

Winning Space Race with Data Science

<Genchang Peng> <Nov. 29th,2024>

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
 - ➤ Data Collection Through API (Module 1)
 - ➤ Data Collection with Web Scraping (Module 1)
 - ➤ Data Wrangling (Module 1)
 - Exploratory Data Analysis with SQL (Module 2)
 - Exploratory Data Analysis with Data Visualization (Module 2)
 - ➤Interactive Visual Analytics with Folium (Module 3)
 - ➤ Machine Learning Prediction (Module 4)
- Summary of all results
 - > Exploratory Data Analysis Results (Data Collection and Wrangling)
 - ➤ Interactive Analytics Results (Data Visualization and Dashboard Interaction)
 - ➤ Predictive Machine Learning Results (Classification Models)

Introduction

Project background and context

- ➤ Space X advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upward of 165 million dollars each.
- > Much of the savings is because Space X can reuse the first stage.
- > We (Space Y) as a competitor, need to determine if the first stage will land, we can determine the cost of a launch.
- > This information can be used if we (Space Y) wants to bid against Space X for a rocket launch.
- > The goal of this project is to create a machine learning pipeline to predict if the first stage will land successfully.
- Problems you want to find answers
 - > What factors in the Space X dataset (e.g., payload mass, launch site, etc.) determine the rocket will land successfully?
 - ➤ How can we visualize these factors in an easy and explicit way?
 - > Can we **build the optimal machine learning model** to predict the successful rate?

Methodology

Executive Summary

- Data collection methodology:
 - We collect data using the Space X API and Web Scrapping from Wikipedia
- Perform data wrangling
 - We use pandas Dataframe to replace missing values in specific columns by their means()
- Perform exploratory data analysis (EDA) using Python visualization and SQL (inline magic)
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Building four models: logistic regression (LR), SVM, decision-tree and KNN
 - Designing cross-validation by splitting training and testing data as 80%: 20%
 - Using GridSearchCV to find the optimal parameters of a model

Data Collection

- Describe how data sets were collected.
 - **1. API Request**: Using requests.get(spacex-url) to request the Space X API
 - **2. JSON to DataFrame:** Used .json() function to call the response, turn into pd.DataFrame using pd.json_normalize()
 - 3. Data Wrangling: Replacing the nan values by the mean() of PayloadMass
 - 4. WEB Scraping: Using BeautifulSoup() to requesting the HTML page of Falcon9 launch WIKI page
 - 5. HTML to DataFrame: Parsing the HTML table into pd.DataFrame using html5lib

Data Collection – SpaceX API

- Our basic steps for API data collection:
 - ➤ Use **request.get()** to request the Space X API, get response
 - ➤ Use json_normalize() to get json response into pandas DataFrame
 - ➤ Use **me** columns **an()** to replace the nan in some (e.g., PayloadMass)
- GitHub URL: (<u>Git location: data</u> collection via APIs)

Data Collection - Scraping

- Our basic steps for Scraping data collection:
 - Use request.get() to get the Space X HTML
 - Use beautifulsoup() to extract the HTML table
 - > Sparse the HTML table into DataFrame
- GitHub URL: (Github location: data collection scraping)

1. Request the Space X HTML

TASK 1: Request the Falcon9 Launch Wiki page from its URL

First, let's perform an HTTP GET method to request the Falcon9 Launch HTML page, as an HTTP rest.

```
: # use requests.get() method with the provided static_url
# assign the response to a object
## 1, we get the Falcon9 launch wiki page
html_data = requests.get(static_url)
html_data.status_code
```

2. Extract the HTML Table by beautifulsoup()

3. Sparsing table into DataFrame

After you have fill in the parsed launch record values into launch_dict, you can create

It is described to describe the next section, but to make the answers consistent a following labs will be using a provided dataset to make each lab independent.

33]: df.to_csv('spacex_web_scraped.csv', index=False)

df.to_csv('spacex_web_scraped.csv', index=False)

Data Wrangling

- Our data wrangling steps:
 - ➤ Use **isnull().sum** to identify the percentage of missing values
 - ➤ Use value_counts() to calculate the number of the orbits, launches, mission outcomes, etc..
 - > Create a landing outcome label
 - ➤ Use mean() to replace the nan in some columns (e.g., PayloadMass)
- GitHub URL: (Github location: data wrangling)

1. Identify the missing values df.isnull().sum()/len(df)*100 FlightNumber 0.000000 0.000000 BoosterVersion 0.000000 0.000000 PayloadMass 0.000000 0.000000 LaunchSite Outcome 0.000000 Flights 2. Calculate number of launches # Apply value counts() on column LaunchSite df['LaunchSite'].value_counts() LaunchSite CEASE CLE AD Use the method .value_counts() to determine 3. Calculate number of orbits [13]: # Apply value_counts on Orbit column df['Orbit'].value_counts() [13]: Orbit GTO 27 ISS 21 VLEO Using the Outcome, create a list where the element variable landing_class: # Landing class = 0 if bad outcome 4. Creating a landing outcome label # Landing class = 1 otherwise ### this one takes my time!! for key, value in df['Outcome'].items():

if value in bad_outcomes:
 landing_class.append(0)
else:
 landing_class.append(1)

This variable will represent the classification variable.

first stage landed Successfully

EDA with Data Visualization

- We use scatter plot to visualize the relationship among
 - > Flight Number & Launch Site
 - ➤ Payload & Launch Site
 - > Flight Number & Orbit Type
 - > Payload & Orbit Type
- We use bar plot (upper right) to visualize the Success Rate of Orbit Type
- We use line plot (lower right) to visualize the trend between Year and Success Rate
- GitHub URL (Github location: data visualization)

EDA with SQL

- We use sqlite to connect to our database my_data1.db, read Spacex.csv, created the TABLE SPACEXTABLE, and perform the following sql queries (<u>Github location: sqlite</u>):
 - Names of the unique launch sites in the space mission
 - Display 5 records where launch sites begin with the string 'CCA',
 - > Display the total payload mass carried by boosters launched by NASA (CRS)
 - Display average payload mass carried by booster version F9 v1.1
 - List the date when the first succesful landing outcome in ground pad was achieved
 - > List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000
 - > List the total number of successful and failure mission outcomes
 - List the names of the booster_versions which have carried the maximum payload mass. Use a subquery
 - List the records which will display the month names, failure landing_outcomes in drone ship ,booster versions, launch_site for the months in year 2015.
 - Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order.

Build an Interactive Map with Folium

- We marked launch sites, and added map objects like **markers**, **circles**, **lines** to mark the success or failure of launches for each site on the folium map
- We assigned the feature launch outcomes (failure or success) to class 0 and 1.i.e., 0 for failure, and 1 for success.
- Using the **color-labeled marker clusters**, we identify which launch sites have relatively high successful rate
- We calculate the distances between a launch site to its proximities.
- GIT location: (Github location: Folium location)

Build a Dashboard with Plotly Dash

- We build an interactive dashboard via Plotly Dash
- We plot the pie chart showing the total launches by a certain site
- We plot scatter plot showing the relationship between Outcome and Payload Mass for different booster version
- GIT location: (Github location: Dashboard)

Predictive Analysis (Classification)

- We load the data using numpy and pandas, transformed the data, split into training and testing
- We build four models, Logistic Regression, SVM, Decision Tree and KNN
- We use GridSearchCV to find the best parameters
- We use accuracy as the metric, using feature engineering and algorithm tuning, find Decision Tree as optimal model
- GIT location: (Github location: machine learning)

Results

- Exploratory data analysis results
 - > Successfully collect SpaceX launching data via API and Web scaping
 - > Perform data wrangling, and use SQL query to read the data information
- Interactive analytics demo in screenshots
 - > Visualize the relationship between success rate and different factors (e.g., Payload Mass)
 - Visualize the location of launch site, create the dashboard
- Predictive analysis results
 - > Designed machine learning pipelines with four different models
 - > Perform classification and find the optimal results

Flight Number vs. Launch Site

- A scatter plot of Flight Number vs. Launch Site
- O is failure, 1 is success
- We noticed that:
 - >The later year, more likely to success
 - CCAFS SLC 40 launch site has the most launches, but only half success rate
 - ➤ KSC LC 39 A and VAFB SLC 30, while less launches, have higher success ful rate than CCAFS SLC 40

Payload vs. Launch Site

- A scatter plot of Payload vs Launch Site
- O is failure, 1 is success
- We noticed that:
 - For CCAFS SLC 40, the greater payload mass, the more success rate (see the red box)
 - ➤ KSC LC 39 A and VAFB SLC 30, due to less launches, cannot be surely stated about such observation

Success Rate vs. Orbit Type

- A bar plot to show the Success
 Rate vs Orbit Type
- They are shown in descending order of Success Rate
- We noticed that:

For ES-L1, GEO, HEO, SSO and VLEO, they have the most Success Rate

Flight Number vs. Orbit Type

- A scatter plot of Flight Number vs Orbit Type
- O is failure, 1 is success
- We noticed that:

For VLEO orbit, high Flight Number, more Success Rate (see the red box)

VLEO orbit flight number and success

Payload vs. Orbit Type

- A scatter plot of Payload vs Orbit
 Type
- O is failure, 1 is success
- We noticed that:
 - ➤ Most Payload Mass (kg) is between 2000 to 6000
 - ➤ VLEO orbit sees the hightest payload, with 3 Success (see red box)
 - ➤GTO, with most launches, the Success is not very satisfactory (see black box)

Launch Success Yearly Trend

- A line plot of Launch Success and Year
- We noticed that:
 - ➤ In general, the launce success increases with new years
 - ≥2019 sees the highest success rate (marked in red)

All Launch Site Names

- We use SELECT DISTINCE launch_site, from SPACEXTABLE
- We notice there are **four** launch site names
 - **≻CCAFS LC-40**
 - **≻VAFB SLC-4E**
 - >KSC LC-39A
 - **>CCAFS SLC-40**

```
Display the names of the unique launch sites in the space mission

[57]: %sql SELECT DISTINCT launch_site from SPACEXTABLE;

* sqlite:///my_datal.db
Done.

[57]: Launch_Site

CCAFS LC-40

VAFB SLC-4E

KSC LC-39A

CCAFS SLC-40
```

Launch Site Names Begin with 'CCA'

- We use SELECT * to select from table
- We use WHERE launch_site like 'CCA%' as condition to select only 'CCA'
- We use LIMIT 5 to show the 5 records

%sql SELECT * from SPACEXTABLE where launch_site like 'CCA%' limit 5; * sqlite://my_datal.db Done.									
Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	Landing_Outcome
2010- 06-04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
2010- 12-08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2012- 05-22	7:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
2012- 10-08	0:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
2013- 03-01	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Total Payload Mass

- We use SUM(PAYLOAD_MASS_KG) to calculate the total Payload Mass
- We use WHERE Customer = 'NASA (CRS)' as condition to select those launched by NASA (CRS)
- Total Payload Mass(kg): 45596

```
Display the total payload mass carried by boosters launched by NASA (CRS)

** sql SELECT SUM(PAYLOAD_MASS__KG_) AS total_payload_mass FROM SPACEXTABLE WHERE Customer = 'NASA (CRS)'

* sqlite:///my_datal.db
Done.

** total_payload_mass

45596
```

Average Payload Mass by F9 v1.1

- We use AVG(PAYLOAD_MASS_KG) to calculate the average Payload Mass
- We use WHERE Booster_Version = 'F9
 v1.1' as the condition to select those by
 F9 V1.1
- Average Payload Mass(kg): 2928.4

First Successful Ground Landing Date

- We use MIN(Date) to find the first (min) landing date
- We use WHERE Landing_Outcome=
 'Success (Ground pad)' as the condition to select the success
- First successful ground landing data:
 2015-12-22

Successful Drone Ship Landing with Payload between 4000 and 6000

- In WHERE, we have two conditions below:
 - ➤ Success (drone ship)
 - ➤ PAYLOAD_MASS_KG BETWEEN 4000 AND 6000, as the condition of payload range
- Four boost versions:
 - >F9 FT B1022
 - >F9 FT B1026
 - >F9 FT B1021.2
 - >F9 FT B1031.2

Total Number of Successful and Failure Mission Outcomes

- We SELECT Mission_Outcome, Count(*) to count the number of outcomes
- We use GROUP BY Mission_Outcome to group the outcomes by success and failure
- Results are:
 - > Success: 98+1+1=100
 - Failure: 1

Boosters Carried Maximum Payload

- We have **subquery**:
 - ➤ We use SELECT MAX(PAYLOAD_MASS_KG_)
 FROM SPACEXTABLE, to select the maximum payload, as subquery
 - ➤ In the outside, we SELECT Booster_Version FROM SPACEXTABLE, and put the subquery after WHERE
- There are 12 booster_versions

2015 Launch Records

- In Python SQLLite inline querey, we use SUBSTR(Date, 6, 2) as Month
- We use SUBSTR(Date, 0, 5)=2015 as year
- Two records are:
 - **>** 2015-01-01
 - > 2015-04-14

Task 9

List the records which will display the month names, failure landing_outcomes in drone ship ,booster versions, launch_site for the months in year 2015.

Note: SQLLite does not support monthnames. So you need to use substr(Date, 6,2) as month to get the months and substr(Date, 0,5)='2015' for year.

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

- We use WHERE Date BETWEEN as condition
- We use **GROUP BY Landing_Outcomes** to group by each outcomes
- We have **COUNT(*)** to count the outcomes
- We rank them by DESC
- Eight outcomes in descending order:
 - ➤ No attempt is the most number
 - > Precluded (drop ship) is the least

Global Map Markers of All Launch Sites

• We note there are two sites, one in East lower latitude, another in West higher latitude

Success/Failed Launches of Each Site

• East has 46 launches, West has 10 launches

<Folium Map Screenshot 3>

Replace <Folium map screenshot 3> title with an appropriate title

• Explore the generated folium map and show the screenshot of a selected launch site to its proximities such as railway, highway, coastline, with distance calculated and displayed

• Explain the important elements and findings on the screenshot

Success Percentage of Each Launch Site

KSC LC-39A is most success launches

Success Ratio of KSC LC-39A

• KSC LC-39A, as the most success launch site, has the success ratio of 76.9%

Scatter Plot of Payload vs Launch Outcomes

 Success rate in lightweighted payload (lower than 5000kg, left) is higher than heavy-weighted payload (higher than 5000kg, right)

Classification Accuracy

 By comparing the accuracy of four models as barplot, we find Decision-Tree has the highest accuracy of 0.88 (or 88.89%, marked in red)

Confusion Matrix

- We draw the confusion matrix of decision-tree
 - ➤ It successfully classify the 'did not land (true negative/TN)' and 'land (true positive/TP)', which can be found in the diagonal
 - ➤ Also, the false negative (FN, lower left) and false positive (FP, upper right) are pretty small, only 1 in each case
 - ➤ The data is imbalanced (land > did not land), but decision tree still performs good

Conclusions

Data Collection and Wrangling:

- In Python, we use API and HTML Sparse to collect the online data, and store them into pandas DataFrame
- > We pre-process the DataFrame, replacing the nan or missing values by others, e.g., the mean value of one column

Insight Drawn from EDA:

- > We visualize the relationship among different factors, and find the increasing trend between success rate and years
- > We use SQL to query data, and summarize the statistics of different columns, e.g., average payload mass, landing records in 2015 year, etc

•

Conclusions – Cont.

- Launching Sites Proximities Analysis:
 - > Using Folium, we locate the two different launch sites, and their locations
- Build a Dashboard with Plotly Dash:
 - > We draw pie chart to find the launch site KSC LC-39A has the highest success rate of 76.9%
- Predictive Analysis (Classification):
 - > We compare LR, SVM, decision-tree and KNN, using GridSearchCV + 10-fold cross-validation
 - > We find decision-tree has the highest accuracy of 0.88 (or 88.89%)

Appendix

- In the function plot_confusion_matrix() of Machine Learning module, I have added a line to save the figure (Github location: machine learning)
- In SQL query module (<u>Github location: sqlite</u>), I implemented all SQL query via line-magic of SQLLite in Python

