Universidad Autonoma de Aguascalientes LICENCIATURA EN MATEMATICAS APLICADAS

MATERIA: Calculo Vectorial Integral

Docente: Jorge G. Macias Díaz

FECHA DE CREACION: 12 de agosto de 2023

BRYAN RICARDO BARBOSA OLVERA 12 de agosto de 2023

Profesor: Jorge G. Macias Díaz

Edificio: 117

Oficina: 6:30 - 3:30

Email: Jemacias@correo.uaa.mx

Email Secundario: jorge.maciasdiaz@edu.uaa.mx

Tel: +4494527006

1. INTEGRALES DOBLES

Def. Un rectangulo en \mathbb{R}^2 es

$$R = [a_1, b_1] \times [a_2, b_2] \subseteq \mathbb{R}^2$$

Definimos $A(R) = \text{"Area de } R\text{"} = (b_1 - a_1)(b_2 - a_2)$

Sean

$$\bar{a}=(a_1,a_2)$$

$$\bar{b} = (b_1, b_2)$$

Importante: Haaser usa la notación $R = [\bar{a}, \bar{b}]$

Obs. Si $\mathcal{R} = \{R \subseteq \mathbb{R}^2; R \text{ es rectángulo }\}$ ent

 $\mathcal{A}: \mathcal{R} \to \mathbb{R}^+ \cup \{0\}$ es una funcion.

Def. Sea $R = [a_1, b_1] \times [a_2, b_2] \subseteq \mathbb{R}^2$ una particion de R es

$$\mathcal{P} = \mathcal{P}_1 \times \mathcal{P}_2 \text{ con}$$

 \mathcal{P} es particicon de $[a_1, b_1]$

 \mathcal{P} es particicon de $[a_2, b_2]$

Concretamente, Si

$$\mathcal{P}_{1}: a_{1} = x_{0} < x_{1} < \dots < x_{m} = b_{1}$$

$$\mathcal{P}_{2}: a_{2} = y_{0} < y_{1} < \dots < y_{n} = b_{2}$$

$$\mathcal{P} = \{(x_{i}, y_{j}) \in \mathbb{R}^{2} | i = 0, 1, \dots, m; j = 0, 1, \dots, n\}$$

$$y_{n}$$

$$y_{n-1}$$

$$y_{n-2}$$

$$y_{2}$$

$$y_{1}$$

$$y_{0}$$

$$x_{1}$$

$$x_{2}$$

$$x_{m-2}$$

$$x_{m-1}$$

$$x_{m}$$

Definimos
$$R_{ij} = [x_{i-1}, x_i] \times [y_{j-1}, y_j] \ \forall \ i = 1, \dots, m \ \forall \ j = 1, \dots, n$$

Obs. $R = \bigcup_{i=1}^m \bigcup_{j=1}^n R_{ij}$

Def. Definimos la norma de \mathcal{P} como

$$|\mathcal{P}| = \max\{|\mathcal{P}_1, \mathcal{P}_2|\}$$

 $|\mathcal{P}_1| = \max\{x_i - x_{i-1}|i = 1, \dots, m\}$
 $|\mathcal{P}_2| = \max\{y_j - y_{j-1}|j = 1, \dots, n\}$

Obs Con la notacion de la definicion anterior

$$\mathcal{A}(R) = \sum_{i=1}^{m} \sum_{j=1}^{n} \mathcal{A}(R_{ij})$$

Dem.

$$\sum_{i=1}^{m} \sum_{j=1}^{n} (\mathcal{A}(R_{ij})) = \sum_{i=1}^{m} \sum_{j=1}^{n} (x_i - x_{i-1}) (y_j - y_{j-1}) =$$

$$= \sum_{i=1}^{m} (x_i - x_{i-1}) \sum_{j=1}^{n} (y_j - y_{j-1}) = \sum_{i=1}^{m} (x_i - x_{i-1}) (b_2 - a_2) =$$

Calculo Vectorial Integral
$$= (b_2 - a_2) \sum_{i=1}^m \left(x_i - x_{i-1}\right) = (b_2 - a_2) \left(b_1 - a_1\right) = \mathcal{A}\left(R\right)$$

Def. Definimos

$$\wp(R) = \{ \mathcal{P} | \mathcal{P} \text{ particion de } R \}$$

Def. Sea R un rectangulo $R = [a_1, b_1] \times [a_2, b_2] \subseteq \mathbb{R}^2$.

Sean $\mathcal{P}, \mathcal{P}' \subset \wp(R)$

Diga

$$\mathcal{P} = \mathcal{P}_1 \times \mathcal{P}_2 \wedge \mathcal{P}' = \mathcal{P}'_1 \times \mathcal{P}'_2$$

decimos \mathcal{P}' es refinamiento de \mathcal{P}

Si
$$\mathcal{P}_1 \subseteq \mathcal{P}_1' \wedge \mathcal{P}_2 \subseteq \mathcal{P}_2'$$

Notacion: $\mathcal{P} \subseteq \mathcal{P}'$

Obs. En lo que sigue:

$$R = [a_1, b_1] \times [a_2, b_2] \subseteq \mathbb{R}^2 \wedge f : R \to \mathbb{R}$$
 es acotada

Mas aún, $m, M \in \mathbb{R} \ni$

$$\forall x \in \mathbb{R} : m \le f(x) \le M$$

Def. Sea $\mathcal{P} = \mathcal{P}_{\infty} \times \mathcal{P}_{\in} \in \wp(\mathbb{R})$

Diga

$$\mathcal{P}_1: a_1 = x_0 < x_1 < \dots < x_m = b_1$$

$$\mathcal{P}_2 : a_2 = y_0 < y_1 < \dots < y_m = b_2$$

Definimos

 $L(f, \mathcal{P}) =$ "Suma inferior de f con respecto a \mathcal{P} "

$$=\sum_{i=1}^{m}\sum_{j=1}^{n}m_{ij}\left(f\right)\mathcal{A}\left(R_{ij}\right)$$

 $\operatorname{con} m_{ij}(f) = \inf\{f(x) | x \in R_{ij}\}\$

Definimos

$$U(f, \mathcal{P}) =$$
 "Suma superior de f con respecto a \mathcal{P} "

$$=\sum_{i=1}^{m}\sum_{j=1}^{n}M_{ij}\left(f\right)\mathcal{A}\left(R_{ij}\right)$$

 $\operatorname{con} M_{ij}(f) = \sup\{f(x) | x \in R_{ij}\}\$

Lemma. $\forall \mathcal{P} \in \wp(R)$:

$$m\mathcal{A}(R) \leq L(f,\mathcal{P}) \leq U(f,\mathcal{P}) \leq M\mathcal{A}$$

Dem.

$$m\mathcal{A}(R) = m \sum_{i=1}^{m} \sum_{j=1}^{n} \mathcal{A}(R_{ij}) = \sum_{i=1}^{m} \sum_{j=1}^{n} m\mathcal{A}(R_{ij})$$

$$\leq \sum_{i=1}^{m} \sum_{j=1}^{n} m_{ij}(f) \mathcal{A}(R_{ij}) = L(f, \mathcal{P})$$

$$\leq \sum_{i=1}^{m} \sum_{j=1}^{n} M_{ij}(f) \mathcal{A}(R_{ij}) = U(f, \mathcal{P})$$

$$\leq \sum_{i=1}^{m} \sum_{j=1}^{n} M\mathcal{A}(R_{ij}) = M \sum_{i=1}^{m} \sum_{j=1}^{n} \mathcal{A}(R_{ij}) = M\mathcal{A}(R)$$

$$\therefore m\mathcal{A}(R) \leq L(f, \mathcal{P}) \leq U(f, \mathcal{P}) \leq M\mathcal{A}(R)$$

Def. Definimos

$$\mathscr{L}(f)$$
 = "Conjunto de sumas superiores de f "
$$= \{L(f,\mathcal{P}) | \mathcal{P} \in \wp(R)\}$$
 $\mathscr{U}(f)$ = "Conjunto de sumas inferiores de f "
$$= \{U(f,\mathcal{P}) | \mathcal{P} \in \wp(R)\}$$

Bryan Ricardo

Obs. Del lema anterior.

$$\forall L(f, \mathcal{P}) \in \mathcal{L}(f) : L(f, \mathcal{P}) \subseteq M\mathcal{A}(R)$$

Asi, $\emptyset \neq \mathcal{L}(f)$ acotado sumeriormente $\Rightarrow \exists \sup \mathcal{L}(f)$ Similarmente $\exists \inf \mathcal{U}(f)$

Def. Definimos

$$\int_{R} f = \text{"Integral inferior de } f \text{ sobre } R" = \sup \mathscr{L}(f)$$

$$\int_{R} f = \text{"Integral superior de } f \text{ sobre } R" = \inf \mathscr{U}(f)$$

Lemma Sean $\mathcal{P}, \mathcal{P}' \in \wp(R) \ni \mathcal{P} \subseteq \mathcal{P}'$. Entonces $m\mathcal{A}(R) \le L(f, \mathcal{P}) \le L(f, \mathcal{P}') \le U(f, \mathcal{P}') \le U(f, \mathcal{P}) \le M\mathcal{A}(R)$

Sean

Dem.

$$\mathcal{P} = \mathcal{P}_1 \times \mathcal{P}_2 \in \wp(R)$$
$$\mathcal{P}' = \mathcal{P}'_1 \times \mathcal{P}'_2 \in \wp(R)$$

Caso1. $\mathcal{P}_1 = \mathcal{P}'_1$. Sea $n = \operatorname{card} \{\mathcal{P}'_2 \setminus \mathcal{P}_2\} \in \mathbb{N} \cup \{0\}$ Usaremos inducción sobre n Si n = 0, Ent. $\mathcal{P}'_2 = \mathcal{P}_2$ $\mathcal{P}' = \mathcal{P}$, Ent.

$$L(f, \mathcal{P}) = L(f, \mathcal{P}') \le U(f, \mathcal{P}') = U(f, \mathcal{P})$$

PasoGeneral: Supongamos la conclusion valida para algun $n \in \mathbb{N} \cup \{0\}$ veremos que es valido para n + 1. Sea \mathcal{P}'_2 refinamiento de $\mathcal{P}_2 \ni n + 1 = \operatorname{card} (\mathcal{P}'_2 \backslash \mathcal{P}_2)$

Definimos $\mathcal{P}_2 \subseteq \mathcal{P}_2'' \subseteq \mathcal{P}_2'$ con card $(\mathcal{P}_2'' \backslash \mathcal{P}_2) = n \wedge \text{card } (\mathcal{P}_2' \backslash \mathcal{P}_2'') = 1$ por hipótesis de inducción:

$$L(f, \mathcal{P}) \le L(f, \mathcal{P}'') \le U(f, \mathcal{P}'') \le U(f, \mathcal{P})$$

donde $\mathcal{P}'' = \mathcal{P}_2 \times \mathcal{P}_2''$ Digo

$$\mathcal{P}_{2}'': a_{2} = y_{0} < y_{1} < \dots < y_{j_{0}} < y_{j_{0+1}} < \dots < y_{p} = b_{2}$$

$$\mathcal{P}_{2}': a_{2} = y_{0} < y_{1} < \dots < y_{j_{0}} < y^{*} < y_{j_{0+1}} < \dots < y_{p} = b_{2}$$

$$\mathcal{P}_{1}: a_{1} = x_{0} < x_{1} < x_{m} = b_{1}$$

Obs.

$$L(f, \mathcal{P}) = \sum_{i=1}^{m} \sum_{j=1}^{p} \left(\inf_{[x_{i-1}, x_i] \times [y_{j-1}, y_j]} \right) \cdot \mathcal{A}([x_{i-1}, x_i] \times [y_{j-1}, y_j])$$

$$= \sum_{i=1}^{m} \sum_{j=1, j \neq j_0+1}^{p} \left(\inf_{[x_{i-1}, x_i] \times [y_{j-1}, y_j]} \right) \cdot \mathcal{A}([x_{i-1}, x_i] \times [y_{j-1}, y_j])$$

$$+ \sum_{i=1}^{m} \left(\inf_{[x_{i-1}, x_i] \times [y_{j_0}, y_{j_0+1}]} \right) \cdot \mathcal{A}([x_{i-1}, x_i] \times [y_{j_0}, y_{j_0+1}])$$

$$= \sum_{i=1}^{m} \sum_{j=1, j \neq j_0+1}^{p} \left(\inf_{[x_{i-1}, x_i] \times [y_{j-1}, y_j]} \right) \cdot \mathcal{A}([x_{i-1}, x_i] \times [y_{j_0}, y^*])$$

$$+ \sum_{i=1}^{m} \left(\inf_{[x_{i-1}, x_i] \times [y_{j_0}, y^*]} \right) \cdot \mathcal{A}([x_{i-1}, x_i] \times [y_{j_0}, y^*])$$

$$+ \sum_{i=1}^{m} \left(\inf_{[x_{i-1}, x_i] \times [y^*, y_{j_0+1}]} \right) \cdot \mathcal{A}([x_{i-1}, x_i] \times [y^*, y_{j_0+1}])$$

$$= L(f, \mathcal{P}') \leq U(f, \mathcal{P}') \leq U(f, \mathcal{P}') \leq U(f, \mathcal{P}')$$

(El caso 1 se sigue por inducción)

 $Caso2 : \mathcal{P}_2 = \mathcal{P}'_2 \land \mathcal{P}_1 \subseteq \mathcal{P}'_1 \text{ similar al caso } 1$

 $\overline{\mathbf{Caso3}: \mathcal{P}_1 \subseteq \mathcal{P}_1' \ \land \ \mathcal{P}_2 \subseteq \mathcal{P}_2'}$

$$\mathcal{P} = \mathcal{P}_1 \times \mathcal{P}_2$$

$$\mathcal{P}' = \mathcal{P}_1 \times \mathcal{P}_2'$$

Definimos $\mathcal{P}'' = \mathcal{P}_1 \times \mathcal{P}_2'$ de los casos anteriores

$$L\left(f,\mathcal{P}\right) \leq L\left(f,\mathcal{P}''\right) \leq U\left(f,\mathcal{P}'\right) \leq U\left(f,\mathcal{P}''\right) \leq U\left(f,\mathcal{P}''\right)$$

9/8/2023