Numerical solutions to some linear systems are adversely affected by round-off errors.

This phenomenon is related the matrices in the linear systems. Those matrices for which the issue is particularly prevalent are referred to as being *ill-conditioned*.

For any matrix, we can assign a numerical score that gives an indication of whether it is ill-conditioned. That score is called the *condition number*, and is the subject of these section.

The condition number is defined in terms of matrix norms.

Suppose we have a vector norm, $\|\cdot\|$ and associated subordinate matrix norm. It is not hard to see that

$$\|Au\| \leq \|A\| \|u\| \quad \text{for any } u \in \mathbb{R}^n, A \in \mathbb{R}^{n \times n}.$$
 Here is why:
$$\text{Recall Elast } \|AI\| := \max_{v \in \mathbb{R}^n/\S o \S} \frac{\|Av\|}{\|v\|}.$$
 So, for an orbitrary vector u ,
$$\|AII \geqslant \|Au\| = \|Au\|.$$

There is an analogous statement for the product of two matrices:

Definition 3.26 (Consistent matrix norm)

A matrix norm $\|\cdot\|$ is **consistent** (or "sub-multiplicative") if

$$||AB|| \le ||A|| ||B||$$
, for all $A, B \in \mathbb{R}^{n \times n}$.

Theorem 3.27

Any subordinate matrix norm is consistent.

The proof is left to Exercise 3.17. That exercises also demonstrates that there are matrix norms which are *not* consistent.

[Please read this slide in your own time!]

Modern computers don't store numbers in decimal (base 10), but in binary (base 2) "floating point numbers" of the form :

$$x = \pm a \times 2^{b-M}$$
.

Most use double precision, where 8 bytes (64 bits or binary digits) are used to store

- the sign (1 bit),
- a, called the "significand" or "mantissa" (52 bits)
- and the exponent, b 1023 (11 bits)

Note that a has roughly 16 decimal digits.

(Some older computer systems sometimes use *single precision* where a has 23 bits — giving 8 decimal digits — and b has 7; so too do many new GPU-based systems).

[OK, you can start reading again!] When we try to store a real number x on a computer, we actually store the nearest floating-point number. That is, we end up storing $x + \delta x$, where δx is the "round-off" error.

But the quantity we are mainly interested in is the **relative error**: $|\delta x|/|x|$.

Since this is not a course on computer architecture, we'll simplify a little and just take it that single and double precision systems lead to a relative error of 10^{-8} and 10^{-16} respectively.

(Sew p68–70 of Süli and Mayers for a thorough development of the concept of a condition number).

Suppose we use, say, LU-factorization and back-substitution on a computer to solve

$$Ax = b$$
.

Because of the "round-off error" we actually solve

$$A(\boldsymbol{x} + \boldsymbol{\delta} \boldsymbol{x}) = (b + \boldsymbol{\delta} \boldsymbol{b}).$$

Our problem now is, for a given A, if we know the (relative) error in b, can we find an upper-bound on the relative error in x?

Definition 3.28

The condition number of a matrix, with respect to a particular matrix norm $\|\cdot\|_{\star}$ is

$$\kappa_{\star}(A) = \|A\|_{\star} \|A^{-1}\|_{\star}.$$
 If $\kappa_{\star}(A) \gg 1$ then we say A is ill-conditioned.
$$\begin{cases} \kappa_{\star}(I) = 1 \\ \kappa_{\star}(A) \gg 1 \end{cases}$$
 where $\kappa_{\star}(A) \gg 1$ is ill-conditioned.

Example: Find the condition number κ_{∞} of

So
$$||A||_{\infty} = 22$$
. $||A^{-}||_{\infty} = 302.5$
So $||A||_{\infty} = 6.655$.

Theorem 3.29

Suppose that $A \in \mathbb{R}^{n \times n}$ is nonsingular and that $b, x \in \mathbb{R}^n$ are non-zero vectors. If Ax = b and $A(x + \delta x) = (b + \delta b)$ then

$$\frac{\|\boldsymbol{\delta}\boldsymbol{x}\|}{\|\boldsymbol{x}\|} \le \kappa(A) \frac{\|\boldsymbol{\delta}\boldsymbol{b}\|}{\|\boldsymbol{b}\|}.$$

Proof: Since
$$Ax = b$$
 and $A6x + \delta x) = b + \delta b$,
So $A \delta x = \delta b$.
Then $b = Ax$, so $||b|| = ||Ax|| \le ||A|| \cdot ||x|||$

Similarly $\delta x = A^{-1} \delta b$, so $\| \delta x \| \leq \| A^{-1} \| \cdot \| \delta b \|$. So $\| b \| \cdot \| \delta x \| \leq \| A \| \cdot \| A^{-1} \| \| x \| \| \| \delta b \|$

Example 3.30

Suppose we are using a computer to solve $Aoldsymbol{x} = oldsymbol{b}$ where

$$A = \begin{pmatrix} 10 & 12 \\ 0.08 & 0.1 \end{pmatrix} \quad \text{and } \mathbf{b} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

But, due to round-off error, right-hand side has a relative error (in the ∞ -norm) of 10^{-6} . Give a bound for the relative error in x in the ∞ -norm.

We already sow that
$$K_0(A) = 6655$$
.
So, since $\frac{||5b||}{||5||} = |0^{-6}|$,
 $\frac{||5x||}{||x||} \leq K_{\infty}(A) \times 10^{-6} = 0-0.06655$.

For every matrix norm we get a different condition number.

Example 3.31

Let A be the $n \times n$ matrix

$$A = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & 1 & 0 & \dots & 0 \\ 1 & 0 & 1 & \dots & 0 \\ \vdots & & & & & \\ 1 & 0 & 0 & \dots & 1 \end{pmatrix}.$$

What are $\kappa_1(A)$, and $\kappa_\infty(A)$

First we compute $\|A\|_1$ and $\|A_\infty\|$.

For this very special example, it is easy to write down the inverse of A:

$$A^{-1} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ -1 & 1 & 0 & \dots & 0 \\ -1 & 0 & 1 & \dots & 0 \\ \vdots & & & & \\ -1 & 0 & 0 & \dots & 1 \end{pmatrix}.$$

$$\|A^{-1}\|_{1} = 2$$
 $\|A^{-1}\|_{\infty} = n$.
So $K_{1}(A) = 4$ $K_{\infty}(A) = n^{2}$.

To compute $\kappa_1(A)$ and $\kappa_{\infty}(A)$, we need to know A^{-1} , which is usually not practical. However, for κ_2 , we are able to *estimate* the condition number of A without knowing A^{-1} .

Recall that $||A||_2 = \sqrt{\lambda_n}$ where λ_n is the largest eigenvalue of $B = A^T A$.

We can also show that $\|A^{-1}\|_2=\frac{1}{\sqrt{\lambda_1}}$ where λ_1 is the smallest eigenvalue of B (see Section 3.6.5 of notes). So

$$\kappa_2(A) = \left(\lambda_n/\lambda_1\right)^{1/2}.$$

......

Motivated by this, we'll finish MA385, by studying an easy way of estimating the eigenvalues of a matrix.

Exercises (90/103)

Exercise 3.17

- (i) Prove that, if $\|\cdot\|$ is a subordinate matrix norm, then it is *consistent*, i.e., for any pair of $n \times n$ matrices, A and B, we have $\|AB\| \le \|A\| \|B\|$.
- (ii) One might think it intuitive to define the "max" norm of a matrix as follows:

$$||A||_{\infty} = \max_{i,j} |a_{ij}|.$$

Show that this is indeed a norm on $\mathbb{R}^{n \times n}$. Show that, however, it is not consistent.

Exercise 3.18

Let A be the matrix

$$A = \begin{pmatrix} 0.1 & 0 & 0 \\ 10 & 0.1 & 10 \\ 0 & 0 & 0.1 \end{pmatrix}$$

Compute $\kappa_\infty(A)$. Suppose we wish to solve the system of equations Ax=b on single precision computer system (i.e., the relative error in any stored number is approximately 10^{-8}). Give an upper bound on the relative error in the computed solution x.

Exercises (90/103)

Exercise 3.17

- (i) Prove that, if $\|\cdot\|$ is a subordinate matrix norm, then it is *consistent*, i.e., for any pair of $n \times n$ matrices, A and B, we have $\|AB\| \le \|A\| \|B\|$.
- (ii) One might think it intuitive to define the "max" norm of a matrix as follows:

$$||A||_{\infty} = \max_{i,j} |a_{ij}|.$$

Show that this is indeed a norm on $\mathbb{R}^{n \times n}$. Show that, however, it is not consistent.

Exercise 3.18

Let A be the matrix

$$A = \begin{pmatrix} 0.1 & 0 & 0 \\ 10 & 0.1 & 10 \\ 0 & 0 & 0.1 \end{pmatrix}$$

Compute $\kappa_\infty(A)$. Suppose we wish to solve the system of equations Ax=b on single precision computer system (i.e., the relative error in any stored number is approximately 10^{-8}). Give an upper bound on the relative error in the computed solution x.