2a. Prova - MA-311 - 18/05/07. Turmas #, C, D, E, F e G

NOME: _____ _____ RA: _____

Tempo de prova: 100min; Analise o tempo que voce qastará em cada questão. Justifique de forma clara e sucinta todas as suas respostas e afirmações;

Respostas sem justificativas não serão consideradas. Ponha suas resoluções nas folhas em branco em ordem crescente. Não destaque as páginas da prova. Não é permitido o uso de calculadoras.

Cada questão vale 2,4 pontos.

Questão 1.

a) Analise a convergência das séries numéricas e especifique o teste utilizado:

a.1) (0,8 pontos)
$$\sum_{n=1}^{\infty} \frac{n+5}{\sqrt[3]{n^7+n^2}}$$
 a.2) (0,8 pontos) $\sum_{n=1}^{\infty} \left(\frac{3n}{1+8n}\right)^n$

b) (Difícil!) (0,2 pontos cada item) Seja

$$a_1 = \sqrt[3]{6}, \quad a_2 = \sqrt[3]{6 + \sqrt[3]{6}}, \quad a_3 = \sqrt[3]{6 + \sqrt[3]{6} + \sqrt[3]{6}}, \dots$$
 isto é, $a_1 = \sqrt[3]{6}$ e $a_n = \sqrt[3]{6 + a_{n-1}}$ se $n \ge 2$.

b.1) Mostre que $\{a_n\}$ é crescente, **b.2)** limitada superiormente,

b.3) e que $\lim_{n\to\infty} a_n$ existe; **b.4**) calcule $\lim_{n\to\infty} a_n$.

Dica: Use o princípio da indução para mostrar $\mathbf{b.1}$) e que $a_n < 2$ para todo n.

Questão 2.

Considere o sistema de equações $\mathbf{x}' = A\mathbf{x}$, onde $A = \begin{pmatrix} 2 & -2 & 2 \\ -1 & 1 & 3 \\ 1 & -1 & 5 \end{pmatrix}$.

- a) Calcule a solução geral usando autovalores e autovetores:
- b) Resolva o problema de valor inicial $\mathbf{x}' = A\mathbf{x}, \mathbf{x}(0) = (1, 2, -1).$

Questão 3. Considere o sistema $\mathbf{x}' = B\mathbf{x}$, onde $B = \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix}$. Sabendo que $\Psi(t) = e^t \begin{pmatrix} \cos 2t & -\sin 2t \\ \sin 2t & \cos 2t \end{pmatrix}$ é uma matriz fundamental deste sistema,

- a) (0,4 pontos) Esboce a trajetória da solução que satisfaz $\mathbf{x}(0) = (1,0)$.
- b) Encontre a solução do sistema $\mathbf{x}' = B\mathbf{x} + \mathbf{g}(t)$, onde $\mathbf{g}(t) = (2e^t, 0)$.

Questão 4. Considere o sistema autônomo

$$\begin{cases} \frac{dx}{dt} = \mu x - y \\ \frac{dy}{dt} = x + \mu y \end{cases} \qquad \mu \neq 0.$$

Discuta se a solução crítica $\mathbf{x}(t) \equiv \mathbf{0}$ é assintoticamente estável, estável ou instável, de acordo com o sinal de μ .

Questão 5.

- a) (1,0 ponto) Calcule a transformada de Laplace inversa da função $1/(s^2+9)^2$ usando convolução;
- b) Resolva o seguinte p.v.i.:

$$\begin{cases} y''(t) + 4y'(t) + 13y(t) = \frac{1}{3}e^{-2t} \cdot \sin(3t) + 3\delta(t) \\ y(0) = 0 \text{ e } y'(0) = 0 \end{cases}$$

BOA PROVA!