1 Definitions

 $\hat{\tau}$ is the estimate of the average treatment effect on the treated, calculated by nearest-neighbor matching on the original sample.

 $\hat{\tau}^b$ is the estimate of the average treatment effect on the treated, calculated by nearest-neighbor matching on the bootstrapped (wild) sample.

 $\hat{\tau}_i$ and $\hat{\tau}_i^b$ are the difference between $Y_i(1)$ and $\widehat{Y_i(0)}$ on the original and bootstrapped samples, respectively.

 ε_i is the residual for each treated unit i - that is, $\varepsilon_i = Y_i(1) - \hat{\tau} - \widehat{Y_i(0)}$

 ε_i^* is a random variable that takes on values ε_i and $-\varepsilon_i$ with equal probability.

2 Preamble

Throughout, I am conditioning on $\{Y, W, X\}$ - the entire original sample. I suppress the notation for this in the interests of legibility.

Without loss of generality, the sample is ordered so that the N_1 treated units are indexed $i \in \{1, 2, ..., N_1\}$ and the N_0 untreated units are indexed $i \in \{N_1 + 1, N_1 + 2, ..., N_1 + N_0\}$.

3 Variance of $\hat{\tau}^b$

As in the original sample, $\hat{\tau}^b$ is constructed by averaging $\hat{\tau}^b_i$ over all treated units:

$$\hat{\tau}^b = \frac{1}{N_1} \sum_{i=1}^{N_1} \hat{\tau}_i^b \tag{1}$$

By the definition of $\hat{\tau}_i^b$, (1) can be rewritten as:

$$\hat{\tau}^{b} = \frac{1}{N_{1}} \sum_{i=1}^{N_{1}} \left(Y_{i}(1) + \varepsilon_{i}^{*} - \widehat{Y_{i}(0)} \right)$$

$$= \frac{1}{N_{1}} \sum_{i=1}^{N_{1}} Y_{i}(1) + \frac{1}{N_{1}} \sum_{i=1}^{N_{1}} \varepsilon_{i}^{*} - \frac{1}{N_{1}} \sum_{i=1}^{N_{1}} \widehat{Y_{i}(0)}$$

$$= \frac{1}{N_{1}} \sum_{i=1}^{N_{1}} Y_{i}(1) + \frac{1}{N_{1}} \sum_{i=1}^{N_{1}} \varepsilon_{i}^{*} - \frac{1}{N_{1}} \sum_{i=1}^{N_{1}} \widehat{Y_{i}(0)}$$

$$(3)$$

Thus:

$$\mathbb{E}\left[\hat{\tau}^{b}\right] = \mathbb{E}\left[\frac{1}{N_{1}} \sum_{i=1}^{N_{1}} Y_{i}(1) + \frac{1}{N_{1}} \sum_{i=1}^{N_{1}} \varepsilon_{i}^{*} - \frac{1}{N_{1}} \sum_{i=1}^{N_{1}} \widehat{Y_{i}(0)}\right] \\
= \mathbb{E}\left[\frac{1}{N_{1}} \sum_{i=1}^{N_{1}} Y_{i}(1)\right] + \mathbb{E}\left[\frac{1}{N_{1}} \sum_{i=1}^{N_{1}} \varepsilon_{i}^{*}\right] - \mathbb{E}\left[\frac{1}{N_{1}} \sum_{i=1}^{N_{1}} \widehat{Y_{i}(0)}\right] \tag{4}$$

By the Law of Large Numbers and the fact that ε_i^* is mean-zero:

$$\mathbb{E}\left[\hat{\tau}^{b}\right] = \mathbb{E}\left[Y_{i}(1)\right] + 0 - \mathbb{E}\left[\widehat{Y_{i}(0)}\right]$$
$$= \mathbb{E}\left[Y_{i}(1)\right] - \mathbb{E}\left[\widehat{Y_{i}(0)}\right] = \hat{\tau}$$
(5)

Thus:

$$\mathbb{V}\left[\hat{\tau}^{b}\right] = \mathbb{E}\left[\left(\hat{\tau}^{b} - \mathbb{E}\left[\hat{\tau}^{b}\right]\right)^{2}\right] = \mathbb{E}\left[\left(\hat{\tau}^{b} - \hat{\tau}\right)^{2}\right] \\
= \mathbb{E}\left[\left(\frac{1}{N_{1}}\sum_{i=1}^{N_{1}}Y_{i}(1) + \frac{1}{N_{1}}\sum_{i=1}^{N_{1}}\varepsilon_{i}^{*} - \frac{1}{N_{1}}\sum_{i=1}^{N_{1}}\widehat{Y_{i}(0)} - \hat{\tau}\right)^{2}\right] \tag{6}$$

This next step I view as somewhat shaky - the argument is that $\hat{\tau}$ is numerically identical to $\frac{1}{N_1} \sum_{i=1}^{N_1} Y_i(1) - \frac{1}{N_1} \sum_{i=1}^{N_1} \widehat{Y_i(0)}$:

$$\mathbb{V}\left[\hat{\tau}^b\right] = \mathbb{E}\left[\left(\frac{1}{N_1} \sum_{i=1}^{N_1} \varepsilon_i^*\right)^2\right] \tag{7}$$

The problem here is that I think I can go from (7) (by noting that $\varepsilon_i^* \varepsilon_j^* = 0$ for $i \neq j$) to:

$$\mathbb{V}\left[\hat{\tau}^b\right] = \frac{1}{N_1} \mathbb{E}\left[\frac{1}{N_1} \sum_{i=1}^{N_1} (\varepsilon_i^*)^2\right] \tag{8}$$

But now an application of the LLN gives that the expectation converges to $\mathbb{E}\left[(\varepsilon_i^*)^2\right]$, but this is 0, so (8) is 0, which can't be right.