Méthode simplexe

[MAIN4] Mina Pêcheux - Cours de H. Ouzia

Théorie

• Soit un problème d'optimisation linéaire :

Son équivalent sous forme standard est :

$$\begin{array}{ll} \text{Min} & c^t x \\ s.c. & \\ Ax + \mathbbm{1}\zeta = b & \leftarrow \text{ ajout de variables d'écart} \\ x, \zeta \geq 0 & \leftarrow \text{ variables d'écart positives} \end{array}$$

• Méthode simplexe : soit y_1, \ldots, y_m les variables d'écart :

	(1) construire le tableau	simple xe initial :			
	$x_1 \dots x_n y_1 \dots y_m$	\overline{z}			
	vecteur des coûts réduits c^t	val. fonction objectif			
y_1					
	matrice des contraintes	second membre			
y_n					

Au départ, les variables d'écart sont en base. La matrice des contraintes étendue contient donc la matrice identité à droite.

- (2) à chaque itération, déterminer le pivot :
- var. qui améliorera le plus la fonction objectif entre en base (soit k son indice)
- critère du ratio : var. de base bloquante sort de la base (soit r son indice) :

 x_r sort si $r = \operatorname{argmin} \left\{ \frac{\operatorname{second membre}_i}{\operatorname{matrice contr.}_{ik}}, \text{ si matrice contr.}_{ik} > 0 \right\}$ - on effectue l'opération de pivot de Gauss

(3) on vérifie le vecteur des coûts réduits :

(ou positifs pour une max.)

- minimisation : tous les coûts sont positifs \rightarrow arrêt
- maximisation : tous les coûts sont négatifs \rightarrow arrêt Remarque : on peut aussi mettre dans le tableau l'opposé du vecteur des coûts réduits et dans ce cas, l'algo. s'arrête quand tous les coûts réduits sont négatifs pour une min.
- <u>Complexité de l'algo.</u> : exponentielle en la taille de l'instance
- Visualisation géométrique : les points trouvés à chaque itération sont les points extrêmes du polyèdre des solutions réalisables

Application

• Soit le problème d'optimisation linéaire :

Son équivalent sous forme standard est :

• 1 tableau simplexe initial (coûts réduits opposés pour une min. : arrêt de l'algo. quand tous les coûts réduits sont négatifs) :

	x_1	x_2	x_3	y_1	y_2	y_3	z
	-2	-1	3	0	0	0	0
y_1	1	-2	2	1	0	0	5
\mathcal{J}_2	1	1	-1	0	1	0	3
J 3	1	2	1	0	0	1	4

→ coût réduit le plus grand pour x_3 : x_3 entre en base → critère du ratio : y_1 sort car $\frac{5}{2}$ = $\min\left\{\frac{5}{2}, \frac{4}{1}\right\}$

(2) déroulement de l'algorithme :

- <u>itération 1 :</u>

	x_1	x_2	x_3	y_1	y_2	y_3	z
	$-\frac{7}{2}$	2	0	$-\frac{3}{2}$	0	0	$-\frac{15}{2}$
$\overline{x_3}$	$\frac{1}{2}$	-1	1	$\frac{1}{2}$	0	0	$\frac{5}{2}$
y_2	$\frac{\overline{3}}{2}$	0	0	$\frac{\overline{1}}{2}$	1	0	$\frac{\overline{11}}{2}$
y_3	$\frac{1}{2}$	(3)	0	$-\frac{1}{2}$	0	1	$\frac{3}{2}$

 $\rightarrow x_2$ entre en base \rightarrow critère du ratio : y_3 sort

- itération 2 :

	x_1	x_2	x_3	y_1	y_2	y_3	z
	$-\frac{23}{6}$	0	0	$-\frac{7}{6}$	0	$-\frac{2}{3}$	$-\frac{17}{2}$
x_3	$\frac{2}{3}$	0	1	$\frac{1}{3}$	0	$\frac{1}{3}$	3
y_2	$\frac{3}{2}$	0	0	$\frac{1}{2}$	1	0	$\frac{11}{2}$
x_2	$\frac{\overline{1}}{6}$	1	0	$-\frac{1}{6}$	0	$\frac{1}{3}$	$\frac{\overline{1}}{2}$

3 tous les coûts réduits sont négatifs : l'algorithme s'arrête et on a trouvé une solution de base réalisable optimale :

$$(\hat{x}_1, \hat{x}_2, \hat{x}_3) = (0, \frac{1}{2}, 3)$$
 et $\hat{z} = -\frac{17}{2}$

Remarque: sur cet exemple, on est loin de la complexité exponentielle: l'algo n'a pas eu besoin de parcourir tous les points extrêmes pour trouver l'optimum!)

Résolution d'un problème sous contraintes d'égalité

[MAIN4] Mina Pêcheux - Cours de H. Ouzia

Théorie

Soit le problème de minimisation :

Min
$$f(\vec{x})$$

s.c.
$$h_k(\vec{x}) = 0 \qquad k = 1, \dots, m$$
$$\vec{x} \in \mathbb{R}^n$$

Etapes de résolution :

- 1 <u>Vérification de la régularité du domaine</u>: avec les critères de qualification des contraintes (contraintes affines, fonctions h_k convexes...)
- (2) Fonction de Lagrange associée :

$$\mathcal{L}(\vec{x}, \vec{\pi}) = f(\vec{x}) + \sum_{i=1}^{k} \pi_k h_k(\vec{x})$$

- 3 Conditions nécessaires d'optimalité :
- $\vec{\nabla}_{\vec{x}} \mathcal{L}(\vec{x}, \vec{\pi}) = \vec{0}$
- $\vec{\nabla}_{\vec{\pi}} \mathcal{L}(\vec{x}, \vec{\pi}) = \vec{0}$
- Point \vec{x} régulier $\Leftrightarrow \operatorname{rg}\left(\vec{\nabla}\begin{pmatrix}h_1\\\vdots\\h_m\end{pmatrix}(\vec{x})\right) = m$

On résoud ce système pour trouver le (ou les) point(s) de Lagrange **candidat(s)** à l'optimum.

 $\overbrace{4}$ Etude de la nature des points stationnaires : pour un problème de minimisation, il faut vérifier si la hessienne de $\mathcal L$ est définie positive sur l'espace tangent au domaine des contraintes.

Pour chacun des points stationnaires $\vec{x_0}$:

• caractérisation de l'espace tangent :

$$T_{\vec{x_0}}(\Omega) = \{ z \in \mathbb{R}^n : z^T \cdot \vec{\nabla}_{\vec{x}} h(\vec{x_0}) = 0 \}$$

• vérification de la définie-positivité de la hessienne sur l'espace tangent : il faut regarder le signe de :

$$z^T \cdot \vec{\nabla}^2_{\vec{x}\vec{x}} \mathcal{L}(\vec{x}, \vec{\pi}) \cdot z$$
, pour $z \in T_{\vec{x_0}}(\Omega)$

Application

Soit le problème de minimisation :

$$\begin{aligned} & \text{Min} & -xy - xz - yz \\ & s.c. & \\ & x + y + z = 3 \\ & x, y, z \in \mathbb{R} \end{aligned}$$

- (1) <u>Vérification</u> de la régularité du domaine : toutes les fonctions sont différentiables ; de plus, la contrainte est affine, donc le domaine est régulier (pour tout \vec{x} , $\vec{\nabla} h(\vec{x}) = (1,1,1)^T \neq (0,0,0)^T$, et ce gradient est indépendant du point).
- (2) Fonction de Lagrange associée :

$$\mathcal{L}(\vec{x}, \lambda) = -xy - xz - yz + \lambda(x + y + z - 3)$$

- (3) Conditions nécessaires d'optimalité :
- $\bullet \left\{ \begin{array}{l} -y-z+\lambda=0 \\ -x-z+\lambda=0 \\ -x-y+\lambda=0 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} x=y=z \\ 3x-3=0 \\ \lambda=2x \end{array} \right. \Rightarrow \left\{ \begin{array}{l} x=y=z=1 \\ \lambda=2 \end{array} \right.$
- x + y + z 3 = 0 \Rightarrow
- \vec{x} régulier car $\operatorname{rg}(\vec{\nabla}h(\vec{x})) = m = 1$

 $\vec{x_0} = (1, 1, 1)$ est candidat à l'optimum (point de Lagrange).

- (4) Etude de la nature des points stationnaires :
- calcul de la hessienne : $\vec{\nabla}^2_{\vec{x}\vec{x}}\mathcal{L}(\vec{x},\lambda) = \begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix}$
- $T_{\vec{x_0}}(\Omega) = \{z \in \mathbb{R}^n : z_1 + z_2 + z_3 = 0\}$
- soit $z \in T_{\vec{x_0}}(\Omega)$:

$$z^{T} \cdot \vec{\nabla}_{\vec{x}\vec{x}}^{2} \mathcal{L}(\vec{x}, \lambda) \cdot z = \begin{pmatrix} z_{1} & z_{2} & z_{3} \end{pmatrix} \begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix} \begin{pmatrix} z_{1} \\ z_{2} \\ z_{3} \end{pmatrix}$$

$$= \left(\begin{array}{cc} -z_2 - z_3 \\ \hline z_1 \end{array} \right) \underbrace{-z_1 - z_3}_{z_2} \underbrace{-z_1 - z_2}_{z_3} \right) \left(\begin{array}{c} z_1 \\ z_2 \\ z_3 \end{array}\right) = z_1^2 + z_2^2 + z_3^2$$

qui est nul si $z = (0,0,0)^T$ (trivial) et strictement positif sinon. Donc la hessienne est définie-positive et $\vec{x_0} = (1,1,1)$ est bien un minimum (global, ici, car c'est le seul candidat!).

Résolution d'un problème sous contraintes d'inégalité

[MAIN4] Mina Pêcheux - Cours de H. Ouzia

Théorie

Soit le problème de minimisation :

Min
$$f(\vec{x})$$

s.c. $g_k(\vec{x}) \le 0$ $k = 1, ..., m$
 $\vec{x} \in \mathbb{R}^n$

Etapes de résolution :

- ① <u>Vérification</u> de la régularité du domaine : avec les critères de qualification des contraintes (contraintes affines, fonctions g_k convexes...)
- (2) Fonction de Lagrange associée :

$$\mathcal{L}(\vec{x}, \vec{\mu}) = f(\vec{x}) + \sum_{i=1}^{k} \mu_k g_k(\vec{x})$$

- (3) Conditions KKT:
- Stationarité : $\vec{\nabla}_{\vec{x}} \mathcal{L}(\vec{x}, \vec{\mu}) = \vec{0}$
- Complémentarité : $\forall k = \{1, \dots, m\}, \quad \mu_k q_k = 0$
- Admissibilité primale : $\forall k = \{1, \dots, m\}, \quad g_k \leq 0$
- Admissibilité duale : $\forall k = \{1, ..., m\}, \quad \mu_k \geq 0 \text{ (pour un problème de minimisation avec contraintes "\leq")}$

On résoud ce système pour trouver le (ou les) point(s) KKT ${\bf candidat(s)}$ à l'optimum. La complémentarité nous donne 2 cas :

- * si $\mu=0$: la contrainte n'intervient pas dans la résolution du problème, elle est saturée ou non
- * si $\mu \neq 0$: la contrainte est saturée

En général, si on trouve une solution candidate pour $\mu=0$, il faut se méfier : la contrainte est inactive donc le point peut ne pas être réalisable...

 $\overbrace{4}$ Etude de la nature des points stationnaires : pour un problème de minimisation, il faut vérifier si la hessienne de $\mathcal L$ est définie positive sur l'espace tangent au domaine des contraintes.

Pour chacun des points stationnaires $\vec{\hat{x}}$:

• caractérisation de l'espace tangent :

$$T_{\vec{x}}(\Omega) = \{ z \in \mathbb{R}^n : z^T \cdot \vec{\nabla}_{\vec{x}} h(\vec{\hat{x}}) = 0 \}$$

• vérification de la définie-positivité de la hessienne sur l'espace tangent : il faut regarder le signe de :

$$z^T \cdot \vec{\nabla}^2_{\vec{x}\vec{x}} \mathcal{L}(\vec{x}, \vec{\pi}) \cdot z$$
, pour $z \in T_{\vec{x}}(\Omega)$

Application

Soit le problème de minimisation :

Min
$$\frac{1}{2}(x^2 + y^2 + z^2)$$

s.c. $x + y + z \le -3$
 $x, y, z \in \mathbb{R}$

- (1) <u>Vérification de la régularité du domaine</u>: toutes les fonctions sont différentiables ; de plus, la contrainte est affine, donc le domaine est régulier (pour tout \vec{x} , $\vec{\nabla} g(\vec{x}) = (1,1,1)^T \neq (0,0,0)^T$, et ce gradient est indépendant du point).
- (2) Fonction de Lagrange associée :

$$\mathcal{L}(\vec{x}, \mu) = \frac{1}{2}(x^2 + y^2 + z^2) + \mu(x + y + z + 3)$$

(3) Conditions KKT:

$$\bullet \begin{cases}
 x + \mu = 0 \\
 y + \mu = 0 \\
 z + \mu = 0
\end{cases}$$

- $x + y + z + 3 \le 0$
- $\mu(x+y+z+3) = 0$
- $\mu > 0$
- * si $\mu=0$: x=y=z=0, or le point (0,0,0) n'est pas réalisable \Rightarrow dans ce cas, le système KKT ne donne aucune solution candidate
- * $\frac{\sin \mu > 0:}{-3+3\mu=0}$ x+y+z=-3 (et $x=y=z=-\mu$), donc: $-3+3\mu=0$ \Rightarrow $\mu=1$ est une solution candidate

La solution KKT ($\hat{\vec{x}} = (-1, -1, -1)$ et $\hat{\mu} = 1$) est candidate à l'optimum.

(4) Etude de la nature des points stationnaires :

$$\vec{\nabla}_{\vec{x}\vec{x}}^{2}\mathcal{L}(\vec{\hat{x}},\hat{\mu}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \hat{\mu} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{\text{hessienne de la contrainte} \\ g(\vec{x}) = x + y + z + 3 \le 0}$$

• $\vec{\nabla}^2_{\vec{x}\vec{x}}\mathcal{L}(\vec{x},\hat{\mu})$ est la matrice identité donc elle est définie positive sur tout \mathbb{R}^3 , a fortiori sur l'espace tangent $T_{\vec{x}}(\Omega)$ qui est un sous-espace de \mathbb{R}^3 . Donc $\vec{x} = (-1, -1, -1)$ est bien un minimum (global, ici, car c'est le seul candidat!).

Théorème des écarts complémentaires

[MAIN4] Mina Pêcheux - Cours de H. Ouzia

Théorie

Soit le problème primal :

$$\begin{array}{ccc}
& \text{Min} & c^t x \\
(P) & s.c. & \\
& & Ax \ge b \\
& & x > 0
\end{array}$$

On a le problème dual associé :

$$(D) \begin{array}{cc} \text{Min} & w^t b \\ s.c. & \\ & w^t A \le c^t \\ & w > 0 \end{array}$$

Notations: on pose:

- * $\hat{x} = (\hat{x}_1, \dots, \hat{x}_n)$: solution optimale primale * $\hat{w} = (\hat{w}_1, \dots, \hat{w}_m)$: solution optimale duale
- ① **primal** \rightarrow **dual** : on connaît \hat{x} , on cherche \hat{w} * étude du signe de la solution primale : $\forall i=1,\ldots,n,\,\hat{x}_i\neq 0 \Rightarrow i$ -e contrainte duale saturée

* étude de la saturation des contraintes primales : on calcule la valeur de chaque contrainte primale au point \hat{x} et on vérifie si la contrainte est saturée ou non $\forall j=1,\ldots,m,j$ -e contr. primale non saturée $\Rightarrow \hat{w}_j=0$

- \ast résolution du système d'équations obtenu
- ② dual \rightarrow primal : on connaît \hat{w} , on cherche \hat{x} * étude du signe de la solution duale : $\forall j=1,\ldots,m,\,\hat{w_j}\neq 0 \Rightarrow j$ -e contrainte primale saturée
- * étude de la saturation des contraintes duales : on calcule la valeur de chaque contrainte duale au point \hat{w} et on vérifie si la contrainte est saturée ou non $\forall i=1,\ldots,n, i$ -e contr. duale non saturée $\Rightarrow \hat{x}_i=0$
- * résolution du système d'équations obtenu

Application

Soit le problème primal :

On a le problème dual associé :

On suppose que l'on a déterminé \hat{x} ou \hat{w} , par exemple par une méthode simplexe primale ou duale. Soit :

- * $\hat{x} = (-1, 0, -1, 0)$: solution optimale primale
- * $\hat{w} = (0,3,5)$: solution optimale duale
- (1) **primal** \rightarrow **dual** : $\hat{x} = (-1, 0, -1, 0)$ $\hat{w} = ?$
- * étude du signe de la solution primale :

$$\hat{x}_1 \neq 0 \Rightarrow -\hat{w}_1 - \hat{w}_2 = -3$$

$$\hat{x}_3 \neq 0 \Rightarrow 4\hat{w}_1 + \hat{w}_2 - \hat{w}_3 = -2$$

* étude de la saturation des contraintes primales :

$$-\hat{x_1} + 4\hat{x_2} + 4\hat{x_3} - 6\hat{x_4} = -3 < 8 \text{ (non sat.)} \Rightarrow \hat{w_1} = 0$$

$$-\hat{x_1} + 3\hat{x_2} + \hat{x_3} - \hat{x_4} = 0 \text{ (sat.)}$$

$$-\hat{x_3} = 1 \text{ (sat.)}$$

* résolution du système d'équations obtenu

$$\left\{ \begin{array}{l} -\hat{w_1} - \hat{w_2} = -3 \\ 4\hat{w_1} + \hat{w_2} - \hat{w_3} = -2 \\ \hat{w_1} = 0 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} \hat{w_1} = 0 \\ \hat{w_2} = 3 \\ \hat{w_3} = 5 \end{array} \right.$$

- (2) dual \to primal : $\hat{w} = (0, 3, 5)$ $\hat{x} = ?$
- * étude du signe de la solution duale :

$$\hat{w}_2 \neq 0 \Rightarrow -\hat{x}_1 + 3\hat{x}_2 + \hat{x}_3 - \hat{x}_4 = 0$$

$$\hat{w}_3 \neq 0 \Rightarrow -\hat{x}_3 = 1$$

* étude de la saturation des contraintes duales :

$$-\hat{w_1} - \hat{w_2} = -3 \text{ (sat.)}$$

- $4\hat{w}_1 + 3\hat{w}_2 = 9 < 10 \text{ (non sat.)} \Rightarrow \hat{x}_2 = 0$
- 3-ème contrainte saturée
- $-6\hat{w}_1 \hat{w}_2 = -3 < 5 \text{ (non sat.)} \Rightarrow \hat{x}_4 = 0$
- * résolution du système d'équations obtenu

$$\begin{cases} -\hat{x_1} + 3\hat{x_2} + \hat{x_3} - \hat{x_4} = 0 \\ -\hat{x_3} = 1 \\ \hat{x_2} = 0 \\ \hat{x_4} = 0 \end{cases} \Rightarrow \begin{cases} \hat{x_1} = -1 \\ \hat{x_2} = 0 \\ \hat{x_3} = -1 \\ \hat{x_4} = 0 \end{cases}$$

Relaxation lagrangienne

[MAIN4] Mina Pêcheux - Cours de H. Ouzia

Théorie

Soit le problème primal:

$$(P) \begin{array}{c} \underset{s.c.}{\text{Min}} \quad f(\vec{x}) \\ g_i(\vec{x}) \leq 0, \quad i \in \mathcal{I} \\ h_k(\vec{x}) = 0, \quad k \in \mathcal{K} \\ \vec{x} \in \Omega \end{array}$$

- Fonction de Lagrange associée : $\frac{\mathcal{L}(\vec{x}, \vec{u}, \vec{v}) = f(\vec{x}) + \sum_{i \in \mathcal{I}} u_i g_i(\vec{x}) + \sum_{k \in \mathcal{K}} v_k h_k(\vec{x})}{\mathcal{L}(\vec{x}, \vec{u}, \vec{v}) = f(\vec{x}) + \sum_{i \in \mathcal{I}} u_i g_i(\vec{x}) + \sum_{k \in \mathcal{K}} v_k h_k(\vec{x})}$
- Relaxation lagrangienne du problème (P):

$$(P) \begin{array}{ll} \text{Min} & \mathcal{L}(\vec{x}, \vec{u}, \vec{v}) \\ s.c. & \\ \vec{x} \in \Omega \end{array}$$

d'où la fonction duale lagrangienne :

 $\theta(\vec{u}, \vec{v}) = \operatorname{Min} \left\{ \mathcal{L}(\vec{x}, \vec{u}, \vec{v}) : \vec{x} \in \Omega \right\}$

et le problème dual lagrangien :
$$\theta(\vec{u}, \vec{v}) = \max_{\vec{u} \geq 0} \min_{\vec{x} \in \Omega} \left\{ \left\{ (\vec{x}) + \sum_{i \in \mathcal{I}} u_i g_i(\vec{x}) + \sum_{k \in \mathcal{K}} v_k h_k(\vec{x}) \right\}$$

- Méthode :
 - (1) étudier le problème :
 - régularité du domaine, convexité de la fonction objectif f...
 - fonction de Lagrange $\mathcal L$ associée au problème
 - convexité de la fonction de Lagrange
 - (2) déterminer l'expression de la fonction duale de Lagrange θ : si \mathcal{L} est convexe alors elle possède un unique min. et ce point critique donnne θ

Remarque : il faut vérifier que θ est concave (sinon, il y a une erreur quelque part...!).)

- (3) déterminer la solution optimale du problème dual : comme θ est concave, elle possède un unique max. qui est la solution optimale
- (4) en déduire la solution optimale de (P): en utilisant les relations entre \vec{u} , \vec{v} et \vec{x} trouvées dans les calculs Remarque : si le problème (P) est convexe, on doit vérifier la dualité forte qui assure qu'il n'y a pas de saut de dualité, i.e. la solution optimale du dual est égale à celle du primal.)

Application

Soit le problème primal :

$$(P) \begin{array}{ccccc} \text{Min} & -x & -y & +3x^2 & +2y^2 & -2xy \\ x & +y & \leq & 1 \\ (x, & y) & \in & \mathbb{R}^2 \end{array}$$

(1) Toutes les fonctions sont différentiables en tant que polynômes et on a la contrainte : $q(\vec{x}) = x + y - 1$ qui est linéaire donc le domaine est régulier.

$$\mathcal{L}(\vec{x}, w) = -x - y + 3x^2 + 2y^2 - 2xy + w(x + y - 1)$$

$$\nabla \mathcal{L}(\vec{x}, w) = \begin{pmatrix} -1 + w + 6x - 2y \\ -1 + w - 2x + 4y \end{pmatrix} \Rightarrow \nabla^2 \mathcal{L}(\vec{x}, w) = \begin{pmatrix} 6 & -2 \\ -2 & 4 \end{pmatrix}$$

Si on calcule le polynôme caractéristique, on trouve deux valeurs propres positives $(5+\sqrt{5} \text{ et } 5-\sqrt{5})$ donc $\nabla^2 \mathcal{L}(\vec{x}, w)$ est définie positive sur \mathbb{R}^2 . Donc \mathcal{L} est convexe pour tout w et admet un unique minimum.

(2) Fonction duale lagrangienne:

$$\theta(w) = \begin{array}{ccccc} \underset{s.c.}{\text{Min}} & -x & -y & +3x^2 & +2y^2 & -2xy \\ & x & +y & \leq & 1 \\ & (x, & y) & \in & \mathbb{R}^2 \end{array}$$

 \mathcal{L} est convexe donc on étudie son unique point fixe :

$$\nabla \mathcal{L}(\vec{x}, w) = 0 \Leftrightarrow \begin{cases} -1 + w + 6x - 2y = 0 \\ -1 + w - 2x + 4y = 0 \end{cases} \begin{cases} x = \frac{3}{10}(1 - w) \\ y = \frac{4}{10}(1 - w) \end{cases}$$

 $\Rightarrow \theta(w) = -x - y + 3x^2 + 2y^2 - 2xy$ Après calculs, on trouve : $\theta(w) = -\frac{7}{20}w^2 + \frac{17}{10}w - \frac{7}{20}$. Remarque : $\theta(w)$ est bien concave (polynôme de degré 2 à

coefficient négatif).

 $\theta'(w) = -\frac{7}{10}w + \frac{17}{10} = 0 \Leftrightarrow w = \frac{17}{7}$ D'où la solution optimale du dual lagrangien :

$$\hat{w} = \frac{17}{7} \text{ et } \theta(\hat{w}) = \frac{12}{7}$$

(4) On en déduit

$$\begin{cases} \hat{x} = \frac{3}{10}(1 - \hat{w}) = -\frac{3}{7} \\ \hat{y} = \frac{4}{10}(1 - \hat{w}) = -\frac{4}{7} \end{cases} \Rightarrow \boxed{(\hat{x}, \hat{y}) = (-\frac{3}{7}, -\frac{4}{7})} \text{ et } \boxed{f(\hat{x}, \hat{y}) = \frac{12}{7}}$$

Remarque: on a un problème convexe et on vérifie bien qu'il y a la dualité forte car il n'y a pas de saut de dualité : $\theta(\hat{w}) = f(\hat{x}, \hat{y}).$

Méthodes itératives

[MAIN4] Mina Pêcheux - Cours de H. Ouzia

- <u>Idée</u>: inspirée de la méthode de plus forte pente pour une optimisation sans contraintes avec l'ajout d'une **projection** sur l'espace des contraintes Ω
- Principe:
 - point initial $x^{(0)}$ donné
 - calcul d'un nouvel itéré à partir du point courant par la méthode de plus forte pente (mais on n'assure pas que la direction de descente soit réalisable) :

$$y^{(k)} = x^{(k)} - \alpha \nabla f(x^{(k)})$$

- projection sur l'ensemble des contraintes Ω pour retrouver le problème contraint : $x^{(k+1)} = \operatorname{Proj}_{\Omega}(y^{(k)})$ Remarques :
- le pas de déplacement α peut être différent à chaque itération ou constant ; certains choix de pas assurent la convergence de la méthode
- plus le domaine Ω est "compliqué", plus la projection est compliquée (donc plus le problème est lent à résoudre)
- Comparaison aux autres méthodes : ce schéma est intéressant si Ω est simple et que la projection n'est pas trop longue ; elle doit être utilisée sur ordinateur
- ullet Cas d'un problème quadratique : soit, sur l'ensemble de contraintes Ω , la fonction objectif :

$$f(\vec{x}) = \frac{1}{2}\vec{x}^T Q \vec{x} + b^T \vec{x}$$

Si on ne veut pas calculer un $\alpha^{(k)}$ à chaque itération et que l'on prend un pas constant, le pas optimal est : $\hat{\alpha} = \frac{2}{\lambda_{\min} + \lambda_{\max}}$ (avec λ_{\min} et λ_{\max} les valeurs propres minimale et maximale de Q). Alors la convergence de l'algorithme est linéaire.

Méthode de Zoutendijk

[MAIN4] Mina Pêcheux - Cours de H. Ouzia

Théorie

Soit le problème non linéaire avec des contr. linéaires :

$$\begin{aligned} & \underset{s.c.}{\text{Min}} & & f(\vec{x}) \\ & & A\vec{x} \leq \vec{b} \\ & & B\vec{x} = \vec{h} \\ & & x \in \mathbb{R}^n \end{aligned}$$

- calcul du grad. de $f: \vec{\nabla} f(\vec{x}), \forall \vec{x} \in \mathbb{R}^n$
- choix du point initial réalisable
- à chaque itération :
 - (1) calcul du gradient au point $\vec{\nabla} f(\hat{x})$
 - (2) calcul de la direction de descente réalisable (DDR) optimale \hat{d} : problème de min. de $\nabla f(\hat{x}) \cdot (d_1, \dots, d_n)^T$ avec conditions de normalisation, contraintes $A^{=}$. $(d_1,\ldots,d_n)^T \leq 0$ $(A^=: matrice des contr. sat. en$ \hat{x}) et contraintes $B \cdot (d_1, \dots, d_n)^T = 0$
 - \rightarrow si la valeur optimale du problème de min. de la DDR est nulle, arrêt de l'algorithme
 - \rightarrow sinon, nouvelle itération
 - (3) calcul du pas de déplacement : problème de min. de $f(\vec{\hat{x}} + \lambda \vec{\hat{d}})$ soumis aux contraintes $\lambda A \hat{d} \leq \vec{b} - A \vec{\hat{x}}$ et $\lambda B\hat{d} = \vec{h} - B\hat{x}$
- (4) calcul du nouvel itéré : $\text{new} \vec{\hat{x}} = \vec{\hat{x}} + \hat{\lambda}\hat{d}$
- conclusion sur le pt KKT : min/max ? local/global ?

Application

Soit le problème :

- $\vec{\nabla} f(\vec{x}) = (x 1, y 2)^T, \vec{x}_0 = (0, 0)^T$
- Itération 1 :
 - (1) calcul du gradient au point : $\vec{\nabla} f(\vec{x}_0) = (-1, -2)^T$

(2) calcul de la DDR :

$$\begin{array}{cccc}
\operatorname{Min} & -d_1 & -2d_2 \\
& & -1 & \leq & d_1 & \leq & 1 \\
& & -1 & \leq & d_2 & \leq & 1 \\
& & -d_1 & \leq & 0 \\
& & -d_2 & \leq & 0 & \end{array} \right\} \quad \text{cond. de normalisation} \\
& & \operatorname{contr. satur\acute{e}es en } x_0$$

$$\Leftrightarrow \begin{array}{c}
\operatorname{Min} & -d_1 & -2d_2 \\
& s.c. \\
& 0 & \leq & d_1 \\
& 0 & \leq & d_2 & \leq & 1
\end{array}
\Rightarrow \boxed{\vec{\hat{d}_0} = (1,1)^T}$$

Valeur optimale : $-\vec{\hat{d}}_{0,1} - 2\vec{\hat{d}}_{0,2} \neq 0 \rightarrow \text{nouvelle iteration}$

(3) calcul du pas de déplacement : $\vec{x}_0 + \lambda \vec{\hat{d}_0} = (\lambda, \lambda)^T$

$$\begin{array}{cccc} \underset{s.c.}{\text{Min}} & \lambda^2 & -3\lambda \\ & 2\lambda & +3\lambda & \leq & 6 \Rightarrow \lambda \leq \frac{6}{5} \\ & \lambda & +4\lambda & \leq & 5 \Rightarrow \lambda \leq 1 \Rightarrow \begin{bmatrix} \hat{\lambda}_0 = 1 \\ & -\lambda & & \leq & 0 \\ & -\lambda & \leq & 0 \end{array}$$

- (4) calcul du nouvel itéré : $\vec{x}_1 = \vec{x}_0 + \hat{\lambda}_0 \vec{\hat{d}_0} = (1,1)^T$
- Itération 2 :

$$\boxed{1} \vec{\nabla} f(\vec{x}_1) = (0, -1)^T$$

(2) Min
$$-d_2$$

 $-1 \le d_1, d_2 \le 1$
 $d_1 + 4d_2 \le 1 \Rightarrow \boxed{\vec{\hat{d}}_1 = (-1, \frac{1}{4})^T}$

Valeur optimale $\neq 0 \rightarrow$ nouvelle itération

$$\begin{array}{cccc} (3) \ \vec{x}_1 + \lambda \hat{d}_1 = (1 - \lambda, 1 + \frac{\lambda}{4})^T \\ \underset{s.c.}{\text{Min}} & \frac{17}{32} \lambda^2 & -\frac{\lambda}{4} & -2 \\ & & -\frac{5}{4} \lambda & \leq & 1 \Rightarrow \lambda \geq -\frac{4}{5} \\ & \lambda & \leq & 1 & \Rightarrow \hat{\lambda}_1 = \frac{4}{17} \\ & \lambda & \geq & 0 \end{array}$$

- $\underbrace{ \left(\stackrel{\frown}{4} \right) \vec{x}_2 = \vec{x}_1 + \hat{\lambda}_1 \vec{\hat{d}}_1 = (\frac{13}{17}, \frac{18}{17})^T }_{\text{ Lifration 3 :}}$

$$\frac{1}{1} \vec{\nabla} f(\vec{x}_2) = (-\frac{4}{17}, -\frac{16}{17})^T$$

(2) Min
$$-\frac{4}{17}d_1$$
 $-\frac{16}{17}d_2$
 $-1 \le d_1, d_2 \le 1$
 d_1 $+4d_2$ $\le 1 \Rightarrow \vec{\hat{d}_1} = (1, -\frac{1}{4})^T$

Valeur optimale = $0 \rightarrow \text{arrêt}$ de l'algorithme

• Donc le point $\vec{x}_2 = (\frac{13}{17}, \frac{18}{17})^T$ est un point KKT. De plus, on vérifie que, ici : $\forall \vec{x} \in \mathbb{R}^n, \vec{\nabla}^2 f(\vec{x}) = 1$ déf. positive $\Rightarrow f$ convexe \Rightarrow les conditions KKT sont nécessaires et suffisantes $\Rightarrow \vec{x}_2$ est un min. global