Chapter 5: Matrices

Daniel Chan

UNSW

Semester 1 2018

In this chapter

- Matrices were first introduced in the Chinese "Nine Chapters on the Mathematical Art" to solve linear eqns.
- In the mid-1800s, senior wrangler (see wikipedia) Arthur Cayley studied matrices in their own right and showed how they have an interesting and useful algebra associated to them.
- We will look at Cayley's ideas and extend vector arithmetic to matrices and even show there is matrix multiplication akin to multiplying numbers.
- These ideas will not only shed light on solving linear eqns, they will also be useful later when you look at multivariable functions and mappings.

Some new notation for matrices

Recall an $m \times n$ -matrix is an array of (for us) scalars (real or complex).

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}.$$

Notation

- We abbreviate the above to $A = (a_{ij})$ and call a_{ij} the ij-th entry of A.
- Also write [A]_{ij} for a_{ij}.
- We say the size of A is $m \times n$ because it has
- $M_{mn}(\mathbb{R})$ (resp $M_{mn}(\mathbb{C})$) denote the set of all $m \times n$ -matrices with real entries (resp complex entries). Sometimes abbreviate to M_{mn} if the scalars are understood or irrelevant.

E.g. A length *m column vector* is an

Revise matrix-vector product

Let
$$A=(a_{ij})=(\mathbf{a}_1|\mathbf{a}_2|\ \dots |\mathbf{a}_n)\in M_{mn}.$$
 Then

$$A\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = = x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \dots + x_n \mathbf{a}_n.$$

Alternatively, the i-th entry of Ax is

$$[A\mathbf{x}]_i = a_{i1}x_1 + \ldots + a_{in}x_n = \begin{pmatrix} a_{i1} & \ldots & a_{in} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$$

Note similarity with dot products.

A induces the linear function $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m : \mathbf{x} \mapsto A\mathbf{x}$.

Note We will write all our results for matrices with real entries, but there are obvious analogues over the complexes.

Arithmetic of matrices

Just as for vectors, we can define matrix addition and scalar multiplication to be entry-wise addition and scalar multiplication

E.g.

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & -1 \end{pmatrix} + \begin{pmatrix} 3 & 4 & 6 \\ 2 & -1 & 5 \end{pmatrix} =$$

$$7 \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & -1 \end{pmatrix} =$$

In formulas

Matrix arithmetic

For $A, B \in M_{mn}(\mathbb{R}), \lambda \in \mathbb{R}$, the entries of $A + B, \lambda A \in M_{mn}(\mathbb{R})$ are

- $[A + B]_{ij} = [A]_{ij} + [B]_{ij}$
- $[\lambda A]_{ij} = \lambda [A]_{ij}$

N.B. We don't define the sum of matrices of different sizes (just as is the case for vectors).

Linear combinations and subtraction

E.g. We can also form linear combinations of matrices

$$\begin{pmatrix}1&2&3\\0&1&-1\end{pmatrix}+(-1)\begin{pmatrix}1&2&3\\0&1&-1\end{pmatrix}=$$

Definition

- The zero matrix $\mathbf{0}$ has all entries 0. (There's one for each size $m \times n$.) $A + \mathbf{0} =$
- The negative of $A \in M_{mn}$ is -A := (-1)A. Hence A + (-A) =
- The difference A B = A + (-B) if A, B have the same size.

Daniel Chan (UNSW) Chapter 5: Matrices Semester 1 2018

Another distributive & associative law

Proposition

For $A, B \in M_{mn}(\mathbb{R}), \lambda \in \mathbb{R}, \mathbf{x} \in \mathbb{R}^n$

- $\bullet (A+B)\mathbf{x} = A\mathbf{x} + B\mathbf{x}.$
- $\bullet (\lambda A)\mathbf{x} = \lambda (A\mathbf{x}).$

Proof. Suppose n = 2 (else need more space) so $A = (\mathbf{a}_1 | \mathbf{a}_2), B =$

Upshot Recall that in calculus, you define the sum and scalar multiple of functions pointwise, $(f+g)(x) = f(x) + g(x), (\lambda f)(x) = \lambda f(x)$. The above formulas show that the linear function corresponding to A+B which

sends $\mathbf{x} \mapsto (A+B)\mathbf{x} = A\mathbf{x} + B\mathbf{x}$ is the pointwise sum of the functions corresponding to A and B. The same goes for the scalar multiple.

Mappings and matrix arithmetic

E.g. The mapping
$$\mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 corresponding to the matrix $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

E.g. The mapping
$$\mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 corresponding to the matrix $B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

E.g. The mapping
$$\mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 corresponding to the matrix $\frac{1}{2}(A+B)=$

Daniel Chan (UNSW) Chapter 5: Matrices

Basic properties of matrix arithmetic

Proposition

For $A, B \in M_{mn}$, and scalars λ, μ

- $\lambda(\mu A) = (\lambda \mu) A$.
- $(\lambda + \mu)A =$
- $\lambda(A+B)=$

Proof. Just as for vectors e.g.

Matrix multiplication

Let $A \in M_{mn}$, $B = (\mathbf{b}_1 | \dots | \mathbf{b}_p) \in M_{np}$. We define the *matrix product AB* to be the $m \times p$ -matrix

$$AB = (A\mathbf{b}_1| \dots |A\mathbf{b}_p) \in M_{mp}.$$

E.g.
$$\begin{pmatrix} 0 & 1 \\ 2 & 3 \\ 4 & 5 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 2 \end{pmatrix}$$

Alternatively, the ij-th entry of AB comes from "zipping up" the ith row of A with the jth column of B: i.e. if $A = (a_{ij}), B = (b_{ij})$

$$[AB]_{ij} = (a_{i1} \ldots a_{in}) \begin{pmatrix} b_{1j} \\ \vdots \\ b_{nj} \end{pmatrix} = a_{i1}b_{1j} + \ldots + a_{in}b_{nj} = \sum_{l=1}^{n} a_{il}b_{lj}.$$

Warning The product AB is only defined when no. columns A = no. rows B.

Daniel Chan (UNSW) Chapter 5: Matrices Semester 1 2018

10 / 33

Associative law of matrix multiplication

Let
$$A \in M_{mn}$$
, $B = (\mathbf{b}_1 | \dots | \mathbf{b}_p) \in M_{np}$, $C = (\mathbf{c}_1 | \dots | \mathbf{c}_q) \in M_{pq}$. Then $(AB)C = A(BC)$.

Proof. It suffices show this for $C = \mathbf{c} = \begin{pmatrix} c_1 \\ \vdots \\ c_p \end{pmatrix}$ for assuming this case we see

$$(AB)C = ((AB)\mathbf{c}_1|\dots|(AB)\mathbf{c}_q) = (A(B\mathbf{c}_1)|\dots|A(B\mathbf{c}_q))$$

= $A((B\mathbf{c}_1)|\dots|(B\mathbf{c}_q)) = A(BC).$

If $C = \mathbf{c}$ then

$$(AB)\mathbf{c} = (A\mathbf{b}_1|\ldots|A\mathbf{b}_p)\mathbf{c} = c_1A\mathbf{b}_1+\ldots+c_pA\mathbf{b}_p = A(c_1\mathbf{b}_1+\ldots+c_p\mathbf{b}_p) = A(B\mathbf{c}).$$

Daniel Chan (UNSW) Chapter 5: Matrices Semester 1 2018

11 / 33

Functional interpretation of the associative law

The associative law says the function associated to AB which maps $\mathbf{x} \mapsto (AB)\mathbf{x} = A(B\mathbf{x})$ is the composite $\mathbf{x} \mapsto B\mathbf{x} \mapsto A(B\mathbf{x})$ of the linear maps associated to A and B.

E.g. Recall that $B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ corresponds to reflection about the x-axis. The functional viewpoint shows that B^2 coresponds to the mapping

Let's check
$$\left(\begin{smallmatrix}1&0\\0&-1\end{smallmatrix}\right)\left(\begin{smallmatrix}1&0\\0&-1\end{smallmatrix}\right)=$$

Remark The definition of matrix multiplication was designed so that it reflects the composition of linear maps.

Distributive laws & noncommutativity

Distributive law

Let A, B, C be matrices & λ a scalar. The following formulas hold whenever the terms on one side are defined.

- (A+B)C = AC + BC.

Proof. Easy ex similar to distributive law we proved for matrix-vector product.

Noncommutativity Note that if AB is defined, BA may not be, and even if it is, usually we have $AB \neq BA$.

E.g. Let
$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

Hence $(A+B)^2 =$

Miscellaneous matrix definitions

A matrix is said to be *square* if its no. rows = no. columns. The *diagonal* of a square matrix $A = (a_{ij})$ consists of the entries a_{ii} . The $n \times n$ -identity matrix I, is the matrix with 1's on the diagonal and 0's elsewhere. **E.g.**

Formula

IA = A, BI = B whenever the products are defined.

Proof. Just multiply matrices. We'll check here

Upshot In particular, we see the linear function associated to I is the identity map $\mathbf{x} \mapsto \mathbf{x}$.

Daniel Chan (UNSW) Chapter 5: Matrices Semester 1 2018 14 / 33

Transpose

The *transpose* of an $m \times n$ -matrix A, is the $n \times m$ -matrix A^T gotten by turning all the rows of A into columns (or equivalently, flipping the matrix about the row i = column j diagonal).

E.g.
$$\begin{pmatrix} 2 & 5 & 1 \\ 1 & 3 & 2 \end{pmatrix}^T =$$

More formally, the entries of A^T are given by $[A^T]_{ij} = [A]_{ji}$.

Formulas

Let A, B be matrices & λ a scalar. The following hold when one side is defined.

- $(A+B)^T = A^T + B^T, \quad (\lambda A)^T = \lambda A^T$
- **3** $(AB)^T = B^T A^T$.

Proof. 1) & 2) are easy and say the function $A \mapsto A^T$ is linear. For 3)

$$[(B^TA^T)]_{ij} = \sum_{I} [B^T]_{ii} [A^T]_{ij} = \sum_{I} [B]_{ii} [A]_{jI} =$$

Miscellaneous tidbits involving transpose

Relation with dot product

Let $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$. Then though \mathbf{ab} is not defined we can define

$$\mathbf{a}^T\mathbf{b} = (a_1 \dots a_n) \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} = a_1b_1 + \dots + a_nb_n = \mathbf{a} \cdot \mathbf{b}.$$

Symmetric matrices

A square matrix is *symmetric* if $A^T = A$ and *anti-symmetric* if $A^T = -A$ (Why is square in the defn?).

E.g. $\mathbf{bb}^T \in M_{nn}$ is symmetric since

In fact if $|\mathbf{b}| = 1$, then the linear function $\mathbb{R}^n \longrightarrow \mathbb{R}^n$ associated to \mathbf{bb}^T is projection onto \mathbf{b} for it sends

$$\mathbf{x} \mapsto \mathbf{b} \mathbf{b}^T \mathbf{x} =$$

Matrix Inverse

To attempt matrix "division" we need the matrix inverse.

Inverse

A matrix W is an *inverse* for the matrix A if

$$AW = WA = I$$

If such a matrix exists we say that A is *invertible*. A matrix can have at most one inverse, denoted A^{-1} .

Proof. If W' is another inverse then

E.g.
$$A = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$$

Inverses and solving $A\mathbf{x} = \mathbf{b}$

Proposition

Let $A \in M_{mn}$ be an invertible matrix. Then for any $\mathbf{b} \in \mathbb{R}^n$ the eqn $A\mathbf{x} = \mathbf{b}$ has $\mathbf{x} = A^{-1}\mathbf{b}$ as its unique soln.

Proof. $\mathbf{x} = A^{-1}\mathbf{b}$ is a soln since It is the only possible soln since $A\mathbf{x} = \mathbf{b} \implies$

Corollary Any invertible matrix $A \in M_{mn}$ is square.

Proof. The inverse $W = A^{-1}$ must be $n \times m$ for AW, WA to be defined.

 $A\mathbf{x} = \mathbf{0}$ has a unique soln $\implies m$

Formulas involving matrix inverses

Formula

Let $A, B \in M_{nn}$ be invertible.

- **1** A^{-1} is invertibe & $(A^{-1})^{-1}$ =
- ② *AB* is invertible & $(AB)^{-1} = B^{-1}A^{-1}$.
- **3** A^T is invertible & $(A^T)^{-1} = (A^{-1})^T$.

Proof. All easy e.g.

E.g. Simplify $(ABA^{-1})^{-2}A$

Computing inverses of matrices: example

Q Find the inverse of
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & 2 \\ -1 & 1 & -1 \end{pmatrix}$$

Α

The algorithm for inverting matrices

Let $A \in M_{nn}$. To determine invertibility and invert A if invertible we:

- Form the augmented $n \times 2n$ -matrix (A|I).
- ② Apply ERO's until we get row echelon form (U|B).
- **1** If U has non-leading columns, we stop as solns to $A\mathbf{x} = \mathbf{0}$ are not unique so A is not invertible.
- If U has no non-leading columns, then A is invertible & we can apply EROS to transform (U|B) to the form (I|C) with $C = A^{-1}$.

Q Is
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & 2 \\ 2 & 4 & 3 \end{pmatrix}$$
 invertible? If so, find its inverse.

Why our algorithm works

Suppose EROs send $(A|I) \xrightarrow{EROs} (I|C)$ where $C = (\mathbf{c}_1|\dots|\mathbf{c}_n)$. Restrict Gaussian elimination

$$(A|\mathbf{e}_i) \xrightarrow{EROs} (I|\mathbf{c}_i),$$

i.e. $A\mathbf{c}_i = \mathbf{e}_i$.

$$AC = (A\mathbf{c}_1|\ldots|A\mathbf{c}_n) = (\mathbf{e}_1|\ldots|\mathbf{e}_n) = ??$$

Challenge Q Show that we also have CA = I. Hint: Observe ACA = A = AI and explain why you can cancel the A's.

Chapter 5: Matrices Semester 1 2018

Invertibility for square matrices

Theorem

Suppose that $A \in M_{nn}$ has row-echelon form U. Then the following are equivalent:

- A is invertible.
- U has no zero rows.
 - U has no nonleading columns.
 - \mathbf{O} $A\mathbf{x} = \mathbf{O}$ has a unique solution $\mathbf{x} = \mathbf{O}$.
- **9** For each $\mathbf{b} \in \mathbb{R}^n$, $A\mathbf{x} = \mathbf{b}$ has a unique solution.

Proof We check
$$5) \Longrightarrow 4) \Longrightarrow 3) \Longrightarrow 2) \Longrightarrow 1) \Longrightarrow 5)$$

Corollary Suppose that $A \in M_{nn}$. Then

$$XA = I \iff AX = I \iff X = A^{-1}.$$

Proof. Note AX or XA square $\implies X \in M_{nn}$, so by symmetry, suff show $AX = I \implies X$ is invertible by checking condn 4) above. But $X\mathbf{x} = \mathbf{0} \implies \mathbf{x} = I\mathbf{x} = AX\mathbf{x} = A\mathbf{0} = \mathbf{0}$ so we're done by the thm.

Inverse of 2×2 -matrices

Recall the 2×2 -determinant

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

Inverse formula

Let $A = (a_{ij}) \in M_{22}$. Then A is invertible if det $A \neq 0$ in which case

$$A^{-1} = rac{1}{\det(A)} egin{pmatrix} a_{22} & -a_{12} \ -a_{21} & a_{11} \end{pmatrix}.$$

Proof. Just multiply

Remark We'll generalise the relationship between determinants and invertibility later. The formula in this case is best appreciated if you understand the linear mapping $\mathbb{R}^2 \longrightarrow \mathbb{R}^2$ associated to A.

Daniel Chan (UNSW) Chapter 5: Matrices Semester 1 2018

Minors of a square matrix

We define the *determinant* of $A \in M_{nn}$, using induction on n. We've defined it for n = 2 (and 3), and suppose it's defined for $(n - 1) \times (n - 1)$ -matrices. First

Definition

For $1 \le i, j \le n$, the (row i, column j) minor of A, denoted $|A_{ij}|$, is the determinant of the $(n-1) \times (n-1)$ matrix obtained by deleting row i and column j from A.

E.g.Let
$$A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 0 & 1 \\ 4 & -2 & 5 \end{pmatrix}$$
. $|A_{21}| =$

Defn For a 1×1 -matrix (a) we define its *determinant* to be det(a) = a.

There are many definitions of the determinant. To keep the exposition elementary, we'll use a generalisation of the one for 3×3 -determinants.

Determinant

This definition is via expanding along the first row.

Definition

Let $A \in M_{nn}$ with $n \ge 2$. Then the determinant of A is

$$\det(A) = a_{11}|A_{11}| - a_{12}|A_{12}| + a_{13}|A_{13}| + \dots + (-1)^{n-1}a_{1n}|A_{1n}|$$
$$= \sum_{k=1}^{n} (-1)^{k-1}a_{1k}|A_{1k}|.$$

E.g. Let
$$A = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 2 & 3 & 0 & 0 \\ -1 & 1 & 5 & 0 \\ 7 & -2 & 3 & 1 \end{pmatrix}$$
. Then $det(A) =$

Determinant of lower triangular matrices

We say $A = (a_{ij})$ is lower triangular, if $a_{ij} = 0$ whenever i < j.

The computation above shows more generally the following

Proposition

If $A = (a_{ij})$ is lower triangular, then det(A) is just the product of the diagonal elements.

$$\det(A) = \prod_{i=1}^n a_{ii}$$

In particular,

$$\det(I) = 1.$$

The geometric meaning of the determinant

- Unfortunately in this course, we will not be able to talk about the determinant in depth. For a thorough treatment, see my MATH2601 lecture notes, lectures 5,6.
- Just as the (magnitude of) 2×2 -determinant gives the area of parallelograms, and 3×3 -determinants volumes of parallelopipeds, the $n \times n$ -determinant gives the volume of n-dimensional parallelopipeds (unfortunately we can't prove this).
- In particular, the linear mapping $\mathbb{R}^n \longrightarrow \mathbb{R}^n$ associated to A expands volumes by $\det(A)$.
- The sign of det(A) is related to a higher dimensional version of the right hand rule.
- All these facts are easy to see for *diagonal matrices*, i.e. those whose non-zero entries all lie on the diagonal.

Determinant of the Tranpose

Let
$$A = (a_{ij}) \in M_{nn}$$
. Then

Proposition

$$\det(A) = \det(A^T).$$

Proof. Hard (& omitted) with our defn except for 2×2 .

Since the transpose swaps columns with rows, we can compute det(A) by expanding along the first column as in the formula below

Formula

$$\det(A) = a_{11}|A_{11}| - a_{21}|A_{21}| + \dots + (-1)^{n+1}a_{n1}|A_{n1}|.$$

In particular, if A is upper triangular in the sense that $a_{ij} = 0$ whenever i > j, then det(A) is the product of the diagonal entries.

E.g.

Determinant of products

Theorem

$$\det(AB) = \det(A)\det(B)$$

Note that A, B square and AB defined $\implies A, B$ have the same size.

Proof. Hard, see my MATH2601 notes.

E.g. Find the determinant of
$$A^{42}$$
 where $A = \begin{pmatrix} 1 & 0 & 0 \\ 4e^{\pi-\sqrt{2}} & \frac{1}{2} & 0 \\ 0 & \int_0^1 \frac{dx}{\sqrt{(1-x^2)(2-x^2)}} & 4 \end{pmatrix}$.

Corollary

If A is invertible, then $det(A) \neq 0 \& det(A^{-1}) = det(A)^{-1}$.

Proof.

EROs and determinants

Below we see how performing an ERO to get from $A \xrightarrow{ERO} B$ changes the determinant.

Proposition

- If $A \xrightarrow{R_i \leftrightarrow R_j} B$, then det(B) = -det(A). i.e. swapping two rows of a matrix negates the determinant.
- ② If $A \xrightarrow{R_i = cR_i} B$, then det(B) = c det(A). i.e, multiplying a row by c multiplies the determinant by c.
- If $A \xrightarrow{R_i = R_i + cR_j} B$, then det(B) = det(A). i.e,

In particular, if two rows of A are the same, or A has a row of 0s, then $\det(A) =$

E.g. Suppose $A \in M_{44}$ has determinant 2. Find det(3A).

Computing determinants in practice

Warning We don't compute determinants using the defn except for small or special matrices!

In practice, a) we apply EROs to reduce A to row-echelon form U, b) record how we've changed the determinant (see previous slide), & c) note U square & row-echelon \implies upper triangular so has readily computable determinant.

E.g. Find the determinant of
$$A = \begin{pmatrix} 1 & -1 & 2 & 3 \\ -1 & 1 & 1 & 2 \\ -1 & 2 & 0 & 1 \\ 2 & 0 & 3 & -1 \end{pmatrix}$$

32 / 33

Conclusions from the algorithm for computing determinants

- We can transform A into upper echelon form U by using ERO's of form $R_i \leftrightarrow R_i \& R_i = R_i + cR_i$ only. Then $\det(A) = \pm \det(U)$.
- For this U, it has all leading columns iff all diagonal entries are non-zero iff $det(U) \neq 0$.

This gives

Theorem

A square matrix A is invertible iff $det(A) \neq 0$.

Remark The formula for inverting 2×2 -matrices generalises (see Cramer's rule in my MATH2601 notes). It has det(A) in the denominator for A^{-1} and an otherwise well-defined numerator.

33 / 33