

Theory of Groups

MAT511

Prof. Dr Chandrani Nag

 $Shahjalal\ University\ of\ Science\ and\ Technology$

Edited by Mehedi Hasan

PREFACE i

Preface

This is a compilation of lecture notes with some books and my own thoughts. If there are any mistake/typing error or, for any query mail me at mehedi12@student.sust.edu.

Contents

Preface	j
Part 1. Sheet	1
Chapter 1. Automorphism	2
1. Inner Automorphisms	3
Chapter 2. Conjugacy and Class Equation	4

Part 1

Sheet

CHAPTER 1

Automorphism

DEFINITION 1 (Automorphism). An automorphism of a group G is an isomorphism¹ of G onto itself.

THEOREM 0.1. The set Aut(G) of all automorphisms of a group G is a group under the operation of composition of mappings.

PROOF. Here Aut(G) is the set of all automorphisms of a group G and the operation is the composition of mappings.

Let $f, g \in Aut(G)$.

Then the composite map $g \circ f$ is bijective, because f and g are bijective.

Using the hypotheses that f and g are group homomorphisms, we can conclude that $g \circ f$ is also a group homomorphism, because

$$(g \circ f)(ab) = g(f(ab))$$

$$= g(f(a)f(b))$$

$$= g(f(a))g(f(b))$$

$$= (g \circ f)(a)(g \circ f)(b)$$

So, $g \circ f \in Aut(G)$.

This is the closure property.

The associative law holds for Map(G), the set of all mappings of G into itself; so it holds in Aut(G), because Aut(G) is closed under composition of mappings.

Clearly, 1_G is the identity element of Aut(G).

If $f \in Aut(G)$, the inverse mapping $f^{-1}: G \to G$ exists and is likewise bijective.

Let $f \in Aut(G)$ and $a, b, x, y \in G$ such that f(a) = x and f(b) - y. Then we have $a = f^{-1}(x)$ and $b = f^{-1}(y)$.

Since f is a group homomorphism, we have f(ab) = f(a)f(b) = xy.

It gives, $f^{-1}(xy) = ab = f^{-1}(x)f^{-1}(y)$.

This implies that f^{-1} is also a group homomorphism.

Hence, $f^{-1} \in Aut(G)$.

Therefore, Aut(G) is a group under composition of mappings.

Isomorphism: A bijective group homomorphism is called an isomorphism.

¹Homomorphism: Suppose G, G' are multiplicative groups. A mapping $f: G \to G'$ is called a group homomorphism iff f(ab) = f(a)f(b) holds for all $a, b \in G$.

1. Inner Automorphisms

For any fixed $a \in G$, we define a mapping $f_a : G \to G$ by setting $f_a(x) = axa^{-1}$, $f_a \in Aut(G)$ for every $a \in G$.

PROOF. f_a is injective (by the cancellation law), for

$$f_a(x) = f_a(y) \Rightarrow axa^{-1} = aya^{-1} \Rightarrow x = y.$$

 f_a is surjective, because

$$f_a(a^{-1}xa) = a(a^{-1}xa)a^{-1} = x.$$

 f_a is group homomorphism, because for all $x, y \in G$, we have

$$f_a(xy) = a(xy)a^{-1} = (axa^{-1})(aya^{-1}) = f_a(x)f_a(y).$$

DEFINITION 2 (Inner Automorphism). For any fixed $a \in G$ the mapping $f_a : G \to G$ defined by $f_a(x) = axa^{-1}$ is called the inner automorphism determined by a.

CHAPTER 2

Conjugacy and Class Equation

DEFINITION 3. Let G be a group. The *normalizer* of a non-empty subset $S \subseteq G$ is defined by $N_S = \{x \in G : xS = Sx\}$.

DEFINITION 4. Let G be a group and $a \in G$. Then the set $N_a = \{x \in G : ax = xa\}$ is called the *normalizer* of $a \in G$ in G.

Thus, N_a is the set of those elements of G which commute with a.

Example. N_a is a subgroup of G.

PROOF. We know that $N_a = \{x \in G : ax = xa\}$ when $a \in G$. Let $x, y \in N_a$. Then ax = xa and ay = ya.

Hence, we have

$$a(xy) = (ax)y = (xa)y = x(ay) = x(ya) = (xy)a.$$

Besides, we also get

$$x^{-1}(ax)x^{-1} = x^{-1}(xa)^{-1}$$
 which implies that $x^{-1}a = ax^{-1}$.

Thus, it follows that $xy \in N_a$ and $x^{-1} \in N_a$ for all $x, y \in N_a$. So, N_a is a subgroup of G.

Note. $N_a = G \Leftrightarrow a = Z$.

EXAMPLE. N_a need not be a normal subgroup¹ of G.

PROOF. In order to show that N_a need not be normal in G, consider an element (23) of the symmetric group S_3 .

It is easy to verify that $N_{(23)} = \{(1), (23)\}$ is a subgroup of S_3 .

But $(12) \circ N_{(23)} = \{(12), (123)\}$ and $N_{(23)} \circ (12) = \{(12), (132)\}$

Thus $(12) \circ N_{(23)} \neq N_{(23)} \circ (12)$.

This shows that $N_{(23)}$ is not a normal subgroup of S_3 .

¹Normal subgroup: A subgroup N of a group G is called normal subgroup iff aN = Na holds $\forall a \in G$. Denoted by $N \triangleleft G$.