ULTRA-LOW POWER 2.4GHz WI-FI + BLUETOOTH SMART SOC

PinMux Tool User Guide

http://www.opulinks.com/

Copyright © 2017-2018, Opulinks. All Rights Reserved.

REVISION HISTORY

Date	Version	Contents Updated
2018-05-09	0.1	Initial Release

TABLE OF CONTENTS

TABLE OF CONTENTS

1.	介绍		1					
	1.1.							
	1.2.	缩略语						
	1.3.	参考文献	1					
2.	界面	介绍	2					
		Pin 管脚配置结果列表						
		外设管脚和参数配置对话框						
3.	外设资源选择和参数配置							
	3.1.	UART 选择和参数配置	4					
		SPI 选择和参数配置						
	3.3.	I2C 选择和参数配置	4					
	3.4.	PWM 选择和参数配置	4					
	3.5.	AUX/ADC 选择和参数配置	4					
	3.6.	GPIO 选择和参数配置	5					
4.	IO 管	6						
5.		管脚复用定义.c 文件	7					
6.	. 版本号和使用手册							

LIST OF FIGURES

Figure 1: Pin-Mux tool 界面	2
Figure 2: 管脚定义未选择界面	3
Figure 3: 选择了若干外设管脚定义后的界面	3
Figure 4: 外设管脚配置标签页	3
Figure 5: UART 选择和参数配置	4
Figure 6: Normal 模式下 UART 信号线配置	4
Figure 7: 带流量控制模式下 UART 信号线配置	4
Figure 8: Single mode 下 SPI 的四种工作方式时序	4
Figure 9: SPI 选择和参数配置	4
Figure 10: SPI single mode 管脚配置	4
Figure 11: SPI quad mode 管脚配置	4
Figure 12: I2C 参数配置	4
Figure 13: I2C 管脚复用设置	4
Figure 14: PWM 选择和参数配置	4
Figure 15: PWM 管脚复用选择	4
Figure 16: AUX/ADC 选择	4
Figure 17: AUX/ADC 管脚复用选择	4
Figure 18: GPIO 选择和参数配置	5
Figure 19: GPIO 管脚复用配置	5
Figure 20: 外设 IO 管脚定义	6
Figure 21: 生成.c 和 ini 文件	7
Figure 22: OPL1000_pin_mux_define.c Part1	7
Figure 23: OPL1000_pin_mux_define.c Part2	8
Figure 24: 用户手册	9

LIST OF TABLES

LIST OF TABLES

Table 1: OPL1000 支持的外设资源数目 ______

1. 介绍

1.1. 文档应用范围

本文档介绍了 OPL1000 管脚复用(pin-Mux)工具的使用方法。Pin mux 配置软件用于 OPL1000 外设寄存器参数和 IO 引脚映射的设置。外设包括 PWM、AUX(SAR ADC)、SPI(master)、UART(flow control optional)、I2C(master or slave)、GPIO。

1.2. 缩略语

AUX Auxiliary ADC 辅助 ADC 模块 CPHA Clock PHAse 时钟相位选择 CPOL Clock POLarity 时钟极性选择 DevKit Develop Kit OPL1000 产品板 FW FirmWare 固件·处理器上运行的嵌入式软件 GPIO General Purpose Input/Output 通用输入输出接口 I2C Inter-Integrated Circuit bus I2C 内置集成电路总线 PWM Pulse-Width Modulation 脉宽调制输出 SPI Serial Peripheral Interface 串行外设总线	缩写	说明							
CPOL Clock POLarity 时钟极性选择 DevKit Develop Kit OPL1000 产品板 FW FirmWare 固件·处理器上运行的嵌入式软件 GPIO General Purpose Input/Output 通用输入输出接口 I2C Inter-Integrated Circuit bus I2C 內置集成电路总线 PWM Pulse-Width Modulation 脉宽调制输出 SPI Serial Peripheral Interface 串行外设总线	AUX	Auxiliary ADC 辅助 ADC 模块							
DevKit Develop Kit OPL1000 产品板 FW FirmWare 固件·处理器上运行的嵌入式软件 GPIO General Purpose Input/Output 通用输入输出接口 I2C Inter-Integrated Circuit bus I2C 內置集成电路总线 PWM Pulse-Width Modulation 脉宽调制输出 SPI Serial Peripheral Interface 串行外设总线	СРНА	Clock PHAse 时钟相位选择							
FW FirmWare 固件·处理器上运行的嵌入式软件 GPIO General Purpose Input/Output 通用输入输出接口 I2C Inter-Integrated Circuit bus I2C 内置集成电路总线 PWM Pulse-Width Modulation 脉宽调制输出 SPI Serial Peripheral Interface 串行外设总线	CPOL	Clock POLarity 时钟极性选择							
GPIO General Purpose Input/Output 通用输入输出接口 I2C Inter-Integrated Circuit bus I2C 内置集成电路总线 PWM Pulse-Width Modulation 脉宽调制输出 SPI Serial Peripheral Interface 串行外设总线	DevKit	Develop Kit OPL1000 产品板							
I2C Inter-Integrated Circuit bus I2C 內置集成电路总线 PWM Pulse-Width Modulation 脉宽调制输出 SPI Serial Peripheral Interface 串行外设总线	FW	FirmWare 固件·处理器上运行的嵌入式软件							
PWM Pulse-Width Modulation 脉宽调制输出 SPI Serial Peripheral Interface 串行外设总线	GPIO	General Purpose Input/Output 通用输入输出接口							
SPI Serial Peripheral Interface 串行外设总线	I2C	Inter-Integrated Circuit bus I2C 内置集成电路总线							
·	PWM	Pulse-Width Modulation 脉宽调制输出							
LIADT Linivarial Asymptonics Passiver / Transmitter 落田北田北原华佐於四	SPI	Serial Peripheral Interface 串行外设总线							
UAKI Universal Asynchronous Receiver / Transmitter 通用非向步收及传制器	UART	Universal Asynchronous Receiver / Transmitter 通用非同步收发传输器							

1.3. 参考文献

2. 界面介绍

OPL1000 提供 16 个外设管脚可用于配置成三种通信端口(UART·I2C 和 SPI)以及特定信号端口(如 PWM·AUX /ADC 和 GPIO)。由于这些管脚配置是可以复用的,例如既可以配置为 UART 的某个信号线,也可以配置为 AUX/ADC 或者 GPIO 端口。Pin-Mux 工具提供了一种方法帮助客户灵活、方便地定义管脚复用模式和端口参数配置。Pin-Mux 工具的输出是一个.c 文件和 ini 配置文件。.c 文件包含管脚复用设置和选定的端口参数配置表,基于这个配置表用户调用相应的 API 可完成 OPL1000 管脚复用设定和端口工作模式配置。

OPL1000 Pin-Mux 界面如图 Figure 1 所示。

Figure 1: Pin-Mux tool 界面

界面包含四个部分:

- 1. Pin 管脚配置结果列表:这个是右侧管脚配置后的输出结果。
- 2. 外设管脚和参数配置对话框:它包含 7 个标签页·用于选择外设资源(包括 UART, SPI, I2C, PWM, AUX/ADC, GPIO 等)·以及根据需要设定它们的管脚输出。
- 3. 输出.c 和.ini 文件:外设资源和参数配置好后,点击 Build 按钮将产生.c 和.ini 文件。
- 4. 版本信息和使用手册:指示当前软件版本号以及展示本软件使用手册。

下面详细介绍几个部分的功能。

2.1. Pin 管脚配置结果列表

2.2. 外设管脚和参数配置对话框

外设管脚和参数配置对话框 包含 7 个标签页·其中 UART,SPI,I2C,PWM,AUX/ADC,GPIO 等属于外设选择和参数配置标签页·IO 标签页是外设管脚选择对话框。IO 标签页的选择在左侧 pin setting 列表中会有显示。

Figure 4: 外设管脚配置标签页

不同外设资源选择和参数配置详细参考章节3。

3. 外设资源选择和参数配置

本章介绍 UART,SPI,I2C,PWM,AUX/ADC,GPIO 等外设选择和参数配置功能。 OPL1000 支持的外设资源数目如表 所示:

Table 1: OPL1000 支持的外设资源数目

外设资源	数目
UART	2
I2C	1
SPI	2
PWM	6
AUX/ADC	10
GPIO	16

- 3.1. UART 选择和参数配置
- 3.2. SPI 选择和参数配置
- 3.3. I2C 选择和参数配置
- 3.4. PWM 选择和参数配置
- 3.5. AUX/ADC 选择和参数配置

3.6. GPIO 选择和参数配置

OPL1000 支持 16 根 GPIO 信号选择。即提供出来的 16 根 IO 管脚都可以配置为 GPIO 信号。GPIO 信号的参数配置有两种,一个是输入/输出信号配置,另一个是上拉/下拉电阻配置。注意输入输出和上拉下拉二者并非可以相互独立组合的。用户在选择 GPIO 的时候要根据需要和电路设计进行选择。

GPIO 和 IO 管脚也是——对应关系。选择和参数配置如图 Figure 18 所示。

Figure 18: GPIO 选择和参数配置

GPIO 管脚复用配置如 Figure 19 所示。同 PWM、AUX/ADC 类似当和其他通信管脚一起配置时,需要 先选择 GPIO,然后再定义通信管脚。

Figure 19: GPIO 管脚复用配置

4. IO 管脚选择

第三章对各种外设(通信端口和信号端口)的选择和参数配置做了介绍。当选择需要配置哪些端口后,在 IO 标签页会显示选择的外设资源以及可以用来配置管脚的选择项。当某个端口的信号线管脚选定后(勾选了对应的复选框),则这个 IO 管脚被该信号线所占,其他信号线就不能使用它了。和它同一竖行的复选框被禁止。例如图 Figure 20 中 SPI1 的 CLK 选择为 IO7 后,IO7 同一竖列的 SPI2_CLK,UARTO_RX, I2C_SDA 等复选框就被禁止掉。

通过 IO 标签列表,用户可以清晰直观地知道有哪些管脚可以分配费某个信号线。并且通过点击复选框,保证每个所选的信号线都有管脚资源被分配。

Figure 20: 外设 IO 管脚定义

1	pin	IO2	IO3	104	105	106	107	IO8	Ю9	IO10	IO11	IO18	IO19	1020	IO21	1022	1023
1	SPI1_CLK						~										
2	SPI1_CS					~											
3	SPI1_MISO								~								
4	SPI1_MOSI							~									
5	SPI2_CLK			~													
6	SPI2_CS				~												
7	SPI2_IO0		~														
8	SPI2_IO1	~															
9	SPI2_IO2									~							
10	SPI2_IO3										~						
11	UARTO_TX													~			
12	UARTO_RX														~		
13	I2C_SDA											~					
14	I2C_SCL												~				
15																	
16																	

5. 生成管脚复用定义.C 文件

当端口定义和管脚分配定义好之后,点击 Build 按钮,将产生 OPL1000_pin_mux_define.c 文件和一个 ini 文件。.c 文件用于后续的端口初始化和管脚复用设置,ini 文件记录了同样的信息,可用于其他目的,例如管脚复用模块的自动化测试。

Figure 21: 生成.c 和 ini 文件

OPL1000_pin_mux_define.c 文件的内容如图 Figure 22 和 Figure 23 所示。

Figure 22: OPL1000_pin_mux_define.c Part1

```
T_OPL1000_Periph OPL1000_periph = {
   {UART_IDX_0,
   OPL1000_IO20_PIN,
   OPL1000_IO21_PIN,
   BLANK_PIN,
   BLANK_PIN,
   115200.
   DATA_BIT_8,
   PARITY_NONE,
   STOP_BIT_1,
   UART_SIMPLE},
   {UART_IDX_MAX,
   BLANK_PIN,
   BLANK_PIN,
   BLANK PIN,
   BLANK_PIN,
   DATA_BIT_8,
   PARITY_NONE,
   STOP_BIT_1,
   UART_SIMPLE}
 1,{I2C_SPEED_FAST,
  OPL1000_IO19_PIN,
  OPL1000_IO18_PIN,
  12C_07BIT,
  0x7A,
  MASTER_HAS_STOP},
// continue ...
```


Figure 23: OPL1000_pin_mux_define.c Part2

```
{SPI_IDX_1,
   OPL1000_IO6_PIN,
   OPL1000_IO7_PIN,
   OPL1000_IO9_PIN,
   OPL1000_IO8_PIN,
   BLANK_PIN,
   BLANK PIN.
   1000000,
   SPI_CLK_PLOAR_HIGH_ACT,
   SPI_CLK_PHASE_START,
   SPI_FMT_MOTOROLA,
   SPI_DFS_08_bit,
   QMODE_DISABLE},
   {SPI_IDX_2,
   OPL1000_IO5_PIN,
   OPL1000_IO4_PIN,
   BLANK_PIN,
   BLANK_PIN,
   OPL1000_IO10_PIN,
   OPL1000_IO11_PIN,
   1000000,
   SPI_CLK_PLOAR_HIGH_ACT,
   SPI_CLK_PHASE_START,
   SPI_FMT_MOTOROLA,
   SPI_DFS_08_bit,
   QMODE_ENABLE},
 {BLANK_PIN,CLK_32KHz,CFG_SIMPLE,0,0,0,0,0,0,0,0,0,0,0,},
{BLANK_PIN,CLK_32KHz,CFG_SIMPLE,0,0,0,0,0,0,0,0,0,0,0,
   {BLANK_PIN,CLK_32KHz,CFG_SIMPLE,0,0,0,0,0,0,0,0,0,0,0}},
O,{BLANK_PIN,BLANK_PIN,BLANK_PIN,BLANK_PIN,BLANK_PIN,BLANK_PIN,BLANK_PIN,BLANK_PIN
,BLANK_PIN,BLANK_PIN},
 O,{{BLANK_PIN,IO_OUTPUT,PULL_UP},
   {BLANK_PIN,IO_OUTPUT,PULL_UP},
   {BLANK_PIN,IO_OUTPUT,PULL_UP},
   {BLANK_PIN,IO_OUTPUT,PULL_UP},
   {BLANK_PIN,IO_OUTPUT,PULL_UP},
{BLANK_PIN,IO_OUTPUT,PULL_UP},
   {BLANK_PIN,IO_OUTPUT,PULL_UP},
   BLANK_PIN,IO_OUTPUT,PULL_UP},
   {BLANK_PIN,IO_OUTPUT,PULL_UP},
{BLANK_PIN,IO_OUTPUT,PULL_UP},
   {BLANK PIN,IO OUTPUT,PULL UP},
   {BLANK_PIN,IO_OUTPUT,PULL_UP},
   {BLANK_PIN,IO_OUTPUT,PULL_UP},
   {BLANK_PIN,IO_OUTPUT,PULL_UP},
   {BLANK_PIN,IO_OUTPUT,PULL_UP},
   {BLANK_PIN,IO_OUTPUT,PULL_UP}}
};
```


6. 版本号和使用手册

点击 Use Manual 按钮将调用 Windows 系统自带的 Explore,载入本软件的使用手册如图 Figure 24 所示。

Figure 24: 用户手册

CONTACT

sales@Opulinks.com

