MBA PIONEER

Lecture- 01

Factors + Unit's Digit

Number System - 1

By-RAHUL BATHLA

Recap of Previous Lecture:

to be covered

3 aurag A

- 1 Number of Factors | Posmula
- 2 Sum of Factors
- From Factors to Number
 - 4 Unit's Digit

24

$$24 = 2\int_{4}^{3} x \, 3\int_{2}^{3}$$

3×5×7×2

2

12

3

8

4

6

Total Factors = $p^{\alpha} \times q^{b} \times n^{c}$ $N_{actor} = (\alpha + 1)(b + 1)(c + 1)$ factor

Total Factors

$$2^{3} \times 3$$

$$1 \times 3$$

$$\frac{2^{\circ}}{2^{1}}$$
 $\frac{3^{\circ}}{3^{1}}$ $\frac{2^{2}}{4}$ $\frac{2^{3}}{4}$ $\frac{2^{3}}{2^{3}}$

Odd Factors

$$\frac{3^{\circ}}{2} = 2$$

Even Factors

$$2^{1}$$
 3^{0}
 2^{2} 3^{1}
 2^{3} $\sqrt{2} = 61$

#Q. Find the number of divisors of 144.

- **A**) 12
- B 15 //
- **(c)** 18
- **D** none

$$144 = 24 \times 3^{2}$$
 $5 \times 3 = 15$

#Q. Find the number of divisors of 544 excluding 1 and 544.

- **A**) 12
- **B** 15
- **(c)** 18
- none //

$$2^{6} \times 17^{1}$$
 $6 \times 2 = 12 \text{ factors}$
 $(1 $544 \text{ inc.})$

#Q. Find the number of total factors, odd factors and even factors of

the number
$$2^8 * 3^6 * 5^4 * 10^5$$
?

$$10^{5} (2x5)^{3}$$

$$N = 2^{8} \times 3^{6} \times 5^{4} \times 10^{5}$$

$$= 2^{8} \times 3^{6} \times 5^{4} \times 2^{5} \times 5^{5}$$

$$= 2^{13} \times 3^{6} \times 5^{9}$$

72

Perfect Square

$$72 = 2^3 X3^2$$

$$2^{\circ} \quad 3^{\circ}$$

$$2^{\circ} \quad 3^{\circ}$$

$$2 \quad \times 2 = 4$$

Perfect Cube

$$72 = 2^3 \times 3^2$$

$$2^{\circ} 3^{\circ}$$
 $\frac{2^{3}}{2} = 2$

#Q. How many factors of 1080 are perfect squares?

- **A** 8
- B 4//
- **(c)** 6
- **D** 2

#Q. How many perfect cubes factor of 10648 is

(A) 2

B 4//

(c) 3

(**D**) [

T. factors = 4 X4 = 16

O. factors = 4

S. factors = 3 X4 = 12

P. S. Poctors = 2 X2 = 4

$$N = 2^{3} \times 11^{3}$$

$$2^{\circ} \quad 11^{\circ}$$

$$2^{3} \quad 11^{3}$$

$$2 \times 2 = 4 \text{ factors}$$

1331

Factors divisible by 8

$$\frac{72}{8} = 9$$

Factors divisible by 6

$$\frac{72}{6} = 12$$

$$2^{2} \times 3^{1}$$

$$3 \times 2 = 6$$

$$6$$

$$6$$

$$72 \longrightarrow 2^{3} \times 3^{2}$$

$$6 \longrightarrow 2^{1} \times 3^{1}$$

$$2^{1} \times 3^{2}$$

$$2^{2} \times 3^{2}$$

$$2^{3} \times 2 = 6$$

$$\#Q. N = 2^8 * 3^6 * 5^4 * 10^5$$
, Find

Topic: SUM OF FACTORS

60

Even Factors

$$\frac{2'}{2}$$
 $\frac{3'}{2}$ $\frac{5'}{2}$ $\frac{5}{2}$ = 8 fcr.

Sum of Even Factors

$$2^{1} 3^{\circ} 5^{\circ}$$
 $\frac{2^{2}}{6} \times 4 \times 6 = 144$

Odd Factors

$$\frac{3^{\circ}}{2} \times \frac{5^{\circ}}{2} = 4 f c c$$

Sum of Odd Factors

Total Factors

$$2^{\circ} \quad 3^{\circ} \quad 5^{\circ}$$

$$2^{\circ} \quad 2^{\circ} \quad 5^{\circ}$$
Sum of Factors

$$2^{\circ}$$
 3° 5°
 2^{1} 3^{1} 5^{1}
 $+2^{2}$ $+3^{1}$ $+5^{1}$
 $7 \times 4 \times 6$
 $28 \times 6 = 168$

#Q. Find the sum of the sum of divisors of 144 and 160.

- **A** 589
- **B** 735
- **C** 781
- **D** none of these

#Q. Find the sum of the sum of even divisors of 96 and the sum of odd divisors of 3600.

$$2^{4} \times 5^{2} \times 3^{2}$$

$$3600 = 2^{4} \times 3^{2} \times 5^{2}$$

$$3^{0} \times 5^{0}$$

$$3^{1} \times 5^{1}$$

$$3^{2} \times 5^{2}$$

$$13 \times 31$$

$$= 403$$

72

1 2 3 4 6 8 9 12 18 24 36 72
$$72 = 2^{3} \times 3^{2}$$

Sum of Perfect Square

$$2^{\circ}$$
 3° 2^{2} 3^{2} $10 = 50$

Sum of Perfect Cube

$$\frac{2^{\circ}}{2^{3}} \times \frac{3^{\circ}}{1} = 9/$$

Sum of Jackon of 3600 & divisible by 100

$$3600 = 2^{2} \times 5^{2} \times 3^{2} \times 2^{2}$$

$$= 2^{4} \times 3^{2} \times 5^{2}$$

$$100 = 2^{2} \times 5^{2}$$

Topic: Product Of Factors

1	2	3	4	6	8	9	12	18	24	36	72
---	---	---	---	---	---	---	----	----	----	----	----

			\
1 st Factor	1	12 th Factor	72
2 nd Factor	2 <	11 th Factor	36
3 rd Factor	3	10 th Factor	24
4 th Factor	4	9 th Factor	18
5 th Factor	6	8 th Factor	12
6 th Factor	8	7 th Factor	9

$$72x72x72x72x72=72^{6}$$

$$\frac{1}{2} = \frac{12}{2} = 6$$

#Q. What is the product of all factors of 12?

- **A**) 144
- **B**) 512
- **(c)** 1728/
- **D** 1331

#Q. What is the product of all factors of 36?

- $\bigcirc A \qquad 36^8$
- \bigcirc 68
- **D** 69 //

$$(36)^{9/2}$$
 $(36)^{9/2}$
 $(62)^{9/2}$

$$36 \rightarrow 2^2 \times 3^2$$

_	
	1

1	2	3	4	6	8	9	12	18	24	36	72
											1

(1 st) Factor	1
2 nd Factor	2
3 rd Factor	3
(4 th) Factor	4
5 th Factor	6
6 th Factor	8

12 th Factor	772
11 th Factor	3 36
10 th Factor	2 424
9 th Factor	/8 18
8 th Factor	1212
7 th Factor	9 9

#Q. The 4th position factor of 384 from beginning (when arranged in ascending order) is 4. If 13th position factor from beginning is x. Find x

13

48

None of these

$$(4^{m})(13^{m}) = 384$$

 $4(x) = 384$
 $x = 96$

Topic: From Factors to Numbers

Number ______factors.

#Q. What is the smallest number which has total 15 factors?

$$|44| = 2 | X | 3 |$$

$$5 | X | 3 | = 16 factor$$

#Q. What is the minimum sum of two numbers which have total 12

factors?

$$72 = 2^{3} \times 3^{2}$$

$$4 \times 3 \longrightarrow 12$$

$$6 \times 2 \longrightarrow 12$$

$$60 = 2^{2} \times 3^{3} = 5^{1}$$

$$12 \times 1 \longrightarrow 12$$

#Q. A number N² has 15 factors. How many factors can N have?

A

5 or 8 factors

B

6 or 8 factors

4 or 6 factors

none

$$\sqrt{2} = \sqrt{\frac{4}{a}}$$

$$N^{2} = a^{4}b^{2}$$

$$N = a^{2}b^{4}$$

$$3 \times 2 = 6$$

$$N^2 = \begin{bmatrix} a \\ 15 \\ 15 \\ 15 \end{bmatrix}$$

$$N = a^{7}$$

Units' digit only depends upon Unit's Digit of all the numbers

$$(_{3}) \times (_{2})$$

$$= (_{6})$$

$$(_{1}) (_{2}) (_{7})$$

$$(_{4})$$

$$(-1)^n = (-1)(-1) - - - (-1) = (-1)$$

* Power of __5
$$(---5)^n = (---5)(---5)(---5) = (--5)$$

* Power of __6
$$(----6)^n = (----6)(-----6) = (-----6)$$

$$(-4)(-4) = (-6)$$

$$(-4)(-4) = (-6)$$

$$(-4)(-4)(-4) = (-6)$$

$$(-4)(-4)(-4)(-4) = (-6)$$

$$(-2)^{0} = (-2)$$

$$(-2)^{2} = (-3)$$

$$(-2)^{3} = (-8)$$

$$(-2)^{3} = (-6)$$

Power of

$$(-3)^{2} = (-3)^{2}$$
 $(-3)^{2} = (-9)^{2}$
 $(-3)^{3} = (-7)^{2}$
 $(-3)^{4} = (-1)^{2}$

Power of _ _ 7

Power of _ _ 8

Power of number ending with 0, 1, 5, 6

Power of number ending with 4, 9

Power of number ending with 2,3,7,8

Cyclicity-1

Cydicity-2 odd eVIM Cyclicity -> 4

Power

y

x = 1

x = 3

div

Expression	Cyclicity	Answer	Remarks 🕏
26 ⁵⁵	1	6	6 ،
19 ¹⁷³	2	9	19°dd
24 ⁵⁶	2	6	2 y even
43 ¹²³⁴⁵⁶⁷ 89	4	3	(-3) 89 1 (-3) 89 1=1
37 ⁵³²	4	1	32 4 div

#Q. 12¹⁷³ × 125⁷²⁰ × 343⁵¹² = x. Find the unit's place digit of x.

- **A** 7
- **(B)** 5
- **(c)** 8
- none/

#Q. $215^{215^{215}} = z$, find the unit digit of z is

- **(A)** 0
 - B) 5 //
- **(c)** 1
- **D** none

#Q. $\frac{6^{33}}{3^{11}} + \frac{8^{18}}{32^6}$, find the unit digit of the resulting number

- (A) 4
- $\left(\mathbf{B}\right)$ 2
- **(c)** 5
- **D** 3

#Q. Find the unit digit of $[115^{117} \times 202^{159}]^4$

- A
- 0 ///
- $\left(\mathbf{B}\right)$
- 6
- **(c)** [
- **D** none

#Q. If $(3^m + 3^n) \times (4^o + 4^p) \times (5^q + 5^r) \times (6^s + 6^t)$, where each power is any natural number. Find the unit digit of this expression

- **A** 7
- **B**) 1
- **(c)** 3
- **D** 0 /

$$\left(\begin{array}{cccc} -5 & + & -5 \\ \hline & & 0 \end{array}\right)$$

#Q. What is the sum of all the possible unit digits of $(3^x + 5^y + 6^z)$, if x, y and z are natural numbers?

A) 14

B) 12

(c) 10

D none

#Q. What is the remainder when 42^{123} is devided by 10?

- **A** 6
- **B**) 8
- **(c)** 4
- $\left(\mathbf{D} \right)$

#Q. What is the remainder when 42¹²³ is devided by 5?

SUMMARY

factors -

UNIT'S DIGIT

