

Modeling and numerical simulations of dendritic crystal growth

Ryo Kobayashi

Department of Applied Mathematics and Informatics, Ryukoku University, Seta, Ohtsu 520-21, Japan

≡ Google Scholar

Received 12 August 1991 Revised manuscript received 10 June 1992 Accepted 31 July 1992 Communicated by M. Mimura

GET MY OWN PROFILE		
Cited by		VIEW AL
	All	Since 201
Citations	6424	250
h-index i10-index	30 57	2
2013 2014 2015	2016 2017 2018	26 13 2020
Co-authors		VIEW AL
	ki Nakagaki or, Research Inst	itute for
	A Warren	

晶体生长是一种自然界中自发形成的现象。如雪花, 它们形成于接近均匀的环境,却有各种各样非常美丽和复 杂的枝晶形状,枝晶结构也常见于金属的凝固或过饱和溶 液中的结晶。

晶体的存在或平衡,或生长,本视频中使用到的理论 认为,其通过使表面能最小来趋近于平衡状态。

因此,如果表面能是各向同性的,则晶体为球形;如果存在各向异性,则为多边形。

$$F(\varphi,m) = \int_{V} \frac{1}{2} \varepsilon^{2} |\nabla \varphi|^{2} + f(\varphi,m) dv$$
 能量梯度项 局部自由能项

能量梯度项

各向异性梯度能量系数: $\mathcal{E} = \overline{\mathcal{E}}\sigma(\theta)$

$$\sigma(\theta) = 1 + \delta \cos(j(\theta - \theta_o))$$

$$f(\varphi, m) = \frac{1}{4}\varphi^4 - \left(\frac{1}{2} - \frac{1}{3}m\right)\varphi^3 + \left(\frac{1}{4} - \frac{1}{2}m\right)\varphi^2$$

初始偏移角:
$$\theta = \tan^{-1} \left(\frac{\partial \varphi / \partial y}{\partial \varphi / \partial x} \right)$$

界面驱动力:
$$m(T) = \left(\frac{\alpha}{\pi}\right) \tan^{-1} \left[\gamma \left(T_{eq} - T\right)\right]$$

演化过程假设:
$$\tau \frac{\partial \varphi}{\partial t} = -\frac{\delta F}{\delta \phi}$$

相演化离散方程:

温度演化离散方程:

$$\tau \frac{\partial \varphi}{\partial t} = \frac{\partial}{\partial y} \left(\varepsilon \frac{\partial \varepsilon}{\partial \theta} \frac{\partial \varphi}{\partial x} \right) - \frac{\partial}{\partial x} \left(\varepsilon \frac{\partial \varepsilon}{\partial \theta} \frac{\partial \varphi}{\partial y} \right) + \nabla \cdot \left(\varepsilon^2 \nabla \varphi \right) + \varphi (1 - \varphi) \left(\varphi - \frac{1}{2} + m \right) \qquad \qquad \frac{\partial T}{\partial t} = \nabla^2 T + \kappa \frac{\partial \varphi}{\partial t}$$

$$(\nabla^2 u)_{i,j} = \frac{u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1} - 4u_{i,j}}{h^2}$$


```
tau = 0.0003; %时间演化系数
epsilonb = 0.01; %各向异性梯度能量系数平均值0.01
kappa = 1.8; %无量纲潜热,正比于潜热,反比于冷却强度1.8
delta = 0.02; %各向异性强度0.02
aniso = 6.0; %j: 各向异性模数4&6
alpha = 0.9; %过冷系数0.9
gamma = 10.0; %温差放大系数10.0
teq = 1.0; %平衡温度1.0
theta0 = 0.2; %初始偏移角0.2
seed = 5.0; %定义晶核种子大小5.0
```