DS 5 : Chimie & Transferts thermiques & Électrostatique Éléments de correction

N°	Elts de rép.	Pts	Note
00-00	Titre de l'exo	0	0
0	éléments de réponse	0	0

01-09	Production de chaux vive		
1	$\Delta_r H^{\circ}(298) = \Delta_f H^{\circ}(CO_2) + \Delta_f H^{\circ}(CaO) - \Delta_f H^{\circ}(CaCO_3) =$	1	
	-393, 5 - 635, 1 + 1207 = 178, 4 kJ/mol		
	la réaction est endothermique		
2	On note $D = 9,38.10^3 \text{ m}^3/\text{h}$ le débit volumique	1	
	$\frac{dn(gaz)}{dt} = \frac{D}{V_m(750K)} = 1,53.10^5 \text{ mol/h}$		
	$\frac{-dt}{dt} = \frac{V_m(750K)}{V_m(750K)} = 1,33.10$ mol/n		
	$\frac{dn(CO_2)}{dt} = 0.64 \frac{dn(gaz)}{dt} = 9.76.10^4 \text{ mol/h}$		
	$\frac{dn(CaO)}{dn(CO_2)} = \frac{dn(CO_2)}{dn(CO_2)}$		
	$\frac{dt}{dm(CaO)} \frac{dt}{dn(CO_0)}$		
3	$\frac{dm(CdO)}{dt} = M(CaO)\frac{dm(CO2)}{dt} = 5476 \text{ kg/h}$	1	
	$\frac{dn(CO_2)}{dt} = 0,64 \frac{dn(gaz)}{dt} = 9,76.10^4 \text{ mol/h}$ $\frac{dn(CaO)}{dt} = \frac{dn(CO_2)}{dt}$ $\frac{dm(CaO)}{dt} = M(CaO) \frac{dn(CO_2)}{dt} = 5476 \text{ kg/h}$ $\frac{dm(CO_2)}{dt} = M(CO_2) \frac{dn(CO_2)}{dt} = 4294 \text{ kg/h}$ $\frac{dn(air)}{dt} = 5,54.10^4 \text{ mol/h}$ $\frac{dn(air)}{dt} = 5,54.10^4 \text{ mol/h}$		
4	$\frac{dn(\overrightarrow{air})}{dt} = 5,54.10^4 \text{ mol/h}$	1	
	$\frac{dm(air)}{dt} = 1607 \text{ kg/h}$		
5	à l'état initial il y a $m_1 = 10$ t de CaCO ₃ et $m_{air} = 1607$ kg d'air	1	
	à $T_1 = 298 \text{ K}$		
	à l'état final il a $m_1 = 10$ t de CaCO ₃ et $m_{air} = 1607$ kg d'air à		
	$T_2 = 1100 \text{ K}$		
	$Q_1 = \frac{(m_1 c(CaCO_3) + mairc(air))(T_2 - T_1)}{\eta}$ avec η l'efficacité,		
	on trouve $Q_1 = 1,97.10^7 \text{ kJ/h}$		

6	$Q_2 = \dot{\xi}_f \Delta_r H^\circ = \frac{dn(CO_2)}{dt} \Delta_r H^\circ = 1,74.10^7 \text{ kJ/h}$	1	
7	$Q_{TOT} = Q_1 + Q_2 = 3,71.10^7 \text{ kJ/h}$	1	
8	Pour avoir une combustion complète (pas de production de mo-	1	
	noxyde de carbone)		
9	$Q_{TOT} = -\frac{m(CH_4)}{dt} \Delta_r H^{\circ} \text{ donc } \frac{m(CH_4)}{dt} = -\frac{Q_{TOT}}{\Delta_r H^{\circ}} = 4,62.10^4$	1	
	mol/h		
	$\frac{V(CH_4)}{dt} = V_m(750) \frac{m(CH_4)}{dt} = 2841 \text{ m}^3/\text{h}$		
	$\int_{-\infty}^{\infty} dt = \int_{-\infty}^{\infty} dt = \int_{-\infty}^{\infty} dt = \int_{-\infty}^{\infty} dt$		
	La production totale de CO ₂ est issue des deux réactions		
	$\frac{dn(\tilde{C}O_2)}{dt}_{tot} = \frac{dn(CO_2)}{dt}_{CH_4} + \frac{dn(CO_2)}{dt}_{CaO} = 14,38.10^4 \text{ mol/h}$		
	dt tot dt CH_4 dt CaO		
	$\frac{dm(CO_2)}{dt}_{tot} = M(CO_2) \frac{dn(CO_2)}{dt}_{tot} = 6327 \text{ kg/h}$		
	dt tot dt tot dt tot		

	Onde thermique		
10	Il y a une invariance par translation selon \vec{e}_x et \vec{e}_y du solide et de la condition au limite, donc tout le problème est invariant selon ces deux translations, donc la température ne dépend pas de x et de y .	1	
11	La loi de Fourier est $\vec{j} = -\lambda \overline{\text{grad}}(T)$ avec \vec{j} , le vecteur densité de courant thermique, c'est un flux surfacique de transfert thermique, il s'exprime en W.m ⁻² avec T la température, s'exprime en K avec $\overline{\text{grad}}$ un opérateur vectoriel qui à un champ scalaire s associe le champ vectoriel $\frac{\partial s}{\partial x}\vec{e}_x + \frac{\partial s}{\partial y}\vec{e}_y + \frac{\partial s}{\partial z}\vec{e}_z$, il s'exprime donc en m ⁻¹ avec λ la conductivité thermique qui s'exprime en W.m ⁻¹ .K ⁻¹	1	
12	$\begin{split} \frac{\partial \underline{\theta}}{\partial t} &= D \frac{\partial^2 \underline{\theta}}{\partial z^2} \\ \frac{\partial}{\partial t} (f(z) e^{j\omega t}) &= D \frac{\partial^2}{\partial z^2} (f(z) e^{j\omega t}) \\ j\omega f(z) e^{j\omega t} &= D \frac{d^2 f}{dz^2} e^{j\omega t} \\ \frac{D}{j\omega} \frac{d^2 f}{dz^2} - f(z) &= 0 \end{split}$	1	

13 on note k tel que $k^2 = \frac{j\omega}{D}$, on a alors $f(z) = A \exp(kz) + B \exp(-kz)$. Si on choisit k tel que $\Re(k) > 0$, le module de $\exp(kz)$ tend vers $+\infty$ quand z tend $+\infty$, or la température est finie pour $z \to +\infty$ donc $A = 0$ 14 on a $f(z) = B \exp(-kz)$ avec $k = \sqrt{\frac{\omega}{2D}}(1+j)$ $\frac{\theta}{\theta} = f(z)e^{j\omega t} = B \exp(-kz)e^{j\omega t}$ $\frac{\theta}{\theta} = B \exp(-\sqrt{\frac{\omega}{2D}}(1+j)z + j\omega t)$ $\frac{\theta}{\theta} = B \exp(-\sqrt{\frac{\omega}{2D}}(2+j\omega t) + j\omega t)$ $\frac{\theta}{\theta} = B \exp(-\sqrt{\frac{\omega}{2D}}(2+j\omega t)) \exp(j(\omega t - z/\delta))$ avec $\alpha = B$ d'après la condition au limite en $z = 0$ et $\delta = \sqrt{\frac{2D}{\omega}}$ 15 $T(z,t) = T_0 + \theta = T_0 + \alpha \exp(-z/\delta) \cos(\omega t - z/\delta)$ Pour l'interprétation on peut tracer $T(z,t)$, on remarque que la température tend vers T_0 quand $z \to +\infty$ donc les variations de températures s'estompent avec la profondeur. Le terme $\exp(-z/\delta)$ montre que l'amplitude décroit exponentiellement avec la profondeur sur une distance typique de δ . Le terme $\cos(\omega t - z/\delta)$ montre que les variations se propagent comme une onde dans le sol avec une longueur d'onde de $2\pi\delta$. 16 on cherche L_{10} telle que $\alpha \exp(-L_{10}/\delta) = \frac{\alpha}{10}$ donc $L_{10} = \ln(10)\delta$ 1 pour une variation quotidienne $T = 24 \times 3600$ s donc $L_{10} = 20$ cm pour une variation annuelle $T = 365 \times 24 \times 3600$ s donc $L_{10} = 3.7$ m Enfouir une canalisation à 4 m de profondeur est couteux en terme d'infrastructure à déployer, mais on peut considérer en France que les moyennes de température sur une journée complète (journée + nuit) sont suffisamment tempérées (pas de gel, surchauffe,) pour une canalisation d'eau, de gaz, on peut donc enfouir les canalisation entre 20 cm et 1 m.				1
Si on choisit k tel que $\Re(k) > 0$, le module de $\exp(kz)$ tend vers $+\infty$ quand z tend $+\infty$, or la température est finie pour $z \to +\infty$ donc $A = 0$ 14 on a $f(z) = B \exp(-kz)$ avec $k = \sqrt{\frac{\omega}{2D}}(1+j)$ 1 $\frac{\theta}{\theta} = f(z)e^{j\omega t} = B \exp(-kz)e^{j\omega t}$ $\frac{\theta}{\theta} = B \exp(-kz + j\omega t)$ $\frac{\theta}{\theta} = B \exp(-kz + j\omega t)$ $\frac{\theta}{\theta} = B \exp(-\sqrt{\frac{\omega}{2D}}(1+j)z + j\omega t)$ $\frac{\theta}{\theta} = B \exp(-\sqrt{\frac{\omega}{2D}}z) \exp(j(\omega t - \sqrt{\frac{\omega}{2D}}z))$ $\frac{\theta}{\theta} = \alpha \exp(-z/\delta) \exp(j(\omega t - z/\delta))$ avec $\alpha = B$ d'après la condition au limite en $z = 0$ et $\delta = \sqrt{\frac{2D}{\omega}}$ 15 $T(z,t) = T_0 + \theta = T_0 + \alpha \exp(-z/\delta) \cos(\omega t - z/\delta)$ Pour l'interprétation on peut tracer $T(z,t)$, on remarque que la température tend vers T_0 quand $z \to +\infty$ donc les variations de températures s'estompent avec la profondeur. Le terme $\exp(-z/\delta)$ montre que l'amplitude décroit exponentiellement avec la profondeur sur une distance typique de δ . Le terme $\cos(\omega t - z/\delta)$ montre que les variations e propagent comme une onde dans le sol avec une longueur d'onde de $2\pi\delta$. 16 on cherche L_{10} telle que $\alpha \exp(-L_{10}/\delta) = \frac{\alpha}{10}$ donc $L_{10} = \ln(10)\delta$ 1 17 $L_{10} = \ln(10)\delta = \ln(10)\sqrt{\frac{2D}{\omega}} = \ln(10)\sqrt{\frac{DT}{\pi}}$ 1 pour une variation quotidienne $T = 24 \times 3600$ s donc $L_{10} = 20$ cm pour une variation annuelle $T = 365 \times 24 \times 3600$ s donc $L_{10} = 3.7$ m Enfouir une canalisation à 4 m de profondeur est couteux en terme d'infrastructure à déployer, mais on peut considérer en France que les moyennes de températures sur une journée complète (journée + nuit) sont suffisamment tempérées (pas de gel, surchauffe,) pour une canalisation d'eau, de gaz, on peut donc enfouir les	13		1	
$+\infty \text{ quand } z \text{ tend } +\infty, \text{ or la température est finie pour } z \to +\infty \\ \text{donc } A = 0$ $14 \qquad \text{on a } f(z) = B \exp(-kz) \text{ avec } k = \sqrt{\frac{\omega}{2D}}(1+j) \\ \frac{\theta}{\theta} = f(z)e^{j\omega t} = B \exp(-kz)e^{j\omega t} \\ \frac{\theta}{\theta} = B \exp(-kz+j\omega t) \\ \frac{\theta}{\theta} = B \exp(-\sqrt{\frac{\omega}{2D}}(1+j)z+j\omega t) \\ \frac{\theta}{\theta} = B \exp(-\sqrt{\frac{\omega}{2D}}z) \exp(j(\omega t - \sqrt{\frac{\omega}{2D}}z)) \\ \frac{\theta}{\theta} = \alpha \exp(-z/\delta) \exp(j(\omega t - z/\delta)) \text{ avec } \alpha = B \text{ d'après la condition au limite en } z = 0 \text{ et } \delta = \sqrt{\frac{2D}{\omega}} \\ 15 \qquad T(z,t) = T_0 + \theta = T_0 + \alpha \exp(-z/\delta) \cos(\omega t - z/\delta) \\ Pour l'interprétation on peut tracer T(z,t), on remarque que la température s'estompent avec la profondeur. Le terme \exp(-z/\delta) montre que l'amplitude décroit exponentiellement avec la profondeur sur une distance typique de \delta. Le terme \cos(\omega t - z/\delta) montre que les variations se propagent comme une onde dans le sol avec une longueur d'onde de 2\pi\delta. 16 \qquad \text{on cherche } L_{10} \text{ telle que } \alpha \exp(-L_{10}/\delta) = \frac{\alpha}{10} \text{ donc } L_{10} = \ln(10)\delta 1 \qquad L_{10} = \ln(10)\delta = \ln(10)\sqrt{\frac{2D}{\omega}} = \ln(10)\sqrt{\frac{DT}{\pi}} \text{pour une variation quotidienne } T = 24 \times 3600 \text{ s donc } L_{10} = 20 \text{ cm} \text{pour une variation annuelle } T = 365 \times 24 \times 3600 \text{ s donc } L_{10} = 3,7 \text{ m} Enfouir une canalisation à 4 m de profondeur est couteux en terme d'infrastructure à déployer, mais on peut considérer en France que les moyennes de température sur une journée complète (journée + nuit) sont suffisamment tempérées (pas de gel, surchauffe,) pour une canalisation d'eau, de gaz, on peut donc enfouir les$		- \ /		
14 on a $f(z) = B \exp(-kz)$ avec $k = \sqrt{\frac{\omega}{2D}}(1+j)$ 1 $\frac{\theta}{\theta} = f(z)e^{j\omega t} = B \exp(-kz)e^{j\omega t}$ $\frac{\theta}{\theta} = B \exp(-kz + j\omega t)$ $\frac{\theta}{\theta} = B \exp(-kz + j\omega t)$ $\frac{\theta}{\theta} = B \exp(-\sqrt{\frac{\omega}{2D}}(1+j)z + j\omega t)$ $\frac{\theta}{\theta} = B \exp(-\sqrt{\frac{\omega}{2D}}(1+j)z + j\omega t)$ $\frac{\theta}{\theta} = \alpha \exp(-z/\delta) \exp(j(\omega t - z/\delta)) \text{ avec } \alpha = B \text{ d'après la condition}$ au limite en $z = 0$ et $\delta = \sqrt{\frac{2D}{\omega}}$ 15 $T(z,t) = T_0 + \theta = T_0 + \alpha \exp(-z/\delta) \cos(\omega t - z/\delta)$ Pour l'interprétation on peut tracer $T(z,t)$, on remarque que la température tend vers T_0 quand $z \to +\infty$ donc les variations de températures s'estompent avec la profondeur. Le terme $\exp(-z/\delta)$ montre que l'amplitude décroit exponentiellement avec la profondeur sur une distance typique de δ . Le terme $\cos(\omega t - z/\delta)$ montre que les variation se propagent comme une onde dans le sol avec une longueur d'onde de $2\pi\delta$. 16 on cherche L_{10} telle que $\alpha \exp(-L_{10}/\delta) = \frac{\alpha}{10}$ donc $L_{10} = \ln(10)\delta$ 1 17 $L_{10} = \ln(10)\delta = \ln(10)\sqrt{\frac{2D}{\omega}} = \ln(10)\sqrt{\frac{DT}{\pi}}$ pour une variation quotidienne $T = 24 \times 3600$ s donc $L_{10} = 20$ cm pour une variation annuelle $T = 365 \times 24 \times 3600$ s donc $L_{10} = 3,7$ m Enfouir une canalisation à 4 m de profondeur est couteux en terme d'infrastructure à déployer, mais on peut considérer en France que les moyennes de température sur une journée complète (journée + nuit) sont suffisamment tempérées (pas de gel, surchauffe,) pour une canalisation d'eau, de gaz, on peut donc enfouir les		$+\infty$ quand z tend $+\infty$, or la température est finie pour $z \to +\infty$		
$\frac{\theta}{\theta} = f(z)e^{j\omega t} = B \exp(-kz)e^{j\omega t}$ $\frac{\theta}{\theta} = B \exp(-kz + j\omega t)$ $\frac{\theta}{\theta} = B \exp(-\sqrt{\frac{\omega}{2D}}(1+j)z + j\omega t)$ $\frac{\theta}{\theta} = B \exp(-\sqrt{\frac{\omega}{2D}}z) \exp(j(\omega t - \sqrt{\frac{\omega}{2D}}z))$ $\frac{\theta}{\theta} = \alpha \exp(-z/\delta) \exp(j(\omega t - z/\delta)) \text{ avec } \alpha = B \text{ d'après la condition}$ au limite en $z = 0$ et $\delta = \sqrt{\frac{2D}{\omega}}$ $15 \qquad T(z,t) = T_0 + \theta = T_0 + \alpha \exp(-z/\delta) \cos(\omega t - z/\delta)$ Pour l'interprétation on peut tracer $T(z,t)$, on remarque que la température tend vers T_0 quand $z \to +\infty$ donc les variations de températures s'estompent avec la profondeur. Le terme $\exp(-z/\delta)$ montre que l'amplitude décroit exponentiellement avec la profondeur sur une distance typique de δ . Le terme $\cos(\omega t - z/\delta)$ montre que les variation se propagent comme une onde dans le sol avec une longueur d'onde de $2\pi\delta$. $16 \qquad \text{on cherche } L_{10} \text{ telle que } \alpha \exp(-L_{10}/\delta) = \frac{\alpha}{10} \text{ donc } L_{10} = \ln(10)\delta$ $1 \qquad L_{10} = \ln(10)\delta = \ln(10)\sqrt{\frac{2D}{\omega}} = \ln(10)\sqrt{\frac{DT}{\pi}}$ pour une variation quotidienne $T = 24 \times 3600$ s donc $L_{10} = 20$ cm pour une variation annuelle $T = 365 \times 24 \times 3600$ s donc $L_{10} = 3$, T m Enfouir une canalisation à 4 m de profondeur est couteux en terme d'infrastructure à déployer, mais on peut considérer en France que les moyennes de température sur une journée complète (journée + nuit) sont suffisamment tempérées (pas de gel, surchauffe,) pour une canalisation d'eau, de gaz, on peut donc enfouir les				
$\frac{\theta}{\theta} = B \exp(-kz + j\omega t)$ $\frac{\theta}{\theta} = B \exp(-\sqrt{\frac{\omega}{2D}}(1+j)z + j\omega t)$ $\frac{\theta}{\theta} = B \exp(-\sqrt{\frac{\omega}{2D}}z) \exp(j(\omega t - \sqrt{\frac{\omega}{2D}}z))$ $\frac{\theta}{\theta} = \alpha \exp(-z/\delta) \exp(j(\omega t - z/\delta)) \text{ avec } \alpha = B \text{ d'après la condition}$ au limite en $z = 0$ et $\delta = \sqrt{\frac{2D}{\omega}}$ $15 \qquad T(z,t) = T_0 + \theta = T_0 + \alpha \exp(-z/\delta) \cos(\omega t - z/\delta)$ Pour l'interprétation on peut tracer $T(z,t)$, on remarque que la température tend vers T_0 quand $z \to +\infty$ donc les variations de températures s'estompent avec la profondeur. Le terme $\exp(-z/\delta)$ montre que l'amplitude décroit exponentiellement avec la profondeur sur une distance typique de δ . Le terme $\cos(\omega t - z/\delta)$ montre que les variation se propagent comme une onde dans le sol avec une longueur d'onde de $2\pi\delta$. $16 \qquad \text{on cherche } L_{10} \text{ telle que } \alpha \exp(-L_{10}/\delta) = \frac{\alpha}{10} \text{ donc } L_{10} = \ln(10)\delta$ 1 $17 \qquad L_{10} = \ln(10)\delta = \ln(10)\sqrt{\frac{2D}{\omega}} = \ln(10)\sqrt{\frac{DT}{\pi}}$ pour une variation quotidienne $T = 24 \times 3600 \text{ s}$ donc $L_{10} = 20 \text{ cm}$ pour une variation annuelle $T = 365 \times 24 \times 3600 \text{ s}$ donc $L_{10} = 3, 7 \text{ m}$ Enfouir une canalisation à 4 m de profondeur est couteux en terme d'infrastructure à déployer, mais on peut considérer en France que les moyennes de température sur une journée complète (journée + nuit) sont suffisamment tempérées (pas de gel, surchauffe,) pour une canalisation d'eau, de gaz, on peut donc enfouir les	14	on a $f(z) = B \exp(-kz)$ avec $k = \sqrt{\frac{\omega}{2D}}(1+j)$	1	
$\frac{\theta}{\theta} = B \exp(-\sqrt{\frac{\omega}{2D}}z) \exp(j(\omega t - \sqrt{\frac{\omega}{2D}}z))$ $\frac{\theta}{\theta} = \alpha \exp(-z/\delta) \exp(j(\omega t - z/\delta)) \text{ avec } \alpha = B \text{ d'après la condition}$ au limite en $z = 0$ et $\delta = \sqrt{\frac{2D}{\omega}}$ $15 \qquad T(z,t) = T_0 + \theta = T_0 + \alpha \exp(-z/\delta) \cos(\omega t - z/\delta)$ Pour l'interprétation on peut tracer $T(z,t)$, on remarque que la température tend vers T_0 quand $z \to +\infty$ donc les variations de températures s'estompent avec la profondeur. Le terme $\exp(-z/\delta)$ montre que l'amplitude décroit exponentiellement avec la profondeur sur une distance typique de δ . Le terme $\cos(\omega t - z/\delta)$ montre que les variation se propagent comme une onde dans le sol avec une longueur d'onde de $2\pi\delta$. $16 \qquad \text{on cherche } L_{10} \text{ telle que } \alpha \exp(-L_{10}/\delta) = \frac{\alpha}{10} \text{ donc } L_{10} = \ln(10)\delta$ 1 $17 \qquad L_{10} = \ln(10)\delta = \ln(10)\sqrt{\frac{2D}{\omega}} = \ln(10)\sqrt{\frac{DT}{\pi}}$ pour une variation quotidienne $T = 24 \times 3600$ s donc $L_{10} = 20$ cm pour une variation annuelle $T = 365 \times 24 \times 3600$ s donc $L_{10} = 3,7$ m Enfouir une canalisation à 4 m de profondeur est couteux en terme d'infrastructure à déployer, mais on peut considérer en France que les moyennes de température sur une journée complète (journée + nuit) sont suffisamment tempérées (pas de gel, surchauffe,) pour une canalisation d'eau, de gaz, on peut donc enfouir les				
$\frac{\theta}{a} = \alpha \exp(-z/\delta) \exp(j(\omega t - z/\delta)) \text{ avec } \alpha = B \text{ d'après la condition}$ au limite en $z = 0$ et $\delta = \sqrt{\frac{2D}{\omega}}$ $T(z,t) = T_0 + \theta = T_0 + \alpha \exp(-z/\delta) \cos(\omega t - z/\delta)$ Pour l'interprétation on peut tracer $T(z,t)$, on remarque que la température tend vers T_0 quand $z \to +\infty$ donc les variations de températures s'estompent avec la profondeur. Le terme $\exp(-z/\delta)$ montre que l'amplitude décroit exponentiellement avec la profondeur sur une distance typique de δ . Le terme $\cos(\omega t - z/\delta)$ montre que les variation se propagent comme une onde dans le sol avec une longueur d'onde de $2\pi\delta$. $16 \qquad \text{on cherche } L_{10} \text{ telle que } \alpha \exp(-L_{10}/\delta) = \frac{\alpha}{10} \text{ donc } L_{10} = \ln(10)\delta $ 1 $17 \qquad L_{10} = \ln(10)\delta = \ln(10)\sqrt{\frac{2D}{\omega}} = \ln(10)\sqrt{\frac{DT}{\pi}}$ pour une variation quotidienne $T = 24 \times 3600 \text{ s}$ donc $L_{10} = 20 \text{ cm}$ pour une variation annuelle $T = 365 \times 24 \times 3600 \text{ s}$ donc $L_{10} = 3,7 \text{ m}$ Enfouir une canalisation à 4 m de profondeur est couteux en terme d'infrastructure à déployer, mais on peut considérer en France que les moyennes de température sur une journée complète (journée + nuit) sont suffisamment tempérées (pas de gel, surchauffe,) pour une canalisation d'eau, de gaz, on peut donc enfouir les		$\underline{\theta} = B \exp(-\sqrt{\frac{\omega}{2D}}(1+j)z + j\omega t)$		
$\frac{\theta}{a} = \alpha \exp(-z/\delta) \exp(j(\omega t - z/\delta)) \text{ avec } \alpha = B \text{ d'après la condition}$ au limite en $z = 0$ et $\delta = \sqrt{\frac{2D}{\omega}}$ $T(z,t) = T_0 + \theta = T_0 + \alpha \exp(-z/\delta) \cos(\omega t - z/\delta)$ Pour l'interprétation on peut tracer $T(z,t)$, on remarque que la température tend vers T_0 quand $z \to +\infty$ donc les variations de températures s'estompent avec la profondeur. Le terme $\exp(-z/\delta)$ montre que l'amplitude décroit exponentiellement avec la profondeur sur une distance typique de δ . Le terme $\cos(\omega t - z/\delta)$ montre que les variation se propagent comme une onde dans le sol avec une longueur d'onde de $2\pi\delta$. $16 \qquad \text{on cherche } L_{10} \text{ telle que } \alpha \exp(-L_{10}/\delta) = \frac{\alpha}{10} \text{ donc } L_{10} = \ln(10)\delta $ 1 $17 \qquad L_{10} = \ln(10)\delta = \ln(10)\sqrt{\frac{2D}{\omega}} = \ln(10)\sqrt{\frac{DT}{\pi}}$ pour une variation quotidienne $T = 24 \times 3600 \text{ s}$ donc $L_{10} = 20 \text{ cm}$ pour une variation annuelle $T = 365 \times 24 \times 3600 \text{ s}$ donc $L_{10} = 3,7 \text{ m}$ Enfouir une canalisation à 4 m de profondeur est couteux en terme d'infrastructure à déployer, mais on peut considérer en France que les moyennes de température sur une journée complète (journée + nuit) sont suffisamment tempérées (pas de gel, surchauffe,) pour une canalisation d'eau, de gaz, on peut donc enfouir les		$\underline{\theta} = B \exp(-\sqrt{\frac{\omega}{2D}}z) \exp(j(\omega t - \sqrt{\frac{\omega}{2D}}z))$		
15		$\underline{\theta} = \alpha \exp(-z/\delta) \exp(j(\omega t - z/\delta))$ avec $\alpha = B$ d'après la condition		
Pour l'interprétation on peut tracer $T(z,t)$, on remarque que la température tend vers T_0 quand $z \to +\infty$ donc les variations de températures s'estompent avec la profondeur. Le terme $\exp(-z/\delta)$ montre que l'amplitude décroit exponentiellement avec la profondeur sur une distance typique de δ . Le terme $\cos(\omega t - z/\delta)$ montre que les variation se propagent comme une onde dans le sol avec une longueur d'onde de $2\pi\delta$. 16 on cherche L_{10} telle que $\alpha \exp(-L_{10}/\delta) = \frac{\alpha}{10}$ donc $L_{10} = \ln(10)\delta$ 1 17 $L_{10} = \ln(10)\delta = \ln(10)\sqrt{\frac{2D}{\omega}} = \ln(10)\sqrt{\frac{DT}{\pi}}$ 1 pour une variation quotidienne $T = 24 \times 3600$ s donc $L_{10} = 20$ cm pour une variation annuelle $T = 365 \times 24 \times 3600$ s donc $L_{10} = 3,7$ m Enfouir une canalisation à 4 m de profondeur est couteux en terme d'infrastructure à déployer, mais on peut considérer en France que les moyennes de température sur une journée complète (journée + nuit) sont suffisamment tempérées (pas de gel, surchauffe,) pour une canalisation d'eau, de gaz, on peut donc enfouir les		au limite en $z = 0$ et $\delta = \sqrt{\frac{2D}{\omega}}$		
températures s'estompent avec la profondeur. Le terme $\exp(-z/\delta)$ montre que l'amplitude décroit exponentiellement avec la profondeur sur une distance typique de δ . Le terme $\cos(\omega t - z/\delta)$ montre que les variation se propagent comme une onde dans le sol avec une longueur d'onde de $2\pi\delta$. 16 on cherche L_{10} telle que $\alpha \exp(-L_{10}/\delta) = \frac{\alpha}{10}$ donc $L_{10} = \ln(10)\delta$ 1 17 $L_{10} = \ln(10)\delta = \ln(10)\sqrt{\frac{2D}{\omega}} = \ln(10)\sqrt{\frac{DT}{\pi}}$ 1 pour une variation quotidienne $T = 24 \times 3600$ s donc $L_{10} = 20$ cm pour une variation annuelle $T = 365 \times 24 \times 3600$ s donc $L_{10} = 3,7$ m Enfouir une canalisation à 4 m de profondeur est couteux en terme d'infrastructure à déployer, mais on peut considérer en France que les moyennes de température sur une journée complète (journée + nuit) sont suffisamment tempérées (pas de gel, surchauffe,) pour une canalisation d'eau, de gaz, on peut donc enfouir les	15	Pour l'interprétation on peut tracer $T(z,t)$, on remarque que la	1	
lement avec la profondeur sur une distance typique de δ . Le terme $\cos(\omega t - z/\delta)$ montre que les variation se propagent comme une onde dans le sol avec une longueur d'onde de $2\pi\delta$. 16 on cherche L_{10} telle que $\alpha \exp(-L_{10}/\delta) = \frac{\alpha}{10}$ donc $L_{10} = \ln(10)\delta$ 1 17 $L_{10} = \ln(10)\delta = \ln(10)\sqrt{\frac{2D}{\omega}} = \ln(10)\sqrt{\frac{DT}{\pi}}$ 1 pour une variation quotidienne $T = 24 \times 3600$ s donc $L_{10} = 20$ cm pour une variation annuelle $T = 365 \times 24 \times 3600$ s donc $L_{10} = 3,7$ m Enfouir une canalisation à 4 m de profondeur est couteux en terme d'infrastructure à déployer, mais on peut considérer en France que les moyennes de température sur une journée complète (journée + nuit) sont suffisamment tempérées (pas de gel, surchauffe,) pour une canalisation d'eau, de gaz, on peut donc enfouir les		températures s'estompent avec la profondeur.		
comme une onde dans le sol avec une longueur d'onde de $2\pi\delta$. 16 on cherche L_{10} telle que $\alpha \exp(-L_{10}/\delta) = \frac{\alpha}{10}$ donc $L_{10} = \ln(10)\delta$ 1 17 $L_{10} = \ln(10)\delta = \ln(10)\sqrt{\frac{2D}{\omega}} = \ln(10)\sqrt{\frac{DT}{\pi}}$ 1 pour une variation quotidienne $T = 24 \times 3600$ s donc $L_{10} = 20$ cm pour une variation annuelle $T = 365 \times 24 \times 3600$ s donc $L_{10} = 3,7$ m Enfouir une canalisation à 4 m de profondeur est couteux en terme d'infrastructure à déployer, mais on peut considérer en France que les moyennes de température sur une journée complète (journée + nuit) sont suffisamment tempérées (pas de gel, surchauffe,) pour une canalisation d'eau, de gaz, on peut donc enfouir les		lement avec la profondeur sur une distance typique de δ .		
pour une variation quotidienne $T=24\times3600$ s donc $L_{10}=20$ cm pour une variation annuelle $T=365\times24\times3600$ s donc $L_{10}=3,7$ m Enfouir une canalisation à 4 m de profondeur est couteux en terme d'infrastructure à déployer, mais on peut considérer en France que les moyennes de température sur une journée complète (journée + nuit) sont suffisamment tempérées (pas de gel, surchauffe,) pour une canalisation d'eau, de gaz, on peut donc enfouir les				
pour une variation quotidienne $T=24\times3600$ s donc $L_{10}=20$ cm pour une variation annuelle $T=365\times24\times3600$ s donc $L_{10}=3,7$ m Enfouir une canalisation à 4 m de profondeur est couteux en terme d'infrastructure à déployer, mais on peut considérer en France que les moyennes de température sur une journée complète (journée + nuit) sont suffisamment tempérées (pas de gel, surchauffe,) pour une canalisation d'eau, de gaz, on peut donc enfouir les	16	on cherche L_{10} telle que $\alpha \exp(-L_{10}/\delta) = \frac{\alpha}{10}$ donc $L_{10} = \ln(10)\delta$	1	
pour une variation quotidienne $T=24\times3600$ s donc $L_{10}=20$ cm pour une variation annuelle $T=365\times24\times3600$ s donc $L_{10}=3,7$ m Enfouir une canalisation à 4 m de profondeur est couteux en terme d'infrastructure à déployer, mais on peut considérer en France que les moyennes de température sur une journée complète (journée + nuit) sont suffisamment tempérées (pas de gel, surchauffe,) pour une canalisation d'eau, de gaz, on peut donc enfouir les	17	$L_{10} = \ln(10)\delta = \ln(10)\sqrt{\frac{2D}{\omega}} = \ln(10)\sqrt{\frac{DT}{\pi}}$	1	
pour une variation annuelle $T = 365 \times 24 \times 3600$ s donc $L_{10} = 3,7$ m Enfouir une canalisation à 4 m de profondeur est couteux en terme d'infrastructure à déployer, mais on peut considérer en France que les moyennes de température sur une journée complète (journée + nuit) sont suffisamment tempérées (pas de gel, surchauffe,) pour une canalisation d'eau, de gaz, on peut donc enfouir les		pour une variation quotidienne $T = 24 \times 3600$ s donc $L_{10} = 20$		
Enfouir une canalisation à 4 m de profondeur est couteux en terme d'infrastructure à déployer, mais on peut considérer en France que les moyennes de température sur une journée complète (journée + nuit) sont suffisamment tempérées (pas de gel, surchauffe,) pour une canalisation d'eau, de gaz, on peut donc enfouir les		pour une variation annuelle $T = 365 \times 24 \times 3600$ s donc $L_{10} = 3,7$		
les moyennes de température sur une journée complète (journée + nuit) sont suffisamment tempérées (pas de gel, surchauffe,) pour une canalisation d'eau, de gaz, on peut donc enfouir les		Enfouir une canalisation à 4 m de profondeur est couteux en terme		
pour une canalisation d'eau, de gaz, on peut donc enfouir les		les moyennes de température sur une journée complète (journée		
canalisation entre 20 cm et 1 m.		pour une canalisation d'eau, de gaz, on peut donc enfouir les		
		canalisation entre 20 cm et 1 m.		

18	erreur d'énoncé à cette question il faut remplacer les T par des θ	1	
	on cherche Δt tel que $\cos(\omega(t+\Delta t)-L_{10}/\delta)=\cos(\omega t)$ donc		
	$\Delta t = \frac{L_{10}}{L_{10}}$		
	$\Delta t = \frac{L_{10}}{\omega \delta}$ $\Delta t = \frac{\ln(10)\delta}{\omega \delta}$ $\Delta t = \frac{\ln(10)T}{2\pi}$		
	$\frac{-\omega}{\ln(10)T}$		
	$\Delta t = \frac{\Delta t}{2\pi}$		
	pour les variations quotidiennes on a $\Delta t = 8\text{h}48\text{min}$, la canalisa-		
	tion est à température élevée pendant la nuit et à température		
	faible pendant la journée.		
	pour les variations annuelles on a $\Delta t = 47$ j17h, l'onde thermique		
	met 6 semaines à se propager dans le sol.		

	Étude thermique d'un objet torique		
19	On considère un cylindre entre r et r+dr, on a $dH = \delta Q_e(r)$ –	1	
	$\delta Q_s(r+dr)$		
	donc $dm(h(t+dt) - h(t)) = \phi(r)dt - \phi(r+dr)dt$		
	donc $\rho dV \frac{\partial \dot{h}}{\partial t} dt = j_Q(r) \times (2\pi ra) dt - j_Q(r + dr) \times (2\pi (r + dr)a) dt$		
	$\operatorname{donc} \rho(2\pi r a d r) \frac{\partial h}{\partial t} d t = -2\pi a \frac{\partial r j_Q}{\partial r} d r d t$		
	$\operatorname{donc} \rho c r \frac{\partial T}{\partial t} = -\frac{\partial (r j_Q)}{\partial r}$		
	$\operatorname{donc} \rho c r \frac{\partial T}{\partial t} = -\frac{\partial \left(r \left(-\lambda \frac{\partial T}{\partial r}\right)\right)}{\partial r}$ $\operatorname{donc} \frac{\rho c}{\lambda} r \frac{\partial T}{\partial t} = \frac{\partial \left(r \frac{\partial T}{\partial r}\right)}{\partial r}$ $\operatorname{donc} \xi = \frac{\rho c}{\lambda} \text{ et } \xi \text{ s'exprime en s.m}^{-2}$		
	$\operatorname{donc} \frac{\rho c}{\lambda} r \frac{\partial T}{\partial t} = \frac{\partial \left(r \frac{\partial T}{\partial r} \right)}{\partial r}$		
	donc $\xi = \frac{\rho c}{\lambda}$ et ξ s'exprime en s.m ⁻²		

20	On remplace $T(r,t)$ par son expression en fonction de ρ et η dans l'équation obtenue à la question précédente $\xi r \frac{\partial \rho \eta}{\partial t} = \frac{\partial \left(r \frac{\partial \rho \eta}{\partial r}\right)}{\partial r}$ or ρ ne dépend que de r et η ne dépend que de t donc $\xi r \rho \frac{\partial \eta}{\partial t} = \eta \frac{\partial \left(r \frac{\partial \rho}{\partial r}\right)}{\partial r}$ on peut mettre tout ce qui dépend de r d'un côté et tout ce qui dépend de t de l'autre pour avoir $\frac{\xi}{\eta} \frac{\partial \eta}{\partial t} = \frac{1}{r\rho} \frac{\partial \left(r \frac{\partial \rho}{\partial r}\right)}{\partial r} = \chi$ avec χ une constante car d'après le premier terme elle ne dépend pas de r , et d'après le second terme elle ne dépend pas de t .	1	
21	On a pour η l'équation différentielle suivante $\frac{\xi}{\eta} \frac{\partial \eta}{\partial t} = \chi$ donc $\frac{\partial \eta}{\partial t} - \frac{\chi}{\xi} \eta = 0$ donc $\eta = \eta(0) \exp\left(\frac{\chi}{\xi} t\right)$ la température dans le tore ne tends pas vers ∞ quand $t \to +\infty$ donc $\chi < 0$	1	
22	On a pour ρ l'équation différentielle suivante $\frac{1}{r\rho} \frac{\partial \left(r \frac{\partial \rho}{\partial r}\right)}{\partial r} = \chi$ $\frac{\partial \left(r \frac{\partial \rho}{\partial r}\right)}{\partial r} = \chi r \rho$ on remplace ρ par la série $\sum_{0}^{+\infty} \alpha_{n} r^{n}$ $\frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \left(\sum_{0}^{+\infty} \alpha_{n} r^{n}\right)\right) = \chi r \sum_{0}^{+\infty} \alpha_{n} r^{n}$ $\frac{\partial}{\partial r} \left(\sum_{0}^{+\infty} n \alpha_{n} r^{n}\right) = \sum_{0}^{+\infty} \chi \alpha_{n} r^{n+1}$ $\sum_{1}^{+\infty} n^{2} \alpha_{n} r^{n-1} = \sum_{0}^{+\infty} \chi \alpha_{n} r^{n+1}$ $\sum_{0}^{+\infty} (n+1)^{2} \alpha_{n+1} r^{n} = \sum_{1}^{+\infty} \chi \alpha_{n-1} r^{n}$ $\alpha_{1} + \sum_{1}^{+\infty} \left((n+1)^{2} \alpha_{n+1} - \chi \alpha_{n-1}\right) r^{n} = 0$ donc $\alpha_{1} = 0$ et $\alpha_{n+1} = \frac{\chi}{(n+1)^{2}} \alpha_{n-1}$ $donc \alpha_{2p+1} = 0$ et $\alpha_{2p} = \frac{\chi}{(2p)^{2}} \alpha_{2(p-1)} = \frac{\chi^{2}}{2^{4} (p(p-1))^{2}} \alpha_{2(p-2)} = \dots = \frac{\chi^{p}}{2^{2p} (p!)^{2}} \alpha_{0}$	1	

23	en $r = a$, il n'y a pas d'échange conducto-convectif (avec un fluide)	1	
	car il y a un vide interne, il n'y a pas d'échange par convection		
	car le tore s'interrompt pour laisser place au vide, il n'y a pas		
	d'échange par rayonnement car la cavité intérieure est refermée		
	sur à l'intérieur du tore. Donc $\phi(r=a)=0$ donc $j_Q(r=a)S=0$		
	donc $-\lambda \frac{\partial T}{\partial r}S = 0$ donc $-\lambda S \eta \frac{d\rho}{dr} = 0$ donc $\frac{d\rho}{dr} = 0$ en $r = a$.		
24	On trace le graphe de $\rho(r)$ en fonction de r multiplié par $\eta(t)$ qui	1	
	est exponentiellement plus proche de 0 quand le temps augmente.		
	En l'absence de toute source d'énergie, le tore ne peut que se		
	refroidir au cours du temps via sa face extérieure. (Comme le tore		
	est entouré de vide le tore se refroidit uniquement en émettant		
	un rayonnement). Le tore va donc se refroidir jusqu'à atteindre le		
	zéro absolu, s'il ne reçoit pas de rayonnement de l'extérieur.		

	Capteur capacitif		
25	On fait un schéma pour modéliser des condensateur avec une	1	
	armature qui forme deux condensateur avec ses deux voisines.		
	On remarque que les condensateurs sont en parallèles. Donc $i = 1$		
	$\sum_{k} i_{k} = \sum_{k} C_{k} \frac{du}{dt} = \left(\sum_{k} C_{k}\right) \frac{du}{dt} = NC_{1} \frac{du}{dt}. \text{ D'où } C_{tot} = NC_{1}$		
26	On cherche la direction du champ \vec{E} au point M. On remarque	1	
	que tout plan contenant l'axe (Mz) est un plan de symétrie de		
	la distribution de charge, donc $\vec{E}(M)$ appartient à l'intersection		
	de ces plans donc $\vec{E}(M)$ est colinéaire à \vec{e}_z , d'où $\vec{E} = E(M)\vec{e}_z$.		
	La distribution est invariante par translation selon \vec{e}_x d'où $\vec{E}=$		
	$E(y,z)\vec{e}_z$. La distribution est invariante par translation selon \vec{e}_y		
	d'où $\vec{E} = E(z)\vec{e}_z$. La distribution est symétrique par rapport au		
	plan (Oxy) donc $\vec{E}(z) = -\vec{E}(-z)$ d'où $\vec{E} = A(z)\vec{e}_z siz > 0$ et		
	$\vec{E} = -A(z)\vec{e}_z siz < 0$		
27	On choisit comme surface fermée un cylindre de section S et de	1	
	hauteur entre -z à z. On écrit le théorème de Gauss $\Phi(\vec{E})$ =		
	$\oint \vec{E} \cdot d\vec{S} = \frac{Q_{int}}{\epsilon_0}$. On décompose le calcul du flux de \vec{E} sur trois		
	surface : celle en -z notée S_1 , celle en z notée S_2 , et la surface la-		
	térale notée S_L . $\iint_{S_1} \vec{E} \cdot d\vec{S}_1 + \iint_{S_2} \vec{E} \cdot d\vec{S}_2 + \iint_{S_L} \vec{E} \cdot d\vec{S}_L = \frac{Q_i nt}{\epsilon_0}$.		
	Or $\iint \vec{E} \cdot d\vec{S}_1 = -(-A(z))S$, $\iint \vec{E} \cdot d\vec{S}_2 = A(z)S$, et $\iint \vec{E} \cdot d\vec{S}_L = 0$,		
	d'où $2A(z)S = \frac{Q_{int}}{\epsilon_0}$. Et enfin $Q_{int} = \sigma S$ donc $A = \frac{\sigma}{2\epsilon_0}$		

28	On applique le principe de superposition entre les deux armatures	1	
	du condensateur $\vec{E} = \vec{E}_1 + \vec{E}_2 = \frac{\sigma_1}{2\epsilon_0}\vec{e}_z - \frac{\sigma_2}{2\epsilon_0}\vec{e}_z$. Les deux ar-		
	matures ont la même surface et des charges opposées donc σ_1		
	$\frac{q_1}{S} = -\frac{q_2}{S} = -\sigma_2 = -\sigma$. On en déduit $\vec{E} = -\frac{\hat{\sigma}}{\epsilon_0}\vec{e}_z = -\frac{q}{S\epsilon_0}\vec{e}_z$. Or		
	$u = \int_{1 \to 2} dV = \int_{1 \to 2} \overrightarrow{\operatorname{grad}}(V) \cdot d\vec{l} = \int_{1 \to 2} -\vec{E} \cdot d\vec{l} = -E \times e = \frac{e}{S\epsilon_0} q.$		
	$C_0 = \frac{\epsilon_0 S}{e}$		
29	$C_{tot} = NC_1 \text{ et } C_1 = \frac{\epsilon_0 S}{e} \text{ donc } e = \frac{N\epsilon_0 S}{C_{tot}} = 90 \mu\text{m}$	1	
30	$C_0 = \frac{\epsilon}{e}$ $C_{tot} = NC_1 \text{ et } C_1 = \frac{\epsilon_0 S}{e} \text{ donc } e = \frac{N\epsilon_0 S}{C_{tot}} = 90 \mu\text{m}$ $C = \frac{\epsilon_0 S}{e} \text{ donc } \epsilon_0 = \frac{Ce}{S} \text{ donc } \epsilon_0 \text{ s'exprime en F.m.m}^{-2} \text{ soit des}$ $F.m^{-1}$	1	
31	La norme du champ électrique est d'autant plus élevée que les	1	
	lignes de champ se ressèrent. Donc à proximitez de PVB.		