Physics GR6037 Quantum Mechanics I Assignment # 2

Benjamin Church

October 12, 2017

Problem 3.

Let an operator O on a 3 dimensional vector space be given as

$$O = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

(a). Let det $(I\lambda - O) = 0$ then $\lambda^3 - 2\lambda = 0$ so $\lambda = 0, \pm \sqrt{2}$

For $\lambda = 0$,

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} b \\ a+c \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Therefore, a = -c and b = 0 so

$$|v_0\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\-1 \end{pmatrix}$$

For $\lambda = \sqrt{2}$,

$$\begin{pmatrix} -\sqrt{2} & 1 & 0\\ 1 & -\sqrt{2} & 1\\ 0 & 1 & -\sqrt{2} \end{pmatrix} \begin{pmatrix} a\\b\\c \end{pmatrix} = \begin{pmatrix} -\sqrt{2}a+b\\a-\sqrt{2}b+c\\b-\sqrt{2}c \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}$$

Therefore, $b = a\sqrt{2}$ and c = a so

$$\left|v_{\sqrt{2}}\right\rangle = \frac{1}{2} \begin{pmatrix} 1\\\sqrt{2}\\1 \end{pmatrix}$$

For $\lambda = -\sqrt{2}$,

$$\begin{pmatrix} \sqrt{2} & 1 & 0 \\ 1 & \sqrt{2} & 1 \\ 0 & 1 & \sqrt{2} \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} \sqrt{2}a + b \\ a + \sqrt{2}b + c \\ b + \sqrt{2}c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Therefore, $b = -\sqrt{2}a$ and c = a so

$$\left|v_{-\sqrt{2}}\right\rangle = \frac{1}{2} \begin{pmatrix} 1\\ -\sqrt{2}\\ 1 \end{pmatrix}$$

(b).
$$\mathbf{P}(\lambda = 0) = |\langle v_0 | \psi \rangle|^2 = \left(\frac{1}{2}(1+0+0)\right)^2 = \frac{1}{4}$$

$$\mathbf{P}(\lambda = \sqrt{2}) = |\langle v_{\sqrt{2}} | \psi \rangle|^2 = \left(\frac{1}{2\sqrt{2}}(1+\sqrt{2}+0)\right)^2 = \frac{1}{8}(3+2\sqrt{2})$$

$$\mathbf{P}(\lambda = -\sqrt{2}) = |\langle v_{-\sqrt{2}} | \psi \rangle|^2 = \left(\frac{1}{2\sqrt{2}}(1-\sqrt{2}+0)\right)^2 = \frac{1}{8}(3-2\sqrt{2})$$

Problem 4.

(a). For every λ , $E(\lambda)$ is an orthogonal projection so $E(\lambda)^2 = E(\lambda)$ and $E(\lambda)^{\dagger} = E(\lambda)$. Now consider $\langle \psi | E(\lambda) | \psi \rangle = \langle \psi | E(\lambda) E(\lambda) | \psi \rangle = \langle E(\lambda) \psi | E(\lambda) \psi \rangle \geq 0$ by Hermiticity and positive definiteness.

Also, let $\lambda_1 < \lambda_2$ then

$$\langle \psi | E(\lambda_2) | \psi \rangle = \langle \psi | E(\lambda_2) - E(\lambda_1) | \psi \rangle + \langle \psi | E(\lambda_1) | \psi \rangle \text{ but}$$

$$\langle \psi | E(\lambda_2) - E(\lambda_1) | \psi \rangle = \langle \psi | (E(\lambda_2) - E(\lambda_1))^2 | \psi \rangle = |(E(\lambda_2) - E(\lambda_1)) | \psi \rangle |^2 \ge 0$$

Therefore, $\langle \psi | E(\lambda_2) | \psi \rangle \ge \langle \psi | E(\lambda_1) | \psi \rangle$

(b). Let

$$F = \int_{-\infty}^{\infty} \lambda \, dE_F(\lambda) \text{ then } F^2 = \int_{-\infty}^{\infty} \lambda \, \frac{dE_F(\lambda)}{d\lambda} d\lambda \int_{-\infty}^{\infty} \lambda' \, \frac{dE_F(\lambda')}{d\lambda'} d\lambda'$$
$$= \int_{-\infty}^{\infty} \lambda \lambda' |\lambda\rangle \, \langle \lambda|\lambda'\rangle \, \langle \lambda'| \, d\lambda d\lambda' = \int_{-\infty}^{\infty} \lambda^2 |\lambda\rangle \langle \lambda| \, d\lambda = \int_{-\infty}^{\infty} \lambda^2 \frac{dE_F(\lambda)}{d\lambda} d\lambda$$

Now, the eigenvectors of F^2 are $\xi = \lambda^2$. Then $F^2 = \int_0^\infty \lambda^2 \frac{\mathrm{d} E_F(\lambda)}{\mathrm{d} \lambda} \mathrm{d} \lambda + \int_{-\infty}^0 \lambda^2 \frac{\mathrm{d} E_F(\lambda)}{\mathrm{d} \lambda} \mathrm{d} \lambda$. In the first integral, reparametrize by $\lambda = \sqrt{\xi}$ and in the second, $\lambda = -\sqrt{\xi}$. Thus,

$$F^{2} = \int_{0}^{\infty} \xi \frac{\mathrm{d}E_{F}(\sqrt{\xi})}{\mathrm{d}\xi} \frac{\mathrm{d}\xi}{\mathrm{d}\lambda} \frac{\mathrm{d}\lambda}{\mathrm{d}\xi} \mathrm{d}\xi + \int_{\infty}^{0} \xi \frac{\mathrm{d}E_{F}(-\sqrt{\xi})}{\mathrm{d}\xi} \frac{\mathrm{d}\xi}{\mathrm{d}\lambda} \frac{\mathrm{d}\lambda}{\mathrm{d}\xi} \mathrm{d}\xi$$

$$= \int_{0}^{\infty} \xi \frac{\mathrm{d}E_{F}(\sqrt{\xi})}{\mathrm{d}\xi} \mathrm{d}\xi - \int_{0}^{\infty} \xi \frac{\mathrm{d}E_{F}(-\sqrt{\xi})}{\mathrm{d}\xi} \mathrm{d}\xi \int_{0}^{\infty} \xi \left[\frac{\mathrm{d}E_{F}(\sqrt{\xi})}{\mathrm{d}\xi} - \frac{\mathrm{d}E_{F}(-\sqrt{\xi})}{\mathrm{d}\xi} \right] \mathrm{d}\xi$$

$$= \int_{0}^{\infty} \xi \frac{\mathrm{d}}{\mathrm{d}\xi} \left[E(\sqrt{\xi}) - E(-\sqrt{\xi}) \right] \mathrm{d}\xi$$

This is a resolution of the identity for F^2 if we let $E_{F^2}(\xi) = E_F(\sqrt{\xi}) - E(-\sqrt{\xi})$ for $\xi \ge 0$ and $E_{F^2} = \mathbf{0}$ for $\xi < 0$.

Problem 5.

Let both A and B be commuting Hermitian operators with complete spectra:

$$A |n_A\rangle = a_n |n_A\rangle$$
 and $B |n_B\rangle = b_n |n_B\rangle$

- (a). Suppose that A has a non-degenerate spectrum. Then $AB | n_A \rangle = BA | n_A \rangle = Ba_n | n_A \rangle$. Thus, $A(B | n_A \rangle) = a_n(B | n_A \rangle)$ so $B | n_A \rangle$ is an eigenvector with of A with eigenvalue a_n . Since there is no degeneracy, $B | a_n \rangle = \omega | n_A \rangle$ and therefore, $| n_A \rangle$ is also an eigenvector for B so the basis $\{|n_A\rangle\}$ consists of eigenvectors of both A and B.
- (b). let $V_{\lambda}^{A} = \{|v\rangle \in \mathcal{H} \mid A|v\rangle = \lambda |v\rangle\}$. For any $|v\rangle \in V_{\lambda}^{A}$ take $AB|v\rangle = BA|v\rangle = B\lambda |v\rangle$. Thus, $A(B|v\rangle = \lambda(B|v\rangle)$ so $B|v\rangle \in V_{\lambda}^{A}$. Therefore, restricting B to the subspace V_{λ}^{A} which by assumption is finite dimensional, we get a linear map $B: V_{\lambda}^{A} \to V_{\lambda}^{A}$ which is Hermitian on finite dimensional spaces. Thus, by the finite dimensional spectral theorem (problem 6), there exists a basis of V_{λ}^{A} consisting of eigenvectors of B namely, $\{|w_{1}^{\lambda}\rangle, \ldots, |w_{n_{\lambda}}^{\lambda}\rangle\}$. Now since $\mathrm{span}\{|w_{1}^{\lambda}\rangle, \ldots, |w_{n_{\lambda}}^{\lambda}\rangle\} = V_{\lambda}^{A}$ then since every $|n_{A}\rangle \in V_{a_{n}}^{A}$ then

$$\bigcup_{\lambda \in \{a_n\}} \{ \left| w_1^{\lambda} \right\rangle, \dots, \left| w_{n_{\lambda}}^{\lambda} \right\rangle \}$$

Is a complete set because every $|n_A\rangle$ is contained in its span. However each vector in the set is an eigenvector of B by construction. Also, $|w_i^{\lambda}\rangle \in V_{\lambda}^A$ so $A|w_i^{\lambda}\rangle = \lambda |w_i^{\lambda}\rangle$ so $|w_i^{\lambda}\rangle$ is also an eigenvector of A.

(c). Since the eigenvectors of A span the entire space, the problem is reduced to diagonalizing B in each eigenspace of A. Then these vectors will be simultaneous eigenvectors of A and B and will space each eigenspace and thus span the entire space. Now, for any $|v\rangle \in V_{\lambda}^{A}$ take $AB|v\rangle = BA|v\rangle = B\lambda|v\rangle$. Thus, $A(B|v\rangle = \lambda(B|v\rangle \text{ so } B|v\rangle \in V_{\lambda}^{A}$. Since $B|_{V_{\lambda}^{A}}$ is self-adjoint, there is a resolution of the identity,

$$B|_{V_{\lambda}^{A}} = \int_{-\infty}^{\infty} \lambda_{B} \frac{\mathrm{d}E_{B}(\lambda_{B})}{\mathrm{d}\lambda_{B}} \mathrm{d}\lambda_{B}$$

With $E_B(\lambda_B)V_\lambda^A \subset V_\lambda^A$. Then

$$B|_{V_{\lambda}^{A}} \frac{\mathrm{d}E_{B}(\lambda_{B})}{\mathrm{d}\lambda_{B}} V_{\lambda}^{A} = \int_{-\infty}^{\infty} \lambda_{B} |\lambda'_{B}\rangle \langle \lambda'_{B}|\lambda_{B}\rangle \langle \lambda_{B}| \,\mathrm{d}\lambda'_{B} V_{\lambda}^{A}$$
$$= \lambda_{B} |\lambda_{B}\rangle \langle \lambda_{B}| \,\mathrm{d}\lambda_{B} V_{\lambda}^{A} = \lambda_{B} \frac{\mathrm{d}E_{B}(\lambda_{B})}{\mathrm{d}\lambda_{B}} V_{\lambda}^{A}$$

Thus, $\frac{\mathrm{d}E_B(\lambda_B)}{\mathrm{d}\lambda_B}V_{\lambda}^A$ is an eignvector of B. Furthermore,

$$\int_{-\infty}^{\infty} \frac{\mathrm{d}E_B(\lambda_B)}{\mathrm{d}\lambda_B} V_{\lambda}^A \mathrm{d}\lambda_B = \int_{-\infty}^{\infty} \mathrm{d}E_B(\lambda_B) V_{\lambda}^A = (E(\infty) - E(-\infty)) V_{\lambda}^A = V_{\lambda}^A$$

So these eigenvectors of B span the eigenspace of V_{λ}^{A} . Because we are working only in V_{λ}^{A} , these vectors are automatically eigenvectors of A as well.

Problem 6.

Let dim $\mathcal{H} = N$ and $O : \mathcal{H} \to \mathcal{H}$ be hermitian. Then let $S = \{|\psi\rangle \in \mathcal{H} \mid \langle \psi | \psi \rangle = 1\}$ is an N-sphere and thus is compact in \mathcal{H} . Since O is hermitian, it has real expectation values so $\langle \psi | O | \psi \rangle : S \to \mathbb{R}$ is a continuous function by the linearity of O. $\langle \psi | O | \psi \rangle$ is a continuous function and S is compact, therefore, Im $\langle \psi | O | \psi \rangle$ is compact in \mathbb{R} so it is closed and bounded and in particular much achive a minumum value $\langle \psi_0 | O | \psi_0 \rangle \in \mathbb{R}$.

(a). Take normalized $|\delta\psi\rangle \in (\text{span}\{|\psi_0\rangle\})^{\perp}$ and $\epsilon \in \mathbb{C}$ then define:

$$|\psi_{\epsilon}\rangle = \frac{1}{\sqrt{1+|\epsilon|^2}} (|\psi_0\rangle + \epsilon |\delta\psi\rangle)$$

Now calculate: $\langle \psi_{\epsilon} | \psi_{\epsilon} \rangle =$

$$\frac{1}{1+|\epsilon|^2} \left(\langle \psi_0 | \psi_0 \rangle + \epsilon \langle \psi_0 | \delta \psi \rangle + \epsilon^* \langle \delta \epsilon | \psi_0 \rangle + |\epsilon|^2 \langle \delta \psi | \delta \psi \rangle \right) = \frac{1}{1+|\epsilon|^2} \left(1 + |\epsilon|^2 \right) = 1$$

Because $\langle \psi_0 | \delta \psi \rangle = 0$ and $\langle \psi | \psi \rangle = \langle \delta \psi | \delta \psi \rangle = 1$.

(b). By the minimum property, $\langle \psi_{\epsilon} | O | \psi_{\epsilon} \rangle \geq \langle \psi_{0} | O | \psi_{0} \rangle$ therefore,

$$\frac{1}{1+|\epsilon|^2} \left(\langle \psi_0 \rangle | \, O \, | \psi_0 \rangle \right) + \epsilon \, \langle \psi_0 | \, O \, | \delta \psi \rangle + \epsilon^* \, \langle \delta \psi | \, O \, | \psi_0 \rangle + |\epsilon|^2 \, \langle \delta \psi | \, O \, | \delta \psi \rangle \right) \geq \langle \psi_0 | \, O \, | \psi_0 \rangle$$

To first order in ϵ ,

$$2\Re \mathfrak{e}\left[\epsilon^* \left\langle \delta \psi \right| O \left| \psi_0 \right\rangle \right] \ge 0$$

Thus take $\epsilon = -\varepsilon \langle \delta \psi | O | \psi_0 \rangle$ for $\varepsilon \in \mathbb{R}^+$. Therefore,

$$2\mathfrak{Re}\left[-\varepsilon\left|\left\langle\delta\psi\right|O\left|\psi_{0}\right\rangle\right|^{2}\right]=-\varepsilon\left|\left\langle\delta\psi\right|O\left|\psi_{0}\right\rangle\right|^{2}\geq0$$

Which is a contradiction unless $\langle \delta \psi | O | \psi_0 \rangle = 0$.

- (c). Because \mathcal{H} is finite dimensional, $\mathcal{H} = W \bigoplus W^{\perp}$ with $W = (\operatorname{span}\{|\psi_0\rangle\})^{\perp}$ and also $W^{\perp \perp} = W$ but $\forall |\delta\psi\rangle \in W : \langle \delta\psi | O |\psi_0\rangle = 0$ therefore, $O |\psi_0\rangle \in W^{\perp} = \operatorname{span}\{|\psi_0\rangle\}$. But if $O |\psi_0\rangle \in \operatorname{span}\{|\psi_0\rangle\}$ then $O |\psi_0\rangle = \lambda |\psi_0\rangle$.
- (d). Take $W = (\operatorname{span}\{|\psi_0\rangle\})^{\perp}$ then for $|\psi\rangle \in W$, $\langle \psi_0|O\psi\rangle = \langle O\psi_0|\psi\rangle = \lambda^* \langle \psi_0|\psi\rangle = 0$. Thus, Im $O|_W \subset W$. Therefore, $O|_W$ is a well defined operator on W which inherits Hermiticity. We can apply the above argument to W since $\dim W = N 1$ is finite and produce a new eigenvector $|\psi_1\rangle \in W$ which is perpendicular to the span of $|\psi_0\rangle$.
- (e). We can therefore prove the finite dimensional spectral theorem by induction on the dimension of \mathcal{H} . If dim $\mathcal{H}=1$ then $O|v\rangle\in\operatorname{span}\{|v\rangle\}$ trivially. Suppose the theorem holds on every space with dim $\mathcal{H}=N$. Let dim $\mathcal{H}=N+1$. Then since dim W=N,W admits a orthonormal basis of eigenvectors of $O|_W$ namely $\{|v_1\rangle,|v_2\rangle,\ldots,|v_N\rangle\}$. Then since the eigenvector found above $|\psi_0\rangle\in W^{\perp}$ then the set $\{|v_1\rangle,\ldots,|v_N\rangle,|\psi_0\rangle\}$ is an orthonormal set of eigenvectors which are therefore independent.

Problem 7.

Let $|\psi\rangle = |A\rangle + \alpha |B\rangle$ where $\alpha \in \mathbb{C}$ then $\langle \psi | \psi \rangle \geq 0$ therefore,

$$\langle A|A\rangle + \alpha \, \langle A|B\rangle + \alpha^* \, \langle B|A\rangle + \alpha^2 \, \langle B|B\rangle = |B|^2 |\alpha|^2 + 2 \Re \mathfrak{e} \left[\langle A|B\rangle \, \alpha\right] + |A|^2 \geq 0$$

Let $\alpha = \langle B|A \rangle r$ for $r \in \mathbb{R}$ then because $\langle A|B \rangle \langle B|A \rangle \in \mathbb{R}$

$$|B|^2 |\langle A|B\rangle|^2 r^2 + 2 \langle A|B\rangle \langle B|A\rangle r + |A|^2 \ge 0$$

The innequality must hold for every r therefore, the discriminant of the quadratic form must be non-positive. Therefore, $4\left|\langle A|B\rangle\right|^4-4|A|^2|B|^2\left|\langle A|B\rangle\right|^2\geq 0$ Thus,

$$|A||B| \ge |\langle A|B\rangle|$$