NFC 通信距离扩展技术 卷积码、扩频相关方案评估

版本日期: 2025-3-18

修订记录

日期	版本	作者	备注
2025-03-17	V1.0	王江浩	初始版本
2025-03-18	V1.1	王江浩	会议后小修
待进行	V1.2	王江浩	加次数重新仿真;检查加噪与调制解调代码,更新仿真

一些会议后的补充说明:

在 3.1 节仿真曲线图中增加了无任何编码(nocode)的曲线,发现其与仅曼彻斯特编码的曲线重合(基带信号码长一致,曼彻斯特编码后码长翻倍)。可能说明在当前仿真方法下,未能体现"降速"带来的增益

在此文档的现有分析中,关于"降速"均是由于编码、扩频导致的"码率"变化,即保持基带码长 L 不变时,经编码调制后,码长显著增加。而非编码前码元速率降低,或说调制时码元宽度 T_B 延长。

另外,现有加噪方式可能处理得不严谨,或关于信号功率的基本假设存在问题,导致未能正确仿真 BPSK 带来的增益、降速带来的增益。需补充学习通信相关基础后检查仿真逻辑,重新解释仿真数据或重新仿真。

目录

1	卷积	码误码率性能分析	1
	1.1	卷积码参数说明	1
	1.2	码长影响	1
		1.2.1 性能影响	1
		1.2.2 协议内容摘录	1
	1.3	约束长度与码率影响	3
		1.3.1 约束长度影响	3
		1.3.2 码率影响	3
		1.3.3 最小回溯深度	4
	1.5	译码算法影响(待评估,占位)	4
2	卷积	码编译码计算、存储开销评估	5
	2.1	编码开销评估	5
		2.1.1 编码计算开销	5
		2.1.2 编码存储开销	5
	2.2	译码开销评估	5
		2.2.1 译码计算开销	5
		2.2.2 译码存储开销	7
	2.3	考虑速率的编译码计算开销评估	7
		2.3.1 协议限制	8
		2.3.2 数据吞吐率考量	8
3	扩频	方法评估	9
	3.1	DSSS 扩频	9
	3.2	其余扩频方式(待评估,占位)	9
4	调制	方法评估1	0
	4.1	当前仿真方法与相应增益1	0
		4.1.1 BPSK 调制增益(粗糙估计)1	0
		4.1.2 仿真方法现存问题1	0
		待确定:调制后码元宽度 TB 1	
5	汇总	方案评估1	2
	5.1	方案对比 1	2
附	录 1	最小回溯长度仿真结果汇总1	4
附	录 2	方案对比仿真结果汇总 <mark>(需加循环次数重仿)</mark>	5

1 卷积码误码率性能分析

1.1 卷积码参数说明

对于(n,k,v)的卷积码,k为每组输入码元数,n为每组输出码元数,v为移位寄存器深度。生成矩阵g用二进制表示,如 $g=[111\ 101]$ 。并有:约束长度K=v+1,码率R=k/n。

另记: 基带信号码长为L,回溯深度为 δ ,译码所需路径度量 (Path Metric) 为 PM,分支度量 (Branch Metric) 为 BM。

在后续分析中,暂仅考虑k=1的情形。对于k>1的情形,部分结论可能需做修正。

1.2 码长影响

1.2.1 性能影响

在(n,k,v) = (2,1,2), g = [7,5], 译码回溯深度 δ = 5v, BPSK 调制条件下, 对码长 L=8,L=32,L=256,L=1024 的卷积码进行误码率仿真,结果如图 1 所示。

图 1 码长对卷积码误码率性能的影响

由图 1 可知,在码长较短时,卷积码的误码率性能会有所下降。当码长达到 L=256 时,卷积码误码率性能已达较优水平,随码长的继续增长,误码率性能提升不再显著。

1.2.2 协议内容摘录

ISO/IEC 14443 协议中存在一些对帧长度的限制。部分有关帧长度的规定如下: (1) 短帧

Request and wake-up frames are used to initiate communication and consist of, in the following order:

- · Start of communication
- 7 data bits transmitted LSB first. (The data content is '26' for a standard REQA and '52' for a WAKE-UP Request).
- · End of communication

No parity bit is added.

图 2 ISO/IEC 14443 协议对短帧的定义

(2) 标准帧

6.1.8 Standard frame

Standard frames are used for data exchange and consist of

- · Start of communication
- n * (8 data bits + odd parity bit). with n ≥ 1. The LSB of each data byte is transmitted first. Each data byte is followed by an odd parity bit.
- · End of communication

图 3 ISO/IEC 14443 协议对标准帧的定义

在图 3 所示标准帧定义中,其**帧长度上限似乎并不明确**。而 Type-B 的 ATQB 命令中协议信息部分包含对最大帧长度的描述,给出最大帧长度 256。

Max_Frame_Size (4 bits): see table 7.4

Table 7.4 – Maximum frame sizes

Maximum frame size that can be received by the PICC is codded as follows:										
Maximum Frame	0	1	2	3	4	5	6	7	8	9-F
Size Code in										
ATQB										
Maximum Frame	16	24	32	40	48	64	96	128	256	RFU
Size (Bytes)										>256

图 4 ISO/IEC 14443 协议对 ATOB 命令帧长度段的定义

此外,还有有关防碰撞帧的定义。本节仅关注其帧长度规定为56。

由上述协议细节可知,存在长度仅为7bit 的短帧,Type-B 的标准帧长度也小于256。因此,关注码长对卷积码误码率性能的影响是有必要的。

另外,需要注意的是,随着帧长度的变短,将可能影响到译码回溯长度的选择。 较小的约束长度将进一步导致误码率升高。例如,当码长为8时,在约束长度仅为3 的情况下,根据经验公式,最小回溯深度为10,仍超过了码长8,于是将不得已减小 回溯深度至8以下。

1.3 约束长度与码率影响

本节分析卷积码误码率性能受约束长度、码率的影响,并通过仿真找到各参数组合下几乎不影响译码性能的最小回溯深度 δ_{min} 。

1.3.1 约束长度影响

由图 5 可知,在相同码率下,约束长度对误码率性能的影响较小。

1.3.2 码率影响

一定约束长度下,码率对误码率性能的影响如图 6 所示。在每组对比中均加入 仅曼彻斯特编码的误码率情况,

图 6 相同约束长度下码率对卷积码误码率性能的影响

1.3.3 最小回溯深度

前述误码率性能分析中,译码回溯深度均采用经验公式 $\delta = 5v$ 。本节将寻找实际几乎不影响译码性能的最小回溯深度。

							,		
K	R	G	δ_{min}	R	g	δ_{min}	R	g	δ_{min}
3	1/2	[5 7]	8	1/3	[5 7 7]	8	1/4	[5 7 7 7]	10
5	1/2	[23 35]	15	1/3	[25 33 37]	16	1/4	[25 27 33 37]	12

表 1 各参数卷积码的最小回溯深度

对各参数卷积码的最小回溯深度仿真结果见附录 1。值得注意的是,从附录 1 图像可看出,不同回溯深度下误码率性能较接近,且当误码率较低时,随机误差会对最小回溯深度的选取造成显著影响。因而上表所取最小回溯深度为较保守的选择,且其合理性仍有待商榷。

1.5 译码算法影响 (待评估,占位)

2 卷积码编译码计算、存储开销评估

2.1 编码开销评估

2.1.1 编码计算开销

编码过程的计算只包括数次异或运算,异或运算次数取决于编码器抽头数量。以(n,k,v)=(2,1,2),生成矩阵 $g=[111\ 101]$ 的卷积码为例,其编码器如图 7 所示。

图 7 生成矩阵g = [111101]的卷积码编码器

若码长L=256,则其计算开销为:每 bit 输入进行 3 次异或运算,输入L+3=259bit,共进行259×3=777次异或运算。

推广至一般情况:对于码长为L, (n,k,v)的卷积码,记编码器抽头数量为G,则进行 $G\cdot(L+v+1)$ 次异或运算。

其中,G的计算为二进制表示的生成矩阵中"1"的数量,额外增加的(v+1)bit输入来自于将移位寄存器恢复为全 0 所需的补 0 输入。

2.1.2 编码存储开销

编码器存储开销仅为移位寄存器深度,抽头在硬件实现中由连线实现,无需占用额外存储空间。

直接考虑一般情况:存储开销为v。

2.2 译码开销评估

2.2.1 译码计算开销

考虑维特比译码算法,其译码过程可简述为"加比选"过程。图 8 为(n,k,v) = (2,1,2),生成矩阵 $g=[111\ 101]$,基带信号码长 L=4 的译码网格图。

图 8 译码网格图示例

由图 8 易知,自第 3 时隙起,后续时隙为重复第 3 时隙的状态转移图形,此时各状态均有两条路径可到达,各状态也将引出两条路径指向不同状态。各时隙将进行"加比选"过程,具体为:将每条路径的累加汉明距离作为路径度量 PM,比较到达每个状态的两条路径 PM,保留 PM 较小的一条路径。若两路径 PM 相等,则任意保留一条。

具体地,PM 计算方法为: 前一状态的累计 PM 与当前时隙新增的分值度量 BM 相加,可公式表示为:

$$PM_i = PM_{i-1} + BM_i \tag{2.1}$$

以前述(n,k,v) = (2,1,2)的卷积码为例,在硬判决译码中,BM采用汉明距离,计算过程由 2 次异或运算与 2 个单 bit 加法运算构成。满足 $0 \le BM \le 2$ 。

综上, 自第3时隙起, 每推进译码1bit, 需进行的计算为: 表 2 每时隙译码运算的构成

运算类型	计算构成	累计计算		
8 ↑ BM	2 次异或, 1 次 2*1bit 加法	8 次异或, 4 次 2*1bit 加法		
8 次 $PM_{i-1} + BM_i$	1 次多 bit 加法运算	1 次多 bit 加法		
4 次二选一比较		4 次二选一比较		

现考虑图 8 中在前 2 时隙、后 2 时隙状态转移路径不完整的情形。这是由于移位寄存器初始状态为全 0,结束状态也回归全 0。路径度量 PM 累加的过程自第 1 时隙即开始进行,而"比选"过程从第 3 时隙出现完整状态转移路径后才开始进行。

分析译码计算、存储开销时,若码长较长,译码过程首尾出现的状态转移路径不完整的情形可近似忽略;而码长较短时可能带来一定影响,因而本节先进行尽量严谨的分析推导。

将前述分析推广至一般情况:

表 3 译码计算开销分析-一般情况

运算类型 (每时隙)	计算构成	累计计算	近似值
2 ^{v+1} 个 BM	n次异或,1 次 n*1 bit 加法	$(L-v+3) \cdot n \cdot 2^{v+1}$ 次异或 $(L-v+3) \cdot 2^{v+1}$ 次 n*1 bit 加法	$L \cdot n \cdot 2^{\nu+1}$ $L \cdot 2^{\nu+1}$
$2^{v+1} 次 PM_{i-1} + BM_i$	1次多位加法	$(L-v+3)\cdot 2^{v+1}$ 次多位加法运算	$L \cdot 2^{v+1}$
2"次二选一比较		$(L-v+3)\cdot 2^v$ 次二选一比较	$L \cdot 2^{v}$

说明:表 3 中 n*1 bit 加法表示 n 个 1bit 数相加; 完整加比选次数为(L-v+1),(L-v+3)为考虑首尾非完整加比选过程后,近似的完整加比选次数。v为移位寄存器长度,约束长度K=v+1。

2.2.2 译码存储开销

译码所需存储内容:路径度量PM,幸存路径SP。

(1) 路径度量 PM

$$PM_i = PM_{i-1} + BM_i \tag{2.1}$$

加比选时,状态数为 2^{ν} ,总时隙 $L+\nu+1$ 。从而有:

$$(PM)_{max} = \sum_{1}^{L+v+1} (BM)_{max} \le (L+v+1) \cdot n \tag{2.2}$$

各时隙状态数为 2^{ν} ,需存储 $2^{\nu+1}$ 个 PM 用于比选,从而有路径度量 PM 存储开销为:

$$M_{PM} = [log_2[(L+v+1) \cdot n]] \cdot 2^{v+1}$$
 (2.3)

(2) 幸存路径 SP:

记回溯深度为 δ ,所需存储路径数与各时隙状态数相等,为 2^{ν} 。各时隙状态转移路径类型数为 $2^{\nu+1}$ 。若直接二进制存储各时隙路径,需 $(\nu+1)$ bit 存储。若采用移位寄存器法存储,则各时隙路径仅需 1bit 存储。从而有幸存路径 SP 存储开销为:

$$M_{SP} = 2^{v} \cdot (v+1) \cdot \delta \not \equiv M_{SP} = 2^{v} \cdot \delta \tag{2.4}$$

综上, 卷积码维特比硬判决译码的存储开销可近似为:

$$M = \left[\log_2[L \cdot n]\right] \cdot 2^{\nu+1} + \delta \cdot 2^{\nu} \tag{2.5}$$

2.3 考虑速率的编译码计算开销评估

此前于2.1.1、2.2.1 节已推导卷积码编译码的计算次数开销。为表征计算速度需

求,即单位时间内计算次数,需确定编译码延时要求或吞吐率要求。

2.3.1 协议限制

在原有协议中,存在106kbps、212kbps等经典值为帧传输过程中的数据速率。

图 9 副载波调制的曼彻斯特编码示意图

如图 9 所示, $T_B = 128 \cdot T_{13.56M}$,从而有数据速率为 $13.56M/128 \approx 106$ kbps。 在协议中,**暂未见**对编译码延时的限制规定。

2.3.2 数据吞吐率考量

考虑20kbps数据速率的连续帧传输,则译码速率应不小于数据速率。对码长为256,(n,k,v) = (2,1,2)的卷积码,其译码延时至多为:256/20k = 12.8ms。将多个单比特加法与多位加法计算次数合并为 $L\cdot 2^{v+2}$ = 4096次加法计算,相应计算速率为 O_{add} = 4096/12.8ms = 320kOPS,单位OPS指每秒加法运算次数。从而有计算速率要求的一般形式为:

$$O_{add} = L \cdot 2^{\nu+2} / (L/R_b) = 2^{\nu+2} \cdot R_b$$
 (2.6)

上式 (2.6) 中, R_h 指数据速率,如经典值106kbps。

3 扩频方法评估

3.1 DSSS 扩频

考虑以下两种扩频参数:

- (1) m 序列长度 $L_m = 15$, 抽头位置[41], 寄存器初值[1000];
- (2) m 序列长度 $L_m = 31$, 抽头位置[5 3 2], 寄存器初值[1 0 0 0 0];

对仅曼彻斯特编码、仅卷积码编码、卷积码与扩频叠加方案进行对比,并测试不同参数卷积码,其中一种卷积码参数下对比结果如图 10 所示,其余结果见附录 2。

图 10 扩频增益

由图 10 与附录 2 中图像可见,m 序列长度 $L_m=15$ 时扩频增益约为 10dB;m 序列长度 $L_m=31$ 时扩频增益约为 13dB。

此外,观察到曼彻斯特编码与无编码的两条曲线高度重合,可能说明当前仿真方法无法表现降速带来的增益,而主要体现编码方法带来的增益。(不确定的推断)

3.2 其余扩频方式 (待评估,占位)

4 调制方法评估

4.1 当前仿真方法与相应增益

4.1.1 BPSK 调制增益(粗糙估计)

对(n,k,v) = (2,1,2),码长为 256,生成矩阵 g=[57]的卷积码进行调制方式对比仿真,所对比调制方式为 30% ASK 调制、100% ASK 调制、BPSK 调制。结果如图 11 所示。

图 11 调制方式增益

由图 11 可知,相较于 100% ASK 调制, BPSK 调制可带来约 3dB 增益。

4.1.2 仿真方法现存问题

当前仿真中,调制前后码元均为离散的单点数据,而非向 13.56MHz 载波直接调制。因而所体现的受噪声的影响、引入的误码可能较粗糙。

```
switch lower(modulation_cell{1})
 case {'ask'}
     ask_depth = modulation_cell{2};
     ASK_amplitude_0 = 1 - ask_depth;
                                                               switch lower(modulation_cell{1})
     ASK_amplitude_1 = 1;
                                                                   case {'ask'}
                                                                      ask_depth = modulation_cell{2};
     for i_x = 1 : length(x)
                                                                      hard_threshold_ask = 1 - ask_depth / 2;
         if x(i_x) == 1
                                                                      y_demodulated = (y_noisy > hard_threshold_ask);
                                                  % 幅度为1
             x_{modulated(i_x)} = ASK_{amplitude_1};
                 % 二进制0或双极性-1均可
                                                                      y_demodulated = (y_noisy <= 0);</pre>
             x_modulated(i_x) = ASK_amplitude_0;
                                                  % 幅度为0
     end
case {'bpsk'}
        x_{modulated} = 1 - 2 * x;
```

图 12 当前仿真中调制解调实现方法

可能的细化方案:

(1) 在 MATLAB 中实现数字解调。FIR 数字滤波器: 涉及采样率、窗函数设计

等较多参数,暂未深入学习;

- (2) MATLAB Simulink 构建新仿真框架? (暂未调研);
- (3)会议笔记: 需学习信号功率、SNR等内容,检查代码,搞清应如何表征增益;增加仿真次数,在低误码率部分至少 100 个误码才基本可信,现有曲线不可靠。

4.2 待确定:调制后码元宽度 T_B

码元宽度 T_B 即码元持续时间。此处码元指经卷积码编码、扩频操作后,调制前信号序列的码元。

图 13 码元宽度 T_R 示意图

码元宽度 T_B 将直接用于后续章节方案评估中数据速率的计算:

$$R_b = \frac{1}{R_{conv} \cdot R_{dsss} \cdot T_B} \tag{4.1}$$

为方便计算数据速率,可用 k_B 表示码元对应的载波周期数,即

$$k_B = T_B / T_{13.56M} (4.2)$$

从而有:

$$R_b = \frac{13.56 \times 10^3}{R_{conv} \cdot R_{dsss} \cdot k_B} \text{ kbps}$$
 (4.3)

5 汇总方案评估

5.1 方案对比

表格见下页,相应仿真结果汇总于附录2。

表格说明:

- (1) 由于现有仿真在 ASK 到 BPSK 的增益分析存在问题,参考基准"序号 0" 暂统一用 BPSK 调制;
 - (2) 编码的计算和存储开销均较小,暂仅考虑译码开销;
- (3) 将多个单 bit 加法与多位加法计算次数合并为 $2^{\nu+2}$ 次,表示为"+",异或运算表示为" \oplus "。

表 4 部分方案汇总对比

		卷积码参数	编码增益/dB (相对仅 Man)	扩频增益/dB (相对于仅 Conv)	速率影响	译码开销(倍数比较)		
序号 调制方式	计算					存储		
			(All Market Market)	(All All All Cont)		11 开	$\delta = 5v$	δ_{min}
0	BPSK	曼彻斯特	/	/	1/2	/	/	/
1	BPSK	(n,k,v) = (2,1,2)	3.3dB		1/2 * 1/15	"1"	"1"	"1"
1	DISK	R=1/2, K=3, g=[5 7], $\delta_{min} = 8$	3.34D	$L_m=15$ 时, 10 dB $L_m=31$ 时, 13 dB	1/2 * 1/31	1	1	1
2	BPSK	(n,k,v) = (2,1,4)	3.5dB		1/2 * 1/15	⊕: 4 +: 4	5.4	5.1
	2 Brsk	R=1/2, K=5, g=[23 35], $\delta_{min} = 15$	3.34D		1/2 * 1/31			
3	3 BPSK	(n,k,v) = (3,1,2)	5.5dB		1/3 * 1/15	⊕: 1.5	1.1	1.1
	DISK	R=1/3, K=3, g=[5 7 7], $\delta_{min} = 8$			1/3 * 1/31	+:1	1.1	1.1
4	BPSK	(n,k,v) = (3,1,4)	5.5dB		1/3 * 1/15	⊕: 6	5.7	5.5
	DISK	R=1/3, K=5, g=[25 33 37], $\delta_{min} = 16$			1/3 * 1/31	+:4		
5	5 BPSK	(n,k,v) = (4,1,2)	6.5dB		1/4 * 1/15	⊕: 2	1.1	1.2
<i>J</i>		R=1/4, K=3, g=[5 7 7 7], $\delta_{min} = 10$	0.300		1/4 * 1/31	+:1	1.1	1.2
6	6 BPSK	(n,k,v) = (4,1,4)	6.5dB		1/4 * 1/15	⊕: 8	5.7	4.9
0		R=1/4, K=5, g=[25 27 33 37], δ_{min} = 12			1/4 * 1/31	+:4	5.7	4.9

附录 1 最小回溯长度仿真结果汇总

14

附录 2 方案对比仿真结果汇总 (需加循环次数重仿)

