COMP3234B Computer and Communication networks

Assignment 3 (8%)

Sample Solution

Total mark is 100.

1. (25 marks)

Answer:

There are many possible solutions. The following is an example:

(1) (15 marks: 3 marks each)

Subnet 0: 139.247.116.0/22

Subnet 1: 139.247.120.0/26

Subnet 2: 139.247.112.0/22

Subnet 3: 139.247.122.0/23

Subnet 4: 139.247.120.64/26

(2) (10 marks: 1 mark per entry)

IP address prefix	Interface
10001011 11110111 011101	0
10001011 11110111 01111000 00	1
10001011 11110111 011100	2
10001011 11110111 0111101	3
10001011 11110111 01111000 01	4

2. (23 marks) [NAT (LO2)]

Answer:

(1) (1 mark each)

There are many possible solutions. The following is an example:

Host A: 172.16.0.1

Interface i: 172.16.0.2 Host B: 192.168.0.1 Interface j: 192.168.0.2

(2)

Port forwarding rule installed on router 1: all requests to port 9191 should be forwarded to host A at 172.16.0.1. (3 marks)

Port forwarding rule installed on router 2: all requests to port 6262 should be forwarded to host B at 192.168.0.1. (3 marks)

(3) (13 marks: 0.5 marks per value)

NAT Translation Table on Router 1			
LAN side WAN side			
172.16.0.1, 2761 183.50.237.23, 8765			

Request sent out from host A			
Source IP address:	172.16.0.1		
Source port number:	2761		
Destination IP address:	224.36.7.5		
Destination port number: 6262			

Request sent out from router 1			
Source IP address: 183.50.237.23			
Source port number:	8765		
Destination IP address:	224.36.7.5		
Destination port number:	6262		

Request sent out from router 2			
Source IP address:	183.50.237.23		
Source port number:	8765		
Destination IP address:	192.168.0.1		
Destination port number:	6262		

Response sent out from host B			
Source IP address: 192.168.0.1			
Source port number:	6262		
Destination IP address:	183.50.237.23		
Destination port number: 8765			

Response sent out from router 2				
Source IP address: 224.36.7.5				
Source port number: 6262				

Destination IP address:	183.50.237.23		
Destination port number:	8765		

Response sent out from router 1			
Source IP address: 224.36.7.5			
Source port number:	6262		
Destination IP address:	172.16.0.1		
Destination port number:	2761		

3. (23 marks) [Dijkstra's Algorithm (LO3)]

(1) (**15 marks**)

(12 marks on the table: deduct 0.2 marks for each wrong entry in the table)

Step	N'	D(b),p(b)	D(c),p(c)	D(d),p(d)	D(e),p(e)	D(f),p(f)	D(g),p(g)	D(h),p(h)
0	а	4, a	3, a	∞	2,a	8	8	∞
1	a,e	4,a	3,a	3,e		7,e	∞	9,e
2	a,e,c	4,a		3,e		6,c	∞	9,e
3	a,e,c,d	4,a				6,c	9,d	9,e
4	a,e,c,d,b					6,c	9,d	9,e
5	a,e,c,d,b,f						9,d	7,f
6	a,e,c,d,b,f,h						8,h	
7	a,e,c,d,b,f,h,g							

The shortest path tree is as follows: (3 marks on the tree: deduct 0.5 marks for each wrong edge)

(2) (8 marks)

(i) No **(1 mark)**. Link a—c needs to support 4 virtual circuits at the total data rate of 4*125Mbytes/s=4Gbps, but its capacity is only 2Gbps. **(2 marks)**

(ii) If no congestion along link a-c, a is sending to at most two nodes among c, f, h, g concurrently, as 2*125Mbytes/s=2Gbps.

The probability that a is sending data to exactly two nodes among c, f, h, g is: $(4 \text{ chooses } 2) 0.1^2(1-0.1)^2=0.0486$ (1 mark)

The probability that a is sending data to exactly one node among c, f, h, g is: $(4 \text{ chooses 1}) 0.1^* (1-0.1)^3=0.2916$ (1 mark)

The probability that a is not sending data to any node among c, f, h, g is: $(1-0.1)^4=0.6561$ (1 mark)

The probability of no congestion along link a-c is: 0.0486+0.2916+0.6561=0.9963 (2 marks)

4. (16 marks) [Bellman-Ford Algorithm (LO3)]

Answer:

(13 marks on the table: deduct 0.2 marks for each incorrect entry)

Iteration	D _b (a),	Dc(a),	Dd(a), Sd(a)	De(a), Se(a)	D _f (a),	Dg(a),	Dh(a),
	S _b (a)	Sc(a)			S _f (a)	S _g (a)	Sh(a)
0	8, a	3, a	∞	∞	∞	∞	∞
1	8, a	3, a	∞	6, c	5, c	∞	∞
2	7, e	3, a	12, e	6, c	5, c	9, e	6, f
3	7, e	3, a	10, g	6, c	5, c	8, h	6, f
4	7, e	3, a	9, g	6, c	5, c	8, h	6, f

The resulting least—cost—path tree is as follows: (3 marks on the tree: deduct 0.5 marks per wrong edge)

5. (13 marks) [Hierarchical Routing in the Internet (Learning Outcomes 2, 3)]

- (1) iBGP **(2 marks)**
- (2) eBGP (2 marks)
- (3) (X, i1) (2 marks). i1 begins the least cost path from 2d towards the gateway

router 1c (1 mark).

- (4) (X, j2) (2 marks). The AS path via AS1 has a smaller AS hop number than the AS path via AS2, while both j1 and j2 begin a least-cost intra-AS path leading to the closest gateway router that is connected to the NEXT-HOP of the AS path (1 mark).
- (5) J will be set to j1 then (2 marks). AS path AS2 AS1 should be chosen, which has a smaller AS hop number than AS path AS5 AS4 AS1, and j1 begins the least-cost path to the gateway router 3a that is connected to the NEXT-HOP of this AS path (1 mark).