

Отчёт о выполнении лабораторной работы № 1.1.4 (Измерение интенсивности радиационного фона)

Дмитренко Александр Михайлович (Б02-111) 7-21 сентября 2021 г. **Цель работы:** применение методов обработки экспериментальных данных для изучения статистических закономерностей при измерении интенсивности радиационного фона.

В работе используются: счётчик Гейгера-Мюллера (СТС-6), блок питания, компьтер с интерфейсом связи со счётчиком

1 Теоретические сведения

Из космоса, в основном из-за активности галактик, а не Солнца, на Землю падают первычные космические лучи (на 92 процента состоят из протонов). Поток этих частиц изотропен и не меняется со временем последние 35 тысяч лет. Основная характеристика потока - интенсивность $I = \frac{\text{число едениц}}{\text{см}^2 * \text{ср} * \text{с}}$ Обнаружить космические лучи можно по ионизации, которую они производят в разреженном газе. Для этого используют счётчик Гейгера-Мюллера (СТС-6).

1.1 Принцип работы установки:

Устройства счётчика: сосуд с газом с 2-мя электродами. Сосуд - это тонкостенный металлический цилиндр, стенки которого выполняют функцию катода(-). Анодом является тонкая нить вдоль оси цилиндра(+). В цилиндре поддерживается разность потенциалов $=400~\mathrm{B}$, которая определяется энергией ионизации газа в сосуде.

Пролетающая через счётчик частица выбивает из стенки электрон, который в свою очередь, ускоряясь в электрическом поле, выбивает из атомов газа вторичные электроны. Так образуется электроная лавина, и ток через счётчик резко увеличивается. За это короткое время происходит разрядка конденсатора C_1 . Время $\tau \propto RC_1$, за которое происходит разрядка и зарядка кондесатора C_1 , называют "временем разрешения счётчика". Это время в основном определяет погрешность прибора.

1.2 Основные формулы погрешностей:

$$\overline{n_1} = \frac{1}{N_1} \cdot \sum_{i=1}^{N_1} n_i \tag{1}$$

$$\sigma_{=}\sqrt{\overline{n}}\tag{2}$$

$$\sigma_{\text{отд}} = \sqrt{\frac{1}{N_1} \cdot \sum_{i=1}^{n} (n_i - \overline{n_1})^2}$$
(3)

$$\sigma_{\overline{n_1}} = \frac{\sigma_{\text{отд}}}{\sqrt{N_1}} = \frac{1}{N_1} \cdot \sqrt{\sum_{i=1}^n (n_i - \overline{n_1})^2}$$

$$\tag{4}$$

$$\varepsilon_{\overline{n}} = \frac{\sigma_{\overline{n}}}{\overline{n}} \cdot 100\% \tag{5}$$

2 Ход работы

- 1. Включаем компьютер. (Начинается измерение для основного эксперимента.)
- 2. В результате демонстрационного эксперимента убеждаемся, что:
 - 1) Число частиц, обнаруженных за единицу времени, флуктуирует;
 - 2) Флуктации среднего значения измеряемой величины уменьшаются, и среднее значение выходит на постоянную величину;
 - 3) Флуктауции величины погрешности среднего значения уменьшаются, и сама погрешность среднего убывает.
- 3. Возратимся к основному эксперименту: измерение плотности потока космического излучения за 10 с, 20 с и 40 с (с момента включения компьютера прошло 4000 секунд). На компьютере проведём обработку, аналогичную сделанной в демонстрационном эксперименте. Результаты приведены в таблицах 1 и 2.

Номер опыта	1	2	3	4	5	6	7	8	9	10
0	17	16	26	11	22	16	19	19	17	23
10	24	19	18	25	17	20	17	26	27	23
20	21	18	24	16	29	11	15	22	24	24
30	23	32	18	26	22	20	28	23	16	30
40	29	15	16	18	27	17	14	17	25	15
50	24	22	19	13	25	27	20	19	15	23
60	16	16	26	22	19	19	17	20	17	21
70	21	14	24	28	20	19	21	23	18	27
80	31	24	25	13	22	22	23	23	21	18
90	21	16	18	15	14	18	22	18	26	17
100	13	15	17	30	20	25	16	27	20	20
110	13	20	26	30	21	20	13	23	17	13
120	15	24	16	18	28	25	25	19	20	24
130	19	18	20	18	22	28	15	19	17	16
140	25	14	26	13	22	19	31	17	22	17
150	26	22	24	24	26	23	25	22	21	16
160	17	19	21	18	15	24	15	19	17	18
170	26	19	22	19	21	17	17	27	25	21
180	15	17	14	29	16	18	17	15	20	15
190	24	20	22	18	21	21	12	18	18	19

Таблица 1: Число срабатываний счётчика за 20 с

Ч-ло импульсов	1	3	4	5	6	7	8	9	10	11
Ч-ло случаев	1	3	2	16	26	40	39	53	57	37
Доля случ.	0.0025	0.0075	0.005	0.04	0.065	0.1	0.0975	0.1325	0.1425	0.0925
Ч-ло импульсов	12	13	14	15	16	17	18	19	20	22
Ч-ло случаев	35	30	21	17	10	3	3	3	2	2
Доля случ.	0.0875	0.075	0.0525	0.0425	0.025	0.0075	0.0075	0.0075	0.005	0.005

Таблица 2: Данные для построения гистограммы распределения числа срабатываний счётчика за $10\ c$

4. Разбиваем результаты измерений из таблицы 1 на группы по 2, что соответствует 100 измерениям по 40 с. Результат сведём в таблицу 3.

Номер опыта	1	2	3	4	5	6	7	8	9	10
0	44	34	44	31	40	46	32	52	39	38
10	32	48	38	37	38	35	52	39	44	45
20	33	37	38	38	40	43	43	37	43	50
30	39	40	40	37	48	55	44	42	51	46
40	55	38	44	46	39	37	33	32	40	43
50	28	47	45	43	40	33	56	41	36	30
60	39	34	53	44	44	37	38	50	34	33
70	39	39	41	48	39	48	48	49	47	37
80	36	39	39	34	35	45	41	38	44	46
90	32	43	34	32	35	44	40	42	30	37

Таблица 3: Число срабатываний счётчика за 40 с

5. Представим результаты из таблицы 3 в виде, удобном для построения гистограммы (Таблица 4).

Ч-ло импульсов	28	30	31	32	33	34	35	36	37	38
Ч-ло случаев	1	2	1	5	4	5	3	2	8	8
Доля случ.	0.01	0.02	0.01	0.05	0.04	0.05	0.03	0.02	0.08	0.08
Ч-ло импульсов	39	40	41	42	43	44	45	46	47	48
Ч-ло случаев	10	7	3	2	6	9	3	4	2	5
Доля случ.	0.1	0.07	0.03	0.02	0.06	0.09	0.03	0.04	0.02	0.05
Ч-ло импульсов	49	50	51	52	53	55	56			
Ч-ло случаев	1	2	1	2	1	2	1			
Доля случ.	0.01	0.02	0.01	0.02	0.01	0.02	0.01			

Таблица 4: Данные построения гистограммы распределения числа срабатываний счётчика для интервала 40 с

6. Определим среднее число срабатываний счётчика за 10 с:

$$\overline{n_1} = \frac{1}{N_1} \cdot \sum_{i=1}^{N_1} n_i = \frac{4065}{400} = 10, 2$$

	Число случаев	Доля случаев,%	Теоретическая оценка ,%
$\pm \sigma_1 = \pm 3.3$	285	70.3	68
$\pm 2 \cdot \sigma_1 = \pm 6.6$	3809	93.7	95

Таблица 5:

И за 40 с:

$$\overline{n_2} = \frac{1}{N_2} \cdot \sum_{i=1}^{N_2} n_i = \frac{4065}{100} = 40,7$$

7. Найдём среднеквадратичную ошибку отдельного измерения:

$$\sigma_1 = \sqrt{\frac{1}{N_1} \cdot \sum_{i=1}^n (n_i - \overline{n_1})^2} = \pm 3.3$$
 - для интервала 10 с.

$$\sigma_2 = \sqrt{\frac{1}{N_2} \cdot \sum_{i=1}^n (n_i - \overline{n_2})^2} = \sqrt{\frac{3710}{100}} = \pm 6.1$$
 - для интервала 40 с.

8. Убедимся, что среднеквадратичная ошибка связана со средним значением $\sigma_1 = \sqrt{\overline{n}}$:

$$\sqrt{\overline{n_1}} = \sqrt{10, 16} = 3.18 \approx \sigma_1 = 3.29$$

$$\sqrt{\overline{n_2}} = \sqrt{40,65} = 6.37 \approx \sigma_2 = 6.09$$

- 9. Определим долю случаев, когда отклонения от среднего значения не превышают σ_1 и $2 \cdot \sigma_1$, и сравним с теоретическими оценками (таблица 5).
- 10. Сравним среднеквадратичные ошибки отдельных измерений для обоих распределений:

$$\sigma_1 = 3.3; \overline{n_1} = 10.2 \text{ и } \sigma_2 = 6.1; \overline{n_2} = 40, 7$$

$$\frac{\sigma_1}{\overline{n_1}} \cdot 100\% = \frac{3.3}{10.2} \cdot 100\% \approx 32\%; \ \frac{\sigma_2}{\overline{n_2}} \cdot 100\% = \frac{6.1}{40.7} \cdot 100\% \approx 15\%$$

Как видно, несмотря на то, что $\sigma_1 < \sigma_2$, относительная полуширина второго распределения меньше в два раза.

11. Определим стандартную ошибку σ_1 и относительную ошибку $\varepsilon_{\overline{n_1}}$ для N=400 измерений по 10 секунд по формуле (3) и (4):

$$\sigma_{\overline{n_1}} = \frac{\sigma_1}{\sqrt{N_1}} = \frac{3.3}{\sqrt{400}} \approx 0.16$$

$$\varepsilon_{\overline{n_1}} = \frac{\sigma_{\overline{n_1}}}{\overline{n_1}} \cdot 100\% = \frac{0.16}{10.2} \cdot 100\% \approx 1.6\%$$

12. Определим стандартную ошибку σ_2 и относительную ошибку $\varepsilon_{\overline{n_2}}$ для N=400 измерений по 40 секунд по формуле (6) и (7):

$$\sigma_{\overline{n_2}} = \frac{\sigma_2}{\sqrt{N_2}} = \frac{6.09}{\sqrt{100}} \approx 0.61$$

$$\varepsilon_{\overline{n_2}} = \frac{\sigma_{\overline{n_2}}}{\overline{n_2}} \cdot 100\% = \frac{0.61}{40.7} \cdot 100\% \approx 1.5\%$$

13. Окончательный результат:

$$n_{t=10 {
m c}} = \overline{n_1} \pm \sigma_{\overline{n_1}} = 10.2 \pm 0.16 \; ($$
частиц $/10 \; {
m c})$

$$n_{t=40c} = \overline{n_2} \pm \sigma_{\overline{n_2}} = 40.7 \pm 0.61 \text{ (частиц/40 c)}$$

3 Вывод

В ходе работы были измерены данные-плотность потока космических частиц, которые теоретически являлись случайными. После их обработки можно с хорошей точностью утверждать, что распределение числа импульсов за равные промежутки времени с увеличением измерений стремится к нормальному. Это подтверждается следующим:

- 1) Были выполнены т.н. "правила 68 %"
и "правила 96 %"
- 2) $\sigma_1 = \sqrt{\overline{n}}$

3) $\varepsilon_{\overline{n_2}} \approx \frac{1}{\sqrt{N}}$ По полученным данным построены две гистограммы. Ширина пика зависит от промежутка времени t, за который мы считаем число импулльсов: чем больше t, тем меньше ширина. С увеличением количества измерений гистограмма всё более приближается к графику Гауссова распределения.