ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ

Δημήτρης Καλαθάς

el18016

7° εξάμηνο

ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ 3

Άσκηση 1

<u>1.</u>

ЕПОХН	Xk	3	y_k - $f(x_k)$	ΕΝΗΜΕΡΩΣΗ	ВАРН
		$\sum x_i w_i$			
		$\overline{i=0}$			(1,1,-1,-1)
1	(1,0,-1,4)	1+0+1-4=-2	1-0= 1	(0.2,0,-0.2,0.8)	(1.2,1,-1.2,-0.2)
1	(1,4,0,-1)	1.2+4+0+0.2=5.4	0-1= -1	(-0.2, -0.8, 0, 0.2)	(1,0.2,-1.2,0)
1	(1,2,2,-1)	1+0,4-2.4=-1	1-0= 1	(0.2,0.4,0.4,-0.2)	(1.2,0.6,-0.8,-0.2)
1	(1,3,-1,0)	1,2+1,8+0,8=3.8	0-1= -1	(-0.2, -0.6, 0.2, 0)	(1,0,-0.6,-0.2)
1	(1,-2,1,-3)	1-0.6+0.6=1	1-1=0	-	(1,0,-0.6,-0.2)
1	(1,0,-2,-1)	1+1,2+0.2=2.4	0-1= -1	(-0.2,0,0.4,0.2)	(0.8,0,-0.2,0)
2	(1,0,-1,4)	0.8+0.2=1	1-1=0	-	(0.8,0,-0.2,0)
2	(1,4,0,-1)	0.8=1	0-1= -1	(-0.2,-0.8,0,0.2)	(0.6, -0.8, -0.2, 0.2)
2	(1,2,2,-1)	0.6-1.6-0.4-0.2=	1-0= 1	(0.2,0.4,0.4,-0.2)	(0.8, -0.4, 0.2, 0)
		-1.8			
2	(1,3,-1,0)	0.8-1.2-0.2=-0.6	0 - 0 = 0	-	(0.8, -0.4, 0.2, 0)
2	(1,-2,1,-3)	0.8+0.8+0.2=1.8	1-1=0	-	(0.8, -0.4, 0.2, 0)

2	(1,0,-2,-1)	0.8-0.4=0.4	0-1=-1	(-0.2,0,0.4,0.2)	(0.6,-0.4,0.6,0.2)
3	(1,0,-1,4)	0.6 - 0.6 + 0.8 = 0.8	1-1=0	1	(0.6, -0.4, 0.6, 0.2)
3	(1,4,0,-1)	0.6-1.6-0.2=-1.2	0 - 0 = 0	1	(0.6, -0.4, 0.6, 0.2)
3	(1,2,2,-1)	0.6-0.8+1.2-	1-1=0	-	(0.6,-0.4,0.6,0.2)
		0.2 = 0.8			
3	(1,3,-1,0)	0.6-1.2-0.6= -1.2	0 - 0 = 0	-	(0.6, -0.4, 0.6, 0.2)
3	(1,-2,1,-3)	0.6+0.8+0.6-	1-1=0	-	(0.6, -0.4, 0.6, 0.2)
		0.6 = 1.4			
3	(1,0,-2,-1)	0.6-1.2-0.2=-0.8	0 - 0 = 0	-	(0.6, -0.4, 0.6, 0.2)

<u>2.</u>

Για το (-1,2,2):

$$\sum_{i=0}^{3} x_i w_i = 0.6 + 0.4 + 1.2 + 0.4 = 2.6 > 0$$

Άρα : κλάση Β

<u> Άσκηση 2</u>

ΣΤΟΙΧΕΙΟ	ΑΠΟΣΤΑΣΗ	ΚΛΑΣΗ	KNN1	KNN3
	АПО (-1,2,2)			
(0,-1,4)	$\sqrt{14}$	В	В	В
(4,0,-1)	$\sqrt{38}$	A	-	-
(2,2,-1)	$\sqrt{18}$	В	-	В
(3,-1,0)	$\sqrt{29}$	A	-	-
(-2,1,-3)	$\sqrt{27}$	В	-	-
(0,-2,-1)	$\sqrt{26}$	A	-	A
ΚΛΑΣΗ	-	-	В	В

Άρα και οι δύο βρίσκουν ότι ανήκει στην κλάση ${\bf B}$.

Άσκηση 3

$$P(A) = 0.51$$

$$P(\Gamma) = 0.49$$

$$P(K|A)=0.095$$

$$P(K|\Gamma) = 0.017$$

$$P(K) = P(K|A) * P(A) + P(K|\Gamma) * P(\Gamma) = 0.095 * 0.51 + 0.017 * 0.49 = 0.04845 + 0.00833 = 0.05678$$

Κανόνας του Bayes

Εμείς θέλουμε την πιθανότητα:

$$P(A|K) = \frac{P(A)*P(K|A)}{P(K)} = \frac{0.51*0.095}{0.05678} = 0.8532$$

Άσκηση 4

Αν η X είναι A1 και Y είναι A2 τότε Z είναι $B \leftrightarrow \eta < X,Y,Z>$ είναι R

$$R(a,y,z)=J_{min}(i(A1(x),A2(y)),B(z))$$

$$A1=0.2/x1 + 1/x2 + 0.8/x3$$

$$(σχετικά) A2=1/y1 + 0.09/y2$$

$$A2=1/y1 + 0.3/y2$$

$$B=0.7/z1+1/z2$$

$$i(A1,A2) = min(A1,A2) = 0.2/x1,y1 + 0.2/x1,y2 + 1/x2,y1 + 0.3/x2,y2 + 0.8/x3,y1 + 0.3/x3,y2$$

Συνεπαγωγή Mamdani: $J_{min}(a, b) = min\{a, b\}$

$$\begin{split} &J_{min}(i(A1,A2),B) = min(i(A1,A2),B) = 0.2/x1,y1,z1 + 0.2/x1,y2,z1 + 0.7/x2,y1,z1 + 0.3/x2,y2,z1 + 0.7/x3,y1,z1 + 0.3/x3,y2,z1 + 0.2/x1,y1,z2 + 0.2/x1,y2,z2 + 1/x2,y1,z2 + 0.3/x2,y2,z2 + 0.8/x3,y1,z2 + 0.3/x3,y2,z2 \end{split}$$

Αν X=x2 και Y=y1 η έξοδος του συστήματος είναι:

0.7/z1 + 1/z2