## Ecophysiologie et FSPM:

La modélisation structure-fonction pour simuler la variabilité génotypique des flux et de l'allocation de carbone et d'hormones et leurs conséquences développementales : application au pommier

## Benoît Pallas

<sup>1</sup>INRA, UMR AGAP, Montpellier, France



Module Agreenium: introduction à la modélisation structure fonction

Mars 2018



## Flux dans les plantes

• Les flux de carbone, d'hormones et d'eau dans les plantes conditionnent une grande partie des processus de développement et de croissance.



• Objectif de la modélisation : rendre compte des flux ou de l'allocation des ressources entre les différents organes de la plante.

#### Classification des modèles d'allocation et de flux de carbone (Lacointe, 2000)

#### 1. Modèles basés sur des règles empiriques

- . Pas de description de l'architecture
- . Règles d'allocation simples
- . Plutôt utilisés pour les crop models.



Goudriaan et Van Laar, 1994

#### Classification des modèles d'allocation et de flux de carbone (Lacointe, 2000)

- 1. Modèles basés sur des règles empiriques
- . Pas de description de l'architecture
- . Règles d'allocation simples
- . Plutôt utilisés pour les crop models.

#### 2. Modèles sources-puits

- . Basés sur la notion de force de puits
- . Prise en compte ou non des distances sources/puits
- . Pas d'explicitation des flux.



$$\Delta q_o(j, k, t) = P_o(k) \cdot f_o(j) \cdot \frac{Q(t)}{D(t)}$$

 $q_o$ : la biomasse allouée à l'organe o,  $P_o$ , la force de puits de l'organe  $_o$ ,  $Q_o$ , l'offre en biomasse totale à l'échelle de la plante, D: la demande en biomasse totale à l'échelle de la plante.

#### Classification des modèles d'allocation et de flux de carbone (Lacointe, 2000)

- 1. Modèles basés sur des règles empiriques
- . Pas de description de l'architecture
- . Règles d'allocation simples
- . Plutôt utilisés pour les crop models.
- 2. Modèles sources-puits
- . Basés sur la notion de force de puits
- . Prise en compte ou non des distances sources/puits
- . Pas d'explicitation des flux.

#### 3. Modèles « transport-resistance »

- . Basés sur une analogie électrique
- . Explicitation des flux et des concentrations locales en ressources



Total Frui

Total Frui

Total veg

Allen et al., 2005; Prusinkiewicz et al., 2007

#### Classification des modèles d'allocation et de flux de carbone (Lacointe, 2000)

- 1. Modèles basés sur des règles empiriques
- . Pas de description de l'architecture
- . Règles d'allocation simples
- . Plutôt utilisés pour les crop models.
- 2. Modèles sources-puits
- . Basés sur la notion de force de puits
- . Prise en compte ou non des distances sources/puits
- . Pas d'explicitation des flux.
- 3. Modèles « transport-resistance »
- . Basés sur une analogie électrique
- . Explicitation des flux et des concentrations locales en ressources

#### Modélisation des flux d'hormones

Peu d'études Principalement menées sur la modélisation du transport polarisé d'auxine



# Choix de l'échelle spatiale: différents degrés de représentation de la structure et de l'architecture de la plante



#### Cas d'étude: le pommier.

- Le pommier est composée d'une population de pousses très hétérogènes :
- Pousses végétatives
- Pousses reproductives
- + Forte variabilité des longueurs de pousses.



- Forte variabilité génotypique de l'architecture
- -Liée à la variabilité des dimensions des organes, à la succession temporelle des unités de croissance et au pattern de ramification.
- La variabilité des patterns de production est associée à la variabilité architecturale.



Types alternants

Types réguliers

#### Variabilité intra-plante du bilan carboné et de la production d'hormones

#### Starch concentration



Pallas et al., 2018

#### Light interception



Pallas et al., 2015

- Dans le cadre des arbres fruitiers, une forte variabilité des conditions locales de disponibilités des ressources ou de production d'hormones est observée au sein de l'arbre.
- Cette variabilité est associée aux patterns de floraison

#### Variabilité intra-plante du bilan carboné et de la production d'hormones



#### GA content and Floral induction



Pallas et al., 2017 and Belhassine thesis

Nécessité d'utiliser des modèles explicitant les distances et les relations topologiques entre les organes pour simuler la variabilité intra-arbre et inter-abre des processus de croissance et développement.

#### Objectifs de modélisation

Simulations des flux (allocation) de carbone et de signaux inhibiteurs: application à la modélisation de la variabilité intraarbre de la croissance des organes et processus d'induction florale







## Le modèle MAppleT

MappleT un modèle de simulation de l'architecture du pommier servant de base à la modélisation des flux et de l'allocation de carbone.





## MappleT outputs: tree structure over years



#### **Objectives**

### Development of a modelling workflow

#### between

- MappleT (Simulation of tree architecture)
- Qualitree (Simulation of carbon allocation and resulting growth)

## **MappleT** Simulation of tree architecture



## Representation of the tree architecture in Qualitree



#### Simplified representation of topology:

- Old roots, new roots and old wood compartments
- Production units correspond to 1yo shoots and gather leafy shoots, fruits and stem.
- Each production unit differs in terms of leafy shoot and fruit number.
- Within each production unit, leafy shoot, stem (1-year old internodes) and fruit compartments are taken into account.

## **Light interception in Qualitree**

#### Photosynthesis







Turbid medium inside an ellipsoid covering 80% of total leaf area (implementation of this new shape for apple tree)











#### Analyse des relations entre lumière/carbone/croissance

• Focus: modélisation de l'impact des distances sources-puits dans Qualitree

$$F_{ij} = \frac{S_i \times D_j}{\sum_{j=1}^{j=n} D_j} \times d_{ij}^{-\alpha}$$

 $F_{ij}$ : flux de carbone de la source i ver s le puit j,  $D_i$ , demande en carbone du puits j, S, offre de la source i,  $d_{ij}$ , distance entre la source i et le puits j.



• Le paramètre d'effets des distances contrôle le niveau de variabilité intra-arbre simulé. (pool commun --- autonomie des pousses)



#### Analyse des relations entre lumière/carbone/croissance

• Focus: modélisation de l'impact des distances sources-puits dans Qualitree

$$F_{ij} = \frac{S_i \times D_j}{\sum_{j=1}^{j=n} D_j} \times d_{ij}^{-\alpha}$$

 $F_{ij}$ : flux de carbone de la source i ver s le puit j,  $D_i$ , demande en carbone du puits j, S, offre de la source i,  $d_{ij}$ , distance entre la source i et le puits j.



• Simulation de la variabilité interarbre de la croissance des organes

#### Masse des fruits à la récolte



#### Surface foliaire des pousses



Pallas et al., 2016

## Analyse des relations entre lumière/carbone/croissance

- Développement d'un modèle multi-échelle d'allocation de biomasse.
- Modèle d'allocation (SIMWALL, Balandier et al. 2000), tenant compte des offres, demandes et de la distance entre les sources et puits.

$$F_{ij} = \frac{Demand_{j} \times Supply_{i} \times 1 / (1 + d_{ij})^{\alpha}}{\sum_{k=1}^{n} Demand_{k} \times 1 / (1 + d_{ik})^{\alpha}}$$

 $F_{ij}$ : flux de carbone de la source i ver s le puit j, Demand<sub>j</sub>, demande en carbone du puits j, Supply<sub>i</sub>, offre de la source i,  $d_{ij}$ , distance entre la source i et le puits j.

- Calcul de l'allocation de C à différentes échelles d'aggrégation topologique de la plante en se basant sur le formalisme MTG
- Objectifs : réduire le temps de calcul et tester des hypothèses sur l'homogénéité des structures au sein de l'arbre.



#### Variabilité de l'induction florale chez le pommier

• Développement des fruits et induction florale sont concommitants chez le pommier

- Deux hypothèses principales pour expliquer la variabilité de l'induction florale dans les méristèmes au sein d'un arbre et entre les années:
- Signaux hormonaux (provenant des fruits) (Bangerth, 2006)
- Bilan carboné des pousses (Nielsen and Denis, 2000)



Nécessité de simuler ces flux et mécanismes pour rendre compte de cette variabilité.

## Développement d'un modèle de flux inhibiteur

- Construit sous la plateforme L-Studio en se basant sur le formalisme L-System.
- A segment-based approach (Renton et al. 2012)



$$F_{i+1} = F_i \times \alpha \times L_i$$
  
$$S_i = F_{i+1} - F_i$$

with  $F_i$  the flux of inhibitory signal from metamer i to metamer i +1,  $S_i$  the amount of inhibitory signal in metamer i and  $L_i$  being the length of the internode of metamer i

The transfert rate (cm<sup>-1</sup>)

## Multi-step simulation

- 1. Le signal inhibiteur est produit par les fruits et transporté dans la direction basipète.
- 2. Une partie du signal est « stockée » à chaque point de ramification

#### Flux basipète:

$$F_{d,i+1} = \sigma_1 \times \alpha \times L_{i+1} \times (F_{d,k} + F_{d,i})$$



Pallas et al., 2016



#### Multi-step simulation

- 1. Le signal inhibiteur est produit par les fruits et transporté dans la direction basipète.
- 2. Une partie du signal est « stockée » à chaque point de ramification

#### Flux basipète:

3. Réallocation du signal atteignant la base de l'arbre et de la quantité « stockée » à chaque point de branchement en direction acropète.

#### Flux acropète :

$$F_{u,i} = (A_B + \sigma_2 \times F_{u,i+1}) \times Li \times \alpha$$
  
 $F_{u,k} = (A_M + (1 - \sigma_2) \times F_{u,i+1}) \times L_k \times \alpha$ 

4. Fin des itérations quand la quantité de signal atteignant les extrémités de la plante est inférieure à un seuil.



Pallas et al., 2016



# Couplage de MappleT avec le modèle de flux inhibiteur et un modèle de flux de carbone

• MappleT est utilisé pour simuler differéntes architectures provenant de séquences de tronc mesurées sur une population bi-parentale.



• Utilisation de la modélisation « aspect-oriented » pour permettre le couplage entre les différents aspects du modèle (Croissance, hormone, carbone).

#### Flow of computational phases:





#### Simulation sur arbres de 3 ans

#### Hypothèses de travail

- Seuil arbitraire pour l'inhibition.
- Occurrence de l'induction florale durant des phases sensibles
- Variation dans le production de signaux inhibiteurs durant la croissance.



#### Simulation sur arbres de 3 ans

#### Simulations avec différents valeurs du coefficient de transferts

- Comportement bimodal pour  $\alpha = 0.8$ . (genotypes avec une forte alternance à l'échelle des branches).
- Pas d'influence de la longueur et du type de rameaux pour  $\alpha = 0.95$ . (genotypes avec une distribution aléatoire des unités de croissances florales et reproductives).



Pallas et al., 2016



## Simulation de l'impact du crop load



Comparaison avec données expérimentales pour des génotypes avec différents niveaux de charge

| Simulated crop load (fruits.cm <sup>-2</sup> TCSA) | Simulated % of floral induction          | Observed % of<br>floral induction<br>'Golden'                                              |
|----------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------|
| 8.3                                                | 47.2                                     | 56.1                                                                                       |
| 3.7                                                | 87.0                                     | 83.1                                                                                       |
| High 15.1                                          |                                          | 4.0                                                                                        |
|                                                    | (fruits.cm <sup>-2</sup> TCSA)  8.3  3.7 | Simulated crop load (fruits.cm <sup>-2</sup> TCSA) of floral induction  8.3 47.2  3.7 87.0 |

> Absence de vrai validation à l'échelle du rameau.



#### Validation du modèle

- Mise en place d'expérimentation avec des arbres ayant subi des défoliation et défrutification locales.
- Calibration des paramètres de résistances aux flux.

Defoliated tree

Defructified tree



#### **Expérimentation virtuelle**



#### Conclusions

- -MappleT, un modèle pertinent pour simuler des architectures réalistes sur lesquelles des modèles d'allocation et de flux sont appliqués.
- Ces modèles permettent de traiter des questions biologiques et agronomiques telles que la croissance et la variabilité de la masse des fruits et les phénomènes d'alternances de production.
- L'approche de modélisation peut prendre en compte la variabilité génotypique soit directement au travers de valeurs de paramètres du modèle soit au travers de marqueurs moléculaires.
- Bon outil pour étudier les interactions genotype x architecture x fonctionnement.







#### Fronts de recherches

-Poursuivre l'intégration des rétroactions entre fonctionnement, croissance et développement pour permettre des simulations multi-annuelles notamment pour simuler la régularité/irrégularité de la production.

- Généraliser les méthodes de simulation des flux dans les plantes dans un contexte multi-échelle.

- Intégrer des effets génétiques sur les paramètres utilisés pour modéliser l'architecture et les flux entre organes.







## Objectifs de modélisation

Introduction de la variabilité génotypique dans les modèles.







## Simulation de la variabilité génotypique

Simulation de la variabilité architecturale au sein d'une population de lignées recombinantes à partir de relevés de séquences de tronc.



Analyse de sensibilité du modèle à la variation des variables architecturales.



## Introduction d'effets génétiques dans le modèle MappleT

- Première année après la plantation sur une population de lignées recombinantes.
- Prise en compte d'effets génétiques sur quatre paramètres du modèle déterminant la croissance et l'établissement de l'architecture en première année.

| Process                                   | Parameter<br>name | Parameter definition                                                                                                 |  |
|-------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------|--|
| Creation of successive phytomers          | $RLE_{GDD}$       | Rate of leaf emergence expressed in Growing Degree Days (GDD)                                                        |  |
| Immediate branching (sylleptic branching) | a <sub>syll</sub> | Coefficient of the linear relation between the probability of the sylleptic branching and the rate of leaf emergence |  |
| Individual internode elongation           | IN_length         | The final length of individual internode                                                                             |  |
| Individual leaf expansion                 | Leaf_area         | The final area of individual leaf                                                                                    |  |

## Intégration d'effets génétiques dans MappleT

- 3123 polymorphismes SNPs utilisés pour la prédiction pangénomiques.
- Prédiction GWAS réalisée avec une méthode de régression d'arrêtes (RR-BLUPS) en se basant sur un modèle à effets aléatoire avec des effets infinidécimaux des marqueurs.





Climatic variables (daily temperature)

## Intégration d'effets génétiques dans MappleT

- 3123 polymorphismes SNPs utilisés pour la prédiction pangénomiques.
- Prédiction GWAS réalisée avec une méthode de régression d'arrêtes (RR-BLUPS) en se basant sur un modèle à effets aléatoire avec des effets infinidécimaux des marqueurs.



(daily temperature)

## Merci pour votre attention

#### Remerciements:

- -Equipe AFEF de l'UMR AGAP AFEF
- Equipe M2P2
- UR PSH
- UMR PIAF
- Jim Hanan's team (University of Queensland)



#### Contexte sur le pommier

Large **genotypic** variability of bearing patterns (alternating, regular, irregular) in apple trees.

4 types of bearing pattern (*Durand et al., 2013*): biennial, irregular, regular (bourse over bourse), regular (with desynchronized branches).



