

Schletter, Inc.		20° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	2000 mm	Height =	1900 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 20°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

g_{MAX}	=	3.00	psf
g _{мім}	=	1.75	psf

Self-weight of the PV modules.

2.2 Snow Loads

	30.00 psf	Ground Snow Load, P_g =
(ASCE 7-05, Eq. 7-2)	20.62 psf	Sloped Roof Snow Load, P _s =
	1.00	I _s =
	0.91	$C_s =$
	0.90	$C_e =$

 $C_t =$

1.20

2.3 Wind Loads

Design Wind Speed, V =	90 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, q_z = 12.72 psf Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Ct+ _{TOP}	=	1.050	
Cf+ BOTTOM	=	1.050 1.650 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel
Cf- TOP, OUTER PURLIN	=	-2.400	testing done by Ruscheweyh Consult. Coefficients are located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.840 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	applica and from the sames.

2.4 Seismic Loads

S _S =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	1.67	$C_{S} = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
T _a =	0.06	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	<u>Location</u>	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>764.43</u>	<u>4455.60</u>	k
Compressive Load =	4230.95	<u>4754.95</u>	k
Lateral Load =	<u>353.67</u>	2016.29	k
Moment (Weak Axis) =	0.72	0.41	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 124503.7 in-lbs Resisting Force Required = 1741.31 lbs A minimum 143in long x 35in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 2902.19 lbs to resist overturning. Minimum Width = 35 in in Weight Provided = 7559.64 lbs Sliding Force = 484.52 lbs Use a 143in long x 35in wide x 18in tall Friction = 0.4 Weight Required = 1211.30 lbs ballast foundation to resist sliding. Resisting Weight = 7559.64 lbs Friction is OK. Additional Weight Required = 0 lbs Cohesion Sliding Force = 484.52 lbs Cohesion = 130 psf Use a 143in long x 35in wide x 18in tall 34.76 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3779.82 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

ASD LC		1.0D	+ 1.0S			1.0D +	+ 1.0W		1	.0D + 0.75L +	0.75W + 0.75	iS		0.6D +	+ 1.0W	
Width	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in
FA	1582 lbs	1582 lbs	1582 lbs	1582 lbs	1294 lbs	1294 lbs	1294 lbs	1294 lbs	2028 lbs	2028 lbs	2028 lbs	2028 lbs	-361 lbs	-361 lbs	-361 lbs	-361 lbs
F _B	1703 lbs	1703 lbs	1703 lbs	1703 lbs	1577 lbs	1577 lbs	1577 lbs	1577 lbs	2322 lbs	2322 lbs	2322 lbs	2322 lbs	-2136 lbs	-2136 lbs	-2136 lbs	-2136 lbs
F _V	170 lbs	170 lbs	170 lbs	170 lbs	872 lbs	872 lbs	872 lbs	872 lbs	769 lbs	769 lbs	769 lbs	769 lbs	-969 lbs	-969 lbs	-969 lbs	-969 lbs
P _{total}	10845 lbs	11061 lbs	11277 lbs	11493 lbs	10431 lbs	10647 lbs	10863 lbs	11079 lbs	11910 lbs	12126 lbs	12342 lbs	12558 lbs	2039 lbs	2168 lbs	2298 lbs	2427 lbs
M	3593 lbs-ft	3593 lbs-ft	3593 lbs-ft	3593 lbs-ft	3495 lbs-ft	3495 lbs-ft	3495 lbs-ft	3495 lbs-ft	5022 lbs-ft	5022 lbs-ft	5022 lbs-ft	5022 lbs-ft	2964 lbs-ft	2964 lbs-ft	2964 lbs-ft	2964 lbs-ft
е	0.33 ft	0.32 ft	0.32 ft	0.31 ft	0.34 ft	0.33 ft	0.32 ft	0.32 ft	0.42 ft	0.41 ft	0.41 ft	0.40 ft	1.45 ft	1.37 ft	1.29 ft	1.22 ft
L/6	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft									
f _{min}	260.0 psf	258.8 psf	257.7 psf	256.6 psf	249.5 psf	248.6 psf	247.7 psf	246.9 psf	269.9 psf	268.4 psf	267.1 psf	265.8 psf	15.7 psf	18.9 psf	21.9 psf	24.8 psf

364.1 psf 360.0 psf 356.2 psf 352.5 psf 350.7 psf 347.0 psf 347.0 psf 349.5 psf 340.2 psf 415.4 psf 409.9 psf 404.7 psf 399.8 psf 101.6 psf 102.4 psf 103.2 psf 103.9 psf

36 in

35 in

 $P_{ftg} = (145 \text{ pcf})(11.92 \text{ ft})(1.5 \text{ ft})(2.92 \text{ ft}) = \frac{7560 \text{ lbs}}{7776 \text{ lbs}} = \frac{7992 \text{ lbs}}{7992 \text{ lbs}} = \frac{8208 \text{ lbs}}{7992 \text{ lbs}}$

Ballast Width

<u>37 in</u>

38 in

Maximum Bearing Pressure = 415 psf Allowable Bearing Pressure = 1500 psf Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Seismic Design

Overturning Check

 $M_O = 3251.2 \text{ ft-lbs}$

Resisting Force Required = 2229.40 lbs S.F. = 1.67 Weight Required = 3715.67 lbs

Minimum Width = 35 in in Weight Provided = 7559.64 lbs

A minimum 143in long x 35in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1.238D + 0.875E			1.1785D + 0.65625E + 0.75S			0.362D + 0.875E				
Width		35 in			35 in			35 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	290 lbs	663 lbs	224 lbs	956 lbs	2694 lbs	904 lbs	108 lbs	194 lbs	42 lbs		
F _V	222 lbs	217 lbs	226 lbs	164 lbs	158 lbs	177 lbs	223 lbs	219 lbs	224 lbs		
P _{total}	9649 lbs	10022 lbs	9583 lbs	9865 lbs	11603 lbs	9813 lbs	2845 lbs	2930 lbs	2779 lbs		
M	905 lbs-ft	891 lbs-ft	914 lbs-ft	680 lbs-ft	678 lbs-ft	721 lbs-ft	901 lbs-ft	888 lbs-ft	905 lbs-ft		
е	0.09 ft	0.09 ft	0.10 ft	0.07 ft	0.06 ft	0.07 ft	0.32 ft	0.30 ft	0.33 ft		
L/6	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft		
f _{min}	224.1 psf	235.6 psf	221.6 psf	243.6 psf	293.7 psf	239.7 psf	28.5 psf	31.8 psf	26.4 psf		
f _{max}	331.2 psf	341.1 psf	329.8 psf	324.1 psf	373.9 psf	325.0 psf	135.2 psf	136.9 psf	133.5 psf		

Maximum Bearing Pressure = 374 psf Allowable Bearing Pressure = 1500 psf

Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 143in long x 24in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut Maximum Axial Load = M12 Bolt Capacity = Strut Bearing Capacity =	3.255 k 12.808 k 7.421 k	Rear Strut Maximum Axial Load = 3.430 k M12 Bolt Capacity = 12.808 k Strut Bearing Capacity = 7.421 k
Utilization =	<u>44%</u>	Utilization = 46%
Diagonal Strut Maximum Axial Load = M12 Bolt Shear Capacity = Strut Bearing Capacity = Utilization =	1.547 k 12.808 k 7.421 k <u>21%</u>	Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)
		Christa un dan paranganian aug abaum ta danaan

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, h_{sx} = 51.89 in Allowable Story Drift for All Other Structures, Δ = { $0.020h_{sx}$ 1.038 in Max Drift, Δ_{MAX} = 0.699 in 0.699 ≤ 1.038, OK.

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 108 \text{ in}$$

$$J = 0.432$$

$$298.779$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$

Weak Axis:

3.4.14

$$\begin{array}{lll} \mathsf{L_b} = & 108 \\ \mathsf{J} = & 0.432 \\ & 190.005 \\ & \\ S1 = & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ & \\ S1 = & 0.51461 \\ & \\ S2 = & \left(\frac{C_c}{1.6}\right)^2 \\ & \\ S2 = & 1701.56 \\ & \\ \varphi \mathsf{F_L} = & \varphi b [\mathsf{Bc-1.6Dc*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))]} \\ & \\ \varphi \mathsf{F_I} = & 28.9 \end{array}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 25.1 \text{ ksi}$$

 $\phi F_1 = 27.7 \text{ ksi}$

3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi F cy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 37.0588

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr-mDbr^*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

25.1 ksi

2.155 in⁴

41.015 mm

1.335 in³

2.788 k-ft

 $lx = 897074 \text{ mm}^4$

3.4.18
$$h/t = 32.195$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$ly = 446476 \text{ mm}^4$$

$$1.073 \text{ in}^4$$

Sy=

 $M_{max}Wk =$

45.5 mm

0.599 in³

1.152 k-ft

 $M_{max}St =$

 $\varphi F_L St =$

y = Sx=

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

 $S1 = 6.87$
 $S2 = 131.3$
 $\phi F_L = \phi y F c y$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 21.94 \text{ ksi}$
 $A = 1215.13 \text{ mm}^2$
 1.88 in^2
 $P_{\text{max}} = 41.32 \text{ kips}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: Weak Axis: 3.4.14 $L_b = 104.56 \text{ in}$ $L_b = 104.56$ J = 1.08 J = 1.08 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b [Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_1 = 29.0 \text{ ksi}$ $\phi F_1 =$ 28.9

3.4.16 b/t = 16.2 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2 S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16
$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y F cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

$$\begin{array}{ll} \textbf{3.4.16.1} & \underline{\textbf{Used}} \\ \textbf{Rb/t} = & \textbf{18.1} \\ S1 = \left(\frac{Bt - 1.17 \frac{\theta_{\mathcal{V}}}{\theta_{b}} Fcy}{1.6Dt} \right)^{2} \\ \textbf{S1} = & \textbf{1.1} \\ S2 = C_{t} \\ \textbf{S2} = & \textbf{141.0} \\ \textbf{\phiF}_{L} = & \textbf{\phib}[\textbf{Bt-Dt}^{*}\sqrt{(\textbf{Rb/t})}] \end{array}$$

31.1 ksi

 $\phi F_L =$

3.4.18

h/t =

S1 =

m =

Bbr -

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.0 \text{ ksi}$$

$$k = 984962 \text{ mm}^4$$

$$C_0 = 40$$
 $Cc = 40$
 $S2 = \frac{k_1 Bbr}{mDbr}$
 $S2 = 77.3$
 $\phi F_L = 1.3 \phi y F c y$
 $\phi F_L = 43.2 \text{ ksi}$
 $\phi F_L =$

16.2

36.9

0.65

 $\frac{\theta_y}{2}$ 1.3Fcy

Compression

 $M_{max}St =$

Sx =

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\varphi F_L = \varphi c[Bp-1.6Dp*b/t]$ $\varphi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\varphi F_L =$ 33.3 ksi

2.366 in⁴

1.375 in³

3.323 k-ft

y = 43.717 mm

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi c [Bt-Dt^* \sqrt{(Rb/t)}]$
 $\phi F_L = 31.09 \text{ ksi}$
 $\phi F_L = 31.09 \text{ ksi}$
A = 1215.13 mm²
1.88 in²

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = **55x55**

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 24.8 \text{ in} \\ \mathsf{J} = & 0.942 \\ & 38.7028 \\ S1 = & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ S2 = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib[Bc-1.6Dc*}\sqrt{((\mathsf{LbSc})/(\mathsf{Cb*}\sqrt{(\mathsf{lyJ})/2}))]} \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} L_b &= & 24.8 \\ J &= & 0.942 \\ & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= & 1701.56 \\ \phi F_L &= & \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)})}] \\ \phi F_L &= & 31.4 \end{split}$$

3.4.16

$$\begin{split} b/t &= 24.5 \\ S1 &= \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp} \\ S1 &= 12.2 \\ S2 &= \frac{k_1 Bp}{1.6Dp} \\ S2 &= 46.7 \\ \phi F_L &= \phi b [Bp-1.6Dp^*b/t] \\ \phi F_L &= 28.2 \text{ ksi} \end{split}$$

 $\phi F_L = 31.4 \text{ ksi}$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used
Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$
S1 = 1.1
$$S2 = C_t$$
S2 = 141.0
$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$S.4.18$$

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$k = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$y = 27.5 \text{ mm}$$

0.621 in³

3.4.18 h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

 $M_{max}Wk = 1.460 \text{ k-ft}$

y = Sx =

 $M_{max}St = 1.460 \text{ k-ft}$

SCHLETTER

Compression

3.4.7 $\lambda = 0.57371$ r = 0.81 in $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ $S1^* = 0.33515$ $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ $S2^* = 1.23671$ $\varphi cc = 0.87952$ $\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$ $\varphi F_L = 28.0279 \text{ ksi}$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 28.03 \text{ ksi}$
 $\phi F_L = 663.99 \text{ mm}^2$
1.03 in²

28.85 kips

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

 $P_{max} =$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 98.03 in 98.03 0.942 0.942 J = J = 152.985 152.985 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461 S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_1 =$ 29.4 ksi $\phi F_1 =$ 29.4

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

Not Used 0.0 3.4.16.1

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{rll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \end{array}$$

$$M_{max}St = 1.460 \text{ k-ft}$$

Compression

3.4.7
$$\lambda = 2.26776$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.89749$$

$$\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$$

$$\varphi F_L = 6.10803 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{split} \phi F_L W k &= & 28.2 \text{ ksi} \\ ly &= & 279836 \text{ mm}^4 \\ & & 0.672 \text{ in}^4 \\ x &= & 27.5 \text{ mm} \\ Sy &= & 0.621 \text{ in}^3 \\ M_{max} W k &= & 1.460 \text{ k-ft} \end{split}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \end{array}$$

3.4.10

 $\varphi F_L =$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_{y}}{\theta_{b}}Fcy}{Dt}\right)^{\frac{1}{2}}$$
S1 = 6.87
S2 = 131.3
 $\phi F_{L} = \phi y Fcy$
 $\phi F_{L} = 33.25 \text{ ksi}$
 $\phi F_{L} = 6.11 \text{ ksi}$
 $\phi F_{L} = 663.99 \text{ mm}^{2}$
1.03 in²
 $\phi F_{L} = 6.29 \text{ kips}$

28.2 ksi

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

 $P_{max} =$

Strong Axis: Weak Axis: 3.4.14 $L_b =$ 61.10 in $L_b =$ 61.1 0.942 0.942 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}]}$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\varphi F_L =$ $\phi F_L = 30.2 \text{ ksi}$ 30.2

$$S.4.16$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp^*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$S.4.16$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp^*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$p/F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$\left(Bt - 1.17 \frac{\theta_y}{\theta_x} Fcy\right)^2$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

 $\phi F_L = 43.2 \text{ ksi}$

S4.18
$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

$$\begin{array}{cccc} \phi F_L W k = & 28.2 \text{ ksi} \\ y = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ \text{Sy} = & 0.621 \text{ in}^3 \\ M_{\text{max}} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.41345 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.77788 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 13.6277 \text{ ksi} \end{array}$$

$$\begin{array}{lll} \textbf{9} \\ \textbf{b/t} = & 24.5 \\ \textbf{S1} = & 12.21 \text{ (See 3.4.16 above for formula)} \\ \textbf{S2} = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \textbf{\phi} \textbf{F}_{L} = & \textbf{\phi} \textbf{c} [\textbf{Bp-1.6Dp*b/t}] \\ \textbf{\phi} \textbf{F}_{L} = & 28.2 \text{ ksi} \\ \\ \textbf{b/t} = & 24.5 \\ \textbf{S1} = & 12.21 \\ \textbf{S2} = & 32.70 \\ \textbf{\phi} \textbf{F}_{L} = & \textbf{\phi} \textbf{c} [\textbf{Bp-1.6Dp*b/t}] \\ \textbf{\phi} \textbf{F}_{L} = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF}_L \text{ψF}_L \text{ψF}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 3, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(MeS	Surface(
1	Dead Load, Max	DĽ		-1	,			4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-9.843	-9.843	0	0
2	M14	Υ	-9.843	-9.843	0	0
3	M15	Υ	-9.843	-9.843	0	0
4	M16	Υ	-9.843	-9.843	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-5.454	-5.454	0	0
2	M14	Υ	-5.454	-5.454	0	0
3	M15	Υ	-5.454	-5.454	0	0
4	M16	Υ	-5.454	-5.454	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-63.565	-63.565	0	0
2	M14	Υ	-63.565	-63.565	0	0
3	M15	Υ	-63.565	-63.565	0	0
4	M16	Υ	-63 565	-63 565	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-43.811	-43.811	0	0
2	M14	V	-43.811	-43.811	0	0
3	M15	V	-68.846	-68.846	0	0
4	M16	V	-68.846	-68.846	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

_		Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
	1	M13	V	100.14	100.14	0	0
	2	M14	٧	76.774	76.774	0	0
	3	M15	V	41.725	41.725	0	0
	4	M16	У	41.725	41.725	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Z	7.874	7.874	0	0
2	M14	Ζ	7.874	7.874	0	0
3	M15	Ζ	7.874	7.874	0	0
4	M16	Ζ	7.874	7.874	0	0
5	M13	Ζ	0	0	0	0
6	M14	Ζ	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:___

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	381.388	2	1124.756	1	.941	1	.005	1	0	1	0	1
2		min	-506.605	3	-1066.538	3	-66.827	5	312	4	0	1	0	1
3	N7	max	.033	9	1175.376	1	591	12	001	12	0	1	0	1
4		min	118	2	-163.236	3	-272.055	4	555	4	0	1	0	1
5	N15	max	0	15	3254.578	1	0	12	0	12	0	1	0	1
6		min	-1.398	2	-588.023	3	-258.245	4	536	4	0	1	0	1
7	N16	max	1458.243	2	3657.657	1	0	2	0	2	0	1	0	1
8		min	-1550.991	3	-3427.388	3	-66.632	5	315	4	0	1	0	1
9	N23	max	.041	14	1175.376	1	12.277	1	.025	1	0	1	0	1
10		min	118	2	-163.236	3	-263.959	4	542	4	0	1	0	1
11	N24	max	381.388	2	1124.756	1	058	12	0	12	0	1	0	1
12		min	-506.605	3	-1066.538	3	-67.499	5	314	4	0	1	0	1
13	Totals:	max	2219.383	2	11512.498	1	0	12						
14		min	-2564.632	3	-6474.958	3	-988.792	4						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
1	M13	1	max	80.62	4	475.065	1	-6.858	12	0	15	.214	1	0	4
2			min	3.904	12	-521.796	3	-168.674	1	014	1	.011	12	0	3
3		2	max	76.73	1	331.651	1	-5.43	12	0	15	.106	4	.445	3
4			min	3.904	12	-367.456	3	-129.232	1	014	1	.005	12	403	1
5		3	max	76.73	1	188.236	1	-4.002	12	0	15	.06	5	.735	3
6			min	3.904	12	-213.117	3	-89.79	1	014	1	044	1	663	1
7		4	max	76.73	1	44.821	1	-2.575	12	0	15	.033	5	.871	3
8			min	3.904	12	-58.778	3	-50.348	1	014	1	114	1	78	1
9		5	max	76.73	1	95.562	3	595	10	0	15	.008	5	.852	3
10			min	3.904	12	-98.593	1	-26.734	4	014	1	145	1	753	1
11		6	max	76.73	1	249.901	3	28.536	1	0	15	005	12	.68	3
12			min	3.26	15	-242.008	1	-21.628	5	014	1	136	1	583	1
13		7	max	76.73	1	404.24	3	67.978	1	0	15	004	12	.353	3
14			min	-6.759	5	-385.423	1	-19.455	5	014	1	088	1	269	1
15		8	max	76.73	1	558.58	3	107.42	1	0	15	.002	2	.188	1
16			min	-18.559	5	-528.838	1	-17.282	5	014	1	055	4	129	3
17	•	9	max	76.73	1	712.919	3	146.862	1	0	15	.127	1	.789	1
18			min	-30.36	5	-672.252	1	-15.108	5	014	1	069	5	765	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		Axial[lb]						Torque[k-ft]					
19		10	max	76.73	1	867.258	3	186.304	_1_	.014	_1_	.294	1_	1.533	1
20			min	3.904	12	-815.667	_1_	-110.782	14	002	3	.007	12	-1.555	3
21		11	max	76.73	1	672.252	1_	-4.565	12	.014	_1_	.127	1	.789	1
22			min	3.904	12	-712.919	3	-146.862	1_	0	15	.002	12	765	3
23		12	max	76.73	1	528.838	1_	-3.137	12	.014	_1_	.054	4	.188	1
24			min	3.904	12	-558.58	3	-107.42	1_	0	15	003	3	129	3
25		13	max	76.73	1	385.423	1_	-1.709	12	.014	_1_	.025	5	.353	3
26		.	min	3.904	12	-404.24	3	-67.978	_1_	0	15	088	1_	269	1
27		14	max	76.73	1	242.008	_1_	281	12	.014	_1_	0	15	.68	3
28			min	2.193	15	-249.901	3	-31.128	4	0	15	136	1_	583	1
29		15	max	76.73	1	98.593	_1_	10.906	_1_	.014	_1_	005	12	.852	3
30			min	-8.448	5	-95.562	3	-22.553	5	0	15	145	1	753	1
31		16	max	76.73	1	58.778	3_	50.348	_1_	.014	_1_	003	12	.871	3
32			min	-20.249	5	-44.821	1_	-20.38	5	0	15	114	1	78	1
33		17	max	76.73	1	213.117	3	89.79	<u>1</u>	.014	_1_	0	3	.735	3
34			min	-32.049	5	-188.236	1	-18.207	5	0	15	076	4	663	1
35		18	max	76.73	1	367.456	3	129.232	1	.014	1	.065	1	.445	3
36			min	-43.85	5	-331.651	1_	-16.033	5	0	15	082	5	403	1
37		19	max	76.73	1	521.796	3	168.674	1	.014	1	.214	1	0	1
38			min	-55.65	5	-475.065	1	-13.86	5	0	15	097	5	0	5
39	M14	1	max	56.561	4	527.209	1	-7.1	12	.009	3	.254	1	0	1
40			min	2.044	12	-417.061	3	-175.224	1	015	1	.013	12	0	3
41		2	max	44.76	4	383.794	1	-5.672	12	.009	3	.159	4	.359	3
42			min	2.044	12	-300.108	3	-135.782	1	015	1	.006	12	455	1
43		3	max	44.503	1	240.379	1	-4.244	12	.009	3	.092	5	.6	3
44			min	2.044	12	-183.154	3	-96.34	1	015	1	018	1	768	1
45		4	max	44.503	1	96.965	1	-2.816	12	.009	3	.051	5	.725	3
46			min	2.044	12	-66.2	3	-56.898	1	015	1	095	1	936	1
47		5	max	44.503	1	50.754	3	-1.222	10	.009	3	.013	5	.733	3
48			min	.067	15	-46.45	1	-42.166	4	015	1	132	1	962	1
49		6	max	44.503	1	167.707	3	21.986	1	.009	3	005	12	.623	3
50			min	-11.692	5	-189.865	1	-35.329	5	015	1	13	1	843	1
51		7	max	44.503	1	284.661	3	61.428	1	.009	3	004	12	.397	3
52			min	-23.493	5	-333.279	1	-33.155	5	015	1	088	1	582	1
53		8	max	44.503	1	401.615	3	100.87	1	.009	3	0	10	.054	3
54			min	-35.294	5	-476.694	1	-30.982	5	015	1	094	4	177	1
55		9	max	44.503	1	518.569	3	140.312	1	.009	3	.114	1	.372	1
56			min	-47.094	5	-620.109	1	-28.809	5	015	1	12	5	406	3
57		10	max	72.643	4	635.522	3	179.754	1	.015	1	.274	1	1.063	1
58		10	min	2.044	12	-763.523	1	-114.472	14	009	3	.006	12	983	3
59		11	max		4	620.109	1	-4.323	12	.015	1	.159	4	.372	1
60			min	2.044	12	-518.569	3	-140.312	1	009	3	.001	12	406	3
61		12	max	49.042	4	476.694	<u> </u>	-2.895	12	.015	<u> </u>	.09	4	.054	3
62		14	min	2.044	12	-401.615	3	-100.87	1	009	3	007	1	177	1
63		13	max	44.503	1	333.279	<u> </u>	-1.467	12	.015	<u>ა</u> 1	.048	5	.397	3
64		13	min	2.044	12	-284.661	3	-61.428	1	009	3	088	1	582	1
65		14		44.503	1	189.865	<u> </u>	.014	3	.015	<u> </u>	.01	5	.623	3
		14	max	2.044	12	-167.707	3	-43.128	4	009	3	13	1	843	1
66 67		15	min					17.456		.015		004	12	.733	
		15	max	44.503	12	46.45	1		1		3				3
68		16	min	2.044		-50.754	3	-35.532	5	009		132	12	962	_
69		16	max	44.503	1	66.2	3	56.898	1	.015	1	002	12	.725	3
70		47	min	<u>-7.46</u>	5	-96.965	1	-33.359	5_	009	3	095	1	936	1
71		17	max	44.503	1	183.154	3	96.34	1_	.015	1_	.002	3	.6	3
72		4.0		-19.261	5	-240.379	1_	-31.185	5	009	3	1	4	768	1
73		18	max	44.503	1	300.108	3	135.782	1_	.015	1_	.098	1	.359	3
74		4.0	min	-31.061	5	-383.794	1_	-29.012	5	009	3	124	5	455	1
75		19	max	44.503	1	417.061	3	175.224	_1_	.015	_1_	.254	1	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	v-v Mome	LC	z-z Mome	LC
76			min	-42.862	5	-527.209	1	-26.839	5	009	3	152	5	0	3
77	M15	1	max	88.81	5	594.767	1	-7.036	12	.015	1	.303	4	0	2
78			min	-47.377	1_	-228.28	3	-175.178	1_	007	3	.012	12	0	3
79		2	max	77.01	5	431.324	_1_	-5.608	12	.015	1	.211	4	.198	3
80			min	-47.377	1	-167.405	3	-135.736	1_	007	3	.006	12	513	1
81		3	max	65.209	5	267.882	1_	-4.18	12	.015	1	.129	5	.335	3
82		_	min	-47.377	1_	-106.53	3	-96.294	1_	007	3	018	1	863	1
83		4	max	53.409	_5_	104.439	1_	-2.752	12	.015	1	.074	5	.411	3
84		_	min	-47.377	1_	-45.654	3	-66.903	4	007	3	095	1	-1.049	1
85		5	max	41.608	_ <u>5_</u> 1	15.221	3	-1.249 -56.578	<u>10</u> 4	.015	3	.021	5	.426 -1.072	3
86 87		6	min	-47.377 29.808	<u> </u>	-59.004 76.096	<u>1</u> 3	22.032	_ 4 _	007 .015	1	132 005	12	.38	3
88		0	max	-47.377	1	-222.446	1	-49.724	5	007	3	13	1	931	1
89		7	max	18.007	5	136.972	3	61.474	<u> </u>	.015	1	004	12	.274	3
90			min	-47.377	1	-385.889	1	-47.551	5	007	3	098	4	627	1
91		8	max	6.207	5	197.847	3	100.916	1	.015	1	0	10	.107	3
92		Ŭ	min	-47.377	1	-549.332	1	-45.378	5	007	3	129	4	159	1
93		9	max	-2.456	12	258.722	3	140.358	1	.015	1	.114	1	.472	1
94			min	-47.377	1	-712.774	1	-43.204	5	007	3	169	5	122	3
95		10	max	-2.456	12	319.598	3	179.8	1	.007	3	.302	4	1.267	1
96			min	-47.377	1	-876.217	1	-121.809	14	015	1	.007	12	411	3
97		11	max	.084	15	712.774	1	-4.387	12	.007	3	.208	4	.472	1
98			min	-47.377	1	-258.722	3	-140.358	1	015	1	.002	12	122	3
99		12	max	-2.456	12	549.332	1	-2.959	12	.007	3	.125	4	.107	3
100			min	-47.377	1	-197.847	3	-100.916	1	015	1	007	1	159	1
101		13	max	-2.456	12	385.889	1_	-1.532	12	.007	3	.069	5	.274	3
102			min	-47.377	1_	-136.972	3	-67.896	4	015	1	088	1	627	1
103		14	max	-2.456	12	222.446	1_	089	3	.007	3	.015	5	.38	3
104			min	-47.377	1	-76.096	3	-57.571	4	015	1	13	1	931	1
105		15	max	-2.456	12	59.004	1_	17.41	_1_	.007	3	004	12	.426	3
106			min	-57.954	4	-15.221	3	-49.929	5	015	1	132	1	-1.072	1
107		16	max	-2.456	12	45.654	3_	56.852	_1_	.007	3	002	12	.411	3
108		47	min	-69.755	4_	-104.439	1_	-47.756	5_	015	1	106	4	-1.049	1
109		17	max	-2.456	12	106.53	3	96.294	1_	.007	3	.002	3	.335	3
110		18	min	-81.555	<u>4</u> 12	-267.882 167.405	<u>1</u> 3	-45.582	5	015	3	137	4	863	3
111		18	max	-2.456				135.736 -43.409	1	.007	1	.098	5	.198	1
112		19	min	<u>-93.356</u> -2.456	<u>4</u> 12	-431.324 228.28	<u>1</u> 3	-43.409 175.178	<u>5</u> 1	015 .007	3	176 .253	1	<u>513</u> 0	2
114		19	max min	-105.156	4	-594.767	1	-41.236	5	015	1	218	5	0	5
115	M16	1	max	84.586	5	543.251	1	-6.662	12	.012	1	.217	1	0	1
116	IVITO			-85.192	1	-199.477	3	-169.125	1	009	3	.01	12	0	3
117		2	max	72.785	5	379.808	1	-5.234	12	.012	1	.143	4	.169	3
118			min	-85.192	1	-138.602	3	-129.683	1	009	3	.004	12	462	1
119		3	max	60.985	5	216.365	1	-3.806	12	.012	1	.087	5	.277	3
120			min	-85.192	1	-77.726	3	-90.241	1	009	3	043	1	76	1
121		4	max	49.184	5	52.923	1	-2.378	12	.012	1	.05	5	.324	3
122			min	-85.192	1	-16.851	3	-50.799	1	009	3	113	1	894	1
123		5	max	37.384	5	44.024	3	743	10	.012	1	.015	5	.311	3
124			min	-85.192	1	-110.52	1	-37.059	4	009	3	144	1	865	1
125		6	max	25.583	5	104.9	3	28.085	1	.012	1	005	12	.236	3
126			min	-85.192	1_	-273.963	1_	-31.812	5	009	3	136	1	673	1
127		7	max	13.783	5	165.775	3	67.527	_1_	.012	1	004	12	.101	3
128			min	-85.192	1_	-437.405	1_	-29.638	5	009	3	088	1	318	1
129		8	max	1.982	5	226.65	3	106.969	1	.012	1_	.001	2	.202	1
130			min	-85.192	1_	-600.848	1_	-27.465	5	009	3	079	4	095	3
131		9	max	-4.025	12	287.526	3	146.411	_1_	.012	1	.126	1	.884	1
132			min	-85.192	1_	-764.291	1	-25.292	5	009	3	103	5	352	3

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
133		10	max	-4.025	12	348.401	3	185.853	1	.009	3	.292	1	1.73	1
134			min	-85.192	1	-927.733	1	-115.801	14	012	1	.008	12	67	3
135		11	max	.552	5	764.291	1_	-4.761	12	.009	3	.145	4	.884	1
136			min	-85.192	1_	-287.526	3	-146.411	1	012	1	.003	12	352	3
137		12	max	-4.025	12	600.848	1_	-3.333	12	.009	3	.078	4	.202	1
138			min	-85.192	1_	-226.65	3	-106.969	1	012	1	002	3	095	3
139		13	max	-4.025	12	437.405	_1_	-1.906	12	.009	3	.039	5	.101	3
140			min	-85.192	_1_	-165.775	3	-67.527	1	012	1	088	1	318	1
141		14	max	-4.025	12	273.963	1_	478	12	.009	3	.003	5	.236	3
142		4.5	min	-85.192	1_	-104.9	3	-41.281	4	012	1	136	1	673	1
143		15	max	-4.025	12	110.52	1	11.357	1	.009	3	005	12	.311	3
144		4.0	min	-85.192	1_	-44.024	3	-32.714	5	012	1	144	1	865	1
145		16	max	-4.025	12	16.851	3	50.799	1	.009	3	003	12	.324	3
146		47	min	-85.192	1_	-52.923	1	-30.54	5	012	1	113	1	894	1
147 148		17	max	-4.025 -88.966	<u>12</u> 4	77.726 -216.365	<u>3</u>	90.241 -28.367	<u>1</u> 5	.009 012	3	102	12	.277 76	3
149		18	min max	-4.025	12	138.602	3	129.683	1	.009	3	.067	1	.169	3
150		10	min	-100.766	4	-379.808	1	-26.194	5	012	1	119	5	462	1
151		19	max	-4.025	12	199.477	3	169.125	1	.009	3	.217	1	0	1
152		19		-112.567	4	-543.251	1	-24.02	5	012	1	145	5	0	5
153	M2	1		1093.647	1	2.211	4	.906	1	0	3	0	3	0	1
154	IVIZ		min	-954.617	3	.543	15	-58.845	4	0	1	0	1	0	1
155		2		1094.063	_ <u></u>	2.202	4	.906	1	0	3	0	1	0	15
156			min	-954.305	3	.541	15	-59.205	4	0	1	017	4	0	4
157		3	_	1094.479	_ <u></u>	2.194	4	.906	1	0	3	0	1	0	15
158		3	min	-953.993	3	.539	15	-59.566	4	0	1	033	4	001	4
159		4		1094.895	<u> </u>	2.185	4	.906	1	0	3	0	1	0	15
160			min	-953.681	3	.537	15	-59.926	4	0	1	05	4	002	4
161		5	_	1095.311	_ <u></u>	2.176	4	.906	1	0	3	.001	1	0	15
162		J		-953.369	3	.535	15	-60.287	4	0	1	067	4	002	4
163		6		1095.727		2.168	4	.906	1	0	3	.001	1	0	15
164			min	-953.057	3	.533	15	-60.647	4	0	1	084	4	003	4
165		7		1096.142	1	2.159	4	.906	1	0	3	.002	1	0	15
166			min	-952.745	3	.531	15	-61.008	4	0	1	101	4	004	4
167		8		1096.558	1	2.15	4	.906	1	0	3	.002	1	001	15
168			min	-952.434	3	.529	15	-61.368	4	0	1	118	4	004	4
169		9		1096.974	1	2.141	4	.906	1	0	3	.002	1	001	15
170			min	-952.122	3	.527	15	-61.729	4	0	1	135	4	005	4
171		10	max	1097.39	1	2.133	4	.906	1	0	3	.002	1	001	15
172			min		3	.525	15	-62.089	4	0	1	153	4	005	4
173		11		1097.806	1	2.124	4	.906	1	0	3	.003	1	001	15
174				-951.498	3	.523	15	-62.45	4	0	1	17	4	006	4
175		12		1098.222	1	2.115	4	.906	1	0	3	.003	1	002	15
176				-951.186	3	.521	15	-62.81	4	0	1	188	4	007	4
177		13		1098.638	1	2.107	4	.906	1	0	3	.003	1	002	15
178				-950.874	3	.518	15	-63.171	4	0	1	205	4	007	4
179		14		1099.054	1	2.098	4	.906	1	0	3	.003	1	002	15
180				-950.562	3	.516	15	-63.531	4	0	1	223	4	008	4
181		15		1099.469	1	2.089	4	.906	1	0	3	.004	1	002	15
182				-950.25	3	.514	15	-63.892	4	0	1	241	4	008	4
183		16		1099.885	1	2.08	4	.906	1	0	3	.004	1	002	15
184				-949.938	3	.512	15	-64.252	4	0	1	259	4	009	4
185		17		1100.301	1	2.072	4	.906	1	0	3	.004	1	002	15
186				-949.626	3	.51	15	-64.613	4	0	1	277	4	01	4
187		18		1100.717	1	2.063	4	.906	1	0	3	.004	1	003	15
188				-949.314	3	.508	15	-64.973	4	0	1	295	4	01	4
189		19		1101.133	1	2.054	4	.906	1	0	3	.005	1	003	15

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]	LC		LC	z-z Mome	LC
190			min	-949.003	3	.506	15	-65.334	4	0	1_	313	4	011	4
191	<u>M3</u>	1_	max	378.169	2	9.133	4	.21	1	0	12	0	1_	.011	4
192		_	min	-505.71	3_	2.161	15	-3.415	5	0	4	005	4	.003	15
193		2	max	377.998	2	8.259	4	.21	1	0	12	0	1	.007	4
194			min	-505.837	3_	1.955	15	-2.806	5	0	4	007	4	.002	12
195		3	max	377.828	2	7.384	4	.21	1	0	12	0	1	.003	2
196			min	-505.965	3_	1.75	15	-2.197	5	0	4	008	4	0	12
197		4	max	377.658	2	6.51	4	.21	1	0	12	0	1	0	2
198		_	min	-506.093	3_	1.544	15	-1.589	5	0	4	009	4	002	3
199		5	max	377.487	2	5.635	4	.21	1	0	12	0	1_	0	15
200			min	-506.221	3_	1.338	15	98	5	0	4	009	5	003	6
201		6	max	377.317	2	4.761	4	.21	1	0	12	0	1_	001	15
202			min	-506.348	3_	1.133	15	371	5	0	4	01	5	006	6
203		7	max	377.147	2	3.886	4	.299	4	0	12	0	1_	002	15
204			min	-506.476	3	.927	15	.01	12	0	4	01	5	008	6
205		8	max	376.976	2	3.012	4	.907	4	0	12	0	1_	002	15
206		_	min	-506.604	3_	.722	15	.01	12	0	4	009	5	009	6
207		9	max	376.806	2	2.137	4	1.516	4	0	12	0	1_	002	15
208			min	-506.732	3	.516	15	.01	12	0	4	009	5	011	6
209		10	max	376.636	2	1.263	4	2.125	4	0	12	0	1_	003	15
210			min	-506.86	3_	.311	15	.01	12	0	4	008	5	011	6
211		11	max	376.465	2	.397	2	2.733	4	0	12	.001	1_	003	15
212			min	-506.987	3_	.035	12	.01	12	0	4	007	5	012	6
213		12	max	376.295	2	1	15	3.342	4	0	12	.001	1	003	15
214			min	-507.115	3	487	6	.01	12	0	4	006	5	012	6
215		13	max	376.125	2	306	15	3.951	4	0	12	.001	1_	003	15
216			min	-507.243	3_	-1.362	6	.01	12	0	4	004	5	011	6
217		14	max	375.954	2	512	15	4.56	4	0	12	.001	1_	002	15
218			min	-507.371	3	-2.236	6	.01	12	0	4	002	5	01	6
219		15	max	375.784	2	717	15	5.168	4	0	12	.001	1	002	15
220			min	-507.498	3	-3.111	6	.01	12	0	4	0	12	009	6
221		16	max	375.614	2	923	15	5.777	4	0	12	.003	4	002	15
222			min	-507.626	3_	-3.985	6	.01	12	0	4	0	12	008	6
223		17	max	375.443	2	-1.128	15	6.386	4	0	12	.006	4	001	15
224			min	-507.754	3_	-4.859	6	.01	12	0	4	0	12	005	6
225		18	max	375.273	2	-1.334	15	6.994	4	0	12	.009	4	0	15
226			min	-507.882	3_	-5.734	6	.01	12	0	4	0	12	003	6
227		19	max	375.103	2	-1.539	15	7.603	4	0	12	.013	4	0	1
228			min	-508.009	3	-6.608	6	.01	12	0	4	0	12	0	1
229	M4	1	max		_1_	0	1	589	12	0	1	.008	4	0	1
230				-165.535		0	1	-270.895		0	1	0	12	0	1
231		2		1172.48	_1_	0	1	589	12	0	1	0	12	0	1
232		_	min		3_	0	1	-271.043		0	1	023	4	0	1
233		3		1172.65	1_	0	1	589	12	0	1	0	12	0	1
234			min		3	0	1	-271.191		0	1	055	4	0	1
235		4		1172.821	1_	0	1	589	12	0	1	0	12	0	1
236		-		-165.152	3	0	1	-271.338		0	1	086	4	0	1
237		5		1172.991	1	0	1	589	12	0	1	0	12	0	1
238				-165.024	3	0	1	-271.486		0	1	117	4	0	1
239		6		1173.161	1_	0	1	589	12	0	1	0	12	0	1
240			_	-164.897	3	0	1	-271.634		0	1	148	4	0	1
241		7		1173.332	1_	0	1	589	12	0	1	0	12	0	1
242			min		3	0	1	-271.781		0	1	179	4	0	1
243		8		1173.502	_1_	0	1	589	12	0	1	0	12	0	1
244				-164.641	3	0	1	-271.929		0	1	211	4	0	1
245		9		1173.672	1_	0	1	589	12	0	1	0	12	0	1
246			min	-164.513	3	0	1	-272.077	4	0	1	242	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
247		10	max	1173.843	1	0	1	589	12	0	1	0	12	0	1
248			min	-164.386	3	0	1	-272.224	4	0	1	273	4	0	1
249		11	max	1174.013	1	0	1	589	12	0	1	0	12	0	1
250			min	-164.258	3	0	1	-272.372	4	0	1	304	4	0	1
251		12	max	1174.184	1	0	1	589	12	0	1	0	12	0	1
252			min	-164.13	3	0	1	-272.519	4	0	1	336	4	0	1
253		13	max	1174.354	1	0	1	589	12	0	1	0	12	0	1
254			min	-164.002	3	0	1	-272.667	4	0	1	367	4	0	1
255		14	max	1174.524	1	0	1	589	12	0	1	0	12	0	1
256			min	-163.875	3	0	1	-272.815	4	0	1	398	4	0	1
257		15	max	1174.695	1	0	1	589	12	0	1	0	12	0	1
258			min	-163.747	3	0	1	-272.962	4	0	1	43	4	0	1
259		16	max	1174.865	1	0	1	589	12	0	1	0	12	0	1
260			min	-163.619	3	0	1	-273.11	4	0	1	461	4	0	1
261		17		1175.035	1	0	1	589	12	0	1	001	12	0	1
262			min		3	0	1	-273.258	4	0	1	492	4	0	1
263		18	max	1175.206	1	0	1	589	12	0	1	001	12	0	1
264				-163.364	3	0	1	-273.405	4	0	1	524	4	0	1
265		19		1175.376	1	0	1	589	12	0	1	001	12	0	1
266		1.0	min	-163.236	3	0	1	-273.553	4	0	1	555	4	0	1
267	M6	1		3422.387	1	2.415	2	0	1	0	1	0	4	0	1
268	1110		min	-3063.415	3	.299	12	-59.48	4	0	4	0	1	0	1
269		2		3422.803	1	2.409	2	0	1	0	1	0	1	0	12
270			min	-3063.103	3	.295	12	-59.841	4	0	4	017	4	0	2
271		3		3423.219	1	2.402	2	0	1	0	1	0	1	0	12
272		-	min	-3062.791	3	.292	12	-60.201	4	0	4	034	4	001	2
273		4		3423.635	1	2.395	2	0	1	0	1	0	1	0	12
274		7	min		3	.288	12	-60.562	4	0	4	05	4	002	2
275		5		3424.051	1	2.388	2	0	1	0	1	0	1	0	12
276		1	min	-3062.168	3	.285	12	-60.922	4	0	4	068	4	003	2
277		6		3424.467	<u> </u>	2.381	2	0	1	0	1	0	1	0	12
278		-	min	-3061.856	3	.282	12	-61.283	4	0	4	085	4	003	2
279		7		3424.883	<u> </u>	2.375	2	0	1	0	1	0	1	003 0	12
280		+-	min	-3061.544	3	.278	12	-61.643	4	0	4	102	4	004	2
281		8		3425.299	<u>ა</u> 1	2.368	2	0	1	0	1	102	1	004	12
282		0	min	-3061.232	3	.275	12	-62.004	4	0	4	119	4	005	2
283		9		3425.715		2.361	2	0	1	0	1	0	1	005 0	12
		9	min		<u>1</u> 3	.271	12	-62.364	4	0	4	137	4	005	2
284 285		10				2.354	2	0	1		1	0	1	005 0	
286		10	max		<u>1</u> 3		12		4	0	4	154	4	_	12
287		11	min	3426.546		.268 2.348		-62.725		0				006	
		11			1		2	62.095	1	0	1_1	172	1	0	12
288		10	min		3	.265	12	-63.085	4	0	<u>4</u> 1	172	4	007	12
289		12		3426.962	<u>ا</u>	2.341	2	62.446	1	0		10	1	0	12
290		10	min		3_	.261	12	-63.446	1	0	<u>4</u> 1	19	1	007	2
291		13		3427.378 -3059.672	1_	2.334	2	0	_	0		0		0	12
292		4.4	min		3	.258	12	-63.806	4	0	4	207	4	008	2
293		14		3427.794	1	2.327	2	0	1	0	1_1	0	1	001	12
294		4.5		-3059.36	3	.254	12	-64.167	4	0	4	225	4	009	2
295		15		3428.21	1_	2.32	2	0	1	0	1_1	0	1	001	12
296		40	min		3	.251	12	-64.527	4	0	4	243	4	009	2
297		16		3428.626	1_	2.314	2	0	1	0	1	0	1	001	12
298			min		3_	.248	12	-64.888	4	0	4	262	4	01	2
299		17		3429.042	1	2.307	2	0	1	0		0	1	001	12
300			min		3_	.244	12	-65.248	4	0	4	28	4	011	2
301		18		3429.457	1_	2.3	2	0	1	0	1	0	1	001	12
302			min		3	.241	12	-65.609	4	0	4	298	4	011	2
303		19	max	3429.873	_1_	2.293	2	0	1	0	<u>1</u>	0	1	001	12

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

204	Member	Sec		Axial[lb]						Torque[k-ft]					LC
304	N 4 7	4	min	-3057.801	3	.237	12	-65.969	4	0	4_	317	4	012	2
305	<u> </u>	1		1457.018	2	9.141	6	0	1	0	1_1	0	1_4	.012	2
306		2	min	-1544.96	3	2.145	15	-3.631	5	0	4	005	<u>4</u> 1	.001	12
307		2		1456.848 -1545.088	2	8.267	6 1E	0	1	0	1_4	0		.008	2
308		2	min		3	1.939	15	-3.023	<u>5</u>	0	<u>4</u> 1	007	<u>4</u> 1	0	3
309		3	max	1456.678 -1545.215	2	7.392	6 15	-2.414	5	0	4	0		.005	3
310		4	min		3	1.734 6.518			<u> </u>	0	_ 4 _	008 0	<u>4</u> 1	002	
311		4		1456.507 -1545.343	2		6 15	0		0	4	_	4	.003	3
312			min		3	1.528		-1.805 0	<u>5</u>	-	_ 4 _	009	_	004 0	
313		5		1456.337 -1545.471	2	5.643	6 1 <i>E</i>	_	5	0		0	1_1		3
314		6	min	1456.167	3	1.323	15	-1.197	1	0	<u>4</u> 1	01	<u>4</u> 1	005	
315		6		-1545.599	3	4.769 1.117	6 15	588	5	0	4	01	4	001 007	1 <u>5</u>
		7	min						4	0	1	0	1		_
317				1455.996 -1545.726	3	3.895	6 15	.031	1	0	4	_	4	002	15
318		8	min		_	.912 3.02	6	.639	4	0	_ 4 _ 1	01 0	1	008 002	15
319		0	max	-1545.854	2	.706	15	.039	1	0	4	01	4	002	4
321		9	_	1455.656	<u>3</u> 2	2.146	6	1.248	4	0	1	0	1	009	15
322		9		-1545.982			12	0	1	0	4		4		
		10			3	.499		•		-	_ 4 _	01 0	1	011	4
323		10		1455.485 -1546.11	3	1.394 .159	2 12	1.857 0	4	0	4	009	4	003 011	1 <u>5</u>
		11	_					2.466	_	_	<u>4</u> 1	_	1		
325		- 1 1		1455.315 -1546.238	3	.713	3		<u>4</u> 1	0	4	008		003 012	15
326		10	min			305		0		0	_ 4 _ 1		<u>4</u> 1		4
327		12		1455.145 -1546.365	2	.031	2	3.074	4	0		0		003	15
328		12	min		3	816	3	0	1_1	0	<u>4</u> 1	007	<u>4</u> 1	012 003	4
329		13	max	-1546.493	2	322	15	3.683	4	0	<u> </u>	0			15
330		4.4	min		3	-1.352	4	0	1_4	0	4	005	4	011	4
331		14		1454.804	2	527	15	4.292	4	0	1_	0	11	002	15
332		4.5		-1546.621	3	-2.227	4	0	1	0	4	003	4	01	4
333		15		1454.634 -1546.749	2	733 -3.101	15	4.9	4	0	1_4	0	1_4	002	15
334		16	min		3		4	0 5 500	_	0	4_	001	4	009	4
335		16		1454.463 -1546.876	2	938	<u>15</u>	5.509	<u>4</u> 1	0	<u>1</u> 4	.001	<u>5</u> 1	002	15
336		17	min	1454.293	3	-3.975 -1.144		0 6.118		0	_ 4 _ 1	0		008	4
337		17		-1547.004	3		15	0.116	<u>4</u> 1	-		.004	<u>5</u>	001	15
338		18	min		_	-4.85 -1.35	4 15	6.726	4	0	<u>4</u> 1	.007	5	005 0	15
		10	max	-1547.132	2		4		1	0	_	_	1	_	4
340		10	min	1453.952	<u>3</u> 2	-5.724		7.335	4	0	<u>4</u> 1	.011	5	003	1
341		19				-1.555	15		1	0			<u> </u>	0	1
	MO	1		-1547.26	<u>3</u> 1	-6.599	<u>4</u> 1	0	1	0	<u>4</u> 1	0	5	1	1
343	<u>M8</u>			3251.511		0			_	0		.006	1	0	1
344		2		-590.323 3251.682	3	0	1	-260.932	<u>4</u> 1	0	<u>1</u> 1	0	1	0	1
346				-590.195	<u>1</u> 3	0	1	-261.08	4	0	1	024	4	0	1
347		3		3251.852	<u> </u>	0	1	0	1	0	1	024	1	0	1
348		3		-590.067	3	0	1	-261.228	4	0	1	054	4	0	1
349		4		3252.022	<u> </u>	0	1	0	1	0	1	054	1	0	1
350		4		-589.94	3	0	1	-261.375	4	0	1	084	4	0	1
351		5		3252.193	<u> </u>	0	1	0	1	0	1	0	1	0	1
352		5		-589.812		0	1	-261.523	4	0	1	114	4	0	1
		G			3		1	0			1	114 0	<u>4</u> 1		1
353		6		3252.363	1	0	1		4	0	1		4	0	1
354		7		-589.684	3	0	•	-261.671		_	•	144			
355		7		3252.533	1	0	1	0	1_1	0	1	0	1_1	0	1
356		0		-589.556	3	0	1_1	-261.818	4	0	1	174	4	0	1
357		8		3252.704	1	0	1	0	11	0	1_	0	1_4	0	1
358		0		-589.429	3	0	1	-261.966	4	0	1	204	4	0	1
359		9		3252.874	1	0	1	0	1_1	0	1	0	1_1	0	1
360			min	-589.301	3	0	1	-262.114	4	0	1_	234	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

004	Member	Sec		Axial[lb]						Torque[k-ft]		1 -	LC	_	
361		10		3253.045	1_	0	1	0	11	0	1	0	1	0	1
362		44	min	-589.173	3	0	1	-262.261	4	0	1_	264	4	0	1
363		11		3253.215	1	0	1	0	11	0	1	0	1	0	1
364		12		-589.045 3253.385	<u>3</u>	0	1	-262.409 0	1	0	1	294 0	1	0	1
365 366		12		-588.918	3	0	1	-262.556	4	0	1	324	4	0	1
		12					1		1	_	1	_	1	0	1
367 368		13		3253.556	<u>1</u> 3	0	1	0 -262.704	4	0	1	355	4	0	1
		1.1	min	-588.79 3253.726	<u>ာ</u> 1	0	1		1	0	1	i	1	0	1
369		14			3		1	0 -262.852	4		1	0		0	1
370 371		15	min	-588.662 3253.896	<u>ာ</u> 1	0	1	0	1	0	1	385 0	1	0	1
372		10		-588.534	3	0	1	-262.999	4	0	1	415	4	0	1
		16	min	3254.067	<u> </u>	0	1	0	1	0	1	0	1	0	1
373 374		10		-588.407	3	0	1	-263.147	4	0	1	445	4	0	1
375		17		3254.237	<u>ა</u> 1	0	1	0	1	0	1	443	1	0	1
376		17		-588.279	3	0	1	-263.295	4	0	1	475	4	0	1
377		18		3254.407	<u> </u>	0	1	0	1	0	1	0	1	0	1
378		10		-588.151	3	0	1	-263.442	4	0	1	506	4	0	1
		19	min		<u>ာ</u> 1	0	1	0	1	0	1	506 0	1	0	1
379 380		19		3254.578	3	0	1	-263.59	4	0	1		4	0	1
381	M10	1	min	-588.023 1093.647	<u>ာ</u> 1	2.103	6	-263.59 044	12	0	1	536	4	0	1
	IVITO							-59.323	4		<u> </u>	0	3	0	1
382		2	min	<u>-954.617</u>	3	.471	15		12	0	5	0			_
383				1094.063 -954.305	<u>1</u> 3	2.095 .469	6 15	044 -59.683		0	<u>1</u> 5	017	10	0	15
384		2							4	-			4	-	6
385		3		1094.479	1	2.086	6 15	044	12	0	1	0	12	0	15
386		4			3	.467		-60.044	4	0	5	033	4	001	6
387		4		1094.895	1	2.077	6	044	12	0	1	0	12	0	15
388		-	min	-953.681	3	.465	15	-60.404	4	0	5	05	4	002	6
389		5		1095.311	1	2.068	6	044	12	0	1	0	12	0	15
390			min	-953.369	3	.463	15	-60.764	<u>4</u> 12	0	<u>5</u> 1	067	12	002	6
391		6		1095.727	1	2.06	6 15	044	4	0	<u> </u>	084	4	0	15
392		7	min	<u>-953.057</u>	3	.461		-61.125	12	0	<u>5</u> 1		12	003	6
393				1096.142	<u>1</u> 3	2.051 .459	6 1 <i>E</i>	044 -61.485		0	5	102	4	003	15
394		0		-952.745			15		4 12	-			12	003 0	6
395 396		8		1096.558 -952.434	<u>1</u> 3	2.042 .457	6 15	044 -61.846	4	0	<u>1</u> 5	119	4	004	15
		9							_	_	<u> </u>				
397		9		1096.974	<u>1</u> 3	2.034 .455	6 15	044 -62.206	12 4	0		136	12	001 005	15
398		10	min	-952.122	<u>ာ</u> 1				12	0	<u>5</u> 1		12		6
399 400		10	max	1097.39 -951.81	3	2.025 .452	6 15	044 -62.567	4	0	5	154	4	001 005	15
401		11	min	1097.806		2.016	,	-02.307 044	12	0		0	12	003	15
402		11		-951.498	1	.45	15	-62.927	4	0	<u>1</u> 5	171		006	6
403		12		1098.222	<u>3</u> 1	2.007	6	-02.921 044	12	0	<u>၁</u> 1	0	12	006	15
404		12		-951.186	3	.448	15	-63.288	4	0	5	189	4	001	6
405		13		1098.638	<u>ာ</u> 1	1.999	6	-03.200 044	12	0	<u>၁</u> 1	0	12	002	15
406		13		-950.874	3	.446	15	-63.648	4	0	5	207	4	002	6
407		14	_	1099.054	<u> </u>	1.99	6	044	12	0	<u> </u>	207 0	12	007	15
408		14		-950.562	3	.444	15	-64.009	4	0	5	225	4	002	6
409		15		1099.469	<u> </u>	1.981	6	044	12	0	<u> </u>	0	12	007	15
410		10		-950.25	3	.442	15	-64.369	4	0	5	243	4	002	6
411		16		1099.885	<u>ა</u> 1	1.973	6	044	12	0	<u>၁</u> 1	<u>243</u> 0	12	002	15
411		10					15	-64.73	4		5	261	4	002	6
		17		<u>-949.938</u>	3	1.064			12	0	<u>5</u> 1				
413		17		1100.301	1	1.964	6 15	044 -65.09		0	5	279	12	002	15
		10		<u>-949.626</u>	3	.438			4	_			12	009	15
415 416		18		1100.717	<u>1</u> 3	1.955	6 15	044 -65.451	12 4	0	<u>1</u> 5	297	12	002 - 01	15
		10		-949.314		.436	15						12	01	
417		19	шах	1101.133	<u>1</u>	1.946	6	044	12	0	_1_	0	12	002	15

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
418			min	-949.003	3	.434	15	-65.811	4	0	5	316	4	01	6
419	M11	1	max	378.169	2	9.069	6	01	12	0	1	0	12	.01	6
420			min	-505.71	3	2.118	15	-3.464	4	0	4	005	4	.002	15
421		2	max	377.998	2	8.195	6	01	12	0	1	0	12	.006	6
422			min	-505.837	3	1.912	15	-2.855	4	0	4	007	4	.001	15
423		3	max	377.828	2	7.32	6	01	12	0	1	0	12	.003	2
424			min	-505.965	3	1.707	15	-2.246	4	0	4	008	4	0	12
425		4	max	377.658	2	6.446	6	01	12	0	1	0	12	0	2
426			min	-506.093	3	1.501	15	-1.638	4	0	4	009	4	002	3
427		5	max	377.487	2	5.571	6	01	12	0	1	0	12	0	15
428			min	-506.221	3	1.296	15	-1.029	4	0	4	01	4	004	4
429		6	max	377.317	2	4.697	6	01	12	0	1	0	12	002	15
430			min	-506.348	3	1.09	15	42	4	0	4	01	4	006	4
431		7	max	377.147	2	3.822	6	.215	5	0	1	0	12	002	15
432			min	-506.476	3	.885	15	21	1	0	4	01	4	008	4
433		8	max	376.976	2	2.948	6	.824	5	0	1	0	12	002	15
434			min	-506.604	3	.679	15	21	1	0	4	01	4	01	4
435		9	max	376.806	2	2.074	6	1.432	5	0	1	0	12	003	15
436			min	-506.732	3	.473	15	21	1	0	4	009	4	011	4
437		10	max	376.636	2	1.199	6	2.041	5	0	1	0	12	003	15
438			min	-506.86	3	.268	15	21	1	0	4	008	4	012	4
439		11	max	376.465	2	.397	2	2.65	5	0	1	0	12	003	15
440			min	-506.987	3	.035	12	21	1	0	4	007	4	012	4
441		12	max	376.295	2	143	15	3.259	5	0	1	0	12	003	15
442		T	min	-507.115	3	551	4	21	1	0	4	006	4	012	4
443		13	max	376.125	2	349	15	3.867	5	0	1	0	12	003	15
444			min	-507.243	3	-1.425	4	21	1	0	4	004	4	012	4
445		14	max	375.954	2	554	15	4.476	5	0	1	0	12	003	15
446			min	-507.371	3	-2.3	4	21	1	0	4	002	4	011	4
447		15	max	375.784	2	76	15	5.085	5	0	1	0	5	002	15
448		'	min	-507.498	3	-3.174	4	21	1	0	4	001	1	009	4
449		16	max	375.614	2	965	15	5.693	5	0	1	.003	5	002	15
450		1.0	min	-507.626	3	-4.049	4	21	1	0	4	002	1	008	4
451		17	max	375.443	2	-1.171	15	6.302	5	0	1	.006	5	001	15
452		1	min	-507.754	3	-4.923	4	21	1	0	4	002	1	005	4
453		18	max	375.273	2	-1.376	15	6.911	5	0	1	.009	5	0	15
454		10	min	-507.882	3	-5.798	4	21	1	0	4	002	1	003	4
455		19	max	375.103	2	-1.582	15	7.52	5	0	1	.012	5	0	1
456		15	min	-508.009	3	-6.672	4	21	1	0	4	002	1	0	1
457	M12	1	max		1	0.072	1	12.718	1	0	1	.002	5	0	1
458	IVIIZ	<u> </u>		-165.535		0	1	-264.151		0	1	001	1	0	1
459		2		1172.48	1	0	1	12.718	1	0	1	0	1	0	1
460			min		3	0	1	-264.299		0	1	023	4	0	1
461		3		1172.65	<u> </u>	0	1	12.718	1	0	1	.002	1	0	1
462		3	min		3	0	1	-264.447	4	0	1	054	4	0	1
463		4		1172.821	<u> </u>	0	1	12.718	1	0	1	.003	1	0	1
464		4		-165.152	3	0	1	-264.594		0	1	084	4	0	1
465		5		1172.991	<u> </u>	0	1	12.718	1	0	1	.005	1	0	1
466		J		-165.024	3	0	1	-264.742	4	0	1	114	4	0	1
		G									-				_
467		6		1173.161	1	0	1	12.718	1	0	1	.006	1_1	0	1
468		7		-164.897	3	0	1	-264.89	4	0		145	4	0	
469		7		1173.332	1	0	1	12.718	1	0	1	.008	1	0	1
470		0	min		3_	0	1	-265.037	4	0	1	175	4	0	1
471		8		1173.502	1	0	1	12.718	1	0	1	.009	1	0	1
472				-164.641	3	0	1	-265.185		0	1	206	4	0	1
473		9		1173.672	1_	0	1	12.718	1	0	1	.011	1	0	1
474			min	-164.513	3	0	1	-265.332	4	0	1	236	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
475		10	max	1173.843	_1_	0	1	12.718	1	0	_1_	.012	_1_	0	1
476			min	-164.386	3	0	1	-265.48	4	0	1	267	4	0	1
477		11	max	1174.013	1	0	1	12.718	1	0	1	.014	1	0	1
478			min	-164.258	3	0	1	-265.628	4	0	1	297	4	0	1
479		12	max	1174.184	1	0	1	12.718	1	0	1	.015	1	0	1
480			min	-164.13	3	0	1	-265.775	4	0	1	328	4	0	1
481		13	max	1174.354	1	0	1	12.718	1	0	1	.016	1	0	1
482			min	-164.002	3	0	1	-265.923	4	0	1	358	4	0	1
483		14	max	1174.524	1	0	1	12.718	1	0	1	.018	1	0	1
484			min	-163.875	3	0	1	-266.071	4	0	1	389	4	0	1
485		15		1174.695	1	0	1	12.718	1	0	1	.019	1	0	1
486			min	-163.747	3	0	1	-266.218	4	0	1	419	4	0	1
487		16		1174.865	1	0	1	12.718	1	0	1	.021	1	0	1
488			min	-163.619	3	0	1	-266.366	4	0	1	45	4	0	1
489		17		1175.035	1	0	1	12.718	1	0	1	.022	1	0	1
490			min		3	0	1	-266.514	4	0	1	48	4	0	1
491		18		1175.206	1	0	1	12.718	1	0	1	.024	1	0	1
492		10	min	-163.364	3	0	1	-266.661	4	0	1	511	4	0	1
493		19		1175.376	1	0	1	12.718	1	0	1	.025	1	0	1
494		13	min	-163.236	3	0	1	-266.809	4	0	1	542	4	0	1
495	M1	1	max		1	521.766	3	55.613	5	0	1	.214	1	0	15
496	IVII		min	-13.86	5	-472.92	1	-76.609	1	0	5	097	5	014	1
497		2	max	169.255	1	520.579	3	57.073	5	0	1	.167	1	.28	1
498			min	-13.591	5	-474.503	1	-76.609	1	0	5	062	5	325	3
499		3	max	323.828	3	553.217	1	1.297	5	0	3	.119	1	.563	1
500		3	min	-220.522	2	-384.672	3	-75.958	1	0	1	027	5	638	3
501		4	max	324.26	3	551.634	1	2.757	5	0	3	.072	1	.221	1
502		-	min	-219.946	2	-385.859	3	-75.958	1	0	1	026	5	399	3
503		5	max	324.693	3	550.051	1	4.217	5	0	3	.025	<u> </u>	005	15
504		5	min	-219.37	2	-387.046	3	-75.958	1	0	1	024	5	159	3
505		6	max	325.125	3	548.468	1	5.678	5	0	3	024	12	.082	3
506		0	min	-218.794	2	-388.234	3	-75.958	1	0	1	025	4	462	1
507		7	max	325.557	3	546.884	1	7.138	5	0	3	023	12	.323	3
508			min	-218.217	2	-389.421	3	-75.958	1	0	1	069	1	802	1
509		8	max	325.989	3	545.301	1	8.598	5	0	3	009	12	.565	3
510		0	min	-217.641	2	-390.609	3	-75.958	1	0	1	116	1	-1.141	1
511		9	max	337.144	3	34.617	2	52.783	5	0	9	.073	1	.661	3
512		-	min	-148.775	2	.475	15	-120.508	1	0	3	142	5	-1.299	1
513		10	max		3	33.034	2	54.243	5	0	9	0	10	.644	3
514		10	min	-148.198	2	006	5	-120.508	1	0	3	109	4	-1.31	1
515		11		338.008	3	31.451	2	55.703	5	0	9	004	12	.628	3
516			min		2	-1.977	4	-120.508		0	3	09	4	-1.321	1
517		12	max		3	254.48	3	151.361	5	0	1	.114	1	.549	3
518		12	min		5	-582.854	1	-73.172	1	0	3	234	5	-1.167	1
519		13		349.494	3	253.293	3	152.821	5	0	<u> </u>	.069	1	.391	3
520		13	min		5	-584.437	1	-73.172	1	0	3	14	5	805	1
521		14	max		3	252.105	3	154.281	5	0	1	.023	1	.234	3
522		14	min	-94.25	5	-586.02	1	-73.172	1	0	3	044	5	442	1
523		15		350.358	3	250.918	3	155.741	5	0	<u> </u>	.052	<u>5</u>	.078	3
524		15		-93.982				-73.172	1		3	022	1		1
		16	min		5	-587.604	1		5	0			•	077	_
525		16	max		3_	249.73 -589.187	3	157.202		0	1	.149	<u>5</u> 1	.288	3
526		17	min	-93.713	5		2	-73.172	5	0	<u>3</u>	068 .247		077	
527		17	max		<u>3</u>	248.543	3	158.662	1	0	3	113	<u>5</u> 1	.654 232	3
528		40	min		<u>5</u>	-590.77	•	-73.172 4.025		0			•		1
529 530		10	max		<u>5</u> 1	546.868 -198.353	3	-4.025 -114.076	12	0	<u>5</u>	.203 164	<u>5</u> 1	.327	3
		10	min				-			0	_		_	114	
531		19	max	24.02	<u>5</u>	545.285	1	-4.025	12	0	5	.145	5	.009	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

						<u> </u>		_							
	Member	<u>Sec</u>		Axial[lb]						Torque[k-ft]	LC		LC	z-z Mome	LC
532			min	-169.121	<u>1</u>	-199.54	3	-112.616		0	1	217	1	012	1
533	M5	1	max		_1_	1734.464	3	92.765	5	0	1	0	1_	.029	1
534			min	11.986	12	-1621.186	1	0	1	0	4	204	4	0	15
535		2	max	373.174	1	1733.277	3	94.226	5	0	1	0	1	1.035	1
536			min	12.274	12	-1622.769	1	0	1	0	4	146	4	-1.073	3
537		3	max	1018.393	3	1575.269	1	42.373	4	0	4	0	1	2.008	1
538			min		2	-1180.56	3	0	1	0	1	089	4	-2.116	3
539		4		1018.825	3	1573.686	1	43.833	4	0	4	0	1	1.031	1
540			min	-749.775	2	-1181.747	3	0	1	0	1	062	4	-1.383	3
541		5		1019.257	3	1572.103	1	45.294	4	0	4	0	1	.055	1
542			min	-749.198	2	-1182.935	3	0	1	0	1	034	4	649	3
543		6		1019.689	3	1570.52	1	46.754	4	0	4	0	1	.085	3
544		0	min	-748.622	2	-1184.122	3	0	1	0	1	006	5	921	1
		7													
545		7		1020.121	3	1568.937	1	48.214	4	0	4	.024	4	.82	3
546			min	-748.046	2	-1185.309	3	0	1_	0	1	0	1_	-1.895	1
547		8		1020.554	3_	1567.353	1	49.674	4	0	4	.054	4	1.556	3
548			min	-747.47	2	-1186.497	3	0	1	0	1	0	1_	-2.868	1
549		9	max	1038.093	3_	115.369	2	173.735	4	0	1	0	1	1.797	3
550			min		2	.48	15	0	1	0	1	203	4	-3.252	1
551		10	max	1038.526	3	113.786	2	175.195	4	0	1	0	1	1.735	3
552			min	-603.405	2	.002	15	0	1	0	1	095	5	-3.291	1
553		11	max	1038.958	3	112.203	2	176.655	4	0	1	.014	4	1.675	3
554			min	-602.829	2	-1.727	6	0	1	0	1	0	1	-3.33	1
555		12	max	1056.701	3	754.578	3	206.298	4	0	1	0	1	1.466	3
556		· -	min	-459.385	2	-1692.177	1	0	1	0	4	33	4	-2.961	1
557		13		1057.133	3	753.39	3	207.758	4	0	1	0	1	.998	3
558		10	min		2	-1693.76	1	0	1	0	4	201	4	-1.91	1
559		14		1057.565	3	752.203	3	209.218	4	0	1	0	1	.53	3
560		14		-458.233		-1695.343	1	0	1	0	4	072	4	859	1
		4.5	min		2										
561		15		1057.998	3_	751.016	3	210.678	4	0	11	.058	4	.244	2
562		40	min	-457.656	2	-1696.927	1	0	1	0	4	0	1	0	15
563		16	max		3	749.828	3	212.139	4	0	1	.19	4	1.248	1
564			min	-457.08	2	-1698.51	1_	0	1	0	4	0	1_	402	3
565		17		1058.862	_3_	748.641	3	213.599	4	0	1_	.322	4	2.302	1
566			min	-456.504	2	-1700.093	1	0	1	0	4	0	1	867	3
567		18	max		12	1866.419	1	0	1	0	4	.314	4	1.183	1
568			min	-372.289	1_	-695.909	3	-35.51	5	0	1	0	1	451	3
569		19	max	-12.378	12	1864.836	1	0	1	0	4	.293	4	.025	1
570			min	-371.713	1	-697.096	3	-34.05	5	0	1	0	1	019	3
571	M9	1	max	168.679	1	521.766	3	80.8	4	0	3	011	12	0	15
572			min	6.858	12	-472.92	1	3.904	12	0	4	214	1	014	1
573		2	max		1	520.579	3	82.26	4	0	3	009	12	.28	1
574			min	7.146	12	-474.503	1	3.904	12	0	4	167	1	325	3
575		3	max		3	553.217	1	75.958	1	0	1	006	12	.563	1
576		J		-220.522	2	-384.672	3	3.857	12	0	3	119	1	638	3
		1	min				-			_	_				
577		4	max		3_	551.634	1	75.958	1	0	1	004	12	.221	1
578		_	min		2	-385.859	3	3.857	12	0	3	072	1	399	3
579		5	max		3_	550.051	1	75.958	1	0	1	001	12	005	15
580			min		2_	-387.046	3	3.857	12	0	3	032	4	159	3
581		6	max		3_	548.468	1	75.958	1_	0	1	.022	1	.082	3
582			min	-218.794	2	-388.234	3	3.857	12	0	3	018	5	462	1
583		7	max	325.557	3	546.884	1	75.958	1	0	1	.069	1	.323	3
584			min	-218.217	2	-389.421	3	3.857	12	0	3	009	5	802	1
585		8	max		3	545.301	1	75.958	1	0	1	.116	1	.565	3
586			min	-217.641	2	-390.609	3	3.857	12	0	3	0	15	-1.141	1
587		9	max		3	34.617	2	120.508	1	0	3	004	12	.661	3
588				-148.775	2	.488	15	5.898	12	0	9	167	4	-1.299	1
000			1111111	170.113		.+00	IU	0.030	12	U	J	.107		1.200	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	337.576	3	33.034	2	120.508	1	0	3	.001	1	.644	3
590			min	-148.198	2	.011	15	5.898	12	0	9	109	4	-1.31	1
591		11	max	338.008	3	31.451	2	120.508	1	0	3	.076	1	.628	3
592			min	-147.622	2	-1.869	6	5.898	12	0	9	066	5	-1.321	1
593		12	max	349.061	3	254.48	3	177.323	4	0	3	005	12	.549	3
594			min	-86.73	10	-582.854	1	3.445	12	0	1	274	4	-1.167	1
595		13	max	349.494	3	253.293	3	178.783	4	0	3	003	12	.391	3
596			min	-86.25	10	-584.437	1	3.445	12	0	1	163	4	805	1
597		14	max	349.926	3	252.105	3	180.243	4	0	3	001	12	.234	3
598			min	-85.77	10	-586.02	1	3.445	12	0	1	052	4	442	1
599		15	max	350.358	3	250.918	3	181.703	4	0	3	.06	4	.078	3
600			min	-85.29	10	-587.604	1	3.445	12	0	1	0	12	077	1
601		16	max	350.79	3	249.73	3	183.163	4	0	3	.174	4	.288	1
602			min	-84.81	10	-589.187	1	3.445	12	0	1	.003	12	077	3
603		17	max	351.222	3	248.543	3	184.623	4	0	3	.288	4	.654	1
604			min	-84.329	10	-590.77	1	3.445	12	0	1	.005	12	232	3
605		18	max	-6.95	12	546.868	1	85.307	1	0	1	.259	4	.327	1
606			min	-169.697	1	-198.353	3	-86.222	5	0	3	.008	12	114	3
607		19	max	-6.662	12	545.285	1	85.307	1	0	1	.217	1	.009	3
608			min	-169.121	1	-199.54	3	-84.762	5	0	3	.01	12	012	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC	(n) L/z Ratio	LC
1	M13	1	max	0	1	.192	1	.006	3	1.282e-2	1	NC	1	NC	1
2			min	727	4	032	3	003	2	-1.963e-3	3	NC	1	NC	1
3		2	max	0	1	.151	3	.031	1	1.408e-2	1	NC	5	NC	2
4			min	727	4	.003	15	017	5	-1.812e-3	3	1186.354	3	7128.016	1
5		3	max	0	1	.298	3	.073	1	1.535e-2	1	NC	5	NC	3
6			min	727	4	053	1	021	5	-1.661e-3	3	654.786	3	3018.19	1
7		4	max	0	1	.389	3	.107	1	1.661e-2	1	NC	5	NC	3
8			min	727	4	108	1	016	5	-1.511e-3	3	513.809	3	2031.451	1
9		5	max	0	1	.411	3	.124	1	1.788e-2	1	NC	5	NC	3
10			min	727	4	102	1	006	5	-1.36e-3	3	487.788	3	1750.177	1
11		6	max	0	1	.367	3	.119	1	1.914e-2	1	NC	5	NC	3
12			min	727	4	037	1	.004	15	-1.209e-3	3	541.878	3	1831.328	1
13		7	max	0	1	.27	3	.092	1	2.041e-2	1	NC	5	NC	3
14			min	727	4	.003	15	.002	10	-1.058e-3	3	716.433	3	2365.133	1
15		8	max	0	1	.203	1	.052	1	2.167e-2	1	NC	1	NC	2
16			min	727	4	.006	15	002	10	-9.066e-4	3	1217.526	3	4214.684	1
17		9	max	0	1	.317	1	.02	3	2.293e-2	1	NC	5	NC	1
18			min	727	4	.009	15	007	10	-7.557e-4	3	1717.945	1	NC	1
19		10	max	0	1	.368	1	.02	3	2.42e-2	1	NC	3	NC	1
20			min	727	4	018	3	013	2	-6.047e-4	3	1222.666	1	NC	1
21		11	max	0	12	.317	1	.02	3	2.293e-2	1	NC	5	NC	1
22			min	727	4	.009	15	013	5	-7.557e-4	3	1717.945	1	NC	1
23		12	max	0	12	.203	1	.052	1	2.167e-2	1	NC	1	NC	2
24			min	727	4	.006	15	013	5	-9.066e-4	3	1217.526	3	4214.684	1
25		13	max	0	12	.27	3	.092	1	2.041e-2	1	NC	5	NC	3
26			min	727	4	.002	15	005	5	-1.058e-3	3	716.433	3	2365.133	1
27		14	max	0	12	.367	3	.119	1	1.914e-2	1	NC	5	NC	3
28			min	727	4	037	1	.005	15	-1.209e-3	3	541.878	3	1831.328	1
29		15	max	0	12	.411	3	.124	1	1.788e-2	1	NC	5	NC	3
30			min	727	4	102	1	.007	10	-1.36e-3	3	487.788	3	1750.177	1
31		16	max	0	12	.389	3	.107	1	1.661e-2	1	NC	5	NC	3
32			min	727	4	108	1	.006	10	-1.511e-3	3	513.809	3	2031.451	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC				
33		17	max	0	12	.298	3	.073	1 1.535e-2	_1_	NC	<u>5</u>	NC	3
34			min	727	4	053	1	.004	10 -1.661e-3	3	654.786	3	3018.19	1
35		18	max	0	12	.151	3	.031	1 1.408e-2	_1_	NC	5	NC	2
36			min	727	4	.002	15	0	10 -1.812e-3	3	1186.354	3	7128.016	1
37		19	max	0	12	.192	1	.006	3 1.282e-2	1	NC	1_	NC	1
38			min	727	4	032	3	003	2 -1.963e-3	3	NC	1	NC	1
39	M14	1	max	0	1	.27	3	.006	3 7.702e-3	1	NC	1	NC	1
40			min	551	4	59	1	003	2 -4.169e-3	3	NC	1	NC	1
41		2	max	0	1	.477	3	.021	1 8.992e-3	1	NC	5	NC	1
42			min	551	4	894	1	025	5 -4.955e-3	3	708.588	1	9095.888	5
43		3	max	0	1	.657	3	.056	1 1.028e-2	1	NC	15	NC	2
44		+	min	551	4	-1.164	1	031	5 -5.742e-3	3	376.001	1	3935.397	1
45		4	max	0	1	.79	3	.089	1 1.157e-2	1	NC	15	NC	3
46		+ -		551	4	-1.374	1	022	5 -6.528e-3	3	275.462	1	2452.745	
		-	min		1		3	.108	1 1.286e-2			15		3
47		5	max	0		.866				1	8959.341		NC 2004 700	3
48			min	<u>551</u>	4	<u>-1.51</u>	1	005	5 -7.315e-3	3	234.665	1_	2024.736	
49		6	max	0	1	.885	3	.106	1 1.415e-2	1_		<u>15</u>	NC	3
50			min	551	4	-1.571	1	.005	10 -8.101e-3	3	220.087	1_	2060.937	1
51		7	max	0	1	.855	3	.084	1 1.544e-2	1_		15	NC	3
52			min	<u>551</u>	4	-1.566	1	.002	10 -8.888e-3	3	221.215	1_	2608.569	1
53		8	max	0	1	.794	3	.049	1 1.673e-2	_1_	9024.689	15	NC	2
54			min	551	4	-1.516	1	002	10 -9.674e-3	3	233.211	1	4430.574	4
55		9	max	0	1	.73	3	.032	4 1.802e-2	1	9740.108	15	NC	1
56			min	551	4	-1.452	1	006	10 -1.046e-2	3	250.32	1	6550.764	4
57		10	max	0	1	.698	3	.017	3 1.931e-2	1	NC	15	NC	1
58			min	551	4	-1.42	1	012	2 -1.125e-2	3	260.233	1	NC	1
59		11	max	0	12	.73	3	.018	3 1.802e-2	1	9740.077	15	NC	1
60			min	551	4	-1.452	1	025	5 -1.046e-2	3	250.32	1	9075.895	5
61		12	max	0	12	.794	3	.049	1 1.673e-2	1		15	NC	2
62		12	min	551	4	-1.516	1	03	5 -9.674e-3	3	233.211	1	4564.394	1
63		13	max	<u>551</u>	12	.855	3	.084	1 1.544e-2	1	8513.515	15	NC	3
64		13	min	551	4	-1.566	1	02	5 -8.888e-3	3	221.215	1	2608.569	1
65		14		<u>551</u> 0	12	.885	3	.106	1 1.415e-2	1		15	NC	3
		14	max											
66		4.5	min	<u>551</u>	4	<u>-1.571</u>	1	002	5 -8.101e-3	3	220.087	1_	2060.937	1
67		15	max	0	12	.866	3	.108	1 1.286e-2	1_	8959.005	<u>15</u>	NC	3
68		1.0	min	<u>551</u>	4	-1.51	1	.006	10 -7.315e-3	3	234.665	1_	2024.736	1
69		16	max	0	12	.79	3	.089	1 1.157e-2	_1_	NC	15	NC	3
70			min	551	4	-1.374	1	.005	10 -6.528e-3	3	275.462	1_	2452.745	1
71		17	max	0	12	.657	3	.056	1 1.028e-2	1_	NC	15	NC	2
72			min	551	4	-1.164	1	.003	10 -5.742e-3	3	376.001	1_	3935.397	1
73		18	max	0	12	.477	3	.033	4 8.992e-3	1	NC	5	NC	1
74			min	551	4	894	1	0	10 -4.955e-3	3	708.588	1	6321.922	4
75		19	max	0	12	.27	3	.006	3 7.702e-3	1	NC	1	NC	1
76			min	551	4	59	1	003	2 -4.169e-3	3	NC	1	NC	1
77	M15	1	max	0	12	.277	3	.005	3 3.479e-3	3	NC	1	NC	1
78			min	448	4	589	1	003	2 -7.841e-3	1	NC	1	NC	1
79		2	max	0	12	.421	3	.021	1 4.131e-3	3	NC	5	NC	1
80			min	448	4	917	1	037	5 -9.163e-3	1	658.602	1	6083.432	_
81		3	max	0	12	.549	3	.057	1 4.783e-3	3		15	NC	2
82			min	448	4	-1.205	1	046	5 -1.049e-2	1	350.476	1	3913.774	1
83		4	max	440 0	12	.652	3	046 .09	1 5.435e-3	3	NC	15	NC	3
		4								1				
84		-	min	<u>448</u>	4	<u>-1.426</u>	1	034	5 -1.181e-2	2	257.982	1_	2441.923	
85		5	max	0	12	.722	3	.108	1 6.087e-3	3		<u>15</u>	NC 0040 040	3
86		_	min	448	4	<u>-1.565</u>	1	011	5 -1.313e-2	1_	221.293	1_	2016.343	
87		6	max	0	12	.758	3	.107	1 6.739e-3	3_		<u>15</u>	NC	3
88			min	<u>448</u>	4	<u>-1.62</u>	1	.006	10 -1.445e-2	1_	209.516		2051.704	
89		7	max	0	12	.765	3	.085	1 7.391e-3	3	8530.76	15	NC	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	I.C.	(n) I /v Ratio	I C	(n) I /z Ratio	10
90	WICHIDO		min	448	4	-1.602	1	.003	10 -1.577e-2	1	213.222	1	2593.519	
91		8	max	0	12	.751	3	.06	4 8.043e-3	3		15	NC	2
92			min	449	4	-1.535	1	001	10 -1.71e-2	1	228.217	1	3573.206	
93		9	max	0	12	.728	3	.042	4 8.695e-3	3		15	NC	1
94			min	449	4	-1.457	1	005	10 -1.842e-2	1	248.742	1	5056.653	4
95		10	max	0	1	.716	3	.016	3 9.347e-3	3	NC	15	NC	1
96			min	449	4	-1.418	1	011	2 -1.974e-2	1	260.615	1	NC	1
97		11	max	0	1	.728	3	.017	3 8.695e-3	3	9765.916	15	NC	1
98			min	449	4	-1.457	1	035	5 -1.842e-2	1	248.742	1	6417.854	5
99		12	max	0	1	.751	3	.049	1 8.043e-3	3		<u>15</u>	NC	2
100			min	448	4	<u>-1.535</u>	1	041	5 -1.71e-2	1	228.217	1	4518.77	1
101		13	max	0	1	.765	3	.085	1 7.391e-3	3		<u>15</u>	NC	3
102			min	448	4	-1.602	1	028	5 -1.577e-2	<u>1</u>	213.222	1_	2593.519	
103		14	max	0	1	.758	3	.107	1 6.739e-3	3		15	NC	3
104			min	448	4	-1.62	1	003	5 -1.445e-2	1_	209.516	1_	2051.704	
105		15	max	0	1	.722	3	.108	1 6.087e-3	3		<u>15</u>	NC	3
106			min	448	4	<u>-1.565</u>	1	.007	10 -1.313e-2	1_	221.293	1_	2016.343	
107		16	max	0	1	.652	3	.09	1 5.435e-3	3		<u>15</u>	NC	3
108			min	448	4	-1.426	1	.005	10 -1.181e-2	1_	257.982	1_	2441.923	1
109		17	max	0	1	.549	3	.066	4 4.783e-3	3		<u>15</u>	NC	2
110		10	min	448	4	<u>-1.205</u>	1	.003	10 -1.049e-2	1	350.476	1_	3241.9	4
111		18	max	0	1	.421	3	.045	4 4.131e-3	3	NC	5	NC_	1
112		10	min	448	4	917	1	0	10 -9.163e-3	1_	658.602	1_	4705.75	4
113		19	max	0	1	.277	3	.005	3 3.479e-3	3	NC	1_	NC	1
114	1440		min	448	4	589	1	003	2 -7.841e-3	1	NC	1_	NC	1
115	M16	1	max	0	12	.186	1	.005	3 6.405e-3	3_	NC NC	1	NC NC	1
116			min	143	4	096	3	002	2 -1.206e-2	1	NC NC	1_	NC NC	1
117		2	max	0	12	.023	1	.031	1 7.232e-3	3_	NC	5	NC	2
118			min	143	4	044	3	026	5 -1.314e-2	1	1325.549	1_	7208.657	1
119		3	max	0	12	0	15	.072	1 8.058e-3	3	NC 740,000	5	NC	3
120		4	min	143	4	127	2	033	5 -1.423e-2	1	743.906	1_	3033.809	1
121		4	max	0	12	.011	3	.107	1 8.885e-3	3	NC coo coo	5	NC 0004.50	3
122		_	min	144	4	195	2	026	5 -1.531e-2	1	602.393	1_	2034.52	1
123		5	max	0 144	12	.004	12	.125	1 9.712e-3	3	NC COE 24C	<u>5</u>	NC 1747.157	3
124		6	min		12	197 0	2	011 .12	5 -1.64e-2	<u>1</u> 3	605.216 NC	5		3
125		6	max	0		136	13		1 1.054e-2 15 -1.749e-2				NC 1820.82	1
126 127		7	min	144	12	.03	9	<u>.004</u> .094	15 -1.749e-2 1 1.137e-2	<u>1</u> 3	747.727 NC	3	NC	3
128			max min	0 144	4	081	3	.004	10 -1.857e-2	<u> </u>	1213.79	2	2335.225	1
129		8	max	0	12	.165	1	.054	1 1.219e-2	3	NC	1	NC	2
130		0		144	4	14	3	0	10 -1.966e-2	1	4924.064	3	4086.44	1
131		9	min max	0	12	.294	1	.027	4 1.302e-2	3	NC	5	NC	1
132		3	min	144	4	191	3	005	10 -2.074e-2	1	1993.327	1	7895.664	
133		10	max	0	1	.351	1	.014	3 1.385e-2	3	NC	5	NC	1
134		10	min	144	4	213	3	014	2 -2.183e-2	1	1303.03	1	NC	1
135		11	max	0	1	.294	1	.015	1 1.302e-2	3	NC	5	NC	1
136			min	144	4	191	3	02	5 -2.074e-2	1	1993.327	1	NC	1
137		12	max	0	1	.165	1	.054	1 1.219e-2	3	NC	1	NC	2
138		14	min	143	4	14	3	021	5 -1.966e-2	1	4924.064	3	4086.44	1
139		13	max	0	1	.03	9	.094	1 1.137e-2	3	NC	3	NC	3
140		10	min	143	4	081	3	01	5 -1.857e-2	1	1213.79	2	2335.225	
141		14	max	0	1	0	13	.12	1 1.054e-2	3	NC	5	NC	3
142			min	143	4	136	2	.005	15 -1.749e-2	1	747.727	2	1820.82	1
143		15	max	0	1	.004	12	.125	1 9.712e-3	3	NC	5	NC	3
144		10	min	143	4	197	2	.008	10 -1.64e-2	1	605.216	1	1747.157	1
145		16	max	0	1	.011	3	.107	1 8.885e-3	3	NC	5	NC	3
146			min	143	4	195	2	.007	10 -1.531e-2	1	602.393	1	2034.52	1
170			1111111	.170	т.	.100		.007	10 1.0010-2		302.000		2007.02	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

147	Member	Sec 17	max	x [in]	LC 1	y [in] 0	LC 15	z [in] .072	LC 1	x Rotate [r 8.058e-3	LC 3	(n) L/y Ratio	LC 5	(n) L/z Ratio	LC 3
148		1/	min	143	4	127	2	.004	10	-1.423e-2	1	743.906	1	3033.809	1
149		18	max	0	1	.023	1	.037	4	7.232e-3	3	NC	5	NC	2
150		10	min	143	4	044	3	0	10	-1.314e-2	1	1325.549	1	5760.585	
151		19	max	0	1	.186	1	.005	3	6.405e-3	3	NC	1	NC	1
152		13	min	143	4	096	3	002	2	-1.206e-2	1	NC	1	NC	1
153	M2	1	max	.006	1	.005	2	.01	1	2.538e-3	5	NC		NC	2
154	IVIZ	<u>'</u>	min	006	3	009	3	683	4	-2.247e-4	1	NC	1	88.728	4
155		2	max	.006	1	.004	2	.009	1	2.546e-3	5	NC	1	NC	2
156			min	005	3	009	3	626	4	-2.104e-4	1	NC	1	96.695	4
157		3	max	.006	1	.003	2	.008	1	2.553e-3	5	NC	1	NC	2
158			min	005	3	008	3	57	4	-1.962e-4	1	NC	1	106.173	4
159		4	max	.005	1	.003	2	.008	1	2.56e-3	5	NC	-	NC	2
160		+-	min	005	3	008	3	515	4	-1.819e-4	1	NC NC	1	117.558	4
161		5	max	.005	1	.002	2	.007	1	2.567e-3	5	NC	1	NC	2
162		- 5	min	004	3	008	3	461	4	-1.677e-4	1	NC NC	1	131.391	4
163		6	max	.005	1	.001	2	.006	1	2.575e-3	5	NC	1	NC	1
164		-	min	004	3	008	3	408	4	-1.535e-4	1	NC	1	148.426	4
165		7	max	.004	1	008	2	.005	1	2.584e-3	4	NC	1	NC	1
166				004	3	007	3	357	4	-1.392e-4	1	NC NC	1	169.731	4
167		8	min	.004	1	<u>007</u> 0	2	.004	1	2.595e-3	4	NC NC	1	NC	1
168		0	max	003	3	007	3	308	4	-1.25e-4	1	NC NC	1	196.874	4
		9	min		1		15		1			NC NC	1	NC	1
169		9	max	.004	3	0	3	.004		2.606e-3	4		1		_
170		40	min	003		007		261	4	-1.108e-4	1_	NC NC	_	232.222	4
171		10	max	.003	1	0	15	.003	1	2.617e-3	4	NC NC	1	NC 270, 400	1
172		4.4	min	003	3	006	3	217	4	-9.655e-5	1_	NC NC	1_	279.496	4
173		11	max	.003	1	0	15	.003	1	2.628e-3	4	NC	1	NC 044.040	1
174		40	min	002	3	006	3	176	4	-8.231e-5	1_	NC NC	1_	344.818	4
175		12	max	.002	1	0	15	.002	1	2.639e-3	4_	NC	1_	NC 400.055	1
176		40	min	002	3	005	3	138	4	-6.808e-5	1_	NC NC	1_	438.855	4
177		13	max	.002	1	0	15	.001	1	2.65e-3	4	NC NC	1	NC FOA FOO	1
178		4.4	min	002	3	005	3	104	4	-5.384e-5	1_	NC NC	1_	581.592	4
179		14	max	.002	1	0	15	.001	1	2.661e-3	4	NC NC	1	NC 044400	1
180		4.5	min	002	3	004	3	074	4	-3.961e-5	1_	NC	1_	814.188	4
181		15	max	.001	1	0	15	0	1	2.672e-3	4_	NC NC	1_	NC 4000 400	1
182		40	min	001	3	004	3	049	4	-2.538e-5	1_	NC NC	1_	1233.136	4
183		16	max	.001	1	0	15	0	1	2.683e-3	4_	NC	1	NC	1
184			min	0	3	003	3	029	4	-1.114e-5	_1_	NC	1_	2111.894	
185		17	max	0	1	0	15	0	1	2.694e-3	4_	NC	1	NC	1
186		4.0	min	0	3	002	6	013	4	-3.195e-7	3_	NC	1_	4506.999	4
187		18	max		1	0	15	0	1	2.705e-3		NC	1	NC	$\frac{1}{4}$
188		40	min	0	3	001	6	004	4	5.459e-7	12	NC NC	1_	NC NC	1
189		19	max	0	1	0	1	0	1	2.716e-3	4	NC	1_	NC	1
190	140		min	0	1	0	1	0	1	1.285e-6	12	NC	1_	NC	1
191	<u>M3</u>	1	max	0	1	0	1	0	1	-4.117e-7	12	NC	_1_	NC	1
192			min	0	1	0	1	0	1	-5.239e-4	4_	NC	1_	NC	1
193		2	max	0	3	0	15	.015	4	1.806e-4	4_	NC	_1_	NC	1
194			min	0	2	002	6	0	12	8.954e-7	12	NC	1_	NC	1
195		3	max	0	3	001	15	.03	4	8.851e-4	4	NC	1_	NC	1
196			min	0	2	005	6	0	12	2.203e-6	12	NC	1_	NC	1
197		4	max	0	3	002	15	.044	4	1.59e-3	4_	NC	_1_	NC	1
198			min	0	2	008	6	0	12	3.51e-6	12	NC	1_	NC	1
199		5	max	.001	3	002	15	.057	4	2.294e-3	4_	NC	1_	NC	1
200			min	0	2	011	6	0	12	4.817e-6		9469.175	6	8933.566	5
201		6	max	.001	3	003	15	.071	4	2.999e-3	4_	NC	_1_	NC	1
202			min	001	2	014	6	0	12	6.124e-6	12	7584.45	<u>6</u>	7816.494	
203		7	max	.002	3	004	15	.083	4	3.703e-3	4	NC	5	NC	1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 3, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
204			min	001	2	016	6	0	12	7.431e-6		6454.681	6	7218.288	
205		8	max	.002	3	004	15	.095	4	4.408e-3	4	NC F7F7 07F	5	NC 0057.04	1
206			min	001	2	018	6	0	12	8.738e-6		5757.275	6	6957.64	5
207		9	max	.002	3	004	15	.107	4	5.112e-3	4	NC	5	NC COC4 4CF	1
208		10	min	002 .002	3	019 004	15	<u> </u>	12	1.005e-5	12 4	5340.857 NC	<u>6</u> 5	6961.465 NC	<u>5</u>
210		10	max	002	2	004 02	6	0	12	5.817e-3 1.135e-5	12	5131.57	6	7214.749	
211		11	min max	.002	3	02 004	15	.128	4	6.521e-3	4	NC	5	NC	1
212			min	002	2	004 02	6	0	12	1.266e-5		5098.089	6	7748.077	5
213		12	max	.002	3	004	15	.139	4	7.225e-3	4	NC	5	NC	1
214		12	min	002	2	02	6	0	12	1.397e-5		5239.533	6	8646.525	_
215		13	max	.002	3	004	15	.148	4	7.93e-3	4	NC	5	NC	1
216		10	min	002	2	018	6	0	12	1.527e-5		5586.601	6	NC	1
217		14	max	.004	3	004	15	.158	4	8.634e-3	4	NC	5	NC	1
218			min	003	2	017	6	0	12	1.658e-5	12	6217.903	6	NC	1
219		15	max	.004	3	003	15	.168	4	9.339e-3	4	NC	3	NC	1
220			min	003	2	014	6	0	12	1.789e-5	12	7309.298	6	NC	1
221		16	max	.004	3	002	15	.177	4	1.004e-2	4	NC	1	NC	1
222			min	003	2	011	6	0	12	1.92e-5	12	9287.94	6	NC	1
223		17	max	.004	3	002	15	.187	4	1.075e-2	4	NC	1	NC	1
224			min	003	2	008	1	0	12	2.05e-5	12	NC	1	NC	1
225		18	max	.005	3	0	15	.197	4	1.145e-2	4	NC	1	NC	1
226			min	004	2	006	1	0	12	2.181e-5	12	NC	1	NC	1
227		19	max	.005	3	0	5	.208	4	1.216e-2	4	NC	1	NC	1
228			min	004	2	003	1	0	12	2.312e-5	12	NC	1	NC	1
229	M4	1	max	.003	1	.003	2	0	12	7.751e-5	1	NC	1_	NC	3
230			min	0	3	005	3	208	4	-1.06e-3	4	NC	1	119.197	4
231		2	max	.003	1	.003	2	00	12	7.751e-5	1	NC	1_	NC	3
232			min	0	3	005	3	191	4	-1.06e-3	4	NC	1_	129.797	4
233		3	max	.002	1	.003	2	0	12	7.751e-5	1	NC	1_	NC	3
234			min	0	3	004	3	174	4	-1.06e-3	4	NC	1_	142.402	4
235		4	max	.002	1	.003	2	0	12	7.751e-5	1	NC	1_	NC	3
236			min	0	3	004	3	<u>157</u>	4	-1.06e-3	4	NC	1_	157.534	4
237		5	max	.002	1	.003	2	0	12	7.751e-5	1	NC	1_	NC 475.004	2
238			min	0	3	004	3	<u>141</u>	4	-1.06e-3	4	NC NC	1_	175.904	4
239		6	max	.002	1	.002	2	0	12	7.751e-5	1	NC NC	1	NC	2
240		7	min	0	3	004	3	125	4	-1.06e-3	4	NC NC	1	198.496	4
241			max	.002	3	.002	3	0	12	7.751e-5	11	NC NC	1	NC	2
242 243		8	min	.002	1	003 .002	2	109 0	12	-1.06e-3 7.751e-5	<u>4</u> 1	NC NC	1	226.708 NC	2
244		0	max min		3	003	3	094		-1.06e-3		NC NC	1	262.579	
245		9	max	.002	1	.002	2	094 _ 0	12	7.751e-5	1	NC	1	NC	2
246		9	min	0	3	003	3	08	4	-1.06e-3	4	NC NC	1	309.179	4
247		10	max	.001	1	.002	2	<u>00</u>	12	7.751e-5	1	NC	1	NC	2
248		10	min	0	3	003	3	067	4	-1.06e-3	4	NC	1	371.309	4
249		11	max	.001	1	.003	2	<u>.007</u>	12	7.751e-5	1	NC	1	NC	1
250			min	0	3	002	3	054	4	-1.06e-3	4	NC	1	456.82	4
251		12	max	.001	1	.001	2	0	12	7.751e-5	1	NC	1	NC	1
252			min	0	3	002	3	043	4	-1.06e-3	4	NC	1	579.3	4
253		13	max	0	1	.001	2	0	12	7.751e-5	1	NC	1	NC	1
254			min	0	3	002	3	032	4	-1.06e-3	4	NC	1	763.973	4
255		14	max	0	1	0	2	0	12	7.751e-5	1	NC	1	NC	1
256			min	0	3	001	3	023	4	-1.06e-3	4	NC	1	1062.166	
257		15	max	0	1	0	2	0	12	7.751e-5	1	NC	1	NC	1
258			min	0	3	001	3	016	4	-1.06e-3	4	NC	1	1592.228	4
259		16	max	0	1	0	2	0	12	7.751e-5	1	NC	1	NC	1
260					3		3					NC			

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

004	Member	Sec	1	x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio	LC		
261		17	max	0	1	0	2	0	12	7.751e-5	1	NC	1_	NC 5540.77	1
262		10	min	0	3	0	3	004	4	-1.06e-3	4_	NC	1_	5543.77	4
263		18	max	0	1	0	2	0	12	7.751e-5	1	NC	_1_	NC	1
264			min	0	3	0	3	001	4	-1.06e-3	4	NC	1_	NC	1
265		19	max	00	1	00	1	0	1_	7.751e-5	_1_	NC	_1_	NC	1_
266			min	0	1	0	1	0	1	-1.06e-3	4_	NC	1_	NC	1
267	M6	1	max	.02	1	.02	2	0	1	2.654e-3	4	NC	3	NC	1
268			min	018	3	027	3	69	4	0	1_	3040.197	2	87.821	4
269		2	max	.019	1	.018	2	0	1	2.658e-3	4	NC	3	NC	1
270			min	017	3	026	3	633	4	0	1	3347.602	2	95.708	4
271		3	max	.018	1	.016	2	0	1	2.662e-3	4	NC	3	NC	1
272			min	016	3	024	3	576	4	0	1	3721.061	2	105.089	4
273		4	max	.017	1	.014	2	0	1	2.665e-3	4	NC	3	NC	1
274			min	015	3	023	3	52	4	0	1	4180.472	2	116.359	4
275		5	max	.016	1	.013	2	0	1	2.669e-3	4	NC	3	NC	1
276			min	014	3	021	3	466	4	0	1	4754.096	2	130.052	4
277		6	max	.014	1	.011	2	0	1	2.673e-3	4	NC	3	NC	1
278			min	013	3	02	3	412	4	0	1	5483.201	2	146.913	4
279		7	max	.013	1	.009	2	0	1	2.677e-3	4	NC	1	NC	1
280			min	012	3	019	3	36	4	0	1	6430.043	2	168.003	4
281		8	max	.012	1	.008	2	<u>.00</u> 0	1	2.68e-3	4	NC	1	NC	1
282			min	011	3	017	3	311	4	0	1	7692.298	2	194.871	4
283		9	max	.011	1	.006	2	0	1	2.684e-3	4	NC	1	NC	1
284		Ť	min	01	3	016	3	263	4	0	1	9430.74	2	229.863	4
285		10	max	.01	1	.005	2	0	1	2.688e-3	4	NC	1	NC	1
286		10	min	009	3	014	3	219	4	0	1	NC	1	276.66	4
287		11	max	.009	1	.004	2	0	1	2.692e-3	4	NC	1	NC	1
288			min	008	3	013	3	177	4	0	1	NC	1	341.323	4
289		12	max	.008	1	.003	2	0	1	2.695e-3	4	NC	1	NC	1
290		12	min	007	3	011	3	139	4	0	1	NC	1	434.413	4
291		13	max	.007	1	.002	2	0	1	2.699e-3	4	NC	1	NC	1
292		13	min	006	3	01	3	105	4	0	1	NC	1	575.714	4
293		14	max	.006	1	.001	2	0	1	2.703e-3	4	NC	1	NC	1
294		14	min	005	3	008	3	075	4	0	1	NC	1	805.976	4
295		15	max	.004	1	008	2	<u>073</u> 0	1	2.707e-3	4	NC	1	NC	1
296		13	min	004	3	007	3	05	4	0	1	NC	1	1220.731	4
297		16		.003	1	0	2	<u>05</u> 0	1	2.71e-3	4	NC	1	NC	1
298		10	max	003	3	005	3	029	4	0	1	NC NC	1	2090.727	4
		17	min		1	<u>005</u> 0	2		1		•	NC NC	1	NC	1
299		17	max	.002	3			0		2.714e-3	<u>4</u> 1		1		_
300		40	min	002		003	3	<u>014</u>	4	0 7400 0		NC NC	1_	4462.112	4
301		18		.001	1	0	2	0	1	2.718e-3	4	NC NC	1	NC NC	1
302		40	min	0	3	002	3	004	4	0 704 - 0	1_1	NC NC	1_	NC NC	1
303		19	max	0	1	0	1	0	1	2.721e-3	4	NC	1	NC NC	1
304	1.47	1	min	0	1	0	1	0	1	0	1	NC	1_	NC NC	1
305	<u>M7</u>	1	max	0	1	0	1	0	1	0	1	NC NC	1_	NC NC	1
306			min	0	1	0	1	0	1	-5.238e-4	4	NC NC	1_	NC NC	1
307		2	max	0	3	0	15	.015	4	1.607e-4	4	NC NC	1_1	NC NC	1
308		_	min	0	2	003	3	0	1	0 4500 4	1_1	NC NC	1_	NC NC	1
309		3	max	.002	3	001	15	.03	4	8.452e-4	4	NC NC	1_	NC NC	1
310		_	min	002	2	006	3	0	1	0	1_1	NC NC	1_1	NC NC	1
311		4	max	.003	3	002	15	.044	4	1.53e-3	4	NC NC	1_	NC	1
312		-	min	002	2	009	3	0	1	0	1	NC NC	1_	9881.833	
313		5	max	.003	3	003	15	.058	4	2.214e-3	4	NC	1_	NC 7000 004	1
314		_	min	003	2	011	3	0	1	0	1_	9537.557	4	7969.381	4
315		6	max	.004	3	003	15	.071	4	2.899e-3	4	NC 7000 744	1_	NC COOO FOE	1
316		-	min	004	2	014	4	0	1	0	1_1	7633.744	4_	6932.505	
317		7	max	.005	3	004	15	.083	4	3.583e-3	4	NC	_1_	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC	(n) L/y Ratio			
318			min	005	2	016	4	0	1	0	_1_	6492.93	4	6358.687	4
319		8	max	.006	3	004	15	.095	4	4.268e-3	_4_	NC	2	NC	1_
320			min	006	2	018	4	0	1	0	1_	5788.72	4_	6080.532	4
321		9	max	.007	3	005	15	.106	4	4.952e-3	4	NC	5	NC	1
322			min	006	2	02	4	0	1	0	1_	5367.992	4	6027.033	4
323		10	max	.008	3	005	15	.117	4	5.637e-3	_4_	NC	5_	NC	1_
324			min	007	2	021	4	0	1	0	1	5156.019	4	6176.853	
325		11	max	.008	3	005	15	.127	4	6.321e-3	_4_	NC	5_	NC	1_
326			min	008	2	021	4	0	1	0	1	5121.034	4	6544.606	4
327		12	max	.009	3	005	15	.137	4	7.006e-3	4	NC	5_	NC	1_
328			min	009	2	02	4	0	1	0	_1_	5261.958	4	7183.89	4
329		13	max	.01	3	004	15	.147	4	7.69e-3	4	NC	5	NC	1_
330			min	01	2	019	4	0	1	0	1_	5609.482	4	8207.683	
331		14	max	.011	3	004	15	.156	4	8.375e-3	4	NC	2	NC	1
332			min	01	2	017	4	0	1	0	1	6242.421	4	9842.225	4
333		15	max	.012	3	003	15	.165	4	9.059e-3	4	NC	_1_	NC	1_
334			min	011	2	015	4	0	1	0	1_	7337.215	4	NC	1
335		16	max	.013	3	003	15	.173	4	9.744e-3	4	NC	_1_	NC	1_
336			min	012	2	012	4	0	1	0	1	9322.513	4	NC	1
337		17	max	.014	3	002	15	.182	4	1.043e-2	4	NC	1_	NC	1_
338			min	013	2	01	1	0	1	0	1	NC	1	NC	1
339		18	max	.014	3	001	15	.191	4	1.111e-2	4	NC	1	NC	1
340			min	014	2	008	1	0	1	0	1	NC	1	NC	1
341		19	max	.015	3	0	15	.201	4	1.18e-2	4	NC	1	NC	1
342			min	014	2	006	1	0	1	0	1	NC	1	NC	1
343	M8	1	max	.008	1	.013	2	0	1	0	1	NC	1	NC	1
344			min	001	3	015	3	201	4	-1.178e-3	4	NC	1	123.351	4
345		2	max	.007	1	.012	2	0	1	0	1	NC	1	NC	1
346			min	001	3	014	3	185	4	-1.178e-3	4	NC	1	134.332	4
347		3	max	.007	1	.012	2	0	1	0	1	NC	1	NC	1
348			min	001	3	014	3	168	4	-1.178e-3	4	NC	1	147.388	4
349		4	max	.006	1	.011	2	0	1	0	1	NC	1	NC	1
350			min	001	3	013	3	152	4	-1.178e-3	4	NC	1	163.063	4
351		5	max	.006	1	.01	2	0	1	0	1	NC	1	NC	1
352			min	001	3	012	3	136	4	-1.178e-3	4	NC	1	182.09	4
353		6	max	.006	1	.01	2	0	1	0	1	NC	1	NC	1
354			min	001	3	011	3	121	4	-1.178e-3	4	NC	1	205.49	4
355		7	max	.005	1	.009	2	0	1	0	1	NC	1	NC	1
356			min	0	3	01	3	106	4	-1.178e-3	4	NC	1	234.711	4
357		8	max	.005	1	.008	2	0	1	0	1	NC	1	NC	1
358			min	0	3	009	3	091	4	-1.178e-3	4	NC	1	271.865	4
359		9	max	.004	1	.007	2	0	1	0	1	NC	1	NC	1
360			min	0	3	009	3	077	4	-1.178e-3	4	NC	1	320.132	4
361		10	max	.004	1	.007	2	0	1	0	1	NC	1	NC	1
362		'	min	0	3	008	3	065	4	-1.178e-3	4	NC	1	384.483	4
363		11	max	.003	1	.006	2	<u>.003</u> 0	1	0	1	NC	1	NC	1
364			min	0	3	007	3	052	4	-1.178e-3	4	NC	1	473.054	4
365		12	max	.003	1	.005	2	0	1	0	1	NC	1	NC	1
366		14	min	0	3	006	3	041	4	-1.178e-3	4	NC	1	599.918	4
367		13	max	.003	1	.004	2	<u>041</u> 0	1	0	1	NC	1	NC	1
368		13	min	0	3	00 4	3	031	4	-1.178e-3	4	NC	1	791.204	4
369		14		.002	1	.003	2	<u>031</u> 0	1	0	1	NC	1	NC	1
370		14	max min	.002	3	004	3	023	4	-1.178e-3	4	NC NC	1	1100.081	4
371		15		.002	1	.003	2	<u>023</u> 0	1	0	_ 4 _	NC NC	1	NC	1
		10	max		3				4	-1.178e-3	_		1	1649.147	
372		16	min	0		003	3	<u>015</u>			4	NC NC	_		
373		16	max	.001	1	.002	2	0	1	0	1_1	NC NC	1	NC	1
374			min	0	3	003	3	009	4	-1.178e-3	4	NC	1_	2777.434	4

Model Name

: Schletter, Inc. : HCV

Oteredend DV/Mer

: Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		LC
375		17	max	0	1	.001	2	0	1	0	1_	NC	1_	NC	1
376			min	0	3	002	3	004	4	-1.178e-3	4	NC	1_	5742.618	4
377		18	max	0	1	0	2	0	1	0	1	NC	1	NC	1
378			min	0	3	0	3	001	4	-1.178e-3	4	NC	1	NC	1
379		19	max	0	1	0	1	0	1	0	1	NC	1	NC	1
380			min	0	1	0	1	0	1	-1.178e-3	4	NC	1	NC	1
381	M10	1	max	.006	1	.005	2	0	12	2.636e-3	4	NC	1	NC	2
382	IVITO		min	006	3	009	3	688	4	1.202e-5	12	NC	1	88.049	4
383		2		.006	1	.004	2	<u>000</u>	12	2.639e-3	4	NC	1	NC	2
			max		3	009	3					NC	1		
384			min	005				<u>631</u>	4	1.129e-5	12			95.955	4
385		3	max	.006	1	.003	2	0	12	2.643e-3	4	NC	1_	NC	2
386			min	005	3	008	3	575	4	1.055e-5	12	NC	1_	105.361	4
387		4	max	.005	1	.003	2	0	12	2.646e-3	4_	NC	_1_	NC	2
388			min	005	3	008	3	519	4	9.806e-6	12	NC	1	116.66	4
389		5	max	.005	1	.002	2	0	12	2.65e-3	4	NC	1	NC	2
390			min	004	3	008	3	464	4	9.067e-6	12	NC	1	130.388	4
391		6	max	.005	1	.001	2	0	12	2.653e-3	4	NC	1	NC	1
392			min	004	3	008	3	411	4	8.327e-6	12	NC	1	147.293	4
393		7	max	.004	1	0	2	0	12	2.657e-3	4	NC	1	NC	1
394			min	004	3	007	3	36	4	7.588e-6	12	NC	1	168.437	4
395		8		.004	1	<u>007</u> 0	2	_ 30 0	12	2.66e-3	4	NC	1	NC	1
		-	max												
396			min	003	3	007	3	<u>31</u>	4	6.849e-6	12	NC	1_	195.375	4
397		9	max	.004	1	0	2	0	12	2.664e-3	_4_	NC	1_	NC	1
398			min	003	3	007	3	263	4	6.109e-6	12	NC	1_	230.457	4
399		10	max	.003	1	001	2	0	12	2.667e-3	4	NC	1_	NC	1
400			min	003	3	006	3	218	4	5.37e-6	12	NC	1	277.375	4
401		11	max	.003	1	002	15	0	12	2.671e-3	4	NC	1	NC	1
402			min	002	3	006	3	177	4	4.63e-6	12	NC	1	342.206	4
403		12	max	.002	1	001	15	0	12	2.674e-3	4	NC	1	NC	1
404		'-	min	002	3	005	3	139	4	3.891e-6	12	NC	1	435.538	4
405		13	max	.002	1	001	15	0	12	2.678e-3	4	NC	1	NC	1
406		13	min	002	3	005	4	105	4	3.151e-6	12	NC	1	577.207	4
		4.4											•		
407		14	max	.002	1	001	15	0	12	2.682e-3	4	NC	1_	NC 000.074	1
408			min	002	3	005	4	075	4	2.412e-6	12	NC	1_	808.071	4
409		15	max	.001	1	001	15	0	12	2.685e-3	4	NC	1_	NC	1
410			min	001	3	004	4	049	4	1.672e-6	12	NC	1_	1223.916	4
411		16	max	.001	1	0	15	0	12	2.689e-3	4	NC	_1_	NC	1
412			min	0	3	003	4	029	4	8.285e-7	10	NC	1	2096.217	4
413		17	max	0	1	0	15	0	12	2.692e-3	4	NC	1	NC	1
414			min	0	3	002	4	014	4	-3.092e-6	1	NC	1	4473.982	4
415		18	max	0	1	0	15	0		2.696e-3	4	NC	1	NC	1
416		10	min	0	3	001	4	004	4	-1.733e-5	1	NC	1	NC	1
417		19	max	0	1	0	1	004	1	2.699e-3	4	NC	1	NC	1
		13		0	1	0	1	0	1			NC NC	1	NC NC	1
418	N 1 4 4	4	min						-	-3.156e-5	1_				
419	<u>M11</u>	1	max	0	1	0	1	0	1	9.62e-6	1_1	NC NC	1	NC NC	1
420			min	0	1	0	1	0	1	-5.187e-4	4	NC	1_	NC	1
421		2	max	0	3	0	15	.015	4	1.706e-4	_4_	NC	_1_	NC	1
422			min	0	2	003	4	0	1	-1.903e-5	1	NC	1_	NC	1
423		3	max	0	3	001	15	.029	4	8.598e-4	4	NC	1_	NC	1
424			min	0	2	006	4	0	1	-4.768e-5	1	NC	1	NC	1
425		4	max	0	3	002	15	.044	4	1.549e-3	4	NC	1	NC	1
426			min	0	2	009	4	0	1	-7.633e-5	1	NC	1	NC	1
427		5	max	.001	3	003	15	.057	4	2.238e-3	4	NC	1	NC	1
428			min	0	2	012	4	0	1	-1.05e-4	1	9036.891	4	8570.361	4
		G		•				.07			•	NC	1	NC	
429		6	max	.001	3	004	15		4	2.928e-3	4				1
430		-	min	001	2	014	4	001	1	-1.336e-4	1_	7271.191	4_	7486.056	
431		7	max	.002	3	004	15	.083	4	3.617e-3	4	NC	5	NC	_1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 3, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC				
432			min	001	2	017	4	001	1	-1.623e-4	1_	6210.585	4	6899.013	
433		8	max	.002	3	005	15	.094	4	4.306e-3	4	NC	5	NC	1
434			min	001	2	<u>019</u>	4	002	1	-1.909e-4	_1_	5555.921	<u>4</u>	6633.487	4
435		9	max	.002	3	005	15	.106	4	4.995e-3	4_	NC 5400 044	5	NC	1
436		40	min	002	2	02	4	002	1	-2.196e-4	1_	5166.611	<u>4</u>	6617.332	4
437		10	max	.002	3	005	15	.117	4	5.685e-3	4	NC 4974.2	5	NC 6933 303	4
438 439		11	min	002 .003	3	021 005	15	002 .127	4	-2.482e-4	<u>1</u> 4	4974.2 NC	<u>4</u> 5	6833.202 NC	1
440		+	max	002	2	005 021	4	003	1	6.374e-3 -2.769e-4	1	4950.115	4	7305.594	
441		12	max	.002	3	021 005	15	.137	4	7.063e-3	4	NC	5	NC	1
442		12	min	002	2	005 021	4	003	1	-3.055e-4	1	5094.676	4	8107.389	-
443		13	max	.003	3	005	15	.146	4	7.753e-3	4	NC	5	NC	1
444		13	min	002	2	003	4	004	1	-3.342e-4	1	5438.596	4	9388.906	
445		14	max	.002	3	004	15	.156	4	8.442e-3	4	NC	5	NC	1
446		17	min	003	2	018	4	005	1	-3.628e-4	1	6059.123	4	NC	1
447		15	max	.004	3	004	15	.165	4	9.131e-3	4	NC	3	NC	1
448			min	003	2	015	4	005	1	-3.915e-4	1	7128.341	4	NC	1
449		16	max	.004	3	003	15	.174	4	9.82e-3	4	NC	1	NC	1
450			min	003	2	012	4	006	1	-4.201e-4	1	9063.678	4	NC	1
451		17	max	.004	3	002	15	.183	4	1.051e-2	4	NC	1	NC	1
452			min	003	2	009	4	007	1	-4.488e-4	1	NC	1	NC	1
453		18	max	.005	3	001	15	.193	4	1.12e-2	4	NC	1	NC	1
454			min	004	2	006	1	008	1	-4.774e-4	1	NC	1	NC	1
455		19	max	.005	3	0	10	.203	4	1.189e-2	4	NC	1	NC	1
456			min	004	2	003	1	009	1	-5.061e-4	1	NC	1	NC	1
457	M12	1	max	.003	1	.003	2	.009	1	-3.883e-6	12	NC	1_	NC	3
458			min	0	3	005	3	203	4	-1.101e-3	4	NC	1_	122.099	4
459		2	max	.003	1	.003	2	.009	1	-3.883e-6	12	NC	_1_	NC	3
460			min	0	3	005	3	187	4	-1.101e-3	4	NC	1	132.961	4
461		3	max	.002	1	.003	2	.008	1	-3.883e-6	<u>12</u>	NC	_1_	NC	3
462			min	0	3	004	3	<u>17</u>	4	-1.101e-3	4	NC	1_	145.877	4
463		4	max	.002	1	.003	2	.007	1	-3.883e-6	12	NC	1	NC	3
464		-	min	0	3	004	3	<u>154</u>	4	-1.101e-3	4_	NC	1_	161.382	4
465		5	max	.002	1	.003	2	.006	1	-3.883e-6	12	NC	1	NC 400,005	2
466			min	0	3	004	3	138	4	-1.101e-3	4	NC NC	1_	180.205	4
467		6	max	.002	1	.002	2	.006	1	-3.883e-6	12	NC NC	1	NC 202.252	2
468		7	min	0	3	<u>004</u>	3	122	4	-1.101e-3	4	NC NC	1	203.353 NC	2
469			max	.002	3	.002	3	.005	1 4	-3.883e-6	12		1		
470 471		8	min	.002	1	003 .002	2	107 .004	1	-1.101e-3 -3.883e-6	<u>4</u> 12	NC NC	1	232.261 NC	2
471		0	max min		3	003	3	092		-3.003e-0		NC NC	1	269.016	
473		9	max	.002	1	.002	2	.004	1	-3.883e-6		NC	1	NC	2
474		-	min	0	3	003	3	078	4	-1.101e-3		NC	1	316.765	4
475		10	max	.001	1	.002	2	.003	1	-3.883e-6		NC	1	NC	2
476		10	min	0	3	003	3	065	4	-1.101e-3	4	NC	1	380.426	4
477		11	max	.001	1	.001	2	.002	1	-3.883e-6		NC	1	NC	1
478			min	0	3	002	3	053	4	-1.101e-3		NC	1	468.045	4
479		12	max	.001	1	.001	2	.002	1	-3.883e-6		NC	1	NC	1
480			min	0	3	002	3	042	4	-1.101e-3		NC	1	593.545	4
481		13	max	0	1	.001	2	.001	1	-3.883e-6		NC	1	NC	1
482			min	0	3	002	3	032	4	-1.101e-3		NC	1	782.772	4
483		14	max	0	1	0	2	.001	1	-3.883e-6		NC	1	NC	1
484			min	0	3	001	3	023	4	-1.101e-3		NC	1	1088.32	4
485		15	max	0	1	0	2	0	1	-3.883e-6		NC	1	NC	1
486			min	0	3	001	3	015	4	-1.101e-3	4	NC	1	1631.46	4
487		16	max	0	1	0	2	0	1	-3.883e-6	12	NC	1	NC	1
488			min	0	3	0	3	009	4	-1.101e-3	4	NC	1	2747.547	4

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 3, 2015

Checked By:_

489		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
491	489		17	max	0	1	0	2	0	1	-3.883e-6		NC	1_	NC	1
May May	490			min	0	3	0	3	004	4	-1.101e-3	4	NC	1_	5680.587	4
199	491		18	max	0	1	0	2	0	1	-3.883e-6	12	NC	1	NC	1
494	492			min	0	3	0	3	001	4	-1.101e-3	4	NC	1	NC	1
494	493		19	max	0	1	0	1	0	1	-3.883e-6	12	NC	1	NC	1
1985				min	0	1	0	1	0	1		4	NC	1	NC	1
A96		M1	1		.006	3	.192	1		4		1		1		1
1987																
A98			2									_		•		
Section Sect								_								
Sol			3							_						•
SOI			- 3													
502			1											•		1
503			4													-
504			-													
506			5													_
Solid														•		
507			6							4				<u>15</u>		
508				min				1		1		3		_		5
Solution Solution	507		7	max	.006		.211	3	.587	4	1.918e-2	1		15	NC	1
Still	508			min	003	2	478	1	0	3	-1.315e-2	3	200.763	1	2446.132	4
511	509		8	max	.006	3	.256	3	.562	4	2.403e-2	1	5692.032	15	NC	1
511	510			min	003	2	564	1	0	12	-1.642e-2	3	178.046	1	2173.82	4
512	511		9	max	.006	3	.285	3	.534	4		1		15	NC	1
514																4
514			10						•			_		•		
515			10													
516			11											•		1
517			1 ' '													1
518 min 003 2 562 1 001 1 -1.132e-2 3 178.657 1 2141.226 4 519 13 max .005 3 .226 3 .39 4 2.088e-2 1 6392.428 15 NC 1 520 min 002 2 475 1 0 1 -9.056e-3 3 202.246 1 2550.001 4 521 14 max .005 3 .175 3 .344 4 1.581e-2 1 7576.583 15 NC 1 522 min 002 2 366 1 0 12 -6.793e-3 3 242.378 1 3458.069 4 523 15 max .005 3 .06 3 .297 4 1.075e-2 1 9581.57 15 NC 1 526 min 002 2 12 1			12					•								
519			12								2.594 0- 2					
S20			12							•				•		
521 14 max .005 3 .175 3 .344 4 1.581e-2 1 7576.583 15 NC 1 522 min 002 2 366 1 0 12 -6,793e-3 3 242.378 1 3458.069 4 523 15 max .005 3 .119 3 .297 4 1.075e-2 1 9581.57 15 NC 1 524 min 002 2 244 1 0 12 4.529e-3 3 310.937 1 5635.695 4 525 16 max .005 3 .063 3 .251 4 1.001e-2 4 NC 15 NC 1 526 min 002 2 12 1 0 12 -2.266e-3 3 436.592 1 NC 1 528 min 002 2			13													
522 min 002 2 366 1 0 12 -6.793e-3 3 242.378 1 3458.069 4 523 15 max .005 3 .119 3 .297 4 1.075e-2 1 9581.57 15 NC 1 524 min 002 2 244 1 0 12 -4.529e-3 3 310.937 1 5635.695 4 525 16 max .005 3 .06 3 .251 4 1.001e-2 4 NC 15 NC 1 526 min 002 2 005 2 0 12 -2.266e-3 3 436.592 1 NC 1 527 17 max .005 3 .003 3 .209 4 1.114e-2 4 NC 5 NC 1 528 min 002 2 -			4.4													4
523 15 max .005 3 .119 3 .297 4 1.075e-2 1 9581.57 15 NC 1 524 min 002 2 244 1 0 12 -4.529e-3 3 310.937 1 5635.695 4 525 16 max .005 3 .06 3 .251 4 1.001e-2 4 NC 15 NC 1 526 min 002 2 12 1 0 12 -2.266e-3 3 436.592 1 NC 1 527 17 max .005 3 .003 3 .209 4 1.114e-2 4 NC 5 NC 1 528 min 002 2 005 2 0 12 -2.23e-6 3 702.139 1 NC 1 529 18 max .005 3			14													1
524 min 002 2 244 1 0 12 -4.529e-3 3 310.937 1 5635.695 4 525 16 max .005 3 .066 3 .251 4 1.001e-2 4 NC 15 NC 1 526 min 002 2 12 1 0 12 -2.266e-3 3 436.592 1 NC 1 527 17 max .005 3 .003 3 .209 4 1.114e-2 4 NC 5 NC 1 528 min 002 2 005 2 0 12 -2.43e-6 3 702.139 1 NC 1 529 18 max .005 3 .095 1 .173 4 7.294e-3 1 NC 1 NC 1 S 1 1 1 1 1 1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td>									•					•		
525 16 max .005 3 .06 3 .251 4 1.001e-2 4 NC 15 NC 1 526 min 002 2 12 1 0 12 -2.266e-3 3 436.592 1 NC 1 527 17 max .005 3 .003 3 .209 4 1.114e-2 4 NC 5 NC 1 528 min 002 2 005 2 0 12 -2.43e-6 3 702.139 1 NC 1 529 18 max .005 3 .095 1 .173 4 7.294e-3 1 NC 5 NC 1 530 min 002 2 048 3 0 12 -2.218e-3 3 1474.173 1 NC 1 531 19 max .002 3 .			15													_
526 min 002 2 12 1 0 12 -2.266e-3 3 436.592 1 NC 1 527 17 max .005 3 .003 3 .209 4 1.114e-2 4 NC 5 NC 1 528 min 002 2 005 2 0 12 -2.43e-6 3 702.139 1 NC 1 529 18 max .005 3 .095 1 .173 4 7.294e-3 1 NC 5 NC 1 530 min 002 2 048 3 0 12 -2.218e-3 3 1474.173 1 NC 1 531 19 max .005 3 .186 1 .143 4 1.417e-2 1 NC 1 NC 1 532 min 002 3 .368 <t< td=""><td></td><td></td><td></td><td>min</td><td></td><td></td><td></td><td></td><td></td><td>12</td><td></td><td>3</td><td></td><td>•</td><td></td><td>4</td></t<>				min						12		3		•		4
527 17 max .005 3 .003 3 .209 4 1.114e-2 4 NC 5 NC 1 528 min 002 2 005 2 0 12 -2.43e-6 3 702.139 1 NC 1 529 18 max .005 3 .095 1 .173 4 7.294e-3 1 NC 5 NC 1 530 min 002 2 048 3 0 12 -2.218e-3 3 1474.173 1 NC 1 531 19 max .005 3 .186 1 .143 4 1.417e-2 1 NC 1 NC 1 532 min 002 2 096 3 0 1 -4.513e-3 3 NC 1 NC 1 534 min 013 2 018 3 0 1			16					3	.251	4		4_		<u>15</u>		1_
528 min 002 2 005 2 0 12 -2.43e-6 3 702.139 1 NC 1 529 18 max .005 3 .095 1 .173 4 7.294e-3 1 NC 5 NC 1 530 min 002 2 048 3 0 12 -2.218e-3 3 1474.173 1 NC 1 531 19 max .005 3 .186 1 .143 4 1.417e-2 1 NC 1 NC 1 532 min 002 2 096 3 0 1 -4.513e-3 3 NC 1 NC 1 533 M5 1 max .02 3 .368 1 .727 4 0 1 NC 1 NC 1 NC 1 NC 1 NC 1	526			min	002	2	12	1	0	12		3	436.592	1_	NC	1
529 18 max .005 3 .095 1 .173 4 7.294e-3 1 NC 5 NC 1 530 min 002 2 048 3 0 12 -2.218e-3 3 1474.173 1 NC 1 531 19 max .005 3 .186 1 .143 4 1.417e-2 1 NC 1 NC 1 532 min 002 2 096 3 0 1 -4.513e-3 3 NC 1 NC 1 533 M5 1 max .02 3 .368 1 .727 4 0 1 NC 1 NC 1 534 min 013 2 018 3 0 1 -7.597e-6 4 NC 1 NC 1 535 2 max .02 3 .1	527		17	max	.005	3	.003	3	.209	4	1.114e-2	4	NC	5	NC	1
529 18 max .005 3 .095 1 .173 4 7.294e-3 1 NC 5 NC 1 530 min 002 2 048 3 0 12 -2.218e-3 3 1474.173 1 NC 1 531 19 max .005 3 .186 1 .143 4 1.417e-2 1 NC 1 NC 1 532 min 002 2 096 3 0 1 -4.513e-3 3 NC 1 NC 1 533 M5 1 max .02 3 .368 1 .727 4 0 1 NC 1 NC 1 534 min 013 2 018 3 0 1 -7.597e-6 4 NC 1 NC 1 535 2 max .02 3 .1	528			min	002	2	005	2	0	12	-2.43e-6	3	702.139	1	NC	1
530 min 002 2 048 3 0 12 -2.218e-3 3 1474.173 1 NC 1 531 19 max .005 3 .186 1 .143 4 1.417e-2 1 NC 1 NC 1 532 min 002 2 096 3 0 1 -4.513e-3 3 NC 1 NC 1 533 M5 1 max .02 3 .368 1 .727 4 0 1 NC 1 NC 1 534 min 013 2 018 3 0 1 -7.597e-6 4 NC 1 NC 1 535 2 max .02 3 .185 1 .71 4 8.486e-3 4 NC 5 NC 1 536 min 014 2 028 <td< td=""><td>529</td><td></td><td>18</td><td>max</td><td>.005</td><td>3</td><td>.095</td><td>1</td><td>.173</td><td>4</td><td>7.294e-3</td><td>1</td><td>NC</td><td>5</td><td>NC</td><td>1</td></td<>	529		18	max	.005	3	.095	1	.173	4	7.294e-3	1	NC	5	NC	1
531 19 max .005 3 .186 1 .143 4 1.417e-2 1 NC 1 NC 1 532 min 002 2 096 3 0 1 -4.513e-3 3 NC 1 NC 1 533 M5 1 max .02 3 .368 1 .727 4 0 1 NC 1 NC 1 534 min 013 2 018 3 0 1 -7.597e-6 4 NC 1 NC 1 535 2 max .02 3 .185 1 .71 4 8.486e-3 4 NC 5 NC 1 536 min 014 2 01 3 0 1 0 1 734.047 1 8489.725 4 537 3 max .02 3 .027								3	_			3		1		1
532 min 002 2 096 3 0 1 -4.513e-3 3 NC 1 NC 1 533 M5 1 max .02 3 .368 1 .727 4 0 1 NC 1 NC 1 534 min 013 2 018 3 0 1 -7.597e-6 4 NC 1 NC 1 535 2 max .02 3 .185 1 .71 4 8.486e-3 4 NC 5 NC 1 536 min 014 2 01 3 0 1 0 1 734.047 1 8489.725 4 537 3 max .02 3 .027 3 .689 4 1.678e-2 4 NC 15 NC 1 538 min 014 2 028 1 <td></td> <td></td> <td>19</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>.143</td> <td></td> <td></td> <td>1</td> <td></td> <td>1</td> <td></td> <td>1</td>			19						.143			1		1		1
533 M5 1 max .02 3 .368 1 .727 4 0 1 NC 1 NC 1 534 min 013 2 018 3 0 1 -7.597e-6 4 NC 1 NC 1 535 2 max .02 3 .185 1 .71 4 8.486e-3 4 NC 5 NC 1 536 min 014 2 01 3 0 1 0 1 734.047 1 8489.725 4 537 3 max .02 3 .027 3 .689 4 1.678e-2 4 NC 15 NC 1 538 min 014 2 028 1 0 1 0 1 340.297 1 4921.468 4 539 4 max .019 3 .118 <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3</td> <td></td> <td>1</td> <td></td> <td>1</td>			1									3		1		1
534 min 013 2 018 3 0 1 -7.597e-6 4 NC 1 NC 1 535 2 max .02 3 .185 1 .71 4 8.486e-3 4 NC 5 NC 1 536 min 014 2 01 3 0 1 0 1 734.047 1 8489.725 4 537 3 max .02 3 .027 3 .689 4 1.678e-2 4 NC 15 NC 1 538 min 014 2 028 1 0 1 340.297 1 4921.468 4 539 4 max .019 3 .118 3 .666 4 1.367e-2 4 7176.125 15 NC 1 540 min 013 2 29 1 0 1		M5	1						•					•		
535 2 max .02 3 .185 1 .71 4 8.486e-3 4 NC 5 NC 1 536 min014 201 3 0 1 0 1 734.047 1 8489.725 4 537 3 max .02 3 .027 3 .689 4 1.678e-2 4 NC 15 NC 1 538 min014 2028 1 0 1 0 1 340.297 1 4921.468 4 539 4 max .019 3 .118 3 .666 4 1.367e-2 4 7176.125 15 NC 1 540 min013 229 1 0 1 0 1 204.57 1 3728.13 4 541 5 max .019 3 .247 3 .64 4 1.056e-2 4 4996.902 15 NC 1 542 min013 2581 1 0 1 0 1 141.832 1 3128.952 4 543 6 max .018 3 .394 3 .613 4 7.456e-3 4 3832.701 15 NC 1 544 min013 2873 </td <td></td> <td>IVIO</td> <td><u>'</u></td> <td></td>		IVIO	<u>'</u>													
536 min 014 2 01 3 0 1 0 1 734.047 1 8489.725 4 537 3 max .02 3 .027 3 .689 4 1.678e-2 4 NC 15 NC 1 538 min 014 2 028 1 0 1 0 1 340.297 1 4921.468 4 539 4 max .019 3 .118 3 .666 4 1.367e-2 4 7176.125 15 NC 1 540 min 013 2 29 1 0 1 0 1 204.57 1 3728.13 4 541 5 max .019 3 .247 3 .64 4 1.056e-2 4 4996.902 15 NC 1 542 min 013 2 581 <td< td=""><td></td><td></td><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			2							_						
537 3 max .02 3 .027 3 .689 4 1.678e-2 4 NC 15 NC 1 538 min 014 2 028 1 0 1 0 1 340.297 1 4921.468 4 539 4 max .019 3 .118 3 .666 4 1.367e-2 4 7176.125 15 NC 1 540 min 013 2 29 1 0 1 0 1 204.57 1 3728.13 4 541 5 max .019 3 .247 3 .64 4 1.056e-2 4 4996.902 15 NC 1 542 min 013 2 581 1 0 1 0 1 141.832 1 3128.952 4 543 6 max .018 3 .39												-		1		_
538 min 014 2 028 1 0 1 0 1 340.297 1 4921.468 4 539 4 max .019 3 .118 3 .666 4 1.367e-2 4 7176.125 15 NC 1 540 min 013 2 29 1 0 1 0 1 204.57 1 3728.13 4 541 5 max .019 3 .247 3 .64 4 1.056e-2 4 4996.902 15 NC 1 542 min 013 2 581 1 0 1 0 1 141.832 1 3128.952 4 543 6 max .018 3 .394 3 .613 4 7.456e-3 4 3832.701 15 NC 1 544 min 013 2 873			2											15		
539 4 max .019 3 .118 3 .666 4 1.367e-2 4 7176.125 15 NC 1 540 min 013 2 29 1 0 1 0 1 204.57 1 3728.13 4 541 5 max .019 3 .247 3 .64 4 1.056e-2 4 4996.902 15 NC 1 542 min 013 2 581 1 0 1 0 1 141.832 1 3128.952 4 543 6 max .018 3 .394 3 .613 4 7.456e-3 4 3832.701 15 NC 1 544 min 013 2 873 1 0 1 0 1 108.411 1 2751.61 4			3						_		_					_
540 min 013 2 29 1 0 1 0 1 204.57 1 3728.13 4 541 5 max .019 3 .247 3 .64 4 1.056e-2 4 4996.902 15 NC 1 542 min 013 2 581 1 0 1 0 1 141.832 1 3128.952 4 543 6 max .018 3 .394 3 .613 4 7.456e-3 4 3832.701 15 NC 1 544 min 013 2 873 1 0 1 0 1 108.411 1 2751.61 4			4					•		_						
541 5 max .019 3 .247 3 .64 4 1.056e-2 4 4996.902 15 NC 1 542 min 013 2 581 1 0 1 0 1 141.832 1 3128.952 4 543 6 max .018 3 .394 3 .613 4 7.456e-3 4 3832.701 15 NC 1 544 min 013 2 873 1 0 1 0 1 108.411 1 2751.61 4			4						_		_	-				
542 min 013 2 581 1 0 1 0 1 141.832 1 3128.952 4 543 6 max .018 3 .394 3 .613 4 7.456e-3 4 3832.701 15 NC 1 544 min 013 2 873 1 0 1 0 1 108.411 1 2751.61 4								_								4
543 6 max .018 3 .394 3 .613 4 7.456e-3 4 3832.701 15 NC 1 544 min 013 2 873 1 0 1 0 1 108.411 1 2751.61 4			5									4				1
544 min013 2873 1 0 1 108.411 1 2751.61 4				min					•	1		1		•		4
544 min013 2873 1 0 1 108.411 1 2751.61 4			6	max				3	.613	4	7.456e-3	4		15		1
545 7 max .018 3 .538 3 .587 4 4.35e-3 4 3162.852 15 NC 1	544			min	013	2	873	1	0	1		1	108.411	1	2751.61	4
	545		7	max	.018	3	.538	3	.587	4	4.35e-3	4	3162.852	15	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC	(n) L/y Ratio L		
546			min	012	2	-1.14	1	0	1	0	<u> 1</u>	89.223	l 2462.831	
547		8	max	.018	3	.66	3	.561	4	1.243e-3	_4_		5 NC	1
548			min	012	2	-1.354	1	0	1	0	1_	78.118		4
549		9	max	.017	3	.739	3	.535	4	1.721e-7	14		5 NC	1
550			min	012	2	-1.49	1	0	1	-3.934e-6	5	72.44	1 1997.457	4
551		10	max	.017	3	.769	3	.503	4	2.855e-7	14	2515.725 1	5 NC	1
552			min	012	2	-1.535	1	0	1	-3.729e-6	5	70.75	1968.3	4
553		11	max	.016	3	.75	3	.469	4	3.988e-7	14	2575.769 1	5 NC	1
554			min	011	2	-1.489	1	0	1	-3.525e-6	5	72.54	2022.424	4
555		12	max	.016	3	.684	3	.434	4	7.938e-4	4	2774.795 1	5 NC	1
556			min	011	2	-1.351	1	0	1	0	1	78.451	1 2102.021	4
557		13	max	.016	3	.579	3	.392	4	2.777e-3	4		5 NC	1
558			min	011	2	-1.131	1	0	1	0	1	90.098		4
559		14	max	.015	3	.445	3	.344	4	4.761e-3	4		5 NC	1
560			min	011	2	858	1	0	1	0	1	110.406		4
561		15	max	.015	3	.297	3	.293	4	6.745e-3	4		5 NC	1
562		1	min	011	2	562	1	0	1	0	1	146.221		2 5
563		16	max	.014	3	.147	3	.245	4	8.728e-3	4		5 NC	1
564		'	min	01	2	27	1	0	1	0.7200 0	1	214.572		1
565		17	max	.014	3	.009	3	.202	4	1.071e-2	4		5 NC	1
566		1 ' '	min	01	2	014	1	0	1	0	1	365.066		1
567		18	max	.014	3	.185	1	.168	4	5.419e-3	4		NC	1
568		10	min	01	2	108	3	0	1	0	1	801.654		1
569		19	max	.014	3	.351	1	.144	4	0	1	NC ·		1
570		10	min	01	2	213	3	0	1	-3.659e-6	4	NC ·		1
571	M9	1	max	.006	3	.192	1	.727	4	1.574e-2	3	NC ·		1
572	IVIO		min	003	2	032	3	0	1	-1.2e-2	1	NC ·		1
573		2	max	.006	3	.095	1	.709	4	8.009e-3	5	NC :		1
574		_	min	003	2	016	3	0	12	-5.794e-3	1	1399.145		
575		3	max	.006	3	.009	3	.687	4	1.671e-2	4		NC	1
576			min	003	2	008	1	0	12	-7.478e-6	10	672.371		
577		4	max	.006	3	.049	3	.664	4	1.311e-2	5		5 NC	1
578			min	003	2	126	1	0	12	-4.629e-3	1	423.207		
579		5	max	.006	3	.101	3	.639	4	9.887e-3	5		5 NC	1
580		J	min	003	2	25	1	0	12	-9.478e-3	1	304.504		
581		6	max	.006	3	.157	3	.613	4	9.885e-3	3		5 NC	1
582		—	min	003	2	37	1	0	12	-1.433e-2	1	239.225		4
583		7	max	.006	3	.211	3	.587	4	1.315e-2	3		5 NC	1
584			min	003	2	478	1	0	1	-1.918e-2	1	200.763		
585		8	max	.006	3	.256	3	.561	4	1.642e-2	3		5 NC	1
586				000	2	564	1	0	1	-2.403e-2	1	178.046	1 2188.763	
587		9	min	.006	3	.285	3	.535	4	1.67e-2	3		5 NC	1
588		3	min	003	2	618	1	.555	12	-2.634e-2	1		1 1995.858	
589		10	max	.006	3	.296	3	.504	4	1.498e-2	3		5 NC	1
590		10	min	003	2	635	1	.504	1	-2.697e-2	1	162.659		
591		11	max	.005	3	.289	3	.47	4	1.326e-2	3		5 NC	1
592			min	003	2	617	1	0	1	-2.76e-2	1	166.413		4
593		12		.005	3	.265	3	.433	4	1.132e-2	3		5 NC	1
594		14	max min	003	2	562	1	.433	12	-2.594e-2	1	178.657		
595		13	max	.005	3	.226	3	.39	4	9.056e-3	3		5 NC	1
596		13	min	002	2	475	1	.39	12	-2.088e-2	<u> </u>		1 2549	4
		14				475 .175	3	.343		6.793e-3			5 NC	1
597		14	max	.005	3	366	1	002	4		3			
598		1 =	min	002 .005	3	366 119	3		1_4	-1.581e-2	_1_			<u>5</u>
599		15	max		2			.294	1	6.381e-3	<u>5</u>		5 NC	
600		16	min	002	3	244 .06	3	006 246		-1.075e-2 8.569e-3	<u>1</u> 5	0.0.00.		5 5
		16	max	.005	2		1	.246	4		<u> </u>		5 NC	1
602			min	002	 	12		009	1	-5.687e-3		436.592	I NC	

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
603		17	max	.005	3	.003	3	.204	4	1.083e-2	4	NC	5	NC	1
604			min	002	2	005	2	009	1	-6.241e-4	1	702.139	1	NC	1
605		18	max	.005	3	.095	1	.17	4	5.196e-3	5	NC	5	NC	1
606			min	002	2	048	3	007	1	-7.294e-3	1	1474.173	1	NC	1
607		19	max	.005	3	.186	1	.143	4	4.513e-3	3	NC	1	NC	1
608			min	002	2	096	3	0	12	-1.417e-2	1	NC	1	NC	1

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			•

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1020.0	27.0	565.0	565.6	
Sum	1020.0	27.0	565.0	565 6	

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1020

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
8095	0.75	6071	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_t)$	Nc / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4))			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247.75	0.967	1.00	1.000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

rt-term K _{sat} τ _{k,cr} (psi)
0 1.00 1035
. D-16f)
(in) h_{ef} (in) N_{a0} (lb)
0 6.000 9755
Ψ _{ed,Na} Ψ _{p,Na} N _{a0} (Sec. D.4.1 & Eq. D-16a)
$\Psi_{ m ed,Na}$ $\Psi_{ m p,Na}$

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-40 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	7.00	6947			
$\phi V_{cby} = \phi (A_V)$	/c / A vco) \(\mathcal{P}_{ed, V} \(\mathcal{P}_{c, V} \)	$ \sqrt{\Psi_{h,V}V_{by}} $ (Sec.	D.4.1 & Eq. D-2	1)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$arPsi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)	
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934	

 V_{bx} (lb)

8282

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/c$	$(d_a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}$				
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	
4.00	0.50	1.00	2500	7.87	

 $\phi V_{cbx} = \phi (A_{Vc}/A_{Vco}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$ (Sec. D.4.1 & Eq. D-21)

Avc (in ²)	Avco (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5} \text{ (Eq. D-24)}$ $\frac{I_e \text{ (in)} \qquad d_a \text{ (in)} \qquad \lambda \qquad \qquad f'_c \text{ (psi)} \qquad c_{a1} \text{ (in)} \qquad V_{by} \text{ (lb)}}{4.00 \qquad 0.50 \qquad 1.00 \qquad 2500 \qquad 7.00 \qquad 6947}$ $\phi V_{cbx} = \phi (2) (A_{Vc}/A_{Vc}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{by} \text{ (Sec. D.4.1, D.6.2.1(c) \& Eq. D-21)}$

$\varphi \mathbf{v} \cos \varphi \left(\frac{2}{3} \right) (11)$	ωχ ψ (2)(11νε) 11νεο) 1 εα, ν 1 ε, ν 1 η, ν ν μ (333. Β. π. η, Β.3.2. η (3) α Ε η. Β Σ 1)						
Avc (in ²)	$Av\infty$ (in ²)	$\varPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cby} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a \; ; \; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \, \Psi_{ed,Na} \, \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc}/A_{Nco}) \, \Psi_{ed,N} \, \Psi_{c,N} \, \Psi_{cp,N} N_b| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{p,Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
Anc (in²)	Ανω (in²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ	$\phi V_{c ho}$ (lb)
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 14-40 Inch Width				
Address:					
Phone:					
E-mail:			_		

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1020	6071	0.17	Pass
Concrete breakout	1020	5710	0.18	Pass
Adhesive	1020	5365	0.19	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	566	3156	0.18	Pass (Governs)
T Concrete breakout y+	565	3934	0.14	Pass
T Concrete breakout x+	27	3018	0.01	Pass
Concrete breakout y+	27	8508	0.00	Pass
Concrete breakout x+	565	6875	0.08	Pass
Concrete breakout, combined	-	-	0.14	Pass
Pryout	566	12298	0.05	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rat	io Permissible	Status
Sec. D.7.1 0.1	9 0.00	19.0 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	1/5		
Project:	Standard PVMax - Worst Case, 21-31 Inch Width				
Address:					
Phone:					
E-mail:					

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2 Load combination: not set

Seismic design: No

Anchors subjected to sustained tension: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

Ψ_{c,V}: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016					
Engineer:	HCV	Page:	2/5					
Project:	Standard PVMax - Worst Case, 21	Standard PVMax - Worst Case, 21-31 Inch Width						
Address:								
Phone:								
E-mail:								

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21-	-31 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2495.5	1558.5	0.0	1558.5
2	2495.5	1558.5	0.0	1558.5
Sum	4991.0	3117.0	0.0	3117.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4991

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
8095	0.75	6071	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

<i>k</i> _c	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_c)$	Nc / A Nco) $\Psi_{ec,N}$ Ψ_{ec}	$_{I,N} \varPsi_{c,N} \varPsi_{cp,N} N_{b}$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
378.00	324.00	1.000	0.972	1.00	1.000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

f short-term	K _{sat}	τ _{k,cr} (psi)
1.00	1.00	1035
nef (Eq. D-16f)		
d _a (in)	h _{ef} (in)	N _{a0} (lb)
0.50	6.000	9755
	1.00 nef (Eq. D-16f) de (in)	1.00 1.00 nef (Eq. D-16f) d _a (in) h _{ef} (in)

 $\phi N_{ag} = \phi \left(A_{Na} / A_{Na0} \right) \varPsi_{ed,Na} \varPsi_{g,Na} \varPsi_{ec,Na} \varPsi_{\rho,Na} N_{a0} \left(\text{Sec. D.4.1 \& Eq. D-16b} \right)$

A_{Na} (in ²)	A_{Na0} (in ²)	$arPsi_{\sf ed,Na}$	$arPsi_{g,Na}$	$arPsi_{\sf ec,Na}$	$arPsi_{p,Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)	
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093	

Company:	Schletter, Inc.	Date:	8/1/2016				
Engineer:	HCV	Page:	4/5				
Project:	Standard PVMax - Worst Case, 21-31 Inch Width						
Address:							
Phone:							
E-mail:							

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ extit{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	Avc / Avco) Yec, v Ye	$_{ed,V} \varPsi_{c,V} \varPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
Avc (in ²)	$Av \infty$ (in ²)	$\Psi_{ec,V}$	$\varPsi_{\sf ed,V}$	$arPsi_{ extsf{c}, extsf{V}}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (Ib)
378.00	648.00	1.000	0.836	1.000	1.000	15593	0.70	5323

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

le (in)	da (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (Ib)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cpg} = \phi \min |k_{cp} N_{ag} \; ; \; k_{cp} N_{cbg}| = \phi \min |k_{cp} (A_{Na} / A_{Nao}) \; \Psi_{ed,Na} \; \Psi_{g,Na} \; \Psi_{ec,Na} \; \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc} / A_{Nco}) \; \Psi_{ed,N} \; \Psi_{e,N} \; \Psi_{c,N} \;$

,			(,	-, 3,,	μ, ,μ (,	,,,	(-1)
<i>k</i> _{cp}	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A_{Nc} (in ²)	A _{Nco} (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	N _{cb} (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2496	6071	0.41	Pass
Concrete breakout	4991	9208	0.54	Pass
Adhesive	4991	8093	0.62	Pass (Governs)
Shear	Factored Load, Vua (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1559	3156	0.49	Pass
T Concrete breakout x+	3117	5323	0.59	Pass (Governs)

Company:	Schletter, Inc.	Date:	8/1/2016	
Engineer:	HCV	Page:	5/5	
Project:	Standard PVMax - Worst Case, 21-31 Inch Width			
Address:				
Phone:				
E-mail:				

Concrete break	out y- 1559	12241	0.	13	Pass (Governs)	
Pryout	3117	19833	0.	16	Pass	
Interaction check	Nua/φNn	Vua/ ϕ Vn	Combined Ratio	Permissible	Status	
Sec. D.7.3	0.62	0.59	120.2 %	1.2	Pass	

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.