Compact 3D Grid Drawings of Trees

Irene Parada, Kees Voorintholt, and Zeyu Zhang

CONTRIBUTION

We show that perfect binary trees with n-1 vertices can be optimially embedded in 3D, that is, they admit a straight-line drawing on a $\sqrt[3]{n}$ by $\sqrt[3]{n}$ by $\sqrt[3]{n}$ grid without intersecting edges:

Theorem: The perfect binary tree with height k = 3x - 1 for $x \in \mathbb{N}$ with $n = 2^{k+1} - 1$ vertices has a compact embedding on the $\sqrt[3]{n} \times \sqrt[3]{n}$ grid.

To show it, we adapt a recursive approach used by Akitaya *et al.* [1] for the 2D case: they recursively construct two types of compact embeddings of perfect binary trees on a square grid.

We recursively construct three blocks F_k , G_k , and H_k which are compact embeddings of a perfect binary tree T_k of height k. The critical difference between the blocks is the placement of the root of T_k and the empty node.

OVERVIEW OF THE BLOCKS

	Formulas	Sketch
F_k	Root node: $(2 \cdot 2^{\frac{k-2}{3}}, 2^{\frac{k-2}{3}} + 1, 2^{\frac{k-2}{3}} + 1)$ Empty node: $(2 \cdot 2^{\frac{k-2}{3}}, 2^{\frac{k-2}{3}}, 2^{\frac{k-2}{3}})$	
G_k	Root node: $(1, 2^{\frac{k-2}{3}} + 1, 2^{\frac{k-2}{3}})$ Empty node: $(2 \cdot 2^{\frac{k-2}{3}}, 2 \cdot 2^{\frac{k-2}{3}}, 2 \cdot 2^{\frac{k-2}{3}})$	
H_k	Root node: $(1, 2^{\frac{k-2}{3}} + 1, 2^{\frac{k-2}{3}})$ Empty node: $(1, 1, 2 \cdot 2^{\frac{k-2}{3}})$	

TRIVIAL BLOCKS

References

[1] Akitaya H.A., Löffler M., Parada I. How to Fit a Tree in a Box. In: Proc. 26th International Symposium on Graph Drawing and Network Visualization (GD 2018). pp. 361–367. LNCS 11282, Springer (2018). https://doi.org/10.1007/978-3-030-04414-5 26

Each non-trivial block representing T_k can be recursively constructed from eight smaller sub-blocks representing T_{k-3} . Some sub-blocks need to be rotated around an axis.

The sub-blocks are connected by non-intersecting edges using the root and empty nodes to complete the drawing of T_k .

The eight sub-blocks are listed from bottom to top (-z to +z), from front to back (-y to +y), and from left to right (-x to +x).

F_k BLOCK

Sub-blocks: F_{k-3} , G_{k-3} , F_{k-3} , H_{k-3} , F_{k-3} , H_{k-3} (rot. $\pi \mid_{x}$), F_{k-3} , and G_{k-3} (rot. $\pi \mid_{x}$).

G_k BLOCK

Sub-blocks: H_{k-3} (rot. $\pi \mid_{\mathcal{X}}$), F_{k-3} (rot. $\pi \mid_{\mathcal{Z}}$), G_{k-3} (rot. $\pi \mid_{\mathcal{Z}}$), F_{k-3} (rot. $\pi \mid_{\mathcal{Z}}$), F_{k-3} , and G_{k-3} .

H_k BLOCK

Sub-blocks: H_{k-3} (rot. π \mid_z), F_{k-3} (rot. π \mid_z), G_{k-3} (rot. π \mid_z), F_{k-3} (rot. π \mid_z), G_{k-3} (rot. π \mid_z), G_{k-3} (rot. π \mid_z), and G_{k-3} (rot. π \mid_z).