ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙГОСТ РСТАНДАРТ54619—РОССИЙСКОЙ2011ФЕДЕРАЦИИ

Глобальная навигационная спутниковая система СИСТЕМА ЭКСТРЕННОГО РЕАГИРОВАНИЯ ПРИ АВАРИЯХ

Протоколы обмена данными автомобильной системы вызова экстренных оперативных служб с инфраструктурой системы экстренного реагирования при авариях

Издание официальное

Москва Стандартинформ 2012

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. №184-ФЗ «О техническом регулировании», а правила применения стандартов организаций — ГОСТ Р 1.0-2004 «Стандартизация в Российской Федерации. Основные положения»

Сведения о стандарте

1 РАЗРАБОТАН Открытым акционерным обществом «Навигационноинформационные системы» (ОАО «НИС»)

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 363 «Радионавигация»

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 8 декабря 2011 г. № 754-ст

- 4 В настоящем стандарте учтены основные нормативные положения следующих международных документов:
- Технические требования (TS) Европейского института стандартов электросвязи (European Telecommunications Standards Institute, ETSI) и партнерской Ассоциации групп телекоммуникационных компаний (3rd Generation Partnership Project (3GPP) к системе и протоколам передачи данных, применительно к общеевропейской системе eCall;
- Технические требования (TS) Европейского института стандартов электросвязи (European Telecommunications Standards Institute, ETSI) к цифровым телекоммуникационным сетям в части сервиса отправки и приема коротких сообщений.

5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок – в ежемесячно издаваемых информационных «Национальные указателях стандарты». пересмотра, замены или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования – на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

© Стандартинформ, 2012

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

1	Область применения	1						
2	Нормативные ссылки	2						
3	Термины, определения, обозначения и сокращения							
4	Общие положения							
5	Протокол транспортного уровня	8						
5.1	Назначение протокола транспортного уровня	8						
5.2	Обеспечение маршрутизации	9						
5.3	Механизм проверки целостности данных	9						
5.4	Обеспечение надежности доставки пакетов данных	10						
5.5	Описание типов данных, используемых в протоколе транспортного							
	уровня	11						
5.6	Описание структур данных, используемых в протоколе							
	транспортного уровня	15						
5.7	Описание структуры данных при использовании SMS в качестве							
	резервного канала передачи данных	25						
5.8	Временные и количественные параметры протокола транспортного							
	уровня при использовании пакетной передачи							
	данных	32						
5	Протокол уровня поддержки услуг (общая часть)	33						
6.1	Назначение протокола уровня поддержки услуг	33						
6.2	Обмен информационными сообщениями	34						
6.3	Обеспечение уведомления о результатах доставки и обработки							
	данных уровня поддержки услуг	34						
6.4	Идентификация принадлежности данных, используемых в							
	протоколе уровня поддержки услуг	34						
6.5	Определение характеристик данных в протоколе уровня							
	поддержки услуг	35						

6.6	Структуры данных, используемых в протоколе уровня поддержки					
	услуг		35			
6.7	Описание с	сервисов предоставления услуг	41			
6.8	Временные	е и количественные параметры протокола уровня				
	поддержки	услуг при использовании пакетной передачи				
	данных		91			
7	Сервис экс	стренного реагирования при аварии протокола уровня				
	поддержки	услуг	92			
7.1	Назначение	е сервиса экстренного реагирования при аварии	92			
7.2	Минималы	но необходимый набор функций АС для использования				
	услуги EGT	ΓS_ECALL_SERVICE	92			
7.3	Состав серг	виса GTS_ECALL_SERVICE	93			
7.4	Использова	ание сервиса EGTS_COMMANDS_SERVICE	103			
7.5	Список и о	писание команд, параметров и подтверждений при				
	использова	нии сервиса GTS_ECALL_SERVICE	103			
8	Формат сос	общения AL-ACK	117			
Прил	ожение А	(справочное) Описание принципа построения				
		навигационно-информационной системы на основе				
		протокола транспортного уровня	118			
Прил	ожение Б	(справочное) Анализ протокола транспортного				
		уровня на основе концепции NGTP	121			
Прил	ожение В	(обязательное) Коды результатов обработки				
Прил	ожение Г	(справочное) Пример реализации алгоритма расчета				
		контрольной суммы CRC16 на языке С	125			
Прил	ожение Д	(справочное) Пример реализации алгоритма расчета				
		контрольной суммы CRC86 на языке C	127			
Приложение Е		(справочное) Таблицы кодировки символов	130			
Библ	иография		133			

Введение

Настоящий стандарт входит в комплекс стандартов «Глобальная навигационная спутниковая система. Система экстренного реагирования при авариях» и является одним из базовых стандартов комплекса.

Система экстренного реагирования при авариях «ЭРА-ГЛОНАСС» предназначена для снижения тяжести последствий дорожно-транспортных происшествий и иных чрезвычайных ситуациях на дорогах Российской Федерации посредством уменьшения времени реагирования экстренных оперативных служб.

Настоящий стандарт описывает протокол обмена данными между автомобильной системой вызова экстренных оперативных служб и инфраструктурой оператора системы «ЭРА-ГЛОНАСС» и связанный с ним протокол поддержки услуг, включая базовую услугу экстренного реагирования при авариях.

Настоящий стандарт предоставляет все необходимые данные о формате и правилах передачи сообщений и должен использоваться для разработки подсистем передачи данных на стороне автомобильной системы вызова экстренных оперативных служб и оператора системы «ЭРА-ГЛОНАСС».

Основные положения настоящего стандарта взаимоувязаны с основополагающими национальными стандартами комплекса стандартов «Глобальная навигационная спутниковая система. Система экстренного реагирования при авариях»:

ГОСТ Р 54620-2011 Глобальная навигационная спутниковая система. Система экстренного реагирования при авариях. Автомобильная система вызова экстренных оперативных служб. Общие технические требования

ГОСТ Р 54721-2011 Глобальная навигационная спутниковая система. Система экстренного реагирования при авариях. Общий порядок оказания системой базовой услуги.

В настоящем стандарте учтены основные положения соответствующих международных стандартов и международных документов:

по общеевропейской системе безопасности в экстренных ситуациях eCall - в части состава передаваемого автомобильной системой минимального набора данных;

по мобильной (подвижной связи) – в части передачи данных с использованием SMS-сообщений.

Настоящий стандарт предназначен для использования:

- производителями автомобильных систем экстренного реагирования при авариях (терминалов «ЭРА-ГЛОНАСС»);
 - авто производителями;
 - оператором системы «ЭРА-ГЛОНАСС»;
- разработчиками и поставщиками услуг на основе навигационноинформационной платформы системы «ЭРА-ГЛОНАСС».

Глобальная навигационная спутниковая система СИСТЕМА ЭКСТРЕННОГО РЕАГИРОВАНИЯ ПРИ АВАРИЯХ Протоколы обмена данными автомобильной системы вызова экстренных оперативных служб с инфраструктурой системы экстренного реагирования при авариях

Global navigation satellite system.

Roadaccidentemergency responsesystem

Protocol of Data Transmission from In-Vehicle Emergency Call System to

Emergency Response System Infrastructure

Дата введения – 2012-09-01

1 Область применения

Настоящий стандарт распространяется на систему экстренного реагирования при авариях «ЭРА-ГЛОНАСС» (далее – система).

Настоящий стандарт устанавливает требования к протоколам обмена данными между автомобильной системой вызова экстренных оперативных служб и инфраструктурой оператора системы «ЭРА-ГЛОНАСС», включая требования к протоколу обмена данными, связанными с предоставлением системой «ЭРА-ГЛОНАСС» базовой услуги.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ Р 52928-2010 Система спутниковая навигационная глобальная. Термины и определения

ГОСТ Р 54620-2011 Глобальная навигационная спутниковая система. Система экстренного реагирования при авариях. Автомобильная система вызова экстренных оперативных служб. Общие технические требования

ГОСТ Р 54721-2011 Глобальная навигационная спутниковая система. Система экстренного реагирования при авариях. Общий порядок оказания системой базовой услуги

ГОСТ Р ИСО/МЭК 7498-1—99 Информационная технология. Взаимосвязь открытых систем. Базовая эталонная модель. Часть. 1. Базовая модель

ГОСТ 7.75-97 Система стандартов по информации, библиотечному и издательскому делу. Коды наименований языков

П р и м е ч а н и е – При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, соответствующим ежемесячно информационным И ПО издаваемым указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться замененным (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины, определения, обозначения и сокращения

- 3.1 В настоящем стандарте применены термины по ГОСТ Р 52928, ГОСТ Р ИСО/МЭК 7498-1, ГОСТ Р 54620, а также следующие термины с соответствующими определениями:
- 3.1.1 автомобильная система вызова экстренных оперативных служб «ЭРА-ГЛОНАСС» АС: Система, устанавливаемая на колесном транспортном средстве соответствующей категории и предназначенная для определения местоположения и параметров движения транспортного средства по сигналам глобальной навигационной спутниковой системы ГЛОНАСС или ГЛОНАСС совместно с другими ГНСС, передачи сообщения о транспортном средстве при дорожно-транспортном происшествии и обеспечения двусторонней голосовой связи с экстренными оперативными службами.
- 3.1.2 **минимальный набор данных**; МНД: Набор данных, передаваемый автомобильной системой вызова экстренных оперативных служб при дорожнотранспортном происшествии и включающий в себя информацию о координатах и параметрах движения аварийного транспортного средства и времени аварии, VIN-коде транспортного средства и другую информацию, необходимую для экстренного реагирования.
- 3.1.3 **протокол передачи** данных: Набор правил и соглашений, определяющих содержимое, формат, параметры времени, последовательность и проверку ошибок в сообщениях, которыми обмениваются сетевые устройства
- 3.1.4 **сервис**: Элемент инфраструктуры телематической платформы системы экстренного реагирования при авариях «ЭРА-ГЛОНАСС», обеспечивающий функциональное выполнение алгоритма той или иной услуги, оказываемой системой, с использованием протокола уровня поддержки услуг.
- 3.1.5 система экстренного реагирования при авариях; (система «ЭРА-ГЛОНАСС»): Федеральная государственная автоматизированная навигационно-информационная система, функционирующая с использованием сигналов глобальной навигационной спутниковой системы Российской

Федерации (ГЛОНАСС) стандартной точности, реализующая доставку сообщений о дорожно-транспортных происшествиях и иных чрезвычайных ситуациях на автомобильных дорогах Российской Федерации экстренным оперативным службам.

Примечание - Аналогом системы «ЭРА ГЛОНАСС» является общеевропейская система eCall (emergencycall), с которой система «ЭРА-ГЛОНАСС» гармонизирована по основным функциональным свойствам (использование тонального модема как основного механизма передачи данных; унифицированные состав и формат обязательных данных, передаваемых в составе МНД, единообразные правила установления и завершения двустороннего голосового соединения с лицами, находящимися в кабине транспортного средства и др.).

- «ЭРА-ГЛОНАСС» базовая: 3.1.6 услуга системы Результат функционирования системы «ЭРА-ГЛОНАСС», состоящий в формировании и передаче экстренных сообщений о дорожно-транспортных происшествиях, приеме, обработке и доведении указанных сообщений в единую дежурнодиспетчерскую службу системы-112 обеспечении И установления (коммутации) двухсторонней голосовой связи с лицами, находящимися в транспортном средстве.
- 3.1.7 **система-112**:Система обеспечения вызова экстренных оперативных служб по единому номеру «112».
- 3.1.8 **единый номер «112»:** Единый номер вызова экстренных оперативных служб, установленный в Российской системе и плане нумерации.
- 3.1.9 оператор системы экстренного реагирования при авариях «ЭРА-ГЛОНАСС» (оператор системы): Юридическое лицо, осуществляющий деятельность по эксплуатации системы «ЭРА-ГЛОНАСС», в том числе по обработке информации, содержащейся в ее базе данных.

3.2 В настоящем стандарте применены следующие обозначения и сокращения

навигационно-информационные системы;

ОЗУ - оперативное запоминающее устройство;

по - программное обеспечение;

ППУ - протокол уровня поддержки услуг;

- протокол транспортного уровня;

ТП - телематическая платформа;

тс - транспортное средство;

Цифровая - информация в электронной форме, которая

подпись используется для идентификации отправителя

данных;

ЭРА - экстренное реагирование на аварии;

CP-1251 - CodePage CP1251 (набор символов и кодировка,

являющаяся стандартной 8-битной кодировкой для

всех русских версий Microsoft Windows);

CRC-8(16) - Cyclic Redundancy Code (Циклический избыточный

код);

DNS - Domain Name System (система доменных имен);

eCall - Emergency Call (общеевропейская система

экстренного реагирования при авариях);

EGTS - Era Glonass Telematics Standard (телематический

стандарт для системы «ЭРА-ГЛОНАСС»);

FTP - File Transfer Protocol (протокол передачи файлов);

IP - Internet Protocol (межсетевой протокол);

GSM - Global System for Mobile communications

(глобальный цифровой стандарт для мобильной

сотовой связи);

HyperText Transfer Protocol (протокол передачи HTTP гипертекста); **IMAP** Internet Message Protocol Access (протокол прикладного уровня для доступа к электронной почте); **ISDN** Integrated Services Digital Network (цифровая сеть с интеграцией обслуживания); Little-endian младший байт вперед (порядок следования байт); Next Generation Telematics Protocol (телематический **NGTP** протокол следующего поколения. Архитектура и концепция построения); OSI Open Systems Interconnection Basic Reference Model (базовая эталонная модель взаимодействия открытых систем - абстрактная сетевая модель для коммуникаций и разработки сетевых протоколов); PDU Protocol Description Unit (элемент описания протокола); POP3 Post Office Protocol Version 3 (протокол почтового отделения, версия 3); SC Service Center (сервис-центр, ответственный за обработку, хранение и передачу SMS-сообщений получателям); SIM Subscriber Identification Module (модуль идентификации абонента); **SME** Message (объекты, способные Short **Entity** отправлять и получать SMS -сообщения); **SMS** Short Message Service (сервис коротких сообщений); **SMSC** Short Message Service Center (центр обработки коротких сообщений);

SMTP - Simple Mail Transfer Protocol (простой протокол

передачи почты);

TCP - Transmission Control Protocol (протокол управления

передачей);

TFTP - Trivial File Transfer Protocol (простой протокол

передачи файлов);

telnet - TErminaL NETwork (сетевой протокол для

реализации текстового интерфейса по сети);

UDP - User Datagram Protocol (протокол пользовательских

дейтаграмм);

4 Общие положения

4.1 Сетевая модель взаимодействия открытых систем согласно ГОСТ Р ИСО/МЭК 7498-1 определяет следующие уровни обмена данными:

- физический;
- канальный;
- сетевой;
- транспортный;
- сеансовый;
- представления данных и приложений.
- 4.2 В терминах сетевой модели OSI в системе «ЭРА-ГЛОНАСС» для передачи данных между автомобильной системой вызова экстренных оперативных служб и оператором системы используются следующие протоколы:
 - транспортный уровень протокол ТСР;
 - сетевой уровень протокол ІР.

Соответствие сетевой модели OSI, стека протоколов TCP/IP и протоколов передачи данных системы «ЭРА-ГЛОНАСС» представлено в таблице 1.

Т а б л и ц а 1 – Соответствие уровней модели OSI, стека протоколов TCP/IP и протоколов системы «ЭРА-ГЛОНАСС»

N	Іодель OSI	Стек протоколов ТСР/ІР		Протоколы	Протоколы
Номер	Название уровня	Номер	Название	TCP/IP	системы
уровня		уровня	уровня		«ЭРА-
					ГЛОНАСС»
7	Приложений	4	Приложений	FTP, HTTP,	Уровень
6	Представления			POP3, IMAP,	поддержки
	данных			telnet, SMTP,	услуг
5	Сеансовый			DNS, TFTP	Транспортный
					уровень
4	Транспортный	3	Транспортный	TCP, UDP	TCP
3	Сетевой	2	Межсетевой	IP	IP
2	Канальный	1	Доступ к сети	-	-
1	Физический				-

- 4.3 Настоящий стандарт устанавливает требования к следующим видам протоколов обмена информацией между элементами системы «ЭРА-ГЛОНАСС»:
 - протокол транспортного уровня;
- протокол уровня поддержки услуг, включая базовую услугу, оказываемую системой «ЭРА-ГЛОНАСС».

П р и м е ч а н и е – Описание базовой услуги, оказываемой системой «ЭРА-ГЛОНАСС», приведено в ГОСТ Р 54721.

4.4 Настоящий стандарт также устанавливает требования к формату сообщения AL-ACK, которое высылается посредством использования тонального модема [1].

5 Протокол транспортного уровня

5.1 Назначение протокола транспортного уровня

5.1.1 Протокол транспортного уровня предназначен для обеспечения маршрутизации информации протокола уровня поддержки услуг между пунктами инфраструктуры системы «ЭРА-ГЛОНАСС» и АС, использующих

данный протокол, проверки целостности и правильной последовательности данных, а также обеспечения надежности доставки до пункта назначения.

- 5.1.2 Описание принципа построения системы на основе протокола транспортного уровня приведено в приложении A.
- 5.1.3 Анализ протокола транспортного уровня на основе концепции NGTP приведен в приложении Б.

5.2 Обеспечение маршрутизации

В основу протокола транспортного уровня положен принцип гибкой маршрутизации пакетов данных между взаимоувязанными элементами распределенной сети телематических платформ, использующих данный протокол. В качестве адресов маршрутизации используются идентификаторы телематической платформы, которые должны быть уникальны в рамках одной взаимоувязанной сети.

5.3 Механизм проверки целостности данных

Проверка целостности передаваемой информации основана на применении контрольных сумм заголовка транспортного уровня, и данных уровня поддержки услуг. Принимающая сторона подсчитывает контрольные суммы и сравнивает их с соответствующими значениями, записанными отправляющей стороной в определенные поля пакета. Если контрольные суммы не совпадают, то считается, что целостность нарушена, на что отправляется подтверждение в виде кода ошибки результата обработки.

В целях обеспечения минимизации использования системных ресурсов при обработке пакетов протокола в части транспортного уровня и данных уровня поддержки услуг используются различные поля и алгоритмы обеспечения контроля целостности. При этом используется механизм, основанный на подсчете контрольной суммы передаваемой последовательности байт (CRC).

Для части пакета транспортного уровня используется алгоритм вычисления циклического избыточного кода CRC-8.

Для части пакета уровня поддержки услуг используется алгоритм вычисления циклического избыточного кода CRC-16.

5.4 Обеспечение надежности доставки пакетов данных

5.4.1 Механизм обеспечения надежной доставки основан на использовании подтверждений ранее отправленных пакетов. Отправляющая сторона после передачи пакета ожидает на него подтверждения в виде пакета определенного типа, содержащего идентификатор ранее переданного пакета и результата его обработки на принимающей стороне. Ожидание определенного производится В течение промежутка времени, регламентированного протоколом транспортного уровня и зависящего от типа используемого транспортного протокола нижнего уровня (параметр 13). получения TL_RESPONSE_TO В таблице После подтверждения отправляющая сторона производит анализ кода результата.

Коды результатов обработки также регламентированы протоколом транспортного уровняи представлены в приложении В.

5.4.2 В зависимости от результата анализа, пакет считается доставленным или недоставленным. Пакет считается недоставленным также в случае, если подтверждение не приходит по истечению времени TL_RESPONSE_TO (см. таблицу 13). Недоставленные пакеты отправляются повторно (число попыток отправки регламентировано настоящим протоколом и определяется параметром TL_RESEND_ATTEMPTS, указанным таблице 13). По достижению предельного числа попыток отправки канал передачи данных считается ненадежным, и производится уничтожение установленной сессии (разрыв использования TCP/IP соединения В случае протокола качестве транспортного) и попытка создания новой сессии (соединения) через время, определяемое параметром TL RECONNECT TO (см. таблицу 13).

- **5.5** Описание типов данных, используемых в протоколе транспортного уровня
- 5.5.1 Протоколом транспортного уровня определены и используются несколько различных типов данных полей и параметров. Состави описание типов данных, используемых в протоколе транспортного уровня, представлены в таблице 2.
- 5.5.2 Многобайтовые типы данных USHORT, UINT, ULONG, FLOATuDOUBLE используют порядок следования байт little-endian (младший байт вперед). Байты, составляющие последовательность в типах STRING и BINARY должны интерпретироваться как есть, т.е. обрабатываться в порядке их поступления.
- 5.5.3 В протоколе транспортного уровня определены следующие типы полей и параметров:
- M (mandatory) обязательный параметр. Параметр должен передаваться всегда;
- -O (optional) необязательный. Параметр может не передаваться и его присутствие определяется другими параметрами, входящими в пакет.

Т а б л и ц а 2 - Состав и описание типов данных, используемых в протоколе транспортного уровня

Тип данных	Размер, байт	Диапазон значений	Описание
BOOLEAN	1	TRUE-1, FALSE-0	Логический тип, принимающий только два
BOOLLAN	1	TRUE-1, TALSE-0	значения TRUE или FALSE
BYTE	1	0 255	Целое число без знака
USHORT	2	0 65535	Целое число без знака
UINT	4	0 4294967295	Целое число без знака
ULONG	8	0 18446744073709551615	Целое число без знака
SHORT	2	минус 32768 плюс 32767	Целое число со знаком
INT	4	минус 2147483648 плюс 2147483647	Целое число со знаком
FLOAT	4	$\pm 1.2 E - 38 \dots 3.4 E + 38$	Дробное число со знаком
DOUBLE	8	$\pm 2.2 E - 308 \dots 1.7 E + 308$	Дробное число со знаком

Продолжение таблицы 2

Тип данных	Размер, байт	Диапазон значений	Описание
STRING	Переменный. Размер определяется внешними параметрами или применением специального символатерминатора (код 0х00)	-	Содержит последовательность печатных символов в кодировке по умолчанию CP-1251, если явно не указана другая кодировка (при помощи дополнительного параметра)
BINARY	Переменный. Размер определяется внешними параметрами	-	Содержит последовательность данных типа ВҮТЕ

Окончание таблицы 2

Тип данных	Размер, байт	Диапазон значений	Описание
			Может содержать последовательность одного из
			вышеуказанных типов (ТҮРЕ), кроме BINARY. Порядок
	Переменный. Размер определяется внешними параметрами		следования байт и размер каждого элемента
			используемого типа определяется самим типом.
ARRAYOF			Экземпляры типов идут последовательно один за другим.
TYPE		-	Например: ARRAY OF STRING содержит в своем
			составе 10 экземпляров типа STRING, при этом размер
			каждого экземпляра определяется разделителем (код
			0х00), который должен присутствовать между
			экземплярами.

5.6 Описание структур данных, используемых в протоколе транспортного уровня

- 5.6.1 Общая структура пакета протокола транспортного уровня определяется составом пакета и его форматом.
- 5.6.1.1 Пакет протокола транспортного уровня состоит из заголовка, поля «данные уровня поддержки услуг», а также поля контрольной суммы «данных уровня поддержки услуг».

Состав пакета протокола транспортного уровня представлен на схеме 1.

Заголовок протокола	Данные уровня	Контрольная сумма данных
транспортного уровня	поддержки услуг	уровня поддержки услуг

Схема 1 - Состав пакета протокола транспортного уровня

5.6.1.2 Общая длина пакета протокола транспортного уровняне превышает значения 65535 байт, что соответствует максимальному значению параметра Window Size (максимальный размер целого пакета, принимаемый на стороне приемника) заголовка протокола ТСР. Такое значение максимального размера пакета позволяет более эффективно использовать каналы передачи данных, базируясь только на стандартном методе управления потоком данных, заложенном в протоколе TCP/IP [1].

Формат пакета транспортного уровня представлен в таблице 3.

Таблица3 - Состав пакета протокола транспортного уровня

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Типданны	Размер,
									X	байт
		PRV	(Proto	col Ver	sion)			M	BYTE	1
		SKII	D (Secu	rity Key	y ID)			M	BYTE	1
PRF (Prefix)	RTE	EN	ΙA	CMP	P	R	M	BYTE	1
		HI	(Head	er Leng	th)			M	BYTE	1
		НЕ	(Heade	r Encod	ing)			M	BYTE	1
		FDL	(Frame	Data Le	ength)			M	USHORT	2
		PID	(Packe	t Identi	fier)			M	USHORT	2
	PT (Packet Type)							M	BYTE	1
PRA (Peer Address)						О	USHORT	2		
	RCA (Recipient Address)					О	USHORT	2		
TTL (Time To Live)						О	BYTE	1		
HCS (Header Check Sum)						M	BYTE	1		
SFRD (Services Frame Data)					О	BINARY	0 65517			
	SFRC	S (Serv	ices Fra	me Dat	a Check	Sum)		О	USHORT	0, 2

5.6.1.3 Заголовок протокола транспортного уровня состоит из следующих параметров(полей): PRV, PRF, PR, CMP, ENA, RTE, HL, HE, FDL, PID, PT, PRA, RCA, TTL, HCS. Протокол уровня поддержки услуг представлен полем SFRD, контрольная сумма поля уровня поддержки услуг содержится в поле SFRCS.

Описание вышеуказанных параметров (полей) приведено в таблице 4.

Т а б л и ц а 4 - Описание параметров (полей), входящих в состав пакета протокола транспортного уровня

Обозначение	Назначение параметра (поля)
параметра(поля)	
PRV	Параметр определяет версию используемой структуры заголовка и должен содержать значение 0x01. Значение данного
	параметра инкрементируется каждый раз при внесении изменений в структуру заголовка.
SKID	Параметр определяет идентификатор ключа, используемый при шифровании.
PRF	Параметр определяет префикс заголовка транспортного уровня и для данной версии должен содержать значение 00.
RTE (Route)	Битовое поле определяет необходимость дальнейшей маршрутизации данного пакета на удаленную телематическую
	платформу, а также наличие опциональных параметров PRA, RCA, TTL, необходимых для маршрутизации данного
	пакета. Если поле имеет значение 1, то необходима маршрутизация и поля PRA, RCA, TTL присутствуют в пакете.
	Данное поле устанавливает диспетчер той телематической платформы, на которой сгенерирован пакет, или АС,
	сгенерировавшая пакет для отправки на телематическую платформу, в случае установки в ней параметра
	«HOME_DISPATCHER_ID», определяющий ее адрес, на которой данный АС зарегистрирована.
ENA (Encryption	Битовое поле определяет код алгоритма, используемый для шифрования данных из поля SFRD. Если поле имеет
Algorithm)	значение 0 0, то данные в поле SFRD не шифруются. Состав и коды алгоритмов не определены в данной версии
	протокола.
CMP (Compressed)	Битовое поле определяет, используется ли сжатие данных из поля SFRD. Если поле имеет значение 1, то данные в поле
	SFRD считаются сжатыми. Алгоритм сжатия не определен в данной версии протокола.

Продолжение таблицы 4

Обозначение	Назначение параметра (поля)
параметра (поля)	
PR (Priority)	Битовое поле определяет приоритет маршрутизации данного пакета и может принимать следующие значения:
	00 – наивысший;
	01 – высокий;
	10 – средний;
	11 — низкий.
	Установка большего приоритета позволяет передавать пакеты, содержащие срочные данные, такие, например, как пакет
	с минимальным набором данных базовой услуги «ЭРА-ГЛОНАСС» или данные о срабатывании сигнализации на
	транспортном средстве. При получении пакета диспетчер, анализируя данное поле, производит маршрутизацию пакета с
	более высоким приоритетом быстрее, чем пакет с низким приоритетом, тем самым достигается более оперативная
	обработка при наступлении критически важных событий.
HL	Длина заголовка протокола транспортного уровня в байтах с учетом байта контрольной суммы (поля HCS).
HE	Определяет применяемый метод кодирования следующей за данным параметром части заголовка протокола
	транспортного уровня.
FDL	Определяет размер в байтах поля данных SFRD, содержащего информацию протокола уровня поддержки услуг.

Продолжение таблицы 4

Обозначение	Назначение параметра (поля)
параметра (поля)	
PID	Содержит номер пакета протокола транспортного уровня, увеличивающийся на 1 при отправке каждого нового пакета на
	стороне отправителя. Значения в данном поле изменяются по правилам циклического счетчика в диапазоне от 0 до 65535,
	т.е. при достижении значения 65535, следующее значение должно быть 0.
PT	Тип пакета протокола транспортного уровня.
	Поле РТ может принимать следующие значения:
	0 – EGTS_PT_RESPONSE (подтверждение на протокол транспортного уровня);
	1 – EGTS_PT_APPDATA (пакет содержащий данные протокола уровня поддержки услуг);
	2 – EGTS_PT_SIGNED_APPDATA (пакет содержащий данные протокола уровня поддержки услугс цифровой
	подписью).
PRA	Адрес телематической платформы, на которой данный пакет сгенерирован. Данный адрес является уникальным в
	рамках связной сети и используется для создания пакета-подтверждения на принимающей стороне.
RCA	Адрес телематической платформы, для которой данный пакет предназначен. По данному адресу производится
	идентификация принадлежности пакета определенной телематической платформе и его маршрутизация при
	использовании промежуточных телематических платформ.

Окончание таблицы 4

Обозначение	Назначение параметра (поля)
параметра (поля)	
TTL	Время жизни пакета при его маршрутизации между телематическими платформами. Использование данного параметра
	предотвращает зацикливание пакета при ретрансляции в системах со сложной топологией адресных пунктов.
	Первоначально TTL устанавливается телематической платформой, сгенерировавшей данный пакет. Значение TTL
	устанавливается равным максимально допустимому числу телематической платформы между отправляющей и
	принимающей платформами. Значение TTL уменьшается на единицу при трансляции пакета через каждую
	телематическую платформу, при этом пересчитывается контрольная сумма заголовка протокола транспортного уровня.
	При достижении данным параметром значения 0 и при обнаружении необходимости дальнейшей маршрутизации пакета,
	происходит уничтожение пакета и выдача подтверждения с соответствующим кодом (PC_TTLEXPIRED см. приложение
	B).
HCS	Контрольная сумма заголовка протокола транспортного уровня (начиная с поля «PRV» до поля «HCS», не включая
	последнего). Для подсчета значения поля HCS ко всем байтам указанной последовательности применяется алгоритм
	CRC-8. Пример программного кода расчета CRC-8 приведен в приложении Д.
SFRD	Структура данных, зависящая от типа пакета и содержащая информацию протокола уровня поддержки услуг.
SFRCS	Контрольная сумма.
	Для подсчета контрольной суммы по данным из поля SFRD, используется алгоритм CRC16 – CCITT. Данное поле
	присутствует только в том случае, если есть поле SFRD. Пример программного кода расчета CRC-16 приведен в
	приложении Г.

- 5.6.1.4 Блок схема алгоритма сборки пакета протокола транспортного уровня при приеме представлена на рисунке 1.
 - 5.6.2 Структуры данных в зависимости от типа пакета

В зависимости от типа пакета протокола транспортного уровня, структура поля SFRD имеет различный формат.

5.6.2.1 Структура данных пакета EGTS_PT_APPDATA

Пакет данного типа предназначен для передачи одной или нескольких структур, содержащих информацию протокола уровня поддержки услуг. Структура данных поля SFRD пакета EGTS_PT_APPDATA представлена в таблице 5.

Таблица5 - Формат поля SFRD для пакета типа EGTS_PT_APPDATA

Бит 7 Бит 6 Бит 5 Бит 4 Бит 3 Бит 2 Бит 1 Бит 0	Тип	Тип данных	Размер, байт
SDR 1(Service Data Record)	О	BINARY	9 65517
SDR 2	О	BINARY	9 65517
SDRn	О	BINARY	9 65517

П р и м е ч а н и е – Структуры SDR 1, SDR 2, SDRn, содержат информацию протокола уровня поддержки услуг. Таких структур в составе поля SFRD может быть одна или несколько, идущих одна за другой. Описание внутреннего состава структур представлено в разделе 6.

5.6.2.2 Структура данных пакета EGTS_PT_RESPONSE

С помощью данного типа пакета осуществляется подтверждения пакета протокола транспортного уровня. Данный тип пакета содержит информацию о результате обработки данных протокола транспортного уровня, полученного ранее. Структура данных поля SFRD пакета EGTS_PT_RESPONSE представлена в таблице 6.

А – маршрутизация и отправка пакета на другую телематическую платформу

Б – обработка данных протокола уровня поддержки услуг

Рисунок 1 - Блок схема алгоритма сборки пакета протокола транспортного уровня при приеме

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Тип данных	Размер, байт
		RPID	(Respon	nse Pack		M	USHORT	2		
		PR	(Process	M	BYTE	1				
		SDR 1	(Service		O	BINARY	9 65517			
			SD	О	BINARY	9 65517				
			SD	О	BINARY	9 65517				

Таблицаб-Формат поля SFRD для пакета типа EGTS_PT_RESPONSE

Примечания:

- 1 Параметр RPID идентификатор пакета транспортного уровня, подтверждение на который формируется.
- 2 Параметр PR код результата обработки части пакета, относящейся к транспортному уровню (подсчет контрольных сумм заголовка транспортного уровня и данных уровня поддержки услуг, проверка размера пакета, определение необходимости дальнейшей маршрутизации пакета и т.д.). Список возможных кодов результата обработки представлен в приложении В.
- 3 Структуры SDR 1, SDR 2, SDRn структуры, содержащие информацию уровня поддержки услуг. Таких структур может быть одна или несколько, идущих одна за другой.

5.6.2.3 Структура данных пакета EGTS_PT_SIGNED_APPDATA

Пакет данного типа применяется для передачи помимо структур, содержащих информацию уровня поддержки услуг, также информацию о «цифровой подписи», идентифицирующей отправителя данного пакета. Структура данных поля SFRD пакета EGTS_PT_ SIGNED_APPDATA представлена в таблице 7.

5.6.2.4 На каждый пакет типа EGTS_PT_APPDATA или EGTS_PT_SIGNED_APPDATA, поступающий от AC на телематическую платформу или от нее на AC, должен быть отправлен пакет типа EGTS_PT_RESPONSE, содержащий в поле PID номер пакета из пакета EGTS_PT_APPDATA или EGTS_PT_SIGNED_APPDATA.

На рисунке 2 представлена последовательность обмена пакетами, при взаимодействии AC и телематической платформы.

Таблица7 - Формат поля SFRD для пакета типа EGTS_PT_SIGNED_APPDATA

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Тип данных	Размер, байт
		SIGI	_(Signa	M	SHORT	2				
		SIG	D (Sign		О	BINARY	0 512			
		SDR 1	(Service		О	BINARY	9 65515			
			SD	О	BINARY	9 65515				
			•	•••	•••	•••				
			SD	О	BINARY	9 65515				

Примечания:

- 1 Параметр SIGL определяет длину данных «цифровой подписи» из поля SIGD
- 2 Параметр SIGD содержит непосредственно данные «цифровой подписи».
- 3 Структуры SDR 1, SDR 2, SDRn структуры, содержащие информацию уровня поддержки услуг. Таких структур может быть одна или несколько, идущих одна за другой.

Рисунок 2 - Взаимодействие АС и телематической платформы на уровне пакетов транспортного уровня

5.7 Описание структуры данных при использовании SMS в качестве резервного канала передачи данных

5.7.1 Структура SMS сообщения

При использовании SMS для передачи пакетов данных протокола транспортного уровня используется режим PDU [2],[3]. Режим PDU позволяет передавать не только текстовую, но и бинарную информацию через сервис SMS оператора сотовой связи GSM. Описываемый протокол транспортного уровня оперирует бинарными данными, поэтому PDU режим наиболее подходит для использования SMS в качестве резервного канала передачи транспортного уровня.

5.7.1.1 Для передачи SMS сообщения используется 8-ми битовая кодировка. Формат SMS сообщения для отправки в PDU-режиме представлен в таблице 8 и использует структуру, описанную в [3(раздел 9)].

Таблица8 - Формат SMS с использованием PDU режима

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Размер, байт	
	M	1								
	SMSC_AT (SMSC Address Type)									
	О	0,6								
TP_RP	TP_UDHI	TP_SRR	TP_	VPF	TP_RD	TP_	MTI	M	1	
	M	1								
TP_DA_L (Destination Address Length)									1	
TP_DA_T (Destination Address Type)									1	
	TP_DA(Destination Address)									

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Размер, байт
	M	1							
TP_DCS (Data Coding Schema)									1
TP_VP (ValidityPeriod)									0, 1, 7
TP_UDL (User Data Length)									1
TP_UD (UserData)									0140

- 5.7.1.2 Описание параметров, входящих в состав SMS-сообщения в PDUрежиме приведено ниже:
 - SMSC_AL-длина полезных данных адреса SMSC в октетах;
 - SMSC_AT-тип формата адреса SMSC.

Возможные значения параметров SMSC_AT представлены в таблице 10. Поле опциональное и наличие его зависит от значения параметра SMSC_AL (если значение SMSC_AL больше 0, то данное поле присутствует);

- SMSC_A адрес SMSC. Каждая десятичная цифра номера представлена в виде четырех бит (младшие 4 бита цифра более старшего разряда, старшие 4 бита цифра меньшего разряда), при этом, если число цифр в номер нечетное, то в битах с 4 по 7 последнего байта номера устанавливается значение 0xF (1111b). Данный параметр опциональный и его наличие зависит от значения параметра SMSC_AL. В случае отсутствия параметра SMSC_A, используется SMSC из SIM карты;
- TP_MTI (Message Type Indicator) тип сообщения (должен содержать бинарное значение 01);
- TP_RD (Reject Duplicates) поле определяет, необходимо ли SMSC принимать данное сообщение на обработку, если существует предыдущее

необработанное отправленное с данного номера сообщение, которое имеет такое же значение поля TP_MR и такой же номер получателя в поле TP_DA;

- TP_VPF (Validity Period Format) формат параметра TP_VP. Возможные значения поляTP_VPF представлены в таблице 9;
- TP_SRR (Status Report Request) Поле определяет необходимость отправки подтверждения со стороны SMSC на данное сообщение (если данный бит имеет значение 1, то требуется подтверждение);
- TP_UDHI (User Data Header Indicator)поле определяет, передается ли заголовок пользовательских данных TP_UD_HEADER (если поле имеет значение 1, то заголовок присутствует);
- TP_RP (Reply Path) поле определяет, присутствует ли поле RP в сообщении;
- TP_MR —идентификатор сообщения (должен увеличиваться на 1 при каждой отправке нового сообщения);
 - TP_DA_L -длина полезных данных адреса получателя в октетах;
- TP_DA_T –тип формата адреса получателя. Возможные значения параметров TP_DA_T и SMSC_AT представлены в таблице 10;
- TP_DA адрес получателя. Кодировка номера производится по тем же правилам, что и в параметре SMSC_A;
 - TP_PID идентификатор протокола (должен содержать значение 00);
- TP_DCS тип кодировки данных (должен содержать значение 0x04, определяющий 8-ми битную кодировку сообщения, отсутствие компрессии);
- TP_VP время актуальности данного сообщения. Формат данного поля определяется значением из таблицы 9. Параметр является опциональным. Его наличие и размер зависят от значения поля TP_VPF;
- TP_UDL длина данных сообщения из поля TP_DL, в байтах для используемой 8-ми битной кодировки;

- TP_UD — непосредственно передаваемые пользовательские данные. Формат данного поля в зависимости от значения поля TP_UDHI представлен в таблице 11.

Таблица 9 - Формат поля TP_VP в зависимости от значения поля TP_VPF

Значен	ие битов	Описание					
0	0	Поле TP_VP не передается					
1	0	Поле TP_VP имеет формат «относительное время» и размер 1 байт					
0	1	Поле TP_VP имеет формат «расширенное время» и размер 7 байт					
1	1	Поле TP_VP имеет формат «абсолютное время» и размер 7 байт					

Таблица 10 - Формат полей TP_DA_Ти SMSC_AT (тип адреса)

F	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Размер, байт
	1	TON				NI	PI		1

Параметры полей TP_DA_T и SMSC_AT, приведенные в таблице 10, имеют следующее назначение:

- TON (Type Of Number) –тип номера. Параметр TON может принимать следующие значения:
 - а) 000 неизвестный;
 - б) 001 международный формат;
 - в) 010 национальный формат;
 - г) 011 специальный номер, определяемый сетью;
 - д) 100 номер абонента;
 - е) 101 буквенно-цифровой код (коды согласно [2] с

7-битной кодировкой по умолчанию);

- ж) 110 укороченный;
- и) 111 зарезервировано.
- NPI (NumericPlanIdentification) тип плана нумерации (применимо для значений поля TON- 000,001,010). NPI может принимать следующие значения:
 - а) 0000 неизвестный;
 - б) 0001 план нумерации ISDN телефонии;
 - в) 0011 план нумерации при передаче данных;
 - г) 0100 телеграф;
 - д) 1000 национальный;
 - е) 1001 частный;
 - ж) 1111 зарезервировано.

Таблица 11 - Формат поля TP_UD

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Размер, байт
	LUDH (Length of User Data Header)							О	1
	IEI «A	» (Inforn	nation-El	ement-Id	entifier «	A»)		О	1
	LIE «A	x» (Lengt	h of Info	rmation-l	Element «	(A»)		О	1
	IED «A» (Information-Element-Data of «A»)							О	1 n
	IEI «B» (Information-Element-Identifier «B»)							О	1
	LIE «E	B» (Lengt	h of Info	rmation-l	Element «	(B»)		О	1
	IED «	B» (Info	mation-E	Element-I	Data of «I	3»)		О	1 n
	IEI «N	» (Inforn	nation-El	ement-Id	entifier «	N»)		О	1
	LIE «N	I» (Lengt	h of Info	rmation-I	Element «	(N»)		О	1
	IED «N» (Information-Element-Data of «N») O 1 n						1 n		
		1	UD (Usei	Data)				M	1140

Параметры поля TP_UD, приведенные в таблице 11, имеют следующее назначение:

-LUDH – длина заголовка пользовательских данных в байтах без учета размера данного поля;

-IEI «А», IEI «В» , IEI «N» - идентификатор информационного элемента «А», «В» и «N» соответственно, который определяет тип информационного элемента и может принимать следующие значения (в шестнадцатеричной системе):

- а) 00 часть конкатенируемого SMS сообщения;
- б) 01 индикатор специального SMS сообщения;
- в) 02 зарезервировано;
- г) 03 не используется;
- д) 04 7F- зарезервировано;
- e) 80 9F- для специального использования SME;
- ж) A0 BF– зарезервировано;
- и) C0 DF- для специального использования SC;
- κ) E0 FF- зарезервировано.
- LIE «А», LIE «В» , LIE «N» параметры определяющие размер данных информационных элементов «А», «В» и «N» соответственно, в байтах, без учета размера данного поля;
- -IED «А», IED «В» , IED «N» данные информационных элементов «А», «В» и «N» соответственно;
- -UD данные пользователя. Размер данного поля определяется наличием заголовка пользовательских данных TP_UD_HEADER, состоящего из полей LUDH, IEI, LIE, IED. Если заголовок не передается, то размер равен значению поля TP_UDL, указанного в таблице 8. Если заголовок передается, то размер поля вычисляется как разность (TP_UDL LUDH -1).

В случае, если идентификатор информационного элемента IEI заголовка пользовательских данных TP_UD_HEADER имеет значение 00, структура поля IED будет иметь вид, указанный в таблице 12.

Т а б л и ц а 12 - Формат поля данных информационного элемента характеризующего часть конкатенируемого SMS сообщения

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Размер, байт
CSMRN (Concatenated Short Message Reference Number)								M	1
	MNSM (Maximum Number of Short Messages)							M	1
SNCSM (Sequence Number of Current Short Message)								M	1

Примечания:

- 1. CSMRN номер конкатенируемого SMS сообщения, должен иметь одинаковое значение для всех частей длинного SMS сообщения.
- 2. MNSM общее количество сообщений, из которых состоит длинное SMS. Должен содержать значения в диапазоне от 1 до 255.
- 3. SNCSM номер передаваемой части длинного SMS сообщения. Инкрементируется при отправке каждой новой части длинного сообщения. Должен содержать значение в диапазоне от 1 до 255. Если значение данного поля превышает значение из поля MNSM или равно нулю, то принимающая сторона должна игнорировать весь информационный элемент.
 - 5.7.2 Описание формата передаваемой информации
- 5.7.2.1 При использовании SMS для обмена данными между АС и телематической платформой, пакеты, упакованные по правилам протокола транспортного уровня и протокола уровня поддержки услуг, помещаются в поле TP_UD (см. таблицу 8), при этом полный размер пакета протокола не должен превышать 140 байт. В этом случае механизм авторизации не используется и подтверждение на переданные пакеты не требуются. После успешной отправки SMS информация считается доставленной.
- 5.7.2.2 Для отправки SMS, содержащего «цифровую подпись» используется пакет транспортного уровня типа EGTS_PT_SIGNED_APPDATA.

5.7.2.3 В случае если размер пакета данных протокола превышает 140 SMS байт, используется механизм конкатенации сообщений. который определен в [3],(9.2.3.24.1)]. Суть данного механизма состоит в том, что передаваемые пользовательские данные разбиваются на части и отправляются отдельными SMS сообщениями. При этом каждое такое сообщение содержит определяющую общее специальную структуру, количество частей передаваемых данных и порядок их сборки на принимающей стороне. В качестве такой структуры используется поле TP_UD_HEADER, которое содержит информационный элемент характеризующий часть конкатенируемого SMS сообщения. Таким образом, исходя из размера заголовка данных пользователя и максимального числа частей длинного сообщения равного 255, максимально возможный размер пакета при использовании 8-ми битной кодировки может составлять 255*(140-6)=34170 байт.

5.8 Временные и количественные параметры протокола транспортного уровня при использовании пакетной передачи данных

Наименование и описание временных и количественных параметров протокола транспортного уровня указаны в таблице 13.

Таблица13 - Временные и количественные параметры протокола транспортного уровня

Название	Тип данных	Диапазон значений	Значение по умолчанию	Описание
TL_RESPONSE_ TO	ВҮТЕ	0 255	5	Время ожидания подтверждения пакета на транспортном уровне, секунды
TL_RESEND_ ATTEMPTS	ВҮТЕ	0 255	3	Число повторных попыток отправки неподтвержденного пакета
TL_RECONNECT_T O	ВҮТЕ	0 255	30	Время, по истечении которого будет осуществляться повторная попытка установления канала связи после его разрыва.

6 Протокол уровня поддержки услуг (общая часть)

6.1 Назначение протокола уровня поддержки услуг

- 6.1.1 Протокол уровня поддержки услуг предназначен для обеспечения обмена данными между элементами системы «ЭРА-ГЛОНАСС»» в целях обеспечения функционирования системы для оказания информационных услуг потребителям. Каждой услуге соответствует отдельный сервис, который является ключевым элементом в рамках системы, построенной с использованием протокола уровня поддержки услуг.
- 6.1.2 Протокол уровня поддержки услуг выполняет следующие основные функции:

- обмен информационными сообщениями, содержащими данные для обработки различными сервисами, а также запросы на выдачу информации сервисами;
- обеспечение уведомления о результатах доставки и обработки данных уровня поддержки услуг;
 - идентификация принадлежности данных определенному типу сервиса;
- определение характеристик данных (число, тип, состав, размер, кодировка и др.).

6.2 Обмен информационными сообщениями

Основной структурой протокола уровня поддержки услуг, содержащей в себе все необходимые данные для обработки информации или запроса на предоставление той или иной услуги, является запись. Каждая запись может иметь в своем составе несколько подзаписей, содержащих необходимые данные и определяющих действия, которые должен произвести сервис, обрабатывающий данную подзапись.

6.3 Обеспечение уведомления о результате доставки и обработки данных уровня поддержки услуг

На уровне поддержки услуг уведомление отправляющей стороны о результате доставки и обработки данных обеспечивается механизмом подтверждений информационных записей при помощи специальных подзаписей, содержащих идентификатор полученной/обработанной записи.

6.4 Идентификация принадлежности данных, используемых в протоколе уровня поддержки услуг

Для идентификации принадлежности записи тому или иному сервису используется идентификатор типа сервиса, который определяет функциональные особенности и характеристики обрабатываемых данных. Тип

сервиса является его идентификатором при внутриплатформенной маршрутизации и является уникальным в рамках протокола уровня поддержки услуг.

6.5 Определение характеристик данных в протоколе уровня поддержки услуг

Данные в протоколе уровня поддержки услуг записываются в виде подзаписи, имеющей свой уникальный идентификатор в рамках отдельного типа сервиса, а также строго определенную структуру организации данных в зависимости от подзаписи. Использованием такой организации данных в протоколе уровня поддержки услуг достигается однозначное определение типа данных, их физического смысла, размера и способа упаковки.

6.6 Структуры данных, используемые в протоколе уровня поддержки услуг

6.6.1 Общая структура

Общая структура протокола уровня поддержки услуг, которая входит в состав пакета протокола транспортного уровня, может содержать одну или несколько записей, идущих одна за другой и имеющих различный состав данных, предназначенных разным сервисам. Общая структура данных представлена на схеме 2.

	Данные уровня поддержки услуг					
Запись RID=1	Запись RID=2		Запись RID=N			

Схема 2 - Общая структура данных уровня поддержки услуг

6.6.2 Структура отдельной записи

6.6.2.1 Состав записи

Отдельная запись протокола уровня поддержки услуг состоит из заголовка записи и данных записи. Состав отдельной записи представлен на схеме3

Заголовок записи	Данные записи				
	Подзапись 1	•••	Подзапись N		

Схема3 - Состав отдельной записи уровня поддержки услуг

В заголовке записи находятся параметры, определяющие типы сервисов получателя и отправителя, идентификатор записи, идентификатор объекта (например, АС), длину передаваемых данных, а также различные флаги, определяющие наличие опциональных параметров и способ обработки.

Данные записи могут содержать одну или несколько подзаписей, определяющих типов и содержащих передаваемые данные.

6.6.2.2 Структура записи

Структура отдельной записи уровня поддержки услуг указана в таблице 14.

Таблица14 - Формат отдельной записи протокола уровня поддержки услуг

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Типданны х	Размер, байт
	RL (Record Length)								USHORT	2
	RN (Record Number)							M	USHORT	2
		RF	L (Rec	ord Fla	gs)			M	ВҮТЕ	1
SSOD	RSOD	GRP	Rl	PP	TMFE	EVFE	OBFE			
	OID (Object Identifier)							О	UINT	4
	EVID (Event Identifier)							О	UINT	4

TM (Time)	О	UINT	4
SST (Source Service Type)	M	BYTE	1
RST (Recipient Service Type)	M	BYTE	1
RD (Record Data)	M	BINARY	365498

Параметры отдельной записи протокола уровня поддержки услуг, приведенные в таблице 14, имеют следующее назначение:

- RL параметр определяет размер данных из поля RD;
- RN номер записи. Значения в данном поле изменяются по правилам циклического счетчика в диапазоне от 0 до 65535, т.е. при достижении значения 65535, следующее значение должно быть 0. Значение из данного поля используется для подтверждения записи;
- RFL содержит битовые флаги, определяющие наличие в данном пакете полей OID, EVID и TM, характеризующих содержащиеся в записи данные
- SSOD (Source Service On Device), битовый флаг, определяющий расположение сервиса-отправителя:
 - а) 1 -сервис-отправитель расположен на стороне АС;
 - б) 0 -сервис- отправитель расположен на телематической платформе.
- RSOD (Recipient Service On Device), битовый флаг, определяющий расположение сервиса-получателя:
 - а) 1 -сервис-получатель расположен на стороне АС;
 - б) 0 -сервис-получатель расположен на телематической платформе.
- GRP (Group), битовый флаг, определяющий принадлежность передаваемых данных определенной группе, идентификатор которой указан в поле OID:
 - а) 1 данные предназначены для группы;
 - б) 0 принадлежность группе отсутствует.

- RPP (Record Processing Priority), битовое поле, определяющее приоритет обработки данной записи сервисом:
 - a) 00 наивысший;
 - б) 01 высокий;
 - в) 10 средний;
 - г) 11 низкий.
- TMFE (Time Field Exists), битовое поле, определяющее наличие в данном пакете поля TM:
 - а) 1 поле ТМ присутствует;
 - б) 0 поле ТМ отсутствует.
- EVFE (Event ID Field Exists), битовое поле, определяющее наличие в данном пакете поля EVID:
 - а) 1 поле EVID присутствует;
 - б) 0 поле EVID отсутствует.
- OBFE (Object ID Field Exists), битовое поле, определяющее наличие в данном пакете поля OID:
 - а) 1 поле OID присутствует;
 - б) 0 поле OID отсутствует.
- OID идентификатор объекта, сгенерировавшего данную запись, или для которого данная запись предназначена (уникальный идентификатор AC), либо идентификатор группы (при GRP=1). При передаче от AC в одном пакете транспортного уровня нескольких записей подряд для разных сервисов, но от одного и того же объекта, поле OID может присутствовать только в первой записи, а в последующих записях может быть опущено;
- EVID уникальный идентификатор события. Поле EVID задает глобальный идентификатор события и применяется, когда необходимо логически связать с одним единственным событием набор нескольких информационных сущностей, причем сами сущности могут быть разнесены как по разным информационным пакетам, так и по времени. При этом прикладное

программное обеспечение имеет возможность объединить все эти сущности воедино в момент представления пользователю информации о событии. Например, если с нажатием тревожной кнопки связывается серия фотоснимков, поле EVID должно указываться в каждой сервисной записи, связанной с этим событием на протяжении передачи всех сущностей, связанных с данным событием, как бы долго не длилась передача всего пула информации;

- ТМ время формирования записи на стороне отправителя (секунды с 00:00:00 01.01.2010 UTC). Если в одном пакете транспортного уровня передаются несколько записей, относящихся к одному объекту и моменту времени, то поле метки времени ТМ может передаваться только в составе первой записи;
- SST идентификатор тип сервиса-отправителя, сгенерировавшего данную запись. Например, сервис, обрабатывающий навигационные данные на стороне АС, сервис команд на стороне телематической платформы и т.д.;
- RST идентификатор тип сервиса-получателя данной записи. Например, сервис, обрабатывающий навигационные данные на стороне телематической платформы, сервис обработки команд на стороне AC и т.д.;
- RD поле, содержащее информацию, присущую определенному типу сервиса (одну или несколько подзаписей сервиса типа, указанного в поле SST или RST, в зависимости от вида предаваемой информации).

6.6.3 Общая структура подзаписей

Формат отдельной подзаписи в протоколе уровня поддержки услугуказан в таблице 15.

Таблица15 - Формат отдельной подзаписи протокола уровня поддержки услуг

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Типданных	Размер, байт
SRT (Subrecord Type)								M	BYTE	1
SRL (Subrecord Length)								M	USHORT	2
SRD (Subrecord Data) O BIN							BINARY	0 65495		
	Примечания:									

1 SRT – тип подзаписи (подтип передаваемых данных в рамках общего набора типов одного сервиса). Тип 0 – специальный, зарезервирован за подзаписью подтверждения данных для каждого сервиса. Конкретные значения номеров типов подзаписей определяются логикой самого сервиса. Протокол оговаривает лишь то, что этот номер должен присутствовать, а нулевой идентификатор зарезервирован.

- 2 SRL длина данных в байтах подзаписи в поле SRD.
- 3 SRD данные подзаписи. Наполнение данного поля специфично для каждого сочетания идентификатора сервиса и типа подзаписи.

6.6.4 На каждую информационную запись уровня поддержки услуг, должно быть отправлено подтверждение, которое содержит подзапись с информацией об идентификаторе подтверждаемой записи и результате ее обработки. Диаграмма, поясняющая работу механизма подтверждений при обмене сообщениями на уровне поддержки услуг, представлена на рисунке 3.

Рисунок 3 - Диаграмма обмена сообщениями

Каждое сообщение протокола уровня поддержки услуг содержит в себе заголовок и контрольную сумму транспортного уровня и одну или несколько записей уровня поддержки услуг. Причем в одном сообщении могут содержаться как информационные записи, так и подтверждения на ранее принятые записи.

6.7 Описание сервисов предоставления услуг

6.7.1 Список поддерживаемых протоколом уровня поддержки услуг сервисов предоставления услуг, их идентификаторы в десятичном виде, а также описание представлены в таблице 16.

ГОСТ Р 54619-2011 Таблиц а 16 - Список сервисов, поддерживаемых протоколом

Код	Название	Описание	ДО ¹⁾	ШСЭ ²⁾	ШСД ³⁾
1	EGTS_	Данный тип сервиса применяется			
	AUTH_	для осуществления процедуры			
	SERVICE	аутентификации АС на телемати-			
		ческой платформе.			
		При использовании TCP/IP			1
		протокола, АС должен проходить	+	-	+
		данную процедуру, и только после			
		успешного завершения данной			
		процедуры происходит дальнейшее			
		взаимодействие.			
2	EGTS_	Сервис предназначен для обра-			
	TELEDATA_	ботки телематической информации			
	SERVICE	(координатные данные, данные о	+	-	+
		срабатывании датчиков и т.д.),			
		поступающей от АС.			
4	EGTS_	Данный тип сервиса предназначен			
	COMMANDS_	для обработки управляющих и			
	SERVICE	конфигурационных команд,			
		информационных сообщений и	+	+	+
		статусов, передаваемых между АС,			
		телематической платформой и			
		операторами.			

Окончание таблицы 16

Код	Название	Описание	ДО ¹⁾	ШСЭ ²⁾	ШСД ³⁾
9	EGTS_ FIRMWARE_ SERVICE	Сервис предназначен для передачи на АС конфигурации и непосредственно самого программмного обеспечения аппаратной части самого АС, а также различного периферийного оборудования, подключенного к АС и поддерживающего возможность удаленного обновления программного обеспечения	+	+	+
10	EGTS_ ECALL_ SERVICE	Сервис, обеспечивающий выполнение функционала ЭРА. Сервис описан в разделе 7.	+	+	+

Примечание - варианты конфигурации АС:

- 1 АС, исполненная в конфигурации дополнительного оборудования;
- 2 AC, исполненная в конфигурации штатного оборудования и предназначенная для реализации только базовой услуги системой «ЭРА-ГЛОНАСС»;
- 3 AC, исполненная в конфигурации штатного оборудования и предназначенная для реализации дополнительных, кроме базовой, услуг системой «ЭРА-ГЛОНАСС».

6.7.2 CepвиcEGTS_AUTH_SERVICE

CepsucEGTS_AUTH_SERVICE применяется ДЛЯ осуществления процедуры аутентификации АС на стороне телематической платформы, а также получения учетных данных АС и информации об инфраструктуре на стороне AC(состав версии программного обеспечения модулей, блоков, И периферийного оборудования, информации о транспортном средстве). Сервис должен использоваться АС только в случае работы по протоколу ТСР/ІР после создания каждого нового соединения с телематической платформой.

Требования данного пункта стандарта распространяются только на AC, исполненные в конфигурации дополнительного оборудования, и не распространяется на штатные AC, которые поддерживают только базовую услугу реагирования при аварии.

Список подзаписей, используемых сервисом EGTS_AUTH_SERVICE, представлен в таблице 17.

Т а б л и ц а 17 - Список подзаписей Сервиса EGTS_AUTH_SERVICE

Код	Название	Описание
0	EGTS_SR_RECORD_RESPONSE	Подзапись применяется для осуществления подтверждения процесса обработки
		записи протокола уровня поддержки услуг. Данный тип подзаписи должен
		поддерживаться всеми сервисами.
1	EGTS_SR_TERM_IDENTITY	Подзапись используется АС при запросе авторизации на телематическую
		платформу и содержит учетные данные АС.
2	EGTS_SR_MODULE_DATA	Подзапись предназначена для передачи на телематическую
		платформуинформации об инфраструктуре на стороне АС, о составе, состоянии и
		параметрах блоков и модулей АС. Данная подзапись является опциональной и
		разработчик АС сам принимает решение о необходимости заполнения полей и
		отправки подзаписи. Одна подзапись описывает один модуль. В одной записи
		может передаваться последовательно несколько таких подзаписей, что позволяет
		передать данные об отдельных составляющих всей аппаратной части АС и
		периферийного оборудования.
3	EGTS_SR_VEHICLE_DATA	Подзапись применяется АС для передачи на телематическую
		платформуинформации о транспортном средстве.

Окончание таблицы 17

Код	Название	Описание
6	EGTS_SR_AUTH_PARAMS	Подзапись используется телематической платформой для передачи на АТ
		данных о способе и параметрах шифрования, требуемого для дальнейшего
		взаимодействия.
7	EGTS_SR_AUTH_INFO	Подзапись предназначена для передачи на телематическую платформу
		аутентификационных данных АС с использованием ранее переданных со стороны
		платформы параметров для осуществления шифрования данных.
8	EGTS_SR_SERVICE_INFO	Данный тип подзаписи используется для информирования принимающей
		стороны, АС или телематической платформы, в зависимости от направления
		отправки, о поддерживаемых сервисах, а также для запроса определенного набора
		требуемых сервисов (от АС к ТП).
9	EGTS_SR_RESULT_CODE	Подзапись применяется телематической платформой для информирования АС о
		результатах процедуры аутентификации АС.

6.7.2.1 Подзапись EGTS_SR_RECORD_RESPONSE

Структура подзаписи указана в таблице 18.

Таблица 18 - Формат подзаписи EGTS_SR_RECORD_RESPONSE

Бит 7	7 Бит 6 Бит 5 Бит 4 Бит 3 Бит 2 Бит 1 Бит 0 Тип Т								Тип данных	Размер, байт
	C	RN (Co	nfirmed	lRecord	lNumbe	er)		M	USHORT	2
		RS	T (Reco	M	ВҮТЕ	1				

Поля подзаписи EGTS_SR_RECORD_RESPONSE имеют следующее назначение:

- CRN номер подтверждаемой записи (значение поля RN из обрабатываемой записи);
 - RST статус обработки записи.

При получении подтверждения отправителем, он анализирует поле RST подзаписи EGTS_SR_ RECORD_RESPONSE и в случае получения статуса об успешной обработке, стирает запись из внутреннего хранилища, иначе в случае ошибки и в зависимости от причины, производит соответствующие действия.

6.7.2.2 Подзапись EGTS_SR_TERM_IDENTITY.

Структура подзаписи указана в таблице 19.

Таблица 19 - Формат подзаписи EGTS_SR_TERM_IDENTITY сервиса EGTS_AUTH_SERVICE

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Тип	Размер,
DM1 /	DIII 0	DH1 5	Dni 4	Dil 3	DHI Z	Dir	DIII 0	1 mii	данных	байт
		TI	M	UINT	4					
			Fl	ags				М	DVTE	1
MNE	BS	E NIDE	SSRA	LNGCE	IMSIE	IMEIE	HDIDE	M	BYTE	1
		HDID (I	Home Dis	spatcher Id	lentifier)			О	USHORT	2
	IME	I (Internat	ional Mo	bile Equip	ment Ide	entity)		О	STRING	15
	IMS	SI (Internat	ional Mo	bile Subsc	riber Ide	entity)		О	STRING	16
		LN	IGC (Lar	iguage Coo	de)			О	STRING	3
		NI	D (Netwo	ork Identifi	ier)			О	BINARY	3
			О	USHORT	2					
MS	ISDN (I	Mobile Sta	О	STRING	15					

Поля подзаписи EGTS_SR_TERM_IDENTITY имеют следующее назначение:

- TID уникальный идентификатор, назначаемый при программировании AC. Наличие значения 0 в данном поле означает, что AC не прошла процедуру конфигурирования или прошла ее не полностью. Данный идентификатор назначается оператором системы «ЭРА-ГЛОНАСС» и однозначно определяет набор учетных данных AC. TID назначается при инсталляции AC как дополнительного оборудования и передаче оператору учетных данных AT (IMSI, IMEI, serial_id). В случае использования AC в качестве штатного устройства, TID сообщается оператору автопроизводителем вместе с учетными данными (VIN, IMSI, IMEI);
- HDIDE битовый флаг, который определяет наличие поля HDID в подзаписи (если бит равен 1, то поле передается, если 0, то не передается);
- IMEIE битовый флаг, который определяет наличие поля IMEI в подзаписи (если бит равен 1, то поле передается, если 0, то не передается);

- IMSIE битовый флаг, который определяет наличие поля IMSI в подзаписи (если бит равен 1, то поле передается, если 0, то не передается);
- LNGCE битовый флаг, который определяет наличие поля LNGC в подзаписи (если бит равен 1, то поле передается, если 0, то не передается);
- SSRA битовый флаг предназначен для определения алгоритма использования сервисов (если бит равен 1, то используется «простой» алгоритм, если 0, то алгоритм «запросов» на использование сервисов);
- NIDE битовый флаг определяет наличие поля NID в подзаписи (если бит равен 1, то поле передается, если 0, то не передается);
- BSE битовый флаг, определяющий наличие поля BS в подзаписи (если бит равен 1, то поле передается, если 0, то не передается);
- MNE битовый флаг, определяющий наличие поля MSISDN в подзаписи (если бит равен 1, то поле передается, если 0, то не передается);
- HDID идентификатор «домашней» телематической платформы (подробная учетная информация об AC хранится на данной платформе);
- IMEI идентификатор мобильного устройства (модема). При невозможности определения данного параметра, AC должна заполнять данное поле значением 0 во всех 15-ти символах;
- IMSI идентификатор мобильного абонента. При невозможности определения данного параметра, устройство должно заполнять данное поле значением 0 во всех 16-ти символах;
- LNGC код языка, предпочтительного к использованию на стороне АСв соответствии с[4], например, "rus" русский;
- NID идентификатор сети оператора, в которой зарегистрирована АС. Используются 20 младших бит. Представляет пару кодов МСС-МNС .Структура поля NID представлена в таблице 20;
- BS максимальный размер буфера приема AC в байтах. Размер каждого пакета информации, передаваемого на AC, не должен превышать данного значения. Значение поля BS может принимать различные значения (1024, 2048,

4096), и зависит от реализации аппаратной и программной частей конкретной АС;

- MSISDN — телефонный номер мобильного абонента. При невозможности определения данного параметра, устройство должно заполнять данное поле значением 0 во всех 15-ти символах (формат описан в [4]).

Передача поля HDID определяется настройками AC и целесообразна при возможности подключении AC к телематической платформе, отличной от «домашней», например, при использовании территориально распределенной сети платформ. При использовании только одной «домашней» платформы, передача HDID не требуется.

«Простой» алгоритм использования сервисов подразумевает, что для АС доступны все сервисы, и в таком режиме АС разрешено сразу отправлять данные для требуемого сервиса. В зависимости от действующих на телематической платформе для данного АС разрешений, в ответ на пакет с данными для сервиса может быть возвращена запись-подтверждение с соответствующим признаком ошибки. В системах с простым распределением прав на использование сервисов рекомендуется применять «простой» алгоритм. Это сокращает объем передаваемого трафика и время авторизации АС.

Алгоритм «запросов» на использование сервисов подразумевает, что перед тем, как использовать тот или иной тип сервиса (отправлять данные), АС должна получить от телематической платформы информацию о доступных для использования сервисов. Запрос на использование сервисов может осуществляется как на этапе авторизации, так и после нее. На этапе авторизации запрос на использование того или иного сервиса производится путем добавления подзаписей типа SR SERVICE INFO и установке бита 7 SRVP в значение 1. После процедуры авторизации запрос использование сервиса может быть осуществлен также при помощи подзаписей SR SERVICE INFO.

Таблица 20 - Формат поля NID подзаписи EGTS_SR_TERM_IDENTITY Сервиса EGTS AUTH SERVICE

Биты 2023	Биты 1019	Биты 09	Тип	Типданны х	Размер, байт
_	MCC (Mobile	MNC (Mobile	M	BINARY	3
_	Country Code)	Network Code)	101	DINAKI	3

Совокупность МСС и MNC определяет уникальный идентификатор сотового оператора сетей GSM, CDMA, TETRA, UMTS, а также некоторых операторов спутниковой связи.

Параметры поля NID подзаписи EGTS_SR_TERM_IDENTITY имеют следующее назначение:

- МСС код страны;
- MNC код мобильной сети в пределах страны.
- 6.7.2.3 Подзапись EGTS_SR_MODULE_DATA

Структура подзаписи представлена в таблице 21.

Поля подзаписи SR_MODULE_DATA имеют следующее значение:

- МТ тип модуля, определяет функциональную принадлежность модуля (1 основной модуль; 2 модуль ввода вывода; 3 модуль навигационного приемника; 4 модуль беспроводной связи). Здесь указаны рекомендованные правила нумерации типов модулей. Конкретная реализация сервиса авторизации может вводить и расширять собственную нумерацию типов, включая все внешние периферийные контроллеры;
 - VID код производителя;
- FWV версия аппаратной части модуля (старший байт число до точки major version, младший после точки minor version, например версия 2.34 будет представлена числом 0x0222);
- Т а б л и ц а 21 Формат подзаписи EGTS_SR_MODULE_DATAceрвиса EGTS_AUTH_SERVICE

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 0	Тип	Типданных	Размер, байт		
		M	T (Mod	M	BYTE	1				
		VID	(Vendo	r Identi	ifier)			M	UINT	4
		FWV	(Firmw	are Ve	rsion)			M	USHORT	2
		SWV	(Softw	are Ver	rsion)			M	USHORT	2
		M	D (Mod	lificatio	n)			M	BYTE	1
			ST (S	State)				M	BYTE	1
		SR	N (Seria	ıl Numl	oer)			О	STRING	0 32
			D (Del	imiter)				M	BYTE	1
		DS	SCR (De	О	STRING	0 32				
			D (Del	imiter)				M	BYTE	1

- SWV версия программной части модуля (старший байт число до точки, младший после точки);
 - MD код модификации программной части модуля;
- ST состояние (1 включен, 0- выключен, больше 127 неисправность, (см. приложение В));
 - SRN- серийный номер модуля;
 - D разделитель строковых параметров (всегда имеет значение 0);
 - DSCR краткое описание модуля.
 - 6.7.2.4 Подзапись EGTS_SR_VEHICLE_DATA.

Структура подзаписи представлена в таблице 22. В случае использования АС в конфигурации штатного оборудования по данным из поля VIN, данная подзапись должна передаваться совместно с EGTS_SR_TERM_IDENTITY.

Таблица 22 - Формат подзаписи EGTS_SR_VEHICLE_DATAceрвиса EGTS_AUTH_SERVICE

Гуут 7	Гуут 6	From 5	From 4	Free 2	From 2	г 2 Бит 1 Бит 0		Tvv	Типданны	Размер,
Бит 7	БИТ О	Бит 3	БИТ 4	БИТ 3	БИТ 2			Тип	х	байт
	V]	N (Veh	icle Ide	ntificatio	n Numb	er)		M	STRING	17
		V	HT (Ve	chicle Ty	pe)			M	UINT	4
	VPS	T (Veh	M	UINT	4					

Поля подзаписиEGTS_SR_VEHICLE_DATA имеют следующее значение:

- VIN идентификационный номер транспортного средства;
- VHT тип транспортного средства:
 - а) Бит 31 5: не используется;
 - б) Бит4-0;
 - в) 0001 пассажирский (Class M1);
 - г) 0010 автобус (Class M2);
 - д) 0011 автобус (Class M3);
 - e) 0100 легкая грузовая машина (Class N1);
 - ж) 0101 тяжелая грузовая машина (Class N2);
 - и) 0110 тяжелая грузовая машина (Class N3);
 - к) 0111 мотоцикл (Class L1e);
 - л) 1000 мотоцикл (Class L2e);
 - м) 1001 мотоцикл (Class L3e);
 - н) 1010 мотоцикл (Class L4e);
 - o) 1011 мотоцикл (Class L5e);
 - п) 1100 мотоцикл (Class L6e);
 - р) 1101 мотоцикл (Class L7e).
- VPST тип энергоносителя транспортного средства. Если все биты 0, то тип не задан:

- а) Бит 31 6: не используется;
- б) Бит 5: 1 водород;
- в) Бит 4: 1 электричество (более 42Ви 100 А/ч);
- г) Бит 3: 1 жидкий пропан (LPG);
- д) Бит 2: 1 сжиженный природный газ (CNG);
- е) Бит 1: 1 дизель;
- ж) Бит 0: 1 бензин.

6.7.2.5 Подзапись EGTS_SR_AUTH_PARAMS.

Структура подзаписи представлена в таблице 23.

Таблица23 – Формат подзаписи EGTS_SR_AUTH_PARAMS сервиса EGTS_AUTH_SERVICE

Бит 7	Бит 6	Бит 5	Бит 4	Тип	Тип данных	Размер, байт				
			FLG	M	ВҮТЕ	1				
-	EXE	SSE	MSE							
		PKL	(Public	Key L	ength)			О	USHORT	2
		PBK (Public Key)					О	BINARY	0512	
		ISL (I	dentity	String 1	Length)			O	USHORT	2
]	MSZ (N	Iod Siz	e)			О	USHORT	2
		SS	(Serve	r Seque	nce)			О	STRING	0255
			D (De	limiter))			О	BYTE	1
			EXP	О	STRING	0255				
			D (De	limiter)	l			О	BYTE	1

Поля подзаписи EGTS_SR_AUTH_PARAMS имеют следующее значение:

- EXE- битовый флаг, определяет наличие поля EXP и следующего за ним разделителя D (если 1, то поля присутствуют);
- SSE битовый флаг, определяет наличие поля SS и следующего за ним разделителя D (если 1, то поля присутствуют);

- MSE битовый флаг, определяет наличие поля MSZ (если 1, то поле присутствует);
- ISLE битовый флаг, определяет наличие поля ISL (если 1, то поле присутствует);
- РКЕ- битовый флаг, определяет наличие полей РКL и РВК (если 1, то поля присутствуют);
- ENA битовое поле, определяющее требуемый алгоритм шифрования пакетов. Если данное поле содержит значение 0 0, то шифрование не применяется, и подзапись EGTS_SR_AUTH_PARAMS содержит только один байт, иначе, в зависимости от типа алгоритма, наличие дополнительных параметров определяется остальными битами поля FLG;
 - РКL- длина публичного ключа в байтах;
 - РВК данные публичного ключа;
 - ISL результирующая длина идентификационных данных;
 - MSZ параметр, применяемый в процессе шифрования;
- SS специальная серверная последовательность байт, применяемая в процессе шифрования;
 - D разделитель строковых параметров (всегда имеет значение 0);
- EXP- специальная последовательность, используемая в процессе шифрования.

Если требуется использование шифрования и запрашиваемый алгоритм шифрования поддерживается, авторизуемой стороной производится формирование и отправка записи EGTS_SR_AUTH_INFO, зашифрованной по указанному алгоритму. При этом биты 11 и 12 в поле KEYS заголовка транспортного уровня устанавливаются в соответствующие значения, и весь последующий обмен данными производится с использованием шифрования.

Если требуемый алгоритм шифрования не поддерживается, инициирующая сторона отправляет подзапись EGTS_SR_RECORD_RESPONSE с соответствующим признаком ошибки.

В записи, в зависимости от используемого алгоритма запроса сервисов, также могут содержаться подзаписи EGTS_SR_SERVICE_INFO, определяющие число и параметры поддерживаемых, а также требуемых инициирующей стороной сервисов.

6.7.2.6 Подзапись EGTS_SR_AUTH_INFO

Структура подзаписи представлена в таблице 24.

Поля подзаписи EGTS_SR_AUTH_INFO имеют следующее значение:

- UNM имя пользователя;
- D разделитель строковых параметров (всегда имеет значение 0);
- UPSW пароль пользователя;
- SS специальная серверная последовательность байт, передаваемая в подзаписи EGTS_SR_AUTH_PARAMS (необязательное поле, наличие зависит от используемого алгоритма шифрования).

Таблица 24 - Структура подзаписи EGTS_SR_AUTH_INFOcepвиса EGTS_AUTH_SERVICE

Бит 7	Бит 6	Бит 5	Бит 4	Fur 3	Бит 2	Fur 1	Бит 0	Тип	Типданны	Размер,
рит /	Бит 0	Бит 3	Бит 4	Бит 3	Вит 2	Бит т	Бит О	ТИП	X	байт
		UN	IM (User	Name)	1			M	STRING	032
			D (Delin	niter)				M	BYTE	1
		UPSV	W (User l	Passwoi	rd)			M	STRING	032
			D (Delin	niter)				M	BYTE	1
		SS (О	STRING	0255					
			О	BYTE	1					

6.7.2.7 Подзапись EGTS_SR_SERVICE_INFO.

Структура подзаписи представлена в таблице 25.

Таблица25 - Структура подзаписи EGTS_SR_SERVICE_INFO сервиса EGTS_AUTH_SERVICE

Бит 7	Fum 6	From 5	Бит 4	Fran 2	Errm 2	т 2 Бит 1 Бит 0		Тип	Типданны	Размер,
БИТ /	БИТ О	Бит 3	БИТ 4	Бит 3	БИТ 2			Тип	х	байт
			ST (Serv	vice Typ	pe)			M	BYTE	1
		SS	T (Servi	ce State	ment)			M	BYTE	1
		SRV	M	BYTE	1					
SRVA			171	DIID	•					

Поля подзаписи EGTS_SR_SERVICE_INFO имеют следующее значение:

- ST тип сервиса, определяет функциональную принадлежность (например, EGTS TELEDATA SERVICE, EGTS ECALL SERVICE и т.д.);
 - SST определяет текущее состояние сервиса (см. таблицу 26);
 - SRVP определяет параметры сервиса;
 - SRVA (Service Attribute) битовый флаг, атрибут сервиса:
 - а) 0 поддерживаемый сервис;
 - б) 1 запрашиваемый сервис.
- SRVRP (Service Routing Priority) битовое поле, приоритет с точки зрения трансляции на него данных (в случае масштабирования системы и применения нескольких экземпляров приложений одного типа сервиса) определяется битами 0 и 1:
 - а) 00 -наивысший;
 - б) 01 высокий;
 - в) 10 средний;
 - г) 11 низкий.

Код	Название	Описание
0	EGTS_SST_IN_SERVICE	Сервис в рабочем состоянии и
		разрешен к использованию
128	EGTS_SST_OUT_OF_SERVICE	Сервис в нерабочем состоянии
		(выключен)
129	EGTS_SST_DENIED	Сервис запрещен для использования
130	EGTS_SST_NO_CONF	Сервис не настроен
131	EGTS_SST_TEMP_UNAVAIL	Сервис временно недоступен

Таблица 26 - Список возможных состояний сервиса

6.7.2.8 Подзапись EGTS_SR_RESULT_CODE.

Структура подзаписи представлена в таблице 27.

Поля подзаписи EGTS_SR_SERVICE_INFO имеют следующее значение:

- RCD — код, определяющий результат выполнения операции авторизации.

Т а б л и ц а 27 -Структура подзаписи EGTS_SR_ RESULT_CODE сервиса EGTS_AUTH_SERVICE

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Тип данных	Размер, байт
		R	.CD (Res	ultCode)				M	BYTE	1

6.7.2.9 Описание процедуры авторизации

Для работы в инфраструктуре оператора системы «ЭРА-ГЛОНАСС» АС должен быть назначен уникальный идентификатор UNIT_ID, которому соответствуют определенные значения IMEI, IMSI и другие учетные данные АС, необходимые для осуществления взаимодействия в системе оператора.

Конфигурирование АС может быть произведено одним из следующих способов.

работы AC 1) B пассивном режиме после нажатия кнопки «Дополнительные функции» и осуществления регистрации AC в сети GSM или инфраструктура сотового оператора отслеживает появление нового UMTS. устройства и инициирует отправку ему зашифрованного SMS с учетными данными. Шифрование производится ключом и алгоритмом, известных данному образцу АС и сохраненных к моменту конфигурирования в хранилище оператора. Для определения ключей и алгоритмов шифрования на стороне АС используются соответствующие поля из заголовка протокола транспортного уровня, а также данные о ключах, зашитых в памяти АС. Учетные данные передаются в виде конфигурационного файла с использованием подзаписи EGTS SR SERVICE FULL DATA или EGTS SR SERVICE PART DATA сервиса EGTS FIRMWARE SERVICE.

Файл конфигурации должен содержать: параметр EGTS_GPRS_APN (параметры точки доступа для установления GPRS сессии), параметр EGTS_SERVER_ADDRESS, определяющий адрес и порт сервера с которым необходимо установить TCP/IP соединение, уникальный идентификатор AC UNIT_ID. В конфигурационном файле также могут присутствовать другие параметры, необходимые для работы AC.

Далее AC производит расшифровку SMS сообщения, проверяет корректность структур данных, вычисляет и сравнивает с полученными в сообщении значениями контрольные суммы. Если расшифровка и проверка прошли успешно, AC устанавливает GPRS сессию и соединяется с указанным сервером по TCP/IP.

После прохождения процедуры аутентификации отправляет подтверждение об успешной конфигурации в виде подзаписи EGTS_SR_RECORD_RESPONSE с кодом EGTS_PC_OK на полученную запись EGTS_SR_SERVICE FULL DATA или

EGTS_SR_SERVICE_PART_DATA сервиса EGTS_FIRMWARE_SERVICE.

Алгоритм такого способа конфигурирования АС представлен на рисунке 4.

Рисунок 4 - Алгоритм конфигурации AC с использованием SM

2) После регистрации AC в сети GSM или UMTS устанавливается GPRS сессия и ТСР/ІР соединение с сервером, информация об адресе которого уже записана в памяти АС. При прохождении процедура аутентификации, инфраструктура оператора анализирует параметр TID ИЗ подзаписи EGTS SR TERM IDENTITY (таблица 18). Если TID имеет значение 0, конфигурирования производится процедура сервиса при помощи EGTS FIRMWARE SERVICE, как описано в предыдущем способе, отправляя файл конфигурации c использованием подзаписи EGTS SR SERVICE FULL DATA или EGTS SR SERVICE PART DATA. Далее после прихода подтверждения получения конфигурационного файла от AC, ей отправляется результат авторизации с кодом EGTS PC ID NFOUND, указывающий, что TID=0 в системе не найден. После этого сервер, не разрывая

соединение с AC, ожидает повторной авторизации AC, но уже с корректным параметром TID. Алгоритм такого способа конфигурирования AC представлен на рисунке 5.

Рисунок 5 - Алгоритм конфигурации ACc использованием GPRS

Если авторизация прошла успешно, телематическая платформа, в зависимости от алгоритма запроса использования сервисов, может перед

подзаписью EGTS_SR_RESULT_CODE добавлять подзаписи типа EGTS_SR_SERVICE_INFO, определяющие состав сервисов, разрешенных для АС и поддерживаемых платформой.

Это означает, что AC сразу после авторизации может использовать только перечисленные сервисы, даже если она предполагает «Простой» алгоритм поддержи прав использования сервисов.

Если используется алгоритм «запросов» использования сервисов, то AC не может использовать сервисы, разрешение на использование которых не получено от стороны телематической платформы. Причем разрешение на некоторые запрашиваемые сервисы может прийти позже. Например, когда сервисы находятся на удаленных телематических платформах, от которых в асинхронном режиме приходят ответы на запросы. В таком телематическая платформа, используя имеющиеся данные маршрутизации, отправляет асинхронный запрос на использование сервисов идентификатор платформы, если **HDID** указан В подзаписи EGTS_SR_TERM_IDENTITY при авторизации AC.

Алгоритм обмена сообщениями на этапе авторизации AC на стороне телематической платформы, представлен на диаграмме, приведенной на рисунке 6.

После успешного подключения АС к телематической платформе по протоколу TCP/IP, АС должна быть авторизована. Для передачи первичных аутентификационных данных АС должна отправить сообщение, содержащее подзапись EGTS_SR_TERM_IDENTITY (сообщение 1) в течение времени EGTS_SL_NOT_AUTH_TO.

Рисунок 6 - Обмен сообщениями на этапе авторизации AC на телематической платформе

Получив сообщение с подзаписью EGTS_SR_TERM_IDENTITY, телематическая платформа отправляет на него сообщение 2 с подтверждением о приеме EGTS_SR_RECORD_RESPONSE на запись с идентификатором ID, равным 1. Далее, в зависимости от настроек (используется шифрование или дополнительный алгоритм авторизации), телематическая платформа отправляет

пакет (сообщение 3) с подзаписью EGTS_SR_AUTH_PARAM, содержащей параметры, необходимые для осуществления шифрования и/или алгоритма расширенной авторизации. Если шифрование и алгоритм расширенной авторизации не используется, то вместо подзаписи EGTS_SR_AUTH_PARAMтелематическая платформа может отправить подзапись EGTS_SR_RESULT_CODE, с результатом проведения процедуры авторизации AC.

Далее AC отправляет сообщение 4 с и подтверждения EGTS_SR_RECORD_RESPONSE на сообщение 3 с ID, равным 2. При использовании расширенного алгоритма авторизации и/или шифрования, AC передает сообщение 5, закодированное по правилам шифрования, указанным в сообщении 3 от телематической платформы и содержащее подзапись EGTS_SR_AUTH_INFO с данными для расширенной авторизации.

После получения EGTS_SR_AUTH_INFOтелематическая платформа отправляет сообщение 6 с подтверждением на сообщение 5 с ID, равным 3, и выполняет процедуру авторизации. Платформа формирует сообщение 7 с результатом проведения авторизации в виде подзаписи EGTS_SR_RESULT_CODE, а также в случае успешной авторизации может добавить информацию о разрешенных для использования данной АС услуг в виде подзаписей EGTS_SR_SERVICE INFO.

АС затем формирует сообщение 8 с подтверждением на сообщение 7 с ID, равным 4. АС может сформировать сообщение 9 и добавить подзаписи EGTS_SR_SERVICE_INFO, содержащие информацию о требуемых услугах (если используется процедура использования сервисов «по запросу») и/или поддерживаемых сервисах на стороне АС.

Далее телематическая платформа создает сообщение 10 с подтверждением на сообщение 9 с ID, равным 5.

На этом этап авторизации заканчивается, и AC переходит на этап обмена информационными сообщениями с платформой согласно установленному в AC режиму работы.

В случае, если процедура авторизации проходит неудачно (неверные аутентификационные данные АС, запрет доступа данного АС к телематической платформе и т.д.), то после отправки сообщения, содержащего подзапись EGTS_SR_RESULT_CODE с указанием в ней соответствующего кода, телематическая платформа должна разорвать установленное автомобильной системойТСР/IP соединение.

6.7.3 Сервис EGTS_COMMANDS_SERVICE

Данный тип сервиса предназначен для обработки команд, сообщений и подтверждений, передаваемых между AC, телематической платформой и клиентскими приложениями.

Для осуществления взаимодействия в рамках данного сервиса используется одна подзапись EGTS_SR_COMMAND_DATA, описание и код которой представлены в таблице 28.

Та б л и ц а 28 -Описание подзаписей сервиса EGTS_COMMAND_SERVICE

Код	Название	Описание
0	EGTS_SR_RECORD_RESPONSE	Подзапись применяется для
		подтверждения процесса обработки
		записи протокола уровня поддержки
		услуг. Данный тип подзаписи должен
		поддерживаться всеми сервисами.
51	EGTS_SR_COMMAND_DATA	Подзапись используется АС и
		телематической платформой для
		передачи команд, информационных
		сообщений, подтверждений доставки,
		подтверждений выполнения команд,
		подтверждения прочтения сообщений.

6.7.3.1 Подзапись EGTS_SR_COMMAND_DATA.

Структура подзаписи представлена в таблице 29.

Таблица 29 - Структура подзаписи EGTS_SR_COMMAND_DATAceрвиса EGTS_COMMANDS_SERVICE

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Тип данных	Размер, байт
СТ	CT (Command Type) CCT (Command Confirmation Type)								ВҮТЕ	1
		CII	O (Com	mand Id	entifier))		M	UINT	4
		S	ID (Sou	rce Ider	ntifier)			M	UINT	4
		-	-			ACFE	CHSFE	M	BYTE	1
			CHS	(Charse	et)			O	BYTE	1
ACL (Authorization Code Length)									BYTE	1
AC (Authorization Code)								O	BINARY	0 255
	CD (Command Data)								BINARY	065205

Приведенные в таблице 29 параметры (поля) подзаписи EGTS_SR_COMMAND_DATA имеют следующее назначение:

- СТ тип команды:
- a) 0001 CT_COMCONF подтверждение о приеме, обработке или результат выполнения команды;
- б) 0010 CT_MSGCONF подтверждение о приеме, отображении и/или обработке информационного сообщения;
- в) 0011 CT_MSGFROM информационное сообщение от AC;
- г) 0100 CT_MSGTO информационное сообщение для вывода на устройство отображения AT;
 - д) 0101 СТ_СОМ команда для выполнения на АС;
- e) 0110 CT_DELCOM удаление из очереди на выполнение переданной ранее команды;
 - ж) 0111 CT_SUBREQ дополнительный подзапрос для

выполнения (к переданной ранее команде);

в) 0010 - CC ILL

- и) 1000 CT_DELIV подтверждение о доставке команды или информационного сообщения.
- CCT- тип подтверждения (имеет смысл для типов команд CT_COMCONF, CT_MSGCONF, CT_DELIV):
- а) 0000 CC_OK успешное выполнение, положительный ответ;
 - б) 0001 CC_ERROR обработка завершилась ошибкой;

- команда не может быть

- выполнена по причине отсутствия в списке разрешенных (определенных протоколом) команд или отсутствия разрешения на выполнение данной команды;
 - г) 0011 CC_DEL команда успешно удалена;
 - д) 0100 CC_NFOUND команда для удаления не найдена;
- e) 0101 CC_NCONF успешное выполнение, отрицательный ответ;
 - ж) 0110 CC_INPROG команда передана на обработку, но для ее выполнения требуется длительное время (результат выполнения еще не известен).
- CID идентификатор команды, сообщения. Значение из данного поля должно быть использовано стороной, обрабатывающей/выполняющей команду или сообщение, для создания подтверждения. Подтверждение должно содержать в поле CID то же значение, что содержалось в самой команде или сообщении при отправке;
 - SID идентификатор отправителя данной команды или подтверждения;
- ACFE (Authorization Code Field Exists) битовый флаг, определяющий наличие полей ACL и AC в подзаписи:
 - а) 1 поля ACL и AC присутствуют в подзаписи;
 - б) 0 -поля ACL и AC отсутствуют в подзаписи.

- CHSFE (Charset Field Exists) битовый флаг, определяющий наличие поля CHS в подзаписи:
 - а) 1 -поле СНЅ присутствует в подзаписи;
 - б) 0 -поле СНЅ отсутствует в подзаписи.
- -CHS кодировка символов, используемая в поле CD, содержащем тело команды. При отсутствии данного поля по умолчанию должна использоваться кодировка CP-1251. Определены следующие значения поля CHS (десятичный вид):
 - a) 0 -CP-1251;
 - б) 1 IA5 (CCITT T.50)/ASCII (ANSI X3.4);
 - в) 2 бинарные данные;
 - г) 3 Latin 1 (таблица Е.1 (приложение Е));
 - д) 4 бинарные данные;
 - e) 5 -JIS (X 0208-1990);
 - ж) 6 Cyrillic (таблица Е.1(приложение Е));
 - и) 7 Latin/Hebrew (таблица Е.3(приложение Е));
 - к) 8 -UCS2.
- ACL- длина в байтах поля AC, содержащего код авторизации на стороне получателя;
- AC код авторизации, использующийся на принимающей стороне (автомобильная система), и который обеспечивает ограничение доступа на выполнение отдельных команд. Если указанный в данном поле код не совпадает с ожидаемым значением, то в ответ на такую команду или сообщение, автомобильная система должна отправить подтверждение с типом СС_ILL;
- CD тело команды, параметры, данные возвращаемые на командузапрос, использующие кодировку из поля CHS или значение по умолчанию.

Размер данного поля определяется, исходя из общей длины записи протокола уровня поддержки услуг, и длины предшествующих полей в данной подзаписи. Формат команды представлен в таблице 30. Данное поле может иметь нулевую длину (отсутствовать) в тех случаях, когда в ответ на команду или сообщение для АС не передаются никакие данные.

Таблица30 - Формат команд автомобильной системы

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Тип данных	Размер, байт
ADR (Address)									USHORT	2
	SZ (Size)			ACT (Action)		M	BYTE	1
CCD (Command Code)									USHORT	2
DT (Data)								О	BINARY	0 65200

Приведенные в таблице 30 параметры имеют следующее назначение:

- ADR адрес модуля, для которого данная команда предназначена. Адрес определяется. исходя из начальной конфигурации АСили из списка модулей, который может быть получен при регистрации АС через сервис EGTS_AUTH_SERVICE и передачи подзаписей EGTS_SR_MODULE_DATA;
- SZ объем памяти для параметра (используется совместно с действием ACT-2). При добавлении нового параметра в AC, данное поле определяет, что для нового параметра требуется 2^{SZ} байт памяти в AC;
- ACT описание действия, используется в случае типа команды, поле CT-CT_COM подзаписи EGTS_SR_COMMAND _DATA. Значение поля может быть одним из следующих вариантов:
- а) 0 параметры команды. Используется для передачи параметров для команды, определяемой кодом из поля ССD;
- б) 1 запрос значения. Используется для запроса информации, хранящейся в АС. Запрашиваемый параметр определяется кодом из поля ССD;
 - в) 2 установка значения. Используется для установки

нового значения определенному параметру в AC. Устанавливаемый параметр определяется кодом из поля CCD, а его значение полем DT;

- г) 3 добавление нового параметра в АС. Код нового параметра указывается в поле ССD, его тип в поле SZ, а значение в поле DT;
- д) 4 удаление имеющегося параметра из AC. Код удаляемого параметра указывается в поле CCD.
 - CCD код команды при ACT-0 или параметра при ACT-1..4;
- DT запрашиваемые данные или параметры, необходимые для выполнения команды. Данные записываются в данное поле в формате, зависящем от типа команды.

Подтверждение на ранее переданную команду при CT-CT_COMCONF, если с AC передается сопутствующая информация, имеет формат, представленный в таблице 31. Описанная структура содержится в поле CD (таблица 29).

Таблица31 - Формат подтверждения на команду АС

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Тип данных	Размер, байт
			ADR		M	USHORT	2			
		CC	CD (Cor		M	USHORT	2			
			DT	О	BINARY	065200				

Приведенные в таблице 31 параметры имеют следующее назначение:

- ADR адрес модуля, от которого передается подтверждение. Адрес определяется, исходя из начальной конфигурации АС или из списка модулей, который может быть получен при регистрации АС через сервис EGTS_AUTH_SERVICE и передачи подзаписей EGTS_SR_MODULE_DATA;
- CCD код команды, сообщения из таблицы 32 или параметра из таблицы 34, в соответствии с которым передается сопутствующая информация в поле DT:

- DT — сопутствующие данные, тип и состав которых определяется значением поля ССD. Список и состав сопутствующих данных, передаваемых в подтверждении на некоторые команды, представлен в таблице 33.

6.7.3.2 Описание команд, параметров и подтверждений Список и описание команд АС представлены в таблице 32.

Значения следующих параметров АС могут быть запрошены, но не могут быть изменены или удалены при помощи сервиса команд: EGTS_UNIT_SERIAL_NUMBER, EGTS_UNIT_HW_VERSION, EGTS_UNIT_SW_VERSION, EGTS_UNIT_VENDOR_ID, EGTS_UNIT_IMEI.

Значения указанных параметров выставляются производителями соответствующих модулей и блоков АС, а также разработчиками программного обеспечения для них.

Таблица 32 - Список команд для АС

Название команды	Код	Тип, число и	Описание
		предельные	
		значения	
		параметров	
EGTS_RAW_DATA	0x0000	BINARY (до 65200	Команда для передачи произвольных данных. Применяется, например, для
		байт)	передачи команд, сообщений и данных на периферийные устройства,
			модули, подключенные к основному блоку АС, в определяемом данным
			модулем формате. При этом АС не должна анализировать данные из поля
			DT и в неизменном виде передать их по адресу, определяемому полем ADR.
EGTS_TEST_MODE	0x0001	ВҮТЕ	Команда начала /окончания тестирования АС.
			1 – начало тестирования,
			0 - окончание тестирования.

Окончание таблицы 32

Название команды	Код	Тип, число и	Описание
		предельные	
		значения	
		параметров	
EGTS_CONFIG_	0x0006	-	Возврат к заводским установкам. Удаляются все установленные
RESET			пользователем параметры, и производится возврат к заводским установкам.
			Для обработки данной команды оператор должен установить корректные
			значения полей ACL и AC, указанных в таблице 29.
EGTS_SET_AUTH_C	0x0007	BINARY	Установка кода авторизации на стороне АС. Для обработки данной
ODE			команды оператор должен установить корректные значения полей АСL и
			АС, указанных в таблице 29. После подтверждения данной команды, АС
			будет использовать уже новые данные для сравнения со значением из поля
			АС в некоторых присылаемых на АС командах.
EGTS_RESTART	0x0008	-	Команда производит перезапуск основного программного обеспечения
			АС. Для обработки данной команды оператор должен установить
			корректные значения полей ACL и AC, указанных в таблице 29.

Таблица33 - Список подтверждений на команды и сообщения от АС

Название команды	Код	Тип и число	Описание
		параметров	
EGTS_RAW_DATA	0x0000	BINARY	Данные, поступающие от периферийных устройств, модулей,
		(до 65200 байт)	подключенных к основному блоку АС, в определяемом данным
			модулем формате.
EGTS_SELF_TEST_ RESULT	0x0002	STRING	Сообщение о результатах самодиагностики. Генерируется АС
			автоматически без запроса от оператора.

Таблица 34 - Список параметров АС

Имя параметра	Код	Тип	Значение по	Описание					
		параметра	умолчанию						
Радио mute (только для конфигурации дополнительного оборудования)									
EGTS_RADIO_MUTE_	0x0201	INT	0	Задержка между установкой сигнала радио mute и началом					
DELAY				проигрывания звука, (миллисекунды).					
EGTS_RADIO_	0x0202	INT	0	Задержка между снятием сигнала радио mute и окончанием					
UNMUTE_DELAY				проигрывания звука, (миллисекунды).					
			Установки оби	цего назначения					
EGTS_GPRS_APN	0x0203	STRING	((2)	Параметр, определяющий точку доступа GPRS.					
EGTS_SERVER_	0x0204	STRING	(())	Адрес и порт сервера для связи с использованием TCP/IP					
ADDRESS				протокола.					
EGTS_SIM_PIN	0x0205	INT	0	PIN код SIM карты					
EGTS_AUTOMATIC_	0x0207	BOOLEAN	1	Флаг, разрешающий автоматическую регистрацию SIM в сети					
REGISTRATION				после включения питания					

Имя параметра	Код	Тип	Значение по	Описание
		параметра	умолчанию	
EGTS_SELFTEST_	0x0208	INT	0	Интервал проведения периодической самодиагностики, часы.
INTERVAL				Если значение установлено в 0, то самодиагностика не
				проводится.
EGTS_POST_TEST_	0x0209	INT	120	Промежуток времени, в течение которого АС остается
REGISTRATION_TIME				зарегистрированной в сети после передачи результатов
				самодиагностики оператору системы, (секунды).
EGTS_TEST_MODE_E	0x020A	INT	300	Дистанция, на которой режим тестирования выключается
ND_DISTANCE				автоматически, (метры).
EGTS_GARAGE_MOD	0x020B	INT	300	Дистанция, на которой режим «автосервис» выключается
E_END_DISTANCE				автоматически, (метры).
EGTS_GARAGE_	0x020C	ENUM	0	Линия, сигнализирующая, что система находится в режиме
MODE_PIN		{NONE-0,		"Автосервис" NONE - нет сигнализации режима PIN_X – PIN_X
		PIN_1 -1,		линия активная, когда система находится в данном режиме.
		••		
		PIN_8-8}		

Имя параметра	Код	Тип	Значение по	Описание
		параметра	умолчанию	
EGTS_TEST_MODE_	0x020E	INT	10	Интервал тревожного счетчика в режиме тестирования, (минуты).
WATCHDOG				
		Конфи	гурация и конфигу	рационные данные услуг
			Пакетная пер	редача данных
EGTS_USE_GPRS_	0x0230	BOOLEAN	FALSE	Параметр, указывающий на необходимость использования
WHITE_LIST				GPRS_WHITE_LIST при организации пакетной передачи данных.
EGTS_GPRS_WHITE_	0x0231	ARRAY OF	((;) ((;));););;;	Список сетей, в которых разрешена пакетная передача данных.
LIST		STRING	, , , ,	Если список GPRS_WHITE_LIST пуст, то пакетная передача
			, , , ,	данных запрещена, MCC (Mobile Country Code) 3 символа
			, , , ,	+MNC(Mobile Network Code), (3 символа).
			, , ,	

Имя параметра	Код	Тип	Значение по	Описание					
		параметра	умолчанию						
	Режим тестирования								
EGTS_TEST_	0x0242	INT	5	Если АС была зарегистрирована в сети посредством нажатия					
REGISTRATION_				на кнопку включения дополнительных услуг, то последующая					
PERIOD				регистрация АС в сети при нажатии на кнопку включения					
				дополнительных услуг возможна не ранее чем через данный					
				промежуток времени. Если значение установлено в 0, то					
				ограничений на последующую регистрацию АС в сети не					
				накладывается, (минуты).					
			Прочие г	параметры					
EGTS_GNSS_POWER_	0x0301	INT	500	Промежуток времени, через который отключается питание					
OFF_TIME				ГНСС приемника после выключения зажигания,					
				(миллисекунды).					

Имя параметра	Код	Тип	Значение по	Описание
		параметра	умолчанию	
EGTS_GNSS_DATA_R	0x0302	INT/ 1,	Определяется	Темп выдачи данных ГНСС приемником, (Герцы).
ATE		2,5,10	производите-	
			лем АС	
EGTS_GNSS_MIN_	0x0303	INT/ 515	15	Минимальное значение угла возвышения (угла отсечки)
ELEVATION				навигационных космических аппаратов, (градусы).
			Параметры	устройства
EGTS_UNIT_SERIAL_	0x0400	STRING	((2)	Серийный номер устройства.
NUMBER				
EGTS_UNIT_HW_	0x0401	STRING	6627	Версия аппаратной платформы.
VERSION				
EGTS_UNIT_SW_	0x0402	STRING	6627	Версия программного обеспечения.
VERSION				

Имя параметра	Код	Тип	Значение по	Описание
		параметра	умолчанию	
EGTS_UNIT_VENDOR	0x0403	INT	0	Идентификатор поставщика устройства.
_ID				
EGTS_UNIT_ID	0x0404	INT	0	Уникальный идентификатор устройства, назначаемый
				оператором системы при первой активизации устройства.
EGTS_UNIT_IMEI	0x0405	STRING	(())	Номер IMEI
EGTS_UNIT_RS485_	0x0406	INT	19200	Скорость порта RS485
BAUD_RATE				
EGTS_UNIT_RS485_	0x0407	INT	1	Число стоп битов при передаче данных через порт RS485.
STOP_BITS				
EGTS_UNIT_RS485_	0x0408	INT/0,1,2	0	Способ проверки на четность при передаче данных через порт
PARITY				RS485
				0 – проверка не производится
				1 – проверка типа ODD
				2 – проверка типа EVEN.

Имя параметра	Код	Тип	Значение по	Описание
		параметра	умолчанию	
EGTS_UNIT_	0x0410	INT	0	Предпочтительный язык для голосового общения в
LANGUAGE_ID				соответствии с [4]
				0x5F – Русский.
EGTS_UNIT_HOME_DI	0x0411	INT	0	Идентификатор телематической платформы, в хранилище
SPATCHER_ID				которой находится информация об учетных данных устройства,
				списке предоставляемых услуг и их статусах.
EGTS_SERVICE_	0x0412	INT	1	Метод использования услуг.
AUTH_METHOD				1- простой метод (подразумевает, что все услуги по умолчанию
				доступны АС),
				0- с подтверждением (разрешены к использованию только те
				услуги, информация о разрешении использования которых
				пришла с телематической платформы).

Окончание таблицы 34

Имя параметра	Код	Тип	Значение по	Описание
		параметра	умолчанию	
EGTS_SERVER_CHEC K_IN_PERIOD	0x0413	INT	30	Время между попытками установить соединение TCP/IP с сервером, (секунды).
EGTS_SERVER_CHEC K_IN_ATTEMPTS	0x0414	INT	5	Число попыток установления TCP/IP соединения с сервером, по достижению которого будет произведена повторная установка сессии верхнего уровня (GPRS)
EGTS_SERVER_ PACKET_TOUT	0x0415	INT	5	Время, в течение которого АС ожидает подтверждения с сервера на отправленный пакет, (секунды).
EGTS_SERVER_PACK ET_RETRANSMIT_ ATTEMPTS	0x0416	INT	3	Число попыток повторной отправки неподтвержденного пакета, по достижению которого, АС производит повторную инициализацию сессии на уровне TCP/IP.
EGTS_UNIT_MIC_ LEVEL	0x0417	INT/010	8	Уровень чувствительности микрофона.
EGTS_UNIT_SPK_ LEVEL	0x0418	INT/010	6	Уровень громкости динамика.

Автомобильными системами, установленными в конфигурации штатного оборудования, должна быть реализована поддержка следующих параметров:

- EGTS_GPRS_APN;
- EGTS_SERVER_ADDRESS;
- EGTS_SIM_PIN;
- EGTS_AUTOMATIC_REGISTRATION;
- EGTS_SELFTEST_INTERVAL;
- EGTS_POST_TEST_REGISTRATION_TIME;
- EGTS_TEST_MODE_END_DISTANCE;
- EGTS_GARAGE_MODE_END_DISTANCE;
- EGTS_TEST_MODE_WATCHDOG;
- EGTS_USE_GPRS_WHITE_LIST;
- EGTS_GPRS_WHITE_LIST;
- EGTS TEST REGISTRATION PERIOD;
- EGTS_GNSS_POWER_OFF_TIME;
- EGTS GNSS DATA RATE;
- EGTS GNSS MIN ELEVATION;
- EGTS_UNIT_SERIAL_NUMBER;
- EGTS_UNIT_HW_VERSION;
- EGTS_UNIT_SW_VERSION;
- EGTS_UNIT_VENDOR_ID;
- EGTS_UNIT_ID;
- EGTS_UNIT_LANGUAGE_ID;
- EGTS_UNIT_IMEI;
- EGTS_UNIT_HOME_DISPATCHER_ID.
- 6.7.4 CepвисEGTS_FIRMWARE_SERVICE

Cepвиc EGTS_FIRMWARE_SERVICE предназначен для передачи на AC конфигурации и обновления программного обеспечения аппаратной части

модулей и блоков самой АС, а также периферийного оборудования, подключенного к АС.

Для осуществления взаимодействия в рамках данного сервиса используется несколько подзаписей, описание и код которых представлены в таблице 35.

Таблица 35 - Список подзаписей сервиса EGTS_FIRMWARE_SERVICE

Код	Название	Описание
0	EGTS_SR_RECORD_	Подзапись применяется для осуществления
	RESPONSE	подтверждения записи протокола уровня
		поддержки услуг из пакета типа
		EGTS_PT_APPDATA.
33	EGTS_SR_SERVICE_	Подзапись предназначена для передачи на
	PART_DATA	АС данных, которые разбиваются на части и
		передаются последовательно. Данная
		подзапись применяется для передачи больших
		объектов, длина которых не позволяет
		передать их на АС одним пакетом.
34	EGTS_SR_SERVICE_	Подзапись предназначена для передачи на
	FULL_DATA	АС данных, которые не разбиваются на части,
		а передаются одним пакетом.

6.7.4.1 Подзапись EGTS_SR_SERVICE_PART_DATA

ПодзаписьEGTS_SR_SERVICE_PART_DATAможет использоваться сервисом для передачи сущностей на AC. Структура подзаписи представлена в таблице 36.

Таблица 36 - Структура подзаписи EGTS_SR_SERVICE_PART_DATAceрвиса EGTS_FIRMWARE_SERVICE

Fum 7	Бит 7 Бит 6	Бит 5	From 4	Бит 3	Бит 2	Exm 1	Бит 0	Тип	Тип	Размер,						
Вит /	Вит о	Вит Э	ит 5 Бит 4 Бит 3 Бит 2 Бит 1 Би	Б ит 0	ТИП	данных	байт									
			ID (Id		M	USHORT	2									
				M	USHORT	2										
		EPQ (I	Expected	Parts Qu	antity)			M	USHORT	2						
ODH (Object Data Header)									BINARY	071						
OD (Object Data)									OD (Object Data) M BINARY 1							165400

Примечания:

- 1. ID уникальный идентификатор передаваемой сущности. Инкрементируется при начале отправки новой сущности. Данный параметр позволяет однозначно идентифицировать, какой именно сущности данная часть принадлежит.
 - 2. РN- последовательный номер текущей части передаваемой сущности.
 - 3. ЕРО- ожидаемое число частей передаваемой сущности
- 4. ОDH- заголовок, содержащий параметры, характеризующие передаваемую сущность. Данный заголовок передается только для первой части сущности. При передаче второй и последующих частей, данное поле не передается. Структура заголовка ОDH представлена в таблице 36.
 - 5. OD- непосредственно данные передаваемой сущности.

Параметр EPQ содержит число частей, которое будет передано, а параметр PN номер текущей части. Поле ID однозначно определяет сущность, которому принадлежит передаваемая часть. Значения параметров EPQ и PN для данной подзаписи должны содержать значения в диапазоне от 1 до 65535, причем, значение из поля PN должно быть меньше или равно значению из поля EPQ. Если данное условие нарушается, то данные из такой подзаписи игнорируются.

Идентификатор объекта ID, поля PN и EPQ, а также идентификатор источника записи OID из заголовка уровня маршрутизации сервисов позволяют определить, какая часть и какого объекта получена для обработки. Это

позволяет при достаточной пропускной способности канала одновременно передавать сущности для обновления программного обеспечения различных аппаратных частей АС и периферийного оборудования.

Т а б л и ц а 37 - Формат заголовка передаваемой сущности подзаписи EGTS_SR_SERVICE_PART_DATA сервиса EGTS_FIRMWARE_SERVICE

Бит 7	Fur 6	Бит 5	Fum 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Тип	Размер,
БИТ /	Бит о	Бит 3	Б ИТ 4	Бит 3	БИТ 2	Б ИТ 1	риго	ТИП	данных	байт
				M	BYTE	1				
	-	-								
		M	BYTE	1						
			V	ER (Versi	on)			M	USHORT	2
		W	OS (Wh	ole Object	t Signature	e)		M	USHORT	2
	FN (File Name)									064
	D (Delimiter)				M	BYTE	1			

В таблице 37 параметры (поля) имеют следующее назначение:

- ОА характеристика принадлежности передаваемой сущности;
- OT тип сущности по содержанию. Определены следующие значения данного поля:
 - а) 00 данные внутреннего программного обеспечения («прошивка»);
 - б) 01 блок конфигурационных параметров.
- МТ тип модуля, для которого предназначена передаваемая сущность.
 Определены следующие значения данного поля:
 - а) 00 периферийное оборудование;
 - б) 01 АС.
- СМІ номер компонента в случае принадлежности сущности непосредственно АС или идентификатор периферийного модуля/порта, подключенного к АС, в зависимости от значения параметра МТ;

- VER версия передаваемой сущности (старший байт число до точки major version, младший, после точки minor version, например версия 2.34 будет представлена числом 0x0222);
- WOS сигнатура (контрольная сумма), всей передаваемой сущности. Используется алгоритм CRC16-CCITT;
- -FN имя файла передаваемой сущности (данное поле опционально и может иметь нулевую длину);
 - -D разделитель строковых параметров (всегда имеет значение 0).

6.7.4.2 Подзапись EGTS_SR_SERVICE_FULL_DATA

Структура подзаписи представлена в таблице 38.

Таблица 38 - Структура подзаписи EGTS_SR_SERVICE_FULL_DATAceрвиса EGTS_FIRMWARE_SERVICE

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3 Бит 2 Бит 1 Бит 0		Тип	Тип данных	Размер, байт		
ODH (Object Data Header)									BINARY	771
OD (Object Data)								M	BINARY	165400

В таблице 38 параметры (поля) имеют следующее назначение:

- ODH— заголовок, содержащий параметры, характеризующие передаваемую сущность. Для подзаписи EGTS_SR_SERVICE_FULL_DATA параметр ODH является обязательным и присутствует в каждой такой подзаписи;
 - -OD непосредственно данные передаваемой сущности.

6.7.4.3 Подзапись EGTS_SR_RECORD_RESPONSE

Данная подзапись имеет такую же структуру, как описано в 6.7.2.1 и применяется для подтверждения получения и обработки подзаписей EGTS_SR_SERVICE_PART_DATA и EGTS_SR_SERVICE_FULL_DATA. При этом на все подзаписи EGTS_SR_SERVICE_PART_DATA кроме последней, при успешной обработке, в составе EGTS_SR_RECORD_RESPONSE должен передаваться код результата равный EGTS_PC_IN_PROGRESS. На последнюю

подзапись EGTS_SR_SERVICE_PART_DATA и каждую EGTS_SR_SERVICE_FULL_DATA при успешном приеме и обработке со стороны AC должна передаваться подзапись EGTS_SR_RECORD_RESPONSE, содержащая код EGTS_PC_OK, что будет воспринято сервисом как удачная попытка отправка всей сущности.

6.8 Временные и количественные параметры протокола уровня поддержки услуг при использовании пакетной передачи данных

Описание временных и количественных параметров протокола уровня поддержки услуг представлено в таблице 39.

Таблица 39 - Временные и количественные параметры протокола уровня поддержки услуг

Название	Тип данных	Диапазон значений	Значение по умолчанию	Описание
EGTS_SL_NOT_ AUTH_TO	ВҮТЕ	0 255	6	Время ожидания прихода сообщения от АС, содержащего данные для осуществления процедуры авторизации на стороне телематической платформы после установления АС нового подключения по протоколу TCP/IP, (секунды). Если в течение данного времени сообщение не поступает, платформа должна разорвать установленное с АСТСР/IP соединение.

7 Сервис экстренного реагирования при аварии протокола уровня поддержки услуг

7.1 Назначение сервиса экстренного реагирования при аварии

Сервис экстренного реагирования предназначен для обеспечения возможности реализации системой «ЭРА-ГЛОНАСС» функционала по оказанию базовой услуги, предоставляемой системой. В протоколе уровня поддержки услуг этот сервис определен как EGTS_ECALL_SERVICE и имеет код 10.

7.2 Минимально необходимый набор функций AC для использования услуги EGTS ECALL SERVICE

Для использования автомобильной системой вызова экстренных оперативных служб сервиса EGTS_ECALL_SERVICE в AC должен быть реализован следующий набор функций:

- 7.2.1 Поддержка сервиса обработки команд EGTS_COMMANDS_SERVICE, указанного в 6.7.4.
- 7.2.2 Поддержка команд EGTS_ECALL_REQ, EGTS_ECALL_MSD_REQ, отправляемых оператором системы «ЭРА-ГЛОНАСС» через SMS и передача соответствующих ответов и подтверждений на них.
- 7.2.3 Обработка команды EGTS_TEST_MODE, отправляемых оператором системы через GPRS и передача соответствующих ответов и подтверждений на них.
- 7.2.4 Передача данных профиля ускорения через GPRS (подзапись EGTS_SR_ACCEL_DATA).
- 7.2.5 Передача данных траектории движения транспортного средства при ДТП через GPRS (подзапись EGTS_SR_TRACK_DATA)

7.2.6 Обработка команд установки параметров AC, отправляемых оператором системы «ЭРА-ГЛОНАСС» через GPRS и SMS и передача соответствующих подтверждений на них.

7.3 Состав и описание подзаписей сервиса EGTS_ECALL_SERVICE

Для осуществления взаимодействия в рамках сервиса EGTS_ECALL_SERVICE используется несколько подзаписей, описание и код которых представлены в таблице 40.

7.3.1 Подзапись EGTS_SR_RECORD_RESPONSE

Данная подзапись имеет такую же структуру, как указано в 6.7.2.1.

7.3.2 Подзапись EGTS_SR_ACCEL_DATA

Структура подзаписи представлена в таблице 41.

Таблица40 - Список подзаписей сервиса EGTS_ECALL_SERVICE

Код	Название	Описание
0	EGTS_SR_RECORD_	Подзапись применяется для
	RESPONSE	осуществления подтверждения записи
		протокола уровня поддержки услуг из
		пакета типа EGTS_PT_APPDATA.
20	EGTS_SR_ACCEL_DATA	Подзапись предназначена для передачи
		на телематическую платформу данных
		профиля ускорения АС.

Окончание таблицы 40

Код	Название	Описание
40	EGTS_SR_RAW_MSD_DATA	Подзапись используется АС для
		передачи МНД на телематическую
		платформу в исходном виде.
50	EGTS_SR_MSD_DATA	Подзапись используется АС для
		передачи МНД на телематическую
		платформу.
62	EGTS_SR_TRACK_DATA	Подзапись применяется для передачи
		данных о траектории движения
		транспортного средства при ДТП на
		телематическую платформу.

Т а б л и ц а 41 - Структура подзаписи EGTS_SR_ ACCEL_DATA сервиса EGTS_ECALL_SERVICE

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Тип данных	Размер, байт
		SA	(Structu		M	BYTE	1			
		A	M	UINT	4					
	ADS	S1 (Acc	elerome	eter Dat	a Struct	ure 1)		M	BINARY	8
	ADS	S2 (Acc	elerome	eter Dat	a Struct	ture 2)		О	BINARY	8
										•••
ADS255 (Accelerometer Data Structure 255)									BINARY	8

В таблице 41 параметры (поля) имеют следующее назначение:

- SA- число передаваемых структур данных показаний акселерометра;
- ATM— время проведения измерений первой передаваемой структуры показаний акселерометра (количество секунд с 00:00:00 01.01.2010 UTC);
- ADS1 ... ADS255 структуры данных показаний акселерометра. Формат структуры представлен в таблице 42.

В составе подзаписи EGTS_SR_ ACCEL_DATA должна передаваться хотя бы одна структура ADS.

Т а б л и ц а 42 - Формат структуры данных показаний акселерометра подзаписи EGTS_SR_ ACCEL_DATA сервиса EGTS_ECALL_SERVICE

Exm 7	Бит 7 Бит 6	Бит 5	Fum 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Тип	Размер,
БИТ /			Бит 4			Б ИТ 1	БИТ О		данных	байт
		R'	ΓM (Re		M	USHORT	2			
	X	AAV (X	X Axis A	Accelera	tion Va	lue)		M	SHORT	2
YAAV (Y Axis Acceleration Value)									SHORT	2
	Z	AAV (Z	M	SHORT	2					

В таблице 42 параметры (поля) имеют следующее назначение:

- RTM— приращение ко времени измерения предыдущей записи (для первой записи приращение к полю ATM), в миллисекундах;
- XAAV— значение линейного ускорения по оси X (старший бит определяет знак, 1 указывает на отрицательное значение), 0.1 m/c^2 ;
- YAAV— значение линейного ускорения по оси Y (старший бит определяет знак, 1 указывает на отрицательное значение), 0.1 M/c^2 ;
- ZAAV— значение линейного ускорения по оси Z (старший бит определяет знак, 1 указывает на отрицательное значение), 0.1 M/c^2 . Разрешающая способность полей ускорения должна быть не более 0.01G.
 - 7.3.3 Подзапись EGTS_SR_RAW_MSD_DATA.

Структура подзаписи EGTS_SR_RAW_MSD_DATA представлена в таблице 43.

Таблица43 - Формат подзаписи EGTS_SR_RAW_MSD_DATA Сервиса EGTS_ECALL_SERVICE

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Тип данных	Размер, байт
FM (Format)								M	BYTE	1
MSD (Minimal Set of Data)								M	BINARY	01024

В таблице 43 параметры (поля) имеют следующее назначение:

- FM формат данных, содержащихся в поле MSD данной подзаписи. Данной версией документа определены следующие возможные значения данного поля:
 - а) 0 формат неизвестен;
 - б) 1 правила кодировки пакета в соответствии с ГОСТ Р 54620.

Не указанные в настоящем стандарте значения поля FM должны дополнительно согласовываться между производителем AC и оператором системы;

- MSD — массив данных (размер данного поля определяется исходя из размера поля FM данной подзаписи, а также значения поля SRLв соответствии с [2](таблица 3)].

7.3.4 Подзапись EGTS SR MSD DATA

Структура подзаписи EGTS_SR_MSD_DATA представлена в таблице 44и соответствует требованиям к МНД, указанным в ГОСТ Р 54620.

Т а б л и ц а 44 - Структура подзаписи EGTS_SR_MSD_DATA сервиса EGTS_ECALL_SERVICE

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Тип	Размер,
БИТ /	Бит о	Бит 3	Б ИТ 4	Бит 3	БИТ 2	Бит т	Бит О		данных	байт
			M	BYTE	1					
		N	M	BYTE	1					
			M	BYTE	1					
-	V	T(Vehi	cle Typ	e)	POCN	CLT	ACT	-	-	-
	1	VIN (Ve	ehicle Id	entifica	tion Nu	nber)		M	STRING	17
	VF	PST (Ve	hicle Pr	opulsio	n Storage	e Type)		M	BYTE	1
TS (Time Stamp)									BINARY	4
		PI	AT (Po	sition L	atitude)			M	BINARY	4
		PLO	ON (Pos	ition Lo	ongitude)		M	BINARY	4
		V	D (Veh	icle Dir	ection)			M	BYTE	1
RVP n-1 LATD(Recent Vehicle Position n-1 Latitude Delta)									BINARY	2
RVP n-1 LOND(Recent Vehicle Position n-1 Longitude Delta)									BINARY	2
RVP n-2 LATD(Recent Vehicle Position n-2 Latitude Delta)									BINARY	2
RVP n-2 LOND(Recent Vehicle Position n-2 Longitude Delta)									BINARY	2
NOP (Number Of Passengers)									BYTE	1
AD (Additional Data)									STRING	056

В таблице 44 параметры (поля) имеют следующее назначение:

- FV версия формата данных (поле должно содержать значение 1);
- MI идентификатор сообщения (поле должно содержать значение, начиная с 1, и увеличиваться на 1 при каждой отправке сообщения после наступления события);
 - CN битовое поле управления;
 - VT битовые флаги, характеризующие тип транспортного средства [5]: a) 0001 пассажирский (категория М1);

- б) 0010 автобус (категория М2);
- в) 0011 автобус (категория M3);
- г) 0100 легкая грузовая машина (категория N1);
- д) 0101 тяжелая грузовая машина (категория N2);
- e) 0110 тяжелая грузовая машина (категория N3);
- ж) 0111 мотоцикл (категория L1e);
- и) 1000 мотоцикл (категория L2e);
- к) 1001 мотоцикл (категория L3e);
- л) 1010 мотоцикл (категория L4e);
- м) 1011 мотоцикл (категория L5e);
- н) 1100 мотоцикл (категория L6e);
- о) 1101 мотоцикл (категория L7e).
- POCN (Position Confidence) битовый флаг, определяющий достоверность данных о местоположении:
- а) 1 данные местоположения недостоверны (если местоположение не могло быть определено с точностью не более $\pm 150\,\mathrm{m}$ с достоверностью 95%);
 - б) 0 данные местоположения достоверны.
 - CLT- (Call Type) битовый флаг, определяющий тип вызова:
 - а) 1 тестовый вызов;
 - б) 0 экстренный вызов.
- ACT (Activation Type) битовый флаг, определяющий тип активации события:
 - а) 1 автоматически;
 - б) 0 вручную.
 - VIN идентификатор транспортного средства;
 - VPST тип энергоносителя транспортного средства:
 - а) если все биты 0, то тип не задан;
 - б) Бит 7: 6 не используется;

- в) Бит 5: 1 водород;
- г) Бит 4: 1 электричество (более 42 В и 100 А/ч);
- д) Бит 3: 1 жидкий пропан (LPG);
- е) Бит 2: 1 сжиженный природный газ (CNG);
- ж) Бит 1: 1 дизель;
- и) Бит 0: 1 бензин.
- TS время события. Число секунд с 00:00:00 01.01.1970 согласно универсальному синхронизированному времени (UTC). При отсутствии возможности определения времени события устанавливается равным 0. Данное поле должно интерпретироваться на приемной стороне, как тип UINT с порядком следования байт big-endian;
- PLAT широта местоположения транспортного средства в момент события, в угловых миллисекундах. При отсутствии или невозможности определить значение широты, все биты поля должны содержать значение 1. Данное поле должно интерпретироваться на приемной стороне, как тип INT с порядком следования байт big-endian;
- PLON долгота местоположения транспортного средства в момент события, в угловых миллисекундах. При отсутствии или невозможности определить значение широты, все биты поля должны содержать значение 1. Данное поле должно интерпретироваться на приемной стороне, как тип INT с порядком следования байт big-endian;
- VD направление движения транспортного средства от направления на северный магнитный полюс по часовой стрелке, с шагом 2°. Диапазон возможных значений 0 ... 129. При отсутствии или невозможности определения значение поле должно содержать значение 255;
- RVP n-1 LATD разность широты местоположения транспортного средства относительно значения поля PLAT с шагом 100 миллисекунд. Положительные значения севернее, отрицательные южнее. Диапазон возможных значений от минус 512 до плюс 511. При отсутствии или

невозможности определить значение все биты поля должны содержать значение 1. Данное поле должно интерпретироваться на приемной стороне как тип SHORT с порядком следования байт big-endian;

- RVP n-1 LOND разность долготы местоположения транспортного средства относительно значения поля PLON с шагом, установленным в ГОСТ Р 54620 (приложение В). Положительные значения восточнее, отрицательные западнее. Диапазон возможных значений от минус 512 до плюс 511. При отсутствии или невозможности определить значение все биты поля должны содержать значение 1. Данное поле должно интерпретироваться на приемной стороне как тип SHORT с порядком следования байт big-endian;
- RVP n-2 LATD разность широты местоположения транспортного средства относительно значения поля RVP n-1 LATD с шагом, установленным в ГОСТ Р 54620 (приложение В). Положительные значения севернее, отрицательные южнее. Диапазон возможных значений от минус 512 до плюс 511. При отсутствии или невозможности определить значение все биты поля должны содержать значение 1. Данное поле должно интерпретироваться на приемной стороне как тип SHORT с порядком следования байт big-endian;
- RVP n-2 LOND разность долготы местоположения транспортного средства относительно значения поля RVP n-1 LOND с шагом, установленным в ГОСТ Р 54620 (приложение В). Положительные значения восточнее, отрицательные западнее. Диапазон возможных значений от минус 512 до плюс 511. При отсутствии или невозможности определить значение все биты поля должны содержать значение 1. Данное поле должно интерпретироваться на приемной стороне как тип SHORT с порядком следования байт big-endian;
- NOP число застегнутых ремней безопасности. При отсутствии информации поле должно содержать значение 255;
 - AD дополнительные данные.

Наличие необязательных параметров в подзаписи EGTS_SR_MSD_DATA должно определяться, исходя из общего размера подзаписи. При этом, если

необходимо передать необязательный параметр, например, поле NOP, то все предшествующие необязательные поля, RVP n-1 LATD, RVP n-1 LOND, RVP n-2 LATD, RVP n-2 LOND также должны передаваться, но с соответствующими заполнителями.

7.3.5 Подзапись EGTS_SR_TRACK_DATA

Структура подзаписи EGTS_SR_TRACK_DATA представлена в таблице 45.

Т а б л и ц а 45 - Структура подзаписи EGTS_SR_ TRACK_DATA сервиса EGTS_ECALL_SERVICE

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Тип данных	Размер, байт
		SA (M	BYTE	1					
		AT]	M	UINT	4					
TDS1 (Track Data Structure 1)									BINARY	8
TDS2 (Track Data Structure 2)									BINARY	8
									•••	
TDS 255 (Track Data Structure 255)									BINARY	8

В таблице 45 параметры (поля) имеют следующее назначение:

- SA количество передаваемых точек траектории движения транспортного средства;
- ATM опорное время проведения измерений (число секунд с 00:00:00 01.01.2010 UTC). Используется в качестве начального времени для первой передаваемой структуры с точностью 1 с. Более точное время измерения определяется с учетом поля RTM структуры информации об отдельной точке траектории движения;
- TDS1 ... TDS255 структуры данных, содержащие параметры отдельной точки траектории движения транспортного средства. Формат структуры представлен в таблице 46.

В составе подзаписи EGTS_SR_TRACK_DATA должна передаваться хотя бы одна структура TDS.

Т а б л и ц а 46 - Формат структуры данных отдельной точки траектории движения транспортного средства подзаписи EGTS_SR_TRACK_DATA сервиса EGTS_ECALL_SERVICE

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Тип данных	Размер, байт
TNDE	LOHS	LAHS		RTM	(Relativ	e Time)	M	BYTE	1	
	LAT (Latitude)									4
LONG (Longitude)									UINT	4
SPDL (Speed Low Bits)								0	USHORT	2
DIRH	DIRH SPDH (Speed Hi Bits)								USITORT	2
DIR (Direction)									BYTE	1

В таблице 46 параметры (поля) имеют следующее назначение:

- TNDE (Track Node Data Exist) битовый флаг, определяющий наличие компонентов данных о точке траектории движения в данной структуре TDS (поля LAT, LONG, SPDL, DIRH, SPDH, DIR):
 - а) 1 данные передаются;
- б) 0 данные не передаются (для указанного времени не удалось получить достоверные координаты и информацию о скорости с требуемой точностью. Либо координаты не валидны, либо определены с неудовлетворительной точностью). Поля LAT, LONG, SPDL, DIRH, SPDH, DIR не передаются в составе данной структуры, и ее размер составляет 1 байт.
 - LOHS битовый флаг определяет полушарие долготы:
 - а) 0 восточная долгота;
 - б) 1 западная долгота.
 - LAHS битовый флаг определяет полушарие широты:
 - а) 0 северная широта;

- б) 1 южная широта.
- RTM приращение ко времени измерения предыдущей записи (для первой записи приращение к полю ATM) в 0,1 с. Определяет время проведения измерения параметров данной точки траектории. Максимально возможное значение приращения составляет 3,2 с;
- LAT- широта по модулю, градусы (WGS 84) / 90 * 0хFFFFFFF и взята целая часть;
- LONG долгота по модулю, градусы (WGS 84) / 180 * 0xFFFFFFF и взята целая часть;
- SPDL, SPDH младшие (SPDL) и старшие (SPDH) биты параметра скорости (используется 15 бит). Измеряется в 0.01 км/ч. Максимальное значение скорости, передаваемое в данном поле, составляет 327,67 км/ч;
 - DIRH (Direction the Highest bit) Старший бит (8) параметра DIR;
- DIR направление движения TC, выраженное в градусах, относительно севера по часовой стрелке (дополнительно старший бит находится в поле DIRH). Значение параметра направления должно быть в пределах от 0 до 359.

7.4 Использование сервиса EGTS_COMMANDS_SERVICE

Описание, состав и форматы подзаписей сервиса EGTS_COMMANDS_SERVICE, используемого в целях оказания базовой услуги, приведены в 6.7.3.

7.5 Список и описание команд, параметров и подтверждений при использовании сервиса EGTS ECALL SERVICE

Список и описание команд АС и подтверждений, необходимых для реализации базовой услуги системой «ЭРА-ГЛОНАСС» представлены в таблицах 47и 48соответственно.

В АС, установленных на транспортных средствах в конфигурации штатного оборудования, помимо параметров, описанных в [6], должна быть реализована поддержка следующих параметров:

- EGTS_ECALL_BLACK_LIST;
- EGTS_ECALL_TEST_NUMBER;
- EGTS ECALL ON;
- EGTS_ECALL_SIGNAL_INTERNAL;
- EGTS ECALL SIGNAL EXTERNAL;
- EGTS_ECALL_SOS_BUTTON_TIME;
- EGTS_ECALL_CCFT;
- EGTS_ECALL_INVITATION_SIGNAL_DURATION;
- EGTS_ECALL_SEND_MSG_PERIOD;
- EGTS_ECALL_AL_ACK_PERIOD;
- EGTS_ECALL_MSD_MAX_TRANSMISSION_TIME;
- EGTS ECALL NAD DEREGISTRATION TIMER;
- EGTS_ECALL_DIAL_DURATION;
- EGTS_ECALL_AUTO_DIAL_ATTEMPTS;
- EGTS_ECALL_MANUAL_DIAL_ATTEMPTS;
- EGTS_ECALL_MANUAL_CAN_CANCEL;
- EGTS_ECALL_SMS_FALLBACK_NUMBER;
- EGTS_CRASH_RECORD_TIME;
- EGTS_CRASH_RECORD_RESOLUTION;
- EGTS_CRASH_PRE_RECORD_TIME;
- EGTS_CRASH_PRE_RECORD_RESOLUTION;
- EGTS TRACK RECORD TIME;
- EGTS TRACK RECORD RESOLUTION;
- EGTS TRACK PRE RECORD TIME;
- EGTS_ECALL_BLACK_LIST;

- EGTS_VEHICLE_VIN;
- EGTS_VEHICLE_TYPE;
- -EGTS_VEHICLE_PROPULSION_STORAGE_TYPE.

Таблица47 - Список команд для АС

Название	Код	Тип, число и	Описание
команды		предельные значения	
		параметров	
EGTS_ECALL_	0x0112		Команда на осуществление повторного экстренного вызова. Используется
REQ		-	только через SMS.
EGTS_ECALL_	0x0113	-	Команда на осуществление повторной передачи МНД. Используется только
MSD_REQ			через SMS.
EGTS_	0x0114	-	Команда на осуществление передачи данных профиля ускорения.
ACCEL_DATA			Используется только через SMS.
EGTS_TRACK_	0x0115	-	Команда на осуществление на осуществление передачи данных траектории
DATA			движении. Используется только через SMS.
EGTS_TEST_	0x0003	BYTE/ 08	Команда, осуществляющая запуск тестов в «тестовом режиме».
MODE_			Может принимать следующие значения:
START_TEST			0 – запуск последовательно всех тестов;
			1 – проверка центра обслуживания звонков;
			2 – проверка внешнего (коммерческого) центра обслуживания звонков;
			3 – тест микрофона;

Окончание таблицы 47

Название	Код	Тип, число и	Описание
команды		предельные значения	
		параметров	
			4 – тест динамиков;
			5 – тест включения/выключения зажигания;
			6 – расширенный тест БИП;
			7 – тест встроенной резервной аккумуляторной батареи;
			8 – тест датчика автоматической идентификации ДТП.

Т а б л и ц а 48 - Список подтверждений на команды и сообщения от АС

Название команды	Код	Тип и число	Описание
		параметров	
EGTS_TEST_MODE_	0x0003	BINARY	Результаты проведения тестов. Каждый байт содержит код,
START_TEST		(8 байт)	определяющий результат теста (см. описание
			TEST_MODE_START_TEST из таблицы 35). 1-й байт – тест
			1, 2-й байт – тест 2 и т.д.

Таблица 49 - Список параметров АС

Имя параметра	Код	Тип	Значение по	Описание				
		параметра	умолчанию					
	Установки общего назначения							
EGTS_ECALL_	0x0206	ARRAY OF	(()) (()))))))))	Список сетей, в которых нет возможности осуществить				
BLACK_LIST		STRING	, , , ,	экстренный Вызов.				
			, , , , ,					
)))))))) (()) (())					
			, , ,					
EGTS_ECALL_	0x020D	STRING	112	Телефонный номер для тестовых звонков ЭРА-ГЛОНАСС.				
TEST_NUMBER								
	1	Конф	игурация и конф	оигурационные данные услуг				
		Ба	азовая услуга сис	стемы «ЭРА-ГЛОНАСС»				
EGTS_ECALL_ON	0x0210	BOOLEAN	TRUE	Возможность осуществления экстренного вызова.				
EGTS_ECALL_	0x0211	BOOLEAN	TRUE	Только транспортные средства категории М1 - для определения				
CRASH_SIGNAL_				события аварии используется встроенный измеритель ускорения.				
INTERNAL								

Имя параметра	Код	Тип	Значение по	Описание
		параметра	умолчанию	
EGTS_ECALL_	0x0212	BOOLEAN	TRUE	Только транспортные средства категории М1 - для определения
CRASH_SIGNAL_E				события аварии используется внешний датчик в автомобиле.
XTERNAL				
EGTS_ECALL_	0x0213	INT	200	Длительность, в течение которой должна быть нажата кнопка
SOS_BUTTON_				экстренный вызов, для инициации экстренного вызова независимо
TIME				от состояния линии зажигания, (миллисекунды).
EGTS_ECALL_	0x0216	ENUM	NONE	Линия, сигнализирующая, что система находится в режиме ЭРА;
MODE_PIN		{NONE-0,		NONE - нет сигнализации режима; PIN_X – PIN_X номер активной
		PIN_1 -1,		линии, когда система находится в данном режиме.
		PIN_8-8}		

Имя параметра	Код	Тип	Значение по	Описание
		параметра	умолчанию	
EGTS_ECALL_	0x0217	INT	60	Длительность счетчика автоматического прекращения звонка,
CCFT				(минуты).
EGTS_ECALL_	0x0218	INT	200	Длительность сигнала INVITATION, (миллисекунды).
INVITATION_SIGN				
AL_DURATION				
EGTS_ECALL_SEN	0x0219	INT	200	Период сообщения SEND MSG, (миллисекунды).
D_MSG_PERIOD				
EGTS_ECALL_	0x021A	INT	200	Период AL-ACK, (миллисекунды).
AL_ACK_PERIOD				
EGTS_ECALL_	0x021B	INT	20	МаксимальнаядлительностьпередачиМSD, (секунды).
MSD_MAX_TRANS				
MISSION_TIME				
EGTS_ECALL_	0x021D	INT	8	Время, по истечении которого, GSM или UMTS модуль
NAD_DEREGISTR				прекращает регистрацию в сети, (часы).
ATION_TIMER				

Имя параметра	Код	Тип	Значение по	Описание
		параметра	умолчанию	
EGTS_ECALL_	0x021E	INT	5	Общая продолжительность дозвона при инициации экстренного
DIAL_DURATION				вызова, (минуты).
EGTS_ECALL_	0x021F	INT	10	Только транспортные средства категории М1 - число попыток
AUTO_DIAL_				дозвона при автоматически инициированном вызове.
ATTEMPTS				Значение не может быть установлено в 0.
EGTS_ECALL_	0x0220	INT	10	Число попыток дозвона при экстренном вызове, инициированном
MANUAL_DIAL_				вручную. Значение не может устанавливаться в 0.
ATTEMPTS				
EGTS_ECALL_	0x0222	BOOLEAN	TRUE	TRUE – экстренный вызов, инициированный вручную, может
MANUAL_CAN_				быть прекращен со стороны пользователя.
CANCEL				
EGTS_ECALL_	0x0223	STRING	112	Номер, по которому AC посылает SMS с минимальным набором
SMS_FALLBACK_				данных по запросу от оператора системы.
NUMBER				

Имя параметра	Код	Тип параметра	Значение по умолчанию	Описание
			Запись профи	ля ускорения при ДТП
IGNITION_OFF_	минуты	INT	120	Промежуток времени в течение которого осуществляется запись
FOLLOW_UP_				профиля ускорения при ДТП при выключенном зажигании.
TIME1				
IGNITION_OFF_	минуты	INT	240	Промежуток времени в течение которого осуществляется
FOLLOW_UP_				определение события аварии при выключенном зажигании.
TIME2				
EGTS_CRASH_	0x0251	INT/ 0250	250	Время записи информации о профиле ускорения при ДТП,
RECORD_TIME				(миллисекунды).
EGTS_CRASH_	0x0252	INT/15	1	Продолжительность одного отсчета при записи профиля ускорения
RECORD_				при ДТП, (миллисекунды).
RESOLUTION				
EGTS_CRASH_	0x0253	INT/	20000	Время записи информации о профиле ускорения до того, как
PRE_RECORD_		020000		событие ДТП наступило, (миллисекунды).
TIME				

Имя параметра	Код	Тип	Значение по	Описание		
		параметра	умолчанию			
EGTS_CRASH_	0x0254	INT/ 5100	5	Продолжительность одного отсчета при записи профиля ускорения		
PRE_RECORD_				до того, как событие ДТП наступило, (миллисекунды).		
RESOLUTION						
	Запись траектории движения при ДТП					
EGTS_TRACK_	0x025A	INT/ 0180	10	Время записи информации о траектории движения транспортного		
RECORD_TIME				средства при наступлении события ДТП, (секунды). Установка		
				значения данного параметра равного 0 означает, что запись данных		
				о траектории движения при ДТП не производится.		

Имя параметра	Код	Тип	Значение по	Описание
	- 7,	параметра	умолчанию	
EGTS_TRACK_	0x025B	INT/ 0600	20	Время записи информации о траектории движения транспортного
PRE_RECORD_				средства до того, как событие ДТП наступило, (секунды).
TIME				Установка значения данного параметра равного 0 означает, что
				запись данных о траектории движения до того как событие ДТП
				наступило, не производится.
EGTS_TRACK_	0x025C	INT/130	10	Продолжительность одного отсчета при записи траектории
RECORD_				движения транспортного средства, 100 миллисекунд.
RESOLUTION				
			Параметры тра	анспортного средства
EGTS_VEHICLE_	0x0311	STRING	6677	VIN в соответствии с [5]
VIN				

Имя параметра	Код	Тип параметра	Значение по умолчанию	Описание
EGTS_VEHICLE_	0x0312	INT	0	Тип транспортного средства
TYPE				1 – пассажирский (Класс М1)
				2 – автобус (КлассМ2)
				3 – автобус (КлассМ3)
				4 – легкая грузовая машина (КлассN1)
				5 – тяжелая грузовая машина (КлассN2)
				6 – тяжелая грузовая машина (КлассN3)
				7 – мотоцикл (КлассL1e)
				8 – мотоцикл (КлассL2e)
				9 – мотоцикл (КлассL3e)
				10 – мотоцикл (КлассL4e)
				11 – мотоцикл (КлассL5e)
				12 – мотоцикл (КлассL6e)
				13 – мотоцикл (КлассL7e)

Окончание таблицы 49

Имя параметра	Код	Тип	Значение по	Описание
	, ,	параметра	умолчанию	
EGTS_VEHICLE_	0x0313	INT	0	Тип энергоносителя
PROPULSION_				Если все биты 0, то тип не задан
STORAGE_				Бит 7: не используется
TYPE				Бит 6: не используется
				Бит 5: 1 - водород
				Бит 4: 1 - электричество (более 42 v and 100 Ah)
				Бит 3: 1 - жидкий пропан (LPG)
				Бит 2: 1 - сжиженный природный газ (CNG)
				Бит 1: 1 - дизель
				Бит 0: 1 - бензин

8 Формат сообщения AL-ACK

- 8.1 Сообщение AL-ACK высылается системой "ЭРА-ГЛОНАСС", в сторону АС посредством использования тонального модема, содержащее подтверждение корректности полученного минимального набора данных.
- 8.2 Сообщение AL-ACK должно иметь формат, определенный в таблице 50.

Таблица50 – Формат сообщения AL ACK

Поле данных AL-ACK	Номер бита,	Значение
	представляющего	
	поле данных	
Зарезервированное	4	Поле не используется
поле №1		
Зарезервированное	3	Поле не используется
поле №2		
Признак корректности	2	0 – полученные данные
полученных данных		корректны
		1 – полученные данные не
		корректны
Версия формата	1	0 – текущий формат
данных		1 – зарезервировано для
		будущего использования

Приложение **А** (справочное)

Описание принципа построения навигационно-информационной системы на основе протокола транспортного уровня

Минимальным и достаточным элементом системы, использующей протокол транспортного уровня, является телематическая платформа. В качестве основной составной части телематической платформы, выполняющей функции координации внутриплатформенного взаимодействия и маршрутизации используется такое понятие как «диспетчер».

Протоколом различается логический межплатформенной уровень маршрутизации, данные в котором (информационные пакеты) предаются на уровне платформ, а также уровень внутриплатформенной отдельных телематических маршрутизации, информация в котором предается между отдельными сервисами одной платформы. Под «сервисом» понимается отдельная составная часть телематической платформы, обеспечивающая функциональное алгоритма той или иной услуги с использованием описываемого протокола транспортного уровня. Во всех указанных типах маршрутизации взаимодействие происходит через диспетчера.

Генераторами и потребителями данных в системе, построенной на основе протокола транспортного уровня, являются сервисы, которые на стороне-«отправителе» создают пакеты, а на стороне-«получателе» производят обработку пакетов, полученных от других сервисов. Каждый сервис реализует различную бизнес логику в зависимости от функционала той или иной услуги. Тип сервиса является его главной функциональной характеристикой и используется диспетчером для внутриплатформенной маршрутизации данных. Как правило, во взаимодействии участвуют комплементарная пара сервисов, один из которых расположен на стороне абонентского терминала (применительно к настоящему стандарту - АС или терминал «ЭРА-ГЛОНАСС»), например, генерирует пакеты с координатными данными и показаниями датчиков, а другой, на стороне телематической платформы, такие данные обрабатывает.

Все сервисы в рамках одной телематической платформы соединяются с диспетчером и не имеют непосредственных связей между собой.

Телематическая платформа может иметь связи с другими платформами и производить обмен данными на основе данных маршрутизации. Для осуществления маршрутизации диспетчер обращается к локальному хранилищу, содержащему данные о соседних телематических платформах и доступных на них сервисах, а также информацию о сервисах, функционирующих в рамках своей платформы. При организации связи между диспетчерами различных телематических платформ происходит обмен информацией о типах сервисов, доступных на каждой из сторон, а также их статусе. Поиск маршрута сводится к поиску направления (соединения) по типу запрашиваемого сервиса. Если запрашиваемый сервис находится на той же телематической платформе, что и диспетчер, то взаимодействие происходит с использованием только внутриплатформенной маршрутизации. То есть, если имеется соответствующие разрешения, то поиск сервиса ведется по данным маршрутизации платформах и нахождении такого маршрута и на соседних телематических доступности маршрута происходит трансляция запроса на найденную платформу, при этом в качестве адреса используется идентификатор диспетчера удаленной платформы.

АС также осуществляет взаимодействие с сервисами телематической платформы через диспетчера. При этом АС идентифицируется по специальным пакетам, содержащих уникальный номер АС, назначаемый ей при регистрации в системе, а также другие учетные данные и информацию о внутренней инфраструктуре и состоянии модулей и блоков АС.

Структурная схема взаимодействия элементов системы, основанной на описываемом протоколе транспортного уровня, представлена на рисунке А.1. Каждый сервис имеет определенный тип, который на рисунке А.1 определяется параметром SID.

Рисунок А.1 - Структурная схема взаимодействия элементов системы, основанной на протоколе транспортного уровня

Приложение Б (справочное)

Анализ протокола транспортного уровня на основе концепции NGTP

Согласно концепции построения телематических систем на основе NGTP, различают три основных элемента взаимодействия: телематическое устройство, провайдер телематических сервисов и диспетчер. Взаимодействие осуществляется через стандартизованные интерфейсы и является элементами протокола за исключением провайдера телематических сервисов, который объединен в протоколе с диспетчером.

Телематическое устройство (применительно к настоящему стандарту – автомобильная система вызова экстренных оперативных служб «ЭРА-ГЛОНАСС») интегрируется в транспортное средство, но также может быть персональным навигационным устройством или мобильным телефоном.

Провайдер телематических сервисов предназначен для обмена данными между сервисами и телематическими устройствами.

Диспетчер согласно NGTP является посредником между ПТС и ПУ и обеспечивает стандартный интерфейс связи ТУ с другими компонентами системы, обеспечивающими выполнение функционала сервисов. Диспетчер оперирует только данными своего уровня и не анализирует состав данных уровня сервисов.

Заголовок NGTP полностью совпадает с первыми байтами заголовка протокола транспортного уровня: Protocol Version (1 байт), Security Context (2 байта), NGTP HeaderL ength (1 байт), NGTP Header Encoding (1 байт)

В NGTP идентификатором AC является VIN /DriveID, в описываемом протоколе - UNIT_ID.

Для идентификации AC, исполненной в конфигурации штатного оборудования, используется VIN.

Как и NGTP, протокол направлен на гибкую маршрутизацию данных сервисов между AC и телематической платформой. При этом внедрение нового сервиса не

требует доработки протокола, так как протоколом производится только маршрутизации данных, а сама обработка ведется непосредственно в самом сервисе. Необходимо лишь настроить правильную маршрутизацию диспетчера на новый тип сервиса, что реализуется средствами администрирования системы, построенной на основе протокола транспортного уровня.

NGTP оперирует таким понятием как событие, определяющее некоторую общую характеристику данных и предназначенное для интеграции информации различного типа в некий массив обобщенных данных. Каждому идентификатору события также соответствует признак идентифицирующий время генерации события. Использование такого механизма обобщения заложено в протоколе транспортного уровня, в котором каждая запись протокола уровня поддержки сервисов (услуг) может содержать идентификатор события, который генерируется источником таких записей в определенный срез времени, например при возникновении ДТП.

В отличие от NGTP, который использует различные интерфейсы между ТУ и диспетчером, диспетчером и ПТС и между ПТС и сервисами, протокол транспортного уровня АС использует один интерфейс для связи компонентов.

NGTP использует такое понятие как «триггер», подразумевающий некое уведомление компонентов системы о том, что для них принята информация. Приняв такой «триггер», получатель информации должен запросить данную информацию и обработать. В протоколе транспортного уровня не используются «триггеры» и информация сразу же передается получателю.

Приложение В (обязательное)

Коды результатов обработки

Коды результатов обработки приведены в таблице В.1.

Т а б л и ц а В.1 - Коды результатов обработки

Значение	Обозначение	Описание
0	EGTS_PC_OK	Успешно обработано
1	EGTS_PC_IN_PROGRESS	В процессе обработки (результат
		обработки еще не известен)
128	EGTS_PC_UNS_PROTOCOL	Неподдерживаемый протокол
129	EGTS_PC_DECRYPT_ERROR	Ошибка декодирования
130	EGTS_PC_PROC_DENIED	Обработка запрещена
131	EGTS_PC_INC_HEADERFORM	Неверный формат заголовка
132	EGTS_PC_INC_DATAFORM	Неверный формат данных
133	EGTS_PC_UNS_TYPE	Неподдерживаемый тип
134	EGTS_PC_NOTEN_PARAMS	Неверное количество параметров
135	EGTS_PC_DBL_PROC	Попытка повторной обработки
136	EGTS_PC_PROC_SRC_DENIED	Обработка данных от источника
		запрещена
137	EGTS_PC_HEADERCRC_ERROR	Ошибка контрольной суммы
		заголовка
138	EGTS_PC_DATACRC_ERROR	Ошибка контрольной суммы данных
139	EGTS_PC_INVDATALEN	Некорректная длина данных
140	EGTS_PC_ROUTE_NFOUND	Маршрут не найден
141	EGTS_PC_ROUTE_CLOSED	Маршрут закрыт
142	EGTS_PC_ROUTE_DENIED	Маршрутизация запрещена
143	EGTS_PC_INVADDR	Неверный адрес
144	EGTS_PC_TTLEXPIRED	Превышено число ретрансляции
		данных

Окончание таблицы В.1

145	EGTS_PC_NO_ACK	Нет подтверждения
146	EGTS_PC_OBJ_NFOUND	Объект не найден
147	EGTS_PC_EVNT_NFOUND	Событие не найдено
148	EGTS_PC_SRVC_NFOUND	Сервис не найден
149	EGTS_PC_SRVC_DENIED	Сервис запрещен
150	EGTS_PC_SRVC_UNKN	Неизвестный тип сервиса
151	EGTS_PC_AUTH_DENIED	Авторизация запрещена
152	EGTS_PC_ALREADY_EXISTS	Объект уже существует
153	EGTS_PC_ID_NFOUND	Идентификатор не найден
154	EGTS_PC_INC_DATETIME	Неправильная дата и время
155	EGTS_PC_IO_ERROR	Ошибка ввода/вывода
156	EGTS_PC_NO_RES_AVAIL	Недостаточно ресурсов
157	EGTS_PC_MODULE_FAULT	Внутренний сбой модуля
158	EGTS_PC_MODULE_PWR_FLT	Сбой в работе цепи питания модуля
159	EGTS_PC_MODULE_PROC_FLT	Сбой в работе микроконтроллера
		модуля
160	EGTS_PC_MODULE_SW_FLT	Сбой в работе программы модуля
161	EGTS_PC_MODULE_FW_FLT	Сбой в работе внутреннего
		программного обеспечения модуля
162	EGTS_PC_MODULE_IO_FLT	Сбой в работе блока ввода/вывода
		модуля
163	EGTS_PC_MODULE_MEM_FLT	Сбой в работе внутренней памяти
		модуля
164	EGTS_PC_TEST_FAILED	Тест не пройден
	1	

Примечание:

Пакеты сообщений об ошибках (EGTS_PC_DECRYPT_ERROR, EGTS_PC_UNS_PROTOCOL, EGTS_PC_INC_DATAFORM, EGTS_PC_DATACRC_ERROR, EGTS_PC_INC_HEADERFORM, EGTS_PC_HEADERCRC_ERROR) предназначены для целей тестирования оборудования и в рабочей версии программного обеспечения и АС могут быть исключены.

Приложение Г (справочное)

Пример реализации алгоритма расчета контрольной суммы CRC16 на языке C/*

Name: CRC-16 CCITT

Poly: $0x1021 \quad x^16 + x^12 + x^5 + 1$

Init: 0xFFFF

Revert: false

XorOut: 0x0000

Check: 0x29B1 ("123456789")*/

const unsigned short Crc16Table[256] - {

0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50A5, 0x60C6, 0x70E7,

0x8108, 0x9129, 0xA14A, 0xB16B, 0xC18C, 0xD1AD, 0xE1CE, 0xF1EF,

0x1231, 0x0210, 0x3273, 0x2252, 0x52B5, 0x4294, 0x72F7, 0x62D6,

0x9339, 0x8318, 0xB37B, 0xA35A, 0xD3BD, 0xC39C, 0xF3FF, 0xE3DE,

0x2462, 0x3443, 0x0420, 0x1401, 0x64E6, 0x74C7, 0x44A4, 0x5485,

0xA56A, 0xB54B, 0x8528, 0x9509, 0xE5EE, 0xF5CF, 0xC5AC, 0xD58D,

0x3653, 0x2672, 0x1611, 0x0630, 0x76D7, 0x66F6, 0x5695, 0x46B4,

0xB75B, 0xA77A, 0x9719, 0x8738, 0xF7DF, 0xE7FE, 0xD79D, 0xC7BC,

0x48C4, 0x58E5, 0x6886, 0x78A7, 0x0840, 0x1861, 0x2802, 0x3823,

0xC9CC, 0xD9ED, 0xE98E, 0xF9AF, 0x8948, 0x9969, 0xA90A, 0xB92B,

0x5AF5, 0x4AD4, 0x7AB7, 0x6A96, 0x1A71, 0x0A50, 0x3A33, 0x2A12,

0xDBFD, 0xCBDC, 0xFBBF, 0xEB9E, 0x9B79, 0x8B58, 0xBB3B, 0xAB1A,

0x6CA6, 0x7C87, 0x4CE4, 0x5CC5, 0x2C22, 0x3C03, 0x0C60, 0x1C41,

0xEDAE, 0xFD8F, 0xCDEC, 0xDDCD, 0xAD2A, 0xBD0B, 0x8D68, 0x9D49,

0x7E97, 0x6EB6, 0x5ED5, 0x4EF4, 0x3E13, 0x2E32, 0x1E51, 0x0E70,

0xFF9F, 0xEFBE, 0xDFDD, 0xCFFC, 0xBF1B, 0xAF3A, 0x9F59, 0x8F78,

0x9188, 0x81A9, 0xB1CA, 0xA1EB, 0xD10C, 0xC12D, 0xF14E, 0xE16F,

0x1080, 0x00A1, 0x30C2, 0x20E3, 0x5004, 0x4025, 0x7046, 0x6067,

0x83B9, 0x9398, 0xA3FB, 0xB3DA, 0xC33D, 0xD31C, 0xE37F, 0xF35E,

```
0x02B1, 0x1290, 0x22F3, 0x32D2, 0x4235, 0x5214, 0x6277, 0x7256,
0xB5EA, 0xA5CB, 0x95A8, 0x8589, 0xF56E, 0xE54F, 0xD52C, 0xC50D,
0x34E2, 0x24C3, 0x14A0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
0xA7DB, 0xB7FA, 0x8799, 0x97B8, 0xE75F, 0xF77E, 0xC71D, 0xD73C,
0x26D3, 0x36F2, 0x0691, 0x16B0, 0x6657, 0x7676, 0x4615, 0x5634,
0xD94C, 0xC96D, 0xF90E, 0xE92F, 0x99C8, 0x89E9, 0xB98A, 0xA9AB,
0x5844, 0x4865, 0x7806, 0x6827, 0x18C0, 0x08E1, 0x3882, 0x28A3,
0xCB7D, 0xDB5C, 0xEB3F, 0xFB1E, 0x8BF9, 0x9BD8, 0xABBB, 0xBB9A,
0x4A75, 0x5A54, 0x6A37, 0x7A16, 0x0AF1, 0x1AD0, 0x2AB3, 0x3A92,
0xFD2E, 0xED0F, 0xDD6C, 0xCD4D, 0xBDAA, 0xAD8B, 0x9DE8, 0x8DC9,
0x7C26, 0x6C07, 0x5C64, 0x4C45, 0x3CA2, 0x2C83, 0x1CE0, 0x0CC1,
0xEF1F, 0xFF3E, 0xCF5D, 0xDF7C, 0xAF9B, 0xBFBA, 0x8FD9, 0x9FF8,
0x6E17, 0x7E36, 0x4E55, 0x5E74, 0x2E93, 0x3EB2, 0x0ED1, 0x1EF0};
```

```
unsigned short Crc16(unsigned char * pcBlock, unsigned short len)
{  unsigned short crc - 0xFFFF;
  while (len--)
    crc - (crc << 8) ^ Crc16Table[(crc >> 8) ^ *pcBlock++];
  returncrc;}
```

Приложение Д (справочное)

Пример реализации алгоритма расчета контрольной суммы CRC8 на языке C/*

```
Name: CRC-8
 Poly: 0x31 	 x^8 + x^5 + x^4 + 1
 Init: 0xFF
 Revert: false
 XorOut: 0x00
 Check: 0xF7 ("123456789")
*/
const unsigned char CRC8Table[256] - {
  0x00, 0x31, 0x62, 0x53, 0xC4, 0xF5, 0xA6, 0x97,
  0xB9, 0x88, 0xDB, 0xEA, 0x7D, 0x4C, 0x1F, 0x2E,
  0x43, 0x72, 0x21, 0x10, 0x87, 0xB6, 0xE5, 0xD4,
  0xFA, 0xCB, 0x98, 0xA9, 0x3E, 0x0F, 0x5C, 0x6D,
  0x86, 0xB7, 0xE4, 0xD5, 0x42, 0x73, 0x20, 0x11,
  0x3F, 0x0E, 0x5D, 0x6C, 0xFB, 0xCA, 0x99, 0xA8,
  0xC5, 0xF4, 0xA7, 0x96, 0x01, 0x30, 0x63, 0x52,
  0x7C, 0x4D, 0x1E, 0x2F, 0xB8, 0x89, 0xDA, 0xEB,
  0x3D, 0x0C, 0x5F, 0x6E, 0xF9, 0xC8, 0x9B, 0xAA,
  0x84, 0xB5, 0xE6, 0xD7, 0x40, 0x71, 0x22, 0x13,
  0x7E, 0x4F, 0x1C, 0x2D, 0xBA, 0x8B, 0xD8, 0xE9,
  0xC7, 0xF6, 0xA5, 0x94, 0x03, 0x32, 0x61, 0x50,
```

```
0xBB, 0x8A, 0xD9, 0xE8, 0x7F, 0x4E, 0x1D, 0x2C,
  0x02, 0x33, 0x60, 0x51, 0xC6, 0xF7, 0xA4, 0x95,
  0xF8, 0xC9, 0x9A, 0xAB, 0x3C, 0x0D, 0x5E, 0x6F,
  0x41, 0x70, 0x23, 0x12, 0x85, 0xB4, 0xE7, 0xD6,
  0x7A, 0x4B, 0x18, 0x29, 0xBE, 0x8F, 0xDC, 0xED,
  0xC3, 0xF2, 0xA1, 0x90, 0x07, 0x36, 0x65, 0x54,
  0x39, 0x08, 0x5B, 0x6A, 0xFD, 0xCC, 0x9F, 0xAE,
  0x80, 0xB1, 0xE2, 0xD3, 0x44, 0x75, 0x26, 0x17,
  0xFC, 0xCD, 0x9E, 0xAF, 0x38, 0x09, 0x5A, 0x6B,
  0x45, 0x74, 0x27, 0x16, 0x81, 0xB0, 0xE3, 0xD2,
  0xBF, 0x8E, 0xDD, 0xEC, 0x7B, 0x4A, 0x19, 0x28,
  0x06, 0x37, 0x64, 0x55, 0xC2, 0xF3, 0xA0, 0x91,
  0x47, 0x76, 0x25, 0x14, 0x83, 0xB2, 0xE1, 0xD0,
  0xFE, 0xCF, 0x9C, 0xAD, 0x3A, 0x0B, 0x58, 0x69,
  0x04, 0x35, 0x66, 0x57, 0xC0, 0xF1, 0xA2, 0x93,
  0xBD, 0x8C, 0xDF, 0xEE, 0x79, 0x48, 0x1B, 0x2A,
  0xC1, 0xF0, 0xA3, 0x92, 0x05, 0x34, 0x67, 0x56,
  0x78, 0x49, 0x1A, 0x2B, 0xBC, 0x8D, 0xDE, 0xEF,
  0x82, 0xB3, 0xE0, 0xD1, 0x46, 0x77, 0x24, 0x15,
  0x3B, 0x0A, 0x59, 0x68, 0xFF, 0xCE, 0x9D, 0xAC
};
unsigned char CRC8(unsigned char *lpBlock, unsigned char len)
{
  unsigned char crc - 0xFF;
128
```

```
while (len--)
    crc - CRC8Table[crc ^ *lpBlock++];
return crc;
}
```

Приложение E (справочное)

Таблицы кодировки символов

Е.1 Кодировка символов латинского алфавита приведена в таблице Е.1.

Таблица Е.1

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
0		0001	0002	0003	0004	0006	0006	0007	0008	0009	000A	0008	0000	0000	000€	000F
1	0010	0011	0012	0013	0014	0015	0016	0017	0018	0019	001A	0018	001C	001D	001E	001F
2	0020	0021	0022	# 0023	\$ 0024	% 0025	& 0026	0027	0028)	* 002A	+	9	- 0020	• 002E	/
3	0	1	2	3	4	5	6	7	8	9	003A	• 0038	< 003C	= 0030	> 003E	? 003F
4	@	A	B 0042	C 0043	D	E 0045	F 0046	G	H 0048	I 0049	J.	K	L	M	N 004E	O 004F
5	P	Q	R	S 0053	T 0064	U	V 0056	W	X	Y 0059	Z	0058	0050]	∧ 005€	005F
6	0060	a 0061	b	C 0063	d	e 0085	f	g	h	i ************************************	j	k	1	m	n	OOSF
7	p	q	r 0072	S 0073	t	u 0075	V	W	X	y	Z	{ 007B	007C	}	~ 007E	007F
8	080	0081	0082	0083	0084	0085	0086	0087	0088	0089	008A	0088	008C	0080	3800	008F
9	0090	0091	0092	0093	0094	0095	0096	0097	0098	0099	009A	0098	009C	0090	009E	009F
Α	00A0	00A1	¢ ∞∞2	£	¤	¥ 00A5	1 1 00A6	§ 00A7	•• 00A8	© 00A9	<u>a</u>	≪ 00AB	OGAC	- 00AD	® OOAE	 00AF
В	0080	± 0081	2 0062	3 0083	0084	μ	¶ ∞ee	0087	3 0088	1 0089	<u>0</u>	>> 0088	1/4 0080	1/2 008D	3/4 008E	¿ ooe⊭
С	À	Á 00C1	Â 00C2	Ã 0003	Ä 0004	Å	Æ 0006	Ç	È	É	Ê	Ë	Ì	Í	Î	Ï
D	Ð	Ñ	Ò	Ó	Ô	Õ	Ö	X 0007	Ø	Ù	Ú	Û	Ü	Ý	Þ ∞∞∈	B
Ε	à	á	â	ã	ä 00E4	å	æ	Ç	è	é ‱	ê OOEA	ë	ì ooec	í ooed	î 00EE	Ï OOEF
F	ð	ñ	ò	Ó	ô	Õ oofs	Ö 00F6	÷ 00F7	Ø oof8	ù	ú OOFA	û oofb	ü oofc	ý	þ	ÿ

E.2 Кодировка символов латинского и кириллического алфавитов приведена в таблице E.2.

ТаблицаЕ.2

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Ε	F
0		0001	0002	0003	0004	0005	0006	0007	0008	0009	000A	0008	000C	0000	000E	000F
1	0010	0011	0012	0013	0014	0015	0016	0017	0018	0019	001A	0018	001C	001D	001E	001F
2	0020	9021	0022	# 0023	\$ 0004	% 0025	& 0026	0027	0028	0029	* 002A	+ 0028	9 0000	0020	• 002E	/ 002F
3	0	1	2	3	4	5	6	7	8	9	: 003A	;	< 003C	= 0030	> 0006	? 003F
4	@	A 0041	B 0042	C 0043	D 0044	E 0045	F 0046	G 0047	H 0048	I 0049	J	K 0048	L	M	N oo4E	O 004F
5	P	Q	R	S 0063	T 0064	U	V	W	X 0058	Y 0059	Z	Cose	\ 005C]	^ 005€	005F
6	0060	a ************************************	b	C 0063	d	e	f s	g	h	i	j	k cose	1	m	n	O
7	p	q	r 0072	S 0073	t 0074	u 0075	V	W	X	y	Z	{ 0078	007C	}	~ 007E	007F
8	0080	0081	0082	0083	0084	0085	0086	0087	0088	0089	008A	0088	008C	0080	008E	cosf
9	0090	0091	0092	0093	0094	0095	0096	0097	0098	0099	009A	8000	009C	0090	009E	000F
Α	00A0	Ë 0401	Ъ	Ѓ	€	S 0405	I 0406	Ï 0407	J 0408	Љ	Ь	h	Ќ	- 00AD	Ý	Ц
В	A 0410	Б	B 0412	Г 0413	Д	E 0415	Ж	3	И 0418	Й	K 041A	Л 0418	M 0410	H 0410	O 041E	П 041F
С	P 0420	C 0421	T 0422	y	Ф 0424	X 0425	Ц	4	Щ 0428	Щ 0429	Ъ	Ы 0428	Ь 0420	Э	Ю	Я
D	a 0430	б 0431	B	Γ 0433	Д 0434	e 0435	Ж 0436	3	И 0438	Й	K 043A	Л 0438	M 0430	H 0430	O 043E	П 043F
Ε	p	C 0441	T 0442	y 0443	ф	X 0445	Ц 0446	प 0447	Ш 0448	Щ	Ъ	Ы 0448	b	Э 0440	Ю 044Е	Я 044F
F	Nº 2116	ë 0451	ħ ₀₄₅₂	Ϋ́ 0453	€ 0454	S 0455	i 0456	Ϋ́ 0457	j 0458	Љ 0459	њ 045A	ħ 0458	Ќ 0450	§ 00A7	ў 045E	U 045F

E.3 Кодировка символов латинского и древнееврейского алфавитов приведена в таблице E.3.

ТаблицаЕ.3

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Ε	F
0		0001	0002	0003	0004	0005	0006	0007	0008	0009	000A	0008	000C	0000	000E	000F
1	0010	0011	0012	0013	0014	0015	0016	0017	0018	0019	001A	0018	001C	001D	001E	001F
2	0020	0021	0022	# 0023	\$ 0024	% 0025	& 0026	0027	(0028)	* 002A	+	90000	- 0020	• 002E	/ 002F
3	0	1 0031	2	3	4	5	6	7	8	9	003A	9 0038	<	= 0030	> 003E	? 003F
4	@	A	B 0042	C 0043	D	E 0045	F 0046	G	H 0048	I 0049	J	K 0048	L	M	N 004E	O 004F
5	P	Q	R	S 0063	T	U	V 0056	W 0067	X 0058	Y 0059	Z	[0058	0060]	∧ 005€	
6	0060	a 0061	p 0065	C 0063	d	e 0085	f	g	h	i	j	k	0060	m	n 006E	O
7	p	q	r 0072	S 0073	t 0074	u 0075	V 0076	W	X	y	Z	{ 0078	007C	}	~ 007E	007F
8	080	0081	0082	0083	0084	0085	0086	0087	0088	0089	008A	0088	008C	008D	008E	008F
9	0090	0091	0092	0093	0094	0095	0096	0097	0098	0099	009A	0098	009C	0090	009E	009F
Α	00A0		¢ 00A2	£	¤	¥ 00A5	I I 00A6	§ 00A7	•• 00A8	© 00A9	X 0007	≪ 00AB	- 00AC	- 00AD	® OOAE	203E
В	0080	± 0081	2	3 0083	0084	μ	¶ ∞ee	2022	3 0088	1 0089	÷	>> 0088	1/4 0080	1/2 008D	3/4 008E	
С																
D																2017
Ε	X	<u>ء</u> ۵۵۵۵	λ	7 0500	٦ 6504	1 0505	7 05D6	0507	U OSD8) 0509	7 OSDA) 0508	خ ‱	0500	۵ ۵۵۵۶] 05DF
F) oseo	D 05E1	y	أ	<u>ඛ</u>	Poses	2 ∞ee	ح 05E7	٦ 05E8	บ osea	OSEA					

Библиография

- ETSI TS 126 267 [1] Группа технических спецификаций услуги и (3GPPTS 26.267) системные аспекты; передача данных экстренном вызове (eCall); тональный модем; 8 общее описание, издание (Technical Specification Group Services and System Aspects; eCall Data Transfer; In-band modem solution; General description, Release 8)
- [2] GSM 03.38 Правила кодирования: структура алфавитов и (ETS 300 628) языков, используемых при передаче сервиса коротких сообщений. (Digital cellular telecommunication system (Phase 2); Alphabets and language-specific information)
- [3] GSM 03.40 (ETS Правила отправки и приема сервиса коротких 300 536) сообщений. (Digital cellular telecommunication system (Phase 2)
- [4] Российская система и план нумерации (утверждены приказом Министерства информационных технологий и связи Российской Федерации от 17 ноября 2006 г. N 142)
- [5] Технический регламент о безопасности колесных транспортных средств (утвержден постановлением Правительства Российской Федерации от 10 сентября 2009 года № 720)

УДК 656.13:004 ОКС 33.020

Ключевые автомобильная слова: система вызова экстренных оперативных служб, дорожно-транспортное происшествие, маршрутизация, минимальный набор данных, протокол уровня поддержки услуг, протокол транспортного уровня, система экстренного реагирования «ЭРА-ГЛОНАСС», авариях экстренный при вызов, экстренная оперативная служба, экстренное сообщение