This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1-25 (cancelled).

26 (currently amended). A method of manufacturing a liquid crystal display device comprising a first substrate, a second transparent second substrate, and a liquid crystal layer and a color filter layer sandwiched between said first and second substrates, comprising the steps of:

forming a protection layer on said first substrate;

forming said color filter layer on said protection layer;

forming said liquid crystal layer between said color filter <u>layer</u> and said second substrate;

forming, between said first substrate and said color filter layer, plural scan signal electrodes, plural video signal electrodes crossing said scan signal electrodes in a matrix form, and plural thin film transistors in association with the crossing points between said scan signal electrodes and said video signal electrodes;

forming at least one pixel in each of areas surrounded by said plural scan signal electrodes and said plural video signal electrodes;

forming, in each pixel, a common electrode which is connected over plural

pixels through a common electrode wire to supply reference potential, and a pixel electrode which is connected to the corresponding thin film transistor and disposed so as to confront said common electrode in said pixel area;

disposing said common electrode and said pixel electrode between said color filter layer and said liquid crystal layer, and disposing said common electrode and said pixel electrode in different layers through an interlayer separation film formed of transparent insulating material; forming liquid crystal so as to be oriented substantially vertically to said first substrate when no voltage is applied across said common electrode and said pixel electrode;

forming vertical orientation films on both surface of said liquid crystal layer; and

forming an optically negative compensation film and an optically positive compensation film between said first or second substrate and a polarizing plate, and forming, by light irradiation, pretilt angles in two directions in which liquid crystal molecules are felled when a voltage is applied to said compensation films; and

adding an organic material comprising monomers or olygomers into said liquid crystal, injecting said liquid crystal into the gap between said first substrate and said second substrate, and then polymerizing said organic material in said liquid crystal.

27 (cancelled).

- 28 (withdrawn). The method as claimed in claim 40, wherein the light irradiation to forming the pretilt angles is conducted on the surfaces of said vertical orientation films from a slant direction.
- 29 (withdrawn). The method as claimed in claim 28, wherein the light irradiation for forming the pretilt angles is conducted by irradiating polarized light the surfaces of said vertical orientation films from a slant direction.
- 30 (withdrawn). The method as claimed in claim 41 wherein the light irradiation for forming the pretilt angle is conducted on the surfaces of said vertical orientation films from a slant direction.
- 31 (withdrawn). The method as claimed in claim 30, wherein the light irradiation for forming the pretilt angles is conducted by irradiating polarized light on the surfaces of said vertical orientation films from a slant direction.

32 (withdrawn). A method of manufacturing a liquid crystal display device comprising the steps of:

forming a thin film on a transparent substrate;

forming a passivation film for protecting said thin film transistor;

successively coating, light-exposing, developing and baking plural photosensitive color resists to form a color filter;

forming a common electrode; and

forming an interlayer separation film of a transparent insulating film.

33 (withdrawn). A method of manufacturing a liquid crystal display device comprising the steps of:

forming a thin film on a transparent substrate;

forming a passivation film for protecting said thin film transistor;

successively coating, light-exposing, developing and baking plural photosensitive color resists to form a color filter;

forming an overcoat film for protecting said color filter;

forming a common electrode; and

forming an interlayer separation film of a transparent insulating film.

34 (withdrawn). The liquid crystal display device as claimed in claim 33, wherein said common electrode is formed in a grid shape so as to surround a pixel; said pixel electrode is disposed so as to traverse the pixel; and said common electrode commonly uses a part of said common electrode wire.

35 (withdrawn). The liquid crystal display device as claimed in claim 33, wherein a plurality of said common electrodes and said pixel electrodes are arranged in the pixel.

36 (withdrawn). The liquid crystal display device as claimed in claim 34, wherein said common electrode is formed in a grid shape so as to surround a pixel; said pixel electrode is disposed so as to traverse the pixel; and said common electrode commonly uses a part of said common electrode wire.

37 (withdrawn). The liquid crystal display device as claimed in claim 34, wherein a plurality of said common electrodes and said pixel electrodes are arranged in the pixel.

38 (withdrawn). The liquid crystal display device as claimed in claim 35, wherein said common electrode is formed in a grid shape so as to surround a pixel; said pixel electrode is disposed so as to traverse the pixel; and said common electrode commonly uses a part of said common electrode wire.

39 (withdrawn). The liquid crystal display device as claimed in claim 35, wherein a plurality of said common electrodes and said pixel electrode are arranged in the pixel.

40 (withdrawn). The method as claimed in claim 26, further comprising the steps of forming an optically negative compensation film and an optically positive compensation film between said first or second substrate and a polarizing plate, and forming, by light irradiation, pretilt angles in two directions in which liquid crystal molecules are felled when a voltage is applied to said vertical orientation films.

41 (withdrawn). The method as claimed in claim 26, further comprising the steps of forming an optically negative compensation film and an optically positive compensation film between said first or second substrate and a polarizing plate, and forming, by light irradiation, a pretilt angle in any one of directions in which liquid crystal molecules are felled when a voltage is applied to said vertical orientation films.

- 42 (previously presented). The method as claimed in claim 26, further comprising the step of forming an optically negative compensation film and an optically positive compensation film between said first or second substrate and a polarizing plate, and forming, by a rubbing method, pretilt angles along two directions in which liquid crystal molecules are felled when a voltage is applied to said vertical orientation films.
- 43 (previously presented). The method as claimed in claim 26, further comprising the step of forming an optically negative compensation film and an optically positive compensation film between said first or second substrate and a polarizing plate, and forming, by a rubbing method, a pretilt angle in any one of directions in which liquid crystal molecules are felled when a voltage is applied to said vertical compensation films.

44 (cancelled).