Università degli Studi di Brescia

Multimedia Communication Services Lab experience n. 8

Sub-band filtering

Consider the filter bank with the following perfect reconstruction Haar analysis and synthesis filters

$$h_L = \left[\frac{\sqrt{2}}{2} \ \frac{\sqrt{2}}{2}\right] \quad h_H = \left[\frac{\sqrt{2}}{2} \ -\frac{\sqrt{2}}{2}\right] \quad g_L = \left[\frac{\sqrt{2}}{2} \ \frac{\sqrt{2}}{2}\right] \quad g_H = \left[-\frac{\sqrt{2}}{2} \ \frac{\sqrt{2}}{2}\right]$$
 (1)

Consider then the separable application of these filter bank to an image according to the following scheme for horizontal and vertical filtering and sub-sampling

- 1. Implement the analysis bank by filtering the signal X first by columns, so obtaining X_L and X_H , and then filtering by rows those two signals to obtain X_{LL} , X_{LH} , X_{HL} , X_{HH} .
- 2. Display the four sub-bands X_{LL} , X_{LH} , X_{HL} , X_{HH} and observe the different content of each sub-band.
- 3. Implement the synthesis bank and check that the filter bank is perfect-reconstruction.
- 4. Evaluate the quality of the image obtained by only using the LL sub-band in the synthesis phase (quantize the remaining sub-bands to zero).
- 5. Iterate the sub-band analysis and synthesis process on the LL sub-band, and repeat the experiment of the previous two points.

Bonus: Apply a uniform (non-zero) quantization to different sub-bands and study its effect on the quality of the reconstructed image.