In [1]: import pandas as pd
 from matplotlib import pyplot as plt
 %matplotlib inline
 import seaborn as sns

In [2]: df=pd.read_csv(r"C:\Users\DELL\Downloads\BreastCancerPrediction.csv")
 df

Out[2]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_
0	842302	М	17.99	10.38	122.80	1001.0	0.
1	842517	М	20.57	17.77	132.90	1326.0	0.0
2	84300903	М	19.69	21.25	130.00	1203.0	0.
3	84348301	М	11.42	20.38	77.58	386.1	0.
4	84358402	М	20.29	14.34	135.10	1297.0	0.
564	926424	М	21.56	22.39	142.00	1479.0	0.
565	926682	М	20.13	28.25	131.20	1261.0	0.0
566	926954	М	16.60	28.08	108.30	858.1	0.0
567	927241	М	20.60	29.33	140.10	1265.0	0.
568	92751	В	7.76	24.54	47.92	181.0	0.0

569 rows × 33 columns

In [3]: df.head()

Out[3]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_me
0	842302	М	17.99	10.38	122.80	1001.0	0.118
1	842517	М	20.57	17.77	132.90	1326.0	0.084
2	84300903	М	19.69	21.25	130.00	1203.0	0.10
3	84348301	М	11.42	20.38	77.58	386.1	0.142
4	84358402	М	20.29	14.34	135.10	1297.0	0.100

5 rows × 33 columns

```
In [4]: df.tail()
```

Out[4]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_me
564	926424	М	21.56	22.39	142.00	1479.0	0.11 ⁻
565	926682	М	20.13	28.25	131.20	1261.0	0.097
566	926954	М	16.60	28.08	108.30	858.1	0.084
567	927241	М	20.60	29.33	140.10	1265.0	0.117
568	92751	В	7.76	24.54	47.92	181.0	0.052

5 rows × 33 columns

In [5]: df.shape

Out[5]: (569, 33)

In [6]: df.describe()

Out[6]:

	id	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mea
count	5.690000e+02	569.000000	569.000000	569.000000	569.000000	569.00000
mean	3.037183e+07	14.127292	19.289649	91.969033	654.889104	0.09636
std	1.250206e+08	3.524049	4.301036	24.298981	351.914129	0.01406
min	8.670000e+03	6.981000	9.710000	43.790000	143.500000	0.05263
25%	8.692180e+05	11.700000	16.170000	75.170000	420.300000	0.08637
50%	9.060240e+05	13.370000	18.840000	86.240000	551.100000	0.09587
75%	8.813129e+06	15.780000	21.800000	104.100000	782.700000	0.10530
max	9.113205e+08	28.110000	39.280000	188.500000	2501.000000	0.16340

8 rows × 32 columns

In [7]: df.columns

```
In [8]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 33 columns):

#	Column	Non-Null Count	Dtype
0	id	569 non-null	int64
1	diagnosis	569 non-null	object
2	radius_mean	569 non-null	float64
3	texture_mean	569 non-null	float64
4	perimeter_mean	569 non-null	float64
5	area_mean	569 non-null	float64
6	smoothness_mean	569 non-null	float64
7	compactness_mean	569 non-null	float64
8	concavity_mean	569 non-null	float64
9	concave points_mean	569 non-null	float64
10	symmetry_mean	569 non-null	float64
11	<pre>fractal_dimension_mean</pre>	569 non-null	float64
12	radius_se	569 non-null	float64
13	texture_se	569 non-null	float64
14	perimeter_se	569 non-null	float64
15	area_se	569 non-null	float64
16	smoothness_se	569 non-null	float64
17	compactness_se	569 non-null	float64
18	concavity_se	569 non-null	float64
19	concave points_se	569 non-null	float64
20	symmetry_se	569 non-null	float64
21	<pre>fractal_dimension_se</pre>	569 non-null	float64
22	radius_worst	569 non-null	float64
23	texture_worst	569 non-null	float64
24	perimeter_worst	569 non-null	float64
25	area_worst	569 non-null	float64
26	smoothness_worst	569 non-null	float64
27	compactness_worst	569 non-null	float64
28	concavity_worst	569 non-null	float64
29	concave points_worst	569 non-null	float64
30	symmetry_worst	569 non-null	float64
31	<pre>fractal_dimension_worst</pre>	569 non-null	float64
32	Unnamed: 32	0 non-null	float64
dtyp	es: float64(31), int64(1)	, object(1)	

drypes: T10ac64(31), 10c64(1), 0

memory usage: 146.8+ KB

In [9]: df.isnull().sum() Out[9]: id 0 0 diagnosis radius_mean 0 texture_mean 0 perimeter_mean area_mean 0 smoothness_mean 0 compactness_mean 0 concavity_mean 0 concave points_mean symmetry_mean fractal_dimension_mean radius se 0 0 texture_se perimeter_se 0 area_se 0 smoothness_se compactness_se 0 concavity_se concave points_se symmetry_se 0 fractal dimension se 0 radius_worst 0 texture worst perimeter_worst area worst 0 smoothness_worst 0 compactness_worst 0 concavity_worst concave points_worst symmetry_worst fractal_dimension_worst 0 569 Unnamed: 32

dtype: int64

In [10]: sns.barplot(x='radius_mean', y='texture_mean', data=df, color="mediumturquoise'
 plt.show()


```
In [11]: plt.scatter(df["area_mean"],df["area_se"])
     plt.xlabel("area_mean")
     plt.ylabel("area_se")
```

Out[11]: Text(0, 0.5, 'area_se')

C:\Users\DELL\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklea
rn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will
change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp
ress the warning
warnings.warn(

```
Out[14]: array([7, 0, 5, 1, 3, 4, 2, 2, 4, 4, 2, 5, 2, 0, 5, 4, 2, 5, 0, 2, 2, 3,
                7, 0, 5, 4, 4, 3, 4, 0, 5, 7, 5, 5, 4, 7, 5, 6, 6, 0, 2, 2, 7, 5,
                5, 5, 2, 4, 0, 0, 3, 3, 0, 2, 0, 2, 5, 5, 3, 2, 5, 2, 0, 2, 5, 2,
                0, 3, 4, 3, 3, 3, 2, 0, 0, 0, 0, 5, 1, 0, 0, 5, 3, 3, 5, 5, 2, 4,
                2, 2, 3, 3, 6, 0, 0, 5, 3, 6, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 4,
                3, 3, 3, 3, 0, 3, 6, 5, 2, 7, 2, 0, 2, 0, 6, 3, 5, 0, 0, 2, 5, 0,
                5, 0, 2, 0, 6, 0, 5, 6, 2, 0, 0, 5, 3, 0, 1, 0, 0, 3, 2,
                4, 2, 3, 3, 3, 0, 2, 3, 5, 3, 5, 0, 6, 0, 3, 3, 0, 0, 2, 6, 0, 0,
                0, 2, 3, 6, 0, 4, 5, 6, 2, 0, 2, 0, 2, 3, 7, 3, 6, 2, 2, 2, 2, 3,
                2, 7, 0, 0, 2, 4, 2, 5, 2, 2, 4, 3, 0, 3, 6, 6, 7, 5, 5, 0,
                3, 2, 2, 4, 3, 2, 0, 2, 0, 5, 2, 0, 0, 3, 0, 3, 2, 3, 6, 0, 3, 0,
                2, 0, 0, 0, 0, 5, 0, 2, 0, 0,
                                                 2, 5, 2, 0, 2, 2, 5,
                2, 0, 2, 3, 5, 0, 3, 0, 0, 0, 3, 3, 0, 3, 3, 2, 2, 2, 5, 0, 6, 3,
                3, 3, 2, 2, 3, 2, 5, 2, 3, 0, 6, 6, 0, 3, 2, 0, 2, 3, 3,
                                                                         2,
                3, 6, 5, 3, 3, 5, 2, 6, 3, 0, 2, 6, 0, 2, 3, 1, 0, 0, 6, 3,
                2, 5, 2, 0, 3, 0, 3, 5, 0, 0, 2, 2, 2, 4, 0, 3, 0, 2,
                5, 0, 0, 6, 2, 3, 3, 3, 0, 0, 3, 0, 0, 2, 2, 3,
                2, 2, 0, 0, 5, 4, 2, 2, 3, 0, 0, 3, 0, 3, 3, 0, 0, 3, 2, 5, 2, 3,
                0, 6, 0, 0, 2, 3, 2, 2, 3, 3, 0, 3, 2, 5, 2, 2, 3, 2,
                                                                      2,
                0, 2, 2, 0, 0, 0, 2, 3, 2, 2, 3, 3, 0, 3, 2, 2, 3, 2, 2, 0, 3, 6,
                3, 3, 6, 0, 0, 0, 2, 5, 3, 3, 3, 3, 0, 2, 3, 0, 3, 3, 3, 2, 0,
                3, 2, 3, 0, 3, 2, 3, 0, 2, 3, 0, 3, 0, 2, 3, 0, 2, 2, 3, 3,
                3, 2, 3, 2, 0, 7, 2, 6, 2, 3, 0, 3, 2, 2, 3, 3, 3, 5, 2, 0, 2, 0,
                0, 0, 3, 2, 0, 3, 5, 0, 3, 2, 2, 3, 0, 2, 5, 2, 3, 0, 3, 2, 5, 2,
                3, 0, 3, 2, 0, 2, 3, 2, 0, 0, 2, 0, 3, 2, 0, 3, 3, 0, 0, 0, 3, 2,
                3, 2, 3, 3, 3, 3, 3, 3, 6, 3, 6, 4, 0, 6, 0, 3, 4, 0])
```

```
In [15]: df["cluster"]=y_predicted
    df.head()
```

Out[15]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_me
0	842302	М	17.99	10.38	122.80	1001.0	0.118
1	842517	М	20.57	17.77	132.90	1326.0	0.084
2	84300903	М	19.69	21.25	130.00	1203.0	0.109
3	84348301	М	11.42	20.38	77.58	386.1	0.142
4	84358402	М	20.29	14.34	135.10	1297.0	0.10(

5 rows × 34 columns

```
In [25]: df1=df[df.cluster==0]
    df2=df[df.cluster==1]
    df3=df[df.cluster==2]
    plt.scatter(df1["texture_mean"],df1["area_mean"],color="aquamarine")
    plt.scatter(df2["texture_mean"],df2["area_mean"],color="green")
    plt.scatter(df3["texture_mean"],df3["area_mean"],color="blue")
    plt.xlabel("texture_mean")
    plt.ylabel("area_mean")
```

Out[25]: Text(0, 0.5, 'area_mean')


```
In [17]: from sklearn.preprocessing import MinMaxScaler
```

In [18]: scaler=MinMaxScaler()

```
In [19]: scaler.fit(df[["concavity_se"]])
    df["concavity_se"]=scaler.transform(df[["concavity_se"]])
    df.head()
```

Out[19]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_me
0	842302	М	17.99	10.38	122.80	1001.0	0.118
1	842517	М	20.57	17.77	132.90	1326.0	0.084
2	84300903	М	19.69	21.25	130.00	1203.0	0.109
3	84348301	М	11.42	20.38	77.58	386.1	0.142
4	84358402	М	20.29	14.34	135.10	1297.0	0.100

5 rows × 34 columns

In [20]: scaler.fit(df[["compactness_mean"]])
 df["compactness_mean"]=scaler.transform(df[["compactness_mean"]])
 df.head()

Out[20]:

	Id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_me
0	842302	М	17.99	10.38	122.80	1001.0	0.118
1	842517	М	20.57	17.77	132.90	1326.0	0.084
2	84300903	М	19.69	21.25	130.00	1203.0	0.109
3	84348301	М	11.42	20.38	77.58	386.1	0.142
4	84358402	М	20.29	14.34	135.10	1297.0	0.100

5 rows × 34 columns

In [21]: km=KMeans()

C:\Users\DELL\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklea
rn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will
change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp
ress the warning
warnings.warn(

```
Out[22]: array([7, 3, 3, 1, 3, 1, 7, 4, 4, 1, 0, 0, 3, 0, 4, 0, 0, 0, 3, 4, 4, 5,
                0, 3, 7, 7, 0, 7, 0, 7, 7, 1, 7, 3, 0, 7, 4, 4, 0, 4, 4, 1, 7, 4,
                4, 7, 5, 4, 1, 4, 1, 4, 1, 7, 0, 1, 3, 0, 4, 5, 5, 5, 0, 5, 4, 0,
                5, 1, 5, 4, 3, 5, 7, 4, 1, 0, 4, 7, 3, 4, 1, 4, 2, 3, 1, 7, 0, 7,
                1, 0, 0, 0, 4, 4, 0, 3, 1, 5, 1, 0, 4, 5, 1, 5, 5, 4, 1, 1, 2, 1,
                5, 1, 4, 5, 5, 1, 5, 0, 0, 7, 1, 7, 2, 0, 4, 4, 4, 3, 0, 3, 1, 0,
                0, 0, 7, 4, 1, 1, 0, 1, 5, 0, 1, 4, 1, 1, 1, 0, 0, 4, 4, 5, 5, 1,
                4, 1, 7, 7, 1, 1, 1, 3, 3, 1, 2, 0, 1, 7, 7, 0, 1, 4, 0, 1, 5, 5,
                5, 0, 4, 4, 6, 3, 0, 1, 0, 5, 7, 1, 1, 1, 4, 4, 5, 1,
                3, 0, 1, 7, 2, 4, 1, 0, 5, 7, 4, 0, 3, 1, 6, 7, 4, 4, 1,
                4, 4, 5, 0, 4, 0, 5, 0, 4, 4, 7, 1, 1, 3, 5, 4, 2, 3, 4, 7, 4, 1,
                1, 4, 3, 5, 4, 4, 5, 1, 3, 1, 3, 7, 3, 4, 3, 0, 0, 0,
                7, 3, 5, 4, 4, 5, 4, 1, 2, 5, 7, 1, 1, 7, 4, 4, 3, 1, 3, 0, 4, 4,
                1, 4, 1, 1, 0, 0, 4, 1, 4, 4, 1, 1, 4, 5, 3, 1, 3, 5, 1, 1, 4, 5,
                4, 4, 1, 0, 4, 1, 5, 1, 1, 7, 5, 1, 5, 3, 4, 3, 1, 4, 4, 1,
                0, 4, 1, 1, 1, 7, 4, 7, 5, 2, 0, 5, 1, 3, 1, 5, 1, 0, 1, 1, 1, 0,
                         1, 4, 4, 5, 5, 4, 4, 4, 0, 4, 3, 3, 1, 2,
                4, 0, 5, 4, 4, 1, 1, 1, 1, 1, 4, 0, 1, 4, 1, 3, 5, 5, 0, 3, 1, 4,
                            7, 1, 4, 4, 1, 1, 0, 4, 7, 1, 1, 1, 5, 0, 0, 1,
                4, 1, 1, 0, 1, 4, 5, 5, 5, 1, 1, 4, 0, 1, 3, 7, 0, 4, 4, 4,
                1, 7, 4, 5, 7, 1, 7, 0, 0, 3, 1, 3, 1, 0, 4, 4, 1, 4, 4, 5, 7, 6,
                            4, 5, 7, 1, 5, 1, 0, 1, 1, 4, 4, 4, 1, 0, 1, 4,
                0, 1, 0, 3, 1, 7, 1, 7, 7, 1, 4, 0, 1, 1, 7, 3, 0, 4, 1, 2, 5, 5,
                1, 1, 0, 0, 1, 0, 4, 0, 0, 1, 7, 3, 4, 4, 5, 2, 1, 4, 5, 5, 4, 1,
                4, 1, 1, 1, 4, 3, 1, 3, 4, 1, 5, 5, 1, 0, 0, 4, 4, 4, 5, 5, 5, 1,
                1, 1, 4, 5, 4, 5, 5, 5, 0, 1, 4, 1, 0, 3, 2, 3, 7, 3, 5])
```

```
In [23]: df["New cluster"]=y_predicted
df.head()
```

Out[23]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_me
0	842302	М	17.99	10.38	122.80	1001.0	0.118
1	842517	М	20.57	17.77	132.90	1326.0	0.084
2	84300903	М	19.69	21.25	130.00	1203.0	0.109
3	84348301	М	11.42	20.38	77.58	386.1	0.142
4	84358402	М	20.29	14.34	135.10	1297.0	0.100

5 rows × 35 columns

```
In [27]: df1=df[df["New cluster"]==0]
    df2=df[df["New cluster"]==1]
    df3=df[df["New cluster"]==2]
    plt.scatter(df1["texture_mean"],df1["area_mean"],color="red")
    plt.scatter(df2["texture_mean"],df2["area_mean"],color="aquamarine")
    plt.scatter(df3["texture_mean"],df3["area_mean"],color="black")
    plt.xlabel("texture_mean")
    plt.ylabel("area_mean")
```

Out[27]: Text(0, 0.5, 'area_mean')

Out[30]: Text(0, 0.5, 'area_mean')


```
k rng=range(1,10)
In [32]:
         sse=[]
         for k in k_rng:
             km=KMeans(n clusters=k)
             km.fit(df[["texture_mean","area_mean"]])
             sse.append(km.inertia_)
             sse
         C:\Users\DELL\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklea
         rn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` will
         change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp
         ress the warning
           warnings.warn(
         C:\Users\DELL\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklea
         rn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init` will
         change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp
         ress the warning
           warnings.warn(
         C:\Users\DELL\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklea
         rn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` will
         change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp
         ress the warning
           warnings.warn(
         C:\Users\DELL\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklea
         rn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init` will
         change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to supp
         ress the warning
           warnings.warn(
         C:\Users\DELL\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklea
         rn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` will
         change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to supp
         ress the warning
           warnings.warn(
         C:\Users\DELL\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklea
         rn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init` will
         change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp
         ress the warning
           warnings.warn(
         C:\Users\DELL\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklea
         rn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init` will
         change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp
         ress the warning
           warnings.warn(
         C:\Users\DELL\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklea
         rn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init` will
         change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp
         ress the warning
           warnings.warn(
         C:\Users\DELL\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklea
         rn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` will
         change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp
         ress the warning
           warnings.warn(
```

```
In [33]: plt.plot(k_rng,sse)
    plt.xlabel("k")
    plt.ylabel("sum of squared Error")
```

Out[33]: Text(0, 0.5, 'sum of squared Error')

