Algorithmic Graph Theory – Chapter1

박진영

1.1 Graphs and Digraphs

Basic Definition

- A graph G = (V, E) is an ordered pair of finite sets.
- Elements of V are called vertices or nodes.
- Elements of $E \subseteq V^{(2)}$ are called edges or arcs.
- |V| is called the order of G.
- |E| is called the size of G.

Basic Definition

- v_1 and v_2 are adjacent vertices if $(v_1, v_2) \in E$ is an edge of a graph G = (V, E).
- (v_1, v_2) or v_1v_2 is incident with the vertices v_1 and v_2 .

Figure 1.1: The seven bridges of Königsberg puzzle.

Digraph

- A directed graph or digraph G is a graph each of whose edges is directed.
- directed edge uv: tail vertex $u \rightarrow head$ vertex v
- The set of edges is a subset of the ordered pairs $V \times V$.
- indegree id(v): the number of edges such that v is the head.
- outdegree od(v): the number of edges such that v is the tail.
- degree deg(v): id(v) + od(v), the number of edges incident to that vertex (self-loop counts 2)
- G is undirected => uv = vu
- G is directed => $uv \neq vu$

Multigraphs

• There are multiple edges between a pair of vertices.

Figure 1.5: A graph G and digraph H with a loop and multi-edges.

Weighted Graph

- Has a real number called the weight.
- vertex: (v, w_v) , vertex weight $w_v \in \mathbb{R}$
- edge: (w_e, u, v) , edge weight $w_e \in \mathbb{R}$

Figure 1.6: An example of a weighted multigraph.

Weighted Graph

- weighted indegree: the sum of the weights of edges going into v.
- weighted outdegree: the sum of the weights of edges going out of v.
- weighted degree: weighted indegree + weighted outdegree, the sum of the weights of edges incident to that vertex

Figure 1.6: An example of a weighted multigraph.

Line Graph

- The line graph $\mathcal{L}(G)$ is the multidigraph whose vertices are the edges of G and whose edges are the edges are (e,e') where h(e)=t(e') (for $e,e'\in E$).
- h(e): the head of the edge e
- t(e): the tail of the edge e

• no self-loops and no multiple edges

Figure 1.7: A simple graph, its digraph version, and a multidigraph.

- deg(v) = |adj(v)|
- isolated vertex: deg(v) = 0
- pendant vertex: deg(v) = 1

Figure 1.4: A figure with a self-loop.

- minimum degree $\delta(G)$
- maximum degree $\Delta(G)$
- r-regular graph is a regular graph ($\delta(G) = \Delta(G)$) each of whose vertices has degree r.
- $\sum_{v \in V} \deg(v) = 2|E|$ (i.e., nonnegative and even)
- It's because each edge $e = v_1 v_2$ is incident with two vertices, so e is counted twice.
- If G is an r-regular graph having n vertices and m edges, then m = rn/2.

- A graph G contains an even number of vertices with odd degrees.
- V_e : even degree vertices, V_o : odd degree vertices

That is, $V = V_e \cup V_o$ and $V_e \cap V_o = \emptyset$. From Theorem 1.9, we have

$$\sum_{v \in V} \deg(v) = \sum_{v \in V_e} \deg(v) + \sum_{v \in V_o} \deg(v) = 2|E|$$

which can be re-arranged as

$$\sum_{v \in V_0} \deg(v) = \sum_{v \in V} \deg(v) - \sum_{v \in V_e} \deg(v).$$

As $\sum_{v \in V} \deg(v)$ and $\sum_{v \in V_e} \deg(v)$ are both even, their difference is also even.

1.2 Subgraphs and Other Graph Types

Definition

• *H* is subgraph of *G* if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.

Walk

- A u-v walk is an alternating sequence of vertices and edges starting with u and ending at v.
- Consecutive vertices and edges are incident.
- A walk $W: v_0, e_1, v_1, e_2, v_2, ..., v_{n-1}, e_n, v_n$ where each edge $e_i = v_{i-1}v_i$ and the length n refers to the number of (not necessarily distinct) edges in the walk.
- If the graph has no multiple edges, then usually a walk $W: v_0, v_1, v_2, ..., v_{n-1}, v_n$.
- Allowed to have repeated vertices and edges in a walk.

Walk

• e.g., *a-e* walk: *a, b, c, b, e* (length 4)

Figure 1.9: Walking along a graph.

Trail

- A walk with no repeating edges.
- e.g., a-b walk: a, b, c, d, f, g, b (no repeated edges, but one repeated vertex)

Figure 1.9: Walking along a graph.

Path

- A walk with no repeating vertices except for possible the first and last.
- It is also a trail (no repeating vertices => no repeating edges).

Figure 1.9: Walking along a graph.

Closed

- closed walk, closed trail, closed path or cycle: start and end vertices are the same.
- e.g., closed path: a, b, c, e, a

Figure 1.9: Walking along a graph.

Features

- Let G be a simple (di)graph of order n = |V|. Any path in G has length at most n 1.
- The length of the shortest cycle in a graph is called the girth.
- Every u-v walk in a graph contains a u-v path.

Connectivity

- A graph is said to be connected if for every pair of distinct vertices u, v there is a u-v path joining them.
- geodesic path or shortest path: u-v path of minimum length
- component: connected subgraph such that it isn't proper subgraph of any connected subgraph, which is maximal connected subgraph.
- Any connected graph is its own component.
- The number of connected components $\omega(G)$.
- Suppose that exactly two vertices of a graph have odd degree. Then those two vertices are connected by a path.

Tree

- Has some form of hierarchy.
- Undirected graph that is connected and has no cycles.

Figure 1.11: A family tree.

Spanning Subgraph

- H is a subgraph of G and V(H) = V(G).
- To obtain a spanning subgraph from a given graph, delete edges from the graph.

Figure 1.12: A graph and one of its subgraphs.

Complete Graph

- complete graph K_n : any two distinct vertices are adjacent.
- $|V(K_n)| = n$, $|E(K_n)| = \binom{n}{2} = \frac{n(n-1)}{2}$
- For any graph G with n vertices, $|E(G)| \le \frac{n(n-1)}{2}$

Figure 1.13: Complete graphs K_n for $1 \le n \le 5$.

Cycle Graph

• The cycle graph C_n on $n \ge 3$ vertices is the connected 2-regular graph.

Figure 1.14: Cycle graphs C_n for $3 \le n \le 6$.

Path Graph

- The path graph P_n on $n \ge 3$ vertices is a spanning subgraph of C_n obtained by deleting one edge.
- Otherwise, $P_1 = K_1$, $P_2 = K_2$.

Bipartite Graph

- A graph with at least two vertices such that V(G) can be split into two disjoint subsets V_1 and V_2 , both nonempty.
- Every edge $uv \in E(G)$ is such that $u \in V_1$ and $v \in V_2$, or $v \in V_1$ and $u \in V_2$.
- A graph is bipartite if and only if it has no odd cycles.

Bipartite Graph

- complete bipartite graph $K_{m,n}$: vertex set portioned into two nonempty disjoint sets V_1 and V_2 with $|V_1| = m$ and $|V_2| = n$.
- Any vertex in V_1 is adjacent to each vertex in V_2 .
- Where m = 1 then $K_{1,n}$ is called the star graph.

Figure 1.18: Bipartite, complete bipartite, and star graphs.

1.3 Representing Graphs as Matrices

Matrix

An $m \times n$ matrix A can be represented as

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}.$$

The positive integers m and n are the row and column dimensions of A, respectively. The entry in row i column j is denoted a_{ij} . Where the dimensions of A are clear from context, A is also written as $A = [a_{ij}]$.

Adjacency Matrix

Let G be an undirected graph with vertices $V = \{v_1, \ldots, v_n\}$ and edge set E. The adjacency matrix of G is the $n \times n$ matrix $A = [a_{ij}]$ defined by

$$a_{ij} = \begin{cases} 1, & \text{if } v_i v_j \in E, \\ 0, & \text{otherwise.} \end{cases}$$

The adjacency matrix of G is also written as A(G). As G is an undirected graph, then A is a symmetric matrix. That is, A is a square matrix such that $a_{ij} = a_{ji}$.

Adjacency Matrix

Now let G be a directed graph with vertices $V = \{v_1, \ldots, v_n\}$ and edge set E. The (0, -1, 1)-adjacency matrix of G is the $n \times n$ matrix $A = [a_{ij}]$ defined by

$$a_{ij} = \begin{cases} 1, & \text{if } v_i v_j \in E, \\ -1, & \text{if } v_j v_i \in E, \\ 0, & \text{otherwise.} \end{cases}$$

Adjacency Matrix

More generally, if G is an undirected multigraph with edge $e_{ij} = v_i v_j$ having multiplicity w_{ij} , or a weighted graph with edge $e_{ij} = v_i v_j$ having weight w_{ij} , then we can define the (weighted) adjacency matrix $A = [a_{ij}]$ by

$$a_{ij} = \begin{cases} w_{ij}, & \text{if } v_i v_j \in E, \\ 0, & \text{otherwise.} \end{cases}$$

Bipartite Case

• The matrix A' has the form:

$$A' = \begin{bmatrix} \mathbf{0} & B \\ B^T & \mathbf{0} \end{bmatrix}$$

• where $\mathbf{0}$ is a zero matrix, B is a reduced adjacency matrix.

Tanner Graph

- bipartite graph
- m rows: V_1
- n columns: V_2
- In fact, it's the reduced adjacency matrix.

Figure 1.20: A Tanner graph.

Incidence Matrix

Let G be a digraph with edge set $E = \{e_1, \ldots, e_m\}$ and vertex set $V = \{v_1, \ldots, v_n\}$. The *incidence matrix* of G is the $n \times m$ matrix $B = [b_{ij}]$ defined by

$$b_{ij} = \begin{cases} -1, & \text{if } v_i \text{ is the tail of } e_j, \\ 1, & \text{if } v_i \text{ is the head of } e_j, \\ 2, & \text{if } e_j \text{ is a self-loop at } v_i, \\ 0, & \text{otherwise.} \end{cases}$$

$$(1.10)$$

Each column of B corresponds to an edge and each row corresponds to a vertex. The definition of incidence matrix of a digraph as contained in expression (1.10) is applicable to digraphs with self-loops as well as multidigraphs.

Incidence Matrix

Theorem 1.26. The incidence matrix of an undirected graph G is related to the adjacency matrix of its line graph L(G) by the following theorem:

$$A(L(G)) = D(G)^T D(G) - 2I_n ,$$

where A(L(G)) is the adjacency matrix of the line graph of G.

Laplacian Matrix

The degree matrix of a graph G = (V, E) is an $n \times n$ diagonal matrix D whose i-th diagonal entry is the degree of the i-th vertex in V. The Laplacian matrix \mathcal{L} of G is the difference between the degree matrix and the adjacency matrix:

$$\mathcal{L} = D - A$$
.

In other words, for an undirected unweighted simple graph, $\mathcal{L} = [\ell_{ij}]$ is given by

$$\ell_{ij} = \begin{cases} -1, & \text{if } i \neq j \text{ and } v_i v_j \in E, \\ d_i, & \text{if } i = j, \\ 0, & \text{otherwise,} \end{cases}$$

where $d_i = \deg(v_i)$ is the degree of vertex v_i .

Distance Matrix

- The $n \times n$ matrix $[d(v_i, v_j)]$ is the distance matrix of G.
- distance (or geodesic distance) d(v, w): the number of edges in a shortest path connecting them
- It's important to understand the "connectivity".

1.4 Isomorphic Graphs

Definition

- Structurally equivalent (fundamentally same).
- If G and H are isomorphic, $G \cong H$.
- Two graphs G and H are isomorphic if there is a bijection $f:V(G)\to V(H)$ such that whenever $uv\in E(G)$ then $f(u)f(v)\in E(H)$.
- If u and v are adjacent in G, then their counterparts in V(H) are also adjacent in H.

Figure 1.24: Isomorphic and nonisomorphic graphs.

Features

- order and size equal
- $\deg(v) = \deg(f(v))$ for all $v \in G$
- Adjacencies are preserved
- Shortest paths are preserved, if $v_1, v_2, ..., v_k$ is a shortest path, then $f(v_1), f(v_2), ... f(v_k)$ is also a shortest path.

Lexicographical Ordering

- Like the way words are arranged in a dictionary (alphabetically).
- e.g., "apple" < "banana", [1, 2, 3] < [2, 1, 1]
- In the case of matrix, $A_1 < A_2$ if the list of entries of A_1 is less than or equal to the list of entries of A_2 in the lexicographical ordering.
- The list of entries is obtained by concatenating the entries of the matrix, row-by-row.
- For example:

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} < \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

Permutation Equivalent

- If there is a permutation matrix P such that $A_1 = PA_2P^{-1}$.
- A_1 is the same as A_2 after a suitable re-ordering of the rows and columns.
- Graphs G_1 and G_2 are isomorphic if and only if A_1 is permutation equivalent to A_2 .
- canonical label: the lexicographically maximal element of the permutation equivalence class of the adjacency matrix of G
- To check if isomorphic, simply check if their canonical labels are equal.

Permutation Equivalent

return True

7 return False

```
Algorithm 1.1: Computing graph isomorphism using canonical labels.

Input: Two undirected simple graphs G_1 and G_2, each having n vertices.

Output: True if G_1 \cong G_2; False otherwise.

I for i \leftarrow 1, 2 do

A_i \leftarrow \text{adjacency matrix of } G_i

A_i \leftarrow \text{permutation equivalence class of } A_i

A_i' \leftarrow \text{lexicographically maximal element of } p_i

Input: Two undirected simple graphs G_1 and G_2, each having n vertices.

A_i \leftarrow A_i' \leftarrow A_i'

Input: Two undirected simple graphs G_1 and G_2, each having n vertices.

A_i' \leftarrow A_i' \leftarrow A_i'

Input: Two undirected simple graphs G_1' = G_2' and G_2' = G_1'

Input: G_1' = G_2' = G_2'

Input: Two undirected simple graphs G_1' = G_2'

Input: Tw
```

References

- [1] Algorithmic Graph Theory
- [2] <u>Line graph Wikipedia</u>