a)

İlk olarak R_{B1} ve R_{B2} dirençleri üzerinden geçen akımı aynı akım olarak kabul ederek denklemleri yazmaya başlıyoruz.

$$V_{CC} = I(R_{B1} + R_{B2})$$
 ve $V_B = IR_{B2}$ =>
$$I = \frac{V_{CC}}{R_{B1} + R_{B2}} = \frac{V_B}{R_{B2}} => \frac{16}{82 + 24} = \frac{V_B}{24} => V_B = 3,623 V$$

Ardından V_{BE} değerini de bildiğimiz için V_E değerini bulabiliriz.

$$V_{BE} = V_B - V_E = > V_E = V_B - V_{BE} = 3,623 - 0,7 = 2,923 V$$

Artık R_E değerine ulaşmak için gereken iki değerden (V_E ve I_E) birini bulduk. Sırada I_E değerini bulmak var. I_E ile I_C yaklaşık olarak aynı değere sahip oldukları için $I_E = I_C$ diyebiliriz. Bu durumda I_C değerini bulmalıyız. Bunun için V_{CC} ve V_C arası gerilim değişimini kullanmalıyız.

$$V_{CC} - V_C = I_C R_C = > I_C = \frac{V_{CC} - V_C}{R_C} = \frac{16 - 6}{5000} = 2 \text{ mA} = I_E$$

Gerekli tüm değerlere sahip olduğumuz için artık R_E değerini hesaplayabiliriz.

$$R_E = \frac{V_E}{I_E} = \frac{2,923}{0.002} = 1,4615 \, k\Omega$$

Öncelikle DC kaynakları ve kapasiteler devre dışı(kısa devre) kabul edilerek devre tekrar çizilir.

Devrenin son halinde E kısmındaki R_E direnci kısa devre olacağı için sonraki kısımlarda çıkartılır ve devrenin kalan kısmı çizilir. Devrenin yeni halini tekrar düzenleyerek transistörü açarsak:

h_{ie} direnç değeri r_e modelinde βr_e değerini alır. Bu nedenle öncelikle r_e değerini bulmalıyım.

$$I_C = \frac{V_{CC} - V_C}{R_C} = \frac{16 - 6}{5000} = 2 \, mA = I_E$$

$$r_e = \frac{26mV}{I_E} = \frac{26mV}{2mA} = 13\Omega = h_{ie} = \beta r_e = 150.13 = 1950 \,\Omega = 1,95 \,k\Omega$$

 Z_i giriş empedansı R_{B1} R_{B2} ve h_{ie} dirençlerini görür ve bu dirençler birbirleri ile paraleldir. Bu nedenle Z_i empedansının değeri bu dirençlerin eş değer direnci olur.

$$R_{BB} = \frac{R_{B1}R_{B2}}{R_{B1} + R_{B2}} = \frac{82.24}{82 + 24} = \frac{1968}{106} = 18,566 \, k\Omega$$

$$Z_{\dot{1}} = \frac{R_{BB}h_{ie}}{R_{BB} + h_{ie}} = \frac{18,566 \cdot 1,95}{18,566 + 1,95} = \frac{36,2037}{20,516} = 1,765 \, k\Omega$$

 Z_0 çıkış empedansı sadece R_C direncini görür. Bu nedenle Z_0 empedansının değeri doğrudan R_C direncinin değerine eşit olur.

$$Z_O = R_C = 5 k\Omega$$

Av gerilim kazancı değeri giriş ve çıkış gerilimlerinin oranına eşit olur.

$$A_V = \frac{V_O}{V_1} = -\frac{h_{fe}R_C}{h_{ie}} = -\frac{R_C}{r_e} = -\frac{5000}{13} = -384,615$$

Aı akım kazancı değeri giriş ve çıkış akımlarının oranına eşit olur

İlk olarak R_{B1} ve R_{B2} dirençlerinin eşdeğer direncini (R_{BB}) ve eşdeğer gerilimini (V_{BB}) bularak başlıyoruz.

$$R_{BB} = \frac{R_{B1}R_{B2}}{R_{B1} + R_{B2}} = \frac{220 \cdot 33}{220 + 33} = \frac{7260}{253} = 28,696 \, k\Omega$$

$$V_{BB} = \frac{R_{B2}}{R_{B1} + R_{B2}} V_{CC} = \frac{33}{220 + 33} 25 = \frac{825}{253} = 3,261 \, V$$

$$V_{CC} = 25 \, V$$

$$V_{CE} = 12.5 \, V$$

$$V_{BE} = 0,7 \, V$$

$$V_{E} = 1.8 \, k\Omega$$

Devremizi şekilde görüldüğü gibi çizdiğimiz zaman sırayla denklemleri yazıyoruz.

$$\begin{split} V_{BB} - I_E \, R_E - V_{BE} - I_B R_{BB} &= 0 => I_E = I_B + I_C => I_C = \beta I_B => V_{BB} - V_{BE} = (1+\beta) I_B R_E + I_B R_{BB} \\ I_B = \frac{V_{BB} - V_{BE}}{(1+\beta) R_E + R_{BB}} &= \frac{3,261 - 0,7}{(1+180)1800 + 28696} = \frac{2,561}{354496} = 7,224 \mu A \quad I_C = \beta I_B = 180.7,224 = 1300,32 \mu A = 1,30032 m A \\ -V_{CC} + I_C R_C + V_{CE} + I_E R_E = 0 => (I_C \ ve \ I_E \ nerdeyse \ birbirine \ eşit \ olduğu \ için \ I_C \ alınır) \\ V_{CC} - V_{CE} = I_C (R_C + R_E) => 25 - 12,5 = 1,30032 (R_C + 1,8) => R_C + 1,8 = 9,613 => R_C = 7,813 \ k\Omega \end{split}$$

b)

İlk olarak R_{B1} ve R_{B2} dirençleri üzerinden geçen akımı aynı akım olarak kabul ederek denklemleri yazmaya başlıyoruz.

$$V_{CC} = I(R_{B1} + R_{B2})$$
 ve $V_B = IR_{B2}$ =>
$$I = \frac{V_{CC}}{R_{B1} + R_{B2}} = \frac{V_B}{R_{B2}} => \frac{25}{220 + 33} = \frac{V_B}{33} => V_B = 3,261 V$$

Ardından V_{BE} değerini de bildiğimiz için V_E değerini bulabiliriz. Ve devamında V_E değerini ve V_{CE} değerini kullanarak V_C değerini bulabiliriz.

$$V_{BE} = V_B - V_E = > V_E = V_B - V_{BE} = 3,261 - 0,7 = 2,561 V$$

 $V_{CE} = V_C - V_E = > V_C = V_{CE} + V_E = 12,5 + 2,561 = 15,061 V$

Artık R_C değerine ulaşmak için gereken iki değerden (V_C ve I_C) birini bulduk. Sırada I_C değerini bulmak var. I_E ile I_C yaklaşık olarak aynı değere sahip oldukları için $I_E = I_C$ diyebiliriz. Bu durumda I_E değerini bulmalıyız. Bunun için V_E gerilim değerini kullanmalıyız.

$$V_E = I_E R_E = > I_E = \frac{V_E}{R_E} = \frac{2,561}{1800} = 1,423 \ mA = I_C$$

Gerekli tüm değerlere sahip olduğumuz için artık R_E değerini hesaplayabiliriz.

$$V_{CC} - V_C = I_C R_C = R_C = \frac{V_{CC} - V_C}{I_C} = \frac{25 - 15,061}{0,001423} = \frac{9,939}{0,001423} = 6,984 \, k\Omega$$

Öncelikle DC kaynakları ve kapasiteler devre dışı(kısa devre) kabul edilerek devre tekrar çizilir.

Devrenin son halinde E kısmındaki R_E direnci kısa devre olacağı için sonraki kısımlarda çıkartılır ve devrenin kalan kısmı çizilir. Devrenin yeni halini tekrar düzenleyerek transistörü açarsak:

 h_{ie} direnç değeri r_e modelinde βr_e değerini alır. Bu nedenle öncelikle r_e değerini bulmalıyım.

$$I_B = \frac{V_{CC} - V_{BE}}{(R_{F1} + R_{F2}) + (\beta + 1)(R_C + R_E)} = \frac{12 - 0.7}{50 + 101.5} = \frac{11.3}{555} = 0.02 \text{ mA} \implies I_E = (\beta + 1)I_B = 101.0.02 = 2.02 \text{ mA}$$

$$r_e = \frac{26mV}{I_E} = \frac{26mV}{2.02mA} = 12.871\Omega \implies h_{ie} = \beta r_e = 100.12.871 = 1287.1 \Omega = 1.2871 \text{ k}\Omega$$

Z_i giriş empedansı R_{F1} ve h_{ie} dirençlerini görür ve bu dirençler birbirleri ile paraleldir. Bu nedenle Z_i empedansının değeri bu dirençlerin eş değer direnci olur.

$$Z_{\rm i} = \frac{R_{F1}h_{ie}}{R_{F1} + h_{ie}} = \frac{20.1,287}{20 + 1,287} = \frac{25,74}{21,287} = 1,209 \, k\Omega$$

 Z_0 çıkış empedansı sadece R_{F2} ve R_C dirençlerini görür ve bu dirençler birbirleri ile paraleldir. Bu nedenle Z_0 empedansının değeri bu dirençlerin eş değer direnci olur.

$$Z_O = R' = \frac{R_{F2}R_C}{R_{F2} + R_C} = \frac{30.3}{30 + 3} = \frac{90}{33} = 2,727 \text{ k}\Omega$$

Av gerilim kazancı değeri giriş ve çıkış gerilimlerinin oranına eşit olur.

$$A_V = \frac{V_O}{V_{\rm i}} = -\frac{h_{fe}R'}{h_{ie}} = -\frac{R'}{r_e} = -\frac{2727}{12,871} = -211,872$$

Ai akım kazancı değeri giriş ve çıkış akımlarının oranına eşit olur.

$$A_{\bar{1}} = \frac{I_O}{I_{\bar{1}}} => I_{\bar{1}} = I_b \frac{R_{F1} + h_{ie}}{R_{F1}} => I_O = I_b \frac{R_{F2} h_{fe}}{R_{F2} + R_C} =>$$

$$A_{\rm l} = \frac{\frac{R_{F2}h_{fe}}{R_{F2} + R_C}}{\frac{R_{F1} + h_{ie}}{R_{F1}}} = \frac{R_{F1}R_{F2}h_{fe}}{(R_{F2} + R_C)(R_{F1} + h_{ie})} = \frac{20.30.100}{33.21,287} = \frac{60000}{702,471} = 85,413$$

Şekilde gösterildiği yönde denklemleri sırayla yazarsak:

4)

a)

$$V_{CC} - I_C R_C - I_B (R_{F1} + R_{F2}) - V_{BE} - I_E R_E = 0 \Rightarrow I_E = I_C = (\beta + 1)I_B \Rightarrow V_{CC} - V_{BE} = (\beta + 1)I_B R_C + I_B (R_{F1} + R_{F2}) + (\beta + 1)I_B R_E \Rightarrow I_B = \frac{V_{CC} - V_{BE}}{(R_{F1} + R_{F2}) + (\beta + 1)(R_C + R_E)} = \frac{10 - 0.7}{250000 + 61.4200} = \frac{9.3}{506200} = 18.372 \,\mu A$$

$$I_C = I_E = (\beta + 1)I_B = 61.18.372 = 1120.692 \,\mu A = 1.120692 \,m A$$

$$V_{CC} - I_C R_C - V_{CE} - I_E R_E = 0 \Rightarrow V_{CE} = V_{CC} - I_C R_C - I_E R_E = 10 - 1.121.3 - 1.121.1.2 = 5.2918 \,V$$
b)

Öncelikle DC kaynakları ve kapasiteler devre dışı(kısa devre) kabul edilerek devre tekrar çizilir.

Devrenin son halinde E kısmındaki R_E direnci kısa devre olacağı için sonraki kısımlarda çıkartılır ve devrenin kalan kısmı çizilir. Devrenin yeni halini tekrar düzenleyerek transistörü açarsak:

 h_{ie} direnç değeri r_e modelinde βr_e değerini alır. Bu nedenle öncelikle r_e değerini bulmalıyım.

$$I_B = \frac{V_{CC} - V_{BE}}{(R_{F1} + R_{F2}) + (\beta + 1)(R_C + R_E)} = \frac{10 - 0.7}{250 + 61.4.2} = \frac{9.3}{506.2} = 18.372 \,\mu A =>$$

$$I_E = (\beta + 1)I_B = 61.18.372 = 1120.692 \,\mu A = 1.121 \,m A$$

$$r_e = \frac{26mV}{I_E} = \frac{26mV}{1.121mA} = 23.194\Omega => h_{ie} = \beta r_e = 60.23.194 = 1391.64 \,\Omega = 1.39164 \,k\Omega$$

 Z_i giriş empedansı R_{F1} ve h_{ie} dirençlerini görür ve bu dirençler birbirleri ile paraleldir. Bu nedenle Z_i empedansının değeri bu dirençlerin eş değer direnci olur.

$$Z_{\rm i} = \frac{R_{F1}h_{ie}}{R_{F1} + h_{ie}} = \frac{100.1,392}{100 + 1,392} = \frac{139,2}{101,392} = 1,373 \, k\Omega$$

 Z_0 çıkış empedansı sadece R_{F2} ve R_C dirençlerini görür ve bu dirençler birbirleri ile paraleldir. Bu nedenle Z_0 empedansının değeri bu dirençlerin eş değer direnci olur.

$$Z_O = R' = \frac{R_{F2}R_C}{R_{F2} + R_C} = \frac{150.3}{150 + 3} = \frac{450}{153} = 2,941 \, k\Omega$$

Av gerilim kazancı değeri giriş ve çıkış gerilimlerinin oranına eşit olur.

$$A_V = \frac{V_O}{V_i} = -\frac{h_{fe}R'}{h_{ie}} = -\frac{R'}{r_e} = -\frac{2941}{23,194} = -126,757$$

Ai akım kazancı değeri giriş ve çıkış akımlarının oranına eşit olur.

$$A_{i} = \frac{I_{o}}{I_{i}} = > I_{i} = I_{b} \frac{R_{F1} + h_{ie}}{R_{F1}} = > I_{o} = I_{b} \frac{R_{F2}h_{fe}}{R_{F2} + R_{C}} = >$$

$$A_{i} = \frac{\frac{R_{F2}h_{fe}}{R_{F2} + R_{C}}}{\frac{R_{F1} + h_{ie}}{R_{F1}}} = \frac{R_{F1}R_{F2}h_{fe}}{(R_{F2} + R_{C})(R_{F1} + h_{ie})} = \frac{100.150.60}{153.101,392} = \frac{900000}{15512,976} = 58,016$$

5)

a)

Şekilde gösterildiği yönde denklemleri sırayla yazarsak:

$$V_{CC} - I_B R_B - V_{BE} - I_E R_E = 0 \Rightarrow I_E = I_C + I_B \Rightarrow I_C = \beta I_B$$

$$V_{CC} - V_{BE} = I_B R_B + (\beta + 1)I_B R_E \Rightarrow I_B = \frac{V_{CC} - V_{BE}}{R_B + (\beta + 1)R_E} = \frac{12 - 0.7}{560000 + 101.2200} = \frac{11.3}{782200} = 14.464 \,\mu A$$

$$I_C = \beta I_B = 100 \cdot 14.464 = 1.4464 \,mA \Rightarrow I_E = (\beta + 1)I_B = 101.14.464 = 1.460864 \,mA$$

$$V_{CC} - V_{CE} - I_E R_E = 0 \Rightarrow V_{CE} = V_{CC} - I_E R_E = 12 - 1.461.2.2 = 8.7792 \,V$$
b)

Öncelikle DC kaynakları ve kapasiteler devre dışı(kısa devre) kabul edilerek devre tekrar çizilir.

Devrenin yeni halini tekrar düzenleyerek transistörü açarsak:

Burada gösterilen Z₀ direncinin değeri h¡e ve Rɛ dirençlerinden geliyor ve şu şekilde ifade edilir:

$$Z_b = h_{ie} + (1 + h_{fe})R_E$$

 h_{ie} direnç değeri r_e modelinde βr_e değerini alır. Bu nedenle öncelikle r_e değerini bulmalıyım.

$$I_B = \frac{V_{CC} - V_{BE}}{R_B + (\beta + 1)R_E} = \frac{12 - 0.7}{560000 + 101.2200} = \frac{11.3}{782200} = 14.464 \,\mu A =>$$

$$I_E = (\beta + 1)I_B = 101.14.464 = 1460.864 \,\mu A = 1.460864 \,m A$$

$$r_e = \frac{26mV}{I_E} = \frac{26mV}{1.461mA} = 17.796\Omega => h_{ie} = \beta r_e = 100.17.796 = 1779.6 \,\Omega = 1.7796 \,k \Omega$$

$$Z_b = 1.78 + 101.2.2 = 223.98 \,k \Omega$$

Z₁ giriş empedansı R_B ve Z_b dirençlerini görür ve bu dirençler birbirleri ile paraleldir. Bu nedenle Z₁ empedansının değeri bu dirençlerin eş değer direnci olur.

$$Z_{1} = \frac{R_{B}Z_{b}}{R_{B} + Z_{b}} = \frac{560.223,98}{560 + 223,98} = \frac{125428,8}{783,98} = 159,99 k\Omega$$

 Z_0 çıkış empedansı sadece R_E ve $h_{ie}/(1+h_{fe})$ dirençlerini görür ve bu dirençler birbirleri ile paraleldir. Bu nedenle Z_0 empedansının değeri bu dirençlerin eş değer direnci olur.

$$Z_{O} = \frac{R_{E} \frac{h_{ie}}{1 + h_{fe}}}{R_{E} + \frac{h_{ie}}{1 + h_{fe}}} = \frac{2.2 \cdot \frac{1.78}{101}}{2.2 + \frac{1.78}{101}} = \frac{0.038772}{2.217623} = 0.017484 \, k\Omega = 17.484 \, \Omega$$

A_V gerilim kazancı değeri giriş ve çıkış gerilimlerinin oranına eşit olur.

$$A_V = \frac{V_O}{V_i} = \frac{I_E R_E}{I_B Z_b} = \frac{(1 + h_{fe})I_B R_E}{I_B Z_b} = \frac{(1 + h_{fe})R_E}{Z_b} = \frac{101.2,2}{223,98} = 0,992$$

A_i akım kazancı değeri giriş ve çıkış akımlarının oranına eşit olur.

$$A_{i} = \frac{I_{O}}{I_{i}} = > I_{i} = I_{b} \frac{R_{B} + Z_{B}}{R_{B}} = > I_{O} = I_{E} = (1 + h_{fe})I_{b} = >$$

$$A_{i} = \frac{1 + h_{fe}}{\frac{R_{B} + Z_{B}}{P}} = \frac{R_{B}(1 + h_{fe})}{R_{B} + Z_{B}} = \frac{560.101}{560 + 223.98} = \frac{56560}{783.98} = 72,145$$

- 6) Devre şekli aslında ilk sorularda çözdüğümüz devrenin farklı bir gösterimi ilk iş olarak bildiğimiz şekline
- a) getirirsek şu şekilde olur.

Bu soruyu yaklaşık analiz veya tam analiz yaparak çözebiliriz. Ben sorularda tam analiz örneği olarak sadece bir soru olduğu için tam analiz yapmayı tercih ettim. İlk olarak R_{B1} ve R_{B2} dirençlerinin eşdeğer direncini (R_{BB}) ve eşdeğer gerilimini (V_{BB}) bularak başlıyoruz.

$$R_{BB} = \frac{R_{B1}R_{B2}}{R_{B1} + R_{B2}} = \frac{56.5,6}{56 + 5,6} = \frac{313,6}{61,6} = 5,091 \, k\Omega$$

$$V_{BB} = \frac{R_{B2}}{R_{B1} + R_{B2}} V_{CC} = \frac{5.6}{56 + 5.6} 20 = \frac{112}{61.6} = 1.818 V$$

Devremizi şekilde görüldüğü gibi çizdiğimiz zaman sırayla denklemleri yazıyoruz.

$$V_{BB} - I_E R_E - V_{BE} - I_B R_{BB} = 0 \Rightarrow I_E = I_B + I_C \Rightarrow I_C = \beta I_B \Rightarrow V_{BB} - V_{BE} = (1 + \beta)I_B R_E + I_B R_{BB}$$

$$I_B = \frac{V_{BB} - V_{BE}}{(1 + \beta)R_E + R_{BB}} = \frac{1,818 - 0,6}{(1 + 100)560 + 5091} = \frac{1,218}{61651} = 19,756\mu A \quad I_C = \beta I_B = 100.19,756 = 1975,6\mu A = 1,9756m A$$

$$-V_{CC} + I_C R_C + V_{CE} + I_E R_E = 0 => (I_C \ ve \ I_E \ nerdeyse \ birbirine \ eşit \ olduğu \ için \ I_C \ alınır)$$

$$V_{CE} = V_{CC} - I_C(R_C + R_E) => V_{CE} = 20 - 1,9756(1 + 0.56) => V_{CE} = 16,918 V_{CE}$$

 $V_{CC}-V_{C}=I_{C}R_{C}=>$ (İki düğüm arasındaki gerilim farkı düğümler arasındaki elemanların gerilimine eşittir)

$$V_C = V_{CC} - I_C R_C = V_C = 20 - 1,9756.1 = 18,0244 V$$

$$V_{CE} = V_C - V_E = V_C = V_C - V_{CE} = V_C = 18,0244 - 16,918 = 1,1064 V$$

(Bu soruda IB ve IC akımlarını bulduktan sonra gerilim değerleri farklı sora ve formüller ile bulunabilir. Ben bunlardan sadece birini

$$V_S + 6 = I_D R_S => V_{GS} = V_G - V_S = 0 - V_S = -V_S => V_{GS} = 6 - I_D R_S = 6 - I_D$$

			_
	I _D (mA)	V _{GS} (V)	
	0	6	
	6	0	
$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2 = 8(1 + \frac{V_{GS}}{4})^2$			
	V _{GS} (V)	I _D (mA)	
	0	8	
	-1,2	4	
	-2	2	
	-4	0	

Kesişme noktaları alındığında: $I_{DQ} = 6,417 \; mA \quad V_{GSQ} = -0,417 \; V$

$$V_S + 6 = I_D R_S => V_S + 6 = 6,417 =>$$

$$V_S = -V_{GS} = 0,417 V$$

$$12 - V_D = I_D R_D => 12 - V_D = 6,417.1,5 = 9,6255 =>$$

$$V_D = 2,3745 V$$

$$V_{DS} = V_D - V_S = 2,3745 - 0,417 = 1,9575 V$$

$$10 - V_S = I_D R_S => V_{GS} = V_G - V_S = 0 - V_S = -V_S => V_{GS} = I_D R_S - 10 = 2,4.I_D - 10$$

I _D (mA)	V _{GS} (V)
0	-10
4,167	0

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2 = 20(1 - \frac{V_{GS}}{8})^2$$

V _{GS} (V)	I _D (mA)
0	20
2,4	10
4	5
8	0

Kesişme noktaları alındığında: $I_{DQ} = 5{,}718\,\mathrm{mA}$ $V_{GSQ} = 3{,}7232\,\mathrm{V}$

$$10 - V_S = I_D R_S \implies 10 - V_S = 2,4.5,718 \implies$$

$$V_S = -V_{GS} = -3,7232 V$$

$$V_D + 20 = I_D R_D \implies V_D + 20 = 5,718.1,1 = 6,2898 \implies$$

$$V_D = -13,7102 V$$

$$V_{DS} = V_D - V_S = -13,7102 + 3,7232 = -9,987 V$$

Devre üzerinde görülen R_G direncinin üzerinden direnç değeri çok büyük olduğu için akım geçmediği kabul edilir. Bu nedenle V_G gerilimi tekrardan O olur. Önceki sorularda yaptığımız işlemleri tekrarlayalım.

$$-V_S = I_D R_S => V_{GS} = V_G - V_S = 0 - V_S = -V_S => V_{GS} = I_D R_S = 2.I_D$$

I _D (mA)	V _{GS} (V)
0	0
3	6

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2 = 8(1 - \frac{V_{GS}}{6})^2$$

V _{GS} (V)	I _D (mA)
0	8
1,8	4
3	2
6	0

Kesişme noktaları alındığında:
$$I_{DQ} = 1,641 \, mA \quad V_{GSQ} = 3,282 \, V$$

$$-V_S = I_D R_S => -V_S = 2.1,641 => V_S = -V_{GS} = -3,282 V$$

$$V_D + 24 = I_D R_D => V_D + 24 = 1,641.3 = 4,923 => V_D = -19,077 V$$

$$V_{DS} = V_D - V_S = -19,077 + 3,282 = -15,795 V$$

Devre üzerinde görülen R_G direncinin üzerinden direnç değeri çok büyük olduğu için akım geçmediği kabul edilir. Bu nedenle V_G gerilimi arada bir gerilim değişimi olmadığı için V_D değerine eşit olur. Yani $V_D = V_G$ ve $V_S = 0$ olduğu için $V_{DS} = V_{GS}$ olur.

$$V_{DD} - V_D = I_D R_D => V_{DS} = V_D - V_S = V_D - 0 = V_D => V_{DS} = V_{DD} - I_D R_D = 12 - 4.I_D$$

I _D (mA)	V _{DS} (V)
0	12
3	0

$$I_D = K(V_{GS} - V_T)^2 = K(V_{DS} - V_T)^2 = 0.5(V_{DS} - 4)^2$$

V _{DS} (V)	I _D (mA)
4	0
6	2
8	8
10	18

Kesişme noktaları alındığında: $I_{DQ} = 1,559 \, mA$ $V_{DSQ} = 5,766 \, V$

Öncelikle devre üzerinde görülen V_G gerilimini hesaplamalıyız. Bunun için şekilde gösterilen denklemler yazılmalıdır.

$$\frac{V_{DD}}{R_{G1} + R_{G2}} = I_G => \qquad \qquad \frac{V_G}{R_{G2}} = I_G =>$$

$$\frac{V_{DD}}{R_{G1} + R_{G2}} = \frac{V_G}{R_{G2}} => V_G = \frac{R_{G2}}{R_{G1} + R_{G2}} V_{DD} = \frac{10}{110 + 10} 18 = 1,5 V$$

Buradan sonra önceki sorularda yaptığımız işlemleri tekrarlayalım.

$$V_S = I_D R_S => V_{GS} = V_G - V_S => V_{GS} = V_G - I_D R_S = 1.5 - 0.3I_D$$

I _D (mA)	$V_{GS}(V)$
0	1,5
5	0

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2 = 6(1 + \frac{V_{GS}}{3})^2$$

V _{GS} (V)	I _D (mA)
1,2	12
0	6
-0,9	3
-1,5	1,5
-3	0

Kesişme noktaları alındığında:
$$I_{DQ} = 5.5 \text{ mA} \quad V_{GSQ} = -0.15 \text{ V}$$

$$V_{DD} - I_D R_D - V_{DS} - I_D R_S = 0 => V_{DS} = V_{DD} - I_D R_D - I_D R_S = 18 - 5,5.1,8 - 5,5.0,3 => V_{DS} = 6,45 V$$

Öncelikle I_{DSS} değerini hesaplayabilmek için bana V_{GS} ve I_D değerleri gerekiyor ve V_{GS} değerini hesaplamak için V_G ile V_S gerilimlerini bilmemiz gerekiyor. Bu nedenle ilk olarak devre üzerinde görülen V_G gerilimini hesaplamalıyız. Bunun için şekilde gösterilen denklemler yazılmalıdır.

$$\frac{V_{DD}}{R_{G1} + R_{G2}} = I_G => \qquad \frac{V_G}{R_{G2}} = I_G =>$$

$$\frac{V_{DD}}{R_{G1} + R_{G2}} = \frac{V_G}{R_{G2}} => V_G = \frac{R_{G2}}{R_{G1} + R_{G2}} V_{DD} = \frac{30}{90 + 30} 20 = 5 V$$

$$V_{GS} = V_G - V_S = 5 - 6 = -1 V$$

Artık değerlerden birini bulduk. ID akımını bulmak için şekilde gösterilen denklem yazılır.

$$V_S = I_D R_S => 6 = 1,5. I_D => I_D = 4 mA$$

Tüm değerlere sahip olduğum için artık IDSS değerini bulabilirim.

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2 = I_{DSS} = \frac{I_D}{\left(1 - \frac{V_{GS}}{V_P} \right)^2} = \frac{4}{(1 - \frac{1}{3})^2} = \frac{4}{(\frac{2}{3})^2} = \frac{4}{\frac{4}{9}} = 9 \, mA$$

Soruda istenen son değerim V_{DS} değeri ve onu bulmak için V_D ile V_S gerilimlerini bilmemiz gerekiyor.

$$V_{DD} - V_D = I_D R_D = > V_D = V_{DD} - I_D R_D = 20 - 4.1 = 16 V$$

 $V_{DS} = V_D - V_S = 16 - 6 = 10 V$