AMENDMENTS TO SPECIFICATION

Please replace the paragraph beginning at page 7, line 8, with the following:

Therefore, for example, when a transmission line is provided with a value α_T =1.48×10⁻⁵ (ps/nm²/km/deg) similar to that of RDF and the optical fiber length is set to L=1000(km), the temperature change is set to ΔT =50(deg) and the wavelength bandwidth is set to $\Delta \lambda$ =100(nm), the dispersion change amount difference becomes ΔD =62.5(ps/nm) ΔD =74.0 (ps/nm). That is, even when the dispersion is set to 0 in a total range of the wavelength bandwidth of 100nm at an initial time of operating a WDM transmission system and a variation amount of the dispersion is compensated by an adaptive type dispersion equalizer by the same amount over a total wavelength bandwidth, by the temperature dependency of the dispersion slope, a difference of a dispersion of 62.5(ps/nm) is produced between channels of the shortest wavelength and the longest wavelength. In this case, application to a WDM transmission system (allowable dispersion of about 40ps/nm) of 40Gbit/s/ch becomes difficult.

2

Please replace the paragraph beginning at page 21, line 13, with the following:

Center wavelengths of a wavelength tunable filter are set one by one for all of wavelength channels by the controller 604 comprising PC (personal computer) and dispersion values are monitored. For example, in a wavelength division multiplexing optical transmission system comprising 32 channels, dispersion values in wavelength channels 1 to $32 \, (\lambda_{mon1} \, \text{to} \, \lambda_{mon32})$ at a certain temperature $T_1(^{\circ}\text{C})$ are measured and the dispersion values are stored to the controller 604. Next, by measuring dispersion values in λ_{mon1} to λ_{mon32} when a certain other temperature $T_1(^{\circ}\text{C})$ $\underline{T_2(^{\circ}\text{C})}$ is constituted, dispersion variation amounts ΔD_{mon1} to ΔD_{mon32} in all of the wavelength channels λ_{mon1} to λ_{mon32} can be monitored by differences from the dispersion values at temperature $T_1(^{\circ}\text{C})$ for the respective wavelength channels. By monitoring the dispersion variation amounts of the respective channels, appropriate dispersion compensation amounts in the respective channels can be known.