This listing of claims will replace all prior versions, and listings, of claims in the application:

<u>Listing of Claims</u>:

1. (Currently Amended) A dye represented by the following
formula (1):

formula (1)

$$(R_{14})_{n13}$$
 $(R_{13})_{n12}$

wherein Z is an atomic group necessary to form a 6-membered nitrogen containing aromatic ring; R_{11} is a hydrogen bonding group selected from the group consisting of -OH, -NHCOR₄ -NHCOOR₄, -NHCONHR₄, -NHSO₂R₄ and -NHSO₂NHR₄, in which R₄ is a substituent; R_{12} , R_{13} and R_{14} are independently a hydrogen atom or a substituent; n11 and n13 are each an integer of 1 to 4; n12 is an integer of 1 to 3.

2. (Original) The dye of claim 1, wherein the dye
represented by formula (1) is a dye represented by the following
formula (2), (3), (4), (5), (6) or (7):

formula (2)
$$(R_{22})_{n21} \xrightarrow{||} R_{21}$$

$$(R_{24})_{n23} \xrightarrow{||} (R_{23})_{n22}$$

formula
$$(4)$$
 R_{41} R_{42} R_{43} R_{45} R_{43} R_{45} R_{45

formula (6)
$$R_{61}$$
 $(R_{62})_{n61}$ $(R_{65})_{n63}$ $(R_{64})_{n62}$

formula (7)
$$R_{71}$$
 R_{72} R_{72} R_{72} R_{72} R_{72} R_{73} R_{73} R_{73} R_{73} R_{73} R_{73} R_{73} R_{73} R_{73}

formula (5)
$$(R_{52})_{n51}$$
 $(R_{55})_{n53}$ $(R_{54})_{n52}$

wherein R_{21} , R_{31} , R_{41} , R_{51} , R_{61} and R_{71} are each a hydrogen bonding atom; R_{22} , R_{23} , R_{24} , R_{32} , R_{33} , R_{34} , R_{35} , R_{42} , R_{43} , R_{44} , R_{45} , R_{52} , R_{53} , R_{54} , R_{55} , R_{62} , R_{63} , R_{64} , R_{65} , R_{72} , R_{73} , and R_{74} are independently a hydrogen atom or a substituent; n21, n23, n31, n33, n41, n43, n51, n53, n61, n63, n71 and n73 are each an integer of 1 to 4; n22, n32, n42, n52, n62 and n72 are each an integer of 1 to 3.

- 3. (Original) The dye of claim 2, wherein the dye represented by formula (1) is a dye represented by formula (2) or (3).
- 4. (Original) The dye of claim 3, wherein the dye represented by formula (2) is a dye represented by the following formulas (8) or (9), and the dye represented by formula (3) is a dye represented by the following formulas (10) or (11):

formula (8)
$$(R_{22})_{n21}$$
 R_{21} R_{21} R_{23} R_{25}

formula (10)
$$(R_{32})_{n31}$$
 R_{31} R_{33} R_{31} $R_{34})_{n35}$ R_{36}

formula (9)
$$(R_{22})_{n21} \stackrel{\text{II}}{=} R_{21}$$

$$(R_{24})_{n23} \stackrel{\text{(R}_{23})_{n25}}{=} R_{26}$$

$$0 \quad HN \qquad \qquad (R_{28})_{n24}$$

formula (11)
$$(R_{32})_{n31}$$
 R_{31}
 R_{33}
 R_{33}
 R_{31}
 $R_{34})_{n35}$
 R_{37}
 R_{37}
 $R_{39})_{n34}$

wherein R_{21} and R_{31} are independently a hydrogen bonding group; R_{22} , R_{23} , R_{24} , R_{28} , R_{32} , R_{33} , R_{34} , R_{35} and R_{39} are independently a hydrogen atom or a substituent; R_{26} , R_{27} , R_{37} and R_{38} are independently a substituent; n21, n23, n31, and n33 are each an integer of 1 to 4; n24 and n34 are each an integer of 1 to 3; n25 and n35 are each an integer of 1 or 2; n25 and n25 are independently a group having a Hammett substituent constant (n25) of 0.3 to 1.0.

5. (Original) The dye of claim 3, wherein the dye represented by formula (2) is a dye represented by the following formula (12), and the dye represented by formula (3) is a dye represented by the following formula (13):

wherein R_{21} and R_{31} are independently a hydrogen bonding group; R_{22} , R_{23} , R_{24} , R_{28} , R_{32} , R_{33} , R_{34} , R_{35} and R_{39} are independently a hydrogen atom or a substituent; n21, n23, n24, n31, n33, and n34 are each an integer of 1 to 4; n25 and n35 is an integer of 1 or 2.

6. (Currently Amended) An ink for ink jet printing comprising a dye represented by the following formula (1) and a solvent:

formula (1)

$$(R_{14})_{n13}$$
 $(R_{12})_{n11}$
 $(R_{13})_{n12}$

wherein Z is an atomic group necessary to form a 6-membered nitrogen containing aromatic ring; R_{11} is a hydrogen bonding group selected from the group consisting of -OH, -NHCOR₄ -NHCOOR₄, -NHCONHR₄, -NHSO₂R₄ and -NHSO₂NHR₄, in which R₄ is a substituent; R_{12} , R_{13} and R_{14} are independently a hydrogen atom or a substituent; n11 and n13 are each an integer of 1 to 4; n12 is an integer of 1 to 3.

7. (Original) The ink of claim 6, wherein the dye represented by formula (1) is a dye represented by the following formula (2), (3), (4), (5), (6) or (7):

formula (2)
$$(R_{22})_{n21} \xrightarrow{\text{II}} R_{21}$$

$$(R_{24})_{n23} \xrightarrow{\text{(R}_{23})_{n22}}$$

formula
$$(4)$$
 R_{41} R_{43} R_{45} R_{45} R_{43} R_{45} R_{45

formula (6)
$$R_{61}$$
 R_{62} R_{62} R_{62} R_{63} R_{63} R_{63} R_{64} R_{64} R_{64} R_{64}

formula (7)
$$R_{71}$$
 $(R_{72})_{n71}$ $(R_{73})_{n72}$

formula (5)
$$R_{51} \qquad (R_{52})_{n51}$$

$$(R_{55})_{n53} \qquad (R_{54})_{n52}$$

wherein R_{21} , R_{31} , R_{41} , R_{51} , R_{61} and R_{71} are each a hydrogen bonding atom; R_{22} , R_{23} , R_{24} , R_{32} , R_{33} , R_{34} , R_{35} , R_{42} , R_{43} , R_{44} , R_{45} , R_{52} , R_{53} , R_{54} , R_{55} , R_{62} , R_{63} , R_{64} , R_{65} , R_{72} , R_{73} , and R_{74} are independently a hydrogen atom or a substituent; n21, n23, n31, n33, n41, n43, n51, n53, n61, n63, n71 and n73 are each an integer of 1 to 4; n22, n32, n42, n52, n62 and n72 are each an integer of 1 to 3.

- 8. (Original) The ink of claim 7, wherein the dye represented by formula (1) is a dye represented by formula (2) or (3).
- 9. (Original) The ink of claim 8, wherein the dye represented by formula (2) is a dye represented by the following formulas (8) or (9), and the dye represented by formula (3) is a dye represented by the following formulas (10) or (11):

formula (8)
$$(R_{22})_{n21}$$
 R_{21} R_{21} R_{23} R_{25}

formula (10)
$$(R_{32})_{n31}$$
 R_{31}
 $(R_{35})_{n33}$
 $(R_{34})_{n35}$
 $(R_{36})_{n35}$

formula (9)
$$(R_{22})_{n21}$$
 R_{21} R_{21} $R_{24})_{n23}$ R_{26} R_{26} R_{27} R_{26} R_{27}

formula (11)
$$(R_{32})_{n31}$$
 R_{31} R_{33} R_{31} R_{33} R_{34} R_{35} R_{37} R_{37} R_{38} R_{38}

wherein R_{21} and R_{31} are independently a hydrogen bonding group; R_{22} , R_{23} , R_{24} , R_{28} , R_{32} , R_{33} , R_{34} , R_{35} and R_{39} are independently a hydrogen atom or a substituent; R_{26} , R_{27} , R_{37} and R_{38} are independently a substituent; n21, n23, n31, and n33 are each an integer of 1 to 4; n24 and n34 are each an integer of 1 to 3; n25 and n35 are each an integer of 1 or 2; n25 and n25 are independently a group having a Hammett substituent constant (n25) of 0.3 to 1.0.

10. (Original) The ink of claim 8, wherein the dye represented by formula (2) is a dye represented by the following formula (12), and the dye represented by formula (3) is a dye represented by the following formula (13):

wherein R_{21} and R_{31} are independently a hydrogen bonding group; R_{22} , R_{23} , R_{24} , R_{28} , R_{32} , R_{33} , R_{34} , R_{35} and R_{39} are independently a hydrogen atom or a substituent; n21, n23, n24, n31, n33, and n34 are each an integer of 1 to 4; n25 and n35 is an integer of 1 or 2.

- 11. (Original) The ink of claim 6, wherein in the compound represented by formula (1), the molecule contains at least one sulfonic acid group or at least one carboxyl group.
- 12. (Original) The ink of claim 6, wherein the ink comprises the dye in the form of fine particle dispersion.
- 13. (Original) The ink of claim 6, wherein the ink comprises the dye together with an oil-soluble polymer in the form of fine particle dispersion.