

SIMULASI MATERIAL DENGAN EST

QUANTUM ESPRESSO

QUASI One Day Workshop

02 Agustus 2021

EDI SUPRAYOGA

edis008@lipi.go.id

QUAntum design and Simulation Laboratory
Pusat Penelitian Fisika
Lembaga Ilmu Pengetahuan Indonesia

Introduction to QE

Materials Theory & Computation Research Group

Subgrup: High-Energy Physics

- HPC and Instrumentation
- Experimental Particle Physics

Suharyo

Agmal

Jauhar

Subgrup: Condensed Matter Physics

- Electronic Structure Calculation,
- Catalysts, Battery, Thermoelectrics

Ferensa

Hesky

Yusrul

Ridwan

Edi

Gagus

Arman

Shoufie

Dita

Mengapa "teori & komputasi"?

Pilar-Pilar Fisika

- Teori dan komputasi adalah 2 dari 3 pilar utama fisika
- · Hanya membutuhkan pensil, kertas, komputer, dan ide
- Perangkat prediktif ketika eksperimen sulit dilakukan

UANTUMESPRESSO

Design Material

Time & length scale

Timeline of DFT methods

1964	Hohenberg–Kohn theorem and Kohn–Sham formulation
1972	Relativistic extension of density functional theory
1980	Local density approximation (LDA) for exchange and correlation
1984	Time-dependent density functional theory (TD-DFT)
1985	First-principles molecular dynamics (MD)
1986	Quasiparticle corrections for insulators
1987	Density functional perturbation theory (DFPT)
1988	Towards quantum chemistry accuracy
1991	Hubbard-corrected density functional theory (DFT+U)
1996	The generalized gradient approximation (GGA)

First-principles calculation

Solve Kohn-Sham equations

DFT tools

Why is DFT so popular?

Mudah ditransfer

Kode atau metode DFT yang sama dapat dipakai untuk material yang berbeda

Sederhana

Persamaan Kohn-Sham menyederhanakan Persamaan Schrödinger untuk elektron banyak

Reliabel

Dapat memprediksi properti material dengan akurasi tinggi hingga bahkan sebelum eksperimen

Mudah dibagikan

DFT telah menjadi perusahaan global (pengembangan software dengan kolaborasi global dan open source)

Platformnya kokoh

Sering kali kelemahan pada DFT dapat diatasi dengan mengembangkan metode yang lebih kompleks, tetapi tetap berdasar pada DFT. Contoh: Metoda GW

QE Installation

QE installation on Windows

QE installation on Ubuntu <a>©

```
Preinstalled

Download installer
```

Configure & make

Add to system PATH

```
$ sudo apt install build-essential gfortran libopenmpi-dev
$ sudo apt install libblas-dev liblapack-dev libfftw3-dev
```

```
$ wget https://github.com/QEF/q-e/archive/qe-6.8.0.tar.gz
$ tar -zxvf qe-6.7.0.tar.gz
```

```
$ cd qe-6.8

$ ./configure

$ make all
```

```
Try your self: $ make w90
$ make epw
$ make yambo
```

```
$ export PATH=$PATH:/home/username/qe-6.8/bin/
```


Useful Resources

How to obtain CIF File

- AFLOW (http://aflowlib.org)
- Materials Project (https://materialsproject.org)

How to generate QE Input

- PWgui (http://www-k3.ijs.si/kokalj/pwgui/)
- BURAI (https://nisihara.wixsite.com/burai)
- Materials Cloud (https://www.materialscloud.org/home)

How to Running QE

- AiiDA (https://www.materialscloud.org/work/aiidalab)
- Exabyte (<u>https://exabyte.io</u>)
- HPC LIPI (https://hpc.lipi.go.id)

Tools

- Text editor
 - Notepad++
 - Gedit, Emacs, dll...
- Graph plot
 - Gnuplot
 - Origin, Excel
- Crystal visualization
 - VESTA
 - XCrysden

QE INPUT

Kohn-Sham equations

INPUT

Model:

unit cell lattice vectors basis

Physical approx:

xc-approximation GGA, LDA, ...

Numerical approx:

energy cut-off k-points grid SCF procedure

RUN

OUTPUT

Physical quantities:

charge density total energy KS wavefunctions KS energies

Solve Kohn-Sham equations

$$\left[-\frac{1}{2} \nabla^2 + V_{ion}(r) + V_H[n(r)] + V_{XC}[n(r)] \right] \psi_i(r) = \varepsilon_i \psi_i(r)$$
 External nuclear Hartree Exchange-correlation potential potential

Structure of QE input file

```
&CONTROL
 calculation='scf',
 restart_mode='from_scratch',
 prefix='si',
 pseudo_dir='../pseudo/',
 outdir='../tmp/',
&SYSTEM
 ibrav=2.
 celldm(1)=10.2625,
 nat=2.
 ntyp=1,
 ecutwfc=60.0.
 ecutrho=720.0,
&ELECTRONS
mixing_beta=0.7,
 conv_thr=1d-8,
ATOMIC_SPECIES
 Si 28.0855 Si.pbe-rrkj.UPF
ATOMIC_POSITIONS (alat)
   0.00 0.00 0.00
   0.25 0.25 0.25
K POINTS automatic
4 4 4 1 1 1
```


How to get pseudopotential

http://www.quantum-espresso.org/pseudopotentials/

PSEUDO SEARCH RESULTS

Si.pbe-rrkj.UPF

- type of exchangecorrelation functional
- type of pseudopotential

How to check the structure

XCrySDen: http://www.xcrysden.org

QUANTUM ESPRESSO CONVERGENCY

HANDS-ON #1

QE Convergency

- Basic self consistent calculation (scf)
- Convergence of total energy & plane waves cut-off (ecut)
- Convergence of total energy & BZ sampling (k-point)
- Lattice constant (vc-relax)

SCF

Files for self consistent calculation

Basic self consistent calculation (scf)

```
command:
$ pw.x <Si.scf.in> Si.scf.out &
$ grep ! Si.scf.out
```

```
highest occupied level (ev):
                                      5.9399
  total energy
                                     -15.74122935 Ry
   Harris-Foulkes estimate
                                     -15.74122935 Ry
                                          8.8E-09 Ry
   estimated scf accuracy
  The total energy is the sum of the following terms:
 Parallel routines
 fft_scatter :
                   0.16s CPU
                                0.24s WALL (
                                              2061 calls)
 PWSCF
                1.96s CPU
                                  4.47s WALL
This run was terminated on: 19: 3:24 14Feb2016
JOB DONE.
```

ECUT

K-POINT

offset

8

no offset

10

Files for k-point sampling

Convergence of total energy & BZ sampling (k-point)

Command:

\$ pw.x <Si.k-point.#.in> Si.k-point.#.out

VC-RELAX

VC-RELAX


```
&CONTROL
 calculation='vc-relax',
 restart_mode='from_scratch',
 prefix='si',
 pseudo_dir='../pseudo/',
 outdir='../tmp/',
 forc_conv_thr=1d-5,
&SYSTEM
ibrav=2.
celldm(1)=10.2625.
nat=2,
ntyp=1,
ecutwfc=60.0,
 ecutrho=720.0,
&ELECTRONS
mixing_beta=0.7,
conv_thr=1d-8,
&IONS
ion_dynamics='bfgs'
&CELL
cell_dynamics='bfgs',
 press=0.0,
 press_conv_thr=0.5,
ATOMIC_SPECIES
Si 28.0855 Si.pbe-rrkj.UPF
ATOMIC_POSITIONS (alat)
si 0.00 0.00 0.00
   0.25 0.25 0.25
K_POINTS automatic
```

Structure optimization

Broyden–Fletcher–Goldfarb–Shanno (**BFGS**) algorithm is an <u>iterative method</u> for solving unconstrained <u>nonlinear optimization</u> problems

```
&CONTROL
 calculation='vc-relax',
 restart_mode='from_scratch',
 prefix='si',
 pseudo_dir='../pseudo/',
 outdir='../tmp/',
 forc_conv_thr=1d-5,
&SYSTEM
ibrav=2,
celldm(1)=10.2625,
nat=2,
 ntyp=1,
 ecutwfc=60.0,
 ecutrho=720.0,
&ELECTRONS
mixing_beta=0.7,
conv_thr=1d-8,
&IONS
ion_dynamics='bfgs',
&CELL
cell_dynamics='bfgs',
 press=0.0,
 press_conv_thr=0.5,
ATOMIC_SPECIES
Si 28.0855 Si.pbe-rrkj.UPF
ATOMIC POSITIONS (alat)
   0.00 0.00 0.00
   0.25 0.25 0.25
K_POINIS automatic
```

Structure optimization

Cell lattice parameters and free (internal) coordinates of the atoms may be changed by relaxation

Files for vc-relax

VC-RELAX

Lattice constant (vc-relax)

Command:

\$ pw.x <Si.vc-relax.in> Si.vc-relax.out

```
bfgs converged in 4 scf cycles and 3 bfgs steps
     (criteria: energy < 1.0E-04, force < 1.0E-05, cell < 5.0E-01)
     End of BFGS Geometry Optimization
     Final enthalpy =
                         -15.7417268079 Ry
Begin final coordinates
                              276.89334 a.u.^3 (
                                                  41.03136 Ang^3 )
     new unit-cell volume =
CELL PARAMETERS (alat= 10.25000000)
  -0.504704263
                0.000000000
                              0.504704263
                              0.504704263
  -0.00000000
                0.504704263
  -0.504704263 0.504704263
                              0.000000000
ATOMIC POSITIONS (alat)
        -0.00000000 -0.00000000
                                   -0.000000000
         0.252352132
                      0.252352132
                                    0.252352132
End final coordinates
```

Input:

a = 10.2500 Bohr

Output:

a = 10.3464 Bohr

How to check the structure

XCrySDen: http://www.xcrysden.org

QUANTUM ESPRESSO BAND STRUCTURE & DOS

HANDS-ON #2

QE Post Processing

Charge Density

Charge density

Step 1: SCF calculation (Hands-on #1)

Step 2: post processing charge density

Step 3: Visual charge density

Command:

The electronic density n(r):

$$n(r) = rac{1}{\Omega_{BZ}} \sum_i \int_{BZ} |\Psi_{i,k}(r)|^2 f(\epsilon_{i,k} - \epsilon_F) d(k)$$

Charge density

Step 1: SCF calculation (Hands-on #1)
Step 2: post processing charge density

Step 3: Visual charge density

Command:

```
$ pw.x < Si.scf.in > Si.scf.out
$ pp.x < Si.pp.in > Si.pp.out
```

Si.pp.in

http://web.mit.edu/espresso_v6.1/i386_linux26/qe-6.1/Doc/INPUT_PP.html

Visual Charge density

VESTA: http://jp-minerals.org/vesta/en/

Density of States

Density of states (DOS)

Files for density of states

Step 1: SCF calculation (Hands-on #1)

Step 2: Non-SCF calculation

Step 3: Plot DOS

Command:

```
$ pw.x < Si.scf.in > Si.scf.out
$ pw.x < Si.nscf.in > Si.nscf.out
$ dos.x < Si.dos.in > Si.dos.out
```

Density of states (DOS)

Si.nscf.in


```
Step 1: SCF calculation (Hands-on #1)
&CONTROL
                                     non-SCF calculation
calculation='nscf',
                                                                        Step 2: Non-SCF calculation
verbosity = 'high',
                                                                        Step 3: Plot DOS
prefix='si'.
pseudo_dir='../pseudo/',
outdir='../tmp/',
                                                            Command:
&SYSTEM
                                                            $ pw.x < Si.scf.in > Si.scf.out
 ibrav=2,
                                                            $ pw.x < Si.nscf.in > Si.nscf.out
 celldm(1)=10.2625,
                                                            $ dos.x < Si.dos.in > Si.dos.out
nat=2.
ntyp=1,
 ecutwfc=60.0,
 ecutrho=720.0,
 nbnd=8.
                                    Linear tetrahedron method
occupations='tetrahedra', ←
&ELECTRONS
mixing_beta=0.7,
conv_thr=1d-8.
ATOMIC_SPECIES
Si 28.0855 Si.pbe-rrkj.UPF
ATOMIC_POSITIONS (alat)
si 0.00 0.00 0.00
si 0.25 0.25 0.25
K POINTS automatic
                                        High density k-point
12 12 12 1 1 1
```

Density of states (DOS)


```
Si.dos.in

&DOS

prefix='si',
outdir='../tmp/',
```

Data file of DOS (state/eV)

Step 1: SCF calculation (Hands-on #1)

Step 2: Non-SCF calculation

Step 3: Plot DOS

Command:

\$ pw.x < Si.scf.in > Si.scf.out
\$ pw.x < Si.nscf.in > Si.nscf.out
\$ dos.x < Si.dos.in > Si.dos.out

Command:
\$ gnuplot < si_dos.gnu</pre>

fildos='si.dos'

emin=-9.0,

emax=16.0,

Projected Density of States (PDOS)

Step 1: SCF calculation (Hands-on #1)

Step 2: Non-SCF calculation

Step 3: Plot PDOS

```
Si.projwfc.in
```

```
&projwfc
prefix='si',
outdir='../tmp/',
degauss = 0.01,
/
```

Command:

```
$ pw.x < Si.scf.in > Si.scf.out
$ pw.x < Si.nscf.in > Si.nscf.out
$ projwfc.x < Si.projwfc.in > Si.projwfc.out
```

Command: \$ gnuplot < si_pdos.gnu</pre>

Step 1: SCF calculation (Hands-on #1)

Step 2: Non-SCF calculation

Step 3: Data of bands structure

Step 4: Plot band structure

Command:

```
$ pw.x < Si.scf.in > Si.scf.out
```

\$ pw.x < Si.nscf.in > Si.nscf.out

\$ bands.x <Si.bands.in > Si.bands.out

\$ plotband.x <Si.plotband</pre>


```
&CONTROL
calculation='bands',
                                                           non-SCF calculation
                                                                                 Step 1: SCF calculation (Hands-on #1)
prefix='si',
                                                                                 Step 2: Non-SCF calculation
 pseudo_dir='../pseudo/',
 outdir='../tmp/',
                                                                                 Step 3: Data of bands structure
                                                                                 Step 4: Plot band structure
&SYSTEM
ibrav=2,
 celldm(1)=10.2625,
                                                                  Command:
 nat=2,
                                                                   $ pw.x < Si.scf.in > Si.scf.out
 ntyp=1,
 ecutwfc=60.0,
                                                                   $ pw.x < Si.nscf.in > Si.nscf.out
 ecutrho=720.0,
                                                                   $ bands.x <Si.bands.in > Si.bands.out
 nbnd=8,
                                                                   $ plotband.x <Si.plotband</pre>
&ELECTRONS
mixing_beta=0.7,
 conv_thr=1d-8,
ATOMIC_SPECIES
 Si 28.0855 Si.pbe-rrkj.UPF
ATOMIC_POSITIONS (alat)
si 0.00 0.00 0.00
si 0.25 0.25 0.25
                                                          Selected special k-point
                                                          coordinates
K_POINTS {crystal_b} 	
  0.000000000
                   0.000000000
                                  -0.5000000000
  0.000000000
                  0.000000000
                                  0.000000000
  -0.5000000000
                  0.000000000
                                  -0.5000000000
  -0.3750000000
                  0.000000000
                                  -0.6250000000
```

0.000000000

0.000000000

0.000000000

XCrySDen k-path

XCrySDen: http://www.xcrysden.org

Si.bands.in

```
&BANDS
outdir='../tmp/',
prefix='si',
filband='si.bands',

Name of data file
```

```
Step 1: SCF calculation (Hands-on #1)
```

Step 2: Non-SCF calculation

Step 3: Data of bands structure

Step 4: Plot band structure

Command:

```
$ pw.x < Si.scf.in > Si.scf.out
$ pw.x < Si.nscf.in > Si.nscf.out
$ bands.x <Si.bands.in > Si.bands.out
$ plotband.x <Si.plotband</pre>
```


Si.bands.in

```
&BANDS
outdir='../tmp/',
prefix='si',
filband='si.bands',

Name of data file
```

Step 1: SCF calculation (Hands-on #1)

Step 2: Non-SCF calculation

Step 3: Data of bands structure

Step 4: Plot band structure

Si.plotband

Command:

\$ pw.x < Si.scf.in > Si.scf.out

\$ pw.x < Si.nscf.in > Si.nscf.out

\$ bands.x <Si.bands.in > Si.bands.out

\$ plotband.x <Si.plotband</pre>

Any Questions?

Email: edis008@lipi.go.id