Practica 3

Algorítmic

Introduccio

Diseño de

Pseudocodigo

Demostració

Minimizando el número de visitas al proveedor

Algorítmica

Universidad de Granada

19 de abril de 2016

Índice

Practica 3

Algorítmic

Introduce

Ejercicio

Diseño d algoritmo

Pseudocodig

Demostración

- Introducción
- 2 Ejercicio
- 3 Diseño del algoritmo
- Pseudocodigo
- Demostración

Introducción

Practica 3

Algorítmica

Introducción

Eigenieig

Diseño de algoritmo

Pseudocodig

Demostració

 El objetivo de esta práctica es diseñar un algoritmo
 Greedy, que resuelva de manera óptima uno de los cinco problemas de la práctica y demostrar que dicho algoritmo encuentra siempre la solución óptima.

Enunciado del ejercicio

Practica 3

Algorítmic

Introducci

Ejercicio

Diseño de algoritmo

Pseudocodigo

Un granjero necesita disponer siempre de fertilizante. El granjero consume el fertilizante en **R** días, antes de que esto ocurra debe acudir a abastecerse. Para esto el granjero se desplaza a la tienda del pueblo, de la que conoce el horario. El granjero desea minimizar el número de desplazamientos al pueblo para abastecerse.

Diseño del algoritmo

Practica 3

Algorítmica

Introduce

Ejercicio

Diseño del algoritmo

Pseudocodigo

• **Conjunto de candidatos**: Conjunto de días en que la tienda permanece abierta. (Conjunto **C**)

- Conjunto de seleccionados: Días elegidos para ir a la tienda. (Conjunto S)
- Función solución: Cuando el conjunto de candidatos esté vacío y aún tengamos fertilizante.
- Función factibilidad: No habrá una solución, si dentro del intervalo R no hay un candidato que elegir.
- Función selección: Se seleccionará el día más lejado de los posibles candidatos.
- Función objetivo: Lista con los días que el granjero irá a la tienda.

Pseudocódigo I

Practica 3

Algorítmica

miroducci

Ejercicio

Diseño de algoritmo

 ${\sf Pseudocodigo}$

Demostración

```
Selección 

Require: Conjunto de candidatos C 

x=0 

for i=1 to len(C) do 

if c_i - c_dia_actual menor que R then 

x=c_i 

end if 

end for 

return x
```

Pseudocódigo II

Practica 3

Algorítmica

Introducción

Diseño de

Pseudocodigo

Demostración

```
Factibilidad
```

Require: Candidato c

 $\quad \textbf{if} \ \ \mathsf{c_dia_actual} == \mathsf{c} \ \, \textbf{then}$

return False

else

return True

end if

Pseudocódigo III

Practica 3

Algorítmica

Introducción

......

Diseño de algoritmo

Pseudocodigo

Demostraciói

```
Require: Conjunto de candidatos C S = 0 while S no sea una solución y C != 0 do x = seleccion (C) C = C - x if factible(x) then S = S + x end if end while
```

Demostración

Practica 3

Algorítmica

Introducción

Diseño del algoritmo

Pseudocodigo

Demostración

Harémos la demostración por reducción al absurdo:

Sea $L = g_0 < g_1 < ... < g_p$ el conjunto de días seleccionados por el algoritmo Greedy que **NO** es óptimo.

Sea $L_{op} = f_0 < f_1 < ... < f_p$ una de la soluciones optimas del problema.

Sea r el máximo valor posible hasta donde L y L_{op} coinciden, es decir, $f_0=g:0, f_1=g_1,...,f_r=g_r.$

Entonces, g(r+1) > f(r+1)

Por lo que $g_0 < ... < g_r < g(r+1) < f(r+2) < f_q$ es otra solución al problema.

Si f llega un momento que se separa de g querrá decir que el número de días será mayor o igual.

Por lo que alcanzamos una contradiccion, ya que r no seria el maximo valor donde L y L_{op} siguen siendo iguales.