CS 292C Computer-Aided Reasoning for Software

Lecture 9: The DPLL(T) Framework

Yu Feng Fall 2020

Summary of previous lecture

- 4th paper review is out
- Proposal is due now
- Deciding a combination of theories
- The Nelson-Oppen algorithm

Overview of Nelson-Oppen

Outline of this lecture

- Deciding arbitrary boolean combinations of theory constraints
- The DPLL (T) algorithm
- The last lecture about SMT/SAT

Boolean abstraction

CFG of SMT formula in theory T

• $F := a_T | F_1 \wedge F_2 | F_1 \vee F_2 | \neg F$

For each SMT formula, define a

boolean abstraction function,

that maps SMT formula to overapproximate SAT formula

- $B(a_T) = b$ (b fresh)
- $B(F_1 \wedge F_2) = B(F_1) \wedge B(F_2)$
- $B(F_1 \vee F_2) = B(F_1) \vee B(F_2)$
- $\bullet \quad \mathsf{B}(\neg\mathsf{F}) = \neg\mathsf{B}(\mathsf{F}_\mathsf{I})$

F:
$$x = z \land ((y = z \land x < z) \lor \neg(x = z))$$

B(F) = $b_1 \land ((b_2 \land b_3) \lor \neg b_1)$

Is B(F) satisfiable?
Is F satisfiable?

Off-line v.s. online

SAT solver may yield assignments that are not sat modulo T because boolean abstraction is an over-approximation

Need to learn theory conflict clauses

Two different approaches for learning theory conflict clauses

- Off-line (eager): Use SAT solver as black-box
- On-line (lazy): Integrate theory solver into the CDCL loop (adopted by mainstream SMT solvers)

Off-line version

```
Offline-DPLL(T-formula \phi)
```

$$\varphi_P \leftarrow B(\varphi)$$

while (TRUE) do

$$\mu_P$$
, res \leftarrow CDCL(ϕ_P)

if res = UNSAT then return UNSAT

else

T-res
$$\leftarrow$$
 T-solve($\mathbf{B}^{-1}(\mu_P)$)

else
$$\varphi_P \leftarrow \varphi_P \land \neg \mu_P$$

$$F: x = z \wedge ((y = z \wedge x < z) \vee \neg(x = z))$$

$$B(F) = b_1 \wedge ((b_2 \wedge b_3) \vee \neg b_1)$$

SAT assignment to B(F): $b_1 \wedge b_2 \wedge b_3$

B-1(F) is UNSAT

What is new boolean abstraction?

$$b_1 \wedge ((b_2 \wedge b_3) \vee \neg b_1) \wedge \neg (b_1 \wedge b_2 \wedge b_3)$$

Is this formula SAT?

$$B^{-1}(F) = x = y \wedge x < y \wedge a_1 \wedge a_2 \wedge ... \wedge a_{2019}$$

 2^{2019} UNSAT assignments containing

 $x = y \land x < y$ but $\neg A$ prevents only one of them

Theory conflict clause

Minimal UNSAT core

- Let φ be original unsatisfiable conjunct
- Drop one atom from φ, call this φ'
- If φ ' is still unsat, $\varphi := \varphi$ '
- Repeat this for every atom in φ
- resulting φ is minimal unsat core of original formula

$$\phi: x = y \wedge f(x) + z = 5 \wedge f(x) \neq f(y) \wedge y \leq 3$$

Drop x = y from φ . Is result UNSAT?

Drop f(x)+z = 5. Is result UNSAT?

New formula: $\phi : x = y \land f(x) \neq f(y) \land y \leq 3$

Drop $f(x) \neq f(y)$. Is result UNSAT?

Drop $y \le 3$. Is result UNSAT?

So, minimal UNSAT core is $x = y \land f(x) \neq f(y)$

Improvement on the off-line

```
Offline-DPLL(T-formula \varphi)
\varphi_P \leftarrow B(\varphi)
while (TRUE) do
   \mu_P, res \leftarrow CDCL(\phi_P)
   if res = UNSAT then return UNSAT
   else
      T-res \leftarrow T-solve(\mathbf{B}^{-1}(\mu_{P}))
      if T-res = SAT then return SAT
      else
          t \leftarrow B(UNSATCORE(B^{-1}(\mu_P)))
          \varphi_P \leftarrow \varphi_P \wedge \neg t
```

 $B^{-1}(F) = x = y \wedge x < y \wedge a_1 \wedge a_2 \wedge ... \wedge a_{2019}$ x = y and x < y are overapproximated by boolean variables b_1 and b_2 we are doomed if both b_1 and b_2 are true.

Better but still need a *full assignment* to the boolean abstraction in order to generate a conflict clause.

DPLL-based SAT solver

Integrate theory solver right into this SAT solving loop!

From DPLL to DPLL(T)

to clause database

Use theory solver to decide if $B^{-1}(A)$ is UNSAT

If $B^{-1}(A)$ UNSAT, add theory conflict clause $\neg A$

Theory Propagation Lemmas

12

In next Decide step, free to assign b_3 : \top or b_3 : \bot

But assignment b_3 : \top is stupid, why?

Theory Propagation Lemmas

 The clauses implied by theory are theory propagation lemmas

The lemmas prevents bad assignments to boolean abstraction

Theory Propagation Lemmas

- Which theory propagation lemmas do we add?
 - Option #1 (exhaustive): Figure out and add all literals implied by current partial assignment
 - Option #2 (heuristics): Only figure out literals "obviously" implied by current partial assignment
- Exhaustive theory propagation can be very expensive
- There isn't much of a science behind which literals are "obviously" implied
- Solvers use different heuristics to obtain simple-to-find implications

Modern SMT solvers

- All competitive SMT solvers today are based on the on-line version
- Many existing off-the-shelf SMT solvers: Z3, CVC4, Yices, MathSAT, etc.
- Lots of on-going research on SMT, esp. related to quantifier support
- Annual competition SMT-COM

TODOs by next lecture

• Start to work on your final report