Midterm 2 Study Guide

William Sun

Random Variables

- $X: \Omega \to \mathbb{R}$ can be discrete or continuous
- If X is a discrete random variable, we will associate it with a probability mass function (pmf) P_X
 - $-P_X(x) > 0 \ \forall \ x \in \{\text{values of } X\}$
 - $-\sum_{x} P_X(x) = 1$, where the sum is over all the possible values of X
 - Used to calculate some probabilities: $P(X \in A) = \sum_{x \in A} P_X(x)$

Functions of Random variables

• With pmf of X and Y = g(X):

$$P_Y(y) = \sum_{x:g(x)=y} P_X(x)$$

Expected Value and Variance of a Discrete Random Variable

• \mathbb{E} : also the mean, weighted average, or center of mass

$$\mathbb{E}(X) = \sum_{x} x P_X(x)$$

- The variance of an random variable: $Var(x) = (x \mu)^2$, where $\mu = \mathbb{E}(X)$
 - So $\mathbb{E}(\{X \mu\}^2) := Var(X)$
- A form of the Var(X) more amenable to calculations: $Var(X) = \mathbb{E}(X^2) \mathbb{E}(X)^2$

Cumulative Distribution Function (CDF)

- $F(X) = P(X \le x)$
 - 1) $F: \mathbb{R} \to [0, 1]$
 - 2) If x < y, $F(x) \le F(y)$
- Notation: Left-limit notation $F(c-) = \lim_{x\to c-} F(x)$
- If we know the CDF,

$$- P(a < x \le b) = F(b) - F(a)$$

$$-P(a \le x \le b) = F(b) - F(a-)$$

$$- P(a \le x < b) = F(b-) - F(a-)$$

$$- P(a < x < b) = F(b-) - F(a)$$

- General rule: If near "<", $a \to -F(a)$, $b \to F(b-)$
 - * "a < b" ... so if "<" is near a, the "-" is on the left; "-" is on the right for b

Law of the Unconscious Statistician

- If X is discrete and $G: \mathbb{R} \to \mathbb{R}$, then
 - $\mathbb{E}(\mathbf{g}(\mathbf{X})) = \sum_{\mathbf{x}} \mathbf{g}(\mathbf{x}) \mathbf{P}(\mathbf{X} = \mathbf{x})$ when the expectation exists
- Used when we know G(X) and the distribution of X but not the distribution of G(X)
- Some consequences:
 - Linearity of Expectation #1

$$* \mathbb{E}(aX + b) = a\mathbb{E}(X) + b$$

- Linearity of Expectation #2

*
$$\mathbb{E}(X_1 + X_2 + \dots + X_n) = \mathbb{E}(X_1) + \mathbb{E}(X_2) + \dots + \mathbb{E}(X_n)$$

- \ast Expectation of a sum is the sum of the individual expected values
- * For any random variables for which $\mathbb{E}(X_i)$ exists for all i
- * To be proved later