SIGyE

Coordinación del Sistema Geoestadístico

mayo 17, 2024

Resumen

"Proyecto: Sistema de Integración Geográfica y Estadística. Sistema de gestión de la base geográfica del INDEC en la CSG" INDEC. (borrador).

Índice

Si	\mathbf{stem}	a de Integración Geográfica y Estadística (INDEC)	1
1	Intr	roducción	1
	1.1	Objetivos	2
	1.2	Metas	2
2		arrollo Componentes (técnicos y accesorios - capacitación-)	3
3	Bas	e de Datos	6
	3.1	Unidades Geoestadísticas	6
	3.2	Modelo Geográfico	10
	3.3	Esquema de interacción	18

Sistema de Integración Geográfica y Estadística (INDEC)

Un proyecto de la Coordinación del Sistema Geoestadístico (CSG) de la Dirección Nacional de Metodología e Infraestructura Estadística (DNMIE) del Instituto Nacional de Estadística y Censos (INDEC Argentina) para la CSG y las Direcciones Provinciales de Estadísticas (DPE).

1 Introducción

El presente documento es una propuesta estratégica de la Coordinación del Sistema Geoestadístico (CSG). El objetivo es establecer la metodología de trabajo y la gestión de la base geográfica del INDEC en la CSG y en las áreas geoestadísticas de las Direcciones Provinciales de Estadística durante el decenio 2020-2030.

Dentro del plan estructurado en varios ejes, aquí abordamos el punto 2: Implementación de la Base de Datos Relacional y Topológica en la CSG y las DPE.

(* Extraído del "MasterPlan")

1.1 Objetivos

- 1. Administración de la unidades geoestadísticas básicas y sus relaciones con el modelo geográfico social/legal para el manejo de la información estadística.
- 2. Control intrínseco que da la consistencia para las unidades geoestadísticas. (Topología)
- 3. Mantenimiento de la trazabilidad de las unidades geoestadísticas a lo largo del tiempo.
- 4. Administración de las relaciones del modelo geográfico y sus modificaciones a lo largo del tiempo y su participación en los distintos operativos.
- 5. Preparación de los datos para diferentes publicaciones y aplicativos.
- 6. Generación y mantenimiento de la base de datos multifinalitaria para el cruce de datos estadísticos provenientes de diferentes fuentes adecuándose a los distintos ámbitos y los diferentes grados de cobertura.
- 7. Carga de archivos Shape (.shp, .shx, .dbf, .prj) con datos de cartografía urbana.
- 8. Carga de archivos E00 (.e00) con datos de cartografía urbana.
- 9. Carga de archivos DBF de listado de viviendas ADRA.
- 10. Carga de archivos PxxRad en formato DBF. Datos de Radios, tipo de radio y su relación con localidad/entidad

1.2 Metas

- 1. Construir un Catálogo de imágenes versionado, censo 2020, censo 2018 (Anabella)
- 2. Completar la carga de otras unidades geográficas: . Entidades . Gobiernos Locales . Radios Rurales .
- 3. Integración de datos básicos censo 2022
- 4. Integración de datos de otros registros administrativos.
- 5. Consumir geoservicio de geolocalización de INDEC (JC ArcGis) a evaluar alternativas API GeoRef / Naminatim
- 6. Relevamiento de visores a fin de incorporar/sincronizar intercambio de datos con el sistema.
- 7. Baja de Elementos (*)
- 8. Capacitar recursos humanos para... desgloce de capacitaciones...
- 9. Incorporar las normativas vigentes en cuanto a nombre de calles y numeración.
- 10. Generar Reportes de vías de circulación (ver: http://172.22.26.215/reportes, http://172.22.26.215/reportes_2022)
- 11. Desarrollar un Sistema de gestión de informes (informes generados por operario)
- 12. Desarrollar un Sistema para la Generación de layers en topología y edición.

- 13. Generar de "mapa base INDEC" asociado según operativo/tag
- 14. Incorporar reportes de areas conflictivas: por limites, doble asignación, imputación, etc.
- 15. CODIFICACIÓN: Incorporar procedimientos para la validación y/o generación de códigos para los distintos objetos geográficos.
- 16. Generar módulo de Verificación (tag: verificado?) (verificador x OG?)
- 17. Actualizar Carga ADRA / Actualización de Domicilios
- 18. Modulo para Integración de alturas de ADRA a Base geográfica. (pensando en otras fuentes)
- 19. Generar Manual de estilos y estilos para capa base INDEC.
- 20. Desarrollar Módulo para la gestión de archivos. (Ale y Sil)

1.2.1 Actividades

(*)

- [x] Borrar Provincia
- [] Borrar Departamentos
- [] Borrar Localidad

2 Desarrollo

2.1 Componentes (técnicos y accesorios - capacitación-)

2.1.1 Sistema WEB

Para la gestión, carga, edición y navegación de unidades geoestadísticas y objetos geográficos relacionados.

Visualización de los componentes geográficos.

Segmentación de radios urbanos.

2.1.2 Integración de submódulo de segmentación.

El sistema web prepara los datos y dispara los procesos del submódulo de segmentación, ésto incluye:

- Generación de grafo (Adyacencia de lados) para el cálculo de la continuidad de los segmentos.
- Diferentes procesos según la distribución de las viviendas, para área según su densidad.
- Generación de descripción de los segmentos.
- Planillas R3 con resumen de la segmentación para cada radio.

2.1.3 Plugin QGIS

Visualización de los componentes geográficos.

Salidas gráficas de mapas para la Segmentación 2022 del CNPyV.

Consulta y acceso a la Base de Datos geográfica y geoestadística.

2.1.4 Esquema de Base de Datos

Unidades Básicas del Marco Geoestadístico

- Provincias
- Departamentos
- Fracciones
- Radios
- Manzanas
- Lados de Manzanas
- Viviendas
- segmentos

Relaciones de unidades del modelo Geográfico

- Localidades
- Aglomerados
- Entidades
- Gobiernos Locales
- Parajes
- Bases Antárticas
- Regiones
- Vías de circulación

Figura 1: Diagrama de Base de Datos

3 Base de Datos

3.1 Unidades Geoestadísticas

3.1.1 Provncias

```
campos <- dbListFields(con, "provincia")
knitr::kable(campos, format = "simple", caption = "Campos de tabla provincia")</pre>
```

Cuadro 1: Campos de tabla provincia

id codigo nombre fecha_desde fecha_hasta observacion_id geometria_id srid

```
df <- dbGetQuery(con, "SELECT * FROM provincia order by random() limit 5")
knitr::kable(df, caption = "Tabla provincia", border_left = TRUE, border_right = TRUE) %>%
  kable_styling(font_size = 8) %>%
  kable_styling(latex_options = "striped", full_width = F) %>%
  kable_styling(latex_options = c("repeat_header")) %>%
  row_spec(0, angle = 70)
```

3.1.2 Departamentos

```
campos <- dbListFields(con, "departamentos")
knitr::kable(campos, format = "simple", caption = "Campos de tabla departamentos")</pre>
```

6

Cuadro 2: Tabla provincia

þį	codigo	hombr_e	$fech_{\mathrm{a}}$ $desd_{\mathrm{e}}$	$fech_{a-hast_{a}}$	$^{observacion}_{-id}$	$g_{ m eometria_id}$	Pits
16	62	Río Negro	NA	NA	NA	NA	22183
5	18	Corrientes	NA	NA	NA	NA	22186
12	46	La Rioja	NA	NA	NA	NA	22183
7	26	Chubut	NA	NA	NA	NA	22182
15	58	Neuquén	NA	NA	NA	NA	22182

Cuadro 4: Tabla departamentos

	$codi_{SO}$	$^{n_{Ombr_{re}}}$	Provincia_id	fecha_desde	fecha_hasta	observacion_id	Seometria_id
233	22098	Mayor Luis J. Fontana	6	NA	NA	NA	NA
494	86098	Juan Felipe Ibarra	22	NA	NA	NA	NA
238	22133	Quitilipi	6	NA	NA	NA	NA
314	42098	Loventué	11	NA	NA	NA	NA
362	54028	Capital	14	NA	NA	NA	NA

Cuadro 3: Campos de tabla departamentos

id
codigo
nombre
provincia_id
fecha_desde
fecha_hasta
observacion_id
geometria_id

```
df <- dbGetQuery(con, "SELECT * FROM departamentos order by random() limit 5")
knitr::kable(df, caption = "Tabla departamentos", border_left = TRUE, border_right = TRUE) %>%
kable_styling(font_size = 8) %>%
kable_styling(latex_options = "striped", full_width = F) %>%
kable_styling(latex_options = c("repeat_header")) %>%
row_spec(0, angle = 70)
```

-1

Cuadro 6: Tabla fraccion

P _i	codigo	$^{departamento}_{-id}$	$f_{\mathrm{e}ch_{a}}$ _ $d_{\mathrm{e}sd_{\mathrm{e}}}$	f_{ech_a} hasta	observacion_id	$geometria_id$
64968	0649047	91	NA	NA	NA	84212
65012	0651515	95	NA	NA	NA	84256
64828	0644155	84	NA	NA	NA	84072
65405	0667204	120	NA	NA	NA	84649
64573	0641201	79	NA	NA	NA	83817

knitr::kable(campos, format = "simple", caption = "Campos de tabla fracciones")

Cuadro 5: Campos de tabla fracciones

id
codigo
departamento_id
fecha_desde
fecha_hasta
observacion_id
geometria_id

```
df <- dbGetQuery(con, "SELECT * FROM fraccion order by random() limit 5")
knitr::kable(df, caption = "Tabla fraccion", border_left = TRUE, border_right = TRUE) %>%
  kable_styling(font_size = 8) %>%
  kable_styling(latex_options = "striped", full_width = F) %>%
  kable_styling(latex_options = c("repeat_header")) %>%
  row_spec(0, angle = 70)
```

 ∞

3.1.4 Radios

```
campos <- dbListFields(con, "radio")
knitr::kable(campos, format = "simple", caption = "Campos de tabla radio")</pre>
```

Cuadro 7: Campos de tabla radio

```
id
codigo
fraccion_id
fecha_desde
fecha_hasta
observacion_id
geometria_id
tipo_de_radio_id
resultado
user_id
issegmentado
updated_at
created_at
nombre
```

```
df <- dbGetQuery(con, "SELECT * FROM radio order by random() limit 5")
knitr::kable(df, caption = "Tabla radio", border_left = TRUE, border_right = TRUE) %>%
  kable_styling(font_size = 8) %>%
  kable_styling(latex_options = "striped", full_width = F) %>%
  kable_styling(latex_options = c("repeat_header")) %>%
  row_spec(0, angle = 70)
```

9

þį	codigo	fraccion_id	f_{ech_a} d_{esd_e}	fecha_hasta	$ob_{servacion_id}$	$^{geometria}_{-id}$	$^{tip_{o}}$ $^{-de}$ $^{-radio}$ $^{-id}$	$^{Iesul_{Ead_{O}}}$	USer_id	issegmentado	$^{up}d^{ated}_{-at}$	$^{created}_{-at}$	$^{nombr_{ m e}}$
19572	063577002	64449	NA	NA	NA	107581	3	NA	NA	NA	NA	NA	NA
47413	500281411	66769	NA	2019-07-23 23:59:59	NA	135422	3	NA	NA	NA	NA	NA	NA
3376	180350108	68388	NA	NA	NA	91385	3	NA	NA	NA	NA	NA	NA
25038	064903803	64959	NA	NA	NA	113047	3	NA	NA	NA	NA	NA	NA
26623	065601007	65103	NA	NA	NA	114632	3	NA	NA	NA	NA	NA	NA

3.2 Modelo Geográfico

3.2.1 Localidades

```
campos <- dbListFields(con, "localidad")
print("Campos de tabla localidad")

## [1] "Campos de tabla localidad"
knitr::kable(campos, format = "simple", caption = "Campos de tabla Localidad")</pre>
```

Cuadro 9: Campos de tabla Localidad

X
id
codigo
nombre
$aglomerado_id$
$tipo_de_localidad_id$
$tipo_de_poblacion_io$

recha_desde
fecha_hasta
observacion_id
geometria_id
cap_de_rep
cap_de_pcia
cab_de_depto
sede_gob_loc

```
df <- dbGetQuery(con, "SELECT * FROM localidad order by random() limit 5")
knitr::kable(df, caption = "Tabla Localidad", digits = 2, longtable = TRUE) %>%
kable_styling(font_size = 8) %>%
kable_styling(latex_options = "striped", full_width = F) %>%
kable_styling(latex_options = c("repeat_header")) %>%
row_spec(0, angle = 70)
```

Cuadro 10: Tabla Localidad

Pį	o8j $^{po_{o}}$	nombre	^{ag} lom ^{erado} _id	$^{tipo}_{-de_localidad_id}$	tipo _de_poblacion_id	fech_a_desd_e	$f_{eCh_{a_hast_{a}}}$	observacion_id	8eometria_id	$^{cap}{}^{-de}{}^{-lep}$	$^{cap}_{-de}_{-Dc_{ia}}$	$^{cab}_{-d_{e}}^{-d_{e}}$	$^{sede}_{-8ob}$
5887	90091030	Nueva Trinidad	3307	1	2	NA	NA	NA	7877	1	1	1	2
5316	82021320	Ramona	1051	1	2	NA	NA	NA	7498	1	1	1	2
3581	14147320	Villa del Prado	1524	1	2	NA	NA	7401	5690	1	1	1	3
5891	90098010	Amaicha del Valle	1298	1	2	NA	NA	NA	7823	1	1	1	2
2746	06547010	Abbott	1652	1	2	NA	NA	NA	4683	1	1	1	1

3.2.2 Aglomerados

```
campos <- dbListFields(con, "aglomerados")
print("Campos de tabla aglomerados")</pre>
```

12

```
knitr::kable(campos, format = "simple", caption = "Campos de tabla aglomerados")
```

Cuadro 11: Campos de tabla aglomerados

```
id
codigo
nombre
fecha_desde
fecha_hasta
observacion_id
geometria_id
tipo_de_poblacion_id
```

```
df <- dbGetQuery(con, "SELECT * FROM aglomerados order by random() limit 5")
knitr::kable(df, caption = "Tabla aglomerados", digits = 2, longtable = TRUE) %>%
kable_styling(font_size = 8) %>%
kable_styling(latex_options = "striped", full_width = F) %>%
kable_styling(latex_options = c("repeat_header")) %>%
row_spec(0, angle = 70)
```

Cuadro 12: Tabla aglomerados

p _i	codigo	$^{HOmbr_{ m fre}}$	f_{ech_a} $desd_e$	f_{ech_a} h_{ast_a}	$^{ob_{SepVacjon}}_{-id}$	8eometria_id	tipo_de_poblacion_d
779	0716	Margarita	NA	NA	NA	NA	1
1268	1222	Medanitos	NA	NA	NA	NA	2
3010	6062	El Paramillo	NA	NA	NA	NA	2
2086	2812	Médanos	NA	NA	NA	NA	2

Cuadro 12: Tabla aglomerados (continued)

3.2.3 Entidades

```
campos <- dbListFields(con, "entidades")

print("Campos de tabla entidades")

## [1] "Campos de tabla entidades"

knitr::kable(campos, format = "simple", caption = "Campos de tabla entidades")</pre>
```

Cuadro 13: Campos de tabla entidades

id
codigo
nombre
localidad_id
fecha_desde
fecha_hasta
observacion_id
cap_de_pcia
cab_de_depto
sede_gob_loc
geometria_id

x created_at updated_at

```
df <- dbGetQuery(con, "SELECT * FROM entidades order by random() limit 5")
knitr::kable(df, caption = "Tabla entidades", digits = 2, longtable = TRUE) %>%
kable_styling(font_size = 8) %>%
kable_styling(latex_options = "striped", full_width = F) %>%
kable_styling(latex_options = c("repeat_header")) %>%
row_spec(0, angle = 70)
```

Cuadro 14: Tabla entidades

id	^{OS} (po _O	hombr_e	localidad_id	fech _a _desd _e	fech _a _hast _a	observacion_id	$^{cap}_{-de}$	$^{cab}_{-d_{e}}_{-d_{e}p_{t_{o}}}$	sede_gob_loc	geometria_id	$^{created}_{-at}$	$^{upd_{ated}}_{-a_t}$
1942	3804204002	Río Blanco	4188	2024-03-27 11:52:05	2024-03-27 11:52:05	0	0	0	1	2	2024-03-27 11:52:05	2024-03-27 11:52:05

3.2.4 Gobiernos Locales

```
campos <- dbListFields(con, "gobierno_local")

print("Campos de tabla gobierno_local")

## [1] "Campos de tabla gobierno_local"

knitr::kable(campos, format = "simple", caption = "Campos de tabla gobierno_local")</pre>
```

Cuadro 15: Campos de tabla gobierno_local

```
id
codigo
nombre
categoria_de_agl_id
tipo_de_agl
tipo_de_poblacion_id
fecha_desde
fecha_hasta
observacion_id
geometria_id
cap_de_rep
cap_de_pcia
cab_de_depto
sede_gob_loc
```

```
# df <- dbGetQuery(con, "SELECT * FROM gobierno_local order by random() limit 5")
# knitr::kable(df, caption = "Tabla gobierno_local", digits = 2, longtable = TRUE) %>%
# kable_styling(font_size = 8) %>%
# kable_styling(latex_options = "striped", full_width = F) %>%
# kable_styling(latex_options = c("repeat_header")) %>%
# row_spec(0, angle = 70)
```

3.2.5 Parajes

```
campos <- dbListFields(con, "paraje")
print("Campos de tabla paraje")</pre>
```

[1] "Campos de tabla paraje"

```
knitr::kable(campos, format = "simple", caption = "Campos de tabla paraje")
```

Cuadro 16: Campos de tabla paraje

```
id
codigo
nombre
departamento_id
fecha_desde
fecha_hasta
observacion_id
fuente_id
geometria_id
sede_gob_loc
gobierno_local_id
tipo_de_poblacion_id
```

```
df <- dbGetQuery(con, "SELECT * FROM paraje order by random() limit 5")
knitr::kable(df, caption = "Tabla paraje", digits = 2, longtable = TRUE) %>%
kable_styling(font_size = 8) %>%
kable_styling(latex_options = "striped", full_width = F) %>%
kable_styling(latex_options = c("repeat_header")) %>%
row_spec(0, angle = 70)
```

Cuadro 17: Tabla paraje

Cuadro 17: Tabla paraje (continued)

. Pi	$^{cod_{igo}}$	nombr_e	departamento_id	$f_{eO_{l_a}}$ $d_{eSO_{l_e}}$	$f_{eO_{la}}$ h_{ast_a}	$^{observacion}_{-id}$	$ extit{fleate}_{-id}$	$^{8eometria}_{id}$ id	$^{sed}\epsilon_{-80b_loc}$	80biemo_local_id	tipo_de_boblacion_id
9086	86077A30	Toledo	491	NA	NA	NA	1	13201	1	NA	3
4637	34007A08	El Churcal	276	NA	NA	NA	1	10826	1	NA	3
8079	78042A04	Juan José Albornoz	460	NA	NA	NA	6	17760	1	NA	3

3.2.6 Bases Antárticas

:TODO

3.2.7 Regiones

:TODO

3.2.8 Vías de circulación

:TODO

 \vdash

- 3.2.9 Resultados esperados
- 3.3 Esquema de interacción
- 3.3.1 Interacción con otras áreas
- 3.3.2 Integración con datos estadísticos
- \dots codgeo
- ... vías de circulación

dbDisconnect(con)

[1] TRUE