EE-421: Digital System Design

Doing MATHS on an FPGA

Arithmetic Circuit:
(Revisiting) Adder for Performance
Carry Look-Ahead Adder

Dr. Rehan Ahmed [rehan.ahmed@seecs.edu.pk]

Carry Look-Ahead Adder (CLA)

Approach

- Attempt (look-ahead) to evaluate quickly for each stage whether the carry-in from the previous stage will have a value 0 or 1:
 - If a correct evaluation can be made in a relatively short time, then the performance of the complete adder will be improved.

Approach – how?

Generate Term

A_i, B_i would generate a carry if both are 1

$$G_i = A_i$$
 and B_i

Propagate Term

A_i, B_i would propagate a carry if either is 1

$$P_i = A_i \ or \ B_i$$

Approach

$$c_{i+1} = a_i b_i + a_i c_i + b_i c_i$$

$$c_{i+1} = a_i b_i + (a_i + b_i) c_i$$

$$c_{i+1} = g_i + p_i c_i$$

- The function g_i is equal to 1 when both inputs a_i and b_i are equal to 1,
 - regardless of the value of the incoming carry to this stage, c_i
 - Since in this case stage i is guaranteed to generate a carry-out,
 g is called the generate function.
- The function p_i is equal to 1 when at least one of the inputs a_i and b_i is equal to 1,
 - In this case a carry-out is produced if $c_i = 1$.
 - The effect is that the carry-in of 1 is propagated through stage
 i; hence p_i is called the *propagate* function.

Approach Takeaway

Pre-compute parts of carry logic

For each bit of the addition, independently calculate two terms:

Generate term

$$G_i = f(A_i, B_i)$$

Propagate term

$$P_i = f(A_i, B_i)$$

G_i and P_i are independent of Carry terms C_i

Then, by using the various Generate and Propagate terms, we can compute the carry terms at each bit without the ripple effect.

Approach Takeaway – (2)

$$Cout_{i+1} = G_i \text{ or } (P_i \text{ and } Cin_i)$$
A Carry was GENERATED

A Carry was PROPAGATED

Example: Generate Term

Does adding the *i-th* bits of A, B generate a carry?

Example: A = 011, B = 010

Look at each bit-position INDEPENDANTLY

Does adding bit 0 generate a Carry?

$$A + B = 011 + 010$$

NO,
$$1 + 0 = 01$$
 (carry NOT generated)

$$G_0 = 0$$

Does adding bit 2 generate a Carry?

$$A + B = 011 + 010$$

NO,
$$0 + 0 = 00$$

$$G_2 = 0$$

Does adding bit 1 generate a Carry?

$$A + B = 011 + 010$$

YES,
$$1 + 1 = 10$$
 (carry generated)

$$G_1 = 1$$

Example: Propagate Term

If there was a carry-in at the *i-th* bit, would it propagate to the next stage?

Example: A = 011, B = 010

Look at each bit-position INDEPENDANTLY

Would bit 0 propagate a Carry?

$$A + B = 011 + 010$$

YES,
$$1 + 0 + 1 = 10$$
 (carry propagated)

$$P_0=1$$

hypothetical carry-in

Would bit 2 propagate a Carry?

$$A + B = 011 + 010$$

NO,
$$0 + 0 + 1 = 01$$

$$P_2 = 0$$

hypothetical carry-in

Would bit 1 propagate a Carry?

$$A + B = 011 + 010$$

YES,
$$1 + 1 + 1 = 11$$
 (carry propagated)

hypothetical carry-in

4-bit CLA Example

Let C_i denote the carry-in of stage i this means that it is also the carry-out of the previous stage

$$C_{1} = G_{0} + P_{0} \cdot C_{0}$$

$$C_{2} = G_{1} + P_{1} \cdot C_{1}$$

$$C_{3} = G_{2} + P_{2} \cdot C_{2}$$

$$C_{4} = G_{3} + P_{3} \cdot C_{3}$$

Note: We are using logical operators here: + means OR . means AND

Carry Look-Ahead Logic

$$C_{1} = G_{0} + P_{0} \cdot C_{0}$$

$$C_{2} = G_{1} + P_{1} \cdot C_{1}$$

$$C_{3} = G_{2} + P_{2} \cdot C_{2}$$

$$C_{4} = G_{3} + P_{3} \cdot C_{3}$$

Perform Forward Substitution

$$C_{1} = G_{0} + P_{0} \cdot C_{0}$$

$$C_{2} = G_{1} + P_{1} \cdot G_{0} + P_{1} \cdot P_{0} \cdot C_{0}$$

$$C_{3} = G_{2} + P_{2} \cdot G_{1} + P_{2} \cdot P_{1} \cdot G_{0} + P_{2} \cdot P_{1} \cdot P_{0} \cdot C_{0}$$

$$C_{4} = G_{3} + P_{3} \cdot G_{2} + P_{3} \cdot P_{2} \cdot G_{1} + P_{3} \cdot P_{2} \cdot P_{1} \cdot G_{0} + P_{3} \cdot P_{2} \cdot P_{1} \cdot P_{0} \cdot C_{0}$$

Carry Look-Ahead Logic

$$C_{1} = G_{0} + P_{0} \cdot C_{0}$$

$$C_{2} = G_{1} + P_{1} \cdot G_{0} + P_{1} \cdot P_{0} \cdot C_{0}$$

$$C_{3} = G_{2} + P_{2} \cdot G_{1} + P_{2} \cdot P_{1} \cdot G_{0} + P_{2} \cdot P_{1} \cdot P_{0} \cdot C_{0}$$

$$C_{4} = G_{3} + P_{3} \cdot G_{2} + P_{3} \cdot P_{2} \cdot G_{1} + P_{3} \cdot P_{2} \cdot P_{1} \cdot G_{0} + P_{3} \cdot P_{2} \cdot P_{1} \cdot P_{0} \cdot C_{0}$$

If C_0 and all G_i and P_i terms are available at the same time, ALL C_i terms will be ready after 2 gate delays

AND-OR networks

No Ripple Effect!

2-bit Carry Lookahead Adder

Compare: A ripple-carry adder

4-bit Carry Lookahead Adder

All G, P terms available after single gate delay

The total delay in the n-bit carry-lookahead adder is four gate delays

ALL outputs ready after 4 t_{PD}

The total delay in the n-bit carry-lookahead adder is four gate delays

But there are still few wrinkles to iron out...

What about CLA Scalability?

In theory, we could build Carry Look-Ahead Adders of any size N However, equations get more complex very quickly, and we need wider and wider gates (slow) in the carry logic.

$$\begin{split} &C_{1} = G_{0} + P_{0} \cdot C_{0} \\ &C_{2} = G_{1} + P_{1} \cdot G_{0} + P_{1} \cdot P_{0} \cdot C_{0} \\ &C_{3} = G_{2} + P_{2} \cdot G_{1} + P_{2} \cdot P_{1} \cdot G_{0} + P_{2} \cdot P_{1} \cdot P_{0} \cdot C_{0} \\ &C_{4} = G_{3} + P_{3} \cdot G_{2} + P_{3} \cdot P_{2} \cdot G_{1} + P_{3} \cdot P_{2} \cdot P_{1} \cdot G_{0} + P_{3} \cdot P_{2} \cdot P_{1} \cdot P_{0} \cdot C_{0} \end{split}$$

Typically do not extend beyond 4-bits due to fan-in constraints

Recommended Reading

• Digital System Design with Verilog HDL, 3/e, b Stephen

Brown and **Z**vonko Vranesic. [**S&Z**]

- S&Z,
 - Chapter-3
 - -3.4

FUNDAMENTALS OF

with Verilog Design

Stephen Brown

IGITAL LOGIC

Zvonko Vranesio

THANK YOU

