DNNWEAVER: From High-Level Deep Network Models to FPGA Acceleration

Hardik Sharma

Joon Kyung Kim

Jongse Park

Chenkai Shao

Divya Mahajan

Asit Mishra†

Emmanuel Amaro

Hadi Esmaeilzadeh

Alternative Computing Technologies (ACT) Lab Georgia Institute of Technology

†Intel Corporation

MICRO'16

Deep Neural Networks: A Move Towards Artificial Intelligence

Programmability is a First-Order Concern

FPGAs are Hard to Program!

Over 10,000 lines of code for DNN hardware templates in 14 months!

DNNs are Big, on-chip FPGA storage is small!

AlexNet is 119 MBytes whereas Arria 10 has 5 MB!

1. Translator

High-Level DNN model – Caffe*

```
layer{
name: Pool,
type: POOLING,
params{...}}
    layer{
    name: Conv,
    type: CONVOLUTION,
    params{...}}
         layer{
         name: Inner-Product,
         type: INNER_PRODUCT,
         params{...}}
```

DNNWEAVER ISA

ISA: Abstracting DNNs

Abstract DNNs as a macro-dataflow graph

Template Architecture

Accelerator Core

Processing Unit

Exchangeable Components

Executing the Macro Dataflow Graph

Template Architecture

Slicing the Dataflow Graph

Sliced Output

2. Design Planner

Macro-Dataflow

FPGA Specification

of DSPs
of BRAMs
BRAM capacity
LUTs

Co-optimize
Hardware and
Execution
Schedule

Using FPGA's Programmability

Significant variations between different DNN models: # layers, Model Size, Operations, etc.

Specialize for each DNN model!

Co-optimization

3. Design Weaver

Design Planner

4. Integrator

Benchmark DNNs

Name	# Layers	Model Size(MB)	# Operations (Mops)	Lines of Code
VGG-16	36	324.0 MB	16362 MOps	347
OverFeat	16	278.0 MB	2798 MOps	196
VGG-CNN-S	19	196.0 MB	2666 MOps	200
AlexNet	20	119.0 MB	1147 MOps	278
Djinn	13	48.4 MB	25 MOps	105
NiN	28	14.5 MB	1106 MOps	516
LeNet	7	0.8 MB	2 MOps	128
CIFAR-10Full	12	0.2 MB	12 MOps	156

Platforms Tested

High Performance

Low Power

FPGA

Altera Arria 10

Altera Stratix V

Xilinx ZC702

CPU

Intel Xeon E3

ARM Cortex 15

GPU

Tesla K40

GTX 650 Ti

Tegra K1

Performance vs CPUs

Compared to Xeon, Arria10 is **5.9x** faster, and Zynq is **0.6x** faster.

Performance-per-Watt vs GPUs

Compared to TeslaK40, Zynq is 1.6x, and Arria10 is 1.3x more power efficient.

Performance vs Power

Conclusion

FPGAs are a promising option for low-mid power range

However, there is a semantic gap between the high-level DNN models and FPGA acceleration

DNNWEAVER is an initial step in making FPGAs more accessible to DNN programmers

Questions?

Backup Slides

Runtime Breakdown

Per Layer Speedup CPU

Performance vs GPU

Performance-per-Watt vs CPU

Platforms Tested

Altera Arria 10

TDP:35W

\$4495

Altera Stratix V

TDP:25W

\$6999

Xilinx Zynq ZC702

TDP: 2W

\$129

Intel Xeon E3-1276 V3

TDP: 84W

\$339

ARM Cortex 15

TDP: 5W

\$191

Tegra K1 GPU

TDP: 10 W

\$191

GTX 650 Ti

TDP: 110

\$150

Tesla K40

TDP: 235 W

\$5499

Deep Neural Networks (DNNs)

Convolution and Inner-Product are the Learnable Layers

Deep Neural Networks (DNNs)

DNNWEAVER supports all these five layers.

Scheduling Operations on Hardware

Convolution

Inner-product

Performance vs GPU

Performance-per-Watt vs CPU

Executing the Slice

Performance vs CPUs

Compared to Xeon, Arria10 is **5.9x** faster, Stratix V is **2.8x** faster, and Zynq is **0.6x** faster.

Performance-per-Watt vs GPUs

Compared to GTX650, Zynq is **3.2**x, Stratix V is **1.5**x, and Arria10 is **2.7**x more power efficient.

Co-optimize Hardware and Execution Schedule

Processing Engine

