自动控制原理

朱英华

Email: yhzhu@swjtu.edu.cn

西南交通大学电气工程学院

第一章 控制系统导论

1.1 自动控制系统

1.2 自动控制系统的发展

1.3 自动控制系统研究的主要内容

■ 磁盘驱动 读取系统

■ 汽车驾驶 控制系统

四、控制系统的分类

1、按输入(预期输出)的特征分类

恒值控制系统

随动控制系统

输入量一经设定就保持 恒定值,要求系统的输 出尽可能保持在期望的 恒值上。

输入量随时间任意变化, 要求系统的输出紧紧跟 踪输入量的变化。

■ 转盘转速控制的闭环系统

恒值控制系统

■ 汽车驾驶控制系统

2、按数学模型的特征分类

■ 线性控制系统与非线性控制系统

■ 连续控制系统和离散控制系统

■ 单输入单输出系统与多输入多输出系统

2、按数学模型的特征分类

■ 线性控制系统与非线性控制系统

至少存在一个非线性元件

组成元件均为线性元件

叠加定理

齐次性

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + 4\frac{\mathrm{d}y}{\mathrm{d}t} + 3y = r(t)$$
 线性还是涨线性?

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + 4\frac{\mathrm{d}y}{\mathrm{d}t} + 3y = r(t)$$

线性还是非线性?

输入:
$$r(t) = r_1(t)$$
 输出: $y(t) = y_1(t)$

$$\frac{d^2y_1}{dt^2} + 4\frac{dy_1}{dt} + 3y_1 = r_1(t)$$

输入: $r(t) = ar_1(t)$

满足齐次性

输出:
$$y(t) = ay_1(t)$$

$$= \frac{dy}{dt^2} + 4\frac{dy}{dt} + 3y$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + 4\frac{\mathrm{d}y}{\mathrm{d}t} + 3y = r(t)$$

线性还是非线性?

$$r(t) = r_1(t)$$
 $y(t) = y_1(t)$

$$\frac{d^2 y_1}{dt^2} + 4 \frac{dy_1}{dt} + 3y_1 = r_1(t)$$

$$r(t) = r_2(t)$$
 $y(t) = y_2(t)$

$$\frac{d^2 y_2}{dt^2} + 4 \frac{dy_2}{dt} + 3y_2 = r_2(t)$$

$r(t) = r_1(t) + r_2(t)$

满足叠加性

$$r(t) = r_1(t) + r_2(t) = \left(\frac{d^2 y_1}{dt^2} + 4\frac{dy_1}{dt} + 3y_1\right) + \left(\frac{d^2 y_2}{dt^2} + 4\frac{dy_2}{dt} + 3y_2\right)$$

$$= \frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 3y = \frac{d^2(y_1 + y_2)}{dt^2} + 4\frac{d(y_1 + y_2)}{dt} + 3(y_1 + y_2)$$

$$y(t) = y_1(t) + y_2(t)$$
 线性控制系统

连续控制系统和离散控制系统

微分方程 连续时间信号

0

差 分 方 程 离散时间信号

■ 单输入单输出系统与多输入多输出系统

SISO系统

单变量控制系统

MIMO系统

多变量控制系统

SISO(单输入单输出)系统

MIMO(多输入多输出)系统

P10 (12版) 蒸汽发电机的协同控制系统

■ 单输入单输出系统与多输入多输出系统

SISO系统

经典控制

MIMO系统

现代控制

3、按控制系统的组成元件分类

电气系统

机械系统

液动系统

生物学系统

经济学系统

• • • • •

1.2 自动控制系统的发展

自动控制系统的发展历程

自动控制理论的发展

一、自动控制系统的发展历程 P6 *1.1

- 1769 瓦特(James Watt) 发明了蒸汽机和飞球调节器。蒸汽机常常被认为是英国工业革命开始的标志
- 1800 惠特尼(Eli Whitney) 的"可互换件生产"概念在滑膛枪中得到验证。Whitney的成就常常被认为是大规模工业化生产开始的标志
- 1868 麦克斯韦(J.C.Maxwell) 为蒸汽机的调节器建立了数学模型
- 1913 福特(Henry Ford)在汽车生产中引入了机械化装配线
- 1927 H.S.Black 发明了负反馈放大器,H.W.Bode分析了反馈放大器
- 1932 奈奎斯特(H.Nyquist)发展了系统稳定性分析方法
- 1941 第一门具有主动控制功能的防空高炮诞生
- 1952 为了实施机床轴向控制,MIT开发出了数控(NC)方法
- 1954 George Devol 开发出了 "程控物体转运器",这被视为最早的机器人

- 1957 发射人造地球卫星开启了太空时代,促进了计算机小型化和自动控制理论的发展
- 1960 研制成功了第一台Unimat 机器人,并于1961年安装使用,用 于向压铸机给料
- 1970 发展了状态变量模型和最优控制
- 1980 鲁棒控制系统设计得到了广泛的研究
- 1983 个人计算机问世(控制系统设计软件业随之问世),从而将设计工具搬到了工程师的书桌上
- 1990 出口外向型产业公司强调自动化
- 1994 汽车上广泛采用了反馈控制系统
- 1995 全球定位系统(GPS)投入运营,面向全球提供定位和导航服务
- 1997 第一台自主控制的"旅居者"号漫游车实现了火星探测
- 1998~2003 微机电和纳米技术得到发展,研制成功了第一台智能微型机器,开发出功能纳米材料
- 2007 "轨道快车"首次实现了空间交会对接

1769年 瓦特 (James Watt)

鱼球调节器

公认最早的 工业自动控 制系统

1868年 麦克斯韦尔 (J.C. Maxwell)

稳定性条件(低阶线性系统)

"论调速器"

1877年 劳斯 (E.J. Routh)

1895年 霍尔维茨 (A. Hurwitz)

1892年

李亚普诺夫 (A.M. Lyapunov)

稳定性判据 (非线性系统)

"论运动稳定性的一般问题"

时域分析

1927年 布莱克 (H.S. Black)

负反馈放大器

频率域稳定性判据 (负反馈系统)

1940年 波特 (H. Bode)

频率响应的对数坐标图描述法 (Bode图)

频域分析

1948年 伊文斯 (W. Evans)

根轨迹分析法

复数域分析

经典控制

1948年 维纳 (N. Wiener)

控制论——关于在动物和机器中控制与通讯的科学

控制论学科诞生的标志

1954年 贝尔曼 (R. Bellman)

动态视划理论

(离散多阶段决策的最优原理)

状态分析法

1956年 庞特里亚金 (L.S. Pontryagin)

极大值原理

1960年 卡尔曼 (R.E.Kalman)

卡尔曼滤波器

多变量系统最优控制与最优滤波理论

系统的能控性和能观测性

奠定了现代控制的理论基础

二、自动控制理论的发展

经典控制理论阶段(19世纪——20世纪50年代)现代控制理论阶段(20世纪50年代——至今)

1. 经典控制理论阶段

(19世纪——20世纪50年代)

• 研究对象

• 数学模型

线性微分方程

传递函数

频率特性

• 基本方法

时域分析法 频域分析法 根轨迹分析法

重点

• 局限性

限于线性定常系统

限于单输入单输出系统

2. 现代控制理论阶段 (20世纪50年代——至今)

• 研究对象

多输入——多输出系统

非线性系统

时变系统

离散系统

• 数学模型

状态空间模型 输出方程

• 基本方法

状态空间法

状态空间法以系统的状态空间描述作为数学模型,通过对系统状态空间的分析及控制,使系统性能指标达到最优。

"最优控制"

时域法

• 新研究内容

智能控制 一种经网络控制 一专家控制

自适应控制

非线性控制

1.3 自动控制系统研究的主要内容

控制系统分析

控制系统设计

一、控制系统分析

已知系统的结构和参数,分析典型输入信号下系统的响应及指标。

(1) 稳定性 是否稳定,稳定裕度多大?

一个稳定的控制系统,其输出(被控量)偏离期望值的初始偏差应随时间的增长逐渐减小并趋于零。

一个不稳定的控制系统,其输出(被控量)偏离期望值的初始偏差将随时间的增长而发散,无法实现预定的控制任务。

(2) 稳态特性

控制精度的何,准确性(稳态误差)的何?

(3) 动态特性

快速性、平稳性的何, 响应时间多长?

二、控制系统设计

为达到特定的目的,构思或创建系统的 结构、组成和技术细节的过程。

■设计流程 确立控制目标 (P13 & 1.17) 辨识确定受控变量 定义系统性能指标 设计要求 进行系统配置 建立系统模型,包括受控 对象、执行机构和传感器 对控制器进行描述说明, 并选择关键待调参数 对参数进行调整优化,并 分析系统性能

此果系统性能没有达到规定要求, 则需要修改系统配置 此果系统性能满足规定要求, 则设计任务结束

