KAIST

2021 MAS575 Combinatorics

Homework 4

Fanchen Bu

University: KAIST

Department: Electrical Engineering

Student ID: 20194185

May 11, 2021

Contents

1	HW 4.1	2
2	HW 4.2	3
3	HW 4.3	4
4	HW 4.4	5
5	HW 4.5	6

Let A and B be two nonempty subsets of \mathbb{Z}_p . Let

$$X = \{a + b : a \in A, b \in B, ab \neq 1\}.$$

Show that $|X| \ge \min\{|A| + |B| - 3, p\}$.

Proof. We may assume that $|A|+|B|-3 \le p$, otherwise, i.e, $|A|+|B| \ge p+4$, then for any fixed $g \in \mathbb{Z}_p$, we have 4 distinct pairs (a_i,b_i) such that $a_i=g-b_i$, for $i \in [4]$. Then if we want |X| < p, there must exist some $g_0 \in \mathbb{Z}_p$ such that $a_ib_i=1, a_i+b_i=g_0$, for all $i \in [4]$. Then we have $a_1g_0-a_1^2=a_2g_0-a_2^2$, which gives $(a_1-a_2)(g-a_1-a_2)=0$, and thus $a_2=g-a_1=b_1$. Similarly, we have $a_3=b_1$, and thus $a_2=a_3$, which is a contradiction with the fact that pairs (a_i,b_i) are all distinct. We may also assume that both |A| and |B| are at least 2 and $|A|+|B| \ge 5$, otherwise it is trivial.

Now suppose that $|X| \leq |A| + |B| - 4$. Let $f(x,y) := (xy-1) \prod_{c \in C} (x+y-c)$, where $X \subset C \subset \mathbb{Z}_p$ with |C| = |A| + |B| - 4. We have $\deg(f) = |C| + 2 = |A| + |B| - 2$ and the coefficient of $x^{|A|-1}y^{|B|-1}$ in f is $\binom{|C|}{|A|-2} \neq 0$, as $1 \leq |C| \leq p-1$. By Combinatorial Nullstellensatz, there exist $a \in A$ and $b \in B$ such that $f(a,b) \neq 0$, i.e., $a+b \notin C$ and $ab \neq 1$, but then $a+b \in X$, contradicting with $X \subset C$, and thus completing the proof.

A graph is k-regular if every vertex has degree k. Let p be a prime. Let G be a graph with no loops. Prove that if the average degree of G is greater than 2p-2 and the maximum degree is at most 2p-1, then G contains a p-regular subgraph.

Proof. Let G = (V, E). For $x \in \mathbb{F}_n^E$, let

$$f(x) := \prod_{v \in V} (1 - (\sum_{e \sim v} x_e)^{p-1}) - \prod_{e \in E} (1 - x_e),$$

where $e \sim v$ means the vertex v and edge e are incident and $x_e = x(e)$. By Fermat's little theorem, for $z \in \mathbb{F}_p$, $z^{p-1} \equiv 1 \pmod p$ iff $z \not\equiv 0 \pmod p$. Thus $\prod_{v \in V} (1 - (\sum_{e \sim v} x_e)^{p-1}) = 1$ if $\sum_{e \sim v} x_e \equiv 0 \pmod p$, $\forall v \in V$ and 0 otherwise. Clearly, f(0) = 1 - 1 = 0. Now we set $L_e = \{0, 1\} \subset \mathbb{F}_p$ for all $e \in E$, then for $x \in \mathbb{F}_p^E$ such that $x \not\equiv 0$ and $x_e \in L_e$ for all $e \in E$, $f(x) \not\equiv 0$ iff $\sum_{e \sim v} x_e \equiv 0 \pmod p$, $\forall v \in V$, as $\prod_{e \in E} (1 - x_e) = 0$. Because the maximum degree is at most 2p - 1, it means $\sum_{e \sim v} x_e \in \{0, p\}, \forall v \in V$. Then we take H be the subgraph of G consisting of $e \in E$ such that $x_e = 1$, then H is nonempty and p-regular. Now it remains to show that there exists $x_e \in L_e, \forall e \in E$ such that $f(x) \not\equiv 0$. The coefficient of $\prod_{e \in E} x_e$ in f is $-(-1)^m \not\equiv 0 \pmod p$. On the other hand, the average degree of G is 2m/n > 2p - 2, which gives that m > (p-1)n, thus $\deg(f) = m$, as in f the first term has degree (p-1)n and the second one has degree m. Then by Combinatorial Nullstellensatz, there exists $x \in \mathbb{F}_p^E$ with $x_e \in L_e$ for all $e \in E$ such that $f(x) \not\equiv 0 \pmod p$, completing the proof.

Suppose that there exist m affine hyperplanes covering each point in $\{0,1\}^n - \{0\}$ at least twice but not covering 0. What is the minimum m in terms of n?

Remark 3.1. Similar with the case when the affine hyperplanes cover the points at least once, we may first consider $(\{x \in \mathbb{R}^n : x_i = 1\})_{i \in [n]}$, these n affine hyperplanes cover each point in $\{0,1\}^n - \{0\}$ with at least two coordinates being 1. It remains to cover those with exactly a single coordinate being 1, adding $\{x \in \mathbb{R}^n : \sum_{i \in [n]} x_i = 1\}$ suffices. This intuitive construction gives us a case when m = n + 1.

Claim 3.1. The minimum m is m(n) = n + 1.

Proof. First, we state the lemma proved and used in the lecture.

Lemma 3.1. Let p be a polynomial in $\mathbb{R}[x_1,...,x_n]$ with $p(0) \neq 0$ and $p(x_1,...,x_n) = 0, \forall (x_1,...,x_n) \in \{0,1\}^n - \{0\}$, then $\deg(p) \geq n$.

Proof. Suppose not, i.e., $\deg(p) < n$. In particular, p does not contain the term $\prod_{i \in [n]} x_i$. Define $f(x_1, ..., x_n) := p(x_1, ..., x_n) - c \prod_{i \in [n]} (x_i - 1)$, where we choose $c \neq 0$ such that f(0) = 0. Observe that $\deg(f) = n$ and the coefficient of $\prod_{i \in [n]} x_i$ in f is $-c \neq 0$. Then by Combinatorial Nullstellensatz, there exists $x \in \{0, 1\}^n$ such that $f(x) \neq 0$, but it is easy to check that f(0) = 0 and f(x) = 0 - 0 = 0, $\forall x \in \{0, 1\}^n - \{0\}$. By contradiction we complete the proof.

The idea in the remark provides us an example with m = n + 1, thus the minimum $m(n) \le n + 1$. Let $(H_i)_{i \in [m]}$ be the affine hyperplanes covering each point in $\{0,1\}^n - \{0\}$ at least twice but not covering 0, where $H_i = \{x \in \mathbb{R}^n : a_i x = b_i\}$. Define

$$p(x_1, ..., x_n) := \prod_{i \in [m-1]} (a_i x - b_i),$$

observe that $\deg(p) = m - 1$ and if $x \in H_i$ and $x \in H_j$ for some $i \neq j \in [m]$, then p(x) = 0 as at least one of i and j is in [m-1]. Thus, $p(x) = 0, \forall x \in \{0,1\}^n - \{0\}$. Besides, p(0) = 0 as none of these affine hyperplanes covers 0. By Lemma 3.1, we have $m-1 \geq n$, thus $m(n) \geq n+1$. Therefore, m(n) = n+1, completing the proof.

Let p be a prime and $\mathbb{F}_p = \mathrm{GF}(p)$ be the filed of size p. Let $f_1, ..., f_m$ be polynomials in $\mathbb{F}_p[x_1, ..., x_n]$ with no constant terms. Let $Q_1, ..., Q_m$ be subsets of \mathbb{F}_p such that $0 \in Q_i$ for all i. If $\sum_{i=1}^m \deg(f_i) | \mathbb{F}_p \setminus Q_i | < n$, then there exists a vector $x \in \{0,1\}^n$ such that $f_i(x) \in Q_i$ for all i and $x \neq 0$.

Proof. Define $g \in \mathbb{F}_p[x_1, ..., x_n]$ as

$$g(x_1, ..., x_n) := \prod_{i \in [m]} \prod_{q \in \mathbb{F}_p \setminus Q_i} (q - f_i(x)) - c \prod_{k \in [n]} (x_k - 1),$$

where we choose $c \neq 0$ such that p(0) = 0. This is possible as each f_i contains no constant terms and each Q_i contains 0, thus $f_i(0) = 0, \forall i \in [m]$ and we have

$$\prod_{i \in [m]} \prod_{q \in \mathbb{F}_p \backslash Q_i} (q - f_i(0)) = \prod_{i \in [m]} \prod_{q \in \mathbb{F}_p \backslash Q_i} q \not\equiv 0 \pmod{p}.$$

Observe that $\deg(f) = n$ as $\deg(\prod_{i \in [m]} \prod_{q \in \mathbb{F}_p \backslash Q_i} (q - f_i(x))) = \sum_{i=1}^m \deg(f_i) |\mathbb{F}_p \backslash Q_i| < n$, and the coefficient of $\prod_{k \in [n]} x_k$ in f is $-c \neq 0$ as $\prod_{i \in [m]} \prod_{q \in \mathbb{F}_p \backslash Q_i} (q - f_i(x))$ does not contain $\prod_{k \in [n]} x_k$ that exceeds its degree. Then by Combinatorial Nullstellensatz, there exists $x \in \{0,1\}^n$ such that $f(x) \neq 0$. But f(0) = 0 and for $0 \neq x \in \{0,1\}^n$, $g(x) = \prod_{i \in [m]} \prod_{q \in \mathbb{F}_p \backslash Q_i} (q - f_i(x)) \neq 0$ iff $f_i(x) \in Q_i$, $\forall i \in [m]$, completing the proof.

KAIST — MAS575 Combinatorics 2021 Spring

HW 4.5

In a party, n couples are invited. They decided to sit around a table with 2n + 1 chairs such that the i-th couple are seated from each other by distance d_i (separated by $d_i - 1$ chairs). Prove that if 2n + 1 is a prime and $d_i \leq n$ for all $i \in [n]$, then this is possible.

Proof. First, we state the theorem proved and used in the lecture.

Theorem 5.1 (Dyson's Conjecture). The constant term in the expansion of $\prod_{1 \leq i \neq j \leq n} (1 - \frac{x_i}{x_j})^{a_i}$ is $A!/\prod_{i \in [n]} a_i!$, where $A = \sum_{i \in [n]} a_i$. Equivalently, the coefficient of $\prod_{i \in [n]} x_i^{A-a_i}$ in $\prod_{1 \leq i < j \leq n} (-1)^{a_j} (x_j - x_i)^{a_i+a_j}$ is $A!/\prod_{i \in [n]} a_i!$.

Now, we assume that p=2n+1 is an odd prime and label the p=2n+1 chairs with [p] clockwise starting from any fixed chair. And we define $f \in \mathbb{F}_p[x_1,...,x_n]$ as

$$f(x_1,...,x_n) := \prod_{k \in [n]} (x_k + d_k) \prod_{1 \le i < j \le n} (x_i - x_j)(x_i + d_i - x_j)(x_i - x_j - d_j)(x_i + d_i - x_j - d_j).$$

Observe that $\deg(f) = n + 4\binom{n}{2} = (p-2)n$. The coefficient of $\prod_{i \in [n]} x_i^{p-2}$ in f is equal to the coefficient of $\prod_{i \in [n]} x_i^{p-2}$ in $\prod_{k \in [m]} x_k \prod_{i < j} (x_i - x_j)^4$. And that is equal to the coefficient of $\prod_{i \in [n]} x_i^{p-3} = \prod_{i \in [n]} x_i^{2n-2}$ in $\prod_{i < j} (x_i - x_j)^4$, which is, by the statement in the second type of Theorem 5.1 with $a_i = 2$ for all i, $(2n)!/2^n \not\equiv 0 \pmod{p}$ as 2n < p. Then by Combinatorial Nullstellensatz, there exists $x_i \in [p-1]$ for all i such that $f(x_1, ..., x_n) \not\equiv 0 \pmod{p}$. By take $y_k \equiv x_k + d_k \pmod{p}$ such that $y_k \in [p]$ for each $k \in [n]$, we have $y_k \equiv x_k + d_k \not\equiv 0 \pmod{p}$ for each $k \in [n]$; $x_i \not\equiv x_j$ for all $i \not\equiv j$, which means x_i 's are all distinct; $x_j \not\equiv x_i + d_i \equiv y_i \pmod{p}$ for all $i \not\equiv j$; and $y_i \equiv x_i + d_i \not\equiv x_j + d_j \equiv y_j \pmod{p}$ for all $i \not\equiv j$, which means y_i 's are all distinct. Thus, for the k-th couple, $k \in [n]$, it is possible to let one of them be seated at chair x_k and the other y_k with all desired conditions satisfied, completing the proof.