Parcial 3 - Lenguajes 2020

- 1. Sea $\Sigma=\{\#,\$\}$, sean $L_1,L_2\subseteq\Sigma^*$ conjuntos Σ -r.e., y supongamos que $\varepsilon\in L_1\cap L_2$. Pruebe que $L_1\cap L_2$ es Σ -r.e.
- 2. Sea $\Sigma=\{\#,\$\}$ y sea $\mathcal{P}_0\in {\rm Pro}^\Sigma$ tal que $\Psi^{0,1,\#}_{\mathcal{P}_0}(\varepsilon)=0.$ Sea

$$L := \{ \alpha \in \Sigma^* : \Psi^{0,1,\#}_{\mathcal{P}_0}(\alpha) \text{ es par} \}.$$

Dar un programa $\mathcal{Q}\in \mathrm{Pro}^{\Sigma}$ tal que $\mathrm{Dom}\Psi^{1,0,*}_{\mathcal{Q}}=\omega$ e $\mathrm{Im}\Psi^{1,0,*}_{\mathcal{Q}}=L$.

Para cada macro usado dar el predicado o la función Σ -computable asociada dependiendo si es un macro de tipo IF o de asignación.