K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS DIODE APPLICATIONS

Numerical 1: Simulate a half wave rectifier circuit with input Amplitude = 110V peak, f = 60 Hz and $R_L = 75\Omega$ using LT spice. Select diode as IN4148. Use 10:1 step down transformer. Plot the following using LTspice:

- (a) Primary peak voltage
- (b) Secondary peak voltage
- (c) Output voltage across resistor
- (d) Output voltage across diode
- (e) Current flowing through the circuit

Also, calculate the efficiency of the Half wave rectifier circuit.

Solution:

Figure 1: Circuit 1

$$\begin{split} \frac{N_1}{N_2} &= \frac{E_1}{E_2} \\ \frac{N_1}{N_2} &= \frac{10}{1} \\ V_{in} &= E_1 = 110 \mathrm{V} \\ V_{out} &= E_2 = 11 \mathrm{V} \end{split}$$

Current through the circuit
$$I_M = \frac{V_M}{R_f + R_L}$$

$$= \frac{10.3}{0.00001 + 75}$$

$$= 0.1373 \text{A}$$

 $I_M = 0.1373A$

Output voltage across resistor
$$(V_M) = E_2 - V_{D,ON}$$

= 11 - 0.7
= 10.3V

$$V_M = 10.3 \mathrm{V}$$

DC Power
$$(P_{DC}) = \frac{V_M^2}{\pi^2 \times R_L}$$
$$= \frac{10.3^2}{\pi^2 \times 75}$$
$$= 0.1433 \text{W}$$

AC Power
$$(P_{AC}) = \frac{V_M^2}{4(R_f + R_L)}$$

= $\frac{10.3^2}{4(0.00001 + 75)}$
= 0.3536W

$$P_{DC} = 0.1433 W$$

 $P_{AC} = 0.3536 W$

Efficiency
$$(\eta) = \frac{P_{DC} \times 100}{P_{AC}}$$

= $\frac{0.1433 \times 100}{0.3536}$
= 40.526%

$$\eta = 40.526\%$$

PIV rating on D =
$$-V_M = -11V$$

Waveforms:

Figure 2: Circuit Waveforms

SIMULATED RESULTS:

The given circuit is simulated in LTspice and the results obtained are as follows:

Figure 3: Circuit Schematic and Simulated Results

Comparison of theoretical and simulated values:

Parameters	Theoretical Values	Simulated Values
Output peak voltage (V_M)	10.3V	10.11V
Output peak current (I_M)	0.1373A	0.134A
AC Power	0.3536W	0.3409W
DC Power	0.1433W	0.1381W
Efficiency (η)	40.526%	40.5104%
PIV rating	-11V	-10.99V

Table 1: Numerical 1

Numerical 2: Simulate a full wave rectifier circuit with input Amplitude = 1210V peak, f = 50 Hz and $R_L = 50\Omega$ using LT spice. Select diode as IN4148. Use 10:1 step down transformer. Plot the following using LTspice:

- (a) Primary peak voltage
- (b) Secondary peak voltage
- (c) Output voltage across resistor
- (d) Output voltage across diode
- (e) Current flowing through the diodes
- (f) Current flowing through the circuit
- (g) Efficiency of the full wave rectifier circuit.

Solution:

Figure 4: Circuit 2

$$\frac{N_1}{N_2} = \frac{E_1}{E_2}$$
 $\frac{N_1}{N_2} = \frac{10}{1}$
 $V_{in} = E_1 = 120V$
 $V_{out} = E_2 = 12V$

Current through the circuit
$$I_M = \frac{V_M}{R_f + R_L}$$

$$= \frac{11.3}{0.00001 + 50}$$

$$= 0.226 A$$

$$I_M = 0.226A$$

Output voltage across resistor
$$(V_M) = E_2 - V_{D,ON}$$

= 10 - 0.7
= 11.3V

$$V_M = 11.3V$$

$$I_{D1} = I_{D1} = I_M = 0.226$$
A

DC Power
$$(P_{DC}) = \frac{(2I_M)^2 \times R_L}{\pi^2}$$

$$= \frac{(2 \times 0.226)^2 \times 50}{\pi^2}$$

$$= 1.035W$$
AC Power $(P_{AC}) = \frac{I_M^2 (R_f + R_L)}{2}$

$$= \frac{0.226^2 (0.00001 + 50)}{2}$$

$$= 1.276W$$

$$P_{DC} = 1.035 W$$

 $P_{AC} = 1.276 W$

Efficiency
$$(\eta) = \frac{P_{DC} \times 100}{P_{AC}}$$

= $\frac{1.035 \times 100}{1.276}$
= 81.112%

$$\eta = 81.112\%$$

PIV rating on D1 =
$$-2V_M = -22.6$$
V
PIV rating on D2 = $-2V_M = -22.6$ V

Waveforms:

Figure 5: Circuit Waveforms

SIMULATED RESULTS:

The given circuit is simulated in LTspice and the results obtained are as follows:

Figure 6: Circuit Schematic and Simulated Results

Comparison of theoretical and simulated values:

Parameters	Theoretical Values	Simulated Values
Output peak voltage (V_M)	11.3V	11.04V
Output peak current (I_M)	0.226A	0.220A
AC Power	1.276W	1.219W
DC Power	1.0 3 5W	0.9807W
Efficiency (η)	81.112%	81.049%
PIV rating on D1	-22.6V	-23.033V
PIV rating on D2	-22.6V	-23.034V

Table 2: Numerical 2