Math 445 Homework 5 Solutions

Due Wednesday, October 6

21. If an integer n can be expressed as the sum of the squares of two rational numbers

(*)
$$n = (\frac{a}{b})^2 + (\frac{c}{d})^2$$
,

then n can be expressed as the sum of the squares of two *integers*.

From (*), clearing denomenators, we have that $nb^2d^2=a^2d^2+c^2b^2=(ad)^2+(bc)^2$ is a sum of two squares. So for every prime p with $p\equiv 3\pmod 4$, $p^k||nb^2d^2=n(bd)^2$ with k even. But since $(bd)^2$ is a perfect square, $p^m||(bd)^2$ has m even. So $p^{k-m}||n$ has k-m even. Consequently, every prime p with $p\equiv 3\pmod 4$ which appears in the prime factorization of n has even exponent. Therefore, by our main result from class, n can be expressed as a sum of two squares.

22. How many solutions (mod 17) each of the following congruence equations have?

(a)
$$x^{12} \equiv 16 \pmod{17}$$

 $(12,17-1)=(12,16)=(4\cdot 3,4\cdot 4)=4\cdot (3,4)=4$, so we need to determine if, mod 17, $16^{\frac{17-1}{4}}=16^4\equiv 1$. But $16\equiv -1$, so $16^4\equiv (-1)^4=1$, as desired. Therefore, $x^{12}\equiv 16\pmod {17}$ has (12,16)=4 solutions.

(b)
$$x^{48} \equiv 9 \pmod{17}$$

(48,17-1)=(48,16)=16, so we need to determine if, mod 17, $9^{\frac{17-1}{16}}=9^1=9\equiv 1$. But it isn't; it is $9\not\equiv 1$. So $x^{48}\equiv 9\pmod{17}$ has no solutions.

(c)
$$x^{20} \equiv 13 \pmod{17}$$

 $(20, 17-1) = (20, 16) = 4 \cdot (5, 4) = 4$, so we need to determine if, mod 17, $13^{\frac{17-1}{4}} = 13^4 \equiv 1$. But, mod 17, $13^2 = 169 \equiv -1$, so $13^4 \equiv (-1)^2 = 1$, as desired. So $x^{20} \equiv 13 \pmod{17}$ has (20, 16) = 4 solutions.

(d)
$$x^{11} \equiv 9 \pmod{17}$$

(11,17-1)=(11,16)=1 (since $1=3\cdot 11-2\cdot 16$), so we need to determine if, mod 17, $9^{\frac{17-1}{1}}=9^{16}\equiv 1$. But since (9,17)=1 (since $2\cdot 9-1\cdot 17=1$), $9^{16}\equiv 1\pmod {17}$ by Fermat's Little Theorem. So $x^{11}\equiv 9\pmod {17}$ has 1 solution.

23. If p is a prime, and $p \equiv 3 \pmod 4$, then the congruence equation $x^4 \equiv a \pmod p$ has a solution $\Leftrightarrow x^2 \equiv a \pmod p$ does.

Since $p \equiv 3 \pmod 4$, $p-1 \equiv 2 \pmod 4$, so p-1=4k+2=2(2k+1) for some k. Then $(4,p-1)=(2\cdot 2,2(2k+1))=2(2,2k+1)=2$. By our result from class, $x^4\equiv a \pmod p$ has a solution $\Leftrightarrow a^{\frac{p-1}{(4,p-1)}}=a^{\frac{p-1}{2}}\equiv 1 \pmod p$. But since 2|p-1, (2,p-1)=2, and so by the same result, $x^2\equiv a \pmod p$ has a solution $\Leftrightarrow a^{\frac{p-1}{(2,p-1)}}=a^{\frac{p-1}{2}}\equiv 1 \pmod p$.

So $x^4 \equiv a \pmod{p}$ has a solution $\Leftrightarrow a^{\frac{p-1}{2}} \equiv 1 \pmod{p} \Leftrightarrow x^2 \equiv a \pmod{p}$ has a solution, as desired.

24. If a, b are both primitive roots of 1 modulo the **odd** prime p, then ab is not a primitive root of 1 modulo p.

Since p is odd, p-1 is even. Since a and b are primitive roots, $\operatorname{ord}_p(a) = p-1 = \operatorname{ord}_p(b)$. So, mod p, $a^{p-1} \equiv 1 \equiv b^{p-1}$, but $a^{\frac{p-1}{2}} \not\equiv 1 \not\equiv b^{\frac{p-1}{2}}$. By the Miller-Rabin test, the latter two equations imply that $a^{\frac{p-1}{2}} \equiv -1 \equiv b^{\frac{p-1}{2}}$. Consequently, $(ab)^{\frac{p-1}{2}} = a^{\frac{p-1}{2}}b^{\frac{p-1}{2}} \equiv (-1)(-1) = 1$, so $\operatorname{ord}_p(ab)|\frac{p-1}{2} < p-1$, so ab is not a primitive root mod p.

25. Find a primitive root modulo 23.

Following our argument from class, since $23-1=22=2\cdot 11$, we will find an a with $a^{22/11}=a^2\not\equiv 1\pmod {23}$ and b with $b^{22/2}=b^{11}\not\equiv 1\pmod {23}$. Then c=ab will be a primitive root. But a=2 works; $2^2=4\not\equiv 1$. And since 11 is odd, $b=22\equiv -1$ works; $22^{11}\equiv (-1)^{11}=-1\not\equiv 1\pmod {23}$. So, from our argument in class, $c=2\cdot 22=44\equiv 21$ is a primitive root, mod 23.

Note: There are, in fact, $\Phi(\Phi(23)) = \Phi(22) = \Phi(2 \cdot 11) = (2-1)(11-1) = 10$ pimitive roots mod 23. They can be found by raising the one found here, 21, to all of the exponents relatively prime to 22. (Via Maple, they are: $21, 21^3 = 15, 21^5 = 14, 21^7 = 10, 21^9 = 17, 21^{13} = 19, 21^{15} = 7, 21^{17} = 5, 21^{19} = 20, 21^{21} = 11$. So, in consecutive order, they are 5,7,10,11,14,15,17,19,20,21.)