Module: Analyse numériques

Chapitre 3 : Intégration Numérique

Partie 2: Formules de Quadratures

Rappel

Interpolation de Lagrange

Soient f une fonction continue sur [a,b] et $(x_i,y_i=f(x_i))_{0\leq i\leq n}$ n+1 points d'interpolation tel que $a\leq x_0\leq x_1\leq \cdots \leq x_n\leq b$, alors f est interpolée par un polynôme d'interpolation de Lagrange $P\in\mathbb{R}_n[X]$ tel que

$$f(x) = P(x) + E_p(f),$$

avec

- $P(x) = \sum_{i=0}^{n} f(x_i) L_i(x)$ est le polynôme d'interpolation de Lagrange.
- $E_p(f)$ est l'erreur d'interpolation de Lagrange.

Rappel

Interpolation de Lagrange

Soient f une fonction continue sur [a,b] et $(x_i,y_i=f(x_i))_{0\leq i\leq n}$ n+1 points d'interpolation tel que $a\leq x_0\leq x_1\leq \cdots \leq x_n\leq b$, alors f est interpolée par un polynôme d'interpolation de Lagrange $P\in \mathbb{R}_n[X]$ tel que

$$f(x) = P(x) + E_p(f),$$

avec

- $P(x) = \sum_{i=0}^{n} f(x_i) L_i(x)$ est le polynôme d'interpolation de Lagrange.
- $E_p(f)$ est l'erreur d'interpolation de Lagrange.

L'intégrale I(f) peut s'écrire comme suit:

$$I(f) = \int_{a}^{b} f(x)dx = \int_{a}^{b} P(x)dx + \int_{a}^{b} E_{p}(f)dx,$$

= $\int_{a}^{b} \sum_{i=0}^{n} f(x_{i})L_{i}(x)dx + E_{q}(f),$

où $E_q(f)=\int_a^b E_p(f)dx$ est l'erreur d'intégration.

Si on pose $W_i = \int_a^b L_i(x) dx$, on trouve

$$I(f) = \int_a^b f(x)dx = \sum_{i=0}^n W_i f(x_i) + E_q(f).$$

Rappel

Interpolation de Lagrange

Soient f une fonction continue sur [a,b] et $(x_i,y_i=f(x_i))_{0\leq i\leq n}$ n+1 points d'interpolation tel que $a\leq x_0\leq x_1\leq \cdots \leq x_n\leq b$, alors f est interpolée par un polynôme d'interpolation de Lagrange $P\in\mathbb{R}_n[X]$ tel que

$$f(x) = P(x) + E_p(f),$$

avec

- $P(x) = \sum_{i=0}^{n} f(x_i) L_i(x)$ est le polynôme d'interpolation de Lagrange.
- $E_p(f)$ est l'erreur d'interpolation de Lagrange.

L'intégrale I(f) peut s'écrire comme suit:

$$I(f) = \int_a^b f(x)dx = \int_a^b P(x)dx + \int_a^b E_p(f)dx,$$

$$= \int_a^b \sum_{i=1}^n f(x_i)L_i(x)dx + E_q(f),$$

où $E_q(f) = \int_a^b E_p(f) dx$ est l'erreur d'intégration.

Si on pose $W_i = \int_a^b L_i(x) dx$, on trouve

$$I(f) = \int_a^b f(x)dx = \sum_{i=0}^n W_i f(x_i) + E_q(f).$$

Notre objectif est d'approcher I(f) par une somme finie.

On appelle formule de quadrature ou formule d'intégration numérique toute formule permettant de calculer une approximation de I(f).

Définition

On dit qu'une **formule de quadrature de type interpolation** toute formule s'écrie sous la forme suivante :

$$I(f) = \int_a^b f(x)dx \simeq I_q(f) = \sum_{i=0}^n W_i f(x_i),$$

οù

- $\mathcal{W}_i = \int_a^b L_i(x) dx$: poids de la formule de quadrature.
- x_i : nœuds ou points d'intégration.

On appelle formule de quadrature ou formule d'intégration numérique toute formule permettant de calculer une approximation de I(f).

Définition

On dit qu'une **formule de quadrature de type interpolation** toute formule s'écrie sous la forme suivante :

$$I(f) = \int_a^b f(x) dx \simeq I_q(f) = \sum_{i=0}^n W_i f(x_i),$$

οù

- $W_i = \int_a^b L_i(x) dx$: poids de la formule de quadrature.
- x_i : nœuds ou points d'intégration.

Exemple: Soit *f* une fonction continue.

Les formules suivantes sont des formules de quadrature:

Définition

Définitions

L'erreur de quadrature est donnée par

$$E_q(f) = |I(f) - I_q(f)|.$$

lacktriangle La formule de quadrature est **exacte** lorsque l'erreur de quadrature $E_q(f)$ vaut zéro.

Définition

Définitions

• L'erreur de quadrature est donnée par

$$E_q(f) = |I(f) - I_q(f)|.$$

ullet La formule de quadrature est **exacte** lorsque l'erreur de quadrature $E_q(f)$ vaut zéro.

Exercice : Parmi les formules de quadrature précédentes, indiquez laquelle est exacte, avec

$$f(x) = \frac{1}{1.2626 + x}.$$

Définition

Définitions

• L'erreur de quadrature est donnée par

$$E_q(f) = |I(f) - I_q(f)|.$$

• La formule de quadrature est exacte lorsque l'erreur de quadrature $E_q(f)$ vaut zéro.

Exercice: Parmi les formules de quadrature précédentes, indiquez laquelle est exacte, avec

$$f(x) = \frac{1}{1.2626 + x}.$$

Solution:

Définition

Définitions

• L'erreur de quadrature est donnée par

$$E_q(f) = |I(f) - I_q(f)|.$$

lacktriangle La formule de quadrature est **exacte** lorsque l'erreur de quadrature $E_q(f)$ vaut zéro.

Exercice : Parmi les formules de quadrature précédentes, indiquez laquelle est exacte, avec

$$f(x) = \frac{1}{1.2626 + x}.$$

Solution:

① On a $\int_{-1}^{1} f(x)dx = \left[\log(1.2626 + x)\right]_{-1}^{1} = \log\left(\frac{2.2626}{0.2626}\right) = 2.1536.$ Or $I_q(f) = \frac{1}{3}f(-1) + \frac{4}{3}f(0) + \frac{1}{3}f(1) = \frac{1}{3}\frac{1}{0.2626} + \frac{4}{3}\frac{1}{1.2626} + \frac{1}{3}\frac{1}{2.2626} = 2.4727.$ Alors

$$E_q(f) = |I(f) - I_q(f)| = |2.1536 - 2.4727| = 0.3191$$

D'où, cette formule n'est pas exacte.

Définition

Définitions

• L'erreur de quadrature est donnée par

$$E_q(f) = |I(f) - I_q(f)|.$$

lacktriangle La formule de quadrature est exacte lorsque l'erreur de quadrature $E_q(f)$ vaut zéro.

Exercice : Parmi les formules de quadrature précédentes, indiquez laquelle est exacte, avec $f(x) = \frac{1}{1.2626 \pm x}$.

Solution:

On a
$$\int_{-1}^{1} f(x)dx = \left[\log(1.2626 + x)\right]_{-1}^{1} = \log\left(\frac{2.2626}{0.2626}\right) = 2.1536$$
.
Or $I_q(f) = \frac{1}{3}f(-1) + \frac{4}{3}f(0) + \frac{1}{3}f(1) = \frac{1}{3}\frac{1}{0.2626} + \frac{4}{3}\frac{1}{1.2626} + \frac{1}{3}\frac{1}{2.2626} = 2.4727$.
Alors
$$E_q(f) = |I(f) - I_q(f)| = |2.1536 - 2.4727| = 0.3191$$

D'où, cette formule n'est pas exacte.

② On a
$$\int_0^1 f(x)dx = \left[\log(1.2626 + x)\right]_0^1 = \log(\frac{2.2626}{1.2626}) = 0.5833$$
.
Or $I_q(f) = 0.5f(0) + 0.4238f(1) = 0.5\frac{1}{1.2626} + 0.4238\frac{1}{2.2626} = 0.5833$
Alors $E_q(f) = |I(f) - I_q(f)| = |0.5833 - 0.5833| = 0$

D'où, cette formule est exacte.

Degré de précision

Degré de précision

Définition

Une formule de quadrature est dite de **degré de précision** (degré d'exactitude) n, s'il elle est exacte pour tout polynôme $P_k(x) = x^k$, $k = 0, 1, \dots, n$ et non exacte pour $P_{n+1}(x) = x^{n+1}$.

Degré de précision

Définition

Une formule de quadrature est dite de **degré de précision** (degré d'exactitude) n, s'il elle est exacte pour tout polynôme $P_k(x) = x^k$, $k = 0, 1, \dots, n$ et non exacte pour $P_{n+1}(x) = x^{n+1}$.

Proposition

Une formule de quadrature a un degré de précision au moins égale n si et seulement si c'est une formule de quadrature interpolatoire à n+1 points.

Degré de précision

Définition

Une formule de quadrature est dite de **degré de précision** (degré d'exactitude) n, s'il elle est exacte pour tout polynôme $P_k(x) = x^k$, $k = 0, 1, \dots, n$ et non exacte pour $P_{n+1}(x) = x^{n+1}$.

Proposition

Une formule de quadrature a un degré de précision au moins égale n si et seulement si c'est une formule de quadrature interpolatoire à n+1 points.

Exemple: Soit *f* une fonction continue.

La formule de quadrature

$$\int_{-1}^{1} f(x)dx \simeq I_q(f) = \frac{1}{3}f(-1) + \frac{4}{3}f(0) + \frac{1}{3}f(1)$$

est de type interpolation à 3 points, donc elle est exacte pour tout polynôme de degré ≤ 2 .

Exercice

Soient f une fonction continue sur [-1,1] et I(f) l'intégrale suivante

$$I(f) = \int_{-1}^{1} f(x) dx$$

On considère la formule de quadrature $I_q(f)$ suivante approchant la valeur de I(f):

$$I_q(f) = \alpha f(-1) + \beta f(1),$$

avec α et β deux réels.

- 1. Trouver α et β .
- 2. Montrer que cette formule est de degré de précision 1.

solution

1. D'après la proposition, on remarque que cette formule de quadrature est de type interpolation à 2 points, donc elle est exacte pour tout polynôme de degré ≤ 1 .

Trouvons α et β : Soit $P_k(x) = x^k$ avec k = 0, 1.

• Pour k = 0, on a $f(x) = P_0(x) = 1$, d'une part

$$\int_{-1}^{1} f(x) dx = \int_{-1}^{1} 1 dx = 2.$$

D'autre part, $I_q(f) = \alpha f(-1) + \beta f(1) = \alpha \times 1 + \beta \times 1 = \alpha + \beta$. Puisque la formule de quadrature est exacte pour un polynôme de degré 0, alors on a $I(f) = I_q(f)$, par suite

$$\alpha + \beta = 2 \tag{1}$$

• Pour k = 1, on a $f(x) = P_1(x) = x$, d'une part

$$\int_{-1}^{1} f(x) dx = \int_{-1}^{1} x dx = \left[\frac{x^{2}}{2} \right]_{-1}^{1} = 0.$$

D'autre part, $I_q(f)=\alpha f(-1)+\beta f(1)=\alpha \times (-1)+\beta \times 1=-\alpha+\beta$. Puisque la formule de quadrature est exacte pour un polynôme de degré 1, alors on a $I(f)=I_q(f)$, par suite

$$-\alpha + \beta = 0. (2)$$

Les deux équations (1) et (2) donnent le système linéaire suivant :

$$\begin{cases} 2 = \alpha + \beta \\ 0 = -\alpha + \beta \end{cases} \Leftrightarrow \alpha = \beta = 1$$

solution

Donc la formule de quadrature est :

$$\int_{-1}^{1} f(x) dx \simeq f(-1) + f(1).$$

2. Montrons que le degré de précision de cette formule est 1 i.e. on montre que la formule n'est pas exacte pour un polynôme de degré 2.

Posons
$$P_2(x) = x^2$$
:
on a $I_q(P_2) = P_2(-1) + P_2(1) = 2$.

$$\int_{-1}^{1} P_2(x) dx = \left[\frac{x^3}{3}\right]_{-1}^{1} = \frac{2}{3} \neq I_q(P_2).$$

Alors le degré de précision est 1.

