1^a Ficha Formativa

Matemática A

12.º Ano de Escolaridade • Turma: B + C + H

outubro de 2022

- 1. Seja f,a função real, de variável real, definida por $f(x)=\frac{x^2-1}{2x^2-3x-2}$
 - 1.1. Determina o domínio da função f
 - 1.2. Resolve, em \mathbb{R} , e analiticamente, a condição $f(x) \frac{x}{2x+1} > 0$

Apresenta o conjunto solução sob a forma de intervalo ou reunião de intervalos de números reais

2. Seja g,a função real de variável real, definida por $g(x)=-2x^3+5x^2+x-6$

Sabe-se que g(x) é divisível por x-2

Determina o domínio da função i, sendo i, a função real, de variável real, definida por $i(x) = \frac{\sqrt{x+1}+1}{\sqrt[3]{g(x)}}$

Apresenta o conjunto sob a forma de intervalo ou reunião de intervalos de números reais

- 3. Considera a função h, real, de variável real, definida por $h(x) = \frac{3x^3 + 4x^2 + 2x + 1}{x^2 1}$
 - 3.1. Em qual das opções está o valor de $\lim_{x \to +\infty} \frac{h(x)}{x}$?
 - (A) 3
 - (B) $-\infty$
 - (C) $+\infty$
 - (D) 0
 - 3.2. Determina $\lim_{x \to -1} h(x)$
- 4. Seja g, a função real de variável real, definida por, $g(x) = \begin{cases} \frac{3x+1}{2x-1} & se \quad x \leq 0 \\ \frac{x^2-4}{x^2-2x} & se \quad 0 < x < 2 \\ \frac{\sqrt{x+7}+1}{x} & se \quad x \geq 2 \end{cases}$
 - 4.1. Averigua, analiticamente, se existe $\lim_{x\to 2} g(x)$
 - 4.2. Usando a definição de limite de uma função segundo Heine, determina $\lim_{x\to 9} g(x)$
- 5. Seja i, a função real de variável real, definida por, $i(x) = x + 10 \sqrt{4 8x}$

Determina, caso existam, os zeros da função i

6. Considera a função h, real de variável real, de domínio $D_h = \mathbb{R} \setminus \{3\}$

Na figura 1, está representado, em referencial o.n. xOy, parte do gráfico da função h

Figura 1

6.1. Considera as seguintes afirmações

(I) Existe
$$\lim_{x\to 0} h(x)$$

(II) Não existe
$$\lim_{x\to 3} h(x)$$

(III) A função
$$h$$
 é contínua em $[-4; -2]$

Relativamente às três afirmações pode dizer-se que:

- (A) (I) é falsa e (II) é verdadeira
- (B) (II) é falsa e (III) é verdadeira
- (C) (I), (II) e (III) são verdadeiras
- (D) (I), (II) e (III) são falsas

6.2. Relativamente a uma sucessão (u_n) de números reais, tal que $u_n \in D_h$, sabe-se que $\lim h(u_n) = 2$

Em qual das opções pode estar o termo geral da sucessão (u_n) ?

(A)
$$u_n = \frac{1}{n}$$

(B)
$$u_n = -\frac{1}{n}$$

(B)
$$u_n = -\frac{1}{n}$$
 (C) $u_n = 3 + \frac{1}{n}$ (D) $u_n = 3 - \frac{1}{n}$

(D)
$$u_n = 3 - \frac{1}{n}$$

7. Em qual das opções pode estar o valor de $\lim_{x \to -4} \left[\left(x^4 + 4x^3 - x - 4 \right) \times \frac{1}{x^2 + 4x} \right]$?

(A) $\frac{65}{4}$ (B) $\frac{67}{4}$ (C) $\frac{33}{2}$ (D) $\frac{17}{2}$

(A)
$$\frac{65}{4}$$

(B)
$$\frac{67}{4}$$

(C)
$$\frac{33}{2}$$

(D)
$$\frac{17}{2}$$

8. Seja h, a função real de variável real, definida por, $h(x)=\left\{ \begin{array}{ll} \displaystyle \frac{\sqrt{1-x}-2}{3x^2+10x+3} & se \quad x<-3\\ \\ \displaystyle k^2+1 & se \quad x=-3\\ \\ \displaystyle \frac{x^2+8x+15}{x^2+7x+12} & se \quad x>-3 \end{array} \right.$

Averigua, analiticamente, se existe algum $k \in \mathbb{R}$, para o qual a função h é contínua no ponto x = -3

9. Seja f, a função real de variável real, definida por, $f(x) = \frac{-4x^3 + 4x^2 + 8x - 8}{r^2 - 2}$

Sabe-se que 1 é zero do polinómio $-4x^3 + 4x^2 + 8x - 8$

Simplifica a funão f, e indica o respetivo domínio de validade da simplificação

10. Determina:

10.1.
$$\lim_{x \to -\infty} \frac{\sqrt{9x^2 + 2} - 1}{2x + 3}$$

10.2. $\lim_{x \to +\infty} \left(\sqrt{1 + 4x^2} - \sqrt{x + 4x^2}\right)$