Welcome to the Robot Programming User Study

Ying Siu LIANG, 3rd year PhD, HAwAI

Robot Programming User Study

- We are **not** trying to evaluate your performance
- Evaluate and improve our robot programming system
- Comments & difficulties you're facing during the experiment are important!

Overview

- 1. Introduction to Robot Programming
- 2. How to program Baxter
- 3. User tasks
- 4. Post-study questionnaire

How do we teach humans?

2. Robioles nutiths obreditions:

- one disk acaimtate

How do we teach robots?

Humans

1. Learn Actions

+ Conditions

2. Solve Problems

- Initial state
- + Goal state

Predicates

Predicates

is clear posA is clear obj2 is clear

is on obj2 is on posB obj3 is on obj2

is stackable (= can be placed on) obj1 is stackable on posC obj1 is not stackable on obj3

move(CUBE, POSITION, POSITION)

Types

action(ELEMENT, ELEMENT, ...)

move(BASECIPOSDISOINO ROSDISOINO) N)

Questions?

https://goo.ql/forms/or7WoGqZeMI1KVT92

is thin

is on obj2 is on posB obj3 is on obj2

is stackable on posC obj1 is not stackable on obj3

Experimental Context

- Production line (positions A,B,C,M)

- Baxter does not know how to pick up objects
- Baxter grippers Electric

Vacuum

Press start

Manipulating Baxter

https://youtu.be/oD9DE0HjMM4?t=28

Note	start	time:	

Move a BASE object

Program Baxter to move the BASE from position B to position M

- 1. Create Action
- 2. **Perception** step
 - a. Click on DETECT
 - b. Verify all detected objects and their types
- 3. **Demonstration** step
 - a. REPLAY action at least once
- 4. **Conditions** step
 - Detect effects
 - b. Save conditions
- 5. Rename action "move-base" & Save

Note	start	time:	

Move a BASE object

Program Baxter to move the BASE from position B to position M

- 1. Create Action
- 2. **Perception** step
 - a. Click on DETECT
 - b. Verify all detected objects and their types
- 3. **Demonstration** step
 - a. REPLAY action at least once
- 4. **Conditions** step
 - Detect effects
 - b. Save conditions
- 5. Rename action "move-base" & Save

What if we want to move to any position?

- 1. Create **Problem**
- 2. **Initial states** step
 - a. Click on DETECT
 - b. Verify object types and initial states
- 3. **Goal states** step
 - a. Add goal states
- 4. **Generated Plan** step
 - a. Verify action sequence
 - b. EXECUTE plan
- 5. Rename problem "rearrange" & Save

Experiment tasks

Teach Baxter an Action to move a BASE object

move-vacuum

Move BASE object to any position (e.g. A)

Generate a plan to swap positions of two BASE objects

Define the goal states and let Baxter figure out the action steps

Hint: How can Baxter come up with the right steps?

(NO EXECUTION)

Stack CUBE object on BASE

Modify the existing move action

Modify the existing move action so that Baxter would not stack the CUBE object if it is a ROOF

(NO EXECUTION)

Move ROOF object to position M

move-grip

Stack ROOF object on CUBE

Final task: Build a house from all objects

Final task: Build a house from all objects - part 2

Bonus task: Have BASE and ROOF on position M

