Лекция 10 1

Дискретный аналог теоремы Боля

Пусть f(x) - периодическая функция с периодом 1. Пусть $\alpha \notin \mathbb{Q}$, обозначим через $S_n =$ $\sum_{i=1}^{n} f(j\alpha + x).$

Теорема: Пусть $f \in C^2$, тогда $\forall N, \forall \varepsilon > 0 \exists n \geq N : |S_n(x)| < \varepsilon$. И $\int_0^1 f(x) dx = < f > = 0$. \triangle Множество иррациональных чисел представляется в виде объединения $K_1 \bigcup K_2$, причем $K_1 \cap K_2$ - пусто. K_1 определим следующим образом: Число $\alpha \in K_1$ тогда и только тогда \Leftrightarrow , когда неравенство $|n\alpha-m| < n^{-3/2}$ имеет бесконечно много решений в целых числах. Остальные иррациональные числа отнесем к K_2 . Заметим, что в определении K_1 m и n можно считать взаимно простыми. Заметим, что K_2 имеет полную меру на \mathbb{R} , K_1 всюду плотно и имеет мощность континуума.

Лемма 1: Если $\alpha \in K_2$, то $\sum_{n=1}^{\infty} \frac{1}{n^2 |n\alpha-m_n|} < \infty$, где m_n - последовательность целых чисел.

Докажем лемму. Пусть $S=\sum_{n=1}^{\infty}\frac{1}{n^2|n\alpha-m_n|}$, нас интересует случай $|n\alpha-m_n|<1$ (иначе нас не устраивает). $\frac{1}{2^{j+1}} \leq |n_k^j \alpha - m_{n_k^j}| < \frac{1}{2^j}, j = 0, 1, 2, \dots$ При этом можно упорядочить: $n_{k+1}^j > n_k^j, k = 1, 2, \dots$ Запишем неравенство: $|(n_{k+1}^j - n_k^j)\alpha - \overline{m}| < \frac{1}{2^{j-1}},$ и еще одно: $|\overline{n}\alpha - \overline{m}| < \frac{1}{2^{j-1}},$ $N_j = min\overline{n} \geq 1,$ (что такое \overline{n} ?)

 $(n_{k+1}^j - n_k^j) \ge N_j \ |n_1^j \alpha - m_{n_1^j}| < \tfrac{1}{2^j} < \tfrac{1}{2^{j-1}} \ \Rightarrow \ n_1^j \ge N_j \ \Rightarrow \ n_k^j \ge k N_j \ , \ N_i^{3\backslash 2} \ge 2^{j-1} \ \Rightarrow \ n_1^j \ge N_j \ \Rightarrow \ n_k^j \ge k N_j \ , \ N_i^{3\backslash 2} \ge 2^{j-1} \ \Rightarrow \ n_1^j \ge N_j \ , \ N_i^{3\backslash 2} \ge N_j \ \Rightarrow \ n_1^j \ge$

$$N_j \geq [2^{j-1}]^{2\backslash 3}$$
 Обозначим через S_j - часть S , отвечающую j - ому неравенству:
$$S_j = \sum_{k=1}^\infty \frac{1}{(n_k^j)^2 |n_k^j \alpha - m_{n_k^j}|} \leq \sum_{k=1}^\infty \frac{2^{j+1}}{(kN_j)^2} = \frac{2^{j+1}}{N_j^2} \sum_{k=1}^\infty \frac{1}{n^2} < \frac{\pi^2 2^{j-1} 4}{6[2^{j-1}]^{4/3}} = \frac{2\pi^2}{3} (\frac{1}{3\sqrt{2}})^{j-1} \sqrt{3} > 0$$

 $1\Rightarrow\sum S_j<rac{2\pi^2}{3}\sum(rac{1}{3\sqrt{2}})^{j-1}<\infty$ отсюда получаем требуемое.

Лемма 2: Имеет место неравенство $|e^{2\pi i n \alpha} - 1| \ge 4|n\alpha - m|$ для некоторого целого m. Докажем лемму: $|e^{\pi i n \alpha} - e^{-\pi i n \alpha}| = 2|\sin(\pi n \alpha)| = 2|\sin(\pi n \alpha)| \geq 4|n\alpha - m|$.

Лемма 3: Если $f \in C^2$, то $\exists g \in C$ такая, что: g(x+1) = g(x), $S_n(x) = \sum_{j=1}^n f(j\alpha + x) = g((n+1)\alpha + x) - g(x)$. Докажем лемму: $f(x) = \sum_{-\infty}^{+\infty} f_n e^{2\pi i n x}$, x mod 1, так как $f \in C^2$, то $|f_n| \leq \frac{c}{n^2}, n \geq 1$ (грубая оценка). $S_n(x) = \sum_{j=1}^n \sum_{-\infty}^{+\infty} f_m e^{2\pi i m (j\alpha + x)} = \sum_{m=-\infty}^{+\infty} f_m \sum_{j=1}^n e^{2\pi i m j \alpha} e^{2\pi i m x} = \sum_{m=-\infty}^{+\infty} \frac{f_m e^{2\pi i m \alpha} (e^{2\pi i m \alpha} (e^{$ так как $f \in C^2$. Ряд для функции g(x) сходится и является непрерывной 1-периодической функцией.

Мажоранта:
$$\sum_{m=-\infty}^{+\infty} \frac{c}{e^{m^2|m\alpha-lm|}} < \infty \implies S_n(x) = g((n+1)\alpha + x) - g(x)$$

Замечание: Вместе с этими леммами доказана теорема для $lpha \in K_2$. Последовательность $\{x+(n+1)\alpha\}$ всюду плотно распределена на [0;1], а так как g - непрерывна, то $S_n(x)$ сколь угодно мала равномерно по x. Далее будем рассматривать случай, когда $\alpha \in K_1$.

Вычисление Эйлера : $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$. Поясним это вычисление. Рассмотрим известное из анализа представление функции $\sin x$ в виде бесконечного произведния: $\sin x = x(1 - x)$ $\frac{x^2}{\pi^2}$) $(1-\frac{x^2}{4\pi^2})\dots$ С другой стороны, рассмотрим разложение функции $\sin x$ в ряд Тейлора и приравняем эти представления: $1 - \frac{x^2}{6} + \ldots = (1 - \frac{x^2}{\pi^2})(1 - \frac{x^2}{4\pi^2})\ldots \Rightarrow \frac{1}{6} = \frac{1}{\pi^2} + \frac{1}{4\pi^2} + \ldots$

<u>Лемма</u>: Пусть f(x) - 1 - периодична и $< f >= 0, f \in \mathbb{C}^2, \alpha \in K_1$. Тогда $|\sum_{j=1} nf(j\alpha+x)| \leq \frac{M_1}{\sqrt{n}} + \frac{M_2}{24n}$, где $M_1 = \max |f'(x)|$, $M_2 = \max |f''(x)|$. \triangle Фиксируем $\frac{m}{n}: |\alpha - \frac{m}{n}| < \frac{1}{n^{5/2}}$ $|\sum_{j=1}^{n} f(j\alpha + x) - \sum_{j=1}^{n} j(j\alpha + x)| \le \sum_{j=1}^{n} |f(j\alpha + x) - f(\frac{jm}{n} + x)| = 0$ $\sum_{j=1}^{n} |f'(\zeta_j)| j |\alpha - \frac{m}{n}| \le \frac{M_1}{\sqrt{n}}$ Теперь рассмотрим оценку: $\sum_{j=1}^{n} f(j\frac{m}{n} + x)$, обозначим $x_j = j\frac{m}{n} + x$ $x_{k+1} - x_k = \frac{1}{n}$;

Метод прямоугольников: $\frac{1}{n}\sum_{k=1}^n f(x_k) \leq \int_0^1 f(x)dx + \frac{f''(\zeta)}{24n^2}$. Так как < f> = 0, $|f''(\zeta)| \leq M_2$, $|\sum_{k=1}^n f(x_k)| \leq \frac{M_2}{24n}$. Отсюда получаем требуемое. Осталось обосновать метод прямоугольников. $\int_{-h}^h f(x)dx = \int_0^h f(x)dx + \int_{-h}^0 f(x)dx = F(h) - \int_{-h}^h f(x)dx = \int_0^h f(x)dx = \int_{-h}^h f(x)d$ F(-h).

 $F(h) = F(0) + F'(0)h + F''(0)h^2/2 + F'''(\zeta)h^3/6$, $\zeta \in [0; h]$ $F(-h) = F(0) - F'(0)h + F''(0)h^2/2 - F'''(\eta)h^3/6 , \eta \in [-h; 0]$ $\int_{-h}^{h} f(x)dx = F'(0)2h + \frac{F'''(\zeta) + F'''(\eta)}{2}(2h)^3/24 \text{ так как } F'(h) = f(h), \frac{F'''(\zeta) + F'''(\eta)}{2} = \frac{1}{2} \int_{-h}^{h} f(x)dx = \frac{1}{2} \int_{-h$ $\frac{f''(\zeta) + f''(\eta)}{2} = f''(\xi)$

Таким образом, мы получили оценку: $\int_{-h}^{h} f(x) dx - f(0) 2h = \frac{f''(\xi)(2h)^3}{24}$ $2h = 1/n \Rightarrow$ $\int_0^1 f(x)dx - \frac{1}{n} \sum_{k=1}^n f(x_k) \le \frac{f''(\xi)}{24n^2}$ Отсюда получаем требуемое.

1.2Теорема о возвращаемости интегралов от двухчастотных условно-периодических функций. Пример Пуанкаре

Рассмотрим $f(x_1,x_2), x_1, x_2 mod 1$. Пусть $\int_0^1 \int_0^1 f(x_1,x_2) dx_1 dx_2 = 0 = < f >$, считаем, что $x_1 = \omega_1 t + x_1^0; x_2 = \omega_2 t + x_2^0$, где $\frac{\omega_1}{\omega_2} \notin \mathbb{Q}$. $f(\omega_1 t + x_1^0, \omega_2 t + x_2^0)$ - условно - периодическая функция времени. $I(T,x^0)=\int_0^T f(\omega t+x)dt$. $S^1=\{x_1mod1\}, x_2=x_2^0$ - сечение (Пуанкаре), обозначим $x_1^0 = x$, $\Delta t = \frac{1}{\omega_2}$ - время возврата на окружность. $F(x) = \int_0^{\frac{1}{\omega_2}} f(\omega_1 t + x, \omega_2 t + x_2^0) dt$ $\Rightarrow \int_0^{\frac{n}{\omega_2}} f(\omega_1 t + x, \omega_2 t + x_2^0) dt = F(x) + \ldots + F(x + \alpha(n-1)), F \in C^2, \int_0^1 F(x) dx = 0.$ (Упражнение: проверить).

Пример Пуанкаре.

 $f(x_1,x_2) = \sum_{n=1}^{\infty} (\frac{A}{\Lambda})^n \cos 2\pi (u_n x_1 + v_n x_2)$ - не имеет ни одной производной ни в одной точке, $\langle f \rangle = 0$ u_n, v_n - целые числа такие, что: $(\sqrt{2}-1)^n = u_n + v_n\sqrt{2}, \ x_1, x_2 mod 1$. $\Lambda = \sqrt{2} + 1$, $1 < \frac{\Lambda}{2} < A < \Lambda$, f - непрерывная функция(есть мажоранта). Будем считать, что: $x_2 = \sqrt{2}t, x_1 = t, \omega_2 = \sqrt{2}, \omega_1 = 1$ $\frac{\omega_1}{\omega_2} \notin \mathbb{Q}, \ x_1^0 = x_2^0 = 0, \ u_n x_1 + v_n x_2 = (u_n + \sqrt{2}v_n)t = (\sqrt{2} - 1)^n t = \frac{t}{(\Lambda)^n}, \ \text{ряд} \ \sum_{n=1}^{\infty} (\frac{A}{\Lambda})^n \cos(\frac{2\pi t}{\Lambda^n}) \ \text{сходится, поэтому} \ I(\tau) = \int_0^{\tau} \sum_{n=1}^{\infty} (\frac{A}{\Lambda})^n \cos(\frac{2\pi t}{\Lambda^n}) dt$ Предолжение: $I(\tau) \longrightarrow +\infty(-\infty), \tau \to +\infty(-\infty)$

 \triangle Возьмем интервал: $\frac{\pi}{2}\Lambda^{n-1} \leq t \leq \frac{\pi}{2}\Lambda^n, n = 1, 2, \dots$, разделим его на Λ^{n+k} : $0 < \frac{\pi}{2}\Lambda^{-k-1} \leq \frac{t}{\Lambda^{n+k}} \leq \frac{\pi}{2\Lambda^k} < \frac{\pi}{2}, k = 0, 1, 2, \dots$ $I(t) = \sum_{j=1}^{\infty} A^j \sin(\frac{t}{\Lambda^j}) = \sum_{j=1}^{n-1} (A^j \sin(\frac{t}{\Lambda^j}) + \sum_{k=0}^{\infty} A^{n-k} \sin(\frac{t}{\Lambda^{n+k}}) = (I) + (II).$ $I(t) \leq \sum_{j=1}^{n-1} A^j = \frac{A^n-A}{A-1}$ $I(t) : \sin(\frac{t}{\Lambda^{n+k}}) \geq \frac{2t}{\pi\Lambda^{n+k}} > \frac{1}{\Lambda^{k+1}}$ $I(t) \geq \sum_{k=0}^{\infty} A^{n+k}/\Lambda^{k+1} = \frac{A^n}{\Lambda} \sum_{k=0}^{\infty} (\frac{A}{\Lambda})^k = \frac{A^n}{\Lambda-A}$ В нашем интервале получается, что $I(t) \geq \frac{A^n}{\Lambda-A} - \frac{A^n-A}{A-1} = A^n \frac{2A-\Lambda-1}{(\Lambda-A)(A-1)} + \frac{A}{A-1} \to \infty, n \to \infty, t \to \infty.$

 $f(x_1,x_2) = \sum_{n=1}^{\infty} (\frac{A}{\Lambda})^n \cos 2\pi (u_n x_1 + v_n x_2)$, положим $x_2 = 0, x_1 = x \Rightarrow g(x) = 0$ $\sum_{n=1}^{\infty} \left(\frac{A}{\Lambda}\right)^n \cos(2\pi u_n x) \Rightarrow \Lambda = \sqrt{2} + 1 = \frac{1}{\sqrt{2} - 1} \Rightarrow u_n + v_n \sqrt{2} = \frac{1}{\Lambda^n} \Rightarrow (-\sqrt{2} - 1)^n = u_n - v_n \sqrt{2} = \frac{1}{\sqrt{2} - 1} = \frac{1}{\sqrt$

 $(-1)^n \Lambda^n$. Из этих соотношений мы можем найти u_n, v_n : $u_n = (-1)^n/2[\Lambda^n + (-1)^n/\Lambda^n]$. Введем функцию $G(x) = \sum_{n=1}^{\infty} (\frac{A}{\Lambda})^n \cos(2\pi \Lambda^n x)$ - функция Вейерштрасса, не имеет производной ни в одной точке(Харди).

Упражнение: Доказать, что $g(x) - G(x) \in C^1$.

Рассмотрим $f(x_1,x_2)\in C^2; x_1,x_2mod1; < f>= 0$, берем $x_1^0,x_2^0:f(x_1^0,x_2^0)\neq 0$. Запишем интеграл: $I(\tau,x^0)=\int_0^\tau f(\omega_1t+x_1^0,\omega_2t+x_2^0)dt$, где $\frac{\omega_1}{\omega_2}$ - иррационально. Интеграл возвращается к нулю (было доказано ранее).

Теорема: В этих предположениях $I(\tau,x^0)$ имеет бесконечно много нулей при $\tau\to\infty$.(нули встречаются сколь угодно далеко)

1.3 Дифференциальные уравнения на торе с инвариантными мерами

Эйлер:

 $\dot{x} = f(x, y)$

 $\dot{y} = q(x, y)$

 $\rho(x,y)$ - плотность инвариантной меры, интегрирующий множитель. Уравнение Лиувилля: $\frac{\partial(\rho f)}{\partial x} + \frac{\partial(\rho g)}{\partial y} = 0$. Рассмотрим дифференциальную форму: $-\rho g dx + \rho f dy =$ dH(x,y) (она точна в силу условия Лиувилля). $\frac{\partial H}{\partial x}=-\rho g$, $\frac{\partial H}{\partial y}=\rho f$. Как видим, H первый интеграл системы.

Теорема Якоби: Пусть есть система дифференциальных уравнений: $\dot{x}=f(x)$. Пусть:

- 1) имеется (n-2) независимых первых интеграла $G_1(x), \ldots, G_{n-2}(x)$,
- 2) имеется интегральный инвариант с плотностью $\rho(x) > 0$, $\sum_{i=1}^{n} \frac{\partial \rho f_{i}}{\partial x_{i}} = 0$.

Тогда уравнения интегрируются в квадратурах.

Замечание: Почему рассматриваемый класс систем полезно изучать? Рассмотрим совместный уровень первых интегралов: $M_c = \{G_1 = c_1, \dots, G_{n-2} = c_{n-2}\}$ - вообще говоря, это двумерная поверхность. Рассмотрим случай, когда M_c - замкнуто (представляется как пересечение замкнутых множеств) и ограничено. Предположим также, что $f(x) \neq 0 \forall x \in$ M_c , и рассмотрим связную компоненту M_c , тогда M_c диффеоморфно \mathbb{T}^2 . Ясно, что M_c ориентируемая поверхность. Почему на торе будет интегральный инвариант? Введем на торе угловые переменные $u, v, \mathbb{T}^2 \cong M_c$, то есть в окрестности тора можно ввести nпеременных: $z_1 = G_1, \dots, z_{n-2} = G_{n-2}, z_{n-1} = u, z_n = v, u, v, mod 2\pi$. Напишем в этих переменных дифференциальное уравнение: $\dot{z}_1 = 0, \dots, \dot{z}_{n-2} = 0$

$$\dot{z}_{n-1} = f$$

$$\dot{z}_n = g$$

Утверждение: Эта система имеет интегральный инвариант с плотностью $\overline{\rho}(z)$ =

Можем записать уравнение Лиувидля для новой системы:

$$\frac{\partial(\overline{\rho}f)}{\partial x} + \frac{\partial(\overline{\rho}g)}{\partial y} = 0$$
.

 $\frac{\partial(\overline{
ho}f)}{\partial x}+\frac{\partial(\overline{
ho}g)}{\partial y}=0\,.$ Фиксируем $z_1=c_1,\ldots,z_{n-2}=c_{n-2},$ отсюда все получаем.