Making Classical (Threshold) Signatures Post-Quantum for Single Use on a Public Ledger

Laurane Marco, Abdullah Talayhan, Serge Vaudenay

Speaker: Abdullah Talayhan (abdullah.talayhan@eplf.ch)

https://abdullahtalayhan.com

Background

(p is a prime with some structure)

One-way Hash Functions

Commitment Schemes

 $com \leftarrow Commit(x, open)$

Making Classical (Threshold) Signatures Post-Quantum for Single Use on a Public Ledger

Making Classical (Threshold) Signatures Post-Quantum for Single Use on a Public Ledger

Digital Signatures

pk

A digital signature scheme is a tuple of algorithms (KeyGen, Sign, Verify) with key space \mathscr{D} and message space \mathscr{M} such that:

 $\mathsf{KeyGen}(1^{\lambda}) \to (\mathsf{sk}, \mathsf{pk})$

Sign(sk, msg) $\rightarrow \sigma$

Verify(σ , pk, msg) $\rightarrow 0/1$

sk

Sign(sk, msg)

Verify(σ , pk, msg)

KeyGen

Making Classical (Threshold) Signatures Post-Quantum for Single Use on a Public Ledger

 \boldsymbol{g}^{X}

$$g^{X}$$

$$g^{x_1+x_2+x_3}=g^{x_1}\cdot g^{x_2}\cdot g^{x_3}$$

Making Classical (Threshold) Signatures Post-Quantum for Single Use on a Public Ledger

A 100

В

A 100

B

A 100

В

A 100

B

 A, sk_A, pk_A 100

 $\sigma \leftarrow \mathsf{Sign}(sk, tx)$

 A, sk_A, pk_A 100

 $\sigma \leftarrow \mathsf{Sign}(sk, tx)$

 B, pk_B

 A, sk_A, pk_A 100

 $\sigma \leftarrow \mathsf{Sign}(sk, tx)$

 B, pk_B

 A, sk_A, pk_A 100

 $\sigma \leftarrow \text{Sign}(sk, tx)$

 B, pk_B

 A, sk_A, pk_A 100

 $\sigma \leftarrow \text{Sign}(sk, tx)$

 B, pk_B

A, sk_A, pk_A
100\$

 $\sigma \leftarrow \text{Sign}(sk, tx)$

 B, pk_B

Verify(σ , pk, tx)

2\$

Making Classical (Threshold) Signatures Post-Quantum for Single Use on a Public Ledger

Quantum Computers

 A, sk_A, pk_A 100

 $\sigma \leftarrow \text{Sign}(sk, tx)$

 B, pk_B

sk

One-way Hash Functions

One-way Hash Functions

Quantum Computers

Making Classical (Threshold) Signatures Post-Quantum for Single Use on a Public Ledger

Motivation

Public Key Cryptography

Public Key Cryptography

Quantum Computers

Quantum Computers

Digital Signatures

Quantum Computers

- Post-Quantum Signatures (NIST): secure, not yet widely deployed
- Hiding the public key: one time secure, ready to use with classical algorithms

P2PKH

P2PKH hides the public key behind a hash → Generalised HashedPK transform

```
\begin{array}{|l|l|l|}\hline & \mathsf{HashedPK\text{-}KeyGen}(\lambda) & \mathsf{HashedPK\text{-}Sign}(\tilde{\mathsf{sk}},\mathsf{msg}) \, \mathsf{HashedPK\text{-}Verify}(\tilde{\sigma},\mathsf{pk}_{\mathcal{H}},\mathsf{msg}) \\ \hline 1: & (\mathsf{pk},\mathsf{sk}) \leftarrow \$ \, \mathsf{KeyGen}_{\Sigma}(\lambda) & 1: & (\mathsf{sk},\mathsf{pk}) \leftarrow \tilde{\mathsf{sk}} & 1: & (\sigma,\mathsf{pk}) \leftarrow \tilde{\sigma} \\ 2: & \mathsf{pk}_{\mathcal{H}} \leftarrow H(\mathsf{pk}) & 2: & \sigma \leftarrow \mathsf{Sign}_{\Sigma}(\mathsf{sk},\mathsf{msg}) & 2: & \mathbf{if} \, \mathsf{pk}_{\mathcal{H}} = H(\mathsf{pk}): \\ 3: & \tilde{\mathsf{sk}} \leftarrow (\mathsf{sk},\mathsf{pk}) & 3: & \tilde{\sigma} \leftarrow (\sigma,\mathsf{pk}) & \mathbf{return} \, \mathsf{Verify}_{\Sigma}(\sigma,\mathsf{pk},\mathsf{msg}) \\ 4: & \mathbf{return} \, (\tilde{\mathsf{sk}},\mathsf{pk}_{\mathcal{H}}) & 4: & \mathbf{return} \, \tilde{\sigma} & 3: & \mathbf{return} \, 0 \\ \hline \end{array}
```


 $\Sigma = (\text{KeyGen}_{\Sigma}, \text{Sign}_{\Sigma}, \text{Verify}_{\Sigma})$ with additive public key domain

+ hash function H

Generic Transform


```
\Sigma = (\text{KeyGen}_{\Sigma}, \text{Sign}_{\Sigma}, \text{Verify}_{\Sigma}) with additive public key domain
```

+ hash function H

Generic Transform

Signature scheme with hidden public key

$HiddenPK-KeyGen(\lambda)$

- $1: (\mathsf{sk}, \mathsf{pk}) \leftarrow \mathsf{\$} \mathsf{KeyGen}_{\Sigma}(\lambda)$
- $2: \quad \rho \leftarrow \mathcal{D}$
- $3: \tilde{\mathsf{sk}} \leftarrow (\mathsf{sk}, \rho)$
- 4: $\tilde{\mathsf{pk}} \leftarrow (H(\rho), \mathsf{pk} + \rho)$
- 5: return (\tilde{sk}, \tilde{pk})


```
\Sigma = (\text{KeyGen}_{\Sigma}, \text{Sign}_{\Sigma}, \text{Verify}_{\Sigma}) with additive public key domain
```

+ hash function H

Generic Transform

```
\mathsf{HiddenPK}	ext{-}\mathsf{KeyGen}(\lambda)
```

- $1: (\mathsf{sk}, \mathsf{pk}) \leftarrow \mathsf{\$} \, \mathsf{KeyGen}_{\varSigma}(\lambda)$
- $2: \rho \leftarrow \mathcal{D}$
- $3: \tilde{\mathsf{sk}} \leftarrow (\mathsf{sk}, \rho)$
- 4: $\tilde{\mathsf{pk}} \leftarrow (H(\rho), \mathsf{pk} + \rho)$
- 5: return (sk, pk)


```
\Sigma = (\text{KeyGen}_{\Sigma}, \text{Sign}_{\Sigma}, \text{Verify}_{\Sigma}) with additive public key domain
```

+ hash function H

Generic Transform

 $\Sigma = (\text{KeyGen}_{\Sigma}, \text{Sign}_{\Sigma}, \text{Verify}_{\Sigma})$ with additive public key domain

+ hash function H

Generic Transform

$HiddenPK\text{-KeyGen}(\lambda)$		$HiddenPK\text{-}Sign(\tilde{sk},msg)$		$HiddenPK-Verify(\tilde{\sigma},\tilde{pk},msg)$	
1 :	$(sk,pk) \leftarrow\!$	1:	$(sk, ho) \leftarrow \tilde{sk}$	1:	$(\sigma, \rho) \leftarrow \tilde{\sigma}$
2 3	$ ho \leftarrow \hspace{-0.1cm} * \mathcal{D}$	2:	$\sigma \leftarrow Sign_{\varSigma}(sk,msg)$	2:	$(\tilde{pk}_1,\tilde{pk}_2) \leftarrow \tilde{pk}$
3 3	$\tilde{sk} \leftarrow (sk, \rho)$	3:	$\tilde{\sigma} \leftarrow (\sigma, \rho)$	3:	$\mathbf{if}H(\rho)=\tilde{pk}_1$
4:	$\tilde{pk} \leftarrow (H(\rho), pk + \rho)$	4:	${f return} \; ilde{\sigma}$	4:	$pk = \tilde{pk}_2 - \rho$
5 3	\mathbf{return} (\tilde{sk}, \tilde{pk})			5:	\mathbf{return} $Verify_{\varSigma}(\sigma,pk,msg)$
				6:	return 0

 $\Sigma = (\text{KeyGen}_{\Sigma}, \text{Sign}_{\Sigma}, \text{Verify}_{\Sigma})$ with additive public key domain

+ hash function H

Generic Transform

$HiddenPK\text{-KeyGen}(\lambda)$		Hido	$denPK-Sign(\tilde{sk}, msg)$	$HiddenPK-Verify(\tilde{\sigma},\tilde{pk},msg)$		
1:	$(sk,pk) \leftarrow \!$	1:	$(sk, ho) \leftarrow \tilde{sk}$	1:	$(\sigma, \rho) \leftarrow \tilde{\sigma}$	
2:	$ ho \leftarrow \!\!\!\! * \mathcal{D}$	2:	$\sigma \leftarrow Sign_{\varSigma}(sk,msg)$	2:	$(\tilde{pk}_1,\tilde{pk}_2) \leftarrow \tilde{pk}$	
3:	$\tilde{sk} \leftarrow (sk, \rho)$	3:	$\tilde{\sigma} \leftarrow (\sigma, \rho)$	3:	$\mathbf{if} \; H(\rho) = \tilde{pk}_1$	
4:	$\tilde{pk} \leftarrow (H(\rho), pk + \rho)$	4:	${f return} ilde{\sigma}$	4:	$pk = \tilde{pk}_2 - \rho$	
5:	$return (\tilde{sk}, \tilde{pk})$			5 :	$\mathbf{return} \ Verify_{\varSigma}(\sigma,pk,msg)$	
				6:	return 0	

Problem Front Running

 $\tilde{\mathsf{pk}}: (H(\rho), \mathsf{pk} + \rho)$ ₃₀

EPFL LASEC

EPFL LASEC

• Formal study of hiding a public key in a public ledger setting.

- Formal study of hiding a public key in a public ledger setting.
- HiddenPK is easier to extend to threshold setting compared to P2PKH.

- Formal study of hiding a public key in a public ledger setting.
- HiddenPK is easier to extend to threshold setting compared to P2PKH.
- Practical instantiations require improvement in DDoS protection & miner motivation.

Thanks!

