

when the potential applied, not side's femi level goes up ord some e- from noside "turnel" twoogh the barrier towards poside and we observe maximum current

E	5ak		dio	de		We	×K	ن ک	۸ ۱	Fora	بدر	4	bi	as		
-	سروح	die	de	. (PN)	mon	rks	i٨	re	ખબ.	ડશ	りん	2 5		
	diff	~ sic	3 72	W	(ro	Λt	;	ω ((0)	ょ	طب	e t	ρ	dif.	لعدر	ΛC
									in							
#	PN	Jun	Ctic)h	:	O	UT.	√ c	للكاو	te	mb	di	et c	nd		
								FE								
								مع								
								rent								
γ	ote:	The	na	lzi	St	٨	SN	019	P	P J	The	<i>b</i> o	15	Q3	رسوا	L.
	Eo	_			_											
					•						_ E	fn				
	Esp															
		Ph	pe)	へた	pe						

$$f_{o}(x) = \begin{cases} -9Na : -x_{0} < x \leq 0 \\ 9No : 0 < x < x_{n} \end{cases}$$

$$0 : -x_{0} > x \text{ or } x > x_{n} = 0$$

Gowss Law

$$E(x) - E(x_0) = \int_{\xi}^{x} \int_{x_0}^{x} f(x) dx$$

$$\frac{\partial^2 \Phi(x)}{\partial x^2} = -\nabla E = -\frac{3(x)}{\varepsilon_o}$$

$$\phi(x) - \phi(x_0) = \int_{x_0}^{x} -E(x)dx$$

for
$$J = -qNa : -xp. < x \le 0$$
 $E = ?$

$$dE = -2NA$$

$$dx$$

$$E = -2NA \int dx$$

$$E = -2NA \times + C$$

$$So at x = -xp. (bondary condition for x < xp.)$$

$$So at x = -xp. (bondary)$$

$$G = -2NA \times + C$$

$$G = -xp. (bondary)$$

$$G = -xp. (x + xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. (x - xp.) : -xp. < x < 0$$

$$G = -xp. < x < 0$$

only at x=0

note:

hole density > e-density

-> p side less doped wrt n side

here Egraph is not a posfect triangle

E ord potential ore continuous at x=0

$$\Phi(\chi) = \begin{cases}
\frac{2Na}{2s} \left[\chi_{po} \chi + \frac{\chi^2}{2} + \frac{\chi^2_{po}}{2} \right] & : -\chi_{po} = \chi < 0 \\
\frac{2Nd}{2s} \left(\chi_{no} \chi - \frac{\chi^2}{2} \right) + \frac{2Na\chi^2_{po}}{2s} & : 0 < \chi < \chi_{no}
\end{cases}$$

uit Na, Na 1 -> W L -> band bending t W= 28sVbi [NatNd]/2
9 Na:Nd

note: Wy Vbi

Revese bias -> Vbi' = Vbi+qV -> W1 -> EJ IJ Forward bias -> Vbi' = Vbi-qV -> W1 -> E1 I1

diffusion current = - duitt current
for pn junction

Vbi = KT Qn[NAND]

drift wrrent = 9 pupt

for p side

diffusion wrrent = 9 Dp dP

dz

now we have 2 famules for Ubi