

Feb 2012

Leeds, UK

481 times

4510 times

1,480

Join Date:

Location:

Posts:

Thanks:

Thanked:

Awards:

DECEMBER 23RD, 2012, 12:21

Originally Posted by matqkks

I have been trying to prove the following result:

If A is real symmetric matrix with an eigenvalue lambda of multiplicity m then lambda has m linearly independent e.vectors.

Is there a simple proof of this result?

This is a slight variation of Deveno's argument. I will assume you already know that the eigenvalues of a real symmetric matrix are all real.

Let A be an $n\times n$ real symmetric matrix, and assume as an inductive hypothesis that all $(n-1)\times(n-1)$ real symmetric matrices are diagonalisable. Let λ be an eigenvalue of A, with a normalised eigenvector x_1 . Using the Gram–Schmidt process, form an orthonormal basis $\{x_1,x_2,\ldots,x_n\}$ with that eigenvector as its first element.

Let P be the $n \times n$ matrix whose columns are x_1, x_2, \ldots, x_n , and denote by $T: \mathbb{R}^n \to \mathbb{R}^n$ the linear transformation whose matrix with respect to the standard basis is A. Then P is an orthogonal matrix ($P^T = P^{-1}$), and the matrix of T with respect to the basis $\{x_1, x_2, \ldots, x_n\}$ is $P^T A P$. The (i, j)-element of that matrix is $(P^T A P)_{ij} = \langle A x_j, x_i \rangle$. In particular, the elements in the first column are

$$\left(P^{ ext{T}}AP
ight)_{i1} = \left\langle Ax_{1},x_{i}
ight
angle = \left\langle \lambda x_{1},x_{i}
ight
angle = \ egin{dcases} \lambda & (i=1) \ 0 & (i>1) \end{cases}$$

(because the vectors x_i are orthonormal). Thus the first column of $P^{\mathrm{T}}AP$ has λ as its top element , and 0 for each of the other elements. Since $P^{\mathrm{T}}AP$ is symmetric, the top row also consists of a λ followed by all zeros. Hence the matrix $P^{\mathrm{T}}AP$ looks like this:

$$\begin{bmatrix} \lambda & 0 & \dots & 0 \\ 0 & & & \\ \vdots & & B & \\ 0 & & & \end{bmatrix}$$

where B is an $(n-1)\times (n-1)$ real symmetric matrix. By the inductive hypothesis, B is diagonalisable, so there is an orthogonal $(n-1)\times (n-1)$ matrix Q such that $Q^{\rm T}BQ$ is