1. The Cherlin-Hrushovski rank

Definable means "definable with parameters".

Definition 1.1. Let $D \subseteq \mathcal{M}$ be a definable set. We define *Cherlin-Hrushovski rank* of D, denoted $\mathsf{CH-rk}(D)$. First, we inductively define $\mathsf{CH-rk}(D) \geq n$ for $n \in \mathbb{N}$:

- (1) $\mathsf{CH}\text{-rk}(D) \geq 0$ if D is non-empty.
- (2) $\mathsf{CH-rk}(D) > 0$ if D is infinite. [In particular, if $\mathsf{CH-rk}(D) = 0$ then D is finite.]
- (3) For $n \in \mathbb{N}$, CH-rk $(D) \geq n+1$ if there exist definable sets D_1, D_2 and definable functions $\pi: D_1 \to D$ and $f: D_1 \to D_2$ such that:
 - (a) For all $d \in D$ we have CH-rk $(\pi^{-1}(d)) = 0$. [In particular, π is surjective and finite-to-one.]
 - (b) $\mathsf{CH-rk}(D_2) > 0$. [In particular, D_2 is infinite.]
 - (c) For all $d \in D_2$ we have $\mathsf{CH-rk}(f^{-1}(d)) \geq n$. [In particular, if $n \geq 0$, then f is also surjective.]

As is usual, $\mathsf{CH-rk}(D) = n$ if $\mathsf{CH-rk}(D) \ge n$ and $\mathsf{CH-rk}(D) \not \ge n+1$. If $\mathsf{CH-rk}(D) \ge n$ for all $n \in \mathbb{N}$ then we write $\mathsf{CH-rk}(D) = \infty$.

Remarks 1.2.

- (1) If \mathcal{M} is not \aleph_0 -categorical (in particular \aleph_0 -saturated), then CH-rk should be defined in a saturated model. This will not be an issue here, as we will only work in the \aleph_0 -categorical context.
- (2) The definition above can be applied either to \mathcal{M} or to \mathcal{M}^{eq} . When the distinction becomes significant, the following terminology will be used:
 - CH-rk calculated in \mathcal{M} will be referred to as *pre-rank*;
 - CH-rk calculated in \mathcal{M}^{eq} will be referred to simply as rank (somehow indicating that \mathcal{M}^{eq} is the right context to carry out these calculations).

To begin to understand this definition, we can imagine the simplifying scenario where we enforce that $D_1 = D$ and $\pi = \mathrm{id}$. With this additional assumption, the definition simply says that $\mathsf{CH-rk}(D) \geq n$ if there is a definable set D_2 and a definable function $f: D \to D_2$ whose fibres all have rank at least n. Equivalently, (again, assuming that $D_1 = D$ and $\pi = \mathrm{id}$) $\mathsf{CH-rk}(D) \geq n+1$ means that there is a uniformly definable partition[A partition of of the form $\{\phi(x,t): t \in E\}$, where E is a definable set.] of D into infinitely many parts of rank at least n.

The definition weakens this a little bit, since $\mathsf{CH-rk}(D) \geq n$ if there is a definable finite cover D' of D [A definable surjective map $\pi: D' \to D$ such that $\pi^{-1}(d)$ is finite for all $d \in D$.] with $\mathsf{CH-rk}(D') \geq n$.

The following example, from [Sim22], illustrates why this may be necessary:

Example 1.3. Let \mathcal{M} be an infinite set with no extra structure (so we are working in the language of pure equality). And let $D \subseteq \mathcal{M}^{eq}$ be the set of subsets of M of size 2 (naturally a definable set in \mathcal{M}^{eq} , as it is the quotient of the definable set $\{(a,b): a \neq b\}$ by the definable equivalence relation $(a,b) \sim (c,d) \iff \{a,b\} = \{c,d\}$). Then:

Claim 1.3.1. CH-rk(D) ≥ 2 .

Proof of Claim. First, we show that $\mathsf{CH-rk}(D) \geq 2$. Let $D_1 = \{(a,b) \in M^2 : a \neq b\}$, $D_2 = M$, $f: D_1 \to D_2$ the projection onto the first coordinate and $\pi_{\sim} : D_1 \to D$ the "selector function" for classes of the equivalence relation \sim (from above). Since D_2 is infinite and so is $f^{-1}(d)$ for all $d \in D_2$, this inequality follows. \blacksquare [In fact, $\mathsf{CH-rk}(D) = 2$, but one inequality suffices to make the point I want to make, and this note is already getting out of hand.]

Claim 1.3.2. Let D' be an infinite definable subset of \mathcal{M}^{eq} and $f: D \to D'$ a definable map. Then f has finite fibres.

Proof of Claim. [The intuition is that we cannot definably choose an element from each member of D.]

Fix an infinite definable subset D' of \mathcal{M}^{eq} and suppose toward a contradiction that there is a definable map $f:D\to D'$ with infinite fibres. Observe that if for some $d\neq d'\in D'$ there are $\{a,b\}\in f^{-1}(d)$ and $\{a',b'\}\in f^{-1}(d')$ such that $|\{a,b\}\cap \{a',b'\}|=1$, then, as all elements in the same fibre are conjugates, this means that for all $\{a,b\}\in f^{-1}(d)$ and all $\{a',b'\}\in f^{-1}(d')$ we have that $|\{a,b\}\cap \{a',b'\}|=1$. This is easily seen to be impossible.

So any two distinct fibres of f must consist of pairs of elements of M with trivial intersection. But, of course, this means that f can have only one fibre, which is impossible.

[The point of the second claim is that if we enforce in the definition that $D_1 = D$ and $\pi = \mathrm{id}$, then the rank of D would be 1.]

We now give two more examples with computations of CH-rk. These are lifted from [Wol20].

Example 1.4. Let $\mathcal{L} = \{E_1, E_2\}$ be a language with two binary relation symbols and \mathcal{M} an \mathcal{L} -structure in which E_1 , E_2 are both equivalence relations with infinitely many infinite classes, so that each E_1 -class is refined by infinitely many E_2 -classes.

- Let D be an E_2 -class. By definition $\mathsf{CH-rk}(D) \geq 0$, since D is infinite. Of course, there is no partition of D into infinitely many infinite sets
- The rank of an E_1 class in \mathcal{M} is 2.
- The rank of \mathcal{M} is 3.

In each case, it is easy to see why the rank is at least the given value. The other direction requires a bit more care.

The next example is also a continuation from the end of David's talk:

Example 1.5 ([CH02, Example 2.1.11]). Let $\mathcal{L} = \{0, +\}$ and p a fixed prime. Let $A = \bigoplus_{n \in \omega} \mathbb{Z}/p^2\mathbb{Z}$, i.e.

 $\mathsf{dom}(\mathcal{M}) = \{(a_i)_{i \in \omega} : a_i \in \mathbb{Z}/p^2\mathbb{Z}, \text{ and } a_i = 0 \text{ for all but finitely many } i \in \omega\}.$

This is, of course, a countable \aleph_0 -categorical structure.

Recall that, for $a \in A$ we write pa for $\underbrace{a + \cdots + a}_{p \text{ times}}$. We write A[p] for the subgroup

of A consisting of p-th powers, or, equivalently of all the elements of A of order p:

$$A[p] := \{ a \in A : pa = 0 \}.$$

This is an \mathbb{F}_p -vector space of infinite dimension, and we shall denote its projectivisation by J_0 , so

$$J_0 = A[p] \setminus \{0\} / \sim$$

where $a \sim b$ if, and only if a = rb for some $r \in \mathbb{F}_p$. For $c \in A$ we will write A_c for the set $\{a \in A : pa = c\}$. We Lie coordinatised this structures, resulting in a tree of height 4. The calculations in [Wol20] give us:

$$\mathsf{CH}\text{-rk}(A) = 2.$$

(More precisely, $\mathsf{CH-rk}(A_c) = 1$, for all $c \in A$ and $\mathsf{CH-rk}(J_0) = 1$.)

The examples above are special cases of Corollary 1.27

1.1. **The very basics.** We start by listing some of the most basic properties of CH-rk.

Lemma 1.6 (Lemma 2.2.2(1)). Let $D \subseteq \mathcal{M}$ be a definable set. Then $\mathsf{CH}\text{-rk}(D) = 0$ if, and only if D is finite.

Proof. It suffices to show that if D is finite, then $\mathsf{CH-rk}(D) \not\geq 1$. Suppose not. Then, by definition, there is a definable set D_1 , an infinite definable set D_2 , a surjective map $f: D_1 \to D_2$ (since $\mathsf{CH-rk}(f^{-1}(d)) \geq 0$, for all $d \in D_2$) and a surjective finite-to-one map $\pi: D_1 \to D$. But, it is clear that D_1 is also infinite, and hence D must be infinite, a contradiction.

Lemma 1.7 (Lemma 2.2.2(2)). Let A, B be definable sets. If $A \subseteq B$ then $\mathsf{CH-rk}(A) \leq \mathsf{CH-rk}(B)$.

Proof. Formally we prove, by induction on $n \in \mathbb{N}$, that, for definable sets A, B, if $A \subseteq B$ and $\operatorname{CH-rk}(A) \ge n$ then $\operatorname{CH-rk}(B) \ge n$. The base case (n=0) is trivial. For the inductive step, suppose that the result holds for definable sets of rank at least n and $\operatorname{CH-rk}(A) \ge n+1$. By definition, there exist definable sets D_1, D_2 and definable functions $\pi: D_1 \to A$, and $f: D_1 \to D_2$, such that: D_2 is infinite; $\operatorname{CH-rk}(\pi^{-1}(d)) = 0$ for all $d \in D_1$; and $\operatorname{CH-rk}(f^{-1}(d)) \ge n$, for all $d \in D_2$.

Without loss of generality, we may assume that D_1 and B are disjoint (e.g. by appending a new fixed coordinate to all elements of D_1). Let $D'_1 = D_1 \sqcup (B \setminus A)$, pick a point $d_* \in D_2$ and define:

$$g: D_1' \to D_2$$

$$d \mapsto \begin{cases} f(d) & \text{if } d \in D_1 \\ d_{\star} & \text{otherwise.} \end{cases}$$

and

$$\pi': D_1' \to B$$

$$d \mapsto \begin{cases} \pi(d) & \text{if } d \in D_1 \\ d & \text{otherwise.} \end{cases}$$

Clearly, for each $d \in D_2$ we have $g^{-1}(d) \subseteq f^{-1}(d)$. Since $\mathsf{CH-rk}\left(f^{-1}(d)\right) \geq n$, by inductive hypothesis, $\mathsf{CH-rk}\left(g^{-1}(d)\right) \geq n$. Thus, by definition, we have that $\mathsf{CH-rk}(B) \geq n + 1$, as required.

Lemma 1.8 (Remark in the proof of Lemma 2.2.2). Let A and B be definable sets. Then:

$$\mathsf{CH-rk}(A \cup B) = \max\{\mathsf{CH-rk}(A), \mathsf{CH-rk}(B)\}.$$

Proof. It is clear form Lemma 1.7 that $\max\{\mathsf{CH-rk}(A),\mathsf{CH-rk}(B)\} \leq \mathsf{CH-rk}(A \cup B)$. For the inequality $\mathsf{CH-rk}(A \cup B) \leq \max\{\mathsf{CH-rk}(A),\mathsf{CH-rk}(B)\}$, we start by observing that it suffices to prove it when A and B are disjoint. Indeed, once we have proved it for two disjoint sets, we can immediately generalise it by induction to unions of n disjoint sets. Then, clearly:

$$\begin{aligned} \mathsf{CH-rk}(A \cup B) &\leq \max\{\mathsf{CH-rk}(A \setminus (A \cap B)), \mathsf{CH-rk}(B \setminus (A \cap B)), \mathsf{CH-rk}(A \cap B)\} \\ &\leq \max\{\mathsf{CH-rk}(A), \mathsf{CH-rk}(B)\}, \end{aligned}$$

where the last inequality follows immediately from Lemma 1.7.

Let $n \in \mathbb{N}$ be arbitrary and suppose that A and B are disjoint sets and $\mathsf{CH-rk}(A \cup B) \geq n+1$ (the case n=0 is trivial). The result will follow almost immediately from the definition and the pigeonhole principle. Explicitly, if $\mathsf{CH-rk}(A \cup B) \geq n+1$, then, there are definable sets D_1, D_2 and surjective definable maps $\pi: D_1 \to D$ and $f: D_1 \to D_2$ such that D_2 is infinite, $\pi^{-1}(d)$ is finite, for all $d \in D$ and

 $\mathsf{CH-rk}(f^{-1}(d)) \geq n$, for all $d \in D_2$. We may partition D_2 into two disjoint definable sets, as follows:

$$D_2 = \{ d \in D_2 : \pi(f^{-1}(d)) \in A \} \sqcup \{ d \in D_2 : \pi(f^{-1}(d)) \in B \}.$$

At most one of these sets is finite, by the pigeonhole principle, and thus at least one of CH-rk(A) or CH-rk(B) must be greater than n+1.

1.2. Ranks of elements.

Definition 1.9. Let $a \in \mathcal{M}$ and $B \subseteq \mathcal{M}$. The Cherlin-Hrushovski rank of a over B, denoted CH-rk(a/B), is:

$$\mathsf{CH-rk}(a/B) := \min\{\mathsf{CH-rk}(D) : D \in \mathsf{tp}(a/B)\}.$$

Remark 1.10. Let \mathcal{M} be an \aleph_0 -categorical structure $a \in \mathcal{M}$ and $B \subseteq \mathcal{M}$ a finite subset. Then, there is a smallest B-definable subset of \mathcal{M} containing a. [By \aleph_0 -categoricity of \mathcal{M} and finiteness of B there are only finitely many B-definable subsets, up to equivalence. Finite lattices have minimal elements.]

Thus, the following is well-defined:

Definition 1.11. Let \mathcal{M} be an \aleph_0 -categorical structure $a \in \mathcal{M}$ and $B \subseteq \mathcal{M}$ a finite subset. The *locus of a over B* is the smallest *B*-definable subset containing a.

In particular:

Remark 1.12. Let \mathcal{M} be \aleph_0 -categorical, $a \in \mathcal{M}$ and $B \subseteq \mathcal{M}$ a finite set. Then $\mathsf{CH-rk}(a/B)$ is precisely the rank of the locus of a over B.

We may now translate the results of the previous subsection, in the context of ranks of elements:

Lemma 1.13 (Lemma 2.2.2(1') and (2")). Let $a \in \mathcal{M}$ and $B, B_1, B_2 \subseteq \mathcal{M}$. Then:

- (1) $\mathsf{CH}\text{-rk}(a/B) = 0$ if, and only if $a \in \mathsf{acl}(B)$.
- (2) If $B_1 \subseteq B_2$ then $\mathsf{CH-rk}(a/B_2) \le \mathsf{CH-rk}(a/B_1)$. [In the book, they say that this amounts to $D_1 \subseteq D_2 \implies \mathsf{CH-rk}(D_1) \le \mathsf{CH-rk}(D_2)$. I think it's just from the definition. Say $\mathsf{CH-rk}(a/B_1) = \mathsf{CH-rk}(D)$ for some B_1 -definable set D. Then D is also B_2 -definable, so $\mathsf{CH-rk}(a/B_2) \le \mathsf{CH-rk}(D) = \mathsf{CH-rk}(a/B_1)$.]

Lemma 1.14 (Extension Property, Lemma 2.2.2(2')). Let D be a non-empty B-definable set. Then, there is a complete type over B containing D and having the same rank.

Proof. The lemma follows easily from the fact that:

$$\mathsf{CH-rk}(A \cup B) = \max\{\mathsf{CH-rk}(A), \mathsf{CH-rk}(B)\}.$$

Let's actually go through the details:

Let D be B-definable. To fix notation, say D is given by $\phi(x, b_0)$ for some \mathcal{L} -formula $\phi(x, y)$ and some $b_0 \in B$. Now, let $\pi(x)$ be the following partial type:

$$\pi(x) = \{ \psi(x, b) \in \mathcal{L}(B) : \mathsf{CH-rk}(\phi(x, b_0) \land \neg \psi(x, b)) < \mathsf{CH-rk}(\phi(x, b_0)) \}.$$

Clearly $\phi(x, b_0) \in \pi(x)$. We claim that $\pi(x)$ is finitely consistent. Indeed, suppose that $\psi_1(x,b), \psi_2(x,b) \in \pi(x)$, and assume toward a contradiction that $\psi_1(x,b) \wedge \psi_2(x,b)$ is empty. By definition, then, $\mathsf{CH-rk}(\psi_1(x,b) \wedge \psi_2(x,b)) = 0$, but:

$$\mathsf{CH-rk}(\phi(x,b_0)) = \max \left\{ \begin{aligned} \mathsf{CH-rk}(\phi(x,b_0) \wedge \neg \psi_1(x,b)), \\ \mathsf{CH-rk}(\phi(x,b_0) \wedge \neg \psi_2(x,b)), \\ \mathsf{CH-rk}(\phi(x,b_0) \wedge \psi_1(x,b) \wedge \psi_2(x,b)) \end{aligned} \right\},$$

and by assumption, the RHS above is less than CH-rk($\phi(x, b_0)$), a contradiction. So, let p(x) extend $\pi(x)$ to a complete type over B.

To finish the proof, suppose that for some formula $\psi(x,b) \in p(x)$ we have that $\mathsf{CH-rk}(\psi(x,b)) < \mathsf{CH-rk}(\phi(x,b_0))$. Then $\mathsf{CH-rk}(\psi(x,b) \land \phi(x,b_0)) < \mathsf{CH-rk}(\phi(x,b_0))$, so $\neg \psi(x,b) \in p(x)$, a contradiction.

1.3. **The not so very basics.** The next lemma is a useful tool for computing ranks. We will repeatedly use it in the proof of 'additivity' (Proposition 1.17):

Lemma 1.15 (Lemma 2.2.3). Let \mathcal{M} be \aleph_0 -categorical. Then, the following are equivalent:

- (1) CH-rk $(a/b) \ge n + 1$.
- (2) There are a', c with $a' \in \operatorname{acl}(abc) \setminus \operatorname{acl}(bc)$, and $\operatorname{CH-rk}(a/a'bc) \geq n$

Remark 1.16. Observe, for instance, that by the lemma above, the following are equivalent:

- (1) CH-rk(a) = 1.
- (2) There are a', c with $a' \in \operatorname{acl}(ac) \setminus \operatorname{acl}(c)$ such that $a \in D$, for some a'c-definable D, and for all a', c with $a' \in \operatorname{acl}(ac) \setminus \operatorname{acl}(c)$ we have $a \in \operatorname{acl}(a'c)$.

Proof. For the entirety of the proof, let D be the locus of a over b. [The point being that if $a, \alpha \in D$ then $a \equiv_b \alpha$. Indeed, suppose toward a contradiction that $\alpha \in D$ and there is some b-definable set D' such that $\alpha \in D'$, but $a \notin D'$. Then, the locus of a should have been $D \cap (\neg D')$. Thus by the locus of a over b we essentially mean the formula isolating $\operatorname{tp}(a/b)$.]

(1) \Rightarrow (2) . By definition, CH-rk(a/B) = CH-rk(D). Let D_1, D_2, π and f witness that CH-rk(D) $\geq n+1$. Let $c \in \mathcal{M}$ be a finite tuple such that D_1, D_2, π and f are all c-definable. By \aleph_0 -categoricity, it follows that $D_2 \setminus \operatorname{acl}(bc) \neq \emptyset$, since D_2 is infinite.

[The algebraic closure of finite sets in \aleph_0 -categorical structures is finte.]

So, we may pick some $a' \in D_2 \setminus \operatorname{acl}(bc)$. We know that $\operatorname{CH-rk}(f^{-1}(a')) \geq n$, by assumption, and since $f^{-1}(a')$ is a'bc-definable, by the Extension Property (Lemma 1.14) and ω -saturation, we can find some $a_1 \in f^{-1}(a')$ such that $\operatorname{CH-rk}(a_1/a'bc) = \operatorname{CH-rk}(f^{-1}(a'))$. Now, to finish the proof, let $a_0 = \pi(a_1)$. It is easy to see that $a' \in \operatorname{acl}(a_0bc)$, since the fibre of π above a_0 is an algebraic set.

Claim 1.16.1. CH-rk $(a_0/a'bc) \ge n$.

Proof of Claim. We know that $\mathsf{CH-rk}(a_1/a'bc) \geq n$. Let A_1 be the locus of a_1 over a'bc and A_0 the locus of a_2 over a'bc. Clearly π is a finite-to-one map from A_1 to A_0 , so the claim follows.

Now, to finish the proof, since $a_0 \in D$, we have that $\operatorname{tp}(a_0/b) = \operatorname{tp}(a/b)$. By strong ω -homogeneity there is an automorphism σ taking a_0 to a. But then we are done, after replacing a' by $\sigma(a')$ and c by $\sigma(c)$.

 $(2) \Rightarrow (1)$ Suppose that there are a' and c as in (2). Let D_1 be the set:

$$\{(x,y): \operatorname{tp}(xy/bc) = \operatorname{tp}(aa'/bc)\}$$

[This is definable, because \mathcal{M} is \aleph_0 -categorical, and types over finite sets are isolated.]

Let f be the projection of D_1 onto the second coordinate and take D_2 to be $f(D_1)$.

Claim 1.16.2. Let π be the projection of D_1 onto the first coordinate. Then $\pi(D_1) = D$.

Proof of Claim. Recall that D is the locus of a over b. Suppose first that $\alpha \in D$. In particular, this means that $\operatorname{tp}(a/b) = \operatorname{tp}(\alpha/b)$. By strong ω -homogeneity, there is an automorphism $\sigma \in \operatorname{Aut}(\mathcal{M}/bc)$ taking a to α . Taking $\alpha' = \sigma(a')$ gives us $\operatorname{tp}(\alpha\alpha') = \operatorname{tp}(aa'/bc)$, so $\alpha \in \pi(D_1)$. Conversely, suppose that $(\alpha, \alpha') \in D_1$, then, we claim that $\alpha \in D$. Since $\alpha \in D_1$, we have $a \equiv_b \alpha$, and thus $\alpha \in D_1$.

[The point of the assumption $a' \in \operatorname{acl}(abc) \setminus \operatorname{acl}(bc)$ is that the set D_2 is infinite and that the fibre in D_1 above any $d \in D$ is finite.]

To finish the proof, it remains to show that for all $d \in D_2$ we have $\mathsf{CH-rk}\left(f^{-1}(d)\right) \geq n$.

Claim 1.16.3. CH-rk
$$(f^{-1}(a')) \ge n$$

Proof of Claim. By assumption, we have $\mathsf{CH-rk}(a/a'bc) \geq n$. So, by definition, the locus of a over a'bc has rank at least n.

Finally, observe that all fibres of f are conjugates under automorphisms, so we are done.

Proposition 1.17 (Lemma 2.2.4). Let \mathcal{M} be \aleph_0 -categorical. If CH-rk(a/bc) and CH-rk(b/c) are finite then:

$$\mathsf{CH}\text{-rk}(ab/c) = \mathsf{CH}\text{-rk}(a/bc) + \mathsf{CH}\text{-rk}(b/c).$$

Proof. The proof is by induction on the $n = \mathsf{CH-rk}(a/bc) + \mathsf{CH-rk}(b/c)$. The base case is trivial. Indeed, if $\mathsf{CH-rk}(a/bc) + \mathsf{CH-rk}(b/c) = 0$, then $\mathsf{CH-rk}(a/bc) = 0$, so $a \in \mathsf{acl}(bc)$ and $\mathsf{CH-rk}(b/c) = 0$, so $b \in \mathsf{acl}(c)$. Combining the two conclusions, we obtain that $a \in \mathsf{acl}(b)$, so $a, b \in \mathsf{acl}(c)$ and thus $\mathsf{CH-rk}(ab/c) = 0$.

Now, for the inductive step. First, we shall show the inequality $\mathsf{CH-rk}(ab/c) \leq n$. To this end, pick some d such that $\mathsf{acl}(abcd) \setminus \mathsf{acl}(abc) \neq \emptyset$ and let $e \in \mathsf{acl}(abcd) \setminus \mathsf{acl}(cd)$. By Lemma 1.15, it suffices to show that $\mathsf{CH-rk}(ab/cde) < n$. Explicitly, our inductive hypothesis will give us the following:

(IH) If
$$\mathsf{CH}\text{-rk}(a/bcde) + \mathsf{CH}\text{-rk}(b/cde) < n$$
 then:

$$\mathsf{CH-rk}(ab/cde) = \mathsf{CH-rk}(a/bcde) + \mathsf{CH-rk}(b/cde).$$

At this point, there are two cases to consider:

• <u>Case 1</u>: If $e \notin \operatorname{acl}(bcd)$, then $e \in \operatorname{acl}(abcd) \setminus \operatorname{acl}(bcd)$. In this case, we claim that CH-rk(a/bcde) < CH-rk(a/bc) ≤ n. Indeed, assume toward a contradiction that CH-rk(a/bcde) = CH-rk(a/bc). Now, applying Lemma 1.15, we see that we have found d, e with $e \in \operatorname{acl}(abcd) \setminus \operatorname{acl}(bcd)$ and CH-rk(a/bcde) ≥ n. Thus CH-rk(a/bc) ≥ CH-rk(a/bc) + 1, which is, of course, a contradiction. Thus CH-rk(a/bcde) < CH-rk(a/bc). We always have that CH-rk(b/cde) ≤ CH-rk(b/cde), so

$$\mathsf{CH-rk}(a/bcde) + \mathsf{CH-rk}(b/cde) < \mathsf{CH-rk}(a/bc) + \mathsf{CH-rk}(b/c) = n,$$

and, by (IH) we obtain:

$$\mathsf{CH-rk}(ab/cde) = \mathsf{CH-rk}(a/bcde) + \mathsf{CH-rk}(b/cde) < n,$$

as required.

• <u>Case 2</u>: If $e \in \operatorname{acl}(bcd)$, then $e \in \operatorname{acl}(bcd) \setminus \operatorname{acl}(cd)$. In this case, we claim that $\operatorname{CH-rk}(b/cde) < \operatorname{CH-rk}(b/cd)$. The argument is similar. If not, then we have that $\operatorname{CH-rk}(b/cde) = \operatorname{CH-rk}(b/cd)$, and again, we have found d, e such that $e \in \operatorname{acl}(bcd) \setminus \operatorname{acl}(cd)$. So again by Lemma 1.15 we can conclude that $\operatorname{CH-rk}(b/cd) \ge \operatorname{CH-rk}(b/cd) + 1$, which is a contradiction. We again conclude by (IH) exactly as in the previous case.

It remains to show the inequality $\mathsf{CH-rk}(ab/c) \geq n$. Observe, first, that if $\mathsf{CH-rk}(b/c) = 0$ then:

$$\mathsf{CH-rk}(ab/c) \ge \mathsf{CH-rk}(a/c) \ge \mathsf{CH-rk}(a/bc) = n,$$

and we are done.

[The first inequality holds because the locus of ab over c certainly contains the locus of a over c.]

Thus, we may assume that $\mathsf{CH}\text{-rk}(b/c) > 0$. By Lemma 1.15 it suffices to find some b', d such that $binacl(bcd) \setminus \mathsf{acl}(cd)$ and $\mathsf{CH}\text{-rk}(ab/b'cd) \ge n-1$, for then we have $\mathsf{CH}\text{-rk}(ab/c) \ge n$.

To this end, pick b',d such that $b'\in \mathsf{acl}(bcd)\setminus \mathsf{acl}(cd)$ and $\mathsf{CH-rk}(b/b'cd)=\mathsf{CH-rk}(b/c)-1$.

[Such elements exist precisely by Lemma 1.15.]

To finish the proof, by Lemma 1.15 it suffices to show that $\mathsf{CH-rk}(ab/b'cd) \geq n-1$. By the Extension Property (Lemma 1.14) we may assume that $\mathsf{CH-rk}(a/bb'cd) = \mathsf{CH-rk}(a/bc)$.

[The point is that the locus D of a over bc is, of course, definable over $\{b,b',c,d\}$, thus, by ω -saturation we can find an element $a_{\star} \in D$, such that $\mathsf{CH-rk}(a_{\star}/bb'cd) = \mathsf{CH-rk}(D) = \mathsf{CH-rk}(a/bc)$. By strong ω -homogeneity, we can find an automorphism σ which fixes b and c sending a_{\star} to a. Replacing d and b', by their images under σ the claimed equality holds. Of course, since σ fixes b and c, the previous conditions on b' and d are still true.]

Thus: $\mathsf{CH-rk}(a/bb'cd) + \mathsf{CH-rk}(b/b'cd) = n-1,$

so, in particular, by (IH) we have that:

$$\mathsf{CH-rk}(ab/b'cd) = \mathsf{CH-rk}(a/bb'cd) + \mathsf{CH-rk}(b/b'cd) < n,$$

and the result follows.

Corollary 1.18 (Corollary 2.2.5). If CH-rk(D) = 1, then acl defines a pregeometry on D.

Proof. For notational convenience, throughout this proof we will write $\operatorname{acl}(-)$ to mean $\operatorname{acl}(-) \cap D$. We must show that for all singletons $a, b \in D$ and finite tuples c from D we have that:

$$a \in \operatorname{acl}(bc) \setminus \operatorname{acl}(c) \implies b \in \operatorname{acl}(ac).$$

Let a, b and c satisfy the antecedent of the implication above. We know that

$$\mathsf{CH-rk}(ab/c) = \mathsf{CH-rk}(b/ac) + \mathsf{CH-rk}(a/c)$$

and we wish to show that $\mathsf{CH-rk}(b/ac) = 0$. Thus, it suffices to show that $\mathsf{CH-rk}(ab/c) = \mathsf{CH-rk}(a/c)$. Since $a \not\in \mathsf{acl}(c)$ we must have that $\mathsf{CH-rk}(a/c) \ge 1$, and since $\mathsf{CH-rk}(a) = 1$, we must have that $\mathsf{CH-rk}(a/c) = 1$. Similarly, $\mathsf{CH-rk}(ab/c) = 1$, and we are done.

Definition 1.19. We say that a and b are independent over C, written $a \downarrow_C^{\mathsf{ch}} b$ if:

$$\mathsf{CH}\text{-rk}(a/bC) = \mathsf{CH}\text{-rk}(a/C) + \mathsf{CH}\text{-rk}(b/C).$$

Remark 1.20. Equivalently, $a \downarrow_C^{\mathsf{ch}} b$ if, and only if, $\mathsf{CH-rk}(a/bC) = \mathsf{CH-rk}(a/C)$.

We collect here some of the properties of \bigcup^{ch} :

Lemma 1.21 (Lemma 2.2.7). The independence relation \bigcup ^{ch} satisfies the following properties:

(1) Symmetry:
$$a \downarrow_E^{\mathsf{ch}} b \iff b \downarrow_E^{\mathsf{ch}} a$$
.

- (2) Monotonicity: $a \downarrow_E^{\mathsf{ch}} bc \implies a \downarrow_E^{\mathsf{ch}} b$.
- (3) Base Monotonicity: For $E \subseteq F \subseteq G$ we have $a \downarrow_E^{\mathsf{ch}} F \implies a \downarrow_B^{\mathsf{ch}} F$.
- (4) Transitivity:
- (5) If $a \in \operatorname{acl}(bC)$ then $a \downarrow_C^{\operatorname{ch}} b \iff a \in \operatorname{acl}(C)$.

Remark 1.22. The conjunction of properties (2) - (4) above are equivalent to the following equivalence:

$$a \stackrel{\mathsf{ch}}{\underset{E}{\bigcup}} bc \iff a \stackrel{\mathsf{ch}}{\underset{Ec}{\bigcup}} b \text{ and } a \stackrel{\mathsf{ch}}{\underset{E}{\bigcup}} c$$

Proof.

(1) Symmetry: Suppose that $a \downarrow_E^{\mathsf{ch}} b$. Then, by definition, we have that:

$$\mathsf{CH} ext{-rk}(a/bC) = \mathsf{CH} ext{-rk}(a/C)$$

By Proposition 1.17 we know that:

$$\mathsf{CH-rk}(a/bC) + \mathsf{CH-rk}(b/C) = \mathsf{CH-rk}(b/aC) + \mathsf{CH-rk}(a/C).$$

and thus $\mathsf{CH}\text{-rk}(b/C) = \mathsf{CH}\text{-rk}(b/aC)$.

(2) Monotonicity, Base Monotonicity, and Transitivity: We show the equivalent equivalence. Suppose first that $a \, \, \bigcup_E^{\mathsf{ch}} bc$. By definition, we have that:

$$\mathsf{CH}\text{-rk}(a/bcE) = \mathsf{CH}\text{-rk}(a/E)$$

We must show that $a \downarrow_E^{\mathsf{ch}} cb$, i.e. that $\mathsf{CH}\text{-rk}(a/bcE) = \mathsf{CH}\text{-rk}(a/cE)$ and $a \downarrow_E^{\mathsf{ch}} c$, i.e. that $\mathsf{CH}\text{-rk}(a/cE) = \mathsf{CH}\text{-rk}(a/E)$. Both of these follow immediately, since:

$$\mathsf{CH}\text{-}\mathsf{rk}(a/bcE) \leq \mathsf{CH}\text{-}\mathsf{rk}(a/cE) \leq \mathsf{CH}\text{-}\mathsf{rk}(a/E),$$

and

$$\mathsf{CH}\text{-}\mathsf{rk}(a/E) \geq \mathsf{CH}\text{-}\mathsf{rk}(a/cE) \geq \mathsf{CH}\text{-}\mathsf{rk}(a/bcE).$$

Conversely, by symmetry we have that $\mathsf{CH-rk}(b/acE) = \mathsf{CH-rk}(b/cE)$ and $\mathsf{CH-rk}(c/aE) = \mathsf{CH-rk}(c/E)$. Then:

$$\begin{split} \mathsf{CH-rk}(abc/E) &= \mathsf{CH-rk}(b/acE) + \mathsf{CH-rk}(c/aE) + \mathsf{CH-rk}(a/E) \\ &= \mathsf{CH-rk}(a/E) + \mathsf{CH-rk}(b/E) + \mathsf{CH-rk}(c/E), \end{split}$$

and we are done.

(3) Suppose that $a\in \operatorname{acl}(bC)$, so $\operatorname{CH-rk}(a/bC)=0$. First, we show that if $a\downarrow^{\operatorname{ch}}_C b$ then $a\in\operatorname{acl}(C)$. Indeed, if $\operatorname{CH-rk}(a/bC)=\operatorname{CH-rk}(a/C)$, it follows that $\operatorname{CH-rk}(a/C)=0$, so $a\in\operatorname{acl}(C)$. Conversely, suppose that $a\in\operatorname{acl}(C)$. Then $\operatorname{CH-rk}(a/C)=0$, so $\operatorname{CH-rk}(a/C)=0=\operatorname{CH-rk}(a/bC)$ and thus $a\downarrow^{\operatorname{ch}}_C b$.

1.4. ... And geometries. Brief reminder (from Paolo's talk):

Definition 1.23 ((Weak) Linear Geometries). A weak linear geometry is one of the following six (types) of structures.

- (1) A Degenerate Space
- (2) A Pure Vector Space
- (3) A Polar Space
- (4) An Inner Product Space
- (5) An Orthogonal Space
- (6) A Quadratic Space

A linear geometry is a weak linear geometry \mathcal{M} expanded by a set of algebraic constants in \mathcal{M}^{eq} , i.e. expanded by adding to the language a subset of $\operatorname{acl}^{eq}(\emptyset)$.

These are the building blocks of the following kinds of geometries:

Definition 1.24.

- (1) An unoriented weak linear geometry a weak linear geometry of type (1)-(5) or a reduct of a QUADRATIC SPACE in which we have forgotten the Witt defect function.
- (2) A basic linear geometry is a linear geometry with the elements of K and L named by constants, and in the case of a Polar Space, the two vector spaces V and W named by unary predicates.
- (3) A projective geometry is a structure obtained by a linear geometry by factoring out the equivalence relation $\operatorname{acl}(x) = \operatorname{acl}(y)$.
- (4) An affine geometry is a pair (J, A), consisting of a linear geometry J with underlying vector space V (one of the two vector spaces in the Polar Space case), and a definable subset A on which V acts definably and regularly, where J carries its given structure and A.

Lemma 1.25 (Lemma 2.2.10). The linear, affine, and projective geometries are all of pre-rank 1.

Proof. "Do them one-by-one, using QE, if you don't trust their proof."

Definition 1.26. A structure \mathcal{M} is *Lie coordinatised* if it admits a tree structure < of finite height (where < is an invariant partial order) with a unique 0-definable root such that:

- (1) Coordinatisation: For all $a \in M$ above the root, one of the following holds: (A) a is algebraic over its <-predecessor. OR
 - (B) There is b < a and a b-definable projective geometry J_b , fully embedded in \mathcal{M} such that either:
 - (i) $a \in J_b$, or
 - (ii) There is some $c \in M$ such that b < c < a and a c-definable affine or quadratic geometry (J_c, A_c) such that $a \in A_c$ and the projectivisation of J_c is J_b .
- (2) Orientation: If $a, b \in M$ have the same type over \emptyset and are associated with coorinatising quadratic geometries J_a , J_b , then any definable map between them which preserves everything other than w also preserves w.

We say that \mathcal{M} is $Lie\ coordinatisable$ if it is interpretable with a structure \mathcal{N} with finitely many 1-types over \emptyset which is Lie coordinatised.

Corollary 1.27 (Corollary 2.2.11). If \mathcal{M} is Lie coordinatisable then \mathcal{M} has finite rank, at most the height of the coordination tree.

Proof. [Idea:Every time we meet a geometry the rank goes up by 1. The algebraic steps don't increase the rank.] \Box

Corollary 1.28. Let J be a linear, projective, or affine geometry and a, b are finite tuples from J. If $acl(a) \cap acl(b) = C$ then $a \cup_C^{ch} b$. So J is one-based.

2. More Cherlin-Hrushovski ranks

Definition 2.1. Induction

- $\mathsf{CH}\text{-rk}_0(D) = \begin{cases} 0 & \text{if } D \text{ is finite} \\ \infty & \text{otherwise} \end{cases}$
- Let $\alpha \in \mathbf{Ord}$, and assume that $\mathsf{CH-rk}_{\beta}(D)$ has been defined for all $\beta < \alpha$. Then:
 - (1) $\mathsf{CH}\text{-rk}_{\alpha}(D) \geq 0$ if D is non-empty.

- (2) $\mathsf{CH}\text{-rk}_{\alpha}(D) > 0$ if $\mathsf{CH}\text{-rk}_{\beta}(D) = \infty$ for all $\beta < \alpha$.
- (3) For $n \in \mathbb{N}$, $\mathsf{CH-rk}_{\alpha}(D) \geq n+1$ if there exist definable sets D_1, D_2 and definable functions $\pi: D_1 \to D$ and $f: D_1 \to D_2$ such that:
 - (a) For all $d \in D$ we have $\mathsf{CH}\text{-rk}_{\alpha}\left(\pi^{-1}(d)\right) = 0$.
 - (b) CH-rk_{\alpha}(D₂) > 0.
 - (c) For all $d \in D_2$ we have $\mathsf{CH}\text{-rk}_{\alpha}(f^{-1}(d)) \geq n$.

TODO: Look at their pseudofinite example...

3. An alternative definition

In this section, we follow [Sim22, Section 2.4] rather closely. Diversions from that source will be indicated in red.

By a uniformly definable family $(X_t:t\in E)$ we mean that E is a definable set and there is a formula $\phi(x,y)$ such that, for each $t\in E$, the set X_t is precisely $\phi(x,t)$. Such a family is weakly k-inconsistent, for $k\in \mathbb{N}$, if whenever X_{t_1},\ldots,X_{t_k} are pairwise distinct members of the family then $\bigcap_{i\leq k}X_{t_i}=\emptyset$.

[A uniformly definable family $(X_t : t \in E)$ is called k-inconsistent, for $k \in \mathbb{N}$ if whenever t_1, \ldots, t_k are pairwise distinct then $\bigcap_{i \leq k} X_{t_i} = \emptyset$.]

Definition 3.1 ([Sim22, Definition 2.2]). Let D be a definable subset of \mathcal{M} (not \mathcal{M}^{eq}). We define p-rk(D) $\geq n$, by induction on $n \in \mathbb{N}$:

- $b\text{-rk}(D) \ge 0$ if D is consistent.
- b-rk(D) > 0 if D is infinite.
- $p\text{-rk}(D) \ge n+1$ if there is a uniformly definable weakly k-inconsistent family $(X_t: t \in E)$ of subsets of D, containing infinitely many pairwise distinct sets, such that $p\text{-rk}(X_t) \ge n$ for all $t \in E$.

Theorem 3.2. For any structure \mathcal{M} and any definable set $D \subseteq M^k$ not \mathcal{M}^{eq} we have that:

$$p$$
-rk $(D) = CH$ -rk (D) .

References

- [CH02] Gregory Cherlin and Ehud Hrushovski. Finite structures with few types. (AM-152), volume 152. en. Annals of Mathematics Studies. Princeton, NJ: Princeton University Press, 2002.
- [Sim22] Pierre Simon. 'NIP ω-categorical structures: The rank 1 case'. In: Proceedings of the London Mathematical Society 125.6 (2022), pp. 1253–1331. DOI: https://doi.org/10.1112/plms.12482. eprint: https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/plms.12482. URL: https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/plms.12482.
- [Wol20] Daniel Wolf. 'Multidimensional Exact Classes, Smooth Approximation and Bounded 4-types'. In: The Journal of Symbolic Logic 85.4 (2020), pp. 1305–1341. DOI: 10.1017/jsl.2020.37.

Aris Papadopoulos, School of Mathematics, University of Leeds, UK $Email\ address: mmadp@leeds.ac.uk$