# Отчет по заданию №3.2

Кондратенко Федор, гр 13632/1

2019г.

## Модель

В качестве исходной была взята модель из задания 3.1. В нее был внесен ряд изменений, а именно:

- 1. Вместо коэффициента b задается коэффициент  $\psi$ ;
- 2. Проведен рефакторинг системы, создана вспомогательная подсистема подсистемы для расчета коэффициентов;
- 3. Добавлены блоки анализа системы.

#### Внешний вид модели:



Рис. 1: Внешний вид модели

### Подсисистема:



Рис. 2: Вид подсистемы

Дифференциальные уравнения колебаний остались теми же, за исключением уравнения для последнего задания. Вспомогательная подсистема:



 ${\it Puc.}~3$ : Вспомогательная подсистема. Вычисляет некоторые коэффициенты, которые далее используются при моделировании.

## Результаты моделирования и анализ системы



Рис. 4: Linear step response plot,  $\psi=0.5$ 

Время затухания свободных колебаний – 8 секунд.



Рис. 5: Linear step response plot,  $\psi=0.1$ 

Время затухания свободных колебаний – 40 секунд. Таким образом, уменьшение  $\psi$  ведет к увеличению времени затухания свободных колебаний.



Рис. 6: Linear step response plot,  $\psi=0$ 

Время затухания свободных колебаний – 40 секунд. Таким образом, уменьшение  $\psi$  ведет к увеличению времени затухания свободных колебаний. При  $\psi=0$  колебания не затухают.



Рис. 7: АЧХ и ФЧХ системы,  $\psi=0.5$ 



Рис. 8: АЧХ и ФЧХ системы,  $\psi=0.1$ 

Как видно, при меньшем  $\psi$  амплитуда на AЧX становится больше,  $\Phi$ ЧX не меняется.



Рис. 9: Вид АЧХ при линейной шкале частот,  $\psi = 0.5$ 



Рис. 10: АФЧХ системы, система усточива



Рис. 11: Вынужденные колебания до резонанса,  ${\bf k}={\bf 6},$  колебания происходят в одной фазе



Рис. 12: Колебания на частоте резонанса,  $\mathbf{k}=12.45,$  сдвиг по фазе на  $\frac{\pi}{2}$ 



Рис. 13: Колебания после резонанса, k=26, колебания происходят в противофазе с вынуждающей силой

## Добавление в систему сухого трения

В связи с добавлением в систему сухого трения, дифференциальное уравнение колебаний меняется:

$$mx'' + bx' + cx = F_0 sin(\omega t) - 0.2 * mg * sign(x')$$



Рис. 14: Затухающие колебания при учете сухого трения



Рис. 15: Резонанс при учете сухого трения

<sup>&</sup>quot;Экспоненциальность" амплитуды колебаний уменьшилась.