Optical Spectroscopy of Hydrogenic Atoms:

Calibration against Mecury and the Balmer Series of Hydrogen Isotopes

Jason Gross

MIT - Department of Physics

Goals

test the Balmer-Bohr formula:

$$\frac{1}{\lambda} = R_H \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$$

determine the value of the Rydberg constant

$$R_H = \frac{R_{\infty}}{1 + m_e/M}$$

determine the hydrogen-deuterium mass-ratio

Goals

test the Balmer-Bohr formula:

$$\frac{1}{\lambda} = R_H \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$$

determine the value of the Rydberg constant

$$R_H = \frac{R_{\infty}}{1 + m_e/M}$$

determine the hydrogen-deuterium mass-ratio

Goals

test the Balmer-Bohr formula:

$$\frac{1}{\lambda} = R_H \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$$

determine the value of the Rydberg constant

$$R_H = \frac{R_{\infty}}{1 + m_e/M}$$

determine the hydrogen-deuterium mass-ratio

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Bohr Model

Balmer Series

Experimental Setup

Mercury Spectrum

Hydrogen Peak

Rydberg Constant

Book Value: 0.00109737 -1

Rydberg Constant

Mass Ratio

Book Value:

$$\frac{1+m_e/M_D}{1+m_e/M_H} = 0.999724$$

Our Value: $\frac{1+m_e/M_D}{1+m_e/M_H} = 0.9997 \pm 0.0010$

Thank You

Any questions?