Page Rank

Grundlagen

Gliederung

- Mathematische Grundbegriffe
- Idee und Algorithmus
- Probleme und Lösungen
- Potenzmethode
- Erweiterungen

Eigenwerte und Eigenvektoren Eigenvalues and Eigenvectors

- **Eigenvektor** x einer Matrix M: vom Nullvektor verschieden, Richtung ändert sich durch Multiplikation mit der Matrix $\underline{\text{nicht}} \rightarrow \text{Streckung bzw. Stauchung}$
- Formel: $Mx = \lambda x$
- "Streckungsfaktor" λ heißt Eigenwert
- eine Matrix kann mehrere Eigenwerte haben; zu jedem Eigenwert gibt es passende Eigenvektoren
- dominanter Eigenwert: betragsmäßig größter Eigenwert einer Matrix

Eigenwerte und Eigenvektoren Eigenvalues and Eigenvectors

For the matrix A

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
.

the vector

$$\mathbf{x} = \begin{bmatrix} 3 \\ -3 \end{bmatrix}$$

is an eigenvector with eigenvalue 1. Indeed,

$$A\mathbf{x} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ -3 \end{bmatrix} = \begin{bmatrix} (2 \cdot 3) + (1 \cdot (-3)) \\ (1 \cdot 3) + (2 \cdot (-3)) \end{bmatrix} = \begin{bmatrix} 3 \\ -3 \end{bmatrix} = 1 \cdot \begin{bmatrix} 3 \\ -3 \end{bmatrix}.$$

Übergangsmatrix Stochastic Matrix

- drückt Übergangswahrscheinlichkeiten von diskreten und kontinuierlichen
 Markow-Ketten aus
- quadratische Matrix
- zeilenstochastische Übergangsmatrix: Zeilensumme 1
- spaltenstochastische Übergangsmatrix: Spaltensumme 1
- Werte der Einträge liegen zwischen 0 und 1

Übergangsmatrix Stochastic Matrix

München		Paris	Rom	
	/ 0,05	0,4	0,55	München
P =	0,1	0,7	0,2	Paris
	$\setminus_{0,1}$	0,8	$_{0,1}$ /	Rom

Irreduzible Matrix Irreducible Matrix

Eine Matrix M heißt irreduzibel, wenn von jedem Zustand aus ein Übergang zu jedem Zustand existiert.

Ersetzt man alle von 0 verschiedenen Einträge durch 1 und betrachtet die Matrix als Adjazenzmatrix eines gerichteten Graphen, muss ein stark zusammenhängender Graph entstehen, damit man von einer irreduziblen Matrix sprechen kann.

Page Rank

Idee und Algorithmus

Problemstellung

- Suchmaschine: Finden eines Suchbegriffs in einer Vielzahl von Dokumenten
- Mit dem gesamten Internet aufgrund seiner Größe problematisch umzusetzen
 - → Nach Relevanz sortieren
 - → Page Rank: Sortierung basierend auf Verlinkungsstruktur

Grundidee:

Anzahl an Links zu bzw. von einer Seite i trifft Aussage über ihre Relevanz

Problem: leicht zu manipulieren

Lösung: Page Rankdes Inlinks einbeziehen

- Page Rank der Seite i ist die gewichtete Summe der Rank Scores der Seiten j_n, die Outlinks zu i haben
- Rank Score der Seite j wird gleichmäßig auf alle Outlinks verteilt
- Formel:

$$r_i = \sum_{j \in I_i} \frac{r_j}{N_j}$$

 \rightarrow Wenn eine Seite j₁ mit einem hohen Rank Score auf i verweist, trägt das zu einem größeren Teil zum Rank Score von i bei, als wenn eine Seite j₂ mit niedrigem Rank Score auf i verlinkt.

Beispiel

mit $r_k(P_{j2}) = 0.8$ und 4 Outlinks

Rank Score von O1 und O2: 9/40 + Scores von anderen Inlinks

Mathematische Darstellung

$$r_{k+1}(P_i) = \sum_{P_j \in B_{P_i}} \frac{r_k(P_j)}{|P_j|}$$

Vorhergehende Formel berechnet den Page Rank für jede Seite einzeln.

⇒ Übergangsmatrix H im Format nxn (n = Seitenanzahl)

$$\boldsymbol{\pi}^{(k+1)T} = \boldsymbol{\pi}^{(k)T} \mathbf{H}.$$

 $\pi^{(k+1)T}$ = Rank-Vektor in der k+1-ten (nächsten) Iteration

Random Surfer / Markov Kette

- Websurfer, der Hyperlinks (Outlinks) nutzt, um von Seite zu Seite zu springen.
- Wählt nächsten Link zufällig.

Resultat:

- Websurfer verbringt auf manchen Seiten mehr Zeit als auf anderen
- Diese Seiten werden als relevanter eingestuft

Random Surfer / Markov Kette

$$\boldsymbol{\pi}^{(k+1)T} = \boldsymbol{\pi}^{(k)T} \mathbf{H}.$$

$$\pi^{(0)T} = [0.25 \ 0.25, \ 0.25, \ 0.25]$$

Random Surfer / Markov Kette

Matrixmultiplikation gibt uns

```
\pi^{(1)} = [ 0,25 
0,375
0,125
0,25 ]
```

- Vorgang wiederholen, bis die Werte konvergieren
- $\pi^{(k+1)T}$ stellt Eigenvektor von H mit Eigenwert 1 dar

Probleme und Lösungen

Probleme: Sinks

 Seiten, die in jeder Iteration mehr und mehr PageRank anhäufen, aber keine Outlinks haben.

⇒ PageRank mancher Seiten bleibt bei 0. Beispiel: PDFs, Bilder etc.

Lösung: <u>stochasticity adjustment</u>
 Jedes "Loch" bekommt Outlinks mit 1/n zu jeder Seite.

$$\mathbf{H} = \begin{pmatrix} P_1 & P_2 & P_3 & P_4 & P_5 & P_6 \\ P_2 & 0 & 1/2 & 1/2 & 0 & 0 & 0 \\ P_2 & 0 & 0 & 0 & 0 & 0 & 0 \\ P_3 & 1/3 & 1/3 & 0 & 0 & 1/3 & 0 \\ P_4 & 0 & 0 & 0 & 0 & 1/2 & 1/2 \\ P_5 & 0 & 0 & 0 & 1/2 & 0 & 1/2 \\ P_6 & 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}.$$

$$\mathbf{S} = \begin{pmatrix} 0 & 1/2 & 1/2 & 0 & 0 & 0 \\ 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \\ 1/3 & 1/3 & 0 & 0 & 1/3 & 0 \\ 0 & 0 & 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 0 & 1/2 & 0 & 1/2 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}.$$

Anpassung der Formel

$$\mathbf{S} = \mathbf{H} + \mathbf{a}(1/n\,\mathbf{e}^T)$$

H = Ürsprüngliche Übergangsmatrix n = Anzahl der Seiten a = 1 wenn page_i ein Sink sonst 0 e = $(11111)^T$

Probleme: Cycles

- Werte sind nach jeder Iteration vertauscht
- Random Surfer kann hängen bleiben

1 2

Lösung: Random Teleportation

Nach einer gewissen Zeit wird dem Surfer langweilig und er springt zu einer zufälligen Website.

Erweiterung der Formel

$$\mathbf{S} = \mathbf{H} + \mathbf{a}(1/n\,\mathbf{e}^T)$$

$$\mathbf{G} = \alpha \mathbf{S} + (1 - \alpha) 1/n \mathbf{e} \mathbf{e}^T$$

H = Ürsprüngliche Übergangsmatrix

n = Anzahl der Seiten

a = 1 wenn page; ein Sink sonst 0

 $e = (11111)^T$

a= Wert zw. 1 und 0. Gibt an wie oft der Surfer teleportiert.

ee^T= uniforme Matrix nxn mit Values 1/n

Google Matrix G

$$= \alpha \mathbf{H} + (\alpha \mathbf{a} + (1 - \alpha)\mathbf{e}) 1/n \mathbf{e}^T$$

$$\mathbf{G} = .9\mathbf{H} + (.9 \begin{pmatrix} 0\\1\\0\\0\\0 \end{pmatrix} + .1 \begin{pmatrix} 1\\1\\1\\1\\1 \end{pmatrix}) 1/6 (1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1)$$

$$= \begin{pmatrix} 1/60 & 7/15 & 7/15 & 1/60 & 1/60 & 1/60\\1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6\\19/60 & 19/60 & 1/60 & 1/60 & 19/60 & 1/60\\1/60 & 1/60 & 1/60 & 1/60 & 7/15 & 7/15\\1/60 & 1/60 & 1/60 & 1/12 & 1/60 & 1/60 \end{pmatrix}.$$

$$m{\pi}^T = \begin{pmatrix} .03721 & .05396 & .04151 & .3751 & .206 & .2862 \end{pmatrix}$$

Problem: Berechnung

Mit Eigenvektor-Berechnung auf π^I kommen:

$$πT = πTG$$
 $πTe=1$

- $\Rightarrow \pi^{T}e=1$ stellt sicher, dass π^{T} ein Wahrscheinlichkeitsvektor ist
- ⇒ Aber wie berechnet man den Eigenvektor für eine Matrix mit >8 Billionen auf >8 Billionen Einträgen?

 $G(G(....(G\pi^T) = G^n\pi^T))$ bis π^T konvergiert. \Rightarrow Potenzmethode

Page Rank

Potenzmethode

Potenzmethode

- Intuitivste Methode den dominanten Eigenwert und Eigenvektor einer Matrix zu finden
- Eigentlich langsam und es würde modernere Methoden geben
- G eigentlich dense ⇒ lange Berechnung
- Matrixmult. mit sparse Matrix H ⇒ schnelle Berechnung

$$\boldsymbol{\pi}^{(k+1)T} = \boldsymbol{\pi}^{(k)T}\mathbf{G}$$

$$= \alpha \, \boldsymbol{\pi}^{(k)T}\mathbf{S} + \frac{1-\alpha}{n} \, \boldsymbol{\pi}^{(k)T} \, \mathbf{e} \, \mathbf{e}^{T}$$

$$= \alpha \, \boldsymbol{\pi}^{(k)T}\mathbf{H} + (\alpha \, \boldsymbol{\pi}^{(k)T}\mathbf{a} + 1 - \alpha) \, \mathbf{e}^{T}/n$$

Potenzmethode

- Matrix wird nicht manipuliert (siehe stochasticity adjustment)
- Andere Methoden manipulieren die Matrix bei jedem Schritt
- Sparse Matrix spart Speicherplatz
- Jede Iteration benötigt O(n) Laufzeit

⇒ Meistens ca. 50 Iterationen benötigt bis Ranking-Vektor π^T konvergiert.

Warum? asymptotic rate of convergence von Markov-Ketten

Page Rank

Erweiterungen

Erweiterungen

- Search Engine Optimization
- User-Profil
- Suchort
- Wonach andere Nutzer suchen
- alter Suchverlauf

⇒ Unklar, wie all das in der Berechnung eine Rolle spielt und Google verrät es auch nicht.

Quellen

Empfehlung:

• Langville, A. & Meyer, C. (2011). Google's PageRank and Beyond. The Science of Search Engine Rankings. Princeton: Princeton University Press

Sonstige:

- https://www.mathebibel.de/eigenwerte-eigenvektoren
- https://de.wikipedia.org/wiki/%C3%9Cbergangsmatrix
- https://en.wikipedia.org/wiki/Irreducibility_(mathematics)
- Eldén Lars. (2007). Matrix methods in data mining and pattern recognition. Philadelphia, PA: Society for Industrial and Applied Mathematics.
- https://www.youtube.com/watch?v=qxEkY8OScYY
- Page, Lawrence and Brin, Sergey and Motwani, Rajeev and Winograd, Terry (1999) *The PageRank Citation Ranking: Bringing Order to the Web.* Technical Report. Stanford InfoLab.