Problem Set 7

Parvesh Adi Lachman

November 2023

1 Problem 1

Consider the algorithm below, which takes an $n \geq 0$ and finds it remainder when divided by $c \geq 1$

```
 \begin{aligned} & \textbf{function} \ \operatorname{REMAINDER}(n) : \\ & \textbf{if} \ n \leq c - 1 \ \textbf{then} \\ & \textbf{return} \ n \\ & \textbf{else} \\ & \textbf{return} \ \operatorname{Remainder}(n - c) \\ & \textbf{end if} \\ & \textbf{end function} \end{aligned}
```

Claim: Let $c \ge 1$. For any $n \ge 0$, remainder $(n) = n \mod c$.

Step 0: For $n \ge 0$, we want to show that **remainder** $(n) = n \mod c$.

Step 1: For any $n \ge 0$, Let P(n) be the property that **remainder** $(n) = n \mod c$.

We want to show that P(n) is true for all $n \geq 0$.

Step 2: As base cases, consider when

n=0. We will show that P(0) is true: that is **remainder**(0) = 0 mod c. Fortunately, this is true since $c \geq 1$ and in the algorithm, if $n \leq c-1$, and in this case n=0, $c \geq 1$. This implies $0 \leq 1-1=0 \leq 0$ which is true, then **remainder**(n) = n. Thus, **remainder**(0) = n, so RHS = n0. Also, 0 mod n0 so LHS = n0. Thus, LHS = RHS, so n0 is true.

Additionally, for any $n \leq c - 1$, **remainder** $(n) = n = (n \mod c)$, this is true since due to the definition of the algorithm.

Step 3: Let $k \ge 1$. For the induction hypothesis, suppose that $P(0), \ldots, P(k)$ are true, or equivalently, that for all $0 \le k' \le k : P(k')$. That is, suppose that **remainder** $(k') = k' \mod c$.

Step 4: Now we prove that P(k+1) is true, using our induction assumptions that $P(0), \ldots, P(k)$ are true. That is, we prove that **remainder** $(k+1) = (k+1) \mod c$.

Step 5: If k + 1 < c, then **remainder** $(k + 1) = k + 1 = k + 1 \mod c$ by definition of algorithm. Otherwise the proof that P(k + 1) is true (given that $P(0), \ldots, P(k)$ are true) is as follows:

```
Left hand side of P(k+1) = remainder(k+1)

= remainder((k+1)-c) By def of algorithm, since k+1 \ge c-1

= ((k+1)-c) \mod c By IH, since 0 \le (k+1)-c \le k

= (k+1) \mod c - c \mod c By def of mod

= (k+1) \mod c Since c \ge 1, c \mod c = 0

= Right hand side of P(k+1)
```

Step 6: The steps above have shown that for any $k \geq 1$, if $P(0), \ldots, P(k)$ are true, then P(k+1) is also true. Combined with the base cases, which show that P(0) are true, we have shown that for all $n \geq 0$, P(n) is true, as desired.

2 Problem 2

Claim: Let $n, c \ge 1$ and $c \le n$. The number of simple paths of length c in the complete graph on n nodes is $\frac{n!}{(n-c-1)!}$ which is equal to $n(n-1)\cdots(n-c)$.

complete graph K_n : an undirected graph on n nodes with an edge between every pair of nodes.

simple path: a sequence of distinct nodes with edges between consecutive nodes in the sequence.

length of a path: the number of *edges* in the path (**not** number of nodes).

Step 0: For all $c \geq 1$, we want to show that the number of simple paths of length c in the complete graph on n nodes is $\frac{n!}{(n-c-1)!}$ which is equal to $n(n-1)\cdots(n-c)$.

Step 1: For any $c \ge 1$, Let P(c) be the property that the number of simple paths of length c in the complete graph on n nodes is $\frac{n!}{(n-c-1)!}$ which is equal to $n(n-1)\cdots(n-c)$.

Step 2: As base cases, consider when c=1. We will show that P(1) is true: that is the number of simple paths of length 1 in the complete graph on n nodes is $\frac{n!}{(n-1-1)!}$ which is equal to n(n-1). Fortunately, this is true since the number of simple paths of length 1 in the complete graph on n nodes is n(n-1), and $\frac{n!}{(n-1-1)!} = n!$, and n! = n(n-1). Thus, the number of simple paths of length 1 in the complete graph on n nodes is $\frac{n!}{(n-1-1)!}$ which is equal to n(n-1), so LHS = RHS. Thus, P(1) is true.

Step 3: For the induction hypothesis, suppose (hypothetically) that P(k) is true for some fixed $k \geq 1$. That is, suppose that the number of simple paths of length k in the complete graph on n nodes is $\frac{n!}{(n-k-1)!}$ which is equal to $n(n-1)\cdots(n-k)$.

Step 4: Now we prove that P(k+1) is true, using our induction assumptions that P(k) is true. That is, we prove that the number of simple paths of length k+1 in the complete graph on n nodes is $\frac{n!}{(n-(k+1)-1)!}$ which is equal to $n(n-1)\cdots(n-(k+1))$.

Step 5: The proof that P(k+1) is true (given that P(k) is true) is as follows:

Left hand side of
$$P(k+1)$$
 = The number of simple paths of length $k+1$ in K_n = The number of simple paths of length k in K_n * $(n-(k+1))$ Since there are $k+1$ nodes in length k path
$$= \frac{n!}{(n-k-1)!} \cdot (n-(k+1))$$
 By IH
$$= \frac{n!}{(n-k-1)!} \cdot \frac{(n-k-1)!}{(n-(k+1)-1)!}$$
 By algebra
$$= \frac{n!}{(n-(k+1)-1)!}$$
 By algebra By algebra
$$= \text{Right hand side of } P(k+1)$$

Step 6: The steps above have shown that if P(k) is true, then P(k+1) is also true. Combined with the base case, which shows that P(1) is true, we have shown that for all $c \geq 1$, P(c) is true, as desired.

3 Problem 3

Recall the Fibonacci numbers, as defined by:

$$f_1 = 1$$

 $f_2 = 1$
 $f_n = f_{n-1} + f_{n-2}$ for $n \ge 3$

Recall the Sharp numbers from PS6, as defined by:

$$s_1 = 2$$

 $s_2 = 4$
 $s_n = s_{n-1} + s_{n-2}$ for $n \ge 3$

Claim: For all $n \ge 3$, $s_n = 4 \cdot f_{n-1} + 2 \cdot f_{n-2}$.

Step 0: For $n \geq 3$, we want to show that $s_n = 4 \cdot f_{n-1} + 2 \cdot f_{n-2}$.

Step 1: For any $n \ge 3$, Let P(n) be the property that $s_n = 4 \cdot f_{n-1} + 2 \cdot f_{n-2}$. We want to show that P(n) is true for all $n \ge 3$.

Step 2: As base cases, consider when

n=3. We will show that P(3) is true: that is $s_3=4\cdot f_{3-1}+2\cdot f_{3-2}$. Fortunately, this is true since $s_3=s_2+s_1=4+2=6$ and $4\cdot f_{3-1}+2\cdot f_{3-2}=4\cdot f_2+2\cdot f_1=4\cdot 1+2\cdot 1=6$. Thus, $s_3=4\cdot f_{3-1}+2\cdot f_{3-2}$, so LHS = RHS. Thus, P(3) is true.

n=4. We will show that P(4) is true: that is $s_4=4\cdot f_{4-1}+2\cdot f_{4-2}$. Fortunately, this is true since $s_4=s_3+s_2=6+4=10$ and $4\cdot f_{4-1}+2\cdot f_{4-2}=4\cdot f_3+2\cdot f_2=4\cdot 2+2\cdot 1=10$. Thus, $s_4=4\cdot f_{4-1}+2\cdot f_{4-2}$, so LHS = RHS. Thus, P(4) is true.

Step 3: Let $k \geq 4$. For the induction hypothesis, suppose that $P(3), P(4), \ldots, P(k)$ are true, or equivalently, that for all $3 \leq k' \leq k : P(k')$. That is, suppose that $s_{k'} = 4 \cdot f_{k'-1} + 2 \cdot f_{k'-2}$.

Step 4: Now we prove that P(k+1) is true, using our induction assumptions that $P(3), P(4), \ldots, P(k)$ are true. That is, we prove that $s_{k+1} = 4 \cdot f_{k+1-1} + 2 \cdot f_{k+1-2}$.

Step 5: The proof that P(k+1) is true (given that $P(3), P(4), \dots, P(k)$ are true) is as follows:

```
Left hand side of P(k+1) = s_{k+1} = s_k + s_{k-1} By def of sequence (Sharp numbers)

= (4 \cdot f_{k-1} + 2 \cdot f_{k-2}) + (4 \cdot f_{k-2} + 2 \cdot f_{k-3}) By IH

= 4 \cdot f_{k-1} + 2 \cdot f_{k-2} + 4 \cdot f_{k-2} + 2 \cdot f_{k-3} By algebra

= 4 \cdot f_{k-1} + 4 \cdot f_{k-2} + 2 \cdot f_{k-2} + 2 \cdot f_{k-3} By rewriting

= 4(f_{k-1} + f_{k-2}) + 2(f_{k-2} + f_{k-3}) By factoring and algebra

= 4 \cdot f_k + 2 \cdot f_{k-1} By def of sequence (Fibonacci numbers)

= Right hand side of P(k+1)
```

Step 6: The steps above have shown that for any $k \geq 4$, if $P(3), P(4), \ldots, P(k)$ are true, then P(k+1) is also true. Combined with the base cases, which show that P(3), P(4) are true, we have shown that for all $n \geq 3$, P(n) is true, as desired.