Lossless Image Compression and Transmission

FUNDAMENTALS OF IMAGE AND VIDEO PROCESSING

What is Lossless Image Compression and Transmission?

- To store large sized images and make available on internet
 Compression is required.
- The goal is to represent an image signal with the smallest possible number of bits.
- Without loss of any information.
- Speeding up transmission and minimizing storage requirements.
- Original data to be perfectly reconstructed from the compressed data.

<u>Huffman Coding</u>

- Huffman coding is a lossless data compression algorithm.
- The idea is to assign variable length codes to input characters, lengths of the assigned codes are based on the frequencies of corresponding characters.
- Huffman's code procedure is based on the two observations.
 - More frequently occurred symbols will have shorter code words than symbols that occur less frequently.
 - The two symbols that occur least frequently will have the same length.

Table 1: Huffman source reduction.

a5 0.04

Original source Source reduction

OH	Simui	Soul		ouic	e reduction	
S	P	1	2	3	4	
a2	0.4	0.4	0.4	0.4	0.6	
a6	0.3	0.3	0.3	0.3	0.4	
a1	0.1	0.1	0.2	0.3		
a4	0.1	0.1	0.1			
a3	0.06	0.1				

 Table 2 : Huffman Code Assignment Procedure

S	iginal source S	1	2	3	4
	0.4[1]	0.4[1]	0.4[1]	0.4[1]	0.6[0]
	0.3[00]	0.3[00]	0.3[00]	0.3[00]	500000 -500
a1	0.1[011]	0.1[011]	0.2[010]	0.3[01]	
a4	0.1[0100]	0.1[0100]	0.1[011]		
a3	0.06[01010]	0.1[0101]			
a5	0.04[01011]				
S-s	source, P-prob	ability			

Lavg =
$$(0.4)(1) + (0.3)(2) + (0.1)(3) + (0.1)(4) + (0.06)(5) + (0.04)(5) = 2.2 \text{ bits/ symbol}$$

and the entropy of the source is 2.14bits/symbol,
the resulting Huffman code efficiency is2.14/2.2 = 0.973.
Entropy, H=- Σ P(aj)log P(aj)

<u>Huffman Decoding</u>

- Decoding is accomplished in a simple look-up table manner.
- The code itself is an instantaneous uniquely decodable block code.
- It is called a block code.
- Each source symbol is mapped into a fixed sequence of code symbols.
- It is instantaneous because each codeword in a string of code symbols can be decoded without referencing succeeding symbols.
- It is uniquely decodable because any string of code symbols can be decoded in only one way.

Huffman Decoding

- Any string of Huffman encoded symbols can be decoded by examining the individual symbols of the string in a left to right manner.
- The decompressor keeps the whole Huffman binary tree, and of course a pointer to the root to do the recursion process.
- Make the tree as usual and then you'll store a pointer to the last node in the list, which is the root.
- Navigate the tree by using the pointers to the children that each node has.
- This process is done by a recursive function that accepts as a parameter a pointer to the current node and returns the symbol.

Methodology

<u>Methodology</u>

- 1. Reading image.
- 2. Converting RGB to Gray-Scale.
- 3. Call function to find symbols.
- Call function for calculating probability.
- 5. Arrange in Descending order.
- 6. Code words are achieved related to the corresponding symbols.
- 7. Code words and final encoded values are concatenated.
- 8. Huffman codewords are achieved by using final encoding values.
- 9. Original image is reconstructed in the spatial domain.

<u>Methodology</u>

- 10. Compressed image applied on Huffman coding to get the better quality image based on block and codebook size.
- 11. Recovered reconstructed looks similar to the original image.
- 12. Implement Laplacian of Gaussian filtering.
- 13. Implement Pseudo coloring.
- 14. Implement Bilateral filtering.
- 15. Implement Watermarking.

Output

Variance: 13

Average Length: 7.865064e+00

Time Elapsed: 4.3565

Image before Transmission

Entropy is :7.840854 bits

Efficiency is :0.996922

Image after Transmission

Applications

- Medical imaging is been used for diagnosis of diseases and surgical planning, and they need long-term storage for profiling patient's data as well as efficient transmission for long diagnosis
- In the field of online diagnosis or real time applications such as telemedicine, demands for hardware to handle lossless compression that can accelerate the computation process.
- Works well for text and fax transmissions.

Conclusion

Efficient and Effective communication of superior quality digital images needs a reduction of memory space and less bandwidth requirement.

- (a) Good quality image with Lower compression ratio.
- (b) Lower entropy and more the Average Length.

Thank You!