

Varianta083

Proba scrisă la MATEMATICĂ

PROBA D

Profilul: Filiera Teoretică: sp.: matematică-informatică, Filiera Vocațională, profil Militar, Specializarea: specializarea matematică-informatică

♦ Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.

La toate subiectele se cer rezolvări cu soluții complete

SUBIECTUL I (20p)

- (4p) a) Să se calculeze distanța dintre punctele A(3,1,2) și B(2,3,1).
- (4p) b) Să se determine $x \in \mathbb{R}$ astfel încât punctele A(1, 2), B(3, 4) și M(0, x) să fie coliniare.
- (4p) c) Să se calculeze partea reală a numărului complex $z = \frac{1}{3+4i}$.
- (4p) d) Să se determine aria unui triunghi echilateral cu perimetrul egal cu 3.
- (2p) e) Să se determine $a \in \mathbb{R}$ pentru care dreptele de ecuații x + y + 2 = 0 și 3x + ay + 5 = 0 sunt paralele.
- (2p) f) Să se determine coordonatele punctelor de intersecție dintre dreapta de ecuație 3x + y = 0 si cercul de ecuatie $x^2 + y^2 = 10$.

SUBIECTUL II (30p)

1.

- (3p) a) Să se arate că $\lg \frac{2}{1} + \lg \frac{3}{2} + \lg \frac{4}{3} + ... + \lg \frac{10}{9} = 1$.
- (3p) b) Să se determine probabilitatea ca un element din **Z**₆ să fie inversabil față de operația de înmultire
- (3p) c) Să se rezolve ecuația $A_x^2 = 20$, pentru $x \in \mathbb{N}$, $x \ge 2$.
- (3p) d) Să se determine câtul și restul împărțirii polinomului $f = X^4 + X^2 + 2$ la polinomul $g = X^2 + X + 1$.
- (3p) e) Se consideră progresia geometrică $(a_n)_{n \in \mathbb{N}^*}$, cu $a_1 = 1$ și $a_2 = 2$. Să se calculeze a_{10} .
 - **2.** Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = \sin x x$.
- (3p) a) Să se calculeze f(0).
- (3p) b) Să se calculeze f'(x), $x \in \mathbb{R}$.
- (3p) c) Să se calculeze $\lim_{x\to 0} \frac{f(x)}{r}$.
- (3p) d) Să se calculeze $\lim_{x \to \infty} \frac{f(x)}{x}$.
- (3p) e) Să se calculeze $\int_{0}^{\frac{\pi}{2}} f(x) dx.$

Ministerul Educației și Cercetării - Serviciul Național de Evaluare și Examinare

SUBIECTUL III (20p)

Se consideră polinomul $f_n = 1 + \frac{X}{1!} + \frac{X(X+1)}{2!} + ... + \frac{X(X+1)(X+2) \cdot ... \cdot (X+n-1)}{n!} \in \mathbb{C}[X],$

$$n \in \mathbf{N}^* \text{ si matricele } O_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ si } A \in M_3(\mathbf{C}), \text{ cu } A^4 = O_3.$$

- (4p) a) Să se calculeze $f_n(0)$
- (4p) b) Să se calculeze $f_n(-1)$
- (4p) c) Să se arate că $f_n = \frac{1}{n!} (X+1)(X+2) \cdot ... \cdot (X+n), \forall n \in \mathbb{N}^*$.
- (2p) d) Să se arate că polinomul f_n are rădăcinile $x_1 = -1$, $x_2 = -2$, ..., $x_n = -n$, $\forall n \in \mathbb{N}^*$.
- (2p) e) Să se arate că $(I_3 x \cdot A) (I_3 + x \cdot A + x^2 \cdot A^2 + x^3 \cdot A^3) = I_3, \forall x \in \mathbb{C}$.
- (2p) | f) Să se arate că $\det(I_3 x \cdot A) = 1$, $\forall x \in \mathbb{C}$.
- (2p) g) Să se calculeze $\det(f_3(A))$.

SUBIECTUL IV (20p)

Se consideră funcția $f:[1,\infty)\to \mathbf{R}$, $f(x)=\frac{1}{x^{\alpha}}$, $\alpha>0$ și șirurile

$$x_n(\alpha) = 1 + \frac{1}{2^{\alpha}} + \frac{1}{3^{\alpha}} + \dots + \frac{1}{n^{\alpha}}, \quad n \in \mathbb{N}^*, \qquad I_n(\alpha) = \int_{-1}^{n} f(x) dx, \quad n \in \mathbb{N}^*.$$

- (4p) a) Să se calculeze f(1).
- (4p) b) Să se calculeze f'(x), $x \ge 1$.

(4p) c) Să se arate că
$$\lim_{n \to \infty} I_n(\alpha) = \begin{cases} \infty, & \alpha \in (0, 1] \\ \frac{1}{\alpha - 1}, & \alpha > 1 \end{cases}$$

(2p) d) Să se arate că
$$\frac{1}{n^{\alpha}} \le \int_{n-1}^{n} f(x) dx \le \frac{1}{(n-1)^{\alpha}}, \forall n \in \mathbb{N}, n \ge 2.$$

(2p) e) Să se arate că
$$x_n(\alpha) - 1 \le I_n(\alpha) \le x_{n-1}(\alpha)$$
, $\forall n \in \mathbb{N}$, $n \ge 2$..

(2p) **f**) Să se arate că șirul
$$(x_n(\alpha))_{n \in \mathbb{N}^*}$$
 este divergent pentru $\alpha \in (0,1]$ și convergent pentru $\alpha > 1$.

(2p) g) Să se arate că
$$\lim_{n \to \infty} \left(e^{x_{n+1}(1)} - e^{x_n(1)} \right) = e^c$$
, unde $c = \lim_{n \to \infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n \right)$.