German University in Cairo Department of Computer Science Assoc. Prof. Haythem O. Ismail

CSEN 1003 Compiler, Spring Term 2019 Practice Assignment 7

Discussion: 27.03.18 - 02.04.18

Exercise 7-1

LR(0) Automaton

Is it possible that the following items constitute an item set in an LR(0) automaton? Justify your answer.

$$A \rightarrow P.Q$$

$$P \rightarrow .e$$

$$Q \quad o \quad .$$
e

Solution:

The item set must be complete: so the answer is NO: $P \rightarrow .e$ should not be part of it as we entered this set on a shift on P.

(Note that we can add the item $Q \to P$ to create a complete valid item set, but this was not the question!). Whether or not an item set makes the grammar LR(0) or not does not define the validity of an item set.

Exercise 7-2

LR(0) Item sets

Which of the following pairs of terms can co-exist in an LR(0) item set:

a)
$$A \rightarrow P.Q$$

 $B \rightarrow QP.$

Solution:

Yes. Both correspond to a shift on P, but to co-exist we need to show that the items are related. So we could have the previous state as $B \to Q.P$ with the additional item $P \to .A$ and $A \to .PQ$ Now a shift on P gives the items above as co-existing items.

Solution:

No, because one corresponds to a shift on P, while the second item corresponds to a shift on Q. We cannot connect these items.

c)
$$A \rightarrow P.Q$$

 $B \rightarrow P.Q$

⁰Exercises are due to Dr. Carmen Gervet and Pearson textbook

Solution:

Yes with $P \to B$ for instance as extra production (thus in the previous state we have $A \to .PQ, \, P \to .B$ and $B \to .PQ$). A shift on P yields the items.

$$d) \quad \begin{array}{ccc} A & \rightarrow & P.Q \\ A & \rightarrow & .Q \end{array}$$

Solution:

Yes, if $Q \to A$ is part of the grammar.

Exercise 7-3

LR(0) Automaton and SLR Parsing

Consider the following grammar:

$$\begin{array}{ccc} S & \to & X \mathbf{a} \\ X & \to & \mathbf{a} \mid \mathbf{a} X \mathbf{b} \end{array}$$

a) Compute the LR(0) item sets and construct the DFA of the augmented grammar.

Solution:

Augmented grammar:

$$\begin{array}{ccc} S' & \to & S \\ S & \to & X \mathbf{a} \\ X & \to & \mathbf{a} \mid \mathbf{a} X \mathbf{b} \end{array}$$

DFA:

b) Construct the SLR parsing table.

Solution:

Rule numbering:

1.
$$S \rightarrow Xa$$

$$2. \ X \ \rightarrow \ {\tt a}$$

$$3. \ X \ \rightarrow \ {\tt a} X {\tt b}$$

Parsing table:

	A	GOTO			
State	a	b	\$	S	X
0	s3			1	2
1			acc		
2	s6				
3	s3,r2	r2			4
4		s5			
5	r3	r3			
6			r1		

Note: The table above shows that the grammar is not SLR(1) since there is a shift/reduce conflict in state I_3 . However, in this case it is safe to always resolve the conflict in favor of shifting.

c) Use the parsing table to simulate SLR parsing on the string: aaba

Solution:

Stack	Input	Action
0	aaba\$	shift
03	aba\$	shift
033	ba\$	reduce $X \to \mathtt{a}$
034	ba\$	shift
0345	a\$	$\operatorname{reduce} X \to \mathtt{a} X \mathtt{b}$
02	a\$	shift
026	\$	reduce $S \to Xa$
01	\$	accept

Exercise 7-4

LR(0) Automaton and SLR Parsing

Consider the following grammar:

$$\begin{array}{ccc} S & \rightarrow & \mathrm{a} S \mathrm{c} \mid T \mathrm{d} \\ T & \rightarrow & T \mathrm{b} \mid \mathrm{b} \end{array}$$

a) Compute the LR(0) item sets and construct the DFA of the augmented grammar.

Solution:

Augmented Grammar:

$$\begin{array}{ccc} S' & \rightarrow & S \\ S & \rightarrow & \mathtt{a} S \mathtt{c} \mid T \mathtt{d} \\ T & \rightarrow & T \mathtt{b} \mid \mathtt{b} \end{array}$$

LR(0) Item sets:

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$I_1:$ $S' \rightarrow S \cdot$	$egin{array}{lll} I_2 \colon & & & & \\ S & ightarrow & ext{a} \cdot S ext{c} & & \\ S & ightarrow & \cdot ext{a} S ext{c} & & \\ S & ightarrow & \cdot T ext{d} & & \\ T & ightarrow & \cdot T ext{b} & & \\ T & ightarrow & \cdot ext{b} & & \\ \end{array}$
$egin{array}{cccc} I_3\colon & & & \\ S & ightarrow & \mathtt{a} S \cdot \mathtt{c} & & & \end{array}$	$egin{array}{ccc} I_4\colon & & & \\ S & ightarrow & { t a} S{ t c} \cdot & & & \end{array}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccc} I_7\colon & & & & & & & & & & & & & & & & & & &$	I_8 : $T o b \cdot$

b) Construct the SLR parsing table.

Solution:

Rule numbering:

- $1. \ S \ \rightarrow \ {\rm a} S {\rm c}$
- $2. \ S \ \rightarrow \ T \mathrm{d}$
- $3. T \rightarrow Tb$
- $4. \ T \quad \rightarrow \quad {\tt b}$

Parsing table:

	Action				GOTO		
State	a	b	С	d	\$	S	X
0	s2	s8				1	5
1					acc		
2	s2	s8				3	5
3			s4				
4			r1		r1		
5		s7		s6			
6			r2		r2		
7		r3		r3			
8		r4		r4			

c) Is this grammar SLR ? Justify your answer.

Solution:

The table above shows that the grammar is SLR since there is no conflicts.

d) Use the parsing table to simulate SLR parsing on the string: aabdcc

Solution:

Stack	Input	Action
0	aabdcc\$	shift
02	abdcc\$	shift
022	bdcc\$	shift
0228	dcc\$	reduce $T \to b$
0225	dcc\$	shift
02256	cc\$	reduce $S \to T$ b
0223	cc\$	shift
02234	c\$	reduce $S \to \mathtt{a} S \mathtt{c}$
023	c\$	shift
0234	\$	reduce $S \to \mathtt{a} S \mathtt{c}$
021	\$	accept

Exercise 7-5

Consider the following grammar:

$$\begin{array}{ccc} S & \rightarrow & T\text{,}S \mid \varepsilon \\ T & \rightarrow & \text{int 0} \end{array}$$

a) Compute the LR(0) item sets and construct the DFA of the augmented grammar.

Solution:

Augmented Grammar:

$$\begin{array}{ccc} S' & \rightarrow & S \\ S & \rightarrow & T, S \mid \varepsilon \\ T & \rightarrow & \text{int 0} \end{array}$$

LR(0) Item sets:

$ \begin{array}{cccc} I_0 \colon & & & \\ S' & \to & \cdot S & & \\ S & \to & \cdot T, S & & \\ S & \to & \cdot & & \\ T & \to & \cdot \mathtt{int} \ \mathtt{0} \end{array} $	$I_1: S' \rightarrow S \cdot$	I_2 : $S \rightarrow T \cdot , S$
I_3 : $S \rightarrow T, \cdot S$ $S \rightarrow \cdot T, S$ $S \rightarrow \cdot T$ $T \rightarrow \cdot \text{int 0}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$

b) Construct the SLR parsing table.

Solution:

Rule numbering:

- 1. $S \rightarrow T, S$
- $2. S \rightarrow \varepsilon$
- $3. \ T \quad \rightarrow \quad \text{int 0}$

Parsing table:

	Action				GOTO	
State	int	0	,	\$	$\mid S \mid$	X
0	s5			r2	1	2
1				acc		
2			s3			
3	s5			r2	4	2
4				r1		
5		s6				
6			r3			

c) Is this grammar SLR ? Justify your answer.

Solution:

The table above shows that the grammar is SLR since there are no conflicts.

d) Use the parsing table to simulate SLR parsing on the string: int $\, 0 \,$, int $\, 0 \,$

Solution:

Stack	Input	Action
0	int 0 , int 0\$	shift
05	0 , int $0\$$	shift
056	, int $0\$$	reduce T o int 0
02	, int $0\$$	shift
023	int 0\$	shift
0235	0\$	shift
02356	\$	Error