ÉCOLE D'ACTUARIAT UNIVERSITÉ LAVAL

Travail pratique 1

Guillaume MICHEL Nathanaël PELCHAT Mikael ROBERTSON Olivier TURCOTTE

AUTOMNE 2018

1 Sommaire exécutif

Table des matières

1	Sommaire exécutif	2				
2	Analyse des données					
3	Modèle proposé					
	3.1 Équation	7				
	3.2 Traitement des variables qualitatives	7				
	3.3 Interactions	7				
	3.4 Interprétation	7				
	3.5 Statistiques	7				
4	Analyse des résidus	9				
	4.1 Linéarité	9				
	4.2 Homogénéité	10				
	4.3 Indépendance	10				
	4.4 Normalité	11				
	4.5 Test pour manque d'ajustement	11				
5	Prévisions	12				
6	Recommandations 1					
Aı	nexes	12				
A	Erreurs de données	12				
В	3 Transformation					
\mathbf{C}	Sélection des variables 1					

2 Analyse des données

Voici les variables disponibles afin d'effectuer un modèle prédictif de la perte économique :

Tableau 1 – Description des variables

Variables	Type	Description			
Casenum	Valeur entière	Numéro d'identification de la			
		réclamation			
ATTORNEY	Variable indicatrice	Indique si le réclamant est représenté			
		par un avocat			
CLMSEX	Indique le sexe du réclamant				
Marital	Variable polytomique	Indique le statut marital du réclamant			
CLMINSUR	Variable polytomique	Indique si le réclamant est assuré			
Seatbelt	Variable polytomique	Indique si le réclamant portait une cein-			
		ture de sécurité			
CLMAGE	Valeur entière	Âge du réclamant			
Loss	Valeur continue	Perte économique totale du réclamant			
		en milliers de dollars			

En effectuant l'analyse préliminaire univariée des différentes variables de la base de données, il est déjà possible d'avoir une bonne idée de leur pertinence et de leur pouvoir prédictif potentiel. La variable CASENUM n'est pas utilisée dans le modèle final puisqu'elle n'a pas d'incidence directe sur la variable du montant des pertes. La variable LOSS est la variable endogène continue, et la seule autre variable continue employée dans le modèle est la variable exogène CLMAGE.

Tableau 2 – Analyse des variables continues

	CLMAGE	LOSS
$\min(X)$	0.0	0.005
$F_X^{-1}(0.25)$	21	0.640
$F_X^{-1}(0.5)$	33	2.331
E[X]	32.6	5.965
$F_X^{-1}(0.75)$	41	3.998
$\max(X)$	95	1067.697

On s'intéresse donc à la capacité de la variable CLMAGE à prédire la valeur de la variable LOSS, tout en gardant en tête que cette variable endogène prend quelques valeurs extrêmes, dont la sévérité n'est pas nécessairement expliquée par les valeurs entières de la variable CLMAGE. L'analyse préléminaire univariée des variables continues projette donc la possibilité que le modèle ne puisse pas expliquer parfaitement la valeur du montant relié à une réclamation donnée.

Les autres variables exogènes de la base de données sont des variables qualitatives dichotomiques ou polytomiques. Une analyse de fréquences de celles-ci permet de voir leur représentation dans la base de données sur laquelle se basera le modèle prédictif :

(Je sais pas quoi dire pour interpréter les diagrammes à bandes ci-haut, ça serait bon de mettre 2-3 lignes de comments) Toutefois, c'est plutôt l'analyse des nuages de points de la variable endogène en fonction de chaque variable exogène qui permet d'avoir un meilleur ressenti quant à leurs interactions avec la variable endogène Loss :

 $\label{eq:figure 1} Figure \ 1 - Variable \ LOSS \ en \ fonction \ de \ chaque \ variable \ explicative$

(Commentaires du beau Guillaume Michel ici ; on aurait peut-être aussi pu rajouter le graphique avec la transformation, soit $\log({\rm Loss})$ en fonction de CL-MAGE)

3 Modèle proposé

3.1 Équation

Le modèle choisi est donné par l'équation suivante

```
\ln Y = \beta_0 + \beta_1 x_{i,CLMAGE} + \beta_2 x_{i,ATTORNEY} + \beta_{3,1} x_{i,MARITAL,2} + \beta_{3,2} x_{i,MARITAL,3} + \beta_{3,3} x_{i,MARITAL,4} + \beta_4 x_{i,SEATBELT} + \beta_5 x_{i,CLMAGE} * x_{i,ATTORNEY}
```

3.2 Traitement des variables qualitatives

Les variables qualitatives du modèle, soit ATTORNEY, SEATBELT et MARITAL, ont chacune été converties en factor car c'est le type de données qui est compatible avec R lorsqu'on veut utiliser ce logiciel pour effectuer des régressions linéaires comportant des variables qualitatives.

3.3 Interactions

Suite à la sélection des variables, il nous a été possible de déterminer qu'il n'y avait qu'une seule interaction non-redondante (qui ne cause pas de multico-linéarité) et significative au modèle. Il s'agit de l'interaction entre les variables CLMAGE et ATTORNEY qui représentent respectivement l'âge du réclamant ou de la réclamante et la présence d'un avocat pour la réclamation. Cette interaction est logique car, en effet, l'âge d'un réclamant peut influencer la décision de prendre un avocat.

3.4 Interprétation

3.5 Statistiques

Voici les intervalles de confiance à 95% pour chacun des paramètres du modèle :

Tableau 3 – Intervalles de confiance des paramètres du modèle

	2.5%	97.5%
β_0	0.28583388	1.262939359
β_1	0.01334127	0.026414523
β_2	-1.32630903	-0.708680308
$\beta_{3,1}$	-0.51501270	0.340256198
$\beta_{3,2}$	-0.72345837	0.148361570
$\beta_{3,3}$	-1.69700396	-0.155725880
β_4	0.46855029	1.528929789
β_5	-0.02025211	-0.003201663

De plus, voici le R_a^2 : 0.2754. Ainsi, une grande variabilité de la variable endogène n'est pas expliquée par le modèle. Ceci est en parti dû au grand nombre de variables qualitatives dans le modèle qui n'ont pas assez de valeurs possibles afin de réfléter l'étendue des valeurs possible de la perte économique. (structure de la phrase à revoir)

Voici la table anova du modèle :

Tableau 4 – Table anova du modèle

Source	Dl	SS	MS	${f F}$
SSR	7	809.4939	115.642	73.48
SSE	1328	2089.85386	1.573685	
SST	1335	2899.348	2.171796	

Selon la statistique F du tableau 4, on peut effectuer un test de validité globale de la régression linéaire. Ce faisant, nous obtenons une p-value inférieur à $2.2*10^{-16}$ et donc nous concluons que la régression est tout à fait valide.

4 Analyse des résidus

4.1 Linéarité

FIGURE 2 – Résidus studentisés en fonction de CLMAGE

4.2 Homogénéité

FIGURE 3 – Résidus studentisés en fonction de Y

4.3 Indépendance

```
##
## Durbin-Watson test
##
## data: modele
## DW = 1.9557, p-value = 0.2091
## alternative hypothesis: true autocorrelation is greater than 0
```

4.4 Normalité

Normal Q-Q Plot

FIGURE 4 – Quantile théorique versus quantile pratique

4.5 Test pour manque d'ajustement

Après avoir effectué un test pour manque d'ajustement, on obtient une p-value de $8.623*10^{-5}$, valeur inférieure au seuil de 5%. Ainsi, on doit rejeter H_0 , ce qui implique que le modèle actuel ne s'ajuste pas bien aux données (sens de la phrase à clarifier).

5 Prévisions

Pour répondre à la question du directeur, un individu répondant aux caractéristiques suivantes : CLMAGE=45, SEATBELT=1, ATTORNEY=1, MARITAL="single" et CLMINSUR = 1, aura selon le modèle actuel une perte économique de : $Y \in [0.3378229, 46.89545]$ à un niveau de 95%.

Avec les mêmes caractéristiques, on obtient : $E[Y] \in [3.369781, 4.701301]$. Ainsi, on constate la grande variabilité de la perte économique en comparant les différentes bornes des deux prévisions.

Tableau 5 – Intervalles de confiance des moyennes de la perte économique totale prévues

CLMAGE	MARITAL	CLMSEX	SEATBELT	CLMINSUR	ATTORNEY	2.5%	97.5%
70	single	M	1	1	1	4.83	8.86
45	married	${f M}$	1	1	1	4.26	5.54
45	divorced	${f M}$	1	1	1	3.47	8.10
45	widowed	${f M}$	1	1	1	1.09	4.05
45	$_{ m single}$	\mathbf{F}	1	1	1	3.37	4.70
45	$_{ m single}$	${f M}$	2	1	1	6.26	18.65
45	$_{ m single}$	${f M}$	1	2	1	3.37	4.70
45	$_{ m single}$	${f M}$	1	1	2	0.72	1.00
22	single	\mathbf{F}	2	1	2	1.11	3.28

6 Recommandations

Annexes

A Erreurs de données

La base de données originelles utilisées dans la création du modèle a dû subir quelques modifications afin d'être utilisable. Voici les quelques erreurs répertoriées ainsi que les techniques utilisées pour les rectifier :

1. Fautes d'orthographe

(a) MARITAL

Cette colonne contient à l'origine plusieurs fautes de frappe dans la manière de noter les états maritaux. Afin d'uniformiser le tout, il a fallu substituer les états écrits différemment dans ces quatre variables distinctes : divorced, widowed, married, single.

(b) CLMSEX

Cette colonne supposée contenir les états ${\bf F}$ ou ${\bf M}$ contient à l'origine quelques états male. Afin d'unifier le tout, ces états répertoriés de façon hétérogène ont été substitués en ${\bf M}$.

2. Données aberrantes

(a) LOSS

Cette colonne contient une valeur très extrême de 1067.697. En analysant la figure 5, on voit bien que la valeur est très énorme comparativement à l'ensemble des autres valeurs prises par cette variable. Néanmoins, comme il s'agit de perte économique aux États-Unis suite à une blessure corporelle, cette valeur est possible donc nous ne l'avons pas retirée de l'étude.

FIGURE 5 – Boxplot de LOSS

(b) CLMAGE

Cette colonne contient une valeur de 610, valeur impossible selon la description de la variable, soit l'âge du réclamant. Afin de ne pas fausser les résultats, cette valeur a été modifiée pour 61.

B Transformation

C Sélection des variables