Introducción

En clases pasadas se iniciamos el uso de los numerosos puertos o pines que posee el microcontrolador, estos pueden ser utilizados como entradas o salidas, dependiendo de la configuración o inicialización, para ello se debe utilizar el comando **pinMode(NUMERO, MODO)**, los argumentos necesarios son **NUMERO** que representa el número del pin a utilizar, el segundo argumento el **MODO** que comúnmente se suelen utilizar **OUTPUT** para salida e **INPUT** para entrada.

Actividad

Como en actividades pasadas se pueden controlar los puertos o pines para encender y apagar led y también leer el estado de estos con muy poco código.

La siguiente actividad consiste en utilizar los puertos como entradas y salidas para encender o apagar leds según el estado de las entradas, en este caso una digital y otra analógica. Se debe realizar una versión con aportes propios en base el siguiente ejemplo, siempre respetando los elementos incluidos, está permitido agregar nuevos elementos de ser necesario.

Diagrama

En la siguiente captura permite visualizar el conexionado de los elementos para el ejemplo.

Código

En el siguiente texto permite visualizar el código para el ejemplo.

```
// Codigo Ejemplo
int Led Pin = 3;
int Pot_Pin = A0;
int Int_Pin = 2;
int sensorValue = 0;
int outputValue = 0;
int inputValue = 0;
void setup()
  pinMode(Led_Pin, OUTPUT);
  pinMode(Int_Pin, INPUT);
  Test_Led();
void loop()
  inputValue = digitalRead(Int_Pin);
  if (inputValue == HIGH)
    for (int fadeValue = 0 ; fadeValue <= 255; fadeValue += 5) {</pre>
      analogWrite(Led_Pin, fadeValue);
      delay(30);
    }
    for (int fadeValue = 255 ; fadeValue >= 0; fadeValue -= 5) {
      analogWrite(Led_Pin, fadeValue);
      delay(30);
    }
  }
  else
    sensorValue = analogRead(Pot_Pin);
    outputValue = map(sensorValue, 0, 1023, 0, 255);
    analogWrite(Led_Pin, outputValue);
  }
}
```

```
void Test_Led()
{
    digitalWrite(Led_Pin, HIGH);
    delay(1000);
    digitalWrite(Led_Pin, LOW);
    delay(1000);
    digitalWrite(Led_Pin, HIGH);
    delay(1000);
    digitalWrite(Led_Pin, LOW);
    delay(1000);
    digitalWrite(Led_Pin, HIGH);
    delay(1000);
    digitalWrite(Led_Pin, LOW);
}
```