Державний вищий навчальний заклад «Прикарпатський національний університет імені Василя Стефаника» Кафедра комп'ютерних наук та інформаційних систем

ЛАБОРАТОРНА РОБОТА №1

з предмету «Архітектура обчислювальних систем»

Тема: «Розробка багатопроцесорної обчислювальної системи з відмовами»

Виконав: студент групи КН-31 Книш В. В.					
<u>~</u>	<u> </u>	2022p.			
-	ийняв: н., доц. П	Іетришин М.Л			
		2022p.			

Мета: Розробка багатопроцесорної обчислювальної системи з відмовами

Хід роботи: За формулами для обчислення значень критеріїв ефективності систем із відмовами визначити основні показники. Із основних показників ефективності функціонування обчислювальної системи визначити похідні показники.

Варіант 14

На базі комплексу методик оптимізації процесорів обслуговування в ОС з відмовами, що наведений в четвертому розділі навчального посібника, оптимізувати вихідні параметри системи згідно варіанту завдання (Рисунок 1) та розробити структуру оптимізованої обчислювальної системи.

вар-т		λ	п _{завд.}	: Р ^п обсзд	P ^t обсзд	ŀ Р ^λ обсз∂
од.вм	10 ⁻² c	C ⁻¹				[
14.	20	55	8	0.941	0.595	0.952

Рисунок 1 Вхідні дані

Код програми

```
VARIANT = 14
\overline{p} \stackrel{-}{1} obszd = 0.952
p n obszd array = Array.new(N, p n obszd)
    sum += (alpha**k.to f / Math.gamma(k+1))
    sum 2 += alpha**k * (n zavd - k).to f / Math.gamma(k+1) * p o
```

```
\t#{p_o}\t#{p_n}\t#{p_obs}\t#{n_k}\t#{k_z}\t#{n_o}\t#{n_o}\t#{n_zavd}"
  rows << [lambd, alpha.round, p_o.round(7), p_n.round(3), p_obs.round(3),
  n_k.round(3), k_z.round(3), n_o.round(7), k_p.round(7), n_zavd]
  # rows << [lambd, alpha, p_o, p_n, p_obs, n_k, k_z, n_o, k_p, n_zavd]
end

puts Terminal::Table.new title: "n = #{N}, t_obs = #{t_obs}, VARIANT

#{VARIANT}", headings: headings, rows: rows

g = Gruff::Line.new
g.title = "Графік залежності Р(обс) від кількості процесорів"
g.data 'P_oбс', p_obs_array
# g.data 'P_oбсsb', p_n_obszd_array
g.data 'K_s', k_z_array
g.labels = (1..N).to_a.to_h { |n| [n-1, n] }
# g.write("img/plot1.png")
g.write("img/plot1.png")</pre>
```

За формулами для обчислювання критеріїв ефективності систем із відмовами визначили основні показники (Таблиця 1).

n = 8, t_obs = 0.2, VARIANT 14								
lambd alpha	 p_o	 p_n '	 p_obs	 n_k '	 k_z	n_o	k_p	 n_zavd
1/55 11 1/55 11	0.0833333 0.0137931 0.0033975 0.0011057 0.0004451 0.0002125 0.0001166 7.2e-05	0.917 0.834 0.754 0.675 0.597 0.523 0.451 0.383	0.083 0.166 0.246 0.325 0.403 0.477 0.549 0.617	3.58 4.428 5.25 6.039	0.917 0.91 0.903 0.895 0.886 0.875 0.863 0.849	0.0069444 0.0024732 0.0009869 0.0004644 0.0002545 0.0001594 0.0001121 8.71e-05	0.0069444 0.0012366 0.000329 0.0001161 5.09e-05 2.66e-05 1.6e-05	1 1

Таблиця 1 Результати обчислень показників ефективності обслуговування ОС з 10 процесорами

За таблицею 2 та графіком (Рисунок 3) бачимо, що:

	Р(обс)	K(3)
1	0.083	0.917
2	0.166	0.910
3	0.246	0.903
4	0.325	0.895
5	0.403	0.886
6	0.477	0.875
7	0.549	0.863
8	0.617	0.849

Таблиця 2 Вхідні дані для графіка (Рисунок 2)

Рисунок 2 Графік залежності Робс від кількості процесорів

ОС функціонує в не оптимальному режимі, та ефективність функціонування системи, заданої такими вихідними умовами, не ϵ достатньою, а її завантаженість досить значна.

Визначити оптимальну кількість процесорів, для якого показники ймовірності обслуговування і коефіцієнта зайнятості системи набудуть однакових значень. А саме (11) (таблиця 3).

Таблиця 3 Результати обчислень показників ефективності обслуговування ОС з 15 процесорами

За таблицею 4 та графіком до нього бачимо, що:

	Р(обс)	Р(обсзв)
11	0.794	0.794

ОС функціонує в оптимальному та ефективному режимі, змінивши кількість процесорів з (8) на (11).

Висновки

Розробка багатопроцесорної обчислювальної системи з відмовами. За формулами для обчислення значень критеріїв ефективності систем із відмовами визначили основні показники. Із основних показників ефективності функціонування обчислювальної системи визначили похідні показники.