Practice Problems: Chapter 3

- 1. A function is given by $f(x) = x e^{-3x} + x^2$. Now answer the following up to five significant figures.
 - a. Approximate the derivative of f(x) at $x_0 = 2$ with step size h = 0.1 using the central difference method.
 - b. Calculate the upper bound of the truncation error of f(x) at $x_0 = 2$ using h = 0.1 using the central difference method.
 - c. Compute $D^{(1)}_{0.1}$ at $x_0 = 2$ using Richardson extrapolation method and calculate the relative error.
- 2. During the derivation process, we explored the first-order Richardson extrapolated $\frac{1}{h}$

derivative using
$$(h \to \frac{h}{2})$$
,

$$D_h^{(1)} \equiv f'(x_0) - \frac{h^4}{480} + O(h^6)$$

- a. Using $^{h\to \frac{h}{2}}$, derive the expression for $^{D^{(2)}_{\frac{h}{2}}}$, which represents the second-order Richardson extrapolation.
- b. Now, starting from the definition of $D_h^{(1)}$ and applying $h \to \frac{h}{3}$, derive the expression for $D_h^{(1)}$.
- 3. Consider the function $g(x) = \ln(x)$,
 - a. Approximate the derivative of g(x) at $x_0 = 1.5$ with step size h = 0.2 using the central difference method up to 6 significant figures.
 - b. Approximate the derivative of g(x) at $x_0=1.5$ with step size h=0.2 using the forward difference method up to 6 significant figures.
 - c. Calculate the truncation error of g(x) at $x_0=1.5$ using h=0.1,0.01,0.001 in both the central difference and forward difference methods.
 - d. Compute $D_{0.2}^{(1)}$ at $x_0=1.5$ using Richardson extrapolation method up to 6 significant figures and calculate the truncation error. $D_{0.2}^{(1)}$ at $x_0=1.5$ using Richardson extrapolation method up to 6 significant figures and calculate the truncation error.
- 4. Given the function $f(x) = e^{-2x}$:
 - a. Approximate the derivative of f(x) at $x_0 = 0.5$ with step size h = 0.2 using the forward difference method up to 6 significant figures.
 - b. Approximate the derivative of f(x) at $x_0 = 0.5$ with step size h = 0.2 using the central difference method up to 6 significant figures.
 - c. Calculate the rounding error of the derivative approximation at $x_0=0.5$ using h=0.1,0.01,0.001 for both the forward and central difference methods.
 - d. Compute $D_{0.2}^{(1)}$ at $x_0=0.5$ using Richardson extrapolation up to 6 significant figures and calculate the rounding error.
- 5. Consider the following data table::

х	1.1	1.2	1.3
---	-----	-----	-----

f(x)	f(x)		-0.90730	
------	------	--	----------	--

- a. Using the above data, compute f(1.2) using the central difference method.
- b. For the interval [1.1, 1.3], compute the error bound (truncation error) if the above data is generated by the function, $f(x) = x \cos(x) x^2 \sin(x)$.
- c. Also compute the actual error.