

Universidad Nacional de Colombia Facultad de Ciencias Topología General Taller II

Nateo Andrés Manosalva Amaris	
ergio Alejandro Bello Torres	

1. Demostrar que toda variedad es regular y, por lo tanto, metrizables.

Demostración. Sea $x \in X$, como X es m-variedad,
entonces dada U una vecindad de x, tenemos que U
es homeomorfo $V \subset \mathbb{R}^m$. Sea h es homeomorfismo, como \mathbb{R}^m es localmente compacto, entonces dada
una vecindad W de h(x) existe un K compacto tal que

$$W_{h(x)} \subset K \subset V \subset \mathbb{R}^m$$

y como h es homeomorfismo

$$h^{-1}(W_{h(x)}) \subset h^{-1}(K) \subset U$$

con $h^{-1}(W_{h(x)})$ vecindad de x y $h^{-1}(K)$ compacto. Esto prueba que X es local localmente compacto, como localmente compacto y Haussdorf implica regular entonces hemos probado que toda variedad es regular, por la definición de variedad tenemos que esta es 2-contable, luego por el teorema de Urysohn toda variedad es metrizable.

- 2. Sea X un espacio compacto de Hausdorff. Suponga que para cada $x \in X$, existe una vecindad U de x y un entero positivo k tal que U puede ser embebido en \mathbb{R}^k . Mostrar que X puede ser embebido en \mathbb{R}^N para algún entero positivo N.
- 3. Sea X un espacio de Hausdorff tal que cada punto de X tiene un vecindario homeomorfo con un subconjunto abierto de \mathbb{R}^m . Mostrar que si X es compacto, entonces X es una m-variedad.
- 4. Una familia indexada $\{A_{\alpha}\}$ de subconjuntos de X se dice familia indexada puntualmente finita si cada $x \in X$ pertenece a A_{α} solo para un número finito de valores de α . Lema. Sea X un espacio normal; sea $\{U_1, U_2, \ldots\}$ una cobertura indexada puntualmente finita de X. Entonces, existe una cobertura indexada $\{V_1, V_2, \ldots\}$ de X tal que $\bar{V}_n \subset U_n$ para cada n.
- 5. La condición de Hausdorff es una parte esencial en la definición de una variedad; no se sigue de las otras partes de la definición. Considere el siguiente espacio: Sea X la unión del conjunto $\mathbb{R} \{0\}$ y el conjunto de dos puntos $\{p,q\}$. Se topologiza X tomando como base la colección de todos los intervalos abiertos en \mathbb{R} que no contienen 0, junto con todos los conjuntos de la forma $(-a,0) \cup \{p\} \cup (0,a)$ y todos los conjuntos de la forma $(-a,0) \cup \{q\} \cup (0,a)$, para a > 0. El espacio X se llama A recta con dos orígenes.
 - a) Verificar que esto es una base para una topología.
 - b) Mostrar que cada uno de los espacios $X \{p\}$ y $X \{q\}$ es homeomorfo a \mathbb{R} .
 - c) Mostrar que X satisface el axioma T_1 , pero no es de Hausdorff.
 - *d*) Mostrar que *X* satisface todas las condiciones para ser una 1-variedad, excepto la condición de Hausdorff.