Linear Regression

Professor Jie Peng, PhD

Department of Statistics

University of California, Davis

Normal Error Model

Normal Error Model

Simple regression model + Normality assumption:

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i, \quad i = 1, \dots, n,$$

where the error terms ϵ_i s are independently and identically distributed (i.i.d.) $N(0, \sigma^2)$ random variables.

MLE

Under the Normal error model:

- LS estimators $\hat{\beta}_0$, $\hat{\beta}_1$ are the maximum likelihood estimator (MLE) of β_0 , β_1 , respectively.
- ▶ The MLE of σ^2 is SSE/n.

Sampling Distributions

Under the Normal error model:

• $\hat{\beta}_0, \hat{\beta}_1$ are normally distributed:

$$\hat{\beta}_0 \sim N(\beta_0, \sigma^2\{\hat{\beta}_0\}), \quad \hat{\beta}_1 \sim N(\beta_1, \sigma^2\{\hat{\beta}_1\}).$$

- ► SSE/σ^2 follows a χ^2 distribution with n-2 degrees of freedom, denoted by $\chi^2_{(n-2)}$.
- ► SSE is independent with both $\hat{\beta}_0$ and $\hat{\beta}_1$.

χ^2 Distributions

Figure: χ^2 distributions: probability density function

Confidence Intervals of Regression Coefficients

Pivotal Quantity

$$\frac{\hat{\beta}_1 - \beta_1}{s\{\hat{\beta}_1\}}$$

- The numerator is the difference between the LS estimator $\hat{\beta}_1$ and its mean β_1 .
- ▶ The denominator is the standard error of $\hat{\beta}_1$.
- ► This quantity follows a **known distribution**, $t_{(n-2)}$, t-distribution with n-2 degrees of freedom.

Figure: t distributions: probability density function*

^{*}t distribution with ∞ degrees of freedom is the standard normal N(0,1) distribution.

$$P\left(\left|\frac{\hat{\beta}_{1} - \beta_{1}}{s\{\hat{\beta}_{1}\}}\right| \le t(1 - \alpha/2; n - 2)\right) = 1 - \alpha \Rightarrow$$

$$P\left(\hat{\beta}_{1} - t(1 - \alpha/2; n - 2)s\{\hat{\beta}_{1}\} \le \beta_{1} \le \hat{\beta}_{1} + t(1 - \alpha/2; n - 2)s\{\hat{\beta}_{1}\}\right) = 1 - \alpha$$

Confidence Interval

The $(1 - \alpha)100\%$ -confidence interval of β_1 :

$$\hat{\beta}_1 \pm t(1 - \alpha/2; n - 2)s\{\hat{\beta}_1\},\$$

where $t(1 - \alpha/2; n-2)$ is the $(1 - \alpha/2)100$ th percentile of $t_{(n-2)}$.

Confidence Coefficient: Accuracy

- ▶ $(1 \alpha)100\%$ is called the *confidence coefficient* or the *confidence level*.
- Commonly used confidence coefficients are 95% (α = 0.05), 90% (α = 0.1), 99% (α = 0.01).
- Confidence coefficient reflects accuracy of the C.I.: the larger (i.e., the smaller the α), the more accurate.

Confidence Interval Width: Precision

- ► The half-width: $t(1 \alpha/2; n 2)s\{\hat{\beta}_1\}$
- The width reflects precision of the C.I.: the narrower, the more precise
- Factors influencing the precision:
 - The larger the confidence coefficient (more accurate), the wider the C.I. (less precise)
 - The larger the sample size n (more data), the narrower the C.I. (more precise)
 - The larger the SE (more uncertainty), the wider the C.I. (less precise)

Simulation Experiment

Figure: C.I.s of β_1 : Left: 90% C.I.; Right: 99% C.I.

Heights

$$ightharpoonup n = 928, \ \overline{X} = 68.316, \ \sum_{i=1}^{n} (X_i - \overline{X})^2 = 3038.761, \text{ and}$$

$$\hat{\beta}_0 = 24.54, \ \hat{\beta}_1 = 0.637, \ \textit{MSE} = 5.031.$$

- $s\{\hat{\beta}_1\} = \sqrt{\frac{5.031}{3038.761}} = 0.0407.$
- ▶ 95%-confidence interval of β_1 :

$$0.637 \pm t(0.975; 926) \times 0.0407 = 0.637 \pm 1.963 \times 0.0407$$

= [0.557, 0.717].

► We are 95% confident that the regression slope is between 0.557 and 0.717.

T-test for β_1

- Null hypothesis: $H_0: \beta_1 = \beta_1^{(0)}$, where $\beta_1^{(0)}$ is a given constant.
- ► T-statistic:

$$T^* = rac{\hat{eta}_1 - eta_1^{(0)}}{s\{\hat{eta}_1\}}.$$

Null distribution:

Under
$$H_0: \beta_1 = \beta_1^{(0)}, \quad T^* \sim t_{(n-2)}.$$

Decision Rules

At significance level α :

- ► Two-sided alternative $H_a: \beta_1 \neq \beta_1^{(0)}$: Reject H_0 if and only if $|T^*| > t(1 \alpha/2; n 2)$; Or equivalently, reject H_0 if and only if pvalue:= $P(|t_{(n-2)}| > |T^*|) < \alpha$.
- Left-sided alternative $H_a: \beta_1 < \beta_1^{(0)}$: Reject H_0 if and only if $T^* < t(\alpha; n-2)$; Or equivalently, reject H_0 if and only if pvalue:= $P(t_{(n-2)} < T^*) < \alpha$.

Heights

Test whether there is a linear association between parent's height and child's height at significance level $\alpha=0.01$.

- $H_0: \beta_1 = 0$ vs. $H_a: \beta_1 \neq 0$.
- $T^* = \frac{\hat{\beta}_1 0}{s\{\hat{\beta}_1\}} = \frac{0.637}{0.0407} = 15.7.$
- ► Critical value: t(1 0.01/2; 928 2) = 2.58. Since the observed $|T^*| = |15.7| > 2.58$, reject the null hypothesis at level 0.01.
- ▶ **Pvalue**: $P(|t_{(926)}| > |15.7|) \approx 0$. Since *pvalue* < $\alpha = 0.01$, reject the null hypothesis at level 0.01.
- Conclusion: There is a significant association between parent's height and child's height at level 0.01.

Mean Response

Estimation of Mean Response

The mean response at $X = X_h$ is $E(Y_h) = \beta_0 + \beta_1 X_h$.

▶ An unbiased estimator of $E(Y_h)$:

$$\widehat{Y}_h = \hat{\beta}_0 + \hat{\beta}_1 X_h = \overline{Y} + \hat{\beta}_1 (X_h - \overline{X}).$$

- ▶ Standard error of \widehat{Y}_h :

$$s\{\widehat{Y}_h\} = \sqrt{MSE\left[\frac{1}{n} + \frac{(X_h - \overline{X})^2}{\sum_{i=1}^n (X_i - \overline{X})^2}\right]}.$$

- The larger the sample size, or the larger the dispersion of X values, the smaller the SE of \widehat{Y}_h .
- ▶ The further X_h from \overline{X} , the larger the SE of \widehat{Y}_h .

Sampling Distribution of \widehat{Y}_h

Under the Normal error model:

 $ightharpoonup \widehat{Y}_h$ is normally distributed:

$$\widehat{Y}_h \sim \text{Normal}(E(Y_h), \sigma^2\{\widehat{Y}_h\})$$

Pivotal quantity:

$$\frac{\widehat{Y}_h - E(Y_h)}{s(\widehat{Y}_h)} \sim t_{(n-2)}$$

Confidence Intervals of $E(Y_h)$

The $(1 - \alpha)100\%$ confidence interval of $E(Y_h)$:

$$\widehat{Y}_h \pm t(1-\alpha/2; n-2)s(\widehat{Y}_h)$$

Heights

What is the average height of children of 70in parents?

- ► n = 928, $\overline{X} = 68.316$, $\sum_{i=1}^{n} (X_i \overline{X})^2 = 3038.761$ and $\hat{\beta}_0 = 24.54$, $\hat{\beta}_1 = 0.637$, MSE = 5.031
- $\widehat{Y}_h = 24.54 + 0.637 \times 70 = 69.2$
- $s\{\widehat{Y}_h\} = \sqrt{5.031 \times \left\{ \frac{1}{928} + \frac{(70 68.316)^2}{3038.761} \right\}} = 0.1$
- ▶ 95%-confidence interval: $69.2 \pm 1.963 \times 0.1 = [69, 69.40]$
- ► We are 95% confident that the average height of children of 70*in* parents is between [69*in*, 69.40*in*].

Prediction of New Outcome

Predict a **future outcome** at $X = X_h$:

$$Y_{h(new)} = \beta_0 + \beta_1 X_h + \epsilon_h$$

▶ Predict $Y_{h(new)}$ by the estimated mean response at $X = X_h$:

$$\widehat{Y}_h = \hat{eta}_0 + \hat{eta}_1 X_h = \overline{Y} + \hat{eta}_1 (X_h - \overline{X})$$

▶ ϵ_h is assumed to be uncorrelated with ϵ_i s → $Y_{h(new)}$ is uncorrelated with the observed Y_i s.

Pivotal Quantity

Under Normal error model:

 $ightharpoonup \widehat{Y}_h - \frac{Y_{h(new)}}{Y_{h(new)}} \sim \text{Normal}(0, \sigma^2(pred_h)), \text{ where}$

$$\begin{split} \sigma^2(\textit{pred}_h) &:= \textit{Var}(\widehat{Y}_h - \textit{Y}_{\textit{h(new)}}) = \sigma^2(\widehat{Y}_h) + \sigma^2(\textit{Y}_{\textit{h(new)}}) \\ &= \sigma^2(\widehat{Y}_h) + \sigma^2 = \sigma^2 \left[\mathbf{1} + \frac{1}{n} + \frac{(X_h - \overline{X})^2}{\sum_{i=1}^n (X_i - \overline{X})^2} \right] \end{split}$$

Pivotal quantity: $\frac{\widehat{Y}_h - Y_{h(new)}}{s(pred_h)} \sim t_{(n-2)}$, where

$$s(pred_h) = \sqrt{MSE\left[\frac{1}{n} + \frac{(X_h - \overline{X})^2}{\sum_{i=1}^n (X_i - \overline{X})^2}\right]}$$

Prediction Intervals

The $(1 - \alpha)100\%$ prediction interval of $Y_{h(new)}$:

$$\widehat{Y}_h \pm t(1-\alpha/2; n-2)s(pred_h)$$

Prediction vs. Estimation

- ► $Y_{h(new)}$ a "moving target" (random variable) vs. $E(Y_h)$ a fixed quantity (non-random).
- Two sources of variations in the prediction process: Variability from \(\hat{Y}_h \) and variability from the target

$$Y_{h(new)} \rightarrow s(pred_h) > s(\widehat{Y}_h).$$

► At a given X value, the prediction interval of a new outcome is wider than the confidence interval of the mean response.

Heights

What would be the predicted height of the child of a 70*in* couple?

- ► n = 928, $\overline{X} = 68.316$, $\sum_{i=1}^{n} (X_i \overline{X})^2 = 3038.761$, and $\hat{\beta}_0 = 24.54$, $\hat{\beta}_1 = 0.637$, MSE = 5.031
- ▶ Predicted height: $\widehat{Y}_h = 24.54 + 0.637 \times 70 = 69.2$
- Standard error:

$$s\{pred_h\} = \sqrt{5.031 \times \left\{1 + \frac{1}{928} + \frac{(70 - 68.316)^2}{3038.761}\right\}} = 2.25$$

- ▶ 95% prediction interval: $69.2 \pm 1.8831 \times 2.25 = [64.75, 73.56]$
- ► We are 95% confident that the child's height will be between [64.75*in*, 73.56*in*].

Extrapolation

Extrapolation occurs when predicting the outcome at an X value that lies outside of the observed data range.

- Every model has a range of validity.
- A model may be inappropriate when it is extended outside of the range of the observations upon which it was built.
- Extrapolation is less reliable than interpolation and need to be handled with caution.

Analysis of Variance

Analysis of Variance

- Basic idea: attributing variation in the data to different sources through decomposition of the total variation.
- ▶ In regression, the variation in the observations comes from:
 - variation in the error term
 - variation in X

Partition of Total Deviation

► Total deviation: difference between Y_i and the sample mean Ȳ:

$$Y_i - \overline{Y}, \quad i = 1, \dots, n.$$

Total deviation can be decomposed into the sum of two terms:

$$Y_i - \overline{Y} = (Y_i - \widehat{Y}_i) + (\widehat{Y}_i - \overline{Y}), \qquad i = 1, ..., n$$

► I.e., the deviation of the observed value around the fitted regression line (residual) and the deviation of the fitted value from the sample mean.

Figure: Partition of total deviation

Decomposition of Total Variation

Taking sum of squares of the total deviations and noting that the sum of the cross product terms vanishes:

$$\sum_{i=1}^{n} (Y_i - \overline{Y})^2 = \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2 + \sum_{i=1}^{n} (\widehat{Y}_i - \overline{Y})^2.$$

Decomposition of total variation:

$$SSTO = SSE + SSR$$

ANOVA: Sums of Squares

Total Sum of Squares (SSTO)

Quantify variation of the observations around the sample mean:

SSTO :=
$$\sum_{i=1}^{n} (Y_i - \overline{Y})^2$$
, $d.f.(SSTO) = n - 1$.

Error Sum of Squares (SSE)

Quantify variation of the observations around the fitted regression line:

$$SSE = \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2, \quad d.f.(SSE) = n - 2.$$

Regression Sum of Squares (SSR)

Quantify variation of the fitted values around the sample mean:

$$SSR = \sum_{i=1}^{n} (\widehat{Y}_{i} - \overline{Y})^{2} = \hat{\beta}_{1}^{2} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}, \quad d.f.(SSR) = 1.$$

- ► SSR = SSTO SSE: reduction of uncertainty in Y by utilizing the predictor X through a linear regression model
- ► The larger the fitted regression slope or the more the dispersion of X values, the larger SSR

Mean Squares

Sum of Squares divided by its degree of freedom:

$$MS = SS/d.f.(SS).$$

Mean squared error:

$$MSE = \frac{SSE}{d.f.(SSE)} = \frac{SSE}{n-2}$$

Regression mean square:

$$MSR = \frac{SSR}{d.f.(SSR)} = \frac{SSR}{1}$$

ANOVA: F Tests

Expected Values of SS and MS

Under simple regression model:

Expected values of SS:

$$E(SSE) = (n-2)\sigma^2, \quad E(SSR) = \sigma^2 + \beta_1^2 \sum_{i=1}^{n} (X_i - \overline{X})^2.$$

Expected values of MS:

$$E(MSE) = \sigma^2, \qquad E(MSR) = \sigma^2 + \beta_1^2 \sum_{i=1}^n (X_i - \overline{X})^2.$$

► $E(MSR) \ge E(MSE)$ and "=" holds iff $\beta_1 = 0$.

Sampling Distributions of SS

Under Normal error model:

- ► SSE ~ $\sigma^2 \chi^2_{(n-2)}$
- SSE and SSR are independent.

F Test

- ► $H_0: \beta_1 = 0$ vs. $H_a: \beta_1 \neq 0$
- ► F ratio: $F^* = \frac{MSR}{MSE} = \frac{SSR/1}{SSE/(n-2)}$
- Null distribution: $F^* \underset{H_0:\beta_1=0}{\sim} F_{1,n-2}$.
- ▶ Decision rule at the significance level α :

reject
$$H_0$$
 if $F^* > F(1 - \alpha; 1, n - 2)$,

where $F(1-\alpha; 1, n-2)$ is the $(1-\alpha)100$ th percentile of the $F_{1,n-2}$ distribution.

F Distributions

Figure: F distributions: probability density function

In simple linear regression, the *F*-test is equivalent to the two-sided *t*-test for testing $H_0: \beta_1 = 0$ versus $H_a: \beta_1 \neq 0$.

$$F^* = (T^*)^2$$

$$F(1-\alpha; 1, n-2) = t^2(1-\alpha/2; n-2).$$

ANOVA Table for Simple Regression

Source	SS	d.f.	MS=SS/d.f.	F*
of Variation				
Regression	$SSR = \sum_{i=1}^{n} (\widehat{Y}_i - \overline{Y})^2$	1	MSR = SSR/1	MSR/MSE
Error	$SSE = \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2$	n – 2	MSE = SSE/(n-2)	
Total	$SSTO = \sum_{i=1}^{n} (Y_i - \overline{Y})^2$	n – 1		

Heights

Source	SS	d.f.	MS=SS/d.f.	F*
of Variation				
Regression	SSR = 1234	1	MSR = 1234	245
Error	SSE = 4659	926	MSE = 5.03	
Total	<i>SSTO</i> = 5893	927		

- ► Test whether there is a linear association between parent's height and child's height at significance level $\alpha = 0.01$.
- ► $F(0.99; 1, 926) = 6.66 < F^* = 245$, so reject $H_0: \beta_1 = 0$ and conclude that there is a significant linear association between parent's height and child's height.

Coefficient of Determination

Coefficient of Determination R^2

A descriptive measure for **linear association** between *X* and *Y*:

$$R^2 = \frac{SSR}{SSTO} = 1 - \frac{SSE}{SSTO}.$$

► Heights: $R^2 = \frac{1234}{5893} = 0.209$. 20% of variation in child's height may be explained by the variation in parent's height.

Properties of R²

- ▶ $0 \le R^2 \le 1$.
- If all observations fall on one straight line, then $R^2 = 1$.
 - X accounts for all variation in the observations.
- If the fitted regression line is horizontal, i.e., $\hat{\beta}_1 = 0$, then $B^2 = 0$.
 - ► *X* is of no use in explaining variation in the observations.
 - ► There is no evidence of linear association between *X* and *Y* in the data.

Figure:

Caution with Interpreting R²

When the relationship between X and Y is nonlinear, R^2 is not a meaningful measure.

- ► "A large R² means that the estimated regression line must be a good fit of the data". Not necessarily!
- "A near zero R² means that X and Y are not related". Not necessarily!