Rotation of Rigid Body

[h Problem * 1: Advertise ment Board

We know: M, m, L, & cost, &, Tors

A. Prove that & should be & > & crit for the rope to not break! Determie the value of & crit!

T=0=-1M g t cos(& crit) -1mt cos(&crit) + T crit t sin & cirt Cos & crit =0

- 1 g cus (8 crit) (M+m) + T crit. Sin (6 crit) cus (6 crit) =0

- 1 g (M+m) = -T (rit Sin Garit

Sin & Crit = (M+m) g

sin-1 (M+m)g) = O crot

In order to prevent the rope from breaking, the value of θ has to be greater than θ crit. When the anggel is θ , it creak a new tension call T. The expression is

 $sin^{-1}\left(\underbrace{(M+m)g}\right) = \theta crit < \theta = sin^{-1}\left(\underbrace{(M+m)g}\right)$

]- XX+ FX - KMX - 4	
	B 2	
	$f = -F \times \pm KM\alpha$	
Translation:	ZF= m-a	
	F+ F = m-a	
	1 + 7 = 110 00	
	F-Fa+Kma=Ma	
	$F(1-\alpha) = n\alpha(1-k)$	
	$0 = \frac{F(1-a)}{M(1-k)}$	
	M(1-k)	
= Second con	ianation	
Rutation:	Tret = arad I	
	FXR-JR= KMR ¹ . a	
	<u> </u>	
	f = Fx -kma	
Traclation.	ZF = M-a	
ין טוינ זניטט זטין .		
	F-f = M.a	
	F-FX+KMa=Ma	
	$F(1-\alpha) = M\alpha(1-k)$	
	a = F (1-a)	

	$A = \frac{F(1-\alpha)}{M(1-k)}$ $A = \frac{F(1-\alpha)}{M(1-k)}$
B. Prove that F \(\sime\) Determine F max	Fmax, the yo-yo can roll without slip.
We know that	$f = Ms \cdot M \cdot g \leq F max$ $F \propto -KMa = MsMg \leq F max$ $Ma \propto -KMa = MsMg \leq F max$ $Ma(x - K) \leq F max$
into kinetik frich	the static friction is removed and change ion. Max, the yo-yo can roll without slipping
Problem & 3: R	Colliny Cylinder Wo M, I M, I

4 0 , ,	
4. Vefermine	the value of Vf, Wf, and St!
	Tret = a rad. [
	F.R=KMP-a P
	fg.R=KNRa
	Ms.M.g = KMa
ين ا	a = Msg
	arad = Msg
	KR
i Dales mire	the value of Vf
vepi jime	
	Vf= a. 4t
	= Mkg Dt
	- F /2
: Dolumine	the value of cuf
	CV f = ML g CLE
	K R
: Defermine	the value of 5t
Δ	$t = \frac{CUfKR}{Mkg}$ or $3t = \frac{VfK}{Mkg}$
	Mk 9
8 8 1	14 /ST1 00 40 40 40 40
	at UEk cm be express as
DEK	= $\eta \left(\frac{M \cos^2 R^2}{2} \right)$ and determine the value of $\eta $!

				ΔE	EK	5	η	(1	M (W0 ²	P2)	0	ind	l q	eter	₩ }٢	e	the	e vo	alve	σf	· γ	1				
							-			2													'					
		۲		1.					١																			
	•	t	negy	, [o	7 F	Co	ηι	∿ l(() h)e (expr	e(j	a,)														
				λī	C k	-	1	m	ſν	2-1	ر، ا)																
				0.1		_	2	•		1		,																
		S	o	he	pe	ed	H		get	50	me	e	j.vo	ility	} -													
													-							_								
				2 r	ν (, h	k g	· &t	-	. !	1 k	5	Įt —			7	η	(Y	1 4	/02	pr.)						
		ζι (, knoo	63.	_	ተ	_	1		r	th			. 1 •		04.0	1)											
			.0119	. 24	٠,	ιc	-anp	いて	p'	U0}	tb	e (Yve	<i>ሊ</i> ርነው	^	\\' /												
			Ţ	GeW	e	<u>ተ</u> ነ	ο Ca.	r	} 10	W٧	J wer	r :	ł	መ ረላ	Ma	h.												
			_)		υ ·	,(0.		1.4	01	J • •			(J	8												
			η	Z		Ŀ	_																					
			V			k-	l	11																				