POLYTROPIC MODELS OF WHITE DWARFS UNC PHYS 331 PROJECT

Erin Conn Matthew Hurley

April 9, 2014

Table of Contents

THEORY

Polytropes White Dwarfs

Polytropes

Table of Contents

THEORY

Polytropes

WHAT ARE POLYTROPES?

Solutions to...

The Lane-Emden Equation

$$\frac{1}{\xi^2} \frac{d}{d\xi} \left(\xi^2 \frac{d\theta}{d\xi} \right) = -\theta^n(\xi)$$

A dimensionless, 2nd order nonlinear differential equation relating the pressure of a spherically-symmetric gas distribution to the radius.

WHY POLYTROPES?

▶ Provide simplified stellar models - simple pressure/density relation

WHY POLYTROPES?

- ▶ Provide simplified stellar models simple pressure/density relation
- ► Easier to solve than full equations of stellar structure

WHY POLYTROPES?

- ▶ Provide simplified stellar models simple pressure/density relation
- ► Easier to solve than full equations of stellar structure
- ▶ Require less computational effort some analytic solutions even exist!

DEFINITIONS

DEFINITION

Polytropic process - Thermodynamic process that obeys the relation

$$PV^n = C$$

Theory

DEFINITIONS

DEFINITION

Polytropic process - Thermodynamic process that obeys the relation

$$PV^n = C$$

DEFINITION

Polytropic index - Constant that relates pressure of a polytropic fluid to its volume (density). It may be any real number.

Theory

DEFINITIONS

DEFINITION

Polytropic process - Thermodynamic process that obeys the relation

$$PV^n = C$$

DEFINITION

Polytropic index - Constant that relates pressure of a polytropic fluid to its volume (density). It may be any real number.

DEFINITION

Poisson's equation Relates a force density function to a potential field

$$\nabla^2 \Phi = f$$

DERIVATION 1: Poisson Equation

Can be derived multiple ways. From laws of mass conservation and hydrostatic equilibrium:

Theory

DERIVATION 1: Poisson Equation

Can be derived multiple ways. From laws of mass conservation and hydrostatic equilibrium:

$$dM(r) = 4\pi r^2 \rho(r) dr \rightarrow \frac{dM(r)}{dr} = 4\pi r^2 \rho(r)$$

DERIVATION 1: Poisson Equation

Can be derived multiple ways. From laws of mass conservation and hydrostatic equilibrium:

$$\begin{array}{ll} dM(r) &= 4\pi r^2 \rho(r) dr \rightarrow \frac{dM(r)}{dr} = 4\pi r^2 \rho(r) \\ \frac{dP(r)}{dr} &= -\frac{\rho(r)GM(r)}{r^2} \end{array}$$

DERIVATION 1: POISSON EQUATION

Can be derived multiple ways. From laws of mass conservation and hydrostatic equilibrium:

$$\begin{array}{ll} dM(r) &= 4\pi r^2 \rho(r) dr \rightarrow \frac{dM(r)}{dr} = 4\pi r^2 \rho(r) \\ \frac{dP(r)}{dr} &= -\frac{\rho(r)GM(r)}{r^2} \end{array}$$

These equations are related by multiplying the hydrostatic equation by r^2/ρ and differentiating:

DERIVATION 1: POISSON EQUATION

Can be derived multiple ways. From laws of mass conservation and hydrostatic equilibrium:

$$\begin{array}{ll} dM(r) &= 4\pi r^2 \rho(r) dr \rightarrow \frac{dM(r)}{dr} = 4\pi r^2 \rho(r) \\ \frac{dP(r)}{dr} &= -\frac{\rho(r)GM(r)}{r^2} \end{array}$$

These equations are related by multiplying the hydrostatic equation by r^2/ρ and differentiating:

$$\frac{d}{dr}\left(\frac{r^2}{\rho(r)}\frac{dP(r)}{dr}\right) = -G\frac{dM(r)}{dr}$$

DERIVATION 1: Poisson Equation

Can be derived multiple ways. From laws of mass conservation and hydrostatic equilibrium:

$$\begin{array}{ll} dM(r) &= 4\pi r^2 \rho(r) dr \rightarrow \frac{dM(r)}{dr} = 4\pi r^2 \rho(r) \\ \frac{dP(r)}{dr} &= -\frac{\rho(r)GM(r)}{r^2} \end{array}$$

These equations are related by multiplying the hydrostatic equation by r^2/ρ and differentiating:

$$\frac{d}{dr}\left(\frac{r^2}{\rho(r)}\frac{dP(r)}{dr}\right) = -G\frac{dM(r)}{dr}$$

Yielding Poisson's equation for gravity:

DERIVATION 1: Poisson Equation

Can be derived multiple ways. From laws of mass conservation and hydrostatic equilibrium:

$$\begin{array}{ll} dM(r) &= 4\pi r^2 \rho(r) dr \rightarrow \frac{dM(r)}{dr} = 4\pi r^2 \rho(r) \\ \frac{dP(r)}{dr} &= -\frac{\rho(r)GM(r)}{r^2} \end{array}$$

These equations are related by multiplying the hydrostatic equation by r^2/ρ and differentiating:

$$\frac{d}{dr}\left(\frac{r^2}{\rho(r)}\frac{dP(r)}{dr}\right) = -G\frac{dM(r)}{dr}$$

Yielding Poisson's equation for gravity:

$$\frac{1}{r^2}\frac{d}{dr}\left(\frac{r^2}{\rho(r)}\frac{dP(r)}{dr}\right) = -4\pi G\rho(r)$$

Theory

DERIVATION 2: WORKING TOWARDS A DIMENSIONLESS FORM

Define a polytropic state equation:

Theory

DERIVATION 2: WORKING TOWARDS A DIMENSIONLESS FORM

Define a polytropic state equation:

$$P = K\rho^{\frac{n+1}{n}}$$

Define a polytropic state equation:

$$P = K\rho^{\frac{n+1}{n}}$$

Make it dimensionless:

$$\theta^n \equiv \frac{\rho}{\rho_c}$$

Define a polytropic state equation:

$$P = K\rho^{\frac{n+1}{n}}$$

Make it dimensionless:

$$\theta^n \equiv \frac{\rho}{\rho_c}$$

$$P(r) = K \rho_c^{\frac{n+1}{n}} \theta^{n+1}(r) = P_c \theta^{n+1}(r)$$

Define a polytropic state equation:

$$P = K \rho^{\frac{n+1}{n}}$$

Make it dimensionless:

$$\theta^n \equiv \frac{\rho}{\rho_c}$$

$$P(r) = K \rho_c^{\frac{n+1}{n}} \theta^{n+1}(r) = P_c \theta^{n+1}(r)$$

Substitute into Poisson and simplify:

Define a polytropic state equation:

$$P = K\rho^{\frac{n+1}{n}}$$

Make it dimensionless:

$$\theta^n \equiv \frac{\rho}{\rho_c}$$

$$P(r) = K \rho_c^{\frac{n+1}{n}} \theta^{n+1}(r) = P_c \theta^{n+1}(r)$$

Substitute into Poisson and simplify:

$$\frac{(n+1)P_c}{4\pi G\rho_c^2} \frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{d\theta(r)}{dr} \right) = -\theta^n(r)$$

Define a new variable:

Define a new variable:

$$\alpha^2 \equiv \frac{(n+1)P_c}{4\pi G\rho_c^2}$$

Define a new variable:

$$\alpha^2 \equiv \frac{(n+1)P_c}{4\pi G\rho_c^2}$$

Use it to define a dimensionless radius:

Define a new variable:

$$\alpha^2 \equiv \frac{(n+1)P_c}{4\pi G\rho_c^2}$$

Use it to define a dimensionless radius:

$$\xi \equiv \frac{r}{\alpha}$$

Define a new variable:

$$\alpha^2 \equiv \frac{(n+1)P_c}{4\pi G\rho_c^2}$$

Use it to define a dimensionless radius:

$$\xi \equiv \frac{r}{\alpha}$$

Substitute into the simplified Poisson:

Define a new variable:

$$\alpha^2 \equiv \frac{(n+1)P_c}{4\pi G\rho_c^2}$$

Use it to define a dimensionless radius:

$$\xi \equiv \frac{r}{\alpha}$$

Substitute into the simplified Poisson:

$$\frac{1}{\xi^2} \frac{d}{d\xi} \left(\xi^2 \frac{d\theta(\xi)}{d\xi} \right) = -\theta^n(\xi)$$

Table of Contents

THEORY

White Dwarfs

Theory

PLACEHOLDER

Something about degenerate matter and how polytropic models suit it?

Theory

PLACEHOLDER

Relativistic vs. Non-Relativistic?

METHODS

$$\frac{d^2\theta}{d\xi^2} = -\frac{2}{\xi} \frac{d\theta}{d\xi} - \theta^n(\xi)$$

Translating to a system of 1st order **EQUATIONS**

$$\begin{cases} \phi = \frac{d\theta}{d\xi} \\ \frac{d\phi}{d\xi} = -\frac{2}{\xi}\phi - \theta^n \end{cases}$$

BOUNDARY VALUES

Obtained from central density and hydrostatic equation

$$\xi = 0 \\
\theta = 1 \\
\frac{d\theta}{d\xi} = 0$$

Singularity at $\xi_0 = 0$:

$$\phi' = -\left(\frac{2}{\xi_0}\phi\right) - \theta_0^n$$

Need to work around this somehow:

Singularity at $\xi_0 = 0$:

$$\phi' = -\left(\frac{2}{\xi_0}\phi\right) - \theta_0^n$$

Need to work around this somehow:

▶ Taylor expand at $\xi = 0$ and take limit as $\xi \to 0$: $\phi' \to -\frac{1}{3}$

PROBLEM!

Singularity at $\xi_0 = 0$:

$$\phi' = -\left(\frac{2}{\xi_0}\phi\right) - \theta_0^n$$

Need to work around this somehow:

- ▶ Taylor expand at $\xi = 0$ and take limit as $\xi \to 0$: $\phi' \to -\frac{1}{3}$
- Offset the starting point: $0 < \xi_0 \ll 1$

Table of Contents

THEORY

Polytropes

METHODS

RESULTS

DISCUSSION

PLACEHOLDER

Table of Contents

DISCUSSION

