ZeiMathematik für Informatiker 2 – SS 2025

Studiengang Angewandte Informatik

Gemischte Übungen 6: Integralrechnung

1 Anwendung einfacher Integrationstechniken

	nnen Sie	Lösung
	$\int_0^1 (e^t - 3t^2) dt$	= e - 2
1.2	$\int_{1}^{2} \frac{1}{x^2} dx$	$=\frac{1}{2}$
1.3	$\int_{1}^{2} \sqrt{4x - 3} dx$	~ 1,6967
1.4	$\int_{-2}^{1} sign(x)dx$	= -1
1.5	$\int \frac{1}{(1-2x)^2} + \frac{1}{\sqrt{1-x}} + \frac{1}{1-ax} + \frac{1}{a} dx$	$= \frac{1}{2} \cdot \frac{1}{1 - 2x} - 2\sqrt{1 - x} - \frac{1}{a} \ln 1 - ax + \frac{1}{a}x + C$

2 Gemischt (Level 1-2): Stammfunktion ermitteln

Techniken: Summenregel, Faktorregel, Lineare innere Funktion, Kettenregel rückwärts, Integraltafeln

Berechnen Sie das unbestimmte Integral R		Regel	Lösung (machen Sie die Probe durch Differenzieren)
2.1	$\int e^{2x}(1-2x) \ dx$		$= (1-x)e^{2x} + C$
2.2	$\int \cos^3(x)\sin(x) \ dx$		$= -\frac{1}{4}\cos^4(x) + C$
2.3	$\int x\sqrt{1-ax^2}dx (a\neq 0)$		$= -\frac{1}{3a}(1 - ax^2)^{\frac{3}{2}} + C$
2.4	$\int x \cos(n\omega x) dx$		$= x \frac{\sin(n\omega x)}{n\omega} + \frac{\cos(n\omega x)}{n^2\omega^2} + C$
2.5	$\int \frac{2^x}{2^x + 1} dx$		$=\frac{\ln(2^x+1)}{\ln 2}+C$
2.6	$\int \frac{1}{x^2} e^{\frac{a}{x}} dx (a > 0)$		$= -\frac{1}{a}e^{\frac{a}{x}} + C$
2.7	$\int x \ln(x+2) dx$		$= \frac{1}{2}(x^2 - 4) \ln x + 2 - \frac{x^2}{4} + x + C$
2.8	$\int x^2 \cos(x) dx$		$= x^2 \sin x + 2x \cos x - 2 \sin x + C$

3 Übung: Bestimme Integrale

3.1	Berechnen Sie die Fläche zwischen Kurve $f(x) = x^2 - 3$, x -Achse, $x = 0$ und $x = 3$	$4\sqrt{3}\approx 6,9282$
-----	--	---------------------------