[p-Block Elements]

Inside the Chapter.....

⊕ 7.1	वर्ग 15 के तत्व	7.2	<i>डाइनाइट्रोजन</i>	7.3	अमो <i>निया</i>
7.4	नाइट्रोजन के ऑक्साइड	7.5	नाइट्रिक अम्ल	7.6	फॉस्फोरस के अपररूप
7.7	फॉस्फीन	7.8	फॉस्फोरस के हैलाइड	7.9	फॉस्फोरस के ऑक्सो अम्ल
7.10	वर्ग 16 के तत्व	7.11	डाइऑक्सीजन	7.12	साधारण ऑक्साइड
7.13	ओजोन	7.14	सल्फर के अपररूप	7.15	सल्फरडाइ ऑक्साइड
7.16	सल्फर के ऑक्सो अम्ल	7.17	सल्फ्यूरिक अम्ल	7.18	वर्ग 17 के तत्व
7.19	क्लोरीन	7.20	हाइड्रोजन क्लोराइड	7.21	हैलोजन के आंक्सो अम्ल
7.22	अन्तरा हैलोजन यौगिक	7.23	वर्ग 18 के तत्व		
7.24	प्रमुख प्रश्न	7.25	पाठ्यपुस्तक के प्रश्न-उत्तर		·

IIIA	IVA	VA	VIA	VIIA	0 (शून्य)
13	14	15	16	17	18
वर्ग	वर्ग	वर्ग	वर्ग।	वर्ग	वर्ग/He
<u>B</u>	С	N	О	F	Ne
Al	Si	P	S	Cl	Ar
Ga	Ge	As	Se	Br	Kr
_In	Sn	Sb	Те	I	Xe
Tl	Pb	Bi	Po	At	Rn

हम पिछली कक्षा [XI] में पढ़ चुके हैं कि-

- p- ब्लॉक के तत्त्व आवर्त सारणी के अन्तिम छ: खड़े खानों में स्थित
 है। अर्थात् ये 13 से 18 खड़े खानों में रखे गये हैं।
- p- ब्लॉक के तत्त्वों की संयोजकता कोश का इलेक्ट्रॉनिक विन्यास ns²np¹-6 [He को छोड़कर] होता है।
- p- ब्लॉक तत्वों में धातु, उपधातु व अधातु तीनों ही विद्यमान होते हैं। इन्हें प्रसामान्य या प्रतिनिधि तत्व भी कहते हैं।
- p- ब्लॉक तत्वों के गुण अन्य तत्वों की तरह ही परमाण्वीय आकार,
 आयनन एन्थैल्पी, इलेक्ट्रॉन लब्धि एन्थैल्पी विद्युतऋणता, धनत्व
 क्वथनांक, गलनांक से बहुत अधिक प्रभावित होते हैं।
- द्वितीय आवर्त के तत्वों में d- कक्षकों की अनुपस्थिति तथा अन्य आवर्त के भारी तत्वों में d या f कक्षकों की उपस्थित का तत्वों की गुणों पर सार्थक प्रभाव पढ़ता है।
- आवर्त सारणी के p- ब्लॉक के वर्ग 13 व 14 के तत्त्वों का रसायन

हम कक्षा XI में अध्ययन कर चुके हैं। इस कक्षा (XII में) में हम वर्ग 15 से वर्ग 18 के तत्वों के रसायन का अध्ययन करेंगे।

p- ब्लॉक तत्त्वों की कुछ संख्या 36 है।

7.1 अमें 15 के तत्त्व (Elements of group 15)

- वर्ग 15(VA) में कुल पांच तत्व हैं, नाइट्रोजन (N), फॉस्फोरस (P), आर्सेनिक (As), एन्टिमनी (Sb), बिस्मिथ (Bi) तथा
- प्रथम दो तत्व N & P अधातु हैं। As एवं Sb उपधातु हैं, जबिक Bi धातु हैं।
- इन तत्वों को निकोजन्स (Pnicogens) व इनके यौगिकों को निकोमॉइड्स (Pnicomides) कहते हैं। शब्द निकोजन्स नाम ग्रीक शब्द Pnicogens से व्युत्पित हुआ है, जिस का अर्थ घुटन से है।
- वायुमण्डल में मुख्यतया नाइट्रोजन (आयतन का 75%) एवं ऑक्सीजन (आयतन 21%) होते हैं।

73-14 saltheren (Occurrence)

- आण्विक नाइट्रोजन वायु का एक मुख्य घटक है। यह वायुमण्डल का 78% भाग है।
- नाइट्रोजन संयुक्त अवस्था में प्रोटीन्स के रूप में उपलब्ध होती है।
 प्रोटीन्स पादपों व जन्तुओं दोनों में पायी जाती है।
- नाइट्रोजन, यौगिकों में जैसे
 - (i) चिली साल्ट पीटर सोडियम नाइट्रेट [NaNO₃]
 - (ii) इण्डियन साल्ट पीटर पोटेशियम नाइट्रेट [KNO₃]

(iii) अमोनिया

- (iv) अमोनियम यौगिक
- (v) डर्वरकों जैसे यूरिया तथा फॉस्फेट डर्वरकों फॉस्फोरस निम्न यौगिकों में पाया जाता है—
- (i) फॉस्फोराइट Ca₃(PO₄)₂
- (ii) फ्लुओरोऐपेटाइट 3Ca₃(PO₄)₂CaF₂
- (iii) क्लोरो ऐपेटाइट $3Ca_3(PO_4)_2$. $CaCl_2$
- (iv) हाइड्रॉक्सी ऐपेटाइट $3Ca_{3}(PO_{4})_{2}$. $Ca(OH)_{2}$
- फोस्फोरस हमारे शरीर में अस्थियों, दांतों, पेशियों, मस्तिष्क व तित्रका तन्तुओं को बनाता है।
- फॉस्फो प्रोटीन के रूप में यह दूध, अण्डों, मछली आदि में पाया जाता है।
- इस पिखार के अन्य सदस्य भूपर्पर्टी में कम अनुपातों में पाये जाते हैं।

7.1.2 इलेक्ट्रॉनिक विन्यास (Electronic Configuration)

- इस परिवार के सदस्यों का सामान्य इलेक्ट्रॉनिक विन्यास ns²np³ होता है।
- हुण्ड नियम के अनुसार तीनों p कक्षकों में एक-एक इलेक्ट्रॉन उपस्थित होता है अर्थात् अर्धपूर्ण भरे p कक्षकों के कारण यह विन्यास अधिक स्थायी होता है।
- इन तत्त्वों के इलेक्ट्रॉनिक विन्यास निम्न हैं—

 $N_7 1s^2 2s^2 2p^3$

 $\begin{array}{cc} & \text{[He] } 2s^22p^3 \\ P_{15} & 1s^22s^22p^63s^23p^3 \end{array}$

P₁₅ 1s²2s²2p⁶3s²3p³ [Ne] 3s² 3p³

As₃₃ $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^3$

[Ar] $3d^{10} 4s^2 4p^3$

 $Sb_{51} \qquad \quad 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 5s^2 5p^3$

 $[Kr]4d^{10}5s^25p^3$

 $Bi_{83} \qquad \qquad 1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}$

 $4f^{14}5s^{2}5p^{6} 5d^{10}6s^{2}6p^{3}$

[Xe] $4f^{14}5d^{10}6s^26p^3$

अतः उपरोक्त सभी सदस्यों की संयोजकता कोश में 5 इलेक्ट्रॉन उपस्थित होते हैं।

7.1.3 परमाणु एवं आयनिक त्रिज्यायें (Atomic & Ionic radii

- इस वर्ग के सदस्यों में ऊपर से नीचे चलने पर सहसंयोजक तथा
 आयिनक त्रिज्याओं में क्रमश: वृद्धि होती है।
- N से P तक सहसंयोजक किज्या में अच्छी वृद्धि होती है लेकिन As से Bi तक में सहसंयोजक किज्या के मानों में बहुत कम वृद्धि होती है। [इनमें d व ा कक्षकों की उपस्थिति के कारण होता है व अधिक नाभिकीय आवेश में वृद्धि होने के कारण भी होता है]

नाइट्रोजन परिवार के सदस्यों की सहसंयोजक व आयनिक त्रिज्यायें

तत्व	N	Р	As	Sb	Bi
सहसंयोजक	79	110	120	140	152
त्रिज्या [pm]					
आयनिक	171[N ³ -]	212[P ³ -	222[As ³ -]	76[Sb ³⁻]	103
त्रिज्या [pm]					[Bi ³⁺]

तत्वों के परमाणुओं के आकार का बढ़ता क्रम निम्न हैं-

 $N \le P \le A_S \le Sb \le Bi$

तत्वों के ऋणायनों व धनायनों का बढ़ता क्रम

 $N^{3-} \le P^{3-} \le A_S^{3-}$

 $Sb^{3-} \leq Bi^{3-}$

7.1.4 आयनन एन्थेल्पी (Ionisation Enthalpies)

- नाइट्रोजन परिवार के सदस्यों की आयनन एन्थेल्पी का मान समान आवर्त में स्थित कार्बन परिवार के सदस्यों की अपेक्षा बहुत अधिक होती है। यह N परिवार के सदस्यों में अर्धपूर्ण भरे p- कक्षकों के अधिक स्थायित्व के कारण है।
- वर्ग में ऊपर से नीचे चलने पर परमाण्विक आकार बढ़ने के कारण आयनन एन्थैल्पी का मान क्रमश: घटता जाता है।
- नीचे दिये गये आँकड़ों से यह स्पष्ट है कि Bi तत्व की द्वितीय व तृतीय आयनन एन्थैल्पी का मान Sb से अधिक होता है।
 [इनमें आने वाले 4f इलेक्ट्रॉन का बहुत कम पिरक्षिण प्रभाव व 32 अधिक नाभकीय आवेश के कारण है।]
- नाइट्रोजन परिवार के सभी सदस्यों के विभिन्न आयनन एन्थैल्पी का मान क्रम निम्न रहता है।

 $\begin{array}{ccc} \Delta_i H_1 \leq \Delta_i H_2 \leq \Delta_i H_3 \\ N \geq P \geq As \geq Sb \geq Bi & [\Delta_i H_1] \\ N \geq P \geq As \geq Bi \geq Sb & [\Delta_i H_2] & \textit{[Important]} \\ N \geq P \geq As \geq Bi \geq Sb & [\Delta_i H_3] & \textit{[Important]} \end{array}$

		· ·			
आयनन एन्थेल्पी	N	P	As	Sb	Bi
$\Delta_i H_1$	1402	1012	947	834	703
$\Delta_i H_2$	2856	1903	1798	1595	1610
$\Delta_{i}H_{3}$	4577	2910	2736	2443	2466

7.1.5 विद्युत ऋणात्मकता (Electronegativity)

- नाइट्रोजन परिवार में ऊपर से नीचे चलने पर, परमाण्विक आकार में क्रमश: वृद्धि होने के कारण विद्युत ऋणात्मकता का मान क्रमश: घटता जाता है।
- नीचे जाने पर अन्तर घटता जाता है। (आकार बढ़ने के कारण)

	1				
·	N	P	As	Sb	Bi
विद्युत ऋणात्मकता	3.0	2.1	2.0	1.9	1.9
पॉलिंग पैमाना	i .			ĺ	

तत्वों की विद्युत ऋणता का बढ़ता क्रम
 Bi = Sb < As < P < N

7.1.6 भौतिक गुण (Physical Properties)

- इस वर्ग के सभी तत्व बहुपरमाणुक है।
- डाइनाइट्रोजन एक द्विपरमाणुक गैस है जबिक अन्य बहुपरमाणुक ठोस है।
- N और P अधातु हैं, As a Sb उपधातु हैं जबिक Bi धातु हैं।
- वर्ग में ऊपर से नीचे जाने पर धात्विक गुण बढ़ता है।
- वर्ग में ऊपर से नीचे जाने पर क्वथनांक में वृद्धि होती है।
- वर्ग में ऊपर से नीचे जाने पर गलनांक As तक बढ़ते हैं, फिर घटते हैं।

	N	P	As	Sb	Bi
क्वथनांक (k) में	72.2	554	888	1860	1837
गलनांक (k) में	63	317	1089	904	544

तत्वों के क्वथनांक का बढ़ता क्रम

 $N \le P \le A_S \le B_i \le Sb$

तत्वों के गलनांक का बढ़ता क्रम

 $N \le P \le Bi \le Sb \le As$

7.1.7 रासायनिक गुरा (Chemical properties)

(a) ऑक्सीकरण अवस्था (Oxidation State)

- इस वर्ग की सामान्य ऑक्सीकरण अवस्था -3, +3 एवं +5 हैं।
- वर्ग में ऊपर से नीचे जाने पर -3 ऑक्सीकरण अवस्था प्रदर्शित करने की प्रवृत्ति घटती है। अन्तिम सदस्य Bi में -3 ऑक्सीकरण अवस्था नहीं पाई जाती।
- इस वर्ग के संयोजी कोश में 5 इलेक्ट्रॉन [ns²np³] उपस्थित होते हैं।
- M³ धनायनों का निर्माण तीन p इलेक्ट्रॉन के निष्कासन से होता है यहां s कक्षक के दो इलेक्ट्रॉन क्रिया में भाग नहीं लेते इसिल्ये इसे अक्रिम युग्म प्रभाव कहते हैं।
- अक्रिय युग्म प्रभाव वर्ग में ऊपर से नीचे चलने पर क्रमश: बढ़ता है अत: M³⁺ आयन बनाने की प्रवृत्ति बढ़ती है व M⁵⁺ आयन बनाने की प्रवृत्ति घटती है।

 $As^{3+} \le Sb^{3+} \le Bi^{3+}$ स्थायित्व का क्रम

As⁺⁵ > Sb⁵⁻ > Bi⁵⁻ स्थायित्व का क्रम

 इन तत्वों में M³- आयन बनाने की प्रवृत्ति वर्ग में ऊपर से नीचे जाने पर घटती है, विद्युतऋणता का मान क्रमश: घटते रहने के कारण-

 $N^{3-} > P^{3-} > As^{3-}$

Sb व Bi धातु होने के कारण M3 आयन नहीं बनाते।

 नाइट्रोजन तत्व को छोड़कर वर्ग 15 के अन्य तत्वों में रिक्त d-कक्षक उपस्थित होते हैं, जिसके फलस्वरूप ns² कक्षक का एक इलेक्ट्रॉन रिक्त d कक्षक में चला जाता है। अत: संयोजकता कोश में पांच [5] अयुग्मित इलेक्ट्रॉन हो जाते हैं अत: ये तत्व पांच सहसंयोजक बन्ध बनाने में समर्थ होते हैं, P से Sb— पांच सहसंयोजी बन्ध प्रदर्शित करते हैं, N में रिक्त d कक्षक अनुपस्थित होने के कारण यह तत्व पांच सहसंयोजकता प्रदर्शित नहीं करता।

यही कारण है कि N. NCI3 बनाता है NCI5 नहीं।

N और P तत्वों में तीन संयोजकता प्रदर्शित करने के बाद इनमें एक एकांकी इलेक्ट्रॉन युग्म उपस्थित होता है अतः NH_3 एवं PH_3 यौगिक लुइस क्षार की तरह व्यवहार करते हैं। अतः ये यौगिक NH_4 व PH_4 में N व P चार सहसंयोजकता प्रदर्शित करते हैं।

- P. As तथा Sb. [PCI₆] . [SbF₆] व [AsF₆] संकर आयनों में 6 सहसंयोजकता प्रदर्शित करते हैं।
- N अपने निम्न यौगिकों में विभिन्न प्रकार की ऑक्सीकरण अवस्थायें प्रदर्शित करता है।

ऑ. अवस्था	यौगिक
-1	NH ₂ OH
-2	NH_2-NH_2
-3	NH ₃
0	N_2
+]	$N_2^{"}O$
+2	NO
+3	N_2O_3
+4	N_2O_4
+5	N_2O_5

(b) পৃंखलन (Catenation)

- जब कोई तत्व स्वयं के साथ बन्ध बनाने की प्रवृत्ति को शृंखलन
 कहते हैं।
- C में शृंखलन N की अपेक्षाकृत अधिक होता है क्योंकि N-N के मध्य एकलबन्ध C-C बन्ध की तुलना में दुर्बल होता है। [N पर उपस्थिति एकांकी इलेक्ट्रॉनों युग्म में प्रतिकर्षण के कारण होता है।]
- P में शृंखलन की प्रवृत्ति N से अधिक है क्योंकि P परमाणु में चक्रीय तथा विवृत्त शृंखला यौगिक बनाने की प्रवृत्ति पाई जाती है।

(c) अपररुपता (Allotropy)

इस वर्ग (15) में Bi के अलावा अन्य सभी तत्व अपररुपता प्रदर्शित करते हैं।

N दो अपररुपों में पाया जाती है-

(i) α− नाइट्रोजन

- (ii) β- नाइट्रोजन
- P कई अपररुपों में पाया जाता है।
 श्वेत P लाल P α- काला P β काला P व बैंगनी P
- As तीन अपररुपों में पाया जाता है। ग्रे As, पीला As, काला As
- Sb तीन अपररुपों में पाया पाया है। धात्विक Sb. पीला Sb व
 विस्फोटक Sb

(d) आबन्ध की प्रकृति (Nature of Bonding)

- अधिकांश तत्व अपने यौगिकों में सहसंयोजक बन्ध बनाते हैं।
- N और P सहसंयोजक बन्ध बनाने के साथ-साथ आयनिक नाइट्राइड तथा फॉस्फाइड बनाते हैं।

7.4

 सहसंयोजी बन्ध बनाने की प्रवृत्ति समूह में ऊपर से नीचे जाने पर घटती है अत: बन्ध प्रबलता का क्रम निम्न हैं।

N > P > As > Sb > Bi

 Bi फ्लोओरीन के साथ आयिनक बन्ध बनाता है BiF₃ आयिनिक होगा।

 $BiF_3 > BiCl_3 > BiBr_3 > BiI_3$ आयनिक गुण का घटता क्रम नाइट्राजन का अपने परिवार के अन्य संदर्श में असामन गण

- नाइट्रोजन का बहुत छोटा आकार, उच्च विद्युत ऋणात्मकता, उच्च आयनन एन्थैल्पी एवं d कक्षकों की अनुपस्थिति के कारण वर्ग के अन्य सदस्यों से गुणों में भिन्न होती है।
- नाइट्रोजन की स्वयं के साथ व छोटे आकार व उच्च विद्युत ऋणात्मकता वाले तत्वों [С व О] के साथ बहुबन्ध [π बन्ध] बनाने की क्षमता रखता है जबकि अन्य तत्व नहीं रखते।
- अत: दो नाइट्रोजन परमाणुओं के मध्य एक त्रिबन्ध [एक सिग्मा व दो π बन्ध] के साथ द्विपरमाणुक अणु के रूप में पाया जाता है।
- N₂ अणु की बन्ध एन्थैल्पी 941.4 KJ mol-1 हैं जो बहुत अधिक है।
- N N बन्ध एक P P बन्ध की अपेक्षा दुर्बल होता है।
 N N आबन्धी इलेक्ट्रॉनों के उच्च अन्तरा इलेक्ट्रॉनिक प्रतिकर्षण के कारण बन्ध लम्बाई कम होती है। परिणामस्वरूप नाइट्रोजन में शृंखलन प्रवृत्ति दुर्बल होती है।
- N में d कक्षकों की अनुपस्थिति के कारण, नाइट्रोजन अधिकतम 4 संयोजकता प्रदर्शित करता है जबिक अन्य तत्व 5 संयोजकता प्रदर्शित करते हैं।
- $N. d\pi p\pi$ बन्ध नहीं बना सकता जैसा कि अन्य भारी तत्व करते हैं। $R_3 \; P = O, \qquad \qquad R_3 \; P = C H_2$

(i) हाइड्रोजन के प्रति क्रियाशीलता (Reactivity towards H)

 इस वर्ग के सभी सदस्य हाइड्रोजन के साथ सहसंयोजी हाइड्राइड बनाते हैं। इसका सुत्र MH₃ होता है।

 NH_3 PH_3 AsH_3 SbH_3 BiH_3 अमोनिया फॉस्फीन आसीन स्टीबीन बिस्मथीन

 इनके हाइड्राइड में संकरण अवस्था sp³ होती है। एक एकांकी इलेक्ट्रॉन युग्म उपस्थित होने के कारण इनका बन्ध कोण 109°28' से कम होता है व इनकी आकृति पिरेमिड होती है। वर्ग में ऊपर से नीचे जाने पर केन्द्रीय तत्वों की विद्युत ऋणात्मकता घटती है जिसमें बन्ध कोण क्रमश: घटता जाता है।

 $NH_3 > PH_3 > AsH_3 > SbH_3 > BiH_3$ (बन्ध कोण का क्रम)

(a) हाइड्राइड्स की जल में विलेयता

अमोनिया, हाइड्रोजन बन्धन के कारण जल में विलेय है जबिक अन्य हाइड्राइड जल में बहुत ही कम विलेय है। $NH_3 > PH_3 > AsH_3 > SbH_3 > BiH_3$ [जल में विलेयता का क्रम]

(b) क्षारीय गुण

नाइट्रोजन परमाणु का आकार अत्यधिक छोटा होने के कारण इस पर इलेक्ट्रॉन का घनत्व उच्च हो जाता है अर्थात् इलेक्ट्रॉन मुक्त करने की प्रवृत्ति बढ़ जाती है। अतः NH3 में क्षारीय सामध्य अधिक होती है। वर्ग में ऊपर से नीचे चलने पर तत्वों का आकार बढ़ता जाता है अतः इलेक्ट्रॉन युग्म देने की प्रवृत्ति घटती है। क्षारीय सामध्य घटती है।

 $NH_3 > PH_3 > AsH_3 > SbH_3 > BiH_3$

- (c) तापीय स्थायित्व (Stability towards heat)
 - िकसी हाइड्राइड का तापीय स्थायित्व M-H बन्ध लम्बाई के व्युक्त्रमानुपाती होता है।
 - अतः वर्ग में ऊपर से नीचे जाने पर M-H बन्ध लम्बाई क्रमशः बढ्ती जाती है। अतः तापीय स्थायित्व क्रमशः घटता है।

NH₃ PH₃ AsH₃ SbH₃ BiH₃

M-H बन्ध लम्बाई [Å] 101.7 141.9 151.9 170.7 - M-H बन्ध वियोजन kJmol-1 389 322 247 255 -

- वर्ग 15 के तत्वों के हाइड्राइड्स में M-H बन्ध लम्बाई का क्रम $NH_3 < PH_3 < AsH_3 < SbH_3 < BiH_3 \left[M-H$ बन्ध लम्बाई $\right]$
- वर्ग 15 के तत्वों के हाइड्राइड्स का तापीय स्थायित्व का क्रम NH₃ > PH₃ > AsH₃ > SbH₃ > BiH₃

अपचायक सामर्थ्य-

 ${
m NH_3} < {
m PH_3} < {
m AsH_3} < {
m SbH_3} < {
m BiH_3}$ इनकी अपचायक सामर्थ्य वर्ग में नीचे जाने पर बढ़ती है क्योंकि बन्ध लम्बाई बढ़ने के कारण हाइड्रोजन उपलब्ध होने की प्रकृति बढ़ती है। अत: स्पष्ट है कि हाइड्राइड का तापीय स्थायित्व कम होने पर उसकी अपचायक प्रवृत्ति बढ़ती है।

(ii) ऑक्साइड (Oxide)

नाइट्रोजन परिवार के सदस्य E_2O_3 व E_2O_5 प्रकार के ऑक्साइड बनाते हैं।

नाइट्रोजन सबसे अधिक ऑक्साइड बनाता है। क्योंकि इसका आकार बहुत छोटा होता है व उचित विद्युत ऋणता तथा ऑक्सीजन एवं नाइट्रोजन दोनों के संयोजी इलेक्ट्रॉन 2p- कक्षक में होते हैं। एक दी गई ऑक्सीकरण अवस्था के लिए ऑक्साइडों का अम्लीय गुण N से Bi तक घटता है क्योंकि धात्विक गुण बढ़ता है।

नीट – N की ओक्सीकरण संख्या बढ़ने के साथ ओक्साइट की अम्लीय प्रकृति भी बढ़ती है।

अभ्यास-७.१

- 1. वर्ग 15 के तत्वों का सामान्य इलेक्ट्रॉनिय विन्यास लिखिये।
- 2. निम्न परमाणु क्रमांक वाले तत्वों का इलेक्ट्रॉनीय विन्यास लिखिये।
 - (i) 83
- (ii) 33
- (iii) 51
- (iv) 15 (v) 7
- 3. वर्ग 15 के तत्वों के संयोजकता कोश में इलेक्ट्रॉन्स की संख्या कितनी है?
- N की आयनन ऐन्थैल्पी का मान Oxygen से अधिक होता है क्यों?
- वर्ग 15 के तत्वों में कौन से तत्व अधातु है?
- वर्ग 15 के तत्वों में कौन से तत्व धातु है?
- 7. वर्ग 15 के तत्वों में कौन से तत्व उपधात है?
- 8. वर्ग 15 के तत्वों की सामान्य ऑक्सीकरण अवस्थायें कौन-कौनसी है?
- वर्ग 15 के तत्वों में कौनसा तत्व -3 ऑक्सीकरण अवस्था प्रदर्शित नहीं करता?
- 10. अक्रिय युग्म प्रभाव वर्ग 15 में ऊपर से नीचे चलने पर घटता है या बढ़ता है बताइये?
- वर्ग 15 के तत्वों में ऊपर से नीचे चलने पर +3 ऑक्सीकरण अवस्था का स्थायित्व बढता है, किस प्रभाव के कारण होता है।
- 12. वर्ग 15 के तत्वों में कौनसा तत्व अपररुपता प्रदर्शित नहीं करता?
- 13. वर्ग 15 के तत्वों के हाइड्राइड में संकरण अवस्था व आकृति बताइये व विभिन्न हाइड्राइडों के बन्ध कोण का क्रम दीजिये।
- 14. वर्ग 15 के तत्वों के हाइड्राइड की जल में विलेयता का क्रम दीजिये।
- 15. वर्ग 15 के तत्वों के हाइड्राइड की जल में क्षारीय प्रकृति का क्रम दीजिये।
- 16. वर्ग 15 के तत्वों के हाइड्राइड की तापीय स्थायित्व का क्रम दीजिये।
- 17. वर्ग 15 के तत्वों को उनके आकार के बढ़ते क्रम में व्यवस्थित कीजिये।
- 18. वर्ग 15 के तत्वों को आयनन ऐन्थैल्पी के बढ़ते क्रम में कीजिये।
- 19. वर्ग 15 के तत्वों को इलेक्ट्रॉन ग्रहण ऐन्थैल्पी के बढ़ते क्रम में व्यवस्थित करें।
- 20. N की विभिन्न ऑक्सीकरण अवस्थायें बताते हुए प्रत्येक पर एक-एक उदाहरण दीजिये।

उत्तरमाला

- 1. ns^2np^3
- 2. (i) 83 $1s^22s^22p^63s^23p^63d^{10} 4s^24p^64d^{10}4f^{14}5s^25p^65d^{10}$ $6s^26p^3$
 - (ii) $33 ext{ } 1s^22s^22p^63s^23p^63d^{10}4s^24p^3$

 - (iv) $15 \ 1s^2 2s^2 2p^6 3s^2 3p^3$
 - (v) $7 1s^2 2s^2 2p^3$
- 3.
- 4. N में अर्धपूर्ण भरे p[p³] कक्षकों के अधिक स्थायी होने के कारण N में से e निकालने के लिये अधिक ऊर्जा की आवश्यकता होगी अत: N की आयनन ऐन्थैल्पी का मान Oxygen से अधिक है।
- 5. N&P
- 6. Bi
- 7. As, Sb
- 8. -3. +3 력 +5

- 9. B
- 10. इलेक्ट्रॉन युग्म प्रभाव वर्ग में ऊपर से नीचे चलने पर बढ़ता है।
- 11. अक्रिय इलेक्ट्रॉन युग्म प्रभाव के कारण
- 12. (Bi)
- 13. sp³ पिरेमिड, NH₃> PH₃ > AsH₃ > SbH₃ > BiH₃
- 14. $NH_3 > PH_3 > AsH_3 > SbH_3 > BiH_3$
- 15. $NH_3 > PH_3 > AsH_3 > SbH_3 > BiH_3$
- 16. $NH_3 > PH_3 > AsH_3 > SbH_3 > BiH_3$
- 17. N < P < As < Sb < Bi
- 18. $Bi \le Sb \le As \le P \le N$
- 19. $Bi \le Sb \le As \le N \le P$

,		
2 0.	-3	NH ₃
	-2	NH ₂ -NH ₂
	-1	NH ₂ OH
	0	N_2
	+1	N ₂ O
	+2	NO
	+3	N_2O_3
	+4	N_2O_4
	+5	N_2O_5

72 डाइनारीजन (Dintrogen)

1772 में *डेनियल रदरफोर्ड (Daniel Rutherford)* ने नाइट्रोजन की खोज को थी।

आणिवक अवस्था में यह द्विपरमाणुक अणु (N₂) के रूप में उपस्थित होती है,
 जिसमें दो परमाणु परस्पर क्रिबंध से जुड़े (N ≡ N) होते हैं।

7.21 डाइनाइट्रोजन का विस्त्रने (Preparation of Dinitagen

- डाइनाइट्रोजन का व्यावसायिक उत्पादन
- डाइनाइट्रोजन का व्यावसायिक उत्पादन वायु के द्रवीकरण तथा प्रभाजी आसवन द्वारा किया जाता है।

- -द्रवित वायु में डाइनाइट्रोजन [क्वथनांक 77K] तथा डाइऑक्सीजन [क्वथनांक 90k] है।
- जब द्रवित वायु का प्रभाजी आसवन करते हैं तो डाइनाइट्रोजन कम क्वथनांक के साथ पहले आसिवत होती है तथा डाइऑक्सीजन आसवन में फ्लास्क में रह जाती है।

प्रयोगशाला में डाइनाइट्रोजन गैस के बनाने की विधि 2,

प्रयोगशाला में डाइनाइट्रोजन गैस को बनाने के लिये सोडियम नाइट्राइट व अमोनियम क्लोराइड के विलयन की समान मात्रा को गर्म करके बनायी जाती है।

$$\begin{array}{c} \text{NH}_4\text{Cl} + \text{NaNO}_2 \xrightarrow{-\eta f} \text{NH}_4\text{NO}_2 + \text{NaCl} \\ & \textit{Ammonium nitrite} \end{array}$$

$$NH_4NO_2 \xrightarrow{\eta d} N_2 + 2H_2O$$

- इस अभिक्रिया में थोड़ी मात्रा में NO तथा HNO3 भी बनते हैं। इन्हें पृथक् करने के लिये इन्हें सल्फ्यूरिक अम्ल युक्त पोटेशियम डाइक्रोमेट के जलीय विलयन में से प्रवाहित कर दूर किया जाता है।
- अमोनियम यौगिकों से डाइनाइट्रोजन का बनाना 3.
- (a) अमोनियम डाइक्रोमेट को गर्म करके-

$$(NH_4)_2Cr_2O_7$$
 $\xrightarrow{\eta\bar{\eta}}$ $Cr_2O_3+N_2+4H_2O$
क्रोमियम ऑक्साइड

(b) क्यूप्रिक ऑक्साइड या विरंजक चूर्ण को अमोनिया के साथ गर्म करने पर

$$2NH_3 + 3CuO \xrightarrow{\eta d} 3Cu + N_2 + 3H_2O$$

$$2NH_3 + 3CaOCl_2 \xrightarrow{\eta \neq f} 3CaCl_2 + N_2 + 3H_2O$$

अति शुद्ध अवस्था में डाइनाइट्रोजन को प्राप्त करने के लिये बेरियम 4. ऐजाइड तथा सोडियम एजाइड को गर्म करते हैं।

$$Ba(N_3)_2 \longrightarrow Ba + 3N_2$$

बेरियम ऐजाइड

 $2NaN_3 \longrightarrow 2Na + 3N_2$ सोडियम ऐजाइड

7.2.2 डाइनाइट्रोजन के भौतिक गुण (Physical properties of dinitrogen)

- यह रंगहीन, गंधहीन तथा स्वादहीन गैस है।
- यह दो स्थायी समस्थानिक में पायी जाती है। 14N ਕ
- यह वायु से थोड़ी हल्की होती है।
- इसका वाष्प घनत्व 14 है।
- यह जल में बहुत ही कम विलेय हैं। मा.ता.दा. [273k, 1 वायुमण्डल दाब] पर 23.2 cm³ गैस 1 lit जल में विलेय होती है।

- इसका गलनांक 63.2 k व क्वथनांक 77k है।
- आण्विक नाइट्रोजन [N2] आण्विक कक्षक सिद्धान्त के अनुसार प्रति-चुम्बकीय है। [इसके सभी इलेक्ट्रॉन युग्मित है।]

7,23 डाइनाइट्रोजन के संसायनिक गुण (Chemical properties of Dinitrogen)

- N = N बन्ध की उच्च बन्ध एन्थैल्पी के कारण डाइनाइट्रोजन कमरे के ताप पर अक्रिय है।
- ताप में वृद्धि के साथ इसंकी क्रियाशीलता तेजी से बढ़ती है।
- N_2 में बन्ध लम्बाई 109.8 pm [बहुत छोटी], बन्ध ऊर्जा [946kJ. mol-1] अत्यधिक होती है।

धातुओं के साथ क्रिया 1.

जब धातुओं को डाइनाइट्रोजन के साथ तीव्रता से गर्म करते हैं तो नाइट्राइड्स प्राप्त होता है।

$$3Mg + N_2 \rightarrow Mg_3N_2$$

मैंग्नीशियम नाइट्राइड

$$3Ca + N_2 \rightarrow Ca_3N_2$$
$$2Al + N_2 \rightarrow 2AlN$$

कैल्शियम नाइट्राइड ऐल्युमीनियम नाइट्राइड

$$6Li + N_2 \rightarrow 2Li_3N$$

लिथियम नाइट्राइङ

उपरोक्त सभी अभिक्रियायें ऊष्माक्षेपी अभिक्रियायें हैं, अत: इन अभिक्रियाओं में डाइनाइट्रोजन आग पकड़ लेती है व जलने लगती है।

- अधातुओं के साथ डाइनाइट्रोजन की क्रिया 2,
- डाइऑक्सीजन के साथ क्रिया (a)

ंडाइनाइट्रोजन व डाइऑक्सीजन, दोनों गैस 200K ताप पर अभिक्रिया कर, नाइट्रिक ऑक्साइड बनाती है।

$$N_2 + O_2 \stackrel{\text{diff}}{\rightleftharpoons} 2NO(g)$$

नोट- बर्कलैण्ड व इंडे की प्रक्रिया द्वारा नाइट्रिक अम्ल के विरचन के लिये यह अभिक्रिया आधार होती है।

डाइहाइड्रोजन के साथ अभिक्रिया **(b)**

डाइहाइड्रोजन व डाइनाइट्रोजन गैस 773 K ताप व 200 वायुमण्डलीय दाब पर मॉलीब्लेडनम [Mo] या $m K_2O_3$ या $m Al_2O_3$ की थोड़ी मात्रा को वर्द्धक के रूप में रखने वाले आयरन उत्प्रेरक की उपस्थिति में NH3 का निर्माण करते हैं।

$$N_2 + 3H_2 \xrightarrow{733K} 2NH_3 \Delta_f H^- = 46.1 \text{ kJ mol} \cdot 1$$

नोट- यह अभिक्रिया अमोनिया बनाने वाले हॉबर प्रक्रम का आधार है।

3. लिटमस के साथ किया

यह लिटमस के प्रति उदासीन है।

- अन्य यौगिकों के साथ अभिक्रिया 4.
- कुछ यौगिकों को जब डाइनाइट्रोजन गैस के साथ गर्म करते है तो वे क्रिया करते हैं।

(a) कैल्शियम कार्बाइड के साथ

जब कैिल्शयम कार्बाइड को डाइनाइट्रोजन गैस के साथ 1273K ताप पर गर्म करते हैं तो कैिल्शयम सायनामाइड बनता है।

 $CaC_2 + N_2 \rightarrow CaCN_2 + C$ कैल्शियम सायनामाइङ

- CaCN2 को नाइट्रोलिम भी कहते हैं।
- CaCN₂ जल के साथ क्रिया करके NH₃ देता है। CaCN₂ + 3H₂O \rightarrow CaCO₃ + 2NH₃

(b) ऐलुमिना के साथ

ऐलुमीना [Al₂O₃]. डाइनाइट्रोजन के साथ कोक की उपस्थिति में
 1273k ताप पर गर्म करने पर ऐलुमिनियम नाइट्राइड बनता है।

$$Al_2O_3 + 3C + N_2 \xrightarrow{1273K} 2AIN + 3CO$$

● AIN भी जल के साथ क्रिया कर NH₃ बनाती है। AIN + $3H_2O \rightarrow AI(OH)_3 + NH_3$

7.2.4 डाइनाइट्रोजन के उपयोग (Use of Dinitrogen)

- डाइनाइट्रोजन कुछ यौगिकों जैसे NH₃, HNO₃, कैल्शियम सायनामाइड आदि के बनाने में उपयोग लेते हैं।
- यह उच्च ताप नापने के लिये गैस से भरे थर्मामीटर में प्रयुक्त होती है।
- डाइनाइट्रोजन, टंगस्टन धातु की वोल्टता को कम करने लिये वैद्युत बल्बों में भी भरी जाती है।
- द्रव डाइनाइट्रोजन को कुछ जैव नमूनों को संरक्षित करने, भोजन पदार्थों को जमाने के लिये प्रशीतक के रूप में प्रयोग करते हैं।

7.3 अमोनिया (Ammonia)

- अमोनिया, नाइट्रोजन का एक महत्वपूर्ण यौगिक है।
- वातावरण में अमोनिया सूक्ष्म मात्रा में उपलब्ध रहती है।
- पौधो एवं जन्तुओं के नाइट्रोजन युक्त पदार्थों के जीवाणु अपघटन द्वारा बनती है।
- अमोनिया की सुगन्ध सार्वजिनक मूत्र स्थलों व मवेशी के रहने के स्थान से महसूस की जा सकती है।
- NH₃ की अत्यधिक मात्रा कुछ उपग्रहों जैसे ज्यूपीटर व शनि में पाई जाती है।
- यह यूरिया के जलीय विघटन द्वारा प्राप्त होती है। $NH_2CONH_2 + 2H_2O \rightarrow 2NH_3 + H_2O + CO_2$

7.3.1 अमोनिया बनाने की विधियाँ (Proparation of Ammonia)

अमोनिया को निम्न विधियों से प्राप्त किया जा सकता है।

अमोनियम लवणों को गर्म करने से

 सल्पयूरिक एवं फॉस्फोरिक अम्लों के अमोनियम लवणों को गर्म

 करने से अमोनिया प्राप्त होती है।

 $(NH_4)_2SO_4 \xrightarrow{\eta \#} 2NH_3 + H_2SO_4$ अमोनियम सल्फेट

(NH₄)₃ PO₄ <u>गर्म</u> 3NH₃ + HPO₃ + H₂O. अमोनिथम फॉस्फेट मेटा फॉस्फोरिक अम्ल

2. अमोनियम लवणों को प्रबल क्षार के साथ गर्म करने पर

जब अमोनियम सल्फेट या अमोनियम क्लोराइड को प्रबल-क्षार जैसे NaOH/KOH के साथ गर्म करते हैं तो अमोनिया गैसे प्राप्त होती है।

 $(NH_4)_2SO_4 + 2NaOH \xrightarrow{\eta \not q} 2NH_3 + Na_2SO_4 + 2H_2O$ $NH_4Cl + NaOH \xrightarrow{\eta \not q} NH_3 + NaCl + H_2O$

3. धातु नाइट्राइडो की जल से क्रिया करके

AlN, Mg_3N_2 पर जल की क्रिया कराने पर NH_3 गैस प्राप्त होती है। $2AlN+6H_2O \rightarrow 2Al(OH)_3+2NH_3$

 $\mathrm{Mg_3N_2} + 6\mathrm{H_2O} \rightarrow 3\mathrm{Mg(OH)_2} + 2\mathrm{NH_3}$

4. प्रयोगशाला में NH3 का निर्माण

 प्रयोगशाला में, NH₄Cl व खुझे हुए चूने के पानी को 1:3 के अनुपात में मिलाकर प्राप्त करते हैं।

$$2\mathrm{NH_4Cl} + \mathrm{Ca(OH)_2} \rightarrow 2\mathrm{NH_3} + \mathrm{CaCl_2} + 2\mathrm{H_2O}$$

- प्रयोगशाला में अमोनिया गैस को वायु के नीचे की ओर प्रतिस्थापित होने से प्राप्त की जाती है। क्योंकि यह वायु की तुलना में हल्की होती है।
- यह जल में अत्यधिक मात्रा में विलेय होने के कारण इसे जल पर एकत्रित नहीं करते।

5. अमोनिया का व्यावसायिक निर्माण

व्यावसायिक स्थर पर अमोनिया को हॉबर प्रक्रिया द्वारा डाइनाइट्रोजन व डाइहाइड्रोजन से क्रिया कराकर प्राप्त करते हैं।

 $N_2 + 3H_2 \rightleftharpoons 2NH_3$ $\Delta H = -46.1 \text{ k Jmol}^{-1}$ अधिक NH_3 की उपलब्धि के लिये हमें निम्न परिस्थितियाँ रखनी होगी।

- (a) कम ताप-अभिक्रिया ऊष्माक्षेपी होने के कारण, कम ताप NH₃ की उपलब्धि को बढ़ायेगा।
- (b) उच्चे दाब-लगभग 200 वायुमण्डलीय उच्च दाब पर अधिक NH₃ प्राप्त होगी क्योंकि आयतन में कमी हो रही है।
- (c) उत्प्रेरक-अभिक्रिया की दर महीन विभाजित आयरन ऑक्साइड उत्प्रेरक के प्रयोग करने से बढ़ जाती है। इसमें $K_2O/Al_2O_3/Mo$ की अल्पमात्रा उत्प्रेरक के लिये वर्धक का कार्य करते हैं।

अमोनिया गैस का शुष्क करना

- अमोनिया गैस को चाहे प्रयोगशाला में बनाये या व्यावसायिक स्तर पर बनाये, सामान्यत: नम होती है क्योंकि यह जल के प्रति तीव्र आकर्षित होती है।
- इसे CaO पर से प्रवाहित कर शुष्क की जाती है।
- इसे सान्द्र H_2SO_4 . $CaCl_2$ व P_2O_5 के द्वारा शुष्क नहीं करते क्योंकि NH_3 गैस इन निर्जलीकारक पदार्थों से क्रिया करती हैं।

 $2{
m NH_3} + {
m H_2SO_4}
ightarrow ({
m NH_4})_2{
m SO_4}$ अमोनियम सल्फेट $8{
m NH_3} + {
m CaCl_2}
ightarrow {
m CaCi_2}. \ 8{
m NH_3}$ योगात्मक यौगिक ${
m P_4O_{10}} + 6{
m H_2O}
ightarrow 4{
m H_3}\ {
m PO_4}$ $3{
m NH_3} + {
m H_3PO_4}
ightarrow ({
m NH_4})_3{
m PO_4}$ अमोनियम फॉस्फेट

7.3.2 SPHERN THE WITCH SUPER (Physical properties of NELS)

- अमोनिया गैस एक तीखी गंधवाली, रंगहीन गैस है इसकी गंध अमोनिकल गंध द्वारा जानी जाती है।
- अमोनिया गैस वायु से हल्की होती है।
- NH₃ जल में बहुत अधिक विलेय होती है। Lcc जल में 1000 cc NH₃ विलेय होती है। जल में NH₃ की उच्च विलेयता अन्तरा आण्विक हाइड्रोजन बन्ध के कारण होती है।

- उच्च दाब पर NH₃ द्रव अवस्था में बदल जाती है।
- NH₃ का क्वथनांक 239.7K है। इसका हिमांक 198.4 K है।
- जब द्रव अमोनिया को वाष्पित होने देते हैं तो यह अत्यधिक ठंडी हो जाती है। जिसके परिणामस्वरूप NH3 को प्रशीतक के रूप में प्रयुक्त करते हैं।

NH3 की संरचना

- NH $_3$ में उपस्थित N परमाणु पर संकरण अवस्था ${
 m sp}^3$ है।
- NH₃ में उपस्थित N परमाणु पर एक एकांकी इलेक्ट्रॉन युग्म उपस्थित होने के कारण इसकी आकृति पिरेमिड या विकृत चतुष्फलकीय होती है व बन्ध कोण 107° होता है।

NH3 की पिरेमिड संरचना

राज्य अभागिका के समस्यानिक गुण (Chemical properties)

 अमोनिया जल में विलेय होकर NH4OH [अमोनियम हाइड्रोऑक्साइड] बनाती है।

 $NH_3 + HOH \rightarrow NH_4OH \rightleftharpoons NH_4^+ + OH$

- अत: अमोनिया का जलीय विलयन क्षारीय है। यह लाल लिटमस को नीले लिटमस में बदलता है।
- NH₃ के N परमाणु पर एकांकी इलेक्ट्रॉन युग्म उपस्थित होने के कारण यह लुईस क्षार है।
- NH₃ लुइस अम्लों के साथ क्रिया कर उपसहसंयोजक बन्ध द्वारा जुड़कर योगात्मक यौगिक बनाते हैं।

$$H_3N:+BF_3\rightarrow H_3N\rightarrow BF_3$$

- अमोनिया d- ब्लॉक के तत्वों जैसे Ag⁺, Cu⁺, Cd²⁺ आयनों के साथ क्रिया कर संकुल यौगिक बनाते हैं।
 - $Ag^{\perp} + 2NH_3 \rightarrow [Ag(NH_3)_2]^{\perp}$

diamminesilver (I) ion

• $Cu^{2+} + 4NH_3 \rightarrow [Cu (NH_3)_4]^{2+}$

Tetrammine copper (II) ion

• $Cd^{2-} + 4NH_3 \rightarrow [Cd (NH_3)_4]^{2+}$

Tetrammine Cadmium (II) ion

- $CuSO_4 + 4NH_4OH \rightarrow [Cu(NH_3)_4]SO_4 + 4H_2O$ ट्रेटाऐमीन कॉपर (II) सल्फेट

- FeCl_{3(aq)} + NH₄OH(aq) → Fe₂O₃.xH₂O_(s) + NH₄Cl(aq) भरा अवक्षेप
- $ZnSO_{4(aq)} + 2NH_4OH(aq) \rightarrow Zn(OH)_{2(s)} + (NH_4)_2SO_{4(aq)}$ सफेद अवक्षेप

2. ऑक्सीकरण [Oxidation]

जब NH3 को वायु के साथ मिश्रित कर Pt की जाली पर गर्म करने पर (1100K), नाइट्रिक ऑक्साइड बनता है।

$$4NH_3 + 5O_2 - \frac{P_1}{1100K} \rightarrow 4NO + 6H_2O$$

3. धातु हैलाइड्स से क्रिया

 Fe^{3+} , Cr^{3+} , Al^{3+} आदि के हैलाइड जलीय NH_3 विलयन से क्रिया कर धातु हाइड्रॉक्साइड का अवक्षेप प्राप्त होता है।

 $FeCl_3 + 3NH_4OH \rightarrow Fe(OH)_3 + 3NH_4Cl$

 $CrCl_3 + 3NH_4OH \rightarrow Cr(OH)_3 + 3NH_4Cl$

 $AlCl_3 + 3NH_4OH \rightarrow Al (OH)_3 + 3NH_4Cl$

दव अमोनिया विलायक के रूप में

अमोनिया की जल की भाँति आयनीकत होती है।

$$NH_3 + NH_3 \rightarrow NH_4^+ + : NH_2$$

- अत: द्रव NH₃ कई ध्रुवीय पदार्थों में घुल सकती है।
- 5. अमोनिया प्रबल अम्ल व दुर्बल क्षारों के साथ लवण बनाती है।

 $NH_3 + HCl \longrightarrow NH_4Cl$ अमोनियम क्लोराइड

 $2NH_3 + H_2SO_4 - \longrightarrow (NH_4)_2SO_4$ अमोनियम सल्फेट

NH₃ + HNO₃ ---→ NH₄NO₃ अमोनियम नाइट्रेट

NH3 + CH3COOH ——>CH3COONH4 अमोनियम ऐसीटेट

ist Britige & andre

- अमोनिया नाइट्रिक अम्ल [ओस्टबाल्ड प्रक्रिया] एवं सोडियम कार्बोनेट के निर्माण में प्रयुक्त होती है।
- अमोनिया मुख्यतः विभिन्न प्रकार के उर्वरकों को जैसे यूरिया,
 अमोनियम नाइट्रेट, अमोनियम सल्फेट आदि को बनाने में प्रयुक्त होती है।
- अमोनियम नाइट्रेट व Al पाउडर का मिश्रण अमोनल नाम से विस्फोटक के रूप में प्रयुक्त किया जाता है।
- अमोनियम नाइट्रेट व TNT [Trinitrotoluenc] का मिश्रण अमेटाल
 (Amatol) नाम से विस्फोटक के रूप में प्रयुक्त किया जाता है।
- द्रव NH₃ बर्फ के कारखाने व शीत भण्डारण (Cold Storage) में प्रशीतक के रूप में प्रयुक्त होती है।

उदा.1 NH3 लुईस क्षार की तरह व्यवहार क्यों करती है?

हल- अमोनिया में उपस्थित नाइट्रोजन पर एक एकांकी इलेक्ट्रॉन युग्ध उपस्थित हैं अत: NH_3 में इलेक्ट्रॉन युग्म प्रदान करने के लिये उपलब्ध है अत: NH_3 एक लुईस क्षार की तरह व्यवहार करती है

उदा.2 अमोनिया की लिक्ष्य को बढ़ाने के लिये आवश्यक स्थितियों का वर्णन कीजिये।

हल- $N_2 + 3H_2 \implies 2NH_3$. $\Delta_0 H = -46.1 \text{ kJmot}^{-1}$

- उपरोक्त अभिक्रिया ऊष्माक्षेपी होने के कारण हमें निकाय का ताप कम करने पर NH₃ की लब्धि अधिक प्राप्त होगी।
- उच्च दाब पर [आयतन में कमी होने के कारण], NH3 की लिब्ध अधिक प्राप्त होती है।
- प्राप्त NH₃ को पृथक् करते रहने पर भी NH₃ की लब्धि अधिक प्राप्त होगी।

उदा.3 Cu2+ विलयन के साथ अमोनिया कैसे क्रिया करती है।

हल- संकुल आयन tetrammine copper (II) ion बनाती है।

$$Cu^{2+} + 4NH_3 \rightarrow [Cu(NH_3)_4]^{2-}$$

7.4

नाइट्रोजन विभिन्न ऑक्सीकरण अवस्थाओं में अनेक ऑक्साइट बनाती है।

and the second s

- इसका सूत्र N₂O है। [नाइट्रस ऑक्साइड]
- इस ऑक्साइड में N की ऑक्सीकरण अवस्था +1 है।
- यह ऑक्साइंड निम्न अनुनादी संरचनायें प्रदर्शित करता है।

$$\dot{N} = \dot{N} = \dot{O} \longleftrightarrow : \dot{N} \stackrel{\textcircled{\tiny }}{=} \dot{N} \stackrel{\frown}{=} \dot{O} \stackrel{\textcircled{\tiny }}{=} \dot{O}$$

 N₂O की संरचना रेखीय है व N – N के मध्य बन्ध लम्बाई 113 pm व N–O के मध्य लम्बाई 119 pm है।

$$N - N - O$$

113pm 119pm

 N₂O को प्राप्त करने के लिये हम अमोनियम नाइट्रेट को गर्म करते हैं।

$$NH_4NO_3 \xrightarrow{\Delta} N_2O + 2H_2O$$

- यह ऑक्साइड रंगहीन, उदासीन, गैसीय अवस्था में है।
- N2O को हँसाने वाली गैस भी कहते हैं।

- इसका सूत्र NO है। [नाइट्रिक ऑक्साइड]
- इस ऑक्साइड में N की ऑक्सीकरण अवस्था +2 है।

यह ऑक्साइड निम्न अनुनादी संरचनायें प्रदर्शित करता है।

इसमें N के 5 इलेक्ट्रॉन तथा Oxygen के 6 इलेक्ट्रॉन होते हैं अत: इलेक्ट्रॉन की विषम संख्या के कारण NO में एक इलेक्ट्रॉन अयुग्मित हो जाता है अत: NO अणु अनुचुम्बकीय (गैसीय अवस्था) होता है।

N-O के मध्य बन्ध लम्बाई 238 pm व 114 pm होती है।

द्रव व ठोस अवस्था में NO की संरचना

- NO अनुचुम्बकीय है।
- NO को प्राप्त करने के लिये NaNO₂ की अम्लीय FeSO₄ के साथ क्रिया कराते हैं।

$$2\text{NaNO}_2 + 2\text{FeSO}_4 + 3\text{H}_2\text{SO}_4 \rightarrow$$

$$\text{Fe}_2(\text{SO}_4)_3 + 2\text{NaHSO}_4 + 2\text{H}_2\text{O} +$$

$$2\text{NO}$$

यह ऑक्साइड रंगहीन, उदासीन गैस है।

7.4.3 बाहमाङ्ग्रेजन ट्राइऑक्साइड N₂O₃

- इसका सूत्र N2O3 है। नाइट्रोजन (III) ऑक्साइड
- इस ऑक्साइड में N की ऑक्सीकरण अवस्था +3 है।
- यह निम्न अनुनादी संरचनायें प्रदर्शित करता है।

- N_2O_3 में उपस्थित N-N के मध्य बन्ध लम्बाई 186~pm है जबिक N-O के मध्य बन्ध लम्बाई 121pm व 114~pm है।
- इस ऑक्साइड को प्राप्त करने के लिये नाइट्रोजन मोनोक्साइड को नाइट्रोजन डाइआक्साइड को 250K ताप पर गर्म करते हैं।

 $2 \text{ NO} + \text{NO}_2 \xrightarrow{250 \text{ K}} 2 \text{N}_2 \text{O}_3$

- यह ऑक्साइड नीला होता है।
- यह ऑक्साइड ठोस होता है।
- यह ऑक्साइड अम्लीय होता है।
- यह ऑक्साइड प्रतिचुम्बकीय होता है।

१४४ नाहराचन डाइऑक्साइड

- इस ऑक्साइड का सूत्र NO₂ है। नाइट्रोजन (IV) ऑक्साइड
- इस ऑक्साइड में N की ऑक्सीकरण अवस्था +4 है।
- यह निम्न अनुनादी संरचनायें प्रदर्शित करता है।

- NO₂ अणु में उपस्थित N—O के मध्य बन्ध लम्बाई 120 pm है एवं ONO के मध्य कोण 134° है तथा इसकी आकृति V होती है।
- NO2 ठोस अवस्था में डायमर [N2O4] के रूप में पाया जाता है।
- N₂O₄ की संरचना निम्न है।

- ठोस अवस्था में [N₂O₄] N-N के मध्य बन्ध लम्बाई 175pm एवं NO के मध्य बन्ध लम्बाई 121 pm है। O-N-O के मध्य बन्ध कोण 135° है।
- NO₂ को प्राप्त करने के लिये लैंडनाइट्रेट को 673K ताप पर गर्म करते है।

$$2Pb (NO_3)_2 \rightarrow 4NO_2 + 2PbO + O_2$$

- कमरे के ताप पर यह भूरी रंग की गैस है।
- यह अम्लीय प्रवृत्ति का है।
- यह ऑक्साइड अनुचुम्बकीय होता है।

१८६३ - ब्राइनाइट्राजन देवाओस्साइड

- इस ऑक्साइड का सूत्र N₂O₄ है।
- इस ऑक्साइड में N का ऑक्सीकरण अवस्था +4 है।
- ullet NO $_2$ को ठंडा करने पर N $_2$ O $_4$ प्राप्त होता है।

$$2NO_2 \xrightarrow{\overrightarrow{\text{ris}}} N_2O_4$$

- यह रंगहीन ठोस के रूप में पायी जाती है, यह अम्लीय है।
- यह निम्न अनुनादी संरचनायें प्रदर्शित करती है।

• इस ऑक्साइड में N-N के मध्य बन्ध लम्बाई 175pm N-O के O मध्य बन्ध लम्बाई 121pm व N बन्ध कोण 135° होता है। O

समतलीय आकृति होती है।

समतलीय

 NO₂ द्वितयीकृत होकर N₂O₄ बनाता है। NO₂ में इलेक्ट्रॉन विषम संख्या में होते हैं, दो अणु संयुग्मित होकर स्थायी N₂O₄ अणु में परिवर्तित हो जाती है जिसमें इलेक्ट्रॉन की संख्या सम है।

7.4% इंग्ड्रमहर्दे जन पेन्टा ऑक्साइड

- इस ऑक्साइड का सूत्र N₂O₅ है।
- इस ऑक्साइड में N की ऑक्सीकरण अवस्था +5 है।
- फॉस्फोरस पेन्टाऑक्साइड की नाइट्रिक अम्ल से क्रिया कराने पर N₂O₅ प्राप्त होता है।

$$4\text{HNO}_3 + P_4O_{10} \rightarrow 4\text{HPO}_3 + 2N_2O_5$$

- यह रंगहीन ठोस होता है।
- इसकी प्रकृति अम्लीय होती है।
- यह निम्न अनुनादी संरचनायें बनाता है।

N के मध्य बन्ध लम्बाई समान व 151pm जबकि

उदा. 4. NO2 द्वितयीकृत क्यों होती है?

हल- NO₂ में संयोजी इलेक्ट्रॉन विषम संख्या में होते हैं अत: NO₂ एक प्रारूपी विषम इलेक्ट्रॉन अणु की तरह व्यवहार करती है, द्वितयीकृत होने से यह स्थायी N₂O₄ अणु में परिवर्तित हो जाती है। जिसमें इलेक्ट्रॉनों की संख्या सम है।

उदा.5. N_2O_5 में नाइट्रोजन की संयोजकता क्या है?

हल – N_2O_5 में संरचना के आधार पर हम कह सकते है कि N की संयोजकता चार है। N पर 2 सिग्मा, 1 पाई एवं एक उपसहसंयोजक बंध उपस्थित होते हैं।

अभ्यास-७.२

- प्र.1. यूरिया के जल अपघटन पर कौनसी गैस प्राप्त होती है।
- प्र.2. अमोनियम लवण को गर्म करने पर कौनसी गैस प्राप्त होती है समीकरण दीजिये।
- प्र.3. अमोनियम सल्फेट को किसी क्षार के साथ गर्म करने पर कौनसी गैस प्राप्त होती है समीकरण दीजिये।
- प्र.4. मैंग्नीशियम नाइट्राइड की जल में क्रिया करने पर कौनसी गैस प्राप्त होती है समीकरण दीजिये।
- प्र.5. प्रयोगशाला में $\mathrm{NH_3}$ गैस को कैसे प्राप्त करेंगे, समीकरण दीजिये \parallel
- प्र.6. औद्योगिक निर्माण में अमोनिया को हॉबर प्रक्रिया द्वारा कैसे प्राप्त करेंगे, समझाइये।
- प्र.7. अमोनिया गैस को शुष्क किस प्रकार करते हैं।
- प्र.8. अमोनिया गैस के भौतिक गुणों की व्याख्या कीजिये।
- प्र.9. अमोनिया की निम्न के साथ अभिक्रियाओं के रासायनिक समीकरण दीजिये।
 - (i) Ag+, Cd²⁻⁻ व Cu²⁺ के साथ अभिक्रिया
 - (ii) वायु के साथ Pt की जाली पर गर्म करने पर
 - (iii) FeCl3 विलयन के साथ अभिक्रिया।
- प्र.10. अमोनिया के कोई तीन उपयोग लिखिये।
- प्र.11. अमोनल नामक विस्फोट में क्या होता है?

प्र.12.अमेटाल नामक विस्फोट में क्या होता है?

प्र.13. नाइट्रोजन मोनोऑक्साइड के बारे में बताइये।

ग्र.14. डाइनाइट्रोजन ऑक्साइड के बारे में बताइये।

प्र.15. डाइ नाइट्रोजन टॉइऑक्साइड के बारे में बताइये।

प्र.१६.नाइट्रोजन डाइऑक्साइड के बारे में बताइये।

प्र.17. N₂O₅ के बारे में बताइये।

प्र.18.N₂O की अनुनादी संरचनाऐं बताइये।

प्र.19.N₂O₃ की अनुनादी संरचनाऐं बताइये।

प्र.20.NO2 की अनुनादी संरचनाऐं बताइये।

प्र.21. N₂O₅ की अनुनादी संरचनाऐं बताइये।

उत्तरमाला

1. NH3 गैस प्राप्त होती है।

 $NH_2CONH_2 + 2H_2O \rightarrow 2NH_3 + H_2O + CO_2$

NH3 गैस प्राप्त होती है। 3,

 $(NH_4)_2SO_4 \xrightarrow{TH} 2NH_3 + H_2SO_4$

अमोनियम सल्फेट

NH3 गैस प्राप्त होती है।

 $(NH_4)_2SO_4 + 2NaOH \xrightarrow{\eta H} 2NH_3 + Na_2SO_4 + 2H_2O$

NH; गैस प्राप्त होती है। 4.

 $Mg_3N_2 + 6H_2O \rightarrow 3Mg(OH)_2 + 2NH_3$

 $NH_4Cl + Ca(OH)_2 \rightarrow 2NH_3 + CaCl_2 + 2H_2O$ 5.

व्यावसायिक स्थर पर अमोनिया को हॉबर प्रक्रिया द्वारा डाइनाइट्रोजन व डाइहाइडोजन से क्रिया कराकर प्राप्त करते हैं।

 $N_2 + 3H_2 \rightleftharpoons 2NH_3$

 $\Delta H = -46.1 \text{ k Jmol}^{-1}$

अधिक NH3 की उपलब्धि के लिये हमें निम्न परिस्थितियाँ रखनी होगी।

- कम ताप-अभिक्रिया ऊष्पाक्षेपी होने के कारण, कम ताप NH3 (a) की उपलब्धि को बढायेगा।
- उच्च दाब- लगभग 200 वायुमण्डलीय उच्च दाब पर अधिक NH3 प्राप्त होगी क्योंकि आयतन में कमी हो रही है।
- उत्प्रेरक-अभिक्रिया की दर महीन विभाजित आयरन ऑक्साइड उत्प्रेरक के प्रयोग करने से बढ जाती है। इसमें K2O/Al2O2/Mo की अल्पमात्रा उत्प्रेरक के लिये वर्धक का कार्य करते हैं।
- अमोनिया गैस को चाहे प्रयोगशाला में बनाये या व्यावसायिक स्तर पर बनाये, सामान्यत: नम होती है क्योंकि यह जल के प्रति तीव आकर्षित होती है।

इसे CaO पर से प्रवाहित कर शुष्क की जाती है।

इसे सान्द्र H_2SO_4 , $CaCl_2$ व P_2O_5 के द्वारा शुष्क नहीं करते क्योंकि NH3 गैस इन निर्जलीकारक पदार्थी से क्रिया करती हैं।

 $2NH_3 + H_2SO_4 \rightarrow (NH_4)_2SO_4$

अमोनियम सल्फेट

 $8NH_3 + CaCl_2 \rightarrow CaCl_2$. $8NH_3$

योगात्मक यौगिक

 $P_4O_{10} + 6H_2O \rightarrow 4H_3 PO_4$

 $3NH_3 + H_3PO_4 \rightarrow (NH_4)_3PO_4$

अमोनियम फॉस्फेट

- अमोनिया गैस एक तीखी गंधवाली, रंगहीन गैस है इसकी गंध अमोनिकल गंध द्वारा जानी जाती है।
- अमोनिया गैस वायु से हल्की होती है।
- NH3 जल में बहुत अधिक विलेय होती है। 1.cc जल में 1000 cc NH3 विलेय होती है। जल में NH3 की उच्च विलेयता अन्तरा आण्विक हाइडोजन बन्ध के कारण होती है।

(i) $Ag^+ + 2NH_3 \rightarrow [Ag(NH_3)_2]^+$

diammine silver (1) ion

 $Cd^{2-} + 4NH_3 \rightarrow [Cd(NH_3)_4]^{2-}$

tetrammine cadmium (II) ion

 $Cu^{2+} + 4NH_3 \rightarrow [Cu(NH_3)_4]^{2-}$

tetrammine copper(II) ion

(ii)
$$4NH_3 + 5O_2 \xrightarrow{Pt} 4NO + 6H_2O$$

नाइट्रिक ऑक्साइड

(iii) $FeCl_3 + 3NH_4OH \rightarrow Fe(OH)_3 + 3NH_4Cl$

- 10. अमोनिया नाइट्रिक अम्ल [ओस्टवाल्ड प्रक्रिया] एवं सोडियम कार्बोनेट के निर्माण में प्रयुक्त होती है।
 - अमोनिया मुख्यत: विभिन्न प्रकार के उर्वरकों को जैसे यूरिया, अमोनियम नाइट्रेट, अमोनियम सल्फेट आदि को बनाने में प्रयुक्त होती है।
 - अमोनियभ नाइट्रेट व Al पाउडर का मिश्रण अमोनल नाम से विस्फोटक के रूप में प्रयुक्त किया जाता है।
- $NH_4NO_3 + AI$ पाउडर \rightarrow अमोनल नामक विस्फोट h1.
- NH₄NO₃+TNT [Trinitrotoluene] → अमेटॉल h2.
- 13. इसका सूत्र NO है। [*नाइट्रिक ऑक्साइड*]

(Hes)

- इस ऑक्साइड में N की ऑक्सीकरण अवस्था +2 है।
- यह ऑक्साइड निम्न अनुनादी संरचनायें प्रदर्शित करता है।

 $: \stackrel{\Theta}{N} \equiv \stackrel{\Phi}{O}:$: N = O: (H es)

इसका सूत्र N₂O है । [नाइट्रस ऑक्साइड]

- इस ऑक्साइड में N की ऑक्सीकरण अवस्था +1 है।
- यह ऑक्साइड निम्न अनुनादी संरचनायें प्रदर्शित करता है।

- इसका सूत्र N2O3 है। नाइट्रोजन (II) ऑक्साइड h5.
 - इस ऑक्साइड में N की ऑक्सीकरण अवस्था +3 है।
 - यह निम्न अनुनादी संरचनायें प्रदर्शित करता है।

समतलीय

- इस ऑक्साइड का सूत्र NO2 है। *नाइट्रोजन (IV) ऑक्साइड*
- इस ऑक्साइड में N की ऑक्सीकरण अवस्था +4 है।
- यह निम्न अनुनादी संरचनायें प्रदर्शित करता है।

- इस ऑक्साइड का सूत्र N₂O₅ है।
- इस ऑक्साइड में N को ऑक्सीकरण अवस्था +5 है।
- ठोस अवस्था में N_2O_5,NO_2^\oplus व NO_3^- का आयिनक यौगिक है
- यह निम्न अनुनादी संरचनायें बनाता है।

यह ऑक्साइड निम्न अनुनादी संरचनायें प्रदर्शित करता है। 18.

यह निम्न अनुनादी संरचनायें प्रदर्शित करता है।

TIETE CONTROL IN THE STATE OF T

- नाइट्रोजन निम्न प्रकार की ऑक्सो अम्ल बनाती है।
 - (i) हाइपोनाइट्रस अम्ल

 $H_2N_2O_2$

- (ii) नाइट्रस अम्ल

- HNO₂
- (iii) नाइट्रिक अम्ल
- HNO₃

उपरोक्त तीनों ऑक्सो अम्लों में हमें नाइट्रिक अम्ल के बारे में विस्तार <u>से</u> अध्य<u>य</u>न क<u>रना है।</u>

विरचन (Preparation)

प्रयोगशाला में, नाइट्रिक अम्ल, काँच के रिटार्ट में सान्द्र $m H_2SO_4$ व सोडियम नाइट्रेट (NaNO3) अथवा पोटेशियम नाइट्रेट [KNO3] को गर्म करके बनाते हैं।

 $NaNO_3 + H_2SO_4 \rightarrow NaHSO_4 + HNO_3$

नाइट्रिक अस्त का व्यापारिक निर्माण (Manufacture of Nitric Acid)

- नाइट्रिक अम्ल को बड़े स्तर पर अमोनिया के उत्प्रेरकीय ऑक्सीकरण द्वारा बनाया जाता है तथा यह प्रक्रिया ओस्टवाल्ड विधि (Ostwald Process) से जानी जाती है।
- इस विधि को प्रक्रियायें चित्र के साथ निम्न रूप से प्रस्तुत होती हैं...

- नाइंट्रिक अम्ल को निम्न पदों में प्राप्त करते हैं।
- परिवर्तक (Converter)— यह स्टील का बना होता है तथा प्लेटीनम जाली उत्प्रेरक के साथ बंधी होती है।
- अमोनिया (हॉबर विधि से प्राप्त) व धूल मुक्त वायु का मिश्रण 1:10 के अनुपात में आयतन अनुसार परिवर्तक की पेंदी से प्रवेश कराया जाता है जो लगभग 1100 K पर वैद्युत रूप से गर्म किया जाता है। अमोनिया नाइट्रिक ऑक्साइड में ऑक्सीकृत हो जाती है।

$$4NH_3 + 5O_2 \xrightarrow{(Pt)} 4NO + 6H_2O; \Delta H = -89.9kJ$$

- चूँिक अभिक्रिया अत्यधिक ऊष्माक्षेपी होती है, इसलिए अभिक्रिया के दौरान निकली ऊष्मा आवश्यक ताप को नियमित बनाये रखती है। इसीलिए आगे गर्म करने की आवश्यकता नहीं होती है।
- 2. शीतलक पाइप (Cooler pipes)— परिवर्तक से निकलने वाली गैसें अत्यधिक गर्म होती हैं। ये शीतलक पाइप की सहायता से लगभग 320 से 325K पर ठण्डी की जाती है।
- 3. ऑक्सीकरण कक्ष (Oxidation Chamber) इस कक्ष में नाइट्रिक ऑक्साइड जो अत्यधिक अस्थायी होती है, ज्यादा वायु से मिश्रित होकर नाइट्रोजन डाइऑक्साइड बनाती है—

$$2NO + O_2 \rightarrow 2NO_2$$

- 4. अवशोषण टावर (Absorption tower)—
- नाइट्रोजन डाइऑक्साइड अवशोषण टावर की तली जो अम्लप्रूफ फ्लिन्ट या क्वार्टज के टुकड़े के साथ बंधी होती है, से प्रवेश करायी जाती है।
- टावर के ऊपर से जल गिरता रहता है। यह नाइट्रोजन डाइऑक्साइड से जुड़ कर निम्न रूप से नाइट्रिक अम्ल बनाती है।

$$3NO_2 + H_2O \rightarrow 2HNO_3 + NO$$

- बनी हुई नाइट्रिक ऑक्साइड अभिक्रिया को सतत रखने के लिए पुनः
 चिक्रत होती है।
- बना हुआ अम्ल अत्यधिक तनु होता है व पुनः प्राप्त किया जा सकता है।
- 5. अम्ल की सान्द्रता (Concentration of the acid)— तनु नाइट्रिक अम्ल कम दाब के अन्तर्गत लगभग 68% तक इसके आसवन द्वारा सान्द्रित किया जा सकता है।
- इसे आगे सान्द्र H₂SO₄ के निर्जलीकरण द्वारा (लगभग 98% तक) सान्द्रित किया जा सकता है।
- सान्द्रण के परिणामस्वरूप प्राप्त अम्ल इसमें घुली हुई कुछ NO₂ गैस के कारण भूरे रंग का होता है इसे सधूम नाइट्रिक अम्ल [Furning

- यह गैस इसमें कुछ समय के लिए शुष्क वायु के बुलबुलों के प्रवेश द्वारा निकाली जा सकती है।
- पूर्णरूप से निर्जलीकृत अम्ल फॉस्फोरस पेन्टाक्साइङ (P_4O_{10}) पर जलीय अम्ल के आसवन द्वारा प्राप्त हो सकता है।

नाइट्रिक अम्ल की प्रयोगशाला विधि (Laboratory Preparation of Nitric Acid)

 नाइट्रिक अम्ल प्रयोगशाला में सोडियम या पोटेशियम को 423 K से 475K गर्म करके एक काँच के पात्र में बनाया जा सकता है।

$$NaNO_3 + H_2SO_4 \xrightarrow{TMI} NaHSO_4 + HNO_3$$

नाइट्रिक अम्ल के गुण (Properties of Nitric Acid) भौतिक गुण (Physical Properties)

- नाइट्रिक अम्ल शुद्ध अवस्था में रंगहीन तेलीय द्रव होता है। अशुद्ध अम्ल इसमें घुले नाइट्रोजन डाइऑक्साइड के कारण पीला भूरा होता है।
- निर्जलीकृत अम्ल का क्वथनांक 355.6K है तथा 231.4K पर सफेद ठोस में जम जाता है। 68.5% अम्ल रस वाला एक जलीय विलयन जल के साथ समक्वथनी (azeotrope) बनाता है 394.0K पर उबलता है।
- अम्ल त्वचा पर प्रबल संक्षारक प्रभाव डालता है तथा पीड़ादायक घाव बनाता है।

रासायनिक गुण (Chemical Properties)

नाइट्रिक अम्ल के महत्वपूर्ण रासायनिक गुण निम्नवत् है---

1. अपघटन (Decomposition)— तीत्र गर्म करने पर अम्ल अपघटित होकर NO_2 व O_2 देता है।

$$4\text{HNO}_3 \xrightarrow{\text{3CH}} 2\text{H}_2\text{O} + 4\text{NO}_2 + \text{O}_2$$

2. अम्लीय लक्षण (Acidic Character)— नाइट्रिक अम्ल एक बहुत प्रबल अम्ल होता है तथा जलीय विलयन निम्न रूप से आयनित होता है।

$$HNO_3 + H_2O \rightleftharpoons H_3O^+ + NO_3$$

यह इसीलिए, एक **क्षारीय (Monobasic) अम्ल** है व धातुओं के हाइड्रोक्सॉइडों, ऑक्साइडों, कार्बोनेट्स व बाईकार्बोनेट्स के साथ अभिक्रिया करके संगत नाइट्रेटस बनाते हैं।

$$\begin{split} \text{NaOH} + \text{HNO}_3 &\rightarrow \text{NaNO}_3 + \text{H}_2\text{O} \\ \text{CaO} + 2\text{HNO}_3 &\rightarrow \text{Ca(NO}_3)_2 + \text{H}_2\text{O} \\ \text{Na}_2\text{CO}_3 + 2\text{HNO}_3 &\rightarrow 2\text{NaNO}_3 + \text{H}_2\text{O} + \text{CO}_2 \\ \text{NaHCO}_3 + \text{HNO}_3 &\rightarrow \text{NaNO}_3 + \text{H}_2\text{O} + \text{CO}_2 \\ \end{split}$$

3. ऑक्सीकारक गुण (Oxidising Properties)— नाइट्रिक अम्ल एक बहुत प्रबल ऑक्सीकारक होता है तथा तनु व सान्द्र दोनों रूपों में तुरन्त

 2HNO_3 (सान्द्र) \rightarrow $\text{H}_2\text{O} + 2\text{NO}_2 + [\text{O}]$ 2HNO_3 (तन्) \rightarrow $\text{H}_2\text{O} + 2\text{NO} + 3[\text{O}]$

नाइट्रिक अम्ल की कुछ ऑक्सीकारक अभिक्रियाओं का वर्णन दिया गया है—

- (A) अधातुओं का ऑक्सीकरण (Oxidation of Non-metals)
 अधातुएँ तनु HNO3 के साथ सामान्य रूप से ऑक्सीकृत नहीं होती हैं।
 किन्तु सान्द्र अम्ल उनमें से अधिकांश को ऑक्सीकृत कर सकता है।
 उदाहरण के लिए—
- (i) **कार्बन**, कार्बोनिक अम्ल में ऑक्सीकृत हो जाता है। $\frac{2 \text{HNO}_3 \to 2 \text{NO}_2 + \text{H}_2 \text{O} + \text{O}] \times 2}{\text{C} + 2[\text{O}] + \text{H}_2 \text{O} \to \text{H}_2 \text{CO}_3} \\ \hline \frac{\text{C} + 4 \text{HNO}_3 \to \text{H}_2 \text{CO}_3 + 4 \text{NO}_2 + \text{H}_2 \text{O}}{\text{C} + 4 \text{HNO}_3 \to \text{H}_2 \text{CO}_3 + 4 \text{NO}_2 + \text{H}_2 \text{O}}$
- (ii) आयोडीन, आयोडिक अम्ल में ऑक्सीकृत हो जाता है। $2\text{HNO}_3 \to 2\text{NO}_2 + \text{H}_2\text{O} + \text{O}] \times 5$ $I_2 + 5[\text{O}] + \text{H}_2\text{O} \to 2\text{HIO}_3$ $\overline{I_2 + 10\text{HNO}_3} \to 2\text{HIO}_3 + \overline{10\text{NO}_2 + 4\text{H}_2\text{O}}$
- (iii) **फॉस्फोरस**, फास्फोरिक अम्ल में ऑक्सीकृत हो जाता है। $\frac{2 \text{HNO}_3 \to 2 \text{NO}_2 + \text{H}_2 \text{O} + \text{O}] \times 10}{P_4 + 10 \ [\text{O}] + 6 \text{H}_2 \text{O} \to 4 \text{H}_3 \text{PO}_4} \\ \hline \frac{P_4 + 20 \text{HNO}_3 \to 4 \text{H}_3 \text{PO}_4 + 20 \text{NO}_2 + 4 \text{H}_2 \text{O}}{P_4 + 20 \text{HNO}_3 \to 4 \text{H}_3 \text{PO}_4 + 20 \text{NO}_2 + 4 \text{H}_2 \text{O}}$
- (iv) सल्फर, सल्फ्यूरिक अम्ल में ऑक्सीकृत हो जाता है। $\frac{2\text{HNO}_3 \to 2\text{NO}_2 + \text{H}_2\text{O} + \text{O}] \times 24}{\text{S}_8 + 24 \text{ [O]} + 8\text{H}_2\text{O} \to 8\text{H}_2\text{SO}_4} \\ \overline{\text{S}_8 + 48\text{HNO}_3 \to 8\text{H}_2\text{SO}_4 + 48\text{NO}_2 + 16\text{H}_2\text{O}}$
- (B) धातुओं का ऑक्सीकरण (Oxidation of Metals)

नाइट्रिक अम्ल लगभग सभी धातुओं के साथ अभिक्रिया करके विभिन्न उत्पाद बनाता है। धातुओं के साथ अभिक्रियायें सिक्रयता श्रेणी में उनकी स्थिति के आधार पर तीन प्रकार की होती है।

- धातुएँ जो सिक्रयता श्रेणी में हाइड्रोजन के ऊपर होती है।
- धातुएँ जो सिक्रयता श्रेणी में हाइड्रोजन के नीचे होती हैं।
- उत्कृष्ट धातुएँ जैसे गोल्ड (सोना) व प्लेटीनमा
 इन धातुओं पर नाइट्रिक अम्ल की विभिन्न अभिक्रियाओं का विवरण हम समझेंगे।

धातुएँ जो सक्रियता श्रेणी में हाइड्रोजन के ऊपर रखी जाती हैं—

 ये सिक्रिय धातुओं के रूप में जाने जाते हैं व हाइड्रोजन की अपेक्षा ज्यादा विद्युत धनात्मक होती है। उदाहरण Na, K, Ca, Mg, Al,Zn, Cd, Fe, Co, Ni आदि। ऑक्सीकरण का सामान्य तरीका है— धातु + HNO₃ → धातु नाइट्रेट + H; HNO₃ + H→ अपचयन उत्पाद

ਪੁਆਨ ਜਿਸਤ ਕਰਾ ਸੇ ਆਤਰਕ ਦਾਵਤੇ ਤੇ — 🚓

$$\begin{array}{c} \text{HNO}_3 \xrightarrow{\text{H}^{\circ}} \text{NO}_2 \xrightarrow{\text{+2H}} \text{NO} \xrightarrow{\text{+5H}} \text{NH}_3 \xrightarrow{\text{HNO}_3} \\ \text{NH}_4 \text{NO}_3 \xrightarrow{\text{-2H}_2\text{O}} \text{N}_2\text{O} \end{array}$$

उत्पाद जो वास्तव में बनता है, निर्भर करता है—

- (i) धातु को प्रकृति (ii) अम्ल की सान्द्रता (iii) ताप पर।
- (i) जिंक के साथ (With Zinc)— जिंक सान्द्र, तनु व अति तनु नाइट्रिक अम्ल के साथ निम्न उत्पाद बनाता है। सान्द्र नाइट्रिक अम्ल को प्रयुक्त करने पर

Zn + 2HNO₃ \rightarrow Zn(NO₃)₂ + 2H HNO₃ + H \rightarrow H₂O + NO₂] \times 2 Zn + 4HNO₃ (सान्द्र) \rightarrow Zn(NO₃)₂ + 2H₂O + 2NO₂ नाइट्रोजन डाइऑक्साइड

अति तनु नाइट्रिक अम्ल को प्रयुक्त करते हुए $Zn + 2HNO_3 \rightarrow Zn(NO_3)_2 + 2H] \times 4$ $HNO_3 + 8H \rightarrow NH_3 + 3H_2O$ $NH_3 + HNO_3 \rightarrow NH_4NO_3$

4Zn+ 10HNO₃ (अति तनु) → 4Zn(NO₃)₂ + 3H₂O + NH₄NO₃ अमो. नाइट्रेट

धातुएँ जो सक्रियता श्रेणी में हाइड्रोजन के नीचे होती है।

उदाहरण के लिए Cu, Ag. Hg आदि। ये हाइड्रोजन की अपेक्षा कम विद्युत धनात्मक होती हैं व नवजात हाइड्रोजन नहीं निकाल सकती हैं जैसा कि विद्युत धनात्मक धातुओं में दिखता है। अम्ल पहले उनको क्रमागत ऑक्साइडों में बदलता है जो फिर आगे की अभिक्रियाओं में भाग लेते हैं।

धातु + HNO $_3$ \to धातु ऑक्साइड + NO $_2$ (या NO) + H $_2$ O धातु ऑक्साइड + HNO $_3$ \to धातु नाइट्रेट + H $_2$ O

(i) कॉपर के साथ (With copper)— सान्द्रित व अति तनु नाइट्रिक अम्ल निम्न रूप से अभिक्रिया करता है— सान्द्र नाइट्रिक अम्ल को प्रयुक्त करते हुए,

अति तेनु नाइट्रिक अम्ल को प्रयुक्त करते हुए— 3Cu + 2HNO₃ → 3CuO + 2NO + H₂O CuO + 2HNO₂ → Cu(NO₂)₂ + H₂OI × 3

नाइट्रिक अम्ल के उपयोग (Dieerof Ritige Acid)

नाइट्रिक अम्ल के उपयोग—

- (i) विस्फोटकों जैसे T.N.T. डायनामाइट, पिक्रिक अम्ल आदि के निर्माण में।
- (ii) नाइट्रो यौगिकों के निर्माण में जो परफ्यूम, रोगन (dyes) व औषधियों आदि में प्रयुक्त पाये जाते हैं।
- (iii) उर्वरकों के निर्माणें जैसे अमोनिया नाइट्रेट व क्षारीय कैल्शियम नाइट्रेट [CaO.Ca(NO3)3]
- (iv) कृत्रिम रेश्म के निर्माण में।
- गोल्ड तथा प्लेटिनम के शुद्धिकरण में प्रयुक्त एक्वा-रेजिया के विरचन में।
- (vi) प्रयोगशाला में उपयोगी अभिकर्मक के रूप में।

नाइट्रिक, अपल व नाइट्रेट आधन की संस्कृत. (Structure of Nitric acid and Nitrit ion)

नाइट्रिक अम्ल की संरचना भौतिक विधियों द्वारा स्थापित होती है जैसे इलेक्ट्रॉन विवर्तन व स्पेक्ट्रोस्कोप विधियाँ। वाष्प अवस्था में, अम्ल एक रिखक गुण होता है जैसा कि चित्र में दर्शाया गया है। लेकिन उपर्युक्त संरचना वास्तव में निम्न दो संभावित संरचनाओं का एक संकर होती है।

नाइट्रेंट (२५०) आयन की मिल्ट्री नाइट्रिक अम्ल एक H+ आयन निकालकर नाइट्रेट आयन बनाता है जो निम्न दी गयी संरचनाओं का एक संकर होता है।

$$\begin{bmatrix} O & O^{\circ} & O^{\circ} \\ \parallel & & & & \\ N^{\circ} & & & & \\ O & O & O^{\circ} & & \\ \end{bmatrix} \begin{pmatrix} O & O^{\circ} \\ \parallel & & & \\ O & O & \\ O & O & \\ \end{bmatrix}$$

चित्र: NO3-आयन की अनुनादी संरचनाएँ

नाइट्रेट आयन के लिए सिंग प्रशिक्षण (Ring Test for Nitrate ion)

 एक लवण में नाइट्रेट की उपस्थिति रिंग परीक्षण द्वारा जानी जा सकती है। लवण का जलीय विलयन एक परखनली में लिया जाता है तथा ताजे बने फेरस सल्फेट विलयन के समान आयतन के साथ मिलाया जाता है।

p-ब्लॉक के तत्व

अब सान्द्र सल्फ्यूरिक अम्ल की बूंदें परखनली की दीवार से इसे बिना हिलाते हुए डालते रहते हैं जब तक कि एक गहरे भूरे रंग का छल्ला दोनों द्रवों के मिलने के स्थान पर बने। इस स्थान पर सल्फ्यूरिक अम्ल की तेलीय पर्त व जलीय पर्त मिलती है। प्रयुक्त होने वाली रासायनिक अभिक्रियायें निम्नवत् हैं—

 NO_3^- (aq) + $3Fe^{2+}$ (aq) + $4H^+$ (aq) $\rightarrow NO(g)+3Fe^{3+}$ (aq) + $2H_2O(I)$

 $Fe^{2+} (aq) + NO(g) + 5H_2O(l) \rightarrow [Fe(H_2O)_5NO]^{2+} (aq)$ Pentaquanitrosyliron (II)ion

लाल भूरा संकर

7.6 ESCENISE EL SUGEO Continue frações o plasemoras

- फॉस्फोरस प्रकृति में बहुतायत में पाये जाने वाले तत्वों में से एक
- यह मुख्यत: फास्फेट खनिजों के रूप में भूपर्पटी में पाया जाता है।
 फॉस्फोरस मुख्यत: तीन अपररूपों में पाया जाता है।
 - (a) श्वेत फॉस्फोरस
 - (b) लाल फॉस्फोरस
 - (c) काला फॉस्फोरस

उपरोक्त तीनों अपररूपों के अलावा अंगूरी रंग का व बैंगनी रंग का फॉस्फोरस भी पाया जाता है।

- विद्युत आर्क भट्टी से प्राप्त फॉस्फोरस को श्वेत फॉस्फोरस कहते हैं।
- इसे वायु में खुला छोड़ने पर यह पीला पड़ जाता है। अत: इसे पीला फॉस्फोरस भी कहते हैं।

- श्वेत फॉस्फोरस P₄ अणु के रूप में पाया जाता है, यह चतुष्फलक के रूप में पाया जाता है। प्रत्येक P अन्य तीन P से सहसंयोजक बन्ध द्वारा जुड़ा होता है।
- P₄ अणुओं में कोणीय तनाव के कारण कोण 60° का होता है।
- यह कम स्थायी होने के कारण अत्यधिक क्रियाशील होता है।
- यह निम्न लक्षण प्रदर्शित करते हैं।

- (i) ताजा कटा हुआ फॉस्फोरस सफेद होता है। जबकि कुछ समय बाद यह पीला पड़ जाता है।
- .(ii) यह मोम जैसा मुलायम होने के कारण इसे चाकू से काट सकते हैं।
- (ui) इसमें लहसून जैसी गंध आती है।
- (iv) इसका गलनांक 317K व क्वथनांक 553K होता है।
- (v) यह बहुत विषैला होता है, इसमें काम करने वाले कर्मचारी में फ्रॉसीजॉ नामक बीमारी होती है जिसमें जबड़े की हिड्डियों का क्षय होने लगता है।
- (vi) यह जल में अविलेय होता है लेकिन CS_2 , एल्कोहॉल व ईथर में विलेय होता है।

(vii) ऑक्सीकरण (Oxidation)

 यह वायु व O₂ में तुरन्त आग पकड़ लेता है व हरे रंग की चमक के साथ जलकर फॉस्फोरस पेन्टाऑक्सोइड बनाता है।

$$P_4 + 5O_2 \rightarrow P_4O_{10}$$

नोट अतः श्वेत फॉरफोरस को जल में रखा जाता है श्वेत फॉस्फोरस का स्वतः चमकना प्रतिदीप्ति कहलाती है।

(viii) अधातुओं के साथ क्रिया

श्वेत फॉस्फोरस हैलोजन, सल्फर के साथ क्रिया करता है।

$$P_4 + 6Cl_2 \rightarrow 4PCl_1$$

 $P_4 + 10\text{Cl}_2 \rightarrow 4\text{PCl}_5$

 $8P_4 + 3S_8 \longrightarrow 8P_4S_3$

टेट्रा फॉस्फोरस ट्राइसल्फाइड

(ix) धातुओं के साथ क्रिया

श्वंत फॉस्फोरस कई धातुओं के साथ जुड़कर फॉस्फाइड बनाता है।

 $P_4 + 6Mg \rightarrow 2Mg_3P_2$

मैग्नीशियम फॉस्फॉइड

 $P_4 + 12Na \rightarrow 4Na_3P$

सोडियम फॉस्फॉइड

(x) जलीय क्षारों के साथ अभिक्रिया

जब श्वेत फॉस्फोरस को जलीय NaOH या KOH के साथ गर्म करते हैं तो फासफीन गैस प्राप्त होती है।

 $P_4 + 3NaOH + 3H_2O \rightarrow PH_3 + NaH_2PO_2$

फास्फीन सोडि. हाइपो फॉस्फाइट

(xi) अपचयन प्रकृति

श्वेत फॉस्फोरस आसानी से ऑक्सीजन ले सकता है। अत: यह अपचायक के रूप में कार्य करता है तथा सल्फ्यृरिक अम्ल व नाइट्रिक अम्ल दोनों को अपचयित करता हैं।

 $P_4 + 10H_2SO_4 \rightarrow 10SO_2 + 4H_3PO_4 + 4H_2O$

 $P_4 + 20HNO_3 \rightarrow 20 NO_2 + 4H_3PO_4 + 4H_2O$

6.1 लाल फॉस्फोरस (Red Plasgimenas)

 कोल गैस या CO₂ के अक्रिय वातावरण में सफेद फॉस्फोरस को 540-570 K ताप के मध्य गर्म करने पर लाल फॉस्फोरस का निर्माण किया जाता है। श्वेत फॉस्फोरस की तरह लाल फॉस्फोरस भी P₄ रूप में पाया जाता
 है। यह बहुलीकृत रूप में पाया जाता है।

नोट- बहुलीकृत संरचना के कारण यह श्वेत फॉस्फोरस की तुलना में कम क्रियाशील है।

लाल फॉस्कोरस निम्न प्रमुख लक्षण प्रदर्शित करता है।

- यह कठोर, क्रिस्टलीय ठोस है।
- (ii) यह गंधहीन, अविषैली प्रकृति का है।
- (iii) यह जल में अविलेय है एवं कार्बनिक जिलायकों जैसे CS2 alcohol व ईथर में विलेय है।
- (iv) यह अधिक स्थायी है, इसका ज्वलन ताप 543K है अत: यह वायु
 में आग नहीं पकड़ता अत: इसे वायु में खुला रखा जा सकता है।
- (v) यह कॉस्टिक क्षार के साथ क्रिया नहीं करता।
- (vi) यह अधातुओं से संयोजित होता है।
- (vii) यह धातुओं से केवल उच्च ताप पर क्रिया करता है।
- (viii) यह ऑक्सीजन में 565K ताप पर जलकर फॉस्फोरस पेन्टा ऑक्साइड बनाता है लेकिन प्रतिदीप्ति प्रदर्शित नहीं करता।

$$P_4 + 5O_2 - \xrightarrow{565K} P_4O_{10}$$

(ix) जब इसे गर्म करते हैं तो यह ऊर्ध्वपातित होकर वाष्प बनाता है, जब इन वाष्प को संघनित करते हैं तो खेत फॉस्फोरस बनता है।

श्वेत फॉस्फोरस व लाल फॉस्फोरम में अन्तर

- श्वेत फॉस्फोरस में लहसुन जैसी गंध आती है।
- 2. यह वायु में आग पकड़ता है।
- 3. यह जहरीला होता है।
- यह NaOH विलयन के साथ PH₃ बनाता है।
- 5. यह प्रतिदीप्ति प्रदर्शित करता है।

लाल फॉस्फोरस में कोई गंध नहीं आती है। यह वायु में आग नहीं पक इती यह जहरीला नहीं होता। यह NaOH विलयन के साध कोई क्रिया नहीं करता। यह प्रतिदीति प्रदिशत नहीं करता।

6- 30 Fell Hall Back (Balck phosphrous)

- काला फॉस्फोरस के दो रूप होते हैं जिन्हें α काला फॉस्फारस ब
 β काला फॉस्फोरस।
- जब लाल फॉस्फोरस को 803K ताप पर, बन्द निलका में गर्म करते
 हैं तो α- काला फॉस्फोरस बनता है।

7.18

- α- काला फॉस्फोरस ऊर्ध्वपातित नहीं होता, इसके क्रिस्टल अपारदर्शी, एकनताक्ष या त्रिसमन ताक्ष होते हैं। यह वायु में ऑक्सीकृत नहीं होता।
- P-P-P बंध कोण 90° का होता है।
- β- काला फॉस्फोरस श्वेत फॉस्फोरस को 473K ताप तथा उच्च दाब पर गर्म करके बनाया जाता है। यह वायु में 673K तक नहीं जलता।

7.7 फॉस्फोन (Phosphine)

- फॉस्फीन, फॉस्फोरस का हाइड्राइड व्युत्पन्न है।
- फॉस्फीन का अणुसूत्र PH3 है।

7.7.1 वनाने की विधियाँ

 कैल्शियम फॉस्फाइड की जल या तनु HCl की क्रिया से प्राप्त की जाती है।

$$Ca_3P_2 + 6H_2O \xrightarrow{\overline{qq} HCl} 3Ca(OH)_2 + 2PH_3$$

 सोडियम फॉस्फाइड की जल या तनु HCl की क्रिया से भी प्राप्त की जा सकती है।

$$Na_3P + 3HOH \rightarrow 3NaOH + PH_3$$

 प्रयोगशाला में फॉस्फीन गैस का निर्माण CO₂ या कोल गैस के अक्रिय वातावरण में श्वेत फॉस्फोरस कास्टिक सोडा के प्रबल विलयन के साथ गर्म करने पर प्राप्त होती है।

$$P_4 + 3NaOH + 3H_2O \rightarrow 3NaH_2PO_2 + PH_3$$

सोडि. हाइपो फॉस्फाइट

फॉस्फीन के साथ फॉस्फोरस डाइहाइड्राइड भी बनता है जो अत्यधिक प्रज्वलनशील होता है। जैसे ही गैस के बुलबुले वायु के सम्पर्क में आते हैं ये आग पकड़ लेते हैं एवं स्वतः ही धुएँ के छल्ले बनाते हैं। जिन्हें वार्टेक्सवलय (Vortex rings) कहते हैं, ये छल्ले P_4H_4 के जलने से बनते है।

$$3P_4+8NaOH+8H_2O \rightarrow 8NaH_2~PO_2+2P_2H_4$$
 सोडि. हाइपो फॉस्फाइट $P_2H_4+7O_2 \rightarrow 4HPO_3+2H_2O$

2H4 + 7O2 → 4HPO3 + 2H2O मेटा फॉस्फोरिक अम्ल

p-ब्लॉक के तत्व

- शुद्ध अवस्था में यह अज्यलनशील होती है, परंतु वायु में यह आग पकड़ लेती है।
- इसका कारण P_2H_4 (फास्फोरस डाइहाइड्राइड) या P_4 की अशुद्धियों के रूप में उपस्थिति है।
- इसे अशुद्धियों से मुक्त करने के लिए HI में अवशोषित किया जा
 है, जिससे फास्फोनियम आयोडाइड (PH₄I) बन जाता है और
 KOH से अभिकृत करने पर पुन: फास्फीन उत्पन्न करता है।

$$PH_3 + HI \longrightarrow PH_3I$$

$$PH_4I + KOH \longrightarrow KI + H_2O + PH_3$$

7.7.2 फॉरफीन की संरचना (Structure of Phosphine

- इसकी संरचना NH₃ जैसी होती है।
- संकरण अवस्था sp³,HPH बन्ध कोण 94°, पिरेमिड आकृति होती है।

P—H बन्ध की लम्बाई = 141.5 pm

 PH₃ के P पर एकांकी इलेक्ट्रॉन युग्म होने के कारण यह क्षारीय प्रवृत्ति प्रदर्शित करता है, इसकी क्षारीय प्रकृति NH₃ से कम होती है।

7.7.3 फॉस्फोर के गुण

- यह रंगहीन, सड़ी मछली के समान गंध वाली अत्यन्त विषैली गैस है।
- यह जल में आंशिक रूप से विलेय है।
- PH_3 का जलीय विलयन प्रकाश की उपस्थिति में विघटित होकर लाल फॉस्फोरस तथा H_2 देता है।

$$4PH_3 \rightarrow P_4 + 6H_2$$

लाल फॉस्फोरस

- फॉस्फीन HNO₃. Cl₂ तथा Br₂ जैसे ऑक्सीकारक के वाष्पों की अति सूक्ष्म मात्रा के सम्पर्क में आने पर विस्फोटित होती है।
- CuSO₄ व HgCl₂ विलयन द्वारा अवशोषित करने पर संगत फॉस्फाइड प्राप्त होता है।

$$3\text{CuSO}_4 + 2\text{PH}_3 \rightarrow \text{Cu}_3\text{P}_2 + 3\text{H}_2\text{SO}_4$$

 $3\text{HgCl}_2 + 2\text{PH}_3 \rightarrow \text{Hg}_3\text{P}_2 + 6\text{HCl}$

- फॉस्फीन अम्ल HBr से क्रिया कर फॉस्फोनियम यौगिक बनाते हैं। $PH_3 + HBr \rightarrow PH_4Br$
- इस अभिक्रिया में PH₃ क्षारीय प्रवृत्ति प्रदर्शित करती है।

१३% डपयीग

- इसका उपयोग धूमपट (Smoke screens) बनाने में होता है।
- 2. कैल्शियम कार्बाइड तथा कैल्शियम फॉस्फाइड के पात्रों को छंदित करके समूह में फैंक दिया जाता है। जिससे गैसे उत्पन्न होती है, जलती है और संकेत के रूप में कार्य करती है। इन्हें होम्ज सिग्नलों में प्रयोग करते हैं।

उदा.6 किस तरह से यह सिद्ध कर सकते हैं कि PH3 की प्रकृति क्षारकीय है।

- हल- PH3 में उपस्थित P पर एकांकी इलेक्ट्रॉन युग्म उपस्थित होता है अत: PH3 लुईस क्षार है।
- PH₃, HI जैसे अम्लों के साथ अभिक्रिया करके PH₄I बनाता है जो यह दर्शाता है कि इसकी प्रवृत्ति क्षारकीय है।

 $PH_3 + HI \rightarrow PH_4I$

उदा.7 PH3 से PH4+ का आबन्ध कोण अधिक है? क्यों?

- हल- PH3 व PH4- दोनों में P पर संकरण अवस्था sp3 पायी जाती है।
- PH₄- में बन्ध कोण 109°28' होता है जबिक PH₃ में एक एकांकी इलेक्ट्रॉन उपस्थित होने के कारण इसमें बन्ध कोण 109°28' से घटकर बहुत कम हो जाता है।

उदा.8 क्या होता है जब श्वेत फॉस्फोरस को CO2 के अक्रिय वातावरण में सान्द्र कास्टिक सोडा विलयन के साथ गर्म करते हैं।

हल- फॉस्फीन गैस PH_3 प्राप्त होती है।

 $P_4 + 3NaOH + 3H_2O \rightarrow PH_3 + 3NaH_2PO_2$

सोडि. हाइपो फॉस्फाइट

7.8 फॉस्फ्रेस के हैलाइड (Halides of Phosphorus)

- फॉस्फोरस दो प्रकार के हैलाइडस बनाता है।
- PX₃ व PX₅ [x = F, Cl, Br, I होता है।]
- PX₅ के बनने का कारण P में रिक्त d कक्षकों की उपस्थिति के कारण है।

7.8.। फॉस्फोरस ट्राइ क्लोतड्ड बनाने की विधियाँ

 रिटार्ट में लिये गये सफेद या लाल फॉस्फोरस पर शुष्क क्लोरीन गैस के प्रवाहित करने पर इसका निर्माण होता है।

 $P_4 + 6Cl_2 \rightarrow 4PCl_3$

2. श्वेत फॉस्फोरस पर धायोनिल क्लोराइड की अभिक्रिया से भी प्राप्त होता है।

> $P_4 + 8SOCl_2 \rightarrow 4PCl_3 + 4SO_2 + 2S_2Cl_2$ सल्फर मोनो क्लोराइङ

गुण-

- यह रंगहीन तैलीय द्रव है।
- यह नमी की उपस्थिति में जल अपघटित हो जाता है।

 $PCl_3 + 3H_2O \rightarrow H_3PO_3 + 3HCI$

- यह कार्बनिक यौगिक CH_3COOH , C_2H_5OH से क्रिया करता है। $3CH_3COOH + PCl_3 \rightarrow 3CH_3COCI + H_3PO_3$ $3C_2H_5OH + PCl_3 \rightarrow 3C_2H_5CI + H_3PO_3$
- इसकी संरचना NH3 जैसी ही है,
 (पिरैमिड) है। एकांकी इलेक्ट्रॉन युग्म उपस्थित होने के कारण यह लुईस क्षार की तरह व्यवहार करता है।

उपयोग-अनेक कार्बनिक यौगिकों के निर्माण में होता है। जैसे RCOCI. RCI आदि।

7.8.2 फॉस्फोरस प्रेन्टाक्लोराइड

बनाने की विधियाँ

 फॉस्फोरस पेन्टा क्लोराइड को प्राप्त करने के लिये श्वेत फॉस्फोरस को शुष्क Cl₂ गैस से आधिक्य में अभिक्रिया कराते हैं।

$$P_4 + 10Cl_2 \rightarrow 4PCl_5$$

2. PCl_5 का निर्माण श्वेत फॉस्फोरस पर सल्फ्यूराइल क्लोराइड की अभिक्रिया कराके भी करते हैं।

$$P_4 + 10 SO_2Cl_2 \rightarrow 4PCl_5 + 10 SO_2$$

गुण-

- यह एक हल्का पीत-श्वेत पाउडर है।
- यह नम वायु में जल अपघटित होकर POCl₃ देता है।

$$PCl_5 + H_2O \rightarrow POCl_3 + 2HC1$$

 $POCl_3 + 3H_2O \rightarrow H_3PO_4 + 3HC1$

 गर्म करने पर यह ऊर्ध्वपातित होता है अधिक गर्म करने पर यह वियोजित हो जाता है।

$$PCl_5 \xrightarrow{\text{31 Was fill q}} PCl_3 + Cl_2$$

• यह कार्बनिक यौगिकों जैसे CH_3COOH , C_2H_5OH , आदि में अभिक्रिया करते हैं।

$$\mathrm{CH_3-COOH} + \mathrm{PCl}_5 \to \mathrm{CH_3COCl} + \mathrm{POCl}_3 + \mathrm{HCl}$$

ऐसीटिल क्लोग्रइङ

$$C_2H_5OH + PCl_5 \rightarrow C_2H_5Cl + POCl_3 + HCl$$

ऐथिलक्लोराइङ

 कुछ विभाजित धातुओं जैसे चाँदी व टिन के साथ भी अभिक्रिया करके क्रमागत धातुओं के हैलाइड बनाते हैं।

$$2Ag + PCl_5 \rightarrow 2AgCl + PCl_3$$

सिल्वर क्लोराइड

Sn + 2PCl₅ \rightarrow SnCl₄ + 2PCl₃ स्टैनिक क्लोराइड

उपयोग (Uses)

कार्वनिक यौगिकों के संश्लेषण में किया जाता है जैसे C₂H₅CI,
 CH₃COCI आदि में I

संरचना

- PCl₅ में उपस्थित P पर संकरण अवस्था sp³d है।
- इसकी आकृति त्रिकोणिक द्विपिरैमिडी होती है।
- इसमें उपस्थित तीन P-CI आबन्ध जो तीनों निरक्षीय (Equatorial)
 पर स्थित है, समान है एवं बन्ध लम्बाई 202 pm है।
- जबिक दो अक्षीय आबन्ध (axial) जो तीन P-Cl बन्धों के लम्बवत है अलग व समान है। P-Cl बन्ध लम्बाई = 240 pm
- टोस अवस्था में PCI₅ एक आयितक यौगिक की तरह होता है जिसकी संरचना [PCI₄] - [PCI₆] है। इसमें धनायन [PCI₄] -चतुष्फलकीय व ऋणायन [PCI₆] - अष्टफलकीय होता है।

उदा.9 PCl3 नमी में धूम्र क्यों देता है?

हल- नमी की उपस्थिति में PCl₃ जल अपघटित होकर HCl के धूम देता है।

$$PCl_3 + 3H_2O \rightarrow H_3PO_3 + 3HCI \uparrow$$

उटा.10 क्या PCI₅ के पाँचों आबन्ध समतुल्य है।अपने उत्तर की पुष्टि कीजिये।

हल- PCl₅ की त्रिकोणिक द्विपिरैमिडी संरचना होती है। [sp³d संकरण के कारण] इनके तीनों निरक्षीय (Equatorial) P-Cl आबन्ध समान है। लेकिन दो P-Cl अक्षीय आबन्ध भिन्न है तथा निरक्षीय आबन्धों से बड़े हैं।

उदा 11 क्या होता है जब PCL को गर्म करते हैं?

हल- PCl₅ को अधिक गर्म करने पर PCl₃ व Cl₂ बनते हैं।

$$PCl_5 - \xrightarrow{\overline{n}|q} PCl_3 + Cl_2$$

उदा.12 PCI₅की भारी जल में जल अपघटन अभिक्रिया का सन्तुलित समीकरण दीजिये।

हल- इसकी सन्तुलित ससायनिक समीकरण निम्न हैं-

$PCl₅ + DOD \rightarrow POCl₃ + 2DCl$ $POCl₃ + 3D₂O \rightarrow H₃PO₄ + 3DCl$ $PCl₅ + 4D₂O \rightarrow H₃PO₄ + 5DCl$

7.9 अग्रेसकारा के आवस्ते अस्त स्थारक केटोवेंड अन्यिक phorus)

फॉस्फोरस अनेक प्रकार के ऑक्सो अम्ल बनाता है। जो निम्न है-

- 1. हाइपो फॉस्फोरस अम्ल (H₃PO₂)
- 2. आर्थो कॉस्फोरस अम्ल (H3PO3)
- 3. पायरो फॉस्फोरस अम्ल (${
 m H_4P_2O_5}$)
- 4. हाइपो फॉस्फोरिक अम्ल (${
 m H_4P_2O_6}$)
- 5. आर्थी फॉस्फोरिक अम्ल (H₃PO₄)
- 6. पायरो फॉस्फोरिक अम्ल ($H_4P_2O_7$)
- 7. मेटा फॉस्फोरिक अप्ल (HPO3)3
- 8. परऑक्सोफोस्फोरिक अभ्ल H₃PO₅

किं। इस्पा फ्रास्क्रिक केपर/कोस्फ्रीनक अप्त

- हाइपो फॉस्फोरस अम्ल का गसायनिक सूत्र ${
 m H_3PO_2}$ है।
- हाइपो फॉस्फोरस अभ्न में उपस्थित फॉस्फोरस की ऑ. अवस्था +1 है।
- हाइपो फॉस्फोरस अम्ल की संरचना निम्न हैं।

- हाइपो फॉस्फोरस अम्ल में एक OH समूह उपस्थित होने के कारण यह एक क्षारकीय अम्ल है।
- इस अम्ल को श्वेत फॉस्फोरस की क्षार के किया कराने पर प्राप्त होता है।

ा अन्य अपनी सामानिया अपने (Phosphonic Acid)

- ullet आर्थी फॉस्फोरस अम्ल का रासायनिक सूत्र ${
 m H_3PO_3}$ है।
- आर्थी फॉस्फोरस अम्ल में P का ऑक्सीकरण अंक +3 है।
- आर्थी फॉस्फोरस अम्ल में दो OH समूह उपस्थित होने के कारण यह दिक्षारकीय अम्ल है।

इसे फॉस्फोरस ट्राईऑक्साइड की जल से क्रिया करने पर प्राप्त होती है।

7.9.3 पायरो फॉस्फोस्स अम्ल (Pyrophosphorae acil)

- पायरो फॉस्फोरस अम्ल का रासायनिक सूत्र H₄P₂O₅ है।
- पायरो फॉस्फोरस अम्ल में P का ऑक्सीकरण अवस्था +3 है।
- पायरों फॉस्फोरस अम्ल की संरचना निम्न हैं-

- इसमें दो OH समूह उपस्थित होने के कारण यह द्विक्षारकीय अम्ल है।
- इस अम्ल को PCl₃ की H₃PO₃ के साथ क्रिया करने पर प्राप्त की जाती है।

7.9.1 हाइयो फ्रांस्फारिक अस्त (Hypophosphore said)

- ullet हाइपो फॉस्फोरिक अम्ल का रासायनिक सूत्र ${
 m H_4P_2O_6}$ है।
- हाइपो फॉस्फोरिक अम्ल में P का ऑक्सीकरण अंक +4 है।
- हाइपो फॉस्फोरिक अम्ल की संरचना निम्न हैं।

- इस अम्ल में 2-OH समूह उपस्थित होने के कारण यह **चतुक्षारकीय** अम्ल है।
- इस अम्ल को लाल फॉस्फोरस की क्षार के साथ क्रिया कराने पर प्राप्त करते हैं।

195 आर्थो फास्साविक अस्य Kithophophoris scol

- आर्थी फॉस्फोरिक अम्ल का रासायनिक सूत्र H₃PO₄ है।
- आर्थी फॉस्फोरिक अम्ल में P का ऑक्सीकरण अवस्था +5 है।
- आर्थी फॉस्फोरिक अम्ल की संरचना निम्न है।

- इसमें 3-OH समूह उपस्थित होने के कारण यह त्रिक्षारकीय अम्ल है।
- इस अम्ल को P_4H_{10} की H_2O के साथ क्रिया से प्राप्त करते हैं।

१.९७ प्रमित्रे कार्यमिस असल (Friedlingsborge

पायरो फॉस्फोरिक अम्ल का रासायनिक सूत्र H₄P₂O₇ है।

- पायरो फॉस्फारिक में P का ऑक्सीकरण अवस्था +5 है।
- पायरो की संरचना निम्न हैं-

- इस अम्ल में 4—OH समूह उपस्थित है अतः यह चतुक्षारकीय अम्ल हैं।
- इस अम्ल को फॉस्फोरिक अम्ल को गर्म करने पर प्राप्त करते हैं।

A and separation area (Metaphosphoric acid)

- मेटा फॉस्फोरिक अम्ल का रासायनिक सृत्र (HPO₃₎₃ है।
- ये दो प्रकार का होता है।
 - (a) साइक्लोमेटा फॉस्फोरिक अम्ल (HPO3)3
 - (b) पॉली मेटा फॉस्फोरिक अम्ल (HPO_{3)n}

साइक्लो मेटाफॉस्फोरिक अम्ल क्षारकता (3)

पॉली मेटाफॉस्फोरिक अम्ल (बहु क्षारकीय अम्ल)

- इस अम्ल को फॉस्फोरस अम्ल को BR₂ के साथ बन्द नली में गर्म करने पर प्राप्त करते हैं।
- गुण- फॉस्फोरस के ऑक्सो अम्लों के संरचनात्मक एवं अभिलाक्षिक गुणधर्म निम्न है-
- (1) फॉस्फोरस अम्ल परमाणुओं के द्वारा इन ऑक्सो अम्लों में चतुष्फलकीय रूप से घिरा रहता है।
- (2) इनमें कम से कम एक P = O बन्ध होना चाहिये।
- (3) इनमें कम से कम एक P-OH बन्ध होना चाहिये।
- (4) यदि इनमें P-H बन्ध उपस्थित है तो अणु एक अच्छा अपचायक की तरह व्यवहार करता है।
- (5) इनकी क्षारकता का निर्धारण इनमें उपस्थित P—OH बन्ध के आधार पर किया जाता है।

(6) ऑथॉफास्फोरस अम्ल या फॉस्फोरस अम्ल गर्म करने पर असमानुपातिक होकर ऑथॉफास्फोरिक अम्ल या फास्फोरिक अम्ल तथा फास्फीन देता है।

$$4H_3PO_3
ightarrow 3H_3PO_4 + PH_3$$
 आंधी फास्फोरक अम्ल आंधी फास्फोरक अम्ल

- (7) कुछ ऑक्सो अम्लों में चतुष्फलक के किनारों पर P-O-P या P-P बंध सहभाजित होते हैं।
- (8) परऑक्सो अम्लों के P-O-O-P या P-O-O-H बंध उपस्थित होते हैं।
- (9) कुछ ऑक्सो अम्लों में P की +5 ऑक्सीकरण अवस्थायें P = O, P - OH बंधों के अलावा P-P या P-H बंध भी उपस्थित होते हैं।
- (10) कुछ ऑक्सो अम्लों में P की +3 ऑक्सीकरण अवस्था में तो उनमें असमानुपातीकरण की प्रबल प्रवृत्ति पाई जाती है, जिनमें उच्च [+5 वाले] व निम्न [+1] ऑक्सीकरण अवस्थाओं वाले उत्पाद में बदलते हैं।

$$4H_{3}PO_{3} \longrightarrow 3H_{3}PO_{4} + PH_{3}$$

(11) वे ऑक्सो अम्ल जिनमें P-H बंध उपस्थित है, प्रबल अपचायक गुण प्रदर्शित करते हैं।

 E_{X} . हाइपोफॉस्फोरस अम्ल $(H_{3}PO_{2})$ में दो P-H बंध उपस्थित है, अतः यह एक अच्छा प्रबल अपचायक है।

$$AgNO_3 + 2H_2O + H_3PO_2 \longrightarrow 4Ag + 4HNO_3 + H_3PO_4$$

$$C_6H_5N_2Cl + H_3PO_2 + H_2O \longrightarrow C_6H_6 + H_3PO_3 + N_2 + HCl$$

उदा. 13 आप ${ m H_3PO_2}$ की संरचना के आधार पर इसका अपचायक व्यवहार कैसे स्पष्ट कर सकते हैं।

हल- O H_3PO_2 की संरचनायें दो H परमाणु सीधे P से जुड़े होते हैं। अतः ये दोनों H परमाणु अम्ल को OH OH अपचायक गुण देते हैं।

उदा. 14 H₃PO₄ की क्षारकता क्या है?

EM- OH. OH.

 H_3PO_4 में 3-OH समृह उपस्थित होने के कारण इस अम्ल की क्षारकता 3 (तीन) है।

उदा. 15 क्या होता है जब H₃PO₃ को गरम करते हैं?

हल- $4H_3PO_3 \rightarrow 3H_3PO_4 + PH_3$ फॉस्फीन

आर्थो फॉस्फोरिक अस्ल

अभ्यास-७.३

- प्र. 1. फॉस्फीन की संरचना बनाइये।
- प्र. 2. फॉस्फीन की आकृति, संकरण अवस्था व बन्ध कोण बताइये।
- प्र. 3. क्या होता है जबकि—
 - (i) कैल्शियम फॉस्फाइड की तनु HCl के साथ क्रिया
 - (ii) PH_3 के जलीय विलयन का प्रकाश की उपस्थिति में i
 - (iii) CuSO₄ के साथ PH₃ की अभिक्रिया
 - (iv) HgCl₂ के साथ PH₃ की अभिक्रिया
- प्र. 4. फॉस्फीन के भौतिक गुणों की व्याख्या कीजिये।
- प्र. 5. फॉस्फीन का उपयोग बताइये।
- प्र. 6. श्वेत फॉस्फोरस पर थायोनिल क्लोराइड की अभिक्रिया का रासायनिक समीकरण दीजिये।
- प्र. 7. PCl₃ की संरचना बनाइये।
- प्र. 8. PCI₅ की संरचना बनाइये।
- प्र. १. श्वेत फॉस्फोरस पर सल्फ्यूराइल क्लोराइड के साथ अभिक्रिया का समीकरण दीजिये।
- प्र.10. प्रयोगशाला में फॉस्फीन गैस को कैसे बनाते हैं।
- प्र.11. वार्टेक्सवलय किसे कहते हैं।
- प्र.12. PCl_3 के भौतिक गुणों का वर्णन कीजिये।
- प्र.13. PCI₅ के भौतिक गुणों का वर्णन कीजिये।
- प्र.14. PCl₅ की निम्न से अभिक्रियाओं के रासायनिक समीकरण दीजिये।
 - (i) CH₃COOH अम्ल से
- (ii) C2H5OH से
- (iii) Ag धातु से
- (iv) $CH_3CH = O$ से
- (v) CH₃CH₂ O CH₂CH₃ (ईथर से)
- प्र.15. ठोस अवस्था में PCl₅ आयनिक यौगिक की तरह व्यवहार करता है। इस अवस्था में यह किस रूप में रहता है।
- प्र.16. हाइपो फॉस्फोरस अम्ल की संरचना, P का आ. अंक, क्षारकता बताइये।
- प्र.17. आर्थो फॉस्फोरस अम्ल की संरचना, P का आ. अंक, क्षारकता बताइये।
- प्र.18. पायरो फॉस्फोरस अम्ल की संरचना, P का आ. अंक, क्षारकता बताइये।
- प्र.19. हाइपो फॉस्फोरिक अम्ल की संरचना, P का आ. अंक, क्षारकता बताइये।
- प्र.20. आर्थो फॉस्फोरिक अम्ल की संरचना, P का आ. अंक, क्षारकता बताइये।
- प्र.21. पायरो फॉस्फोरिक अम्ल की संरचना, P का आ. अंक, क्षारकता बताइये।
- प्र.22. मेटॉफॉस्फोरिक अम्ल की संरचना, P का आ. अंक, क्षारकता बताइये।

उत्तरमाला

1.

P-H बन्ध की लम्बाई ≈ 141.5 pm

- 2. पिरेमिड में sp³ व बन्ध कोण 94° है।
- 3. (i) $Ca_3P_2 + 6H_2O \xrightarrow{\overline{q} HCl} 3Ca(OH)_2 + 2PH_3$
 - (ii) 4PH₃ प्रकाश → P₄ + 6H₂
 - (iii) $3\text{CuSO}_4 + 2\text{PH}_3 \rightarrow \text{Cu}_3\text{P}_2 + 3\text{H}_2\text{SO}_4$ $3\text{HgCl}_2 + 2\text{PH}_3 \rightarrow \text{Hg}_3\text{P}_2 + 6\text{HCl}$
- (i) यह रंगहीन, सड़ी मछली के समान गंध
 - (ii) विषैली गैस है।
 - (iii) जल में आंशिक रूप से विलेय है।
- 5. 1. इसका उपयोग धूमपट (Smoke screens) बनाने में होता है।
- केल्शियम कार्बाइड तथा कैल्शियम फॉस्फाइड के पात्रों को छंदित करके समूह में फैंक दिया जाता है। जिससे गैसे उत्पन्न होती है, जलती है और संकेत के रूप में कार्य करती है।
- 6. $P_4 + 8SOCl_2 \rightarrow 4PCl_3 + 4SO_2 + S_2 Cl_2$

7.

सल्फर**मोनोक्लोरा**इङ

P-Cl बन्ध लम्बाई = 200 pm संकरण अवस्था sp³ एकांकी इलेक्ट्रॉन युग्म = 1 संरचना पिरेमिडी

8.

संकरण sp³d आकृति त्रिकोणिय– द्विपिरेमिड 120º|90º|180º

- 9 $P_4 + 10 SO_2Cl_2 \rightarrow 4PCl_5 + 10SO_2$
- 10. प्रयोगशाला में फॉस्फीन गैस का निर्माण CO_2 या कोल गैस के अक्रिय वातावरण में श्वेत फॉस्फोरस कास्टिक सोडा के प्रबल

विलयन के साथ गर्म करने पर प्राप्त होती है।

 $P_4 + 3NaOH + 3H_2O \rightarrow 3NaH_2PO_2 + PH_3$ सोडिः हाइपो फॉस्फाइट

फॉस्फीन के साथ फॉस्फोरस डाइहाइड्राइड भी बनता है जो अत्यधिक प्रज्वलनशील होता है। जैसे ही गैस के बुलबुले वायु के सम्पर्क में आते हैं ये आग पकड़ लेते हैं एवं स्वत: ही धुएँ के छल्ले बनाते हैं। जिन्हें वार्टेक्सवलय (Vortex rings) कहते हैं, ये छल्ले P_4H_4 के जलने से बनते है।

11. जब हम फॉस्फीन को प्रयोगशाला में बनाते हैं तो PH₃ के साथ P₂H₄ फॉस्फोरस डाइहाड़ाइड बनता हैजो अत्यधिक प्रज्वलनशील होता है जैसे ही गैस के बुलबुले वायु के सम्पर्क में आते हैं तो आग पकड़ लेते हैं एवं स्वत: ही धुएँ के छल्ले बनाते हैं जिन्हें वार्टेक्सवलय कहते हैं।

 $3P_4 + 8NaOH + 8H_2O \rightarrow 8NaH_2PO_4 + 2P_2H_4$ फॉस्फोरस डाइहाइड्राइड

 $2P_2H_4 + 7O_2 \rightarrow 4HPO_3 + 2H_2O$ मेटा फॉस्फोरिक अम्ल

12. PCl₃ एक रंगहीन तेलीय द्रव है यह नमी की उपस्थिति में जल अपघटित होकर आर्थीफॉस्फोरिक अम्ल बनाता है।

13. यह एक हल्का पीला श्वेत पाउडर है। यह नम वायु में जल अपघटित होकर $POCl_3$ बनाता है। $PCl_5 + H_2O \rightarrow POCl_3 + 2HCl$

14. (i) $CH_3COOH + PCl_5 \rightarrow CH_3COCl + POCl_3 + HCl$ $C_2H_5OH + PCl_5 \rightarrow C_2H_5Cl + POCl_3 + HCl$ $2Ag + PCl_5 \rightarrow 2AgCl + PCl_3$ $CH_3CH = O + PCl_5 \rightarrow CH_3CHCl_2 + POCl_3$ $C_2H_5-O-C_2H_5 + PCl_5 \rightarrow 2C_2H_5Cl + POCl_3$

15. PCI₅ ठोस अवस्था में [PCI₄]+ [PCI₆]- के रूप में स्थित होता है

हाइपो फॉस्फोरस अम्ल का रासायनिक सूत्र H₃PO₂ है।

हाइपो फॉस्फोरस अम्ल में उपस्थित फॉस्फोरस की ऑ. अवस्था
 +1 है।

हाइपो फॉस्फोरस अम्ल की संरचना निम्न हैं।

- हाइपो फॉस्फोरस अम्ल में एक OH समूह उपस्थित होने के कारण यह एक क्षारकीय अम्ल है।
- 17. आर्थो फॉस्फोरस अम्ल का रासायनिक सूत्र H₃PO₃ है।
 - आर्थो फॉस्फोरस अम्ल में P का ऑक्सीकरण अंक +3 है।
 - आर्थो फॉस्फोरस अम्ल में दो OH समृह उपस्थित होने के कारण यह द्विक्षारकीय अम्ल है।

O OH HOOH

- 18. इसका रासायनिक सूत्र $H_4P_2O_5$ है, P की ऑक्सीकरण अवस्था +3 है।
- इसमें 2–OH समूह उपस्थित होने के कारण यह द्विक्षारकीय अम्ल है।
- 19. हाइपो फॉस्फोरिक अम्ल का रासायनिक सूत्र $\mathrm{H_4P_2O_6}$ है।
- हाइपो फॉस्फोरिक अम्ल में P का ऑक्सीकरण अंक +4 है।

- इस अम्ल में 2—OH समूह उपस्थित होने के कारण यह द्विक्षारकीय
 अम्ल है।
- 20. आर्थो फॉस्फोरिक अम्ल का रासायनिक सूत्र ${
 m H_3PO_4}$ है।
- आर्थी फॉस्फोरिक अम्ल में P का ऑक्सीकरण अवस्था +5 है।
- आर्थो फॉस्फोरिक अम्ल की संरचना निम्न है।

- इसमें 3-OH समूह उपस्थित होने के कारण यह त्रिक्षारकीय अम्ल है।
- 21. पायरो फॉस्फोरस अम्ल का रासायनिक सूत्र $H_4P_2O_5$ है।
- पायरो फॉस्फोरस अम्ल में P का ऑक्सीकरण अवस्था +3 है।

- इसमें दो OH समूह उपस्थित होने के कारण यह द्विक्षारकीय अम्ल है।
- 22. मेटा फॉस्फोरिक अम्ल का रासायनिक सूत्र (HPO₃)₃ है। इसकी क्षारकता 3 या बहुक्षारकीय अम्ल होते हैं।

पॉली मेटाफॉस्फोरिक अम्ल (बहु क्षारकीय अम्ल)

7.10 graffe Boxes (Elements of Group 16)

वर्ग 16 के तत्त्व

तत्त्व	नाम	परमाणु क्रमांक
0	Oxygen	8 ऑक्सीजन
S	Sulphur	16 सल्फर
Se	Sellenium	34 सिलीनियम
Te	Tellurium	52 टेल्यूरियम
Po	Polonium	84 पोलोनियम

- वर्ग 16 में सम्मिलित होने वाले तत्त्व ऑक्सीजन [O] सल्फर [S] सिलिनियम [Se] टेल्यूरियम [Te] व पोलोनियम [Po] है।
- इस वर्ग के तत्वों को कैल्कोजेन [अयस्क बनाने वाला] भी कहते हैं, कैल्कोजेन नाम ब्रास के लिये ग्रीक भाषा के शब्द से व्युत्पन्न हुआ है अर्थात् कॉपर का सल्फर एवं इसके समवंशियों के साथ संगुणन होने से हैं, अधिकांश कॉपर खनिजों में या तो ऑक्सीजन या सल्फर व अन्य सदस्य पाये जाते हैं।

STREE STOTOSTOLE PERSONAL PROPERTY.

- पृथ्वी में सभी तत्वों में से ऑक्सीजन सबसे अधिक मात्रा में पाई जाती
 है।
- भूपर्पटी के द्रव्यमान का लगभग 46.6% ऑक्सीजन के द्वारा निर्मित है।
- शुष्क वायु में आयतन के अनुसार 20.946% ऑक्सीजन है।
- भूपपेटी में सल्फर की उपलब्धता केवल 0.03 से 0.1% है। संयुक्त अवस्था में सल्फर मुख्यतया सल्फेटों के रूप में जैसे— जिप्सम CaSO₄. 2H₂O; एपसम लवण MgSO₄. 7H₂O बेराइट BaSO₄ तथा सल्फाइडों के रूप में जैसे गैलेना PbS. यशद ब्लैण्ड [Zn Blend) ZnS. कॉपर पाइरॉइटीज CuFeS₂ में पाई जाती है।
- सल्फर की सूक्ष्ममात्रा ज्ञालामुखी में हाइड्रोजन सल्फाइड (H₂S) के रूप भी पाई जाती है।
- कार्बनिक पदार्थों में जैसे अण्डे, प्रोटीन, लहसून, प्याज, सरसों, बाल तथा ऊन में भी सल्फर पाई जाती है।
- सिलीनियम तथा टेल्यूरियम सल्फाइड अयस्कों में धातु सेलेनाइडों तथा टेल्यूराइडों के रूप में पाये जाते हैं।
- पोलोनियम प्रकृति में थोरियम तथा यूरेनियम खनिजों के विघटन उत्पाद के रूप में पाया जाता है।

(40) Technical Collections consumation)

 वर्ग 16 के तत्वों के बाह्य कोशो में छ इलेक्ट्रॉन उपस्थित होते हैं, इनका सामान्य इलेक्ट्रॉनिक विन्यास ns²np⁴ होता है।

सारणी: वर्ग 16 (ऑक्सीजन परिवार) के तत्वों के इलेक्ट्रॉनिक विन्यास

तत्व	परमाणु कमांक	इलेक्ट्रॉनिक विन्यास	नोबल गैस क्रोड सहित विन्यास
ऑक्सीजन (O)	8 -	Js ² 2s ² 2p ⁴	[He] 2s ² 2p ⁴
सल्फर (S)	16	1s ² 2s ² 2p ⁶ 3s ² 3p ⁴	[Ne]3s ² 3p ⁴
सिलीनियम (Se)	34	is ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ⁴	[Ar]3d ¹⁰ 4s ² 4p ⁴
टेल्यूरियम (Te)	52	$1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^4$	[Kr]4d ¹⁰ 5s ² 5p ⁴
भोलोनियम (Po)	84	$1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}4f^{14}5s^25p^65d^{10}6s^26p^4$	[Xe]4f ¹⁴ 5d ¹⁰ 6s ² 6p ⁴

- 02 CHARLES SUBJECT STEEL STORES SONS SHIFTS

- वर्ग 16 के तत्वों का आकार अपने आवर्त में वर्ग 15 के तत्वों से छोटे होते हैं।
- वर्ग में ऊपर से नीचे चलने पर आकार क्रमश: बढ़ता जाता है। क्योंकि
 प्रत्येक अगले तत्त्व में एक बाह्यतम कोश में वृद्धि होने के कारण होता
 है।

आयिनिक त्रिज्यायें भी वर्ग में ऊपर से नीचे चलने पर बढ़ती है।
 O² : < S² : < Se² : < Te² - < Po²

16 वर्ग के तत्वों की परमाणु त्रिज्यायें व आयनिक त्रिज्या

		•		-, , , ,	,
	O	S	Se	Te	Po
परमाणु					
तिज्या (pm) आयनिक त्रिज्या	66	104	107	137	146
M ²⁻ (pni)	140	180	198	221	231

A to Maria North Conseque Participent

यदि हम समान आवर्त में उपस्थित नाइट्रोजन परिवार व ऑक्सीजन परिवार के तत्वों की तुलना करें तो हम यह प्रेक्षित करते हैं, कि नाइट्रोजन के सदस्यों हेतु $\Delta_i H_i$ के मान ऑक्सीजन परिवार के सदस्यों की अपेक्षा अधिक होते हैं जबकि $\Delta_i H_2$ के मान कम होते हैं। उदाहरण के लिए,

तत्व	$\Delta_i H_1(kJ \ mol^{-1})$	$\Lambda_i H_2(kJ \text{ mol}^{-1})$
नाइट्रोजन	1402	2856
ऑक्सीजन	1314	3888

कारण— इन दोनों तत्त्वों के $\Lambda_i H_1$ मान संयोजी कोश के इलेक्ट्रॉनिक विन्यास पर आधारित होते हैं।

नाइट्रोजन का विन्यास ऑक्सीजन के विन्यास की अपेक्षा अधि समित होता है (क्योंकि इसमें सभी तीनों 2p कक्षक अर्धपूरित है हैं)। अतः इसके Δ_iH_1 का मान अधिक होता है। हालांकि ऑक्सी का Δ_iH_2 मान अधिक होता है क्योंकि यदि एक इलेक्ट्रॉन त्यागने पश्चात् बने एकसंयोजी ऋणायनों की तुलना की जाये तो, यह रहे होता है, कि ऑक्सीजन की स्थिति में ऋणायन का विन्यास नाइट्रो की अपेक्षा अधिक समित है।

 वर्ग में नीचे जाने पर इलेक्ट्रॉन कोशों की संख्या बढ़ने के का आयनन एन्थैल्पी के मानों में कमी होती है!

• अत:

N > O; P > S; $A_S > Se$

Sb > Te; Bi > Po

O > S > Se > Te > Po

वर्ग 16 के तत्त्वों की आयनन एन्थ्रेल्पी के मान

	0	S	Se	Te	Po
आयनन एन्थैल्पी					·
kJ/Mol	1314	1000	941	869	813

ऑक्सीजन परिवार के तत्वों को अपने परमाणुओं में केवल दो इलक्ट्रों की आवश्यकता होती है, जिससे कि सबसे समीपस्थ उत्कृष्ट स तत्वों का विन्यास प्राप्त कर सके।

- ये अत्यधिक उच्च ऋणात्मक इलेक्ट्रॉन लब्धि एन्थैल्पी वाले होते जो केवल हैलोजन कुल से (ns²p⁵ विन्यास) सम्बन्धित तत्त्वां आगे होते हैं।
- इस वर्ग में, ऑक्सीजन सबसे न्यूनतम मान वाला (-141 kJ mol होता है क्योंकि इसका परमाणु आकार बहुत छोटा तथा इलेक्ट्रॉन-इलेक्ट्र प्रतिकर्षण अधिक होता है। जिसके परिणामस्वरूप, ऑक्सीजन के पा बाहरी इलेक्ट्रॉन को ग्रहण करने की क्षमता सबसे कम होती है।
- वर्ग में ऊपर से नीचे चलने पर इलेक्ट्रॉन ग्रहण करने की प्रवृत्ति घट जाती है अत: इलेक्ट्रॉन लब्धि एन्थैल्पी का मान घटता जाता है।
 S > Se > Te > Po > O इलेक्ट्रॉन लब्धि एन्थैल्पी क्रम

वर्ग 16 के तत्वों की इलेक्ट्रॉन लब्धि एन्थैल्पी के मान

0	S	Te	Po	
इलेक्ट्रॉन लब्धि				
एन्थैल्पी kJ/mole –141	-200	-195	-174	

7:10**४-विश्**त ऋणात्मकता (Electronegativity)

- वर्ग 16 के तत्वों की विद्युत ऋणात्मकता का मान वर्ग 15 के तत्वों से अधिक व वर्ग 17 के तत्वों से कम होता है।
- अतः इस वर्ग के तत्व विद्युतऋणीय होते हैं
- आवर्त सारणी में दूसरा विद्युतऋणीय तत्व ऑक्सीजन (3.5) होता है।
 प्रथम सर्वाधिक विद्युत ऋणीय तत्व फ्लुओरीन (4.0) होता है।
- वर्ग में ऊपर से नीचे चलने पर विद्युत ऋणात्मकता का मान क्रमशः
 घटता जाता है। क्योंकि आकार क्रमशः बढ़ता है।

O > Se > S > Te > Po विद्युत ऋणात्मकता का क्रम वर्ग 16 के तत्वों की विद्युत ऋणात्मकता का मान

0	S	Sc	Te	Po	
विद्युत ऋणात्मकता ३.५०	2.44	2.48	2.10	2.0	
	33(3)(2)2(3) (mr. 66)	News are a series as			

7.11.7 भौतिक गुण (Physical Properties)

- ऑक्सीजन व सल्फर अधातु तत्व है, सिलीनियम तथा टेल्यूरियम उपधातु है जबिक पोलोनियम धातु हैं।
- पोलोनियम एक रेडियोधर्मी होता है इसकी अल्प आयु 13.8 दिन है।
- सभी तत्व अपररूपता प्रदर्शित करते हैं।
- इस वर्ग का प्रथम सदस्य ऑक्सीजन द्विपरमाण्वीक अणु (O2) के रूप में पाया जाता है। ऑक्सीजन में परमाणु आपस में द्विबन्ध से [O=O] जुड़े होते हैं। यह ऑक्सीजन के छोटे आकार के कारण होता है। वर्ग में ऊपर से नीचे चलने पर आकार क्रमश: बढ़ता जाता है। अत: तत्वों के परमाणु आपस में एकल बन्ध से ही जुड़े होते हैं।
- अन्य तत्त्वों के अणु प्राय: अष्ट परमाण्विक होते हैं। जैसे S₈, Se₈, Te₈
 के रूप में पाये जाते हैं। इनकी पुटित वलय संरचनाएँ होती है।

सल्फर अणु की पुटित वलय (Crown Shape) संरचना

- O व S के गलनांक व क्वथनांक के मध्य बहुत ज्यादा अन्तर को उनकी परमाणुकता के आधार पर समझा सकते हैं। ऑक्सीजन द्विपरमाण्विक अणु है जबिक सल्फर बहुपरमाणुक अणु (S₈) के रूप में विद्यमान होता है।
- वर्ग में ऊपर से नीचे चलने पर गलनांक क्वथनांक क्रमश: बढ़ते हैं।

	0	S	Se	Te	Po
गलनांक	55	393	490	725	520
<u>क्वथनांक</u>	90	718	958	1260	1235

 Po का गलनांक व क्वथनांक Te से कम होता है क्योंकि इसमें परमाए के मध्य दुर्बल बन्ध होते हैं।

शृंखलन-इस वर्ग में S की शृंखलन प्रवृत्ति अधिक होती है। क्यों इसकी बन्ध ऊर्जा का मान अधिक होता है।

$$S > O > S_C > T_C > P_O$$

वाष्य अवस्था में \mathbf{S}_2 आंशिक रूप से स्पार्ट होता है। लेकिन 2 अयुिं इलेक्ट्रॉन की उपस्थिति के कारण यह \mathbf{O}_2 की तरह अनुचुम्बर्क व्यवहार प्रदर्शित करता है।

7.10.8 रासामानक गुण (Chemical Properties)

1. ऑक्सीकरण अवस्थायें (Oxidation states)

वर्ग 16 के तत्व अनेक ऑक्सीकरण अवस्थायें प्रदर्शित करते हैं।

-				21-1/-41-4 2	ापारात का	(तहा
	·	0	S	Se	Te	Po
1	ऑक्सीकरण	-2,-1	-2	-2	-2	
	अवस्था	+1, +2	+2,+4+6	+2,+4+6	+2+ 4 +6	+2+4
					<u>. </u>	

- वर्ग 16 के तत्वों का इलेक्ट्रॉनिक विन्यास ns²np⁴ होता है। ये र इलेक्ट्रॉन का साझा करके या ग्रहण करके उत्कृष्ट गैस विन्यास प्राकरते हैं।
- अत: ये तत्व अपने यौगिकों में ऋणात्मक व धनात्मक दोनों प्रकार कं ऑक्सीकरण अवस्थायें प्रदर्शित करते हैं।

(a) ऋणात्मक ऑक्सीकरण अवस्था

- इस परिवार का प्रथम सदस्य ऑक्सीजन अत्यन्त ऋणात्मक प्रवृत्ति क होता है, यह अपना अष्टक पूर्ण करने के लिये किसी विद्युत धनी तत्व से दो इलेक्ट्रॉन ग्रहण कर सकता है। जिससे द्विसंयोजी ऋणायन (O²⁻) का निर्माण होता है।
- अतः यह अपने यौगिकों जैसे धातु ऑक्साइड (K₂O, Na₂O, CaO आदि) में -2ऑक्सीकरण अवस्था प्रदर्शित करता है। हालांकि इसके कुछ अपवाद भी हैं—
- (i) OF_2 (F, O से अधिक विद्युतऋणात्मक है), में ऑक्सीजन +2 ऑक्सीकरण अवस्था प्रदर्शित करता है।
- (ii) H_2O_2 में ऑक्सीजन -1 ऑक्सीकरण अवस्था प्रदर्शित करता है।
- (iii) O_2F_2 में ऑक्सीजन का ऑक्सीकरण अंक +1 वर्ग में नीचे जाने पर तत्वों की विद्युत ऋणात्मकता घटती है। इसी प्रकार तत्वों द्वारा -2 ऑक्सीकरण अवस्था प्रदर्शित करने की प्रवृत्ति भी घटती है। Po में -2ऑक्सीकरण अवस्था नहीं पाई जाती।
- (b) धनात्मक ऑक्सीकरण अवस्थाएँ (Positive oxidation states)— इस परिवार के सभी सदस्य ऑक्सीजन से कम विद्युत ऋणी होते हैं। अत: इनके परमाणु आसानी से इलेक्ट्रॉन ग्रहण नहीं कर सकते। ये अन्य तत्वों के परमाणुओं से दो इलेक्ट्रॉन्स का साझा कर ns²np6 विन्यास प्राप्त कर सकते हैं अत: ये अपने यौगिकों में +2 ऑक्सीकरण अवस्था प्रदर्शित करते हैं।

 इसके अलावा इनके पास रिक्त d- कक्षक भी होते हैं जिनमें समान कोश के s a p- कक्षकों से इलेक्ट्रॉन्स प्रोन्नत हो सकते हैं। अतः इसके परिणामस्वरूप ये (इलेक्ट्रॉन्स के प्रोन्नत होने के बाद अर्थात उत्तेजित अवस्था में) +4 व +6 ऑक्सीकरण अवस्था प्रदर्शित कर सकते हैं। उदाहरण के लिए, सल्फर अपने यौगिकों में +2, +4 व +6 ऑक्सीकरण अवस्थाएँ प्रदर्शित करता है जिन्हें नीचे दर्शाया गया है—

अत: यह निष्कर्ष निकालते हैं कि-

- ऑक्सीजन सामान्यतया-2ऑक्सीकरण अवस्था प्रदर्शित करता है।
- अन्य तत्व सामान्यतया +2, +4 तथा +6 ऑक्सीकरण अवस्था प्रदर्शित करते हैं।

ऑक्सीजन का असामान्य व्यवहार

- (i) द्वितीय आवर्त में उपस्थित p- ब्लॉक के अन्य सदस्यों की भाँति ऑक्सीजन का असामान्य व्यवहार इसके छोटे आकार तथा उच्च विद्युतऋणात्मकता के कारण होता है छोटे आकार तथा उच्च विद्युतऋणात्मकता के प्रभावों का एक विशिष्ट उदाहरण जल में प्रबल हाइड्रोजन बंध की उपस्थिति है जो कि H₂S में नहीं पाया जाता है।
- ऑक्सीजन में d कक्षकों की अनुपस्थित के कारण इसकी संयोजकता
 4 तक सीमित होती है और व्यवहार में 2 से अधिक दुर्लभ है। दूसरी ओर वर्ग के अन्य तत्वों में संयोजकता कोश का विस्तार हो सकता है और संयोजकता 4 से अधिक होती है।

(ii) हाइड्रोजन के प्रति क्रियाशीलता

(Reactivity towards Hydrogen)

ullet वर्ग 16 के सभी तत्व ${
m H}_2{
m E}$ प्रकार के हाइड्राइड बनाते हैं

[E = O, S. Se, Te, Po]

 H_2O H_2S

 H_2Se H_2Te H_2Po

जल हाइड्रोजन सिलीनियम टेल्यूरीयम पोलोनियम

सल्फॉइंड हाइड्राइंड हाइड्राइंड हाइड्राइंड ${
m H}_2{
m O}$ का निर्माण हाइड्रोजन व ऑक्सीजन के वातावरण में दहन के कारण होता है।

 H₂S, H₂Se तथा H₂Te का निर्माण धातुओं के सल्फाइड, सिलीनाइडस व टेल्यूराइड्स की तनु अम्लों की क्रिया द्वारा होता है। उदाहरण के लिए,

> FeS + H₂SO₄ (त्नु) → FeSO₄ + H₂S Na₂Sc + H₂SO₄ (त्नु) → Na₂SO₄ + H₂Se

हाइड्राइड्स की संरचनाएँ (Structures of Hydrides)— इनसभी हाइड्राइड्स में केन्द्रीय परमाणु (M) sp^3 संकरित होता है। दो sp^3 संकरित कक्षकों में एक-एक हाइड्रोजन परमाणु के साथ दो एकल

बन्ध बनाते हैं जबिक दो sp³ संकरित कक्षकों के पास एक-एक एकांकी इलेक्ट्रॉन युग्म होते हैं।

इन हाइड्राइस की आकृति कोणीय होती है जैसा कि चित्र में दिखाया गया है! दो एकांकी इलेक्ट्रॉन युग्मों की उपस्थिति के कारण बन्ध कोण नियमित चतुष्फलक के बन्ध कोण की अपेक्षा कम होती है। उदाहरण के लिए, H₂O में बन्ध कोण 104.5° होता है और वर्ग में नीचे जाने पर बन्ध कोण का मान घटता है। क्योंकि विद्युत ऋणात्मकता घटती है।

हाइड्राइड H_2O H_2S H_2Sc H_2Tc H_2Po बन्ध कोण 104.5° 92° 91° 90° —

व्याख्या (Explanation)— यह केन्द्रीय परमाणु की विद्युत ऋणात्मकता के साथ सम्बन्धित होता है। चूँिक ऑक्सीजन (O) से टेल्यूरियम (Te) तक विद्युत ऋणात्मक घटती है, इसी प्रकार इलेक्ट्रॉन घनत्व भी घटता है। इसका अर्थ है कि केन्द्रीय धातु के चारों ओर इलेक्ट्रॉन युग्मों में प्रतिकर्षण घटने के साथ-साथ बन्ध कोण में भी कमी होती है।

हाइड्राइड्स के लक्षण (Characteristics of Hydrides)— जल, कक्ष ताप पर एक रंगहीन द्रव है जबिक अन्य सभी हाइड्राइड्स कक्ष ताप पर भी तीक्ष्ण गंध युक्त गैसे हैं। इन हाइड्राइड्स के लक्षणों में परिचलन को यहाँ संक्षित में समझाया गया है।

(a) भौतिक अवस्था (Physical state)— जैसा कि ऊपर बताया गया है कि जल एक रंगहीन द्रव है जबकि अन्य सभी हाइड्राइड्स गैसीय

प्रकृति के हैं। कक्ष ताप पर जल द्रव है क्योंकि अणुओं के बीच अन्तरा आण्विक हाइड्रोजन बन्धन पाया जाता है जिससे इसके अणुओं का संगुणन होता है एवं ये द्रव अवस्था में पाया जाता है। अन्य हाइड्राइड्स में M-H बन्धों की निम्न धुवता के कारण हाइड्रोजन बन्धन नहीं पाया जाता है, अत: ये कमरे के तापक्रम पर गैसें हैं।

अम्लीय लक्षण (Acidic character)— इस वर्ग के हाइड्राइड्स दुर्बल अम्लीय प्रकृति के होते हैं एवं जलीय विलयन में वियोजित होकर H® आयन्स मुक्त करते हैं:

$${
m H_2M}$$
 + (aq) $ightarrow$ MH $^-$ (aq) + H $^+$ (aq) (M= तत्त्व)

 $MH^ (aq) + (aq) \rightarrow M^{2-}$ $(aq) + H^+$ (aq) वर्ग में नीचे जाने पर इनके अम्लीय लक्षण बढ़ते हैं जो कि 298K ताप पर वियोजन स्थिरांकों (K_a) के मानों से स्पष्ट है।

इड्राइड	H ₂ O	H ₂ S	H ₂ Se	H ₂ Te	
ऱ्योजन स्थिरांक	1.8×10 ⁻¹	4 1.3×10 ⁻⁷	1.3×10-4	2.3×10-3	
_{-a}) 298 पर					

व्याख्या (Explanation)— केन्द्रीय परमाणु का आकार बढ़ने के कारण M-H बंध की वियोजन ऊर्जा का मान घटता है। जिससे इनकी अप्लीय सामर्थ्य बढ़ती है। इसके परिणामस्वरूप बंध के विदलन द्वारा H^+ मुक्त करने की प्रवृत्ति वर्ग में H_2O से H_2 Te तक बढ़ती है। H_2O की बहुत कम अप्लीय सामर्थ्य को उसमें उपस्थित अन्तराआण्विक हाइड्रोजन बंधन के द्वारा भी समझाया जा सकता है जिसके परिणामस्वरूप हाइड्रोजन, हाइड्रोजन बन्धों में फँस जाता है।

इड़ाइड	H ₂ O	H ₂ S	H ₂ Se	H ₂ Te
न्ध वियोजन एन्थैल्पी	373	213	232	269
1–H) kJ mol−1 में				

 H_2O से H_2Te तक अम्लीय लक्षण बढ़ते है।

अपचायक प्रकृति (Reducing nature)— जल के अलावा अन्य सभी हाइड्राइड्स अपचायक प्रकृति के होते हैं। वर्ग में नीचे जाने पर अपचायक लक्षण बढ़ते हैं।

व्याख्या (Explanation)— यह M-H की बंध वियोजन ऊर्जा के साथ भी सम्बन्धित है। वर्ग में नीचे जाने पर बंध लम्बाई बढ़ने के कारण यह घटता है। इसीलिए बन्ध विदलन या अपचायक प्रकृति समृह में नीचे जाने पर बढ़ती है।

H2O से H2Te तक अपचायक लक्षण बढ़ते हैं।

गलनांक एवं क्वथनांक (Melting and Boiling points)-- ये हाइड्राइड्स सह-संयोजी प्रकृति के होते हैं और इनमें आकर्षण के बल मुख्य रूप से वाण्डर वाल बल होते हैं। आण्विक आकार बढ़ पर वाण्डर वाल बल बढ़ते हैं। जल के अपवाद के अलावा, जिसा कि हाइड्रोजन बन्धन के कारण बहुत उच्च क्वथनांक होता है, अन हाइड्राइड्स के क्वथनांक H_2S से H_2 Te तक बढ़ते हैं। गलनांक भं नीचे दिया गया है। ये भी वही मार्ग का अनुसरण करते हैं।

	H ₂ O	H ₂ S	H ₂ Se	H ₂ Te
तव्यथनांक (K)	373	213	232	269
गलनांक (K)	273	188	208	222

(iii) ऑक्सीजन के प्रति क्रियाशीलता

(Reactivity towards Oxygen)

 ये सभी तत्व (ऑक्सीजन को छोड़कर) EO₂ व EO₃ प्रकार के ऑक्साइड बनाते हैं।

यहाँ E = S, Se, Te व Po है।

• O_3 व SO_3 गैसे हैं जबिक सिलीनियम डाइऑक्साइड (SeO_2) एक छोस है।

वर्ग 16 के तत्वों के ऑक्साइड्स

तत्व	मोनोक्साइड	डाइऑक्साइड	ट्राइऑक्साइड	अन्य
				ऑक्साइड
S	SO	SO ₂	SO ₃	S ₂ O ₇
Se] -	SeO_2	SeG ₃	
Te	TeO	TeO ₂	TeO ₃	_
Po	PeO	PoO_2	-	- ;

ऑक्साइडों की अम्लीय प्रवृत्ति एवं स्थायित्व वर्ग में नीचे जाने पर घटता है।

(2)
$$SO < SO_2 < SO_3 < SO_3 < SO_7 \longrightarrow$$

किसी एक तत्व की अम्लीय प्रकृति ऑक्सीकरण संख्या बढ़ने पर बढ़ती है।

(3) डाई-ऑक्साइड तथा ट्राई ऑक्साइड की अम्लीय प्रवृत्ति नीचे जाने पर कम होती है।

इनकी संक्षेप में चर्चा निम्न प्रकार हैं--

(a) मोनोक्साइड (Monoxides)— सिलीनियम के अलावा अन्य सभी तत्व मोनॉक्साइड बनाते हैं।

(b) डाइऑक्साइड्स (Dioxides)— जब S, Se व Te को ऑक्सीजन में जलाया जाता है, तो ये डाइऑक्साइड्स (MO₂) बनाते हैं। SO₂ कमरे के तापक्रम पर गैस है। इलैक्ट्रॉन विवर्तन अध्ययनों से यह स्पष्ट होता है कि O – S – O बन्ध कोण 119.5° का होता है एवं दोनों बंध समान लम्बाई (143 pm) के होते हैं। इसमें यह प्रदर्शित होता है कि अणु में अनुनाद पाया जाता है। यह निम्न योगदानी संरचनाओं का संकर होता है—

सिलीनियम एवं टेल्यूरियम डाइऑक्साइड्स ठोस हैं व इनकी बहुलीकृत टेढ़ी-मेढ़ी शृंखला संरचनाएँ होती है। इनमें बहुबन्ध की अनुपस्थिति का कारण तत्व के p- कक्षक व ऑक्सीजन परमाणु में अत्यधिक कर्जा अन्तर है।

(c) ट्राइऑक्साइड्स (Trioxides)— सभी तत्व ट्राइऑक्साइड्स MO₃ बनाते हैं। कक्ष तापक्रम पर (SO₃) एक गैस है एवं यह निम्न योगदानी संरचनाओं का संकर है—

ठोस अवस्था में, सल्फर ट्राइऑक्साइड या तो रैखिक शृंखला या एक चक्रीय त्रिलक (trimer) की तरह उत्पन्न होता है।

$$\overset{:O:}{\circ}:\overset{:$$

उदा.16 वर्ग 15 के संगत आवर्तों के तत्वों की तुलना में वर्ग 16 के तत्वों की प्रथम आयनन एन्थैल्पी का मान सामान्यतः कम होती है क्यों?

हल- वर्ग 15 के तत्वों में अतिरिक्त स्थायित्व प्राप्त अर्धपूरित इलेक्ट्रॉनिक विन्यास के p- कक्षक होते हैं। वर्ग 16 के तत्त्वों की तुलना में इनमेंसे e को निकालने में बहुत अधिक मात्रा में ऊर्जा की आवश्यकता होगी। उदा.17 H₂S, H₂Te की अपेक्षा कम अम्लीय है क्यों?

हल- वर्ग में नीचे की ओर बढ़ने पर बन्ध (E-H) वियोजन एन्थैल्पी में कमी होने के कारण अम्लीय गुणों में वृद्धि होती है।

उदा.18 सल्फर के महत्वपूर्ण स्त्रोतों की सूचीबद्ध कीजिये।

हल- जिप्सम $CaSO_4.2H_2O$ एपसमलवण $MgSO_4.7H_2O$. बेराइटा $BaSO_4$, गेलेना PbS, यशद ब्लैण्ड ZnS, कॉपर पाइराइट $CuFeS_2$ में पाई जाती है।

उदा.19 वर्ग 16 के तत्वों के हाइड्राइडों के तापीय स्थायित्व के क्रम में लिखिये।

हल- वर्ग में ऊपर से नीचे चलने पर E -- H बन्ध की सामर्थ्य घटती हैं अत: स्थायित्व घटता है।

 $H_2O > H_2S > H_2Se > H_2Te > H_2Po$

उदा.20 H₂O एक द्रव है तथा H₂S गैस क्यों?

हल- H_2O में अतिरिक्त H आबन्ध उपस्थिति होने के कारण H_2O के अणु निकट आने से द्रव में बदल जाते हैं, लेकिन H_2S में H बन्ध अनुपस्थिति होने के कारण H_2S गैस है।

7.11 Saronaeu wa Diesegen, 0.

- शोले ने (1772) में सर्वप्रथम HgO को गर्म कर ऑक्सीजन को प्रयोगशाला में बनाया था।
- Oxygen के तीन समस्थानिक हो, तो
 ¹⁶O ¹⁷O ¹⁸O
 ^{90.76%} 0.038% 0.204%
- इनमें [80] समावयव रेडियोधर्मी है। इसका कार्बनिक अभिक्रियाओं की क्रियाविधि ज्ञात करने एवं ट्रेसर तकनिक में किया जाता है।
- वातावरण में डाइऑक्सीजन (O₂) आयतनानुसार लगभग 21% होती है तथा शेष डाइनाइट्रोजन होती है।
- यह गैस मुख्य रूप से पौधों में होने वाले प्रकाश-संश्लेषण के परिणामस्वरूप वातावरण में मुक्त होती है।

$$xH_2O + xCO_2$$
 $\xrightarrow{\frac{\pi d}{\text{प्रकाश}} \frac{\pi i}{\text{प्रकाश}}} (CH_2O)_x + xO_2$
कार्बोहाइड्रेट

A Lie (प्राप्त को को कि (0%) बनाई की (सो पश्ची (Mathods of Preparational Droxyges) (0%)

डाइऑक्सीजन कई विधियों द्वारा बनायी जा सकती है।

 कुछ ऑक्सीजन युक्त धातु ऑक्साइडों को गर्म करके— ये ऑक्साइड तीव्र रूप से गर्म करने पर डाइऑक्सीजन निकालते हैं।

$$2Ag_2O \xrightarrow{gsq_1} 4Ag + O_2$$

सिल्वर ऑक्साइड

 $2\text{HgO} \xrightarrow{3\text{MH}} 2\text{Hg} + \text{O}_2$

मरक्यूरिक ऑक्साइड

 $2Pb_3O_4 \xrightarrow{\text{deaty}} 6PbO + O_2$

लाल सिन्दूर

 $2PbO_2 \xrightarrow{3MI} 2PbO + O_2$

लैंड डाइऑक्साइड

 $^{3MnO_2} \xrightarrow{^{3Mn}} ^{Mn_3O_4} + O_2$

मैंग्नीज डाइऑक्साइड ट्राइमैंग्नीज टैट्राक्साइड

कुछ ऑक्सीजन युक्त लवणों के ऊष्मीय अपघटन द्वारा— ये 2. लवण जब तीव्रता से गर्म किए जाते हैं, डाइऑक्सीजन प्राप्त होती हैं।

2KClO₃ _ उपमे 2KCl + 3O₂

पोटे. *क्लोरेट* MnO

 $2KNO_3 \xrightarrow{3BH} 2KNO_2 + O_2$

पोटे. नाइट्रेट

 $2KMnO_4 \xrightarrow{3MI} K_2MnO_4 + MnO_2 + O_2$

पोटे. परमैंग्नेट

पोटे मैंग्नेट

 $2CaOCl_2 \xrightarrow{\overline{sterl}} 2CaCl_2 + O_2$

कैल्शियम ऑक्सीक्लोराइड (ब्लीचिंग पाउडर)

पोटेशियम क्लोरेट का ऊष्मीय अपघटन डाइऑक्सीजन बनाने की प्रयोगशाला विधि में प्रयुक्त किया जाता है।

कुछ ऑक्सीजन युक्त यौगिकों पर सान्द्र सल्फ्यूरिक अम्ल की 3. क्रिया द्वारा— इसके कुछ उदाहरण निम्न हैं—

 $2K_2Cr_2O_7 + 8H_2SO_4 \rightarrow 2K_2SO_4 + 2Cr_2(SO_4)_3$

+ 8H₂O+3O₂

पोटे. डाइक्रोमेट

 $4 \text{KMnO}_4 + 6 \text{H}_2 \text{SO}_4 \rightarrow 2 \text{K}_2 \text{SO}_4 + 4 \text{MnSO}_4 + 6 \text{H}_2 \text{O} + 5 \text{O}_2$ $2 \text{MnO}_2 + 2 \text{H}_2 \text{SO}_4 \rightarrow 2 \text{MnSO}_4 + 2 \text{H}_2 \text{O} + \text{O}_2$

हाइड्रोजन परॉक्साइड के अपघटन द्वारा— हाइड्रोजन परॉक्साइड 4. तुरन्त महीन रूप से विभाजित धातुओं या मैंग्नीज डाइऑक्साइड की उपस्थिति में अपघटित हो जाती है।

$$^{2\rm{H}_2\rm{O}_2} \rightarrow ^{2\rm{H}_2\rm{O}} + _{\rm{O}_2}$$

- डाइऑक्सीजन के निर्माण की औद्योगिक विधि— 5.
- वायु से— डाइऑक्सीजन (ऑक्सीजन) वायु में 21% आयतनानुसार (a) उपस्थित होती है। इसे प्राप्त करने के लिए वायु पहलेउच्च दाब व कम ताप के अन्तर्गत द्रवित की जाती है। द्रव वायु आसवन करती है जब कम क्वथनांक (77K) वाली डाइनाइट्रोजन आसंवित होती है जब कम क्वथनांक (90K) वाली डाइऑक्सीजन आसवन फ्लास्क में बनी रहती है। यह पुन: प्राप्त की जा सकती है।

- p-ब्लॉक के तत्व जल से— डाइऑक्सीजन डाइहाइड्रोजन के साथ जल के वैद्युत (b) अपघटन द्वारा प्राप्त की जा सकती है।
- शुद्ध डाइऑक्सीजन को बनाने की विधि— शुद्ध डाइऑक्सीजन 6. निकल इलैक्ट्रोड को प्रयुक्त करते हुए Ba(OH)2 विलयन के विद्युत अपघटन द्वारा बनायी जा सकती है।

ाहित हाह आक्सों अस के गुण (Properties of Dioxygen)

भौतिक गुण (Physical Properties)

- डाइऑक्सीजन यह स्वादविहीन होती है।
- यह तीन स्थायी समस्थानिकों के रूप में उत्पन्न होती है। ये हैं 160, ¹⁷O व ¹⁸O। प्रचुर मात्रा मिलने वाला समस्थानिक ¹⁶O होती है।
- यह कम ताप व उच्च दाब के अन्तर्गत द्रवित हो जाती है। डाइऑक्सीजन 55K गलनांक व 90.0K क्वथनांक वाली होती है।
- यह वायु से ज्यादा भारी होती है तथा वाष्प धनत्व 16 होता है।
- डाइऑक्सीजन केवल जल में हल्की-सी विलेय होती है। 1 लीटर जल 293K.व 1 वायुमण्डलीय दाब के अन्तर्गत गैस का लगभग 3.08×10³ cc विलेय कर सकती है। घुली हुई ऑक्सीजन समुद्र में जन्तुओं के जीवन को बनाए रखने के लिए अत्यधिक उपयोगी होती है। यह क्षारीय पायरोगेलॉल विलयन में भी विलेय होती है।
- डाइऑक्सीजन (O2) अनुचुम्बकीय प्रकृति की होती है। इसके पास 2pπ कक्षकों की एन्टीबॉन्डिंग करने के लिए अयुग्मित इलेक्ट्रॉन होते हैं। इसकी आण्विक कक्षक विन्यास है।

$$\sigma_{1s}^2.\sigma_{1s}^{*2}, \sigma_{2s}^2, \sigma_{2s}^{*2}, \sigma_{2pz}^2, \pi_{2px}^2 = \pi_{2py}^2.\pi_{2px}^* = \pi_{2py}^*$$

रासायनिक गुण (Chemical Properties)

- लिटमस के साथ क्रिया— डाइऑक्सीजन लिटमस के प्रति उदासीन 1. होती है तथा नीले या लाल लिटमस का रंग नहीं बदलती है।
- दहन में सहायक --- डाइऑक्सीजन दहन में सहायक होती है लेकिन 2. स्वयं दहन योग्य नहीं होती है।
- अभिक्रियाशीलता— आण्विक ऑक्सीजन ग्रसायनिक रूप से अति स्थायी 3. होती है तथा इसकी बन्धन वियोजन ऊर्जा बहुत उच्च होती है।

 $O = O \rightarrow O + O$; ΔH (वियोजन) = 493.4 kJ mol⁻¹ वियोजन उच्च ताप पर होता है। किन्तु, रासायनिक अभिक्रियायें जिसमें ऑक्सीजन भाग लेती है, अधिकतर ऊष्माक्षेपी प्रकृति की होती है। एक विशिष्ट अभिक्रिया में निकली ऊष्मीय ऊर्जा आवश्यक बन्ध वियोजन ऊर्जा प्रदान करती है। जिसके परिणामस्वरूप, डाइऑक्सीजन अत्यधिक क्रियाशील होती है।

अधातुओं के साथ अभिक्रिया— डाइऑक्सीजन को जब अधातुओं 4. के साथ गर्म करने पर भिन्न यौगिक बनाती है। उदाहरण के लिए, डाइहाइड्रोजन के साथ: (i)

$$2H_2 + O_2 \xrightarrow{1037K} 2H_2O$$

डाइनाइट्रोजन के साथ:

(ii)

$$N_2 + O_2 \xrightarrow{3273K} 2NO$$

नाइट्रिक ऑक्साइड

(iii) सल्फर के साथ:

$$S_8 + 8O_2 \xrightarrow{\text{start}} 8SO_2$$

(iv) कार्बन के साथ

$$2C + O_2$$
 (सीमित मात्रा) $\xrightarrow{\text{व्या}} 2CO$

$$C + O_2$$
 (अधिकता में) $\xrightarrow{\text{उथा}} CO_2$

(v) फॉस्फोरस के साथ:

$$P_4 + 5O_2 \xrightarrow{\text{courl}} P_4O_{10}$$

फॉस्फोरस (V) ऑक्साइड

- 5. **धातुओं के साथ अभिक्रिया** डाइऑक्सीजन विभिन्न दशाओं के अन्तर्गत कई धातुओं के साथ जुड़कर उनके ऑक्साइड बनाती है। उदाहरण के लिए
- (i) सोडियम व कैल्शियम कमरे के ताप पर अभिक्रिया करती है। $4{
 m Na} + {
 m O}_2 o 2{
 m Na}_2{
 m O}$

$$2Ca + O_2 \rightarrow 2CaO$$

(ii) मैग्नीशियम रिबन डाइऑक्सीजन के जार में तेजी से जलता है।

$$2Mg + O_2 \xrightarrow{\overline{gq_1}} 2MgO$$

(iii) ऐल्यूमिनियम व आयरन तेजी से गर्म करने पर डाइऑक्सीजन के साथ जुड़ती है।

$$4AI + 3O_2 \xrightarrow{3041} 2Al_2O_3$$

$$4\text{Fe} + 3\text{O}_2 \xrightarrow{\text{3SMI}} 2\text{Fe}_2\text{O}_3$$

- (iv) उत्कृष्ट धातुएँ जैसे सोना व प्लेटीनम डाइऑक्सीजन के साथ अभिक्रिया नहीं करती हैं
- 6. यौगिकों के साथ अभिक्रिया— डाइऑक्सीजन एक ऑक्सीकारक होती है अत: यह कई यौगिकों को ऑक्सीकृत करती है।
- (i) अमोनिया के साथ— डाइऑक्सीजन 1100K पर प्लेटीनम जाली उत्प्रेरक की उपस्थिति में अमोनिया को नाइट्रिक ऑक्साइड में ऑक्सीकृत करती है।

$$4NH_3 + 5O_2 \xrightarrow{-1100K} 4NO + 6H_2O$$

नाइट्रिक ऑक्साइड अन्तत: ओस्टवाल्ड द्वारा नाइट्रिक अम्ल का निर्माण करता है।

(ii) हाइड्रोजन क्लोराइड के साथ— डाइऑक्सीजन व हाइड्रोजन क्लोराइड की वाष्प 700K पर क्यूप्रिक क्लोराइड की उपस्थिति में क्रिया कर क्लोरीन बनाती है।

$$4HCl + O_2 \xrightarrow{700K} 2Cl_2 + 2H_2O$$

(iii) सत्फर डाइऑक्साइड के साथ— सल्फर डाइऑक्साइड को 723K पर वेनेडियम पेन्टॉक्साइड या महीन चूर्णित प्लेटीनम उत्प्रेरक की उपस्थिति में गर्म करने पर सल्फर ट्राइऑक्साइड में ऑक्सीकृत हो जाता है। यह अभिक्रिया सल्फ्यूरिक अम्ल निर्माण की सम्पर्क विधि का आधार होती है।

$$2SO_2 + O_2 \xrightarrow{723K} 2SO_3$$

(iv) कार्बन डाइसल्फाइड के साथ— कार्बन डाइसल्फाइड को ऑक्सीजन के साथ गर्म करने पर वह जलकर सल्फर डाइऑक्साइड व कार्बन डाइऑक्साइड बनाती है।

$$CS_2 + 3O_2 \xrightarrow{\text{\tiny SMI}} CO_2 + 2SO_2$$

(v) हाइड्रोकार्बन के साथ— हाइड्रोकार्बन (कार्बन व हाइड्रोजन के यौगिक) वायु या डाइऑक्सीजन की अधिकता में जलकर कार्बन डाइऑक्साइड व जल की वाष्प बनाते हैं। दहन अभिक्रियायें अत्यधिक ऊष्माक्षेपी होती है। जिसके परिणामस्वरूप हाइड्रोकार्बन ईंधन के रूप में कार्य करते हैं। प्रोपेन व ब्यूटेन खाना बनाने वाली गैस (LPG) के मुख्य घटक होते हैं।

 $CH_4(g) + 2O_2(g) \xrightarrow{\text{GPH}} CO_2(g) + 2H_2O; \Delta H = -890.0kJ \text{ mol}^{-1}$

 $C_2H_6 + 7/2 O_2 \xrightarrow{30\pi I} 2CO_2(g) + 3H_2O (1);\Delta H = -1580.0 \text{ kJ}$

डाइऑक्सीजन के उपयोग— डाइऑक्सीजन कई तरीकों से उपयोगी होती है।

- यह शल्यचिकित्सा, हृदय रोगों से कृत्रिम श्वसन के लिए तथा ऊँचे पहाड़ चढ़ने वाले पवर्तारोहियों व समुद्री गोताखोरों द्वारा भी प्रयुक्त की जाती है।
- द्रव ऑक्सीजन अन्तरिक्ष राकेटों में एक ऑक्सीकारक के रूप में प्रयुक्त की जाती है।
- उडाइऑक्सीजन धातुकर्म क्रियाओं में As, S, P आदि घुलनशील अशुद्धताओं को ऑक्सीकृत करने में उपयोगी होती है तथा स्टील के निर्माण में भी प्रयुक्त होती है।
- 4. डाइऑक्सीजन सल्फ्यूरिक अम्ल, नाइट्रिक अम्ल, एथिलीन ऑक्साइड, फीनॉल, क्लोरीन आदि को बनाने में उपयोगी होती है।
- 5. ¹⁸O समस्थानिक कुछ अभिक्रियाओं की क्रियाविधि का अध्ययन करने में उपयोगी होता है।
- 6. डाइऑक्सीजन ऑक्सीजन-एथिलीन व ऑक्सी-एसीटिलीन ज्वाला में भी प्रयुक्त होती है जो धातुओं की वेल्डिंग व काटने में प्रयुक्त की जाती है।

7.12 साधारण ऑक्साइडस (Simple Oxides)

- ऑक्साइड अन्य तत्वों के साथ ऑक्सीजन के द्वियौगिक होते हैं।
- धातुओं के ऑक्साइड सामान्य क्षारीय प्रकृति के होते हैं जबिक अधातुओं के ऑक्साइड्स अम्लीय प्रकृति के होते हैं।
- कुछ ऑक्साइड दोनों के ही लक्षण रखते हैं उन्हें उभयधर्मी ऑक्साइड्स (amphoteric oxides) कहते हैं।
- इसके अतिरिक्त कुछ ऑक्साइड्स उदासीन लक्षण वाले भी होते हैं। विभिन्न प्रकार के ऑक्साइडों का संक्षिप्त रूप से वर्णन किया गया है।
- 1. अम्लीय ऑक्साइड (Acidic Oxides) ये वे ऑक्साइड हैं, जो जल में विलेय होने पर अम्ल बनाते हैं। अधातुएँ जैसे कार्बन, सल्फर, नाइट्रोजन, क्लोरीन, फॉस्फोरस आदि सामान्यत: अम्लीय ऑक्साइड बनाती हैं। जैसे-CO₂. SO₂, NO₂, P₂O₅, Cl₂O अम्लीय ऑक्साइड है।

 $CO_2 + H_2O \rightarrow H_2CO_3$ कार्बोनिक अस्त $SO_2 + H_2O \rightarrow H_2SO_3$ सत्प्यूरस अस्त $N_2O_5 + H_2O \rightarrow 2HNO_3$ नाइट्रिक अस्त $P_4O_{10} + 6H_2O \rightarrow 3H_3PO_4$ • फॉस्फोरिक अस्त

- अम्लीय ऑक्साइड एसिड एनहाइड्राइड भी कहलाते हैं। क्योंकि
 ये अम्ल निर्जलीकरण पर अनुरूप अम्लीय ऑक्साइडों बदल जाते
 हैं।
- अम्लीय ऑक्साइड हाइड्रॉक्साइडों को उदासीन करके लवण तथा जल बनाते हैं।

 CO_2 + 2NaOH -> Na $_2CO_3$ + H_2O सोडि. कार्बोनेट P_4O_{10} + 12NaOH \rightarrow 4Na $_3PO_4$ + 6 H_2O सोडि. फास्फेट

2. क्षारीय ऑक्साइड (Basic Oxides) ये ऑक्साइड जल में घुलने पर क्षार बनाते हैं। धातु ऑक्साइड अधिकतर क्षारीय प्रकृति के होते हैं, उदा. सोडियम, पोटेशियम, कैल्शियम, मैग्नीशियम आदि। Na₂O, K₂O, MgO, CaO, Fc₂O₃ क्षारीय ऑक्साइड है।

 $\begin{aligned} &\text{Na}_2\text{O} + \text{H}_2\text{O} \rightarrow 2\text{NaOH} \\ &\text{CaO} + \text{H}_2\text{O} \rightarrow \text{Ca(OH)}_2 \\ &\text{MgO} + \text{H}_2\text{O} \rightarrow \text{Mg(OH)}_2 \\ &\text{Fe}_2\text{O}_3 + 3\text{H}_2\text{O} \rightarrow 2\text{Fe(OH)}_3 \end{aligned}$

 क्षारीय ऑक्साइड क्षारीय एनहाइड्राइड भी कहलाये जा सकते हैं क्योंकि ये क्षारों के निर्जलीकरण द्वारा बनाये जा सकते हैं। क्षारीय ऑक्साइड अम्लों द्वारा उदासीन होकर लवण तथा जल बनाते हैं। उदा. के लिए

 $Na_2O + 2HCl \rightarrow 2NaCl + H_2O$ $MgO + H_2SO_4 \rightarrow MgSO_4 + H_2O$

3. उभयधर्मी ऑक्साइड (Amphoteric Oxides) - कुछ ऑक्साइड अम्लीय व क्षारीय दोनों के ऑक्साइडों की तरह कार्य करते हैं, इन्हें उभयधर्मी ऑक्साइड कहते हैं। सामान्यत: वे तत्व जो धातु व अधातुओं के बीच बार्डर लाइन पर होते है, उभयधर्मी ऑक्साइड बनाते हैं। उदा. के लिए Al₂O₃

 $AI_2O_3 + 6HCI \rightarrow 2AICI_3 + 3H_2O$ (क्षारीय)

 $AI_2O_3 + 6NaOH(aq) + 3H_2O \rightarrow 2Na_3$ [Al(OH)₆] अस्तीय संकर यौगिक

- 4. उदासीन ऑक्साइड (Neutral Oxides)— अधातुओं के कुछ ऑक्साइड न तो अम्ल होते हैं न ही क्षार। ये उदासीन ऑक्साइड कहलाते हैं। उदा. के लिए CO, N₂O, NO, H₂O आदि।
- 5. मिश्रित ऑक्साइड धात्विक ऑक्साइड होते हैं, जिसमें एक ही धातु के दो ऑक्साइड विभिन्न ऑक्सीकरण अवस्थाओं में धातु के साथ

एक दूसरे के साथ मिश्रित होते हैं। उदाहरण के लिए, फेरेसोफेरिक ऑक्साइड ($Fe_3O_4=FeO$, Fe_2O_3), लाल सिन्दूर ($Pb_3O_4=2PbO+PbO_2$)

आवर्त सारणी में ऑक्साइडों के व्यवहार क्रम (Trends in behaviour of Oxides in Periodic table)

वर्ग में (In a group)— वर्ग में धातुओं के धात्विक लक्षण बढ़ते हैं। इसीलिए, ऑक्साइडों का क्षारीय लक्षण बढ़ता है। उदाहरण के लिए, क्षारीय धातुओं के ऑक्साइड का क्रम है—

. Li₂O, Na₂O, K₂O, Cs₂O क्षारीय लक्षण बढ़ रहा है।

आवर्त में (In a period)— आवर्त में, धातुओं का धात्विक लक्षण सामान्यत: घटता है व अधात्विक लक्षण बढ़ता है। इसीलिए ऑक्साइडों का क्षारीय गुण घटते है तथा अम्लीय लक्षण बढ़ते है। उदा. के लिए तीसरे आवर्त के तत्वों के ऑक्साइडों का क्रम निम्न रूप से हैं:

Na₂O, MgO, Al₂O₃SiO₂, P₂O₃SO₂Cl₂O अम्लीय लक्षण बढ रहा है।

उपर्युक्त दिए गए ऑक्साइडों में Na_2O प्रबल क्षार है, MgO क्षार है, Al_2O_3 उभयधर्मी है, SiO_2 दुर्बल अम्ल है तथा अम्लीय लक्षण आगे बायें से दायें जाने पर बढ़ता है।

विभिन्न प्रकार के ऑक्साइड्स (Different Types of Oxides) ऑक्सीजन की मात्रा के आधार पर ऑक्साइड को निम्न भागों में बाँटा गया है—

- (1) सामान्य ऑक्साइड-ये ऑक्साइड सामान्यतय तत्त्र की संयोजकता के अनुसार ऑक्सीजन से संयोग कर बनाते हैं। उदाहरण के लिए- H₂O MgO. CaO Al₂O₃. Li₂O
- (2) Polyoxides- इन ऑक्साइड्स में संयोजकता से अधिक ऑक्सीजन उपस्थित होती है। अत: इनमें ऑक्सीजन की ऑक्सीकरण अवस्था -2 से भिन्न होती है।
- (i) **परऑक्साइड**-इन ऑक्साइड्स में Oxygen O_2^{2-} ion के रूप में उपस्थित होते हैं जहाँ ऑक्सीजन का ऑ. आ. -1 है। जैसे- H_2O_2 , Na_2O_2 BaO_2 , PbO_2
- (ii) सुपर ऑक्साइड-इन ऑक्साइड में ऑक्सीजन O_2 -आयन के रूप में उपस्थित होती है। यहाँ ऑक्सीजन का ओ. अंक -½ होता है। जैसे- KO_2
- (3) सब ऑक्साइड-इन ऑक्साइड्स में तत्व की संयोजकता से कम ऑक्सीजन है। जैसे-N₂O
- (4) मिश्रित ऑक्साइड- ये दो सामान्य ऑक्साइडों को मिश्रित करने से बनता है।

 $Fe_3O_4 \rightarrow FeO + Fe_2O_3$

अभ्यास-७.४

- प्र.1. वर्ग 16 कें तत्वों को केल्कोजोन क्यों कहते हैं?
- प्र.2. शुष्क वायु में आयतन के अनुसार ऑक्सीजन कितने % है?

- प्र.3. निम्न के सूत्र लिखिये-
 - (i) जिप्सम (ii) एपसम लवण (iii) वेराइट (iv) गैलेना (v) यशद ब्लैण्ड (vi) कॉपर पाइराइट्स।
- प्र.4. तत्व S कौन~कौनसी ऑक्सीकरण अवस्थायें प्रदर्शित करता है।
- प्र.5. तत्व O कौन-कौनसी ऑक्सीकरण अवस्थायें प्रदर्शित करता है।
- प्र.6. S की प्रथम उत्तेजित अवस्था में कितने इलेक्ट्रॉन अयुग्मित है?
- प्र.7. S की द्वितीय उत्तेजित अवस्था में कितने इलेक्ट्रॉन अयुग्मित है?
- प्र.8. वर्ग 16 के तत्वों के हाइड्राइड को बन्ध कोण के बढ़ते क्रम में व्यवस्थित करें।
- प्र.९. वर्ग 16 के तत्वों के हाइड्राइड को स्थायित्वता के बढ़ते क्रम में व्यवस्थित करें।
- प्र.10. वर्ग 16 के तत्वों के हाइड्राइड में संकरण अवस्था बताइये।
- प्र.11. वर्ग 16 के तत्वों के हाइड्राइड को अम्ल की प्रबलता के बढ़ते क्रम में व्यवस्थित करें।
- प्र.12. वर्ग 16 के तत्वों के हाइड्राइड मे अपचायक क्षमता के बढ़ते क्रम में व्यवस्थित करें।
- प्र.13. वर्ग 16 के तत्वों के हाइड्राइड को गलनांक के बढ़ते क्रम में व्यवस्थित करें।
- प्र.14. वर्ग 16 के तत्वों के हाइड्राइड क्वथनांक के बढ़ते क्रम में व्यवस्थित
- प्र.15. वर्ग 16 में कौनसा तत्व मोनो ऑक्साइड नहीं बनाता?
- प्र16. वर्ग 16 के तत्वों का इलैक्ट्रॉनिक विन्यास होगा?
- प्र 17 वर्ग 16 के तत्वों को अगयनन एन्थैल्पी के बढ़ते क्रम में व्यवस्थित
- प्र.18. वर्ग 16 के तत्वों को विद्युत ऋणात्मकता के बढ़ते क्रम में व्यवस्थित
- $^{\mathrm{D},19}$. S अणु (S_8) की पुटित वलय संरचना बनाइये।
- प्र.20. SO_2 में बन्ध कोण कितना है?
- । प्रि.21. SeO₂ की संरचना बनाइये।
- . |प्र.22. SO3 की अनुनादी संरचनायें बताइये।
- प्र.23. क्या होता है जब
 - (i) लाल लेड को गर्म करने पर
 - (ii) पोटेशियम क्लोरंट को गर्म करने पर
 - (iii) KMnO₄ को गर्म करने पर
 - (iv) CaOCl₂ को गर्म करने पर
- प्र.24. O_2 के भौतिक गुणों का जर्णन कीजिये।
- प्र.25. O₂ को निम्न के साथ क्या क्रिया होगी, रासायनिक समीकरण दीजिये।
 - (i) N₂
- (ii) S_8
- (iii) P₄ (iv) Mg धातु से
- (v) Fe धातु से (vi) NH3
- (vii) SO₂
- (viii) CH4 से
- ए.26. डाइऑक्सीजन के उपयोग लिखिये।

- प्र.27. ऑक्साइड किसे कहते हैं?, इनके वर्गीकरण का वर्णन कीजिर
- प्र.28. अम्लीय ऑक्साइड किसे कहते हैं? उदाहरण दीजिये।
- प्र.29. क्षारीय ऑक्साइड किसे कहते हैं? उदाहरण दीजिये।
- प्र.30. उभयधर्मी ऑक्साइड किसे कहते हैं? उदाहरण दीजिये।
- प्र.31. उदासीन ऑक्साइड किसे कहते हैं? उदाहरण दीजिये।
- प्र.32. वर्ग 16 के तत्वों के ऑक्साइड की क्षारीय/अम्लीय प्रकृति आव व वर्ग में समझाइये।

उत्तरमाला

- चैल्कोजोन का अर्थ कॉपर का सल्फर एवं इसके समवंशियों के 1. साथ संगुणन होने से हैं, अधिकांश कॉपर अयस्कों में या तो O या S व अन्य सदस्य पाये जाते हैं।
- 2. 20.946%

4.

- 3. (i) CaSO₄.2H₂O
- (ii) MgSO₄.7H₂O
- (iii) BaSO4
- (iv) PbS
- (v) ZnS
- (vi) CuFeS2
- +1. +2, +4.
- +6 प्रदर्शित करती है। 5, +2 ऑक्सीकरण अवस्थायें प्रदर्शित करते हैं।
- S की प्रथम उत्तेजित अवस्था में चार इलेक्ट्रॉन अयुग्मित है। 6.
- 7. S की द्वितीय उत्तेजित अवस्था में छ: इलेक्ट्रॉन अयुग्मित है।
- $H_2P_0 < H_2Te < H_2Se < H_2S < H_2O$ 8.

बन्ध कोण का बढ़ता क्रम

- ${\rm H_2Po} < {\rm H_2Te} < {\rm H_2Se} < {\rm H_2S} < {\rm H_2O}$ 9. स्थायित्व का बढ़ता क्रम
- 10. sp³ संकरण
- $H_2O < H_2S \le H_2Se \le H_2Te \le H_2Po$ 11. अम्ल को प्रबलता का बढ़ता क्रम
- $H_2O \le H_2S \le H_2Se \le H_2Te \le H_2Po$ 12. अपचायक क्षमता का बढ़ता क्रम
- $H_2S < H_2Se < H_2Te < H_2O$ गलनांक का बढ़ता क्रम 13.
- $H_2S < H_2Se < H_2Te < H_2O$ क्वथनांक का बढ़ता क्रम 14.
- Se मोनोऑक्साइड नहीं बनाता। 15.
- 16. ns^2np^4
- Po < Te < Se < S < O आयनन एन्थैल्पी का बढ़ता क्रम 17.
- Po < Te < S < Se < O विद्युत ऋगात्मकता का बढ़ता ऋम 18.
- 19. पेज नं. 7.26 पर बिन्दु 7.10.7 पर देखें।
- 20. 119.50
- 21. SeO₂(s) की संरचना

. p≕ब्लॉक के तत

22. SO3 की अनुनादी संरचनाएँ

23. (i)
$$2Pb_3O_4 \xrightarrow{3041} 6PbO + O_2$$

(iii)
$$2KMnO_4 \xrightarrow{gran} K_2MnO_4 + MnO_2 + O_2$$

(iv)
$$2CaOCl_2 \xrightarrow{\overline{3}\overline{\alpha}+1} 2CaCl_2 + O_2$$

24. O_2 के भौतिक गुण

डाइऑक्सीजन यह स्वादिवहीन भी होती है।

- यह तीन स्थायी समस्थानिकों के रूप में उत्पन्न होती है। ये हैं 16Q,
 17O व 18O! प्रचुर मात्रा मिलने वाला समस्थानिक 16O होती है।
- यह कम ताप व उच्च दाब के अन्तर्गत द्रवित हो जाती है।
 डाइऑक्सीजन 55K गलनांक व 90.0K क्वथनांक वाली होती है।
- यह वायु से ज्यादा भारी होती है तथा वाष्प घनत्व 16 होता है।

25. (i)
$$N_2 + O_2 \xrightarrow{3273K} 2NO$$
 नाइट्रिक ऑक्साइड

(ii)
$$S_8 + 8O_2 \rightarrow 8SO_2$$

(iii)
$$P_4 + 5O_2 \rightarrow 2P_2O_5$$

(iv)
$$2Mg + O_2 \xrightarrow{\text{SPEI}} 2MgO$$

(v)
$$4\text{Fe} + 3\text{O}_2 \xrightarrow{3\text{Eq}} 2\text{Fe}_2\text{O}_3$$

(vi)
$$4NH_3 + 5O_2 \xrightarrow{-1100 \text{ K}} 4NO + 6H_2O$$

(vii)
$$2SO_2 + O_2 \xrightarrow{723K} 2SO_3$$

(viii)
$$2CH_4 + 2O_2 \rightarrow 2CO_2 + 4H_2O$$

- 26. **डाइऑक्सीजन के उपयोग** डाइऑक्सीजन कई तरीकों से उपयोगी होती है।
 - यह शल्यचिकित्सा, हृदय रोगों से कृत्रिम श्वसन के लिए तथा ऊँचे पहाड़ चढ़ने वाले पवर्तारोहियों व समुद्री गोताखोरों द्वारा भी प्रयुक्त की जाती है।
- द्रव ऑक्सीजन अन्तिरक्ष राकेटों में एक ऑक्सीकारक के रूप में प्रयुक्त की जाती है।
- उडाइऑक्सीजन धातुकर्म क्रियाओं में As, S. P आदि घुलनशील अशुद्धताओं को ऑक्सीकृत करने में उपयोगी होती है तथा स्टील के निर्माण में भी प्रयुक्त होती है।

- 27. ऑक्साइड अन्य तत्वों के साथ ऑक्सीकरण के द्वियौगिक होते हैं ऑक्साइड निम्न प्रकार के होते हैं।
 - (a) अम्लीय ऑक्साइड (b) क्षारीय और ऑक्साइड
 - (c) उभयधर्मी ऑक्साइड (d) उदासीन ऑक्साइड
 - (e) मिश्रित ऑक्साइड
- 28. ये जल में विलेय होकर अम्ल बनाते हैं, उन्हें अम्लीय ऑक्साइड कहते हैं।

 ${
m CO_2}$, ${
m SO_2}$, ${
m N_2O_5}$, ${
m P_4O_{11}}$ अम्लीय ऑक्साइड है।

29. वे ऑक्साइड जल में घुलने पर क्षार बनाते हैं। क्षारीय ऑक्साइड कहते हैं।

Na₂O, CuO, MgO, Fe₂O₃ क्षारीय ऑक्साइड है।

- 30. वे ऑक्साइड जो अम्लीय व क्षारीय ऑक्साइड की तरह कार्य करते हो, उन्हें उभयधर्मी ऑक्साइड कहते हैं। Al_2O_3 एक उभयधर्मी ऑक्साइड है।
- 31. अधातुओं के कुछ ऑक्साइड न तो अम्लीय होते हैं और ना ही क्षारीय, उदासीन ऑक्साइड कहते हैं। CO. N2O, NO, H2O उदासीन ऑक्साइड है।
- 32. आवर्त में बाये से दायें चलने पर तत्त्वों के ऑक्साइड की क्षारीय प्रवृत्ति घटती है जबिक अम्लीय प्रवृत्ति बढ़ती है। वर्ग में ऊपर से नीचे चलने पर क्षारीय प्रवृत्ति बढ़ती है जबिक अम्लीय प्रवृत्ति घटती है।

7.13 ओजोन (Ozone)

- डाइऑक्सीजन (O₂) के अतिरिक्त, ऑक्सीजन तत्व त्रिपरमाण्विक रूप (O₃) में भी उत्पन्न होता है जिसे ओजोन कहते हैं।
- दोनों एक दूसरे के अपररूप (allotropes) हैं।
- यह पृथ्वी की सतह से लगभग 20km दूर ऊपरी वातावरण में उपस्थित होती है।
- जब वातावरण में उपस्थित ऑक्सीजन पराबैंगनी किरणों (UV rays)
 को अवशोषित करती है, तो O₂ ओजोन में बदल जाती है।

$$3\mathrm{O}_2$$
 + पराबैंगनी किरणें $ightarrow$ $2\mathrm{O}_3$

 इस प्रकार ओजोन की पर्त एक चादर की तरह कार्य करती है तथा इन पराबैंगनी किरणों को पृथ्वी की सतह तक पहुँचने से बचाती है और इस प्रकार से पौधों व जीवों दोनों को इन विकिरणों के हानिकारक प्रभावों से सुरक्षित रखती है।

ओजोन का विरचन (Preparation of Ozone)

 ओजोन शुद्ध, ठण्डी, पूर्णतया शुष्क ऑक्सीजन को (298 K पर) एक उपकरण जिसे ओजोनाइजर कहते हैं, में से शान्त वैद्युत विसर्जन (चिंगारी विहीन) को गुजारकर बनायी जाती है।

p-ब्लॉक के तत्त्र

- यह एक उत्क्रमणीय अभिक्रिया है तथा अग्र अभिक्रिया ऊष्माक्षेपी होती है।
- शान्त विद्युत स्फुटन करने का उद्देश्य ताप में स्थानिक वृद्धि को रोकना है जो ओजोन को वापस ऑक्सीजन में रूपान्तरित होने देती है।
- 'प्रयोगशाला में सामान्यत: दो ओजोनाइजर प्रयुक्त किए जाते हैं। ये है सीमेन ओजोनाइजर (Scimen's Ozoniser) व ब्रोडी ओजोनाइजर (Brodie's Ozoniser) । सीमेन ओजोनाइजर को निम्न रूप से समझाया गया है—

चित्रः सीमेन ओजोनाइजर द्वारा ओजोनीकृत

ऑक्सीजन का विरचन

- ओजोनाइजर एक सिरे पर बन्द काँच की दो अभिकेन्द्रित निलयों का बना होता है जैसा कि चित्र में दिखाया गया है।
- शुद्ध शुष्क ऑक्सीजन को अन्दर लाने के लिए अन्त: द्वार (inlet)
 तथा ओजोन या बनी हुई ओजोनीकृत ऑक्सीजन को बाहर निकालने
 के लिए बाह्यद्वार होता है।
- बाहरी नली की बाहरी सतह तथा अन्त: नली की अन्त: सतह पर टिन पत्ती (foils) की पर्त होती है। ये उच्च वोल्टेज की वैद्युत धारा गुजारने के लिए एक प्रेरण कुण्डली के दो टर्मिनल से जुड़ी होती हैं।
- अब ठण्डी, शुद्ध व शुष्क ऑक्सीजन का धीमा प्रवाह अन्त: द्वार से गुजारा जाता है तथा इसके बाद शान्त विद्युत स्फुटन गुजारते हैं, यह ऑक्सीजन को धीमे-धीमे ओजोन में बदलती है।
- ओजोन की प्रतिशतता केवल 6 से 10% होती है तथा शेष ऑक्सीजन होती है। इसीलिए यह ओजोनीकृत ऑक्सीजन कहलाती है तथा बाह्य से बाहर निकाली जाती है।
 - निम्न सावधानियों को अपनाते हुए ओजोन का उत्पादन बढ़ाया जा सकता है।
- ऑक्सीजन निश्चित रूप से पूर्णतथा शुष्क व शुद्ध होनी चाहिए।
- 2. ओजोनाइजर को पूर्ण रूप से शुष्क रखना चाहिए।
- 3. वह ताप जिस पर ऑक्सीजन गुजारी जाती है निश्चित रूप से बहुत

4. जहाँ तक सम्भव हो, वैद्युत विसर्जन चिंगारी विहीन होना चाहिए।

ओजोनीकृत ऑक्सीजन का शुद्धिकरण (Purification of ozonised oxygen)

शुद्ध ओजोन को प्राप्त करने में, ओजोनीकृत ऑक्सीजन जो उपर्युक्त तरीके से प्राप्त की जाती है, द्रवित वायु द्वारा घिरी होती है। जिसके परिणामस्वरूप, ऑक्सीजन (क्वथनांक 90.0K) के सापेक्ष ओजोन (क्वथनांक 161.2K) संघनित हो जाती है। इस प्रकार से भी बनी द्रव ओजोन ऑक्सीजन की सूक्ष्म मात्रा रखती है। यह प्रभाजी आसवन के परिणामस्वरूप पृथक की जा सकती है।

ओज़ोन के गुण (Properties of Ozone)

भौतिक गुण (Physical Properties)

- (i) ओजोन अभिलाक्षणिक तीखी गंध वाली पीत-नीली गैस होती है।
- (ii) द्रव वायु द्वारा ठण्डा करने पर यह संघितत होकर गहरा नीला द्रव (क्वथनांक 161.2K) बनाती हैं। आगे ठण्डा करने पर द्रव बैंगनी काले ठोस (हिमांक 80.6K) में परिवर्तित हो जाता है।
- (iii) ओजोन (वा. घन. = 24) वायु (वा. घन. = 14.4) की अपेक्षा भारी होती है।
- (iv) यह केवल जल में हल्की सी विलेय होती है लेकिन कुछ कार्बनिक विलायकों जैसे तारपीन के तेल, कार्बन टैट्राक्लोराइड व बर्फीले एसीटिक अम्ल में तुरन्त विलेय हो जाती है।

रासायनिक गुण (Chemical Properties)

ओजोन के महत्वपूर्ण रासायनिक गुण निम्न हैं—

- उदासीन लक्षण (Neutral character)— ओजोन उदासीन लक्ष्ण वाली होती है तथा नीले या लाल लिटमस पेपर का रंग नहीं बदलती है।
- 2. अपघटन (Decomposition)— ओजोन अत्यधिक स्थायी नहीं होती है तथा कमरे के ताप पर ओजोन का अपघटन धीमे-धीमे करती है।
- जब इसे मैग्नीज डाइऑक्साइड, क्यूप्रिक ऑक्साइड या काले प्लेटीनम जैसे उत्प्रेरक की उपस्थिति में लगभग 470K पर गर्म करते हैं। तब यह आसानी से विघटित होकर ऑक्सीजन बनाती है।
- यह अभिक्रिया ऊष्माक्षेपी प्रकृति की होती है।

$$2O_3 \xrightarrow{470 \text{ K}} 3O_2$$
; $\Delta H = -142 \text{ kJ}$

3. ऑक्सीकारक लक्षण (Oxidising Character)— चूँकि ओजोन तुरन्त परमाण्विक ऑक्सीजन देती है, इसलिए यह एक बहुत प्रबल

$$O_3 \rightarrow O_2 + O_3$$

- ये ऑक्सीकारक अभिक्रियाएँ परमाण्विक ऑक्सीजन द्वारा होती है।
- (i) ओजोन लैंड सल्फाइड (काले) को लैंड सल्फेट (सफेद) में ऑक्सीकृत करती है।

$$O_3 \rightarrow O_2 + O] \times 4$$

$$PbS + 4O \rightarrow PbSO_4$$

$$PbS + 4O_3 \rightarrow PbSO_4 + 4O_2$$

 धातुओं के कुछ अन्य सल्फाइड भी अपने अनुरूप सल्फेटों में ऑक्सीकृत हो जाते हैं। उदाहरण के लिए:

$$\begin{aligned} & \text{CdS} + 4\text{O}_3 \rightarrow \text{CdSO}_4 + 4\text{O}_2 \\ & \text{ZnS} + 4\text{O}_3 \rightarrow \text{ZnSO}_4 + 4\text{O}_2 \\ & \text{MnS} + 4\text{O}_3 \rightarrow \text{MnSO}_4 + 4\text{O}_2 \end{aligned}$$

(ii) ओजोन हैलोजन अम्लों को उनके हैलोजनों में ऑक्सीकृत करती हैं।

$$\begin{array}{c} O_{3} \rightarrow O_{2} + O \\ \frac{2 \text{ HCl} + O \rightarrow H_{2}O + Cl_{2}}{2 \text{HCl} + O_{3} \rightarrow O_{2} + H_{2}O + Cl_{2}} \\ \hline \text{इसी तरह से} & 2 \text{HBr} + O_{3} \rightarrow O_{2} + H_{2}O + Br_{2} \\ \frac{2 \text{HI} + O_{3} \rightarrow O_{2} + H_{2}O + I_{2}}{2 \text{HI} + O_{3} \rightarrow O_{2} + H_{2}O + I_{2}} \end{array}$$

4. ब्लीचिंग लक्षण (Bleaching Character)—ओजोन अपने ऑक्सीकारक लक्षण के कारण हल्के ब्लीचिंग कारक (विरंजक) की तरह कार्य करती है तथा सब्जियों के रंगीन पदार्थ का रंग ब्लीच (सफेद करना) कर देता है।

सब्जियों का रंगीन पदार्थ $+\mathrm{O_3} o$ रंगीन ऑक्सीकृत पदार्थ $+\mathrm{O_2}$

5. ओजोनाइड का निर्माण (Formation of Ozonides)— ओजोन योगात्मक यौगिकों को बनाता है जिन्हें ओजोनाइड्स कहते हैं जब कि ओजोन को अक्रिय विलायक जैसे CCl₄ में घुले हुए एल्कीन या एल्काइन से गुजारा जाता है।

प्रमुख बिन्दु (Important Point)

- जब ओजोन बोरेट बफर विलयन (pH = 9.2) युक्त उभ्य प्रतिरोधित KI विलयन के आधिक्य से अभिक्रिया करती है तो आयोडीन मुक्त होती है जिसका मानक सोडियम थायो सल्फेट विलयन के साथ अनुमापन किया जा सकता है, यह O₃ गैस के आकलन की मात्रात्मक विधि है।
- नाइट्रिक ऑक्साइड ओजोन के साथ अत्यधिक तीव्रता से संयुक्त

होते है। अत: यह सम्भव है कि सुपर सोनिक जैट विपानों के निकास तन्त्र में उत्सर्जित नाइट्रोजन ऑक्साइड ऋपरी त्रापुमण्डन में ओजोन परत की सान्द्रता में मंद गति से क्षय कर रही है।

$$NO_{(g)} + O_3(g) \rightarrow NO_2(g) + O_2(g)$$

ओजोन की परत को दूसरा खतरा संभवतया फ्रेऑनों के उपयोग से हैं।

ओजोन का उपयोग (Uses of Ozone)

- ओजोन एक (जर्मनाशी) कीटाणु विसंक्रामी तथा जल का रोगाणुरहित (निर्जन) करने में प्रयक्त की जाती है।
- यह भीड़ वाले स्थान जैसे रेलवे स्टेशन, सिनेमाघर, सभाघर में वायु
 को शुद्ध करने के लिए भी प्रयुक्त की जाती है।
- ओजोन कोमल कपड़े, तेल, आटा, स्टाच व हाथी दात के लिए विरंजक के रूप में प्रयुक्त होती है।
- ओजोन रेशम व संश्लेषित कपूर को बनाने नाले उद्योगों में प्रयुक्त होती है।
- उस प्रयोगशाला में ऑक्सीकारक की तरह भी प्रयुक्त होती है। जैसे पोटेशियम परमैंगनेट के उत्पादन में ऑक्सीकारक के रूप में उपयुक्त होती है।

ओजोन की संरचना (Structure of Ozone)

ओजोन में केन्द्रीय ऑक्सीजन परमाणु sp² संकरण वाला होता है। अणु, इसीलिए कोणीय आकार का होता है तथा बन्ध कोण 116.8° होता है। O से O को बन्ध लम्बाई 127.8pm पायी गयी तथा O—O बन्ध (148 pm) व O = O बन्ध (110 pm) की

बन्ध लम्बाई का माध्यमिक होती है। ये मान ओजोन को निम्न सम्भावित संरचनाओं का संकर रूप मानते हुए समझाये जा सकत हैं।

उदा.21 निम्नलिखित में से कौनसा तत्व ऑक्सीजन के साथ सीधे अभिक्रिया नहीं करता?

Zn, Ti, Pt & Fe

हल- Pt धातु सीधे ऑक्सीजन से क्रिया नहीं करते हैं। उदा.22 निम्नलिखित अभिक्रियाओं को पूर्ण कीजिये।

(i)
$$C_2H_4 + O_2 \rightarrow$$
 (ii) $4AI + 3O_2 \rightarrow$

ਫ਼ਿਲਾ- (i)
$$2C_2H_4 + 6O_2 \rightarrow 4CO_2 + 4H_2O$$

(ii) $4Al + 3O_2 \rightarrow 2Al_2O_3$

उदा.23 🔾 एक प्रबल ऑक्सीकारक की तरह क्यों क्रिया करती है।

हल- ओजोन आसानी से नक्जात ऑक्सीजन मुक्त करने के कारण ho_3 → O₂ + O] यह प्रबल ऑक्सीकारक की तरह व्यवहार प्रदर्शित करते हैं।

उदा.24 O₃ का मात्रात्मक आकलन कैसे किया जाता है?

हल- जब O3 बोरेट बफर युक्त उभय प्रतिरोधित पोटेशियम आयोडाइड विलयन के आधिक्य से क्रिया करती है तो ${
m I}_2$ मुक्त होती है जिसका मानक सोडियम थायो सल्फेट विलयन के साथ अनुमापन करते हैं। यह O3 गैस के आकलन की मात्रात्मक विधि है।

सल्फर के अपरखप 7.14 (Allotropic forms of Sulphur)

- सल्फर के अनेक अपररूप है।
- इनमें पीली विषम लंबाक्ष (α- सल्फर) तथा एकनताक्ष (β- सल्फर) रूप अति महत्वपूर्ण है।
- कमरे के ताप पर विषमलंबाक्ष सल्फर अधिक स्थायी अपररूप है।
- विषमलंबाक्ष सल्फर को 369K ताप पर गर्म करने पर यह एकनताक्ष सल्फर में रूपांतरित हो जाती है।

(a) विषमलंबाक्ष सल्फर⁄ α- सल्फर

- यह अपररूप पीले रंग का होता है।
- इसका घनत्व 2.06 है।
- यह CS2 में विलेय है।
- यह क्रिस्टलीय रुप है।
- यह S_g के रूप में क्रिस्टल में व्यवस्थित होता है।
- इनकी संरचना निम्न प्रकार की होती है।

विषमलंबाक्ष सल्फर

- इनमें वलय एक-दूसरे से आराम से फिट होती चली जाती है।
- यह जल में अविलेय है।
- इसका गलनांक 385.8K हैं।
- इन्हें गंधक श्लाका को CS_2 विलयन को वाष्पीकृत करके बनाये जाते 割

(b) एकनताक्ष (Monoclinic) सल्फर (β– सल्फर)

- इसका गलनांक 393K है। S₈ का ऑक्सीकरण अंक शून्य होता है।
- इसका घनत्व 1.98 है।
- यह CS2 में विलेय है।

- इस अपररूप को बनाने के लिये विषमलंबाक्ष गन्धक को एक तरतरी में पिघलाकर तथा पपड़ी बनने तक ठंडा करते हैं। इस पपड़ी में दो छिद्र करते हैं। जिनमें से बचा हुआ द्रव निकाल लिया जाता है, पपड़ी को हटाने पर रंगहीन सूई के आकार के β- सल्फर के क्रिस्टल बनते हैं ।
- ये 369K के ऊपर ताप पर स्थायी होते हैं।
- 369K ताप के नीचे ताप पर α− सल्फर में रूपान्तरित हो जाते हैं।
- इसके विपरीत α- सल्फर 369Κ से नीचे ताप पर स्थायी है तथा इससे अपर ताप पर β- सल्फर में रूपान्तरित हो जाती है।
- 369K ताप पर दोनों रूप स्थायी है। इस ताप को संक्रमण ताप कहते हैं।

विषमलम्बाश सल्फर(S¸ संरचना वलय)

विषमलंबाश सल्फर (Sॄ संरचना वलय)

प्लास्टिक सल्फर—पिघली हुई सल्फर को जब ठण्डे जल में उड़ेलते हैं, तो रबर जैसी मुलायम सल्फर प्राप्त होती है, लिये प्लास्टिक सल्फर (६-सल्फर) कहते हैं। आरम्भ में यह नर्म एवं प्रत्यास्थ होती है परंतु धीरे-धीरे कठोर होकर विषमहास्थाक्ष अपररूप में रूपान्तरित हो जाती है। इसे S₆ से प्रदर्शित किया जाता है, जिसमें छ: सल्फर परमाणु कुर्सी रूप में व्यवस्थित होते हैं। पिछले कुछ दशकों में सल्फर के अनेक अपररूप बनाये गये जिनमें सल्फर परमाणुओं की संख्या 6-20 तक है। उच्च ताप (लगभग 1000 K) पर सल्फर मुख्यत: S2 अपररूप में होती है, जो ${
m O}_2$ की भाँति अनुचुम्बकीय व्यवहार प्रदर्शित करती है।

उदा.25 सल्फर का कौनसा रूप अनुचुम्बकीय व्यवहार प्रदर्शित करता है?

हल-वाष्प अवस्था में सल्फर आंशिक रूपसे S2 अणु के रूप में पाया जाता है। S_2 अणु, O_2 अणु की तरह प्रति आबन्धन आर्बिटल $\pi*$ में अयुग्मित इलेक्ट्रॉन होने के कारण अनुचुम्बकीय गुण प्रदर्शित करता हैं।

7.15 सल्फर के चौगिक (Compounds of Sulphur)

7.15.1 सल्फार डाइऑक्साइड (SO₂)

निर्माण (Preparation)— (i) सल्फर डाइऑक्साइड निर्माण वायु में सल्फर या आयरन पायराइटीज को जलाकर किया जा सकता है।

(ii) इसे सोडियम सल्फाइड या सोडियम थायोसल्फेट की तनु HCl या तनु ${
m H}_2{
m SO}_4$ के साथ क्रिया द्वारा भी बनाया जा सकता है।

$$Na_2SO_3 + 2HCl \rightarrow 2NaCl + H_2O + SO_2$$

सोडियम सल्फाइट

$$Na_2S_2O_3 + H_2SO_4 \rightarrow Na_2SO_4 + H_2O_1 + SO_2 + 2S$$

सोडियम थायोसल्फेट

(iii) प्रयोगशाला निर्माण (Laboratory preparation)— प्रयोगशाला में, इसे कॉपर को सान्द्र ${
m H_2SO_4}$ के साथ गर्म करके प्राप्त किया जा सकता है।

$$\frac{\text{Cu} + 2\text{H}_2\text{SO}_4}{\text{JUI (Properties)}} \xrightarrow{\text{Surf}} \text{CuSO}_4 + \text{SO}_2 + 2\text{H}_2\text{O}$$

- (i) सल्फर डाइऑक्साइड एक रंगहीन, तीखी व उत्तेजक गंध वाली गैस है।
- (ii) यह जल में अत्यधिक विलेय होती है तथा इसका विलयन अम्लीय होता है।

$$\mathrm{SO}_2(\mathrm{g}) + \mathrm{H}_2\mathrm{O}\;(\mathrm{l}) o \mathrm{H}_2\mathrm{SO}_3(\mathrm{aq})$$

सल्फ्यूरस अम्ल

- (iii) यह कक्ष ताप व दो वायुमंडलीय दाब पर द्रवित होती है तथा 263K पर उबलती हैं।
- (iv) अम्लीय ऑक्साइड होते हुए, यह क्षारों जैसे NaOH या KOH के साथ अभिक्रिया करती है।

2NaOH + SO
$$_2$$
 \rightarrow Na $_2$ SO $_3$ + H $_2$ O सोडियम सल्फाइट

$$Na_2SO_3 + H_2O + SO_2 \rightarrow 2NaHSO_3$$

सोडियम हाइड्रोजन सल्फाइट

(v) यह चारकोल उत्प्रेरक की उपस्थिति में क्लोरीन के साथ अभिक्रिया करके सल्फ्यूराइल क्लोराइड (SO₂Cl₂) देती है।

$$SO_2(g) + Cl_2(g) \rightarrow SO_2Cl_2(l)$$

सल्फ्यूराइल क्लोराइड

(vi) सल्फर डाइऑक्साइड V_2O_5 या प्लेटीनीकृत एस्बस्टस उत्प्रेरक की उपस्थिति में गर्म करने पर सल्फर ट्राइऑक्साइड में ऑक्सीकृत हो जाती है।

$$2SO_2(g) + O_2(g) \xrightarrow{\text{doken}} 2SO_3(g)$$

(vii) विलयन में या नमी की उपस्थिति में यह अपचायक की तरह कार्य करती है। यह सल्फेट Fe(III) आयनों को Fe(II) आयनों में अपचियत कर देता है। जिसके परिणामस्वरूप, यह फेरिक के जलीय विलयन को फेरस सल्फेट विलयन के निर्माण के कारण हल्के हरे रंग में बदल देता है।

$$\begin{aligned} &\text{Fe}_2(\text{SO}_4)_3 + \text{SO}_2 + 2\text{H}_2\text{O} \rightarrow 2\text{FeSO}_4 + 2\text{H}_2\text{SO}_4 \\ &2\text{Fe}^{3+} + \text{SO}_2 + 2\text{H}_2\text{O} \rightarrow 2\text{Fe}^{2-} + \text{SO}_4^{2-} + 4\text{H}^{\perp} \end{aligned}$$

 सल्फर डाइऑक्साइड गुलाबी पोटेशियम परमैंग्नेट विलयन को रंगहीन कर देता है।

$$2KMnO_4 + H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 3H_2O + 5[O]$$

$$SO_2 + 2H_2O \rightarrow H_2SO_4 + 2H] \times 5$$

$$2H + O \rightarrow H_2O] \times 5$$

$$2KMnO_4 + 5SO_2 + 2H_2O \rightarrow K_2SO_4 + 2MnSO_4 + 2H_2SO_4$$

$$(गुलाबी) \qquad (रंगहीन) \qquad (रंगहीन)$$

 यह अम्लीकृत नारंगी पोटेशियम डाइक्रोमेट को भी क्रोमियम सल्फेट के निर्माण के कारण हरे रंग में बदल देता है।

$$K_2Cr_2O_7 + 4H_2SO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_3 + 4H_2O + 3[O]$$

 $[SO_2 + 2H_2O \rightarrow H_2SO_4 + 2H] \times 3$
 $2H + O \rightarrow H_2O] \times 3$
 $K_2Cr_2O_7 + 3SO_2 + H_2SO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_3 + H_2O$
 $(\overline{e}\overline{c})$

 सल्फर डाइऑक्साइड भी अपनी अपचयन प्रकृति के कारण विरंजक के रूप में कार्य करता है तथा नमी की उपस्थिति में विरंजन करता है।

$$SO_2 + 2H_2O \rightarrow H_2SO_4 + 2(H)$$

रंगीन पदार्थ +H \rightarrow रंगहोन पदार्थ (विरंजित)

नोट-SO₂ द्वारा होने वाला विरंजन अस्थायी होता है। जब विरंजित पदार्थ वायु के सम्पर्क में आता है, यह अपना वास्तविक रंग पुन: प्राप्त कर लेता है।

SO₂ की संरचना इस पर संकरण अवस्था sp² है कोणिय आकृति है। बन्ध कोण 119.5° है, इसमें उपस्थित दोनों बन्ध समतुल्य है।

©' O' -1/2 -1/2

उपयोग (Uses)

- यह पेपर उद्योग में विरंजक (bleaching agent) की तरह कार्य करता है तथा ऊन, रेशम से बनी वस्तुओं में भी विरंजक की तरह कार्य करता है।
- (ii) यह सल्फ्यूरिक अम्ल के विरचन में प्रयुक्त होती है।
- (iii) यह द्रव SO2 के रूप प्रशीतक के रूप में प्रयुक्त होती है।
- (iv) यह अनिभकृत क्लोरीन की अधिकता को निकालने के लिए विरंजन में प्रतिक्लोर (antichlor) की तरह कार्य करता है।
- (v) यह कई कार्बनिक व अकार्बनिक यौगिकों के लिए अजलीय विलायक के रूप में प्रयुक्त किया जाता है।
- (vi) शर्करा एवं पेट्रोलियम के शोधन में इसका उपयोग होता है।

उदा.26 तब क्या होता है जब SO₂ को Fe(III) लवण के जलीय विलयन में से प्रवाहित करते हैं।

हल- Fe(III) लवण को Fe(II) में अपचायित करती है। $Fe_2(SO_4)_3 + SO_2 + 2H_2O \rightarrow 2FeSO_4 + 2H_2SO_4$

उदा.27 दो S-O आबन्धों की प्रकृति पर टिप्पणी लिखिये जो SO_2 अणु बनाते हैं क्या SO_2 अणु के ये दोनों S-O आबन्ध समतुल्य है।

हल- SO₂ में उपस्थित S पर संकरण अवस्था sp² पायी जाती है। S-O आबन्ध में आंशिक द्विबन्ध गुण उपस्थित होता है। (अनुनाद के कारण)

अनुनाद के कारण SO2 में उपस्थित दोनों S-O बन्ध समतुल्य है।

उदा.28 SO₂ की उपस्थिति का पता कैसे लगाया जाता है?

हल- जब अम्लीय $KMnO_4$ विलयन में SO_2 गैस प्रवाहित करते है तो इसका रंग उड़ जाता है, इससे पता चलता है कि गैस SO_2 है। $2KMnO_4 + 5SO_2 + 2H_2O \rightarrow K_2SO_4 + 2MnSO_4 + 2H_2SO_4$

अभ्यास-७.५

- प्र.1. तत्व ऑक्सीजन का त्रिपरमाण्विक रूप का सूत्र व नाम बताइये।
- प्र.2. जब वातावरण में उपस्थित \mathbf{O}_2 पराबैंगनी किरणों का अवशोषण करती है तो कौनसी गैस बनती है।
- प्र.3. प्रयोगशाला में O3 का सीमेन ओजोनाइज़र द्वारा कैसे प्राप्त करते हैं।
- प्र.4. ओजोन के भौतिक गुणों का वर्णन कीजिये।
- प्र.5. O₃ की निम्न के साथ अभिक्रिया करके क्या उत्पाद बनाती है। रासायनिक समीकरण दीजिये।
 - (i) PbS से
- (ii) HCl अम्ल से (iii) MnS से
- (iv) अम्लीय FeSO4 के साथ
- (v) K₂MnO₄ से
- (vi) K₄Fc[CN]₆ के साथ
- (vii) Ag के साथ
- (viii) l₂ के साथ
- (ix) P₄ के साथ
- (x) CH₂ = CH₂ के साथ
- प्र.6. O3 के उपयोग दीजिये।
- प्र.7. O₃ की संरचना बताइये।
- प्र.8. विषमलम्वास सल्फर की संरचना बनाइये।
- प्र.9. विषमलम्बास सल्फर अपररूप के बारे में बताइये।
- प्र.10. एकनताक्ष सल्फर अपररूप के बारे में बताइये।
- प्र.11.क्या होता है जब
 - (i) आयरन पाइराइटीज को हवा में जलाया जाता है।

- (ii) सोडियम सल्फाइट को तनु HCl से अभिक्रिया कराई जाती
- (iii) सोडियम् थायोसल्फेट तनु H_2SO_4 से क्रिया कराने पर
- (iv) SO2 की क्षार के साथ अभिक्रिया कराई जाती है।
- (v) SO2 की Cl2 के साथ अभिक्रिया कराई जाती है।
- (vi) अम्लीकृत $\mathrm{K_2Cr_2O_7}$ की $\mathrm{SO_2}$ के साथ अभिक्रिया कराई जाती
- (vii) जलीय KMnO4 की SO2 के साथ अभिक्रिया कराई जाती है
- प्र.12. SO₂ के उपयोग बताइये।

उत्तरमाला

- O₃ व ओजोन
- 2. ओजोन [O3] गैस बनती है।

$$3O_2 \xrightarrow{\text{परार्वंगनो प्रकाश}} 2O_3$$

- 3. पेज नं. 7.35 पर देखें।
- पेज नं. 7.35 पर देखें।
 - $(i) PbS + 4O_3 \rightarrow PbSO_4 + 4O_2$
 - (ii) $2HCl + O_3 \rightarrow O_2 + H_2O + Cl_2$
 - (iii) $MnS + 4O_3 \rightarrow MnSO_4 + 4O_2$
 - (iv) $2\text{FeSO}_4 + \text{H}_2\text{SO}_4 + \text{O}_3 \rightarrow \text{Fe}_2(\text{SO}_4)_3 + \text{H}_2\text{O} + \text{O}_2$
 - (v) $2K_2MnO_4 + H_2O + O_3 \rightarrow 2KMnO_4 + 2KOH + O_2$
 - (vi) $2K_4$ Fe(CN)₆ + H₂O + O₃ \rightarrow $2K_3$ [Fe(CN)₆] $2KOH+O_2$
 - (vii) $2Ag + O_3 \rightarrow Ag_2O + O_2$
 - (viii) $I_2 + H_2O + 5O_3 \rightarrow 2HIO_3 + 5O_2$
 - (ix) $P_4 + 6H_2O + 10O_3 \rightarrow 4H_3PO_4 + 10O_2$

(x)
$$CH_2 = CH_2 + O_3 \rightarrow \bigcup_{i=0}^{CH_2} CH_2$$
 Ethylene Ozoni

- 6. पेज नं. ७.३६ पर देखें।
- पेज नं. 7.36 पर देखें।
- 8. पेज नं. 7.37 पर देखें।
- पेज नं. 7.37 पर देखें।
- पेज नं. 7.37 पर देखें।
- 11. (i) $4\text{FeS}_2 + 11\text{O}_2 \rightarrow 2\text{Fe}_2\text{O}_3 + 8\text{SO}_2$
 - (ii) $Na_2SO_3 + 2HCl \rightarrow 2NaCl + H_2O + SO_2$
 - (iii) $Na_2S_2O_3 + H_2SO_4 \rightarrow Na_2SO_4 + H_2O + SO_2 + S$
 - (iv) $SO_2 + 2NaOH \rightarrow Na_2SO_3 + H_2O$
 - (v) $SO_2 + Cl_2 \rightarrow SO_2Cl_2$ Sulphuryl chloride
 - (vi) $K_2Cr_2O_7 + H_2SO_4 + 3SO_2 \rightarrow K_2SO_4$
 - + Cr₂(SO₄)₃+H₂
 - (vii) $2\text{KMnO}_4 + 2\text{H}_2\text{O} + 5\text{SO}_2 \rightarrow \text{K}_2\text{SO}_4 + \text{MnSO}_4$
 - $+ 2H_2S0$

12. पेज नं. 7.38 पर देखें।

7.16 सल्फर के ऑक्स्नो क्रांग्ल (Oxo acids of Sulphur)

- ऑक्सीजन परिवण के सदस्यों के मध्य सलकर कई ऑक्सो अम्ल बनाता है, जिन्हें ऑक्सो अम्ल कहते हैं।
- सल्फर की ऑअमीकरण अवस्था के आधार पर इन्हें निम्न ऑक्सो अम्लों में विभक्त करते हैं। मल्म्यूरिक अम्ल (H₂SO₄) सबसे महत्वपूर्ण है इसे रसायनों का राजा कहते हैं।
- (i) सल्प्यूरस अम्ल (H₂SO₃)
- (ii) सलम्ह्रिक अम्ल ($\mathrm{H}_2\mathrm{SO}_1$)
- (iii) थायौ सल्पयूजिक अन्त ($\mathrm{H}_2\mathrm{S}_2\mathrm{O}_3$)
- (iv) पायरो सल्फ्यूरिक अम्ल ($\mathrm{H}_2\mathrm{S}_2\mathrm{O}_7$)
- (v) परऑक्ष्ये डाइसल्क्यूरिक अम्ल ($\mathrm{H}_2\mathrm{S}_2\mathrm{O}_8$)
- (vi) डाइथायोनिक अम्ल ($\mathrm{H_2S_2O_6}$)
- (vii)पर सल्प्यूरिक अम्ल ($\mathrm{H}_2\mathrm{SO}_5$)

(1) सत्क्यून्स अंग्ल (Sulphurous acid)

- इसका रासायनिक सूत्र H₂SO₃ है।
- इसको संग्चना निम्न हैं—

- इसमें सल्फर की ऑक्सीकरण अवस्था +4 है।
- इसमें 2-OH समूह अपस्थित होने के कारण यह दिक्षारकीय अम्ल है।

(2) सल्फ्यूरिक अप्ल (Sulphuric Acid)

- इसका समायनिक सूत्र H₂SO₄ है।
- इसकी सरचना निम्न हैं—

- इस अम्ल में S का ऑक्सीकरण अंक +6 है।
- इस अम्ल में 2-OH समृह उपस्थित होने के कारण यह द्विक्षारकीय
 अम्ल है।

(3) थायो सल्पयूरिक अम्ल (Thiosulphuric acid)

- इस अम्ल का रासायनिक सूत्र (H₂S₂O₃)
- इसकी संरचना निम्न हैं—

इस अस्त ें ज्यस्थित एक S का ऑअसीकरण अंक +4 व दूसरे S का

ऑक्सीकरण अंक शून्य होता है।

 इस अम्ल में 2—OH समूह उपस्थित होने के कारण द्विक्षारकी अम्लीय है।

(4) पायरो सल्फ्यूरिक अम्ल (Pyro sulphuric acid)

- इस अम्ल का रासायनिक सूत्र H₂S₂O₇ है।
- इसकी संरचना निम्न हैं—

- इस अम्ल में उपस्थित S का ऑक्सीकरण अंक 6 है।
- इस अम्ल में 2-OH समूह उपस्थित होने के कारण्यह द्विक्षारकीय
 अम्ल है।

(5) परऑक्सो डाइसल्फ्यूरिक अम्ल (Peroxo disulphuric acid)

- इस अम्ल का रासायनिक सूत्र H₂S₂O₈ है।
- इसे मार्शल अम्ल भी कहते हैं। इसकी संरचना निम्न हैं—

- इसमें S का ऑक्सीकरण अंक +6 है।
- इसमें 2-OH समूह उपस्थित होने के कारण यह दिक्षारकीय अम्ल है।

(6) डाइथाबोनिक अम्त (Dithionic acid)

- इसका रासायनिक सूत्र H₂S₂O₆ है।
- इसको संरचना निम्न हैं—

- इस अम्ल में उपस्थित S का ऑक्सीकरण अंक +5 है।
- इस अम्ल में 2-OH समृह उपस्थित होने के कारण यह द्विक्षारकीय अम्ल है।

(७) परसल्पयूरिक अम्ल (Persulphuric acid)

- इसका रासायनिक सूत्र H₂SO₅ है।
- इसकी संरचना निम्न हैं—

- इसे केरो-अम्ल भी कहते हैं। इसमें S का ऑक्सीकरण अंक +6 है।
- इसमें 2-OH समूह होने के कारण यह द्विक्षारकीय अम्ल है।

7.17 संस्प्रयुरिक अप्ल (Sulpharic acid)

- सल्प्यूरिक अम्ल अतिमहत्वपूर्ण औद्योगिक स्सायनों में से एक है।
 अत: इसे रसायनों का राजा भी कहते है।
- इस अम्ल को सम्पर्क प्रक्रम द्वारा बनाया जाता है।
- इस प्रक्रम में काम आने वाला मूलभूत कच्चा पदार्थ सल्फर या आयरन पायराइटीज है!

सिद्धान्त— इसके निर्माण का प्रक्रम निम्न पदों में सम्पन्न होता है।

- (a) सल्फर डॉई ऑक्साइड का निर्माण
- सल्फर अथवा सल्फाइड अयस्क (आयरन पायराइटोज, FeS₂)को वायु में जलाकर सल्फर डाइऑक्साइड का निर्माण करते हैं।

$$\begin{aligned} & \text{S} + \text{O}_2 \rightarrow \text{SO}_2 \\ & 4\text{FeS}_2 + 11\text{O}_2 \rightarrow 2\text{Fe}_2\text{O}_3 + 8\text{SO}_2 \end{aligned}$$

- (b) सल्फर डाइऑक्साइड का सल्फर ट्राइऑक्साइड में उत्प्रेरकीय ऑक्सोकरण
- सल्फर डाइऑक्साइड को वायु द्वारा V_2O_5 या प्लैटिनीकृत ऐस्बेस्टोस की उपस्थिति में सल्फर ट्राइऑक्साइड में ऑक्सीकृत किया जाता है। ${}^2SO_2 + O_2 = \frac{350 \, \mathrm{cm}}{2} \, {}^2SO_3$: $\Delta H = -196.6 \ \mathrm{kJ} \ \mathrm{mol}^{-1}$
- यह एक उल्क्रमणीय अभिक्रिया है तथा SO₃ की अधिकतम प्राप्ति ली-शातेलिए के नियम के अनुसार निम्न उपयुक्त परिस्थितियों में प्राप्त की जाती है।
- (a) अभिकारकों की उच्च सान्द्रता
- **b) निम्न तापमान:** परन्तु 623 -- 723 K का अनुकूलतम तापमानं बना

- रहना चाहिए।
- (c) उच्च दाब: यद्यपि दाब उच्च होना चाहिए परन्तु SO₂ व SO₃ दोनों को ही अम्लीय प्रवृत्ति के कारण ये यन्त्र का संक्षारण कर देते हैं। सामान्यतया 2atm का दाब बनाये रखा जाना चाहिए।
- (d) उत्प्रेरक की उपस्थिति: अभिक्रिया को त्वरित करने हेतु उत्प्रेरक की उपस्थिति अत्यन्त सहायक है। प्लैटिनीकृत ऐस्बेस्टौस व V_2O_5 में से सामान्यतया प्लैटिनीकृत ऐस्बेस्टौस का उपयोग नहीं किया जाता है क्योंकि एक तो यह महँगा है एवं दूसरा इसके SO_2 में उपस्थित आर्सेनिक की अशुद्धियों द्वारा विषेले होने की सन्भावना होती है।
- (e) गैसों की शुद्धता: उत्प्रेरक पर से गैसों को प्रवाहित करने से पहले इसे धूल एवं आर्सेनिक ऑक्साइड जैसी जहरीला गैसों से मुक्त कर लेना चाहिए।
- (iii) 98% सल्फ्यूरिक अम्ल में सल्फर ट्राइऑक्साइड का अवशोषण (Absorption of sulphur trioxide in 98% sulphuric acid)— सल्फर ट्राइऑक्साइड, 98% सल्फ्यूरिक अम्ल में अवशोक्ति होकर ओलियम या सधूम सल्फ्यूरिक अम्ल (H₂S₂O₇) बनाती है।

$$SO_3 + H_2SO_4 \rightarrow H_2S_2O_7$$

(iv) जल द्वारा ओलियम का तनुकरण (Dilution of oleum with water)— ऊपर प्राप्त हुए ओलियम को जल द्वारा तन् कर इन्छित सान्द्रता का सल्प्यूरिक अम्ल प्राप्त करते हैं।

$$H_2S_2O_7 + H_2O \rightarrow 2H_2SO_4$$

प्लान्ट एवं इसकी कार्यवाही (Plant and its working)— संस्पर्श विधि में काम आने वाले यन्त्र को चित्र में दर्शाया एया है। इसके निम्न भाग होते हैं—

पायराइटज या सल्फर बर्नर (Pyrite or sulphur burner)— यहाँ सल्फर या आयरन पायराइटज वायु को अधिकता में जलकर सल्फर डाइऑक्साइड बनाता है।

$$S + O_2 \rightarrow SO_2$$

$$4FeS_2 + 11O_2 \rightarrow 2Fe_2O_3 + 8SO_2$$

 शोधक इकाई (Purifying Unit)— बर्नर से बाहर निकलने वाला गैसीय मिश्रण धूल कण व आर्सेनिक ऑक्साइड द्वारा शोधित होता है। इस मिश्रण को उत्प्रेरक से प्रवाहित करने से पहले इन अशुद्धियों को दूर करना होता है। ये अशुद्धियाँ निम्न पदों में हटायो जाती है।

- (i) धूल कक्ष (Dust Chember)— इस कक्ष के ऊपरी हिस्स से भाप प्रवाहित की जाती है। ये भाप धूल कणों के स्थिर होने में सहायता करती है।
- (ii) शीतलक (Coolers)— शीतलक में गैसों को प्रवाहित कर ताप लगभग 373K कम हो जाता है।

- (iii) स्क्रबर (Scrubber)— यह क्वार्ट्ज से भरी एक मीनार होती है। इस मीनार के ऊपर पानी का फट्वारा चलाया जाता है जिससे कि जल में विलेय होने वाली अशुद्धियाँ घुल जायें।
- (iv) **शुष्कन मीनार (Drying tower)** फिलन्ट (Flint) से भरी हुई मीनार में ऊपर से सान्द्र H_2SO_4 का फव्वारा चलाया जाता है। यह अम्ल गैसीय मिश्रण को पूर्णतया निर्जलीय कर देता है।
- (v) आर्सेनिक शोधक (Arsenic purifier)— इसमें अनेक खाँचे होते हैं जिनमें ताजा अवक्षेपित फेरिक हाइड्रॉक्साइड भरा होता है। यह आर्सेनिक ऑक्साइड की अशुद्धि को अवशोषित करता है जो कि विषैली प्रकृति का होता है।
- 3. परीक्षण बक्सा (Testing Box)— इस कक्ष में गैसों की शुद्धता का परीक्षण किया जाता है। इस कक्ष में दायें कोण से प्रकाश की एक तीव्र किरण भेजी जाती है, यदि गैसों शुद्ध हो तो प्रकाश का पथ अदृश्य रहता है। यदि गैसों में धूल के कण आदि की अशुद्धि होती है तो प्रकाश का पथ व धूल के कण दोनों ही दिखाई देते हैं ऐसी स्थित में गैसों को पुन: शोधक इकाई से गुजारा जाता है।
- 4. रूपान्तरक या सम्पर्क मीनार (Converter or Contact Tower)— परीक्षण बक्स से बाहर आने वाली गैसों को प्री हीटर (pre heater) में लगभग 723–823 K तक गर्म किया जाता है। इसके बाद इन गैसों को सम्पर्क मीनार में प्रवाहित किया जाता है। यह मीनार लोहे के बेलनाकार कक्षों से बनी होती है एवं प्लैटिनीकृत ऐस्बेस्टॉस (उत्प्रेरक) युक्त लोहे की निलयों से भरी होती है। परन्तु अधिकांश स्थितियों में इसके स्थान पर V_2O_5 को उत्प्रेरक की भाँति लिया जाता है क्योंकि यह अधिक दक्ष (Efficient) है। एवं गैसों में उपस्थित अशुद्धियों द्वारा विषैला नहीं होता है। सम्पर्क मीनार में SO_2 , SO_3 में ऑक्सीकृत हो जाती है।

2SO₂ + O₂ ⇒ 2SO₃, ΔH = −196.6 kJ चूँकि अग्र अभिक्रिया ऊष्माक्षेपी होती हैं अत: अभिक्रिया के दौरान ऊष्मा निकलती है एवं इससे क्रिया हेतु आवश्यक तापमान का सामंजस्य हो जात है अत: प्री-हीटिंग की आवश्यकता नहीं रह जाती।

5. अवशोषण मीनार (Absorption Tower)— सम्पर्क मीनार से प्राप्त SO3 को फिर अवशोषण मीनार में प्रवाहित किया जाता है। इस मीनार में अम्ल अभेध फ्लिन्ट (Flint) के टुकड़े होते हैं। सल्फर ट्राइऑक्साइड के अवशोष्णण हेतु इस मीनार में ऊपर से शुद्ध सान्द्र H₂SO₄ का फट्चारा चलाया जाता है। इससे ओलियम सल्फ्यूरिक अम्ल का निर्माण होता है।

$$H_2SO_4 + SO_3 \rightarrow H_2S_2O_7$$

ओलि

अब इसमें जल मिलाकर इच्छित सान्द्रता का $\mathrm{H}_2\mathrm{SO}_4$ बना दिया जाता है।

$$H_2S_2O_7 + H_2O \rightarrow 2H_2SO_4 (96-96\% \ \mbox{3.4})$$

- सल्फ्यूरिक अप्ल के गुण (Properties of Sulphuric acid) भौतिक गुण (Physical Properties)
- शुद्ध सल्फ्यूरिक अम्ल रंगहीन शरबती द्रव होता है जिसे oil of vitrio (गंधक का तेजाब) कहा जाता है। किन्तु, अशुद्ध अम्ल कुछ पीले रंग जैसा होता है।
- (iii) यह 298K पर 1.84g/ml के घनत्व के साथ अत्यधिक श्यान द्रव होता है। यह अम्ल 283.4K पर जम जाता है तथा 611K पर हल्के से अपघटन के साथ उबलता है। उच्च श्यानता व क्वथनांक अम्ल के अणुओं में अन्तराआण्विक हाइड्रोजन बन्ध के कारण होती है।

(iii) सल्फ्यूरिक अम्ल जल में घुल कर अत्यधिक मात्रा में ऊर्जा निष्कासित करता है। यह दर्शाता है कि अम्ल जल के लिए प्रबल आकर्षण वाला होता है। अगर जल सान्द्र अम्ल में डाला जाता है, तब इतनी ज्यादा ऊष्मा विमुक्त होगी कि अम्ल पात्र को तोड़कर बाहर फैल जाएगा। इसलिए सान्द्र अम्ल को तनु करने के लिए अम्ल को जल में बूँद-बूँद डालकर लगातार हिलाते हुए मिलाना चाहिए न कि जल को अम्ल में डालना चाहिए।

रासायनिक गुण (Chemical Properties)

1. अम्लीय गुण (Acidic character)— सल्फ्यूरिक अम्ल द्विक्षारीय अम्ल है तथा जलीय विलयनों में निम्न रूप से पदों में आयनित होता है।

$$\begin{split} & \text{H}_2\text{SO}_4(\text{aq}) + \text{H}_2\text{O}(l) \rightarrow \text{H}_3\text{O}^-(\text{aq}) + \text{HSO}_4^-(\text{aq}); \ \text{K}_{\text{a}1} > 10 \\ & \text{HSO}_4^-(\text{aq}) + \text{H}_2\text{O}(l) \rightarrow \text{H}_3\text{O}^-(\text{aq}) + \text{SO}_4^{-2}(\text{aq}); \end{split}$$

 K_{a1} =1.2×10⁻² K_{a2} मान अम्ल के लिए K_{a1} की अपेक्षा कम होता है क्योंकि ऋणात्मक आवेशित ऋणायन (HSO_4) के पास उदासीन प्रकृति के अम्ल (H_2SO_4) की अपेक्षा प्रोटॉन निकालने की क्षमता कम होती है। यह, इसीलिए लवणों की दो श्रेणियाँ बनाता है, जिन्हें बाइसल्फेट व सल्फेट कहते हैं।

 $H_2SO_4 + NaOH \rightarrow NaHSO_4 + H_2O$ सोडियम बाइसल्फेट $H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$ सीडियम सल्फेट

- ?. निर्जलीकारक (Dehydrating agent)— हम पढ़ चुके हैं कि सान्द्र सल्फ्यूरिक अम्ल जल के लिए प्रबल स्नेही होता है। इसीलिए, यह एक प्रबल निर्जलीकारक होता है। उदाहरण के लिए—
- (i) शर्करा ज्वलनशील शर्करा की सुगन्ध के साथ जल कर कोयला बन जाती हैं ऐसा कार्बन कणों के काले भार के बनने के कारण होता है।

 $C_{12}H_{22}O_{11} \xrightarrow{\text{सान्द्र} H_2SO_4} 12C + 11H_2O$

(ii) दोनों फार्मिक अम्ल व ऑक्सेलिक अम्ल गर्म करने पर अम्ल द्वारा

निर्जलीकृत हो जाते हैं।

$$\begin{array}{c} \text{HCOOH} & \xrightarrow{\text{Hirs}\,H_2SO_2} & \text{CO} + \text{H}_2O \\ \hline \text{\textit{vnIHa}} & \text{\textit{seq}} \\ \hline \text{COOH} & & \\ | & \xrightarrow{\text{GOM}} & \\ \hline \text{COOH} & & \\ \end{array}$$

- (iii) गैसें जैसे O₂, N₂, Cl₂ जो अम्ल से अभिक्रिया नहीं करती हैं, उनको शुष्क करने के लिए उनकी वाष्प को सान्द्र H₂SO₄ के बुलबुले से गुजारा जाता है। ऐसा देखा जा सकता है कि सान्द्र सल्फ्यूरिक अम्ल त्वचा पर प्रबल संक्षारण होता है जिसके परिणामस्वरूप त्वचा जल जाती है क्योंकि
- 3. धातुओं के साथ क्रिया (Action with metals)— धातुएँ जैसे Zn. Mg. Fe आदि तनु सल्फ्यूरिक अम्ल से अभिक्रिया करके हाइड्रोजन निकालती है।

$$Zn + H_2SO_4$$
 (त्तु) → $ZnSO_4 + H_2$
 $Mg + H_2SO_4$ (त्तु) → $MgSO_4 + H_2$

त्वचा से जल की मात्रा को निकाल लेता है।

लगभग सभी धातुएँ (गोल्ड व प्लेटीनम के अलावा) सान्द्र अम्ल के साथ गर्म करने पर अभिक्रिया करके सल्फर डाइऑक्साइड गैस निकालती है।

$$\begin{array}{c} \operatorname{Cu} + \operatorname{H}_2 \operatorname{SO}_4 \to \operatorname{CuO} + \operatorname{SO}_2 + \operatorname{H}_2 \operatorname{O} \\ \operatorname{CuO} + \operatorname{H}_2 \operatorname{SO}_4 \to \operatorname{CuSO}_4 + \operatorname{H}_2 \operatorname{O} \\ \operatorname{Cu} + 2\operatorname{H}_2 \operatorname{SO}_4 \to \operatorname{CuSO}_4 + \operatorname{SO}_2 + 2\operatorname{H}_2 \operatorname{O} \end{array}$$

- 4. अधातुओं के साथ अभिक्रिया (Action with non-metals)— सान्द्र सल्फ्यूरिक अम्ल भी कई अधातुओं को ऑक्सीकृत करता है क्योंकि यह एक शक्तिशाली ऑक्सीकारक होता है। उदा. के लिए
- (i) कार्बन, कार्बन डाइऑक्साइड में ऑक्सीकृत हो जाता है।

$$\begin{array}{c} H_2 \dot{S}O_4 \to H_2O + SO_2 + O] \times 2 \\ C + 2O \to CO_2 \\ \hline C + 2H_2SO_4 \to CO_2 + 2H_2O + 2SO_2 \end{array}$$

(ii) सल्फर, सल्फर डाइऑक्साइड में ऑक्सीकृत हो जाता है।

$$H_2SO_4 \rightarrow H_2O + SO_2 + O] \times 16$$

 $S_8 + 16O \rightarrow 8SO_2$
 $\overline{3S_8 + 16H_2SO_4} \rightarrow 24SO_2 + 16H_2O$

(iii) फॉस्फोरस, फॉस्फोरिक अम्ल में ऑक्सीकृत हो जाता है।

- 5. लवणों के साथ अभिक्रिया (Action with salts)— यह एक प्रबल व कम धुलनशील प्रकृति का होता है। इसीलिए यह अपने लवणों से ज्यादा धुलनशील अम्ल निकालता है।
- (a) तनु अम्ल लवणों जैसे कार्बोनेट, बाइकार्बोनेट, सल्फाइट, सल्फाइड

आदि को अपघटित करता है।

$$Na_2CO_3 + H_2SO_4 \rightarrow Na_2SO_4 + H_2CO_3(CO_2 + H_2O)$$

$$\frac{4}{3}$$

$$2$$
NaHCO₃ + H₂SO₄ \rightarrow Na₂SO₄ + 2H₂CO₃
Na₂S + H₂SO₄ \rightarrow Na₂SO₄ + H₂S

$$Na_2SO_3 + H_2SO_4 \rightarrow Na_2SO_4 + H_2SO_3 (H_2O + SO_2)$$

(b) सान्द्र अम्ल अनुरूप अम्लों को निकालने के लिए फ्लुओराइड, क्लोराइड, नाइट्रेट, नाइट्राइट, ऑक्सेलेट आदि को गर्म करने पर अपघटित करता है।

$$CaF_2 + H_2SO_4 \xrightarrow{3 \text{UH}} CaSO_4 + 2HF$$

$$NaCl + H_2SO_4 \xrightarrow{3cq_1} NaHSO_4 + HCl$$

$$2NaNO_2 + H_2SO_4 \xrightarrow{\text{3-UPI}} Na_2SO_4 + NO + NO_2 + H_2O$$

$$KNO_3 + H_2SO_4 \xrightarrow{\text{gran}} KHSO_4 + HNO_3$$

$$\begin{array}{c} \text{COONa} \\ \mid \\ \text{COONa} \end{array} \xrightarrow{+ H_2 \text{SO}_4} \xrightarrow{\text{3 tart}} \begin{array}{c} \text{Na}_2 \text{SO}_4 + \end{array} \begin{array}{c} \text{COOH} \\ \mid \\ \text{COOH} \end{array}$$

सोडि. ऑक्सेलेट

ऑक्सेलिक अम्ल

6. अवक्षेपण अभिक्रियायें (Precipitating Reactions)— सल्फ्यूरिक अम्ल बेरियम, लैड, कैल्शियम आदि के लवणों के जलीय विलयनों के साथ अवक्षेप बनाता है।

$$BaCl_2 + H_2SO_4 \rightarrow BaSO_4 + 2HCl$$
सफेद अवक्षेप
$$Pb(NO_3)_2 + H_2SO_4 \rightarrow PbSO_4 + 2HNO_3$$
सफेद अवक्षेप
$$CaCO_3 + H_2SO_4 \rightarrow CaSO_4 + H_2O + CO_2$$
सफेद अवक्षेप

सल्पयूरिक अम्ल के उपयोग (Uses of Sulphuric Acid)

जैसे कि पहले ही बताया जा चुका है कि यह प्रयोगशाला व उद्योगों हेतु एक महत्वपूर्ण उपयोगी रसायन है। अत: इसे रसायनों का राजा कहते हैं। अम्ल के कुछ महत्वपूर्ण उपयोग निम्न हैं—

- (i) इस अम्ल द्वारा अनेकों रसायन जैसे हाइड्रोक्लोरिक अम्ल, नाइट्रिक अम्ल, फॉस्फोरिक अम्ल, बाइसल्फेट्स आदि बनाये जा सकते हैं। इसके अलावा यह अनेकों कार्बनिक यौगिकों के निर्माण के साथ नाइट्रोसेलुलुओज उत्पादों को भी बनाने में भी सहायता करता है।
- (ii) यह उर्वरक जैसे, अमोनियम सल्फेट, चूने के सुपर फॉस्फेट आदि के निर्माण में उपयोग आता है।
- (iii) सान्द्र HNO₃ व H₂SO₄ का मिश्रण विस्फोटकों जैसे पिक्रिक अम्ल, T.N.T. डायनामाइट आदि के निर्माण में काम आता है।

- (iv) तनु H_2SO_4 का उपयोग पेट्रोलियम परिष्करण में अवांछित अशुद्धियों जैसे सल्फर, तार आदि को हटाने में होता है। यह अम्ल वणकोंं, पेन्ट, रोगन व डिटर्जेन्ट में भी प्रयुक्त होता है।
- (v) इसका उपयोग वेद्युत लंपन में धातुओं की सतहों को साफ करने में होता है।
- (vi) यह सीमा संचायक सेलों में भी काम आता है।
- (vii)यह एक बहुत उपयोगी प्रयोगशाला अभिकर्मक है।

सल्प्यूरिक अम्ल की संरचना (Structure of Sulphuric acid)

सल्फ्यूरिक अम्ल में, सल्फर परमाणु sp³ संकरण वाला होता है तथा इसलिए वह एक चतुष्फलकीय अणु होता है। चूँिक यह एक द्विक्षारीय अम्ल है, इसलिए इसका तात्पर्य यह है कि इसके पास सल्फर परमाणु से जुड़े दो OH समूह व शेष ऑक्सीजन परमाणु द्विबन्धों द्वारा सल्फर परमाणु से जुड़े होते हैं। अम्ल की संरचना चित्र में दर्शायी गयी है।

सल्फेट आयन की संरचना (Structure of Sulphate ion (SO₄2-)

सल्फेट आयन अम्ल से दो हाइड्रोजन परमाणुओं को निकालकर बनाय जाते हैं। यह, इसीलिए चतुष्फलकीय प्रकृति का भी होता है। लेकिन आयन में सभी चार S – O बन्ध समान लम्बाई (149 pm) वाले होते हैं। यह दशाता है कि आयन सम्भावित संरचनाओं में संकर में रूए में प्रदर्शित किया जा सकता है। ये चित्र में दर्शायी गयी है।

उदा.29 व्या होता है जब-

(i) कैल्शियम फ्लुओराइड में सान्द्र H₂SO₄ मिलाया जाता है।

(ii) SO3 को पानी में प्रवाहित किया जाता है।

हल-(i) यह हाइड्रोजन फ्लुओराइड [HF] बनाता है।

 $CaF_2 + H_2SO_4 \rightarrow CaSO_4 + 2HF$

(ii) SO_3 घुल जाती है तथा H_2SO_4 प्राप्त होता है। $SO_3 + H_2O \rightarrow H_2SO_4$

उदा.30 उन तीन क्षेत्रों का उल्लेख कीजिये जिनमें ${ m H_2SO_4}$ महत्वपूर्ण भूमिका निभाता है।

- हल- (i) सल्फर अथवा सल्फाइड अयस्क को वायु में जलाकर SO₂ का उत्पादन करना
 - (ii) उत्प्रेरक V_2O_5 की उपस्थिति में O_2 के साथ अभिक्रिया कराकर SO_2 को SO_3 में परिवर्तन करना।
 - (iii) SO_3 को सल्फ्यूरिक अम्ल में अवशोषित करके ओलियम ($H_2S_2O_7$) प्राप्त करना ।

उदा.31 सम्पर्क प्रक्रम द्वारा H_2SO_4 की मात्रा में वृद्धि करने के लिये आवश्यक परिस्थितियों को लिखिये।

- हल- $2SO_2(g) + O_2(g) \xrightarrow{V_2O_5} 2SO_3(g) \Delta H^- = \sim 196.6 \text{K.J./}$ mol
 - सल्फ्यूरिक अम्ल के उत्पादन में O_2 द्वारा SO_2 गैस का V_2O_5 उत्प्रेरक की उपस्थिति में SO_3 प्राप्त करने के लिये उत्प्रेरकी ऑक्सीकरण मूल पद है।

- यह अभिक्रिया ऊष्माक्षेपी तथा उत्क्रमणीय है। अग्र अभिक्रिया में आयतन में कमी आती है।
- अत: कम ताप व उच्च दाब उच्च लिब्ध के लिदे उपयुक्त स्थितियाँ है।

उदा.32 जल में $m H_2SO_4$ के लिये $m Ka_2 < < K_{a1}$ क्यों है?

हल- $H_2SO_4 \rightleftharpoons HSO_4^- + H^+ - K_{a_1}$ $HSO_4^- \rightleftharpoons SO_4^{2-} + H^+ - K_{a_2}$

- K_{a1} में H⁺ उदासीन अणु से पात होता है जो आसान है अत: K_{a1}
 का मान उच्च होगा।
- K_{a2} में H¹ ऋणायन से प्राप्त होता है जा किलिट है। अब. K_{a2} का मान बहुत अन्य होता है।

अभ्यास-७.६

- प्र.1. सलम्यूरस अम्ल की संरचना, ऑक्सीकरण अवस्था एवं क्षारकता बताइये।
- प्र.2. सल्फ्यूरिक अम्ल की संरचना, ऑक्सोकरण अवस्था एवं क्षारकता बताइये।
- प्र. 3. थायो सल्फ्यूरिक अम्ल की संरचना, ऑक्सोकरण अवस्था एवं क्षारकता बताइये।
- प्र.4. पायरो सल्फ्यूरिक अम्ल की संरचना, ऑक्सोकरण अवस्था एवं क्षारकता बताइये।

- पर ऑक्सो डाइसल्फ्यूरिक अम्ल की संरचना, ऑक्सीकरण अवस्था एवं क्षारकता बताइये।
- डाइथायोनिक अम्ल की संरचना, ऑक्सीकरण अवस्था एवं क्षारकता बताइये ।
- पर सल्फ्यूरिक अम्ल की संरचना, ऑक्सीकरण अवस्था एवं क्षारकता
- प्र.8. सल्फर के ऑक्सो अम्लों में कौनसे अम्ल परऑक्साइड [-O-O-] समृह रखते हैं।
- प्र.9. रसायनों का राजा किसे कहते हैं?
- प्र.10. $m H_2SO_4$ के निर्माण में सम्पर्क प्रक्रम में शोधक ईकाई का वर्णन
- प्र. $11.~\mathrm{H_2SO_4}$ के निर्माण में सम्पर्क प्रक्रम में शुष्क मीनार का वर्णन
- $m y.12.~H_2SO_4$ के निर्माण में सम्पर्क प्रक्रम में आर्सेनिक शोधक का वर्णन करें।
- प्र.13. $m H_2SO_4$ के निर्माण में सम्पर्क प्रक्रम में परीक्षण बक्स का वर्णन
- y. 14. $m H_2SO_4$ के निर्माण में सम्पर्क प्रक्रम में सम्पर्क मीनार का वर्णन कारें।
- $m y.15.~~H_2SO_4$ के निर्माण में सम्पर्क प्रक्रम में अवशोषण मीनार का वर्णन करें।
- $_{
 m J}$.16. $_{
 m H_2SO_4}$ अम्ल के भौतिक गुणों का वर्णन कीजिये।
- प्र.17. H2SO4 अम्ल में बन्ध को प्रदर्शित कीजिये।
- प्र.18. $\mathrm{SO}_4{}^2$ आयन की विभिन्न अनुनादी संरचनायें बताइये।
- प्र.19. H₂SO₄ में उपस्थित S पर संकरण अवस्था क्या है?
- प्र.20. $m H_2SO_4$ की निम्न से अभिक्रिया का रासायनिक समीकरण दीजिये।
 - (i) NaOH विलयन के साथ (iii) HCOOH अम्ल से
- (ii) शक्कर के साथ
- (iv) ऑक्सेलिक

- अम्ल से
- (v) Cu के साथ
- (vi) S₈ के साथ
- (vii) P₄ के साथ
- (vii) C के साथ
- (ix) CaF₂ के साथ
- (x) CaCO₃ के साथ
- $exttt{y.21.}$ $exttt{H}_2 exttt{SO}_4$ की संरचना बनाइये $exttt{ <math>\downarrow }$
- प्र.22. $m H_2SO_4$ के उपयोग दीजिये।

उत्तरमाला

- 1. पेज नं. 7.40 पर बिन्दु 7.16 का (1) पर देखें।
- पेज नं. 7.40 पर बिन्दु 7.16 का (2) पर देखें। 2.
- पेज नं. 7.40 पर बिन्दु 7.16 का (3) पर देखें। 3.
- पेज नं. 7.40 पर बिन्दु 7.16 का (4) पर देखें। 4.
- पेज नं. 7.40 पर बिन्दु 7.16 का (5) पर देखें। 5.
- पेज नं. 7.40 पर बिन्दु 7.16 का (6) पर देखें। 6.
- <u>पेज नं. 7.40 पर बिन्दु 7.16 का (7</u>) पर देखें।

- 8. परऑक्सो डाइसल्फ्यूरिक अम्ल H₂S₂O₈ एवं परसल्फ्यूरिक अम्ल [H₂SO₅] में दो Oxygen परऑक्साइड के रूप में स्थित है।
- $\mathrm{H}_2\mathrm{SO}_4$ अम्ल। 9.
- पेज नं. 7.41 पर बिन्दु 7.12 (2) पर देखें। 10.
- 11. पेज नं. 7.41 पर देखें।
- पेज नं. 7.41 पर देखें! 12.
- पेज नं. 7.42 पर देखें। 13.
- पेज नं. 7.42 पर देखें। 14.
- पेज नं. 7.42 पर देखें। 15.
- पेज नं. 7.42 पर देखें।
- पेज नं 7.42 पर देखें। 17.
- पेज नं. 7.44 पर देखें! 18.
- sp³ संकरण 19.
- (i) $2\text{NaOH} + \text{H}_2\text{SO}_4 \rightarrow \text{Na}_2\text{SO}_4 + \text{H}_2\text{O}$ 20.
 - (ii) C₁₂H₂₂O₁₁ $\xrightarrow{\text{H/SO}}$ 12C + 11H₂O
 - (iii) HCOOH $\xrightarrow{\exists i \exists H_2SO_4} CO + H_2O$

- (iv) $\int_{\text{COOH}}^{\text{COOH}} \rightarrow \text{CO} + \text{CO}_2 + \text{H}_2\text{O}$
- (v) $\text{Cu} + 2\text{H}_2\text{SO}_4 \rightarrow \text{CuSO}_4 + \text{SO}_2 + 2\text{H}_2\text{O}$
- (vi) $S_8 + 16H_2SO_4 \rightarrow 24SO_2 + 16H_2O$
- (vii) $P_4 + 10H_2SO_4 \rightarrow 4H_3PO_4 + 10SO_2 + 4H_2O_3$
- (viii) $C \div 2H_2SO_4 \rightarrow CO_2 \div 2H_2O + 2\bar{S}O_4$
- (ix) $CaF_2 + H_2SO_4 \rightarrow CaSO_4 + 2HF$
- (x) $CaCO_3 + H_2SO_4 \rightarrow CaSO_4 + CO_2 + H_2O_3$
- 21. पेज नं. 7.44 पर देखें।
- 22. पेज नं. 7.43 पर देखें।

7.18 20 17 as are (Liements of 17 group)

Symbol	Name	परमाण क्रमांक
F	Fluorine फ्लोओरीन	4
Cl	Chlorine क्लोरीन	17
Br	Bromine ब्रोमीन	35
I	Iodine आयोडीन	53
At	Astatine आस्टेटाइन	85

- वर्ग 17 के तत्वों की कुल संख्या 5 है। [F] फ्लोओरीन, [Cl] क्लोरीन, (Br) ब्रोमीन, (I) आयोडीन एवं (At) आस्टैटीन है।
- वर्ग 17 के तत्वों को हैलोजन तत्व भी कहते हैं। शब्द हैलोजन (ग्रीक भाषा) में हैलो का अर्थ लवण व जैनेस का अर्थ है उत्पन्न करना अर्थात् लवण उत्पन्न करने वाले।
- हैलोजन अति क्रियाशील अधात तत्त्व है।
- आस्टैटीन एक रेडियोएक्टिव तत्त्व है।

7.46

- वर्ग 17 के तत्व अधिकांश समुद्री जल में विलेय लवणों [क्लोराइड, ब्रोमाइड व आयोडाइड] के रूप में पाये जाते हैं।
- वर्ग 17 के तत्व अधिकांश समुद्री जल में विलेय लवणों [क्लोराइड, ब्रोमाइड व आयोडाइड] के रूप में पाये जाते हैं।
- हैलोजन नाम वैज्ञानिक Schweigger ने 1811 में दिया था।
- वर्ग 17 के तत्वों में आपस में समानता पाई जाती है।
- वर्ग 17 के तत्वों के भौतिक एवं रासायनिक गुणों में क्रमिक अन्तर होता है।

7.18:1 **डाइनक्ष**ता (Occurrence)

- (a) फ्लुओरीन (Fluorine)— इसके मुख्य अयस्क निम्न होते हैं। (i) फ्लुओरस्पार (CaF_2). (ii) क्रायोलाइट (Na_3AlF_6) (iii) फ्लुओरएपेटाइट [$CaF_2.3Ca_3(PO_4)_2$]
 - यह भूपर्पटी में भी (लगभग 0.07%) पाया जाता है। थोडी मात्रा में नदी जल, पादपों, जीवों की हिड्डयों तथा दांतों में पायी जाती है।
- (b) क्लोरीन (Chlorine)— क्लोरीन के मुख्य स्रोत निम्न हैं— (i) सोडियम क्लोराइड या शैल लवण (NaCl) (ii) कार्नेलाइट (KCl. MgCl₂.6H₂O) (iii) सिल्वीन (KCl) भूपर्पटी में यह लगभग 0.14% पाया जाता है।
- (c) **बोमीन (Bromine**)— यह ब्रोमो कार्नेलाइट (KBr. MgBr₂. 6H₂O) में पाया जाता है एवं समुद्री जल में ब्रोमाइड के रूप में भी पाया जाता

p-ब्लॉक के तत्व

है। भूपर्पटी में इसकी सापेक्षिक लब्धता 2.5 × 10 4 % है।

- (d) आयोडीन (Iodine)— यह निम्न प्रकार से पाया जाता है। (i) समुद्री खरपतवार में (क्षार धातु आयोडाइड के रूप में) (ii) चिली साल्ट. पीटर में (जोकि मुख्य रूप से सोडियम नाइट्रेट होता है एवं आयोडीन का 0.02% सोडियम आयोडेट के रूप में होता है, NaIO3)। यह भूपर्पटी में नगण्य मात्रा (8 × 10-5 %) में पाया जाता है।
- उपर्युक्त उपलब्ध तथ्यों ये यह स्पष्ट है कि समुद्र हैलोजन परिवार के सदस्यों विशेष रूप से क्लोरीन, ब्रोमीन तथा आयोडीन का प्रमुख स्त्रोत है तथा वे सोडियम, पोटेशियम, कैल्शियम, मैग्नीशियम आदि के घुलनशील लवणों के रूप में होते हैं। शुष्क हुये समुद्री निक्षेपों में सोडियम क्लोराइड तथा कार्नेलाइट (KCIMgCl₂, 6H₂O) जैसे यौगिक उपस्थित होते हैं। समुद्री पादपों में 0.5% आयोडीन होती है। इसी प्रकार चिलीसाल्टपीटर में लगभग 0.2% सोडियम आयोडेट (NaIO3) होते हैं।

7.18.2 इलेक्ट्रॉनिक विन्यास (Electronic Configuration)

- इन तत्वों का सामान्य इलेक्ट्रॉनिक विन्यास ns²p⁵ होता है।
- ्इनको अपने निकटवर्ती उत्कृष्ट गैस का विन्यास प्राप्त करने हेतु एक इलेक्ट्रॉन की आवश्यकता होती है।
- इन तत्त्वों के इलेक्ट्रॉनिक विन्यासों को सारणी में दर्शाया गया है।

सारणी: वर्ग 17 (हैलोजन परिवार) के तत्वों के इलेक्ट्रॉनिक विन्यास

तत्व	परमाणु क्रमांक	: वर्ग 17 (हलाजन परिवार) के तत्वों के इलेक्ट्रॉनिक विन्यास इलेक्ट्रॉनिक विन्यास	
	3	रुलपट्रामक विन्यास	नोबल गैस क्रोड सहित
ालुओरीन (F)	9	1s ² 2s ² 2p ⁵	<u>विन्यास</u>
लोरीन (CI)	17	1s ² 2s ² 2p ⁶ 3s ² 3p ⁵	[He] 2s ² 2p ⁵
मीन (Br)	35	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ⁵	[Ne]3s ² 3p ⁵
ायोडीन (I)	53	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ⁶ 4d ¹⁰ 5s ² 5p ⁵	{Ar}3d ¹⁰ 4s ² 4p ⁵
टैटीन (At)	85	1s ² 2s ² 2n63e ² 3n63e ⁴ 104e ² 4n6441045s ² 5p ⁵	[Kr]4d ¹⁰ 5s ² 5p ⁵
		$1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}4f^{14}5s^25p^65d^{10}6s^26p^5$	[Xe]4f ¹⁴ 5d ¹⁰ 6s ² 6p ⁵

. 18.3 . परकार्ग व आशानक सम्बद्धाः क्षेत्रकार संग्रह्माः क्ष

- वर्ग 17 के तत्वों में प्रभावी नाभकीय आवेश की संख्या अपने आवर्त के अन्य तत्वों में अधिकतम होते हैं। अत: इनका आकार सबसे छोटा होता है।
- वर्ग में ऊपर से नीचे चलने पर आकार क्रमश: बढ़ता जाता है। प्रत्येक में एक अतिरिक्त कोश बढ़ जाने के कारण।

	7/12/4/15/	जिल्लाम व	2 कारण।		
	F	C1	Br		At
परमाणु त्रिज्या(pm	1) 64	99	114	133	
आयनिक त्रिज्या	133	184	196	220	_
m ⁻¹ (pm)		_			

F < Cl < Br < I[परमाणु त्रिज्या का क्रम] $F_{-} < CI_{-} < BI_{-} < I_{-}$ [आयनिक त्रिज्या]

7:18.4 आयनम् एन्थेल्पी (Ionisation Enthalpies)

- वर्ग 17 के तत्वों की आयनन एन्थेल्पी अपने आवर्त के अन्य सदस्यों से अधिकतम होती है।
 - [प्रभावी नाभकीय आवेश का मान अधिकतम होने के कारण व आकार अत्यधिक छोटा होने के कारण।]
- वर्ग में ऊपर से नीचे चलने पर आयनन एन्थैल्पी का मान क्रमश: घटता जाता है।

[आकार बढ़ते रहने के कारण]

वर्ग 17 के तत्वों का आयनन एन्थैल्पी का मान

		ा तत्मा का जावनम एन्थल्या का मान				
	F	C1	Br	I	At	
आयनन एन्थेल्पी	1680	1256	1142	1008		
kJ/mol	_ -					

7.18.5 इलेक्ट्रॉन लिख एन्थेल्डी (Electron gain Enthalpies

हैलोजन के लिए ऋणात्मक इलेक्ट्रॉन लिब्ध एन्थैल्पी का मान बहुत अधिक होता है। ये अपने आवर्त में सर्वाधिक होता है एवं वर्ग के नीचे जाने पर घटता है।

व्याख्या (Explanation)— इलेक्ट्रॉन लब्धि एन्थैल्पी इन परमाणुओं के संयोजी कोश के विन्यास (ns²p⁵) पर निर्भर करती है। चूँिक इन्हें नोबल गैस विन्यास प्राप्त करने हेतु मात्र एक इलेक्ट्रॉन की आवश्यकता होती है अत: इनकी अपने अन्तिम कोश में इलेक्ट्रॉन लब्धि करने के प्रवृत्ति आवर्त में सर्वाधिक होती है एवं इस प्रकार इनकी अपने आवर्त में सर्वाधिक ऋणात्मक इलेक्ट्रॉन लब्धि एन्थैल्पी होती है।

वर्ग में ऊपर से नीचे जाने पर परमाण्वीय आकार बढ़ने के कारण इनका मान घटता है जिसके परिणामस्वरूप परमाणु का नाभिक बाहरी इलेक्ट्रॉन के लिए कम आकर्षण वाला होता है।

अपवाद (Exception)— सारणी में दिए गए आँकड़ों से यह स्पष्ट है कि क्लोरीन की इलेक्ट्रॉन लिब्ध एन्थैल्पी ($\Delta H_{eg} = -349 \text{ kJ mol}^{-1}$) फ्लुओरीन की इलेक्ट्रॉन लिब्ध एन्थैल्पी ($\Delta H_{eg} = -333 \text{ kJ mol}^{-1}$) से ज्यादा होती हैं, हालांकि यह कम होनी चाहिए।

व्याख्या (Explanation)— फ्लुओरीन (परमाणुवीय किंग्या = 64pm) की क्लोरीन की (परमाण्वीय किंग्या = 99 pm) तुलना में कम इलेक्ट्रॉन लब्धि ए-थैल्पी का कारण इसके आकार का कम होना है। इसके परिणामस्वरूप फ्लोओरीन के छोटे आकार के कारण कम स्थान पर इलेक्ट्रॉन घनत्व अत्यधिक हो जाता है एवं इलेक्ट्रॉन प्रतिकर्षण का मान भी बढ़ जाता है। अत: आने वाले इलेक्ट्रॉन पर फ्लुओरीन क्लोरीन परमाणु की तुलना में फ्लुओरीन नाभिक की ओर कम नाभिकीय आकर्षण बल लगता है अत: F तत्व की इलेक्ट्रॉन ग्रहण ऐन्थैल्पी का मान Cl से कम है।

	E				
	r _	<u> Cl</u>	Br	1	At
इलेक्ट्रॉन लब्धि	-333	-349	-325	-296	
एन्थैल्पी				_,	

Cl > F > Br > I [इलेक्ट्रॉन लब्धि एन्थैल्पी क्रम]

7.18.6 विद्युतऋणात्मकता (Electronegativity).

हैलोजन परिवार (वर्ग 17) के सदस्यों की विद्युत ऋणात्मक अपने अनुरूप आवर्त में सबसे अधिक होती है। इस परिवार के प्रथम फ्लुओरीन की विद्युत ऋणात्मक आवर्त सारणी में सर्वाधिक (4.0) होती है। वर्ग में ऊपर से नीचे जाने पर विद्युतऋणता का मान घटता है। व्याख्या (Explanation)— हम जानते हैं कि इस परिवार के सदस्यों की परमाण्वीय त्रिज्याएँ अपने आवर्तों में सबसे कम होती हैं एवं नोबल गैस का विन्यास प्राप्त करने हेतु इन्हें मात्र एक इलेक्ट्रॉन की

आवश्यकता होती है। अत: इनकी अपने आवर्त में सर्वाधिक विद्युत ऋणात्मक होती है एवं वर्ग में ऊपर से नीचे जाने पर यह घटती है। ऐसा इलेक्ट्रॉन कोश की संख्या में वृद्धि के कारण होता है।

F	C1	Br	I	At
विद्युत ऋणात्मकता 4.0	3.2	3.0	2.7	2.2
F > Cl > Br >	I > At	[विद्युत	ऋणात्मकत	गकाक्रम]

उदा.33 आवर्त सारणी में यथा क्रम आवर्त में हैलोजन की अधिकतम ऋणात्मक इलेक्ट्रॉन लब्धि एन्थेल्पी क्यों होती है?

हल-हैलोजन अपने यथाक्रम आवर्त में बहुत छोटे आकार के होते हैं। अत: इन पर उच्च प्रभावी नाभिकीय आवेश होता है। फलत: ये आसानी से एक इलेक्ट्रॉन ग्रहण कर उत्कृष्ट गैसों का इलेक्ट्रॉनिक विन्यास प्राप्त कर लेते हैं।

7.18.7 भौतिक गुण (Physical Properties)

- वर्ग 17 के तत्व भौतिक गुणों में भिन्नता प्रदर्शित करते हैं।
- फ्लुओरीन तथा Cl₂ गैसे हैं, ब्रोमीन द्रव तथा आयोडीन ठोस है।
- इनके गलनांक व क्वथनांक परमाणु क्रमांक बढ़ने के कारण नियमित रूप से वर्ग में बढ़ते हैं।

$$F_2 \leq Cl_2 \leq Br_2 \leq I_2$$

- सभी हैलोजन तत्व रंगीन होते हैं।
 इसका कारण यह है कि दृश्य प्रकाश के विकिरणों का अवशोषण करते हैं तथा बाह्यतम कक्षा के इलेक्ट्रॉन उत्तेजित होकर उच्च ऊर्जा स्तर में चले जाते हैं, विकिरण के भिन्न-भिन्न क्वान्टम अवशोषित करने के कारण ये अलग-अलग रंग प्रदर्शित करते हैं।
 - फ्लोरीन-पीला रंग प्रदर्शित करता है।
 - क्लोरीन-हरायन लिये हुए पीला रंग प्रदर्शित करता है।
 - ब्रोमीन-लाल रंग प्रदर्शित करता है।
 - आयोडीन-बेंगनी रंग प्रदर्शित करता है।
- F व Cl जल में अभिक्रिया करते हैं, Br व I जल में अल्पिबलेय है।
 लेकिन कार्बनिक विलायकों में ये विलेय है।
- F₂ की वियोजन एन्थैल्पी का मान Cl₂ से कम है।
 [F₂ के एकांकी युगलों के मध्य इलेक्ट्रॉन-इलेक्ट्रॉन प्रतिकर्षण का सापेक्षत: अधिक होता है।]

 $CI_2 > Br_2 > F_2 > I_2$ [वियोजन एन्थैल्पी का क्रम] उदा.34 यद्यपि फ्लुओरीन की इलेक्ट्रॉन लिब्ध एन्थैल्पी क्लोरीन की तुलना में कम ऋणात्मक है लेकिन फ्लुओरीन, क्लोरीन की अपेक्षा प्रबल ऑक्सीकारक है, क्यों?

हल-यह इस कारण है क्योंकि-

- (i) F F आबंध की वियोजन एन्थैल्पी कम है
- (ii)F-की जलयोजन एन्थैल्पी उच्च है

आण्विक हैलोजन के लिये आँकड़े-

F_2	Cl ₂	Br_2	I_2
गैस	गैस	द्रव	ठोस
हल्का	हरा	लाल	गहरा
पीला	पीला	भूरा	बैंगनी
. 1.51	1.66	3.19	4.94
85K	203K	273K	293K
54	172	266	397
-85	239	333	458
143	199	228	266
	हल्का पीला 1.51 85K 54 -85	गैस गैस हल्का हरा पीला पीला 1.51 1.66 85K 203K 54 172 -85 239	गैस गैस द्रव हल्का हरा लाल पीला पीला भूरा 1.51 1.66 3.19 85K 203K 273K 54 172 266 -85 239 333

				· • • · ·
बन्ध वियोजन एन्थैल्पी kJ mol ⁻¹	158.8	242.6	192.8	151.1

n-ब्लॉक के नल

ज्ञातः वस्यायप्रकास्य

- (i) ऑक्सीकरण अवस्थाएं तथा रासायनिक क्रियाशीलता की प्रवृत्ति—
- सभी हैलोजन-1 ऑक्सीकरण अवस्था प्रदर्शित करती हैं तथापि क्लोरीन, ब्रोमीन तथा आयोडीन +1, +3, +5 तथा +7 ऑक्सीकरण अवस्थाएँ भी प्रदर्शित करती हैं। जैसा कि नीचे स्पष्ट किया गया है।

हैलोजन परमाणु मूल अवस्था	ns	np ↑↓ ↑ ↓ ↑	nd	 अयुग्लित इलेक्ट्रॉन - 1 या +1 ऑक्सीकरण अवस्था का स्पष्टीकरण देता है।
प्रथम उत्तेजित अवस्था	↑	1 1	<u> </u>	3 अयुग्लित इलेक्ट्रॉन +3 ऑक्सीकरण अवस्था का स्पष्टीकरण देता है।
द्वितीय उत्तेजित अवस्थ	1	↑ ↑	↑ ↑	'S अयुग्लित इलेक्ट्रॉन -5 ऑक्सीकरण अवस्था का स्पष्टीकरण देता है।
तृतीय उत्तेजित अवस्था	↑	↑ ↑ ↑	111	7 अयुग्लित इलेक्ट्रॉन +7 ऑक्सीकरण अवस्था का स्पष्टीकरण देता है।

क्लोरीन, ब्रोमीन तथा आयोडीन की उच्च ऑक्सीकरण अवस्थाएं मुख्यतया तब प्राप्त होती है जब हैलोजन छोटे तथा उच्च विद्युत ऋणात्मकता वाले फ्लुओरीन तथा ऑक्सीजन परमाणुओं के साथ संयोग करते हैं, जैसे— अंतराहैलोजनों, ऑक्साइडों तथा ऑक्सोअम्लों में +4 व +6 ऑक्सीकरण अवस्थाएं क्लोरीन तथा ब्रोमीन के ऑक्साइडों तथा ऑक्सोअम्लों में पाई जाती है।

- फ्लुओरीन के परमाणु के संयोजकता कोश में कोई d कक्षक नहीं होता। अतः यह अपने अष्टक का प्रसार नहीं कर सकता। सबसे अधिक विद्युत ऋणात्मकता होने के कारण यह केवल –1 ऑक्सीकरण अवस्था प्रदर्शित करता है।
- सभी हैलोजन अतिक्रियाशील होते हैं। ये धातु तथा अधातुओं के साथ अभिक्रिया कर हैलाइड बनाते हैं। वर्ग में नीचे की ओर जाने पर हैलोजनों की क्रियाशीलता कम होती है।
- एक इलेक्ट्रॉन तत्काल प्रतिग्रहण कर लेने की प्रवृत्ति के कारण हैलोजनों की प्रबल ऑक्सीकारक प्रकृति होती है।
- F₂ प्रबलतम ऑक्सीकारक हैलोजन है और यह दूसरे हैलाइड आयनों को विलयन में या यहाँ तक कि ठोस प्रावस्था में भी ऑक्सीकृत कर देती है।

E° मान के अधिक होने पर ऑक्सीकारी प्रवृत्ति भी ज्यादा होगी। सभी हैलोजन के उनकी आण्विक अवस्था (X₂) में E° के मानों को सन्दर्भ के रूप में नीचे दिया गया है।

$$F_2 + 2e^- \rightarrow 2F^-$$
; $E^\circ = 2.87 \text{ V}$
 $Cl_2 + 2e^- \rightarrow 2Cl^-$; $E^\circ = 1.36 \text{ V}$

$$Br_2 + 2e^- \rightarrow 2Br^-; E^0 = 1.08V$$

 $I_2 + 2e^- \rightarrow 2I^-; E^0 = 0.54 \text{ V}$

अतः इनकी सापेक्षिक ऑक्सोकरण प्रवृत्ति, ${\rm F_2} > {\rm Cl_2} > {\rm Br_2} > {\rm I_2}$ होती है।

ऊपर दिए गए आँकड़ों से यह स्पष्ट है कि Cl_2 ,. Br_2 को इसके लवणों के विलयनों से विस्थापित कर सकती है। इसी प्रकार से Br_2 , I_2 को इसके लवणों के विलयनों से विस्थापित कर सकती है।

 $Cl_2 + 2KBr \rightarrow 2KCl + Br_2$ या $Cl_2 + 2Br^- \rightarrow 2Cl^- + Br_2$ $Br_2 + 2KI \rightarrow 2KBr + I_2$ या $Br_2 + 2I^- \rightarrow 2Br^- + I_2$ चूँिक अपचायक लक्षण, इलेक्ट्रॉन मुक्त करने की प्रवृत्ति के पदों में प्रदर्शित किए जाते हैं। अतः हैलाइड आयन्स की अपचायक प्रकृति का क्रम निम्न प्रकार से होगाः

$$I^- > Br^- > CI^-$$

फ्लुओरीन आयन (F⁻) उच्च विद्युत ऋणात्मकता व अत्यन्त छोटे आकार के कारण अपचायक की तरह कार्य नहीं करता।

2. हाइड्रोजन के प्रति अभिक्रियाशीलता (हाइड्रोजन हैलाइड का निर्माण) (Reactivity towards hydrogen (formation of Hydogen Halides)— विभिन्न परिस्थितियों में हैलाजन्स, हाइड्रोजन से सीधे क्रिया कर हाइड्रोजन हैलाइड बनाते हैं जिन्हें हाइड्रा अम्ल (HX) भी कहते हैं। हाइड्रोजन के प्रति हैलोजन की बंधुता वर्ग में नीचे जाने पर घटती है।

$$H_2 + F_2 \xrightarrow{3 \hat{u} \hat{u}} 2HF$$
 $H_2 + Cl_2 \xrightarrow{fakka} 2HC$

 H_2 + Br_2 $\xrightarrow{3$ प्मा → 2HBr

$$H_2 + I_2 \xrightarrow{Pt} 2HI$$

आयोडीन के साथ की अभिक्रिया उत्क्रमणीय होती है क्योंकि HI अपनी निम्न बंध वियोजन ऊर्जा (299 kJ mol⁻¹) के कारण आसानी से विदलित हो सकता है।

हाइड्रोजन हैलाइड्स के लक्षण (Characteristics of Hydrogen Halides)— हाइड्रोजन हैलाइड्स के लक्षणों को नीचे संक्षेप में समझाया गया है।

(a) भौतिक अवस्था (Physical state)— HF कमरे के ताप पर द्रव होता है जबिक अन्य हाइड्रोजन हैलाइड्स गैसीय प्रकृति के होते हैं। व्याख्या (Explanation)— हाइड्रोजन प्रलुओराइड की द्रव अवस्था अणुओं में अन्तराण्विक हाइड्रोजन बन्धन की उपस्थिति को प्रदर्शित करती है, जो कि उनकी उच्च ध्रुवीय प्रकृति के कारण होती है। ये संगुणित हो जाते हैं एवं द्रव अवस्था में पाये जाते हैं। परन्तु अन्य हाइड्रोजन हैलाइडस में हाइड्रोजन बन्ध नहीं पाया जाता है अत: वे संगुणित नहीं होते है। ये कमरे के ताप पर गैसीय अवस्था में पाये जाते हैं।

$$\dots\overset{\delta^+}{H} \overset{\delta^-}{-}\overset{\delta^-}{F} \dots \overset{\delta^+}{H} \overset{\delta^-}{-}\overset{\delta^-}{F} \dots \overset{\delta^+}{-}\overset{\delta^-}{F} \dots$$

(b) तापीय स्थायित्व (Thermal stability)— हाइड्रोजन हैलाइड्स का स्थायित्व HF से HI तक घटता है। इसका अर्थ है कि HF सर्वाधिक जबिक HI निम्नतम स्थायी अम्ल है।

व्याख्या (Explanation)— हाइड्रोजन हैलाइड्स का सापेक्षिक स्थायित्व उनकी बंध वियोजन एन्थेल्पी से जुड़ा होता है। बंध वियोजन एन्थेल्पी HF से HI तक घटती है। इसका अर्थ है कि HI आसानी से विदलित हो सकता है। जबिक HF सबसे अधिक कठिनाई से विदलित होता है। दूसरे शब्दों में HF तापीय रूप से सर्वाधिक स्थायी जबिक HI निम्नतम स्थायी होता है।

हैलाइड	HF	HCI	HBr	HI
बंध वियोजन एन्थैल्पी	574	432	363	299
(kj Mol ¹)				

HF से HI तक तापीय स्थायित्व घटता है।

HF > HC1 > HBr > HI

(c) अपचायक प्रकृति (Reducing nature)— हाइड्रोजन हैलाइड्स की अपचायक प्रकृति उनके तापीय स्थायित्व से सम्बन्धित होती है अर्थात् जितना स्थायित्व होगा उतना ही कठिन H – X बंध का विदलन होगा तथा उतनी ही कम अपचायक गुण होगा। अत: HF दुर्बलतम अपचायक है जबिक HI प्रबलतम अपचायक है। वास्तव में, HF, HCl दोनों ही ऑक्सीकारक की भाँति व्यवहार करते हैं, न कि अपचायक की तरह कार्य करते हैं।

HF से HI तक अपचायक प्रकृति बढ़ती है।

H-F < H-Cl < H-Br < H-I अपचायक क्षमता का बढ़ता क्रम अस्लीय प्रबलता (Acidic strength)— गैसीय अवस्था में हाइदोजन

(d) अम्लीय प्रबलता (Acidic strength)— गैसीय अवस्था में हाइड्रोजन हैलाइड्स सहसंयोजी प्रकृति के होते हैं परन्तु जलीय विलयन में ये आयनिक प्रकृति के हो जाते हैं तथा अम्लों की तरह व्यवहार करते हैं इनकी अम्लीय सामर्थ्य का क्रम निम्न प्रकार हैं—

HI > HBr > HCI > HF

व्याख्या (Explanation)— यदि हम बन्ध भ्रुवता की ओर देखते हैं तो अधिकतम भ्रुवता होने के कारण HF प्रबलतम अम्ल होना चाहिए जबिक HI सबसें कम अम्लीय होना चाहिए। उपर्युक्त को बन्ध वियोजन कर्जा के आधार पर समझाया जा सकता है जो कि HF हेतु अधिकतम होती है तथा HI की निम्नतम होती है। अत: HF दुर्बल अम्ल जबिक HI प्रबल अम्ल होता है। HF की दुर्बल अम्लीय प्रकृति को अन्तर-आण्विक हाइड्रोजन बन्धन द्वारा भी समझा सकते हैं जिससे हाइड्रोजन परमाणु हाइड्रोजन बन्धों के बीच फँस जाता है।

HF से HI तक अम्लीय सामर्थ्य बढता है।

(e) संयुग्मी क्षार (Conjugate Base)

हम जानते है कि अम्ल प्रबल होगा तो उसका संयुग्मी क्षार दुर्बल होगा।

अतः हैलोजन अम्लों में [H-F, H-Cl, H-Br एवं H-I] H-I प्रबलतम अम्ल होता है अतः I⁻ आयोडाइड आयनं दुर्बलतम संयुग्मी क्षार होगा। I⁻ < Br⁻ < Cl⁻ < F⁻ [संयुग्मी क्षारों की प्रबलता का बढ़ता क्रम]

(f) हैलोजन अम्लों की सहसंयोजी प्रकृति

हाइड्रोजन हैलाइड सहसंयोजी यौगिक होते हैं। H–X बन्ध की धुवता (Polarity) निम्न क्रम में घटती है अत: सहसंयोजक गुण बढ़ता है।

H-F > H-Cl > H-Br > H-I

धुवता का घटता क्रम सहसंयोजक का बढता क्रम

3. ऑक्सीजन के प्रति अभिक्रियाशीलता (ऑक्साइडों का निर्माण) (Reactivity towards Oxygen (Formation of oxides)]— ये हैलोजन व ऑक्सीजन के यौगिक होते हैं जो अप्रत्यक्ष रूप से बनते हैं। फ्लुओरीन दो ऑक्साइड OF2 व O2F2 बनाता है। ये ऑक्सीजन फ्लुओराइड कहलाते हैं तथा फ्लुओरीन ऑक्साइड नहीं कहलाते हैं क्योंकि फ्लुओरीन ऑक्सीजन की अपेक्षा ज्यादा वैद्युत ऋणात्मक होती है। ऑक्सीजन डाइफ्लुओराइड यौगिक फ्लुओरीन की वाष्प को अति तनु जलीय NaOH विलयन से गुजारकर बनाया जाता है।

 $2F_2 + 2NaOH (तनु) \rightarrow 2NaF + OF_2 + H_2O$ क्लोरीन, ब्रोमीन व आयोडीन कई ऑक्साइड बनाते हैं जिसमें हैलोजन की ऑक्सीकरण अवस्थाएँ +1 से +7 तक बदलती है। किन्तु, उनमें से सभी स्थायी नहीं होते हैं। इन्हें सारणी में सुचित किया गया है।

आण्विक हैलोजन (X_2) के लिये आँकड़े

	आ। प्यक हल	ণাজন (\mathbf{X}_2) \cdot	कालय उ	राकड़	
ऑक्सीकरण		F	Cl	Br	I
अवस्था	-				
-1	OF_2		· —	_	
+1	-	(Cl ₂ O)	Br ₂ O	_	
+3	_	Cl_2O_3		-	
+ 4	_	(CIO_2)	BrO_2	I_2O_4	
+5	_			I_2O_5	
+6	_	Cl_2O_6	-		
+7	_	Cl_2O_7	-	I_2O_7	

उदा.35 फ्लुओरीन केवल -1 ऑक्सीकरण अवस्था प्रदर्शित करता है जबिक अन्य हैलोजन तत्त्व +1, +3, +5 तथा +7 ऑक्सीकरण अवस्थायें भी प्रदर्शित करता है। व्याख्या कीजिये।

हल- फ्लुओरीन सबसे अधिक विद्युत ऋणात्मक तत्व है अत: कोई धनात्मक ऑक्सीकरण अवस्था प्रदर्शित नहीं करती। दूसरे हैलोजन तत्वों में d कक्षक उपस्थित होने के कारण ये अपने अष्टक का विस्तार करके +1, +3, +5 व +7 ऑक्सीकरण अवस्थायें प्रदर्शित करते है।

उदा.36 आबन्ध वियोजन एन्थैल्पी, इलेक्ट्रॉन लब्धि एन्थैल्पी तथा जल योजन ऐन्थैल्पी जैसे प्राचलों को महत्व देते हुये F_2 व Cl_2 की ऑक्सीकरण क्षमता की तुलना कीजिये।

हल-F की इलेक्ट्रॉन लब्धि एन्थेल्पी का मान -333KJ / मोल, Cl की इलेक्ट्रॉन लब्धि के मान -349 KJ/mole से कम है।
F की वियोजन एन्थेल्पी का मान भी Cl से कम है लेकिन F की जलयोजन एन्थेल्पी का मान Cl से बहुत अधिक होने के कारण, F₂.
Cl, की अपेक्षा एक उच्च ऑक्सीकारक पदार्थ है।

उदा.37 दो उदाहरणों द्वारा फ्लुओरीन के असामान्य व्यवहार को दर्शाइये। हल-फ्लोरीन की अधिकांश अभिक्रियाएँ ऊष्माक्षेपी है।

फ्लोरीन सिर्फ एक प्रकार का ऑक्सो अम्ल बनाती है।

उदा.38 समुद्र कुछ हैलोजन का मुख्य स्त्रोत है। टिप्पणी लिखिये। हल-समुद्री जल में सोडियम पोटेशियम मैग्नीशियम तथा कैल्शियम के क्लोराइड ब्रोमाइड तथा आयोडाइड लवण उपस्थित होते हैं। शुष्क हुए समुद्री निक्षेपों में NaCl तथा कार्नेलाइट KCl.MgCl₂.6H₂O यौगिक उपस्थित है।

अत: समुद्री जल में कुछ हैलोजन का मुख्य स्त्रोत है।

7.19 वलोरीन (Chlorine) (Cl₂)

- शैले ने 1774 में HCl पर MnO₂ की अभिक्रिया द्वारा क्लोरीन को खोजा था।
- 1810 में, डेवी ने इसकी तात्विक प्रकृति बताई तथा इसके हरे पीले रंग के कारण इसे क्लोरीन नाम दिया।
- क्लोरीन विभिन्न धातुओं के क्लोराइडों के रूप में प्रकृति में विस्तृत रूप से फैली होती है।
- इनमें से साधारण नमक (NaCl) सबसे ज्यादा प्रचलित है। Occurrence
 - क्लोरीन बहुत क्रियाशील अधातु है। अतः यह प्रकृति में मुक्त अवस्था में नहीं पायी जाती।
 - प्रकृति में यह Na व अन्य क्षारीय धातुओं के साथ क्लोराइड के रूप में पायी जाती है।
 - क्लोरीन का सबसे उत्तम पदार्थ NaCl है।
 - क्लोरीन के अम्ल Sylvine [KCl], Carnalite KCl, MgCl₂.6H₂O में भी पायी जाती है।

विरचन (Preparation)

क्लोरीन निम्न विधियों द्वारा बनायी जा सकती है-

 सान्द्र हाइड्रोक्लोरिक अम्ल को मैंग्नीज डाइऑक्साइड के साथ गर्म करके

$$MnO_2 + 4HCl \rightarrow MnCl_2 + Cl_2 + H_2O$$

- 2. साधारण नमक व सान्द्र सल्फ्यूरिक अम्ल के मिश्रण को गर्म करके $4{
 m NaCl}+{
 m MnO}_2+4{
 m H}_2{
 m SO}_4
 ightarrow {
 m MnCl}_2+4{
 m NaHSO}_4$
- + 2H₂O+Cl₂ 3. पोटेशियम परमैंगनेट या पोटेशियम डाइक्रोमेट की HCl से अभिक्रिया करने पर

 $2KMnO_4 + 16HCl \rightarrow 2KCl + 2MnCl_2 + 5Cl_2 + 8H_2O$ $K_2Cr_2O_7 + 14HCl \rightarrow 2KCl + 2CrCl_3 + 3Cl_2 + 7H_2O$

व्यावसायिक विरचन (Commercial Preparation)

- 1. क्लोरीन की आवश्यकता व्यावसायिक रूप से भी होती है क्योंकि कई पदार्थों के निर्माण में प्रयुक्त होती है। यह ब्राइन (NaCl का सान्द्र विलयन) के वैद्युत अपघटन द्वारा कॉस्टिक सोडा के निर्माण में उत्पाद रूप में प्राप्त होती है तथा जुड़ी हुई सोडियम क्लोराइड के वैद्युत अपघटन द्वारा सोडियम के निर्माण में भी प्राप्त होती है।
- 2. डेकॉन विधि— हाइड्रोजन क्लोराइड गैस को CuCl₂ (उत्प्रेरक) की उपस्थिति में वायुमण्डलीय ऑक्सीजन द्वारा ऑक्सीकरण से प्राप्त होती है।

$$4HCl + O_2 \xrightarrow{-CuCl_2} 2Cl_2 + 2H_2O$$

गुण (Properties)

- 1. क्लोरीन तीखी गंध वाली, दमघोंटू, हरित पीली गैस, वायु से 2.5 गुणा भारी है।
- क्लोरीन अत्यधिक जहरीली होती है। यह अगर थोड़ी मात्रा में सांस द्वारा अन्दर ली जाये, तो सिर दर्द का कारण होती है। ज्यादा मात्रा में गैस के सांस द्वारा अन्दर जाने पर मृत्यु का कारण भी बन सकती है।
- उस्ताब के अन्तर्गत ठण्डा करके आसानी से द्रवित की जा सकती है। द्रव रूप में यह पीले रंग की होती है तथा 239K पर उबलती है।
- 4. यह जल व जलीय विलयन में अत्यधिक विलेय होती है, इसे क्लोरीन जल कहते हैं, जो क्लोरीन की गंध देता है।
- 5. धातुओं व अधातुओं के साथ संयोजन (Combination with metals and non-metals)— क्लोरीन अत्यधिक अभिक्रियाशील प्रकृति की होती है तथा गर्म करने पर अधातु व धातु दोनों के साथ अभिक्रियां करती है।

 $\begin{array}{ll} 2\text{Na} + \text{Cl}_2 \rightarrow 2\text{NaCl}; & 2\text{Fe} + 3\text{Cl}_2 \rightarrow 2\text{FeCl}_3 \\ \text{Mg} + \text{Cl}_2 \rightarrow \text{MgCl}_2; & Zn + \text{Cl}_2 \rightarrow Zn\text{Cl}_2 \\ \text{P}_4 + 6\text{Cl}_2 \rightarrow 4\text{PCl}_3; & S_8 + 4\text{Cl}_2 \rightarrow 4\text{S}_2\text{Cl}_2 \\ 2\text{Al} + 3\text{Cl}_2 \rightarrow 2\text{AlCl}_3 & \end{array}$

हाइड्रोजन के लिए बंधुता (Affinity towards hydrogen)— क्लोरीन हाइड्रोजन के लिए ज्यादा बंधुता वाली होती है तथा सूर्य के प्रकाश को उपस्थिति में इससे जुड़ती है।

 $H_2 + Cl_2 \xrightarrow{\overline{H^d}} 3 \overline{y}$ का प्रकाश $\rightarrow 2HCl$

यह कई हाइड्रोजन यौगिकों को अपघटित करके HCl बनाती है।

तारपीन का तेल क्लोरीन में जलकर HCl व कार्बन बनाता है।

 $C_{10}H_{16} + 8Cl_2 \rightarrow 10C + 16HCl$

- यह सूर्य की उपस्थिति में जल के साथ अभिक्रिया करती है। $2H_2O+2Cl_2\rightarrow 4HCl+O_2$
- \bullet यह हाइड्रोजन सल्फाइड को सल्फर में ऑक्सीकृत करती है। $H_2S+Cl_2 \rightarrow 2HCl+S$
- 7. कार्बन मोनोऑक्साइड के साथ अभिक्रिया (Action with carbon monoxide)— जब क्लोरीन व कार्बन मोनोऑक्साइड सूर्य के प्रकाश की उपस्थित में चारकोल पर गुजारी जाती है तब कार्बोनिल क्लोरीन या फास्जीन बनती है। यह अत्यधिक विषैली होती है।

8. सल्फर के साथ अभिक्रिया (Action with Sulphur)— जब क्लोरीन उबलते सल्फर से गुजारी जाती है, तब यह सल्फर मोनो क्लोराइड (S_2Cl_2) बनाती है।

$$S_8 + 4Cl_2 \rightarrow 4S_2Cl_2$$

सल्फर मोनोक्लोराइड

सल्फर मोनो क्लोराइड एथीन के साथ अभिक्रिया करके अत्यधिक विषैली गैस **मस्टर्ड गैस** बनाती है।

$$\begin{array}{ccccc} \text{CH}_2 & \text{CH}_2 & \text{CH}_2\text{Cl} & \text{CH}_2\text{Cl} \\ \vdots & \vdots & \vdots & \vdots \\ \text{CH}_2 + \text{S}_2\text{Cl}_2 + \text{CH}_2 \rightarrow \text{CH}_2 - \text{S} - \text{CH}_2 & + \text{S} \\ \hline v्थीन & & & & & & \\ \hline \end{array}$$

 बुझे हुए चूने के साथ अभिक्रिया (Action with Slaked Lime)— जब क्लोरीन शुष्क बुझे हुए चूने से अभिक्रिया करती है तो विरंजक चूर्ण बनता है।

$$2Ca(OH)_2 + 2Cl_2 \rightarrow CaOCl_2 + CaCl_2 + 2H_2O$$

कैल्शियम ऑक्सी क्लोराइंड
(विरंजक चूर्ण)

10. क्षारों के साथ (With Alkalies)— जब गैस ठण्डे तनु क्षारों से गुजरती है, यह क्लोराइड व हाइपोक्लोराइट्स बनाती है।

 $2NaOH + Cl_2 \rightarrow NaCl + NaClO + H_2O$ जब क्षार के साथ गर्म की जाती है, यह क्लोरेट देती है।

6NaOH + 3Cl₂ $\xrightarrow{39H}$ 5NaCl + NaClO₃ + 3H₂O

11. क्लोरीन की ऑक्सीकारक प्रकृति (Oxidising Nature of Chlorine)— क्लोरीन जल के साथ अभिक्रिया करके HCl व HClO बनाती है। बाद में तुरन्त ऑक्सीजन देती है जो कई अभिक्रियायें लाती है।

 $Cl_2 + H_2O \rightarrow 2HCl + [O]$

(i) Cl_2 , SO_2 को $\operatorname{H}_2\operatorname{SO}_4$ में ऑक्सीकृत करती है।

 $SO_2 + Cl_2 + 2H_2O \rightarrow 2HCl + H_2SO_4$

(ii) Cl2. Sulphites को sulphate में ऑक्सीकृत करती है।

 $Na_2SO_3 + Cl_2 + H_2O \rightarrow Na_2SO_4 + 2HCl$

(iii) Cl₂ थामोसल्फेअ को सल्फेट में ऑक्सीकृत करती है।

 $\mathrm{Na_2S_2O_3} + \mathrm{Cl_2} + \mathrm{H_2O} \rightarrow \mathrm{Na_2SO_4} + 4\mathrm{HCl} + \mathrm{S}$

(iv) Cl₂, H₂S को S में ऑक्सीकृत करती है।

 $H_2S + Cl \rightarrow 2HCl + S$

(v) Cl_2 नाइट्राइट को नाइट्रेट में ऑक्सीकृत करती है।

 $NaNO_2 + HCl + H_2O \rightarrow NaNO_3 + 2HCl$

(vi) Cl₂ अम्लीय फेरस सल्फेट को फेरिक सल्फेट में ऑक्सीकृत करती है।

 $2\text{FeSO}_4 + \text{Cl}_2 + \text{H}_2\text{SO}_4 \rightarrow \text{Fe}_2(\text{SO}_4)_3 + 2\text{HCl}_4$

(vii)Cl2 आर्सेनाइट को आर्सेनेट में ऑक्सीकृत करती है।

 $Na_3AsO_3 + Cl_2 + H_2O \rightarrow Na_3AsO_4 + 2HCl$

(viii) $\operatorname{Cl}_{2,}\operatorname{I}_{2}$ को आयोडिक अम्ल में ऑक्सीकृत करती है।

 $I_2 + 5CI_2 + 6H_2O \rightarrow 2HIO_3 + 10HCI$

(ix) Cl_2 , FeCl_2 को FeCl_3 में ऑक्सीकृत करती हैं।

 $FeCl_2 + Cl_2 \rightarrow 2FeCl_3$

(x) Cl₂, SnCl₂ को SnCl₄ में ऑक्सीकृत करती है।

 $SnCl_2 + Cl_2 \rightarrow SnCl_4$

(xi) Cl_2 पोटेशियम फेरोसायनाइड को पोटेशियम फेरीसायनाइड में ऑक्सीकृत करती है।

 $2K_4[Fe(CN)_6] + Cl_2 \rightarrow 2K_3[Fe(CN)_6] + 2KC1$

(xii)Cl $_2$, K_2MnO_4 को $KMnO_4$ में ऑक्सीकृत करती है।

 $2K_2MnO_4 + Cl_2 \rightarrow 2KMnO_4 + 2KCl$

- 12. अमोनिया के साथ क्रिया—
- (i) यदि ${
 m NH_3}$ की अधिक मात्रा को ${
 m Cl_2}$ के साथ क्रिया कराने पर ${
 m N_2}$ व ${
 m NH_4Cl}$ बनता है।

 $8NH_3 + 3Cl_2 \rightarrow 6NH_4Cl + N_2$

- (ii) यदि Cl_2 के आधिक्य लेने पर नाइट्रोजन ट्राई क्लोराइड बनता है। $\text{NH}_3 + 3\text{Cl}_2 \rightarrow \text{NCl}_3 + 3\text{HCl}$
- 13. ऐल्केन के साथ Cl₂ पैराबैंगनी प्रकाश की उपस्थिति में क्रिया कर मोनो, डई, ट्राई......क्लोरो ऐल्केन बनाते हैं।

$$CH_4 + Cl_2 \xrightarrow{\frac{q}{N}} CH_3Cl + HCl$$

मेथिल क्लोराइड

 $CH_3Cl + Cl_2 \rightarrow CH_2Cl_2 + HCl$

14. ऐल्कीन से Cl2 क्रिया कर डाइ हैलोऐल्केन बनाते हैं।

$$\begin{array}{ccc} \operatorname{CH}_2 & & \operatorname{CH}_2\operatorname{Cl} \\ \parallel & +\operatorname{Cl}_2 \to & \backslash \\ \operatorname{CH}_2\operatorname{Cl} & & & \\$$

15. विरंजन के रूप में (As bleaching agent)— क्लोरीन भी विरंजक की तरह कार्य करती है तथा इसकी विरंजन क्रिया ऑक्सोकरण के कारण होती है।

 $Cl_2 + H_2 O \rightarrow 2HCl + (O)$ रंगीन पदार्थ + (O) \rightarrow रंगहीन उत्पाद (विरंजित)

सल्फर डाइऑक्साइड के विपरीत, क्लोरीन द्वारा विरंजन स्थायी होता है। विरंजित पदार्थ को पुन: रंजित नहीं किया जा सकता है। यह सब्जियों व कार्बिनिक पदार्थों के लिए विरंजक के रूप में कार्य करता है। किन्तु यह अन्य पदार्थों को विरंजित नहीं करता है जैसे कि सल्फर डाइऑक्साइड में होता है।

उपयोग (Uses) क्लोरीन प्रयुक्त होती है:

- (i) विरंजक चूर्ण, क्लोरेट्स, हाइपोक्लोरिक अम्ल, क्लोरोफार्म, कार्बन टेट्रा क्लोराइंड व कई यौगिकों को बनाने में।
- (ii) कार्बनिक अभिक्रियाओं में क्लोरीनिकृत कारक के रूप में।
- (iii) कॉटन, पेपर, रेयॉन आदि के लिए विरंजक के रूप में।
- (iv) विषैली गैसों जैसे फॉस्जीन (COCl₂) अश्रु गैस (CCl₃NO₂),
 मस्टर्ड गैस (CIC₂H₄ S–C₂H₄Cl) को बनाने में।
- (v) विशेष रूप से वर्षा ऋतु में पीने के जल को निर्जम (जीवाणुरहित) करने में
- (vi) सोने और प्लैटिनम के निष्कर्षण में।
- उदा.39 Cl₂ की गर्म तथा सान्द्र NaOH के साथ अभिक्रिया की सन्तुलित रासायनिक समीकरण लिखिये क्या यह अभिक्रिया असमानुपातन अभिक्रिया है? औचित्य बतलाइये।
- हल- $3\text{Cl}_2 + 6\text{NaOH} \rightarrow 5\text{NaCl} + \text{NaClO}_3 + 3\text{H}_2\text{O}$ उपरोक्त अभिक्रिया असमानुपातन है क्योंकि Cl_2 का शून्य ऑक्सीकरण अंक, -1 तथा +5 ऑक्सीकरण अंक में परिवर्तित होती है।

उदा.40 Cl₂ की विरंजक क्रिया का कारण बताइये।

हल- Cl_2 की विरंजन क्रिया ऑक्सीकरण के कारण होती है जिसमें नवजात [O] प्राप्त होती है।

 $Cl_2 + H_2O \rightarrow 2HCl + [O]$ रंगीन पदार्थ + $[O] \rightarrow$ रंगहीन पदार्थ

उदा.41 उन दो विषैली गैसों के नाम बताइये जो Cl_2 गैस से बनाई जाती है।

हल - फॉस्जीन गैस $[COCl_2]$ एवं मस्टर्ड गैस $CICH_2 - CH_2 - S - CH_2CH_2$

अभ्यास-७.७

- प्र.1. वर्ग 17 के तत्वों को हैलोजन क्यों कहते हैं?
- प्र.2. वर्ग 17 में कौनसा तत्व रेडियोऐक्टिव तत्व है?
- प्र.3. वर्ग 17 के अधिकांश तत्व कहाँ पाये जाते हैं?
- प्र.4. फ्लुओरीन के मुख्य अयस्क बताइये।
- प्र.5. क्लोरीन के प्रमुख स्त्रोत कौनसे है?
- प्र.6. ब्रोमीन के प्रमुख स्त्रोत कौनसे है?
- प्र.7. आयोडीन के प्रमुख स्त्रोत कौनसे है?
- प्र.8. वर्ग 17 के तत्वों का सामान्य इलेक्ट्रॉनिक विन्यास दीजिये।
- प्र.9. वर्ग 17 के तत्वों के ऋणायनों को आयनिक त्रिज्या के बढ़ते क्रम में व्यवस्थित करें।
- प्र.10. वर्ग 17 के तत्वों को आयनन एन्थैल्पी के बढ़ते क्रम में व्यवस्थित करें।
- प्र.11. वर्ग 17 के तत्वों के इलेक्ट्रॉन लब्धि के बढ़ते क्रम में व्यवस्थित करें।
- प्र.12. F तत्त्व की इलेक्ट्रॉन लब्धि ए-थैल्पी का मान CI से कम होता है? क्यों?
- प्र.13. वर्ग 17 के तत्वों को गलनांक के बढ़ते क्रम में व्यवस्थित करें।
- प्र.14. वर्ग 17 के तत्वों को क्वथनांक के बढ़ते क्रम में व्यवस्थित करें।
- प्र.15. वर्ग 17 के तत्वों के हाइड्राइड्स को स्थायित्व के बढ़ते क्रम में व्यवस्थित करें।
- प्र.16. वर्ग 17 के तत्वों के हाइड्राइस को अम्ल की प्रबलता के बढ़ते क्रम में व्यवस्थित करें।
- प्र.17. वर्ग 17 के तत्वों के हाइड्राइ्स को अपचायक क्षमता के बढ़ते क्रम में व्यवस्थित करें।
- प्र.18. वर्ग 17 के तत्वों के ऑक्सो अम्लों को प्रबलता के बढ़ते क्रम में व्यवस्थित करो।
- प्र.19. HCl की MnO₂ की अभिक्रिया द्वारा Cl₂ को किस वैज्ञानिक ने खोजा था?
- प्र.20. Cl का नाम क्लोरीन किस वैज्ञानिक ने दिया।
- प्र.21. Cl_2 के भौतिक गुणों की व्याख्या कीजिये।
- प्र.22. क्या होता है जब
 - (i) MnO2 की सान्द्र HCl के साथ गर्म करते हैं।
 - (ii) KMnO4 की सान्द्र HCl के साथ गर्म करते हैं।
 - (iii) $K_2Cr_2O_7$ की सान्द्र HCl के साथ गर्म करते हैं।
 - (iv) HCl को ${\rm O}_2$ के साथ ${\rm CuCl}_2$ व 723K ताप पर गर्म करते हैं।
 - (v) तारपीन तेल को Cl2 के साथ मिलाया जाता है।
 - (vi) H₂S को Cl₂ के साथ अभिक्रिया कराई जाती है।
 - (vii) $Ca(OH)_2$ की Cl_2 के साथ अभिक्रिया कराई जाती है।
 - (viii) NaOH की Cl2 के साथ अभिक्रिया कराई जाती है।
 - (ix) NH3 की Cl2 के साथ अभिक्रिया कराई जाती है।

- (x) S_8 की Cl_2 के साथ अभिक्रिया कराई जाती है।
- (xi) $CH_2 = CH_2$ की Cl_2 के साथ अभिक्रिया कराई जाती है।
- (xii) CH4 की Cl2 के साथ अभिक्रिया कराई जाती है।
- प्र.23. Cl₂ के उपयोग बताइवे।

उत्तरमाला

- हैलोजन का अर्थ है लवण उत्पन्न करने वाले अर्थात् ये धातुओं से क्रिया कर लवण बनाते हैं अत: वर्ग 17 के तत्वों को हैलोजन कहते हैं।
- 2. At (आस्टेटाइन) एक रेडियोऐक्टिव तत्व है।
- 3. समुद्री जल में विलेय लवणों के रूप में पाये जाते हैं।
- 4. फ्लुओरीन के निम्न मुख्य अयस्क है।
 - (i) फ्लुओरस्पार CaF₂
 - (ii) क्रोमोलाइट Na₃AlF₆
 - (iii) फ्लुओर एपेटाइट CaF₂.3Ca₃(PO₄)₂
- क्लोरीन के मुख्य अयस्क निम्न है—
 - (i) सोडियम क्लोराइड NaCl
 - (ii) कार्नेलाइट KCl. MgCl₂.6H₂O
 - (iii) सिल्वीन KCl
- ब्रोमीन के मुख्य अयस्क निम्न हैं—
 - (i) ब्रोमो कार्नेलाइट KBr.MgBr₂.6H₂O
- 7. आयोडीन के मुख्य अयस्क निम्न हैं—
 - (i) चिल्ली साल्टपीटर NaNO3 + NaIO3
- 8. ns²np5 यह वर्ग 17 का सामान्य इलेक्ट्रॉनिक विन्यास है।
- 9. F < Cl < Br < I- आयनिक त्रिज्या का बढ़ता क्रम
- 10. I < Br < Cl < F आयनन एन्थेल्पी का बढ़ता क्रम
- 11. I < Br < F < Cl इलेक्ट्रॉनिक लब्धि एन्थैल्पी का बढ़ता क्रम
- 12. F का आकार अत्यधिक छोटा होने के कारण, इसकी सतह पर इलेक्ट्रॉन का घनत्व उच्च हो जाता है। जिससे आने वाले e पर नाभकीय आकर्षण बल, अपने ही es के प्रतिकर्षण के कारण कम हो जाता है अत: F की इलेक्ट्रॉन लब्धि एन्थैल्पी का मान CI से कम होता है।
- 13. $F_2 \le Cl_2 \le Br_2 \le l_2$ गलनांक का बढ़ता क्रम
- $14. \quad F_2 < Cl_2 < Br_2 < I_2$ क्वथनांक का बढ़ता क्रम
- 15. HI < HBr < HCl < HF स्थायित्व का बढ़ता क्रम
- HF < HCl < HBr < HI अम्ल प्रबलता का बढ़ता क्रम
- 17. HF < HCl < HBr < HI अपचायक का बढता क्रम
- 18. HOI < HOBr < HOCl < HOF
- 19. शैले ने

- 20. डेवी ने
- 21. पेज नं. 7.50 पर देखें।
- 22. (i) $MnO_2 + 4HCl \rightarrow MnCl_2 + Cl_2 + H_2O$
 - (ii) $2KMnO_4 + 16HCl \rightarrow 2KCl + 2MnCl_2 + 5Cl_2 + 8H_2O$
 - (iii) $K_2Cr_2O_7 + 14HCl + 2KCl + 2CrCl_3 + 3Cl_2 + 7H_2O$

- (iv) 4HCl + O₂ $\xrightarrow{\text{CuCl}_z}$ 2Cl₂ + 2H₂O
- (v) $C_{10}H_{16} + 8Cl_2 \rightarrow 10C + 16HCl$ तारपीन का तेल
- (vi) $H_2S + Cl_2 \rightarrow 2HCl + S$
- (vii) $Ca(OH)_2 + 2Cl_2 \rightarrow CaOCl_2 + CaCl_2 + H_2O$ बुझे हुये बिल्चिंग पाउडर
- (viii) NaOH + Cl_2 → NaCl + NaClO + H_2O ਰੰਭ। 6NaOH + $3Cl_2$ → 5NaCl + NaClO₃ + $3H_2O$
- (ix) $8NH_3 + 3Cl_2 \rightarrow 6NH_4Cl + N_2$ अधिक मात्रा $NH_3 + 3Cl_2 \rightarrow NCl_3 + 3HCl$
- (x) $S_8 + 4Cl_2 \rightarrow 4S_2Cl_2$ (सल्फर मोनो क्लोराइड)
- (xi) $CH_2 = CH_2 + Cl_2 \rightarrow CH_2Cl CH_2Cl$ इथाइलीन क्लोराइड
- (xii) $CH_4 + Cl_2 \rightarrow CH_3Cl + HCl$
- 23. पेज नं. 7.60 पर देखें।

7.20 द्वाइड्रोजन क्लोगड्ड (Hydrogen Chloride) (HCl

- HCl अम्ल 1648 में ग्लैबर ने साधारण लवण (नमक) को सान्द्र सल्प्यूरिक अम्ल के साथ गर्म कर प्राप्त किया।
- 1810 में डेबी ने बताया कि इस अम्ल में हाइड्रोजन तथा क्लोरीन तत्व है।
- हाइड्रोजन सहसंयोजी हैलाइड (HX) को बनाने के लिए हैलोजनों के साथ जुड़ती है।
- निर्जलीकृत अवस्था में ये हाइड्रोजन हैलाइड कहलाते हैं तथा मुश्किल से ही अम्लीय प्रकृति दर्शाते हैं।
- ये केवल जलीय विलयन में H⁺ आयन मुक्त करते हैं व हाइड्रोजन अम्ल कहलाते हैं। विभिन्न हाइड्रोजन हैलाइडों में से हाइड्रोजन क्लोराइड को समझाया गया है।

विरचन (Preparation)

1. प्रयोगशाला में एवं व्यावसायिक स्तर पर, हाइड्रोजन क्लोराइड सोडियम क्लोराइड को सान्द्र H_2SO_4 के साथ गर्म करके बनायी जाती है।

$$NaCl + H_2SO_4 \xrightarrow{3Uel} NaHSO_4 + HCl (g)$$

 $NaHSO_4 + NaCl \xrightarrow{3041} Na_2SO_4 + HCl (g)$

HCl गैस को सान्द्र सल्फ्यूरिक अम्ल में प्रवाहित करके शुष्क किया जा सकता है।

गुण (Properties)

(i) हाइड्रोजन क्लोराइड तीक्ष्ण गंध वाली रंगहीन गैस है।

- (ii) यह रंगहीन द्रव (क्वथनांक 189K) में आसानी से द्रवित की जा सकती है। यह द्रव सफेद ठोस (हिमांक 159K)में जम जाता है।
- (iii) हाइड्रोजन क्लोराइड जल में अत्यधिक विलेय होकर हाइड्रोक्लोरिक अम्ल बनाती है। यह एक बहुत प्रबल अम्ल है तथा अम्ल की सभी विशिष्ट अभिक्रियायें देता है।

 $HCl(g) + H_2O(l) \rightarrow H_3O^{-}(aq) + Cl^{-}(aq)$

(iv) हाइड्रोक्लोरिक अम्ल लवणों जैसे कार्बोनेट, हाइड्रोजन कार्बोनेट, सल्फाइट आदि से अभिक्रिया करता है।

 $\begin{aligned} \text{Na}_2\text{CO}_3 + 2\text{HCl} &\rightarrow 2\text{NaCl} + \text{H}_2\text{O} + \text{CO}_2 \\ \text{NaHCO}_3 + \text{HCl} &\rightarrow \text{NaCl} + \text{H}_2\text{O} + \text{CO}_2 \\ \text{Na}_2\text{SO}_3 + 2\text{HCl} &\rightarrow 2\text{NaCl} + \text{H}_2\text{O} + \text{SO}_2 \end{aligned}$

(v) अपचायक प्रकृति (Reducing Nature)—

HCl एक अपचायक पदार्थ की तरह व्यवहार करती है। HCl प्रबल ऑक्सीकारक पदार्थों जैसे MnO₂, KMnO₄, K₂Cr₂O₇ को अपचित्रत करती है।

 $\begin{aligned} &MnO_2 + 4HCl \rightarrow MnCl_2 + 2H_2O + Cl_2 \\ &2KMnO_4 + 16HCl \rightarrow 2KCl + 2MnCl_2 + 8H_2O + 5Cl_2 \\ &K_2Cr_2O_7 + 14HCl \rightarrow 2KCl + 2CrCl_3 + 7H_2O + 3Cl_2 \end{aligned}$

(vi) अवक्षेपण अभिक्रियायें-

HCl. AgNO₃, Pb(NO₃)₂ व $Hg_2(NO_3)_2$ के साथ क्रिया कर AgCl, PbCl₂ व $HgCl_2$ के सफेद अवक्षेप के रूप में बदलती है। AgNO₃ + HCl \rightarrow AgCl \downarrow + HNO₃ Pb(NO₃)₂ + 2HCl \rightarrow PbCl₂ \downarrow + 2HNO₃ $Hg_2(NO_3)_2$ + 2HCl \rightarrow $Hg_2Cl_2 \downarrow$ 2HNO₃

(v) सान्द्र HCl व सान्द्र HNO₃ का मिश्रण 3:1 के अनुपात में आयतनानुसार एक्वारेजिया कहलाता है। यह गोल्ड व प्लेटीनम जैसी अक्रिय धातुओं को घोल सकता है तथा उनके घुलनशील क्लोराइड बनाता है।

Au + $4H^{+} + NO_{3}^{-} + 4Cl^{-} \rightarrow AuCl_{4}^{-} + NO + 2H_{2}O$ $3Pt + 16H^{-} + 4NO_{3}^{-} + 18Cl^{-} \rightarrow 3PtCl_{6}^{2-} + 4NO + 8H_{2}O$

(v) अमोनियम से अभिक्रिया करके NH_4Cl के श्वेत धूम देती है। $NH_3 + HCl \rightarrow NH_4Cl$

उपयोग (Uses)— हाइड्रोक्लोरिक अम्ल प्रयुक्त होता है।

- (i) क्लोरीन, क्लोराइड व एक्वारेजिया के उत्पादन में,
- (ii) जन्तु ऊतक व हड्डियों से रस निकालने में,
- (iii) टिन प्लेटिंग व गैल्वनीकरण के दौरान लोहे की चादरों को साफ करने में
- (iv) प्रयोगशाला अभिकर्मक के रूप में।
- (v) औषधियों में।

7.21 हैलोजनों के ऑक्सी अम्ल (Oso selds of Halogens)

 F हैलोजन तत्व का छोटा आकार व उच्च विद्युत ऋणात्मकता होने के कारण यह एक ऑक्सो अम्ल HOF बनाता है। HOF को फ्लुओरिक अम्ल या हाइपो फ्लुओरस अम्ल कहते हैं।

- अन्य हैलोजन अनेक ऑक्सो अम्ल बनाते हैं इनमें से अधिकांश शुद्ध रूप में पृथक नहीं किये जा सकते हैं।
- हैलोजन के ऑक्सो अम्ल केवल जलीय विलयन में अथवा लवण के रूप में स्थायी है।

हैलोजन के कुछ ऑक्सो अम्ल

30									
F	C1	Br,	I	सामान्य नाम					
HOF	HOCI	HOBr	HOI	हाइपो हैलस अम्ल					
_	HClO ₂	-	-	हैलस अम्ल					
-	HClO ₃	HBrO ₃	ню,	हैलिक अम्ल					
_	HClO ₄	HBrO ₄	HIO_4	परहैलिक अम्ल					

ऑक्सो अम्लों की सापेक्षिक अम्लीय प्रबलता (Relative Acidic strengths of Oxy Halogen acids)

ऑक्सो अम्लों में एक H परमाणु Oxygen परमाणु से जुड़ा होता है। हैलोजन परमाणु से नहीं अत: सभी ऑक्सो हैलो अम्लों में एक [HO] होने के कारण ये सभी एक क्षारीय अम्ल होते हैं।

 समान ऑक्सीकरण अवस्था युक्त विभिन्न हैलोजन के ऑक्सो अम्लों की अम्लीय सामर्थ्य परमाणु क्रमांक बढ़ने के साथ घटती है — प्रभाव के घटने पर घटती है।

HOF > HCIO > HBrO > HIO [ऑक्सीकरण अवस्था +1]

 $\mathrm{HClO}_2 > \mathrm{HBrO}_2 > \mathrm{HIO}_2$ [ऑक्सीकरण अवस्था +3]

HClO₃ > HBrO₃ > HIO₃ [ऑक्सीकरण अवस्था +5]

 $\mathrm{HClO_4} > \mathrm{HBrO_4} > \mathrm{HIO_4}$ [ऑक्सीकरण अवस्था +7]

व्याख्या (Explanation)— इसे हम हैलोजन परमाणु की विद्युतऋणता के आधार पर समझा सकते हैं। विद्युतऋणता बढ़ने के साथ-साथ इनकी इलेक्ट्रॉन आकर्षी प्रकृति बढ़ेगी जो O-H बन्ध से H⁺ आयन के मुक्त होने की सम्भावना बढ़ायेगी इस प्रकार HOF प्रबल अम्ल होगा HOCl से।

$$H \rightarrow O \rightarrow F \ge H \rightarrow O \rightarrow Cl \ge H \rightarrow O \rightarrow Br \ge H \rightarrow O \rightarrow I$$

 $F \ge Cl \ge Br \ge I$

 समान हैलोजन परमाणु युक्त ऑक्सी अम्लों की अम्लीय सामर्थ्य हैलोजन परमाणु की ऑक्सीकरण अवस्था बढ़ने के साथ बढ़ती है। क्लोरीन के विभिन्न ऑक्सी अम्लों की सापेक्षिक अम्लीय सामर्थ्य निम्न प्रकार हैं

 $HCIO_4 > HCIO_3 > HCIO_2 > HCIO$

(+7) (+5) (+3) (+1)

 ${\rm HBrO_4} > {\rm HBrO_3} > {\rm HBrO_2} > {\rm HBrO}$

 $HIO_4 > HIO_3 > HIO_2 > HIO$

व्याख्या (Explanation)—

प्रथम व्याख्या— अम्लों से प्राप्त ऋणायनों के सापेक्षिक स्थायित्व के आधार पर कर सकते हैं—

 $HCIO \rightarrow H^+ + CIO^ HCIO_2 \rightarrow H^- + CIO_2^-$

 $HClO_3 \rightarrow H^+ + ClO_3$ $HClO_4 \rightarrow H^+ + ClO_4$

 $HCIO_4$ व $HCIO_3$ के अम्लीय सामर्थ्यों की तुलना करते हैं। $[CIO_4^-]$ पर क्लोरेट आयन में ऋणात्मक आवेश चार विद्युत ऋणात्मक ऑक्सीजन परमाणुओं पर फैला हुआ है जबिक क्लोरेट आयन $[CIO_3]$ में ऋण आवेश तीन विद्युत ऋणी ऑक्सीजन परमाणुओं पर फैला होता है। अतः पर क्लोरेट आयन CIO_4^- क्लोरेट आयन CIO_3^- से अधिक स्थायी है अतः परक्लोरिक अम्ल $HCIO_4$. $NCIO_3$ से प्रबल अम्ल है।

दूसरी व्याख्या— इसमें हम ऑक्सीकरण अवस्था से भी समझाते हैं। ऑक्सीकरण अवस्था बढ़ने पर, आकार में कमी होती है, अत: विद्युत ऋणात्मकता में वृद्धि होगी, अत: अम्ल की प्रबलता में वृद्धि हागी। $Cl^{7+} > Cl^{-3} > Cl^{-1}$ विद्युत ऋणात्मकता

 $HCIO_4 > HCIO_3 > HCIO_2 > HCIO$

ऑक्सो अम्लों का तापीय स्थायित्व ऑक्सीकरण अवस्था बढ़ने पर बढ़ता है।

HClO₄ > HClO₃ > HClO₂ > HClO

ऑक्सो अम्लों की संरचनाए

H CI

क्लोरस अम्ल [HClO,]

हाइपोक्लोरस अम्ल [HOCI]

H Cl

क्लोरिक अम्ल [HClO_s)

परक्लोरिक अम्ल [HClO₄]

7.22 अन्तराहैलोजन यौगिक (Inter Haløgen Compounds)

 जब दो भिन्न हैलोजन परमाणु एक दूसरे से अभिक्रिया करते हैं तो अन्तराहैलोजन यौगिक (Interhalogen compounds) प्राप्त होते हैं।

अन्तराहैलोजन यौगिक सहसंयोजक यौगिक होते हैं।

 अन्तरा हैलोजन यौगिकों में पलुओरीन प्राय: विद्युत ऋणात्मक तत्त्व की तरह व्यवहार करता है जबकि अन्य हैलोजन तत्त्व विद्युत धनात्मक तत्त्वों की तरह व्यवहार करते हैं।

 अधिक विद्युत धनात्मक हैलोजन की ऑक्सीकरण अवस्था के आधार पर अन्तरा हैलोजन यौगिकों को चार भागों में बाँटा गया है। (1) XX'_{3} (2) XX'_{3} (3) XX'_{5} (4) XX'_{7}

अन्तरा हैलोजन यौगिकों में X बड़े आकार वाला हैलोजन होता है तथा
 X' छोटे आकार वाला हैलोजन होता है, X हैलोजन तत्त्व की विद्युत
 ऋणात्मकता X' हैलोजन तत्त्व से कम होती है।

जैसे-जैसे X व X' हैलोजन तत्त्वों की त्रिज्याओं का अनुपात बढ़ता जाता है। प्रति अणु परमाणुओं की संख्या बढ़ती जाती है। जैसे I व F के मध्य त्रिज्याओं का अन्तर या अनुपात अधिकतम होने के कारण IF₇ यौगिक बनता है, यहाँ F हैलोजन तत्व की संख्या अधिकतम है। BrF₇, CIF₇ प्राय: नहीं बनते।

XX' टाइप के यौगिक— CIF, BrF, BrCl, ICl, IF

• XX', टाइप के यौगिक— CIF3; BrF3; ICl3 IF3

XX'₅ टाइप के यौगिक— CIF₅ BrF₅ IF₅

• XX'_7 टाइय के यौगिक $- IF_7$

अन्तराहैलोजन यौगिकों का नामकरण

 इन यौगिकों में धनात्मक ऑक्सीकरण अवस्था वाले हैलोजन का नाम ज्यों का त्यों लिखते हैं, जबिक ऋणात्मक ऑक्सीकरण अवस्था वाले हैलोजन का नाम हैलाइड़ [फ्लोराइड, क्लोराइड, ब्रोमाइड] लिखा जाता है।

अन्तरा हैलोजन यौगिकों की आकृतियाँ (Shapes of Inter Halogen Compounds)

(a) XX'3 टाइप के यौगिकों में उपस्थित X हैलोजन तत्व पर संकरण अवस्था sp³d पाई जाती है X- हैलोजन तत्त्व पर तीन सिग्मा बन्ध उपस्थित है व दो एकांकी इलेक्ट्रॉन युग्म उपस्थित होते।

 दो एकांकी इलेक्ट्रॉन युग्म उपस्थित होने के कारण XX'3 यौगिकों की आकृति T [टी] आकार की होती है।

(b) XX', टाइप के यौगिकों में उपस्थित X हैलोजन तत्व पर संकरण अवस्था sp³d² पायी जाती है। XX', में उपस्थित X हैलोजन तत्त्व पर पाँच सिग्मा बन्ध व एक एकांकी इलैक्ट्रॉन युग्म उपस्थित होता है।

XX'₅ की आकृति वर्ग पिरेमिड होती है।

वर्गाकार पिरेमिड ${\rm BrF_5/ClF_5/IF_5}$

 \bullet ${
m IF}_5$ रंगहीन गैस परन्तु 77 ${
m K}$ के नीचे ठोस

- ● BrF्ररंगहीन द्रव है।
- CIF, रंगहीन द्रव है।
- (c) XX'_7 टाइप के यौगिकों में उपस्थित X हैलोजन तत्त्व पर संकरण अवस्था $\mathrm{sp}^3\mathrm{d}^3$ होता है। अतः इसकी आकृति पंचकोणिक द्विपिरेमिड होती है।

- IF, यौगिक रंगहीन गैस है।
- आयोडीन सिर्फ F के 7 परमाणुओं से [आकार अत्यधिक छोटा] संयोग कर IF_7 यौगिक बनाता है $+ICl_7$, IBr_7 , CIF_7 , BrF_7 यौगिक नहीं बनते +

अतराहेलोजन योगिकों के बनाने की विद्या

 ये सीधे संयोग द्वारा या किसी हैलोजन का निम्नवत् अन्तराहैलोजन यौगिक पर अभिक्रिया द्वारा बनाये जाते हैं।

$$Cl_2 + F_2 \xrightarrow{437K} 2ClF$$

$$Cl_2 + 3F_2 \xrightarrow{573K} 2ClF_3$$

$$I_2 + Cl_2 \rightarrow 2ICl$$

$$I_2 + 3Cl \rightarrow 2ICl_3$$

$$Br_2 + 3F_2 \rightarrow 2BrF_3$$

$$Br_2 + 5F_2 \rightarrow 2BrF_5$$

अन्तरेली जन श्रीतिकाँ के गुण्

- अन्तर हैलोजन यौगिकों में दो प्रकार के हैलोजन परमाणु उपस्थित होते हैं CIF, CIF₃, IF₅, IF₇ इनमें दो से अधिक प्रकार के हैलोजन नहीं होते।
- इनमें उपस्थित दो भिन्न हैलोजन परमाणुओं की विद्युत ऋणता में बहुत कम अन्तर होता है।
 - ये यौगिक अपने घटक हैलोजन की अपेक्षाकृत अधिक क्रियाशील होते हैं क्योंकि X-X' बन्ध X-X बन्ध की अपेक्षाकृत दुर्बल होते हैं अत: अधिक क्रियाशील होते हैं।
- ये प्रबल ऑक्सीकारक होते हैं।
- इनके गलनांक एवं क्वथनांक ऋणविद्युतता अन्तर बढ़ने पर बढ़ते हैं।

					19. 1		
विद्युत ऋणता	F = 4.0	C1 = 3.2		Br =	3.0	I=2.7	
	IF >	Br-F	> C1 – F >	> I–C1 >	IBr > 1	Br-Cl	
विद्युत ऋणता	1.3	1.0	.8	.5	.3	.2	
में अन्तर							

- विद्युत ऋणता में अन्तर घटता जा रहा है अत: गलनांक/क्वथनांक क्रमश: घटते हैं।
- ये प्रतिचुम्बकीय प्रकृति के होते हैं [युग्मित es उपस्थित होने के कारण]

जल अपघटन (Hydrolysis)

 सभी अन्तर हैलोजन यौगिक जल से अभिक्रिया कर हाइड्रोजन हैलाइड में बदलते हैं।

$$\stackrel{+}{I} \bar{C} I + \stackrel{+}{H} \bar{O} H \rightarrow HC I + IO H$$

Hypoiodous acid

$$\stackrel{+}{Br}\bar{F_5} + 3\stackrel{+}{H} - OH \rightarrow 5HF + HBrO_3$$

Bromic acid

आयनन (Ionisation)

• अन्तर हैलोजन यौगिक आंशिक रूप से आयनीकृत होते हैं। $2ICl \rightarrow I^+ + ICl_2^-$

$$2ICl_3 \rightleftharpoons I\overset{+}{Cl_2} + ICl_4^-$$

- ये सभी रंगहीन होते हैं।
- ये सभी वाष्पशील ठोस या द्रव होते हैं। CIF ठोस है।

छद्म हैलोजन्स (Pseudo Halogens)

 वे ऋणायन जो दो ऋणविद्युतीय तत्वों से बने हो, उनके गुण हैलाइड आयनों के समान हो, उन्हें छद्म हैलोजन्स कहते हैं।

छद्म हैलाइड छद्म हेलोजन्स $Cyanide ion CN^{\Theta}$ $Cyanogen (CN)_2$ $Thiocyanate ion SCN^ Cyanate OCN^ Oxy cyanogen (OCN)_2$

उपयोग (Uses)

- ये यौगिक अजलीय विलायकों की तरह उपयोग में लिये जाते हैं।
- ClF_3 तथा BrF_3 का उपयोग यूरेनियम ^{235}U के संवर्धन हेतु UF_6 के उत्पादन में किया जाता है।

$$U_{(s)} + 3ClF_3 (1) \rightarrow UF_6(g) + 3ClF(g)$$

उदा.42 HCl सूक्ष्म चूर्णित लोह से अभिक्रिया करने पर फैरस क्लोराइड बनता है न कि फैरिक क्लोराइड क्यों?

हल-इस की आयरन की अभिक्रिया में H_2 बनती है। हाइड्रोजन का मुक्त होना फैरिक क्लोराइड के बनने को रोकता है।

Fe + 2HCl
$$\rightarrow$$
 FeCl₂ + H₂

उदा.43 VSEPR सिद्धान्त के आधार पर BrF_3 की आकृति की व्युत्पत्ति कीजिये।

हल-

• BrF_3 में उपस्थित केन्द्रिय Br परमाणु की संयोजकता कोश में 7 इलेक्ट्रॉन होते हैं।

- 7 इलेक्ट्रॉन में से तीन इलेक्ट्रॉन फ्लुओरीन परमाणुओं के साथ इलेक्ट्रॉन युगल आबन्ध बना लेते हैं तथा चार इलेक्ट्रॉन दो एकांकी इलेक्ट्रॉन युग्म के रूप में स्थित होते हैं।
- हम जानते हैं कि—

LPe ৰ LPe >> BPe ৰ BPe

के मध्य प्रतिकर्षक के मध्य प्रतिकर्षक

अत: एकांकी एकांकी e युग्म के मध्य प्रतिकर्षक अधिक होने के कारण ${\rm BrF}_3$ की आकृति बंकित ${\rm T}$ आकृति की होती है।

उदा.44 I2 से ICI अधिक कियाशील है क्यों?

हल- अन्तराहैलोजन यौगिक ICI में I-Cl आबन्ध I - I आबन्ध की तुलना में दुर्बल होने के कारण ICl अधिक क्रियाशील होते हैं।

अभ्यास-७.८

- प्र.1. सर्वप्रथम किस वैज्ञानिक ने HCI को प्राप्त किया था?
- प्र.2. सर्वप्रथम किस वैज्ञानिक ने बताया कि हाइड्रोक्लोरिक अम्ल में तत्व H व Cl है।
- प्र.3. HCl के बनाने की विधि का वर्णन कीजिये।
- प्र.4. HCl अम्ल के भौतिक गुणों की विवेचना कीजिये।
- प्र.5. HCl से एक्वारेजिया कैसे बनाते हैं?
- प्र.6. HCl अम्ल के उपयोग लिखिये।
- प्र.7. क्या होता है जब
 - (i) NH, को जब HCl अम्ल के साथ अभिक्रिया कराते हैं।
 - (ii) Na₂CO₃ को जब HCl अम्ल के साथ अभिक्रिया कराते हैं।
 - (iii) NaHCO3 को जब HCl अम्ल के साथ अभिक्रिया कराते हैं।
 - (iv) Na₂SO₃ को जब HCl अम्ल के साथ अभिक्रिया कराते हैं।
 - (v) Au व Pt की एक्वारेजिया के साथ अभिक्रिया करता है।
- प्र.8. F हैलोजन तत्व कितने प्रकार के ऑक्सो अम्ल बनाता है।
- प्र.9. Cl हैलोजन तत्व कितने प्रकार के ऑक्सो अम्ल बनाता है।
- प्र.10. Br हैलोजन तत्व कितने प्रकार के ऑक्सो अम्ल बनाता है।
- प्र.11. I हैलोजन तत्व कितने प्रकार के ऑक्सो अम्ल बनाता है।
- प्र.12. HClO, HClO₂, HClO₃ व HClO₄ में कौनसा अम्ल प्रबलतम व कौनसा दुर्बलतम है।
- प्र.13. HOBr , HBrO_3 , HBrO_4 में कौनसा अम्ल प्रबलतम व कौनसा दुर्बलतम है।
- प्र.14. HClO, HOBr, HOI में कौनसा अम्ल प्रबलतम व कौनसा दुर्बलतम है।
- प्र.15. हाइपोक्लोरस अम्ल की संरचना बनाइये।
- प्र.16. क्लोरस अम्ल की संरचना बनाइये।
- प्र.17. क्लोरिक अम्ल की संरचना बनाइये।
- प्र.18. परक्लोरिक अम्ल की संरचना बनाइये।
- प्र.19. CIF3 की संरचना, संकरण अवस्था बताइये।

- प्र.20. BrF₅ की संरचना, संकरण अवस्था बताइये।
- प्र.21. $ext{IF}_{ au}$ की संरचना, संकरण अवस्था बताइये।
- प्र.22. IF, प्राप्त होता है IBr, प्राप्त नहीं होता क्यों?
- प्र.23. IF₇ प्राप्त होता है ICI₇ प्राप्त नहीं होता क्यों?
- प्र.24. अन्तरा हैलोजन यौगिक किसे कहते हैं?
- प्र.25. अन्तरा हैलोजन यौगिक के गुण बताइये।
- प्र.26. निम्न को उनके गुण के आधार पर बढ़तें क्रम में व्यवस्थित कीजिये-
 - (i) FCI . Br I

(परमाणु त्रिज्या)

- (ii) F-, Cl-, Br- I-
- (आयनिक त्रिज्या)
- (iii) $F \cdot Cl \cdot Br \cdot I$
- (आयनन ऐन्थेल्पी)
- (iv) F, Cl . Br. I'
- (गलनांक)
- (v) F, Cl, Br, I
- (क्वथनांक)
- (vi) F, Cl, Br, I
- (इलेक्ट्रोन ग्रहण एन्थैल्पी)
- (vii)F, Cl , Br, I
- (अधात्विक गुण)
- (viii) F2, Cl2, Br2, I2
- (वियोजन एन्थैल्पी)
- (ix) HF, HCl . HBr . HI
- (क्वथनांक)
- (x) HF, HCl, HBr, HI
- (बन्ध लम्बाई)
- (xi) HF, HCl, HBr, HI
- (वियोजन एन्थैल्पी)
- (xii)HF, HCl, H Br, HI
- (अम्लीय गुण)
- (xiii) HI . HBr . HCl . HF
- (अपचायक क्षमता)
- (xiv) HClO, HBrO . HIO
- (अम्लीय गुण)
- (xv)HClO, HClO2 . HClO3 . HClO4 (अम्लीय गुण)
- प्र.27. क्लोरीन के परीक्षण दीजिये।
- प्र.28. HCl के परीक्षण दीजिये।
- प्र.29. Cl_2 के द्वारा फूलों का रंग स्थायी रूप से बदल जाता है जबिक SO_2 द्वारा अस्थायी है।
- प्र 30. निम्न यौगिक में हैलोजन तत्व का ऑक्सीकरण अंक ज्ञात कीजिये।
 - (i) Cl₂O (ii) ClO₂ (iii) NaBrO₃
- (iv) NaClO₄
- प्र.31. निम्न अभिक्रियाओं को पूर्ण कीजिये-
 - (i) NaOH (सान्द्र/गर्म) + Cl₂ →
 - (ii) NH₃ + Cl₂ (अधिक) ---->
 - (iii) NaNO₂ + HCl \longrightarrow
 - (iv) $K_2Cr_2O_7 + HCl \longrightarrow$
 - (v) $K_2CO_3 + HC1 \longrightarrow$
- प्र.32. कोनसा उदासीन अणु CIO- के समझ्लेक्ट्रॉनिक है।
- प्र.33. निम्न के रासायनिक सूत्र दीजिये-
 - (i) Fluorite
- (ii) Cryolite
- (iii) Fluoroapatite
- (iv) Carnallite
- (v) Chile saltpetre

प्र.34.स्यूडो हैलाइड के दो उदाहरण दीजिये।

प्र.35.एक उदाहरण दीजिये जिसके ऑक्साइड में Cl का आँ अंक +6 है।

उत्तरमाला

- ग्लैबर ने सर्वप्रथम HCI को प्राप्त किया।
- डेबी ने
- पेज नं. 7.53 पर देखें।
- पेज नं. 7.54 पर देखें।
- 5. सान्द्र HCl व सान्द्र HNO₃ को 3:1 अनुपात में मिलने पर **एक्वारेजिया** प्राप्त होता है।
- पेज नं. 7.54 पर देखें।
- |7. (i) NH₃ + HCl \rightarrow NH₄Cl (श्वेत धूम)
 - (ii) $Na_2CO_3 + 2HCI \rightarrow 2NaCI + H_2O + CO_2 \uparrow$
 - (iii) NaHCO₃ + HCl \rightarrow NaCl + H₂O + CO \uparrow
 - (iv) Na₂SO₃ + 2HCl \rightarrow 2NaCl + H_2 O + SO₂ \uparrow
 - (v) $Au + 4H^{-} + NO_{3}^{-} + 4Cl^{-} \rightarrow AuCl_{4}^{-} + NO + 2H_{2}O$ $Pt + 16H^{+} + 4NO_{3}^{-} + 18Cl^{-} \rightarrow 2PtCl_{6}^{-2} + 4NO + 8H_{2}O$
- एक प्रकार का ऑक्सी अम्ल बनाता है। HOF
- 10. तीन प्रकार के हैलोजन ऑक्सी अम्ल बनाता है। ${
 m HOBr.\ HBrO_3.\ HBrO_4}$
- तीन प्रकार के हैलोजन ऑक्सी अम्ल बनाता है।
 HOI, HIO₃, HIO₄
- 12. HCIO4 प्रबलतम अम्ल है। HCIO दुर्बलतम।
- 13. HBrO₄ प्रबलतम अम्ल है। HOBr दुर्बलतम।
- 14. HCIO प्रबलतम अम्ल है HOI दुर्बलतम।

15.

17,

18.

हाइपोक्लोरस अम्ल

क्लोरस अम्ल

H Ci

क्लोरिक अम्ल

परक्लोरिक अम्ल

19. T आकृति sp³d

CL

F

F

20. F Br

वर्गाकार पिरेमिड ${
m sp}^3{
m d}^2$

- 22. IF_5 में F का आकार छोटा होने के कारण IF_5 बनता है। Br का आकार बड़ा होने के कारण IBr_5 नहीं बनता।
- IF में F का आकार छोटा होने के कारण IF₇ बनता है। Cl का आकार बड़ा होने के कारण I Cl₇ नहीं बनता।
- 24. जब दो भिन्न हैलोजन परमाणु एक दूसरे से अभिक्रिया करते हैं तो अन्तराहैलोजन यौगिक कहते हैं। CIF₃, IF₇, IF₇, BrF₅ अन्तराहैलोजन यौगिक कहते हैं।
- 25. ये यौगिक सहसंयोजक यौगिक होते हैं। इनकी आकृतियाँ T, वर्गाकार पिरैमिडी, पंच कोणीय द्विपिरैमिडी आदि होती है। ये हैलोजन अणुओं से अधिक क्रियाशील होते हैं।
- 26. *(i)* F < Cl < Br < I
- (ii) $F^- \le Cl^- \le Br^- \le l'$
- (iii) $I \leq Br \leq Cl \leq F$
- (iv) F < Cl < Br < I
- (v) F < C1 < Br < I
- $(vi) \quad I < Br < F < CI$
- (vii) I < Br < Cl < F
- (viii) $I_2 \le F_2 \le Br_2 \le Cl_2$
- (ix) HCl < HBr < HI < HF
- (x) H F < H Cl < H Br < H I
- (xi) HI < HBr < H-Cl < H-F
- (xii) HF < HCl < HBr < HI
- (xiii) $HF < H-C \mid A = ABr < HI$
- (xiv) HIO < HBrO < HCIO
- (xv) HClO \leq HClO₂ \leq HClO₃ \leq HClO₄
- 27. यह हरी पीली गैस है जिसकी तिक्षण गंध होती है। यह स्टार्च युक्त आयोडीन पेपर को नीला करती है।
- 28. यह NH₃ के साथ सधूम सफेद धूम देता है। यह AgNO₃ विलयन के साथ AgCl का सफेद अवक्षेप देता है।

- 29. ब्लीचिंग Cl_2 के द्वारा स्थायी होता है ऑक्सीकरण के कारण जबिक SO_2 के द्वारा ब्लीचिंग अपचयन होता है। अतः SO_2 के द्वारा ब्लीचिंग पदार्थ पुनः हवा की O_2 से पुनः अपनी पुरानी अवस्था में ऑक्सीकृत हो जाता है।
- 30. (i) $Cl_2O \longrightarrow 2x-2=0, x=\pm 1$ (ii) $ClO_2 \longrightarrow x-4=0, x=\pm 4$
 - (iii) KBrO₃ \longrightarrow +1+x-6=0, x=+5
 - (iv) NaClO₄ \longrightarrow +1 + x 8 = 0, x = +7
- 31. (i) $6\text{NaOH} + 3\text{Cl}_2 \longrightarrow 5\text{NaCl} + \text{NaClO}_3 + 3\text{H}_2\text{O}$ (ii) $\text{NaNO}_2 + 2\text{HCl} \longrightarrow 2\text{NaCl} + \text{H}_2\text{O} + \text{NO}_2 + \text{NO}$ (iii) $\text{K}_2\text{Cr}_2\text{O}_7 + 14\text{HCl} \longrightarrow 2\text{CrCl}_3 + 7\text{H}_2\text{O} + 3\text{Cl}_2 + 2\text{VCl}_3$
 - $\textit{(iv)} \quad K_2CO_3 + 2HC1 \longrightarrow H_2CO_3 + 2KCl.$
- 32. CIF समइलेक्ट्रॉनिक है CIO- के
- 33. (i) CáF₂ (iii) 3Cu₃(PO₄)₂. CaF₂
- (ii) Na₃AlF₆
- (iv) KCl, MgCl₂.6H₂O

- (v) NaIO₃
- 4. CN:- CNS-
- 35. Cl₂O₆

7.23 वर्ष 18 के तत्व (Elements 18 group)

- इस वर्ग में कुल छ: तत्व है। हीलियम, निऑन, आर्गन, क्रिप्टॉन, जीनॉन तथा रेडॉन।
- इस वर्ग के सभी सदस्य गैसों के रूप में पाये जाते हैं।
- ये रासायनिक रूप में अभिक्रियाशील है अर्थात् ये बहुत कम यौगिक बनाते हैं। इसी कारण इन्हें उत्कृष्ट गैसे कहते हैं।

He ₂	Helium
Ne ₁₀	Neon
Ar ₁₈	Argon
Kr ₃₆	Kryptor
Xe ₅₄	Xenon
Rn ₈₆	Radon

7.23.1 उपलब्धता (Occurrence of Noble guses)

- रेडॉन के अतिरिक्त सभी गैसे वायुमण्डल में पाई जाती है।
- वायुमण्डल में आयतन के अनुसार इनकी शुष्क वायु में बाहुल्यता लगभग 1% है, जिसमें Ar प्रमुख अवयव है।
- हीलियम तथा कभी-कभी निऑन रेडियोधर्मी उत्पत्ति के खनिजों में पाये जाते हैं जैसे पिचलैण्ड, मोनेजाइट क्लीवाइट।
- हीिलयम का मुख्य औद्योगिक स्त्रोत प्राकृतिक गैस है।
- इस वर्ग के जीनॉन तथा रेडॉन दुर्लभतम तत्त्व है।
- रेडियम [²²⁰Ra] के विघटन में उत्पाद की तरह रेडॉन प्राप्त होता है।

CONTRACTOR DE LA CONTRA
AND THE PERSON OF THE PERSON O
Control of the Contro

तत्त्र	He	Ne	Ar	Kr	Xe	Rn
सापेक्षिक	5.2	18.2	93.4	1.1	0.09	सूक्ष्म
मात्रा (ppm	ι)				•	

उदा. 7.20 वर्ग 18 के तत्वों के उत्कृष्ट गैसों के नाम से क्यों जाना जाता है?

हल-वर्ग 18 के तत्वों के संयोजकता कोशों में पूर्ण भरित कक्षक होते हैं तथा ये कुछ तत्वों के साथ केवल विशेष परिस्थितियों में अभिक्रिया करते हैं। अत: वर्ग 18 के तत्वों को उत्कृष्ट गैसों के नाम से जाना जाता है।

7.23.2 इलेक्ट्रॉनिक विन्यास (Electronic configuration)

 उत्कृष्ट गैसों का सामान्य इलेक्ट्रॉनिक विन्यास ns²np⁶ होता है। हीलियम अपवाद है, ns² होता है।

उत्कृष्ट गैसों का इलेक्ट्रॉनिक विन्यास

तत्व	परमाणु क्रमांक	इलेक्ट्रॉनिक विन्यास
हीलियम	2	ls ²
निऑन	10	$1s^22s^22p^6$
ऑर्गन	18	$1s^22s^22p^63s^23p^6$
क्रिप्टॉन	36	$1s^22s^22p^63s^23p^63d^{10}4s^24p^6$
जीनॉन	54	$1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}$
	:	5s ² 5p ⁶
रेडॉन	86	$1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}$
		4f ¹⁴ 5s ² 5p ⁶ 5d ¹⁰ 6s ² 6p ⁶

7.23.3 आयनन एन्थैल्पी (Ionisation Enthalpies)

- इस वर्ग के तत्वों की आयनन एन्थैल्पी अपने आवर्त में सर्वाधिक होती
 है।
 - इनमें पूर्ण भरे कक्षकों के अधिकतम स्थायित्व के कारण।
- वर्ग में ऊपर से नीचे जाने पर, आकार में क्रमश: वृद्धि होती है। अत:
 अग्रयनन प्रन्थैल्पी के मान में कमी होती है।

तत्व	Не	Ne	Ar	Kr	Xe	Rn
आयनन	2372	2080	1520	1351	1170	1037
एन्थैल्पी						
kJ/(mol)						

He > Ne > Ar > Kr > Xe

7.23.4 प्रसाण् त्रिज्ञा (Atomic Radius)

- उत्कृष्ट गैसें एक परमाण्विक होती है। अत: ये सहसंयोजक बन्ध नहीं बना पाते, अत: इनको वास्तिवक परमाणु त्रिज्या ज्ञात नहीं कर पाते। इन तत्वों की वान्डरवाल त्रिज्जाये ज्ञात करते हैं।
- वान्डरवाल त्रिज्जायें, परमाणु त्रिज्जा से अत्यधिक बड़ी होती है। अतः अपने आवर्त में उत्कृष्ट गैसों के आकार अपवाद स्वरूप बड़े होते हैं।
- वर्ग में ऊपर से नीचे चलने पर इनकी त्रिज्जायें क्रमश: बढ़ती जाती है।

तत्व	He	Ne	Ar	Kr	Xe	Rn
परमाणु	120	160	190	200	- 220	_
त्रिज्या (pm)						

अत: He तत्व सबसे छोटा व Xe सबसे बड़ा तत्व है।

He < Ne < Ar < Kr < Xe (आकार का बढ़ता क्रम)

79245 ATTE GREEN TO COM TO

- उत्कृष्ट गैसों का स्थाई इलेक्ट्रॉनिक विन्यास उपस्थित होने के कारण, इनमें इलेक्ट्रॉन युग्म ग्रहण करने की प्रवृत्ति नहीं होती।
- अत: इन तत्वों की इलेक्ट्रॉन लब्धि एन्थैल्पी का मान अधिक धनात्मक होता है।
- इनमें इलेक्ट्रॉन नये कोश में समायोजित करने हेतु बाहर से ऊर्जा देनी पड़ती है अत: इन गैसों के ΔH_{eg} के मान धनात्मक होते हैं।
- वर्ग में ऊपर से नीचे चलने पर इलेक्ट्रॉन लिब्ध एन्थैल्पी का मान घटता जाता है।

इलेक्ट्रॉन लब्धि एन्थैल्पी

	He	Ne	Аг	Kr	Xe	Rn
इलेक्ट्रॉन	48	116	96	96	77	68
लब्धि						
एन्थैल्पी						

- सभी उत्कृष्ट गैसे एक परमाण्विक होती है।
- सभी उत्कृष्ट गैसे रंगहीन गंधहीन तथा स्वादहीन होती है।
- ये जल में अल्प विलेय होती है।
- इनके गलनांक एवं क्वथनांक निम्न होते हैं क्योंकि इन तत्वों में एक मात्र अन्तरापरमाणुक अन्यायोन्य क्रिया दुर्बल परिक्षेपण बलों के कारण होती है ⊦
- वर्ग में ऊपर से नीचे चलने पर गलनांक व क्वथनांक आकार बढ़ने के कारण (वान्डरवाल बल बढ़ते हैं) बढ़ते हैं।

गलनांक एवं क्वथनांक

	He	Ne	Ar	Kr	Xe	Rn
गलनांक		24.6	83.8	115.9	161.3	202
क्वथनांक	4,2	27.1	87.2	119.7	165.0	211

उदा. 7.21 उत्कृष्ट गैसों के क्वथनांक बहुत कम होते हैं क्यों?

हल- उत्कृष्ट गैसे एक परमाण्विक होने के कारण इनमें दुर्बल परिक्षेपण बलों के अतिरिक्त अन्य किसी प्रकार के अन्तरापरमाणुक बल कार्यरत नहीं होते, इसलिये ये अति निम्न तापों पर द्रवित हो जाते हैं अत: इनके क्वथनांक निम्न होता है।

- सामान्यतया उत्कृष्ट गैसें सबसे कम क्रियाशील होती है, इसके निम्न कारण हैं—
- (i) इनके संयोजकता कोश का पूर्णभरित इलेक्ट्रॉनिक विन्यास ns²np⁶

होता है।

- (ii) इन तत्वों के आयनन एन्थैल्पी के मान अधिकतम होते हैं।
- (iii) इन तत्वों के इलेक्ट्रॉन लब्धि एन्थैल्पी के मान अधिक धनात्मक होते हैं ।
- इनकी प्रारम्भिक खोज के समय से ही इनकी सक्रियता बार-बार परखी जाती रही है लेकिन इन तत्वों के यौगिक बनाने के सभी प्रयास काफी समय तक असफल रहे।
- मार्च 1962 में वैज्ञानिक नील बर्टलेट ने, जो कि उस समय ब्रिटिश कोलंबिया विश्वविद्यालय में थे, एक उत्कृष्ट गैस की क्रियाशीलता प्रेक्षित की उन्होंने पहले एक लाल रंग का यौगिक निर्मित किया जिसे ${
 m O_2}^+{
 m PtF_6}^-$ सूत्र से दर्शाया उन्होंने यह अनुभव किया कि ऑक्सीजन कौ प्रथम आयनन एन्थेल्पी 1.75 kJ mol जीनॉन (1170 kj/mol) के लगभग बराबर है।

उन्होंने Xe के इसी प्रकार के यौगिक बनाने की कोशिश की और Xe तथा PtF₆ को मिलाकर लाल रंग के एक दूसरे यौगिक Xe⁺ PtF₆ के विरचन में सफलता प्राप्त की।

इस खोज के बाद जीनॉन के बहुत से यौगिकों प्राप्त हुये जिनमें Xe अधिक विद्युत ऋणात्मक वालं तत्व F व ऑक्सीजन तत्वों के साथ संश्लेषित किये गये जो कि निम्न हैं—

XeF₂, XeF₄ XeF₆ XeOF₄ XeO, आदि।

- क्रिप्ट्रॉन के बहुत कम यौगिक प्राप्त है। केवल क्रिप्ट्रॉन डाइफ्लुओराड (KrF₂) का विस्तृत अध्ययन किया गया है।
- रेडॉन के यौगिकों का पृथक्करण नहीं हो पाया है
- Ar. Ne तथा He का कोई भी वास्तविक योगिक ज्ञात नहीं है। XePtF उत्कृष्ट गैस तत्व का प्रथम निर्मित यौगिक है।

(a) जीनॉन फ्लुओरीन यौगिक

अनुकूल प्रायोगात्मक परिस्थितियों में उत्कृष्ट तत्व जीनॉन से तीन प्रकार के द्विअंगी फ्लुओराइड XeF₃. XeF₄ व XeF₆ यौगिक बनते

 $XeF_2 \rightarrow जीनॉन डाइफ्लुओराइड$

 $XeF_4 o जीनॉन टेट्रा फ्लुओराइड$

 $XeF_6 o जीनॉन हेक्सा फ्लुओराइड$

इन्हें निम्न प्रकार से बनाया जाता है।

$$Xe(g) + F_2(g) \xrightarrow{673K} XeF_2(g)$$

$$Xe(g) + 2F_2(g) \xrightarrow{873K} XeF_4(g)$$

$$Xe(g) + 3F_2(g) \xrightarrow{573K} XeF_6(g)$$

XeF को एक ओर तरीके से भी बनाया जाता है।

$$XeF_4 + O_2F_2 \xrightarrow{143K} XeF_6 + O_2$$

- XeF_2 , XeF_4 व XeF_6 रंगहीन क्रिस्टलीय ठोस पदार्थ है।
- ये 298 K ताप पर आसानी से ऊर्ध्वपातित हो जाते हैं।
- ये प्रबल फ्लुओरीनीकरण अभिकर्मक है।
 - ये आसानी से जल से अपघटित हो जाते हैं XeF_2 के जल अपघटन से Xe, HF व O₂ प्राप्त होते हैं।

$$2XeF_2(s) + 2H_2O(1) \rightarrow 2Xe(g) + 4HF(g) + O_2(g)$$

जीनॉन फ्लुओराइड, फ्लुओराइड आयन ग्राही से अभिक्रिया कर धनायन स्पीशीज तथा फ्लुओराइड आयन दाता से अभिक्रिया करके फ्लुओरो ऋणायन बनाते हैं।

> $XeF_2 + PF_5 \rightarrow [XeF]^+ [PF_6]^ XeF_4 + SbF_5 \rightarrow [XeF_3]^+ [SbF_6]^ XeF_6 + MF \rightarrow [M^+ XeF_7]^-$

जीतांत के सम्बोधकर्त के संस्थात

इनकी संरचनाओं की व्याख्या VSEPR सिद्धानत के आधार पर कर सकते है।

XeF, की संरचना (Structure of XeF₂)

उबन्धकी संख्या=2 एकांकी e युग्म की संख्या = 3 संकरित कक्षकों की संख्या = 5 अत: संकरण sp³d होगा

F - Xe : -F

 XeF_2 की संरचना रेखीय होगी।

XeF_4 की संरचना

ਰ बन्ध की संख्या = 4 एकांकी e युग्म की संख्या = 2 संकरित कक्षकों की संख्या = 6 अत: संकरण $\mathrm{sp}^3\mathrm{d}^2$ होगा

संरचना वर्गाकार समतलीय होगी।

XeF_6 की संरचना

ਨ बन्ध की संख्या = 6 एकांकी e युग्म की संख्या = 1 संकरित कक्षकों की संख्या = 7 अत: संकरण sp³d³ होगा

(b) जीनॉन-ऑक्सीजन यौगिक

- जीनॉन ऑक्सीजन के साथ XeO3 यौगिक बनाता है।
- जीनॉन ऑक्सीजन व फ्लुओरीन के साथ XeOF4 यौगिक बनाता है।
- $\mathrm{XeF_4}$ व $\mathrm{XeF_6}$ के जल अपघटन से $\mathrm{XeO_3}$ यौगिक बनता है। जिसे जीनॉन ट्राई ऑक्साइड कहते हैं। $6XeF_4 + 12H_2O \rightarrow 2XeO_3 + 4Xe + 24HF + 3O_2$ $XeF_6 + 3H_2O \rightarrow XeO_3 + 6HF$
- XeF_6 के आंशिक जल अपघटन से ऑक्सी फ्लुओराइड XeOF_4 तथा XeO,F, प्राप्त होते हैं।

$$XeF_6 + H_2O \rightarrow XeOF_4 + 2HF$$

 $XeF_6 + 2H_2O \rightarrow XeO_2F_2 + 4HF$

XeO3 एक रंगहीन विस्फोटक ठोस पदार्थ है। इसकी संरचना पिरेमिड होती है क्योंकि इसमें संकरण अवस्था sp3 है। ठ बन्ध की संख्या = 3 एकांकी e युग्म की संख्या = 1 संकरित कक्षकों की संख्या = 4 अत: संकरण sp³ होगा आकृति पिरेमिड

XeOF₂-इसमें Xe पर संकरण अवस्था sp³d है। इसकी आकृति T आकृति है।

वर्गाकार पिरेमिड आकृति

 XeOF_4 एक रंगहीन वाष्पशील द्रव है। इसकी संरचना वर्ग पिरैमिडी है। उषन्ध की संख्या = 5 एकांकी e युग्म की संख्या = 1 संकरित कक्षकों की संख्या = 6 संकरण अवस्था $\mathrm{sp}^3\mathrm{d}^2$

0

उदा.45 क्या XeF₆ का जल अपघटन एक रेडॉक्स अभिक्रिया है? हल-यह अभिक्रिया रेडॉक्स नहीं है क्योंकि अभिक्रिया के पहले व अभिक्रिया के पश्चात् तत्वों की ऑक्सीकरण अवस्था में कोई परिवर्तन नहीं होता।

 $XeF_6 + 2H_2O \rightarrow XeO_2F_2 + 4HF$ [+6] [+6]

उदा.46 वर्ग 18 के तत्वों को उत्कृष्ट गैसों के नाम से क्यों जाना जाता है?

हल-वर्ग 18 में उपस्थित तत्वों के संयोजकता कोशों में पूर्ण भरित कक्षक उपस्थित होते हैं। अत: अधिक स्थायी विन्यास उपस्थित होने के कारण ये अभिक्रियाओं में भाग नहीं लेते अत: इन्हें उत्कृष्ट गैसों के नाम से जाने जाते हैं।

उदा.47 उत्कृष्ट गैसों के क्वथनांक बहुत कम होते हैं?

हल- उत्कृष्ट गैसे एक परमाण्विक होने के कारण इनमें दुर्बल परिक्षेपण बलों के अतिरिक्त अन्य किसी प्रकार के अन्तरापरमाणुक बल नहीं होते इनके क्वथनांक बहुत कम होते हैं।

उदा.48 हीलियम को गोताखोरी उपकरणों में उपयोग क्यों किया जाता है?

हल- आधुनिक गोताखोरी के उपकरणों में यह ऑक्सीजन के तनुकारी के रूप में उपयोग में ली जाती है क्योंकि रक्त में इसकी विलेयता बहुत कम होती है।

उदा.49 निम्नलिखित समीकरण को सन्तुलित कीजिए।

 $XeF_6 + H_2O \rightarrow XeO_2F_2 + HF$

हल- XeF₆ + 2H₂O → XeO₂F₂ + 4HF उदा.50 रेडॉन के रसायन का अध्ययन करना कठिन क्यों था?

हल- रेडॉन एक रेडियोऐक्टिव तत्व होने के कारण इसके रसायन का अध्ययन करना कठिन है।

अभ्यास-7.8

- प्र.1. वर्ग 18 में कुल तत्व कितने है? संकेत दीजिये।
- प्र.2. वर्ग 18 के तत्वों का सामान्य इलेक्ट्रॉनिक विन्यास दीजिये।
- प्र.3. जीनॉन (Xe₅₄) तत्व का इलेक्ट्रॉनिक विन्यास दीजिये।
- प्र.4. वर्ग 18 के तत्वों को आयनन एन्थैल्पी के बढ़ते क्रम में व्यवस्थित कीजिये।
- प्र.5. वर्ग 18 के तत्वों को परमाणु त्रिज्या के बढ़ते क्रम में व्यवस्थित कीजिये।
- प्र.6. XeF₂ में संकरण व आकृति बताइये।
- प्र.7. XeF₄ में संकरण व आकृति बताइये।
- प्र.8. XeF₆ में संकरण व आकृति बताइये।
- प्र.9. XeO, में संकरण व आकृति **ब**ताइये !
- प्र.10. ${
 m XeOF}_4$ में संकरण व आकृति बताइये।
- प्र.11. XeF_4 के जलअपघटन से क्या प्राप्त होता है।
- प्र.12. XeF के जलअपघटन से क्या प्राप्त होता है।

प्र.13. XeO₃ के भौतिक गुण बताइये।

प्र.14. $XeOF_4$ के भौतिक गुण बताइये।

उत्तरमाला

- 1. कुल तत्व 6 है। He, Ne. Ar. Kr. Xe. Rn है।
- 2. ns²np⁶ होता है।
- 3. $Xe_{54} 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 5s^2 5p^6$
- 4. Xc < Kr < Ar < Ne < He आयनन एन्थैल्पी का बढ़ता ऋम
- 5. He < Ne < Ar < Kr < Xc परमाणु त्रिज्या का बढ़ता क्रम
- 6. sp³d, रेखीय

7. $XeF_4 \rightarrow sp^3d^2$, वर्गाकार समतलीय

- 8. Xe $\mathbf{F}_6 o \mathrm{sp}^3\mathrm{d}^3$, अनियमित अष्टफलकीय
- 9. $XeO_3 \rightarrow sp^3$, पिरेमिड
- 10. $XeOF_4 \rightarrow sp^3d^2$, वर्गाकार पिरेमिड
- 11. $XeF_4 + 12H_2O \rightarrow XeO_3 + 24HF + 3O_3$
- 12. $XeF_6 + 3H_2O \rightarrow XeO_3 + 6HF$
- यह एक रंगहीन विस्फोटक ठोस पदार्थ है।
 इसकी संकरण अवस्था sp³ व आकृति पिरेमिड है।
- 14. यह रंगहीन वाष्पशील द्रव है। इसकी संरचना वर्ग समतलीय पिरिमड है।

7.24 जिस्स गण्न

प्र.1. समूह 15 के तत्त्वों के नाम तथा इलेक्ट्रॉनिक विन्यास दीजिये।

उत्तर- नाइट्रोजन [N] : (7) 1s²2s²2p³ फास्फोरस [P] (15) 1s²2s²2p⁶3s²3p³ आर्सेनिक [As] (33) 1s²2s²2p⁶3s²3d¹⁰4s²4p³ ऐण्टिमनी [Sb] (51) 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4p⁶4d¹⁰ 5s²5p³

विस्मथ [Bi] (83) $1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}4f^{14}$ $5s^25p^65d^{10}6s^26p^3$

प्र.2. नाइट्रोजन परमाणु में 5 संयोजी इलेक्ट्रॉन उपस्थित होते हैं, फिर भी यह NCI_s यौगिक नहीं बनाता है, कारण दीजिये।

उत्तर- N परमाणु में 3d कक्षक अनुपस्थित होने के कारण 2s² का एक e उत्तेजित नहीं हो पाता अत: N- परमाणु NCl₅ यौगिक नहीं बनाता।

प्र.3. फॉस्फोरस अम्ल को गर्म करने पर क्या होता है?

उत्तर- फॉस्फोरिक अम्ल व फॉस्फीन प्राप्त होती है।

$$4H_3PO_3 \xrightarrow{\Delta} 3H_3PO_4 + PH_3$$

प्र.4. PH, का क्वथनांक NH, से कम होता है क्यों?

उत्तर- $\mathrm{NH_3}$ के अणु परस्पर अन्तराण्विक H आबन्ध से जुड़े होते हैं जबिक $\mathrm{PH_3}$ में अन्तराण्विक H बन्ध अनुपस्थित होते हैं अत: $\mathrm{PH_3}$ का क्वथनांक, $\mathrm{NH_3}$ से कम है।

प्र.5. NH, को जल में घोलने पर क्या होता है?

उत्तर- $NH_{3(q)} + H_2O(I) \rightarrow NH_4OH_{(aq)}$ $NH_4OH_{(aq)} \rightarrow NH_4^+ + OH^-$

प्र.6. PCI, में संकरण अवस्था बन्ध कोण एवं आकृति बताइये?

उत्तर- PCl₅ में संकरण अवस्था sp³d. बन्ध कोण 120° एवं 90° आकृति त्रिकोणिय द्विपिरेमिड

प्र.7. निम्न में सबसे कम अम्लीय है। PH₃, NH₃, SbH₃, AsH₃

उत्तर- NH, सबसे कम अम्लीय है क्योंकि यह संबसे अधिक क्षारीय है!

प्र.8. PCl₅ एवं PCl₃ में कोण अधिक स्थायी है समझाइये?

उत्तर- PCl₃. PCl₅ से अधिक स्थायी है क्योंकि PCl₃ की संरचना समित है जबकि PCl₅ की संरचना नहीं।

प्र.9. NH_3 में संकरण अवस्था, बन्ध कोण एवं आकृति बताइये?

उत्तर- sp³. 107° एवं पिरेमिङ आकृति।

प्र.10. नाइट्रोजन अणु की सबसे कम क्रियाशीलता का कारण बताइये?

उत्तर- दो N परमाणुओं के मध्य एक त्रिबन्ध [N ≡ N] उपस्थित होता है अत: इसकी आबन्ध वियोजन ऊर्जा का मान बहुत उच्च होने के कारण सबसे कम क्रियाशील है।

प्र.11. जल में से $\mathrm{NH_3}$ को गुजारने पर विलेय हो जाती है लेकिन $\mathrm{PH_3}$ के बुलबुले बनाती है।

उत्तर- N-H आबन्ध, P-H आबन्ध से अधिक ध्रुवीय होता है अत: NH_3 जल के अणुओं के साथ हाइड्रोजन आबन्धन बनाकर विलेय हो जाती है जबिक PH_3 जल में अविलेय के कारण बुलबुले के रूप में बाहर निकल जाती है।

प्र.12. NO गैसीय अवस्था में अनुचुम्बकीय (Paramagnetic) लेकिन ठोस एवं द्रव अवस्था में यह प्रतिचुम्बकीय है समझाइये।

उत्तर- NO में es की संख्या विषम (s) होती है तथा अयुग्मित e उपस्थित होने के कारण अय गैसीय अवस्था में अनुचुम्बकीय है। जबिक ठोस एवं द्रव अवस्था में cs की संख्या (30) N_2O_2 के रूप में पाया जाता है जहाँ अयुग्मित es नहीं रहते अत: प्रतिचुम्बकीय है।

प्र.13. निम्न यौगिकों के ताप स्थायित्व के बढ़ते क्रम में व्यवस्थित कीजिये।

NH₃, BiH₃, PH₃ AsH₃, SbH₃

उत्तर- BiH₃ < SbH₃ < AsH₃ < PH₃ < NH₃

प्र.14. निम्न यौगिकों को क्षारीय गुण के बढ़ते क्रम में व्यवस्थित कीजिये। PH₃, AsH₃, NH₃, BiH₃. SbH₃

उत्तर- BiH₃ < SbH₃ < As H₃ < PH₃ < NH₃

प्र.15. निम्न यौगिकों को अपचायक लक्षण के बढ़ते क्रम में व्यवस्थित कीजिये।

BiH₃, NH₃, AsH₃ SbH₃ PH₃

उत्तर- NH₃ < PH₃ < AsH₃ < SbH₃ < BiH₃

प्र.16. निम्न यौगिकों को क्वथनांक के बढ़ते क्रम में व्यवस्थित कीजिये।
NH₃. PH₃. AsH₃. SbH₃ BiH₃

उत्तर- PH₃ < AsH₃ < NH₃ < SbH₃ < BiH₃

प्र.17. निम्न यौगिकों को बन्ध कोण के बढ़ते क्रम में व्यवस्थित कीजिये। NH₃, PH₃.BiH₃ SbH₃ AsH₃

उत्तर- $BiH_3 \le SbH_3 \le AsH_3 \le PH_3 \le NH_3$

प्र.18. निम्न ऑक्साइडों को उनके अम्लीय लक्षण के बढ़ते क्रम में व्यवस्थित कीजिये।

 N_2O_3 , P_2O_3 , As_2O_3 , Sb_2O_3 Bi_2O_3

उत्तर- $Bi_2O_3 \le Sb_2O_3 \le As_2O_3 \le P_2O_3 \le N_2O_3$

प्र.19. किसका आबन्ध कोण अधिक है, जल व H2S में

 ${
m H_2O}$ एवं ${
m H_2S}$ दोनो में संकरण अवस्था ${
m sp^3}$ व ${
m H_2O}$ में उपस्थित Oxygen तत्व की विद्युतऋणता ${
m H_2S}$ में उपस्थित ${
m S}$ से अधिक है। अतः जल में बन्धित इलेक्ट्रॉन ऑक्सीजन के अधिक निकट हो जाने के कारण इनके मध्य प्रतिकर्षण बढ़ जाता है अतः ${
m H_2O}$ में बन्ध ${
m H_2S}$ से अधिक है। ${
m [H_2O>H_2S]}$

प्र.20. ऑक्सीजन द्विपरमाणुक तथा गैसीय प्रकृति की है व्याख्या कीजिये।

उत्तर- लघु आकार एवं उच्च विद्युतऋणता के कारण Oxygen p_π - p_π द्विबन्ध बनाता है अत: यह द्विपरमाणुक अणु के रूप में पाया जाता है, अणुभार बहुत कम होने के कारण, इनके मध्य दुर्बल वाण्डरवाल्स बल होते हैं अत: O_2 गैसीय अवस्था में पायी जाती है।

प्र.21. परऑक्सोसल्फ्यूरिक अम्ल में उपस्थित S का ऑक्सोकरण अंक ज्ञात कीजिये।

उत्तर- H-O-O-S-OH

संरचना के आधार पर \$ का ऑक्सिकरण अंक +2. +2, +1, +1 = 6 है।

 ${f y}$.22. ${f H}_2{f SO}_3, {f H}_2{f SO}_4$ व ${f H}_2{f S}_2{f O}_7$ की संरचनायें बनाइये।

उत्तर- H₂SO₃

$$H_2SO_4$$

 $y.23. SF_4$ एवं XeF_4 की संरचनायें बनाइये?

उत्तर-

विकृत पंचकोणिय द्विपिरेमिड वर्ग समतलीय sp^3d^2 (संकरण) $(sp^3 d संकरण)$

प्र.24. SF अणु में संकरण समझाइये। इस अणु की आकृति क्या होगी?

एवं इसकी आकृति अष्टफलकीय होती है, बन्ध कोण 90° होते हैं।

प्र.25. निम्न यौगिकों को उनके क्वथनांक के बढ़ते क्रम में व्यवस्थित कीजिये।

H₂O, H₂S, H₂Se, H₂Te

उत्तर- H₂S < H₂Se < H₂Te < H₂O

प्र.26. निम्न यौगिकों को तापीय स्थायित्व के बढ़ते क्रम में व्यवस्थित करे-

 H_2S , H_2O , H_2Te , H_2Se

उत्तर- H₂Te < H₂Se < H₂S < H₂O

प्र.27. निम्न यौगिकों को अम्लीय लक्षण के बढ़ते क्रम में व्यवस्थित कीजिये।

 H_2S , H_2Te , H_2O , H_2Se

उत्तर- $H_2O < H_2S < H_2Se < H_2Te$

प्र.28. निम्न यौगिकों को अपचायक लक्षण के बढ़ते क्रम में व्यवस्थित कीजिये। H₂S, H₂O, H₂Te, H₂Se

उत्तर- $H_2O < H_2S < H_2Se < H_2Te$

प्र.29. निम्न को अम्ल सामर्थ्य के बढ़ते क्रम में व्यवस्थित कीजिये! H₂SO₃, H₂SeO₃, H₂TeO₃

उत्तर- H₂TeO₃ < H₂SeO₃ < H₂SO₃

प्र.30. निम्न यौगिकों के रासायनिक सूत्र दीजिये।

(i) केरो अम्ल

(ii) मार्शल अम्ल

उत्तर- (i) H₂SO₅ (ii) $H_2S_2O_8$

प्र.31. निम्न को अम्लीय प्रवृत्ति के बढ़ते क्रम में व्यवस्थित कीजिये।

(i) HClO, HClO₃, HClO₂, HClO₄

(ii) HBrO, HBr \tilde{O}_3 , HBr \tilde{O}_2 . HBr \tilde{O}_4 (iii) HIO, HIO $_3$. HIO $_2$. HIO $_4$

(iv) HCl, HI, HBr, HF

(v) HOCl, HOI, HOBr, HOF

उत्तर- (i) HClO < HClO₂ < HClO₃ < HClO₄

(ii) $\rm HBrO < HBr\acute{O}_2 < HBr\acute{O}_3 < HBr\acute{O}_4$ (iii) $\rm HIO < HIO_2 < HIO_3 < HIO_4$ (iv) $\rm HF < HCl < HBr < HI$

(v) HOI < HOBr < HOCI < HOF

प्र.32. निम्न को बन्ध प्रबलता के बढ़ते क्रम में व्यवस्थित कीजिये। HCI, HI, HBR, HF

उत्तर- HI < HBr < HCl < HF

प्र.33. निम्न यौगिकों को I के ऑक्सीकरण अंक के बढ़ते क्रम में व्यवस्थित कीजिये।

I₂, HI, HIO₄. ICl, HIO₃

उत्तर- HI < I₂ < ICl < HIO₃ < HIO₄ -1 (0) (+1) (+5) (+7)

प्र.34. निम्न आयनों को उनकी अपचायक क्षमता के बढ़ते क्रम में व्यवस्थित कीजिये।

F-, I-, Cl", Br-

उत्तर- F'' < Cl'' < Br'' < I''

प्र.35. F परमाणु I परमाणु से अधिक विद्युतऋणिय तत्व है लेकिन H-F. की अम्लीय प्रकृति HI से कम है? समझाइये।

उत्तर- H – F में उच्च विद्युत ऋणात्मकता के कारण प्रबल अन्तराण्विक आकर्षण बल होता है अत: यह कम मात्रा में आयनीकृत होता है अत: यह दुर्बल अम्ल है।

प्र.36. फ्लुओरीन सदैव ऋणात्मक संयोजकता प्रदर्शित करता है?

उत्तर- F आवर्त सारणी में सबसे प्रबलतम ऋणविद्युती तत्व होने के कारण यह सदैव ऋणात्मक संयोजकता प्रदर्शित करता है, धनात्मक नहीं।

प्र.37. Cl तत्व की अपने यौगिकों में विभिनन ऑक्सीकरण अवस्था में कौन-कौनसी है?

उत्तर-- -1, 0 +1 +3 +5 +6 +7 HCl Cl, Cl,O CIF, KClO, Cl,O, Cl,O,

प्र.38. $\mathrm{Cl_2}$ तथा NaOH विलयन के मध्य अभिक्रिया का रासायनिक समीकरण लिखिये।

उत्तर- $2NaOH + Cl_2 \xrightarrow{\overline{\sigma_3}} NaCl + NaClO + H_2O$

सोडियम हाइड्रो क्लोराइट

$$6NaOH + 3Cl_2 \xrightarrow{-\eta\bar{\eta}} 5NaCl + NaClO_3 + 3H_2O$$

सोडियम क्लोरेट

प्र.39. HCl व HI में से किसमें दुर्बल सहसंयोजी बन्ध है? इसका इनकी अम्लीय सामर्थ्य पर क्या प्रभाव पड़ता है।

ρ∹ब्लॉक के तत्व

उत्तर- I परमाणु का आकार Cl परमाणु से बड़ा होने के कारण HI सहसंयोजक आबन्ध दुर्बल होता है, HI में आबन्ध दुर्बल होने के कारण HI, HCl से प्रबल अम्ल है।

प्र.40. निम्न यौगिकों को स्थायित्व के बढ़ते क्रम में व्यवस्थित कीजिये। HF. HI, HCI. HBr

उत्तर- HI < HBr < HCl < HF

प्र.41. निम्न को अपचायक क्षमता के बढ़ते क्रम में व्यवस्थित करें। HF. HCl. HBr

उत्तर- HF < HCl < HBr < HI

प्र.42. वर्ग 17 के सभी तत्वों के नाम एवं इलेक्ट्रॉनिक विन्यास दीजिये।

उत्तर- (i) फ्लुओरीन F₉ 1s²2s².2p⁵

(ii) क्लोरीन $Cl_{17} = 1s^2 2s^2 2p^6 3s^2 3p^5$

(iii) ब्रोमीन Br_{35} $1s^22s^22p^63s^23p^63d^{10}4s^24p^5$

(iv) आयोडीन I₅₃ 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4p⁶4d¹⁰

5s²5p⁵

प्र.43. निम्न तत्वों को इलेक्ट्राघ्न बन्धुता के बढ़ते क्रम में व्यवस्थित करे? F. I. Cl. Br

उत्तर- I < Br < F < Cl

प्र.44. निम्न को क्वथनांक के बढ़ते क्रम में व्यवस्थित कीजिये। HI, HF, HCl, HBr

उत्तर- HCl < HBr < HI < HF

प्र.45. निम्न को बन्ध ध्रुवता के बढ़ते क्रम में व्यवस्थित कीजिये। HCI, HI, HBr, HF

उत्तर- HI < HBr < HCl < HF

प्र.46. $HClO_3$ तथा $HClO_4$ में से किसका pK_a मान निम्न होता है और क्यों?

उत्तर- HClO₄ प्रबल अम्ल है अतः इसका pK2 का मान HClO₃ से कम

प्र.47. विरंजक चूर्ण से क्लोरीन गैस किस प्रकार प्राप्त होती है?

उत्तर- जब विरंजिक चूर्णको तनु अम्ल से क्रिया करता है तो Cl_2 प्राप्त होता है।

$$CaOCl_{2(s)} + 4HCl_{(aq)} \rightarrow CaCl_{2(aq)} + Cl_{2(q)} + (O)$$

प्र.48. निम्न इलेक्ट्रॉन बन्धुता के विपरीत फ्लोरीन क्लोरीन की तुलना में प्रबल ऑक्सीकारक है? समझाइये।

उत्तर- \mathbf{F} का मानक इलेक्ट्रॉड विभव $\mathbf{E}_o = +2.87 \mathrm{V}$ क्लोरीन के इलेक्ट्रॉड विभव से $[\mathbf{E}_0 = +1.36 \mathrm{V}]$ अधिक है अत: फ्लोरीन प्रबल ऑक्सीकारक पदार्थ है।

प्र.49. दो विषैली गैसों के नाम लिखिये जो क्लोरीन गैस से बनाई जा सकती है।

उत्तर- फॉस्जीन गैस

 $CO + Cl_2 \rightarrow COCl_2$

मस्टर्ड गैस

 $\mathrm{S_8} + 4\mathrm{Cl_2} \rightarrow 4\mathrm{S_2Cl_2}$ सल्फर मोनो क्लोराइड

$$\begin{array}{ccc} CH_2 \\ 2 \parallel & +S_2CI_2 \rightarrow \begin{array}{ccc} CH_2CI & CH_2CI \\ & \parallel & \parallel \\ CH_2 - S - CH_2 \end{array} + S$$

प्र.50. IF_3 , CIF_5 तथा IF_7 की संरचनायें दीजिये, संकरण अवस्था एवं आकृति भी ज्ञात कीजिये।

उत्तर- (i) IF₃

- संकरण अवस्था sp³d²
- आकृति वर्गाकार पिरेमिड

(iii) IF₇

sp³d³ संकरण अवस्था पंचकोणीय द्विपिरेमिङ/अनियमित अष्टफलकीय

7.25 -पार्व्यप्रदाक के प्रश्न-उत्तर

बहुविकल्पीय प्रश्न

- समूह 15 में से भूपर्पटी (Crustal Rocks) में सर्वाधिक प्रचुरता से पाया जाने वाला तत्व है-
 - (a) N

(b) As

(c) P

(d) \$b

- 2. जब HNO3 धातुओं से अपचयित होता है भूरी गैस प्राप्त होती है।
 - (a) N₂O

(b) N_2O_3

(c) NO_2

(d) NO

- 3. वर्ग 15 के हाइड्राइड़ों में सबसे अधिक बन्धकोण का मान निम्न में से किसका होता है?
 - (a) NH₃

(b) PH₃

(c) AsH₃

(d) BiH_3

4. सबसे दुर्बल हाइड्रोहैलिक अम्ल कौनसा है?

(b) HBr

(c) HF

(d) HCl

 $XeOF_2$ की ज्यामिति निम्न में से कौनसी होती है-(a) पिरैमिडी

(b) **T-आकृ**ति

(c) अष्टफलकीय

(d) चतुष्फलकीय

निम्न में से किसकी आयनन एन्थैल्पी सर्वाधिक होती है?

(a) P

(b) N

(c) As

(d) Sb

िनम्न में से कौनसा ऑक्साइड प्रबल अम्लीय स्वभाव है?

(a) P_4O_{10}

(b) SO_3

(c) Cl₂O₇

(d) Al_2O_3

निम्न में से किस ऑक्सीअम्ल की अम्लीय प्रकृति सर्वाधिक होती है?

(a) HClO₄

(b) HClO₃

(c) HClO₂

(d) HClO

9. हास्य गैस निम्न में से किसे कहा जाता है?

(a) नाइट्रोजन ऑक्साइड

(b) नाइट्रिक ऑक्साइड

(c) नाइट्रोजन ट्राइऑक्साइड

(d) नाइट्रोजन पेन्टा ऑक्साइड

10. कौनसा हेलोजन में उच्चत्तम इलेक्ट्रॉन बन्धुकता होती है

(a) F

(b) CI

(c) Br

(d) [

उत्तर-1 (a), 2 (c), 3 (a), 4 (c), 5 (b), 6 (b), 7 (c), 8 (a), 9 (a), 10 (b)

अतिलघुत्तरात्मक प्रश्न-

प्र.1. ट्राई हैलाइडों से पेन्टा हैलाइड अधिक सहसंयोजी क्यों होते हैं?

उत्तर— PCl में उपस्थित P की ऑक्सीकरण अवस्था +5 है, अत: तत्व के आयन का आकार अत्यधिक छोटा हो जाता है, जो Cl-आयन का ध्रुवीकरण आधा करता है। अत: पेन्टा हैलाइड से सहसंयोजक ट्राइहैलाइड से अधिक होगा।

वर्ग 15 के तत्वों के हाइड्राइडों में BiH, सबसे प्रबल अपचायक

उत्तर-BiH3 में Bi - H का बंध अत्यधिक दुर्बल होने के कारण BiH3 एक प्रबल अपचायक है।

प्र.3. N, अणु कमरे के ताप पर सबसे कम क्रियाशील है, क्यों?

उत्तर -N्र अणु में $N\equiv N$ के मध्य त्रिबंध होने के कारण इसको तोड़ने के लिये अत्यधिक ऊर्जा की आवश्यकता होगी, कमरे के ताप पर N अणु को आसानी से नहीं तोड़ पाते अत: कम क्रियाशील है।

प्र.4. Cu2+ विलयन के साथ NH, कैसे क्रिया करता है?

 $3\pi\tau$ - $Cu^{2+} + 4NH_3 \longrightarrow \left[Cu(NH_3)_4\right]^{3}$ Tetrammunic copper II to

प्र.5. N₂O₂ में नाइट्रोजन की सहसंयोजकता कितनी है? उत्तर-

p-ब्लॉक के तत्व

चार सहसंयोजकता है।

प्र.6. क्या होता है, जब PCI को गर्म करते हैं?

उत्तर- PCI₅ — गर्म करने पर → PCI₃ + CI.

प्र.7. PCl की भारी पानी से जल अपघटन का सन्तुलित समीकरण लिखिये।

उत्तर— $PCl_s + D_sO \longrightarrow POCl_s + 2DHCl_s$

प्र.8. Н.РО विलयन की क्षारकता क्या है? उत्तर-

H,PO, की संरचना में 3-OH समूह उपस्थित होने के कारण यह त्रिक्षारकीय अम्ल है।

प्र.9. क्या होता है, जब H,PO4 को गर्म करते हैं?

उत्तर— $2H_3PO_4 \xrightarrow{\Delta} H_4P_2O_7 + H_2O_7$ पायरो फॉस्फोरिक अम्ल

प्र.10. H₂O एक दव है तथा H₂S गैस है, क्यों?

उत्तर— H_O में अतिरिक्त H-बंधन उपस्थित होने के कारण जल के अणुओं में आण्विक संघटन उच्च हो जाता है, अत: जल द्रव है, जबिक H_S में H बंधन अनुपस्थित होने के कारण दूसरे अणु दूर-दूर होने के कारण गैस है।

प्र.11. O_3 एक प्रबल ऑक्सीकारक की तरह क्यों क्रिया करती है?

उत्तर- क्योंकि 0, आसानी से नवजात ऑक्सीजन उत्पन्न करने के कारण, O, एक प्रबल ऑक्सीकारक पदार्थ की तरह क्रिया करती है।

 $0, \longrightarrow 0, +(0)$

प्र.12. जल में H,SO के लिये Ka, < Ka क्यों है?

उत्तर- $H_2SO_4 \Longrightarrow H^+ + HSO_4^-(Ka_1)$

 $HSO_4 \rightleftharpoons H^- + SO_4^2 (Ka_3)$

Ka, में H+, -ve आयन HSO-4 से निष्कासित होता है, जो कि आसान नहीं अतः Ka_2 का मान Ka_1 से बहुत ही कम होता है।

प्र.13. उन दो विषैली गैसों के नाम बताइये, जो Cl, गैस से बनाई जाती है।

उत्तर- COCI, फासजीन गैस CCl,(NO,) अश्रु गैस

प्र.14. I, से ICl अधिक क्रियाशील है, क्यों?

उत्तर— I2 अध्रवीय अणु है, जब ICI एक ध्रुवीय यौगिक है, ICI ध्रुवीय यौगिक होने के कारण I2 से अधिक क्रियाशील है।

प्र.15. हीलियम का गोताखोरी के उपकरणों में उपयोग क्यों किया जाता है?

उत्तर-आधुनिक गोताखोरी में ऑक्सीजन के तनुकरण में He का प्रयोग होता है, जिससे इसकी रक्त में विलेयता बहुत कम हो जाती है।

प्र.16. निम्नलिखित समीकरण को संतुलित कीजिए।

$$XeF_6 + H_2O \longrightarrow XeO_2F_2 + HF$$

उत्तर- $XeF_6 + 2H_2O \longrightarrow XeO_2F_7 + 4HF$

प्र.17. रेडॉन के रसायन का अध्ययन करना कठिन क्यों था?

उत्तर-रेडॉन के यौंगिक का पृथक्करण नहीं हो पाने के कारण इसके रसायन का अध्ययन करना कठिन हो गया।

प्र.18. NO $_2$ तथा N_2O_5 के अनुनादी संरचनायें लिखिये।

उत्तर- NO₂ की अनुनादी संरचनाऐं

N,O की अनुनादी संरचनाऐं

$$0 \stackrel{\oplus}{\underset{:0:}{\stackrel{\circ}{\downarrow}}} \stackrel{\circ}{\underset{:0:}{\stackrel{\circ}{\downarrow}}} \stackrel{\oplus}{\underset{:0:}{\stackrel{\circ}{\downarrow}}} \stackrel{\oplus}{\underset{:0:}{\stackrel{\circ}{\stackrel$$

प्र.19. $R_3PO = O$ पाया जाता है, जबिक $R_3N = 0$ नहीं क्यों यदि R = ऐल्किल समूह है।

उत्तर- P तत्व में रिक्त d-कक्षक उपस्थित होने के कारण यह पाँच सहसंयोजक बंध बनाकर $R_3P=0$ यौगिक बना लेता है। जबिक $R_3N=0$ में N-पर रिक्त d कक्षक अनुपस्थित होने के कारण यह पाँच संयोजकता प्रदर्शित नहीं करता है।

प्र.20. समझाइऐ क्यों NH, क्षारीय है, जबिक BiH, केवल दुर्बल क्षारक है?

उत्तर- N परमाणु का आकार अपने वर्ग में अत्यधिक छोटा होने के कारण इस पर उपस्थित इलेक्ट्रॉन का घनत्व उच्च हो जाता है, अर्थात् e मुक्त करने की प्रवृत्ति बढ़ जाती है, अत: NH, में क्षारीय सामर्थ्य अधिक होती है।

BiH₃ में Bi का आकार अत्यधिक बड़ा होने के कारण इस पर उपस्थित e का घनत्व निम्नतम होता है अत: ध्यान देने की प्रवृत्ति बहुत कम होने के कारण BiH, दुर्बल क्षार है।

प्र.21. H,PO, की असमानुपात अभिक्रिया होती है?

उत्तर- $2H_{_{+3}}PO_{_{3}} \longrightarrow H_{_{-5}}PO_{_{4}} + PH_{_{3}}$

अभिक्रिया असंमानुपातीं होती है। क्योंकि H_3PO_3 में P की

ऑ. अं. +3 है, जो अभिक्रिया के पश्चात् बढ़ती भी है व घटती भी है।

प्र.22. क्या PCI, ऑक्सीकारक और अपचायक दोनों कार्य कर सकता है? तर्क दीजिये?

उत्तर- PCl, में P की उच्चतम ऑक्सीकरण अवस्था होने के कारण, यह अभिक्रिया में अपनी ऑक्सीकरण अंक को कम ही करेगा, बढ़ायेगा नहीं अत: PCl, ऑक्सीकारक की तरह व्यवहार करता है।

प्र.23. कौनसे एरोसॉल्स ओजोन है?

उत्तर-क्लोरो फ्लोरो कार्बन, नाइट्रोजन व S के ऑक्साइड O_3 पर्त घटाने वाले एरोसोल्स है।

प्र.24. संस्पर्श प्रक्रम द्वारा H₂SO₄ के उत्पादन का वर्णन कीजिए।

उत्तर- बिन्दु 7.17 देखें। पृष्ठ 7.41 देखें।

प्र.25. SO₂ किस प्रकार एक वायु प्रदूषण है?

उत्तर—(i) सल्फर डाइऑक्साइड ईंधनों के दहन के दौरान वातावरण में मुक्त होती है जो उपस्थित H₂O अणु व ऑक्सीजन से जुड़ कर सल्फ्यूरिक अम्ल बनाती है। यह अम्ल विषैली प्रकृति का होने के कारण प्रदूषण का कारण होता है। यह संगमरमर (CaCO₃)

 $SO_2 + 1/2 O_2 + H_2O \rightarrow H_2SO_4$

से बनी मूर्तियों व कीर्ति स्तम्भों का संक्षारण करती है क्योंकि सल्फेट का निर्माण हो जाता है।

 $CaCO_3 + H_2SO_4 \rightarrow CaSO_4 + H_2O + CO_2$

(ii) सल्फर डाइऑक्साइंड विपरीत रूप से अपनी विषैली व उत्तेजन प्रकृति के कारण श्वसन मार्ग को प्रभावित करती है। यह नेत्रों में जलन व गले में संक्रमण का कारण होती है।

(iii) इस गैस की बहुत कम सान्द्रता (0.03pm) होने पर भी पौधों व वनस्पति जगत पर बहुत क्षतिग्रस्त प्रभाव वाली होती है। इसे क्लोरोसिस कहते हैं। यह पर्णहरित के निर्माण को घटाता है तथा पत्तियों भी धीमे-धीमे गिरने लगती है।

प्र.26. हैलोजन प्रबल ऑक्सीकारक क्यों होते हैं?

उत्तर—हैलोजन तत्वों का आं अंक शून्य है, इनकी इलेक्ट्रॉन बंधुता अधिक होने के कारण ये सभी हैलोजन e ग्रहण कर X: हैलाइड आयन बनाते हैं, जिनमें आं. अंक −1 है अत: हैलोजन प्रबल ऑक्सीकारक है।

प्र.27. CIO, के दो उपयोग लिखिए।

उत्तर—(i) कांगज को लुगदी।

(ii) पीने के पानी को शुद्ध करने में किया जाता है।

प्र.28. हैलोजन रंगीन क्यों होते हैं?

उत्तर— सभी हैलोजन रंगीन होते हैं क्योंकि इनके एकांकी e युग्म दृश्य प्रकाश के अवशोषण से उच्च ऊर्जा स्तरों में उत्तेजित हो जाता है और इस अवशोषित प्रकाश का उत्सर्जन करता है अत: हैलोजन रंगीन होते हैं।

प्र.29. जल के साथ $\mathbf{F}_{_{\!2}}$ तथा $\mathbf{Cl}_{_{\!2}}$ की अभिक्रिया लिखिए।

 $3\pi\tau$ - H₂O + F₂ → 2HF + (O)

$$H_2O + Cl_2 \longrightarrow 2HCl + (O)$$

प्र.30. उत्कृष्ट गैंसों के परमाण्विक आकार तुलनात्मक रूप से बड़े होते हैं, क्यों?

उत्तर-उत्कृष्ट गैसें अक्रियाशील होने के कारण इनकी परमाणु त्रिज्या ज्ञात नहीं होती है, इनकी वान्डरवाल त्रिज्या ज्ञात की जाती है। यह त्रिज्या परमाण्विक त्रिज्या से बड़ी होती है, अत: हम कह सकते हैं, िक उत्कृष्ट गैसों के परमाण्विक आकार अपवाद स्वरूप बड़े होते हैं।

लघुत्तरात्मक प्रश्न-

 प्र.1. अमोनिया की लिब्ध को बढ़ाने के लिये आवश्यक स्थितियों का वर्णन कीजिए।

उत्तर — $N_2 + 3H_2 \rightleftharpoons 2NH_3$ H = -46.1 Ky/mol उपरोक्त क्रिया उत्क्रमणीय है। अग्र दिशा में अणुओं की संख्या घट रही है, अतः NH_3 की लब्धि बढ़ाने के लिये हमें दाब उच्च रखना होगा एवं तापक्रम कम रखना होगा। अभिक्रिया ऊष्माशोषी के कारण।

प्र.2. PH ्से PH + में आबंध कोण अधिक है, क्यों?

उत्तर— $PH_3^{'}$ व $PH_4^{'+}$ दोनों में सकरण अवस्था sp^3 समान है, लेकिन PH_3 में एक एकांकी e युग्म होने के कारण इसमें बंध कोण 101° हो जाता है, जबिक $PH_4^{'-}$ में आबंध कोण $109^\circ28'$ होता है।

प्र.3. क्या होता है, जब श्वेत फास्फोरस को CO, के अक्रिय वातावरण में सान्द्र कास्टिक सोड़ा विलयन के साथ गर्म करते हैं?

उत्तर—
$$P_4 + 3NaOH + 3H_2O \longrightarrow PH_3 + 3NaH_2PO_4$$
 सो. हाइड्रो फास्फाइट

प्र.4. सल्फर के महत्त्वपूर्ण स्रोतों को सूचीबद्ध कीजिए। उत्तर– सल्फर निम्न स्रोतों से प्राप्त हो। है–

- (i) जिप्सम CaSO₄.2H₅O
- (ii) बेराइट BaSO4
- (iii) कॉपर पाइराइड $CuFeS_2$
- (iv) गैलेना PbS
- (v) यशद ब्लैड ZnS

प्र.5. वर्ग 16 के तत्वों को हाइड्राइडों के तापीय स्थायित्व के क्रम को लिखिये।

उत्तर- H,S < H,Se < H,Te < H₂O

प्र.6. निम्नलिखित में से कौनसा तत्व ऑक्सीजन के साथ सीधे अभिक्रिया नहीं करता है?

Zn Ti Pt Fe

उत्तर- Pt के साथ O_2 सीधे क्रिया नहीं करता है।

प्र.7. निम्नलिखित अभिक्रिया को पूर्ण कीजिए।

- (i) $C_2H_4+O_2 \longrightarrow$
- (ii) $AI + 3O_2 \longrightarrow$

उत्तर− (i) $2C_2H_4 + 6O_2 \longrightarrow 4CO_2 + 4H_2O$

(ii) $4Al + 3O_2 \longrightarrow 2Al_2O_3$

प्र.8. O का मात्रात्मक आकलन कैसे किया जाता है?

उत्तर— जब ओजोन बोरेट बफर विलयन [pH मान 9.2] युक्त उभय प्रतिरोध KI विलयन के आधिक्य से क्रिया कराते हैं, तो I_2 मुक्त होती है, जिसका मानक सोडियम थायोसल्फेट विलयन के साथ अनुमापन करने पर \mathbf{O}_1 गैस आंकलन मात्रात्मक विधि से है।

प्र.9. क्या होता है, जब SO_2 को Fe(III) लवण के जलीय विलयन में प्रवाहित करते हैं?

उत्तर-फेरिक लक्षण के जलीय विलयन में जब SO गैस प्रवाहित करते हैं, तो फेरस सल्फेट के कारण हरा रंग आता है।

$$Fe_{2}(SO_{4})_{3} + SO_{2} + 2H_{2}O \xrightarrow{FeSO_{4}} FeSO_{4} - 2H_{2}SO_{4}$$

प्र.10. दो S-O बंधों की प्रकृति पर टिप्पणी लिखिये, जो SO, अणु बनाते हैं, क्या SO, के ये दोनों S-O बंध समतुल्य है।

उत्तर- SO_2 की प्राय संरचना में S=O व S o O बंध होता है।

लेकिन SO_2 अनुनाद प्रदर्शित करने के कारण S-O के दोनों बंध समतुल्य हो जाते हैं।

प्र.11. उन तीनों क्षेत्रों का उल्लेख कीजिये जिनमें H₂SO₄ महत्त्वपूर्ण भूमिका निभाता है?

उत्तर—(i) सल्फर अथवा सल्फाइड अयस्क को वायु में जलाकर SO₂ का उत्पादन करना

(ii) उत्प्रेरक V_2O_5 की उपस्थिति में O_2 के साथ अभिक्रिया कराकर SO_2 को SO_3 में परिवर्तन करना।

(iii) ${
m SO_3}$ को सल्फ्यूरिक अम्ल में अवशोषित करके ओलियम $({
m H_2S_2O_7})$ प्राप्त करना ।

प्र.12. संस्पर्श प्रक्रम द्वारा H₂SO₄ की मात्रा में वृद्धि करने के लिये आवश्यक परिस्थितियों को लिखिये।

उत्तर— H_2SO_4 के उत्पादन में SO_2 को V_2O_3 उत्प्रेरक की उपस्थिति में वायु से ऑक्सीकृत कर SO_3 प्राप्त होती है।

 $SO_2 + O_2 \xrightarrow{V_2O_3} \Delta H = -196.6 \text{ kJ/mol}$ उपर्युक्त क्रिया उत्क्रमणिय एवं ऊष्माक्षेपी अभिक्रिया है। अतः ली-शीत लिये सिद्धांत के अनुसार, अग्र अभिक्रिया में आयतन में कमी हो रही है, अतः कम ताप एवं उच्च दाब, इस हेतु अनुकूल प्रस्थितियाँ है।

- प्र.13. आबंध वियोजन एन्थल्पी, इलेक्ट्रॉन लब्धि एन्थैल्पी तथा जलयोजन एन्थैल्पी जैसे प्राचलों को महत्त्व देते हुए \mathbf{F}_2 तथा Cl, की ऑक्सीकरण क्षमता की तुलना कीजिए।
- उत्तर • F₂ प्रबल ऑक्सीकारक है, Cl₂ की तुलना में इसे हम बंध वियोजन एन्थैल्पी, इलेक्ट्रॉन लब्धि एन्थैल्पी एवं जलयोजन एन्थैल्पी के आधार पर समझ सकते हैं।
- ऑक्सीकारक व्यवहार की विधि निम्न है-

$$\frac{1}{2}X_{1}(g) \xrightarrow{\frac{1}{2}\text{Adisso}} \bullet X(gas)$$

$$\bullet X(g) \xrightarrow{\land eg.H} : X^{-}(g)$$

$$: X (g) \xrightarrow{\Delta Hyd.} : X^{-}(aq)$$

 अतः पूर्ण अभिक्रिया के लिये सम्पूर्ण ऊर्जा तीनों के योग के तुल्थ होती है। अतः ΔΗ F₂ के लिये अधिक ऋणात्मक मान के कारण, F₂ प्रबल ऑक्सीकारक है।

प्र.14. दो उदाहरणों द्वारा F, के असामान्य व्यवहार को बताइये?

उत्तर-पलुओरीन के परमाणु के संयोजकता कोश में कोई d कक्षक नहीं होता। अत: यह अपने अष्टक का प्रसार नहीं कर सकता। सबसे अधिक विद्युत ऋणात्मकता होने के कारण यह केवल -1 ऑक्सीकरण अवस्था प्रदर्शित करता है।

फ्लुओरीन सबसे अधिक विद्युत ऋणात्मक तत्व है अत: कोई धनात्मक ऑक्सीकरण अवस्था प्रदर्शित नहीं करती। दूसरे हैलोजन तत्वों में d कक्षक उपस्थित होने के कारण ये अपने अष्टक का विस्तार करके +1. +3. +5 व +7 ऑक्सीकरण अवस्थायें प्रदर्शित करते है।

प्र.15. समुद्र कुछ हैलोजन का मुख्य स्रोत है, टिप्पणी लिखिये।

- उत्तर— समुद्री जल में हैलोजन परिवार के सदस्यों विशेष रूप से क्लोरीन, बोमीन तथा आयोडीन का प्रमुख स्रोत है।
- ये सोडियम, पोटेशियम, Ca व Mg आदि के घुलनशील लवणों के रूप मे होते हैं।
- शुष्क हुए समुद्री निक्षेपों में NaCl तथा कार्नेलाइट [KCl MgCl, 6H,O] जैसे यौगिक उपस्थित होता है।
- प्र.16. Cl, को गर्म तथा सान्द NaOH के साथ अभिक्रिया की संतुलित रासायनिक समीकरण लिखिये, क्या यह अभिक्रिया असमानुपाती अभिक्रिया है, औचित्य बताइये।

उत्तर-
$$6$$
NaOH + 3 Cl₂ -----> 5 NaCl+ NaClO₃ + 3 H₂O

जब किसी अभिक्रिया में किसी तत्व के ऑक्सीकरण अंक में क्रियाफल पदार्थों में वृद्धि भी हो व कमी भी हो, तो ऐसी अभिक्रिया को असमानुपाती अभिक्रिया है। यहाँ Cl_2 का आं अंक शुरू से -1 (कमी) व +5 (बढ़) रहा है। अत: अभिक्रिया असमानुपाती है।

प्र.17. नाइट्रोजन की क्रियाशीलता फास्फोरस से भिन्न है, क्यों/

- उत्तर—अणु नाइट्रोजन द्विपरमाण्विक अणु (N₂) के रूप में उत्पन्न होता है जिसमें नाइट्रोजन परमाणु त्रिक—बन्ध (N≡N) द्वारा एक दूसरे से जुड़ होते हैं। यह कमरे के ताप पर गैस होती है। बहु बन्ध फॉस्फोरस के केस में इसके बड़े आकार के कारण संभव नहीं है। यह P₄ अणु (ठोस) के रूप में उत्पन्न होता है जिसमें P परमाणु एक दूसरे से एकल सहसंयोजी बन्धों द्वारा जुड़े-होते हैं। N≡N की उच्च बन्ध वियोजन ऊर्जा (946 kJ mol⁻¹) के कारण अणु नाइट्रोजन फॉस्फोरस की तुलना में बहुत कम अभिक्रिया होती है।
- प्र.18. वर्ग 15 के तत्वों की रासायनिक व क्रियाशीलता की प्रवृत्ति की विवेचना कीजिए।

उत्तर-बिन्दु 7.1.7 देखें।

प्र.19. NH, हाइड्रोजन बंध बनाती है, परंतु PH, नहीं बनाती है, क्यों?

उत्तर— NH, में उपस्थित N की विद्युत ऋणता H से अधिक होने के कारण NH, Hबंधन बनाती है, लेकिन PH, में P की विद्युत ऋणता H से लगभग समान होने के कारण H बंधन नहीं बनाती।

प्र.20. प्रयोगशाला में N_2 गैस कैसे बनाते हैं। सम्पन्न होने वाली अभिक्रिया के रासायनिक समीकरण दीजिए।

उत्तर- $NH_4Cl + NaNO_2 \xrightarrow{\Delta} NH_4NO_2 + NaCl$ $NH_4NO_2 \xrightarrow{\Delta} N_2 + 2H_2O$

प्र.21. अमोनिया का औद्योगिक उत्पादन कैसे किया जाता है? उत्तर-बिन्दु 7.3.1 देखें। पृष्ठ 7.7 देखें।

प्र.22. उदाहरण देकर समझाइये, कि Cu धातु HNO, के साथ अभिक्रिया करके किस प्रकार भिन्न उत्पाद दे सकती है?

उत्तर—(i) सान्द्र HNO $_3$ के साथ \mathbf{Cu} क्रिया कर, कॉपर नाइट्रेट व \mathbf{NO}_2 बनाती है।

 $Cu + 4HNO_3(conc.) \longrightarrow Cu(NO_3)_{\frac{1}{2}} + 2NO_2 + 2H_2O$

(ii) अति तनु नाइट्रिक अम्ल के साथ क्रिया करके कॉपर नाइट्रेट व नाइट्रिक ऑक्साइड बनते हैं।

 $3Cu + 8HNO_3 \longrightarrow 3Cu(NO_3)_2 + 2NO + 4H_2O$

प्र.23. HNH का बंध कोण का मान HPH, HASH व HSbH कोणों से अपेक्षा अधिक है, क्यों?

उत्तर—इन चारों यौगिकों के N की विद्युत ऋणता P, As a Sb से अधिक है, अत: NH, में बंधित es N के अत्यधिक निकट आ जाने के कारण इनमें प्रतिकर्षण बढ़ता है, अत: बंध कोण अधिक होता है।

प्र.24. नाइट्रोजन द्विपरमाणुक अणु के रूप में पाया जाता है, जबकि फास्फोरस P, के रूप में है?

उत्तर – Nitrogen का आकार अत्यधिक छोटा, उच्च वैद्युत ऋणता तथा उच्च आयनन एन्थैल्पी संयोजी कोश में d कक्षकों की अनुपस्थिति के कारण N, N के मध्य त्रिबन्ध आसानी से बनकर नाइट्रोजन द्विपरमाणुक अणु (N₂) बनाता है।

जबिक P का आकार बड़ा व d कक्षकों की उपस्थिति के कारण P

के मध्य त्रिबन्ध नहीं बन पाता है अत: इनके अणु (P₄) होते हैं।

प्र.25. श्वेत फास्फोरस तथा लाल फास्फोरस के गुणों की मुख्य भिन्नतओं को लिखिए।

उत्तर–बिन्दु 7.6.2 में अंतर की सारणी देता है। पृष्ठ 7.13 देखें।

प्र.26. P की तुलना में N शृंखलन गुणों को कम प्रदर्शित करता है, क्यों?

उत्तर – संयोजी कोश इलेक्ट्रॉनिक विन्यास 2s²2p³ होता है। अष्टक पूरा करने के लिए, दोनों नाइट्रोजन परमाणु संयोजी s a p उपकोश में इलेक्ट्रान का साझा करते हैं। तथा त्रिक बन्ध (Ñ ≡ Ñ) बंध द्वारा जुड़े होते हैं। इस प्रकार नाइट्रोजन अणु द्विपरमाणुक सदस्य के रूप में उत्पन्न होता है तथा कई नाइट्रोजन परमाण को प्रयुक्त करके कोई स्वअभिक्रिया या शृंखलन नहीं होता है। किन्तु फॉस्फोरस में तत्व के तुलनात्मकता बड़े परमाणु आकार के कारण बहु बंधन संभव नहीं है। तत्व के तुलनात्मक रूप से बड़े परमाणु के आकार के कारण आण्विक होता है। अणु फॉस्फोरस सफेद फॉस्फोरस में चतुष्फलकीय अणु (P₄) के रूप में उत्पन्न होता है। ये चतुष्कक आगे सहसंयोजी बंधों द्वारा जुड़ कर जाल बनाते हैं जो कि पॉलीमेरिक रूप में होता है।

प्र.27. O, S, Se, Te व Po को इलेक्ट्रॉनिक विन्यास ऑक्सीकरण अंक तथा हाइड़ाइड के निर्माण के संदर्भ में आवर्त सारणी के एक ही वर्ग में रखने का तर्क दीजिए।

उत्तर-पृष्ठ ७.२५-७.२६ देखें।

प्र.28. क्या कारण है, O, गैस है, जबकि S एक ठोस है।

उत्तर- • ऑक्सीजन का आकार अत्यधिक छोटा व उच्च विद्युत ऋणता के कारण ऑक्सीजन द्विबन्ध बनाता है, जबकि S के बड़े आकार होने के कारण यह द्विबन्ध नहीं बनाता है।

ऑक्सीजन का अणुभार बहुत कम होने के कारण, इनके मध्य दुर्बल वाण्डरवाल बल होती है, अत: O, गैस है, जबकि S ठोस है।

प्र.29. यदि $O \longrightarrow O^-$ तथा $O^- \longrightarrow O^{2-}$ वे इलेक्ट्रॉन लब्धि एन्थैल्पी मान पता है, जो क्रमश: 141 तथा 702 KJ/mol है, आप कैसे स्पष्ट कर सकते हैं, कि O2-स्पीशीज वाले ऑक्साइड अधिक बनते हैं, न कि 0-वाले ऑक्साइड ।

उत्तर-उपलब्ध विवरण के अनुसार

$$O + e^- \rightarrow O^- \Delta_{eg} H = -141 \text{kJ mol}^{-1}$$

 $O + 2e^- \rightarrow O^2 \Delta_{eg} H = +702 \text{ kJ mol}^{-1}$

 $O + e^- \rightarrow O^- \Delta_{eg}^- H = -141 kJ \text{ mol}^{-1}$ $O + 2e^- \rightarrow O^2^- \Delta_{eg}^- H = +702 \text{ kJ mol}^{-1}$ यद्यपि द्विसंयोजी ऋणायन (O 2) के निर्माण को एक संयोजी (O $^-$) की तुलना में ज्यादा ऊर्जा की आवश्यकता होती है जहाँ वास्तव में ऊर्जा मुक्त होती है। ऑक्साइडों की अधिक संख्या में भी (उदा. Na₂O, K₂O, CaO आदि) ऑक्सीजन द्विसंयोजी प्रकृति की होती है। ऐसा अधिक स्थायी क्रिस्टल जालक के कारण होता है क्योंकि द्विसंयोजी ऑक्सीजन में वैद्युत आकर्षण बल का मान एक संयोजी ऑक्सीजन रखने वाले यौगिकों की अपेक्षा ज्यादा बड़ा होता है।

प्र.30. स्पष्ट कीजिए कि क्यों लगभग एक समान विद्युतऋणता होने के पश्चात् भी नाइट्रोजन हाइड्रोजन बंधन बनता है, जबकि क्लोरीन नहीं।

उत्तर-नाइट्रोजन (N) क्लोरीन (Cl) 3.0 विद्युत ऋणात्मकता वाले होते हैं। किन्तु केवल नाइट्रोजन हाइड्रोजन (उदा. NH₂) बनाने में प्रयुक्त होती है तथा क्लोरीन नहीं। ऐसा नाइट्रोजन का परमाणु आकार (परमाणु त्रिज्या = 75pm) क्लोरीन की तुलना (परमाणु त्रिज्या = 99pm) में छोटा होने के कारण होता है। इसीलिए N, Cl-H बन्ध में Cl की अपेक्षा N – H बन्ध का ज्यादा ध्रुवीकरण करता है। अत: नाइट्रोजन परमाणु हाइड्रोजन बन्ध में प्रयुक्त होता है तथा क्लोरीन

प्र.31. आप HCl से Cl, तथा Cl, से HCl कैसे प्राप्त करेंगे, केवल अभिक्रिया लिखिये।

उत्तर $-(i)MnO_2 + 4HCl \rightarrow MnCl_2 + Cl_2 + 2H_2O$ (ii) 2Cl₂ + 2H₂O <u>सूर्य का प्रकाश</u> → 4HCl + O₂

प्र.32. एन. बार्टलेट Xe तथा PtFe के बीच अभिक्रिया कराने के लिये कैसे प्रेरित हुआ?

उत्तर-बर्टलेट ने सोचा कि PtF_6 को Xe को Xe^+ में ऑक्सीकृत करना चाहिये क्योंकि Xe की आयनन ऊर्जा 1175kJmol⁻¹ O की आयनन ऊर्जा 1570 kJ mol-1 के रूप में समान है। इस प्रकार XePtF₆ यौगिक बनाने में सफल हो गये।

प्र.33. निम्नलिखित यौगिकों में फॉस्फोरस की ऑक्सीकारक अवस्थाएं बताइये।

(i) H,PO,

(ii) PCl₅

(iii) Ca₃P₂

(iv) Na₃PO₄

(v) POF₃

उत्तर- (i) H₃PO,

$$3[+1] + 1[x] + 3(-2) = 0$$

 $3 + x - 6 = 0$

$$x = +3$$

PCl,

$$1(x) + 5(-1) = 0$$

$$x = 5$$

(iii) Ca_3P_3

$$3[+2] + 2[x] = 0$$

 $6 + 2x = 0$

$$x = +3$$

 $Na_{x}PO_{x}$ 3[+1] + 1[x] + 4[-2] = 03 + x - 8 = 0

(v)
$$POF_3$$

 $1[x] + 1[-2] + 3[-1] = 0$
 $x = 5$

प्र.34. निम्नलिखित के लिये संतुलित समीकरण दीजिये।

- 1. जब NaOH को MnO, की उपस्थिति में सान्द्र H_2SO_4 के साथ गर्म किया जाता है।
- 2. जब Cl_2 गैस को NaI के जलीय विलयन में से प्रवाहित किया जाता है।

उत्तर-(i)NaCl + H_2 SO $_4$ \rightarrow NaHSO $_4$ + HCl] \times 4 + HCl + MnO $_2$ \rightarrow MnCl $_2$ + Cl $_2$ + 2 H_2 O + NaCl + MnO $_2$ + + + + ANaHSO $_4$ + MnCl $_2$ + Cl $_2$ + 2 H_2 O

(ii) $\text{Cl}_2(\text{aq}) + 2\text{Nal (aq)} \rightarrow 2\text{NaCl (aq)} + I_2 \text{ (s)}$

प्र.35. जीनॉन के पलुओराइड XeF₂, XeF₄ तथा XeF₆ कैसे बनाये जाते हैं?

उत्तर-पेज 7.60 देखें।

प्र.36. किस उदासीन अणु के साथ CIO , समइलेक्ट्रॉनी है? क्या यह अणु लुइस क्षारक है?

उत्तर-CIO के पास (17 + 8 + 1) = 26 इलेक्ट्रॉन होते हैं। यह दो उदासीन अणुओं के साथ समइलेक्ट्रॉनिक होता है। ये है: ऑक्सीजन डाइफ्लुओराइड (OF₂) तथा (CIF) में क्लोरोफ्लुओरीन। चूँकि CIF आगे क्लोरीन के साथ जुड़कर CIF₃ बना सकता है। इसीलिए यह एक लुइस क्षार है।

प्र.37. निम्नलिखित में कौनसे यौगिक का अस्तित्व नहीं है?

(i) XeOF₄

(ii) NeF₂

(iii) XeF₂

(iv) XeF₆

उत्तर- NeF₂ का अस्तित्व नहीं है क्योंकि तत्व Ne(Z = 10) Is²2s²2p⁶ के साथ खाली 2d- कक्षक नहीं रखता है। इसी कारण किसी इलेक्ट्रॉन की उच्च वैद्युत ऋणात्मक तत्त्व द्वारा प्रोन्नित का कोई अवसर नहीं होता है।

प्र.38. उस उत्कृष्ट गैस स्पीशीज का सूत्र लेकर संरचना की व्याख्या

कीजिये, जो कि इनके साथ सम संरचनीय है?

(i) ICl₄

(ii) IBr₂

(iii) BrO₃

उत्तर –(a) ICI में संकरण अवस्था sp³d² है इसकी आकृति वर्गाकार समतलीय है।

 XeF_4 में भी संकरण अवस्था sp^3d^2 है एवं इसकी संस्वना भी वर्गाकार समतलीय है।

- (b) ${\bf IBr_2}^-$ एवं ${\bf XeF_2}$ दोनों में संकरण अवस्था ${\bf sp^3d}$ है एवं समान आकृति रेखीय है।
- (c) BrO_3^- व XeO_3 दोनों में संकरण अवस्था sp^3 है व दोनों की आकृति पिरेमिड है।

प्र.39 निऑन तथा ऑर्गन के उपयोग सूचिबद्ध कीजिये।

उत्तर-उत्तर के लिए पाठ्य भाग देखें।

निबंधात्मक प्रश्न-

प्र.1. वर्ग 15 के तत्वों के सामान्य गुणों को उनके इलेक्ट्रॉनिक विन्यास, ऑक्सीकरण अवस्था परमाण्विक आकार, आननन एन्थैल्पी तथा विद्युत ऋणात्मकता के संदर्भ में विवेचना की?

उत्तर-बिन्दु 7.1 देखें।

- प्र.2. निम्नलिखित प्रत्येक समुच्चय के सामने लिखे गुणों को अनुसार सही क्रम में व्यवस्थित कीजिये।
- 1. $F_2Cl_2Br_2l_2$ आबंध वियोजन एन्थैल्पी बढ़ते क्रम में।
- 2. HF, HCl, HBr, HI अम्ल सामर्थ्य के बढ़ने क्रम में।
- 3. NH $_3$, PH $_3$, AsH $_3$ SbH $_3$ BiH $_3$ क्षारक सामर्थ्य के बढ़ते क्रम। उत्तर— (i) $I_2 < F_2 < Br_2 < Cl_2$
 - (ii) HF < HCl < HBr < HI
 - (iii) $BiH_3 < SbH_3 < AsH_3 < PH_3 < NH_3$