In-Context In-Context Learning with Transformer Neural Processes

Matthew Ashman

 ${
m MCA39@CAM.AC.UK}$

University of Cambridge

CDD43@CAM.AC.UK

Cristiana Diaconu University of Cambridge

Adrian Weller AW665@CAM.AC.UK

University of Cambridge The Alan Turing Institute

Richard E. Turner RET26@CAM.AC.UK

University of Cambridge

 ${\it Microsoft~Research~AI~for~Science}$

1. Neural Processes

• Seek to approximate the posterior predictive map of a ground-truth $\mathcal Y$ -valued stochastic process on input space $\mathcal X$

- Seek to approximate the posterior predictive map of a ground-truth \mathcal{Y} -valued stochastic process on input space \mathcal{X}
- Given a dataset $\mathcal{D}_c = (\mathbf{X}_c, \mathbf{Y}_c)$ of N_c context datapoints, where

$$\mathbf{X}_c \in \mathbb{R}^{N_c \times D_x} \quad \mathbf{Y}_c \in \mathbb{R}^{N_c \times D_y}$$

approximate $p(\mathbf{Y}_t|\mathbf{X}_t,\mathcal{D}_c)$ for N_t target inputs $\mathbf{X}_t \in \mathbb{R}^{N_t \times D_x}$

- Seek to approximate the posterior predictive map of a ground-truth $\mathcal Y$ -valued stochastic process on input space $\mathcal X$
- Given a dataset $\mathcal{D}_c = (\mathbf{X}_c, \mathbf{Y}_c)$ of N_c context datapoints, where

$$\mathbf{X}_c \in \mathbb{R}^{N_c \times D_x} \quad \mathbf{Y}_c \in \mathbb{R}^{N_c \times D_y}$$

approximate $p(\mathbf{Y}_t|\mathbf{X}_t, \mathcal{D}_c)$ for N_t target inputs $\mathbf{X}_t \in \mathbb{R}^{N_t \times D_x}$

We want our model to be

Invariant to permutations of \mathcal{D}_c and \mathcal{D}_t

- Seek to approximate the posterior predictive map of a ground-truth $\mathcal Y$ -valued stochastic process on input space $\mathcal X$
- Given a dataset $\mathcal{D}_c = (\mathbf{X}_c, \mathbf{Y}_c)$ of N_c context datapoints, where

$$\mathbf{X}_c \in \mathbb{R}^{N_c \times D_x} \quad \mathbf{Y}_c \in \mathbb{R}^{N_c \times D_y}$$

approximate $p(\mathbf{Y}_t|\mathbf{X}_t,\mathcal{D}_c)$ for N_t target inputs $\mathbf{X}_t \in \mathbb{R}^{N_t \times D_x}$

We want our model to be

- ullet Invariant to permutations of \mathcal{D}_c and \mathcal{D}_t
- ullet Able to deal with an arbitrary number of datapoints N_c and N_t

- Seek to approximate the posterior predictive map of a ground-truth $\mathcal Y$ -valued stochastic process on input space $\mathcal X$
- Given a dataset $\mathcal{D}_c = (\mathbf{X}_c, \mathbf{Y}_c)$ of N_c context datapoints, where

$$\mathbf{X}_c \in \mathbb{R}^{N_c \times D_x} \quad \mathbf{Y}_c \in \mathbb{R}^{N_c \times D_y}$$

approximate $p(\mathbf{Y}_t|\mathbf{X}_t, \mathcal{D}_c)$ for N_t target inputs $\mathbf{X}_t \in \mathbb{R}^{N_t \times D_x}$

We want our model to be

- Invariant to permutations of \mathcal{D}_c and \mathcal{D}_t
- Able to deal with an arbitrary number of datapoints N_c and N_t

(so we might consider a transformer-based model...)

Neural Processes (NPs)

• Model using an encoder $e: \mathcal{X} \times \mathcal{S} \to \mathcal{Z}$ and a decoder $d: \mathcal{X} \times \mathcal{Z} \to \Theta$ $p(\mathbf{Y}_t | \mathbf{X}_t, \mathcal{D}_c) = p(\mathbf{Y}_t | d(\mathbf{X}_t, e(\mathbf{X}_t, \mathcal{D}_c))$

where:

- ullet ${\cal S}$ is the set of all finite datasets (${\cal D}_c, {\cal D}_t \in {\cal S}$)
- Z is some latent space
- Θ is the parameter space of our predictive distribution.

Neural Processes (NPs)

• Model using an encoder $e: \mathcal{X} \times \mathcal{S} \to \mathcal{Z}$ and a decoder $d: \mathcal{X} \times \mathcal{Z} \to \Theta$ $p(\mathbf{Y}_t | \mathbf{X}_t, \mathcal{D}_c) = p(\mathbf{Y}_t | d(\mathbf{X}_t, e(\mathbf{X}_t, \mathcal{D}_c))$

where:

- ullet ${\cal S}$ is the set of all finite datasets (${\cal D}_c, {\cal D}_t \in {\cal S}$)
- Z is some latent space
- ullet Θ is the parameter space of our predictive distribution.

Train by maximising the posterior predictive likelihood over tasks $au = (\mathcal{D}_c, \mathcal{D}_t)$

$$\mathcal{L}_{\mathrm{ML}} = \mathbb{E}_{p(au)} \left[\sum_{n=1}^{N_t} \log p(\mathbf{y}_{t,n} | d(\mathbf{x}_{t,n}, e(\mathbf{x}_{t,n}, \mathcal{D}_c))) \right]$$

Neural Processes (NPs)

• Model using an encoder $e: \mathcal{X} \times \mathcal{S} \to \mathcal{Z}$ and a decoder $d: \mathcal{X} \times \mathcal{Z} \to \Theta$ $p(\mathbf{Y}_t | \mathbf{X}_t, \mathcal{D}_c) = p(\mathbf{Y}_t | d(\mathbf{X}_t, e(\mathbf{X}_t, \mathcal{D}_c))$

where:

- ullet ${\cal S}$ is the set of all finite datasets (${\cal D}_c, {\cal D}_t \in {\cal S}$)
- Z is some latent space
- \bullet Θ is the parameter space of our predictive distribution.

Train by maximising the posterior predictive likelihood over tasks $\tau = (\mathcal{D}_c, \mathcal{D}_t)$

$$\mathcal{L}_{\mathrm{ML}} = \mathbb{E}_{p(\tau)} \left[\sum_{n=1}^{N_t} \log p(\mathbf{y}_{t,n} | d(\mathbf{x}_{t,n}, e(\mathbf{x}_{t,n}, \mathcal{D}_c))) \right]$$

(Use a Monte-Carlo estimate of this expectation using the tasks you actually have access to.)

2. Transformer Neural Processes

• Obtain initial token representation for context points via pointwise embeddings $\mathbf{Z}_c^0 = \phi_c(\mathcal{D}_c) \in \mathbb{R}^{N_c \times D_z}$

- Obtain initial token representation for context points via pointwise embeddings $\mathbf{Z}_c^0 = \phi_c(\mathcal{D}_c) \in \mathbb{R}^{N_c \times D_z}$
- Pass tokens through <u>L</u> multi-headed self-attention layers

- Obtain initial token representation for context points via pointwise embeddings $\mathbf{Z}_c^0 = \phi_c(\mathcal{D}_c) \in \mathbb{R}^{N_c \times D_z}$
- Pass tokens through <u>L</u> multi-headed self-attention layers
- Perform cross attention with
 - \circ Values Z_c
 - \circ Keys X_c
 - \circ Queries $\phi_t(x_t)$

- Obtain initial token representation for context points via pointwise embeddings $\mathbf{Z}_c^0 = \phi_c(\mathcal{D}_c) \in \mathbb{R}^{N_c \times D_z}$
- Pass tokens through T multi-headed self-attention layers
- Perform cross attention with
 - Values Z_c
 - Keys X_c
 - Queries $\phi_t(x_t)$
- Pass output through decoder ρ (a 2-layer, 128-width MLP) to get predictive distribution (mean and variance of a Gaussian).

 x_t

Better idea: add in cross-attention between context tokens Z_c and updated target token z_t at each layer

ullet Better idea: add in cross-attention between context tokens Z_c and updated target token z_t at each layer

• Problem: $\mathcal{O}\left(N_c^2 + N_c N_t\right)$

ullet Better idea: add in cross-attention between context tokens Z_c and updated target token z_t at each layer

• Problem: $\mathcal{O}\left(N_c^2 + N_c N_t\right)$

Solution: pseudo tokens

(Transformer Neural Process, Nguyen and Grover, 2022)

Pseudo Token TNP (PT-TNP)

• Add in $M \ll N_c$ 'pseudo tokens', $\mathbf{U} \in \mathbb{R}^{M \times D_z}$, to distill/summarise the latent context tokens, Z_c .

Pseudo Token TNP (PT-TNP)

- Add in $M \ll N_c$ 'pseudo tokens', $\mathbf{U} \in \mathbb{R}^{M \times D_z}$, to distill/summarise the latent context tokens, Z_c .
- Remove the quadratic cost of performing attention between context and target

$$\mathcal{O}\left(MN_c + MN_t + M^2\right)$$

Pseudo Token TNP (PT-TNP)

- Add in $M \ll N_c$ 'pseudo tokens', $\mathbf{U} \in \mathbb{R}^{M \times D_z}$, to distill/summarise the latent context tokens, Z_c .
- Remove the quadratic cost of performing attention between context and target

$$\mathcal{O}\left(MN_c + MN_t + M^2\right)$$

 Now we're linear in dataset size

3. In-Context In-Context Learning

What if we have related ('in-context') data?

- We may have multiple related datasets from the target stochastic process
- E.g. a meta-dataset of PDE-simulated Navier-Stokes equations*
 - Could be partitioned into multiple sets based on the Reynold's number (dimensionless parameter describing fluid flow)
 - Infeasible: train one NP per Reynold's number (from 10^-6 to 10^12)
 - Idea: learn a single NP that can condition on each partition of the meta-dataset
- "In-context in-context learning"
 - "amortizing the learning of stochastic-process specific NPs"

(*) Note: training a single NP on the whole non-partitioned meta-dataset would give the predictive distribution of the marginal stochastic process

Theorem: More data is good

Theorem 1 (In-context in-context learning) Let $\xi_i \sim p(\xi)$, \mathcal{D}_i , $\{\mathcal{D}_j\} \sim P(\xi_i)$. Let $p(\mathbf{y}|\mathbf{x}, \mathcal{D}_i, \xi_i)$ be the marginal posterior distribution of $P(\xi_i)$ given \mathcal{D}_i , $p(\mathbf{y}|\mathbf{x}, \mathcal{D}_i, \{\mathcal{D}_j\})$ be the marginal posterior distribution of the stochastic process P given \mathcal{D}_i and $\{\mathcal{D}_j\}$, and $p(\mathbf{y}|\mathbf{x}, \mathcal{D}_i)$ be the marginal posterior distribution of the stochastic process P given \mathcal{D}_i . Then,

$$\mathbb{E}_{\mathcal{D}_i, \{\mathcal{D}_i\}, \xi_i} \left[\text{KL} \left[p(\mathbf{y} | \mathbf{x}, \mathcal{D}_i, \xi_i) || p(\mathbf{y} | \mathbf{x}, \mathcal{D}_i, \{\mathcal{D}_j\}) \right] \right] \leq \mathbb{E}_{\mathcal{D}_i, \xi_i} \left[\text{KL} \left[p(\mathbf{y} | \mathbf{x}, \mathcal{D}_i, \xi_i) || p(\mathbf{y} | \mathbf{x}, \mathcal{D}_i) \right] \right].$$

Theorem: More data is good

Theorem 1 (In-context in-context learning) Let $\xi_i \sim p(\xi)$, \mathcal{D}_i , $\{\mathcal{D}_j\} \sim P(\xi_i)$. Let $p(\mathbf{y}|\mathbf{x}, \mathcal{D}_i, \xi_i)$ be the marginal posterior distribution of $P(\xi_i)$ given \mathcal{D}_i , $p(\mathbf{y}|\mathbf{x}, \mathcal{D}_i, \{\mathcal{D}_j\})$ be the marginal posterior distribution of the stochastic process P given \mathcal{D}_i and $\{\mathcal{D}_j\}$, and $p(\mathbf{y}|\mathbf{x}, \mathcal{D}_i)$ be the marginal posterior distribution of the stochastic process P given \mathcal{D}_i . Then,

$$\mathbb{E}_{\mathcal{D}_i, \{\mathcal{D}_j\}, \xi_i} \left[\text{KL} \left[p(\mathbf{y} | \mathbf{x}, \mathcal{D}_i, \xi_i) || p(\mathbf{y} | \mathbf{x}, \mathcal{D}_i, \{\mathcal{D}_j\}) \right] \right] \leq \mathbb{E}_{\mathcal{D}_i, \xi_i} \left[\text{KL} \left[p(\mathbf{y} | \mathbf{x}, \mathcal{D}_i, \xi_i) || p(\mathbf{y} | \mathbf{x}, \mathcal{D}_i) \right] \right].$$

If we have extra datasets $\{\mathcal{D}_j\}$ from the stochastic process $P(\xi_i)$ (on top of \mathcal{D}_i), then it can't hurt to condition on those too.

Theorem: More data is good

Theorem 1 (In-context in-context learning) Let $\xi_i \sim p(\xi)$, \mathcal{D}_i , $\{\mathcal{D}_j\} \sim P(\xi_i)$. Let $p(\mathbf{y}|\mathbf{x}, \mathcal{D}_i, \xi_i)$ be the marginal posterior distribution of $P(\xi_i)$ given \mathcal{D}_i , $p(\mathbf{y}|\mathbf{x}, \mathcal{D}_i, \{\mathcal{D}_j\})$ be the marginal posterior distribution of the stochastic process P given \mathcal{D}_i and $\{\mathcal{D}_j\}$, and $p(\mathbf{y}|\mathbf{x}, \mathcal{D}_i)$ be the marginal posterior distribution of the stochastic process P given \mathcal{D}_i . Then,

$$\mathbb{E}_{\mathcal{D}_i, \{\mathcal{D}_j\}, \xi_i} \left[\text{KL} \left[p(\mathbf{y} | \mathbf{x}, \mathcal{D}_i, \xi_i) || p(\mathbf{y} | \mathbf{x}, \mathcal{D}_i, \{\mathcal{D}_j\}) \right] \right] \leq \mathbb{E}_{\mathcal{D}_i, \xi_i} \left[\text{KL} \left[p(\mathbf{y} | \mathbf{x}, \mathcal{D}_i, \xi_i) || p(\mathbf{y} | \mathbf{x}, \mathcal{D}_i) \right] \right].$$

If we have extra datasets $\{\mathcal{D}_j\}$ from the stochastic process $P(\xi_i)$ (on top of \mathcal{D}_i), then it can't hurt to condition on those too.

We refer to the additional datasets as the *in-context datasets* $\{\mathcal{D}_{ic,j}\}_{j=1}^{N_{ic}}$

Create extra pseudo-tokens for each of the in-context datasets, U_{ici} .

Create extra pseudo-tokens for each of the in-context datasets, $U_{ic:}$

At each layer we perform cross attention:

1. Between latents Z_c (or Z_{ic_i}) and pseudo tokens U (or U_{ic_j})

Create extra pseudo-tokens for each of the in-context datasets, U_{ici} .

At each layer we perform cross attention:

- 1. Between latents Z_c (or Z_{ic_i}) and pseudo tokens U (or U_{ic_i})
- 2. Between context (i.e. regular) pseudo tokens U and concatenated in-context pseudo tokens U_{ic}

Create extra pseudo-tokens for each of the in-context datasets, $U_{ic:}$

At each layer we perform cross attention:

- 1. Between latents Z_c (or Z_{ic_i}) and pseudo tokens U (or U_{ic_i})
- 2. Between context (i.e. regular) pseudo tokens U and concatenated in-context pseudo tokens U_{ic}
- 3. Between target latents z_t and pseudo tokens U (as in regular PT-TNPs)

Create extra pseudo-tokens for each of the in-context datasets, $U_{ic:}$

At each layer we perform cross attention:

- 1. Between latents Z_c (or Z_{ic_i}) and pseudo tokens U (or U_{ic_i})
- 2. Between context (i.e. regular) pseudo tokens U and concatenated in-context pseudo tokens U_{ic}
- 3. Between target latents z_t and pseudo tokens U (as in regular PT-TNPs)

Basically, the in-context processor maintains in-context latents Z_{ic_i} and in-context pseudo tokens U_{ic} which are used to modulate the main processor's pseudo tokens U

Create extra pseudo-tokens for each of the in-context datasets, U_{ic_i} .

At each layer we perform cross attention:

- 1. Between latents Z_c (or Z_{ic_i}) and pseudo tokens U (or U_{ic_i})
- 2. Between context (i.e. regular) pseudo tokens U and concatenated in-context pseudo tokens U_{ic}
- 3. Between target latents z_t and pseudo tokens U (as in regular PT-TNPs)

Basically, the in-context processor maintains in-context latents Z_{ic_i} and in-context pseudo tokens U_{ic} which are used to modulate the main processor's pseudo tokens U

$$\mathcal{O}\left(MN_c + MN_t + \sum_{j=1}^{N_{ic}} \left(M_{ic}N_{ic,j} + MM_{ic}\right)\right)$$

(Simpler model) ICICL Conditional Neural Processes (ICICL-CNPs)

4. Experiments

Experiments

Want to check:

1. Is ICICL still good without any in-context datasets?

2. Does ICICL get better with more in-context datasets (as we'd hope/expect)?

3. How does ICICL fare with OOD contexts?

4. How does ICICL fare with misspecified in-context datasets?

Synthetic 1D Regression

Draw samples from a Gaussian process with:

Kernel sampled from {RBF, periodic}

- Kernel sampled from {RBF, periodic}
- ullet Bandwidth/period sampled from $\log l \sim \mathcal{U}_{[\log 0.25,\log 4]}$

- Kernel sampled from {RBF, periodic}
- ullet Bandwidth/period sampled from $\log l \sim \mathcal{U}_{[\log 0.25, \log 4]}$
- $N_c \sim \mathcal{U}_{\{1,\dots,64\}}$ context points at $x_c \sim \mathcal{U}_{\{-2,2\}}$

- Kernel sampled from {RBF, periodic}
- ullet Bandwidth/period sampled from $\log l \sim \mathcal{U}_{[\log 0.25,\log 4]}$
- $N_c \sim \mathcal{U}_{\{1,\dots,64\}}$ context points at $x_c \sim \mathcal{U}_{\{-2,2\}}$
- $N_t = 128$ target points at $x_t \sim \mathcal{U}_{[-4,4]}$

- Kernel sampled from {RBF, periodic}
- ullet Bandwidth/period sampled from $\log l \sim \mathcal{U}_{[\log 0.25, \log 4]}$
- $N_c \sim \mathcal{U}_{\{1,\dots,64\}}$ context points at $x_c \sim \mathcal{U}_{\{-2,2\}}$
- $N_t = 128$ target points at $x_t \sim \mathcal{U}_{[-4,4]}$
- $N_{ic} \sim \mathcal{U}_{\{0,...,5\}}$ in-context sets, each with $N_{ic,j} \sim \mathcal{U}_{\{64,...,128\}}$ points at $x_{ic} \sim \mathcal{U}_{[-4,4]}$

- Kernel sampled from {RBF, periodic}
- ullet Bandwidth/period sampled from $\log l \sim \mathcal{U}_{[\log 0.25,\log 4]}$
- $N_c \sim \mathcal{U}_{\{1,\dots,64\}}$ context points at $x_c \sim \mathcal{U}_{\{-2,2\}}$
- $N_t = 128$ target points at $x_t \sim \mathcal{U}_{[-4,4]}$
- $N_{ic} \sim \mathcal{U}_{\{0,...,5\}}$ in-context sets, each with $N_{ic,j} \sim \mathcal{U}_{\{64,...,128\}}$ points at $x_{ic} \sim \mathcal{U}_{[-4,4]}$
- Observation noise 0.2

Draw samples from a Gaussian process with:

- Kernel sampled from {RBF, periodic}
- ullet Bandwidth/period sampled from $\log l \sim \mathcal{U}_{[\log 0.25,\log 4]}$
- $N_c \sim \mathcal{U}_{\{1,\dots,64\}}$ context points at $x_c \sim \mathcal{U}_{\{-2,2\}}$
- $N_t = 128$ target points at $x_t \sim \mathcal{U}_{[-4,4]}$
- $N_{ic} \sim \mathcal{U}_{\{0,...,5\}}$ in-context sets, each with $N_{ic,j} \sim \mathcal{U}_{\{64,...,128\}}$ points at $x_{ic} \sim \mathcal{U}_{[-4,4]}$
- Observation noise 0.2

(In-context datasets are drawn using the exact same kernel as the context-dataset.)

Model	Log lik. (†)
CNP	-0.812 ± 0.005
PT-TNP	-0.598 ± 0.005
ICICL-TNP (0)	-0.607 ± 0.005
ICICL-TNP (1)	-0.499 ± 0.005
ICICL-TNP(2)	-0.474 ± 0.005
ICICL-TNP (3)	-0.469 ± 0.005
ICICL-TNP (4)	-0.467 ± 0.005
ICICL-TNP (5)	-0.466 ± 0.005

Table 1: Comparison of the predictive performance (in terms of test log likelihood) between the CNP, PT-TNP, and the ICICL-TNP with varying number of in-context datasets (indicated within brackets).

(CNP just uses MLPs instead of transformers.)

Model	Log lik. (\uparrow)
CNP	-0.812 ± 0.005
PT-TNP	-0.598 ± 0.005
ICICL-TNP(0)	-0.607 ± 0.005
ICICL-TNP(1)	-0.499 ± 0.005
ICICL-TNP (2)	-0.474 ± 0.005
ICICL-TNP(3)	-0.469 ± 0.005
ICICL-TNP(4)	-0.467 ± 0.005
ICICL-TNP (5)	-0.466 ± 0.005

Table 1: Comparison of the predictive performance (in terms of test log likelihood) between the CNP, PT-TNP, and the ICICL-TNP with varying number of in-context datasets (indicated within brackets).

Figure 2: The difference between the predictive distributions of the regular PT-TNP and the ICICL-TNP when conditioning on three incontext datasets with 128 datapoints (not shown here).

Synthetic 1D Regression - OOD

Test on datasets with bandwidth/period sampled as

$$\log l \sim \mathcal{U}_{[\log 0.1, \log 0.25] \cup [\log 4, \log 10]}$$

Model	Log lik. (↑)
CNP	-0.880 ± 0.006
PT-TNP	-0.798 ± 0.007
ICICL-TNP(0)	-0.783 ± 0.007
ICICL-TNP(1)	-0.721 ± 0.006
ICICL-TNP(2)	-0.702 ± 0.006
ICICL-TNP (3)	-0.700 ± 0.006

Figure 3: The difference between the predictive distributions when tested OOD of the regular PT-TNP and the ICICL-TNP when conditioning on three in-context datasets. The context datapoints come from a GP with a periodic kernel with $\ell = 6.08$.

Synthetic 1D Regression - OOD

Figure 13: A comparison between the predictive distribution when tested OOD of the PT-TNP (left) and the ICICL-TNP (right). In the top row the samples come from a GP with RBF kernel and $\ell = 5.19$. In the bottom row the samples come from a GP with periodic kernel and $\ell = 0.24$. The ICICL-TNP is conditioned on three in-context datasets.

Synthetic 1D Regression - OOD

Figure 13: A comparison between the predictive distribution when tested OOD of the PT-TNP (left) and the ICICL-TNP (right). In the top row the samples come from a GP with RBF kernel and $\ell = 5.19$. In the bottom row the samples come from a GP with periodic kernel and $\ell = 0.24$. The ICICL-TNP is conditioned on three in-context datasets.

Figure 5: A comparison between the predictive distribution of the ICICL-TNP and the regular PT-TNP when conditioning on the context and in-context dataset shown.

- N=784 2D pixel locations $x\in\mathbb{R}^2$
- Pixel values $y \in \mathbb{R}$

Figure 5: A comparison between the predictive distribution of the ICICL-TNP and the regular PT-TNP when conditioning on the context and in-context dataset shown.

- N=784 2D pixel locations $x\in\mathbb{R}^2$
- Pixel values $y \in \mathbb{R}$
- $\qquad N_c \sim \mathcal{U}_{\{N/100,...,N/5\}} \\ \text{context} \\ \text{points}$

Figure 5: A comparison between the predictive distribution of the ICICL-TNP and the regular PT-TNP when conditioning on the context and in-context dataset shown.

- N=784 2D pixel locations $x \in \mathbb{R}^2$
- Pixel values $y \in \mathbb{R}$
- $\qquad N_c \sim \mathcal{U}_{\{N/100,...,N/5\}} \\ \text{context} \\ \text{points}$
- $ullet N_{ic} \sim \mathcal{U}_{\{0,...,3\}}$ in-context sets with $N_{ic,j} \sim \mathcal{U}_{\{N/100,...,N/2\}}$

Figure 5: A comparison between the predictive distribution of the ICICL-TNP and the regular PT-TNP when conditioning on the context and in-context dataset shown.

- N = 784 2D pixel locations $x \in \mathbb{R}^2$
- Pixel values $y \in \mathbb{R}$
- $\qquad N_c \sim \mathcal{U}_{\{N/100,...,N/5\}} \\ \text{context} \\ \text{points}$
- $oldsymbol{N}_{ic} \sim \mathcal{U}_{\{0,...,3\}}$ in-context sets with $N_{ic,j} \sim \mathcal{U}_{\{N/100,...,N/2\}}$
- $\bullet \quad N_t = N N_c$

Figure 5: A comparison between the predictive distribution of the ICICL-TNP and the regular PT-TNP when conditioning on the context and in-context dataset shown.

- N=784 2D pixel locations $x\in\mathbb{R}^2$
- Pixel values $y \in \mathbb{R}$
- $\qquad N_c \sim \mathcal{U}_{\{N/100,...,N/5\}} \\ \text{context} \\ \text{points}$
- $oldsymbol{N}_{ic} \sim \mathcal{U}_{\{0,...,3\}}$ in-context sets with $N_{ic,j} \sim \mathcal{U}_{\{N/100,...,N/2\}}$
- \bullet $N_t = N N_c$

(In-context datasets are drawn using the same class label as the context-dataset.)

Figure 5: A comparison between the predictive distribution of the ICICL-TNP and the regular PT-TNP when conditioning on the context and in-context dataset shown.

Figure 4: A comparison between the predictive performance of the ICICL-TNP, regular PT-TNP, ICICL-CNP and CNP as the proportion of context datapoints N_c/N varies in the MNIST inpainting experiment.

(Notice high uncertainty for 4 and 2, where the context set is less compatible with the label of the in-context dataset.)

Environmental Data

Regression on spatio-temporal data for surface air temperature.

In-context datasets are obtained from the same location but at different times.

Model	Test Log-Likelihood
PT-TNP	1.15 ± 0.01
ICICL-TNP(0)	1.15 ± 0.01
ICICL-TNP(1)	1.18 ± 0.01
ICICL-TNP (2)	1.19 ± 0.01

Table 3: Comparison of the test log-likelihood on the environmental data for the PT-TNP and ICICL-TNP with varying number of in-context datasets (indicated within brackets).

Environmental Data

Another baseline: also allow PT-TNP to train on the in-context sets (but just stick that data in with the main context).

Model	Test Log-Likelihood
PT-TNP	1.15 ± 0.01
PT-TNP-merged (0)	1.14 ± 0.01
PT-TNP-merged (1)	1.15 ± 0.01
PT-TNP-merged (2)	1.14 ± 0.01
ICICL-TNP (0)	1.15 ± 0.01
ICICL-TNP (1)	1.18 ± 0.01
ICICL-TNP (2)	1.19 ± 0.01

Table 5: Comparison of the test log-likelihood on the environmental data for the PT-TNP and ICICL-TNP with varying number of in-context datasets (indicated within brackets). As an additional baseline, we also consider the PT-TNP-merged where the in-context datasets are merged into the context datasets.

Weaknesses

- More experiments?
 - Larger-scaled
 - (Though the experiments in this paper seem to match standard experiments in other NP papers...)

- Include the PT-TNP-merged baseline in all experiments.
 - o (Or some other method to let PT-TNP use the in-context data, even if badly.)

 ICICL relies on identifying in-context datasets drawn from the same stochastic process as the context dataset. This is often not possible.

References

Ashman, Matthew, et al. "In-Context In-Context Learning with Transformer Neural Processes." arXiv preprint arXiv:2406.13493 (2024).

Nguyen, Tung, and Aditya Grover. "Transformer neural processes: Uncertainty-aware meta learning via sequence modeling." arXiv preprint arXiv:2207.04179 (2022).

Foong, Andrew, et al. "Meta-learning stationary stochastic process prediction with convolutional neural processes." Advances in Neural Information Processing Systems 33 (2020): 8284-8295.

Lee, Juho, et al. "Set transformer: A framework for attention-based permutation-invariant neural networks." International conference on machine learning. PMLR, 2019.

Kim, Hyunjik, et al. "Attentive neural processes." arXiv preprint arXiv:1901.05761 (2019).

Garnelo, Marta, et al. "Conditional neural processes." International conference on machine learning. PMLR, 2018.

Appendix: Attentive Neural Process (ANP)

ATTENTIVE NEURAL PROCESS

