Московский государственный технический университет им. Н.Э. Баумана Кафедра «Системы обработки информации и управления»

Лабораторная работа №5

по дисциплине «Методы машинного обучения» на тему «Линейные модели, SVM и деревья решений»

Выполнил: студент группы ИУ5-21М Сенин С.С.

Москва − 2020 г.

Лабораторная работа №5

✓ Линейные модели, SVM и деревья решений.

Цель лабораторной работы: изучение линейных моделей, SVM и деревьев решений.

▼ Задание:

Выберите набор данных (датасет) для решения задачи классификации или регрессии. В слили заполнение пропусков и кодирование категориальных признаков.

С использованием метода train_test_split разделите выборку на обучающую и тестовую.

Обучите следующие модели:

- одну из линейных моделей;
- SVM;
- дерево решений. Оцените качество моделей с помощью трех подходящих для задачи моделей.

Произведите для каждой модели подбор одного гиперпараметра с использованием GridSe

Повторите пункт 4 для найденных оптимальных значений гиперпараметров. Сравните кач моделей, полученных в пункте 4.

```
from datetime import datetime
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn.metrics import median_absolute_error, r2_score, mean_absolute_error
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import ShuffleSplit
from sklearn.model_selection import cross_val_score, train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.svm import SVR
from sklearn.tree import DecisionTreeRegressor
from sklearn.tree import export_graphviz, plot_tree
import graphviz
# Enable inline plots
%matplotlib inline
```

Выбор набора данных(датасета) и исследование его

```
data = pd.read csv('camera dataset.csv', sep=',')
```

		Model	Release date	Max resolution	Low resolution	Effective pixels	Zoom wide (W)	Zoom tele (T)	Normal focus range
	0	Agfa ePhoto 1280	1997	1024.0	640.0	0.0	38.0	114.0	70.0
	1	Agfa ePhoto 1680	1998	1280.0	640.0	1.0	38.0	114.0	50.0
	2	Agfa ePhoto CL18	2000	640.0	0.0	0.0	45.0	45.0	0.0
	3	Agfa ePhoto	1999	1152.0	640.0	0.0	35.0	35.0	0.0

data.shape

[→ (1038, 13)

data.dtypes

Г⇒	Model	object
	Release date	int64
	Max resolution	float64
	Low resolution	float64
	Effective pixels	float64
	Zoom wide (W)	float64
	Zoom tele (T)	float64
	Normal focus range	float64
	Macro focus range	float64
	Storage included	float64
	Weight (inc. batteries)	float64
	Dimensions	float64
	Price	float64
	dtype: object	

dtype: object

data.isnull().sum()

Г⇒	Model	0
_	Release date	0
	Max resolution	0
	Low resolution	0
	Effective pixels	0
	Zoom wide (W)	0
	Zoom tele (T)	0
	Normal focus range	0
	Macro focus range	1
	Storage included	2
	Weight (inc. batteries)	2
	Dimensions	2
	Price	0
	d+vmos in+C4	

dtype: int64

Удаление или заполнение пропусков и кодирование категориал

```
# кодирование категориальных признаков числовыми
le = LabelEncoder()
data['Model'] = le.fit_transform(data['Model'])
# заполнение 0 пропусков
data = data.fillna(0)
data.dtypes

    Model

                               int64
    Release date
                               int64
                           float64
    Max resolution
                             float64
    Low resolution
    Effective pixels
                            float64
    Zoom wide (W)
                            float64
    Zoom tele (T)
                            float64
    Normal focus range float64
    Macro focus range
                            float64
                            float64
    Weight (inc. batteries) float64
    Dimensions
                              float64
    Price
                              float64
    dtype: object
data.isnull().sum()

    Model

                              0
    Release date
                              0
    Max resolution
                              0
    Low resolution
                              0
    Effective pixels
    Zoom wide (W)
    Zoom tele (T)
    Normal focus range
                              0
    Macro focus range
                              0
    Storage included
                              0
    Weight (inc. batteries) 0
    Dimensions
                              0
                              0
    Price
    dtype: int64
data.head()
\Box
```

	Model	Release date	Max resolution	Low resolution	Effective pixels	Zoom wide (W)	Zoom tele (T)	Normal focus range
0	0	1997	1024.0	640.0	0.0	38.0	114.0	70.0
1	1	1998	1280.0	640.0	1.0	38.0	114.0	50.0
2	2	2000	640.0	0.0	0.0	45.0	45.0	0.0
3	3	1999	1152.0	640.0	0.0	35.0	35.0	0.0
4	4	1999	1152.0	640.0	0.0	43.0	43.0	50.0

▼ С использованием метода train_test_split разделение выборки в

Разделим данные на целевой столбец и признаки.

```
# Перейдем к разделению выборки на обучающую и тестовую.
X = data.drop('Price',axis = 1).values
y = data['Price'].values
```

Разделим выборку на тренировочную и тестовую.

▼ Обучение моделей

```
def test_model(model):
    print("mean_absolute_error:", mean_absolute_error(y_test, model.predict(X_test)))
    print("median_absolute_error:", median_absolute_error(y_test, model.predict(X_test)))
    print("r2_score:", r2_score(y_test, model.predict(X_test)))
```

• Линейная модель Ridge

```
from sklearn.linear model import Ridge
```

```
ridge.fit(X_train, y_train)

☐ Ridge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, random_state=None, solver='auto', tol=0.001)

# Проверим метрики построенной модели test_model(ridge)

☐ mean_absolute_error: 306.3038807132392 median_absolute_error: 165.30968988067252 r2_score: 0.37462185757821154
```

Данный метод без настройки гиперпараметров работает хуже, чем метод К ближайших со-

SVM;

```
svr = SVR(kernel='linear', C=1.0)
svr.fit(X_train, y_train)

test_model(svr)

    mean_absolute_error: 282.0231575952385
    median_absolute_error: 80.92326189883352
    r2_score: 0.10635427550256049
```

SVM показал результаты лучше по средней абсолютной ошибке, коэффициенте детермина Ridge.

дерево решений.

```
dt_r = DecisionTreeRegressor(max_depth=None)
dt_r.fit(X_train, y_train)

test_model(dt_r)

mean_absolute_error: 184.8230769230769
    median_absolute_error: 0.0
    r2_score: 0.4429956343774656
```

Дерево решений показало достаточно хороший результат по сравнению с рассмотренным детерминации больше, чем в методе SVM.

▼ Подбор гиперпараметра К

• Линейная модель — Ridge

```
param_range = np.arange(0.001, 2.01, 0.1)
```

```
Γ<sub>3</sub> [{'alpha': array([1.000e-03, 1.010e-01, 2.010e-01, 3.010e-01, 4.010e-01, 5.010e-01,
              6.010e-01, 7.010e-01, 8.010e-01, 9.010e-01, 1.001e+00, 1.101e+00,
              1.201e+00, 1.301e+00, 1.401e+00, 1.501e+00, 1.601e+00, 1.701e+00,
              1.801e+00, 1.901e+00, 2.001e+00])}]
gs = GridSearchCV(Ridge(), tuned_parameters,
cv=ShuffleSplit(n_splits=10), scoring="r2",return_train_score=True, n_jobs=-1)
gs.fit(X, y)
gs.best_estimator_
    Ridge(alpha=2.001, copy X=True, fit intercept=True, max iter=None,
           normalize=False, random state=None, solver='auto', tol=0.001)
reg = Ridge(**gs.best_params_)
reg.fit(X_train, y_train)
test model(reg)

    mean_absolute_error: 306.26400065441203

     median_absolute_error: 165.30140387399297
     r2_score: 0.3746856932251066
```

При использовании метода Ridge с подобранными параметрами результат остается практ

plt.plot(param range, gs.cv results ["mean train score"]);

plt.plot(param range, gs.cv results ["mean test score"]);

 Γ


```
from sklearn.linear_model import LinearRegression
reg = LinearRegression()
reg.fit(X_train, y_train)
test_model(reg)
```

mean_absolute_error: 306.34387129507815
median_absolute_error: 165.31800124581423
r2_score: 0.3745577194481675

Аналогичный результат и при использовании линейной регрессии.

SVM

С подобранными параметрами результаты значительно лучше.

median_absolute_error: 73.93932701801725

r2_score: 0.212389939289774

plt.plot(tuned parameters[0]['C'], gs.cv results ["mean train score"]):

plt.plot(tuned_parameters[0]['C'], gs.cv_results_["mean_test_score"]);

• Дерево решений

```
plt.plot(param_range, gs.cv_results_["mean_train_score"]);
```


plt.plot(param_range, gs.cv_results_["mean_test_score"]);


```
param_range = np.arange(15, 25, 1)
tuned_parameters = [{'max_depth': param_range}]
tuned_parameters
```

 \vdash [{'max_depth': array([15, 16, 17, 18, 19, 20, 21, 22, 23, 24])}]

gs = GridSearchCV(DecisionTreeRegressor(), tuned_parameters,
cv=ShuffleSplit(n_splits=10), scoring="r2",
return_train_score=True, n_jobs=-1)
gs.fit(X, y)
gs.best_estimator_

plt.plot(param_range, gs.cv_results_["mean_test_score"]);

reg = gs.best_estimator_
reg.fit(X_train, y_train)
test_model(reg)

mean_absolute_error: 179.6846153846154
median_absolute_error: 0.0
r2 score: 0.3902964044398235

plot_tree(reg, filled=True);

dot_data = export_graphviz(reg, out_file=None, feature_names=data.columns[:-1],
filled=True, rounded=True,
special_characters=True)
graph = graphviz.Source(dot_data)
graph

atteries) ≤ 1135.0 30110.892 es = 778 = 454.473

eries) ≤ 205.0 364.042 ; = 23 44.043

nge ≤ 30.0

Weight (inc. batteries) ≤ 505.0

Вывод

Наибольшую точность дает модель, построенная при помощи дерева решений, затем идет SGD (стохастический градиентный метод), а потом линейный метод.