```
In [37]: import numpy as np
   import pandas as pd
   import seaborn as sns
   import matplotlib.pyplot as plt
   from sklearn.preprocessing import StandardScaler
   from sklearn.decomposition import PCA
   from sklearn.cluster import KMeans
```

```
In [38]: df = pd.read_csv("Mall_Customers.csv")
df
```

Out[38]:

	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	15	39
1	2	Male	21	15	81
2	3	Female	20	16	6
3	4	Female	23	16	77
4	5	Female	31	17	40
195	196	Female	35	120	79
196	197	Female	45	126	28
197	198	Male	32	126	74
198	199	Male	32	137	18
199	200	Male	30	137	83

200 rows × 5 columns

In [39]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):

```
#
    Column
                             Non-Null Count
                                             Dtype
    -----
---
                             _____
                                             _ _ _ _ _
                             200 non-null
                                             int64
0
    CustomerID
1
    Genre
                             200 non-null
                                             object
2
                             200 non-null
                                             int64
    Age
3
    Annual Income (k$)
                             200 non-null
                                             int64
    Spending Score (1-100)
                             200 non-null
                                             int64
```

dtypes: int64(4), object(1)
memory usage: 7.9+ KB

, ,

```
In [40]: df.drop(labels="CustomerID",axis = 1, inplace = True)
```

```
In [41]: | df.isnull().sum()
Out[41]: Genre
                                     0
                                     0
         Age
         Annual Income (k$)
                                     0
         Spending Score (1-100)
         dtype: int64
In [42]: df["Genre"].replace({"Male":1,"Female":0},inplace=True)
In [43]: model = StandardScaler()
         data = model.fit_transform(df)
         pca = PCA(n_components=2)
In [44]:
         pca data = pca.fit transform(data)
In [45]: wcss_list = []
         for i in range(1,15):
             kmeans = KMeans(n_clusters=i,init="k-means++",random_state=1)
             kmeans.fit(pca_data)
             wcss list.append(kmeans.inertia )
In [46]:
         plt.plot(range(1,15),wcss list)
         plt.plot([4,4],[0,500],linestyle="--")
         plt.text(4.2,300,"Elbow = 4")
         plt.xlabel("K")
         plt.ylabel("WCSS")
Out[46]: Text(0, 0.5, 'WCSS')
            500
            400
                            Elbow = 4
            300
            200
            100
              0
                                        8
                                              10
                                                    12
                                                          14
                                      Κ
```

```
In [47]:
         kmeans = KMeans(n clusters=4,init="k-means++",random state = 1)
         kmeans.fit(pca data)
Out[47]:
                          KMeans
          KMeans(n_clusters=4, random_state=1)
In [22]: | pred = kmeans.predict(pca data)
In [27]:
         result_data = pd.DataFrame()
         result_data['PC1'] = pca_data[:,0]
         result_data['PC2'] = pca_data[:,1]
In [29]: result_data["ClusterID"] = pred
In [30]: | cluster_colors = {0:'tab:red' , 1:'tab:green' , 2:'tab:blue' , 3:'tab:pink'}
         cluster_dict = {'Centroid':'tab:orange','Cluster0':'tab:red' , 'Cluster1':'tab:gr
                           'Cluster2':'tab:blue' , 'Cluster3':'tab:pink'}
In [36]: plt.scatter(x = result_data['PC1'] , y = result_data['PC2'],
                     c = result_data['ClusterID'].map(cluster_colors))
         plt.scatter(x = kmeans.cluster centers [:,0] , y = kmeans.cluster centers [:,1]
                     marker = 'o' , c = 'tab:orange', s = 150 , alpha = 1)
         plt.title("Clustered by KMeans")
         plt.xlabel("PC1" )
         plt.ylabel("PC2" )
```

Out[36]: Text(0, 0.5, 'PC2')


```
In [ ]:
```