

Technische Grundlagen: Übungssatz 7

Aufgabe 7.1

Wellenwiderstand einer Leitung

- (a) Erläutern Sie den Unterschied zwischen ohmschen Widerstand und Wellenwiderstand einer elektrischen Leitung. Betrachten Sie dazu auch deren Ersatzschaltung aus mehreren Leitungsstücken.
- (b) Berechen Sie den Wellenwiderstand einer verlustlosen Koaxialleitung mit folgenden Parametern:

Durchmesser Innenleiter $d_i = 2.6 \, \mathrm{mm}$ Für die Koaxialleitung gilt: Durchmesser Außenleiter $d_a = 8.6 \, \mathrm{mm}$ (siehe VL Elektrisches Feld) Dielektrikum mit $\varepsilon_r = 2.05$ Relative Permeabilität $\mu_r = 1.0$ $C = \frac{2\pi\varepsilon_0\varepsilon_r \cdot s}{\ln\left(\frac{d_a}{d_i}\right)}$

Allgemein gilt: $c_0 \approx 3 \cdot 10^8 \, \mathrm{m/s}$, $\varepsilon_0 = 8,854 \cdot 10^{-12} \, \mathrm{As/Vm}$

Aufgabe 7.2

Ein Impuls $u_q(t)$ mit der Breite t_i und der Höhe U_i wird zum gleichen Startzeitpunkt t_0 über zwei Koaxialleitungen mit den Längen s_1 und s_2 übertragen, siehe Bild. Beide Leitungen sind verlustlos und weisen den gleichen Wellenwiderstand R_W und Phasengeschwindigkeit c auf. Am Ende der Leitungen werden die übertragenen Impulse über ein Gatter verknüpft. Das CMOS-Gatter hat die Betriebsspannung U_B und einen unendlich hohen Eingangswiderstand; die Verzögerungszeit kann vernachlässigt werden.

Dimensionierung:

$$R_W = 50\Omega$$
 $s_1 = 1,0m$ $U_B = 2,5V$ $U_i = 2U_B$ $c = 2 \cdot 10^8 \text{m/s}$ $s_2 = 1,1m$ $t_0 = 0$ $t_i = 1,0\text{ns}$

(a) Beschreiben Sie die Übertragung des Impulses auf Leitung 1 und geben Sie den Spannungsverlauf (nach der Zeit) am Anfang der Leitung, am Ende der Leitung und am Gattereingang jeweils in Abhängigkeit vom Verlauf des Quellensignals $u_{q1}(t)$ an.

- (b) Zu welchen Zeitpunkten treffen die Impulse jeweils am Gattereingang ein? (Zeitpunkt der führenden Flanke)
- (c) Wie hoch (Spannung) ist jeweils der Impuls am Ende der Leitung?
- (d) Zeichnen Sie den zeitlichen Verlauf der Spannungen $u_1(t)$ und $u_2(t)$ in das Diagramm ein. Verwenden Sie dabei eine gemeinsame Zeitachse und ergänzen Sie die Achsenbeschriftungen sowie die Marken t_1 und t_2 !

- (e) Wie breit (Zeit) ist der High-Impuls am Ausgang y?
- (f) Wie hoch (Spannung) ist der Impuls am Ende der Leitung 2 wenn dort der Abschlusswiderstand entfernt wird?

Aufgabe 7.3

Berechnen Sie die Lichtleistung P_a am Ausgang eines Lichtwellenleiters (LWL) bei folgender Konfiguration:

- ullet Lichtleistung der Laser-Diode am Eingang: $P_e=10\,\mathrm{mW}$
- ullet LWL: lpha= 0,1 dB/km (Leistungsdämpfung) bei $\lambda=$ 1300 nm, s= 100 km