

Data Review

Yi Xie

May 18, 2022

Yi Xie | May 18, 2022 1/42

Table of contents

- Overview
- SAPT(DFT) Implementation Theory Results
- 3 Three-Body FDDS Dispersion
 Background
 Results

Yi Xie | May 18, 2022 2/42

Intermolecular Energies

Supermolecular approach

$$E_{int} = E_{AB} - E_A - E_B$$

- ► Straightforward, but cannot separate different types of interactions
- ► Can adopt to different electronic structure methods
- ► DFT-D3 with proper functional can be both cheap and accurate
- Symmetry-Adapted Perturbation Theory
 - ► Can give details about different types of interactions; important in understanding their nature
 - ► Not as cheap as DFT-D3
 - SAPT0 is somewhat cheap, but does not include intramonomer correlation

Yi Xie | May 18, 2022 3/4:

SAPT(DFT)

- Attempt to inlude intramonomer correlation in a cheap way
- Replaces HF orbitals with KS orbitals
- Needs to consider orbital response for dispersion terms
- Exchange-dispersion term needs to be estimated from scaling
- Investigate the accuracy and efficiency of SAPT(DFT)

Yi Xie | May 18, 2022 4/42

Three-Body Interaction

- Crucial in computing lattice energies
- DFT-D3 does not perform well for three-body interaction
- ▶ MP2.5 scales as $O(N^6)$, MP2 is $O(N^5)$ but lacks three-body dispersion
- Three-body dispersion can be implemented with SAPT(DFT) in ${\cal O}(N^5)$
- Combine MP2 with SAPT(DFT) dispersion to model three-body interaction

Yi Xie | May 18, 2022 5/4:

Table of contents

- Overview
- SAPT(DFT) Implementation Theory Results
- 3 Three-Body FDDS Dispersion Background Results

Yi Xie | May 18, 2022 6/42

Table of contents

- Overview
- SAPT(DFT) Implementation Theory Results
- 3 Three-Body FDDS Dispersion Background Results

Idea of SAPT(DFT)

SAPT energy in orders of interaction and fluctuation potentials; n denotes order in V and k, l for WA, WB

$$H = F_A + F_B + V + W_A + W_B$$

$$E_{int} = \sum_{n=1}^{\infty} \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \left(E_{pol}^{(nkl)} + E_{exch}^{(nkl)} \right)$$

- SAPT0: n = 2, k = l = 0, no intramonomer correlation, $O(N^5)$ cost
- ▶ Many-body SAPT: $k + l \ge 2$, $O(N^6)$ or higher cost
- SAPT(DFT): Use Kohn-Sham operator $K_{A,B}$ instead of Fock operator $F_{A,B},\,O(N^5)$ cost
- Primitive SAPT(DFT) works well on 1st-order terms, but not 2nd-order terms (especially dispersion). Needs orbital response for these terms

Yi Xie | May 18, 2022 8/42

Coupled Dispersion Energy

Uncoupled dispersion energy in terms of frequency-dependent density susceptibility (FDDS):

$$E_{disp,u}^{(2)} = -4 \sum_{ia \in A, jb \in B} \frac{|(ia|jb)|^2}{\epsilon_{ij}^{ab}}$$

$$= -\frac{1}{2\pi} \int_0^\infty d\omega \int d\mathbf{r}_A d\mathbf{r}'_A d\mathbf{r}_B d\mathbf{r}'_B$$

$$= \frac{1}{|\mathbf{r}_A - \mathbf{r}_B|} \frac{1}{|\mathbf{r}'_A - \mathbf{r}'_B|} \chi_0^A \left(\mathbf{r}_A, \mathbf{r}'_A | i\omega\right) \chi_0^B \left(\mathbf{r}_B, \mathbf{r}'_B | i\omega\right)$$

- Kohn-Sham DFT constructs a fictitious system of non-interacting particles, which reproduces the density and energy of the real electronic system
- Kohn-Sham FDDS does not reflect the correct response properties of the electronic system

Yi Xie | May 18, 2022 9/42

Dispersion Term

Coupled FDDS from solving TDDFT equations:

$$oldsymbol{\chi} = oldsymbol{\chi}_0 + oldsymbol{\chi}_0 \mathbf{S}^{-1} \mathbf{W} \left(\mathbf{S} - oldsymbol{\chi}_0 \mathbf{S}^{-1} \mathbf{W}
ight)^{-1} oldsymbol{\chi}_0$$

- $oldsymbol{\mathrm{S}}$ and $oldsymbol{\mathrm{W}}$ corresponds to Coulomb metric and xc kernel
- Pure ALDA kernel good for pure GGA functional, but not for hybrid functional
- lacktriangle Exact exchange in $v_{xc}
 ightarrow$ increased $\epsilon^{ab}_{ij}
 ightarrow$ decreased $E^{(2)}_{disp}$

$$E_{disp,u}^{(2)} = -4 \sum_{ia \in A, jb \in B} \frac{|(ia|jb)|^2}{\epsilon_{ij}^{ab}}$$

▶ Hybrid ALDA kernel to compensate, or localized HF (LHF) exchange to avoid increase in ϵ^{ab}_{ij}

Coupled FDDS with hybrid kernel

$$\chi = \chi'_0 + (\chi'_0 \mathbf{S}^{-1} \mathbf{W} + \mathbf{K}') \left[\mathbf{S} - (\chi'_0 \mathbf{S}^{-1} \mathbf{W} + \mathbf{K}') \right]^{-1} \chi'_0$$

$$\mathbf{K}' = \left[-\xi \mathbf{K}_1 (\lambda d) - \xi \mathbf{K}_2 (\lambda d) + \xi^2 \mathbf{K}_{21} (\lambda) \right] (\mathbf{R}^T)^{-1} \mathbf{S}$$

$$\left[\mathbf{K}_1 (\lambda d) \right]_{PQ} = (P|ar) \lambda_{ar} d_{ar} \left[(aa'|rr') + (ar'|a'r) \right] (a'r'|\mathbf{Q}|Q)$$

$$\left[\mathbf{K}_2 (\lambda d) \right]_{PQ} = (P|ar) \lambda_{ar} d_{ar} \left[(aa'|rr') - (ar'|a'r) \right] (a'r'|\mathbf{Q}|Q)$$

$$\left[\mathbf{K}_{21} (\lambda) \right]_{PQ} = (P|ar) \lambda_{ar} \left[(aa''|rr'') - (ar''|a''r') \right]$$

$$\left[(a'a''|r'r'') - (a'r''|a''r') \right] (a'r'|\mathbf{Q}|Q)$$

$$\left[\mathbf{K}'_2 (\lambda) \right]_{PQ} = (P|ar) \lambda_{ar} \left[(aa'|rr') - (ar'|a'r) \right] (a'r'|Q)$$

$$\chi'_0 = \chi_0 - \xi \mathbf{K}_2 (\lambda)$$

$$(ar|Q) = (ar|\mathbf{Q}|P) (P|\mathbf{R}|Q)$$

Yi Xie | May 18, 2022 11/42

Equation for $E_{disp}^{(2)}$

- Coupled Kohn-Sham (CKS) FDDS reflects correct response properties of electrons
- ullet $O(N^5)$ scaling is limited to forming ${f K}_1,\,{f K}_2,\,{f K}_{21}$ and ${f K}_2'$
- Separates "nontrivial" and "trivial" parts of the code, also highly reduces need of disk I/O operations
- $ightharpoonup E_{disp}^{(2)}$ from coupled FDDS:

$$E_{disp,r}^{(2)} = -\frac{1}{2\pi} \int_{0}^{\infty} d\omega \int d\mathbf{r}_{A} d\mathbf{r}'_{A} d\mathbf{r}_{B} d\mathbf{r}'_{B}$$

$$\frac{1}{|\mathbf{r}_{A} - \mathbf{r}_{B}|} \frac{1}{|\mathbf{r}'_{A} - \mathbf{r}'_{B}|} \chi^{A} \left(\mathbf{r}_{A}, \mathbf{r}'_{A} | i\omega\right) \chi^{B} \left(\mathbf{r}_{B}, \mathbf{r}'_{B} | i\omega\right)$$

Yi Xie | May 18, 2022 12/4

Exchange-Dispersion Term

- Explicit coupled exchange-dispersion not trivial to implement;
 currently working on this
- Estimate from scaling uncoupled exchange-dispersion; Scale with ratio in dispersion term or with pre-fitted (with S22×5) fixed factor

$$\tilde{E}_{exch-disp,r}^{(2)} = E_{exch-disp,u}^{(2)} \cdot \frac{E_{disp,r}^{(2)}}{E_{disp,u}^{(2)}}$$

$$\tilde{E}_{exch-disp,r}^{(2)} = \alpha \cdot E_{exch-disp,u}^{(2)}(\alpha = 0.686)$$

- ► The value above is fitted from $E_{exch-disp,u}^{(2)}$ with LHF orbitals
- Non-LHF orbitals have greater o-v gaps and smaller $E_{disp,u}^{(2)}$, needs to re-fit with non-LHF results

Yi Xie | May 18, 2022 13/4

LHF vs non-LHF orbitals

Hybrid vs. LHF values in kcal/mol for each term for S66 data set: (a) $E_{elst}^{(1)}$, (b) $E_{exch-ind}^{(2)}$, (c) $E_{ind}^{(2)}$, (d) $E_{exch-ind}^{(2)}$, (e) $E_{disp,v}^{(2)}$, (f) $E_{disp,v}^{(2)}$, (g) $E_{exch-disp,v}^{(2)}$

Yi Xie | May 18, 2022 14/42

Table of contents

- Overview
- SAPT(DFT) Implementation Theory Results

3 Three-Body FDDS Dispersion
Background
Results

Yi Xie | May 18, 2022 15/42

Exchange-Dispersion Refitting

- Need to fit the uncoupled $E^{(2)}_{exch-disp,r}$ with non-LHF orbitals on the coupled LHF orbital values (implemented in Molpro)
- Assuming coupled LHF and non-LHF orbital $E^{(2)}_{exch-disp,r}$ from the behavior of $E^{(2)}_{disp,r}$
- Exchange-related components depend heavily on distance between monomers, sets like S22×5 and S66×8 would be preferred
- ▶ Determine the scaling factor with S22×5, validate with S66×8

S22×5 Fitting Results

Yi Xie | May 18, 2022 17/42

S66×8 Validating Results

Yi Xie | May 18, 2022 18/42

Termwise results

- Compared the SAPT(DFT)/aug-cc-pVTZ results of our code to SAPT(CCSD)/aug-cc-pVTZ results from Korona S2¹
- Also comparing the results for S66 with SAPT2+3(CCD)δMP2/aug-cc-pVTZ as reference. Also added SAPT0/aug-cc-pVDZ, SAPT2+/aug-cc-pVDZ and SAPT2+(3)δMP2/aug-cc-pVTZ into comparison as side-reference.
- Errors of each system with respect to reference shown as vertical lines
- Mean absolute error (MAE) and mean unsigned relative error (MURE) listed for S2. MAE indicated by black box in the diagram
- Color scheme for S66 systems: Hydrogen-bonded (HB, red), mixed-influence (MX, green), dispersion-dominated (DD, blue)

Yi Xie | May 18, 2022 19/42

¹T. Korona, Mol. Phys. **111**, 3705 (2013).

Korona S2 Results

Methoda	MAE	MURE		Error Distribution ^b										
			4	OB	1		1	0		1			UB	4
Electrostatics														
SAPT(DFT) hybrid	0.112	2.39				l		Ш						
SAPT(DFT) LHF	0.114	3.68						Ш						
SAPT0	0.520	8.61	1				I							
Exchange														
SAPT(DFT) hybrid	0.251	3.38						Ш						
SAPT(DFT) LHF	0.258	3.09												
SAPT0	1.757	12.88		ı	Ш	l								
Induction														
SAPT(DFT) hybrid	0.148	2.79						Ш						
SAPT(DFT) LHF	0.192	2.97						П	l			1		
SAPT0	1.993	16.83		I										
Exchange-Induction														
SAPT(DFT) hybrid	0.144	4.03						Ш						
SAPT(DFT) LHF	0.165	4.76						Ш	-		1			
SAPT0	1.551	26.80	I	1		Ш								

Yi Xie | May 18, 2022 20/42

Korona S2 Results

Dispersion			
SAPT(DFT) hybrid	0.175	3.68	
SAPT(DFT) LHF	0.141	2.77	
SAPT(DFT) non-hybrid	0.326	9.58	
SAPT0	0.811	24.86	
Exchange-Dispersion			
SAPT(DFT) hybrid	0.062	12.47	
SAPT(DFT) LHF	0.039	3.25	(1
SAPT0	0.265	36.11	
Total			
SAPT(DFT) hybrid	0.155	4.98	
SAPT(DFT) LHF	0.189	4.17	
SAPT(DFT) hon-hybrid	0.244	10.64	
SAPT0	1.237	19.63	1 1 1 1 1 1 1 1 1

Yi Xie | May 18, 2022 21/42

S66 Results

Methoda	Total	нв	MX	DD	Error Distribution ^b
					4 OB 1 0 1 UB 4
Electrostatics					
SAPT(DFT) hybrid	0.374	0.556	0.177	0.311	
SAPT(DFT) LHF	0.423	0.666	0.196	0.319)
SAPT0	0.613	1.034	0.439	0.297	7
SAPT2+	0.236	0.270	0.136	0.263	3 Ⅲ∰11
$SAPT2+(3)\delta MP2$	0.000	0.000	0.000	0.000	
Exchange					
SAPT(DFT) hybrid	0.886	1.127	0.426	0.926	3
SAPT(DFT) LHF	0.886	1.121	0.431	0.928	3
SAPT0	0.675	0.942	0.263	0.658	3
SAPT2+	0.337	0.467	0.222	0.277	7
$SAPT2+(3)\delta MP2$	0.000	0.000	0.000	0.000	
Induction					
SAPT(DFT) hybrid	0.211	0.201	0.212	0.220)
SAPT(DFT) LHF	0.224	0.223	0.223	0.225	j
SAPT0	0.241	0.200	0.261	0.271	<u>(</u> •
SAPT2+	0.327	0.384	0.250	0.318	3
$SAPT2+(3)\delta MP2$	0.152	0.179	0.121	0.145	5 III 0

Yi Xie | May 18, 2022 22/42

S66 Results

Dispersion					
SAPT(DFT) hybrid	0.370	0.260	0.219	0.573	
SAPT(DFT) LHF	0.308	0.200	0.173	0.499	I
SAPT(DFT) non-hybrid	0.635	0.581	0.419	0.822	
SAPT0	0.443	0.862	0.162	0.195	
SAPT2+	0.235	0.397	0.169	0.115	
$SAPT2+(3)\delta MP2$	0.093	0.129	0.056	0.080	
Total					
SAPT(DFT) hybrid	0.334	0.588	0.107	0.217	
SAPT(DFT) LHF	0.234	0.382	0.046	0.199	III Biljini)
SAPT(DFT) non-hybrid	0.604	0.955	0.389	0.385	
SAPT0	0.990	1.197	0.692	0.965	
SAPT2+	0.230	0.235	0.138	0.280	
$SAPT2+(3)\delta MP2$	0.105	0.056	0.082	0.169	110

Yi Xie | May 18, 2022 23/42

Timing Performance

Dimer systems for timing: (a) Watson-Crick adenine-thymine complex, (b) RDX dimer, (c) C_{60} -buckycather complex.

Yi Xie | May 18, 2022 24/42

Watson-Crick Adenine-Thymine

Yi Xie | May 18, 2022 25/42

RDX Dimer

Yi Xie | May 18, 2022 26/42

Comparison with LHF Approach

- Comparison of subrountine wall times between hyybrid xc kernel approach implemented in Psi4 1.4 and LHF approach implemented in Molpro 2019.2
- Some subroutines does not exist or not included by default in the Molpro DFT-SAPT program

Subroutine	Hybrid time (h)	LHF time (h)
Delta HF	0.96	N/A
DFT	0.45	2.29
xc kernel	0.08	4.17
${\cal O}(N^5)$ objects formation	2.35	N/A
$E_{disp}^{\left(2 ight) }$ time integration	0.37	3.59
$E_{exch-disp}^{(2)}$	0.41	1.99
Total	5.03	12.80

Yi Xie | May 18, 2022 27/4:

C₆₀-Buckycatcher Complex

- $ightharpoonup N_{bf} = 3012, N_{aux} = 9284$ with aug-cc-pVDZ basis set
- Using Intel i9-10980XE processor with 18 cores, completed entire calculation in 4.03 days
- ▶ 42.7 hours for $E_{disp}^{(2)}$; 20.1 hours for the $O(N^5)$ subroutines
- ▶ Cost of DFT and $E_{ind}^{(2)}$ still somewhat significant

Table of contents

- Overview
- SAPT(DFT) Implementation Theory Results
- Three-Body FDDS Dispersion Background Results

Yi Xie | May 18, 2022 29/42

Table of contents

- Overview
- SAPT(DFT) Implementation Theory Results
- Three-Body FDDS Dispersion

 Background

 Results

Yi Xie | May 18, 2022 30/42

3B-69 Benchmark Set

- Benchmark set for 3-body interaction energies
- 69 trimers extracted from 23 different molecular crystal structures (3 each)
- Used focal point approach to obtain CCSD(T) (and other wavefunction method) energies

$$E = E^{HF}(aQZ) + \Delta E^{MP2}(aTZ/aQZ) + \Delta E^{CCSD(T)}(aDZ)$$

- Assessing accuracy for various wavefunction and DFT methods
- ▶ Recommended MP2.5 and SCS-MI-CCSD, both $O(N^6)$
- Trying to assess performance of MP2 + FDDS dispersion for 3B-69 systems

Yi Xie | May 18, 2022 31/42

3B-69 Wavefunctional Methods

Yi Xie | May 18, 2022 32/42

3B-69 DFT Methods

Yi Xie | May 18, 2022 33/42

New Set from X23

- Sampling trimer geometries from X23 crystal structures
- Trying to include trimer with different intermolecular distances and alignment
- Aiming to serve as a "three-body version" of S22×5/S66×8
- Distance: Geometry mean of 3 pairwise closest contact distance
- Alignment: Angles of the COM triangle; mainly looking at the greatest angle

Yi Xie | May 18, 2022 34/42

Table of contents

- Overview
- SAPT(DFT) Implementation Theory Results
- Three-Body FDDS Dispersion Background Results

Yi Xie | May 18, 2022 35/4

Three-Body Dispersion

Three-body dispersion energy in terms of FDDS, analogous to the two-body dispersion:

$$E_{disp,r}^{(3)} = -\frac{1}{\pi} \int_{0}^{\infty} d\omega \int d\mathbf{r}_{A} d\mathbf{r}'_{A} d\mathbf{r}_{B} d\mathbf{r}'_{B} d\mathbf{r}_{C} d\mathbf{r}'_{C}$$

$$\frac{1}{|\mathbf{r}_{A} - \mathbf{r}_{B}|} \frac{1}{|\mathbf{r}'_{A} - \mathbf{r}_{C}|} \frac{1}{|\mathbf{r}'_{B} - \mathbf{r}'_{C}|}$$

$$\chi^{A} (\mathbf{r}_{A}, \mathbf{r}'_{A}|i\omega) \chi^{B} (\mathbf{r}_{B}, \mathbf{r}'_{B}|i\omega) \chi^{C} (\mathbf{r}_{B}, \mathbf{r}'_{B}|i\omega)$$

Transforming into density-fitting basis:

$$E_{disp,r}^{(3)} = \int_0^\infty d\omega \operatorname{Tr} \left(\mathbf{S}^{-1} \boldsymbol{\chi}_A \mathbf{S}^{-1} \boldsymbol{\chi}_B \mathbf{S}^{-1} \boldsymbol{\chi}_C \right)$$

Yi Xie | May 18, 2022 36/42

Table of contents

- Overview
- SAPT(DFT) Implementation Theory Results
- Three-Body FDDS Dispersion
 Background
 Results

Yi Xie | May 18, 2022 37/42

3B-69 Systems

Yi Xie | May 18, 2022 38/42

3B-69 Results

- Total interaction energies in kcal/mol
- FDDS(aDZ) and FDDS(aTZ) correspond to estimated total IE with MP2 + FDDS

System	CCSD(T)	FDDS(aDZ)	FDDS(aTZ)	MP2	MP2.5
1	0.181	0.207	0.210	0.161	0.179
2	-0.122	-0.069	-0.065	-0.178	-0.143
3	-0.922	-0.905	-0.904	-0.937	-0.913
4	-0.089	-0.003	-0.003	-0.239	-0.151
5	-0.027	0.002	0.003	-0.061	-0.023

Yi Xie | May 18, 2022 39/42

3B-69 Results

- Estimated 3-body dispersion energies comparison
- CCSD(T) corresponds to dispersion energy estimated by $E^{CCSD(T)} E^{\mathrm{MP2}}$

System	CCSD(T)	FDDS(aDZ)	FDDS(aTZ)
1	0.020	0.046	0.049
2	0.056	0.109	0.113
3	0.015	0.032	0.033
4	0.150	0.236	0.242
5	0.034	0.063	0.064

Yi Xie | May 18, 2022 40/42

Distance Dependence

Yi Xie | May 18, 2022 41/42

Distance Dependence

Yi Xie | May 18, 2022 42/42