26. Welch-Berlekamp decoding algorithm

26.1 Introduction

In today's lecture, we look at the unique decoding problem for Reed Solomon codes, and look at the Welch-Berlekamp decoder.

26.2 Decoding Reed-Solomon codes

The decoding problem for Reed-Solomon codes is the following. Given a message $\mathbf{y} = (\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_n)$ such that $\Delta(\mathbf{y}, \mathcal{C}) < \frac{n-k+1}{2}$ where \mathcal{C} is an $[n, k, n-k+1]_q$ RS code, find the polynomial P(x) of degree at most k-1 such that $P(\alpha_i) \neq \mathbf{y}_i$ for at most $e = \lfloor \frac{n-k+1}{2} \rfloor$ many values of α_i .

To this end we define an error locator polynomial E(x) such that $E(\alpha_i) = 0$ whenever $P(\alpha_i) \neq \mathbf{y}_i$. In fact, polynomial

$$E(x) = \prod_{\alpha_i | \mathbf{y}_i \neq P(\alpha_i)} (x - \alpha_i)$$

is such a polynomial, and it has degree at most e. But, if we don't have P, we also don't have E and this definition seems useless at the moment. Also observe that $\mathbf{y}_i E(\alpha_i) = P(\alpha_i) E(\alpha_i)$ for all $i \in [n]$ (why?). If we were given the polynomial E, then if we take the coefficients of P(x) as unknowns, we get n linear equations over k unknowns where $k \leq n$. This would give us the corrected message we want. But what if we think of the coefficients of P(x) and E(X) as unknowns. Then we have n equations over k+e+1 variables, but the equations are no longer linear. Define N(x) = P(x)E(x). The way this is written, all the polynomials are unknown to us and it seems as though this will not give us anything. The Welch-Berlekamp decoder that we describe next shows that we can forget about P(x) and just try to find two polynomials N(x) and E(x) with certain properties and then obtain P(x) = N(x)/E(x).

26.2.1 The Welch-Berlekamp decoder

The algorithm can be explained simply as follows: Given a vector $\mathbf{y} \in \mathbb{F}_q^n$, find polynomials E(x) of degree e < (n-k+1)/2 and N(x) of degree at most e+k-1 such that for all $i \in \{1, 2, ..., n\}$, $N(\alpha_i) = \mathbf{y}_i E(\alpha_i)$, degree of E is e and degree of $N(\alpha_i)$ is at most e+k-1. If we find such polynomials N(x) and E(x), return P(x) = N(x)/E(x). Else the algorithm fails. Observe that finding the coefficients of N(x) and E(x) is solving n linear equations with (e+1) + (e+k) unknowns.

Now, we need to prove the correctness of this procedure. First observe the following simple lemma

Lemma 26.1. There exists polynomials $E^*(x)$ and $N^*(x)$ such that $\mathbf{y}_i E^*(\alpha_i) = N^*(\alpha_i)$ for all $i \in [n]$, and $P(x) = N^*(x)/E^*(x)$.

Proof. Choose the following polynomials.

$$E^*(x) = x^{e-\Delta(\mathbf{y},\mathcal{C})} \prod_{\mathbf{y}_i \neq P(\alpha_i)} (x - \alpha_i), \text{ and}$$

 $N^*(x) = P(x)E^*(x).$

Observe that E^* is a non-zero polynomial of degree e, and degree of N^* is at most e+k-1. Furthermore, for every $\mathbf{y_i}$, one of the two happens:

- If $\mathbf{y}_i \neq P(\alpha_i)$, then $E^{\star}(\alpha_i) = 0$, and therefore $N^{\star}(\alpha_i) = \mathbf{y}_i E^{\star}(\alpha_i)$.
- If $\mathbf{y}_i = P(\alpha_i)$, then $N^*(\alpha_i) = P(\alpha_i)E^*(\alpha_i) = \mathbf{y}_iE^*(\alpha_i)$.

This shows that there is some solution for E(x) and N(x) that gives the correct P(x). \square

To complete the proof of correctness of the decoder, it is sufficient to show the following.

Lemma 26.2. Let (E_1, N_1) and (E_2, N_2) be two different solutions such that $N_1(\alpha_i) = \mathbf{y}_i E_1(\alpha_i)$ and $N_2(\alpha_i) = \mathbf{y}_i E(\alpha_i)$. Then $N_1/E_1 = N_2/E_2$.

Proof. Let $R(x) = N_1(x)E_1(x) - N_2(x)E_1(x)$. We will show that R(x) is the zero polynomial. For any α_i , $N_1(\alpha_i)E_1(\alpha_i) = \mathbf{y}_iE_1(\alpha_i)E_2(\alpha_i)$ and $N_2(\alpha_i)E_1(\alpha_i) = \mathbf{y}_iE_2(\alpha_i)E_1(\alpha_i)$. Therefore R(x) has at least n roots. But, notice that the degree of R(x) is at most e + k - 1 + e = 2e + k - 1 < n. But this is not possible unless R(x) is the identically zero polynomial.

Implementing the algorithm

Notice that to implement the algorithm, we need to enforce that degree of E is exactly 1. This can be done by adding a new constraint that the coefficient corresponding to x^e is 1. The set of equations has at most n+1 unknowns and n+1 equations. The standard Guassian elimination algorithm gives an $O(n^3)$ algorithm to solve for N(x) and E(x). To compute P(x), we need to perform long division. So the total running time of this algorithm is $O(n^3)$.