that the the three the table is a strict for the first three the table three t

FIG.1

Mature Human GDNF

TCA Ser	CCA Pro	GAT Asp	AAA Lys	CAA Gln 5	Met	GCA Ala	GTG Val	CTT Leu	CCT Pro 10	Arg	AGA Arg	GAG Glu	CGG Arg	AAT Asn 15
CGG Arg	CAG Gln	GCT Ala	GCA Ala	GCT Ala 20	GCC Ala	AAC Asn	CCA	GAG Glu	AAT Asn 25	TCC Ser	AGA Arg	GGA Gly	AAA Lys	GGT Gly 30
CGG Arg	AGA Arg	GGC Gly	CAG Gln	AGG Arg 35	GGC Gly	AAA Lys	AAC Asn	CGG Arg	GGT Gly 40	TGT Cys	GTC Val	TTA Leu	ACT Thr	GCA Ala 45
ATA Ile	CAT His	TTA Leu	AAT Asn	GTC Val 50	ACT Thr	GAC Asp	TTG Leu	GGT Gly	CTG Leu 55	GGC Gly	TAT Tyr	GAA Glu	ACC Thr	AAG Lys 60
GAG Glu	GAA Glu	CTG Leu	ATT Ile	TTT Phe 65	AGG Arg	TAC Tyr	TGC Cys	AGC Ser	GGC Gly 70	TCT Ser	TGC Cys	GAT Asp	GCA Ala	GCT Ala 75
GAG Glu	ACA Thr	ACG Thr	TAC Tyr	GAC Asp 80	AAA Lys	ATA Ile	TTG Leu	AAA Lys	AAC Asn 85	TTA Leu	TCC Ser	AGA Arg	AAT Asn	AGA Arg 90
AGG Arg	CTG Leu	GTG Val	AGT Ser	GAC Asp 95	AAA Lys	GTA Val	GGG Gly	CAG Gln	GCA Ala 100	TGT Cys	TGC Cys	AGA Arg	CCC Pro	ATC Ile 105
GCC Ala	TTT Phe	GAT Asp	GAT Asp	GAC Asp 110	CTG Leu	TCG Ser	TTT Phe	TTA Leu	GAT Asp 115	GAT Asp	AAC Asn	CTG Leu	GTT Val	TAC Tyr 120
CAT His	ATT Ile	CTA Leu	AGA Arg	AAG Lys 125	CAT His	TCC Ser	GCT Ala	AAA Lys	AGG Arg 130	TGT Cys	GGA Gly	TGT Cys	ATC Ile	

H With Link Kin Kink and Cold Link

the day per oper per green species

FIG.2

FIG.3A

metGDNF Degenerate DNA Sequence

FIG.3B

S n Ι CCTGCGACGCTGCTGAAAACCACGTACGACAAAATCCTGAAAAAACCTGTCCCGTAACCGTC E Н а m đ P 1 0 I 5 į GTCTGGTTTCCGACAAGTTGGTCAAGCTTGCTGCCGTCCGATCGCTTTCGACGACGACC [] Ļij _TGTCCTTCCTGGACGACAACCTGGTTTACCACATCCTGCGTAAACACTCCGCTAAGCGTT В m Ι GCGGTTGCATCTAAGGATCC 421 ----- 440

BY CLASS SUBCLASS

Hall that the think think the first think it

Horte street street reptor street region (1)

FIG.4

metGDNF Degenerate DNA Sequence

	Ŋ	
	đ	
	e •	
	CATATGAGCCCGGACAAACAG	
	MetSer	60
	ATGGCAGTACTTCCACGTCGTGAACGTAATCGCCAGGCAGCAGCTGCAAACCCGGAAAAC	
63	1+++	120
		120
	TCCCGTGGTAAAGGTCGCCGTGGCCAGCGCGGCAAAAACCGTGGTTGTGTTCTGACTGCA	
121	L+++	180
	·	100
	P	
	s	
	h	
	A	
	I	
	ATCCACCTGAACGTTACTGACCTGGGTCTGGGCTACGAAACCAAAGAAGAACTGATCTTC	
181		240
	P	
	S	
	t.	
	I	
2.4.1	CGCTACTGCAGCGGCTCTTGCGACGCAGCTGAAACCACTTACGACAAAATCCTGAAAAAC	
241		300
	P	
	v	
	<u> </u>	
	I I	
2.01	CTGTCCCGTAACCGCCGTCTGGTAAGCGACAAAGTAGGTCAGGCATGCTGCCGTCCGATC	
301		360
	В	
	S T	
	m I	
361	GCATTCGACGATGACCTGAGCTTCCTGGATGACAACCTGGTTTACCACATCCTGCGTAAA	
201	++	420
	В	
	a a	
	m 	
	H T	
	I CACTCCGCTAAACGCTGCGGTTGCATCTAAGGATCC	
421	456	

FIG.5

$[\text{Pro}^{23}\text{-Lys}^{37}\Delta\text{Asn}^{37}\text{-IIe}^{134}] \text{ Truncated GDNF Protein}$

21		ATGTCCCCAGAAAATTCTCGTGGTAAAGGTCGTCGTGGTCAGCGTGGTAATAACCGCGGT														80									
		S																		00					
81				CTGACCGCTATCCACCTGAACGTTACCGACCTGGGTCTCGGTTACGAAACCAAA															140						
		v																		140					
																			CGAC	•					
141		E																		200					
201	AAAATCCTGAAAAACCTGTCCCGTAACCGTCGTCTGGTTTCCGACAAAGTTGGTCAAGCT														260										
		I																							
261																			 TTAC	320					
		С																		320					
221		CAT																							
321		I		•												-									

then then their open pres the time to produce the party open press and then the time than

FIG.6

[Arg³²-lie¹³⁴] Truncated GDNF Protein

41	ATGCGTGGTCAACGTGGTAAAAACCGCGGTTGCGTTCTGACTGCAATCCACCTGAACGTT														100						
41													L								100
101	ACTGACCTGGGTCTGGGCTACGAAACCAAAGAAGAACTGATCTTCCGCTACTGCAGCGGC															160					
	Т	D	L	G	L	G	Y	E	Т	ĸ	E	E	L	I	F	R	Y	С	S	G	
161	TCTTGCGACGCAGCTGAAAACCACTTACGACAAAATCCTGAAAAAACCTGTCCCGTAACCGC															220					
101													L								220
201	•	CGTCTGGTAAGCGACAAAGTAGGTCAGGCATGCTGCCGTCCGATCGCATTCGACGATGAC															200				
221													R								280
201	CTGAGCTTCCTGGATGACAACCTGGTTTACCACATCCTGCGTAAACACTCCGCTAAACGC															240					
281													L								340
			ТTG														-				
341	 C		 C	-+- I	*	- 3	55														

then then the the the the the the test to be the the the test that the test the test

FIG.7

[Gly³³-Ile¹³⁴] Truncated GDNF Protein

41	ATGGGTCAACGTGGTAAAAACCGTGGTTGTGTTCTGACTGCAATCCACCTGAACGTTACT																		
																	v		100
101																		CTCT	
																	G		160
161																		CCGT	000
161																	R		220
221		CTGGTAAGCGACAAAGTAGGTCAGGCATGCTGCCGTCCGATCGCATTCGACGATGACCTG																	
221																	D		280
201	AGCTTCCTGGATGACAACCTGGTTTACCACATCCTGCGTAAACACTCCGCTAAACGCTGC															240			
201																	R		340
	GGTTGCATCTAA																		
341				-+-	- 3	52													
(G	C	I	*															

BY CLASS COGOLASS

DRAFTSMATE

FIG.8

Comparison of Protein Sequences

50

: <u>=</u>		GDNF	MSPDKQMAVL	PRRERNRQAA	AANPENSRGK	GRRGQRGKNR	GCVLTAIHLN	
	-31	GDNF				.MRGQRGKNR	GCVLTAIHLN	
ħ O	-32	GDNF				MGQRGKNR	GCVLTAIHLN	
(C)	-22	GDNF			.MSPENSRGK	GRRGQRGNNR	GCVLTAIHLN	
<i></i> 0								
= =			51				100)
<u> </u>		GDNF	VTDLGLGYET	KEELIFRYCS	GSCDAAETTY	DKILKNLSRN	RRLVSDKVGQ	
ā Ē	-31	GDNF	VTDLGLGYET	KEELIFRYCS	GSCDAAETTY	DKILKNLSRN	RRLVSDKVGQ	
Start Com. Dr.	-32	GDNF	VTDLGLGYET	KEELIFRYCS	GSCDAAETTY	DKILKNLSRN	RRLVSDKVGQ	
-	-22	GDNF	VTDLGLGYET	KEELIFRYCS	GSCDAAETTY	DKILKNLSRN	RRLVSDKVGQ	
			101			135		
		GDNF	ACCRPIAFDD	DLSFLDDNLV	YHILRKHSAK	RCGCI		
	-31	GDNF	ACCRPIAFDD	DLSFLDDNLV	YHILRKHSAK	RCGCI		
	-32	GDNF	ACCRPIAFDD	DLSFLDDNLV	YHILRKHSAK	RCGCI		
	-22	GDNF	ACCRPIAFDD	DLSFLDDNLV	YHILRKHSAK	RCGCI		