# Réduction de la logique numérique

#### Table de vérité avec d(X):

|    | Α | В | С | D | F |
|----|---|---|---|---|---|
| 0  | 0 | 0 | 0 | 0 | 1 |
| 1  | 0 | 0 | 0 | 1 | 0 |
| 2  | 0 | 0 | 1 | 0 | d |
| 3  | 0 | 0 | 1 | 1 | d |
| 4  | 0 | 1 | 0 | 0 | d |
| 5  | 0 | 1 | 0 | 1 | 0 |
| 6  | 0 | 1 | 1 | 0 | d |
| 7  | 0 | 1 | 1 | 1 | 0 |
| 8  | 1 | 0 | 0 | 0 | 0 |
| 9  | 1 | 0 | 0 | 1 | 1 |
| 10 | 1 | 0 | 1 | 0 | 0 |
| 11 | 1 | 0 | 1 | 1 | d |
| 12 | 1 | 1 | 0 | 0 | 0 |
| 13 | 1 | 1 | 0 | 1 | 1 |
| 14 | 1 | 1 | 1 | 0 | 0 |
| 15 | 1 | 1 | 1 | 1 | 1 |

## <u>Tableau initial:</u>

| Α | В | С | D   |
|---|---|---|-----|
| 0 | 0 | 0 | 0 1 |
| 0 | 0 | 1 | 0 1 |
| 0 | 1 | 0 | 0 1 |
| 0 | 0 | 1 | 1 \ |
| 0 | 1 | 1 | 0 1 |
| 1 | 0 | 0 | 1 ↓ |
| 1 | 0 | 1 | 1 \ |
| 1 | 1 | 0 | 1 ↓ |
| 1 | 1 | 1 | 1 \ |

#### Après la première réduction :

| Α | В | С | D   |
|---|---|---|-----|
| 0 | 0 | _ | 01  |
| 0 | _ | 0 | 01  |
| 0 | 0 | 1 | _ * |
| 0 | _ | 1 | 01  |
| 0 | 1 | _ | 01  |
| _ | 0 | 1 | 1 * |
| 1 | 0 | _ | 1 \ |
| 1 | _ | 0 | 1 \ |
| 1 | _ | 1 | 1 \ |
| 1 | 1 | ı | 1↓  |

## Après la deuxième réduction :

| Α | В | С | D   |
|---|---|---|-----|
| 0 | _ | _ | 0 * |
| 1 | _ | _ | 1 * |

#### <u>Table de choix :</u>

| Prime      | Minterms |      |      |      |
|------------|----------|------|------|------|
| Implicants | 0000     | 1001 | 1101 | 1111 |
| 001_       |          |      |      |      |
| _011       |          |      |      |      |
| *00        | 7        |      |      |      |
| *11        |          | 1    | 1    | 1    |

$$\mathsf{F}(\mathsf{A},\mathsf{B},\mathsf{C},\mathsf{D}) = \bar{A}\,\overline{D} + \mathsf{A}\,\mathsf{D}$$

# Conception schématique des circuits combinatoires avec le logiciel Quartus II

#### a) <u>Table de vérité :</u>

A1A0 \* B1B0 = M<sub>i</sub>, où i = 0,1,2,3

| A1 | Α0 | B1 | В0 | M3 | M2 | M1 | M0 |
|----|----|----|----|----|----|----|----|
| 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  |
| 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  |
| 0  | 0  | 1  | 1  | 0  | 0  | 0  | 0  |
| 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  |
| 0  | 1  | 0  | 1  | 0  | 0  | 0  | 1  |
| 0  | 1  | 1  | 0  | 0  | 0  | 1  | 0  |
| 0  | 1  | 1  | 1  | 0  | 0  | 1  | 1  |
| 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 1  | 0  | 0  | 1  | 0  | 0  | 1  | 0  |
| 1  | 0  | 1  | 0  | 0  | 1  | 0  | 0  |
| 1  | 0  | 1  | 1  | 0  | 1  | 1  | 0  |
| 1  | 1  | 0  | 0  | 0  | 0  | 0  | 0  |
| 1  | 1  | 0  | 1  | 0  | 0  | 1  | 1  |
| 1  | 1  | 1  | 0  | 0  | 1  | 1  | 0  |
| 1  | 1  | 1  | 1  | 1  | 0  | 0  | 1  |

#### b) Table de Karnaugh (M0):

| A1A0 | 00 | 01 | 11 | 10 |
|------|----|----|----|----|
| B1B0 |    |    |    |    |
| 00   |    |    |    |    |
| 01   |    | 1  | 1  |    |
| 11   |    | 1  | 1  |    |
| 10   |    |    |    |    |

#### Table de Karnaugh (M1):

| A1A0 | 00 | 01 | 11 | 10 |
|------|----|----|----|----|
| B1B0 |    |    |    |    |
| 00   |    |    |    |    |
| 01   |    |    | 1  | 1  |
| 11   |    | 1  |    | 1  |
| 10   |    | 1  | 1  |    |

#### Table de Karnaugh (M2):

| A1A0<br>B1B0 | 00 | 01 | 11 | 10 |
|--------------|----|----|----|----|
| 00           |    |    |    |    |
| 01           |    |    |    |    |
| 11           |    |    |    | 1  |
| 10           |    |    | 1  | 1  |

#### Multiplexeur 8 bits vers 1 (M2):

| B1 | В0 | A0 | M2 |
|----|----|----|----|
| 0  | 0  | 0  | 0  |
| 0  | 0  | 1  | 0  |
| 0  | 1  | 0  | 0  |
| 0  | 1  | 1  | 0  |
| 1  | 0  | 0  | A1 |
| 1  | 0  | 1  | A1 |
| 1  | 1  | 0  | A1 |
| 1  | 1  | 1  | 0  |

M0 = A0B0

 $\mathsf{M1} = \mathsf{A0*B1}\overline{B0} + \mathsf{A1*}\overline{B1}\mathsf{B0} + \mathsf{A1}\overline{A0}\mathsf{*B0} + \overline{A1}\mathsf{A0*B1}$ 

 $M2 = A1*B1\overline{B0} + B1*A1\overline{A0}$ 

 $= A1*B1*(\overline{B0} + \overline{A0})$ 

M3 = A1A0\*B1B0

#### Circuit:



#### c) Résultat de la simulation :

