به نام خدا

دانشگاه صنعتی شریف دانشکده مهندسی کامپیوتر

آزمایشگاه طراحی سیستمهای دیجیتال

آزمایش پنجم: طراحی واحد ضرب کننده

محمدجواد هزاره، یاسین موسوی

فهرست مطالب

٢																										قدمه	نه	1
۲	•															•								مايش	هدف آزه	١.	١	
۲	٠	•		•	•	•	•												•	•	•	•	•	ری .	مبانى تئو	۲.	١	
٣	معماری مدار															ક	۲											
٣	•																								روش کار	١.	۲	
٣	•																							ترل .	واحد كنا	۲.	۲	
۴	•				•												•		•		•	•		•	مسير داد	٣.	۲	
۵																								رد مدار	زي عملك	بيەسا	ش	٣

۱ مقدمه

۱.۱ هدف آزمایش

در این آزمایش هدف طراحی یک واحد ضربکننده به روش الگوریتم Booth بود.

۲.۱ مبانی تئوری

Add یک الگوریتم الگوریتم برای ضرب دو عدد n بیتی در یکدیگر بوده که براساس روش Booth الگوریتم در شکل ۱ آمده است. مراحل این این الگوریتم در شکل ۱ آمده است.

شكل ١: مراحل الگوريتم Booth

۲ معماری مدار

۱۰۲ روش کار

برای پیادهسازی الگوریتمی که در شکل ۱ نشان داده شد، دو واحد مسیر داده و واحد کنترل در نظر می گیریم. واحد کنترل در واقع یک ماشین حالت است که حالتهای مختلفی که در الگوریتم داریم را طی کرده و مسیر داده نیز با توجه به حالتی که این ماشین در آن قرار داد، داده ها را جمع و یا تفریق کرده و شیفت می دهد.

۲.۲ واحد کنترل

همانطور که گفته شد این واحد یک ماشین حالت است که نمودار آن را در شکل ۲ میتوان دید.

شكل ٢: ماشين حالت واحد كنترل

با توجه به تقارن نمودار، میتوان حالتهایی که زیروند دارند را با استفاده از یک متغیر دیگر تشخیص داد و برای آنها حالت جدیدی در نظر نگرفت.

ورودی های این واحد نیز سیگنال های data_ready و b0 هستند که به ترتیب نشان دهنده آماده بودن اعداد و شروع به کار واحد ضربکننده و بیت اول ضربکننده میباشند. خروجی های آن نیز o_result_ready ، o_subtract و مستند که سیگنال اول نشان دهنده نوع عملیات

محاسباتیای است که باید صورت بگیرد (تفریق یا جمع ضرب شونده) و کاربرد سیگنالهای دیگر نیز از اسم آنها مشخص است.

۳.۲ مسیر داده

این قسمت با استفاده از حالتی که واحد کنترل دارد، تصمیم به جمع یا تفریق ضربشونده با رجیستر کمکی X میگیرد. ورودی های آن اعداد A و B به همراه سیگنال های state و state که از واحد کنترل استفاده شده و کنترل می آیند می باشد. خروجی های آن نیز b0 و b0 هستند که b0 در واحد کنترل استفاده شده و result نیز جواب ضرب را نشان می دهد.

۳ شبیه سازی عملکرد مدار

در شکل ۳ شبیه سازی مدار برای ضرب اعداد ۳ و ۱۳ آورده شده که در آن می توان حالت ماشبن واحد کنترل و عملکردی که مسیر داده داشته است را مشاهده کرد.

```
0, A: 3, B: 13, result: 00001101 -( 13), result_ready: 0, state:000, counter:0 5, A: 3, B: 13, result: 00001101 -( 13), result_ready: 0, state:001, counter:0 7, A: 3, B: 13, result: 11011101 -(221), result_ready: 0, state:010, counter:0
# time:
                                                               3, B: 13, result: 11101110 -(238), result_ready: 0, state:011, counter:1
# time:
                                                                 3, B: 13, result: 11101110 -(238), result_ready: 0, state:001, counter:1
# time:
                                                                 3, B: 13, result: 00011110 -( 30), result_ready: 0, state:010, counter:1
# time:
                                                  13, A:
                                                                 3, B: 13, result: 00001111 -( 15), result_ready: 0, state:011, counter:2
f time:
                                                 17, A: 3, B: 13, result: 00001111 - (15), result_ready: 0, state:011, counter:2
17, A: 3, B: 13, result: 00001111 - (15), result_ready: 0, state:001, counter:2
19, A: 3, B: 13, result: 11011111 - (223), result_ready: 0, state:010, counter:2
# time:
# time:
                                                                 3, B: 13, result: 11101111 -(239), result_ready: 0, state:011, counter:3
# time:
                                                 21, A: 3, B: 13, result: 11101111 -(239), result_ready: 0, state:011, counter:3
23, A: 3, B: 13, result: 11101111 -(239), result_ready: 0, state:010, counter:3
25, A: 3, B: 13, result: 11110111 -(247), result_ready: 0, state:011, counter:4
27, A: 3, B: 13, result: 11110111 -(247), result_ready: 0, state:100, counter:4
29, A: 3, B: 13, result: 00100111 -(39), result_ready: 1, state:000, counter:0
# time:
# time:
```

شکل ۳: ضرب ۳ در ۱۳