MATD11: Functional Analysis Assignment 1

Anmol Bhullar - 1002678140

January 24, 2018

P1.

Let $(X, \|\cdot\|)$ be a normed linear space over \mathbb{R} .

- 1. Prove that for $x, y \in X$, $||x|| ||y|| | \ge ||x y||$.
- 2. Let $\{x_n\}$ be a convergent sequence in X and $\{a_n\}$ a convergent sequence in \mathbb{R} . Prove that the sequence $\{a_nx_n\}$ is convergent.
- 3. Let $a \in X$ and r > 0. Prove that B(a, r) = B(0, r) + a.
- 4. Prove that the open ball in X is a convex set.

Solution.

1. First, note that ||x - y|| = ||y - x|| since

$$||y - x|| = ||-1(x - y)|| = |-1| ||x - y|| = ||x - y||.$$

Now, note that:

$$||x|| = ||(x - y) + y|| \le ||x - y|| + ||y|| \implies ||x|| - ||y|| \le ||x - y||$$

$$||y|| = ||(y - x) + x|| \le ||y - x|| + ||x|| \implies ||y|| - ||x|| \le ||y - x||$$

$$\implies ||x|| - ||y|| \le - ||x - y||$$

Thus:

$$-\|x - y\| \le \|x\| - \|y\| \le \|x - y\|$$

which implies,

$$|\|x\| - \|y\|| \le |\|x - y\|| = \|x - y\|$$
 (positive definiteness)

as wanted.

2. Claim: $\{a_n x_n\} \to ax$.

$$||a_n x_n - ax|| = ||a_n x_n - x_n a + x_n a - ax|| \le ||x_n|| ||a_n - a|| + |a| ||x_n - x||$$

We are given that $x_n \to x \in X$. Since this is a convergent series, then x_n is bounded i.e. $||x_n|| \le M \in \mathbb{R}^+$. Now, choose some $\epsilon > 0$ and write $\epsilon = \epsilon_1 + \epsilon_2$ for some $\epsilon_1 > 0$ and $\epsilon_2 > 0$. Now, we choose $\epsilon_1/M > 0$, then there must exist some $N \in \mathbb{N}$ such that if n > N, then $|a_n - a| < \epsilon_1/M$. Next, we choose $\epsilon_2/|a| > 0$, then there must exist some $M \in \mathbb{N}$ such that if m > M, then $||x_m - x|| < \epsilon_2/|a|$. Choose $J = max\{N, M\}$. Then, consider for all j > J:

$$\begin{aligned} \|a_{j}x_{j} - ax\| &= \|a_{j}x_{j} - x_{j}a + x_{j}a - ax\| \\ &\leq \|x_{j}\| |a_{j} - a| + |a| \|x_{j} - x\| \\ &< M \frac{\epsilon_{1}}{M} + |a| \frac{\epsilon_{2}}{|a|} \\ &= \epsilon_{1} + \epsilon_{2} \\ &= \epsilon \end{aligned}$$

so that $a_n x_n \to ax$ as wanted. Note that if a = 0, then

$$||a_j x_j - ax|| \le ||x_j|| |a_j - a| < \epsilon_1 < \epsilon.$$

as wanted.

3. To solve this, we show set equality i.e. a) show $B(a,r) \subseteq B(0,r) + a$ and b) show $B(0,r) + a \subseteq B(a,r)$.

a) First, note that d(0, x-a) = ||0-(x-a)|| = ||a-x|| = d(a, x). Now, choose $x \in B(a, r)$, then $d(a, x) < r \implies d(0, x-a) < r$. Then, $x-a \in B(0, r)$ which furthermore implies $x \in B(0, r) + a$.

b) Choose $y \in B(0,r)$. Then $y + a \in B(0,r) + a$. Note, d(a, y + a) = ||a - (y + a)|| = ||y|| < r. Thus, $y + a \in B(a,r)$ so that $B(0,r) + a \subseteq B(a,r)$ as wanted.

4. Choose $a \in X$ and r > 0. Then B(a,r) is said to be convex if for all $x, y \in B(a,r)$, the straight line connecting them is in B(a,r). Choose $x, y \in B(a,r)$. Let the line connecting them be given by,

$$f(t) = ty + (1-t)x \qquad \forall t \in (0,1)$$

We want to show ||f(t) - a|| < r. Consider,

$$||f(t) - a|| = ||ty + (1 - t)x - a|| = ||t(y - a) + (1 - t)(x - a)||$$

By using the triangle inequality, we get:

$$||f(t) - a|| < ||(1 - t)(x - a)|| + ||t(y - a)||$$

so that, we get:

$$|f(t) - a| \le |1 - t| \|x - a\| + |t| \|y - a\| < |1 - t|r + |t|r = r$$

Thus, B(a, r) is convex as wanted.

P2.

Show the map $x \mapsto ||x||$ is continuous. Is it uniformly continuous?

Solution.

Choose $x_0 \in X$. We want to show $\lim_{x\to x_0} ||x|| = ||x_0||$ i.e.

$$\forall \epsilon > 0, \ \exists \delta > 0 \text{ such that if } \|x - x_0\| < \delta \implies \|x\| - \|x_0\| < \epsilon$$

Thus, choose a $\epsilon > 0$. Let $\epsilon = \delta$. Then, by the reverse triangle inequality:

$$|\|x\| - \|x_0\|| \le \|x - x_0\| < \delta = \epsilon$$

Therefore, $\|\cdot\|$ is a continuous mapping. Note, even if we did not fix x_0 in the beginning, our proof would not have changed. Therefore, our proof does not depend on our choice of x_0 implying that $\|\cdot\|$ is also uniformly continuous.

P3.

Let c_0 be the set of real sequences that converge to 0. Prove that c_0 is complete with respect to the sup norm.

Solution.

Let $\{\xi_n\}$ be a Cauchy sequence of elements of c_0 . We want to show that $\{\xi_n\}$ converges and it converges to some sequence $\{a_n\}$ in c_0 . Choose a $\epsilon > 0$, then there exists $N \in \mathbb{N}$ such that if n, m > N, then $\|\xi_n - \xi_m\| < \epsilon$. By the definition of the sup norm, we know that for all $j \in \mathbb{N}$,

$$|\xi_n(j) - \xi_m(j)| \le \sup\{|\xi_n(j) - \xi_m(j)| : j \in \mathbb{N}\} = \|\xi_n - \xi_m\| < \epsilon$$

Thus $\{\xi_n(j)\}_{j=1}^{\infty}$ is a sequence of real numbers and is a Cauchy sequence from the line above. Since this is a sequence of real numbers, by the completeness of the reals, we know this converges to some real number m_j . Therefore, we can write

$$\lim_{n\to\infty}\xi_n(j)=m_j$$

so we can define a sequence $\{m_j\}_{j=1}^{\infty}$ using the same process for different j's and then claim that

$$\{m_j\} \in c_0$$
 and $\lim_{n \to \infty} \xi_n = \{m_j\}.$

First, we want to show that $\lim_{n\to\infty} \xi_n = \{m_j\}$.

Choose $\epsilon > 0$. We know for all $n \in \mathbb{N}$, $\{\xi_m(n)\}$ is a convergent sequence (of \mathbb{R}), thus, there exists some $M \in \mathbb{N}$ such that if $m \geq M$, then:

$$|\xi_m(n) - m_n| < \epsilon \tag{1}$$

Now, to show $\lim_{n\to\infty} \xi_n = \{m_j\}$, choose the same M that makes (1) hold and consider:

$$\|\xi_m - \{m_j\}\| = \max_{n \in \mathbb{N}} |\xi_m(n) - m_n| < \epsilon$$

which is enough to show that $\lim_{n\to\infty} \xi_n = \{m_i\}$ as wanted.

Claim: $m_j \to 0$ as $j \to \infty$. Choose a $\epsilon > 0$. Then: We know ξ_n is an element of c_0 . Thus, for our choice of ϵ , there exists a $J \in \mathbb{N}$ such that if $j \geq J$, then $|\xi_n(j)| < \epsilon$. Furthermore, since $\{\xi_n(j)\}_{j=1}^{\infty} \to m_j$ as discussed earlier, then for our choice of ϵ , there exists $J' \in \mathbb{N}$, then if $j' \geq J'$, then $|\xi_n(j') - m_{j'}| < \epsilon$. Then, define $J := \max\{J, J'\}$, and for all $j \geq J$, consider:

$$\begin{aligned} |\xi_n(j) - m_j| &= |m_j - \xi_n(j)| < \epsilon \\ |m_j| - |\xi_n(j)| &\leq ||m_j| - |\xi_n(j)|| < \epsilon \end{aligned} \quad \text{(reverse triangle inequality)} \\ |m_j| &< \epsilon + |\xi_n(j)| < 2\epsilon \end{aligned}$$

Although $\epsilon \leq 2\epsilon$, this does not matter as we can just go back and choose $\epsilon/2$ so that in the end, we get $|m_j - 0| < \epsilon/2 + \epsilon/2 = \epsilon$ which is sufficient to show that $\{m_j\} \to 0$ as $j \to \infty$ as wanted.

Therefore, the Cauchy sequence $\{\xi_n\}\subseteq c_0$ converges to a sequence in c_0 showing that c_0 is complete.

P4.

Let c_{00} be the set of all real sequences that have at most finitely many non-zero entries.

- 1. Prove that c_{00} is a proper subspace of c_0 .
- 2. Find the Hamel basis for c_{00} that is a generalization of the standard basis for \mathbb{R}^n .
- 3. Prove that if \mathcal{A} is a Hamel basis for c_0 , then \mathcal{A} is not a subset of c_{00} .
- 4. Prove that the closure of c_{00} (with respect to the sup norm) is c_0 .

Solution.

1. $\{1/n\}_{n=1}^{\infty}$ is an example of a sequence of real numbers which clearly does not have finitely many non-zero terms but still converges to 0. Therefore, if $c_{00} \subseteq c_0$, then $c_{00} \subseteq c_0$. Now, choose an arbitrary $\{x_n\} \in c_{00}$. Since this has finitely many non-zero terms, there exists some $K \in \mathbb{N}$ such that for all $k \geq K$, then $x_k = 0$. Thus, for all $\epsilon > 0$, we choose this choice of K, and obtain for all $k \geq K$ that $|x_k| = 0 < \epsilon$. Therefore, $\{x_n\} \to 0$ implying that $\{x_n\} \in c_0$ which further implies that $c_{00} \subseteq c_0$. From our discussion earlier, we then obtain that

$$c_{00} \subsetneq c_0$$

2. Let e_k be the kth standard basis vector of \mathbb{R}^n (obviously $n \geq k$). This has only one non-zero term which is located at the kth component of the n-dimensional vector and is equal to 1 there. To generalize this, let $e_k' := (0, \ldots, 0, 1, 0, \ldots)$ which has only one non-zero term located at the kth component of the sequence (or equivalently, an ∞ -dimensional vector). Then, the set $\{e_k'\}_{k=1}^{\infty}$, we claim gives the basis of c_{00} . It is easy to see this is linearly independent as it is just a generalization of the standard basis from \mathbb{R}^n . To show that it spans c_{00} , we pick a sequence $\{x_n\}_{n=1}^{\infty} \in c_{00}$. Then, there exist finitely many n_1, \ldots, n_m for some $m \in \mathbb{N}$ such that $\{x_{n_i}\}_{i=1}^m$ contains the only non-zero terms of $\{x_n\}$. $\{x_n\}$ can then be written as:

$$\{x_n\} = (x_{n_1})e'_{n_1} + \ldots + (x_{n_m})e'_{n_k}$$

implying that the basis $\{e_k'\}_{k=1}^{\infty}$ clearly spans the space c_{00} as wanted and is clearly a generalization of the standard basis of \mathbb{R}^n .

3. Suppose such a set \mathcal{A} exists i.e. \mathcal{A} is a Hamel basis of c_0 and also a subset of c_{00} . Then each element $\{x_n\}$ of \mathcal{A} only has finitely many non-zero terms and the rest are zero. The key to recognizing the contradiction is to realize that any element $\{y_n\}$ of c_0 must be able to be written as a finite combination of elements of \mathcal{A} . But if each element of \mathcal{A} only has finitely many non-zero terms, then there exist no finite combination of elements of \mathcal{A} such that the combination produces a sequence which has infinitely many non-zero terms. More mathematically put, pick a element $\{y_n\}$ of c_0 such that it has infinitely many non-zero terms (i.e. $\{1/n\}$). Then, we can write $\{y_n\}$ as a finite combination of elements in \mathcal{A} since it is a basis of c_0 . Therefore, we write:

$$\{y_n\} = a_1\{b_1(n)\} + a_2\{b_2(n)\} + \ldots + a_m\{b_m(n)\}\$$

where each $a_i \in \mathbb{R}$ and each $\{b_i(n)\} \in \mathcal{A}$ for $1 \leq i \leq m$ (also not all a_i 's are 0). However, since each sequence $\{b_i(n)\}$ only has finitely many non-zero terms, then their sum produces a sequence which again, only has a finite number of non-zero terms. However, this is impossible since we picked $\{y_n\}$ to be a sequence which has an infinite number of non-zero terms. Therefore, there is a contradiction and no such \mathcal{A} exists as wanted.

4. We claim that c_0 is the smallest closed set which contains c_{00} (def'n of closure). In order to prove this, we show that every element of c_0 is a limit point of c_{00} , and if there existed a smaller (closed) set than c_0 , then it would not contain all limit points of c_{00} implying the set is not closed which is a contradiction. Therefore, choose some arbitrary element $\{x_n\}_{n=1}^{\infty}$ of c_0 and define a sequence by terms:

$$\alpha_n := \{x_1, x_2, \dots, x_n, 0, 0, \dots\}$$

and we claim that $\{\alpha_n\} \to \{x_j\}_{j=1}^{\infty}$ as $n \to \infty$. Clearly, each $\alpha_n \in c_{00}$ and so it is left to show the convergence. Choose a $\epsilon > 0$. We want to show

there exists some $N \in \mathbb{N}$ such that if $n \geq N$, then $\|\alpha_n - \{x_j\}\| < \epsilon$. Note $\{x_j\}$ goes to 0 since it is in c_0 . Thus, for our choice of ϵ , there exists some $N_1 \in \mathbb{N}$ such that if $n' \geq N_1$, then $|x_{n'}| < \epsilon$. Let $N = N_1$. Then for all $n \geq N$, note:

$$\|\alpha_n - \{x_j\}\| = \|(0, \dots, 0, x_{n+1}, x_{n+2}, x_{n+3}, \dots)\|$$

= $\sup_{k > n} |x_k| < \epsilon$

so that $\{\alpha_n\} \to \{x_j\}$ as $n \to \infty$ as wanted. Therefore, we have that for every point \mathbf{x} of c_0 , there exists some sequence $\{\alpha_n\}$ of elements of c_{00} such that this sequence converges to \mathbf{x} , thus implying that every point of c_0 is a limit point of c_{00} . Therefore, c_0 is the closure of c_{00} .

P5.

Let H be a Hilbert space.

- 1. Verify the second equation in Proposition 1.22 on Page 11.
- 2. Let $x, y \in H$. Prove that $x \perp y$ if and only if $||x + \alpha y|| = ||x \alpha y||$ for all $\alpha \in \mathbb{C}$.

Solution.

1. We want to prove that for any vectors f, g in a Hilbert space \mathcal{H} , we have the equality:

 $||f + q||^2 = ||f||^2 + 2\operatorname{Re}\langle f, q \rangle + ||q||^2$

Recall the definition of the induced norm by a given inner product, then:

$$||f + g||^2 = \langle f + g, f + g \rangle = \langle f, f \rangle + \langle g, f \rangle + \langle f, g \rangle + \langle g, g \rangle$$

Recall that $\langle f,g\rangle=\overline{\langle g,f\rangle}$ and since $\langle f,g\rangle$ is a complex number, we can write $\langle f,g\rangle=a+ib$ for $a,b\in\mathbb{R}$ and:

$$\langle f, g \rangle + \overline{\langle g, f \rangle} = (a + ib) + (a - ib) = 2a$$

i.e.

$$||f + g||^2 = \langle f, f \rangle + 2\operatorname{Re}\langle f, g \rangle + \langle g, g \rangle$$

which is just equal to:

$$||f||^2 + 2\text{Re}\langle f, g \rangle + ||g||^2$$

as wanted.

2. First, assume $x \perp y$ for $x, y \in \mathcal{H}$ where \mathcal{H} is a Hilbert space. Then for any $\alpha \in \mathbb{C}$:

$$||x + \alpha y||^2 = \langle x + \alpha y, x + \alpha y \rangle$$

$$= \langle x, x + \alpha y \rangle + \langle \alpha y, x + \alpha y \rangle$$

$$= \langle x, x \rangle + \bar{\alpha} \langle x, y \rangle + \alpha \langle y, x \rangle + \alpha \bar{\alpha} \langle y, y \rangle$$

By recalling that for all $\alpha \in \mathbb{C}$, we have that $\alpha \bar{\alpha} = |\alpha|^2$, we obtain:

$$||x + \alpha y||^2 = \langle x, x \rangle + \alpha \langle x, y \rangle + \bar{\alpha} \langle y, x \rangle + |\alpha|^2 \langle g, g \rangle$$
$$= \langle x, x \rangle + \alpha(0) + \bar{\alpha}(0) + |\alpha|^2 \langle g, g \rangle = \langle x, x \rangle + |\alpha|^2 \langle g, g \rangle$$

where the last line follows from the fact that if $\langle x, y \rangle = 0$, then $\langle y, x \rangle = 0$. Furthermore, consider:

$$\begin{aligned} \|x - \alpha y\|^2 &= \langle x, x \rangle + \langle x, -\alpha y \rangle + \langle -\alpha y, x \rangle + \langle -\alpha y, -\alpha y \rangle \\ &= \langle x, x \rangle + \overline{-\alpha} \langle x, y \rangle - \alpha \langle y, x \rangle + |\alpha|^2 \langle y, y \rangle \\ &= \langle x, x \rangle + |\alpha|^2 \langle y, y \rangle \end{aligned}$$

implying that $||x + \alpha y|| = ||x - \alpha y||$ as wanted. Now, we prove the reverse direction. So, assume $||x + \alpha y|| = ||x - \alpha y||$, and we show $x \perp y$ i.e. $\langle x, y \rangle = 0$. Consider:

$$||x + \alpha y|| = ||x - \alpha y||$$

$$||x + \alpha y||^2 = ||x - \alpha y||$$

$$\langle x + \alpha y, x + \alpha y \rangle = \langle x - \alpha y, x - \alpha y \rangle$$

$$\langle x, x \rangle + \langle x, \alpha y \rangle + \langle \alpha y, x \rangle + \langle \alpha y, \alpha y \rangle = \langle x, x \rangle + \langle x, -\alpha y \rangle + \langle -\alpha y, x \rangle + \langle -\alpha y, -\alpha y \rangle$$

$$\bar{\alpha} \langle x, y \rangle + \alpha \langle y, x \rangle = -\bar{\alpha} \langle x, y \rangle - \alpha \langle y, x \rangle$$

$$2\bar{\alpha} \langle x, y \rangle = -2\alpha \langle y, x \rangle$$

$$\bar{\alpha} \langle x, y \rangle = -\alpha \langle y, x \rangle$$

Let $\langle x,y\rangle=a+ib$ for some $a,b\in\mathbb{R}$ and choose $\alpha=1$. Then $\bar{\alpha}=-1$ and:

$$-1(a+ib) = 1(a-ib) \implies ib-ib = a+a \implies a = 0$$

i.e. $\operatorname{Re}\langle x,y\rangle=0$. Now, choose $\alpha=i$. Then $\bar{\alpha}=-i$ and:

$$-i(a+ib)=i(a-ib) \implies -ia+b=-i(a-ib) \implies -ia+b+ia+b=0 \implies b=0$$

which implies $\mathrm{Im}\langle x,y\rangle=0$. This is enough to imply that $\langle x,y\rangle=0$ i.e. $x\perp y$ as wanted.

P6.

Let A be a subset of a Hilbert space \mathcal{H} . Prove that A^{\perp} is a closed subspace of \mathcal{H} .

Solution.

First, we prove that A^{\perp} is closed. To do this, we use this fact provided in the book:

$$A^{\perp} = \cap_{a \in A} a^{\perp}$$

Define a function $f:\{a\} \times X \to \mathbb{C}$ defined by $f(a,x) = \langle a,x \rangle$. Note the inner product function is a continuous map, so when it is restricted like as in f, it is still continuous. Since f is continuous, then the pre-image of every closed set in \mathbb{C} is mapped to a closed set in $\{a\} \times X$. Therefore, choose $\{0\} \subseteq \mathbb{C}$ which is clearly closed. The pre-image of this set is the set of all points $x, \in X$ such that $\langle a, x \rangle = 0$ i.e. $\pi_2(f^{-1}(0)) = \{a\}^{\perp}$. Therefore, $\{a\}^{\perp}$ is closed. Since the arbitrary intersection of closed sets is closed, we obtain that A^{\perp} is closed.

To show that A^{\perp} is a subspace of \mathcal{H} , it suffices to show that A^{\perp} is closed under vector addition and scalar multiplication. Choose $x,y\in A^{\perp}$. We want to show $x+y\in A^{\perp}$ i.e. $\langle a,x+y\rangle=0$. Note: $\langle a,x+y\rangle=\langle a,x\rangle+\langle a,y\rangle=0+0=0$ so that $x+y\in A^{\perp}$. Similarly, choose $c\in\mathbb{C}$, we want to show $cx\in A^{\perp}$ i.e. $\langle a,cx\rangle=0$. Note, $\langle a,cx\rangle=\bar{c}\langle a,x\rangle=\bar{c}(0)=0$ so that $cx\in A^{\perp}$. Therefore, A^{\perp} is a linear closed subspace of \mathcal{H} .

P7.

Verify the proper inclusions of real sequences $l^1 \subset l^p \subset l^q \subset c_0 \subset l^{\infty}$ where 1 .

Solution.

Let $1 \leq p < q$. We want to show $l^p \subseteq l^q$. Note, this will show $l^1 \subseteq l^p \subseteq l^q$. Choose an element $\{x_n\} \in l^p$, we want to show $\{x_n\} \in l^q$. We know $\sum_{n=1}^{\infty} |x_n|^p < \infty$.

$$L = \lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right|^p \implies L^{q/p} = \lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right|^q$$

Since L < 1 (series converges in l^p norm) and q/p > 1, then $L^{q/p} < 1$ implying $\sum_{n=1}^{\infty} |x_n|^q$ converges by our elementary series tests. Therefore, $\{x_n\} \in l^q$ as wanted. By the zero test for series, we know that if $\sum_{n=1}^{\infty} |a_n|^p < \infty$, then $\lim_{n\to\infty} a_n = 0$. This is enough to imply that $\{a_n\} \in c_0$. Furthermore, every element of c_0 is a convergent sequence (in \mathbb{R}) and therefore it is bounded implying that this sequence is also in l^{∞} . More mathematically put, if $\{a_n\}_{n=1}^{\infty}$ is an element of c_0 . Then by definition of c_0 , we know $\{a_n\} \to 0$ as $n \to \infty$

i.e. it converges and therefore all the terms $|a_n|$ for every n is bounded by some $M \in \mathbb{R}$. Therefore, $\sup\{|a_n| : n \in \mathbb{N}\} < \infty$ implying that $\{a_n\}$ is also in l^{∞} . We have so far proven that:

$$l^1 \subseteq l^p \subseteq l^q \subseteq c_0 \subseteq l^\infty$$

We will now show *proper* inclusions. We know $\{1,1,\ldots\}$ is in l^{∞} but clearly this does not converge to 0, therefore, it is not an element of c_0 . We know by the *p*-series test that $\{1/n^{1/p}\}$ is an element of l^q since:

$$\sum_{n=1}^{\infty} (\frac{1}{n^{1/p}})^q = \sum \frac{1}{n^{q/p}}$$

since q/p > 1, we know this series converges (p-series test), and therefore is in l^q but we claim that this is not in l^q since:

$$\sum_{n=1}^{\infty} (\frac{1}{n^{1/p}})^p = \sum (\frac{1}{n^1})$$

which clearly does not converge as it is the Harmonic series. Therefore, $\{1/n^{1/p}\}$ is in l^q but not in l^p . Since our proof did not rely on p > 1, only on $p \ge 1$, we have shown in total that:

$$l^1 \subsetneq l^p \subsetneq l^q \subsetneq c_0 \subsetneq l^\infty$$

as wanted.

P8.

Show that C[0,1] in the supremum norm is not an inner product space; that is, the norm cannot be derived from an inner product.

Solution

We know that the parallelogram law only holds in inner product spaces, therefore, we assume that C[0,1] in the supremum norm is an inner product space, and show that the parallelogram law does not hold thereby showing a contradiction and obtaining the result we want.

The parallelogram law states that for all $f, g \in C[0, 1]$:

$$||f + g||^2 + ||f - g||^2 = 2 ||f||^2 + 2 ||g||^2$$

Choose f(x) = x and g(x) = 1 + x. Then ||f + g|| = ||x + 1|| = 2, ||f - g|| = ||1|| = 1, ||f|| = 1, ||g|| = 2. Therefore,

$$3^2 + 1^2 = 2(3+1) \implies 9+1 = 2(4) \implies 10 = 8$$

which is clearly not true, therefore no such inner product space structure exists on C[0,1] such that it induces the sup norm on C[0,1].