2020 年秋期六校第一次联考

高一年级数学试题

(考试时间: 120 分钟

注意事项:

- 1. 答题前, 考生务必将自己的姓名、准考证号、考场号填写在答题卡上。
- 2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如 需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡 上,写在本试卷上无效。
- 3. 考试结束后,将本试卷和答题卡一并交回。
- 一、选择题(本大题共 12 小题,每小题 5 分,共 60 分. 在每小题给出的四个选项中,只有一项符合题目要求.)
- 1. 下列符号表述正确的是

 $A.0 \in N^*$

B. 1. 732 ∉ Q

 $C. \varnothing \in \{0\}$

- D. $\emptyset \subseteq \{x \mid x \le 2\}$
- 2. 已知集合 $U = \{1,2,3,4,5,6,7\}, A = \{2,3,4,5\}, B = \{2,3,6,7\}, 则 (C_UA) \cap B = \{2,3,6,7\}, D \in A$

A. {1,6}

- B. {1,7}
- C. $\{6,7\}$
- D. $\{1,6,7\}$
- 3. 已知函数 y = f(x), 部分 x = f(x) 的对应关系如表:则 f(f(4)) =

x	-3	-2	-1	0	1	2	3	4
y	3	2	1	0	0	-1	-2	-3

A. - 1

B. -2

 $C_{\rm c} = 3$

D. 3

4. 函数 $f(x) = \frac{\sqrt{x+1}}{2-x}$ 的定义域为

 $A. \lceil -1,2 \rangle \cup (2, +\infty)$

B. $(-1, +\infty)$

C. [-1,2)

- $D. \lceil -1. + \infty \rangle$
- 5. 已知集合 $M = \{x \mid 6x^2 5x + 1 = 0\}, P = \{x \mid ax = 1\}, 若 P \subseteq M, 则 a$ 的取值集合为
 - A. {2}
- B. {3}

- C. $\{2,3\}$
- D. $\{0,2,3\}$

- 6. 函数 y = f(x) 的图像与直线 x = a 的交点个数为
 - A. 0

B. 1

C.0 或 1

D. 无数个

7	下加	函数为	同—	函数自	内見
/ .	ניעיין.	かしなえ クレ	H —	IN THE	ᄓᅏ

A.
$$f(x) = \frac{|x|}{x} = g(x) = \begin{cases} 1, x \ge 0 \\ -1, x < 0 \end{cases}$$

B.
$$f(x) = \sqrt{x} \sqrt{x+1} = g(x) = \sqrt{x(x+1)}$$

C.
$$f(x) = x^2 - 2x - 1 = g(t) = t^2 - 2t - 1$$

D.
$$f(x) = 1 - g(x) = x^0 (x \neq 0)$$

8. 某校高一(9)班共有49名同学,在学校举办的书法竞赛中有24名同学参加,在数学竞赛中 有25名参加,已知这两项都参赛的有12名同学,在这两项比赛中,该班没有参加过比赛的 同学的人数为

A. 10

B. 11

C. 12

D. 13

9. 已知函数 $f(\sqrt{x} + 2) = x + 4\sqrt{x} + 5$, 则 f(x) 的解析式为

A.
$$f(x) = x^2 + 1$$

B.
$$f(x) = x^2 + 1(x \ge 2)$$

C.
$$f(x) = x^2$$

D.
$$f(x) = x^2 (x \ge 2)$$

10. 函数 $f(x) = |x^3 + 1| + |x^3 - 1|$, 则函数 f(x) 图象

A. 关于原点对称

B. 关于直线 y = x 对称

C. 关于 x 轴对称

D. 关于 y 轴对称

11. 已知 $f(x) = \begin{cases} (3a-1)x + 4a(x < 1) \\ -ax(x \ge 1) \end{cases}$, 是定义在 R 上的减函数,则 a 的取值范围是

A.
$$\left[\frac{1}{8}, \frac{1}{3}\right]$$
 B. $\left(\frac{1}{8}, \frac{1}{3}\right]$ C. $\left(0, \frac{1}{3}\right)$

B.
$$(\frac{1}{8}, \frac{1}{3}]$$

C.
$$(0,\frac{1}{3})$$

D.
$$(-\infty, \frac{1}{3}]$$

12. 设集合 M 满足: \overline{A} t ∈ M,则 2020 − t ∈ M,且集合 M 中所有元素之和 \overline{m} ∈ (2020 × 11,2020 ×12),则集合 M 中元素个数为

A. 22

- B. 22 或 23
- C. 23

D. 23 或 24

二、填空题(本大题共4个小题,每小题5分,共20分.)

13. 已知幂函数 y = f(x) 的图象过点 $(2,\sqrt{2})$, 则 f(9) =

14. 已知集合 $A = \{2,4,6,8,9,11\}$, $B = \{1,2,3,5,7,8\}$, 非空集合 C 满足 : C 中每一个元素都 加上2 变成 A 的一个子集, C 中每一个元素都减去2 变成 B 的一个子集, 则集合 C 中元素 的个数最多有 个.

15. 函数 $f(x) = \frac{1}{\sqrt{x^2 + 5x - 6}}$ 的单调递减区间是______.

16. 设函数 $f(x) = \frac{(x+1)^2 + a^2 x}{x^2 + 1}, a \in R$ 的最大值为 M, 最小值为 m, 则 $M + m = _____.$

三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.)

17. (本小题满分10分)

已知集合
$$A = [-5,6], B = [2m-1,m+1].$$

- (1) 当 m = -3 时,求 $A \cap B,A \cup B$;
- (2)若 $A \cup B = A$, 求实数 m 的取值范围.

18. (本小题满分12分)

已知函数
$$f(x) = \frac{2x-3}{x+1}$$
.

- (1)判断函数 f(x) 在区间 $[0, +\infty)$ 上的单调性,并用定义证明其结论;
- (2)求函数 f(x) 在区间[2,9]上的最大值与最小值.

19. (本小题满分12分)

某地煤气公司规定,居民每个月使用的煤气费由基本月租费、保险费和超额费组成.每个月的保险费为 3 元,当每个月使用的煤气量不超过 am^3 时,只缴纳基本月租费 c 元;如果超过这个使用量,超出的部分按 b 元/ m^3 计费.

月份	煤气使用量/m³	煤气费/元
7	4	4
8	25	14
9	35	19

- (1)写出每个月的煤气费y(元)关于该月使用的煤气量 $x(m^3)$ 的函数解析式;
- (2)如果某个居民 7~9 月份使用煤气与收费情况如上表,请确定 a,b,c 及 y 与 x 的函数关系式. (其中,仅 7 月份煤气使用量未超过 am³.)

20. (本小题满分12分)

已知二次函数 f(x) 的图象过点(0,4),对任意 x 满足 f(3-x)=f(x),且有最小值是 $\frac{7}{4}$.

- (1) 求 f(x) 的解析式;
- (2) 在区间[-1,3]上, y = f(x) 的图象恒在函数 y = 2x + m 的图象上方,试确定实数 m 的取值范围.

21. (本小题满分12分)

已知函数
$$f(x) = x + \frac{a}{x}, g(x) = x^2 - bx, (a, b \in R, a \neq 0).$$

- (1) 若集合 $\{x \mid f(x) = 2x + 2\}$ 为单元素集,求实数 a 的值;
- (2) 在(1) 的条件下,对任意 $m \in [2,4]$,存在 $n \in [1,5]$, 使 $f(m) \ge g(n)$ 成立,试求实数 b 的取值范围.

22. (本小题满分12分)

设二次函数
$$f(x) = x^2 - (4a - 2)x + 5a^2 - 4a + 2, x \in [0,1]$$
 的最小值为 $g(a)$.

- (1)求 g(a) 的解析式;
- (2)求 g(a) 的最小值.

2020 年秋期六校第一次联考高一年级

数学试题

一. 选择题: 1-5 DCDAD 6-10 CCCBD 11-12 AC

二. 填空題: 13. 3 14. 3 15.
$$(2,\frac{5}{2})$$
或 $(2,\frac{5}{2}]$ 16. 2

三.解答题

∴
$$A \cap B = [-5,-2]$$
4 分

$$A \cup B = [-7,6]$$
6 分

$$(2)$$
 $: A \cup B = A : B \subseteq A$

② B
$$\neq \Phi$$
 由题意知
$$\begin{cases} 2m-1 < m+1, \\ 2m-1 \ge -5, \\ m+1 \le 6, \end{cases}$$
8 分

$$\therefore m \in [-2,2)$$

18. (1) f(x) 在区间 $[0,+\infty)$ 上是增函数......2 分

证明如下: 任取 $x_1, x_2 \in [0, +\infty)$, 且 $x_1 < x_2$,

$$f(x_1) - f(x_2) = \frac{2x_1 - 3}{x_1 + 1} - \frac{2x_2 - 3}{x_2 + 1}$$

$$=\frac{(2x_1-3)(x_2+1)}{(x_1+1)(x_2+1)}-\frac{(2x_2-3)(x_1+1)}{(x_2+1)(x_1+1)}=\frac{5(x_1-x_2)}{(x_2+1)(x_1+1)}$$
......6 \(\frac{1}{2}\)

因为
$$x_1-x_2<0$$
, $(x_1+1)(x_2+1)>0$,

所以
$$f(x_1) - f(x_2) < 0$$
,即 $f(x_1) < f(x_2)$.

(2) 由(1)知函数f(x)在区间[2,9]上是增函数,

最小值为 $f(2) = \frac{2 \times 2 - 3}{2 + 1} = \frac{1}{3}$12 分 19.解: (1)设每个月使用的煤气量为 x m³,煤气费为 y 元,那么 $y = \begin{cases} 3+c \,, & 0 \leq x \leq a \\ 3+c+b(x-a) \,, & x>a \end{cases}$6 分 (2) 有表格可知, $\begin{cases} 3+c=4\\ 3+c+b(25-a)=14\\ 3+c+b(35-a)=19 \end{cases}, 解得 \begin{cases} a=5\\ b=\frac{1}{2}\\ c=1 \end{cases}$ 所以 $y = \begin{cases} 4 & (0 \le x \le 5) \\ \frac{1}{2}x + \frac{3}{2}(x > 5) \end{cases}$. **20. 解:** (1) 由题知二次函数图象的对称轴为 $x = \frac{3}{2}$, 又最小值是 $\frac{7}{4}$,3 分 则可设 $f(x) = a(x - \frac{3}{2})^2 + \frac{7}{4}(a \neq 0)$. 又图象过点(0, 4), 则 $a(0-\frac{3}{2})^2 + \frac{7}{4} = 4$,解得 a = 1, ∴ $f(x) = (x - \frac{3}{2})^2 + \frac{7}{4} = x^2 - 3x + 4$6 分 (2) 由己知, f(x) > 2x + m 对 $x \in [-1, 3]$ 恒成立, ∴ $m < x^2 - 5x + 4$ 对 $x \in [-1, 3]$ 恒成立, $g(x) = x^2 - 5x + 4$ 在 $x \in [-1, 3]$ 上的最小值为 $-\frac{9}{4}$ $\therefore m < -\frac{9}{4}$. 21. 解析: (1) 由题意知, $x + \frac{a}{x} = 2x + 2$ 有唯一实数解 (2) $f(m) = m - \frac{1}{m}$, $\therefore m \in [2,4]$ $\therefore f(m)_{\min} = f(2) = \frac{3}{2}$:: 当任意 $m \in [2,4]$, 存在 $n \in [1,5]$ 使 $f(m) \ge g(n)$ 成立

所以 $g(a)_{\min} = \frac{6}{5}$.