CH110: Gases Tutorial Sheet 2024

- a) Write down the mathematical expressions of the following gas laws:
 - 1. Boyle's law
 - 2. Charles' law
- b) Consider a mixture of two gases, A, and B, confined in a closed vessel. A quantity of a third gas, C, is added to the same vessel at the same temperature. State whether each of the following will increase, decrease, or remain the same.
 - 1. The partial pressure of gas A
 - 2. The total pressure in the vessel
 - 3. The mole fraction of gas B
- c) A diver releases a bubble of air which rises to the surface of the sea. The volume of the bubble increases from 4.0 cm3 to 10.0 cm3 during this process.
 - 1. Why does the bubble expand as it rises?
 - 2. Just below the surface, the pressure acting on the bubble is one atmosphere. What is the pressure (in atmospheres) acting on it before it starts to rise?
 - 3. Which gas law is being applied in your calculation in c(ii) above?
- d) An aerosol spray can with a volume of 250 ml contains 2.30 g of propane gas (C3H8) as a propellant.
 - 1. If the can is at 230C, what is the pressure in the can?
 - 2. What volume would the propane occupy at STP?
 - 3. The can's label says that exposure to temperatures above 1300F may cause the can to burst. What is the pressure in the can at this temperature?
- e) When 1.77 g of a gas was stored in a 1.500 L flask at 17 °C, it exerted a pressure of 508 Torr. What is the molar mass of the gas?
- f) A container of volume 5 dm3 was filled with 2.02 g of H2(g) and 71 g of Cl2(g). The mixture was then sparked leading to the formation of HCl(g) and then cooled to a temperature of 25 °C. At the end of the reaction, determine the
 - 1. Partial pressure
 - 2. Partial pressure of each component gas
 - Total pressure in the container.
 - Mole fraction of each gas.
- g) Between helium and ammonia gas, which one would you expect to exhibit behaviour close to ideal gas behaviour at low pressure? Provide brief explanation for your answer.
- h) State the Van der Waals equation and define each of the terms involved.

So / which

The total focus une increases

as more moles of gas is added to

the same volume

P = nrT, here everything is same

except n increases so

Palso increases

The same amount of moles B is in the volume, but the total moles increases so male fraction of B goes down or decreased.

Arabel fraction: Moles of B total moles

* The partial pressure of gas A stays the same because the total pressure of gas C. relatively with the addition

(fii NRT v= 250ml v= 0.251 0.0522 mol

```
# finding T;
    K = 0C + Q 73
K = Q3 + Q 73
H = 296 K
        - P - nRT
             p = [0.0592) (0.0821) x(296)
                             0.25
          P = 5.0 7 atm
(ii) STP => Standard Temperature (273k) and
Pressure (1 atm)
    at STP, molar volume is 22.42
          1 mol = 22.4d
0.0522 mol = 2
2 = 1.17 L
           or;
         V = \Pi R T where \Pi = 0.0522
P = R = 0.0821
T = 873
P = 1
        yout get the same solutions.
```

M=PV
RT
7 - 0.6684 x 1.5
0.0821 X 290
1 = 0.04211 moles
n = mass
m.m
m.m = mas
m.m = 1.779
0.04.211 mol
m·m - 42.03 g/mol:
f 77
(i) Partial Pressure of what kaili _ kkk
(ii) $n(H_2) = 2.029 = 1 \text{ mol}$ 8.029 mol
\$ 0 kg mol
$\Pi\left(\mathcal{C}(2) = 7 q = 1 \text{ mo}\right)$
$\frac{\Pi\left(C(r) = 7 g = 1 mol}{7 g mol}$
71911101
$P(H_1) = nRI$
THU V
= 1 x 0.08 21 x 298
S
P(H2) = 4.9 atm

 $\left(\begin{array}{c} P + \frac{n^2q}{V^2}\right) \left(V - nb\right) = nR \mathcal{I}$ P = pressure exerted by gos

V = Volume occupied by the gas

M = moles of the gas

Q = Van der maals constant [representing the attraction between gas molecules]

b = Van der mash waals constant [representing volume occupied by gas molecules R = Ideal gas Constant T = Temp or gas.