Alge III	Q1:
	A) NENJ = COS (0,07 Rn) = COS(270,005 n)
	$F = 9005 = \frac{5}{1000} = \frac{1}{200}$ $N = 200$
	it is periodic because F is rational
	F - F - 1 200
	B) $n \in n = \cos(\pi 30 n) = \cos(2\pi 30 n) = \cos(2\pi 1 n)$
	$F = \frac{1}{7}$ is rational so jugar is periodic
)	$\widetilde{F} = F = \frac{1}{7}$ $N = 7$

Question 1
C) X[n] = COS (217 142 n)
F= 149 is rational so it is periodic. N=100
$ \vec{F} = \frac{149}{100} \cdot 1 = \frac{49}{100}$
D) $91[n] = Sin(3n) = Sin(2\pi \frac{3}{2\pi}n)$
F= 3 is irrational so it is not periodic
E) $x_{[n]} = e^{-\frac{100}{10}} = e^{-\frac{31}{10}} = F = \frac{31}{10}$ is rational
in agaz is periodic [N-10] F -31 2= 1

 Q2: We need to compare F together
$\widetilde{F}_{a} = \frac{1}{200} = 0,005$ $\widetilde{F}_{b} = \frac{1}{7} \approx 0,14$ $\widetilde{F}_{c} = \frac{49}{100} \approx 0,49$
Fe= 10=01 Fa <fe<fb<fc< th=""></fe<fb<fc<>
" naIn has the lowest rate of oscillation " " highest " " "

e) for this part, we need to create a DC signal. So, we need to have sample at zero value or every $10\ ms$.

T = 10ms

 $F_s = 1/10 \text{ ms} = 100 \text{ sample/sec}$

Q4:
A)
$$n_{ER} = \sin(2\pi \frac{1}{5}n)$$
 $F = \frac{1}{5}$ $f_{5} = 10$
 $=> F - f_{00} = \frac{1}{5} => f_{00} = 2 Hz$ $n_{(t)} = \sin(2\pi 2t)$
 $f_{55} = 10$ $f_{5} = 125$ $f_{5} = 125$ $f_{5} = 125$ $f_{5} = 125$
 $n_{\alpha(t)} = \sin(2\pi 25t)$

B) i) $\lim_{q \to 1} \frac{1 - q N}{1 - q N} = 0$
fin) = 1 - an fin) = - Nan N-1
g(n) = 1-n g'(n) = -1
$\lim_{n\to 1} f(n) = 0 \qquad \lim_{n\to 1} g(n) = 0 \implies \lim_{n\to 1} f(n) = \lim_{n\to 1} f(n)$
$-> \lim_{n \to 1} \frac{f'(n)}{g'(n)} - \lim_{n \to 1} -Nn^{N-1} = N$
e lim 1-n - N n->1 1-n

Biv) Based on Bii and Bi the sum of complex exponential over 1 period is equal to zero. except for Fo=0,1 that is equal to N.

	15 14 3 (SEN)
E) 5[N] = { Deu, 0, 5, 4, 3, 2, 1, 0, -1, 0, cock
	*5 1 Yrn7
-	2
P) /2 / >n /En] = {000,0,5,2,-1,0,000}

1.5/6	g) $V_{En]} = V_{En-2]}$ $V_{En]} = X_{En]} = X_{En-2]} = X_{E-(n-2)]} = X_{E2-n]}$ $= X_{En]} = X_{E2-n}$
To A	SEN] = YE-N] = XE(-n)+2]=XE2-N] => SEN] = XE2-N]
	H) Advance nend by two samples, then fold the resulting sequence about the 'n-o' axis.
	fold nenz about the 'n=o' axis, then Delay the resulting

Q8)
ZEn3 2 = ZEn]ZEnj = (3e, +4e) (3e +4e) (3e +4e)
= 9e + 16e + 12e = 12e = 12e = 12e
$=25+12\left(\frac{2}{1}+\left(-\frac{2}{1}\right)^{n}\right)=25+12i^{n}\left(1+\left(-\frac{1}{1}\right)^{n}\right)$
of n is a odd number => ZIn3 2 = 25

0	B) ZENJ is a periodic signal then with N=4 herouse, N=1 \[\sum_{n=0}^{N-1} \] \[\sum_{n=
£	$= > P_2 - \frac{1}{4} \sum_{n=0}^{3} Z_{EN} ^2 = \frac{1}{4} (49 + 25 + 25 + 1) = 25$ $ Z_{EO} ^2 = 49 \qquad Z_{EN} ^2 = Z_{EN} ^2 = 25 \qquad Z_{EN} ^2 = 1$

	Q9) A) VENJ = 58 [n+1] + 38 [n] + 18[n-1]
	B) yenz - 8[n+1]+28[n]+38[n-1]+48[n-2]+58[n-3]
qu'ille	> Y[n] = \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \