import numpy as np

import pandas as pd

df=pd.read_csv("Churn_Modelling.csv")

df

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	
0	1	15634602	Hargrave	619	France	Female	42	2	
1	2	15647311	Hill	608	Spain	Female	41	1	
2	3	15619304	Onio	502	France	Female	42	8	
3	4	15701354	Boni	699	France	Female	39	1	
4	5	15737888	Mitchell	850	Spain	Female	43	2	
9995	9996	15606229	Obijiaku	771	France	Male	39	5	
9996	9997	15569892	Johnstone	516	France	Male	35	10	
9997	9998	15584532	Liu	709	France	Female	36	7	
9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	
9999	10000	15628319	Walker	792	France	Female	28	4	
10000 rows × 14 columns									

import matplotlib.pyplot as plt import seaborn as sns

%matplotlib inline

```
df[['RowNumber', 'CustomerId', 'Surname', 'CreditScore', 'Geography',
       'Gender', 'Age', 'Tenure']].describe()
```

		RowNumber	CustomerId	CreditScore	Age	Tenure			
	count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000			
	mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800			
sns.hi	<pre>sns.histplot(df.Geography,kde= True)</pre>								

<matplotlib.axes._subplots.AxesSubplot at 0x7f08d7826750>

plot count plot for the gender column sns.countplot(df.Gender)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: P FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f08d76ef610>


```
df[['RowNumber', 'CustomerId', 'Surname', 'CreditScore', 'Geography',
       'Gender', 'Age', 'Tenure']].corr()
```

	RowNumber	CustomerId	CreditScore	Age	Tenure
RowNumber	1.000000	0.004202	0.005840	0.000783	-0.006495
CustomerId	0.004202	1.000000	0.005308	0.009497	-0.014883

sns.scatterplot(df.CreditScore,df.Age) plt.ylim(0,150)

> /usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: P FutureWarning

sns.pairplot(data=df[['CustomerId', 'Surname', 'CreditScore', 'Geography','Gender', 'Age',

<seaborn.axisgrid.PairGrid at 0x7f08d7202250>

summary statistics df.describe()

		RowNumber	CustomerId	CreditScore	Age	Tenure	Ва
CC	ount	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.0
m	ean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.8
\$	std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.4
n	nin	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.0
2	5%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.0
5	0%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.5
7	5%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.2
n	nax	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.0
4							•

df.dtypes

RowNumber	int64
CustomerId	int64
Surname	object
CreditScore	int64
Geography	object
Gender	object
Age	int64
Tenure	int64
Balance	float64
NumOfProducts	int64
HasCrCard	int64
IsActiveMember	int64
EstimatedSalary	float64
Exited	int64

dtype: object

```
# mode
df['Age'].mode()
          37
     dtype: int64
# calculation of the mean
```

df["Age"].mean()

38.9218

```
# calculation of the mean and round the result
round(df["Age"].mean(), 3)
     38.922
# calculation of the median
df["Age"].median()
```

df.isna().any()

37.0

RowNumber False CustomerId False Surname False False CreditScore Geography False Gender False Age False Tenure False Balance False NumOfProducts False HasCrCard False IsActiveMember False False EstimatedSalary Exited False

dtype: bool

df.isnull().sum()

0 RowNumber CustomerId 0 Surname 0 CreditScore 0 Geography 0 0 Gender 0 Age 0 Tenure Balance 0 NumOfProducts 0 HasCrCard 0 IsActiveMember 0 0 EstimatedSalary Exited dtype: int64

df.isnull()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenur
0	False	False	False	False	False	False	False	Fals
1	False	False	False	False	False	False	False	Fals
2	False	False	False	False	False	False	False	Fals
3	False	False	False	False	False	False	False	Fals
4	False	False	False	False	False	False	False	Fals
9995	False	False	False	False	False	False	False	Fals
9996	False	False	False	False	False	False	False	Fals
9997	False	False	False	False	False	False	False	Fals
9998	False	False	False	False	False	False	False	Fals
9999	False	False	False	False	False	False	False	Fals

10000 rows × 14 columns

df.notnull()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure
0	True	True	True	True	True	True	True	True
1	True	True	True	True	True	True	True	True
2	True	True	True	True	True	True	True	True
3	True	True	True	True	True	True	True	True
4	True	True	True	True	True	True	True	True
9995	True	True	True	True	True	True	True	True
9996	True	True	True	True	True	True	True	True
9997	True	True	True	True	True	True	True	True
9998	True	True	True	True	True	True	True	True
9999	True	True	True	True	True	True	True	True
10000	rows × 14 colu	umns						
4								>

sns.boxplot(x=df['Age'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f08d6ffcd10>

sns.boxplot(x=df['Tenure'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f08d719f550>

a=df.columns

y=df['Exited']

```
b=df._get_numeric_data().columns
```

b

```
Index(['RowNumber', 'CustomerId', 'CreditScore', 'Age', 'Tenure', 'Balance',
       'NumOfProducts', 'HasCrCard', 'IsActiveMember', 'EstimatedSalary',
       'Exited'],
      dtype='object')
```

```
list(set(a) - set(b))
     ['Geography', 'Surname', 'Gender']
# x -Independent
# y -Dependent
x =df.drop('Exited',axis=1)
```

x.head()

```
RowNumber CustomerId
                           Surname CreditScore Geography Gender
                                                                           Tenure
                                                                       Age
                                                                                  2
0
           1
                15634602 Hargrave
                                             619
                                                      France Female
                                                                        42
1
           2
                15647311
                                             608
                                                       Spain Female
                                Hill
                                                                        41
                                                                                  1
                               Onio
2
           3
                15619304
                                             502
                                                      France Female
                                                                        42
                                                                                  8
                                                                                     1!
3
                                                                                  1
           4
                15701354
                               Boni
                                             699
                                                      France Female
                                                                        39
4
           5
                15737888
                            Mitchell
                                             850
                                                       Spain Female
                                                                        43
                                                                                  2
                                                                                     1:
```

```
y.head()
     0
          1
     1
          0
     2
          1
     3
          0
     4
          0
     Name: Exited, dtype: int64
from sklearn import linear_model
from sklearn.preprocessing import StandardScaler
scale = StandardScaler()
scale = StandardScaler()
x=df[['Age','Tenure']]
scaledx = scale.fit_transform(x)
print(scaledx)
     [[ 0.29351742 -1.04175968]
      [ 0.19816383 -1.38753759]
      [ 0.29351742   1.03290776]
      [-0.27860412 0.68712986]
      [ 0.29351742 -0.69598177]
      [-1.04143285 -0.35020386]]
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=0)
print('X Train shape:{},Y.Train SHape:{}'.format(x_train.shape,y_train.shape))
     X Train shape: (8000, 2), Y. Train SHape: (8000,)
print('X Test Shape :{},Y Test Shape:{}'.format(x_test.shape,y_test.shape))
```

X Test Shape :(2000, 2),Y Test SHape:(2000,)

Colab paid products - Cancel contracts here