The Cost of Medical Care

Can general health factors predict insurance billing?

Corey Quackenbush CS 522 – Data Mining

Data summary

Summary statistics for project data

age	
Min.	18.0
1st Qu.	27.0
Median	39.0
Mean	39.2
3rd Qu.	51.0
Max.	64.0

charges	•
Min.	1122
1st Qu.	4740
Median	9382
Mean	13270
3rd Qu.	16640
Max.	63770

bmi	
Min.	16.0
1st Qu.	26.3
Median	30.4
Mean	30.7
3rd Qu.	34.7
Max.	53.1

children	
0	574
1	324
2	240
3	157
4	25
5	18

sex	sex	
female	60	
male	6	

region	١
northeast	324
northwest	325
southeast	364
southwest	325

bmi_category	
Underweight	20
Normal	225
Overweight	386
Obese	707

smoker	
yes	274
no	1064

ob	obese	
yes	707	
no	631	

Field of interest – yearly medical charges

- Can we predict these values based on some or all the other fields present?
- Difference between median and mean (Right-skew).
- Could be a problem because assumes data is normally distributed.

Partition data in to test and training

- Using 90% of the data for training 1204 entries.
- Using 10% of the data for testing 134 entries.
- Total 1338 entries.

Check for correlation between data attributes

Scatter Plot Matrix

Correlation in upper right

Check for correlation between data attributes

Scatter Plot Matrix

- Correlation in upper right
- Attribute histograms on diagonal

Check for correlation between data attributes

Scatter Plot Matrix

- Correlation in upper right
- Attribute histograms on diagonal
- Scatter plots between attributes in lower left
- Oval correlation ellipse
 - Stretched: strong correlation
 - Round: little/no correlation
- Curve loess smooth
 - General relationship between x/y

Choose attributes for model

```
# Explore the effects of dropping variables from the model.
summary(lm(charges ~ age + sex + bmi + children + smoker + region, data = training_set))
summary(lm(charges ~ age + sex + bmi + children + smoker, data = training_set))
summary(lm(charges ~ age + bmi + children + smoker, data = training_set))
```

- Tested various models.
- Focused on including attributes correlated with the charges attribute.
- Used summary statistics of model to choose the best one.
- Scatter plot matrix of final attributes chosen for model.

Model generation and testing

Model 1: Predicted vs Actual Cost

- Charges higher if you smoke.
- Not much difference between male/female smoker and non-smokers.
- Might be two groups within the smoker set.

- Interesting second group in the obese category.
- Much higher medical charges in second obese group.

- Again, smokers pay more than nonsmokers.
- Seems reasonable that the second group from previous plot could be obese smokers.

- Older people tend to pay more in medical expenses.
- The trend replicates well within groups.

- Visualize the training and testing data.
- Nice random distribution.

- Minimum amount paid in medical expenses increases with number of children.
- Whether or not you smoke dominates the relationship with charges.

- Again, older people pay more in medical expenses.
- Again, you tend to pay more if you smoke.
- There is clearly a second group within the smokers

 There is a combined effect for being obese and smoking.

- Again, smoking results in higher medical expenses.
- There is a combined effect for being obese and smoking.
- We can use this observation to update our regression model.

Update model: smoker – obese interaction

Model 2: Predicted vs Actual Cost

Clustering

K-means clustering

DBSCAN clustering

Hierarchical clustering: Ward's method

Clustering method comparison

Final Notes

- Can predict yearly medical costs given the following information:
 - Age, BMI, Children number, Smoker or not
- Model explains 86% of variation in medical costs.
- Majority of predictions are over predicted by only \$400 to \$1800.
 - Not bad considering the input information.
- Can group the data nicely with hierarchal clustering using Ward's method.
- Can use nearest neighbor to assign new data to a cluster.
 - Use groups to infer general information.
 - BMI/Charges → Smoker
 - BMI/Smoker → Charge range
 - Smoker/Charges → Obese / BMI range