Uppgift 2 MySql

Ni har fått i uppgift att hjälpa **NASA** att bygga en databas för att lagra data om astronomiska objekt.

Följande uppgifter skall finnas med:

Constellations (Stjärnbilder), Stars, DeepSkyObjects(galaxer, nebulosor, etc), Planets, Moons, Spectral class(klassificering av stjärnor i färg och temperatur).

<u>Följande gäller:</u>

- En planet kan ha flera månar men bara tillhöra en stjärna.
- En <u>Constellation</u>(stjärnbild) kan innehålla flera <u>Stjärnor</u> och flera <u>DeepSkyObjects</u>(galaxer,nebulosor etc).
- En Stjärna kan bara tillhöra en Spektralklass.

Ni skall använda följande tre importfiler för att populera tabellerna med data.

DeepSkyConstellations.csv, PlanetsMoons.csv, StarsConstellations.csv

Gör följande:

1. Skapa databas

Skapa en ny databas och döp den till Astronomy

2. Skapa tabeller med primärnycklar

Följande fält skall finnas med för att kunna ta emot data från importfilerna:

Constellation, DeepSkyObject, MagnitudeDeepSky, Ra_Dec, Distance_LY, NGC, Messier, Star, Planet, Diameter, Temperature_K, Temperature_C, Moon, MoonDistance, MoonPeriod, MoonMagnitude, Hemisfere(halvklot), Planets_in_Const, Star, StarDistance_LY, Spectral_Class, Colour, Temperature

Färgerna på fälten i importfilerna indikerar vad som hör ihop.

Importfil: DeepSkyConstellations.csv	Importfil: PlanetsMoons.csv	Importfil: StarsConstellations.csv
Constellation	Star	Constellation
DeepSkyObject	Planet	Hemisfere
Magnitude	Diameter	Planets_in_Const
Ra_Dec	Temperature_K	Star
Distance_LY	Temperature_C	Distance_LY
NGC	Moon	Spectral_Class
Messier	Distance_1000km	Colour
	Period_(days)	Temperature
	Magnitude	

Skapa numeriska primärnyckelält som autogenererar heltal. Skapa även sekundärnycklar som kan kopplas till primärnycklarna. Indexera alla nyckelfält.

3. Skapa relationer mellan tabellerna

Analysera vilka tabeller som skall kopplas och hur de skall kopplas. Skapa relationer mellan nyckelfälten i tabellerna.

4. Importera data till tabellerna

Skriv sql-kod som importerar data från importfilerna. Tänk på att importera data på "ett-sidan" först, dvs yttertabbellerna först. Importera utifrån och innåt i relationsstrukturen. På detta sätt skapas primärnyckelvärden som kan användas för att populera sekundärnycklarna.

OBS! Se till att dubbletter inte importeras till tabellerna.

Använd Insert-statements för att göra jobbet.

5. Skapa följande sql-frågor för utdata

- 1. Visa Constellations(stjärnbilder) med deepSky-objekt för norra halvklotet.
- 2. Visa planeter med månar.
- 3. Visa planeter utan månar.
- 4. Visa alla stjärnor som inte tillhör spektralklass W.
- 5. Visa antal stjärnor per stjärnbild.
- 6. Visa alla stjärnbilder med funna exoplaneter.

7. Skapa en stored function

Skapa en funktion som beräknar restiden i år till stjärnorna. Funktionen skall ha en inparameter för avstånd. Vi antar att hastigheten är 100 000 km/h.

8. Skapa en stored procedure

Skapa en procedur med sql-kod som kör funktionen. Sql-koden skall även visa stjärnans namn och avstånd.