		I	II
Name Vorname	1		
	2		
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach)			
	3		
Unterschrift der Kandidatin/des Kandidaten	4		
TECHNISCHE UNIVERSITÄT MÜNCHEN	5		
Zentrum Mathematik	6		
Semestrale	_		
Mathematik für Physiker 2	7		
(Analysis 1)			
(Allalysis 1)	\sum		
Prof. Dr. Oliver Matte			
14. Februar 2011, 8:30–10:00 Uhr, MW 1801, MW 2001	I .		·····
	l I	Erstkorre	ktur
Hörsaal: Platz:	II .		
Hinweise:	2	Zweitkor	rektur
Überprüfen Sie die Vollständigkeit der Angabe: 7 Aufgaben			
Bearbeitungszeit: 90 min			
Erlaubte Hilfsmittel: 1 selbsterstelltes DIN A4-Blatt			
Bei Multiple-Choice-Aufgaben sind genau die zutreffenden Aussagen anzukreuzen.			

Vorzeitig abgegeben um

Besondere Bemerkungen:

Note

1. Beweis

[5 Punkte]

Beweisen Sie, dass für alle $n \in \mathbb{N}$ gilt:

$$\sum_{k=1}^{n} (-1)^{k+1} k^2 = (-1)^{n+1} \frac{n(n+1)}{2}$$

2. Taylor-Reihen

[6 Punkte]

Betrachten Sie die Funktion $f:\mathbb{R}\longrightarrow\mathbb{R}$, $f(x)=\frac{x^2}{2+x^2}$.

(i) Wie lauten die ersten drei nichtverschwindenden Terme der Taylor-Entwicklung von f um x=0. Wie groß ist der Fehler?

 $f(x) = +\mathcal{O}(x^{\square})$

(ii) Bestimmen Sie den Konvergenzradius der Taylor-Reihe um x=0.

 $\square \ 2 \qquad \square \ \tfrac{\sqrt{2}}{2} \qquad \square \ \tfrac{1}{2} \qquad \square \ \sqrt{2} \qquad \square \ 0 \qquad \square \ 1 \qquad \square \ \infty$

[7 Punkte]

3. **Diverse Integrale**Bestimmen Sie folgende Stammfunktionen:

(i)

$$\int \mathrm{d}x\,x\,\sqrt{x-1} =$$

(ii) Für $a,b\in\mathbb{R}\setminus\{0\}$, bestimmen Sie

$$\int \mathrm{d}x \, \frac{1}{x(a+bx)} =$$

4. Folgen

[6 Punkte]

Bestimmen Sie das Verhalten für $n \to \infty$ der unten stehenden Folgen.

(i)
$$a_n = n \ln \left(1 + \frac{1}{\sqrt{n}}\right)$$

 $\Box \sqrt{e} \quad \Box + \infty \quad \Box e$

 $\Box \ 0 \ \Box \ 1$

(ii)
$$b_n = \frac{\sqrt{n^2 + 5} + n}{n + 17}$$

 \Box 1 \Box 0 \Box 2 \Box $\frac{5}{17}$ \Box konvergiert nicht

(iii)
$$c_n = \sum_{k=1}^n (-1)^k \sin \frac{1}{k}$$

 $\hfill \square$ konvergiert nicht, da $\left(\sin\frac{1}{k}\right)_{k\in\mathbb{N}}$ keine Nullfolge ist

 \square konvergiert, da $\left(\sin\frac{1}{k}\right)_{k\in\mathbb{N}}$ absolut summierbar ist

 $\hfill \square$ konvergiert nach dem Leibniz-Kriterium, und zwar gegen $c \in (-\infty,0)$

 \square konvergiert nach dem Leibniz-Kriterium, und zwar gegen $c \in (0, +\infty)$

 \square konvergiert nicht, da $\left(\sin\frac{1}{k}\right)_{k\in\mathbb{N}}$ wie $(1/k)_{k\in\mathbb{N}}$ gegen 0 geht

5. Potenzreihen und uneigentliche Integrale

Betrachten Sie die Funktion

$$F(x) = \int_0^x ds \, \frac{1 - \cos(2s^2)}{s^4}.$$

- (i) Zeigen Sie, dass das uneigentliche Integral F(x) für $x \neq 0$ existiert.
- (ii) Setzen Sie F in x = 0 stetig fort.
- (iii) Entwickeln Sie F als Potenzreihe um x=0 und geben Sie den Konvergenzradius an.
- (iv) Untersuchen Sie, ob $\int_0^\infty \mathrm{d} s \, \frac{1-\cos(2s^2)}{s^4} = \lim_{x \to \infty} F(x)$ existiert und begründen Sie Ihre Antwort.

6. Lipschitz-Stetigkeit und gleichmäßige Stetigkeit [4 Punkte] Sei $f:\mathbb{R} \longrightarrow \mathbb{R}$ eine Lipschitz-stetige Funktion mit Lipschitz-Konstanten L>0. Zeigen Sie, dass f auch gleichmäßig stetig ist.

7. Summierbarkeit und Quadratsummierbarkeit

[10 Punkte]

Seien $a_n\in\mathbb{C}$, $n\in\mathbb{N}$, komplexe Koeffizienten. Zeigen oder widerlegen Sie (mit Begründung):

(i) $\sum_{n=1}^{\infty} a_n$ konvergiert absolut $\Rightarrow \sum_{n=1}^{\infty} a_n^2$ konvergiert absolut.

\square Wahr	□ Falsch

(ii) $\sum_{n=1}^{\infty}a_n^2$ konvergiert absolut $\Rightarrow \sum_{n=1}^{\infty}a_n$ konvergiert absolut.

 \square Wahr \square Falsch