PD5 IOP224

Marcelo Gallardo

2022

Resumen

Basado en los apuntes de clase del curso de Microeconomía 1 dictado por el profesor de la Pontificia Universidad Católica del Perú, José D. Gallardo Ku durante el ciclo 2022-1.

1. Maximización de la Utilidad

$$\max U(x, y)$$

s.a. : $p_x x + p_y y \le I$
 $x, y \ge 0$.

Al asumir preferencias localmente no saciables y condiciones de Inada en la función de utilidad, el problema se reduce a

$$\max U(x, y)$$

s.a. : $p_x x + p_y y = I$.

Gráficamente:

Figura 1: Problema de maximización de la utilidad.

La solución (x^*, y^*) se obtiene vía las condiciones de primer orden de la función Lagrangiana

$$\mathcal{L} \triangleq \mathcal{L}(x, y, \lambda)$$

$$= u(x, y) - \lambda(p_x x + p_y y - I)$$

$$= u(x, y) + \lambda(I - p_x x - p_y y).$$

Obtenemos

$$\frac{\partial \mathcal{L}}{\partial x} = \frac{\partial u}{\partial x} - \lambda p_x = 0$$

$$\frac{\partial \mathcal{L}}{\partial y} = \frac{\partial u}{\partial y} - \lambda p_y = 0$$

$$\frac{\partial \mathcal{L}}{\partial \lambda} = p_x x + p_y y - I = 0.$$

El multiplicador de Lagrange λ es la utilidad marginal del ingreso pues

$$\lambda^* = \frac{\partial U/\partial x}{p_x} = \frac{\partial U/\partial y}{p_y}.$$

Las compras dependen de la utilidad (de las preferencias) y de los precios. En particular, el consumidor tiene en cuenta cuanta utilidad adicional genera el bien pero en relación a su precio. En el óptimo, la utilidad marginal de cada bien entre sus precios es igual. Más aún,

$$TMS = \frac{\partial U/\partial x}{\partial U/\partial y} = \frac{p_x}{p_y}.$$

Esta condición caracteriza el equilibrio. La pendiente de la restricción presupuestaria, es igual a la tangente de la curva de indiferencia en el óptimo. Esto implica que la TMS se ajusta hasta ser igual al ratio de precios¹.

Observación 1. Si un bien tiene un precio especialmente alto, la utilidad marginal del bien también debe ser alta, posiblemente porque se consume pocas unidades de dicho bien.

Observación 2. La condición $TMS = p_x/p_y$, implica que el consumidor esta en equilibrio porque ya no tiene incentivo para cambiar unidades de y para aumentar el consumo del bien x.

Definición 1.1. Solución de esquina: la solución corresponde a $x_1^* = 0$ o $x_2^* = 0$.

¹Esto pues, el consumidor estaría por ejemplo dispuesto a sacrificar más de y por una unidad adicional de x si $TMS > p_x/p_y$.

Figura 2: Solución de esquina.

Soluciones de esquina pueden ocurrir cuando no se cumplen las condiciones de Inada.

Ejemplo 1. Sea $U(x,y)=x^{\alpha}y^{\beta}$, $\boldsymbol{\theta}=(\alpha,\beta)$. El problema de maximización de la utilidad es en este caso:

máx
$$U(x, y|\boldsymbol{\theta}) = x^{\alpha}y^{\beta}$$

s.a.: $p_x x + p_y y \leq I$.

Como cualquier transformación monótona mantiene el orden, es posible aplicar una función F creciente a U, y obtener $F \circ U = \tilde{U}$ que representa las misma preferencias. Por ende, podemos resolver

máx
$$\tilde{U}(x, y|\boldsymbol{\theta}) = \ln[x^{\alpha}y^{\beta}]$$

s.a. : $p_x x + p_y y = I$.

Note que implícitamente hemos usado las propiedades sobre $U(\cdot)$ para omitir condicione de no negatividad. Así,

$$\mathcal{L}(x, y, \lambda) = \alpha \ln x + \beta \ln y + \lambda (I - p_x x - p_y y).$$

Las condiciones de primer orden son

$$\frac{\partial \mathcal{L}}{\partial x} = \frac{\alpha}{x} - \lambda p_x = 0$$

$$\frac{\partial \mathcal{L}}{\partial y} = \frac{\alpha}{y} - \lambda p_y = 0$$

$$\frac{\partial \mathcal{L}}{\partial \lambda} = I - p_x x - p_y y = 0.$$

Resolviendo,

$$\lambda = \frac{\alpha}{p_x x} = \frac{\beta}{p_y y}.$$

Así,

$$\frac{\alpha}{\beta} = \frac{p_x x}{p_y y}.$$

Usando que $x = \frac{I - p_y y}{p_x}$, se obtiene finalmente

$$x^* = \frac{\alpha I}{(\alpha + \beta)p_x}$$
$$y^* = \frac{\beta I}{(\alpha + \beta)p_y}.$$

Esta solución ilustra que la demanda depende del ingreso I, de las preferencias $\boldsymbol{\theta}$ y de los precios \boldsymbol{p} . Ciertamente, con el ingreso la demanda aumenta en general (para bienes normales) y cae con el precio respectivamente. Obsérvese que la demanda de x aumenta si α incrementa (las curvas de indiferencia se pegan al eje x, la utilidad aumenta con x conforme α es mayor), y el resultado es análogo con y en función de β .

Las demandas ordinarias, usualmente denominadas demandas marshallianas, nos dicen cuales son las cantidades que comprará el individuo dadas sus preferencias, ingresos y nivel (vector fijo) de precios.

2. Estática comparativa

Objetivo: deseamos conocer $\frac{dx}{dI}$ y $\frac{dx}{dp_x}$.

Notación: para simplificar

$$\frac{\partial U}{\partial x} = U_x, \ y \ \frac{\partial U}{\partial y} = U_y.$$

De las condiciones de primer orden

$$\frac{\partial \mathcal{L}}{\partial x} = U_x - \lambda p_x = 0$$

$$\frac{\partial \mathcal{L}}{\partial y} = U_y - \lambda p_y = 0$$

$$\frac{\partial \mathcal{L}}{\partial \lambda} = I - p_x x - p_y y = 0.$$

Sacando el diferencial de estas 3 ecuaciones, se obtiene

$$d(U_x - \lambda p_x) = U_{xx}dx + U_{xy}dy - d\lambda p_x - \lambda dp_x = 0$$

$$d(U_y - \lambda p_y) = U_{yy}dy + U_{yx}dx - d\lambda p_y - \lambda dp_y = 0$$

$$dI - dxp_x - xdp_x - dyp_y - ydp_y = 0.$$

Observación 3. Para bienes normales y preferencias estrictamente convexas, asumiendo diferenciabilidad

$$U_{xy} > 0, U_{xx}, U_{yy} < 0.$$

Matricialmente, el sistema de ecuaciones se convierte en

$$\begin{pmatrix} U_{xx} & U_{xy} & -p_x \\ U_{yx} & U_{yy} & -p_y \\ -p_x & -p_y & 0 \end{pmatrix} \begin{pmatrix} dx \\ dy \\ d\lambda \end{pmatrix} = \begin{pmatrix} \lambda dp_x \\ \lambda dp_y \\ xdp_x + ydp_y - dI \end{pmatrix}.$$

Aplicando la regla de Cramer, para obtener

$$\frac{dx}{dI}$$
,

se considera $dp_x = dp_y = 0$ (mantener precios constantes)

$$dx = \frac{1}{|A|} \begin{vmatrix} 0 & U_{xy} & -p_x \\ 0 & U_{yy} & -p_y \\ -dI & -p_y & 0 \end{vmatrix},$$

donde

$$|A| = \det \begin{pmatrix} U_{xx} & U_{xy} & -p_x \\ U_{yx} & U_{yy} & -p_y \\ -p_x & -p_y & 0 \end{pmatrix} = -U_{xx}p_y^2 + U_{xy}p_xp_y + U_{yx}p_xp_y - U_{yy}p_x^2 > 0.$$

Desarrollando el determinante, se obtiene

$$\frac{dx}{dI} = \frac{U_{xy}p_y - p_x U_{yy}}{|A|} > 0.$$

Las desigualdades se obtiene teniendo en cuenta que la utilidad marginal es decreciente en cada bien U_{xx} , $U_{yy} < 0$, pero las derivadas cruzadas, puesto que las preferencias se suponen convexas², son positivas U_{xy} , $U_{yx} > 0$.

En relación a $\frac{dx}{dp_x}$, considerando $dp_y = dI = 0$

$$dx = \frac{1}{|A|} \begin{vmatrix} \lambda dp_x & U_{xy} & -p_x \\ 0 & U_{yy} & -p_y \\ x dp_x & -p_y & 0 \end{vmatrix}.$$

Expandiendo el determinante del numerador,

$$\frac{dx}{dp_x} = \frac{-\lambda p_y^2 - x p_y U_{xy} + x p_x U_{xx}}{|A|}$$

$$= \frac{-\lambda p_y^2 + x (U_{yy} p_x - U_{xy} p_y)}{|A|}$$

$$= -\frac{\lambda p_y^2}{|A|} - x \frac{dx}{dI} < 0.$$

Esta ecuación indica que cuando el precio de un bien aumenta, la demanda por este bien se ve reducida por un efecto sustitución y un efecto ingreso³.

²Noción de escasez.

³Esto es más nítido al introducir la ecuación de Slutsky.

2.1. Regla de Cramer

Dado el sistema de ecuaciones

$$\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} j \\ k \\ \ell \end{pmatrix},$$

se tiene que

$$x = \frac{1}{|A|} \begin{vmatrix} j & b & c \\ k & e & f \\ \ell & h & i \end{vmatrix}$$
$$y = \frac{1}{|A|} \begin{vmatrix} a & j & c \\ d & k & f \\ g & \ell & i \end{vmatrix}$$
$$z = \frac{1}{|A|} \begin{vmatrix} a & b & j \\ d & e & k \\ g & h & \ell \end{vmatrix}.$$