Ermüdung und Verschleiß

Prof. Dr.-Ing. Christian Willberg Hochschule Magdeburg-Stendal

Kontakt: christian.willberg@h2.de
Teile des Skripts sind von Prof. Dr.Ing. Jürgen Häberle übernommen

Ermüdung

► Was ist Ermüdung?

- Tritt typischerweise bei zyklischer Belastung auf
 - Isotherme mechanische Ermüdung
 - Oszillierende Last
 - Flugzeugrümpfe (Druckaufbau und -abfall)
 - Thermische Ermüdung
 - Öfen, Heizelemente
 - Thermomechanische Ermüdung
 - Hochdruckbehälter
 - Elektrothermische Ermüdung
 - Stromleiter (Glühfäden)

Ermüdung

- ullet Die Belastung liegt unterhalb der Streckgrenze $R_{p0,2}$
 - \circ Erinnerung: Was bedeutet $R_{p0,2}$?
- Spannungs-Konzentrationen entstehen an Materialfehlern (Poren, Mikrorisse) oder im Kristall (Versetzungen, Fehlstellen)
- Zunächst bilden sich unter wechselnder Last lokal zufällige Bereiche plastischer Verformung
- Diese Punkte repräsentieren Spannungs-Konzentrationsbereiche, die sich mit der Zeit vergrößern und zu Bruch führen können

Erklärvideo

Spannungsverhältnis

$$R=rac{\sigma_u}{\sigma_o}$$

Mittelspannung

$$\sigma_m=rac{\sigma_u+\sigma_o}{2}$$

 σ_o - Oberspannung

 σ_u - Unterspannung

Begriffe

- Lebensdauer
- Ermüdungsriss
- Ermüdungsbruch
- Kurzzeitfestigkeit (K) $< 10^5$ (Low Cycle Fatigue (LCF))
- Zeitfestigkeit (Z) $10^4 < 10^6$ (High Cycle Fatigue (HCF))
- Dauerfestigkeit (D) $> 10^6$ (Very High Cycle Fatigue (VHCF))

Gegenmaßnahmen

- Kerbwirkung verringern
- Materialanpassung
- Konstruktion anpassen, damit lokale Spannung zulässige Grenzen nicht überschreitet
- Regelmäßige Inspektionen

Verschleiß

- infolge Reibung eintretende bleibende Form- und Stoffveränderung an der Oberfläche von Festkörpern
- ist technologisch nicht beabsichtigt und eine Form des funktionellen Versagens darstellt bzw. darstellen kann
- Beeinflusst durch
 - Reibkörperpaarung
 - Beschaffenheit der Grenzschichten und des Zwischenstoffes
 - Art des Bewegungsablaufes
 - Höhe der Belastung

- Adhäsiver Verschleiß
- Abrasiver Verschleiß
- Oberflächenzerrüttung
- Tribooxidation

Adhäsiver Verschleiß

- Adhäsiver Verschleiß tritt bei mangelnder Schmierung auf
- bei hoher Flächenpressung haften Flächen aneinander
- tritt Gleiten ein, werden Randschichtteilchen
- es entstehen Löcher und schuppenartige Materialteilchen, die oft an der Gleitfläche des härteren Partners haften bleiben.

Abrasiver Verschleiß

- harte Teilchen eines Schmierstoffs oder Rauheitsspitzen eines Reibungspartners dringen in Randschicht ein
 - -> es kommt es zu Ritzung und Mikrozerspanen
 - Furchverschleiß oder Erosionsverschleiß
- richtige Wahl der Werkstoffpaarung; Metall-Kunststoff- oder Metall-Keramik-Paarungen

Beispiel Windenergie:

- Sand im Wind "schmirgelt" die Oberfläche ab
- Wirkungsgrad sinkt

Oberflächenzerrüttung

- wechselnde oder schwellende mechanische Spannungen an der Oberfläche
- Ermüdung oder Kriechen des Materials an der Oberfläche

Tribooxidation

- Tribooxidation (Passungsrost) an einer Welle aus Stahl
- Bildung von Zwischenschichten, z. B. Oxidschichten, infolge chemischer Reaktion und ihre mechanische Zerstörung durch Bewegung der Bauteile
- tritt fast immer zusammen mit adhäsivem Verschleiß auf

Verschleißart	Erscheinung	Primäres Vorkommen
Gleitverschleiß	Rillen oder Riefen durch Abrieb, Materialübertragung oder lokales Schmelzen	Un-geschmierte Lager, Kupplungen, Bremsen
Rollverschleiß	Abblättern durch Ermüdungsrisse	Rad/Schiene, Wälzlager
Pittings	Grübchenbildung: Pitting	Wälzkörper, speziell Zahnräder
Abrasivverschleiß	Plastische Verformung, Erosion	Bagger, Schüttguttransport, Partikelaufprall
Kavitation	Oberflächenschädigung durch	Wasserturbinen, Pumpen

Gleitverschleiß

- Beeinflusst durch
 - \circ Die mittlere Rauheitstiefe R_z
 - Anpressdruck
 - $^{\circ}$ Verschleißpfadverhältnis $W=krac{F_{N}}{A}10^{6}$
 - \circ k in $\left[\frac{mm^3}{Nm}\right]$ spezifischer Verschleißkoeffizient (lastunabhängig)

Wälzverschleiß

- Wälzen ist eine
 Beanspruchungsart, bei der
 Gleitanteile (Schlupf) den reinen
 Rollvorgang überlagern
- kleine Kontaktfläche; hohe Flächenpressung
- Oberflächenzerrüttung (plastische Verformung, Gefügeänderungen, usw.)
- ullet durch Schmierung deutlich reduzierbar o spezifische Schmierfilmdicke λ

Kavitation

Video

► Physikalische Ursache?

- lokale Belastungen an der Oberfläche
- diese Bereiche ermüden und platzen ab
- Beeinträchtigt die Oberfläche
 - Wirkungsgradreduktion
 - Korrosion
 - Bereiche wo Risse initiieren können

Reibkorrosion

- Gleitbewegungen zwischen zwei hochbelasteten Bauteilen
- meist bei zu geringem Übermaß
 - \rightarrow Passungen