

- > AC OUTDOOR UNIT WIND TURBINE
- > SMALL SCALE DUCTED WIND TURBINE
- > LARGE SCALE DUCTED WIND TURBINE

AC Outdoor Unit Wind Turbine

STIMUTECH

Overview

The objective of the project is to convert the free source of energy from the AC outdoor unit into usable electricity by means of a wind turbine. This can be used directly to run some device or can be stored in a battery.

Workflow

Specifications

Blades	Biodegradable Plastic	Naca Profile 4412	
Resistor	-	5 ohms	

Componen	Туре	Spec
Generator	PMDC	100W
Bat tery	Lead Acid	12V,7.5AH
inverter	-	,12V/220V

Naca Profile Analysis for Blades

NACA 4 digit airfoil generator (NACA 4412 AIRFOIL)

Blade Trials

Power Generation

 $P = \frac{1}{2} * \rho * A * V^3$

P = 0.5 * 1.225 * 0.53582 *

729 P = 239.25032 W

Cp - Coefficient of Power = 0.5

Final P = 239.25032 * 0.5

P = 119.62516W

Power generated in trials

S.No	Diameter (D) In cm	Wind Speed (V) In m/s	Cross-Sectional Area (A) In m²	Power (P = ½ ρΑV³) In W
1	40.69	4.9	0.25930	12
2	35.56	5.5	0.19852	19.817
3	50.8	6.5	0.405160	66.76
4	48.26	4	0.36565	15.09
5	43.18	4.5	0.29272	17.2
6	43.18	3.5	0.29272	8.09
7	58.42	9	0.53582	138
8	50.8	4.8	0.40516	28.9
9	58.42	6.2	0.53582	82.36
10	50.8	4.8	0.90516	64.56

Power generated with various Load Resistance

Resistance	Power
5 ohms	28.8W
6 ohms	24W
7 ohms	20.57W
8 ohms	18W
9 ohms	16W
10 ohms	14.4W

 $P = V^2/R [V = 12V]$

Comparison of ML Techniques

S.No.	Algorithm	Accuracy		Average
		Dataset 1	Dataset 2	
1.	Naive Baiyes	54.5%	92.54%	73.52%
2.	Random Forest	86%	95.91%	90.95%
3.	KNN	83.6%	91.77%	87.68%
4.	Simple Vector Machine	80%	97.22%	88.61%

Site Survey

SUSTANABLE ENERGY GENERATOR SUSTANABLE ENERGY GENERATOR Company name: HITACHI Company Color who we have conditioned in children Company Color who we have taken to overcome the problems "If my Color with you have taken to overcome the problems "If my Color of the steps that you have taken to overcome the problems "If my Color of the steps that you have taken to overcome the problems "If my Color of the steps that you have taken to overcome the problems "If my Color of the steps that you have taken to overcome the problems "If my Color of the steps that you have taken to overcome the problems "If my Color of the steps that you have taken to overcome the problems "If my Color of the steps that you have taken to overcome the problems "If my Color of the steps that you have taken to overcome the problems "If my Color of the steps that you have taken to overcome the problems "If my Color of the steps that you have taken to overcome the problems "If my Color of the steps that you have taken to overcome the problems "If my Color of the steps that you have taken to overcome the problems of the steps that you have taken to overcome the problems of the steps that you have taken to overcome the problems of the steps that you have taken to overcome the problems of the steps that you have taken to overcome the problems of the steps that you have taken to overcome the problems of the steps that you have taken to overcome the problems of the steps that you have taken to overcome the problems of the steps that you have taken to overcome the problems of the steps that you have taken to overcome the problems of the steps that you have taken to overcome the problems of the steps that you have taken to overcome the problems of the steps tha

Advantages

- Less loss of energy due to DC Net Metering
- Fixed rpm => Fixed output

Matlab Simulation

Ducted Mounting Stand

Bernoulli's Theorem

This decreased pressure in the air at high speeds also clarifies An air stream's velocity increases when the static pressure surrounding it decreases. This causes the air around the stream to be brought in, or entrain, and increases the total amount of air carried in that direction by drawing in more air from the sides. Directional velocity flow of a stream of air that is free to flow in the direction of its velocity. the directional motion turns into "static" pressurization as we see inside the duct system.

Business Model Canva

SMALL SCALE DUCTED WIND TURBINE

SPECIFICATIONS

COMPONENTS USED

- Voltage sensor (0-25V)
- Current sensor(0-25A)
- ESP32 WIRELESS CONTROLLER
- ARDUINO UNO

PMSG:

3Ф PMSG.

Off-	grid
DC Load	AC Load
12V/24V from Battery	Through Inverter

On- grid

BATTERY:

Voltage: 12V, Capacity: 7.5AH (LEAD ACID)

Maximum current: 14A

INVERTER:

12V DC ________230V,50hz, AC

DUCTED WIND TURBINE

BLADE DESIGNS

WIND TURBINE BLADE FOR LOW & MEDIUM WIND SPEED

WIND TURBINE BLADE FOR HIGH WIND SPEED

DUCT DYNAMICS

COMPUTATIONAL FLUID DYNAMICS of DUCT

Velocity Contour of the Duct

FURLING MECHANISM

POWER CALCULATIONS

D - Dia in cm	V - Velocity in m/s	A - CSA in m2	Wind Power in watts
58.42	3	0.67	5.38
58.42	3.8	0.67	10.94
58.42	4	0.67	12.76
58.42	4.5	0.67	18.17
58.42	5	0.07	24.92
58.42	5.5	0.67	33.17
58.42	0	0.67	43.07
58.42	0.5	0.67	54.76
58.42	7	0.67	68.39
58.42	7.5	0.67	84.12
58.42	8	0.67	102.09
58.42	8.5	0.67	122.45
58.42	9	0.67	145.35
58.42	9.5	0.67	170.95

FORMULA = 1/2 ρ AV³ [A=[D] / 4 / 1000]Cp

CP = 0.5 (betz limit)

Rate of Investment

ROI Calulation for Designed DWT (350W) @12m/s Annual Energy Consumption and Money saved @ Rs 8 per unit

	YEAR	Month	Avg WS10M	No: of	Wind Power in watts	DWT	Energy/ month (kWH)	@Rs 8 /unit
	2022	Jan	9.48	24	169.87	254.81	189.58	1516.615
	2022	Feb	6.73	24	60.78	91.17	67.83	542.6198
	2022	Mar	7.77	24	93.53	140.30	104.38	835.052
	2022	Apr	8.29	24	113.60	170.39	126.77	1014.178
	2022	May	9.38	24	164.55	246.83	183.64	1469.126
	2022	Jun	7.66	24	89.62	134.42	100.01	800.0862
	2022	Jul	8.24	24	111.55	167.33	124.49	995.9375
3 4	2022	Aug	10.09	24	204.82	307.23	228.58	1828.622
3 4	2022	Sep	6.8	24	62.69	94.04	69.97	559.7282
3 4	2022	Oct	5.16	24	27.39	41.09	30.57	244.568
3 4	2022	Nov	4.19	24	14.67	22.00	16.37	130.9461
3 4	2022	Dec	4.36	24	16.53	24.79	18.44	147.54
		7					Rs	10085.02

ROI Calulation for Designed DWT (350W) @12m/s Annual Energy Consumption and Money saved @ Rs 4 per unit

		Avg	No: of	Wind Power in		Energy/ month	
YEAR	Month	WS10M	hours	watts	DWT	(kWH)	@Rs 4 /unit
2022	Jan	9.48	24	169.87	254.81	189.58	758.3077095
2022	Feb	6.73	24	60.78	91.17	67.83	271.3099067
2022	Mar	7.77	24	93.53	140.30	104.38	417.5259912
2022	Apr	8.29	24	113.60	170.39	126.77	507.088838
2022	May	9.38	24	164.55	246.83	183.64	734.5628737
2022	Jun	7.66	24	89.62	134.42	100.01	400.0430854
2022	Jul	8.24	24	111.55	167.33	124.49	497.9687556
2022	Aug	10.09	24	204.82	307.23	228.58	914.3110279
2022	Sep	6.8	24	62.69	94.04	69.97	279.8641033
2022	Oct	5.16	24	27.39	41.09	30.57	122.2839797
2022	Nov	4.19	24	14.67	22.00	16.37	65.47304331
2022	Dec	4.36	24	16.53	24.79	18.44	73.7700244
						Rs	5042.509339

ROI - Return on Investment

		Years
Max	ROI	5
Min	ROI	3

BOM:

MS Structure	6000
FRP Blades	2000
FRP Duct	2000
PMSG 350W	10000
Rectifier	250
Regulator	250
App Cost	2500
Sensor & Controller	2000
Product Cost in Rs	25000

WIND SPEED DATA @ GUJARAT

PARAMETER	YEAR	JAN	FEB	MAR
WS10M_MAX	2022	9.77	6.82	7.86
WS10M_MIN	2022	0.28	0.09	0.09
WS10M_RANGE	2022	9.48	6.73	7.77
PARAMETER	YEAR	APR	MAY	JUN
WS10M_MAX	2022	9.18	10.57	8.27
WS10M_MIN	2022	0.89	1.2	0.61
WS10M_RANGE	2022	8.29	9.38	7.66
PARAMETER	YEAR	JUL	AUG	SEP
WS10M_MAX	2022	9.5	10.1	7.08
WS10M_MIN	2022	1.26	0.01	0.27
WS10M_RANGE	2022	8.24	10.09	6.8
PARAMETER	YEAR	OCT	NOV	DEC
WS10M_MAX	2022	5.21	4.41	5.21
WS10M_MIN	2022	0.05	0.23	0.85
WS10M RANGE	2022	5.16	4.19	4.36

Fabrication Difficulties

- 1. Bearing for Hub Rotation.
- 2. Tail Furling Fabrication difficulty due to unavailability of materials and tools.
- 3. Duct fabrication sheet metal not of required thickness, lack of rolling machine.
- 4. Missing of gas welding machinery for sheet metal works.