Universite de Yaounde I

ECOLE NATIONALE SUPERIEURE
POLYTECHNIQUE DE YAOUNDE

DEPARTEMENT DE GENIES INDUSTRIEL ET

MECANIQUE

University of Yaounde I

NATIONAL ADVANCED SCHOOL OF ENGINEERING OF YAOUNDE

Industrial and Mechanical Engineering

Department

ETAT DES LIEUX DE LA MAINTENANCE DE l'ENGIN NAUTIQUE VIGILANCE, PROPOSITION D'UN PLAN DE MAINTENANCE PRÉVENTIVE ET CONCEPTION D'UN OUTIL D'AIDE AU SUIVI DE LA MAINTENANCE DE CET EQUIPEMENT

Mémoire de fin d'études

Présenté et soutenu par :

ABE'ELE MABOULI Patricia Lakeine

En vue de l'obtention du

Diplôme d'Ingénieur de Conception en Génie Mécanique

Sous la direction de :

YIMEN Nasser, Docteur chargé de Cours, UY1 (Encadrant académique)

BEYE Idriss, Ingénieur, Directeur Adjoint, RDD/PAD (Encadrant professionnel)

Devant le jury composé de :

Président : VOUFO Joseph, Maître de Conférences, UY1

Rapporteur: YIMEN Nasser, Chargé de cours, UY1

Examinateur: KONAÏ, Chargé de cours, UY1

Invité: BEYE Idriss, Ingénieur, Directeur adjoint, RDD/PAD

Date de Soutenance : xx septembre 2023

Année Académique: 2022 - 2023

DEDICACE

A nos chers parents Lucie et Prosper ABE'ELE.

REMERCIEMENTS

Le présent mémoire de fin d'études, vient parachever notre formation à l'ENSPY comme élève ingénieur de conception en Génie Mécanique.

Notre gratitude à l'endroit de plusieurs personnes ne saurait être exprimée du fait de leur soutien immense et leur apport dans la réalisation de ces travaux. C'est pourquoi, nous tenons à remercier :

- ➤ Le Pr. VOUFO Joseph, pour l'honneur qu'il nous fait en acceptant de présider le jury de soutenance de ce mémoire ;
- L'ingénieur BEYE Idriss, notre encadreur académique, pour sa disponibilité, ses précieux conseils, ses enseignements, et son suivi permanent dans l'aboutissement de ce travail;
- Le **Dr YIMEN Nasser**, qui a bien voulu examiner ce travail, pour ses enseignements durant notre formation et aussi pour ses conseils pour la présentation de ce travail;
- ➤ **Pr. Raoul Domingo AYISSI,** Directeur de l'ENSPY, pour tous les efforts mis en œuvre pour toujours porter très haut la notoriété de notre valeureuse école Polytechnique ;
- > Pr. MEVA'A Jean Raymond Lucien, notre chef de département ;
- ➤ Tout le personnel enseignant et non enseignant de l'École Nationale Supérieure Polytechnique de Yaoundé pour la formation que nous avons reçu auprès d'eux aussi bien académique qu'humaine ;
- ➤ M. Cyrus NGO'O, Directeur Général du Port Autonome de Douala, pour avoir accepté de nous accueillir dans cette structure dans le cadre de notre stage de fin d'étude pour la réalisation de ce projet ;
- Notre encadreur professionnel **l'Ingénieur BEYE Idriss**, Directeur Délégué Adjoint de la Régie du Dragage du Port Autonome de Douala, qui nous a accordé un temps de qualité enrichi par des conseils et des directives qui ont mené à la réalisation de ce projet ;
- ➤ L'ingénieur NKOMOM Brice, notre superviseur qui nous a beaucoup apporté en ce qui concerne l'imprégnation dans le cadre de travail et les conseils par rapport à la rédaction de ce mémoire ;

J'adresse mes sincères remerciements à :

- ➢ Mes sœurs et frères : ABE'ELE Danielle, ABE'ELE Derrick, ABE'ELE Gabriella, ABE'ELE Divine et ABE'ELE Raphael, parce qu'ils sont la raison pour laquelle l'échec n'est pas une option pour nous ;
- ➤ Mon oncle **Cyrus** pour le soutien incommensurable dont il fait montre depuis mon admission dans cette institution ;
- Ma famille de Douala: ESSOLA Pierre, AWAL Ahmed, NKOH Junior, MODOU Michelle, NANGA Nancy, MBONG Rachel, NLEND Pierre, ANTOUGA Tifanie, APEH Christian, Tata Marthe et son équipe pour avoir pris soin de moi durant mon séjour dans cette ville.
- ➤ Mes précieux amis : Pamela BITOM, Loïc ELLA, Harry ANGOULA, Jules BOUNOUNGOU, Gaëtan EBENE, Julien ATANGANA, Andréa EYOTTO, Yvon MANDELA, David BETSEM, Georges KAMSU, Joyce KENFACK, Alex KENFACK, Cyrille KENFACK, Igor ZEH, Elie BWANGA, Cédric ETOUNDI, Mimshe KENFACK, Junior KEMOGNE, Gires TAKOUGANG, Landry ZAMBO, Précieux MABIKA et tous mes amis de Polytechnique Yaoundé pour leur présence et leur soutien inconditionnel durant mon passage dans cette école.
- ➤ Mes ainés académiques : **Nicolas AYONTA et Boris FOTSA**, pour les bons conseils et leurs encouragements ;
- ➤ Mes camarades des promotions **GIM-2022** et **GIM-2023** pour tout le soutien, la patience et la solidarité dont ils ont fait preuve pendant toutes nos années de formation ;
- > Je remercie enfin Celui Par Qui tout est possible.

LISTE DES ABREVIATIONS

ETAT DES LIEUX DE LA MAINTENANCE DE l'ENGIN NAUTIQUE VIGILANCE, PROPOSITION D'UN PLAN
DE MAINTENANCE PRÉVENTIVE ET CONCEPTION D'UN OUTIL DE SUIVI DE LA MAINTENANCE DE CET
EQUIPEMENT

RES	UN	ME
	\sim \perp	

Mots clés :

ABS	TR /	CT
ADO		

Key words:

LISTE DES FIGURES

Figure 1 : Organigramme de fonctionnement de la RDD	20
Figure 2 : Disponibilité de la Drague Vigilance	23
Figure 3 : Disponibilité du navire d'assistance DMC	24
Figure 4 : MTBF de Vigilance	25
Figure 5 : MTBF de DMC	25
Figure 6 : L'assurance Produit	30
Figure 7 : Organigramme des types de maintenance.	32
Figure 8 : Les temps de maintenance.	34
Figure 9 : Exemple de structure modulaire d'une GMAO	36
Figure 10 : Courbe de fiabilité et fonction de répartition.	39
Figure 11 : Système série.	41
Figure 12 : Système parallèle.	41
Figure 13 : Courbe baignoire.	42
Figure 14 : Structure d'un SGBD.	49
Figure 15 : Méthodologie de cycle de vie en V.	51
Figure 16 : Méthodologie en cascade.	52
Figure 17 : Exécution de la requête avec Django.	54
Figure 18 : Menu principal de FiabOptim.	59
Figure 19 : Tracé sur papier de Weibull.	61
Figure 20 : Fonction de Fiabilité R(t)	62
Figure 21 : Fonction Densité de probabilité f(t)	63
Figure 22 : Fonction de répartition F(t)	63
Figure 23 : Taux de défaillance $\lambda(t)$	64
Figure 24 : Courbe ABC	69
Figure 25 : Diagramme de Pareto	70

LISTE DES TABLEAUX

Tableau 1 Fiche signalétique de l'entreprise	17
Tableau 2: Récapitulatif des niveaux de maintenance	33
Tableau 3 : Les 10 modules d'une GMAO	37
Tableau 4 : Les principales lois de survie	43
Tableau 5 : Historique des pannes sur Vigilance 2022 :	57
Tableau 6 : Estimation de la fiabilité et la fonction de répartition	60
Tableau 7 : Les paramètres de calcul de la Fiabilité	61
Tableau 8 : Calcul de la maintenabilité	66
Tableau 9 : Historique utilisé pour le diagramme ABC	68
Tableau 10 : Plan de maintenance du Navire Vigilance	72

TABLE DES MATIERES

DEDICACE	ii
REMERCIEMENTS	iii
LISTE DES ABREVIATIONS	v
RESUME	vi
ABSTRACT	vii
LISTE DES FIGURES	viii
LISTE DES TABLEAUX	ix
TABLE DES MATIERES	x
INTRODUCTION GENERALE	14
CHAPITRE 1 : CONTEXTE ET PROBLEMATIQUE	15
I.1. PRESENTATION DE L'ENTREPRISE PAD/RDD	16
I.1.1. PRESENTATION DE L'ENTREPRISE PAD	16
I.1.2. PRESENTATION DE LA SUCCURSALE RDD	18
a) Objet, missions et durée de la RDD	19
b) Les ressources de la RDD	20
c) Organigramme de la RDD	20
1.2. CONTEXTE	21
1.2.1. LE COMBINA PORTUAIRE DE DOUALA/BONABERI	21
1. Présentation	21
2. Le chenal d'accès	21
3. Les plans d'eau et les pieds de quai :	22
1.2.2. LES MOYENS	22
1.3. CONSTATS ET PROBLEMATIQUE	23

1.3.1. CONSTATS	23
Constat 1	23
Constat 2	25
Constat 3	26
Constat 4	26
Constat 5	26
1.3.2. PROBLEMATIQUE	27
CHAPITRE 2 : METHODOLOGIE	28
II.1. MAINTENANCE	29
II.1.1. DEFINITION	29
II.1.2. LES OBJECTIFS DE LA MAINTENANCE	29
II.1.3. ENVIRONNEMENT DE LA MAINTENANCE	30
II.1.4. LES DIFFERENTS TYPES DE MAINTENANCE	31
1) La maintenance corrective :	31
2) La maintenance préventive :	31
II.1.5. LES NIVEAUX DE MAINTENANCE	33
II.1.6. LES TEMPS DE MAINTENANCE	34
II.2. GMAO	34
II.2.1. DEFINITION	34
II.2.2. OBJECTIFS D'UNE GMAO	35
II.2.3. IMPORTANCE D'UNE GMAO	35
II.2.4. LES 10 MODULES D'UNE GMAO	36
6) Gestion des approvisionnements et des achats	37
II.3. L'ANALYSE FMD	38
II.3.1. LA FIABILITE	38

1) Objectifs de la fiabilité	38
2) Méthodes mathématiques	39
II.3.2. LA MAINTENABILITE	44
II.3.3. LA DISPONIBILITE	46
1. Disponibilité intrinsèque théorique :	46
2. Disponibilité moyenne :	46
3. Disponibilité opérationnelle :	46
4. Disponibilité asymptotique	47
5. Disponibilité instantanée	47
II.4. LA CONCEPTION LOGICIELLE	48
II.4.1. LANGAGES DE PROGRAMMATION	48
II.4.2. LES SYSTEMES DE GESTION DES BASES DE DONNEES (SGBD) :	48
1) Les avantages d'un SGBD	49
2) Les exemples de SGBD	50
II.4.3. Méthodologie de conception d'un logiciel	50
1) La méthodologie classique ou en V	50
2) Méthodologie en cascades X	51
II.4.4. MODELISATION DU SYSTEME	53
1) Architecture de Django	53
2. Diagramme UML	54
II.5. MÉTHODOLOGIE ADOPTÉE :	55
CHAPITRE 3 : RÉSULTATS ET COMMENTAIRES	56
III.1 ETAT DES LIEUX DE LA MAINTENANCE : L'ANALYSE FMD	57
III.1.1 HISTORIQUE DES PANNES	57
III.1.2 LA FIABILITÉ	59

a) Calcule de R (MTBF):	64
b) Calcule de F (MTBF):	64
c) La densité de défaillance f (MTBF) :	65
d) Calcul de λ (MTBF) :	65
III.1.3 LA MAINTENABILITÉ	65
III.1.4 DISPONIBILITÉ THÉORIQUE	67
III.1.5 LES ANALYSES PREVISIONNELLES DES DYSFONCTIONNEMENTS	68
1) LA MÉTHODE ABC : CONSTRUCTION DE LA COURBE ABC	68
2) LE DIAGRAMME DE PARETO	70
III.2 PLAN DE MAINTENANCE PRÉVENTIVE DE VIGILANCE	71
III.2 CONCEPTION D'UN OUTIL D'AIDE AU SUIVI DE LA MAINTENANCE DU 1	NAVIRE
VIGILANCE : VIGILANCE VIEW	74
BIBLIOGRAPHIE	76

INTRODUCTION GENERALE

CHAPITRE

CONTEXTE ET PROBLEMATIQUE

Dans cette partie, il est question de mettre en avant l'environnement qui encadre le mémoire ainsi que les notions y afférent. De ce fait, nous allons présenter l'entreprise d'abord le PAD et sa succursale la RDD, ensuite les motivations qui ont conduit au choix du développement de ce thème, et enfin le vocabulaire nécessaire à la compréhension de la problématique qu'il traite.

I.1. PRESENTATION DE L'ENTREPRISE PAD/RDD

I.1.1. PRESENTATION DE L'ENTREPRISE PAD

Situé au cœur du Golfe de Guinée à 04° 03′5 de l'altitude Nord et 09° 41′8 de l'altitude Est, le port de Douala est relié à la mer par un chenal d'accès de près de 50 Km dont 25 Km à l'intérieur et 25 Km à l'extérieur avec une cote de -7 m.

Ex-Office National des Ports du Cameroun (ONPC), le Port Autonome de Douala (PAD) a été créé par décret d'application No 99/130 du 15 juin 1999, de la loi cadre No 98/021 qui définit la reforme portuaire. Le PAD est une société à capital public, dotée d'une autonomie financière.

Sa position de « pôle de référence au cœur du Golfe de Guinée » lui permet de jouer un rôle essentiel pour l'économie des pays de l'hinterland (Nigéria, Congo, Gabon, Guinée Équatoriale, Tchad, République Centrafricaine) dont il assure 95% du trafic.

Le PAD a pour principale mission d'assurer la gestion, le marketing et la promotion du port de Douala dont le domaine couvre une superficie de 100 ha. De façon spécifique, le PAD est chargée de :

- Accueillir les navires :
- A Fournir la logistique multimodale ;
- A Promouvoir l'intégration sous régionale ;
- Assurer la gestion et la promotion de la place portuaire de Douala

La sécurité et la sureté sont assurées en conformité avec les exigences du code **I.S.P.S** (International Ship and Port facility Security) par une régie toute neuve créée en 2020 par le port de Douala appelée **Douala Port Security**.

Le tableau suivant récapitule la fiche signalétique du PAD :

Tableau 1 Fiche signalétique de l'entreprise

Raison sociale:	Port Autonome de Douala
Création :	Décret présidentiel n°99/130 du 15 juin 1999
Responsables:	Directeur Général : Cyrus NGO'O
	Directeur Général Adjoint : Charles Michaux
	MOUKOKO NJOH
Registre du commerce :	RCCM: 030.153
Numéro du contribuable :	M069900009499X
Forme Juridique :	Société à Capital public ayant l'État comme unique
	actionnaire
Adresse:	Centre des affaires Maritimes – Bonanjo
	BP: 4020 Douala – Cameroun
	Tel.: (237) 33 42 01 33/33 43 55 00
	Fax (+237) 33 42 67 97
	Web: http://www.pad.cm/site/
Accès:	- Port d'estuaire relié à la mer par un chenal de 50
	km
	- Largeur du chenal intérieur : 150 m environ
	- Profondeur du chenal : -7,00 m (+ 2,0 de marnage)
	- Balisage latéral du système A, constitué de 39
	bouées.
Terminaux :	- Terminal céréalier
	- Terminal à bois
	- Terminal mixte fruitier
	- Terminal minéralier
	- Terminal pétrolier
	- Port de pêche
Régies:	- Régie du Terminal à Conteneurs (RTC)
	- Régie Du Dragage (RDD)
	- Régie Du Remorquage (RDR)
	- Régie de police et Sécurité Portuaire baptisée
	Douala Port Security (DPS)
Services offerts:	- Services aux Navires: Pilotage, manutention,
	maintenance navale, remorquage et amarrage des
	navires, avitaillement, séjour à quai, dragage.
	- Service à la marchandise : Manutention Terre,
	Stockage, Entreposage, Transit.
Performances:	- 1181 Navires accueillis en 2011
	- Trafic total de 8 568 798 tonnes en 2011 dont 6
	372 487 tonnes d'export, 564 448 tonnes de trafic de
	transit et 333 834 tonnes de trafic.
Conteneurs:	- Taux d'occupation des quais : 55,38% (2011)
	- Attente moyenne/navire : 15,67 Heures (2011)
	- Séjour moyen à quai : 3,58 jours (2011)

Le PAD dispose d'une organisation constituée du Président du Conseil d'Administration, qui dispose d'une structure d'appui dont l'organisation et le fonctionnement sont précisés par un texte particulier et de la direction générale.

Cette dernière assure la gestion administrative, technique et financière du Port Autonome de Douala et est éventuellement assisté d'une Direction Générale Adjointe. Pour l'accomplissement de sa mission, le Directeur Général dispose :

A	ъ.	Cabinet	
41	1)'11n	('ahınet	•
48-0	D un	Caumici	

Des services rattachés ;

D'une Administration Centrale;

Des Services déconcentrées ;

Des Services Extérieures.

I.1.2. PRESENTATION DE LA SUCCURSALE RDD

La résolution N° 0617-18-/CA/PAD du 07 Décembre 2018 porte création, organisation et fonctionnement de la **Régie** *Déléguée* **Du Dragage** Du Port De Douala/Bonaberi.

La résolution N° 0995-22-CA/PAD du 29 décembre 2022 porte création de la **Régie Du Dragage**, succursale du PAD.

La RDD a été tour à tour la **Régie Déléguée Du Dragage** puis la succursale du PAD baptisée **Régie Du Dragage**, s'occupant exclusivement du dragage du chenal du port de Douala et de ses différents clients. Sur proposition du Directeur Général, après délibération, le conseil d'administration du PAD adopte la teneur dont la résolution suit :

- De L'objet Des Missions Et De La Durée De La Régie Du Dragage
- Des Ressources De La Régie Du Dragage
- Des Moyens Matériels Et Humains De La Régie Du Dragage
- De L'organisation Et Du Fonctionnement De La Direction De La Régie Déléguée Du Dragage Du Port Autonome De Douala Bonaberi.

a) Objet, missions et durée de la RDD

La RDD assure pour le compte du PAD, l'exercice de l'activité du dragage du chenal d'accès des plans d'eau, des quais et des darses du port de Douala/Bonaberi. Elle est créée pour une **durée indéterminée.**

À ce titre elle est chargée de :

- La planification, de la programmation et de l'exécution des travaux portuaires du dragage selon le cahier des charges défini par le Directeur General du PAD;
- La vulgarisation et du contrôle de l'application des règles de sécurité spécifiques à la navigation et aux travaux portuaires du dragage ;
- La gestion, de l'entretien, de la maintenance des équipements affectés aux travaux portuaires du dragage;
- Contrôle de l'adéquation entre les prestations et les coûts des équipements affectes aux travaux portuaires du dragage ;
- La facturation des travaux portuaires du dragage;
- La valorisation commerciale des résidus des travaux portuaires du dragage ;
- La recherche des marches en vue de la valorisation commerciale des équipements affectés aux travaux portuaires du dragage ;
- La gestion, de la formation et du recyclage du personnel technique et administratif recruté et affecté à la RDD.

Dans le cadre de ses missions, la RDD met en place un système de gestion des données portuaires relatives à la profondeur du chenal et des zones navigables des plans d'eau, des quais et des darses. Les opérations de dragage relèvent des missions du service public portuaire. À ce titre, et dans le respect des dispositions légales et règlementaires applicables, la RDD est tenue d'exploiter cette activité de façon à garantir en permanence la continuité d'exploitation des services du dragage, l'égalité de traitement des usagers, le respect des objectifs de performances et de résultats qui lui sont fixés par le Directeur Général du PAD. La RDD est créée pour une **durée indéterminée**.

Pour les besoins de son administration, la RDD dispose de :

- Un conseil de supervision
- Une Direction.

Ces organes assurent leurs missions de manière autonome dans le respect des dispositions prévues. Le secrétariat du conseil de supervision de la RDD est assuré par le Directeur assisté du Directeur adjoint de la RDD.

b) Les ressources de la RDD

Les ressources de la RDD proviennent notamment :

- Du produit des travaux portuaires du dragage facturé au PAD;
- Du produit de la commercialisation des résidus des travaux portuaires du dragage;
- Du produit de la location des équipements du dragage ;
- Des revenus des prestations de dragage exécutés hors du port de Douala/Bonaberi.

c) <u>Organigramme de la RDD</u>

Sa direction est constituée de 6 unités majeures en plus de l'Unité Technique de l'Informatique qui, malgré qu'elle ne soit pas mentionnée dans ses statuts, est une unité à part entière et existante de la structure. Son organigramme de fonctionnement est le suivant :

Figure 1 : Organigramme de fonctionnement de la RDD

Pour le compte de ce stage, nous avons été affectés à *l'unité technique de maintenance des équipements*.

1.2. CONTEXTE

1.2.1. <u>LE COMBINA PORTUAIRE DE DOUALA/BONABERI</u>

1. Présentation

Le port de Douala, situé au fond du Golfe de Guinée et en amont de l'estuaire du Wouri, est accessible par un chenal de 50 km de longueur et limité par le premier obstacle à la navigation le pont de Wouri. Ce complexe est construit sur environ 400 hectares de superficie et d'environ 10 km de quais.

À l'amont sur la rive gauche, la fermeture du bras Est du Wouri a permis la construction d'une darse de pêche draguée à -6.5m de profondeur autour de laquelle se développent les activités de pêche, de réparation navale et de recherche pétrolière.

En aval de cette darse de pêche, un quai d'environ 5 km de longueur dispose de 17 postes à quai de commerce. Le terminal à conteneur et roll-on/Roll-off avec un front d'accostage réalisé en palplanches métalliques à une cote d'exploitation de -8,50m.

La darse à bois initialement draguée à -9.50m est construite sur environ 40 hectares, bordée par les quais de l'armée camerounaise (BIR, base navale), le quai SDV Bolloré Logistic, le parc à bois, etc.

En rive droite, une extension du port dans la zone industrielle de Bonaberi a permis la construction des quais 51 et 52 destinés respectivement à accueillir les produits gaziers et les matières premières de l'usine de CIMENCAM de Bonaberi.

2. Le chenal d'accès

Les navires qui arrivent au Port de Douala font leur point à partir de la bouée d'atterrissage « WOURI ». Ils empruntent ensuite un chenal long de 50 km et divisé en deux parties à peu près d'égale longueur au regard de la stabilité des fonds :

- Le chenal extérieur large de 250 m offre des profondeurs naturelles suffisantes à la navigation et allant de la bouée d'atterrissage « Wouri » à la bouée de base, zone de mouillage des navires en attente ;
- Le chenal intérieur, va de la bouée de base jusqu'au port, large de 150 m soumis au phénomène de sédimentation connu dans tous les ports d'estuaire, phénomène entraînant des dépôts d'alluvions charriés par le fleuve, ses affluents et criques. Dans cette partie du chenal, il faut draguer pour garantir les profondeurs d'eau, nécessaires à la navigation.

3. <u>Les plans d'eau et les pieds de quai :</u>

Les plans d'eau du Port de Douala comprennent :

- Une darse à bois dont l'envasement constant a réduit les profondeurs d'eau offertes aux navires. L'accès aux quais de cabotage est maintenu par dragage à la cote -5,00 m;
- Une darse de pêche dans la partie amont du port dont une bonne partie est encombrée par les épaves de navires ;
- Une zone d'évitage en face des quais rive gauche du Wouri ;
- Les pieds de quais de commerce comprennent les postes 1 à 17 et le poste à duc d'albe du terminal bois.

1.2.2. LES MOYENS

Au regard du besoin permanent de l'activité de dragage du port de Douala/Bonaberi, l'Etat du Cameroun a doté le Port Autonome de Douala d'importants moyens pour assurer la navigation dans les accès et bassins du port de Douala.

Les équipements et immeubles du PAD nécessaires aux opérations du dragage du port de Douala/Bonaberi mis à la disposition de RDD, organe en charge desdites opérations sont :

- Une drague à élinde trainante de 3.000 m³ de capacité de puits : La drague Mont MANDARA ;
- Une drague suceuse stationnaire à cutter de type Beaver 50 : La drague Vigilance ;
- Une drague Polyvalente de 630m³ de capacité de puits : La drague Chantal BIYA ;
- Une vedette d'assistance de la drague VIGILANCE : le Delta Multicraft (DMC) Patriote ;
- Les grues ;
- Les bulldozers ;
- Le matériel roulant ;
- Les infrastructures et les immeubles relevant du domaine public portuaire affectés à la RDD.

1.3. CONSTATS ET PROBLEMATIQUE

1.3.1. CONSTATS

Dans ce travail, nous nous intéressons particulièrement aux équipements que sont **la drague Vigilance** et son **navire d'assistance DMC** (Delta Multi Craft) ; Depuis son lancement, ils participent de manière quasi « efficace » au fonctionnement opérationnel de la RDD. Quasi car nous avons effectué des constats au niveau de la gestion de la maintenance du navire Vigilance et son Navire d'assistance DMC.

Constat 1 : Indicateurs de disponibilité de Vigilance et DMC

Selon les données d'heures de fonctionnement de la drague Vigilance et de DMC recueillis au service Maintenance de la RDD et présentés en annexe, nous avons constaté d'importants écarts par rapport à la disponibilité idéale maximale de 98% selon la norme NFE 60-182 sur le taux de disponibilité. En appliquant la formule de calcul de la disponibilité Opérationnelle suivante :

$$DO = \frac{TBF}{TO - TAP}$$

DO: Disponibilité Opérationnelle

■ TO: Temps d'Ouverture

■ TAP : Temps d'Arrêts

Cela est traduit par les courbes suivantes :

Figure 2 : Disponibilité de la Drague Vigilance

Nous constatons que la disponibilité du navire Vigilance a une tendance en dents de scies avec une baisse graduelle durant les 04 derniers mois de l'année 2022 devenant presque nulle au dernier mois. Cette décroissance est due au grand nombre de pannes apparaissant sur le navire et nécessitant de nombreuses périodes d'arrêt dues au temps de réparation.

Figure 3 : Disponibilité du navire d'assistance DMC

La tendance de la courbe de disponibilité opérationnelle du navire d'assistance DMC est similaire à celle de la drague Vigilance donc nous constatons la même baisse de la disponibilité avec un point particulier À 0% en novembre 2022 due à sa mise en cale sèche. Ces similarités sont mieux mise en évidence dans le graphique suivant sur lequel les courbes de ces deux navires sont mises l'une à côté de l'autre.

Aux vues de ceci, on constate que la disponibilité visée n'a jamais été atteinte et se dégrade au dernier trimestre de l'année 2022.

<u>Constat 2</u>: Indicateurs de fiabilité de Vigilance et DMC:

En ce qui concerne la MTBF désirable, nous nous basons sur les objectifs de l'entreprise qui durant la période de 2021 à 2022 étaient d'être opérationnels 18h par jour ce qui fait une MTBF désirable de 420h :

MTBF = Temps total d'opération/Nombre d'arrêts+1

Figure 4 : MTBF de Vigilance

Figure 5: MTBF de DMC

Dans le pire des cas un nombre d'arrêts est de 1 par mois ceci dû à certaines maintenances correctives. En se basant dessus, force est de constater que sur la période totale **de 17 mois, aucun mois** ne représente un fonctionnement au-dessus de la MTBF désirable pour les navires Vigilance et DMC.

Ainsi nous avons un Pourcentage de 39,89% d'attentes réalisées pour Vigilance et 54,93% pour DMC. Ces résultats représentent une performance moindre pour ces navires qui sont destinés à fonctionner 24h/24.

Constat 3: Manque d'outil informatisé de suivi des navires vigilance et DMC

Le navire Mont Mandara inclut en son sein une GMAO (Gestion de la maintenance assistée par ordinateur) nommée Marad, mais les navires Vigilance et DMC ne bénéficient pas de cet outil ce qui en comparaison avec Mont Mandara, rend moins aisé la collecte des informations du navires et le suivi des maintenances programmées.

<u>Constat 4</u>: Difficulté de communication des informations de maintenance entre les mécaniciens en mer et les ingénieurs à terre

La transmission efficace des informations entre les mécaniciens du navire et les ingénieurs à terre à la Régie du Dragage de Douala n'est pas toujours efficace. Les mécaniciens, travaillant souvent dans des conditions exigeantes et éloignées en mer, sont confrontés à des contraintes de temps et de communication. Ils doivent gérer un grand nombre de données, telles que les relevés de maintenance, les rapports d'incidents, les relevés des équipements, les données de performance et bien d'autres. Cependant, la collecte, l'enregistrement et le transfert de ces informations vers les ingénieurs à terre peuvent être sujets à des obstacles telles que les lenteurs administratives et le fait de devoir attendre la fin de chaque bordée (qui dure deux semaines) pour transmettre les informations aux ingénieurs à terre qui sont chargés de planifier la maintenance et organiser la maintenance des navires.

Constat 5 : Problème de suivi des maintenances programmées

Le suivi des maintenances programmées sur les navires de la Régie du dragage présente plusieurs défis. Tout d'abord, il peut être difficile de respecter les plannings établis en raison des contraintes opérationnelles et des délais serrés auxquels sont confrontés les navires. De plus, la coordination entre les équipes de maintenance à terre et les marins peut est complexe comme signalée dans le paragraphe précédent. De ce fait les maintenances programmées sur de longues périodes (mois ou années), ne sont pas réellement suivies et cela aboutit à des pannes qui forcent les maintenances correctives.

Pour résoudre ces problèmes, il est essentiel de mettre en place un programme solide de maintenance préventive, et de l'accompagner d'un outil de suivi numérique et automatique.

1.3.2. PROBLEMATIQUE

Les constats énoncés ci-dessus dans l'état des lieux nous permettent de retracer les conséquences suivantes :

- La non atteinte des objectifs de performances (KPI) navires dus à leur indisponibilité;
- Les problèmes de communication ;
- L'absence de suivi réel des maintenances programmées ;

Pour bien mener les missions de service publique de dragage qui sont confiées à la Régie du Dragage du Port de Douala, la maintenance en excellent état opérationnel des équipements est essentielle, ce qui nous pousse à nous poser les questions suivantes :

Quel est le plan de maintenance à appliquer afin de garantir une meilleure disponibilité de l'équipement de dragage Vigilance ?

Cette question justifie le thème qui nous a été attribué :

- « État des lieux de la maintenance de l'engin nautique Vigilance, proposition d'un plan de maintenance préventive et conception d'un outil de suivi de la maintenance de cet équipement. »

 Les objectifs pour cette problématique sont :
 - ⇒ Améliorer la disponibilité et la fiabilité du navire en identifiant et en réalisant les tâches de maintenance appropriées.
 - ⇒ Développer un plan de maintenance préventive optimisé, efficace et adapté aux besoins spécifiques du navire VIGILANCE.
 - ⇒ Mettre en place un outil numérique de suivi de la maintenance pour faciliter la gestion et la coordination des tâches de maintenance préventive.
 - ⇒ Réduire les coûts de maintenance et d'exploitation en appliquant une approche préventive, ce qui réduira les dépenses liées aux réparations imprévues et aux pannes majeures.

Ces objectifs visent à améliorer la performance de l'ensemble du système en assurant la fiabilité, la disponibilité et la sécurité des équipements et des systèmes de la drague et de son navire d'assistance.

CHAPITRE

METHODOLOGIE

Ce chapitre traite les prérequis ainsi que les méthodes et procédure pour mettre en place notre état des lieux, et planifier la maintenance préventive.

II.1. MAINTENANCE

II.1.1. DEFINITION

Le maintien des équipements de production est un enjeu clé pour la productivité des entreprises aussi bien pour la qualité des produits.

La norme AFNOR X 60-010 définie la **maintenance** comme l'ensemble des activités destinées à maintenir ou à rétablir un bien dans un état ou dans des conditions données de sûreté de fonctionnement, pour accomplir une fonction requise. Ces activités sont une combinaison d'activités techniques, administratives et de management.

Le rôle de la maintenance est d'assurer à l'outil de production, le fonctionnement le plus fiable possible, dans les plages de disponibilité désirées par la production.

II.1.2. LES OBJECTIFS DE LA MAINTENANCE

La maintenance vise à :

- Garantir la production prévue : La planification de la production doit être étudiée conjointement par l'entretien et la production en conciliant les arrêts nécessaires à l'entretien préventif et les recommandations du manufacturier tout en s'ajustant aux programmes de fabrication.
- **Améliorer la qualité du produit** : La qualité dépend autant de la production que de l'entretien ; chacune de ces fonctions aura à rendre compte en cas de baisse de productivité de l'entreprise : erreur d'opération ou défaillance de la machine, matière première défectueuse ou déréglage de la machine, etc.
- Contribuer au respect des délais : Il y a une double responsabilité au niveau de l'entretien : on doit connaître exactement l'état des équipements (pièce de rechanges, historique des pannes, intervenants, caractéristiques techniques, stock pièces de rechanges disponible etc.).
- **Rechercher des coûts optimaux** : Mis à part les compétences techniques, le service d'entretien doit être capable d'établir des devis précis et des estimes de coûts reliés aux travaux de maintenances.
- Assurer la sécurité des travailleurs et la qualité du milieu de travail : Le service de maintenance doit se préoccuper des accidents que les interventions peuvent occasionner d'une part, pour ses propres tâches (méthode de travail, consignes de sécurité, cadenassage, etc.).
- Respecter l'environnement : Au service de maintenance incombe souvent le contrôle des polluants et le rejet des contaminants dans l'environnement. Il n'est pas rare que le matériel non productif mais nécessaire soit négligé (exemple : système de recyclage, dépoussiéreur, filtre, etc.)

II.1.3. ENVIRONNEMENT DE LA MAINTENANCE

La maintenance s'intègre dans le concept global de la sureté de fonctionnement, qui lui-même s'intègre dans « l'assurance Produit » dont les grands axes sont présentés sur la figure ci-dessous :

Figure 6: L'assurance Produit

La sûreté de fonctionnement est composé quatre paramètres sont :

- La fiabilité (AFNOR X-06-501) : C'est l' « Aptitude d'un dispositif à accomplir une fonction requise dans des conditions d'utilisation données à un instant donné ».
- La disponibilité (AFNOR X-06-010) : C'est l' « Aptitude d'un dispositif à accomplir une fonction requise dans des conditions d'utilisation données pendant une période donnée ».
- La maintenabilité (AFNOR X-06-010) : C'est l' « Aptitude d'un dispositif à être maintenu ou rétabli dans un état dans lequel il puisse accomplir une fonction requise lorsque la maintenance est accomplie dans des conditions d'utilisation données avec des moyens et procédures prescrits».
- La sécurité (AFNOR X-06-010) : C'est l' « Aptitude d'un dispositif à éviter de faire apparaître des évènements critiques ou catastrophiques ».

II.1.4. LES DIFFERENTS TYPES DE MAINTENANCE

Il existe deux types de maintenance :

- La maintenance corrective;
- La maintenance préventive.

1) La maintenance corrective :

La norme AFNOR NF X 60 010 définit la **maintenance corrective** comme une maintenance effectuée après défaillance, où l'on distingue deux types d'intervention :

- Palliative (dépannage) : c'est-à-dire une remise en état de fonctionnement « caractère Provisoire ».
- Curative (réparation) : c'est la réparation complète, parfois après dépannage « Caractère définitif ».

La maintenance corrective peut être utilisée : seule en tant que méthode ou en complément d'une maintenance préventive pour s'appliquer aux défaillances résiduelles.

2) La maintenance préventive :

La norme AFNOR (X-60-010) définit la **maintenance préventive** comme une Maintenance effectuée dans l'intention de réduire la Probabilité de défaillance d'un bien ou la dégradation d'un service rendu. Il existe deux types de maintenance préventives :

- La maintenance **préventive systématique** : AFNOR X-60-010 : « Maintenance préventive effectuée suivant un échéancier établi, suivant le temps ou le nombre d'unité d'usage ».
- La maintenance **préventive conditionnelle** : AFNOR X-60-010 : « Maintenance préventive subordonnée à un type d'évènement prédéterminé révélateur de l'état du bien ».

La figure ci-dessous représente un organigramme des différentes méthodes de la maintenance :

Figure 7 : Organigramme des types de maintenance.

II.1.5. LES NIVEAUX DE MAINTENANCE

Les opérations à réaliser sont classées, selon leur complexité, en cinq niveaux. Les niveaux pris en considération sont ceux de la norme NF X-60-010 et récapitulés dans le tableau ci-dessous.

Tableau 2: Récapitulatif des niveaux de maintenance

1 Exploitant sur place Réglage simple d'organes accessibles léger défini sans aucun démontage, ou échanges d'éléments accessibles en dans les consignes de toute sécurité conduite.	
sans aucun démontage, consignes ou échanges d'éléments de conduite accessibles en dans les consignes de toute	
ou échanges d'éléments de conduite accessibles en dans les consignes de toute	
accessibles en dans les consignes de toute	
consignes de toute	
of south of a second side	
securite conduite.	
2 Technicien habileté Dépannage par échange Outillage st	andard et
(dépanneur) sur place standard d'éléments rechanges s	itués
prévus à cet effet, ou à proximité	
opérations mineures de	
maintenance préventive.	
3 Technicien spécialisé, Identification et Outillage pa	révu plus
sur place ou en atelier de maintenance diagnostics de pannes, appareils	
	banc d'essai,
de composants de contrôle.	•
fonctionnels, réparations	
mécaniques mineures	
4 Équipe encadrée par un Travaux importants de Outillage ge	énéral et
technicien spécialisé, en atelier central maintenance corrective spécialisé.	
ou préventive/Révisions	
	oches de ceux
polyvalente, en atelier de reconstruction, de la fabrica	ation par le
réparations importantes constructeu	r.
confiées à un atelier	
central	
Souvent externalisés.	

II.1.6. LES TEMPS DE MAINTENANCE

Les temps de la maintenance peuvent être représentés selon le modèle de la figure suivante :

Figure 8 : Les temps de maintenance.

On a:

- MTTF= Mean Time To First Failure = Fonctionnement avant 1ère défaillance ;
- **MDT**= *Mean Down Time* = Temps Moyen d'Indisponibilité;
- **MUT**= *Mean up Time* = Temps Moyen de Remise en Etat ;
- **MTBF**= *Mean Time Between Failure* = Temps Moyen entre Défaillance ;
- **MTBF-MTTR** = Fonctionnement Moyen Entre Défaillance.

II.2. GMAO

II.2.1. DEFINITION

Un Logiciel de Gestion de Maintenance assistée par Ordinateur (GMAO) est un logiciel de management de la maintenance organisée autour d'une base des données permettant de programmer et de suivre sous trois aspects (technique, budgétaire, organisationnelle), toutes les activités d'un service de maintenance à partir de terminaux disséminés dans les bureaux techniques, les ateliers, les magasins et bureau d'approvisionnement.

Il est destiné aux différents secteurs de l'industrie, du tertiaire, des institutions publiques... Son intérêt est d'assister quotidiennement les services maintenance dans leurs missions, en adéquation avec les nouvelles technologies (applications de mobilité et de traçabilité).

Il comprend différents organes:

- D'entrée, qui permettent l'introduction d'informations dans la base de données ;
- De mémoire, qui permettent la conservation des informations ;
- De traitement, qui permettent d'effectuer des analyses sur les informations saisies ;
- De sortie, qui permettent de restituer les résultats.

II.2.2. OBJECTIFS D'UNE GMAO

L'objectif de la GMAO est de déterminer les causes initiales des problèmes identifiés préalablement et préventivement de trouver ceux non encore survenus, en évaluant leur criticité, c'est-à-dire en tenant compte de la fréquence d'apparition des défaillances et de criticité de ces dernières. Ses objectifs sont :

- La diminution des temps d'arrêt pour une meilleure préparation et connaissance de l'historique ;
- La planification dans le temps et le suivi des activités du service maintenance ;
- L'accès aux informations mises à jour ;
- L'optimisation des stocks ;
- La Gestion de l'équipage;

La GMAO agit sur trois aspects que sont :

- La fiabilité opérationnelle par : la collecte et analyse des données, le suivi et exploitation des indicateurs, et la gestion des équipes ;
- La maintenabilité opérationnelle par : les informations sur les interventions, la documentation des interventions, les équipements de réparation et pièces de rechange ;
- La disponibilité opérationnelle par : la fiabilité et maintenabilité, la planification hors temps de production.

II.2.3. IMPORTANCE D'UNE GMAO

Aujourd'hui, la maintenance ne peut plus se résumer à des taches d'entretien basiques. Le service de maintenance est un centre de profit. Il faut donc anticiper les pannes, afin de réduire les couts et améliorer la productivité. Le service maintenance cherche à maintenir un bien afin que celui-ci soit en mesure d'assurer un service déterminé. Ainsi, une **GMAO** permet la gestion complète du parc machines, l'analyse du curatif, l'organisation des interventions préventives et réglementaires, la gestion des stocks et des achats, le « reporting » à travers les tableaux de bord et les statistiques, en prenant en compte les réalités du terrain.

Les impacts d'une GMAO sont :

- La connaissance complète des équipements ;
- Une meilleure maitrise des couts ;
- Un partage de connaissance ;
- Un plan de maintenance.

II.2.4. LES 10 MODULES D'UNE GMAO

Tous les logiciels de GMAO ont en commun la même structure modulaire proposant les mêmes fonctions. Mais, selon les logiciels, les fonctions remplies sont diversement dénommées, diversement réparties et diversement organisées. [30]

 $Figure\ 9: Exemple\ de\ structure\ modulaire\ d'une\ GMAO$

Dans les bureaux techniques d'une entreprise (méthodes, ordonnancement, logistique et travaux neufs), on pourra effectuer la gestion par exploitation des 10 modules présentés dans le tableau suivant

Tableau 3 : Les 10 modules d'une GMAO.

MODULES	<u>FONCTIONNEMENT</u>
1) Gestion des équipements	Il s'agit de décrire et de coder l'arborescence du découpage allant de
	l'ensemble du parc à maintenir aux équipements identifiés et caractérisés
	par leur DTE (dossier technique d'équipement) et leur historique, puis à
	leur propre découpage fonctionnel.
2) Gestion du suivi	Ce module permettra de suivre les performances d'un équipement à partir
opérationnel des équipements	des indicateurs de fiabilité, de maintenabilité, de disponibilité.
3) Gestion des interventions	Ce module doit permettre un enregistrement rapide de la durée, de la
	localisation, et de la nature d'une intervention.
4) Gestion du Préventif	Ce module doit permettre de gérer la maintenance systématique à travers
	un planning calendaire par équipement, les dates doivent être déterminées
	à partir d'un relevé de compteur (ou d'une mesure dans le cas de la
	maintenance conditionnelle). Ce qui fait que le déclenchement sera
	automatique, par listage hebdomadaire des opérations prévues dans la
	semaine. Chaque opération sera prévue par sa gamme préventive.
5) Gestion des stocks	Le système repose sur le fichier des articles en magasin comprenant les
	"lots de maintenance" par équipement et sur les mouvements
	entrées/sorties du magasin.
6) Gestion des	Les caractéristiques de la fonction de maintenance sont beaucoup de
approvisionnements et des achats	références et de fournisseurs pour des quantités faibles et des délais
	courts. Ce module doit permettre la gestion des achats.
7) Analyse des défaillances	La base de ce module est constituée des historiques automatiquement
	alimentés par chaque saisie de BT (bons de travaux) ou OT (ordre de
	travaux). Ce qui permet une analyse quantitative ou qualitative des
	défaillances.
8) Budget et suivi des dépenses	L'objectif de ce module est le suivi de l'évolution des dépenses par activité
	dans un budget donné.
9) Gestion des ressources	Spécifiquement adapté au service maintenance, ce module sera
humaines	principalement une aide à l'ordonnancement.
10) Tableaux de bord et	Les tableaux de bord concernent la mise en forme de tous les indicateurs
statistiques	techniques, économiques, et sociaux sélectionnés pour assurer la gestion
	et le management du service maintenance.

II.3. L'ANALYSE FMD

La sûreté de fonctionnement regroupe les activités d'évaluation de la fiabilité (assurer la continuité du service), de la Maintenabilité (être réparable), de la disponibilité (être prêt à l'emploi), d'un système, d'un produit ou d'un moyen. Ces évaluations permettent, par comparaison aux objectifs ou dans l'absolu, d'identifier les actions de construction (ou d'amélioration) de la sûreté de fonctionnement de l'entité. Ces évaluations sont prévisionnelles et reposent essentiellement sur des analyses inductives ou déductives des effets des pannes, dysfonctionnements, erreurs d'utilisation ou agressions de l'entité.

II.3.1. LA FIABILITE

La fiabilité est la caractéristique d'un dispositif exprimée par la probabilité que ce dispositif accomplisse une fonction requise dans des conditions d'utilisation et pour une période déterminée. La fiabilité d'un groupe d'éléments à un instant t est la probabilité de fonctionnement sans défaillance pendant la période [0, t], c'est donc la probabilité que l'instant de première défaillance T soit supérieur à t, [17].

Bien entendu, cette définition posée sur une échelle en temps de fonctionnement est tout aussi valable avec une autre unité, par exemple en Km ou en R(t) = P(T > t).

1) Objectifs de la fiabilité

La fiabilité est utilisée depuis bientôt une dizaine d'années dans l'industrie, le concept de fiabilité permet à l'aide de renseignement statistique recueilli pendant la vie du matériel [15] :

- De mesurer une garantie dans le temps.
- Dévaluer rigoureusement de degré de confiance.
- De chiffrer une dure de vie.
- Dévaluer une précision du temps de bon fonctionnement.
- De calculer le risque pris.
- De déterminer la stratégie d'entretien.
- De choisir le stock magasin judicieux.

2) <u>Méthodes mathématiques</u>

a) Densité de probabilité f(t).

$$f(t) = \frac{\beta}{\eta} \left(\frac{t - \gamma}{\eta}\right)^{\beta - 1} e^{-\left(\frac{t - \gamma}{\eta}\right)}$$

Avec t≥y

 β : est appelé paramètre de forme $\beta > 0$.

 η : est appelé paramètre d'échelle $\eta > 0$.

 γ : est appelé paramètre de position $-\infty < \gamma < +\infty$.

b) Fonction de répartition F(t):

Un dispositif, mis en marche pour la première fois, tombera inévitablement en panne à un instant T, non connu à priori.

T : est une variable aléatoire de fonction de répartition F(t).

F(t_i) : est la probabilité pour que le dispositif soit rn panne à l'instant t_i.

$$F(t_i) = P_r(T > t_i).$$

R(t_i) : est la probabilité de bon fonctionnement à l'instant ti.

$$R(t_i) = P_r(T > t_i).$$

$$\int_{0}^{t} f(t). dt + \int_{0}^{\infty} f(t). dt = 1$$

Figure 10 : Courbe de fiabilité et fonction de répartition.

ETAT DES LIEUX DE LA MAINTENANCE DE l'ENGIN NAUTIQUE VIGILANCE, PROPOSITION D'UN PLAN DE MAINTENANCE PRÉVENTIVE ET CONCEPTION D'UN OUTIL DE SUIVI DE LA MAINTENANCE DE CET EQUIPEMENT

c) Taux de défaillance $\lambda(t)$:

Soit N_0 : le nombre de dispositifs fonctionnant à t=0,

N (t): le nombre de dispositifs fonctionnant à l'instant t,

 $\frac{N(t)}{N_0}$ Est un estimateur de la fiabilité R(t).

$$N(t) - N(t + \Delta t) = \Delta N > 0$$

Si Δt tends vers 0, l'estimateur tend vers une limite qui est le taux de défaillance instantané :

$$\lambda(t)dt = -\frac{dN}{N(t)}$$

Relation non démontrée : si f(t) est la densité de probabilité, nous aurons

$$\lambda\left(t\right) = \frac{f\left(t\right)}{R\left(t\right)}$$

d) Fiabilité R(t):

On intègre cette expression entre 0 et t :

$$-\int_{0}^{t} \lambda(t) dt = \ln N(t) + K$$

Pour t=0, $N(t)=N_0 d$ 'où $K=N_0$.

$$N(t) = N_0 e^{-\int_0^t \lambda(t) dt}$$

$$N(t) = N_0 e^{-\int_0^t \lambda(t)dt}$$

$$N(t) = N_0 e^{-\int_0^t \lambda(t) dt}$$

Cette relation est fondamentale, car, quelle que soit la loi de fiabilité, elle permet un tracé expérimental de la fiabilité en fonction du temps, l'évolution du taux de défaillances étant connue [17].

d) Fiabilité des systèmes complexes

D'une manière générale, les systèmes réels sont constitués de plusieurs composants et présentent plusieurs modes de défaillance ; de tels systèmes sont dits complexes.

i. Fiabilité d'un système en série

Figure 11 : Système série.

Un système série fonctionne si et seulement si tous les composants fonctionnent. La fiabilité est calculée par la relation suivante :

$$R(t) = \Pr(T > t)$$

$$= \Pr[(T_1 > t) \cap (T_2 > t) \cap]$$

$$= \prod_{i} \Pr(T_i > t) = \prod_{i} R_i(t)$$

ii. Fiabilité d'un système en parallèle

Figure 12 : Système parallèle.

Un système parallèle fonctionne si au moins un de ses composants fonctionne. La fiabilité pour ce système est donnée par :

$$R(t) = 1 - F(t)$$

$$= 1 - \Pr[(T_1 \le t) \cap (T_2 \le t) \cap ...]$$

$$= 1 - \prod_i \Pr(T_i \le t) = \prod_i R(t)$$

e) La MTBF

C'est la moyenne de temps de bon fonctionnement [16].

$$MTBF = \frac{\sum Heures \ de \ défaillance}{N^{\circ} \ d'équipementen \ essai}$$

On détermine aussi la MTBF à partir de la densité de probabilité :

$$MTBF=E(t)=\int tf(t)dt=\int_{0}^{\infty}R(t)dt$$

I.7. LE TAUX DE DÉFAILLANCE λ(t) EN FONCTION DU TEMPS t

En pratique, le taux de panne λ peut être constant, mais aussi croissant ou décroissant au cour du temps, avec changement graduel, sans discontinuités. Pour la majorité des produits industriels, les variations de $\lambda(t)$ à la cour du temps « courbes dites en baignoire » (figure suivant) présentent trois zones typiques :

Figure 13: Courbe baignoire.

Zone 1 = Époque de jeunesse.

Zone 2 = Époque de maturité, fonctionnement normal, défaillance aléatoire indépendante du temps ;

Zone 3 = Époque d'obsolescence, défaillances d'usure ou pannes de vieillesse.

f) Principales lois utilisées :

Dans les études de fiabilité des différents équipements, une variable aléatoire continue ou discrète peut être distribuée suivant diverses lois qui sont principalement :

i. La loi exponentielle

Elle est la plus couramment utilisée en fiabilité électronique pour décrire la période durant laquelle le taux de défaillance des équipements est considèré comme constant. Elle décrit le temps écoulé jusqu'à une défaillance, ou l'intervalle de temps entre deux défaillances successives.

ii. La loi de WEIBULL

C'est une loi continue à trois paramètres, donc d'un emploi très souple. En fonction de la valeur de ses paramètres, elle peut s'ajuster à toutes sortes de résultats expérimentaux. Cette loi a été retenue pour représenter la durée de vie des pièces mécaniques.

iii. La loi normale

C'est une loi continue à deux paramètres ; la valeur moyenne et l'encart type caractérise la dispersion autour de la valeur moyenne. Elle est la plus ancienne, utilisée pour décrire les phénomènes d'incertitudes sur les mesures, et ceux de fatigue des pièces mécaniques [17].

iv. La loi log-normale (ou loi de GALTON)

Soit une VA continue positive ; si la variable Log(xy) = est distribuée selon une loi normale, la variable x suit une loi log-normale. De nombreux phénomènes de mortalité ou de durée de répartition sont distribués selon des lois log- normale.

Tableau 4 : Les principales lois de survie.

Le tableau ci-après représente les fonctions représentatives de ces quatre lois :

	Loi exponentiell e	Loi de weibull Loi normale Loi-le		Loi-long-normale
Fiabilité (loi de survie): R (t)	$e\left(-\lambda_{0}t\right)$	$e^{\left[-\left(rac{t-t_0}{\eta} ight)^ ho} ight]}$	$\int_{t}^{0} \frac{1}{\sigma_{0}\sqrt{2\pi}} e^{\left[\frac{1(t-\mu)^{2}}{2\sigma_{0}^{2}}\right]}$	$\int_{t}^{0} \frac{1}{\sigma_{0} \sqrt{2\pi}} e^{\left[\frac{1(\ln t - \mu)^{2}}{2\sigma_{0}^{2}}\right]}$
Densité des défaillances: f (t)	$\lambda_{v}e\left(-\lambda_{v}t\right)$	$\frac{\beta}{\eta} \left(\left(\frac{t - t_0}{\eta} \right)^{\rho} \right)^{\beta - 1} e^{\left[-\left(\frac{\left(t - t_0 \right)}{\eta} \right)^{\rho} \right]}$	$\frac{1}{\sigma_0\sqrt{2\pi}}e^{\left[\frac{1(t-\mu)^2}{2\sigma_0^2}\right]}$	$\frac{1}{\sigma_0 \sqrt{2\pi}} e^{\left[\frac{\left[\ln(r-\mu)^2}{2\sigma_0^2}\right]}$
Taux instantané de défaillances: λ(t)	λ_{o}	$\frac{\beta}{\eta} \! \left(\! \left(\frac{t - t_0}{\eta} \right)^{\! \rho} \right)^{\! \beta - 1}$	$\frac{f(t)}{R(t)}$	$\left[\frac{f\left(t\right)}{R\left(t\right)}\right]$

g) MTTR

La MTTR est la Moyenne des temps Technique de Réparation. Comme la MTBF, elle est calculée à partir des historiques de défaillances et plus précisément à partir des TTR (temps de défaillance).

$$MTTR = \frac{\sum Heures \ de \ réparation}{N^{\circ} \ d'équipementen \ essai}$$

II.3.2. LA MAINTENABILITE

AFNOR norme X60-010 : « Dans des conditions données d'utilisation, aptitude d'un dispositif à être maintenu ou rétabli dans un état dans lequel il peut accomplir sa fonction requise, lorsque la maintenance est accomplie dans des conditions données, avec des procédures et des moyens prescrits » Il est possible de donner à la maintenabilité une définition probabiliste : « si la probabilité de rétablir un système dans des conditions de fonctionnement spécifiées, en des limites de temps désirées, lorsque la maintenance est accomplie dans des conditions avec des moyens prescrits ».

La maintenabilité dépend essentiellement de l'accessibilité, de la facilité de démontage et de remontage des éléments constitutifs et de leur interchangeabilité d'un équipement. L'indicateur essentiel de la maintenabilité d'un équipement est la MTTR (Mean Time To Repaire) traduite par la (Moyenne des Temps Techniques de Réparation), la maintenabilité concerne donc les responsables de maintenance ou même titre que la fiabilité, tant pour le choix d'équipements nouveaux que pour l'amélioration éventuelle l'équipement existant [15].

Métrologie d'évaluation des « MTTR » :

Comme pour l'étude de fiabilité, on va essayer de calculer la moyenne des temps technique de réparation « MTTR ». Les « MTTR » sont distribuées en générale suivants une loi log-normale, la distribuée log-normale est observée pour une durée de grande diversité d'équipements quelles que soit la forme de maintenance utilisée, cette distribution correspond à peu d'interventions de courte ou longues durées et une grande proportion d'intervention, dont les durées sont proches les unes des autres.

• La fonction de distribution des durées des interventions dans le cas de la loi log-normale :

$$g(t) = \frac{1}{t \cdot \sigma \cdot \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{\log(t-\mu)}{\sigma}\right)^2}$$

• La formule qui nous donne la Maintenabilité est :

$$\mu(t) = \frac{1}{\sigma \cdot \sqrt{2\pi}} \int \frac{1}{t} e^{-\frac{1}{2} \left(\frac{\log(t-\mu)}{\sigma}\right)^2} dt$$

• Pour cette loi MTTR est notée μc

Log
$$\mu c = \mu + 1,15 \sigma 2 = \mu + 1,15 v2$$

On a deux méthodes pour vérifier, si la loi-normale s'ajuste bien, se fait soit par méthode analytique, soit par méthode graphique. Du fait qu'elle est plus pratique nous choisissons la méthode graphique.

ETAT DES LIEUX DE LA MAINTENANCE DE l'ENGIN NAUTIQUE VIGILANCE, PROPOSITION D'UN PLAN DE MAINTENANCE PRÉVENTIVE ET CONCEPTION D'UN OUTIL DE SUIVI DE LA MAINTENANCE DE CET EOUIPEMENT

On traduit les résultats sur un graphique à échelle fonctionnelle log-normale. Sur un tel graphique, une fonction de réparation log-normale est transformée en une droite. C'est une manière simple pour vérifier rapidement si la distribution supposée log-normale est valable, il suffit ensuite de déterminer avec une assez bonne approximation les paramètres qui définissent complètement cette fonction de distribution (valeur médiane μ et l'écart type σ) ; 50 % des interventions de la maintenance curative représentent la valeur médiane, à partir des valeurs entre les ordonnées des points correspondant à 84 % et 16 % ($\pm \sigma$), on peut obtenir v et l'estimation de σ .

$$\sigma = \log t_{(0.5)} - \log_{(0.16)} = \frac{\log t_{(0.5)}}{\log_{(0.16)}}$$

$$\sigma = \log t_{(0.5)} - \log_{(0.16)} = \frac{\log t_{(0.5)}}{\log_{(0.16)}}$$

La médiane μ est donnée par : $\mu = \log t$ (0.5).

En additionnant les deux équations suivantes, on a :

$$\nu = \frac{1}{2} \log \frac{t_{(0.84)}}{t_{(0.16)}}$$

Avec N = nombre d'interventions.

L'étendu = TTR_S – TTR_{inf}

TTR_S = temps technique de réparation supérieure.

TTR_{inf} = temps technique de réparation inférieure.

II.3.3. LA DISPONIBILITE

AFNOR X60 - 500: « l'aptitude d'une entité à être en état d'accomplir une fonction requise dans des conditions données, à un instant donné ou pendant un intervalle de temps donné, en supposant que la fourniture des moyens extérieurs nécessaires de maintenance soit assurée ».

La politique de maintenance d'une entreprise est fondamentalement basée sur la disponibilité du matériel indiqué dans le système de production. Pour qu'un équipement présente une bonne disponibilité, il doit :

- Avoir le moins possible d'arrêts de production ;
- Être rapidement remis en bon état s'il tombe en panne.

La disponibilité peut se mesurer :

- Sur un intervalle de temps donné (disponibilité moyenne),
- À un instant donné (disponibilité instantanée),
- À la limite, si elle existe, de la disponibilité instantanée lorsque t→∞ (disponibilité asymptotique)

1. Disponibilité intrinsèque théorique :

Cette disponibilité est évaluée en prenant en compte les moyennes des temps de bon fonctionnement et les moyennes de réparations, ce qui donne :

$$D_i = \frac{MTBF}{MTBF + MTTR}$$

La disponibilité allie donc les notions de fiabilité et de maintenabilité. Pour augmenter la disponibilité on peut :

- Allonger la MTBF (action sur la fiabilité);
- La notion de MTTR (action sur la maintenance).
 - 2. <u>Disponibilité moyenne</u>:

La disponibilité moyenne sur un intervalle de temps donné peut-être évalué par les rapports suivants :

$$D_{m} = \frac{TCBF}{MCBF + TCI}$$

TCI: Temps cumulé d'immobilisation

3. Disponibilité opérationnelle :

Pour cette mesure, sont pris en compte les temps logistiques, ce qui donne :

$$D_0 = \frac{MTBF}{MTBF + MTTR + MTL}$$

ETAT DES LIEUX DE LA MAINTENANCE DE l'ENGIN NAUTIQUE VIGILANCE, PROPOSITION D'UN PLAN DE MAINTENANCE PRÉVENTIVE ET CONCEPTION D'UN OUTIL DE SUIVI DE LA MAINTENANCE DE CET EOUIPEMENT

Avec:

MTL: Moyenne des temps logistiques.

4. Disponibilité asymptotique

Lorsque λ et μ sont indépendants de temps et quand (t) devient grand, on constate que D (t) tend vers une valeur constante.

Cette valeur est souvent dénommée disponibilité asymptotique et se note A∝ est égale à :

$$A \infty = \frac{\mu}{\mu + \lambda}$$

Avec

$$\lambda = \frac{1}{MTBF} \qquad \mu = \frac{1}{MTTR}$$

5. <u>Disponibilité instantanée</u>

Pour un système avec l'hypothèse d'un taux de défaillance λ constant et d'un taux de réparation μ constant, on montre que la disponibilité instantanée a pour expression :

$$D(t) = \frac{\mu}{(\mu + \lambda)} + \frac{\lambda}{\mu + \lambda} e^{-(\lambda + \mu)t}$$

La fiabilité, maintenabilité et la disponibilité sont des notions fondamentales parallèles de même importance. Cependant complémentaires, une maintenabilité optimale sera particulièrement recherchée là où la fiabilité est douteuse. L'analyse FMD (fiabilité, maintenabilité et disponibilité) basée sur le calcul des trois paramètres essentiels sont la fiabilité, la maintenabilité et la disponibilité. Dans le chapitre suivant, on va calculer la fiabilité de la machine choisie et on va améliorer cette dernière et la sureté de fonctionnement par une proposition d'un plan de maintenance préventive systématique suivant des opérations de la maintenance préventive systématique pour améliorer la durée de fonctionnement de ces équipements.

II.4. LA CONCEPTION LOGICIELLE

II.4.1. LANGAGES DE PROGRAMMATION

Un langage de programmation est une notation conventionnelle qui sert à décrire les action qu'un ordinateur doit réaliser. Ainsi, il existe deux grands types de langages de programmations notamment :

- ⇒ La programmation procédurale : il permet de décrire les procédures d'un raisonnement en distinguant les procédures et les données soumises à ces procédures. Comme langage de programmation procédurale nous pouvons citer : le C, PASCAL, BASIC, FORTRAN, COBOL etc...
- ⇒ La programmation orienté objet (POO) : c'est un modèle de programmation informatique qui consiste à définir et faire interagir des objets grâce à de différentes technologiques. Il s'articule autour d'objets et des données plutôt que des actions logiques. Comme langage de programmation orientée objet nous pouvons citer : le C++ ; PYTHON ; JAVA ; Ruby ; Visual basic.NET, simula etc... [10]

Dans le cadre de notre étude, nous allons uniquement présenter la programmation orientée objet. La programmation orientée objet regorge en son sein de plusieurs avantages notamment :

- La facilité d'organisation, la possibilité de réutilisation, une méthodologie plus intuitive, sa possibilité d'héritage, sa facilité de correction, sa gestion de projets plus aisée. Son intérêt principal réside dans le fait que l'on ne décrit plus par le code des actions à réaliser de façon linéaire, mais par des ensembles cohérents appelés objets.
- Il est facilement concevable car il décrit des entités comme il en existe dans le monde réel. « Dans un modèle à objets, toute entité du monde réel est un objet, et réciproquement, tout objet représente une entité du monde réel ».
- Lisibilité des programmes avec un minimum d'expérience, de taille minimale et à la correction aisée.
 Ces programmes sont de plus, souvent très stables.
- La sécurité dans le programme grâce à l'interdiction ou l'autorisation de l'accès à certains objets aux autres parties du programme.

II.4.2. LES SYSTEMES DE GESTION DES BASES DE DONNEES (SGBD) :

Une base de données (abrégée BD) est un ensemble structuré et organisé permettant le stockage de grandes quantités d'informations afin d'en faciliter l'exploitation (ajout, mise à jour, recherche de données). Ainsi, un système de gestion des données (abrégée SGBD) est caractérisé par le modèle de description des données qu'il supporte (relationnel, objet). La plupart des SGBD fonctionnent selon un mode client/serveur. Le serveur (la machine qui stocke les données) recroît des requêtes de plusieurs clients et ceci de manière concurrente. Le serveur analyse la requête, la traite et retourne le résultat au client. Ces données peuvent être

manipulées non seulement par un Langage spécifique de Manipulation des Données (LMD) mais aussi par des langages de programmation classiques. [11]

Figure 14: Structure d'un SGBD.

1) Les avantages d'un SGBD

Le système de gestion des bases de données regorge en son sein plusieurs avantages qui sont [11] :

- ⇒ **Indépendance physique** : La façon dont les données sont définies doit être indépendante des structures de stockage utilisées.
- ⇒ **Indépendance logique** : Un même ensemble de données peut être vu différemment par des utilisateurs différents. Toutes ces visions personnelles des données doivent être intégrées dans une vision globale.
- ⇒ Accès facile aux données.
- ⇒ Administration centralisée des données (intégration) : Toutes les données doivent être centralisées dans un réservoir unique commun à toutes les applications.
- ⇒ **Non redondance des données** : Afin d'éviter les problèmes lors des mises à jour, chaque donnée ne doit être présente qu'une seule fois dans la base.
- ⇒ **Cohérence des données :** Les données sont soumises à un certain nombre de contraintes d'intégrité qui définissent un état cohérent de la base. Elles doivent pouvoir être exprimées simplement et vérifiées automatiquement à chaque insertion, modification ou suppression des données.
- ⇒ **Partage des données** : Il s'agit de permettre à plusieurs utilisateurs d'accéder aux mêmes données au même moment de manière transparente.
- ⇒ **Sécurité des données** : Les données doivent pouvoir être protégées contre les accès non autorisés. Pour cela, il faut pouvoir associer à chaque utilisateur des droits d'accès aux données.
- ⇒ Résistance aux pannes : après une panne intervenant au milieu d'une modification deux solutions sont possibles : soit récupérer les données dans l'état dans lequel elles étaient avant la modification, soit terminer l'opération interrompue.

2) <u>Les exemples de SGBD</u>

Il existe de nombreux systèmes de gestion de bases de données, nous pouvons citer :

- ACCESS;
- SQL SERVER;
- SYBASE;
- POSTGRESQL;
- MYSQL.

II.4.3. Méthodologie de conception d'un logiciel

Afin de mettre en place un logiciel de GMAO, plusieurs méthodologies ont été expérimentées dans de diverses entreprises. Toutefois, ces différentes méthodologies ont des activités clés en commun. Il s'agit de :

- L'analyse : elle consiste à recenser et documenter chaque fonctionnalité que devra offrir le logiciel en fonction du cahier de charge.
- Conception : il s'agira de déterminer les solutions techniques qui permettent de satisfaire le cahier des charges.
- Implémentation : ici, de façon générale, c'est la rédaction du code source et sa compilation.
- **Test** : c'est un examen approfondi qui prend en compte une série de tests en vue de vérifier l'alignement du produit avec le cahier des charges.

Comme méthodologies de développement du logiciel, nous avons :

1) La méthodologie classique ou en V

Le modèle en V demeure actuellement le cycle de vie le plus connu et certainement le plus utilisé. Le principe de ce modèle est que toute décomposition doit décrire la recomposition, et que toute description d'un composant est accompagnée de tests qui permettront de s'assurer qu'il correspond à sa description.

Les méthodologies classiques ou en V s'attachent à planifier le projet de bout en bout et sont résistantes aux changements, on les dit « prédictives ». Afin d'adapter le besoin à l'évolution rapide du marché, les projets doivent gagner en souplesse et recentrer l'objectif sur la vision produit, non seulement la vision projet. La méthode classique de génie consiste à effectuer successivement les travaux d'analyse fonctionnelle, de conception, de programmation et de test.

Figure 15 : Méthodologie de cycle de vie en V.

a) Les avantages de la méthodologie en V :

La méthodologie en V présente plusieurs avantages indéniables que sont :

- L'expression d'une vision claire du projet ;
- La définition d'une démarche projet en escaliers qui décline en « petits morceaux », la marche à suivre vers la cible ;
- Le suivi de la cohérence du résultat attendu. [12]

b) Les limites de la méthodologie en V :

Toute œuvre n'étant pas parfaite, la méthodologie en V rencontre plusieurs limites qui sont :

- Une faiblesse dans la prise en charge des modifications de l'expression des besoins pendant le projet ;
- Une faiblesse dans la gestion des risques inhérents au projet ;
- Une rigidité dans la prise en charge des non-conformités (pour correction), dont certaines pourraient s'avérer mineures pour le bon fonctionnement du produit final [12]

2) Méthodologie en cascades X

Elle a été mise au point dès 1966, puis formalisé aux alentours de 1970. Dans ce modèle le principe est très simple : chaque phase se termine à une date précise par la production de certains documents ou logiciels. Les résultats sont définis sur la base des interactions entre étapes, ils sont soumis à une revue approfondie et on ne passe à la phase suivante que si les tests ont été jugés satisfaisants.

Figure 16: Méthodologie en cascade.

a) Les avantages de la méthodologie en cascade

La méthodologie en cascade regorge en son sein plusieurs avantages notamment [12] :

- Planification structurée : les étapes sont prédéfinies en amont et dans un ordre strict.
- La documentation est détaillée : Chaque étape d'informations sont détaillées. Facilitant ainsi l'accès d'une documentation solide de l'équipe de travail pour revenir à tout moment sur certaines parties du processus. Cela facilite également la standardisation des processus utiles aux nouveaux membres ou aux projets du même type.
- Suivi facile : grâce à la barre de chronologie. Elle facilite la progression du projet et repère clairement l'étape en cours de réalisation.

b) Les limites de la méthodologie en cascade

Les limites de la méthodologie en cascade sont [12] :

- Pas de place aux imprévus: La linéarité caractéristique de la méthode cascade ne fait pas bon ménage avec le caractère imprévisible des retards et des obstacles. De ce fait, tout retard ou obstacle (par exemple, la non-réception d'une pièce de fabrication dans les délais) qui survient peut décaler le calendrier, voire mettre en pause l'ensemble du projet.
- **Retours en arrière impossibles :** Intrinsèquement linéaire, la structuration des phases est source de rigidité dans l'organisation des activités. Ce manque de flexibilité ne laisse donc pas la place aux modifications ou aux mises à jour (dynamique du marché, attentes du client, etc.) qui n'ont pas été planifiées avant le commencement du projet.
- Contrôle qualité tardive : La phase de tests n'a lieu qu'à la fin du projet, soit une fois le produit conçu. Cela ne permet pas de corriger tout défaut majeur présent dès le départ, mais constaté en aval, ou encore d'ajuster toute sous-estimation des exigences ou des besoins.

II.4.4. MODELISATION DU SYSTEME

Pour notre outil de dimensionnement, nous avons utilisé le logiciel Django, car il est sécurisé et possède une grande communauté :

1) Architecture de Django

Django est un Framework Python de haut niveau, permettant un développement simple et rapide de sites internet, sécurisés, et maintenables.

Lorsque nous parlons de Framework qui fournissent une interface graphique à l'utilisateur (soit une page web, comme ici avec Django, soit l'interface d'une application graphique classique), nous parlons souvent de Framework utilisant l'architecture MVC. Il s'agit d'un modèle distinguant plusieurs rôles précis d'une application, qui doivent être accomplis. Comme son nom l'indique, l'architecture (ou « patron ») Modèle-Vue-Contrôleur est composé de trois entités distinctes, chacune ayant son propre rôle à remplir.

- ✓ Tout d'abord, **le modèle** représente une information enregistrée quelque part, le plus souvent dans une base de données. Il permet d'accéder à l'information, de la modifier, d'en ajouter une nouvelle, de vérifier que celle-ci correspond bien aux critères (on parle d'intégrité de l'information), de la mettre à jour, etc.
- ✓ Ensuite la vue qui est, comme son nom l'indique, la visualisation de l'information. C'est la seule chose que l'utilisateur peut voir. Non seulement elle sert à présenter une donnée, mais elle permet aussi de recueillir une éventuelle action de l'utilisateur (un clic sur un lien, ou la soumission d'un formulaire par exemple). (Un Template est un fichier HTML, aussi appelé en français « gabarit ». Il sera récupéré par la vue et envoyé au visiteur ; cependant, avant d'être envoyé, il sera analysé et exécuté par le Framework, comme s'il s'agissait d'un fichier avec du code).
- ✓ Finalement, le contrôleur prend en charge tous les événements de l'utilisateur (accès à une page, soumission d'un formulaire, etc.). Il se charge, en fonction de la requête de l'utilisateur, de récupérer les données voulues dans les modèles. Après un éventuel traitement sur ces données, il transmet ces données à la vue, afin qu'elle s'occupe de les afficher. Lors de l'appel d'une page, c'est le contrôleur qui est chargé en premier, afin de savoir ce qu'il est nécessaire d'afficher.

La figure 24 nous donne un apercu de l'exécution d'une requête avec Django :

Figure 17 : Exécution de la requête avec Django.

2. Diagramme UML

Le diagramme d'UML (Unified Modeling Language), est un language de modélisation graphique à base de pictogrammes conçu comme une méthode normalisée de visualisation dans les domaines du développement logiciel et en conception orientée objet.

a) Diagramme de cas d'utilisation

Le diagramme de cas d'utilisation représenté à la figure 25 permet d'exprimer les besoins des utilisateurs d'un système en recueillant, analysant et organisant les besoins des utilisateurs et en recensant les grandes fonctionnalités du système

b) Diagramme de séquence

Le diagramme de séquence est utilisé pour illustrer les échanges entre les objets lors d'un scénario décrit dans un diagramme de cas d'utilisation. Son objectif est de représenter la manière dont les acteurs ou objets interagissent. Il met en évidence l'ordre d'échange des messages et l'évolution temporelle. Il est considéré comme un diagramme temporel.

II.5. MÉTHODOLOGIE ADOPTÉE:

Dans la suite de notre projet nous allons suivre la démarche suivante :

- 1. Afin de faire **l'état des lieux de la maintenance** du navire Vigilance, nous allons réaliser l'analyse FMD (Fiabilité, Maintenabilité et Disponibilité) de l'équipement accompagné d'une analyse prévisionnelle des dysfonctionnements de l'engin en appliquant la méthode ABC et en établissant un diagramme de Pareto. L'analyse de la fiabilité (FMD) dans le domaine de la mécanique est un outil très important utilisé pour caractériser le comportement de l'équipement dans ses différentes phases de vie, qualifier un produit et améliorer ses performances tout au long de sa mission. La maintenabilité par analogie à la fiabilité, exprime un intérêt considérable au maintien des équipements en état de service et par conséquence assurer leur disponibilité.
- 2. Pour établir **le plan de maintenance préventive**, nous utiliserons les informations obtenues dans la partie état des lieux, les actions recommandées par le constructeur ainsi que l'expérience des ingénieurs et techniciens sur place.
- 3. Pour **concevoir notre outil d'aide au suivi de la maintenance**, nous emploierons la méthode des diagrammes d'UML (Unified Modeling Language). Comme outil de dimensionnement, nous avons utilisé le Framework Django car extrêmement sécurisé et ses mises à jour fréquentes atténue les risques pour les applications en cours de téléchargement. Enfin le langage de programmation utilisé pour son développement est le Python car facile à implémenter, puissant et flexible.

CHAPITRE

RÉSULTATS ET COMMENTAIRES

Ce chapitre est consacré:

- À l'établissement de l'état des lieux de la maintenance du navire Vigilance en appliquant la méthode FMD ;
- La proposition d'un plan de maintenance préventive pour ce navire ;
- La conception d'un outil d'aide au suivi de la maintenance.

III.1 ETAT DES LIEUX DE LA MAINTENANCE : L'ANALYSE FMD

III.1.1 <u>HISTORIQUE DES PANNES</u>

D'après l'historique et les interventions sur le navire Vigilance (du janvier 2022 à décembre 2022), on résume les données dans le tableau suivant :

Tableau 5 : Historique des pannes sur Vigilance 2022

N°	Date	Panne	Temps d'arrêts (h)	Temps de réparation (h)
01	03/01/2022	Panne sèche sur vigilance	13	13
02	04/01/2022	Mauvais état de la manivelle de la pompe pré	11	9
02	13/01/2022	graissage du moteur pompe Fuite de la mixture au niveau de la bride du coude	8	4
03	13/01/2022	de refoulement	8	4
04	21/01/2022	Dysfonctionnement sur la conduite de refoulement	2	2
05	22/01/2022	Tuyauterie enfuie dans les plans d'eau	3	3
06	27/01/2022	Fissure sur la poulie d'entrainement d'ancre bâbord	3	1
	27/01/2022	et tribord;	3	1
07	29/01/2022	Fente au niveau de l'ancre bâbord et tribord ;	9	1
08	02/02/2022	Vis de serre câble du treuil bâbord cassé	14	1
09	07/02/2022	Fuite de la mixture au niveau de la bride du coude	5	14
		de refoulement		
10	18/02/2023	Vis de la serre câble du treuil bâbord cassé	6	1
11	19/02/2022	Dysfonctionnement sur la conduite de refoulement	10	7
12	01/03/2022	Fuite d'huile hydraulique au niveau du treuil du Cutter	3	1
13	05/03/2022	Câbles de l'élinde défectueux	14	14
14	07/03/2022	Fuite au niveau du Box Cooler	14	14
15	08/03/2022	Fuite de la mixture au niveau de la bride du coude de refoulement	14	14
16	23/03/2022	Crépine sur vigilance cassée	3	3
17	07/04/2022	Dysfonctionnement sur le capteur de position des	3	3
17	07/04/2022	deux Spuds	3	3
18	14/04/2022	Dents endommagées sur le cutter	1	1
19	25/04/2022	Collier du box Cooler du moteur de dragage hors service	3	1
20	16/05/2022	Fuite d'eau sur la conduite juste après le densimètre	7	1
21	19/05/2022	Dysfonctionnement sur la conduite de refoulement	8	2
22	21/05/2022	Fuite d'huile hydraulique au niveau du vérins de	3	2
22	25/05/2022	levages qui contrôle le Spuds bâbord		
23	25/05/2022	Fuite d'huile hydraulique au niveau du treuil du Cutter	2	1
24	31/05/2022	Fuite au niveau de la gland water pump	2	2
25	01/06/2022	Dysfonctionnement sur la conduite de refoulement	5	1
26	02/06/2022	Flexible d'aspiration d'air dans la salle machine défectueux	2	1
27	04/06/2022	Fuite d'eau de la pipe situé au dessus du Gearbox	2	2
28	10/06/2022	Fissure du tuyau de refoulement au niveau de la	7	7
		zone ralliée à la pompe		

ETAT DES LIEUX DE LA MAINTENANCE DE l'ENGIN NAUTIQUE VIGILANCE, PROPOSITION D'UN PLAN DE MAINTENANCE PRÉVENTIVE ET CONCEPTION D'UN OUTIL DE SUIVI DE LA MAINTENANCE DE CET EQUIPEMENT

29	13/06/2022	Dents endommagées sur le cutter	1	1
30	18/06/2022	Câble du capteur de température de l'eau de	5	2
		refroidissement du moteur défectueux		
31	22/06/2022	Tuyau et vanne de la pompe à eau de	5	3
		refroidissement défectueux		
32	23/06/2022	Dysfonctionnement sur la conduite de refoulement	7	3
33	28/06/2022	Réducteur n'embrayer pas	4	4
34	13/07/2022	Câble en acier des Spuds défectueux	14	3
35	20/07/2022	Réducteur n'embrayer pas	14	14
36	30/07/2022	Fuite d'huile hydraulique au niveau du treuil du	7	6
		Cutter		
37	04/08/2022	Fuite d'huile hydraulique au niveau du treuil du	8	1
		Cutter		
38	05/08/2022	Fissure sur la conduite de refoulement prêt du	7	4
		densimètre		
39	05/08/2022	Dysfonctionnement sur la conduite de refoulement	7	4
40	16/08/2022	Fuite au niveau du coude de la conduite de	14	14
		refoulement posé sur le pont de Vigilance		
41	16/08/2022	Dysfonctionnement au niveau du ladder winch	14	14
42	21/09/2022	Câble d'ancre bâbord de Vigilance détaché du	11	2
		tambour		
43	01/10/2022	Bride fissurée sur le pipe	16	2
45	07/10/2022	Fuite sur le plateau principal de la dredge pump	4	4
46	08/10/2022	Fuite sur le pipe du liquidyne seal housing	14	14
47	12/10/2022	Fuite au niveau de la gland water pump	19	14
48	02/11/2022	Fuite d'eau au niveau du tuyau d'alimentation d'eau	7	6
		de refroidissement de la Gearbox		
49	17/11/2022	Fuite d'eau du pipe situé au dessus du Gearbox	7	6
50	18/11/2022	Déplacement de la bague positionné sur le	2	2
		couvercle avant de la pompe de dragage		
51	21/11/2022	Tuyau du pipe de graissage cassé	17	15
52	26/12/2022	Tuyau du pipe de graissage cassé	22	3
53	30/12/2022	Raccord du coude de refoulement de Vigilance	22	24
		percé		

III.1.2 LA FIABILITÉ

Nous utilisons le logiciel FiabOptim pour générer une représentation graphique de la fonction de fiabilité. FiabOptim est un logiciel spécialement conçu pour l'analyse numérique et graphique des données de fiabilité. Il permet d'estimer la loi de distribution des défaillances à partir des données opérationnelles ou expérimentales. De plus, il permet d'estimer les paramètres caractéristiques de ces lois et de calculer la fiabilité prévisionnelle du système étudié aux dates désirées, que ce soit en fonction du temps, des cycles, des kilomètres parcourus, etc. Son menu principal est présenté sur la figure ci-dessous :

Figure 18 : Menu principal de FiabOptim.

Le logiciel fonctionne à partir d'un fichier qui stocke les données de fiabilité. Vous avez la possibilité d'enregistrer les données au format. OFI pour les données individuelles. Si vos données ne sont pas encore enregistrées, vous devez les saisir à l'aide d'une fenêtre de saisie accessible via le bouton "Saisie". Vous pouvez vérifier la saisie des données individuelles en cliquant sur le bouton "Affichage" et même les corriger à partir du tableau affiché. Dans l'étude individuelle, vous pouvez choisir parmi les différentes méthodes proposées en fonction du module sélectionné.

Dans le cadre de notre analyse, nous procéderons au calcul de la fiabilité et de la fonction de répartition afin de vérifier quelle loi parmi celles existantes (Loi de Weibull, loi de Poisson, loi normale et loi exponentielle) correspond le mieux à nos données. Cette vérification sera effectuée en utilisant le test de Kolmogorov, qui permettra de déterminer la loi acceptée, ceci est illustré dans le tableau ci-dessous :

Tableau 6 : Estimation de la fiabilité et la fonction de répartition

N°	Temps d'arrêts (h)	F(t)	R(t)
01	1	0.0526315	0.9696542
02	1	0.0678524	0.9473684
03	2	0.0812594	0.9356412
04	2	0.1052632	0.9145877
05	2	0.1252691	0.8947368
06	2	0.1423952	0.8756246
07	2	<mark>0.1578947</mark>	0.8621654
08	2	0.1726482	0.8421053
09	3	0.1923647	0.8232548
10	3	0.2105263	0.8023654
11	3	0.2326985	0.7894737
12	3	0.2536947	0.7725462
13	3	0.2631579	0.7556921
14	3	0.2832145	0.7368421
15	3	0.3036547	0.7232652
16	4	0.3157885	0.7025972
17	4	0.3325648	0.6821512
18	<mark>5</mark>	0.3564587	0.6732658
19	5	0.3684211	0.6532156
20	5	0.3835642	0.6315789
21	<mark>5</mark>	0.4023491	0.6024894
22	6	0.4210526	0.5989456
23	7	0.4426851	0.5789474
24	7	0.4684562	0.5612345
25	7	0.4736842	0.5421496
26	7	0.4836542	0.5263158
27	7	0.5021598	0.5021598
28	7	0.5263158	0.4836542
29	<mark>7</mark>	<mark>0.5421496</mark>	0.4736842
30	7	0.5612345	0.4684562
31	8	0.5789474	0.4426851
32	8	0.5989456	0.4210526
33	8	0.6024894	0.4023491
34	9	0.6315789	0.3835642
35	10	0.6532156	0.3684211
36	11	0.6732658	0.3564587
37	11	0.6821512	0.3325648
38	13	0.7025972	0.3157885
39	14	0.7232652	0.3036547
40	14	0.7368421	0.2832145
41	14	0.7556921	0.2631579
42	14	0.7725462	0.2536947
43	14	0.7894737	0.2326985
44	14	0.8023654	0.2105263
45	14	0.8232548	0.1923647
46	14	0.8421053	0.1726482

47	14	0.8621654	0.1578947
48	<mark>16</mark>	<mark>0.8756246</mark>	0.1423952
49	<mark>17</mark>	<mark>0.8947368</mark>	0.1252691
50	19	0.9145877	0.1052632
51	<mark>19</mark>	0.9356412	0.0812594
52	22	0.9473684	0.0678524
53	<mark>22</mark>	<mark>0.9696542</mark>	0.0526315

La figure suivante montre la représentation graphique de la fonction de répartition sur le papier de Weibull. Cette représentation permet d'extraire les paramètres nécessaires pour calculer la fiabilité.

Figure 19 : Tracé sur papier de Weibull.

A partir de cette courbe, nous pouvons extraire les différents paramètres nécessaires pour estimer la valeur de la fiabilité. Les valeurs de ces paramètres résumés dans le tableau suivant :

Tableau 7 : Les paramètres de calcul de la Fiabilité

Paramètres	Valeurs
Beta (ß)	1,4987345
Eta (η)	8,9154374
Gamma (γ)	1,0363328
MTBF	156,490 h

Nous avons $\beta > 1 \Rightarrow \lambda$ (t) croit \Rightarrow période d'obsolescence du système.

Le logiciel utilisé applique le test de Kolmogorov pour vérifier la loi acceptée. Avec un écart maximum de 2,79E-01 et une valeur de D de 0,309, la loi de Weibull est acceptée. Les résultats obtenus avec cette loi permettent d'obtenir les figures suivantes des fonctions de fiabilité R(t), Densité de probabilité f(t), fonction de répartition F(t) et Taux de défaillance $\lambda(t)$.

Figure 20 : Fonction de Fiabilité R(t)

Cette courbe illustre que la fonction de fiabilité diminue avec le temps c'est-à-dire que la fiabilité réduite avec l'augmentation du taux de défaillance.

Figure 21 : Fonction Densité de probabilité f(t)

La courbe de la densité de probabilité montre que cette dernière diminue avec le temps.

Figure 22 : Fonction de répartition F(t)

On remarque d'après la courbe de la fonction de répartition que la fonction augmente avec le temps.

Figure 23 : Taux de défaillance $\lambda(t)$

Le taux de défaillance augmente avec la variation du temps.

a) Calcule de R (MTBF) :

$$R(MTBF) = e^{-\left[\frac{MTBF - \gamma}{\eta}\right]^{\beta}}$$

AN: R(MTBF) =
$$e^{-\left(\frac{156.5-1.036}{8.91}\right)^{1.49}} = 0.48$$

b) Calcule de F (MTBF):

$$F(MTBF) = 1 - e^{-\left[\frac{MTBF - \gamma}{\eta}\right]^{\beta}}$$

AN:

$$F(MTBF) = 1 - e^{-\left(\frac{156.5 - 1.036}{8.91}\right)^{1.49}}$$
$$= 0.52$$

c) La densité de défaillance f (MTBF) :

$$f(MTBF) = \frac{\beta}{\eta} \left(\frac{MTBF - \gamma}{\eta} \right)^{\beta - 1} \cdot e^{-\left(\frac{MTBF - \gamma}{\eta} \right)^{\beta}}$$

$$= f(MTBF) = \frac{1.49}{8.91} \left(\frac{156.5 - 1.036}{8.91} \right)^{1.49 - 1} \cdot e^{-\left(\frac{156.5 - 1.036}{8.91} \right)^{1.49}}$$

$$= 0.09$$

d) Calcul de λ (MTBF):

$$\lambda(\text{MTBF}) = \frac{\beta}{\eta} \left(\frac{MTBF - \gamma}{\eta}\right)^{\beta - 1}$$

$$\text{AN} : \lambda(\text{MTBF}) = \frac{1.49}{8.91} \left(\frac{156.5 - 1.036}{8.91}\right)^{1.49 - 1}$$

$$= 0.19 \text{ h}^{-1}$$

III.1.3 LA MAINTENABILITÉ

La fonction de maintenabilité est donnée par :

$$M(t) = 1 - e^{-\mu . t}$$

Avec t étant le temps de réparation de la panne concernée.

Le taux de réparation μ se calcule par la formule :

$$\mu = \frac{1}{MTTR} ,$$

Avec MTTR =
$$\frac{\sum TTR}{N}$$
 = 5.5 h.

Où N est le nombre de pannes.

Ainsi
$$\mu = 0.18 \, h^{-1}$$

Le tableau ci-dessous résume le calcul de la maintenabilité :

Tableau 8 : Calcul de la maintenabilité

N°	Temps de réparation (h)	M(t)
01	13	0.9036
02	9	0.8021
03	4	0.5132
04	2	0.3023
05	3	0.4172
06	1	0.1647
07	1	0.1647
08	1	0.1647
09	14	0.9195
10	1	0.1647
11	7	0.7163
12	1	0.1647
13	14	0.9195
14	14	0.9195
15	14	0.9195
16	3	0.4172
17	3 3	0.4172
18	1	0.1647
19	1	0.1647
20	1	0.1647
21	2	0.3023
22	2	0.3023
23	1	0.1647
24	2	0.3023
25	1	0.1647
26	1	0.1647
27	2	0.3023
28	7	0.7163
29	1	0.1647
30	2	0.3023
31	3	0.4272
32	3	0.4172
33	4	0.5132
34	3	0.4172
35	14	0.9195
36	6	0.6604
37	1	0.1647
38	4	0.5132
39	4	0.5132
40	14	0.9195
41	14	0.9195
42	2	0.3023
43	2	0.3023
45	4	0.5132
46	14	0.9195
47	14	0.9195

ETAT DES LIEUX DE LA MAINTENANCE DE l'ENGIN NAUTIQUE VIGILANCE, PROPOSITION D'UN PLAN DE MAINTENANCE PRÉVENTIVE ET CONCEPTION D'UN OUTIL DE SUIVI DE LA MAINTENANCE DE CET EQUIPEMENT

48	6	0.6604
49	6	0.6604
50	2	0.3023
51	15	0.9327
52	3	0.4172
53	24	0.9867

III.1.4 <u>DISPONIBILITÉ THÉORIQUE</u>

$$D = \frac{MTBF}{MTBF + MTTR}$$
Or MTBF = 156.5 h et MTTR = 5.5 h
Alors D = $\frac{156.5}{156.5 + 5.5}$
D = 0.96

III.1.5 <u>LES ANALYSES PREVISIONNELLES DES DYSFONCTIONNEMENTS</u>

1) <u>LA MÉTHODE ABC : CONSTRUCTION DE LA COURBE ABC</u>

À partir de l'historique des pannes de 2022, nous avons le tableau suivant :

Tableau 9 : Historique utilisé pour le diagramme ABC

N°	Pannes	Nombre de pannes	Cumul du nombre de pannes	% Cumulé du Nombre de pannes	Temps d'arrêt (h)	Cumul des temps d'arrêt	% Cumul des temps d'arrêt
01	Dysfonctionnement sur la conduite de refoulement	9	9	16,6667	43	43	4,3611
02	Fuite d'huile hydraulique au niveau du treuil du Cutter	8	17	31,4815	56	99	10,0406
03	Vis du serre câble du treuil bâbord cassé	5	22	40,7407	43	142	14,4016
04	Fuite de la mixture au niveau de la bride du coude de refoulement	5	27	50,0000	29	171	17,3428
05	Fuite au niveau de la gland water pump	4	31	57,4074	30	201	20,3854
06	Tuyauterie enfuie dans les plans d'eaux	3	34	62,9630	150	351	35,5984
07	Câble de l'ancre du treuil bâbord coupé	3	37	68,5185	30	381	38,6410
08	Dysfonctionnement du moteur de la pompe à graisse	2	39	72,2222	66	447	45,3347
09	Tuyau du pipe de graissage cassé	2	41	75,9259	42	489	49,5943
10	Tuyau du pipe de graissage cassé	2	43	79,6296	20	509	51,6227
11	Réducteur n'embrayer pas	2	45	83,3333	18	527	53,4483
12	Dysfonctionnement de l'écran d'indication des paramètres du moteur dans la salle machine	1	46	85,1852	100	627	63,5903
13	Défaut de prise de commande à la passerelle	1	47	87,0370	104	731	74,1379
14	Dysfonctionnement sur le système des treuils de papillonnage (vitesse presque nulle)	1	48	88,8889	73	804	81,5416
15	Rupture du cône de liaison de la poulie des alternateurs sur la boîte de répartition	1	49	90,7407	42	846	85,8012
16	Anomalie sur la carte électronique de commande des treuils	1	50	92,5926	42	888	90,0609

ETAT DES LIEUX DE LA MAINTENANCE DE l'ENGIN NAUTIQUE VIGILANCE, PROPOSITION D'UN PLAN DE MAINTENANCE PRÉVENTIVE ET CONCEPTION D'UN OUTIL DE SUIVI DE LA MAINTENANCE DE CET EQUIPEMENT

17	Non alignement de la poulie des alternateurs	1	51	94,4444	28	916	92,9006
18	Fuite d'huile sur le réducteur	1	52	96,2963	28	944	95,7404
19	Raccord du coude de refoulement de Vigilance percé	1	53	98,1481	22	966	97,9716
20	Absence d'étanchéité de la vanne de purge de l'élinde	1	54	100	20	986	100

La figure suivante représente le diagramme ABC obtenu :

Figure 24 : Courbe ABC

La zone A : elle représente 83% des pannes représentent 53 % des temps d'arrêt, c'est la zone la plus importante. Le problème réside dans le grand nombre de dysfonctionnements sur la conduite de refoulement et les nombreuses fuites d'huile.

La zone B: Dans cette zone 7% des pannes qui représentent 27% des temps d'arrêts, à ce stade, les dysfonctionnements sont majoritairement d'ordre électriques et électroniques.

La zone C : elle représente 6% des pannes qui représentent 8% des temps d'arrêts, c'est la moins importante. Elle représente les problèmes d'étanchéité et de non-alignements des poulies.

2) LE DIAGRAMME DE PARETO

D'après les données montrées dans le tableau ci-dessus, on peut tracer le diagramme de Pareto. La figure ci-dessous représente le diagramme de Pareto.

 $Figure\ 25: Diagramme\ de\ Pareto$

D'après le diagramme de Pareto, on constate que la défaillance ayant causé le plus grand nombre d'heures d'arrêt est la tuyauterie enfuie dans les plans d'eau, cette information permettra d'étudier plus précisément les défaillances.

III.2 PLAN DE MAINTENANCE PRÉVENTIVE DE VIGILANCE

D'après notre étude, nous avons constaté que les éléments qui tombent le plus en panne sur la drague Vigilance sont : la tuyauterie enfuie dans les plans d'eau, le défaut de prise de commandes de la passerelle et le dysfonctionnement de l'écran d'indication des paramètres du moteur de la salle des machines. La fréquence de défaillance de ces éléments réduit la fiabilité de la machine. Pour minimiser le temps d'arrêt et améliorer la fiabilité, on propose les solutions suivantes :

- → Changement complet de l'écran d'indication de des paramètres de la salle machine ;
- → Renouvellement annuel de la tuyauterie de déversement de la drague ;
- → Former l'équipage Camerounais du navire à la prise en mains des commandes de la drague pour que les interventions sur la passerelle soient plus effectives.

ETAT DES LIEUX DE LA MAINTENANCE DE l'ENGIN NAUTIQUE VIGILANCE, PROPOSITION D'UN PLAN DE MAINTENANCE PRÉVENTIVE ET CONCEPTION D'UN OUTIL DE SUIVI DE LA MAINTENANCE DE CET EQUIPEMENT

Tableau 10 : Plan de maintenance du Navire Vigilance

PLAN DE MAINTENANCE PREVENTIVE		DRAGUE VIGILANCE						ICE
OPERATIONS	EXÉCUTANT			FRÉQU	ENCES	S		OBSERVATIONS
		J	Н	M	T	S	A	
Nettoyage de la salle machine de DMC et Vigilance ;	Mécanicien		X					
Nettoyage des ponts principaux ;	Matelot		X					
Vérification de l'état de la batterie de démarrage ;	Électricien	X						
Nettoyage des filtres à air et séparateurs ;	Mécanicien					X		
Inspection visuelle état du treuil et de la grue ;	Matelot/Mécanicien	X						
Inspection visuelle pompe à graisse ;	Mécanicien	X						
Test de l'ancre;	Mécanicien			X				
Contrôle pompe de graissage et appoint ;	Mécanicien		X					
Nettoyage du Cutter;	Mécanicien			X				
Remplacement des filtres et préfiltres à gasoil	Mécanicien						X	
Nettoyage des ponts principaux et du Cutter ;	Matelot			X				
Vérification des paramètres de l'eau de refroidissement et de l'huile de graissage sur les différents systèmes ;	Mécanicien	X						
Vidange de la génératrice Perkins 403D à 4370h;	Mécanicien					X		
Inspection visuel état du treuil et de la grue ;	Mécanicien	X						

ETAT DES LIEUX DE LA MAINTENANCE DE l'ENGIN NAUTIQUE VIGILANCE, PROPOSITION D'UN PLAN DE MAINTENANCE PRÉVENTIVE ET CONCEPTION D'UN OUTIL DE SUIVI DE LA MAINTENANCE DE CET EQUIPEMENT

Contrôler les courroies reliant la pompe au moteur ;	Mécanicien	X							
Maintenance des tuyaux de refoulement ;	Mécanicien					X			
Entretien effectué sur l'ancre;	Mécanicien					X			
Appoint eau douce;	Matelot				X				
Nettoyage permanent de la salle machine de DMC et Vigilance;	Matelot			X					
Révision du klaxon de DMC;	Mécanicien		X						
Graissage du treuil	Mécanicien					X			
Graissage de la grue	Mécanicien			X					
Vérifier l'absence de de dommages sur les poulies et tambours	Mécanicien	X							
Vérifier les niveaux de pression / température de l'huile	Mécanicien	X							
Contrôler/ nettoyer le refroidisseur d'huile hydraulique et le filtre	Mécanicien		X						
Vérifier l'absence des dommages sur les câblages électrique	Électricien						X		
Vérifier les couples de serrage des boulons	Mécanicien						X		
Rédacteur : Date :	*: J = Journalier H = Hebdomadaire M = Mensuel T = Folio: 1/1 Trimestriel								

ETAT DES LIEUX DE LA MAINTENANCE DE l'ENGIN NAUTIQUE VIGILANCE, PROPOSITION D'UN PLAN DE MAINTENANCE PRÉVENTIVE ET CONCEPTION D'UN OUTIL DE SUIVI DE LA MAINTENANCE DE CET EQUIPEMENT

III.3 CONCEPTION D'UN OUTIL D'AIDE AU SUIVI DE LA MAINTENANCE DU NAVIRE VIGILANCE : VIGILANCE VIEW

ETAT DES LIEUX DE LA MAINTENANCE DE l'ENGIN NAUTIQUE VIGILANCE, PROPOSITION D'UN PLAN DE MAINTENANCE PRÉVENTIVE ET CONCEPTION D'UN OUTIL DE SUIVI DE LA MAINTENANCE DE CET EQUIPEMENT

CONCLUSION ET PERSPECTIVES

BIBLIOGRAPHIE

- [26] https://zestedesavoir.com/tutoriels/597/developpez-votre-site-web-avec-le-framework-django/263 premiers-pas/1521 les-templates/ (consulté le 01 juillet 2023).
- ¹ GEODE, (2003). Dragage- Dictionnaire Environnement. Repéré le 31 juillet 2023, à https://m.actu-environnement.com/dictionnaire-environnement/definition/dragage.html
- [30] MAINTENANCE Methodes et organisations cours monchy.pdf consulté le 15/05/2023 à 09:55
- [40] GMAO: avantages d'un logiciel de maintenance (aqmanager.com) consulté le 15/05/2023 à 10:40
- [50] Mémoire de conception GMAO.pdf consulté le 12/05/2023 à 22:50

ETAT DES LIEUX DE LA MAINTENANCE DE l'ENGIN NAUTIQUE VIGILANCE, PROPOSITION D'UN PLAN DE MAINTENANCE PRÉVENTIVE ET CONCEPTION D'UN OUTIL DE SUIVI DE LA MAINTENANCE DE CET EQUIPEMENT