Data Structures and Algorithms CS245-2013S-21 Connected Components

David Galles

Department of Computer Science University of San Francisco

21-0: Strongly Connected Graph

Directed Path from every node to every other node

Strongly Connected

21-1: Strongly Connected Graph

Directed Path from every node to every other node

Strongly Connected

21-2: Connected Components

21-3: Connected Components

21-4: Connected Components

21-5: Connected Components

21-6: Connected Components

- Connected components of the graph are the largest possible strongly connected subgraphs
- If we put each vertex in its own component each component would be (trivially) strongly connected
 - Those would not be the connected components of the graph – unless there were no larger connected subgraphs

21-7: Connected Components

- Calculating Connected Components
 - Two vertices v_1 and v_2 are in the same connected component if and only if:
 - Directed path from v_1 to v_2
 - Directed path from v_2 to $\overline{v_1}$
 - To find connected components find directed paths
 - Use DFS

21-8: DFS Revisited

- We can keep track of the order in which we visit the elements in a Depth-First Search
- For any vertex v in a DFS:
 - d[v] = Discovery time when the vertex is first visited
 - f[v] = Finishing time when we have finished with a vertex (and all of its children)

21-9: DFS Revisited

```
class Edge {
  public int neighbor;
  public int next;
void DFS(Edge G[], int vertex, boolean Visited[], int d[], int f[]) {
  Edge tmp;
  Visited[vertex] = true;
  d[vertex] = time++;
  for (tmp = G[vertex]; tmp != null; tmp = tmp.next) {
    if (!Visited[tmp.neighbor])
      DFS(G, tmp.neighbor, Visited);
  f[vertex] = time++;
```

21-10: DFS Revisited

• To visit every node in the graph:

```
TraverseDFS(Edge G[]) {
  int i;
  boolean Visited = new boolean[G.length];
  int d = new int[G.length];
  int v = new int[G.length];
  time = 1;
  for (i=0; i<G.length; i++)</pre>
    Visited[i] = false;
  for (i=0; i<G.length; i++)
    if (!Visited[i])
      DFS(G, i, Visited, d, f);
```

21-11: DFS Example

21-12: DFS Example

21-13: DFS Example

21-14: DFS Example

21-15: DFS Example

21-16: DFS Example

21-17: DFS Example

21-18: DFS Example

21-19: DFS Example

21-20: DFS Example

21-21: DFS Example

21-22: DFS Example

21-23: DFS Example

21-24: DFS Example

21-25: DFS Example

21-26: DFS Example

21-27: DFS Example

21-28: DFS Example

21-29: DFS Example

21-30: DFS Example

21-31: DFS Example

21-32: DFS Example

21-33: DFS Example

21-34: DFS Example

21-35: DFS Example

21-36: DFS Example

21-37: DFS Example

21-38: DFS Example

21-39: DFS Example

21-40: DFS Example

21-41: DFS Example

21-42: DFS Example

21-43: DFS Example

21-44: DFS Example

21-45: DFS Example

21-46: Using d[] & f[]

• Given two vertices v_1 and v_2 , what do we know if $f[v_2] < f[v_1]$?

21-47: Using d[] & f[]

- Given two vertices v_1 and v_2 , what do we know if $f[v_2] < f[v_1]$?
 - Either:
 - ullet Path from v_1 to v_2
 - Start from v_1
 - ullet Eventually visit v_2
 - Finish v_2
 - Finish v_1

21-48: Using d[] & f[]

- Given two vertices v_1 and v_2 , what do we know if $f[v_2] < f[v_1]$?
 - Either:
 - Path from v_1 to v_2
 - No path from v_2 to v_1
 - Start from v_2
 - ullet Eventually finish v_2
 - Start from v_1
 - ullet Eventually finish $\overline{v_1}$

21-49: Using d[] & f[]

- If $f[v_2] < f[v_1]$:
 - Either a path from v_1 to v_2 , or no path from v_2 to v_1
 - If there is a path from v_2 to v_1 , then there must be a path from v_1 to v_2
- $f[v_2] < f[v_1]$ and a path from v_2 to $v_1 \Rightarrow v_1$ and v_2 are in the same connected component

21-50: Calculating paths

- $lackbox{lack}{lackbox{lack}{\bullet}}$ Path from v_2 to v_1 in G if and only if there is a path from v_1 to v_2 in G^T
 - G^T is the transpose of G-G with all edges reversed
- If after DFS, $f[v_2] < f[v_1]$
- Run second DFS on G^T , starting from v_1 , and v_1 and v_2 are in the same DFS spanning tree
- v_1 and v_2 must be in the same connected component

21-51: Connected Components

- Run DFS on G, calculating f[] times
- Compute G^T
- Run DFS on G^T examining nodes in *inverse* order of finishing times from first DFS
- Any nodes that are in the same DFS search tree in G^T must be in the same connected component

21-52: Connected Components Eg.

21-53: Connected Components Eg.

21-54: Connected Components Eg.

21-55: Connected Components Eg.

d 12 f 13

. /

2 4 6 6 d 5 f 7 f 6

d 14 f 15

21-56: Connected Components Eg.

21-57: Connected Components Eg.

21-58: Connected Components Eg.

21-59: Connected Components Eg.

21-60: Topological Sort

- How could we use DFS to do a Topological Sort?
 - (Hint Use discover and/or finish times)

21-61: Topological Sort

- How could we use DFS to do a Topological Sort?
 - (Hint Use discover and/or finish times)
 - (What does it mean if node x finished before node y?)

21-62: Topological Sort

- How could we use DFS to do a Topological Sort?
 - Do DFS, computing finishing times for each vertex
 - As each vertex is finished, add to front of a linked list
 - This list is a valid topological sort