

COMO UM SISTEMA DE COMUNICAÇÃO É ORGANIZADO?

TRANSMISSÃO DE SINAIS

COMO UM SISTEMA DE COMUNICAÇÃO É ORGANIZADO?

Figura 1.1 Elementos de um sistema de comunicação.

☐ Rede e camadas de controle — Permitem que sistemas com um grande número de transmissores e receptores que compartilham um mesmo meio físico.

ABORDAGEM POR CAMADAS

Figura 1.2 Processos pares no modelo OSI de sete camadas para redes de computadores.

Sistema de comunicação analógico

Sistema de comunicação digital

Pilhas de protocolos – empacotas os dados para que eles possam chegar ao destino.

Modulação - é o processo que converte o sinal da mensagem para uma forma que seja compatível com as características de transmissão do canal.

Conversão ascendente e filtro - sinal modulado é convertido para a radiofrequência RF final, na qual será transmitido.

Estágio de RF – O sinal é amplificado a um nível de potência apropriado e emitido.

- > Miliwatt rádio de curto alcance
- ➤ **Megawatt** irradiada por alguns transmissores de televisão

> Canal de fio

Tipos de canais

Canal de rádio

> Canal de fibra óptica

- Propriedades dos canais de comunicação
- Atenuação
- Largura de banda
- Retardo

- Distúrbios nos canais de comunicações
- Ruído elétrico
- Distorção do sinal
- Sinais interferentes ou espúrios

PROPRIEDADES DOS **CANAIS COMUNICAÇÃO**

Atenuação - perda de energia ao se propagar no canal de comunicação.

Figura 1.4 Ilustração das anomalias do canal.

MEDEIROS, J. C. O. Princípios de telecomunicações - Teoria e prática, Editora: Érica - 1ª. edição 2004.

Atenuação da onda devido ao espaço livre

$$L_{\mathit{fs}} = \left(\frac{\lambda}{4\pi d}\right)^2 \text{ adimensional } \begin{array}{c} L_{\mathit{fs}} \\ \lambda \\ d \end{array} \text{ atenuação do espaço livre; } \\ \lambda \\ d \text{ distância percorrida pela onda em [m].} \end{array}$$

Sistemas de omunicação
$$L_{\mathit{fs}}(\mathit{dB}) = 20\log\!\left(rac{\lambda}{4\pi d}
ight)$$
 de

Alguns canais são variantes no tempo

Distúrbios específicos do canal de rádio, pois pode depender de característica do relevo, etc.

Figura 1.4 Ilustração das anomalias do canal.

Ondas multipercurso – A energia irradiada pela antena transmissora forma uma onda direta o restante da energia se dispersa.

Figura 3.4 - Ondas de múltiplos percursos.

rigura 3.5 - Soma vetorial instantânea de dois sinais senoidais de mesma freqcom diferentes amplitudes e defasados de φ.

Alguns canais são variantes no tempo

Distúrbios específicos do canal de rádio, pois pode depender de característica do relevo, etc.

Figura 1.4 Ilustração das anomalias do canal.

Desvanecimento – Quando o sinal recebido flutua, varia de intensidade

Seletividade de frequência -Cada meio conduz bem para uma faixa de frequência.

Figura 1.4 Ilustração das anomalias do canal.

Propriedades dos canais de comunicação

Retardo – Tempo gasto para atravessar o canal de comunicação.

Não linear – devido a presença de elementos não lineares como repetidores com amplificadores não lineares.

Figura 1.4 Ilustração das anomalias do canal.

Distorção do sinal – Alteração da forma de onda do sinal.

Uso compartilhado –

Multiplexação sem perfeito isolamento.

Figura 1.4 Ilustração das anomalias do canal.

Sinais interferentes ou espúrios – Sinais de outras comunicações que invadem o canal em uso.

Ruído – Máxima distância de transmissão ao custo de uma potência de transmissão mínima.

Figura 1.4 Ilustração das anomalias do canal.

Ruído Elétrico

Nas formas elétricas e eletromagnéticas, tem comportamento aleatório, com amplitudes e fases variáveis e se faz presente em todo espectro de frequência, particularmente no canal de rádio.

Origina da agitação térmicas dos elétrons existentes na matéria.

O ruído pode ser interno do equipamento ou externo captado pela antena.

Figura 1.4 Ilustração das anomalias do canal.

☐ Fontes Externas de Ruídos:

Ruído atmosférico - Resulta das descargas elétricas na atmosfera. (Afeta comunicação de rádio em alta frequência 3-30MHz)

Ruídos cósmicos - Gerados por distúrbios ocorridos fora da terra. (>20Mhz)

Ruído provocado pelo homem - Gerado por máquinas ou dispositivos fabricado pelo homem. Ex: motores elétricos com escovas.

Relação Sinal Ruído (dB)
$$\frac{S}{N} = 10 \log \frac{Pot_S}{Pot_R}$$

Boa recepção: Analógico: Sinal voz, S/N≥30dB - Sinal de vídeo, S/N≥45dB

Digital: S/N≥15dB

Figura 1.4 Ilustração das anomalias do canal.

Ruído interno do equipamento ou externo captado pela antena.

☐ Fonte Interna de Ruídos: É gerado pelas colisões entre os elétrons, quando da passagem de corrente elétrica nos componentes dos circuitos, tais como: resistores, diodos e transistores.

ruído branco

A potência de ruído interno gerado por um dispositivo é expressa pela figura de ruído, F.

F = Potência de ruído medido na saída do dispositivo, à temperatura ambiente

Potência de saída do dispositivo como se não gerasse ruído

Dispositivo ideal F=1 ou 0dB

A temperatura efetiva do ruído é dada por:

$$T_e = (F-1)T_o$$

 T_o Temperatura ambiente em kelvin (290K-300K).

F Figura de ruído do dispositivo.

$$T_e = (F-1)T_o$$

Potência de ruído:

Carga resistiva

$$P_n = kT_o B$$

- P_n potência do ruído, em W;
- k const. de Boltzmann (1,38*10^-23 joules/kelvin)
- B banda do canal (Hz)

- •Saída do receptor $P_{n(saída)} = FkT_oB$
- Considerando os ganhos dos estágios amplificadores em cascata

$$P_{n(saida)} = G_{sis}F_{sis}kT_{o}B$$

COMO UM SISTEMA DE COMUNICAÇÃO É ORGANIZADO?

Figura 1.1 Elementos de um sistema de comunicação.

Figura 1.3 Ilustração dos componentes básicos de um transmissor de rádio.

Distúrbios específicos do canal de rádio

Ondas multipercurso – A energia irradiada pela antena transmissora forma uma onda direta o restante da energia se dispersa.

Desvanecimento* – Quando o sinal recebido flutua, varia de intensidade.

Ação das chuvas sobre as ondas de rádio

Efeito Doppler - Quando um radio móvel esta se deslocando na velocidade V, aproximando ou afastando do ponto P, a onda transmitida é recebida em uma frequência diferente.

Figura 3.7 - Ilustração do efeito Doppler.

$$\Delta f = \frac{V}{\lambda} \cos \theta$$

 Δf Deslocamento da frequência, em Hz.

Velocidade do móvel, em m/s.

g Ângulo, em grau.

Comprimento da onda, em m

LINKS DE COMUNICAÇÃO - O RECEPTOR

Figura 1.5 Ilustração de um receptor de rádio.

Leitura capítulo 1

Exercícios

