ROS-Cyton Module

1.Package Summary

The ROS-Cyton Module provides a ROS interface for Energid's actinSE and Robai's Cyton 7-DOF humanoid manipulators. The aim of this module is to expose actinSE and the Cyton hardware API through ROS .

2.Overview

Using the *ROS-actionlib* a user can access the methods of Actin-SE and the Cyton hardware API. The methods included allow for direct, real-time control of the Cyton robot arms in both jointspace and end-effector modes.

The module consist of six nodes named as follows: <code>actinSE_node</code> <code>,cyton</code> <code>,guide</code> <code>frame</code> <code>,hardware</code> <code>,send_joints</code> <code>,and</code> <code>set</code> <code>home</code> .The core node(action server) is called <code>actinse</code>. The <code>actinse</code> node accepts end effector (EE) coordinates and publishes joint values and joint rates. The node which sends EE coordinates is called the <code>guide</code> <code>frame</code> node. It can be any program which is configured to send EE coordinates to a particular topic .The <code>cyton</code> node will subscribe to the output of the <code>actinse</code> node and send the valued to the cyton arm using the cyton hardware API (or the <code>hardware</code> node). The <code>set</code> <code>home</code> node moves the cyton to a default home position .

Cyton can also be directly controlled using joint space values. There are two nodes for doing this task, the *hardware* node and *send_joints* node. The hardware node is an action server which will receive the joint values from the *send_joints* action client and publishes to a topic. The *cyton* node will subscribe to the topic and move the cyton according to the joint values.

3.Detailed Description

For additional details on the control interface or Actin please see the Actin-SE API or the Cyton Hardware Interface API.

3.3 ROS-Cyton Module Architecture

The ROS-Cyton module is using actinSE and the cyton-hardware library for its operation. The module mainly consist of *ActionServers* and *ActionClients*. There are two *ActionServers* and two *ActionClienst*. The first *ActionServer* is called *actinse*. It performs EE to joint-space conversion using the ActinSE Cyton IK engine. Its *ActionClient* is the *guide frame* node. It will send guide frame values to the *ActionServer*. The second *ActionServer* is the *hardware* node. It is responsible for marshalling joint values from the *ActionClient* to the /cyton/feedback topic. Its *ActionClient* is the *send joints* node .It will send the joint values to the *hardware* node .The user can control the cyton in two ways.

- End effector control
- Joint-space control

3.1 End effector Control

During end effector control, the *actinse* node acts as action server and the *guide frame* node is the action client. The EE values are published from the *guide frame* node to the *actinse* node. The *actinse* node subscribes to the values and feeds back the resulting values in the /cyton/feedback topic.

3.1.1 actinSE node

This node acts as the *ActionServer*. The node will subscribe to topics publish by the action client.

Subscribed Topics

/cyton/goal

Consist of the following messages:

float32[] position :EndEffector coordinates or jointValues

float32[] rate :Joint-rates

float32 time: Simulation time int32 eeindex: EndEffector type

uint32 home :Home flag to move cyton to home position

float32 gripper_value :Gripper joint angle for controlling gripper separately

float32 gripper_rate :Gripper joint rate

Published Topics

• /cyton/result

Consist of the following messages:

float32[] position :Joint values

• /cyton/feedback

Consist of the following messages:

float32[] position :Joint Values float32[] rate :Joint rates float32 time :Simulation time float32 gripper_feed_value float32 gripper_feed_rate

3.1.2 guide_frame node(input node)

This node act as the action client. It will publish the following topics:

Published Topics:

/cyton/goal

Consists of the following messages:

float32[] position :EndEffector coordinates

float32[] rate :Joint-rates float32 time :Simulation time int32 eeindex :EndEffector type

uint32 home :Home flag to move the cyton to home position

float32 gripper_value :Gripper joint angle for controlling gripper separately

float32 gripper_rate :Gripper joint rate

3.1.3 cyton_node

This node handles the movement of the cyton robotic arm. It uses the cyton hardware API for movement. It will subscribe to the /cyton/feedback topic from the *actinSE* node and push data to the hardware.

3.1.4 set home

Moves the cyton to a default home position. It will only work when the user is working with EE coordinates .

Execution: rosrun cyton set_home

3.2 Joint-level Controlling

3.2.1 Hardware_node

This node handles the movement of cyton through direct joint values .It acts as an *ActionServer*. It will publish joint values to the topic /cyton/feedback .

Subscribed Topics

/cyton/goal

Consist following messages

float32[] position: jointvalues float32[] rate: Joint-rates float32 time: Simulation time int32 eeindex: EndEffector type

uint32 home :Home flag to move cyton to home position

float32 gripper_value :Gripper joint angle for controlling gripper separately float32 gripper_rate :Gripper joint rate

Published Topics

/cyton/feedback

Consist of following messages

float32[] position :Joint Values float32[] rate :Joint rates float32 time :Simulation time float32 gripper_feed_value float32 gripper_feed_rate

3.2.2 send_joints

This node acts as an *ActionClient* of the hardware_node. This will publish joint values to topic /cyton/goal.

Published Topics:

• /cyton/goal

Consists of the following messages:

float32[] position: EndEffector coordinates

float32[] rate :Joint-rates float32 time :Simulation time int32 eeindex :EndEffector type

uint32 home :Home flag to move cyton to home position

float32 gripper_value :Gripper joint angle for controlling gripper separately

float32 gripper_rate :Gripper joint rate

3.2.3 cyton_node

This node handles the movement of the cyton robotic arm. It uses the cyton hardware API for movement. It will subscribe to the /cyton/feedback topic from the actinSE node and send to hardware .

/cyton/feedback

Consist of following messages

float32[] position :Joint Values float32[] rate :Joint rates

float32 time: Simulation time float32 gripper_feed_value float32 gripper_feed_rate

Here the action-client is called the *guide frame* node. The function of the *guide frame* node is to send guide frame values (End effector coordinates) to the actinSE node. The guide frame node can be any program which can send the guide frame coordinates.

4. Tutorials

This package will works well in Ubuntu 11.04, for other distribution it is still in testing

4.1 Installation

- 1. Set the PATH instruction in README file inside the cyton module folder
- 2. Execute roscd cyton
- 3. rosmake –rosdep-install cyton

4.2Execution

Before execution user need to change the permission of FTDI device as shown in fig

```
lentin@lentin-desktop:-$ lsusb
Bus 005 Device 002: ID 046d:c03d Logitech, Inc. M-BT96a Pilot Optical Mouse
Bus 005 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub
Bus 004 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub
Bus 003 Device 002: ID 0403:6001 Future Technology Devices International, Ltd FT232 USB-Serial (UART) IC
Bus 003 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub
Bus 002 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub
Bus 001 Device 004: ID 050d:705a Belkin Components F5D7050 Wireless G Adapter v3000 [Ralink RT2573]
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
lentin@lentin-desktop:-$ sudo chmod 777 /dev/bus/usb/003/002
lentin@lentin-desktop:-$
```

For EE control

- 1. roslaunch cyton cyton.launch :Initialises cyton hardware node and actinSE actionclient
- 2. rosrun cyton guide_frame_node :Send EE values to cyton
- 3. rosrun cyton set_home :Setting cyton to home position

For Joint Control

- 1. roslaunch cyton hardware.launch :Initialises cyton hardware
- 2. rosrun cyton send_joints :Send direct joint command to cyton

README

ROS-Cyton Installation Procedure on Ubuntu

1)Install ROS-electric from

http://www.ros.org/wiki/electric/Installation/Ubuntu

- 2)Copy cyton folder(ROS-Cyton interface) to user location For example copy cyton folder to home folder of Ubuntu
- 3)Add Environmental Variables such as

CYTON_INC :=include directory path inside the cyton folder

CYTON_LIB :=lib folder path inside the cyton folder

CYTON_BIN :=bin folder path inside the cyton folder

CYTON_EE_FILE :=EE file path, which stores a series of EE position.

For testing purpose there are some default values .The user can take any file name as EE file .It has to follow certain format like guide_frame.txt given as example inside the bin folder .

These variable has to add on the bottom of .bashrc on the home folder

Note: All path must be system path not relative

An example configuration is shown below

export CYTON_INC="/home/lentin/myworks/cyton/include/"

export CYTON_LIB="/home/lentin/myworks/cyton/lib/"

export CYTON_BIN="/home/lentin/myworks/cyton/bin/"

export CYTON EE FILE="/home/lentin/myworks/cyton/bin/guide frame.txt"

#Setting ROS_PACKAGE_PATH here

source /opt/ros/electric/setup.bash

export ROS_PACKAGE_PATH=\$ROS_PACKAGE_PATH:/home/lentin/myworks/cyton

- 4)Add ROS_PACKAGE_PATH as shown above.
- 5)Clear or Delete the existing Makefile and replace with the following line

include \$(shell rospack find mk)/cmake.mk

- 5)Open a terminal inside cyton folder and build using rosmake command
- 6)Install module using rosmake --rosdep-install command

Execution

Change the permission of FTDI device as shown in fig

```
lentin@lentin-desktop:-$ lsusb
Bus 005 Device 002: ID 046d:c03d Logitech, Inc. M-BT96a Pilot Optical Mouse
Bus 005 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub
Bus 004 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub
Bus 003 Device 002: ID 0403:6001 Future Technology Devices International, Ltd FT232 USB-Serial (UART) IC
Bus 003 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub
Bus 002 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub
Bus 001 Device 004: ID 050d:705a Belkin Components F5D7050 Wireless G Adapter v3000 [Ralink RT2573]
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
lentin@lentin-desktop:-$ sudo chmod 777 /dev/bus/usb/003/002
lentin@lentin-desktop:-$
```

For EE control

roslaunch cyton cyton.launch rosrun cyton guide_frame_node

For setting to home position

rosrun cyton set_home

For Joint Control

roslaunch cyton hardware.launch rosrun cyton send_joints