## South Australia has some of the highest and most volatile prices



**Aim**: Model randomness in electricity prices - *spikes & drops*. **Why?** Risk management & financial valuation

## The model

R(t) evolves with probabilities  $p_{ij} = P(R(t) = j | R(t-1) = i)$ .



## Results.

$$X(t) = \begin{cases} B(t) = \mathbf{a} + \mathbf{b}B(t-1) + \sigma \epsilon(t) & \text{when } R(t) = 1, \\ S(t) + q_2 \sim LN(\mu_S, \sigma_S) + q_2 & \text{when, } R(t) = 2, \end{cases}$$
 
$$\rho_{ij} = P(R(t) = j | R(t-1) = i).$$

| Parameter              | Interpretation                                             | Posterior mean |
|------------------------|------------------------------------------------------------|----------------|
| <i>p</i> <sub>11</sub> | $p(Base \; at \; time \; t + 1   Base \; at \; time \; t)$ | 0.95           |
| <i>p</i> <sub>22</sub> | $p(Spike \ at \ time \ t + 1   Spike \ at \ time \ t)$     | 0.66           |
| а                      | -                                                          | -0.60          |
| Ь                      | $\mathit{corr}(X(t+1), X(t))$                              | 0.50           |
| $\sigma$               | var(X(t+1) X(t))                                           | 424            |
| $\mu_{\mathcal{S}}$    | -                                                          | 4.5            |
| $\sigma_{\mathcal{S}}$ | -                                                          | 1.2            |

- ▶ Mean spike size = \$314.90 (above the trend)
- ▶ Spike std. dev. = \$1,363.89

