MA166: Exam 2 Solutions

Carlos Salinas

April 28, 2016

Exam II Solutions

Students, here are the solutions to Exam II. I have color-coded the solutions so that they match the color of the respective version of the exam.

Students, here are the solutions to Exam II.

The following few pages go into

Problem 1 (# 1, #). Find the sum of the series

$$\sum_{n=1}^{\infty} \frac{4^n}{5(3^{2n-1})}$$

Solution. This is a geometric series and it's not hard to see that. The first thing you should do is factor it

$$\sum_{n=1}^{\infty} \frac{4^n}{5(3^{2n-1})} = \frac{4}{15} \sum_{n=1}^{\infty} \frac{4^{n-1}}{3^{2n-2}}$$
$$= \frac{4}{15} \sum_{n=1}^{\infty} \frac{4^{n-1}}{3^{2(n-1)}}$$

now shift it back to turn it into a geometric series

$$= \frac{4}{15} \sum_{n=0}^{\infty} \frac{4^n}{3^{2n}}$$
$$= \frac{4}{15} \sum_{n=0}^{\infty} \left(\frac{4}{3^2}\right)^n$$
$$= \frac{4}{15} \sum_{n=0}^{\infty} \left(\frac{4}{9}\right)^n$$

since |4/9| < 1, this sequence converges and it converges to

$$= \frac{4}{15} \left(\frac{1}{1 - \frac{4}{9}} \right)$$
$$= \frac{4}{15} \left(\frac{1}{\frac{5}{9}} \right)$$
$$= \boxed{\frac{12}{25}}.$$

Answer: D,

Problem 2 (# 2, #). Evaluate the integral

$$\int_0^1 \frac{x^2 + 1}{(x+1)^2} dx.$$

Solution. Rewrite the integral and use partial fractions

$$\int_0^1 \frac{x^2 + 1}{(x+1)^2} dx = \int_0^1 \frac{(x^2 + 1 + 2x) - 2x}{(x+1)^2} dx$$

$$= \int_0^1 \left[\frac{(x^2 + 1 + 2x)}{(x+1)^2} - \frac{2x}{(x+1)^2} \right] dx$$

$$= \int_0^1 \left[\frac{(x+1)^2}{(x+1)^2} - \frac{2x}{(x+1)^2} \right] dx$$

$$= \int_0^1 \left[1 - \frac{2x}{(x+1)^2} \right] dx$$

$$= \int_0^1 1 dx - \int_0^1 \frac{2x}{(x+1)^2} dx.$$

Now, rewrite $I_1 = 1$ and that's easy. To find I_2 we use partial fractions

$$\frac{2x}{(x+1)^2} = \frac{A}{x+1} \frac{B}{(x+1)^2}$$
$$2x = A(x+1) + B$$
$$= Ax + (A+B).$$

So A + B = 0 and A = 2 so B = -2. Now we compute I_2

$$I_{2} = \int_{0}^{1} \frac{2x}{(x+1)^{2}} dx$$

$$= \int_{0}^{1} \left[\frac{2}{x+1} - \frac{2}{(x+1)^{2}} \right] dx$$

$$= \int_{0}^{1} \frac{2}{x+1} dx - \int_{0}^{1} \frac{2}{(x+1)^{2}} dx$$

$$= \left[2\ln|x+1| + \frac{2}{x+1} \right]_{0}^{1}$$

$$= 2\ln 2 - 1.$$

Hence the integral is

$$I_1 - I_2 = 1 - (2 \ln 2 - 1) = 2 - 2 \ln 2.$$

Answer: E.

Problem 3 (# 3, #). Evaluate the integral

$$\int_0^1 \frac{x^2}{x^2 + 1} dx.$$

Solution. Factor and use partial fractions

$$\int_0^1 \frac{x^2}{x^2 + 1} dx = \int_0^1 \frac{x^2 + 1 - 1}{x^2 + 1} dx$$

$$= \int_0^1 \frac{(x^2 + 1) - 1}{x^2 + 1} dx$$

$$= \int_0^1 \left[\frac{x^2 + 1}{x^2 + 1} - \frac{1}{x^2 + 1} \right] dx$$

$$= \int_0^1 \left[1 - \frac{1}{x^2 + 1} \right] dx$$

$$= \int_0^1 1 dx - \int_0^1 \frac{1}{x^2 + 1} dx.$$

It's easy to compute $I_1 = 1$. To compute I_2 you can either use a trig substitution or realize that the integral of $1/(x^2 + 1)$ is $\tan^{-1}(x)$.

Using the trig substitution, let $x = \tan \theta$, $dx = \sec^2 \theta d\theta$ we have

$$\int_0^{/pi/4} \frac{1}{x^2 + 1} dx = \int_0^{\pi/4} \sec^2 \theta \cos^2 \theta d\theta$$
$$= \int_0^1 1 d\theta$$
$$= [\theta]_0^{\pi/4}$$
$$= \frac{\pi}{4}.$$

Then the integral is

$$I_1 - I_2 = \boxed{1 - \frac{\pi}{4}.}$$

Answer: B.

Problem 4 (#, #). Which of the following statements are true?

- (I) The sequence $a_n = \sin(n\pi)$ is convergent.
- (II) The sequence $a_n = \frac{2n^3 + 1}{n n^3}$ is divergent.
- (III) The sequence $a_n = e^{\left(\frac{2n}{n+2}\right)}$ is convergent.

Solution. (II) clearly converges. First rewrite

$$\frac{2n^3+1}{n-n^3}=-\frac{2n^3+1}{n^3-n}$$

make the substitution n = x and use l'Hôpital's rule

$$= -\frac{6x^2}{3x^2 - 1}$$
$$= -\frac{12x}{6x}$$

- (III) converges because the sequence 2n/(n+2) converges to 2, so $a_n \to e^2$.
- (I) is well known to not converge since $\sin \pi x$ changes value from -1 to 1 and as we get closer and closer to infinity, it keeps on moving between these two values.

Answer: E.

Problem 5 (# 5, #). Which of the following statements are true?

- (I) Every positive bounded sequence is convergent.
- (II) The sequence $a_n = \frac{n \cos n}{n^2 + 3}$ is convergent.
- (III) The sequence $a_n = \frac{3^n}{2^{n+1}}$ is convergent.

Solution. (I) is false. Just consider $|\sin(\pi n/2)|$. This sequence goes from 0 to 1, 0 to 1, 0 to 1 indefinitely. This sequence is positive and bounded, but it does not converge.

(II) By l'Hôpital's as $n \to \infty$, $1 + 3/n^2 \to 1$ and $n(1 + 3/n^2) \to \infty$ as $n \to \infty$ so $\lim_{n \to \infty} \frac{\cos n}{n(1 + \frac{3}{n^2})} \to 0.$

Problem 6 (# 6, #). Evaluate the integral $\int_0^1 \frac{x^2}{\sqrt{1-x^2}} dx$. Hint: $\cos(2t) = 1 - 2\sin^2 t$.

Solution. Use a trigonometric substitution $\sin t = x$, $\cos t \ dt = x$ so $0 \le t \le \pi/2$

$$\int_{0}^{1} \frac{x^{2}}{\sqrt{1-x^{2}}} dx = \int_{0}^{\pi/2} \frac{\sin^{2} t}{\cos t} \cos t \, dt$$

$$= \int_{0}^{\pi/2} \sin^{2} t \, dt$$

$$= \frac{1}{2} \left[\int_{0}^{\pi/2} 1 - \cos 2t \right] \, dt$$

$$= \frac{1}{2} \left[\int_{0}^{\pi/2} 1 \, dt - \int_{0}^{\pi/2} \cos 2t \, dt \right]$$

$$= \frac{1}{2} \left[t - \frac{1}{2} \cos 2t \right]_{0}^{\pi/2}$$

$$= \frac{1}{2} \left[\frac{\pi}{2} - (-1) - (0 - 1) \right]_{0}^{\pi/2}$$

$$= \boxed{\frac{\pi}{4}}.$$

Answer: E.

Problem 7 (# 7, #). Evaluate the integral

$$\int_4^9 \frac{\sqrt{x}}{x-1} dx.$$

Hints: $\frac{d}{dx}\sqrt{x} = \frac{1}{2\sqrt{x}}, \ \frac{2}{u^2 - 1} = \frac{1}{u - 1} - \frac{1}{u + 1}.$

Solution. Make the substitution $u^2 = x$, 2u du = dx. Then

$$\begin{split} \int_4^9 \frac{\sqrt{x}}{x-1} dx &= \int_2^3 \frac{u}{u^2-1} 2u \ du \\ &= \int_2^3 \frac{2u^2}{u^2-1} du \\ &= 2 \int_2^3 \frac{u^2}{u^2-1} du \\ &= 2 \int_2^3 \frac{u^2-1+1}{u^2-1} du \\ &= 2 \left[\int_2^3 \left(1 + \frac{1}{u^2-1}\right) du \right] \\ &= 2 \int_2^3 1 \ du + \int_2^3 \frac{2}{u^2-1} du \\ &= 2 \int_2^3 1 \ du + \int_2^3 \left[\frac{1}{u-1} - \frac{1}{u+1} \right] du \\ &= \left[2u + \ln \left| \frac{u-1}{u+1} \right| \right]_2^3 \\ &= \left[6 + \ln \left| \frac{2}{4} \right| - 4 - \ln \left| \frac{1}{3} \right| \right] \\ &= \left[2 + \ln(3/2) \right]. \end{split}$$

Answer: A.

Problem 8 (# 8, #). Find the arc length of the curve $y = 2x^{3/2}$, $0 \le x \le 3$.

Solution. Find the derivative

$$\frac{dy}{dx} = 3\sqrt{x}.$$

Then

$$\int_0^3 \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx = \int_0^3 \sqrt{1 + \left(3\sqrt{x}\right)^2} \, dx$$

$$= \int_0^3 \sqrt{1 + 9x} \, dx$$

make the substitution u = 1 + 9x, du = 9 dx, $1 \le u \le 28$

$$= \frac{1}{9} \int_{1}^{28} \sqrt{u} \, du$$

$$= \int_{1}^{28} u^{1/2} \, du$$

$$= \frac{2}{27} \left[u^{3/2} \right]_{1}^{28}$$

$$= \left[\frac{2}{27} \left(28^{3/2} - 1 \right) \right]_{1}^{28}$$

Answer: E.

Problem 9 (# 9, #). The curve

$$x = \frac{1}{3}(y^2 + 2)^{3/2}, \qquad 1 \le y \le 2,$$

is rotated about the y-axis. The area of the resulting surface is

$$\int_{1}^{2} \frac{2\pi}{3} (y^{2} + 2)^{3/2} (y^{2} + k) dy$$

for some constant k. What is k?

Solution. What we are really looking for is the simplification of

$$\sqrt{1 + \left(\frac{dx}{dy}\right)^2}$$
.

We need to find

$$\frac{dx}{dy} = y\sqrt{y^2 + 1}$$

so

$$\sqrt{1 + \left(\frac{dx}{dy}\right)^2} = \sqrt{1 + \left(y\sqrt{y^2 + 2}\right)^2}$$

$$= \sqrt{1 + y^2(y^2 + 2)}$$

$$= \sqrt{1 + y^4 + 2y^2}$$

$$= \sqrt{y^4 + 2y^2 + 1}$$

$$= \sqrt{(y^2 + 1)^2}$$

$$= y^2 + 1.$$

If we compare this to $\int_1^2 \frac{2\pi}{3} (y^2 + 2)^{3/2} (y^2 + k)$ we see that k = 1.

Answer: C.

Problem 10 (# 10, #). Find the x-coordinate, \bar{x} , of the centroid of the region bounded by y = -2x + 3, y = 0, x = 0 and x = 1.

Solution. First we compute the area of the region

$$A = \int_0^1 -2x + 3$$

= $[-x^2 + 3x]_0^1$
= 2.

Then the mass is 2ρ and the moment about the y-axis is

$$M_y = \rho \int_0^1 x(-2x+3) \, dx$$
$$= \rho \int_0^1 -2x^2 + 3x \, dx$$
$$= \rho \left[-\frac{2}{3}x^3 + \frac{3}{2}x^2 \right]_0^1$$
$$= \rho \left[-\frac{2}{3} + \frac{3}{2} \right]_0^1$$
$$= \frac{5}{6}\rho.$$

So

$$\bar{x} = \frac{M_y}{m} = \frac{(5/6)rho}{2\rho} = \boxed{\frac{5}{12}}.$$

Answer: D.

Problem 11 (#, #). Evaluate the integral

$$\int_0^{\pi/3} \tan^3 x \sec x \, dx.$$

Solution. Use the following trig identity

$$\sec^2 x - \tan^2 x = 1.$$

Rewrite the integral

$$\int_0^{\pi/3} \tan^3 x \sec x \, dx = \int_0^{\pi/3} (\tan^2 x) \tan x \sec x \, dx$$

$$= \int_0^{\pi/3} (\sec^2 x - 1) \tan x \sec x \, dx$$

make the substitution $u = \sec x$, $du = \tan x \sec x \, dx$

$$= \int_{1}^{2} (u^{2} - 1) \tan x \sec x \frac{du}{\tan x \sec x}$$

$$= \int_{1}^{2} u^{2} - 1 du$$

$$= \left[\frac{1}{3} u^{3} - u \right]_{1}^{2}$$

$$= \frac{8}{3} - 2 - \frac{1}{3} + 1$$

$$= \frac{7}{3} - 1$$

$$= \left[\frac{4}{3} \right]_{1}^{2}$$

Answer: C.

Problem 12 (# 12, #). Evaluate the integral $\int_0^{\pi/2} \frac{\cos t}{\sqrt{1+\sin^2 t}} dt$ using the table of integrals formula $\int \frac{du}{1+u^2} = \ln\left(u+\sqrt{1+u^2}\right) + C$.

Solution. Set $u = \sin t$, $du = \cos t dt$, then we have the integral

$$\int_0^{\pi/2} \frac{\cos t}{\sqrt{1 + \sin^2 t}} dt = \int_0^1 \frac{1}{1 + u^2} dt$$

$$= \left[\ln \left(u + \sqrt{1 + u^2} \right) \right]_0^1$$

$$= \ln \left(1 + \sqrt{2} \right) - \ln \left(0 + \sqrt{1 + 0} \right)$$

$$= \left[\ln \left(1 + \sqrt{2} \right) \right]_0^1$$

Answer: A.