow calculation calculated by:
 - Explicit, semi-implicit or implicit time schemes
- Steady state calculation obtained:
 - By convergence of the transient flow

Table of contents

- TRUST/TrioCFD historic
- Modeling flow with TRUST/TrioCFD
- Examples of performed calculations
- Models, schemes, numerical methods
- Data files & calculation
- Command lines
- Parallel calculation
- Automating validation test case
- Mesh generators: Salomé/Gmsh
- TRUST/TrioCFD support
- Recommendations
- Examples of data files

Examples of performed calculations (1/2)

- Academic calculations
 - Plane channel with conduction coupling at the wall
 - Flow around obstacle
 - Pipe flow
 - Impinging jet
 - Isotropic turbulence

Examples of performed calculations (2/2)

- Industrial calculations
 - Various studies about the core of a reactor
 - Thermal stress in a T-shaped mixing pipe
 - Natural convection in a storage room of waste
 - Atmospheric dispersion (polluting or radio-nucleid)
 - Compressor blades in GFR (Gas Fast Reactor)

Practice

Exercise: Obstacle.data + VisIt

(incompressible 2D flow)

Table of contents

- TRUST/TrioCFD historic
- Modeling flow with TRUST/TrioCFD
- Examples of performed calculations
- Models, schemes, numerical methods
- Data files & calculation
- Command lines
- Parallel calculation
- Mesh generators: Salomé/Gmsh
- Examples of data files
- Automating validation test case
- Recommendations
- TRUST/TrioCFD support

Models, schemes, numerical methods (1/6)

 Discretizations (VDF/VEF) 	p22
• Time and space schemes	p28
• Boundaries conditions	p31
• Source terms	p35
• Solvers for linear systems	p39
• Turbulence models	p43

Discretizations (1/5)

- Finite Differences Volumes (VDF)
 - Structured meshing; velocity and pressure are shifted
 - Scalar unknown is mesh centred
 - Velocity is normal at the face

Discretizations (2/5)

- Finite Elements Volumes (VEF)
 - Unstructured meshing triangles (2D) or tetrahedrons (3D)
 - Unknown fields are face centered (P1NC)
 - Physical characteristics are cell centered
 - Pressure:

Mesh centered and at the vertex (P0+P1)

Discretizations (3/5)

Finite Elements Volumes (VEF)

By default, P0+P1 for pressure but less/more pressure nodes is possible:

Plus in 3D: P0+P1+Pa

11 pressure nodes per tetra:

- -1 in center (P0)
- -4 on vertexes (P1)
- -6 on edges (Pa)
- -> **Useful** for flow with a strong source term & a low velocity field where P0+P1 pressure gradient P0+P1 has trouble to match the source term

La force de l'innovation

Discretizations (4/5)

- Kind of mesh permitted
 - Quadrangular or triangular meshing for 2D cases

Hexahedral or tetrahedral meshing for 3D cases

Non standard or hybrid meshing not supported

Discretizations (5/5)

- Kind of mesh permitted
 - Internal boundaries partially supported
 - with ICEM, spit faces in two and define boundaries
 - TRUST will differentiate the two faces

Models, schemes, numerical methods (2/6)

- Discretizations (VDF/VEF)
- Time and space schemes
- Boundaries conditions
- Source terms
- Solvers for linear systems
- Turbulence models

Time and space schemes (1/2)

Explicit time schemes:

$$\frac{\partial I}{\partial t}^{n+1} + \vec{u}^n \nabla I^n = Div(\alpha \nabla I^n)$$

- Euler explicit (order 1)
- Runge Kutta (order 2 or 3)
- Semi-implicit time scheme:

$$\frac{\partial I^{n+1}}{\partial t} + \vec{u}^n \nabla I^n = Div(\alpha \nabla I^{n+1})$$

- Euler semi-implicit (diffusion implicited)
- Implicit time schemes (not unconditionally stable):

$$\frac{\partial I}{\partial t}^{n+1} + \vec{u}^{n+1} \nabla I^{n+1} = Div(\alpha \nabla I^{n+1})$$

Implicite, Piso, Simple (dynamic time step)

Time and space schemes (2/2)

- convection schemes with VDF discretization
 - Quick (order 2-3)
 - Centre (order 2 or 4) « centered »
 - Amont (order 1) « upwind »

- convection schemes with VEF discretization
 - EF_stab (order 2) « centered stabilized »
 - Muscl (order 2) « quick like »
 - Amont (order 1) « upwind »

Models, schemes, numerical methods (3/6)

- Discretizations (VDF/VEF)
- Time and space schemes
- Boundaries conditions
- Source terms
- Solvers for linear systems
- Turbulence models

Boundaries conditions (1/3)

Available BC for momentum equation

- Wall:
 - No slip (u=0)
 - Slipping at the wall (u.n=0)
 - Imposed tangential velocity
- Fluid boundary:
 - Imposed velocity
 - Imposed pressure or pressure gradient
 - Free outlet
 - Periodic

Boundaries conditions (2/3)

Available BC for energy equation

- Wall:
 - Imposed temperature
 - Adiabatic or imposed flux
 - Imposed exchange (coefficient)
 - Contact resistance possible between two walls
- Fluid boundary:
 - Imposed temperature
 - No flux
 - Periodic

Boundaries conditions (3/3)

- Boundary condition values may be:
 - Uniform on the boundary
 - Space dependent
 - Time dependent
 - Read in a file

Models, schemes, numerical methods (4/6)

- Discretizations (VDF/VEF)
- Time and space schemes
- Boundaries conditions
- Source terms
- Solvers for linear systems
- Turbulence models

Source terms (1/3)

- Navier Stokes equation:
 - Boussinesq

$$S = \rho_0 g \beta (T - T_0)$$

- Useful for small variation of volumic mass
- Flow rate

Pressure loss

$$S=-0.5\rho C_{\rm f}U|U|/D$$

- Regular pressure loss (Blasius or Cf given by the user)
- Periodic channel

- Useful to keep constant flow rate into a periodic channel
- ...

Source terms (2/3)

Navier Stokes equation:

Calculation into a non Galilean referential R'. Coriolis and inertial forces, the user specifies:

- Acceleration and velocity of R' referential into the Galilean referential R
- Ω , d Ω /dt : rotation and its derivative term into the R' referential
- A centre of the rotation of R' into R with the coordinates given into the R' referential

$$\vec{F}_{ie} = -m \ \vec{a}_e = -m \ (\vec{a}(A)_{(R)} + \left(\frac{d\vec{\Omega}_{(R'/R)}}{dt}\right)_{(R)} \wedge A\vec{M} + \vec{\Omega}_{(R'/R)} \wedge (\vec{\Omega}_{(R'/R)} \wedge A\vec{M}))$$

$$\vec{F}_{ic} = -m \ \vec{a}_c = -m \ 2\vec{\Omega}_{(R'/R)} \wedge \vec{v}_r$$

Source terms (3/3)

- Energy equation:
 - Volumic heat power

S=P

- For example into a solid media
-

- Concentration equation:
 - Boussinesq

$$S = \rho_0 g \beta (C - C_0)$$

 Useful to build a two miscible fluids calculation (if the volume mass is similar). Concentration C will be equal to the fraction fluid

Models, schemes, numerical methods (5/6)

- Discretizations (VDF/VEF)
- Time and space schemes
- Boundaries conditions
- Source terms
- Solvers for linear systems
- Turbulence models

Solvers for linear systems (1/3)

Linear systems	Sparse	Symmetric	Constant
Pressure linear system for incompressible flow	×	×	X
Pressure linear system for quasi compressible flow	X	X	X
Pressure linear system for diphasic flow	×	×	
Use of an implicit scheme	X		
Radiation in transparent medium			X
Radiation in semi transparent medium	X	X	X

Solvers for linear systems (2/3)

- TRUST solvers (default choice):
 - Symmetric matrix (e.g. pressure solver)
 - GCP (Conjugate gradient with SSOR preconditioning)
 - Non symmetric matrix (e.g. implicit solver)
 - GMRES or Bi-CGSTAB with diagonal preconditioning
- Integrated PETSc solvers (advanced choice):
 - Symmetric matrix
 - Parallelized Cholesky:

If enough memory available AND matrix is constant, generally the best choice under 500 cores (max 1000 cores on 10e6 cells, ~2s/timestep to solve Ax=B)

BI-CGSTAB with block jacobi ICC(1):

The fastest if high scalability needed (>1000 cores), use GCP with block jacobi ICC(1) if BI-CGSTAB diverges. RCM ordering of the local matrix may accelerate also.

- Non symmetric matrix
 - GMRES or BI-CGSTAB with diagonal preconditioning: Generally faster than previous TRUST versions

Solvers for linear systems (3/3)

- Iterative solvers (GC, GMRES,...)
 - Need a tolerance ε to be defined : $||Ax-B|| < \varepsilon$
 - Possible pitfall because it is an absolute (not a relative) value in TRUST
 - So, check the balances!
 - Exemple: Solving pressure system for an incompressible flow Div(u)=0
 - -So, check the flow rate error in .out file
- Direct solvers (PETSc Cholesky)
 - Use it if possible

Models, schemes, numerical methods (6/6)

- Discretizations (VDF/VEF)
- Time and space schemes
- Boundaries conditions
- Source terms
- Solvers for linear systems
- Turbulence models

Turbulence models (1/1)

- DNS (Direct numerical simulation)
 - No model
- RANS (Reynolds averaged Navier Stokes equations)
 - 0 equation
 - Mixing length
 - 2 equations
 - Standard k-ε
- LES (Large eddy simulation)
 - Wale http://www.cfd-online.com/Wiki/Wall-adapting_local_eddy-viscosity_(WALE)_model
 - Smagorinsky http://www.cfd-online.com/Wiki/Smagorinsky-Lilly_model
- Wall laws
 - Standard (logarithmic law)
 - TBLE (Turbulent Boundary Layer Equations)

Table of contents

- TRUST/TrioCFD historic
- Modeling flow with TRUST/TrioCFD
- Examples of performed calculations
- Models, schemes, numerical methods
- Data files & calculation
- Command lines
- Parallel calculation
- Automating validation test case
- Mesh generators: Salomé/Gmsh
- TRUST/TrioCFD support
- Recommendations
- Examples of data files

Data files & calculation (1/5)

•	TRUST and tools interfaces	.p46
•	Data file description	.p48
•	Operations on meshes	.p56
•	Post processing description	p59
•	Output files description	.p67

TRUST and interfaces between tools (1/1)

TRUST/TrioCFD package released and supported

Data files & calculation (2/5)

- TRUST and tools interfaces
- Data file description
- Operations on meshes
- Post processing description
- Output files description

Data file description (1/8)

 Objects creation with keywords (Domain, Time scheme, Problem, Fluid, ...):

```
# Data file objects definition #

Domaine my_domain

Pb_Thermohydraulique my_problem

Schema_Euler_Explicite my_scheme
...
```


Data file description (2/8)

Action on these objects with keywords:

```
Read_file my domain meshing.geom # Read a mesh file #
Read_file file.geo; # Read external instructions #
Read my scheme {
   tinit 0.
   dt min 0.001
   dt max 0.002
   dt_impr 0.001
   ....}
Associate my problem my scheme # Association #
Read my problem { .... } # Read (define) the problem #
```


Data file description (3/8)

```
# Hydraulique 2D laminar with Quick scheme #
# PARALLEL RUNS #
# lance test 2 ecarts #
# Dimension 2D or 3D #
dimension 2
# Domain definition #
Domaine dom
# BEGIN MESH #
/* Read mesh from ICEM */
/* Read File Binary dom mesh.bin */
/* Read mesh from Salome */
/* Read MED dom Mesh 1 mesh.med */
/* Create domain and mesh from TRUST */
Read file Obstacle.geo;
# END MESH #
# BEGIN PARTITION
Partition dom
    /* Choose Nb parts so to have ~ 25000 cells per
      processor */
      Partition tool metis { nb parts 2 }
      Larg joint 2
      zones name DOM
End
END PARTITION #
# BEGIN SCATTER
Scatter DOM.Zones dom
END SCATTER #
# Discretization on hexa or tetra mesh #
VDF ma discretisation
```

```
# Time scheme explicit or implicit #
Scheme euler explicit mon schema
Read mon schema
     # Time step #
      # Initial time [s] #
     tinit 0
      # Min time step #
     dt min 5.e-3
      # Max time step #
    dt max 5.e-3 # dt min=dt max so dt imposed #
      # facsec such as dt = facsec * min(dt(CFL), dt max); for explicit scheme facsec \leq 1. By default facsec
      equals to 1 #
     # facsec 0.5 #
     # make the diffusion term in NS equation implicit: disable(0) or enable(1) #
     diffusion implicite 0
    # Output criteria #
      # .out files printing period #
    dt impr 5.e-3 # Note: small value to print at each time step #
      # .sauv files printing period #
     dt sauv 100
     periode sauvegarde securite en heures 23
    # Stop if one of the following criteria is checked: #
     # End time [s] #
     tmax 5.0
      # Max number of time steps #
    # nb pas dt max 3 #
     # Convergence threshold (see .dt_ev file) #
     seuil statio 1.e-8
```


Data file description (4/8)

```
# Problem definition #
Pb hydraulique pb
# Physical characteristcs of medium #
Fluide Incompressible milieu
Read milieu
    # hydraulic problem #
     # Dynamic viscosity [kg/m/s] #
    mu Champ_Uniforme 1 3.7e-05
     # Volumic mass [kg/m3] #
    rho Champ Uniforme 12
# Association between the different objects #
Associate pb dom
Associate pb mon schema
Associate pb milieu
Discretize pb ma discretisation
# New domains for post-treatment #
# By default each boundarie condition of the domain is
      already extrated with such name
      "dom" boundaries "BC" #
```

```
# Problem description #
Read pb
    # hydraulic problem #
    Navier_Stokes_standard
         # Pressure matrix solved with #
        solveur_pression GCP {
             precond ssor { omega 1.500000 }
             seuil 1.000000e-06
             impr
         # Two operators are defined #
        convection { quick }
        diffusion { }
        # Uniform initial condition for velocity #
        initial conditions {
             vitesse Champ Uniforme 2 0. 0.
        # Boundary conditions #
        boundary conditions {
                       paroi fixe
             Square
             Upper
                       symetrie
             Lower
                       symetrie
             Outlet
                       frontiere ouverte pression imposee Champ front Uniforme 1 0.
                       frontiere_ouverte_vitesse_imposee Champ_front_Uniforme 2 1. 0.
             Inlet
```


Data file description (5/8)

List of possible keywords to define a field:

Volume fields, keyword Champ_TYPE where TYPE may be:

uniforme (uniform field)
uniforme_par_morceaux (uniform field per sub-zone)
fonc_t (uniform time dependent field)
fonc_xyz (space dependent field)
fonc_txyz (space and time dependent field)
fonc_fonction (depends on another field, analytic function)
fonc_tabule (depends on another field, tabulated function)
fonc_MED (read a MED field)
don_lu (field read in a file)

Surface fields, keyword Champ_front_TYPE where TYPE:

As volume fields plus: **Iu** (field read in a file) **recyclage** (field extracted from a plane or a boundary of another problem)

Data file description (6/8)

Formulas for a field in a data file:

: substracte/ : division* : multiplication% : modulo

\$: max
^ : power
< : lesser than

: greater than: less or equal to: greater of equal to

: test if

Data file description (7/8)

Example of Champ_Fonc_MED

First calculation on a VDF mesh:

Postraitement { fichier VDF_field format med Champs dt_post 0.1 { vitesse elem } }

Second calculation on a different refined VEF mesh with initial condition from the VDF field:

conditions_initiales { vitesse Champ_Fonc_MED last_time VDF_field.med domain vitesse elem 0 }

Data file description (8/8)

Example of TrioCFD coupled problems

Periodic box to provide a fully developed turbulent flow inlet for the T-shaped domain:

Data files & calculation (3/5)

- TRUST and tools interfaces
- Data file description
- Operations on meshes
- Post processing description
- Output files description

Operations on meshes (1/2)

Operations on meshes (2/2)

- List of possible keywords to adjust a mesh:
 - **Dilate** (to change the size of a mesh)
 - **Mesh** (to mesh a block or merge several meshes)
 - Transformer (to transform a mesh with a function)
 - Rotation (to rotate a mesh according to an axis)
 - Extruder (to extrude a 2D mesh into a 3D mesh)
 - Trianguler/Tetraedriser (to triangulate, to tetraedrise)
 - Raffiner_(an)isotrope (to refine a mesh)
 - RegroupeBord (to merge or rename boundaries)
 - Supprime_Bord (to suppress boundaries)
 - Remove_Elem (to create holes in a VDF mesh)
 - ...

Data files & calculation (4/5)

- TRUST and tools interfaces
- Data file description
- Operations on meshes
- Post processing description
- Output files description

Data file description (1/8)

```
# Post_processing description #
 /* To know domains that can be treated directly, search in .err output file: "Creating a surface domain named" */
 /* To know fields that can be treated directly, search in .err output file: "Reading of fields to be postprocessed" */
 Post processing
      # Probes #
      Probes
          # Note: periode with small value to print at each time step (necessary for spectral analysis) #
                                                        periode 0.005 points 2
          sonde pression
                                                                                       0.13 0.105
                                                                                                      0.13 0.115
                                 pression
          sonde vitesse
                                 vitesse
                                                        periode 0.005 points 2
                                                                                       0.14 0.105
                                                                                                      0.14 0.115
                                                        periode 0.005 segment 22 0.14 0.0
          sonde vit
                         nodes vitesse
                                                                                                      0.14 0.22
          sonde P
                                 pression
                                                        periode 0.01
                                                                       plan 23 11
                                                                                       0.01 0.005
                                                                                                      0.91 0.005
                                                                                                                      0.01 0.21
          sonde Pmoy
                                 Moyenne_pression
                                                        periode 0.005 points 2
                                                                                       0.13 0.105
                                                                                                      0.13 0.115
          sonde Pect
                                 Ecart_type_pression
                                                        periode 0.005 points 2
                                                                                       0.13 0.105
                                                                                                      0.13 0.115
      # Fields #
      format lml # lata for Visit tool #
     fields dt_post 1. # Note: Warning to memory space if dt post too small #
           pression elem
          pression som
          vitesse elem
          vitesse som
```


Data file description (2/8)

Post processing description (3/8)

Probes: "Nodes" option

"Nodes" option moves the probes to the nearest faces, but take care of stretched meshes!

sonde_vit nodes vitesse periode 0.005 segment 22 0.14 0.0 0.14 0.22

In the following 2D example, the initial probes in **red** are defined along a segment from boundary to boundary, but when applying option "**nodes**" it moves the probes (in **blue**) to the nearest face and sometimes near the

boundary the nearest face **IS NOT** a boundary face.

Since several version it is possible to visualize the .son files containing the probes in Visit. It provides you a point MESH which is the localization of the probes. We will try in the 1.6.9 version to help user by improving the messages in the .err file when probes are moved according to the "nodes" option and also to run Visit on .son files directly from the triou script.

So, if you want extreme probes of the segment on the boundaries, try to move slightly the segment.

Post processing description (4/8)

TRUST results export

2D/3D results files are readable:

- Either directly by :
 - VisIt (use lata format in the data file "format lata")*
 - Salomé (use *med* format <u>in the data file</u> "**format med**", to post-process use "ParaVis" in Salomé and open med file with "builtin")
- Or after read then export by VisIt (VTK format):
 - Paraview, Tecplot

1D results files by:

Gnuplot, XmGrace, Excel

La force de l'innovation

Post processing description (5/8)

- Possible basic post processed fields
 - Equation unknowns (velocity, pressure, temperature,...)
 - Physical characteristics (dynamic viscosity, thermal conductivity,...)
 - Model fields (turbulent viscosity, friction velocity,...)

The complete list of keywords for fields which could be post processed for the current calculation is printed into the .err file :

Reading of fields to be postprocessed

Milieu_base : 1 masse_volumique

Fluide_Incompressible : 2 viscosite_cinematique viscosite_dynamique

Equation_base : 1 **volume_maille**

Operateur_base: 0

Navier_Stokes_std: 16 divergence_U gradient_pressionY gradient_pressionX gradient_pression pression_pa pression vitesseY vitesseX vitesse taux_cisaillement courant_maille reynolds_maille y_plus porosite_volumique critere_Q vorticite

Possible advanced post processing fields

- Can be created in the data file with the keyword **Definition_champs**
- 3 examples given:
 - Monitoring extreme values of a field
 - Averaging a field on a boundary
 - Error between Trio U and an analytical solution

Post processing description (6/8)

Maximal value of a field

```
Read pb {
 Postraitement {
             Definition_champs {
                           # Creation of the 0D field: maximal temperature of the domain #
                           temperature_max Reduction_0D {
                                         methode max
                                         source refChamp { Pb_champ pb temperature }
             Sondes {
                           # Print max(temperature) into the datafile_TMAX.son file #
                           tmax temperature_max periode 0.01 point 1 0. 0. 0.
             Champs dt_post 1.0 { ... }
```


Post processing description (7/8)

Averaging a field on a boundary

```
Domaine dom # 3D domain with a boundary named wall #
Domaine surface # 2D domain object created for use by the Extraction keyword #
Read problem {
Postraitement {
             Definition_champs {
                           # Creation of the 0D field: mean temperature on the boundary wall #
                           wall mean temperature Reduction 0D {
                                         methode moyenne
                                         source Extraction {
                                                       domaine surface nom_frontiere wall methode trace
                                                       source refChamp { Pb_champ problem temperature }
             # Print into the datafile_TWALL.son file #
              Sondes { twall wall mean temperature periode 0.01 point 1 0. 0. 0. }
             Champs dt_post 1.0 { ... }
```


Post processing description (8/8)

Calculating an error between fields

```
Postraitement {
             Definition_champs { # Creation of the 3D field: error #
                           error Transformation {
                                         methode formule expression 1 velocity-solution
                                         sources {
                                                       refChamp { Pb_champ problem vitesse nom_source velocity } ,
                                                       Transformation {
                                                              methode vecteur expression 3 x*y x+y z
                                                               nom_source solution
                           # Calculate the L2 norm of the error as 0D field #
                           error_norm Reduction_0D { methode norme_L2 source_reference error }
             } # Print into the datafile_ERROR_NORM.son file #
             Sondes { sonde_error_norm error_norm periode 0.01 point 1 0. 0. 0. }
             format LATA Champs dt_post 1.0 {
                                         # Post process the error field #
                           error
                           vitesse
```

Data files & calculation (5/5)

- TRUST and tools interfaces
- Data file description
- Operations on meshes
- Post processing description
- Output files description

Output files description (1/6)

Saving process

- Unknowns (velocity, temperature,...) are saved in:
 - one .xyz file
 - one or several (parallel calculation) .sauv files
- By default, saving process in .sauv happens during the calculation:
 - · At the start and at the end
 - Periodically (each 23 hours of CPU with tcpumax keyword)
 - But, user may also specify a time physical period (dt_sauv keyword)
- By default, saving process in .xyz file happens during the calculation:
 - At the end
 - But, user may enable it with a specific keyword
- By default, there is a default name for the *.sauv* files (testcase_000n.sauv), the format is binary, and the files are appended during successive saves but user can change the behaviour with the keywords:

sauvegarde|sauvegarde_simple binaire|formatte|xyz filename.sauv|filename.xyz

with:

- **sauvegarde_simple** : the file is deleted before the save
- formatte : the format of the file ASCII instead of binary
- **xyz**: the .xyz file is written instead of the .sauv files

Output files description (2/6)

Restarting process

Restarting the calculation is possible:

- Either from .sauv file(s) (one file per process)
- -> Necessary to restart the calculation with the <u>same</u> number of equations on the <u>same</u> number of processes
- Or from a .xyz file
- -> Possible to restart a calculation by changing the number of equations solved
- -> Possible to restart with a <u>different</u> number of processes

The mandatory syntax in the data file is:

reprise binaire|formatte|xyz filename.sauv|filename.xyz

Output files description (3/6)

TRUST files summary

• Input:

Data file: .data

Meshing: .geom (or .bin)

Instructions file: .geo

• Sub zones: .ssz

Sub domains: .Zones

Output :

• 2D/3D results: .lata (or .med)

• 1D results: .son

Saving-restart: .sauv ou .xyz

• Listing (physical infos): .out

Listing (warnings&errors&domain infos): .err

Listing of boundary fluxes: *.out

CPU performances: .TU

• Time steps, facsec, equation residuals: .dt_ev

• Stop file (0 or 1):

Output files description (4/6)

Output files description (5/6)

TRUST with VisIt

For more informations and to download manuals see :

Output files description (6/6)

TRUST with gnuplot

Real-time display of calculated quantities:

One point probe

Probes plane

Probes segment

Convergence

Instantaneous or averaged value and also, flux balance at the boundaries like:

- -flow rate
- -pressure forces
- -viscous forces
- -heat flux

. . .

Table of contents

- TRUST/TrioCFD historic
- Modeling flow with TRUST/TrioCFD
- Examples of performed calculations
- Models, schemes, numerical methods
- Data files & calculation
- Command lines
- Parallel calculation
- Automating validation test case
- Mesh generators: Salomé/Gmsh
- TRUST/TrioCFD support
- Recommendations
- Examples of data files

Command lines (1/3)

TRUST environment initialization:

source \$TRUST_ROOT/env_TRUST.sh

- To run a TRUST calculation with the trust script:
 - Sequential run:

trust datafile

- Parallel run on N CPUs:
 - Partitioned mesh partitioned should be created sequentially, then interactively:

trust datafile N

Or to run on a batch-queuing system, add this line into the submission file:
 mpirun -np N \$exec datafile N

To redirect into output and error files, after the command line, add:

trust 1>datafile.out 2>datafile.err

Command lines (2/3)

- To copy a data file from the test database:
 trust -copy datafile
- To visualize the mesh and its boundaries used by a data file: trust -mesh datafile[.data]
- To edit interactively (change/add schemes, solvers...) a data file with:
 EditData datafile.data
- Check a data file without running TRUST:
 VerifData datafile.data
- To identify all the data sets from the no regression data base which contain some specified keywords (word1 word2...wordn). The identified data set are listed in the file 'liste_cherche'.

cherche.ksh [-reference_only] word1 word2 ...wordn

 To monitor only your calculation: trust -probes [datafile[.data]]

Command lines (3/3)

To run Visit with a LATA results file:
 visit -o datafile.lata

 To clean your calcul directory: trust -clean

To open the PDF documentation (User's manual):
 trust -doc

To browse some useful resources (PDF manuals, test cases, keywords, C++ classes,...):

trust -index

In all cases, the TRUST binary may be changed by the **\$exec** variable and by default, exec=\$TRUST_ROOT/exec/TRUST_mpi_opt

Practice

Exercise: Heat exchange VDF/VEF exercise

Table of contents

- TRUST/TrioCFD historic
- Modeling flow with TRUST/TrioCFD
- Examples of performed calculations
- Models, schemes, numerical methods
- Data files & calculation
- Command lines
- Parallel calculation
- Automating validation test case
- Mesh generators: Salomé/Gmsh
- TRUST/TrioCFD support
- Recommendations
- Examples of data files

Parallel calculation (1/3)

- Parallel calculation description..p80
- Parallel calculation on clusters..... p86
- Visualization with Vislt......p94

Parallel calculation description (1/5)

- SPMD model (Single Program Multiple Data)
- Messages exchange by MPI (Message Passing Interface)
- From PC to massively // computer, with shared or distributed memory

Parallel calculation description (2/5)

- Domain partitioning tools :
 - Metis
 - Tranche "band partitioning"
- Performances are partition dependent :
 - Same number of cells by sub-domain
 - To minimize the joints length (boundaries between sub-domains)

user:tr:ou Thu Jan 22 19:15:22 2004

- Some rules of thumb for performance
 - If possible, use 20000-30000 cells per process
 - Look at cluster specificities:
 - L2 size cache
 - Latency network
 - ...

Parallel calculation description (3/5)

- Definition of overlapping width value
 - Number of vertexes or elements on the remote subdomain known by the local sub-domain
 - Specified by the users during partitioning task
 - This value depends on the space scheme orders:
 - 1 if 1-2nd order
 - 2 if 3-4th order
 - In practice, use 2 except if you use only upwind schemes

Parallel calculation description (4/5)

- Performance examples :
 - PC linux cluster (Scali network):

Processors	Speed Up	Efficiency
1	1	1
2	1.7	0.86
4	3.2	0.80
8	5.5	0.69
16	7.5	0.47

Parallel calculation description (5/5)

Some advices:

-Choose a number of elements per process between 20000 and 30000 for optimal performances. Below 20000 elements/process, TRUST parallel efficiency may dramatically decreases. Example on curie:

Scaling of curie from 72000 cells/core to 9000 cells/core

Parallel calculation (2/3)

- Parallel calculation description
- Parallel calculation on clusters
- Visualization with VisIt

Parallel calculation on clusters (1/7)

- To connect to:
 - CEA/DM2S service cluster: callisto (1168 cores)
 - CEA/CCRT cluster: airain (~10000 cores)
 - CEA/TGCC cluster: curie (~92000 cores)
 - CINES cluster: occigen (~50 000 cores)
 - CEA/Cadarache cluster: mezel2 (~600 cores)
- Ask for a login:
 - callisto (access for CEA only)
 - CCRT http://www-ccrt.cea.fr
 - TGCC http://www-hpc.cea.fr/fr/complexe/tgcc.htm
 - occigen https://www.cines.fr/occigen-le-nouveau-supercalculateur/
 - mezel https://www-linuxcad.intra.cea.fr/dokuwiki/doku.php/cluster
- Once you have the login, connect from your PC to:
 - ssh –X login@name.intra.cea.fr (name=callisto-login1 | callisto-login2)
 - ssh –X login@name.ccc.cea.fr (name=curie-ccrt-gw | airain-gw)
 - ssh –X login@occigen.cines.fr
 - Ssh -X login@mezel

Parallel calculation on clusters (2/7)

TRUST/TrioCFD versions located on:

callisto
 ROOT=/panfs/ixion/home/triou/

CCRT/TGCC
 ROOT=/ccc/scratch/cont002/den/triou/
 occigen
 ROOT=/opt/software/applications/trio u/

with stable versions:

- \$ROOT/TRUST/TRUST_X.Y.Z
- \$ROOT/TrioCFD/TrioCFD X.Y.Z

and versions in development (if exists):

- \$ROOT/Version_beta_clustername/TRUST
 -> future X.Y.Z+1 version
- \$ROOT/Version beta clustername/Composants/TrioCFD
- For **TRUST** configuration, you can add in your ~/.profile (or ~/.bashrc) file, the lines:

```
# Example of TRUST environment on callisto:
source /panfs/ixion/home/triou/TRUST/TRUST_1.7.2/env_TRUST.sh 1>/dev/null 2>&1
```

• **Check your environment**, after you reconnect to the cluster, look at TRUST_ROOT variable: echo \$TRUST_ROOT

Parallel calculation on clusters (3/7)

- Space discs on callisto:
 - /home (limited space but there is backup)
 - /panfs/ixion/home (local space backup)
 - /panfs/ixion/scratch (local space no backup)
- Space discs and quotas on CCRT/TGCC:
 - /ccc/cont002/home (3 GB, slow I/O, backup)
 - /ccc/work (1 TB, fast I/O, no backup)
 - /ccc/scratch (20 TB, fastest I/O, no backup)
 - /ccc/store (infinite size, backup, but data are slow to access)
- -> Data shared by all clusters
- -> Source code, binary (also shared)
- -> Data, code output
- -> Data archiving

- Space discs on occigen:
 - /home (40 GB/user, backup)
 - /store (200 GB/group, backup, limited to 100 000 files/group)
 - /scratch (4 TB/group, no backup)

Parallel calculation on clusters (4/7)

• Sequential interactive run (but very time-limited), for example to run a datafile to partition a mesh:

trust datafile

• Parallel interactive run (but very time-limited), for example to check your datafile:

trust datafile nb processes

 To use the batch queuing system (for a long time-limited run), you need to create first a submission file (named sub_file):

trust -create_sub_file datafile nb_processes

Then, you submit the job:

callisto: sbatch sub_file CCRT/TGCC: ccc_msub sub_file occigen: sbatch sub_file mezel: sbatch sub_file

Parallel calculation on clusters (5/7)

- Before you submit the job, you can edit and change the values of the submission file sub-file
- The submission file describes:
 - The job name
 - The number of cores required
 - The default output files
 - The CPU time required (the CPU value selects implicitly a queue)
 - The location of the TRUST study
 - The TRUST parallel command line

Parallel calculation on clusters (6/7)

• Example on callisto

```
#SBATCH -J name_of_the_job

#SBATCH -p slim

#SBATCH --qos=normal_slim

#SBATCH -t 2880

#SBATCH -n 2

cd /panfs/ixion/home/login/study

mpirun -np nbprocs $exec datafile nbprocs 1>jdd.out 2>jdd.err
```

Example on CCRT/TGCC

```
#MSUB -r job_name

#MSUB -n nb_procs

#MSUB -o out.%J

#MSUB -e err.%J

#MSUB -T 86400

# On cluster curie, add also your project (e.g. genden):

#MSUB -A genden

cd /ccc/scratch/cont002/den/login/study

mpirun -np nb_procs ./Trio_U_mpi_opt datafile nb_procs 1>datafile.out 2>datafile.err
```

Example on occigen

```
#SBATCH -J name_of_the_job
#SBATCH -t 24
#SBATCH -n 2
#SBATCH -N 1
cd directory_of_my_study
srun --mpi=pmi2 -K1 --resv-ports -n $SLURM_NTASKS $exec datafile $SLURM_NTASKS1>jdd.out 2>jdd.err
```


Parallel calculation on clusters (7/7)

Description of partition/queues/classes for each cluster:

callisto: slim (no limit of CPU, limited to 800 cores, 6.4GB/core)

large (no limit of CPU, limited to 320 cores, 12.8GB/core) **fat** (no limit of CPU, limited to 48 cores, 21.3GB/core)

CCRT/TGCC: test (30 minutes of CPU, limited to 256 cores)

prod (24 hours of CPU)

More class informations with the command class

occigen: all (24 hours of CPU)

• <u>List of jobs and their state:</u>

callisto: squeue CCRT/TGCC: ccc_mpp

occigen: squeue -u your_login or squeue -j job_number

• Kill a job (the job_number is given by the previous command):

callisto: scancel job_number
CCRT/TGCC: ccc_mdel job_number
occigen: scancel job_numbertrain

Parallel calculation (3/3)

- Parallel calculation description
- Parallel calculation on clusters
- Visualization with VisIt

Visualization with VisIt (1/2)

On clusters

- If available, use a HPCDrive deported session on CCRT/TGCC clusters to run Vislt without network slowness
 - Available on curie cluster: https://visu-tgcc.ccc.cea.fr/HPCDrive/home
 - Available on airain cluster: https://visu-airain.ccc.cea.fr/HPCDrive/home
 - Ask us the HPCDrive user manual
- Or the client/server mode
 - See the following description VisIt (callisto)
 - Unhappily, this mode DOES NOT work with CCRT/TGCC clusters
 - Fine tuning of a critical option: Rendering->Advanced->Auto (2000KPolys)
- Or local mode
 - Copy the LATA results from the cluster to your PC and run the parallel version of Visit

Visualization with VisIt (2/2)

Recent features with Visit

-The TRUST install builds a parallel version of VisIt:

visit -np 8 -o results.lata

- -Client/server mode available by default for some clusters (callisto)
 - You run the TRUST calculation on the cluster
- You visualize with VisIt your results from your Linux/Windows PC without data copy and/or network slowness

Practice

Exercise: Obstacle.data //

Exercise: Calculation on callisto

Exercise: Turbulent flow on a 3D step

Table of contents

- TRUST/TrioCFD historic
- Modeling flow with TRUST/TrioCFD
- Examples of performed calculations
- Models, schemes, numerical methods
- Data files & calculation
- Command lines
- Parallel calculation
- Automating validation test case
- Mesh generators: Salomé/Gmsh
- TRUST/TrioCFD support
- Recommendations
- Examples of data files

Automating validation test case (1/11)

- What is an automated test case?
- How to generate an automated test case?
- How to run an automated test case?

Automating validation test case (2/11)

What is an automated test case?

- Tool to compare TRUST results and experimental data and/or analytical solutions
 - -> As final result a report PDF file containing
 - » figures (images or gnuplot plots)
 - » tables with results
 - » visualizations (built by VisIt tool)
 - » etc...
- Useful to quickly validate a new TRUST/TrioCFD version or to compare different versions of the code

Automating validation test case (3/11)

How to generate an automated test case?

- Create a directory for example Test_case_name and under:
- src directory will contain the elements to build the test case
- build directory will contain the results of the building run

Automating validation test case (4/11)

How to generate an automated test case?

- In the src directory, you will create a:
 - .prm file (mandatory)
 - It contains the automated test case description
 - prepare script (optional)
 - It will build one (several) data file(s) in the build sub-directories
 - pre_run script (optional)
 - It will do operations BEFORE calculations begin, for example the mesh partition before a parallel calculation
 - post_run script (optional)
 - It will extract relevant information from the raw result files AFTER the calculation finishes (run python scripts,...)
 - other optional files/directories necessary to build the test case
 - data file, mesh file, experimental data, images,...

Automating validation test case (5/11)

Example of a prm file (and final PDF result):

```
Several data files will be run by TRUST/TrioCFD
Parametres {
                    Titre "2D Channel flow with imposed Twall and volumetric power"
                    Description "2D Channel flow with imposed wall temperature"
                    Auteur "Simone Vandroux"
                    CasTest dir1 Canal_2D_grossier.data
                    CasTest dir2 Canal_2D_semi_grossier.data 4
Chapitre {
                    Titre " Test Description "
                    Description " \latex_(\textbf{Tested options}\latex_)"
                    Description " Type of flow:
                                                                                  Thermohydraulic laminar 2D"
                    Description " Time scheme:
                                                          Euler explicite"
                    Description " Convection schemes:
                                                             Amont, muscl, EF_stab {volumes_etendus}"
                                                         VEFPreP1b"
                    Description " Discretization:
                    Description " Type of boundary conditions: Momentum: periodic and symetry"
                    Description "
                                                    Energy: periodic and imposed temperature"
                    Description " Type of fluid:
                                                         properties of helium gas at 700°C
                    Description " "
                    Description "\latex_(\textbf{Physical properties}\latex_)"
                    Description "The physical properties correspond to the properties of Helium at 700°C"
                    Description "\latex_($\rho = 4.40684\: kg.m^{-3}$\latex_)"
                    Description "\latex_($\mu$\latex_) = 4.46437e-05 Pa.s"
                    Description "\latex (\\lambda = 0.344964 \: W.m\{-1}.K\\{-1}\$\latex )"
                    Description "Cp = 5193 J/kg/K"
                    Description "\latex_($\beta = 0.0014285714\: K\{-1}$\latex_)"
                    Description "Pr = 0.67 "
```

Test Description Tested options Type of flow: Thermohydraulic laminar 2D Time scheme: Euler explicite Convection schemes: Amont, muscl, EF stab (volumes etendus) Discretization: VEEPreP1b Type of boundary conditions: Momentum: periodic and symetry Energy: periodic and imposed temperatur Type of fluid: properties of helium gas at 700°C Physical properties The physical properties correspond to the properties of Helium at 700°C $\rho = 4.40684 \, kg.m^{-3}$ $\lambda = 0.344964 \ W.m^{-1}.K^{-}$ $C_D = 5193 \text{ J/kg/K}$ $\beta = 0.0014285714 K$ Pr = 0.67Boundary limits Hydraulic: symetry at walls Energy: imposed temperature T=0 at walls, imposed volumetric power=1 in the calculation domain For this periodic calculation, the exact temperature solution is a parabolic profile $T(y) = \frac{P}{\lambda} \cdot \frac{y}{2} \cdot (y - H)$ It is imposed as an initial temperature profile Solving of equations Equation Navier Stockes standard

Pressure solver: solveur pression Gcp { precond ssor { omega 1.5 } seuil 1.e-10 Latex format can be integrated

Automating validation test case (6/11)

Automating validation test case (7/11)

• Example of a **prepare** script:

```
#!/bin/bash
# Loop on several convection schemes:
for scheme in "muscl ef_stab upwind"
do
  # Create a sub directory into the build directory
  mkdir $scheme
  # Go into the sub directory
  cd $scheme
  # Copy the flow.data into a new file named flow.data
  cp ../flow.data flow.data
  # Substitute into the the data file the SCHEME string by the the value of the $scheme variable
  echo -e "1,$ s?SCHEME?$scheme?g\nw" | ed flow.data
  # Create a link with pre run and post run script
  ln –s –f ../pre_run .
  ln –s –f ../post_run.
  # Come back to the build directory
  cd ..
```


Automating validation test case (8/11)

• Example of a **pre_run** script:

#!/bin/bash
Uncompress the mesh file
gunzip -c ../Channel.msh.gz > Channel.msh
Partition the mesh with the make_PAR.data tool:
make_PAR.data flow.data

Automating validation test case (9/11)

Example of post_run script:

```
#!/bin/bash
# The first parameter is the name of the data file:
datafile=$1
file=${datafile%.data}
# Read the pressure drag on the 5th column of the last line (final time) of
# the pressure force file:
fp=`tail -1 $file"_pb_Force_pression.out" | awk '{print $5}'`
# Read the viscous drag:
fv=`tail -1 $file"_pb_Contrainte_visqueuse.out" | awk '{print $5}'`
# Calculate the total drag:
Drag='echo $fp $fv | awk '{print $1+$2}'"
#Drag=`echo "$fp+$fv" | bc -l`
# Write the total drag into a file to be included into a table of the PDF file
echo $Drag > drag.dat
```


Automating validation test case (10/11)

How to run an automated test case?

- "Run_fiche" command should be run either from the root directory of the test case, either in the src directory
- All operations made by **Run_fiche** are in the build directory:

- » First, it runs the prepare script
- » Then for each calculation:
 - -runs the **pre_run** script
 - -runs the calculation
 - -runs the **post_run** script
- » Then builds the PDF report file

Automating validation test case (11/11)

- User guide:
 - -\$TRUST ROOT/doc/TRUST/HowTo Validation.pdf
- .prm syntax documented in:
 - -\$TRUST_ROOT/Validation/Outils/Genere_courbe/doc/manuel.xhtml
- Examples of automated verification test case:
 - -\$TRUST_ROOT/Validation/Rapports_automatiques/Verification/Verification_codage

Practice

Exercise: Validation form

Table of contents

- TRUST/TrioCFD historic
- Modeling flow with TRUST/TrioCFD
- Examples of performed calculations
- Models, schemes, numerical methods
- Data files & calculation
- Command lines
- Parallel calculation
- Automating validation test case
- Mesh generators: Salomé/Gmsh
- TRUST/TrioCFD support
- Recommendations
- Examples of data files

Mesh generators (1/3)

•	Possible meshing tools	p112
•	Salomé	.p116
•	Gmsh	p118

114

Possible meshing tools (1/3)

- TRUST internal mesh tool
 - Used by keywords in the data file
 - Limited to simple geometry (assembling of rectangle in 2D or blocks in 3D)

- Or use of a mesh generator tool linked with TRUST:
 - Salomé
 - Gmsh

Possible meshing tools (2/3)

- Mesh generator tools :
 - ICEM (Ansys) generates a file at Trio_U format
 - TRUST reads .unv files from I-DEAS*
 - TRUST reads 2D/3D meshes from old tools of Fluent (Gambit/TGrid)
 - TRUST reads « .med » meshes from Salomé or Gmsh
- Form factors (view factors for the radiation model):
 - Link between Ansys and TRUST

*:tetrahedral meshing only

Possible meshing tools (3/3)

- Presentation of 2 mesh generators: Salomé, Gmsh
- Exercise with 1 mesh generator according to your needs

Mesh generator	Salomé	Gmsh	Other (ICEM,)
Availability	Free	Free	License
TRUST discretization	VEF	VEF	VEF
TRUST package	No	Yes	No
TRUST tutorial	Yes	Yes	No
Support	support-salome@cea.fr	gmsh@geuz.org	

Mesh generators (2/3)

- Possible meshing tools
- Salomé
- Gmsh

Salomé (1/1)

Salomé: An OpenSource platform (CEA, EDF, OpenCascade,...) which provides a 2D/3D element mesh generator. It is available here for download:

http://www.salome-platform.org

- -> **Salomé** is not provided in the TRUST package
- -> To have a full training session, or receive support for install or use, see:

http://www.salome-platform.org/service-and-support support-salome@cea.fr

Short description soon to use the Geometry and Mesh modules....

Mesh generators (3/3)

- Possible meshing tools
- Salomé
- Gmsh

Gmsh (1/3)

Gmsh: A 2D/3D finite element mesh generator available here:

http://www.geuz.org/gmsh

-> The documentation is here:

http://geuz.org/gmsh/doc/texinfo/gmsh.html

-> Gmsh is downloaded and built during the TRUST install. There are tutorials and examples under:

\$TRUST_ROOT/exec/gmsh/share/doc/gmsh/tutorial

\$TRUST_ROOT/exec/gmsh/share/doc/gmsh/demos

-> Support on Gmsh at gmsh@geuz.org

Best is to start from a .geo file of one of the previous examples. Run Gmsh with:

gmsh file.geo

Edit and change your .geo file and use the **Reload** button to update the geometry visualization.

Gmsh (2/3)

Example of .geo file

```
// Variables definition
Ic = 0.02;
// First cell size (used when points
// are defined):
lc1 = lc * 8;
// Second cell size
lc2 = lc / 2;
// Circle diameter
D = 0.14;
E = D;
param = 1;
H = param * 10 * D;
X = param * 5 * D;
L = param * 10 * D + X + E;
// Points definition
Point(1) = \{0,0,0,lc1\};
Point(2) = \{L,0,0,lc1\};
Point(3) = \{L,H,0,lc1\};
Point(4) = \{0,H,0,lc1\};
Point(5) = \{X,0,0,lc2\};
Point(8) = \{X+E,0,0,lc2\};
```

```
// Lines definition
Line(2) = {1,5}; // 2 points
Line(5) = {8,2};
Line(6) = {3,2};
Line(7) = {3,4};
Line(8) = {4,1};

// 1/4 Circle definition
Point(6) = {X+D/2,0,0,lc2}; // Center
Point(7) = {X+D/2,D/2,0,lc2};

// 3 points for the circle arc (P1,Center,P2):
Circle(1) = {5,6,7};
Line(3) = {7,6};
Line(4) = {6,8};

// A circle arc is STRICTLY smaller than Pi
```


// Naming the boundaries is MANDATORY // and it is thanks to the // Physical Line (use Lines or Circle to define it) // DO NOT USE LINE LOOPS !!!! Physical Line("Shape") = {1,3}; Physical Line("Axis") = $\{2,4,5\}$; Physical Line("Outlet") = {6}; Physical Line("Top") = {7}; Physical Line("Inlet") = {8}; // A lineloop is a loop on several lines // for defining/orienting a surface // Use negative lines to reverse the // orientation of the line Line Loop(1) = $\{2,1,3,4,5,-6,7,8\}$; // The surface will use the lineloop Plane Surface(1) = $\{1\}$; // Naming the domain is MANDATORY

Physical Surface("domain") = {1};

Gmsh (3/3)

Mesh and import

Then, export the mesh to a MED format file (File->Save As, format MED) and <u>DO NOT</u> select "Save All" because points could be saved. <u>Important</u>: Check that your mesh is created with the command (if nothing appears, you forgot to name boundaries and/or the domain with the Physical keywords):

gmsh file.med

To import the mesh, add in the TRUST datafile:

Dimension 2

Domaine dom

Lire_MED family_names_from_group_names dom mesh_name file.med # By default, the mesh name is the name of the file, so there mesh_name=file #

If you have created several domains into the same Gmsh mesh, you will add cause the different domains in the Gmsh mesh file are seen as subzones.

Domain second_dom

Create_domain_from_sous_zone { domain_final second_domain par_sous_zone sub_zone_name domaine_init dom }

Practice

Exercise: Meshing tools

VEF calculation with TRUST

- Run Salomé exercise in the tutorial
- Run Gmsh exercise in the tutorial

Run Xprepro exercise in the tutorial if one is interested by a VDF calculation with TRUST

Table of contents

- TRUST/TrioCFD historic
- Modeling flow with TRUST/TrioFD
- Examples of performed calculations
- Models, schemes, numerical methods
- Data files & calculation
- Command lines
- Parallel calculation
- Automating validation test case
- Mesh generators: Salomé/Gmsh
- TRUST/TrioCFD support
- Recommendations
- Examples of data files

TRUST/TrioCFD support (1/2)

Subscribe to the TrioCFD newsletters (diffusion list):

- Users (1 mail/trimester) http://saxifrage:3500/wws/info/trio_u_annonces
- Developers (1 mail/week) http://saxifrage:3500/wws/info/trio_u_dev

Download new versions from sourceforge site:

- TRUST: http://sourceforge.net/projects/trust-platform/files/
- TrioCFD: http://sourceforge.net/projects/triocfd/files/

See recent research publications related to TrioCFD project:

Web site: http://www-trio-u.cea.fr

Hot line

• triou@cea.fr

Céline CAPITAINE

Marthe ROUX

01 69 08 42 68 (Saclay bât 451 pièce 50)

01 69 08 00 02 (Saclay bât 451 pièce 50)

TRUST/TrioCFD support (2/2)

- A release every 6 months:
 - Linux version only
 - Installed on several CEA clusters, TGCC/CCRT and CINES
 - Installation by users or TRUST/TrioCFD support
- Documentation available under \$TRUST_ROOT/doc/TRUST directory else ask it to CEA project leaders:
 - TRUST_and_TrioCFD_presentation.pdf (these slides)
 - TRUST_tutorial.pdf
 TRUST/TrioCFD/Meshing exercises
 - Models_Equations_TRUST.pdf
 "Methodology for incompressible single phase flow"
 - Best_Practice_TRUST.pdf "Validation of Trio_U code"
 - User_Manual_TRUST.pdf
 "User Manual TRUST/TrioCFD"
 - HowTo_Validation.pdf "Organisation of TrioCFD validation data base"
 - Manuel_Xprepro.pdf "User Manual Xprepro"
 - **Developer_TRUST_presentation.pdf** TRUST development Presentation

Table of contents

- TRUST/TrioCFD historic
- Modeling flow with TRUST/TrioCFD
- Examples of performed calculations
- Models, schemes, numerical methods
- Data files & calculation
- Command lines
- Parallel calculation
- Automating validation test case
- Mesh generators: Salomé/Gmsh
- TRUST/TrioCFD support
- Recommendations
- Examples of data files

Recommendations (1/6)

• For VEF meshing	p127
• For conditions	p130
• For schemes	p132
• For turbulence	p139
• For post processing	p145
• What if?	p147

129

Recommendations for VEF meshing (1/2)

- Mesh refinement
 - Minimum of 10 points between two walls
 - To avoid very small time steps, do not create small cells in high velocity regions
- Boundary layers
 - Quality of the mesh near boundary layer will be improved if 2 or 3 layers of regular cells is used near the wall
- Tetra general mesh recommendations
 - Avoid significant changes in the mesh size of two adjacent tetras.
 A propagation factor of 20% seems to be the upper limit (5% recommended)

Recommendations for VEF meshing (2/2)

- Tetra general mesh recommendations:
 - •Avoid the use of a great amount of obtuse cells (angles between faces greater than 90°). In the contrary, non physical phenomena are observed to the diffusion operator.
 - Use any optimization tools of mesh generators to reduce too large angles
 - Check in the .err file of TRUST, the angles histogram of the mesh
 - Visualize the field (mesh quality) named LargestAngle_elem
 - •Use isotropic cells in all directions as mush as possible for a 3D flow. In the case of a flow in a given direction (1D flow), the stretching of a mesh up to a hundred times in the preferred direction nevertheless doesn't much degrade the results
 - •Look the Meshing paragraph of the Best Practice Guide for more advices

Recommendations (2/6)

- For VEF meshing
- For conditions
- For schemes
- For turbulence
- For post processing
- What if?

Recommendations for conditions (1/1)

Boundary conditions

- Wall conditions for RANS model (no rule for the LES model):
 - The first discretization point should be in the logarithmic layer (30<y+<500). y+ field may be post-processed to check this condition.
- Look for paragraph "Boundary conditions" in Best Practice Guide

Initial conditions

 Look for paragraph "Initial conditions" of the Best Practice Guide to optimize the flow initialization in order to improve/reach faster the convergence

Recommendations (3/6)

- For VEF meshing
- For conditions
- For schemes
- For turbulence
- For post processing
- What if?

Recommendations for schemes (1/6)

Space scheme

- Convection schemes with VEF discretization
 - EF_stab
 - Use it for Navier Stokes and scalar equations (temperature, concentration)
 - Option α is a compromise between:
 - robustness (α near 1, the default value)
 - accuracy (smaller value for α)
 - α =0.2 gives the better results. When the mesh is stretched in one direction, this scheme may have some convergence issues.
 - α = 1 insures the stability and gives the same results for a lot of cases when the forced convection flow has a preferred direction.
 - Muscl
 - Use it for very perturbed or mixing flows
- Convection schemes with VDF discretization
 - Quick

Recommendations for schemes (2/6)

Explicit time scheme

Time step dt = facsec * dt(CFL condition: Courant-Fiedrichs-Lewy)

• Euler explicit scheme:

facsec<=1

Runge Kutta schemes (facsec limit may be increased):

facsec=2 if RK2

facsec=3 if RK3

facsec=4 if RK4

Recommendations for schemes (3/6)

Implicit time scheme

When to use it?

- To solve a steady state calculation (e.g. $k-\varepsilon$ simulation)
- To reduce the time of the transient state of a calculation before switching to an explicit time scheme

WARNING: An unsteady calculation solved with an implicit scheme may give non physical results!

How to use it?

- Define upper and lower limits of the dynamic time step algorithm
- Define a solver (GMRES, BiCGSTAB,...)
- Define the convergence criterias

Recommendations for schemes (4/6)

Implicit time scheme

• Dynamic time step algorithm:

```
Time step dt = facsec(t) * dt(CFL condition)
```

with:

```
facsec(0) = facsec (lower limit keyword)
```

 $facsec(t^{n+1}) = a * facsec(t^n)$

facsec(t) <= **facsec_max** (upper limit keyword)

The algorithm uses a=1.2 and reduces it if necessary

Recommendations for schemes (5/6)

- In a first approach, use **facsec=facsec_max** with:
 - facsec max=20-30 for:
 - hydraulic calculation only
 - thermal hydraulic with forced convection and no or low coupling between velocity and temperature
 - **facsec_max**=90-100 for:
 - thermal hydraulic with forced convection and a strong coupling between velocity and temperature
 - facsec max=300 for:
 - thermal hydraulic with natural convection
 - much higher value is possible for:
 - conduction calculation
- In a second approach (no convergence):
 - keep facsec_max and reduce facsec to 5 or 10

Recommendations for schemes (6/6)

- It is possible to specify a solver for each equation:
 - Momentum equations
 - GMRES solver generally works well
 - Scalar equations
 - BICGSTAB/ILU if GMRES converges slowly or not at all
 - Transport k-ε equations
 - **GMRES** solver and if no convergence (rare), solve these equations with an explicit scheme
- Convergence criteria's
 - Threshold convergence (keyword seuil) of the iterative solver (to have at least 3 iterations)
 - A maximal number of iterations may be specified with nb_it_max keyword (5 is a good value)
 - For coupled problems, another parameter:
 - keyword seuil_convergence_implicite should be set to 0.001(or less) for strongly coupled problems to guarantee the correct coupling of various equations as e.g. hydraulic and thermal phenomena

Recommendations (4/6)

- For VEF meshing
- For conditions
- For schemes
- For turbulence
- For post processing
- What if?

Recommendations for turbulence (1/5)

Which turbulence models?

Interested in averaged quantities

- k-ε standard model
 - -Low cost but lack of generality

Interested in fluctuating quantities

- LES model
 - Involves a refined 3D mesh
 - Recommended in the following cases

Recommendations for turbulence (2/5)

Which turbulence models?

LES model if:

- Strongly non stationary flow
 - Access to mechanical or thermal fluctuations
 - Mixing phenomena
 - Free and impinging jets
- Flow with important secondary structures
 - Tube bends
 - Rectangular channels at reduced Reynolds numbers
- Flow with detachment and/or reattachment
 - Backward facing steps
 - Obstacles
- Flow at slow regimes
 - Natural convection

Recommendations for turbulence (3/5)

RANS calculation

- Model adapted to high Reynolds number
- First discretization point of the mesh should be located in the logarithmic zone (y+~30)
- Taking care to the initial and boundary conditions for k and ϵ will avoid some issues and dramatically improve convergence
 - In a first approach (for example 10% turbulence rate), you can use (U, bulk velocity and L, a relevant dimension, example a pipe diameter):

```
k \sim 3/2*(turbulence\_rate*U)^2
\epsilon \sim k^{15}/L
```

- Use EF_stab scheme for the Navier Stokes equation
- Use upwind scheme for k-ε equation

Recommendations for turbulence (4/5)

LES calculation

- Time schemes:
 - High order explicit schemes like:
 - Runge Kutta order 3 (ut facsec 1.0 for LES)
 - Adams Bashforth order 2
- Convection schemes:
 - VEF:

-EF_stab with α =0.2 for Navier Stokes equation (do not use first order scheme for a LES, so if you need to set α =1.0 to insure convergence, then something is wrong with your mesh)

- VDF:
 - -Centre (order 4) and if unstable use facsec=0.2

Recommendations for turbulence (5/5)

LES calculation

- Use a periodic box to provide a turbulent velocity field (see page 54):
 - The length of the periodic box should be at least 8*Dh (Dh: hydraulic diameter)
 - Do not stretch the mesh in the axial direction of the box
- Models
 - First approach, use Wale model, then check the turbulent energy spectra
 - If Wale is unable to dissipate sufficiently the high frequencies, use the Smagorinsky model (see "Post processing" paragraph of the Best Practice Guide)

Recommendations (5/6)

- For VEF meshing
- For conditions
- For schemes
- For turbulence
- For post processing
- What if?

Recommendations for post processing (1/1)

- Fields can be visualized at:
 - element, vertex, or face
- Prefer visualization without linear interpolation
- The fields visualized without linear interpolation are :
 - At elements (keyword elem)
 - pressure, turbulent viscosity, y+, physical properties and for VDF only, temperature, concentration, k, ϵ
 - At vertexes (keyword som)
 - pressure
 - At faces (keyword faces)
 - velocity and for VEF only, temperature, concentration, k, ϵ
- Prefer the LATA format which can be converted to any other TRUST format

Recommendations (6/6)

- For VEF meshing
- For conditions
- For schemes
- For turbulence
- For post processing
- What if?

Recommendations: What if? (1/1)

The calculation does not converge...

- Symptoms:
 - Time-step decreases to the dt_min lower limit
 - wall law does not converge (error message)
 - implicit diffusion algorithm does not converge (warning message)
 - ...
- Try:
 - Reduce the time-step (use **facsec** value 0.5 or 0.2) if using an **explicit** scheme
 - Reduce the upper limit of the time-step (reduce facsec_max) if using an implicit scheme
 - If using the **EF_stab** scheme, try to increase α value incrementally (0.2 to 0.3 or 0.5 or 1.0) to recover stability or reduce the **facsec** (if no change, switch to muscl scheme)
 - If using the **centre** scheme, reduce the **facsec** or change your scheme (**quick** scheme)
 - Contact Trio_U support

Table of contents

- TRUST/TrioCFD historic
- Modeling flow with TRUST/TrioCFD
- Examples of performed calculations
- Models, schemes, numerical methods
- Data files & calculation
- Command lines
- Parallel calculation
- Automating validation test case
- Mesh generators: Salomé/Gmsh
- TRUST/TrioCFD support
- Recommendations
- Examples of data files

Examples of data files (1/3)

•	Front Tracking calculation	p150
•	Quasi compressible example	p156
•	Genepi+ data file	p163

Front Tracking calculation (1/4)

```
# Front Tracking calculation #
dimension 3
# Generic problem used for Front Tracking calculation #
Probleme_FT_Disc_gen pb
Domaine DOM
# BEGIN MESH #
Mesh DOM
       Pave pave1
                          origine 0. 0. 0.
                         longueurs 0.04 0.04 0.06
                         nombre_de_noeuds 11 11 16
                         bord paroi X = 0. 0. \leq Y \leq 0.04 0. \leq Z \leq 0.06
                         bord paroi X = 0.04 \ 0. \le Y \le 0.04 \ 0. \le Z \le 0.06
                         bord paroi Y = 0. 0. \langle = X \langle = 0.04 \ 0. \langle = Z \langle = 0.06 \ 
                         bord paroi Y = 0.04 \ 0. \le X \le 0.04 \ 0. \le Z \le 0.06
                         bord bas Z = 0. 0 <= X <= 0.04 0 <= Y <= 0.04
                         bord haut Z = 0.06 \, 0. \le X \le 0.04 \, 0. \le Y \le 0.04
       }
# END MESH #
# BEGIN PARTITION
Partition DOM
       Partitionneur tranche { tranches 2 1 1 }
       Larg joint 2
       Nom Zones DOM
End
END PARTITION #
# BEGIN READ
Scatter DOM.Zones dom
END SCATTER #
```

```
VDF dis
Schema_Euler_explicite sch
Read sch
                                          P=0
      tinit 0.
                                                               24 cm
     tmax 0.1
      dt min 1.e-7
      dt max 0.5e-2
                                                                12 cm
      dt_impr 10.
      dt_sauv 100
                             1 cm ±
      seuil statio -1
                             2 cm ]
                                                               10 cm
# First phase: liquid #
Fluide_Incompressible liquide
                                            10 cm
Read liquide
      mu Champ Uniforme 1 0.282e-3
      rho Champ Uniforme 1 1000.
# Second phase: gas #
Fluide Incompressible gaz
Read gaz
      mu Champ Uniforme 1 0.282e-3
      rho Champ_Uniforme 1 100.
```

153

La force de l'innovation

session

Front Tracking calculation (2/4)

```
# Definition of the two phase media #
Fluide Diphasique fluide
Read fluide
      # Give a number for each phase #
      fluide0 liquide
      fluide1 gaz
      # Surface tension #
      sigma champ_uniforme 1 0.05
# Add a constituent #
Constituant constituant
Read constituant
      diffusivite Champ_Uniforme 1 1e-6
# Gravity field #
Champ_Uniforme gravite
Read gravite 3 0. 0. -9.81
Associate fluide gravite
# Navier Stokes equation #
Navier Stokes FT Disc
                                hydraulique
# One equation for the two phase flow interface #
Transport Interfaces FT Disc
                                  interf
# One equation for a moving body #
Transport Interfaces FT Disc
                                  body
# One equation for the constituent #
Convection Diffusion Concentration concentration
Associate pb hydraulique
Associate pb interf
Associate pb body
Associate pb concentration
Associate pb DOM
Associate pb sch
```

```
Associate pb fluide
Associate pb constituant
Discretize pb dis
# Define the front tracking problem #
Read pb
    hydraulique
        # Turbulence model needed and zeroed for laminar flow #
        modele_turbulence sous_maille_wale {
            Cw 0 turbulence paroi negligeable
        # Iterative method to solve the pressure linear system with a non-constant matrix #
        solveur_pression GCP { precond ssor { omega 1.5 } seuil 1e-12 impr }
        convection { quick }
        diffusion {}
        conditions_initiales { vitesse champ_uniforme 3 0. 0. 0. }
        # Relation beetween Navier Stokes equation and interface equations #
        equation interfaces proprietes fluide interf # The velocity field moves the gas-liquid interface #
        equation interfaces vitesse imposee body # The body has an imposed velocity field, so moves the
        fluid #
        boundary_conditions
         haut Sortie libre rho variable champ front uniforme 1 0. # Outlet boundary condition for FT
        model#
          paroi paroi fixe
          bas Frontiere ouverte vitesse imposee champ front uniforme 3 0.0 0.0 0.001
```

Front Tracking calculation (3/4)

```
interf
   # Definition of the transport method of the interface: velocity from the
   Navier Stokes equation #
   methode transport vitesse interpolee hydraulique
   # Initial position of the water-gas interface and a drop of water #
   conditions_initiales {
       fonction z-0.03-((x-0.02)^2+(y-0.02)^2)*10,
       fonction ajout_phase0 (x-0.02)^2+(y-0.02)^2+(z-0.045)^2-(0.01)^2
   # Options for the meshing algorithm #
   iterations correction volume 1
   n_iterations_distance 2
   remaillage {
                     pas 0.000001 nb_iter_remaillage 1
                     critere_arete 0.35 critere_remaillage 0.2
                     pas_lissage 0.000001 lissage_courbure_iterations 3
                     lissage courbure coeff -0.1 nb iter barycentrage 3
                     relax_barycentrage 1 facteur_longueur_ideale 0.85
                     nb_iter_correction_volume 3
                     seuil dvolume residuel 1e-12
   # Algorithm for the collision algorithm between interfaces #
   collisions
      active juric_pour_tout
      type_remaillage Juric { source_isovaleur indicatrice }
   # Boundary condition, variable contact angle is possible #
   boundary conditions
                     paroi Paroi_FT_disc symetrie
                     haut Paroi FT disc symetrie
                     bas Paroi FT disc symetrie
```

```
body
       # Initial position of the moving body #
       conditions initiales { fonction -(((x-0.02))^2+((y-0.02)/0.6)^2+((z-
       0.02)/0.6)^2-(0.015^2)) }
       remaillage { pas 1e8 }
       boundary conditions
                        haut Paroi_FT_disc symetrie
                        paroi Paroi_FT_disc symetrie
                        bas Paroi_FT_disc symetrie
       # 2 methods to move the body: velocity(x,y,z)=f(x,y,z) or
       x(t),y(t),z(t)=f(t),g(t),h(t) #
       methode_transport vitesse_imposee
         -(y-0.02)*10 (x-0.02)*10 0.
 # Constituent equation #
 concentration
       diffusion { negligeable }
       convection { quick }
       conditions initiales { concentration champ fonc xyz DOM 1 EXP(-((x-
       0.02)^2+(y-0.02)^2+(z-0.03)^2)/0.03^2)
       boundary conditions {
        haut frontiere_ouverte C_ext Champ_Front_Uniforme 1 0.
        paroi paroi # Concentration flux = 0 #
        bas paroi
```

Front Tracking calculation (4/4)

```
Postraitement
       Sondes {
                       vitesse vitesse periode 1.e-7 point 1 0.02 0.02 0.03
                        pression pression periode 1.e-7 point 1 0.02 0.02 0.03
                       indicatrice interf indicatrice_interf periode 1.e-7 point 1 0.02 0.02 0.03
      Champs dt_post 0.05
                       indicatrice_interf
                        concentration
liste_postraitements
       # Another keywords to post process FT results #
       Postraitement ft lata liquid gas
                        dt_post 0.05 nom_fichier liquid gas
                       format binaire print
                        champs sommets { vitesse }
                        champs elements
                                         distance_interface_elem_interf
                                         distance_interface_elem_body
                                         indicatrice interf
                                         pression
                                         concentration
                                         vitesse
                        # Post process the moving grid of the interface #
                       interfaces interf {
                            champs sommets { courbure vitesse }
```

```
Postraitement_ft_lata body
                   dt_post 0.05
                   nom_fichier body
                   format binaire
                   print
                   interfaces body {
                     champs sommets { courbure }
Solve pb
End
```


Practice

Exercise: Tank Filling 3D

Examples of data files (2/3)

- Front Tracking calculation
- Quasi compressible example
- Genepi+ data file

Quasi compressible example (1/5)

```
dimension 2
Domaine dom fluid
Mesh dom_fluid {
Pave Entree1
      Origine 0. 0.
      Nombre_de_Noeuds 4 3
      Longueurs 0.6 0.4
      Bord inlet1 Y = 0. 0 <= X <= 0.6
      Bord wall X = 0. 0 <= Y <= 0.4
      Bord wall X = 0.6 0. <= Y <= 0.4
Pave Sortie1
      Origine 0. 5.4
      Nombre de Noeuds 43
      Longueurs 0.6 0.4
      Bord outlet1 Y = 5.8 0. <= X <= 0.6
      Bord wall X = 0. 5.4 \le Y \le 5.6
      Bord wall X = 0.6 5.4 <= Y <= 5.8
      Bord P imp X = 0. 5.6 \le Y \le 5.8
Pave Entree2
      Origine 1. 0.
      Nombre de Noeuds 43
      Longueurs 0.6 0.4
```

```
Bord inlet2 Y = 0.
                         1. <= X <= 1.6
      Bord wall X = 1.
                          0. \le Y \le 0.4
      Bord wall X = 1.6 0. <= Y <= 0.4
Pave Sortie2
      Origine 1, 5,4
      Nombre de Noeuds 43
      Longueurs 0.6 0.4
      Bord outlet2 Y = 5.8 1. <= X <= 1.6
      Bord wall X = 1.
                          5.4 <= Y <= 5.8
      Bord wall X = 1.6 5.4 <= Y <= 5.6
      Bord P imp X = 1.6 5.6 <= Y <= 5.8
Pave Enceinte
      Origine 0. 0.4
      Nombre de Noeuds 9 26
      Longueurs 1.6 5.
      Bord wall Y = 0.4  0.6 \le X \le 1.
      Bord wall Y = 5.4  0.6 <= X <= 1.
      Bord wall X = 0.
                             0.4 \le Y \le 5.4
      Bord wall X = 1.6
                              0.4 \le Y \le 5.4
Trianguler_fin dom fluid # Triangulate the mesh #
```

TRUST coupled with Cathare via ICoCo

Quasi compressible example (2/5)

```
Schema Euler implicite sch
Read sch
       tinit 0.
       tmax 10.
       dt min 1.e-6
       dt max 0.01
       dt impr 0.01
       dt sauv 1000.0
       seuil statio 1.e-6
      # Options related to implicit scheme #
       facsec 20
       facsec max 500
       Solveur Piso
         # Convergence threshold for the iterative method
        # (by default GMRES) to solve the unsymmetric #
        # linear system #
         seuil_convergence_solveur 1.e-6
# Definition of the a thermalhydraulic problem #
# using the Quasi-compressible model #
Pb_thermohydraulique_QC pb1
# VEF discretization selected #
VEFPreP1B dis
# Gravity defined as a uniform field #
Champ Uniforme gravite
Read gravite 2 0 -9.81
```

```
# Define the media, helium gas #
Fluide Quasi Compressible helium
Read helium
       # Pressure in Pa #
       pression 7000000.
       # Sutherland law for viscosity and conductivity #
       Sutherland mu0 1.6E-5 T0 273.15 Slambda 235. C 235.
       # Ideal gas law #
       loi_etat gaz_parfait {
          Prandtl 1.
         # Specific heat at constant pressure #
          Cp 5193.
         # Cv, specific heat at constant volume given by gamma=Cp/Cv #
          gamma 1.666
       # Keyword for open flow (Neuman condition ), total pressure is constant #
       traitement_pth constant
# Create link between objects #
Associate helium gravite
Associate pb1 dom fluid
Associate pb1 sch
Associate pb1 helium
Discretize pb1 dis
```


Quasi compressible example (3/5)

```
# Definition of four surface domains #
# each extracted from a boundary of the problem #
domaine entree1
extraire_surface
      domaine entree1
      probleme pb1
      avec certains bords 1 inlet1
domaine entree2
extraire_surface
      domaine entree2
      probleme pb1
      avec certains bords 1 inlet2
domaine sortie1
extraire_surface
      domaine sortie1
      probleme pb1
      avec_certains_bords 1 outlet1
domaine sortie2
extraire surface
      domaine sortie2
      probleme pb1
      avec certains bords 1 outlet2
```

```
Read pb1
      Navier Stokes QC
                       solveur pression petsc cholesky { } # Direct solver, pressure matrix is constant #
                       convection { muscl }
                       diffusion { }
                      conditions_initiales { vitesse Champ_Uniforme 2 47. 0. }
                       boundary_conditions {
                                       # Dirichlet boundary condition mass flow rate #
                                       # Ch front input: ICOCO coupling field #
                                       inlet1 frontiere ouverte rho u impose ch front input {
                                         nb_comp 2 nom rho u entree1 probleme pb1
                                       inlet2 frontiere ouverte rho u impose ch front input {
                                         nb_comp 2 nom rho u entree2 probleme pb1
                                       outlet1 frontiere ouverte rho u impose ch front input {
                                         nb_comp 2 nom rho u sortie1 probleme pb1
                                       outlet2 frontiere_ouverte_rho_u_impose ch_front_input {
                                         nb_comp 2 nom rho u sortie2 probleme pb1
                                       P imp Frontiere ouverte pression imposee
                                                       Champ front Uniforme 1 70.e5
                                       wall paroi fixe
                      # Definition of a source term (pressure loss) #
                       sources {
                        Perte Charge isotrope {
                          diam_hydr champ_fonc_txyz dom fluid 1 1.4-1.3908*(y]1.4)*(y[4.4)
                          lambda 4*((16/Re)$(0.079/(Re^0.25))$0.003)
```


Quasi compressible exemple (4/5)

```
Convection Diffusion chaleur OC
             diffusion { }
             convection { muscl }
             conditions initiales { Temperature Champ Uniforme 1 673. }
             boundary conditions {
             # Boundary conditions for temperature #
             # ch_front_input coupling keyword #
             inlet1 frontiere_ouverte t_ext ch_front_input {
               nb comp 1 nom temperature entree1 probleme pb1
             inlet2 frontiere_ouverte t_ext ch_front_input {
               nb_comp 1 nom temperature_entree2 probleme pb1
             outlet1 frontiere_ouverte t_ext ch_front_input {
               nb_comp 1 nom temperature sortie1 probleme pb1
             outlet2 frontiere_ouverte t_ext ch_front_input {
               nb_comp 1 nom temperature sortie2 probleme pb
             # Outlet boundary condition for temperature #
             P imp Frontiere ouverte T ext champ front uniforme 1 700.
             # Zero heat flux #
             wall paroi_adiabatique
             # Heat source term #
             sources
                Puissance thermique champ fonc xyz dom fluid 1
2400e6*2/3./10./(3*3.1416*0.7*0.7)*0.6/1.8*1.53*(v]1.4)*(v<4.4)
```

```
Postraitement
            # As usual, just notice the masse_volumique keyword
            for the volume mass field #
            Sondes
            sonde pression1 pression periode 0.05 segment 31
0.1 0 0.1 5.8
            sonde pression2 pression periode 0.05 segment 31
1.5 0 0.1 5.8
            sonde vitesse1 vitesse periode 0.05 segment 31 0.1
0 0.15.8
            sonde vitesse2 vitesse periode 0.05 segment 31 1.5
0 0.1 5.8
            sonde temperature1 temperature periode 0.05 segment
31 0.1 0 0.1 5.8
            sonde temperature2 temperature periode 0.05 segment
31 1.5 0 0.1 5.8
            sonde rho1 masse_volumique periode 0.05 segment
31 0.1 0 0.1 5.8
            sonde rho2 masse volumique periode 0.05 segment
31 1.5 0 0.1 5.8
            format lata
            Champs dt_post 0.05
                               pression elem
                               pression som
                               vitesse elem
                               temperature elem
                               temperature faces
                               masse volumique elem
```


Quasi compressible example (5/5)

```
Postraitements
                    # List of postprocessing blocks #
entree1 {
       # Restrict postprocessing on surface meshes previouslyy defined #
       domaine entree1
       # Keyword to create new postprocessing fields #
       Definition_champs
                    # Define a pressure surface field by Interpolating pressure #
                    # volume field on the elements of the surface mesh #
                    pressure entree1 champ_post_interpolation
                                        localisation elem
                                        domaine entree1
                                        source champ_post_refchamp {
                                           pb_champ pb1 pression
                    # Define a temperature surface field #
                    temperature_entree1 champ_post_interpolation
                                        localisation elem
                                        domaine entree1
                                        source champ_post_refchamp {
                                           pb_champ pb1 temperature
# Same tasks for each surface meshes #
entree2 { ... }
sortie1 { ... }
sortie2 { ... }
Solve pb1
                    # Solve the problem #
End
```

Practice

Exercise: Low Mach number flow

Examples of data files (3/3)

- Front Tracking calculation
- Quasi compressible example
- Genepi+ data file

Genepi+ data file (1/4)

```
dimension 3
ecriturelecturespecial 1 # Keyword to not save .xyz file #
# Create domains #
domaine dom
domaine MAILLAGE GENEPI
# Read a MED file (may be composed of several meshes, a
given mesh name is necessary) #
lire_med dom MAILLAGE GENEPI tface.med
lire_med MAILLAGE GENEPI MAILLAGE GENEPI maigro.med
# The keyword is used to rename boundary #
regroupebord dom Wall { WALL 01 }
regroupebord dom Entree branche chaude { INLET 03 }
regroupebord dom Entree branche froide { INLET 02 }
regroupebord dom Sortie { OUTLET 04 }
ef dis # Define the specific discretization for Genepi+ #
schema_euler_implicite sch2 # Define an implicit scheme #
Lire sch2 {
  tinit 0.0 tmax 55.0
  dt min 0.02439 dt max 0.02439
  dt_start dt_fixe 0.02439 # To insure the first time step is imposed #
  facsec 50000
  nb pas dt max 40000
  dt_sauv 1.0 dt_impr 0.5
  seuil statio 1e-05
  solveur implicite {
      solveur gmres # Iterative solver for the implicit linear system #
       impr seuil 1e-08 # Threshold convergence for the solver #
       diag # Diagonal pre-conditioning #
```

```
# Define the gravity field #
                                                    Old data file
champ_uniforme gravite
Lire gravite 3 0.0 0.0 -9.80665
# Specific Genepi+ keywords: #
fluide_melange freon
Lire freon {
  type_fluide fr 114 9 12b
  init_file dump.all
pb melange pb
# Link objects #
Associer freon gravite
Associer pb dom
Associer pb sch2
Associer pb freon
discretiser pb dis
# Keyword to write the domain in a LATA file to visualization purpose #
postraiter domaine { format lata fichier geom domaine dom }
# Keyword to define a volume porosity field and a surface porosity field #
# Here the fields are read from a MED file #
porosites champ pb champ fonc med last time betan betae.med MAILLAGE GENEPI
        POROSITE 2 elem 0.0
```

Genepi+ data file (2/4)

```
Lire pb {
   # Genepi+ keywords #
   navier_stokes_melange {
    # Usual keywords for Navier Stokes #
    solveur_pression gcp
       precond ssor { omega 1.5 } seuil 1e-08
    convection { generic amont }
    diffusion { option { grad_u_transpose_partout 1 } }
    conditions_initiales { vitesse champ_fonc_xyz dom 3 0 0 0 }
    conditions limites
      Wall symetrie
       Sortie frontiere ouverte pression imposee champ front uniforme 1 880000.0
       # Boundary condition can also be read in MED files, here velocity profiles: #
       Entree branche chaude frontiere ouverte vitesse imposee champ front med test champ fonc med last time maigro.med MAILLAGE GENEPI VITESSE 3 som
       Entree branche froide frontiere ouverte vitesse imposee champ front med test champ fonc med last time maigro.med MAILLAGE GENEPI VITESSE 3 som 0.0
     modelisation {
       diffusion_turbulente 1
       prandtl 0.5
       faisceau
         champ_rotation champ_fonc_med last_time
                                                      rotation faisceau.med
                                                                                       MAILLAGE GENEPI champ vectoriel 1 elem 0.0
                                                                                       MAILLAGE GENEPI champ scalaire 2 elem 0.0
         champ_presence champ_fonc_med last_time rotation_faisceau.med
         transpose rotation
       plagues_in_file plagues.data # Definition in an external data file #
       init_file dump.all
    pression_initiale champ_uniforme 1 880000
    # List of source terms : separated by comma #
    sources { source_derive , source_frottement , source_pesanteur }
```

Genepi+ data file (3/4)

```
enthalpie melange # Energy equation definition #
    convection { generic amont }
    diffusion { option { grad_u_transpose_partout 1 } }
    conditions_initiales { enthalpie champ_uniforme 1 140000.0 }
    conditions_limites {
      Wall symetrie
      Sortie frontiere ouverte T ext champ front fonc txyz 1 1.193e5
      # An example of space dependant boundary condition, hear an Heaviside function for enthalpy: #
      Entree branche chaude frontiere_ouverte_enthalpie_imposee champ_front_fonc_txyz 1 1.193e5-400*(x gt 0.31)*(x lt 0.32)
      Entree branche froide frontiere_ouverte_enthalpie_imposee champ_front_fonc_txyz 1 1.185e5+400*(x gt 0.31)*(x lt 0.32)
   # Source terms and an example of a source term read in a file #
    sources { source derive, source scalaire champ fonc med last time sourceHgros.med MAILLAGE GENEPI scalar 1 elem 0.0 }
   # It is possible to change the default parameters of the implicit scheme in case of slow convergence of one equation #
    parametre_equation parametre_implicite {
      solveur gmres { impr seuil 0.0001 diag controle_residu 1 } # controle_residu is a parameter to check the residual do not increase suddenly #
  postraitement
   # Probes to monitor some fields, here on the cell 0 of the master process #
    sondes {
      sonde hsat enthalpie_saturation_liquide periode 1e-06 numero_elem_sur_maitre 0
      sonde L chaleur latente melange periode 1e-06 numero elem sur maitre 0
    format lata champs binaire dt post 1e-0 # binaire is useless cause it is now the default for LATA output format #
      pression elem
      vitesse som
      enthalpie som
      taux de vide melange elem
Resoudre pb
```

Genepi+ data file (4/4)

```
# File plaques.data #
                      description OBSTACLE1
                                                                     frt-singulier.med MAILLAGE GENEPI
                      champ_aire champ_fonc_med last_time
                                                                                                                      AIRE OBSTACLE 1 elem 0.
                     transpose_rotation champ_rotation champ_uniforme 9
                      -1. 0. 0.
                      0. 1. 0.
                      0. 0. -1.
      }
                      description OBSTACLE2
                     champ_aire champ_fonc_med last_time frt-singulier.med
                                                                                    MAILLAGE_GENEPI
                                                                                                                      AIRE_OBSTACLE_2 elem 0.
                     transpose_rotation champ_rotation champ_uniforme 9
                     1. -0. 0.
                     0. 1. -0.
                      0. 0. 1.
                     description OBSTACLE3
                     champ_aire champ_fonc_med last_time frt-singulier.med
                                                                                    MAILLAGE GENEPI AIRE OBSTACLE 3 elem 0.
                     transpose_rotation champ_rotation champ_uniforme 9
                      0. -1. 0.
                     1. 0. -0.
                      0. 0. 1.
```

