Midterm Assignment

1 Q1

1. Incorrect.

Step	Reason
$1. (\neg p \land (p \rightarrow q)) \rightarrow \neg$	q Premise
2. $\neg(\neg p \land (\neg p \lor q)) \lor \neg$	ng Useful law
3. $(p \lor (p \land \neg q)) \lor \neg q$	Double negation law & De Morgen's law
$4. ((p \lor p) \land (p \lor \neg q))$	√¬q Distributive law
5. $(p \land (p \lor \neg q)) \lor \neg q$	Idempotent law
6. $(p \lor \neg q) \land ((p \lor \neg q)$	∨¬q) Distributive law
7. $(p \vee \neg q) \wedge (p \vee (\neg q))$	$(\neg q)$) Associative law
8. $(p \lor \neg q) \land (p \lor \neg q)$	Idempotent law
9. $(p \vee \neg q)$	Idempotent law

It is a contingency.

2. Correct.

On the left hand side:

Step Reason
1.
$$(p \lor q) \to r$$
 Premise
2. $\neg (p \lor q) \lor r$ Useful law
3. $(\neg p \land \neg q) \lor r$ De Morgen's law

On the right hand side:

StepReason1.
$$(p \rightarrow r) \land (q \rightarrow r)$$
Premise2. $(\neg p \lor r) \land (\neg q \lor r)$ Useful law3. $(\neg p \land \neg q) \lor r$ Distributive law

Therefore, they are equivalent.

3. Correct.

For any number $y \in \mathbb{R}$, if $y \neq 0$, there always exists a reciprocal x of y such that xy = 1.

4 Correct

Take n = 1, m = 2 such that $n^2 + m^2 = 5$. So $\exists n \exists m (n^2 + m^2 = 5)$ in the domain of \mathbb{Z} is T.

2 Q2

1. Let propositions p: you finished your homework; q: you can answer this question. Then Premise 1 is $\neg p \rightarrow \neg q$; Premise 2 is p; Conclusion is q.

We want to know if $((\neg p \rightarrow \neg q) \land p) \rightarrow q$ is a tautology.

Step	Reason
1. $((\neg p \rightarrow \neg q) \land p) \rightarrow q$	Premise
2. $\neg (p \lor q) \lor q$	Useful law & Double negation law
$3. (\neg p \land \neg q) \lor q$	De Morgen's law
$4. (\neg p \lor q) \land (\neg q \lor q)$	Distributive law
5. $(\neg p \lor q) \land T$	Negation law
6. $(\neg p \lor q)$	Identity law

It is a contingency, not a tautology. Therefore, the argument form is invalid.

2. Let predicates P(x): student x has submitted his or her homework; Q(x): student x can get 100 in the final exam. Domain is the students in this class. Then Premise 1 is $\forall x P(x) \to \forall x Q(x)$; Premise 2 is $\exists x \neg P(x)$; Conclusion is $\neg \forall x Q(x)$.

We want to know if $((\forall x P(x) \to \forall x Q(x)) \land (\exists x \neg P(x))) \to (\neg(\forall x Q(x)))$ is a tautology.

Step	Reason
1. $((\forall x P(x) \to \forall x Q(x)) \land (\exists x \neg P(x))) \to (\neg \forall x Q(x))$	Premise
2. $((\forall x P(x) \to \forall x Q(x)) \land \neg \forall x P(x)) \to (\neg \forall x Q(x))$	De Morgen's law for quantifier
3. $\neg ((\neg \forall x P(x) \lor \forall x Q(x)) \land \neg \forall x P(x)) \lor (\neg \forall x Q(x))$	Useful law
4. $((\forall x P(x) \land \neg \forall x Q(x)) \lor \forall x P(x)) \lor (\neg \forall x Q(x))$	Double negation law
5. $((\forall x P(x) \lor \forall x P(x)) \land (\neg \forall x Q(x) \lor \forall x P(x))) \lor (\neg \forall x Q(x))$	Distributive law
6. $(\forall x P(x) \land (\neg \forall x Q(x) \lor \forall x P(x))) \lor (\neg \forall x Q(x))$	Idempotent law
7. $(\forall x P(x) \lor \neg \forall x Q(x)) \land ((\neg \forall x Q(x) \lor \forall x P(x)) \lor \neg \forall x Q(x))$	Distributive law
8. $(\forall x P(x) \lor \neg \forall x Q(x)) \land (\neg \forall x Q(x) \lor \neg \forall x Q(x) \lor \forall x P(x))$	Commutative law
9. $(\forall x P(x) \lor \neg \forall x Q(x)) \land (\neg \forall x Q(x) \lor \forall x P(x))$	Idempotent law
10. $\forall x P(x) \lor \neg \forall x Q(x)$	Idempotent law

It is a contingency, not a tautology. Therefore, the argument form is invalid.

3 Q3

Step	Reason
$1. (\neg r \lor (p \land \neg q)) \to (r \land p \land \neg q)$	Premise
2. $\neg(\neg r \lor (p \land \neg q)) \lor (r \land p \land \neg q)$	Useful law
3. $(r \land (\neg p \lor q)) \lor (r \land p \land \neg q)$	De Morgen's law & Double negation law
$4. \ r \wedge ((\neg p \vee q) \vee (p \wedge \neg q))$	Associative law & De Morgen's law
5. $r \land (\neg p \lor ((q \lor p) \land (q \lor \neg q)))$	Associative law & De Morgen's law
$6. \ r \land (\neg p \lor ((q \lor p) \land T))$	Negation law
7. $r \wedge (\neg p \vee (q \vee p))$	Identity law
8. $r \wedge (T \vee q)$	Commutative law & Associative law
9. $r \wedge T$	Domination law
10. <i>r</i>	Identity law

By Addition rule of inference, we have

$$r \rightarrow (r \lor s)$$

that is,

$$(\neg r \lor (p \land \neg q)) \to (r \land p \land \neg q) \to (r \lor s)$$

which is what we need to prove.

4 Q4

1. Let $A = \{1, 1\}$, $B = \{2, 2\}$, then $A \times B = \{(1, 2)\}$, $B \times A = \{(2, 1)\}$. We have $\mathcal{P}(A \times B) = \{\emptyset, (1, 2)\} \neq \mathcal{P}(B \times A) = \{\emptyset, (2, 1)\}$

2. By definition, we have $A \oplus B = (A \cap \overline{B}) \cup (B \cap \overline{A})$. Then

 $(A \oplus B) \oplus B$ $=((A\cap \overline{B})\cup (B\cap \overline{A}))\oplus B$ By definition $= ((A \cap \overline{B}) \cup (B \cap \overline{A}) \cap B) \cup (((A \cap \overline{B}) \cup (B \cap \overline{A})) \cap \overline{B})$ By definition $=((\overline{A}\cup B)\cap(\overline{B}\cup A)\cap B)\cup(((A\cap\overline{B})\cup(B\cap\overline{A}))\cap\overline{B})$ De Morgen's law $=((\overline{A}\cup B)\cap((\overline{B}\cup A)\cap B))\cup(((A\cap\overline{B})\cup(B\cap\overline{A}))\cap\overline{B})$ Associative law $=((\overline{A}\cup B)\cap((\overline{B}\cap B)\cup(A\cap B)))\cup(((A\cap\overline{B})\cap\overline{B})\cup((B\cap\overline{A})\cap\overline{B}))$ Distributive law $=((\overline{A}\cup B)\cap (\emptyset\cup (A\cap B)))\cup (((A\cap \overline{B})\cap \overline{B})\cup ((B\cap \overline{A})\cap \overline{B}))$ Complement law $=((\overline{A}\cup B)\cap (A\cap B))\cup (((A\cap \overline{B})\cap \overline{B})\cup ((B\cap \overline{A})\cap \overline{B}))$ Identity law $= (((\overline{A} \cup B) \cap A) \cap B) \cup ((A \cap (\overline{B} \cap \overline{B})) \cup ((B \cap \overline{B}) \cap \overline{A}))$ Associative law $= (((\overline{A} \cup B) \cap A) \cap B) \cup ((A \cap \overline{B}) \cup ((B \cap \overline{B}) \cap \overline{A}))$ Idempotent law $= (((\overline{A} \cap A) \cup (B \cap A)) \cap B) \cup ((A \cap \overline{B}) \cup ((B \cap \overline{B}) \cap \overline{A}))$ Distributive law $= ((\emptyset \cup (B \cap A)) \cap B) \cup ((A \cap \overline{B}) \cup (\emptyset \cap \overline{A}))$ Complement law $= ((\emptyset \cup (B \cap A)) \cap B) \cup ((A \cap \overline{B}) \cup \emptyset)$ Domination law $= ((B \cap A) \cap B) \cup (A \cap \overline{B})$ Identity law $= (B \cap B \cap A) \cup (A \cap \overline{B})$ Commutative law $= (B \cap A) \cup (A \cap \overline{B})$ Idempotent law $= A \cap (B \cup \overline{B})$ Distributive law $= A \cap U$ Complement law = AIdentity law

- 3. $\forall y \in f(S \cap T), \exists x \in S \cap T \subseteq S \text{ (or } T, \text{ equivalently), we have } y = f(x), \text{ i.e., } f(S \cap T) \subseteq f(S) \cap f(T).$ But reversely, $\forall y \in f(S) \cap f(T), \exists x \in S \text{ (or } T), \text{ we have } y = f(x) \in S \text{ (or } T).$ However, we cannot guarantee that $x \in S \cap T$. Therefore, $f(S \cap T) \subset f(S) \cap f(T)$.
- 4. For any $x \in f^{-1}(S \cap T)$, there exists $y \in S \cap T \subseteq S$ (or T, equivalently) such that y = f(x), i.e., $f^{-1}(S \cap T) \subseteq f^{-1}(S) \cap f^{-1}(T)$. For any $x \in f^{-1}(S) \cap f^{-1}(T)$, there exists $y \in S$ or $y \in T$ such that y = f(x), i.e., $f^{-1}(S) \cap f^{-1}(T) \subseteq f^{-1}(S \cap T)$. Therefore, $f^{-1}(S \cap T) = f^{-1}(S) \cap f^{-1}(T)$

5 Q5

For any infinite set A, then we can extract an element a_1 from A, a_2 from $A - \{a_1\}$, a_3 from $A - \{a_1, a_2\}$,..., a_{n+1} from $A - \{a_1, a_2, ..., a_n\}$ and so on. Then there at least a sequence $S = \{a_1, a_2, ..., a_n\}$ is countable, i.e., $|A| \ge |S|$. However, for any sequence S, we have $|S| = |Z^+|$, i.e., $|A| \ge |Z^+|$. Therefore, there is no infinite set A such that $|A| < |Z^+|$.

6 Q6

$$(\log n)^{\log\log n}, \log(n^n), n^2(\log n)^{20}, n^{20}, 2^n, (n!)^5$$

For $k = 2^{64}$, C = 1, we have

$$(\log n)^{\log\log n} \le C\log(n^n)$$

whenever n > k. Therefore, $(\log n)^{\log \log n} = O(\log(n^n))$.

7 **Q**7

From the question we can get the system of linear congruences as below

$$x \equiv 1 (mod \ 2)$$

 $x \equiv 0 (mod \ 3)$

 $x \equiv 1 \pmod{4}$

 $x \equiv 4 \pmod{5}$

 $x \equiv 3 \pmod{6}$

 $x \equiv 0 \pmod{7}$

 $x \equiv 1 \pmod{8}$

 $x \equiv 0 \pmod{9}$

Since gcd(2,4,8) = 2, gcd(3,9) = 3, we can simplify it. After simplification, we have

$$x \equiv 4 \pmod{5}$$

 $x \equiv 3 \pmod{6}$

 $x \equiv 0 \pmod{7}$

 $x \equiv 1 \pmod{8}$

 $x \equiv 0 \pmod{9}$

Since $x \equiv 4 \pmod{5}$, we have $\exists k \in \mathbb{Z}, x = 4 + 5k$. Substitute into $x \equiv 3 \pmod{6}$, we have

$$4 + 5k \equiv 3 \pmod{6}$$

$$\implies k \equiv 25 \pmod{6} \text{ (since } 5 \times 5 \equiv 1 \pmod{6}\text{)}$$

Similarly, $\exists t \in \mathbb{Z}, k = 25 + 6t \implies x = 129 + 30t$. Substitute into $x \equiv 0 \pmod{7}$, we have

$$129 + 30t \equiv 0 \pmod{7}$$

$$\implies t \equiv 16 \pmod{7} \text{ (since } 4 \times 30 \equiv 1 \pmod{7})$$

Then, $\exists s \in \mathbb{Z}, t = 16 + 7s \implies x = 609 + 210s$. Substitute into $x \equiv 1 \pmod{8}$, we have

$$609 + 210s \equiv 1 \pmod{8}$$

$$\implies$$
 210s \equiv 0(mod 8)

then by definition, we have 8|210s, i.e., 4|105s. Since gcd(4, 105) = 1, then by the property of division, we have 4|s, i.e., $\exists l \in \mathbb{Z}, s = 4l \implies x = 609 + 840l$. Substitute into $x \equiv 0 \pmod{9}$, we have

$$609 + 840l \equiv 0 \pmod{9}$$

$$\implies$$
 840 $l \equiv 3 (mod 9)$

then by definition, we have 9|840l-3, i.e., $3|280l-1 \implies 280l \equiv 1 \pmod{3}$. Since $280 \times 93 \equiv 1 \pmod{3}$, we have

$$l \equiv 93 (mod \ 3)$$

Therefore, $\exists r \in \mathbb{Z}, l = 93 + 3r \implies x = 78729 + 2520r = 609 + 2520(r + 31)$. Thus the solution is $x \equiv 609 \pmod{2520}$.

8 Q8

1. Since (*a* and *b* are integers, just for short)

$$33^{15} \equiv (32+1)^{15} \equiv 32^{15} + a32^{14} \cdot 1 + \dots + b32 \cdot 1^{14} + 1^{15} \equiv 1^{15} \equiv 1 \pmod{32}$$

then $(33^{15} \mod 32)^3 \mod 15 = 1^3 \mod 15 = 1$.

2. By Euclidean algorithm, we have

$$1638 = 7 \times 210 + 168$$
$$210 = 1 \times 168 + 42$$
$$168 = 4 \times 42$$

So gcd(210, 1638) = 42.

3. Since $gcd(34, 89) = 1,34y \equiv 1 \pmod{89}$ has solution.

$$89 = 2 \times 34 + 21$$

$$34 = 1 \times 21 + 13$$

$$21 = 1 \times 13 + 8$$

$$13 = 1 \times 8 + 5$$

$$8 = 1 \times 5 + 3$$

$$5 = 1 \times 3 + 2$$

$$3 = 1 \times 2 + 1$$

$$2 = 2 \times 1$$

we have q = [2, 1, 1, 1, 1, 1, 1, 1, 2] and s = [1, 0, 0, 0, 0, 0, 0, 0], t = [0, 1, 0, 0, 0, 0, 0, 0]. By iterating $s_i := s_{i-2} - s_{i-1}q_{i-1}$ and $t_i := t_{i-2} - t_{i-1}q_{i-1}$, we can get $s_8 = 13$, $t_8 = -34$. So the inverse of 34 modulo 89 is -34.

Therefore, $x \equiv 77 \times (-34) \equiv 52 \pmod{89}$.

4. It is to find the solution of $3^{1000} \mod 10$. (a and b are integers, just for short)

$$3^{1000} \equiv 9^{500} \equiv (10-1)^{500} \equiv 10^{500} + a10^{499}(-1) + ... + b10(-1)^{499} + (-1)^{500} \equiv (-1)^{500} \equiv 1 \pmod{10}$$

So the last decimal digit of 3^{1000} is 1.

9 Q9

Let m = kt, t is odd, then

$$2^{m} + 1 = (2^{k} + 1)(2^{k(t-1)} - 2^{k(t-2)} + \dots - 2^{k} + 1)$$

Suppose *m* has an odd factor greater than one, then let t = 2s + 1, $s \ge 1$. We have

$$2^{m} + 1 = (2^{k} + 1)(2^{ks} - 2^{k(2s-1)} + \dots - 2^{k} + 1)$$

For s = 1, $2^m + 1 = (2^k + 1)(2^{2k} - 2^k + 1)$ is not a prime. For s > 1, we have $k = \frac{m}{2s+1} < m$, so $2^k + 1 < 2^m + 1$, $2^k + 1$ is a factor of $2^m + 1$, leading a contradiction.

10 Q10

1. Valid.

 $(p-1)(q-1) = 88 \times 60 = 5280$, which satisfies gcd(e, (p-1)(q-1)) = 1. $ed = 61 \times 4501 = 274561 = 52 \times 5280 + 1$, so $ed \equiv 1 \pmod{(p-1)(q-1)}$. Therefore, this pair of public key (n, e) and private key d is valid.

2. Invalid.

 $(p-1)(q-1) = 88 \times 60 = 5280$, which satisfies gcd(e, (p-1)(q-1)) = 1. $ed = 89 \times 4501 = 400589 = 75 \times 5280 + 4589$, so ed = 4589 (mod (p-1)(q-1)), not satisfy the requirement. Therefore, this pair of public key (n, e) and private key d is invalid.

3. Invalid.

 $(p-1)(q-1) = 88 \times 60 = 5280$, gcd(e, (p-1)(q-1)) = 30, not satisfy the requirement. Therefore, this pair of public key (n, e) and private key d is invalid.

11 Q11

For the first time, I try to use shift cipher to solve this problem.

```
#include <iostream>
   #include <cstring>
   using namespace std;
   int main()
   {
5
       string s = "qy qaq iloiyu uiwx lwhc oiu lwgc i nat ah srasalizcu yae vcjcp gvao oriz
             yae pc mavvi mcz";
       int len = s.length();
       for (int j = 1; j < 26; j++)
10
           for (int i = 0; i < len; i++)</pre>
11
12
               if(s[i]-'a' >= 0 && s[i]-'a' <= 25)</pre>
13
                   cout.put('a'+(s[i]-'a'+j)%26);
14
               else
15
                   cout.put(s[i]);
           }
17
           cout << endl;</pre>
18
       return 0;
20
   }
21
```

Unfortunately, it failed.

Then, I made a guess to solve this problem. (Color does not mean anything). I started from yea'pc and

Figure 1: Q11

guessed it may be you're. Then I found that i for a word is much probable to be a. Since I had confirmed y is what, then Qy is pretty like to be My and qaq is to be mom. ah is of coming after that, and so on. During the guess, I noticed that l and y do not change before and after the encryption, which means f(12) = 12 and f(25) = 25. Thus, I had a guess, maybe the encryption function is in the form of

 $f(p) = (ap + b) \mod 26$. After that, I tried to use $12 \equiv 12a + b \pmod{26}$ and $25 \equiv 25a + b \pmod{26}$ to solve the function. After tested some special cases, I found with a = 5, b = -22, the function can be used to decryption. Therefore, I solved for an inverse function of that and the encryption function is as

$$f(p) = 21p + 462 \mod 26$$

It worked well.