Seminarul 1 - Soluții

- 1. În câte moduri se pot așeza pe un raft 5 culegeri de matematică, 3 culegeri de informatică și 4 romane, știind că fiecare carte are un autor diferit, astfel încât:
 - a) cărțile de același tip să fie alăturate?
 - b) doar romanele să fie neapărat alăturate?
 - c) doar culegerile de matematică, respectiv de informatică, să fie neapărat alăturate?
 - R: a) 5!3!4!3!; b) 4!(5+3+1)!; c) 5!3!(1+1+4)!.
- 2. Câte coduri binare sunt formate din 4 biți egali cu 1 și 6 biți egali cu 0 și nu au doi biți alăturați egali cu 1?

R: punem în linie 0-urile cu spații între ele: _0_0_0_0_0_, apoi alegem 4 spații pe care să punem 1-urile \implies există C_7^4 astfel de coduri.

- 3. Se aruncă două zaruri. Determinați probabilitățile următoarelor evenimente:
 - a) A: "se obţine o dublă".
 - b) B: "suma numerelor este un număr par."
 - c) C: "suma numerelor este cel mult egală cu 10."
- R: a) $P(A) = \frac{1}{6}$; b) $P(B) = \frac{3^2+3^2}{36}$; c) $P(C) = 1 \frac{3}{36}$. 4. 7 căluşari: c_1, c_2, \ldots, c_7 se așează în cerc, într-o ordine aleatoare. Care este probabilitatea ca c_1 și c_7 să fie vecini?

R:
$$\frac{2!5!}{\frac{7!}{7}} = \frac{2}{6} = \frac{1}{3}$$
.

- 5. În câte moduri se pot așeza în cerc caracterele următoare: A, A, A, B, B, 0, 0, 0, 1?
- **6.** În câte moduri se pot distribui m bile identice în n cutii distincte $(m, n \in \mathbb{N}^*)$? R: $C_{m+n-1}^m = C_{m+n-1}^{n-1}$ combinări cu repetiție.
- 7. Câte coduri binare sunt formate din 10 cifre și nu au două cifre alăturate egale cu 1? R: $1 + C_{10}^1 + C_9^2 + \ldots + C_6^5$.

Dacă în codul binar sunt k biți egali cu 1, atunci codul are 10-k biți egali cu 0. Punem în linie 0-urile și spațiile pe care putem să punem 1-urile, la fel ca în Pb. 2: 0_0 . Deci avem 11 - k spații libere pe care vrem să punem k biți egali cu 1, rezultă C_{11-k}^k alegeri posibile. k poate să ia valorile $0, 1, \ldots, p$ ână la maxim 5, deoarece pentru k > 5 numărul de spații libere este mai mic decât numărul de biți egali cu 1.

- **8. a)** Câte soluții $(x_1, \ldots, x_k) \in \mathbb{N}^* \times \cdots \times \mathbb{N}^*$ are ecuația $x_1 + \ldots + x_k = n \ (k, n \in \mathbb{N}^*, n \geq k)$? \hat{R} : C_{n-1}^{k-1} .
- M1: Considerăm un şir cu n valori egale cu 1 şi n-1 spații între ele 1_1_1..._1. Dacă pe spații se pun k-1simboluri + şi se şterg spațiile libere, atunci şirul de 1-uri va fi împărțit în k grupe de aceste simboluri. Fie x_i =suma de 1-uri din al i-lea grup, $i=\overline{1,k}$. Cum nu există două simboluri + consecutive, avem $x_i \in \mathbb{N}^*$, $i=\overline{1,k}$. Din modul de construcție obținem $x_1+\ldots+x_k=n$. Există C_{n-1}^{k-1} moduri în care se pot pune k-1 simboluri + pe n-1 spații.

Exemplu: n = 6, k = 3, 1 - 1 - 1 - 1 - 1; k - 1 = 2; 11 + 111 + 1 (3 grupe de 1, separate prin 2 simboluri +) $\Rightarrow x_1 = 2, x_2 = 3, x_3 = 1$, iar $x_1 + x_2 + x_3 = 6$; în acest caz, există C_5^2 soluții $(x_1, x_2, x_3) \in \mathbb{N}^* \times \mathbb{N}^* \times \mathbb{N}^*$.

b) Câte soluții $(x_1, \ldots, x_k) \in \mathbb{N} \times \cdots \times \mathbb{N}$ are ecuația $x_1 + \ldots + x_k = n \ (k, n \in \mathbb{N}^*)$? R: C_{n+k-1}^{k-1} .

Fiecare soluție $(x_1, \ldots, x_k) \in \mathbb{N} \times \cdots \times \mathbb{N}$ a ecuației $x_1 + \ldots + x_k = n$ corespunde în mod unic unei soluții $(y_1, \ldots, y_k) \in \mathbb{N}^* \times \cdots \times \mathbb{N}^*$ a ecuației $y_1 + \ldots + y_k = n + k$ și vice versa, alegând $y_i = x_i + 1$, pentru $i \in \{1, \dots, k\}$. Cf. a), există C_{n+k-1}^{k-1} soluții.

- 9^* . Fie A şi B două mulțimi finite.
- a) Dacă A are $k \in \mathbb{N}^*$ (k > 3) elemente și B are 3 elemente, câte funcții surjective se pot defini de la A la B?

R: a) Fie $A = \{a_1, a_2, ..., a_k\}, \ B = \{b_1, b_2, b_3\}.$ Definim

$$F_i = \{f : \{a_1, a_2, ..., a_k\} \rightarrow \{b_1, b_2, b_3\} | \forall a \in A \ f(a) \neq b_i\}, i \in \{1, 2, 3\}.$$

Notăm cu #(M) numărul de elemente ale unei mulțimi M. Numărul funcțiilor care nu sunt surjective este

$$\#(F_1 \cup F_2 \cup F_3) = \#(F_1) + \#(F_2) + \#(F_3)$$
$$- \#(F_1 \cap F_2) - \#(F_2 \cap F_3) - \#(F_1 \cap F_3) + \#(F_1 \cap F_2 \cap F_3)$$
$$= C_3^1 (3-1)^k - C_3^2 (3-2)^k + C_3^3 (3-3)^k = 3 \cdot 2^k - 3.$$

Numărul funcțiilor care sunt surjective este $3^k - 3 \cdot 2^k + 3$.

b) Dacă A are $k \in \mathbb{N}^*$ elemente și B are $n \in \mathbb{N}^*$ $(k \ge n)$ elemente, câte funcții surjective se pot defini de la A la B? [Indiciu: Se aplică principiul includerii și excluderii!]

R: b)
$$n^{k} - C_{n}^{1}(n-1)^{k} + C_{k}^{2}(n-2)^{k} - \ldots + (-1)^{k-2}C_{k}^{n-2}2^{k} + (-1)^{k-1}C_{k}^{n-1}$$
.

10*. Fie $m, n \in \mathbb{N}^*$, $m \ge n$. În câte moduri se pot îmbarca m persoane într-un tren cu n vagoane astfel încât niciun vagon să nu fie gol?

R:
$$n^m - C_n^1(n-1)^m + C_m^2(n-2)^m - \ldots + (-1)^{m-2}C_m^{n-2}2^m + (-1)^{m-1}C_m^{n-1}$$
.