# Tópicos Especiais em RGV II

# Modelagem de adequabilidade ambiental



Diogo S. B. Rocha

Validação de Modelos



# Como sabemos se um modelo é bom?

#### Retorno ao campo







Consulta ao especialista na biogeografia da espécie modelada





... fazemos uma partição dos dados em conjunto de treino (ajuste) e teste do modelo.



## Algumas definições!

<u>Dados de treino</u>: registros de ocorrência de espécies que serão utilizados para rodar o modelo para a espécie de interesse.

<u>Dados de teste</u>: registros de ocorrência que não foram utilizados no treino do modelo mas que serão utilizados para testar o modelo gerado (pelos dados de treino), referente a mesma espécie.

### Algumas definições!

<u>Dados de presença</u> – pontos de ocorrência da espécie

<u>Dados de ausência</u> – registros de ausência da espécie, caso não estejam disponíveis, é necessário gerar um conjunto de pseudoausências.

## Onde?

# Área de calibração do modelo





# Área de calibração do modelo



# Então, para validar um modelo é preciso:

1. Gerar o(s) conjunto(s) de treino e teste

- 2. Gerar modelo(s) com o(s) conjunto(s) de dados de treino
- 3. Sobrepor o conjunto de teste ao modelo e quantificar os erros através de uma <u>matriz de confusão</u>

#### E ainda: como eu gero esses conjuntos de dados?

Para gerar um **conjunto de teste**, existem pelo menos duas formas de se fazer isso:

- a. Coletar novos dados (voltar ao campo)
- b. Dividir o dados originais em conjuntos (treino e teste) antes de realizar a modelagem



#### Mas não precisamos ficar com apenas dois conjuntos

Os dados podem ser divididos em vários conjuntos de treino e teste

#### Com isso, podemos:

- calcular a variabilidade dos resultados (média ± desvio padrão)
- avaliar a qualidade dos pontos
- comparar melhor os resultados de diferentes algoritmos

#### Tipos de partições de dados:

- 1. Com reposição (ex: bootstrap)
- 2. Sem reposição (ex: crossvalidate ou validação cruzada)

A escolha de um método irá depender do número de pontos que você possui.



Terminamos com 5 conjuntos de dados sendo Treino N = 80 e Teste N = 20

N = 20



Terminamos com 5 conjuntos de dados sendo Treino N = 80 e Teste N = 20

#### Sub-sample





Para avaliar a qualidade do modelo gerado é preciso:

.. <u>Ter um conjunto de teste</u>. Não é aceitável testar um modelo a partir dos pontos que o geraram! Isso não faria sentido!

Quantificar os componentes de erro através de uma matriz de confusão sobrepondo os pontos de teste ao modelo gerado pelo conjunto de treino

#### Gerar um modelo com o conjunto de dados de treino



#### Testar o modelo com o conjunto de teste



# Qual a diferença?



#### Limiar de corte (threshold)

Valor de adequabilidade ambiental (*suitability*) a partir do qual será considerada presença provável para a espécie.

No exemplo abaixo, vamos adotar o limiar 0.3 como *threshold*. Então todos os pixels da área de estudo cujo valor de A.A. for superior a 0.3 será considerado como área de presença predita e receberá o valor 1. Consequentemente os pixels com valor de A.A. inferiores a 0.3 receberão o valor 0.



#### Como fazemos isso?

#### Boas revisões dos limites de corte (thresholds) utilizados:

(Liu et al. 2005, Pearson et al. 2007, Liu et al. 2013)

- 1. Fixed cumulative value 1 (valor fixo em 1% de A.A.)
- 2. Fixed cumulative value 5 (valor fixo em 5% de A.A.)
- 3. Fixed cumulative value 10 (valor fixo em 10% de A.A.)
- 4. Minimum training presence (omissão = 0% dos pontos de treino)
- 5. 10 percentile training presence (omissão = 10% dos pontos de treino)
- 6. Equal training sensitivity and specificity (omissão e comissão iguais dos pontos de treino)
- 7. Maximum training sensitivity plus specificity (menor omissão de treino na menor área preditiva)
- 8. Equal test sensitivity and specificity (omissão e comissão iguais dos pontos de teste)
- 9. Maximum test sensitivity plus specificity (menor omissão de teste na menor área preditiva)

#### Como fazemos isso?

#### Boas revisões dos limites de corte (thresholds) utilizados:

(Liu et al. 2005, Pearson et al. 2007, Liu et al. 2013)

- 1. Fixed cumulative value 1 (valor fixo em 1% de A.A.)
- 2. Fixed cumulative value 5 (valor fixo em 5% de A.A.)
- 3. Fixed cumulative value 10 (valor fixo em 10% de A.A.)
- 4. Minimum training presence (omissão = 0% dos pontos de treino)
- 5. 10 percentile training presence (omissão = 10% dos pontos de treino)
- 6. Equal training sensitivity and specificity (omissão e comissão iguais dos pontos de <u>treino</u>)
- 7. Maximum training sensitivity plus specificity (menor omissão de <u>treino</u> na menor área preditiva)
- 8. Equal test sensitivity and specificity (omissão e comissão iguais dos pontos de <u>teste</u>)
- 9. Maximum test sensitivity plus specificity (menor omissão de <u>teste</u> na menor área preditiva)

# Mas e depois, como contabilizamos os erros e acertos do teste? Há dois tipos de erro em modelagem Erro de omissão e de sobreprevisão



#### Matriz de Confusão

A e D são acertos B e C são erros PRESENÇA A B

AUSÊNCIA
PREDITA C D



| Sen | $asibilidade = \frac{A}{(A+C)}$          |
|-----|------------------------------------------|
| Esp | $pecificidade = \frac{D}{(B+D)}$         |
| Sol | $preprevisão = \frac{B}{(B+D)}$          |
| omi | $issão = \frac{C}{(A+C)}$                |
| Acı | $ur\acute{a}cia^* = \frac{A+D}{A+B+C+D}$ |

Taxas de acertos

Taxas de erros

#### Matriz de Confusão



★ registros de presença★ registros de ausência

|                     | REGISTRO DE<br>PRESENÇA | REGISTRO DE<br>AUSÊNCIA |
|---------------------|-------------------------|-------------------------|
| PRESENÇA<br>PREDITA | 9                       | 3                       |
| AUSÊNCIA<br>PREDITA | 1                       | 7                       |

| $Sensibilidade = \frac{A}{(A+C)}$  | 0.9 |
|------------------------------------|-----|
| $Especificidade = \frac{D}{(B+D)}$ | 0.7 |
| $Sobreprevisão = \frac{B}{(B+D)}$  | 0.3 |
| $omiss\~ao = \frac{C}{(A+C)}$      | 0.  |
| $Acurácia* = \frac{A+D}{A+B+C+D}$  | 0.8 |

# Qual o significado dos dois tipos de erros no processo de modelagem?

Erro de omissão: em geral, o erro de omissão é considerado um erro verdadeiro. Contudo, algumas vezes um registro de presença pode não ser correto. Isso pode acontecer em algumas circunstâncias, tais como:

- 1. A identificação da espécie está errada.
- 2. Erro de georeferenciamento.
- 3. Um registro da espécie encontrado fora do seu habitat natural (indivíduos em trânsito ou introduzidos).

## E qual o significado do erro de sobreprevisão?

<u>Erro de sobreprevisão</u>: este pode ou não ser um erro, de qualquer forma, não é considerado um erro "grave". A previsão de ocorrência em áreas onde as espécies não tem registro confirmado pode ser causada por diferentes fatores:

- 1. A área é habitável pela espécie, mas o esforço amostral não foi suficiente para detectá-la.
- 2. A área é habitável para a espécie mas fatores históricos ou ecológicos (barreiras geográficas, capacidade de dispersão) ou bióticos (competição, predação) impediram a espécie de chegar ou de se estabelecer na região.
- 3. A área é inabitável mesmo, o que seria o verdadeiro erro de sobreprevisão.

#### Outras estatísticas para validar os modelos

#### True Skill Statistic (TSS)

- TSS = (sensibilidade + especificidade) 1
- TSS = ((A/A+C) + (D/B+D))-1

|                     | REGISTRO DE<br>PRESENÇA | REGISTRO DE<br>AUSÊNCIA |
|---------------------|-------------------------|-------------------------|
| PRESENÇA<br>PREDITA | Α                       | В                       |
| AUSÊNCIA<br>PREDITA | С                       | D                       |

Utilizando nosso exemplo anterior temos:

- TSS = (9/(9+1) + (7/(3+7)) 1
- TSS = (0.9+0.7) 1
- TSS = 0.6 (modelo bom!)

$$Sensibilidade = \frac{A}{(A+C)}$$
 
$$Especificidade = \frac{D}{(B+D)}$$

Obs: A TSS pode variar de -1 a 1. Quanto mais próximo de 1 melhor é o modelo. No geral, acima de 0.6 considera-se um bom ajuste do modelo aos dados. Entre 0.2 – 0.6 um ajuste regular e abaixo de 0.2, um ajuste ruim.

#### Outras estatísticas para validar os modelos

Análise ROC (cálculo da área sob a curva – AUC): avalia a performance do modelo através do valor representado pela área sob a curva ROC (AUC).

É obtida plotando-se a sensibilidade no eixo y e o valor 1especificidade no eixo x. Quanto mais próximo de 1 for a área sob a curva, mais distante o resultado do modelo é da previsão aleatória, ou seja, melhor o desempenho do modelo.

Obs: este valor pode ser usado para comparações entre diferentes algoritmos porque independe de um limiar de corte específico.

#### Análise ROC (cálculo da área sob a curva - AUC):



Training data (AUC = 0.995) Random Prediction (AUC = 0.5)

|                     | REGISTRO DE<br>PRESENÇA | REGISTRO DE<br>AUSÊNCIA |
|---------------------|-------------------------|-------------------------|
| PRESENÇA<br>PREDITA | Α                       | В                       |
| AUSÊNCIA<br>PREDITA | С                       | D                       |

Sensibilidade = 
$$\frac{A}{(A+C)}$$
  
Especificidade =  $\frac{D}{(B+D)}$ 

#### Análise ROC (cálculo da área sob a curva - AUC):

plot(e,"AUC")





Apesar de ser muito utilizada no passado, hoje tem caído em desuso:

- Dá igual importância aos erros de omissão e comissão
- Varia com a prevalência da espécie, espécies mais especialistas têm AUC maiores porque acertar as ausências é fácil.

#### VALIDAÇÃO DOS MODELOS - Considerações importantes

**3.** Avaliação do especialista na biogeografia da espécie modelada



**4.** Teste de campo, nada substitui esta validação!!



# Análises pós-modelagem

Depende da pergunta inicial:

- Consideração de variáveis que não entraram na modelagem: uso da terra, cobertura, etc.
- Interações bióticas
- Modelos multi-espécie
- Projeção no tempo e no espaço

#### O MNE não é o fim!