

Powdered Coal Engineering & Equipment Co.

Copyright, 1914, by The Buffalo Forge Company Buffalo, N. Y.

OF TABLES, CHARTS AND DATA ON THE APPLICATION OF CENTRIFUGAL FANS AND FAN SYSTEM APPARATUS, INCLUDING ENGINES AND MOTORS, AIR WASHERS, HOT BLAST HEATERS AND SYSTEMS OF AIR DISTRIBUTION

PUBLISHED BY

THE BUFFALO FORGE COMPANY BUFFALO, N. Y.

FIRST EDITION

PRICE \$3.00

EDITED BY

WILLIS H. CARRIER, CHIEF ENGINEER

ENGINEERS HAND BOOK

OF TABLE CHARYS (SD: DAYS ON CENTRAL ON THE ALL ON CHARTS) AND THE SECOND CHARTS (SD: DAYS) AND THE

CONTRACT STATES OF STATES

Adequate The State

- N. W. C. C.

PREFACE

THE use of the fan in general engineering practice is rapidly increasing, making it imperative that both the engineer and the architect become familiar with the fundamental principles governing the selection and application of fans for various purposes. Some general information has been published on the subject by the different fan builders, but what has been given out has always been incomplete and frequently misleading, and did not afford sufficient data to be intelligently employed by the engineer. Heretofore no effort has been made to collect and present under one cover the latest and most reliable engineering data concerning fans and their application to various industrial requirements.

This book is intended to be used as a guide in the selection and application of fans, heaters and kindred apparatus, and an effort has been made to so standardize the rules and data given that they may be used with any standard make of equipment. The greater part of the data presented is the result of tests and research made by the engineering staff of the Buffalo Forge Company in the testing laboratories of the company, many of the investigations being made purposely to obtain data for this book. The results of these investigations have in most cases never been heretofore published except in the proceedings of some of the engineering societies, where they were presented by the engineers of this company, and others. The rules and applications as outlined are the same as are used in this company's practice. In preparing this work the theory has been generally omitted, except in such elementary form as was necessary to an understanding of the facts given.

The information herein presented is in complete and reliable form for standard applications, but there are many cases requiring special consideration from the engineer familiar with fan installations.

PREFACE

And the property of the proper

Subjective and accepting to a constraint of the constraint of the first policy of the constraint of th

addette kan eint grant i former i ni vol gebourdet ett.
Lock open ingforger tut- open i vol gebourd et foret

OUTLINE OF CONTENTS

Part I-PROPERTIES OF AIR.

Weight of air.

Specific heat of air.

Relation of velocity to pressure.

Effects of temperature, humidity and barometric pressufe on the properties of air.

Relation of dry-bulb, wet-bulb and dew-point tempers

Sensible, latent and total heat.

Psychrometric charts and tables.

Part II—APPLICATIONS.

SECTION I-Heating.

Heat losses from buildings.

Cold storage insulation.

Heat loss from galvanized iron pipes.

Heat loss due to infiltration.

Heat required for ventilation.

Air quantity and temperature required for heating.

SECTION II—Ventilation.

Standard of ventilation.

Special air requirements.

Application of the fan system of ventilating.

SECTION III—Air Washing, Cooling, Humidifying, Drying.

Air washing.

Humidity in heated buildings.

Cooling.

Relation of room temperature to outside wet-bulb temperature.

Drving.

Time required for drying various materials.

Practical examples in drying calculations.

Moisture removing capacity of air.

SECTION IV-Mechanical Draft.

Forced and induced draft.

Draft requirement.

k

Amount of air required.

Measurement of air used.

Mechanical draft in connection with mechanical stokers.

SECTION V-Exhaust Systems.

Size of pipes and velocity required.

Dust removal from grinding and buffing wheels.

Specifications from Labor Laws of New York State.

Dust collectors.

Friction loss in system.

Standard and slow speed exhausters.

Practical examples.

SECTION VI-Miscellaneous Applications.

Part III-AIR DUCTS.

Pressure losses in air ducts and elbows.

Pressure losses in nozzles and orifices.

The diverging nozzle in air ducts.

Theoretical outlet or blast area.

Proportioning the various losses.

Proportioning piping for exhaust systems.

Proportioning ducts for public buildings.

Proportioning piping for industrial buildings.

Equalizing friction for unequal length.

Piping layout.

Sizes and weight of piping.

Part IV-APPARATUS.

SECTION I-Fans.

Fan design.

Pressure characteristics.

Special types and features.

Horsepower of a fan.

Relations of total, static, and velocity pressure.

The selection of a fan-practical examples.

SECTION II-Fan Testing.

The pitot tube.

The anemometer.

The orifice.

OUTLINE OF CONTENTS

The converging nozzle.

Coefficients of discharge for air measurements.

SECTION III—Fan Capacities.

SECTION IV-Fan Dimensions.

SECTION V-Heaters.

Buffalo standard pipe coil heater.

Heat transmission through metal surfaces.

Temperatures attained with indirect heaters.

Condensation in coils.

Velocity of air through heaters.

Application of heater tables and curves.

Frictional resistance of heaters.

Sizes and dimensions of Buffalo heaters.

Heater cases and by-pass proportions.

Determination of guarantees.

SECTION VI—Air Conditioning Apparatus.

Air washers.

Types of humidifiers.

The dehumidifier.

The design of humidifiers.

Refrigeration required for dehumidifying.

Power required for operating humidifiers.

Dimensions and capacity tables of Carrier air washers and humidifiers.

SECTION VII-Steam Engines.

M. E. P. of high speed engines.

Water rate of high speed engines.

Brake H. P. per R. P. M. of Buffalo engines.

Dimensions of Buffalo engines.

Section VIII—Practical Applications and the Selection of Apparatus for Heating and Ventilating.

Part V-APPENDIX.

Specifications.

Miscellaneous engineering data.

Index.

PART I

PROPERTIES OF AIR

In this section will be found a discussion of the physical and chemical properties of air and their general relations with respect to "fan engineering." A complete set of psychrometric charts and tables are included.

Air is a mechanical mixture of various gases, ordinarily considered as consisting of oxygen and nitrogen, but also containing a portion of moisture and carbonic acid, and a very small part of other constituents. The proportion of these components will vary under different conditions, but ordinarily pure dry air is composed as follows, in per cent.:

	By Volume	By Weight o
Oxygen	 20.9	23.1
Nitrogen	79.1	76.9

The moisture will vary with the humidity of the air, from 0. to 4 per cent., and the carbonic acid will vary with the purity of the air from perhaps 0.03 to 0.30 per cent., or as usually expressed, from 3 to 30 parts in 10,000.

Weight of Air

The weight of the air varies with its temperature and barometric pressure and also with the amount of moisture it contains. The weight of one cubic foot of pure dry air expressed in pounds may be determined by the formula

$$W = \frac{2.6982 \text{ p}}{459.2 + \text{t}} \tag{1}$$

where p = absolute pressure in pounds per square inch.

t=temperature of the air in degrees F.

A convenient formula for expressing the weight of dry air at any conditions of temperature and pressure as used by Frank H. Kneeland* is

$$W = \frac{1.3253 \text{ b}}{459.2 + \text{t}} \tag{2}$$

where b = corrected barometer reading in inches of mercury

t = temperature, deg. F.

1.3253 = weight in lbs. of 459.2 cu. ft. of air at 0° F. and 1" barometric pressure.

^{* &}quot;Some Experiences with the Pitot Tube on High and Low Velocities" Am. Soc. Mech. Engrs., Dec., 1911.

A formula expressing the weight of humid air is given in the Smithsonian Meteorological Tables as

$$W = \frac{0.080723}{1 + 0.0020389 (t - 32)} \times \frac{b - 0.378 e}{29.921}$$
 (3)

where t = temperature, deg. Fahr.

b = height of barometer in inches of mercury

e = pressure due to vapor in the air in inches of mercury.

According to the latest data the above values should be slightly changed, and we will then have the following formulae as convenient forms for calculating the weight per cubic foot of either dry or moist air.

$$W = \frac{0.0028862 \text{ b}}{1 + 0.0021758 \text{ t}} \tag{4}$$

For moist air
$$W = \frac{0.0028862 \text{ b} - 0.001088 \text{ e}}{1 + 0.0021758 \text{ t}}$$
 (5)

This last gives the weight of a cubic foot of the mixture of air and vapor, either for saturated or partly saturated air.

The weight of the dry air contained in one cubic foot of saturated air may be determined from the formula

$$W = \frac{0.0028862 \text{ b} - 0.002886 \text{ e}}{1 + 0.0021758 \text{ t}}$$
 (6)

The weight of vapor or density in pounds per cubic foot of saturated vapor at temperature t is given by the following:

$$D_{\text{s}} = \frac{S (144 \times 0.4908 \text{ e})}{53.35 (459.2 + t)} \tag{7}$$

where S is the specific weight of water vapor and may be found as

$$S = 0.6221 + 0.001815\sqrt{e} + 0.0000051\sqrt{e^3}$$
 (8)

The relationship between the temperature and specific weight of vapor is shown by the diagram on page 14 taken from W. H. Carrier's paper on "Rational Psychrometric Formulae."*

An approximate value for the weight of water vapor contained in one pound of dry air saturated with moisture may be determined from

$$G = \frac{0.624 \text{ e}}{b - e} \tag{9}$$

It may be noted from the curve on page 14 that the value of 0.624 for S in the above is only correct at about 70°.

^{*&}quot;Rational Psychrometric Formulae" Am. Soc. Mech. Engrs., Dec., 1911.

PROPERTIES OF DRY AIR
Barometric Pressure 29.921 Inches

Temperature Degrees Fahr.	Weight per Cu. Ft. Pounds	Per Cent. of Volume at 70° F.	B. t. u. Absorbed by One Cu. Ft. Dry Air per Degree F.	Cu. Ft. Dry Air Warmed One Degree per B. t. u.	Temperature Degrees Fahr.	Weight per Cu. Ft. Pounds	Per Cent. of Volume at 70° F.	B. t. u. Absorbed by One Cu. Ft. Dry Air per Degree F.	Cu. Ft. Dry Air Warmed One Degree per B. t. u.
0	.08636	.8680	.02080	48.08	130	.06732	1.1133	.01631	61.32
5	.08544	.8772	.02060	48.55	135	.06675	1.1230	.01618	61.81
10	.08453	.8867	.02039	49.05	140	.06620	1.1320	.01605	62.31
15	.08363	.8962	.02018	49.56	145	.06565	1.1417	.01592	62.82
20	.08276	.9057	.01998	50.05	150	.06510	1.1512	.01578	63.37
25	.08190	.9152	.01977	50.58	160	.06406	1.1700	.01554	64.35
30	.08107	.9246	.01957	51.10	170	.06304	1.1890	.01530	65.36
35	.08025	.9340	.01938	51.60	180	.06205	1.2080	.01506	66.40
40	.07945	.9434	.01919	52.11	190	.06110	1.2270	.01484	67.40
45	.07866	.9530	.01900	52.64	200	.06018	1.2455	.01462	68.41
50	.07788	.9624	.01881	53.17	220	.05840	1.2833	.01419	70.48
55	.07713	.9718	.01863	53.68	240	.05673	1.3212	.01380	72.46
60	.07640	.9811	.01846	54.18	260	.05516	1.3590	.01343	74.46
65	.07567	.9905	.01829	54.68	280	.05367	1.3967	.01308	76.46
70	.07495	1.0000	.01812	55.19	300	.05225	1.4345	.01274	78.50
75	.07424	1.0095	.01795	55.72	350	.04903	1.5288	.01197	83.55
80	.07356	1.0190	.01779	56.21	400	.04618	1.6230	.01130	88.50
85	.07289	1.0283	.01763	56.72	450	.04364	1.7177	.01070	03.46
90	.07222	1.0380	.01747	57.25	500	.04138	1.8113	.01018	98.24
95	.07157	1.0472	.01732	57.74	550	.03932	1.9060	.00967	103.42
100	.07093	1.0570	.01716	58.28	600	.03746	2.0010	.00923	108.35
105	.07030	1.0660	.01702	58.76	700	.03423	2.1900	.00847	118.07
110	.06968	1.0756	.01687	59.28	800	.03151	2.3785	.00782	127.88
115	.06908	1.0850	.01673	59.78	900	.02920	2.5670	.00728	137.37
120	.06848	1.0945	.01659	60.28	1000	.02720	2.7560	.00680	147.07
125	.06790	1.1040	.01645	60.79	1200	.02392	3.1335		165.83

Specific Weight of Water Vapor

The table on page 13 gives the properties of dry air for various temperatures, and the table on page 15 the properties of saturated air. These are both based on the standard barometric pressure of 29.921 inches.

The table on page 17 giving the weights of saturated and partly saturated air for various barometric and hygrometric conditions will be found especially convenient in making calculations based on other than standard conditions. The weight in pounds per cubic foot of saturated air is given for even barometric pressures and temperatures. The decrement per degree rise in temperature and the increment per 0.1" increase in barometer are also given, thus readily giving the weight of saturated air at any other temperature and pressure. The last column in the table gives the approximate average increment per degree wet-bulb depression which is to be added to the weight of saturated air to obtain the corresponding weight of partly saturated air.

Example. As an example of the use of the table on page 17 we will assume a case where it is desired to find the weight in pounds per cubic foot of air at a temperature of 83° dry- and 68°

PROPERTIES OF SATURATED AIR

Weights of Air, Vapor of Water, and Saturated Mixture of Air and Vapor at Different Temperatures, Under Standard Atmospheric Pressure of 29.921 Inches of Mercury

	iry e	Weight in	a Cubic Foot	of Mixture	d by Sat. F.	at. Air Degree u.
Temperature Degrees Fahr.	Vapor Pressure Inches of Mercury	Weight of the Dry Air Pounds	Weight of the Vapor Pounds	Total Weight of the Mixture Pounds	B. t. u. Absorbed One Cubic Foot S Air per Degree I	Cubic Feet Sat. / Warmed One Deg per B. t. u.
1	2	3	4	5	6	7
0	.0383	.08625	.000069	.08632	.02082	48.04
10	.0631	.08433	.000111	.08444	.02039	49.05
20	.1030	.08247	.000177	.08265	.01998	50.05
30	.1640	.08063	.000276	.08091	.01955	51.15
40	.2477	.07880	.000409	.07921	.01921	52.06
50	.3625	.07694	.000587	.07753	.01883	53.11
60	.5220	.07506	.000829	.07589	.01852	54.00
70	.7390	.07310	.001152	.07425	.01811	55.22
80	1.0290	.07095	.001576	.07253	.01788	55.93
90	1.4170	.06881	.002132	.07094	.01763	56.72
100	1.9260	.06637	.002848	.06922	.01737	57.57
110	2.5890	.06367	.003763	.06743	.01716	58.27
126	3.4380	.06062	.004914	.06553	.01696	58.96
130	4.5200	.05716	.006357	.06352	.01681	59.50
140	5.8800	.05319	.008140	.06133	.01669	59.92
150	7.5700	.04864	.010310	.05894	.01663	60.14
160	9.6500	.04341	.012956	.05637	.01664	60.10
170	12.2000	.03735	.016140	.05349	.01671	59.85
180	15.2900	.03035	.019940	.05029	.01682	59.45
190	19.0200	.02227	.024465	.04674	.01706	58.80
200	23.4700	.01297	.029780	.04275	.01750	57.15

wet-bulb (or a depression of 15°) when the barometric pressure is 29.40 inches. From the table on page 17 we find that the weight of saturated air at 80° and 29.00 inch barometer is 0.07034 lb. per cu. ft. Also the decrement to be subtracted is 0.00015 lb. per degree of temperature above 80°. That is, the weight at 83° and 29.00 inches would be 0.07034–(3×0.00015) = 0.06989 lb. per cu. ft. The increment to be added per 0.1" increase in barometer above 29.00 inches is 0.00025, so that the weight of the saturated mixture at 83° and 29.40 inches will be $0.06989 + (4 \times 0.00025) = 0.07089$ lb. per cu. ft. From the last column in the table we find the increase in weight for each degree wet-bulb depression for a temperature of 83° to be 0.000034 + 0.3(0.000039 - 0.000034) = 0.0000355.

Then the weight of moist air at 83°, 15° wet-bulb depression, and 29.40 inch barometer will be

0.07034 - 0.00045 + 0.001 + 0.00053 = 0.07142 lb. per cu. ft.

Specific Heat of Air

The specific heat of air is the ratio of the heat required to raise the temperature of a given weight of air through one degree as compared to the heat required to raise the temperature of the same weight of water from 62 to 63 degrees Fahr., i. e., it is the B. t. u. required to raise one pound of air one degree Fahr.

The specific heat of air may be expressed as either of two factors, specific heat at constant pressure or at constant volume. It is the specific heat at constant pressure that is ordinarily referred to. The factors commonly used heretofore have been those determined by Renault—specific heat at constant pressure =0.2375, and at constant volume =0.1689. But recent investigation tends to show that the value 0.2375 is too low, and that it should be $C_p = 0.24112 + 0.000009$ t or for ordinary purposes approximately 0.2415.*

For the specific heats of various substances see the table on page 78.

Relation of Velocity to Pressure

The laws governing the flow of air are perhaps less understood than almost any other branch of engineering data. The flow of air under high pressures must necessarily be investigated thermodynamically and the formulae are more or less compli-

^{* &}quot;Rational Psychrometric Formulae" by Willis H. Carrier, Am. Soc. Mech. Engrs., December, 1911, also W. F. G. Swan, Phil. Trans. Royal Soc., Series A, Vol. 210, pp. 199-238.

WEIGHTS OF SATURATED AND PARTLY SATURATED AIR FOR VARIOUS BAROMETRIC AND HYGROMETRIC

Approx, Aver'g Increase in Weight per Degree Wet Bulb Depression	.000015 .000016 .000017	.000019 .000021 .000023	.000026 .000029 .000034	.000039	.000059	.000090	.000134 .000153 .000173
Incr's Wt. per 0.1" Rise in Bar.	.00028 .00028 .00028	.00027 .00027 .00026	.00026 .00025 .00025	.00024 .00024 .00023	.00023 .00023 .00022	.00022 .00021 .00021	.00021
Decr's Wt. per Deg. Inc.	.00019 .00018 .00018	.00017 .00017 .00016	.00016 .00016 .00016	.00017 .00018 .00019	.00020 .00022 .00024	.00026 .00029 .00033	.00036 .00038 .00041
Wt. per Cu. Ft. Saturated TiA	.08654 .08468 .08286	08110 07942 07773	.07609 .07440 .07280	.07112 .06939 .06759	.06569 .06367 .06147	.05906 .05644 .05352	.05026 .04662 .04254
Incr's Wt. per 0.1" Rise in Bar.	.00028 .00028 .00028	.00027 .00027 .00026	.00026 .00025 .00025	.00024 .00023	.00023 .00023 .00022	$\begin{array}{c} .00022 \\ .00021 \\ .00021 \end{array}$.00021
Decr's Wt. per Deg. Inc.	.00018 .00018 .00018	.00017 .00016 .00016	.00016 .00016 .00015	.00016 .00017 .00018	.00019 .00020 .00022	.00024 .00026 .00031	.00034 .00037 .00041
Incr's Wt. per O.1" Rise in Bar. Cu. Wt. per Cu. Wt. per Cu. Ft. Saturated Air.	.08365 .08185 .08009	.07839 .07675 .07512	.07353 .07193 .07034	.06870 .06703 .06526	.06339 .06142 .05925	.05689 .05430 .05141	.04818 .04457 .04052
Wt. per Cu. Air Air Decr's Wt. Der Bulber. Inc. Dry Bulb Incr's Wt. Incr's Wt	.00028	.00027 .00027 .00026	.00026 .00025 .00025	.00024 .00024 .00023	.000023 .000023 .000022	.00022 .00021 .00021	.00021
Decr's Wt. 22 Presult Wt. 22 Presult Mt. 22 Presult	.00017 .00017 .00017	.00016 .00016 .00016	.00015 .00015 .00015	.00016 .00016 .00017	.00018 .00019 .00021	.00028 .00026 .00029	.00032
Wt. per Cu. Pt. Saturated Air	.08077 .07903 .07733	.07569 .07409 .07252	.07098 .06943 .06789	.06629 .06465 .06293	.05917 .05917 .05704	.05471 .05216 .04931	.04253 .04253 .03851
Incr's Wt. per 0.1" Rise in Bar.	.00028 .00028 .00028	.00027 .00027 .00026	.00026 .00025 .00025	.00024 .00024 .00023	.00023 .00023 .00022	.00022 .00022 .00021	.00021
Decr's Wt. 27	.00016 .00016 .00016	.00016 .00015 .00015	.00015 .00015 .00015	.00016 .00016 .00017	.00018 .00019 .00021	.00023 .00025 .00028	.00036
Wt. per Cu. Ft. Saturated Air	.07788 .07620 .07456	.07297 .07143 .06992	.06843 .06692 .06542	.06388 .06228 .06060	.05882 .05692 .05483	.05253 .05001 .04720	.04404 .04049 .03650
Incr's Wt. per 0.1" Rise in Bar.	.00028 .00028 .00028	.00026 .00026 .00026	.00026 .00025 .00025	.00024 .00024 .00023	.00023 .00023 .00022	.00022 .00022 .00021	.00021
Decr's Wt.	.00016 .00016 .00016	.00015 .00015 .00015	.00015 .00015 .00015	.00015 .00016 .00016	.00018 .00019 .00021	.00023 .00025 .00028	.00035
Wt. per Cu. Ft. Saturated	.07500 .07338 .07180	.07027 .06879 .06732	.06588 .06442 .06297	.05991 .05828	.05653 .05467 .05262	.05036 .04788 .04509	.03845 .03449
Dry Bulb Tempera- ture Degrees Fahr.	022	30	828	889	130	150 160 170	2002

cated. For ordinary fan work, however, where air is at low pressure but slight error is introduced if the same formulae are applied to the flow of air as are commonly used for the flow of water. The basic formula for such calculations is

$$V_s = \sqrt{2 \text{ gh}} \tag{10}$$

where V_s = velocity in ft. per second, or

$$V = 60\sqrt{2 \text{ gh}} \tag{11}$$

where V = velocity in ft. per min.

g = acceleration due to gravity in feet per second

h = head in ft. causing flow

But we also have

$$h = h' \frac{d}{12W} \tag{12}$$

where h' = head expressed in in. of water

d = density of water

W = weight of air in lbs. per cu. ft.

Then at 70° F. and 29.92" barometer and with dry air

$$\frac{\mathrm{d}}{12\mathrm{W}} = \frac{62.31}{12 \times 0.07495} = 69.75$$

and we have

$$V = 60 \sqrt{2 \text{ gh'} \frac{d}{12W}} = 4005 \sqrt{h'}$$
 (13)

Thus we see that the velocity at standard conditions stated for a pressure of one inch of water will be 4005 ft. per min., and for one ounce per square inch will be

$$4005\sqrt{1.734} = 5273$$
 ft. per min. (14)

The weight of dry or saturated air at other temperatures may be found from the tables on pages 13 and 15, or for any special condition of temperature, barometer, or humidity from the table on page 17, the use of which has already been explained, (see page 14).

The most convenient formulae for determining the velocity or pressure of air under different conditions of temperature, barometer and humidity, when computing test results are the following:

$$V = 1096.5 \sqrt{\frac{p}{W}}$$
 (15)

$$p = \left(\frac{V}{1096.5}\right)^2 W \tag{16}$$

where

V = velocity in ft. per min. p = pressure in in. of water.

W = weight of air in lbs, per cu, ft,

The quantity of air discharged through an orifice or nozzle due to a difference in pressure may be determined from

$$Q = 1096.5 \text{ C A} \sqrt{\frac{p}{W}}$$

where

C = coefficient of discharge. A = area of orifice in sq. ft.

p = pressure head in in. of water causing flow of air through orifice.

W = weight of air in lbs. per cu. ft.

For values of coefficients of discharge see "Coefficients of Discharge for Air Measurements" in Part IV, Section II.

In case the pressure is expressed in ounces per square inch these formulae become:

$$V = 1444.5 \sqrt{\frac{p}{W}}$$
 (17)

$$p = \left(\frac{V}{1444.5}\right)^2 W \tag{18}$$

and

$$Q = 1444.5 \text{ C A} \sqrt{\frac{p}{W}}$$

The value to be used for W to be determined for each specific case, as already explained.

Example. As an example of the application of the above we will assume a case of a fan test made under the same atmospheric conditions as those assumed for the example on page 14. That is, the air to be at 83° F. and 15° depression, with the barometer at 29.40 inches. What will be the velocity of this air at a pressure of 1.5 inches of water as measured by a pitot tube? As determined on page 16 the weight of air under the above conditions will be 0.07142 lb. per cu. ft. Then from formula (15) we find the velocity to be

$$V = 1096.5 \sqrt{\frac{1.5}{0.07142}} = 5024 \text{ ft. per min.}$$

The above formulae are sufficiently accurate for low pressures such as are ordinarily used in fan work, but for high pressures such as are ordinarily used in fan work, but for high pressures are sufficiently accurate for low pressures are suf

sures such as are met in compressed air work, the error becomes excessive and it will be found necessary to use the following thermodynamic formulae. For the flow through an orifice from a higher to a lower pressure, where the absolute initial pressure is less than twice the absolute pressure of the discharge region,

$$V_2 = 6552 \sqrt{T_1 \left[1 - \left(\frac{P_2}{P_1}\right)^{0.29}\right]}$$
 (19)

where $V_2 = \text{velocity in ft. per min. at discharge.}$

V₂ = velocity in it. per min. at discharge.

P₁ = absolute initial press, in lb. per sq. in. P₂ = absolute final press, in lb. per sq. in.

 $T_1 = absolute temp. degrees F. of entering air.$

The discharge through an orifice into a region where the pressure is greater than half the initial pressure, expressed in cubic feet of free air per minute, may then be determined by the formula

$$Q = 631600 CA \frac{P_1}{1/T_1} \sqrt{\left(\frac{P_2}{P_1}\right)^{1.42} - \left(\frac{P_2}{P_1}\right)^{1.71}}$$
(20)

where

Q=cu. ft. free air per min.

C = coefficient of discharge.

A = orifice area in sq. ft.

As already shown for dry air at 70° F. and 29.92 inch barometric pressure, the velocity due to a pressure of one inch of water is 4005 feet per minute and for a pressure of one ounce per square inch is 5273 feet per minute. Since the velocity varies as the square root of the pressure, we have

$$\frac{V}{V_0} = \sqrt{\frac{p}{p_0}} \text{ or } V = V_0 \sqrt{\frac{p}{p_0}}$$
 (21)

Taking p_o as unit pressure, and V_0 the velocity corresponding thereto, assuming dry air at 70° F. and 29.92 inch barometer, the above relation reduces to

$$V = 4005 \sqrt{p}$$
 (22)

When the pressure is taken in inches

or
$$V = 5273 \sqrt{p}$$
 (23)

when the pressure is expressed in ounces.

The table on page 21 gives the velocity of dry air at standard conditions for various pressures expressed both in inches and ounces. The two tables on pages 22 and 23 give the corresponding velocities of dry air under standard barometric pressure of

CORRESPONDING PRESSURES AND VELOCITIES OF DRY AIR AT 70° AND 29.92 INCHES BAROMETER

Inches	Ounces	Velocity	Inches	Ounces	Velocity
of Water	per Sq. In.	Ft. per Min.	of Water	per Sq. In.	Ft. per Min.
.05	.0289	896	4.77	2.750	8745
.10	.0577	1266	5.00	2.884	8943
.20	.1154	1791	5.20	3.000	9134
.25	.1443	2003	5.50	3.172	9392
.30	.1730	2193	6.00	3.460	9810
.40	.2308	2533	6.07	3.500	9864
.43	.2500	2637	6.50	3.749	10210
.50	.2884	2832	6.94	4.000	10545
.60	.3460	3102	7.00	4.037	10595
.70	.4037	3351	7.50	4.326	10968
.75	.4326	3468	7.80	4.500	11187
.80	.4614	3582	8.00	4.614	11328
.87	.5000	3729	8.67	5.000	11792
.90	.5190	3800	9.00	5.190	12015
1.00	.5768	4005	9.54	5.500	12367
1.25	.7209	4478	10.00	5.768	12665
1.30	.7500	4566	10.40	6.000	12915
1.50	.8650	4905	11.00	6.344	13282
1.73	1.0000	5273	11.27	6.500	13445
1.75	1.0092	5298	12.00	6.921	13875
2.00	1.1535	5664	12.14	7.000	13950
2.17	1.2500	5895	13.00	7.497	14440
2.25	1.2975	6007	13.87	8.000	14913
2.50	1.4418	6332	14.00	8.074	14985
2.60	1.5000	6457	15.00	8.650	15510
2.75	1.5860	6641	15.61	9.000	15820
3.00	1.7300	6937	16.00	9.227	16020
3.03	1.7500	6976	17.00	9.805	16513
3.25	1.8740	7220	17.34	10.000	16675
3.47	2.0000	7457	18.00	10.380	16990
3.50	2.0185	7492	19.00	10.960	17456
3.75	2.1630	7756	19.07	11.000	17488
3.90	2.2500	7910	20.00	11.535	17910
4.00	2.3070	8010	20.81	12.000	18265
4.25	2.4510	8256	22.54	13.000	19012
4.34	2.5000	8337	24.28	14.000	19730
4.50	2.5950	8496	26.01	15.000	20420
4.75	2.7395	8729	27.74	16.000	21090

CORRESPONDING VELOCITIES FOR DRY AIR AT VARIOUS PRESSURES AND TEMPERATURES 29.92 INCHES BAROMETER

Pre	Pressure					Temperatur	Temperature Degrees Fahr.	ahr.			
Inches	Ounces	20°	009	200	.08	100°	150°	200°	300°	500°	550°
-55	.1154	1242 1757 1965	1255 1776 1986	1266 1791 2003	1278 1808 2022	1300 1841 2059	1358 1921 2149	1413 2000 2235	1516 2145 2399	1704 2411 2696	1830 2590 2895
ىن خىن	.2308	2151 2485 2778	2175 2512 2808	2193 2533 2832	2214 2557 2859	2254 2603 2911	2352 2717 3038	2447. 2827 3160	2626 3033 3391	2952 3409 3812	3175 3660 4095
.75	.3460 .4037 .4326	3043 3287 3402	3076 3323 3439	3102 3351 3468	3131 3383 3501	3188 3445 3565	3327 3595 3720	3462 3740 3870	3715 4013 4153	4510 4668	4490 4850 5020
80.0	.4614	3524 3728 3929	3552 3768 3971	3582 3800 4005	3616 3836 4043	3682 3906 4117	3843 4076 4296	3997 4241 4470	4290 4550 4796	4821 5114 5390	5185 5500 5795
1.25	.7209 .8650 1.0092	4393 4812 5197	4440 4864 5254	4478 4905 5298	4520 4952 5348	4602 5042 5446	4804 5262 5683	4997 5474 5912	5362 5874 6344	6027 6602 7131	6470 7100 7655
2.25	1.1535 1.2975 1.4418	5556 5892 6211	5616 5956 6278	5664 6007 6332	5718 6064 6392	5822 6174 6508	6076 6443 6792	6320 6704 7066	6783 7193 7582	7624 8085 8523	8195 8690 9150
3.00	1.5860 1.7300 2.3070	6514 6807 7857	6585 6879 7942	6641 6937 8010	6704 7003 8086	6827 7130 8233	7124 7440 8592	7412 7742 8940	7952 8307 9581	8938 9336 10780	9600 10000 11580
5.00	2.8840 3.4600	8772 9623	8867 9728	8943 9810	9027 9903	9192 10083	9593 10523	9980 10950	10710	12037 13203	12900 14180
						-				-	The real Property lies, the last of the la

CORRESPONDING VELOCITIES FOR DRY AIR AT VARIOUS PRESSURES AND TEMPERATURES 29.92 INCHES BAROMETER

090 200
.667 1683 2358 2380
7820 7894 3168 8245 3500 8581
8822 8906 9134 9220

29.92 inches for different pressures and temperatures. One table gives the velocity for even parts of an inch and the other for even parts of an ounce, with the corresponding pressure in the other unit.

Effect of Temperature and Barometric Pressure on Velocity

If considered at the same pressure the effect of changing the temperature of the air will change the corresponding velocity in direct proportion as the square root of the absolute temperatures. That is

$$V = V_0 \sqrt{\frac{460 + t}{460 + t_0}} \tag{24}$$

The tables on pages 22 and 23 give the corresponding velocities for dry air at various pressures and temperatures, but the velocity for any other temperature may be determined from the above formula.

In connection with fan work we have the same relation—that is at constant pressure, the speed, capacity and horse-power of the fan varies as the square root of the ratio of the absolute temperatures. At constant velocity the weight and pressure of the air handled will vary inversely as the ratio of the absolute temperatures.

The velocity of air at constant pressure not only varies with any change in temperature, but also with every change in barometer. The velocity of the air varies inversely as the square root of the ratio of the barometric pressures.

Then we will have

$$V = V_0 \sqrt{\frac{b_0}{h}} \tag{25}$$

or where we wish to correct for both temperature and barometer

$$V = V_0 \sqrt{\frac{460 + t}{460 + t_0}} \times \sqrt{\frac{b_0}{b}}$$
 (26)

In the above formulae V represents the velocity of the air at temperature t degrees Fahr. and barometer b, while V_0 is the corresponding velocity at temperature t_0 and barometer b_0 .

Relation of Altitude to the Properties of Air

The diagram on page 25 shows graphically the effect of different altitudes on the properties of air, and the two lines of relative air velocity and of air pressure and density are especially convenient in fan calculation.

As an illustration of the use of this diagram assume a case where a fan is to handle 150,000 A. P. M. at 0.5 inch static pressure at an altitude of 5000 feet. We must determine what sea level conditions correspond to these conditions at the given altitude and so be able to select a fan of the required capacity. From the chart we find the relative pressure at this altitude is 0.825, so that the sea level pressure corresponding to 0.5 inch at 5000 feet altitude will be $0.5 \div 0.825 = 0.6$ inch. The horsepower required to operate this fan will be 82.5 per cent. of the rated horsepower as given in the fan tables for the corresponding pressure of 0.6 inch static.

Any given amount of air as commonly specified will be increased in volume by this same ratio when we consider an altitude of say 5000 feet. Thus if we ordinarily require a definite quantity of air for a certain purpose this volume should be divided by 0.825 to determine the capacity required if the apparatus is to be installed at an altitude of 5000 feet, and a fan selected to handle this greater volume.

Effect of Temperature on the Volume of Air

Air at constant pressure changes its volume almost exactly in proportion to its absolute temperature (460+temperature deg. Fahr.) The table on page 13 gives the relative volume of a given quantity of air at various temperatures as compared to the volume at 70° . For instance, the volume at 160° will be 1.17 times the volume at 70° . Expressed as a formula for use with other temperatures than those given in the table we will have, where Q is the volume at temperature t and Q_0 the volume at t_0

$$Q = Q_0 \left(\frac{460 + t}{460 + t_0} \right) \tag{27}$$

The effect of temperature on the various properties of air is shown graphically by the diagram on page 27. As air at 70° is commonly used as a standard, these curves give the various relationships relative to air at 70°. Inasmuch as the fan tables given herein are based on air at 70° F., the upper curve of this diagram is especially applicable to fan calculations. Thus we see that if the air to be handled by a fan is at 140°, the velocity and fan speed would have to be increased to 106.5 per cent. of that given in the tables. Or if the velocity remains the same, the pressure and weight of air handled at 140° will be only 88 per cent. of the rated capacity.

Effect of Humidity on Velocity

It may be noted that the tables herein given, consider the various properties of dry air at the standard temperature and barometric pressure. But as a matter of fact, atmospheric air is not dry, so that a correction is necessary in order to reduce the actual observed velocity to the standard condition of dry air. This may be accomplished by means of the following relation, the cubic feet per pound of air being determined from the psychrometric charts on pages 36 and 37.

$$\frac{\text{Actual vel.}}{\text{Vel. Dry Air}} = \sqrt{\frac{\text{Cu. ft. per lb. air as observed}}{\text{Cu. ft. per lb. dry air}}}$$
(28)

HUMIDITY

Humidity is the moisture or water vapor mixed with the air in the atmosphere, and the weight of water vapor a given space will hold is dependent entirely on the temperature. The amount of vapor in any given space is independent of the presence of air, the only effect the air has being due to its temperature.

Absolute Humidity

Absolute humidity is the weight of a given volume of water vapor at a given temperature and percentage of saturation and is usually expressed as grains per cubic foot. The tables on pages 38 to 45 give the weight of water vapor per cubic foot at different temperatures and percentages of saturation.

Relative Humidity

Relative humidity is the ratio of the weight of water vapor in a given space as compared to the weight which the same space is capable of containing when fully saturated at the same temperature. It is the ratio of the absolute humidity for the given condition to the absolute humidity at saturation. The quantity of moisture mixed with the air under different conditions of temperature and saturation is usually determined by means of some form of instrument in which a dry-bulb and a wet-bulb thermometer are used.

Dew-Point

The dew-point is the temperature at which saturation is obtained for a given weight of water vapor, or the point where any reduction in temperature would cause condensation of some of the water vapor. Any given amount of moisture must have some temperature at which saturation will occur and any further lowering of the temperature will cause condensation. This then will be its dew-point.

Dry-Bulb and Wet-Bulb Thermometer

Usually the temperature of the air is determined by means of an ordinary or dry-bulb thermometer. The wet-bulb thermometer has the bulb covered with a piece of clean soft cloth and should be wet or dipped in water before taking a reading. Care should always be taken to keep the cloth free from dirt and to use pure clean water. This thermometer will give a depressed or lower reading than that of the dry-bulb thermometer in proportion to the evaporation from the wet surface of the

cloth, and this depression is a measure of the amount of moisture in the air. This depressed reading corresponds to the temperature at which the air would normally saturate without any change in its heat contents. That is, the total heat in the air remains constant at a constant wet-bulb temperature. In order to obtain a true reading it is necessary that the thermometer be placed in a strong current of air.

The Sling Psychrometer

This instrument consists of a wet-and a dry-bulb thermometer mounted on a strip of metal and provided with a handle which permits of the thermometer being rapidly whirled through the air. When being used the instrument should be whirled continuously until no further drop in the wet-bulb reading is noted. The differ-

ence between the readings of the two thermometers is the wet-bulb depression, and by referring to the tables on pages 38 to 45 or to the charts on pages 35 to 37 the corresponding psychrometric conditions may be determined. There are other forms of instruments, generally of some stationary type, used for taking humidity readings, but the instrument described is reasonably accurate and is the one used by the United States Weather Bureau.

The Aspiration Psychrometer

The aspiration psychrometer shown herewith is more accurate than the sling psychrometer, as it will be noted from the cut that the bulbs of the two thermometers are enclosed in highly polished tubes so the temperature is not affected by radiation from surrounding objects.

A circulation of air is induced through the tubes by a small suction fan located in the top of the instrument. This fan is

Aspiration Psychrometer

driven at a constant speed by means of the clockwork, which will drive the fan several minutes with one winding, giving a uniform strong current to produce a rapid evaporation from the wet-bulb. The small rubber bulb is used to moisten the wick or muslin covering the wet-bulb.

Relation of Humidity to Heating

To understand more thoroughly the relation of humidity to heating, it is necessary to know that the temperature felt by the body, or the sensible temperature, as it is called, corresponds to the temperature of the wet-bulb thermometer; hence, the drier the air the greater is the difference between the actual and sensible temperatures. Dry air heated much above the normal will still be chilly, slight drafts are very noticeable and colds are easily contracted.

The excessive evaporation from the skin lowers the temperature of the body very rapidly, and as a result higher temperatures are required than would be necessary for comfort if the proper amount of humidity were present. On the other hand, if the percentage of humidity is excessive, evaporation from the body is below normal, with the result that the body heat is not radiated as speedily as is necessary for comfort. In general, the higher the humidity maintained the lower the temperature required for the same degree of personal comfort.

Relation of Dry-Bulb, Wet-Bulb and Dew-Point Temperatures

The relation between the temperature as shown by the drybulb and wet-bulb thermometer, and the relation to the dewpoint should be thoroughly understood by those expecting to become at all familiar with the subject of humidity.

Dew-point, as previously stated, is the temperature at which saturation is obtained for a given amount of water vapor. In other words, the air is at the dew-point when it contains all the moisture it will hold at a given temperature, and when it is impossible to get the air to absorb more water vapor without raising the temperature. When air has been reduced to the dewpoint, both wet- and dry-bulb thermometer register exactly the same; for instance, air at 50° temperature and 100 per cent. saturation will contain 4.076 grains of moisture per cubic foot, under which condition the dry-bulb and wet-bulb thermometer will both register 50°. If this air is heated, both thermometers will rise, but the wet-bulb temperature will rise more slowly and the relative humidity will be rapidly reduced: the dew-point remains constant at 50°, since any given number of grains of moisture per cubic foot has a fixed and definite dew-point or temperature of saturation.

If a cubic foot of air at a temperature of 87°, containing 4:076 grains per cubic foot with the wet-bulb temperature at 65°, is passed through a fine spray of recirculated water, it will absorb moisture; the dry-bulb temperature will immediately begin to fall, but the wet-bulb temperature will remain absolutely constant at 65° until the dry-bulb temperature has dropped to the wet-bulb temperature, namely, 65°. As the absorption takes place the dew-point will be gradually rising from 50° to 65°, when saturation is obtained. At ordinary temperatures the absorption of one grain of moisture per cu. ft. lowers the dry-bulb temperature approximately $8\frac{1}{2}$ °.

Sensible, Latent and Total Heat

The total heat of air is composed of the sensible heat or heat due to the temperature of the air as indicated by the thermometer, and the latent heat or heat of vaporization of the moisture or vapor in the air. The total heat is a constant quantity for any certain wet-bulb temperature irrespective of any change in the dry-bulb temperature. This fact has been termed by W. H. Carrier* "One of the four fundamental psychrometric principles," and expressed as

"The true wet-bulb temperature of the air depends entirely on the total of the sensible and the latent heat in the air and is independent of their relative proportions. In other words, the wet-bulb temperature of the air is constant, providing the total heat of the air is constant."

^{*&}quot;Rational Psychrometric Formulae" Am. Soc. Mech. Engrs., Dec., 1911.

Thus, if sufficient moisture is introduced into a certain quantity of air, the dry-bulb temperature of the air will be lowered until it is the same as the wet-bulb temperature. This is simply an exchange from sensible heat into latent heat required to vaporize the moisture, keeping the total heat the same. If a further lowering of the temperature takes place, the wet-bulb temperature will lower and the corresponding total heat will be less. If the air should be heated without the addition of more moisture, the dew-point temperature of the air would remain constant but the wet-bulb, as well as the dry-bulb temperature would increase, and the total heat of the air would increase a corresponding amount. The two psychrometric charts on pages 36 and 37 will be found especially convenient for determining the total heat of the air for any wet-bulb temperature.

Psychrometric Charts and Tables

Psychrometric charts giving the properties of air as calculated by W. H. Carrier and published in his paper entitled "Rational Psychrometric Formulae," which was presented before the A. S. M. E. at the 1911 annual meeting, are shown on pages 36 and 37. These two charts are to be used when calculations are being made in terms of pounds of air, while the chart on page 35 should be used for cubic feet of air. For most purposes of calculation it will be found preferable to use the pound as a unit.

The various curves shown on these charts will be found especially valuable in making air calculations. The grains of moisture per pound of dry air are read by passing directly from the dew-point, or intersection of the wet- and dry-bulb temperatures, to the scale on the left edge of the chart. The B. t. u. required to raise one pound of dry air one degree when saturated with moisture, as also the vapor pressure, may be determined by passing vertically from the dew-point to the proper curve, and then to the corresponding scale on the left edge of the chart. The total heat, in B. t. u., above zero degrees contained in one pound of dry air saturated with moisture may be found by passing vertically from the wet-bulb temperature to the total heat curve and then to the left edge of the chart. The volume of air in cubic feet per pound may be found by passing vertically from the dry-bulb temperature to either of the two volume curves

and then to the left edge of the chart. One curve gives the volume of dry and the other of saturated air.

Example. As an example of the use of this chart we will assume air at 75° dry-bulb temperature and 60 per cent. relative humidity. From the chart we find that the wet-bulb temperature will be 65.25°, the dew-point 60°, the grains of moisture per pound of dry air 77; the heat required to raise one pound of dry air saturated at 60° through one degree is 0.24664 B. t. u.; and the vapor pressure of air saturated at 60° is 0.523 inches of mercury. Passing vertically from the wet-bulb temperature of 65.25° to the total heat curve and thence to the scale on the left, we find the total heat above zero in one pound of dry air when saturated at 65.25° to be 29.75 B. t. u. This, then, is also the measure of the heat in a pound of air at 75° and 60 per cent. relative humidity, since the wet-bulb temperature is the same.

The cubic feet per pound of air may be found by passing vertically from the dry-bulb temperature to either of the two volume curves, depending on whether the volume of dry or of saturated air is desired. To determine the volume of one pound of partly saturated air as here assumed, we will have from the chart,

Cu. ft. per lb. at 75° sat. = 13.88 Cu. ft. per lb. at 75° dry = $\frac{13.48}{.40}$ = Moisture $\frac{.60}{.24}$ = Rel. humidity Cu. ft. per lb. at 75° and 60% = $\frac{13.48}{13.72}$

The psychrometric chart on page 35 and tables on pages 38 to 45 are taken from the catalog of the Carrier Air Conditioning Company of America. They show the grains of moisture per cubic foot of saturated air at various temperatures, as well as the relative humidity, the dew-point temperature and the grains of moisture per cubic foot of air for different temperatures as determined by the wet and dry-bulb of the sling psychrometer.

As an example of the use of the chart on page 35 we will assume a case where the dry-bulb temperature is 80° and the wet-bulb thermometer reads 70°, or a 10° depression. From the intersection of the corresponding lines through these two tem-

peratures we find the relative humidity to be 62 per cent. Passing horizontally to the left from this point of intersection to the wet-bulb temperature line (called the saturation curve) we find the dew-point temperature to be 64.5°. If the temperature of the air should be reduced, both the dry and wet-bulb readings will be lowered until they both read 64.5°, when the air will be saturated. The grains of moisture contained in each cubic foot of this air will be found by continuing to the left on the horizontal line through the 64.5° dew-point to the left edge of the chart, where we have a reading of 6.65 grains. If the temperature of the air be further reduced, part of the moisture content will be condensed, the dew-point or saturation temperature will be lowered, and the grains of moisture per cubic foot will be correspondingly less.

In case more accurate readings are desired than can be determined from a chart on as small a scale as the one on page 35, the psychrometric tables may be used.

NOTE.—Large psychrometric charts as shown on pages 36 and 37, with sub-divisions for accurate readings, will be furnished on request by the Carrier Air Conditioning Company of America, 39 Cortlandt St., New York City.

RELATIVE HUMIDITY, DEW-POINTS AND GRAINS OF MOISTURE PER CUBIC FOOT

Barometric Pressure — 30 Inches Degrees Wet-Bulb Depression														
				10	Degr	rees	Wet=B	GID I	Jepre	32	_		4°	
Dry-Bulb Temp.	Grains per Cu. Ft. at Saturation	Sc Rel. Hum.	Dew-	_	Cu. Ft.	Hum.	Dew- Point	Grs. Per Cu. Ft.	Hum.	Dew- Point	Gra. Per Cu. Ft.	Hum.	Dew- Point	Gra. Per Cu. Pt.
0 2 4 6 8 10	.48 .53 .58 .64 .70 .78	67 70 72 74 76 78	11111	7 5 2 0 3 5	.32 .37 .42 .47 .54	33 39 44 49 53 56	-20 -15 -11 -8 -5 -2	.16 .21 .26 .32 .37 .44	9 17 23 29 34	-40 -28 -21 -15 -10	.05 .10 .15 .20	13	-42 -27	.04
12 14 16 18 20 22	.86 .94 1.03 1.13 1.24 1.36	50 81 82 84 85 86	1 1 1 1	7 0 2 4 6 9	.69 .76 .85 .95 1.10 1.17	59 62 65 68 70 71	2 5 7 10 12 15	.51 .58 .65 .72 .86	39 44 48 52 55 58	-6 -2 +1 5 11	.33 .41 .50 .59 .68 .79		-19 -12 -7 -2 +2 5	.16 .25 .32 .41 .49
24 26 28 30 32 34				15 17 10 12	1.30 1.41 1.56 1.72 1.88 2.05	73 75 76 78 79 81	17 20 22 25 27 29	1.10 1.22 1.37 1.50 1.67 1.85	60 63 65 67 69 71	13 16 19 21 24 26	1.18 1.30 1.40 1.60		12 15 18 21 23	.70 [83 [96 1.08 1.25 1.41
36 38 40 42 44 46			200 00	14 16 18 10 12 14	2.24 2.41 2.62 2.82 3.06 3.29	82 83 83 85 85	31 33 35 38 40 42	2.02 2.20 2.36 2.61 2.80 3.09	73 75 75 77 78 78	29 31 33 35 37 40	1.75 1.96 2.16 2.36 2.5 2.8	9 64 8 66 4 68 6 69 7 71 0 72	30 33 35	1.57 1.74 1.94 2.12 2.34 2.54
48 50 50 50 50 50		000	4	46 48 50 52 54 56	3.53 3.79 4.11 4.40 4.71 5.00	86 87 87 87 88 88 88	44 46 48 50 53 55	3.23 3.58 4.13 4.4 4.7	7 79 5 80 81 82 1 82 8 83	46	3.0 3.2 3.5 3.8 4.1 4.4	74 4 75 4 76 1 76 6 77	40 42 44 46 49 51	
66666	5.5		4 4 6 5	57 58 59 60 61 62	5.25 5.46 5.58 5.7 6.0 6.2		60	4.9. 5.1 5.2 5.4 5.6 5.9	5 83 1 83 9 84 6 84 5 84 1 84	54 55 56 57 58 89			1	
	5 6.7 6 7.0 7 7.2 8 7.4 9 7.7		15 15 15 15 15 15	64 65 67 68 69	6.4 6.8 7.1 7.3 7.5	4 700	63 64 65 66 66	6.3 6.5 6.7 6.9 7.1	0 84 1 84 2 84 3 84 5 84 8 84	6 60 6 63 6 63 6 64	5.6 6.3 6.4	265 100		5.79 5.98 6.26 6.46
	71 8.2 72 8.4 73 8.7 74 9.0 75 9.0 76 9.0	24 9 51 9 78 9 07 9 36 9	95 95 96 96	70 71 72 73 74 75	7.8 8.0 8.3 8.4 9.2	3 9	1 69 1 70 1 71 1 72	7.4 7.7 7.9 8.3 8.3 8.3	12 8 14 8 19 8 25 8 51 8 79 8	6 68 6 69 6 70	7.3 7.3 7.3 7.3 7.3 1 8.3 2 8.3	09 8 31 8 55 8 80 8 05 8 40 8	1 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5 6.67 6 97 7 7.20 8 7.43 9 7.67 0 7.92

HUMIDITY

RELATIVE HUMIDITY, DEW-POINTS AND GRAINS OF MOISTURE. PER CUBIC FOOT—Barometric Pressure, 30 Inches

Degrees Wet-Bulb Depression													
9	at		1°			2°			3°			4°	
Dry-Bulb Temp.	Grains per Cu. Ft. at Saturation	% Rel. Hum.	Dew- Point	Grs. per Cu. Ft.	% Rel. Hum.	Dew- Point	Grs. per Cu. Ft.	% Rel. Hum.	Dew- Point	Grs. per Cu. Ft.	% Rel. Hum.	Dew- Point	Grs. per Cu. Ft.
77 78 79	9.96 10.28 10.60	96 96 96	76 77 78	9.56 9.87 10.18	91 91 91	74 75 76	9.02 9.35 9.65	87 87 87	73 74 75	8.67 8.94 9.21	83 83 83	71 72 73	8.27 8.53 8.80
81 82 83 84	10.93 11.28 11.63 11.99 12.36	96 96 96 96 96	79 80 81 82 83	10.50 10.82 11.16 11.51 11.86	91 92 92 92 92 92	77 78 79 80 81	9.95 10.37 10.70 11.03 11.37	87 88 88 88 88	76 77 78 79 80	9.51 9.92 10.23 10.55 10.87	83 84 84 84 84	74 75 77 78 79	9.08 9.47 9.77 10.07 10.38
85 86 87 88 89	12.74 13,13 13.53 13.94 14.36	96 96 96 96 96	84 85 86 87 89	12.22 12.60 12.99 13.38 13.99	92 92 92 92 92 92	82 83 84 85 86	11.72 12.08 12.44 12.82 13.21	88 88 88 88 88	81 82 83 84 85	11.21 11.55 11.90 12.26 12.64	84 84 85 85 85	80 81 82 83 84	10.70 11.03 11.50 11.85 12.21
90 92 94 96 98	14.79 15.69 16.63 17.63 18.67	96 96 96 96 96	80 91 93 95 97	14.20 15.06 15.97 16.92 17.92	92 92 93 93 93	87 89 92 94 96	13.61 14.44 15.47 16.39 17.36	89 89 89 89 89	86 88 90 92 94	13.16 13.96 14.81 15.69 16.62	85 85 85 86 86	85 87 89 91 08	12.57 13.34 14.14 15.16 16.06
100 104 108 112 116 120	19.77 22.13 24.72 27.88 30.10 34.80	96 97 97 97 97 97	99 103 107 111 115 119	18.98 21.46 23.98 27.02 29.20 33.76	93 93 93 94 94 94	98 102 106 110 114 118	18.38 20.58 22.99 26.19 28.29 32.71	89 90 90 90 91 91	96 100 104 109 113 117	17.59 19.91 22.25 25.07 27.39 31.67	86 87 87 87 88 88	95 99 103 107 111 115	17.00 19.25 21.51 24.24 27.21 30.62
			5°			6°			7°			8°	
Dry-Bulb Temp.	Grains per Cu. Ft. at Saturation	% Rel. Hum.	Dew- Point	Grs. per Cu. Ft.	% Rel. Hum.	Dew- Point	Grs. per Cu. Ft.	% Rel. Hum.	Dew- Point	Grs. per Cu. Ft.	% Rel. Hum.	Dew- Point	Grs. per Cu. Ft.
20 22 24 26 28	1.24 1.36 1.48 1.62 1.77	26 31 35 39 43	$ \begin{array}{r} -7 \\ -2 \\ +2 \\ 7 \\ 10 \end{array} $.32 .42 .52 .63 .76	12 17 22 27 32	-21 -12 -6 -1 +4	.15 .23 .33 .44 .52	4 10 16 21	-36 -20 -11 -4	.05 .15 .26 .37	4 10	-32 -17	.07
30 32 34 36 38	1.94 2.11 2.28 2.46 2.65	46 49 52 55 58	14 17 20 23 25	.89 1.03 1.19 1.35 1.54	36 39 43 46 50	12 16 19	.70 .82 .98 1.13 1.32	26 30 34 38 42	+2 7 11 15 18	.50 .63 .78 .93 1.11	16 20 25 29 33	-7 -1 5 10 14	.31 .42 .57 .71 .87
40 42 44 46 48 50	2.85 3.06 3.29 3.54 3.80 4.08	60 62 63 65 66 67	28 30 32 35 37 40	1.71 1.90 2.08 2.30 2.51 2.73	52 55 50 58 60 61	25 27 30 32 35 37	1.48 1.69 1.85 2.05 2.28 2.49	45 47 49 52 54 55	21 24 27 20 32 34	1.28 1.44 1.61 1.84 2.05 2.24	37 40 43 45 47 49	18 21 24 27 29 32	1.06 1.23 1.42 1.59 1.79 1.98

RELATIVE HUMIDITY, DEW-POINTS AND GRAINS OF MOISTURE PER CUBIC FOOT

						ressure		Inches				
		5°		Degre	es we	t=Duib	Dept	7°			8°	_
Dry-Bulb Temp.	% Rel. Hum.	Dew. Point	Grs. per Cu. Ft.	% Rel. Hum.	Dew- Point	Grs. per Cu. Ft.	% Rel. Hum.	Dew- Point	Grs. per Cu. Ft.	% Rel. Hum.	Dew- Point	Grs. per
52 54 56 58 59	69 70 71 72 72	42 44 47 49 50	3.02 3.28 3.61 3.87 4.00	63 64 65 66 67	40 42 44 47 48	2.75 3.00 3.26 3.55 3.72	57 59 60 61 62	37 40 42 45 46	2.49 2.77 3.01 3.28 3.44	51 53 55 56 57	34 37 40 42 44	2.23 2.48 2.76 3.01 3.17
60 61 62 63 64	73 73 74 74 74	51 52 53 55 56	4.19 4.34 4.54 4.71 4.86	68 68 69 69 70	49 50 52 53 54	3.91 4.04 4.24 4.38 4.59	63 63 64 64 65	47 48 50 51 52	3.62 3.74 3.93 4.07 4.27	58 58 59 60 60	45 46 47 49 50	3.33 3.45 3.62 3.81 3.94
65 66 67 68 69	75 75 75 76 76	57 58 59 60 61	5.09 5.26 5.43 5.69 5.87	70 71 71 71 71 72	55 56 57 58 59	4.75 4.98 5.14 5.31 5.56	66 66 67 67	53 54 55 57 58	4.48 4.63 4.78 5.01 5.18	61 62 62 63	51 52 53 55 56	4.14 4.28 4.49 4.64 4.87
70 71 72 73 74	77 77 77 78 78	62 63 64 66 67	6.15 6.35 6.55 6.85 7.07	72 72 73 73 74	61 62 63 64 65	5.75 5.93 6.21 6.41 6.71	68 68 69 69	59 60 61 62 63	5.43 5.60 5.87 6.06 6.26	64 64 65 65 65	57 58 59 60 62	5.11 5.27 5.53 5.71 5.89
75 76 77 78 79		68 69 70 71 72	7.30 7.53 7.87 8.12 8.38	74 74 74 75 75	66 67 68 69 70	6.92 7.14 7.37 7.71 7.95	70 70 71 71 71 71	64 66 67 68 69	6.59 6.76 7.07 7.30 7.53	66 66 67 67 68	63 64 65 66 67	6.18 6.37 6.67 6.89 7.21
80 81 82 83 84		73 74 75 76 77	8.64 9.02 9.30 9.59 9.89	75 76 76 76 76	72 73 74 75 76	8.20 8.57 8.84 9.11 9.39	72 72 72 73 73	70 71 72 73 74	7.87 8.12 8.37 8.75 9.02		68 70 71 72 73	7.44 7.78 8.02 8.27 8.53
85 86 87 88		78 79 80 81 82	10.32 10.63 10.96 11.29 11.63	77 77 77 77 77 78	77 78 79 80 81	9.81 10.11 10.42 10.73 11.20	73 73 74 74 74	75 76 78 79 80	9.30 9.58 10.01 10.31 10.63	70 70 70 70 70 71	74 75 76 77 78	8.92 9.19 9.47 9.76 10.19
90 92 94 90		83 86 88 90	11.98 12.87 13.64 14.45 15.50	78 78 79 79	82 84 86 88 90	11.54 12.24 13.14 13.93 14.75	74 75 75 76 76	85	10.94 11.77 12.48 13.40 14.19	71 72 72 73 73	79 81 84 86 88	10.50 11.30 11.98 12.87 13.63
106 104 107 117 110	83 83 84 84 84 84	94 98 102 106	16.41 18.36 20.77 23.40 26.31 29.58	81	93 97 101 105 109 113	15.81 17.70 20.02 22.57 25.40 28.88	77 77 78 79 79	95	15.22 17.04 19.28 21.60 24.50 27.84	75 76 76	90 94 98 103 107 111	14.43 16.37 18.54 20.90 23.60 26.78

HUMIDITY

RELATIVE HUMIDITY, DEW-POINTS AND GRAINS OF MOISTURE PER CUBIC FOOT

				D		Wet-Bu	lb De					
₾.		9°			10			119			12°	
Dry-Bulb	% Rel.	Dew-	Grs. per	% Rel.	Dew-	Grs. per	% Rel.	Dew-	Grs. per	% Rel.	Dew-	Grs. Per
Temp.	Hum.	Point	Cu. Ft.	Hum.	Point	Cu. Ft.	Hum.	Point	Cu. Ft.	Hum.	Point	Cu. Ft.
40	29	13	0.83	22	7	0.63	15	-1	0.43	7	-14	0.20
42	33	17	1.01	26	12	0.80	19	6	0.58	12	-3	0.37
44	36	20	1.19	30	16	0.99	23	11	0.76	16	4	0.53
46	39	23	1.38	32	20	1.13	26	15	0.92	20	10	0.71
48	41	26	1.56	35	23	1.33	29	19	1.11	23	14	0.88
50	43	29	1.75	38	26	1.55	32	22	1.30	27	18	1.10
52	46	32	2.01	40	29	1.75	35	26	1.53	29	22	1.27
54	48	34	2.25	42	32	1.97	37	29	1.73	32	25	1.49
56	50	37	2.51	44	34	2.21	39	32	1.96	34	29	1.71
58	51	40	2.74	46	37	2.47	41	35	2.20	37	32	1.99
60	53	43	3.04	48	40	2.76	43	38	2.47	39	35	2.25
62	54	45	3.32	50	43	3.07	45	40	2.76	41	38	2.52
64	56	48	3.68	51	46	3.35	47	43	3.09	43	41	2.82
66	57	50	3.99	53	48	3.71	48	46	3.36	44	44	3.08
67	58	52	4.20	53	49	3.84	49	47	3.55	45	45	3.19
68	58	53	4.34	54	51	4.04	50	49	3.74	46	46	3.44
69	59	54	4.56	55	52	4.25	51	50	3.94	47	48	3.63
70	59	55	4.71	55	53	4.39	51	51	4.07	48	49	3.83
71	60	56	4.94	56	54	4.62	52	52	4.29	48	50	3.96
72	61	58	5.19	57	56	4.86	53	54	4.51	49	52	4.17
73	61	59	5.36	57	57	5.01	53	55	4.65	50	53	4.39
74	61	60	5.53	58	58	5.26	54	56	4.90	50	54	4.53
75	62	61	5.80	58	59	5.43	54	57	5.05	51	55	4.77
76	62	62	5.99	58	60	5.70	55	59	5.31	51	57	4.92
77	63	63	6.28	59	62	5.88	56	60	5.58	52	58	5.18
78	63	64	6.47	60	63	6.17	56	61	5.76	53	59	5.45
79	64	66	6.79	60	64	6.36	57	62	6.04	53	60	5.62
80	64	67	7.00	61	65	6.67	57	63	6.23	54	62	5.90
81	65	68	7.33	61	66	6.88	58	65	6.54	55	63	6.20
82	65	69	7.56	61	67	7.09	58	66	6.74	55	64	6.39
83 84 85 86 87 88	66 66 66 67 67	70 71 72 73 75 76	7.91 8.16 8.41 8.67 9.06 9.34	62 62 63 63 64 64	70 71 72 73 74	7.43 7.66 8.02 8.27 8.66 8.92	59 59 60 60 61 61	67 68 69 70 72 73	7.07 7.29 7.64 7.88 8.25 8.50	56 56 57 57 57	65 66 68 69 70 71	6.71 6.92 7.26 7.48 7.71 7.94
89 90 92 94 96 98	68 68 69 69 70	77 78 80 82 84 87	9.76 10.06 10.67 11.48 12.16 13.07	65 65 65 66 66 67	75 76 79 81 83 85	9.33 9.61 10.20 10.98 11.63 12.51	61 62 63 63 64	74 75 77 79 82 84	8.76 9.09 9.73 10.48 11.11 11.95	58 58 59 60 61 61	72 73 76 78 80 82	8.33 8.58 9.26 9.98 10.75 11.39
100 104 108 112 116 120	70 71 72 73 74 74	89 98 97 101 105 110	13.84 15.71 17.80 20.34 22.99 25.71	08 69 70 70 71 72	87 92 96 100 104 108	13.44 15.27 17.30 19.50 22.05 25.01	65 66 67 68 69	86 90 95 99 103 107	12.85 14.60 16.56 18.94 21.45 23.95	62 63 64 65 66 67	85 89 93 08 102 106	12.26 13.94 15.82 18.11 20.55 23.24

RELATIVE HUMIDITY, DEW-POINTS AND GRAINS OF MOISTURE PER CUBIC FOOT

Degrees Wet-Bulb Depression												
	T	13	0)	149		Lepi	15	,	1	16°	
Dry-Bulb	% Rel.	Dew-	Grs. per									
Temp.	Hum.	Point	Cu. Ft.	Hum.	Point	Cu. Ft.	Hum.	Point	Cu. Ft.	Hum.	Point	
50	21	13	0.86	16	8	0.65	10	0	0.41	5	-13	0.20
52	24	18	1.05	19	13	0.83	14	7	0.61	9	-2	0.39
54	27	22	1.27	22	18	1.03	17	12	0.80	12	6	0.56
56	30	25	1.51	25	22	1.25	20	17	1.00	16	12	0.80
58	32	29	1.72	27	25	1.45	23	21	1.24	18	17	0.97
59	33	30	1.83	29	27	1.61	24	23	1.33	20	19	1.11
60	34	32	1.95	30	29	1.72	26	25	1.50	21	21	1.21
61	35	33	2.08	31	30	1.84	27	27	1.60	22	23	1.31
62	36	35	2.21	32	32	1.97	28	29	1.72	24	25	1.47
63	37	36	2.34	33	34	2.17	29	30	1.84	25	27	1.59
64	38	38	2.49	34	35	2.23	30	32	1.97	26	29	1.71
65	39	40	2.65	35	37	2.37	31	34	2.10	27	31	1.83
66	40	41	2.80	36	38	2.52	32	35	2.24	29	32	2.03
67	41	43	2.97	37	40	2.68	33	37	2.39	30	34	2.17
68	42	44	3.14	38	42	2.84	34	39	2.54	31	36	2.32
69	43	45	3.32	39	43	3.01	35	40	2.70	32	37	2.47
70	44	47	3.51	40	44	3.19	36	42	2.87	33	39	2.63
71	45	48	3.71	41	46	3.38	37	43	3.05	33	41	2.72
72	45	50	3.83	42	47	3.57	38	45	3.23	34	42	2.89
73	46	51	4.04	42	49	3.69	39	46	3.43	35	44	3.07
74	47	52	4.26	43	50	3.90	39	48	3.54	36	45	3.26
75	47	54	4.40	44	51	4.12	40	49	3.74	37	47	3.46
76	48	55	4.64	44	53	4.25	41	51	3.96	38	48	3.67
77	48	56	4.78	45	54	4.48	42	52	4.18	39	50	3.89
78	49	57	5.04	46	55	4.73	43	53	4.42	39	51	4.01
79	50	59	5.30	46	57	4.88	43	55	4.56	40	53	4.24
80	50	60	5.47	47	58	5.14	44	56	4.81	41	54	4.48
81	51	61	5.75	48	59	5.41	45	57	5.07	42	55	4.74
82	51	62	5.93	48	60	5.58	45	59	5.23	42	57	4.88
83	52	64	6.23	49	62	5.87	46	60	5.52	43	58	5.01
84	52	65	6.43	49	63	6.06	46	61	5.68	43	59	5.31
85	53	66	6.75	50	64	6.37	47	62	5.99	44	61	5.60
86	53	67	6.96	50	65	6.56	47	64	6.17	44	62	5.78
87	54	68	7.17	51	67	6.90	48	65	6.49	46	63	6.22
88	54	69	7.53	51	68	7.11	48	66	6.69	46	64	6.41
89	55	71	7.90	52	69	7.47	49	67	7.04	47	66	6.75
90	55	72	8.13	52	70	7.69	49	69	7.25	47	67	6.95
92	56	74	8.79	53	73	8.32	50	71	7.84	48	69	7.53
94	57	76	9.48	54	75	8.98	51	73	8.48	49	72	8.15
96	58	79	10.22	55	77	9.69	52	76	9.17	50	74	8.81
98	58	81	10.83	56	79	10.46	53	78	9.90	50	76	9.34
100	59	83	11.66	56	82	11.07	54	80	10.67	51	79	10.08
104	60	88	13.28	58	86	12.83	55	85	12.17	53	83	11.73
108	62	92	15.33	59	91	14.59	57	89	14.09	54	88	13.35
112	63	96	17.55	60	95	16.72	58	94	16.16	55	92	15.39
116	64	101	19.95	61	99	19.05	59	95	18.45	57	97	17.85
120	65	105	22.40	62	104	21.46	60	102	20.75	58	101	20.07

HUMIDITY

RELATIVE HUMIDITY, DEW-POINTS AND GRAINS OF MOISTURE PER CUBIC FOOT

				Deg		Vet-Bulb	Dep						
-	-	17	0	-	189			19°			20°		
Dry-Bulb	% Rel.	Dew-	Grs. per	% Rel.	Dew-	Grs. per	% Rel.	Dew-	Grs. per	% Ref.	Dew-	Grs. per	
Temp.	Hum.	Point	Cu. Ft.	Hum.	Point	Cu. Ft.	Hum.	Point	Cu. Ft.	Hum.	Point	Cu. Ft.	
52 54 56 58 59	4 8 11 14 16	-17 -4 5 11 14	0.18 0.38 0.55 0.75 0.89	3 7 10 11	-20 -5 4 8	0.14 0.35 0.54 0.61	2 6 7	-25 -6 0	0.10 0.32 0.42	1 3	-30 -20	0.05 0.14	
60 61 62 63 64	17 18 20 21 22	17 19 21 23 25	0.98 1.07 1.23 1.33 1.44	13 14 16 17 18	11 14 16 19 21	0.75 0.83 0.98 1.08 1.18	10 12 14 15	4 8 11 14 17	0.52 0.63 0.74 0.86 0.98	5 6 8 10 11	-8 -1 3 7 11	$0.29 \\ 0.39 \\ 0.49 \\ 0.60 \\ 0.72$	
65	24	27	1.63	20	24	1.36	16	19	1.09	13	14	0.86	
66	25	29	1.75	21	26	1.47	17	22	1.19	14	17	0.98	
67	26	31	1.88	22	28	1.59	18	24	1.35	15	19	1.09	
68	27	33	2.00	23	29	1.72	20	26	1.50	16	22	1.20	
69	28	34	2.16	24	31	1.85	21	28	1.63	17	24	1.36	
70	29	36	2.31	25	33	2.00	22	30	1.76	19	26	1.52	
71	30	38	2.47	27	35	2.23	23	32	1.85	20	28	1.66	
72	31	40	2.64	28	37	2.38	24	33	2.04	21	30	1.79	
73	32	41	2.81	29	38	2.55	25	35	2.20	22	32	1.94	
74	33	43	2.99	29	40	2.63	26	37	2.36	23	34	2.09	
75	34	44	3.18	30	42	2.81	27	39	2.53	24	36	2.25	
76	34	46	3.28	31	43	2.99	28	41	2.70	25	38	2.41	
77	35	48	3.49	32	45	3.19	29	42	2.89	26	39	2.59	
78	36	49	3.70	33	46	3.39	30	44	3.08	27	41	2.78	
79	37	50	3.92	34	48	3.60	31	46	3.29	28	43	2.97	
80	38	52	4.16	35	50	3.83	32	47	3.50	29	44	3.17	
81	39	53	4.40	36	51	4.06	33	49	3.72	30	46	3.38	
82	39	55	4.53	36	52	4.19	33	50	3.84	30	48	3.49	
83	40	56	4.65	37	54	4.44	34	52	4.08	31	49	3.72	
84	40	57	4.94	37	55	4.57	35	53	4.33	32	51	3.95	
85	41	59	5.22	38	57	4.84	36	54	4.59	33	52	4.20	
86	42	60	5.52	39	58	5.12	36	56	4.73	33	54	4.33	
87	43	61	5.82	40	59	5.41	37	57	5.00	34	55	4.60	
88	43	62	5.99	40	61	5.58	37	59	5.16	35	57	4.88	
89	44	64	6.32	41	62	5.89	38	60	5.46	36	58	5.17	
90	44	65	6.51	41	63	6.06	39	61	5.77	36	59	5.33	
92	45	68	7.06	42	68	6.59	40	64	6.28	37	62	5.81	
94	46	70	7.65	43	68	7.15	41	67	6.82	38	65	6.32	
96	47	72	8.28	44	71	7.76	42	89	7.40	39	67	6.87	
98	48	75	8.96	45	73	8.40	43	72	8.03	40	70	7.47	
100 104 108 112 116 120	49 50 52 53 54 55	77 82 86 91 95	9.69 11.06 12.85 14.84 16.87 19.05	46 48 49 51 52 53	76 80 85 90 94 98	9.09 10.62 12.11 14.28 16.21 18.37	44 46 47 49 50 51	74 79 84 88 93 97	8.70 10.18 11.62 13.70 15.62 17.69	41 43 45 47 48 49	72 77 82 87 91	8.10 9.51 11.12 13.12 14.98 16.96	

RELATIVE HUMIDITY, DEW-POINTS AND GRAINS OF MOISTURE PER CUBIC FOOT

				Degr	ees W	et-Bulb	Depr	ession				
4	i	21°			229)	I	23°			24°	
Dry-Bulb	% Rel.	Dew-	Grs. per	% Rel.	Dew-	Grs. per	% Rel.	Dew-	Grs. per	% Rel.	Dew-	Grs. per
Temp.	Hum.	Point	Cu. Ft.	Hum.	Point	Cu. Ft.	Hum.	Point	Cu. Ft.	Hum.	Point	Cu. Ft.
66 68 70 72 74	10 13 15 18 20	11 17 22 26 30	0.70 0.97 1.20 1.53 1.81	7 10 12 15 17	2 11 17 22 27	0.49 0.75 0.96 1.28 1.54	3 6 9 12 14	-11 $\frac{2}{11}$ $\frac{17}{23}$	0.21 0.45 0.72 1.02 1.27	0 3 6 9	-11 2 11 18	0.22 0.48 0.77 1.00
75	21	32	1.96	18	29	1.68	15	25	1.40	12	21	1.12
76	22	34	2.12	19	31	1.84	16	27	1.55	13	23	1.26
77	23	36	2.29	20	33	1.99	17	29	1.69	14	26	1.39
78	24	38	2.47	21	35	2.16	18	31	1.85	16	28	1.64
79	25	40	2.65	22	37	2.33	19	34	2.01	17	30	1.80
80	26	42	2.74	23	39	2.52	20	36	2.19	18	32	1.97
81	27	43	3.04	24	41	2.71	21	38	2.37	19	34	2.14
82	28	45	3.26	25	42	2.91	22	39	2.56	20	36	2.33
83	29	47	3.48	26	44	3.12	23	41	2.76	21	38	2.52
84	29	48	3.58	26	46	3.31	24	43	2.97	21	40	2.59
85	30	50	3.82	27	48	3.44	25	45	3.18	22	42	2.80
86	31	52	4.07	28	49	3.68	26	47	3.41	23	44	3.02
87	32	53	4.33	29	51	3.92	26	48	3.52	24	46	3.25
88	32	55	4.46	30	52	4.18	27	50	3.76	25	47	3.48
89	33	56	4.74	31	54	4.45	28	51	4.02	26	49	3.73
90	34	57	5.03	31	55	4.59	29	53	4.29	26	51	3.85
92	35	60	5.49	32	58	5.02	30	56	4.71	28	54	4.39
94	36	63	5.99	33	61	5.49	31	59	5.16	29	57	4.82
96	37	66	6.52	35	64	6.17	32	62	5.64	30	60	5.29
98	38	68	7.10	36	66	6.72	34	64	6.35	32	63	5.98
100	39	71	7.71	37	69	7.31	35	67	6.92	33	65	6.52
104	41	76	9.07	39	74	8.63	37	72	8.19	35	71	7.75
108	43	81	10.63	41	79	10.14	39	77	9.64	37	76	9.15
112	44	85	12.26	42	84	11.68	40	82	11.10	38	81	10.54
116	46	90	14.33	44	88	13.69	42	87	13.04	40	86	12.40
120	47	94	16.28	45	93	15.60	43	92	14.92	41	90	14.24
	1	259			26°			27°			28°	
Dry-Bulb	% Rel.	Dew-	Grs. per	% Rel.	Dew-	Grs. per	% Rel.	Dew-	Grs. per	% Rel.	Dew-	Grs. per
Temp.	Hum.	Point	Cu. Ft.	Hum.	Point	Cu. Ft.	Hum.	Point	Cu. Ft.	Hum.	Point	Cu. Ft.
75 76 77 78 79	9 11 12 13 14	15 18 21 24 26	0.84 1.06 1.20 1.34 1.48	7 8 9 10 11	12 16 19 22	0.66 0.77 0.90 1.03 1.17	4 5 6 8 9	-2 4 9 13 16	0.37 0.48 0.60 0.82 0.95	1 3 4 5	-23 -10 -2 5 10	0.09 0.29 0.40 0.51 0.64
80	15	28	1.64	12	24	1.31	10	20	1.09	7	13	0.77
81	16	31	1.80	13	27	1.47	11	22	1.24	9	17	1.02
82	17	33	1.98	14	29	1.63	12	25	1.40	10	20	1.16
83	18	35	2.16	15	31	1.80	13	27	1.56	11	23	1.32

HUMIDITY

RELATIVE HUMIDITY, DEW-POINTS AND GRAINS OF MOISTURE PER CUBIC FOOT

				Deg		Wet-Bull	b De	pressio	n			
Δ.		259		1	26	0		279			28°	
Dry-Bulb	% Rel.	Dew-	Grs. per	% Rel.	Dew-	Grs. per	% Rel.	Dew-	Grs. per	% Rel.	Dew-	Grs. per
Temp.	Hum.	Point	Cu. Ft.	Hum.	Point	Cu. Ft.	Hum.	Point	Cu. Ft.	Hum.	Point	Cu. Ft.
84	19	37	2.35	16	34	1.98	14	30	1.73	12	26	1.48
85	20	39	2.55	17	36	2.17	15	32	1.91	13	28	1.66
86	21	41	2.76	18	38	2.36	16	34	2.10	14	31	1.84
87	22	43	2.98	19	40	2.57	17	36	2.30	15	33	2.03
88	22	45	3.07	20	42	2.79	18	38	2.51	15	35	2.09
89	23	46	3.30	21	44	3.02	19	41	2:73	16	37	2.30
90	24	48	3.55	22	45	3.25	19	43	2.81	17	89	2.52
92	25	51	3.92	23	49	3.61	21	46	3.30	19	43	2.98
94	27	55	4.49	24	52	3.99	22	50	3.66	20	47	3.33
96	28	58	4.94	26	55	4.58	24	53	4.23	22	51	3.88
98	29	61	5.41	27	58	5.04	25	56	4.67	23	54	4.29
100	30	63	5.93	28	61	5.54	26	59	5.14	24	57	4.74
104	33	69	7.30	31	67	6.86	29	65	6.42	27	63	5.98
108	35	74	8.65	33	72	8.16	31	71	7.66	29	69	7.17
112	36	79	9.98	35	78	9.42	33	76	8.86	31	74	8.58
116	38	84	11.78	36	83	11.16	34	81	10.56	33	79	10.25
	40	89	13.90	38	87	13.20	36	86	12.49	34	84	11.79
		29	30°			31°			32°			
Dry-Buib	% Rel.	Dew-	Grs. per	% Rel.	Dew-	Grs. per	% Rel.	Dew-	Grs. per	% Rel.	Dew-	Grs. per
Temp.	Hum.	Point	Cu. Ft.	Hum.	Point	Cu. Ft.	Hum.	Point	Cu. Ft.	Hum.	Point	Cu. Ft.
78 79 80 81 82	3 4 5 6 7	-9 -1 6 10 14	0.31 0.42 0.55 0.68 0.81	1 3 4 5	-20 -7 0 7	0.11 0.33 0.45 0.58	1 2	-18 -6	0.11 0.23	O		
83 84 85 86 87	8 9 10 11 12	18 21 24 27 29	0.96 1.11 1.27 1.44 1.62	6 7 8 9 10	11 15 19 22 25	0.72 0.87 1.02 1.18 1.35	3 5 6 7 8	2 8 12 16 20	0.36 0.62 0.77 0.92 1.08	2 8 4 5	-15 -4 H 9	0.24 0.37 0.51 0.66 0.81
88 89 90 92 94	13 14 15 17 18	31 34 36 40 44	1.81 2.01 2.22 2.67 2.99	11 12 13 15 16	27 30 32 37 41	1.53 1.72 1.92 2.35 2.66	10 11 13 14	23 26 28 33 38	1.26 1.44 1.63 2.04 2.33	7 8 9 11 12	17 21 24 29 34	0.98 1.15 1.33 1.73 2.00
96	20	48	3.53	18	45	3.17	16	42	2.82	14	39	2.47
98	21	52	3.92	19	49	3.55	17	46	3.17	15	43	2.80
100	22	55	4.35	21	52	4.15	19	50	3.76	17	47	3.36
104	25	61	5.53	23	59	5.09	21	57	4.65	20	54	4.43
108	27	67	6.67	25	05	6.18	24	63	5.93	22	61	5.44
112	29	72	8.03	27	71	7.49	26	89	7.22	24	67	6.68
116	31	78	9.61	20	76	8.99	28	74	8.68	26	73	8.06
120	33	83	11.44	31	81	10.73	29	80	10.04	28	78	9.70

PART II APPLICATION

The principles of Fan Engineering have found application for a great variety of purposes and an ever increasing use in the manufacturing industries. These applications will be briefly treated under their proper heading, such as Heating, Ventilation, Drying, Cooling, Mechanical Draft, Planing Mill and other exhaust systems and various other miscellaneous uses. Some of these applications, such as heating and ventilation, are so common as to be more or less familiar to all engineers, while others are of a more special nature and the requirements as well as the apparatus used are not so generally understood.

SECTION I

HEATING

Although the heating of buildings is accomplished in many ways, the fundamental requirements and the results desired are the same in all systems; that is, to provide sufficient heat to take care of the radiation and infiltration losses, and if required, to warm the air needed for ventilation.

Heat Losses from Buildings

The heating capacity depends on the amount of the heat losses, so evidently the first step in laying out any heating system is to determine the extent of these losses. The main source of loss will be due to radiation, and as accurate data in the form of factors or coefficients for the various building materials used are available, the total heat loss may be determined when the extent of the surface is known.

Each of the various materials used in building construction has a certain capacity for transmitting heat, or we may say exerts a certain resistance to the transmission of heat, and the transmission of heat may be shown to be the reciprocal of the resistance. This transmission is due to two components, radiation and convection from the surface, and conduction through the material. The radiation and convection factor is independent of the thickness, but varies with the height of the wall, with the difference in temperature between the two sides of the

material, and with variation in the air movement or velocity over the surface. While for extreme accuracy all of these variables should be considered, for ordinary calculations we may use a coefficient which will meet the average conditions. We will represent this factor by NK; where N varies with the temperature difference according to the accompanying table, and K is a constant for any given material,

NK = Surface transmission for each material.

1 NK = Surface resistance to the transmission of heat by radiation and convection.

The conductivity of any material will vary with the thickness, so that we will have

 ${\bf A} = {\bf Conductivity}$ of material itself from surface to surface per unit thickness.

A = Resistance of the material per unit of thickness to the transmission of heat.

W = Thickness of the material.

 $\frac{\mathbf{A}}{\mathbf{W}}$ = Conductivity of the material.

 $\frac{W}{A}$ = Resistance of the material to conduction.

L = B. t. u. transmitted per sq. ft. per hour per deg. difference.

As the total resistance is composed of the two factors $\frac{1}{NK}$ and $\frac{W}{A}$, we have the transmission in B. t. u. per square foot per degree difference in temperature between the two sides of the material,

$$L = \frac{1}{\frac{1}{NK} + \frac{W}{A}}$$
 (29)

and the total transmission per square foot per hour with temperatures t_1 and t_2 on the two sides of the material will be

$$L_{1} = \frac{t_{1} - t_{2}}{\frac{1}{NK} + \frac{W}{A}} = L \ (t_{1} - t_{2})$$
(30)

In case we are to consider a double wall or a wall made up of more than one material, we will have greater resistance due to the extra surfaces adding their resistances and also to the added resistances to conduction, thus giving a lower rate of heat transmission. This will then give us

$$L = \frac{1}{\left(\frac{1}{N_1 K_1} + \frac{1}{N_2 K_2} + \&c\right) + \left(\frac{W_1}{A_1} + \frac{W_2}{A_2} + \&c\right)}$$
(31)

In case the materials considered are very thin, but slight error will be introduced if we neglect the conduction factor and consider only the resistance of the surface.

This theory of heat transmission was first deduced by Peclet and has been used by the majority of investigators for determining factors of heat transmission. The following values for N, K and A are adapted from the original tables of factors for use in these formulae. The values given for A are for a unit thickness of one inch.

VALUES OF N FOR VARIOUS TEMPERATURE DIFFERENCES

Difference Between Inside and Outside Temperature	N	Difference Between Inside and Outside Temperature	N
5	0.580	50	0.956
10	0.670	55	0.974
15	0.740	60	0.987
20	0.790	65	1.000
25	0.825	70	1.012
30	0.860	75	1.023
35	0.887	80	1.032
40	0.912	85	1.040
45	0.936	90	1.047

VALUES OF K AND A FOR DIFFERENT MATERIALS

Materials	K	A
Brick	1.275	5.50
Brick and 2" Air space	0.460	5.50
Pine Board	1.275	0.97
Oak Board	1.275	1.75
Double Pine Board, Paper Between	0.475	0.97
Corrugated Iron	1.500	
Sheet Iron	1.200	224.00
Pine Board and Corrugated Iron	0.575	0.97
Pine Board and Sheet Iron	0.675	0.97
Single Glass	1.095	7.20
Double Glass	0.470	
Building Paper	1.200	

The values given in the above table apply to the two sides of the material considered, and would be double in case the factor for one side only is desired. That is, the resistance of only one surface would be one-half and the transmission therefore double the values given for the two surfaces. These

factors as given apply to wall construction, where there is more or less movement of the air over the surfaces due to the current of air passing up the walls. With a roof or a floor this movement of the air will be greatly lessened and the transmission consequently decreased. The necessary modifications of the factors for other than wall construction are in a great measure a matter of judgment.

The application of the foregoing formula may best be shown by a practical example, in which it is required to determine the coefficient of transmission per square foot per degree difference in temperature for a wall composed of two-inch pine boards covered with building paper and corrugated iron, with a difference of 50° in temperature between the two sides. From the accompanying table we find the value of N to be 0.956.

HEAT TRANSMISSION THROUGH WALLS.

We will have six surface resistances to consider, N K for the two surfaces of the board being 1.218 and for the two surfaces of the corrugated iron 1.433. On account of the fact that the paper and the iron are quite thin the resistance to conduction would be very small and may be omitted for these two materials without serious error.

We will then have the surface resistance $\frac{1}{N_1K_1} = \frac{1}{1.218}$ for the two board surfaces, and assuming the same surface loss

for paper as is given for sheet iron, we will have the resistance for the two sides of the paper $\frac{1}{N_0 K_0} = \frac{1}{1.15}$

As already stated the resistance of the two surfaces of the iron will be $\frac{1}{N_3K_3}=\frac{1}{1.433}$ The resistance to conduction of the two-inch pine board will be $\frac{W}{A}=\frac{2}{0.97}$ Then we will have the total transmission in B. t. u. per sq. ft. per degree difference in temperature between the two sides of the wall as,

$$\mathbf{L} = \frac{1}{\frac{1}{1.218} + \frac{1}{1.15} + \frac{1}{1.433} + \frac{2}{0.97}} = 0.224 \text{ B. t. u. per hour.}$$

If we leave out the paper and consider a wall composed of two-inch boards and corrugated iron, the transmission in B. t. u. per sq. ft. of wall per degree difference in temperature between the two sides of the wall would be

$$L = \frac{1}{\frac{1}{1.218} + \frac{1}{1.433} + \frac{2}{0.97}} = 0.279 \text{ B. t. u. per hour.}$$

The factors on pages 51 and 52 are compiled from the best authorities and will be found to agree with modern engineering practice. Much of our information on this subject dates back to the time of Peclet and other early investigators, but a great deal of work has been done more recently in an effort to obtain authentic data. The principal reason for discrepancies in this part of the work is due to the great difference in building construction. Thus, although as ordinarily considered, the radiation loss is the principal factor to be considered and reliable data is available, nevertheless, due to poor construction, the convection losses may become so great that the apparatus will be unable to furnish the heat required.

For this reason these factors are subject to modifications to care for special cases such as exposure to winds, unequal distribution of heat, infiltration of cold air, etc. The German government standards require these factors to be increased as follows:

Ten per cent. where the exposure is a northerly one and the winds are to be counted on as important factors.

Ten per cent. when the building is heated during the daytime only, and the location of the building is not an exposed one.

Thirty per cent. when the building is heated during the daytime only, and the location of the building is exposed.

Fifty per cent. when the building is heated during the winter months intermittently, with long intervals of non-heating.

It may be noted that some engineers are inclined in a few instances to use slightly higher factors than here given. For instance, N. S. Thompson in his "Mechanical Equipment of Federal Buildings" gives constants for concrete that are 50 per cent. greater than the constants for brick herein quoted instead of 20 per cent. greater as given below, while the constants for brick agree very closely.

HEAT LOSS FROM BUILDINGS

B. t. u. Transmitted per Hour per Square Foot of Surface per Degree Difference in Temperature

CONSTANTS FOR BRICK WALLS

Thickness Inches	Plain	Plastered One Side	Air Space and Plastered	Furred and Plastered
4 8 ½ 13 17 ½ 22	0.52 0.37 0.29 0.25 0.22	0.50 0.36 0.28 0.24 0.21 0.18	0.25 0.21 0.19 0.16	0.28 0.23 0.20 0.18 0.16

For Concrete walls add 20 per cent. to above values.

Outside walls of frame buildings, lath and plaster inside, outside construction as follows:

Clapboards, 7/16" thick		14
Same with paper lining		31
Same with 34" sheathing		28
Same with paper and 34"	sheathing	23

Inside ordinary stud partitions.

Lath and	plaster,	one side		 	. ć	 					 	0	.60	ı
Lath and	plaster.	both side	es.	 		 	٠					0	.34	ı

Sheet iron siding, 1.20.

Corrugated iron siding, 1.50.

FOR VARIOUS WALL CONSTRUCTIONS

Thickness of Board Inches	Pine Board	Double Board Paper Between	Board and Corrugated Iron	Board and Sheet Iron
1/2	0.77	0.32	0.45	0.50
1	0.51	0.24	0.36	0.40
1 1/2	0.43	0.19	0.30	0.33
2	0.35	0.16	0.26	0.28
2 1/2	0.30	0.14	0.23	0.25

DOUBLE 1" BOARDS WITH SAWDUST BETWEEN

Sawdust Inches	B. t. u.
2	0.127
4	0.083
6	0.062
8	0.049

FOR FLOOR SURFACES

Single wooden floor, no plaster beneath joists
Same, lath and plaster beneath joists
Double wooden floor, no plaster beneath joists
Same, lath and plaster beneath joists

Assume temperature of unheated floor space beneath the floor at one-half the difference in temperature between indoors and outdoors.

FLOORS LAID ON THE GROUND

Cement or tile, no wood above		 			0.31
Cement or tile, wood floors above	e	 			0.10
Dirt, no floor whatever					
Wood, single, laid near ground.		 			0.10
A	ad la	 	- 200	4- 500	יסו

Assume temperature of earth as plus 30° to

FOR ROOFING PURPOSES

Sheet iron)
Corrugated iron	
Slate on wooden framing	
Slate on 1" boards	
2" boards, paper, tar and gravel	
Patent tar, gravel and paper)
Tiling 1" thick or less)
6" hollow tile covered with 2" concrete, tar and gravel	5
2" concrete with cinder fill)
2" concrete with cinder hil	ð
6" " " "	ł

FOR GLASS SURFACE AND DOORS

Single windows .	 								 														 	٠	 	.1.	09
Double windows	 				ı.			ı		ı											 		 		 	.0.	46
Single skylight																											
Double skylight.					i				i.	Ĭ				Ü	Ξ.	3	i		ī	i		i		į.	 	.0.	48
Pine Doors, 1".								ï									i		Ĭ	Ì		Ĭ		i		.0.	41
1 1/2"	 ů	• •	•			•		•		•				ı									ì	Ĺ	ï	.o.	32
" " 2"	• •	•	• •	•		•	•	• •	•	•	•	• •	٠	• •	۰	•	• •	•	۰			•	ů			o.	27

Heat Loss Through Cold Storage Insulation

Extensive experiments have been made by various investigators who were interested in the subject of heat transfer through the various materials commonly used for insulation in cold storage work. Any apparent discrepancy between the figures quoted by different authors for the same material is probably due to the different conditions under which the tests were conducted.

The following table of coefficients has been compiled by F. E. Mathews, principally from data furnished by the Armstrong Cork Co. This table was published in Power, August 8, 1911. These values are for use under the best conditions, and builders are advised to increase them by 25 to 50 per cent., depending on the physical condition of the insulation.

COLD STORAGE INSULATION

Transmission in B. t. u. per Square Feet per Hour per Degree Difference in Temperature for

Insulating Slabs

	""Nonpareil" cork board (pure cork, no foreign binder)
	""Rock" cork (water-proofed rock-wool composition board)0.308
	""Lith" plain (mineral wool flax-fibre composition board)
1	"'Lith" water-proofed (same as above, water-proofed)
1	""impregnated cork board" (gran, cork and asphaltic binder) 0.371
1	"indurated fibre board (indurated wood-pulp board)

Built-up Insulation (wood and air space)

1" American spruce
1" American spruce
an.)
(1/3" sp. paper 1/3" sp.) (1" air space) (1/3" sp. paper 1/3" sp.)
6 thicknesses, 78" sp., 3 papers, 2 air spaces arranged as above 0.144
8 thicknesses, 38" sp., 4 papers, 3 air spaces arranged as above0.113

Built-up Insulation (wood, paper and fill)

(/8 sp. paper /8 sp.) (/8 sp. paper /8 sp.)	м
$(\frac{7}{8}" \text{ sp. paper } \frac{7}{8}" \text{ sp.})$ (4" min. wool) ($\frac{7}{8}" \text{ sp. paper } \frac{7}{8}" \text{ sp.})$ 0.09.	$\frac{2}{2}$
(1/2" sp. paper 1/2" sp.) (8" mill shavings, damp) (1/2" sp. paper 1/2" sp.)0.08	8
(% sp. paper $%$ sp.) $(1$ mill shavings, drv) $(%$ sp. paper $%$ sp.)0.05	6
(1/8" sp. paper 1/8" sp.) (8" granulated cork) (1/8" sp. paper 1/8" sp.)0.07	9
(1/8" sp. paper 7/8" sp.) (1" Nonpareil cork) (1/8" sp. paper 7/8" sp.)0.12	9
(1/8" sp. paper) (1" Nonpareil cork) (paper 5/8" sp.)	6
(1/8" sp. paper) (2" Nonpareil cork) (paper 5%" sp.)	8
(78" sp. paper) (3" Nonpareil cork) (paper 58" sp.)	4
(78" sp. paper) (4" Nonpareil cork) (paper 5% sp.)	0
(7/8" sp.) (1" pitch) (7/8" sp.)	2
(78" sp.) (2" pitch) (78" sp.)	7

Built-up Insulation (wood, paper, air space and fill)

(1/8" sp. paper 1/8" sp.) (1" air space) (1/8" sp.) (6" min. wool) (1/8" sp. paper (3/8 sp.) (1" air space) (1/8" sp.) (6" gran. cork) (1/8" sp. paper (1/8" sp.) (1" air space) (1/8" sp.) (6" gran. cork) (1/8" sp. paper

% sp.) (1" sp.) (1" air space) (1/" sp.) (2" Nonpareil cork) (1/6" sp.

FAN ENGINEERING-BUFFALO FORGE COMPANY

	8" sp.) (1" air space) (2" Nonpareil cork) (paper 1/5" sp	
(1/8" sp. paper	%" sp.) (1" air space) (3" Nonpareil cork) (paper 1%" sp. %" sp.) (1" air space) (4" Nonpareil cork) (paper 1%" sp	.)0.050
(1/8" sp. paper	8" sp.) (1" air space) (5" Nonpareil cork) (paper 18" sp	.)0.038

Brick Wall and Sheet Cork

(13" brick wall) (2" Nonpareil	il cork)	0.115
(13" brick wall) (4" Nonpareil NOTE—Sp. designates Ameri	il cork)	0.061

The data given in the table following is an extract from a report on Heat Transmission of Building Materials, submitted to the American Society of Heating and Ventilating Engineers, 1913, by Prof. L. A. Harding.

These results were obtained in a specially constructed testing plant, using temperature differences that ordinarily occur, either in heating or refrigerating practice. The testing boxes were made up of the various materials stated, having approximately 100 sq. ft. of surface. Heat was introduced inside the boxes by means of electrical resistance coils, the air surrounding the box being artificially cooled. A strong circulation of air was maintained both inside and outside of the box by fans.

TABLE OF UNIT HEAT TRANSMISSION

B. t. u. Transmission per Sq. Ft. per Hour per Degree Difference in Temperature of Air in Contact with the Two Sides

One 4-in, Hollow Tile	
1 in, Concrete (1-3-5 Mix.)	
% in. Lumber (T and G)	
One Air Space (from 1 in, to 6 in.)	
1 in. Mineral Wool (Dry)	
1 in. Pitch	
1 in. Shavings (Dry)	
1 in. Granulated Cork	
1 in, Corkboard (all Cork)	
l in. Hair Felt	
1 in. Indurated Fibre Board	
1 in. Compressed Mineral Wool Board	

Heat Loss from Galvanized Iron Pipes

As already explained (page 47) the resistance of any surface to the transmission of heat is the sum of the various resistances to be met in each case, and the transmission or heat loss is the reciprocal of this total resistance. In the case of a galvanized iron duct the conductivity of the material may be neglected, and we have to consider only the resistance to the transfer of heat from the air to the metal on one side and from the metal to the air on the other side. The air in the pipe would have a direction of flow parallel to the surface so that the heat transfer would be as shown in formula (97), page 404, for

longitudinal flow. The conditions on the outside of the pipe or duct would be approximately those of any direct radiation placed in the room.

According to the best authorities the coefficient of transmission K for direct radiation from the outside will vary from 1.6 to 1.8 B. t. u. per sq. ft. per hour per degree difference in temperature between the material and the external air. A factor of K=1.7 B. t. u. is an average value commonly used. Assuming a velocity of 1500 ft. per minute for the air through the pipe, we find from the diagram giving "Rate of Heat Transmission for Longitudinal Flow of Air," on page 406, that for the internal surface of the pipe K=7.5 B. t. u. The total resistance of the duct will then be

$$\frac{1}{K} = \frac{1}{1.7} + \frac{1}{7.5} = 0.723$$

$$K = 1.38$$

For average conditions as outlined above we may assume for the heat transfer through galvanized iron ducts per sq. ft. per hour per degree difference in temperature between inside and outside

K = 1.4 B. t. u.

 $H = K \ (t_a - t_r) = 1.4 \ (t_a - t_r)$

where H = heat lost per square foot per hour.
t_a = temperature of the air in the pipe.

 $t_r = temperature of the room.$

Heat Loss Due to Infiltration

The heat loss due to leakage and infiltration is often a difficult quantity to determine, inasmuch as it may depend on so many different factors, such as size, height and construction of the building, distribution of doors, windows and ventilators, and the object for which the building is used. For this reason no fixed rule can be given, and the allowance to be made for this loss is necessarily a result of experience and good judgment. It is customary to allow from two changes per hour to one change in two hours as a measure of this loss, depending, as already stated, on the circumstances of the case considered. For the average application one air change per hour is usually a satisfactory allowance.

Thus if the building is very large the ratio of cubic contents to wall surface would be greater than with a smaller building, hence the air change due to leakage would be less frequent. The existence of large doors frequently opened or of ventilators makes a more rapid air change due to leakage, as does also loosely fitting windows or other faulty construction. Many of the materials used for roofs and siding, such as tile or galvanized iron, are notoriously bad as regards leakage.

The heat required in B. t. u. per hour to warm this air from the outdoor to the room temperature will be

$$H_i = \frac{\text{cubic contents} \times \text{changes per hour} \times \text{temp. rise}}{55.2}$$

Heat Required for Ventilation

The heat required for ventilating is easily computed when the air supplied per hour is actually known. If we consider the specific heat of air at constant pressure to be 0.2415 and the weight of one cu. ft. of air at 70° is 0.0749 lbs., one British thermal unit of heat will raise the temperature of one cu. ft. of air

$$\frac{1}{0.2415 \times 0.0749} = 55.2^{\circ} \text{ F}.$$

From this we may deduce the formula.

$$H' = \frac{60 Q (t_r - t_1)}{55.2}$$
 (32)

where

H' = B. t. u. per hour required for ventilation.

Q = cu. ft. of air per min. required for ventilation.

 $t_r = room temperature.$

 $t_1 = entering$, or outdoor, temperature.

Examples illustrating the use of the above formula will be found in Section VIII, Part IV. For a consideration of the heat given off by the occupants of a room or by various sources of heat, such as lights and machinery, see "Special Ventilation Requirements" on pages 61 and 62.

Air Quantity and Final Temperature Required for Heating

In heating a building by means of the fan system, there are three factors to be considered. These are, the heat loss due to transmission and infiltration; the quantity of air required as a heat carrier; the final temperature and the temperature rise of this air in passing through the heater. Ordinarily the heat loss and one of the other factors are given, with the third to be determined. It may be required to use all return or room air, all outdoor air, or a mixture of the two. The relations between the above factors may be expressed by the following equations:

$$Q = \frac{55.2 \text{ H}}{60 (t_2 - t_r)} \tag{33}$$

and

$$t_2 = \frac{55.2 \text{ H}}{60 \text{ Q}} + t_r \tag{34}$$

where

H = heat loss in B. t. u. per hour due to transmission and infiltration.

Q=cu. ft. of air per minute.

t2 = temperature of air leaving heater.

 $t_r = temperature of room.$

When using all or part outdoor air there will be sufficient heat required at the heater not only to take care of the heat loss, but also to raise the temperature of the air from entering temperature t_1 , to the room temperature, t_τ . The total temperature rise will then be t_2-t_1 , and

$$H' = \frac{60 \text{ Q } (t_2 - t_1)}{55.2} \tag{35}$$

where

H'=total heat in B. t. u. per hour required at the heater.

 t_1 = temperature of air entering heater—either outdoor or a mixture of room and outdoor air.

t2 = temperature of air leaving heater.

The amount of steam required will be

H' latent heat of steam = lbs. per hour.

or approximately lbs. steam per hour = $\frac{H'}{1000}$

SECTION II

VENTILATION

Any room or building used for the habitation or congregation of human beings should be provided with a plentiful supply of fresh air. Strictly speaking, good ventilation is merely a relative term, and the standards as ordinarily accepted are a compromise that will answer the purpose of keeping the air in a building in a fairly fresh condition. The requirements of ventilation are, first, maintaining certain standards of purity of the air within the room or building; second, the removal and prevention of odors; third, the removal of the bodily heat of the occupants together with the heat from such other sources as illumination and power; and fourth, the prevention of excessive rise in humidity which usually accompanies the rise in temperature from bodily heat.

Many of the existing standards of ventilation have been founded on the belief that carbon dioxide was the dangerous element in expired air. The requirements of ventilation as to air purity are more or less arbitrary, and no rational standard has ever been fixed. Later investigations would indicate that carbon dioxide is harmless, and interesting only as indicating how much respiration the air has undergone. In this way it serves as an index of the contamination of the air with organic impurities from the lungs and bodies of the occupants. These organic poisons are little understood, although they undoubtedly constitute the real danger in impure air. The standard of purity which has usually been considered satisfactory is from six to eight parts of carbon dioxide in 10000 parts of air, but it is certain that ten times this amount would not be injurious if provision were made for the removal of organic impurities. In all probability the best index of good ventilation in so far as purity is concerned is freedom from objectionable odors.

It is estimated that the average adult, at rest or doing light work, will breathe approximately 0.25 cu. ft. of air and exhale 0.01 cu. ft. of CO₂ per minute (0.6 cu. ft. per hour), and that

only about five per cent. or less of the oxygen is taken out of a breath of air. The air of poorly ventilated rooms will show a slight diminution in the oxygen, accompanied by a corresponding increase in carbon dioxide, organic pollution, and moisture. The poisons in the air due to the presence of too many persons relative to the supply induce a lowering of the vital processes and a loss of muscular strength.

Ordinary outdoor air will contain on an average about four parts of CO2 in 10000 and fairly good ventilation is ordinarily considered to exist in a room where the air contains not more than from six to eight parts of CO2 in 10000. That is, if a great amount of CO2 exists in the air, it is considered as having been breathed too often and unfit for further respiration. The following table gives the amount of air required per hour by the average person, exhaling 0.6 cu. ft. of CO2 per hour, if it is desired to maintain the corresponding number of parts of CO2 in the air with outdoor air containing four parts of CO2 per 10000.

Parts of CO ₂	in 10000	Cu. Ft. Air per Hour
Increase Above Outdoor Air	Total	Per Person
1 2 3 4 5	5 6 7 8 9	6000 3000 2000 1500 1200 1000

It is ordinarily the custom to allow for average conditions 1800 cu. ft. of air per hour per person, and this is the factor commonly used for school ventilation. But there are many cases in which the amount of air allowed is varied to suit the circumstances, a few of which are given in the following table:

ALLOWED PER PERSON CU. FT. PER HOUR

2100 to 2400
2100 to 2400
4800
1800
1200
2400

Removal of Bodily Heat

In rooms where the glass and wall exposure is considerable, ventilation for the removal of bodily heat need not be considered,

except where the building is artificially cooled. In crowded audience halls, however, and even in school-rooms it is the determining factor. Each adult occupant gives off an average of 400 B. t. u. per hour, of which approximately 150 B. t. u. may be assumed to be latent heat of evaporation, while not more than 250 B. t. u. will be sensible heat given off by the breath and by convection to the surrounding air. On this basis if each occupant is supplied with 30 cu. ft. of air per minute or 1800 cu. ft. per hour there will be a rise of approximately eight degrees above the temperature at which the air is introduced into the room, so that in order to maintain we will say 70 degrees in the room, the air would have to be reduced to 62 degrees. There is evidently a limit to the difference of temperature allowable between incoming air and room temperature, which depends largely on the size and arrangement of inlet openings as effecting the production of cold drafts. The practical limit is found in standard methods of ventilation to be between 5 and 10 degrees. Therefore, the limiting quantity of air required for the removal of bodily heat must be taken approximately between 25 and 50 cu. ft. per minute per adult occupant. This, as may be noted. also gives a very satisfactory standard of purity.

While 1800 cu. ft. of air per hour or 30 cu. ft. per minute (expressed as 30 A. P. M.), when used as a standard for overhead ventilation, is in the average case amply sufficient to take care of the heat and moisture from the body, when the air is supplied through many small openings distributed about the room a smaller quantity of air may often be supplied. Several different systems of this character have been used, such as introducing the air under the seats in a theatre, or through a small opening at each desk in a school. By this means a more uniform distribution of the air is obtained than is possible with the over-head system, with greater assurance that each occupant of the room will receive the desired amount of fresh air.

Carbon Dioxide Determination

Various methods for making analyses of the air to ascertain the CO₂ content have been used, but it is generally considered that the more simple methods are little better than approximations. The more dependable methods require carefully prepared apparatus, and an operator who has had considerable experience in this or similar chemical work. One of the methods quite

generally used for this determination is called the Pettenkofer method.

The Pettenkofer method of analyses for carbon dioxide is based on the fact that barium hydroxide will absorb the CO₂ from the atmosphere. A measured bottle or flask is used to collect the sample of air, some form of bellows or air pump being used to force the room air into the bottle. This operation is continued for several seconds, or until the air in the bottle has been changed quite a number of times (six to ten).

After the sample is collected, a definite quantity of standard barium hydroxide is inserted into the bottle to absorb the CO2 from the sample of air contained. At the same time a few drops of penolphthalein is added to the barium hydroxide in the bottle, giving the mixture a reddish color. The sample should then be allowed to stand for at least an hour, being frequently shaken, although the final operation may be left till the next day if desired. The excess of barium hydroxide is then titrated with standard oxalic acid, by dropping the acid into the reddened solution until the color disappears. This oxalic acid should be dropped into the sample bottle from a graduated burette, so that the exact amount of acid required to titrate the barium hydroxide not absorbed by the carbon dioxide may be measured. Previous determinations having been made to find the amount of oxalic acid required to titrate a quantity of barium hydroxide equal to that put into the bottle, the difference in the acid used before and after taking the sample is a measure of the barium hydroxide uniting with the CO2. One c. c. of the oxalic acid is equivalent to 1/10 c. c. of carbon dioxide.

Special Ventilation Requirements

There are other factors that may have to be considered in making a determination of the air quantity to be supplied for ventilating purposes. Some of these special cases are where provision is to be made to care for the heat given off by furnaces or machinery; the effect of gas jets or other lighting apparatus; or to remove the heat radiated from the bodies of the occupants of the building.

The allowance to be made for many sources of heat, such as furnaces, is often a matter of experience and good judgment, but in case of machinery using a known amount of power the

heat expended may be determined on the basis of 2545 B. t. u. per hour or 42.416 B. t. u. per minute per horsepower.

The following data concerning the heat given off to the air by various electric lights is based on the standard of 2545 B. t. u. per hour per H. P.; and 1 H. P. = 746 watts, giving 3.41 B. t. u. per watt as the heat radiated. This gives the B. t. u. per hour for the following lamps:

25 50	watt	lamps lamps								 			 											35	
600	watt	enclose	ed	a	rc		٠	٠	 		·					Ċ		i					204	10	

Prof. Kinealy quotes the following values for the heat radiated in B. t. u. per candle power per hour.

as, ordinary split burn	er	٠.					:	٠.													20
lectric, arc			•	•		٠.	•	٠.	•	 •		٠.	٠	٠,	٠.	٠	•	٠		٠	٠,
		•			•	٠.	٠		٠	 ٠	• •	٠.		٠,	٠.			 	. ,		. 4

The following data gives the values commonly quoted as the bodily heat given off in B. t. u. per hour per person.

C1 11 1 0 1 1	-	I I	
Child 6 years old			040
Adult of root			.240
Man 30 years old in an atm	oanhana mith		.000
A line of years old in an atmi	osphere with a	temperature of 31° F.	. 600
Adult in old age			200
			. 300

The amount of heat in B. t. u. usually assumed as given off per person per hour in an atmosphere at 70° F. is 400 for adults and 200 for children. These are the figures generally used when the heating effect of the occupants of assembly halls, auditoriums, or factories is taken into account.

The proper allowance for the above sources of heat is of especial importance in the design of apparatus used for cooling a building in the summer-time. The heating effect of the direct sun on walls and glass surface has also to be considered, the ordinary factors in B. t. u. per hour per square foot of surface being:

Sun effect—13-inch brick wall, 6.0 B. t. u. per sq. ft. per hr. Sun effect—glass, 150.0 B. t. u. per sq. ft. per hr.

The Fan System for Heating and Ventilating

While for heating purposes the fan heating system may or may not be used, depending on circumstances and the requirements to be met, yet for purposes of ventilation the fan system is practically without competition. The fan system may be

Three-Quarter Housing Fan, Left-Hand Top Horizontal Discharge, Blowing Air Through and Underneath Heater into Brick Plenum Chamber

used to supply both heat and fresh air for ventilation or it may be used in conjunction with some form of direct radiation which is to care for the heat losses. When used for ventilating purposes the fan will be required to supply whatever amount of air is specified to meet the ventilation requirements.

Arrangement of Apparatus

Fan system apparatus, consisting of a fan and some form of indirect heating coil, may be arranged either to exhaust the air through or to blow through the heater, commonly called the exhaust-through or draw-through and the blow-through apparatus. Each arrangement possesses its own peculiar advantages but the selection depends largely upon the individual requirements of the installation. An exhaust fan is slightly less efficient than a blower, but in a draw-through system the air blows directly from the fan into the piping system with but little, if any, change in velocity. On the other hand when using a blow-through apparatus the velocity of the air leaving the fan must be reduced through the heater and then raised again through the piping system, both changes entailing a loss in pressure.

The exhaust-through apparatus is usually employed in factory buildings on account of its compactness as well as the advantage gained by connecting directly to the piping system. In this case the temperature of the air delivered will be the same to all parts of the building. The blow-through apparatus is used in public buildings or wherever different temperatures and independent temperature regulation are required for different rooms of the building. The use of the by-pass around the heating coils permits the mixture of hot and cold air in any desired proportions, by the use of a mixing damper at the point where the two ducts from the heater and from the by-pass join to form one duct leading to the room. In the case of public buildings the fan frequently blows the warm air into a space called a plenum chamber, from which the air ducts radiate to the various rooms of the building. For this reason this system is sometimes called the plenum system of heating and ventilating.

Upward and Downward Systems of Ventilation

For audience halls the problems of air distribution and avoidance of drafts are greatly increased owing to the usual large dimensions of such buildings, and the density to which they are peopled. Two plans of ventilation are in vogue, usually distinguished as the upward and the downward systems of ventilation. In the upward method the air is admitted through perforations in the floor underneath the seats and is allowed to escape through ventilators in the roof. In the downward system the air is admitted through registers in the walls at a height of several feet above the floor, and removed through vent registers in the walls at the floor line in the same manner as in school buildings. In large auditoriums the upward method is doubtless preferable when the architectural design makes it permissible. A perfect distribution of the air can be secured, and the air flow is upward in accordance with natural currents induced by the heat of the body and the breath, the products of respiration are immediately carried away, and the incoming air is uncontaminated. This method of ventilation is exceedingly efficient, as a high standard of purity can be maintained at the breathing line with a comparatively small air supply.

Upward ventilation to be successful requires a very careful arrangement of the supply openings on account of the greater

liability of drafts. The velocities are necessarily low, and the registers are so small that a very large number is needed to convey the necessary air. The plenum chamber for the supply is sometimes out of the question, and on this account the downward system, which is in almost universal use in schools, is extended to churches, theatres and halls with high ceilings. With a proper arrangement of fresh air and vent registers and ample air supply excellent results are obtained. To insure such results exhaust systems are frequently relied upon, the vent registers being connected with suction fans which maintain a steady draft.

Schoolhouse Ventilation

Modern school buildings offer most exacting requirements in heating and ventilation. On account of the large number of pupils seated in one room, a very rapid air change is required, and this must be accomplished without drafts. The temperature must be uniform everywhere, and ventilation must be adequate. Even elaborate systems can not secure entirely perfect distribution of air, and the only practical and successful method of insuring ample ventilation in all parts of the room is to supply air considerably in excess of the theoretical requirements. The necessity of this added capacity, or factor of safety as it may be termed, is often overlooked in writing specifications for school buildings. Thirty cubic feet of air per pupil which is usually specified will allow from six to seven parts CO2 in 10000. dividually this is ample, but collectively insufficient, since to insure that this per cent. of CO2 is nowhere exceeded, it would probably be necessary to supply an average of nearly 40 cu. ft. per pupil.

Ventilation of Industrial Buildings

Where an industrial building is heated by means of a fan system apparatus and no special air requirement exists, except in certain cases, it is not customary to provide for ventilation aside from taking the air for heating purposes from the outdoors. Certain industrial processes require ventilation either for cooling or for the removal of obnoxious gases and fumes or of steam. For such cases it is advisable to use an exhaust system where practicable. The air should be exhausted if possible at the point where the heat or objectionable gases escape.

It is customary to suspend a hood directly above the source of heat or gases, this hood being connected by a duct or pipe to the inlet of an exhaust fan or to a vent stack. These hoods are usually so proportioned as to obtain a velocity of from 75 to 250 feet per minute over their area, according to the location of the hood. Full directions for the design of such a system, with data on the size of hoods and piping to be used, will be found under "Exhaust Systems" on page 93, and on "Proportioning Piping for Exhaust Systems" on page 129. Data on the design of piping systems for various purposes will also be found under "Air Ducts," Part III.

A few of the more common air changes provided for ordinary conditions are:

Laundry—1 to 3 minute air change depending on the size of the room and the concentration of the heat.

Hotel kitchen—4 minute air supply and 3 minute exhaust. This tends to place the room under a slight vacuum, so that any leakage at the doors is into rather than outward from the kitchen.

Engine and boiler room—3 minute supply and 4 minute exhaust.

Foundry—15 minute air change when air is taken from outside.

Roundhouse—10 to 12 minute supply in order to keep the air free from steam and smoke.

Cooling occupied rooms in summer without refrigeration usually calls for from 4 to 6 minute air supply.

SECTION III

Air Washing, Cooling, Humidifying,* Drying

AIR WASHING

On account of dust and soot introduced by a ventilating system, some form of air washer or air filter is essential where cleanliness is of importance. The spray type has superseded cloth screens and other methods of wet cleaning on account of its greater efficiency and is now standard practice for ventilating equipment.

The advantages to be derived both in industrial establishments and in public buildings by maintaining any desired degree of moisture in the air, as well as freeing it from impurities, have become very widely recognized. This process is generally termed air conditioning. This conditioning can be most successfully accomplished by passing the air through a spray type of air washer or humidifier where additional moisture is desired, or by using a spray type dehumidifier when the moisture content of the air is already too great and requires reduction.

Humidity in Heated Buildings

In schools and other public buildings the humidity of the air is of more consequence than is usually supposed. The amount of moisture which air can hold at saturation per unit volume increases rapidly with the temperature as shown by the psychrometric chart on page 35. Air normally has a humidity varying from 40 to 50 per cent. of saturation, while if much above or below these limits it becomes uncomfortable if not actually injurious to the health. Hence air at 70° should contain from 3.5 to 5.5 grains per cubic foot, while at 0° it contains only about 0.3 grains and at 32° about 1.25 grains, so that in the usual systems of heating, with 32° outside, the humidity of the air when heated to 70° would be only 15.5 per cent. The effect of this ex-

^{*}NOTE.—For a general discussion of the subject of Humidity see page 28, Part I. For details of the performance and dimensions of Carrier Air Conditioning Apparatus see Section VI, Part IV.

treme dryness is undoubtedly very harmful to the mucous membrane in the nose, throat and the lungs, and may be considered a contributing source of many throat and pulmonary diseases.

The proper humidity to maintain in public buildings is from 35 to 50 per cent. The humidity to be recommended in good practice is 40 per cent., with a room temperature of 68° F. This corresponds to about three grains of moisture per cubic foot of air and a dew-point of 42°. Even this will cause slight condensation on the windows in extremely cold weather and a lower humidity should be maintained in very cold weather if condensation on the windows is objectionable.

Humidity in Manufacturing Establishments

In the case of industrial installations the amount of moisture required in the air will vary widely according to the nature of the process, some requiring high and others low relative humidity. In textile mills the necessity of humidifying and cooling the air has long been understood. Just as in many instances the fan system has superseded other methods of drying materials, it is to be expected that air conditioning apparatus with automatic control of humidity will find new applications in which economy of operation will justify the expense.

COOLING

One of the special developments in connection with the fan system of ventilating is the cooling of a building so that the indoor temperature in summer will be lower than that outdoors. A limited amount of cooling may be obtained by passing the air through an air washer in which cold water is used, and for many purposes this will be found sufficient. In case a considerable temperature difference is desired, or when a great amount of heat is to be taken care of, as from machinery and other apparatus in a factory, a special form of washer known as a dehumidifier is used. This is generally operated in two stages or sets of sprays, one using cold well water and the second using refrigerated water. With such an apparatus any desired dew-point or per cent. of relative humidity may be maintained in the room to be conditioned, and the air may be delivered as low as 39° or 40°.

It is not generally considered desirable to have too great a difference between the room and outdoor temperatures, on account of the chilling effect to persons coming in from the out-

door air. A difference of from 10° to 15° will generally be found the most desirable. The incoming air must be cooled to a temperature enough lower than the room to take care of any heat generated in the room, as well as the heat transmitted through the walls from the warmer outdoor air. In case the relative humidity of this air is then too great, the moisture content may be reduced by lowering the temperature still further, so condensing a portion of the moisture from the air. The amount of moisture contained at different saturation temperatures may be found from the psychrometric tables on pages 38 to 45.

Relation of Cooling Effect to Percentage of Relative Humidity

In the moist air system of humidifying it is evidently essential, as shown in the table on page 71, that the difference between the dew-point temperature of the incoming air and the room temperature shall not exceed a predetermined value, depending upon the percentage of humidity to be maintained. The minimum temperature at which air can be introduced is evidently the dew-point or saturation temperature at the apparatus. This permissible temperature rise limits the possible cooling effect to be obtained from each cubic foot of air as shown in the table of cooling capacities. This relationship is of primary importance in the design of the humidifying system and the disregard of it has been the chief cause of failure or of unsatisfactory operation.

COOLING CAPACITY OF CARRIER HUMIDIFYING SYSTEM

Per Cent. Humidity in Room	Difference between Dew- point and Room Temperature	Cu. Ft. of Air at 70° Fahr. Required per B. t. u. Cooling Effect
50	20.3	2.71
55	17.7	3.11
60	15.2	3.63
65	12.8	4.31
70	10.8	5.10
75	8.8	6.27
80	6.8	8.11

In the majority of industrial applications the problem during warm weather, and in some instances throughout the entire year, is as much a question of cooling as of humidifying. Indeed, in the moist air system, as has just been shown, one is dependent on the other. In every industrial air conditioning plant there are four sources of heat which must be taken into account in the design of the system:

- (a) Radiation From Outside Owing To The Maintenance Of A Lower Temperature Inside. At ordinary humidities this is negligible, but at high humidities and in dehumidifying plants it is an important factor, owing to the increased temperature difference. This may be calculated from the usual constants of radiation.
- (b) Heating Effect Of Direct Sunlight. This is especially noticeable from window shades and exposed windows and skylights where the entire heat energy of the sunlight is admitted to the room, and from the roof which constitutes the greater amount of sunlight exposure and which in ordinary construction transmits heat much more readily than the walls. Precautions should be taken where high humidities are desired to shade exposed windows and to insulate the roof thoroughly. Ventilators in the roof are of great advantage in removing the hot layer of air next it and those of ample capacity should always be provided.
- (c) Radiation Of Heat From The Bodies Of The Operatives. This amounts to about 400 to 500 B. t. u. per hour per operative, about one-half of which is sensible heat, the other half being transformed into latent heat through

evaporation.

(d) Heat Developed By Power Consumed In Driving Machinery And In Manufacturing Processes In General. According to the laws of conservation of energy, all power used in manufacturing is ultimately converted entirely into its heat equivalent. Each horsepower of energy, therefore, creates 42½ B. t. u. of heat per minute, which must be cared for by ventilation. In high-powered mills this is the chief source of heating and is frequently sufficient to overheat the building even in zero weather, thus requiring cooling by ventilation the year round.

It must be remembered that in cooling moist air the latent heat removed in condensing the moisture is usually of more importance than the reduction in the sensible heat of the air itself. The total heat removed may be determined from the total heat curve of the diagrams on pages 36 and 37. It should also be noted that the total heat of the air is dependent on the wet-bulb temperature only, and the wet-bulb temperature should always be used in such calculations.

DEW-POINT TEMPERATURES AND TEMPERATURE DIFFERENCES REQUIRED IN CARRIER SYSTEM OF HUMIDIFYING FOR VARIOUS PERCENTAGES OF HUMIDITY AND ROOM TEMPERATURES

30.25 30.8 31.0 31.8
49.75 54.2 59.0 63.2
26.5 27.0 28.0 28.0
58.0 58.0 62.5 67.0
24.25 24.25 24.25
61.25 61.25 65.75 70.3
20.75 20.75 21.25 21.65
64.25 64.25 68.75 73.35
18.1 18.4 18.75
76.25
15.6
69.4 74.2 78.8
13.25
71.75
10.9
74.1 78.8 83.6
9.25
76.2 80.9 85.75

Relation of Room Temperature to Outside Wet-Bulb Temperature

During cool weather the dew-point or saturation temperature at the apparatus is secured and controlled artificially at whatever point required. During warm weather however, it is impossible during the greater part of the time to obtain as low a dew-point as desired without refrigeration, which in the majority of cases of humidifying is impracticable. The lowest saturation temperature that can be obtained with an efficient spray system is the same as the outside wet-bulb temperature, as has been shown: therefore the dew-point in the room will always be the same as the outside wet-bulb temperature. Since the difference between the dew-point and the room temperature is dependent upon the percentage of relative humidity maintained, the minimum room temperature and the percentage of humidity required in the enclosure will be as shown in table on page 71. It will be noted that the lower the humidity carried. the lower the dew-point must be for any given room temperature

Dew-Point Method of Humidity Control

Any one of the three spray types of air conditioners previously described are admirably adapted for humidity control by what is known as the dew-point method. This system is applicable only where the absolute moisture content of the air in the room is unaffected to any great extent by extraneous sources of moisture supply or by moisture absorption. It depends upon supplying the enclosure with conditioned air having a definite dewpoint and maintaining a predetermined relationship between the dew-point temperature and the room temperature. The dew-point of the air supply is determined by saturating the air and removing all free moisture at the apparatus at a definite temperature. This dew-point will evidently remain constant regardless of subsequent variations in air temperature. It may be shown that the percentage of relative humidity in an enclosure is dependent upon the difference between the dewpoint temperature and the room temperature, and that it is substantially constant for any variation in room temperature so long as the difference between the dew-point and room temperature is maintained constant. (See table page 71.)

HEAT REQUIRED TO CONDITION 1000 CU. FT. OF AIR (MEASURED AT 70 DEG. FAHR.) FROM VARIOUS ENTERING WET-BULB TEMPERATURES TO VARIOUS DEW-POINT TEMPERATURES

emperature ing Air	At 70 Deg. Fahr., 30 Per Cent. Humidity, Dew-Point 37.25 Deg. Fahr.			At 70 Deg. Fahr., 40 Per Cent. Humidity, Dew-Point 44.5 Deg. Fahr.			At 70 Deg. Fahr., 50 Per Cent. Humidity, Dew-Point 50.5 Deg. Fahr.		
Wet-Bulb Temperature of Entering Air	Sensible Heat	Latent Heat	Total Heat	Sensible Heat	Latent	Total	Sensible Heat	Latent	Total Heat
-10 0 10	856 673 480	338 311 270	1194 984 750	981 802 622	471 444 403	1452 1246 1025	1086 907 730	567 540 498	1653 1447 1228
20 30 40	307 200	203 100	510 300	443 263 82	336 233 96	779 496 178	550 370 190	433 330 194	983 700 384
mperature ng Air	Per C	Deg. Fa ent. Hun Dew-Poin 3 Deg. Fa			nidity, nt	Per C	Deg. Fa ent. Hur Dew-Poir 5 Deg. F	nidity, it	
Wet-Bulb Temperature of Entering Air	Sensible Heat	Latent Heat	Total Heat	Sensible Heat	Latent Heat	Total Heat	Sensible Heat	Latent	Total Heat
-10 0 10 20	1161 991 814 635	699 672 631 565	1860 1663 1445 1200	1243 1066 888 710	801 774 733 667	2044 1840 1621 1377	1310 1131 955 779	935 908 867 802	2245 2039 1822 1581
30 40 50 60	457 276 83	463 327 137	920 603 220	532 353 154	565 430 240	1097 783 394	600 423 244 63	700 564 375 118	1300 987 619 181

3

It is evident that this system is particularly adapted to thermostatic control of (a) the dew-point (saturation temperature at the apparatus) and the room temperature independently; (b) of the dew-point with reference to a variable room temperature; or (c) of the room temperature with reference to a variable dew-point temperature. System (a) is generally applied to air washers and humidifiers under winter conditions, where the outside temperature is considerably lower than the room temperature and to dehumidifiers where it is possible to maintain a definite dew-point temperature throughout the entire year.

However, during summer conditions the saturation point at the apparatus will frequently and unavoidably be higher than the required minimum dew-point. Under such variable temperature conditions it is necessary to control temperature with reference to the dew-point according to system (c) and a humidifier is employed to give the air complete saturation under these conditions. A differential thermostat effects this control.

Automatic Humidity Control

In many industrial installations where humidifying or dehumidifying systems are used, some means of positively and accurately maintaining the proper temperatures and humidities is essential. While much can be accomplished by hand regulation, this would require the constant attention of a highly skilled operator which in most instances is impracticable. In many processes of manufacturing, as, for example, the weaving of silk and in the conditioning of tobacco for the manufacture of cigars, a uniformity of humidity conditions is quite as essential as the quantity of moisture, as any variation in humidity, either above or below a standard, reduces the output and causes lack of uniformity in the product. In many cases a sensitive automatic humidity control is as important as some means of humidifying. There are three distinct methods by which such automatic control can be secured:

(a) By two separate thermostats, one of which is placed at the humidifier to control the temperature of the dew-point by an automatically operating valve or damper, governing a means of varying the temperature of the spray water, of the entering air, or of both in conjunction. The other thermostat, placed in a room where the humidity is controlled, maintains a constant room temperature, either by controlling the temperature of the air entering the room, or by controlling some source of heat within the room. With these two temperatures maintained constant, the percentage of humidity in the room will remain constant, and will depend upon the difference between the dewpoint temperature maintained at the humidifier and the temperature maintained in the room, as shown by the table on page 71.

- (b) By a differential thermostat. This type of dew-point control is required wherever it is impracticable to maintain either a constant dew-point or a constant room temperature. In this method there are two elements, one of which is exposed to the dew-point temperature, while the other is exposed to the room temperature. They are so connected that they act conjointly upon a single thermostatic valve connected with operating motors arranged to control the dew-point temperature in relation to the variable room temperature, or to control the room temperature with respect to the variable dew-point temperature.
- (c) By means of some form of differential hygrostat. This controls the wet-bulb temperature with respect to the dry-bulb temperature, so as to maintain a constant relative humidity without regard to the dew-point or variation in room temperature.

DRYING

The drying of materials of various kinds may be accomplished either by means of direct radiation from some source of heat, or by means of air currents, depending on the character of the installation or the requirements to be met. Drying by means of air currents may be done either by means of natural circulation, or by the use of some form of fan—either of the disk wheel or steel plate type. This air is usually warmed, either by some form of heating coil or by means of waste heat, the temperature ranging say from 70° to 200° depending entirely on the nature of the substance to be dried. In some cases this temperature is varied at different periods of the operation. The time required may be anywhere from a few minutes to several days. In many cases a combination of the above systems are used—that is, both direct radiation and air circulation.

Dryers are ordinarily built in either the room type or the continuous (or progressive) type. In a room dryer the material to be dried is placed in the room and left for a certain period until drying is accomplished. In the progressive type wet material enters at one end, and is taken from the other in a

dried condition. The entering end of the dryer is termed the green or wet end and the leaving end the dry end. In a continuous dryer it is customary to introduce warm air at the dry end and exhaust it at the wet end, this air being either discharged to the atmosphere or returned to the fan to be recirculated. The apparatus is usually so arranged that any desired proportion of this return air may be recirculated, depending on the varying atmospheric conditions. The drying apparatus itself may take any one of several forms, depending on the material handled, which may be spread on trays, placed in a revolving cylinder, on a traveling conveyor, or in a room or kiln. A drying room or compartment is frequently referred to as a drying tunnel. Except in the case of cylinder driers or continuous conveyors it is customary, whenever practical, to load the material on trucks or small cars in order to facilitate the filling and emptying of the drying tunnel or kiln. The dryer should be so designed that a clear area for the passage of air is provided equal to 1/2 to 2/4 the cross sectional area of the drver.

The amount of moisture carried in the air is of as great importance as is proper temperature in many classes of drying work which require either a high or a low moisture content, or often a varying amount of moisture at different periods of the drying for different substances. Any desired amount of moisture may be obtained by passing the air through a humidifier or a dehumidifier, depending on the conditions desired, or the humidity of the air may frequently be controlled by recirculating varying amounts of the moist air leaving the dryer.

The temperature drop through the dryer or tunnel must be sufficient to care for the following heat losses; (a) Radiation from the walls, (b) Heat required to raise the temperature of the material being dried, including the contained moisture, as well as the trucks or other apparatus from the room to the dryer temperature, (c) Heat required to evaporate the moisture removed by the air, which is the principal requirement. Sufficient quantity of air must be supplied to act as a heat carrier without having the temperature leaving the dryer drop too low. The air quantity must also be sufficient to remove the desired weight of moisture without bringing the air to saturation at the green end of the dryer. The relative humidity of the air leaving the dryer is ordinarily kept below 75 per cent.

The quantity of air to be supplied by the fan, or frequency of the air change in the drying chamber, depends upon the rate at which moisture is given up by material. This will vary with every class of installation, in some cases as high as ¼ minute air change being used. The theoretical amount of moisture which the air will remove is directly proportional to the difference between the wet and dry-bulb temperature of the entering air, while the actual amount absorbed by a given quantity of air is measured by the drop in dry-bulb temperature between the air entering and leaving the dryer, less a slight correction for radiation. For the same reason the higher the temperature of the entering air (the initial moisture content remaining the same) the greater will be the amount of moisture removed per given quantity of air and the greater will be the economy of the dryer.

The temperature of the air will drop approximately $8\frac{1}{2}^{\circ}$ for each grain of moisture absorbed per cubic foot of air measured at 70°, or 0.71 of a degree for each grain of moisture absorbed per pound of air. Approximate calculations may be based on air volume, but for exact determinations the weight of air handled should be used, on account of it being a fixed quantity at all temperatures. Knowing the rate of drying desired and the amount of moisture to be removed, it is a simple matter to determine the quantity of air required.

The following table of drying conditions is given by H. C. Russell* and will show some of the variations required in this work:

CONDITIONS FOR DRYING DIFFERENT MATERIALS

Material	Temp. (Deg. F.)	Drying Period
Sole leather hides Thin leather hides	90	4 to 6 days 2 to 3 days
Bone glue	70 to 90	4 days
Skin glue Starch	70 to 90 180 to 200	2 days 12 hours
Apples	140 to 180	6 hours
Leaf tobacco Stem tobacco	85 200	
Soap Wool	100	2 days
Rags	180	
Pottery	120	

^{*}Drying Apparatus by H. C. Russell, Am. Soc. H. & V. Engrs., 1912.

The table on page 79 giving the "Moisture Removing Capacity of Air in Fan System Dryers" will be found especially convenient for use in drying calculations, as it will serve as an indication of the results to be obtained under any given conditions. Two sets of values are given, for air entering the heater either at 50 per cent. or 100 per cent. saturated. It will be noted that the results given are based on the assumption that the air leaves the dryer saturated, but as already explained, in practice the air absorbs only about 60 to 70 per cent. of this theoretical amount. Under these conditions about two-thirds as much moisture will be removed per cubic foot or pound of air as is given in the table, and the air quantity would be increased 50 per cent.

The specific heat of various substances will be found below.

SPECIFIC HEAT OF VARIOUS SUBSTANCES*

Solids				
Brickwork				

Liquids	Liquids
Alcohol (absolute)0.700	Benzine

Gases	Constant Pressure	Constant Volume
Oxygen Hydrogen Nitrogen Carbonic acid Marsh gas	0.21751 3.40900 0.24380 0.21700 0.5929 0.2277	0.15507 2.41226 0.17273 0.17100 0.4683

^{*}Kent's Mechanical Engineer's pocket book.

MOISTURE REMOVING CAPACITY OF AIR IN FAN SYSTEM DRYERS

. E	Air E	Air Entering Heater at 70° F. and 50% Rel. Hum.								
Initial Temperature Entering Drye Deg. F.	Temp. Deg.		Moisture Saturation	Cu. Ft. Air	Lbs. of Steam at					
	Saturation Leaving Dryer	Grains per Lb. of Air	Grains per Cu. Ft. at 70°	Required to Evaporate 1 Lb. of Water	212° F. Required per Lb. of Water Evaporated					
80	62.1	28.6	2.12	3300	0.455					
90	65.5	39.7	2.94	2380	0.773					
100	68.7	51.2	3.80	1845	0.944					
110	71.7	62.5	4.63	1515	1.050					
120	74.5	74.5	5.52	1270	1.118					
130	77.0	87.0	6.45	1085	1.152					
140	79.6	99.5	7.38	950	1.187					
150	81.8	112.0	8.30	845	1.210					
160	84.3	125.0	9.26	755	1.230					
170	86.4	138.0	10.20	685	1.240					
180	88.4	151.0	11.20	625	1.255					
190	90.3	164.5	12.20	575	1.260					
200	92.2	178.5	13.20	530	1.260					

Air Entering Heater at 70° F. and Saturated

80	72.9	11.6	0.85	8240	1.490
90	75.6	23.9	1.75	4050	1.480
F08	78.3	36.3	2.65	2640	1.470
110	80.7	48.8	3.56	1965	1.465
120	83.0	61.8	4.52	1525	1.455
130	85.2	74.8	5.46	1280	1.440
140	87.3	87.8	6.41	1090	1.435
150	89.3	101.8	7.44	934	1.418
160	91.2	116.3	8.50	827	1.395
170	93.0	130.8	9.55	732	1.380
180	94.8	145.3	10.62	662	1.365
190	96.5	159.8	11.68	000	1.355
200	98.1	174.3	12.75	562	1.350

Example. The quantity of moisture which a given amount of air may be expected to remove from the contents of a drying chamber may be determined from the psychrometric charts on pages 35 to 37. Let it be assumed that the air to be used as a drying medium contains 50 grains of moisture per pound under the average conditions at which it enters the heater. Here the air is warmed and delivered to the dryer at say 150° Fahr. The

moisture content of this air will still be the same as first considered, that is, 50 grains per pound of air.

The amount of moisture which this air will remove may be determined from the high psychrometric chart on page 37. The first step is to find the intersection of the horizontal line through 50 grains per pound with the vertical line through 150° dry-bulb temperature, and by following the diagonal through this point to the saturation curve, we have a wet-bulb temperature of 81°, which is the temperature the air would assume if brought to saturation. Following the horizontal from this point to the left edge of the chart, it will be seen that at saturation this air would be capable of containing 165 grains per pound, or an increase of 115 grains. In practice it is impossible to bring the air to saturation, the limit generally being from 65 to 75 per cent. of the theoretical increase. Assuming that the air under consideration will absorb 70 per cent. of the 115 grains indicated above, gives us 80 grains of moisture absorbed per pound of air.

Inasmuch as a draw-through outfit will generally be used for this class of installation, the fan will handle the air at a temperature enough above 150° to care for the radiation loss from the connections. The quantity of air handled will then be based on 50 grains per pound and a temperature of at least 150°, or, as found from the psychrometric chart, approximately 13.7 cu. ft. per pound. Then $80 \div 13.7$ gives 5.85 grains absorbed per cubic foot of air. On the basis that each grain absorbed will reduce the temperature of the air 8.5° , we will have a drop in temperature through the dryer of $8.5 \times 5.85 = 50^{\circ}$. There will be an additional drop in temperature due to the radiation loss from the walls of the dryer, as well as due to the heat required to raise the contents to the temperature of the dryer.

SECTION IV

MECHANICAL DRAFT

There are two methods in common use for removing smoke and gases from a boiler, by means of a chimney or natural draft, and by means of a steam jet or a fan, commonly called mechanical draft.

Mechanical draft possesses many advantages over natural draft, in that it is independent of atmospheric conditions, and absolute command of the draft enables the boilers to be operated at capacities greatly in excess of that possible when depending on natural draft. Indeed it is directly responsible for the high rates of combustion and the increased efficiency obtained with modern boiler plants. Heat in the escaping gases may be largely used in economizers, since it is not required to create draft, resulting in a considerable saving. It is also possible to burn a cheaper grade of fuel when using the mechanical draft systems.

Mechanical draft produced by a fan is commonly classified under two heads, forced draft and induced draft. Each of these systems has its advantages and each has special features which recommend it for different cases.

Forced Draft

In the case of forced draft, air is forced by the fan through the fire, maintaining a pressure in the ash pit and furnace greater than that of the atmosphere. Forced draft is applied in two ways: The plenum system used in steamships, where forced draft creates a pressure in the entire stoke-hold, and the direct system where the fan discharges directly into the ash pit beneath the grates. Forced draft is always used with underfeed stokers on account of the restricted area of tuyere openings.

With forced draft the blower should be run at a pressure sufficient to overcome the resistance of the grate; the pressure losses in the tubes and breeching all being taken care of by the stack, with an indraft above the fire of from 0.05 to 0.10 of an inch. Hence forced draft requires a higher stack than would an induced draft system, since its action practically ceases at the surface of the fire. If a greater pressure should be carried, the result would be a pressure in the fire-box greater than that existing in the room, so there would be an out-rush of flame and smoke when the fire-door was opened.

Induced Draft

In the induced draft system the fan is placed at the base of the stack and handles the smoke and gases. By this means a partial vacuum is maintained within the furnace, closely imitating the action of a chimney. Induced draft should not be expected to create an excessive vacuum through the fuel bed itself. In case an excessive furnace draft is maintained the loss due to air leakage through the boiler setting is greatly increased. A combination system of both forced and induced draft is frequently used to good advantage where a considerable overload capacity is required of the boilers. Thus it is seen that an induced draft system is intended to either supply the draft ordinarily obtained by means of a stack, or to so increase the capacity of a stack that variable or overload capacities may be carried.

The use of mechanical draft makes a much more flexible system than does any system of natural draft, since the pressure or intensity of the draft is under perfect control of the fireman. Extreme fluctuations of load may be cared for, and peak loads that would be impossible when depending on natural draft may be readily carried.

Draft Requirement

The draft or pressure required for a boiler is due to the combined effect of two causes, the resistance of the fuel bed and the resistance of the boiler itself. In case the breeching and uptake are considered, they will cause an additional pressure loss. The amount or intensity of the draft required varies with the rate of combustion, thickness of the fuel bed, and character of the fuel used.

Boiler and economizer losses for which draft is required follow the usual law for frictional resistance. That is, other conditions remaining the same, the draft loss varies as the square of the velocity and therefore approximately as the square of the per cent. of rating developed. For example, an increase of 50 per cent. in capacity requires a draft which is 2.25 times the draft at normal rating, and for forcing to 100 per cent. overload would require four times the draft used at normal rating.

The following table gives some of the commonly accepted values for draft required in the furnace to overcome the resistance of the fuel bed under the different conditions stated:

FURNACE DRAFT IN INCHES OF WATER

	Lbs. of Dry Coal Burned per Sq. Ft. of Grate per Hr.								
	15	20	25	30	35	40	45		
Eastern bituminous coal	0.12	0.16	0.20	0.27	0.34	0.42	0.52		
Western bituminous coal Semi bituminous coal	$0.15 \\ 0.15$	$0.20 \\ 0.20$	$0.25 \\ 0.28$	0.33	0.42	0.52	$0.65 \\ 0.80$		
Anth. buckwheat, No. 1 and larger	0.45	0.70	1.00						
Anth. buckwheat, No. 2 and No. 3	0.75	1.30							

The diagram on page 84 shows an interesting study of draft losses at different rates of combustion, based on data furnished by Joseph Harrington of the Green Engineering Co. These tests were made on a B. & W. boiler using a Green chain grate, operating at from 50 to 250 per cent. of the rated capacity. The curve "A" shows the resistance of the fuel bed and curve "C" the total resistance of the boiler at the different rates of combustion. It was found from these curves that the fuel bed resistance was 0.4 of the total resistance. The values from curve "A" run a trifle higher than those given for furnace draft in the accompanying table.

Loss of pressure through a boiler will depend in a great measure on the condition of the surfaces in regard to soot, but ordinarily the drop in pressure through a water tube boiler may be taken as 0.25" of water when operating at rated capacity. The loss through horizontal circular or square steel breeching will average about 0.1" per 100 feet of length, and rectangular pipe should not depart far from a square section without increasing this value. The loss of pressure in a brick flue will be

30 per cent. greater than for a steel flue. The loss of draft in an easy right angle bend or elbow will be approximately equal to 0.05" of water. The drop in pressure through an economizer will ordinarily run from 1/4 to 1/2 inch, at rated capacity.

Draft intensity of a chimney is proportional to its height. For a chimney 100 feet high, with flue gases at 350° above the outside temperature, the draft intensity will average approximately 0.5" of water.

Amount of Air Required

In estimating the amount of air to be supplied, as also the size of fan required, for a forced draft system it is necessary to assume both the rate of combustion and of evaporation for the plant under consideration. These will depend on the size of the plant and the class of equipment installed. The weight of air actually required for the combustion of one pound of coal is approximately 12 pounds, but owing to the fact that it is impossible to perfectly intermingle the air and gases rising from the grate, more air must be provided than is theoretically required. This will vary from 18 to 30 pounds depending on the installation, in the average case between 20 and 25 pounds of air perpound of combustible being allowed.

It is customary practice in selecting apparatus for mechanical draft purposes to allow for 100 per cent. excess air for hand fired boilers, or 16.70 cu. ft. of air per minute at 70° per boiler H. P. for a forced draft fan, and 32.40 cu. ft. per minute at 550° for an induced draft fan. An allowance of 50 per cent. excess air is made where the boiler is equipped with a stoker, or 11.70 cu. ft. per minute at 70° per boiler H. P. for a forced, and 22.80 cu. ft. per minute at 550° for an induced draft fan.

Assuming 20 pounds of air at 70° per pound of coal, and 4.5 pounds coal containing 11450 B. t. u. per pound with a boiler efficiency of 65 per cent. as equivalent to one boiler horsepower, gives 90 pounds of air per hour, or 20 cu. ft. per minute at 70° per boiler horsepower. Then the total horsepower of the boiler multiplied by 20 gives the required capacity of the fan with the air at 70° F. This will be the proper size for a forced draft system, but with induced draft where the fan handles the gases and excess air at flue gas temperature, due allowance must be made for the increased volume to be handled, and a larger fan chosen. A fan for this purpose should be of special design, with bearings protected from the heat of the flue gases handled.

There is a definite relation between the analysis of the flue gases passing from the boiler and the quantity of air required or supplied, and, as explained on page 89, the results of the analysis may be used to determine the amount of air or gases being handled by a forced or induced draft system. The method of taking flue gas analysis by means of the Orsat apparatus is quite generally understood, and will be found described in the various standard works on boiler performance.*

A pound of carbon requires for complete combustion 2.67 pounds of oxygen, or a volume of 32.64 cu. ft. at 70°. Considered at 70°, the gaseous product, CO₂, would occupy the same volume as did the oxygen. The volume of the carbon dioxide (CO₂), as also its proportion to the nitrogen, would be the same after combustion as had been the proportions of oxygen and nitrogen originally in the air used. Then the complete combustion of carbon, with no excess of air, would give a volumetric flue gas analysis of

If the supply of air is in excess of that required to supply the oxygen needed, the combined volumes of the carbon dioxide and oxygen are still the same as that of the oxygen before combustion. The action of hydrogen in the coal is to increase the apparent percentage of nitrogen in the flue gases. Thus the sum of the CO₂ and O₂ from flue gas analysis will not be found equal to the theoretical 20.91 per cent., but will approach this amount as the amount of excess air is increased. This is shown by the values given in the table on page 87.

Quantity of air required may be determined approximately by means of the following formula when the ultimate analysis of the fuel is known.

Pounds of air required per pound of fuel

$$=36.56\left(\frac{C}{3}+H-\frac{O}{8}\right) \tag{36}$$

where C, H and O are per cents. by weight of carbon, hydrogen and oxygen in the fuel, divided by 100.

When the proportionate part, by weight, of the carbon in the fuel (C) is known, and also the carbon monoxide (CO), carbon

^{*}Experimental Engineering by R. C. Carpenter. Steam Boiler Economy by Wm. Kent.

RELATION OF BOILER EFFICIENCY AND DRAFT REQUIREMENT TO PER CENT. EXCESS AIR

WHEN BURNING BITUMINOUS COAL

Gases per r Boiler P.	550 Deg. F.	14.47 17.74 19.37	21.10 22.83 24.52	26.38 28.28 30.30	32.40 37.52 42.88	55.85 69.02 87.78
Cu. Ft. Gases p Min. per Boiler H. P.	300 Deg. F.	10.89 13.35 14.58	15.88 17.18 18.45	19.87 21.28 22.80	24.39 28.24 32.27	42.02 51.94 66.06
	Cu. Ft. Air per A per Boiler H. 70° F.	7.32 9.01 9.85	10.77 11.68 12.57	13.52 14.53 15.57	16.68 19.35 22.16	28.92 35.81 45.60
nt per	Lbs. Gas per Ho Boiler H. P.	35.6 43.4 47.2	51.3 55.4 59.4	63.8 68.3 73.1	78.1 90.2 102.9	133.6 164.8 209.3
ıt bet	Lbs. Air per Hou Boiler H. P	32.9 40.5 44.3	48.4 52.5 56.5	60.8 65.3 70.0	75.0 87.0 99.6	130.0 161.0 205.0
stible 7. H. P.	Pounds Combus Biliod red bentud	2.74 2.81 2.84	2.88 2.91 2.94	2.98 3.02 3.07	3.12	3.61 3.84 4.28
	Pounds Gases po Gombustible	13.0 15.4 16.6	17.8 19.0 20.2	21.4 22.6 23.8	25.0 28.0 31.0	37.0 43.0 49.0
Com-	Lbs. Air per Lb. bustible Burn	12.0 14.4 15.6	16.8 18.0 19.2	20.4 21.6 22.8	24.0 27.0 30.0	36.0 42.0 48.0
relier	Efficiency of B	79.8 77.9 77.0	76.0 75.1 74.2	73.2 72.3 71.3	70.4 68.2 65.8	61.0 56.5 51.6
%01	Stack Loss Plus Radiation Los	20.2 22.1 23.0	24.0 24.9 25.8	26.8 27.7 28.7	29.6 31.8 34.2	39.0 43.5 48.4
ni yay	Meat Carried Aw Gamind Case	10.2 12.1 13.0	14.0 14.9 15.8	16.8 17.7 18.7	19.6 21.8 24.2	29.0 33.5 38.4
From Flue Gas Analysis	Excess Oxygen O2	3.6	6.1 7.1 8.0	8.8 9.5 10.1	10.6 11.8 12.7	14.1
From F Ana	Carbon Dioxide CO2	18.2 15.1 13.9	12.9 12.0 11.2	10.6 10.0 9.5	9.0	5.9
	Excess Air %	20 30	929	288	125	200 250 300

dioxide (CO₂) and nitrogen (N) in per cent. by volume are determined from the flue gases, the total amount of air supplied may be found from the following formula,

Pounds of air supplied per pound of fuel

$$=3.032\left(\frac{N}{CO_2+CO}\right)\times C+(1-A)$$
 (37)

where A represents the proportionate part, by weight, of ash in the fuel.

Ratio of air supplied per pound of fuel to the amount theoretically required is

$$\frac{N}{N-3.782 O}$$
 (38)

The heat loss in the flue gases is

$$H = 0.24 \text{ W (T-t)}$$
 (39)

where

H = B. t. u. lost per lb. of fuel.

W = Wt. of flue gas in lb. per lb. fuel.

T = Temperature of flue gas deg. F.

t=Temperature of air deg. F.

0.24 = specific heat of flue gas.

The table on page 87 has been calculated on the basis of burning a good grade of bituminous coal having a combustible containing 87 per cent. carbon and 5.5 per cent. hydrogen. The amount of CO in the flue gas has been considered a negligible quantity, and only the CO2 and O2 used in the calculations. This table gives the air required for different dilution coefficients and the air quantities to be allowed for either forced or induced draft work when operating with different amount of excess air. It also gives the per cent. of excess air corresponding to different per cents. of excess oxygen as determined from the flue gas analysis. This may be readily calculated from the formulae on page 89. As explained on page 89 under air measurement, the values in this table give a measure of the air being handled when the flue gas analysis and also either the weight of combustible burned or of water evaporated are known.

On page 87 the column of air quantity at 70° per H. P. would apply to forced draft work; the column headed 300° would apply to the average induced draft conditions where an economizer was in use, while the column headed 550° would be used for induced draft fans handling gases directly from the boiler. These values

then indicate the increase in volume of a given weight of air at a constant pressure for the different temperature conditions.

The tables on pages 321 to 330 give the capacity under different conditions, both for standard and for special high efficiency fans when used for induced draft service. The standard Planoidal, Niagara Conoidal and Turbo-Conoidal fan capacity tables in Part IV, Section III, give the required information for forced draft work.

Measurement of Air Used

Amount of air being used by either forced or induced draft systems under different conditions may be determined by either of the three following methods:

- 1—Pitot tube readings in the breeching or forced draft connection.
- 2—By weighing the coal and ash and taking the flue gas analysis.
- 3—Approximately by weighing the water and taking the flue gas analysis, in case of a boiler with a good setting.

The theory and method of using the pitot tube will be found fully given on page 190 under "Fan Testing" and need not be repeated here. If intelligently used this instrument has proven itself to be a simple and accurate method of measuring air or gases. It may be used alone or as a check on either of the other two methods mentioned, and in the case of a forced draft system any difference between determinations made by the pitot tube and from the flue gas analysis would be an indication of air leakage through the boiler setting.

Amount of air used in per cent. of that theoretically required may be determined from the proportions of excess oxygen and carbon dioxide as indicated by the flue gas analysis. The relation between these three factors may be expressed by the following formulae, where $O_2\!=\!\mathrm{excess}$ oxygen and $CO_2\!=\!\mathrm{carbon}$ dioxide from the flue gas analysis, and $K\!=\!\mathrm{per}$ cent. of excess air being used.

$$K = \frac{96.6 \text{ O}_2}{20.9 - \text{O}_2} \tag{40}$$

$$K = \frac{1760}{CO_2} - 96.6 \tag{41}$$

Theoretical amount of O_2 or CO_2 in the flue gas for any percent. of excess air may be found from the following:

$$O_2 = \frac{20.9 \frac{K}{100}}{0.966 + \frac{K}{100}}$$
(42)

$$CO_2 = \frac{17.60}{0.966 + \frac{K}{100}} \tag{43}$$

Since it requires approximately 12 pounds of air to burn one pound of combustible, in case K as derived from the formulae shows 100 per cent. excess air, we would know at once that 24 pounds of air were being supplied for each pound of combustible burned, or that 25 pounds of gases were being handled if an induced draft system was installed. The table on page 87 gives the pounds of air required per pound of combustible burned for different amounts of excess oxygen in the flue gas.

The table just referred to also shows the cubic feet of air and of chimney gases per boiler H. P. for the different flue gas analyses. Thus we see that if the H. P. developed is known from the weight of water evaporated, the flue gas analysis gives an indication of the amount of air used. Any determinations of this character are subject to corrections on account of varying amounts of leakage through the boiler setting.

Mechanical Draft in Connection with Mechanical Stokers

Mechanical draft may be used in connection with boilers fitted with automatic stokers as readily as with hand fired installations. With some forms of stokers either forced or induced draft may be used while others are only adapted to forced draft, or in some special instances to some form of steam jet blower.

The manufacturers of the Parsons Mechanical Stoker ordinarily install a steam jet blower in connection with their apparatus, although if conditions will permit, forced draft by means of a fan may be used. Their practice is to allow for maximum conditions a pressure in the ash pit of 2¾ inches for anthracite, 1¼ inches for bituminous coking coals, and 1 inch for noncoking coals. The damper regulators are ordinarily so adjusted as to give a maximum indraft if 0.05 of an inch over the fire, or a condition of minimum inflow at the fire doors or corresponding parts. In special double deck boilers this may be increased to 0.15 of an inch.

Forced draft is used in connection with the Jones underfeed stoker system, sufficient pressure being maintained to force the air required for combustion into the air chamber and practically to the top of the fuel bed. The stack is then depended upon to produce the necessary furnace draft and to overcome the resistance through the boiler. To meet the maximum requirements it is customary to provide for supplying 200 cu. ft. of air per pound of coal at a pressure of not less than two ounces in the air chamber. For approximating the probable coal consumption the company's engineers ordinarily assume five pounds of coal per horsepower which will provide a sufficiently large factor of safety and allow for some reserve power. This allows 16.67 cu. ft. of air per minute per boiler horsepower.

Forced draft is used in connection with the Taylor stoker, giving a very wide range of over capacity to the boiler. The pressure required in the tuyere chamber may vary from one to six inches of water according to the conditions and capacity developed. Recent tests on a well known installation of Taylor stokers, with the boilers using an average of approximately 35 per cent. excess air, required the following pressures in inches of water in the tuyere chamber for the corresponding per cent. of rated boiler capacity.

TAYLOR STOKERS

Per Cent. of Rated Boiler Capacity	Air Pressure in Tuyere Chamber
100 125 150 175 200	1.10 in. 1.70 in. 2.50 in. 3.40 in. 4.50 in.

The Murphy automatic smokeless furnace may be used with either forced or induced draft, giving an overload capacity to the boiler. As an instance of this a test on 500 H. P. of water-tube boilers may be cited in which a maximum natural draft of 0.45 inch to 0.50 inch above the fire gave a capacity of about 115 to 120 per cent. above normal rating. With a pressure of from 34 inch to 1 inch under the fire the draft suction above the fire was reduced to about 1 to 2 hundredths of an inch and the capacity raised to 200 per cent. above the rating.

Draft requirements in connection with the various chain grates, such as the Green or the B. & W. will not differ materially

from each other, or from a stationary grate if it is kept clean and free from clinker, and an interesting study of results obtained from such an installation will be found on page 84. This data was furnished by Joseph Harrington, Chief Engineer of the Green Engineering Company, based on actual tests under the conditions stated. While no one set of curves will give the draft losses for all the various kinds of coal or all the different types of boilers, yet a diagram such as the one referred to is of especial value inasmuch as it gives a basis for a comparative study of other conditions.

Niagara Conoidal Type "N" Fan Direct Connected to Buffalo Double Vertical, Double-Acting Engine

SECTION V

EXHAUST SYSTEMS

An extensive field has been developed for the use of exhaust fans of more or less special design, for the removal of refuse and industrial waste in shops and factories, as well as removing the heated or foul air, or gases, resulting from various industrial processes. Such an exhaust system consists of the proper hood or receptacle at the receiving end, the necessary piping to connect to the exhaust fan, and if refuse is handled, some form of dust or refuse collector. In laying out an exhaust or conveying system the usual method of procedure is to determine: (1) the number and size of branch pipes necessary to properly do the work; (2) the design and arrangement of piping to give the best results with the least power consumption; (3) the size and most economical type of exhaust fan, and (4) the disposition of refuse.

Size of Pipe

Proper size of piping required is for the most part a matter of experience, although practice has established standards for the more common applications. The tables on page 94 give the usual sizes of galvanized iron piping to attach to the hoods of the machines indicated. For branch pipes over 25 feet long increase the size 10 per cent. for each additional 20 feet.

Hood Construction

It is almost impossible to give standard practice in hood construction, since there is such a variety of makes and sizes of machines as to obviate the possibility of having any standard design. Furthermore, a hood must be constructed to suit the character of the work to be done. In designing hoods, a principle to keep in mind is to so shape them that the refuse from knives or wheels, due to their centrifugal action, is thrown directly to a point where it will be caught by the highest velocity of air. Hoods should always be made to fit as tight and close as possible, since the suction effect is lost, resulting in poor operation, if this feature is disregarded.

PIPE SIZES FOR WOODWORKING MACHINES

	No. of Pipes	Size of Pipes		No. of Pipes	Size of Pipes
Cut-off Saws,			Matcher Heads, each	1	5
10-16 inch diameter	1	- 4	Moulder	4	4-7
18-24 inch diameter	1	5	Sash and Cabinet Shaper	1	4
Rip Saws and Re-Saws,			Door Tenoner	1	5
10-16 inch diameter	1	4	Sash Tenoner	1	4
18-24 inch diameter	1	5	Sticker, each head	1	4
24-60 inch diameter	1	- 6	Panel Raiser, each head	1-	4
Band Saws, small	1	3	Mortiser	1	102
Buzz Planer	1	4-7	Router	î	4
Pony Planer	1	4-7	Jointer	1	4-7
Diagonal Planer	i	4-7	Sand Drum, 24 inch long.	î	4
Four Sided Planer	4	4-7	Sand Drum, 30 inch long.	1	E .
Bull Planer	2	4-7	Sand Belt	1	4
				1	4
Planer and Matcher	4	4-7	Floor Sweeps		D

Sizes of pipes for planers, moulders and similar machines with knives or saws.

UPPER 1	KNIVES	LOWER KNIVES			
Length, Inches	Size of Pipe, Inches	Length, Inches	Size of Pipe, Inches		
5 10 14	# 5 6	5 10 14	4 5 5		
24 30	7 7	24 30	6 7		

For planers handling timber the pipe sizes must be increased 25 per cent. High speed planers and matchers require about 50 per cent. more area than indicated in the above table.

PIPE SIZES FOR EMERY WHEEL EXHAUST SYSTEMS

Diameter of	Size of Pipe,	Diameter of	Size of Pipe,
Wheel, Inches	Inches	Wheel, Inches	Inches
36	7	20	4 1/2
30	6	16	

For the removal of smoke or fumes it is good practice to make the mouth of the hood extend out over the kettle or furnace at least six inches in every direction, if the hood is not elevated over two feet. For every additional two feet elevation, the size of the hood should be increased six inches each way. The area of the branch pipe should then be made one-sixteenth of the hood mouth. For instance, a furnace 2 x 4 feet in size, having the bottom of the hood four feet above it, would have a hood 4 ft. x 6 ft. and the area of the pipe should be one-sixteenth of this, or 1.5 sq. ft. This branch should therefore be 17 inches in diameter. The velocity at the mouth for average conditions should be 75 to 250 feet per minute.

In some manufacturing processes it will be found necessary to provide some means for the removal of poisonous and noxious gases that will be more certain in its action than is the common form of open hood or canopy. This can be accomplished by the use of a double hood with about an inch or less of clearance between the edges of the outside and inside hoods. There should also be an opening in the top of the inner hood, located under the exhaust pipes. These openings should be of such a size that a velocity of about 1000 feet per minute will be created through the slot, around the edge and through the central opening.

Size of Main Pipe

It is the common practice in blow-pipe construction to add the area of the branch pipes and make the area of the main pipe equal to their sum. This process should be continued back to the fan, choosing a fan with an inlet equal to or greater in area than the main pipe.

Velocity Required

The subject of the proper velocity of the air throughout the system is an important one, and while sufficient velocity should be provided to insure the removal of the material being handled, any excess means an unnecessary increase in power consumption. It must be borne in mind that the power required increases as the cube of the speed or velocity, hence to double the velocity will require eight times the horsepower.

In planing-mill work, it is customary to allow a velocity of 2400 for light shavings, 3000 for dry saw dust, and from 3600 to 4000 for knots, blocks, etc. This corresponds to operating the exhaust fan at a speed to give approximately $2\frac{1}{2}$ to 5 ounces

of pressure, depending upon the length of the piping and the velocity required. The velocity in the piping should either be uniform throughout the entire system, or else higher in the branches than in the main pipe.

Dust Removal from Grinding and Buffing Wheels

Specifications for the design, construction and operation of exhaust systems for grinding, polishing and buffing wheels to comply with the Labor Law of New York State, have been prepared by William Newell, of the Department of Labor, as follows: Accompanying the specifications are certain recommendations by The Buffalo Forge Company on the design of these systems.

1. Minimum size of branch pipes allowed for different sized emery or other grinding wheels are given in the accompanying table. In case a wheel is thicker than given in the tabulation, or if a disc instead of a regular wheel is used, it must have a branch pipe no smaller than is called for by its grinding surface.

GRINDING WHEELS

Diameter of Wheels	Maximum Grinding Surface, Sq. Ins.	Minimum Diameter of Branch Pipe in Inches		
6" or less, not over 1" thick	19 43 101 180 302 472	3 1/2 4 1/2 5 6		

BUFFING WHEELS

Diameter of Wheels	Maximum Grinding Surface, Sq. Ins.	Minimum Diameter of Branch Pipes in Inches
6" or less, not over 1" thick	19 57	31/2
13" to 16" inclusive, not over 2" thick	101	4 1/2
17" to 20" inclusive, not over 3" thick	189	5
25" to 30" inclusive, not over 4" thick	$\frac{302}{472}$	5 ½ 6 ½

2. Minimum sizes of branch pipes allowed for different sized buffing, polishing, or rag wheels, as they are variously called, are given in the table.

Buffing wheels six inches or less in diameter used for jewelry

work may have a three-inch branch pipe.

The thickness given for buffing wheels applies to the thickness of the wheel at the center. In case the wheel is thicker than given in the tabulation, it must have a branch pipe no smaller than is called for by its grinding surface.

- 3. Branch pipes must not be less than the sizes specified above throughout their entire length.
- 4. All branch pipes must enter the main suction duct at an angle not exceeding 45°, and must incline in the direction of the air flow at junction with main.
 - 5. Branch pipes must not project into the main duct.
- 6. All laps in piping must be made in the direction of the air flow.
- 7. All bends, turns, or elbows, whether in the main or branch pipes, must be made with a radius in the throat at least equal to 11/2 times the diameter of the pipe on which they are connected.
- 8. The inlet of the fan or exhauster shall be at least 20 per cent. greater in area than the sum of the areas of all the branch pipes, and such increase shall be carried proportionately throughout the entire length of the main suction duct, i. e., the area of the main at any point shall be at least 20 per cent. greater than the combined areas of the branch pipes entering it between such point and the tail end or dead end of the system.

For the convenience of those wishing to use it, the table on page 98 is given, showing what the size of the main suction duct should be at any point for any number of uniform-size branch pipes when the main duct is made 20 per cent. greater than the combined areas of the branches entering it,-the minimum required by these specifications.

- 9. The area of the discharge pipe from the fan shall be as large or larger than the area of the fan inlet throughout its entire length.
- 10. The main trunk lines, both suction and discharge, shall be provided with suitable clean-out doors not over ten feet apart, and the end of the main suction duct shall be blanked off with a removable cap placed on the end.

PROPORTIONS OF MAIN DUCT TO ACCOMMODATE BRANCHES

	Diameter of Branch Pipes in Inches										
	3	3 1/2	4	4 1/2	5	5 1/2	0	6 1/2	7		
Pipes	Area of Each Branch Pipe in Square Inches										
Number of Branch Pipes	7.07	9.62	12.566	15.9	19.635	23.758	28.274	33.183	38.485		
er of B	Area of Each Branch Pipe Plus 20% (Square Inches)										
Numb	8.484	11.544	15.08	19.08	23.562	28.51	33.93	39.82	46.182		
1 2 3	3 ³ / ₈ 4 ³ / ₄ 5 ³ / ₄	3 7/8 5 1/2 6 5/8	4 3/8 6 1/4 7 5/8	5 7 8 5/8	$ \begin{array}{c c} 5\frac{1}{2} \\ 7\frac{3}{4} \\ 9\frac{1}{2} \end{array} $	$\begin{array}{ c c c c c c }\hline & 6 & & \\ & 8 & 5 & \\ & 8 & 10 & 1 & \\ & & 10 & 1 & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & $	6 5/8 9 1/4 11 1/2	7½ 10½ 12¾ 12¾	7 ³ / ₄ 10 ³ / ₈ 13 ¹ / ₄		
4 5 6	6 5/8 7 3/8 8 1/8	7 3/4 8 5/8 9 1/2	8 ³ ⁄ ₄ 9 ⁷ ⁄ ₈ 10 ³ ⁄ ₄	9 7/8 11 12 1/8	$\begin{array}{c} 11 \\ 12\frac{1}{4} \\ 13\frac{1}{2} \end{array}$	$\begin{array}{c} 12\frac{1}{8} \\ 13\frac{1}{2} \\ 14\frac{3}{4} \end{array}$	13 ½ 14 ¾ 16 ½	14 1/4 16 17 1/2	15 3/8 17 1/8 18 3/4		
7 8 9	8 ³ ⁄ ₄ 9 ³ ⁄ ₈ 9 ⁷ ⁄ ₈	10 ½ 10 ½ 10 ½ 11 ½	$11\frac{5}{8}$ $12\frac{3}{8}$ $13\frac{1}{8}$	13 ½ 14 14 ½	$\begin{array}{c} 14\frac{1}{2} \\ 15\frac{1}{2} \\ 16\frac{1}{2} \end{array}$	16 17 ½ 18 ½	17 ½ 18 5/8 19 3/4	18 7/8 20 1/8 21 3/8	$ \begin{array}{c} 20\frac{14}{21} \\ 21\frac{34}{23} \end{array} $		
10 11 12	10 ½ 11 11 ½	$12\frac{1}{8}$ $12\frac{3}{4}$ $13\frac{3}{8}$	$13\frac{7}{8}$ $14\frac{5}{8}$ $15\frac{1}{4}$	$\begin{array}{c} 15{}^{5}\!\!/\!\!8 \\ 16{}^{3}\!\!/\!\!8 \\ 17{}^{1}\!\!/\!\!8 \end{array}$	17 3/8 18 1/4 19	19 ½ 20 20 ½	$\begin{array}{c c} 20\frac{3}{4} \\ 21\frac{7}{8} \\ 22\frac{3}{4} \end{array}$	22 ½ 23 5/8 24 ¾	24 ½ 25 ½ 26 ½ 26 %		
13 14 15	$11\frac{7}{8}$ $12\frac{3}{8}$ $12\frac{3}{4}$	13 7/8 14 3/8 14 7/8	$15\frac{7}{8}$ $16\frac{1}{2}$ 17	17 7/8 18 1/2 19 1/8	$\begin{array}{c} 19\sqrt[3]{4} \\ 20\sqrt[1]{2} \\ 21\sqrt[1]{4} \end{array}$	$\begin{array}{c} 21\frac{3}{4} \\ 22\frac{5}{8} \\ 23\frac{3}{8} \end{array}$	$23\frac{3}{4}$ $24\frac{5}{8}$ $25\frac{1}{2}$	25 ³ / ₄ 26 ³ / ₄ 27 ⁵ / ₈	$\begin{array}{c} 27\frac{3}{4} \\ 28\frac{3}{4} \\ 29\frac{3}{4} \end{array}$		
16 17 18	$13\frac{14}{13\frac{5}{8}}$ 14	15 3/8 15 7/8 16 3/8	17 5/8 18 1/8 18 5/8	$\begin{array}{c} 19\frac{3}{4} \\ 20\frac{3}{8} \\ 21 \end{array}$	22 22 5/8 23 1/4	24 ½ 24 ½ 24 ½ 25 ½	26 3/8 27 1/8 27 7/8	28 ½ 29 ¾ 30 ¼	$30\frac{34}{31\frac{5}{8}}$ $32\frac{5}{8}$		
19 20 21	$\begin{array}{c} 14\frac{3}{8} \\ 14\frac{3}{4} \\ 15\frac{1}{8} \end{array}$	16 3/4 17 1/8 17 5/8	19 ½8 19 ½8 20 ½8	21 ½ 22 ½ 22 ½ 22 5/8	23 7/8 24 1/2 25 1/8	26 1/4 27 27 5/8	$\begin{array}{c} 28\sqrt[3]{4} \\ 29\sqrt[1]{2} \\ 30\sqrt[1]{8} \end{array}$	$31\frac{1}{8}$ $31\frac{7}{8}$ $32\frac{3}{4}$	$33\frac{1}{2}$ $34\frac{3}{8}$ $35\frac{1}{8}$		
22 23 24	$\begin{array}{c} 15\frac{1}{2} \\ 15\frac{3}{4} \\ 16\frac{1}{8} \end{array}$	18 18 ½ 18 ½ 18 ¾	20 5/8 21 1/8 21 1/2	23 ½ 23 ¾ 24 ¼	25 ³ ⁄ ₄ 26 ³ ⁄ ₈ 26 ⁷ ⁄ ₈	28 3/8 29 29 5/8	$30\frac{7}{8}$ $31\frac{1}{2}$ $32\frac{1}{4}$	33 ½ 34 ¼ 34 ¾ 34 ¾	$\frac{36}{36}\frac{34}{37}$		
25 26 27	16 ½ 16 ¾ 17 ⅓	19 ½ 19 5/8 20	22 22 3/8 22 7/8	24 ³ / ₄ 25 ¹ / ₈ 25 ⁵ / ₈	27 ½ 28 28 ½	$\begin{array}{c} 30 \frac{1}{8} \\ 30 \frac{3}{4} \\ 31 \frac{3}{8} \end{array}$	32 7/8 33 1/2 34 1/8	35 ⁵ / ₈ 36 ³ / ₈ 37	38 3/8 39 1/8 39 7/8		
28 29 30	17 ½ 17 ¾ 18	20 3/9 20 3/4 21	23 ¼ 23 5/8 24	26 ½ 26 ½ 26 ½ 27	29 29 ½ 30	32 32 ½ 33	34 ³ / ₄ 35 ¹ / ₂ 36	37 ⁸ / ₄ 38 ³ / ₈ 39	40 5/8 41 3/8 42		

11. Sufficient static suction head shall be maintained in each branch pipe within one foot of the hood to produce a difference in level of two inches of water between the two sides of a U-shaped tube. Test is to be made by placing one end of a rubber tube over the small hole made in the pipe, the other end of the tube being connected to one side of a U-shaped water gauge. Test is to be made with all branch pipes open and unobstructed.

In addition to the foregoing specifications, which are compulsory, a number of "Recommendations" are given below, which, if observed, will make for still more efficient operation and longer life of the system.

Recommendations

- 1. Emery wheel and buffing wheel exhaust systems should be kept separate owing to danger of sparks from the former setting fire to the lint dust from the latter, if both are drawn into the same suction main.
- 2. In the case of undershot wheels, i. e., the top of the wheel runs toward the operator, which is almost always the direction of rotation of both emery and buffing wheels, the main suction duct should be back of and below the wheels and as close to them as is practicable; or it should be fastened to the ceiling or the floor below, preferably the former. If behind the wheels, it should be not less than six inches above the floor at every point to avoid possible charring of the floor in case of fire in the main duct and also to permit sweeping under it. For similar reasons it should be at least six inches below any ceiling it may run under.
- 3. Both the main suction and discharge pipes should be made as short and with as few bends as possible, to avoid loss by friction. If one or the other must be of considerable length, it is best to place the fan not far beyond where the nearest branch enters the large end of the main, as a long discharge main is a lesser evil than a long suction main.
- 4. Avoid any pockets or low places in ducts where dust might accumulate.
- 5. The main suction duct should be enlarged between every branch pipe entering it, whenever space permits, and in no case should the main duct receive more than two branches in a section

of uniform area. All enlargements in the size of the main should be made on a taper and not by an abrupt change.

- 6. If there is a likelihood of a few additional wheels being installed in the future, it is advisable to leave a space for them between the fan and the first branch and to put in an extra size fan. Or, a space may be left beyond the fan so that the fan may be moved along and the main extended when it is actually decided to install additional wheels, provided the fan is of sufficient size to still comply with these specifications after the additional branches are added.
- 7. Branch pipes should enter the main on the top or sides—never at the bottom. Two branches should never enter a main directly opposite one another.
- 8. Each branch pipe should be equipped with a shut-off damper or blast-gate as it is also called, which may be closed, if desirable, when the wheel is not in use. Not more than 25 per cent. of such blast-gates should be closed at one time; otherwise, the air velocity in the main duct may drop too low and let the dust accumulate on the bottom.
- 9. It is very important that the lower part of the hood shall come far enough forward beneath the front of the wheel so that the dust will enter the hood and not fall outside of it altogether, even if the accomplishment of this result necessitates leavin; considerable space between the wheel and the lower part of the hood in order that the hood shall not interfere with the work.
- 10. Branch pipes should lead out of the hood as nearly as possible at the point where the dust will naturally be thrown into them by the wheels. This is very important.
- 11. An objectionable practice sometimes found where small work is polished is the use of a screen across the mouth of the branch pipe where it enters the hood. Such screens are an obstruction to the passage of material, and the ravelings from buffing wheels are held against the screen by the suction, with the result that in a short time the draft is almost entirely cut off.
- 12. The use of a trap at the junction of the hood and branch pipe is good practice provided it is cleaned out regularly and not allowed to fill up with dust. This will catch the heavier particles and so take some wear off the fan. It will also serve to catch any nuts, pieces of tripoli, etc., dropped by accident,

and in the case of work on small articles, will enable them to be recovered when dropped in the hood.

- 13. All bends, turns, or elbows, whether in the main or branch pipes, should be made with a radius in the throat of twice the diameter of the pipe on which they are connected, wherever space permits.
- 14. Elbows should be made of metal one or two gauges heavier than the pipe on which they are connected as the wear on them is much greater.
- 15. The withdrawal of air from a room by an exhaust system naturally tends to create a slight vacuum and for this reason inlets for air at least equal to the sum of the areas of the branch pipes should be left open.
- 16. Recommendations for the size of the cyclone separator or dust collector, as it is often called, are hard to give, as the separator must be proportioned to suit operating conditions, light dusts requiring a larger separator than heavier dusts. A separator should be selected with an inlet area at least as large as the area of the discharge pipe from the fan.

For light buffing dusts, lint, etc., the air outlet from the top of the separator should be so large that the velocity of discharge will not exceed 300 to 480 feet per minute; then select a separator of which the other dimensions are proportionate. The air outlet should be provided with a proper canopy or elbow to exclude the weather, but should be otherwise unobstructed.

DIMENSIONS OF DUST COLLECTORS

Diam. Inlet	Diam. Air Outlet	Dust Outlet	Diam. Collector	Total Height	Diam. Inlet	Diam. Air Outlet	Dust Outlet	Diam. Collector	Total
6	12	6	24	40	28	56	14	112	175
8	16	7	32	52	30	60	15	120	187
10	20	8	40	64	32	64	16	128	200
12	24	8 8 8	48	76	34	68	17	136	212
14	28		56	89	36	72	18	144	224
16	32		04	101	38	76	19	152	236
18 20 22	36 40 44	10 11	72 80 88	114 126 139	40 42 44	80 84 88	20 21 22	160 168 176	248 260 272
24	48	12	104	151	46	92	23	184	284
26	52	13	104	163	48	96	24	192	296

Dust Collectors

The air with its contents of shavings and dust should be delivered by the fan into a separator or collector. Whatever heavy matter the air carries here settles to the bottom and is discharged into the proper receptacle, leaving the air to escape to the atmosphere. As usually built they depend on the centrifugal action to accomplish the separation. While the different makes will vary in their dimensions, the table on page 101 will serve to give a general idea of the sizes used. These are built either right or left hand.

A properly designed separator should not cause a resistance of more than one velocity head due to the flow. That is, with a velocity of 4000 feet per minute the resistance would be one inch.

Friction Loss

A complete discussion on the loss in pressure due to friction of the air passing through the piping and elbows will be found on pages 115 to 120. For perfectly smooth piping we may consider that one velocity head, or a pressure corresponding to the velocity, is lost in every 60 diameters of pipes, but for planing-mill work it is customary to use a factor of 55 diameters. That is, with a velocity through the pipes of 4000 feet per minute, which corresponds to a pressure or velocity head of one inch, there would be one inch of pressure lost in every 55 diameters. With a pipe 18 inches in diameter, one velocity head would be lost in each 83 feet of length. The fan must operate at a total pressure sufficient to care for all of the losses, and still leave a pressure corresponding to the velocity desired. For the loss in elbows see the diagrams on pages 118 and 119.

Standard and Slow Speed Planing-Mill Exhausters

For conveying refuse from wood working machines and carrying off factory waste of similar nature, fans with steel plate housings and overhung blast wheels are usually employed. These fans are of heavier construction than those used for ventilating, and are built double as well as single for use where a double fan avoids unnecessary length of piping and elbows. A description of these fans and capacity tables will be found in Part IV, Section III. In the ordinary planing-mill the refuse is sufficient to furnish fuel for heating and power. The standard type fan is designed for large capacity, rather

than for high efficiency, so wherever it is necessary to buy fuel, a more efficient fan should be used, and proper design makes it possible to combine the features of high efficiency and slow speed. The most efficient type of slow speed planing-mill exhauster has a housing which is very large and narrow in proportion to the size of inlet and outlet connections, and will reduce the power at least 15 per cent. while operating at about two-thirds the speed of the standard fan. Dimension and capacity tables of these fans will be found in Part IV, Section III.

Primarily, the speed of the fan depends upon the suction or vacuum to be maintained at the hoods. To move shavings and saw dust, a velocity in the piping system of from 3000 to 4000 feet per minute is the average requirement, which corresponds approximately to $1\frac{1}{8}$ to 2 inches suction in the pipe near the hood inlets, and a velocity head in the piping of from 0.6 to 1.0 inch. In addition to maintaining this suction at the hoods, the operating pressure at the fan must be sufficient to overcome the friction losses of the system. Piping friction losses, plus collector loss, plus intake and discharge losses, therefore equals the necessary operating pressure of the exhauster.

Examples. As an example, take a planing-mill installation having three 7-inch branch pipes, three 6-inch branch pipes, two 5-inch branch pipes and one 4-inch branch pipe. Assume that the longest run of piping on the suction side of the fan is 57 feet, that there are three right angle elbows in the same (radius of elbows 1½ diameters), and that the fan discharges its refuse into a collector located 60 feet from the fan, with one right angle elbow in this pipe.

Adding the areas of branch pipes, the diameter of the main suction pipe will be 18 inches. Referring to the data on friction losses on page 102 the loss in 55 diameters of pipe equals one velocity head.

57 feet of suction and 60 feet of discharge piping (1 $\frac{1}{2}$ foot diameter) is equivalent to

$$\frac{57+60}{1\frac{1}{2}} = 78 \text{ diameters}$$

Referring to the curve of friction loss in round elbows on page 118 it will be seen that the loss in each of the four elbows will be 0.17 of a velocity head. For a perfectly smooth well built system this would mean each elbow was equivalent in friction to 9.5 diameters of pipe, but it is the general custom to allow ten diameters to each elbow. We will then have the four elbows equal to 40 diameters, in addition to the 78 diameters of piping. Allowing the customary 55 diameters as equal to one velocity head lost we have as the loss in the piping and elbows

$$\frac{78 + 40}{55}$$
 = 2.15 velocity heads.

Intake and discharge loss = 1.5 velocity heads.

Loss in refuse collector = 1 velocity head.

Pressure due to the velocity = 1 velocity head.

Total operating head = 5.65 velocity heads.

Assume 4000 feet velocity required, which corresponds to a pressure of one inch or 0.5768 ounces per square inch.

The necessary operating pressure of exhauster will then be $5.65 \times 0.5768 = 3.25$ ounces.

From the dimension and capacity tables, an exhauster having an 18-inch inlet, or the 45-inch size should be used. If a slow speed exhauster were chosen we would find from the table on page 345 that for 3 oz. pressure the necessary speed would be 742 R. P. M., the capacity 6620 cu. ft. per minute and the power required 8.97 H. P. But as the pressure required is 3.25 oz. the accompanying conditions must be calculated from the above factors. That is,

the speed will be
$$742\sqrt{\frac{3.25}{3.00}} = 770 \text{ R. P. M.}$$

the capacity will be $6620\sqrt{\frac{3.25}{3.00}} = 6880$ cu. ft. per min.

and the power will be
$$8.97 \sqrt{\left(\frac{3.25}{3.00}\right)^3} = 10.10 \text{ H. P.}$$

If a standard exhauster is used the speed will be 1245 R.P. M.; the capacity the same as above; and the power 12.15 H. P. The power as stated would be maximum, that is, the amount required when all the branch pipes are open. In pattern shops, all of the machines are seldom used at once, which means that less air is handled, with resultant reduction in power.

The capacity tables on pages 343 and 346 which have been compiled with velocity as a basis, will be found more convenient in computing speed and powers than the above method and for

most installations will be sufficiently accurate. Assuming the same conditions as in the preceding problem, an example of their use follows:

Length of suction and discharge pipe, 117 feet.

Length of pipe equivalent to four elbows equals

 $4 \times 10 = 40$ diameters.

40 diameters $\times 1\frac{1}{2} = 60$ feet.

Length of pipe equivalent to collector equals one velocity head or 55 diameters.

55 diameters $\times 1\frac{1}{2} = 83$ feet.

Total equivalent length = 260 feet.

The tables are based on an assumption that the system will contain an equivalent of 275 feet of piping, and corrections for 15 feet will be necessary. For each 10 feet difference, the speed must be decreased one per cent., or 1.5 per cent. in this instance, and the power three per cent., or $3 \times 1.5 = 4.5$ per cent.

From tables, pages 343 and 346, the following is obtained:

Slow speed exhauster—Speed 790 less $1\frac{1}{2}\% = 778$ R. P. M. Power 11.1 less $4\frac{1}{2}\% = 10.60$ H. P.

Standard exhauster—Speed 1295 less $1\frac{1}{2}\%$ = 1275 R. P. M. Power 13.3 less $4\frac{1}{2}\%$ = 12.70 H. P.

SECTION VI

MISCELLANEOUS APPLICATIONS

Fans are used for a great variety of purposes, many of which have special engineering features which make it impossible to lay down any easily applied rules for their installation. Even where a standard fan is to be used, a full knowledge of all of the features of the case are necessary before making a selection.

One large field for the use of fans, propellors and disk wheels is in connection with drying and cooling work, a brief discussion of which is given in the following pages. Fans and blowers are used for many purposes requiring air under considerable pressure, such as foundry and furnace service; blast supply for forges; for sand blast machines, pneumatic tube installations, mine ventilation, tunnel work, in glass factories, and many other special applications.

For forge service either the volume blowers listed in the table on page 335 may be used, or the pressure blowers already mentioned, depending on the conditions. For exhausting the smoke and gases from forges a pressure of from one to two ounces is required. The blast is usually run at three to six ounces pressure. Piping should be properly proportioned to allow for friction.

Special blowers and exhausters, either low or high pressure, are built for handling gas at gas works, or for removing acid or other chemical fumes. These latter may be made of special acid-resisting metals. For gas works the low pressure exhausters range in capacity from 30,000 to 1,500,000 cubic feet per hour at a pressure up to 15 inches of water. High pressure exhausters range in capacities from 30,000 to 3,000,000 cubic feet of air.

In connection with blast furnaces a special gas cleaning fan is used, in which the inner surface is kept wet by sprays. The centrifugal force throws the dust particles against the water covered surface of the interior of the fan, so cleansing the gas. In the case of gas producers the same form of fan, or gas scrubber, is used to remove the tar from the gas.

Forge Shop Equipment

Table on page 107 gives sizes of blast and exhaust fans for School Forge Shops and table on page 108 sizes of blast and exhaust tile.

FORGE SHOP EQUIPMENT

	iter	Н. Р.	0.34 0.76 1.09	1.54 2.08	3.83 9.82 9.83 9.83	3.68 4.66	5.78	5.78	6.00 0.00 0.00	8.30	8 8 8 8 8 8 8 8	11.3	11.3	11.3	8.4.1
	2 Oz. Exhauster	R. P. M.	2420 1490 1345	1100	1210	1060 943	943 848 848	848	772	707	707	909	909	909	530
	an at 1 1/2 lal St. Pl.	A. P. M. per Forge	458 507 485	515	530	520 585	527 590 540	200	525 525	490 550	520 490	610	555	530 490	595
Exhaust	Exhaust Fan B Vol. or Planoidal	Diam. Inlet	6½6" 9"105%"	1113/16"	17 1/2"	20"	25.7%	25"	22.2	30,, 32,	30,	35"	35,	35,"	40″
	B Vol. o	Fan	2 B Vol. 4 B Vol. 5 B Vol.	ol.	zz	ಪಪ	a a a	- L	로로	드리	60″ PI.	i di	ie:	ᆵ	80" Pl. 80" Pl.
	Diam.	Main Exh. Duct	,0°,0°,10°,10°,10°,10°,10°,10°,10°,10°,1	12,	15,	12,"	19, 20,	22"	23,3	24″ 25″	, , , , , , , , , , , , , , , , , , ,	28"		30″	33,"
		Н. Р.	0.73	0.73	0.73	0.78	1233	1.62	1.62	1.62	1.62	2.03	27.72	2.72	2.72
,	Blower	R. P. M.	3150 3150 3150	3150	3150	2660	2195	2414	2414 2414	2414	2414	2590	2270	2270	2270
	B Vol.	A. P. M. per Forge	430 215 143	107	622	578	808	84	23%	68 64	60 57	55	70 67	65	55
Blast	Steel Press. or B Vol. Blower	Diam. Outlet	444	4 4 8 8 8 8 8 8	4 4 4 4 4 4	53%	1-1-1	75/8	2000		10 10 1 10 10 1	18/5/	o o	, , ,	9,"
	Stee	Blower	2.0.00 0.00.00 0.00.00	1515	45454	10110	mm:	a m	3 B Vol. 3 B Vol.	3 B Vol.	3 B Vol.			4 B Vol.	4 B Vol.
	Diam.	Main Rlast Duct	4. y	100	- oo oo	ර්ත්	10,	11"	11,"	122	13,	14"	14"	15,	16"
	Num.	Surrato OJD Forges	-00	4 n	100	- 00 0	^2=:	13	15	22	20	21	22	77.5	30
is	Press. of Blast		·u	.p8	ber ;	·20	%z	-		20	ε	1	·z() %í	3

SIZE OF BLAST AND EXHAUST TILE FOR FORGE SHOP EQUIPMENT

Sizes of Branch	Blast Tile		Exhaust Tile						
Tile	3"	4"	6"	8"	10"				
No. of Branch Tile	Size of Main Tile								
1 2 3 4 5 6 7 8 9	3 4 5 8 8 8 9	4 8 8 9 10 12 12 12	6 9 12 12 15 15 18 18 18 20	8 12 15 18 18 20 24 24 24 30	10 15 18 20 24 27 27 30 30				
11 12 13 14 15 16 17 18 19	9 10 10 10 12 12 12 12 12 12 15	12 15 15 15 15 15 15 15 18 18	20 24 24 24 24 27 27 27 27 27	30 30 30 36 36 36 36 36 36 36	36 36 36 40 x 32 40 x 32 40 x 32 40 x 36 40 x 36 40 x 40				
21 22 23 24 25 26 27 28 29 30	15 15 15 15 15 15 15 15 15 15	18 18 18 18 18 20 20 20 20 20	30 30 30 30 30 36 36 36 36 36	40 x 32 40 x 32 40 x 32 40 x 32 40 x 36 40 x 36 40 x 36 40 x 40 40 x 40	44 x 44 44 x 44 44 x 44 50 x 44 50 x 44 50 x 44 50 x 48 50 x 48				
31 32 33 34 35 36 37 38 39 40	15 18 18 18 18 18 18 18 18 18 18	20 24 24 24 24 24 24 24 24 24 24 24 24 24	36 36 36 36 36 36 36 36 36 x 30 36 x 30 40 x 30	44 x 44 44 x 44 44 x 44 44 x 44 44 x 44 50 x 44 50 x 44 50 x 44 50 x 44	50 x 48 50 x 54 50 x 54 50 x 54 60 x 54 60 x 54 60 x 54 60 x 54 60 x 54 60 x 54				
41 42 43 44 45 46 47 48 49 50	18 18 18 18 18 20 20 20 20 20	24 24 24 24 24 27 27 27 27 27 27 27	40 x 30 40 x 30 40 x 30 40 x 34 40 x 34 40 x 34 40 x 34 40 x 34 40 x 36	50 x 44 50 x 48 50 x 48 50 x 48 50 x 48 50 x 48 50 x 48 50 x 54 50 x 54	60 x 60 60 x 60 60 x 60 60 x 60 60 x 60 64 x 64 64 x 64 64 x 64 64 x 64				

Foundry Blower Practice

The air required per ton of iron melted has been variously given at from 30,000 to 33,000 cu. ft. per ton. As it is almost impossible to measure the air directly it is necessary to resort to indirect methods of chemical analysis of the escaping gases. By analyzing a sufficient number of samples, the amount of air used in the combustion of the coke can be determined with considerable exactness. The following weights and volumes of air are required per ton of iron in different melting ratios.

MELTING RATIO	AIR REQUIREMENT		
bs. of Iron per Lb. of Coke	Cu. Ft. per Ton		
7	31,000		
8 9	29,000 27,000		
10	25,000 22,000		

It is customary to provide a blower on a basis of 30,000 cu. ft. of air per ton, which corresponds to from 70 to 80 per cent. of the chemical requirements with coke of average quality and a melting ratio of 71/2 to 1. The pressure and quantity of air required for any particular case may be determined by means of the following formulae:

$$W = 2D\sqrt{p} \tag{44}$$

A. P. M. =
$$\frac{D^2 V p}{2}$$
 (45)

$$W = 2D\sqrt{p}$$
A. P. M. = $\frac{D^2\sqrt{p}}{2}$ (45)
H. P. = $\frac{D^2\sqrt{p^3}}{3800}$ (46)

where

W = weight of iron in lbs. per hour. p = press. at cupola in oz. per sq. in. D = diam. of cupola in inches. A. P. M. = cu. ft. of air per minute.

H. P. = horsepower required. The above formula for A. P. M. allows for an air leakage of 10 per cent.

The table on page 110 of air per minute and H. P. for cupola service gives the cubic feet of air required per minute and horsepower of the fan for various sizes of cupola and at pressures of from 10 to 18 ounces. Knowing the size of cupola and either the pressure to be carried or the weight of metal per hour to be melted, the other factors may be readily determined from the table.

TABLE OF AIR PER MINUTE AND H. P. FOR CUPOLA SERVICE

ide 1. of ola	Stat					
Inside Diam. of Cupola	10 oz.	12 oz.	14 oz.	16 oz.	18 oz.	
30"	5690	6230	6730	7200	7640	CAP.
	1423	1558	1688	1800	1910	A. P. M.
	7.4	9.7	12.3	15.0	17.9	H. P.
35″	7740	8480	9170	9800	10390	CAP.
	1935	2120	2293	2450	2773	A. P. M.
	10.0	13.2	16.7	20.4	25.9	H. P.
40"	$\begin{array}{c} 10120 \\ 2530 \\ 13.2 \end{array}$	11080 2770 17.3	11970 2993 21.8	12800 3200 26.6	13570 3393 31.8	CAP. A. P. M. H. P.
45"	$^{12810}_{3203}_{16.7}$	14030 3508 21.9	15150 3788 27.6	16200 4050 33.7	17180 4295 40.2	CAP. A. P. M. H. P.
50"	15810	17320	18700	20000	21210	CAP.
	3953	4330	4675	5000	5303	A. P. M.
	20.6	27.0	34.0	41.6	49.6	H. P.
55"	19130	20960	22640	24200	25660	CAP.
	4783	5240	5660	6050	6415	A. P. M.
	24.9	32.7	41.2	50.3	60.0	H. P.
60"	22770	24940	26940	28800	30540	CAP.
	5693	6235	6735	7200	7635	A. P. M.
	29.6	38.9	49.0	59.9	71.5	H. P.
65"	26730	29270	31620	33800	35840	CAP.
	6683	7318	7905	8450	8960	A. P. M.
	34.8	45.7	57.5	70.3	83.9	H. P.
70"	30990	33950	36670	39200	41570	CAP.
	7748	8488	9168	9800	10393	A. P. M.
	40.3	52.9	66.7	81.5	97.3	H. P.
75"	35580	38970	42090	45000	47720	CAP.
	8895	9743	10523	11250	11930	A. P. M.
	46.3	60.8	76.6	93.6	111.7	H. P.
80"	40480	44340	47890	51200	54290	CAP.
	10120	11085	11973	12800	13573	A. P. M.
	52.6	69.2	87.2	106.5	127.0	H. P.

CAP. is lbs. of metal melted per hour.
A. P. M. is cu. ft. of air required per minute.
H. P. is power required to deliver air at pressure given with steel pressure blowers.

PART III AIR DUCTS

Under the subject of "Air Ducts," will be found detailed information pertaining to the design of various duct or conduit systems used for the conveying of air. The data relating to pressure losses and friction in piping and elbows is based on actual experiments and tests, and in many cases where required information was not to be found, special experiments were made to obtain data for use in this hand-book. The subject of the proper proportions of piping in different systems, as well as the proper velocity of air, is also completely covered.

Material of Air Ducts

One of the essential parts of any heating and ventilating system consists of the ducts or conduits used to convey the air to the desired points in the building. These ducts may go under ground, when they are usually constructed of tile, brick, or of concrete. When the system is an overhead one warm air is usually carried through galvanized iron pipes or ducts, the vertical risers being either of brick or galvanized iron. A very common construction is to run galvanized iron risers inside brick flues. In any event the inside of the duct should be made as smooth as possible, in order to avoid excessive friction and for this reason iron ducts are generally preferred to brick or concrete, unless low velocities are employed.

The piping systems for industrial buildings and those for public buildings are designed according to two distinct methods. In industrial buildings the problem is chiefly to convey heat units with as great an economy of power, material and space as possible, while in public buildings there are the additional requirements of freedom from noise and prevention of drafts. In industrial buildings air is usually conveyed through one or more main lines extending lengthwise of the building, the areas of such pipes decreasing as they extend, to give a uniform distribution of air throughout. On the other hand in public buildings individual ducts are carried from the apparatus to each room, so that it is evident the same method is not applicable

to both systems.

Loss of Pressure per 100 Feet in Inches of Water

.06988 12415 19403 00121 00277 00486 01994 02514 03104 27970 38051 49696 62 in. 1.1167 $02688 \\ 03312$ 29895 40680 1.1947 58 in. 72135 89178 .0791 02289 02878 03555 08010 14270 22281 32096 43700 57066 1.2844 54 in. 02462 03121 03850 .08653 15417 24069 .3872 50 in. 37680 51295 66985 84809 00166 00376 00668 02670 03399 04214 46 in. 1.5078 in Inches 01146 01651 02245 10320 18182 28660 41270 56190 73381 00184 00413 00732 02934 03716 04583 .6473 in. 2 Diameter of Pipe $\frac{11409}{20092}$ 316781.8252 38 in. 51000 69415 90650 03624 04590 05661 34 in. 2.0402 04108 05202 06417 .57800 .78661 0274 14450 25451 40129 01604 02311 03144 30 in. 2.3121 05571 2,4771 28 in. 66695 90761 1853 2.6611 i. 92 72250 98330 05134 06503 08021 24 in. 2.8900 1500 2000 2500

Pressure Losses in Air Ducts

Losses in piping systems are made up of two parts, dynamic losses and friction losses. Dynamic losses are due to changes either in direction or velocity of the air flow, and are composed of loss at entrance and loss in elbows and connections. The first is the pressure required to produce velocity in the pipe, and may vary from 1 to 1.5 times the velocity head, i. e., pressure corresponding to velocity, depending on whether the pipe is connected directly to the fan outlet or through a plenum chamber. It is expressed as a multiple of the pressure corresponding to the average velocity produced in the pipe. Where velocity in the pipe is the same as at the fan outlet this may still be considered a loss, in view of the fact that with a reduction of velocity through a gradually diverging outlet to a larger area the difference between the velocity head at the fan and the velocity head in the pipe is largely utilized by conversion to static pressure.

The other chief source of dynamic loss is in elbows, and depends on the radius of curvature of the elbow and not on its size or on the velocity of the air. This loss may be expressed directly in per cent. of velocity head, and, with a round five-piece elbow, having a center line radius of one diameter, the loss will be 25 per cent. of the average velocity head. With a five-piece elbow having a center line radius of one and one-half diameters the loss will be 17 per cent., or only two-thirds that of the first case. This shows the advantage of an intelligently designed system and the possibility in power saving, for elbows may be of so short a radius as to cause loss of an entire velocity head in each one.

The second source of pressure loss in the piping system is due to friction of air against the sides of the pipe. This loss will vary directly as the length of the pipe, or as the square of the velocity, and inversely as the diameter of the pipe. As length is a fixed quantity for any system, the only factors subject to modification are the diameter and velocity, which determine the relation between power cost and piping cost.

As in the case of heaters, it is the usual engineering practice to proportion piping arbitrarily, either from assumed velocities depending upon the velocity of the air at the fan outlet, or, in better engineering practice, by determining the velocity which will give an assumed resistance considered suitable and within the fan capacity. It is the best practice to gradually decrease the velocity in the main conduit as the latter is decreased in size owing to partial delivery of the air through the branch outlets.

This practice serves three useful purposes:

- 1. A proper proportioning of the velocity permits a uniform delivery of air through all the branch outlets without dampers and regardless of distance from the fan.
- 2. By a gradual reduction in velocity a considerable proportion of the velocity pressure is usefully converted to static pressure, thus largely compensating for piping friction.
- 3. It decreases friction in the smaller piping, where it would otherwise be greatest.

Friction in Air Ducts

Resistance to flow of air through piping varies with several factors such as velocity, roughness of the contact surface, or obstructions such as dampers, deflectors, and elbows. This resistance or loss in pressure is ordinarily expressed as the equivalent head in feet of air; or in velocity heads (that is the ratio of the friction loss to the theoretical pressure corresponding to the average velocity in the pipe); or as the equivalent pressure in inches or ounces. As explained on page 16 under the subject, "Relation of Velocity to Pressure," one velocity head is the pressure corresponding to the velocity of the air.

The formula used by the U.S. Navy Department for loss of head due to friction in a round pipe is

$$H = 4f \frac{L}{D} V^2 \tag{47}$$

where

H = loss of head in feet of air.

L=length and D=diameter of pipe, both expressed either in feet or in inches.

V = velocity of flow through the pipe in feet per second. f = 0.00008 for first class piping.

Since in air measurements it is more customary to express velocity as feet per minute, this formula reduces to

$$H = 0.000000089 \frac{L}{D} V^2$$
 (48)

For rectangular ducts the formula becomes

$$H = 0.000000045 \frac{i+n}{n} - \frac{L}{i} V^{2}$$
 (49)

where

H = loss of head in feet of air.

V = velocity in feet per minute.

i = short side of pipe.

n = long side of pipe.

L=length of pipe.

f = assumed as 0.00008.

It will be noted that the loss in head as given by the above formulae is expressed in feet of air, while the head or pressure ordinarily considered in air measurements is expressed either in inches of water or in ounces per square inch. As shown by Equation (12) page 18, the velocity head expressed in feet of air is $\frac{d}{12W}$ times the head in inches of water. Taking a value of d=62.31 as the density of water we then have

$$H = h' \frac{62.31}{12\,W}$$

$$V_0 = \frac{1096.5}{1\!\!\!/\,\overline{W}} (\text{See page 18})$$

where

 $V_0 = vel.$ in ft. per min. corresponding to one inch of water.

W = weight of air per cubic foot.

From the above and from equation (48)

$$h' = \frac{L}{48.6 D} \left(\frac{V}{V_0}\right)^2$$
 (50)

where

h' = loss of head or pressure.

V = velocity of air in feet per minute.

 $V_0 =$ velocity corresponding to unit pressure.

L=length and D=diameter of pipe in feet.

 $\frac{L}{D}$ = length of pipe in diameters.

 $\left(\frac{V}{V_0}\right)^2$ = velocity head or pressure corresponding to the velocity.

A more general form of the above equation may be expressed as

 $\mathbf{h}' = \frac{\mathbf{L}}{\mathbf{CD}} \left(\frac{\mathbf{V}}{\mathbf{V}_0} \right)^2 \tag{51}$

where C=a constant depending on the character of the pipe.

The constant C in the above formula represents the length of pipe in diameters causing a loss of one velocity head. For

perfectly smooth unobstructed pipe we may take C=60, but for fairly smooth work such as the piping of a planing-mill exhaust system a safe factor would be C=55. For heating and ventilating work where there exist more or less obstructions in the form of dampers, deflectors, etc., and where the piping is usually swedged, we may consider one velocity head lost in from 45 to 50 diameters. For such systems we may usually take C=45. For tile or brick ducts C=40 will meet the average conditions.

From the above we see that if the velocity in a 12-inch pipe is 2832 feet per minute (corresponding to $\frac{1}{2}$ inch) and the pipe is 45 feet long, the loss in pressure will be one velocity head, or $\frac{1}{2}$ inch. If, for instance, a pressure of $\frac{1}{2}$ inch is required at the outlet end of the pipe, a pressure of 1 inch must be maintained at the entering end.

Friction in rectangular pipe may be determined by using the tables on pages 156 and 157 which give the circular equivalent of rectangular pipes computed to give equal friction for the same air quantities. By means of this table the corresponding diameter of round pipe may be found, and the friction loss determined as above.

Friction in Elbows

The two diagrams on pages 118 and 119 of pressure loss in elbows show respectively the loss by friction through elbows of either round or square section. These curves are based on data obtained at the testing plant of the Buffalo Forge Company, full details of the tests and of the results obtained being described in a paper presented before the A. S. H. & V. E. on "Loss of Pressure due to Elbows in the Transmission of Air through Pipes or Ducts."* The loss in per cent. of a velocity head is given for elbows of different radii, the center line radius being expressed in per cent. of the pipe diameter or width.

It may be seen from these diagrams that with $R=1\frac{1}{2}D$, or an inside throat radius of one diameter, fairly good results may be obtained without making the elbow unduly long. Practically nothing is to be gained by making R greater than 2D.

It is also evident from an inspection of these diagrams that if it can possibly be avoided an elbow with R less than one D should not be used. Even with these an elbow in a square duct will cause a loss of 17.5 per cent. and in a round duct 25.5 per

^{*}Am. Soc. Heating and Ventilating Engrs., 1913, by Frank L. Busey.

cent. of the velocity head. In case $R = \frac{1}{2}D$ (throat of elbow square but outer side rounded to a radius of one diameter) the loss will be 95 per cent. for a square duct and for a round duct 75 per cent. of the velocity head. The loss indicated on the diagram for R = D represents tests on elbows of two-piece construction, or with both inside and outside made square. It is evident that this is a construction that should never be used, since in the case of the square pipe one quarter of the loss may be saved by making the outer side round $(R = \frac{1}{2}D)$.

From the curve for round ducts it will be seen that with an elbow having $R=1\frac{1}{2}D$ the loss will be 17 per cent. of a velocity head. If we consider one velocity head lost in 50 diameters of straight pipe this means that this elbow is equivalent in friction effect to 8.5 diameters of pipe. If the elbow was in a square duct the loss would be equal to 4.5 diameters (or widths) of pipe. With a velocity of 4000 feet per minute through the duct (corresponding to one inch pressure, or a velocity head of one inch) the above elbow in the round pipe would cause a loss in pressure of 0.17 inch and in the square duct of 0.09 inch.

For ordinary calculations one easy long radius elbow in a circular pipe may be considered as equal in friction loss to 10 diameters of straight pipe. This is the factor given by N. S. Thompson in his book, "Mechanical Equipment of Federal Buildings," as applied to elbows having a center line radius of $1\frac{1}{2}$ diameters.

Pressure Losses in Diverging and Converging Nozzles and in Orifices

It may be stated as a general principle in air flow calculations that "The coefficient of pressure loss is the square of the reciprocal of the coefficient of discharge," i. e., the coefficient of pressure loss, m, in terms of the coefficient of discharge, c, may be stated as

$$m = \left(\frac{1}{c}\right)^2 \tag{52}$$

and the loss in static pressure will be

$$p_s = m \left(\frac{V}{V_0}\right)^2 \tag{53}$$

where V = velocity of air flow and $V_o = velocity$ corresponding

to unit pressure. Then $\left(\frac{V}{V_0}\right)^2$ will be the velocity pressure.

Coefficients of discharge to be used in air measurements will be found below. Coefficients for pressure loss will be

m for sharp edged orifice 2.78

m for short length (2½ to 3 diam.) of pipe 1.47

m for short pipe on fan outlet 1.11

The coefficient m for converging nozzles having different angles of convergence between the two sides will be

Angle of Convergence	Coefficient m
6 degrees	1.175
8	1.150
10	1.140
12	1.130
14	1.130
22.5	1.185

In case any of the above factors are to be considered, there will be a loss in static pressure—and the same loss in total pressure—of m times the pressure due to the velocity.

When a diverging nozzle is to be considered, as shown by the diagram on page 123, there will be a certain gain in static pressure as determined by the coefficient e.

The coefficient of loss m will then be (1-e), but in this case the coefficient m is to be applied to the change in velocity head due to the nozzle, and is a measure of the loss in total pressure. That is, the gain in static pressure will be

$$p_{s} = e \left[\left(\frac{V_{1}}{V_{0}} \right)^{2} - \left(\frac{V_{2}}{V_{0}} \right)^{2} \right]$$
 (54)

The loss in total pressure will be

$$p_t = (1 - e) \left[\left(\frac{V_1}{V_0} \right)^2 - \left(\frac{V_2}{V_0} \right)^2 \right]$$
 (55)

In the above formulae the change in velocity head between the entering and leaving end of the nozzle is expressed by

$$\left[\left(\frac{V_1}{V_0} \right)^2 - \left(\frac{V_2}{V_0} \right)^2 \right]$$

 V_1 = velocity of air entering nozzle.

V2 = velocity of air leaving nozzle.

Vo = velocity corresponding to unit pressure.

e = coefficient from diagram on page 123.

Diverging Nozzle in Air Ducts

A diverging nozzle is used in an air duct when the area is increased in order to reduce the velocity, or when blowing into an enclosed space or plenum chamber. Any change from a higher to a lower velocity is accompanied by a conversion from velocity to static pressure, but inasmuch as there is always some loss in making this conversion, the total pressure is not the same after making the reduction in velocity. That is, there is always a certain portion of this converted static pressure lost in making the change, and the efficiency of conversion is never the full 100 per cent. As will be seen from the chart on page 123, the efficiency of conversion depends on the per cent. of slope of the sides of the diverging nozzle, the more gradual the slope the less the loss in pressure.

The diagram on page 123 shows the efficiency, or ratio of actual to theoretical velocity head obtained with diverging nozzles of different slopes to the sides. That is, while theoretically we should obtain an increase in static pressure equal to decrease in velocity pressure we will really convert only a part of this decreasing velocity pressure to static pressure, depending on the slope of the nozzle. While theoretically we should have

$$p_{s2} - p_{s1} = p_{v1} - p_{v2} = \left(\frac{V_1}{V_0}\right)^2 - \left(\frac{V_2}{V_0}\right)^2 \tag{56}$$

as a matter of fact we will have

$$p_{\text{s2}} - p_{\text{sl}} = e \left[\left(\frac{V_1}{V_0} \right)^2 - \left(\frac{V_2}{V_0} \right)^2 \right]$$
 (57)

where e represents a factor depending on the proportions of the nozzle.

For instance, if we have a nozzle whose length is five times half the difference between the diameters of the two ends, that is a length of five times the slope or a slope of 0.20, we will have an efficiency of conversion of 51.5 per cent. In case the side of a nozzle makes an angle of say 30 degrees, the slope will be 0.577 and we may see from the curve that there will be no gain from the cone outlet. From the foregoing it may be seen that length of a diverging nozzle should be made as long as the case will permit in order to get the greatest possible benefit from it. The length should be at least from five to ten times the slope, giving a slope of from 0.10 to 0.20 or an angle of approximately 6 to 12 degrees.

Conversion from velocity to static pressure may be determined from the formula

$$p_s = e \left[1 - \left(\frac{A_1}{A_2} \right)^2 \right] p_v \tag{58}$$

and loss in pressure due to the increase in area will be

 $p_t = (1 - e) \left[1 - \left(\frac{A_1}{A_2} \right)^2 \right] p_v$ (59)

where

p_s = static press. converted from vel. press.

pt=loss in total press.

pv = velocity press. at inlet of nozzle.

e = efficiency of conversion.

 $A_1 = area$ of inlet to nozzle.

 A_2 = area of outlet from nozzle.

On page 125 will be found a diagram plotted from actual tests of diverging nozzles, showing the per cent. of velocity head converted into static head by using nozzles having different ratios of length to diameter of outlet, as well as outlet to inlet area. While these tests were made with round pipe, it was found that the same relations held for those of rectangular section. As an example of the use of the diagram we may select a nozzle having a length equal to twice the small or inlet diameter and the outlet area twice the inlet area. From the diagrams we will find that a nozzle of these dimensions will convert 50 per cent. of the velocity head into static head.

The line marked "Curve of Maximum Efficiency" indicates the best ratios of outlet to inlet areas for different fixed lengths of nozzle and inlet diameter. It will be noted that for the different ratios of $\frac{L}{D_1}$ there is a certain ratio of outlet to inlet area that will give maximum conversion from velocity to static pressure.

Example. Assuming a case where a diverging nozzle is to be used on a 24-inch pipe in order to increase the diameter and so decrease the velocity in the pipe, and owing to the limited space the nozzle can be made only six feet long. Then the ratio $\frac{L}{D_1} = 3$, and according to the diagram we will obtain the maximum conversion from velocity to static pressure when the

area of the enlarged pipe is made 2.3 times the area of the 24-inch pipe, or 36.5 inches diameter. In this case 57 per cent. of the

DIVERGING NOZZLES.

change in velocity head will be converted into static pressure at the nozzle outlet. Then

$$p_{\text{s2}} - p_{\text{sl}} = 0.57 \bigg[\left(\frac{V_1}{V_0} \right)^2 - \left(\frac{V_2}{V_0} \right)^2 \bigg]$$

A diverging nozzle on the outlet of multivane fans is often used to advantage, giving a reduction of the comparatively high velocity at the outlet of this type of fan, with a corresponding increase in static pressure.

Theoretical Outlet or Blast Area

It is a well known fact that air (or water) under pressure in passing through an orifice in a thin plate will not deliver the volume indicated by the actual area of the orifice, because the resistance of the orifice, depending on its character, will tend to restrict the flow. It follows then that there will in each instance exist an equivalent or blast area, differing from the actual area in proportion to the resistance. This blast area of an air conveying system is the area which would be theoretically required to deliver the same amount of air at a velocity corresponding to the total pressure resistance offered by the system.

Every point in a fan blast system has its blast area, which, as stated above, is less than the actual area by an amount depending on the resistance at that point. The blast area of the entire system may then be computed, inasmuch as the total resistance is the sum of the various resistances passed in series. In case the air passes through parallel channels the blast area of the system is the sum of the blast area of the separate channels.

Blast area based on the total pressure drop may be determined from

Blast area =
$$\frac{\text{A. P. M.}}{4005 \sqrt{\text{total press. drop in inches}}}$$
 (60)

Representing the blast area of an entire system by A_b and the blast area of the various sections by A_{b1} , A_{b2} , etc., we will have the relation

$$A_b = \frac{1}{\left(\frac{1}{A_{bl}}\right)^2 + \left(\frac{1}{A_{b2}}\right)^2 + \text{ etc.}}$$
 (61)

Examples. As an illustration of the above principles, we will assume a case where a fan blows through a short pipe into a heater and thence into a single duct piping system. We may determine the drop in static pressure for the various sections of

the system, and calculate the blast area of each by means of the formula

Blast area = actual area
$$\sqrt{\frac{1}{\text{static loss in vel. heads} + 1}}$$

Assuming the connection between fan and heater to have an area of 4.9 sq. ft. with a loss of entrance of 0.1 vel. head and 0.25 vel. head lost in the connection itself, we find the blast area of this section to be

$$A_{b1}\!=\!4.9\,\sqrt{\frac{1}{0.35+1.0}}\!=\!4.24~\text{sq. ft.}$$

The blast area of the heater may be found by means of the above general formula. With 10000 A. P. M. and a pressure drop of 0.5 inches through the heater, the blast area will be

$$A_{\text{b2}}\!=\!\frac{10000}{4005\, \sqrt[4]{0.5}}\!=\!3.53\ \text{sq. ft.}$$

If we assume 0.5 velocity head lost by entrance to the piping system, and two velocity heads lost in the ducts and elbows, we will have as the blast area of this part of the system, if the main pipe is 35 inches in diameter

$$A_{b3} = 6.68 \sqrt{\frac{1}{2.5 + 1.0}} = 3.58 \text{ sq. ft.}$$

The blast area of the entire system may then be found from

$$A_b = \frac{1}{\left(\frac{1}{4.24}\right)^2 + \left(\frac{1}{3.53}\right)^2 + \left(\frac{1}{3.58}\right)^2} = 4.68 \text{ sq. ft.}$$

Proportioning the Various Losses

In addition to loss of pressure due to friction in piping and elbows, there is a loss of static pressure due to entrance to the piping system of from 0.1 to 0.5 of a velocity head. In addition to this, one velocity head must be maintained to produce the required velocity in the system. In case the piping is connected directly to the fan outlet this loss of entrance is frequently neglected especially if the piping is larger than the fan outlet and is made cone shaped. This is the case in a draw-through system, where the fan draws the air through the heater and blows directly into the piping or ducts. Where the system is a blow-through one, that is, the fan blows into the heater and the air passes through and into the ducts, a considerable loss will occur at the entrance to the piping system, depending on the

character of the layout. Where the piping is connected to the heater casing by an easy cone shaped approach, the loss of static pressure may be only 0.2 or 0.3 of a velocity head. In case the fan blows through the heater and into a plenum chamber, from which the pipes radiate to different parts of the building, the loss of entrance to these pipes may be as much as 0.5 of a velocity head. In any case the pressure required at the fan must be one velocity head greater in order to produce the velocity desired in the piping.

It is evident from the above that loss of power due to friction is less in a draw-through than in a blow-through system. Loss of pressure through the heater would be the same in either case, and may be determined from the table on page 446.

In the case of the draw-through system, the sum of all the pressure losses is to be deducted from the total pressure at which the fan is operating, while with the blow-through apparatus this loss is to be deducted from the static pressure.

In an ordinary draw-through system it is usually considered advisable to keep the sum of all piping losses approximately one-third to one-half, and the loss through the heater at less than one-half of the total pressure. The balance is then available for producing velocity. In case a system has been laid out and the pressure loss is found to be greater than desired, the size of the piping may be reproportioned by means of the following formula so as to obtain the desired pressure drop.

$$C_2 = C_1 \sqrt{\frac{p_2}{p_1}} \tag{62}$$

where

C₁ = present pipe area. C₂ = required pipe area. p₁ = present pressure loss. p₂ = desired pressure loss.

Thus, if we have made a layout for a system which it is desired to operate at a total pressure of not more than one and one-half inches, and find that at the velocity required to handle the air through the sizes of ducts selected the piping loss will be say one inch, we may reproportion the size of the ducts by the above formula. Assuming that a maximum pressure loss of 0.75 inch is to be allowed instead of the above 1.00 inch, we have

$$C_2 = C_1 \sqrt{\frac{1.00}{0.75}} = 1.15 C_1$$

That is, the area of all the ducts in the system must be increased 15 per cent., or the diameters increased 7 per cent. Then if the heater loss is found to be 0.60 inch, and the velocity through the main duct is to be 1800 feet per minute, corresponding approximately to 0.2 inch, the total pressure required at the fan will be 1.55 inches.

Proportioning Piping for Exhaust Systems

It is recommended in the design of piping for an exhaust system where no dampers are provided, to make the area of the main pipe approximately 20 per cent. greater than the sum of the area of the branch pipes at that point. This results in greater uniformity of distribution than where the increase in area is not made.

Where dampers are provided, as in the vent system from buildings, uniform velocity through the system should be maintained by making the area of the main duct equal the area of the branches. Where the exhaust ducts in a public building connect directly to the exhaust fan, a velocity of from 1200 to 1500 feet per minute may be allowed in both branches and main. Where the exhaust register or opening is placed near the floor, a velocity of from 600 to 750 feet per minute should be allowed in the register box. Velocity of the air should be kept uniform throughout the entire system.

For public buildings where a plenum exhaust system (vent stacks connecting into one large chamber, such as an attic) is used and the air discharged from this chamber by means of an exhaust fan, it is customary to allow a velocity of 600 to 750 feet per minute through the vent stacks and remove the same amount of air delivered by the supply fan. When the air is discharged from the exhaust chamber by some other means than an exhaust fan, about two-thirds the amount of air supplied to the building is ordinarily taken as a measure of the air discharged, with a velocity in the exhaust stacks of from 400 to 500 feet per minute. In either case this makes the exhaust or vent stacks the same area as the supply risers.

For industrial buildings, a velocity of from 1500 to 2000 feet per minute may be allowed through the exhaust system, the velocity being made uniform in both the mains and branches. The actual velocities assumed in any case will depend on the best proportion between the first cost and the operating cost. A study of the relation between these two factors will be found on page 130.

The design of the piping system as well as the size of branch pipes required for a refuse exhaust system will be found discussed under "Exhaust Systems." Part II. Section V.

Proportioning Piping for Maximum Economy

The subject of the most economical velocity of air through piping systems has been discussed in a paper* presented before the A. S. H. & V. E. at their 1913 annual meeting, some of the more interesting conclusions of which will be here given.

A decrease in velocity increases the size and cost of the air conduit, but decreases cost of power consumed in overcoming the conduit or piping resistance. From a point of economy the question to be determined is what relation between power cost and conduit cost, as determined by the velocity, will give minimum annual total cost.

This relationship may be shown to be

$$\left(\frac{V_{\rm m}}{V_{\rm o}}\right)^3 = 0.335 \left(\frac{C_{\rm wo}}{C_{\rm po}}\right) \tag{63}$$

or
$$V_m = 0.7 \text{ V}_o \left(\frac{C_{wo}}{C_{no}}\right)^{1/3}$$
 (64)

Where C_{po} and C_{wo} represent respectively cost of power to overcome piping resistance and an annual charge for interest and depreciation on piping designed for an assumed velocity V_0 ; and V_m is the relative velocity required for maximum economy.

Comparing these relationships with those obtained for the heater on page 414, it is evident that they are almost identical. It will be seen in this case that for maximum economy the annual cost of power consumed by piping resistance should be practically one-third of the annual interest and depreciation charges based on initial cost of piping. That is $C_p = 0.335 \, C_w$ for maximum economy. This annual allowance on the piping system for interest and depreciation may be assumed to be about 25 per cent. of the original cost of the installation.

While these lower velocities and consequently lower resistance would require the use of large fans in order to operate at high efficiency, considering the entire installation of heater, piping and fan, the annual cost of power should be practically

^{*&}quot;The design of Indirect Heating Systems with Respect to Maximum Economy of Maintenance and Operation," by Frank L. Busey and Willis H Carrier.

30 per cent. of the total annual allowance for interest and depreciation. If this allowance is taken at 20 per cent. as an average, we would have approximately 6 per cent. on the first cost as the most economical yearly rate to be allowed for power.

Practical Applications

For the purpose of illustrating the application of the foregoing principles to a system of galvanized iron piping, different cases will be assumed and results shown. A system handling 30000 cu. ft. per minute, at a velocity of 1950 ft. per minute, will require a pipe 53 inches in diameter, or an area of 15.32 sq. ft. These quantities will be taken as a constant condition, but different arrangements considered in the system of piping.

Assuming one straight duct 200 feet long and 53 inches in diameter, delivering all of the air at the end farthest from the fan, we will have two sources of loss to be overcome by the fan.

First, the dynamic loss due to the velocity of 1950 feet per minute (or one velocity head), and second, the loss due to friction, amounting to one velocity head in each 50 diameters of length. The pressure due to the velocity of 1950 feet per minute in the pipe (one velocity) will be 0.237 inch, water gauge. The loss of pressure due to friction will be

 $\frac{200}{4.42 \times 50} = 0.905$ velocity head

This loss expressed in inches of water will be $0.237 \times 0.905 = 0.214$ inch

and the total loss will be the sum of these two, or 0.451 inch. In the piping system a part of the velocity is converted to static pressure, hence the power calculated should be based on total pressure with a corresponding fan efficiency of 50 per cent. At a rate of \$20 per H. P. yr., the annual cost due to the piping resistance will be

 $C_{po} = 30000 \times 0.000324 \times 0.451 \times 20 = $48.$

A round galvanized iron pipe, 53 inches in diameter, would be made of No. 18 iron, weighing 2.3 pounds per square foot, and would contain 14.2 sq. ft. per running foot. This would make 32.7 pounds per running foot, or a total of 6540 pounds for the entire pipe. Allowing 25 per cent. annually for interest and depreciation on an initial cost of say 10 cents per pound, the yearly allowance would be 2.5 cents per pound of iron. Then we would have as the yearly allowance for interest and depreciation

$$C_{wo} = 6540 \times 0.025 = $163.50.$$

From equation (64) we may determine that for the most economical conditions the velocity of air in the pipe should be

$$V_{\text{m}}\!=\!0.7\!\times\!1950\left(\!\frac{163.5}{88.0}\right)^{\frac{1}{13}}\!\!=\!1670~\text{ft. per min.}$$

Assuming the case where 30000 cu. ft. per minute is to be uniformly distributed by a galvanized iron pipe 200 feet long, with equal openings every 20 feet of its length, each discharging 3000 cu. ft. per minute, we will have an example of another common form of installation. Referring to the chart, page 138, we see that, if the first 20 feet of pipe is 53 inches in diameter, the next 20 feet carrying 90 per cent. of the air should be 51 inches in diameter. Treating each successive section in the same manner we may determine the diameter and weight of each section, and will find the total weight of the piping to be 3922 pounds. Then the yearly total allowance for interest and depreciation on the piping system will be

$$C_{wo} = 3922 \times 0.025 = $98.05$$

Loss in pressure due to friction will be the same as in the first case considered, or 0.214 inch, but loss due to velocity will be only 40 per cent. of the loss as calculated in the first example, or 0.095 inch. The total pressure loss will then be

$$0.214 + 0.095 = 0.309$$
 inch.

and the annual power cost at \$20 per H. P. yr. will be $C_{mo} = 30000 \times 0.000324 \times 0.309 \times 20 = 60 .

As before from equation (64) we will have as the velocity for the most economical operation

$$V_m = 0.7 \times 1950 \left(\frac{98.05}{60.00}\right)^{\frac{1}{1}} = 1575 \text{ ft. per min.}$$

Proportioning Ducts for Public Buildings

In public buildings the sizes of air-conveying ducts from fans or heaters to vertical induction flues, and the sizes of these flues, depend upon the velocity of flow in such ducts and flues. The essential factors in determining these velocities are: Limitations of economical relative speed of fans from the standpoint of power; limitations of air velocities on account of noise or by reason of increasing friction as velocities increase; limitations of velocity of inflowing air through registers into rooms; desirability of as high a velocity of air as is permissible under the limitations referred to in order to get as quick a conveyance of the warmed

air as possible; and necessary initial and intermediate velocities to overcome the resistance existing in each particular system or case.

Register Velocity

The size of vertical flues to the registers in the rooms is determined by the maximum velocities allowable in avoiding drafts and noise in the rooms. Practice has shown that the best velocities for the registers should be from 200 to 400 feet per minute over the face of the register, depending upon the size and location; floor registers from 125 to 175 feet. Velocity in the vertical flues leading to the registers should be from 400 to 750. Sizes of these vertical flues are determined largely by the size of register desirable. In general, the velocity in these risers should be low, in order to obtain as uniform a flow as possible over the register area.

STANDARD SIZES OF REGISTERS AND RISERS FOR PUBLIC BUILDINGS

Cu. Ft. of	Register	Av. Vel. Over	Size of Riser	Riser Velocity
Air per Min.	Size Inches	Face of Reg.	Inches	Ft. per Min.
160	8 x 13	220	6 x 8	490
230	8 x 18	230	8 x 8	510
290	10 x 18	230	8 x 10	525
360	12 x 18	240	8 x 12	540
430	14 x 18	245	8 x 14	555
510	16 x 18	255	8 x 16	570
580	12 x 30	230	12 x 12	580
690	14 x 24	295	12 x 14	590
810	16 x 28	260	12 x 16	605
925	18 x 27	275	12 x 18	615
1040	20 x 26	290	12 x 20	625
1160	22 x 28	270	12 x 22	635
1290	24 x 27	285	12 x 24	645
1450	20 x 36	290	16 x 20	653
1620	22 x 36	295	16 x 22	663
1790	24 x 36	300	16 x 24	672
1970	24 x 36	330	16 x 26	080
2140	27 x 38	300	16 x 28	687
2310	30 x 36	310	16 x 30	593
2490	30 x 36	330	16 x 32	700

Duct Velocity

The velocity in horizontal ducts leading from the apparatus to the vertical risers is determined chiefly by the resistance of the duct. In practice these velocities will vary from 700 feet to 1200 feet depending upon size and length of duct, number of elbows, etc. A designer with considerable experience may proportion these ducts so as to give very uniform distribution without going into any extended calculation. However, it is desirable to have a correct method as a basis. For the benefit of engineers and architects we give here the method that may be employed in the determination of duct velocities and sizes.

Allowing for Friction

The principal losses in piping systems for public buildings are in the horizontal ducts where velocity is highest. Losses in these ducts depend upon velocity, size and length of duct, and upon the number of elbows, together with a considerable loss in pressure as the air enters the duct. An ideal system should take all these factors into consideration and so proportion the velocities that the resistance may be practically equal in all ducts regardless of the length, etc. The system above mentioned accomplishes this in a practical manner and at the same time avoids any laborious calculation. For each duct a factor may be obtained by inspection in accordance with the following formula:

$$F = 2\frac{1}{2} + \frac{L}{4W} + \frac{N}{5}$$
 (65)

This factor represents loss by friction in terms of velocity head. The first term, $2\frac{1}{2}$, is approximately the number of times the velocity head is lost by entrance to the pipe, entrance to the vertical flue, and loss in riser and register. The second factor represents loss due to length and size of pipe; L is length in feet and W is approximate width in inches. The third term represents that proportion of the pressure lost in elbows, and N is the number of long radius elbows. One square elbow is considered equal to two long radius elbows. In checking over the piping layout the factors for the various ducts are first found as above and from these factors the velocity in the respective ducts is ascertained directly. In determining these velocities it is usual to allow a loss not exceeding one-quarter of the total fan pressure, which in practice usually amounts to about one-quarter

of an inch. The velocity corresponding to a pressure of onequarter of an inch is 2000, and since the velocities vary as the square root of the pressures, the factor F and the velocity V will give a loss of one-quarter of an inch if

$$V = \frac{2000}{\sqrt{F}} \tag{66}$$

Example. As an example of the above system we will assume a case where the longest run of pipe L=50 feet, W=18 inches, and the number of easy elbows N=4

We will then have

$$F = 2.5 + \frac{50}{72} + \frac{4}{5} = 4.0$$
 velocity heads

Velocity which will cause a loss of one-quarter inch will then be

$$V = \frac{2000}{\sqrt{4}} = 1000$$
 ft. per min.

Proportioning Piping for Industrial Buildings—Supply or Blast System

In proportioning main and branch pipes in industrial buildings, the primary aim is to secure as uniform a distribution as possible without the necessity of dampering, as well as to secure economy of power and economy of material. It has been found good practice in proportioning piping systems to decrease the velocity in the main pipes as the air quantity decreases. As already stated, this principle of proportioning has three advantages. First: It utilizes the velocity of the air in producing static pressure in the system. Second: By this means a nearly uniform static pressure may be secured in all parts of the pipe line, giving a very uniform distribution of air throughout. Third: It reduces the friction in the smaller pipes, which would otherwise be excessive.

Equations giving ideal distribution of static pressure for roundpipes are

$$\frac{V_2}{V_1} = \sqrt{\frac{L_1}{40D_1} + \frac{N}{5} + 1} \tag{67}$$

and

$$\frac{D_1}{D_2} = \sqrt{\frac{C_1}{C_2}} \sqrt[4]{\frac{L_1}{40D_1} + \frac{N}{5} + 1}$$
 (68)

These equations for rectangular pipes are

$$\frac{V_2}{V_1} = \sqrt{\frac{(a+b)L_1}{80 \text{ a b}} + \frac{N}{5} + 1}$$
 (69)

or when the short side a remains constant and the long side \underline{b} changes

$$\frac{\mathbf{b_2}}{\mathbf{b_1}} = \frac{\mathbf{C_2}}{\mathbf{C_1}} \frac{1}{\sqrt{\frac{(\mathbf{a} + \mathbf{b}) \ \mathbf{L_1}}{80 \ \mathbf{a} \ \mathbf{b}} + \frac{\mathbf{N}}{5} + 1}}$$
(70)

where

V₁=an assumed or predetermined velocity in a length of pipe.

V2 = velocity in the preceding length of pipe.

 L_1 =length and D_1 =diameter both expressed in feet of the length of pipe having the velocity V_1 .

N = number of easy long radius elbows in section L₁. C₁ and C₂ = the corresponding air quantities in the pipes D₁ and D₂.

a = short side and b = long side of a rectangular pipe.

The application of these formulae is clearly shown by a reference to the sketch on page 135, where velocity V_1 is known and velocity V_2 is to be determined. The decrease in velocity between V_2 and V_1 will then be sufficient to care for the static losses of the section having the velocity V_1 .

The following method of proportioning piping has been carefully tested and has been found to give a satisfactory distribution when applied to the reduction in size of the main duct with a series of outlets along its length, or to branch pipes of equal length. It also facilitates the calculation of friction. When the branch pipes are of unequal length a correction should be applied as explained under "Equalizing Friction for Unequal Length" on page 139. The principle involved is to so proportion the velocities in the various pipe sizes as to give equal friction in all air pipes per running foot regardless of their size. It may

easily be shown that the equation which relates the carrying capacity of a pipe to its size to suit this condition is

$$\frac{\mathrm{d_2}}{\mathrm{d_1}} = \left(\frac{\mathrm{C_2}}{\mathrm{C^1}}\right)^{\frac{2}{15}} \tag{71}$$

Where d_1 and d_2 are the relative diameters of two pipes and C_1 and C_2 are the relative air quantities. As an equation in this form would be difficult of computation, the diagram shown on page 138 may be conveniently employed.

In using this chart commence with the main pipe equal in area to the fan outlet, or larger, as circumstances may require. All sizes are proportioned directly from this main pipe size, will be noted that the curve is plotted for per cent, capacity and for per cent. diameter according to the formula for constant friction per foot of length. For instance, if we have a branch pipe which is required to carry 50 per cent. of the capacity of the main pipe, we find the point on the curve which corresponds to 50 per cent. capacity and which gives a corresponding point of 76 per cent. diameter; that is, a pipe to carry 50 per cent. of the capacity with the same friction per foot must have 76 per cent. of the diameter, which may be easily calculated or be read directly from the chart for various pipe sizes. It will be seen that straight lines are drawn for pipe sizes from 20 inches up to 80 inches in diameter. Supposing the size of the main pipe is 60 inches in diameter, then following to the line of 60-inch pipe, we find from the scale above a diameter of 46 inches, which is the size of pipe which has half the capacity of a 60-inch pipe with the same friction per foot. By this method the sizes may be read off rapidly without any intermediate calculation.

Example. Let the main pipe from the fan be 48 inches in diameter in the form of a straight duct having ten equal outlets. The first section of piping is 48 inches, the second section has a capacity of 90 per cent., the third section 80 per cent., the fourth 70 per cent. and so on. Corresponding to 90 per cent. we find a diameter of 96 per cent. which for a 48-inch pipe gives us 46 inches for the second section. For the third section we have 80 per cent. capacity corresponding to 91 per cent. diameter, or again following from left to right to the 48-inch line, we find a diameter of approximately 44 inches. For the fourth section we have 70 per cent. capacity with a corresponding pipe size of $86\frac{1}{2}$ per cent. of the main pipe and a diameter of between 41

inches and 42 inches determined as before. For the last section we have 10 per cent. capacity or 40 per cent. diameter, which gives a diameter of between 19 inches and 20 inches.

The sizes of the outlets are not calculated by means of this diagram, but are proportioned so as to give the desired velocity to the air leaving the outlets. This velocity will be determined by the size of the room and consequent distance the air is to be carried, and by the required freedom from drafts due to high velocity of the air leaving the outlets. Outlet velocities varying from 500 to 1400 feet per minute are ordinarily used, depending on the circumstances. The most commonly used velocity at the outlet is about 1000 feet per minute.

As already stated, the above system of proportioning piping applies to the reduction in size of the main pipe where a series of outlets are taken off, or to branch pipes of equal length. When these branch pipes are of unequal length, a correction should be applied as explained in the next paragraph under "Equalizing Friction for Unequal Length."

Equalizing Friction for Unequal Length

The above system of proportioning piping refers to cases where outlets or branch pipes are of equal length. In case one or more of these branch pipes are of unequal length the shorter pipes will tend to discharge more air than intended. It will then be necessary to so design the various branches that the frictional resistance in each will be equal, or adopt the common practice of placing a damper in each pipe and partly closing it in the pipes which deliver too much air.

The better way of equalizing the friction through a system having runs of unequal length is so to proportion the different runs that the resistance of each is the same. This may be accomplished either by using a smaller pipe and higher velocity in the short pipes, or by making the long run of greater diameter with a corresponding lower velocity and pressure loss.

The change in diameter required to accomplish this equalization of friction loss due to unequal lengths of piping may be computed by means of the following formula,

$$\frac{d_1'}{d_1} = \sqrt[5]{\frac{l_1 + 45 d_1}{l_2 + 45 d_2}} \tag{72}$$

where d₁ and d₂ are the diameters, and l₁ and l₂ the lengths of the two runs of piping, both expressed in feet, as originally laid out, and d₁' is the diameter d₁, corrected so as to equalize friction

between the two branches. The regular method of proportioning piping as described on pages 135 to 139 results in equal friction per foot of length, but formula (72) gives equal friction, and therefore the desired distribution, for different lengths of piping.

This formula may be readily solved by means of the curve on page 140, which gives the fifth root of the various ratios of $(l_1+45 d_1)$ to $(l_2+45 d_2)$. This ratio should be applied after the piping has been laid out for equal friction per running foot according to the method explained in the preceding section.

Example. Assuming a piping system has been proportioned for equal friction per foot of length according to the method explained in the example on page 137, and that there are a number of branch pipes ten feet long and one branch pipe to a distant room is 50 feet long. To carry the desired amount of air, according to the method already referred to, we will assume the short pipes are to be 15 inches and the long pipe 12 inches in diameter. While friction in this long run will be the same per lineal foot, owing to the fact that it is longer than the other branches, total friction will be greater and air delivery will be less than desired.

Letting $l_1=10$ and $d_1=1.25$ as the length and diameter of the short branch, and $l_2=50$ and $d_2=1$ as the length and diameter of the long branch, we may determine the corrected diameter d_1' by means of the factor obtained from the curve on page 140. We will have

$$\frac{\mathbf{l_1} + 45\,\mathbf{d_1}}{\mathbf{l_2} + 45\,\mathbf{d_2}} = \frac{10 + 56.3}{50 + 45} = 0.698$$

and from the curve (page 140) the corresponding ratio

$$\frac{d_1'}{d_1} = 0.93 \text{ or } \frac{d_2'}{d_2} = \frac{1}{0.93} = 1.075$$

In this case diameter of the longer branch should be increased to $d_2{'}=12\times 1.075=12.9 \ inches.$

Piping Layout

Values in the tables on pages 144 to 152 are taken from the diagram and for rapid work may be found more convenient than the curves. They give directly the diameter of the branch pipe required to carry, with equal friction, any given percentage of the air carried in the main pipe whose diameter will be found across the top of the table.

In reducing from one pipe size to another the taper should be $1\frac{1}{2}$ inches to the foot until the area is reduced to the size required.

The branches should leave the main at any angle less than 45°, preferably 30°, but it is not necessary to adhere to this rigidly.

Elbows of 90° should be made with a radius of 1½ diameters to the center of the pipe. In mains having high velocity two diameters is a better radius.

Outlets which discharge directly from the main or branches, as is often the case in industrial buildings, should be made about two diameters in length.

By the foregoing method of proportioning piping, it becomes unnecessary to consider the resistance of each section of pipe independently as the friction is constant per foot of length. It is simply necessary to know the length of the longest run of piping in feet, number and sizes of elbows, and diameter and velocity in the largest pipe, as the loss is exactly the same as though the entire amount of air was carried through the largest pipe the entire distance. It is usual to make the area of the largest pipe approximately equal to the area of the fan outlet.

Example. As an example of this method of figuring, assume 120 feet as the length of piping to the farthest outlet with a main pipe of 48 inches diameter and with three reductions of 39, 30 and 20 inches diameter, each containing one 90° elbow. We may then compute the friction in the following manner:

The main pipe is 48 inches or 4 feet in diameter.

120 feet is equivalent to $\frac{120}{4}$ or 30 diameters of 48-inch pipe.

1-48-inch elbow is equivalent to 10 diameters of 48-inch pipe.

1-39-inch elbow is equivalent to 10 diameters of 39-inch pipe or $\frac{83}{2} \times 10 = 8.13$ diameters of 48-inch pipe.

1–30-inch elbow is equivalent to 10 diameters of 30-inch pipe or $\frac{30}{8} \times 10 = 6.25$ diameters of 48-inch pipe.

1-20-inch elbow is equivalent to 10 diameters of 20-inch pipe or $\frac{20}{48} \times 10 = 4.17$ diameters of 48-inch pipe.

Then the total equivalent length will be 30+10+8.13+6.25+4.17=58.55 diameters of 48-inch pipe.

The equivalent loss in velocity head will then be

 $58.55 \div 50 = 1.17$

times the velocity head in the 48-inch main. Further, there is a velocity head remaining in the 20-inch pipe which gives an

PROPORTIONING PIPING

additional loss evidently of $^{20}4s$ of one velocity head or 0.42 times the velocity head in the 48-inch main. This gives a total loss in the piping system, neglecting the loss of entrance of

1.17 + 0.42 = 1.59

times the velocity head in the 48-inch main. If we allow a velocity in the 48-inch main of 2000 feet per minute the corresponding velocity head will be 0.25 inch. The loss in pressure in the piping system is

 $0.25 \times 1.59 = 0.398$ inch.

Carrying Capacity of Pipes

Carrying capacity of round ducts at various velocities may be found from the tables on pages 154 and 155. Capacity of rectangular ducts may be determined from the table of equivalent sizes on pages 156 and 157. Thus if we are to handle 20000 A. P. M. at a velocity of 1800 feet per minute a round pipe 46 inches in diameter should be used. In case a rectangular duct is to be used the size may be found by selecting from the table on page 157 the proper sizes to correspond to the dimension 46 inches in the body of the table. Thus we might use a 35×50 , a 38×46 , a 42×42 , or any one of a number of other combinations.

Three-Quarter Housing Planoidal Type "L" Fan

	40	080112124735517880000011938888444447885555
	39	08011111111111111111111111111111111111
	38	08011111111111111111111111111111111111
	37	08001111111111111111111111111111111111
	36	080011211111111111111111111111111111111
	35	22222222222222222222222222222222222222
	34	75555555555555555555555555555555555555
	33	78600183884456666675751111111111111111111111111111
	32	78601113884448439977778888666600000111
	31	7880001233333 78800012333844435559000000
	30	0800001113366446555000000000000000000000000000000
	29	0r80001131313144447555600rrrr888889000
Pipe	28	80000000000000000000000000000000000000
Main	27	80001111111111111111111111111111111111
	26	978896001111222222224444444444444444444444444
Diameter of	25	01-800000011221212124444447577 773
Jiam	24	9288888888888888888888889
	23	07-7-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8
	22	000-88880000001111111111111111111111111
	21	07-7-88800000001111111111111111111111111
	20	33333355555555555555555555555555555555
	61	322222222222222222222222222222222222222
	18	222211111110000000000000000000000000000
	17	092444400000000000000000000000000000000
	91	097777776000000000000000000000000000000
	15	000000000000000000000000000000000000000
	14	
	13	©©©©©\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	12	00000001111111111
A 10	%	-4247012242222222222222222222222222222222

	,	
	69	04171123222222222222222222222222222222222
	89	04701846786001886888888888888888888888888888888
	29	047.012446974444444444444444444444444444444444
	99	041-012222222222222222222222222222222222
	65	01111010101010101010101010101010101010
	64	0:111000000000000000000000000000000000
	63	021110000000000000000000000000000000000
	62	0111101010101010101010101010101010101010
	19	0.000000000000000000000000000000000000
	09	0.000000000000000000000000000000000000
	59	0344780138449977780000000000000000000000000000000
e	200	021010101010101010101010101010101010101
Diameter of Main Pipe	57	03440800-198475-1-1-1-198080888888888888888888888888888
Mair	56	03440C001844660C00000C000000000000000000000000000
r of	55	0244012020202020202020202020202020202020
nete	54	######################################
Diar	53	######################################
	52	03330000000000000000000000000000000000
	51	######################################
	20	1244611111111111110000000000000000000000
	49	0144751-111222222222222222222222222222222222
	48	**************************************
	47	L0387451888601188884488888888888888888888888888
	46	F04847078000199884447760005778888899999
	45	C0184787181818888888888888888888888888888
3	44	L0114480118010101010101010101010101010101
	43	L0111111111111111111111111111111111111
	42	P011844001111111111111111111111111111111
	14	0.0012446047446000000000000000000000000000000
A 10	%	333322222222222222222222222222222222222

Diameter of Main 27-02222288888888884444444 27-0227-80184297886-128443 JIV 10 %

	40	*************************************
	39	**************************************
	38	######################################
	37	444444555555555555555555555555555555555
	36	44447777775555555555555555555555555555
	35	######################################
	34	######################################
	33	######################################
	32	222222222222222222222222222222222222222
	31	22222222222222222222222222222222222222
	30	809919191919999999
	29	## ## ## ## ## ## ## ## ## ## ## ## ##
Pipe	28	### ### ### ### ### ### ### ### #### ####
Main	27	SERVICE SERVIC
OF M	26	
lameter of	25	222222222222222222222222222222222222222
lam	24	11000000000000000000000000000000000000
2	23	000000000000000000000000000000000000000
	22	10000000000000000000000000000000000000
	21	44445555555555555555555555555555555555
	20	E::444444466666666666666666666666666666
	19	88888888444444444444444444444444444444
	18	77777777777777777799 77777777777777777
	117	
	16	
	15	0.0000111111111111111111111111111111111
	14	022222222222222222222222222222222222222
1	113	000000000000000000000000000000000000000
	12	888888888888888888888888888888888888888
A lo	%	33.33.33.33.33.33.33.33.33.33.33.33.33.

	66	46	120	- 2-	000	$\infty \propto$	61	9,9	21	Z :	22	223	2 50	8	4.4	55	3.5	993	100	22	27	200	600	1
	88	45 4	-			-												-			92	22	00 00	
	67 (44			÷	_	<u> </u>	-		_		_		_		_		_	_	-	55	999	77	
	9	44				_			_			_	-					-	÷	_	÷		99	
	55 6	25.5	-	-	÷		÷	_	<u> </u>			-		÷	-	_	-			_			rc) rc rc) rc	
	54 6	22			-		<u> </u>	-	_		_			_										-
	63 6	41 4			_	_		-	÷	-		-	_	-	-	_			_					-
	52 6	4114			_				_			4.	44	-	8 6 6 4 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	_		_	_			-	200	
			-		-	_	÷	-	÷	÷		6 4	44	_		÷	_							1
	0 61	9 40		_	_	_	_		_	-	_	_		_	-			_						1
	09	39										_						-	4 4	(A)	20.0	200	10.10	
	29	39			÷							_		_	4 4	4	4.4	4	4, 4	4 4	46	4.00	20.00	5
	58	388			÷	-			-	-		-	44		4.7	46	46	47	47	48	48	4.0	46	
	57	38	380	30	39	404	41	4 4	45	425	443	43	24 4 4	44	44	45	45	46	46	47	47	2. 4. 4. X.	48	
	56	37	300	38	33	39	40	40	41	41	424	42		43	44	44	45	45	46	46	47	47	47	
	55	36	37	38	38	308	39	39	40	40	4 4	42	4 2 2 4	43	43	44	44	44	45	45	46	46	47	
	54	35	36	37	37	00 00 00 00 00 00	300	30	39	40	40	41	4 4	42	420	43	43	44	44	444	45	45	46	1
	53	35	35	36	37	37	38	8 88 8 88	39	39	40	40	40	41	41	42	242	43	43	44	44	444	45	2
	52	34	35	35	36	37	37	327	38	300	30	39	40	40	40	41	41	45	45	43	43	44	44	
	51	33	34	35	35	36	36	37	37	300	00 00 00 00	39	30	39	40	40	41	41	24	427	42	2 43	43	-
	50	2000	200	34	34	3 50	36	36	37	37	38	900	00 00 00 00	39	39	40	40	40	4:	414	42	22.4	125	T.
	49	322	233	33	34	35	35	3 23	36	36	37	37	32	38	85 8 80 8	39	39	40	40	40	41	4.4	425	3 10
	48	32	35	300	33	34	34	3.55	35	35	36	36	37	37	37	38	300	39	39	39 40	40	40	41	-
	47	31	31	325	322	3 63	333	34	34	35	35	35	36	36	37	37	37	300	300	39	39	39	94	-
	46	30	31	32	32	322	200	20 00	34	34	34	35	35	35	36	36	37	37	37	20 00 20 00	38	300	33	00
	45	30	30	31	31	32	32	333	33	33	34	34	42.5	35	25.2	36	36	36	36	37	37	00 00	380	00
	44	29	20	30	30	25	31	322	32	35	33 0	33	25. 4. 4.	34	20 cc 4 cc 7 cc	35	25.0	36	36	36	37	37	37	000
	43	828	200	30	30	30	31	2 2	32	37.5	355	33	333	33	34	34	34	35	35	36	36	36	37	0
	42	888	286	29	29	30	30	30	31	31	31	32	357	33	233	33	4 6	34	34	35.	35	35	36	30
	41	27	888	28 8	28	626	29	30	30	30	31	31	32	32	325	333	333	33	33	34	34	35.	35	00
0	%	34	30	38	39	6:	7	43	45	10	47	40	20	52	53	55	50	200	59	250	62	64	655	3
																								- 6

0 4 4 4 4 4 4 4 4 4
####################################

№ №
■ 11111139193999999999999999999999999999

000000000000000000000000000000000000
#17770000000000000000000000000000000000
1
22222233333333333333333333333333333333
20000000000000000000000000000000000000
000000000000000000000000000000000000000
6 0000000000000000000000000000000000000
44.200000000000000000000000000000000000
L 84444444444 844444444 844444444
3 9000000000000000000000000000000000000
K 93233333333333333333333333333333333333
<u>4</u> 2222222223333333333333333333333333333
<u>x 88888222222222222223388888888888888888</u>
2 2000000000000000000000000000000000000
<u>z </u>
000000000000000000000000000000000000000
<u>• </u>

1222222222222222222222222222222222222
a 4444440000000000000000000000000000000
r x
4 00000000000000000000044444444444444
<u> </u>
2
0 %

 $\frac{44}{2}$

 $\frac{1}{2}$ 88866000111222222244455

Outlets, as used with Fan System Typical Layout of Piping Showing Main Ducts and Branch Outler Heating Apparatus in a Machine Shop

CARRYING CAPACITY OF PIPES

This table specifies the diameters of pipes required for the passage of stated volumes of air at given velocities. The column, "Cubic feet of air per minute," indicates various quantities of air to be moved per minute. The figures at top of table give the velocities in feet per minute at which the air is to be moved, and the figures in the body of the table state the required diameters of pipes for the passage of the volumes mentioned at the given velocities.

k Ft.					Veloci	ties					
Cubic of Ai	500	800	1000	1200	1500	1800	2000	2500	3000	3500	4000
200 400 800 1000 1200 1400 1800 2200 2240 2240 2360 360 360 360 360 360 360 360 360 360	9 8 13 11 15 14 16 20 18 21 20 23 21 25 23 21 25 23 26 24 28 25 33 30 28 31 29 33 30 34 31 34 31 34 32 36 33 37 34 38 35 40 36 41 37 42 39 42 39 42 44 44 40	7 10 12 14 16 17 18 20 21 22 23 24 25 26 27 28 28 29 30 31 32 32 33 34 35 35 36 37 38 38 39 40 40 41 41 41 42 43 43 43	7 9 11 13 14 15 16 18 19 20 21 22 23 4 25 5 26 27 28 29 30 30 31 31 32 33 33 34 34 34 34 34 34 34 34 34 34 34	6 8 10 12 13 14 15 16 17 18 19 20 21 22 23 23 22 24 25 26 27 28 29 30 30 31 31 23 32 32 33 33 34 34 34 34 34 36 36 36 36 36 36 36 36 36 36 36 36 36	6 8 9 10 12 13 14 15 15 16 17 18 19 20 20 21 22 23 24 24 25 25 26 27 27 27 27 27 27 29 30 30 30 30 31 31 31 31 31 31 31 31 31 31 31 31 31	7 8 9 10 11 12 13 14 15 16 17 18 18 19 19 19 20 21 21 22 22 22 22 22 22 22 22 22 22 22	6 7 8 9 10 11 12 13 13 14 15 15 16 16 16 16 16 17 18 19 19 20 20 21 21 21 22 22 23 23 24 24 24 24 25 26 26 27 27 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	6 6 7 7 8 9 10 11 11 12 13 13 14 15 15 15 16 16 17 18 18 18 19 19 20 20 21 21 21 22 22 22 23 23 24 24 24 25 25 25 25 25 25 25 25 25 26 26 27 27 27 27 27 27 27 27 27 27 27 27 27	6 8 9 10 11 11 12 13 13 14 15 15 16 16 16 16 17 17 18 18 18 19 20 20 21 121 22 12 22 22 22 22 23 23	6 6 6 7 8 9 9 9 10 11 11 12 12 13 13 13 14 14 15 15 16 16 16 17 17 18 18 18 18 18 19 19 20 20 20 20 21 21 21 21	101111111111111111111111111111111111111

CARRYING CAPACITY OF PIPES

				CA	KK	YII	U	U/	IPA	CITY OF PIP	ES							_
	_			Vel	oci	ties							Ve	eloc	itic	25		C
Cu. Ft.										Cu. Ft.								-
of Air per	000	1200	1500	800	2000	2500	3000	3500	1000	of Air per	1200	1500	1800	2200	2500	3000	3500	000
Minute	12	12	15	-8	20	25	30	35	9	Minute	12	15	18	22	25	30	35	5 5
	_	_		_														_ 0
8600	40		33		29	25	23	21	20	54000	91	82		68	63	58	54	50
8800 9000	41	37	33	30 31	29 29	$\frac{26}{26}$	24 24	21 22 22	$\frac{21}{21}$	55000 56000	92 93	82 83	75 76	68	64 65	58 59	54 55	51 -
9200	41	38 38	34	31 31	30 30	$\frac{26}{27}$	24 24 24	22 22	21 21	57000 58000	94	84	77	69	65	60		52 -
9400 9600	42	39	35	32	30	27	25	22 23	21	59000	95 95	85 85	77	70 71	66	60	56	52 C
9800	43	39 40	36	$\frac{32}{32}$	30 31	27 28	25 25	23 23	21 22	61000	96 97		79	71	67	61 62	57 57	52 53 53
10000	45	41	37	33	31	29	26	24	23	62000	98				67 图图	62	57	54 -
12000 13000	47	43 45	39	35 37	34 35	30 31	28 29	25	24 25	63000 64000			П	73 73	68	63	58 58	54 55
14000	51		42	38	36	33	30	27 28	26	65000				74	70	83	59	55 %
15000	53 55			40 41	38 39	34	31 32	28 29	27 28	66000 67000				75 75	70 71	64	59 60	56 56
17000	56	51	46	42	40	36	33	30	28	68000				76	71	65	60	56
18000	58 60	53 54		43 44	41	37	34 34	$\frac{31}{32}$	29 30	69000 70000				76	71 72	65	61	57 57
20000	61	56	50	46	43	39	35	33	31	71000				77	73	66	61	57
21000	63 64	57 58		47	44	40	36 37	34 34	31 32	72000 73000				78 78	73 74	67 67	62 62	58
23000	65	60	53	49	46	42	38	35	33	74000				79	74	68	63	59 \$
24000 25000	67	$\frac{61}{62}$		50 51	47	42	39 40	36 37	34	75000 76000				79 50		68		59
26000	70	63	57	52	49	44	40	38	35	77000				81	76	59	64	60
27000 28000	71	65		53 54	50 51	45	41 42	38	36	78000 79000				81 82	76		B4 65	60
29000	73	67	50	55	52	47	42	30	37	80000				82	77	70	65	61
31000	75	68 69	61	56 57	53 54	47	43	40	38	81000 82000				83 83	78 78	71 71	66 66	61
32000	77	70	63	57	55	49	45	41	39	83000				84	79	72	66	
33000 34000	78 79	72 73	65	58 59	56 56	50 50	45 46	42	39	84000 85000				84 85	79 79	72 73	67 67	63
35000	81	74	66	60	57	51	47	43	40	86000				85	80	73	68 68	63
36000 37000	82 83	75	67	$\frac{61}{62}$	58 59	52 52	47	44	41	87000 88000				86	80	73 74	68	64
38000		77		63	60	53	49	45	42	89000				87	81	74 75	69	65
39000 40000	85	78 79	70 71	63 64	$\frac{60}{61}$	54 55	49 50	46	43	90000 91000				87 88	82	75	70	
41000	87	79		65	62	55	50	47	44	92000				88	83 83	75 76	70 70	65
42000 43000	89		72 73	66 66	63 63	56 57	51 51	47	44	93000 94000				89	84	76	71	66
44000	90		74	67	64	57	52	4R	45	95000				90	84	77 77	71 71	66 67
45000	91	83	75 75	68	65 65	58 59	53 53	50	46	96000 97000				90	85	77	72	67
47000	93		76	70	66	59	54	50	47	98000				91	85	78 78	72 72	68 68
48000 49000	95	86	77 78	70 71	67 68	60 60	55 55	50 51	47	100000				92	86	70	73	68
50000	96	88	79	72	68	61	50	51	48									
51000 52000	97	89	79 80	73 73	69	62 62	56	52 53	49									
53000		90			70				50									

AN	ENGINEERING-BUFFALO FORGE COMPANI
_	99399888888888888888888888888888888888
34	99999000000000000000000000000000000000
	@@@@@rrd\-@rd4-x46r40@0@4
23	999999-0000000000000000000000000000000
-	
77	97999978888888888888444 478678888848785778888944 97488916876787878787878
2	947979797888888888888888888888888888888
-	
02	99999999999999999999999999999999999999
4	ดีสีสีสีสีสีสีสีสีสีสีสีสีสีสีสีสีสีสีส
	07/38/48/38/28/28/28/28/28/28/28/28/28/28/28/28/28
6	944405000000000000000000000000000000000
	ά 4 ο ο ά α ο 4 ή ο κ. 4 - α α ο ο ο ή ο 4 ο 4 ο 4 ο 4 ο 4
18	139939399939999999888888888888888888888
-	PNXWWNCDP4NXGNX4-5WXXXXXXXXXXXX
17	. #10-999999999999999999999999999999999999
9	78888888888888888888888888888888888888
5	27-5-1-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2
-	######################################
4	#####################################
-	447755777788888888888888888888888888888
5	441111111111111111111111111111111111111
-	######################################
12	EEE447755777780001733388447755877788898
=	2328244666525860001199888499999999999999999999999999999
-	
2	
6	0-0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
-	
00	x0000000000000000000000000000000000000
1	8x9000000000000000000000000000000000000
9	C8888000000000000000000000000000000000
	12777777777777777777777777777777777777
100	© N N N N N N N N N N N N N N N N N N N
-	のアンの名ののののつつニーニッジングはは444666666666667トアア
255	\$\$\$0-##4\$\$\\$

48				52.8	54.0 55.0 56.0	57.0 58.0 58.9	59.7 60.6 61.6	62.6 63.5 64.5
94				50.6	52.9 53.8 54.8	55.9 56.8 57.7	58.5 59.4 60.4	61.3 62.1 63.0
4				48.4 49.5 50.5	51.6 52.5 53.5	54.6 55.5 56.4	57.2 58.1 59.1	59.9 60.6 61.3
42			46.2	47.2 48.4 49.3	50.4 51.3 52.3	53.3 54.2 55.0	55.9 56.8 57.6	58.4 59.1 60.0
40			44.0	46.1 47.2 48.1	49.1 50.1 51.1	52.0 52.9 53.8	54.5 55.4 56.2	56.9 57.7 58.7
39			43.4	45.5 46.6 47.5	48.5 49.5 50.5	51.3 52.2 53.0	53.9 54.7 55.5	56.2 57.0 57.8
38			41.8 42.9 44.0	44.9 46.0 46.9	47.9 48.9 49.9	50.6 51.5 52.3	53.0 53.9 54.7	55.5 56.2 57.0
37			41.2 42.3 43.4	44.3 45.4 46.3	47.1 48.2 49.2	49.9 50.8 51.6	52.4 53.2 53.9	54.6 55.4 56.2
36		39.6	40.7 41.7 42.7	43.7 44.8 45.6	46.5 47.5 48.4	49.1 50.0 50.9	51.7 52.4 53.1	53.8 54.5 55.4
35		39.1	40.1 41.1 42.1	43.1 44.2 45.0	45.9 46.8 47.6	48.5 49.4 50.1	50.9 51.7 52.4	53.1 53.7 54.6
34		38.5	39.5 40.5 41.5	42.5 43.5 44.4	45.2 46.1 47.0	47.7 48.5 49.3	50.0 50.9 51.6	52.2 52.9 53.7
33		36.8	39.0 39.9 40.9	41.8 42.9 43.7	44.5 45.4 46.4	46.9 47.8 48.5	49.3 50.0 50.7	51.4 52.0 52.8
32		35.2 36.3 37.3	38.4 39.3 40.3	41.2 42.2 43.0	43.8 44.7 45.5	46.2 47.0 47.8	48.4 49.2 50.0	50.7 51.3 51.9
31		34.6 35.7 36.7	37.7 38.6 39.6	40.5 41.5 42.3	43.0 43.9 44.7	45.4 46.2 46.9	47.6 48.4 49.1	49.7 50.4 51.0
30	33.0	34.1 35.1 36.1	37.1 38.0 39.0	39.9 40.8 41.5	42.3 43.1 44.0	44.6 45.4 46.1	46.8 47.5 48.2	48.9 49.5 50.1
29	32,5	33.5 34.5 35.5	36.5 37.4 38.3	39.2 40.0 40.8	41.5 42.3 43.2	43.8 44.5 45.4	46.0 46.7 47.3	48.0 48.7 49.3
78	30.8	32.9 33.9 34.9	35.9 36.7 37.6	38.5 39.3 40.0	40.8 41.6 42.4	43.0 43.8 44.5	45.1 45.8 46.5	47.2 47.8 48.4
27	30.2	32.3 33.3 34.3	35.3 36.0 36.8	37.7 38.5 39.2	40.0 40.8 41.5	42.1 42.9 43.6	44.3 44.9 45.6	46.3 46.9 47.5
26	28.6 29.7 30.7	31.7 32.7 33.7	34.6 35.3 36.0	36.9 37.8 38.5	39.2 40.0 40.7	41.3 42.1 42.7	43.4	45.3 46.0 46.5
25	28.1 29.1 30.1	31.1 32.0 32.9	33.8 34.6 35.2	36.1 37.0 37.8	38.4 39.1 39.8	40.4 41.2 41.8	42.5 43.1 43.7	44.4 45.0 45.5
Side Rect. Duct	388	32	38	444	52 54 54	588	223	228

Sizes and Weights of Piping

Conduits through which air is conveyed may be either round or rectangular, depending on conditions to be met, and the terms piping or ducts are used for either cross section. The accompanying table gives the gauge of iron generally used for galvanized iron piping in heating and ventilating work, and also the weight per lineal foot of such pipes. For method of proportioning piping see page 135.

WEIGHT PER LINEAL FOOT AND GAUGES FOR GALVANIZED IRON PIPES ORDINARILY USED IN HEATING AND VENTILATING

Diam.	26 Gauge	Diam.	24 Gauge	Diam.	22 Gauge	Diam.	20 Gauge	Diam.	18 Gauge
10	2.70	20	7.02	30	12.17	40	18.76	50	30.90
11	2.96	21	7.26	31	12.54	41	19.20	51	31.40
12	3.22	22	7.70	32	12.93	42	19.61	52	32.00
13	3.48	23	8.04	33	13.34	43	20.30	53	32.66
14	3.74	24	8.38	34	13.73	44	20.74	54	33.20
15	4.01	25	8.72	35	14.10	45	21.20	55	34.10
16	4.27	26	9.05	36	14.50	46	21.62	56	34.65
17	4.53	27	9.40	37	14.90	47	22.10	57	35.21
18	4.87	28	9.75	38	15.29	48	22.60	58	35.84
19	5.14	29	10.07	39	15.60	49	23.00	59	36.40

GAUGES OF IRON USED FOR PIPING

He	ating and	Ventilating		Planing=Mil	and			
Round Du	cts	Rectangular	Ducts	Other Exhaust Systems				
Diam., Inches	Gauge	Width, Inches	Gauge	Diam., Inches	Gauge			
6 to 19	26	4 to 18	26	Up to 8	24			
20 to 29 30 to 39	24 22	19 to 30 31 to 60	24 22	9 to 14 15 to 20	22 20			
40 to 49 50 and above	20 18	61 to 118 118 and above	20 18	21 to 30	18			

The tables on pages 160 and 161 give the weight of galvanized iron pipes in pounds per lineal foot for the various gauges ordinarily used in duct work, as also the square feet of surface per lineal foot for pipes from 4 to 86 inches in diameter. The weight per square foot for the different gauges is given at the bottom of the second table.

The figures to the right of the heavy line indicate the gauge of iron ordinarily used in heating and ventilating work. Thus a pipe 20 to 29 inches in diameter would be made of 24 gauge and a pipe from 30 to 39 inches of 22 gauge iron. The dotted line indicates the gauge to be used for planing-mill or other exhaust work. Other gauges than those indicated may be used under special circumstances, but those shown as above represent good average practice. The small table on page 158 gives the same information regarding weights of iron in tabular forms as explained above.

In the table on page 162 will be found the weights of black steel pipe of various diameters and gauges in pounds per lineal foot, and also the material used in square feet per running foot for the different sizes. The tables on pages 163 to 167 give the weight in pounds per lineal foot of rectangular galvanized iron ducts. These tables also show the gauge of iron ordinarily used for the different sizes of ducts. Thus a pipe say 20×50 inches would be made of No. 22 gauge iron and would weigh 17.5 pounds per lineal foot, while for a pipe 20×70 inches No. 20 gauge would be used, and the weight would be 26.3 pounds per running foot.

Niagara Conoidal Type "N" Fan

WEIGHT OF GALVANIZED IRON PIPES-POUNDS PER LINEAL FOOT

Diam.	Sq. Ft. :		Nu	mber of G	auge, U. S	. S.	
of Pipe	Running Ft.	26	24	22	20	18	16
4	1.13	1.13	1.47	1.69	1.97	2.56	3.10
5	1.39	1.39	1.80	2.08	2.43	3.19	3.82
6	1.65	1.65	2.14	2.47	2.89	3.79	4.54
7	1.91	1.91	2.48	2.86	3.34	4.39	5.25
8	2.18	2.18	2.83	3.27	3.81	5.01	6.00
9	2.44	2.44	3.17	3.66	4.27	5.61	6.71
10	2.70	2.70	3.51	4.05	4.72	6.21	7.42
11	2.96	2.96	3.85	4.44	5.18	6.80	8.14
12	3.22	3.22	4.18	4.83	5.63	7.40	8.85
13	3.48	3.48	4.52	5.22	6.09	8.00	9.57
14	3.74	3.74	4.86	5.61	6.54	8.60	10.28
15	4.01	4.01	5.21	6.01	7.01	9.22	10.86
16	4.27	4.27	5.55	6.40	7.47	9.82	11.74
17	4.53	4.53	5.85	6.79	7.92	10.42	12.45
18	4.87	4.87	6.33	7.30	8.51	11.18	13.36
19	5.14	5.14	6.68	7.71	9.00	11.80	14.11
20	5.40	5.40	7.02	8.10	9.45	12.42	14.85
21	5.59	5.59	7.26	8.39	9.78	12.85	15.36
22	5.92	5.92	7.70	8.88	10.35	13.60	16.25
23	6.18	6.18	8.04	9.27	10.81	14.40	17.00
24	6.45	6.45	8.38	9.67	11.30	14.84	17.71
25	6.71	6.71	8.72	10.06	11.74	15.41	18.41
26	6.97	6.97	9.05	10.45	12.20	16.00	19.15
27	7.33	7.33	9.40	10.85	12.67	16.62	19.87
28	7.50	7.50	9.75	11.27	13.13	17.26	20.60
29	7.75	7.75	10.07	11.63	13.58	17.81	21.30
30	8.10	8.10	10.54	12.17	14.20	18.62	22.25
31	8.36	8.36	10.87	12.54	14.63	19.20	23.00
32	8.62	8.62	11.20	12.93	15.10	19.84	23.70
33	8.88	8.88	11.56	13.34	15.56	20.42	24.40
34	9.15	9.15	11.90	13.73	16.00	21.08	25.18
35	9.41	9.41	12.23	14.10	16.48	21.65	25.85
36	9.67	9.67	12.57	14.50	16.91	22.22	26.60
37	9.93	9.93	12.91	14.90	17.40	22.84	27.30
38	10.19	10.19	13.25	15.29	17.81	23.40	28.00
39	10.46	10.46	13.60	15.60	18.31	24.02	28.70

NOTE: For explanation of heavy and dotted lines, see page 159.

WEIGHT OF GALVANIZED IRON PIPES-POUNDS PER LINEAL FOOT

Diam.	Sq. Ft.		Nu	mber of Ga	uge, U. S.	s.	
Pipe	Running Ft.	26	24	22	20	18	16
40	10.72	10.72	13.95	16.08	18.76	24.68	29.50
41	10.98	10.98	14.27	16.47	19.20	25.25	30.20
42	11.24	11.24	14.60	16.86	19.61	25.86	30.90
43	11.59	11.59	15.06	17.38	20.30	26.60	31.80
44	11.85	11.85	15.40	17.78	20.74	27.25	32.60
45	12.11	12.11	15.75	18.17	21.20	27.90	33.30
46	12.37	12.37	16.10	18.55	21.62	28.43	34.00
47	12.63	12.63	16.40	18.95	22.10	29.00	34.70
48	12.90	12.90	16.78	19.35	22.60	29.70	35.50
49	13.15	13.15	17.10	19.72	23.00	30.25	36.20
50	13.41	13.41	17.45	20.12	23.50	30.90	36.90
51	13.66	13.66	17.75	20.49	23.90	31.40	37.50
52	13.94	13.94	18.12	20.97	24.40	32.00	38.30
53	14.20	14.20	18.46	21.30	24.90	32.66	39.00
54	14.46	14.46	18.80	21.69	25.30	33.20	39.70
55	14.81	14.81	19.28	22.22	25.94	34.10	40.80
56	15.07	15.07	19.60	22.61	26.40	34.65	41.40
57	15.33	15.33	19.95	23.00	26.80	35.21	42.10
58	15.58	15.58	20.30	23.37	27.30	35.84	42.80
59	15.83	15.83	20.55	23.74	27.70	36.40	43.50
60	16.12	16.12	20.95	24.18	28.20	37.00	44.30
62	16.65	16.65	21.65	24.97	29.10	38.20	45.70
64	17.16	17.16	22.30	25.74	30.00	39.50	47.20
56	17.66	17.66	22.97	26.49	30.90	40.60	48.50
68	18.21	18.21	23.65	27.31	31.83	41.80	50.00
70	18.75	18.75	24.40	28.12	32.80	43.10	51.50
72	19.25	19.25	25.02	29.92	33.70	44.30	53.00
74	19.79	19.79	25.70	29.68	34.65	45.50	54.50
76	20.41	20.41	26.60	30.60	35.62	45.77	54.73
78	21.00	21.00	27.30	31.50	35.75	46.96	55.13
80	21.5	21.5	28.0	32.3	36.65	48.16	56.63
82	22.0	22.0	28.6	33.0	37.57	49.40	58.00
84	22.6	22.6	29.4	33.9	38.50	50.60	59.40
86	23.0	23.0	29.9	34.5	39.39	51.77	60.77
W'ght ;	per Sq. Ft.	1.00	1.30	1.50	1.75	2.30	2.70

NOTE: For explanation of heavy line, see page 159.

WEIGHT OF BLACK STEEL PIPES—POUNDS PER LINEAL FOOT

Diam.	Sq. Ft.		N	umber o	f Gauge,	U. S. S	•	
of Pipe	Running Ft.	24	22	20	18	16	14	12
of Pipe 4	Per Running Ft. 1.13 1.39 1.65 1.91 2.18 2.44 2.70 2.96 3.48 3.48 3.74 4.01 4.27 4.53 4.87 5.14 5.40 5.59 5.92 6.18 6.45 6.71 7.23 7.75 8.10 8.36 8.62 8.68 9.15 9.41 9.67 9.67 9.67 9.67 9.67 9.67 9.67 9.67	1.30 1.60 2.20 2.50 2.80 3.10 3.40 3.70 4.30 4.30 4.30 4.30 4.30 4.30 4.30 4.3	1.58 1.95 2.31 2.67 3.05 4.15 4.50 4.83 5.61 5.61 7.20 7.58 8.28 6.69 9.75 10.11 10.50 10.85 11.34 11.70 12.05 10.85 11.34 11.70 12.05 10.35 11.34 11.35 12.81 13.18 13.56 15.97 17.37 16.97 17.31 16.90 17.70 17.71 17.71	1.86 2.29 2.72 3.15 3.60 4.45 4.88 5.31 5.74 6.61 7.04 7.48 8.92 9.75 10.20 10.63 11.06 11.48 11.93 12.78 13.80 14.25 16.80 17.27 18.11 15.51 15	2.43 2.99 3.54 4.10 4.68 5.25 5.80 6.91 7.48 10.45 11.04 11.60 12.70 12.70 12.70 12.70 12.70 12.70 12.70 12.70 12.70 12.70 12.91 13.85 14.40 15.51 16.10 16.67 17.40 19.68 20.20 20.78 21.38 21.38 21.39 22.50 22.50 24.20 24.	2.99 3.68 4.36 5.05 5.77 7.15 7.15 7.15 7.15 7.15 7.15 7.1	14 3.62 4.45 5.28 6.11 6.97 7.80 8.64 9.47 10.30 11.15 11.97 12.83 13.65 14.49 15.55 14.49 15.55 16.42 17.26 21.7.87 18.90 20.65 21.50 22.30 23.10 24.80 25.90 26.75 27.60 29.30 30.1	5.08 6.25 7.42 8.58 9.50 10.98 12.15 13.31 14.48 18.03 19.17 20.40 21.90 23.10 24.30 29.00 31.30 25.10 26.60 29.00 33.75 34.90 33.75 34.90 33.75 34.90 34.50 44.70 47.10 44.80 47.10 55.60 55.60 55.70
47 48 49 50 51 52 54 56 60 62 64 66 70	12.63 12.90 13.15 13.41 13.66 13.94 14.46 15.07 15.58 16.12 16.65 17.16 17.66 18.21 18.75	14.52 14.83 15.11 15.42 15.71 16.01 16.62 17.32 17.91 18.53 19.16 19.72 20.30 20.95 21.55	17.70 18.07 18.40 18.80 19.13 19.50 20.25 21.10 21.80 22.60 23.30 24.00 24.70 25.50 26.25	20.85 21.30 21.70 22.15 22.55 23.00 23.85 24.85 25.70 26.65 27.50 28.30 29.15 30.00 30.90	27.20 27.75 28.25 28.80 29.40 30.00 31.10 32.40 33.50 34.70 35.80 36.90 38.00 39.15 40.30	33.45 34.20 34.80 35.55 36.20 36.90 38.30 39.90 41.30 42.75 44.10 45.50 46.80 48.25 49.70	40.40 41.30 42.10 42.90 43.75 44.60 46.30 48.20 49.80 51.60 53.30 54.90 56.50 58.30 60.00	56.80 58.00 59.20 60.40 61.50 62.65 65.00 67.80 70.20 72.60 75.00 77.20 79.40 81.80 84.30
72 74	18.75 19.25 19.79	22.15 22.75	27.00 27.70	30.90 31.80 32.65	40.30 41.40 42.60	51.00 52.40	61.60 63.30	84.30 86.60 89.00

WEIGHT PER LINEAL FOOT FOR GALVANIZED IRON RECTANGULAR DUCTS U. S. Standard Gauge

	0	0	4.0	4.17	4 34	4.5	4.67	4.84	5.0	5.34	0.0	-	30	00	0.0	.24	67	80	10	54	76	4 0 7 10	50	72	12.13 12.56	0
	17	,,	3.84	4.0	4.17	4.34	4.5	4.67	4.84	5.5	100	-		i	-	-	-	-	-		-	-	-			
	91		-		-	-			-	0.0.0	-	1	50	7.59	20.00	8.02	8.45	8.67	8.89	9.32	10.9	10.64	11.06	11.5	12.35	12.78
	15		_	-	_	_	_	_	_	55.17		00	87	7.37	7.59	0.0	8.24	8.45	8.67	0.10	9.97	10.42	10.85	11.29	12.13	12.50
	14		-	-	-	-		_	_	5.04		100	17	7.15	7.37	200	8.02	8.24	8.45	3.50	9.76	0.5	0.64	9.4	11.9	00.
	13		-		-					5.17		96		_	-	_	-	-	-		-			-		
		1	000		m (70 0	χ) ₹	4.4	. 4	4.70		-	9	1.6	1.	7	7.8	∞ ∞	0 0X	0.0	9.5	9.6	10.4	11.3	19.13	
Gauge	12		3.0	9.17	0.04	9.50	20.0	4.04	4.34	5.0	24 Gauge	25	3	6.72	7.15	7.37	7.59	x 0	8.45	8.89	9.32	9.76	10.2	10.04	11.5	
26	-		40.2	9.0	9.17	0.04 0.04	3.67	3.84	4.17	4.5	24	24		6.5	6.94	7.15	7.37	7.09	8.24	8.67	9.10	9.54	10.49	10.85	11.29	
	10	100	70.7	30.04	3.17	334	3.50	3.67	4.0	4.34		23	1	6.29	6.72	6.94	7.15	7.50	8.02	8.45	68.80	0.32	10.2	10.64	11.06	
	6	02 6	9.67	2.84	ie	3.17	3.34	3.50	3.84	4.17		22		6.07	6.5	6.72	0.94 7.15	7.37	7.8	8.24	29.67	9.10	9.97	10.42	10.85	
	œ	0.34	9.50	2.67	2.84	3.0	3.17	3.34	3.67	4.0		21		5.85	6.29	6.5	6 94	7.15	7.59	8.02	0.40	0.03	9.76	10.2	10.64	
	7	917	2.34	2.50	2.67	2.84	3.0	3.17	3.50	4.17		20	100	5.64	6.07	67.0	6.72	6.94	7.37	× 0	20.04	9.10	9.54	9.97	10.85	
	9	2.00	2.17	2.34	2.50	2.67	2.84	3.0	5.54	4.0		61	1000	5.64	5.85	0.07	6.5	6.72	7.15	80.7	8 45	8.89	9.32	9.76	10.64	
Size of	Duct	9	7	00	6	10	= :	2:	7 7	000	Size of	Duct	1	20	20 0	, 01	2=	12	4,	2 2	20	22	24	98	30	

WEIGHT PER LINEAL FOOT FOR GALVANIZED IRON RECTANGULAR DUCTS

	45	12.75 13.0 13.25	13.5 13.75 14.0	14.25 14.5 14.75	15.0 15.25 15.5	15.75 16.0 16.25	16.5 16.75 17.0	17.25 17.75 18.25	18.75 19.25 19.75 20.25
	44	12.5 12.75 13.0	13.25 13.5 13.75	14.0 14.25 14.5	14.75 15.0 15.25	15.5 15.75 16.0	16.25 16.5 16.75	17.0 17.5 18.0	18.5 19.0 19.5 20.0
	43	12.25 12.5 12.5	13.0 13.25 13.5	13.75 14.0 14.25	14.5 14.75 15.0	15.25 15.5 15.75	16.0 16.25 16.5	16.75 17.25 17.75	18.25 18.75 19.25 19.75
	42	12.0 12.25 12.5	12.75 13.0 13.25	13.75 13.75 14.0	14.25 14.5 14.75	15.0 15.25 15.5	15.75 16.0 16.25	16.5 17.0 17.5	18.0 18.5 19.0 19.5
	41	11.75 12.0 12.25	12.5 12.75 13.0	13.25 13.5 13.75	14.0 14.25 14.5	14.75 15.0 15.25	15.5 15.75 16.0	16.25 16.75 17.25	17.75 18.25 18.75 19.25
	40	11.5 11.75 12.0	12.25 12.5 12.75	13.0 13.25 13.5	13.75 14.0 14.25	14.5 14.75 15.0	15.25 15.5 15.75	16.0 16.5 17.0	17.5 18.0 18.5 19.0
ıge	39	11.25 11.5 11.75	12.0 12.25 12.5	12.75 13.0 13.25	13.5 13.75 14.0	14.25 14.5 14.75	15.0 15.25 15.5	15.75 16.25 16.75	17.25 17.75 18.25 18.75
S. Standard Gauge 22 Gauge	38	11.0 11.25 11.5	11.75 12.0 12.25	12.5 12.75 13.0	13.25 13.5 13.75	14.0 14.25 14.5	14.75 15.0 15.25	15.5 16.0 16.5	17.0 17.5 18.0 18.5
S. Stan	37	10.75 11.0 11.25	11.5	12.25 12.5 12.75	13.0 13.25 13.5	13.75 14.0 14.25	14.5 14.75 15.0	15.25 15.75 16.25	16.75 17.25 17.75 18.25
0.0	36	10.5 10.75 11.0	11.25 11.5 11.75	12.0 12.25 12.5	12.75 13.0 13.25	13.5 13.75 14.0	14.25 14.5 14.75	15.0 15.5 16.0	16.5 17.0 17.5 18.0
	35	10.25 10.5 10.75	11.0 11.25 11.5	11.75 12.0 12.25	12.5 12.75 13.0	13.25 13.5 13.75	14.0 14.25 14.5	14.75 15.25 15.75	16.25 16.75 17.25 17.75
	34	10.0 10.25 10.5	10.75 11.0 11.25	11.5 11.75 12.0	12.25 12.5 12.75	13.0 13.25 13.5	13.75 14.0 14.25	14.5 15.0 15.5	16.0 16.5 17.0 17.5
	33	9.75 10.0 10.25	10.5 10.75 11.0	11.25 11.5 11.75	12.0 12.25 12.5	12.75 13.0 13.25	13.5 13.75 14.0	14.25 14.75 15.25	15.75 16.25 16.75 17.25
	32	9.5 9.75 10.0	10.25 10.5 10.75	11.0	11.75 12.0 12.25	12.5 12.75 13.0	13.25 13.5 13.75	14.0 14.5 15.0	15.5 16.0 16.5 17.0
	31	9.25 9.5 9.75	10.0 10.25 10.5	10.75 11.0 11.25	11.5 11.75 12.0	12.25 12.5 12.75	13.0 13.25 13.5	13.75 14.25 14.75	15.25 15.75 16.25 16.75
ncı	zi2 G 10	° 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	02=	222	15	202	332	282	34423

WEIGHT PER LINEAL FOOT FOR GALVANIZED IRON RECTANGULAR DUCTS

Size						o l	ń	Standard Gauge	age a						
Ouct	46	47	48	49	50	51	52	53	54	22	26	57	58	59	09
97.8	13.25 13.25 13.5	13.25 13.5 13.75	13.5 13.75 14.0	13.75 14.0 14.25	14.0 14.25 14.5	14.25 14.5 14.75	14.5 14.75 15.0	14.75 15.0 15.25	15.0 15.25 15.5	15.25 15.5 15.75	15.5 15.75 16.0	15.75 16.0 16.25	16.0 16.25 16.5	16.25 16.5 16.75	16.5
901	13.75	14.0	14.25	14.5	14.75	15.0	15.25	15.5	15.75	16.0	16.25	16.5	16.75	17.0	17.25
	14.0	14.25	14.5	14.75	15.0	15.25	15.5	15.75	16.0	16.25	16.5	16.75	17.0	17.25	17.5
	14.25	14.5	14.75	15.0	15.25	15.5	15.75	16.0	16.25	16.5	16.75	17.0	17.25	17.5	17.5
222	14.5	14.75	15.0	15.25	15.5	15.75	16.0	16.25	16.5	16.75	17.0	• 17.25	17.5	17.75	18.0
	14.75	15.0	15.25	15.5	15.75	16.0	16.25	16.5	16.75	17.0	17.25	17.5	17.75	18.0	18.25
	15.0	15.25	15.5	15.75	16.0	16.25	16.5	16.75	17.0	17.25	17.5	17.75	18.0	18.25	18.5
15 16 17	15.25	15.5	15.75	16.0	16.25	16.5	16.75	17.0	17.25	17.5	17.75	18.0	18.25	18.5	18.75
	15.5	15.75	16.0	16.25	16.5	16.75	17.0	17.25	17.5	17.75	18.0	18.25	18.5	18.75	19.0
	15.75	16.0	16.25	16.5	16.75	17.0	17.25	17.5	17.75	18.0	18.25	18.5	18.75	19.0	19.25
828	16.0	16.25	16.5	16.75	17.0	17.25	17.5	17.75	18.0	18.25	18.5	18.75	19.0	19.25	19.5
	16.25	16.5	16.75	17.0	17.25	17.5	17.75	18.0	18.25	18.5	18.75	19.0	19.25	19.5	19.75
	16.5	16.75	17.0	17.25	17.5	17.75	18.0	18.25	18.5	18.75	19.0	19.25	19.5	19.75	20.0
322	16.75	17.0	17.25	17.5	17.75	18.0	18.25	18.5	18.75	19.0	19.25	19.5	19.75	20.0	20.25
	17.0	17.25	17.5	17.75	18.0	18.25	18.5	18.75	19.0	19.25	19.5	19.75	20.0	20.25	20.5
	17.25	17.5	17.75	18.0	18.25	18.5	18.75	19.0	19.25	19.5	19.75	20.0	20.25	20.5	20.75
2822	17.5	17.75	18.0	18.25	18.5	18.75	19.0	19.25	19.5	19.75	20.0	20.25	20.5	20.75	21.0
	18.0	18.25	18.5	18.75	19.0	19.25	19.5	19.75	20.0	20.25	20.5	20.75	21.0	21.25	21.5
	18.5	18.75	19.0	19.25	19.5	19.75	20.0	20.25	20.5	20.75	21.0	21.25	21.5	21.75	22.0
323	19.0	19.25	19.5	19.75	20.0	20.25	20.5	20.75	21.0	21.25	21.5	21.75	22.0	22.25	22.5
	19.5	19.75	20.0	20.25	20.5	20.75	21.0	21.25	21.5	21.75	22.0	22.25	22.5	22.75	23.0
	20.0	20.25	20.5	20.75	21.0	21.25	21.5	21.75	22.0	22.25	22.5	22.75	23.0	23.25	23.5
36	20.5	20.75	21.0	21.25	21.5	21.75	22.0	22.25	22.5	22.75	23.0	23.25	23.5	23.75	24.0

WEIGHT PER LINEAL FOOT FOR GALVANIZED IRON RECTANGULAR DUCTS Standard Gauge si

28.0 28.6 29.2 31.5 32.1 32.7 36. 29.2 29.8 30.4 32.7 33.3 33.9 37.9 38.5 39.0 39.0 10.2 11.8 11.8 35.6 36.2 36.8 32.1 32.7 33.3 30,20 20.00 တ္ကတ္ 2000 29.2 29.8 30.4 100 M 27.4 28.0 28.6 30.9 31.5 32.1 32.7 33.3 33.9 36.2 36.8 37.3 37.9 38.5 39.0 39.6 82 26. 720 26.7 27.4 28.0 2002 2002 2003 2003 2003 32.1 32.7 33.3 33.9 34.4 35.0 35.6 36.2 36.8 37.3 37.9 38.5 39.0 30 255. 24.5 25.1 26.3 33.3 33.9 34.4 36.8 37.3 37.9 38.5 20 Gauge 23.9 24.5 25.1 27.4 28.0 28.6 25.7 26.3 26.7 29.2 29.8 30.4 33.3 34.4 35.0 35.6 36.2 36.8 37.3 37.9 25.1 25.7 26.3 26.7 27.4 28.0 28.6 29.2 29.8 32.1 32.7 33.3 33.9 34.4 35.0 35.6 36.2 37.3 10-12 200 804 0000 200.00 222.1 222.8 23.4 23.9 24.5 25.1 1001 409 29.2 29.8 30.4 30.9 31.5 32.1 1-00 34.4 35.0 35.6 36.2 2000 28. 21.6 22.1 22.8 23.4 23.9 24.5 28.6 29.2 29.8 32.1 32.7 33.3 33.9 34.4 35.0 ∞ 4·0 24.5 25.1 25.7 26.3 26.7 27.4 090 20.00 222.3 23.4 23.4 27.4 28.0 28.6 29.2 29.8 30.4 332.7 333.3 34.4 19.9 20.4 21.0 21.6 22.1 22.8 23.4 23.9 24.5 26.7 27.4 28.0 28.0 29.2 29.2 29.8 33.37 62 Duct 900 545 2228 200 32 522 To sais

WEIGHT PER LINEAL FOOT FOR GALVANIZED IRON RECTANGULAR DUCTS

Size of Duct							20 Gauge	ozni						
	92	94	96	98	100	102	104	901	108	011	112	114	116	110
· • •	28.6	29.5	29.8	30.4	30.9	31.5	32.1	32.7	33.3	33.9	34.4	35.0	35.6	36.2
10	29.8	30.4	30.9	31.5	32.1	32.7	33.3	33.0 8.0 8.0	34.4	34.4	35.0 35.6	35.6 36.2	36.2	36.8
2.4	30.4	30.9	32.1	32.1	32.7	33.3	33.9	34.4	35.0	35.6	36.2	36.8	37.3	37.9
9	31.5	32.1	32.7	33.3	33.0	34.4	35.0	35.0 35.6	36.2 36.2	36.2	36.8	37.3	37.9	38.5
222	32.1 32.7 33.3	32.7 33.3 33.9	33.3 33.9 34.4	33.9 34.4 35.0	34.4 35.0 35.6	35.0 35.6 36.2	35.6 36.2 36.8	36.2 36.8 37.3	36.8 37.3 37.9	37.3 37.9	38.5	38.5 39.0 6	39.0 39.6	39.6
2822	33.9 34.4 35.0	34.4 35.0 35.6	35.0 35.6 36.2	35.6 36.2 36.8	36.2 36.8 37.3	36.8 37.3 37.9	37.3 37.9 38.5	37.9 38.5 39.0	38.5 39.0 39.6	39.0 39.6 40.2	39.6 40.2 40.8	40.8	40.8	41.4 42.0 6.0
30	35.6 36.2 36.8	36.2 36.8 37.3	36.8 37.3 37.9	37.3 37.9 38.5	37.9 38.5 39.0	38.5 39.0 39.6	39.0 39.6 40.2	39.6 40.2	40.2 41.4	40.8	41.4	42.6 43.6 43.9	44.4 63.2 83.2 83.2 83.2 83.2 83.2 83.2 83.2 8	43.2
98 9 98 0 98 0	37.3 37.9 38.5	37.9 38.5 39.0	38.5 39.0 39.6	39.0 39.6 40.2	39.6 40.2 40.8	40.2	40.8 41.4 42.0	41.4 42.0 42.6	44.2.0 43.2.6	44.4.4.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.	43.2	43.8	44.4	45.0
244	39.0 39.6 40.2	39.6 40.2 40.8	40.8	40.8 41.4 42.0	41.4 42.0 42.6	42.0 43.2	42.6 43.2 43.8	43.2	43.8 44.4 45.0	44.4 45.0 45.5	45.0 45.5 46.0	45.5 46.0 46.6	46.0 46.6 47.2	46.6
22208	40.8 41.4 42.0 42.6	41.4 42.0 43.2 43.2	42.0 42.6 43.2 43.8	42.6 43.2 44.4 4.4	4.3.2 4.4.8 4.5.0	43.8 44.4 45.0 45.5	44.4 45.0 45.5 46.0	45.0 45.5 46.0 46.6	45.5 46.0 46.6 47.2	46.0 46.6 47.2 47.8	46.6 47.2 47.8 48.4	47.2 48.4 48.4	47.8 48.4 49.0 49.6	4.8.4 4.9.0 50.2

PART IV APPARATUS

The essential elements embodied in most installations using fans, more especially those for heating, ventilating, or similar work, are the fan, heater, ducts or piping system, and some form of motive power for driving the fan. In this section will be found complete data relative to the performance and dimensions of fans, heaters and engines, together with detailed directions for making fan tests. Data on the performance and dimensions of cast iron heaters are also given.

SECTION I

Fan Design

Centrifugal fans may be roughly divided into two classes, those having rotors with straight radial blades, and those having rotors with blades curved with reference to their direction of rotation. Curved blade fans have quite diverse characteristics, depending on whether they are curved forward or backward with reference to their direction of rotation. The mathematical theory of the radial blade fan is very completely and clearly discussed in Prof. Carpenter's book on Heating and Ventilation.

In any centrifugal fan there are two separate and independent sources of pressure. First, pure centrifugal force due to the rotation of an enclosed column of air. Second, kinetic energy contained in the air by virtue of its velocity upon leaving the periphery of the fan rotor. The amount of centrifugal force imparted to the air depends largely upon the ratio of the tangential or rotational velocity of the air leaving the periphery of the rotor to the tangential or rotational velocity of the air entering the fan at the heel of the blades.

When the flow of air through the rotor of a fan is partially obstructed the centrifugal effect in the rotor produces a compression corresponding to the centrifugal force, which is known as static pressure. On the other hand, the kinetic energy of the air leaving the periphery of the rotor must first be converted largely into potential energy in the form of static pressure before

being serviceable. This conversion from kinetic energy or velocity into potential energy or static pressure is ordinarily accomplished in the scroll formation of the fan housing. A still further conversion is often secured, where the velocity leaving the outlet is high, by means of a diverging nozzle on the outlet of the fan. The principle covering the design and application of such nozzles is discussed on page 122.

The accompanying diagrams represent the parallelogram of forces for the three general types of blades, the first a straight blade, the second a blade bent forward and the third where the blade is bent backward. The line U₂ represents the tip speed of the wheel and the line V₂ represents the radial velocity of the air leaving the tip of the blade. The diagonal line R then repre-

sents the actual velocity of the air with respect to the fan casing.

The amount of total pressure developed by a straight blade fan may be determined by means of the following formula:

$$p = \frac{(U_2^2 - U_1^2) + MU_2^2 - (1 - M)V_2^2 - (NV_0)^2}{V_p^2}$$
(73)

where

p=total press. developed by fan.

Vo = velocity of air through inlet.

V_p = vel. corresponding to unit press.

V2 = radial vel. of air leaving tip of blades.

U1 = lineal vel. at heel of blades.

U2=lineal vel. at tip of blades.

M = per cent. velocity pressure conversion in fan scroll.

N = ratio of actual to effective area of inlet.

It will be noticed from the two diagrams of curved blade wheels that when the blade is bent forward an accelerated velocity will be obtained, while with the blades bent backward the opposite effect will be the result. This explains how it is possible to build a fan with a small wheel, such as is used in the multiblade type, and obtain the desired pressure and velocity without using excessive speeds. By curving the blades forward a pressure greater than that due to the peripheral velocity is obtained, as indicated in the diagram.

The velocity of the air leaving the tip of the blades and the corresponding velocity pressure is greatly in excess of that ordinarily required in the piping system, and at the same time the static pressure is too low. By enclosing the wheel in a casing having a properly designed scroll, this velocity is reduced, and a part of the velocity pressure is converted to static pressure. Since the static pressure due to the wheel varies as the difference of the squares of the rotational velocities at the periphery and inlet, it is evident that the shorter the blade the greater must be the dependence on the scroll-shaped housing to obtain the desired static pressure. For this reason the proper design of the housing is of greater importance in the case of a short blade multivane type of fan than with the older styles.

There are frequently cases where a fan is to be direct connected to a high speed unit, where the corresponding pressure obtained would be greater than required. In this case the backward bent blade is used, since, as may be noticed from the diagram, a pressure less than that corresponding to the peripheral velocity is then obtained.

The standard steel plate fan is essentially a straight blade fan, as compared with the later styles of short curved blade multivane type, although, as just shown, when the tips of the blades are bent either forward or backward the fan will have different characteristics from one with straight blades. This fan as ordinarily built does not give as high an efficiency as the multivane type owing to the fact that it is designed for large capacity rather than for high efficiency. But if these long blade fans are built according to special design they may be made to give greater efficiency than may be obtained from the curved short blade fans. This calls for a tall narrow fan with the inlet diameter smaller than that used on the standard fan. It may

be readily shown that there is a certain diameter of inlet that will give maximum economy of operation. If the diameter is increased the loss by impact at the heel of the blades is increased as the square of the diameter, and the loss by entrance is decreased as the fourth power of the diameter. The opposite holds true in case the inlet diameter is decreased.

The proper size of the fan inlet depends on the cubic feet of air per revolution handled by the fan. It has been determined both mathematically and experimentally that the most efficient diameter of inlet is given by the simple relationship

$$D_1 = C \sqrt[3]{\frac{Q}{N}} \tag{74}$$

where

D₁ = inlet diameter in feet.

Q = cubic feet of air per minute.

N = revolutions per minute.

C=a factor determined experimentally, and is practically a constant for all ratios of inlet diameter to wheel diameter.

COMPARATIVE EFFECT OF BLAST-WHEEL PROPORTIONS UPON THE EFFECT OF STRAIGHT BLADE FANS OPERATING AT THE SAME CAPACITY AND PRESSURE

Ratio of Dia. Inlet to Dia. Wheel	Per Cent. Dian	Relative neter	Per Cent.	Per Cent.	Per Cent. Relative
at Perip.	Wheel	Inlet	Width	Н. Р.	Speed
0.700 0.650 0.625 0.600 0.550 0.500 0.450 0.400 0.350	82.0 93.2 100.0 106.9 123.5 144.9 170.8 206.5 255.0	91.9 97.5 100.0 102.6 108.8 116.6 123.0 132.4 142.8	108.9 102.5 100.0 97.5 92.1 85.9 81.3 75.5 70.1	112.3 104.0 100.0 96.7 91.0 86.8 83.4 80.0 77.5	123.0 109.5 100.0 92.7 78.2 64.5 53.3 43.1 34.6

It may be noted from the accompanying table that the essential factor in the design of straight blade fans is the diameter of the inlet, and that the smaller the inlet as compared to the diameter of the wheel, the greater will be the efficiency obtained. This table is based on the assumption that a value of 62.5 per cent. for the above ratio be used to represent the average standard fan, and the other figures show comparative values for other

ratios. It will be seen from the second and fourth columns that the height of the fan increases rapidly while the width decreases. This means, then, that these special high efficiency fans are tall and narrow, which naturally makes them more expensive than the ordinary commercial steel plate fan.

These special tall narrow fans are frequently used for induced draft work, partly because the narrow wheel makes a shorter over-hang on the fan bearing, and partly because they may be operated at lower speed and are therefore more suitable for direct connection to steam engines. A table of special induced draft fans will be found on pages 328 to 330, giving the size of engine and dimensions of fan for various boiler capacities.

Pressure Characteristics

The relative performance of the different styles of fans may be shown by the performance curves given for each style in Section III. The diagrams on pages 214 and 215 or on pages 224 and 225 are typical of the straight blade fan, while the diagram on page 276 shows the performance of the Niagara Conoidal fan, it being typical of the forward curved blade style.

In making the tests on these fans from which the diagrams referred to were computed, the fan was operated at constant speed with varying sized discharge orifices. Horsepower, pressure and capacity readings were taken and the efficiency calculated. The horsepower, pressure and efficiency were then plotted to capacity, giving the performance curves of this test fan. This set of curves shows the power consumption increasing with the capacity, but not at the same ratio. The efficiency increases to a maximum and then decreases to zero. The rating of the fan may be taken at any point adopted as a standard, but the desirable point will generally be determined by the point of maximum efficiency.

As will be noted from the diagrams already referred to, the relative pressure developed by centrifugal fans will differ for fans having straight or curved blades. A further comparison of the two types may be made from the diagram on page 173. The two curves indicate the ratio of the total pressure developed to the pressure corresponding to the peripheral velocity of the wheel, when operating at different per cents. of the fan's rated

capacity. Thus we see that at rated capacity the straight blade fan gives a total pressure of 87 per cent, and the forward curved blade type gives 208 per cent, of the pressure corresponding to *the peripheral velocity.

When the Niagara Conoidal fan is operated up to 50 per cent. overload the total pressure increases, but when operating at less than rated capacity the pressure decreases. Just the opposite holds true in the case of the straight blade fan. From this we note that if a forward curved blade fan is intended to operate at a certain pressure and capacity and if for any reason, such as resistance greater than expected, the quantity of air handled is less than the fan's rating for the speed maintained, the total pressure will also be less than that specified. With the straight blade fan just the opposite holds true, for as the capacity is reduced the pressure will increase, at constant speed.

Care should be taken in the selection of a fan with forward curved blades in case it is to be driven with a motor. If for any reason there should be a tendency to operate at over capacity both the air quantity and the pressure will increase, which may overload the motor in case sufficient margin has not been allowed.

Special Types and Features

There are numerous special types of fans intended to meet various requirements. Some of these, as for instance foundry and forge shop blowers and exhausters or planing-mill exhausters, are adaptations of the ordinary straight blade fans. There are other types, such as the disc or propeller wheel, that differ essentially in the principle of their design and operation. These special types will be found described under their proper heading, together with their capacity and dimension tables.

The steel plate fans may be divided into two classes, namely, blower or exhauster, depending on whether they have two inlets or only one. With the double inlet fan, or blower, we have the total inlet area divided between the two sides of the housing, therefore each inlet may be made smaller in diameter for the same size of fan wheel, and so approach the more efficient type of fan as indicated in the table on page 171. For this reason the steel plate blower is a more efficient fan than the single inlet fan, or exhauster. Either may be made full housing or three-quarter

housing, depending on the size and requirements. The multivane fan as ordinarily built is a single width fan with but one inlet. These are also built in a double width style, with two inlets, being essentially two fans placed back to back. They have the same characteristics as regards full or three-quarter housing, as also the angle of discharge, as has the steel plate exhauster.

Both the steel plate and the multivane fans are ordinarily built with a bearing on each side of the housing. In the case of the exhauster, where any substance is to be handled that would be injurious to the bearing located in the intake, they are usually made with an overhung wheel, a pedestal supporting an extra bearing being attached to the back of the housing. Special exhausters, as for instance planing-mill exhausters, are built with an overhanging wheel in order to avoid obstructing the inlet of the fan. Induced draft fans are built with an overhung wheel to avoid drawing the hot gases over the bearing. In any fan handling hot gases the bearing attached to the back of the housing should be of a special water cooled type to avoid heating.

The regular discharges of fans and blowers are designated as top or bottom horizontal discharge, up or down blast, and special, which are described by giving the angle of the discharge from the horizontal. The hand of a fan or blower is determined by the side on which the pulley or engine is located. Standing facing or nearest to the discharge outlet, the fan is right or left hand, according to whether the pulley is on the right- or left-hand side.

Horsepower of Fan

Each cubic foot of air per minute moved against a total pressure of one inch water gauge, equivalent to 0.577 oz. per square inch, or 5.19 pounds per square foot, represents the expenditure of 5.19 foot-pounds of work. We then have as the theoretical expenditure of energy in doing this work

$$\frac{5.19}{33000}$$
 = 0.000157 H. P.

and also

$$\frac{1}{0.000157} = 6370 \text{ A. P. M.}$$

That is, with perfect efficiency, it will require 0.000157 H. P. to move one cubic foot of air per minute against a pressure of one

inch, or 6370 cu. ft. of air per minute moved against one inch pressure will require one horsepower. Assuming a fan efficiency of 60 per cent. will give 0.000261 H. P. per cubic foot of air per minute per inch total pressure

H. P. =
$$\frac{A. P. M. \times 0.000157 \times total \text{ press. in inches}}{total \text{ efficiency}}$$
 (75)

or H. P. =
$$\frac{A. P. M. \times 0.000157 \times \text{static press. in inches}}{\text{static efficiency}}$$
 (76)

where total or static efficiency refers to the efficiency based respectively on the total or static pressure. The ratio of total to static pressure will remain constant for any style of fan at rated capacity but will vary for the different types.

In the case of straight blade fans we may determine the horse-power for any given air delivery by assuming twice the pressure corresponding to the peripheral velocity with a corresponding efficiency of 100 per cent. This will give approximately the true horsepower regardless of actual pressure or efficiency obtained. Thus if we have a straight blade fan delivering 30000 A. P. M. at 230 R. P. M. with a fan wheel 83½ inches in diameter, we will have a peripheral velocity of 5040 feet per minute, and twice the pressure corresponding to the peripheral velocity will be 3.17 inches. Then the horsepower required by the fan will be

H. P. =
$$30000 \times 0.000157 \times 3.17 = 14.9$$
.

Relations of Total, Static and Velocity Pressure

In fan work air is delivered against a certain static pressure or resistance of the system and in addition has imparted to it a certain velocity at the fan outlet. This velocity is dependent on the amount of air required and on the area of the fan outlet, and the velocity pressure expressed in inches corresponding to this velocity may be determined from the formula (see page 20)

$$p_v = \left(\frac{\text{velocity}}{4005}\right)^2 = \text{inches of water}$$

where the term velocity refers to the velocity of the air through the fan outlet in feet per minute.

When it is desired to express the velocity pressure in ounces per square inch the following formula should be used:

$$p_v = \left(\frac{\text{velocity}}{5273}\right)^2 = \text{oz. per sq. in.}$$

The total energy imparted to the air is composed of the static pressure of the system and the energy of discharge corresponding to the velocity pressure or velocity head as it is termed in hydraulics. The total pressure is the sum of the velocity pressure at the fan outlet plus the static pressure produced, and is the pressure upon which the performance and efficiency of the fan is usually based. In the case of an exhaust system, the static head on the fan should be taken as the difference in static pressure at the inlet and outlet of the fan. The method to be used in making these various pressure determinations is fully explained under "Fan Testing," Part IV, Section II.

The ratio of static to velocity pressure at the fan outlet is very important in fan engineering. This ratio varies as the capacity of the fan is varied at constant speed, and bears a definite experimental relationship to the efficiency of the fan. The rated fan performances which represent the most desirable conditions of operation are based on certain relationships of static to velocity pressure. For instance, the rated performance of the Planoidal fan is based on a relationship of

$$\frac{p_s}{p_v} = 3.88$$

The performance of the Planoidal fan with reference to this ratio is shown by the diagram on page 215. As an illustration of its use we will assume an 80-inch Planoidal exhauster operating against a static pressure of $\frac{3}{4}$ inch and delivering 12000 cu. ft. air per minute. Since the outlet of this fan is 5.54 sq. ft. (see table on page 207) the velocity at the fan outlet will be $12000 \div 5.54 = 2170$ ft. per minute, and the velocity pressure will be

$$p_v = \left(\frac{2170}{4005}\right)^2 = 0.294$$
 in.

The ratio of static to velocity pressure will then be

$$\frac{p_s}{p_v} = \frac{0.75}{0.294} = 2.55$$

From the diagram on page 215 we find that with the above ratio, the fan will be operating at 111.5 per cent. of rated

capacity, with correspondingly increased power consumption and lowered efficiency. Further examples illustrating the application of these diagrams will be found under "Selection of a Fan" on page 182.

For certain kinds of work a low velocity in the piping system is desired, while in other cases it is necessary to maintain a high velocity. In case a lower velocity is required in the piping system than that maintained at the fan outlet, the area of the main pipe should be gradually increased. This is termed a diverging cone on the fan outlet, and if properly proportioned the loss due to the reduction in velocity at this point will be reduced to a minimum. Rules for the design of cone outlets and their effect in increasing the static pressure will be found given under "Diverging Nozzles in Air Ducts" on page 122.

The Relation Between Pressure, Velocity and Air Density in Fan Work

For low pressures, as in fan work, we may consider that the pressure varies inversely as the absolute temperature and directly as the barometric pressure. The volume of the same weight of air is directly and the weight of the same volume is inversely proportional to the absolute temperature. We will then have

$$\frac{p_0}{p} = \frac{T}{T_0} \text{ and } \frac{p_0}{p} = \frac{b_0}{b} \text{ or } p_0 = p \times \frac{T}{T_0} \times \frac{b_0}{b}$$
 (77)

where

p = pressure at absolute temp. T and barom. b.
p₀ = pressure at absolute temp. T₀ and barom. b₀.
T = absolute temp. of the air in deg. Fahr.
b = barometric pressure in in. of mercury.

Then in order to correct any given pressure reading p, at temperature t and barometer b, to the corresponding pressure for standard dry air at 70° F. and 29.92" barom. we will have

$$p_0 = p \times \frac{530}{460 + t} \times \frac{b}{29.92} = \frac{0.075 p}{W}$$
 (78)

Since at constant capacity and speed the power consumption will vary as the pressure, and the pressure varies as the density of the air, we will also have

$$H.P. = (H.P.)_0 \times \frac{460 + t}{530} \times \frac{29.92}{b} = \frac{(H.P.)_0 W}{0.075}$$
 (80)

Thus, if a fan is to operate under some other condition than standard air, corrections can be made for pressure and horsepower by equations (78) and (80) respectively. For illustration see example 5, page 188.

In a centrifugal fan working under a constant orifice condition and at known air density, the theoretical velocity and pressure developed each bears a definite relation to the peripheral or tip velocity of the fan wheel. That is, the air velocity at the fan outlet and capacity is directly proportional to the peripheral velocity and fan speed, and the pressure developed varies directly as the square of the peripheral velocity and therefore as the square of the fan speed. Since the horsepower is proportional to the product of the pressure and capacity, the horsepower evidently varies as the cube of the fan speed. These combined relationships may be expressed by the following formula:

$$\frac{p}{p_0} = \frac{N^2 W}{N_0^2 W_0} \text{ and } \frac{H.P.}{(H.P.)_0} = \frac{N^3 W}{N_0^3 W_0}$$
(81)

where N = revolutions per minute, and W = air density.

Laws of Fan Performance

In the selection and operation of fans, the size, speed, capacity, horsepower, and pressure each has a fixed and definite relation to the other, which may be expressed as follows:

For a given fan size, piping system, and air density-

- 1-Capacity varies directly as speed.
- 2-Velocity varies as speed or capacity.
- 3-Pressure varies as the square of the speed.
- 4—Speed and capacity vary as square root of the pressure.
- 5-Horsepower varies as cube of the speed or capacity.
- 6—Horsepower varies as (pressure)3/2

For a constant pressure and at rated capacity-

- 7—Capacity and horsepower vary as square of the size.
- 8-Speed varies inversely as size.
- 9—At constant pressure the speed, capacity and horsepower vary as the square root of the absolute temperature.
- 10—At constant capacity and speed, the horsepower and pressure will vary directly as the density of the air and approximately inversely as the absolute temperature. Thus increasing the temperature from 50° to 550° practically cuts the horsepower and pressure in half if the speed and capacity remain the same.

It has been shown that the pressure loss or resistance (p_s) of a given system of air passages varies as the square of the air velocity and therefore as the square of the air quantity, (Q). Also, since the pressure produced by a fan varies as the square of the speed (Law 3) under constant outlet conditions, it is evident that the air quantity delivered by the fan through a given system of air passages will vary directly as the speed, (Law 1). The relation between pressure loss and the air quantity passed through a given system may be termed the coefficient of resistance (R) of that system in the formula $p_s=R\ Q^2$, and $R=\frac{p_s}{Q^2}$ Also on page 125, it has been shown that each system has an equivalent or blast-area (A), where the pressure loss may also be expressed as $p_s=\left(\frac{Q}{V_0\cdot A}\right)^2$ and where V_0 is the velocity corresponding to unit pressure. Hence $R=\left(\frac{1}{V_-A}\right)^2$

If the coefficient of resistance or blast-area of a system to which a fan is applied should be changed while the fan is operated at constant speed, then the air delivery will undergo a change which is complicated by the fact that the fan pressure also changes with the quantity of air delivered, as shown by the pressure-capacity characteristic. This is best illustrated by the accompanying diagram. In the first case suppose we have a system whose coefficient of resistance is $R_1 = 142/10^{10}$ and in the second case the system is changed so the coefficient of

resistance is reduced to $R_2=42/10^{10}$. Curves R_1 and R_2 show how the pressure losses will vary with the air delivery in the respective cases, and curve P shows how the pressure produced by a 90-inch Planoidal exhauster at 330 R. P. M. varies as the air delivery. It is evident that the air delivery will be Q_1 for the first case and Q_2 for the second, with corresponding static pressures p_1 and p_2 .

Selection of a Fan

It is well known and capable of demonstration in practice as well as in theory that of two straight blade fan wheels, the one having longer blades gives greater pressure, and that curving the blades forward in the direction of rotation increases the pressure, the converse also being true.

It is not a fact that a fan with forward curved blades is on that account any more efficient than one with radial blades; the two types have radically different characteristics, and each a field in which it excels; with the short forward curved blades good efficiency requires a greatly increased number as compared with the few blades of the radial type familiar in the steel plate fan.

In both types the need of careful design does not end with the proportions of the blades; the design of the scroll or housing, the area and position of the outlet and the diameter of the inlet are very important factors.

As explained under "Pressure Characteristics," the performance at other than rated capacity of the older style straight blade fan is entirely different from that of the curved blade multivane type. With the straight blade fan the pressure drops off rapidly when operated at overload, but increases when the fan is operated at less than rated capacity. In the case of the multiblade fans, the static pressure is greatest at normal load, and decreases at capacities either above or below this rated point.

Thus we see in the case of a system where a uniform air quantity is desired, whether for heating, ventilating, forced draft or for drying processes, the steel plate fan will come nearer giving this uniform quantity in spite of variations in resistance, throttling effect of closing dampers, and similar conditions.

On the other hand, it is sometimes very desirable to be able to throttle the capacity of a fan without increasing the pressure and velocity, as for instance, if one wing of a building is closed off and it is not convenient to change the speed of the fan, the steel plate fan would deliver an increased amount of air into the remaining part of the system on account of its increased pressure, while the multiblade fan would be more sensitive to the increased resistance and would show only a slight increase in velocity through the ducts which remain open.

In general, the multiblade fans, of which the Niagara Conoidal is a type, require less space than steel plate fans of equal capacity and efficiency. Another important advantage is the fact that the higher speeds of these multiblade fans make them more suitable for direct connection to motors, or at least give better pulley ratios than may be obtained with radial blade fans of equal efficiency.

After determining the style of fan to be used, there are two things to be considered in its selection. It must supply a definite amount of air per minute and it must supply this air at sufficient static pressure to overcome the friction loss of the system, which should be calculated or determined with reasonable accuracy. The performance of the fan under this condition is determined from the capacity tables.

Example 1. Assume that it is required to deliver 16500 cu. ft. air per minute against a static pressure of 0.95 in., and determine the size of Planoidal exhauster to be used, with the corresponding speed and horsepower. From the diagram on page 214 we see that at rated capacity the Planoidal fan gives a static pressure which is 79 per cent. of the rated total pressure. Then the total pressure corresponding to 0.95 in static will be 1.20 in. From the table on page 208 we see that we may choose between a 90-inch fan operating over capacity or a 100-inch fan operating at less than rated capacity.

A 90-inch Planoidal fan has an outlet area of 7.10 sq. ft. (table page 208) so that the velocity through the outlet will be $16500 \div 7.1 = 2325$ feet per minute. From formula 21 on page 20 we have the pressure varies as the square of the velocity, and from formula 13 on page 18 the velocity for dry air at 70° F. corresponding to one inch pressure is 4005 feet per minute. The velocity head or velocity pressure at the outlet of the 90-inch fan corresponding to a velocity of 2325 feet per minute will then be

 $p_v = (2325 \div 4005)^2 = 0.337$ in.

The total pressure against which the 90-inch fan must operate will then be the sum of the static and velocity pressures, or 0.95 +0.337 = 1.287 inches, and the ratio of static to velocity pressure will be 0.95 +0.337 = 2.82. Referring to the diagram on page 215, we find a point on the bottom scale corresponding to a ratio of static to velocity pressure of 2.82, and from the intersection of a vertical from this point with the curves above we may determine the relative performance of the fan from the scale on the left-hand edge of the chart. Thus we find that the fan will be operating at 108 per cent. of the rated capacity, and require 104.5 per cent. of the rated horsepower.

As already stated, the fan is required to deliver 16500 A. P. M.; so that $16500 \div 1.08 = 15300$ A. P. M., the rated capacity of the fan at the speed used. From the table on page 208 we see that this fan will deliver 14890 A. P. M. at 334 R. P. M. and require 6.65 H. P. According to the relations given on page 179 the speed varies directly as the capacity and the power as the cube of the capacity. We will then have for a rated capacity of 15300 A. P. M.

Actual speed =
$$334 \left(\frac{15300}{14890} \right) = 344 \text{ R. P. M.}$$

Rated power = $6.65 \left(\frac{15300}{14890} \right)^3 = 7.22 \text{ H. P.}$

But as already stated, when operating at 108 per cent. of the rated capacity, or 16500 A. P. M., this fan will require 104.5 per cent. of the rated power, so we will have

Actual power =
$$1.045 \times 7.22 = 7.55$$
 H. P.

The pressure developed will be 0.95 inch static and 1.287 inches total.

In case a 100-inch Planoidal fan should be selected for this service it will operate at less than the rated capacity, and the power required may be determined in the same manner as for the 90-inch fan. The outlet area of a 100-inch fan is 8.75 sq. ftc so the velocity at the outlet will be $16500 \div 8.75 = 1885$ feet per minute and the corresponding velocity pressure will be $(1885 \div 4005)^2 = 0.221$ in. Since the fan is required to develop 0.95 in. static, the total pressure against which it will operate will be $0.95 \div 0.221 = 1.171$ in., and the ratio of static to velocity pressure will be $0.95 \div 0.221 = 4.30$. From the diagram on page 215 we

find that with a ratio of static to velocity pressure of 4.30 the fan will operate at 97 per cent. of the rated capacity and require 98.5 per cent. of the rated power.

As 16500 is to be 97 per cent. of the fan's rated capacity at the speed used, we have $16500 \div 0.97 = 17000$ A. P. M. as the rated capacity. From the table on page 208 we note that the 100-inch fan at 300 R. P. M. will deliver 18370 A. P. M. and require 8.20 H. P. To obtain a rated capacity of 17000 A. P. M. it will be necessary to reduce the speed and consequently the power to

$$\begin{split} \text{Speed} &= 300 \left(\frac{17000}{18370} \right) = 278 \text{ R. P. M.} \\ \text{Power} &= 8.20 \left(\frac{17000}{18370} \right)^3 = 6.50 \text{ H. P.} \end{split}$$

As determined from the diagram, the power at 97 per cent. capacity will be 98.5 per cent. of the rated, so we will actually require

$$0.985 \times 6.50 = 6.40 \text{ H}$$
. P.

Thus we see that while the first cost of the 100-inch fan will be greater, the cost for power will be less than with the 90-inch fan.

Example 2. A case frequently met in the application of fans is where the resistance against which the fan must operate is different from any of the pressures given in the fan capacity tables.

We will assume that 12000 A. P. M. is required at 0.20 in. static resistance. What size of fan shall be used and what will be the speed and horsepower? If a fan should be required to operate at rated capacity at a speed corresponding to the 0.20 in. resistance, we may select a Planoidal fan from the table on page 210. We note that the lowest pressure given in the table is % inch, but from the ratio given on page 179 we may determine the speed, capacity, and horsepower at 0.20 in. as follows: Since the capacity varies as the square root of the pressure, and we require 12000 A. P. M. at 0.20 in. the corresponding capacity at % in. will be 12000 $(0.375 \div 0.2)^{\frac{1}{12}} = 16450$ A. P. M.

We see from the table on page 210 that a 120-inch Planoidal exhauster at % inch static will have a rated capacity of 16030 A. P. M. at 152 R. P. M., and 2.62 H. P. We would use this size

and operate it at slightly over the rated capacity to give 16450 A. P. M. at $\frac{3}{8}$ inch or 12000 A. P. M. at 0.20 in. The rated speed of the 120-inch fan at 0.20 inch pressure will be 152 (0.20 \div 0.375) $\frac{1}{2}$ = 111 R. P. M. and the rated power will be 2.62 $\left(\frac{111}{152}\right)^3$ = 1.02 H. P. When operating at $16450 \div 16030 = 102$ per cent. of the rated capacity, the power required would be 1.08 H. P.

In order to determine the performance of a smaller fan under these conditions we will assume that a 100-inch Planoidal exhauster operating at over capacity is to be used. The outlet area of a 100-inch fan is $8.75 \, \text{sq}$. ft. in area so that the velocity through the outlet will be $12000 \div 8.75 = 1370 \, \text{ft}$. per minute and the corresponding velocity pressure will be $(1370 \div 4005)^2 = 0.118 \, \text{in}$. The ratio of static to velocity pressure will then be $0.20 \div 0.118 = 1.7$, and from the diagram on page 215 we note that with this ratio the exhauster will operate at 118 per cent. of rated capacity and require 110 per cent. of the rated power.

If 12000 A. P. M. is 118 per cent. of the fan's rated capacity at the speed required to meet the assumed conditions, we will have $12000 \div 1.18 = 10150$ A. P. M. as the rated capacity. The table on page 210 does not give the speed and power required for 10150 A. P. M., but does give 182 R. P. M. and 1.81 H. P. for 11140 A. P. M. Since the speed varies directly and the power as the cube of the capacity we will have for 10150 A. P. M., -182 $(10150 \div 11140) = 162$ R. P. M., and 1.81 $(10150 \div 11140)^8 = 1.28$ H. P. as the rated speed and power. As already found from the diagram on page 215 with a ratio of static to velocity pressure of 1.7, the power required will be 110 per cent. of the rated, which gives us under the assumed conditions $1.28 \times 1.10 = 1.41$ H. P. when delivering 12000 A. P. M. against 0.20 in. static resistance at 162 R. P. M.

We see from the table on page 210 that a speed of 182 R. P. M. corresponds to a static pressure of 0.375 inch, and as the pressure varies as the square of the speed, the pressure for 162 R. P. M. will be $0.375 \ (162 \div 182)^2 = 0.296$ in. That is, although the resistance of the system is only 0.2 in. and would call for a 120-inch fan, we may reduce the initial cost by using a 100-inch fan operating at a speed corresponding to approximately 0.3 in. with but 30 per cent. increase in the power consumption. Where the fan is to be direct connected to an engine and the exhaust

steam used in the heating coils, this additional power is of little or no consideration.

Selection of a Niagara Conoidal Fan

Example 3. The Niagara Conoidal fan may be selected either from the static pressure tables on pages 232 to 273 or from the total pressure tables on pages 228 to 231. The total pressure tables, like the tables for Planoidal fans, give the performance of this fan at its point of rating only. The static pressure tables give the performance at other than the rated capacity, and give the speed and power required on both sides of the most efficient point. The tables on pages 274 and 275 indicate the efficiencies obtainable under different conditions of pressure and outlet velocity with these fans. Thus we see that there is one point in each pressure column at which the fan will give the highest efficiency. In the selection of these fans it may often be found expedient to operate at other than the most efficient point.

When selecting a fan for use in a public building it is advisable to use a velocity of about 1800 feet per minute through the fan outlet, with a maximum allowable velocity of 2200 for such work. For industrial installations, where higher duct velocities are the rule, outlet velocities up to 4000 may be used, without varying greatly from the most efficient performance.

To illustrate the use of the static pressure tables we will assume that it is required to deliver 17000 cu. ft. of air per minute against a pressure of one inch static. By an inspection of the corresponding tables, we find that we may use a No. 6 at 419 R. P. M., 6.59 H. P., and an outlet velocity of 3200 feet per minute; a No. 7 at 332 R. P. M., 5.19 H. P., and an outlet velocity of 2400 feet per minute or a No. 8 at 291 R. P. M., 4.86 H. P., and an outlet velocity of 1800 feet per minute. For use in a public building the No. 8 should be selected, but in case it is desirable to use higher duct velocities and absolute quietness of operation is not essential, either the No. 7 or No. 6 may be used.

Example 4. A common case of variable resistance in a fan system of heating and ventilating is where a fan is selected to supply a definite amount of air, and during the winter this air is drawn through the heater, but during the summer the damper to the by-pass is open so that the air may be drawn through both the heater and by-pass. As shown by the tables on pages 446 and 447, the resistance due to the heater will depend upon its depth and the velocity of the air through the clear area. From

page 457 we see that under average conditions, we may assume two velocity heads lost due to the by-pass. Assuming a case where the heater is four sections deep with a velocity of 1000 feet per minute through the clear area, we find from the table on page 446 that the resistance will be 0.382 in. Allowing a loss of 0.24 in. static in the piping system, the fan will be required to operate against a static pressure of 0.382 + 0.240 = 0.622 in. or $\frac{5}{8}$ in. This is under normal working conditions when the by-pass damper is closed.

We will first assume that a Planoidal exhauster is required to deliver 25000 A. P. M. under the above conditions. With this type of fan at rated capacity the static will be 79 per cent. of the total pressure, so that with a static resistance of 0.622 in. the corresponding total pressure will be $0.622 \div 0.79 = 0.787$ in. or approximately ¾ in. From the capacity table on page 210, we find that a 130-inch Planoidal exhauster at $\frac{5}{8}$ inch static pressure has a capacity of 24150 A. P. M. at 180 R. P. M. and will require 6.57 H. P. As this capacity is within a few per cent. of that required, it will be taken as the rated condition.

According to the data given on page 457 the resistance of a standard by-pass is approximately the same as that for four sections of Buffalo heater, so that in the case assumed when the by-pass damper is opened the effective area will be doubled. Since the loss due to the resistance varies as the square of the velocity and the velocity is to be reduced to $\frac{1}{2}$, the resistance for the same air quantity will be $(\frac{1}{2})^2$ or $\frac{1}{4}$ of what it was when all the air passed through the heater. That is, with the by-pass damper open, the resistance at the heater will be one-fourth of 0.382 or 0.095 inch.

With the damper in the by-pass open the static resistance of the system will be reduced to 0.095+0.240=0.335 in. providing the same air quantity is handled and it will be required to determine the results obtained under this new condition. The area of the outlet of the 130-inch fan is 14.85 sq. ft., so the velocity through the outlet under rated conditions would be $24600 \div 14.85 = 1685$ ft. per minute and the corresponding velocity pressure $(1685 \div 4005)^2 = 0.177$ in. With the by-pass damper open the static pressure based on the same air quantity is 0.335 in. and the ratio of static to velocity pressure will be $0.335 \div 0.177$ in. = 1.89. From the diagram on page 215 we find

that with this ratio the actual static pressure will be 65.5 per cent., the capacity 116.5 per cent. and the power 109 per cent. of the rated as given on page 187. That is, we will have

actual pressure $= 0.622 \times 0.655 = 0.407$ in. static. actual capacity $= 24150 \times 1.165 = 28150$ A. P. M. actual power $= 6.57 \times 1.09 = 7.15$ H. P.

Correction for Temperature

Example 5. A case frequently met in selecting a fan is where the air to be handled is specified at some temperature other than the standard of the fan tables (70° F.). For instance, a "B" Volume Exhauster is required to handle 5500 cu. ft. of air per minute at a temperature of 600° F. against a pressure of two ounces. What size exhauster should be used and what will be the speed and horsepower? This fan is to handle the air at 600° while the capacity tables are based on air at 70°.

As explained on page 179, if the speed and capacity are kept constant the pressure and horsepower will vary inversely as the absolute temperature. Thus an increase in temperature from 70° to 600° doubles the absolute temperature $(1060 \div 530 = 2)$ and if we select a fan that will handle 5500 A. P. M. at 70° against four ounces it will have the same capacity at the same speed against two ounces when the temperature is 600° and the power will be half that given in the table for four ounces. From the capacity table of "B" Volume Exhausters on page 335 we find that the nearest size to that required will be No. 8, operating at 1420 R. P. M. and requiring $10.20 \div 2 = 5.1$ H. P.

Another example illustrating the effect of temperature would be to assume a fan is delivering 3500 A. P. M. at 1000° F. against $1\frac{1}{2}$ oz. pressure with a speed of 920 R. P. M. What will be the speed and capacity of this fan at 500° and 2 oz. pressure?

The relative pressure of the air at 1000° and 500° is given by the ratio of the absolute temperature, or $1460 \div 960 = 1.52$. That is, if this fan handles the same volume of air at the same speed, due to the change in the temperature the pressure developed will be $1.5 \times 1.52 = 2.28$ oz. But this fan is required to operate at 2 oz. instead of 2.28 oz., which calls for a lower speed. We may see from page 179 that the speed and consequently the capacity will vary as the square root of the pressure, so the speed at 2 oz. will be $920 (2 \div 2.28)^{\frac{1}{2}} = 708$ R. P. M. and the capacity

will be $3500 (2 \div 2.28)^{\frac{1}{2}} = 2700$ A. P. M. Thus we see that this same fan will deliver 2700 A. P. M. at 500° against 2 oz. pressure when operated at 708 R. P. M.

Correction for Altitude

Example 6. The following example represents the calculations required to correct the fan performance to a sea-level (29.92 inches barometer) basis. Required a fan to handle 40000 A. P. M. against 0.5 in. static pressure at an altitude of 5000 feet with a temperature of 70° . As the fan tables are based on air at sea-level, we will have to reduce the above specified pressure to a sea-level basis. From the diagram on page 25 we note that the relative pressure for this altitude is 0.835, so that a sealevel pressure corresponding to a pressure of 0.5 in. at 5000 altitude is $0.5 \div 0.835 = 0.6$ in., or approximately $\frac{5}{8}$ in. The horsepower required to operate the fan will be 83.5 per cent. of the rated horsepower as given in the capacity tables for $\frac{5}{8}$ in. static.

We find from the table of Niagara Conoidal capacities on page 248 that a double No. 8 fan with an outlet velocity of 2200 feet per minute would answer the requirement at $\frac{5}{8}$ in. at 238 R. P. M. and 8.66 H. P. At 5,000 altitude the power consumption will be $8.66 \times 0.835 = 7.23$ H. P.

Another example illustrating the correction for altitude would be to require an induced draft system for 1600 boiler H. P., at an altitude of 5200 feet with flue gases at 550° F. and a static pressure of one inch required. From the diagram on page 25 we find that the factor for 5200 altitude is 0.83. The corresponding pressure at sea-level will then be $1 \div 0.83 = 1.20$ in.

From the table on page 325 we find that a 150-inch Planoidal exhauster operating at 305 R. P. M. will have a capacity of 63110 A. P. M. at 1.25 in. static with a temperature of 550° and require 34.0 H. P. With an allowance of 32.4 A. P. M. at this temperature per boiler H. P. this fan will be capable of supplying draft for 1950 H. P. of boilers at sea-level. The air required per boiler horsepower at an altitude of 5200 feet will be $32.4 \div 0.83 = 39.0$ A. P. M. so that the draft capacity of this fan at 5200 altitude will be only $63110 \div 39.0 = 1620$ or $1950 \times 0.83 = 1620$ boiler H. P. The power requirements at 5200 altitude will be $34.0 \times 0.83 = 28.2$ H. P.

SECTION II FAN TESTING

It is frequently necessary to make a test on a fan installation in order to determine the quantity of air being delivered. There are several methods of making this determination, depending on the degree of accuracy desired, the object of the test, or the conditions under which the system is installed. The velocity and quantity of air delivered by a fan or flowing through a duct may be found by means of a pitot tube, an anemometer, a converging nozzle, an orifice, or a short length of pipe. Each method may be especially applicable under various conditions and a selection should depend on the object and accuracy desired.

The most accurate method for ordinary work is to use the pitot tube, either in an air duct or in connection with a converging nozzle attached to the fan outlet. The anemometer is especially useful in determining the velocity and quantity of air entering a room in order to properly proportion the air distribution in an indirect heating or ventilating system. An orifice or a short length of pipe is frequently used in connection with test work, where a permanent piece of apparatus is desired.

The Pitot Tube

The pitot tube is an instrument used for making velocity measurements of a current of air, the principle of its action being shown by the accompanying diagram. As already explained,

when there exists a flow of air due to a certain pressure, a part of this pressure, termed the velocity head, is transformed into velocity, while the balance, termed pressure of static head, serves to produce pressure. If a bent tube with an open end be inserted in an air duct, as at B in figure on page 190, with the open end facing the air current, a pressure due to both the velocity and static head will be produced in this tube. This is the total or dynamic head, and the amount can be read on an attached gauge or manometer tube. If, instead of a bent tube, a straight tube be inserted as at A, the difference in levels in the manometer tube will indicate the static head or pressure. The velocity head or pressure may then be determined by subtracting the static from the total manometer reading.

The pitot tube as ordinarily used is an instrument combining the tubes just described, as shown at C, the outer ends being connected to the two legs of the same manometer. By this means the subtraction is made automatically and the difference as shown by the gauge is due to velocity pressure only. These tubes are usually combined in some form as shown in the following figure.

Care should be taken to have all of the connections made tight, especially on the static side, as a very slight leak here will cause considerable error. The small holes as shown above in the static tube should be about 0.02 in. in diameter.

The greatest difficulty to be encountered in air measurements is in obtaining accurate static pressure readings. Many different forms of static tubes have been used, with varying degrees of accuracy. Some of the more common forms are shown on page 192. Charles H. Treat in a paper on "Measurements of Air in Fan Work" gives the results of his efforts to check the accuracy of some of these forms. He found that tube D was fairly accurate so long as it was set exactly parallel to the air flow, but the open tube E held at right angles to the air flow gave readings as much

^{*} Am. Soc. Mech. Engrs., Dec., 1912.

DIFFERENT FORMS OF STATIC TIPS.

as 50 per cent. too low. The total pressure, or impact tube, as shown in the sketch representing a pitot tube, will give practically true readings, so that if the static readings are too low the corresponding velocity pressure readings will be too great.

The Gebhardt tube uses a static tip which has the end beveled as at F, in order to avoid the suction of the air flow across the end of the tube, but Prof. Gebhardt states that further experiments are necessary to show whether any fixed angle is applicable to all velocities. A static tube as shown at G is frequently used, having slots on the sides of the tube, the Taylor pitot tube being an adaptation of this form. Mr. Treat found that a slot 5% in. long and 0.01 in. or less wide in a 1/4-inch tube gave good results, but it is advisable to cover these slots with a piece of fine mesh wire cloth.

APPROVED FORM OF STATIC TIP

The static tube here shown is the most approved form, and is the one recommended by the A. S. M. E. for fan testing work. It may be combined with the impact tube to form a pitot tube as already shown. Charles H. Treat found that a static tube of this form with clean holes 0.02 in. in diameter in $\frac{1}{4}$ -inch tubing $\frac{1}{432}$ in. thick, gave static readings accurate to within less than one per cent. of the pressure due to the velocity. A hole $\frac{1}{16}$ in. in diameter in this tube gave readings considerably off, while a 2-in. slot $\frac{1}{16}$ in. wide gave velocity readings approximately 10 per cent. too low. Covering the slot with wire cloth improved the results obtained. A $\frac{5}{8}$ -in. slot 0.01 in. or less in width gave fairly accurate results. The tube of the above standard form gave fairly accurate results even though as much as five degrees out of parallel with the air flow.

A very complete series of tests have been made by W. C. Rowse* in which he compared different forms of pitot tubes with the readings of a Thomas electric meter. The author used a pitot tube similar in shape to the one already described, and found that "of the various forms of static openings in the pitot tube itself, very small holes in a perfectly smooth surface give the most accurate results. Slots give erroneous static pressures and beveled-ended tubes for obtaining static pressures are not reliable."

remable."

A convenient form of gauge for use with low pressure is the ordinary Ellison differential draft gauge. Mineral seal oil should be used in the Ellison gauge, but it is so graduated that it gives the pressure directly in inches of water, without any correction. The mineral seal oil as ordinarily used for this purpose has a specific gravity of 0.8284.

The theory of the pitot tube is thoroughly discussed by Frank H. Kneeland, together with a study of some of the different forms, in a paper recently read before the American Society

of Mechanical Engineers.**

Having determined the velocity head as above explained, the actual velocity may be calculated approximately by means of the formula

$$V = 1096.5 \sqrt{\frac{p}{W}}$$
 (84)

where

V = velocity of air in ft. per min. p = pressure in in. of water. W = weight of air in lbs. per cu. ft.

^{*&}quot;Pitot Tubes for Gas Measurement" Am. Soc. Mech. Engrs., Sept.,

^{**&}quot;Some experiences with pitot tube on high and low air velocities" Am. Soc. Mech. Engrs., Dec., 1911.

The relationships between velocity and pressure will be found on page 16, from which we see that if we have dry air at 70° F, and 29.92 inches barometer, we will have W=0.07494, hence the approximate formula (84) becomes

$$V = 4005 \sqrt{p}$$

Where the pressure p is expressed in inches of water, or

$$V = 5273 \sqrt{p}$$

where p is expressed in ounces per square inch.

The above formulae are only accurate for low pressures, and should not be used for over 10 inches of water. For more accurate work or for high pressures the following formulae should be used. As a matter of ready reference the table of velocity for various pressures as given on page 21 will be found convenient.

Capt. D. W. Taylor in a paper entitled "Experiments with Ventilating Fans and Pipes" gives the following exact formula for the pitot tube:

$$\frac{V_1^2 - V_2^2}{2g} = \frac{y}{y - 1} \times \frac{p_2}{W} \left[1 - \left(\frac{p_1}{p_2} \right)^{\frac{y - 1}{y}} \right]$$
 (85)

where

 V_1 = velocity in ft. per second at a point where the pressure = p_1 in lbs. per sq. ft.

p, = pressure in lbs. per sq. ft. at any other point.

 V_2 = velocity in ft. per second.

W = weight of air in lbs. per cu. ft. where press. = p₂ y = ratio between specific heats of air under constant pressure and constant volume = 1.408.

g = acceleration due to gravity in ft. per second.

The above formula has been presented in a simplified form by Frank H. Kneeland** as follows:

$$V_1 = 4046.16 \sqrt{\frac{P_2 - P_1}{W} (1 - 0.355k + 0.202k_2 - 0.137k_3)}$$
 (86)

where

$$k = \left(\frac{p_2}{p_1} - 1\right)$$

The values given above are for a temperature of 70° F., a barometric pressure of 29.92 inches, and a humidity of 70 per cent.

^{*}Society of Naval Arch. and Marine Engrs., 1905, p. 35.

^{**&}quot;Some experiences with pitot tube on high and low air velocities" Am. Soc. Mech. Engrs., Dec., 1911.

From the preceding it is seen that the velocity at 70° F. and 29.92 inches barometer due to one-inch pressure is 4005 feet per minute and the velocity at any other pressure may be determined from the above relation. That is, the velocity varies as the square root of the pressure. For any other temperatures the velocity may be found by inserting the proper values of W in formula (84), or from the ratio of the absolute temperatures or barometric pressure, since at constant pressure the velocity will vary directly as the square root of the absolute temperatures and inversely as the square root of the barometric pressure.

These formulae may be considered sufficiently accurate for ordinary velocities, say up to 6000 feet per minute. Above that velocity and for very accurate work, various corrections should be made. These corrections, based on the experiments of Capt. D. W. Taylor are discussed by Mr. Kneeland in the paper already referred to.

Use of the Pitot Tube in an Air Duct

For fan testing or in ventilation work the pitot tube may be used to determine the velocity, and hence the quantity, of air flowing through a duct or pipe. The tube should be inserted at a point where the duct is straight and the flow undisturbed. In testing a fan the pitot tube should be placed from 10 to 20 diameters from the fan outlet with the point directly facing the blast. The air pipe should be the same diameter as the fan outlet.

The velocity pressure as shown with the tube in the center of the duct will be higher than the average, and will vary at different points from the center to the sides of the duct. In order to obtain the true or average pressure it is necessary to multiply the velocity pressure reading obtained at the center by the proper coefficient. Various authorities give a coefficient of from 0.81 to 0.82 for circular pipes, by which the velocity pressure readings taken at the center of the pipe should be multiplied to obtain the corrected average pressure. Consequently the velocity based on the observed pressure readings may be multiplied by the coefficient 0.91 to obtain the corrected average velocity.

For more accurate work it is better to make a traverse of the pipe and either determine the coefficient for the case in question or take the average of all of the readings. Where the duct is

rectangular it may be divided into a number of small squares or rectangles and a reading taken in the center of each. Then the average of all of the velocities corresponding to these pressures will give the true velocity in the duct. In case the pipe is round its area should be divided into a number of concentric zones or rings of equal area, and four readings taken in each area, readings being taken horizontally and vertically across the pipe.

The position of each successive point may be found by dividing each ring into two equal areas and adding one of these to the sum of the preceding areas. The radius of this resulting area will locate the desired point.

Expressed by means of a series of formulae, these points may be found as follows:

$$R_1 = \sqrt{\frac{a}{6.2832}} \tag{87}$$

$$R_2 = \sqrt{\frac{a + (a \div 2)}{3.1416}} \tag{88}$$

$$R_8 = \sqrt{\frac{2a + (a \div 2)}{3.1416}} \tag{89}$$

$$R_4 = \sqrt{\frac{3a + (a \div 2)}{3.1416}} \tag{90}$$

Where R_1 , R_2 , etc., = the distance from the center to the points where the readings should be taken in each successive ring.

a = the area of each zone or ring.

PIPE TRAVERSE FOR PITOT TUBE READINGS

Distance From Center of Pipe to Point of Reading in Per Cent. of Pipe Diameter

No. of Equal Areas in Traverse	No. of Readings	First R ₁	Second R ₂	Third R ₃	Fourth R4	Firth R ₆	Sixth R ₆	Seventh R7	Eighth R.s
3 4 5 6 7 8	12 16 20 24 28 32	20.4 17.7 15.5 14.5 13.4 12.5	35.3 30.5 27.2 25.0 23.1 21.6	45.5 39.4 35.3 32.3 29.9 28.0	46.6 41.7 38.2 35.3 33.2	47.4 43.3 40.1 37.6	47.9 44.3 41.5	48.2 45.1	48.4

The location of the points on a traverse where readings should be taken are shown in the accompanying sketch. The table on page 196 is based on formulae (87) to (90) for laying out a traverse and will be found very convenient for that purpose. As an example of its use we will assume that a traverse is to be made of a 24-inch pipe, twelve readings to be taken. One reading will be taken at $0.204 \times 24'' = 4.9''$ from the center of the pipe; one at $0.353 \times 24'' = 8.46''$ from the center, and one at $0.455 \times 24'' = 10.92''$ from the center.

An example of laying out a traverse and finding the average velocity through a round duct is illustrated in the accompanying figure drawn from test results. Twelve readings were taken as shown on the diagram, the points being laid out according to the table on page 196. The velocities were then computed for each point and the average velocity for each area plotted as shown, these points on the lower and upper half of the plot being the same. A curve drawn through these points indicates the velocity at the edge and at the center of the pipe, and these points should be used in calculating the average velocity.

The Anemometer

The anemometer is used in many cases where the velocity of the air is low or extreme accuracy is not required. It is more frequently used to determine the velocity of the air leaving a register or air vent than for testing a fan, although it may be used for either purpose. An anemometer should be frequently calibrated, and when used in a current of hot air the bearings of the

instrument are liable to become dry and the readings affected by friction. Such an instrument may vary as much as 10 or 20 per cent. from the true reading.

The space over which the velocity is to be measured should be divided into a considerable number of smaller squares and the velocity readings taken before each square; the average of these readings gives the air velocity in the duct or pipe. Another method frequently used when taking readings before a register or outlet in wall is to take a series of readings along the two diagonals of the openings, each reading being taken during an equal interval of time and similar distances from the center.

A special committee, appointed by the American Society of Heating and Ventilating Engineers to draft a standard method for measuring air velocities at supply openings by means of an anemometer, reported January 23, 1913, as follows:

- FIRST:—The openings shall be divided into equal rectangular areas, no side of which shall be over 10 inches long excepting where this would require more than ten readings, in which case the opening shall be divided into 12 equal areas.
- SECOND:—Readings are to be taken in every case at the center of every area.
- THIRD:—Readings are to be one-half minute duration, the anemometer being held at the register base or in the plane of the opening.
- FOURTH:—Where the diffusers are used, a total area is to be computed on the basis of the periphery of the diffuser.
- FIFTH:—The average of the readings are to be considered as the average velocity at the opening. Where negative velocities are found, they are to be deducted in arriving at the average velocity.
- SIXTH:—In computing volume, the net area of the opening is to be taken, the volume to be considered as the product of the average velocity and the net area of the opening. In case the anemometer is held two inches from the register face, no deduction should be made for the register mesh.

The Orifice

An orifice in connection with some form of testing apparatus is frequently used for fan testing work, usually as a part of a permanent testing plant where the air is blown into a large airtight box and escapes from the box through an orifice. A coefficient of 0.600 applied to the velocity is commonly used with this apparatus. Professor Durley describes in Vol. 27 of the Trans. A. S. M. E. a series of tests where various sized orifices

were attached to the end of a gauging box and a set of coefficients determined for the different conditions.

The orifice may also be used for measuring the air delivery in connection with compressed air systems, where the air is under a pressure of several atmospheres. A convenient form of apparatus for such use is here shown, in which the air passes through an enlargement in which the orifice is fastened.

As shown in the sketch, baffles should be provided on each side of the orifice. The pressure, P, should be taken on the leaving side of the chamber, the temperature being taken on either side. The drop in pressure, p_v , between the two sides of the orifice may be measured either in inches of water or of mercury by means of a manometer connected to the two sides of the chamber. The inner ends of these tubes should enter well between the baffle and the orifice plate. Different sizes of orifices may be used in the same apparatus, according to the pressure carried, diaphragms with openings from 1 to $2\frac{1}{2}$ inches in diameter being a suitable range for a chamber having a 4-inch inlet.

The equation for this apparatus would then be

$$Q = 100 A \sqrt{P T p_y}$$
 (91)

where

Q = cu. ft. free air per min.

A = area of orifice in sq. ft.

P = absolute pressure in lbs. per sq. in.

T = absolute temperature deg. F.

pv = drop in pressure in inches of mercury.

Orifice at End of Pipe

An orifice may be used on the end of a length of pipe for measuring the air discharged, as shown by Fig. a. The coefficient for such a case is

$$C = \frac{0.60}{\sqrt{1 - \left(\frac{A_2}{A_1}\right)^2}}$$
 (92)

where

C = coefficient of discharge.

 $A_1 = area$ of pipe.

 A_2 = area of orifice.

The quantity of air delivered by a given static pressure in the pipe may be determined by

$$Q = 1096.5 \text{ C } A_2 \sqrt{\frac{p}{W}}$$
 (93)

where

Q=cu. ft. of air per min.

C = above coefficient of discharge.

 A_2 = area of orifice in sq. ft.

p = static pressure in inches of water in main pipe.

W = weight of air in lbs. per cu. ft.

For values of W see table on page 17.

$$A_1 \qquad A_2 \qquad C = \frac{0.60}{\sqrt{1-\left(\frac{A_2}{A_1}\right)^2}}$$

FIG. a ORIFICE AT END OF PIPE.

$$C = \frac{0.82}{\sqrt{1 - \left(\frac{A_2}{A_1}\right)^2}}$$

FIG. & SHORT PIPE ATTACHED TO END OF LARGER PIPE.

The orifice may be replaced by a short length of pipe as in Fig. b, in which case the coefficient of discharge becomes

$$C = \frac{0.82}{\sqrt{1 - \left(\frac{A_2}{A_1}\right)^2}} \tag{94}$$

The above coefficients have been verified experimentally and found to be adapted to measurements of air under low pressures. Short Length of Pipe

A short length of pipe (preferably three diameters long) connected to a box or plenum chamber into which the fan discharges is frequently used instead of an orifice for fan testing, and for several reasons makes a better arrangement. It is used on the outlet of a tight box into which the air is blown by the fan, the air escaping through the short pipe. The static pressure in the box is carefully noted, it being a measure of the fan performance. The box leakage, if any, should be determined.

A coefficient of discharge of 0.825 should be applied to the area of the short pipe to determine the true effective area, or to the velocity of the air. If required, a traverse may be made of the pipe with a pitot tube and the coefficient determined for any special cases.

The quantity of air discharged may be determined by means of the formula:

$$Q = 1096.5 \text{ C A} \sqrt{\frac{p}{W}}$$

where

Q=cu. ft. of air per min.

C = coefficient of discharge.

A = area of pipe in sq. ft.

p = static pressure in inches of water in the plenum chamber.

W = weight of air in lbs. per cu. ft.

For values of W see the table on page 17.

The Converging Nozzle

A method frequently used in commercial work for fan testing, or for testing a special fan before its installation, is by means of a converging nozzle attached directly to the fan outlet. The pressure produced by the velocity of the air is measured at the point of discharge by means of a pitot tube, placed at the center

of the nozzle outlet. Proper correction must be made according to the accompanying curve of coefficients of discharge for converging nozzles. This curve is based on coefficients as given in Merriman's Treatise on Hydraulics.

To illustrate the use of the converging nozzle, we will take the case of a 40-inch planing-mill exhauster at 1780 R. P. M., blowing through a converging nozzle having the inlet and outlet ends 14 and $9\frac{3}{8}$ inches square, with sides sloping at an angle as here shown. The outlet area of the nozzle would be 0.61 sq. ft.

The angle of convergence of the cone outlet would be 11° and from the curve on page 202 the corresponding coefficient is 0.94.

The pressure on the fan will be taken at 3 inches; and the corresponding velocity will be $4005 \sqrt{3} = 6950$ ft. per min. At this velocity through the outlet of 0.61 sq. ft. the fan would handle 4230 A. P. M., but the actual quantity handled will be

$$4230 \times 0.94 = 3980$$
 A. P. M.

Coefficients of Discharge for Air Measurements

Various coefficients are used in the calculation of fan performance or in air measurements, and their derivation and application will be found fully discussed under their proper heading. The following summary is given merely as a matter of convenience, but the factors should not be used without first having an intelligent understanding of their proper application. In case of special requirements it may be found necessary to modify the given coefficient accordingly.

Coefficients of Discharge for Air Measurements

Coefficient for orifice at end of pipe 0.60

Coefficient for orifice at end of pipe - - - - $\frac{0.60}{\sqrt{1-\left(rac{A_2}{A_1}
ight)^2}}$

Coef. for short pipe attached to end of larger pipe

For explanation see page 201.

 $\frac{0.82}{\sqrt{1 - \left(\frac{A_2}{A_1}\right)^2}}$ - - - 0.82

Coefficient for short length of pipe - - - - - - 0.82 (blowing from plenum chamber)

Coefficient for short pipe on outlet of fan (see page 201) - 0.95 Coefficient for round pipe (pitot tube in center) - - - 0.91 Coefficient for converging nozzle (see curve page 202).

Coefficient for diverging nozzle (see curve page 223).

The quantity of air to be measured may be calculated by means of the formula

$$Q = 1096.5 \text{ C A} \sqrt{\frac{p}{W}}$$

where Q=cu. ft. air per min.

C = coefficient of discharge.

A = area of pipe in sq. ft.

p = static pressure in inches causing flow of air.

W = weight of air in lbs. per cu. ft.

For values of the weight of air in pounds per cubic foot for various atmospheric conditions see the table on page 17.

The coefficients given above are to be applied to velocity, capacity, or to the effective area of pipe or outlet. The proper coefficients to be applied to the pressure readings will be the square of the ones given above. Thus the coefficients for pressure in a round pipe varies from 0.81 to 0.82. These are to be applied to the pressure readings of the pitot tube when taken at the center of the pipe or duct. This coefficient for round pipes is based on test data, but should be decreased for pipes below 12 inches in diameter and increased by a small amount for pipes above 24 inches in diameter.

SECTION III

FAN CAPACITIES

The following chapter gives the capacity tables and performance curves for the various styles of Buffalo fans. These are divided into the following divisions: Planoidal Exhausters, Planoidal Blowers, Niagara Conoidal Fans, Turbo-Conoidal Fans, Induced Draft Tables, Miscellaneous fans and blowers. In each case the corresponding performance curves follow the capacity tables. The tables show the rated speed, capacity, and horsepower for fans operating at the different pressures stated, with the exception of the static pressure tables of the Niagara and Turbo-Conoidal fans, which give the performance at other than the rated point.

Use of Performance Curves

In connection with the steel plate and multivane fans, as well as several other styles, are shown relative performance curves, based on actual tests. The scale on the lower edge of each diagram reads per cent. of rated capacity, while the left-hand margin reads directly in per cent. The capacity curves show the relative horsepower, efficiency and pressure at any capacity in per cent. of their respective values at rated capacity. Thus we see from the diagram on page 214 of Planoidal Exhausters, if the fan is operated at say 80 per cent. of the rated capacity, the horsepower required will be 87.5 per cent. and the total pressure 116 per cent. of the rated values as given in the capacity tables. The efficiency will be 6 per cent. greater than at rated capacity.

The use of these diagrams for the analysis of fan performances has been fully covered under the subject of "Fans" (Part IV, Section I) and their application in the selection of a fan may be found on page 182, together with the practical examples explaining the various calculations involved. The relations between static, velocity, and total pressure will be found on page 177.

Combination Fan, Heater and Engine Tables

A series of tables giving combinations of fan, heater, and engine for various duties will be found in Part IV, Section VIII, following the examples on "The Selection of Apparatus." The air capacities given are based on the assumption that an average maximum value for the total pressure, in case of an installation in a public building such as a school or theatre, will be about one inch, and for industrial installations about two inches. A series of heater sizes is given for each fan, and a selection should be made on the basis of allowable velocity through the clear area. For public buildings the larger sizes should be used, and for industrial installations, the smaller. The depth of the heater will depend on the temperature range to be cared for, and may be determined from the heater tables on pages 418 to 431. low pressure engines were selected on the assumption of 20 to 25 pounds and the high pressure engines on 80 to 100 pounds steam pressure at the throttle. The engines are all suitable for direct connection to the given size of fan.

Planoidal Type "L" Fan Direct Connected to Class "I" Vertical Cylinder Below Shaft Engine

CAPACITIES OF BUFFALO PLANOIDAL STEEL PLATE EXHAUSTERS (TYPE·L) UNDER AVERAGE WORKING CONDITIONS

	S. or	Н. Р.	0.41 0.55 0.72	0.91 1.13 1.37	1.63 2.21 2.80	3.66 4.51 5.46	6.50 7.63 8.84	10.2 11.6 13.0	14.6 16.3 18.1	19.9 21.9 23.9
	Total Press. 0.505 Oz.	Vol.	1350 1840 2410	3050 3760 4550	5410 7370 9620	12180 15040 18190	21650 25410 29480	33830 38500 43460	48720 54300 60150	66310 72780 79540
	L 18/1	R. P.M.	819 702 614	546 492 447	410 351 307	273 246 224	205 189 176	164 154 145	137 129 123	117
	3. or	H. P.	0.32 0.44 0.58	0.73 0.90 1.09	1.30 1.76 2.30	2.92 3.60 4.36	5.18 6.08 7.05	8.10 9.21 10.4	11.7	15.9 17.4 19.0
er	Total Press. 0.433 Oz.	Vol.	1260 1710 2230	2820 3490 4220	5020 6830 8920	11290 13940 16870	20080 23560 27330	31370 35690 40290	45170 50330 55760	61480 67480 73750
Baromet	34"	R.P.M.	760 651 570	506 456 414	380 326 285	253 228 207	190 175 163	152 142 134	127 120 114	109
2 Inches	3. OF	H. P.	0.25 0.34 0.44	0.55 0.68 0.83	0.98 1.34 1.75	2.21 2.73 3.30	3.90 4.61 5.35	6.14 6.99 7.89	8.84 9.86 10.9	13.2
Temperature of 70° F., 29.92 Inches Barometer	Total Press. 0.360 Oz.	Vol.	1150 1560 2040	2580 3180 3850	4580 6230 8140	10270 12720 15390	18320 21500 24930	28620 32560 36760	41200 45930 50880	56100 61550 67280
ture of 7	28/8	R.P.M.	693 594 520	462 415 378	347 297 260	231 208 189	173 160 149	139 130 122	116 110 104	90 90 90
Tempera	3. Of	H. P.	0.18 0.24 0.31	0.40 0.59	0.71 0.96 1.25	1.59 1.96 2.37	2.82 3.31 3.84	4.41 5.01 5.66	6.34 7.07 7.83	8.64 9.48 10.4
	1/2" Total Press. or 0.288 0z.	Vol.	1030 1400 1820	2010 2850 3440	4100 5580 7290	9220 11380 13770	16390 19240 22310	25610 29140 32900	36880 41100 45540	50200 55100 60210
		R. P. M.	620 532 465	414 372 338	310 266 233	207 186 169	155 143 133	124 116 110	103 98 93	885 855 81
	Area of Outlet	\$ F.	0.77 1.04 1.36	1.75 2.16 2.61	3.13 4.26 5.54	8.75 10.57	13.00 14.85 17.20	19.70 · 22.40 25.40	28.50 31.70 35.30	38.7 42.2 46.5
	Diam. Blast-	Wheel	19 14" 22 14" 25 34"	32.29	38 1/5" 45" 51 3/5"	57 7% 64 1/4 70 3/4	77 17 83 1/5" 90"	96 1/2" 103" 109 1/4"	115 % 1 122 14" 128 15"	135" 141 ½" 148"
	Size		30 40	45 50 55	8028	201	130	120	180	220 230

Static Pressure is 79% of the Rated Total Pressure

					Temperat	ture of 70	Temperature of 70° F., 29.92 Inches Barometer	2 Inches	Baromet	er				
Size	Diam. Blast-	Area of Outlet		1" Total Press. or 0.577 Oz.	. or	11%"	1 14" Total Press. or 0.721 Oz.	88. Of	11/3"	1 ½" Total Press. or 0.865 0z.	S. Of	134"]	1 %" Total Press. or 1.010 Oz.	5. OF
	Wheel	Sq. Ft.	R.P.M.	Vol.	H. P.	R.P.M.	Vol.	Н. Р.	R.P.M.	Vol.	Н. Р.	R.P.M.	Vol.	Н. Р.
35	19 14"	0.77	877	1450	0.50	981	1620	0.70	1074	1770	0.91	1160	1920	1.15
9	25 34"		658	2580	0.89	735	2880	1.24	806	3150	1.63	870	3410	2.05
505	29 78" 32 18"	1.75	585	3260 4030	1.12	654 588	3640	1.57	716	3990	2.54	774 696	4310 5330	3.21
92	35 %		478	4870	1.68	535	5440	2.34	280	noac	3.03	033	0440	0.00
828	38 1/2" 45" 51 3/2"	3.13 4.26 5.54	439 376 329	5800 7890 10300	1.99 2.71 3.54	420 368	6480 8820 11520	2.79 3.79 4.95	537 460 403	7100 9650 12620	3.66 4.99 6.51	580 497 435	7670 10450 13630	8.21 8.21 8.21
889	64 7%	-	283 283 283 283	13040	5.54	327	14580	6.27	322	15970 19720	8.24	387	17250	10.4
120	77 1/4"		219	23180	7.97	245	25920	11.2	269	28390	14.7	290	30670	18.5
130	83 1/3"	14.85	202 188	27210 31560	9.36	226 210	30420 35280	13.1	248 230	33320	17.2	268 249	36000	21.7 25.1
160	96 ½" 103" 109 ½"	19.70 22.40 25.40	175 164 155	36230 41220 46530	12.5	196 184 173	46080	19.8	201	44360 50470 56980	22.9 26.0 20.4	232 218 205	47930 54510 61560	28.9 32.8 37.0
2000	115 34" 122 14" 128 15"		146 139 132	52160 58120 64400	17.9 20.0 22.2	164 155 147	58320 64980 72000	25.1 27.9 31.0	179 170 161	63880 71180 78870	33.0 36.7 40.7	194 183 174	69000 76900 85200	41.5 46.3 51.3
220	135"	38.7	125	77920	24.4	140	79380	34.1	154	86950 95430	44.9	166	93930	56.5 62.1
730	148	_ {	114	85170	29.3	128	95220	40.9	140	104300	53.8	101	112080	0.70

29.4 36.3 43.9

52.2 51.3 71.0

13.1 17.8 23.2

7.34 9.06

CAPACITIES OF BUFFALO PLANOIDAL STEEL PLATE EXHAUSTERS (TYPE L) UNDER AVERAGE

H. P.

9

3.26 4.44 5.80

159.9 175.5 191.8 117.5 130.9 145.0 925.8 92.8 92.8 Total Press. 2.019 Oz. 10840 14760 19280 67770 77110 87060 97600 108740 120490 132830 145780 159310 24400 30120 36450 50900 59040 3100 7530 9110 2710 3690 1820 Vol. 3 1/2" R. P. M. 820 703 615 547 492 448 410 379 352 641 406 230 328 308 290 H. P. 2.59 3.52 4.60 5.83 7.19 8.70 64.8 73.6 83.1 93.2 103.4 115.1 126.9 139.3 152.2 23.3 28.8 34.8 10.4 14.1 18.4 41.4 48.6 56.4 10 3" Total Press. 1.734 Oz. 100670 10040 13660 17850 40650 47100 54750 122980 134970 147510 2510 3420 4460 Vol. Temperature of 70° F., 29.92 Inches Barometer R. P. M. 013 912 829 207 519 302 139 760 551 570 380 351 326 304 285 268 WORKING CONDITIONS H. P. 7.88 10.7 14.0 1.97 2.68 3.50 4.43 5.47 6.62 96.5 105.9 115.8 17.7 21.9 26.5 31.5 37.0 42.9 49.3 56.0 63.3 79.0 or Total Press. 82480 91900 101800 112270 123200 134670 9160 12470 16290 25460 30800 13020 57260 65170 73570 2290 3120 4070 Vol. 2 3/3" R. P. M. 462 416 378 86 387 189 040 924 332 756 393 594 520 347 320 297 277 260 245 H. P. 1.41 5.64 7.67 10.0 3.17 12.7 22.6 26.5 30.7 35.3 40.1 500.7 69.1 75.8 82.9 9 Total Press. 1.154 Oz. 32780 38470 44630 82180 91060 100390 110170 120420 8200 11540 14570 2050 2790 3630 Vol R. M. P. ž 240 064 930 327 744 376 620 532 465 413 372 338 310 286 266 248 233 219 96 96 86 77 69 62 Outlet Sq. Ft. 28.50 31.70 35.30 0.77 1.04 1.36 1.75 2.16 2.61 13.00 14.85 17.20 rea 38.7 42.2 46.5 135" 141 ½" 148" 96 ½" 103″ 109 ¼" 115" 122 14" 128 25"

Static Pressure is 79% of the Rated Total Pressure

282

35

CAPACITIES OF BUFFALO PLANOIDAL STEEL PLATE EXHAUSTERS (TYPE L) AT TEMPERATURE OF 70° F. AND 29.92 INCHES BAROMETER

	Static Press. or 0.505 Oz.	I. H. P.	35 0.58 75 0.79 30 1.03	40 1.30 60 1.61 40 1.95	25 2.32 50 3.16 80 4.13	80 5.22 20 6.44 00 7.80	00 9.35 00 10.90 50 12.60	50 14.40 00 16.45 50 18.65	00 20.85 50 23.20 00 25.75	00 28.30 00 31.15 00 34.00	
	7/8" Static 0.505	R.P.M. Vol.	925 1535 795 2075 695 2730	617 3440 556 4260 505 5140	463 6125 398 8350 347 10880	309 13780 278 17020 253 20600	232 24500 213 28600 198 33350	185 38250 174 43400 164 49150	154 55200 146 61250 138 68200	132 75000 126 82200 121 89900	
-	ess. or	H. P. R	0.46	1.03	1.84 2.51 3.28	4.15 5.12 6.19	7.40 8.64 10.00	11.40 13.05 14.75	16.55 18.40 20.45	22.50 24.75 27.00	
	Static Press. 0.433 Oz.	Vol.	1420 1925 2530	3185 3940 4765	5675 7730 10080	12750 15750 19100	22700 26450 30850	35400 40200 45500	51100 56700 63100	69400 76100 83300	
	* *	R.P.M.	857 736 644	571 515 468	429 368 321	286 257 234	215 198 184	171 161 152	143 135 128	122 117 112	-
	ess. or z.	Н. Р.	0.35 0.47 0.62	0.79 0.97 1.18	1.40 1.91 2.49	3.15	5.63 6.57 7.60	8.70 9.93 11.25	12.60 14.00 15.55	17.10 18.85 20.55	C11-1:0
	Static Press. 0.360 Oz.	Vol.	1300 1755 2310	2910 3600 4350	5180 7060 9200	11640 14400 17400	20700 24150 28200	32350 36700 41600	46700 51800 57600	63400 69500 75200	
	2%	R.P.M.	783 672 588	522 470 427	391 336 293	261 235 214	196 180 168	157 147 138	130 123 117	111 107 102	11 2 1
	ess. or	H. P.	0.25 0.34 0.45	0.56 0.70 0.84	1.00 1.36 1.78	2.25 2.78 3.37	4.04 4.70 5.45	6.21 7.08 8.04	9.00 10.00 11.10	12.20 13.45 14.70	T. 1. D. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
	Static Press. 0.288 Oz.	Vol.	1160 1570 2065	2600 3220 3890	4630 6320 8230	, 10410 12880 15550	18530 21600 25200	28950 32800 37150	41700 46300 51500	56650 62150 68000	2
	1,5,	R.P.M.	700 601 526	467 421 382	350 301 262	233 210 191	175 161 150	140 132 124	117 110 105	100 96 91	E
	ess. or z.	Н. Р.	0.16 0.22 0.29	0.37 0.45 0.55	0.65 0.89 1.16	1.47 1.81 2.19	2.62 3.05 3.54	4.04 4.61 5.23	5.86 6.51 7.22	7.95 8.75 9.54	
	Static Press. 0.217 Oz.	Vol.	1000 1360 1790	2255 2785 3370	4010 5465 7120	9020 11140 13480	16030 18700 21830	25050 28400 32200	36150 40150 44600	49100 53800 58900	
	3%	R.P.M.	606 520 456	404 364 331	303 260 227	202 182 165	152 140 130	121 114 107	101 96 91	88 83 79	
	A. P. M.	R.P.M.	1.66 2.61 3.93	5.57 7.65 10.18	13.25 21.00 31.38	44.60 61.30 81.50	105.60 134.00 168.00	249.50 300.00	357.50 420.00 491.50	568.50 651.00 745.00	
	Size		35 9	45 50 55	828	899	130	150	180	210 220 230	

CAPACITIES OF BUFFALO PLANOIDAL STEEL PLATE EXHAUSTERS (TYPE L) AT TEMPERATURE

F 70° F. AND 29.92 INCHES BAROMETER Static Press. or 1½° Static Press. or 1½° Static Press. or 2° Static Press. or 1½° Static Press. or 134 1041 2270 1176 1125 2940 2122 1050 3140 3280 2.75 780 2.89 4510 2.32 986 580 363 787 4870 2.89 1050 4135 7780 318 662 6740 4.38 715 7280 5.50 10920 7.11 562 11810 11.05 520 11.00 314 4220 11.00 364 12230 11.72 437 19500 114.74 467 20850 11.00 364 12230 11.72 437 19500 114.74 467 20850 24600 11.33 331 26950 11.72 437 19500 114.74 467 20850 24600 11.35 301 24.50 329 302 44000 30.75 323 43250 31.00 328 34650 26.40 36.1 300 50400 30.75 328 43220 31.00 328 5600 31.50 24.60 329 5600 37.05 246 61400 30.75 329 43250 51880 31.50 214 64400 41.90 329 69400 52.05 289 65700 52.00 52
OF 70° F. AND 29.02 INCHES BAROMETER I. M. Static Press. or 1.½" Static Press. or 1.½" Static Press. or 1.5.65 Oz. I. M. Vol. H. P. R.P.M. Vol. H. P. R.P. H. P. R.P.M. Vol. H. P. R.P. H. P.
70° F. AND 29.92 INCHES BAROMETER. Author Press. or Lys. Static Press. or Lys. B.P.M. Vol. H. P. R.P.M. Vol. H.
Note H. P. R.P.M. Vol. H. P.
Note H. P. R.P.M. Vol. H. P.
Note H. P. R.P.M. Vol. H. P.
Note H. P. R.P.M. Vol. H. P.
Note H. P. R.P.M. Vol. H. P.
H. P. R.P.M. Vol. H. P.
Or 2" Static Press, c I.154 0z. H. L.M. Vol. H. J. P. R.P.M. Vol. H. J. J. 1.154 0z. 2.2 1.154 0z. 2.2 2.2 1.200 3.140 2.2 2.2 2.2 1.200 3.140 2.2 3.2 5.5 7.0 3.10 2.2 3.2 6.6 7.0 1.2630 1.4 4.7 2.850 1.8 7.4 467 2.0850 1.8 3.7 3.2 3
Static Press, c 1.154 0z, Vol. H. 2320 2, 3140 2, 4135 3, 6440 6, 6450 14, 12630 14, 12630 14, 12650 18, 20750 22, 25750 22, 25750 43250 37, 5040 43, 65700 64, 83500 72, 83500
List Or.
H. P. 14.26 64.30

Total Pressure is 126% of the Rated Static Pressure

CAPACITIES OF BUFFALO PLANOIDAL STEEL PLATE EXHAUSTERS (TYPE L) AT TEMPERATURE OF 70° F. AND 29.92 INCHES BAROMETER

or 21/2" Static Press. or 1.442 0z.	Н. Р.	2595 2.81 1 3510 3.80 1 4.98 1	5825 6.29 1 7200 7.78 8700 9.41	10370 11.19 14120 15.27 18400 19.92	23300 25.25 28800 31.10 34800 37.70	41400 45.10 48350 52.60 56400 60.90	64750 69.60 73500 79.50 83200 90.00	93400 100.90 103700 112.00 115100 124.30	126800 136.80 139000 150.50 152100 164.30
23/" Static Press. 1.586 0z.	R.P.M. Vol. H	1640 2720 1410 3680 1233 4840	093 6100 986 7540 896 9120 1	821 10870 1. 705 . 14800 1. 615 19300 2	547 24420 3 493 30200 3 448 36500 4	412 43400 5 378 50650 66 352 59150 7	328 67800 8 308 77000 9 290 87200 10	259 108700 12 259 120800 14	234 133000 15 224 145800 17; 214 159400 18;
or 3"	P. R.P.M	3.24 1715 4.38 1472 5.74 1288	7.25 1143 8.98 1030 10.84 936	12.90 858 17.60 736 22.88 643	29.08 35.85 43.40 468	51.95 429 60.60 395 70.20 367	80.20 343 91.60 322 103.70 303	116.30 286 129.20 270 143.30 257	157.80 244 173.50 234 189.40 223
Static Press, or 1.734 Oz.	Vol. H. P.	2840 3.69 3845 4.99 5060 6.56	6375 8.28 7880 10.24 9530 12.38	11340 14.71 15460 20.08 20150 26.20	25500 33.20 31530 40.90 38100 49.60	45400 59.40 52900 69.25 61750 80.25	70900 91.70 80400 104.50 91000 118.20	102200 132.60 113300 147.30 126100 163.70	138800 179.90 152200 198.00 166500 216.00
3 1/2" Static 2.019	R.P.M.	1852 3 1590 4 1392 5	1235 6 1112 8 1010 10	926 12 795 16 694 21	617 27 556 34 505 41	464 49 427 57 397 66	371 76 348 86 328 98	309 110400 292 122500 277 136300	264 150000 253 164500 241 179900
ic Press. or	Vol. H. P.	3070 4155 6.30 5460 8.26	6890 10.43 8510 12.92 10290 15.60	12250 18.55 16700 25.33 21750 33.08	27550 41.80 34050 51.60 41200 62.50	49000 74.70 57200 87.20 66700 101.00	76600 115.30 86900 131.80 98400 149.20	100 167.10 100 185.80 100 206.30	000 227.00 000 249.90 000 272.30

Total Pressure is 126% of the Rated Static Pressure

CAPACITIES OF BUFFALO PLANOIDAL STEEL PLATE EXHAUSTERS (TYPE, L) AT TEMPERATURE

1980 32.895 0 1980 32.80 5.68 2100 34.80 6.78 22.15 1980 32.80 5.68 2100 34.80 6.78 22.15 1980 32.80 15.8 170 9.16 190 1320 786 15.76 1262 96.50 18.80 13.6 1990 13100 22.64 1050 18.95 18.80 13.8 14.7 850 1786 30.88 901 1895 32.7 12.8 95.0 840 1786 30.88 901 1895 38.8 90 73.2 10.0 73.8 95.0 10.0 85.0 73.1 10.0 73.8 95.0 10.0 85.0 75.1 10.0			A" 6	tatic Dec		4	, tatic	2000	2 // 2	totic D	9 8	a0 000a	A 21/11	" Ctatic	" Ctatic Dage	Static Dance on K"	Static Dance on K"
H.P.H. VOI. H.P. R.P.H. VOI. H.P. R.P.H. H.P. R.P.H. 66 1980 3280 568 2100 3480 678 216 1906 83 1488 5840 10.08 1578 4710 9.16 1906 55 1180 9100 15.76 1282 9650 18.30 1376 25 990 13100 22.64 1050 13990 27.01 1108 38 50 1786 30.88 901 1396 22.73 1208 80 66 29450 51.10 787 48.15 895 80 540 44400 76.24 573 46650 91.00 604 80 540 44400 76.24 573 46650 91.00 604 80 540 44400 76.24 573 46650 91.00 604 80 540 44400 76.24 573 46650 91.00 604 80 486 61120 <th>Size</th> <th>A. P. M.</th> <th>4 2</th> <th>2.307 O</th> <th>ess. or z.</th> <th>4 1/2</th> <th>Static Pr 2.595 02</th> <th>ress. or</th> <th>S.</th> <th>274</th> <th>atic Pre</th> <th>Static Press. or 2.884 Oz.</th> <th>or 5 ½"</th> <th>or 5 ½" Static 3.172</th> <th>or 5 ½"</th> <th>or 5 ½" Static Press. or 6" 3.172 0z.</th> <th>or 5 ½" Static Press. or 3.172 0z.</th>	Size	A. P. M.	4 2	2.307 O	ess. or z.	4 1/2	Static Pr 2.595 02	ress. or	S.	274	atic Pre	Static Press. or 2.884 Oz.	or 5 ½"	or 5 ½" Static 3.172	or 5 ½"	or 5 ½" Static Press. or 6" 3.172 0z.	or 5 ½" Static Press. or 3.172 0z.
66 1980 3280 5.68 2100 3480 6.78 2216 51 1700 4440 7.68 18.94 4710 9.16 1900 57 1320 7360 12.72 1400 7805 15.18 1476 55 1190 9100 19.04 1145 11680 22.73 1208 25 990 13100 22.64 1050 13900 27.01 1108 38 742 23280 40.38 901 13900 27.01 108 6 60 2945 51.10 70 31.25 60.99 75.10 664 5 40 4400 62.96 630 3860 75.10 664 5 40 4400 76.24 573 46650 75.0 674 60 496 5115 106.44 44.64 680 174 674 60 496 512.0 123.20		K. P. M.	R.P.H.	Vol.	H. P.	R.P.M.	Vol.	٥.	R.P.M.	Vo	-	d. H. P.	I	Н. Р.	H. P. R.P.M.	H. P. R.P.M. Vol. H. P.	H. P. R.P.M. Vol. H.
57 1320 7360 12.72 1400 7805 15.18 14.18 14.61 18.81 13.80 14.80 4.80 14.80 4.80 14.80 4.80 14.80 4.80 14.80 4.80 14.80 4.80 14.80 4.80 14.80 14.80 14.80 14.80 14.80 14.80 14.80 14.80 14.80	320	1.66 2.61 3.93	1980 1700 1488	3280 4440 5840	5.68 7.68 10.08	2100 1804 1579	3480 4710 6195	6.78 9.16 12.03	2215 1900 1664	367 496 653	000	0 7.94 5 10.73 0 14.10		7.94 10.73 14.10	7.94 2325 10.73 1995 14.10 1745	7.94 2325 3845 10.73 1995 5210 14.10 1745 6850	7.94 2325 3845 9.16 10.73 1995 5210 12.38 14.10 1745 6850 16.25
25 990 13100 22.64 1050 13900 27.00 1108 38 742 23280 40.30 787 24680 48.15 83 50 660 29450 51.10 708 31250 60.90 738 50 540 44000 76.24 573 46650 91.00 604 60 456 51200 75.10 75.10 664 60 456 51200 102.25 5560 11.00 674 60 456 51200 147.00 147.00 474 60 456 7560 147.00 474 60 456 7560 147.00 474 60 456 7560 147.00 474 60 456 7560 147.00 474 60 456 7560 147.00 476 60 456 7560 147.00 476 60	55	5.57 7.65 10.18		7360 9100 11000	12.72 15.76 19.04	1400 1262 1145	7805 9650 11680	15.18 18.80 22.73	1476 1330 1208	8230 10180 12300		17.80 22.05 26.60		17.80 22.05 26.60	17.80 1549 22.05 1395 26.60 1268	17.80 1549 8635 22.05 1395 10680 26.60 1268 12900	17.80 1549 8635 20.50 22.05 1395 10680 25.40 26.60 1268 12900 30.70
60 660 29450 51.10 700 31250 60.90 738 30 540 44000 76.24 573 46650 91.00 604 60 496 52400 91.20 526 5600 108.70 555 60 496 52400 91.20 526 5600 108.70 510 60 456 51150 123.20 450 75600 147.00 474 50 396 81800 140.80 420 86900 168.00 443 50 372 92900 160.80 395 98500 146.11 170 50 372 19200 160.80 395 9850 147.00 443 16 19 50 380 118000 204.00 350 127.30 391 1 50 380 118000 226.80 311 139000 243.50 369 1 50	323	13.25 21.00 31.38		13100 17860 23280	22.64 30.88 40.30	1050 901 787	13900 18950 24680	27.00 36.83 48.15	1108 950 830	14650 19980 26000		31.65 43.15 56.40	31.65 1160 43.15 997 56.40 870		1160 997 870	1160 15370 997 20950 870 27280	1160 15370 36.50 1 997 20950 49.80 1 870 27280 65.00
60 496 52400 91.20 526 55600 108.70 555 00 456 61150 106.40 484 64800 127.00 510 50 396 81800 140.80 396 98500 168.00 443 50 372 92900 160.80 371 111400 217.30 391 60 330 105100 182.00 371 111400 217.30 391 60 34 105100 226.80 331 139000 270.50 345 50 286 145700 251.60 314 154500 302.50 331 50 282 160300 276.80 289 170000 330.60 315 50 282 160300 274 204000 363.50 302 50 282 188400 363.50 392 302 302 50 282 188400 302.50 382	289	44.60 61.30 81.50		29450 36400 44000	51.10 62.96 76.24	700 630 573	31250 38600 46650	60.90 75.10 91.00	738 664 604	32950 40700 49200		71.40 88.00 106.50	71.40 774 88.00 697 106.50 633		774 697 633	774 34550 697 42700 633 51600	774 34550 82.30 697 42700 101.50 633 51600 123.00
50 396 81800 140.80 420 86900 168.00 441 50 372 92900 160.80 365 98500 192.00 416 50 330 118000 204.00 371 1111400 243.50 389 60 312 131000 226.80 331 139000 270.50 349 50 286 145700 251.60 314 154500 300.50 331 50 282 16030 276.80 299 17000 330.00 315 50 278 15800 304.80 286 188400 302 302 50 278 15800 332.40 274 20400 377.50 289	4000	105.60 134.00 168.00		52400 61150 71350	91.20 106.40 123.20	526 484 450	55600 64800 75600	108.70 127.00 147.00	555 510 474	58600 68300 79750		127.50 148.70 172.10	127.50 582 148.70 535 172.10 498	1000	50 582 70 535 10 498	50 582 61450 770 535 71700 10 498 83700	50 582 61450 147.00 770 535 71700 171.80 10 498 83700 198.70
50 330 118000 204.00 350 125200 243.50 349 50 312 131000 226.80 331 139000 270.50 349 50 296 145700 251.60 314 154500 300.50 331 50 282 160300 276.80 299 170000 330.00 315 00 270 175800 304.80 286 186400 363.50 302 00 276 12800 332.40 274 20400 397.50 289	288	249.50 300.00		81800 92900 105100	140.80 160.80 182.00	420 395 371	86900 98500 1111400	168.00 192.00 217.30		91500 103900 117500		197.00 224.80 254.50	197.00 464 224.80 436 254.50 411	980	00 464 80 436 50 411	00 464 96000 227 80 436 108900 259 50 411 123200 293	00 464 96000 227.00 80 436 108900 259.30 50 411 123200 293.50
50 282 160300 276.80 299 170000 330.00 315 00 270 175800 304.80 286 186400 363.50 302 00 258 192300 332.40 274 204000 397.50 289	2002	357.50 420.00 491.50		118000 131000 145700	204.00 226.80 251.60	350 331 314	125200 139000 154500	243.50 270.50 300.50		132000 146500 163000		285.30 317.00 352.00	285.30 387 317.00 366 352.00 347	888	30 387 00 366 00 347	30 387 138400 00 366 153800 00 347 170900	30 387 138400 329.00 00 366 153800 365.90 00 347 170900 406.00
	220	568.50 651.00 745.00	282 270 258	160300 175800 192300	276.80 304.80 332.40		170000 186400 204000	330.00 363.50		179100		387.50 426.00 465.00	331		331	331 188000 446 317 206100 491 303 995500 536	331 188000 446.50 317 206100 491.50

otal Pressure is 126% of the Rated Static Pressure

Motor Driven Planoidal Type "L" Fan

Left-Hand Bottom Horizontal Discharge Planoidal Type "L" Fan with Overhung Pulley

CAPACITIES OF BUFFALO PLANOIDAL STEEL PLATE BLOWERS (TYPE L) UNDER AVERAGE

		_								
	or or	Н. Р.	0.37 0.51 0.66	0.84 1.03 1.25	1.49 2.02 2.64	3.34 4.12 4.99	5.94 6.97 8.08	9.28 10.6 11.9	13.4 14.9 16.5	18 2 20 0 21 8
	Total Press. 0.505 Oz.	Vol.	1350 1840 2410	3050 3760 4550	5410 7370 9630	12180 15040 18190	21650 25410 29480	33830 38500 43460	48720 54300 60150	66310 72780 79540
ETER	L8%	R.P.M.	795 681 596	530 477 433	397 341 298	265 238 217	199 183 170	159 149 140	133 126 119	114 108 104
BAROW	3. Of	H. P.	0.30 0.40 0.53	0.67 0.82 1.00	1.19 1.61 2.11	2.67 3.29 3.98	4.74 5.56 6.45	7.40 8.42 9.50	10.7 11.9 13.2	· 14.5 15.9 17.4
INCHES BAROMETER	Total Press. 0.433 Oz.	Vol.	1260 1710 2230	2820 3490 4220	5020 6830 8920	11290 13940 16870	20080 23560 27330	31370 35690 40290	45170 50330 55760	61480 67480 73750
ID 29.92	78	R. P. M.	737 632 553	491 442 402	368 316 276	246 221 201	184 170 158	147 138 130	123 116 111	105 101 96
0° F. AND	s, or	H. P.	0.22 0.31 0.40	0.51 0.62 0.76	0.90 1.22 1.60	2.02 2.50 3.02	3.59 4.22 4.89	5.62 6.38 7.21	8.08 9.01 9.98	11.0 12.1 13.2
JRE OF 7	Total Press. 0.360 Oz.	Vol.	1150 1560 2040	2580 3180 3850	4580 6230 8140	10300 12720 15390	18320 21500 24930	28620 32560 36760	41200 45930 50880	56100 61550 67280
PERAT	8/2	R. P. M.	672 576 504	448 403 367	336 288 252	224 202 183	168 155 144	134 126 119	112 106 101	98
NS-TEM	3. Of	H. P.	0.16 0.22 0.29	0.36	0.65 0.88 1.15	1.45	2.58 3.02 3.51	4.03 4.58 5.17	5.80 6.46 7.16	7.89 8.66 9.47
WORKING CONDITIONS—TEMPERATURE OF 70° F.	Total Press. 0.288 Oz.	Vol.	1025 1400 1820	2310 2850 3440	4100 5580 7290	9220 11380 13780	16390 19240 22310	25610 29140 32900	36880 41100 45540	50200 55100 60210
KING C	1/2"	R. P. M.	602 516 451	401 361 328	301 258 226	201 181 164	150 139 129	120 113 106	100 95 90	86 82 79
WOR	Area of Outlet	Sq. Ft.	0.77 1.04 1.36	1.75 2.16 2.61	3.13 4.26 5.54	7.10 8.75 10.57	13.00 14.85 17.20	19.70 22.40 25.40	28.50 31.70 35.30	38.7 42.2 46.5
	Diam. Blast-	Wheel	19 ¼" 22 ½" 25 ¾"	29 78" 32 18" 35 38"	381/2" 45" 513%	57 78" 64 14" 70 34"	83.74 90".24"	96 ½" 103″ 109 ¼"	11564" 122 14" 128 12"	135" 141 ½" 148"
	Size		30 35 40	45 50 55	328	9011	120 130 140	150 160 170	180 190 200	210 220 230

Static Pressure is 79% of the Rated Total Pressure

CAPACITIES OF BUFFALO PLANOIDAL STEEL PLATE BLOWERS (TYPE L) UNDER AVERAGE WODKING CONDITIONS. TEMBED ATTIDE OF 70° E AND 20 92 INCHES BADOMETED

H. P. R. P. M. Vol. H. P. R. P. M. P. P. M.		Diam.	Area	1" T	1" Total Press.	or	11%"	Total Press. 0.721 Oz.	s. or	1 1/2" 7	Total Press. 0.865 Oz.	s. or	134" 7	Total Press.	8. of
19 % 0.77 851 1450 0.46 951 1620 0.64 1042 1770 0.84 1126 1149 965 2810 129 1149 965 2810 1149 965 2810 1149 965 2810 1149 965 2810 1149 965 2810 1149 965 2810 1149 965 2810 1149 965 2810	Size	Blast- Wheel	Sq. Ft.	R.P.M.	Vol.		R.P.M.	Vol.	Н. Р.		Vol.			Vol	Н. Р.
28 % 1.75 567 3260 1.03 634 3640 1.43 695 3990 1.88 750 4310 35 % 2.61 464 4870 1.27 571 4500 1.77 625 4930 2.81 674 5330 675 5330 675 5330 675 5330 675 5330 675 5330 675 5330 675 5330 674 6440 757 7100 3.85 653 7670 482 6440 757 7100 3.85 654 482 6440 757 447 9660 4.82 482 486 8.85 391 12620 4.82 1446 6440 7.07 447 9660 4.82 4.82 1447 966 4.82 14450 6440 1.82 347 14650 4.82 14460 4.00 4.10 317 447 447 416 4.82 14500 4.82 11800 4.82 <th>35</th> <th>19 ¼" 22 ½" 25 ¾"</th> <th>0.77 1.04 1.36</th> <th>851 729 638</th> <th>1450 1970 2580</th> <th>0.46 0.62 0.81</th> <th>951 815 713</th> <th>1620 2200 2880</th> <th>0.64 0.87 1.13</th> <th>1042 893 781</th> <th>1770 2410 3150</th> <th>0.84 1.14 1.49</th> <th>1125 965 844</th> <th>1920 2610 3410</th> <th>1.05</th>	35	19 ¼" 22 ½" 25 ¾"	0.77 1.04 1.36	851 729 638	1450 1970 2580	0.46 0.62 0.81	951 815 713	1620 2200 2880	0.64 0.87 1.13	1042 893 781	1770 2410 3150	0.84 1.14 1.49	1125 965 844	1920 2610 3410	1.05
38 ½ 4.26 580 1.82 476 6480 2.55 521 7100 3.35 563 7670 51 ¾ 4.26 365 7890 2.48 408 8820 3.46 447 19650 4.56 482 19650 51 ¾ 4.26 365 4.82 11820 3.46 447 19650 4.56 482 19650 57 ¾ 8.15 2.56 1800 4.10 317 14580 5.73 347 1590 7.73 317 1960 4.56 4.85 11820 4.55 3.84 11830 3.75 11820 4.55 3.84 3.85 11830 3.85 11830 3.85 11830 3.85 11830 3.85 3.84 3.85 11830 3.85 3.84 3.85 3.84 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 <th>45 50 55</th> <th>35 % % % % % % % % % % % % % % % % % % %</th> <th>1.75 2.16 2.61</th> <th>567 511 464</th> <th>3260 4030 4870</th> <th>1.03 1.27 1.53</th> <th>634 571 519</th> <th>3640 4500 5440</th> <th>1.43</th> <th>695 625 568</th> <th>3990 4930 5960</th> <th>1.88 2.32 2.81</th> <th>750 675 614</th> <th>4310 5330 6440</th> <th>2.93 3.55</th>	45 50 55	35 % % % % % % % % % % % % % % % % % % %	1.75 2.16 2.61	567 511 464	3260 4030 4870	1.03 1.27 1.53	634 571 519	3640 4500 5440	1.43	695 625 568	3990 4930 5960	1.88 2.32 2.81	750 675 614	4310 5330 6440	2.93 3.55
64 % 1.8. 7.10 284 13040 4.10 317 14580 5.73 347 15970 7.53 375 17250 64 % 2.8. 255 16100 5.06 285 18000 7.07 313 19720 9.30 338 21360 77 % 1.0.57 232 196 27210 8.55 229 2380 12.0 240 23800 11.3 307 25770 90 % 2.2. 17.20 8.55 204 35280 12.0 240 33320 15.7 260 36000 90 % 2.2. 17.20 8.55 204 35280 12.0 223 38650 18.2 241 41750 163 % 2.40 160 4122 13.6 178 46080 18.1 184 41750 112 % 3.7 25.40 142 58120 18.4 159 5820 20.9 177 6380 189 4790 122 % 3.7 122 % 3.7 13.4 <	8008	38 ½" 45" 51 %"	3.13 4.26 5.54	426 365 319	5800 7890 10300	1.82 2.48 3.24	476 408 337	6480 8820 11520	2.55 3.46 4.53	521 447 391	7100 9650 12620	3.35 4.56 5.95	563 482 422	7670 10450 13630	4.22 5.74 7.50
77 ½ 13.00 212 23180 7.29 238 25620 10.2 261 28390 13.4 281 30670 90.7 17.20 182 27210 8.55 220 36220 13.9 223 38550 18.7 260 36000 90.7 17.20 182 21.0 223 38550 18.2 241 37500 103 22.40 160 46530 11.4 180 40500 18.1 196 56470 23.8 211 41750 115 % 25.40 150 20.4 184 56980 26.9 199 61560 115 % 25.40 14.6 168 52020 20.4 184 56980 26.9 199 61560 128 % 35.10 18.3 150 64980 25.5 165 7880 36.0 188 69000 128 % 35.20 18.3 150 64980 25.5 165	885	57 78" 64 14" 70 84"	7.10 8.75 10.57	284 255 232	13040 16100 19480	4.10 5.06 6.02	317 285 259	14580 18000 21780	5.73 7.07 8.55	347 313 284	15970 19720 23860	7.53 9.30 11.3	375 338 307	17250 21300 25770	9.49 11.7 14.2
96 ½ 19.70 170 36230 11.4 190 40500 15.9 208 44360 20.9 225 47930 1037 22.40 160 41520 13.6 178 46680 18.1 185 56470 23.8 211 54510 115 ¾ 28.50 142 5120 14.6 159 5820 22.9 177 6380 30.1 189 69000 122 ¼ 31.70 134 58120 18.4 150 5820 22.9 177 6380 30.1 188 69000 122 ¼ 31.70 134 58120 18.3 150 28.3 156 78870 37.2 169 82000 128 ¼ 36.30 20.3 143 72000 28.3 156 78870 37.2 169 82000 135* 316 46.5 13 7780 28.3 143 8650 41.0 161 18390 <t< th=""><th>130</th><th>77 14" 83 1/2" 90"</th><th>13.00 14.85 17.20</th><th>212 196 182</th><th>23180 27210 31560</th><th>7.29 8.55 9.92</th><th>238 220 204</th><th>25920 30420 35280</th><th>10.2 12.0 13.9</th><th>261 240 223</th><th>28390 33320 38650</th><th>13.4 15.7 18.2</th><th>281 260 241</th><th>30670 36000 41750</th><th>16.9 19.8 23.0</th></t<>	130	77 14" 83 1/2" 90"	13.00 14.85 17.20	212 196 182	23180 27210 31560	7.29 8.55 9.92	238 220 204	25920 30420 35280	10.2 12.0 13.9	261 240 223	28390 33320 38650	13.4 15.7 18.2	281 260 241	30670 36000 41750	16.9 19.8 23.0
115 %" 28.50 142 5216 16.4 159 58320 22.9 177 63880 30.1 188 69000 128 %" 31.70 134 58120 18.3 150 64980 25.5 165 71180 33.6 178 76900 128 %" 35.30 128 64400 20.3 143 72000 28.3 166 78870 37.2 169 86200 141 %" 42.2 116 7790 22.3 136 77.4 149 8640 45.0 164 10580 46.5 111 85170 26.8 124 95220 37.4 136 104300 49.2 147 112680	150 160 170	96 ½" 103″" 109 ¼"	19.70 22.40 25.40	170 160 150	36230 41220 46530	11.4 13.0 14.6	190 178 168	40500 46080 52020	15.9 18.1 20.4	208 195 184	44360 50470 56980	20.9 23.8 26.9	225 211 199	47930 54510 61560	26.4 30.0 33.9
135" 38.7 122 71000 22.3 136 79380 31.2 149 86950 41.0 161 93930 141 ½" 42.2 116 77920 24.5 130 87120 34.2 142 95430 45.0 154 103080 148" 46.5 111 85170 26.8 124 95220 37.4 136 104300 49.2 147 112680	180 190 200	115 %" 122 ¼" 128 ½"	28.50 31.70 35.30	142 134 128	52160 58120 64400	16.4 18.3 20.3	159 150 143	58320 64980 72000	22.9 25.5 28.3	177 165 156	63880 71180 78870	30.1 33.6 37.2	188 178 169	69000 76900 85200	38.0 42.3 46.9
	210 220 230	135" 141 ½" 148"	38.7 42.2 46.5	122 116 111	71000 77920 85170	22.3 24.5 26.8	136 130 124	79380 87120 95220	31.2 34.2 37.4	149 142 136	86950 95430 104300	41.0 45.0 49.2	161 154 147	93930 103080 112680	51.7 56.7 62.0

Static Pressure is 79% of the Rated Total Pressure

CAPACITIES OF BUFFALO PLANOIDAL STEEL PLATE BLOWERS (TYPE L) UNDER AVERAGE

	S. 0f	Н. Р.	2.98 4.06 5.30	6.71 8.28 10.0	11.9 16.2 21.2	26.8 33.1 40.1	47.7 56.1 64.9	74.6 84.8 95.7	107.3 119.6 132.5	146.1 160.3 175.3
	Total Press. or 2.019 Oz.	Vol.	2710 3690 4820	6100 7530 9110	10840 14760 19280	24400 30120 36450	43380 50900 59040	67780 77110 87060	97600 108740 120490	132830 145780 159350
BAROMETER	3 1/2"	R.P.M.	1590 1363 1192	1060 954 867	795 682 596	530 477 434	398 367 341	318 298 281	265 251 239	227 217 208
	1. OF	H. P.	2.36 4.21	5.32 6.57 7.95	9.46 12.9 16.8	21.3 26.3 31.8	37.8 44.4 51.5	59.1 67.2 75.9	85.1 94.8 105.1	115.8 127.1 138.9
29.92 INCHES	Total Press. 1.734 Oz.	Vol.	2510 3420 4460	5650 6970 8440	10040 13660 17850	22520 27900 33740	40150 47130 54660	62740 71390 80590	90340 100670 111540	122980 134970 147530
AND 29.9	3" T	R. P. M.	1473 1263 1105	982 884 804	737 632 553	491 442 402	369 340 316	295 276 260	246 233 221	211 201 192
70° F.	88. Of	H. P.	1.80 2.45 3.20	4.05 5.00 6.05	7.20 9.80 12.8	16.2 20.0 24.2	28.8 33.8 39.2	45.0 51.2 57.8	64.8 72.2 80.0	88.2 96.8 105.8
URE OF	Total Press. or 1.442 Oz.	Vol.	2290 3120 4070	5160 6360 7700	9160 12460 16290	20600 25460 30800	36660 43020 49890	57260 65170 73570	82480 91900 101800	112270 123200 134670
MPERAT	2 1/2"	R. P. M.	1345 1153 1009	897 807 734	673 577 504	448 403 367	336 310 288	269 252 237	224 212 202	192 183 176
NS-TE	. or	H. P.	1.29 1.75 2.29	2.90 3.58 4.33	5.15 7.01 9.16	11.6 14.3 17.3	20.6 24.2 28.1	32.2 36.6 41.4	46.4 51.7 57.3	63.1 69.3 75.8
WORKING CONDITIONS—TEMPERATURE	Total Press. 1.154 Oz.	Vol.	2050 2800 3640	4610 5700 6900	8200 11150 14570	18390 22770 27540	32880 38470 44630	51220 58270 65790	73760 82180 91060	100390 110170 120420
KING C	2" T	R.P.M.	1203 1031 902	802 722 656	602 516 451	401 361 328	301 278 258	241 226 212	201 190 181	172 164 157
WOF	Area Outlet	Sq. Ft.	0.77	1.75 2.16 2.61	3.13 4.26 5.54	7.10 8.75 10.57	13.00 14.85 17.20	19.70 22.40 25.40	28.50 31.70 35.30	38.7 42.2 46.5
	Diam. Blast-	Wheel	19 ¼" 22 ¼" 25 ¾"	3227%	38 ½" 45" 51 ¾"	57 7% 64 1/% 70 %	77 14" 83 1/4" 90"	96 ½" 103" 109 ¼"	115 %" 122 ¼" 128 ½"	135" 141 1/5" 148"
	Size		30 35 40	45 50 55	800	001	120 130 140	150 160 170	180 190 200	210 220 230

Static Pressure is 79% of the Rated Total Pressure

CAPACITIES OF BUFFALO PLANOIDAL STEEL PLATE BLOWERS (TYPE L) AT TEMPERATURE OF 70° F. AND 29.92 INCHES BAROMETER

		,							
ess. or	Н. Р.	0.53 0.73 0.95	1.20	2.13 2.89 3.79	4.79 5.91 7.15	8.51 9.95 11.58	13.28 15.15 17.11	19.15 21.35 23.65	26.10 28.60 31.30
Static Press. 0.505 Oz.	Vol.	1535 2075 2730	3440 4260 5140	6125 8350 10880	13780 17020 20600	24500 28600 33350	38250 43400 49150	55200 61250 68200	75000 82200 89900
1%"	R.P.M.	896 767 673	597 538 488	448 384 336	298 268 244	224 207 192	179 167 158	149 141 135	128 122 117
30° 0E	H. P.	0.42 0.58 0.75	0.96 1.18 1.42	1.70 2.31 3.02	3.82 4.71 5.71	6.78 7.93 9.24	10.60 12.10 13.65	15.25 17.05 18.85	20.80 22.80 24.95
Static Press. 0.433 Oz.	Vol.	1420 1925 2530	3185 3940 4765	5675 7730 10080	12750 15750 19100	22700 26450 30850	35400 40200 45500	51100 56700 63100	69400 76100 83300
%" S	R.P.M.	830 710 623	553 498 452	415 355 315	276 248 226	207 192 177	165 154 146	138 131 125	119 113 108
SS. OF	Н. Р.	0.32 0.44 0.57	0.73 0.90 1.08	1.29 1.75 2.29	2.90 3.58 4.33	5.15 6.02 7.00	8.05 9.17 10.35	11.60 12.90 14.30	15.80 17.30 18.95
Static Press. 0.360 Oz.	Vol.	1300 1755 2310	2910 3600 4350	5180 7060 9200	11640 14400 17400	20700 24150 28200	32350 36700 41600	46700 51800 57600	63400 69500 75200
S	R.P.M.	758 648 568	505 455 413	378 324 284	252 227 207	189 175 162	161 142 134	126 119 114	108 103 98
Press. or Oz.	H. P.	0.23 0.31 0.41	0.52 0.64 0.77	0.92 1.25 1.64	2.08 2.56 3.10	3.69 4.31 5.02	5.76 6.57 7.42	8.31 9.26 10.25	11.30 12.40 13.60
Static Pro 0.288 Oz	Vol.	1160 1570 2065	2600 3220 3890	4630 6320 8230	10410 12880 15550	18530 21600 25200	28950 32800 37150	41700 46300 51500	56650 62150 68000
1/2" S	R.P.M.	678 580 508	451 407 369	339 290 254	226 203 185	169 156 145	135 127 120	112 107 102	92 88
Press. or Oz.	Н. Р.	0.15 0.20 0.27	0.34 0.42 0.50	0.60 0.81 1.07	1.35 1.66 2.01	2.39 2.79 3.25	3.73 4.26 4.81	5.38 6.00 6.65	7.33 8.05 8.80
Static Pres 0.217 Oz.	Vol.	1000 1360 1790	2255 2785 3370	4010 5465 7120	9020 11140 13480	16030 18700 21830	25050 28400 32200	36150 40150 44600	49100 53800 58900
3%"	R.P.M.	586 502 440	391 352 320	294 251 220	195 176 160	146 135 126	117 110 104	93	84 80 77
A.P. M.	R.P.M.	1.71 2.71 4.06	5.76 7.92 10.50	13.70 21.75 32.40	46.20 63.40 84.30	109.50 138.20 174.00	214.00 259.50 311.00	371.00 434.00 505.00	585.00 675.50 769.00
Size		30 40	45 50 55	328	889	130	150 160 170	180	220 230

Total Pressure is 126% of the Rated Static Pressure

CAPACITIES OF BUFFALO PLANOIDAL STEEL PLATE BLOWERS (TYPE L) AT TEMPERATURE

M. Static Press, or M. Static Press, or																	- 1
K. P.M. k. P.M. Vol. H. P. R. P. M. P. P. M. R. P. M. P. P	Size	A. P. M.	<u>.</u>	0.577 0	25. OF	17/2	Static Pi 0.721 Or	ress. or	1 1/3"		ress. or	134	Static.P1	ress. or	2, 2	tatic Pre	.ss. or
1.71 958 1640 0.65 1070 1830 0.91 1174 2010 1.19 1288 2170 1.51 1355 2240 2.15 1355 2320 2.87 916 2480 1.24 1005 2720 1.63 1086 2720 1.63 1086 2.24 0.27 845 4870 2.06 1.10 1.10 2.05 780 2.70 4.07 3.40 904 4.13 4.13 4.02 2.06 1.10 2.05 782 4.50 6.02 2.01 1.10 2.05 6.02 4.01 1.00 2.05 6.02 4.02 1.00 2.04 4.02 4.02 4.02 4.02 4.03 4.02 4.03<		R. P. M.	R.P.M.	Vol.	H. P.	R.P.M.	V.ol.	H. P.	R.P.M.	Vol.	Н. Р.	R.P.M.	Vol.	Н. Р.	R.P.M.	Vol.	H. P.
5.76 689 3680 1.47 715 4110 2.05 783 4510 2.76 4870 3.45 4870 48.45 4870 4.21 814 6440 1.0.50 522 5500 2.19 584 516 650 4.21 878 778 778 1.0.50 522 5500 2.19 584 587 870 6.04 6.04 6.04 778 778 21.75 410 650 4.96 550 4.40 14.25 8.55 4.75 15400 10.77 508 16450 46.20 314 46.5 40.0 14.25 8.22 8.55 4.75 15400 10.77 508 16450 46.20 31 14.730 5.88 357 16480 8.22 380 16.12 346 16.12 345 18.20 48.50 18.60 4.60 4.60 10.80 4.22 19600 13.60 10.80	35	1.71 2.71 4.06	958 820 719	1640 2220 2920	0.65 0.87 1.16	1070 916 804	1830 2480 3260	0.91 1.24 1.62	1174 1005 880	2010 2720 3580	1.19 1.63 2.13	1268 1085 951	2170 2940 3860	1.51 2.06 2.69	1355 1160 1018	2320 3140 4135	1.84 2.52 3.28
13.70 479 6550 2.61 536 7320 3.64 587 8030 4.80 634 8670 6.04 678 9260 21.75 410 8893 3.55 449 1990 4.96 502 10920 6.52 542 11810 8.23 580 12650 46.20 319 14730 5.86 357 16480 8.22 2230 13.82 13.60 13.60 13.60 13.60 15.50 12650 84.30 261 2200 10.22 352 2230 16.12 346 9.60 13.60 4.65 16.20 18.60	.45 50 55	5.76 7.92 10.50		3680 4550 5500	1.47 1.82 2.19	715 643 584	4110 5080 6150	2.05 2.54 3.06	783 705 640	4510 5580 6740	2.70 3.35 4.03	845 760 690	4870 6020 7280	3.40 4.21 5.07	904 814 738	5210 6440 7780	4.15 5.15 6.19
46.20 319 14730 5.88 357 16480 8.22 391 18050 10.80 422 19500 13.82 380 18.80 18.80 465 25750 84.30 281 1820 364 287 18.80 18.80 16.80 16.80 465 25750 109.50 281 287 10.12 352 28950 16.12 346 29.24 406 25750 109.50 289 282 14.80 28.40 28.40 28.25 313 43250 174.00 205 3650 14.20 229 38850 28.75 28.40 28.25 313 43250 214.00 191 40900 16.30 214 45750 22.75 234 50150 22.4 48.60 28.00 50400 214.00 180 2880 28.60 28.41 20.22 48.15 28.72 48.60 28.20 56.00 28.15 48.60	808	13.70 21.75 32.40	479 410 359	6550 8930 11630	2.61 3.55 4.65	536 459 401	7320 9990 13000	3.64 4.96 6.50	587 502 440	8030 10920 14250	4.80 6.52 8.55	634 542 475	8670 11810 15400	6.04 8.23 10.77	678 580 508	9260 12630 16450	7.38 10.02 13.12
108.50 239 26200 10.44 267 29300 14.60 293 32080 19.18 316 34650 24.20 34150 17.04 271 37410 22.40 29.24 29.24 29.24 29.25 313 43250 20400 28.25 313 43250 20400 28.25 313 43250 20400 28.25 31.20 20.45 29.95 40400 28.25 29.00 28.25 31.20 20.95 29.95 29.95 24.00 32.50 290 29.95 24.00 32.50 29.00 29.95 24.00 32.50 29.00 29.95 24.00 38.00 39.80 29.35 24.00 38.00 39.80 39.80 34.10 38.00 38.10 39.80 34.10 38.00 38.25 37.55 38.60 38.60 38.15 37.50 38.50 39.80 39.80 39.80 39.80 39.80 39.80 38.10 39.80 39.80 39.80 39.80	9001	46.20 63.40 84.30	319 287 261	14730 18200 22000	5.88 7.25 8.78	357 321 292	16480 20350 24600	8.22 10.12 12.28	391 352 320	18050 22300 26950	10.80 13.32 16.12	422 380 345	19500 24080 29100	13.60 16.80 20.35	451 406 369	20850 25750 31100	16.60 20.48 24.80
214.00 191 40900 16.30 214 45750 22.75 234 50150 39.95 255.35 54150 37.75 270 57900 259.50 179 46450 18.60 28.85 28.60 28.35 29.35 207 64400 38.15 227 61400 48.60 253 65700 371.00 159 58000 23.50 178 66000 32.80 195 7225 48.10 220 88.60 54.40 225 83500 434.00 151 68500 28.20 169 73250 48.10 200 84.60 52.5 83500 505.00 144 72850 28.00 58.30 176 89200 53.30 191 96400 67.15 204 103000 585.00 137 80.50 145 98200 58.80 181 10600 7.15 204 103000 675.50 130 135 8850	130	109.50 138.20 174.00	239 221 205	26200 30550 35650	10.44 12.20 14.20	267 247 229	29300 34150 39850	14.60 17.04 19.83	293 271 251	32080 37410 43700	19.18 22.40 26.10	316 292 271	34650 40400 47200	24.20 28.25 32.90	338 313 290	37050 43250 50400	29.50 34.50 40.15
371.00 159 59000 23.50 178 66000 32.80 195 72250 48.15 210 78100 54.40 225 83500 505.00 144 72850 26.20 161 81450 40.50 176 89200 53.30 191 9640 67.15 204 92650 585.00 134 72850 135 161 8820 67.15 204 10300 675.55 130 87900 32.00 148 88250 48.70 158 8820 181 10600 67.15 204 10300 675.55 130 87900 35.80 185 1072 116200 81.30 184 124300 769.00 125 90150 38.40 146 107500 53.65 159 177 116200 88.90 177 136900	120	214.00 259.50 311.00	191 179 169	40900 46450 52550	16.30 18.60 21.00	214 200 189	45750 51850 58800	22.75 26.00 29.35	234 219 207	50150 56900 64400	29.95 34.15 38.60	253 237 224	54150 61400 69500	37.75 43.10 48.60	270 253 239	57900 65700 74300	46.10 52.60 59.40
585.00 137 80150 32.00 153 89550 44.70 168 98200 58.80 181 106000 74.10 194 113300 675.50 130 87900 35.10 145 98250 49.00 159 10780 64.50 172 11620 81.30 184 124300 769.00 125 96150 38.40 140 107500 53.65 153 117850 70.50 165 125800 88.90 177 136000	2000	371.00 434.00 505.00	159 151 144	59000 65500 72850	23.50 26.20 29.00	178 169 161	66000 73250 81450	32.80 36.60 40.50	195 185 176	72250 80250 89200	43.15 48.10 53.30	210 200 191	78100 86700 96400	54.40 60.70 67.15	225 214 204	83500 92650 103000	66.40 74.20 82.00
	220 220 230	585.00 675.50 769.00	137 130 125	80150 87900 96150	32.00 35.10 38.40	153 145 140	89550 98250 107500	44.70 49.00 53.65	168 159 153	98200 107800 117850	58.80 64.50 70.50	181 172 165	106000 116200 125800	74.10 81.30 88.90		113300 124300 136000	90.50 99.40 108.50

CAPACITIES OF BUFFALO PLANOIDAL STEEL PLATE BLOWERS (TYPE L) AT TEMPERATURE

**Static Press, or 1.734 Oz. 1.735 Oz.	OF Top. F. And 29.92 INCHES BAROMETER P. B.P.M. Vol. H. P. B.P.
23.4" Static Press. or 1.556 Oz. 3" Static Press. or 1.734 Oz. B.P.M. Vol. H. P. B.P.M. Vol. H. P. B. M. M. Vol. H. P. B. M.	234" Static Press. or 1:586 Oz. 3" Static Press. or 1:734 Oz. 3" Static Press. or 1:734 Oz. 3.5 Static Press. or 1:586 Oz. 3" Static Press. or 1:734 Oz. 3.5 Static Press. or 1:756 Oz. 3.5 Static Press. or 1:756 Oz. 3.5 Static Press. or 1:756 Oz. 3.5 Static Press. or 1:754 Oz. 3.5 Static Press. or 1:754 Oz. 3.5 Static Press. or 1:754 Oz. 3.6 Static Press. or 1:754 Oz. 3.7 Stati
Static Press, or 1.74 Oz. H. P. M. P. M. S.	Static Press. or 31½" Static Press. or 1.734 Oz. Vol. H. P. R.P.M. Vol. 2840 3.38 1792 3070 3845 4.63 1534 4155 5660 6.33 1345 5460 6537 7.63 1195 6890 7880 11.38 976 10290 11346 13.55 896 12250 11346 13.55 896 12250 25500 30.55 597 27550 38150 45.60 488 41200 45400 54.25 447 49000 65200 63.40 413 57200 65290 63.40 413 57200 61750 73.80 384 66700 70900 84.70 385 86900 113300 195.00 316 98400 113300 122.20 282 122500 1138800 166.60 282 125500 126100 166.80 269 136300 126100 166.80 269 136300 138800 166.80 269 136300
Static Press, or 1.74 Oz. H. P. M. P. M. S.	Static Press. or 31½" Static Press. or 1.734 Oz. Vol. H. P. R.P.M. Vol. 2840 3.38 1792 3070 3845 4.63 1534 4155 5660 6.33 1345 5460 6537 7.63 1195 6890 7880 11.38 976 10290 11346 13.55 896 12250 11346 13.55 896 12250 25500 30.55 597 27550 38150 45.60 488 41200 45400 54.25 447 49000 65200 63.40 413 57200 65290 63.40 413 57200 61750 73.80 384 66700 70900 84.70 385 86900 113300 195.00 316 98400 113300 122.20 282 122500 1138800 166.60 282 125500 126100 166.80 269 136300 126100 166.80 269 136300 138800 166.80 269 136300
0	or 3½" Static Pres . P. R.P.H. Vol. 4.63 1534 4155 6.03 1345 5460 9.45 1076 8810 9.45 1076 1020 8.45 767 1670 8.45 767 1670 8.45 767 1670 8.45 767 1670 8.45 767 1670 8.45 767 1670 8.45 767 1670 8.45 767 1670 8.45 767 1670 8.45 767 1670 8.45 767 1670 8.40 4120 4120 8.50 488 4120 8.40 488 4120 8.40 488 4120 8.50 88600 1 9.00 384 600 9.00 316 9840 1
	20 000 000 000 000 000 000

Potal Pressure is 126% of the Rated Static Pressure

CAPACITIES OF BUFFALO PLANOIDAL STEEL PLATE BLOWERS (TYPE L) AT TEMPERATURE

	Static Press. or 3.460 Oz.	Vol. H. P.	4030 9.55 5440 13.08 7150 17.05	9020 21.60 11140 26.75 13480 32.20	16040 38.40 21880 52.10 28530 68.30	36080 86.50 44600 106.50 53900 129.00	64200 153.30 74850 179.20 87300 209.00	100 239.50 700 273.00 800 308.50	144500 345.50 160400 385.00 178400 426.00	000 470.00 300 516.00 500 564.00
	6" Static	B. P.M.	2345 2010 1760	1564 1410 1279	1173 1003 880	782 703 640	585 542 502	468 100100 438 113700 414 128800	389 370 353	336 196000 318 215300 306 235500
	Static Press. or 3.172 0z.	H. P.	8.36 0 11.45 0 14.91	5 18.90 0 23.40 0 28.15	0 33.60 0 45.70 0 59.80	0 75.60 0 93.20 0 112.90	0 134.30 0 157.00 0 182.70	209.50 0 239.00 0 270.00	0 337.00 0 373.00	0 412.00 451.50 494.00
ETER	5 1/2" Static Pre 3.172 Oz.	.M. Vol.	25 5210 35 6850	8635 10680 3 12900	22 15370 52 20950 12 27280	749 34550 673 42700 612 51600	561 61450 518 71700 481 83700	96000 108900 123200	3 138400 4 153800 8 170900	11 188000 15 206100 18 225500
BAROMETER	or	H. P. R. P.M.	7.27 2245 9.95 1925 12.98 1685	16.44 1499 20.35 1349 24.50 1223	29.20 1122 39.70 962 52.00 842	65.70 74 81.10 67 98.20 61	116.80 56 136.30 51 158.90 48	182.20 448 208.00 420 235.00 396	263.00 373 293.00 354 324.50 338	358.00 321 393.00 305 429.00 293
29.92 INCHES	Static Press. 2.884 Oz.	Vol.	3670 4965 6530	8230 10180 12300	14650 19980 26000	32950 40700 49200	58600 68300 79750	91500 103900 2 117500	132000 146500 163000 3	179100 3 196600 3 215000 4
	5" S	R.P.M.	2140 1833 1608	1430 1285 1168	1070 917 803	714 642 583	534 494 458	427 400 378	356 338 322	306 291 279
P. F. AND	ress. or	Н. Р.	6.20 8.50 10.08	14.01 17.37 20.90	24.90 33.90 44.40	56.10 69.20 83.80	99.60 116.30 135.50	155.50 177.50 200.50	224.50 250.00 277.00	305.00 335.00 367.00
OF 70°	Static Press. 2.595 Oz.	. Vol.	3480 4710 6195	7805 9650 11680	13900 18950 24680	31250 38600 46650	55600 64800 75600	86900 98500 111400	125200 139000 154500	170000 186400 204000
	4 1/5"	R. P.M.	2035 1740 1525	1356 1220 1108	1018 870 762	677 609 554	507 469 435	405 380 359	338 321 306	291 276 265
	ess. or	H. P.	5.20 7.12 9.28	11.76 14.57 17.52	20.88 28.40 37.20	47.00 58.00 70.25	83.52 97.60 113.80	130.40 148.80 168.00	188.00 209.60 232.00	256.00 280.80 307.20
	Static Press. 2.307 Oz.	l. Vol.	3280 4440 5840	7360 9100 11000	13100 17860 23280	29450 36400 44000	52400 61150 71350	81800 92900 105100	118000 131000 145700	160300 175800 192300
	4"	R. P.M.	1916 1640 1438	1278 1150 1044	958 820 718	638 574 522	478 442 410	382 338 338	318 302 288	274 260 250
		R. P. M.	1.71 2.71 4.06	. 5.76 7.92 10.50	13.70 21.75 32.40	46.20 63.40 84.30	109.50 138.20 174.00	214.00 259.50 311.00	371.00 434.00 505.00	585.00 675.50 769.00
	Ciro	200	35	45 50 55	328	881	120 130 140	150 160 170	190 200	220 220 230

Fotal Pressure is 126% of the Rated Static Pressure

Niagara Conoidal Type "N" Fan Wheel

Motor Driven Niagara Conoidal Type "N" Fan

Niagara Conoidal Capacity Tables

The fan capacity tables on pages 228 to 273 refer to the single inlet Niagara Conoidal fans. It will be noted that there are two sets of these tables, the first based on total pressures of from 3% to 4 inches, and the second set for static pressures. The tables on pages 228 to 231 give the speeds, capacities, and horsepowers for the different sizes when operating approximately at the point of highest total efficiency. Under these conditions the static pressure will be 77.5 per cent. of the total pressure as given in the table. These are termed the rated capacity tables for these fans, and are similar in character to those given for the Planoidal and other fans. Double width fans with two inlets give double the capacities and horsepowers given in the tables.

The static pressure tables on pages 232 to 273 give the capacities, speeds and horsepowers of these fans at static pressures of 0.25 to 2.5 inches of water, and with velocities at the fan outlet of 1000 to 4000 feet per minute. Thus we have the performance not only at the point of maximum efficiency, but at both sides of this point on the performance curve. It will be noted that the peculiar performance of the Niagara Conoidal fan gives a wide range of capacities at constant static pressure with but little variation in speed and but very slight change in total efficiency. The tables on pages 274 and 275 show the total efficiency at various pressures and outlet velocities. While it is generally advisable to operate a fan at or near its most efficient point, it may frequently be necessary to make a slight sacrifice in efficiency in order to meet special conditions.

Particular attention should be used in public building work to keep the fan outlet velocity about 1800 feet per minute in order to insure quietness of operation, with a maximum allowable velocity of 2200 for such work. For industrial installations where higher duct velocities are the rule and absolute quietness of operation is not essential, outlet velocities as high as 4000 may be used. For practical examples in the use of these tables see page 186.

CAPACITIES OF BUFFALO NIADARA CONDIDAL FANS (TYPE N) UNDER AVERAGE WORKING CONDITIONS

	Mean	Area	1.8%	Total Press. 0.217 Oz.	. or	3/2"	Total Press. 0.288 Oz.	s, or	L 189	Total Press. 0.360 Oz.	s, or	34" T	34" Total Press. 0.433 0z.	, or
No.	Dia. of Blast- Wheel	Outlet Sq. Ft.	R.P.M.	Vol.	H. P.	R. P. M.	Vol.	Н. Р.	R.P.M.	Vol.	Н. Р.	R.P. M.	Vol.	H. P.
₩₩ 4 %	15 % 18 18 20 12"	1.31	413 354 310	1490 2030 2650	0.13 0.17 0.22	478 409 358	1720 2350 3070	0.19 0.26 0.34	533 457 400	1930 2620 3430	0.27 0.37 0.48	585 501 439	2110 2870 3750	0.35
4 n n % %	28.27.2% 28.2.2% 28.2.2%	2.95 3.64 4.41	276 248 225	3360 4150 5020	0.28	318 287 260	3880 4790 5800	0.43 0.53 0.65	356 320 291	4340 5350 6470	0.60	390 351 319	4750 5870 7100	0.80 0.98 1.19
ΦV.∞	31 3%" 36 ½" 42"	5.25 7.14 9.33	207 177 155	5970 8130 10610	0.50 0.68 0.89	239 205 179	6900 9400 12260	0.77 1.05 1.37	267 229 200	7710 10490 13700	1.07 1.46 1.91	292 251 219	8450 11500 15020	1.41 1.92 2.51
°2=	52,	11.81 14.58 17.64	138 124 113	13450 16580 20070	1.12 1.39 1.68	159 143 130	15520 19160 23180	1.73 2.14 2.58	178 160 146	17340 21400 25900	2.41 2.98 3.60	195 175 160	19000 23460 28390	3.18 3.93 4.75
252	63, 68, 73,	21.00 24.65 28.68	104 95 89	23880 28040 32520	2.35	119 110 102	27590 32370 37550	3.08 3.61 4.19	133 123 114	30820 36180 41950	4.29 5.03 5.84	146 135 125	33780 39650 45990	5.65 6.63 7.69
17	78″ 89″	32.80 37.32 42.14	338	37330 42470 47950	3.13 3.56 4.01	96 84 84	43100 49040 55370	4.80 5.47 6.17	100 100 46	48160 54790 61860	6.70 7.62 8.60	1110	52790 60060 67800	8.83 10.1 11.4
8000	94" 99" 105"	47.24 52.63 58.32	69 62 62	53750 59890 66360	4.49 5.00 5.56	80 75 72	62060 69160 76640	6.92 7.71 8.54	80 80 80 80	69340 77260 85600	9.64 10.8 11.9	8688	76010 84700 93850	12.7 14.2 15.7

Static Pressure is 77 1/2 of Total Pressure

CAPACITIES OF BUFFALO NIAGARA CONDIDAL FANS (TYPE N) UNDER AVERAGE WORKING CONDITIONS AT 70° F. AND 29.92 INCHES BAROMETER

NIAC	AR	A COL	NOID	AL I	AN	CAPA	CITI	ES
s. or	H. P.	1.37	2.25	4.00 5.44 7.10	8.99 11.1 13.4	16.0 18.8 21.8	25.0 28.4 32.1	36.0 40.1 44.4
Total Press. 0.865 Oz.	Vol.	2990 4060 5310	6720 8300 10040	11940 16260 21240	26880 33180 40150	47770 56070 65030	74650 84940 95900	107500 1119780 132710
1 1/2" T	R. P. M.	827 709 620	551 496 451	414 354 310	276 248 226	207 191 177	165 155 146	138 131 124
SS. Of	Н. Р.	.76 1.04 1.35	1.71 2.11 2.56	3.04 4.14 5.41	6.85 8.45 10.2	12.2 14.3 16.6	19.0 21.6 24.4	27.4 30.5 33.8
Total Press, or 0.721 Oz.	Vol.	2730 3710 4850	6130 7570 9160	10930 14840 19390	24530 30290 36650	43620 51180 59370	68160 77540 87540	98140 109340 121160
11%"	R. P. M.	755 647 566	503 453 412	378 324 283	252 227 206	189 174 162	151 142 133	126 119 113
. or	Н. Р.	.54 .74 .97	1.22	2.17 2.96 3.87	4.89 6.04 7.31	8.70 10.2 11.8	13.6 15.5 17.5	19.6 21.8 24.2
1" Total Press. or 0.577 Oz.	Vol.	2440 3320 4340	5490 6770 8200	9750 13280 17340	21950 27090 32780	39010 45780 53100	60960 69360 78300	87780 97800 108370
1" T	R.P.M.	675 579 506	450 405 368	338 289 253	225 203 184	169 156 145	135 127 119	113 107 101
3. OF	Н. Р.	.44 .60 .79	1.23	1.77 2.41 3.15	3.99 4.92 5.96	7.09 8.32 9.65	11.1	16.0 17.8 19.7
78" Total Press. 0.505 Oz.	Vol.	2280 3100 4050	5120 6330 7660	9110 12400 16200	20500 25310 30620	36440 42760 49600	56940 64780 73140	81990 91350 101220
	R.P.M.	631 541 473	420 378 344	315 270 237	210 189 172	158 146 135	126 118 111	105 100 95
Area of Outlet	Sq. Ft.	1.31	2.95 3.64 4.41	5.25 7.14 9.33	11.81 14.58 17.64	21.00 24.65 28.68	32.80 37.32 42.14	47.24 52.63 58.32
Mean Dia. of Riget-	Wheel	15 58 18 18 18 20 12"	23 75 26 75 28 75 26 75	31 % 36 ½ 42″	522"	63" 68" 73"	78" 84" 89"	94" 99" 105"
Fan		22.	7 7 7	200	00-	NW #		800

Static Pressure is 77 1/2% of Total Pressure

Static Pressure is 77 1/2% of Total Pressure

							STATE OF THE PERSON					
rea	134" T	Total Press. or 1.010 Oz.	. or	2" T	Total Press. or 1.154 Oz.	or or	2 1/4"	Total Press. or 1.298 Oz.	S. Of	2 1/2"	Total Press. 1.442 Oz.	J0 .
Outlet Sq.Ft. R.	R. P. M.	Vol.	Н. Р.	R.P.M.	Vol.	Н. Р.	R.P.M.	Vol.	Н. Р.	R.P.M.	Vol.	Н. Р.
1.31	893 766 670	3230 4390 5740	1.26 1.71 2.24	955 818 716	3450 4690 6130	1.54 2.09 2.73	1013 868 760	3660 4980 6500	1.84 2.50 3.26	1067 915 801	3860 5250 6850	2.15 2.93 3.82
95	596 536 487	7260 8960 10840	2.83	636 573 521	7760 9580 11590	3.46 4.27 5.17	675 608 552	8230 10160 12290	4.13 5.09 6.17	712 640 582	8670 10710 12960	4.83 5.96 7.22
.25	447 383 335	12900 17560 22940	5.03 6.85 8.95	477 409 358	13790 18770 24520	6.15 8.37 10.9	506 434 380	14630 19910 26010	7.34 9.99 13.1	534 458 400	15420 20990 27410	8.59 11.7 15.3
.58 .64	298 268 244	29030 35840 43370	11.3 14.0 16.9	318 286 260	31020 38310 46360	13.8 17.1 20.7	338 304 276	32920 40640 49180	16.5 20.4 24.7	356 320 291	34700 42840 51800	19.3 23.9 28.9
0.65.89	223 206 191	51610 60560 70250	20.1 23.6 27.4	239 220 205	55170 64730 75090	24.6 28.9 33.5	253 234 217	58510 68670 79650	29.4 34.4 40.0	267 246 229	61680 72380 83950	34.4 40.3 46.8
325	179 168 158	80640 91760 103590	31.5 35.8 40.4	191 179 169	86200 98060 110720	38.4 43.7 49.4	203 190 179	91420 104030 117450	45.9 52.2 58.9	214 200 188	96380 109660 123800	53.7 61.1 69.0
323	149 141 134	116120 129380 143360	45.3 50.5 55.9	159 151 151 143	124410 138280 153250	65.3 61.7 68.3	169 160 152	131660 146690 162550	66.0 73.6 81.5	178 169 160	138770 154620 171320	77.3 86.2 95.5
U UW4 100 -46 -40 UFU FUX	2. 2. 3. 3. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.		6 70 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	596 7260 586 7260 586 7260 586 7260 587 10890 383 17560 383 17560 385 22940 2244 43370 170 80640 170 80640 1168 91760 1168 11618 1168 11618 1168 11618 1168 11618 1168 11618 1168 11618 1168 11618 1168 11618 1168 11618 1179 11618 1189 11618 1181 118180 1181 118180	670 5740 2.24 586 7260 3.49 447 12800 5.03 385 22940 8.95 288 2880 11.3 228 28940 11.3 228 28940 14.0 223 51610 20.1 206 60560 23.6 179 80640 31.5 168 91760 40.4 149 116129880 55.9	596 7260 2.24 716 536 7260 2.83 636 487 10840 4.23 521 447 12900 5.03 477 383 17560 8.95 409 288 29030 11.3 358 298 29030 11.3 286 244 43370 16.9 260 191 70250 23.6 220 191 70250 27.4 205 1168 91760 37.4 205 1169 11619 1161 1168 91760 37.4 205 1169 11619 1169 1149 149 11613 169 1169 134 11613 169 169 134 143360 55.9 143 169	596 7260 2.24 716 6130 536 7260 2.83 636 7760 487 10840 3.49 573 9580 447 12800 5.03 477 13790 383 17560 6.85 499 18770 288 25940 8.95 358 24520 288 35540 14.0 286 38310 288 35540 14.0 286 38310 288 35540 14.0 286 38310 298 25600 14.0 260 46360 298 35540 14.0 266 46360 298 35540 16.9 260 46360 191 70250 27.4 205 76990 179 80540 37.4 205 7690 168 97760 37.4 169 110720 168 108590 40.4 169 11072	596 7260 2.84 716 6130 2.73 586 7260 2.83 636 7760 3.46 487 10840 3.49 571 1590 4.27 487 10840 3.48 571 1590 4.27 447 12800 5.03 477 13790 6.15 383 17560 6.85 499 18770 8.37 288 35400 11.3 318 310.09 6.15 288 35401 14.0 286 38310 10.3 288 35540 14.0 286 38310 10.3 288 35540 14.0 286 38310 17.1 298 20600 23.4 4330 16.9 260 4580 298 35540 16.9 260 4580 28.4 191 70250 27.4 205 7690 38.4 168 91760 37	596 7260 2.24 716 6130 2.73 760 536 7260 2.83 636 7760 346 675 447 10840 4.23 571 19890 4.27 552 447 12800 5.03 477 13790 6.15 506 383 17560 6.85 409 18770 8.37 434 298 22940 8.95 358 34650 10.9 380 288 35840 14.0 286 38310 17.1 304 244 43370 16.9 260 46360 20.7 276 223 51610 20.1 239 55170 24.6 253 224 43370 16.9 20.6 46360 20.7 276 225 5560 27.4 206 75090 33.5 217 168 97760 37.4 206 75090 33.5 217<	596 7260 2.84 716 6130 2.73 760 6500 536 7260 2.83 636 7760 3.46 675 8230 447 1880 3.49 573 19580 4.27 652 12090 447 12900 5.03 477 13790 6.15 562 12290 283 17560 6.85 409 18770 8.37 434 119910 284 22940 8.95 358 24520 10.9 380 26010 298 22940 14.0 286 48360 17.1 304 49180 224 43370 16.9 286 48360 20.7 276 49180 222 51610 20.1 236 55170 24.6 253 5510 222 5160 2.7 276 49180 201 201 201 202 64730 28.3 201 104040	596 7260 2.84 716 6130 2.73 760 6500 3.26 586 7260 2.88 636 7760 3.46 675 8230 4.13 447 1890 4.27 16980 4.27 562 10160 5.09 447 1200 5.03 477 13790 6.15 506 14630 5.17 283 17560 6.85 409 18770 8.15 506 14630 5.04 298 22940 1.3 31020 10.9 380 22010 13.1 298 289030 11.3 31020 17.1 304 4040 20.4 244 43370 16.9 260 20.7 276 49180 24.7 252 51610 20.1 239 55170 28.9 28.9 28.9 28.9 28.9 28.9 28.9 28.9 28.9 28.9 28.9 28.9 28.9 <th>596 7260 2.24 716 6130 2.73 760 650 3.26 801 536 7260 2.83 636 7760 3.46 675 8230 4.13 712 487 18860 3.49 573 1980 5.17 608 10160 6.17 609 640 487 18960 5.17 1590 6.15 608 10160 6.17 609 640</th>	596 7260 2.24 716 6130 2.73 760 650 3.26 801 536 7260 2.83 636 7760 3.46 675 8230 4.13 712 487 18860 3.49 573 1980 5.17 608 10160 6.17 609 640 487 18960 5.17 1590 6.15 608 10160 6.17 609 640

CAPACITIES OF BUFFALO NIADARA CONDIDAL FANS (TYPE N) UNDER AVERAGE WORKING CONDITIONS

AT 70° F. AND 29.92 INCHES BAROMETER

			38/11	Total Dead	00000	2"	Total Dan		21/1	Total De	-	- 111	T-4-1 D	
Fan	Mean Dia of	Area	0 % 7	or 1.586 Oz.	sure	0	or 1.734 Oz.		3 72 OF	7 2.019 Oz.	ess.	00	or 2.307 Oz.	s .
Š.	Blast- Wheel	Outlet Sq. Ft.	R. P. M.	Vol.	Н. Р.	R. P. M.	Vol.	Н. Р.	R. P. M.	Vol.	H. P.	H. P. R. P. M.	Vol.	Н. Р.
ww4	15 58" 18 18" 20 12"	1.31 1.79 2.33	1120 960 840	4040 5500 7190	2.48 3.38 4.41	1169 1002 877	4220 5750 7510	2.83 3.85 5.02	1263 1083 947	4560 6210 8110	3.56 4.85 6.32	1350 1157 1013	4880 6640 8670	4.35 5.92 7.73
5,72	28.22 58 58.22 58.22 58.22 58.22 58.22 58.22 58.22 58.22 58.22 58.22 58	2.95 3.64 4.41	746 672 610	9100 11230 13590	6.88 8.33	780 702 638	9500 11730 14190	6.36 7.84 9.49	842 758 689	10260 12670 15330	8.01 9.87 12.0	900 810 736	10970 13550 16390	9.78 12.1 14.6
0 N 00	31 3% 36 1/2 42″ 24	5.25 7.14 9.33	560 480 420	16170 22020 28760	9.91 13.5 17.6	585 501 439	16890 23000 30040	11.3 15.4 20.1	632 541 474	18250 24840 32440	14.2 19.4 25.3	675 579 506	19510 26550 34680	17.4 23.7 30.9
·2=	47" 52" 58"	11.81 14.58 17.64	373 336 305	36390 44930 54360	22.3	390 351 319	38010 46930 56780	25.4 31.4 38.0	421 379 344	41050 50700 61330	32.0 39.5 47.8	450 405 368	43890 54180 65560	39.1 48.3 58.5
222	63," 68," 73,"	21.00 24.65 28.68	280 258 240	64700 75920 88060	39.7 46.5 54.0	292 270 251	67570 79300 91970	45.2 53.0 61.5	316 292 271	72990 85650 99340	57.0 66.8 77.5	338 312 289	78020 91560 106200	69.6 81.6 94.7
17	78" 84" 89"	32.80 37.32 42.14	224 210 198	101080 115000 129840	62.0 70.5 79.6	234 219 206	105580 120130 135620	70.6 80.3 90.7	253 223	114050 129750 146490	89.0 101.2 114.3	270 253 238	121920 138700 156600	108.7 123.7 139.6
20 02	94" 99" 105"	47.24 52.63 58.32	187 177 168	145550 162170 179700	89.2 99.4 110.2	195 185 175	152020 169400 187680	101.7 113.3 125.5	211 200 190	164110 182970 202720	128.1 142.7 158.1	225 213 202	175550 195600 216720	156.5 174.4 193.2

Static Pressure is 77 1/2% of Total Pressure

NO. 3 NIAGARA CONOIDAL FAN (TYPE N) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

Outlet	Capacity	Add for	14" S.	.P.	%, S ,,%	S. P.	1/2" S.	. P.	\$	P.	34" S. P.	-G.	S "%"	S. P.
Velocity Ft. per Min.	Cu. Ft. Air per Min.	Total Press.	R. P. M.	Н. Р.	R. P. M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	Н. Р.
1000 1100 1200	1310 1440 1570	0.063 0.076 0.090	387 384 387	90:12:	483 477 477	.15 .16 .17	557	.23						
1300 1400 1500	1710 1840 1970	0.106	393 400 410	.14 .16 .18	470 473 477	.18 22 23 23	547 543	2,2,2,2	623 617 613	25.55 55.	687	4. 24. 24.	743	.52
1600 1700 1800	2100 2230 2360	0.160 0.180 0.202	420 443 443	22.22.22	480 490 500	25.25. 22.25.	547 550 553	.34 .34	610 607 610	.37 .40 .43	673 670 667	.45 .48 .51	733 727 723	43° 63°
1900 2000 2100	2490 2630 2760	0.225 0.250 0.275	457 470 483	135 139	520 530	35. 4. 5. 4. 5.	560 570 580	14:	613 617 623	.47 .52 .56	667 670 670	.63 .63	720 720 720	.62 .66 .71
2200 2300 2400	2890 3020 3150	0.302	497 513 527	.44 .55	543 557 570	55.	590 600 610	.55 .61 .67	633 643 650	.61 .67	677 683 690	.88 .80 .80	723 727 733	.76 .81
2500 2600 2800	3280 3410 3670	0.390 0.422 0.489	543 560 590	.60	583 597 623	.67 .89	623 633 660	.74 .81 .96	660 673 693	.88 .88 1.04	700 710 730	.86 .94 1.10	740 747 767	.94 1.02 1.17
3000 3200 3400	3940 4190 4460	0.560 0.638 0.721	1123	66:	657	1.04	687	1.14	720	1.22	753 780 807	1.29 1.50 1.75	780 810 833	1.36

NO. 3 NIADARA CONOIDAL FAN (TYPE N) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

S. P.	H.P.		2.13	2.20 2.24 2.29	2.33	2.54 2.54 2.67	3.00 3.21	3.48 3.76 4.10
2 1/3"	R.P.M. H.P.		1343 1330	1317 1303 1297	1287 1270 1263	1253 1247 1233	1227 1217 1213	1220 1227 1233
S. P.	Н. Р.		1.53	1.65 1.68 1.73	1.76 1.81 1.85	1.91 1.96 2.10	2.25 2.47 2.69	2.96 3.28 3.60
, % 	R.P.M.		1190 1177 1167	1157 1143 1133	1127 1120 1107	1103 1097 1090	1087 1090 1093	1107 1117 1133
S. P.	Н. Р.	1.25	1.29	1.39 1.42 1.46	1.50 1.54 1.59	1.64 1.70 1.84	2.02	2.76 3.04 3.39
134"	R. P. M.	1110	1100 1087 1077	1067 1057 1050	1040 1033 1027	1023 1020 1013	1020 1023 1033	1050 1067 1087
s. P.	Н. Р.	1.00	1.06	1.14	1.25 1.30 1.35	1.41	1.81 2.02 2.26	2.53
1 1/2"	R.P.M.	1027	1007 997 983	977 970 960	953 950 947	943 940 943	950 960 980	1017
S. P.	Н. Р.	.81	8.8.8. 4.8.8.9.8.	95. 99. 99.	1.03 1.08 1.13	1.20 1.26 1.43	1.61 1.83 2.06	2.34
1 14" S.	R. P. M.	920 913	903 893 883	877 873 867	863 860 860	860 863 870	883 900 920	943
S. P.	Н. Р.	.58 .59 .62	.649. 99. 89.	.71 .75 .79	8.8.9. 4.0.7.0.	1.03 1.09 1.25	1.44	2.18
1, 8	R. P. M.	820 810 800	793 783 777	773 770 770	767 770 773	777 783 800	820 837 863	8883
Add for	Total Press.	0.106 0.122 0.141	0.160 0.180 0.202	0.225 0.250 0.275	0.302 0.330 0.360	0.390 0.422 0.489	0.560 0.638 0.721	0.810 0.900 1.000
Capacity	Cu. Ft. Air per Min.	1710 1840 1970	2100 2230 2360	2490 2630 2760	2890 3020 3150	3280 3410 3670	3940 4190 4460	4730 4990 5250
Outlet	elocity Ft. per Min.	1300 1400 1500	1600 1700 1800	1900 2000 2100	2200 2300 2400	2500 2600 2800	3000 3200 3400	3600 3800 4000

NO. 31% NIAGARA CONOIDAL FAN (TYPE N) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

	н. Р.		17.	.73 .80	8. 9. 9. 9. 9. 9.	1.03	1.27	1.85 2.16 2.50
7/8" S. P.	R. P. M. H		637	629 623 620	617 617 617	620 623 629	634 1 640 1 657 1	669 694 714
			9	999	999	000	000	700
. P.	Н. Р.		.59		.74 .86	1.09	1.17 1.27 1.50	1.75 2.05 2.38
34" S.	R. P. M.	,	589	577 574 572	572 572 574	580 586 592	600 609 626	646 669 692
S. P.	Н. Р.		.43 .45 .48	.51 .55 .59	.64 .70 .76	.83 199 99	1.08	1.65
2,00	R. P. M.		534 529 526	523 523	526 529 534	543 552 557	566 577 594	640
S. P.	Н. Р.	.32	င်းမှုံ့မှုံ မေ့ဆိုဆို	.45 .51	55. 62. 68.	.75 .83 .91	1.01	1.56
1/2" 5	R. P. M.	477	472 469 466	469 472 474	480 489 497	506 514 523	534 543 566	589 614
S. P.	н. Р.	8222	25. 28. 3.1. 3.1.	33 33 33	84. 47. 19.	.68 .83 .83	.91 1.01 1.21	1.42
3/8/	R. P. M.	414 409 409	403 406 409	412 422 429	437 446 454	466 477 489	500 512 534	563
S. P.	Н. Р.	113 14 16	81. 12. 42.	82.82 72.75	4.4.7. 2.8.6.	.59 .67 .74	.82 .91 1.10	1.35
34" 8	R. P. M.	332 332 332	337 343 352	369	392 403 414	426 440 452	466 480 506	534
Add for Total	Press.	0.063 0.076 0.090	0.106 0.122 0.141	0.160 0.180 0.202	0.225 0.250 0.275	0.302 0.360 0.360	0.390 0.422 0.489	0.560 0.638 0.721
Capacity Cu. Ft.	Per Min.	1790 1970 2140	2320 2500 2680	2860 3040 3210	3390 3570 3750	3930 4110 4290	4470 4640 5000	5360 5720 6070
Outlet Velocity	Min.	1000	1300 1400 1500	1600 1700 1800	1900 2000 2100	2200 2300 2400	2500 2600 2800	3000 3200 3400

NO. 31/4 NIAGARA CONDIDAL FAN (TYPE N) CAPACITIES AND STATIC PRESSURES

	ъ.	Н. Р.		2.94	2.99 3.05 3.11	3.17 3.23 3.31	3.38 3.46 3.63	3.84 4.08 4.36	4.73 5.12 5.59
	2 1/2" S.	R. P. M.		1151	1129	1103 1089 1083	1074 1069 1057	1052 1043 1040	1046 1052 1057
	Ъ.	Н. Р.		2.08 2.14 2.19	2.24 2.29 2.35	2.40 2.46 2.52	2.60 2.67 2.86	3.06 3.36 3.66	4.03 4.46 4.90
	2" S.	R.P.M.		1020 1009 1000	992 980 972	966 960 949	946 940 934	932 934 937	949 957 972
	S. P.	Н. Р.	1.70	1.75 1.79 1.84	1.89 1.94 1.99	2.03 2.10 2.17	2.23	2.74 3.04 3.36	3.75 4.14 4.61
TE IEN	134"	R.P.M.	952	943 932 923	914 906 900	892 886 880	877 874 869	874 877 886	900 914 932
DARO	S. P.	Н. Р.	1.36	1.45 1.48 1.52	1.56 1.59 1.65	1.70	1.91 2.00 2.22	2.46 2.75 3.08	3.86
INCILES	13%	R.P.M.	880 872	863 854 843	837 831 823	817 814 812	808 808 809	814 823 840	854 872
76.67	S. P.	Н. Р.	1.08	1.15	1.25 1.30 1.35	1.40	1.63 1.72 1.95	2.19 2.49 2.81	3.19
10- F. AND 29:92 INCHES DAROMETER	11%"	R.P.M.	789	774 766 757	752 749 743	740 737 737	737 740 746	757 772 789	808
0/ 14	. B.	Н. Р.	%: 8: 8: 8: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4:	86. 89. 89. 89.	.97 1.02 1.08	1.14 1.22 1.30	1.40 1.48 1.70	1.96 2.24 2.59	2.07
	1" S.	R.P.M.	703 694 686	680 672 666	966 660 660	657 660 663	666 672 686	703 717 740	757
	Add for	Total Press.	0.106 0.122 0.141	0.160 0.180 0.202	0.225 0.250 0.275	0.302 0.330 0.360	0.390 0.422 0.489	0.560 0.638 0.721	0.810 0.900 1.000
	Capacity	Cu. Ft. Air per Min.	2320 2500 2680	2860 3040 3210	3390 3570 3750	3930 4110 4290	4470 4640 5000	5360 5720 6070	6430 6790 7140
	Outlet	Velocity Ft. per Min.	1300 1400 1500	1600 1700 1800	1900 2000 2100	2200	2500 2600 2800	3000 3200 3400	3600 3800 4000

NO. 4 NIAGARA CONOIDAL FAN (TYPE N) CAPACITIES AND STATIC PRESSURES

				0/ 10		47.74	F. AND 29:94 INCHES BAROMETER	DARG	Tri La					
Outlet Velocity	Capacity Cu. Ft.	Add for Total	14" S.	. Р.	% 8 8,8	ъ.	S%	S. P.	Š.	S. P.	34" S. P.	Ъ.	%" 8	S. P.
Min.	per Min.	Press.	R.P.M.	н. Р.	R. P. M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	Н. Р.
1000	2330 2570 2800	0.06 3 0.076 0.090	230 288 290	.17	358 358 358	8,8,8	418	.41						
1300 1400 1500	3030 3270 3500	0.106 0.122 0.141	300 308 308	4826	355 355 358	86. 96. 04.	413 410 408	.44 .47 .50	468 463 460	.59 .62 .62	515 510	.74	558	.92
1600 1700 1800	3730 3970 4220	0.160 0.180 0.202	315 323 333	.37 .42 .49	360 368 375	.45 .50 .56	410 413 415	.55 .66 .66	458 455 458	.77.	505 503 500	.85 .90	550 545 543	.96 1.00 1.05
1900 2000 2100	4430 4670 4900	0.225 0.250 0.276	343 353 363	.55 .62 .70	383 390 398	.63	428 435	.73 .89	460 463 468	.92	500 500 503	.96 1.04 1.12	540 540 540	1.11 1.17 1.26
2300	5130 5370 5600	0.302 0.380 0.360	373 385 395	.78 .97	408 418 428	.88 .98 1.09	443 450 458	.98 1.08 1.19	475 483 488	1.08	508 513 518	1.21	543 545 550	1.35
2500 2600 2800	5830 6070 6530	0.390 0.422 0.489	408 443 443	1.07	438 448 468	1.19	468 475 495	1.32	495 505 520	1.41 1.56 1.84	525 533 548	1.53 1.67 1.95	555 560 575	1.67
3000 3200 3400	7000 7460 7930	0.560 0.638 0.721	468	1.76	493	1.86	515	2.03	540	2.16	565 585 605	2.29 2.67 3.11	585 608 625	2.42 2.82 3.27
Section of the last	-													

NO. 4 NIADARA CONOIDAL FAN (TYPE N) CAPACITIES AND STATIC PRESSURES AT 70° E AND 20 02 INCHES RADOMETED

				AT 70	F. AN	26.62	AT 70° F. AND 29.92 INCHES BAROMETER	BAKO	MEIEK					
Outlet	Capacity	Add for	1" S.	. Р.	11%"	S. P.	13%.	S. P.	184"	S. P.	. 2" S. P.	۳.	21/2" S.	ď
Ft. per Min.	Air per Min.	Total Press.	R. P. M.	Н. Р.	R. P. M.	Н. Р.	R. P. M.	Н. Р.	R. P. M.	Н. Р.	R.P.M.	Н. Р.	R. P. M.	Н. Р.
1300 1400 1500	3030 3270 3500	0.106 0.122 0.141	615 608 600	1.03 1.06 1.09	690	1.41	770	1.78	833	2.23				
1700	3730 3970 4220	0.160 0.180 0.202	595 588 583	1.13	678 670 663	1.50 1.53 1.58	755 748 738	1.89 1.94 1.94	825 815 808	2.29 2.34 2.40	893 883 875	2.72 2.80 2.87	1008 998	3.78
1900 2000 2100	4430 4670 4900	0.225 0.250 0.275	580 578 578	1.27 1.33 1.40	658 655 650	1.63 1.70 1.76	733 728 720	2.03 2.08 2.16	800 793 788	2.47 2.53 2.59	868 858 850	2.93 2.99 3.07	988 978 973	3.91 3.99 4.07
2200 2300 2400	5130 5370 5600	0.302 0.330 0.360	575 578 580	1.49 1.59 1.70	648 645 645	1.83 1.92 2.00	715 713 710	2.23 2.31 2.40	780 775 770	2.66 2.74 2.83	845 840 830	3.14	965 953 948	4.15
2500 2600 2800	5830 6070 6530	0.390 0.422 0.489	583 588 600	1.83	645 648 653	2.13 2.24 2.55	708 705 708	2.50 2.61 2.90	768 765 760	2.91 3.03 3.27	828 823 818	3.39 3.49 3.73	940 935 925	4.42 4.51 4.74
3200 3200 3400	7000 · 7460 7930	0.560 0.638 0.721	615 628 648	2.56 2.93 3.38	663 675 690	2.87 3.25 3.67	713 720 735	3.22 3.59 4.02	765 768 775	3.59 3.97 4.39	815 818 820	4.00 4.39 4.79	920 913 910	5.01 5.33 5.70
3600 3800 4000	8400 8860 9330	0.810 0.900 1.000	663	3.87	208	4.16	748	5.04	788 800 815	4.90 5.41 6.02	838 850 850	5.27 5.83 6.40	915 920 925	6.18 6.69 7.30

NO. 4% NIAGARA CONDIDAL FAN (TYPE N) CAPACITIES AND STATIC PRESSURES AT 70° E. AND 20 02 INCHES RADOMETED

				A1 /02	F. AND	76.67	AI 70° F. AND 29.92 INCHES BAROMETER	BAKO	EIEK					
Outlet	Capacity	Add for	3.1%	S. P.	**	S. P.	S	S. P.	× ***	S. P.	34" S.	ď,	78" S. P.	<u>-</u>
Velocity Ft. per Min.	Cu. Ft. Air per Min.	Total Press.	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R. P. M.	н. Р.	R. P. M.	Н. Р.
1200	2950 3250 3540	0.063 0.076 0.090	258 258 258	0.21 0.23 0.27	322 318 318	0.33	371	0.52						
1300	3840 4130 4430	0.106 0.122 0.141	262 267 273	0.30	313 316 318	0.41 0.46 0.51	367 365 362	0.55 0.59 0.63	416 411 409	0.71 0.75 0.79	458	0.93	496	1.17
1600 1700 1800	4720 5020 5310	0.160 0.180 0.202	280 287 296	0.46 0.53 0.61	320 327 333	0.57 0.64 0.71	365 367 369	0.69 0.76 0.84	407 405 407	0.84 0.90 0.97	449 447 445	1.02	489 485 482	1.21 1.27 1.33
1900 2000 2100	5610 5900 6200	0.225 0.250 0.275	305 313 322	0.69 0.79 0.88	340 347 353	0.80 0.89 1.01	373 380 387	0.92 1.02 1.13	409 411 416	1.06 1.16 1.26	445 445 447	1.22	480 480 480	1.40 1.48 1.59
2200 2300 2400	6500 6790 7090	0.302 0.330 0.360	331 342 351	0.98 1.10 1.23	362 371 380	1.12	393 400 407	1.24	422 429 433	1.37 1.50 1.64	451 456 460	1.53 1.65 1.80	482 485 489	1.71 1.82 1.96
2500 2600 2800	7380 7680 8270	0.390 0.422 0.489	362 373 393	1.35	389 398 416	1.50 1.67 2.00	416 422 440	1.67	440 449 462	1.79 1.97 2.33	467 473 487	1.94 2.11 2.47	493 498 511	2.29
3000 3200 3400	8860 9450 10040	0.560 0.638 0.721	416	2.23	438	2.35	458	3.00	480 498	3.20	502 520 538	3.93	520 540 556	3.06 3.57 4.13
	Name and Address of the Owner, or other Desires.		-	-		-		1		-			-	

NO. 41/3 NIAGARA CONOIDAL FAN (TYPE N) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

uflet	Capacity	Add for	1" S. P.	Р.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	S. P.	1 1/2"	S. P.	187"	S. P.	2" S	. P.	2 1/5"	S. P.
Velocity Ft. per Min.	Cu. Ft. Air per Min.	Total Press.	R. P. M.	H. P.	R.P.M.	H. P.	R. P. M.	H. P.	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	Н. Р.
1300	3840 4130 4430	0.106 0.122 0.141	547 540 533	1.30	613	1.79	685	2.25	740	2.82			,	
1600 1700 1800	4720 5020 5310	0.160 0.180 0.202	529 522 518	1.43 1.48 1.54	602 596 589	1.89	671 665 656	2.39 2.45 2.51	733 725 718	2.96 3.04	793 7785	3.44 3.54 3.63	896	4.78
1900 2000 2100	5610 5900 6200	0.225 0.250 0.275	516 513 513	1.60 1.69 1.78	57225	2.07 2.15 2.23	651 647 640	2.57 2.63 2.74	711 704 700	3.12 3.20 3.28	771 762 756	3.71 3.79 3.89	878 869 865	4.94 5.04 5.14
2200 2300 2400	6500 . 6790 7090	0.302 0.330 0.360	511 513 516	1.89 2.01 2.15	576 573 573	2.31 2.43 2.53	636 633 631	2.82 3.04 3.04	696 689 685	3.36 3.46 3.59	751 747 738	3.97 4.07 4.17	858 847 842	5.25 5.35 5.47
2500 2600 2800	7380 7680 8270	0.390 0.422 0.489	518 522 533	2.45 2.82	573 576 580	2.69 3.22	629 627 629	3.16 3.30 3.67	682 680 676	3.69 3.83 4.13	736 731 727	4.29 4.42 4.72	836 831 822	5.59 5.71 5.99
3000 3200 3400	8860 9450 10040	0.560 0.638 0.721	547 558 576	3.24	589 600 613	3.63 4.11 4.64	633 640 653	4.54 5.08	680 689 689	4.54 5.02 5.55	725 727 729	5.06 5.55 6.06	818 811 809	6.34 6.74 7.21
3600 3800 4000	10630 11220 11810	0.810 0.900 1.000	589	4.90	629	5.27	665	6.38	700 711 725	6.20 6.85 7.61	738 745 756	6.66 7.37 8.10	813 822 822	7.82 8.46 9.23

NO. 5 NIAGARA CONOIDAL FAN (TYPE N) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

Outlet	Capacity	Add for	%" S	ç, G	% S.	Ъ.	%	S. P.	S "%	S. P.	3/1/8	S. P.	18,1	S. F.
Velocity Ft. per Min.	Cu. Ft. Air per Min.	Total Press.	R. P. M.	Н. Р.	R.P.M.	Н. Р.	R. P. M.	Н. Р.	R.P.M.	Н. Р.	R. P. M.	Н. Р.	R.P.M.	н. Р.
1000	3640 4010 4370	0.063 0.076 0.090	220 230 230 230 230	82.52. 83.33.	290 286 286	444	334	99.						
1300	4740 5100 5470	0.106 0.122 0.141	236 240 246	86.4. 00.	282 284 286	.51 .56 .63	330 328 326	.68 .73 .73	374 370 368	88. 9.9. 9.8. 8.0.	408	1.15	446	1.44
1700	5830 6190 6560	0.160 0.180 0.202	252 258 266	.57 .66 .76	288 294 300	.70 .79 .88	328 330 332	.86 .94 1.03	366 364 366	1.04	404 402 400	1.26 1.33 1.40	440 436 434	1.49 1.57 1.64
1900 2000 2100	6930 7290 7660	0.225 0.250 0.275	274 282 290	.86 .97 1.09	306 312 318	.99 1.11 1.24	336 342 348	1.14 1.26 1.39	368 370 374	1.31 1.43 1.56	400 402 402	1.50 1.62 1.75	432 432 432	1.73 1.83 1.96
2200 2300 2400	8010 8380 8750	0.302	298 308 316	1.21	326 334 342	1.38 1.55 1.70	354 360 366	1.53 1.69 1.86	380 390	1.69 1.85 2.03	406 410 414	1.89 2.04 2.22	434 436 440	2.11 2.25 2.41
2500 2600 2800	9100 9480 10200	0.390 0.422 0.489	326 336 354	1.67 1.86 2.25	350 358 374	1.86 2.06 2.46	374 380 396	2.06 2.24 2.68	396 404 416	2.21 2.43 2.88	420 426 438	2.40 2.60 3.05	444 448 460	2.60 3.25 3.25
3000 3200 3400	10940 11660 12390	0.560 0.638 0.721	374	2.75	394	2.90	412 430	3.18	4448	3.38	452 468 484	3.58 4.18 4.85	468 486 500	3.78 4.40 5.10

NO. 5 NIAGARA CONOIDAL FAN (TYPE N) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

Outlet	Capacity	Add for	l" S. P.	ď	1 1 8 "	s. P.	1%	S. P.	13/1 8	S. P.	2, 2,	. S. P	2 1/2 S.	ا مُ
Ft. per Min.	Air per Min.	Total Press.	R.P.M.	Н. Р.	R.P.M.	H. P.	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	H.P.
1300	4740 5100 5470	0.106 0.122 0.141	492 486 480 480	1.60	552	2.21	616	2.78	999	3.48				
1600 1700 1800	5830 6190 6560	0.160 0.180 0.202	476 470 466	1.76 1.82 1.90	542 536 530	2.34 2.39 2.47	604 598 590	2.95 3.03 3.10	660 652 646	3.58 3.65 3.75	714 706 700	4.38 4.48 84.48	806	5.90
1900 2000 2100	6930 7290 7660	0.225 0.250 0.275	464 462 462	1.98 2.08 2.19	526 524 520	2.55 2.65 2.75	586 582 576	3.25	640 634 630	3.85 4.05 5.05	694 686 680	4.58 4.80 4.80	790 782 778	6.10 6.23 6.35
2200 2300 2400	8010 8380 8750	0.302 0.330 0.360	460 462 464	2.33 2.48 2.65	518 516 516	2.85 3.00 3.13	572 570 568	3.48 3.60 3.75	624 620 616	4.15 4.44 4.44	676 672 664	4.90 5.03 5.15	772 762 758	6.48 6.60 6.75
2500 2600 2800	9100 9480 10200	0.390 0.422 0.489	466 470 480	2.85 3.03 3.48	516 518 522	3.33	566 564 566	3.90 4.53	614 612 608	4.55 4.73 5.10	662 658 654	5.30	752 748 740	6.90 7.05 7.40
3000 3200 3400	10940 11660 12390	0.560 0.638 0.721	492 502 518	4.00 . 5.27	530 540 552	4.48 5.08 5.73	570 576 588	5.03 5.60 6.28	612 614 620	5.60 6.20 6.85	652 654 656	6.25	736 730 728	7.83 8.32 8.90
3600 3800 4000	13120 13850 14580	0.810	930	6.05	266	6.50	598 610	7.03	630 640 652	7.65 8.46 9.40	664 670 680	8.22 9.10 10.00	732 736 740	9.65 10.5 11.4

NO. 51/2 NIAGARA CONOIDAL FAN (TYPE N) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

Outlet Velocity Fr. per	Capacity Cu. Ft.	Add for Total	%	S. P.	S	s. P.	17.8	S. P.	58 S.	. P.	34" S. P.	. P.	7%" S.	ď
Min.	per Min.	Press.	R.P.M.	H. P.	R.P.M.	Н. Р.	R. P. M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	н. Р.	R.P.M.	Н. Р.
1000	4410 4850 5290	0.063 0.076 0.090	211 209 211	28. 25. 40	264 260 260	.49 .53	304	.78						
1300 1400 1500	5730 6170 6620	0.106 0.122 0.141	215 218 224	.45 .52 .60	257 258 260	.62 .68 .76	300 298 296 296	8.8.9. 8.00.00	340 336 335	1.06 1.12 1.18	375	1.40	406	1.75
1600 1700 1800	7060 7500 7940	0.160 0.180 0.202	229 235 242	868 929 929	262 267 273	.85 .95 1.06	298 300 302	1.04	333 333	1.26 1.35 1.46	367 366 364	1.52 1.60 1.70	400 397 395	1.81 1.89 1.98
1900 2000 2100	8380 8820 9260	0.225 0.250 0.275	249 256 264	1.04 1.17 1.32	278 284 289	1.19	306 311 316	1.38 1.53 1.68	335 336 340	1.59 1.73 1.88	364 364 366	1.82 1.96 2.12	393 393 393	2.09 2.21 2.37
2200 2300 2400	9700 10140 10590	0.330	271 280 287	1.65	296 304 311	1.67 1.86 2.05	322 327 333	1.85 2.05 2.25	346 351 355	2.05 2.24 2.45	369 373 377	2.28 2.47 2.68	395 397 400	2.55 2.72 2.92
2500 2600 2800	11030 11470 12350	0.390 0.422 0.489	. 297 306 322	2.02	318 326 340	2.25 2.49 2.98	340 346 360	2.49 2.71 3.24	360 367 378	2.94	382 387 398	2.90 3.15 3.69	404 407 418	3.15 3.93
3000 3200 3400	13230 14110 15000	0.560 0.638 0.721	340	3.33	358	3.51	375	3.84 4.48	393	4.08	411 426 440	4.33 5.05 5.87	426 442 455	4.57 5.33 6.17

NO. 5% NIAGARA CONOIDAL FAN (TYPE N) CAPACITIES AND STATIC PRESSURES

	s. P.	н. Р.		7.14	7.38	7.84 7.99 8.17	8.35 8.53 8.95	9.47 10.1 10.8	11.7 12.7 13.8
	21/2"	R.P.M.		733	718 711 707	702 693 689	684 680 673	669 664 662	666 669 673
	, P.	Н. Р.		5.14 5.29 5.42	5.54 5.66 5.81	5.93 6.08 6.23	6.41 6.59 7.05	7.56 8.29 9.04	9.95 11.0 12.1
	2" S.	R. P. M.		649 642 636	631 624 618	615 611 604	602 598 595	593 595 596	604 609 618
	S. P.	Н. Р.	4.21	4.33 4.42 4.54	4.66 4.78 4.90	5.02 5.17 5.35	5.51 5.72 6.17	6.78 7.50 8.29	9.26 10.2 11.4
Lin	134" S. P.	R. P. M.	909	600 593 587	582 576 573	567 564 560	558 557 553	557 558 564	573 582 593
THOUSE THE	S. P.	н. е.	3.36	3.57 3.66 3.75	3.84 3.93 4.08	4.21 4.36 4.54	4.72 4.93 5.48	6.08 6.78 7.59	9.53
0	11%"	R. P. M.	560	549 544 537	533 529 524	520 518 517	515 513 515	518 524 535	555
I. AND ENTER MANIET BAROMETER	. P.	Н. Р.	2.67	2.83	3.09 3.21 3.33	3.45 3.63 3.78	4.02 4.24 4.81	5.42 6.14 6.93	7.87
O VIV	1½" S. P.	R. P. M.	502 498	493 487 482	478 476 473	471 469 469	469 471 475	482 491 502	515
2 2	Р.	H. P.	1.94 1.99 2.07	2.13	2.39	2.82 3.00 3.21	3.45 3.66 4.21	4.84 5.54 6.38	7.32
	1" S. P.	R. P. M.	447 442 437	433 427 424	422 420 420	418 420 422	424 427 437	447 456 471	482
	Add for Total	Press.	0.106 0.122 0.141	0.160 0.180 0.202	0.225 0.250 0.275	0.302 0.330 0.360	0.390 0.422 0.489	0.560 0.638 0.721	0.810 0.900 1.000
	Capacity Cu. Ft.	per Min.	5730 6170 6620	7060 7500 7940	8380 8820 9260	9700 10140 10590	11030 11470 12350	13230 14110 15000	15880 16760 17640
	Outlet Velocity Et		1300	1200	1900 2000 2100	2200 2300 2400	2500 2600 2800	3000 3200 3400	3600 3800 4000

NO. 6 NIAGARA CONOIDAL FAN (TYPE N) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

1	H. P.		2.08	2.15 2.25 2.36	2.49 2.63 2.82	3.04 3.23 3.48	3.74 4.07 4.68	5.44 6.34 7.35
% %	R. P. M. H.		372	367 362 362	360	362 363 367	370 374 384	390 405 417
S. P.	Н. Р.		1.66	1.81 1.91 2.02	2.16 2.33 2.52	2.72 2.94 3.19	3.45 3.74 4.39	5.15 6.01 6.98
34"	R.P.M.		344	337 335 334	334 335	339 342 345	355 365	377 390 403
S. P.	Н. Р.		1.27	1.49 1.60 1.73	1.88 2.06 2.24	2.43 2.92 2.92	3.18 3.50 4.14	4.86
18/2	R.P.M.		312 308 307	305 304 305	307 309 312	317 322 325	337 337 347	360
S. P.	Н. Р.	.93	.98 1.05 1.13	1.23	1.64	2.20 2.43 2.68	2.96 3.22 3.85	5.33
12,2	R.P.M.	278	275 274 272	274 275 277	280 285 290	295 300 305	312 317 330	344
S. P.	Н. Р.	.59 .63 .67	.73 .91	1.01 1.13 1.26	1.42 1.59 1.79	1.98 2.21 2.45	2.67 2.96 3.55	4.18
*8	R.P.M.	242 238 238	235 237 238	240 245 250	255 260 265	272 279 285	291 299 312	329
, S. P.	Н. Р.	.37 .42 .48	.54 .72	.82 .95 1.09	1.24 1.40 1.57	1.75 1.96 2.18	2.41 2.68 3.24	3.96
17.	R.P.M.	193 192 193	197 200 205	210 215 222	228 235 242	248 257 263	272 280 295	312
Add for	Press.	0.063 0.076 0.090	0.106 0.122 0.141	0.160 0.180 0.202	0.225 0.250 0.275	0.302 0.330 0.360	0.390 0.422 0.489	0.560 0.638 0.721
Capacity	Air per Min.	5250 5770 6300	6820 7350 7870	8400 8920 9450	9970 10500 11030	11550 12070 12600	13120 13650 14700	15750 16790 17850
Outlet	Ft. per Min.	1000	1300 1400 1500	1500	1900 2000 2100	2200 2300 2400	2500 2600 2800	3000 3200 3400

NO. 6 NIAGARA CONOIDAL FAN (TYPE N) CAPACITIES AND STATIC PRESSURES

	S. P.	Н. Р.		8.50	8.78 8.96 9.14	9.32 9.50 9.72	9.94 10.2 10.7	11.3 12.0 12.8	13.9 15.1 16.4
	2 1/2" \$	R.P.M.		672 665	659 652 649	644 635 632	627 624 617	614 609 607	610 614 617
	S. P.	Н. Р.		6.12 6.30 6.45	6.59 6.73 6.91	7.06	7.63 7.85 8.39	9.00 9.86 10.8	11.9
	2, 8	R.P.M.		595 589 584	579 572 567	564 560 554	552 549 545	544 545 547	554 559 567
	S. P.	Н. Р.	5.00	5.15 5.26 5.40	5.55 5.69 5.83	5.98 6.16 6.37	6.55 6.81 7.34	8.06 8.93 9.86	11.0 12.2 13.5
MOTER	134"	R.P.M.	555	550 544 539	534 529 525	520 517 514	512 510 507	510 512 517	525 534 544
29.92 INCHES BAROMOTER	S. P.	Н. Р.	4.00	4.25 4.36 4.47	4.57 4.68 4.86	5.00 5.18 5.40	5.62 5.87 6.52	7.24 8.06 9.04	10.1
INCHES	11/2"	R.P.M.	513 509	504 499 492	489 485 480	477 475 474	472 470 472	475 480 490	499 509
26.92	S. P.	H. P.	3.18	3.36 3.44 3.56	3.67 3.82 3.96	4.11 4.32 4.50	4.79 5.04 5.73	6.45 7.31 8.24	9.36
70° F. AND	11/4"	R. P. M.	460	452 447 442	439 437 434	432 430 430	430 432 435	442 450 460	472
AT 70°	S. P.	Н. Р.	2.31 2.37 2.46	2.54 2.62 2.73	2.85 3.00 3.16	3.572	4.10 4.36 5.00	5.76 6.59 7.60	8.71
	1 s1	R.P.M.	410 405 400	397 392 389	385 385 385	384 385 387	389 392 400	410 419 432	442
	Add for	Press.	0.106 0.122 0.141	0.160 0.180 0.202	0.225 0.250 0.275	0.302 0.330 0.360	0.390 0.422 0.489	0.560 0.638 0.721	0.810 0.900 1.000
	Capacity Cu. Fr.	Air per Min.	6820 7350 7870	8400 8920 9450	9970 10500 11030	11550 12070 12600	13120 13650 14700	15750 16790 17850	18900 19950 21000
	Outlet	Ft. per Min.	1300 1400 1500	1600 1700 1800	2000	2300	2500 2600 2800	3000 3200 3400	3600 3800 4000

NO. 7 NIAGARA CONOIDAL FAN (TYPE N) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

S. P.	н. Р.		2.83	2.93 3.07 3.21	3.39 3.58 3.84	4.13 4.40 4.73	5.10 5.54 6.37	7.40 8.62 10.0
	R.P.M.		319	314 312 310	308 308 308	310 312 314	317 320 329	334 347 357
S. P.	Н. Р.		2.26	2.46 2.60 2.75	2.95 3.18 3.43	3.70 4.00 4.34	4.70 5.10 5.98	7.01 8.18 9.51
3,4"	R.P.M.		294	289 287 286	286 286 287	290 293 296	300 304 313	328 334 346
S. P.	Н. Р.		1.73 1.81 1.91	2.03 2.18 2.36	2.56 2.80 3.05	3.31 3.63 3.97	4.33	6.62
	R.P.M.		267 264 263	262 262 262	263 264 267	272 276 279	283 289 297	309
S. P.	Н. Р.	1.26	1.34	1.68	2.23 2.47 2.73	3.00 3.31 3.64	4.03 4.39 5.24	6.22
1,2" 8	R. P. M.	239	234 234 233	234 236 237	240 244 249	253 257 262	267 272 283	294
a.	н. Р.	0.80 0.85 0.92	1.10	1.37	1.93 2.17 2.44	2.70 3.01 3.33	3.64 4.03 4.83	5.68
% % % P.	R.P.M.	204 204	202 203 204	206 210 214	219 223 227	233 239 244	250 256 267	282
. P.	Н. Р.	0.51 0.57 0.65	0.74 0.85 0.98	1.12	1.68	2.38	3.27 3.64 4.41	5.39
14" S. P.	R.P.M.	166 164 166	169 172 176	180 184 190	196 202 207	213 220 226	233 240 253	267
Add for	Press.	0.063 0.076 0.090	0.106 0.122 0.141	0.160 0.180 0.202	0.225 0.250 0.275	0.302 0.330 0.360	0.390 0.422 0.489	0.560 0.638 0.721
Capacity Cu. Ft.	per Min.	7140 7860 8570	9290 10000 10720	11430 12150 12860	13570 14290 15000	15720 16430 17150	17860 18580 20000	21430 22860 24290
Outlet Velocity		1000	1300	1700	1900 2000 2100	2200 2300 2400	2500 2600 2800	3000 3200 3400

NO. 7 NIAGARA CONOIDAL FAN (TYPE, N) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

1½° S.P. 1½° S.P. 1½° S.P. 2° S.P. 2° S.P. 2½° S.P. R.P.M. H.P. R.P. R.P. H.P. R.P.		100													1
R.P.M. H. P. R. P.M. H. P. R	Add for	l, S.	1, S, I	_	٠.	13%	S. P.	13%	S. P.	13/4"	S. P.	2, 8	. P.	. 21/2" S	٦.
394 4.33 440 5.64 476 6.81 6.81 8.33 576 8.33 576 8.33 576 8.33 576 8.33 576 8.33 576 8.33 576 8.33 576 8.35 8.35 474 1	per Min. Press. R.P. M. H	R. P. M.		=	Н. Р.	R.P.M.	Н. Р.	R.P.M.		R. P. M.	Н. Р.	R. P. M.	Н. Р.		Н. Р.
387 4.58 432 5.78 472 7.01 504 8.33 576 379 4.86 427 5.93 466 7.15 504 8.58 576 376 5.00 419 6.22 457 7.55 496 8.97 554 372 5.39 412 6.02 450 7.74 490 9.16 556 370 5.89 409 6.81 446 8.13 483 9.60 552 369 6.88 407 7.36 443 8.83 480 9.85 544 369 6.52 404 7.35 440 8.67 477 10.1 552 370 6.86 403 7.99 437 9.26 470 10.7 529 370 6.86 403 7.99 437 10.0 467 11.4 529 386 9.95 412 11.0 486 13.4 <th>9290 0.106 352 3. 10000 0.122 347 3. 10720 0.141 343 3</th> <td>352 343 343</td> <td></td> <td>က်က်က</td> <td>3.23</td> <td>394</td> <td>4.33</td> <td>440 436</td> <td>5.44</td> <td>476</td> <td>6.81</td> <td></td> <td></td> <td></td> <td></td>	9290 0.106 352 3. 10000 0.122 347 3. 10720 0.141 343 3	352 343 343		က်က်က	3.23	394	4.33	440 436	5.44	476	6.81				
376 5.00 419 6.22 457 7.55 496 8.97 564 374 5.19 416 6.37 453 7.74 490 9.16 559 370 5.59 400 6.81 446 8.13 486 9.61 556 369 5.88 407 7.06 443 8.38 480 9.80 554 369 6.13 406 7.36 443 8.67 474 10.1 542 370 6.86 404 7.84 437 9.26 477 10.4 529 373 7.79 404 8.87 434 10.0 467 10.7 534 379 8.77 407 9.85 437 10.0 467 10.7 520 384 11.2 420 12.3 443 13.4 460 14.7 520 404 12.7 427 13.8 450 15.0 <th>11430 0.160 340 3.46 12150 0.180 336 3.57 12860 0.202 333 3.72</th> <td>340 333 333</td> <td></td> <td>0000</td> <td>227</td> <td>387 383 379</td> <td>4.58 4.68 4.85</td> <td>432 427 422</td> <td>5.78 5.93 6.08</td> <td>472 466 462</td> <td>7.01 7.15 7.35</td> <td>510 504 500</td> <td>8.33 8.58 8.77</td> <td>576 570</td> <td>11.6</td>	11430 0.160 340 3.46 12150 0.180 336 3.57 12860 0.202 333 3.72	340 333 333		0000	227	387 383 379	4.58 4.68 4.85	432 427 422	5.78 5.93 6.08	472 466 462	7.01 7.15 7.35	510 504 500	8.33 8.58 8.77	576 570	11.6
370 5.59 409 6.81 446 8.13 483 9.60 552 369 5.88 407 7.06 443 8.83 450 9.85 544 369 6.5.2 404 7.64 439 8.87 471 10.1 542 370 6.86 403 7.94 434 10.0 467 11.7 529 373 7.79 404 8.87 434 10.0 466 12.3 526 386 9.95 412 11.0 466 12.3 526 384 11.2 420 12.3 443 13.4 520 394 11.2 420 12.3 450 14.7 520 404 12.7 427 13.8 450 18.4 469 14.7 520 404 12.7 427 13.8 450 18.6 479 17.8 526 404 12.7	13570 0.225 332 3.88 14290 0.250 330 4.08 15000 0.275 330 4.30	330	-	88.4.4 90.4.4	~~~	376 374 372	5.00 5.19 5.39	419 416 412	6.22 6.37 6.62	457 453 450	7.55	496 490 486	8.97 9.16 9.41	554 556 556	12.0 12.2 12.5
369 6.52 404 7.64 439 8.92 473 10.4 537 370 6.86 403 7.99 437 9.26 470 10.7 534 373 7.79 404 8.87 434 10.0 467 11.4 529 386 9.95 412 11.0 439 12.2 467 11.4 529 394 11.2 420 12.3 449 13.4 520 404 12.7 427 13.8 450 15.0 474 16.1 520 404 12.7 436 15.4 457 16.6 479 17.8 520	15720 0.302 329 4.56 16430 0.330 330 4.86 17150 0.360 332 5.19	328 332 332		4.56 4.86 5.19		370 369 369	5.59 5.88 6.13	409 407 406	6.81 7.06 7.35	446 443 440	8.13 8.38 8.67	483 480 474	9.60 9.85 10.1	552 544 542	12.7 12.9 13.2
379 8.77 407 9.85 437 11.0 466 12.3 526 386 9.95 412 11.0 439 11.2 467 13.4 522 394 11.2 420 12.3 433 13.4 459 14.7 520 404 12.7 427 13.8 450 15.0 474 17.8 526 404 12.7 436 15.4 466 18.4 486 19.6 529	17860 0.390 333 5.59 18580 0.422 336 5.93 20000 0.489 343 6.81	333 343 343	-	5.59 5.93 6.81		369 370 373	6.52 6.86 7.79	404 403 404	7.64 7.99 8.87	439 437 434	8.92 9.26 10.0	473 470 467	10.4 10.7 11.4	537 534 529	13.5 13.8 14.5
12.7 427 13.8 450 15.0 474 16.1 528 436 15.4 457 16.6 479 17.8 526 16.6 18.4 486 19.6 529	22860 0.580 352 7.84 22860 0.638 359 8.97 24290 0.721 370 10.3	#52 #59 #70		7.84 8.97 10.3		379 386 394	8.77 9.95 11.2	407 412 420	9.85 11.0 12.3	437 439 443	11.0 12.2 13.4	466 467 469	12.3 13.4 14.7	526 522 520	15.3 16.3 17.4
	25720 0.810 379 11.9 27150 0.900 1.000	379		11.9		404	12.7	427	13.8	450 457 466	15.0 16.6 18.4	474 479 486	16.1 17.8 19.6	523 526 529	18.9 20.5 22.4

NO. 8 NIADARA CONOIDAL FAN (TYPE N) CAPACITIES AND STATIC PRESSURES

utlet	Canacity	Add for	1/4"	S. P.	% 8 8	S. P.	345" S. P.	. Р.	S%	S. P.	34"	34" S. P.	7/8" S. P.	. P.
elocity Ft. per Min.	Cu. Ft. Air per Min.	Total Press.	R. P. M.	H. P.	R. P. M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	н. Р.
1000	9330 10270 11200	0.063 0.076 0.090	145 144 145	.67 .74 .85	181 179 179 179	1.04	509	1.65						
1300 1400 1500	12130 13060 14000	0.106 0.122 0.141	148 150 154	.96 1.11 1.27	176 178 179	1.31	206 205 204	1.75 1.87 2.00	234 231 230	2.25	258	2.95 3.06	279	3.69
1600 1700 1800	14930 15860 16800	0.160 0.180 0.202	158 161 166	1.69	180 184 188	1.79 2.01 2.25	205 206 208	2.19 2.39 2.64	228 228 229	2.66 2.85 3.08	253 251 250	3.21 3.39 3.59	275 273 271	3.82 4.01 4.19
1900 2000 2100	17730 18660 19600	0.225 0.250 0.275	171 176 181	2.20 2.48 2.79	191 195 199	2.52	210 214 218	2.91 3.23 3.56	230 231 234	3.34 3.66 3.98	250 250 251	3.85 4.15 4.48	270 270 270	4.42 4.68 5.02
2200	20530 21460 22400	0.302 0.330 0.360	186 193 198	3.48	204 209 214	3.53 4.35	221 225 229	3.92 4.33 4.76	238 241 244	4.33 4.74 5.19	254 256 259	4.83 5.22 5.67	271 273 275	5.40 5.75 6.18
2500 2600 2800	23330 24260 26130	0.390 0.422 0.489	204 210 221	4.28 4.76 5.76	219 224 234	4.75 5.26 6.31	234 238 248	5.26 5.73 6.85	248 253 260	5.65 6.23 7.36	263 266 274	6.13 6.66 7.81	278 280 288	6.66 7.23 8.32
3000 3200 3400	28000 29860 31720	0.560 0.638 0.721	234	7.04	246	7.42	258 269	9.47	270	8.64 10.1	283 293 303	9.15 10.7 12.4	293 304 313	9.66 11.3 13.1
		The second second second		The same of the sa	STATES OF THE OWNER, WHEN SHAPE OF					The second name of the local division in which the local division is not to the local division in the local di		The same of the sa	-	Annual Contrast

NO. 8 NIAGARA CONOIDAL FAN (TYPE N) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

Outlet	Capacity	Add for	1" S. P.	٩	17%	S. P.	1 1/3" S. P.	S. P.	134"	o. G.	2, 8	S. P.	23%" 8	S. P.
Ft. per Min.	Air Per Min.	Total Press.	R. P. M.	н. Р.	R. P. M.	Н. Р.	R. P. M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	H. P.	R. P. M.	Н. Р.
1300 1400 1500	12130 13060 14000	0.106 0.122 0.141	308 300 300	4.10 4.22 4.37	345	5.65	385	7.10	416	8.90				
1500 1700 1800	14930 15860 16800	0.160 0.180 0.202	298 294 291	4.51 4.66 4.86	335 335 331	5.98 6.11 6.33	378 374 369	7.55	413 408 404	9.15 9.34 9.60	446 441 438	10.9	504 499	15.1
1900 2000 2100	17730 18660 19600	0.225 0.250 0.275	280 289 289	5.06 5.33 5.61	329 328 325	6.53 6.78 7.04	366 364 360	8.13 8.32 8.64	400 396 394	9.86	434 429 425	11.7 12.0 12.3	484 489 486	15.6 15.9 16.3
2200 2300 2400	20530 21460 22400	0.302 0.330 0.360	288 289 280	5.96 6.35 6.78	324 323 323	7.30	356 355	8.90 9.22 9.60	3880	10.6 11.0 11.3	423 420 415	12.6 12.9 13.2	483 476 474	16.6 16.9 17.3
2500 2600 2800	23330 24260 26130	0.390 0.422 0.489	291 300	7.30 7.74 8.90	323 324 326	8.51 8.96 10.2	354 354 354	9.98 10.4 11.6	384 383 380	11.7	414 411 409	13.6 14.0 14.9	470 468 463	17.7 18.1 19.0
3000 3200 3400	28000 29860 31720	0.560 0.638 0.721	308 314 324	10.2	331 338 345	11.5	356 360 368	12.9 14.3 16.1	388 388 388	14.3 15.9 17.5	408 409 410	16.0 17.5 19.1	460 456 455	20.0 21.3 22.8
3600 3800 4000	33590 35460 37330	0.810 0.900 1.000	331	15.5	354	16.6	374 381	18.0	394 400 408	19.6 21.6 24.1	415 419 425	21.1 23.3 25.6	458 460 463	24.7 26.8 29.2

NO. 9 NIAGARA CONDIDAL FAN (TYPE N) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

_	pacity	Add for	14" S	s. P.	8 "8" S	S. P.	328	S. P.	28,2	S. P.	34" \$	S. P.	7%" S.	۵.
Velocity C. Ft. per Min. po	Cu. Ft. Air per Min.	Total Press.	R. P.M.	н. Р.	R.P.M.	н. Р.	R. P. M.	Н. Р.						
1000	11810 12990 14170	0.063 0.076 0.090	129 129 129	0.84 0.94 1.07	161 159 159	1.32 1.41 1.52	186	2.09						
1300	15360 16530 17720	0.106 0.122 0.141	131 133 137	1.22 1.40 1.61	157 158 159	1.65 1.82 2.04	183 182 181	2.21 2.37 2.54	208 206 205	2.85 2.99 3.16	229 227	3.74	248	4.67
1500	18900 20080 21250	0.160 0.180 0.202	140 143 148	1.86 2.14 2.45	160 163 167	2.27 2.54 2.84	182 183 185	3.35	202 203 203	3.36	225 223 222	4.07 4.29 4.55	244 242 241	4.84 5.07 5.30
1900 2000 2100	22440 23620 24800	0.225 0.250 0.275	152 157 161	2.78 3.14 3.52	170 173 177	3.19 3.58 4.03	187 190 193	3.69 4.08 4.51	205 206 208	4.23 4.64 5.04	222	4.87 5.25 5.67	240 240 240	5.60 5.92 6.35
2200 2300 2400	25980 27160 28340	0.302	166 171 176	3.93 4.41 4.90	181 186 190	4.47	197 200 203	4.96 5.48 6.02	211 215 217	5.47 6.00 6.56	226 228 230	6.10 6.61 7.18	242 242 244	6.83 7.27 7.82
2500 2600 2800	29520 30710 33070	0.390 0.422 0.489	181 187 197	5.41 6.02 7.28	195 199 208	6.01 6.66 7.98	208 211 220	6.66 7.25 8.67	220 224 231	7.15 7.88 9.30	233 243	7.76 8.42 9.88	247 249 256	8.43 9.15 10.5
3000 3200 3400	35430 37790 40150	0.560 0.638 0.721	208	8.91	219	9.40	229	10.3	240	10.9	251 260 269	11.6 13.5 15.7	260 270 278	12.2

NO. 9 NIAGARA CONOIDAL FAN (TYPE N) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

Outlet	Capacity	Add for	l" S. P.	ъ.	17%	1 1/2" S. P.	13%	S. P.	134"	S. P.	2" S. P.	P.	318"	S. P.
Ft. per Min.	Air per Min.	Total Press.	R.P.M.	Н. Р.	R. P. M.	Н. Р.	R.P.M.	Н. Р.	R. P.M.	Н. Р.	R. P. M.	H. P.	R.P.M.	Н. Р.
1300	15360 16530 17720	0.106 0.122 0.141	273 270 267	5.18 5.34 5.53	307	7.15	342	8.99	370	11.3				
1500 1700 1800	18900 20080 21250	0.160 0.180 0.202	264 261 259	5.71 5.90 6.15	301 298 294	7.57 7.73 8.01	336 332 328	9.56 9.80 10.0	367 362 359	11.6 11.8 12.2	397 392 389	13.8 14.2 14.5	448	19.1 19.4
1900 2000 2100	22440 23620 24800	0.225 0.250 0.275	258 257 257	6.41 6.74 7.10	292 291 289	8.26 8.59 8.91	326 323 320	10.3 10.5 10.9	356 350 350	12.5 12.8 13.1	386 381 378	14.8 15.2 15.6	439 435 432	19.8 20.2 20.6
2200 2300 2400	25980 27160 28340	0.302 0.330 0.360	256 257 258	7.54 8.04 8.59	288 287 287	9.23 9.72 10.1	318 317 316	11.3	347 344 342	13.4 13.7 14.3	376 373 369	15.9 16.3 16.7	429 423 421	21.0 21.4 21.9
2500 2600 2800	29520 30710 33070	0.390 0.422 0.489	259 261 267	9.23 9.80 11.3	287 288 290	10.8 111.3 12.9	314 313 314	12.6 13.2 14.7	341 340 338	14.8 15.3 16.5	368 366 363	17.2 17.7 18.9	418 416 411	22.4 22.8 24.0
3000 3200 3400	35430 37790 40150	0.560 0.638 0.721	273 279 288	13.0 14.8 17.1	294 300 307	14.5 16.4 18.6	320 320 327	16.3 18.1 20.3	340 344 344	18.2 20.1 22.2	362 363 364	20.3 24.2	409 406 405	25.4 27.0 28.8
3600 3800 4000	42510 44880 47240	0.810 0.900 1.000	294	19.6	314	21.1	332	22.8	350 356 362	24.8 27.4 30.5	369 372 378	26.7 29.5 32.4	407 409 411	31.3 33.9 36.9

NO. 10 NIAGARA CONOIDAL FAN (TYPE N) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

Capacity Add for Cu. Ft. Total	14" S.	vî ်	. D		S "%	S. P.	72,8	S. P.	S8/2	S. P.	34" S	S. P.	1/8"	S. P.
Press. R. P. M. H. P.	R.P.M. H.P.	Н. Р.		2	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	H.
14580 0.063 116 1.04 16040 0.076 115 1.16 17500 0.090 116 1.32	116		1.04 1.16 1.32		145 143 143	1.63	167	2.58						
20410 0.122 120 1.73 21870 0.141 123 1.99	118 120 123		1.50		141 142 143	2.04 2.25 2.52	165 164 163	2.73 2.92 3.13	187 185 184	3.52 3.69 3.90	206 204	4.61	223	5.77
25330 0.160 126 2.29 24790 0.180 129 2.64 26240 0.202 133 3.03	126 129 133		2.29 2.64 3.03		144 147 150	2.80 3.14 3.51	164 165 166	3.42 3.74 4.13	183 183 183	4.15 4.45 4.81	2010 2010 2010	5.02 5.30 5.61	220 218 217	5.97 6.26 6.55
27700 0.225 137 3.43 29160 0.250 141 3.88 30620 0.275 145 4.35	137 141 145		3.43 4.35		153 156 159	3.94 4.42 4.97	168 171 174	4.55 5.04 5.56	184 185 187	5.22 5.72 6.22	200 201 201	6.01 6.48 7.00	216 216 216	6.91 7.31 7.84
32080 0.302 149 4.85 33540 0.330 154 5.44 34990 0.360 158 6.05	149 154 158		4.85 5.44 6.05		163 167 171	5.51 6.14 6.79	177 180 183	6.12 6.76 7.43	190 193 195	6.76 7.40 8.10	203 205 207	7.54 8.16 8.86	217 218 220	8.43 8.98 9.65
36450 0.390 163 6.68 37910 0.422 168 7.43 40830 0.489 177 8.99	163 168 177		6.68 7.43 8.99		175 179 187	7.42 8.22 9.85	187 190 198	8.22 8.95 10.7	198 202 208	8.83 9.73 11.5	210 213 219	9.58 10.4 12.2	222 224 230	10.4 11.3 13.0
43740 0.560 187 11.0 46660 0.638 0.721	187		11.0		197	11.6	206	12.7	216	13.5	226 234 242	14.3 16.7 19.4	234 243 250	15.1 17.6 20.4
	The same of the sa	The second secon												

NO. 10 NIAGARA CONOIDAL FAN (TYPE N) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

S. P.	Н. Р.		23.6	24.4 24.9 25.4	25.9 26.4 27.0	27.6 28.2 29.6	31.3 33.3 35.6	38.6 41.8 45.6
2 1/2"	R.P.M.		403	395 391 389	386 381 379	376 374 370	368 365 364	366 368 370
S. P.	Н. Р.		17.0 17.5 17.9	18.3 18.7 19.2	19.6 20.1 20.6	221.2	25.0 27.4 29.9	32.9 36.4 40.0
5, 2	R.P.M.		357 353 350	347 343 340	338 332 332	331 329 327	326 327 328	332 335 340
s. P.	Н. Р.	13.9	14.3 14.6 15.0	15.4 15.8 16.2	16.6 17.1 17.7	18.2 18.9 20.4	22.4 24.8 27.4	30.6 33.8 37.6
13/4	R.P.M.	333	330 326 323	320 317 315	312 310 308	307 304 304	306 307 310	315 320 326
S. P.	Н. Р.	11.1	11.8 12.1 12.4	12.7 13.0 13.5	13.9 14.4 15.0	15.6 16.3 18.1	20.1 22.4 25.1	31.5
17%	R. P. M.	308	302 299 295	293 291 288	286 285 284	2883 2883 2883	2885 294 294	305
S. P.	H. P.	8.83	9.34 9.54 9.89	10.2 10.6 11.0	11.4 12.0 12.5	13.3 14.0 15.9	17.9 20.3 22.9	26.0
11/2"	R. P. M.	276 274	271 268 265	263 262 260	259 258 258	258 259 261	265 270 276	283
e.	Н. Р.	6.40 6.59 6.83	7.05 7.28 7.59	7.91 8.32 8.77	9.31 9.92 10.6	11.4 12.1 13.9	16.0 18.3 21.1	24.2
l" S.	R. P. M.	246 243 240	238 235 233	232 231 231	230 231 232	233 240	246 251 259	265
Add for Total	Press.	0.106 0.122 0.141	0.160 0.180 0.202	0.225 0.250 0.275	0.302 0.330 0.360	0.390 0.422 0.489	0.560 0.638 0.721	0.810 0.900 1.000
Capacity Cu. Ft.	per Min.	18960 20410 21870	23330 24790 26240	27700 29160 30620	32080 33540 34990	36450 37910 40830	43740 46660 49570	52490 55400 58320
Outlet Velocity	Min.	1300 1400 1500	1600 1700 1800	1900 2000 2100	2200 2300 2400	2500 2600 2800	3000 3200 3400	3600 3800 4000

NO. 11 NIAGARA CONOIDAL FAN (TYPE N) CAPACITIES AND STATIC PRESSURES

R.P.M. H.P. 106 1.26 105 1.40 107 1.82 109 2.09
139 142 145
148 152 156
159 163 170
179

NO. 11 NIAGARA CONOIDAL FAN (TYPE N) CAPACITIES AND STATIC PRESSURES

Outlet	Capacity	Add for	l" S. P.	Р.	114" S.P.	S. P.	17/3"	S. P.	134"	S. P.	2, %	<u>.</u>	21/2" S. P.	٠ <u>.</u>
Velocity Ft. per Min.	Air Per Min.	Total Press.	R. P. M.	Н. Р.	R. P. M.	Н. Р.	R.P.M.	Н. Р.	R. P. M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	Н. Р.
1300 1400 1500	22930 24700 26460	0.106 0.122 0.141	224 221 218	7.74 7.97 8.26	251 249	10.7	280	13.4	303	16.8				
1600 1700 1800	28230 29990 31750	0.160 0.180 0.202	216 214 212	8.53 8.81 9.18	246 244 241	11.3 11.6 12.0	275 272 268	14.3 14.7 15.0	300 296 294	17.3 17.7 18.2	325 321 318	20.6 21.2 21.7	366	28.6
1900 2000 2100	33520 35280 37050	0.225 0.250 0.275	211 210 210	9.57 10.1 10.6	238 238 238	4.21 4.22.8 13.33	265 262 262	15.4 15.7 16.3	288 288 286	18.6 19.1 19.6	316 312 309	22.2 22.6 23.2	359 356 354	29.5 30.1 30.7
2200 2300 2400	38810 40580 42340	0.302 0.330 0.360	209 210 211	11.3 12.0 12.8	235 235 235	13.8 14.5 15.1	260 259 258	16.8 17.4 18.2	284 282 280	20.1 20.7 21.4	307 306 302	23.7 24.3 24.9	351 346 345	31.3 32.0 32.7
2500 2600 2800	44100 45870 49400	0.390 0.422 0.489	212 214 218	13.8 14.6 16.8	235 236 237	16.1 17.0 19.2	257 256 257	18.9 19.7 21.9	279 278 276	22.0 22.9 24.7	301 299 297	25.7 26.4 28.2	342 340 336	33.4 34.1 35.8
3000 3200 3400	52910 56450 59980	0.560 0.638 0.721	224 228 236	19.4 22.1 25.5	241 246 251	21.7 24.6 27.7	259 262 267	24.3 27.1 30.4	278 279 282	27.1 30.0 33.2	296 297 248	30.3 33.2 36.2	335 332 331	37.9 40.3 43.1
3600 3800 4000	63510 67030 70560	0.810 0.900 1.000	241	29.3	257	31.5	272	34.0	286 291 296	37.0 40.9 45.5	302	39.8 44.1 48.4	333 335 336	46.7 50.6 55.2
											-			-

NO. 12 NIAGARA CONOIDAL FAN (TYPE N) CAPACITIES AND STATIC PRESSURES AT 700 E AND 20 02 INCHES DADOMETED

	ď	Н. Р.		8.31	8.60 9.02 9.43	9.95 10.5 11.3	12.2 12.9 13.9	15.0 16.3 18.7	21.8 25.4 29.4
	1/8" S.	R.P.M.		186	183 182 181	180 180 180	181 182 183	185 187 192	195 203 208
	s. P.	Н. Р.		6.64	7.23 7.63 8.08	8.66 9.33 10.1	10.9 11.8 12.8	13.8 15.0 17.6	20.6 24.1 27.9
	18/2	R.P.M.		172	168 168 167	167 167 168	169 171 173	175 178 183	188 195 202
	S. P.	Н. Р.		5.07 5.31 5.62	5.98 6.41 6.93	7.52 8.24 8.96	9.74 10.7 11.7	12.7 14.0 16.6	19.5 22.8
METER	28	R.P.M.		156 154 153	153 152 153	153 154 156	158 161 163	165 168 173	180
BARO	S. P.	Н. Р.	3.72	3.93 4.21 4.51	4.93 5.39 5.95	6.55 7.26 8.01	8.81 9.74 10.7	11.8 12.9 15.4	18.3
INCHE	12%	R.P.M.	139	138 137 136	137 138 138	140 143 145	148 150 153	156 158 165	172
70° F. AND 29.92 INCHES BAROMETER	s. P.	Н. Р.	2.35 2.51 2.69	2.94 3.24 3.63	4.03 4.52 5.06	5.67 6.37 7.16	7.94 8.84 9.78	10.7 11.8 14.2	16.7
F. AN	*%	R.P.M.	121 119 119	118 118 119	120 123 125	128 130 133	136 139 143	146 149 156	164
AT 70	S. P.	Н. Р.	1.50 1.67 1.90	2.16 2.49 2.87	3.30 4.36	4.94 5.59 6.27	6.99 7.83 8.71	9.62 10.7 13.0	15.9
	12	R.P.M.	97 96 97	98 100 103	105 108 111	114 118 121	124 128 132	136 140 148	156
	Add for	Total Press.	0.063 0.076 0.090	0.106 0.122 0.141	0.160 0.180 0.202	0.225 0.250 0.275	0.302 0.330 0.360	0.390 0.422 0.489	0.560 0.638 0.721
	Capacity	Air per Min.	21000 23090 25190	27290 29390 31490	33600 35690 37790	39890 41990 44090	46190 48290 50390	52490 54590 58790	62980 67180 71380
	Outlet	Ft. per Min.	1000	1300	1200	1900 2100 2100	2300 2300 2400	2500 2600 2800	3000 3200 3400

NO. 12 NIAGARA CONOIDAL FAN (TYPE N) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

Outlet	Capacity	Add for	1. %	P.	13%"	S. P.	11/2"	S. P.	184"	S. P.	2" S.	۵.	21/2" S	S. P.
Ft. per Min.	Air per Min.	Total Press.	R.P.M.	Н. Р.	R. P. M.	Н. Р.	R.P.M.	Н. Р.	R. P. M.	Н. Р.	R.P.M.	Н. Р.	R. P. M. H.	Н. Р.
1300 1400 1500	27290 29390 31490	0.106 0.122 0.141	200	9.22 9.49 9.84	230 228	12.7	257 254	16.0 16.6	278	20.0			*	
1600 1700 1800	33600 35690 37790	0.160 0.180 0.202	198 196 194	10.2 10.5 10.9	226 223 221	13.5	252 249 246	17.0 17.4 17.9	275 272 269	20.6 21.0 21.6	298 294 292	24.5 25.2 25.8	336	34.0
1900 2000 2100	39890 41990 44090	0.225 0.250 0.275	193 193 193	11.4	219 218 217	15.3	244 243 240	18.3 18.7 19.5	267 264 263	22222	286 286 283	26.9 26.9 27.7	328 326 324	35.1 35.9 36.6
2200 2300 2400	46190 48290 50390	0.302	192 193 193	13.4 14.3 15.3	216 215 215	16.4 17.3 18.0	238 238 237	20.0 20.7 21.6	260 258 257	23.9 24.6 25.5	282 280 277	28.2 29.0 29.7	322 318 316	37.3 38.0 38.9
2500 2600 2800	52490 54590 58790	0.390 0.422 0.489	194 196 200	16.4 17.4 20.0	215 216 218	19.2 20.2 22.9	236 235 236	22.5 23.5 26.1	256 255 253	26.2 27.2 29.4	276 274 273	30.5 31.4 33.6	313 312 308	39.8 40.6 42.6
3000 3200 3400	62980 67180 71380	0.560 0.638 0.721	205 209 216	23.0 26.4 30.4	221 225 230	25.8 29.2 33.0	238 240 245	29.0 32.3 36.2	255 256 258	32.3 35.7 39.5	272 273 273	36.0 39.5 43.1	307 304 303	45.1 48.0 51.3
3600 3800 4000	75580 79780 83980	0.810	221	34.9	236	37.5	249	40.5	263 267 272	44.1 48.7 54.2	277 279 283	47.4 52.4 57.6	305 307 308	55.6 60.2 65.7

NO. 13 NIAGARA CONOIDAL FAN (TYPE N) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

Outlet	Canacity		1,18	S. P.	8 18/8	S. P.	1/2" S	s. P.	2%	S. P.	8,4%	S. P.		S. P.
Velocity Ft. per Min.	Cu. Ft. Air per Min.	Add for Total Press.	R.P.M.	Н. Р.	R. P. M.	Н. Р.	R. P. M.	Н. Р.	R. P. M.	Н. Р.	R. P. M.	Н. Р.	R.P.M.	H. P.
1200	24650 27110 29570	0.063 0.076 0.090	888	1.76 1.96 2.23	112	2.76 2.94 3.16	129	4.36						
1300 1400 1500	32040 34500 36960	0.106 0.122 0.141	91 92 95	2.54 2.92 3.36	109 109 110	3.45 3.80 4.26	127 126 125	4.61 4.94 5.29	144 142 142	5.95 6.24 6.59	159 157	7.79 8.08	172	9.75
1500 1700 1800	39430 41900 44350	0.160 0.180 0.202	97 99 102	3.87 4.46 5.12	111111111111111111111111111111111111111	4.73 5.31 5.93	126 127 128	5.78 6.32 6.98	141 140 141	7.01 7.52 8.13	156 155 154	8.48 8.96 9.48	169 168 167	10.1
1900 2000 2100	46810 49280 51740	0.225 0.250 0.275	105 109 112	5.80 6.56 7.35	118 120 122	6.66 7.47 8.40	129 132 134	7.69 8.52 9.40	142 142 144 144	8.82 9.67 10.5	154 154 155	10.2 11.0 11.8	166 166 166	11.7
2300 2300 2400	54210 56680 59130	0.302 0.330 0.360	115 119 122	8.20 9.19 10.2	125 129 132	9.31 10.4 11.5	136 139 141	10.4 11.4 12.6	146 149 150	11.4 12.5 13.7	156 158 159	12.8 13.8 15.0	167 168 169	14.3 15.2 16.3
2500 2600 2800	61600 64060 69000	0.390 0.422 0.489	125 129 136	11.3 12.6 15.2	135 138 144	12.6 13.9 16.7	144 146 152	13.9 15.1 18.1	152 156 160	14.9 16.5 19.4	162 164 169	16.2 17.6 20.6	171 172 177	17.6 19.1 22.0
3000 3200 3400	73920 78850 83770	0.560 0.638 0.721	144	18.6	152	19.6	159	21.5	166	22.8	174 180 186	24.2 28.2 32.8	180 187 192	25.5 29.8 34.5

NO. 13 NIAGARA CONOIDAL FAN (TYPE N) CAPACITIES AND STATIC PRESSURES

ď

H. P. 41.2 42.1 42.9 43.8 44.6 45.6 46.7 47.7 50.0 52.9 56.3 60.2 ٦. ŝ 2 1/2" R. P. M. 293 292 288 H. P. ۵. ŝ R. P. M. 2 H. P. 26.0 26.7 27.4 28.1 28.9 29.9 ۵. ŝ 13/4" R. P. M. 29.92 INCHES BARDMETER 254 251 249 246 244 242 240 239 237 235 236 239 242 246 251 H. P. 18.8 19.4 20.0 20.5 21.0 21.5 22.0 22.8 34.0 37.9 42.4 1001 ۵. Ś 1 1/3" R. P. M. H. P. 1 14" S. P. AND R. P. M. 200 П. Р. 11.9 12.3 12.8 13.4 15.7 16.8 17.9 1" S. P. R. P. M. 189 183 782 177 179 181 185 93 83 0.225 0.250 0.275 0.302 0.330 0.360 0.390 0.422 0.48961600 64060 59000

NO. 14 NIAGARA CONOIDAL FAN (TYPEN) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

Outlet Velocity	Capacity Cu. Ft.	Add for	%" S	s. P.	% ***	S. P.		S. P.	22/18	o. G	% %	ъ.	S "8/1	S. P.
Ft. per Min.	Per Min.	Press.	R.P.M.	н. Р.	R.P.M.	н. Р.	R. P. M.	Н. Р.	R.P.M.	Н. Р.	R. P. M.	Н. Р.	R.P.M.	Н. Р.
1000	28680 31440 34290	0.063 0.076 0.090	8 22 88	2.04 2.27 2.59	104	3.20 3.41 3.67	119	5.06						
1300 1400 1500	37150 40000 42860	0.106 0.122 0.141	88 88 88	2.94 3.39 3.90	101	4.41	118 117 117	5.35 5.72 6.14	134 132 132	6.90 7.23 7.65	147	9.04	159	11.3
1600 1700 1800	45720 48580 51420	0.160 0.180 0.202	920	4.49 5.18 5.94	103 105 107	5.49 6.16 6.88	117 118 119	6.70 7.33 8.10	131 130 131	8.14 8.72 9.43	144 144 143	9.84 10.4 11.0	157 156 155	11.7 12.3 12.8
1900 2000 2100	54290 57150 60010	0.225 0.250 0.275	98 101 104	6.72 7.61 8.53	109	7.72 8.66 9.74	120 122 124	8.92 9.88 10.9	132 132 134	10.2	143 144 144	11.8 12.7 13.7	154 154 154	13.6 14.3 15.4
2200 2300 2400	62880 65720 68580	0.302 0.330 0.360	107 110 113	9.51 10.7 11.9	117 119 122	10.8 12.0 13.3	127 129 131	12.0 13.3 14.6	136 138 139	13.3 14.5 15.9	145 147 148	14.8 16.0 17.4	155 156 157	16.5 17.6 18.9
2500 2600 2800	71430 74290 80010	0.390 0.432 0.489	117 120 127	13.1 14.6 17.6	125 128 134	14.6 16.1 19.3	134 136 142	16.1 17.6 21.0	142 144 149	17.3 19.1 22.6	150 152 157	18.8 20.4 23.9	159 160 164	20.4 22.2 25.5
3000 3200 3400	85730 91440 97150	0.560 0.638 0.721	134	21.6	141	22.7	147	24.9	154	26.5 31.0	162 167 173	28.0 32.7 38.0	167 174 179	29.6 34.5 40.0

NO. 14 NIAGARA CONDIDAL FAN (TYPE N) CAPACITIES AND STATIC PRESSURES

	s. P.	H.P.		46.3	47.8 49.8 8.9	50.8 51.8 52.9	54.1 55.3 58.0	61.4 65.3 69.8	75.7 81.9 89.4
	23/5"	R.P.M.	-	288	282 279 278	276 272 271	269 267 264	263 260 260	262 263 264
	G.	Н. Р.		33.3 34.3 35.1	35.9 36.7 37.6	38.4 39.4 40.4	41.6 42.7 45.7	49.0 53.7 58.6	64.5 71.4 78.4
	3, 8	R. P. M.		255 252 250	248 245 243	242 240 237	237 235 234	233 234 234	237 239 243
	s. P.	Н. Р.	27.3	28.0 28.6 29.4	30.2 31.0 31.8	32.5 33.5 34.7	35.7 37.1 40.0	43.9 48.6 53.7	60.0
AL 70 F. AND 25:51 INCHES BAROMETER	134"	R. P. M.	238	236 233 231	229 227 225	222 222 220	219 219 217	219 222	225 229 233
DAKO	S. P.	Н. Р.	21.8 22.6	23.1 23.7 24.3	24.9 25.5 26.5	27.3 28.2 29.4	30.6 32.0 35.5	39.4 43.9 49.2	55.1
	1.7%"	R. P. M.	220 218	216 214 211	208 208 206	204 203 203	202 202 202	204 206 210	214
67:75	S. P.	Н. Р.	17.3	18.3 18.7 19.4	20.0 20.8 21.6	22.4 23.5 24.5	26.1 27.5 31.2	35.1 39.8 44.9	51.0
	11%"	R.P.M.	197 196	194 192 189	188 187 186	185 184 184	184 185 187	189 193 197	202
	. Р.	Н. Р.	12.6 12.9 13.4	13.8 14.3 14.9	15.5 16.3 17.2	18.3 19.5 20.8	22.4 23.7 27.3	31.4 35.9 41.4	47.4
	1" S.	R. P. M.	176 174 172	170 168 167	166 165 165	164 165 166	167 168 172	176 179 185	189
	Add for Total	i i	0.106 0.122 0.141	0.160 0.180 0.202	0.225 0.250 0.275	0.302 0.380 0.360	0.390 0.432 0.489	0.560 0.638 0.721	0.810 0.900 1.000
	Capacity Cu. Ft.	per Min.	37150 40000 42860	45720 48580 51420	54290 57150 60010	62880 65720 68580	71430 74290 80010	85730 91440 97150	102870 108580 114290
	Outlet elocity	Min.	1300 1400 1500	1500	1900 2000 2100	2200 2300 2400	2500 2600 2800	3000 3200 3400	3600 3800 4000

NO. 15 NIAGARA CONOIDAL FAN (TYPE N) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

Outlot	Canacity		s "%	S. P.	3,8%	e.	1/2" S	S. P.	\$. 8/8/	۵.	3 "**	S. P.	7%" S.	٠ <u>.</u>
Velocity Ft. per Min.	Cu. Ft. Air per Min.	Add for Total Press.	R. P. M.	Н. Р.	R. P. M.	Н. Р.	R. P. M.	н. Р.	R.P.M.	н. Р.	R. P. M.	Н. Р.	R. P. M.	H.P.
1000	32800 36080 39360	0.063 0.076 0.090	77 77	2.34 2.61 2.97	97 95 95	3.67 3.92 4.21	111	5.81						
1300	42650 45920 49210	0.106 0.122 0.141	82 82 82	3.38	94 95 95	4.59 5.06 5.67	110 109 109	6.14 6.57 7.04	125 123 123	7.92 8.30 8.78	137 136	10.4	149	13.0
1600	52490 55760 59040	0.160 0.180 0.202	88 88 89 89	5.15 5.94 6.82	96 100	6.30	109 110 111	7.70 8.42 9.29	122 121 122	9.34 10.0 10.8	135 134 133	11.3	147 145 145	13.4 14.1 14.7
1900 2000 2100	62320 65610 68900	0.225 0.250 0.275	91 94 97	7.72 8.73 9.79	104 104 106	8.87 9.95 11.2	112	10.2 11.4 12.5	123 123 125	11.8 12.9 14.0	133 133 134	13.5 14.6 15.8	144 144 144	15.6 16.5 17.7
2300	72160 75450 78720	0.302	99 103 105	10.9 12.2 13.6	109	12.4 13.8 15.3	118 120 122	13.8 15.2 16.7	127 129 130	15.2 16.7 18.2	135 137 138	17.0 18.4 19.9	145 145 147	19.0 20.2 21.7
2500 2600 2800	82010 85300 91850	0.390 0.432 0.489	109	15.0 16.7 20.2	117 119 125	16.7 18.5 22.2	125 127 132	18.5 20.1 24.1	132 135 139	19.9 21.9 25.9	140 142 146	21.6 23.4 27.5	148 149 153	25.4 4.4.62
3000 3200 3400	98420 104970 1111520	0.560 0.638 0.721	125	24.8	131	26.1	143	28.6 33.3	144	30.4	151 156 161	32.2 37.6 43.7	156 162 167	34.0

NO. 15 NIAGARA CONDIDAL FAN (TYPE N) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

S. G.	H. P.		53.1	54.9 56.0 57.2	58.3 59.4 60.8	62.1 63.5 66.6	70.4 74.9 80.1	86.9 94.1 102.6
21%	R.P.M.		269 266	263 261 259	257 254 253	251 249 247	245 243 243	244 245 247
S. P.	Н. Р.		38.3 39.4 40.3	41.2 42.1 43.2	44.1 45.2 46.4	47.7 49.1 52.4	56.3 61.7 67.3	74.0 81.9 90.0
5	R.P.M.		235 235 235 235	231 229 227	225 224 221	221 219 218	217 218 219	221 223 227
S. P.	H. P.	31.3	32.5 33.9 33.8	34.7 35.6 36.5	37.4 38.5 39.8	41.0 42.5 45.9	50.4 55.8 61.7	68.9 76.1 84.6
1 3 4 //	R. P. M.	222	220 217 215	213 211 210	208 207 205	205 204 203	204 205 207	210 213 217
S. P.	H. P.	25.0	26.6 27.2 27.9	28.6 29.3 30.4	31.3 32.4 33.8	35.1 36.7 40.7	45.2 50.4 56.5	63.2
1%"	R. P. M.	205	201 199 197	195 194 192	191 190 189	189	190 192 196	199 203
1 1/4"S. P.	Н. Р.	19.9	21.0 21.5 22.3	23.0 24.8 8.4.8	25.7 27.0 28.1	29.9 31.5 35.8	40.3	58.5
13%	R.P.M.	184	181 179 177	175 175 173	173 172 172	172 173 174	177 180 184	189
S. P.	H. P.	14.4 14.8 15.4	15.9 16.4 17.1	17.8 18.7 19.7	21.0 22.3 23.8	25.7 27.2 31.3	36.0 41.2 47.5	54.5
-	R.P.M.	164 162 160	159 157 155	155 154 154	153 154 155	155 157 160	164 167 173	177
Add for	Total Press.	0.106 0.122 0.141	0.160 0.180 0.202	0.225 0.250 0.275	0.302 0.330 0.360	0.390	0.560 0.638 0.721	0.810
Capacity	Air per Min.	42650 45920 49210	52490 55760 59040	62320 65610 68900	72160 75450 78720	82010 85300 91850	98420 104970 1111520	118100 124650 131210
Outlet	Ft. per Min.	1300 1400 1500	1200	-1900 2000 2100	2200 2300 2400	2800 2800 2800	3000 3200 3400	3800

NO. 16 NIAGARA CONOIDAL FAN (TYPE N) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

Outlet Velocity	Capacity Cu. Ft.	Add for	3. ¹ %	ą.		S. P.	1/2" S.	ď.	S	S. P.	%, S.	. Р.	S.	Ъ.
Ft. per Min.	Air per Min.	Press.	R. P. M.	н. Р.	R. P. M.	Н. Р.	R. P. M.	Н. Р.	R.P.M.	Н. Р.	R. P. M.	H. P.	R. P. M.	н. Р.
1200	37320 41060 44790	0.063 0.076 0.090	27.73	2.66 2.97 3.38	91 88 89	4.17	104	6.61						
1300	48520 52250 55980	0.106 0.122 0.141	75	3.84 4.43 5.10	8888	5.22 5.76 6.45	103	6.99 7.48 8.01	117 116 115	9.01 9.45 9.98	129	11.8	139	14.8
1600 1700 1800	59720 63450 67170	0.160 0.180 0.202	83 83	5.86 6.76 7.76	927	7.17 8.04 8.99	103 104 104	8.76 9.58 10.6	114	10.6 11.4 12.3	126 126 125	12.9 13.6 14.4	138 136 136	15.3 16.0 16.8
1900 2000 2100	70910 74640 78380	0.225 0.250 0.275	88 91	8.78 9.93 11.1	988	10.1 11.3 12.7	105 107 109	11.7 12.9 14.2	115 116 117	13.4 14.7 15.9	125 125 126	15.4 16.6 17.9	135 135 135	17.7 18.7 20.1
2200 2300 2400	82110 85840 89570	0.302	86 86 86	12.4 13.9 15.5	102 104 107	14.1 15.7 17.4	111	15.7 17.3 19.0	119 121 122	17.3 19.0 20.7	127 128 129	19.3 20.9 22.7	136 136 138	21.6 23.0 24.7
2500 2600 2800	93300 97040 104500	0.390	102 105 111	17.1 19.0 23.0	109 112 117	19.0 21.1 25.2	117 119 124	21.1 22.9 27.4	124 126 130	22.6 24.9 29.5	131 133 137	24.5 26.6 31.2	139 140 144	33.3 33.3 33.3
3000 3200 3400	111970 119430 126900	0.560 0.638 0.721	117	28.2	123	29.7	128	32.5	135	34.6	141 146 151	36.6 42.8 49.7	146 152 156	38.7 45.1 52.2
				-										

NO. 16 NIADARA CONOIDAL FAN (TYPE N) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

	. P.	н. Р.		60.4	62.5 63.8 65.0	66.3 67.6 69.1	70.7 72.2 75.8	80.1 85.3 91.1	98.8 107.0 116.7
	21/2" S. P.	R. P. M.		252 249	247 244 243	241 238 237	235 234 231	230 228 228	229 230 231
	S. P.	Н. Р.		43.5 44.8 45.8	46.9 47.9 49.2	50.2 51.5 52.7	54.3 55.8 59.7	64.0 70.2 76.6	84.2 93.2 102.4
	2, 5	R.P.M.		223 221 219	217 214 213	211 210 208	204 204 204	204 205	208 209 213
	S. P.	Н. Р.	35.6	36.6 37.4 38.4	39.4 40.5 41.5	42.5 43.8 45.3	46.6 48.4 52.2	57.4 63.5 70.2	78.3 86.5 96.3
MEILE	137"	R.P.M.	208	204 202 202	200 198 197	195 194 193	192 191 190	191 192 194	197 200 204
I. AND 27:72 INCHES DAROMETER	S. P.	Н. Р.	28.4	30.2 31.0 31.8	32.5 33.3 34.6	35.6 36.9 38.4	39.9 41.7 46.3	51.5 57.4 64.3	80.7
	1 1/3"	R. P. M.	193 191	189 187 184	183 182 180	179 178 178	177 176 177	178 180 184	187
27.74	S. P.	Н. Р.	22.6 23.0	23.9 24.4 25.3	26.1 27.1 28.2	29.2 30.7 32.0	34.1 35.9 40.7	45.8 52.0 58.6	9.99
	1%"	R. P. M.	173	169 168 166	164 164 163	162 161 161	161 162 163	166 169 173	177
	1" S. P.	Н. Р.	16.4 16.9 17.5	18.1 18.6 19.4	20.3 21.3 22.5	23.8 25.4 27.1	29.2 31.0 35.6	41.0 46.9 54.0	62.0
	1″ 8	R. P. M.	154 152 150	149 147 146	145 144 144	144 144 145	146 147 150	154 157 162	166
	Add for Total	Press.	0.106 0.122 0.141	0.160 0.180 0.202	0.225 0.250 0.275	0.302 0.330 0.360	0.390 0.422 0.489	0.560 0.638 0.721	0.810
	Capacity Cu. Ft.	per Min.	48520 52250 55980	59720 63450 67170	70910 74640 78380	82110 85840 89570	93300 97040 104500	111970 119430 126900	134380 141810 149300
	Outlet Velocity	Min.	1300	1600 1700 1800	1900 2000 2100	2200 2300 2400	2500 2600 3800	3000 3200 3400	3600 3800 4000

NO. 17 NIAGARA CONOIDAL FAN (TYPE N) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

	1/8" S. P.	Н. Р.		16.7	17.3 18.1 18.9	20.0 21.1 22.7	24.4 26.0 27.9	30.1 32.7 37.6	43.6 50.9 59.0
	1/8"	R.P.M.		131	130 128 128	127 127 127	128 128 130	131 132 135	138 143 147
	. P.	Н. Р.		13.3	14.5 15.3 16.2	17.4 18.7 20.2	21.8 23.6 25.6	27.7 30.1 35.3	41.3 48.3 56.1
	34" S. P.	R. P. M.		121	1118	118	120 121 122	124 125 129	133 138 142
	S. P.	н. Р.		10.2 10.7 11.3	12.0 12.9 13.9	15.1 16.5 18.0	19.5 21.4 23.4	25.5 28.1 33.2	39.0
THE PER	18/2	R.P.M.		1109	108 107 108	108 109 110	112	117 119 122	132
DANG C	S. P.	Н. Р.	7.46	7.89 8.44 9.05	9.88 10.8 11.9	13.2 14.6 16.1	17.7 19.5 21.5	23.8 30.9	36.7
	1,2,"	R.P.M.	86	96	97 98 98	99 101 102	104 106 108	110	121
F. AND 29:32 INCHES BAROMETER	S. P.	Н. Р.	4.71 5.03 5.41	5.90 6.50 7.28	8.09 9.08 10.2	11.4 12.8 14.4	15.9 17.8 19.6	23.8 28.5 28.5	33.5
	18/2	R.P.M.	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	88.8 44.4	88 88	90 92 94	96 98 101	103 105 110	116
0/ 10	S. P.	Н. Р.	3.35 3.35 3.82	4.34 5.00 5.75	6.62 7.63 8.76	9.91 11.2 12.6	14.0 15.7 17.5	19.3 21.5 26.0	31.8
	14"	R.P.M.	8888	69 71 72	74 76 78	833 855	88 91 93	96 99 104	110
	Add for	Total Press.	0.063 0.076 0.090	0.106 0.122 0.141	0.160 0.180 0.202	0.225 0.2 50 0.275	0.302 0.330 0.360	0.390 0.422 0.489	0.560 0.638 0.721
	Capacity Cu. Fr.	Air per Min.	42140 46350 50560	54780 58980 63200	67430 71630 75840	80050 84270 88490	92690 96900 101130	105340 109560 117990	126410 134820 143260
		Ft. per Min.	1000	1300 1400 1500	1500 1700 1800	1900 2000 2100	2200 2300 2400	2500 2600 2800	3000 3200 3400

NO. 17 NIAGARA CONOIDAL FAN (TYPE N) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

ą. G.	Н. Р.		69.4	70.5 72.0 73.4	74.9 76.3 78.0	79.8 81.5 85.6	90.5 96.2 102.9	111.6 120.8 131.8
23%"	R. P.M.		237	232 230 229	227 223 223	221 220 218	217 215 214	215 217 218
s, P,	н. Р.		49.1 50.6 51.7	52.9 54.1 55.5	56.7 58.1 59.5	61.3 63.0 67.3	72.3 79.2 86.4	95.1 105.2 115.6
2, 8	R. P. M.		210 208 206	202 200 200	199 198 195	195 194 192	192 192 193	195 197 200
S. P.	Н. Р.	40.2	41.3 42.2 43.4	44.5 45.7 46.8	48.0 49.4 51.2	52.6 54.6 59.0	64.7 71.7 79.2	88.4 97.7 108.7
134"	R. P. M.	196	194 192 190	188 187 185	184 182 181	181 180 179	180 181 182	185 192
1 15" S. P.	н. Р.	32.1 33.2	34.1 35.0 35.8	36.7 37.6 39.0	40.2 41.6 43.4	45.1 47.1 52.3	58.1 64.7 72.5	91.0
13%	R.P.M.	181	178 176 174	172 171 170	168 168 167	167 166 167	168 170 173	176
S. P.	Н. Р.	25.5 26.0	27.0 27.6 28.6	29.5 30.6 31.8	33.0 34.7 36.1	38.4 40.5 46.0	51.7 58.7 66.2	75.1
17/1	R. P. M.	162	160 158 156	155 154 153	152 152 152	152 152 154	156 159 162	167
S. P.	Н. Р.	18.5 19.1 19.7	20.4 21.0 21.9	22.9 24.1 25.4	26.9 28.7 30.6	33.0 35.0 40.2	46.2 52.9 61.0	6.69
8 *1	R. P. M.	145 143 141	140 138 137	137 136 136	135 136 137	137 138 141	145 148 152	156
Add for Total	Press.	0.106 0.122 0.141	0.160 0.180 0.202	0.225 0.250 0.275	0.302 0.330 0.360	0.390 0.432 0.489	0.560 0.638 0.721	0.810 0.900 1.000
Capacity Cu. Ft.	per Min.	54780 58980 63200	67430 71630 75840	84270 84270 88490	92690 96900 101130	105340 109560 117990	126410 134820 143260	151700 160100 168550
Outlet Velocity	Min.	1300 1400 1500	1600 1700 1800	1900 2000 2100	2200 2300 2400	2500 2600 2800	3200 3200 3400	3600

NO. 18 NIAGARA CONOIDAL FAN (TYPE N) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

										-				
Outlet Velocity	Capacity Cu. Ft.	Add for	1/1 8	14" S. P.	28	S. P.		s. P.	*** ***	s. P.	34"	s. P.	% 	ď.
Min.	per Min.	Press.	R. P. M.	Н. Р.	R. P. M.	Н. Р.	R.P.M.	Н. Р.						
1000	47240 51960 56680	0.063 0.076 0.090	65 64 65	3.37 3.76 4.28	8008	5.28 5.64 6.06	83	8.36						
1300 1400 1500	61420 66130 70860	0.106 0.122 0.141	66 67 68	4.86 5.61 6.45	879 80 80 80	6.61 7.29 8.17	91 6 6 1 6 1	8.85 9.46 10.2	104	11.4 12.0 12.6	115	14.9	124	18.7
1500 1700 1800	75590 80300 85010	0.160 0.180 0.202	77.7 74.	7.42 8.55 9.82	8888	9.07 10.2 11.4	92 92 92	11.1 12.1 13.4	102 101 102	13.5 14.4 15.6	112	16.3 17.2 18.2	122 121 121	19.4 20.3 21.2
1900 2000 2100	89750 94480 99200	0.225 0.250 0.275	76 78 81	11.1 12.6 14.1	88 88	12.8 14.3 16.1	93 95 97	14.8 16.3 18.0	102 103 104	16.9 18.5 20.2	112	19.5 21.0 22.7	120 120 120	22.4 23.7 25.4
2200 2300 2400	103910 108650 113370	0.302 0.360 0.360	8888	15.7 17.6 19.6	93 95	17.9 19.9 22.0	98 100 102	19.8 21.9 24.1	106 107 108	21.9 24.0 26.3	113 114 115	24.4 26.4 28.7	121 121 122	27.3 29.1 31.3
2500 2600 2800	118100 122820 132260	0.390 0.422 0.489	98	21.7 24.1 29.1	97 100 104	24.1 26.6 31.9	104 106 110	26.6 29.0 34.7	110	28.6 31.5 37.3	117 118 122	31.2 33.7 39.5	123 125 128	33.7 36.6 42.1
3000 3200 3400	141710 151160 160600	0.560 0.638 0.721	104	35.7	110	37.6	115	41.2	120 125	43.8	126 130 135	46.3 54.1 62.9	130 135 139	48.9 57.0 66.1

NO. 18 NIAGARA CONOIDAL FAN (TYPE N) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

٥.	Н. Р.		76.5	79.1 80.7 82.3	83.9 85.5 87.5	89.4 91.4 95.9	101.4 107.9 115.3	125.1 135.4 147.7
21/5" S.	R.P.M		222	220 217 216	215 212 211	208 208 206	205 203 1 202	203 205 206
a .	Н. Р. R		55.1 56.7 58.0	59.3 60.6 62.2	63.5 65.1 66.8	68.7 70.6 75.5	81.0 88.8 96.9	106.6 117.9 129.6
2″ S.	R.P.M.		198 196 195	193 191 189	188 187 185	184 183 182	181 182 182	185 186 189
S. P.	Н. Р.	45.0	46.3 47.3 48.6	49.9 51.2 52.5	53.8 55.4 57.4	59.0 61.2 66.1	72.6 80.3 88.8	99.2 109.5 121.8
184"	R.P.M.	185	183 181 180	178 176 175	173 172 171	171 170 169	170 171 172	175 178 181
S. P.	Н. Р.	36.0	38.2 39.2 40.2	41.2 42.1 43.8	45.0 46.7 48.6	50.6 52.8 58.7	65.1 72.6 81.3	91.0
1 1/2"	R.P.M.	171 170	168 166 164	163 162 160	159 158 158	157 157 157	158 160 163	166
S. P.	Н. Р.	28.6 29.2	30.3 30.9 32.1	33.1 34.4 35.7	36.9 38.9 40.5	43.1 45.4 51.5	58.0 65.8 74.2	84.9
17/	R.P.M.	153 152	151 149 147	146 146 145	144 143 143	143 144 145	147 150 153	157
. Р.	Н. Р.	20.7 21.4 22.1	22.9 23.6 24.6	25.6 27.0 28.4	30.2 32.2 34.4	36.9 39.7 45.0	51.8 59.3 68.4	78.4
l" S.	R.P.M.	137 135 133	132 131 130	128 128 128	128 128 129	130 131 133	137 140 144	147
Add for Total	Press.	0.106 0.122 0.141	0.160 0.180 0.202	0.225 0.250 0.275	0.302 0.330 0.360	0.390 0.432 0.489	0.560 0.638 0.721	0.810 0.900 1.000
Capacity Cu. Ft.	per Min.	61420 66130 70860	75590 80300 85010	89750 94480 99200	103910 108650 113370	118100 122820 132260	141710 151160 160600	170070 179500 188950
Outlet Velocity Et ger	Min.	1300	1600 1700 1800	1900 2000 2100	2200 2300 2400	2500 2600 2800	3000 3200 3400	3600

NO. 19 NIAGARA CONOIDAL FAN (TYPE N) CAPACITIES AND STATIC PRESSURES

	S. P.	Н. Р.		20.8	21.6 22.6 23.7	25.0 26.4 28.3	30.4 32.4 34.8	37.6 40.8 46.9	54.5 63.5 73.6
	7/8" S	R.P.M.		117	116	114	114	117	123 128 132
	ъ. Р.	Н. Р.		16.7	18.1 19.1 20.3	21.7 23.4 25.3	27.2 29.5 32.0	34.6 37.6 44.1	51.6 60.3 70.0
	%" S	R.P.M.		109	106	105 105 106	107 108 109	1112	119 123 127
	S. P.	н. Р.		12.7 13.3 14.1	15.0 16.1 17.4	18.9 20.7 22.5	24.4 26.7 29.2	31.9 35.1 41.5	48.7
METER	3/8/	R.P.M.		98	96 96 96	97	102	104	1114
F. AND 29.92 INCHES BAROMETER	S. P.	Н. Р.	9.31	9.86 10.6 11.3	12.4 13.5 14.9	16.4 18.2 20.1	22.1 24.4 26.8	29.7 32.3 38.6	45.9
INCHE	72, 8	R.P.M.	80	87 86 86	86 87 87	89 90 92	93 95 96	99 100 104	109
ND 29.93	S. P.	Н. Р.	5.88 6.28 6.75	7.36 8.12 9.10	10.1 11.3 12.7	14.2 16.0 18.0	19.9 22.2 24.5	26.8 29.7 35.6	41.9
70° F. Al	3/8	R.P.M.	76 75 75	75 75	777	823 84 84	98 88 06	94 98 98	104
AT 7	S. P.	Н. Р.	3.76 4.19 4.77	5.42 6.25 7.18	8.27 9.53 10.9	12.4 14.0 15.7	17.5 19.6 21.8	24.1 26.8 32.5	39.7
	17.	R.P.M.	61 61 61	63 65 65	98 98 20	72 74 76	79 83 83	8886 8988	66
	Add for	Press.	0.063 0.076 0.090	0.106 0.122 0.141	0.160 0.180 0.202	0.225 0.250 0.275	0.302 0.330 0.360	0.390 0.422 0.489	0.560 0.638 0.721
	Capacity Cu. Fr.	Air per Min.	52630 57900 63150	68430 73680 78950	84220 89470 94720	99990 105270 110520	115780 121050 126310	131580 136840 147390	157890 168420 178950
		Ft. per Min.	1000	1300 1400 1500	000 1200 1800	1900 2000 2100	2200 2300 2400	2500 2600 2800	3000 3200 3400

NO. 19 NIAGARA CONOIDAL FAN (TYPE N) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

Outlet Velocity	Capacity Cu. Ft.	Add for Total	1" S. P.	9	8 .5/1	S. P.	1 1/2"	s. P.	13/11	s. P.	2, S.	۳.	2 1/2"	s. P.
Min.	per Min.	Press.	R.P.M.	Н. Р.	R.P.M.	н. Р.	R. P. M.	н. Р.	R.P.M.	Н. Р.	R. P. M.	Н. Р.	R.P.M.	н. Р.
1300 1400 1500	68430 73680 78950	0.106 0.122 0.141	130 128 126	23.1 23.8 24.7	145 144	31.9	162 161	40.1	175	50.2				
1600 1700 1800	84220 89470 94720	0.160 0.180 0.202	125 124 123	25.5 26.3 27.4	143 141 140	33.7 34.4 35.7	159 157 155	42.6 43.7 44.8	174 172 170	51.6 52.7 54.2	188 186 184	61.4 63.2 64.6	212	85.2 86.6
1900 2000 2100	99990 105270 110520	0.225 0.250 0.275	122 122 122 122	28.6 30.0 31.7	139 138 137	36.8 38.3 39.7	154 153 152	45.9 46.9 48.7	169 167 166	55.6 57.0 58.5	183 181 179	66.1 67.5 69.3	208 206 205	88.1 89.9 91.7
2200 2300 2400	115780 121050 126310	0.302 0.360 0.360	121	333.6 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0	136 136 136	41.2 43.3 45.1	151 150 150	50.2 52.0 54.2	164 163 162	59.9 61.7 63.9	178 177 175	70.8 72.6 74.4	203 201 200	93.5 95.3 97.5
2500 2600 2800	131580 136840 147390	0.390 0.422 0.489	123 124 126	41.2 43.7 50.2	136 136 137	48.0 50.5 57.4	149 149 149	56.3 65.3	162 161 160	65.7 68.2 73.6	174 173 172	76.5 78.7 84.1	198 197 195	99.6 101.8 106.9
3000 3200 3400	157890 168420 178950	0.560 0.638 0.721	130 132 136	57.8 66.1 76.2	140 142 145	64.6 73.3 82.7	150 152 155	72.6 80.9 90.6	161 162 163	80.9 89.5 98.9	172	90.3 98.9 107.9	194 192 192	113.0 120.2 128.5
3600 3800 4000	189490 199990 210530	0.810 0.900 1.000	140	87.4	149	93.9	157	101.4	166 168 172	110.5 122.0 135.7	175 176 179	118.8 131.4 144.4	193 194 195	139.3 150.9 164.6
													-	-

NO. 20 NIAGARA CONOIDAL FAN (TYPE N) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

e. G.	н. Р.		23.1	23.9 25.1 26.2	27.7 29.3 31.4	33.7 35.9 38.6	41.6 45.2 52.0	60.4 70.4 81.6
3/1/8	R.P.M.		112	1100	108 108 108	109 109 110	111	117 122 125
ъ.	Н. Р.		18.5	20.1 21.2 22.5	24.1 25.9 28.0	30.2 32.7 35.5	38.3 41.6 48.8	57.2 66.8 77.6
34" S.	R.P.M.		103	555	991	103	105 107 110	113
S. P.	Н. Р.		14.1 14.8 15.6	16.6 17.8 19.3	20.9 22.9 24.9	27.1 29.6 32.4	35.3 38.9 46.0	54.0
	R.P.M.		93	92 91 92	93 84 84	95 97 98	99 101 104	108
3%" S. P. 1/2" S. P. 5/8"	Н. Р.	10.3	10.9 11.7 12.5	13.7 15.0 16.5	18.2 20.2 22.3	24.5 27.1 29.7	32.9 35.8 42.8	59.2
1,7,8	R.P.M.	84	8888	8888	84 86 87	80 80 80 80	94 95 99	103
S. P.	Н. Р.	6.52 6.96 7.48	8.16 9.00 10.1	11.2 12.6 14.1	15.8 17.7 19.9	22.1 24.6 27.2	29.7 32.9 39.4	46.4
"% "%	R.P.M.	272	222	72 74 75	77 78 80	884 864	88 90 94	66
S. P.	Н. Р.	4.16 4.64 5.28	6.00 6.92 7.96	9.16 10.6 12.1	13.7 15.5 17.4	19.4 21.8 24.2	26.7 29.7 36.0	44.0
74" 8	R. P. M.	5888	59 62 62	63 65 67	69 71 73	75 77 79	884 89	94
Add for Total	Press.	0.063 0.076 0.090	0.106 0.122 0.141	0.160 0.180 0.202	0.225 0.250 0.275	0.302	0.390 0.422 0.489	0.560 0.638 0.721
Capacity Cu. Ft.	per Min.	58320 64150 69980	75820 81640 87480	93320 99140 104960	110800 116640 122480	128300 134140 139960	145800 151650 163300	174960 186620 198300
Outlet Velocity		1200	1300 1400 1500	1600 1700 1800	1900 2000 2100	2200 2300 2400	2500 2600 2800	3000 3200 3400

NO. 20 NIAGARA CONOIDAL FAN (TYPE N) CAPACITIES AND STATIC PRESSURES

S. P. 21/5" S. P.	H. P. R. P.M. H. P.		68.0 70.0 71.6 200 94.4 96.0	73.2 198 97.6 74.8 196 99.6 76.8 195 101.6	78.4 193 103.6 80.4 191 105.6 82.4 190 108.0	84.8 188 110.4 87.2 187 112.8 93.2 185 118.4	100.0 184 125.2 109.6 183 133.2 119.6 182 142.4	131.6 183 154.4 145.6 184 167.2 160.0 185 182.4
3,	R.P.M.		179 177 175	174 172 170	169 168 166	166 165 164	163 164 164	166 167 170
S. P.	Н. Р.	55.6	57.2 58.4 60.0	61.6 63.2 64.8	66.4 68.4 70.8	72.8 75.6 81.6	89.6 99.2 109.6	122.4 135.2 150.4
134	R.P.M.	167	165 163 162	160 159 158	156 155 154	154 153 152	153 154 155	158 160 163
1½" S. P. 1¾"	Н. Р.	44.4	47.2 48.4 49.6	50.8 52.0 54.0	55.6 57.6 60.0	62.4 65.2 72.4	80.4 89.6 100.4	112.4
1.7%	R.P.M.	154	151 150 148	147 146 144	143 143 142	145 141 142	143 144 147	150
S. P.	H. P.	35.3 36.0	37.4 38.2 39.5	40.8 42.4 44.0	45.6 48.0 50.0	53.2 56.0 63.6	71.6 81.2 91.6	104.0
17/1	R.P.M.	138	136 134 133	132 131 130	130 129 129	129 130 131	133 135 138	142
1" S. P.	Н. Р.	25.6 26.4 27.3	28.2 29.1 30.4	31.6 33.3 35.1	37.3 39.7 42.4	45.6 48.4 55.6	64.0 73.2 84.4	8.98
1,8	R.P.M.	123 122 120	119 118 117	116 116 116	115 116 116	117 118 120	123 126 130	133
Add for	Total Press.	0.106 0.122 0.141	0.160 0.180 0.202	0.225 0.250 0.275	0.302 0.330 0.360	0.390 0.422 0.489	0.560 0.638 0.721	0.810 0.900 1.000
Capacity	Air Per Min.	75820 81640 87480	93320 99140 104960	110800 116640 122480	128300 134140 139960	145800 151650 163300	174960 186620 198300	209960 221600 233300
Ourflet	Ft. per Min.	1300 1400 1500	1600 1700 1800	1900 2000 2100	2200 2300 2400	2500 2600 2800	3000	3600 3800 4000

TOTAL EFFICIENCIES WITH NIAGARA CONDIDAL FANS (TYPE N) FOR VARIOUS OUTLET VELOCITIES AND TOTAL PRESSURES

							-					
Outlet		14" Static	3%" S	Static	1/2" Static	tatic	58 " S	Static	34" S	Static	78" Static	tic
Ain.	Total Press.	Total Eff.	Total Press.	Total Eff.	Total Press.	Total Eff.	Total Press.	Total Eff.	Total Press.	Total Eff.	Total Press.	Total Eff.
1000	.313	68.8 70.6 70.7	.438 .451 .465	61.5 65.2 68.1	.563 .576 .590	55.2 59.0 63.0	.701	54.1	.840	54.1		
1300	.356	70.6 68.7 67.2	.481 .497 .516	70.4 70.6 70.7	.606 .622 .641	66.0 68.5 70.4	.731 .747 .766	61.9 64.7 67.5	.856 .872 .891	57.7 60.7 64.0	.981 .997 1.016	57.5 58.6
1500	.430 .452	65.6 63.3 61.4	.535	69.9 68.9 67.7	.680	70.7 70.7 70.2	.785 .805 .827	69.1 70.4 70.8	.910 .930 .952	65.4 68.1 69.7	1.035 1.055 1.077	63.5 65.5 67.7
1900 2000 2100	.475	60.2 59.0 58.0	.600 .625 .650	67.2 64.7 62.9	.725 .750 .775	69.5 68.3 66.9	.850 .900	70.8 70.0 69.5	.975 1.000 1.025	70.5 70.6 70.5	1.100 1.125 1.150	69.1 70.3 70.5
2300 2400	.552 .580 .610	57.2 56.1 55.4	.775 .705 .735	61.7 60.5 59.5	.802 .830 .860	66.0 64.8 63.6	.927 .955 .985	69.0 68.5 66.8	1.052 1.080 1.110	70.2 69.6 69.0	1.177 1.205 1.235	70.6 70.6 70.3
250c 2600 2800	.640 .672 .739	54.8 53.8 52.6	.765 .797 .864	59.0 57.6 56.2	.890 .922 .989	62.0 61.2 59.3	1.015	65.7 64.2 62.0	1.140 1.172 1.239	68.1 67.2 64.9	1.265 1.297 1.364	69.4 68.4 67.0
3000 3200 3400 3600			.935	54.9	1.060 1.138 1.221	57.2 56.2 55.0	1.185 1.263 1.346 1.435	60.3 58.6 57.4 56.7	1.310 1.388 1.471 1.560	62.6 60.9 59.3 58.2	1.435 1.513 1.596 1.685	65.1 63.0 60.9 59.8
						-	The same of the sa	-				1

Cotal Eff.

TOTAL EFFICIENCIES WITH NIAGARA CONOIDAL FANS (TYPE N) FOR VARIOUS OUTLET VELOCITIES AND TOTAL PRESSURES

2 1/5" Static 3.310 3.400 3.500 3.060 3.138 3.221 Total Press. 46.4 48.5 50.6 54.5 65.9 68.4 70.1 70.2 69.3 68.4 Cotal Eff. Stiffic 2" 2.160 2.180 2.202 2.225 2.250 2.275 2.330 2.330 2.360 2.390 2.422 2.489 2.560 2.638 2.721 Total Press. Cotal Eff. 48.9 51.2 53.5 55.9 58.0 60.0 62.1 64.0 65.5 1 34" Static 2.052 2.080 2.110 2.140 Total Press. .910 .930 .952 2.000 2.025 2.310 2.388 2.471 2.560 2.650 2.750 168 51.2 54.1 56.7 58.8 61.4 63.5 66.9 68.1 rotal Eff. 1 1/5" Static Total Press. .702 .725 .750 .775 802 830 860 Fotal Eff. 55.2 58.0 60.4 63.1 65.0 66.8 68.3 69.5 70.5 69.5 68.0 66.8 65.0 1 14" Static Total Press. .475 .500 .525 552 580 610 .640 .672 .739 .888 .971 67.3 68.5 70.0 70.5 Fotal Eff. 60.3 63.1 65.1 1" Static Total Press. .106 .122 .141 .160 .180 .202 3302 .390 .422 .489 .560 .638 .721 22200 23300 2400 2500 2800 3200 3400 800 800 2000 2000 2000 2000

Turbo-Conoidal Capacity Tables

For high speed, high efficiency fans suitable for direct connection to motors or turbines, see Turbo-Conoidal capacity tables on pages 278 to 319 inclusive. These fans have speeds for corresponding capacities and pressures which are nearly double those of the Niagara Conoidal of the same size. The dimensions of the housing are identical with those of the Niagara Conoidal. Complete and separate tables of capacities, speeds and horse-powers at various static pressures and outlet velocities are given for each size of single inlet fan as in the Niagara Conoidal tables. This enables the engineer to select a fan for a fixed direct connection speed and for any condition of static pressure and capacity.

It will be noted from the performance curves on page 320 that the pressure builds up rapidly with decreased capacity and increased resistance. In this respect it is in direct contrast with pressure capacity characteristic of the Niagara Conoidal.

For public building work where extreme quietness of operation is essential the following may be taken as conservative

conditions of operation of the Turbo-Conoidal fans:-

At 1 in. static pressure, 1600 outlet velocity. At 3/4 in. static pressure, 1800 outlet velocity.

At ½ in. static pressure, 2000 outlet velocity.

At 1/4 in. static pressure, 2200 outlet velocity.

For exhausting and for systems blowing through heaters, these velocities may be considerably increased.

For industrial work any desired outlet velocity may be used for static pressure up to 6 or 7 inches.

Double width fans with two inlets give double the capacities and horsepowers given in the tables.

NO. 21/2 TURBO-CONOIDAL FAN (TYPE T) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

					`			
ď.	H.P.	42.52.52	E. 55. 8.	.47 .51	.56 .61	.73 .79 .86	.93 1.00 1.08	1.16
1" S.	R.P.M.	1304 1324 1352	1380 1408 1440	1472 1508 1540	1576 1608 1644	1684 1724 1760	1796 1836 1876	1916 1956 1996
ď	H.P.	8 8 8 8 8	.35 .35	.39	55.56	.68 .74 .80	.87 1.01	1.09
7.8" S .	R. P. M.	1232 1256 1284	1316 1344 1376	1408 1444 1480	1516 1552 1588	1628 1668 1704	1744 1780 1820	1860 1904 1948
Ъ.	H.P.	.17 .20 .22	25 28 31	.35 .39 .43	.572	.62 .68 .74	25.89	1.02 1.10 1.18
34" S.	R. P. M.	1160 1188 1216	1248 1280 1312	1344 1380 1420	1456 1492 1532	1568 1608 1648	1688 1732 1772	1812 1852 1896
٦.	H.P.	.15	2,2,2,2	6 6 8 8 8	.43 .52	.62 .68 .68	.80 .87	.95 1.02 1.10
s, "S,	R. P. M.	1084 11112 1140	1176 1208 1244	1280 1316 1352	1392 1428 1468	1508 1548 1588	1632 1672 1712	1756 1800 1840
Ъ.	Н.Р.	.12	12; 12; 42;	27 30 45 45		.51 .56 .61	.80 .80	.87 .94 1.02
1½" S.	R. P. M.	996 1032 1064	1096 1132 1172	1208 1244 1284	1324 1364 1404	1444 1484 1528	1568 1608 1652	1700 1744 1788
ъ.	H.P.	01:12	.16 .18 .21	2,52 8,50 8,0 8,0 8,0 8,0 8,0 8,0 8,0 8,0 8,0 8,	337	.45 .50 .55	.61 .66 .73	88. 88. 89.
% S.	R. P. M.	908 944 980	1016 1052 1088	1128 1168 1208	1248 1288 1328	1372 1416 1460	1504 1548 1596	1640 1688 1732
۵.	H.P.	80. 11.	.13	.19	82.52.85 86.52.85	.40 44. 49.	.55	.808.
1½" S.	R. P. M.	804 840 876	916 956 1000	1040 1084 1124	1164 1208 1256	1300 1348 1392	1440 1484 1532	1576 1628 1676
	Add for Pres	.063 .076 .090	.106 .122 .141	.160	.225 .250 .275	3302	.422	.489
Cu. Ft. Min.	Capacity Air per	910 1000 1090	1190 1280 1370	1460 1550 1640	1730 1820 1910	2010 2100 2190	2270 2370 2460	2550 2640 2730
	Outlet Ve Ft. per	12000	1300 1400 1500	1600 1700 1800	1900 2000 2100	2200 2300 2400	2500 2600 2700	2800 2900 3000

NO. 21/2 TURBO-CONOIDAL FAN (TYPE T) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

	. 4	91.	326	1.39	.888	2.00	2.50
s. P.	1. H.P.					લંલંલ	લંલાં
3 15."	R. P. M.	2344	2364 2384 2404	2424 2444 2464	2488 2516 2544	2572 2600 2632	2664
S. P.	H. P.	26.	1.01 1.06 1.12	1.20 1.28 1.37	1.47 1.56 1.66	1.38	2.23
3, 8	R. P. M.	2188	2208 2232 2252	2272 2296 2320	2344 2372 2400	2432 2464 2496	2528 2560
S. P.	Н. Р.	17:	% 8 8 6 8	1.02	1.27	1.54 1.64 1.74	1.85
2 1/2"	R. P. M.	1984 2000 2020	2040 2064 2088	2112 2140 2168	2196 2224 2256	2288 2320 2352	2384 2420 2459
S. P.	Н. Р.	.54 .62	.67 .73	86. 99. 99.	1.07	1.31	1.59
2, 8	R.P.M.	1796 1816 1840	1860 1884 1912	1940 1968 2000	2032 2060 2092	2124 2160 2196	2232 2268 2300
S. P.	Н. Р.	6.4.8	83. 83. 83.	.68 .74 .80	.86 .93 1.00	1.08 1.16 1.25	1.34
- 7%	R. P. M.	1592 1612 1636	1664 1692 1720	1752 1784 1816	1848 1884 1916	1952 1988 2024	2060 2096 2136
S. G.	Н. Р.	8; 4; 14:	.45 .50 .54	.59	.76 .88 .90	.97 1.05 1.13	1.21
1%1	R.P.M.	1472 1500 1528	1556 1588 1616	1644 1680 1716	1752 1788 1824	1860 1896 1936	1972 2012 2048
latoT .88	rol bbA estq	.090 .106 .122	.141 .160 .180	.202 .225 .250	.330 .330 .330	.380	.455 .489 .525
Cu. Ft. Min.	Capacity Air per	1090 1190 1280	1370 1460 1550	1640 1730 1820	1910 2010 2100	2190 2270 2370	2460 2550 2640
	Outlet V Ft. per	1200	1500 1600 1700	1800 1900 2000	2100 2200 2300	2400 2500 2600	2700 2800 2900

NO. 3 TURBO-CONOIDAL FAN (TYPE T) CAPACITIES AND STATIC PRESSURES

	٦. ا	H.P.	.36 .40	.50 .50 .55	.61 .73 .73	88.6	1.05 1.14 1.23	1.34 1.44 1.55	1.67 1.79 1.93
	1" S.	R.P.M.	1087 1103 1127	1150 1173 1200	1227 1257 1283	1313 1340 1370	1403 1437 1467	1497 1530 1563	1597 1630 1663
	Э.	H.P.	822.86	04: 34: 05:	.55 .61 .67	.7. 18: 89	.98 1.06 1.15	1.25 1.35 1.46	1.57 1.69 1.82
	7/s" S.	R.P.M.	1027 1047 1070	1097 1120 1147	1173 1203 1233	1263 1293 1323	1357 1390 1420	1453 1483 1517	1550 1587 1623
	٥.	H.P.	52.25	.36 .40 .45	.55	.68	.90 .98 1.06	1.16 1.26 1.36	1.47 1.58 1.70
EK	· 34" S.	R.P.M.	967 990 1013	1040 1067 1093	1120 1150 1183	1213 1243 1277	1307 1340 1373	1443 1443 1477	1510 1543 1580
BAROMETER	٩.	H.P.	12,2,2	£. 64.	24. 03. 33.	.61 .68 .75	8.8.8.9. 8.8.9.8.9.	1.06 1.16 1.25	1.36 1.47 1.59
	5 %" S.	R.P.M.	903 927 950	980 1007 1037	1067 1097 1127	1160 1190 1223	1257 1290 1323	1360 1393 1427	1463 1500 1533
INCHES	۳.	H.P.	.18 .21 .24	72.65	.39	.54 .60 .67		1.05	1.25 1.36 1.47
29.92	1/2" S.	R.P.M.	830 860 887	913 943 977	1006 1037 1070	1103 1137 1170	1203 1237 1273	1307 1340 1377	1417 1453 1490
F. AND		H.P.	.15	2,2,2,2	£ 8 8 4	.53 .59	.65 .72 .79	.96 1.05	1.15 1.26 1.37
AI 70°	3/4" S.	R.P.M.	757 787 817	847 877 907	940 973 1007	1040 1073 1107	1143 1180 1217	1253 1290 1330	1367 1407 1443
	-	H.P.	.13	.18 124	36	.45 .51	.64	.78 .96	1.05 1.15 1.26
	½" S.	R.P.M.	670 700 730	764 797 833	867 903 937	970 1007 1047	1083 1123 1160	1200 1237 1277	1313 1357 1397
		roi bbA esarq	.063 .076 .090	.106	.160	.225 .250 .275	.302 .330 .360	.422	.489 .525 .560
		Capacity Air per	1310 1440 1580	1710 1840 1970	2100 2230 2360	2490 2630 2760	2890 3020 3150	3280 3410 3540	3670 3810 3940
		Outlet Ve Ft. per	1000	1300 1400 1500	1600 1700 1800	1900 2000 2100	2200 2300 2400	2500 2600 2700	2800 2900 3000

NO. 3 TURBO-CONOIDAL FAN (TYPE T) CAPACITIES AND STATIC PRESSURES

	S. P.	Н. Р.	1.67	1.75 1.82 1.89	1.99 2.12 2.26	2.40 2.55 2.71	2.88 3.05 3.23	3.41 3.60 3.79	3.99 4.43 4.90
	3 1/2" S	R.P.M.	1953	1970 1987 2003	2020 2037 2053	2073 2097 2120	2143 2167 2193	2220 2247 2273	2353 2407
	Ъ.	H. P.	1.39	1.45 1.52 1.61	1.72 1.85 1.98	2.11 2.25 2.39	2.55 2.70 2.86	3.03 3.21 3.39	3.57 3.99 4.43
	3" &	R.P.M.	1823	1840 1860 1877	1893 1913 1933	1953 1977 2000	2027 2053 2080	2107 2133 2160	2187 2247 2303
	S. P.	Н. Р.	1.02	1.18 1.27 1.36	1.48 1.59 1.70	1.82 1.95 2.07	2.21 2.36 2.50	2.82 2.99	3.17 3.55 3.96
NEIEK	21/2"	R. P. M.	1653 1667 1683	1700 1720 1740	1760 1783 1807	1830 1853 1880	1907 1933 1960	1987 2017 2043.	2073 2130 2193
F. AND 29:32 INCHES BAROMETER	S. P.	Н. Р.	828.8	.96 1.05 1.14	1.23	1.54 1.65 1.76	1.88 2.02 2.15	2.44	3.51
INCIDES	2, 8	R.P.M.	1497 1513 1533	1550 1570 1593	1617 1640 1667	1693 1717 1743	1770 1800 1830	1860 1890 1917	1947 2010 2073
26.75	S. P.	Н. Р.	.65 .69	.76 .83 .90	.98 1.07 1.15	1.25 1.34 1.45	1.56 1.68 1.80	1.93 2.06 2.21	2.35 2.67 3.02
L. AIN	13%"	R.P.M.	1327 1343 1363	1387 1410 1433	1460 1487 1513	1540 1570 1597	1627 1657 1687	1717 1747 1780	1813 1877 1940
A1 /0	S. P.	Н. Р.	.54 .55	.725 .785	.85 10.1	1.10	1.39 1.51 1.62	1.74 1.87 2.01	2.14 2.43 2.77
	11%"	R.P.M.	1227 1250 1273	1297 1323 1347	1370 1400 1430	1460 1490 1520	1550 1580 1613	1643 1677 1707	1740 1807 1870
		Add for	.090	141 160 180	202 225 250 250	.275 .302 .330	.360 .390 .422	.455 .489 .525	.560
	Cu. Ft. Min.	Capacity Air per	1580 1710 1840	1970 2100 2230	2360 2490 2630	2760 2890 3020	3150 3280 3410	3540 3670 3810	3940 4200 4460
		Outlet Vo Ft. per	1200	1500 1600 1700	1900	2100 2200 2300	2500 2500 2600	2700 2800 2900	3000 3200 3400

NO. 31/2 TURBO-CONOIDAL FAN (TYPE T) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29,92 INCHES BAROMETER

1	-G:	46 49 55	.61 .68 .75	.83 .00	1.10	555	1.82 1.96 2.12	2.28 2.44 2.62
S. P.	H H							
-	R.P.M.	932 946 966	986 1006 1029	1052 1077 1100	1126 1149 1174	1203 1232 1257	1283 1312 1340	1369 1397 1426
S. P.	H. P.	88. 44. 49.	.55 .61 .68	92 83	1.01	1.33	1.70	2.13 2.30 2.47
1/8"	R.P.M.	880 897 917	940 960 983	1006 1032 1057	1083 1109 1134	1163 1192 1217	1246 1272 1300	1329 1360 1392
S. P.	Н. Р.	48.6. 43.8.	.49	.68	.92 1.02 1.11	1.22	1.58	2.00 2.16 2.31
34"	R.P.M.	829 849 869	892 914 937	960 986 1014	1040 1065 1094	1120 1149 1177	1206 1237 1266	1294 1323 1354
S. P.	Н. Р.	22.E. & & & & & & & & & & & & & & & & & &	84. 84. 45.	.61 .68 .75	.83 .92 1.01	1.11	1.45	1.85 2.00 2.16
18/2	R. P. M.	774 794 814	840 863 889	914 940 966	994 1020 1049	1077 1106 1134	1166 1194 1223	1254 1286 1314
Р.	Н. Р.	42.2.E.	.37 .42 .47	.53 .60 .67	.74 .82 .91	1.00	1.31 1.43 1.56	1.70 1.84 2.00
15." S.	R.P.M.	712 737 760	783 809 837	863 889 917	946 974 1003	1032 1060 1092	1120 1149 1180	1214 1246 1277
.P.	H. P.	.20 .23 .27	.35 .40	.46 .51 .58	.65 .72 .80	88. 1.08 1.08	1.19 1.30 1.43	1.57
% %	R. P. M.	649 674 700	726 752 777	806 834 863	892 920 949	980 1012 1043	1074 1106 1140	1172 1206 1237
S. P.	Н. Р.	.15	22.23	86.4.4. 8.6.4.4.	.55 .62 .69	.96 .96	1.07 1.18 1.31	1.43 1.56 1.71
34" 8	R.P.M.	574 600 626	654 683 714	743 774 803	831 863 897	929 963 994	1029 1060 1094	1126 1163 1197
	Add for	.063 .076 .090	.106	.160	225 250 275	3302	.390 .422 .455	.489
Cu. Ft. Min.	Capacity Air per	1790 1970 2140	2320 2500 2680	2860 3040 3220	3390 3570 3750	3930 4110 4290	4470 4650 4820	5000 5180 5360
	Outlet V Ft. per	1000	1300 1400 1500	1500	1900 2000 2100	2200 2300 2400	2500 2600 2700	2800 2900 3000

NO. 31/4 TURBO-CONOIDAL FAN (TYPE T) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

۵.	Н. Р.	2.28	2.38 2.48 2.58	2.71 2.88 3.07	3.27 3.47 3.69	3.92 4.15 4.39	4.64 4.90 5.16	5.43 6.03 6.68
3 1/2" S.	R.P.M.	1674	1689 1703 1717	1732 1746 1760	1777 1797 1817	1837 1857 1880	1903 1926 1949	1969 2017 2063
ď.	Н. Р.	1.90	1.98 2.07 2.20	2.34 2.52 2.69	2.88 3.07 3.26	3.47 3.68 3.90	4.13	4.86 5.43 6.03
3″ S.	R. P. M.	1563	1577 1594 1609	1623 1640 1657	1674 1695 1714	1737 1760 1783	1806 1829 1852	1874 1926 1975
e.	Н. Р.	1.39 1.45 1.53	1.61	2.01 2.16 2.31	2.48 2.65 2.82	3.01 3.21 3.41	3.62 3.84 4.07	4.31 4.84 5.39
23/2"	R. P. M.	1417 1429 1443	1457 1474 1492	1509 1529 1549	1569 1589 1612	1634 1657 1680	1703 1729 1752	1777 1826 1880
ď.	Н. Р.	1.07	1.31 1.43 1.55	1.68 1.81 1.94	2.24 2.40	2.57 2.74 2.93	3.12 3.32 3.54	4.26
, % %	R. P. M.	1283 1297 1314	1329 1346 1366	1386 1406 1429	1452 1472 1494	1517 1543 1569	1595 1620 1643	1669 1723 1777
s, P	н. Р.	.78 .94	1.03 1.13 1.23	1.33 1.45 1.57	1.70 1.83 1.97	2.12 2.28 2.45	2.62 2.81 3.00	3.20 3.64 4.10
1 1/2"	R.P.M.	1137 1152 1169	1189 1209 1229	1252 1274 1297	1320 1346 1369	1394 1420 1446	1472 1497 1526	1555 1609 1663
S. P.	Н. Р.	.438	.98	1.16	1.50 1.62 1.76	1.89 2.05 2.21	2.37 2.55 2.73	2.92 3.31 3.77
11%"	R.P.M.	1052 1072 1092	1112 1134 1154	1174 1200 1226	1252 1277 1303	1329 1355 1383	1409 1437 1463	1492 1549 1603
or Total		.106	.141160	.202 .225 .250	.275 .302 .330	.360	.455 .489 .525	.560
ty Cu. Pt. er Min.	isapasi g niA	2140 2320 2500	2680 2860 3040	3220 3390 3570	3750 3930 4110	4290 4470 4650	. 4820 5000 5180	5360 5720 6070
Velocity er Min.	Outlet Ft. p	1200 1300 1400	1500	1900	2200	2400 2500 2600	2800 2900	3000 3200 3400

NO. 4 TURBO-CONOIDAL FAN (TYPE T) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

P.	H.P.	.63 .63 .71	88.86	1.08 1.19 1.31	1.43 1.56 1.71	$\frac{1.86}{2.02}$	2.37 2.56 2.76	2.97 3.19 3.43
1″ S.	R.P.M.	815 828 845	863 880 900	920 943 963	985 1005 1028	1053 1078 1100	1123 1148 1173	1198 1223 1248
٥.	H.P.	.50	.72 .80 .89	1.09	1.32 1.44 1.59	1.74 1.88 2.05	2.22 2.40 2.59	3.22
7,8 S.	R.P.M.	770 785 803	823 840 860	880 903 925	948 970 993	1018 1043 1065	1090 1113 1138	1163 1190 1218
Р.	Н. Р.	.44 .50	.64 .71 .80	.89 .98 1.09	1.20 1.33 1.46	1.59 1.74 1.89	2.06 2.23 2.42	2.61 2.82 3.01
34" S.	R.P.M.	725 743 760	780 800 820	840 863 888	910 932 958	980 1005 1030	1055 1083 1108	1133 1158 1185
9.	Н. Р.	.38 .43 .49	.56 .63 .71	67. 88. 89.	1.09 1.20 1.32	1.45 1.59 1.74	1.89 2.05 2.23	2.42 2.61 2.82
, % S	R.P.M.	678 695 713	735 755 778	800 822 845	870 893 918	943 968 993	1020 1045 1070	1098 1125 1150
P.	H.P.		.48 .62 .62	.69 .78 .87	.97 1.07 1.19	1.31 1.43 1.57	1.71 1.87 2.03	2.23 2.41 2.61
1/2" S.	R.P.M.	623 645 665	685 708 733	755 778 802	828 853 878	903 928 955	980 1005 1032	1062 1090 1118
ъ.	Н. Р.	35.30	.46 .52	.59	.84 .94 1.04	1.15	1.55 1.70 1.87	2.05
%" S:	R.P.M.	568 590 613	635 658 680	705 730 755	780 805 830	858 885 912	940 968 998	1025 1055 1082
Ъ.	H.P.	92,52	.32 .37 .43	.49 .56 .63	17:	1.01 1.13 1.26	1.39 1.55 1.71	1.87 2.04 2.23
14" S.	R.P.M.	503 525 548	573 598 625	650 678 703	728 755 785	813 843 870	900 928 958	985 1018 1048
	Add for Pres	.063 .076 .090	.106	.160	.225 .250 .275	.302 .330 .360	.390 .422 .455	.489
Cu. Ft. Min.	Capacity Air per	2330 2570 2800	3030 3270 3500	3760 3970 4200	4430 4670 4900	5130 5370 5660	. 5830 6070 6300	6530 6770 7000
	Outlet Vor Ft. per	1200	1300 1400 1500	1600 1700 1800	1900 2000 2100	2200 2300 2400	2500 2600 2700	2800 2900 3000

NO. 4 TURBO-CONDIDAL FAN (TYPE T) CAPACITIES AND STATIC PRESSURES

		- d	go	-10°	299	F40	গাল্প	902	070
	S. P.	±	2.98	3.23	3.55 3.76 4.01	4.57 4.54 4.82	5.12 5.43	6.06 6.40 6.75	7.10
	31/2" 5	R. P. M.	1465	1478 1490 1503	1515 1528 1540	1555 1573 1590	1608 1625 1645	1665 1685 1705	1725 1765 1805
	а. -	н. Р.	2.47	2.58	3.06 3.29 3.51	3.76 4.00 4.26	4.53 4.80 5.09	5.39 5.71 6.03	6.35 7.09 7.87
	3" %	R. P. M.	1368	1380 1395 1408	1420 1435 1450	1465 1483 1500	1520 1540 1560	1580 1600 1620	1640 1685 1728
	S. P.	H. P.	1.81 1.90 1.99	2.11 2.26 2.43	2.62 3.02 3.02	3.24 3.46 3.69	3.94 4.19 4.45	4.73 5.02 5.31	5.63 6.32 7.04
IEIEK	2 1/3"	R.P.M.	1240 1250 1263	1275 1290 1305	1320 1338 1355	1373 1390 1410	1430 1450 1470	1490 1513 1533	1555 1598 1645
DAKON	S. P.	Н. Р.	1.39	1.71 1.86 2.02	2.19 2.36 2.54	2.73 2.93 3.14	3.53	4.34 4.62	4.93 5.56 6.23
29:92 INCHES BAROMETER	2,8	R.P.M.	1123 1135 1150	1163 1178 1195	1213 1230 1250	1270 1288 1308	1328 1350 1373	1395 1418 1438	1460 1508 1555
	s. P.	Н. Р.	1.01	1.35	1.74 1.89 2.05	2.21 2.39 2.57	2.77 2.98 3.19	3.42 3.67 3.92	4.75
r. AIND	.541	R.P.M.	995 1008 1023	1040 1058 1075	1095 1115 1135	1155 1178 1198	1220 1243 1265	1288 1310 1335	1360 1408 1455
AI /0' F.	S. P.	Н. Р.	.86 .95 1.05	1.16 1.27 1.39	1.52 1.65 1.80	1.96 2.12 2.29	2.47 2.68 2.88	3.10 3.33 3.56	3.81 4.32 4.92
	111/4"	R.P.M.	920 938 955	973 993 1010	1028 1050 1073	1095 1118 1140	1163 1185 1210	1233 1258 1280	1305 1355 1403
		rof bbA earq	.106	.141 .160 .180	.202 .225 .250	.302 .330 .330	.360 .390 .422	.455 .489 .525	.560
	Cu. Ft. Min.	Capacity Air per	2800 3030 3270	3500 3730 3970	4430 4670	4900 5130 5370	5660 5830 6070	6300 6530 6770	7000 7460 7930
	elocity Min.	Outlet Vo	1200 1300 1400	1500 1600 1700	1800 1900 2000	2100 2200 2300	2400 2500 2600	2700 2800 2900	3000 3200 3400

NO. 41/2 TURBO-CONOIDAL FAN (TYPE T) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

- A	H.P.	2.08: 09:	1.01	1.37	1.81 1.98 2.16	2.36 2.56 2.78	3.24 3.50	3.76 4.01 4.33
1″ S.	R. P. M.	725 736 751	767 782 800	838 856 856	876 893 913	936 958 978	998 1020 1042	1064 1087 1109
۳.	H.P.	.63	.90 1.01 1.12	1.25 1.38 1.52	1.67 1.83 2.01	2.20 2.38 2.59	2.81 3.03 3.28	3.53 3.79 4.08
7/8" S.	R. P. M.	685 698 713	731 747 765	782 802 822	842 862 882	904 927 947	969 989 1011	1033 1058 1082
	H.P.	.56	.81 .90 1.01	1.12	1.52 1.68 1.84	2.02 2.20 2.39	2.60 2.83 3.06	3.30 3.56 3.82
34" S.	R.P.M.	645 660 676	693 711 729	747 767 789	809 829 851	871 893 916	938 962 985	1007 1029 1053
Q.	H.P.	.48 .63 .63	.71 .79 .89	1.00 1.12 1.24	1.38 1.52 1.68	1.83 2.01 2.20	2.39 2.60 2.82	3.06 3.31 3.56
%" &	R.P.M.	602 618 633	653 671 691	711 731 751	773 793 816	838 860 882	907 929 951	976 1000 1022
P.	H.P.	.46 53	.69 .69 .78	.88 .98 1.10	1.22 1.36 1.50	1.65 1.81 1.99	2.18 2.37 2.57	2.82 3.05 3.30
3/2" S.	R.P.M.	553 573 591	609 629 651	671 691 713	736 758 780	802 825 849	871 893 918	945 969 993
Р.	H.P.	88. 84.	15: 86: 66:	.75 .85 .96	1.07 1.19 1.32	1.46 1.62 1.78	1.97 2.15 2.36	2.59 2.83 3.09
%" S	R.P.M.	505 525 545	565 585 605	627 649 671	693 716 738	762 787 811	836 860 887	911 938 962
P.	H.P.	35.	4. 4. 4. 4. 4. 4. 4.	.62 .70 .80	.90 1.02 1.15	1.28 1.43 1.59	$\frac{1.76}{1.96}$ $\frac{2.16}{2.16}$	2.37 2.58 2.83
½" S.	R.P.M.	447 467 487	509 531 556	578 602 625	647 671 698	722 749 773	800 825 851	876 905 931
	Tol bbA Pres	.063 .090	.106	.160	.225 .250 .275	302	.390 .422 .455	.525
Cu. Ft. Min.	Capacity Air per	2950 3250 3540	3840 4130 4430	4720 5020 5310	5610 5910 6200	6500 6790 7090	7380 7680 7970	8270 8560 8860
elocity Min.	Outlet Ve Ft. per	1000	1300 1400 1500	1600 1700 1800	1900 2000 2100	2200 2300 2400	2500 2600 2700	2800 2900 3000

NO. 4% TURBO-CONOIDAL FAN (TYPE T) CAPACITIES AND STATIC PRESSURES

S. P.	H.P.	3.77	3.94 4.09 4.26	4.49 4.76 5.07	5.41 5.74 6.10	6.48 6.87 7.26	7.67 8.10 8.54	8.98 9.96 11.0
3 1/2"	R.P.M.	1302	1313 1323 1336	1347 1358 1369	1382 1398 1413	1429 1445 1462	1480 1498 1516	1531 1569 1605
ni.	Н. Р.	3,18	3.26 3.42 3.63	3.87 4.16 4.45	4.75 5.07 5.39	5.73 6.07 6.44	6.83 7.23 7.64	8.04 8.97 9.96
3, 8,	R.P.M.	1216	1227 1240 1251	1262 1274 1289	1302 1318 1333	1351 1369 1387	1404 1422 1440	1458 1498 1536
e.	Н. Р.	2.29 2.40 2.52	2.86	3.32 3.57 3.82	4.10 4.38 4.66	4.98 5.31 5.63	5.98 6.35 6.72	7.13 8.00 8.91
23%"	R.P.M.	1102 1111 1122	1133 1147 1160	1173 1189 1205	1220 1236 1253	1271 1289 1308	1325 1345 1362	1382 1420 1462
ď.	Н. Р.	1.76 1.86 2.00	2.17 2.36 2.56	2.77 2.98 3.21	3.45	4.24 4.53 4.84	5.16 5.49 5.84	6.24 7.04 7.89
2, S.	R. P. M.	998 1009 1022	1033 1047 1062	1078 1093 1111	1129 1144 1162	1180 1200 1220	1240 1260 1278	1298 1340 1382
٠. م.	Н. Р.	1.28	1.71 1.86 2.03	2.20 2.40 2.59	2.80 3.02 3.25	3.50	4.33	5.30 6.01 6.78
1 ½" S. P.	R.P.M.	884 896 909	924 940 956	973 991 1009	1027 1047 1065	1085 1105 1125	1144 1165 1187	1209 1251 1253
ď.	H. P.	1.08	1.47 1.61 1.76	1.92 2.09 2.28	2.47 2.90 2.90	3.39 3.65	3.92 4.21 4.51	5.47
1½″S.	R.P.M.	818 833 849	864 898 898	913 933 953	973 993 1013	1033 1053 1076	1096 1118 1138	1160 1205 1247
intoTas	of bbA 19	.090 .106 .122	.141 .160 .180	.202 .225 .250	.275 .302 .330	.360 .422	.455	.560
y Cu. Pt. r Min.	Sapacit of TiA	3540 3840 4130	4430 4720 5020	5310 5610 5910	6200 6500 6790	7090 7380 7680	7970 8270 8560	8860 9450 10040
Velocity r Min.	Pt. pe	300	500 500 700	000	2200	400 500 600	200	3000

NO. 5 TURBO-CONOIDAL FAN (TYPE T) CAPACITIES AND STATIC PRESSURES

	H.P.	.94 .99	1.24 1.38 1.53	36 36 36	24 14 37	191	1202	2002
S. P.		44.7		1.69	2.24 2.44 2.67	2.91 3.16 3.43	3.71 4.00 4.32	4.65
-	R. P. M.	652 662 676	690 704 720	736 754 770	788 804 822	842 862 880	898 918 938	958 978 998
. a.	H.P.	.78 .89 1.00	1.12	1.54 1.70 1.87	2.26 2.26 2.48	2.71 2.94 3.20	3.47 3.74 4.05	4.36 4.68 5.04
. "%"	R. P. M.	616 628 642	658 672 688	704 722 740	758 776 794	814 834 852	872 890 910	930 952 974
<u>-</u>	H.P.	.69 .89 .89	1.00	1.38 1.54 1.70	1.88 2.08 2.27	2.49 2.72 2.95	3.22 3.49 3.78	4.08 4.40 4.72
% ***	R. P. M.	580 594 608	624 640 656	672 690 710	728 746 766	784 804 824	844 866 886	906 926 948
. P.	Н.Р.	.59 .68 .77	.87 .98 1.10	1.24 1.38 1.53	1.70 1.88 2.07	2.26 2.48 2.71	2.95 3.21 3.48	3.79 4.08 4.40
.5 % S.	R. P. M.	542 556 570	588 604 622	640 658 676	696 714 734	754 774 794	816 836 856	878 900 920
٠.	H.P.	.50	.75 .96	1.08 1.21 1.36	1.51 1.68 1.85	2.04 2.23 2.45	2.68 2.93 3.18	3.48 3.76 4.08
1/2" S.	R. P. M.	498 516 532	548 566 586	604 622 642	662 682 702	722 742 764	784 804 826	850 872 894
P.	Н.Р.	.40 .47 .54	.63 .72 .82	.93 1.05 1.18	1.32 1.47 1.63	1.80 2.00 2.20	2.43 2.66 2.91	3.20 3.50 3.81
% ,% &	R. P. M.	454 472 490	508 526 544	564 584 604	624 644 664	686 708 730	752 774 798	820 844 866
4	H.P.	.36 .43	.50 .58 .67	.87 .89	1.12 1.26 1.42	1.58	2.18 2.41 2.66	2.93 3.19 3.49
1/4" S.	R. P.M.	402 420 438	458 478 500	520 542 562	582 604 628	650 674 696	720 742 766	788 814 838
	roi bbA esarq	.063 .076 .090	.106	.160	.225 .250 .275	.302 .330 .360	.390 .422 .455	.489
Cu. Ft. Min.	Capacity Air per	3650 4010 4380	4740 5100 5470	5830 6200 6560	6930 7290 7660	8020 8380 8750	9110 9480 9840	10200 10570 10940
	Outlet Ve Ft. per	1000	1300 1400 1500	1600 1700 1800	1900 2000 2100	2200 2300 2400	2500 2600 2700	2800 2900 3000

FAN (TYPE T) CAPACITIES AND STATIC PRESSURES INCHES BAROMETER F. AND 29.92 TURBO-CONDIDAL 200 AT

. 0 2

9.46 10.0 10.5 11.1 S. P. R. P. M. H. 3 1/2" 212 222 232 182 192 202 244 258 272 286 300 316 332 348 364 1378 1412 1444 ď. 3.87 4 Ė υ'n R. P. M. 23 216 232 248 104 116 126 136 148 160 172 186 200 $\frac{312}{348}$ 264 280 296 H. P. 2.83 53 4.10 4.41 4.72 6.15 6.55 6.96 7.397.848.30 5.06 5.41 5.76 4 ဟုံ R. P. M. 2 1/2" 020 098 1112 1128 056 070 084 ٦. 4 ÷ ú R. P. M. 5 930 942 956 030 062 116 134 150 168 206 244 H. P. 1.58 2.30 2.72 3.46 3.73 4.01 4.33 4.65 4.99 ď ဖာ R. P. M. 13% 332 346 360 876 892 908 924 942 958 976 994 012 030 <u>م</u> 1.81 1.99 2.18 4.84 5.20 5.57 49.65 2.37 2.58 2.81 3.06 ٦ ź ග් 12 R. P. M. 986 Press. 141 160 180 202 275 302 330 360 390 422 455 489 525 560 638 721 IRIOT TOT bbA Capacity Cu. Pt. Air per Min. 6560 6930 7290 7660 8020 8380 9840 0200 0570 Ft. per Min. 2300 2300 2300 2300 2500 2500 Outlet Velocity

NO. 5% TURBO-CONOIDAL FAN (TYPE T) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

	ا نه	403	22.20	1255	23	2224	22.45	4252
S. P.	Н.Р.	1.14	1.50 1.67 1.85	2.25	2.95	3.52	4.49	5.62 6.02 6.47
1, 8	R.P.M.	593 602 615	627 640 655	669 686 700	716 731 747	766 784 800	816 835 853	871 889 907
Ъ.	H.P.	.95 1.08 1.21	1.36 1.51 1.68	1.86 2.05 2.26	2.49 2.73 3.00	3.28	4.20 4.53 4.90	5.27 5.67 6.10
.8″ S	R.P.M.	560 571 584	598 611 626	640 656 673	689 706 722	740 758 775	793 809 827	846 866 886
-G	н.Р.	.83 .95 1.07	1.20 1.35 1.50	1.67 1.86 2.06	2.28 2.51 2.75	3.01 3.29 3.57	3.89 4.22 4.57	4.93 5.32 5.71
84" S.	R.P.M.	527 540 553	567 582 596	611 627 646	662 678 696	713 731 749	767 787 806	824 842 862
Ъ.	H.P.	.71 .82 .93	1.05 1.19 1.34	1.50 1.67 1.86	2.05 2.27 2.50	2.74 3.00 3.28	3.57 3.88 4.21	4.58 4.94 5.32
%	R.P.M.	493 506 518	535 549 566	582 598 615	633 649 667	686 704 722	742 760 778	798 818 836
٩.	Н.Р.	.60 .69 .79	.90 1.03 1.16	1.31 1.47 1.64	1.83 2.03 2.24	2.47 2.70 2.97	3.24 3.54 3.85	4.21 4.55 4.93
1/2" S.	R.P.M.	453 469 484	498 515 533	549 566 584	602 620 638	656 675 695	713 731 751	773 793 813
٠.	H.P.	.49 .56	.76 .87 .99	1.12 1.27 1.43	1.59	2.18 2.42 2.66	2.94 3.21 3.53	3.87 4.23 4.61
% ,**	R.P.M.	413 429 446	462 478 495	513 531 549	567 585 604	624 644 664	684 704 726	745 767 . 787
. P.	H.P.	.37 .44 .52	.61 .70 .81	.93 1.05 1.19	1.35 1.53 1.71	1.91 2.14 2.37	2.64 3.22	3.54 3.86 4.22
1. S.	R.P.M.	366 3982 398	416 435 455	473 493 511	529 549 571	591 613 633	655 675 697	716 740 762
IstoT .8	Add for Press	.063 .090	.106	.160	.225 .250 .275	3302	.422 .455	.489
Cu. Pt. Min.	Capacity of Air per	4410 4850 5290	5730 6170 6620	7060 7500 7940	8380 8820 9260	9700 10140 10590	11030 11470 11910	12350 12790 13230
elocity Min.	Outlet Ver	1000	1300 1400 1500	1600 1700 1800	1900 2000 2100	2200 2300 2400	2500 2600 2700	2800 2900 3000

NO. 51/4 TURBO-CONOIDAL FAN (TYPE T) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

S. P.	H. P.	5.63	5.89 6.11 6.36	6.70 7.11 7.58	8.08 8.58 9.11	9.68 10.3 10.9	11.5 12.1 12.8	13.4 14.9 16.5
31/2"	R. P. M.	1066	1075 1083 1093	1102	1131 1144 1156	1169 1182 1197	1211 1226 1240	1253 1284 1313
e.	H. P.	4.68	4.88 5.11 5.43	5.78 6.21 6.64	7.10	8.56 9.08 9.62	10.2	12.0 13.4 14.9
3, 8,	R. P. M.	982	1004 1015 1024	1034 1044 1055	1066 1078 1091	1106 1120 1135	1149 · 1164 1178	1193 1226 1257
S. P.	Н. Р.	3.42	3.98 4.27 4.58	4.96 5.33 5.71	6.12 6.54 6.97	7.44 7.93 8.42	8.94 9.48 10.1	10.7 12.0 13.3
2 1/5"	R. P. M.	905 909 918	927 938 949	960 973 986	998 1011 1026	1040 1055 1069	1084 11100 11115	1131 1162 1196
S. P.	н. Р.	2.63 2.77 2.99	3.24 3.52 3.82	4.14	5.16 5.53 5.93	6.33	7.72 8.20 8.73	9.32 10.5 11.8
2, 8	R. P. M.	816 826 836	846 856 869	882 895 909	924 936 951	966 982 998	1015 1031 1045	1062 1097 1131
S. P.	Н. Р.	1.91 2.17 2.31	2.55 2.78 3.03	3.29	4.18 4.51 4.86	5.23 5.63 6.04	6.93	7.91 8.99 10.1
1 1/2"	R. P. M.	724 733 744	756 769 782	796 811 826	840 856 871	887 904 920	936 953 971	989 1024 1058
S. P.	Н. Р.	1.62 1.80 1.99	2.19 2.41 2.63	2.87 3.13 3.40	3.70 4.01 4.33	4.68 5.07 5.45	5.85 6.29 6.74	7.20 8.17 9.29
13%	R. P. M.	669 682 695	707 722 735	747 764 780	796 813 829	846 862 880	896 915 931	949 986 1020
latoT	rol bbA erq	.090 .106 .122	.141 .160 .180	.202 .225 .250	.275 .302 .330	.390	.455	.560
Cu. Ft. Min.	Capacity Air per	5290 5730 6170	6620 7060 7500	7940 8380 8820	9260 9700 10140	10590 11030 11470	11910 12350 12790	13230 14110 15000
elocity Min.	Outlet V Ft. per	1200	1500 1600 1700	1900	2100 2200 2300	2400 2500 2600	2700 2800 2900	3000 3200 3400

NO. 6 TURBO-CONOIDAL FAN (TYPE T) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

	ا نه ا		000	က္ပတ္ဆက္	22 51 84	ထက္ခဏ	4.9.1	92-1
Р.	H.P.	1.60	1.79	2.43 2.68 2.93	00 00 00 01 10 00	4.19 4.55 4.93	5.34 5.76 6.21	6.69 7.17 7.71
1" S.	R. P. M.	563	575 587 600	613 628 642	657 670 685	702 718 733	748 765 782	798 815 832
<u>a.</u>	H.P.	1.13 1.28 1.44	$\frac{1.61}{1.80}$ $\frac{2.00}{2.00}$	2.22 2.45 2.69	2.97 3.25 3.57	3.90 4.23 4.61	5.00 5.39 5.83	6.27 6.74 7.25
78" 8.	R.P.M.	513 523 535	548 560 573	587 602 617	632 647 662	678 695 710	727 742 758	775 793 812
<u>a.</u>	H.P.	.99 1.13 1.28	1.43 1.60 1.79	1.99 2.22 2.45	2.71 2.99 3.27	3.58 6.91 4.25	4.63 5.03 5.44	5.87 6.34 6.80
%" S.	R.P.M.	483 495 507	520 533 547	560 575 592	622 622 638	653 670 687	703 722 738	755 772 790
٠ <u>.</u>	H.P.	.85 .98 1.11	1.25 1.41 1.59	1.78 1.98 2.21	2.45 2.70 2.98	3.26 3.58 3.91	4.25 4.62 5.01	5.45 5.88 6.34
\$3 % 	R.P.M.	452 463 475	490 503 518	548 563	580 595 612	628 645 662	680 697 713	732 750 767
Р.	H.P.	.71 .82 .94	1.07 1.23 1.38	1.56 1.75 1.96	2.17 2.41 2.67	2.94 3.22 3.53	3.85 4.21 4.58	5.01 5.42 5.87
1/2" S.	R.P.M.	415 430 443	457 472 488	503 518 535	552 562 585	602 618 637	653 670 688	708 727 745
۳.	H.P.	.58	.90 1.03 1.18	1.34 1.51 1.70	1.89 2.12 2.34	2.59	3.50 3.82 4.20	4.61 5.04 5.49
\$ **	R.P.M.	378 393 408	423 438 453	470 487 503	520 537 553	572 590 608	627 645 665	683 703 722
-d-	H.P.	0.44 0.52 0.62	0.72 0.84 0.96	1.10	1.61 1.82 2.04	2.28 2.55 2.82	3.14	4.21 4.59 5.02
34" S.	R.P.M.	335 350 365	382 398 417	433 452 468	485 503 523	542 562 580	600 618 638	657 678 698
	Add for	.063 .076 .090	.106 .122 .141	.160 .180 .202	.225 .250 .275	.302 .330 .360	.390 .422 .455	.525
Cu. Ft. Min.	Capacity Air per	5250 5770 6300	6820 7350 7870	8400 8920 9450	9970 10500 11020	11550 12070 12600	13120 13650 14170	14700 15220 15750
	Outlet Ve Ft. per	1000	1300 1400 1500	1500 1700 1800	1900 2000 2100	2200 2300 2400	2500 2600 2700	2800 2900 3000

NO. 6 TURBO.CONOIDAL FAN (TYPE T) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

_									
	S. P.	Н. Р.	6.70	7.27	7.98 8.46 9.02	9.61 10.21 10.84	11.52 12.20 12.91	13.63 14.40 15.17	15.97 17.71 19.62
	31/2" S. P.	R.P.M.	716	985 993 1002	1010 1018 1027	1037 1048 1060	1072 1083 1097	1110 1123 1137	1148 1177 1203
	S. P.	Н. Р.	5.57	5.80 6.09 6.46	6.88 7.39 7.91	8.45 9.01 9.58	10.19 10.80 11.45	12.13 12.85 13.57	14.29 15.95 17.71
	3, 8	R.P.M.	910	920 930 938	947 957 967	977 988 1000	1013 1027 1040	1053 1067 1080	1093 1123 1152
	S. P.	Н. Р.	4.27 4.27 4.48	4.74 5.08 5.46	5.90 6.34 6.80	7.28	8.86 9.43 10.02	10.64 11.29 11.95	12.67 14.21 15.84
1	2 1/2"	R.P.M.	827 833 842	850 860 870	880 892 903	915 927 940	953 967 980	993 1008 1022	1037 1065 1097
200	S. P.	Н. Р.	3.13 3.30 3.56	3.85 4.19 4.55	4.93 5.30 5.71	6.14 6.58 7.06	7.54 8.06 8.61	9.18 9.76 10.39	11.09 12.51 14.02
	2" S	R.P.M.	748 757 767	775 785 797	808 820 833	847 858 872	885 900 915	930 945 958	973 1005 1037
01110	S. P.	Н. Р.	2.29	3.03 3.31 3.61	3.92 4.26 4.61	4.98 5.37 5.78	6.23 6.70 7.18	7.70 8.24 8.82	9.42 10.69 12.06
	1 1/5" S.	R.P.M.	663 672 682	693 705 717	730 743 757	770 785 798	813 828 843	858 873 890	907 938 970
	S. P.	Н. Р.	1.93 2.14 2.37	2.61 2.87 3.13	3.42	4.40 4.77 5.16	5.57 6.03 6.48	6.96 7.49 8.02	8.57 9.73 11.06
	11%"	R. P. M.	613 625 637	648 662 673	685 700 715	730 745 760	775 790 807	823 838 853 853	870 903 935
		Add for	.106	.141 .160 .180	252	.275 .302 .330	.360	.455	.560
	Cu. Ft. Min.	Capacity Air per	6300 6820 7350	7870 8400 8920	9450 9970 10500	11020 11550 12070	12600 13120 13650	14170 14700 15220	15750 16790 17850
	elocity.	Outlet / Ft. per	1200	1500 1600 1700	1800 1900 2000	2100 22200 2300	2400 2500 2600	2700 2800 2900	3000 3200 3400

NO. 61/2 TURBO-CONOIDAL FAN (TYPE T) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

-	H.P.	1.59 1.67 1.88	2.33 2.59	3.14	3.78 4.12 4.50	4.91 5.34 5.79	6.27 6.76 7.29	7.85 8.41 9.04
1" S.	R. P. M.	502 509 520	531 542 554	566 580 592	606 619 632	648 663 677	691 706 722	737 752 768
ď.	H. P.	1.32 1.51 1.70	1.89 2.11 2.35	2.60 2.87 3.16	3.48 3.81 4.18	4.58 4.97 5.40	5.87 6.32 6.84	7.36 7.91 8.51
, "%' S	R.P.M.	474 483 494	506 517 529	542 556 569	583 597 611	626 642 655	671 685 700	715 732 749
a	H.P.	1.16 1.32 1.50	1.68 1.88 2.10	2.34 2.60 2.87	3.18 3.51 3.84	4.20 4.59 4.99	5.44 5.90 6.38	6.89 7.44 7.98
34" S.	R.P.M.	446 457 468	480 492 505	51.7 531 546	560 574 589	603 619 634	649 666 682	697 712 729
-G	H.P.	1.00 1.15 1.30	1.47 1.66 1.86	2.09 2.33 2.59	2.87 3.17 3.50	3.82 4.20 4.58	4.99 5.42 5.88	6.39
%" S	R. P. M.	417 428 439	452 465 479	492 506 520	535 549 565	580 595 611	628 643 659	676 692 708
-d	H.P.	.84 .96 1.11	1.26 1.44 1.62	1.83 2.05 2.30	2.55 2.83 3.13	3.45	4.52 4.94 5.37	5.87 6.36 6.89
½" S.	R.P.M.	383 397 409	422 436 451	465 479 494	509 525 540	555 571 588	603 619 635	654 671 688
n.	H. P.	.91	1.06 1.21 1.38	1.57 1.77 1.99	2.22 2.49 2.75	3.04	4.49	5.41 5.91 6.44
% ***	R. P. M.	349 363 377	391 405 419	434 449 465	480 495 511	528 545 562	579 595 614	631 649 666
٠.	H.P.	.52	.85 .98 1.13	1.29 1.47 1.67	1.89 2.13 2.39	2.67 2.99 3.31	3.68 4.08 4.50	4.94 5.39 5.89
14" S.	R. P. M.	309 323 337	352 368 385	400 417 432	448 465 483	500 519 536	554 571 589	606 626 645
lato	T 101 bbA	.063 .076 .090	.106	.160	.225 .250 .275	.302 .330 .360	.390 .422 .455	.489 .525 .560
r. Pt. lin.	Capacity Co	6160 6780 7390	8010 8620 9240	9860 10470 11090	11700 12320 12940	13550 14170 14780	15400 16020 16630	17250 17860 18480
ocity in.	Outlet Velo Ft. per M	1000	1300 1400 1500	1700	2000	2300	2500 2600 2700	2800 2900 3000

NO. 61/4 TURBO-CONOIDAL FAN (TYPE T) CAPACITIES AND STATIC PRESSURES

R. P.	elocity Min.	Cu. Ft.		11/4" S	S. P.	11/2" S	S. P.	2, %	. 4	21/2"	S. P.	3" S.	P.	3 1/2" S.	- °
090 566 5.25 613 2.67 691 3.68 763 4.78 6.01 842 6.53 902 .106 577 2.51 629 3.23 708 3.87 769 5.01 842 6.53 902 .122 588 2.78 629 3.23 708 4.18 777 5.26 849 6.81 909 .180 621 3.36 640 3.56 716 4.52 785 5.56 849 6.81 909 .180 622 3.36 640 4.74 735 5.44 803 6.89 932 948 .202 632 3.86 650 756 6.72 823 745 889 948 948 .205 660 4.75 699 5.41 769 6.70 834 7.46 886 948 948 .205 660 4.77 699 5.41 76		Capacity 19q 1iA		R.P.M.		R.P.M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R. P. M.	
.141 599 3.06 640 3.56 716 4.52 785 5.66 849 6.81 909 .180 611 3.36 651 4.24 725 4.91 794 5.96 859 7.14 917 .202 632 4.37 666 5.40 746 5.78 812 6.95 874 8.08 940 .255 646 4.37 689 5.41 769 6.70 834 7.96 874 8.08 940 .255 660 4.37 689 5.41 769 6.70 834 7.96 873 9.28 940 .255 674 5.71 869 6.70 834 7.96 8.23 9.28 948 .380 702 6.55 737 6.79 872 7.72 868 9.73 11.0 968 .380 775 6.79 876 8.23 10.1 990		7390 8010 8620	.090.106	566 577 588	2.26 2.51 2.78	613 620 629	2.67 3.03 3.23	691 699 708	3.68	763 769 777	4.78 5.01 5.26	842	6.53	902	7.86
2202 632 4.01 674 4.60 746 5.78 812 6.92 874 8.08 932 225 646 4.75 686 5.41 769 6.72 823 7.45 883 8.68 940 275 660 4.75 689 5.41 789 7.72 845 8.55 9.28 948 330 702 775 6.79 872 7.72 866 9.73 912 10.6 968 330 702 776 6.79 805 7.22 869 9.73 912 10.6 968 340 776 6.73 7.86 843 846 9.73 923 11.2 979 340 774 8.76 7.78 843 845 10.1 995 11.8 946 13.4 1012 446 8.74 8.78 8.72 11.5 946 11.3 946 13.4 10		9240 9860 10470	.141 .160 .180	599 611 622	3.06 3.36 3.68	640 651 661	3.56 3.89 4.24	716 725 735	4.52 4.91 5.34	785 794 803	5.56 5.96 6.40	849 859 866	6.81 7.14 7.58	909 917 925	8.54 8.88 8.88
275 674 5.16 711 5.84 782 7.20 845 8.55 902 9.92 967 330 702 6.65 737 6.79 805 7.72 866 9.13 912 10.6 968 330 716 6.53 751 8.84 80 10.4 98 11.2 979 422 7.45 7.61 7.86 8.45 10.1 905 11.1 948 12.7 1000 4.85 7.74 8.78 8.45 10.1 905 11.8 960 13.4 1012 4.89 7.74 8.78 8.69 10.8 91 11.8 960 13.4 1012 5.25 7.88 9.41 822 10.4 885 11.5 943 14.0 997 15.9 1049 5.26 8.83 10.1 885 11.2 943 14.0 997 15.9 1049		11090 11700 12320	.202 .225 .250	632 646 660	4.37	674 686 699	4.60 5.00 5.41	746 757 769	5.78 6.22 6.70	812 823 834	6.92 7.45 7.98	874 883 892	8.08 8.68 9.28	932 940 948	9.36 9.93 10.6
360 716 6.53 751 7.31 817 8.84 880 10.4 936 12.7 1000 390 729 7.08 776 8.48 831 9.46 892 11.1 948 12.7 1000 4.452 7.74 8.78 8.66 9.03 854 10.1 905 11.8 948 12.7 1002 526 774 8.78 8.66 9.68 872 11.5 943 14.0 997 15.9 1035 526 788 9.41 822 10.4 885 12.2 943 14.0 997 15.9 1049 588 8.31 13.1 896 13.0 957 14.2 1070 16.8 1069 588 8.32 11.1 896 13.0 957 14.5 1073 16.7 1063 16.8 1066 588 13.0 865 12.6 957 16.5		12940 13550 14170	.275 .302 .330	674 688 702	5.16 5.59 6.05	7111 725 737	5.84 6.30 6.79	782 792 805	7.20	845 856 868	8.55 9.13 9.73	902 912 923	9.92 10.6 11.2	957 968 979	11.3 12.0 12.7
.455 759 8.17 792 9.03 859 10.8 917 12.5 972 14.2 1025 .525 774 8.78 8.06 9.68 872 11.5 931 13.3 985 15.1 1037 .560 8.03 10.4 885 12.2 943 14.0 997 15.9 1449 .580 8.03 10.1 8.98 13.0 957 14.9 1079 16.8 1049 .721 863 11.4 866 12.6 957 14.7 1037 18.7 1086 .721 863 13.0 996 14.2 957 16.5 1012 18.6 1063 20.8 1111		14780. 15400 16020	.360	716 729 745	6.53 7.08 7.61	751 765 779	7.31 7.86 8.43	817 831 845	8.84 9.46 10.1	880 892 905	10.4	936 948 960	12.0 12.7 13.4	989 1000 1012	13.5 14.3 15.2
.560 803 10.1 837 11.1 899 13.0 957 14.9 1009 16.8 1060 16.8 1060 12.6 928 14.7 983 16.7 1037 18.7 1086 14.2 957 16.5 1012 18.6 1063 20.8 1111		16630 17250 17860	.455 .489 .525	759 774 788	8.17 8.78 9.41	792 806 822	9.03 9.68 10.4	8559 872 885	10.8	917 931 943	12.5 13.3 14.0	972 985 997	14.2 15.1 15.9	1025 1037 1049	16.0 16.9 17.8
		18480 19710 20940	.560	803 834 863	10.1 11.4 13.0	837 866 896	11.1 12.6 14.2	899 928 957	13.0 14.7 16.5	957 983 1012	14.9 16.7 18.6	1009 1037 1063	16.8 18.7 20.8	1060 1086 11111	18.7 20.8 23.0

NO. 7 TURBO-CONOIDAL FAN (TYPE T) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

	.	H.P.	1.84 1.94 2.18	3.00	3.31 3.64 3.99	4.38 4.78 5.22	5.70 6.19 6.71	7.27 7.84 8.46	9.10 9.76 10.5
	si l	R. P. M.	466 473 483	493 503 514	526 539 550	563 574 587	602 616 629	642 656 670	684 699 713
	ď	Н.Р.	1.53 1.75 1.97	2.20 2.45 2.72	3.01 3.33 3.67	4.42	5.31 5.76 6.27	6.80 7.33 7.93	8.54 9.18 9.87
	3° 8' 8'	R. P. M.	440 449 459	470 480 491	503 516 529	542 554 567	582 596 609	623 636 650	664 680 696
	P.	Н. Р.	1.35 1.53 1.74	1.95 2.18 2.44	2.71 3.01 3.33	3.69 4.07 4.46	4.88 5.32 5.78	6.30 6.84 7.40	7.99 8.62 9.25
	3.4" S.	R.P.M.	414 424 434	446 457 469	480 493 507	520 533 547	560 574 589	603 619 633	647 662 677
	ъ.	Н.Р.	1.16 1.33 1.51	1.71 1.92 2.16	2.42 2.70 3.00	3.33 3.68 4.05	4.44 4.87 5.32	5.78 6.29 6.82	7.41 8.00 8.62
	28" 8	R. P. M.	387 397 407	420 432 444	457 470 483	497 510 524	539 553 567	583 597 611	627 643 657
	Р.	Н.Р.	.97 1.12 1.28	1.46 1.67 1.88	2.12 2.38 2.66	2.96 3.28 3.63	4.38 4.80	5.24 5.73 6.23	6.81 7.38 7.99
	1/2" S.	R. P. M.	356 389 380	392 404 419	432 444 459	473 487 502	516 530 546	560 574 590	607 623 639
	P.	Н.Р.	.78 .91 1.06	1.23 1.41 1.60	1.82 2.05 2.31	2.58 2.88 3.19	3.53 3.91 4.31	4.76 5.20 5.71	6.27 6.86 7.47
	3/8" S.	R. P. M.	324 337 350	363 376 389	403 417 432	446 460 474	490 506 521	553 553 570	586 603 619
	Ъ.	Н. Р.	.60 .71 .84	.98 1.14 1.31	1.50	2.19	3.47	4.73	5.73 6.25 6.84
	½" S.	R. P. M.	287 300 313	327 342 357	372 387 402	416 432 449	464 482 497	514 530 547	563 599
		Add for	.063 .090	.106 .122 .141	.160 .180 .202	.225 .250 .275	3302	.390	.525
	Ft. Pt. Win.	Capacity C	7140 7860 8580	9290 10000 10720	11430 12150 12860	13570 14290 15000	15720 16430 17150	17860 18580 19290	20000 20720 21430
1	locit) Min.	Outlet Ve Ft. per l	1200	1300 1400 1500	1700	1900 2000 2100	2200	2500 2600 2700	2800 2900 3000

													1
IstoT		13/4"	S. P.	13%	رد ال	2" S.	Р.	21/2"	S. P.	3" S.	P.	3 1/2" 5	S. P.
Add for	-	R. P. M.	М. Р.	R. P. M.	Н. Р.	R. P. M.	Н. Р.	R.P.M.	H. P.	R. P. M.	Н. Р.	R. P. M.	Н. Р.
.090 .106 .122		526 536 546	2.62 2.91 3.23	569 576 584	3.10 3.51 3.75	642 649 657	4.26 4.49 4.84	709 714 722	5.54 5.81 6.10	782	7.58	837	9.12
.141 .160 .180		566 567 577	3.55 3.90 4.26	594 604 614	4.13 4.51 4.92	664 673 683	5.24 5.70 6.19	729 737 746	6.44 6.91 7.42	789 797 804	7.90 8.28 8.79	844 852 859	9.54 9.90 10.3
.202 :225 :250		587 600 613	4.65 5.06 5.51	626 637 649	5.33 5.80 6.27	693 703 714	6.71	754 764 774	8.03 8.64 9.25	811 820 829	9.37 10.1 10.8	866 873 880	10.9 11.5 12.3
.275 .302 .330		626 639 652	5.99 6.49 7.02	660 673 684	6.78 7.31 7.87	726 736 747	8.36 8.96 9.60	784 794 806	9.91 10.6 11.3	837 847 857	11.5 12.3 13.0	888 888 806	13.1 13.9 14.8
.360		664 677 692	7.58 8.21 8.82	697 710 723	8.48 9.12 9.78	759 772 784	10.3 11.0 11.7	817 829 840	12.1 12.8 13.6	869 880 892	13.9 14.7 15.6	919 929 940	15.7 16.6 17.6
.455 .489 .525		704 719 731	9.48 10.2 10.9	736 749 763	10.5 11.2 12.0	797 810 822	12.5 13.3 14.1	852 864 876	14.5 15.4 16.3	903 914 926	16.5 17.5 18.5	952 963 974	18.6 19.6 20.7
.560 .638 .721		746 774 802	11.7	777 804 832	12.8 14.6 16.4	834 862 889	15.1 17.0 19.1	889 913 940	17.3 19.4 21.6	937 963 987	19.5 21.7 24.1	984 1009 1032	21.7 24.1 26.7
												-	-

NO. 71/2 TURBO-CONOIDAL FAN (TYPE T) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

69 303 52 315 52 315 52 315 1.13 351 1.50 363 1.72 376 1.72 376 2.22 403 2.24 429 3.56 457 4.41 487	H. P. R. P. M. I		. L.	, 4" v		Å8/	:	1,8	٠ <u>.</u>
66 82 82 82 83 113 150 150 150 150 150 150 150 150		H.P. R.P.M.	н.Р.	R.P.M.	Н.Р.	R. P. M.	H.P.	R.P.M.	н. Р.
1.13 339 1.151 351 1.50 386 1.95 389 2.22 403 2.24 403 3.84 443 3.56 457 4.41 487		1.11 361 1.28 371 1.47 380	1.53	387 396 405	1.55 1.76 1.99	411 419 428	1.76 2.00 2.26	435 441 451	2.12 2.23 2.50
1.72 376 2.22 408 2.22 408 2.22 408 2.51 429 3.18 443 3.56 457 4.41 487	1.41 365 1.62 377 1.84 391	1.68 392 1.91 403 2.16 415	1.96 2.21 2.48	416 427 437	2.24 2.50 2.80	439 448 459	2.52 2.81 3.12	460 469 480	2.80 3.11 3.44
2.51 416 2.84 429 3.18 443 3.56 457 4.41 487	2.09 403 2.35 415 2.65 428	2.44 427 2.73 439 3.06 451	2.78 3.10 3.45	448 460 473	3.46 3.83	469 481 493	3.46	491 503 513	3.80 4.18 4.59
3.56 457 3.98 472 4.41 487	2.96 441 3.31 455 3.66 468	3.39 464 3.77 476 4.17 489	3.82 4.22 4.65	485 497 511	4.23 4.67 5.11	505 517 529	4.64 5.07 5.57	525 536 548	5.03 5.49 6.00
	4.05 481 4.49 495 4.95 509	4.59 503 5.02 516 5.51 529	5.09 5.59 6.10	523 536 549	5.60 6.11 6.64	543 556 568	6.10 6.61 7.20	561 575 587	6.54 7.11 7.71
480 4.90 501 5. 495 5.43 516 5. 511 5.99 532 6.	5.46 523 5.97 536 6.55 551	6.02 544 6.58 557 7.15 571	6.64 7.22 7.83	563 577 591	7.24 7.85 8.50	581 593 607	7.81 8.42 9.10	599 612 625	8.34 9.00 9.71
525 6.58 547 7. 543 7.18 563 7. 559 7.85 577 8.	7.20 567 7.87 581 8.57 596	7.82 585 8.47 600 9.17 613	8.51 9.19 9.90	604 617 632	9.18 9.90 10.6	620 635 649	9.80 10.5 11.3	639 652 665	10.5 11.2 12.0

NO. 71/2 TURBO-CONOIDAL FAN (TYPE T) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

S. P.	Н. Р.	10.5	11.0	12.5 13.2 14.1	15.0 16.0 17.0	18.0 19.1 20.2	21.3 22.5 23.7	25.0 27.7 30.7
3 1/2" S	R. P. M.	781	788 795 801	808 815 821	829 839 848	857 867 877	888 888 899 800	919 941 963
4.	Н. Р.	8.70	9.07 9.51 10.1	10.8 11.6 12.4	13.2 14.1 15.0	15.9 16.9 17.9	19.0 20.1 21.2	22.3 24.9 27.7
3, %	R.P.M.	729	736 744 751	757 765 773	781 791 800	811 821 832	843 853 864	875 899 921
S. P.	- B	6.36 6.67 7.00	7.40 7.93 8.52	9.22 9.91 10.6	11.4 12.2 13.0	13.8	16.6 17.6 18.7	19.8 22.2 24.8
2 1/2"	R.P.M.	661 667 673	680 696 696	704 713 723	732 741 752	763 773 784	795 807 817	829 852 877
ď.	Н. Р.	4.89 5.15 5.56	6.02 6.54 7.11	7.70 8.29 8.92	9.59 10.3 11.0	11.8 12.6 13.5	14.4 15.3 16.2	17.3 19.6 21.9
2" S.	R.P.M.	599 605 613	620 628 637	647 656 667	677 687 697	· 708 720 732	744 756 767	779 804 829
s, P,	Н. Р.	3.56 4.03 4.30	4.74 5.18 5.64	6.12 6.66 7.20	7.78 8.39 9.03	9.71 10.5 11.2	12.0 12.9 13.8	14.7 16.7 18.9
11/2"	R.P.M.	531 537 545	555 564 573	584 595 605	616 628 639	651 663 675	687 699 712	725 751 776
s, G	Н. Р.	3.01 3.34 3.70	4.08 4.48 4.89	5.34 5.81 6.33	6.88 7.45 8.06	8.70 9.42 10.1	10.9	13.4
1%	R. P. M.	491 500 509	519 529 539	548 560 572	584 596 608	620 632 645	657 671 683	696 723 748
IstoT 10	1 bbA q	.090 .106 .122	.141 .160 .180	.202 .225 .250	.302 .330 .330	.360 .390 .422	.455 .489 .525	.560
ty Cu. Ft. ser Min.	Capaci q niA	9840 10660 11480	12300 13120 13940	14760 15580 16400	17220 18050 18860	19680 20500 21320	22150 22960- 23780	24600 26250 27880
Velocity er Min.	Outlet Ft. p	1200	1500 1600 1700	1900	2100 2200 2300	2400 2500 2600	2700 2800 2900	3000 3200 3400

NO. 8 TURBO-CONOIDAL FAN (TYPE T) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

P	H.P.	2.41 2.54 2.85	3.18 3.53 3.92	4.33 4.76 5.22	5.72 6.25 6.82	7.44 8.09 8.77	9.49 10.3 11.1	11.9 12.8 13.7
1" S.	R. M. P.	408 414 423	431 440 450	460 471 481	493 503 514	526 539 550	561 574 586	599 611 624
P.	H.P.	2.00 2.28 2.57	2.87 3.20 3.55	3.94 4.35 4.79	5.27 5.77 6.34	6.95 7.52 8.19	8.88 9.57 10.4	11.2 12.0 12.9
	R.P.M.	385 393 401	411 420 430	440 451 463	474 485 496	509 521 533	545 556 569	581 595 609
ď.	H.P.	1.76 2.00 2.27	2.55 2.85 3.18	3.54 3.94 4.35	4.81 5.31 5.82	6.37 6.95 7.55	8.24 8.94 9.67	10.4
%, S.	R.P.M.	363 371 380	390 400 410	420 431 444	455 466 479	490 503 515	528 541 554	566 579 593
ď	H.P.	1.51	2.23 2.51 2.82	3.16 3.53 3.92	4.35 4.80 5.29	5.79 6.36 6.95	7.55 8.21 8.91	9.68 10.5 11.3
	R.P.M.	339 348 356	368 378 389	400 411 423	435 446 459	471 484 496	510 523 535	549 563 575
۵.	Н.Р.	1.27 1.46 1.68	1.91 2.18 2.46	2.77 3.11 3.48	3.86 4.29 4.74	5.22 5.72 6.27	6.85 7.49 8.14	8.90 9.63 10.4
1/2" S.	R.P.M.	311 323 333	343 354 366	378 389 401	414 426 439	451 464 478	490 503 516	531 545 559
-G	H.P.	1.03 1.19 1.38	1.60 1.84 2.09	2.38 3.02	3.37 3.76	4.61 5.11 5.63	6.22 6.80 7.46	8.19 8.95 9.76
\$ ***	R. P. M.	284 295 306	318 329 340	353 365 378	390 403 415	429 443 456	470 484 499	513 528 541
<u>a</u>	H.P.	.93 1.10	1.28 1.49 1.71	$\frac{1.96}{2.22}$	3.23 3.23 3.62	4.05 4.53 5.02	5.58 6.18 6.82	7.49 8.17 8.93
**************************************	R. P. M.	251 263 274	286 299 313	325 339 351	364 378 393	406 421 435	450 464 479	493 509 524
	rof bbA Press	.063 .076 .090	.106 .122 .141	.160	.225 .250 .275	.302 .330 .360	.390 .422 .455	.489 .525 .560
Cu. Ft.	Capacity C	9330 10270 11200	12130 13060 14000	14930 15870 16790	17730 18660 19600	20530 21460 22390	23330 24260 25200	26120 27060 28000
	Outlet Vel	1200	1300 1400 1500	1500 1700 1800	1900 2000 2100	2300 2400	2500 2600 2700	2800 2900 3000

NO. 8 TURBO-CONOIDAL FAN (TYPE T) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

2 ½ S. P.								lor To
R. P. M. H. P.	R. P	Н. Р.		H. P. R.P.M. H. P.	R. P. M. H. P.	H. P. R.P.M. H. P.	R.P.M. H.P. R.P.M. H.P.	R.P.M. H.P. R.P.M. H.P. R.P.M. H.P.
520 7.23 525 7.59 531 7.97	999	5.57 5.86 6.32 6		5.57 5.86 6.32	561 5.57 568 5.86 575 6.32	4.05 561 5.57 4.58 5.86 6.32 6.32	498 4.05 561 5.57 504 4.58 568 5.35 6.32	3.43 498 4.05 561 5.57 3.80 504 4.58 568 5.86 4.21 511 4.90 575 6.32
638 8.42 645 9.02 653 9.70		6.85 7.44 8.08	581 589 7.44 598 8.08		581 598 598	5.39 581 5.89 589 6.42 598	520 5.39 581 529 5.89 589 538 6.42 598	4.64 520 5.39 581 5.10 529 5.89 589 5.57 538 6.42 598
660 10.5 669 11.3 678 12.1		8.76 9.43 10.2	606 8.76 615 9.43 625 10.2		606 615 625	6.96 606 7.57 615 8.19 625	558 6.96 606 558 7.57 615 568 8.19 625	6.07 548 6.96 606 6.61 558 7.57 615 7.20 568 8.19 625
686 13.0 695 13.8 705 14.7		10.9 11.7 12.6	635 10.9 644 11.7 654 12.6		635 644 654	8.85 635 9.54 644 10.3 654	578 8.85 635 589 9.54 644 599 10.3 654	7.82 578 8.85 635 8.47 589 9.54 644 9.16 599 10.3 654
715 15.8 725 16.8 735 17.8		13.4 14.3 15.3	664 13.4 675 14.3 686 15.3		664 675 686	11.1 664 11.9 675 12.8 686	610 11.1 664 621 11.9 675 633 12.8 686	9.90 610 11.1 664 10.7 621 11.9 675 11.5 688 12.8 686
745 18.9 756 20.1 766 21.3		16.3 17.4 18.5	698 16.3 709 17.4 719 18.5		698 709 719	13.7 698 14.7 709 15.7 719	644 13.7 698 655 14.7 709 668 15.7 719	12.4 644 13.7 698 13.3 655 14.7 709 14.3 668 15.7 719
778 22. 799 25. 822 28.		19.7 22.3 24.9	730 19.7 754 22.3 778 24.9		730 754 778	16.7 730 19.0 754 21.5 778	680 16.7 730 704 19.0 754 728 21.5 778	15.2 680 16.7 730 17.3 704 19.0 754 19.7 728 21.5 778

NO. 81/4 TURBO-CONOIDAL FAN (TYPE T) CAPACITIES AND STATIC PRESSURES

		۵	282	6663	30	355	250	F-(0)0	
	-G.	H. P.	2.72	3.59	4.89 5.37 5.89	6.46 7.05 7.70	8.40 9.13 9.90	10.7 11.6 12.5	13.4
	1, 8,	R.P.M.	384 390 398	406 414 424	433 444 453	464 473 484	495 507 518	528 540 552	564 576 587
	-i	H.P.	2.26 2.57 2.90	3.24 3.61 4.01	4.44 4.91 5.41	5.95 6.52 7.15	7.83 8.49 9.24	10.0 10.8 11.7	12.6 13.5 14.6
	7 8 S	R. P. M.	362 370 378	387 395 405	414 425 435	446 457 467	479 491 501	513 524 535	547 560 573
	.Р.	H.P.	1.99 2.26 2.56	2.88 3.22 3.59	4.00 4.44 4.91	5.43 6.00 6.57	7.19 7.85 8.53	9.30 10.1 10.9	11.8 12.7 13.7
¥	34" S.	R.P.M.	341 350 358	367 377 386	395 406 418	428 439 451	461 473 485	497 510 521	533 545 558
BAKOMETEK	. Р.	H.P.	1.71 1.96 2.23	2.52 2.83 3.19	3.57 3.98 4.43	4.91 5.42 5.98	6.54 7.18 7.84	8.53 9.27 10.1	10.9 11.8 12.7
ES BAR	5/4 S	R.P.M.	319 327 335	346 355 366	377 387 398	410 420 432	444 455 467	480 492 504	517 530 541
INCHES	. Р.	H.P.	1.43 1.65 1.89	2.15 2.46 2.78	3.13 3.51 3.92	4.36 4.84 5.35	5.90 6.45 7.08	7.73 8.45 9.18	10.0 10.9 11.8
26.62 0	½" S.	R.P.M.	293 304 313	322 333 345	355 366 378	390 401 413	425 437 450	461 473 486	500 513 526
r. AND	Э.	H.P.	1.16 1.34 1.56	1.81 2.07 2.36	2.68 3.02 3.40	3.80 4.25 4.70	5.20 5.77 6.36	7.02 7.67 8.42	9.25 10.1 11.0
A1 70°	% ** **	R.P.M.	267 278 288	299 310 320	332 344 355	367 379 391	404 417 430	442 455 470	482 497 510
	. Р.	H.P.	.88 1.05 1.24	1.45 1.68 1.93	2.21 2.51 2.85	3.22 3.64 4.09	4.57 5.11 5.67	6.29 6.97 7.70	8.45 9.22 10.1
	14" S.	R.P.M.	237 247 258	270 281 294	306 319 331	342 355 369	382 397 410	424 437 451	464 479 493
		Add for Pres	.063 .090	.106	.160	.225 .250 .275	302	.390 .422 .455	.525
	Cu. Ft. Min.	Capacity Ter per	10530 11590 12640	13690 14750 15800	16860 17910 18960	20010 21070 22120	23180 24230 25280	26340 27390 28450	29490 30550 31600
	elocity Min.	Outlet V Ft. per	1000	1300 1400 1500	1500	1900 2000 2100	2200 2300 2400	2500 2600 2700	2800 2900 3000

T) CAPACITIES AND STATIC PRESSURES INCHES BAROMETER 29.92 81/4 TURBO-CONOIDAL FAN (TYPE F. AND 200

. 0

H. P. 14.1 14.6 15.2 16.0 17.0 18.1 28.9 32.1 35.6 39.4 13.4 3 1/2" S. P. R. P. M. 757 395 707 713 811 831 850 H. P. 11.7 17.0 24.4 25.8 27.3 4 ŝ R. P. M. 3, 598 598 706 715 725 734 744 753 762 H. P. 9.50 10.2 11.0 11.8 14.6 15.6 16.6 17.8 18.9 20.1 21.4 22.7 24.0 25.4 28.5 31.8 ٦. ဟံ 2 1/2" R. P. M. 600 607 614 573 583 392 701 584 588 594 646 654 664 732 ۵. 9.89 2.5.4 2.2.2 15.1 16.2 17.3 18.4 19.6 20.9 22.3 25.1 28.1 Ë ے ဟုံ R. P. M. ž 547 554 563 528 534 541 571 579 588 525 535 546 857 867 877 H. P. 4.57 5.17 5.53 6.08 6.65 7.25 7.86 8.55 9.25 13.5 18.9 21.5 24.2 ۵. ú 72" R. P. M. 515 525 534 H. P. 9.57 3.87 4.29 4.76 11.2 14.0 15.0 17.2 19.5 22.2 4 vi 1 1/4" R.P.M. 133 141 149 158 167 175 184 194 505 515 526 537 547 558 570 314 338 360 Press. 202 225 255 250 275 302 330 360 390 422 455 489 525 IBJOT TOT DDA Capacity Cu. Ft. Air per Min. Outlet Velocity Ft. per Min. 500 500 700 200 2300 2500 2800

NO. 9 TURBO-CONOIDAL FAN (TYPE T) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 20.02 INCHES RADOMETED

	ď	H.P.	3.05 3.21 3.61	4.03 4.47 4.96	5.48 6.02 6.60	7.24 7.91 8.64	9.42 10.2 11.1	12.0 13.0 14.0	15.1 16.1 17.3
	ı. S	R.P.M.	362 368 376	383 391 400	409 419 428	438 447 457	468 479 489	499 510 521	532 543 555
	S. P.	н.Р.	2.54 2.88 3.25	3.63 4.05 4.50	4.98 5.50 6.06	6.68 7.31 8.02	8.78 9.52 10.4	11.3	14.1 15.2 16.3
	2,82	R.P.M.	342 349 357	366 373 382	391 401 411	421 431 441	452 463 475	485 495 506	517 529 541
	٦.	Н.Р.	2.23 2.54 2.87	3.22 3.60 4.03	4.48 4.98 5.51	6.09 6.72 7.36	8.06 8.80 9.56	10.4	13.2 15.3 15.3
	34" S.	R.P.M.	322 330 338	347 356 365	373 383 395	405 415 426	436 447 458	469 481 492	503 515 527
	Ъ.	H.P.	1.91 2.20 2.50	2.82 3.18 3.57	4.00 4.46 4.97	5.50 6.08 6.70	7.33 8.04 8.79	9.56 10.4 11.3	13.2
	\$ "%	R.P.M.	301 309 317	327 336 346	356 366 376	387 397 408	419 430 441	453 465 476	488 500 511
	Ъ.	H.P.	1.60	2.41 2.76 3.11	3.51 3.93 4.40	4.89 5.43 6.00	6.61 7.23 7.94	8.67 9.48 10.3	11.3 12.2 13.2
	1/3" S.	R.P.M.	277 287 296	305 315 326	336 346 357	368 379 390	401 412 425	436 447 459	472 485 497
	Ъ.	H.P.	1.30	2.03 2.33 2.65	3.39	4.26 4.76 5.27	5.83 6.47 7.13	7.87 8.60 9.44	10.4 11.3 12.4
	% 8 8	R. P. M.	252 262 272	282 292 302	313 324 336	347 358 369	381 393 406	418 430 443	456 469 481
		Н.Р.	.99 1.18 1.39	1.62 1.88 2.16	2.48 2.81 3.19	3.61 4.08 4.59	5.12 5.73 6.35	7.06	9.48 10.3 11.3
	14" S	R.P.M.	223 233 243	255 266 278	289 301 312	323 336 349	361 375 387	400 412 426	438 452 466
I		not bbA	.063 .090	.106 .122 .141	.160	.225 .250 .275	380	.390 .452 .455	.525
75	Cu. F	Capacity Air per	11810 12990 14170	15350 16530 17710	18900 20080 21250	22440 23620 24800	25990 27160 28350	29520 30710 31890	33060 34250 35430
, Aq	tiools niM	Outlet V Ft. per	1000	1300 1400 1500	1500	1900 2000 2100	2300	2500 2600 2700	2800 2900 3000

NO. 9 TURBO-CONOIDAL FAN (TYPE T) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

Velocity or Min.	y Cu. Pt.	latoT ro		S. P.	1%"	S. P.	2, 8	о. С	27/2"	S,	% %	٠.	3 1/2"	S. P.
Outlet '	Capacit oq 1iA		R.P.M.	П. Р.	R. P. M.	Н. Р.	R. P. M.	Н. Р.	R.P.M.	Н. Р.	R. P. M.	н. Р.	R.P.M.	Н. Р.
1300 1400	14170 15350 16530	.106	409 417 425	4.33 4.81 5.33	442 448 455	5.12 5.80 6.20	499 505 511	7.05 7.42 8.00	551 556 561	9.15 9.61 10.1	809	12.5	651	15.1
1500 1600 1700	17710 18900 20080	.141 .160 .180	432 441 449	5.87 6.45 7.05	462 470 478	6.82 7.45 8.12	517 523 531	8.67 9.42 10.2	567 573 580	10.7 11.4 12.3	613 620 626	13.1 13.7 14.5	657 662 668	15.8 16.4 17.0
1900 1900 2000	21250 22440 23620	.202 .225 .250	457 467 477	7.69 8.37 9.11	487 496 505	8.81 9.58 10.4	539 547 556	11.1 11.9 12.8	587 595 602	13.3 14.3 15.3	631 638 645	15.5 16.6 17.8	673 679 685	18.0 19.0 20.3
2100 2200 2300	24800 25990 27160	.275 .302 .330	487 497 507	9.90 10.7 11.6	513 523 532	11.2 12.1 13.0	565 572 581	13.8 14.8 15.9	610 618 627	16.4 17.5 18.7	651 659 667	19.0 20.3 21.6	691 699 707	21.6 23.0 24.4
2400 2500 2600	28350 29520 30710	.360 .390 .422	517 527 538	12.6 13.6 14.6	542 552 562	14.0 15.1 16.2	590 600 610	17.0 18.1 19.4	636 645 653	19.9 21.2 22.5	676 685 693	22.9 24.3 25.8	715 722 731	25.9 27.5 29.1
2700 2800 2900	31890 33060 34250	.455 .489 .525	548 559 569	15.7 16.8 18.0	. 572 582 593	17.3 18.6 19.9	620 630 639	20.7 22.0 23.3	662 672 681	23.9 25.4 26.9	702 711 720	27.3 28.9 30.5	740 749 758	30.7 32.4 34.2
3200 3400	35430 37790 40150	.560	580 602 623	19.3 21.9 24.9	605 626 647	21.2 24.1 27.2	649 670 691	25.0 28.2 31.6	691 710 731	28.5 32.0 35.7	729 749 768	32.2 35.9 39.9	766 785 802	35.9 39.9 44.2

NO. 10 TURBO-CONOIDAL FAN (TYPE T) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

ď	Н. Р.	3.76 3.96 4.45	4.97 5.52 6.12	6.76 7.43 8.15	8.94 9.76 10.7	11.6 12.6 13.7	14.8 16.0 17.3	18.6 19.9 21.4
1″ S.	R. P. M.	326 331 338	345 352 360	368 377 385	394 402 411	421 431 440	449 459 469	479 489 499
٩.	H.P.	3.13 3.56 4.01	4.48 5.00 5.55	6.15 6.79 7.48	8.24 9.02 9.90	10.8 11.8 12.8	13.9 15.0 16.2	17.4 18.7 20.2
78" S.	R.P.M.	308 314 321	329 336 344	352 361 370	379 388 397	407 417 426	436 445 455	465 476 487
-G.	Н.Р.	2.75 3.13 3.54	3.98 4.45 4.97	5.53 6.15 6.80	7.52 8.30 9.09	9.95 10.9 11.8	12.9 14.0 15.1	16.3 17.6 18.9
3," S.	R.P.M.	290 297 304	312 320 328	336 345 355	364 373 383	392 402 412	422 . 433 . 443	453 463 474
. Р.	Н.Р.	2.36 2.71 3.08	3.48 3.92 4.41	4.94 5.51 6.13	6.79 7.50 8.27	9.05 9.93 10.9	11.8 12.8 13.9	15.1 16.3 17.6
5 % S	R.P.M.	271 278 285	294 302 311	329 329 338	348 357 367	377 387 397	408 418 428	439 450 460
Э.	н.Р.	1.98 2.28 2.62	2.98 3.40 3.84	4.33 4.85 5.43	6.03 6.70 7.41	8.16 8.93 9.80	10.7 11.7 12.7	13.9 15.1 16.3
, , , , , , , , , , , , , , , , , , ,	R.P.M.	249 258 266	274 283 293	302 311 321	331 341 351	361 371 382	392 402 413	425 436 447
٠. م	Н. Р.	1.60 1.86 2.16	2.50 2.87 3.27	3.71 4.18 4.71	5.26 5.88 6.51	7.20 7.98 8.80	9.71 10.6 11.7	12.8 14.0 15.2
% "% % S	R. P.M.	227 236 245	254 263 272	282 292 302	312 322 332	343 354 365	376 387 399	410 422 433
<u>a</u>	Н.Р.	1.22	2.00 2.32 2.67	3.06 3.47 3.94	4.46 5.04 5.66	6.32 7.07 7.84	8.71 9.65 10.7	11.7 12.8 14.0
14" S.	R.P.M.	201 210 219	229 239 250	260 271 281	291 302 314	325 337 348	360 371 383	394 407 419
	Add for	.063 .076 .090	.106	.160	.225 .250 .275	.302 .330 .360	.390 .422 .455	.489
Cu. Ft. Min.	Capacity Air per	14580 16040 17500	18950 20410 21870	23330 24790 26240	27700 29160 30620	32080 33530 34990	36450 37910 39370	40820 42280 43740
elocity Min.	Outlet V	1200	1300 1400 1500	1600 1700 1800	1900 2000 2100	2200 2300 2400	2500 2600 2700	2800 2900 3000

NO. 10 TURBO-CONOIDAL FAN (TYPE T) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

		~	10010	210-	N#-	000	808	4010
S. P.	Н. Р.	18.6	19.5 20.2 21.0	22.2 23.5 25.1	26.7 28.4 30.1	32.0 33.9 35.9	37.9 40.0 42.2	44.4 49.2 54.5
31%" 8	R.P.M.	586	591 596 601	606 611 616	622 629 636	643 650 658	666 674 682	689 706 722
<u>م</u>	Н. Р.	15.5	16.1 16.9 17.9	19.1 20.5 22.0	23.5 25.0 26.6	28.3 30.0 31.8	33.7 35.7 37.7	39.7 44.3 49.2
3, %	R.P.M.	547	552 558 563	568 574 580,	586 593 600	608 616 624	632 640 648	656 674 691
S. P.	Н. Р.	11.3 11.9 12.5	13.2 14.1 15.2	16.4 17.6 18.9	20.2 21.6 23.0	24.6 26.2 27.8	29.6 31.4 33.2	35.2 39.5 44.0
23%	R.P.M.	496 500 505	510 516 522	528 535 542	549 556 564	572 580 588	596 605 613	622 639 658
. Р.	H. P.	8.70 9.16 9.88	10.7 11.6 12.6	13.7 14.7 15.9	17.1 18.3 19.6	20.9 22.4 23.9	25.5 27.1 28.9	30.8 34.8 39.0
2, 8.	R.P.M.	449 454 460	465 471 478	485 492 500	508 515 523	531 540 549	558 567 575	584 603 622
S. P.	Н. Р.	6.32 7.16 7.65	8.42 9.20 10.0	10.9 11.8 12.8	13.8 14.9 16.1	17.3 18.6 20.0	21.4 22.9 24.5	26.2 29.7 33.5
11%"	R. P. M.	398 403 409	416 423 430	438 446 454	462 471 479	488 497 506	515 524 534	544 563 582
S. P.	Н. Р.	5.35	7.25 7.96 8.70	9.49 10.3 11.3	12.2 13.2 14.3	15.5 16.8 18.0	19.3 20.8 22.3	23.8 27.0 30.7
11%"	R.P.M.	368 375 382	389 397 404	411 420 429	438 447 456	465 474 484	493 503 512	522 542 561
	ol bbA	.090 .106 .122	.141 .160 .180	202	.275 .302 .330	.380 .390 .422	.455 .489 .525	.560 .638 .721
Cu. Ft.	Capacity of rich	17500 18950 20410	21870 23330 24790	26240 27700 29160	30620 32080 33530	34990 36450 37910	39370 40820 42280	43740 46650 49570
elocity Min.	Outlet V Ft. per	1200	1500	1800	2100 22200 2300	2400 2500 2600	2700 2800 2900	3000 3200 3400

NO, 11 TURBO-CONOIDAL FAN (TYPE T) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

S. P.	H.P.	4.55 4.79 5.39	6.01 6.68 7.41	8.18 8.99 9.86	10.8 11.8 12.9	14.1 15.3 16.6	18.0 19.4 20.9	22.5 24.1 25.9
1" 8	R.P.M.	296 301 307	314 320 327	335	358 365 374	383 392 400	408 417 426	436 445 454
S. P.	Н.Р.	3.79 4.31 4.85	5.42 6.05 6.72	7.44 8.22 9.05	9.97 10.9 12.0	13.1 14.2 15.5	16.8 18.1 19.6	21.1 22.7 24.4
1/8"	R.P.M.	280 286 292	299 306 313	328 328 336	345 353 361	370 379 387	396 405 414	423 443 443
S. P.	Н.Р.	3.33 4.28	4.82 5.39 6.01	6.69 7.44 8.23	9.10 10.1 11.0	12.1 13.1 14.3	15.6 16.9 18.3	19.7 21.3 22.9
8 14	R.P.M.	264 270 278	284 291 298	306 314 323	331 339 348	356 366 375	384 394 403	412 421 431
S. P.	H.P.	2.86 3.28 3.73	4.21 4.74 5.34	5.98 6.67 7.42	8.22 9.08 10.0	11.0 12.0 13.1	14.3 15.5 16.9	18.3 19.8 21.3
8 8 8	R.P.M.	246 253 259	267 275 283	291 299 307	316 325 334	343 352 361	371 380 389	399 409 418
S. P.	н. Р.	2.40 2.76 3.17	3.61 4.11 4.65	5.24 5.87 6.57	7.30 8.11 8.97	9.87 10.8 11.9	13.0 14.2 15.4	16.8 18.2 19.7
12/1/2	R.P.M.	226 235 242	249 257 266	275 283 292	301 310 319	328 337 347	356 366 376	386 396 406
S. P.	Н.Р.	1.94 2.25 2.61	3.03 3.47 3.96	4.49 5.06 5.70	6.37 7.12 7.88	8.71 9.66 10.7	11.8 12.9 14.1	15.5 16.9 18.5
% ***	R.P.M.	206 215 223	231 239 247	256 266 275	284 293 302	312 322 332	342 352 363	373 384 394
. Р.	H.P.	1.48 1.76 2.07	2.42 2.81 3.23	3.70 4.20 4.77	5.40 6.10 6.85	7.65 8.56 9.49	10.5 11.7 12.9	14.2 15.4 16.9
14" S.	R.P.M.	183 191 199	208 217 227	236 246 256	265 275 286	296 306 316	327 337 348	358 370 381
	rol bbA	.063 .090	.106 .122 .141	.160 .180 .202	.225 .250 .275	3302	.422	.525
Cu. Ft. Min.	Capacity Air per	17640 19410 21170	22930 24700 26460	28230 30000 31750	33520 35280 37050	38820 40570 42340	44100 45870 47640	49390 51160 52920
slocity Min.	Outlet Ve Ft. per	1000	1300 1400 1500	1600 1700 1800	1900 2000 2100	2200 2300 2400	2500 2600 2700	2800 2900 3000

NO. 11 TURBO-CONOIDAL FAN (TYPE T) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29,92 INCHES BAROMETER

PARTICLE PARTICLE	Cu. Ft. Min.	IstoT	111/4"	S. P.	11/2" S	s. P.	2, %	Э.	21/2"	S. P.	3, 8,	ъ.	3 ½" S.	۵.
.090 335 6.47 362 7.65 408 10.5 451 13.7 497 18.7 533 .122 341 7.19 366 413 11.1 455 14.4 497 18.7 533 .122 347 7.29 366 413 11.1 456 15.1 497 18.7 533 .180 367 10.5 396 11.1 435 15.3 476 18.3 512 20.5 546 .220 374 11.5 398 13.2 441 16.6 480 19.2 51.3 51.7 546 .225 382 12.5 406 14.3 447 17.8 486 22.9 527 24.9 560		Add for Pres	R. P. M.		R. P. M.		R.P.M.		R. P. M.	P	R. P. M.	н. Р.	R.P.M.	н. Р.
141 354 8.77 378 10.2 423 13.0 464 15.9 502 40.5 537 1.80 361 10.5 391 12.1 428 14.1 469 17.1 507 20.5 542 2.20 367 10.5 391 12.1 438 14.8 460 17.1 507 20.5 542 542 542 542 542 542 542 542 551 542 551 542 551 542 552 360 542 552 360 560	000	.090	335 341 347	6.47 7.19 7.96	362 366 372	7.65 8.66 9.26	408 413 418	10.5 11.1 12.0	451 455 459	13.7 14.4 15.1	497	18.7	533	22.5
202 374 11.5 398 13.2 441 16.6 480 19.8 516 23.1 551 252 24.9 556 252 24.9 556 556 556 556 556 556 556 556 556 556 556 556 556 556 556 556 556 556 557 556 557 556 557 40.2 558 557 40.2 557 40.2 557 40.2 557 40.2 557 40.2 557 40.2 557 40.2 557	000	.141 .160 .180	354 361 367	8.77 9.63 10.5	378 385 391	10.2 11.1 12.1	423 435 435	13.0 14.1 15.3	464 469 475	15.9 17.1 18.3	502 507 512	19.5 20.5 21.7	537 542 546	23.6 24.5 25.5
.275 398 14.8 420 16.7 462 20.6 499 24.5 533 28.4 566 .302 406 16.0 428 18.1 468 22.1 506 26.2 539 30.3 572 .300 423 18.7 476 22.1 567 32.9 567 38.3 585 .300 431 20.3 462 22.1 499 28.9 556 33.7 567 38.3 586 .452 448 22.4 468 25.9 507 30.9 542 35.8 578 588 .456 448 27.7 515 32.9 542 35.8 40.8 606 .457 456 27.7 515 32.8 550 40.8 606 .458 466 27.7 515 32.8 550 40.8 606 .558 466 27.7 517 31.4	000	.202 .225 .225	374 382 390	11.5 12.5 13.6	398 406 413	13.2 14.3 15.5	441 447 455	16.6 17.8 19.2	480 486 493	19.8 21.3 22.9	516 522 527	23.1 24.9 26.6	551 556 560	26.8 28.4 30.3
.360 423 18.7 444 20.9 483 25.3 520 29.8 553 34.3 585 .390 431 20.3 462 22.5 491 27.1 527 31.7 560 36.3 591 .455 440 21.8 460 22.5 491 27.1 527 567 38.5 591 .456 448 23.4 468 25.9 507 30.9 542 35.8 575 40.8 606 .560 475 25.2 486 27.7 515 32.8 550 37.9 582 48.0 620 .560 475 28.8 495 31.7 531 37.3 566 42.8 55.6 48.0 626 .561 493 37.2 529 47.1 581 47.8 613 53.6 666 .721 510 40.5 566 47.1 588 53.2 <	000	.275 .302 .330	398 406 416	14.8 16.0 17.3	420 428 436	16.7 18.1 19.4	462 468 476	20.6 22.1 23.7	499 506 513	24.5 26.2 27.9	533 546	28.4 30.3 32.2	566 572 578	32.3 34.3 36.5
.455 448 23.4 468 25.9 507 30.9 542 35.8 575. 40.8 606 .525 457 25.2 476 27.7 515 32.8 557.9 589 43.2 613 .556 456 27.0 486 29.7 523 34.9 557 40.2 589 45.6 620 .568 478 588 45.6 47.8 68 48.0 620 .688 493 32.7 512 35.9 566 47.8 618 58.6 642 .721 510 37.2 569 40.5 566 47.1 588 59.5 666 656	000	.360 .390 .422	423 431 440	18.7 20.3 21.8	444 452 460	20.9 22.5 24.1	483 491 499	25.3 27.1 28.9	520 527 535	29.8 31.7 33.7	553 560 567	34.3 36.3 38.5	585 591 598	38.7 41.0 43.4
.560 475 28.8 495 31.7 531 37.3 566 42.6 596 48.0 626 642 638 493 32.7 512 35.9 548 42.1 581 47.8 613 53.6 642 642 642 510 37.2 529 40.5 566 47.1 598 53.2 628 59.5 656	000	.455	448 457 466	23.4 25.2 27.0	468 476 486	25.9 27.7 29.7	507 515 523	30.9 32.8 34.9	542 550 557	35.8 37.9 40.2	575 582 589	40.8 43.2 45.6	606 613 620	45.8 48.4 51.0
	000	.638	475 493 510	28.8 32.7 37.2	495 512 529	31.7 35.9 40.5	531 548 566	37.3 42.1 47.1	566 581 598	42.6 47.8 53.2	596 613 628	48.0 53.6 59.5	626 642 656	53.7 59.5 66.0

NO. 12 TURBO-CONOIDAL FAN (TYPE T) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

	H.P.	5.42 5.70 6.41	7.16 7.95 8.81	9.74 10.7 11.7	6:-:4:	16.8	4.00	00 t- 00
S. P.		ಸುಬಾರಿ	1-1-00	9011	12.9 14.1 15.4	18 18 19	21.4 23.0 24.9	26.8 28.7 30.8
1,	R.P.M.	272 276 282	288 293 300	307 314 321	328 335 343	351 359 367	374 383 391	399 408 416
ď.	H.P.	4.51 5.13 5.78	6.45 7.20 7.99	8.86 9.78 10.8	11.9 13.0 14.3	15.6 16.9 18.4	20.0 21.6 23.3	25.1 27.0 29.0
1/8 °S	R.P.M.	257 262 268	274 280 287	293 301 308	316 323 331	339 348 355	363 371 379	388 397 406
Э.	H.P.	3.96 4.51 5.10	5.73 6.41 7.16	7.96 8.86 9.79	10.8 12.0 13.1	14.3 15.6 17.0	18.5 20.1 21.8	23.5 25.4 27.2
% "% S.	R.P.M.	242 248 253	260 267 273	280 288 296	303 311 319	327 335 343	352 361 369	378 386 395
S. P.	H.P.	3.40 3.90 4.44	5.01 5.65 6.35	7.11 7.94 8.83	9.78 10.8 11.9	13.0 14.3 15.6	17.0 18.5 20.1	21.8 23.5 25.4
3 18/2	R.P.M.	226 232 238	245 252 259	267 274 282	290 298 306	314 323 331	340 348 357	366 375 383
٠ <u>.</u>	H.P.	2.85 3.28 3.77	4.29 4.90 5.53	6.24 6.98 7.82	8.68 9.65 10.7	11.8 12.9 14.1	15.4 16.9 18.3	20.0 21.7 23.5
1%" S.	R.P.M.	208 215 222	228 236 244	252 259 268	276 284 293	301 309 318	327 335 344	354 363 373
<u>a.</u>	H.P.	2.30 2.68 3.11	3.60 4.13 4.71	5.34 6.02 6.78	7.58 8.47 9.37	10.4 11.5 12.7	14.0 15.3 16.8	18.4 20.2 22.0
\$ ***	R.P.M.	189 197 204	212 219 227	235 243 252	260 268 277	286 295 304	313 323 333	342 352 361
S. P.	H.P.	1.76 2.09 2.45	2.88 3.34 3.85	4.41 5.00 5.67	6.42 7.26 8.15	9.10 10.2 11.3	12.6 13.9 15.3	16.9 18.4 20.1
14" S	R.P.M.	168 175 183	191 199 208	217 226 234	243 252 262	271 281 290	300 309 319	328 339 349
	Add for	.063 .076 .090	.106	.180	.225 .250 .275	.302 .330 .360	.390 .422 .455	.525
Cu. Ft. Min.	Capacity Air per	21000 23100 25200	27290 29390 31490	33600 35700 37780	39890 41990 44090	46190 48280 50380	52480 54590 56680	58780 60880 62980
elocity Min.	Outlet Ve Ft. per	2000	1300 1400 1500	1600 1700 1800	1900 2000 2100	2300	2500 2600 2700	2800 2900 3000

NO. 12 TURBO-CONOIDAL FAN (TYPE T) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29,92 INCHES BAROMETER

٠ <u>.</u>	Н. Р.	26.8	28.0 29.1 30.3	31.9 33.9 36.1	38.5 40.8 43.4	46.1 48.8 51.6	54.5 57.6 60.7	63.9 70.9 78.5
3 1/5" S.	R. P. M.	488	493 497 501	505 509 513	518 524 530	536 542 549	555 562 568	574 588 602
<u>a.</u>	Н. Р.	22.3	23.2 24.3 25.8	27.5 29.6 31.6	33.8 36.0 38.3	40.8 43.2 45.8	48.5 51.4 54.3	57.2 63.8 70.9
3, %	R.P.M.	456	460 465 469	473 479 483	488 494 500	507 513 520	527 533 540	547 562 576.
S. P.	Н. Р.	16.3 17.1 17.9	18.9 20.3 21.8	23.6 25.4 27.2	29.1 31.1 33.2	35.4 37.7 40.1	42.6 45.2 47.8	50.7 56.9 63.4
21/2"	R. P. M.	413 417 421	425 430 435	440 446 452	458 463 470	478 483 490	497 504 511	518 533 549
. P.	Н. Р.	12.5 13.2 14.2	15.4 16.8 18.2	19.7 21.2 22.8	24.5 26.3 28.2	30.1 32.2 34.4	36.7 39.1 41.6	44.4 50.1 56.1
," S	R.P.M.	374 378 383	388 393 398	404 410 417	423 429 436	443 450 458	465 473 479	487 503 518
S. P.	Н. Р.	9.1 10.3 11.0	12.1 13.3 14.5	15.7 17.0 18.4	19.9 21.5 23.1	24.9 26.8 28.7	30.8 33.0 35.3	37.7 42.8 48.3
1 1/2"	R. P. M.	332 336 341	347 353 358	365 372 378	385 393 399	407 414 422	429 437 445	453 469 485
S. P.	Н. Р.	7.71 8.55 9.48	10.4 11.5 12.5	13.7 14.9 16.2	17.6 19.1 20.6	22.3 24.1 25.9	27.9 29.9 32.1	34.3 38.9 44.3
11%"	R.P.M.	307 313 318	324 331 337	343 350 358	365 373 380	388 395 403	411 419 427	435 452 468
IntoTal .s	rol bbA esarq	.090	.141 .160 .180	.202 .225 .250	.302 .330 .330	.390	.455 .489 .525	.638
Cu. Ft. Min.	Capacity of Tie	25200 27290 29390	31490 33600 35700	37780 39890 41990	44090 46190 48280	50380 52480 54590	56680 58780 60880	62980 67180 71380
	Outlet Ver	1200 1300 1400	1500 1600 1700	1800	2100 2200 2300	2400 2500 2600	2700 2800 2900	3000 3200 3400

NO. 13 TURBO-CONOIDAL FAN (TYPE T) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

Outlet V Pres Pres		5%" S. P.	%" S. P.	7/8" S. P.	1, S.	ď
24640 065 155 27110 076 169 169 28570 090 169 169 34490 1122 184 1900 14190 225 224 44340 225 224 4520 330 259 155666 330 259 1	R.P.M. H.P. 1	R.P.M. H.P.	R.P.M. H.P.	R. P. M. H. P.	R.P.M.	H.P.
32020 1.06 1.76 1.84 1.92 1.84 1.900 1.80 2.00 1.80 2.00 1.80 2.00 1.80 2.00 1.80 2.00 1.80 2.20 1.80 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2	192 3.35	209 3.99	223 4.65	237 5.29	251	6.36
	198 3.85	214 4.58	229 5.29	242 6.02	255	6.69
	205 4.43	219 5.21	234 5.98	247 6.78	260	7.52
39430 .160 200 44340 .180 209 44340 .202 204 46810 .225 224 49280 .255 232 51740 .275 242 54520 .330 259 1 56660 .330 259 1 59130 .360 .268 1	211 5.04 218 5.75 225 6.49	226 5.88 232 6.63 239 7.45	240 6.73 246 7.52 252 8.40	253 7.57 259 8.45 265 9.38	265 270 3 277	8.40 9.33 10.4
46810 .225 224 49280 .250 232 51740 .275 242 54220 .330 259 1 56660 .360 268 1	232 7.32 239 8.20 247 9.18	246 8.35 253 9.31 260 10.4	259 9.35 265 10.4 273 11.5	271 10.4 278 11.5 285 12.7	283 290 296	11.4 12.6 13.8
54220 .302 250	255 10.2	268 11.5	280 12.7	292 13.9	303	15.1
56660 .330 259	262 11.3	275 12.7	287 14.0	299 15.3	309	16.5
59130 .360 268	270 12.5	282 14.0	295 15.4	305 16.7	316	18.0
	278 13.8	290 15.3	302 16.8	313 18.3	324	19.7
	285 15.1	298 16.8	309 18.4	321 19.9	332	21.4
	294 16.6	305 18.3	317 20.0	328 21.6	339	23.2
2500 61600 .390 277 14.7 2600 64060 .422 286 16.3 2700 66530 .455 295 18.0	302 18.1	314 20.0	325 21.8	335 23.5	346	25.1
	309 19.8	322 21.7	333 23.6	342 25.3	353	27.1
	318 21.5	329 23.5	341 25.5	350 27.4	361	29.2
2800 68980 .489 303 19.8 2900 71450 .525 313 21.6 3000 73920 .560 322 23.6	327 23.5	338 25.6	349 27.6	358 29.4	369	31.4
	335 25.4	346 27.6	356 29.8	366 31.7	376	333.7
	344 27.6	354 29.7	365 31.9	375 34.1	384	36.2

NO. 13 TURBO-CONOIDAL FAN (TYPE T) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

_									
	S. P.	Н. Р.	31.4	32.9 34.1 35.6	37.4 39.7 42.3	45.1 47.9 50.9	54.1 57.3 60.6	64.0 67.6 71.2	75.0 83.2 92.1
	3 1/2"	R.P.M.	451	455 459 462	466 470 474	479 484 489	495 500 506	512 519 525	530 543 556
	.P.	н. Р.	26.1	27.3 28.6 30.3	32.3 34.7 37.1	39.7 42.3 45.0	47.8 50.7 53.8	57.0 60.3 63.7	67.1 74.9 83.1
	3″ S.	R.P.M.	421	425 429 433	437 442 446	451 456 462	468 474 480	486 492 499	505 519 532
	S. P.	Н. Р.	19.1 20.1 21.1	22.2 23.8 25.6	27.7 29.8 31.9	34.2 36.5 38.9	41.6 44.3 47.0	49.0 53.0 56.1	59.5 66.7 74.4
	2 1/2"	R.P.M.	382 385 389	392 397 402	406 412 417	428 434	440 446 452	459 465 472	479 492 506
	. P.	н. Р.	14.7 15.5 16.7	18.1 19.7 21.4	23.1 24.9 26.8	28.8 30.9 33.1	35.4 37.8 40.4	48.8 48.8 48.8	52.1 58.7 65.8
	2″ S.	R.P.M.	346 349 354	358 362 368	373 379 385	391 396 402	409 415 422	429 436 442	449 464 479
	S. P.	Н. Р.	10.7 12.1 12.9	14.2 15.6 17.0	18.4 20.0 21.6	23.4 25.2 27.2	29.2 31.5 33.7	36.1 38.7 41.4	44.2 50.2 56.6
	1 1/2"	R.P.M.	306 310 315	320 325 331	343 349	356 362 369	375 382 389	396 403 411	419 433 448
	S. P.	Н. Р.	9.04 10.0 11.1	12.3 13.5 14.7	16.0 17.5 19.0	20.7 22.4 24.2	26.1 28.3 30.4	32.7 35.1 37.6	40.2 45.7 52.0
	13%	R.P.M.	283 289 294	299 305 311	316 323 330	337 344 351	358 365 372	379 387 394	402 417 432
	IstoT.	Add for Pres	.090 .106 .122	.141 .160 .180	.202 .225 .250	.275 .302 .330	.360 .390 .422	.455 .489 .525	.638
	Cu. Ft. Min.	Capacity Air per	29570 32020 34490	36960 39430 41900	44340 46810 49280	54220 54220 56660	59130 61600 64060	66530 68980 71450	73920 78830 83770
		Outlet V Ft. per	1200 1300 1400	1500 1600 1700	1900	2200	2400 2500 2600	2800	3000 3200 3400

NO. 14 TURBO-CONOIDAL FAN (TYPE T) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

34" S. P. 78" S. P. 1" S. P.	H.P. R.P.M. H.P. R.P.M. H.P. R.P.M. H.P.	4.63 207 5.39 220 6.14 233 7.37 5.604 217 6.94 229 7.86 242 8.72	6.82 223 7.80 235 8.78 247 9.74 7.68 229 8.72 240 9.80 252 10.8 8.64 234 9.74 246 10.9 257 12.0	9.68 240 10.8 252 12.1 263 13.3 10.8 246 12.1 258 13.3 269 14.6 12.0 254 13.3 264 14.7 275 16.0	18.3 260 14.7 271 16.2 282 17.5 14.7 267 16.3 277 17.7 287 19.1 16.2 274 17.8 284 19.4 294 20.9	17.7 280 19.5 291 21.3 301 22.8 19.5 287 21.3 298 23.0 308 24.8 21.3 294 23.1 304 25.1 314 26.9	28.1 302 25.2 312 27.2 321 29.1 25.2 309 27.4 318 29.3 328 31.4 27.3 317 29.6 325 31.7 335 33.8	29.7 324 32.0 332 34.2 34.2 36.4 32.0 331 34.5 340 36.7 349 39.0 34.5 339 37.0 348 39.5 357 42.0
5/8" S. P.	R. P. M.	194 4 204 204	210 6222 8	235 242	249 13 255 14 262 16	269 17 277 19 284 21	292 299 306 27	314 322 329 339
½" S. P.	R. P. M. H. P.	178 3.88 184 4.47 190 5.14	196 5.84 202 6.67 209 7.53	222 222 9.51 229 10.7	236 11.8 244 13.1 251 14.5	258 16.0 265 17.5 273 19.2	280 21.0 287 22.9 295 24.9	304 27.2 312 29.5 319 32.0
S. P.	H.P.	3.14 3.65 4.23	4.90 5.63 6.41	7.27 8.19 9.23	10.3 11.5 12.8	14.1 15.7 17.3	19.0 20.8 22.8	25.1 27.4 29.9
***	P. R. P. M.	39 162 34 169 35 175	92 182 55 188 23 194	30 202 30 209 72 216	74 · 223 88 230 1 237	245 3 253 4 261	269 277 3 285	3052
14" S. P.	R. P.M. H.P.	144 2.39 150 2.84 157 3.35	164 3.92 171 4.55 179 5.23	186 6.00 194 6.80 201 7.72	208 8.74 216 9.88 224 11.1	232 12.4 241 13.9 249 15.4	257 17.1 265 18.9 274 20.9	282 22.9 291 25.0 299 27.4
	noi bbA	.063 .090	.106	.160	.225	3000	.390 .422 .455	.489
Cu. Ft. Min.	Capacity 19q 1iA	28580 31440 34300	37140 40000 42870	45730 48590 51430	54300 57150 60020	62870 65720 68580	71440 74300 77170	80000 82870 85730
elocity Min.	Outlet V Ft. per	1000	1300 1400 1500	1600 1700 1800	1900 2000 2100	2200 2300 2400	2500 2600 2700	2800 2900 3000

NO. 14 TURBO-CONOIDAL FAN (TYPE T) CAPACITIES AND STATIC PRESSURES

	S. P.	H.P.	36.5	38.2 39.6 41.2	43.4 46.1 49.1	52.3 55.6 59.0	62.7 66.5 70.3	74.2 78.4 82.6	86.9 96.4 106.8
	3 1/5"	R. P. M.	419	426 426 429	433 437 440	444 449 454	459 464 470	476 482 487	492 504 516
	S. P.	Н. Р.	30.3	31.6 33.1 35.2	37.5 40.3 43.1	46.0 49.1 52.1	52.55 52.85 52.85 53.85	66.1 70.0 73.9	77.8 86.8 96.4
	3" S	R.P.M.	391	394 399 402	406 410 414	419 424 429	434 440 446	452 457 463	469 482 494
	S. P.	Н. Р.	22.2 23.3 24.4	25.8 27.6 29.7	32.1 34.5 37.0	39.7 42.4 45.1	48.2 51.4 54.5	57.9 61.5 65.1	69.0 77.4 86.3
HEIEK	2 1/2"	R. P. M.	354 357 361	364 369 373	377 382 387	392 397 403	410 414 420	426 432 438	444 457 470
BAKON	а. С	Н. Р.	17.1 18.0 19.4	21.0 22.8 24.8	26.8 28.9 31.1	3.33.4 4.85.4	41.0 43.9 46.9	50.0 53.2 56.6	60.4 68.1 76.4
INCLES	, % , %	R. P. M.	321 324 329	332 337 342	347 352 357	363 368 374	379 386 392	399 405 411	417 431 444
70° F. AND 29.92 INCHES BAROMETER	S. P.	Н. Р.	12.4 14.0 15.0	16.5 18.0 19.7	21.3 23.2 25.1	27.1 29.2 31.5	33.9 36.5 39.1	41.9 44.9 48.0	51.3 58.2 65.7
F. AN	1 1/2"	R.P.M.	284 288 292	297 302 307	313 319 324	330 337 342	349 355 362	368 374 382	389 402 416
A1 /V	s. P.	Н. Р.	10.5 11.7 12.9	14.2 15.6 17.1	18.6 20.3 22.1	24.0 26.0 28.1	30.3 32.8 35.3	37.9 40.8 43.7	46.7 53.0 60.3
	.3/1	R. P. M.	263 268 273	278 284 289	294 300 307	313 319 326	332 339 346	352 359 366	373 387 401
	Add for Total Press.		.106	.141 .160 .180	.205 .225 .250	.275 .302 .330	.360 .390 .422	.455 .489 .525	.560
	Cu. Ft. Min.	Capacity Air per	34300 37140 40000	42870 45730 48590	51430 54300 57150	60020 62870 65720	68580 71440 74300	77170 80000 82870	85730 91440 97160
	elocity Min.	Outlet Vor	1200 1300 1400	1500 1600 1700	1800 1900 2000	2100 2200 2300	2400 2500 2600	2700 2800 2900	3000 3200 3400

NO. 15 TURBO-CONOIDAL FAN (TYPE T) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

ď.	H.P.	8.46 8.91 10.0	11.2 12.4 13.8	15.2 16.7 18.3	20.1 22.0 24.0	26.2 28.4 30.8	33.4 38.8 38.8	44.8 48.2 48.2
1, S.	R. P. M.	217 221 225	230 235 240	245 251 257	263 268 274	281 287 293	299 306 313	319 326 333
-G.	Н.Р.	7.04 8.01 9.02	10.1 11.3 12.5	13.8 15.3 16.8	18.5 20.3 22.3	24.4 26.4 28.8	31.2 33.7 36.4	39.2 42.2 45.3
7%" S.	R.P.M.	205 209 214	219 224 229	235 241 247	253 259 265	271 278 284	291 297 303	310 317 325
<u>a</u>	Н.Р.	6.19 7.04 7.97	8.96 10.0 11.2	12.5 13.8 15.3	16.9 18.7 20.5	22.4 24.4 26.6	29.0 31.4 34.0	36.7 39.6 42.5
34" S.	R.P.M.	193 198 203	208 213 219	224 230 237	243 249 255	261 268 275	281 289 295	302 309 316
ď.	Н. Р.	5.31 6.10 6.93	7.83 8.82 9.92	11.1 12.4 13.8	15.3 16.9 18.6	20.4 22.4 24.4	26.6 28.9 31.3	34.1 36.8 39.6
\$ "%"	R. P. M.	181 185 190	196 201 207	213 219 225	232 238 245	251 258 265	272 279 285	293 300 307
ъ.	Н.Р.	4.46 5.13 5.90	6.71 7.65 8.64	9.74 10.9 12.2	13.6 15.1 16.7	18.4 20.1 22.1	24.1 26.3 28.6	31.3 33.9 36.7
1/2" S.	R. P. M.	166 172 177	183 189 195	201 207 214	221 227 234	241 247 255	261 268 275	283 291 298
.P.	Н. Р.	3.60 4.19 4.86	5.63 6.46 7.36	8.35 9.41 10.6	11.8 13.2 14.7	16.2 18.0 19.8	21.9 23.9 26.2	31.3 293 34.1 302 36.7 310 39.2 310 39.6 310 39.2 317 42.2 326 36.7 30 39.6 31.7 42.2 326 36.7 30.7 39.6 31.6 42.5 333
3%,,	R.P.M.	151 157 163	169 175 181	188 195 201	208 215 221	229 236 243	251 258 266	273 281 289
٠ <u>.</u>	H.P.	2.75 3.26 3.85	4.50 5.22 6.01	6.89 7.81 8.87	10.0 11.4 12.7	14.2 15.9 17.7	19.6 21.7 24.0	26.3 28.7 31.4
14" S.	R.P.M.	134 140 146	153 159 167	173 181 187	194 201 209	217 225 232	240 247 255	263 271 279
	ol bbA Pre	.063 .076 .090	.106	.160	.225 .250 .275	.302 .330 .360	.390 .422 .455	.489
Cu. Ft. Min.	Vicapacity 19q riA	32800 36090 39370	42650 45920 49200	52490 55780 59040	62320 65600 68900	72180 75440 78720	85300 85300 88580	91840 95120 98410
elocity Min.	Outlet V	1000	1300 1400 1500	1700	1900 2000 2100	2200	2500 2600 2700	2800

NO. 15 TURBO-CONOIDAL FAN (TYPE T) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

.nih	ou. Ft. Min.		11%"	S. P.	13%	S. P.	2, %	a,	2 1/3"	S. P.	3″ S.	٥.	3 1/2"	S. P.
	Capacity C	Add for sessing	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R. P. M.	Н. Р.	R. P. M.	Н. Р.	R.P.M.	Н. Р.
1	39370 42650 45920	.090 .106 .122	245 250 255	12.0 13.4 14.8	265 269 273	14.2 16.1 17.2	299 303 307	19.6 20.6 22.2	331 333 337	25.4 26.7 28.0	365	34.8	391	41.9
	49200 52490 55780	.141	259 265 269	16.3 17.9 19.6	277 282 287	19.0 20.7 22.6	310 314 319	24.1 26.2 28.4	340 344 348	29.6 31.7 34.1	368 372 375	36.3 38.0 40.4	397 401	43.8 45.5 47.3
	59040 62320 65600	.202 .225 .255	274 280 286	21.4 23.3 25.3	292 297 303	24.5 26.6 28.8	328 338 333 333	30.8 33.2 35.7	352 357 361	36.9 39.7 42.5	379 383 387	43.0 46.2 49.4	404 407 411	49.8 52.9 56.4
	68900 72180 75440	.302 .330 .330	292 304	27.5 29.8 32.2	308 314 319	31.1 33.6 36.1	339 343 349	38.4 41.1 44.1	366 371 376	45.5 48.7 51.8	391 395 400	52.8 56.3 59.9	415 419 424	60.1 63.8 67.8
	78720 82000 85300	.360 .390 .422	323 323	34.8 37.7 40.5	325 331 337	38.9 41.9 44.9	354 360 366	47.1 50.4 53.8	381 387 391	55.4 59.0 62.6	405 411 416	63.7 67.5 71.6	429 433 439	72.0 76.3 80.7
	88580 91840 95120	.455 .489 .525	329 335 341	43.5 46.8 50.1	343 349 356	48.1 51.5 55.1	372 378 383	57.4 61.0 64.9	397 403 409	66.5 70.5 74.7	421 427 432	75.8 80.3 84.8	444 449 455	85.2 90.0 94.8
	98410 104950 111530	.560 .638 .721	348 361 374	53.6 60.8 69.2	363 375 388	58.8 66.8 75.4	389 402 415	69.3 78.2 87.6	415 426 439	79.2 88.8 99.0	437 449 461	89.3 99.7 110.7	459 471 481	99.8 110.7 122.6

NO. 16 TURBO-CONOIDAL FAN (TYPE T) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

5. P. P. 76 S. P. 77 S. P. 78 S. P.	ity .	.19	Is														
per 12 per </th <th>isolə niM</th> <th>Cu. I Min</th> <th>stoT .e</th> <th>, , , , , , , , , , , , , , , , , , ,</th> <th>i</th> <th><i>i</i></th> <th><u>.</u></th> <th>å S</th> <th>·</th> <th>si S</th> <th><u>.</u></th> <th>% %</th> <th><u>د</u></th> <th>\$ 1,8/2</th> <th>٠<u>.</u></th> <th>ر ا ا</th> <th>۳.</th>	isolə niM	Cu. I Min	stoT .e	, , , , , , , , , , , , , , , , , , ,	i	<i>i</i>	<u>.</u>	å S	·	si S	<u>.</u>	% %	<u>د</u>	\$ 1,8/2	٠ <u>.</u>	ر ا ا	۳.
37320 063 126 3.12 142 4.10 156 5.07 170 6.04 181 7.04 183 8.01 196 9.11 204 44800 .076 131 3.71 148 4.76 161 5.84 174 6.94 186 8.01 196 9.01 204 55240 143 5.94 164 7.35 184 8.91 196 9.01 10.3 206 11.4 206 11.5 220 11.5 220 220 11.5 220 11.5 220 11.5 220 11.5 220 11.5 220 11.5 220 11.5 220 11.5 220 11.5 220 11.5 220 11.5 220 11.5 220 11.5 220 11.5 220 11.5 220 11.5 220 11.5 220 11.5 220 11.5 220 11.4 220 11.1 220 11.4	Outlet V Ft. per	Capacity Air per	Add for Pres	R. P. M.		R. P. M.			H.P.	R. P. M.	H.P.	R.P.M.		R. P. M.		R. P. M.	H.P.
48510 106 143 5.12 159 6.40 171 7.63 184 8.91 195 10.2 206 11.5 210 11.5 210 12.8 216 12.8 220 11.4 210 11.2 220 11.5 210 11.2 220 11.4 210 12.8 220 12.8 220 11.8 220 11.8 220 11.8 220 11.8 220 11.8 220 11.8 220 11.8 220 11.8 220 11.8 220 11.8 220 11.8 220 11.8 220 11.8 220 11.8 220 12.1 200 11.8 220 12.1 200 11.8 220 12.1 200 11.8 200 11.8 200 11.1 200 11.8 200 11.1 200 11.1 200 11.1 200 11.1 200 11.1 200 11.1 200 11.1 2	1000	37320 41060 44800	.063 .076 .090	126 131 137	3.12	142 148 153	4.76	156 161 166	5.07 5.84 6.71	170 174 178	6.04 6.94 7.89	181 186 190	7.04 8.01 9.06	193 196 201	8.01 9.11 10.3	1	9.63 10.1 11.4
59720 160 163 7.83 176 9.50 189 11.1 200 12.7 210 14.2 220 15.4 230 15.7 220 17.4 236 23.2 17.4 236 23.2 23.2	1300 1400 1500	48510 52240 55980	.106	143 149 156	5.12 5.94 6.84	159 164 170	6.40 7.35 8.37	171 177 183	7.63 8.70 9.83		8.91 10.0 11.3		10.2	206 210 215	11.5 12.8 14.2		12.7
70900 225 182 11.4 195 13.5 207 15.4 218 17.2 228 19.3 237 21.1 246 74640 2250 125 189 12.9 201 15.1 213 17.2 223 21.3 248 25.1 23.2 23.1 25.1 25.1 25.2 23.2 24.2 23.2 24.2 25.2 25.5 25.5 25.4 25.1 25.2 25.4 25.2 25.4	1600 1700 1800	59720 63460 67170	.160	163 169 176	7.83 8.88 10.1		9.50 10.7 12.1		11.1 12.4 13.9	200 206 211	12.7 14.1 15.7		14.2 15.8 17.4	220 226 231	15.8 17.4 19.2		17.3 19.0 20.9
82120 302 203 16.2 214 18.4 226 20.9 236 23.4 25.5 27.8 261 27.8 261 37.8 261 37.8 261 37.8 261 37.8 261 37.9 27.8 28.8 27.8 261 37.9 27.8 26.4 27.9 27.8 26.4 27.9 27.8 26.4 27.8 26.1 37.1 27.9 27.9 27.8 27.8 26.1 37.1 27.0 27.0 27.0 27.8 26.4 37.0 27.8 26.1 37.1 27.0	1900 2000 2100	70900 74640 78380	.225 .250 .275	182 189 196	11.4 12.9 14.5		13.5		15.4 17.2 19.0	218 223 229	17.4 19.2 21.2		19.3 23.3		21.1 23.1 25.4		22.9 25.0 27.3
93300 .390 225 22.3 225 24.9 245 27.4 255 30.2 264 33.0 273 35.5 281 383 287 38.3 287 38.3 287 38.3 287 38.7 284 41.4 293 104500 .455 239 277 .86 35.6 277 .88.7 284 41.4 293 104500 .455 256 32.8 276 35.6 277 .88.7 284 41.4 293 108230 .525 254 32.7 266 35.6 281 41.8 291 441.4 300 111970 .560 .255 277 38.7 289 48.0 304 316	2200 2300 2400	85830 85830 89570	.302 .330 .360		16.2 18.1 20.1		18.4 20.4 22.5		20.9 22.9 25.1		23.2 25.4 27.8		25.5 27.8 30.2		27.8 30.1 32.7		29.8 32.4 35.1
104500 -489 246 30.0 256 32.8 266 35.6 273 281 41.8 281 44.6 300 1108230 -525 254 32.7 264 35.8 273 38.5 281 41.8 289 45.1 298 48.0 306 111970 -560 262 35.7 271 39.0 280 41.7 288 45.1 296 48.0 304 11970 -560 262 35.7 271 39.0 280 41.7 288 45.1 296 48.3 304 51.6 312	2500 2600 2700	93300 97040 100780	.390 .422 .455		22.3 24.7 27.3		24.9 27.2 29.8		27.4 30.0 32.5		30.2 32.9 35.6		33.0		35.5 41.4		38.0 41.0 44.2
	2900	104500 108230 111970	.525		30.0 32.7 35.7		32.8 35.8 39.0		35.6		38.7 41.8 45.1		41.8 45.1 48.3		44.6 48.0 51.6		47.6 51.0 54.8

NO. 16 TURBO-CONOIDAL FAN (TYPE T) CAPACITIES AND STATIC PRESSURES AT 70° F. AND 29.92 INCHES BAROMETER

	S. G.	H.P.	47.6	49.8 51.7 53.8	56.7 60.2 64.1	68.4 72.6 77.1	81.9 86.8 91.8	96.9 102.4 107.9	113.5 126.0 139.5
	3 1/5"	R.P.M.	366	373 373 376	379 382 385	389 393 398	402 406 411	416 421 426	431 441 451
	٥.	Н. Р.	39.6	41.3 43.3 45.9	49.0 52.6 56.2	60.1 64.1 68.1	72.5 76.8 81.4	86.3 91.4 96.5	101.6 113.4 126.0
	ş, Ş	R. P. M.	342	345 349 352	355 359 363	366 371 375	380 385 390	395 400 405	421 432
	رن ح.	Н. Р.	28.9 30.4 31.9	33.7 36.1 38.8	41.9 45.1 48.3	51.8 55.4 59.0	63.0 67.1 71.2	75.7 80.3 85.0	90.1 101.1 112.6
1	23%"	R.P.M.	310 313 316	319 323 326	334 334 339	343 348 353	358 363 368	373 378 383	389 400 411
2	٩.	Н. Р.	22.3 23.5 25.3	27.4 29.8 32.3	35.1 37.7 40.6	43.7 46.8 50.2	53.6 57.3 61.2	65.3 69.4 73.9	78.9 89.0 99.7
TANK WALLES BAROMETER	2, %	R. P. M.	281 284 288	291 294 299	303 308 312	318 322 327	332 338 343	349 354 360	365 377 389
72.27	s. P.	Н. Р.	16.2 18.3 19.6	21.6 23.6 25.7	27.9 30.3 32.8	35.4 38.2 41.1	44.3 47.6 51.1	54.7 58.6 62.7	67.0 76.0 85.8
1: 000	13%	R. P. M.	249 252 256 256	260 264 269	274 279 284	.289 294 299	305 311 316	322 328 334	340 352 364
2	~ ~	Н. Р.	13.7 15.2 16.9	18.6 20.4 22.3	24.3 26.5 28.8	31.3 33.9 36.7	39.6 42.9 46.1	49.5 53.2 57.0	60.9 69.2 78.7
	1%"	R. P. M.	230 234 239	243 248 253	257 263 268	274 280 285	291 296 303	308 314 320	326 339 351
	fatoT 70		.106	.141 .160 .180	.202 .225 .250	.275 .302 .330	.360 .390 .422	.455 .489 .525	.560 .638 .721
	ty Cu. Ft. er Min.	Capacit q riA	44800 48510 52240	55980 59720 63460	67170 70900 74640	78380 82120 85830	89570 93300 97040	100780 104500 108230	111970 1119400 126900
	Velocity er Min.	Outlet Pt. pe	1300	1500 1600 1700	1800 1900 2000	2100 2200 2300	2400 2500 2600	2700 2800 2900	3000 3200 3400

Induced Draft Tables

Induced draft tables are given for both Planoidal and Niagara Conoidal fans, with gases at 300° and 550° Fahr. The 300° tables are to be used in case the gases are passed through an economizer. These tables give the boiler horsepower that will be served, together with the speed, cubic feet of gases handled per minute, and the power required to drive the fan, for different sizes of fans operating at various pressures measured at the breeching of the boiler. Thus, if we operate a 100-inch Planoidal fan handling gases at 550° at 355 R. P. M., and 0.75 inch static pressure, we will be able to develop 670 boiler H. P. In case we speed up to 502 R. P. M., with a pressure of 1.5 inches, we will be able to develop 950 boiler H. P., or an increase of 41 per cent. The power required to drive the fan will increase from 7.06 H. P. to 20.0 H. P.

Special Narrow Induced Draft Fans

The tables of special steel plate fans to be direct connected to Buffalo steam engines and used for induced draft work will be found especially convenient when selecting apparatus for this purpose. The first column gives a number, which refers to that particular combination of engine and fan. It will be noticed that these are narrow, tall fans, of the special high efficiency type, operating at such a speed as to make them suitable for direct connection to steam engines.

These fans are to be operated with a static pressure of 1.69 inches at the breeching of the boiler, with gases at 550°, and develop 50 per cent. overload on the boiler. These combinations are so selected that a peak load on the boiler of at least 100 per cent. may be carried for a limited time, and approximately 50 per cent. overload all of the time. The engines are to be operated at their normal rated cut-off and at the speed indicated, the steam pressure required being indicated in the third column. The above is based on the assumption that under average conditions a pressure of 0.75 in. at the up-take will be required, when operating at normal rated capacity.

BUFFALO PLANOIDAL (TYPE L) EXHAUSTERS WITH ECONOMIZER INDUCED DRAFT FAN CAPACITIES

Press.		Н. Р.	4.34 6.21 6.63	11.1 14.0 17.3	21.0 25.0 29.2	33.8 38.6 44.1	50.0 56.0 62.3	69.1 76.0 83.7	91.2 99.6 107.8
1 1/2 In. or 0.865 Oz. Static Press.	Fan	Vol.	6660 9590 13070	17020 21550 26640	32200 38350 44700	52170 59860 67970	76910 86340 95860	106600 117300 128600	140700 153300 166100
or 0.865		R.P.M.	871 725 622	543 483 435	396 363 334	310 290 272	256 241 228	217 207 197	181 181 174
1 1/2 In.	Boiler H. P. at	24.4 A.P.M.	270 395 535	700 885 1090	1320 1570 1830	2140 2455 2785	3150 3540 3930	4370 4810 5270	6285 6810
Press.	i	H.P.	3.30 4.72 6.44	8.41 10.7 13.2	15.9 19.0 22.2	25.7 29.4 33.6	38.0 42.6 47.3	52.5 57.8 63.6	69.4 75.7 82.0
1¼ In. or 0.721 Oz. Static Press.	Fan	Vol.	6080 8750 11940	15540 19670 24320	29390 35000 40800	47630 54640 62050	70200 78810 87500	97330- 107100 117400	128500 140000 151600
or 0.721		R.P.M.	795 662 568	495 441 397	361 331 305	283 265 248	234 220 208	198	172 166 159
1 1/4 In.	Boiler H. P. at	24.4 A.P.M.	250 360 490	635 805 995	1205 1435 1670	1950 2240 2545	2875 3230 3585	3990 4390 4810	5265 5740 6215
Press.		н. Р.	2.36 3.38 4.61	6.02 7.63 9.41	11.4 13.6 15.9	18.4 21.0 24.0	27.2 30.5 33.9	37.6 41.4 45.5	49.7 54.2 58.7
Z. Static Press.	Fan	Vol.	5440 7830 10670	13900 17600 21750	26290 31310 36500	42600 48880 55500	62800 70500 78270	87050 95770 105020	114900 125160 135620
1 In. or 0.577 Oz.		R. P. M.	711 592 508	443 394 355	323 296 273	253 237 222	209 197 186	177 169 161	154 148 142
1 In.	Boiler H. P. at	24.4 A.P.M.	225 320 430	570 720 890	1080 1285 1495	1745 2005 2275	2575 2890 3210	3570 3925 4300	4710 5130 5560
	Size of Fan		2002	888	1300	150 150 160	1980	200 210 220	230 240 250

INDUCED DRAFT FAN CAPACITIES

Fan H. P. A A C. Static Press. Fan Fan H. P. A A C. Static Press. 7690 6.68 11000 9.56 110000 110000 11000 110000 11000 11000 110000 110000 110000 11000 11000 110000 11000 11000 11000 11000	Fan Fan H. P.	Pan Fan H. P. at R. P. M. Vol. H. P. A. P. M. R. P. M. 1006 7690 6.68 350 1124 837 11070 13.0 690 701 557 24.86 17.0 900 701 557 24.80 17.0 900 701 557 24.80 21.6 1410 623 557 37180 32.3 1705 561 45 37180 32.3 1705 468 45 419 45.0 2365 432 386 69120 52.1 2760 460 386 69120 68.0 3595 351 279 99700 86.0 4670 331 279 99700 86.2 4670 331 279 11700 96.3 5640 264 280 1128.0 116.3 6805 265
	G 88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	G 88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	G 88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	G 88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	G 88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Boiler H. P. at 24.4 A. P. M. 350 505 6905 6905 6905 6905 2365 2365 2365 2365 2365 6905 6905 6905 6805 6805 7445 8110	## Doller H. P. at 24.4 A. P. M.	## Policy
	R. P. M. R. P. M. 1124 936 803 701 701 623 561 4432 400 337 256 280 280 280 280 284 244	R. P. M. Vol. 1124 8600 936 12880 803 12880 803 27880 511 41560 400 67350 375 87728 331 99280 331 11500 280 137600 284 181700 284 181700 284 181700

PACITIES EXHAUSTERS

550°

INDUCED DRAFT FAN CAPACITIES BUFFALO PLANOIDAL (TYPE L) EXHAUSTERS

	½ In.	or 0.288	½ In. or 0.288 Oz. Static Press.	Press.	3,4 In.	or 0.433	34 In. or 0.433 Oz. Static Press.	Press.	I In.	ог 0.577	1 In. or 0.577 Oz. Static Press.	Press.
of Of Fan	Boiler H. P. at		Fan		Boiler H. P. at		Fan		Boiler H. P. at		Fan	
	32.4 A. P. M.	R. P. M.	Vol.	Н. Р.	32.4 A. P. M.	R. P. M.	Vol.	H.P.	32.4 A. P. M.	R.P.M.	Vol.	Н. Р.
2000	135	580	4440	.96	170	711	5440	1.77	195	821	6280	2.72
	195	483	6390	1.38	240	592	7830	2.54	280	683	9040	3.91
	270	415	8710	1.89	330	508	10670	3.47	380	587	12320	5.33
860	350	362	11350	2.46	430	444	13900	4.53	495	512	16050	6.96
100	445	323	14380	3.12	545	395	17600	5.73	630	456	20330	8.81
100	550	290	17760	3.86	670	355	21760	7.06	775	410	25120	10.9
120	665	264	21470	4.67	810	323	26290	8.55	935	373	30360	13.2
	790	242	25570	5.55	965	296	31320	10.2	1115	342	36160	15.7
	920	223	29810	6.51	1125	273	36510	11.9	1300	315	42160	18.4
150	1075	207	34760	7.53	1315	254	42570	13.8	1515	293	49160	21.3
	1230	193	39910	8.59	1505	237	48800	15.8	1740	273	56440	24.3
	1400	182	45330	9.80	1700	223	55100	18.0	1980	257	64100	27.7
180	1585	171	51280	11.1	1940	210	62800	20.4	2240	242	72520	31.4
	1775	161	57580	12.5	2175	198	70500	22.9	2525	228	81420	35.2
	1975	152	63920	13.8	2415	186	78290	25.4	2790	215	90400	39.1
200	2195	144	71100	15.4	2685	177	87060	28.2	3105	204	100530	43.4
210	2415	138	78200	16.9	2955	169	95780	31.0	3415	195	110660	47.8
220	2650	132	85770	18.6	3240	161	105050	34.2	3745	186	121300	52.6
230	2895	126	93840	20.3	3550	154	114900	37.3	4095	178	132700	57.4
240	3155	121	102200	22.1	3865	148	125200	40.7	4460	171	144560	62.6
250	3420	116	110800	24.0	4185	142	135640	44.1	4835	164	156820	67.8

INDUCED DRAFT FAN CAPACITIES BUFFALO PLANOIDAL (TYPE L) EXHAUSTERS

	1 1 In.	or 0.721	1 1/2 In. or 0.721 Oz. Static Press.	Press.	1 1 kg In.	or 0.865	1 1/5 In. or 0.865 Oz. Static Press.	c Press.	2 In.	or 1.154	2 In. or 1.154 Oz. Static Press.	Press.
Size Fan	Boiler H. P. at		Fan		Boiler H. P. at		Fan		Boiler H. P. at		Fan	
	32.4 A. P. M.	R. P. M.	Vol.	H. P.	32.4 A. P. M.	R.P.M.	Vol.	H.P.	32.4 A. P. M.	R. P. M.	Vol.	Н. Р.
200	215 310 425	918 764 656	7020 10110 13770	3.80 5.46 7.45	235 340 465	1006 837 719	7690 11070 15090	5.00 7.18 9.79	270 395 540	1160 966 830	8880 12790 17430	7.69
885	555 700 865	572 510 458	17940 22730 28080	9.72 12.3 15.2	605 770 950	627 559 502	19660 24900 30760	, 12.8 16.2 20.0	700 890 1095	724 645 580	22700 28750 35530	19.7 24.9 30.7
130	1050 1250 1455	417 382 352	33940 40420 47130	18.4 22.0 25.6	1150 1365 1595	457 419 386	37180 44290 51630	24.2 28.9 33.7	1325 1590 1840	528 484 446	42940 51440 59630	37.2 44.5 51.9
550 600 600 600 600 600 600 600 600 600	1695 1950 2210	328 305 287	54960 63110 71660	29.7 34.0 38.8	1860 2135 2425	359 334 315	60200 69120 78500	39.1 44.7 51.0	2145 2435 2800	415 383 364	69530 79820 90660	60.1 68.7 78.5
190	2500 2810 3120	271 255 240	81070 91000 101100	43.9 49.2 54.6	2740 3075 3420	296 279 263	88810 99710 110800	57.7 64.7 71.9	3165 3555 3950	342 323 304	102600 115200 127900	88.8 99.6 110.6
2200	3470 3815 4185	228 218 208	112400 123600 135600	60.6 66.7 73.5	3800 4180 4585	250 239 228	123100 135500 148600	79.7 87.7 96.6	4390 4830 5300	289 276 263	142200 156400 171600	122.8 135.1 148.7
230 240 250	4580 4990 5400	199 191 183	148300 161600 175100	80.1 87.4 94.7	5015 5465 5920	218 210 201	162500 177000 191800	105.3 115.0 124.5	5795 6310 6835	252 242 232	187700 204500 221500	162.2 177.0 191.7
260 270 280	5850 6295 6750	176 170 163	189500 204000 218700	102.4 110.4 118.5	6405 6895 7410	192 186 179	207500 223400 240000	134.6 145.1 155.8	7400 7965 8555	222 214 207	239700 258000 277100	207.3 223.5 239.8

INDUCED DRAFT FAN CAPACITIES BUFFALO NIAGARA CONOIDAL (TYPE N) FANS

	0.288 0	½ In. or 0.288 Oz. Static Press.	Press.	34 In.	or 0.433	34 In. or 0.433 Oz. Static Press.	Press.	1 In.	or 0.577	1 In. or 0.577 Oz. Static Press.	Press.
		Fan		Boiler H. P. at		Fan		Boiler H. P. at		Fan	
100	R.P.M.	Vol.	Н. Р.	32.4 A. P. M.	R.P.M.	Vol.	Н. Р.	A. P. M.	R.P.M.	Vol.	H. P.
	764 655 573	2290 3120 4070	.33 .59	85 120 155	935 802 702	2810 3820 4990	.61 .83 1.09	100 135 180	1080 926 810	3240 4410 5760	.94 1.28 1.67
	509	5160	.75	195	624	6310	1.38	225	720	7290	2.12
	458	6360	.92	240	561	7800	1.70	275	648	9000	2.61
	417	7700	1.12	290	510	9430	2.06	335	589	10890	3.16
	382	9160	1.33	345	468	11220	2.45	400	540	12960	3.76
	327	12470	1.81	470	401	15280	3.33	545	463	17640	5.12
	286	16290	2.37	615	351	19950	4.35	710	405	23040	6.69
	255	20620	3.00	780	312	25250	5.51	900	360	29160	8.47
	229	25450	3.70	960	281	31180	6.79	1110	324	36000	10.5
	209	30800	4.47	1165	256	37730	8.22	1345	295	43560	12.7
	191	36650	5.32	1385	234	44900	9.78	1600	270	51840	15.1
	176	43020	6.25	1625	216	52690	11.5	1880	249	60840	17.7
	164	49890	7.24	1885	201	61100	13.3	2180	232	70560	20.5
	153	57270	8.31	2165	187	70150	15.3	2500	216	81000	23.5
	144	65160	9.46	2465	176	79800	17.4	2845	203	92150	26.8
	135	73540	10.7	2780	166	90100	19.6	3210	191	104000	30.2
	127	82450	12.0	3120	156	101000	22.0	3600	180	116600	33.9
	121	91920	13.4	3480	148	112600	24.5	4010	171	130000	37.7
	115	101800	14.8	3850	140	124700	27.2	4445	162	144000	41.8

INDUCED DRAFT FAN CAPACITIES
FFALO NIAGARA CONOIDAL (TYPE N) FANS

	Press.		Н. Р.	2.66 3.62 4.72	6.00 8.94 8.94	10.6 14.5 18.9	24.0 29.6 35.8	42.6 50.0 57.9	66.5 75.7 85.4	95.8 106.7 118.2
	2 In. or 1.154 Oz. Static Press.	Fan	Vol.	4580 6240 8150	10310 12730 15400	18330 24950 32580	41240 50900 61600	73300 86040 99800	114600 130000 147100	164900 183900 203700
	or 1.154		R. P.M.	1527 1310 1146	1018 916 833	764 655 573	509 458 417	382 328 328	306 287 270	242 242 229
	2 In.	Boiler H. P. at	32.4 A. P. M.	140 195 250	320 395 475	565 770 1005	1275 1570 1900	2260 2655 3080	3535 4015 4540	5090 5680 6285
N) FAN	c Press.		Н. Р.	1.73 2.35 3.07	3.90 4.80 5.81	6.91 9.41 12.3	15.6 19.2 23.3	27.7 32.5 37.6	43.2 49.2 55.5	62.2 69.3 76.8
AL (IYPE	1 ½ In. or 0.865 Oz. Static Press.	Fan	Voi.	3970 5400 7050	8920 11000 13330	15860 21600 28200	35700 44100 53300	63450 74460 86400	99200 113100 127300	142700 159100 176200
CONON	or 0.865		R. P. M.	1322 1133 992	881 793 721	661 567 496	441 397 361	331 305 284	264 249 234	220 209 198
IAUAKA	1 ½ In.	Boiler H. P. at	A. P. M.	123 165 220	275 340 410	490 665 870	1100 1360 1645	1960 2300 2665	3060 3490 3930	4405 4910 5440
BUFFALU MAUAKA CONOIDAL (IYPE N) FANS	Static Press.	-	Н. Р.	1.31 1.79 2.33	2.96 3.65 4.42	5.25 7.15 9.35	11.8 14.6 17.7	21.0 24.7 28.6	32.9 37.4 42.2	47.3 52.7 58.4
Da	l Oz. Stati	Fan	Vol.	3620 4930 6440	8150 10060 12180	14490 19720 25760	32600 40250 48700	57960 68000 78900	90560 103000 116300	130300 145300 161000
-	1¼ In. or 0.721 Oz.		R. P. M.	1208 1035 906	805 725 659	604 518 453	403 362 330	302 279 259	242 227 214	201 191 181
	1½ In	Boiler H. P. at	A. P. M.	110 150 200	250 310 375	445 610 795	1000 1245 1505	1790 2100 2435	2795 3180 3590	4020 4485 4970
		of Fan		∞w4 %	4 m m	97·0	9 110 11	252	15 16 17	20 20

DIRECT CONNECTED TO BUFFALO HIGH SPEED CLASS "A" ENGINES SPECIAL STEEL PLATE INDUCED DRAFT FANS

Normal	Rating	1280 1280 1280 1280 1280 1280 1280 1280
Boiler H. P.	Socioped Social Overload	225 226 200 200 200 200 200 200 200 200 200
Cu. Ft. Gas per Min. at	sso F. and 1.69" Static Press.	7260 19400 114400 114400 114400 114400 114400 114400 11450
Rev.	per Min.	002488888888888888888888888888888888888
I. H. P.	Required	**************************************
Max. I. H. P.	of Engine Frame	aauuu0000 aaaaaaaaaaaaaaaa
Jutlet	Width of Fan	
Fan Outle	Height of Outlet	00004440000000000000000000000000000000
Diam.	Fan Inlet	018844440000000000000000000000000000000
Size	of Fan	86000000000000000000000000000000000000
Steam	Press. Gauge	855595585811888488788558
Engine Cylinder	Diam. and Stroke	44477777777777777777777777777777777777
	Combin	-42242222222222222222222222222222222222

DIRECT CONNECTED TO BUFFALO HIGH SPEED CLASS "A" ENGINES SPECIAL STEEL PLATE INDUCED DRAFT FANS

Normal	Boiler Rating	1950	2150	2150	2540	2150	2340	2540	2760	3000	3470	3470	3730	4000	4000	4260	4260	4530	4800	5130	5400	5750	6050	6050	6400	6750	7100
Boiler H. P.	Developed 50% Overload	0606	3220	3220	3820	3220	3510	3820	4150	4500	5200	5200	5600	0009	0009	6400	6400	6800	7220	0022	8120	8620	9075	9075	0096	10100	10650
Cu. Ft. Gas per Min. at	550° F. and 1.69" Static Press.	04500	103800	103800	193500	103800	113300	123500	134000	145000	168000	168000	181000	193500	193500	206500	206500	219500	233500	248000	262000	278000	293500	293500	310000	327000	344000
Rev.	per Min.	066	212	212	104	212	202	194	186	179	166	166	160	155	155	150	150	145	141	137	133	129	125	125	122	119	116
1. H. P.	Required	62.5	69.5	69.5	0.03	69.5	76.0	82.8	8.68	97.4	113.0	113.0	122.0	130.0	130.0	139.0	139.0	147.0	157.0	167.0	176.0	186.0	197.0	197.0	208.0	219.0	231.0
Max. I. H. P.	of Engine Frame	0.5	95	95	200	95	95	95	135	135	135	200	200	200	285	285	285	285	285	350	350	350	350	350	350	350	320
Outlet	Width of Fan	603/	63 1/2	63.77	27.09	63.74	7,99	7, 69	72	75	80.14	808	83 1/2	86 1/2	86 1/4	89 1/4	89 1/4	92	95	200	101	103 1/2	106 1/2	106 1/2	109 1/4	112	115 1/2
Fan (Height of Outlet	74.54	28.28	78	01 74 05 17	2007	8134	85 %	68	92 %	200 17	27 66	103	106 1/2	106 1/2	110	110	113 1/3	117 1/4	121	124 3/2	128	131 1/2	131 1/2	135	13814	142 1/2
Diam.	Fan	043/	88 77	88 77 88 77	272	2000	92 32	96 12	100 1/2	104 1/4	11917	110.72	116 1%	120 1%	1201/2	124 1/3	124 1/3	128 1/2	132 1/3	136 1/2	140 1/2	145	148 1/2	148 1/2	152 1/2	157	161
Size	of Fan	010	220	220	230	086	230	240	250	260	0/2	086	290	300	300	310	310	320	330	340	350	360	370	370	380	390	400
Steam	Press. Gauge	1001	115	28	104	*01 89	200	88	101	113	195	10	36	112	86	108	95	104	114	800	95	104	113	92	100	106	116
Engine	Diam. and Stroke		××	12 x 12	×	××	<×	: ×	×	×	×	4 3	< ×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
	Combin Mum	l c	28	53	3:	32	3.5	34	35	36	37	900	40	4	42	43	44	45	46	47	48	6	20	21	52	53	54

DIDECT CONNECTED TO BILEFALD HIGH SPEED ENGINES SPECIAL STEEL PLATE INDUCED DRAFT FANS

_		
	Normal	Boiler Rating
		Developed 50% Overload
	Cu. Ft. Gas per Min. at	and 1.69" Static Press.
CHAINES	Rev.	per Min.
STATES CONNECTED TO DOLLARO III'MI SPEED ENGINE	I. H. P.	Required
TO LINE	Rated I. H. P.	of Engine
1100 01	Fan Outlet	Width of Fan
TO TO	Fan (Height of Outlet
100	Diam.	Fan Infet
NI C	Size	Fan
	Steam	Gauge
	Engine Cylinder	and Stroke
	nation	Combin

l	
l	
	Shaf
	Below
	nder
	-Cyli
	I.,
	Class
	cal
	Vert

				Ver	Vertical-Class "I"-Cylinder Below	ss "I"—Cy	linder Be	low Shaft				
22021	0004 ××× 0000 22727	65 100 85	888	22 ½ 26 ½ 28 ½	8888 7474	%21 %25 %2%	5.0	2.8 6.4 6.4	580 580 580	4800 7260 9700	150 225 300	100 150 200
8600	444 %%% ××× voo	75 90 105	110	200 200 200 200 200 200 200 200 200 200	30.00	15 173 21	0.11	7.2 8.8 10.6	415 415 415	12100 14400 17000	375 450 525	250 300 350
522	665 2727 2727 2727 2727 2727 2727 2727	080 100	140 160 160	47 14 52 56	49 56 4 56 4 4	22.22 22.27	18.5 25.0 25.0	14.9 17.8 22.9	325 290 290	24200 29100 36100	750 900 1120	500 600 750
55	7½ x 9 7½ x 9	85 95	180	61 34	64 64	3234 36 14	30.0	30.0	260	43600	1350 1500	1000
								- :				

1								
			Double	Vertical-	Double Ac	Acting		
	886	32 ½ 32 ½ 38 ½	32 28 XX 32 XX	448 727	20.0 20.0 20.0	9.6 9.6 12.9	580 580 500	14400 14400 19400
	90 110 160	38 46 14 65 1/5	32 39 56 %	20 84 85 77,74	20.0 35.0 60.0	12.9 19.5 38.7	500 415 290	19400 29100 58200

855

88 4 22

X X X

6278

300 400 400 1200 1200

450 600 600 600 1800

55

4 50 00 X X X

\$2F

Planoidal Type "L" Fan Direct Connected to Double-Vertical, Double-Acting Engine

Double Turbo-Conoidal Type "T" Fan

BUFFALO CONE WHEELS

The cone wheel is a style of fan frequently used where the resistance to be overcome is moderate, or where it is merely required to exhaust the air from a chamber or to exhaust from a series of ducts into an attic or out of doors. It may be used in many cases where a disk fan is ordinarily installed, and will give better efficiency than the latter. The efficiency is, however, lower than that obtainable with a wheel enclosed in a housing, so that it is generally advisable to use a standard steel plate or multivane fan. This is especially true if it is necessary to operate against any considerable resistance.

The table on page 333 gives the cubic feet of air per revolution at free delivery, as well as the performance under various pressures. The air H. P. under free delivery may be calculated by H. P. = $0.00026 \times \text{cap.} \times \text{press.}$ corresponding to the peripheral velocity expressed in inches. This should be increased to cover belt and bearing losses.

CAPACITIES OF BUFFALO CONE WHEELS UNDER AVERAGE WORKING CONDITIONS AT 70° F. AND 29,92 INCHES BAROMETER

ALVO IN STATE STAT	Static Press. 34" Static Press. 12" Static Press. 1" Static Press.	Vol. H. P. R.P.M. Vol. H. P. R.P.M. Vol. H. P. R.P.M. Vol. H. P. R.P.M. Vol. H. P.	2300 .43 480 2810 .79 555 3250 1.21 680 3990 2.23 785 4600 3.49 3330 .62 400 4060 1.13 463 4700 1.75 568 5760 3.22 655 6650 4.96 4530 .85 343 5530 1.55 396 6390 2.39 486 7840 4.39 560 9050 6.77	5900 1.10 300 7210 2.02 347 8350 3.11 425 10220 5.72 491 11800 8.86 7480 1.39 266 9150 2.54 308 10550 3.92 378 12950 7.22 436 14950 11.1 9200 1.71 240 11250 3.14 278 13000 4.84 340 15950 8.90 393 18400 13.7	11150 2.10 218 13600 3.83 252 15750 5.90 309 19300 10.9 357 22300 16.7 13300 2.48 200 16250 4.54 232 18800 7.00 284 23050 12.9 328 26600 19.8 18100 3.38 172 22100 6.19 199 25500 9.55 244 31350 17.6 282 36200 27.0	23600 4.40 150 28800 8.07 174 33350 12.4 213 40900 22.9 246 47200 35.2 29950 5.58 133 36000 10.2 154 42250 15.8 189 51900 29.0 218 59900 44.6 36800 6.85 120 45000 12.6 138 52000 19.4 170 63800 35.6 196 73600 54.9	53800 9.90 100 64850 18.1 116 75000 28.0 142 91850 51.5 164 106000 79.2 72400 13.5 86 88450 24.8 100 102000 38.2 122 125200 70.2 141 144800 108. 83250 15.5 80 101800 28.4 93 117500 43.9 114 144200 80.6 131 166500 124.
2	***	R.P.M. Vol.	480 2810 400 4060 343 5530	240 7210 266 9150 240 11250	218 13600 200 16250 172 22100	150 28800 133 36600 120 45000	100 64850 86 88450 80 101800
	"%	Per Re Free De	10 393 2300 17 328 3330 27 282 4530	246 5900 219 7480 197 9200	178 11150 164 13300 141 18100	. 123 23600 109 29950 98 36800	
	93	ziS.	0% 24	54	\$28	2086	168

BUFFALO "B" VOLUME BLOWERS AND EXHAUSTERS (TYPES BB AND BE)

"B" Volume Blower

"B" Volume Exhauster

The table on page 335 shows the range of pressures and capacities for which these blowers and exhausters are designed, either for producing blast for forges and furnaces, for removing smoke and fumes in small ventilating installations, or for conveying dust and refuse from emery and polishing wheels. Data on application is given in another section. For forge blast a pressure of 3 to 5 ounces at the fan is sufficient, and for removing smoke a suction of 2 ounces at the fan is usually employed. For exhaust conveying systems either "B" volume exhausters or planing-mill exhaust fans may be used according to the nature of the material handled. With either type extra heavy blast wheel construction neutralizes the effect of abrasive material, while acid gases may be handled by blast wheels of cast iron, lead, copper, monel metal, or other suitable acid resisting material.

RATED CAPACITIES OF "B" VOLUME BLOWERS AND EXHAUSTERS (TYPES BB AND BE)

lotal Pressure in Oz.	11/5 0z. 2 0z.	H.P. R.P.M. Cap. H.P. R.P.M. Cap. H.P.	.07 2935 181 .14 3393 210 .23 .19 2420 458 .34 2800 534 .59 .31 1695 760 .57 1965 888 .99	.41 1490 1015 .76 1774 1174 1.30 .59 1345 1450 1.09 1556 1688 1.87 .84 1100 2055 1.54 1274 2382 2.65	.97 1010 2380 1.78 1168 2752 3.06 1.41 865 3440 2.58 1000 3983 4.43 2.33 710 5710 4.28 824 6641 7.30	3.18 605 7780 5.82 702 9003 9.90	4 02.	38 3977 753 1.37 1.62 2794 1261 2.29 3436 1551 3.86	2.14 2452 1667 3.03 3015 2051 5.13 3.08 2212 2397 -4.36 2721 2948 7.37 4.33 1809 3382 6.15 2225 4160 10.40	5.00 1660 3908 7.10 2041 4806 12.00 7.24 1422 5656 10.20 1748 6957 17.40 12.10 1171 9431 17.10 1440 11599 28.90	15.00 966 12786 21.90 1225 15726 37.00
	1 ½ 0z.		181 458 760				4 0z.		· .		
in Oz.		R. P. M.	2935 2420 1695	1490 1345 1100	1010 865 710	605		3977	2452 2212 1809	1660 1422 1171	996
Il Pressure		H. P.	.31		.97 1.41 2.33	3.18		.38 .96 1.62	2.14 3.08 4.33	5.00 7.24 12.10	15.00
lota	1 0z.	Cap.	148 374 621	828 1185 1677	1941 2810 4668	6350	3 Oz.	258 651 1090	1441 2071 2923	3377 4888 8150	11050
		R. P. M.	2396 1976 1387	1216 1098 898	823 706 581	494		4169 3437 2414	2119 1912 1563	1434 1229 1012	861
		H. P.	20. 90. 10	.13 .26	.31 .44 .73	1.00		.29 .75 1.23	1.65 2.36 3.34	3.86 5.60 9.28	12.60
	3 0z.	Cap.	104 264 438	585 837 1185	1372 1986 3299	4488	2 ½ 0z.	234 592 983	1310 1875 2650	3080 4450 7400	10050
		R. P. M.	1693 1397 980	859 776 635	582 499 411	349		3795 3130 2195	1925 1740 1425	1300 1120 920	782
	ło . Tewo	No	-00	410.0	V@0	10		-26	410.0	786	01

BUFFALO STEEL PRESSURE BLOWERS (TYPE P)

Steel Pressure Blowers are designed for relatively higher pressures and smaller capacities than "B" Volume Blowers and while they may be used for the same purposes, are intended especially for supplying blast to cupolas, furnaces, and forges requiring air pressure of from 6 to 14 ounces per square inch.

Steel Pressure Blowers for pressures as high as 16 ounces are also built in two stages.

The table on page 337 gives capacities and horsepower required for these blowers at various speeds and pressures. Table on page 110 gives special information regarding requirements for foundry service, and table on page 338 describes method of choosing blower and laying out piping in forge shops.

CAPACITIES OF BUFFALO STEEL PRESSURE BLOWERS (TYPE P) UNDER ORDINARY WORKING CONDITIONS TEMPERATURE 70° F. AND 29.92 INCHES BAROMETER.

		Н. Р.	4.14	5.42 6.40 9.66	13.7 20.0 24.7	28.5		Н. Р.		27.1 38.3 56.7	69.1 80.5 90.5
	8 Oz.	Cap.	950	1240 1470 2220	3135 4590 5660	6350	16 Oz.	Cap.		3115 4400 6510	7940 8960 10395
		R.P.M.	4130	3585 3180 2890	2585 1935 1615	1280 1310		R.P.M.		4060 3635 2720	2265 1795 1840
		Н. Р.	3.05	4.42 5.25 7.93	11.2 16.4 20.3	23.4		Н. Р.	14.7	22.3 31.4 46.1	56.7 65.5 73.5
	7 Oz.	Cap.	785 890	1160 1375 2080	2940 4305 5300	5940	14 Oz.	Cap.	1930	2920 4125 6040	7455 8340 9660
		R.P.M.	4395 3870	3360 2985 2710	2425 1815 1510	1200 1230		R.P.M.	4195	3810 3410 2545	2120 1680 1720
nces		H. P.	2.40	3.52 4.15 6.28	8.87 13,0 16.1	18.5		Н. Р.	9.90	17.6 25.0 36.5	45.0 52.0 58.4
ire in Ou	6 Oz.	Cap.	730 825	1076 1275 1925	2720 3890 4915	5500 6380	12 Oz.	Cap.	1510 1790	2705 3825 5595	6900 7720 8955
Static Pressure in Ounces		R.P.M.	4065 3585	3115 2765 2510	2245 1680 1400	1110		R.P.M.	4380 3880	3525 3155 2360	1970 1555 1595
Star		H. P.	1.75 1.85 2.06	2.70 3.32 4.80	6.80 9.93 12.3	14.1		Н. Р.	7.55	13.6 19.0 27.9	34.4 40.2 44.6
	5 Oz.	Cap.	635 670 755	985 1170 1765	2500 3655 4515	5040	19 Oz.	Cap.	1385 1640	2480 3500 5135	6320 7150 8200
		R. P. M.	4435 3730 3290	2860 2535 2300	2060 1540 1285	1020		R.P.M.	4000 3560	3225 2890 2160	1800 1425 1460
		Н. Р.	1.25 1.32 1.47	1.94 2.27 3.43	4.84 7.09 8.74	10.1		Н. Р.	4.95 6.45 7.61	11.6 16.3 23.8	29.4 33.8 38.1
	4 Oz.	Cap.	565 600 670	880 1045 1570	2225 3255 4010	4500 5210	9 Oz.	Cap.	960 1310 1555	2350 3320 4870	5995 6700 7780
		R. P. M.	3950 3330 2930	2550 2255 2050	1840 1375 1145	907		R.P.M.	4375 3810 3375	3065 2740 2050	1710 1355 1390
	To .		W 4 IV	97.00	°2=	= 2 2 2	lo . Tew	010	76.51	800	==2

BUFFALO STEEL PRESSURE BLOWERS (TYPE P) APPLICATION TO FORGE FIRES

Static Pressure in Ounces

Many	r No.	m. of Blast- ipe	4 oz. Pressure		5 oz. Pressure		6 oz. P	ressure	8 oz. Pressure		
How Many Forges	Use	Main I Pig	Speed	Н. Р.	Speed	Н. Р.	Speed	Н. Р.	Speed	н. р.	
2 4 6	2 3 4	4 ½ 5 5 ½	4986 3993 3363	.79 1.47 1.56	5596 4473 3754	1.01 1.63 1.80	4811 4051	2.45 2.60			
8 10 13	5 6 7	6 7 8	2952 2573 2275	1.78 1.95 2.23	3308 2883 2549	1.96 2.53 3.02	3564 3104 2749	2.95 3.31 4.28	4107 3577 3168	4.39 4.93 6.60	
18 26 38 50	8 9 10 11	$\begin{array}{c} 9\frac{1}{2} \\ 10\frac{1}{2} \\ 12\frac{1}{2} \\ 15 \end{array}$	2067 1851 1384 1154	3.25 4.75 6.75 8.50	2316 2074 1550 1293	4.53 6.45 9.41 11.60	2499 2238 1673 1394	6.46 9.03 12.91 15.77	2880 2579 1928 1608	9.76 13.66 19.65 24.11	

For a number of average fires not exceeding a total of ten, four ounces pressure at the blower is sufficient. If length of main blast-pipe is over 100 feet use next larger size pipe than shown in above table for the blower chosen. If length of main blast-pipe is over 150 feet increase pipe two sizes. Branch pipes to each forge should be three inches in diameter. Increasing size of pipes reduces friction, increases pressures at the fires, allows speed of blower to be reduced and saves power. If fires are extra heavy run the blower at a higher speed than shown in above table, if necessary, to get satisfactory results.

For 12 or more average fires five ounces pressure at the blower is necessary. If main blast-pipe is over 100 feet long, increase size as described above.

In railroad, implement and similar shops where some or all of the fires are large and deep it is necessary to maintain six or eight ounces pressure at the blower, depending on the number of fires.

As the outlet of the blower is smaller than the pipe recommended use an increaser to connect them.

BUFFALO STEEL PLATE PRESSURE BLOWERS (TYPE R)

Pulley Driven

Motor Driven

These are high efficiency fans, and are usually designed for pressures up to 14 or 16 ounces for cupola or furnace service, but may be built for pressures up to two or three pounds per square inch. The speeds for cupola work are suitable for direct connected motors, which are usually mounted on a sub-base built as a part of the fan. In large units the bearings are frequently mounted on independent pedestals, and the fans driven through flexible couplings, while for smaller sizes the fan wheel is overhung on the extended motor shaft.

It is possible to obtain, with a fan of this type, higher efficiencies than with standard radial blade steel plate fans, or with any form of multiblade fan.

CAPACITIES OF BUFFALO STEEL PLATE PRESSURE BLOWERS

Blower		Static Pressure in Oz. per Sq. In.													
of Blo		10 Oz		12 Oz.			14 Oz.		16 Oz.						
No.	R.P.M.	Vol.	H.P.	R.P.M.	Vol.	Н.Р.	R.P.M.	Vol.	н. Р.	R.P.M.	Vol.	H.P.			
5 6 7 8	1700 1700 1700 1700 1700	2700 3600 4800 6400	13 18 24 32	1700 1700 1700 1700 1700	2700 3600 4800 6400	16 21 29 38	1700 1700 1700 1700 1700	2700 3600 4800 6400							
9 10 11 12					8000 10000 12000 15000	48 58 71 89		8000 10000 12000 15000	55 69 83 104	1120 1120 860 860	8000 10000 12000 15000	95			

BUFFALO STANDARD REVERSIBLE PLANING-MILL EXHAUSTERS (TYPE M)

Pulley Driven

Motor Driven

Standard Blast-Wheel for Buffalo Steel Plate Mill Exhauster

Blast-Wheel for Stringy Material

BUFFALO STANDARD PLANING-MILL EXHAUSTERS (TYPE M)

These fans are ordinarily used for conveying materials and for removing shavings and factory refuse in general. Instructions for application are given in another section. The construction is similar to steel plate ventilating fans, but with special proportions and of considerably heavier material to stand wear. The fan wheels are always overhung, and the bearings of extra size. These fans are made single and double. The table below gives speed, capacity and horsepower for various pressures for single fans.

CAPACITIES UNDER NORMAL WORKING CONDITIONS
Total Pressure in Ounces

_										
Size		1 Oz.			2 Oz.		3 Oz.			
SE	R.P.M.	Cap.	Н. Р.	R.P.M.	Cap.	Н. Р.	R.P.M.	Cap.	Н. Р.	
30	1025	1650	.90	1450	2340	2.55	1775	2850	4.65	
35	890	2300	1.25	1260	3250	3.53	1540	3975	6.48	
40	770	3000	1.63	1090	4250	4.60	1334	5190	8.40	
45	690	3825	2.08	976	5410	5.95	1195	6620	10.78	
50	622	4750	2.58	880	6720	7.28	1078	8220	13.38	
55	570	5750	3.12	806	8120	8.83	987	9950	16.25	
60	520	6900	3.75	735	9750	10.60	900	11950	19.50	
70	450	9400	5.10	637	13300	14.50	780	16300	26.60	
80	390	12200	6.63	552	17280	18.75	676	21200	34.50	
9		4 Oz.			5 Oz.			6 Oz.		
Size	R.P.M.	Cap.	Н. Р.	R.P.M.	Cap.	Н. Р.	R.P.M.	Сар.	Н. Р.	
30	2050	3300	7.20	2290	3680	10.05	2510	4040	13.32	
35	1780	4600	10.00	1990	5140	13.92	2180	5630	18.35	
40	1540	6000	13.00	1722	6700	18.15	1888	7350	23.85	
45	1380	7650	16.60	1542	8550	23.20	1690	9350	30.40	
50	1245	9500	20.60	1391	10600	28.80	1525	11620	37.90	
55	1140	11500	25.00	1275	12850	34.90	1398	14080	45.80	
60	1040	13800	30.00	1162	15400	41.90		16900	55.00	
70	900	18800	40.90	1005	21000	56.90		23000	75.00	
80	780	24400	53.00	872	27300	74.00		29850	97.20	

Note-To make connections for special operating conditions use table on page 343.

BUFFALO SINGLE STANDARD PLANING-MILL EXHAUSTERS (TYPE M) WITH DIFFERENT AREA SUCTION PIPES AND VARYING VELOCITIES

Speed and Power Requirements

Est	aus	ter	=	23	,	Velocit	y Thr	ough I	Branc	h Suc	tion Pi	pes in	Feet	per Mi	nute	
	Ini an Out	et	Suction	Sranch		000	T	_	500			1000			1500	
Size	Diameter	Area Sq. In.	-1	Equivalent Diameter	Cubic Feet per Minute	R. P. M.	Brake H. P.	Cubic Feet per Minute	R. P. M.	Brake H. P.	Cubic Feet per Minute	R. P. M.	Brake H. P.	Cubic Feet per Minute	R. P. M.	Brake H. P.
30	12	113	79 113 154	10 12 14	1635 2360 3190	1620	2.0 3.2 5.6	1910 2750 3720	1890	3.3 5.1 9.2	2180 3150 4250	2170	4.72 7.60 13.50	2450 3540	2140 1485	6.6 10.8
35	14	154	113 154 201	12 14	2360 3190	1185 1350 1535	2.52 3.90 6.35	2750 3720 4890	1570	4.02 6.25 10.00	3150 4250 5540	1780	6.00 9.35 14.60	3540 4790 6280	1990 1470	23.3
40	16	201	154	14	4200	1018 1120 1295	3.12 4.70 7.58	3720 4890 6200	1185 1320 1530	5.0 7.7 12.4	4250 5540 7080	1495	7.4 11.3 18.1		1755 1970	16.2 25.8
45	18	254	201	16	4200 5310 6550	973	3.90 5.65 8.40		11140	6.25 9.10 13.40	7080 87 3 0		9.25 13.30 19.20	7980 9820	1320 1458 1640	19.2 28.2
50	20	314	254 314 386	4 20	6550	863	4.7 6.6 9.5	6200 7650 9250	991	10.70	8730	1260	15.7 22.2	9820 11890	1270 1410	15.85 22.30 31.80
88	22	380	31- 38- 45	0 22	792	748	5.50 7.58 10.60	9250	878	12.5	8730 10570 12550	991 1105	24.7	11890 14150	1265	125.4
6	24	45	38 45 53	2 24	792 945 1110	0 684	8.60	11000	80	13.80	10570 12550 14700	911	15.3 20.4 24.6	11890 14150 16500	1045	28.1 38.0
7	0 2	8 61	6 61 70	6 2	1280	0 575	8.3 11.0 14.3	1290 1495 1710	0 67	2 13.4 0 18.3 0 22.6	14700 17100 19600	744 0 820	19.4 25.8 33.2	16500 19200 22100	920	5 27.8 36.6 47.4 0 35.6
8	0 3	2 80	70 4 90	14 3	2 11670	0 48	10.5 5 13.2 1 16.8	1710 1950 2210	0 56		2220	0 64	7 24.9 5 31.2 6 40.0	2210 2500 2830	73	0 48.0 9 57.5

Note—Tables are computed on the basis that the system will have 275 feet of piping including equivalent of one collector. The diameter of main discharge pipe is in each instance assumed of same area as the fan outlet. For each additional 10 feet of suction or discharge piping, the speed should be increased approximately one per cent. and the power will be increased approximately three per cent. If a collector and elbows are included in the system the length of pine to which they are equivalent must be added to the actual the length of pine to determine the total equivalent operating length from which length, in order to determine the total equivalent operating length is less than speed and power may be figured. If the total operating length is less than speed and power should be decreased approximately one per cent. for each 10 feet and the power will be decreased approximately three per cent. For double fans, power and air handled will be doubled.

BUFFALO SLOW SPEED REVERSIBLE PLANING-MILL EXHAUSTERS (TYPE E)

Suction Side

Bearing Side

Standard Slow Speed, High Efficiency Slow Speed Blast-Wheel for Stringy Blast-Wheel

Material

BUFFALO SLOW SPEED PLANING-MILL EXHAUSTERS (TYPE E)

These fans are of the high efficiency type explained elsewhere, and while intended for the same purposes as the standard mill exhausters, require from 15 to 50 per cent. less power. The speed is also reduced one-third, and the size of the fan is increased nearly 50 per cent. For cases where refuse fuel is not available for furnishing power, it is advisable to use this fan, on account of the decrease in power cost.

CAPACITIES UNDER NORMAL WORKING CONDITIONS

Total Pressure in Ounces

9		1 Oz.			2 Oz.			3 Oz.	
Size	R. P. M.	Cap.	н. р.	R. P. M.	Cap.	н. Р.	R. P. M.	Cap.	Н. Р.
30	640	1650	.75	906	2340	2.12	1110	2850	3.87
35	552	2300	1.04	781	3250	2.94	958	3975	5.40
40	482	3000	1.36	682	4250	3.83	837	5190	7.00
45	428	3825	1.73	605	5410	4.96	742	6620	8.97
50	385	4750	2.15	544	6720	6.06	667	8220	11.10
55	350	5750	2.60	494	8120	7.35	606	9950	13.50
60	321	6900	3.12	453	9750	8.83	556	11950	16.20
70	275	9400	4.25	387	13300	12.10	477	16300	22.10
80	241	12200	5.52	341	17280	15.60	418	21200	28.70
9		4 Oz.			5 Oz.			6 Oz.	
Size	R. P. M.	Cap.	Н. Р.	R.P.M.	Cap.	Н. Р.	R. P. M.	Cap.	Н. Р.
30	1280	3300	6.00	1428	3680	8.37	1570	4040	11.10
35	1100	4600	8.32	1230	5140	11.59	1350	5630	15.25
40	965	6000	10.80	1075	6700	15.10	1180	7350	19.84
45	855	7650	13.80	955	8550	19.3	1050	9350	25.30
50	769	9500	17.12	860	10600	24.0	942	11620	31.50
55	698	11500	20.80	782	12850	29.1	856	14080	38.10
60	641	13800	25.00	718	15400	34.7	786	16900	45.80
70	550	18800	34.10	613	21000	47.3	674	23000	62.40
80	482	24400	44.20	570	27300	61.7	590	29850	81.00

Note-To make connections for special operating conditions use table on page 346.

BUFFALO SINGLE SLOW SPEED HIGH EFFICIENCY MILL EXHAUSTERS (TYPE E) WITH DIFFERENT AREA SUCTION PIPES AND VARYING VELOCITIES

Speed and Power Requirements

_	Ex	haus	te			hes	V	eloci	ty Th	rough	Bran	ch S	uction	Pipes	in F	eet per	Min.	
	1	Inlet		Outlet	Sucfi	Branches		3000			3500			4000		,	4500	_
Size	Diameter	Area Sq. In.	Size	Area Sq. In.	Area Sq. in.	Equivalent Diameter	Cubic Feet per Minute	R. P. M.	Brake H. P.	Cubic Feet per Minute	R. P. M.	Brake H. P.	Cubic Feet per Minute	R. P. M.	Brake H. P.	Cubic Feet per Minute	R. P. M.	Brake H. P.
30	121	123	11\$x94	116	79 113 154	10 12 14	1635 2360 3190	863 989 1171	1.6 2.6 4.6	2750	1022 1155 1365	4.2	3150	1175 1319 1552	6.3	3540		5.5 9.0
35	148	168	13\$x11\$	157	113 154 201	12 14 16	2360 3190 4200	724 822 935	2.1 3.2 5.3	2750 3720 4890	850 955 1082	3.3 5.2 8.3	4250		7.8	4790	1081 1215 1470	7.0 10.9 19.4
40	16‡	217	15gx134	206	154 201 254	14 16 18	3190 4200 5310	620 683 790	2.6 3.9 6.3	3720 4890 6200	721 806 936	4.1 6.4 10.3		§24 911 1055	6.1 9.4 15.1		927 1070 1200	
45	18§	272	178×148	258	201 254 314	16 18 20	4200 5310 6550	553 593 664	3.2 4.7 7.0	4890 6200 7650	629 695 777	5.2 7.6 11.1	5540 7080 8730	714 790 888	7.7 11.1 16.0	6280 7980 9820	889	10.9 16.0 23.5
5ō	20§	334	19 1 ×16	320	254 314 380	18 20 22	5310 6550 7920	470 526 575	3.9 5.5 7.9	6200 7650 9250	551 606 678	6.2 8.9 12.6	7080 8730 10570	627 690 770	9.2 13.1 18.5	7980 9820 11890	775	13.2 18.6 26.5
55	223	406	218x184	387	314 380 452	20 22 24	6550 7920 9450	422 456 512	4.6 6.3 8.8	7650 9250 11000	494 534 606	7.3 10.2 14.2	8730 10570 12550	606		9820 11890 14150	674	15.6 21.2 29.6
60	244	481	26	460	380 452 531	22 24 26	7920 9450 11100	384 417 450		9250 11000 12900		11.5	10570 12550 14700	556	16.9	11890 14150 16500	637	17.9 23.4 31.6
70	283		3	621	531 616 707	28	11100 12800 1 47 00	323 351 378	9.2	12900 14950 17100	408	15.3	14700 17100 19600	454	21.5	16500 19200 22100	484 522 561	
80	323	842	304×264	804	707 804 908	32	14700 16700 18900	280 296 319	11.0	17100 19500 22100	347	18.8	19600 22200 25200	394	20.7 26.0 33.5	22100 25000 28300	421 446 481	40.0

Note—Tables are computed on the basis that the system will have 275 feet of piping including equivalent of one collector. The diameter of main discharge pipe is in each instance assumed of same area as the fan outlet. For each additional 10 feet of suction or discharge piping, the speed should be increased approximately one per cent. and the power will be increased approximately three per cent. If a collector and elbows are included in the system, the length of pipe to which they are equivalent must be added to the actual length, in order to determine the total equivalent operating length from which speed and power may be figured. If the total operating length is less than 275 feet, the speed should be decreased approximately one per cent. For double fans, power and air handled will be doubled.

BUFFALO DISK FANS (TYPE D)

Pulley Driven

Motor Driven

The ordinary disk or propeller fans should not be used in connection with a system of piping, but should discharge directly into a room, or exhaust from it without obstruction. Although not as efficient as a centrifugal cased fan, the lower first cost, large air capacity and simplicity of installation account for the wide use of fans of this type for ventilating engine and boiler rooms, kitchens, restaurants, small theatres, brass foundries, etc. A conservative table for the air capacities of actual disk fan installations is given below for normal speeds, and table on page 349 gives capacities and horsepowers for various speeds.

These disk fans are probably more often installed with direct connected motors than for belt drive, and such outfits have become standardized for both direct and alternating current.

Size	Normal Speed	Cu. Ft. Air per Min.
18	1060	2050
24	800	3725
30	660	5950
36	530	8240
42	450	11150
48	400	14600
54	350	18450
60	320	22900
72	265	32850
84	230	44800
96	200	58700
108	175	74300

PERFORMANCE OF BUFFALO DISK WHEELS (TYPE D)
OPERATING AT FREE DELIVERY—ANGLE OF BLADES 30°

		H. P.	.795 .795 1.410	1.780 2.410 3.150	3.980 4.940 7.120	9.660 12.660 16.620
	7000	Vol.	2880 5210 8360	11520 15660 20520	25920 32040 46260	62800 82300 103500
		R.P.M.	1486 1115 929	743 637 557	495 446 372	318 279 248
		Н. Р.	.155 .498 .876	1.100	2.570 3.220 4.490	6.060 7.740 10.000
	0009	Vol.	2480 4470 7160	9900 13410 17550	22230 27450 39600	53900 66600 89000
		R.P.M.	1274 956 796	637 546 478	425 382 319	273 226 212
		Н. Р.	.526	.630 .870 1.150	$\frac{1.450}{1.890}$ 2.580	3.550 4.600 5.830
DAIN-	2000	Vol.	2050 3720 5970	8240 111160 14580	18450 22860 32850	44800 58700 74300
LIVEK		R.P.M.	1060 796 663	530 454 398	353 318 265	227 199 177
SEE DE		Н. Р.	.046	.328 .484 .592	.744 .972 1.340	1.800 2.350 3.020
OPERATING AT FREE DELIVERY—ANGEL OF	4000	Vol.	1650 2990 4780	6590 8970 11700	14850 18360 26550	35900 46900 59600
RATIN		B.P.M.	850 638	425 364 319	283 255 213	182 159 142
OPE		H. P.	.019	.137	388	.750 .978 1.250
	3000	Vol.	1230	4940 6730 8700	11070	26800 35000 44500
		B.P.M.	636	318 273	212	136 119 106
	Perl. Velocity	Size	18	8 % Z 3	\$ 20°8	2 28 2 2

Nore-Air Velocity = 16.2% of Peripheral Velocity

BUFFALO MULTIBLADE DISK FANS (TYPE CM)

Disk fans with many overlapping blades are better suited than standard disk fans for maintaining sufficient pressure to overcome a moderate piping resistance or other friction, and are usually employed for boosters, in mine ventilation, or for producing air flow in cooling towers for condensing plants. The casing and bearings are self-contained to facilitate installation. The normal speeds, air capacities and horsepowers are given in the following table:

Size	Normal Speed	Cu. Ft. Air per Min.	Horsepower
18	900	3200	0.5
24	800	6300	.25
30	650	10000	.50 .75
36	525	14000	1.00
42	450	19300	1.50
48	400	25200	2.00
54	350	32000	2.50
60	320	36000	3.00
72	265	56000	5.00
84	226	77000	7.50

BUFFALO PROPELLER FANS (TYPE F)

The propeller fan has a capacity 25 to 30 per cent. greater than a disk fan of the same size, is used for the same general purposes, and may be furnished either pulley driven or with direct connected motor. 48-inch and smaller disk and propeller fans are made with overhung wheels, so that it is unnecessary to reach between the blades for oiling the outer bearing.

Table of capacities and horsepowers at normal speed is given below.

Size	Normal Speed	Cu. Ft. Air per Min.	Horsepower	Pulley Size
18	1050	2600	.14	2 x 4
24	800	4750	.37	2 x 4
30	650	7600	.79	23/8 x 6
36	525	10500	.95	3 x 7
42	450	14250	1.30	3½ x 8
48	400	18650	1.75	4 x 9
54	350	23550	2.20	4 x 9
60	320	29200	2.85	5 x 10
72	265	42000	3.90	5½ x 12
84	225	57000	5.30	6 x 14

PERFORMANCE OF BUFFALO PROPELLER WHEELS (TYPE F)
OPERATING AT FREE DELIVERY—ANGLE OF BLADES 30°

		ا م	711	000-4	N00	000
		Н. Р.	.371 1.19 2.12	2.67 3.62 4.73	5.97 7.41 10.68	14.49 18.99 24.93
	2000	Vol.	3680 6660 10690	14720 20000 26220	33130 40950 59100	80300 105000 132300
		R.P.M.	1486 1115 929	743 637 557	495 446 372	318 279 248
	0009	Н. Р.	.233 .747 1.31	1.65 2.28 3.00	3.86 4.83 6.74	9.09 11.61 15.00
		Vol.	3160 5720 9160	12650 17140 22430	28410 35080 50610	68900 86000 113800
	5000	R.P.M.	1274 956 796	637 546 478	425 382 319	273 226 212
		Н. Р.	.134 .369 .789	.945 1.31 1.73	2.18 2.84 3.87	5.33 6.90 8.75
		Vol.	2620 4750 7630	10520 14260 18630	23580 29210 41980	57300 75000 94900
		R.P.M.	1060 796 663	530 454 398	353 318 265	227 199 177
	4000	Н. Р.	.069 .389 .389	.492 .726 .888	1.12 1.46 2.01	2.70 3.53 4.53
		Vol.	2110 3820 6110	8420 11470 14950	18980 23460 33930	45900 59900 76100
	3000	R.P.M.	850 638 531	425 364 319	283 255 213	182 159 142
		М. Р.	.029 .093 .164	.206 .284 .374	.461	1.13
		Vol.	1580 2850 4580	6310 8600 10100	14150 17480 25200	34280 44740 56800
		R.P.M.	636 477 398	318 273 239	212 191 159	136 119 106
	Peri. Velocity	Size	18 24 30	8428 8428	54 72	84 96 108

Nore-Air Velocity = 20.7% of Peripheral Velocity

PERFORMANCE OF 8-BLADE PROPELLER WHEELS—30° ANGLE OPERATING AGAINST RESISTANCE

_	1 1									
Size	Static Press. In.	R.P.M.	Vol.	н. Р.	R.P.M.	Vol.	Н. Р.	R.P.M.	Vol.	Н. Р.
18"	.25	774	690	.20	954	1140	.31	1240	2070	.52
	.50	1094	970	.55	1346	1610	.86	1754	2920	1.46
	.75	1340	1190	1.02	1654	1980	1.59	2146	3570	2.70
	1.00	1546	1370	1.57	1906	2280	2.44	2480	4130	4.13
24"	.25	580	1220	.35	715	2025	.54	930	3760	.92
	.50	820	1725	.99	1010	2860	1.53	1315	5190	2.59
	.75	1005	2115	1.81	1240	3510	2.82	1610	6350	4.76
	1.00	1160	2440	2.79	1430	4050	4.34	1860	7340	7.34
30"	.25	464	1910	.55	572	3160	.85	744	5730	1.43
	.50	653	2690	1.54	809	4470	2.39	1050	8100	4.04
	.75	804	3300	2.84	990	5480	4.40	1289	9930	7.43
	1.00	928	3810	4.36	1143	6320	6.76	1488	11450	11.4
36"	.25	387	2750	.79	477	4560	1.22	620	8260	2.07
	.50	547	3880	2.22	673	6430	3.44	877	11680	5.83
	.75	670	4760	4.07	827	7900	6.35	1073	14290	10.7
	1.00	773	5490	6.28	953	9110	9.76	1240	16520	16.5
42"	.25	331	3740	1.07	409	6200	1.65	531	11240	2.81
	.50	469	5280	3.03	577	8760	4.69	751	15890	7.93
	.75	574	6480	5.54	709	10750	8.64	920	19450	14.6
	1.00	663	7470	8.54	817	12400	13.3	1063	22480	22.5
48"	.25	290	4880	1.40	358	8100	2.16	465	14680	3.68
	.50	410	6900	3.96	505	11440	6.12	658	20760	10.4
	.75	503	8460	7.24	620	14040	11.3	805	25400	19.0
	1.00	580	9760	11.2	715	16200	17.4	930	29360	29.4
54"	.25	268	6200	1.77	318	10250	2.74	414	19050	4.66
	.50	364	8750	5.02	450	14500	7.75	585	26300	13.1
	.75	448	10700	9.18	552	17800	14.3	716	32200	24.1
	1.00	516	12350	14.1	636	20500	22.0	828	37200	37.2
60"	.25	232	7630	2.19	286	12600	3.38	372	22940	5.75
	.50	327	10780	6.19	405	17880	9.56	525	32440	16.2
	.75	402	13220	11.3	495	21940	17.6	645	39690	29.8
	1.00	464	15250	17.4	572	25310	27.1	744	45880	45.9
72"	.25	194	11000	3.16	239	18240	4.88	310	33040	8.28
	.50	274	15520	8.88	337	25720	13.8	439	46720	23.3
	.75	335	19040	16.3	414	31600	25.4	537	57160	42.8
	1.00	387	21960	25.1	477	36440	39.0	620	66080	66.0
84"	.25	166	14960	4.28	205	24800	6.60	266	44960	11.2
	.50	235	21120	12.1	289	35040	18.8	376	63560	31.7
	.75	287	25920	22.2	355	43000	34.6	460	77800	58.4
	1.00	332	20880	34.2	409	49600	53.2	532	89920	90.0

BUFFALO ELECTRIC BLOWERS (TYPE FB)

Constant Speed

Variable Speed

This type of blower has been developed for furnishing small volumes of air at pressures from one to three ounces for forge fires and furnaces, for blowing church organs, and in fact any purpose for which the various sizes may be applicable, handling from 60 to 250 cu. ft. per minute.

These fans may be used for exhausting at the same pressures, and are furnished with motors for 110 or 220 volts, either alternating or direct current. The design of the blast-wheel and casing is special, similar to the high efficiency steel plate fans, so as to make the power consumption remarkably low.

No. of Blower	R. P. M.	Cu. Ft. Air per Min.	Pressure Oz. per Sq. In.	Diam. of Outlet	Total Height
IE	3800	80	I	3"	10"
2E	1800	75	1 ½	3"	15"
2EH	3000	150	2 ½	3"	15"
3E	3000	206	2 ½	4"	15"
4E	3200	250	2 ½	5"	20"

BABY CONOIDAL FANS (TYPE IC)

Small motor driven fans for exhaust ventilation are preferable to the use of desk fans, since they provide means for introducing fresh air, or for positively removing fumes and odors. They are also used for small drying outfits in connection with steam or electrical heaters. Standard sizes are arranged for direct or alternating current motors; fans are of Conoidal type with housings which are reversible. The following table shows capacities of some of the smaller stock sizes.

Size	Cu. Ft. Air per Min.	Horsepower	Speed R. P. M.	Height, Inches	
No. 1	90	1/30	1800	8 ½	
No. 2	250	1/8	1800	10 ½	
No. 3	500	1/4	1800	15	

Planoidal Type "L" Fan Wheel

Cowl Ventilator

SECTION IV

FAN DIMENSIONS

Included in this section will be found dimensions of various fans and blowers. Dimensions of Planoidal, Niagara Conoidal and Turbo-Conoidal fans are given for both full and three-quarter housing, for top horizontal, bottom horizontal, up and down discharge. Dimensions are given on pages 382 to 385 for double width Niagara Conoidal and Turbo-Conoidal fans. Dimensions of slow speed and standard planing-mill exhausters, single and double width, will be found on pages 394 to 397, and on page 398 are given dimensions of steel pressure blowers.

OVERHUNG PULLEY
FULL HOUSING—TOP HORIZONTAL DISCHARGE

Dimensions in Inches

									_				
Size	A	Exh.	Blow.	D	E	F	G	H	к	L	M	x	Y
	1	1											
30 35 40	121/2	$\begin{array}{c} 13\frac{1}{4} \\ 15\frac{3}{8} \\ 17\frac{1}{2} \end{array}$	13 1/2		14 7/8 17 1/4 19 5/8	$\begin{array}{c} 16 \frac{5}{8} \\ 19 \frac{1}{4} \\ 21 \frac{7}{8} \end{array}$	14 ½ 16 ¼ 18 ¾	25 28 31	15 $16\frac{3}{4}$ $18\frac{1}{2}$		13 ¼ 14 ¼ 15	3 3 3	8 9 10
45 50 55	17 7/8	19 5/8 23 25 ½	$\begin{array}{c} 17\frac{3}{8} \\ 19\frac{1}{4} \\ 21\frac{1}{4} \end{array}$	16 1/2	22 3/8 24 3/4 27	25 27 5/8 30 1/8	$20\frac{3}{4}$ $22\frac{7}{8}$ $24\frac{7}{8}$	34 37 40	$20\frac{3}{8}$ $22\frac{1}{8}$ $23\frac{7}{8}$	3011 3318 3518	16 17 ¼ 18 ¼	3 4 4	11 12 14
60 70 80	21 ½ 25 28 ½	28 ½ 35 40	23 ½ 27 30 ¾	19 ½ 23 26	29 ³ / ₈ 34 ¹ / ₂ 39 ⁵ / ₈	$32\frac{3}{4}$ $38\frac{1}{2}$ $44\frac{1}{4}$	27 31 ½ 36	43 50 56	$25\frac{3}{4}$ $29\frac{1}{4}$ $32\frac{3}{4}$	39 ½ 45 ¾ 49 ¾	$20 \\ 21 \frac{3}{4} \\ 25$	5 5	16 18 20
90 100 110	32 ¼ 35 ¾ 39 ¼	50	$34\frac{3}{4}$ $38\frac{5}{8}$ $42\frac{1}{2}$		44 ³ / ₈ 49 ³ / ₈ 54 ¹ / ₈	49 ½ 55 ½ 60 ¾	40 ½ 44 5/8 48 7/8	62 68 75	36 ½ 40 44 ½	53 ½ 58 ½ 63	27 29 ½ 31 ¾	6 7 8	24 26 28
120 130 140	43 46 ½ 50	60 65 70	46 ¼ 50 ⅓ 54	38 41 44	59 ¼ 63 ¾ 69	66 ½ 71 ¼ 77	53 3/8 57 1/2 62	81 88 94	48 ½ 52 ¾ 56 ¼	66 5/8 73 5/8 77 7/8	33 ½ 37 39	8 10 10	30 34 36
150 160 170	53 ½ 57 60 ¾	80	57 7/8 61 3/4 65 5/8	50	73 ³ / ₄ 78 ⁷ / ₈ 83 ⁷ / ₈	82 ¼ 88 93 5/8	66 ¼ 70 ¾ 75 ⅓	100 107 116	59 3/4 64 1/4 69	85 7/8 90 1/8 95	43 45 47 ½	11 12 13	38 40 44
180 190 200	64 ¼ 67 ¾ 71 ½	95	69 ½ 73 ¼ 77 ¼	57 60 63	88 5/8 93 3/4 98 3/4	104 5/8	83 1/8	122 128 134	72½ 76 79¾	103 107 ½ 115 ¾		14 15 16	46 48 50

OVERHUNG PULLEY
FULL HOUSING—BOTTOM HORIZONTAL DISCHARGE
Dimensions in Inches

Size	A	Exh.	Blow.	D	Е	F	G	Н	I	K	L	M	x	Y
35	12 1/2	15 3/8	$11\frac{5}{8}$ $13\frac{1}{2}$ $15\frac{1}{2}$	13 1/4	17 14	15 1/4		26	12	15 16 ³ / ₄ 18 ¹ / ₂		13 ¼ 14 ¼ 15	3 3 3	8 9 10
50	17 7/8	23	17 3/8 19 1/4 21 1/4	19	24 34		26 28 5 8 31 1/8		15 16 ½ 18	20 3/8 22 1/8 23 7/8	33 16	16 17 ¼ 18 ¼	3 4 4	11 12 14
70	25	35	23 1/8 27 30 7/8	26 1/2	34 1/2	30 1/2	33 ¾ 40 45 ¾	48	19 ½ 23 26	$25\frac{3}{4}$ $29\frac{1}{4}$ $32\frac{3}{4}$	39 ½ 45 ¾ 49 ¾ 8	21 34	5 5 6	16 18 20
	32 1/4 35 3/4 39 1/4	50	$34\frac{3}{4}$ $38\frac{5}{8}$ $42\frac{1}{2}$	37 78	49 3%	43 5 8	56 5/8		29 32 35	36 ½ 40 44 ½	58 1/2	27 29 1/2 31 3/4	6 7 8	24 26 28
130	46 1/2	60 65 70		45 ½ 49 ½ 53	63 78	52 3/8 56 1/2 61	67 5/8 72 3/4 78 1/2	85	38 41 44	48 1/4 52 3/4 56 1/4	73 5 8		8 9 10	30 34 36
	53 ½ 57 60 ¾	80	61 34	60 5 8	78 7s	65 ½ 69 ¾ 74 ⅓	89 1/2	103 1/2	47 50 54	59 ¾ 64 ¼ 69	90 18		11 12 13	38 40 44
180 190 200	64 14 67 34 71 1/2	95	73 14	72	93 34	82 78	$100\frac{3}{8}$ $106\frac{1}{8}$ $111\frac{3}{4}$	124	57 60 63		103 107 ½ 115 ¾			46 48 50

OVERHUNG PULLEY
FULL HOUSING—UP DISCHARGE

Dimensions in Inches

			С											_
Size	A	Exh.	Blow.	D	Е	F	G	н	I	К	L	M	X	Y
35 40	121/2	15 3/8	$\begin{array}{c} 11 {}^{5}\!\!/\!\!\!8 \\ 13 {}^{1}\!\!/\!\!\!2 \\ 15 {}^{1}\!\!/\!\!\!2 \end{array}$	13 1/4	15 1/4	19 1/4	15 7/8 18 1/4 20 5/8	28	10 ½ 12 13 ½	15 16 ³ ⁄ ₄ 18 ¹ ⁄ ₂		13 ¼ 14 ¼ 15	3 3 3	8 9 10
45 50 55	17 7/8	23	17 3/8 19 1/4 21 1/4	19	21 7/8		23 ³ / ₈ 25 ³ / ₄ 28	37	15 16 ½ 18	20 3/8 22 1/8 23 7/8	3316	16 17 ¼ 18 ¼	3 4 4	11 12 14
60 70 80	21 ½ 25 28 ½	35	23 1/8 27 30 1/8	26 1/2	30 1/2	38 1/2	$30\frac{3}{8}$ $35\frac{1}{2}$ $40\frac{5}{8}$	50	19 ½ 23 26	$25\frac{3}{4}$ $29\frac{1}{4}$ $32\frac{3}{4}$	39 ½ 45 ¾ 49 ¾	21 3/4	5 5 6	16 18 20
90 100 110	32 ¼ 35 ¾ 39 ¼	50	34 34 38 5/8 42 1/2	37 1/8	43 5/8	55 1/8	45 3/8 50 3/8 55 1/8	68	29 32 35	36 ½ 40 44 ½		27 29 ½ 31 ¾	6 7 8	24 26 28
120 130 140	46 1/2	60 65 70	46 ¼ 50 ⅓ 54	49 1/8	52 3/8 50 1/2 61	71 1/4	60 ¼ 64 ¾ 70		41	48 ¼ 52 ¾ 56 ¼	66 5/8 73 5/8 77 7/8		8 9 10	30 34 36
150 160 170	53 ½ 57 60 ¾	80	57 7/8 61 3/4 65 5/8		69 34	88	74 ³ ⁄ ₄ 79 ⁷ ⁄ ₈ 84 ⁷ ⁄ ₈	107	50	59 ¾ 64 ¼ 69	85 7/8 90 1/8 95		11 12 13	38 40 44
180 190 200	64 ¼ 67 ¾ 71 ½	95	73 1/4	72	82 7/8	98 7/8 104 5/8 110 1/4	94 3/4	128	60	72 ½ 76 79 ¾	103 107 ½ 115 ¾	51 ½ 53 ¾ 58	14 15 16	46 48 50

FULL HOUSING—DOWN DISCHARGE

Dimensions in Inches

Size	A	(2	D	r	P	G	н	к	L	м	x	,
size	A	Exb.	Blow.	D	Е	F	u	n		L	M	^	,
30 35 40	12 1/2	15 3/8	$ \begin{array}{c c} 11 & \frac{5}{8} \\ 13 & \frac{1}{2} \\ 15 & \frac{1}{2} \end{array} $	171/4	15 1/4	19 1/4	12 3/8 14 1/4 16 1/8	31 ½ 35 ¼ 39 ¾	16 3/4	25 ½ 27 ½ 27 ½ 28 ¾	13 ½ 14 ¼ 14 ¼ 15	3 3 3	1
45 50 55	16 ½ 17 ½ 19 ½	23	17 3/8 19 1/4 21 1/4	24 3/4	$\begin{array}{c} 19\frac{3}{4} \\ 21\frac{7}{8} \\ 23\frac{7}{8} \end{array}$	25 27 5/8 30 1/8	$18\frac{1}{8}$ 20 $21\frac{3}{4}$	44 48 ½ 52 ½	20 3/8 22 1/8 23 7/8	3018 3318 3516	16 17 ¼ 18 ¼	3 4 4	1111
60 70 80	21 ½ 25 28 ½	35	23 ½ 27 30 ½	$29\frac{3}{8}$ $34\frac{1}{2}$ $39\frac{5}{8}$	30 1/2	$32\frac{3}{4}$ $38\frac{1}{2}$ $44\frac{1}{4}$	23 5/8 27 1/2 31 3/8	65 1/2	$25\frac{3}{4}$ $29\frac{1}{4}$ $32\frac{3}{4}$		21 3/4	5 5 W	1 1 2
90 100 110	32 ¼ 35 ¾ 39 ¼	45 50 55	38 5/8	44 3/8 49 3/8 54 1/8	43 5/8	55 1/8	35 ½ 38 ½ 42 ½ 42 ½	82 ½ 91 ½ 100 ¾		53 ½ 58 ½ 63	27 29 ½ 31 ¾	5 7 8	040404
20 30 40	43 46 ½ 50	60 65 70	46 ¼ 50 ⅓ 54	59 ¼ 63 ¾ 69	52 3/8 56 1/2 61	66 ½ 71 ¼ 77	46 ½ 50 ½ 54	109 ½ 118 ¼ 127	48 ¼ 52 ¾ 56 ¼	66 5/8 73 5/8 77 7/8	33 ½ 37 39	8 9 10	60 60 60
150 160 170	53 ½ 57 60 ¾	80	61 34	73 ³ ⁄ ₄ 78 ⁷ ⁄ ₈ 83 ⁷ ⁄ ₈	65 ¼ 69 ¾ 74 ⅓	88	57 3/4 61 5/8 65 3/8	135 ¼ 145 155 ¾	64 1/4	85 7/8 90 1/8 95	43 45 47 ½	11 12 13	60 4. 4.
180 190 200	64 ¼ 67 ¾ 71 ½	95	69 ½ 73 ¼ 77 ¼	88 5/8 93 3/4 98 3/4	78 3/8 82 7/8 87 1/4	104 5/8	69 ½ 73 76 ¾	163 7/8 172 5/8 181 1/4	76	107 1/2	51 ½ 53 ¾ 58	14 15 16	4.4.4.

OVERHUNG PULLEY
THREE-QUARTER HOUSING—TOP HORIZONTAL DISCHARGE

Size	A	С	D	E	F	G	н	I	K	L	M	x	Y
60 70 80	21 ½ 25 28 ½	28 ½ 35 40	23	29 3/8 34 1/2 39 5/8	38 1/2	30 1/2		20 1/2	$25\frac{3}{4}$ $29\frac{1}{4}$ $32\frac{3}{4}$	39 ½ 45 ¾ 49 ¾ 49 ¾	21 3/4	5 5 6	16 18 20
90 100 110	32 ¼ 35 ¾ 39 ¼	45 50 55		44 3/8 49 3/8 54 1/8	55 1/8	$39\frac{1}{4}$ $43\frac{5}{8}$ $47\frac{7}{8}$	74 1/2	28 1/2	36 ½ 40 44 ½	58 1/2	27 $29\frac{1}{2}$ $31\frac{3}{4}$	6 7 8	24 26 28
120 130 140	43 46 ½ 50	65 70	38 41 44	59 ¼ 63 ¾ 00		52 3/8 56 1/2 61		37	$48\frac{1}{4}$ $52\frac{3}{4}$ $56\frac{1}{4}$	66 5/8 73 5/8 77 7/8		8 9 10	30 34 36
150 160 170	53 ½ 57 60 ¾	75 80 85	47 50 54	73 ³ / ₄ 78 ⁷ / ₈ 83 ⁷ / ₈	88	69 34	111 3/8 120 127 7/8	46	64 14			11 12 13	38 40 44
180 190 200	$\begin{array}{c} 64\frac{1}{4} \\ 67\frac{3}{4} \\ 71\frac{1}{2} \end{array}$		57 60 63	88 ⁵ / ₈ 93 ³ / ₄ 98 ³ / ₄	104 5%	:82 7/8	$134\frac{7}{8}$ $141\frac{5}{8}$ $148\frac{3}{4}$	54		107 1/2		14 15 16	46 18 50

OVERHUNG PULLEY
THREE-OUARTER HOUSING—BOTTOM HORIZONTAL DISCHARGE

THREE-QUARTER HOUSING—BOTTOM HORIZONTAL DISCHARGE Dimensions in Inches THE A C D E F G H I J K L M X

Size	A	С	D	·E	F	G	Н	I	J	K	L	M	X	Y
60 70 80		35		34 1/2	30 1/2	20 1/2	26 1/2	$26\frac{1}{8}$ $30\frac{3}{4}$ $35\frac{1}{2}$	61 1/4	$25\frac{3}{4}$ 29 $32\frac{3}{4}$	45 3/8	21 3/4	5 5 6	16 18 20
90 100 110	$32\frac{1}{4}$ $35\frac{3}{4}$ $39\frac{1}{4}$	50	37 7/8	49 3/8	39 ½ 43 5/8 47 7/8	28 1/2	37 1/8	44 1/4	86 1/8	36 ½ 40 44 ½	58 1/2	27 $29\frac{1}{2}$ $31\frac{3}{4}$	6 7 8	24 26 28
120 130 140	46 1/2		49 1/8	63 7/8	56 1/2	37	49 1/8	57 1/8	$103\frac{1}{2}$ $112\frac{1}{4}$ $120\frac{3}{4}$	52 3/4	73 5/8		8 9 10	30 34 36
150 160 170	53 ½ 57 60 ¾	80	60 5%	78 7/8	69 34	46	60 5/8	70 1/2	$128\frac{5}{8}$ $138\frac{1}{8}$ $147\frac{1}{2}$	64 1/4	85 7/8 90 1/8 95	45	11 12 13	38 40 44
180 190 200	$64\frac{1}{4}$ $67\frac{3}{4}$ $71\frac{1}{2}$	95	72	93 34	78 3/8. 82 7/8 87 1/4	54	72	83 5/8	$155\frac{1}{2}$ $163\frac{5}{8}$ 172	76	107 1/2		14 15 16	46 48 50

PLANOIDAL FAN DIMENSIONS

PLANOIDAL (TYPE L) EXHAUSTERS

OVERHUNG PULLEY THREE-QUARTER HOUSING—UP DISCHARGE

Size	A	С	D	E	F	G	н	ĭ	J	К	L	M	X	Y
60 70 80	21 ½ 25 28 ½	$28\frac{1}{2}$ 35 40	$32\frac{3}{4}$ $38\frac{1}{2}$ $44\frac{1}{4}$	30 1/2	$26\frac{1}{2}$	$29\frac{3}{8}$ $34\frac{1}{2}$ $39\frac{5}{8}$	62 3/4		18 $20\frac{1}{2}$ $23\frac{1}{2}$			21 3/4	5 5 6	
90 100 110	32 ½ 35 ¾ 39 ¼	50	55 1/8	43 5/8	37 1/8	44 ⁸ / ₈ 49 ³ / ₈ 54 ¹ / ₈	88 1/4	32	28 1/2	36 ½ 40 44 ½	58 1/2	2 7 29 ½ 31 ¾	678	24 26 28
120 130 140	43 46 ½ 50	60 65 70	71 1/4	56 1/2	49 1/8	$63\frac{7}{8}$	$106\frac{5}{8}$ $115\frac{3}{8}$ $124\frac{3}{8}$	41		$48\frac{1}{4}$ $52\frac{3}{4}$ $56\frac{1}{4}$	66 5/8 73 5/8 77 7/8		8 9 10	30 34 36
150 160 170	53 ½ 57 60 ¾	80	88	69 34	60 5/8	73 ¾ 78 ⅙ 83 ⅙ 83 ⅙	132 $141\frac{3}{4}$ $151\frac{1}{2}$	50	42 ½ 46 48 ½	64 1/4	85 7/8 90 1/8 95		11 12 13	38 40 44
180 190 200	$64\frac{1}{4}$ $67\frac{8}{4}$ $71\frac{1}{2}$	95	104 5/8	82 7/8	72	93 34	$159\frac{1}{2}$ $167\frac{7}{8}$ $176\frac{1}{2}$	60	54		$103 \\ 107 \frac{1}{2} \\ 115 \frac{7}{8}$		14 15 16	

OVERHUNG WHEEL FULL HOUSING—TOP HORIZONTAL DISCHARGE

This Style for 30 to 60-Inch Fans

This Style for 70 to 140-Inch Fans

OVERHUNG WHEEL FULL HOUSING—TOP HORIZONTAL DISCHARGE

>	8 0 10	127	20 218 20 20 20 20 20 20 20 20 20 20 20 20 20	488	34
×	ကကက	ल य य	ကကတ	91-0	8 0 10
*	3174	44 44 % 49 %	5178 56878 61888	65.77 778.7% 81.7%	884 8997% 892% 87% 87%
7	14.1 15.7 17.7 17.7 17.7 17.7	19.8 2018 2218	47.28 %%%%	08.84 %%% %%%	44.24.45.27.87.87.87.87.87.87.87.87.87.87.87.87.87
-	31 351 3874	45.7% 48.7% 48.7%	51 34 57 14 60 34	208 208 200 200 200 200 200 200 200 200	89 93 77 77 77 77 77 77
I	27	3333	39 50 50	62 68 75	88 88 94
D	18 203% 24	26 % 32 % 32 %	35 31 1/2 36	444 47878 747878	53 57 7% 62 7%
Œ.	16 5% 19 7% 21 7%	30 ½% 30 ½%	2884 284 2727	4.09 7.7% 7.7%	66 1% 71 14 77
ш	41 1747 8747 87478	22 3% 24 3% 27 74 34	39.7%	44 49% 8%% 7,4%	59 % 63 % 69 %
Q	10 ½ 12 ½ 13 ½	15 16 35 18	19 ½ 26 26	35 35 35	38 41 44
υ	13.7%	19 % 23 % 25 ½	28 12 35 14 40	45 50 55	65 65 70
<	10.1 4.21 4.27,4 14.27,2	22/2%	28 27 28 28 28 28 28 28 28 28 28 28 28 28 28	33.33	43 46 1/2 50
Size	35	500	828	800	130

OVERHUNG WHEEL FULL HOUSING—BOTTOM HORIZONTAL DISCHARGE

This Style for 30 to 60-Inch Fans

This Style for 70 to 140-Inch Fans

OVERHUNG WHEEL FULL HOUSING—BOTTOM HORIZONTAL DISCHARGE

improvious in Inchos

>*	8 60	1121	16 18 20	28 28 28	36
×	ကကက	ಬ44	ಸುಬಂ	91-00	30
ᅩ	3.44 2.77 2.77 2.77 2.77	42 44 34 49	5178	65 78 78 78 78 78 78 78 78 78 78 78 78 78	84 7, 89 89 7% 89 2% % 80 7, 80 80 80 80 80 80 80 80 80 80 80 80 80
-	41 42 7,87,7 7,87,7	19 5% 2016 2216	24 38 27 178 28 78 87 88	30 % 38 % 40 %	443 254 257% 277%
	31 3518 3814	41 7% 45 138 48 7%	51 % 57 % 60 %	4128 7272	89 93 7474 96
H	21 24 27	3330	39 48 54	60 66 72 ½	78 ½ 85 91
D	18 20 34 24	26 5% 32 29 1/8	35 40 45 34	51 56% 61%	675 722% 787% 787%
. "	13.17.7% 17.7% 17.7% 17.8%	19 % 21 7/8/7 23 7/8/	26 30 ½ 35	39.74 43.77 74.87 87.87	52 56 56 61
ш	14 34 17 13 19 58	222.24.27.27.27.27.27.27.27.27.27.27.27.27.27.	345% 394% %%%	444 446 8/8/4 8/8/8/8	59 74 69 87 89 78
Q	113%	17 1/8 19 20 3/4	. 225% 30%% 30%%	34 1/8 37 7/8 41 5/8	44 49 49 8,72 8,72 8
υ	13 15% 17% 17% 17%	19 % 23 % 25 %	28 1/2 35 40	45 50 55	60 65 70
V	10 12 12 14 14 14 14	16 1/8 17 7/8 19 5/8	25 % 28 % 28 %	32 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4	43 46 ½ 50
Size	30 35 40	45 50 55	323	889	130 130 140

OVERHUNG WHEEL FULL HOUSING—UP DISCHARGE

This Style for 30 to 60-Inch Fans

This Style for 70 to 140-Inch Fans

OVERHUNG WHEEL FULL HOUSING—UP DISCHARGE

i												
Size	٧	υ	Q	ы	Ľ.	Ū	H	-	7	X	×	A 1
35	101 122 127,74	133% 153% 173%	165% 1814 217%	137%	113 %	18 203 24	21 24 27	31 351 38 1/4	125,17	344,74	ကကက	8 0 10
45 50 55	16 % 17 7% 19 %	19 % 23 25 ½	25 27 5% 30 ½	19 3/2 23 7/8	17 1/8 119 20 3/4	26 5% 29 32 32 4	30	41 7% 45 1% 48 7%	19 5% 20 15 22 15	42 4434 49	w 44 44	127
323	21 % 25 % 28 %	28 ½ 35 40	32 % 38 1% 44 1%	26 30 ½ 35	30%%	35 35 ½ 40 %	39 48 54	51 34 57 14 60 34	24 % 27 17 8 28 7 8 8 8 7 8 8	51.78 56.58 61.38	ကက္ခ	28 20 20
889	35.7% 39.5% 39.7%	45 50 55	49 1/2 55 1/2 60 % 8	39 14 43 54 47 78 8/8/8	34 1% 37 1/8 41 5/8	500 500 500 8/8/8/8	60 66 72 1/2	64 78,12,72 78,72,72	38 1/4 40 1/2/4/4 40 1/4/4/4	8787% 81.8% 81.8%	01-00	25 28 28
130	43 46 ½ 50	60 70	66 % 71 % 77	52%	45 1/2 49 1/8 53 8	60 % 70 % 70 %	78 ½ 85 91	286 93 747474	42 43 78 8/8/8/8	4080 4080 70,807,807,807,807,807,807,807,807,807,8	8 0 10	30 34 36
												-

OVERHUNG WHEEL FULL HOUSING—DOWN DISCHARGE

This Style for 30 to 60-Inch Fans

This Style for 70 to 140-Inch Fans

OVERHUNG WHEEL FULL HOUSING—DOWN DISCHARGE

>	8 0 10	1127	16 18 20	24 28 28 28	36
×	000	044	ರಾವಾ	0 1-00	10
7	10 1/2 12 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3	15 16 ½ 18	19 1/2		
*	3417 3477 377%	42 44 49 49 49	200	287 7881 787%	88 84 7.26 7.26 7.27 7.27
r	14.7 15.5% 17.7%	1916 2016 2216 2216 330 330 330 330 330 330 330 330 330 33	24 % 27 1/8 28 %/8/8	30 38 40 72 74 74	444 253 %%%
-	31 3518 38 14	41 78 45 138 48 78	513% 60% 4%	857.7.7.2 85.7.7.7.2.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.	80 80 80 80 80 80 80 80 80 80 80 80 80 8
I	141 72,61 19,74,74	22 24 14 26 1/4	28 74 74 74 74 74 74	82 1% 91 1% 82 1%	109 % 118 % 127
D	18 20 ¾ 24	26 5% 32 7%	35 277% 31%%	385 7.7% 4.2%%	46 1% 50 1% 54 %
(L	14 78 19 78 19 88	22.22 24.2% 7.72	34.7% 39.7% 39.7%	44 494 8%% 8%%	59 14 63 78 69
ū	13.7%	19 % 21 7% 23 7%	26 30 ½ 35	39 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	52 56 ½ 61 ½
Q	16 5% 19 14 21 78	25 27 5% 30 ½	32 % 38 % 44 % 74 %	49 12 55 72 60 %%	66 1/8 71 1/4 77
C	13.7	19 % 23 % 25 ½	28 ½ 35 40 40	45 50 55	60 70
4	10 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	16 17 278	25 28 28 28 28	35.2% 30.2% 30.2%	43 46 ½ 50
Size	33.04	45 50 55	323	882	120

OVERHUNG PULLEY
FULL HOUSING—TOP HORIZONTAL DISCHARGE

_	1	_		1			L	1			_		_	
Size	A	В	С	D	E	G	H	I	J	K	L	M	X	Y
3 3½ 4	12 14 16	15 ³ / ₄ 18 ³ / ₈ 21	20	11 18 13 14 7/8	18 16		$14 \\ 16 \frac{1}{2} \\ 18 \frac{1}{2}$		15	16	27 29 31	$\begin{array}{c} 14 \frac{1}{2} \\ 15 \frac{1}{2} \\ 16 \frac{1}{2} \end{array}$	- 13	8 9 10
4 ½ 5 5 ½	18 20 22	$23\frac{5}{8}$ $26\frac{1}{4}$ $28\frac{7}{8}$	28 1/2	18 5/8	23 ½ 26 ½ 29 ½	31 ½ 34 ¼ 34 ¼ 38 ¼ 38 ¼	23	24 1/4	$18\frac{3}{4}$ $19\frac{1}{2}$ $21\frac{1}{4}$	22	33 35 36 ½	$17\frac{1}{2}$ $18\frac{1}{2}$ $18\frac{1}{2}$	3	11 12 14
6 7 8	24 28 32	31 ½ 36 ¾ 42		26	31 18 37 ½ 42 ¾ 42 ¾	48 18	27 ½ 32 36 ½	32 1/4	26 1/2		40 47 53	20 ½ 24 27	3 4 5	16 18 20
9 10 11	36 40 44	47 1/4 52 1/2 57 3/4	56 34	33 ½ 37 18 40 18	53	62 78 69 3/8 76 58	45		34 3/4	$\frac{38}{42}$ $\frac{46}{46}$	61 65 73 ½	31 33 37	6 8	24 26 28
12 13 14	48 52 56	63 68 ¼ 73 ½	73 1/2	44 5/8 48 3/8 52 1/8	68 7/8	83 ¼ 90 ਜੈ 97 ⅓	58 1/2	58 1/4			79 ½ 83 92	39 ½ 41 ½ 46	10 11	30 34 36
15 16 17	60 64 68	78 ¾ 84 89 ¼	90 1/4	55 3/4 59 1/2 63 1/4	84 3/4	104 1/8 111 117 1/8	72	66 ¼ 71 ¼ 76 ¼	54 7%	67 1/2	99 107 112	49 ½ 53 ½ 56	14	38 40 44
18 19 20	72 76 80	99 34	101 ½ 107 112 ¾	70 1	95 3/8 100 11 106	124 7/8 131 13 138 3/4	85	84 1/4	64 3/8	80	120 125 128	62 ½ 64		46 48 50

OVERHUNG PULLEY
FULL HOUSING—BOTTOM HORIZONTAL DISCHARGE

Size	A	В	С	D	E	F	G	Н	1	J	K	L	M	X	Y
3 1/2	14	$15\frac{3}{4} \\ 18\frac{3}{8} \\ 21$	20	11 13 13 14 1/8	1816	$13\frac{1}{4}$ $15\frac{7}{16}$ $17\frac{5}{8}$	24 1/4	$\begin{array}{c c} 22 \\ 25 \frac{1}{2} \\ 29 \end{array}$	18 1/4	11 16 13 14 1/8	16	27 29 31	$14\frac{1}{2}$ $15\frac{1}{2}$ $16\frac{1}{2}$		8 9 10
5	20	23 5/8 26 1/4 28 7/8	28 1/2	$16\frac{3}{4}$ $18\frac{5}{8}$ $20\frac{7}{16}$	26 1/2	$19\frac{7}{8}$ $22\frac{1}{16}$ $24\frac{1}{4}$	3411	36	24 1/4	$\begin{array}{c} 16\frac{34}{18} \\ 18\frac{5}{20} \\ \hline 20\frac{7}{16} \end{array}$	22	33 35 36 ½	17 ½ 18 ½ 18 ½ 18 ½	3	11 12 14
7	28	$31\frac{1}{2}$ $36\frac{3}{4}$ 42	39 34		37 1/8	$26\frac{1}{2}$ $30\frac{7}{8}$ $35\frac{5}{16}$	48 8	50	32 1/4	22 18 26 29 3/4	30	40 47 53	20 ½ 24 27	4	16 18 20
9 10 11	40	47 1/4 52 1/2 57 3/4	56 34	33 ½ 37 ¾ 40 ⅓	53	39 ¾ 44 ¼ 48 ½	69 3/8	64 71 78	44 1/4	33 ½ 37 ¾ 40 ¼ 40 ¼ §		61 65 73 ½	31 33 37	6	24 26 28
12 13 14	52	63 68 ¼ 73 ½	73 1/2	44 5/8 48 3/8 52 18	68 7/8	5215 573/8 613/4		92	58 1/4	44 5/8 48 3/8 52 18		79 ½ 83 92	39 ½ 41 ½ 46	10	30 34 36
15 16 17	64	78 ¾ 84 89 ¼		55 ³ / ₄ 59 ¹ / ₂ 63 ¹ / ₄	84 34	70 3/8	$104\frac{1}{16} \\ 111 \\ 117\frac{15}{16}$	106 112 ½ 119 ½	71 1/4	55 ³ ⁄ ₄ 59 ¹ ⁄ ₂ 63 ¹ ⁄ ₄	67 1/2	99 107 112	49 ½ 53 ½ 56		38 40 44
18 19 20	76	99 34	$101\frac{1}{2}$ 107 $112\frac{3}{4}$	7011	10011	8313	13112	$126\frac{1}{2}$ $133\frac{1}{2}$ $140\frac{1}{2}$	84 1/4	7016	80	120 125 128	$60 \\ 62 \frac{1}{2} \\ 64$		46 48 50

OVERHUNG PULLEY
FULL HOUSING—UP DISCHARGE

Size	A	B	С	D	F	G	Н	I	J	K	L	M	X	Y
3 1/2	12 14 16	$\begin{array}{c} 15{}^{3}4\\ 18{}^{3}8\\ 21 \end{array}$	20	13	13 ½ 15 ¼ 17 ¾ 17 ¾	24 1/4	19 1/2	$16\frac{1}{4}$ $18\frac{1}{4}$ $20\frac{1}{4}$		$17 \\ 19 \frac{1}{2} \\ 22$	27 29 31	$14\frac{1}{2}$ $15\frac{1}{2}$ $16\frac{1}{2}$	3 3	8 9 10
4 ½ 5 5 ½	18 20 22	23 5/8 26 1/4 28 7/8	28 1/2	18 5/8	$19\frac{7}{8}$ $22\frac{1}{16}$ $24\frac{1}{4}$	34 11	25 27 ½ 30	24 1/4	19 1/2	24 ½ 27 29 ½	33 35 36 ½	17 ½ 18 ½ 18 ½ 18 ½	3 18	11 12 14
6 7 8	24 28 32	$31\frac{1}{2}$ $36\frac{3}{4}$ 42	39 34	22 $\frac{5}{16}$ 23 $\frac{3}{4}$	$26\frac{1}{2}$ $30\frac{7}{8}$ $35\frac{5}{16}$	41 5/8 48 16 55 1/2	33 38 43 ½		23 $26\frac{1}{2}$ $28\frac{3}{4}$		40 47 53	20 ½ 24 27	3 4 5	16 18 20
9 10 11	36 40 44	47 1/4 52 1/2 57 3/4	56 34	37 18	39 ³ / ₄ 44 ¹ / ₈ 48 ¹ / ₂		54	44 1/4	31 34 34 7 8 38 3/8		61 65 73 ½	31 33 37	8	24 26 23
12 13 14	48 52 56	63 68 ¼ 73 ½	73 1/2	48 3/8	52 18 57 3/8 61 3/4	90 3	65 70 75 ½	58 1/4	41 7/8 45 3/8 47 3/8	62 ½ 68 73	79 ½ 83 92	$39\frac{1}{2}$ $41\frac{1}{2}$ 46	10 11	30 34 36
15 16 17	60 64 88	78 3/4 84 89 1/4	90 1/4	55 3/4 59 1/2 63 1/4	70 5/8	$104 \frac{1}{16}$ 111 $117 \frac{15}{18}$	80 ½ 86 91	71 1/4	51 8/8 54 7/8 58 3/8	83 1/2	99 107 112	49 ½ 53 ½ 56	14	38 40 44
18 19 20	72 76 80	19937	107	70 14	83 13	124 7% 131 18 138 34	102	84 1/4	61 3/8 64 3/8 67 3/8	99	120 125 128	50 62 ½ 64		46 48 50

OVERHUNG PULLEY FULL HOUSING—DOWN DISCHARGE

Size	A	В	С	E	F	G	н	I	J	K	L	M	X	Y
3 3 ½ 4		15 ³ ⁄ ₄ 18 ³ ⁄ ₈ 21			13 1/4 15 1/8 17 5/8	$\begin{array}{c} 20\frac{13}{16} \\ 24\frac{1}{4} \\ 27\frac{3}{4} \end{array}$	14	16 ¼ 18 ¼ 20 ¼		$\begin{array}{c c} 22\frac{13}{16} \\ 26\frac{1}{4} \\ 29\frac{3}{4} \end{array}$	27 29 31	14 ½ 15 ½ 16 ½	3	8 9
4 ½ 5 5 ½	18 20 22	23 5/8 26 1/4 28 7/8	$25\frac{3}{4}$ $28\frac{1}{2}$ $31\frac{1}{2}$	23 7/8 26 1/2 29 1/8	19 7/8 22 1/8 24 1/4	3411	18 20 $21 \frac{1}{2}$	24 1/4	18 ⁸ ⁄ ₄ 19 ¹ ⁄ ₂ 21 ¹ ⁄ ₄	33 ¼ 36 ¼ 40 ¾ 40 ¾	35	17 ½ 18 ½ 18 ½	3	11 12 14
6 7 8	24 28 32	$ \begin{array}{r} 31 \frac{1}{2} \\ 36 \frac{3}{4} \\ 42 \end{array} $	$34\frac{1}{4}$ $39\frac{3}{4}$ $45\frac{1}{2}$	31 13 37 1/8 42 3/8	26 ½ 30 ¾ 35 ¼ 35 ¼	41 5/8 48 18 55 1/2		32 1/4	23 26 ½ 28 ¾	43 5/8 50 1/8 57 1/2	47	$20\frac{1}{2}$ 24 27	3 4 5	16 18 20
9 10 11	36 40 44	47 1/4 52 1/2 57 3/4	56 34	53	39 ³ ⁄ ₄ 44 ¹ ⁄ ₈ 48 ¹ ⁄ ₂	69 3/8	38 1/2	44 1/4	$31\frac{8}{4}$ $34\frac{8}{4}$ $38\frac{3}{8}$	64 78 71 3/8 78 18		31 33 37	6 6 8	24 26 28
12 13 14		63 68 ¼ 73 ½			5215 57 3/8 61 3/4		49 1/2	58 1/4	41 7/8 45 3/8 47 3/8	85 3/4 93 18 100 1/8	83	39 ½ 41 ½ 46		30 34 36
15 16 17	60 64 68	78 ¾ 84 89 ¼	90 1/4	79 ½ 84 ¾ 90 ⅓	66 3 70 5/8 75	104 16 111 117 1 5	60 1/2	71 1/4	54 7/8	107 16 114 1/3 121 18	99 107 112	49 ½ 53 ½ 56		38 40 44
18 19 20		99 34	101 ½ 107 112 ¾	10011	79 78 83 18 88 14	124 7/8 131 \frac{1}{6} 138 3/4	72	84 1/4	64 3/8	128 7/8 135 1 8 142 8/	125	60 62 ½ 64		46 48 50

OVERHUNG PULLEY
THREE-QUARTER HOUSING—TOP HORIZONTAL DISCHARGE

Size	A	В	С	D	E	G	H	I	J	K	L	M	x	Y
6 7 8	28	$ \begin{array}{c} 31 \frac{1}{2} \\ 36 \frac{3}{4} \\ 42 \end{array} $	34 ½ 39 ¾ 45 ½	26	31 18 37 1/8 42 3/8	41 ⁵ / ₈ 48 ⁹ / ₁₆ 55 ½	23 3/4		26 1/2	24 11 28 ³ / ₄ 32 ⁷ / ₈	40 47 53	20 ½ 24 27	3 4 5	16 18 20
9 10 11		47 1/4 52 1/2 57 3/4	56 34	33 ½ 37 ¾ 40 ⅓	53		3234	44 1/4	34 34	36 11 40 1/8 45 1/2	61 65 73 ½	31 33 37	6 6 8	24 26 28
12 13 14	38 52 56	63 68 ¼ 73 ½	73 1/2	44 5/8 48 3/8 52 1/8	68 7/8	90 3	42	58 1/4	45 3/8	54 16	79 ½ 83 92	39 ½ 41 ½ 46		30 34 36
15 16 17	B0 64 68	78 ¾ 81 89 ¼	90 1/4	55 ³ / ₄ 59 ¹ / ₂ 63 ¹ / ₄	84 3/4	104 18 111 117 18	51 1/2	71 1/4	54 7/H	66 34	107	49 ½ 53 ½ 56		HS 40 44
18 19 20	76	99 34	107	70 1	95 3/8 100 118 106	131 18	59 34	84 1/4	64 3/8	79 1/2	125	62 ½ 64		46 48 50

OVERHUNG PULLEY THREE-QUARTER HOUSING—BOTTOM HORIZONTAL DISCHARGE

Size	A	В	С	D	E	F	Н	1	J	K	L	M	X	Y.
6 7 8	24 28 32	$31\frac{1}{2}$ $36\frac{3}{4}$ 42	39 3/4	23 ³ / ₈ 27 ⁵ / ₁₈ 31 ³ / ₁₈	39 1/4	$27\frac{7}{8}$ $32\frac{7}{16}$ $37\frac{1}{8}$	23 3/4	32 1/4	25 3/8 29 16 33 3/8	32 7/8 38 1/8 43 3/8		20 ½ 24 27	3 4 5	16 18 20
9 10 11	36 40 44	47 1/4 52 1/2 57 3/4	56 34	35 1 6 39 42 ½		41 ³ ⁄ ₄ 46 ³ ⁄ ₈ 51		40 ¼ 44 ¼ 49 ¼	41	48 18 53 78 59 58	61 65 73 ½	31 33 37	6 8	24 26 28
12 13 14		63 68 ¼ 73 ½	73 1/2	46 3/4 50 11 54 16	72 78	55 \frac{11}{16} \\ 60 \frac{5}{16} \\ 64 \frac{15}{16} \end{array}	42	58 1/4	53 11	64 7/8 70 3/4 75 1/8	79 ½ 83 92	39 ½ 41 ½ 46	9 10 11	30 34 36
15 16 17		78 ¾ 84 89 ¼	90 1/4	58 78 62 3/8 66 1/4			51 1/2	71 1/4	65 7 8	$\begin{array}{c} 81 \frac{1}{8} \\ 86 \frac{7}{8} \\ 92 \frac{11}{16} \end{array}$	107	49 ½ 53 ½ 56	14	38 40 44
18 19 20		99 3/4	107	74 16	$100\frac{15}{106}$ $106\frac{1}{2}$ $112\frac{1}{8}$	88 1/8	59 3/4	84 1/4	78 16		125	60 62 ½ 64		46 48 50

OVERHUNG PULLEY THREE-QUARTER HOUSING—UP DISCHARGE

Size	A	В	С	D	F	G	Н	1	J	K	L	M	x	Y
6 7 8	24 28 32	31 ½ 36 ¾ 42	34 ½ 39 ¾ 45 ½	26	26 ½ 30 ½ 35 ½ 35 ½		23 3/4	28 ¼ 32 ¼ 36 ¼	$23\frac{3}{4}$ $27\frac{5}{8}$ $31\frac{1}{2}$	33 ¼ 38 5/8 44 1/8		20 ½ 24 27	3 4 5	16 18 20
9 10 11	36 40 44	47 ½ 52 ½ 57 ¾	56 34	37 %	39 ³ ⁄ ₄ 44 ¹ ⁄ ₈ 48 ¹ ⁄ ₂		32 34	44 1/4	35 1/8 39 43 1/8	49 3/6 54 7/8 60 3/4	61 65 73 ½	31 33 37	8	24 26 28
12 13 14	48 52 56	63 68 ¼ 73 ½	73 1/2	48 3/8	52 15 57 3/8 61 3/4	90 1	42	58 1/4	47 1/8 51 1/2 55 1/4	72 1/4	83	39 ½ 41 ½ 46		30 34 36
15 16 17	60 64 68	78 ⁸ / ₉ / ₄ 89 ¹ / ₄	90 1/4	55 ³ / ₄ 59 ¹ / ₂ 63 ¹ / ₄	70 5/8	104 1 4 111 117 1 8	51 1/2	$71 \frac{1}{4}$	63 18	82 7/8 88 7/8 94 18	107	49 ½ 53 ½ 56		38 40 44
18 19 20	72 76 80	00 3/	101 ½ 107 112 ¾	70 11	. 23 11	11311 43	59 3/4	84 1/4	75 1/4	100 ¼ 105 ¾ 111	120 125 128	62 ½ 64		46 48 50

DOUBLE WIDTH
FULL HOUSING—TOP HORIZONTAL DISCHARGE

	1	1	1										,	_
Size	A	В	С	D	E	G	н	I	J	K	L	M	x	Y
3 1/2	28	15 ³ ⁄ ₄ 18 ³ ⁄ ₈ 21	20	11 18 13 14 7/8	18 16	24 1/4	14 16 ½ 18 ½	32 1/4	13 ¼ 15 16 7/8	16	38 44 48	$ \begin{array}{c c} 19 \frac{1}{2} \\ 22 \frac{1}{2} \\ 24 \frac{1}{2} \end{array} $	3	8 9 10
4 ½ 5 5 ½	40	$23\frac{5}{8}$ $26\frac{1}{4}$ $28\frac{7}{8}$	28 1/2	$16\frac{3}{4}$ $18\frac{5}{8}$ $20\frac{7}{16}$		34 11	23	44 1/4	$18\frac{3}{4}$ $19\frac{1}{2}$ $21\frac{1}{4}$	22	55 59 65	28 30 33	4 5	11 12 14
6 7 8	56	$ \begin{array}{c} 31 \frac{1}{2} \\ 36 \frac{3}{4} \\ 42 \end{array} $			31 18 37 1/8 42 3/8	48 %	$27\frac{1}{2}$ 32 $36\frac{1}{2}$	60 1/4	23 $26\frac{1}{2}$ $28\frac{3}{4}$		69 ½ 77 ½ 87	35 39 43 ½	6 6 8	16 18 20
9 10 11	80	47 1/4 52 1/2 57 3/4	56 34	33 ½ 37 ½ 40 ½	53	$\begin{array}{c} 62 \frac{7}{18} \\ 69 \frac{3}{8} \\ 76 \frac{5}{16} \end{array}$	41 45 49 ½	76 ¼ 84 ¼ 93 ¼		42	100 110 124	50 55 62	10 12 15	24 26 28
12 13 14	104	63 68 ¼ 73 ½	73 1/2	$44\frac{5}{8}$ $48\frac{3}{8}$ $52\frac{1}{16}$	68 7/8	90 3	58 1/2	$101\frac{1}{4}$ $110\frac{1}{4}$ $118\frac{1}{4}$	45 3/8	55		69 73 79		30 34 36
15 16 17	128	78 ¾ 84 89 ¼	90 1/4	55 ³ / ₄ 59 ¹ / ₂ 63 ¹ / ₄	84 3/4	104 1 6 111 117 1 8	72	$126\frac{1}{4}$ $135\frac{1}{4}$ $144\frac{1}{4}$	54 1/8	67 1/2	166 ½ 179 187 ½	89 1/2		38 40 44
18 19 20	152	99 34	$101\frac{1}{2}$ 107 $112\frac{3}{4}$	70 11	95 3/8 100 11 106	$124\frac{7}{8}$ $131\frac{13}{16}$ $138\frac{3}{4}$	85	160 1/4	64 3/8	80	202	97 101 106		46 48 50

DOUBLE WIDTH
FULL HOUSING—BOTTOM HORIZONTAL DISCHARGE

Size	A	В	С	D	E	E	G	н	I	J	K	L	M	X	Y
3 3 1 1		153 183 21	20	11 36 13 147 148	157 18 16 21 16	131 15 7 178	20 18 24 1 27 2 27 2	$\frac{22}{25\frac{1}{2}}$	281 321 361	11 18 13 147 148	14 16 18	38 44 48	$ \begin{array}{r} 19\frac{1}{2} \\ 22\frac{1}{2} \\ 24\frac{1}{2} \end{array} $	3333	8 9 10
4½ 5 5½	36 40 44	23 8 26 1 28 8	281	163 188 20 7 20 78	23 1 26 1 29 1 29 1 8	197 22 18 241	31½ 34½ 38½ 38½	$\frac{32\frac{1}{2}}{36}$ $\frac{3}{39\frac{1}{2}}$		163 188 20 7 20 7	20 22 24	55 59 65	28 30 33	4	11 12 14
6 7 8	48 56 64	31 ½ 36¾ 42	34½ 39¾ 45½		31 18 37 18 42 8	26½ 30½ 35½	41 8 48 18 55 2	43 50 57	52½ 60¼ 68¼	22 5 26 29 3 29 3 3	26 30 34	$69\frac{1}{2}$ $77\frac{1}{2}$ 87	35 39 43½	6	16 18 20
9 10 11	72 80 88	471 521 571	56	33½ 37 ½ 40 ½ 40 ½	47 11 53 58 18	39 ³ / ₄ 44 ¹ / ₈ 48 ¹ / ₃	62 78 69 8 76 18	64 71 78	841	33½ 37 x 8 40 { 8		100 110 124		10 12 15	26
12 13 14	96 104 112	63 681 731	73 1	44 1 48 1 52 1 8	635 687 74 3	52 18 578 614	831 90 18 971		101 ½ 110 ½ 118 ½		50½ 55 59	137½ 146 158	69 73 79		30 34 36
16	128	783 84 891	843 901 DB		791 842 90 18	66 76 70 8 75	104 % 111 117 1 8	1123	1351	591	荷 9 67⅓ 72	166½ 179 187½	83½ 89½ 04		38 40 44
19	152	994	101½ 107 112¾	70 1	95 ² / ₈ 100 ¹ / ₈ 106	83 18	131 18	1333	1521 1601 1681	66 18 70 18 74 8	76 80 84	194 202 212	97 101 106		48 50

DOUBLE WIDTH
FULL HOUSING—UP DISCHARGE

Size	A	В	С	D	F	G	Н	I	J	К	L	M	x	Y
3 3½ 4	24 28 32	$15\frac{3}{4}$ $18\frac{3}{8}$ 21	20	13	$\begin{array}{c} 13\frac{1}{4} \\ 15\frac{7}{16} \\ 17\frac{5}{8} \end{array}$	24 1/4	191/2	32 1/4		17 $19\frac{1}{2}$ 22	38 44 48	19 ½ 22 ½ 24 ½	33 33 33	8 9 10
4 ½ 5 5 ½	36 40 44	$23\frac{5}{8}$ $26\frac{1}{4}$ $28\frac{7}{8}$	28 1/2	18 5/8	$19\frac{7}{8}$ $22\frac{1}{16}$ $24\frac{1}{4}$	34 11	$\begin{array}{c} 25 \\ 27 \frac{1}{2} \\ 30 \end{array}$	44 1/4	$18\frac{3}{4}$ $19\frac{1}{2}$ $21\frac{1}{4}$	27	59	28 30 33	4	11 12 14
6 7 8	48 56 64	$ \begin{array}{c} 31 \frac{1}{2} \\ 36 \frac{3}{4} \\ 42 \end{array} $	39 34	26	$26\frac{1}{2}$ $30\frac{7}{8}$ $35\frac{5}{16}$	48 16	38	52 ½ 60 ¼ 68 ¼	$23 \\ 26 \frac{1}{2} \\ 28 \frac{3}{4}$		69 ½ 77 ½ 87	35 39 43 ½	6	16 18 20
9 10 11	72 80 88	47 ¼ 52 ½ 57 ¾	56 34	37 18	$39\frac{3}{4}$ $44\frac{1}{8}$ $48\frac{1}{2}$	69 3/8	49 54 59 ½	84 1/4	$31\frac{3}{4}$ $34\frac{3}{4}$ $38\frac{3}{8}$	52	100 110 124	50 55 62	10 12 15	26
12 13 14	96 104 112	63 68 ¼ 73 ½	73 1/2	48 3/8	52 \frac{15}{18} \\ 57 \frac{3}{8} \\ 61 \frac{3}{4}		70	$101\frac{1}{4}$ $110\frac{1}{4}$ $118\frac{1}{4}$	45 3/8	68	137 ½ 146 158	69 73 79		30 34 36
15 16 17	120 128 136	78 ¾ 84 89 ¼	90 1/4	$55\frac{3}{4}$ $59\frac{1}{2}$ $63\frac{1}{4}$	70 5/8	104 16 111 117 18	86	$126\frac{1}{4}$ $135\frac{1}{4}$ $144\frac{1}{4}$	54 7/8	83 1/2	166 ½ 179 187 ½	83 ½ 89 ½ 94		38 40 44
18 19 20	144 152 160	99 3/4	107	70 11	83 18	124 7/8 131 18 138 3/4	$96\frac{1}{2}$ 102 107	$152\frac{1}{4}$ $160\frac{1}{4}$ $168\frac{1}{4}$	64 3/8	99		97 101 106		46 48 50

DOUBLE WIDTH FULL HOUSING—DOWN DISCHARGE

Size	A	В	С	E	F	G	н	I	J	K	L	M	x	Y
3 3 ½ 4	28	$15\frac{3}{4} \\ 18\frac{3}{8} \\ 21$	17 ½ 20 22 ¾	15 7/3 18 $\frac{1}{16}$ 21 $\frac{3}{16}$	15 76	24 1/4	14	28 ½ 32 ¼ 36 ¼		22 13 26 14 29 34	38 44 48	19 ½ 22 ½ 24 ½	3333	8 9 10
4 ½ 5 5 ½	36 40 44	23 ⁵ / ₈ 26 ¹ / ₄ 28 ⁷ / ₈	$25\frac{3}{4}$ $28\frac{1}{2}$ $31\frac{1}{2}$	23 7/8 26 1/2 29 1/8	22 16	34 18		44 1/4	$18\frac{3}{4}$ $19\frac{1}{2}$ $21\frac{1}{4}$		59	28 30 33	4 4 5	12
6 7 8		$31\frac{1}{2}$ $36\frac{3}{4}$ 42	$34\frac{1}{4}$ $39\frac{3}{4}$ $45\frac{1}{2}$	37 1/8	30 1/8	48 16			23 26 ½ 28 ¾	43 5/8 50 1/6 57 1/2	77 1/2		6 6 8	18
9 10 11		47 1/4 52 1/2 57 3/4	$51\frac{1}{4}$ $56\frac{3}{4}$ $62\frac{1}{2}$		39 ¾ 44 ¼ 48 ½	69 3/8	34 ½ 38 ½ 42	84 1/4	31 ³ / ₄ 34 ³ / ₄ 38 ³ / ₈	71 3/8	110	50 55 62	10 12 15	
12 13 14		68 ½ 73 ½		68 7/8	52 18 57 3/4 61 3/4	90 3	49 1/2	110 1/4	45 3/8	85 3 i 93 i 100 1/8	146	69 73 79		30 34 36
15 16 17	120 128 136	78 ¾ 84 89 ¼	90 1/4	79 ½ 84 ½ 90 %	70 5/8	104 18 111 117 16	60 1/2	135 1/4	54 7%	114 1/2	179	89 1/2		38 40 44
18 19 20		99 34	101 ½ 107 112 ¾	100 1	83 18	124 7/8 131 18 138 3/4	72	160 14	64 3/8	128 7/8 135 18 142 3/4	202	97 101 106		46 48 50

OVERHUNG WHEEL
FULL HOUSING—TOP HORIZONTAL DISCHARGE

This Style for No. 3 to No. 6 Fans

This Style for No. 7 to No. 13 Fans

OVERHUNG WHEEL FULL HOUSING—TOP HORIZONTAL DISCHARGE Dimensions in Inches

	>	86 01	127	16 18 20	288	34
•	×	ოოო	ოოო	62470	6000	10
	W	318 34.88 87.7%	25.05 27.05 27.2%	55 50 50 50 50 50 50 50 50 50 50 50 50 5	677 85 74%%	95
	7	41 1688 8888 8888	20 1/2 22 2/2 24 1/2 24 1/2	30 30 88 80 80 80 80 80 80 80 80 80 80 80 80	325 420 78,8%	44 5 8 8 9 8 9 8 9 8 9 8 9 9 9 9 9 9 9 9 9
	7	12 14 16	18 22 23	24 34 34	38 42 46 ½	55 1/2
	7	11 13 13 14 78	16 17% 19%%	21 26 1% 28 %%	6.4.4.%	45 % 8 % 8 % 8 % 8 % 8 % 8 % 8 % 8 % 8 %
	_	32 1/4 36 1/8 40	43.3% 51.1%	50 60 77 77 77	88 88 87,74 74,74	94 14 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Difficultions in theres	I	18 2034 24	26 % 32 %	35 32 36 ½	41 45 49 ½	5.4 5.8 1/2
I SHOISH	Ö	20 H3 24 XX 27 XX	31 14 34 15 38 16	41 5% 48 1% 55 ½	62 18 69 38 76 18	83 ½ 90 %
	IT.	13.14 15.14 17.5%	19 78 22 18 24 14	26 1/2		
	ш	15 7% 18 18 21 18	200 200 200 200 200 200 200 200 200 200	31 13 42 %	47 Hg 53 58 FB	63 2%
	Q	11 18 13 14 78	16 34 18 58 20 Te	22 ft 26 29 34	33 1/5 37 1/8 40 1/8	44 4 48 8 8 8 8 8 8 8
	ဎ	17 ¼ 20 22 ¾	318.25 28.27 27.27 27.27 27.27	34 14 39 34 45 75	51 14 56 34 62 1/2	73 1/2
	2	15 34 18 38 21	23 26 1/4 28 7/4 28 7/4	31 15 36 37 42 42	47.75 77.77 77.74	63 44
	4	12 14 16	18 23 23	3284	36 44 44	52
	Size	ww.4	4 ro ro % %	ю/ю	°21	132

OVERHUNG WHEEL
FULL HOUSING—BOTTOM HORIZONTAL DISCHARGE

This Style for No. 3 to No. 6 Fans

This Style for No. 7 to No. 13 Fans

OVERHUNG WHEEL FULL HOUSING—BOTTOM HORIZONTAL DISCHARGE

>	800	1224	16 18 20	24 26
×	0000	000	භ 4 ත	99
W	3.44 3.47 3.47 3.47 3.47 3.47 3.47 3.47	50 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	53 3.4 64 4.4 68 4.4	74 34 83 34 44
7	14. 16.%% 18.%% 18.%%	888 % %	33.7.8 33.7.8 33.7.8	36 5 ₄ 40 5 ₈
×	12 14 16	18 20 22	24 34 34	38
7	11 rd 13 rd 14 7%	16 34 18 54 20 7a	22 15 28 31 34	35 ½ 39 ¼
-	32 36 34 39 34	43 34 48 51	54 66 34 70 34	77 34 85 34
I	23 27 30 %4 %	25.24 24.85.72 24.72/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3	45 34 50 57	64
D	22 42 22 24 24 24 24 24 24 24 24 24 24 2	31 1/4 32 14 38 13	41 54 48 18 55 12	62 18 69 38
(L	13 1/2 1/4 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	19 7% 22 7% 24 74	26 ½ 30 ½ 35 №	39 34 44 1/8
m	15 78 18 18 21 18	26.7% 20.7% 20.7%	31 42 42 52 52 52 52 52 52 52 52 52 52 52 52 52	47 Hs
Q	11 ta 13 14 7.8	16 34 18 58 20 76	22 18 26 18 29 34	33 1/2 37 1/8
υ	17 14 20 22 34	31874	34 74 39 34 45 74 27 74	51 77 29 27 27 27 27 27 27 27 27 27 27 27 27 27
2	15 34 18 38 21	2000 2000 2000 2000 2000 2000 2000 200	31 35 36 34 42 34	47 1/4 52 1/5
<	12 14 16	25 25 25 25 25 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26	328	36 40
Size	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 mm	97.8	00

OVERHUNG WHEEL FULL HOUSING—UP DISCHARGE

This Style for No. 3 to No. 6 Fans

This Style for No. 7 to No. 13 Fans

TURBO-CONOIDAL (TYPE N) FANS TURBO-CONOIDAL (TYPE T) FANS OVERHUNG WHEEL FULL HOUSING—UP DISCHARGE

	*	000	124	16 20 20 20	488	34
	×	000	ოოო	w 4 ro	တ္တလ	01
	×	88.42.7 %%%%	2440 2640 272%	55 50 50 50 50 50 50 50 50 50 50 50 50 5	857.7 85% 74.7%	91 95
	٦	16 % % % % % % % % % % % % % % % % % % %	20 ½ 22 ½ 24 ½	%%% 30 30 30 30 30 30 30 30 30 30 30 30 30	2044 2044 %%%%	44 5% 46 %%
	*	15 17 15 20	22 ½ 25 ½ 27 ½	30 37 42	47 52 57 ½	62 1/2
-	٦	11 14 13 15	16 % 17 ½ 19 ½	21 26 1/2 28 3/4	31 34 34 34 38 38	41 7%
Ì	-	32 14 36 18 40	43.34 47.75 51.16	54 60 74 64 74 64 74	68 ½ 85 ¾ 90 ¼	94 14 98 34
	E	18 2034 24	26 5% 29 74 32 24	35 38 43 ½	49 54 59 ½	65
	Ö	20 th 24 th 27 % X X X X X X X X X X X X X X X X X X	3.17 3.85 3.84 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85	41 5% 48 14 55 ½	62 178 69 3% 76 18	83 ¼ 90 ¾
	<u></u>	13 14 15 14 17 5%	19 7% 22 14 24 74	26 1/2 30 7/8 35 14	39 34 44 1/8 48 1/2 24	52 38
Ì	ш	15% 18% 21 14	28677%	31 37 18 8 42 8 8 8	47 H 53 H 58 H	88 2% 88 2% 88 2%
-	Q	11 18 13 14 78	16 % 18 % 20 7°	22 18 26 29 34	33 1/2 37 1/2 40 1/2 50	44 4 44 88 88 88
	ပ	17 ¼ 20 22 ¾	3122	468 4064 7%7%	51 ½ 56 ½ 62 ½	73 1/2
	8	15 % 21 % % 21 % % % % % % % % % % % % % %	28.25% 28.25% 28.25%	31 ½ 36 % 42 % 42 %	74 72 72 74 74 74 74 74	68 14
	<	12 14 16	25 25 25 25 25 25	328	86 44 60 44	48
	Size	ww.4	**************************************	01.00	°2=	22

OVERHUNG WHEEL FULL HOUSING—DOWN DISCHARGE

This Style for No. 3 to No. 6 Fans

This Style for No. 7 to No. 13 Fans

OVERHUNG WHEEL FULL HOUSING—DOWN DISCHARGE Dimensions in Inches

*	8001	1121	16 18 20	22.5 28.8 28.8	34
×	ကကက	ကကက	w4r0	99%	10
W	33.4 38.2 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7	24 43 75 75 75 75 75 75 75 75 75 75 75 75 75	5.50 5.00 5.4% 4.4%	200 200 200 200 200 200 200 200 200 200	91
1	41 16%% 88%% 88%%	20 1/2 22 1/2 24 1/8	30888	2044 2044 %/%/%	44 5/8
×	00 00 44 %4.%4	201	50 77.72	44.7.7.8.7.7.8.7.7.8.7.7.8.7.7.8.7.7.7.8.7.7.7.8.7	85 34 93 34
7	11 14 13 15	16 37 17 1/2 19 1/4	21 26 ½ 28 ¾	1000 1400 1400 1400 1400 1400 1400 1400	41 78 45 38
-	32 14 36 18 40	43.34 47.18 51.14	54 ½ 60 ½ 64 ½ 74 ¼	68 72 72 74 74 74	94 46 98 % 4 %
Ξ	18 2034 24	26 5% 32 34	35 27 31	34 ½ 38 ½ 42 ½	49 1/2
ū	20 13 24 14 27 34	31 1/4 34 14 38 18	484 55 55 72 22 22 22 22 22 22 22 22 22 22 22 22	62 18 69 38 76 18	83 ½ 90 ⅓
Ľ.	13 14 15 74 17 5%	19 78 22 18 24 14	26 ½ 30 ½ 35 ¼	39 44 44 77,84 77,84 77,84	50.00 50.00 80 80.00 80 80 80 80 80 80 80 80 80 80 80 80 8
m	15 % 18 % 21 13	2003 2003 2003 2003 2003 2003 2003 2003	31 37 42 38 88 88	47 18 53 58 fs	63.5%
Q	11 3 13 14 78	1634 1858 20 fs	22 % 29 % 29 %	33 1/2 40 les	44 5%
ပ	17 1/4 20 22 3/4	32%	334 453 47% 74%	51 5 56 37 74 74 74	68 73 1/2
8	15 34 18 38 21	%%% 88,8% 87,8%	31 24 25 24 27 27 27	47.25 74.27 74.2%	63 14 89
<	12 14 16	18 20 23	28 32 32 32	36 44 44	48
Size	27.4	4 70 70 72 72	01·00	°2=	132

STANDARD REVERSIBLE PLANING-MILL EXHAUST FANS (TYPE M)

BOTTOM HORIZONTAL DISCHARGE

Size	A	В	c	F	G	Н	I	J	L	M	P	R	U	X	Y
30 35 40	13 1/2	14	14	$12 \\ 13\frac{3}{4} \\ 15\frac{3}{4}$	35 16	35 1/2	13 7/8	173/8	15 5/8	15 1/8	15 5/8	20 3/4	11 12 7/8 15	4 ½ 5 ½ 6 ½	7
45 50 55	19 3/8	20	20	17 ½ 19 ¾ 21 ¼	46 5	47 1/2	1934	24 34	22 1/4	21 1/4	21	29 1/4		8 1/2	10
60 70 80	23 ¼ 27 ¼ 31 ¼	28	28	24	60 5/8	54 60 ½ 65 5/8	27 1/2	34 1/2	31	28 3/4	27 1/4	39 1/4	25 1/2		14

STANDARD REVERSIBLE DOUBLE PLANING-MILL EXHAUST FANS (TYPE M)

BOTTOM HORIZONTAL DISCHARGE

Size	A	В	c	F	G	H	1	J	L	M	P	R	U	X	Y
35		14	14	12 13 ³ ⁄ ₄ 15 ³ ⁄ ₄	53 1/4	47 ½ 52 58 ¼	13 7/8	173/8	13 ½ 15 5/8 18	15 1/8	31 ½ 34 ½ 38 ¼	20 3/4	11 12 7/8 15	6 ½ 7 ½ 8 ½	1 2 8
50	19 3/8	20	20	17 ½ 19 ¾ 21 ¼	71 34	70 1/2	1934	24 34	20 ½ 22 ¼ 24 ¾ 24 ¾	21 1/4	46 1/2	29 1/4		10 1/2	10
	23 ¼ 27 ¼ 37 ¼	28	28	24	83 ½ 93 ¾ 101 ¾	91 1/2	27 1/2	34 1/2	26 34 31 35 ½	28 3/4		39 1/4		14	10

SLOW SPEED REVERSIBLE PLANING-MILL EXHAUST FANS (TYPE E)

BOTTOM HORIZONTAL DISCHARGE

Size	A	В	c	F	G	н	1	U	L	M	P	R	x	Y
30 35 40	11 1/2	13 5/8	$\begin{array}{c} 12\frac{1}{2} \\ 14\frac{5}{8} \\ 16\frac{5}{8} \end{array}$	13 34	31 ¼ 35 ¼ 38 ¾	40 3/4	19 1/8	23 7/8	21 1/2	12 ½ 14 ¼ 16 ¼	15 1/8	23 3/8 27 1/4 30 5/8	16	8 9 10
45 50 55	16 5/8	19 1/4	$18\frac{5}{8}$ $20\frac{5}{8}$ $22\frac{3}{4}$	19 34	45 1/2	58 1/4	27 3/8	$30\frac{1}{2}$ $34\frac{1}{8}$ $37\frac{1}{4}$	30 34	19 1/2	20 3/8	34 ½ 38 ½ 41 ¾	9	11 12 13
60 70 80	23	27	$24\frac{3}{4}$ $28\frac{3}{4}$ $32\frac{3}{4}$	24	51 ⁷ / ₈ 60 ³ / ₈ 66 ⁵ / ₈	81 1/2	38 1/8	42 34	42 34	27 34		$45\frac{3}{4}$ $53\frac{1}{2}$ $61\frac{1}{4}$	11 12 14	14 16 20

DOUBLE SLOW SPEED REVERSIBLE PLANING-MILL EXHAUST FANS (TYPE E)

BOTTOM HORIZONTAL DISCHARGE

Size	A	B	С	F	G	Н	1	J	L	M	P	R	X Y
30 35 40	11 1/2	13 5/8	$12\frac{1}{2}$ $14\frac{5}{8}$ $16\frac{5}{8}$	13 3/4		52 1/2		23 78	18 ³ / ₈ 21 ¹ / ₂ 24 ³ / ₈	14 1/4	3234	27 1/4	8 1/2 9
45 50 55	16 5/8	19 1/4	$18\frac{5}{8}$ $20\frac{5}{8}$ $22\frac{3}{4}$	19 34	69 1/4	71 34	27 3/8	34 1/8	$27\frac{1}{2}$ $30\frac{3}{4}$ $33\frac{5}{8}$	19 1/2	45 1/4	38 1/2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
60 70 80	23	27	$24\frac{3}{4}$ $28\frac{3}{4}$ $32\frac{3}{4}$	24	81 ¾ 93 ¼ 107	98 1/4		47 3/8	36 ³ ⁄ ₄ 42 ³ ⁄ ₄ 49	27 34	62	45 ³ / ₄ 53 ¹ / ₂ 61 ¹ / ₄	18 20

STEEL PRESSURE BLOWERS (TYPE P)

BOTTOM HORIZONTAL DISCHARGE

No.	В	F	G	Н	1	J	K.	L	M	P	R	T	V	X	Y
1 2 3	4	8 ³ 4 10 15	71/4	$14\frac{1}{4}$ $19\frac{1}{2}$ 23		6 3/8	578 778 91/2	5 18	6		6 78 9 3 10 34	3 16	3 16	1 7/8 2 3/8 2 3/4	278
4 5 6	538	183%	133%	25 ¼ 24 ½ 27 ½	11	11 16	12 3	11 1/2	10 16	4 1/2	13 ½ 14 ¼ 16 5%	478	434	3 1/4	3 3/4 4 4 1/2
7 8 9	8 9	25 29^{5} $35\frac{3}{8}$	171/2	34 40 41 ½	1514	173/8	15 11 18 1 20 3	16 3/8	15 1	85	19 21 74 24 34	5 3/4 7 1/2 10	814		61/4
11	143/8		23 14	45 50 53 ¼	23 1/2	30 7 8	32 1/8	29 1/8	27 3/8		36	11 1/4	11	6 3/8	81/2
12	18	57 3/4	26 ½	53 1/4	28 1/4	35 1/8	373/8	34	32 ½	121/4	41 1/4	13 ½	121/4	9 1/8	10

SECTION V

HEATERS

The heaters used in connection with fan systems of heating are usually some form of pipe coil heater like the Buffalo heater or of cast iron like the Vento heater. Either style is made up in sections or units in the direction of the air flow, which makes it possible to assemble a heater of any desired depth. The general arrangement would be the same for either kind of heater, each being enclosed in a sheet-iron case or jacket.

Buffalo Heaters

The Buffalo Standard Pipe Coil Heater is usually one of two styles, the regular open area pattern (usually written R. O. A. pattern) or the return bend pattern (R. B. pattern). The cuts on page 400 show clearly the difference. Both are made of one-inch full weight steel pipe screwed into a cast-iron base, the pipes being spaced on $2\frac{5}{8}$ -inch centers. These sections are ordinarily made four rows deep, and are called four-row sections. Detailed dimensions of these heaters will be found on page 451, of the piping connections on pages 452 to 455, and of the sheet-iron casing on page 456. Other special forms of pipe coil heater are also made, such as the mitre coil shown on page 400, or the indirect heater shown on page 459.

These heaters are usually connected up to steam and drip headers, with separate connections running to each section. In case it may be required to shut off part of the sections during mild weather, both the steam and drip connections to each section are fitted with a valve. Each section should always be fitted with an air vent which should always be thoroughly blown out on turning steam into a section.

Buffalo Regular Open Area Pattern Heater

Buffalo Return Bend Heater

Buffalo Four-Row Open Area Pattern Section

Buffalo Miter Coil Heater Without Casing or Connections

Detail of Buffalo Heater Construction

Vento Heaters

The Vento cast iron heater, an illustration of which is shown on page 402, is designed specially for use in fan and blower work. The tables and data herein given concerning this heater are taken from the catalog of the makers.

These heaters are made in two standard sizes, called the Regular and the Narrow section, and ordinarily either 40, 50 or 60 inches high. The sections may be so mounted as to make a heater of any desired size.

Vento Heaters

Heat Transfer through Metal Surfaces with Forced Circulation

The transfer of heat through metallic tubes, such as a pipe coil heater, from gases and liquids to gases and liquids may be considered of the same nature as already explained for building material in Part II, Section I. That is, there exist three separate operations—the transfer from the warmer fluid to the initial surface of the tube; the heat passage through the tube wall, and the transfer from the secondary tube wall to the cooler fluid. The amount of heat transmitted will depend on the existing conditions such as the nature of the gas or liquid, the arrangement of the surface, the velocity over the heating surface, or to some special conditions.

The total amount of heat transfer per square foot of surface in a given time will depend on the rate of transmission, upon the temperature difference between the two sides of the surface, and to a certain degree upon the absolute temperatures considered. That is, the total heat transmitted per square foot of surface per hour will be

$$H = K(t_s - t)_m \tag{95}$$

where

H=total heat transfer in B. t. u. per hour.

K=B. t. u. transmitted per sq. ft. per hour per deg. temp. diff.

 $(t_u-t)_m$ = mean temp, diff. between the two sides of the surface.

As may be shown the rate of heat conduction between steam and water is approximately, as indicated by the diagram on page 404, based on data obtained from condenser tests. This gives the rate of conductivity from steam to water as

$$\mathbf{K} = \frac{1}{0.000394 + \frac{0.00255}{V}} \tag{96}$$

where

 $K\!=\!B$. t. u. per hour per sq. ft. per deg. temp. diff. $V\!=\!v$ elocity in ft. per second.

Condensing coils give a much more rapid rate of conductivity per degree difference in temperature than steam coils, owing to the additional effect of condensation.

The rate of transmission from steam to air under conditions of longitudinal flow, based on a series of tests made by the engineering department of the Buffalo Forge Company, is indicated

by the diagram on page 406. These tests were conducted on a boiler tube surrounded by steam, and with the air blown through the tube at different velocities. The coefficient of transmission for this condition may be determined from the formula

$$K = \frac{1}{0.026 + \frac{187}{V}} \tag{97}$$

The method of deriving this formula, as well as the one given on page 407 for transverse flow, may be explained by a reference to the diagram on page 405, where the values of $\frac{1}{K}$ and $\frac{1}{V}$ as obtained from the curve drawn through the plotted test points (page 406) are plotted and a straight line drawn through them. The equation of this line is found to be

$$\frac{1}{K} = 0.026 + \frac{187}{V} \tag{98}$$

from which we obtain the above equation for K.

/alues of K taken from Curve on the Following Page

B. t. u. per Sq. Ft. per Hour per Degree Difference in Temperature Between the Two Sides

Rate of Heat Transmission for Indirect or Pipe Coil Heater
Transverse Flow of Air

The theory of heat transfer with forced circulation under conditions of transverse flow has been fully discussed in the paper "Air Conditioning Apparatus" already referred to, in which the coefficient of heat transmission from steam to air with indirect or fan system pipe coil heaters is shown to be as indicated by the solid line of the diagram on page 407. This curve is based on tests made with a Buffalo Forge Company standard pipe coil heater composed of one-inch pipes placed on 25%-inch centers. The coefficient K for transverse flow as determined from the data obtained may be expressed as

$$K = \frac{1}{0.0447 + \frac{50.66}{V}} \tag{99}$$

where

 K=B, t. u. per hour per sq. ft. per deg. temp. diff.
 V=the velocity of the air through the clear area of the heater in ft. per minute.

This formula was derived by plotting $\frac{1}{K}$ to $\frac{1}{V}$ in a similar manner to that already explained in the case of longitudinal flow.

As already shown, the total heat transmission is dependent on the rate of transmission K, and upon the difference in temperature between the two sides of the conducting wall or surface. That is

$$H = K (t_s - t)_m \tag{100}$$

It is frequently stated that the rate of transmission under the above conditions varies as the square root of the velocity, but as a matter of fact, over the range of velocities ordinarily used in fan system heaters, the transmission varies approximately as the two-thirds power of the velocity. This is shown by the dotted curve in the diagram on page 407, which is plotted from the formula as given. Thus we see that up to a velocity of 1200 feet per minute there is but slight error in assuming the above relations.

The mean temperature difference between the two sides of the surface of a heater as expressed in this formula may be determined from the formula

^{*&}quot;Air Conditioning Apparatus," by Willis H. Carrier and Frank L. Busey, Am. Soc. Mech. Engrs., 1911.

$$(t_{u}-t)_{m} = \frac{(t_{s}-t_{1})-(t_{s}-t_{2})}{\log_{e}\left(\frac{t_{s}-t_{1}}{t_{s}-t_{2}}\right)}$$
(101)

where

t_s = temperature of the steam.

 $t_1 = temperature$ of the entering air.

t2 = temperature of the leaving air.

 $t_8 - t_1 = \text{entering temp. diff. between the steam and}$ the air.

t₈-t₂=leaving temp, diff. between the steam and the air.

Coefficient of transmission may be found approximately from the formula

$$K = \frac{C_p G}{S} \log_e \left(\frac{t_s - t_1}{t_s - t_2} \right)$$
 (102)

where

K=B. t. u. per sq. ft. per hour per deg. temp. diff. Cp = specific heat of air.

G = weight of air in lbs. per hour passed through the heater.

S = total sq. ft. of heating surface.

The amount of heating surface in square feet required may be calculated approximately from the formula

S = (0.1119 Q + 127 A)
$$\log_{10} \left(\frac{t_s - t_1}{t_s - t_2} \right)$$
 (103)

and the temperature rise from

$$\log_{10} \left(\frac{t_s - t_1}{t_s - t_2} \right) = \frac{f}{0.1119 \, V + 127} \tag{104}$$

where

S = sq. ft. of heating surface.

A = clear area of heater.

f = ratio total surface to clear area.

Q=cu. ft. of air at 70° F.

V = velocity of the air through the clear area (at 70° F.) in ft. per min.

t_a = steam temperature.

 $t_1 = \text{entering air temperature.}$

t₂ = final air temperature.

The derivation of the above formulae may be found in the papers on "Air Conditioning Apparatus" referred to on page 408, and the results obtained, while only approximate, will be found sufficiently accurate for calculations based on the temperatures obtained in heating work with exhaust or low pressure steam. Since the transmission varies slightly with different steam temperatures, for accurate work or for higher steam temperatures it will be found necessary to use the following formula. This is the formula used in the calculation of the heater tables and curves included on pages 418 to 438.

$$\begin{split} f = & \left[\left(0.0001791 \text{ V T}_s + 126.8 \right) \log_{10} \left(\frac{t_s - t_1}{t_s - t_2} \right) \right. \\ & \left. - \frac{0.000003474 \text{ V}^2 \left(t_s - t_1 \right)}{0.0447 \text{ V} + 50.66} \right] \end{split} \tag{105}$$

where T_s = the absolute temperature of the steam.

This same theory of heat transmission has been applied to the Vento Cast Iron Heaters * and the following formula derived as an expression of the coefficient of transmission.

$$K = \frac{1}{0.47 + \frac{61.00}{V}}$$
 (106)

While this investigation shows that at the same velocity the heat transmission from pipe coil heaters is greater than from Vento heaters, the frictional resistance is correspondingly greater. But it was also shown that with the same effective velocity, or with the same frictional loss, the rate of transmission was practically the same for the two types of heater.

A further study has been made between pipe coil heaters having one inch pipes on 2¾-inch centers and the Vento Cast Iron Heaters by L. C. Soule.† In discussing the results of his tests the author states: "These results show that former temperature charts published for pipe coils having 2¾-inch centers of pipes read much too high and are, therefore, unsafe to use. These results agree with both the Vento tests and the Buffalo Forge Company tests and by their consistency show their entire reliability." These tests further show that for the same friction the Vento requires 35 per cent. greater velocity than the pipe coil heater on 2¾-inch center, but with the same friction loss the heat transmission was practically the same.

^{*&}quot;Heat Transmission with Indirect Radiation," by Frank L. Busey, Am. Soc. H. and V. Engrs., 1912.

^{†&}quot;Heat Transmission with Pipe Coils and Cast Iron Heaters under Fan Blast Conditions," Am. Soc. H. and V. Engrs., July, 1913.

Temperatures Attained with Indirect Heaters

While it is true that the total rise in temperature will be greater with a greater depth of heater it is also evident that after air has passed over the first few rows of coils it approaches more nearly the temperature of the steam in the coils, hence the rate of transmission is very much less, and added surface is not of proportionate value. For this reason it is seldom advisable, in heating work, to attempt to raise the temperature of the air above 135° or 140°. For special work such as drying, where higher temperatures are required, it is customary to use high pressure steam in the coils.

In case the system is used for ventilation only, and the heat loss is cared for by direct radiation, the temperature of the air leaving the heater should be from 10° to 15° above that of the room, depending on the drop of temperature in the ducts between the heater and outlets. The temperature of the air leaving the outlet should be within a few degrees of that of the room.

The ratio of the temperature difference between the steam and leaving air to the temperature difference between the steam and entering air is approximately constant for a given depth of heater and a given air velocity through the clear area. That is

$$\frac{t_s - t_2}{t_s - t_1}$$
 = approximately a constant.

Condensation in Coils

The weight of steam condensed in the heating coils may be determined either from the B. t. u. as given in the heater tables, or from the cubic feet of air handled and the temperature rise. The heater tables give the B. t. u. per hour per lineal foot of pipe for any given conditions. This, multiplied by the total number of lineal feet in the heater and divided by the latent heat of the steam at the pressure used will give the condensation in pounds per hour.

The weight of steam condensed per hour may also be found by means of the formula

 $C = \frac{\text{Cu. ft. air per min.} \times \text{temp. rise} \times 60}{\text{Cu. ft. air per deg. per B. t. u.} \times \text{latent heat of steam}}$

For ordinary conditions with dry air at 70° F., it has been shown on page 56 that one B. t. u. will raise the temperature of 55.2 cu. ft. of air one degree, hence we have

$$C = \frac{Q \times (t_2 - t_1) \times 60}{55.2 L} = 1.087 \frac{Q (t_2 - t_1)}{L}$$
 (107)

where

C=lbs. of steam per hour.

Q = cu. ft. air per min.

 $t_1 = temperature$ air entering heater.

t2 = temperature air leaving heater.

L=latent heat of steam (=960.6 at 5 lbs. press.)

Velocity of Air Through Heaters

The proper velocity for the air through the clear area of the heater will vary with the different conditions such as pressure carried and character of the installation. The following table of velocities is based on the assumption that the pressure loss through the heater should not exceed 50 per cent. of the total pressure on the fan.

MAXIMUM ALLOWABLE VELOCITIES OF AIR THROUGH CLEAR AREA OF HEATER FOR VARIOUS FAN PRESSURES AND FOR VARIOUS DEPTHS OF HEATER

Total Fan Pressure in Inches

	Total Fair Fossile In Menes										
No. of Sect. Deep	3/4	1	11/4	1 1/2	13/4	2	21/2				
4 5 6 7 8	990 885 810 745 700	1140 1020 930 860 810	1280 1140 1040 960 910	1400 1250 1140 1055 995	1510 1350 1230 1140 1070	1610 1440 1320 1220 1150	1800 1610 1470 1360 1280				

The velocities here given are intended merely to indicate the practical limit, and except where the ducts are very short it will be found advisable to keep below this. This is especially true in the case of public buildings, where the limit should not exceed 90 per cent. of the above. The table on page 413 gives the maximum velocities advisable both for public buildings and for industrial plants for the different depths of heater indicated. These are based on the average pressures usually carried in such installations.

MAXIMUM VELOCITY ADVISABLE THROUGH HEATER FOR DIFFERENT INSTALLATIONS

Depth of Heater in Sections	In Public Buildings	In Industrial Plants
4	1140	1500
5	1020	1350
6	930	1230
7	860	1140
8	810	1070

The subject of velocity of air through the heater with reference to the cost of power has been discussed in a paper* presented before the A. S. H. & V. Engineers, two of the curves and

Maximum Economical Velocity for Different Costs of Power Allowing 25 Per Cent. on Cost of Heater for Interest and Depreciation, Space, Rental, Etc.

^{*&}quot;The design of Indirect Heating Systems with Respect to Maximum Economy of Maintenance and Operation." Am. Soc. H. & V. Engrs., Jan., 1913, by F. L. Busey and W. H. Carrier.

some of the more important deductions being here reproduced. These diagrams are drawn on the assumption that an allowance of 25 per cent. on the cost of the heater be made to cover interest, depreciation, space, rental, etc. The curve shown on page 413 indicates the maximum velocity allowable under the above assumption for various costs of power.

Relative Yearly Interest and Depreciation Cost of Surface and Power Cost
Due to Friction of Air Through Heater at Various Velocities
Through the Clear Area, Allowing 25 Per Cent. on
Cost of Heater for Interest and Depreciation

The above diagram shows the cost for power and the cost allowance for interest and depreciation at different velocities through the heaters. Two power cost curves are shown, one at \$10.00 and one at \$40.00 per H. P. year. The combined curves show the total cost, and the low points on these curves indicate the maximum economical velocity for the respective costs of power.

It was shown that the cost of surface varies as the two-thirds power and the cost of power as the seven-thirds power of the velocity. Also that the maximum economical velocity is equal to 0.66 times the assumed velocity multiplied by the ratio of the

yearly cost allowed for interest and depreciation to the yearly cost of power, to the one-third power. The following deduction was then made regarding the velocity through the heater.

"As regards the heater, the most economical point will be reached when the installation is so proportioned that the yearly cost of power due to the frictional resistance of the heater amounts to 28.6 per cent. of the annual interest and depreciation allowance on the first cost of the heater. This is true regardless of variations in the depth of heater, temperature rise or steam pressure."

Application of the Heater Tables and Curves

Two sets of heater tables will be found on the following pages, one to be used in connection with Buffalo Standard Heaters and the other with Vento Cast Iron Heaters. The methods here described for the use of the Buffalo heater tables are equally applicable to the Vento tables. The values given for the Buffalo heaters are based on data obtained by W. H. Carrier from an extensive series of tests made for the Buffalo Forge Company. The method of making these tests and of working up the data therefrom has been fully described in the paper* "Air Conditioning Apparatus" already referred to. Large diagrams similar to the charts on pages 432 to 438 were drawn and the values for the heater tables determined.

The heater tables on pages 418 to 431 are computed for various steam pressures and give the final temperature of the air and the B. t. u. transmitted per lineal foot of pipe per hour for different entering temperatures and velocities of the entering air. These results are given for different depths of heater, varying from one to eight four-row sections.

The curves showing the relation between the heater surface and air temperature are useful for obtaining the final temperatures when the entering temperature or velocity is different from that given in the tables. As an example, we will assume a steam pressure of five pounds, an entering temperature of plus 20°, a velocity of 1000 feet per minute through the clear area of the heater which is five sections deep. Starting from the left side of the diagram at 20°, follow to the right to the intersection of the 1000 velocity curve, and then downward to the base line at 2.05 sections: adding to this the five sections which we have

^{*&}quot;Air Conditioning Apparatus," by W. H. Carrier and F. L. Busey, Am. Soc. Mech. Engrs., Dec., 1911.

assumed for the depth of the heater gives 2.05+5.00=7.05 sections. Passing upward from the point 7.05 to the 1000 velocity curve and then to the left side of the chart again gives a final or leaving temperature of 113° .

In case the entering and leaving temperatures are assumed to be 0° and 140° respectively, the steam pressure five pounds, and the velocity 800 feet per minute determine how many sections of heater will be required. Passing from the left side of the diagram at 0° to the intersection of the 800 velocity curve and then downward to the base line we find a point of 1.2 sections. In the same way from the 140° point we intersect the base line at 8.6 sections. Then the difference, or 8.6-1.2=7.4 sections, will be the number of 4 row sections or seven 4 row and one 2 row sections, making 30 rows of pipe deep.

The lower graduations on the base line are for use with other than the Buffalo Standard Heaters, where the value of the ratio f is known. In the case of the Buffalo Standard Heater, the value of f for a single four-row section is 12.335. That is, there are 12.335 sq. ft. of heating surface in each section to each square foot of clear area. But in the case of other than the standard heater where the pipes are on different centers the value of f will be different. As an example we will assume that on measuring up the surface in a pipe coil heater it is found that the total square feet of surface is 1000 and the clear area for the passage of air is 25 sq. ft. This gives a ratio of surface to clear area of f=40. Assuming the air enters the heater at 15° above zero with a velocity of 900 ft. per minute find from the diagram on page 433 for five pound pressure what will be the final temperature of this air. Passing from 15° on the left edge of the chart to half way between the 800 and 1000 velocity curves and then to the bottom line, we find a value of f=20. Adding to this the value of f as found from the heater measurements, gives a total of f = 20 + 40 = 60. Passing vertically from f = 60 on the bottom scale to a point corresponding to 900 velocity and thence to the left edge of the diagram gives a final air temperature of 83°.

These curves may be used in connection with any heater when the ratio of surface to clear area is known. In the case of pipe coil heaters composed of one inch pipes the value of f per row of pipes deep is a fixed quantity for each distance between centers of the pipes in the heater. The values of f for different

spacings are given in the following table for heaters one row deep. From this we may see that with the standard Buffalo heater having centers of $2\frac{5}{8}$ inches the value of f per single row of pipes is 3.084 and for a four-row section f is 12.335.

VALUES OF F PER SINGLE ROW OF PIPE ON DIFFERENT CENTERS

C=Pipe Centers in Inches Spacing of 1" Steel Pipe	$f = \frac{S_1}{A}$ Per Row of 1" Pipe
2 1/8	6.164
2 1/4	5.041
2 3/8	4.214
2 1/2	3.581
2 5/8	3.084
2 3/4	2.688

The scale at the top of the diagrams applies to Vento regular sections on five-inch centers, and is used in the same manner as explained for the standard Buffalo pipe coil heaters.

Planoidal (Type L) Fan Drawing Through Heater

TEMPERATURE OBTAINED WITH BUFFALO STANDARD HEATERS STEAM TEMP. 212° 0 LBS., PRESSURE GAUGE

0 lbs.

Lin. Ft. Per Hour 313 860 815 774 774 778 699 656 635 015 955 889 8852 767 731 959 902 9356 831 772 734 597 965 21.5 40.5 57.6 772.9 86.7 98.8 19.6 Final Femp. 12.6 32.5 50.5 66.4 66.4 105.0 15.0 3.9 443.5 60.3 775.0 10.5 11.3 Lin. Ft. B. t. u. Hour 335 742 742 700 367 597 597 325 370 319 771 771 731 557 557 74 226 226 776 733 898 861 861 861 866 1200 Velocity of Air in Ft. per Min., Measured at 70° F. and 29,92 Inches Barometer 23.0 43.3 61.2 77.0 91.6 114.9 14.1 35.4 554.0 70.6 85.9 99.0 5.5 47.8 64.8 80.4 94.1 106.4 B. t. u. per Lin. Ft. 797 738 394 352 352 550 550 755 700 361 362 558 554 554 498 per 334 727 727 583 545 509 577 546 000 24.9 46.2 65.4 65.4 82.0 96.7 109.7 121.0 Final Femp. 16.3 38.7 58.7 76.0 91.7 105.1 116.9 7.5 31.3 51.9 70.1 86.3 100.5 113.1 B. t. u. 555 507 507 501 501 444 444 444 Per 525 625 625 584 517 60 160 382 336 336 337 557 494 494 440 800 9.7 35.2 57.3 76.3 93.2 120.6 131.8 27.0 50.0 70.1 70.1 87.6 116.5 116.5 138.4 18.1 42.4 63.5 81.9 98.0 112.1 124.4 jer jer Hour 535 191 129 129 177 354 333 559 116 118 121 121 121 139 149 149 200 29.4 54.0 75.8 94.3 94.3 110.6 124.3 136.3 20.7 46.7 69.5 88.9 88.9 105.7 120.1 132.8 143.4 12.4 39.8 63.1 83.6 101.1 116.3 129.3 Final Temp. B. t. u. per Lin. Ft. 400 3864 336 3312 230 2269 2269 2269 236 Per 136 399 3842 318 318 295 275 275 258 #18 382 382 3326 303 282 282 263 263 247 001 33.0 60.0 83.0 102.8 119.4 133.2 145.2 24.5 52.9 77.0 97.6 97.6 115.0 129.6 142.0 16.0 45.8 71.1 92.6 110.9 126.0 138.9 B. t. u. per in. Ft. 224 203 203 203 203 171 171 158 135 135 135 Per 246 222 222 204 204 172 172 173 174 178 178 178 200 36.9 66.8 91.8 112.8 129.9 144.0 155.9 28.4 59.8 108.0 126.0 140.6 153.2 163.3 80.9 03.4 122.0 137.7 150.7 No. of Heater Sections 10045050 10045050 1004100100 00 Temp. of Entering Air

TEMPERATURE OBTAINED WITH BUFFALO STANDARD HEATERS GAUGE PRESSURE U LBS., STEAM TEMP, 212° F.

	1400	B. t. u. Per Lin. Ft. Per Hour	853 809 771 734 697 662 632 602	807 768 732 696 661 661 629 600 571	637 605 572 543 518 492 468 449
	14	Final Temp.	30.1 48.1 64.5 79.2 92.1 103.6 114.2	39.0 56.2 71.7 85.6 97.8 108.9 118.9	75.0 88.5 100.4 1111.2 121.0 129.6 137.2 144.4
arometer	1200	B. t. u. per Lin. Ft. per Hour	787 746 704 665 632 599 568	740 704 665 632 598 556 539	581 5555 522 493 467 445 404
nches Ba	12	Final Temp.	31.7 51.0 68.0 83.1 96.9 108.7 119.2	40.4 58.7 74.8 89.5 102.1 113.4 123.7 132.6	76.0 90.5 103.0 114.2 124.2 133.3 141.3 148.8
and 29.92 Inches Barometer	0001	B. t. u. per Lin. Ft. per Hour	709 661 625 591 558 498 473	667 628 559 559 559 500 474 450	496 496 465 438 415 373 373
70° F. and	10	Final Temp.	33.4 53.6 71.8 87.9 102.0 114.0 125.0	42.0 61.4 78.6 93.8 107.0 118.8 129.4	77.2 92.7 106.0 117.8 128.5 138.0 146.1 153.4
i i	800	B. t. u. per Lin. Ft. per Hour	616 575 539 506 448 423 399	582 546 510 480 451 425 425 401	458 428 403 377 356 336 317 300
lin., Measured		Final Temp.	35.4 57.4 76.7 93.4 120.9 132.0 141.7	44.0 65.0 83.1 113.0 125.2 135.8 144.9	78.9 95.3 109.8 122.1 133.4 143.0 158.8
per Mir	009	B. t. u. per Lin. Ft. Per Hour	504 469 437 482 382 3337 317	473 446 414 388 384 341 320	378 352 3252 3252 2252 2520 2538
Air in Ft. per Min.,	9	Final Temp.	37.7 61.5 82.0 99.9 115.1 128.4 139.8 149.3	46.0 69.0 88.3 105.3 119.9 132.5 143.1 152.2	80.8 98.7 114.2 127.5 139.1 148.8 157.1 164.7
Velocity of	400	B. t. u. per Lin. Ft. per Hour	376 320 220 220 2216 2216 2210 2210	351 328 303 281 261 243 228 228	279 261 240 221 207 194 180 168
Vel	4(Final Temp.	41.0 67.2 89.2 107.9 123.6 136.9 148.4 158.1	49.0 74.0 95.0 112.8 127.6 140.4 151.5	83.0 103.0 119.3 145.3 155.7 164.0
	200	B. t. u. per Lin. Ft. per Hour	210 193 177 163 150 139 129	199 183 168 155 142 132 122	158 146 132 122 113 105 97 89
	2	Final Temp.	44.6 73.5 97.5 117.3 133.5 147.1 158.6 167.5	52.8 80.2 103.1 122.0 137.3 150.4 161.2	86.1 108.0 126.0 140.7 153.3 163.5 171.4
	sater	No. of Ho	-226450 6 -20	-1304001-00	-0040000
	Temp. of Entering Air		°01	30°	°09

TEMPERATURE OBTAINED WITH BUFFALO STANDARD HEATERS

5 lbs.

GAUGE PRESSURE 5 LBS., STEAM TEMP. 227°

	0	B. t. u. Per Lin. Ft. Per Hour	1065 1001 946 898 854 813 775	1010 953 904 858 816 777 741	959 910 863 819 780 748 708
	1400	Final Temp.	5.1 27.2 46.9 64.6 80.6 94.9 107.8 119.1	13.8 34.9 53.9 70.9 86.1 99.9 112.3 123.0	22.6 42.9 61.0 77.2 91.9 105.0 116.7
ometer	1200	B. t. u. per Lin. Ft. Per Hour	976 913 862 817 772 732 696	918 869 822 778 738 701 667	878 829 788 744 706 670 637 605
ches Bar	12	Final Temp.	6.9 30.2 51.1 69.8 86.1 100.8 114.0	15.3 37.8 57.8 755.5 91.4 105.7 118.3	24.2 45.6 65.0 81.8 97.0 110.6 133.2
and 29.92 Inches Barometer	000	B. t. u. per Lin. Ft. Per Hour	876 820 724 724 683 612 580	736 659 659 658 658 658 658 658	800 747 702 661 624 591 559
Œ.	800 10	Final Temp.	8.9 34.1 56.1 75.5 92.7 108.0 121.3 133.0	17.7 41.5 62.8 81.4 97.9 112.4 125.2 136.4	26.4 49.3 69.5 87.2 103.0 117.0 129.2 140.0
ed at 70°		B. t. u. per Lin. Ft. Per Hour	754 703 659 619 582 548 517	728 631 593 558 495 468	691 643 603 567 534 474 448
Min., Measured at	80	Final Temp.	11.1 38.0 61.5 82.1 100.0 115.6 129.3 141.0	20.0 45.5 68.1 87.8 105.0 120.1 133.0	28.5 53.0 74.6 93.5 110.0 124.3 136.8
Ft. per Min.	009	B. t. u. per Lin. Ft. Per Hour	620 574 536 500 467 438 412 387	591 553 514 479 447 420 395 371	565 527 491 458 429 402 378 355
Air in Ft.	09	Final Temp.	14.1 43.1 68.4 90.0 108.5 124.6 138.5 150.3	22.5 50.3 74.8 95.4 1113.0 128.6 141.9 153.3	31.1 58.0 81.0 1100.8 117.9 132.7 145.4 156.3
Velocity of A	400	B. t. u. per Lin. Ft. Per Hour	459 390 336 336 314 293 274	436 402 374 346 322 301 281	418 385 357 331 288 268 268 251
Veloc	4(Final Temp.	17.9 49.5 76.5 99.3 118.4 135.2 149.0	26.0 56.3 82.4 104.0 122.7 138.9 152.0 163.2	34.5 63.5 88.4 109.2 127.3 142.4 155.0 166.0
	200	B. t. u. per Lin. Ft. per Hour	261 236 236 1198 1183 1169 1157	249 226 207 190 176 163 151	239 217 198 182 168 1156 1144 134
	2	Final Temp.	23.0 58.0 87.1 111.0 131.2 147.9 161.5	31.1 64.6 92.6 115.4 135.0 151.0 164.0	39.5 71.5 98.2 120.2 138.9 154.1 166.6
3	eater	No. of He	-000400F0	-0:04r00r0	-0104500r
	Temp. of Entering Air		-20°	-10°	°o

TEMPERATURE OBTAINED WITH BUFFALO STANDARD HEATERS GAUGE PRESSURE 5 LBS., STEAM TEMP, 227° F.

	400	B. t. u. per Lin. Ft. per Hour	913 888 821 7821 708 674 674	866 823 783 708 674 642 612	692 658 625 594 564 537 513 492
	4	Final Temp.	31.5 50.9 68.0 68.0 97.7 110.1 121.2	40.4 58.8 75.3 90.0 103.4 115.2 125.9	76.3 91.0 104.2 116.0 126.4 135.9 144.6 152.7
	200	B. t. u. per Lin. Ft. Per Hour	838 791 751 710 674 640 608 578	795 755 716 674 641 610 579 550	639 600 570 540 512 486 463 442
arometer	12	Final Temp.	33.1 53.5 71.9 88.0 102.6 115.6 127.0	41.9 61.5 79.0 94.1 108.1 120.5 131.4 141.0	77.6 93.0 1107.0 1119.4 130.4 140.1 1440.1 157.2
29.92 Inches Barometer	0001	B. t. u. per Lin. Ft. Per Hour	758 669 630 596 564 534	716 673 635 600 566 566 536 482	576 538 509 481 454 430 408
d 29.92	10	Final Temp.	35.0 56.8 76.2 93.1 108.3 121.6 133.2 143.8	43.6 64.4 82.8 99.1 113.4 126.0 137.3	79.0 95.5 110.4 123.4 134.8 145.2 162.2
70° F. and	800	B. t. u. per Lin. Ft. Per Hour	657 616 576 541 509 480 452 452	626 586 550 515 485 457 4431 408	497 440 440 414 389 366 347
ured at 7	8 009	Final Temp.	37.1 60.8 81.2 99.2 115.0 128.8 140.5	45.8 68.3 88.0 104.9 133.0 144.4 154.5	80.5 98.7 114.4 128.2 140.1 150.6 168.0
per Min., Measured at 70°		B. t. u. per Lin. Ft. Per Hour	537 469 438 410 384 361	515 479 449 417 391 366 344 324	417 385 335 335 313 277 261
Ft. per Mi		Final Temp.	39.5 65.3 87.4 106.3 122.7 136.7 148.9 159.3	48.3 72.7 94.0 111.6 127.4 140.8 152.4 162.3	82.9 102.3 119.0 133.7 146.1 157.0 166.5
	400	B. t. u. Per Lin. Ft. Per Hour	400 342 342 295 275 258 241	382 326 302 280 280 245 245	308 284 263 244 226 211 198 185
Velocity of Air in	4	Final Temp.	43.0 71.0 94.5 114.4 131.7 146.1 158.8	51.5 78.0 100.5 119.6 135.6 149.8 161.2 171.3	85.4 106.8 125.0 140.5 153.2 164.4 174.0 182.0
No.	200	B. t. u. Per Lin. Ft. Per Hour	228 207 189 174 161 149 138	216 197 181 166 154 142 132	173 158 146 134 1124 116 99
		Final Temp.	47.6 78.3 103.7 124.8 142.7 157.3 169.2 179.1	55.6 85.1 109.4 129.6 146.7 160.3 171.8	88.6 112.2 132.2 148.6 162.0 173.1 182.4 190.0
19	leat	No. of 1 Section		-01004r00r00	1004001-8
1	Temp. of Entering Air		.01	200	°09

TEMPERATURE OBTAINED WITH BUFFALO STANDARD HEATERS GAUGE PRESSURE 20 LBS., STEAM TEMP. 258.8° F.

20 lbs.

		400	B. t. u. per Lin. Ft. Per Hour	1172 1105 1053 998 949 902 861 821	1112 1061 1012 958 912 867 750	1025 1025 971 875 834 795 759
		14	Final Temp.	7.6 32.1 54.4 74.0 91.8 107.5 121.9 134.7	16.2 40.0 61.5 80.3 97.4 112.5 126.4 138.8	25.2 48.3 68.6 86.9 117.9 131.0 143.0
	neter	0	B. t. u. per Lin. Ft. per Hour	1070 1017 958 907 860 815 777 737	1016 973 922 872 826 784 745 709	937 837 753 717 682
2	and 29.92 Inches Barometer	1200	Final Temp.	9.5 35.9 59.0 79.7 98.1 114.4 129.1 142.0	18.0 43.5 66.0 85.8 119.3 1133.4 145.9	27.1 51.5 73.0 92.0 124.2 138.0 149.9
	.92 Inch	0	B. t. u. per Lin. Ft. per Hour	964 910 854 806 761 719 681 646	931 873 824 7775 731 692 656 623	904 841 792 746 704 631 599
	F. and 29	1000	Final Temp.	11.8 40.0 64.5 86.3 105.5 122.3 137.3 150.5	20.7 47.6 71.5 92.2 110.6 126.9 141.4 154.4	29.8 78.4 78.4 116.0 145.6 158.1
	at 70°	0	B. t. u. per Lin. Ft. per Hour	837 733 688 648 612 578	800 752 706 662 624 589 557 525	774 724 678 637 601 535 505
	per Min., Measured	800	Final Temp.	14.5 44.5 70.6 93.5 1113.5 146.8 160.0	23.0 52.0 77.3 99.1 118.6 135.8 150.6	31.9 59.7 83.8 105.0 123.8 140.3 154.5
	r Min., A		B. t. u. per Lin. Ft. per Hour	682 638 5597 558 489 460 460	650 614 573 537 502 471 443	630 554 554 483 454 427 402
10000	in Ft. pe	009	Final Temp.	17.5 50.1 78.4 102.6 123.2 141.4 157.0	25.7 57.5 84.4 108.0 128.0 145.2 160.5	34.6 65.1 91.3 1132.6 149.6 164.3 176.6
7000	Velocity of Air	0	B. t. u. per Lin. Ft. per Hour	510 473 4837 405 377 351 328 307	489 455 421 390 363 338 316 296	474 438 404 376 336 304 285
	Velocit	400	Final Temp.	22.1 57.9 88.0 113.4 135.3 153.7 169.4	30.4 65.0 94.0 118.5 139.5 157.2 172.2 185.0	39.1 72.2 100.0 123.9 143.9 161.0 175.5
		0	B. t. u. per Lin. Ft. per Hour	289 264 243 223 206 190 177 164	276 255 234 215 1198 1184 170	267 245 225 207 191 177 164
		200	Final Temp.	27.6 67.2 100.0 127.1 149.7 168.3 183.7	35.5 74.0 105.4 131.8 153.5 171.5 186.3	44.0 80.9 1111.2 136.5 157.4 174.8 189.1
			No. of Hes	1004505		-00.470.01-00
		li TiA	Temp. o	-20°	-10°	8

20 lb

TEMPERATURE OBTAINED WITH BUFFALO STANDARD HEATERS GAUGE PRESSURE 20 LBS., STEAM TEMP, 258.8° F.

	400	B. t. u. per Lin. Ft. Per Hour	1027 985 931 884 841 800 764	989 944 892 847 806 766 731	811 764 723 694 662 630 602 575
	14	Final Temp.	34.2 56.4 75.8 93.3 109.0 123.1 136.0 147.3	43.3 64.5 83.0 99.8 114.9 128.3 140.6 151.6	79.1 96.0 1111.1 125.4 138.0 149.1 159.3 168.4
	1200	B. t. u. per Lin. Ft. per Hour	954 901 849 804 761 724 688	911 864 813 769 729 693 658	740 706 667 633 600 570 545 519
ometer	12	Final Temp.	36.3 59.5 80.0 98.4 114.6 129.3 142.3 153.9	45.1 67.5 87.0 104.5 120.2 134.2 146.6 158.0	80.4 98.8 115.0 129.6 142.5 154.0 164.8
Inches Barometer	0001	B. t. u. per Lin. Ft. per Hour	858 805 758 713 674 638 606	831 727 685 647 612 581	679 635 596 564 534 507 481 456
26.62	10	Final Temp.	38.3 63.1 85.0 104.1 121.1 136.2 149.9 161.9	47.4 71.0 91.9 110.3 126.7 141.0 154.1	82.4 101.9 119.0 134.4 148.0 160.4 171.1
F. and	800	B. t. u. per Lin. Ft. per per Hour	745 695 650 611 577 544 514	716 667 623 525 522 492 466	585 547 518 488 459 432 409 386
ed at 70°	8	Final Temp.	40.7 67.3 90.4 110.8 129.0 144.6 158.3 170.1	49.5 75.0 97.0 116.7 134.3 149.1 162.0 173.8	84.1 105.1 124.0 140.4 154.6 166.9 177.9
Min., Measured	009	B. t. u. per Lin. Ft. Per Per Hour	610 571 532 496 465 4465 410 386	590 549 509 475 446 418 393	488 453 421 395 370 347 326 307
per Min.)9	Final Temp.	43.5 72.8 97.7 1119.0 137.7 153.9 167.6	52.4 80.4 104.0 124.5 142.5 158.0 171.3 182.9	86.8 109.8 129.4 146.8 161.7 174.5 185.5 195.0
Air in Ft.		B. t. u. per Lin. Ft. Per Hour	454 419 388 361 335 313 292 274	439 401 372 346 322 300 280 262	359 333 309 287 287 233 218
J'o		Final Temp.	47.5 79.1 106.0 128.9 148.1 164.7 178.6	56.2 86.1 112.0 134.1 152.7 168.5 181.8 193.1	89.6 114.9 136.4 154.6 170.1 183.1 194.5 204.0
Velocity	200	B. t. u. per Lin. Ft. Per Hour	257 236 216 199 170 158	248 227 208 191 176 163 151	206 188 173 147 135 117
	2	Final Temp.	52.3 87.8 116.9 141.1 161.3 178.0 191.9 203.1	60.9 94.7 122.8 146.0 165.3 181.1 194.5 205.0	94.0 122.0 145.5 164.9 181.0 194.0 205.1 214.0
	sater ns	No. of He	10045050	100450070	-0044000
	lo JiA	Temp. Entering	01	20°	.09

WITH BUFFALO STANDARD HEATERS TEMPERATURE OBTAINED

B. t. u. in. Ft. Hour 40 lbs. 167 1119 063 010 960 913 870 830 286 206 146 085 035 983 983 894 400 10.3 36.8 61.0 82.3 118.9 118.9 48.4 18.8 67.8 67.8 88.8 123.8 139.1 27.5 52.7 75.1 95.2 95.2 13.0 143.4 56.5 B. t. u. 084 024 967 916 869 785 749 128 061 007 9955 991 891 775 Velocity of Air in Ft. per Min., Measured at 70° F. and 29.92 Inches Barometer 1200 12.4 88.4 108.4 126.2 126.2 142.3 156.6 21.0 48.3 73.0 95.0 95.0 113.8 131.2 146.6 29.8 56.3 79.7 119.4 1136.2 151.0 Per 000 TEMP, 286.7° 14.8 45.0 72.0 95.7 95.7 116.6 134.8 151.0 23.0 52.8 78.5 78.5 101.8 39.6 55.4 69.5 32.0 60.5 85.2 107.7 127.0 144.0 159.4 Lin. Ft. Per Hour B. t. u. 342 744 744 357 357 357 357 554 554 354 356 366 366 366 366 366 STEAM 800 34.7 65.5 92.0 115.2 135.4 153.5 169.1 Final Femp. 17.5 50.4 78.4 104.0 125.6 144.8 161.4 176.0 26.4 58.0 85.8 85.8 130.6 149.2 165.3 40 LBS.. Per 701 352 307 307 331 468 468 442 746 700 553 508 508 508 502 473 900 PRESSURE 38.5 71.7 71.7 100.0 124.6 145.8 164.1 180.4 21.0 57.0 87.7 113.6 136.2 156.0 173.1 30.0 63.8 93.6 1119.2 141.0 159.9 176.8 100 34.2 72.2 104.1 131.0 154.0 173.5 204.1 42.3 79.0 100.6 136.0 177.2 193.0 206.8 26.0 65.0 97.6 125.8 149.8 170.0 201.7 Final in. Ft. 256 256 256 256 202 202 202 174 291 271 271 228 228 228 210 210 195 181 168 200 40.0 82.0 116.5 145.3 169.6 189.4 205.9 Final Femp. 32.5 75.6 1111.3 141.0 166.0 186.3 203.3 48.0 89.5 89.5 1122.6 1150.5 1173.5 208.6 221.8 Sections 120450500 100450500 40100 **4100** 100 No. of Heater Temp. of Entering Air ô

TEMPERATURE OBTAINED WITH BUFFALO STANDARD HEATERS

40 lbs.

GAUGE PRESSURE 40 LBS., STEAM TEMP. 286.7° F.

	0	B. t. u. per Lin. Ft. Per Hour	1146 1076 1020 970 972 879 838 801	1091 1034 982 981 887 845 806 769	914 870 821 745 710 679 643
	1200 1400	Final Temp.	37.0 60.7 82.1 101.7 118.6 134.2 148.2 160.9	45.7 68.7 89.4 107.7 124.5 139.4 152.9	81.4 101.0 118.0 133.7 147.7 160.4 172.0 181.2
		B. t. u. per Lin. Ft. Per Hour	1041 988 929 882 837 795 720	990 940 893 845 804 764 728	842 797 752 713 645 645 615
Inches Barometer	12000	Final Temp.	38.5 64.3 86.6 107.0 125.0 141.0 155.5	47.2 72.0 93.6 113.0 130.5 146.0 160.0	83.0 103.8 132.0 138.4 153.2 166.3 178.2
Inches B		B. t. u. per Lin. Ft. Per Hour	940 884 831 786 770 702 667	895 849 799 757 713 675 642	767 722 674 637 603 572 572 516
26.62	800 10	Final Temp.	41.0 68.3 92.2 113.7 132.5 148.9 164.0	49.5 76.0 99.1 119.8 137.5 153.6 168.1 181.0	85.1 107.6 126.7 144.0 159.4 173.2 185.6
70° F. and		B. t. u. per Lin. Ft. Per Hour	813 759 718 634 634 598 555	784 737 692 648 611 576 544	670 622 583 548 517 487 461 436
Measured at 7	98 009	Final Temp.	43.5 72.6 98.8 121.0 140.6 157.9 172.9	52.3 80.8 105.6 126.9 145.9 176.9 189.8	87.6 1111.3 132.1 150.4 166.5 193.0 204.0
I., Measi		B. t. u. per Lin. Ft. Per Per Hour	677 629 585 547 511 452 452	644 605 563 526 492 4462 436 410	548 509 474 443 416 392 369 348
per Min.,	400 60	Final Temp.	47.2 79.1 106.4 130.2 150.4 168.4 184.0	25.4 86.5 112.8 135.7 155.1 172.5 187.6 200.4	90.1 116.0 138.2 157.3 174.5 189.3 201.9 212.8
Air in Ft.		B. t. u. per Lin. Ft. Per Hour	499 4862 3988 346 323 302	479 4445 4113 383 357 333 311	250 3379 3379 3325 3325 281 281 264 248
Velocity of Air	200 40	Final Temp.	51.1 86.2 116.0 141.1 162.5 180.9 196.2 209.4	59.5 93.4 122.1 146.4 167.0 184.6 199.4 212.2	93.9 122.5 146.6 167.2 185.0 199.6 212.3 223.4
Velc		B. t. u. per Lin. Ft. per Hour	282 280 220 220 203 174 162	272 251 230 212 196 181 168	234 214 196 180 166 1154 1143 133
	20	Final Temp.	56.5 95.8 154.9 177.5 196.0 2211.0	64.8 102.9 133.9 159.5 181.3 199.0 213.8	98.6 130.6 156.7 179.0 197.1 212.2 224.9 235.3
	No. of Heater Sections		-01004r0@r-00	-0044001-00	-0104706-00
	Temp. of Entering Air		.01	20°	09

TEMPERATURE OBTAINED WITH BUFFALO STANDARD HEATERS

	Temp. of Entering Air		-20°	°01-	00
	No. of Heater Sections				-0.004€00F0
	2	Final Temp.	36.0 82.0 120.0 151.8 177.8 199.8 218.2 234.0	44.2 88.9 125.5 156.4 181.6 203.0 221.0 236.3	52.3 95.5 131.2 161.0 185.4 224.0 239.0
	200	B. t. u. per Lin. Ft. Per Hour	340 283 281 240 222 222 206 193	329 300 274 252 252 215 200 187	317 290 265 244 225 208 194 181
Velo	400	Final Temp.	29.0 70.0 105.0 134.9 160.4 182.0 200.2 215.9	37.7 77.4 1111.4 140.2 165.0 185.6 203.5 218.6	45.4 84.3 117.0 145.3 169.0 189.2 206.5 221.0
Velocity of Air is		B. t. u. per Lin. Ft. Per Hour	594 505 505 470 438 408 382 358	578 530 491 456 425 395 370	550 5111 4411 4410 383 358
F	009	Final Temp.	24.2 61.6 94.1 122.0 146.2 167.5 185.5	32.6 69.0 100.3 127.5 151.0 171.3 189.0 204.4	41.0 76.4 106.7 133.0 175.5 192.8 207.5
. 2		B. t. u. per Lin. Ft. Per Hour	804 742 692 646 605 569 534	777 719 669 625 586 550 517 488	746 695 647 605 568 532 501 472
Mea	800	Final Temp.	20.3 554.6 85.0 111.4 134.5 155.0 173.0	28.9 62.2 91.4 117.0 139.5 159.4 176.9	37.3 69.8 98.0 122.7 144.5 164.0 180.7
sured at 70° F.		B. t. u. per Lin. Ft. Per Hour	978 905 849 797 750 708 669 632	944 876 820 770 725 685 648	905 847 793 744 701 663 626 592
and	1000	Final Temp.	17.0 49.1 77.6 102.7 124.8 144.5 162.0	25.6 56.8 84.1 108.8 130.0 149.1 166.1	34.5 64.3 91.2 114.6 135.4 170.2 184.6
29.92		B. t. u. per Lin. Ft. Per Hour	1122 1048 987 930 878 831 788 748	1079 1013 951 901 849 804 763	1046 975 922 869 821 778 737
Inches Bar	12	Final Temp.	14.3 44.5 71.2 95.0 116.1 135.5 152.4 167.3	23.0 52.3 78.0 101.0 121.8 140.3 156.6	32.0 60.1 85.0 107.2 127.2 145.0 161.0
Barometer	1200	B. t. u. per Lin. Ft. per Hour	1245 1174 1106 1046 991 943 896 852	1197 1134 1067 1010 959 912 866 825	1161 1094 1031 975 926 879 837 797
	1400	Final Temp.	12.3 40.2 65.7 88.8 109.1 127.4 144.1 159.0	21.0 48.5 73.0 95.0 114.7 132.3 148.8 163.0	29.8 56.4 79.9 101.4 120.5 137.7 153.1 167.0
		E. E. B.	81122100	821110000	21100000

60 lbs.

TEMPERATURE OBTAINED WITH BUFFALO STANDARD HEATERS CL. TEMP. 307.3° 60 LBS., STEAM GAUGE PRESSURE

381 386 389 389 381 310 772 737 Lin. Ft. Hour 1167 1104 1051 999 951 965 865 865 B. t. u. 210 146 090 035 985 940 897 856 1400 83.1 104.1 123.0 40.0 155.4 169.1 181.5 93.0 38.5 64.0 87.0 107.5 126.0 142.9 157.9 47.5 72.0 94.3 114.1 132.0 148.0 162.7 8859 8859 815 777 735 699 666 078 013 958 962 862 780 743 350 350 350 350 350 350 350 and 29.92 Inches Barometer 1200 85.0 107.2 127.2 145.0 161.0 175.2 188.2 40.9 68.0 91.8 1133.0 1150.2 1165.5 49.7 75.7 99.0 19.9 38.5 55.0 70.1 83.4 319 7773 7728 555 555 589 589 970 910 857 764 588 538 B. t. u. Per 900 87.0 111.0 132.0 151.0 168.0 182.7 195.9 52.0 80.0 80.0 104.8 126.8 146.0 163.5 178.7 43.1 72.4 98.0 20.6 40.8 74.5 74.5 88.5 Final Temp. Ľ Velocity of Air in Ft. per Min., Mennired at 70° 552 552 552 552 552 552 552 552 339 737 737 5394 518 552 552 873 814 767 720 678 640 605 per 800 89.7 115.3 138.0 158.0 175.8 190.8 204.5 54.6 85.0 111.1 134.4 172.9 172.9 202.2 46.0 77.1 104.8 149.8 168.4 184.6 198.8 155 154 154 154 101 101 593 555 503 529 529 529 529 529 529 B. t. 11. 584 584 584 514 484 484 456 per 900 92.5 120.8 145.2 1166.4 200.5 214.3 226.4 58.1 91.0 1119.4 144.1 165.5 183.8 2200.0 49.5 83.5 83.5 1112.9 138.5 160.5 179.5 196.2 254 258 354 308 308 288 288 271 Lin. Ft. Per 000 96.5 127.7 154.0 176.7 195.6 226.7 238.5 99.0 129.5 155.7 178.0 197.0 213.0 226.8 54.0 91.5 91.5 150.5 173.3 193.0 209.6 Final Femp. per in. Ft 2553 232 213 213 196 181 68 156 202 202 202 202 202 75 B. t. u. Per 902 136.5 136.5 1165.3 189.0 209.4 226.3 226.3 240.5 68.7 109.0 142.8 170.0 193.1 212.8 229.3 61.0 1102.3 1137.0 1165.9 1189.4 209.7 226.5 240.6 100450500 1010041001-00 Sections 1015045007-00 No. of Heater 009 Entering Air 200 lemp. of

TEMPERATURE OBTAINED WITH BUFFALO STANDARD HEATERS

80 lbs.

	00	B. t. u. per Lin. Ft. per Hour	1431 1350 1274 1208 1146 1092 1040	1384 1305 1234 1167 1110 1058 1007	1354 1265 11193 11129 1024 1022 975
neter	1400	Final Temp.	13.7 43.6 70.0 93.8 115.0 134.3 151.5 166.8	22.6 51.5 77.2 100.0 120.7 139.5 156.0 171.0	31.9 59.6 84.3 106.4 126.5 144.4 160.8 175.2
	rometer 1200	B. t. u. per Lin. Ft. Per Hour	1310 1234 1158 1095 1038 985 985 937 891	1274 1186 1120 1059 1004 954 908 864	1233 1146 1086 1026 972 923 880 837
	1000 1200	Final Temp.	16.0 47.8 75.5 100.4 122.6 142.4 160.3 176.0	25.0 55.2 82.3 106.4 128.0 147.3 164.7 180.0	33.9 63.0 89.5 112.8 132.6 152.2 169.2 184.0
	000	B. t. u. per Lin. Ft. Per Hour	1182 1095 1095 972 919 869 825 783	1137 1061 1000 941 890 842 799 758	1098 1028 969 911- 861 775
1	4	Final Temp.	19.0 522.2 822.2 108.2 131.5 170.5 186.6	27.5 60.0 88.9 114.1 136.8 156.6 174.5	36.2 67.8 95.9 120.2 142.0 161.5 178.9
	800	B. t. u. per Lin. Ft. per Hour	1024 950 890 835 786 740 700	985 921 861 808 761 718 679 642	961 8885 834 737 695 657
100	Measu	Final Temp.	22.2 58.3 90.0 117.6 142.0 163.1 182.0 198.3	30.6 65.9 96.5 123.2 146.9 167.5 185.8	39.6 73.0 103.1 129.0 151.9 172.0 189.5 205.0
	per min.,	B. t. u. per Lin. Ft. per Hour	846 780 726 676 633 596 560	812 755 702 653 615 576 543	782 731 679 634 595 559 559 496
יו בי	III FT.	Final Temp.	26.5 65.7 99.7 128.5 154.0 176.4 195.3	34.6 73.0 105.8 133.5 158.9 180.1 198.8 215.0	43.0 80.3 112.0 139.4 163.6 184.5 202.4 218.0
, <	400	B. t. u. per Lin. Ft. per Hour	625 531 492 459 428 400 375	607 559 4477 445 388 364	587 541 469 462 432 402 376 353
	ve10c	Final Temp.	31.5 74.5 111.3 142.3 169.0 191.7 210.8	40.0 82.0 117.5 147.3 173.2 195.4 214.1	48.4 89.0 123.3 152.5 178.0 199.0 217.1 232.6
	200	B. t. u. per Lin. Ft. per Hour	355 323 223 273 252 252 233 201	346 315 288 265 244 226 210	334 305 279 257 237 219 204
	7	Final Temp.	38.5 86.6 126.5 160.0 187.5 229.8 245.4	47.0 93.8 132.5 165.0 191.5 232.6 247.8	55.0 100.6 138.0 169.5 195.5 217.0 235.1 250.0
	No. of Heater Sections		-004700V®	-0047001-00	-004r00r0
	Temp. of Entering Air		-20°	-10°	ခ

TEMPERATURE OBTAINED WITH BUFFALO STANDARD HEATERS STEAM TEMP. 323.7° F. 80 LBS., JAUGE PRESSURE

80 lbs.

B. t. u. Lin. Ft. Per Hour 1235 11167 1104 1051 002 952 910 873 057 998 997 782 747 49.1 75.0 98.0 119.0 170.0 170.0 84.9 107.0 1126.9 145.0 161.0 175.5 200.8 Final Femp. 40.5 67.3 91.2 112.7 132.2 149.5 179.5 per in. Ft. B. t. u. and 29.92 Inches Barometer Per 179 047 991 892 849 849 146 072 007 955 907 861 881 972 919 986 881 782 742 707 1200 51.5 78.9 103.0 125.0 144.6 162.0 178.0 42.4 71.0 96.3 118.9 139.0 157.0 173.4 86.7 1110.5 1131.4 1150.0 1167.4 1182.4 1182.4 208.3 in. Ft. 879 820 7776 894 858 858 858 858 Per 058 993 934 879 788 749 89.0 114.1 136.8 156.5 174.4 190.1 204.0 44.9 75.5 102.4 126.0 147.5 166.0 197.6 54.0 83.1 109.1 132.1 152.8 171.0 187.0 Velocity of Air in Ft. per Min., Measured at 70° F. in. Ft. Hour B. t. u. 327 361 361 361 758 773 373 373 373 373 885 828 828 777 731 530 531 531 531 532 759 531 531 532 532 503 800 48.2 81.0 1110.0 1135.0 1176.5 1193.7 208.5 56.5 88.3 1116.2 140.5 162.1 181.0 197.5 Final Temp. 91.3 119.0 143.0 164.1 182.8 199.0 226.0 per in. Ft. Hour 768 558 558 515 515 510 420 420 420 728 382 382 382 382 382 463 364 464 464 900 60.0 95.0 124.3 150.5 173.2 192.5 224.0 52.2 88.0 118.5 145.1 168.5 188.7 206.0 95.0 124.4 150.2 173.0 192.4 229.3 224.0 in. Ft. Per 901 56.8 96.4 96.4 1129.6 1158.0 2202.8 220.8 220.5 235.0 65.0 103.3 1135.4 1186.8 206.5 223.4 223.4 238.0 99.3 132.0 1160.0 184.0 204.3 221.5 236.5 249.0 B. t. u. per Lin. Ft. Per 287 287 287 241 223 223 206 1191 270 248 226 209 209 209 179 179 154 002 104.5 141.6 172.0 198.0 237.0 251.2 263.3 No. of Heater Sections 10045050 100450010 100450000 Temp. of Entering Air 6 00

TEMPERATURE OBTAINED WITH BUFFALO STANDARD HEATERS

100 lbs.

	1400	B. t. u per Lin. F Per Hour	1465 1388 1313 1242 1185 1128 1075	1414 1341 1271 1205 1148 1092 1042 995	1358 1295 1227 1167 1112 1060 1010 965
	14	Final Temp.	14.5 45.4 72.8 97.0 1119.6 139.5 157.2 173.3	23.3 53.2 79.8 103.5 125.2 144.4 161.8	32.0 61.0 86.7 110.0 149.8 166.5
neter	200	B. t. u. per Lin. Ft. per Hour	1344 1266 1194 1132 1073 1018 971 925	1306 1226 1155 1097 1041 987 941 898	1252 1186 1122 1063 1008 957 913 870
Inches Barometer	1000	Final Temp.	17.0 49.6 78.4 104.4 127.4 147.9 166.7 183.3	26.0 57.4 85.2 110.6 133.0 152.8 171.0	34.5 65.2 92.5 116.8 138.5 175.8 191.4
29.92 Inch		B. t. u. per Lin. Ft. Per Hour	1219 1137 1065 1007 952 900 854 811	1182 1098 1031 975 922 873 827 786	1137 1064 1001 945 893 846 804
F. and 29	01	Final Temp.	20.2 555.0 85.4 112.8 137.0 177.2 194.0	29.0 62.4 92.0 118.6 142.0 162.8 181.0	37.5 70.2 99.0 124.6 147.2 167.4 185.5 201.3
20°	00	B. t. u. per Lin. Ft. per Hour	1050 982 920 864 7725 685	1019 952 890 837 788 744 703	980 919 862 811 763 722 683
Measured at	800	Final Temp.	23.3 61.0 93.8 122.5 147.4 169.5 206.0	32.0 68.5 100.1 128.0 152.5 174.0 193.0 209.5	40.4 75.8 106.6 133.7 157.2 178.5 197.0 212.9
Min.,		B. t. u. per Lin. Ft. per Hour	873 804 749 700 656 617 580	839 779 728 679 637 598 563	811 755 704 658 618 581 546
in Ft. per	009	Final Temp.	28.0 68.4 103.5 134.0 160.3 183.4 203.1 219.7	36.1 75.6 110.0 139.3 165.0 187.3 206.7 223.3	44.6 83.0 116.0 144.7 169.9 191.5 226.4
Air	400	B. t. u. per Lin. Ft. per Hour	646 595 550 509 444 415 389	625 576 533 494 462 431 403 378	606 561 518 480 448 418 392 367
Velocity of	200 40	Final Temp.	33.3 78.1 116.0 148.0 176.0 199.6 219.7 236.5	41.5 85.0 121.8 153.0 180.3 203.0 222.7 239.2	50.0 92.5 128.0 158.3 184.8 206.9 226.0
		B. t. u. per Lin. Ft. Per Hour	368 3337 283 283 224 224 209	355 326 299 275 254 235 203	343 317 289 267 246 228 212 198
	2(Final Temp.	40.7 91.0 132.1 166.7 195.6 219.4 239.0 256.0	48.5 97.5 137.8 171.3 199.5 222.3 241.8	56.6 104.4 143.0 176.0 203.1 225.5 244.5 260.7
	No. of Heater Sections		-00450p-00	-01004r0@F-00	-00400rx
	Temp. of Entering Air		-20°	-10°	0

00 lbs.

TEMPERATURE OBTAINED WITH BUFFALO STANDARD HEATERS GAUGE PRESSURE 100 LBS., STEAM TEMP, 337.6° F.

1	9,4,5	<u>64000404</u>	∞0084F04	20540004
400	B. t. u. per Lin. Ft per Hour	1337 1254 1189 1130 1076 1024 978 934	1278 1210 1146 1093 1041 991 946 904	1112 1040 991 944 899 856 819 819
4	Final Temp.	41.5 69.1 94.0 116.5 136.7 154.8 171.2 186.0	50.1 77.0 101.0 123.0 142.5 160.0 176.0	86.2 109.0 130.0 148.9 165.9 181.0 195.0
1200	B. t. u. per Lin. Ft. Per Hour	1216 1154 1083 1028 975 977 884 844	1161 1106 1047 992 943 898 856 816	1016 955 909 859 819 781 743
rometer 12	Final Temp.	43.5 73.4 99.3 123.0 144.0 162.8 180.1	52.0 80.8 106.3 129.0 149.6 168.0 184.7	88.0 112.5 134.9 154.4 172.6 188.8 203.0
29.92 Inches Barometer 1000 12	B. t. u. per Lin. Ft. per Hour	1107 1036 967 916 867 821 778	1055 993 934 884 837 793 754	910 858 766 728 688 654 653
1 29.92 1	Final Temp.	46.5 78.3 105.7 130.8 153.0 172.4 189.7 205.1	54.8 85.5 112.4 136.6 158.0 177.0 194.0	90.0 116.6 140.1 161.0 180.0 196.2 211.0
70° F. and	B. t. u. per Lin. Ft. per Hour	953 892 785 740 699 661	922 864 809 759 717 677 640	796 702 661 661 558 558
at	Final Temp.	49.3 83.5 113.3 139.5 162.5 183.0 200.8 216.5	58.0 91.2 120.0 145.1 167.8 187.5 204.8	92.8 146.8 169.0 188.6 205.5 221.0
in., Measured	B. t. u. per Lin. Ft. per Hour	784 731 682 639 563 563 500	755 709 658 618 618 545 545 484	664 615 575 539 506 447 447
per M	Final Temp.	53.1 90.4 122.5 150.5 174.6 195.5 214.0 229.8	61.6 97.9 128.5 155.8 179.4 199.7 217.5	96.5 127.6 154.8 178.5 199.0 216.7 232.0
Air in Ft.	B. t. u. per Lin. Ft. Per Hour	585 543 500 466 435 403 378	5688 4525 4525 452 393 345 345	501 424 395 395 344 321 301
Velocity of A	Final Temp.	58.2 99.5 1133.7 163.5 189.3 209.5 228.3 244.9	66.8 106.6 140.0 169.0 193.6 214.3 232.3 247.5	135.2 135.2 190.4 229.9 245.5 258.8
Velo	B. t. u. per Lin. Ft. Per Hour	334 337 281 289 239 221 206 192	324 298 273 251 232 214 199 186	285 285 220 220 220 175 175
30	Final Temp.	65.0 111.1 149.0 181.0 207.3 228.8 247.3 262.8	73.4 118.3 154.9 185.7 211.1 232.0 250.0	107.0 145.6 178.0 205.0 227.0 245.5 261.6 274.3
	No. of He Section	1004001-00	-01004r00r00	-284507-8
	Temp. Entering	00	00	00

Relation Between Heater Surface and Temperature of Air at Various Velocities Measured at 70° F.

STEAM PRESSURE O Lbs.

Temperature, 212° F.

Application of Heater Curves. For example, the air enters the heating coils at 5 deg. above zero, with a velocity through the clear area of 1000 ft. per min. What will be the final air temperature with a Buffalo standard pipe coil heater, seven sections deep? Follow dotted line from +5 deg. to 1.6 sections on bottom edge. Adding 7 sections gives 8.6 sections. Following

Relation Between Heater Surface and Temperature of Air at Various Velocities Measured at 70° F.

STEAM PRESSURE 5 Lbs.

Temperature, 227° F.

dotted line upward to 1000 velocity curve and to left edge gives final temperature of 124 deg. Reverse this process where the depth of heater is required for a given temperature rise.

For more complete directions see "Application of Heater Tables and Curves" on page 415.

Relation Between Heater Surface and Temperature of Air at Various Velocities Measured at 70° F.

STEAM PRESSURE 20 Lbs.

Temperature, 258.8° F.

Relation Between Heater Surface and Temperature of Air at Various Velocities Measured at 70° F.

STEAM PRESSURE 40 Lbs.
Temperature, 286.7° F.

Relation Between Heater Surface and Temperature of Air at Various Velocities Measured at 70° F.

STEAM PRESSURE 60 Lbs.

Temperature, 307.3° F.

Relation Between Heater Surface and Temperature of Air at Various Velocities Measured at 70° F.

STEAM PRESSURE 80 Lbs.

Temperature, 323.7° F.

Relation Between Heater Surface and Temperature of Air at Various Velocities Measured at 70° F.

STEAM PRESSURE 100 Lbs.

Temperature, 337.6° F.

VENTO HEATER TABLES

FINAL TEMPERATURES WITH VENTO CAST IRON HEATERS REGULAR SECTION—4 1/4-INCH CENTERS OF LOOPS STEAM 227°, 5 LBS. GAUGE

8		V	elocity	Throug	gh Hea	ter in	Ft. per	Min.	Measu	red at	70°
Stack	re of Air	60	-	80	00	100	00	120	00	14	00
Number of Stacks Deep	Temperature Entering Air	Final Temp. Air Leaving Heater	Cond. Lbs. per Sq. Ft. per Hour	F. T.	c.	F. T.	c.	F. T.	c.	F. T.	c.
1	$ \begin{array}{r} -20 \\ 0 \\ +20 \\ +40 \\ +60 \\ +70 \end{array} $	31 46 62 77 93 100	1.66 1.50 1.37 1.21 1.07 .98	42 57 73 80 97	1.82 1.61 1.43 1.26 1.17	38 54 70 87 95	2.06 1.85 1.63 1.47 1.36	35 52 68 85 93	2.28 2.08 1.82 1.63 1.50	33 50 66 83 91	2.51 2.28 1.98 1.75 1.60
12	$ \begin{array}{r} -20 \\ 0 \\ +20 \\ +40 \\ +60 \\ +70 \end{array} $	70 82 94 106 118 124	1.47 1.34 1.21 1.07 .94 .88	63 75 87 100 112 119	1.80 1.63 1.46 1.30 1.13 1.06	57 69 82 95 108 115	2.09 1.87 1.68 1.49 1.30 1.22	51 65 78 91 105 112	2.31 2.11 1.89 1.66 1.46 1.37	47 61 75 MM 102 109	2.55 2.32 2.09 1.82 1.60 1.48
3	$ \begin{array}{r} -20 \\ 0 \\ +20 \\ +40 \\ +60 \\ +70 \end{array} $	100 110 119 128 137 141	1.30 1.20 1.07 .96 .84 .77	91 101 110 120 130 135	1.61 1.46 1.30 1.16 1.01 .94	84 94 104 115 125 131	1.88 1.70 1.52 1.36 1.18 1.10	78 99 98 110 121 127	2.13 1.93 1.69 1.52 1.33 1.24	72 84 94 106 118 124	2.33 2.13 1.87 1.67 1.47 1.37
4	-20 fi +20 +40 +60 +70	123 131 138 145 152 156	1.16 1.07 .96 .86 .75 .70	114 122 130 138 146 150	1.46 1.32 1.20 1.06 .93 .87	105 114 123 132 140 145	1.70 1.55 1.41 1.25 1.09 1.02	99 108 117 126 135 140	1.94 1.76 1.58 1.40 1.22 1.14	93 103 112 122 131 136	2.15 1.96 1.75 1.56 1.35 1.25
5	-20 10 +20 +40 +60	142 147 152 158 164	1.05 .96 .86 .77 .68	132 138 144 151 158	1.32 1.20 1.08 1.08 1.96 .85	124 131 137 145 152	1.56 1.42 1.27 1.14 1.00	116 124 131 139 147	1.77 1.61 1.45 1.29 1.13	110 118 126 135 143	1.98 1.79 1.61 1.44 1.26
6	-20 0 +20 +40	155 160 164 170	.95 .87 .78 .71	146 152 156 162	1.20 1.10 .99	139 145 150 156	1.44 1.31 1.18 1.05	132 138 144 151	1.65 1.50 1.35 1.20	125 132 139 146	1.83 1.67 1.51 1.34
7	-20	167	.87	158	1.10	150	1.32	144	1.53	138	1.72

FINAL TEMPERATURES WITH VENTO CAST IRON HEATERS REGULAR SECTION—5-INCH CENTERS OF LOOPS STEAM 227°, 5 LBS, GAUGE

- X	-	Ve.	locity i	nroug	n rieai	er in i	t. per	Min. A	leasur	ed at 7	00
Stac	Air	6	00	8	00	10	00	12	200	14	00
Number of Stacks Deep	Temperature of Entering Air	Final Temp. Air Leaving Heater	Cond. Lbs. per Sq. Ft. per Hour	F. T.	c.	F. T.	c.	F. T.	c.	F. T.	c.
1	0 +20 +40 +60 +70	43 58 74 90 97	1.65 1.46 1.31 1.15 1.04	38 54 70 86 94	1.95 1.75 1.54 1.34 1.23	35 51 68 84 92	2.24 1.99 1.80 1.54 1.41	32 49 66 82 90	2.46 2.23 2.00 1.69 1.54	47 64 81 89	2.4 2.1 1.8 1.7
2	$ \begin{array}{r} -20 \\ 0 \\ +20 \\ +40 \\ +60 \\ +70 \end{array} $	63 75 87 100 112 118	1.60 1.44 1.29 1.15 1.00 .92	55 68 81 94 107 114	1.92 1.74 1.57 1.39 1.21 1.13	49 62 76 90 103 110	2.22 1.99 1.80 1.60 1.38 1.28	44 58 72 86 100 107	2.46 2.23 2.00 1.77 1.54 1.42	40 54 69 83 98 105	2.6 2.4 2.2 1.9 1.5
3	$ \begin{array}{r} -20 \\ 0 \\ +20 \\ +40 \\ +60 \\ +70 \end{array} $	91 101 110 121 131 136	1.42 1.30 1.15 1.04 .91 .85	82 93 103 114 124 130	1.74 1.59 1.42 1.26 1.09 1.03	75 86 97 109 120 126	2.03 1.84 1.65 1.47 1.28 1.20	69 81 92 104 116 122	2.28 2.08 1.85 1.64 1.44 1.34	64 76 88 100 113 119	2.8 2.2 2.0 1.3 1.4
4	$ \begin{array}{r} -20 \\ 0 \\ +20 \\ +40 \\ +60 \\ +70 \end{array} $	114 121 130 138 146 150	1.29 1.16 1.06 .94 .83 .77	103 113 122 130 139 143	1.58 1.45 1.31 1.15 1.01 .94	96 106 115 124 134 138	1.86 1.70 1.52 1.35 1.19 1.09	90 100 110 119 129 134	2.12 1.92 1.73 1.52 1.33 1.23	84 95 105 115 125 131	2.3 2.1 1.9 1.6 1.4
5	$ \begin{array}{r} -20 \\ 0 \\ +20 \\ +40 \\ +60 \\ +70 \end{array} $	132 138 144 151 158 162	1.17 1.06 .95 .85 .75 .71	122 129 136 144 151 155	1.46 1.32 1.19 1.07 .93 .87	114 122 130 138 145 149	1.72 1.56 1.41 1.26 1.09 1.01	107 115 124 132 140 144	1.95 1.77 1.60 1.42 1.23 1.14	100 109 119 127 136 141	2.1 1.9 1.7 1.8 1.3
6	$ \begin{array}{r} -20 \\ 0 \\ +20 \\ +40 \\ +60 \end{array} $	146 152 156 162 167	1.06 .97 .87 .78 .69	137 143 148 154 160	1.34 1.22 1.10 .97 .85	129 135 142 148 155	1.59 1.44 1.30 1.15 1.02	121 129 136 143 150	1.81 1.65 1.49 1.32 1.15	115 123 130 138 146	2.0 1.8 1.6 1.4 1.2
7	$ \begin{array}{r} -20 \\ 0 \\ +20 \\ -40 \end{array} $	159 163 167 171	.98 .90 .81 .72	150 154 159 164	1.25 1.13 1.02 .91	141 147 152 158	1.47 1.35 1.21 1.08	134 140 146 153	1.69 1.54 1.39 1.24	128 135 141 148	1.9 1.7 1.5 1.3
8	$ \begin{array}{r} -20 \\ \hline 0 \\ +20 \\ +40 \end{array} $	168 172 175 179	.90 .83 .75 .67	159 164 167 171	1.15 1.05 .94 .84	151 156 161 165	1.37 1.25 1.13 1.00	144 150 155 160	1.58 1.44 1.30 1.15	138 144 150 155	1.7 1.6 1.4 1.2

FINAL TEMPERATURES WITH VENTO CAST IRON HEATERS REGULAR SECTION—5%-INCH CENTERS OF LOOPS STEAM 227°, 5 LBS. GAUGE

		Ve	locity	Throug	h Hea	ter in	Ft. per	Min.	Measur	ed at	70°
itack	re of Air	ő	00	80	00	10	00	12	00	14	00
Number of Stacks Deep	Temperature Entering Ali	Final Temp. Air Leaving Heater	Cond. Lbs. per Sq. Ft. per Hour	F. T.	c.	F. T.	с.	F. T.	c.	F. T.	c.
1	0 + 20 + 40 + 60 + 70	34 51 68 85 93	1.54 1.40 1.27 1.13 1.04	32 48 65 82 90	1.93 1.69 1.51 1.33 1.21	46 63 80 88	1.96 1.73 1.51 1.36	44 61 78 87	2.17 1.90 1.63 1.54	42 59 77 86	2.32 2.01 1.79 1.69
. 12	$ \begin{array}{r} -20 \\ 0 \\ +20 \\ +40 \\ +60 \\ +70 \end{array} $	49 62 76 90 104 110	1.56 1.40 1.27 1.13 1.00 .91	43 57 71 85 99 106	1.90 1.72 1.54 1.36 1.18 1.08	38 52 67 82 96 103	2.19 1.96 1.77 1.58 1.36 1.25	34 48 64 79 94 101	2.44 2.17 1.99 1.76 1.54 1.40	45 61 76 92 99	2.38 2.16 1.90 1.69 1.53
3	-20 D +20 +40 +60 +70	76 87 98 109 120 126	1.45 1.31 1.18 1.04 .90 .84	68 80 91 103 115 121	1.77 1.61 1.43 1.27 1.11 1.03	61 74 85 98 111 118	2.04 1.86 1.63 1.46 1.28 1.21	56 69 81 94 108 115	2.29 2.08 1.84 1.63 1.45 1.36	51 65 78 91 105 112	2.50 2.25 2.04 1.79 1.58 1.48
4	$ \begin{array}{r} -20 \\ 0 \\ +20 \\ +40 \\ +60 \\ +70 \end{array} $	97 105 115 125 135 140	1.32 1.19 1.07 .96 .85 .79	88 97 108 118 128 133	1.63 1.46 1.33 1.18 1.02 .95	80 91 101 112 123 129	1.89 1.72 1.53 1.36 1.19 1.11	74 86 96 108 119 125	2.13 1.95 1.72 1.54 1.34 1.25	81 92 104 116 122	2.34 2.14 1.90 1.69 1.48 1.37
5	-20 D +20 +40 +60 +70	116 124 131 139 147 151	1.23 1.12 1.00 .89 .79 .73	106 115 123 131 140 145	1.52 1.39 1.24 1.10 .96 .90	98 107 117 126 135 140	1.78 1.61 1.46 1.30 1.13 1.05	91 101 111 121 130 135	2.01 1.83 1.65 1.46 1.26 1.17	86 96 106 116 126 132	2.24 2.03 1.82 1.60 1.39 1.31
6	$ \begin{array}{r} -20 \\ \hline{0} \\ +20 \\ +40 \\ +60 \\ +70 \end{array} $	131 138 144 150 157 160	1.14 1.04 .93 .83 .73 .68	121 128 136 143 150 154	1.42 1.29 1.17 1.04 .91 .85	112 120 129 137 145 149	1.66 1.51 1.37 1.22 1.07	106 114 123 132 140 145	1.90 1.72 1.55 1.39 1.21 1.13	100 108 118 127 136 141	2.11 1.90 1.72 1.53 1.34 1.25
7	-20 0 +20 +40 +60 +70	145 151 153 159 165 168	1.07 .98 .86 .77 .68 .63	135 141 146 152 158 162	1.34 1.21 1.09 .96 .84 .79	127 133 140 146 153 157	1.58 1.43 1.29 1.14 1.00 .94	120 127 134 140 148 152	1.81 1.64 1.47 1.29 1.14 1.06	113 121 129 136 144 148	2.00 1.82 1.64 1.45 1.27 1.18
8	-20 0 +20 +40 +60	155 160 164 169 173	.81 .73 .64	146 151 156 161 100	1.25 1.14 1.03 .91	138 144 149 155 160	1.49 1.36 1.22 1.08	131 137 143 149 155	1.71 1.55 1.39 1.24 1.07	125 131 138 144 151	1.91 1.73 1.56 1.37 1.20

FINAL TEMPERATURES WITH VENTO CAST IRON HEATERS NARROW SECTION—4 1/8-INCH CENTERS OF LOOPS STEAM 227°, 5 LBS. GAUGE

ks	4	Ve	locity	Throug	h Hea	ter in	Ft. per	Min.	Measur	ed at	70°
itacl	Pi o	60)0	80	10	10	00	12	00	14	100
Number of Stacks Deep	Temperature of Entering Air	Final Temp. Air Leaving Heater	Cond. Lbs. per Sq. Ft. per Hour	F. T.	c.	F. T.	c.	F. T.	c.	F. T.	c.
1	$ \begin{array}{r} 0 \\ +20 \\ +40 \\ +60 \\ +70 \end{array} $	34 51 67 84 92	1.59 1.45 1.27 1.13 1.03	47 64 81 90	1.68 1.49 1.31 1.25	45 62 79 88	1.95 1.72 1.49 1.40	43 60 78 87	2.15 1.87 1.68 1.59	41 59 77 86	2.30 2.08 1.86 1.75
2	$ \begin{array}{r} -20 \\ 0 \\ +20 \\ +40 \\ +60 \\ +70 \end{array} $	48 62 76 90 104 111	1.59 1.45 1.31 1.17 1.03 .96	42 56 70 85 99 106	1.94 1.75 1.56 1.40 1.22 1.13	37 51 66 82 96 103	2.22 1.99 1.80 1.64 1.41 1.29	33 47 63 79 94 101	2.48 2.20 2.02 1.83 1.59 1.45	44 60 76 92 99	2.40 2.19 1.97 1.74 1.59
3	$ \begin{array}{r} -20 \\ 0 \\ +20 \\ +40 \\ +60 \\ +70 \end{array} $	74 85 96 108 120 126	1.47 1.33 1.19 1.06 .94 .87	66 78 89 101 114 120	1.79 1.62 1.44 1.27 1.13 1.04	59 71 84 97 110 116	2.06 1.85 1.66 1.48 1.30 1.20	54 66 80 93 106 113	2.31 2.06 1.87 1.65 1.44 1.34	49 62 76 90 103 110	2.51 2.26 2.04 1.82 1.57 1.46
4	$ \begin{array}{r} -20 \\ 0 \\ +20 \\ +40 \\ +60 \\ +70 \end{array} $	95 104 113 123 133 138	1.35 1.22 1.09 .97 .86 .80	86 96 106 117 127 132	1.66 1.50 1.34 1.20 1.05 .97	79 90 100 112 122 128	1.93 1.75 1.56 1.40 1.21 1.13	73 84 95 107 118 124	2.18 1.97 1.76 1.57 1.36 1.27	67 79 91 103 115 121	2.38 2.16 1.94 1.72 1.50 1.39
5	$ \begin{array}{r} -20 \\ 0 \\ +20 \\ +40 \\ +60 \\ +70 \end{array} $	113 120 127 137 145 150	1.25 1.13 1.00 .90 .80 .75	103 112 120 130 139 144	1.54 1.40 1.25 1.12 .98 .91	95 104 114 124 134 139	1.79 1.62 1.47 1.31 1.16 1.08	88 98 109 119 129 134	2.02 1.84 1.67 1.48 1.29 1.20	82 92 104 115 125 131	2.23 2.01 1.84 1.64 1.42 1.33
6	$ \begin{array}{r} -20 \\ 0 \\ +20 \\ +40 \\ +60 \\ +70 \end{array} $	127 134 140 148 155 159	1.15 1.05 .94 .84 .74 .69	117 125 132 140 148 152	1.43 1.30 1.17 1.04 .92 .85	109 118 125 134 142 147	1.68 1.53 1.37 1.22 1.07 1.00	103 112 119 128 137 142	1.92 1.75 1.55 1.37 1.20 1.12	97 106 114 124 133 138	2.13 1.93 1.71 1.53 1.33 1.24
7	$-20 \\ 0 \\ +20$	140 146 151	1.07 .98 .88	130 136 143	1.34 1.21 1.10	121 129 136	1.58 1.44 1.30	114 122 130	1.80 1.63 1.47	108 116 125	2.00 1.81 1.64
8	-20 0	150 155	1.00	141 146	1.26 1.14	133 138	1.49 1.35	125 132	1.70 1.55	119 126	1.90 1.72

VENTO HEATER TABLES

FINAL TEMPERATURE WITH VENTO CAST IRON HEATERS NARROW SECTION—5-INCH CENTERS OF LOOPS STEAM 227°, 5 LBS. GAUGE

90		Ve	locity '	Throug	h Hea	ter in l	Ft. per	Min. I	Measur	ed at 7	70°
stack	re of Air	60	00	80	90	10	00	120	00	14	00
Number of Stacks Deep	Temperature Entering Ai	Final Temp. Air Leaving Heater	Cond. Lbs. per Sq. Ft. per Hour	F. T.	c.	F. T.	c.	F. T.	c.	F. T.	с.
1	+20 +40 +60 +70	47 64 82 90	1.49 1.33 1.22 1.11	45 62 80 88	1.84 1.62 1.47 1.33	43 60 78 86	2.12 1.84 1.66 1.47	41 58 76 85	2.32 1.99 1.77 1.66	39 57 75 84	2.45 2.19 1.94 1.81
2	$ \begin{array}{r} -20 \\ 0 \\ +20 \\ +40 \\ +60 \\ +70 \end{array} $	41 56 70 85 99 106	1.69 1.55 1.38 1.24 1.08 1.00	36 51 65 80 95 102	2.06 1.88 1.66 1.47 1.29 1.18	31 46 62 77 92 100	2.35 2.12 1.93 1.70 1.47 1.38	43 59 74 90 98	2.38 2.16 1.88 1.66 1.55	40 56 72 88 96	2.58 2.32 2.06 1.81 1.68
3	$ \begin{array}{r} -20 \\ 0 \\ +20 \\ +40 \\ +60 \\ +70 \end{array} $	65 77 90 102 114 120	1.57 1.42 1.29 1.14 .99 .92	58 70 84 97 109 115	1.92 1.72 1.57 1.40 1.20 1.10	52 65 79 92 105 112	2.21 2.00 1.81 1.60 1.38 1.29	47 61 75 88 102 109	2.47 2.25 2.03 1.77 1.55 1.44	43 57 71 85 100 107	2.71 2.45 2.19 1.94 1.72 1.59
4	$ \begin{array}{r} -20 \\ 0 \\ +20 \\ +40 \\ +60 \\ +70 \end{array} $	86 96 106 117 127 132	1.46 1.33 1.19 1.06 .93 .86	77 88 99 110 121 127	1.79 1.62 1.46 1.29 1.12 1.05	70 82 93 105 117 123	2.07 1.89 1.68 1.50 1.31 1.22	64 77 85 101 113 119	2.32 2.13 1.88 1.69 1.47 1.36	59 72 84 98 110 116	2.55 2.32 2.06 1.87 1.61 1.48
5	$ \begin{array}{r} -20 \\ 0 \\ +20 \\ +40 \\ +60 \\ +70 \end{array} $	102 111 120 129 138 142	1.35 1.23 1.10 .98 .86 .80	93 103 113 122 132 136	1.67 1.52 1.37 1.21 1.06 .97	86 96 106 117 127 132	1.95 1.77 1.58 1.42 1.23 1.14	79 90 101 112 123 128	2.19 1.99 1.79 1.59 1.39 1.28	74 85 96 108 119 125	2.43 2.20 1.96 1.76 1.52 1.42
6	-20 10 +20 +40 +60 +70	116 124 132 140 148 152	1.25 1.14 1.03 .92 .81 .76	107 115 124 133 142 146	1.56 1.41 1.28 1.14 1.01 .93	108 118 127 137 141	1.83 1.66 1.51 1.34 1.18 1.09	92 102 112 122 132 136	2.06 1.88 1.70 1.51 1.33 1.22	87 97 107 118 128 133	2.30 2.09 1.87 1.68 1.46 1.36
7	-20 0 +20 +40	130 136 142 150	1.18 1.07 .96 .87	120 127 134 142	1.47 1.34 1.20 1.07	112 120 128 136	1.74 1.58 1.42 1.26	105 114 122 131	1.97 1.80 1.61 1.43	99 108 117 126	2.19 1.99 1.79 1.59
8	-20 0 +20	140 146 152	1.11 1.01 .91	130 137 144	1.38 1.26 1.14	122 129 137	1.64 1.49 1.35	115 123 131	1.87 1.70 1.53	109 118 125	2.08 1.90 1.69

FINAL TEMPERATURES WITH VENTO CAST IRON HEATERS NARROW SECTION—5%-INCH CENTERS OF LOOPS STEAM 227°, 5 LBs. GALIGE

83	1	V	elocity	Thro	ugh H		in Ft. p		. Meas	ured at	70°
Stacl	re of Air	6	00		800	,	1000	-	200		400
Number of Stacks Deep	Temperature Entering Ali	Final Temp. Air Leaving Heater	Cond. Lbs. per Sq. Ft. per Hour	F. T	с.	F. T	с.	F. T.	c.	F. T.	c.
1	+20 +40 +60 +70	42 60 78 86	1.43 1.30 1.17 1.04	40 58 76 84	1.73 1.56 1.39 1.21	38 56 74 83	1.95 1.73 1.52 1.41	37 55 73 82	2.21 1.95 1.69 1.56	36 54 72 81	2.43 2.12 1.82 1.67
2	0 +20 +40 +60 +70	46 61 77 93 101	1.50 1.33 1.20 1.07 1.01	42 57 73 89 97	1.82 1.60 1.43 1.26 1.17	38 54 71 87 95	2.06 1.84 1.68 1.46 1.35	35 52 69 85 93	2.27 2.08 1.88 1.63 1.50	32 50 67 83 91	2.43 2.28 2.05 1.75 1.59
3	$ \begin{array}{r} -20 \\ 0 \\ +20 \\ +40 \\ +60 \\ +70 \end{array} $	52 65 79 92 105 112	1.56 1.41 1.28 1.13 .98 .91	46 59 73 87 101 108	1.90 1.70 1.53 1.36 1.19 1.10	40	2.17 1.95 1.77 1.55 1.34 1.26	36 50 66 80 94 102	2.43 2.17 2.00 1.73 1.47 1.39	33 47 63 77 92 100	2.68 2.38 2.17 1.87 1.62 1.52
4	$ \begin{array}{r r} -20 \\ 0 \\ +20 \\ +40 \\ +60 \\ +70 \end{array} $	71 82 94 106 118 124	1.48 1.33 1.20 1.07 .94 .88	63 75 88 100 112 118	1.80 1.63 1.47 1.30 1.13 1.04	57 69 83 95 108 114	2.08 1.87 1.71 1.49 1.30 1.19	52 65 78 91 104 111	2.34 2.11 1.89 1.66 1.43 1.33	47 61 74 88 101 108	2.54 2.32 2.05 1.82 1.56
5	$ \begin{array}{r} -20 \\ 0 \\ +20 \\ +40 \\ +60 \\ +70 \end{array} $	88 98 107 117 128 133	1.41 1.27 1.13 1.00 .88 .82	79 90 100 111 123 128	1.72 1.56 1.39 1.23 1.09 1.00	72 83 94 106 118 124	1.99 1.80 1.60 1.43 1.26	66 78 90 102 114 120	2.24 2.03 1.82 1.61 1.41 1.30	61 73 86 98 111 117	1.44 2.46 2.22 2.00 1.76 1.55 1.43
6	$ \begin{array}{r} -20 \\ 0 \\ +20 \\ +40 \\ +60 \\ +70 \end{array} $	102 110 119 128 138 143	1.32 1.19 1.07 .95 .85	93 102 111 121 131 137	1.63 1.47 1.31 1.17 1.03 .97	85 95 105 116 126 132	1.90 1.72 1.54 1.37 1.19	79 89 100 111 122 128	2.74 1.93 1.73 1.54 1.34 1.25	73 84 96 107 118 124	2.35 2.12 1.92 1.70 1.47 1.37
7	$ \begin{array}{r} -20 \\ 0 \\ +20 \\ +40 \\ +60 \end{array} $	121	1.26 1.14 1.03 .92 .81	106 114 123 131 140	1.56 1.41 1.28 1.13 .99	98 107 117 126 135	1.83 1.65 1.50 1.33 1.16	91 101 111 121 130	2.06 1.88 1.69 1.51 1.30	86 96 106 116 126	2.30 2.08 1.86 1.65 1.43
8	-20 0 +20 +40	126 133 140 147	1.19 1.08 .98 .87	117 124 132 140	1.48 1.34 1.21 1.08	109 117 126 134	1.75 1.59 1.44 1.27	102 111 120 129	1.98 1.80 1.62 1.45	96 105 115 124	2.20 1.99 1.80 1.59

Left-Hand Bottom Horizontal Discharge Fan Drawing Through Heater

Full Housing Top Horizontal Discharge Fan Blowing Air Through and Underneath Heater

REGULAR OPEN AREA AND RETURN BEND PATTERN—AIR AT 70° F. Loss of Air Pressure in Inches of Water Per Square Incl FRICTION OF AIR THROUGH BUFFALO HEATERS

		7	0.017	0.069 0.094 0.123	0.078 0.155 0 0.096 0.191 0 0.116 0.232 0	0.276 0.324 0.375	0.215 0.431 0. 0.245 0.490 0. 0.277 0.555 0. 0.310 0.620 0.
sere in menes of water rer square inch	Numbe	4		0.138 0.141 0.188 0.245		0.414 0.551 0.486 0.648 0.562 0.750	0.846 0.861 0.735 0.980 0.831 1.110 0.930 1.240
ater Fer Squar	Number of Sections	LO .	0.043	0.173 0.235 0.306	0.388 0.479 0.579	0.689 0.810 0.936	1.226 1.226 1.387 1.550
re incn		9	0.052 0.092 0.144	0.207 0.282 0.368	0.466 0.574 0.695	0.827 0.972 1.124	1.293 1.471 1.664 1.860
		7	0.060	0.242 0.329 0.429	0.544 0.670 0.810	0.965 1.133 1.311	1.508 1.716 1.940 2.167
		x	0.069	0.276	0.621 0.765 0.926	1.103	1.722 1.961 2.218 2.480

FRICTION THROUGH HEATERS

FRICTION OF AIR THROUGH VENTO HEATERS Loss in Pressure in Inches of Water

Velocity Ft. per Min.		Reg	gular Section	5-Inch Cen	ters	
Ft.	1 Stack	2 Stack	3 Stack	4 Stack	5 Stack	6 Stack
600	0.022	0.040	0.058	$0.076 \\ 0.105 \\ 0.136$	0.094	0.112
700	0.030	0.055	0.080		0.130	0.155
800	0.040	0.072	0.104		0.168	0.200
900	0.051	0.091	0.131	0.172	0.213	0.254
1000	0.063	0.113	0.163	0.213	0.263	0.313
1100	0.076	0.136	0.196	0.257	0.318	0.379
1200	0.090	0.162	0.234	0.306	$0.378 \\ 0.445 \\ 0.514$	0.450
1300	0.105	0.190	0.275	0.360		0.530
1400	0.122	0.220	0.318	0.416		0.612
1500	0.140	0.252	0.364	0.477	0.590	0.703
1600	0.160	0.288	0.416	0.544	0.672	0.800
Velocity Ft. per Min.		Naı	rrow Section	5-Inch Cent	ers	
F. F.	2 Stack	3 Stack	4 Stack	5 Stack	6 Stack	7 Stack
600	0.028	0.043	0.058	0.073	0.088	0.103
700	0.037	0.057	0.077	0.098	0.119	0.140
800	0.048	0.075	0.102	0.128	0.155	0.181
900 1000 1100	0.061 0.075 0.090	$0.095 \\ 0.117 \\ 0.140$	0.128 0.158 0.190	0.162 0.199 0.240	$0.196 \\ 0.241 \\ 0.290$	0.230 0.283 0.340
1200	0.107	0.167	0.227	0.287	0.347	0.407
1300	0.126	0.196	0.266	0.336	0.406	0.476
1400	0.147	0.229	0.311	0.392	0.473	0.554
1500	0.170	0.263	0.356	0.449	0.542	0.635
1600	0.194	0.300	0.406	0.512	0.617	0.722

From Catalog of American Radiator Company.

Friction Through Heaters

On pages 446 and 447 will be found tables giving the friction loss or drop in pressure through both the Buffalo Standard Heaters and the Vento Cast Iron Heaters, with different velocities and depths of heaters. The values given for Buffalo heaters are based on tests made by the Buffalo Forge Company and will be found accurate for pipe coils. The table of loss through Vento heaters is based on tests made by the American Radiator Company.

Sizes and Dimensions of Buffalo Standard Heaters

The table on page 449 of the Sizes and Dimensions of Buffalo Standard Heaters gives the information required for the selection of a heater for any specific case. The third column gives the length of the section (or of the cast-iron base) as also the number of rows of pipe in the section. The fifth row gives the various heights that are made on each base. Thus a heater $4' \times 6'10''$ is 4 feet across the face by 6 feet 10 inches high.

Three columns are given showing measurements of the surface in the section. One gives the actual measured lineal feet of one inch pipe in each section. The next gives the actual effective square feet of heating surface in the section, counting in the exposed portions of the base as well as the surface of the pipe fittings. The third column gives the equivalent of this surface expressed in lineal feet of one inch pipe. Thus in the $4'\times6'10''$ section there are 428 feet of one inch pipe, but the total exposed heating surface is equivalent to 455 lineal feet of one inch pipe.

The column of clear areas gives the actual clear area, expressed in square feet, for the passage of air through the heater. Having the quantity of air and the velocity through the heater given, the values in this column decide the size of heater to be used. The number of sections in depth of the heater will depend on the desired temperature rise to be obtained.

SIZES AND DIMENSIONS OF BUFFALO STANDARD HEATERS

Manner of Piping	Number of Pipes	Length of Section	Section	Extreme Height Section	Width of Section	Lin. Feet of 1-inch Pipe per Section	Total Effective Sq. Ft. Heating Surface	Equivalent in Lin. Feet of I-Inch Pipe	Clear Area for Air Passage Sq. Ft.	Weight
R.O.A.	56	3' 4 row	1 A 2 A 3 A 4 A 5 A 6 A	3' 4" 3' 10" 4' 4" 4' 10" 5' 4" 5' 10"	8 ½" 8 ½" 8 ½" 8 ½" 8 ½" 8 ½" 8 ½"	140 168 196 224 252 280	54.7 64.2 74.0 83.7 93.3 102.5	159 186 215 243 271 298	4.4 5.2 6.0 6.8 7.6 8.4	473 515 565 616 656 708
R.O.A.	72	4' 4 row	1 B 2 B 3 B 4 B	5' 4" 5' 10" 6' 4" 6' 10"	8 ½" 8 ½" 8 ½" 8 ½" 8 ½"	320 356 392 428	119.0 131.5 143.9 156.5	346 382 418 455	9.7 10.7 11.2 12.6	819 877 938 1003
R.O.A.	80	4' 6" 4 row	1 C 2 C 3 C 4 C	5' 10" 6' 4" 6' 10" 7' 4"	8 ½" 8 ½" 8 ½" 8 ½" 8 ½"	396 436 476 516	148.2 162.0 174.8 188.6	431 480 507 548	12.1 13.1 14.2 15.3	997 1055 1127 1174
R.O.A.	88	5' 4 row	1 D 2 D 3 D 4 D	6' 4" 6' 10" 7' 4" 7' 10"	8 ½" 8 ½" 8 ½" 8 ½" 8 ½"	476 520 564 608	174.3 189.3 204.8 219.8	507 550 595 638	14.1 15.4 16.6 17.7	1182 1262 1325 1407
R.O.A.	104	6' 4 row	1 E 2 E 3 E 4 E	7' 4" 7' 10" 8' 4" 8' 10"	8 ½" 8 ½" 8 ½" 8 ½" 8 ½"	674 726 778 830	245.0 262.9 280.8 298.7	712 763 816 868	19.8 21.3 22.7 24.2	1505 1600 1695 1770
R.O.A.	64	7' 2 row	1 F 2 F 3 F 4 F	8' 4" 8' 10" 9' 4" 9' 10"	6" 6" 6"	477 509 541 573	173.1 184.3 195.3 205.3	503 535 567 596	28.1 30.0 31.7 33.3	1198 1244 1303 1350
R.B.	128	7′ 4 row	1 G 2 G 3 G 4 G 5 G 6 G	7' 4" 7' 10" 8' 4" 8' 10" 9' 4" 9' 10"	8 ½" 8 ½" 8 ½" 8 ½" 8 ½" 8 ½" 8 ½" 8 ½"	796 860 924 988 1052 1116	291.0 313.2 335.2 357.2 379.2 401.2	845 910 974 1037 1101 1163	23.6 25.4 27.2 29.0 30.7 32.5	1845 1950 2055 2160 2280 2380
R.B.	154	8' 6" 4 row	1 H 2 H 3 H 4 H 5 H 6 H	8' 4" 8' 10" 9' 4" 9' 10" 10' 4" 10' 10"	10" 10" 10" 10" 10" 10"	1119 1196 1273 1350 1427 1504	410.2 436.8 463.5 490.0 516.6 543.2	1190 1265 1345 1421 1499 1578	33.2 35.3 37.6 39.8 41.8 44.0	2675 2800 3075 3200 3325 3455
R.B.	170	9′ 6″ 4 row	1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I	8' 4" 8' 10" 9' 4" 9' 10" 10' 4" 10' 10' 11' 4" 11' 10"	10" 10" 10" 10" 10" 10" 10" 10"	1231 1316 1401 1486 1571 1656 1741 1826	452.3 481.6 510.9 540.2 569.5 598.7 628.0 657.3	1313 1396 1481 1570 1651 1739 1821 1910	36.7 39.0 41.4 43.8 46.0 48.4 50.8 53.2	3205 3350 3485 3625 3770 3910 4060 4200

BUFFALO STANDARD PIPE COIL HEATERS

		DIMENSIONS OF		KEUULAK	. A. P.	AND	KELOKN BEND	ND DEALERS	CKS		
Size of Sec	Section	4	æ	U	_	ţr.	Į,	5	I	-	×
Length	Height			,		1		,	•	,	4
3 ft.	3, 4" 3'10" 4' 4" 5'10" 5'10"	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	344" 550" 622"	ດ້ວ້າວ້າວ້າ		หืดีดีดีดีดี	កើតកើតកើត	******	22222 22222 2222 2222 2222 2222 2222 2222	1.6.6.1 1.0.0 1.0.0 1.0.0 1.0.0	158 178 193 221 249 277
4 ft.	5′ 4″ 5′10″ 6′ 4″ 6′10″	24 4 4 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4	56" 62" 74"	Un Un Un U (x/x/x/x/w (x/x/x/x/w (x/x/x/w/w	00000 2020/2/2	20000 20000	20000 2022 2022 2022 2022 2022 2022 20	77.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7	2222	9.8 10.8 11.8 12.9	320 356 392 428
4 ft. 6 in.	5'10" 6' 4" 6'10" 7' 4"	445000 44444 18,214 18,214	62" 68" 74" 80"	01 01 01 01 \$\int_{\int}\int_{\i	00000 2020/02/2	20000 20000	2222		8888	12.0 13.0 14.0 15.0	396 436 477 516
5 ft.	6′ 4″ 6′10″ 7′ 4″ 7′10″	0.000 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.	68" 74" 80" 86"	%%%%% %%%%% %%%%%% %%%%%%	315/16" 315/16" 315/16" 315/16"	25/16, 25/16, 25/16, 25/16,	ත් ත් ත් ත්		\$\$ \$\$ \$\$ \$\$	14.3 15.6 16.8 17.8	479 523 567 611
6 ft.	7' 4" 7'10" 8' 4" 8'10"	69 7/8" 69 7/8" 69 7/8" 69 7/8"	80" 86" 92"	%,%,%,% %,%,%,%, %,%,%,%, %,%,%,%,	315/16" 315/16" 315/16" 315/16"	25/16, 25/16, 25/16, 26/16,	ත් ත් ත් ත්	**************************************	104 104 104	19.7 21.2 22.7 24.2	670 722 774 826
7 ft.	8′ 4″ 8′10″ 9′ 4″ 9′10″	00 00 00 00 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1	92" 98" 104" 110"	,	315/16" 315/16" 315/16" 315/16"	25/16, 25/16, 25/16, 25/16,	ణ్ ణ్ ణ్ ణ్		128 128 128 128	27.0 29.0 30.8 32.5	960 1024 1088 1152

STEAM, DRIP AND AIR CONNECTIONS FOR REGULAR O. A. P. HEATERS

LIST OF FITTINGS FOR ONE SECTION

Steam Connections

- ·1 Globe Valve "A"
- 1 Elbow "B"
- 2 Nipples "C"
- 1 Nipple "D"

Drip and Air Connections

- 1 Tee "E"
- 1 Box Union "F"

- 1 Elbow "G"
- 1 Check Valve "H"
- 1 Nipple "J"
- 2 Nipples "K"
- 2 Short Nipples "M"
- 1 Bushing "N" 1—3/4" Pipe "P" 12" long
- 1—4" Pipe "P" 12" long
 1—4" Pet Cock "Q"
 Female Thread

Main Drip

1 Pipe Plug "R"

Tees "S." Same number as Number of Sections Nipples "U." One less than Number of Sections STEAM, DRIP AND AIR CONNECTIONS FOR REGULAR O. A. P. HEATERS

							_					
lipples	ם	67%	66	22%	66%	66	6 72%	901/8/8/	6 1/8	67.8	99	99
Length of Nipples	×	0000	ကက	0000	0000	27%	22	200	22%	2121	200	01 01 74.74
Leng	7	44	44	44	44	44	44	44	44	44	4.4. 74.74	44
	6 Sect.	ବାବା	0101	0101	01 01 74.74	21.21	21.21	21.21	222	222	00 00	ကက
Drip	5 Sect.	গণ	0101	0101	6161	27,2	0101	20.00	200	2121	ကက	60 CC
Size of Main Drip	4 Sect.	222	72,72	727	22	212	0101	ବାଦା	0101	ବାଦା	212	01 01 767%
Size	3 Sect.	222	7070	75.75	727	1 1/3	12/2	0101	0101	ରାରା	0101 7474	21.01
	2 Sect.	7474	7474	7474	7474	7476	7474	727	7572	75.75	0101	0101
Size	Drip					-i-	1 1/4	7474	7474	7474	72,72	75.75
Length of Nipples	Q	99	99	99	99	7 1/2	7 1/2	77	77	747	∞ ∞	00 00
Leng	o	22	21 80 80 80 80	188	18	18	18	18	18	18	18	24
ly	20 Lbs. 60 Lbs.				1 1/4	7474	7474	7474	7474	727%	75.75	1,73
am Sup	20 Lbs.		77.7	74%	772	1 1/2	172	0101	0101	0101	21,2	212
Size of Steam Supply	5 Lbs.	77.7	77%	0101	ଦାବା	272	222	222	2001	222	ကက	ကက
Si	0 Lbs.	77.7	0101	ଚାଚା	22%	222	22%	22%	2000	ကက	ကက	ကက
Size of	Heater	3'0"x3' 4" 3'0"x3'10"	3'0"x4' 4" 3'0"x4' 10"	3'0"x5' 4" 3'0"x5'10"	4'0"x5' 4" 4'0"x5'10"	4'0"x6' 4" 4'0"x6'10"	4'6"x5'10" 4'6"x6' 4"	4'6"x6'10" 4'6"x7' 4"	5'0"x6' 4" 5'0"x6'10"	5'0"x7' 4" 5'0"x7'10"	6'0"x7' 4" 6'0"x7'10"	6'0"x8' 4" 7'0"x8'10"

STEAM, DRIP AND AIR CONNECTIONS FOR RETURN BEND HEATERS

LIST OF FITTINGS FOR ONE SECTION

Steam Connections

- 1 Globe Valve "A"
- 1 Elbow "B"
- 2 Nipples "C"
- 1 Nipple "D"

Drip Connections

- 2 Elbows "G"
- 1 Box Union "F"
- 1 Check Valve "H"
- 1 Nipple "J"

- 2 Nipples "K"
- 2 Short Nipples "M"

Air Connections

- -3/4" Short Nipple "E"
- -3/4" Elbow "N"
- -3/4" Pipe "P" 18" long
- -34" x 1/4" Reducer "L"
- 1-1/4" Pet Cock "Q"
 - Male Thread

Main Drip

1 Pipe Plug "R." Tees "S." Same Number as Number of Sections Nipples "U." One less than Number of Sections

	20	
r	×	
ľ	n l	
	=1	
	HEAT	
п	n)	
ľ	-	
ı,		
	7	
r	ā	
r	BEND	
ľ		
	Z	
	TUR	
	5	
	68	
	¥	
	¥	
	FO KE	
I	44	
	#	
	Z	
	3	
	я	
	ឡ	
	#1	
	ONNE	
	4	
	긲	
	9	
	2	
	K	
	⋖	
	_	
	ㅋ	
	AND N	
	-	
	۵.	
)RP	
	TEAM	
	~	
	ш	
	E	
	93	

Size of	S	ze of Ste	Size of Stram Supply	<u>></u>	Length of Nipples	th of ples	Size		Size	Size of Main Drip	Drip		Lengt	Length of Nipples	pples
Heater	0 Lbs.	5 Lbs.	20 Lbs. 60 Lbs.	60 Lbs.	ပ	Q	of Drip	2 Sect.	3 Sect.	4 Sect.	5 Sect.	6 Sect.	~	×	n
3'0"x3' 4" 3'0"x3' 10" 3'0"x4' 4"	222	777	7,		1228	999		777	7277	22.22	000	ମନାନା	444	000	000
3.0"x4'10" 3.0"x5' 4" 3.0"x5'10"	ଚାଚାଚା	1000	72/2		188	999		777	777	222	010101	010101	444	0000	000
4'0"x5' 4" 4'0"x5'10" 4'0"x6'4"	2222	လလ	222	77.	18 18 18	999		77.7		ରାରାର	010121	222	444	നനന	222
4'0"x6'10" 4'6"x5'10" 4'6"x6' 4"	222	222	220	777	18 18 18	767	7, 7,	22%	27,2	ରାରାର	2000	222	444	2 2	000 %%%
4'6"x6'10" 4'6"x7' 4" 5'0"x6' 4"	2222	222	ରାଜାନା	7474	18 18 18	77.7	777	7272	ରାରାର	ରାରାର	010101 XXX	2222	444	2000	2000
5'0"x6'10" 5'0"x7' 4" 5'0"x7'10"	ಣಣಣ	222	ବାବାଦା	747676	18 18 24	707070	777		ରାରାର	ରାଜାନା	्राज्य स्थाप्त्रस्य	222	ব্যব্য	222	000 7272
6.0°x7' 4" 6.0°x7' 10" 6.0°x8' 4"	ကကက	ოოო	22%	222	18 24 24	00 00 00	7272	ବାବାବା	लाल १८५५	2222	ოოო	ოოო	444	222	999
6'0"x8'10" 7'0"x8' 4" 7'0"x8'10"	00 00 00	000	2222	୍ରାଦାର	24 24 24	00 00 00	777	ରାଚାଚା	222	222	ოოო	ကကက	444 222	222	999
7'0'x9' 4" 7'0'x9'10"	eo eo	ကက	22	0101	24	00 00	22	8181	22%	22	en en	ကက	44	22	9 9

DIMENSIONS OF HEATER CASE FOR BUFFALO STANDARD HEATERS

H-DIA.	OF HOLE	FOR	STEAM PIPE.
J - DLA.	OF HOLE	FOR	DRIP PIPE.

Size of	Section					_				ì	Н		
Length	Height	A	В	С	D	Е	F	G	0 lbs.	5 lbs.	20 lbs.	60 lbs.	J
3 ft.	3' 4" 3'10" 4' 4" 4'10" 5' 4" 5'10"	38 ³ / ₄ 38 ³ / ₄	38 3/8 38 3/8 38 3/8 38 3/8 38 3/8 38 3/8	555555	34 38 44 50 56 62	2 2 2 2 2 2	3 ½8 3 ½8 3 ½8 3 ½8 3 ½8 3 ½8 3 ½8		2 1/8 2 1/8 2 5/8 2 5/8 2 5/8 2 5/8	$1\frac{7}{8}$ $1\frac{7}{8}$ $2\frac{1}{8}$ $2\frac{1}{8}$ $2\frac{5}{8}$ $2\frac{5}{8}$	$ \begin{array}{c} 1 \frac{1}{2} \\ 1 \frac{1}{2} \\ 1 \frac{7}{8} \\ 1 \frac{7}{8} \\ 2 \frac{1}{8} \end{array} $	1 ½ 1 ½ 1 ½ 1 ½ 1 ½ 1 ½ 1 ½	1 ½ 1 ½ 1 ½ 1 ½ 1 ½ 1 ½
4 ft.	5' 4" 5'10" 6' 4" 6'10"	49 ½ 49 ¼ 49 ¼ 49 ¼ 49 ¼	48 7/8 48 7/8 48 7/8 48 7/8	5 5/8 5 5/8 5 5/8 5 5/8	56 62 68 74	$ \begin{array}{r} \hline 2 \frac{1}{8} \\ 2 \frac{1}{8} \\ 2 \frac{1}{8} \\ 2 \frac{1}{8} \end{array} $	3 ½ 3 ½ 3 ½ 3 ½ 3 ½ 3 ½	SECTIONS	3 1/8 3 1/8 3 1/8 3 1/8 3 1/8	25/8 25/8 25/8 25/8 31/8	2 1/8 2 1/8 2 1/8 2 1/8 2 5/8	1 ½ 1 7/8 1 7/8 1 7/8	1 1/2 1 1/2 1 1/2 1 1/2
4 ft. 6 in.	5'10" 6' 4" 6'10" 7' 4"	54 ½ 54 ½ 54 ½ 54 ½ 54 ½	54 ½ 54 ½ 54 ½ 54 ½ 54 ½	5 5/8 5 5/8 5 5/8 5 5/8	62 68 74 80	2 1/8 2 1/8 2 1/8 2 1/8 2 1/8	3 ½ 3 ½ 3 ½ 3 ½ 3 ½	OF SECT	$ \begin{array}{c c} 3 \frac{1}{8} \\ 3 \frac{1}{8} \\ 3 \frac{1}{8} \\ 3 \frac{1}{8} \end{array} $	$ \begin{array}{c} 2 \frac{5}{8} \\ 3 \frac{1}{8} \\ 3 \frac{1}{8} \\ 3 \frac{1}{8} \end{array} $	2 1/8 2 5/8 2 5/8 2 5/8	$ \begin{array}{c} 1 \frac{7}{8} \\ 1 \frac{7}{8} \\ 1 \frac{7}{8} \\ 1 \frac{7}{8} \\ 1 \frac{7}{8} \end{array} $	1 1/8 1 7/8 1 7/8 1 7/8
5 ft.	6' 4' 6'10' 7' 4" 7'10"	59 34 59 34 59 34 59 34	59 3/8 59 3/8 59 3/8 59 3/8	6 3/8 6 3/8 6 3/8 6 3/8	68 74 80 86	$\begin{array}{c} 2 \frac{5}{16} \\ 2 \frac{5}{16} \\ 2 \frac{5}{16} \\ 2 \frac{5}{16} \\ 2 \frac{5}{16} \end{array}$	3 15 3 15 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	x No.	3 ½ 3¾ 3¾ 3¾ 3¾ 3¾	3 1/8 3 1/8 3 1/8 3 1/8 3 1/8	25/8 25/8 25/8 25/8 25/8	$1\frac{7}{8}$ $1\frac{7}{8}$ $2\frac{1}{8}$ $2\frac{1}{8}$	17/8 17/8 17/8 17/8
6 ft.	7' 4" 7'10" 8' 4" 8'10"	70 ¼ 70 ¼ 70 ¼ 70 ¼ 70 ¼	69 7/8 69 7/8 69 7/8 69 7/8	6 3/8 6 3/8 6 3/8 6 3/8	80 86 92 98	2 16 2 16 2 16 2 16 2 16 2 16	315555	8 1/2"	3 ³ / ₄ 3 ³ / ₄ 3 ³ / ₄ 3 ³ / ₄	33/4 33/4 33/4 33/4	2 5/8 3 1/8 3 1/8 3 1/8	$ \begin{array}{r} \hline 2 \frac{1}{8} \\ 2 \frac{1}{8} \\ 2 \frac{1}{8} \\ 2 \frac{1}{8} \\ 2 \frac{5}{8} \end{array} $	2 1/8 2 1/8 2 1/8 2 1/8
7 ft.	8' 4" 8'10" 9' 4" 9'10"	86 86 86 86	85 5/8 85 5/8 85 5/8 85 5/8	6 3/8 6 3/8 6 3/8 6 3/8	92 98 104 110	2 18 2 18 2 18 2 18 2 18 2 18	3 156 3 156 3 156 3 156		3 ³ / ₄ 3 ³ / ₄ 3 ³ / ₄ 3 ³ / ₄	33/4 33/4 33/4 33/4	3 ½ 3 ½ 3 ½ 3 ½ 3 ½ 3 ½ 3 ½	25/8 25/8 25/8 25/8 25/8	2 1/8 2 1/8 2 1/8 2 1/8

Note—Connection as shown in full lines for full Housing Fans up to and including 120". Connection as shown in dotted lines for full Housing Fans over 120" and all three-quarter Housing Fans.

Heater Case for Buffalo Heaters

Detailed dimensions of the casing used for the Buffalo fan system heaters will be found on page 456. Care should be taken to have the connection between the fan and heater case of such a character that it will not restrict the flow of air or offer unnecessary resistance. This precaution is frequently overlooked, either throwing excessive pressure on the fan, or curtailing the quantity of air handled.

The following table gives the approximate lengths of connection advised for a draw through installation.

LENGTH OF HEATER CONNECTION FOR DRAW THROUGH EQUIPMENT

Size	of Fan	
Planoidal	Niagara Conoidal	Distance From Fan to Heater
Up to 70" 70" to 100" 100" to 130" 130" to 170" 170" to 200"	Up to No. 7 7 to 10 10 to 13 13 to 17 17 to 20	18" to 24" 24" to 30" 36" 42" 48" to 54"

By-Pass Proportions

It is common practice in indirect or fan system heaters to arrange a by-pass, usually beneath the heater, so that all or a part of the air may be taken direct without passing through the heating coils. The by-pass is generally made the full width of the heater with a height of one-third or more of the height of the heater. Since the clear area of the standard Buffalo heater is one-half the gross area, this makes the total area of the by-pass equal to two-thirds or more of the clear area of the heater.

The loss by friction through the by-pass is very slight since the distance the air travels is comparatively short. As ordinarily installed the by-pass is placed below the center of the fan so that the direction of the air is changed more or less several times in going through the by-pass. The loss of entrance and discharge at the by-pass may be taken at from $1\frac{1}{2}$ to $2\frac{1}{2}$ velocity heads, depending on the arrangement. An average loss might be considered as two velocity heads, or approximately the equivalent of the resistance of four Buffalo heater sections of the size to which the by-pass is proportioned. The blast area of the by-pass may be taken as approximately 70 per cent. of the actual area.

Indirect Heaters

This is a special form of pipe coil heater, details and dimensions of which will be found on page 459.

As the table shows, a variety of sizes are built, the smallest being six pipes wide and eight pipes long. Under the heading of "Size," the first row of figures gives the number of pipes across the steam supply and drip ends, and the second column the number of pipes in the length of the coil. Cast iron manifolds are used for the bases into which the pipes are screwed, as in the regular fan system heaters. The indirect heaters may be used in an upright or horizontal position, according to the requirements. These heaters are shown as the solid base type and a diaphragm in same compels the steam to flow evenly through all pipes. The steam supply enters the heater base at one end and the water of condensation is removed directly opposite. These coils are designed for the use of either live or exhaust steam.

Blast Area of Buffalo Heaters

The blast area of any heater may be determined by the formula

$$A_b = \frac{A. P. M.}{4005 \sqrt{\text{press. drop in in.}}}$$
 (109)

Thus, if we assume a case where 10000 cu. ft. of air per minute is to be passed through five sections of Buffalo heater at a velocity of 1000 feet per minute, we find from the table on page 446 that the pressure loss will be 0.479 inch. Then from the above formula

Blast area =
$$\frac{10000}{4005\sqrt{0.479}}$$
 = 3.61 sq. ft.

A general discussion on the subject of blast area, together with an example illustrating the application of the general formula to an entire heating system, will be found on page 126.

INDIRECT HEATERS

ACTUAL LINEAL FEET 1-INCH PIPE IN EACH SECTION

No. Pipes	Size	40 ½"	46 1/2"	52 ½"	58 ½"	64 ½"	W	L
48	6 x 8	133	154	177	198	221	12½	22
64	6 x 8	177	206	236	265	295	16¼	22
80	8 x 10	221	258	295	332	369	16¼	27
100	10 x 10	276	323	369	415	462	20	27
120	10 x 12	346	387	443	498	553	20	32
140	10 x 14	387	451	517	581	645	20	37
144 168 192	12 x 12 12 x 14 12 x 16	398 464 532	464 542 618	532 618 709	598 697 798	663 774 886	23 ¼ 23 ¼ 23 ¼ 23 ¼	32 37 42
196	14 x 14	542	632	723	814	906	27 ½	37
256	16 x 16	708	827	945	1061	1181	30 ¼	42

VENTO CAST IRON HOT-BLAST HEATER REGULAR SECTION—RATINGS AND FREE AREAS

Regular 40 Inch Section, 10.75 Sq. Ft. Height 411/64 Inch. Width 91/8 Inch.

86		ineal	5" Cent Loo		5 3/8" C of Lo	enters oops	4 5/8" Co of Lo	enters	of	
r of Loops Stack	Feet of Surface	E d	Stand 44% of		52% of	Face	37% of	Face	Weight of in Pounds	mate
Number o	Square F Heating	#Equivalent in Feet 1-inch	Net Air Space in Square Feet	†Width of Stack in Inches	Net Air Space in Square Feet	†Width of Stack in Inches	Net Air Space in Square Feet	†Width of Stack in Inches	Actual Wo	Approximate Weights
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	75.25 86.00 96.75 107.50 118.25 129.00 139.75 172.00 172.00 182.75 193.50 204.25 215.00 247.25 258.00	226 258 290 323 355 387 419 452 484 516 548 581 613 645 677 710 742 774	4.34 4.96 5.58 6.20 6.82 7.44 8.06 8.68 9.30 9.92 10.54 11.16 11.78 12.40 13.02 13.64 14.26 14.88	35 40 45 50 55 60 65 70 75 80 85 90 90 91 105 110 115 120	5.12 5.85 6.57 7.29 8.02 8.74 9.47 10.19 11.64 12.36 13.09 13.82 14.54 15.26 15.98 16.71 17.43	38 43 48 54 59 65 70 75 81 86 91 97 102 108 113 118 124 129	3.67 4.20 4.72 5.25 5.77 6.30 6.82 7.35 7.87 8.40 8.92 9.45 9.97 10.50 11.05 11.05 11.05 12.07 12.60	32 37 42 46 51 55 60 65 69 74 79 83 88 92 97 102 106 111	594 670 728 851 936 1022 1167 1193 1278 1364 1449 1535 1620 1706 1790 1876 1960 2045	7.92 lbs. per sq. ft. actual 9 lbs. per sq. ft. shipping weight

Regular 50 Inch Section, 13.5 Square Feet. Height 502%2 Inch. Width 91/8 Inch

			5" Cei	nters	5 3/8" C	enters	45/8" C	enters		
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	94.5 108.0 121.5 135.0 148.5 162.0 175.5 189.0 202.5 216.0 229.5 243.0 256.5 270.0 283.5 297.0 310.5 324.0	284 324 365 405 446 486 527 567 608 648 648 689 729 770 810 851 891 932 972	5.37 6.14 6.91 7.68 8.45 9.29 9.99 10.76 11.53 12.30 13.07 13.84 14.59 16.13 16.90 17.67 18.44	35 40 45 50 55 60 65 70 75 80 95 100 115 120	6.35 7.25 8.15 9.95 10.85 11.75 12.65 13.55 14.45 15.35 16.25 17.15 18.05 18.95 19.85 20.75 21.65	38 43 48 54 59 65 70 75 81 86 91 97 102 108 113 118 124	4.55 5.20 5.85 6.50 7.15 7.80 8.45 9.10 9.75 10.40 11.05 11.70 12.35 13.00 13.65 14.30 14.95 15.60	32 37 42 46 51 55 60 65 69 74 79 83 88 92 97 102 106 111	717 810 923 1026 1129 1232 1335 1436 1539 1644 1747 1852 1955 2060 2160 2263 2370 2470	7.62 lbs. per sq. ft. actual 9 lbs. per sq. ft. shipping weight

†Note —Add to the width of stack 2½ inches for staggering of stacks. *Note —The actual length of one-inch pipe per square foot of outside surface is 2.9 lineal feet but is nominally figured at 3 lineal feet, as shown in the third column of above table.

VENTO CAST IRON HOT-BLAST HEATER REGULAR SECTION—RATINGS AND FREE AREAS

Regular 60 Inch Section, 16 Square Feet. Height 6011/16 Inch. Width 9 1/2 Inch.

sdoo	J. e	Lineal	5" Cer of Lo	iters ops	5 3/8" Co of Lo	enters oops	4 5/8" Ca of Lo	enters	of Is	
7.7	Feet of Surface		Standar of Fa	d 44% ace	52% of	Face	37% of	Face	Weight of n Pounds	imate
Number of in Stac	Square	*Equivalent in Feet 1-inch	Net Air Space in Square Feet	†Width of Stack in Inches	Net Air Space in Square Feet	†Width of Stack in Inches	Net Air Space in Square Feet	tWidth of Stack in Inches	Actual W Stack in	Approximate Weights
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	112.0 128.0 144.0 160.0 176.0 192.0 208.0 224.0 240.0 256.0 272.0 288.0 304.0 336.0 352.0 368.0 384.0	336 384 432 480 528 576 624 - 672 720 768 816 864 912 960 1008 1056 1104	6.45 7.37 8.29 9.21 10.13 11.05 11.97 12.89 13.81 14.73 15.65 16.57 17.50 18.42 19.34 20.26 21.18 22.10	35 40 45 50 55 60 65 70 75 80 85 90 105 110 115	7.62 8.70 9.77 10.85 11.93 13.00 14.08 15.15 16.23 17.31 18.39 19.46 20.54 21.62 22.70 23.78 24.85 25.93	38 43 48 54 59 65 70 75 81 86 91 97 102 108 113 118 124 129	5.47 6.25 7.03 7.81 8.59 9.37 10.15 10.93 11.71 12.49 13.27 14.05 14.83 15.61 16.39 17.17 17.95	32 37 42 46 51 55 60 65 69 74 79 83 88 92 97 102 106 111	864 988 1112 1238 1362 1486 1610 1734 1858 1982 2106 2230 2352 2478 2600 2725 2850 2970	7.74 lbs. per sq. ft. actual 9 lbs. per sq. ft. shipping weight

NARROW SECTION—RATINGS AND FREE AREAS

Narrow 40 Inch Section, 7.5 Square Feet. Height 411/64 Inch. Width 63/4 Inch

			5" Cer	iters	5 3/8" Ce	nters	4 5/8" Ce	enters		
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	52.5 60.0 67.5 75.0 82.5 90.0 97.5 105.0 112.5 120.0 127.5 135.0 142.5 150.0 172.5 180.0	158 180 203 225 248 270 293 315 338 360 383 405 428 450 473 495 518	4.34 4.96 5.58 6.20 7.44 8.06 8.68 9.30 9.30 9.30 11.16 11.76 11.76 12.40 13.02 13.64 14.26 14.88	35 40 45 50 55 60 75 80 95 100 105 110 115	5.12 5.85 6.57 7.29 8.74 9.47 10.19 10.91 11.64 12.36 13.09 13.82 14.54 15.26 16.71 17.43	38 43 48 54 59 65 70 75 81 86 91 97 102 108 113 118 124 129	3.67 4.20 4.72 5.25 7.77 6.30 6.82 7.35 7.87 8.40 9.45 9.45 11.05 11.05 11.05 11.05 11.05	32 37 42 46 51 55 60 65 69 74 79 83 88 92 97 102 106 111	420 480 540 600 720 780 960 960 1020 1140 1200 1280 1380 1440	8.00 lbs. per sq. ft. actual 9.25 lbs. per sq. ft. shipping weight

[†]Note —Add to the width of stack 2½ inches for staggering of stacks.

*Note —The actual length of one-inch pipe per square foot of outside surface is 2.9 lineal feet but is nominally figured at 3 lineal feet, as shown in the third column of above table.

VENTO CAST IRON HOT-BLAST HEATER NARROW SECTION—RATINGS AND FREE AREAS

Narrow 50 Inch Section, 9.5 Square Feet. Height 5029/32 Inch. Width 63/4 Inch.

9		Lineal	5" Cent Loo		5 3/8" Co of Lo	enters ops	45%" Ce of Lo	enters ops	of	
Loops	Feet of Surface	.E.E	Stand 44% of		52% of	Face	37% of	Face	Weight	eight
Number of Lo	Square F Heating S	*Equivalent Feet 1"	Net Air Space in Square Feet	†Width of Stack in Inches	Net Air Space in Square Feet	†Width of Stack in Inches	Net Air Space in Square Feet	†Width of Stack in Inches	Nominal W Stack in F	Actual Weights
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	66.5 76.0 85.5 95.0 104.5 114.0 123.5 133.0 142.5 152.0 161.5 171.0 180.5 190.0 199.5 209.0 218.5 228.0	200 228 257 285 314 342 371 399 428 456 485 513 542 570 627 656 684	5.37 6.14 6.91 7.68 8.45 9.22 9.20 10.76 11.53 12.30 13.07 13.84 14.59 15.36 16.13 16.90 17.67 18.44	35 40 45 50 55 60 65 70 75 80 95 100 105 110 115 120	8.35 7.25 8.15 9.95 10.85 11.75 12.65 13.55 14.45 15.35 16.25 17.15 18.95 19.85 20.75 21.65	38 43 48 54 59 65 70 75 81 86 91 97 102 108 113 118 124 129	4.55 5.20 5.85 6.50 7.15 7.80 8.45 9.10 9.75 10.40 11.05 11.70 12.35 13.00 13.65 14.30 14.95 15.60	32 37 42 46 51 55 60 65 69 74 79 83 88 92 97 102 106	515 589 663 736 810 883 957 1030 1105 1178 1252 1326 1400 1472 1546 1620 1693 1768	7.75 lbs. per sq. ft. actual 9.25 lbs. per sq. ft. shipping weight

Narrow 60 Inch Section, 11 Square Feet. Height 6011/16 Inch. Width 63/4 Inch.

			5" Cer	iters	5 3/8" Ce	enters	4 5/8" Ce	enters		
7 8	77.0 88.0	231 264	6.45 7.37	35 40	7.62 8.70	38 43	5.47 6.25	32 37	604 691	nal weight
10 11	$99.0 \\ 110.0 \\ 121.0$	297 330 363	8.29 9.21 10.13	45 50 55	9.77 10.85 11.93	48 54 59	7.03 7.81 8.59	42 46 51	777 864 950	actual ing we
12 13	132.0 143.0	396 429 462	11.05 11.97	60 65	13.00 14.08	65 70	9.37 10.15	55 60 65	1037 1123	f.
14 15 16	$\begin{array}{c c} 154.0 \\ 165.0 \\ 176.0 \end{array}$	495 528	12.89 13.81 14.73	70 75 80	15.15 16.23 17.31	75 81 86	10.93 11.71 12.49	69 74	1210 1295 1382	per sq.
17 18 19	187.0 198.0 209.0	561 594 627	15.65 16.57 17.50	85 90 95	18.39 19.46 20.54	91 97 102	13.27 14.05 14.83	79 83 88	1469 1555 1641	lbs. pe
20 21	220.0 231.0	660 693	18.42 19.34	100 105	21.62 22.70	108 113	15.61 16.39	92 97	1727 1813	7.85 II
22 23 24	242.0 253.0 264.0	726 759 792	20.26 21.18 22.10	110 115 120	23.78 24.85 25.93	118 124 129	17.17 17.95 18.73	102 106 111	1900 1985 2072	9 25 1

†Note —Add to the width of stack 2½ inches for staggering of stacks.
*Note —The actual length of one-inch pipe per square foot of outside surface is 2.9 lineal feet but is nominally figured at 3 lineal feet, as shown in the third column of above table.

Determination of Guarantees

The case often arises that a guarantee to heat a building to a certain specified temperature must be demonstrated at a time when the outside temperature is much higher than called for in the guarantee. It then becomes important to know the exact relation between the increase in outside and inside temperature when apparatus is operated to its full capacity. This relation has been published for heating with direct radiation, but it varies considerably from the results obtained with the fan system. Naturally the rise in indoor temperature will be less than the rise in outdoor temperature owing to the fact that the condensing capacity has been shown to be directly proportional to the difference in temperature between steam and air, while with direct radiation it is not directly proportional owing to the variation in convection currents. The same relation between indoor and outdoor temperature may be shown to hold true whether the system was designed to take the air from outdoors entirely or to recirculate air within the building. The formula expressing the relation between indoor and outdoor temperature in either case is:

$$t_{r} = \frac{t_{r}'(t_{s} - t_{1}) + t_{s}(t_{1} - t_{1}')}{t_{s} - t_{1}'}$$
(110)

When the guarantee is based on an outside temperature of 0° the formula becomes

$$t_{r} = \frac{t_{r}'(t_{s} - t_{1}) + t_{s} \times t_{1}}{t_{s}}$$
 (111)

t_r=temperature of building obtained with outside temperature t₁.

t₁ = any outside temperature at which test is made.

tr' = temperature of building guaranteed.

t₁' = specified outside temperature.

t_s = temperature of steam at pressure specified.

The table on page 464 gives corresponding indoor temperatures as derived from equation above for various outdoor temperatures with guarantees at 60° to 95° in zero weather.

The table on page 465 giving mean monthly temperatures in different localities will be found useful in many instances in laying out heating systems.

FAN ENGINEERING-BUFFALO FORGE COMPANY

TABLE OF AVERAGE INDOOR TEMPERATURES MAINTAINED AT VARIOUS OUTDOOR TEMPERATURES WITH 5 LBS. STEAM PRESSURE

Outdoor Temp.	Average Indoor Temperatures Deg. Fahr.								
-20	45.2	50.8	56.1	61.6	67.1	72.5	77.9	83.4	
-15	48.9	54.3	59.7	64.9	70.3	75.6	80.9	87.3	
-10	52.9	57.9	63.1	68.3	73.5	78.7	86.0	89.2	
-5	56.3	61.4	66.5	71.6	76,8	81.9	87.0	92.1	
0	60.0	65.0	70.0	75.0	80.0	85.0	90.0	95.0	
5	63.7	68.6	73.5	78.4	83.2	88.1	93.0	97.9	
10	67.4	72.1	76.9	81.7	86.5	91.3	96.0	100.8	
15	71.0	75.7	80.3	85.1	89.7	94.4	99.1	103.7	
20	74.7	79.3	83.9	88.4	92.9	97.5	102.1	106.6	
25	78.4	82.9	87.3	91.8	96.2	100.7	105.1	109.5	
30	82.1	86.4	90.8	94.1	99.4	103.8	108.1	112.4	
35	85.8	90.0	94.3	97.5	102.6	106.9	111.2	115.3	
40	89.4	93.6	97.7	101.8	105.9	110.0	114.2	118.2	
45	93.1	97.1	101.2	105.4	109.1	113.2	117.2	121.1	
50	96.8	100.7	104.7	108.5	112.4	116.3	120.2	124.0	
55	100.5	104.3	108.1	111.9	115.6	119.4	123.3	126.9	
60	104.2	107.8	111.6	115.2	118.8	122.6	126.3	129.8	
65	107.8	111.4	115.0	118.6	122.1	125.7	129.3	132.7	
70	111.5	115.0	118.5	121.9	125.3	128.8	132.4	135.6	

MI LI IX X	141 0 1	. 1 11			1VL L	3 10 11	1 0 10 1	0 0	
New York,	30.6	37.8 48.7	59.8 69.0	74.1	66.5	43.9	52.1	28.8	197 100
Chicago, III.	24.0	34.9	. 56.6 . 66.5	72.3	64.8 53.1	39.4	48.7	32.0	212
Portland, Me.	22.0	32.0 43.0	53.5 62.6	68.0	59.6	37.6 27.1	45.4	32.3	234
Boston, Mass.	27.0	35.0 45.3	56.6	71.3	62.7 52.3	41.2	48.8	30.4	216
Philadelphia, Pa.	31.8	40.0 50.8	62.2	75.8	67.4	44.9	53.6	28.3	190
Atlanta, Ga.	42.2	52.4	69.5	77.6	72.1 62.4	51.9	60.9	22.0	139
St. Paul,	11.9	28.2	57.7 67.2	72.0 69.7	60.5	31.0 18.8	43.9	39.0	223 154
St. Louis, Mo.	33.5	43.5	66.5	79.1	70.0	43.4	55.8	28.5	178
Portland, Ore.	38.7	46.1	57.7	67.3	61.3	45.7	52.8	25.7	203
	January February	March April	May June	July August	September October	November December	Mean for year Mean during heating season	Difference between 70° and mean during heating months	Number of days during heating season

E. F. Tweedy in "Power," June 16, 1912.

BUFFALO DUPLEX AUTOMATIC FEED PUMPS AND RECEIVERS

The unit consists of a suitably constructed cast iron receiving tank, mounted in combination with a Boiler Feed Pump on a common bed plate. The tank is mounted slightly above the pump, giving a sufficient head of water above the suction valves to insure the pump always receiving a full supply of water.

Within the tank is provided a float connected to a chronometer valve controlling the steam supply to the pump. Inflowing water causes float to rise, thereby opening the steam supply and starting the pump. When the water level has been lowered, the float automatically cuts off the steam. In this way the condensation water is returned to the boiler as fast as it accumulates.

Diameter Steam Cylinders	Diameter Water Pistons	Length of Stroke	Pump Capacity Gallons per Minute	Square Feet Direct Radiation Apparatus will Drain	Lineal Feet of 1-Inch Pipe Fan System Heater Apparatus Will Drain	Minimum Lbs. Steam Pressure Recommended			
With Standard Boiler Feed Pumps									
3 4 ½ 5 ¼ 5 ¼ 6 7 7 ½	2 23/4 31/2 31/2 4 4 4 4 1/2	3 ½ 4 5 6 6 8 8	10 20 40 45 60 80 100	5000 10000 20000 25000 40000 50000	2500 5000 10000 12500 20000 25000 30000	50 40 35 35 35 35 30 30			
With Low Steam Pressure Pumps									
3 4½ 6 7½	1½ 2 2 2½	3½ 4 6 6	11 16 25	3000 6000 9000 15000	1500 3000 4500 7500	35 25 10 10			

BUFFALO CENTRIFUGAL AUTOMATIC FEED PUMPS AND RECEIVERS

Centrifugal Pumps and Receivers are designed primarily for returning condensation from low-pressure systems into boilers, especially where steam pressure is so low as to prevent using reciprocating steam pumps. Centrifugal pumps should be especially designed for handling hot water and equipped with enclosed type polished brass runners or impellers. Receivers should be cast iron or similar material, strong enough to stand 50 pounds pressure. Centrifugal pumps are ordinarily equipped with 40 gallon receivers but smaller size receivers can be used if desired. Larger size receivers are not desirable, as the accumulated water should be returned to boiler as promptly as possible before it loses temperature.

The general method of operation of all electric driven pumps and receivers is the same. The condensation collects in receiver tank, raising large seamless copper float, until at a maximum point the float, by its connection, closes the float-switch, and an automatic starter starts the motor driving the pump. As the pump drains the receiver the float falls, until at a minimum point the float-switch is opened and the motor stops.

In determining proper size outfit to use it is necessary to know amount of radiation, boiler pressure, lift and pipe friction to boiler and details of electric current. On low steam pressure outfits about 30 per cent. margin should be allowed in figuring power, as water at 10 pounds pressure cannot be forced into a boiler carrying 10 pounds steam pressure.

GAS HEATERS

Various forms of heaters have been devised for use in connection with fans, utilizing the heat of the gases direct rather than through the medium of a steam boiler.

The efficiency of a gas-fired steam boiler, according to tests by Jay M. Whitman, is seldom in excess of 65 to 70 per cent. Some forms of gas heaters have been short-lived, no provision having been made to prevent temperatures in the heating surfaces so high as to destroy them in one or two heating seasons. To be reasonably long-lived, the heat must be transmitted from gas to air through surfaces which are not exposed to temperatures above 1200° F., and the construction must permit the renewal of this heating surface at least as conveniently as in the case of a boiler. These requirements can best be met by a design in which the heating surface proper consists of boiler tubes expanded into heads, the gases passing through the tubes, and the air drawn across them by the fan, while for best economy the range of temperature for the gases is from 1200° to 400° F. With natural gas or producer gas fuel, this design of heater has been combined with a combustion chamber provided with fire brick checker work, which, becoming incandescent, provides for the complete combustion of the mixture of gas and air before it leaves the chamber; a mixing chamber in which the high temperature products of combustion are mixed with low temperature gases which have already passed through the heater, and which in any desired proportion may be recirculated by an induced draft fan; an exhaust chamber from which the induced draft fan draws the cooled gases, part of which are discharged and part recirculated, and a suitable setting with boiler fronts and inspection doors, so as to make the various chambers accessible.

With natural gas having a calorific value of 1000 B. t. u., the loss in the waste gases discharged at 400° is approximately 60 B. t. u., corresponding to an efficiency of 94 per cent. When running at part load, and allowing for possible poor regulation of the burners, such a heater still has an efficiency better than a good steam boiler. Where producer gas is available instead of natural gas, similar economy will be shown. The high temperature exhaust from gas engines, if of sufficient volume and regular in quantity, waste gases from furnaces, or even under some conditions from boiler plants, may be utilized to good advantage.

SECTION VI

Air Washers

Air washers are generally used in connection with ventilating systems for public buildings, offices and residences. Their efficiency in purifying the air varies greatly with their construction and also depends in a large measure upon the nature and quantity of the impurities in the air to be washed. In general, the heavier particles in the air, such as street dust for instance, are comparatively easy to remove even with a washer of simple construction. On the other hand, the very fine particles often existing in city air, especially where it is taken some distance from the ground, where the impurities consist chiefly of fine ash and smoke particles, are exceedingly difficult to remove, and the most efficient air washer construction is required to get satisfactory results, or in fact, any results which will be worth the cost of installing an air washing device.

Principles of Air Washer Construction

It has been found by experiment, and is now generally acknowledged by engineers, that in washing air or gas the first essential is to fill the chamber through which it is passed with a finely divided spray or mist in order to get as great a contact surface as possible between the water and air and to secure a thorough mixture. Probably the most satisfactory way of accomplishing this is by the use of a large number of uniformly spaced centrifugal nozzles with large orifices to prevent clogging with foreign material. It has been found practicable to use orifices %6-inch in diameter in centrifugal nozzles which will give a satisfactory division and distribution of spray and at the same time will not clog. The nozzles should spray in the direction of the air flow.

An adequate filtering system should be provided, where the water is recirculated, in order to remove any large obstructions that might otherwise enter the spray system.

Note —For a general discussion on the subject of Humidity, see page 28; and on Air Washing, Cooling, Humidifying and Drying, see page 67.

The velocity through the washer for best results should be between 400 and 500 feet per minute. It is equally important that the air be distributed uniformly over the entire area of the washer. This is often difficult to accomplish and can only be secured by means of a diffuser or distributing plate at the washer inlet.

While some work may be done with a finely divided spray, it cannot be depended upon alone to give satisfactory cleaning effect. The air after having been moistened must be brought into repeated contact with wetted surfaces and subjected to the combined action of impact and centrifugal force. For the best results, the air should also be divided and broken up into as narrow layers or strata as may be possible mechanically, in order, 1st, that as great a contact surface may be secured as possible, and 2nd, that the solid particles contained in the air shall have as small a distance to travel as possible before coming into contact with a wetted surface where they will be entrained. This is best accomplished by placing in the eliminators large, independently flooded vertical surfaces. The plates forming this flooded surface should be placed as closely as possible, preferably about 1 inch apart, arranged vertically and flooded from the top. An extension of these surfaces should be provided with lips for the removal of all traces of free moisture. A satisfactory ratio has been found to be 64 sq. ft. of combined washing and eliminating surface per 1000 cu. ft. of air per minute.

In public building work provision should be made for heating the spray water and controlling the moisture content of the air in cold weather. The simplest method of accomplishing this is to regulate the temperature of the air leaving the washer by means of a thermostat, at the same time saturating the air by means of a heated spray at a variable temperature.

Air conditioning apparatus for controlling the humidity of air for manufacturing processes may be broadly classified, according to use, into humidifiers proper, which add moisture to the air in required amounts; and dehumidifiers, which remove a variable quantity of moisture from the air to reduce it to the required standard. The relative humidity of the air may also be altered, and in a measure regulated, simply by changing its temperature without affecting its moisture contents.

Types of Humidifiers

Humidifiers may be classified into the spray and evaporative types, the latter being divided again into direct and indirect. The humidity of the air may also be increased by the direct introduction of steam into the air supply or into the room. Since the total heat of the vapor at atmospheric temperature is somewhat less than the total heat at steam temperature, this raises the temperature of the air perceptibly and is therefore intolerable in the majority of cases. Added objections to the direct use of steam are that it frequently gives a noticeable odor and that it is difficult to regulate. The spray and evaporative types of humidifiers have a distinct value aside from humidifying in their possession of a cooling effect which is in direct proportion to their moistening effect. The direct spray type of humidifier is distinguished from the evaporative type in that it introduces a finely divided or atomized spray directly into the room in constant volume, while the evaporative type introduces only There is also a mixed type which discharges the water vapor. both moist air and free moisture into the room.

In what may be termed the indirect evaporative humidifier the air is partly or entirely taken from the outside and is humidified and conditioned before it is introduced into the room. In the direct evaporative type the water vapor passes directly into the air of the room. The indirect system of air conditioning is also termed the central system, and is known commercially as the Carrier System.

The Dehumidifier

In the dehumidifier, relatively cold spray water is used to condense the moisture out of the air. The water is either refrigerated or taken from an artesian well. When the water is artificially cooled the refrigerating coils are usually placed in a chamber underneath the spray chamber, and the water is so distributed as to flow uniformly over the cold surface, dropping to the tank underneath. The dehumidifier has its sprays opposed to the direction of air flow as in the humidifier, but differs from the latter in having usually two sets of sprays in series instead of one. Two or more dehumidifiers are frequently placed in series when the range of air temperature is great or when an economy of cooling water is essential.

Elements of Design of Humidifiers

The degree of saturation of the air leaving any type of air washer or humidifier depends upon the intimacy of the contact of the air and water, and upon the relation of the water temperature to the wet-bulb temperature of the entering air. It also depends to some degree upon the length of the spray chamber as well as upon the velocity of the air passing through it.

The size of the nozzle orifice is also a very important factor in determining the degree of saturation obtained. In general, the smaller the nozzle orifice the more perfect will be the humidifying effect with a given quantity of water. For humidifiers it is standard practice to use centrifugal nozzles having a 3-32 inch orifice, and where rotary strainers are employed for filtering the spray water the nozzle orifice may be reduced to 1-16 inch in diameter to advantage.

With the centrifugal type of spray nozzles the water pressure is a most important element affecting the degree of saturation. The accompanying diagram shows the humidifying effect secured with various velocities and at different pressures on the spray nozzle, in a standard humidifier having four 3-32 inch orifice centrifugal spray nozzles per square foot. This data was obtained from a test in which the wet-bulb depression of the entering air was maintained constant at 16°. It will be noted that an increase of $2\frac{1}{2}$ pounds in the spray pressure permitted a greatly increased velocity with perfect saturation, an effect which was undoubtedly due to the increased fineness of the spray rather than to the increase in the amount of water discharged. In this test, as in all standard humidifiers, the water was discharged in the direction opposite the air flow, increasing the efficiency of saturation.

When the spray water is recirculated without heating, as in warm weather, it remains at all times substantially at the wetbulb temperature of the entering air, while the wetbulb temperature of the air leaving the washer or dehumidifier is unchanged; therefore it follows in conformance with the theory, that when the air is completely saturated as in the humidifier the air is cooled to the wet-bulb temperature of the incoming air. This cooling effect is due to evaporation and is therefore in direct proportion to the moisture added to the air. The wet-bulb depression in atmospheric air averages from 12° to 15° in summer,

while occasionally a depression of 20° to 30° is found in extremely hot and dry weather. In every case a properly designed humidifier will cool the incoming air a corresponding number of degrees.

When saturation is incomplete, as in the ordinary air washer, the wet-bulb depression of the air leaving the washer is found to be a constant percentage of the initial wet-bulb depression, when the air velocity remains constant.

It follows that the cooling effect is a constant percentage of the initial wet-bulb depression. This may be expressed by the

formulae

$$\frac{t_2-t'}{t_1-t'}\!=\!R$$

$$\frac{t_1-t_2}{t_1-t'}\!=\!1\!-\!R\!=\!E$$

where

t' = constant wet-bulb temperature.

 $t_1 = temperature of air entering washer.$

 t_2 = temperature of air leaving washer.

R = constant ratio depending upon intimacy of contact, air velocity, etc.

E = efficiency of saturation.

Elements of Design of Spray Type of Dehumidifiers

Dehumidifiers may be of the spray type previously described, or of the surface type. A knowledge of the relation of water temperature to the leaving air temperature in either type is essential. In the spray type of one stage having two banks of opposed nozzles, the air temperature leaving is practically identical with the temperature of the leaving water, the difference never exceeding one degree in a properly designed apparatus. The air will always be saturated when leaving and under some conditions there is a slight tendency to entrainment even after thorough elimination.

The degree of entrainment is dependent upon the range of temperature of both the air and the water. In general, the smaller the temperature range, the less the tendency is to moisture entrainment or supersaturation. This may be reduced where a considerable lowering of air temperature is required by passing it successively through two or more dehumidifiers in series. When the system is properly designed, the entrainment should not be sufficient to raise the true dew-point temperature more than one degree.

Refrigeration Required for Dehumidifying

The heat to be removed in cooling a known weight of air from a given temperature and moisture content to a given dewpoint temperature, is evidently the difference of the total heat quantities contained in the air under these respective conditions. These values of total heat are given on the charts on pages 36 and 37. It is there shown that the total of latent and specific heat in one pound of pure air is dependent upon the wet-bulb temperature only. The upper table on page 475 shows the amount of refrigeration required to cool and dehumidify 1000 cu. ft. of air between various given wet-bulb temperatures and final dew-points.

Power Required for Operating Humidifiers

The lower table on page 475 exhibits the power required to saturate 1000 cu. ft. of air per minute at various velocities. This is based on overcoming the resistance of the humidifier, using a fan with a static efficiency of 45 per cent., a fair value.

B. T. U. REFRIGERATION REQUIRED TO COOL 1000 CU. FT. OF AIR (MEASURED AT 70 DEG. F.) FROM A GIVEN WET-BULB TEMPERATURE TO A GIVEN DEW-POINT

Dew-Point	emperature	ire (Gauge)	mpressor 15 Lb.	orsepower orsepower ated Suction Lb. Gauge		Er	itering	Wet-Bu	lb Tem	peratu	re	
Leaving De	Ammonia Te	Suction Pressure	Per Cent. Co	Per Cent. Horse pared with H Required at Ra Pressure of 15	50	55	60	65	70	75	80	85
65 60 55	45 40 35	65.96 58.29 51.22	270 244 220	41.5 45.5 49.5			221.5	259.0 480.5	296 553 777	606 865 1086	961 1220 1440	1350 1609 1840
50 45 40	30 25 20	44.72 38.73 33.25	199 182 164	59.5	185 359	203 388 569	425.0 611.0 791.0	683.0 869.0 1050.0	980 1165 1345	1290 1474 1656	1570 1830 2010	2030 2220 2400

RESISTANCE OF CARRIER HUMIDIFIERS AND HORSEPOWER REQUIRED TO HUMIDIFY 1000 CU. FT. OF AIR

Velocity Through Spray Chamber in Ft. per Min.	Resistance in In. of Water		Horsepower for Spray per 1000 Cu. Ft. of Air (1/16 Orifice Nozzle)	Total Horsepower Required per 1000 Cu. Ft. of Air
350	0.112	0.0391	0.1408	0.1799
400	0.147	0.0513	0.1231	0.1744
450	0.186	0.0652	0.1095	0.1747
500	0.229	0.0800	0.0985	0.1785
550	0.277	0.0968	0.0897	0.1865
600	0.330	0.1150	0.0822	0.1972
650	0.387	0.1350	0.0758	0.2108
700	0.450	0.1570	0.0704	0.2274
750	0.516	0.1810	0.0658	0.2488

AIR WASHER DIMENSIONS

DIMENSIONS FOR CARRIER TYPE "A" AIR WASHERS

Number	Capacity in C. F. M.	Height	Length	Width	G. P. M. Circulated	Size Pump Inches	H. P. Motor	R. P. M. Motor	Size Water Supply Inches	Size Sewer Con- nection Inches
1 A 1 B 2 A 1 C 2 B	1500 2100 3100 3200 4400	4'1½" 5'1½" 4'1½" 7'1½" 5'1½"	7'25/16" 7'25/16" 7'25/16" 7'25/16" 7'25/16"	1' 5 ¼" 1' 5 ¼" 2' 9" 1' 5 ¼" 2' 9"	14 16 28 23 32	1 ½ 1 ½ 1 ½ 1 ½ 1 ½ 1 ½ 1 ½ 1 ½ 1 ½	2 2 2 2 2 2 2 2 3 2 2 3	1700 1700 1700 1700 1700	3,4,3,4,3,4,3,4,3,4	2 2 2 2 2 2
3 A 4 A 3 B 2 C 4 B 2 D	4800 6400 6700 6900 9000 9400	4'1 ½" 4'1 ½" 5'1 ½" 7'1 ½" 5'1 ½"	7'25/16" 7'25/16" 7'25/16" 7'25/16" 7'25/16"	4' 034" 5' 4½" 4' 034" 2' 9" 5' 4½" 2' 9"	42 56 48 46 63 57	1 ½ 1 ½ 1 ½ 1 ½ 1 ½ 1 ½ 1 ½ 1 ½		1700 1700 1700 1700 1700 1700	3/4 3/4 3/4 3/4 3/4 3/4 3/4	22222 2222 22222 22222 22222 22222 22222
3 C 5 B 4 C 3 D	10500 11300 14100 14300 17700	9'1 ½" 7'1 ½" 5'1 ½" 7'1 ½" 7'1 ½" 9'1 ½"	7'25/16" 7'25/16" 7'25/16" 7'25/16" 7'25/16" 7'25/16"	4' 034" 6' 8" 5' 4½" 4' 034"	69 79 92 85 115	1 ½ 1 ½ 2 2 2 2 2	3 3 3 5	1700 1700 1700 1700 1700	3/4 3/4 3/4 3/4 3/4 3/4	2 2 2 2 2 2 2
5 C 3 E 4 D 6 C 5 D 4 E 6 D	$\begin{array}{c} 18100 \\ 19200 \\ 21300 \\ 24100 \\ 24300 \end{array}$	7'1 ½" 11'1 ¾" 9'1 ½" 7'1 ½" 9'1 ½" 11'1 ¾"	7'25/16" 7'25/16" 7'25/16" 7'25/16" 7'25/16" 7'25/16"	6' 8" 4' 1 ¼" 5' 4 ½" 7'11 ¾" 6' 8" 5' 5" 7'11 ¾4"	102 114 139 142 135	2 2 2 2 ½ 2 ½ 2 ½ 2 ½	5 5 5 5 5	1700 1700 1700 1700 1700	3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4	2 2 2 2 2
4 F 5 E 7 D	29000 29400 31000 33900 36700	11'1 ¾" 9'1 ½"	7'25/16" 7'25/16" 7'25/16" 7'25/16" 7'25/16" 7'25/16"	5' 5" 6' 8 ½" 9' 3 ½"	171 164 169 200 204	2½ 2½ 2½ 2½ 2½ 2½ 2½ 2½ 3	5 5 5 7 ½ 7 ½ 7 ½	1700 1700 1700 1700 1700 1700	34 34 34 34 34	2 2 2 2 2 2
6 E 5 F 8 D 7 E 9 D 6 F 10 D	37000 38800 42900 43700 44500	9'1 ½" 11'1 ¾" 9'1 ½"	7'25/16" 7'25/16" 7'25/16" 7'25/16" 7'25/16" 7'25/16"	10' 7 ¼" 9' 4" 11'11"	205 228 238 256 247 286	3 3	7 ½ 7 ½ 7 ½ 7 ½ 7 ½ 7 ½ 7 ½ 7 ½	1700 1700 1700 1700 1700 1700	1 34	2 2 2 2
8 E 7 F 11 D	48600 49100 52000 53500 55000	11'1 34" 13'1 34" 9'1 16"	7'25/16" 7'25/16" 7'25/16" 7'25/16" 7'25/16" 7'25/16"	8' 0 ¼" 13' 2 ½" 10' 7 3¼" 9' 4" 14' 6 ¼" 11'11 ½" 15'10" 10' 7 ¾"	271 288 315 305 343	3 3 4 4 4	7 ½ 7 ½ 7 ½ 7 ½ 10 10	1700 1700 1700 1120 1120 1120	1 1 1	2 2 2 2 2 2
9 E 12 D 8 F 7 G 10 E 9 F 11 E	59000 60000 61000 62000 67000 68000	13'1 34" 15'2" 11'1 84"	7'25/16" 7'25/16" 7'25/16" 7'25/16" 7'25/16" 7'25/16"	13' 3"	329 326 340 370 374	4 4 4 4 4	10 10 10 10 10	1120 1120 1120	34 34 1 1	2 2 2 2 2
8 G 12 E 10 F	70000 74000 75000 79000	15'2" 11'1 ⁸ 4" 13'1 ³ 4"	7'25/16" 7'25/16" 7'25/16" 7'25/16" 7'25/16" 7'25/16" 7'25/16"	10' 8 ¼" 15'10 ½" 13' 3"	374 373 408 412 419 442	4 4 4 4	10 10 10 10 10	1120 1120 1120 1120 1120 1120 1120 1120	11	2 2 2 2
9 G 13 E 11 F 14 E 10 G	80000 82000 87000 88000) 15'2") 11'134") 13'134") 11'134") 15'2"	7'25/16" 7'25/16" 7'25/16" 7'25/16" 7'25/16" 7'25/16"	12' 0" 17' 2 ¼" 14' 6 ¾" 18' 6" 13' 3 ½"	442 453 477 466	5 4 4	15 15 15	1120 1120 1120 1120	1 1	3 3 2

Additional sizes and capacities on request.

Carrier Type "B" Washer

AIR WASHER DIMENSIONS

DIMENSIONS FOR CARRIER TYPE "B" AIR WASHERS

Number	Capacity in C. F. M.	Height	Length B	Width	G. P. M. Circulated	Size Pump Inches	H. P. Motor	R. P. M. Motor	Size Water Supply Inches Size Sewer Con-	nection Inches
1 A 1 B 2 A 1 C 2 B	1500 2100 3100 3200 4400	4'1 ½' 5'1 ½'' 4'1 ½'' 7'1 ½'' 5'1 ½''	9'0 3'8" 9'0 3'8" 9'0 3'8" 9'0 3'8" 9'0 3'8"	1' 5 ¼" 1' 5 ¼" 2' 9" 1' 5 ¼" 2' 9"	23 27 46 41 54	1 ½ 1 ½ 1 ½ 1 ½ 1 ½ 1 ½ 1 ½	2 2 2 2 2 3	1700 1700 1700 1700 1700	3/4 3/4 3/4 3/4 3/4	2 2 2 2 2 2
3 A 4 A 3 B 4 C 4 B	4800 6400 6700 6900 9000	4'1 ½" 4'1 ½" 5'1 ½" 7'1 ½" 5'1 ½"	9'0 3'8" 9'0 3'8" 9'0 3'8" 9'0 3'8"	4' 0 ³ 4" 5' 4 ½" 4' 0 ³ 4" 2' 9" 5' 4 ½"	69 92 81 82 106	1 ½ 2 2 2 2	3 3 3 5 5	1700 1700 1700 1700 1700	3/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4	2 2 2 2 2
2 D 3 C 5 B 4 C 3 D 5 C	9400 10500 11300 14100 14300 17700	9'1 ½" 7'1 ½" 5'1 ½" 7'1 ½" 9'1 ½"	9'03'8" 9'03'8" 9'03'8" 9'03'8"	2' 9" 4' 034" 6' 8" 5' 4 ½" 4' 034" 6' 8"	104 123 133 164 155 205	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 5 5 5 7 1/6	1700 1700 1700 1700 1700 1700	34 34 34 34 34 34	22222 22222 22222 22222 22222 22222 2222
5 C 3 E 4 D 6 C 5 D 4 E	18100 19200 21300 24100 24300	7'1 ½" 11'1 ¾" 9'1 ½" 7'1 ½" 9'1 ½" 11'1 ¾"	9'0 3'8" 9'0 3'8" 9'0 3'8" 9'0 3'8" 9'0 3'8" 9'0 3'8"	4' 1 ¼" 5' 4 ½" 7'11 ¾" 6' 8"	189 208 247 259 250	2 ½ 2 ½ 2 ½ 2 ½ 3 8	7½ 5 7½ 7½ 7½ 7½ 7½ 7½	1700 1700 1700 1700 1700	3/4 3/4 3/4 1 3/4 1 3/4	2 2 2 2 2 2
4 E 6 D 4 F 5 E 7 D 6 E	29000 29400 31000 33900 36700	11'1 ¾" 9'1 ½" 13'1 ¾" 11'1 ¾" 9'1 ½" 11'1 ¾"	9'0 3'8" 9'0 3'8" 9'0 3'8" 9'0 3'8" 9'0 3'8" 9'0 3'8"	5′ 5″ 7′11 ³4″ 5′ 5″ 6′ 8 ½″ 9′ 3 ½″ 8′ 0 ¼″	311 308 313 364 347	4 4 4 4	10 10 10 10	1120 1120 1120 1120 1120	1 3/4 3/4 1 1	2 2 2 2 2
6 E 5 F 8 D 7 E 9 D 6 F	37000 38800 42900 43700 44500	11'1 34" 13'1 34" 9'1 ½" 11'1 34" 9'1 ½" 13'1 34"	9'0 3'8" 9'0 3'8" 9'0 3'8" 9'0 3'8" 9'0 3'8"	8' 0 ¼" 6' 8 ½" 10' 7 ¼" 9' 4" 11'11" 8' 0 ¼"	385 415 440 466 463	4 4 4 4 4	10 10 10 15 15	1120 1120 1120 1120 1120	34 1 1 1 1	2 2 2 2
6 F 10 D 8 E 7 F 11 D 9 E	48600 49100 52000 53500 55000	13'1 34" 9'1 ½" 11'1 34" 13'1 34" 9'1 ½" 11'1 34"	9'0 3'8" 9'0 3'8" 9'0 3'8" 9'0 3'8" 9'0 3'8" 9'0 3'8"	8' 0 ¼" 13' 2 ½" 10' 7 ¾" 9' 4" 14' 6 ¼" 11'11 ½"	520 501 540 573 564	4 4 5 5 5	15 15 15 15 15 15	1120 1120 1120 1120 1120	1 1 1 1 1/4	2 2 2 2
9 E 12 D 8 F 7 G 10 E 9 F	59000 60000 61000 62000 67000 68000	11'13'4" 9'11'2" 13'13'4" 15'2" 11'13'4" 13'13'4"	9'0 3'8" 9'0 3'8" 9'0 3'8" 9'0 3'8" 9'0 3'8" 9'0 3'8"	15'10" 10' 734" 9' 4 ½" 13' 3" 11'11 ½"	624 617 616 628 694 691	5 5 5 5 5 5	15 15 15 15 15 15	1120 1120 1120 1120 1120	1 1/4	2 2 2 2
9 F 11 E 8 G 12 E 10 F 9 G 13 E	70000 74000 75000 79000 80000	13'1 34"	9'0 3'8" 9'0 3'8" 9'0 3'8" 9'0 3'8" 9'0 3'8" 9'0 3'8" 9'0 3'8"	11'11 ½" 14' 6 ¾" 10' 8 ¼" 15'10 ½" 13' 3" 12' 0" 17' 2 ¼" 14' 6 ¾"	707 754 772 792 817	5 5 5 5 5 5	15 15 15 20 20 20	1120 1120 1120 1120 1120 1120	1 1/4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 3
9 G 13 E 11 F 14 E 10 G	82000 87000 88000	13'1 34"	9'03'4" 9'03'4" 9'03'4" 9'03'8"	12' 0" 17' 2 ¼" 14' 6 ¾" 18' 6" 13' 3 ½"	849 881 880	6 6	20 20 20 20	1120 1120 1120 1120 1120 1120	1 1/4 1 1/4 1 1/4 1	2

AIR WASHER DIMENSIONS

DIMENSIONS FOR CARRIER TYPE "C" AIR WASHERS

Number	Capacity in C. F. M.	Height A	Length	Width	G. P. M. Circulated	Size Pump Inches	H. P. Motor	R. P. M. Motor
1 A 1 B 1 C 2 A 2 B 3 A	1700 2300 3400 3500 4800 5400	4'1 ½" 5'1 ½" 7'1 ½" 4'1 ½" 5'1 ½" 4'1 ½" 5'1 ½"	4'10" 4'10" 4'10" 4'10" 4'10" 4'10"	1' 5 ¼" 1' 5 ¼" 1' 5 ¼" 1' 5 ¼" 2' 9" 2' 9" 4' 0 ¾"	9 11 18 18 22 27	1 ½ 1 ½ 1 ½ 1 ½ 1 ½ 1 ½ 1 ½ 1 ½	2 2 2 2 2 2 2	1700 1700 1700 1700 1700 1700
4 A 3 B 2 C 4 B 2 D 3 C	7300 7300 7300 9800 9800 11000	4'1 ½" 5'1 ½" 7'1 ½" 5'1 ½" 9'1 ½" 7'1 ½"	4'10" 4'10" 4'10" 4'10" 4'10" 4'10"	5' 4 ½" 4' 0 ¾" 2' 9" 5' 4 ½" 2' 9" 4' 0 ¾"	36 33 36 43 47 54	1 ½ 1 ½ 1 ½ 1 ½ 1 ½ 1 ½ 1 ½ 1 ½	2 2 2 2 2 2 3	1700 1700 1700 1700 1700 1700
5 B 4 C 3 D 5 C 3 E 4 D	12300 14900 14900 18700 18700 20000	5'1 ½" 7'1 ½" 9'1 ½" 7'1 ½" 11'1 ¾" 9'1 ½"	4'10" 4'10" 4'10" 4'10" 4'10" 4'10"	6' 8" 5' 4 ½" 4' 0 ¾" 6' 8" 4' 1 ¼" 5' 4 ½"	54 72 70 90 87 94	1 ½ 1 ½ 1 ½ 2 ½ 2	3 3 3 3 3 3	1700 1700 1700 1700 1700 1700
6 C 5 D 4 E 6 D 4 F 5 E	22500 25200 25200 30300 30300 31600	7'1 ½" 9'1 ½" 11'1 ¾" 9'1 ½" 13'1 ¾" 11'1 ¾"	4'10" 4'10" 4'10" 4'10" 4'10" 4'10"	7'11 ¾" 6' 8" 5' 5" 7'11 ¾" 5' 5" 6' 8 ½"	108 117 115 140 144 144	2 2 2 2 ½ 2 ½ 2 ½ 2 ½ 2 ½	ББ5555	1700 1700 1700 1700 1700 1700
7 D 6 E 5 F 8 D 7 E 9 D	35400 38000 38000 40500 44500 45700	9'1 ½" 11'1 ¾" 13'1 ¾" 9'1 ½" 11'1 ¾4" 9'1 ½"	4'10" 4'10" 4'10" 4'10" 4'10" 4'10"	9' 3 ½" 8' 0 ¼" 6' 8 ½" 10' 7 ¼" 9' 4" 11'11"	164 173 180 187 202 210	2 ½ 2 ½ 2 ½ 2 ½ 2 ½ 2 ½ 2 ½ 2 ½	5 5 5 7 1/2 7 1/2	1700 1700 1700 1700 1700 1700
6 F 10 D 8 E 7 F 11 D 9 E	45800 50500 51000 53500 56000 57500	13'1 34" 9'1 ½" 11'1 34" 13'1 34" 9'1 ½" 11'1 34"	4'10" 4'10" 4'10" 4'10" 4'10" 4'10"	8' 0 ½" 13' 2 ½" 10' 7 ¾" 9' 4" 14' 6 ¼" 11'11 ½"	216 234 230 252 258 259	3 3 3 3 3 3	7 ½ 7 ½ 7 ½ 7 ½ 7 ½ 7 ½ 7 ½ 7 ½	1700 1700 1700 1700 1700 1700
12 D 8 F 7 G 10 E 9 F 11 E	61000 61000 62500 68500 69000 70000	9'1 ½" 13'1 ¾" 15'2" 11'1 ¾" 13'1 ¾" 11'1 ¾"	4'10" 4'10" 4'10" 4'10" 4'10" 4'10"	15'10" 10' 734" 9' 432" 13' 3" 10' 814" 14' 634"	281 288 290 288 324 317	3 3 9 4 4 4	7 ½ 7 ½ 7 ½ 7 ½ 7 ½ 10	1700 1700 1700 1700 1120 1120
8 G 12 E 10 F 9 G 13 E 11 F 10 G 14 E	72000 76500 77000 81000 83000 85000 90000	15'2" 11'1 34" 13'1 34" 15'2" 11'1 34" 13'1 34" 15'2" 11'1 34"	4'10" 4'10" 4'10" 4'10" 4'10" 4'10" 4'10" 4'10"	11'11 ½" 15'10 ½" 13' 3" 12' 0" 17' 2 ¼" 14' 6 ¾" 13' 3 ½" 18' 6"	332 346 360 373 375 396 414 404	4 4 4 4 4 4 4 4 4 4 4 4 4	10 10 10 10 10 10 10	1120 1120 1120 1120 1120 1120 1120 1120

Water supply % inch, sewer connection 2 inches on all sizes. Additional sizes and capacities on request.

SECTION VII

STEAM ENGINES

In the following section will be found capacity and specification tables of Buffalo Steam Engines.

Two diagrams are given, showing the water rate of high speed engines and the ratio of the water rate at any cut-off as compared to the rated water rate, when the engines are rated at 3/8 cut-off. As an example of the use of these diagrams, we will take a case of a 100 H. P. high speed engine with steam pressure at 100 pounds and cutting off at 3% stroke. From the curve on page 486 we find the steam consumption will be 28 pounds per indicated H. P., or a total of 2800 pounds per hour. In case this was a heating job this would then be a measure of the amount of exhaust steam available for use in the heating coils. If, for any reason, this engine should be set to cut off at 5% stroke, we may determine the resulting steam consumption from the diagram on page 487. From the point marked 5% cut-off on the right edge of the chart, pass horizontally to the left until the cut-off line is intersected, thence downward to the curve, and horizontally to the left edge, where we find the water rate will be 104.2 per cent. of the rated. That is, $1.042 \times 28 = 29.2$ pounds per I. H. P. per hour.

The per cent. of rated load that will be developed may be determined from the scale at the bottom of the diagram. Drop vertically from the intersection of the $\frac{5}{8}$ cut-off with the cut-off line to the bottom of the chart, where it will be found that the engine when cutting off at $\frac{5}{8}$ stroke will develop 137.5 per cent. of the rated load, or $1.375 \times 100 = 137.5$ I. H. P.

The table of mean effective pressures has been calculated from actual indicator cards taken from automatic high speed engines. These values are applicable to engines of this class when exhausting at atmospheric pressure. In case back pressure is carried on the engine a corresponding correction should be made.

The horsepower tables for the various classes of engines give the brake horsepower per R. P. M., the maximum speed allowable and the corresponding horsepower developed. There are two factors limiting the speed of these engines; first, a maximum allowable piston speed; and second, the maximum load allowable, as indicated in the dimension table of each particular engine. In the case of the automatic engines the governors do not operate at a speed less than two-thirds of the maximum. There are a number of cases in the tables on pages 490 and 491 where, at certain steam pressures and cut-offs it was found necessary to limit the speed to less than two-thirds of the maximum in order to avoid overloading the corresponding engine frame. As indicated on the tables, these engines will have to be operated throttling, since the automatic governors will not be operative at these low speeds.

The two tables on pages 496 and 497 are applicable to Buffalo Class "A" automatic high speed engines. The maximum speed for each engine is shown, together with the minimum speed when operating with the automatic governor and also the brake horsepower that will be developed at the different steam pressures. Except as indicated these values are based on the engines operating at one-half cut-off. Those cases marked will have to cut off at less than one-half stroke in order to avoid overloading the engine.

Spiro Driven Niagara Conoidal (Type N) Fan for Forced Draft

Spiro Driven Gas Blower Unit

These illustrations show the adaptability of direct connecting various types of fans to Spiro Steam Turbines, which are made in sizes from 1 to 100 horsepower and operate very economically at a comparatively low speed.

M. E. P. OF HIGH SPEED ENGINES

M. E. P. OF HIGH SPEED ENGINES*
Allowance Made for 10 Per Cent. Clearance and without Back Pressure

Steam Pressure Gauge			Cut	-off		
Ster Pres Gau	1/4	1/8	3/8	1/2	5/8	3⁄4
15	3.0	4.4	5.1	6.8	8.5	9.7
20	4.8	6.6	7.4	9.4	11.5	13.1
25	6.7	8.7	9.7	12.1	14.5	16.4
30	8.5	10.8	11.9	14.7	17.6	19.8
35	10.3	13.0	14.2	17.4	20.6	23.1
40	12.2	15.1	16.5	20.0	23.6	26.4
45	14.0	17.3	18.8	22.6	26.6	29.8
50	15.8	19.4	21.0	25.4	29.6	33.1
55	17.7	21.6	23.4	28.0	32.7	36.5
60	19.5	23.7	25.7	30.7	35.7	39.8
65	21.4	25.8	28.0	33.4	38.7	43.2
70	23.2	28.0	30.2	36.0	41.8	46.5
75	25.0	30.2	32.6	38.6	44.8	49.9
80	26.9	32.3	34.8	41.2	47.9	53.1
85	28.7	34.4	37.1	43.9	50.8	56.5
90	30.6	36.6	39.4	46.7	53.9	59.9
95	32.4	38.8	41.6	49.3	57.0	63.3
100	34.3	40.8	44.0	51.9	60.0	66.5
105	36.1	43.0	46.3	54.5	63.7	70.0
110	38.0	45.2	48.5	57.1	66.1	73.3
115	39.8	47.4	50.8	60.5	69.0	76.6
120	41.6	49.5	53.1	63.0	72.0	80.0
125	43.5	51.6	55.3	65.0	75.1	83.4
130	45.2	53.6	57.7	67.9	78.2	86.6
135	47.1	55.9	60.0	70.5	81.1	90.0
140	49.0	57.9	62.4	73.2	84.3	93.4
150	52.7	62.4	66.9	78.5	90.2	100.0

^{*}Note—Based on indicator cards from an automatic high speed engine.

60 lbs. BUFFALO HIGH SPEED ENGINES

Brake Horsepower per R. P. M. and Maximum R. P. M. and Horsepower Allowable CLASS "A" HORIZONTAL AND VERTICAL-STEAM PRESSURE, 60 LB. GAUGE

	Max. B. H. P.	4.6 12.8 18.5 18.5	15.2 27.0 42.1	29.5 46.1 60.6	47.4 68.2 80.1	71.7 97.5 111.8	106.5 122.0 153.5 189.6
% Cut-off	Max. R.P.M.	550 475 450 410	400 400 400	350 350 320	3000	270 270 270	225 200 200 200
	B. H. P. per R. P. M.	.0084 .0164 .0284 .0452	.0379 .0674 .1053	.0843	.1580 .2276 .2671	.2651 .3609 .4142	.4747 .5402 .7681 .9480
	Max. B. H. P.	3.9 6.6 10.7 16.2	12.8 22.7 35.5	24.8 38.8 55.7	39.9 57.5 67.5	60.3 82.0 94.2	90.0 102.0 129.3 159.5
1/2 Cut-off	Max. R.P.M.	550 475 450 425	400 400 400	350 350 350	300	270 270 270	222 200 200
	B. H. P. per R. P. M.	.0071 .0138 .0239 .0380	.0319 .0567 .0886	.0709 .1108 .1596	.1930 .1915 .2248	.2231 .3038 .3485	.3995 .4544 .6462 .7976
	Max. B. H. P.	2.4.8.2. 2.4.8.2.	10.4 18.5 29.0	20.3 31.8 45.7	32.6 47.0 50.9	49.4 67.2 77.0	73.6 83.8 105.8 130.6
% Cut-off	Max. R.P.M.	550 475 450 425	400 400 400	350 350 350	300	270 270 270	225 200 200
80/	B. H. P. per R. P. M.	.0058 .0113 .0196	.0261 .0464 .0726	.0581 .0908 .1307	.1089 .1568 .1697	.1826 .2487 .2853	.3270 .3720 .5291 .6531
	Max. B. H. P.	2.9 4.9 8.1 12.1	9.5 16.9 26.5	18.6 28.9 41.7	29.8 42.9 50.4	45.0 61.2 70.3	67.3 76.4 78.6 119.1
% Cut-off	Max. R. P. M.	550 475 450 425	400 400 400	350 350 350	3000	270 270 270	225 200 200 200
Tr	B. H. P. per R. P. M.	.0053 .0103 .0179	.0238 .0423 .0662	.0530 .0827 .1191	.0993 .1430 .1678	.1666	.2982 .3391 .4825 .5955
Cylinder	Diameter and Stroke	48.0L 48.0L	0 0 0 0 0 0 0 0 0 0 0	8 x 10 10 x 10 12 x 10	10 x 12 13 x 12 13 x 12	12 x 14 14 x 14 15 x 14	15 x 16 16 x 16 20 x 18

Nore-Minimum speed to be not less than two-thirds the Maximum for Automatic Governors.

. GAUGE 80 1bs.

CLASS "A" HORIZONTAL AND VERTICAL-STEAM PRESSURE, 80 LB. GAUGE BUFFALO HIGH SPEED ENGINES

	Max. B. H. P.	5.6 10.5 17.3 18.5	20.3 8.14 8.18	39.6 60.2 60.0	63.6 88.5 63.0	96.0 125.5 125.0	143.2 162.9 206.0 254.4
% Cut-off	Max. R. P. M.	490 475 450 305	400 400 295	350 340 235	300 290 245	270 260 225	225 225 200 200
	B. H. P. Per R. P. M.	.0113 .0221 .0382 .0606	.0509	.1131 .1767 .2545	.2120 .3053 .3583	.3557 .4842 .5558	.6369 .7245 1.0305 1.2720
	Max. B. H. P.	2.28 14.18 18.35 18.55	17.1 30.4 41.0	33.3 52.1 59.0	53.6 77.1 86.0	80.8 110.0 126.0	120.5 137.0 173.5 214.1
% Cut-off	Max. R. P. M.	550 475 450 360	400 400 345	350 350 275	300 300 285	270 270 270	225 225 200 200
1	B. H. P. per R. P. M.	.0095 .0186 .0321 .0510	.0428 .0761 .1189	.0952	.1785 .2570 .3016	.2994 .4075 .4677	.5360 .6097 .8673 1.0705
	Max. B. H. P.	4.3 7.3 11.9 17.7	14.2 25.2 39.3	27.6 45.2 57.6	44.3 63.9 74.8	66.7 91.0 104.3	99.5 113.0 143.3 176.8
3% Cut-off	Max. R. P. M.	550 475 450 420	004 004 0004	350 350 325	300	270 270 270	222 200 200 200
80	B. H. P. per R. P. M.	.0079 .0153 .0265 .0422	.0354 .0629 .0983	.0787 .1229 .1770	.2123	.3367 .3865	.4428 .5036 .7164 .8842
	Мах. В. Н. Р.	4.0 6.7 10.9 16.5	13.0 23.1 36.1	25.3 39.5 56.8	40.6 58.5 68.8	61.3 83.5 96.0	91.5 104.0 131.5 162.3
& Cut-off	Max. R.P.M.	550 475 450 425	400 400 400	350 350 350	300	270 270 270	225 225 200 200 200
	B. H. P. Per R. P. M.	.0072 .0141 .0243 .0387	.0325	.1128	.1354	.2270 .3090 .3546	.4063 .4625 .6576
Cylinder	Diameter and Stroke	480L 480L	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 10 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	122 x x 122 x 22 22 22 22 22 22 22 22 22 22 22 22	12 x 14 14 x 14 15 x 14	15 x 16 16 x 16 20 x 18 20 x 18

Nore-Minimum speed to be not less than two-thirds the Maximum for Automatic Governors.

100 lbs. BUFFALO HIGH SPEED ENGINES

CLASS "A" HORIZONTAL AND VERTICAL-STEAM PRESSURE, 100 LB. GAUGE

		Max. B. H. P.	5.6 11.2 18.6 18.3	25.4 42.0 41.6	41.6 60.8 59.0	79.6 88.2 88.0	120.5 124.0 185.0	179.0 202.0 258.3 318.7
	% Cut-off	Max. R. P. M.	395 405 390 240*	400 370 235*	350 275 185	300 230 195	270 205 265	222 200 200 200
	20	B. H. P. R. Per. R. P. M.	.0142 .0276 .0478 .0760	.0637 .1133 .1770	.1417 .2213 .3185	.2656 .3825 .4489	.4456 .6055 .6962	.7978 .9074 1.2910 1.5935
Allowable		Max. B. H. P.	5.5 10.9 18.2 18.3	21.5 38.3 42.0	42.0 59.0 59.5	67.5 85.9 85.8	101.8 123.0 159.0	152.0 173.0 218.5 269.6
sepower /	3 Cut-off	Max. R.P.M.	455 465 450 285	400 400 280	350 315 215*	300 265 225	240 240 270	200 200 200 200
. and Hor	1	B. H. P. Per R. P. M.	.0120 .0234 .0405 .0643	.0539 .0959 .1499	.1199	.2248 .3237 .3799	.5134	.6752 .7680 1.0920 1.3480
m R. P. M		Max. B. H. P.	5.4 9.2 15.1 17.8	17.9 31.8 41.7	34.8 54.4 58.0	56.0 80.6 85.0	84.5 115.0 131.8	126.0 143.0 181.0 223.7
Maximu	% Cut-off	Max. R. P. M.	510 475 450 335	400 400 335	350 350 260	300 300 270	270 270 270	225 225 200 200 200
P. M. and	8	B. H. P. Per R. P. M.	.0105 .0194 .0336 .0533	.0447 .0795 .1243	.0994	.1864 .2684 .3150	.3127 .4257 .4886	.5600 .6368 .9060 1.1182
Horsepower per R.		Max. B. H. P.	5.0 8.4 13.9 17.6	16.4 29.2 41.6	31.9 50.0 57.4	51.2 74.0 83.8	77.5 105.5 121.0	115.2 131.0 166.0 205.0
Horsepo	1/3 Cut-off	Max. R. P. M.	550 475 450 360	400 400 365	350 350 280	300 300 290	270 270 270	225 225 200 200
Brake	4	B. H. P. Per R. P. M.	.0091 .0178 .0308 .0489	.0410 .0729 .1139	.0912	.1709 .2461 .2888	.3903 .4480	.5133 .5839 .8305 1.0250
	Cylinder	Diameter and Stroke	410.0L 410.0L	0 0 0 0 0 0 0 0 0 0 0	8 x 10 10 x 10 12 x 10	10 x 12 12 x 12 13 x 12	12 x 14 14 x 14 15 x 14	15 x 16 16 x 16 18 x 18 20 x 18

Note-Minimum speed to be not less than two-thirds the Maximum for Automatic Governors. Those marked with a * are for Throttling Governors. 125 lbs.

CLASS "A" HORIZONTAL AND VERTICAL-STEAM PRESSURE, 125 LB. GAUGE er P. P. M. and Maximum R.P.M. and Horsenower Allowable BUFFALO HIGH SPEED ENGINES

Max. B. H. P.	5.5 11.2 18.6 18.1	31.9 41.8 41.0	60.5 58.2 57.8	86.5 86.0 86.9	123.0 121.0 187.0	224.5 255.0 323.0 319.0
Max. R. P. M.	310* 325 310 190*	400 295 185*	340 210* 145*	260 180* 155*	220 160* 215	225 200 200 160
B. H. P. per R. P. M.	.0177 .0346 .0598 .0953	.1418	.2770	.3325 .4785 .5605	.5576 .7595 .8714	.9986 1.1358 1.6155 1.9940
Max. B. H. P.	5.5 10.8 18.2 18.1	27.1 41.0 40.3	52.6 58.8 58.6	84.5 85.3 85.1	123.0 122.0 181.0	190.3 216.0 244.0 301.3
Max. R. P. M.	365 370 360 220*	400 340 210₩	350 250 170*	300 210 175*	260 185* 245	225 225 200 200 200
B. H. P. per R. P. M.	.0150 .0293 .0507 .0822	.0676 .1201 .1920	.1502 .2347 .3452	.2816 .4054 .4860	.4723 .6565 .7380	.8457 .9620 1.2205 1.5064
Max. B. H. P.	5.4 10.7 17.7 18.2	22.5 40.0 40.8	43.8 57.6 57.4	70.5 84.5 85.0	106.0 120.0 165.8	158.0 180.5 227.5 281.0
Max. R. P. M.	430 440 420 260*	400 400 250*	350 295 195*	300 250 215	270 225 270	200 200 200 200 200
B. H. P. per R. P. M.	.0125 .0244 .0422 .0700	.0562 .0999 .1630	.1250 .1953 .2940	.2343 .3374 .3959	.3930 .5350 .6141	.7036 .8004 1.1385 1.4052
Max. B. H. P	5.3 10.6 17.5 17.6	20.7 36.9 39.6	40.4 57.0 57.5	65.0 83.0 83.6	98.0 123.0 153.0	146.0 166.0 210.0 259.3
Max. R. P. M.	460 470 450 285	400 400 275	350 315 210*	300 265 235	270 250 270	225 225 200 200
B. H. P. Per R. P. M.	.0115 .0225 .0389 .0618	.0518 .0922 .1440	.1153	.2161 .3113 .3653	.3625 .4936 .5665	.6492 .7384 1.0505 1.2965
Cylinder Diameter and Stroke	48.0L 48.0L	0 8 0 x x x 8 8 8 8	8 10 10 12 10 10 10 10 10 10 10 10 10 10 10 10 10	12 x x 12 12 13 x x 12 12 12 12 12 12 12 12 12 12 12 12 12	12 x 14 14 x 14 15 x 14	15 x 16 16 x 16 18 x 18 20 x 18
	Max. Max. B.H.P. Max. Max. B.H.P. Max. B.H.P. Max. B.H.P. Max. B.H.P. Max. R.P.M. B.H.P. R.P.M. B.H.P. R.P.M.	B. H. P. Max. P. M. B. H. P. P. M. Max. P. M. B. H. P. Max. P. Max. P. Max. P. Max. P. Max. P. Max. P. M. B. H. P. Max. P. Max	B. H. P. Max. B. H. P. P. P. M. P. P. M. B. H. P. P. P. M. P. P. M. B. H. P. P. P. M. P. P. M. B. H. P. P. P. M. P. P. M. B. H. P. P. P. M. P. P. M. P. P. M. B. H. P. P. P. M. P. P. M. B. H. P. P. P. M. P. P. M. <th< th=""><th>B. H. P. Max. B. H. P. P. P. M. R. P. M. R. P. M. B. H. P. P. P. M. R. P. M. R. P. M. B. H. P. P. P. M. R. P. M.</th><th>B. H. P. Max. B. H. P. P. P. M. P. P. M. B. H. P. P. P. M.</th><th>B. H. P. Max. B. H. P. P. P. M. B. H. P. Max. B. H. P. P. P. M. P. P. M. B. H. P. P. P. M. P. P. M. B. H. P. P. P. M. B. H. P. P. P. M. B. H. P. P. P. M. P. P. M. B. H. P. P.</th></th<>	B. H. P. Max. B. H. P. P. P. M. R. P. M. R. P. M. B. H. P. P. P. M. R. P. M. R. P. M. B. H. P. P. P. M. R. P. M.	B. H. P. Max. B. H. P. P. P. M. P. P. M. B. H. P. P. P. M.	B. H. P. Max. B. H. P. P. P. M. B. H. P. Max. B. H. P. P. P. M. P. P. M. B. H. P. P. P. M. P. P. M. B. H. P. P. P. M. B. H. P. P. P. M. B. H. P. P. P. M. P. P. M. B. H. P. P.

Nore-Minimum speed to be not less than two-thirds the Maximum for Automatic Governors. Those marked with a * are for Throttling Governors.

BUFFALO LONG STROKE ENGINES CLASS "N" AND "S"

	09	60 Lb. Pressure	sure	80	80 Lb. Pressure	sure	100	100 Lb. Pressure	ssure
Diameter and Stroke	B. H. P. Per R. P. M.	Max. R. P. M.	Max. B. H. P.	B. H. P. R. P. M.	Max. R. P. M.	Max. B. H. P.	B. H. P. R. P. R. P. M.	Max. R. P. M.	Max. B. H. P.
	.0329	300	9.9	.0442	300	13.3	.0553	300	16.6
	.1012	250 250	19.4	.1088	250 250	27.2 33.9	.1301	250 250	32.5
	.1178	225 225	26.5	.1581	225	35.6 45.0	.1981	225 225	44.6
	.2631 .3788 .5922	100 80 80	26.3 34.1 47.4	.3530 .5084 .7943	100 80 80	35.3 45.8 63.5	.4422 .6368 .9950	001 008 008	44.2 57.3 79.7
	1.0240	65	52.6 66.6	1.0863	65	70.6	1.3600	65	88.4
	1.5805 1.9120 2.5757	65 65 65	102.7 124.3 148.0	2.1202 2.5658 3.0530	65 65 65	137.8 166.8 198.4	2.6560 3.2140 3.8240	65 65 65	172.6 208.9 248.6

BUFFALO HIGH SPEED ENGINES DOUBLE VERTICAL—DOUBLE ACTING

63
_
ā
6
5
ы
9
~
-
< ₽
-
9
3
8
POOR
90
lors
0
-
10
-
40
5
-
0
-
2
_
_
and a
100
Aax
100
-
Σ
Σ
Z D
W Pu
W pur
and M
and M
. and M
M. and M
M. and M
. M. and M
P. M. and M
P. M. and M
. P. M. and M
R. P. M. and M
R. P. M. and M
r R. P. M. and M
er R. P. M. and M
per R. P. M. and M
per R. P. M. and M
r per R. P. M. and M
er per R. P. M. and M
er per R. P. M. and M
wer per R. P. M. and M
awer per R. P. M. and M
nawer per R. P. M. and M
spawer per R. P. M. and M
sepawer per R. P. M. and M
sepawer per R. P. M. and M
prsepawer per R. P. M. and M
orsepawer per R. P. M. and M
Horsepawer per R. P. M. and M
Horsepawer per R. P. M. and M
Horsepawer per R. P. M. and M.
e Horsepawer per R. P. M. and A
e Horsepawer per R. P. M. and A
e Horsepawer per R. P. M. and A
rake Horsepawer per R. P. M. and M
e Horsepawer per R. P. M. and A
e Horsepawer per R. P. M. and A
e Horsepawer per R. P. M. and A

inder		1/8 Cut-of			% Cut-off			% Cut-off			% Cut-off	
Jiameter and Stroke	B.H.P. per R.P.M.	Max. R. P. M.	Max. B. H. P.	B. H. P. per R. P. M.	Max. R. P. M.	Max. B. H. P.	B. H. P. per R. P. M.	Max. R.P.M.	Max. B. H. P.	B. H. P. Per R. P. M.	Max. R.P.M.	Max. B. H. P.
					80	Lb. Pressure	sure					
372	.0071	650	4.6	8200.	650	5.1	.0094	650	6.1	.0111	650	7.2
2 4	01120	009	0.00	0157	009	0.6	0100	009	11.4	0226	009	13.6
4	.0226	009	13.6	.0246	009	14.8	.0298	009	17.9	.0354	525	18.6
NO II	.0405	200	20.2	.0442	200	22.1	.0534	500	26.7	.0635	500	31.7
000	.1154	400	46.2	.1257	400	50.3	.1523	360	55.0	1809	310	56.0
					1001	Lb. Pressure	sure					
3 3 4	0600.	650	5.9	8600	650	6.4	.0118	650	7.7	.0140	650	9.1
372	.0160	650	10.4	.0174	650	11.3	.0210	650	13.7	.0248	650	16.1
4	.0183	009	11.0	0100	009	12.0	.0240	009	14.4	.0284	009	17.0
4	.0285	009	17.1	.0311	580	17.7	.0375	485	18.2	.0443	420	18.6
S	.0512	200	25.6	.0558	200	27.9	.0673	475	31.9	.0795	410	32.6
S	7690.	440	30.6	0920	410	31.2	.0917	345	31.6	.1083	300	32.5
20	.1458	360	52.5	.1590	335	53.5	.1918	285	54.6	.2265	242	55.6
		,			125]	Lb. Pressure	sure					
372	.0114	650	7.4	.0123		8.0	.0148	650	9.6	.0175	650	11.4
3 1/2	.0202	650	13.1	.0219	650	14.2	.0263	650	17.1	.0311	009	18.6
4	.0231	000	13.9	0220	009	15.0	.0301	009	18.1	.0355	525	18.6
4	.0361	480	17.7	.0391	455	17.8	.0470	390	18.3	.0555	335	18.6
10	.0647	475	30.6	.0702	445	31.2	.0843	380	32.0	9660	325	32.4
ID OI	.0881	350	30.6	.0955	325	31.0	.1148	275	31.5	.1356	240	32.6
0	TILLY.	000	00	00011	200	0.00	7047	2220	04.1	0007	100	000

SINGLE VERTICAL-CYLINDER BELOW SHAFT, CLASS "I" BUFFALO HIGH SPEED ENGINES

Cylinder	9	60 Lb. Pressure			80 Lb. Pressure	
Diameter and Stroke	B. H. P. Per R. P. M.	Max. R. P. M.	Max. B. H. P.	B. H. P. Per R. P. M.	Max. R. P. M.	Max. B. H. P.
6.4400L %%%%% ******* \$\times \times \tim	.0042 .0074 .0133 .0279 .0445	600 500 400 325 275 220	25.23.43.44.7 6.53.44.7 14.22.1	.0056 .0099 .0178 .0374 .0597	600 500 325 275 200 200 200	3.6 5.0 7.1 12.2 16.4 19.7
	DOUBLE VI Brake Horsepower	BUFFALO ERTICAL—SINGL r per R. P. M. an	BUFFALO HIGH SPEED ENGINES AL—SINGLE ACTING—CYLINDER . P. M. and Maximum R. P. M. a.	BUFFALO HIGH SPEED ENGINES DOUBLE VERTICAL—SINGLE ACTING—CYLINDER ABOVE SHAFT Brake Horsepower per R. P. M. and Maximum R. P. M. and Horsepower Allowabie	SHAFT ower Allowable	
Cylinder		60 Lb. Pressure			80 Lb. Pressure	
Diameter and Stroke	B. H. P. per R. P. M.	Max. R. P. M.	Max. B. H. P.	B. H. P. per R. P. M.	Max. R. P. M.	Max. B. H. P.
3 x 3 6 x 6 6 x 6	.0036 .0084 .0284	700 600 500	2.5 5.0 14.2	.0048 .0113 .0382	700 500 435	3.4 5.6 16.6
		100 Lb. Pressure			125 Lb. Pressure	9
3 x 3 x 4 x 6 x 6	.0060 .0142 .0478	615 390 350	3.7 5.5 16.7	.0075 .0177 .0598	490 315 280	3.7

BUFFALO LOW PRESSURE ENGINES AT THREE-QUARTER CUT-OFF AND 3-LB, BACK PRESSURE

Brake Horsepower per R. P. M. and Maximum R. P. M. and Horsepower Allowable at Different Steam Pressures

Cylinder Diameter and Stroke	B. H. P. per R. P. M.	Max. R. P. M.	Max. B. H. P.	B. H. P. Per R. P. M.	Max. R.P. M.	Max. B. H. P.	B. H. P. Per R. P. M.	Max. R. P. M.	Max B. H. P.
Dis	10	Lb. Pre	ssure	15 1	Lb. Pres	sure	20 Lb	. Pres	sure
10x 8	0.00282 0.00460 0.0107	350 325 325	1.0 1.5 3.5	0.00794 0.01522 0.0261	350 325 325	2.8 4.9 8.5	0.01313 0.02600 0.0417	350 325 325	4.6 8.5 13.5
15x10	0.0218 0.0210 0.0264	325 300 300	7.1 6.3 7.8	0.0457 0.0509 0.0604	325 300 300	14.8 15.3 18.1	0.0700 0.0813 0.0949	325 300 300	22.8 24.4 28.4
18x14	0.0362	250	9.1	0.0514 0.0878 0.0897	250 250 200	12.8 21.9 17.9	0.0876 0.1404 0.1510	250 250 200	21.9 35.1 30.2
18x16				0.0863	200	17.3	0.1560	200	31.2
	25 1	Lb. Pre	ssure	30 1	Lb. Pres	sure	40 Lb	. Pres	зите
10x 8	0.01667 0.03654 0.0570	350 325 325	6.4 11.9 18.5	0.02835 0.05758 0.0720	350 325 325	9.9 18.8 23.4	0.03360 0.06850 0.1033	350 325 325	11.8 22.2 33.6
15x10 16x10	0.0935 0.1109 0.1285	325 300 300	30.4 33.2 38.6	0.1174 0.1406 0.1624	325 300 300	38.2 42.2 48.8	0.1656 0.2010 0.2308	250 300 260	41.5 60.3 60.0
18x12 18x14	0.1233 0.1920 0.2108	250 250 200	30.8 48.0 42.2	0.1588 0.2423 0.2702	250 250 200	39.7 60.7 54.1	0.2310 0.3465 0.3920	250 250 200	57.8 86.7 78.5
18x16	0.2444	200	45.0	0.2925	200	58.5	0.4315	200	86.3

HORSEPOWER OF BUFFALO HIGH SPEED CLASS "A" ENGINES

Nore—H. P. marked * indicates engine cutting off at less than rated cut-off.

HORSEPOWER OF BUFFALO HIGH SPEED CLASS "A" ENGINES

1 1					* *		*		
	125	6.0*	18.0*	20.3 36.1	45.0* 45.1 65.0*	65.0* 84.5 95.0*	95.0*		
R. P. M.	100	6.0** P. M. 12.1	18.0*	16.2 28.8	45.0* 36.0 56.2	65.0* 67.5 95.0*	95.0*		
500 R.	80	4.7 300 R. 9.6	15.3	12.8	35.7 28.5 44.7	65.0* 53.5 77.1	95.0*		
	09	3.6	11.4	9.6	26.8 21.3 33.3	47.9 39.9 57.5	67.5		
	125	6.0	18.0*	18.6 33.1	45.0* 41.3 65.0*	65.0* 77.5 95.0*	95.0* 135.0* 135.0*	200.0*	
R. P. M.	100	6.0* 11.1	17.7	14.8 26.4	41.2 33.0 51.5	65.0* 62.0 95.0*	95.0* 103.5 135.0*	162.0	
75 R	80	4.5 8.8 275 R.	14.0	20.9	32.7 26.2 41.0	59.0 49.1 70.7	83.0 82.3 112.0	128.5	
47	09	3.4	10.5	8.8	24.4 19.5 30.5	43.9 36.6 52.6	62.0 61.4 83.5	0.96	
CON LA CONTRACTOR DE CONTRACTO	125	6.0*		16.9	45.0* 37.6 58.8	65.0* 70.5 95.0*	95.0* 118.0 135.0*	184.5	
450 R. P. M.	100	5.4 10.5 18.0**	250 R. P. M.	13.5	37.5 30.0 46.9	65.0* 56.3 81.0	95.0* 94.3 135.0*	117.0 147.0	
450 R	80	8.4 8.4 14.5	250	19.7	29.7 23.8 37.2	53.6 44.6 64.2	75.5 74.8 102.0	117.0	
	09	3.2 6.2 10.7		8.0	22.2 17.7 27.7	39.9 33.3 47.9	56.3 55.8 76.0	M7.2	
200	125	6.0*	18.0*		33.8 52.8	65.0* 63.5 95.0*	95.0* 106.2 135.*	166.0 190.3 216.0	
R. P. M.	001	5.1	18.0* 18.0* 18.0*		P. M. 27.0 42.2	65.0* 50.6 72.9	85.5 84.8 115.5	132.5 152.0 173.0	
425 R.	80	4.0	18.0*		225 R. 21.4 33.5	48.3 40.2 57.9	68.0 67.4 91.7	105.0 120.6 137.0	
	99	3.0	16,1		15.9	35.9 30.0 43.1	50.6 50.2 68.5	78.5 90.0 102.0	
193	Diame Diame Strok	4 % % %	7 x 7	00 00 X X	8 x 8 0 x x 0 0 x 10	2 x 10 2 x 12 2 x 12	3 x 12 2 x 14 4 x 14	5 x 14 5 x 16 6 x 16	8 x 18 0 x 18

Nore-H. P. marked * indicates engine cutting off at less than rated cut-off.

497

BUFFALO HORIZONTAL ENGINES CENTER CRANK, CLASS "A"

MAXIMUM HORSEPOWER ALLOWABLE FOR CORRESPONDING FRAME

High Pressure

Max.		Cylinder		Floor Space			dard wheel	Steam Exhaus		Shipping Weight
Horse- power	Max. R. P. M.	Diameter and Stroke	Length	Width	Height	Diam.	Face	Steam	Exh.	Belted Engine 2 Wheels
45	400	6 x 8	73	40	42	39	7	2	21/2	3300
45	400	8 x 8	73	40	42	39	7	21/2	3	3380
45	400	10 x 8	73	40	42	39	7	3 2	3 1/2	3560
65	350	8 x 10	80	56	60	49	11 1/2	2 1/2	3 1/2	6320
65	350	10 x 10	80	56	60	49	11 1/2	21/2	3 1/2	6490
65	350	12×10	80	56	60	49	11 1/2	3 1/2		6760
95	300	10×12	110	60	65	57	13	$3\frac{1}{2}$	4 4 5 5 5 6	9850
95	300	12×12	110	60	65	57	13 .	4	5	10000
95	300	13 × 12	110	60	65	57	13	4	5	10170
135	270	12×14	126	70	75	66	15	4	5	15950
135	270	14 x 14	126	70	75	66	15	5	6	16170
200	270	15 x 14	130	77	75	66	15	5	6	16390
285	225	15 x 16	144	88	80	72	16	6	7	22330
285	225	16 x 16	144	88	80	72	16	. 8	7	22440
350	200	18 x 18	161	95	88	84	18	7	8	30580
350	200	20 x 18	161	95	88	84	18	7	8	31790

Low Pressure

45 45 65 95 93 135 200	325 325 300 250 250 200 200	12 x 8 15 x 8 15 x 10 15 x 12 18 x 12 18 x 14 18 x 16	110 110 126	40 56 60 60 70	42 42 60 65 65 75 75	39 39 49 57 57 66 66	7 7 11 ½ 13 13 15 15	3 ½ 8 4 5 6	3 ½ 4 3 ½ 5 6 7 7	3780 4000 7150 10830 11270 17270 22700
--	---	---	-------------------	----------------------------	--	--	--	-------------------------	-------------------------------------	--

BUFFALO HORIZONTAL ENGINES SIDE CRANK, CLASS "A"

MAXIMUM HORSEPOWER ALLOWABLE FOR CORRESPONDING FRAME

High Pressure

Max.	Max.	Cylinder Diameter	Flo	or Spa	ice	Gove	dard ernor neel	Stean Exh Pij	aust	Shipping Weight
Horse- power	R.P.M.	and Stroke	Length	Width	Height	Diam.	Face	Steam	Exh.	Belted Engine I Wheel
20 45 45 45 45 55	450 400 400 400 400 350	6 x 6 6 x 8 8 x 8 10 x 8 8 x 10	66 76 76 76 89	42 48 48 48 56	44 47 47 47 53	33 39 39 39 49	6 7 7 7 11 ½	2 2 2½ 3 2½	2 1/4 2 1/2 3 3 1/2 8	2940 3830 3920 4310 5390
65 65 95 95 95	350 350 300 300 300	10 x 10 12 x 10 10 x 12 12 x 12 13 x 12	89 89 110 110 110	56 56 64 64 64	53 53 62 62 62 62	49 49 57 57 57	11 ½ 11 ½ 13 13 13		3 ½ 4 4 5 5	5580 5850 9300 9460 9570

Low Pressure

45 45 65 65 95	325 325 300 300 250 250	12 x 8 15 x 8 15 x 10 16 x 10 15 x 12 18 x 12	76 76 89 89 110 110	48 48 56 56 64 64	47 47 53 53 62 62	39 39 49 49 57 57	7 7 11 ½ 11 ½ 13	3 ½ 3 ½ 3 ½ 3 ½ 4	3 ½ 4 4 4 5	4290 4510 6240 6350 10175 10620
----------------------------	--	--	------------------------------------	----------------------------------	----------------------------------	----------------------------------	------------------------------	-------------------------------	-------------------------	--

BUFFALO HORIZONTAL ENGINES SIDE CRANK, CLASS "N"

MAXIMUM HORSEPOWER ALLOWABLE FOR CORRESPONDING FRAME

Н. Р.	R. P. M.	ider er and ike		or Spa	ice		tandai ly-who			m and ist Pipes	ping ght slete
Max.	Max: R	Cylin Diamet	Length	Width	Height	Diam.	Face	Weight	Steam	Exh.	Ship Wei Comp
30 30 50	300 300 250	5 x 10 6 x 10 7 x 12	70 70 86	30 30 34	30 30 32	40 40 40	8½ 8½ 8½ 8½	450 450 450	1 ½ 1 ½ 2	2½ 2½ 3	1980 2030 2750
50 65 65	250 225 225	8 x 12 8 x 14 9 x 14	\$6 102 102	34 40 40	32 37 37	40 49 49	8½ 10 10	450 900 900	2 2 ½ 2 ½ 2 ½	3 3½ 3½	2970 3850 4070

BUFFALO HORIZONTAL ENGINES SIDE CRANK, CLASS "S"

MAXIMUM HORSEPOWER ALLOWABLE FOR CORRESPONDING FRAME

Н. Р.	R. P. M.	nder er and oke	Floo	r Spa	ice	Standa	rd F	ly=wheel	Steam Exha Pip	aust	ping ght plete rsing
Max.	Max. R	Cylir Diamet Stre	Length	Width	Height	Diam.	Face	Weight	Steam	Exh.	Ship Wei Comi
90	100	10 x 20	162	50	61	72	5	2850	2½	3 3 5	8250
90	90	12 x 20	162	50	61	72	5	2850	2½		8800
90	80	15 x 20	168	52	68	96	8	4000	4		11000
125	65	16 x 24	178	60	72	96	9	6800	4 4 5	5	18370
125	65	18 x 24	178	60	72	96	9	6800		5	20000
275	65	20 x 30	192	64	76	108	10	10000		6	29700
275	65	22 x 30	192	66	80	108	10	10000	5	6	31300
275	65	24 x 30	192	66	80	108	10	12000		7	34300

BUFFALO SINGLE VERTICAL ENGINES CLASS "O"

MAXIMUM HORSEPOWER ALLOWABLE FOR CORRESPONDING FRAME

Max.		Cylinder		Floo Spac			ndard wheel		n and st Pipes	Shipping Weight
Horse- power	Max. R.P.M.	Diameter and Stroke	Length	Width	Height	Diam.	Face	Steam	Exh.	Belted Engine 2 Wheels
6	550	4 x 4	34	32	47	27	5½	$1\frac{1}{1}$ $1\frac{1}{2}$ 2	1 ½	1320
12	475	5 x 5	37	35	55	31	6		2	1800
18	450	6 x 6	41	42	65	33	6½		2 ½	2440
30	425	7 x 7	41	42	73	33	6 ½	2	2 ½	2800
45	400	8 x 8	43	44	76	39	7	2½	3	3840
65	350	10 x 10	52	56	96	49	11 ½	3	3 ½	6600
95	300	12 x 12	58	68	116	57	13	4	5	10000

BUFFALO SINGLE VERTICAL ENGINES CLASS "A"

MAXIMUM HORSEPOWER ALLOWABLE FOR CORRESPONDING FRAME

High Pressure

Max. Horse- power	Max. R. P. M.	Cylinder Diameter and Stroke	Floor Space			Standard Fly=wheel		Steam and Exhaust Pipes		Shipping Weight	
			Length	Width	Height	Diam.	Face	Steam	Exh.	Belted Engine 2 Wheels	
6	550 475	4 x 4 5 x 5	34 37	32 34	46 55	27 31	5 1/2	1 1/4 1 1/2	1 1/2	1260 1740	
20 20	450 425	6 x 6 7 x 7	41	37 37	65 65	33 33	6 1/2 6 1/2	$\frac{2}{2}$	$\frac{2\frac{1}{2}}{2\frac{1}{2}}$	2400 2800	
45 45 65	400 400 350	8 x 8 10 x 8 8 x 10	43 43 52	40 40 52	78 78 96	39 39 49	7 7 11 1/2	2 ½ 3 2 ½	3 1/2	3270 3420 6070	
65 65	350 350	10 x 10 12 x 10	52 52	52 52	96 96	49 49	11 1/2	3 1/2	3 1/2	6240 6460	
95 95	300 300	10 x 12 12 x 12	62 62	64 64	118 118	57 57	13 13	$\frac{3\frac{1}{2}}{4}$	5	8830 9000	

Low Pressure

18 45 45 45 65 95	450 400 400 400 350 800 800	12 x 8 13 x 8 15 x 8	43 52		65 78 78 78 96 118 118	39 49 57	6½ 7 7 7 11½ 13	2 ½ 3 3 ½ 8 4 5	3 1/2 3 1/2 3 1/2 1 3 1/2 5 •	2450 3780 4160 6490 7150 10830 11270
----------------------------------	---	----------------------------	----------	--	--	----------------	--------------------------------	--------------------------------	---	--

BUFFALO SINGLE VERTICAL ENGINES CYLINDER BELOW SHAFT, CLASS "I"

MAXIMUM HORSEPOWER ALLOWABLE FOR CORRESPONDING FRAME

Max. Horsepower	Max. R. P. M.	Cylinder Diameter		d Exhaust pes	Weight of Engine with
Horsepower	K. I . III.	and Stroke	Steam	Exhaust	Hand Wheel
5 7½ 11	600 500 400	3 x 3 ½ 4 x 3 ½ 4 ½ x 5	1 1 11/4	1 ½ 1 ¼ 1 ½ 1 ½	340 370 780
18 ½ 25 30	325 275 220	5½ x 7 6½ x 8 7½ x 9	$\frac{1}{1}\frac{14}{12}$	1 ½ 2 2 ½	1100 1500 2000

BUFFALO DOUBLE VERTICAL ENGINES

MAXIMUM HORSEPOWER ALLOWABLE FOR CORRESPONDING FRAME

Single Acting

Н. В.		ler eter ke	Floor Space			Standard Fly=wheel			Steam haust	ing ht ngine	
Max. H	R. P.	Cyline Diame and Stro	Length	Width	Height	Diam.	Face	Weight	Steam	Exh.	Shipp Weig Belted E
4 6 18	700 600 500	3 x 3 4 x 4 6 x 6	32 40 55	30 34 37	28 38 52	24 31 33	4 ½ 6 6 ½	175 225 425	1 14 2	1 ½ 1 ½ 2 ½ 2 ½	780 1130 2700

Double Acting

20 20 20	650 650 600	3 x 3 ½ 4 x 3 ½ 4 x 4	36 36 36	34 34 34	49 49 49	31 31 31	6 6	225 225 225 225	1 ½ 1 ½ 2	2 2 2 ½	1540 1600 1680
20 35 35 60	600 500 500 400	5 x 4 6 x 5 7 x 5 8 x 8	36 52 52 68	34 42 42 52	49 70 70 88	31 39 39 49	6 7 7 11 ½	225 520 520 1000	2 3 3 3 3	2 ½ 3 ½ 3 ½ 3 ½ 3 ½ 3 ½	1760 2960 3080 6100

SECTION VIII

PRACTICAL APPLICATIONS AND THE SELECTION OF APPARATUS FOR HEATING AND VENTILATING

As has been previously shown, one of the most important applications of fans is in connection with the heating and ventilation of industrial and public buildings. This work will be considered under two general divisions or classes: First, to supply heat; and second, to supply ventilation, where the heating may be done by direct radiation or by means of the fan as circumstances may determine. The first class embraces such buildings as shops and factories. The second class is more likely to be confined to such buildings as theatres, churches, hotels, etc. These buildings may be supplied with ventilation only, or with a combination of heating and ventilation, but the fan system is seldom used in such cases for heating alone.

The following examples will serve to illustrate these various systems, and the use of preceding rules, tables and data required in connection therewith will be explained. There are three factors entering into such calculations, the air required, the heat loss due to transmission and infiltration to be cared for, and the rise in temperature of the air above room temperature. In the various examples two of these conditions are given and the third is to be determined.

Class I. Heat the building, using either all return air, all outdoor air or a mixture of the two. In this case, the total heat loss is assumed to be known. For heating work where part or all of the air is returned from the room to the apparatus, it is customary to use a heater six sections deep with low pressure steam or five sections deep with high pressure steam. Where all outdoor air is used, either six or seven sections may be used with low pressure steam and five or six sections with high pressure steam. Knowing the temperature of the air entering the heater and assuming a suitable velocity of the air through the clear area, we may find from the heater tables on pages 418 to 431 the final or leaving temperature and so determine the temperature rise. Knowing the heat loss in B. t. u. per hour and the

temperature rise, we may determine the air requirement from the formula

$$Q = \frac{55.2 \text{ H}}{60 \text{ (t_2 - t_r)}}$$
 (for heating only)

where

Q=cu. ft. of air per min.

H=B, t. u, loss per hour due to transmission and infiltration.

t2 = temperature of air leaving heater

 $t_r = room$ temperature.

In case all return air is used, the above H is a measure of the heat required to be delivered to the air by the heating coils. Where all or part of the air entering the heater is outdoor air at a temperature t_1 , a greater amount of heat, H', will be required, due to raising the temperature of this air from t_1 to room temperature t_r . This total heat, H', is a measure of the condensation and steam requirement of the heating coils. It may be determined by the formula

$$H' = \frac{Q \times 60 (t_2 - t_1)}{55.2}$$
 (for heating)

where

H'=total heat required at the coils in B. t. u. per hour.

Q = cu. ft. of air per min.

 $t_1 = temperature$ of air entering heater.

t2 = temperature of air leaving heater.

The three following examples illustrate in detail the various steps in the calculations of heating propositions:

Example 1. Supply heat only, using all return air.

Example 2. Supply heat, using all outdoor air. This condition frequently happens when the apparatus is so located that it is impracticable to run return ducts from the building to the heater.

Example 3. Heat the building, using part outdoor air and part return air.

Class II. Supply ventilation, either with or without heat. As already stated this is the usual requirement to be met in the case of public buildings. Here the known factors are the required amount of air for ventilation, the temperatures of the outdoor and of the room air, and the consequent temperature rise. The air to be delivered to the room at practically room temperature. The amount of heat and consequent size of heater

is to be determined, the B. t. u. per hour to be supplied at the heater being indicated by the formula

$$H' = \frac{Q \times 60 (t_r - t_1)}{55.2}$$
 (for ventilation only)

where

H' = B. t. u. per hour required at heater.

Q=cu. ft. air per min. for ventilation.

 $t_r = room temperature.$

t₁ = outdoor, or temperature entering heater.

The amount of steam required by the heater may be determined by

H'
latent heat of steam = lbs. condensation per hour.

For ventilation work the final temperature of the air leaving the heater, t_2 , is usually taken at the room temperature, t_1 , when the room is heated by means of direct radiation, although it is customary to have the air leave the heater say from two to five degrees warmer to provide for radiation from the piping. In case both ventilation and heating are required, we have a different set of requirements. The known quantities then are the heat loss, H, to provide for the transmission and infiltration losses; the air quantity, Q, required for ventilation; and the temperature of the air entering the heater. The temperature of the air leaving the heater will have to be enough above the room temperature to care for the heat losses, and may be determined from the formula

$$t_2 = \frac{55.2 \text{ H}}{O \times 60} + t_r$$
 (for heating and ventilating)

As already explained, the heat required at the heater will be

$$H' = \frac{Q \times 60 \ (t_2 - t_1)}{55.2}$$

Knowing the temperature rise (t_2-t_1) and the air quantity, and assuming a suitable velocity of the air through the heater, the depth of the heater may be found from the heater tables on pages 418 to 431.

The three following examples illustrate the calculations necessary under this class of installations.

Example 4. Supply ventilation only, with a specified air change.

Example 5. Supply ventilation only, with a specified amount of air per minute supplied a given number of people.

Example 6. Supply a specified amount of air for ventilation and heat the building.

As an illustration we will assume a brick building 110×200 ft, in size, with a 13-inch brick wall and an average wall height of 20 ft. Building to be open to the roof, that is, no ceiling under the roof, which is to be of 2-inch boards, paper, tar and gravel. Loss from the floor to be neglected. Building to be warmed to 70° in zero weather.

From the tables of radiation coefficients we find that the factor for a 13-inch brick wall is 0.29, for glass surface is 1.1. and for a roof of this construction is 0.26. The total wall surface will be 12400 sq. ft. of which we will assume 3000 is glass surface and 9400 is brick wall. We will then have as the heat loss per hour per degree difference between the room and outdoor temperature,

Brick wall 9400 sq. ft. ×0.29 =2740Glass 3000 sq. ft. ×1.1 =3300Roof 23000 sq. ft. ×0.26 =596012000 B. t. u.

or a total loss due to transmission of

 $H_t = 12000 \times 70 = 840000$ B. t. u. per hour.

The cubic contents of this building will be 440000 cu. ft.

Example 1. Supply heat only, using all return air.

As already shown, the heat loss from the building due to transmission will be 840000 B. t. u. per hour, to which we will add 10 per cent, giving the corrected loss as 924000 B, t, u, per hour.

In a system using return air at the heater, it is customary to allow for a certain amount of air leakage or infiltration, varying from once in one-half hour to once in two hours. This depends on several factors, such as the size and construction of the building, purposes for which it is used, etc. Assuming a loss due to infiltration of one change in two hours, we will have 220000 cu. ft. of air per hour to be warmed from 0° to 70°. The heat required to care for the infiltration loss will be

$$H_i = \frac{220000 \times 70}{55.2} = 379000 \text{ B. t. u. per hour}$$

The total heat required will then be

H = 924000 + 379000 = 1202000 B. t. u. per hour.

As already stated, when using exhaust or low pressure steam it is considered good practice with return air to use a heater six sections deep. As the air is to be returned from the room, it will enter the heater at from 60° to 70°. From the table on page 421 we find that when using steam at five pound pressure with an entering temperature, t_{r} , of 60°, with six sections of heater we will have a leaving or final temperature, t_{2} , of 145° if the velocity through the heater is 1000 feet per minute.

If it is desired to figure closely, and the heater is so located that there will be no loss in temperature in returning the airthat is, the air enters the heater at room temperature, or t.= 70°—the above value of $t_2 = 145^\circ$ will not be correct. As the table does not give the final temperature when the entering temperature is 70° it will be necessary to refer to the curve on We find from this diagram that with an entering temperature of 70° and a velocity of 1000 feet per minute, the final temperature, to, will be 149°. The method of using this diagram is as follows: Selecting a temperature of 70° on the left-hand margin of the chart pass to the right to the intersection of the 1000 velocity curve, and dropping from here to the base line we have a reading of 4.35 sections. Selecting a new point of 6+4.35=10.35 sections on this scale, pass upwards to the intersection of the vertical with the 1000 velocity curve and then to the left, where a final temperature of 149° is indicated.

The quantity of air at 70° required as a heat carrier will then be

$$Q = \frac{55.2 \times 1303000}{60 (149 - 70)} = 15200 A. P. M.$$

With a velocity of 1000 feet per minute through the heater we will require a clear area of $15200 \div 1000 = 15.2$ sq. ft. From the table on page 449 we find that a heater 4'6" wide by 7'4" high will have a clear area of 15.3 sq. ft. We will then require a heater containing six sections of this size.

As we would use a draw-through apparatus in a case like this, the fan will handle the air at 149° instead of at 70°, and the volume of the air will be correspondingly greater. This volume will vary inversely as the weight per cubic foot of the air, and the ratio of the volume at different temperatures as compared to the volume at 70° may be found from the table on page 13. Thus we find the same amount or weight of air at 150° will have

1.1512 times the volume at 70°. Then the fan must be selected on a basis of

$$15200 \times 1.1512 = 17500$$
 cu. ft. per min.

Assuming that in an installation of this nature, the total resistance against which the fan is to operate will be equal to one inch of water pressure, we will find from the tables of rated fan capacity the size of fan required to deliver 17500 A. P. M. against one inch total pressure. From the table on page 229 we find that a No. 8. Niagara Conoidal fan will deliver 17340 cu. ft. of air per minute against one inch total pressure when operating at 253 R. P. M. and will require 3.87 H. P.

This horsepower based on the values given in the capacity table is for air at 70° while the fan is to handle air at 149°. At constant capacity and speed the horsepower will vary approximately inversely as the absolute temperature, hence it will require less than the rated horsepower to handle this air which is at 149°. The actual brake horsepower required by the fan will then be

$$3.87 \times \frac{460 + 70}{460 + 149} = 3.36 \text{ H. P.}$$

If the fan is to be motor driven, it will be necessary to select a motor of the next larger standard size, or 5 H. P. On account of the slow speed this fan should be belt driven.

Example 2. Heat the building, using all outside air at 0°.

As already explained under Example 1, when using return air it is customary to add 10 per cent. to the computed heat loss and also provide heat necessary to care for the infiltration loss. When using all outdoor air no provision is made for infiltration, but the calculated heat loss is generally increased by a greater margin—say 25 per cent. Sufficient heater must be provided to raise the temperature of the air from zero to room temperature, and enough higher to care for the heat loss from the building.

Adding 25 per cent. to the radiation loss gives 1050000 B. t. u. per hour required for heating. As shown by the heater table on page 420, with a velocity of 1000 feet per minute six sections of heater will raise the temperature of the air from 0° to 117°. Allowing a 2° drop due to the radiation loss from the piping gives a warm air temperature of 115° delivered to the room.

Then the quantity of air at 70° required will be

$$Q = \frac{55.2 \times 1050000}{60 (115 - 70)} = 21450 \text{ A. P. M.}$$

This means approximately a 20 minute change. If possible the apparatus should be so arranged that return air may be used in the morning in order to heat up rapidly.

As the velocity through the heater is to be 1000 feet per minute, this calls for a clear area of 21.45 sq. ft. From the table on page 449 we find that a heater 6'0" × 7'10" will be the nearest standard size.

Example 3. Heat the building, using one-half outside air at 0° and one-half return air at 70°.

As already shown the heat loss from the building will be 840000 B. t. u. to which we will add 10 per cent., making the total loss 924000 B. t. u. per hour. This is the same as the loss figured for in Example 1, but since we are to use only one-half return air, we will allow but half the infiltration loss. This will require 190000 B. t. u. per hour. The total heat to be provided will then be

$$H = 924000 + 190000 = 1114000 B. t. u. per hour.$$

Since half the air entering the heater is to be at 0° and half at 70°, we will assume an average of 35°. As none of the heater tables show the temperature rise for an entering temperature of 35°, we will make use of the diagram on page 433. Assuming a velocity through the heater of 1000 feet per minute, we pass from a temperature of 35° on the left edge of the chart to the intersection of the horizontal with the curve marked 1000 feet per minute. Dropping from here to the base line we have a reading of 2.65 sections. Assuming that we will use a heater six sections deep we will point off a new location on the base line at 2.65+6.0=8.65 sections. Passing from here vertically to the intersection of the 1000 velocity curve and thence to the left edge of the diagram shows a temperature of 132° for the air leaving the heater. Allowing for 2° drop due to loss of heat from fan housing and piping gives an effective warm air temperature of 130°.

The quantity of air at 70° required will then be

$$Q = \frac{55.2 \times 1114000}{60 (130-70)} = 17100 A. P. M.$$

As we are to use a velocity of 1000 feet per minute through the clear area, a heater with a clear area of 17.10 sq. ft. will be required. From the table of heater dimensions on page 449, we find that a section of $5'0'' \times 7'10''$ will have a clear area of 17.7 sq. ft. We will then use a heater $5'0'' \times 7'10''$ six sections deep.

As shown above, the air required will be 17100 cu. ft. per minute at 70°, but if the fan is arranged to draw through the heater it will handle this air at 132°. The volume of the air will be greater than for the corresponding weight at 70°, the ratio as given in the table on page 13 being 1.114. This means that the fan will be required to handle

17100 × 1.114 = 19100 A. P. M. at 132°.

It is probable that the static resistance of an installation of this nature will not be over one inch, due to the resistance of 0.574 inch through the heater, the friction loss in the piping and any entrance or discharge losses that may exist. By referring to the static pressure tables of the Niagara Conoidal Fans on pages 247, 249 and 251, we find that we may use either a No. 7, 8 or 9 fan. Either of these fans may be used to give approximately the required capacity, but we see from the following summary that the outlet velocity, speed, and horsepower will be different in each case.

Size	Outlet Vel.	A. P. M.	R. P. M.	Н. Р.
7	2600	18580	336	5.93
8	2100	19600	289	5.61
9	1600	18900	264	5.71

If low first cost is the main consideration rather than power consumption, and if a comparatively high outlet velocity will not be objectionable, we should use the No. 7 fan. If the fan were to be used for a school or public building where any slight noise might be objectionable, the outlet velocity should be kept below 2100 to 2200. Under these circumstances the No. 8 should be used. If very low outlet velocity is of greater importance than first cost, the choice should fall upon the No. 9 fan. Where a fan is to be direct connected, the speed may also be a governing factor.

In any case, the horsepower as given on page 513 would be based on air at 70°, while the fan is to handle the air at 132°. That is, while the fan is to handle the 19100 cu. ft. per minute, due to the higher temperature, the density and therefore the horsepower required will be less than for the same volume at 70°. At constant capacity and speed, the horsepower will vary directly as the density of the air, and approximately inversely as the absolute temperature. We will then have the above horsepower decreased by the ratio

$$\frac{460 + 132}{460 + 70} = 1.114$$

That is, the above horsepower should be divided by 1.114.

Example 4. Supply ventilation only, with a ten minute air change.

In this case the heating of the building is to be taken care of by direct radiation, and the air required for ventilation will be taken from outside at 0° and introduced into the room at room temperature, or 70°. We are not concerned with the heat loss, but merely in raising an amount of air equal to the cubic contents of the room through a 70° temperature rise once in ten minutes or six changes per hour. Then we will have as the air at 70° required

$$\frac{440000}{10}$$
 = 44000 cu. ft. per min.

Assuming that this building is to be used for a factory, and inasmuch as the heater will be comparatively shallow with a corresponding low pressure drop, we may use a velocity of 1200 feet per minute through the heater. The total pressure against which the fan in such an installation is likely to operate will be about one inch. The temperature of the air leaving the heater should be about five degrees above room temperature to allow for radiation loss from the piping, etc.

From the heater table on page 420 we find that with five pound steam pressure and with 1200 velocity a temperature of 81.8° will be obtained with four sections of standard heater and will be the nearest temperature obtainable at this velocity.

Since we are to handle 44000 cu. ft. per minute at 1200 velocity we will require a heater having a clear area of

$$\frac{44000}{1200}$$
 = 36.7 sq. ft.

From the table of heater dimensions on page 449 we find that a section $9'6'' \times 8'4''$ has a clear area of 36.7 sq. ft. so this will be the size to use. We will then require a heater $9'6'' \times 8'4''$ and four sections deep.

In a large room of this construction it is customary to use a draw-through system, attaching the piping directly to the fan outlet. As already stated, the total pressure required for an installation of this character using but four sections of heater would probably run about one inch.

Referring to the table of fan capacities we may select a fan that will deliver 44000 A. P. M. against a pressure of one inch. From page 208 we find that a 160-inch Planoidal Exhauster will deliver 41220 A. P. M. against one inch at a speed of 164 R. P. M. and require 14.2 H. P. The 44000 A. P. M. required is 106.5 per cent: of the above rated capacity so it will be necessary to operate at a speed of 164×1.065 equals 175 R. P. M., and the power required will be $14.2 \times (1.065)^3$ equals 17.2 H. P.

This method of arriving at the speed and power required is only approximate, since when operating at other than the rated point the pressure will not be constant. For small increments of over or under load the speed may be changed slightly to bring the pressure to the desired amount, but for accurate work the method of using the diagram on page 215 as explained under Example 5 should be followed.

Example 5. Supply ventilation only, with 30 cu. ft. of air per minute for each of 500 occupants. This will require

$$30 \times 500 = 15000$$
 A. P. M. at 70°

which will be equivalent to $440000 \div 15000 = 29$ or approximately two changes per hour.

With a velocity of 1200 feet per minute through the heater, this will require a clear area of 12.5 sq. ft. From the table on page 449 we find that a section of 4'0"×6'10" may be used. As the same temperature rise is required as in Example 4, the heater

must be four sections deep and the final temperature 81.8°. If the heater and fan are located in the building so that there will be little or no radiation loss from the piping, the air may leave the heater at approximately 70°. We see from the heater table that with a velocity of 1000 feet per minute three sections will give a final temperature of 69.5°. By selecting a heater with a clear area slightly greater than indicated by 1000 velocity, we will obtain a final temperature somewhat above 70°. From the table of heaters we find that a 4′6″ x 7′4″ section will have a clear area of 15.3 sq. ft. and give a velocity of 980 feet per minute through the clear area. Thus we see that when using a final temperature of about 70° we may select three sections deep of 4′6″ x 7′4″ heater.

As we are using a low velocity and a heater only three sections deep, the loss in pressure through the heater will be only 0.287 inch, and it is probable that the static resistance of the entire system will not be over 0.6 inch. As under rated conditions the static pressure of a Planoidal Exhauster is 79 per cent. of the total pressure, if we use this type of fan operating at rated capacity the total pressure developed would be $0.6 \div 0.79 = 0.76$ inch or approximately 3/4 inch.

From the table of fan capacities on page 207, we find that a 100-inch Planoidal Exhauster will deliver 13940 A. P. M. at 228 R. P. M. against ¾ inch total pressure and require 3.6 H. P. As 15000 A. P. M. is required, it will be necessary to operate this fan at greater than its rated capacity. We note from the diagram on page 214 that if this style of fan is operated at constant speed beyond its rated point the pressure will be less than the rated, so it will be necessary to operate at a speed corresponding to a certain higher pressure, in order to still have the required pressure when working over the rated capacity. The speed and horsepower to meet the required overload condition may be found approximately by means of the diagram on page 214, but as explained in the example on "Fan Selection" on page 183, the more accurate method is to use the diagram on page 215.

The outlet area of a 100-inch Planoidal Exhauster is 8.75 sq. ft., so at 15000 A. P. M. the outlet velocity will be 1715 feet per minute and the corresponding velocity pressure equals 0.183 inch. Since the static resistance of the system is 0.60 inch, the

rated total pressure will be 0.60+0.183=0.783 inch. The ratio of static to velocity pressure $=0.6\div0.183=3.28$. From the diagram on page 215 we find that with the above ratio we will be operating at 105 per cent. of the fans rated capacity, with 102.5 per cent. of the rated H. P., and the speed will be the rated speed for this fan when developing a total pressure of 0.783 inch.

This fan will give the following rated performance at the two different total pressures.

But $15000 \div 1.05 = 14300$ A. P. M. as the rated capacity required, which is practically as given for 233 R. P. M. Then the power required under the overload condition will be

$$3.85 \times 1.025 = 3.95$$
 H. P.

From the above we see that the 100-inch fan will deliver 15000 A. P. M. against a static pressure of 0.6 inch at 233 R. P. M. and require 3.95 H. P.

Example 6. Heat the building and supply a 12½ minute air change for ventilation.

The outdoor air to be handled by the fan will be

$$\frac{440000}{12\frac{1}{2}}$$
 = 35200 A. P. M. at 70°

This air must be raised to room temperature for ventilation, and enough higher to supply the heat lost by radiation and leakage.

As already shown the heat lost by radiation from this building will be 840000 B. t. u. per hour. It is customary to allow an extra 10 to 50 per cent., depending on the construction of the building and the purposes for which it is used, to care for the heat lost by leakage, opening of doors, and similar causes. Allowing an extra 30 per cent. we will have as the total heat loss

H = 840000 + 252000 = 1092000 B. t. u. per hour.

To determine the final temperature required we will have

$$t_2 = \frac{55.2 \times 1092000}{35200 \times 60} + 70 = 98.6^{\circ}$$

From the heater table on page 420 we find that with a velocity of 1000 feet per minute five sections of heater will raise the temperature of the air from 0° to 103°. As we are to handle 35200 A. P. M. at 1000 velocity, a heater having a clear area of 35.2 sq. ft. will be required. From the table on page 449 it may be seen that a heater section 8'6" x 8'10" has a clear area of 35.3 sq. ft. so this will be the size to use, the heater being five sections deep. In case this heater is too tall for the particular space it is to occupy, we may use two sections placed back to back, each having a clear area of 17.6 sq. ft. This would call for ten sections of 5'0" x 7'10" placed five sections deep.

COMBINATION FAN, ENGINE AND HEATER TABLES

The four tables on pages 520 to 523 indicate what are considered as being the proper combinations of heaters and engines for the different sizes of Planoidal and Niagara Conoidal fans. The cubic feet of air at one inch for public buildings and two inches for industrial installations may be considered as the probable maximum conditions to be encountered. The engine sizes given are for direct connection, and in most cases could be made to answer for these extreme conditions. Several sizes and styles of engines are given in order that a choice may be made to meet different requirements. For instance, where a 7 x 7 and an 8 x 8 inch cylinder are given for the same size fan, a higher steam pressure would be required for the smaller cylinder. A steam pressure of from 20 to 25 pounds will be required for the low pressure, and from 80 to 100 pounds for the high pressure engines.

The heater sizes given in the table indicate the proper heaters for use with the different sizes of fans. A heater should be selected with a clear area that will give the desired velocity of the air through the heater. This will range anywhere from 800 to 1200 feet per minute, depending on the conditions. Lower velocities should be used for public buildings than for industrial installations.

PLANOIDAL (TYPE L) EXHAUSTERS

WITH PROPER COMBINATIONS OF HEATERS AND ENGINES FOR PUBLIC BUILDINGS AND INDUSTRIAL INSTALLATIONS

Size	of .	Feet Air Min.		Buffalo	Standard Heater		Engi	ne Size
of Fan	l inch Total	2 inch Total Press.	Arrange- ment	Style	Size	Clear Area Sq. Ft.	Low Press. Steam	High Press. Steam
50	4030	5690	Single	R.O.A.	3'-0" x 3'- 4"	4.4		
55	4870	6890		R.O.A.	3'-0" x 4'- 4"	5.2 6.0	}	3x3½ I
60	5800	8200	Single	R.O.A.	3'-0" x 4'-4" 3'-0" x 4'-10" 3'-0" x 5'-4"	6.0 6.8 7.6	} 8x6	4x3½ I
70	7890	11540	Single	R.O.A.	3'-0" x 5'- 4" 3'-0" x 5'-10" 4'-0" x 5'- 4"	7.6 8.4 9.7	} 8x6	4x3½ I
80	10300	14570	Single	R.O.A.	4'-0" x 5'-10" 4'-0" x 6'- 4" 4'-0" x 6'-10" 4'-6" x 5'-10" 4'-6" x 6'- 4"	10.7 11.2 12.6 12.1 13.1	8x6	5x5 4½x5 I
90	13040	18440	Single	R.O.A.	4'-6" x 6'- 4" 4'-6" x 6'-10" 4'-6" x 7'- 4" 5'-0" x 6'- 4" 5'-0" x 6'-10" 5'-0" x 7'- 4"	13.1 14.2 15.3 14.1 15.4 16.6	8x6	5 x5 4½x5 I
100	16100	22770	Single	R.O.A.	5'-0" x 6'-10" 5'-0" x 7'- 4" 5'-0" x 7'-10" 6'-0" x 7'- 4"	15.4 16.6 17.7 19.8	} 10x8	6 x6 4½x5 I 5 x10 N
110	19480	27540	Single	R.O.A.	6'-0" x 7'- 4" 6'-0" x 7'-10" 6'-0" x 8'- 4" 6'-0" x 8'-10" 7'-0" x 7'- 4"	19.8 21.3 22.7 24.2 23.6] 10x8	7 x7 6 x8 6½x8 I 5 x10 N
120	23180	32780	Single	R.O.A. R.B.	6'-0" x 8'- 4" 6'-0" x 8'-10" 7'-0" x 7'- 4" 7'-0" x 7'-10" 7'-0" x 8'- 4" 7'-0" x 8'-10"	22.7 24.2 23.6 25.4 27.2 29.0] 12x8	7 x7 8 x8 6½x8 I 6 x10 N
130	27210	38470	Single	R.B.	7'-0" x 8'- 4" 7'-0" x 8'-10" 7'-0" x 9'- 4" 7'-0" x 9'-10" 8'-6" x 8'- 4"	27.2 29.0 30.7 32.5 33.2	} 12x8	8 x8 6½x8 I 6 x10 N
140	31560	44630	Single	R.B.	7'-0" x 9'- 4" 7'-0" x 9'-10" 8'-6" x 8'- 4" 8'-6" x 8'-10" 8'-6" x 9'-10" 8'-6" x 10'- 4" 8'-6" x 10'-10" 9'-6" x 8'- 4" 9'-6" x 8'-10"	30.7 32.5 33.2 35.3 37.6 39.8 41.8 44.0 36.7 39.0] 15x8	8 x8 8 x10 7½x9 I 7 x12 N

PLANOIDAL (TYPE L) EXHAUSTERS

WITH PROPER COMBINATIONS OF HEATERS AND ENGINES FOR PUBLIC BUILDINGS AND INDUSTRIAL INSTALLATIONS

	Cubic Feet of Air per Min.		Buffalo	Standard Heater		Engi	ne Size
Size of Fan	I Inch 2 Inch Total Press. Press.	Arrange- ment	Style	Size	Clear Area Sq. Ft.	Low Press. Steam	High Press. Steam
150	36230 51220	Single	R.B.	8'-6" x 8'-10" 8'-6" x 9'- 4" 8'-6" x 10'-10" 8'-6" x 10'-10" 9'-6" x 10'-10" 9'-6" x 8'-10" 9'-6" x 9'-10" 9'-6" x 9'-10"	35.3 37.6 39.8 41.8 44.0 36.7 39.0 41.4 43.8 46.0	}15x8	10 x8 8 x10 7½x9 1 7 x12 N
150	41220 58270	Single Back to Back	R.B.	8'-6" x 9'-10" 8'-6" x 10'-4" 9'-6" x 9'-10" 9'-6" x 9'-10" 9'-6" x 10'-10" 9'-6" x 10'-10" 9'-6" x 11'-4" 9'-6" x 11'-10" 6'-0" x 7'-4" 6'-0" x 7'-10" 6'-0" x 8'-4" 6'-0" x 8'-10" 7'-0" x 8'-4"	39.8 41.8 44.0 41.4 43.8 46.0 48.4 50.8 53.2 39.6 41.6 45.4 48.4 47.2 50.8	}15×10	10x10 8x12 N
170	46530 65790	Single Back to Back	R.B. R.O.A. R.B.	9'-6" x 10'- 4" 9'-6" x 10'-10" 9'-6" x 11'-1" 9'-6" x 11'-10" 6'-0" x 8'-4" 6'-0" x 8'-10" 7'-0" x 7'-10" 7'-0" x 8'-10" 7'-0" x 8'-10" 7'-0" x 8'-10"	46.0 48.4 50.8 53.2 45.4 48.4 47.2 50.8 54.4 58.0 61.4	}15×10	10x10 8x14 N 9x14 N
180	52160 73760	Back to Back	R.B.	7'-0" x 7'-10" 7'-0" x 8'- 4" 7'-0" x 8'-10" 7'-0" x 9'-10" 7'-0" x 9'-10" 8'-6" x 8'- 4"	50.8 54.4 58.0 61.4 65.0 60.4	16×10	12x10 10x12 9x14 N
190	58120 82180	Back to Back	R.B.	7'-0" x 8'-10" 7'-0" x 9'- 4" 7'-0" x 9'-10" 8'-6" x 8'- 4" 8'-6" x 8'-10" 8'-6" x 9'- 4" 9'-6" x 8'- 4"	58.0 61.4 65.0 66.4 70.6 73.2 73.4	18×12	12x12 9x14 N

NIAGARA CONOIDAL (TYPE N) FANS

WITH PROPER COMBINATIONS OF HEATERS AND ENGINES FOR PUBLIC BUILDINGS AND INDUSTRIAL INSTALLATIONS

Fan	Cubic Feet of Air per Min.			Buffalo		Engine Size			
No.	Total	2Inch Total Press.	Arrange- ment	Style	Sia	re .	Clear Area Sq. Ft.	Low Press. Steam	High Press. Steam
4	4340	6130	Single	R.O.A.	3'-0" x 3'-0" x	3'- 4" 3'-10"	4.4 5.2		
41/2	5490	7760	Single	R.O.A.	3'-0" x	3'-10" 4'- 4" 4'-10"	5.2 6.0 6.8	}	4x4 A 3x3 ½ I
5	6770	9580	Single	R.O.A.	3'-0" x 3'-0" x 3'-0" x 3'-0" x	4'-10" 5'- 4"	6.0 6.8 7.6 8.4	} 5x5	4x4 A 4x3 ½ I
51/2	8200	11590	Single	R.O.A.	3'-0" x 3'-0" x 4'-0" x 4'-0" x 4'-0" x	5'-10" 5'- 4" 5'-10"	7.6 8.4 9.7 10.7 11.2	6x6	4x4 A 4x3 ½ I
6	9750	13790	Single	R.O.A.		5'-10" 6'- 4" 6'-10" 5'-10"	9.7 10.7 11.2 12.6 12.1 13.1	6x6	5 x5 A 4½x5 A
7	13280	18770	Single	R.O.A.	5'-0" x 5'-0" x 5'-0" x	5'-10" 6'- 4" 6'-10" 7'- 4" 6'- 4"	12.6 12.1 13.1 14.2 15.3 14.1 15.4 16.6 17.7	} 8x6	5 x5 A 5½x7 I
8	17340	24520	Single	R.O.A.	5'-0" x 5'-0" x 6'-0" x 6'-0" x	7'- 4" 7'-10" 7'- 4" 7'-10" 8'- 4"	16.6 17.7 19.8 21.3 22.7	10x8	6 x6 A 5½x7 I
9	21950	31020	Single	R.O.A.	6'-0" x 6'-0" x 6'-0" x 7'-0" x		19.8 21.3 22.7 24.2 23.6 25.4 27.2) 10x8	6 x6 A 6½x8 I
10	27090	38310	Single	R.B.	7'-0" x 7'-0" x 7'-0" x 7'-0" x 7'-0" x	7'-10" 8'- 4" 8'-10" 9'- 4" 9'-10" 8'- 4"	25.4 27.2 29.0 30.7 32.5 33.2 35.3	12x8	7 x7 A 6½x8 I 6 x10 N

NIAGARA CONOIDAL (TYPE N) FANS WITH PROPER COMBINATIONS OF HEATERS AND ENGINES FOR PUBLIC BUILDINGS AND INDUSTRIAL INSTALLATIONS

Fan	Cubic Feet of Air per Min.		Buffalo :	Standard Heater		Engine Size		
No.	l inch 2 inch Total Total Press. Press.	Arrange- ment	Style	Size	Clear Area Sq. Ft.	Low Press. Steam	High Press. Steam	
11	32780 46360	Single	R.B.	7'-0" x 9'-4" 7'-0" x 9'-10" 8'-6" x 8'-10" 8'-6" x 9'-10" 8'-6" x 9'-14" 8'-6" x 10'-10" 9'-6" x 8'-4" 9'-6" x 8'-10" 9'-6" x 9'-10"	30.7 32.5 33.2 35.3 37.6 39.8 41.8 44.0 36.7 39.0 41.4 43.8	} 12x8	8x 8 A 7½x 9 I 7 x12 N	
12	39010 55170	Single	R.B.	8'-6" x 8'-10" 8'-6" x 9'-10" 8'-6" x 9'-10" 8'-6" x 10'-10" 8'-6" x 10'-10" 9'-6" x 8'-4" 9'-6" x 8'-10" 9'-6" x 9'-10" 9'-6" x 10'-10" 9'-6" x 10'-4" 9'-6" x 10'-4"	35.3 37.6 39.8 41.8 44.0 36.7 39.0 41.4 43.8 46.0 48.4 50.8	}15x8	10x 8 A 8x10 A 7x12 N	
13	45780 64730	Single Back to Back	R.B.	8'-6" x 10'- 4" 8'-6" x 10'-10' 9'-6" x 9'-4" 9'-6" x 9'-10' 9'-6" x 10'-10' 9'-6" x 11'-4" 9'-6" x 11'-4" 9'-6" x 11'-10' 6'-0" x 8'-4" 6'-0" x 8'-10' 7'-0" x 7'-10' 7'-0" x 7'-10' 7'-0" x 8'-10' 7'-0" x 8'-4"	41.8 44.0 41.4 43.8 46.0 48.4 50.8 53.2 42.6 45.4 48.4 47.2 50.8 54.4 54.4 55.8	} 15x8	10x 8 A 8x12 N	
14	53100 75090	Single Back to Back	R.B. R.O.A. R.B.	$\begin{array}{l} 9^{\circ}-6^{\prime\prime} \times 10^{\prime}-10^{\prime\prime} \\ 9^{\prime}-6^{\prime\prime} \times 11^{\prime}-4^{\prime\prime} \\ 9^{\prime}-6^{\prime\prime} \times 11^{\prime}-4^{\prime\prime} \\ 9^{\prime}-6^{\prime\prime} \times 11^{\prime}-10^{\prime\prime} \\ 6^{\prime\prime}-0^{\prime\prime} \times 8^{\prime}-10^{\prime\prime} \\ 7^{\prime}-0^{\prime\prime} \times 8^{\prime}-10^{\prime\prime} \\ 7^{\prime}-0^{\prime\prime} \times 8^{\prime}-4^{\prime\prime} \\ 7^{\prime\prime}-0^{\prime\prime} \times 8^{\prime}-4^{\prime\prime} \\ 7^{\prime\prime}-0^{\prime\prime} \times 9^{\prime\prime}-10^{\prime\prime} \\ 8^{\prime\prime}-6^{\prime\prime} \times 8^{\prime}-4^{\prime\prime} \\ 8^{\prime\prime}-6^{\prime\prime} \times 8^{\prime}-10^{\prime\prime} \end{array}$	48.4 50.8 53.2 48.4 50.8 54.4 58.0 61.4 65.0 66.4 70.6	}15x10	10x10 A 8x14 N	

PART V

APPENDIX

Complete directions for conducting Fan Installation Tests are included in this part.

This section also includes complete specifications and guarantees for various types of fans, heaters, piping, engines, motors, air washers and humidifiers; and detailed dimensions of Planoidal Steel Plate, Niagara Conoidal Multiblade and Turbo-Conoidal High Speed Multiblade Fans.

Data for the design of chimneys, with table giving size of chimneys with appropriate horsepower of boilers is included.

Miscellaneous engineering data is also given, including size of steam pipes, area of circles, temperature and pressure conversion tables, steam tables, logarithms, dry kiln capacities, many useful factors, etc.

An extract of the report of the committee of the Am. Soc. of H. & V. Engrs. on "Standards for Ventilation Legislation for Motion Picture Show Places" as presented in Jan., 1913, is reproduced.

A very complete and thorough index and cross-index, in addition to "Outline of Contents" in Part I, is given in this part.

Note—All temperatures given in this book are in degrees Fahrenheit unless otherwise specified.

DIRECTIONS FOR MAKING FAN INSTALLATION TESTS

The general subject of fan testing has been discussed on pages 190 to 204, with complete directions for using the pitot tube and for laying out a traverse of a pipe or duct. The detailed methods to be used in making a test on a fan installation, together with detailed instructions for working up the results of the test, will be given in the following:

Measuring the Air Quantity

- 1. Traverse over outlet or inlet pipe.
- 2. Traverse over fan outlet.

The velocity of the air and the quantity delivered should be determined by means of the pitot tube as explained on page 190. Whenever the nature of the installation makes it possible the most accurate results are obtained by making a traverse in the discharge or inlet duct. These velocity pressure readings should be taken at least 10 diameters, in the direction of the air flow, from the fan outlet, or from any bend, elbow, change in section, or other detail of construction that will cause a disturbance in the flow of air preceding the point at which the readings are taken. Readings at the fan inlet should be taken one diameter or more from the inlet.

While a traverse of the pipe is preferable, it is usually impracticable in actual installations to find a point where the air flow is undisturbed. In such cases a traverse with the pitot tube over the outlet area of the fan should be made.

The outlet area should be divided into 25 or more equal rectangles (5 or more each way) and velocity pressure readings taken in the center of each small area. The velocity corresponding to each of these velocity pressure readings should then be calculated as explained on page 18, and an average taken of these velocities. This gives the average velocity over the entire fan outlet, which in turn when multiplied by the area of the outlet in square feet gives the quantity of air delivered in cubic feet per minute. It will be noted that the average velocity over the outlet should be obtained by taking an average of the various velocities and not of the various velocity pressure readings, since the velocity varies as the square root of the pressure.

In taking the velocity pressure by means of a pitot tube, the connection between the two legs of the tube and the two sides of

the gauge should be the same, whether the readings are taken in a duct either on the inlet or on the outlet side of the fan.

Measurement of Pressure Produced by the Fan

The relation between total, static and velocity pressure as produced by a fan has been explained on page 176. The measurement of the total or dynamic pressure is of especial importance since this is the pressure upon which the efficiency of the fan is based. This pressure is a measure of the total energy imparted to the air by the fan and is the difference between the average absolute total or dynamic pressure of the air on the two sides of the fan. The absolute pressure expressed in inches of water for air at 29.92 inches barometer will be the measured pressure plus 407 inches. The absolute total pressure at any point consists of the absolute static pressure plus the velocity pressure.

Since the total dynamic energy at any point in a stream of air is measured by the absolute total or dynamic pressure at that point, the gain or loss in energy between two points in a stream of air is measured by the difference between the absolute total pressures at these points. It follows that the total energy imparted by a fan to a given quantity of air is measured by the difference between the absolute total pressures measured at the inlet and outlet connections respectively and that the total or dynamic pressure produced by a fan is equal to the difference between the absolute total or dynamic pressures at these two points. Thus if an exhaust fan gives static and velocity pressure readings on the inlet side of 3" and 0.5" respectively, the absolute total pressure at the inlet will be (407-3)+0.5=404.5". If the static and velocity pressures on the outlet side are 2" and 1" respectively, the absolute total pressure at this point will be (407+2)+1=410. Then the total pressure against which the fan is operating will be 410-404.5=5.5". This may be expressed in gauge pressure as follows:

Total pressure of fan equals

The static pressure at fan outlet
+ the velocity pressure at fan outlet

+ the static vacuum (draft or suction)
(or—static pressure) at the fan inlet

- the velocity pressure at fan inlet.

The static pressure produced by a fan equals the total pressure minus the velocity pressure at the fan outlet. It follows that

Static pressure of fan equals

The static pressure at the fan outlet
+static vacuum at fan inlet (or - static
pressure)
-velocity pressure at fan inlet.

The Difference in static pressure at the inlet and outlet of the fan equals

The static pressure produced by the fan +the velocity pressure at the fan inlet.

It should be noted that the static vacuum at the fan inlet minus the velocity pressure at the fan inlet is the total pressure at this point.

The static pressure as produced by the fan in accordance with the accepted definition does not necessarily correspond to the difference in static pressures as measured at the fan inlet and outlet respectively.

- (a) Where the velocity in the inlet connection is negligible, the difference in static pressures at the inlet and outlet of the fan corresponds to the static pressure produced by the fan.
- (b) If the inlet and outlet connections to the fan are equal, the difference in the static pressures will not correspond to the static pressure produced by the fan, but will be equal to the total pressure produced by the fan when measured as previously described.
- (c) If the fan inlet connection is smaller than the outlet of the fan, the difference between the static pressure readings taken at the inlet and outlet will be greater than the total pressure produced by the fan.

This apparent discrepancy in the static pressures is due to the fact that a certain amount of static pressure may be produced by conversion from velocity pressure and is not produced by the fan itself. The static pressures specified for the various fans assume the fan to be exhausting from a large chamber having a negligible air velocity. It is evident that the pressures are greatly modified when exhausting through a duct.

Testing a Fan Installation

The proper arrangement of the gauges and the points at which the readings should be taken are shown on the drawing. page 528, which represents a fan drawing through one duct and blowing into another. A pitot tube is shown at A with the central or impact opening connected by a rubber hose to one side of a water column or draft gauge B. (For description of pitot tubes see page 190.) A second pitot tube is shown at C, having its impact or total pressure leg connected to the other side of the same gauge B. A cross connection is also made from this impact connection from pitot tube C to one leg of another gauge D and a connection made between the static leg of pitot tube C to the other side of this gauge. The readings obtained at D are then the difference between the total and static pressures, or the velocity pressure at the fan outlet. The gauge B gives the difference in total pressures at the two points A and C, or the total pressure developed by the fan. The static pressure will be the difference between the total and velocity pressure readings.

As already explained, a traverse should be made over the fan outlet, and the velocity pressure read at each point. The corresponding velocities should then be determined for each reading (see page 18) and an average taken of these various velocity readings. The velocity pressure corresponding to this final average velocity will be the average velocity pressure reading at the fan outlet, which on being added to the static pressure gives the total pressure on the fan.

Method of Calculating Fan Tests

The following are the various factors entering into the calculation of the performance of a fan as based on the results of a test. The object of such a test is to determine the pressure developed, the air quantity delivered, the power required and the efficiency of the fan. The various steps in the calculation may be stated as follows:

- 1. The velocity pressure is the pressure corresponding to the average velocity over the area of either the inlet or outlet of the fan.
- 2. The total static pressure produced by the fan is the arithmetical sum of the static readings on the two sides of the fan minus the velocity pressure at the fan inlet.

- 3. The total or dynamic pressure is the sum of the velocity and static pressures.
- 4. The air quantity is the product of the average velocity pressure times the area of the duct in which the readings were taken.
- 5. In case the fan is motor driven the total power input will be the product of the volts times the amperes as shown by the meters connected at the motor.
- 6. Careful readings of the speed of the fan and motor should be made at time of taking other readings.
- 7. The I²R loss in watts for the current taken by the motor may be determined by means of a voltage drop test made with the wheel blocked. The I²R loss is frequently assumed as being from 2 to 3 per cent. of the full load current of the motor.
- 8. The belt and bearing loss may be determined by removing the wheel from the shaft and taking power readings. Where this is impractical this loss may be assumed at from 3 to 5 per cent. of the power input, depending on the bearing conditions and on whether the fan is direct connected or belt driven. Some allowance should also be made for belt slip.
- 9. No load power readings should be obtained from the motor by disconnecting it from the fan or throwing off the belt. This no load current may frequently be determined from the characteristics of the motor.
- 10. The actual power consumed by the fan will then be the total watts input minus the no load watts and the various losses enumerated above, equals (5) [(7) + (8) + (9)].

11. The brake horsepower of the fan will be the net watts

from item 10 divided by 746.

- 12. In case the fan is driven by means of a steam engine, indicator cards should be taken with the fan in operation and with the wheel removed or disconnected. The difference between the two sets of cards will give the brake horsepower consumed.
- 13. The air horsepower is the product of the air quantity handled in cubic feet per minute times the pressure in inches of water times a constant 0.000157 (see page 175).
- 14. The total or dynamic efficiency is the ratio of the product of the air quantity times the total or dynamic pressure in inches times 0.000157 divided by the brake horsepower.

$$\label{eq:Total off} \begin{split} \text{Total eff.} = \frac{\text{A. P. M.} \times \text{total press. in in.} \times 0.000157}{\text{Brake H. P.}} \end{split}$$

15. The static efficiency is the ratio of the product of the air quantity times the static pressure in inches times 0.000157 divided by the brake horsepower and may be expressed as above by inserting static for total pressure in the formula.

It frequently occurs that a fan is guaranteed to give a certain performance under other than actual test conditions as to speed and temperature. In this case the test results should be corrected to the guaranteed speed and air density. As shown on page 179, the pressure developed will vary as the square and the power consumed as the cube of the speed. Both the pressure and power consumed will vary directly as the density of the air and should be multiplied by the ratio of the air densities under the two conditions. The density of the air may be determined from the table on page 17. These corrections should be made to the average pressure and the net power readings, before the air quantity and efficiency of the fan are calculated.

SPECIFICATIONS

STEEL PLATE FAN

Housing to be constructed of the best commercial steel plate No. — gauge, with riveted lap seams and braced by vertical and horizontal angle irons, — x —, and with angle iron base frame, — x —, drilled for holding-down bolts.

Fan to have one (or two) inlet — inches in diameter and an outlet — x — inches. If fan has a single inlet (exhauster) there shall be a cone extending inward to the inlet of the blastwheel, so as to gradually increase the velocity of the air entering the wheel and so reduce the loss at entrance.

Blast-wheel to be — inches in diameter, constructed with a heavy cast iron hub into which T-iron arms are cast, firmly mounted by means of a key and set screw on a steel shaft — inches in diameter. The blades to be made of No. — gauge steel

plate riveted to — x — T-iron spider arms cast into the hub, and to be tapering in shape, wider at the inlet than at the periphery. Side sheets of wheel to be flanged outward at the inlet and riveted to sides of blades.

Blast-wheel to be carefully balanced to prevent vibration.

Bearings to be spherical self-aligning ring-oiled type, lined with best quality babbitt, and so designed as to allow easy adjustment for wear. Bearings to be provided with large oil reservoir, and in case a bearing is mounted in the fan inlet it is to be provided with suitable arrangement for preventing oil from being drawn along shaft and into the fan by the entering air.

MULTIBLADE FAN

Furnish and erect () No. —— multiblade three-quarter (or full) housing, ——— discharge single (or double) width fan having a capacity of —— cubic feet of air per minute delivered against a static (or total) pressure of ——— inches with a velocity through the fan outlet of ——— feet per minute, at a speed of ———— R. P. M., and requiring not over ——— H. P.

Housing to be constructed of the best commercial steel plate No. — gauge, with riveted lap seams and braced by vertical and horizontal angle irons, —— x ——, and with angle iron base frame, — x —, drilled for holding-down bolts.

Fan to have one (or two) inlet —— inches in diameter and an outlet —— x —— inches. If a double width fan is used, the wheel is to be composed of two separate single width wheels mounted back to back. Each inlet to be fitted with an inlet cone in the space between housing and wheel, having a minimum clearance with the flared inlet of the blast-wheel. In order to obtain the greatest possible conversion of velocity head at tip of blades into static pressure at fan outlet, the inner edge of the outlet is to be approximately tangent to periphery of wheel, and the height of the outlet approximately equal to wheel diameter.

Blast-wheel to be of the forward curved multiblade type, having thirty-two blades of No.— gauge steel plate riveted at the back to a boiler plate disk which in turn is to be hot-riveted to a conical cast iron hub. These blades to be connected by a flange at the inlet edge of the wheel. Hub is to be attached to the shaft by key and set-screws and to the inlet flange by four heavy tierods. The mean diameter of the blast-wheel to be—inches.

Blast-wheel to be carefully balanced to prevent vibration.

The heel or inner edge of the blades to be so arranged as to give a decreasing inlet diameter from front to back in order to give a uniform radial velocity through the wheel. The angle of the blades at entrance shall vary across the width in order to insure the entrance of air with the least possible loss by shock. The curvature of the blades to be such that at normal or rated capacity the air will leave the tips with a velocity pressure approximately twice the pressure corresponding to the peripheral velocity of the wheel, in order to reduce the required speed of rotation.

Bearings to be spherical self-aligning ring-oiled type, lined with best quality babbitt, and so designed as to allow easy adjustment for wear. Bearings to be provided with large oil reservoir, and in case a bearing is mounted in the fan inlet, it is to be provided with suitable arrangement for preventing oil from being drawn along shaft and into the fan by the entering air.

HIGH SPEED MULTIBLADE FAN

Furnish and erect () three-quarter (or full) housing,——discharge single (or double) width high speed multiblade fan having a capacity of ——cubic feet of air per minute delivered against a static (or total) pressure of —— inches at a speed suitable for direct connection to motor specified, and requiring not over —— H. P.

Housing to be constructed of the best commercial steel plate No. — gauge, with riveted lap seams and braced by vertical and horizontal angle irons, —— x ——, and with angle iron base frame, —— x ——, drilled for holding-down bolts.

Fan to have one (or two) inlet — inches in diameter and an outlet — x — inches. If a double width fan is used, the wheel is to be composed of two separate single width wheels mounted back to back. Each inlet to be fitted with an inlet cone in the space between housing and wheel, having a minimum clearance with the flared inlet of the blast-wheel. In order to obtain the greatest possible conversion from the high velocity pressure at tip of blades into a correspondingly high static pressure at the fan outlet, the inner edge of the outlet is to be approximately tangent to periphery of wheel, and the height of the outlet approximately equal to wheel diameter.

Blast-wheel to have thirty-two curved blades of No. — gauge steel plate riveted at the back to a boiler plate disk which in turn is to be hot-riveted to a conical cast iron hub. These blades to be connected by a flange at the inlet edge of the wheel. The hub to be attached to the shaft by key and set-screws and to the inlet flange by four heavy tierods. Blast-wheel to be carefully balanced to prevent vibration.

The heel or inner edge of the blades to be so arranged as to give a decreasing inlet diameter from front to back in order to give a uniform radial velocity through the wheel. The angle of the blades at entrance shall vary across the width in order to insure the entrance of the air with the least possible loss by shock at this point. The angle of the blades at the tip, or periphery of the wheel, to be such that a uniform delivery and pressure will be obtained across the width of the wheel.

Bearings to be spherical self-aligning ring-oiled type, lined with best quality babbitt, and so designed as to allow easy adjustment for wear. Bearings to be provided with large oil reservoir, and in case a bearing is mounted in the fan inlet, it is to be provided with suitable arrangement for preventing oil from being drawn along shaft and into the fan by the entering air.

FAN SYSTEM HEATER

Furnish and erect — four-row sections of pipe coil fan system heater, each section to be — ft. — in. long x — ft. ——in. high. Each section to have heating surface equivalent to ——lineal feet of 1-inch pipe, and a clear area of —— sq. ft. for the passage of air.

The heater bases are to be of cast iron of uniform thickness, with heavy box section and extra heavy tops drilled and tapped for 1-inch pipe on $2\frac{5}{8}$ -inch centers, adjacent rows to be staggered so as to bring the air in intimate contact with the heating surfaces. For the purposes of accelerating the circulation, the base is to be provided with a partition separating the inlet from the return space. Steam and drip connections to be tapped as may be directed. Pipes to be threaded at each end with standard dies and screwed into base. Sections to be tested and made tight at 100 lbs. cold water pressure.

Heater casings to be of No. 18 gauge steel plate, stiffened at all edges and seams with 1½" x 1½" angle iron and extended

to connect with the fan. The heater casing is to extend to the foundation so as to entirely enclose the cast iron bases, preventing radiation losses. Casing to cover both sides, top, and bottom of the heater.

A cast iron steam receiver is to be furnished with companion flanges tapped for individual connections to the several sections, and with a flanged opening for main steam supply.

FAN ENGINE

Engine to have a balanced piston valve so constructed as to take up wear in the surface of valve and valve seats. The eccentric rod is to connect to the valve stem crosshead by phosphor bronze bearing. Crankshaft to be a steel forging to which cast iron counter balance disks are solidly fitted.

Connecting rod to be of steel, with locomotive type end for crank pin, and solid end for carrying the crosshead pin boxes. The crosshead pin boxes are to be of phosphor bronze. Crank pin boxes are to be of cast iron lined with the best babbitt metal. Both ends of the connecting rod are to be provided with adjustment for taking up wear on the pin.

Crosshead guides are to be bored and have ample bearing surface.

Crossheads to be of cast steel, fitted with wedge-adjustable shoes for taking up wear and keeping the wrist pin in alignment with the cylinder.

All running surfaces are to be true to form and well polished. The engine is to be filled and given a well finished painted surface before leaving the factory.

The following fittings to be furnished: Throttle valve, sight feed lubricator, necessary oil and grease cups, and full set of wrenches.

DUCT WORK

To be constructed and installed in accordance with Drawing No. —. Make all sheet metal ducts of best quality galvanized steel sheets, with slip joints in the direction of the air flow, rec-

tangular ducts to have standing seams, and wide ducts to be

stiffened by angle irons where necessary.

All round pipes of less than $5\frac{1}{4}$ to 8 sq. ft. of No. 24 gauge; 8 to $10\frac{1}{2}$ sq. ft. of No. 22 gauge; $10\frac{1}{2}$ to $13\frac{1}{4}$ sq. ft. of No. 20 gauge; $13\frac{1}{4}$ to $22\frac{1}{2}$ sq. ft. of No. 18 gauge; above $22\frac{1}{2}$ sq. ft. of No. 16 gauge.

All rectangular pipes less than 18 inches wide are to be made of No. 26 gauge; from 19 to 30 inches of No. 24 gauge; from 31 to 60 inches of No. 22 gauge; from 61 to 118 inches of No. 20 gauge; above 118 inches wide of No. 18 gauge.

No square turns are to be used at any point where it is possible to use curves, so as to offer the least possible resistance to the passage of air. All joints are to be smooth and tight, and all pipes are to be firmly hung and rigidly fastened in place. The work is to be left in first-class condition throughout.

Each branch rectangular duct is to be provided with a damper and quadrant which may be set and locked in position.

Round branch outlets to have adjustable butterfly dampers.

After erection test and set dampers for proper air distribution.

DIRECT CURRENT MOTOR

Furnish () ——— H. P. ——— Volt direct current motor for direct (or belt) connection to fan at the speed specified. Motor to be of standard construction and equipped with starting rheostat, and furnished with

a-rheostat for starting duty only.

b—combined starting and speed regulating rheostat, capable of reducing the speed 50 per cent. below normal by armature resistance.

c—combined starting and speed regulating rheostat capable of increasing the speed — per cent. above normal by weakening the field circuit.

If direct connected to fan, motor is to be furnished without base rails or pulley, but with flanged coupling, key-seated, faced and polished.

If belted to fan, furnish pulleys of the proper size and single leather endless belt.

ALTERNATING CURRENT MOTOR

Furnish () — — H. P. — Volt — cycle — phase motor of standard construction with starter complete.

If direct connected to fan, motor is to be furnished without base rails or pulleys, but with flanged coupling, key-seated, faced and polished.

If belted to fan, furnish pulleys of the proper size and single leather endless belt.

SUBBASES

For fans direct connected to motors, furnish heavy steel plate subbase to be made tapering and with rounded corners and fitted with continuous angle iron extending around the base. Subbases must be braced inside and provided with hand hole for bolting down the motors. After erection the contractor is to fill the subbases with concrete to prevent transmission of sound.

CARRIER TYPE "A" AIR WASHER AND HUMIDIFIER

The velocity of the air through the washer shall not be greater than 500 ft. per minute and the total guaranteed resistance of the washer shall not exceed .25 inch water. Washer is to be 7' 25/16" long, —— wide and —— high.

Casing. The washer shall be constructed of galvanized iron of No. 18 gauge. Settling tank at least 16 inches high to extend under the entire washer and to be made of No. 16 gauge galvanized iron. The casing and tank shall be braced on the outside with 1½" x 1½" galvanized angles. These angles shall not be spaced further apart than 3 feet. All joints inside of casing shall be either soldered or made tight with rubber gaskets and bolts. All rivets and rivet holes shall be soldered over on inside of casing.

A perforated galvanized distributing plate on the inlet of the washer having 50 per cent. free area is to be provided.

Inspection Door. In the side of the washer casing is to be provided a door not less than 15" x 24" in size to allow easy and convenient access to the machine for inspection and cleaning. The door shall be of cast iron with two glass panels, each glass being not less than 9" x 12". The door frame is also to carry a $\frac{1}{4}$ " x $\frac{1}{4}$ " pure rubber gasket against which the door is to close. The frame is to be cast iron and riveted to the washer casing.

The door is to be held closed by at least three cams on each side; and be sufficiently rigid to prevent cracking of glass when clamping tight against gasket.

Sprays. The brass spray nozzles shall be evenly spaced over the cross section of the washer and shall be placed at least 4 feet from the eliminator plates and in a plane parallel thereto. The spacing of these nozzles shall be such that the entire interior of the washer between the nozzles and eliminator plates shall be uniformly filled with a finely divided spray. There shall be at least five nozzles for every 2000 cu. ft. of air handled per minute. The nozzles shall give a finely divided "mist like" spray. No water passage or way to be smaller than 27/1000 sq. in. area, nor have less than 316-inch minimum dimensions in any water passage. Stand-pipes shall be of 1½-inch galvanized extra heavy wrought iron pipe screwed into a cast iron header. The flooding nozzles over the eliminators are to be spaced on 3-inch centers and handle 1 G. P. M. each.

Eliminators. The eliminators shall set vertical in position and be made of No. 24 gauge galvanized iron. The angles of the eliminators shall not be greater than 35°. The eliminators shall be so set that the air in passing through is deflected at least six times. Eliminator plates to be bolted or riveted directly to galvanized iron supports. The angles of deflection in no case being greater than 35°. No separate metal clips will be allowed. The space of air passage between any two adjacent eliminator plates shall not exceed 1 inch.

The washer shall be so arranged that the first four bends of the eliminator plates shall become a washing surface. A separate set of sprays (independent of the main sprays) is to be provided for maintaining a constant sheet of water flowing down these four surfaces continually. The amount of washing surface thus provided shall not be less than 40 sq. ft. per 1000 cu. ft. of air per minute.

The last two bends of the eliminator plates are to remove effectively all free and entrained moisture. The total washing and eliminating surface shall not be less than 60 sq. ft. per 1000 cu. ft. of air per minute.

Piping. 2-inch galvanized overflow and 2-inch drain to sewer, the latter provided with gate valve.

The washer is to be provided with galvanized iron flanges for piping connections.

Note. All piping between the washer, settling tank and pump shall be galvanized and be installed by contractor in accordance with details furnished by the air washer manufacturer.

Pump. The air washer is to be furnished with a —— double suction centrifugal horizontally divided shell pump having a capacity of —— gallons per minute when discharging against sufficient head to obtain perfect spray effect of all nozzles.

The pump is to be of the horizontal type having enclosed runner and is to be provided with cast iron base plate for direct connection to a —— H. P. motor of suitable current.

The casing of this pump is to be of grey cast iron, horizontally divided for convenient inspection, suitable to withstand an excess over the working pressure and designed with ample water ways for proper velocity.

All surfaces not machined shall be rubbed down, filled and painted a suitable dark color as directed.

The usual piping drains, fittings and grease cups are to be included.

Accessories. The washer is to be provided with an automatic float valve for maintaining a constant water level.

One strainer of 20-mesh copper screen is to be provided with the washer for straining all water recirculated by the pump. This strainer is to extend the entire width of the washer and shall have not less than 1 sq. ft. of surface for each 4000 cu. ft. of air handled per minute.

CARRIER TYPE "B" AIR WASHER AND HUMIDIFIER

Specifications for the Type "B" Air Washer and Humidifier are the same as for the Type "A" as given on pages 537 to 539 with the following exceptions:

Washer is 9' 03/8" long instead of 7' 25/16" long.

There shall be at least five nozzles for every 1000 cu. ft. of air handled per minute instead of five nozzles for every 2000 cu. ft. of air handled per minute.

CARRIER TYPE "C" AIR WASHER AND HUMIDIFIER

The velocity of the air through the washer shall not be greater than 500 ft. per minute and the total guaranteed resistance of the washer shall not exceed .375 inch water. Washer is to be 4' 10" long, ——— wide and ———— high.

Casing. The washer shall be constructed of galvanized iron of No. 18 gauge. Settling tank at least 16 inches high to extend under the entire washer and to be made of No. 16 gauge galvanized iron. The casing and tank shall be braced on the outside with $1\frac{1}{2}$ " x $1\frac{1}{2}$ " galvanized angles. These angles shall not be spaced further apart than 3 feet. All joints inside of casing shall be either soldered or made tight with rubber gaskets and bolts. All rivets and rivet holes shall be soldered over on inside of casing.

Inspection Door. In the side of the washer casing is to be provided a door not less than 15" x 24" in size to allow easy and convenient access to the machine for inspection and cleaning. The door shall be of cast iron with two glass panels, each glass being not less than 9" x 12". The door frame is also to carry a $\frac{1}{4}$ " x $\frac{1}{4}$ " pure rubber gasket against which the door is to close. The frame is to be cast iron and riveted to the washer casing. The door is to be held closed by at least three cams on each side, and be sufficiently rigid to prevent cracking of glass when clamping tight against gasket.

Sprays. The brass spray nozzles shall be evenly spaced over the cross section of the washer and to be placed at least 4 feet from the eliminator plates and in a plane parallel thereto. The spacing of these nozzles shall be such that the entire interior of the washer between the nozzles and eliminator plates shall be uniformly filled with a finely divided spray. There shall be at least five nozzles for every 2000 cu. ft. of air handled per minute. The nozzles shall give a finely divided "mist like" spray. No water passage or way to be smaller than 27/1000 sq. in. area, nor have less than \(^3\frac{1}{16}\)-inch minimum dimensions in any water passage. Stand pipes shall be of 1\(^1\frac{1}{4}\)-inch galvanized extra heavy wrought iron pipe screwed into a cast iron header.

Eliminators. The eliminators are to be made of corrugated sheets of No. 24 galvanized iron. These eliminators are to be set vertically in rows so that the air has a tortuous passage through them and they are to be evenly spaced not further apart than 3½". They shall be braced and stiffened with galvanized angles.

At least two of the corrugations of the sheet are to be provided with a lip for catching any entrained moisture which otherwise may pass through eliminator.

Piping. The washer is to be provided with galvanized iron flanges for piping connections.

One (1) overflow connection and drain is also to be provided.

Note. All piping between the washer, settling tank and pump shall be galvanized and be installed by contractor in accordance with details furnished by the air washer manufacturer.

Pump. The air washer is to be furnished with a ———double suction centrifugal horizontally divided shell pump having a capacity of ——— gallons per minute when discharging against sufficient head to obtain perfect spray effect of all nozzles.

The pump is to be of the horizontal type having enclosed runner and is to be provided with east iron base plate for direct connection to a ——— H. P. motor of suitable current.

The casing of this pump is to be of grey cast iron, horizontally divided for convenient inspection, suitable to withstand an excess over the working pressure and designed with ample water ways for proper velocity.

All surfaces not machined shall be rubbed down, filled and painted a suitable dark color as directed.

The usual piping drains, fittings and grease cups are to be included.

Accessories. The washer is to be provided with an automatic float valve for maintaining a constant water level.

One strainer of 20-mesh copper screen is to be provided with the washer for straining all water recirculated by the pump. This strainer is to extend the entire width of the washer and shall have not less than 1 sq. ft. of surface for each 4000 cu. ft. of air handled per minute.

HUMIDITY CONTROL

The washer is to be provided with a system of humidity control arranged for maintaining a constant dew-point or saturated temperature of the air leaving the washer throughout the winter. This constant dew-point being maintained by varying the water temperature through which the air passes.

A thermostat is to be placed in the chamber between the washer and reheater coil. This thermostat shall be of a graduated action type to the approval of the engineer. In the suction line to the washer pump is to be provided an automatic combined ejector water heater and diaphragm valve to which a steam line is to be connected. In this steam line shall be placed a pressure reducing valve of the Mason Regulator Company's manufacture or equal by the steam contractor designed to maintain a pressure of 5 pounds per square inch on the ejector if high The operation of the automatic ejector pressure steam is used. water heater shall be gradual. This water heater is to be operated by a diaphragm operated by air pressure and a constant temperature thermostat placed between the eliminators and the reheating coil. A globe valve is to be provided in the steam line within a few feet of the water heater by the heating contractor.

Provide a reverse acting diaphragm steam valve which is to be placed in the steam line to the water heater and operated through a safety relay. The valve and relay are to be so connected that should either the water pressure or the air pressure fail, the steam supply to the ejector water heater will be automatically shut off.

One (1) ½-inch opening will be left in the air supply line of the thermostatic control system for supplying compressed air to the thermostat mentioned above. The humidity control shall be set and left in proper adjustment by the manufacturer.

One (1) Pot Strainer. For insertion in the line running from the centrifugal pump to spray header is to be provided a cast iron galvanized pot strainer with two baskets, one to be used as a spare. The baskets of this strainer are to be made of 14-mesh copper wire cloth screen, giving an area of at least sixteen times area of pipe connection. The top of this strainer is to be held by clamp and screw so it can be instantly and easily removed and replaced with clean strainer.

A ——— steam line is to be run to reverse acting diaphragm

valve.

GUARANTEES

Apparatus

The apparatus is guaranteed to be first class with reference to both workmanship and design. Parts which may prove defective within one year after shipment are to be replaced without charge.

Fan

The fan shall be capable of handling — cu. ft. of air per minute at — degrees F. and 29.92 inches barometer, at approximately — inches static (or total) pressure, when running at a speed not to exceed —— R. P. M.

The fan will require under above conditions not over — H. P.

Heater

The free area through the coils shall be of such size that the velocity of the air in passing through them shall not exceed — feet per minute and of ample capacity to heat —— cu. ft. of air per minute from — to — degrees F. using steam at — pounds pressure per square inch gauge.

Engine

The engine shall be belted (or direct connected) to —— fan, and shall be capable of running at —— R. P. M. with steam pressure of —— pounds per square inch gauge, when fan is delivering —— cu. ft. A. P. M. against —— in. static (or total) pressure.

Heating

The apparatus is to be of sufficient capacity to heat the building to —— degrees F. when outside temperature is — degrees F., using —— per cent. return air— and —per cent. fresh air, and to give a — minute air change.

Ventilating

The apparatus is to be of sufficient capacity to supply—cu. ft. air per minute; (or in case of school, ——cu. ft. air per minute per pupil,) at ——degrees F. and 29.92 inches barometer.

Ducts and Outlets

The velocity shall not exceed: in the mains —— feet per minute; in the risers —— feet per minute.

The air shall enter the room —— at not less than —— feet from the floor, at a velocity not to exceed —— feet per minute.

The vent shall be of the size of the inlet and shall be taken off at the floor line where practicable.

Air Washing

The washer is to remove 98 per cent. of the solid material carried by the entering air.

Humidity Control

The apparatus is to automatically control the dew-point temperature within one degree of that desired, when the outside wet-bulb temperature is less than the dew-point for which the control is set.

Cooling With Air Washer

The apparatus when recirculating water in summer and handling rated capacity of air, is to reduce the temperature of the air 70 per cent. of the entering wet-bulb depression (i. e., 70 per cent. of the difference between the dry and wet-bulb temperatures) of the incoming air.

The apparatus when using cold water in summer is to reduce the outgoing difference of air and water temperatures to less than 25 per cent. of the difference in the incoming temperatures.

Cooling With Humidifier

Cool to the wet-bulb temperature of the entering air.

Mechanical Draft

The fan shall be used for (induced or forced) draft for—boilers burning —— pounds coal per hour, having a heat value of —— B. t. u. The fan shall be of sufficient capacity to handle —— cubic feet air per minute at —— degrees F. and 29.92 inches barometer and maintain a ——— pressure of —— inches of water at the grate, when revolving at a speed not to exceed — R. P. M.

The fan will require under above conditions not over ——
H. P.

	Side Angles	00000000000000000000000000000000000000
	Base Angles	ымынымымымымым <u> </u>
Fans ver s.	Blades ast	000000000000000000000000000000000000000
Gauges Induced Draft Fa and Fans over 1 oz. Press.	Blades 84	44444444444999999999999
lucec and l	Scroll Sheets	4444444445555555
Inc	Side Sheets	222222222222222222222
oz.	Blades Blades Hanges	8888888888889999
Gauges Fans under 1 Press.	Blades 5	991111111111111111111111111111111111111
ans	Scroll Sheets	00000000000000000000000000000000000000
	Side Sheets	444444444444444444
Shaft	Induced	න යු යා ස ස ය ය ය ය ය ය ය ය ය ය ය ය ය ය ය ය
	Overhung	
Dia. of	Overhung	
heel	Blower	01111101010000044440000000 0110000000000
Blast-Wheel	Exhauster 🗧	01161111111111111111111111111111111111
Blas	Diameter	00100000000000000000000000000000000000
Dia. of Inlet	Blower	11111111111111111111111111111111111111
Dia	Ехраизсег	######################################
36	olinO	110 100 100 100 100 100 100 100 100 100

Size Fan

		_		
	Double Fan	sZtu	In Beari	
er Shaft	Doubl	las	очм пі	999 % % % % % % % % % % % % % % % % % %
Diameter Shaft	Fan	8u	Оуегћи Мъе	48 39 39 39 39 39 39 39 39 39 39 39 39 39
	Single Fan	3 u	Overhu Pulley	13.00 mm m
		Double Fan	qiT 3A	051458615888888844657256488 65447 74 74 4 74744 78
	£	Double	3A Tenter	88336515288838383838383838383838383833833333333
	Width	Fan	qiT 3A	00000001111111000000000000000000000000
Wheel		Single Fan	At Center	6+80011111111111111111111111111111111111
	eter		Mean	281233228884467667478888886991 %4874
	Diameter	ш	umixsM	10098883729284888878 11009888372928488
,	islnl i	o Tete	omsiQ	T09988888888888888888888888888888888888
let		e Fan	lduoQ	28.28.28.28.28.28.28.28.28.28.28.28.28.2
Outlet		ns9 s	olgni2	214080222225644467604867588 ***********************************
	u	ze Fa	!S	24 74 74 74 74 74 74 74 74 74 74 74 74 74

All Niagara and Turbo-Conoidal Fans have 32 Blades. Turbo-Conoidal (Type T) Fans have same dimensions as in table above, except blast-wheel and shaft, which may vary, depending on operating conditions.

SPECIFICATIONS FOR NIAGARA CONOIDAL (TYPE N) FANS

		Side Braces	ororororororororororororororororororor
		Base Angles	udduddudddddddggaccooaaaa gdddddddddggaccagaaaagaa xxxxxXXXXXXXXXXXXXXXXXXXXXXXXX
over	eel	Flange	3333333333222×××××××××××××××××××××××××
Gauges Induced Draft Fans and Fans over 1-oz. Pressure	Blast-Wheel	AsiQ	& & & & & & & & & & & & & & & & & & &
Gauges raft Fans and 1-oz, Pressure	BIS	Blades	\$55554444555000000000000000000000000000
Gau raft Fa i-oz. P	83	Scroll Shee	44444444888888888888888
nced D	Sheets	Three-quar- ter Housing	222222222222222222222222222222222222222
Judi	Side S	Full Housing	888888000000000000000000000000000000000
	heel	Flange	444444444888000000000000000000000000000
Gauges Fans under 1-0z. Pressure	Blast-Wheel	Disk	000000000000000000000000000000000000000
Gauges er 1-0z. P	<u>=</u>	Blades	8888889994444999999
Ga	st	Scroll Shee	00000004444444400000000
Fans i	Sheets	Three-quar- gnisuoH 193	444440000000000000000000000
	Side 8	Full Housing	444448888888888888888888888888888888888
	nes	Size	2 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

All Niagara and Turbo-Conoidal Fans have 32 Blades. Turbo-Conoidal (Type T) Fans have same dimensions as in table above, except blast-wheel and shaft, which may vary, depending on operating conditions.

CHIMNEYS

The following rules for the design of chimneys are given in "Steam," published by the Babcock & Wilcox Company.

(a)—To find the draft in inches of water produced by a given chimney. Divide 7.6 by the absolute temperature of the external air (t_n+460) ; divide 7.9 by the absolute temperature of the gases in the chimney (t_g+460) ; subtract the latter from the former, and multiply the remainder by the height of the chimney in feet. This may be expressed as

$$d = h \left(\frac{7.6}{t_0 + 460} - \frac{7.9}{t_0 + 460} \right)$$

(b)—To find the height of a chimney to give a specified draft expressed in inches of water: Proceed as above through the first two steps, then divide the required draft by the remainder, and the result will be the height of the chimney in feet. Expressed as a formula,

$$h = \frac{d}{\left(\frac{7.6}{t_a + 460}\right) - \left(\frac{7.9}{t_g + 460}\right)}$$

The draft attainable with any chimney when the temperature of the external air is 70° F, and the temperature of the flue gases 550° F, multiply the height above the grate in feet by 0.0065 and the product is the draft pressure in inches of water.

-	Actual Area	Square	1.77 2.41 3.14	3.98 4.91 5.94	7.07 8.30 9.62	12.57 15.90 19.64	23.76 28.27 33.18	38.48 44.18 50.27	56.75 63.62 70.88	78.54 86.59 95.03	103.86
	Effective	Square	0.97 1.47 2.08	6,83.4 8,53.8 8,4.8 8 8,4.8 8 8,4.8 8 8,6.8 8 8,6.8 8 8,6.8 8 8,6.8 8 8,6.8 8 8,6.8 8 8,6.8 8 8,6.8 8 8,6.8 8 8,6.8 8 8,6.8 8 8,6.8 8 8,6.8 8 8,6.8 8 8 8,6.8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	5.47 6.57 7.76	10.44 13.51 16.98	20.83 25.08 29.73	34.76 40.19 46.01	52.23 58.83 65.83	73.22 81.00 89.19	97.75
	Side of	Inches	16 19 22	24 37 30	33.23	43 45 45	59 70	75 86 86	90 96 101	106 112 117	122
		200 Ft.					981 1181 1400	1637 1893 2167	2462 2773 3003	3452 3820 4205	4608 5031
1		175 Ft.				748	918 1105 1310	1531 1770 2027	2303 2594 2903	3230 3573 3935	4311
	ver	125 Ft. 150 Ft.				551 692	849 1023 1212	1418 1639 1876	2133 2402 2687	2990 3308 3642	3991 4357
	Horsepov					389 503 632	776 934 1107	1294 1496 1720	1946 2192 2459		
1000	mercial	110 Ft.			27.1	365 472 593	728 876 1038	1214 1415 1616			
STEED OF CHILD WITH MINISTER CO.	Height of Chimneys and Commercial Horsepower	100 Ft.			182 219 258	348 449 565	694 835 995	1163 1344 1537			
2	nimneys	90 Ft.		113	173 208 245	330 427 536	658 792				
	ght of Ch	80 Ft.	62	83 107 133	163 196 231	311 363 505					
OIL IN	Hei	70 Ft.	24 58 58	78 100 125	152 183 216						
		60 Ft.	10.88.10 44.00	72 92 115	141						
		50 Ft.	23 40 40 40	65 84							
	iam.	ches	8-7	202	222	846	328	200	1887	326	38

TABLE OF AREA AND CIRCUMFERENCE OF CIRCLES

Diameter	Ar	ea	Circumference	One Side of a
in Inches	Square Inches	Square Feet	in Feet	Square
1	.7854	.0054	.2618	.8862
2	3.140	.0218	.5236	1.7724
3	7.070	.0491	.7854	2.6587
4	12.57	.0873	1.047	3.4549
5	19.63	.1364	1.309	4.4311
6	28.27	.1964	1.571	5.3174
7	38.48	.2673	1.833	6.2036
8	50.27	.3491	2.094	7.0898
9	63.62	.4418	2.356	7.9760
10	78.54	.5454	2.618	8.8623
11	95.03	.6600	2.880	$\begin{array}{c} 9.7485 \\ 10.6347 \\ 11.5209 \\ 12.4072 \\ 13.2934 \end{array}$
12	113.1	.7854	3.142	
13	132.7	.9218	3.403	
14	153.9	1.069	3.665	
15	176.7	1.227	3.927	
16	201.0	1.396	4.189	$14.1796 \\ 15.0659 \\ 15.9521 \\ 16.8383 \\ 17.7245$
17	226.9	1.576	4.451	
18	254.4	1.767	4.712	
19	283.5	1.969	4.974	
20	314.1	2.182	5.236	
21	346.3	2.405	5.498	$\begin{array}{c} 18.6108 \\ 19.4910 \\ 20.3832 \\ 21.2694 \\ 22.1557 \end{array}$
22	380.1	2.640	5.760	
23	415.4	2.885	6.021	
24	452.3	3.142	6.283	
25	,2490.8	3.409	6.545	
26	530.9	3.687	6.807	23.0419
27	572.5	3.976	7.069	23.9281
28	615.7	4.276	7.330	24.8144
29	660.5	4.587	7.592	25.7006
30	706.8	4.909	7.854	26.5868
31	754.7	5.241	8.116	27.4730
32	804.2	5.585	8.378	28.3594
33	855.3	5.940	8.639	29.2455
34	907.9	6.305	8.901	30.1317
35	962.1	6.681	9.163	31.0179
36	1017.8	7.069	9.425	31.9042
37	1075.2	7.467	9.686	32.7904
38	1134.1	7.876	9.948	33.6766
39	1194.5	8.296	10.21	34.5628
40	1256.6	8.727	10.47	35.4491
41	1320.2	9.168	10.73	36.3353
42	1385.4	9.621	10.99	37.2215
43	1452.2	10.08	11.26	38.1078
44	1520.5	10.56	11.52	38.9444
45	1590.4	11.04	11.78	39.8802
46	1661.9	11.54	12.04	40.7664
47	1734.9	12.05	12.30	41.6527
48	1809.5	12.51	12.57	42.5839
49	1885.7	13.09	12.83	43.4251
50	1963.5	13.64	13.09	44.3113

AREA AND CIRCUMFERENCE OF CIRCLES

TABLE OF AREA AND CIRCUMFERENCE OF CIRCLES

Diameter in	Arc	ea	Circumference	One Side of a
Inches	Square Inches	Square Feet	in Feet	Square
51	2043	14.19	13.35	45.9760
52	2124	14.75	13.61	46.0838
53	2206	15.32	13.88	46.9700
54	2290	15.90	14.14	47.8562
55	2376	16.50	14.40	48.7425
55	2463	17.10	14.66	49.6287
57	2552	17.72	14.92	50.5149
58	2642	18.35	15.18	51.4012
59	2734	18.99	15.45	52.2874
60	2827	19.63	15.71	53.1736
61	2922	20.29	15.97	54.0598
62	3019	20.97	16.23	54.9061
63	3117	21.65	16.49	55.8323
64	3217	22.34	16.76	56.7185
65	3318	23.04	17.02	57.6047
67 68 69 70	3421 3526 3632 3739 3848	23.76 24.48 25.22 25.97 26.73	17.28 17.54 17.80 18.06 18.33	58.4910 59.3772 60.2634 61.1497 62.0359
71	3959	27.49	18.59	62.9221
72	4072	28.27	18.85	63.8083
73	4185	29.07	19.11	64.9946
74	4301	29.87	19.37	65.5808
75	4418	30.68	19.63	66.4670
76	4536	31.50	19.90	67.3500
77	4657	32.34	20.16	68.4800
78	4778	33.18	20.42	69.1500
79	4902	34.04	20.68	70.0290
80	5027	34.91	20.94	70.8950
81	5153	35.78	21.21	71.8000
82	5281	36.67	21.47	73.3500
83	5411	37.57	21.73	73.5540
84	5542	38.48	21.99	74.4460
85	5675	39.41	22.25	75.4785
86	5809	40.34	22.51	76.2170
87	5945	41.28	22.78	77.1038
88	6082	42.24	23.04	77.9871
89	6221	43.20	23.30	78.8733
90	6362	44.18	23.56	79.7621
91	6504	45.17	23.82	80,6473
02	6648	46.16	24.09	81,5389
03	6793	47.17	24.35	82,4196
94	6940	48.19	24.61	83,3060
95	7088	49.22	24.87	84,1902
96	7238	50.27	25.13	85.0760
97	7390	51.32	25.39	85.9650
98	7543	52.38	25.66	86.8500
99	7698	53.46	25.92	87.7380
100	7855	54.54	26.18	88.6280

				Dec				Deg	grees Cen	Degrees Centigrade= C.	٠ <u>.</u>			
				Cent.	0	10	20	30	40	50	99	70	80	06
						1 -		Deg	rees Fah	Degrees Fahrenheit= F.	Ľ.			
 	C.= F.	F.= C.		Below	+32	+14	4	-22	-40	1 58	92-	- 94	-112	-130
-00	3.6	-70	0.56 1.11 1.67	Above	32	50	89	98	104	122	140	158	176	194
4 rc	7.2	410.0	33.82	100 200 300	212 392 572	230 410 590	24 8 428 608	266 446 626	284 464 644	302 482 662	320 500 680	338 518 698	356 536 716	374 554 734
9 1	10.8	N®0	3.89	400 500 600	752 932 1112	770 950 1130	788 968 1148	806 986 1166	824 1004 1184	842 1022 1202	860 1040 1220	878 1058 1238	896 1076 1256	914 1094 1274
, wo <u>c</u>	16.2	2=2	5.56 6.11 6.67	700 800 900	1292 1472 1652	1310 1490 1670	1328 1508 1688	1346 1526 1706	1364 1544 1724	1382 1562 1742	1400 1580 1760	1418 1598 1778	1436 1616 1796	1454 1634 1814
		2470	7.22 7.78 8.33	1000 1100 1200	1832 2012 2192	1850 2030 2210	1868 2048 2228	1886 2066 2246	1904 2084 2264	1922 2102 2282	1940 2120 2300	1958 2138 2318	1976 2156 2336	1994 2174 2354
		172	8.89 9.44 10.00	1300 1400 1500	2372 2552 2732	2390 2570 2750	2408 2588 2768	2426 2606 2786	2444 2624 2804	2462 2642 2822	2480 2660 2840	2498 2678 2858	2516 2696 2876	2534 2714 2894
			Cont to Fahr -	96	+ 32= F			Fahr.	Fahr. to Cent.	- 5 (F32)	32) = C.			

PRESSURE IN INCHES OF MERCURY EXPRESSED IN EQUIVALENT POUNDS PER SQUARE INCH

In.	.0 .	.1	.2	.3	.4	.5	.6	.7	.8	.9
0	0.00	0.05	0.10	0.15	0.20	0.25	0.29	0.34	0.39	0.44
1	0.49	0.54	0.59	0.64	0.69	0.74	0.79	0.84	0.88	0.93
2	0.98	1.03	1.08	1.13	1.18	1.23	1.28	1.33	1.38	1.42
3 4 5	1.47 1.96 2.46	1.52 2.01 2.51	1.57 2.06 2.55	1.62 2.11 2.60	1.67 2.16 2.65	1.72 2.21 2.70	1.77 2.26 2.75	1.82 2.31 2.80	1.87 2.36 2.85	1.91 2.41 2.90
6	2.95	3.00	3.05	3.09	3.14	3.19	3.24	3.29	3.34	3.39
7	3.44	3.49	3.54	3.59	3.63	3.68	3.73	3.78	3.83	3.88
8	3.93	3.98	4.03	4.08	4.13	4.18	4.22	4.27	4.32	4.37
9	4.42	4.47	4.52	4.57	4.62	4.67	4.72	4.76	4.81	4.86
10	4.91	4.96	5.01	5.06	5.11	5.16	5.21	5.26	5.30	5.35
11	5.40	5.45	5.50	5.55	5.60	5.65	5.70	5.75	5.80	5.85
12	5.89	5.94	5.99	6.04	6.09	6.14	6.19	6.24	6.29	6.34
13	6.39	6.43	6.48	6.53	6.58	6.63	6.68	6.73	6.78	6.83
14	6.88	6.93	6.97	7.02	7.07	7.12	7.17	7.22	7.27	7.32
15	7.37	7.42	7.47	7.52	7.56	7.61	7.66	7.71	7.76	7.81
16	7.86	7.91	7.96	8.01	8.06	8.10	8.15	8.20	8.25	8.30
17	8.35	8.40	8.45	8.50	8.55	8.60	8.64	8.69	8.74	8.79
18	8.84	8.89	8.94	8.99	9.04	9.09	9.14	9.19	9.23	9.28
19	9.33	9.38	9.43	9.48	9.53	9.58	9.63	9.68	9.73	9.77
20	9.82	9.87	9.92	9.97	10.02	10.07	10.12	10.17	10.22	10.27
21	10.32	10.37	10.41	10.46	10.51	10.56	10.61	10.66	10.71	10.76
22	10.81	10.86	10.90	10.95	11.00	11.05	11.10	11.15	11.20	11.25
23	11.30	11.35	11.40	11.44	11.49	11.54	11.59	11.64	11.69	11.74
24	11.79	11.84	11.89	11.94	11.99	12.03	12.08	12.62	12.18	12.23
25	12.28	12.33	12.38	12.43	12.48	12.53	12.57		12.67	12.72
26	12.77	12.82	12.87	12.92	12.97	13.02	13.07		13.16	13.21
27 28 29 30	13.26 13.75 14.24 14.74	13.31 13.80 14.29 14.78	13.36 13.85 14.34 14.83	13.41 13.90 14.39 14.88	13.46 13.95 14.44 14.93	14.00	14.05	$14.10 \\ 14.59$	14.15 14.64	13.70 14.20 14.69 15.18

SIZE OF STEAM PIPES 100-Foot Length

Hour			0 Lt	ıs.					5 I	.bs.		
				Velocit	y of S	team ii	ı Ft. p	er Mir	ute			
Lbs. Steam per	600	00	90	00	120	00	60	00	9	000	12	2000
Lbs.	D.	Sq. In.	D.	Sq. In.	D.	Sq. In.	D.	Sq. In.	D.	Sq. In.	D.	Sq. In.
200 400 600	2" 2½" 3"	2.1 4.2 6.3	$\frac{1\frac{1}{2}''}{2''}$ $\frac{2\frac{1}{2}''}{2\frac{1}{2}''}$	1.40 2.81 4.21	$\frac{1\frac{1}{4}''}{1\frac{1}{2}''}$	$1.05 \\ 2.10 \\ 3.16$	$\frac{1\frac{1}{2}''}{2''}$	1.6 3.2 4.8	1½" 2" 2"	1.07 2.14 3.20	1" 1½" 2"	$0.8 \\ 1.6 \\ 2.4$
800 1000 1200	$\frac{3\frac{1}{2}''}{3\frac{1}{2}''}$	8.4 10.5 12.6	3" 3" 3½"	5.61 7.03 8.40	$\frac{2\frac{1}{2}''}{3''}$	$4.21 \\ 5.25 \\ 6.30$	$\frac{3''}{3\frac{1}{2}''}$ $\frac{3\frac{1}{2}''}{3\frac{1}{2}''}$	6.4 8.0 9.6	$\frac{2\frac{1}{2}''}{3''}$	4.27 5.34 6.41	$2''$ $2\frac{1}{2}''$ $2\frac{1}{2}''$	3.2 4.0 4.8
1400 1600 1800	4½" 5" 5"	14.8 16.9 19.0	3½" 4" 4"	9.80 11.22 12.62	$\frac{3\frac{1}{2}''}{3\frac{1}{2}''}$	7.40 8.45 9.50	4" 4" 4½"	11.2 12.8 14.4	$\frac{3\frac{1}{2}''}{3\frac{1}{2}''}$	7.48 8.55 9.62	3" 3" 3"	5.6 6.4 7.2
2000 2200 2400	6" 6" 6"	21.1 23.2 25.3	$\frac{4\frac{1}{2}''}{4\frac{1}{2}''}$ 5"	14.0 15.4 16.8	4" 4" 4"	10.5 11.6 12.6	$\frac{4\frac{1}{2}''}{5''}$	16.0 17.6 18.2	4" 4" 4"	10.7 11.7 12.8	$\frac{3\frac{1}{2}''}{3\frac{1}{2}''}$	8.0 8.8 9.1
2600 2800 3000	6" 7" 7"	27.4 29.5 31.6	5" 5" 6"	18.2 19.6 21.1	$\frac{4\frac{1}{2}''}{4\frac{1}{2}''}$	13.7 14.7 15.8	5" 6" 6"	20.8 22.4 24.0	$\begin{array}{c c} 4\frac{1}{2}'' \\ 4\frac{1}{2} \\ 4\frac{1}{2}'' \end{array}$	13.9 14.9 16.0	4" 4" 4"	$10.4 \\ 11.2 \\ 12.0$
3200 3400 3600	7" 7" 7"	33.7 35.8 37.9	6" 6" 6"	22.4 23.9 25.3	5" 5" 5"	16.8 17.9 18.9	6" 6" 6"	25.6 27.2 28.8	5" 5" 5"	17.1 18.2 19.3	4" 4½" 4½"	12.8 13.6 14.4
3800 4000 4200	8" 8" 8"	40.1 42.2 44.3	6" 6" 7"	26.7 28.1 29.5	5" 6" 6"	$20.0 \\ 21.1 \\ 22.1$	7" 7" 7"	30.4 32.0 33.6	6" 6"	20.3 21.4 22.5	4½" 4½" 5"	15.2 16.0 16.8
4400 4600 4800	8" 8" 8"	46.4 48.5 50.6	7" 7" 7"	30.9 32.3 33.7	6" 6" 6"	23.2 24.2 25.3	7" 7" 7"	35.2 36.8 38.4	6" 6"	23.5 24.6 25.7	5" 5" 5"	17.6 18.4 19.2
5000 5500 6000	9" 9" 9"	52.7 58.0 63.2	7" 7" 8"	35.1 38.6 42.1	6" 7" 7"	26.3 29.0 31.6	8" 8"	40.0 44.0 48.0	6" 6" 7"	26.7 29.4 32.0	5" 6" 6"	$20.0 \\ 22.0 \\ 24.0$
6500 7000 7500	10" 10" 10"	68.5 73.6 79.0	8" 8" 9"	45.6 49.1 52.6	7" 7" 7"	34.2 36.8 38.5	8" 9" 9"	52.0 56.0 60.0	7" 7" 8"	34.7 37.4 40.0	6" 6" 7"	26.0 28.0 30.0
8000 8500 9000	12" 12" 12"	84.2 89.5 94.7	9" 9" 9"	56.1 59.6 63.2	8" 8" 8"	42.1 44.7 47.3	9" 10" 10"	64.0 68.0 72.0	8" 8"	42.7 45.4 48.0	7" 7" 7"	32.0 34.0 36.0
9500 10000	12" 12"	100.0	10" 10"	66.7 70.2	8" 9"	50.0 52.6	10″ 10″	76.0 80.0	8" 9"	50.7 53.4	7" 8"	38.0 40.0

SIZE OF STEAM PIPES 100-Foot Length

20 Lbs.

40 Lbs.

er Hou				Velocit	y of S	team in	Ft. p	er Min	ute			
Lbs. Steam per Hour	60	000	9(000	12	000	6(000	9(000	120	000
Lbs. S	D.	Sq. In.	D.	Sq. In.	D.	Sq. In.	D.	Sq. In.	D.	Sq. In.	D.	Sq. In.
200 400 600	1¼" 1½" 2"	0.94 1.87 2.81	1" 1¼" 1½"	0.62 1.25 1.87	1" 1\frac{1}{4}" 1\frac{1}{2}"	0.47 0.93 1.41	$\frac{1''}{1\frac{1}{4}''}$ $\frac{1\frac{1}{2}''}{1\frac{1}{2}''}$	0.61 1.22 1.84	1" 1½" 1½"	0.41 0.82 1.23	1" 1" 1\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$0.30 \\ 0.61 \\ 0.92$
800 F000 1200	$\frac{2\frac{1}{2}''}{2\frac{1}{2}''}$ $3''$	3.75 4.68 5.61	$2''$ $2''$ $2\frac{1}{2}''$	2.50 3.12 3.76	$\frac{1\frac{1}{2}''}{2''}$	1.87 2.34 2.80	$\frac{2''}{2''}$ $\frac{2}{2}$	2.45 3.07 3.68	$\frac{1\frac{1}{2}''}{2''}$	1.64 2.04 2.45	1½" 1½" 1½"	1.22 1.53 1.84
1400 1600 1800	3" 3½" 3½"	6.57 7.49 8.42	$\frac{2\frac{1}{2}''}{2\frac{1}{2}''}$	4.37 5.00 5.63	$2''$ $2\frac{1}{2}''$ $2\frac{1}{2}''$	3.28 3.74 4.21	$\frac{2\frac{1}{2}''}{2\frac{1}{2}''}$	4.28 4.89 5.50	2" 2" 2½"	2.86 3.27 3.68	2" 2" 2"	2.14 2.44 2.75
2000 2200 2400	$\frac{3\frac{1}{2}''}{4''}$	9.36 10.30 11.22	3" 3" 3½"	6.25 6.88 7.50	2½" 3" 3"	4.68 5.15 5.61	3" 3" 3½"	6.12 6.74 7.35	$2\frac{1}{2}$ $2\frac{1}{2}$ $2\frac{1}{2}$	4.09 4.50 4.90	$2''$ $2\frac{1}{2}''$ $2\frac{1}{2}''$	3.06 3.38 3.67
2600 2800 3000	$4''$ $4\frac{1}{2}''$ $4\frac{1}{2}''$	12.18 13.10 14.05	$3\frac{1}{2}''$ $3\frac{1}{2}''$ $3\frac{1}{2}''$	8.13 8.75 9.38	3" 3" 3"	6.09 6.55 7.02	$\frac{3\frac{1}{2}''}{3\frac{1}{2}''}$	7.96 8.58 9.18	3" 3" 3"	5.32 5.73 6.14	$2\frac{1}{2}$ " $2\frac{1}{2}$ " $2\frac{1}{2}$ "	3.98 4.29 4.59
3200 3400 3600	4½" 4½" 5"	15.00 15.95 16.82	3½" 4" 4"	10.00 10.62 11.25	$\frac{3\frac{1}{2}''}{3\frac{1}{2}''}$	7.50 7.98 8.41	3½" 4" 4"	9.80 10.41 11.04	3" 3" 3½"	6.54 6.95 7.35	2½" 3" 3"	4.90 5.20 5.52
3800 4000 4200	5" 5" 5"	17.78 18.75 19.70	4" 4" 4½"	11.85 12.50 13.20	$\frac{3\frac{1}{2}''}{3\frac{1}{2}''}$	8.89 9.37 9.85	4" 4" 4"	11.64 12.25 12.87	$\frac{3\frac{1}{2}''}{3\frac{1}{2}''}$	7.77 8.18 8.60	3" 3"	5.82 6.12 6.43
4400 4600 4800	6" 6" 6"	$\begin{array}{c} 20.60 \\ 21.60 \\ 22.50 \end{array}$	$\frac{4\frac{1}{2}''}{4\frac{1}{2}''}$	13.75 14.35 15.00	4" 4" 4"	10.30 10.80 11.25	$\frac{4\frac{1}{2}''}{4\frac{1}{2}''}$	13.48 14.10 14.70	31" 31" 31"	9.00 9.40 9.80	3" 3" 3½"	6.74 7.05 7.35
5000 5500 6000	6" 6" 6"	23.40 26.80 28.10	4½" 5" 5"	15.60 17.15 18.70	4" 5" 5"	11.70 13.40 14.10	4½" 5" 5"	15.31 16.80 18.40	4" 4" 4"	10.20 11.20 12.30	$\frac{3\frac{1}{2}''}{3\frac{1}{2}''}$	7.66 8.40 9.20
6500 7000 7500	7" 7" 7"	30.50 32.80 35.20	5" 6" 6"	20.30 21.80 23.40	5" 5" 5"	15.20 16.40 17.60	5" 6" 6"	19.80 21.40 23.00	4½" 4½" 4½"	13.30 14.30 15.30	3½" 4" 4"	9.90 10.70 11.50
N000 N500 9000	7" 8" 8"	37.50 39.80 42.20	6" 6" 6"	24.90 26.50 28.00	5" 5" 6"	18.80 19.90 21.10	6" 6" 6"	24.50 26.00 27.60	5" 5" 5"	16.30 17.30 18.30	4" 4½" 4½"	12.20 13.00 13.80
9500 F0000	8" 8"	44.50 46.80	7″. 7″	29.60 31.20	6" 6"	22.20 23,40	7" 7"	29.10 30.70	5" 6"	19.40 20.40	$\frac{4\frac{1}{2}''}{4\frac{1}{2}''}$	14.60 15.30

SIZE OF STEAM PIPES

100-Foot Length

onc			60 I	.bs.				1	80	Lbs.		
H 190			V	elocity	of Ste	am in	Ft. pe	r Minu	te			
Steam per Hour	60	00	90	00	120	000	60	00	1	9000	12	000
Lbs. Str	D.	Sq. In.	D.	Sq. In.	D.	Sq. In.	D.	Sq. In.	D.	Sq. In.	D.	Sq. In.
200 400 600	1" 1½" 1½"	0.46 0.92 1.37	1" 1" 1½"	0.31 0.61 0.92	1" 1" 1"	0.23 0.46 0.68	1" 1" 1 <u>1</u> "	$0.37 \\ 0.73 \\ 1.10$	1" 1" 1"	0.24 0.49 0.73	1" 1" 1"	0.18 0.36 0.55
800 1000 1200	$\frac{1\frac{1}{2}''}{2''}$	1.83 2.29 2.75	$1\frac{1}{4}''$ $1\frac{1}{2}''$ $1\frac{1}{2}''$	1.22 1.53 1.83	$1\frac{1}{4}''$ $1\frac{1}{4}''$ $1\frac{1}{2}''$	$0.91 \\ 1.14 \\ 1.37$	$\frac{1\frac{1}{2}''}{1\frac{1}{2}''}$	1.47 1.82 2.20	$\frac{1\frac{1}{4}''}{1\frac{1}{4}''}$ $\frac{1\frac{1}{2}''}{1\frac{1}{2}''}$	0.98 1.23 1.47	1" 1¼" 1¼"	$0.73 \\ 0.91 \\ 1.10$
1400 1600 1800	$\frac{2''}{2\frac{1}{2}''}$ $\frac{2\frac{1}{2}''}{2\frac{1}{2}''}$	3.21 3.67 4.13	2" 2" 2"	2.14 2.44 2.75	$1\frac{1}{2}''$ $1\frac{1}{2}''$ $2''$	1.60 1.83 2.06	2" 2" 2"	2.57 2.93 3.30	$\frac{1\frac{1}{2}''}{2''}$	1.71 1.96 2.21	$1\frac{1}{4}''$ $1\frac{1}{2}''$ $1\frac{1}{2}''$	1.28 1.46 1.65
2000 2200 2400	$\frac{2\frac{1}{2}''}{2\frac{1}{2}''}$ 3"	4.59 5.05 5.50	$\frac{2''}{2\frac{1}{2}''}$	3.15 3.36 3.67	2" 2" 2"	2.29 2.52 2.75	$\frac{2\frac{1}{2}''}{2\frac{1}{2}''}$	3.67 4.04 4.40	2"	2.46 2.70 2.94	$\frac{1\frac{1}{2}''}{2''}$	1.83 2.02 2.20
2600 2800 3000	3" 3" 3"	5.96 6.43 6.88	$2\frac{1}{2}''$ $2\frac{1}{2}''$ $2\frac{1}{2}''$	3.97 4.28 4.58	2" 2" 2½"	2.98 3.21 3.44	$\frac{2\frac{1}{2}''}{2\frac{1}{2}''}$	4.77 5.12 5.50	$2''$ $2\frac{1}{2}''$ $2\frac{1}{2}''$	3.19 3.43 3.68	2" 2" 2"	2.38 2.56 2.75
3200 3400 3600	$\frac{3\frac{1}{2}''}{3\frac{1}{2}''}$	7.35 7.80 8.26	$\frac{2\frac{1}{2}''}{2\frac{1}{2}''}$ 3"	4.89 5.19 5.50	$2\frac{1}{2}$ " $2\frac{1}{2}$ " $2\frac{1}{2}$ "	3.67 3.90 4.13	3" 3" 3"	5.88 6.22 6.60	$2\frac{1}{2}$ " $2\frac{1}{2}$ " $2\frac{1}{2}$ "	3.92 4.17 4.42	$\frac{2''}{2''}$ $\frac{2^{1}}{2^{2}}$ "	2.94 3.11 3.30
3800 4000 4200	$3\frac{1}{2}''$ $3\frac{1}{2}''$ $3\frac{1}{2}''$	8.71 9.18 9.63	3" 3" 3"	$5.80 \\ 6.11 \\ 6.42$	$2\frac{1}{2}$ " $2\frac{1}{2}$ " $2\frac{1}{2}$ "	4.35 4.59 4.81	$3''$ $3\frac{1}{2}''$ $3\frac{1}{2}''$	6.98 7.33 7.70	$2\frac{1}{2}''$ $2\frac{1}{2}''$ $2\frac{1}{2}''$	4.67 4.92 5.16	$\frac{2!}{2!}$, $\frac{2!}{2!}$, $\frac{2!}{2!}$	$3.46 \\ 3.66 \\ 3.85$
4400 4600 4800	4" 4" 4"	10.10 10.55 11.00	3" 3" 3½"	6.73 7.02 7.34	2½" 3" 3"	5.05 5.27 5.50	$3\frac{1}{2}''$ $3\frac{1}{2}''$ $3\frac{1}{2}''$	8.08 8.45 8.80	3"	5.40 5.65 5.90	$\frac{2\frac{1}{2}''}{2\frac{1}{2}''}$	4.04 4.22 4.40
5000 5500 6000	4" 4" 4½"	11.48 12.60 13.80	$\frac{3\frac{1}{2}''}{3\frac{1}{2}''}$ $\frac{3\frac{1}{2}''}{3\frac{1}{2}''}$	7.64 8.42 9.18	3" 3" 3"	5.74 6.30 6.90	3½" 4" 4"	9.18 10.10 11.00		6.15 6.76 7.39	$2\frac{1}{2}$ $2\frac{1}{2}$ 3	4.59 5.05 5.50
6500 7000 7500	4½" 4½" 5"	14.90 16.10 17.20	4" 4" 4"	9.95 10.70 11.50	$\frac{3\frac{1}{2}''}{3\frac{1}{2}''}$	7.45 8.10 8.60	4" 4" 4½"	11.90 12.80 13.70	33"	8.00 8.60 9.23	3" 3" 3"	5.95 6.40 6.85
8000 8500 9000	5" 5" 6"	18.30 19.50 20.60	4" 4½" 4½"	12.30 13.00 13.80	$3\frac{1}{2}''$ $3\frac{1}{2}''$ $4''$	9.15 9.75 10.30	4½" 4½" 5"	14.70 15.60 16.50	4"	9.84 10.40 11.10	3½" 3½" 3½"	7.35 7.80 8.25
9500 10000	6" - 6"	21.80 23.00	$\frac{4\frac{1}{2}''}{4\frac{1}{2}''}$	14.50 15.30	4" 4"	10.90 11.50	5″ 5″	17.40 18.30		11.70 12.30	$\frac{3\frac{1}{2}''}{3\frac{1}{2}''}$	8.70 9.15

SIZE OF STEAM PIPES 100-Foot Length

100 Lbs. 200 Lbs.

per H			Ve	elocity of	Stea	ım in l	Ft. po	er Min	ute			
Steam	6	000	9	0000	12	2000	6	000	11 :	9000	1.	2000
Lbs.	D.	Sq. In.	D.	Sq. In.	D.	Sq. In.	D.	Sq. In.	D.	Sq. In.	D.	Sq. In.
200 400 500	1" 1" 1\frac{1}{4}"	0.31 0.61 0.92	1" 1" 1"	$0.20 \\ 0.41 \\ 0.61$	1" 1" 1"	0.15 0.31 0.46	1" 1" 1"	$0.17 \\ 0.34 \\ 0.51$	1" 1" 1"	0.11 0.23 0.34	1" 1" 1"	0.08 0.17 0.25
1000 1200	1½" 1½" 1½"	1.22 1.63 1.83	1" 1 ¹ / ₄ " 1 ¹ / ₄ "	0.82 1.02 1.22	1" 1" 1‡"	$0.61 \\ 0.76 \\ 0.92$	1" 11" 11"	$0.68 \\ 0.85 \\ 1.02$	1" 1" 1"	0.45 0.57 0.68	1" 1" 1"	0.34 0.42 0.51
1400 1600 1800	2" 2" 2"	2.14 2.45 2.76	1½" 1½" 1½"	1.43 1.63 1.83	1 ½" 1 ½" 1 ½"	1.22	1 ½" 1 ½" 1 ½"	1.36	1" 114" 114"	0.79 0.91 1.02	1" 1" 1"	0.59 0.68 0.76
2000 2200 2400	$2''$ $2\frac{1}{2}''$ $2\frac{1}{2}''$	3.06 3.37 3.67	2" 2" 2"	2.04 2.24 2.45		1.53 1.68 1.84	1½" 1½" 2"	1.70 1.87 2.04	1 ¼" 1 ¼" 1 ½"	1.13 1.25 1.36	1¼" 1¼" 1¼"	0.85 0.93 1.02
2600 2800 3000	$\frac{2\frac{1}{2}''}{2\frac{1}{2}''}$	3.98 4.28 4.59	2" 2" 2"	2.65 2.85 3.06	2" 2" 2"	1.99 2.14 2.29	2" 2" 2"	2.21 2.38 2.55	1½" 1½" 1½"	1.47 1.59 1.70	1¼" 1¼" 1¼"	1.10 1.19 1.27
3200 3400 3600	2½" 3" 3"	4.90 5.20 5.52	$ \begin{array}{c c} 2'' \\ 2\frac{1}{2}'' \\ 2\frac{1}{2}'' \end{array} $	3.26 3.47 3.67	2" 2" 2"	2.45 2.60 2.76	2" 2" 2"	2.72 2.89 3.06	1½" 2" 2"	1.81 1.93 2.04	1½" 1½" 1½"	1.36 1.44 1.53
3800 3000 4200	3" 3" 3"	5.82 6.13 6.44	$2\frac{1}{2}$ " $2\frac{1}{2}$ " $2\frac{1}{2}$ "	3.88 4.08 4.29	2" 2" 2"	2.91 3.06 3.22	2" 2½" 2½" 2½"	3.23 3.40 3.57	2" 2" 2"	2.15 2.26 2.38	1½" 1½" 1½"	1.61 1.70 1.78
4400 4600 4800	3" 3" 3½"	6.75 7.05 7.35	$2\frac{1}{2}$ " $2\frac{1}{2}$ " $2\frac{1}{2}$ "	4.49 4.69 4.90	$\begin{array}{c} 2\frac{1}{2}'' \\ 2\frac{1}{2}'' \\ 2\frac{1}{2}'' \end{array}$	3.37 3.52 3.67	$2\frac{1}{2}$ " $2\frac{1}{2}$ " $2\frac{1}{2}$ "	3.74 3.91 4.08	2" 2" 2"	2.49 2.61 2.72	1½" 2" 2"	1.87 1.96 2.04
\$000 5500 6000	$\frac{3\frac{1}{2}''}{3\frac{1}{2}''}$	7.65 8.42 9.18	2½" 3" 3"	5.10 5.62 6.13	$2\frac{1}{2}$, 21	3.82 4.21 4.59	2½" 2½" 2½"	4.25 4.68 5.10	2" 2" 2½"	2.83 3.12 3.40	2" 2" 2"	2.12 2.34 2.55
6800 7000 7500	4" 4" 4"	9.95 10.70 11.46	3" 3" 3½"	6.64 7.15 7.66	2½" 3" 3"	4.97 5.35 5.73	3" 3" 3"	5.53 5.95 6.48	$\begin{array}{c} 2\frac{1}{2}'' \\ 2\frac{1}{2}'' \\ 2\frac{1}{2}'' \end{array}$	3.68 3.97 4.25	2" 2" 2"	2.76 2.97 3.24
8000 8500 9000	4" 4½" 4½"	12.22 13.00 13.75	3½" 3½" 3½"	8.17 8.68 9.19	3" 3" 3"	6.11 6.50 6.87	3" 3" 3½"	6.80 7.22 7.65	$2\frac{1}{2}$, 21	4.53 4.82 5.10	$2\frac{1}{2}$, 21	3.40 3.61 3.82
9500 F0000	$\frac{4\frac{1}{2}''}{4\frac{1}{2}''}$	14.50 15.26	3½" 4"	9.70 10.20	$\frac{3\frac{1}{2}''}{3\frac{1}{2}''}$	7.25 7.63		8.08 8.50	3"	5.38 5.66	2½" 2½"	4.04 4.25

PROPERTIES OF SATURATED STEAM

Temp.	Approx. Gauge Press.	Density	Spec. Vol. Cu. Ft. per Lb.	Heat of Liquid	Latent Heat	Total Heat
212	0	.03732	26.79	180.00	970.4	1150.4
215	1	.03945	25.35	183.00	968.4	1151.5
219	2	.04243	23.57	187.10	965.9	1152.9
222	3	.04477	22.34	190.10	963.9	1154.0
224	4	.04640	21.55	192.10	962.6	1154.8
227	5	.04892	20.44	195.20	960.7	1155.8
230	6	.05160	19.39	198.20	958.7	1156.9
232	7	.05340	18.72	200.20	957.4	1157.6
235	8	.05620	17.78	203.20	955.4	1158.7
237 239 250	10 15	.05820 .06020 .07240	17.17 16.60 13.82	205.30 207.30 218.50	954.1 952.8 945.3	1159.4 1160.0 1163.8
259	20	.08370	11.95	227.60	939.1	1166.7
267	25	.09490	10.54	235.80	933.5	1169.3
274	30	.10570	9.46	242.90	928.6	1171.5
281	35	.11740	8.51	250.10	923.5	1173.6
287	40	.12830	7.79	256.20	919.1	1175.3
292	45	.13800	7.24	261.30	915.4	1176.8
298	50	.15040	6.65	267.50	911.0	1178.5
307	60	.17070	5.86	276.80	904.2	1181.0
316	70	.19300	5.19	286.10	897.3	1183.3
324	80	.21480	4.66	294.30	891.0	1185.4
331	90	.23530	4.25	301.60	885.5	1187.1
338	100	.25750	3.88	308.90	879.9	1188.8
344	110	.27780	3.60	315.10	875.1	1190.2
350	120	.29920	3.34	321.40	870.1	1191.5
356	130	.32210	3.10	327.70	865.2	1192.9
361	140	.34230	2.92	332.90	861.0	1193.9
366	150	.36310	2.75	338.20	856.8	1195.0

From the steam tables of Marks & Davis

BUFFALO PROGRESSIVE LUMBER DRY KILN STANDARD SIZES

	Feet Fan System Heater	553 1108 1385 1585 1980 2730 2990	1980 2730 3270 4860 4860 4860	3270 4860 5960 8030 9020 12700
	Size of Fan in Inches	0.000 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.	20 20 30 30 30 30 30 30 30 30 30 30 30 30 30	90 110 120 140 140 22-120 2-130 3-150
be	Wire Ro	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	170 170 170 170 255 255 255 255	
	No. of She Pulleys	00 00 00 00 00 00 00 00	16 16 16 24 24 24 24 24 24	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
n Kiln	12=1b. T=Rails in 1994	96 170 160 160 180 152 315	252 378 504 630 756 756	504 672 1008 1260 1575 1890 3150
For Three Tracks in Number of	Bolts and Nuts with Washers	84 05 72 132 133 133 168	120 192 192 192 180 180 396 396	240 384 528 672 804 1008 1344
Three T	Truck Wheels and Spindles	20 20 44 40 84 84 84 84 84 84 84 84 84 84 84 84 84	90 1322 168 144 198	120 192 264 336 420 504 672 840
	Lumber	55855884	0848 445 452 669 699	60 60 96 1132 1168 1168 210 2210 252 420
For Two Tracks in Kiln. Number of	.dl=21 T=Rails in Teet	884 126 138 150 150 150	164 336 420 500 373 500 500	336 504 672 840 1050 1260 1680 2100
o Tracks in	Bolts and Nuts with Washers	25 25 26 26 26 26 26 26 26 26 26 26 26 26 26	227 176 192 192 193 193 193 193 193 193 193 193 193 193	160 256 352 448 560 672 896
Two T	Truck Wi eels and Spindles	0222224 0248244 0482448	640 112 112 132 132 132	80 128 176 176 224 280 336 448 660
For	Lumber	80245288	02847 8439 0843 8439	40 64 64 88 88 1112 140 140 224 280
Hold.	Capac- ity of Kiln	8000 12000 16000 20000 24000 36000 50000	24000 50000 75000 100000 36000 75000 1110000	48000 48000 192000 192000 240000 400000 500000
Size of	Appara- tus House in Feet	21122 x x x x x x x x x x x x x x x x x	13 x 8 14 x 9 15 x 10 17 x 12 15 x 10 17 x 12 17 x 12 17 x 12 17 x 12	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Size of Dry Kiln	Size of Each Room in Feet	15 x 17 x 9 22 x 17 x 9 33 x 17 x 9 43 x 17 x 9 64 x 17 x 9 85 x 17 x 9	222 x 17 x 9 64 x 17 x 9 64 x 17 x 9 22 x 17 x 9 43 x 17 x 9 43 x 17 x 9 64 x 17 x 9	X X X X X X X X X X X X X X X X X X X
Size of	No. of Drying Rooms	000000000000000000000000000000000000000	Two Two Two Two Three	
		Single ulik	Triple Double Kiln Kiln	Ousbaud niih

LOGARITHMS

Nos.	0	1	2	3	4	5	6	7	8	0	Proportional Parts								
Nat.											1	2	3	4	5	6	7	8	9
10 11 12	0414	0453	0492	0531	0569	0212 0607 0969	0645	0682	0719	0755	4	8	11	15	19	23	26	33 30 28	34
13 14 15						1303 1614 1903							10 9 8		16 15 14	19 18 17	23 21 20	26 24 22	29 27 25
16 17 18	2304	2330	2355	2380	2405	$\begin{array}{c} 2175 \\ 2430 \\ 2672 \end{array}$	2455	2480	2504	2529	2	5	8 7 7	10	13 12 12	16 15 14	17	$\frac{21}{20}$ $\frac{19}{19}$	24 22 21
19 20 21		3032	3054	3075	3096	2900 3118 3324	3139	3160	3181	3201	2	4	7 6 6	9 8 8	11 11 10	13	15	18 17 16	19
22 23 24	3617	3636	3655	3674	3692	3522 3711 3892	3729	3747	3766	3784	2	4	6 6 5	8 7 7	10 9 9	11	13	15 15 14	17
25 26 27	3979 4150 4314	4166	4183	4200	4216		4249	4265	4281	4298	2	3 3 3	5 5 5	7 7 6	9 8 8	10	11	14 13 13	15
28 29 30		4639	4654	4669	4683	4548 4698 4843	4713	4728	4742	4757	1	3	5 4 4	6 6	8 7 7	9	10	12 12 11	14 13 13
31 32 33	5051	5065	5079	5092	5105	4983 5119 5250	5132	5145	5159	5172	1		4 4 4	6 5 5	7 7 6	888		$^{11}_{11}_{10}$	$\frac{12}{12}$ $\frac{12}{12}$
34 35 36	5441	5453	5465	5478	5490	5378 5502 5623	5514	5527	5539	5551	1	3 2 2	4 4 4	5 5 5	6 6 6	8 7 7	9 9 8	10 10 10	11 11 11
37 38 39	5798	5809	5821	5832	5843	5740 5855 5966	5866	5877	5888	5899	1	2 2 2	3 3 3	5 5 4	6 6 5	777	8 8 8	9 9	10 10 10
40 41 42	6128	6138	6149	6160	6170	6075 6180 6284	6191	6201	6212	6222	1	2 2 2	333	4 4 4	5 5 5	6 6	8 7 7	9 8 8	10 9 9
43 44 45	6435	6444	6454	6464	6474	$6385 \\ 6484 \\ 6580$	6493	6503	6513	6522	1	2 2 2	333	4 4 4	5 5 5	6 6 6	7 7 7	8 8	9 9
46 47 48	6721	6730	6739	6749	6758	6675 6767 6857	6776	6785	6794	6803	1	2 2 2	3333	4 4 4	5 5 4	6 5 5	7 6 6	7 7 7	8 8 8
49 50 51	6990	6998	7007	7016	7024	6946 7033 7118	7042	7050	7059	7067	1	2 2 2	3000	3 3	444	5 5 5	6 6	7 7 7	8 88 88
52 53 54	7160 7243 7324	7168 7251 7332	7177 7259 7340	7185 7267 7348	7193 7275 7356	7202 7284 7364	7210 7292 7372	7218 7300 7380	7226 7308 7388	7235 7316 7396	1 1 1	2 2 2	2 2 2	3 3	444	5 5 5	6 6 6	7 6 6	777

LOGARITHMS

LOGARITHMS

Nos.			2	,	1			7		9	P	ro	poi	rti	on	al	Pa	rts	-
Nat.	0	Ľ	2	3	4	5	6	7	8	y	1	2	3	4	5	6	7	8	9
55 56 57	7482	7490	7419 7497 7574	7505	7513	7520	7528	7459 7536 7612	7466 7543 7619	7474 7551 7627	1 1 1	2 2 2	2 2 2	333	444	5 5 5		6 6	777
58 59 60	7709	7716	7649 7723 7796	7731	7738	7745		7686 7760 7832	7694 7767 7839	7701 7774 7846	111	1 1 1	2 2 2	3 3 3	4 4 4	444	5 5 5	6 6	7 7 6
61 62 63	7924	7931	7868 7938 8007	7945	7952	7959	7966	7903 7973 8041	7910 7980 8048	7917 7987 8055	1 1 1	111	2 2 2	3 3 3	4 3 3	444	5 5 5	6 6 5	6 6 6
64 65 66	8129	8136	8075 8142 8209	8149	8156	8162	8169	8109 8176 8241	8116 8182 8248	8122 8189 8254	1 1 1	1 1 1	2 2 2	3 3 3	3 3 3	444			6 6 6
67 68 69	8325	8331	8274 8338 8401	8344	8351	8357	8363	8306 8370 8432	8312 8376 8439	8319 8382 8445	1 1 1	1 1 1	2 2 2	3 2	3 3 3	444	5 4 4	5 5 5	6 6 6
70 71 72	.8513	8519	8463 8525 8585	8531	8537	8543	8549	8494 8555 8615	8500 8561 8621	8506 8567 8627	1 1 1	1 1 1	2 2 2	2 2	3 3 3	4 4 4	444	5 5 5	6 5 5
73 74 75	8692	8698	8645 8704 8762	8710	8716	8722		8675 8733 8791	8681 8739 8797	8686 8745 8802	1 1 1	111	2 2 2	2 2 2	3 3 3	443	444	5 5 5	5 5 5
76 77 78	8865	8871	8820 8876 8932	18882	8887	8893		8848 8904 8960	8854 8910 8965	8859 8915 8971	1 1 1	1 1 1	2 2 2	2 2 2	3 3 3	333	444	5 4 4	5 5 5
79 80 81	9031	9036	8987 9042 9096	9047	9053	9058	9063	9015 9069 9122	9020 9074 9128	9025 9079 9133	1 1 1	1 1 1	2 2 2	2 2	3 3 3	333	4 4 4	444	5 5 5
82 83 84	9191	9196	9149 9201 9253	9206	9212	9217	9222	9175 9227 9279	9180 9232 9284	9186 9238 9289	111	1 1 1	2 2 2	2 2 2	333	333	4 4 4	444	5 5 5
85 86 87	9345	19350	9304 9355 9405	9360	9365	9370	9375	9330 9380 9430	9335 9385 9435	9340 9390 9440	1 1 0	1 1 1	2 2 1	2 2 2	3 3 2	333	4 4 3	444	5 5 4
88 89 90	9494	9499		9509	9513	9518	9523	9479 9528 9576	9484 9533 9581	9489 9538 9586	000	1	1 1 1	2 2 2	2 2 2	333		444	444
91 92 93	9638	9643		9652	9657	9661	9666	9624 9671 9717	9628 9675 9722	9633 9680 9727	000		1111	2 2 2	2 2 2	333	3 3	4	444
94 95 96	9777	9782	9741 9786 9832	19791	9795	9800	9805	9763 9809 9854	9768 9814 9859	9773 9818 9863	000	111	1111	2 2 2	2 2 2	3333	3 3	444	444
97 98 99	9912	9917	9877 9921 9965	19926	9930	9934	9939	9899 9943 9987	9903 9948 9991	9908 9952 9996			111	2 2 2	2 2 2	333	333	443	444

USEFUL FACTORS

=231 cu. in. 1 gal. (U.S.) =0.13368 cu. ft. 1 gal. (British) =277.274 cu. in. =7.4805 gals. 1 cu. ft. =62.37 lbs. 1 cu. ft. water at 60° F. 1 gal. water at 60° F. = 8.34 lbs.1 cu. ft. water at 212° F. =59.76 lbs. =7.99 lbs. 1 gal. water at 212° F. 1 barrel water at 60° F. $=31 \frac{1}{2}$ gals. =262.7 lbs. $=1\frac{1}{8}$ ft. or 13.6 in. water 1 in. mercury =0.491 lb. per sq. in. =2.304 ft, water at 60° 1 lb. per sq. in. press. Height of a column of water =lb. press. per sq. in. in feet \times 0.434 A column of water 1 sq. in. = approximately 1 lb. and 21/3 ft. high =3.97 B. t. u. 1 calorie 1 kilogram =2.2046 lbs. =B. t. u. per lb. Calories per kilo × 1.8 1 kilowatt (1000 watts) =1.3405 H. P. =0.746 K. W. 1 horsepower =56.9 B. t. u. per min. 1 kilowatt =42.4 B. t. u. per min. 1 mech, horsepower =2545 B. t. u. per hour =33000 ft. lbs. per min.

1 boiler horsepower

1 ft. lb. per sec.

1 B. t. u.

=33479 B. t. u. per hour

=778 ft. lbs.

=1.356 watts

WATER CONVERSION FACTORS*

U. S. gallons	×8.33	= pounds
U. S. gallons	$\times 0.13368$	=cu. ft.
U. S. gallons	×231.	=cu. in.
U. S. gallons	$\times 3.78$	=liters
Cu. in. water at 39.1°	$\times 0.036024$	= pounds
Cu. in. water at 39.1°	$\times 0.004329$	= U. S. gal.
Cu. in. water at 39.1°	$\times 0.576384$	= ounces
Cu. ft. water at 39.1°	$\times 62.425$	= pounds
Cu. ft. water at 39.1°	$\times 7.48$	= U. S. gal.
Cu. ft. water at 39.1°	$\times 0.028$	=tons
Pounds of water	$\times 27.72$	=cu. in.
Pounds of water	$\times 0.01602$	=cu. ft.
Pounds of water	$\times 0.12$	= U. S. gal.
MEASURES	OF PRESSURE	AND WEIGHT†

	(0.12) = U. S. gal.
MEASURES OF	PRESSURE AND WEIGHT†
1 lb. per sq. in. $=$	144 lbs. per sq. ft. 2.0416 in. mercury at 62° F. 2.309 ft. water at 62° 27.71 in. water at 62°
1 oz. per sq. in. = {	0.1276 in. mercury at 62° 1.732 in. water at 62°
1 atmosphere (14.7 lbs. per sq. in.) =	2116.3 lbs. per sq. ft 33.947 ft. water at 62° 30 in. mercury at 62° 29.922 in. mercury at 32°
1 in. water at 62° F. =	(0.03609 lb. or .5774 oz. per sq. in. 5.196 lbs. per sq. ft.
1 ft. water at 62° F. =	(0.433 lb. per sq. in. (62.355 lbs. per sq. ft.
1 in, mercury at 62° F. = -	0.491 lb. or 7.86 oz. per sq. in. { 1.132 ft. water at 62° 13.58 in. water at 62°

^{*}American Machinist Hand Book. †Kent's Mechanical Engineers' Pocket Book.

REPORT OF COMMITTEE OF AMERICAN SOCIETY OF HEAT-ING AND VENTILATING ENGINEERS ON STAND-ARDS FOR VENTILATION LEGISLATION FOR MOTION PICTURE SHOW PLACES

January, 1913

Ventilation and sanitation requirements cannot be too strongly emphasized when dealing with the question of legislation relating to motion picture show places. The widespread neglect, in a very large number of communities throughout the country, of proper ventilation and sanitation in such motion picture show places, has many times been correctly characterized as a "menace to public health"—materially affecting the moral tone as well.

Allowing the great importance of fire protection and structural requirements for the protection of life; elimination of lowclass vaudeville, enforced lighting during performances, supervision of pictures exhibited, and other essential matters for the protection of morals; ventilation and sanitation requirements loom up large for the protection of health.

The Committee has been appointed to deal with the subject of ventilation and this question is, of course, vitally concerned with all the conditions of the air breathed, particularly temperature, air purity, air motion, humidity, and freedom from dust (impurities from breathing, skin exhalations, dust, etc., being constantly released in large quantities in every audience hall).

With a view of suggesting minimum requirements that are practical to secure, the following recommendations are made as standards for legislation to cover this important phase of the needed general regulations for motion picture show places.

MINIMUM VENTILATION STANDARDS

1. Floor Area per Occupant.

A minimum of 4½ sq. ft. of floor area, as a seating space, per occupant, exclusive of aisles and public passageways, shall be provided in the audience hall.

2. Cubic Space per Occupant.

A minimum of 80 cu. ft. of air space, per occupant, shall be provided in the audience hall.

3. Quantity of Outdoor Air.

A positive supply of outdoor air from an uncontaminated source shall be provided the audience hall at all times while the show place is open to the public, and the quantity of this positive supply of outdoor air shall be based on a minimum requirement of 15 cu, ft. per minute, per occupant.*

4. Temperature.

The temperature of the air in the audience hall shall at all times, while the show place is open to the public, be maintained throughout at the breathing line (persons being seated) within the range of 62° F. to 70° F. (except when the outside temperature is sufficiently high not to require the air supply for ventilation to be heated). The temperature, distribution and diffusion of the supplied outdoor air shall be such as to maintain the temperature requirement without uncomfortable drafts.

5. Direct Heat Sources.

Any good heat source which does not contaminate the air will be accepted to supplement the warmed outdoor air supply. Gas radiators are prohibited.

6. Machine Booth Ventilation.

Enclosures or booths for the motion picture machines shall be provided with special exhaust ventilation with a capacity to exhaust at all times not less than 60 cu. ft. of air per minute through a one-machine booth, not less than 90 cu. ft. of air per minute through a two-machine booth, and not less than 120 cu. ft. of air per minute through a three-machine booth.

This requirement shall include a number of small metal screened openings (equipped with special dampers and automatic appliance with fusible link to automatically close tight in case

^{*}The ordinance in force in the City of Chicago at the present time requires that the air in the auditorium in the class of buildings in which motion picture show places are included, shall be changed so as to supply for each person for whom seating accommodation is provided, at least 1500 cu. ft. of air per hour for new buildings, and at least 1200 cu. ft. of air per hour for buildings constructed prior to the passage of the ordinance, which requirements the Illinois Chapter of the Society considers practical to obtain and desirable to require by legislation for motion picture show places.

Higher standards of ventilation than set forth as minimum in the committee's report are urged wherever possible to obtain.

of fire in the booth) on the sides of the booth near the bottom, aggregating 180 sq. in. for a one-machine booth, 210 sq. in. for a two-machine booth, and 240 sq. in. for a three-machine booth; and this requirement shall also include a metal or other fireproof flue, extending from the top or side at the top of the booth, and carried to a proper place of discharge outdoors. The ventilation should be augmented by mechanical or other means, so as to exhaust at least the quantity of air as herein stated.

The size of this special fireproof vent flue shall be not less than 96 sq. in. clear area for a one-machine booth, not less than 120 sq. in. clear area for a two-machine booth, and not less than 144 sq. in. clear area for a three-machine booth, and this special vent flue shall be provided with an adjustable damper, operated from the booth, and equipped with an automatic appliance and a fusible link to operate so as to open the damper wide automatically in case of fire in the booth. The machine booth ventilation shall be kept in operation at all times when the booth is in use.

It will be noted that the foregoing regulations are simple, and that violations may be readily detected, also that care has been exercised to leave large latitude for design of the ventilating apparatus.

It should be especially noted that the foregoing regulations call for a minimum of all requirements as compulsory, and that it should be the aim of the administrative department having enforcement of the regulations in charge to encourage motion picture show owners and managers to provide as comprehensive, liberal, and high-class equipment as possible, with a view to catering to the comfort and health of the patrons and thus add to the popularity of the show place as compared with others which may have barely come within the legal requirements.

Elimination of dust from the air supply by means of air filters or air washers is desirable under the best conditions and is imperative under some conditions of especially dusty air supply. This question is dealt with by suggestion in the following general clauses. The controlling of relative humidity is desirable, whenever possible, but the Committee decided to omit from the regulations any humidity requirement.

The machine booth ventilation, as per recommended regulations, would be greatly improved, especially for summer conditions, by providing a duct connection from out of doors to the bottom of the booth, for the introduction of outdoor air directly to the booth. * * * * * *

Strong emphasis is placed on the need of having the administrative feature of legislation of the kind here advocated, placed in the control of a responsible department, * and that such department be supplied with a special inspector or inspectors, experienced in heating, ventilation, and sanitation, and that such department be given reasonable latitude by legislation, such as to require approval of plans preceding installation or to require special extra equipment for special cases, such as dust filters for air supply where the air supply is especially dust laden; exhaust ventilation of toilets where building laws do not properly cover this matter; fans in the auditorium, to keep the air in motion where diffusion is insufficient, etc., it being made clear in the legislation that such latitude should in no case include the right to reduce the stated minimum requirements. The administrative department should also be given the support of other local or state departments, as the case may be, such as the fire department, police department, health department, etc.

INDEX

Absolute humidity	28
Air, amount of per person in various buildings	59
amount of required for combustion	85
composition of	11
effect of barom, pressure on velocity of	24
effect of humidity on velocity of	27
effect of temperature on properties of	27 24
effect of temperature on volume of	$\frac{29}{26}$
heat required to condition	73
measurement of amount used for combustion	89
measuring quantity of	525
moisture removing capacity of in fan system dryers	79
properties of dry	13
properties of saturated	15
purity of	58,59
quantity of and final temp, required for heating	56
relation of altitude to properties of	24
relation of per cent. excess to boiler eff. and draft requirement.	87
relative volumes of at various temperatures	13
requirements due to gas and electric lights	62 62
requirements due to machinery	02
requirements due to heat given off by occupantsrequirements due to sun effect	62 62
specific heat of	16
velocity of at different pressures	21
velocity of at different pressures and temperatures	$22, \overline{23}$
velocity of through heaters	-414
weight of	11
weight of dry, at various temperatures	13
weight of saturated and partly saturated	17
Air conditioning apparatus	469
Air connections for Buffalo heaters452	2-455
A 2 1 1 . 1 . 1 . 1 . 1 . 1 . 1 .	1 00
Air density, pressure, and velocity relations in fan work	-178
Air density, pressure, and velocity relations in fan work	$\frac{178}{111}$
Air density, pressure, and velocity relations in fan work. Air ducts	$178 \\ 111 \\ 122$
Air density, pressure, and velocity relations in fan work	178 111 122 115
Air density, pressure, and velocity relations in fan work	178 111 122 115 114
Air density, pressure, and velocity relations in fan work. Air ducts	178 111 122 115
Air density, pressure, and velocity relations in fan work. Air duets. diverging nozzle in. friction in. pressure losses in. Air measurements, coefficients of discharge for. Air washers.	178 111 122 115 114 203
Air density, pressure, and velocity relations in fan work Air duets . diverging nozzle in. friction in. pressure losses in Air measurements, coefficients of discharge for. Air washers . Air washers , dimensions of Carrier type "A" washer	178 111 122 115 114 203
Air density, pressure, and velocity relations in fan work. Air duets	178 111 122 115 114 203 469
Air density, pressure, and velocity relations in fan work. Air ducts	178 111 122 115 114 203 469 477 479 481
Air density, pressure, and velocity relations in fan work Air duets. diverging nozzle in. friction in. pressure losses in Air measurements, coefficients of discharge for. Air washers Air washers, dimensions of Carrier type "A" washer. Carrier type "B" washer. Carrier type "G" washer. Air washers, principles of construction of	178 111 122 115 114 203 469 477 479
Air density, pressure, and velocity relations in fan work Air duets	178 111 122 115 114 203 469 477 479 481 469
Air density, pressure, and velocity relations in fan work Air duets	178 111 122 115 114 203 469 477 479 481 469
Air density, pressure, and velocity relations in fan work Air duets	178 111 122 115 114 203 469 477 479 481 469 537 539
Air density, pressure, and velocity relations in fan work Air duets	178 111 122 115 114 203 469 477 479 481 469 537 539 540
Air density, pressure, and velocity relations in fan work Air duets. diverging nozzle in. friction in. pressure losses in Air measurements, coefficients of discharge for. Air washers Air washers, dimensions of Carrier type "A" washer. Carrier type "B" washer. Carrier type "G" washer. Air washers, principles of construction of Air washers, specifications of Carrier type "A" washer. Carrier type "B" washer. Carrier type "G" washer. Air washing.	178 111 122 115 114 203 469 477 479 481 469 537 539 540 67
Air density, pressure, and velocity relations in fan work Air duets. diverging nozzle in. friction in. pressure losses in Air measurements, coefficients of discharge for. Air washers Air washers, dimensions of Carrier type "A" washer. Carrier type "B" washer. Carrier type "G" washer. Air washers, principles of construction of Air washers, specifications of Carrier type "A" washer. Carrier type "B" washer. Carrier type "G" washer. Air washing.	178 111 122 115 114 203 469 477 479 481 469 537 539 540 67
Air density, pressure, and velocity relations in fan work Air duets. diverging nozzle in. friction in. pressure losses in Air measurements, coefficients of discharge for. Air washers. Air washers, dimensions of Carrier type "A" washer. Carrier type "B" washer Carrier type "C" washer Air washers, principles of construction of Air washers, principles of construction of Air washers, specifications of Carrier type "A" washer Carrier type "B" washer Carrier type "B" washer Carrier type "C" washer Air washing. guarantees Alternating current motor specifications	178 111 122 115 114 203 469 477 479 481 469 537 539 540 67
Air density, pressure, and velocity relations in fan work Air duets . diverging nozzle in. friction in. pressure losses in Air measurements, coefficients of discharge for Air washers . Air washers . Air washers, dimensions of Carrier type "A" washer Carrier type "B" washer Carrier type "B" washer Carrier type "C" washer Air washers, principles of construction of Air washers, specifications of Carrier type "A" washer Carrier type "B" washer Carrier type "B" washer Carrier type "B" washer Carrier type "C" washer Air washing. guarantees Alternating current motor specifications Altitude, relation of to properties of air.	178 111 122 115 114 203 469 477 479 481 469 537 539 540 67 544 536
Air density, pressure, and velocity relations in fan work Air duets	178 111 122 115 114 203 469 477 479 481 469 537 5340 67 5444 5366 24 197 168
Air density, pressure, and velocity relations in fan work Air duets . diverging nozzle in. friction in. pressure losses in Air measurements, coefficients of discharge for Air washers . Air washers . Air washers, dimensions of Carrier type "A" washer Carrier type "B" washer Carrier type "B" washer Carrier type "C" washer Air washers, principles of construction of Air washers, specifications of Carrier type "A" washer Carrier type "B" washer Carrier type "B" washer Carrier type "B" washer Carrier type "C" washer Air washing. guarantees Alternating current motor specifications Altitude, relation of to properties of air.	178 111 122 115 114 203 469 477 479 481 469 537 539 540 67 544 536 24 197 168 543

INDEX

P.	AGE
Application of heater tables and curves	
Area and circumference of circles	
Arrangement of fan system apparatus	63
Aspiration psychrometer	29
Automatic humidity control	74
Automatic pumps and receivers	
centrifugal	467
dunley	466
	464
22 Votage indoor temp, for various outdoor temp,	101
400	004
	334
capacity table	335
Baby Conoidal fans Barometric pressure, effect of on velocity of air.	356
Barometric pressure, effect of on velocity of air	24
Black steel piping, weight of	162
	458
of minim	126
	108
Blast and exhaust ducts for forge shop equipment	
Blow-through fan system apparatus	63
Blow pipe work (see exhaust systems)	
Blowers, "B" volume	334
capacity table	335
	355
Diameter Diameter District	000
Blowers, Planoidal steel plate capacity tables	202
capacity tables	223
dimension tables	362
performance curves	225
Blowers, steel plate pressure	340
Blowers, steel pressure	336
	337
	398
	339
	59
Dodny heat, removal of	
Boiler eff. and draft required, relation of to per cent. excess air	87
Boiler eff. and draft required, relation of to per cent. excess air Boiler plant, measurement of air used in	87 89
Bodily heat, removal of Boiler eff, and draft required, relation of to per cent. excess air Boiler plant, measurement of air used in Brake horsepower of engines (see steam engines)	87 89
Brake horsepower of engines (see steam engines)	$\frac{87}{89}$ 505
Branch pipes, diameters of	87 89 505 152
Branch pipes, diameters of. Buffalo pipe coil heaters (also see heaters).	87 89 505 152 399
Branch pipes, diameters of. Buffalo pipe coil heaters (also see heaters)	87 89 505 152 399
Brake horsepower of engines (see steam engines) Branch pipes, diameters of	87 89 505 152 399 458
Brake horsepower of engines (see steam engines) Branch pipes, diameters of	87 89 505 152 399 458
Brake horsepower of engines (see steam engines) Branch pipes, diameters of . Buffalo pipe coil heaters (also see heaters) blast area of . by-pass proportions for . curves	87 89 505 152 399 458 457 438
Brake horsepower of engines (see steam engines) Branch pipes, diameters of . Buffalo pipe coil heaters (also see heaters) blast area of . by-pass proportions for . curves . dimensions of heater case for . friction of air through	87 89 505 152 399 458 457 438 446
Brake horsepower of engines (see steam engines) Branch pipes, diameters of. Buffalo pipe coil heaters (also see heaters) blast area of by-pass proportions for curves dimensions of heater case for friction of air through length of connection	87 89 505 152 399 458 457 438 456 446 457
Brake horsepower of engines (see steam engines) Branch pipes, diameters of . Buffalo pipe coil heaters (also see heaters) blast area of . by-pass proportions for . curves. dimensions of heater case for . friction of air through length of connection .	87 89 505 152 399 458 457 438 456 446 457
Brake horsepower or engines (see steam engines) Branch pipes, diameters of. Buffalo pipe coil heaters (also see heaters) blast area of by-pass proportions for curves dimensions of heater case for friction of air through length of connection regular open area pattern	87 89 505 152 399 458 457 438 456 446 457 399
Brake horsepower of engines (see steam engines) Branch pipes, diameters of. Buffalo pipe coil heaters (also see heaters) blast area of by-pass proportions for curves. dimensions of heater case for friction of air through length of connection regular open area pattern return bend pattern.	87 89 505 152 399 458 456 446 457 399 399
Brake horsepower of engines (see steam engines) Branch pipes, diameters of. Buffalo pipe coil heaters (also see heaters) blast area of by-pass proportions for curves. dimensions of heater case for friction of air through length of connection regular open area pattern return bend pattern.	87 89 505 152 399 458 457 438 456 446 457 399 399
Brake horsepower of engines (see steam engines) Branch pipes, diameters of Buffalo pipe coil heaters (also see heaters) blast area of by-pass proportions for curves dimensions of heater case for friction of air through length of connection regular open area pattern sizes and dimensions of	87 89 505 152 399 458 457 438 456 446 457 399 449
Brake horsepower of engines (see steam engines) Branch pipes, diameters of Buffalo pipe coil heaters (also see heaters) blast area of by-pass proportions for curves dimensions of heater case for friction of air through length of connection regular open area pattern sizes and dimensions of	87 89 505 152 399 458 457 438 456 446 457 399 449
Brake horsepower of engines (see steam engines) 485- Branch pipes, diameters of 144- Buffalo pipe coil heaters (also see heaters) 144- Buffalo pipe coil heaters (also see heaters) 145- blast area of 145- by-pass proportions for 143- dimensions of heater case for 143- dimensions of heater case for 143- friction of air through 145- length of connection 145- regular open area pattern 145- return bend pattern 145- sizes and dimensions of 145- tables 148- velocity of air through 142- tables 148- velocity of air through 142- tables 148- velocity of air through 142- tables 148- tables	87 89 505 152 399 458 457 438 456 446 445 399 449 445 431 414
Brake horsepower of engines (see steam engines) Branch pipes, diameters of	87 89 505 152 399 458 457 438 446 446 447 399 449 441 414 96
Brake horsepower of engines (see steam engines) Branch pipes, diameters of	87 89 505 152 399 458 457 438 456 446 445 399 449 445 431 414
Brake horsepower of engines (see steam engines) Branch pipes, diameters of . Buffalo pipe coil heaters (also see heaters) blast area of . by-pass proportions for . curves . dimensions of heater case for . friction of air through . length of connection . regular open area pattern . return bend pattern . sizes and dimensions of . steam, drip and air connections of . 452- tables	87 89 505 152 399 458 457 438 456 446 457 399 449 455 431 414 96 46
Brake horsepower of engines (see steam engines) Branch pipes, diameters of . Buffalo pipe coil heaters (also see heaters) blast area of . by-pass proportions for . curves . dimensions of heater case for . friction of air through . length of connection . regular open area pattern . sizes and dimensions of . steam, drip and air connections of . 452- tables . 418- velocity of air through . Buffing wheels, dust removal from . Buildings, heat losses from .	87 89 505 152 399 458 457 438 446 446 447 399 449 441 414 96
Brake horsepower of engines (see steam engines) 485-	87 89 505 152 399 458 456 446 457 399 449 455 431 414 96 46 457
Brake horsepower of engines (see steam engines) 485-	87 89 505 152 399 458 456 446 457 399 449 455 431 414 96 46 457
Brake horsepower of engines (see steam engines) Branch pipes, diameters of	87 89 505 152 399 458 457 438 446 446 457 431 445 445 431 457 529
Brake horsepower of engines (see steam engines) Branch pipes, diameters of	87 89 505 152 399 458 457 438 446 446 457 431 445 445 431 457 529
Brake horsepower of engines (see steam engines) Branch pipes, diameters of	87 89 505 152 399 458 457 438 457 439 945 431 414 96 46 457 529 356 59
Brake horsepower or engines (see steam engines) Branch pipes, diameters of. Buffalo pipe coil heaters (also see heaters) blast area of by-pass proportions for curves dimensions of heater case for friction of air through length of connection regular open area pattern sizes and dimensions of steam, drip and air connections of 452- tables 418- velocity of air through Buffing wheels, dust removal from Buildings, heat losses from By-pass proportions for heaters. Calculating fan tests, method of Capacity of fans (see fan capacity tables) 205- Capacity of pipes 143, 154, Carbon dioxide, amount allowable in air	87 89 505 152 399 458 457 438 446 446 457 431 445 445 431 457 529
Brake horsepower of engines (see steam engines) Branch pipes, diameters of. Buffalo pipe coil heaters (also see heaters) blast area of by-pass proportions for curves dimensions of heater case for friction of air through length of connection regular open area pattern sizes and dimensions of steam, drip and air connections of 452- tables 418- velocity of air through Buffing wheels, dust removal from By-pass proportions for heaters Calculating fan tests, method of Capacity of fans (see fan capacity tables) 205- Capacity of pipes Carbon dioxide, amount allowable in air determination of Carrier sir washers	87 89 505 152 399 457 438 457 438 4457 431 414 96 4457 529 3155 59 60
Brake horsepower of engines (see steam engines) Branch pipes, diameters of. Buffalo pipe coil heaters (also see heaters) blast area of by-pass proportions for curves dimensions of heater case for friction of air through length of connection regular open area pattern sizes and dimensions of steam, drip and air connections of 452- tables 418- velocity of air through Buffing wheels, dust removal from By-pass proportions for heaters Calculating fan tests, method of Capacity of fans (see fan capacity tables) 205- Capacity of pipes Carbon dioxide, amount allowable in air determination of Carrier sir washers	87 89 505 152 399 457 438 457 438 4457 431 414 96 4457 529 3155 59 60
Brake horsepower of engines (see steam engines) Branch pipes, diameters of	87 89 505 152 399 457 438 457 446 457 441 4457 529 60 481
Brake horsepower or engines (see steam engines) Branch pipes, diameters of . Buffalo pipe coil heaters (also see heaters) blast area of . by-pass proportions for . curves . dimensions of heater case for . friction of air through . length of connection . regular open area pattern . return bend pattern . sizes and dimensions of . steam, drip and air connections of . 452- tables	87 89 505 152 399 457 438 457 446 457 441 4457 529 60 481
Brake horsepower of engines (see steam engines) Branch pipes, diameters of	87 89 505 152 345 845 446 457 438 446 457 529 3449 455 431 414 457 529 60 481 541
Brake horsepower of engines (see steam engines) Branch pipes, diameters of. Buffalo pipe coil heaters (also see heaters) blast area of . by-pass proportions for . curves. dimensions of heater case for . friction of air through length of connection . regular open area pattern . return bend pattern. sizes and dimensions of . steam, drip and air connections of . 452- tables . velocity of air through . Buffing wheels, dust removal from . Buildings, heat losses from By-pass proportions for heaters. Calculating fan tests, method of . Capacity of fans (see fan capacity tables) . 205- Capacity of fans (see fan capacity tables) . 205- Capacity of pipes	87899 5052 34584457 4384566 4457 3999 4455 4414 457 523556 60 4811 69
Brake horsepower of engines (see steam engines) Branch pipes, diameters of. Buffalo pipe coil heaters (also see heaters) blast area of by-pass proportions for curves. dimensions of heater case for friction of air through length of connection regular open area pattern return bend pattern. sizes and dimensions of steam, drip and air connections of 452- tables. 418- velocity of air through Buffing wheels, dust removal from Buildings, heat losses from. By-pass proportions for heaters. Calculating fan tests, method of Capacity of pipes Carpon dioxide, amount allowable in air determination of. Carrier air washers dimensions of Carrier air washers dimensions of Carrier air washers dimensions of Carrier humidifying system cooling capacity of temperatures in	87895 5052 34584457 4384566 4457 33999 44996 457 5296 560 4811 541 6971
Brake horsepower of engines (see steam engines) Branch pipes, diameters of. Buffalo pipe coil heaters (also see heaters) blast area of . by-pass proportions for . curves. dimensions of heater case for . friction of air through length of connection . regular open area pattern . return bend pattern. sizes and dimensions of . steam, drip and air connections of . 452- tables . velocity of air through . Buffing wheels, dust removal from . Buildings, heat losses from By-pass proportions for heaters. Calculating fan tests, method of . Capacity of fans (see fan capacity tables) . 205- Capacity of fans (see fan capacity tables) . 205- Capacity of pipes	87895 5052 34584457 4384566 4457 33999 44996 457 5296 560 4811 541 6971

FAN ENGINEERING-BUFFALO FORGE COMPANY

Case iron heaters, Vento (also see heaters). 436 Cast iron heaters, Vento (also see heaters). 42-438 friction through 447 sizes and dimensions of 460-462 tables 439-444 Centrifugal automatic pumps and receivers. 467 Chimneys 548 draft produced by 548 height 548 height 548 height 548 height 548 lesse of with appropriate horsepower of boilers. 549 Circular equivalents of circles 550, 551 Circumference and area of circles 550, 551 Circumference and area of circles 550, 551 Coefficients of discharge for air measurements 293, 294 Coils, condensation in heater 411 Coll storage insulation, heat loss through 33 Collectors, dust. 101 Combination fan, engine and heater tables 206, 518-528 Combination fan, engine and heater tables 206, 518-528 Combination of air 11 Condensation in heater <td< th=""><th></th><th>PAGE</th></td<>		PAGE
Cast iron heaters, Vento (also see heaters). 401 curves. 432-438 friction through 447 sizes and dimensions of 460-462 tables. 439-444 Centrifugal automatic pumps and receivers. 467 Chimneys 548 draft produced by 548 height. 548 height with appropriate horsepower of boilers. 548 Circles, area and circumference of. 550, 551 Circular equivalents of rectangular duets. 156, 157 Circular equivalents of rectangular duets. 156, 157 Cofficients of discharge for air measurements 203, 204 Coils, condensation in heater 411 Colid storage insulation, heat loss through 33 Collectors, dust. 101, 102 Combination fan, engine and heater tables 206, 518-523 Composition of air 11 Condensation in heater coils 411 Composition of air 11 Conditioning air, apparatus for 486 heat required for 33 Cone wheels	Cases, dimensions of Buffalo heater	
Curves	Cast iron heaters. Vento (also see heaters).	401
friction through sizes and dimensions of	curves	432-438
sizes and dimensions of		
tables	sizes and dimensions of	460-462
Centrifugal automatic pumps and receivers. 467		
Chimneys 548 draft produced by 548 height 548 size of with appropriate horsepower of boilers 548 circles, area and circumference of 550, 551 Circular equivalents of rectangular ducts 156, 157 Circumference and area of circles 550, 551 Coils, condensation in heater 411 Coils, condensation in heater 411 Collectors, dust 101, 102 Combustion, air required for 89 Composition of air 111 Composition of air 111 Conditioning air, apparatus for 484 heat required for 73 Cone wheels 33 capacity table 33 Connection, length of heater 457 Connections of Buffalo heaters, steam, drip and air 452-45 Converging nozzle 120 pressure losses in 120 use of in fan testing 201 Coversjon table, temperature 552 water 562 Cooling capacity of Carrier humidifying system </td <td></td> <td></td>		
draft produced by height. 548 height. 548 size of with appropriate horsepower of boilers. 548 Circles, area and circumference of		401
height	Chimneys	740
Circelar equivalents of rectangular ducts .550, 551 Circular equivalents of rectangular ducts .156, 157 Coefficients of discharge for air measurements .203, 204 Coils, condensation in heater .411 Collectors, dust .101, 102 Combustion, air required for .85 combustion, air required for .86 composition of air .11 Condensation in heater coils .411 Conditioning air, apparatus for .48 heat required for .73 Cone wheels .33 capacity table .33 Connection, length of heater .45 Converging nozzle .20 pressure losses in .20 use of in fan testing .20 Coloing capacity of Carrier humidifying system .66 Cooling capacity of Carrier humidifying system .66 Cooling guarantees .55 Cooling capacity of Carrier humidifying system .66 Cooling guarantees .56 Cooling feet, relation of to per cent, relative humidity .66 C	draft produced by	548
Circelar equivalents of rectangular ducts .550, 551 Circular equivalents of rectangular ducts .156, 157 Coefficients of discharge for air measurements .203, 204 Coils, condensation in heater .411 Collectors, dust .101, 102 Combustion, air required for .85 combustion, air required for .86 composition of air .11 Condensation in heater coils .411 Conditioning air, apparatus for .48 heat required for .73 Cone wheels .33 capacity table .33 Connection, length of heater .45 Converging nozzle .20 pressure losses in .20 use of in fan testing .20 Coloing capacity of Carrier humidifying system .66 Cooling capacity of Carrier humidifying system .66 Cooling guarantees .55 Cooling capacity of Carrier humidifying system .66 Cooling guarantees .56 Cooling feet, relation of to per cent, relative humidity .66 C	neight	548
Circular equivalents of rectangular ducts 156, 157 Circumference and area of circles 550, 551 Coefficients of discharge for air measurements 203, 204 Coils, condensation in heater 411 Cold storage insulation, heat loss through 53 Combination fan, engine and heater tables 206, 518-523 Combustion, air required for 89 measurement of air used for 89 Composition of air 11 Condensation in heater coils 411 Conditioning air, apparatus for 469 heat required for 73 Cone wheels 33 capacity table 33 Connections of Buffalo heaters, steam, drip and air 452-455 Conoidal fans (see Niagara Conoidal and Turbo-Conoidal fans) 201 Converging nozzle 120 pressure losses in 120 use of in fan testing 201 Covereston table, temperature 55 Cooling 68 Cooling capacity of Carrier humidifying system 68 Cooling defect, relation of to per cent. relative humidity <t< td=""><td>size of with appropriate horsepower of boliers</td><td>550 551</td></t<>	size of with appropriate horsepower of boliers	550 551
Circumference and area of circles 550, 520 Coefficients of discharge for air measurements 203, 204 Coils, condensation in heater 411 Cold storage insulation, heat loss through 53 Collectors, dust. 101, 102 Combustion, air required for 85 measurement of air used for. 85 Composition of air 11 Conditioning air, apparatus for 40 heat required for 73 Cone wheels 32 capacity table 33 Connection, length of heater 33 Converging nozzle 12 pressure losses in 12 use of in fan testing 20 coling capacity of Carrier humidifying system 68 Cooling capacity of Carrier humidifying system 68 Cooling guarantees 54 Cooling guarantees 54 Cooling guarantees 54 Coupla service 47 Dehumidifiers 47 spray type 47 Dehumidifying, refrigeration required for <	Circles, area and circumference of	350, 351
Coils, condensation in heater 411 Coil ectors, dust. 101, 102 Combination fan, engine and heater tables 206, 518-523 Combustion, air required for 85 measurement of air used for. 85 Composition of air 11 Conditioning air, apparatus for 46 heat required for 73 Cone wheels 332 capacity table 33 Connection, length of heater 457 Connections of Buffalo heaters, steam, drip and air 452-455 Conoidal fans (see Niagara Conoidal and Turbo-Conoidal fans) 60 Conversion table, temperature 552 water 56 Cooling 68 Cooling capacity of Carrier humidifying system 68 Cooling effect, relation of to per cent, relative humidity 68 Cooling effect, relation of to per cent, relative humidity 68 Corresponding pressures and velocities of dry air 22 Cubic feet air per person for ventilating 56 Corresponding velocity of dry air at various press, and temp 22,22 Cubic feet air	Circular equivalents of rectangular ducts	150, 157
Coils, condensation in heater 411 Coil ectors, dust. 101, 102 Combination fan, engine and heater tables 206, 518-523 Combustion, air required for 85 measurement of air used for. 85 Composition of air 11 Conditioning air, apparatus for 46 heat required for 73 Cone wheels 332 capacity table 33 Connection, length of heater 457 Connections of Buffalo heaters, steam, drip and air 452-455 Conoidal fans (see Niagara Conoidal and Turbo-Conoidal fans) 60 Conversion table, temperature 552 water 56 Cooling 68 Cooling capacity of Carrier humidifying system 68 Cooling effect, relation of to per cent, relative humidity 68 Cooling effect, relation of to per cent, relative humidity 68 Corresponding pressures and velocities of dry air 22 Cubic feet air per person for ventilating 56 Corresponding velocity of dry air at various press, and temp 22,22 Cubic feet air	Circumierence and area of circles	202 204
Cold storage insulation, heat loss through 53 Collectors, dust. 101, 102 Combination fan, engine and heater tables 206, 518-523 Combustion, air required for 85 measurement of air used for 89 Composition of air 11 Condensation in heater coils 411 Conditioning air, apparatus for 406 heat required for 73 Cone wheels 32 capacity table 332 Connections of Buffalo heaters, steam, drip and air 452-455 Conoidal fans (see Niagara Conoidal and Turbo-Conoidal fans) 452-455 Converging nozzle pressure losses in 120 converging nozzle 201 Conversion table, temperature 552 Water 553 Cooling capacity of Carrier humidifying system 66 Cooling guarantees 54 Corresponding pressures and velocities of dry air 21 Corresponding pressures and velocities of dry air 22 Corresponding pressures and velocities of dry air 22 Corresponding pressures and velociti		
Composition of air 11	Colls, condensation in neater	411
Composition of air 11	Cold storage insulation, near loss through	101 109
Composition of air 11	Collections, dust.	519 599
Composition of air 11	Combination rain, engine and neater tables	010-040
Composition of air 11	Compustion, air required for	60
Condensation in heater coils		
Conditioning air, apparatus for 469	Condensation in heater soils	411
heat required for 373	Condensation in neater cons	411
Cone wheels. 332 capacity table 333 Connection, length of heater 457 Connections of Buffalo heaters, steam, drip and air 452-455 Conoidal fans (see Niagara Conoidal and Turbo-Conoidal fans) Converging nozzle 120 pressure losses in 201 Converging nozzle 252 water 552 Cooling. 68 Cooling defect, relation of to per cent. relative humidity 68 Cooling guarantees. 544 Corresponding pressures and velocities of dry air 21 Corresponding velocity of dry air at various press, and temp. 22, 23 Cubic feet air per person for ventilating 56 Cubic feet air per person for ventilating 56 Cupola service. 110 Dehumidifiers. 47 spray type 47 Dehumidifiers 47 Determination of temperature guarantees 46 few-Point 22 Dew-Point method of humidity control 7 Dew-Point temp, relation of wet-bulb and dry-bulb temp. 36	Conditioning air, apparatus for	409
Connection, length of heater Connections of Buffalo heaters, steam, drip and air 452-455	neat required for	10
Connection, length of heater Connections of Buffalo heaters, steam, drip and air 452-455	Cone wheels	999
Converging nozzle	capacity table	457
Converging nozzle	Connection, length of heater	450 455
Converging nozzle	Connections of Buriato neaters, steam, drip and air	452-455
pressure losses in use of in fan testing 200	Conoidal fans (see Niagara Conoidal and Turbo-Conoidal fans)	
use of in fan testing. 201 Conversion table, temperature 552 water 563 Cooling. 68 Cooling capacity of Carrier humidifying system. 68 Cooling effect, relation of to per cent. relative humidity. 68 Cooling guarantees. 544 Corresponding pressures and velocities of dry air 21 Corresponding velocity of dry air at various press. and temp. 22, 23 Cubic feet air per person for ventilating 58 Cupola service. 116 Dehumidifiers. 47 spray type. 47 Dehumidifying, refrigeration required for 47 Design of fans. 166 of humidifiers 47 Determination of temperature guarantees 46 Dew-Point method of humidity control 72 Dew-Point temp, relation of wet-bulb and dry-bulb temp. 30 Diameter of branch pipes 144-15 Dimensions of Buffalo heaters 45 of Carrier air washers. 46 of engines (see steam engines) 498-50 of fans	Converging nozzle	400
Conversion table, temperature 552 water 553 Cooling 68 Cooling capacity of Carrier humidifying system 68 Cooling effect, relation of to per cent. relative humidity 68 Cooling guarantees 544 Corresponding pressures and velocities of dry air 21 Corresponding pressures and velocities of dry air 22 Cubic feet air per person for ventilating 55 Cupola service 110 Dehumidifiers 47 spray type 47 Dehumidifiers 47 Debum f fans 168 of humidifiers 47 Determination of temperature guarantees 46 Dew-Point 22 Dew-Point method of humidity control 7 Dew-Point temp., relation of wet-bulb and dry-bulb temp. to 36 Diameter of branch pipes 144-15 Dimensions of Buffalo heaters 48 of Carrier air washers. 46 of engines (see steam engines) 498-50 of fans (see fan dimension tables) 358-39	pressure losses in	, 120
water 563 Cooling. 68 Cooling. 68 Cooling appacity of Carrier humidifying system. 68 Cooling effect, relation of to per cent. relative humidity. 68 Cooling guarantees. 54 Corresponding pressures and velocities of dry air 21 Corresponding pressures and velocities of dry air 22 Cubic feet air per person for ventilating 55 Cupola service. 110 Dehumidifiers. 47 spray type. 474 Dehumidifying, refrigeration required for 47 Design of fans. 16 of humidifiers 47 Determination of temperature guarantees 46 Dew-Point method of humidity control 7 Dew-Point temp, relation of wet-bulb and dry-bulb temp to 36 Diameter of branch pipes 144-15 Dimensions of Buffalo heaters 45 of Carrier air washers. 476-48 of engines (see steam engines) 498-50 of fans (see fan dimension tables) 358-39 of Vento heaters.		
Cooling 68 Cooling effect, relation of to per cent. relative humidity 68 Cooling guarantees 544 Corresponding pressures and velocities of dry air 21 Corresponding velocity of dry air at various press, and temp. 22,23 Cubic feet air per person for ventilating 56 Cupola service 110 Dehumidifiers 47 spray type 47 Dehumidifiers 47 Design of fans 16 of humidifiers 47 Determination of temperature guarantees 46 Dew-Point 28 Dew-Point method of humidity control 7 Dew-Point temp, relation of wet-bulb and dry-bulb temp 36 Diameter of branch pipes 144-15 Dimensions of Buffalo heaters 488-45 of Buffalo heater cases 45 of Carrier air washers 476-48 of engines (see steam engines) 498-50 of fans (see fan dimension tables) 358-39 of Vento heaters 460-46 Direct current motor specifications 52<		
Cooling guarantees	water	. 503
Cooling guarantees	Cooling	. 08
Cooling guarantees	Cooling capacity of Carrier numidifying system.	. 69
Corresponding velocity of dry air at various press, and temp. 22, 25 Cubic feet air per person for ventilating 51 Cupola service. 110 Dehumidifiers. 47 spray type. 474 Design of fans. 166 of humidifiers. 168 of humidifiers. 47 Determination of temperature guarantees. 46 Dew-Point. 22 Dew-Point temp., relation of wet-bulb and dry-bulb temp. to 33 Diameter of branch pipes. 144-15 Dimensions of Buffalo heaters. 48-45 of Suffalo heater cases. 456 of Carrier air washers. 476-48 of engines (see steam engines) 498-506 of Yento heaters. 460-46 Direct current motor specifications 53 Directions for fan installation tests. 52 Disk fans 34 capacity table 34	Cooling effect, relation of to per cent. relative numidity	. 69
Corresponding velocity of dry air at various press, and temp. 22, 25 Cubic feet air per person for ventilating 51 Cupola service. 110 Dehumidifiers. 47 spray type. 474 Design of fans. 166 of humidifiers. 168 of humidifiers. 47 Determination of temperature guarantees. 46 Dew-Point. 22 Dew-Point temp., relation of wet-bulb and dry-bulb temp. to 33 Diameter of branch pipes. 144-15 Dimensions of Buffalo heaters. 48-45 of Suffalo heater cases. 456 of Carrier air washers. 476-48 of engines (see steam engines) 498-506 of Yento heaters. 460-46 Direct current motor specifications 53 Directions for fan installation tests. 52 Disk fans 34 capacity table 34	Cooling guarantees	. 044
Cubic feet air per person for ventilating 55 Cupola service 116 Dehumidifiers 47 spray type 474 Debumidifying, refrigeration required for 47 Design of fans 165 of humidifiers 47 Determination of temperature guarantees 46 Dew-Point 28 Dew-Point method of humidity control 7 Dew-Point temp, relation of wet-bulb and dry-bulb temp to 36 Diameter of branch pipes 144-15 Dimensions of Buffalo heaters 48-45 of Euffalo heater cases 45 of Carrier air washers 476-48 of engines (see steam engines) 498-50 of fans (see fan dimension tables) 358-39 of Vento heaters 460-46 Direct current motor specifications 526 Directions for fan installation tests 526 Disk fans 344 capacity table 344	Corresponding pressures and velocities of dry air	. 20 22
Cupola service. 116 Dehumidifiers	Corresponding velocity of dry air at various press, and temp	. 22,20
Dehumidifiers 471 spray type 477 Dehumidifying, refrigeration required for 474 Design of fans 168 of humidifiers 472 Determination of temperature guarantees 466 Dew-Point 22 Dew-Point method of humidity control 7 Dew-Point temp, relation of wet-bulb and dry-bulb temp. 36 Diameter of branch pipes 144-155 Dimensions of Buffalo heaters 448 of Euffalo heater cases 456 of Carrier air washers. 476-48 of engines (see steam engines) 498-50 of fans (see fan dimension tables) 358-39 of Vento heaters. 460-46 Direct current motor specifications 53 Directions for fan installation tests 52 Disk fans 344 capacity table 344	Cubic feet air per person for ventilating	
spray type. 476 Dehumidifying, refrigeration required for 477 Design of fans. 108 of humidifiers 472 Determination of temperature guarantees 466 Dew-Point 28 Dew-Point temp, relation of wet-bulb and dry-bulb temp. to 72 Dew-Point temp, relation of wet-bulb and dry-bulb temp. to 3 Diameter of branch pipes 144-15 Dimensions of Buffalo heaters 448-451 of Buffalo heater cases 466-46 of Carrier air washers. 476-48 of raines (see steam engines) 498-500 of fans (see fan dimension tables) 358-399 of Vento heaters. 460-46 Direct current motor specifications 53 Directions for fan installation tests 52 Disk fans 344 capacity table 344	Cupola service	, 110
spray type. 476 Dehumidifying, refrigeration required for 477 Design of fans. 108 of humidifiers 472 Determination of temperature guarantees 466 Dew-Point 22 Dew-Point temp, relation of wet-bulb and dry-bulb temp. to 72 Dew-Point temp, relation of wet-bulb and dry-bulb temp. to 3 Diameter of branch pipes 144-15 Dimensions of Buffalo heaters 448-451 of Buffalo heater cases 466-46 of Carrier air washers. 476-48 of engines (see steam engines) 498-500 of fans (see fan dimension tables) 358-399 of Vento heaters. 460-46 Direct current motor specifications 53 Directions for fan installation tests. 52 Disk fans 344 capacity table 344		
spray type. 476 Dehumidifying, refrigeration required for 477 Design of fans. 108 of humidifiers 472 Determination of temperature guarantees 466 Dew-Point 22 Dew-Point temp, relation of wet-bulb and dry-bulb temp. to 72 Dew-Point temp, relation of wet-bulb and dry-bulb temp. to 3 Diameter of branch pipes 144-15 Dimensions of Buffalo heaters 448-451 of Buffalo heater cases 466-46 of Carrier air washers. 476-48 of engines (see steam engines) 498-500 of fans (see fan dimension tables) 358-399 of Vento heaters. 460-46 Direct current motor specifications 53 Directions for fan installation tests. 52 Disk fans 344 capacity table 344	Dehumidifiers	. 471
Design of fans 106 Of humidifiers 472 Determination of temperature guarantees 476 Dew-Point 22 Dew-Point method of humidity control 72 Dew-Point temp., relation of wet-bulb and dry-bulb temp. to 36 Diameter of branch pipes 144-15 Dimensions of Buffalo heaters 484 Of Buffalo heater cases 456 Of Carrier air washers 476-48 Of engines (see steam engines) 498-50 Of fans (see fan dimension tables) 358-39 Of Vento heaters 460-46 Direct current motor specifications 536 Directions for fan installation tests 526 Disk fans 348 capacity table 344 C	spray type	474
Design of fans 106 Of humidifiers 472 Determination of temperature guarantees 476 Dew-Point 22 Dew-Point method of humidity control 72 Dew-Point temp., relation of wet-bulb and dry-bulb temp. to 36 Diameter of branch pipes 144-15 Dimensions of Buffalo heaters 484 Of Buffalo heater cases 456 Of Carrier air washers 476-48 Of engines (see steam engines) 498-50 Of fans (see fan dimension tables) 358-39 Of Vento heaters 460-46 Direct current motor specifications 536 Directions for fan installation tests 526 Disk fans 348 capacity table 344 C	Dehumidifying, refrigeration required for	. 474
Determination of temperature guarantees 465	Design of fans	. 168
Determination of temperature guarantees 465	of humidifiers	. 472
Dew-Point 28 Dew-Point method of humidity control 72 Dew-Point temp., relation of wet-bulb and dry-bulb temp. to 36 Diameter of branch pipes 144-15 Dimensions of Buffalo heaters 448-451 of Buffalo heater cases 456 of Carrier air washers. 476-481 of engines (see steam engines) 498-501 of fans (see fan dimension tables) 358-39 of Vento heaters 460-46 Direct current motor specifications 53 Directions for fan installation tests 52 Disk fans 344 capacity table 344		
Diameter of branch pipes 144-152	Dow-Point	
Diameter of branch pipes 144-152	Dew-Point method of humidity control	. 72
Diameter of branch pipes 144-152	Dew-Point temp relation of wet-bulb and dry-bulb temp to	. 30
Dimensions of Buffalo heaters 448-451 of Buffalo heater cases 456 of Carrier air washers. 476-481 of engines (see steam engines) 498-506 of fans (see fan dimension tables) 358-398 of Vento heaters. 460-466 Direct current motor specifications 53 Directions for fan installation tests. 52 Disk fans 344 capacity table 344	Diameter of branch nines	144-152
of Buffalo heater cases 456 of Carrier air washers. 476-481 of engines (see steam engines) 498-505 of fans (see fan dimension tables) 358-396 of Vento heaters. 460-465 Direct current motor specifications 536 Directions for fan installation tests 522 Disk fans 348 capacity table 344	Dimensions of Buffalo heaters	448 - 451
of Carrier air washers. 476-481 of engines (see steam engines) 498-502 of fans (see fan dimension tables) 358-398 of Vento heaters. 460-46 Direct current motor specifications 53 Directions for fan installation tests. 52 Disk fans 34 capacity table 34	of Ruffalo heater asses	456
of engines (see steam engines) 495–306 of fans (see fan dimension tables) 358–399 of Vento heaters 460–462 Direct current motor specifications 530 Directions for fan installation tests 522 Disk fans 344 capacity table 344	of Carrier air washers	.476 - 481
of Vento heaters 460-46: Direct current motor specifications 53 Directions for fan installation tests 52 Disk fans 34 capacity table 34	of engines (see steam engines)	.498 - 505
of Vento heaters 460-46: Direct current motor specifications 53 Directions for fan installation tests 52 Disk fans 34 capacity table 34	of fans (see fan dimension tables)	.358 - 398
Direct current motor specifications 53 Directions for fan installation tests 52 Disk fans 34 capacity table 34	of Vento heaters	.460-462
Directions for fan installation tests. 52t Disk fans 34t capacity table 34t	Direct current motor specifications	536
Disk fans 346 capacity table 346	Directions for fan installation tests	525
capacity table		
	capacity table	
	Disk fans, multiblade	

INDEX

Diverging nozzles	PAGE
efficiency of	123
in air ducts	PAGE 123 122 125
performance of	$\frac{125}{120}$
Downward systems of ventilation	64
Draft, air required for	85
for furnaces	83
losses	84
Draft, mechanical	81
forced	81
induced induced Planoidal fan tables.	322-325
induced Niagara Conoidal fan tables	326,327
induced special steel plate fan and engine tables	328,330
Draft produced by chimneys	548
requirement and boiler eff., relation of to per cent. excess air	82 87
Draw-through fan system apparatus	63
Drip connections of Buffalo heaters	
Dry-bulb temp., relation of wet-bulb and dew-point temp. to	30
Dry-bulb thermometer	28
Dry kilns	559
Dryers, Buffalo progressive lumber dry kiln	559
Dryers, moisture removing capacity of air in	79
Drying, methods of	75
conditions for different materials	77
Duct velocity for public buildings	134
Duct work, guarantees	543
specifications	535
Duplex pumps and receivers	466
Dust collectors	.01, 102
New York State law concerning	96
proportioning piping	98
recommendations	99
Economy, friction loss through heater for maximum	415
proportioning piping for maximum	130
Effect of barometric pressure on velocity of air	24
of humidity on velocity of air	27 27 24
of temperature on velocity of air	24
of temperature on velocity of air	26
Efficiency, calculation of fan	30, 531
elements of fan design affecting	70-172
of diverging nozzles	123
Efficiency tables of Niagara Conoidal fans	
Elbows, friction in	17-120
Electric blowers	355
Electric motors, specifications for	536 96
Emery wheels, dust removal from Engines, fans, and heaters, combination tables of	518-523
Warings (you at care angings)	489
balances (see steam engines). brake horsepower of dimensions and maximum horsepower of dimensions and maximum horsepower of	88-497
dimensions and maximum horsepower of 4	98 - 505
guarantees for	543 485
mean effective pressure ofspecifications for	480 535
water rates of	86, 487
Equalizing friction for unequal lengths of piping	138
Equivalent pressures in inches and pounds	553

FAN ENGINEERING-BUFFALO FORGE COMPANY

	PAGE
Exhaust systems	93
dust collectors	01, 102
friction loss	102
hood construction	93
pipe sizes, table	94
pipe sizes, table proportioning piping in	129
size of main pipe	95
size of piping	93
velocity required	95
Exhaust-through fan system apparatus. Exhausters, "B" volume	63 334
expensive to blo	335
capacity table Exhausters, Planoidal steel plate	000
capacity tables	207-213
dimension tables	359-373
performance curves	214, 215
performance curves Exhausters, planing-mill, slow speed	,
capacity tables	345, 346
dimension tables	396, 397
performance curve	347
Exhausters, planing-mill, standard	
capacity tables	
dimension tables	394, 395
Factors, useful	562
water conversion	563
Fans, design of	168
guarantees for	543
horsepower of measuring pressure produced by	175
measuring pressure produced by	$\frac{526}{106}$
miscellaneous applications of	179
performance laws of pressure characteristics of	172
relation of total, static and velocity pressure in	176
selection of	181
selection ofspecial types and features of	174
Fan capacity tables	205
Fan capacity tables	335
"B" volume exhausters	335
Baby Conoidal	356
cone wheels	
disk fans	349
electric blowers	355
multiblade disk fans Niagara Conoidal, induced draft	350
Niagara Conoidal, induced draft	929 975
Niagara Conoidal, static pressure Niagara Conoidal, total pressure planing-mill exhausters, slow speed	228-231
nlaning-mill exhausters slow sneed	345 346
planing-mill exhausters, standard	342, 343
Planoidal blowers	217-223
Planoidal exhausters	207 - 213
Planoidal induced draft	.322 - 325
propeller wheels	352, 353
propeller wheels special steel plate induced draft with engines	328-330
steel plate pressure blowers steel pressure blowers	340
steel pressure blowers	337, 338
Turbo-Conoidal	358
Fan dimension tables Niagara Conoidal, double width Niagara Conoidal, full housing Niagara Conoidal, overhung whee!	382_288
Niagara Conoidal, double width	375-379
Niagara Conoidal overhung wheel	386-393
Niagara Conoidal, three-quarter housing	379-381
planing-mill exhausters, slow speed, double	. 397
planing-mill exhausters, slow speed, single	396
planing-mill exhausters, slow speed, single planing-mill exhausters, standard, double	. 395
planing-mill exhausters, standard, single	. 394

INDEX

Fan dimension tables (continued)	PAGE
Planoidal blowers, full housing	
Planoidal exhausters, full housing	.359 - 362
Planoidal exhausters, overhung wheel	.366 - 373
Planoidal exhausters, three-quarter housing	.363 - 365
steel pressure blowers	. 398
steel pressure blowers Turbo-Conoidal, double width.	.382 - 385
Turbo-Copoidal, full housing	.375-378
Turbo-Conoidal, overhung wheel	.386-393
Turbo-Conoidal, three-quarter housing	.379-381
Fan efficiency, elements of design affecting	.170, 171
method of calculating	. 530
Fan, engine and heater tables, combination of	5,518-523
Fan engines (see steam engines)	.482-505
Fan engines, specifications for	. 535
Fan installation tests, directions for	. 525
Fan sizes for forge shop equipment	
Fan system dryers	. 77
moisture removing capacity of air in	. 79
Fan system heaters, specifications for	. 534
Fan systems for heating and ventilating	
blow-through arrangement	. 63
draw-through arrangementupward and downward ventilation	. 03
upward and downward ventilation	$\frac{64}{525}$
Fan test, directions for making	
method of calculating	
Fan testing	
anemometer	. 201
converging nozzle	
installation	
orifice	
orifice at end of pipe	
pitot tube	196
pitot tube, use of in an air duct	195
short length of nine	
short length of pipe Fan work, relation between pressure, velocity and air density in Final temperature and air required for heating	178
Final temperature and air required for heating	. 56
Forced draft	. 81
Forced draft	338
Forge shop equipment	. 107
Forge shop equipmentblast and exhaust duct sizes	. 108
fan sizes	107
Foundry blower practice	
Friction, allowing for in public building duets	. 134
Foundry blower practice. Friction, allowing for in public building ducts equalizing for unequal lengths of pipes	. 139
in air ducts	110
in elbows	117-120
loss in exhaust systems	. 102
proportioning piping to allow for	. 138
loss in exhaust systems proportioning piping to allow for through Buffalo pipe coil heaters	446
through Vento cast from heaters	. 311
Furnace draft	83
Galvanized iron pipes, heat loss from	. 54
weight of	, 163-167
Gas heaters	, 100
Gauges of iron used for piping.	158
Gauges of iron used for piping	96
Guarantees, determination of temperature	463
Guarantees for	
air washing	544
apparatus	543
cooling	
ducts and outlets	
engines	543
fans	043

FAN ENGINEERING-BUFFALO FORGE COMPANY

Guarantees for (continued)	PAGE
heaters	543 543
heating	544
mechanical draft	544
ventilating	543
TOMORION B. T.	-
Heat	
	331
latent, sensible.	31
total	731
Heat losses	7.01
due to infiltration	55
from buildings	46
from galvanized iron pipes	54
from various materials	51,52
through cold storage insulation	53
Heat radiated by	
gas and electric lights	62
machinery	62
occupants	$\frac{62}{62}$
Sum	73
Heat required to condition air for ventilation.	73 56
	404
Heat transfer, steam to water	403
Heat transfer through metal surfaces	403 403
longitudinal flow, steam to air.	408
Heat transmission (see heat transfer)	403
	67
Heated buildings, humidity in	
Heater cases, dimensions of Buffalo	456
Heater connection, length of	457
Heater curves, Buffalo pipe coil	
Vento cast iron	
Heater, engine and fan tables, combination of	
Heater tables, Buffalo pipe coil4	
Vento cast iron4	
Heater tables and curves, application of	
Heaters, Buffalo pipe coil	399 458
blast area ofby-pass proportions for	457
curves	
dimensions of	19-451
dimensions of cases for	456
friction through	446
length of connection	457
regular open area pattern	399
return bend pattern	399
sizes ofsteam, drip and air connections for	449
tables	2-433
velocity of air through	2-414
Heaters, condensation in coils of	411
gas	7468
guarantees for	543
indirect	458
specifications for	534
temperature attained with	411
Heaters, Vento cast iron	401
curves43	2-438
dimensions of	60-462 447
friction through	0.447
sizes 46 tables 48	9-444
Lastico	

Heating	AGE
Heating	46 56
fan system for	62
guarantees for	543
relation of humidity to	30
Heating and ventilating, selection of apparatus for	
Height of chimneys	548
High speed multiblade fan specifications	533
Horizontal engines (see steam engines) 482– Horsepower of a fan	505
of engines (see steam engines)	175
	471
	472
power required to operate	474
Humidity	28
absolute	28
effect of on velocity of air	27
relation of to heating	30
relative	28
Humidity control automatic	74
dew-point method of	72
	544
	542
Humidity in heated buildings	67
in manufacturing establishments	68
Indirect heaters	458
	464
Induced draft	82
Induced draft fan tables	321
Niagara Conoidal fans	327
Planoidal fans	325
special steel plate fans and engines	
	135 65
ventilation of	55
	525
instantation tests of fans, directions for making	020
T 1 (1 (1) 1 1 1 (11)	0.1
Jones underfeed stokers, mechanical draft with	91
The second secon	
Latent heat	31
Laws of fan performance	179
Layout of piping	141
Length of heater connection	457
Length of heater connection	62
Localities, mean monthly temperatures in	465
Logarithms	561
	403
Lumber dryers	559
Machinery, heat radiated by	62
Manufacturing establishments, humidity in	68
	415
	130
Maximum horsepower of engines (see steam engines)	505 485
Measuring air quantity	525
Measuring air quantity	89
of pressure produced by a fan	526
Measures of pressure and weight	563

FAN ENGINEERING-BUFFALO FORGE COMPANY

Mechanical draft	PAGE 81
induced draft induced draft Planoidal fan tables. induced draft Niagara Conoidal fan tables. induced draft specjal steel plate fan tables.	. 322–325
Mechanical draft in connection with mechanical stokers	. 528-330
Mechanical draft in connection with mechanical stokers Mechanical stokers, mechanical draft with	. 90
Monthly temperatures in different localities	. 79
Murphy automatic stokers, mechanical draft with	. 536
Multiblade fan specifications	. 532
Niagara Conoidal fans	00*
empleades of	0 P 4 0 P H
nerformance curve of	. 227
selection of specification tables of Nigrana Capacida to proceed to the control of the control o	. 276 . 186
Specification tables of	.546,547
Niagara Conoidal fan capacity tables induced draft	206 207
static pressure	020 040
total pressure Niagara Conoidal fan dimension tables	
double width	.382-385
full housing overhung wheel three-quarter housing	
Nozzles (see diverging and converging nozzles)	.120-126
Occupants, air required by	50
neat radiated by	0.0
Orifice, pressure losses in use of in fan testing.	100
Outlet guarantees. Outside wet-bulb temperature, relation of room temperature to	543
Outside wet-build temperature, relation of room temperature to	. 72
Parsons mechanical stoker, mechanical draft with	. 90
Performance curves use of	. 87
Planoidal exhausters	004 005
propeller wheels slow speed planing-mill exhausters	. 214, 215
slow speed planing-mill exhausters steel pressure blowers	. 347
Performance of fans, laws of Pettenkofer method of analysis for carbon dioxide	179
Diast area of	4 = 0
Dy-pass proportions for	AET
curves. dimensions of heater case for.	452-458
length of connection	446
return bend pattern	399

Pipe coil heaters (continued)	PAGE
sizes and dimensions of	452-455
tables	418-431
velocity of air through	411
Pipe traverse for pitot tube	
diameter of branch	
size of steam	554-557
Piping, gauges of iron used for	158
layout. pressure to overcome friction of air passing through	112, 113
proportioning to allow for friction	. 138
proportioning for exhaust systems	129
proportioning for industrial buildings	
proportioning various losses in	. 127
proportioning various losses in	$\frac{158}{162}$
weight of black steel	163-167
Pitot tube	190
pipe traverse for	. 190
use of in an air duct	195
Planing-mill exhaust fans, slow speed	344,345
dimension tables	396, 397
nerformance curve	. 347
Planing-mill exhaust fans, standard	341,342
capacity tables	394 395
Planing-mill exhaust systems (see exhaust systems)	
design of	. 103
dust collectors	. 101, 102
dust collectors. friction loss hood construction.	. 102
pipe sizes for	. 94
pipe sizes for	. 129
size of main pipesize of piping	
velocity required	
Planoidal fans	
performance curves of blowers performance curves of exhausters	. 224, 225
performance curves of exhausters	182
specification table of	
Planeidal fan ganacity tables	
blowers	.217-223
exhausters induced draft fans	322-325
Planoidal fan dimension tables	
blowers full housing	.359-362
exhausters, tull housing, exhausters, overhung wheel exhausters, three-quarter housing	.359-362
exhausters, overhung wheel	363-36!
Power to operate humidifiers	. 474
Pressure, velocity and air density relations in fan work	. 178
Pressure and weight, measures of	. 563
Pressure measurement of produced by a fan	520
relation of to velocityrelation of total, static and velocity in fans	170
Pressure characteristics of fans	17
Pressure losses in air ducts.	. 114
Pressure losses in air ducts. in diverging and converging nozzles and in orifices	120
Pressure to overcome friction of air passing through piping	112, 113

FAN ENGINEERING-BUFFALO FORGE COMPANY

	PAGE
Propeller fans	351
capacity tables	.352,353
performance curve	
Properties of air	. 11 . 27
relation of altitude to	. 24
Properties of dry air	. 13
of saturated air	. 15
of saturated steam Proportioning piping —practical applications Proportioning piping in exhaust systems	. 558
Proportioning pipingpractical applications	. 131
in industrial buildings	. 129 . 135
in public buildings	. 132
to allow for friction	. 138
for maximum economy	, 130
Proportioning various losses in piping	. 127
Proportions of heater by-pass. Psychrometer, aspiration	. 457 . 29
sing	: 29
Psychrometric charts and tables, use of	. 32
charts	. 35–37
tables	. 38–45
Public buildings, allowing for friction in	. 134
duct velocity inproportioning piping in	. 134
register velocity in	. 133
register velocity in	. 133
Pumps and receivers, automatic	
centrifugal	
duplex	
duplex Purity of air	
Purity of air	. 58
	. 58
Purity of air	. 58
Purity of air	. 58
Purity of air	. 58
Purity of air Quantity of air and final temperature required for heating Rectangular ducts, circular equivalent of Refrigeration required for dehumidifying Refuse exhaust system (see exhaust systems)	. 58 . 56 . 156, 157 . 474 . 93
Purity of air Quantity of air and final temperature required for heating	. 58 . 56 . 156, 157 . 474 . 93
Purity of air Quantity of air and final temperature required for heating. Rectangular ducts, circular equivalent of Refrigeration required for dehumidifying Refuse exhaust system (see exhaust systems). Register velocity in public buildings. Registers, sizes of for public buildings Regular open area pattern heaters (see Buffalo heaters).	. 58 . 56 . 156, 157 . 474 . 93 . 133 . 133
Purity of air Quantity of air and final temperature required for heating. Rectangular duets, circular equivalent of Refrigeration required for dehumidifying Refuse exhaust system (see exhaust systems) Register velocity in public buildings. Registers, sizes of for public buildings Regular open area pattern heaters (see Buffalo heaters) Relation of altitude to properties of air	. 58 . 56 . 156, 157 . 474 . 93 . 133 . 133 . 399 . 24
Purity of air Quantity of air and final temperature required for heating	. 58 . 56 .156, 157 . 474 . 93 . 133 . 133 . 399 . 24
Purity of air Quantity of air and final temperature required for heating. Rectangular ducts, circular equivalent of . Refrigeration required for dehumidifying . Refuse exhaust system (see exhaust systems). Register velocity in public buildings . Registers, sizes of for public buildings . Regular open area pattern heaters (see Buffalo heaters). Relation of altitude to properties of air . of boiler eff. and draft requirements to per cent. excess air . of cooling effect to per cent. relative humidity . of dry-bulb, wet-bulb and dew-point temperatures	. 58 . 56 .156, 157 . 474 . 93 . 133 . 133 . 399 . 24 . 87 . 69
Purity of air Quantity of air and final temperature required for heating. Rectangular ducts, circular equivalent of . Refrigeration required for dehumidifying . Refuse exhaust system (see exhaust systems). Register velocity in public buildings . Registers, sizes of for public buildings . Regular open area pattern heaters (see Buffalo heaters). Relation of altitude to properties of air . of boiler eff. and draft requirements to per cent. excess air . of cooling effect to per cent. relative humidity . of dry-bulb, wet-bulb and dew-point temperatures	. 58 . 56 .156, 157 . 474 . 93 . 133 . 133 . 399 . 24 . 87 . 69
Purity of air Quantity of air and final temperature required for heating. Rectangular ducts, circular equivalent of Refrigeration required for dehumidifying Refuse exhaust system (see exhaust systems). Register velocity in public buildings. Registers, sizes of for public buildings Regular open area pattern heaters (see Buffalo heaters). Relation of altitude to properties of air of boiler eff. and draft requirements to per cent. excess air of cooling effect to per cent. relative humidity of dry-bulb, wet-bulb and dew-point temperatures of humidity to heating of pressure, velocity and air density in fan work	. 58 . 56 . 156, 157 . 474 . 93 . 133 . 133 . 399 . 24 . 87 . 69 . 30 . 30 . 178
Purity of air Quantity of air and final temperature required for heating. Rectangular ducts, circular equivalent of Refrigeration required for dehumidifying Refuse exhaust system (see exhaust systems). Register velocity in public buildings Registers, sizes of for public buildings Registers, sizes of for public buildings Regular open area pattern heaters (see Buffalo heaters). Relation of altitude to properties of air of boiler eff. and draft requirements to per cent. excess air of cooling effect to per cent. relative humidity of dry-bulb, wet-bulb and dew-point temperatures of pressure, velocity and air density in fan work of room temperature to outside wet-bulb temperature.	. 58 . 56 . 156, 157 . 474 . 93 . 133 . 133 . 24 . 87 . 69 . 30 . 30 . 178
Purity of air Quantity of air and final temperature required for heating. Rectangular duets, circular equivalent of Refrigeration required for dehumidifying Refuse exhaust system (see exhaust systems) Register velocity in public buildings. Registers, sizes of for public buildings Regular open area pattern heaters (see Buffalo heaters) Relation of altitude to properties of air of cooling effect to per cent. relative humidity of dry-bulb, wet-bulb and dew-point temperatures of humidity to heating of pressure, velocity and air density in fan work of room temperature to outside wet-bulb temperature of total, static and velocity pressure in fans	. 58 . 56 . 156, 157 . 474 . 93 . 133 . 133 . 399 . 24 . 87 . 69 . 30 . 178 . 72
Purity of air Quantity of air and final temperature required for heating. Rectangular ducts, circular equivalent of Refrigeration required for dehumidifying Refuse exhaust system (see exhaust systems). Register velocity in public buildings. Registers, sizes of for public buildings. Registers, of public buildings. Registers, of public buildings. Relation of altitude to properties of air of boiler eff. and draft requirements to per cent. excess air of cooling effect to per cent. relative humidity of dry-bulb, wet-bulb and dew-point temperatures of humidity to heating of pressure, velocity and air density in fan work of room temperature to outside wet-bulb temperature of velocity to pressure	. 58 . 56 . 156, 157 . 474 . 93 . 133 . 133 . 133 . 399 . 24 . 87 . 69 . 30 . 30 . 30 . 178 . 72
Purity of air Quantity of air and final temperature required for heating. Quantity of air and final temperature required for heating. Refrigeration required for dehumidifying Refuse exhaust system (see exhaust systems). Register velocity in public buildings. Registers, sizes of for public buildings Registers, of properties of air of boiler eff. and draft requirements to per cent. excess air of cooling effect to per cent. relative humidity of dry-bulb, wet-bulb and dew-point temperatures of humidity to heating of pressure, velocity and air density in fan work of room temperature to outside wet-bulb temperature of total, static and velocity pressure in fans of velocity to pressure. Relative humidity	. 58 . 56 . 156, 157 . 474 . 93 . 133 . 399 . 24 . 87 . 69 . 30 . 178
Purity of air Quantity of air and final temperature required for heating. Rectangular ducts, circular equivalent of Refrigeration required for dehumidifying Refuse exhaust system (see exhaust systems). Register velocity in public buildings Registers, sizes of for public buildings Registers, open area pattern heaters (see Buffalo heaters) Relation of altitude to properties of air of boiler eff. and draft requirements to per cent. excess air of cooling effect to per cent. relative humidity of dry-bulb, wet-bulb and dew-point temperatures of humidity to heating of pressure, velocity and air density in fan work of room temperature to outside wet-bulb temperature of total, static and velocity pressure in fans of velocity to pressure. Relative humidity relation of cooling effect to per cent. of Relative volumes of air at various temperatures	. 58 . 56 . 156, 157 . 474 . 93 . 133 . 133 . 399 . 24 . 87 . 69 . 30 . 178 . 72 . 176 . 16 . 28 . 16
Purity of air Quantity of air and final temperature required for heating. Rectangular ducts, circular equivalent of Refrigeration required for dehumidifying Refuse exhaust system (see exhaust systems). Register velocity in public buildings Registers, sizes of for public buildings Registers, open area pattern heaters (see Buffalo heaters) Relation of altitude to properties of air of boiler eff. and draft requirements to per cent. excess air of cooling effect to per cent. relative humidity of dry-bulb, wet-bulb and dew-point temperatures of humidity to heating of pressure, velocity and air density in fan work of room temperature to outside wet-bulb temperature of total, static and velocity pressure in fans of velocity to pressure. Relative humidity relation of cooling effect to per cent. of Relative volumes of air at various temperatures	. 58 . 56 . 156, 157 . 474 . 93 . 133 . 133 . 399 . 24 . 87 . 69 . 30 . 178 . 72 . 176 . 16 . 28 . 16
Purity of air Quantity of air and final temperature required for heating. Rectangular ducts, circular equivalent of . Refrigeration required for dehumidifying . Refuse exhaust system (see exhaust systems) . Register velocity in public buildings . Registers, sizes of for public buildings . Registers, sizes of for public buildings . Registers, sizes of for public buildings . Relation of altitude to properties of air . of boiler eff. and draft requirements to per cent. excess air . of cooling effect to per cent. relative humidity . of dry-bulb, wet-bulb and dew-point temperatures . of humidity to heating . of pressure, velocity and air density in fan work . of room temperature to outside wet-bulb temperature . of total, static and velocity pressure in fans . of velocity to pressure . Relative humidity . relation of cooling effect to per cent. of . Relative volumes of air at various temperatures . Removal of bodily heat . Return bend pattern heaters (see Buffalo heaters)	. 58 . 56 . 156, 157 . 474 . 93 . 133 . 133 . 399 . 24 . 87 . 69 . 30 . 30 . 30 . 176 . 69 . 30 . 30 . 30 . 30 . 30 . 30 . 30 . 30
Purity of air Quantity of air and final temperature required for heating. Rectangular ducts, circular equivalent of . Refrigeration required for dehumidifying . Refuse exhaust system (see exhaust systems) . Register velocity in public buildings . Registers, sizes of for public buildings . Registers, sizes of for public buildings . Registers, sizes of for public buildings . Relation of altitude to properties of air . of boiler eff. and draft requirements to per cent. excess air . of cooling effect to per cent. relative humidity . of dry-bulb, wet-bulb and dew-point temperatures . of humidity to heating . of pressure, velocity and air density in fan work . of room temperature to outside wet-bulb temperature . of total, static and velocity pressure in fans . of velocity to pressure . Relative humidity . relation of cooling effect to per cent. of . Relative volumes of air at various temperatures . Removal of bodily heat . Return bend pattern heaters (see Buffalo heaters)	. 58 . 56 . 156, 157 . 474 . 93 . 133 . 133 . 399 . 24 . 87 . 69 . 30 . 30 . 30 . 176 . 69 . 30 . 30 . 30 . 30 . 30 . 30 . 30 . 30
Purity of air Quantity of air and final temperature required for heating. Rectangular ducts, circular equivalent of Refrigeration required for dehumidifying Refuse exhaust system (see exhaust systems). Register velocity in public buildings Registers, sizes of for public buildings Registers, open area pattern heaters (see Buffalo heaters) Relation of altitude to properties of air of boiler eff. and draft requirements to per cent. excess air of cooling effect to per cent. relative humidity of dry-bulb, wet-bulb and dew-point temperatures of humidity to heating of pressure, velocity and air density in fan work of room temperature to outside wet-bulb temperature of total, static and velocity pressure in fans of velocity to pressure. Relative humidity relation of cooling effect to per cent. of Relative volumes of air at various temperatures	. 58 . 56 . 156, 157 . 474 . 93 . 133 . 133 . 399 . 24 . 87 . 69 . 30 . 30 . 30 . 176 . 69 . 30 . 30 . 30 . 30 . 30 . 30 . 30 . 30
Purity of air Quantity of air and final temperature required for heating. Rectangular duets, circular equivalent of Refrigeration required for dehumidifying Refuse exhaust system (see exhaust systems). Register velocity in public buildings. Registers, sizes of for public buildings. Registers, sizes of for public buildings. Relation of altitude to properties of air of boiler eff. and draft requirements to per cent. excess air of cooling effect to per cent. relative humidity. of dry-bulb, wet-bulb and dew-point temperatures of humidity to heating. of pressure, velocity and air density in fan work of room temperature to outside wet-bulb temperature of total, static and velocity pressure in fans of velocity to pressure. Relative humidity. Relative volumes of air at various temperatures. Relative volumes of air at various temperatures. Return bend pattern heaters (see Buffalo heaters) Risers, sizes of for public buildings. Room temperature, relation of to outside wet-bulb temperature.	. 58 . 56 . 156, 157 . 474 . 93 . 133 . 399 . 30 . 30 . 30 . 178 . 72 . 176 . 16 . 16 . 16 . 16 . 18 . 13 . 39 . 30 . 30 . 30 . 30 . 30 . 30 . 30 . 30
Purity of air Quantity of air and final temperature required for heating. Rectangular duets, circular equivalent of Refrigeration required for dehumidifying Refuse exhaust system (see exhaust systems). Register velocity in public buildings. Registers, sizes of for public buildings. Registers, sizes of for public buildings. Relation of altitude to properties of air of boiler eff. and draft requirements to per cent. excess air of cooling effect to per cent. relative humidity. of dry-bulb, wet-bulb and dew-point temperatures of humidity to heating. of pressure, velocity and air density in fan work of room temperature to outside wet-bulb temperature of total, static and velocity pressure in fans of velocity to pressure. Relative humidity. Relative volumes of air at various temperatures. Relative volumes of air at various temperatures. Return bend pattern heaters (see Buffalo heaters) Risers, sizes of for public buildings. Room temperature, relation of to outside wet-bulb temperature.	. 58 . 56 . 156, 157 . 474 . 93 . 133 . 399 . 30 . 30 . 30 . 178 . 72 . 176 . 16 . 16 . 16 . 16 . 18 . 13 . 39 . 30 . 30 . 30 . 30 . 30 . 30 . 30 . 30
Purity of air Quantity of air and final temperature required for heating. Rectangular ducts, circular equivalent of	. 58 . 156, 157 . 474 . 93 . 133 . 133 . 133 . 399 . 24 . 87 . 69 . 30 . 30 . 178 . 72 . 176 . 16 . 28 . 69 . 13 . 59 . 133 . 72
Purity of air Quantity of air and final temperature required for heating. Rectangular ducts, circular equivalent of Refrigeration required for dehumidifying Refuse exhaust system (see exhaust systems). Register velocity in public buildings. Registers, sizes of for public buildings. Registers, sizes of for public buildings. Relation of altitude to properties of air. of boiler eff. and draft requirements to per cent. excess air of cooling effect to per cent. relative humidity. of dry-bubb, wet-bubb and dew-point temperatures of humidity to heating. of pressure, velocity and air density in fan work of room temperature to outside wet-bulb temperature of total, static and velocity pressure in fans of velocity to pressure. Relative humidity. Relative humidity. Return bend pattern heaters (see Buffalo heaters) Risers, sizes of for public buildings. Return bend pattern heaters (see Buffalo heaters) Risers, sizes of for public buildings. Room temperature, relation of to outside wet-bulb temperature. Saturated steam, properties of. Schoolhouse ventilation. Selection of a paparatus for heating and ventilating.	. 58 . 56 . 156, 157 . 474 . 93 . 133 . 399 . 30 . 30 . 30 . 30 . 30 . 178 . 72 . 176 . 16 . 28 . 69 . 13 . 13 . 39 . 30 . 30 . 30 . 30 . 30 . 30 . 30 . 30
Purity of air Quantity of air and final temperature required for heating. Rectangular ducts, circular equivalent of . Refrigeration required for dehumidifying Refuse exhaust system (see exhaust systems). Register velocity in public buildings. Registers, sizes of for public buildings. Registers, sizes of for public buildings Regular open area pattern heaters (see Buffalo heaters). Relation of altitude to properties of air. of boiler eff. and draft requirements to per cent. excess air. of cooling effect to per cent. relative humidity. of dry-bulb, wet-bulb and dew-point temperatures. of humidity to heating. of pressure, velocity and air density in fan work. of room temperature to outside wet-bulb temperature. of total, static and velocity pressure in fans. of velocity to pressure. Relative humidity. relation of cooling effect to per cent. of Relative volumes of air at various temperatures Removal of bodily heat. Return bend pattern heaters (see Buffalo heaters) Risers, sizes of for public buildings. Room temperature, relation of to outside wet-bulb temperature Schoolhouse ventilation. Selection of apparatus for heating and ventilating. Selection of afan. Niagara Conoidal	. 58 . 56 . 156, 157 . 474 . 93 . 133 . 133 . 133 . 399 . 69 . 30 . 170 . 476 . 69 . 30 . 176 . 166 . 28 . 72 . 176 . 16 . 28 . 72 . 176 . 28 . 72 . 176 . 181 . 558 . 5
Purity of air Quantity of air and final temperature required for heating. Rectangular ducts, circular equivalent of Refrigeration required for dehumidifying Refuse exhaust system (see exhaust systems). Register velocity in public buildings. Registers, sizes of for public buildings. Registers, sizes of for public buildings. Relation of altitude to properties of air of boiler eff. and draft requirements to per cent. excess air of cooling effect to per cent. relative humidity of dry-bulb, wet-bulb and dew-point temperatures of humidity to heating of pressure, velocity and air density in fan work of room temperature to outside wet-bulb temperature of total, static and velocity pressure in fans of velocity to pressure. Relative humidity relative humidity relative humidity. Return bend pattern heaters (see Buffalo heaters) Risers, sizes of for public buildings. Room temperature, relation of to outside wet-bulb temperature. Saturated steam, properties of Schoolhouse ventilation. Selection of a paparatus for heating and ventilating. Selection of a fan Niagara Conoidal Planoidal.	. 58 . 56 . 156, 157 . 474 . 93 . 133 . 133 . 399 . 30 . 30 . 178 . 72 . 176 . 16 . 16 . 16 . 28 . 69 . 39 . 39 . 39 . 172 . 558 . 655 . 506-518 . 181 . 186
Purity of air Quantity of air and final temperature required for heating. Rectangular ducts, circular equivalent of . Refrigeration required for dehumidifying Refuse exhaust system (see exhaust systems). Register velocity in public buildings. Registers, sizes of for public buildings. Registers, sizes of for public buildings Regular open area pattern heaters (see Buffalo heaters). Relation of altitude to properties of air. of boiler eff. and draft requirements to per cent. excess air. of cooling effect to per cent. relative humidity. of dry-bulb, wet-bulb and dew-point temperatures. of humidity to heating. of pressure, velocity and air density in fan work. of room temperature to outside wet-bulb temperature. of total, static and velocity pressure in fans. of velocity to pressure. Relative humidity. relation of cooling effect to per cent. of Relative volumes of air at various temperatures Removal of bodily heat. Return bend pattern heaters (see Buffalo heaters) Risers, sizes of for public buildings. Room temperature, relation of to outside wet-bulb temperature Schoolhouse ventilation. Selection of apparatus for heating and ventilating. Selection of afan. Niagara Conoidal	. 58 . 56 . 156, 157 . 474 . 93 . 133 . 133 . 399 . 30 . 30 . 178 . 72 . 176 . 16 . 16 . 16 . 28 . 69 . 39 . 39 . 39 . 172 . 558 . 655 . 506-518 . 181 . 186

		PAGE
Size of steam pipes		554-557
Sizes of piping		158
Sizes of piping Sizes and dimensions of Buffalo heaters of Vento heaters		449-451
of Vento heaters		460-462
Sling nevelrometer		20
Sling psychrometer Slow speed planing-mill exhaust fans capacity tables		344 345
canacity tables		345 346
dimension tables		396 397
performance curve		347
Special steel plate induced draft fans and engines	321	328-330
Special types and features of fans		
Special ventilation requirements		
Specific heat of air		16
of various substances		78
Specific weight of water vapor		14
Specification tables of		1.4
Niagara Conoidal fans		EAG EAT
Diagra Oddoldar rans		540, 547
Planoidal fansTurbo-Conoidal fans		546 547
		340, 341
Specifications for		F97 F40
air washer		
duct work		
fan engine		
fan system heater		533
high speed multiblade fanhumidity control		542
motors		536
multiblade fan		
steel plate fan		
Spiro turbines		484
Spray type dehumidifiers		241 242
Standard planing-mill exhaust fans capacity tables dimension tables.		249 242
capacity tables		342, 343
Chardends of contiletion		594,090
Standards of ventilation		90
regular open area pattern		459 453
return bend pattern		454 455
Stoom oneines		482
Steam engines. mean effective pressure of high speed.		485
water rates of		486 487
Quantum in the land a barrant and		
Steam engines, brake norsepower of Buffalo class "A" Buffalo class "A" at various speeds and pressures Buffalo class "Y" (cylinder below shaft). Buffalo class "N", long stroke. Buffalo double vertical double acting.		488-491
Ruffele class A		406-497
Duffalo class A at various species and pressures		494
Buffalo class "N" long stroke		492
Ruffalo class "S" long stroke		492
Ruffalo double vertical double acting		493
		495
Buffalo low pressure		
Bunalo low pressure		. 490
Steam engines dimensions and maximum horsepower of		. 470
Steam engines dimensions and maximum horsepower of		. 470
Steam engines dimensions and maximum horsepower of		. 470
Steam engines, dimensions and maximum horsepower of Buffalo class "A" horizontal center crank Buffalo class "A" horizontal side crank Buffalo class "N" horizontal side crank	· · · · · · · · · · · · · · · · · · ·	. 498 . 499 . 500
Steam engines, dimensions and maximum horsepower of Buffalo class "A" horizontal center crank		. 498 . 499 . 500
Steam engines, dimensions and maximum horsepower of Buffalo class "A" horizontal center crank Buffalo class "A" horizontal side crank Buffalo class "N" horizontal side crank Buffalo class "S" horizontal side crank Buffalo class "S" horizontal side crank		. 498 . 499 . 500 . 501
Steam engines, dimensions and maximum horsepower of Buffalo class "A" horizontal center crank Buffalo class "A" horizontal side crank Buffalo class "N" horizontal side crank Buffalo class "S" horizontal side crank Buffalo class "S" horizontal side crank		. 498 . 499 . 500 . 501
Steam engines, dimensions and maximum horsepower of Buffalo class "A" horizontal center crank		. 498 . 499 . 500 . 501 . 503 . 504
Steam engines, dimensions and maximum horsepower of Buffalo class "A" horizontal center crank Buffalo class "A" horizontal side crank Buffalo class "N" horizontal side crank Buffalo class "S" horizontal side crank Buffalo class "A" vertical Buffalo class "I" vertical Buffalo class "O" vertical Buffalo class "O" vertical Buffalo class "O" vertical		. 498 . 499 . 500 . 501 . 503 . 504 . 502
Steam engines, dimensions and maximum horsepower of Buffalo class "A" horizontal center crank Buffalo class "A" horizontal side crank Buffalo class "N" horizontal side crank Buffalo class "N" horizontal side crank Buffalo class "A" vertical Buffalo class "A" vertical Buffalo class "I" vertical Buffalo class "O" vertical Buffalo double vertical double acting Steam engines direct-connected to special induced draft fans.		. 498 . 499 . 500 . 501 . 503 . 504 . 502 . 328–330
Steam engines dimensions and maximum horsepower of Buffalo class "A" horizontal center crank Buffalo class "A" horizontal side crank Buffalo class "N" horizontal side crank Buffalo class "S" horizontal side crank Buffalo class "A" vertical Buffalo class "A" vertical Buffalo class "O" vertical Buffalo dass to vertical Buffalo dass to vertical Buffalo dass to vertical Steam engines direct-connected to special induced draft fans Steam engine guarantees		. 498 . 499 . 500 . 501 . 503 . 504 . 502 . 328–330 . 543
Steam engines dimensions and maximum horsepower of Buffalo class "A" horizontal center crank Buffalo class "A" horizontal side crank Buffalo class "N" horizontal side crank Buffalo class "S" horizontal side crank Buffalo class "B" horizontal side crank Buffalo class "A" vertical Buffalo class "A" vertical Buffalo class "I" vertical Buffalo double vertical double acting Steam engines direct-connected to special induced draft fans Steam engine guarantees. specifications.		. 498 . 499 . 500 . 501 . 503 . 504 . 502 . 328–330 . 543 . 535
Steam engines dimensions and maximum horsepower of Buffalo class "A" horizontal center crank Buffalo class "A" horizontal side crank Buffalo class "N" horizontal side crank Buffalo class "S" horizontal side crank Buffalo class "B" horizontal side crank Buffalo class "A" vertical Buffalo class "A" vertical Buffalo class "I" vertical Buffalo double vertical double acting Steam engines direct-connected to special induced draft fans Steam engine guarantees. specifications.		. 498 . 499 . 500 . 501 . 503 . 504 . 502 . 328–330 . 543 . 535
Steam engines dimensions and maximum horsepower of Buffalo class "A" horizontal center crank Buffalo class "A" horizontal side crank Buffalo class "N" horizontal side crank Buffalo class "N" horizontal side crank Buffalo class "N" vertical Buffalo class "A" vertical Buffalo class "I" vertical Buffalo class "O" vertical Buffalo class "O" vertical Buffalo class "O" vertical double acting Steam engines direct-connected to special induced draft fans Steam engine guarantees.		. 498 . 499 . 500 . 501 . 503 . 504 . 502 . 328–330 . 543 . 535 . 558

FAN ENGINEERING-BUFFALO FORGE COMPANY

	PAGI
Steel pressure blowers	336
application to forge fires	338
capacity table	337
capacity table dimension table	399
Stokers with mechanical draft	338 337 398
Jones underfeed	91
Murphy automatic	91
Murphy automatic	90
Taylor	7.91
(Assyster)	7-300
Taylor stoker with mechanical draft	91
Temperature, effect of on properties of air	27
effect of on velocity of air	24
effect of on volume of air	27 24 26
Temperature attained with indirect heaters	411
Temperature conversion table	552
guarantees, determination of	463
in Carrier humidifying system	71
Temperatures, mean monthly in different localities.	465
relation of dry-bulb, wet-bulb and dew-point	300
Testing fane (see fan testing)	190
Testing fans (see fan testing) Tests, directions for fan installation	525
method of calculating fan	529
Theoretical outlet or bleat area	126
Theoretical outlet or blast area Thermometers, dry-bulb and wet-bulb.	28
Tile sizes for forge shops	108
Total heat	31
Transmission of heat (see heat transfer)	403
Transverse flow-heat transfer	408
Transverse now-neat transfer	196
Traverse, pipe	484
Turbines, Spiro steam	
Turbo-Conoidal fans	277
outlet velocities of	277
performance curve of	276
selection of	7 216
Turbo-Conordal ian capacity tables	1-915
Turbo-Cc noidal fan dimension tables	
double width38	2-385
full housing	5-378
overhung wheel	6-393
three-quarter housing	
Types of humidifiers	471
Upward system of ventilation	64
Useful factors	562
Court includes	302
Velocity of air at different pressures	21
at different pressures and temperatures	22, 23
effect of barometric pressure on	24 27
effect of humidity on	27
effect of temperature onin ducts for industrial buildings	24
in ducts for industrial buildings	129
in ducts for public buildings	134
through neaters	412
through piping for maximum economy Velocity, pressure and air density relations in fan work	130
Velocity, pressure and air density relations in fan work	178
Velocity to pressure, relation of	16
Ventilation, fan system for	62
heat required for	56
of industrial buildings	65
of schoolhouse	65
standards of upward and downward systems of	58
upward and downward systems of	64
Ventilating guarantees	543

PA	GE
	101
eurves. 499	138
friction through	147
sizes and dimensions of	169
tables	1.0.4
ertical engines (see steam engines). 482-	105
clume of all offert of the sections and the section of the section	OO
olume of air, effect of temperature on	26
Vater conversion factors	563
Vater rates of steam engines	187
Vater vapor, specific weight of	14
eight of air.	ai.
Cigit of the control	
	13
of saturated and partly saturated air	17
Veight of piping	158
black steel piping	162
galvanized iron piping	67
	563
	30
Vet-hulb thermometer	20

Powdered Coal Engineering & Equipment Co.

Powdered Coal Engineering & Equipment Co.

