Теорія груп і симетрія Основні поняття теорії груп

Олександр Зенаєв

Література

• Основна:

- 1 Akash Jain. "Notes on symmetries in particle physics". arXiv:2109.12087
- 2 Кутовий, С.Ю. "Теорія груп в застосуванні до спектроскопії багатоатомних молекул". Київський національний університет, 2012 р. - 146 с. посилання
- ▶ Голод П. І., Клімик А. У. "Математичні основи теорії симетрій". К. : Наукова думка, 1992. - 368 с.

• Додаткова:

- ▶ Hamermesh M. "Group Theory and Its Application to Physical Problems". New York: Dover Publications, 1989. 509 p.
- ▶ Landau L.D., Lifshitz E.M. "Quantum Mechanics: Non-Relativistic Theory". Oxford: Butterworth-Heinemann, 1981. – 689 p. (Course of Theoretical Physics, Vol. 3; 3rd edition).
- Weinberg S. "The Quantum Theory of Fields. Vol. 1: Foundations". Cambridge: Cambridge University Press, 1995. – 609 p.

Означення групи та основні властивості [2]

- Групою є сукупність елементів $g_1, g_2, \ldots,$ для яких задано операцію множення, що задовольняє умовам:
 - ▶ $g_1g_2 = g_3$ також належить групі
 - $g_1(g_2g_3) = (g_1g_2)g_3$ (асоціативність)
 - ightharpoonup існує одиничний елемент e: $eg_1 = g_1, g_1e = g_1$
 - ightharpoonup для кожного g_1 існує обернений елемент: $g_1g_1^{-1}=e$
- В загальному випадку $g_1g_2 \neq g_2g_1$. Якщо $g_1g_2 = g_2g_1$ для будь-яких двох елементів, група є комутативною (або абелевою), в іншому випадку група є некомутативною (неабелевою).
- Група задається таблицею множення:

	g_1	<i>g</i> ₂	
<i>g</i> ₁	g	g	
g_2	g	g	

- Групи можуть бути скінченими або нескінченими. Для скінчених груп порядком групи є кількість елементів.
 - ▶ Числа 1, −1 з опреацією множення утворюють скінчену групу
 - Всі цілі числа з опреацією додавання утворюють нескінчену групу
- Розглянемо приклад діедричної групи D₄: див. [1]

Властивості груп [1,2]

- Якщо між елементами двох груп є взаємно-однозначна відповідність $g_a \leftrightarrow h_a$ і з $g_a g_b = g_c$ випливає $h_a h_b = h_c$, то такі групи називаються ізоморфними.
 - таблиці множень ізоморфних груп співпадають
 - ▶ приклад: група 1, -1 та група обертань на кут $0, \pi$
- Якщо така відповідність існує, але не є взаємно однозначною, то такі групи називаються гомоморфними.
- Якщо серед елементів групи є сукупність, яка складає групу, то така сукупність елементів називається підгрупою.
 - Кожна група є своєю підгрупою.
 - Одиничний елемент є підгрупою.
 - ▶ Інший приклад: 1, -1 ϵ підгрупою 1, -1, i, -i (операція множення)
- Підгрупа H називається інваріантною (нормальною) підгрупою групи G, якщо для будь-яких елементів виконується $g^{-1}hg\in H$
 - Група з одиничниго елемента та вся група є інваріантними підгрупами своєї групи
 - Будь-яка підгрупа абелевої групи є інваріантною

Властивості груп [1,2]

- Добуток груп G, G' задається сукупністю впорядкованих пар (g,g') таких що $(g_1g'_1)(g_2g'_2)=(g_1g_2)(g'_1g'_2)$
 - ▶ Підгрупа G є ізоморфною добутку $G \times \{e\}$
- ullet Група G ϵ простою, якщо $\ddot{\ }$ $\ddot{\ }$ $\ddot{\ }$ інваріантими підгрупами ϵ лише $\{e\}$ та вся G.
- Група є напівпростою, якщо вона є добутком простих груп.
- Центром групи є сукупність елементів, що комутують з усіма елементами групи
 - центр групи утворює інваріантну підгрупу
 - центром абелевої групи є вся група