RENDSZER- ÉS IRÁNYÍTÁSTECHNIKA

MÁSODIK HÁZI FELADAT

Réda Vince – Z697LX

1. táblázat. Házi feladat kódja

ϑ_0	ϑ_1	ϑ_2	ϑ_3	ϑ_4
36 V	60°	10%	3%	50 ms

Mechatronika, Optika és Gépészeti Informatika Tanszék

Budapesti Műszaki és Gazdaságtudományi Egyetem

2020. november 16.

Tartalomjegyzék

1.	PI sz	zabályzó tervezése pólus-zérus kiejtéssel	4
	a.	P és I paraméterek számítása	4
	b.	Egységugrás válasz	5
	c.	Állandósult szögsebesség	6
2.	PD s	szabályzó tervezése pólus-zérus kiejtéssel	7
	a.	P és D paraméterek számítása	7
	b.	Egységugrás válasz	8
	c.	Állandósult szögsebesség	9
3.	PI p	ozíció szabályozás szimmetrikus optimum módszerrel	10
	a.	P és I paraméterek számítása	10
	b.	Egységugrás válasz	11
	c.	Állandósult szögsebesség	12
4.	PID	pozíció szabályozás szimmetrikus optimum módszerrel	13
	a.	P, I és D paraméterek számítása	13
	b.	Egységugrás válasz	14
	c.	Állandósult szögsebesség	15
5.	Szög	sebesség szabályozás állapotvisszacsatolással	16
	a.	Pólusok számítása	16

A második házi feladat a tárgyhoz kapcsolódó első házi feladat folytatása. A rendszer paraméterei és egyenleteit ott tárgyaltam, amelyeket itt fel fogok használni.

Az egyenáramú motor paraméterei

2. táblázat. A motor és a hajtómű paraméterei

Név	Jelölés	Katalógus-beli érték	SI-beli érték
armatúra ellenállás	$R_{\rm a}$	11,1 Ω	11,1 Ω
armatúra induktivitás	$L_{\rm a}$	1,52 mH	$1,52\cdot 10^{-3}~\mathrm{H}$
nyomatékállandó	$k_{\rm m}$	$58,2 \frac{\text{mNm}}{\text{V}}$	$0.0582 \frac{\text{Nm}}{\text{V}}$
sebességállandó	$k_{ m s}$	$164 \frac{\text{rpm}}{\text{V}}$	$17,17 \frac{\text{rad}}{\text{Vs}}$
elektromos állandó	$k_{\rm e}$	$0.006097 \frac{V}{rpm}$	$0.05822 \frac{\mathrm{Vs}}{\mathrm{rad}}$
forgórész tehetetlenségi nyomatéka	$J_{\rm a}$	44,6 gcm ²	$4,46\cdot10^{-6}~{ m kgm}^2$
névleges szögsebesség	$\omega_{ m n}$	4430 rpm	463,91 $\frac{\text{rad}}{\text{s}}$
névleges áramerősség	i_{n}	0,804 A	0,804 A
névleges feszültség	$u_{\rm n}$	36 V	36 V

(a) A motor hatásvázlata

(b) A szabályozott rendszer hatásvázlata

1. ábra. A rendszer és a visszacsatolt kör hatásvázlatai

1. PI szabályzó tervezése pólus-zérus kiejtéssel

a. P és I paraméterek számítása

Az 1b. ábra mutatja a rendszerünket, ahol a Wc szabályzó átviteli függvénye

$$W_{c} = P \frac{1 + sT_{I}}{sT_{I}} \tag{1}$$

alakú. $T_{\rm I}$ -vel a motor legnagyobb időállandóját ejtjük ki, tehát ezt válasszuk $T_{\rm I}=T_1=0,0145$ s értékűre, az első házi feladatban kiszámoltak alapján.

Az előrevezető ág átviteli függvénye ekkor leegyszerűsödik:

$$W_{x} = \frac{\Psi}{(T + T_{1}s)(1 + T_{2}s)} P \frac{T + sT_{1}}{sT_{1}} = \frac{\Psi P}{T_{1}} \frac{1}{s(1 + sT_{2})},$$
 (2)

ahol T_1 és T_2 a szabályozott szakasz időállandója, Ψ a nullfrekvenciás erősítés.

Most írjuk fel a fáziskésést az $s=j\omega$ helyettesítéssel.

$$\varphi(\omega) = \underbrace{-\frac{\pi}{2}}_{\text{integráló tag miatt}} - \underbrace{\operatorname{arctg}(T_2\omega)}_{\text{kisebbik időállandó}}.$$
 (3)

A megadott fázistartalék $\varphi_{\rm t}=\vartheta_1=60^\circ$. A következő egyenlet megoldása adja a vágási körfrekvenciát:

$$\varphi_{t} = \varphi(\omega_{c}) + \pi \Rightarrow \omega_{c} = 4176, 1 \frac{\text{rad}}{\text{s}}$$
(4)

Ha ω_c a vágási körfrekvencia, definíció szerint $|W_x(\omega_c)| = 1$. Ez alapján P = 4,0709.

A MATLAB-ban található margin függvény segítségével ellenőrizzük a számolást, amit a 2. ábra igazol.

2. ábra. Szabályozott rendszer Bode-diagramja

b. Egységugrás válasz

Az előrevezető ág $W_{\boldsymbol{x}}$, a zárt kör átviteli függvénye ebből

$$W_{cl} = \frac{W_x}{1 + W_x},\tag{5}$$

mivel a visszacsatoló ágban $W_{fb}=1$. Ezt meg kell szorozni az $\omega_{ref}=4430~\text{rpm}=705.0564~\frac{\text{rad}}{\text{s}}$ referencia szögsebességgel.

A PI-szabályozott rendszer egységugrás-válaszát a MATLAB-os step függvény adja meg.

3. ábra. PI egységugrás-válasz

A bemenet legyen $X=\frac{\omega_{\rm ref}}{s}$, a rendszer válasz $Y=W_{\rm cl}X$.

A végérték-tétel alapján az állandósult szögsebesség $\omega_{\infty} = \lim_{s \to 0} s Y = 705,0564.$

2. PD szabályzó tervezése pólus-zérus kiejtéssel

a. P és D paraméterek számítása

Az 1b. ábra mutatja a rendszerünket, ahol a Wc szabályzó átviteli függvénye

$$W_{c} = P \frac{1 + sT_{D}}{1 + snT_{D}} \tag{6}$$

alakú. T_D-vel a motor második legnagyobb időállandóját ejtjük ki,

tehát ezt válasszuk $T_{\rm D}=T_2=1,3825\cdot 10^{-4}$ s értékűre, az első házi feladatban kiszámoltak alapján.

Az előrevezető ág átviteli függvénye ekkor leegyszerűsödik:

$$W_{x} = \frac{\Psi}{(1+T_{1}s)(1+T_{2}s)} P \frac{1+sT_{2}}{1+snT_{D}} = \frac{\Psi P}{(1+sT_{1})(1+snT_{2})},$$
(7)

ahol T_1 és T_2 a szabályozott szakasz időállandója, Ψ a nullfrekvenciás erősítés.

Most írjuk fel a fáziskésést az $s=j\omega$ helyettesítéssel.

$$\varphi(\omega) = -\underbrace{\arctan(T_1\omega)}_{\text{nagyobbik időállandó}} - \underbrace{\arctan(nT_2\omega)}_{\text{szűrő időállandó}}.$$
(8)

A megadott fázistartalék most is $\varphi_t = \vartheta_1 = 60^\circ$. A következő egyenlet megoldása adja a vágási körfrekvenciát:

$$\varphi_{t} = \varphi(\omega_{c}) + \pi \implies \omega_{c} = 41920 \frac{\text{rad}}{\text{s}}$$
 (9)

Ha $\omega_{\rm c}$ a vágási körfrekvencia, definíció szerint $|W_{\rm x}(\omega_{\rm c})|=1$. Ez alapján P=40,9024.

A MATLAB-ban található margin függvény segítségével ellenőrizzük a számolást, amit a 2. ábra igazol.

4. ábra. Szabályozott rendszer Bode-diagramja

b. Egységugrás válasz

Az előrevezető ág $W_{\boldsymbol{x}}$, a zárt kör átviteli függvénye ebből

$$W_{cl} = \frac{W_x}{1 + W_x},\tag{10}$$

mivel a visszacsatoló ágban $W_{fb}=1$. Ezt meg kell szorozni az $\omega_{ref}=4430~\text{rpm}=705.0564~\frac{\text{rad}}{\text{s}}$ referencia szögsebességgel.

A PI-szabályozott rendszer egységugrás-válaszát a MATLAB-os step függvény adja meg.

5. ábra. PI egységugrás-válasz

A bemenet legyen $X=\frac{\omega_{\rm ref}}{s}$, a rendszer válasz $Y=W_{\rm cl}X$.

A végérték-tétel alapján az állandósult szögsebesség $\omega_{\infty} = \lim_{s \to 0} s Y = 704,0542.$

3. PI pozíció szabályozás szimmetrikus optimum módszerrel

a. P és I paraméterek számítása

A DC motor szögsebességének integrálásával kapjuk meg annak pozícióját. A módosított hatásvázlatot a 6. ábra mutatja.

6. ábra. Pozíció-szabályzott DC motor hatásvázlata

Írjuk fel az előrevezető ág átviteli függvényét:

$$W_{x} = W_{c}W_{p}\frac{1}{s} = \frac{\Psi P (T_{I}s + 1)}{s^{2} (T_{1}s + 1) (T_{2}s + 1)},$$
(11)

ahol Ψ a szabályozott szakasz erősítése.

Ezután írjuk fel a fázistolást a körfrekvencia függvényében:

$$\varphi(\omega) = -\pi - \arctan(T_1\omega) - \arctan(T_2\omega) + \arctan(T_1\omega). \tag{12}$$

Ennek a függvénynek a szélsőértékét keressük. Ehhez tegyük nullává a deriváltat:

$$\frac{\partial \varphi}{\partial \omega} = \frac{T_{\rm I}}{T_{\rm I}^2 \,\omega^2 + 1} - \frac{T_2}{T_2^2 \,\omega^2 + 1} - \frac{T_1}{T_1^2 \,\omega^2 + 1} = 0. \tag{13}$$

Ebből megkaptunk egy ω_c értéket, ami T_I -től függ. Ezt helyettesítsük be a fázistartalékhoz tartozó képletbe, ami kiadja T_I -t és ezáltal ω_c numerikus értékét is:

$$\varphi_{t} = \pi + \varphi(\omega_{c}). \tag{14}$$

Ebből $T_{\rm I}=0,204$ s, és $\omega_{\rm c}=18,2783$ $\frac{\rm rad}{\rm s}$.

Már csak a P körerősítést kell meghatároznunk, ami ugyanúgy történik mint az első feladatban:

$$|W_{\mathbf{x}}(\omega_{\mathbf{c}})| = 1 \Rightarrow P = 5,2163. \tag{15}$$

Ellenőrizzük, hogy a fázistartalék tényleg 60°-e a margin függvénnyel.

7. ábra. Pozíció-szabályzott rendszer Bode-diagramja, fázistartalék feltüntetve

Ez teljesül.

b. Egységugrás válasz

Egy kör fordulat szabályozása esetén a bemenet Laplace-transzformáltja $X=\frac{2\pi}{s}$, a kimenet ebből $Y=W_{cl}X$. Ezt a szokásos step függvény ki is rajzolja nekünk időtartományban, amit a 8. ábra mutat.

8. ábra. PI egységugrás-válasz

Az előző részfeladatban kiszámolt kimenetet felhasználva az állandósult szög érték: $\theta_{\infty}=\lim_{s\to 0}sY=6,2832$ rad.

Az állandósult hiba a PI szabályzótól vártan zérus.

4. PID pozíció szabályozás szimmetrikus optimum módszerrel

a. P, I és D paraméterek számítása

Az előző feladatból a szabályzót változtassuk meg egy PID kontrollerre:

$$W_{c} = P \frac{(1 + T_{I}s)(1 + T_{D}s)}{s(1 + nT_{D})}.$$
(16)

Válasszuk meg a deriváló tag időállandóját úgy, hogy az kiejtse a szabályozott szakasz egyik pólusát, tehát legyen $T_{\rm D}=T_2$.

Írjuk fel az előrevezető ág átviteli függvényét:

$$W_{x} = W_{c}W_{p}\frac{1}{s} = \frac{P}{s^{2}} \frac{(1 + T_{1}s)(1 + T_{D}s)}{1 + nT_{D}s} \frac{\Psi}{(1 + sT_{1})(1 + sT_{2})}$$
(17)

ahol Ψ a szabályozott szakasz erősítése.

Ezután írjuk fel a fázistolást a körfrekvencia függvényében:

$$\varphi(\omega) = -\pi - \arctan(T_1 \omega) - \arctan(n T_D \omega) + \arctan(T_I \omega). \tag{18}$$

Ennek a függvénynek a szélsőértékét keressük. Ehhez tegyük nullává a deriváltat:

$$\frac{\partial \varphi}{\partial \omega} = \frac{T_{\rm I}}{(T_{\rm I}\omega)^2 + 1} - \frac{nT_{\rm D}}{(T_{\rm D}\omega)^2 + 1} - \frac{T_{\rm I}}{(T_{\rm I}\omega)^2 + 1} = 0.$$
 (19)

Ebből megkaptunk egy ω_c értéket, ami $T_{\rm I}$ -től függ. Ezt helyettesítsük be a fázistartalékhoz tartozó képletbe, ami kiadja $T_{\rm D}$ -t és ezáltal ω_c numerikus értékét is:

$$\varphi_{\rm t} = \pi + \varphi(\omega_{\rm c}). \tag{20}$$

Ebből $T_{\rm I} = 0,2022 \text{ s, és } \omega_{\rm c} = 18,4589 \frac{\text{rad}}{\text{s}}.$

Már csak a P körerősítést kell meghatároznunk, ami ugyanúgy történik mint az első feladatban:

$$|W_x(\omega_c)| = 1 \Rightarrow P = 5,3159.$$
 (21)

Ellenőrizzük, hogy a fázistartalék tényleg 60°-e a margin függvénnyel.

9. ábra. PID pozíció-szabályzott rendszer Bode-diagramja, fázistartalék feltüntetve

Ez teljesül.

b. Egységugrás válasz

Egy kör fordulat szabályozása esetén a bemenet Laplace-transzformáltja $X = \frac{2\pi}{s}$, a kimenet ebből $Y = W_{cl}X$. Ezt a szokásos step függvény ki is rajzolja nekünk időtartományban, amit a 10. ábra mutat.

10. ábra. PID egységugrás-válasz

Az előző részfeladatban kiszámolt kimenetet felhasználva az állandósult szög érték: $\theta_{\infty}=\lim_{s\to 0}sY=6,2832^{\circ}.$

Az állandósult hiba a PID szabályzótól vártan zérus.

5. Szögsebesség szabályozás állapotvisszacsatolással

a. Pólusok számítása

Írjuk át a rendszerünket állapotteres alakra, valamint a W_c kontrollert cseréljük le a K_x és K_r állapotvisszacsatoló és alapjelkompenzáló mátrixokra. A D kimeneti mátrix esetünkben zérus, és egyenlőre az alapjelkompenzáló mátrix egységnyi.

11. ábra. Állapottér modell hatásvázlata

A rendszer átviteli függvény formában van megadva:

$$W_{p} = \frac{\Psi}{(1+T_{1}s)(1+T_{2}s)} = \frac{\Psi}{T_{1}T_{2}s^{2} + (T_{1}+T_{2})s + 1},$$
(22)

amelynek a pólusai $p_1=-\frac{1}{T_1}=-68,97$ és $p_2=-\frac{1}{p_2}=-7233,3.$

Írjuk át ezt állapottér modellre, irányíthatósági kanonikus alakra:

$$Y = \frac{\Psi}{T_1 T_2 s^2 + (T_1 + T_2) s + 1} U$$
 (23)

$$X := \frac{1}{T_1 T_2 s^2 + (T_1 + T_2) s + 1} U \Rightarrow$$
 (24)

$$u = T_1 T_2 \ddot{x} + (T_1 + T_2) \dot{x} + x \Rightarrow$$
 (25)

$$\begin{bmatrix} \dot{x} \\ \ddot{x} \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & 1 \\ \frac{1}{T_1 T_2} & \frac{T_1 + T_2}{T_1 T_2} \end{bmatrix}}_{\mathbf{A}} \underbrace{\begin{bmatrix} x \\ \dot{x} \end{bmatrix}}_{\mathbf{X}} + \underbrace{\begin{bmatrix} 0 \\ 1 \end{bmatrix}}_{\mathbf{B}} u
 \tag{26}$$

$$y = \underbrace{\begin{bmatrix} \Psi & 0 \end{bmatrix}}_{\mathbf{C}} \begin{bmatrix} x \\ \dot{x} \end{bmatrix} + \underbrace{\begin{bmatrix} 0 \end{bmatrix}}_{\mathbf{D}} u \tag{27}$$

A feladatkiírás alapján a domináns időállandó $\widetilde{T}_1=50~{\rm ms}=0,05~{\rm s}$ kell hogy legyen. A másik pedig valami.

A visszacsatolás miatt

$$u = \mathbf{K}_{\mathbf{r}} \mathbf{r} - \mathbf{K}_{\mathbf{x}} \mathbf{x} \tag{28}$$

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{K}_{r}\mathbf{r} - \mathbf{B}\mathbf{K}_{x}\mathbf{x} \tag{29}$$

$$\dot{\mathbf{x}} = (\mathbf{A} - \mathbf{B}\mathbf{K}_{x})\,\mathbf{x} + \mathbf{B}\mathbf{K}_{r}\mathbf{r} \tag{30}$$

Ebben a feladatrészben $\mathbf{K}_r \equiv \mathbf{I}$, tehát a referencia bemenetre nézve a \mathbf{B} bemeneti mátrix nem változik, az új rendszermátrix pedig $\widetilde{\mathbf{A}} = \mathbf{A} - \mathbf{B}\mathbf{K}_x$. A \mathbf{K}_x mátrixot úgy kell megválasztani, hogy az új rendszermátrix sajátértékei a kívánt pólusok legyenek.

$$\widetilde{\mathbf{A}} = \begin{bmatrix} 0 & 1 \\ \frac{1}{T_1 T_2} & \frac{T_1 + T_2}{T_1 T_2} \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ k_1 & k_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \frac{1}{T_1 T_2} - k_1 & \frac{T_1 + T_2}{T_1 T_2} - k_2 \end{bmatrix}$$
(31)

$$\det \widetilde{\mathbf{A}} = k_1 - \frac{1}{T_1 T_2} = 0 \Rightarrow k_1 = \frac{1}{T_1 T_2}$$
(32)

Hivatkozások

[1] DC motor adatlapja

https://www.maxongroup.com/maxon/view/product/motor/dcmotor/amax/amax32/236671