امة	العلا	عناصر الإجابة على الموضوع الأول					
مجموع	مجزأة	034, 63-3-1, 62-1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1					
		التمرین الأول: ($03,5$) التمرین الأول: ($03,5$) 1- جدول تقدم التفاعل: 0.0					
	0,25x3	$S_20_{3\ (aq)}^{2-} + 2H_30_{(aq)}^{+} = S_{(s)}^{} + SO_{2(g)}^{} + 3H_20_{(I)}^{}$ المعادلة كميات المادة بالمول $X=0$ N_{01} N_{02} N_{02} N_{02} N_{03} N_{01} N_{02} N_{03}					
	0,25	: تحديد المتفاعل المحد : $n_{01} - x_{max} = 0 \Rightarrow x_{max} = n_{01} = c_1 v_1 = 0, 5 \times 0, 480 = 0, 24 mol$					
	0,25	$n_{02} - 2x_{\text{max}} = 0 \Rightarrow x_{\text{max}} = \frac{n_{02}}{2} = \frac{c_2 v_2}{2} = \frac{5 \times 0,02}{2} = 0,05 \text{mol}$					
3,5	0,25	$_{\rm X_{max}}=0.05{ m mol}$ ومنه المتفاعل المحد هو $_{\rm (aq)}^{+}$ و					
	0,25	H_3O^+ ، $S_2O_3^{2-}$: سبب اختفاء شوارد $S_2O_3^{2-}$: $S_2O_3^{2-}$ ، $S_2O_3^{2-}$					
	0,25	4- أ- تعريف السرعة الحجمية للتفاعل : هي مقدار تغير تقدم التفاعل بدلالة الزمن في وحدة الحجوم $v_{vol} = rac{1}{V} imes rac{dx}{dt}$: وتعطى بالعلاقة : $v_{vol} = rac{1}{V} imes rac{dx}{dt}$					
	0,25x2	$v_{vol} = -\frac{1}{170V} \times \frac{d\sigma(t)}{dt} \Leftarrow \frac{dx}{dt} = -\frac{1}{170} \times \frac{d\sigma(t)}{dt} \Leftarrow x = \frac{20,6-\sigma(t)}{170}$ $v_{vol} = -\frac{1}{170V} \times \frac{d\sigma(t)}{dt} = -170 \frac{dx}{dt} \Rightarrow \sigma(t) = 20,6-170x \text{otherwise}$ $v_{vol} = -\frac{1}{170V} \times \frac{d\sigma(t)}{dt} \Leftarrow \frac{1}{V} \frac{d\sigma(t)}{dt} = -170 \frac{1}{V} \frac{dx}{dt} = -170v_{vol}$ $e_{vol} = -\frac{1}{170V} \times \frac{d\sigma(t)}{dt} = -170 \frac{1}{V} \frac{dx}{dt} = -170v_{vol}$ $e_{vol} = -\frac{1}{170V} \times \frac{d\sigma(t)}{dt} = -170 \frac{1}{V} \frac{dx}{dt} = -170v_{vol}$					
	0,25	$v_{vol} = \frac{1}{170 \times 0.5 \times 10^{-3}} \times \frac{0 - 5 \times 4.12}{158.7 - 0} = 1,53 mol \cdot m^{-3} \cdot s^{-1} = 1,53 \times 10^{-3} mol \cdot L^{-1} \cdot s^{-1}$					
	0,25	د- تعريف زمن نصف التفاعل: هو الزمن اللازم لبلوغ تقدم التفاعل نصف قيمته النهائية.					
	0,25 0.25	$\sigma(t_{1/2}) = 20,6 - 170 \times 0,025 = 16,35 (S/m)$ قيمته: ($t_{1/2} = 48,3s = 0,5$ ومن البيان نجد: $t_{1/2} = 48,3s = 0$ ملاحظة: تقبل القيم القريبة من هذه القيمة					

الإجابة النموذجية وسلم التنقيط مادة: العلوم الفيزيائية الشعبة: رياضيات وتقني رياضي دورة: جوان 2015

العلامة		عناصر الإجابة على الموضوع الأول
مجموع	مجزاة	
		التمرين الثاني: (30 نقاط) التمرين الثاني: (3 نقاط) التمرين الثاني: $C o {}^{14}_{6} C o {}^{4}_{7} X + {}^{0}_{1} e$ حيث:
	0,25×2	${}_{6}C \rightarrow {}_{2}X + {}_{-1}e $
	0.05	$_{7}N \Leftarrow _{7}X \leftarrow Z = 0 - (-1) = 79 X - 14 - 0 - 14$ $_{6}^{14}C \rightarrow _{7}^{14}N + _{-1}^{0}e$
	0,25	
		2- أ- طاقة الربط:
	0,25×2	$E_{l}({}^{14}_{6}C) = (6m_{P} + 8m_{n} - m({}^{14}_{6}C)).c^{2}$
		$= (6 \times 1,00728 + 8 \times 1,00866 - 13,99995) \times 931,5 = 105,268815 MeV$
	0.05	$rac{E_{l({}_{0}^{14}C)}}{14}=rac{105,27}{14}=7,52 MeV/nuc:14$ ب- طاقة الربط لكل نوبة لنواة الكربون
3,0	0,25	14 14
		3- أ- عدد أنوية الكربون 12 و الكربون 14.
	0,25	$N(^{12}C) = \frac{0.15 \times 6.02 \times 10^{23}}{12} = 7.525 \times 10^{21} noyaux$
	0,23	12
	0,25	$N_0(^{14}C) = 7,525 \times 10^{21} \times 1,2 \times 10^{-12} = 9,03 \times 10^9 $ noyaux
		ب- النشاط الابتدائي A_0 : $In(2) \times N$ $= 0.03 \times 10^9 \times \ln 2$
		$A_0 = \lambda N_0 = \frac{\ln(2) \times N_0}{t_{1/2}} = \frac{9,03 \times 10^9 \times \ln 2}{5730 \times 31536 \times 10^3} = 0,0346Bq$
	0,25×2	1/2
		$t = \frac{t_{1/2} \times \ln \frac{A_0}{A(t)}}{\ln 2} = \frac{5730 \times \ln \frac{0,0346}{0,023}}{\ln 2} = \frac{3375,76ans}{3.75,76ans}$
	0,25×2	$t = \frac{A(t)}{1.00} = \frac{0,023}{1.000} = 3375,76$ عمر الخشبة:
		ln2 ln2 32es - 多4o-
		التمرين الثالث: (03 نقاط) 1-أ- تمثيل القوى الخارجية: ←
	المرسم	
	الرسم 0,25	$\sum \overline{F_{ext}} = m \overline{a} \Rightarrow \overline{P} + \overline{f} = m \overline{a}$ ب- بتطبيق القانون الثاني لنيوتن $F_{ext} = m \overline{a} \Rightarrow \overline{P} + \overline{f} = m \overline{a}$
	0,25×2	$mg - Kv = ma = m \frac{dv}{dt} \Rightarrow \frac{dv}{dt} + \frac{k}{m}v = g : OZ$ وبالإسقاط على
	0.05.0	$\frac{dv}{dt} = 0 \Rightarrow \frac{k}{m} v_{\text{lim}} = g \Rightarrow v_{\text{lim}} = \frac{mg}{k}$: v_{lim} السرعة الحدية
2.0	0,25×2	u = m
3,0	0,25	$v_{lim}=2.0~m/s$ أ- برسم المستقيم المقارب الأفقي للمنحنى نجد:
	0,25×2	$k = \frac{mg}{v_{\text{lim}}} \Rightarrow [k] = \frac{[M][g]}{[v_{\text{lim}}]} = \frac{[M][L][T]^{-2}}{[L][T]^{-1}} = [M][T]^{-1} : k$ ب- وحدة
	0,23^2	$ v(m/s) $ $ v_{\lim} [v_{\lim}] [L][T]^{-1} $ ومنه وحدة k هي Kg/s
	0.2542	
	0,25×2	$rac{m}{k} = rac{v_{ m lim}}{g} = rac{2}{10} = 0, 2s$ حساب قيمة m/k من عبارة السرعة الحدية نجد
	0,25 0,25	t(s) التسارع يتناقص بمرور الزمن خلال النظام الانتقالي وينعدم عند بلوغ النظام الدائم. $t(s)$
	0,25	4- منحنى السرعة للسفوط الشافوني في الفراع:

الإجابة النموذجية وسلم التنقيط مادة: العلوم الفيزيائية الشعبة: رياضيات وتقني رياضي دورة: جوان 2015

العلامة		عناصر الإجابة على الموضوع الأول
مجموع	مجزأة	
	0,25×2	التعرین الرابع: (3,5 نقطة) 1 - ایجاد المعادلة التفاضلیة: بتطبیق قانون جمع التوترات نجد: (1) $\frac{di}{dt} + \frac{(R+r)}{L}i = \frac{E}{L} \Leftarrow L\frac{di}{dt} + (R+r)i = E \Leftrightarrow u_R + u_b = E$ وهي من الشكل: $\frac{di}{dt} + \alpha i = \beta$
	0,25×2	$eta=rac{E}{L}$ و $lpha=rac{R+r}{L}$ بالمطابقة نجد: $lpha=rac{E}{L}$ و $lpha=rac{R+r}{L}$ -2
	0,25×2	$\beta = \beta \Leftarrow \beta e^{-\alpha t} + \alpha \frac{\beta}{\alpha} - \alpha \frac{\beta}{\alpha} e^{-\alpha t} = \beta \Leftarrow \frac{di}{dt} = \beta e^{-\alpha t} \leftarrow i(t) = \frac{\beta}{\alpha} (1 - e^{-\alpha t})$ $e^{-\alpha t} = \beta e^{-\alpha t} + \alpha e^{-\alpha t} = \beta e^{-\alpha t} = \beta e^{-\alpha t} = \beta e^{-\alpha t}$ $e^{-\alpha t} = \beta e^{-\alpha t} + \alpha e^{-\alpha t} = \beta e^{-\alpha t}$ $e^{-\alpha t} = \beta e^{-\alpha t} + \alpha e^{-\alpha t} = \beta e^{-\alpha t} $
3,5	0,25	$ u_b(t) = L \frac{di}{dt} + ri = L \frac{E}{L} e^{-x\frac{R+r}{L}t} + r \frac{E}{R+r} - r \frac{E}{R+r} e^{-x\frac{R+r}{L}t} $ $ = E e^{-\frac{R+r}{L}t} (1 - \frac{r}{R+r}) + \frac{rE}{R+r} = \frac{R+r-r}{R+r} E e^{-\frac{R+r}{L}t} + \frac{rE}{R+r} = \frac{E}{R+r} (r + Re^{-\frac{R+r}{L}t}) $
	0,25	$u_b(t) = E - u_R = E - RI(1 - e^{\frac{R+r}{L}t}) = (R+r)I - RI + RIe^{\frac{R+r}{L}t} = rI + RIe^{\frac{R+r}{L}t} = \frac{E}{R+r}(r + Re^{\frac{R+r}{L}t})$ u_b
	0,25	E=6V : القوة المحركة الكهربانية للمولد
	0,25	$r=rac{1,5R}{E-1,5}=rac{1,5 imes 15}{6-1,5}=5\Omega eq rac{Er}{R+r}=1,5$ مقاومة الوشيعة: $ au=25ms$ – ثابت الزمن: $ au=25ms$
	0,25 0,25	$L = \tau(R+r) = 0,025 \times 20 = 0,5H$ - الذاتية:
	0,25	$E_{(L)}=rac{1}{2}L\cdot i^2=rac{1}{2}L(rac{E}{R+r})^2(1-e^{-rac{R+r}{L}t})^2$: عبارة الطاقة اللحظية $E_{l}=Li^2/2$ نقبل الجواب غيل الجواب
	0,25	: قيمة الطاقة في النظام الدانم : $E_{(L)} = \frac{1}{2}L \cdot I_0^2 = \frac{1}{2}L \left(\frac{E}{R+r}\right)^2 = \frac{1}{2} \times 0,5 \left(\frac{6}{15+5}\right)^2 = 2,25 \times 10^{-2} J$

الإجابة النموذجية وسلم التنقيط مادة: العلوم الفيزيائية الشعبة: رياضيات وتقني رياضي دورة: جوان 2015

العلامة		عناصر الإجابة على الموضوع الأول
مجموع	مجزأة	
		التمرين الخامس: (3,5 نقطة)
	0,25	1- أ- نطبق م إ الطاقة على المتزلج بين A و B.
	0,25	$Epp_A + Ec_A - W_{(AB)}(f) = Epp_B + Ec_B$
		$h_A - h_B = AB \times \sin \alpha$ $mg(h_A - h_B) - \frac{1}{2}mv_B^2 = f \times AB$ ومنه:
	0,25	
		$f = \frac{m(g \times AB \times \sin \alpha - 0, 5 \cdot v_B^2)}{AB} = \frac{80(10 \times 50 \times 0, 5 - 0, 5 \times 20^2)}{50} = 80N$
		ب- تحديد طبيعة الحركة :
	0,25	$X'X$ بالإسقاط على $\sum \overline{F_{ext}} = m \overrightarrow{a} \Rightarrow \overline{P} + \overline{R} + \overline{f} = m \overrightarrow{a}$
	0.25	$mg \sin \alpha - f = ma \Rightarrow a = g \sin \alpha - \frac{f}{m} = C^{te}$
	0,25	ومنه الحركة م م بانتظام معادلتها:
	0,25	$a = \frac{v^2}{2x} = \frac{400}{100} = 4m/s^2$
	0,23	يمكن استعمال طرق أخرى
		ر معادلة المسار : بتطبيق القانون الثاني لنيوتن : $\vec{a} = \vec{g} \Leftarrow \sum_{r} \vec{F}_{ext} = \vec{P} = m\vec{a}$
3,5		$u-g \leftarrow \sum_{ext} r_{ext} - r - ma$ بالإسقاط على :'xx' نجد
	0,25	$a_x = 0 \Rightarrow V_x = V_C \Rightarrow x(t) = V_C \cdot t$
	0,25	بالإسقاط على 'yy' نجد : dV.
	0,23	$c = 0 \leftarrow t = 0 \text{ if } V_y = -gt + c = -gt \Leftarrow \frac{dV_y}{dt} = -g \Leftarrow a_y = -g$
		$y = -\frac{1}{2}gt^2 + c' \Leftarrow V_y = \frac{dy}{dt} = -gt$
	0,25	$c' = h \leftarrow t = 0 : $
	0,25	$y = -\frac{g}{2V_c^2}x^2 + h \leftarrow t = \frac{x}{V_c}$
:		$V^2 = V_x^2 + V_y^2 = V_C^2 + (-gt)^2$ -3
	0,25	$V^2=g^2t^2+V_C^2$ - العلاقة النظرية: $V^2=g^2t^2+V_C^2$
	0,25	$V_C = 10m/s \iff V_C^2 = 100m^2/s^2$ ب- بیانیا:
	0,25	$V_E = 15m/s \Leftarrow V_E^2 = 225m^2/s^2$
	0.25	جــ الإرتفاع h : بتطبيق م إ الطاقة بين C و E نجد: 225 - 100 - 225 - 100
	0,25	$h = \frac{V_E^2 - V_c^2}{2 \cdot g} = \frac{225 - 100}{20} = 6,25m$
		t_{E} تقبل طريقة استعمال المعادلة الزمنية بعد حساب

العلامة		عناصر الإجابة على الموضوع الأول						
مجموع	مجزأة							
	0,25			$O_{3(aq)}^- + H_3 O^+_{(aq)}$	التمرين التجريبي: (5 1- معادلة التفاعل: (ر 5 ب- جدول التقدم:			
		المعادلة $C_3 H_6 O_{3(aq)} + H_2 O_{(I)} = C_3 H_5 O_{3(aq)}^- + H_3 O^+_{(aq)}$ عميات المادة بالمول كميات المادة بالمول						
	0,50	التقدم حالة الجملة 0 ابتدائية	عده بالمون بوفرة	حمیات اله	0			
		$egin{array}{ccccc} x & n_0 - x & & & & & \\ n_0 - x & & & & & & \\ x_{\acute{e}q} & & & & & & \\ & & & & & & \\ & & & & & $		X Xéq	X X _{éq}			
	0,25×3	$\left[H_3O^+\right]_{\acute{e}q} = 10^{-2.4} = 3.98 \times 10^{-2.4}$		·	جــ تراكيز الأفراد الكيمي			
	0,23^3	$\begin{bmatrix} C_3 H_5 O_3^- \end{bmatrix}_{\ell q} = \begin{bmatrix} H_3 O^+ \end{bmatrix}_{\ell q} = -$ $\begin{bmatrix} C_3 H_6 O_3 \end{bmatrix}_{\ell q} = C - \begin{bmatrix} H_3 O^+ \end{bmatrix}_{\ell q}$,					
	0,25	$pka = pH - \log \frac{\left[C_{3}H_{5}O_{3}^{-}\right]_{eq}}{\left[C_{3}H_{6}O_{3}\right]_{eq}} =$	2,4-log0,0)4145 = 3,78 : (3,4 -	د- ثابت الحموضة pka .			
3,5	0,50	$C_3H_6O_{3(aq)}+H_6$	$O^{-}_{(aq)} = C_3 H_3$	$_{5}O_{3(aq)}^{-} + H_{2}O_{(l)}$	2-أ- معادلة المعايرة:			
					$:C_a$ بب التركيز عند التكافو :			
	0,25×2	$C_a = \frac{C_b \cdot V_{bE}}{V_a} = \frac{2 \times 1}{V_a}$	$\frac{0^{-2} \times 28,3}{10} = 0$	0,0566mol/L	$ \Leftarrow C_a \cdot V_a = C_b \cdot V_{bE} $			
	0,25	140	00 7 66		=5,66mol/L ومنه:			
	0,25	$p = \frac{MC_0}{10d} = \frac{MC_0}{10 \times \frac{\rho}{\rho}} =$	$\frac{90 \times 5,66}{10 \times \frac{1,13}{1}} =$	= 45,08 \approx 45	جـ النسبة المنوية: %			
A COLUMN A C	0.25	$p = \frac{m'}{m} = \frac{50}{1}$ وذلك بأخذ الحجم	$\frac{09,4}{130} = 0,43$					
	0,25			لاصقة صحيح.	نستنتج أن ما كتب على ال			

الإجابة النموذجية وسلم التنقيط مادة: العلوم الفيزيائية الشعبة: رياضيات وتقني رياضي دورة: جوان 2015

	العلامة	عناصر الإجابة على الموضوع الثاني
مجموع	مجزأة	
		التمرين الأول: (03 نقاط)
	0,25×2	$1-1$ معادلة التفكك: $Re o rac{186}{75} Re o rac{186}{76} Os + rac{A}{2} X$ المعادلة التفكك: $Re o rac{186}{75} Re o rac{186}{75} Re$
		$^{186}_{75}Re \rightarrow ^{186}_{76}Os + ^{0}_{-1}e$ ومنه $Z = 75 - 76 = -1$; $A = 186 - 186 = 0$
	0,25	eta^- : نمط التحول eta^-
	0,20	etaتعريف eta : يحدث في الأنوية التي بها فائض في عدد النيترونات حيث يتحول نيترون إلى eta
	0,25	بروتون مع إصدار الكترون وفق المعادلة : $p + \frac{1}{2}p + \frac{0}{2}e$
	0,25	$A_0=4 imes10^9~Bq$: من البيان نجد : $A_0=4 imes10^9~Bq$
	0,25	ب- تعريف t _{1/2} : هو الزمن اللازم لتفكك نصف عدد أنويه العيّنة (أو تناقص نشاط العيّنة إلى
3,0	0.25	النصف)
	0,25	بیانیا نجد : t _{1/2} =3,5jours.
		In 2 In 2
	0,25	$\lambda = \frac{\ln 2}{t_{1/2}} = \frac{\ln 2}{3.5} = 0.198 j^{-1} = 2.3 \times 10^{-6} s^{-1}$: $\lambda = \frac{1}{2} = \frac{1}{3.5} = 0.198 j^{-1} = 2.3 \times 10^{-6} s^{-1}$
		-1/2
		3- عدد أنوية Re عند إلى عند الله عند ا
		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	0,25×2	$N(t_1) = \frac{A_0 \times e^{-\lambda t_1}}{\lambda} = \frac{4 \times 10^9 e^{-0.198 \times 10}}{2.3 \times 10^{-6}} = 2.4 \times 10^{14} noyaux$
		$N(t_1) = \frac{1}{\lambda} = \frac{1}{2,3 \times 10^{-6}} = 2,4 \times 10^{-6}$
		:V = -4
	0,25×2	$V = \frac{1,2 \times 10^{14} \times 10}{2,4 \times 10^{14}} = 5,0 ml \iff \begin{cases} 2,4 \times 10^{14} \to 10 mL \\ 1,2 \times 10^{14} \to V \end{cases}$
		$2,4\times10^{-1} \qquad (1,2\times10^{-1}\rightarrow V)$

العلامة		عناصر الإجابة على الموضوع الثاني				
مجموع	مجزأة					
	0,25	التمرين الثاني: (3.5 نقطة) - رسم الدارة: - رسم الدورة: - بتطبيق قانون جمع التوترات نجد: التعلق قانون جمع التوترات نجد :				
	0,25×2	$RC\frac{du_{C}}{dt} + u_{C} = E \Leftarrow u_{C} + u_{R} = E$ $\frac{du_{C}}{dt} + \frac{u_{C}}{RC} = \frac{E}{RC} \Rightarrow 0$ $\frac{du_{C}}{dt} = \frac{A}{RC} e^{-\frac{1}{\tau}} \Leftarrow u_{C}(t) = A(1 - e^{-\frac{1}{\tau}}) : 0$				
3,5	0,25×2	وبالتعويض في المعادلة التفاضلية: $Ae^{-\frac{t}{\tau}}(\frac{1}{\tau}-\frac{1}{RC}) + \frac{A}{RC} - \frac{E}{RC} = 0 \Leftarrow \frac{A}{\tau}e^{-\frac{t}{\tau}} + \frac{A}{RC} - \frac{A}{RC}e^{-\frac{t}{\tau}} = \frac{E}{RC}$ $\Rightarrow Ae^{-\frac{t}{\tau}}(\frac{1}{\tau}-\frac{1}{RC}) = 0$ $\Rightarrow Ae^{-\frac{t}{\tau}}(\frac{1}{\tau}-\frac{1}{RC}) = 0$ $\Rightarrow A = E \Leftarrow \frac{A}{RC} = \frac{E}{RC} \Leftarrow \frac{A}{RC} - \frac{E}{RC} = 0$ $\Rightarrow T = RC \Leftarrow \frac{1}{\tau} - \frac{1}{RC} = 0$ $\Rightarrow u_{C}(t) = E(1-e^{-\frac{t}{RC}})$ eais				
3,3	0,25	$\ln(E-u_c) = -\frac{t}{\tau} + \ln E \iff E-u_C = Ee^{-\frac{t}{\tau}} \iff u_C = E-Ee^{-\frac{t}{\tau}}$: اثبات العلاقة: -5				
	0,25	: العبارة البيانية : $ln(E-u_C)=at+b$ حيث: E حيث: $ln(E-u_C)=-1000t+1,5 \Leftarrow a=\frac{0-1,5}{(1,5-0)\times 10^{-3}}=-1000 \;\;; \;\; b=1,5$ وبالمطابقة نجد : $E=1,5$				
	0,25	$C = \frac{\tau}{R} = \frac{0,001}{100} = 10,0 \mu F \Leftarrow \tau = \frac{1}{1000} = 0,001s$: C و من τ و کل من τ				
	0,25×2	$E_C(t) = \frac{1}{2}Cu_C^2 = \frac{1}{2}CE^2(1-e^{-\frac{t}{RC}})^2$: delia il delia				
	0,25	: $\frac{1}{CF^2(1-a^{-1})^2}$				
	0,25	$\frac{E_C(\tau)}{E_C(\infty)} = \frac{\frac{1}{2}CE^2(1 - e^{-1})^2}{\frac{1}{2}CE^2} = (1 - e^{-1})^2 \approx 0.4$				
	0,25	$C_{eq} = \frac{C}{4} \Leftarrow C_{eq} \times R = \frac{RC}{4} \Leftarrow \tau' = \frac{\tau}{4} : C' \text{ in a point } -7$				
	0,25	ومنه المكثفة تربط على التسلسل مع المكثفة السابقة. $C' = \frac{C}{3} = \frac{10}{3} = 3,33 \mu F \iff \frac{1}{C} = \frac{1}{C} = \frac{1}{C} = \frac{4}{C} - \frac{1}{C} = \frac{3}{C} \iff \frac{1}{C_{eq}} = \frac{1}{C} + \frac{1}{C'}$				

الإجابة النموذجية وسلم التنقيط مادة: العلوم الفيزيائية الشعبة: رياضيات وتقني رياضي دورة: جوان 2015

العلامة		عناصر الإجابة على الموضوع الثاني					
مجموع	مجزأة	• •					
		التمرين الثالث: (3.5 نقطة) 1-أ-					
	0,25	$IV II \ 4 \ (aq) = IV II \ 3 \ (aq) \ (aq)$					
	,	$H^{-+}_{(aq)} + HO^{-}_{(aq)} = H_{-2}O^{-}_{(l)}$					
		ومنه التفاعل حمض- أساس ب- جدول التقدم					
	0,25×2	$NH_{4(aq)}^{+} + HO_{(aq)}^{-} = NH_{3(aq)} + H_{2}O_{(l)}$					
	0,23 2	التقدم حالة الجملة المول التقدم حالة الجملة المول					
		بو فرة 0 n ₀ n ₀ الابتدانية					
		الانتقالية x n ₀ -x x x					
		النهانية x _{eq} n ₀ -x _{eq} n' ₀ -x _{eq} X _{eq}					
		التقدم الأعظمي:					
		$x_{max} = C_1 V_1 = n_0 = 0.15 \times 20 \times 10^{-3} = 3 \times 10^{-3} mol \iff C_1 V_1 - x_{max} = 0$					
;	0,25	$x_{max} = C_2 V_2 = n_0' = 0.15 \times 10 \times 10^{-3} = 1.5 \times 10^{-3} mol \iff C_2 V_2 - x_{max} = 0$					
	0,25×2	$x_{max} = 1.5 \times 10^{-3} mol$ وبالتالي: HO وبالتالي: $x_{max} = 1.5 \times 10^{-3} mol$					
3,5		max = 1,5 × 10 mov ig is 15 120 5					
3,0		جـ- البر هان:					
	0,25×2	$n_{\acute{e}q(HO^{-})} = n'_{0} - x_{\acute{e}q} \Rightarrow x_{\acute{e}q} = n'_{0} - n_{\acute{e}q(HO^{-})} = n'_{0} - \left[HO_{(aq)}^{-}\right]_{eq} \times V_{T} = n'_{0} - 10^{-14+pH} \times V_{T}$					
		$x_{eq}=1,5 imes10^{-3}-10^{-14+9.2} imes30 imes10^{-3}\simeq 1,5 imes10^{-3}$ سانسية النهائية لتقدم التفاعل:					
	0,25×2	التفاعل تام. $ au_f = \frac{x_{eq}}{x} = 1$					
		· max					
		2- أ- التركيز C _a :					
	0,25×2	$C_a = \frac{C_b \cdot V_{bE}}{V_a} = \frac{0.2 \times 14}{10} = 0.28 mol / L$					
		$^{ u}_{a}$ $^{ u}_{a}$ عساب كتلة الأزوت في العينة:					
		The state of the s					
	0.25	$m_{(N)} = 1,96g \iff \begin{cases} 1 m o l \to 28 g \\ 0,28 \times 250 \times 10^{-3} m o l \to m_N \end{cases}$					
	0,25	$(0,26\times230\times10^{-10})$					
		ب- حساب النسبة المئوية:					
		$\%N = \frac{m_N}{m} = \frac{1,96}{6} \approx 0,33 = 33\%$					
	0,25	$7017 = \frac{1}{m} = \frac{1}{6} = 0.33 = 3376$					
	0,23	المالة الصد في الجالم من					
		هذا يطابق ما كتب على اللاصقة.					

الإجابة النموذجية وسلم التنقيط مادة: العلوم الفيزيائية الشعبة: رياضيات وتقني رياضي دورة: جوان 2015

<u></u> لامة	الع	عناصر الإجابة عنى الموضوع الثاني
مجموع	مجزأة	
	0,25	التمرين الرابع: (03 نقاط) ملاحظة: تبدو المنطقة التي تنتمي إليها النقطة B صغيرة نسبيا لأن الشبكة تخفي جزءا منها أمام اللاعب الموجود في النقطة O. 1- تمثيل القوة: X X
	0,25	~ 1 - المعادلات الزمنية : $\overline{F}_{ext} = \overrightarrow{P} = m \overrightarrow{a}$: الثاني لنيوتن $\overline{F}_{ext} = \overrightarrow{P} = m \overrightarrow{a}$
	0,25	$a_x=0 \Leftarrow 0=ma_x:$ (ox) ومنه الحركة وفق (ox) مستقيمة منتظمة معادلتها $x(t)=v_0t:$ - بالإسقاط على (oy) :
	0,25	$v_y = -gt + c \iff a_y = \frac{dv_y}{dt} = -g \iff -mg = ma_y$
3,0	0,25	$v_y = -gt = \frac{dy}{dt} \Leftarrow v_{0y} = c = 0 \leftarrow t = 0$ ومنه: $y = -\frac{1}{2}gt^2 + c' \Leftarrow \frac{dy}{dt} = -gt$
	0,25	$y(t) = -\frac{1}{2}gt^2 + h \iff y = c' = h \iff t = 0$
	0,25×2	$y = -\frac{g}{2v_0^2} \cdot x^2 + h = -4 \cdot 10^{-3} \cdot x^2 + 2, 2 \leftarrow t = \frac{x}{v_0}$
	0,25×2	$x=12,2m$: مل تمر الكرة فوق الشبكة : نعوض في معادلة المسار بـ: $y_F = -4 \cdot 10^{-3} \times (12,2)^2 + 2,2 = 1,6 m > 0,92 m$ ومنه الكرة تمر فوق الشبكة .
	0,25×2	$y_{B}=0$: عند الموضع B فإن $y_{B}=0$ ومنه: $x_{B}=\sqrt{\frac{2,2}{0.004}}=23,45m>18,7m \Leftrightarrow -4\cdot10^{-3}\cdot x_{B}^{2}+2,2=0$
	0,23/2	$x_B = \sqrt{\frac{0,004}{0,004}} = 25,45m > 16,7m \leftarrow -4.10 - x_B + 2,2 = 0$

الإجابة النموذجية وسلم التنقيط مادة: العلوم الفيزيائية الشعبة: رياضيات وتقني رياضي دورة: جوان 2015

مة	العلا	Title a death to delay water
مجموع	مجزأة	عناصر الإجابة على الموضوع الثاني
	0,25×2	R_A T_A Y' X T_B R_B R_B R_B
	0,25	بتطبیق القانون الثانی لنیوتن : $\sum \overline{F_{ext}} = \overline{P_A} + \overline{R_A} + \overline{T_A} + \overline{f} = m_A \overline{a} : (A)$ العربة (A) بالإسقاط على (X'X)(1) العربة (B) بالإسقاط على (C) برتان العربة (B) برتان (B)
		$\sum_{i} \overline{F}_{ext} = \overline{P}_{A} + \overline{R}_{A} + \overline{T}_{A} = m_{B} \vec{a} : (B)$ العربة (CVIX) العربة (AVIX)
	0,25	$m_B g \sin lpha - T_B = m_B a$ (2) (Y'Y) بالإسقاط على $m_B g \sin lpha - f = a(m_A + m_B)$ ومنه : $T_A = T_B$ ومنه :
3,5	0,23	
	0,25	$4.5 \int_{-\frac{\pi}{2}}^{V(m/s)} (I) \dots \frac{dv}{dt} + \frac{f - m_B g \sin \alpha}{m_A + m_B} = 0$
	0,25	$eta = rac{f - m_B g \sin lpha}{m_A + m_B}$ حيث: $rac{dv}{dt} + eta = 0$
		2 (s) 0,5 2 (s) 2-1- تحديد المنحنى الموافق لكل عربة :
	0,25 0,25	- البيان (1) يوافق العربة (B) لأنه بعد انقطاع الخيط تزداد سرعتها . - البيان (2) يوافق العربة (A) لأنه بعد انقطاع الخيط تتناقص سرعتها بسبب قوة الاحتكاك حتى تتوقف. ب- تسارع كل عربة بيانيا :
	0,25×2	$a'_{B} = \frac{\Delta v}{\Delta t} = \frac{4,5-2}{0,5-0} = 5,0 m / s^{ 2}$ $a'_{A} = \frac{\Delta v}{\Delta t} = \frac{0-2}{2-0} = -1,0 m / s^{ 2}$
	0,25	$d=rac{1}{2} imes2 imes2=2$ المسافة المقطوعة من طرف العربة .A
		حب استنتاج شدة قوة الاحتكاك : العربة (A) : من المعادلة التفاضلية رقم (I) :
	0,25	$f = -m_A a'_A = -0, 3 \times (-1, 0) = 0, 3N \Leftarrow a'_A + \frac{f}{m_A} = 0$
	0,25	$\alpha=30^{\circ} \Leftarrow \sin\alpha=\frac{a_B}{g}=\frac{5}{10}=0,5 \Leftarrow a_B-g\sin\alpha=0$: (B) العربة
	<u> </u>	

العلامة مجزأة مجموع				<u>.</u>	ر الموضوع الثان <u>م</u>	صر الإجابة علم	عناد		
مجموع	مجراه								
	0,25×2	$Zn = Zn^{2+} + 2\acute{e}$ $Zn = Zn^{2+} + 2\acute{e}$ $2H_3O^+ + 2\acute{e} = H_2 + 2H_2O$ الْتَفَاعَل: $2n_{(x)} + 2H_3O_{(aa)}^+ = H_{2(aa)} + Zn_{(aa)}^{2+} + 2H_2O_{(b)}$							
								2- جدول التقدم:	
		مادلة		$Zn_{(s)} +$	2 H ₃ O ⁺ _(aq) =			$-2H_2O_{(l)}$	
	0,25×2	حالة الجملة	التقدم			ات المادة بالموا	<i>کمی</i>		
		ابتدائية	0	n ₀₁	n ₀₂	0	0	بوفرة ا	
3,5		انتقالیة نهائیة	X	n ₀₁ -x	n ₀₂ -2x	X	X		
3,5		بهانيه	X _{max}	n ₀₁ -x _{max}	n_{02} - $2x_{max}$	X _{max}	X _{max}	السحديد المتفاعل	
			x_{max}	$= n_{01} = \frac{m}{M}$	$\frac{1}{4} = \frac{0,654}{65,4} = 1$	$0^{-2} mol \Leftarrow$	•		
	0,25 0,25		x_{max}	$=\frac{n_{02}}{2}=\frac{C}{C}$	$\frac{2 \cdot V}{2} = \frac{10^{-2} \times 2}{2}$ $x = \frac{10^{-2} \times 10^{-2} \times 10^{-2}}{2}$			$2 - 2x_{max} = 0$ $2 - 2x_{max} = 0$ $3 - 2x_{max} = 0$ $4 - 2x_{max} = 0$ $4 - 2x_{max} = 0$ $6 - 2x_{max} = 0$	
	0,25	نجوم،	رحدة الح	ىبة للزمن في ر	******	فاعل: هي تغير	رعة الحجمية للتا	3- أ- تعريف السر وتكتب بالعلاقة: -	
			$v_{vol} = \frac{P}{VRT} \times \frac{dV_{H_2}}{dt}$: باثبات أن يا $v_{vol} = \frac{P}{VRT} \times \frac{dV_{H_2}}{dt}$ باثبات أن يا جدول التقدم لدينا يا $v_{vol} = \frac{P}{VRT} \times \frac{dV_{H_2}}{dt}$ ومنه: $v_{vol} = \frac{P}{VRT} \times \frac{dV_{H_2}}{dt}$						
	0,25×2	$v_{vol} =$							
	0,25	$v_{vol} = \frac{1,013 \times 10^5}{0,1 \times 8,314 \times 293} \times \frac{(12-0) \times 10^{-6}}{(6-0)} = 8,32 \times 10^{-4} mol \times L^{-1} \times min^{-1}$ $c = c = c = c = c = c = c = c = c = c =$							
	0,25								
	0,25 0,25		النهائية) نصف قيمته	11 30			10 ⁻⁵ mol/min 4- تعریف زمن ن	
	0,25	t_1	$_{/2}=4,$	2 min ← <i>V</i>	$T_{H_2}(t_{1/2}) = \frac{8,31}{2}$	$\frac{14 \times 293 \times 2}{1,013 \times 10}$	$\frac{.5 \times 10^{-4}}{0^5} = 6$	ا - قیمته بیانیا: ml	