Обчислюваність

Андрій Фесенко

Означення

машина Тюрінга M вирішує (розв'язує) (decide) мову $L_1\subseteq\{0,1\}^*$

- ullet якщо $x\in L_1$, то M(x)=1 (q_{acc})
- ullet якщо $x
 ot\in L_1$, то M(x)=0 (q_{rej})

машину Тюрінга M називають вирішувачем для мови L_1

Означення

машина Тюрінга M вирішує (розв'язує) (decide) мову $L_1\subseteq\{0,1\}^*$

- ullet якщо $x\in L_1$, то M(x)=1 (q_{acc})
- ullet якщо $x
 ot\in L_1$, то M(x)=0 (q_{rej})

машину Тюрінга M називають вирішувачем для мови L_1

Означення

машина Тюрінга M **розпізнає** (recognize) мову $L_1\subseteq\{0,1\}^*$

- ullet якщо $x\in L_1$, то M(x)=1 (q_{acc})
- ullet якщо $x
 ot\in L_1$, то M(x)=0 (q_{rej}) або M(x)=ot

машину Тюрінга M називають розпізнавачем для мови L_1

Означення

машина Тюрінга M вирішує (розв'язує) (decide) мову $L_1\subseteq\{0,1\}^*$

- ullet якщо $x\in L_1$, то M(x)=1 (q_{acc})
- ullet якщо $x
 ot\in L_1$, то M(x)=0 (q_{rej})

машину Тюрінга M називають вирішувачем для мови L_1

Означення

машина Тюрінга M **розпізнає** (recognize) мову $L_1\subseteq\{0,1\}^*$

- ullet якщо $x\in L_1$, то M(x)=1 (q_{acc})
- ullet якщо $x
 ot\in L_1$, то M(x)=0 (q_{rej}) або M(x)=ot

машину Тюрінга M називають **розпізнавачем** для мови L_1

Наслідок

Довільний вирішувач для довільної мови L_1 завжди зупиняється. Довільний вирішувач для довільної мови L_1 є розпізнавачем для мови L_1 .

Означення

Для довільної машини Тюрінга M мовою машини Тюрінга M (мовою, асоційованою з машиною Тюрінга M) називають множину всіх слів, які вона приймає і позначають як L(M) (або L_M).

Означення

Для довільної машини Тюрінга M мовою машини Тюрінга M (мовою, асоційованою з машиною Тюрінга M) називають множину всіх слів, які вона приймає і позначають як L(M) (або L_M).

Наслідок

 $L(M) = L_1 \Leftrightarrow M$ є розпізнавачем для мови L_1

 $L(M) = L_1$ і M завжди зупиняється $\Leftrightarrow M$ є вирішувачем для мови L_1

Означення

Для довільної машини Тюрінга M мовою машини Тюрінга M (мовою, асоційованою з машиною Тюрінга M) називають множину всіх слів, які вона приймає і позначають як L(M) (або L_M).

Наслідок

 $L(M)=L_1\Leftrightarrow M$ є розпізнавачем для мови L_1 $L(M)=L_1$ і M завжди зупиняється $\Leftrightarrow M$ є вирішувачем для мови L_1

Зауваження

Будь-якій мові L_1 відповідає декілька (нескінченна кількість) машин Тюрінга $M_1,\ M_2,\ \dots$ таких, що $L_1=L(M_1)=L(M_2)=\dots$

Властивості машин Тюрінга

Означення

Машини Тюрінга M_1 і M_2 є

- однаковими, якщо існує перестановка внутрішніх станів та/або зміна напрямків 'ліворуч' та 'праворуч', інакше принципово різними
- ullet еквівалентними, якщо $M_1 = M_2 \; (M_1 \simeq M_2)$
- ullet з однією мовою, якщо $L(M_1) = L(M_2)$

Властивості машин Тюрінга

Означення

Машини Тюрінга M_1 і M_2 є

- однаковими, якщо існує перестановка внутрішніх станів та/або зміна напрямків 'ліворуч' та 'праворуч', інакше принципово різними
- ullet еквівалентними, якщо $M_1 = M_2 \; (M_1 \simeq M_2)$
- з однією мовою, якщо $L(M_1) = L(M_2)$

Наслідок

Для довільних машин Тюрінга M_1 і M_2

- ullet якщо M_1 і M_2 є однаковими, то вони є еквівалентними
- ullet якщо M_1 і M_2 є еквівалентними, то вони є з однією мовою

Властивості машин Тюрінга

Означення

Машини Тюрінга M_1 і M_2 є

- однаковими, якщо існує перестановка внутрішніх станів та/або зміна напрямків 'ліворуч' та 'праворуч', інакше принципово різними
- ullet еквівалентними, якщо $M_1 = M_2 \; (M_1 \simeq M_2)$
- з однією мовою, якщо $L(M_1) = L(M_2)$

Наслідок

Для довільних машин Тюрінга M_1 і M_2

- ullet якщо M_1 і M_2 є однаковими, то вони є еквівалентними
- ullet якщо M_1 і M_2 є еквівалентними, то вони є з однією мовою

Всі розпізнавачі (вирішувачі) однієї мови є з однією мовою (еквівалентними).

Вирішувані та рекурсивно злічені мови

Означення

Мову (множину) називають вирішуваною (за Тюрінгом) (рекурсивною, обчислюваною), якщо для неї існує вирішувач (інакше — **невирішувана**).

Мову (множину) називають рекурсивно зліченою (за Тюрінгом) (зліченою, напіввирішуваною), якщо для неї існує розпізнавач. Мову (множину) називають корекурсивно зліченою (за Тюрінгом),

якщо її доповнення є зліченою мовою (множиною).

Вирішувані та рекурсивно злічені мови

Означення

Мову (множину) називають вирішуваною (за Тюрінгом) (рекурсивною, обчислюваною), якщо для неї існує вирішувач (інакше — невирішувана). Мову (множину) називають рекурсивно зліченою (за Тюрінгом) (зліченою, напіввирішуваною), якщо для неї існує розпізнавач. Мову (множину) називають корекурсивно зліченою (за Тюрінгом), якщо її доповнення є зліченою мовою (множиною).

Мова є вирішуваною \Leftrightarrow її характеристична функція є обчислюваною. Мова є рекурсивно зліченою \Leftrightarrow її напівхарактеристична функція є обчислюваною $\mathbb{I}_{L_1}(x) = \begin{cases} 1, & x \in L_1 \\ \bot, & x \not\in L_1 \end{cases}$.

Переписувач — машина Тюрінга, яка виписує по черзі всі слова з мови, можливо, з повторенням.

Переписувач — машина Тюрінга, яка виписує по черзі всі слова з мови, можливо, з повторенням.

Мова є рекурсивно зліченою ⇔ існує переписувач для цієї мови.

Переписувач — машина Тюрінга, яка виписує по черзі всі слова з мови, можливо, з повторенням.

Мова є рекурсивно зліченою ⇔ існує переписувач для цієї мови.

Доведення.

ullet нехай для мови L_1 є розпізнавач M_R

Переписувач — машина Тюрінга, яка виписує по черзі всі слова з мови, можливо, з повторенням.

Мова є рекурсивно зліченою \Leftrightarrow існує переписувач для цієї мови.

- ullet нехай для мови L_1 ϵ розпізнавач M_R
- множина всіх слів над алфавітом є зліченою $w_1, w_2, ...$

Переписувач — машина Тюрінга, яка виписує по черзі всі слова з мови, можливо, з повторенням.

Мова є рекурсивно зліченою \Leftrightarrow існує переписувач для цієї мови.

- ullet нехай для мови L_1 ϵ розпізнавач M_R
- ullet множина всіх слів над алфавітом ϵ зліченою w_1, w_2, \dots
- переписувач для $i=1,2,3,\ldots$ змоделювати роботу M_R з вхідними словами w_1,w_2,\ldots,w_i впродовж i тактів, записати всі слова, які M_R прийме

Переписувач — машина Тюрінга, яка виписує по черзі всі слова з мови, можливо, з повторенням.

Мова є рекурсивно зліченою ⇔ існує переписувач для цієї мови.

- ullet нехай для мови L_1 ϵ розпізнавач M_R
- множина всіх слів над алфавітом є зліченою $w_1, w_2, ...$
- переписувач для $i=1,2,3,\ldots$ змоделювати роботу M_R з вхідними словами w_1,w_2,\ldots,w_i впродовж i тактів, записати всі слова, які M_R прийме
- ullet нехай для мови L_1 ϵ переписувач M_E

Переписувач — машина Тюрінга, яка виписує по черзі всі слова з мови, можливо, з повторенням.

Мова є рекурсивно зліченою ⇔ існує переписувач для цієї мови.

- ullet нехай для мови L_1 ϵ розпізнавач M_R
- ullet множина всіх слів над алфавітом ϵ зліченою w_1, w_2, \dots
- переписувач для $i=1,2,3,\ldots$ змоделювати роботу M_R з вхідними словами w_1,w_2,\ldots,w_i впродовж i тактів, записати всі слова, які M_R прийме
- ullet нехай для мови L_1 ϵ переписувач M_E
- розпізнавач змоделювати роботу переписувача M_E і порівнювати його слова з вхідним словом

Властивості вирішуваних та рекурсивно злічених мов

Твердження

- порожня мова є вирішуваною мовою
- будь-яка скінченна мова та її доповнення є вирішуваними мовами
- існують нескінченні вирішувані мови з нескінченним доповненням (слова парної довжини)
- доповнення вирішуваної мови є вирішуваною мовою
- об'єднання та перетин скінченної кількості вирішуваних мов є вирішуваною мовою
- будь-яка вирішувана мова є рекурсивно зліченою
- об'єднання та перетин скінченної кількості рекурсивно злічених мов є рекурсивно зліченою мовою

Теорема Поста

Якщо мова L_1 та її доповнення є рекурсивно зліченими, то мова L_1 та її доповнення є вирішуваними.

Теорема Поста

Якщо мова L_1 та її доповнення є рекурсивно зліченими, то мова L_1 та її доповнення є вирішуваними.

Доведення.

ullet існують розпізнавачі M_1 і M_2 для мови L_1 та її доповнення

Теорема Поста

Якщо мова L_1 та її доповнення є рекурсивно зліченими, то мова L_1 та її доповнення є вирішуваними.

Доведення.

- ullet існують розпізнавачі M_1 і M_2 для мови L_1 та її доповнення
- ullet вирішувач $ilde{M}_1$ для мови L_1 моделюємо роботу M_1 і M_2 з одним вхідним словом паралельно

 L_1 є вирішуваною $\Leftrightarrow L_1$ і $\overline{L_1}$ є рекурсивно зліченими

Теорема Поста

Якщо мова L_1 та її доповнення є рекурсивно зліченими, то мова L_1 та її доповнення є вирішуваними.

- ullet існують розпізнавачі M_1 і M_2 для мови L_1 та її доповнення
- ullet вирішувач $ilde{M}_1$ для мови L_1 моделюємо роботу M_1 і M_2 з одним вхідним словом паралельно
- ullet якщо $M_1(x)=1$, $ilde{M}_1(x)=1$; якщо $M_2(x)=1$, $ilde{M}_1(x)=0$

Теорема Поста

Якщо мова L_1 та її доповнення є рекурсивно зліченими, то мова L_1 та її доповнення є вирішуваними.

- ullet існують розпізнавачі M_1 і M_2 для мови L_1 та її доповнення
- ullet вирішувач $ilde{M}_1$ для мови L_1 моделюємо роботу M_1 і M_2 з одним вхідним словом паралельно
- ullet якщо $M_1(x)=1$, $ilde{M}_1(x)=1$; якщо $M_2(x)=1$, $ilde{M}_1(x)=0$
- ullet за скінченну кількість тактів $M_1(x)=1$ або $M_2(x)=1$ $(x\in L_1)$ або $x\in \overline{L_1}$

Теорема Поста

Якщо мова L_1 та її доповнення є рекурсивно зліченими, то мова L_1 та її доповнення є вирішуваними.

- ullet існують розпізнавачі M_1 і M_2 для мови L_1 та її доповнення
- ullet вирішувач $ilde{M}_1$ для мови L_1 моделюємо роботу M_1 і M_2 з одним вхідним словом паралельно
- ullet якщо $M_1(x)=1$, $ilde{M}_1(x)=1$; якщо $M_2(x)=1$, $ilde{M}_1(x)=0$
- ullet за скінченну кількість тактів $M_1(x)=1$ або $M_2(x)=1$ $(x\in L_1)$ або $x\in \overline{L_1}$
- ullet вирішувач $ilde M_2$ для мови $\overline{L_1}$ якщо $M_1(x)=1$, $ilde M_2(x)=0$; якщо $M_2(x)=1$, $ilde M_2(x)=1$

Мова $A_{TM}=\{\ \langle M,x\rangle\ |\$ машина Тюрінга M приймає вхідне слово $x\ \}$ $\langle M,x\rangle\equiv\lfloor(M,x)\rfloor$

Мова
$$A_{TM}=\{\,\langle M,x\rangle\,\,|\,\,$$
 машина Тюрінга M приймає вхідне слово $x\,\}$ $\langle M,x\rangle\equiv\lfloor(M,x)\rfloor$

Теорема

Мова A_{TM} є невирішуваною, але є рекурсивно зліченою.

Мова $A_{TM}=\{\,\langle M,x\rangle\,\,|\,\,$ машина Тюрінга M приймає вхідне слово $x\,\}$ $\langle M,x\rangle\equiv\lfloor(M,x)\rfloor$

Теорема

Мова A_{TM} є невирішуваною, але є рекурсивно зліченою.

Доведення.

ullet змоделювати на 'універсальній' машині Тюрінга U машину Тюрінга M з вхідним словом x

Ĉ

Мова $A_{TM}=\{\ \langle M,x\rangle\ |\$ машина Тюрінга M приймає вхідне слово $x\ \}$ $\langle M,x\rangle\equiv\lfloor(M,x)\rfloor$

Теорема

Мова A_{TM} є невирішуваною, але є рекурсивно зліченою.

Доведення.

- змоделювати на 'універсальній' машині Тюрінга U машину Тюрінга M з вхідним словом x
- ullet якщо M приймає слово x, то U приймає слово $\langle M, x
 angle$

C

Мова $A_{TM}=\{\,\langle M,x\rangle\,|\,\,$ машина Тюрінга M приймає вхідне слово $x\,\}$ $\langle M,x\rangle\equiv\lfloor(M,x)\rfloor$

Теорема

Мова A_{TM} є невирішуваною, але є рекурсивно зліченою.

Доведення.

- ullet змоделювати на 'універсальній' машині Тюрінга U машину Тюрінга M з вхідним словом x
- ullet якщо M приймає слово x, то U приймає слово $\langle M,x
 angle$
- ullet якщо M відхиляє слово x, то U відхиляє слово $\langle M, x \rangle$

C

Мова $A_{TM}=\{\,\langle M,x\rangle\,|\,\,$ машина Тюрінга M приймає вхідне слово $x\,\}$ $\langle M,x\rangle\equiv\lfloor(M,x)\rfloor$

Теорема

Мова A_{TM} є невирішуваною, але є рекурсивно зліченою.

Доведення.

- ullet змоделювати на 'універсальній' машині Тюрінга U машину Тюрінга M з вхідним словом x
- ullet якщо M приймає слово x, то U приймає слово $\langle M, x
 angle$
- ullet якщо M відхиляє слово x, то U відхиляє слово $\langle M, x \rangle$
- ullet \Rightarrow розпізнаємо мову A_{TM}

c

Мова $A_{TM}=\{\,\langle M,x\rangle\,|\,\,$ машина Тюрінга M приймає вхідне слово $x\,\}$ $\langle M,x\rangle\equiv\lfloor(M,x)\rfloor$

Теорема

Мова A_{TM} є невирішуваною, але є рекурсивно зліченою.

Доведення.

- ullet змоделювати на 'універсальній' машині Тюрінга U машину Тюрінга M з вхідним словом x
- ullet якщо M приймає слово x, то U приймає слово $\langle M, x
 angle$
- ullet якщо M відхиляє слово x, то U відхиляє слово $\langle M, x \rangle$
- ullet \Rightarrow розпізнаємо мову A_{TM}
- \bullet якщо M зациклюється на слові x, то U зациклюється на слові $\langle M, x \rangle$

g

Доведення.

• метод від супротивного

Доведення.

- метод від супротивного
- ullet нехай $ilde{M}_A$ ϵ вирішувачем для мови A_{TM}

1.

- метод від супротивного
- ullet нехай $ilde{M}_A$ ϵ вирішувачем для мови A_{TM}

$$ullet$$
 $ilde{M}_A(\langle M, x \rangle) = egin{cases} 1, & M \ ext{приймає слово } x \ 0, & M \ ext{ не приймає слово } x \end{cases}$

Доведення.

- метод від супротивного
- ullet нехай $ilde{M}_A$ ϵ вирішувачем для мови A_{TM}

$$m{\Phi}$$
 $ilde{M}_A(\langle M, x \rangle) = egin{cases} 1, & M \ ext{приймає слово } x \ 0, & M \ ext{ не приймає слово } x \end{cases}$

ullet $ilde{M}_A$ завжди зупиняється

Доведення.

- метод від супротивного
- ullet нехай $ilde{M}_A$ ϵ вирішувачем для мови A_{TM}

$$ilde{M}_A(\langle M,x
angle) = egin{cases} 1, & M \ ext{приймає слово } x \ 0, & M \ ext{ не приймає слово } x \end{cases}$$

- ullet $ilde{M}_A$ завжди зупиняється
- ullet побудуємо МТ M_D , яка на вхідному слові $\langle M \rangle$:

Доведення.

- метод від супротивного
- ullet нехай $ilde{M}_A$ ϵ вирішувачем для мови A_{TM}

$$ilde{M}_A(\langle M,x
angle) = egin{cases} 1, & M \ ext{приймає слово } x \ 0, & M \ ext{ не приймає слово } x \end{cases}$$

- ullet $ilde{M}_A$ завжди зупиняється
- ullet побудуємо МТ M_D , яка на вхідному слові $\langle M
 angle$:
 - ullet моделює $ilde{M}_A$ на слові $\langle M, \langle M \rangle \rangle$

Доведення.

- метод від супротивного
- ullet нехай $ilde{M}_A$ ϵ вирішувачем для мови A_{TM}

$$ilde{M}_A(\langle M,x
angle) = egin{cases} 1, & M \ ext{приймає слово } x \ 0, & M \ ext{ не приймає слово } x \end{cases}$$

- ullet $ilde{M}_A$ завжди зупиняється
- ullet побудуємо МТ M_D , яка на вхідному слові $\langle M
 angle$:
 - ullet моделює $ilde{M}_A$ на слові $\langle M, \langle M \rangle
 angle$
 - $oldsymbol{0}$ повертає інше значення ніж $ilde{M}_A$ ($1- ilde{M}_A(\langle M,\langle M
 angle
 angle)))$

Доведення.

- метод від супротивного
- ullet нехай $ilde{M}_A$ ϵ вирішувачем для мови A_{TM}

$$ullet$$
 $ilde{M}_A(\langle M,x \rangle) = egin{cases} 1, & M \ ext{приймає слово } x \ 0, & M \ ext{ не приймає слово } x \end{cases}$

- ullet $ilde{M}_A$ завжди зупиняється
- ullet побудуємо МТ M_D , яка на вхідному слові $\langle M
 angle$:
 - ullet моделює $ilde{M}_A$ на слові $\langle M, \langle M \rangle \rangle$
 - $m{Q}$ повертає інше значення ніж $ilde{M}_A$ ($1- ilde{M}_A(\langle M,\langle M
 angle
 angle))$)

$$ullet$$
 $M_D(\langle M \rangle) = egin{cases} 1, & M ext{ не приймає слово } \langle M
angle \ 0, & M ext{ приймає слово } \langle M
angle \end{cases}$

Доведення.

- метод від супротивного
- ullet нехай $ilde{M}_A$ ϵ вирішувачем для мови A_{TM}

$$ilde{M}_A(\langle M,x
angle) = egin{cases} 1, & M \ ext{приймає слово } x \ 0, & M \ ext{ не приймає слово } x \end{cases}$$

- ullet $ilde{M}_A$ завжди зупиняється
- ullet побудуємо МТ M_D , яка на вхідному слові $\langle M
 angle$:
 - ullet моделює $ilde{M}_A$ на слові $\langle M, \langle M \rangle \rangle$
 - $oldsymbol{2}$ повертає інше значення ніж $ilde{M}_A$ ($1- ilde{M}_A(\langle M,\langle M
 angle
 angle)))$
- ullet $M_D(\langle M
 angle) = egin{cases} 1, & M$ не приймає слово $\langle M
 angle \ 0, & M$ приймає слово $\langle M
 angle \ \end{cases}$
- ullet $M_D(\langle M_D
 angle) = egin{cases} 1, & M_D ext{ не приймає слово } \langle M_D
 angle \ 0, & M_D ext{ приймає слово } \langle M_D
 angle \end{cases}$

Мова
$$E_{TM} = \{ \langle M \rangle \mid M$$
 — машина Тюрінга і $L(M) = \varnothing \}$

Мова
$$E_{TM} = \{ \langle M \rangle \mid M$$
 — машина Тюрінга і $L(M) = \emptyset \}$

Теорема

Мова E_{TM} є невирішуваною, але є корекурсивно зліченою.

Мова $E_{TM} = \{ \langle M \rangle \mid M$ — машина Тюрінга і $L(M) = \emptyset \}$

Теорема

Мова E_{TM} є невирішуваною, але є корекурсивно зліченою.

Доведення.

ullet нехай існує вирішувач $ilde{M}_E$ для мови E_{TM}

Мова $E_{TM} = \{ \langle M \rangle \mid M$ — машина Тюрінга і $L(M) = \emptyset \}$

Теорема

Мова E_{TM} є невирішуваною, але є корекурсивно зліченою.

Доведення.

- ullet нехай існує вирішувач $ilde{M}_E$ для мови E_{TM}
- ullet використовуючи \tilde{M}_E , побудуємо вирішувач \tilde{M}_A для мови A_{TM} , який на вхідному слові $\langle M, x \rangle$:

Мова
$$E_{TM} = \{ \langle M \rangle \mid M$$
 — машина Тюрінга і $L(M) = \emptyset \}$

Теорема

Мова E_{TM} є невирішуваною, але є корекурсивно зліченою.

Доведення.

- ullet нехай існує вирішувач $ilde{M}_E$ для мови E_{TM}
- ullet використовуючи \tilde{M}_E , побудуємо вирішувач \tilde{M}_A для мови A_{TM} , який на вхідному слові $\langle M, x \rangle$:
 - lacktriangle будує нову машину Тюрінга M_w , яка для довільного вхідного слова $w-M_w(x)=egin{cases} 0,&x
 eq w\ M(x),&x=w \end{cases}$

Мова
$$E_{TM} = \{ \langle M \rangle \mid M$$
 — машина Тюрінга і $L(M) = \emptyset \}$

Теорема

Мова E_{TM} є невирішуваною, але є корекурсивно зліченою.

Доведення.

- ullet нехай існує вирішувач $ilde{M}_E$ для мови E_{TM}
- ullet використовуючи $ilde{M}_E$, побудуємо вирішувач $ilde{M}_A$ для мови A_{TM} , який на вхідному слові $\langle M, x \rangle$:
 - $oldsymbol{0}$ будує нову машину Тюрінга M_w , яка для довільного вхідного слова $w-M_w(x)=egin{cases} 0, & x
 eq w \ M(x), & x=w \end{cases}$
 - $oldsymbol{2}$ моделює роботу вирішувача $ilde{M}_E$ з $\langle M_w
 angle$

Мова
$$E_{TM} = \{ \langle M \rangle \mid M$$
 — машина Тюрінга і $L(M) = \emptyset \}$

Теорема

Мова E_{TM} є невирішуваною, але є корекурсивно зліченою.

Доведення.

- ullet нехай існує вирішувач $ilde{M}_E$ для мови E_{TM}
- ullet використовуючи \tilde{M}_E , побудуємо вирішувач \tilde{M}_A для мови A_{TM} , який на вхідному слові $\langle M, x \rangle$:

 - ullet моделює роботу вирішувача $ilde{M}_E$ з $\langle M_w
 angle$

Мова $E_{TM} = \{ \langle M \rangle \mid M$ — машина Тюрінга і $L(M) = \emptyset \}$

Теорема

Мова E_{TM} є невирішуваною, але є корекурсивно зліченою.

Доведення.

- ullet нехай існує вирішувач $ilde{M}_E$ для мови E_{TM}
- ullet використовуючи \tilde{M}_E , побудуємо вирішувач \tilde{M}_A для мови A_{TM} , який на вхідному слові $\langle M, x \rangle$:
 - $oldsymbol{\circ}$ будує нову машину Тюрінга M_w , яка для довільного вхідного слова $w-M_w(x)=egin{cases} 0,&x\neq w\ M(x),&x=w \end{cases}$
 - ullet моделює роботу вирішувача $ilde{M}_E$ з $\langle M_w
 angle$
- суперечність

Мова

$$EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2$$
 — машини Тюрінга і $L(M_1) = L(M_2) \}$

$Moвa EQ_{TM}$

Мова

$$EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2$$
 — машини Тюрінга і $L(M_1) = L(M_2) \}$

Теорема

Мова EQ_{TM} є невирішуваною і є корекурсивно зліченою.

Мова

$$EQ_{TM} = \{ \langle M_1, M_2
angle \mid M_1, M_2$$
 — машини Тюрінга і $L(M_1) = L(M_2) \}$

Теорема

Мова EQ_{TM} є невирішуваною і є корекурсивно зліченою.

Доведення.

- ullet нехай існує вирішувач $ilde{M}_{EQ}$ для мови EQ_{TM}
- ullet використовуючи $ilde{M}_{EQ}$, побудуємо вирішувач $ilde{M}_E$ для мови E_{TM} , який на вхідному слові $\langle M_1
 angle$:
 - $oldsymbol{0}$ будує нову машину Тюрінга M_2 , яка для довільного вхідного слова $w-M_2(x)=0$
 - $oldsymbol{e}$ моделює роботу вирішувача $ilde{M}_{EQ}$ з $\langle M_1, M_2
 angle$
- суперечність

Задача HALT

Визначити за двійковим представленням машини Тюрінга M та вхідним словом $x \in \{0,1\}^*$, чи зупиниться машина Тюрінга M на вхідному слові x.

Мова $HALT_{TM} = \{ \langle M, x \rangle \mid M$ — машина Тюрінга і $M(x) \neq \bot \}$

Задача HALT

Визначити за двійковим представленням машини Тюрінга M та вхідним словом $x \in \{0,1\}^*$, чи зупиниться машина Тюрінга M на вхідному слові x.

Мова $HALT_{TM} = \{ \langle M, x \rangle \mid M$ — машина Тюрінга і $M(x) \neq \bot \}$

Теорема

Задача HALT (мова $HALT_{TM}$) ϵ невирішуваною.

Задача HALT

Визначити за двійковим представленням машини Тюрінга M та вхідним словом $x \in \{0,1\}^*$, чи зупиниться машина Тюрінга M на вхідному слові x.

Мова $HALT_{TM} = \{ \langle M, x \rangle \mid M$ — машина Тюрінга і $M(x) \neq \bot \}$

Теорема

Задача HALT (мова $HALT_{TM}$) ϵ невирішуваною.

Доведення.

ullet нехай існує вирішувач $M_{HALT},\ M_{diag}(x)=M_{HALT}(x,x)$

Задача HALT

Визначити за двійковим представленням машини Тюрінга M та вхідним словом $x \in \{0,1\}^*$, чи зупиниться машина Тюрінга M на вхідному слові x.

Мова $HALT_{TM} = \{ \langle M, x \rangle \mid M$ — машина Тюрінга і $M(x) \neq \bot \}$

Теорема

Задача HALT (мова $HALT_{TM}$) ϵ невирішуваною.

Доведення.

- ullet нехай існує вирішувач $M_{HALT},\ M_{diag}(x)=M_{HALT}(x,x)$
- $\bullet \ M_{co}(x) = \left\{ \begin{array}{l} \bot, M_{diag}(x) = 1 \\ 1, M_{diag}(x) = 0 \end{array} \right. ,$

Задача HALT

Визначити за двійковим представленням машини Тюрінга M та вхідним словом $x \in \{0,1\}^*$, чи зупиниться машина Тюрінга M на вхідному слові x.

Мова $HALT_{TM} = \{ \langle M, x \rangle \mid M$ — машина Тюрінга і $M(x) \neq \bot \}$

Теорема

Задача HALT (мова $HALT_{TM}$) ϵ невирішуваною.

Доведення.

- ullet нехай існує вирішувач $M_{HALT},\ M_{diag}(x)=M_{HALT}(x,x)$
- $\bullet \ \ M_{co}(x) = \left\{ \begin{array}{l} \bot, M_{diag}(x) = 1 \\ 1, M_{diag}(x) = 0 \end{array} \right.,$
- $\bullet \ M_{co}(\langle M \rangle) = \begin{cases} \bot, & M(\langle M \rangle) \neq \bot \\ 1, & M(\langle M \rangle) = \bot \end{cases}$

Задача HALT_E

Визначити за двійковим представленням машини Тюрінга M, чи зупиниться машина Тюрінга M на порожньому вхідному слові. Мова $HALT_{\varepsilon}=\{\,\langle M\rangle\mid M$ — машина Тюрінга і $M(\varepsilon)\neq \bot\,\}$

3адача $HALT_{\varepsilon}$

Визначити за двійковим представленням машини Тюрінга M, чи зупиниться машина Тюрінга M на порожньому вхідному слові. Мова $HALT_{\varepsilon} = \{\ \langle M \rangle \mid M$ — машина Тюрінга і $M(\varepsilon) \neq \bot \ \}$

Теорема

Задача $HALT_{\varepsilon}$ є невирішуваною.

3адача $HALT_{arepsilon}$

Визначити за двійковим представленням машини Тюрінга M, чи зупиниться машина Тюрінга M на порожньому вхідному слові. Мова $HALT_{\varepsilon}=\{~\langle M\rangle~|~M$ — машина Тюрінга і $M(\varepsilon)\neq \bot~\}$

Теорема

Задача $HALT_{\varepsilon}$ є невирішуваною.

Доведення.

ullet для довільної пари МТ $ilde{M}$ та вхідного слова x існує МТ $ilde{M}_x$: $ilde{M}_x(arepsilon) = ilde{M}(x)$

3адача $\mathit{HALT}_{arepsilon}$

3адача $HALT_{arepsilon}$

Визначити за двійковим представленням машини Тюрінга M, чи зупиниться машина Тюрінга M на порожньому вхідному слові. Мова $HALT_{\varepsilon}=\{~\langle M\rangle~|~M$ — машина Тюрінга і $M(\varepsilon)\neq \bot~\}$

Теорема

Задача $HALT_{\varepsilon}$ є невирішуваною.

Доведення.

- ullet для довільної пари МТ $ilde{M}$ та вхідного слова x існує МТ $ilde{M}_x$: $ilde{M}_x(arepsilon) = ilde{M}(x)$
- якщо існує машина Тюрінга, яка розв'язує задачу $HALT_{\varepsilon}$, то вона розв'язує задачу HALT

3адача $HALT_{arepsilon}$

Визначити за двійковим представленням машини Тюрінга M, чи зупиниться машина Тюрінга M на порожньому вхідному слові. Мова $HALT_{\varepsilon}=\{~\langle M\rangle~|~M$ — машина Тюрінга і $M(\varepsilon)\neq \bot~\}$

Теорема

Задача $HALT_{\varepsilon}$ є невирішуваною.

Доведення.

- ullet для довільної пари МТ $ilde{M}$ та вхідного слова x існує МТ $ilde{M}_x$: $ilde{M}_x(arepsilon) = ilde{M}(x)$
- якщо існує машина Тюрінга, яка розв'язує задачу $HALT_{\varepsilon}$, то вона розв'язує задачу HALT
- суперечність

Moва INF_{TM}

Мова
$$\mathit{INF}_{\mathit{TM}} = \{\, \langle \mathit{M} \rangle \mid \mathit{M} - \mathsf{машина} \; \mathsf{Тюрінга} \; \mathrm{i} \; |\mathit{L}(\mathit{M})| = \infty \,\}$$

Moва *INF_{TM}*

Мова
$$\mathit{INF}_{\mathit{TM}} = \{ \, \langle \mathit{M} \rangle \mid \mathit{M} - \mathsf{машина} \; \mathsf{Тюрінга} \; \mathrm{i} \; |\mathit{L}(\mathit{M})| = \infty \, \}$$

Теорема

Мова INF_{TM} не є вирішуваною, не є рекурсивно зліченою і не є корекурсивно зліченою.

Невирішуваність

Довести невирішуваність мови —

• пряме доведення (метод діагоналізації)

Невирішуваність

Довести невирішуваність мови —

- пряме доведення (метод діагоналізації)
- використання іншої невирішуваної мови

Невирішуваність

Довести невирішуваність мови —

- пряме доведення (метод діагоналізації)
- використання іншої невирішуваної мови
- теорема Райса(-Успенського)

Означення

Властивість формальних мов над алфавітом Σ визначається множиною мов над алфавітом Σ . Мова $L_1 \in \Sigma^*$ має властивість $\mathbb P$, якщо $L_1 \in \mathbb P$. Для довільної властивості $\mathbb P$ мовою розпізнавання властивості $\mathbb P$ називають мову, яка складається з представлень машин Тюрінга, мови яких належать властивості $\mathbb P$, і позначають її як $L_{\mathbb P}$, $L_{\mathbb P} = \{\langle M \rangle | L(M) \in \mathbb P\}$.

Означення

Властивість формальних мов над алфавітом Σ визначається множиною мов над алфавітом Σ . Мова $L_1 \in \Sigma^*$ має властивість \mathbb{P} , якщо $L_1 \in \mathbb{P}$. Для довільної властивості \mathbb{P} мовою розпізнавання властивості \mathbb{P} називають мову, яка складається з представлень машин Тюрінга, мови яких належать властивості \mathbb{P} , і позначають її як $L_{\mathbb{P}}$, $L_{\mathbb{P}} = \{\langle M \rangle | L(M) \in \mathbb{P}\}$.

Приклади

$$\checkmark$$
 $E_{TM} = \{ \langle M \rangle \mid M$ — машина Тюрінга і $L(M) = \emptyset \}$

Означення

Властивість формальних мов над алфавітом Σ визначається множиною мов над алфавітом Σ . Мова $L_1 \in \Sigma^*$ має властивість \mathbb{P} , якщо $L_1 \in \mathbb{P}$. Для довільної властивості \mathbb{P} мовою розпізнавання властивості \mathbb{P} називають мову, яка складається з представлень машин Тюрінга, мови яких належать властивості \mathbb{P} , і позначають її як $L_{\mathbb{P}}$, $L_{\mathbb{P}} = \{\langle M \rangle | L(M) \in \mathbb{P}\}$.

Приклади

- \checkmark $E_{TM} = \{ \langle M \rangle \mid M$ машина Тюрінга і $L(M) = \emptyset \}$
- \checkmark INF_{TM} = { $\langle M \rangle \mid M$ машина Тюрінга і $|L(M)| = \infty$ }

Означення

Властивість формальних мов над алфавітом Σ визначається множиною мов над алфавітом Σ . Мова $L_1 \in \Sigma^*$ має властивість \mathbb{P} , якщо $L_1 \in \mathbb{P}$. Для довільної властивості \mathbb{P} мовою розпізнавання властивості \mathbb{P} називають мову, яка складається з представлень машин Тюрінга, мови яких належать властивості \mathbb{P} , і позначають її як $L_{\mathbb{P}}$, $L_{\mathbb{P}} = \{\langle M \rangle | L(M) \in \mathbb{P}\}$.

Приклади

- \checkmark $E_{TM} = \{ \langle M \rangle \mid M$ машина Тюрінга і $L(M) = \varnothing \}$
- ✓ *INF*_{TM} = { ⟨M⟩ | M машина Тюрінга і |L(M)| = ∞ }
- $\{ \langle M \rangle \mid M$ машина Тюрінга і вона має 10 внутрішніх станів $\}$

Означення

Властивість формальних мов над алфавітом Σ називають **тривіальною**, якщо всі рекурсивно злічені мови над алфавітом Σ належать цій властивості, або одночасно всі рекурсивно злічені мови над алфавітом Σ не належать цій властивості. Інакше, властивість формальних мов над алфавітом Σ називають **нетривіальною**.

Означення

Властивість формальних мов над алфавітом Σ називають **тривіальною**, якщо всі рекурсивно злічені мови над алфавітом Σ належать цій властивості, або одночасно всі рекурсивно злічені мови над алфавітом Σ не належать цій властивості. Інакше, властивість формальних мов над алфавітом Σ називають **нетривіальною**.

Для довільної тривіальної властивості формальних мов над алфавітом Σ її мова розпізнавання властивості є вирішуваною.

Означення

Властивість формальних мов над алфавітом Σ називають **тривіальною**, якщо всі рекурсивно злічені мови над алфавітом Σ належать цій властивості, або одночасно всі рекурсивно злічені мови над алфавітом Σ не належать цій властивості. Інакше, властивість формальних мов над алфавітом Σ називають **нетривіальною**.

Для довільної тривіальної властивості формальних мов над алфавітом Σ її мова розпізнавання властивості є вирішуваною.

Теорема Райса (Райса-Успенського)

Якщо властивість мов \mathbb{P} є нетривіальною, то мова розпізнавання цієї властивості є невирішуваною.

$$L_{\mathbb{P}} = \{\langle M \rangle | L(M) \in \mathbb{P}\}$$

Зауваження

• Теорема Райса говорить про властивості мов, а не машин Тюрінга

Зауваження

- Теорема Райса говорить про властивості мов, а не машин Тюрінга
- властивість має бути обов'язково нетривіальною

Зауваження

- Теорема Райса говорить про властивості мов, а не машин Тюрінга
- властивість має бути обов'язково нетривіальною

Приклад

$$\mathit{FIVE}_{\mathit{TM}} = \{ \ \langle \mathit{M} \rangle \mid \mathit{M} - \mathsf{машини} \ \mathsf{Тюрінга} \ \mathsf{i} \ |\mathit{L}(\mathit{M})| \leq 5 \ \}$$

Зауваження

- Теорема Райса говорить про властивості мов, а не машин Тюрінга
- властивість має бути обов'язково нетривіальною

Приклад

$$FIVE_{TM} = \{ \langle M \rangle \mid M$$
 — машини Тюрінга і $|L(M)| \leq 5 \}$

ullet нехай $L(M_1) = L(M_2) \Rightarrow M_1, M_2 \in \mathit{FIVE}_{\mathsf{TM}}$ або $M_1, M_2 \not\in \mathit{FIVE}_{\mathsf{TM}}$

Зауваження

- Теорема Райса говорить про властивості мов, а не машин Тюрінга
- властивість має бути обов'язково нетривіальною

Приклад

- ullet нехай $L(M_1)=L(M_2)\Rightarrow M_1,M_2\in \mathit{FIVE}_{\mathit{TM}}$ або $M_1,M_2
 ot\in \mathit{FIVE}_{\mathit{TM}}$
- ✓ властивість мови, а не окремої машини Тюрінга

Зауваження

- Теорема Райса говорить про властивості мов, а не машин Тюрінга
- властивість має бути обов'язково нетривіальною

Приклад

- ullet нехай $L(M_1)=L(M_2)\Rightarrow M_1,M_2\in \mathit{FIVE}_{\mathit{TM}}$ або $M_1,M_2
 ot\in \mathit{FIVE}_{\mathit{TM}}$
- √ властивість мови, а не окремої машини Тюрінга
 - ullet нехай M_3 приймає всі слова, а M_4 відхиляє всі слова \Rightarrow $M_3
 ot\in FIVE_{TM}$ і $M_4 \in FIVE_{TM}$

Зауваження

- Теорема Райса говорить про властивості мов, а не машин Тюрінга
- властивість має бути обов'язково нетривіальною

Приклад

- ullet нехай $L(M_1)=L(M_2)\Rightarrow M_1,M_2\in \mathit{FIVE}_{\mathit{TM}}$ або $M_1,M_2
 ot\in \mathit{FIVE}_{\mathit{TM}}$
- √ властивість мови, а не окремої машини Тюрінга
- ullet нехай M_3 приймає всі слова, а M_4 відхиляє всі слова \Rightarrow $M_3
 ot\in FIVE_{TM}$ і $M_4 \in FIVE_{TM}$
- √ властивість є нетривіальною

Зауваження

- Теорема Райса говорить про властивості мов, а не машин Тюрінга
- властивість має бути обов'язково нетривіальною

Приклад

- ullet нехай $L(M_1)=L(M_2)\Rightarrow M_1,M_2\in \mathit{FIVE}_{\mathit{TM}}$ або $M_1,M_2
 ot\in \mathit{FIVE}_{\mathit{TM}}$
- √ властивість мови, а не окремої машини Тюрінга
 - ullet нехай M_3 приймає всі слова, а M_4 відхиляє всі слова \Rightarrow $M_3
 ot\in FIVE_{TM}$ і $M_4 \in FIVE_{TM}$
- √ властивість є нетривіальною
- \Rightarrow теорема Райса є застосовною і мова $FIVE_{TM}$ є невирішуваною

Зауваження

- Теорема Райса говорить про властивості мов, а не машин Тюрінга
- властивість має бути обов'язково нетривіальною

Приклад

- ullet нехай $L(M_1)=L(M_2)\Rightarrow M_1,M_2\in \mathit{FIVE}_{\mathit{TM}}$ або $M_1,M_2
 ot\in \mathit{FIVE}_{\mathit{TM}}$
- √ властивість мови, а не окремої машини Тюрінга
 - ullet нехай M_3 приймає всі слова, а M_4 відхиляє всі слова \Rightarrow $M_3
 ot\in FIVE_{TM}$ і $M_4 \in FIVE_{TM}$
- √ властивість є нетривіальною
- \Rightarrow теорема Райса є застосовною і мова $FIVE_{TM}$ є невирішуваною
- \Rightarrow за теоремою Райса мова E_{TM} є невирішуваною

• Тібор Радо, 1962р.

- Тібор Радо, 1962р.
- Модель машини Тюрінга $(1,\{0,1\},\{1\},0,Q,q_H,q_0,\delta)$, де $\delta:(Q\setminus\{q_H\})\times\{0,1\}\to Q\times\{0,1\}\times\{L,R\}$

- Тібор Радо, 1962р.
- ullet Модель машини Тюрінга $(1,\{0,1\},\{1\},0,Q,q_H,q_0,\delta)$, де $\delta:(Q\setminus\{q_H\}) imes\{0,1\} o Q imes\{0,1\} imes\{L,R\}$
- \mathcal{K}_{BB} всі машини Тюрінга, які зупиняються на порожньому вхідному слові (клас Радо)

- Тібор Радо, 1962р.
- Модель машини Тюрінга $(1,\{0,1\},\{1\},0,Q,q_H,q_0,\delta)$, де $\delta:(Q\setminus\{q_H\}) imes\{0,1\} o Q imes\{0,1\} imes\{L,R\}$
- К_{ВВ} всі машини Тюрінга, які зупиняються на порожньому вхідному слові (клас Радо)
- $\mathcal{K}_{BB}(n)$ всі машини Тюрінга, які зупиняються на порожньому вхідному слові і мають n некінцевих станів

- Тібор Радо, 1962р.
- Модель машини Тюрінга $(1,\{0,1\},\{1\},0,Q,q_H,q_0,\delta)$, де $\delta:(Q\setminus\{q_H\}) imes\{0,1\} o Q imes\{0,1\} imes\{L,R\}$
- К_{ВВ} всі машини Тюрінга, які зупиняються на порожньому вхідному слові (клас Радо)
- $\mathcal{K}_{BB}(n)$ всі машини Тюрінга, які зупиняються на порожньому вхідному слові і мають n некінцевих станів
- s(M) кількість тактів, яку зробить машина Тюрінга M з порожнім вхідним словом до своєї зупинки

- Тібор Радо, 1962р.
- Модель машини Тюрінга $(1,\{0,1\},\{1\},0,Q,q_H,q_0,\delta)$, де $\delta:(Q\setminus\{q_H\}) imes\{0,1\} o Q imes\{0,1\} imes\{L,R\}$
- К_{ВВ} всі машини Тюрінга, які зупиняються на порожньому вхідному слові (клас Радо)
- $\mathcal{K}_{BB}(n)$ всі машини Тюрінга, які зупиняються на порожньому вхідному слові і мають n некінцевих станів
- s(M) кількість тактів, яку зробить машина Тюрінга М з порожнім вхідним словом до своєї зупинки
- $\sigma(M)$ кількість непорожніх комірок, які залишаться на стрічці після зупинки машини Тюрінга M з порожнім вхідним словом

Означення

Функціями Радо називають функції $S, \Sigma : \mathbb{N} \to \mathbb{N}$, які для довільного натурального числа $n \in \mathbb{N}$ приймають значення $S(n) = \max_{M \in \mathcal{K}_{BB}(n)} s(M)$ і $\Sigma(n) = \max_{M \in \mathcal{K}_{BB}(n)} \sigma(M)$.

Означення

Функціями Радо називають функції $S, \Sigma : \mathbb{N} \to \mathbb{N}$, які для довільного натурального числа $n \in \mathbb{N}$ приймають значення $S(n) = \max_{M \in \mathcal{K}_{BB}(n)} s(M)$ і $\Sigma(n) = \max_{M \in \mathcal{K}_{BB}(n)} \sigma(M)$.

Наслідок

Для довільного натурального числа $n\in\mathbb{N}$ виконується нерівність $\Sigma(n)\leq S(n).$

Означення

Функціями Радо називають функції $S, \Sigma : \mathbb{N} \to \mathbb{N}$, які для довільного натурального числа $n \in \mathbb{N}$ приймають значення $S(n) = \max_{M \in \mathcal{K}_{BB}(n)} s(M)$ і $\Sigma(n) = \max_{M \in \mathcal{K}_{BB}(n)} \sigma(M)$.

Наслідок

Для довільного натурального числа $n \in \mathbb{N}$ виконується нерівність $\Sigma(n) \leq S(n)$.

Твердження

Для довільного натурального числа $n \in \mathbb{N}$ потужність класу Радо $\mathcal{K}_{BB}(n)$ машин Тюрінга обмежена зверху значенням $(4(n+1))^{2n}$.

Теорема

Для довільної обчислювальної функції $f:\mathbb{N}\to\mathbb{N}$ існує таке натуральне число $n_f\in\mathbb{N}$, що $\Sigma(n)>f(n)$ для всіх натуральних чисел $n\in\mathbb{N},\ n>n_f$.

Теорема

Для довільної обчислювальної функції $f: \mathbb{N} \to \mathbb{N}$ існує таке натуральне число $n_f \in \mathbb{N}$, що $\Sigma(n) > f(n)$ для всіх натуральних чисел $n \in \mathbb{N}$, $n > n_f$.

Наслідок

Σ функція Радо є необчислювальною.

S функція Радо є необчислювальною.

			Values of S(n, m)			
m n	2-state	3-state	4-state	5-state	6-state	7-state
2-symbol	6	21	107	47 176 870 ?	> 7.4 × 10 ³⁸ 534	> 1010101010101010101
3-symbol	38	≥ 119 112 334 170 342 540	> 1.0 × 10 ¹⁴ 0 ⁷²	?	?	?
4-symbol	≥ 3 932 964	> 5.2 × 10 ^{13 038}	?	?	?	?
5-symbol	> 1.9 × 10 ⁷⁰⁴	?	?	?	?	?
6-symbol	> 2.4 × 10 ⁹⁸⁶⁶	?	?	?	?	?
			Values of Σ(n, m)			
m n	2-state	3-state	4-state	5-state	6-state	7-state
2-symbol	4	6	13	4098 ?	> 3.5 × 10 ^{18 267}	> 1010101010101010
3-symbol	9	≥ 374 676 383	> 1.3 × 10 ⁷⁰³⁶	?	?	?
4-symbol	≥ 2050	> 3.7 × 10 ⁸⁵¹⁸	?	?	?	?
5-symbol	> 1.7 × 10 ³⁵²	?	?	?	?	?
6-symbol	> 1.9 × 10 ⁴⁹³³	?	?	?	?	?

• для довільної обчислювальної та арифметично коректної теорії існує таке натуральне число $k \in \mathbb{N}$, що для довільного числа $n \in \mathbb{N}$, $n \geq k$, жодне твердження виду S(n) = m, де $m \in \mathbb{N}$, не може бути доведено в межах цієї теорії

- для довільної обчислювальної та арифметично коректної теорії існує таке натуральне число $k \in \mathbb{N}$, що для довільного числа $n \in \mathbb{N}$, $n \geq k$, жодне твердження виду S(n) = m, де $m \in \mathbb{N}$, не може бути доведено в межах цієї теорії
- ullet в межах теорії множин Цермело-Френкеля не можна обчислити значення S(748)

- для довільної обчислювальної та арифметично коректної теорії існує таке натуральне число $k \in \mathbb{N}$, що для довільного числа $n \in \mathbb{N}$, $n \geq k$, жодне твердження виду S(n) = m, де $m \in \mathbb{N}$, не може бути доведено в межах цієї теорії
- ullet в межах теорії множин Цермело-Френкеля не можна обчислити значення S(748)
- побудована машина Тюрінга з класу Радо $\mathcal{K}_{BB}(1919)$, яка зупиняється, коли теорія множин Цермело-Френкеля з аксіомою вибору є суперечною

- для довільної обчислювальної та арифметично коректної теорії існує таке натуральне число $k \in \mathbb{N}$, що для довільного числа $n \in \mathbb{N}$, $n \geq k$, жодне твердження виду S(n) = m, де $m \in \mathbb{N}$, не може бути доведено в межах цієї теорії
- в межах теорії множин Цермело-Френкеля не можна обчислити значення S(748)
- побудована машина Тюрінга з класу Радо $\mathcal{K}_{BB}(1919)$, яка зупиняється, коли теорія множин Цермело-Френкеля з аксіомою вибору є суперечною
- побудована машина Тюрінга з класу Радо $\mathcal{K}_{BB}(744)$, яка зупиняється, якщо гіпотеза Рімана є хибною

- Поточні рекорди та історія машин Тюрінга класу Радо http://www.logique.jussieu.fr/ michel/bbc.html http://turbotm.de/ heiner/BB/
- Computerphile "Busy Beaver" відео (англ. мова), prof. Brailsford https://www.youtube.com/watch?v=CE8UhcyJS0I
- Фізична реалізація (3,2) Busy Beaver https://www.youtube.com/watch?v=28pnk2JIBSE
- Фізична реалізація (4,2) Busy Beaver https://www.youtube.com/watch?v=2PjU6DJyBpw
- Реалізація (4,2) Busy Beaver в Minecraft https://www.youtube.com/watch?v=IefoYnf6xKI