Lab 13-2: Image Captioning

Datalab

2021

Outline

- Encoder-Decoder model
- Attention-based
- Assignment

Outline

- Encoder-Decoder model
- Attention-based
- Assignment

- Lab13-1 Neural Machine Translation
 - Encoder RNN: reads the source sentence and transforms it into a rich fixedlength vector representation
 - Decoder RNN: uses the representation as the initial hidden state and generates the target sentence

- Image Captioning
 - Encoder CNN: reads the images and transforms it into a rich fixed-length vector representation
 - Decoder RNN: uses the representation as the initial hidden state and generates the target sentence

• m-RNN (multimodal RNN)

- m-RNN (multimodal RNN)
 - The language model part learns the dense feature embedding for each word

- m-RNN (multimodal RNN)
 - The language model part learns the dense feature embedding for each word
 - The image part contains a deep CNN which extracts image features

- m-RNN (multimodal RNN)
 - The language model part learns the dense feature embedding for each word
 - The image part contains a deep CNN which extracts image features
 - The multimodal part connects the language model and the deep CNN together by a one-layer representation

• NIC

- A generative model based on a deep recurrent architecture that combines recent advances in computer vision and machine translation
- Uses a more powerful CNN in the encoder
- The image is only input once

Outline

- Encoder-Decoder model
- Attention-based
- Assignment

 Attention allows the model to focus on the relevant parts of the input sequence as needed

- Attention allows the model to focus on the relevant parts of the input sequence as needed
 - Show, Attend and Tell: Neural Image Caption Generation with Visual Attention

• First, extract the features from image

- First, extract the features from image
- We have a 8*8*2048 size feature map, the last layer has 8*8 pixel locations which corresponds to certain portion in image
- That means we have 64 pixel locations
- The model will then learn an attention over these locations

• The rest is similar to the neural machine translation task

Neural Machine Translation SEQUENCE TO SEQUENCE MODEL WITH ATTENTION

Outline

- Encoder-Decoder model
- Attention-based
- Assignment

CAPTCHA

- An acronym for "Completely Automated Public Turing test to tell Computers and Humans Apart"
- A type of challenge—response test used in computing to determine whether or not the user is human
- Prevents spam attacks and protects websites from bots

- reCAPTCHA
 - Establish that a computer user is human
 - Assist in the digitization of books or improve machine learning

- We are going to train a captcha recognizer in this lab
- Dataset
 - 140,000 CAPTCHAs

- Requirement
 - Use any model architectures you want
 - Design your own model architecture
 - The first 100,000 as training data, the next 20,000 as validation data, and the rest as testing data
 - Only if the whole word matches exactly does it count as correct
 - Predict the answer to the testing data and write them in a file
 - Testing accuracy should be at least 90%
- Please submit your code file and the answer file

- Requirement
 - Use any model architectures you want
 - Design your own model architecture
 - The first 100,000 as training data, the next 20,000 as validation d rest as testing data
 - Only if the whole word matches exactly does it count as correct
 - Predict the answer to the testing data and write them in a file
 - Testing accuracy should be at least 90%
- Please submit your code file and the answer file

```
thus
   WWW
a2 tied
   ids
   jam
a5
   Z00
   apple
   big
   lot
   above
```