МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Белорусский национальный технический университет

Кафедра «Кораблестроение и гидравлика»

ГИДРАВЛИКА, ГИДРОМАШИНЫ И ГИДРОПРИВОДЫ

Пособие

для студентов специальностей 1-36 01 05 «Машины и технология обработки металлов давлением», 1-36 01 06 «Оборудование и технология сварочного производства»

Рекомендовано учебно-методическим объединением по образованию в области машиностроительного оборудования и технологий

Минск БНТУ 2019 УДК 621.82 (075.8) ББК 30.123я7 Р24

Составители:

И. В. Качанов, В. А. Ключников, И. М. Шаталов, М. К. Щербакова

Рецензенты:

кандидат технических наук А. А. Кособуцкий кандидат технических наук А. М. Кравцов

Р24 Гидравлика, гидромашины и гидроприводы: пособие для студентов специальностей 1-36 01 05 «Машины и технология обработки металлов давлением», 1-36 01 06 «Оборудование и технология сварочного производства» / сост.: И. В. Качанов, В. А. Ключников, И. М. Шаталов, М. К. Щербакова. — Минск: БНТУ, 2019. — 30 с. ISBN 978-985-583-128-1.

В пособии приводятся краткие теоретические сведения, необходимые для расчета гидросистем, справочные данные и методика выполнения расчетно-графической работы по дисциплине «Гидравлика и гидропривод».

УДК 621.82 (075.8) ББК 30.123я7

ВВЕДЕНИЕ

Целью выполнения расчетно-графической работы является углубление знаний студентов по основным разделам дисциплины «Гидравлика и гидропривод», научить их применять полученные теоретические знания для решения инженерных задач. Расчетно-графическая работа оформляется в виде пояснительной записки на листах бумаги А4 формата, сброшюрованной вместе со схемами и чертежами. Все листы пояснительной записки, включая графики, схемы, таблицы и приложения (кроме титульного листа и технического задания на проектирование), должны содержать стандартную рамку и иметь сквозную нумерацию страниц. В начале записки приводятся исходные данные и схема гидросистемы. Схема выполняется на отдельном листе с условными обозначениями распределительной и регулирующей гидроаппаратуры, насосов и гидродвигателей согласно действующим ГОСТам и ЕСКД.

Формулы записывают в общем виде с новой строки по центру. Если формула одна и требуется пояснение символов, входящих в нее, то ставят запятую, а если пояснений символов не требуется – точку. Все формулы должны иметь сквозную нумерацию арабскими цифрами, которые записывают на уровне формулы справа в круглых скобках. Допускается нумерация формул в пределах раздела. Пояснения символов, входящих в формулы, если они не пояснены выше в тексте, должны быть приведены непосредственно под формулой.

Все вычисления следует выполнять с использованием международной системы единиц СИ.

При разработке содержания и вариантов заданий использована работа В. А. Абрамовича и В. А. Голубева «Расчетнографическая работа» по курсу «Гидравлика и гидравлические машины» (Гомель, БИИЖТ, 1979).

РАСЧЕТ ОБЪЕМНОГО ГИДРОПРИВОДА

1. Содержание задания

Широкое распространение в системах машин и механизмов получил объемный гидравлический привод, который состоит из объемных гидромашин, гидроаппаратуры, гидролиний (трубопроводов) и вспомогательных устройств. Объемный гидропривод служит для передачи и преобразования механической энергии посредством объемных гидромашин. Рабочий процесс объемной гидромашины основан на попеременном заполнении рабочей камеры жидкостью и вытеснении ее из рабочей камеры. Гидромашина может иметь одну или несколько рабочих камер.

Примерная схема объемного гидропривода поступательного движения с дросселем на входе показана на рис. 1.

Рис. 1. Схема объемного гидропривода:

1 – гидроцилиндр; 2 – гидрораспределитель с электромагнитным управлением;
 3 – дроссель; 4 – предохранительный клапан;
 5 – обратный клапан;
 6 – фильтр;
 7 – редукционный клапан;
 8 – гидробак;
 9 – насос

Заданием на расчет объемного гидропривода предусматривается:

- составление схемы гидропривода;
- определение основных размеров силового гидроцилиндра и насоса;
 - гидравлический расчет трубопровода;
- определение мощности насоса, гидродвигателя и КПД гидропривода.

2. Составление схемы гидропривода

При составлении схемы гидропривода следует использовать условные обозначения по ЕСКД (ГОСТ 2.781-96, 2.782-96 и 2.784-96).

Условные обозначения наиболее употребительных элементов приведены в табл. 1.

Таблица 1

Наименование элементов гидропривода	Обозначение
<u>Насосы</u>	
Насос нерегулируемый:	
с нереверсивным потоком	\Diamond
с реверсивным потоком	
Насос регулируемый:	
с нереверсивным потоком	\Diamond
с реверсивным потоком	\$

Продолжение табл. 1

Наименование элементов гидропривода	Обозначение
<u>Гидродвигатели</u>	
Гидромотор:	.
Общее обозначение	(M)
Нерегулируемый:	1
с нереверсивным потоком	\Diamond
с реверсивным потоком	\Diamond
Регулируемый с нереверсивным потоком	Ø
Гидроцилиндр	
Общее обозначение	
Одностороннего действия:	
Поршневой	
Двустороннего действия:	
с односторонним штоком	
с двусторонним штоком	
<u>Гидроаппаратура</u>	
Доссель	
Общее обозначение	- *

Продолжение табл. 1

Наименование элементов гидропривода	Обозначение
Дроссель с регулятором давления	**
Дроссель с регулятором давления и предо- хранительным клапаном	
Клапан:	-
предохранительный, ограничивающий максимальное давление	
редукционный, поддерживающий посто- янное давление на выходе	
дифференциальный или перепада, поддерживающий постоянный перепад давлений	
обратный управляемый	
обратный неуправляемый	→
делитель потока	
сумматор потока	
Распределители:	
четырехлинейный двухпозиционный с управлением от кулачка и пружинным возвратом	
с управлением от элекромагнитов	

Окончание табл. 1

Наименование элементов гидропривода	Обозначение
Четырехлинейный, трех позиционный с пе-	
рекрытием потока в исходном положении: с ручным управлением и фиксатором	
с управлением от электромагнитов	
с электрогидравлическим управлением	
Вспомогательные устройства	
Масляный бак:	
Под атмосферным давлением:	
со сливным трубопроводом выше уровня рабочей жидкости	
со сливным трубопроводом ниже уровня рабочей жидкости	
С давлением выше атмосферного:	
со сливным трубопроводом выше уровня рабочей жидкости	
со сливным трубопроводом ниже уровня рабочей жидкости	Ф
Фильтр	\longrightarrow
Охладитель жидкости	\longrightarrow

3. Определение основных размеров силового гидроцилиндра

Определение основных размеров гидроцилиндра производится в такой последовательности:

- назначается давление p в силовом гидроцилиндре в зависимости от величины усилия P, прикладываемого к штоку одного цилиндра, согласно табл. 2.

Таблица 2

<i>P</i> , кН	10–20	20–30	30–50	50-100
p, MΠa	1,6	3,2	5,0	10

— в зависимости от давления в гидросистеме задается отношение диаметра штока к диаметру цилиндра $d_{\rm m}/d_{\rm q}$ в пределах, указанных в табл. 3.

Таблица 3

р, МПа	1,6	1,5–5	5
$d_{ m m}$ / $d_{ m u}$	0,3-0,35	0,5	0,7

- задается значение механического КПД гидравлического цилиндра в пределах $\eta_{\text{мц}} = 0.85 - 0.95$ и определяется диаметр цилиндра и штока по формулам:

для цилиндра с односторонним штоком

$$P = p \frac{\pi d_{\mathrm{II}}^2}{4} \eta_{\mathrm{MII}},\tag{1}$$

для цилиндра с двусторонним штоком

$$P = p \frac{\pi}{4} (d_{\text{II}}^2 - d_{\text{III}}^2) \eta_{\text{MII}}.$$
 (2)

Диаметр гидроцилиндра $d_{\rm u}$ затем округляется до одного из ближайших стандартных размеров, мм: 40, 45, 50, 55, 60, 70, 80, 90, 100, 110, 125, 140, 160, 180, 200, 225, 250, 300, 350, 400.

Диаметр штока $d_{\text{шт}}$ также округляется до одного из стандартных размеров, мм: 12, 14, 16, 18, 20, 22, 25, 28, 32, 36, 40, 45, 50, 55, 60, 70, 80, 90, 100, 110, 125, 140, 160, 180, 200.

4. Гидравлический расчет трубопроводной системы

Для гидравлического расчета трубопроводной системы следует в первую очередь определить скорости движения жидкости на участках от насоса до гидроцилиндра (в подводящей магистрали) и от гидроцилиндра до бака (в сливной магистрали).

Для этого по заданному числу двойных ходов в минуту определяется средняя скорость движения поршня по формуле

$$v_{\rm cp} = \frac{2L \cdot n}{60},\tag{3}$$

где L – ход поршня;

n — число двойных ходов в минуту.

В гидроцилиндре с односторонним штоком средняя скорость поршня υ_{cp} связана с его скоростями υ_1 рабочего хода и υ_2 обратного хода зависимостью

$$v_{\rm cp} = \frac{v_1 + v_2}{2}.\tag{4}$$

В свою очередь скорости υ_1 и υ_2 обусловлены подачей рабочей жидкости соответственно в бесштоковую и штоковую полости. Для нерегулируемого насоса расход жидкости в штоковую и бесштоковую полости будет одинаков и связан соотношением

$$\upsilon_{1} \frac{\pi d_{\Pi}^{2}}{4} = \upsilon_{2} \frac{\pi}{4} (d_{\Pi}^{2} - d_{\Pi}^{2}). \tag{5}$$

Используя зависимости (4) и (5), получим

$$v_1 = 2v_{\rm cp} \frac{a}{1+a},\tag{6}$$

$$v_2 = 2v_{\rm cp} \frac{1}{1+a},\tag{7}$$

где a — постоянная цилиндра,

$$a = 1 - \frac{d_{\text{III}}^2}{d_{\text{II}}^2}$$
.

В гидроцилиндре с двусторонним штоком $\upsilon_1 = \upsilon_2 = \upsilon_{\rm cp}$. Зная скорости υ_1 и υ_2 , можно найти расход в подводящей Q_1 и сливной Q_2 магистралях. Так, например, для скорости υ_1 , расходы определяются по формулам:

$$Q_1 = \frac{\pi d_{II}^2}{4\eta_{OII}} v_1; \tag{8}$$

$$Q_2 = \frac{\pi (d_{II}^2 - d_{III}^2)}{4\eta_{OII}} v_1, \tag{9}$$

где $\eta_{\text{оц}}$ – объемный КПД гидроцилиндра, равный 0,98–1,00.

Диаметр трубопровода $d_{\scriptscriptstyle \rm T}$ определяется по величине расхода Q_1 из зависимости

$$Q_{\rm l} = \upsilon \frac{\pi d_{\rm T}^2}{4},\tag{10}$$

где υ — скорость движения жидкости в трубопроводе, которую в зависимости от величины давления p можно принимать по табл. 4.

Таблица 4

p, MПa	1–2,5	2,5-5,0	5,0-10,0	10,0–15,0
υ, м/c	1,3-2,0	2,0-3,0	3,0-4,5	4,5–5,5

Толщина стенки трубопровода δ в первом приближении определяется из условия прочности на разрыв и зависит от величины давления в гидроцилиндре

$$\delta = \frac{pd}{2\lceil \sigma_{p} \rceil},\tag{11}$$

где $[\sigma_p]$ – допускаемое напряжение на разрыв.

Величину $[\sigma_p]$ можно принимать равной 30–35 % от предела прочности σ_B .

Толщина стенки δ не должна быть менее 1 мм для трубопроводов из цветных металлов и 0,5 мм для стальных трубопроводов.

Наружные диаметры и толщины стенок наиболее употребительных стальных труб приведены в табл. 5.

Таблица 5

ГОСТ	8734-75	ГОСТ 8	732-78
Наружный	Толщина	Наружный	Толщина
диаметр d , мм	стенки δ, мм	диаметр d , мм	стенки δ, мм
20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 32, 34, 35, 36, 38, 40	0,5; 0,6; 0,8; 1,0; 1,2; 1,4; 1,5; 1,6; 1,8; 2,0; 2,2; 2,5; 2,8; 3,0; 3,2; 3,5	25; 28; 32; 38; 42; 45; 50	2,5; 2,8; 3,0; 3,5
42, 45, 48, 50, 51, 53, 54, 56, 57, 60, 63,65, 68, 70, 75, 76	1,0; 1,2; 1,4; 1,5; 1,6; 1,8; 2,0; 2,2; 2,5; 2,8; 3,0; 3,2; 3,5	54; 57; 60; 63; 68; 70	3,0; 3,5

Рассчитав δ и $d_{\rm T}$, следует подобрать по соответствующему ГОСТу трубопровод и уточнить скорость движения жидкости в подводящей и сливной магистралях.

Потеря давления (напора) подсчитывается отдельно для участка от насоса до гидроцилиндра и отдельно для участка от гидроцилиндра до бака.

Для схемы с дросселем на входе потеря давления на сливном участке трубопровода ($\Delta p_{\rm cn}$) определяется по формуле

$$\Delta p_{\rm cn} = \rho g (h_l + h_{\rm M} + h_{\rm pacn} + h_{\phi}), \tag{12}$$

где h_l , $h_{\rm M}$, $h_{\rm pacn}$ и $h_{\rm \phi}$ – потери напора соответственно по длине, в местных сопротивлениях, распределителе, фильтре;

 ρ — плотность жидкости;

g – ускорение силы тяжести.

Потери напора по длине рассчитываются по формуле Дарси-Вейсбаха:

$$h_l = \lambda \frac{l}{d_{\rm T}} \frac{v^2}{2g},\tag{13}$$

где l — длина трубопровода, м;

λ – коэффициента гидравлического трения.

В этой формуле значение коэффициента гидравлического трения λ , зависит от режима движения.

В случае ламинарного течения $\lambda = \frac{64}{Re}$ и потери напора по длине вычисляются по формуле Пуазейля:

$$h_l = \frac{32vlv}{gd_{\rm T}^2}. (14)$$

При турбулентном течении λ определяется по эмпирическим формулам для разных зон сопротивления. Зона гладко-

стного сопротивления имеет место при $4000 < \text{Re} < 20 d_{\scriptscriptstyle T}/k_{\scriptscriptstyle 3}$, где $k_{\scriptscriptstyle 3}$ – эквивалентная шероховатость. В этой зоне $\lambda = f(\text{Re})$ и значение λ может быть определено при $\text{Re} < 10^4$ по формуле Блазиуса:

$$\lambda = \frac{0.3164}{\text{Re}^{0.25}}.$$
 (15)

В случае $20\frac{d_{\rm T}}{k_{\rm 9}} < {\rm Re} < 500\frac{d_{\rm T}}{k_{\rm 9}}$ имеет место зона доквадратичного сопротивления и коэффициент $\lambda = f({\rm Re}, \, \frac{d_{\rm T}}{k_{\rm 9}})$. В этой зоне величину λ можно определить по формуле Альтшуля:

$$\lambda = 0.11 \left(\frac{68}{\text{Re}} + \frac{k_3}{d_x}\right)^{0.25}.$$
 (16)

При Re > $500 \frac{d_{_{
m T}}}{k_{_9}}$ имеет место зона квадратичного сопротивления, где $\lambda = f(\frac{k_{_9}}{d_{_{
m T}}}).$

В этой зоне значение λ можно рассчитать по формуле Шифринсона:

$$\lambda = 0.11 \left(\frac{k_9}{d_T}\right)^{0.25}.\tag{17}$$

Значения k_3 в зависимости от материала и качества трубы подбирается из справочной литературы [3]. При определении h_l длину сливного участка можно принимать примерно равной половине общей длины трубопроводной системы.

Потери напора в местных сопротивлениях $h_{\scriptscriptstyle \rm M}$ рассчитывают по формуле Вейсбаха:

$$h_{\rm M} = \zeta_{\rm M} \frac{v^2}{2g}.$$
 (18)

Для большинства случаев принимается эмпирическое значение коэффициента местных сопротивлений $\zeta_{\rm M}$, при этом необходимо иметь в виду, что значение $\zeta_{\rm M}$ приводится в справочной литературе обычно отнесенным к скорости за сопротивлением.

При расчете потерь напора $h_{\rm M}$ количество и виды местных сопротивлений, включая плавные и резкие повороты, тройники, штуцерные подсоединения труб к гидроагрегатам, следует принять самостоятельно в зависимости от конкретно разработанной схемы.

При ламинарном течении рабочей жидкости потери напора на местном сопротивлении выражаются через эквивалентную длину $l_{\scriptscriptstyle {
m 9KB}}.$

Значения $\zeta_{\rm M}$ для турбулентного режима и $l_{\rm 3KB}$ для ламинарного (для типичных местных сопротивлений) приведены в табл. 6.

Таблица 6

Вид местного сопротивления	$\zeta_{_{ m M}}$	$rac{l_{\scriptscriptstyle m SKB}}{d_{\scriptscriptstyle m T}}$
Вход в тубу при острых кромках	0,5	7–8
Выход из трубопровода под уровень	1,0	14–16
Внезапное расширение при входе в силовой цилиндр	0,8-0,9	12–15
Внезапное сужение при выходе из силового гидроцилиндра	0,5	7–8
Внезапное расширение	1,0	7–8
Внезапное сужение	0,5	7–8
Предохранительный и обратный клапан	2–3	32–40
Резкий поворот на 90°	1,1	16–18

Потери напора в золотниковом распределителе могут быть определены по формуле

$$h_{\text{pacn}} = \frac{Q_2^2}{2f^2 \mu_{\text{p}}^2 g},\tag{19}$$

где Q_2 – расход, м³/c;

f – площадь проходного сечения окна золотника, м 2 ; $\mu_{\rm p}$ – коэффициент расхода.

Величину f можно принимать из соотношения

$$f = 0.1 f_{\rm rp},$$

где $f_{\rm rp}$ – площадь сечения подводящего трубопровода.

Коэффициент расхода μ_p при турбулентном движении минеральных масел и для щелей с острыми кромками $\mu_p=0,6-0,62$. Для закругленных кромок или кромок с фасками $\mu_p=0,75-0,8$.

Подставляя рассчитанные значения потерь напора в формулу (12), получим величину потерь давления в сливной магистрали при заданном числе двойных ходов в минуту поршня гидроцилиндра.

Избыточное давление в гидроцилиндре $p_{\rm ц}$ по другую сторону поршня будет равно:

$$p_{\mathbf{I}\mathbf{I}} = \left[\frac{P}{F_{\mathbf{I}\mathbf{I}}} + (1 - \frac{F_{\mathbf{I}\mathbf{I}\mathbf{I}\mathbf{T}}}{F_{\mathbf{I}\mathbf{I}}})\Delta p_{\mathbf{C}\mathbf{I}\mathbf{I}}\right] \frac{1}{\eta_{\mathbf{M}\mathbf{I}\mathbf{I}}},\tag{20}$$

где F_{Π} – площадь поршня;

 $F_{\rm IIIT}$ – площадь сечения штока.

Потеря давления в подводящей магистрали $\Delta p_{\text{под}}$ на участке насос-гидроцилиндр определяется по формуле

$$\Delta p_{\text{под}} = \rho g (h_l + h_{\text{M}} + h_{\text{pacn}} + h_{\text{дp}}), \tag{21}$$

где h_l , $h_{\rm M}$, $h_{\rm pacn}$, $h_{\rm дp}$ — потери напора соответственно по длине, в местных сопротивлениях, распределителе и дросселе.

Расчет потерь напора h_l , $h_{\rm M}$, $h_{\rm дp}$ производится так же, как и для сливной магистрали трубопровода. Длина участка насосгидроцилиндр, как и в предыдущем случае, принимается равной половине общей длины трубопроводной системы. Количество плавных и резких поворотов, тройников, штуцерных подсоединений труб к гидроагрегатам — самостоятельно, в зависимости от конкретно разработанной схемы.

При расчете величины $h_{\rm дp}$ полагаем, что в схеме используется дроссель шайбового типа. Потеря напора в таком дросселе определяется по зависимости

$$h_{\mathrm{дp}} = \zeta_{\mathrm{дp}} \frac{\mathrm{v}_{\mathrm{дp}}^2}{2g},$$

где $\upsilon_{\text{др}}$ – скорость в самом узком проходном сечении дросселя;

 $\zeta_{\rm дp}$ — коэффициент сопротивления дросселя, равный 2,0—2,2.

Для определения υ_{np} принимается, что

$$f_{\rm JD} = 0, 2f_{\rm TD},$$

где $f_{\rm rp}$ – площадь сечения подводящего трубопровода.

Учитывая, что $\upsilon_{\rm дp} = \frac{Q_{\rm l}}{f_{\rm дp}}$, формулу для определения $h_{\rm дp}$

можно представить в виде

$$h_{\rm дp} = \zeta_{\rm дp} \frac{Q_{\rm l}^2}{2gf_{\rm дp}^2}.$$

Суммируя полученную величину $p_{\rm ц}$ (формула (20)) с потерей давления $\Delta p_{\rm под}$ на участке насос-гидроцилиндр (формула (21)), получим давление $p_{\rm H}$, непосредственно развиваемое насосом,

$$p_{\rm H} = p_{\rm H} + \Delta p_{\rm HOH}. \tag{22}$$

Полагаем далее, что предохранительный клапан отрегулирован на давление $p_{\rm H}$. Поэтому при увеличении сопротивления дросселя часть рабочей жидкости сбрасывается через предохранительный клапан в бак и движение поршня гидроцилиндра замедляется. Однако давление за насосом при этом остается постоянным и равным $p_{\rm H}$.

Приняв несколько значений (4–6) средней скорости поршня, меньших заданной, можно найти соответствующие расходы Q_1 и Q_2 и по ним определить скорости движения жидкости в подводящей $\upsilon_{\text{под}}$ и сливной $\upsilon_{\text{сл}}$ магистралях. Это дает возможность рассчитать зависимость $\Delta p_{\text{сл}} = f(\upsilon_{\text{ср}})$ и, используя формулу (20), найти зависимость $\Delta p_{\text{ц}} = f(\upsilon_{\text{ср}})$.

Так как насос при всех значениях $\upsilon_{\rm cp}$, меньше заданного, развивает постоянное давление $p_{\rm H}$, то, зная зависимость $p_{\rm H}=f(\upsilon_{\rm cp})$, можно для каждого значения $\upsilon_{\rm cp}$ определить потерю давления в подводящей магистрали

$$\Delta p_{\text{под}} = p_{\text{H}} - p_{\text{II}}.$$

Используя теперь формулу (4), можно найти зависимость $h_{\rm дp}=f(\upsilon_{\rm cp})$, если предварительно для каждого принятого значения $\upsilon_{\rm cp}$ вычислить $h_l=f(\upsilon_{\rm cp})$; $h_{\rm M}=f(\upsilon_{\rm cp})$ и $h_{\rm pacn}=f(\upsilon_{\rm cp})$.

При расчете системы с дросселем на выходе потери давления в подводящей и сливной магистралях определяются соответственно по формулам:

$$\Delta p_{\text{пол}} = \rho g(h_l + h_{\text{M}} + h_{\text{pacn}}); \tag{23}$$

$$\Delta p_{\rm ch} = \rho g (h_l + h_{\rm M} + h_{\rm pach} + h_{\rm Jp} + h_{\rm \varphi}). \tag{24}$$

Давление, создаваемое насосом при заданном числе двойных ходов в минуту, определяется так же, как и для схемы с дросселем на выходе с помощью зависимостей (20), (21), (22).

Расчет зависимости $h_{\rm дp} = f(\upsilon_{\rm cp})$ начинается с подсчета потерь напора на подводящей магистрали, а не сливной. В результате сначала получают зависимость $\Delta p_{\rm под} = f(\upsilon_{\rm cp})$, а затем зависимость $\Delta p_{\rm cn} = f(\upsilon_{\rm cp})$ с помощью формулы

$$\Delta p_{\rm c,I} = \frac{(p_{\rm H} - \Delta p_{\rm IIO,I})\eta_{\rm MII} - \frac{P}{F_{\rm II}}}{1 - \frac{F_{\rm IIIT}}{F_{\rm II}}}.$$
 (25)

Используя формулу (24), далее находят зависимость $h_{\rm дp}=f(\upsilon_{\rm cp})$, рассчитав предварительно для каждого значения $\upsilon_{\rm cp}$ величины $h_l=f(\upsilon_{\rm cp});$ $h_{\rm M}=f(\upsilon_{\rm cp});$ $h_{\rm pacn}=f(\upsilon_{\rm cp});$ $f_{\rm дp}=f(\upsilon_{\rm cp}).$

Гидравлический расчет гидросистемы заканчивается для схемы с дросселем на входе построением графиков: $\Delta p_{\rm cn} = f(\upsilon_{\rm cp});$ $\Delta p_{\rm nog} = f(\upsilon_{\rm cp});$ $h_{\rm дp} = f(\upsilon_{\rm cp}).$ Для схемы с дросселем на выходе строятся графики: $\Delta p_{\rm cn} = f(\upsilon_{\rm cp});$ $\Delta p_{\rm nog} = f(\upsilon_{\rm cp});$ $h_{\rm дp} = f(\upsilon_{\rm cp}).$

Зная зависимость $h_{\rm дp} = f(\upsilon_{\rm cp})$, можно с помощью формулы для определения $h_{\rm дp}$ найти зависимость $f_{\rm дp} = f(\upsilon_{\rm cp})$.

5. Определение основных размеров насоса

Расчет основных размеров насоса можно производить в следующем, зависящем от типа насоса, порядке.

1) Шестеренный насос.

Вычислить теоретическую подачу

$$Q_{\rm T} = \frac{Q_{\rm l}}{\eta_{\rm OH}}$$
.

Значение $\eta_{\text{он}}$ можно принять в пределах 0,95–0,96.

Зная n, об/мин, вычислить рабочий объем насоса q, см³/об, по формуле

$$q = \frac{Q_{\rm T}}{n}$$
.

Приняв предварительно ширину шестерни b = (4-6)m и число зубьев z = 9-15, вычислить модуль m из формулы $q = 6,5m^2zb$.

Для определения модуля можно воспользоваться также и эмпирической формулой

$$m = (0, 3-0, 5)\sqrt{Q_{\rm T}},$$

где $Q_{\rm T}$, л/мин, и затем, пользуясь предыдущей формулой, определить ширину колеса.

Рассчитать размеры шестерен:

диаметр начальной окружности $d_{\rm H} = mz$;

шаг зубчатого зацепления $t = \frac{3,14d_{\rm H}}{5}$;

диаметр окружности выступов $D_l = m(z+2)$;

диаметр окружности впадин $D_i = m[z-(2+c)]$, где c – коэффициент радиального зазора, равный 0,05.

При определении потребляемой мощности можно принять механический КПД $\eta_{\text{мн}} = 0.92-0.94$.

2) Аксиально-поршневой насос.

Определить теоретическую подачу

$$Q_{\rm T} = \frac{Q_{\rm l}}{\eta_{\rm OH}}$$
.

Значение объемного КПД можно принимать равным $\eta_{\text{он}} = 0.97 - 0.98$.

Зная чистоту вращения n, об/мин, вычислить рабочий объем насоса, см 3 /об, по формуле

$$q = \frac{Q_{\rm T}}{n}$$
.

Задаться нечетным числом цилиндров z=7–11 и значением $i=\frac{h_{\max}}{d}$ в пределах i=1–2, где h_{\max} – максимальный ход поршня и вычислить диаметр поршня d по формуле

$$d = \sqrt[3]{\frac{4}{\pi} \frac{q}{zi}}.$$

Из выражения $q=\frac{\pi d^2}{4}D_{\bar{0}}$ tg γz найти угол наклона шайбы γ

$$\gamma = \arctan \frac{4q}{3,14d^2 D_6 z},$$

где D_{6} – диаметр блока по осям цилиндров;

$$D_6 = (0,35-0,4)dz.$$

Угол γ не должен превышать 20°.

Определить наружный диаметр $D_{\rm H}$ блока по формуле

$$D_{\rm H} = D_{\rm \tilde{0}} + 1,6d.$$

Определить длину цилиндра и поршня по формулам:

$$L_{\text{пор}} = D_{\delta} \text{tg} \gamma + (1, 6-2, 2) d;$$

 $L_{\text{пил}} = 0, 1d + D_{\delta} \text{tg} \gamma + (1, 5-2) d.$

При определении потребляемой мощности механический КПД можно принимать в пределах $\eta_{\rm M} = 0.93 - 0.98$.

3) Радиально-поршневой насос. Определить теоретическую подачу

$$Q_{\rm T} = \frac{Q_{\rm l}}{\eta_{\rm out}}$$
.

Значение $\eta_{\text{он}}$ можно принимать в пределах $\eta_{\text{он}} = 0.96-0.98$. Исходя из заданного значения n, об/мин, найти рабочий объем насоса, см³/об, по формуле

$$q = \frac{Q_{\rm T}}{n}$$
.

Задаться нечетным числом цилиндров в пределах z=5–11 и отношением $i=\frac{2e}{d}$ в пределах 1–1,5, где e – эксцентриситет, и вычислить диаметр поршня d и величину e по формулам:

$$d = \sqrt[3]{\frac{4}{\pi} \frac{q}{zi}}; \qquad e = \frac{id}{2}.$$

Значение d округлять по ГОСТ 6636-69, значение e — до ближайшего целого числа.

Диаметр распределительной цапфы назначить конструктивно при вычерчивании схемы насоса.

Длину поршня $L_{\text{пор}}$ и $L_{\text{цил}}$ определить по формулам:

$$L_{\text{nop}} = 2e + (1,6-2,2)d;$$

$$L_{\text{IIMJ}} = 0.1d + 2e + (1.5-2)d.$$

Радиус сферы головки поршня принять равным

$$r = (1, 5-2, 5)d$$
.

Механический КПД $\eta_{\text{мн}}$ при определении потребляемой мощности принять в пределах $\eta_{\text{мн}} = 0.85 - 0.9$.

4) Роторно-пластинчатый насос. Определить теоретическую подачу

$$Q_{\rm T} = \frac{Q_{\rm l}}{\eta_{\rm oH}},$$

где η_{oH} – объемный КПД насоса, равный 0,6–0,95.

Вычислить рабочий объем насоса, см³/об, по формуле

$$q = \frac{Q_{\rm T}}{n}$$

где n — частота вращения вала насоса.

Вычислить значения максимального эксцентриситета по формуле $e_{\max} = k \sqrt{q}$, где k – коэффициент, зависящий от ра-

бочего объема насоса; k=1 при $q \le 200$ см³/об; k=0.8 при 200 < q < 500 см³/об; k=0.6 при 500 < q < 4000 см³/об.

Задаться числом пластин z=8–16 (для получения большей равномерности подачи рекомендуется принимать z кратным 4), толщиной пластины $\delta=2$ –2,5 мм, отношением $k_1=b/D$ в пределах 0,2–0,55, где b — ширина пластины; D — диаметр статора и вычислить значение D из формулы

$$q = 2be_{\text{max}}(\pi D + \delta z).$$

Значение k_1 принимается тем больше, чем меньше q.

Принятые окончательно значения D, e, b, z должны обеспечить требуемый рабочий объем насоса.

Радиальная длина пластины может быть принята равной $l=6e_{
m max}.$

Диаметр ротора определяется по формуле

$$d = D - (2e_{\max} + c),$$

где c – зазор между статором и ротором (c = 1 мм).

При определении потребляемой мощности $\eta_{\text{мн}}$ принимается равным 0,7–0,9.

После определения основных размеров вычерчивается в масштабе схема насоса на листе формата A1.

6. Определение мощности насоса, гидродвигателя и КПД гидропривода

Полезная мощность $N_{\rm II}$, кВт, определяется по величине $p_{\rm II}$, найденной при гидравлическом расчете трубопроводной системы, и расходу $Q_{\rm I}$ по формуле

$$N = \frac{p_{\rm H}Q_{\rm l}}{1000}$$
.

Принимая механический КПД $\eta_{\rm MH}$ и объемный КПД насоса $\eta_{\rm OH}$ в соответствии с изложенными выше рекомендациями, найдем потребляемую мощность насоса $N_{\rm II}$

$$N_{\rm II} = \frac{N}{\eta_{\rm MH} \eta_{\rm OH}}.$$

Полезная мощность в кВт на исполнительном органе (штоке) гидродвигателя определяется по формуле

$$N_{\text{IIIT}} = \frac{Pv_1}{1000},$$

где υ_1 – скорость движения штока гидроцилиндра, определяемая по формуле (6).

КПД гидропривода $\eta_{\text{г.пр}}$ определяется как отношение полезной мощности $N_{\text{шт}}$ и потребляемой мощности насоса $N_{\text{п}}$

$$\eta_{\Gamma.\Pi p} = \frac{N_{\text{IIIT}}}{N_{\Pi}}.$$

Список используемой литературы

- 1. Гидравлика, гидравлические машины и гидроприводы / Т. М. Башта [и др.]. – М. : Машиностроение, 1982. – 423 с.
- 2. Васильченко, В. А. Гидравлическое оборудование мобильных машин: справочник / В. А. Васильченко. М. : Машиностроение, 1983.-301~c.
- 3. Вильнер, Я. М. Справочное пособие по гидравлике, гидромашинам и гидроприводам / Я. М. Вильнер, Я. Т. Ковалев, Б. Б. Некрасов. 2-е изд. Минск : Вышэйшая школа, 1985. 382 с.

Варианты исходных данных для заданий по расчету объемного гидропривода

ггулиро- вание	ıe	троссель на выход	18		+		+		+		+	
Регулиро- вание	Э	проссель на вход	17	+		+		+		+		+
нии	พ/90 'น	Частота вращения,	16	096	1950	1000	1440	1420	1450	1500	068	1440
		шестеренный	15				+				+	
Тип насоса	йыл	роторно-пластинча	14			+				+		
Тип н	йоя	яксияльно-поршне г	13		+				+			
	йоя	радиально-поршне	12	+				+				+
COCTS		Кинематическая вязскость, v, сСт	11	17–23	27–33	42-58	20–23	84-48	9'6	17–23	29–33	42–58
бочая жидкос и ее свойства	٤١٨	Плотность, ρ , км/г	10	890	006	920	006	880	068	006	920	880
Рабочая жидкость и ее свойства		Марка масла	6	Инд. 20	Инд. 30	Инд. 50	Typ6. 22	Typ6. 46	Трансф.	Инд. 20	Инд. 30	Инд. 50
йонд		Общая длина трубоп системы, м	8	10	12	14	16	18	20	22	24	26
Ю	оци- идр	с двустороним штоком	7		+		+		+		+	
Данные по гидродвигателю	Гидроци линдр	с односторонним штоком	9	+		+		+		+		+
івродв	I	им/дох .нйоад ,п	5	10	12	14	16	17	18	19	20	25
по гид	m 'ı	кншqоп вдох внигД	4	1	6,0	8,0	0,7	9,00	9,0	0,5	0,4	0,3
нные	٤	исло цилиндрог	3	2	2	2	2	2	2	1	2	1
Да		Полезное усилие на и	2	10	15	20	25	30	35	40	45	50
	ı	у варианта	1	П	2	3	4	5	9	7	∞	6

18	1		_														1		1		1		1	
_	+		+		+		+		+		+		+		+		+		+		+		+	
17		+		+		+		+		+		+		+		+		+		+		+		
16	086	1430	1450	1500	086	096	1000	2900	096	2900	1000	1440	1420	1450	1500	096	086	890	1440	086	1430	1420	1500	
15			+				+				+				+					+				
14		+				+				+				+					+				+	
13	+				+				+				+				+	+				+		
12				+				+				+				+					+			
11	20–23	44-48	9,6	17–23	27–33	44-48	9,6	44-48	9,6	17–23	27–33	42–58	20–23	44-48	9,6	17–23	27–33	42–58	20–23	44-48	9,6	17–23	27–33	
10	006	920	006	088	068	006	920	910	006	068	088	870	920	910	006	810	988	920	006	920	880	068	006	
6	Typ6. 22	Typ6. 46	Трансф.	Инд. 20	Инд. 30	Инд. 50	Typ6. 22	Typ6. 46	Трансф.	Инд. 20	Инд. 30	Инд. 50	Typ6. 22	Typ6. 46	Трансф.	Инд. 20	Инд. 30	Инд. 50	Typ6. 22	Typ6. 46	Трансф.	Инд. 20	Инл. 30	
∞	28	30	10	12	14	16	18	20	22	24	26	28	30	10	12	16	18	30	32	34	36	38	40	
_	+		+		+		+		+		+		+		+		+		+		+		+	
9		+		+		+		+		+		+		+		+		+		+		+		
S	30	15	16	17	18	19	20	19	18	17	16	15	14	13	12	11	10	20	22	24	56	28	20	
4	0,7	8,0	6,0	1,2	1,1	1,0	6,0	8,0	0,7	9,0	0,5	0,4	9,0	0,7	8,0	6,0	1,0	8,0	6,0	1,0	1,1	1,2	0.5	
κ	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-	
7	55	09	9	70	75	80	85	06	95	100	95	06	85	08	75	70	9	20	75	80	85	06	10	
_	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	59	30	31	32	

18	+		+		+		+		+		+		+		+		+		+		+	
17		+		+		+		+		+		+		+		+		+		+		+
16	890	730	950	1000	1440	1500	1420	1440	086	068	096	730	096	1000	1440	1500	1420	1440	086	096	1900	1950
15				+				+				+				+				+		
14			+				+				+				+				+			
13		+				+				+				+				+				+
12	+				+				+				+				+				+	
Π	20–23	44-48	27–33	42–58	17–23	9,6	44-48	20–23	42–58	27–33	17–23	9,6	44-48	20–23	42–58	27–33	17–23	9,6	44–52	9,6	44–58	20–23
10	890	006	920	006	920	890	880	920	006	920	006	068	088	920	006	920	006	890	088	920	006	920
6	Typ6. 22	Typ6. 46	Инд. 20	Инд. 30	Инд. 50	Трансф.	Typ6. 46	Typ6. 22	Инд. 50	Инд. 30	Инд. 20	Трансф.	Typ6. 46	Typ6. 22	Инд. 50	Инд. 20	Трансф.	Typ6. 46	Typ6. 22	Инд. 50	Инд. 30	Инд. 20
∞	24	26	28	14	16	18	20	22	24	26	28	30	32	34	36	38	40	14	16	18	20	22
7	+		+		+		+		+		+		+		+		+		+		+	
9		+		+		+		+		+		+		+		+		+		+		+
5	24	26	28	30	15	10	12	14	16	18	20	22	24	56	28	30	32	34	36	38	40	42
4	0,7	8,0	6,0	1,0	1,1	1,2	0,5	9,0	0,7	8,0	6,0	1,0	1,1	1,2	1,3	0,5	9,0	0,7	8,0	6,0	1,0	1,1
α	1	-	-		2	2	-	2		2	-	2	-	2	-	2	-	2	-	-	-	1
7	30	35	40	45	20	55	09	9	20	75	08	85	06	95	10	20	25	30	35	40	45	50
_	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	90	51	52	53	54	55

Учебное издание

ГИДРАВЛИКА, ГИДРОМАШИНЫ И ГИДРОПРИВОДЫ

Пособие

для студентов специальностей 1-36 01 05 «Машины и технология обработки металлов давлением», 1-36 01 06 «Оборудование и технология сварочного производства»

Составители:

КАЧАНОВ Игорь Владимирович КЛЮЧНИКОВ Владимир Анатольевич ШАТАЛОВ Игорь Михайлович ЩЕРБАКОВА Мария Константиновна

Редактор В. И. Акулёнок Компьютерная верстка Н. А. Школьниковой

Подписано в печать 17.10.2019. Формат $60\times84^{-1}/_{16}$. Бумага офсетная. Ризография. Усл. печ. л. 1,74. Уч.-изд. л. 1,36. Тираж 100. Заказ 875.

Издатель и полиграфическое исполнение: Белорусский национальный технический университет. Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий № 1/173 от 12.02.2014. Пр. Независимости, 65. 220013, г. Минск.