ISP Friendly or Foe? Making P2P Live Streaming ISP-aware

Fabio Picconi and Laurent Massoulie Appeared in ICDCS'09

Outline

- Background
- Design of ISP-friendly Scheme
 - Design Principles and Rationale
 - Overlay Construction
 - Dynamic Unchoke
- Problems
- Emulation and Experiment

Background

- Current P2P systems: network agnostic ->
 generating large volumes of unnecessary interISP traffic
- Recent work has shown the benefits of ISPawareness on file sharing applications → How about living streaming?
- Optimizing P2P live streaming systems is harder to design: data diffusion in short delays

Design Principles and Rationale

[Principles]

- 1. Simplicity and low diffusion delays over traffic optimality
- Decentralized mechanisms based on local peer decisions
- 3. Mesh-based systems
- Using tracker to keep lists of active peers and network cost between two IP addresses

Design Principles and Rationale

[Rationale (Mechanisms)]

 Randomized two-level overlay construction: Primary overlay and secondary overlay

peer selection strategy

2. Dynamic unchoke for secondary overlay links

Overlay Construction

- Each peer keeps two peer lists:
 - subset of random peers;
 - subset of random low-cost peers.
- Half connection attempts to peers from the random peer list; half to peers from low-cost peer list.
- Whether to build an edge (connection)?
 primary overlay links: network cost and upload or download rate secondary overlay links: upload or download rate.

Dynamic Unchoke of Secondary Overlay Links

- how to adapt secondary receive rate:
 - Early starvation signals (ESS): a peer generates an ESS whenever a chunk has not been received halfway to the deadline.
 - Given an interval T_{noess}, during this time:
 - if ESS is observed, increase secondary rate
 - 2. if no ESS is observed, decrease secondary rate

Problems

 How to decide whether to create an edge after connection attempts is not clearly described;

 How to realize unchoke algorithms is not clearly described.

Emulation and Experiment

Test Topologies:

		fraction of peers
		within the group
A1	B1	46.5%
A2	B2	21.4%
A3	B3	18.6%
A4	В4	6.0%
A5	B 5	5.0%
A6	В6	2.5%

Table 1. ISP popularity (6+6 topology).

2+2 and N-clique:

clients are distributed uniformly in the groups;

Figure 1. Test topologies: 2+2 (top left), n-clique (top right), and 6+6 (bottom)

Emulation and Experiment

Bandwidth Distribution in the Topologies:

topol.	intra-group	intra-ISP	upload capacities [kbps]	
			ISP A1,B1	ISP A2,B2
2+2	balanced	homog.	1000	1000
	balanced	heterog.	128-4000	128-4000
2+2	unbalanced	homog.	1500	500
	unbalanced	heterog.	1000-4000	128-384
			all ISPs	
6+6	balanced	homog.	1000	
n-clique	balanced	homog.	1000	

Table 2. Test scenarios.

The convergence of primary overlay links

Traffic pattern:

agn: ISP-agnostic network;

1p: a secondary of only a single peer

without rate limiting

Delay distribution

The unchoke mechanism increases the diffusion delay to the mid-buffer position

 Impact of buffer size, stream rate, time to trigger ESS (use 2+2 balanced homogeneous scenario)

Buffer size's, stream rate's impact on traffic pattern

Mid-buffer vs. quarter-buffer

Figure 5. unchoke based on quarter-buffer misses are too close to the deadline, producing periodic chunk misses.

Impact of number of peers and ISPs

(c) overlay size (6+6 balanced homog.)

(a) number of ISPs (n-clique topol.)

• Impact of churn:

Planetlab Experiments

Thank You!