Laboratory_Exercise_1_Feature_Scaling

July 16, 2025

1 Laboratory Exercise-1: Feature Scaling Methods

1.1 Data Preprocessing with Different Scaling Techniques on Social Network Ads Dataset

AICTE Faculty ID: 1-3241967546

Faculty Name: Milav Jayeshkumar Dabgar

Date: July 16, 2025

1.1.1 Objective:

This laboratory exercise demonstrates comprehensive data preprocessing techniques learned in Laboratory-1, with a special focus on different feature scaling methods applied to the Social Network Ads dataset.

1.1.2 Learning Outcomes:

- Apply complete data preprocessing pipeline
- Understand different feature scaling techniques
- Compare the effects of various scaling methods
- Evaluate model performance with different scaling approaches

1.2 1. Import Required Libraries

Import all necessary libraries for data preprocessing, feature scaling, visualization, and machine learning.

```
PowerTransformer, LabelEncoder)

from sklearn.model_selection import train_test_split

from sklearn.impute import SimpleImputer

# Machine Learning

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import accuracy_score, classification_report,

confusion_matrix

# Visualization settings

plt.style.use('seaborn-v0_8')

sns.set_palette("husl")

pd.set_option('display.max_columns', None)

print("All libraries imported successfully!")
```

All libraries imported successfully!

1.3 2. Load and Explore the Dataset

Load the Social Network Ads dataset and perform comprehensive exploratory data analysis.

```
[2]: # Load the dataset
     dataset = pd.read_csv('Social_Network_Ads.csv')
     print("="*50)
     print("SOCIAL NETWORK ADS DATASET EXPLORATION")
     print("="*50)
     print(f"\n Dataset Shape: {dataset.shape}")
     print(f" Columns: {list(dataset.columns)}")
     print("\n First 10 rows:")
     print(dataset.head(10))
     print("\n Dataset Info:")
     print(dataset.info())
     print("\n Statistical Summary:")
     print(dataset.describe())
     print("\n Target Variable Distribution:")
     print(dataset['Purchased'].value_counts())
     print(f"Purchase Rate: {dataset['Purchased'].mean():.2%}")
     print("\n Missing Values Check:")
     print(dataset.isnull().sum())
```

SOCIAL NETWORK ADS DATASET EXPLORATION

Dataset Shape: (400, 3)

Columns: ['Age', 'EstimatedSalary', 'Purchased']

First 10 rows:

	Age	${\tt EstimatedSalary}$	Purchased
0	19	19000	0
1	35	20000	0
2	26	43000	0
3	27	57000	0
4	19	76000	0
5	27	58000	0
6	27	84000	0
7	32	150000	1
8	25	33000	0
9	35	65000	0

Dataset Info:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 400 entries, 0 to 399
Data columns (total 3 columns):

#	Column	Non-Null Count	Dtype
0	Age	400 non-null	int64
1	EstimatedSalary	400 non-null	int64
2	Purchased	400 non-null	int64

dtypes: int64(3) memory usage: 9.5 KB

None

Statistical Summary:

	Age	EstimatedSalary	Purchased
count	400.000000	400.000000	400.000000
mean	37.655000	69742.500000	0.357500
std	10.482877	34096.960282	0.479864
min	18.000000	15000.000000	0.000000
25%	29.750000	43000.000000	0.000000
50%	37.000000	70000.000000	0.000000
75%	46.000000	88000.000000	1.000000
max	60.000000	150000.000000	1.000000

Target Variable Distribution:

Purchased

0 257

1 143

```
Name: count, dtype: int64
    Purchase Rate: 35.75%
     Missing Values Check:
    Age
                       0
    EstimatedSalary
                       0
    Purchased
                       0
    dtype: int64
[3]: # Data Visualization
     fig, axes = plt.subplots(2, 2, figsize=(15, 10))
     # Age distribution
     axes[0, 0].hist(dataset['Age'], bins=20, alpha=0.7, color='skyblue',_
      ⇔edgecolor='black')
     axes[0, 0].set_title('Age Distribution')
     axes[0, 0].set_xlabel('Age')
     axes[0, 0].set_ylabel('Frequency')
     # Estimated Salary distribution
     axes[0, 1].hist(dataset['EstimatedSalary'], bins=20, alpha=0.7,__

→color='lightgreen', edgecolor='black')
     axes[0, 1].set title('Estimated Salary Distribution')
     axes[0, 1].set_xlabel('Estimated Salary')
     axes[0, 1].set_ylabel('Frequency')
     # Purchase distribution
     purchase counts = dataset['Purchased'].value counts()
     axes[1, 0].pie(purchase_counts.values, labels=['Not Purchased (0)', 'Purchased_
      \hookrightarrow (1)'],
                    autopct='%1.1f%%', colors=['lightcoral', 'lightblue'])
     axes[1, 0].set_title('Purchase Distribution')
     # Scatter plot: Age vs Salary colored by Purchase
     scatter = axes[1, 1].scatter(dataset['Age'], dataset['EstimatedSalary'],
                                 c=dataset['Purchased'], cmap='viridis', alpha=0.6)
     axes[1, 1].set_title('Age vs Estimated Salary (Colored by Purchase)')
     axes[1, 1].set_xlabel('Age')
     axes[1, 1].set_ylabel('Estimated Salary')
     plt.colorbar(scatter, ax=axes[1, 1])
     plt.tight_layout()
     plt.show()
```


1.4 3. Data Preprocessing and Cleaning

Check for data quality issues and prepare the dataset for feature scaling.

```
[4]: # Data Quality Check
    print("="*50)
    print("DATA QUALITY ASSESSMENT")
    print("\n Checking for missing values:")
    missing_values = dataset.isnull().sum()
    print(missing_values)

print("\n Checking for duplicates:")
    duplicates = dataset.duplicated().sum()
    print(f"Number of duplicate rows: {duplicates}")

print("\n Data types:")
    print(dataset.dtypes)

print("\n Unique values in each column:")
    for col in dataset.columns:
        print(f"{col}: {dataset[col].nunique()} unique values")
```

```
# Check for outliers using IQR method
print("\n Outlier Detection (using IQR method):")
for col in ['Age', 'EstimatedSalary']:
    Q1 = dataset[col].quantile(0.25)
    Q3 = dataset[col].quantile(0.75)
    IQR = Q3 - Q1
    lower_bound = Q1 - 1.5 * IQR
    upper bound = Q3 + 1.5 * IQR
    outliers = dataset[(dataset[col] < lower_bound) | (dataset[col] >__
 →upper_bound)]
    print(f"{col}: {len(outliers)} outliers detected")
print("\n Data quality check complete! No missing values found.")
print(" Ready for feature scaling experiments!")
_____
DATA QUALITY ASSESSMENT
 Checking for missing values:
Age
EstimatedSalary
                  0
Purchased
                  0
dtype: int64
 Checking for duplicates:
Number of duplicate rows: 33
 Data types:
Age
                  int64
EstimatedSalary
                  int64
Purchased
                  int64
dtype: object
 Unique values in each column:
Age: 43 unique values
EstimatedSalary: 117 unique values
Purchased: 2 unique values
 Outlier Detection (using IQR method):
Age: 0 outliers detected
EstimatedSalary: 0 outliers detected
```

Data quality check complete! No missing values found.

Ready for feature scaling experiments!

1.5 4. Feature Selection and Target Variable Setup

Separate features and target variable, and prepare data structures for scaling experiments.

```
[5]: # Extract features and target variable
     print("="*50)
     print("FEATURE EXTRACTION")
     print("="*50)
     # Independent variables (features): Age and EstimatedSalary
     X = dataset[['Age', 'EstimatedSalary']].values
     feature_names = ['Age', 'EstimatedSalary']
     # Dependent variable (target): Purchased
     y = dataset['Purchased'].values
     print(f"\n Features (X) shape: {X.shape}")
     print(f" Target (y) shape: {y.shape}")
     print(f"\n Feature names: {feature names}")
     print(f" Target classes: {np.unique(y)}")
     print("\n Original features (first 10 rows):")
     X_df = pd.DataFrame(X, columns=feature_names)
     print(X_df.head(10))
     print("\n Feature statistics:")
     print(X_df.describe())
     # Store original data for comparison
     X_original = X.copy()
     print("\n Features and target variables extracted successfully!")
```

FEATURE EXTRACTION

```
Features (X) shape: (400, 2)
Target (y) shape: (400,)

Feature names: ['Age', 'EstimatedSalary']
Target classes: [0 1]

Original features (first 10 rows):
Age EstimatedSalary
0 19 19000
1 35 20000
2 26 43000
3 27 57000
```

```
4
    19
                   76000
5
    27
                   58000
6
    27
                   84000
7
    32
                  150000
8
    25
                   33000
    35
                   65000
```

Feature statistics:

	Age	EstimatedSalary
count	400.000000	400.000000
mean	37.655000	69742.500000
std	10.482877	34096.960282
min	18.000000	15000.000000
25%	29.750000	43000.000000
50%	37.000000	70000.000000
75%	46.000000	88000.000000
max	60.000000	150000.000000

Features and target variables extracted successfully!

1.6 5. StandardScaler Implementation

Apply StandardScaler to normalize features to have mean=0 and standard deviation=1.

```
[6]: \# StandardScaler: z = (x - )
     print("="*60)
     print("STANDARDSCALER (Z-SCORE NORMALIZATION)")
     print("="*60)
     scaler_standard = StandardScaler()
     X_standard = scaler_standard.fit_transform(X)
     print(" StandardScaler Parameters:")
     print(f"Mean values: {scaler_standard.mean_}")
     print(f"Standard deviations: {scaler_standard.scale_}")
     print("\n Original vs Standardized Data (first 10 rows):")
     comparison_df = pd.DataFrame({
         'Age_Original': X[:10, 0],
         'Age_Standard': X_standard[:10, 0],
         'Salary_Original': X[:10, 1],
         'Salary_Standard': X_standard[:10, 1]
     })
     print(comparison_df)
     print("\n Standardized Data Statistics:")
     X standard df = pd.DataFrame(X_standard, columns=[f'{name}_Standard' for name_
      →in feature_names])
```

```
print(X_standard_df.describe())

print(f"\n Standardized features have mean 0 and std 1")
print(f"Mean: {X_standard_df.mean().values}")
print(f"Std: {X_standard_df.std().values}")
```

STANDARDSCALER (Z-SCORE NORMALIZATION)

StandardScaler Parameters:

Mean values: [3.76550e+01 6.97425e+04]

Standard deviations: [1.04697648e+01 3.40543124e+04]

Original vs Standardized Data (first 10 rows):

	Age_Original	Age_Standard	Salary_Original	Salary_Standard
0	19	-1.781797	19000	-1.490046
1	35	-0.253587	20000	-1.460681
2	26	-1.113206	43000	-0.785290
3	27	-1.017692	57000	-0.374182
4	19	-1.781797	76000	0.183751
5	27	-1.017692	58000	-0.344817
6	27	-1.017692	84000	0.418669
7	32	-0.540127	150000	2.356750
8	25	-1.208719	33000	-1.078938
9	35	-0.253587	65000	-0.139263

Standardized Data Statistics:

	Age_Standard	${\tt EstimatedSalary_Standard}$
count	4.000000e+02	4.000000e+02
mean	-7.105427e-17	-1.776357e-17
std	1.001252e+00	1.001252e+00
min	-1.877311e+00	-1.607506e+00
25%	-7.550313e-01	-7.852897e-01
50%	-6.256110e-02	7.561451e-03
75%	7.970571e-01	5.361289e-01
max	2.134241e+00	2.356750e+00

Standardized features have mean $\ \ 0$ and std $\ \ 1$

Mean: [-7.10542736e-17 -1.77635684e-17]

Std: [1.00125235 1.00125235]

1.7 6. MinMaxScaler Implementation

Apply MinMaxScaler to scale features to a range between 0 and 1.

```
[7]: # MinMaxScaler: z = (x - min) / (max - min)
print("="*60)
print("MINMAXSCALER (NORMALIZATION)")
```

```
print("="*60)
scaler_minmax = MinMaxScaler()
X_minmax = scaler_minmax.fit_transform(X)
print(" MinMaxScaler Parameters:")
print(f"Data min values: {scaler_minmax.data_min_}")
print(f"Data max values: {scaler_minmax.data_max_}")
print(f"Data range: {scaler_minmax.data_range_}")
print("\n Original vs MinMax Scaled Data (first 10 rows):")
comparison_df = pd.DataFrame({
    'Age_Original': X[:10, 0],
    'Age_MinMax': X_minmax[:10, 0],
    'Salary_Original': X[:10, 1],
    'Salary_MinMax': X_minmax[:10, 1]
})
print(comparison_df)
print("\n MinMax Scaled Data Statistics:")
X_minmax_df = pd.DataFrame(X_minmax, columns=[f'{name}_MinMax' for name in_
 →feature names])
print(X_minmax_df.describe())
print(f"\n MinMax scaled features range from 0 to 1")
print(f"Min values: {X_minmax_df.min().values}")
print(f"Max values: {X_minmax_df.max().values}")
MINMAXSCALER (NORMALIZATION)
_____
 MinMaxScaler Parameters:
Data min values: [ 18. 15000.]
Data max values: [6.0e+01 1.5e+05]
Data range: [4.20e+01 1.35e+05]
```

Original vs MinMax Scaled Data (first 10 rows):

	Age_Original	Age_MinMax	Salary_Original	Salary_MinMax
0	19	0.023810	19000	0.029630
1	35	0.404762	20000	0.037037
2	26	0.190476	43000	0.207407
3	27	0.214286	57000	0.311111
4	19	0.023810	76000	0.451852
5	27	0.214286	58000	0.318519
6	27	0.214286	84000	0.511111
7	32	0.333333	150000	1.000000
8	25	0.166667	33000	0.133333
9	35	0.404762	65000	0.370370

```
MinMax Scaled Data Statistics:
       Age_MinMax EstimatedSalary_MinMax
      400.000000
                               400.000000
count
mean
         0.467976
                                 0.405500
         0.249592
                                 0.252570
std
min
        0.000000
                                 0.000000
25%
        0.279762
                                 0.207407
50%
                                 0.407407
        0.452381
75%
         0.666667
                                 0.540741
                                 1.000000
         1.000000
max
 MinMax scaled features range from 0 to 1
Min values: [0. 0.]
Max values: [1. 1.]
```

1.8 7. RobustScaler Implementation

Apply RobustScaler using median and interquartile range - robust to outliers.

```
[8]: \# RobustScaler: z = (x - median) / IQR
     print("="*60)
     print("ROBUSTSCALER (MEDIAN AND IQR BASED)")
     print("="*60)
     scaler_robust = RobustScaler()
     X_robust = scaler_robust.fit_transform(X)
     print(" RobustScaler Parameters:")
     print(f"Center (median): {scaler_robust.center_}")
     print(f"Scale (IQR): {scaler_robust.scale_}")
     print("\n Original vs Robust Scaled Data (first 10 rows):")
     comparison_df = pd.DataFrame({
         'Age_Original': X[:10, 0],
         'Age_Robust': X_robust[:10, 0],
         'Salary_Original': X[:10, 1],
         'Salary_Robust': X_robust[:10, 1]
     })
     print(comparison_df)
     print("\n Robust Scaled Data Statistics:")
     X robust df = pd.DataFrame(X robust, columns=[f'{name} Robust' for name in_
      →feature_names])
     print(X_robust_df.describe())
     print(f"\n RobustScaler is resistant to outliers")
     print(f"Median values: {X_robust_df.median().values}")
```

ROBUSTSCALER (MEDIAN AND IQR BASED)

RobustScaler Parameters:

Center (median): [3.7e+01 7.0e+04] Scale (IQR): [1.625e+01 4.500e+04]

Original vs Robust Scaled Data (first 10 rows):

	Age_Original	Age_Robust	Salary_Original	Salary_Robust
0	19	-1.107692	19000	-1.133333
1	35	-0.123077	20000	-1.111111
2	26	-0.676923	43000	-0.600000
3	27	-0.615385	57000	-0.288889
4	19	-1.107692	76000	0.133333
5	27	-0.615385	58000	-0.266667
6	27	-0.615385	84000	0.311111
7	32	-0.307692	150000	1.777778
8	25	-0.738462	33000	-0.822222
9	35	-0.123077	65000	-0.111111

Robust Scaled Data Statistics:

	Age_Robust	EstimatedSalary_Robust
count	400.000000	400.000000
mean	0.040308	-0.005722
std	0.645100	0.757710
min	-1.169231	-1.222222
25%	-0.446154	-0.600000
50%	0.000000	0.000000
75%	0.553846	0.400000
max	1.415385	1.777778

RobustScaler is resistant to outliers

Median values: [0. 0.] IQR (Q3-Q1): [1. 1.]

1.9 8. Normalizer Implementation

Apply Normalizer to scale individual samples to have unit norm (L1 and L2).

```
[9]: # Normalizer: scales individual samples to have unit norm
print("="*60)
print("NORMALIZER (UNIT NORM SCALING)")
print("="*60)

# L2 Normalization (default)
```

```
normalizer_12 = Normalizer(norm='12')
X_normalized_12 = normalizer_12.fit_transform(X)
# L1 Normalization
normalizer l1 = Normalizer(norm='l1')
X_normalized_l1 = normalizer_l1.fit_transform(X)
print(" Original vs L2 Normalized vs L1 Normalized Data (first 5 rows):")
comparison df = pd.DataFrame({
    'Age_Original': X[:5, 0],
     'Age L2 Norm': X normalized 12[:5, 0],
    'Age_L1_Norm': X_normalized_l1[:5, 0],
    'Salary_Original': X[:5, 1],
     'Salary_L2_Norm': X_normalized_12[:5, 1],
    'Salary_L1_Norm': X_normalized_l1[:5, 1]
})
print(comparison_df)
print("\n L2 Normalized Data Statistics:")
X_12_df = pd.DataFrame(X_normalized_12, columns=[f'{name}_L2 Norm' for name in_
 →feature_names])
print(X_12_df.describe())
print("\n L1 Normalized Data Statistics:")
X_l1_df = pd.DataFrame(X_normalized_l1, columns=[f'{name}_L1_Norm' for name in_
 →feature_names])
print(X 11 df.describe())
# Verify unit norm
print(f"\n Verification - L2 norms of first 5 samples:")
12_norms = np.linalg.norm(X_normalized_12[:5], axis=1)
print(12_norms)
print(f"\n Verification - L1 norms of first 5 samples:")
11_norms = np.sum(np.abs(X_normalized_l1[:5]), axis=1)
print(l1_norms)
NORMALIZER (UNIT NORM SCALING)
```

```
Original vs L2 Normalized vs L1 Normalized Data (first 5 rows):
  Age_Original Age_L2_Norm Age_L1_Norm Salary_Original Salary_L2_Norm \
0
                                0.000999
            19
                   0.001000
                                                    19000
                                                                 1.000000
1
            35
                   0.001750
                                0.001747
                                                    20000
                                                                 0.999998
2
            26
                   0.000605
                                0.000604
                                                    43000
                                                                 1.000000
3
            27
                   0.000474
                                0.000473
                                                    57000
                                                                 1.000000
4
                   0.000250
                                0.000250
                                                    76000
            19
                                                                 1.000000
```

```
Salary_L1_Norm
0 0.999001
1 0.998253
2 0.999396
3 0.999527
4 0.999750
```

L2 Normalized Data Statistics:

	Age_L2_Norm	EstimatedSalary_L2_Norm
count	400.000000	4.000000e+02
mean	0.000715	9.999996e-01
std	0.000482	5.449725e-07
min	0.000196	9.999968e-01
25%	0.000376	9.999997e-01
50%	0.000556	9.999998e-01
75%	0.000807	9.999999e-01
max	0.002522	1.000000e+00

L1 Normalized Data Statistics:

	Age_L1_Norm	EstimatedSalary_L1_Norm
count	400.000000	400.000000
mean	0.000714	0.999286
std	0.000481	0.000481
min	0.000196	0.997485
25%	0.000376	0.999194
50%	0.000555	0.999445
75%	0.000806	0.999624
max	0.002515	0.999804

```
Verification - L2 norms of first 5 samples: [1. 1. 1. 1. ]
```

```
Verification - L1 norms of first 5 samples:
[1. 1. 1. 1. ]
```

1.10 9. MaxAbsScaler Implementation

Apply MaxAbsScaler to scale features by their maximum absolute value.

```
[10]: # MaxAbsScaler: z = x / max(|x|)
print("="*60)
print("MAXABSSCALER (MAXIMUM ABSOLUTE VALUE SCALING)")
print("="*60)

scaler_maxabs = MaxAbsScaler()
X_maxabs = scaler_maxabs.fit_transform(X)
```

```
print(" MaxAbsScaler Parameters:")
print(f"Maximum absolute values: {scaler_maxabs.max_abs_}")
print("\n Original vs MaxAbs Scaled Data (first 10 rows):")
comparison_df = pd.DataFrame({
    'Age_Original': X[:10, 0],
    'Age_MaxAbs': X_maxabs[:10, 0],
    'Salary_Original': X[:10, 1],
    'Salary_MaxAbs': X_maxabs[:10, 1]
print(comparison_df)
print("\n MaxAbs Scaled Data Statistics:")
X_maxabs_df = pd.DataFrame(X_maxabs, columns=[f'{name}_MaxAbs' for name in_
 →feature_names])
print(X_maxabs_df.describe())
print(f"\n MaxAbs scaled features range from -1 to 1")
print(f"Min values: {X_maxabs_df.min().values}")
print(f"Max values: {X_maxabs_df.max().values}")
print(f"Max absolute values in original data: {np.abs(X).max(axis=0)}")
```

MAXABSSCALER (MAXIMUM ABSOLUTE VALUE SCALING)

MaxAbsScaler Parameters:

Maximum absolute values: [6.0e+01 1.5e+05]

Original vs MaxAbs Scaled Data (first 10 rows):

	Age_Original	Age_MaxAbs	Salary_Original	Salary_MaxAbs
0	19	0.316667	19000	0.126667
1	35	0.583333	20000	0.133333
2	26	0.433333	43000	0.286667
3	27	0.450000	57000	0.380000
4	19	0.316667	76000	0.506667
5	27	0.450000	58000	0.386667
6	27	0.450000	84000	0.560000
7	32	0.533333	150000	1.000000
8	25	0.416667	33000	0.220000
9	35	0.583333	65000	0.433333

MaxAbs Scaled Data Statistics:

	Age_MaxAbs	EstimatedSalary_MaxAbs
count	400.000000	400.000000
mean	0.627583	0.464950
std	0.174715	0.227313
min	0.300000	0.100000
25%	0.495833	0.286667

```
50% 0.616667 0.466667
75% 0.766667 0.586667
max 1.000000 1.000000

MaxAbs scaled features range from -1 to 1
Min values: [0.3 0.1]
Max values: [1. 1.]
Max absolute values in original data: [ 60 150000]
```

1.11 10. QuantileTransformer Implementation

Apply QuantileTransformer with uniform and normal distributions - robust to outliers.

```
[11]: # QuantileTransformer: transforms features to follow a uniform or normal_
      \hookrightarrow distribution
      print("="*60)
      print("QUANTILETRANSFORMER (QUANTILE-BASED SCALING)")
      print("="*60)
      # Uniform distribution
      quantile uniform = QuantileTransformer(output distribution='uniform', |
       →random state=42)
      X_quantile_uniform = quantile_uniform.fit_transform(X)
      # Normal distribution
      quantile_normal = QuantileTransformer(output_distribution='normal',_
       →random state=42)
      X_quantile_normal = quantile_normal.fit_transform(X)
      print(" Original vs Quantile Transformed Data (first 10 rows):")
      comparison_df = pd.DataFrame({
          'Age_Original': X[:10, 0],
          'Age_Uniform': X_quantile_uniform[:10, 0],
          'Age_Normal': X_quantile_normal[:10, 0],
          'Salary_Original': X[:10, 1],
          'Salary_Uniform': X_quantile_uniform[:10, 1],
          'Salary_Normal': X_quantile_normal[:10, 1]
      })
      print(comparison_df)
      print("\n Quantile Uniform Transformed Data Statistics:")
      X_quantile_uniform_df = pd.DataFrame(X_quantile_uniform,__

columns=[f'{name}_Quantile_Uniform' for name in feature_names])
      print(X_quantile_uniform_df.describe())
      print("\n Quantile Normal Transformed Data Statistics:")
```

QUANTILETRANSFORMER (QUANTILE-BASED SCALING)

Original vs Quantile Transformed Data (first 10 rows):

	Age_Original	Age_Uniform	Age_Normal	Salary_Original	Salary_Uniform	\
0	19	0.020050	-2.052715	19000	0.033835	
1	35	0.404762	-0.241040	20000	0.042607	
2	26	0.141604	-1.073141	43000	0.246867	
3	27	0.177945	-0.923225	57000	0.377193	
4	19	0.020050	-2.052715	76000	0.611529	
5	27	0.177945	-0.923225	58000	0.390977	
6	27	0.177945	-0.923225	84000	0.715539	
7	32	0.314536	-0.483032	150000	1.000000	
8	25	0.114035	-1.205345	33000	0.166667	
9	35	0.404762	-0.241040	65000	0.474937	

Salary_Normal

- 0 -1.827204
- 1 -1.721208
- 2 -0.684381
- 3 -0.312861
- 4 0.283306
- 5 -0.276772
- 6 0.569639
- 7 5.199338
- 8 -0.967422
- 9 -0.062864

Quantile Uniform Transformed Data Statistics:

	${\tt Age_Quantile_Uniform}$	EstimatedSalary_Quantile_Uniform
count	400.000000	400.000000
mean	0.500298	0.500034
std	0.290087	0.289836
min	0.000000	0.000000
25%	0.256579	0.246867
50%	0.501253	0.502506
75%	0.759398	0.756892
max	1.000000	1.000000

Quantile Normal Transformed Data Statistics:

```
Age_Quantile_Normal EstimatedSalary_Quantile_Normal
                400.000000
                                                  400.000000
count
                  0.016036
                                                   -0.013181
mean
                  1.276245
                                                    1.143063
std
min
                 -5.199338
                                                   -5.199338
25%
                 -0.654354
                                                   -0.684381
50%
                  0.003141
                                                    0.006282
75%
                  0.704369
                                                    0.696341
                  5.199338
                                                    5.199338
max
 Uniform quantile transform: values range from 0 to 1
 Normal quantile transform: values follow standard normal distribution
/Users/milav/Code/qip-dl/.venv/lib/python3.13/site-
packages/sklearn/preprocessing/_data.py:2846: UserWarning: n_quantiles (1000) is
greater than the total number of samples (400). n_quantiles is set to n_samples.
  warnings.warn(
/Users/milav/Code/qip-dl/.venv/lib/python3.13/site-
packages/sklearn/preprocessing/_data.py:2846: UserWarning: n_quantiles (1000) is
greater than the total number of samples (400). n_quantiles is set to n_samples.
  warnings.warn(
```

1.12 11. PowerTransformer Implementation

Apply PowerTransformer with Yeo-Johnson method to make data more Gaussian-like.

```
[12]: # PowerTransformer: makes data more Gaussian-like
      print("="*60)
      print("POWERTRANSFORMER (GAUSSIAN TRANSFORMATION)")
      print("="*60)
      # Yeo-Johnson transformation (works with positive and negative values)
      power_yeo = PowerTransformer(method='yeo-johnson', standardize=True)
      X_power_yeo = power_yeo.fit_transform(X)
      print(" PowerTransformer (Yeo-Johnson) Parameters:")
      print(f"Lambda values: {power yeo.lambdas }")
      print("\n Original vs Power Transformed Data (first 10 rows):")
      comparison_df = pd.DataFrame({
          'Age_Original': X[:10, 0],
          'Age_Power': X_power_yeo[:10, 0],
          'Salary_Original': X[:10, 1],
          'Salary_Power': X_power_yeo[:10, 1]
      })
      print(comparison_df)
      print("\n Power Transformed Data Statistics:")
```

POWERTRANSFORMER (GAUSSIAN TRANSFORMATION)

PowerTransformer (Yeo-Johnson) Parameters:

Lambda values: [0.52273242 0.46112137]

Original vs Power Transformed Data (first 10 rows):

	Age_Original	Age_Power	Salary_Original	Salary_Power
0	19	-1.975163	19000	-1.809251
1	35	-0.190160	20000	-1.752548
2	26	-1.132265	43000	-0.725702
3	27	-1.020842	57000	-0.246494
4	19	-1.975163	76000	0.311281
5	27	-1.020842	58000	-0.214834
6	27	-1.020842	84000	0.523340
7	32	-0.490193	150000	1.964530
8	25	-1.245675	33000	-1.122420
9	35	-0.190160	65000	-0.001010

Power Transformed Data Statistics:

Age_Power EstimatedSalary_Power count 4.000000e+02 4.000000e+02 mean -3.552714e-16 -6.217249e-16 std 1.001252e+00 1.001252e+00 min -2.106457e+00 -2.053917e+00 25% -7.240164e-01 -7.257020e-01 50% 3.266940e-03 1.442111e-01 75% 8.189883e-01 6.252894e-01 1.951591e+00 1.964530e+00 max

PowerTransformer makes data more Gaussian-like

Mean: [-3.55271368e-16 -6.21724894e-16]

Std: [1.00125235 1.00125235]

```
Skewness comparison:
Original data skewness: [0.23046904 0.49316535]
Power transformed skewness: [-0.03275907 -0.0610341]
```

1.13 12. Compare All Scaling Methods

Create comprehensive visualizations and statistical comparisons of all scaling methods.

```
[13]: # Comprehensive comparison of all scaling methods
      print("="*70)
      print("COMPREHENSIVE COMPARISON OF ALL SCALING METHODS")
      print("="*70)
      # Store all scaled versions
      scaling_methods = {
          'Original': X,
          'StandardScaler': X_standard,
          'MinMaxScaler': X_minmax,
          'RobustScaler': X_robust,
          'MaxAbsScaler': X_maxabs,
          'Normalizer_L2': X_normalized_12,
          'Quantile_Uniform': X_quantile_uniform,
          'Quantile_Normal': X_quantile_normal,
          'PowerTransformer': X_power_yeo
      }
      # Create comparison visualization
      fig, axes = plt.subplots(3, 3, figsize=(20, 15))
      axes = axes.ravel()
      for i, (method_name, scaled_data) in enumerate(scaling_methods.items()):
          if i < len(axes):</pre>
              axes[i].scatter(scaled_data[:, 0], scaled_data[:, 1],
                             c=y, cmap='viridis', alpha=0.6, s=30)
              axes[i].set_title(f'{method_name}', fontsize=12, fontweight='bold')
              axes[i].set_xlabel('Age (Scaled)')
              axes[i].set_ylabel('Salary (Scaled)')
              axes[i].grid(True, alpha=0.3)
      plt.tight_layout()
      plt.suptitle('Comparison of All Feature Scaling Methods', fontsize=16,,,
       ⇔fontweight='bold', y=1.02)
      plt.show()
      # Statistical summary comparison
      print("\n Statistical Summary Comparison:")
      comparison_stats = []
```

```
for method_name, scaled_data in scaling_methods.items():
    stats_dict = {
        'Method': method_name,
        'Age_Mean': np.mean(scaled_data[:, 0]),
        'Age_Std': np.std(scaled_data[:, 0]),
        'Age_Min': np.min(scaled_data[:, 0]),
        'Age_Max': np.max(scaled_data[:, 0]),
        'Salary_Mean': np.mean(scaled_data[:, 1]),
        'Salary_Std': np.std(scaled_data[:, 1]),
        'Salary_Min': np.min(scaled_data[:, 1]),
        'Salary_Max': np.max(scaled_data[:, 1])
}
comparison_stats.append(stats_dict)

comparison_df = pd.DataFrame(comparison_stats)
print(comparison_df.round(4))
```

COMPREHENSIVE COMPARISON OF ALL SCALING METHODS

Statistical Summary Comparison:

budibulcar bammary comparison.								
	М	ethod Age_l	Mean	Age_Std	Age_Min	Age_Max	Salary_Mean	\
0	Ori,	ginal 37.	6550	10.4698	18.0000	60.0000	69742.5000	
1	StandardS	caler -0.	0000	1.0000	-1.8773	2.1342	-0.0000	
2	${\tt MinMaxS}$	caler 0.	4680	0.2493	0.0000	1.0000	0.4055	
3	RobustS	caler 0.0	0403	0.6443	-1.1692	1.4154	-0.0057	
4	MaxAbsS	caler 0.	6276	0.1745	0.3000	1.0000	0.4650	
5	Normaliz	er_L2 0.0	0007	0.0005	0.0002	0.0025	1.0000	
6	Quantile_Un	iform 0.	5003	0.2897	0.0000	1.0000	0.5000	
7	$Quantile_N$	ormal 0.0	0160	1.2746	-5.1993	5.1993	-0.0132	
8	PowerTransf	ormer -0.	0000	1.0000	-2.1065	1.9516	-0.0000	
	Salary_Std	Salary_Min	Sa	lary_Max				
0	34054.3124	15000.0000	150	0000.0000				
1	1.0000	-1.6075		2.3567				
2	0.2523	0.0000		1.0000				
3	0.7568	-1.2222		1.7778				
4	0.2270	0.1000		1.0000				
5	0.0000	1.0000		1.0000				
6	0.2895	0.0000		1.0000				
7	1.1416	-5.1993		5.1993				
8	1.0000	-2.0539		1.9645				

1.14 13. Train-Test Split with Scaled Features

Demonstrate proper scaling workflow for machine learning with train-test split.

```
[14]: # Proper scaling workflow: Split first, then scale
      print("="*70)
      print("PROPER SCALING WORKFLOW FOR MACHINE LEARNING")
      print("="*70)
      # Step 1: Split the original data
      X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,_
       →random_state=42, stratify=y)
      print(f" Training set shape: {X_train.shape}")
      print(f" Test set shape: {X_test.shape}")
      print(f" Training target distribution: {np.bincount(y_train)}")
      print(f" Test target distribution: {np.bincount(y_test)}")
      # Step 2: Apply different scaling methods to train/test splits
      scaled_datasets = {}
      # StandardScaler
      scaler_std = StandardScaler()
      X_train_std = scaler_std.fit_transform(X_train)
```

```
X_test_std = scaler_std.transform(X_test)
scaled_datasets['StandardScaler'] = (X_train_std, X_test_std)
# MinMaxScaler
scaler_mm = MinMaxScaler()
X_train_mm = scaler_mm.fit_transform(X_train)
X_test_mm = scaler_mm.transform(X_test)
scaled_datasets['MinMaxScaler'] = (X_train_mm, X_test_mm)
# RobustScaler
scaler rob = RobustScaler()
X_train_rob = scaler_rob.fit_transform(X_train)
X_test_rob = scaler_rob.transform(X_test)
scaled_datasets['RobustScaler'] = (X_train_rob, X_test_rob)
print("\n Applied scaling to train/test splits separately (correct approach)")
print(" Fit scalers only on training data, then transform both train and test")
# Demonstrate the importance of proper scaling
print("\n Scaling parameters learned from training data:")
print(f"StandardScaler - Mean: {scaler_std.mean_}, Std: {scaler_std.scale_}")
print(f"MinMaxScaler - Min: {scaler_mm.data_min_}, Max: {scaler_mm.data_max_}")
print(f"RobustScaler - Center: {scaler_rob.center_}, Scale: {scaler_rob.
 ⇔scale }")
```

PROPER SCALING WORKFLOW FOR MACHINE LEARNING

```
Training set shape: (320, 2)
Test set shape: (80, 2)
```

Training target distribution: [206 114]

Test target distribution: [51 29]

Applied scaling to train/test splits separately (correct approach) Fit scalers only on training data, then transform both train and test

```
Scaling parameters learned from training data:

StandardScaler - Mean: [3.715625e+01 7.079375e+04], Std: [1.06574779e+01 3.47663805e+04]

MinMaxScaler - Min: [ 18. 15000.], Max: [6.0e+01 1.5e+05]

RobustScaler - Center: [3.60e+01 7.05e+04], Scale: [1.700e+01 4.425e+04]
```

1.15 14. Model Training and Evaluation

Train logistic regression models on differently scaled versions and compare performance.

```
[15]: # Train and evaluate models with different scaling methods print("="*70)
```

```
print("MODEL PERFORMANCE COMPARISON WITH DIFFERENT SCALING METHODS")
print("="*70)
# Add original (unscaled) data to comparison
scaled_datasets['No_Scaling'] = (X_train, X_test)
model results = []
for scaling_method, (X_train_scaled, X_test_scaled) in scaled_datasets.items():
    # Train Logistic Regression
   model = LogisticRegression(random_state=42, max_iter=1000)
   model.fit(X_train_scaled, y_train)
   # Make predictions
   y_train_pred = model.predict(X_train_scaled)
   y_test_pred = model.predict(X_test_scaled)
   # Calculate accuracies
   train_accuracy = accuracy_score(y_train, y_train_pred)
   test_accuracy = accuracy_score(y_test, y_test_pred)
    # Store results
   model_results.append({
        'Scaling Method': scaling method,
        'Train_Accuracy': train_accuracy,
        'Test Accuracy': test accuracy,
        'Generalization_Gap': train_accuracy - test_accuracy
   })
   print(f"\n {scaling_method}:")
   print(f" Train Accuracy: {train_accuracy:.4f}")
   print(f" Test Accuracy: {test_accuracy:.4f}")
   print(f" Generalization Gap: {train_accuracy - test_accuracy:.4f}")
# Create results DataFrame
results_df = pd.DataFrame(model_results)
results_df = results_df.sort_values('Test_Accuracy', ascending=False)
print("\n" + "="*50)
print(" MODEL PERFORMANCE SUMMARY")
print("="*50)
print(results df)
# Visualize results
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 6))
# Accuracy comparison
```

```
x_pos = np.arange(len(results_df))
ax1.bar(x_pos - 0.2, results_df['Train_Accuracy'], 0.4, label='Train_Accuracy',
 ⇒alpha=0.8)
ax1.bar(x_pos + 0.2, results_df['Test_Accuracy'], 0.4, label='Test Accuracy',
 ⇒alpha=0.8)
ax1.set_xlabel('Scaling Methods')
ax1.set_ylabel('Accuracy')
ax1.set_title('Model Accuracy Comparison')
ax1.set_xticks(x_pos)
ax1.set_xticklabels(results_df['Scaling_Method'], rotation=45)
ax1.legend()
ax1.grid(True, alpha=0.3)
# Generalization gap
ax2.bar(x_pos, results_df['Generalization_Gap'], alpha=0.8, color='coral')
ax2.set_xlabel('Scaling Methods')
ax2.set_ylabel('Generalization Gap')
ax2.set_title('Generalization Gap (Train - Test Accuracy)')
ax2.set_xticks(x_pos)
ax2.set_xticklabels(results_df['Scaling_Method'], rotation=45)
ax2.grid(True, alpha=0.3)
plt.tight_layout()
plt.show()
print(f"\n Best performing scaling method: {results_df.
 →iloc[0]['Scaling Method']}")
print(f" Best test accuracy: {results_df.iloc[0]['Test_Accuracy']:.4f}")
```

MODEL PERFORMANCE COMPARISON WITH DIFFERENT SCALING METHODS

StandardScaler:

Train Accuracy: 0.8469
Test Accuracy: 0.8375
Generalization Gap: 0.0094

MinMaxScaler:

Train Accuracy: 0.8375
Test Accuracy: 0.7750
Conoralization Cap: 0.06

Generalization Gap: 0.0625

RobustScaler:

Train Accuracy: 0.8469
Test Accuracy: 0.8250
Generalization Gap: 0.0219

No_Scaling:

Train Accuracy: 0.8469
Test Accuracy: 0.8375
Generalization Gap: 0.0094

MODEL PERFORMANCE SUMMARY

	$Scaling_Method$	Train_Accuracy	Test_Accuracy	${\tt Generalization_Gap}$
0	StandardScaler	0.846875	0.8375	0.009375
3	No_Scaling	0.846875	0.8375	0.009375
2	RobustScaler	0.846875	0.8250	0.021875
1	MinMaxScaler	0.837500	0.7750	0.062500

Best performing scaling method: StandardScaler

Best test accuracy: 0.8375

1.16 15. Conclusions and Key Learnings

1.16.1 Dataset Analysis Results:

- Dataset Size: 400 samples with 3 features (Age, EstimatedSalary, Purchased)
- Data Quality: No missing values, but 33 duplicate rows detected
- Target Distribution: 35.75% purchase rate (143 purchases vs 257 non-purchases)
- Feature Ranges: Age (18-60), Salary (15,000-150,000)

1.16.2 Feature Scaling Methods Performance Summary:

Model Performance Ranking (Test Accuracy):

- 1. StandardScaler & No Scaling: 83.75% (tied for best)
- 2. **RobustScaler**: 82.50%

3. MinMaxScaler: 77.50%

Detailed Scaling Method Analysis:

- 1. StandardScaler (Winner)
 - **Performance**: 83.75% test accuracy, 0.94% generalization gap
 - Characteristics: Mean 0, Std 1
 - Best for: Normally distributed data, most ML algorithms
- 2. No Scaling (Tied Winner)
 - **Performance**: 83.75% test accuracy, 0.94% generalization gap
 - Insight: Logistic regression performed equally well without scaling
 - Reason: Features already on reasonable scales for this dataset
- 3. RobustScaler (Runner-up)
 - **Performance**: 82.50% test accuracy, 2.19% generalization gap
 - Characteristics: Median-centered, IQR-scaled
 - Best for: Data with outliers (though none detected in this dataset)
- 4. MinMaxScaler (Third Place)
 - **Performance**: 77.50% test accuracy, 6.25% generalization gap
 - Characteristics: Range [0,1]
 - Issue: Highest generalization gap, indicating potential overfitting

1.16.3 Advanced Scaling Methods Insights:

- 5. MaxAbsScaler: Scales to [-1,1] range, preserves sparsity
- 6. Normalizer: Creates unit norm samples (L1/L2), good for text data
- 7. QuantileTransformer: Makes data uniform/normal distributed, very robust
- 8. **PowerTransformer**: Reduces skewness $(0.23 \rightarrow -0.03 \text{ for Age}, 0.49 \rightarrow -0.06 \text{ for Salary})$

1.16.4 Key Experimental Findings:

Surprising Results:

- No scaling performed as well as StandardScaler for this dataset
- MinMaxScaler showed worst performance despite being popular
- Generalization gap varies significantly across methods (0.94% to 6.25%)

Data Distribution Impact:

- Original data skewness: Age (0.23), Salary (0.49) moderately skewed
- PowerTransformer effectively reduced skewness to near zero
- No outliers detected using IQR method, explaining why RobustScaler wasn't superior

1.16.5 Practical Recommendations:

For This Dataset Type (Social Network Ads):

- 1. StandardScaler or No Scaling Both equally effective
- 2. Avoid MinMaxScaler Shows poor generalization
- 3. Consider RobustScaler Good middle ground option

General ML Best Practices: Always split data before scaling to prevent data leakage
Fit scalers only on training data, then transform both train and test
Compare multiple scaling methods - Performance can vary significantly
Monitor generalization gap - Lower gap indicates better model stability
Consider data characteristics - Outliers, skewness, feature ranges

Algorithm-Specific Guidelines:

- Distance-based algorithms (KNN, SVM): Usually need scaling
- Tree-based algorithms (Random Forest, XGBoost): Often scale-invariant
- Linear models (Logistic Regression): May or may not need scaling (as shown here)
- Neural Networks: Almost always benefit from scaling

1.16.6 Technical Insights:

Statistical Transformations:

- StandardScaler: Achieved perfect normalization (mean=0, std=1)
- MinMaxScaler: Perfect range transformation [0,1]
- RobustScaler: Effective median centering with IQR scaling
- PowerTransformer: Successfully reduced skewness by ~95%

Computational Considerations:

- Normalizer: Creates unit norm, drastically different scale (Age: ~0.001, Salary: ~1.0)
- QuantileTransformer: Warning about n_quantiles > n_samples (400 < 1000)
- All methods: Fast execution on this dataset size

1.16.7 Future Experiments:

- 1. Test with other algorithms (SVM, KNN, Neural Networks)
- 2. Evaluate on larger datasets to confirm scaling importance
- 3. Compare with feature engineering (polynomial features, interactions)
- 4. Analyze computational costs for different scaling methods

1.16.8 Laboratory Exercise Completed Successfully!

This comprehensive experiment demonstrated that **feature scaling impact is highly dataset** and algorithm dependent. The surprising finding that StandardScaler tied with no scaling highlights the importance of **empirical testing rather than assumptions**. The Social Network Ads dataset proved to be a excellent case study for understanding how different preprocessing techniques affect model performance in practice.

Key Takeaway: Always experiment with multiple scaling approaches and let the data guide your preprocessing decisions!