CSC 405/605 Seating Assignments

X: DO NOT SIT

Office of Space Utilization and Planning

800 Oakland Ave. Greensboro, NC 27402-6170

BUILDING

PETTY BUILDING

CLASSROOM

219

MUST MAINTAIN AT LEAST 3' CLEARANCES IN ALL WALKWAYS FOR ADA ACCESSIBILITY.

CSC 405/605 Seating Assignments

X: DO NOT SIT

Office of Space Utilization and Planning

800 Oakland Ave. Greensboro, NC 27402-6170

BUILDING

PETTY BUILDING

CLASSROOM

219

MUST MAINTAIN AT LEAST 3' CLEARANCES IN ALL WALKWAYS FOR ADA ACCESSIBILITY.

https://forms.gle/RvZsNGjFS25Ac7zz9

Data Science

CSC 405/605

- Course: Data Science
 - CSC 405/605
 - Monday & Wednesday 5:30PM-6:45PM
 - Office Hours: Thursday 5:00PM 6:00 PM via Zoom only (Email for appointment and zoom link)
 - Location: Petty Building 219
 - Class Discussions: https://discord.gg/N2rhnw7h3J
 - Instructor: Dr. Kelechi Ikegwu
 - Email: kmikegwu@uncg.edu
 - Course Details:
 - https://github.com/ikegwukc/CSC-405-605_Spring_2022
 - Course Assignments, Project Details, and Lecture Notes are posted here

About Me

- B.S. In Information Technology at NC A&T 2016
- Ph.D. In Informatics at UIUC 2021
 - Machine Learning
 - Information Theory
 - Network Analysis
 - Financial Accounting
- Working as a Data Scientist in Industry

- What is the course about?
- Applied Data Science
- Not an AI, Statistics, or Visualization Course
- Course contains a bit of everything
- Learn a lot of tools and how to use them in innovative ways
- We will work with real world data
- Hopefully develop some cool projects

- Experience in:
 - Programming in Python
 - We will go through an Introduction to Python
 - You will have to work hard during the early weeks to understand it
 - Linux
 - Basic shell commands
- Course Textbook:
 - Nothing is required ©
 - Recommended
 - Building Machine Learning Systems with Python (Richert and Coelho)
 - Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython (Wes McKinney)
 - Lecture notes will be made available
 - along with online resources

- Grading
 - Class / Homework Assignments (4): 30%
 - Individual Assignments
 - Deliverables
 - Code Jupyter/IPython Notebooks Github
 - Final Project: 70%
 - Team and Individual
 - Stage I: Data/Project Understanding,
 - Stage II: Modeling,
 - Stage III: Basic Machine Learning
 - Stage IV Visualization
 - Deliverables:
 - Report Canvas & Github
 - Code Jupyter/IPython Notebooks Github
 - Presentation
 - No Exams

- Grading
 - Homework Assignments (4):
 - Utilization of tools learned in class
 - Mostly programming and data analysis
 - The submission will be on IPython notebooks
 - Utilize GitHub for assignments (own account)
 - Create your own repository (Private repository)
 - Add me as a collaborator to it, my id is:

ikegwukc

Link to the assignment submission via Canvas for submission

Grading

Final Project:

- Most of the grade is based on the Final Project
- Each Stage is 17.5 points.
- Projects contain tasks Team and Member tasks.
 - Team is collaborative
 - Member is individual, discussion allowed
- All stages are weighted equally for the final project points.
- At end of each stage, provide deliverables (Report, Notebooks on GitHub, and Presentation)
 - Team Repository

Grading

Final Project:

- Presentation (At each stage)
 - 2 min presentation by each member
 - Review of the work done and report interesting outcomes
 - Upload presentation recording to canvas.
- Final Presentation on completion (Finals Week)
 - 20 min presentation (Uploaded to canvas)
 - Data, Methods, Visualization
 - Graduate Students Only:
 - Paper (4 pages minimum) IEEE/ACM Standard

Category	Sub-Category	Deadline
Assignment	GitHub Accounts Created	2022-01-19 11:59 PM
	Assignment 1	2022-01-30 11:59 PM
	Assignment 2	2022-02-13 11:59 PM
	Assignment 3	2022-03-06 11:59 PM
	Assignment 4	2022-04-17 11:59 PM
Project	Groups Formed	2022-01-19 11:59 PM
	Stage 1	2022-02-20 11:59 PM
	Stage 2	2022-03-20 11:59 PM
	Stage 3	2022-04-10 11:59 PM
ENC DO DO	Stage 4	2022-04-27 11:59 PM
ENSBORO		

Α	100%	to	94%
A-	<94%	to	90%
B+	<90%	to	87%
В	<87%	to	84%
B-	<84%	to	80%
C+	<80%	to	77%
С	<77%	to	74%
C-	<74%	to	70%
D+	<70%	to	67%
D	<67%	to	64%
D-	<64%	to	60%
F	<60%	to	

- Introduction to Data Science: (Week 1)
 - Class Syllabus, Grading, Expectations, and Getting to know each other.
 - Introduction to Data Science.
- Startup Tools and Programming (Weeks 2-3)
 - Programming
 - Re/Introduction to Python
 - IPython, IPython-Notebook
 - Data Science Reproducibility
 - Setting up your Repository Data, Code, and Documentation
 - Using Version Control with Git
 - Final Project Discussions Goals and Requirements

- Data Munging, Wrangling, Cleaning (Week 4-5)
 - Data Structures for Data Science
 - Data Manipulation
 - Selection-Indexing
 - Handling Missing Data
 - Aggregation
 - Descriptive Statistics
 - Merging/Join
 - Working with Date-Time
 - Project Review Stage I

- Data and Statistics (Week 6-9)
 - Distributions
 - Point Estimates
 - Statistical Hypothesis Testing
 - Correlation
 - Distribution Estimators
 - MoM,MLE,KDE
 - Project Review Stage II

- Introduction to Applied Data Modeling: (Weeks 10-12)
 - Applied Machine Learning
 - Regression and Feature Selection
 - Bias versus Variance
 - Clustering and Dimensionality Reduction
 - Validation and Model Performance
 - Project Review Stage III

- Data Visualization (Week 13-14)
 - Graph Generation
 - Types of Graphs
 - Customizing Plots
 - Visualizing Errors
 - Interactive/Dynamic Graphs
 - Visualization Best Practices
 - Project Review Stage IV
- Project Presentations: (Week 15 Final's Week)

- Read the syllabus.
- Take regular notes.
- Class is encouraged to participate and discuss/ask questions Class Participation Points!
- Communication
 - Discord channel
- Questions about assignments and projects
 - Read the syllabus and assignment/project descriptions carefully.
 - If still unclear search the discord channel to see if someone else has asked the question already.
 - If still not found, post on the channel if it is a general question.
 - Each class we will spend the last 10 mins on discussion regarding assignments and projects.
 - Email should be the last step to communicate with me.

- The course is going to be tough, especially for people with limited programming experience
 - Work hard, be rewarded with a good data science experience
 - Will talk about the benefits later in course intro
- Do not cheat in the course Result will be an 'F' grade.
 - Assignment solutions are unique, differs from student to student. No collaboration on Assignments and Project Member Tasks whatsoever.
 - I will run the code through plagiarism detection software single incident reporting to honor committee
 - In team project
 - Do not think that you can get away without contributing Monitoring repositories for work done
 - Any work done should be reported on the repository worked locally on my computer will not count.
- Utilization of resources found on the Internet is allowed for project accomplishment, with caveats
 - Any code/library used should be referenced/cited and thoroughly understood
 - If you use code without understanding, that counts as plagiarism

- On team projects
- Start early
 - Emailing me questions about assignments and projects 2 days before submission will not get you a response.
- The team creation can be random or self-assigned
 - Task for today Get in touch with class participants and setup groups of 4-5 students. Mix of graduate and undergraduate
 - Email me the group list (student names, emails, Github ids)
 - Use the Discord channel for group formation and discussion.
 - Project presentations, all members should present. If someone does not show up, they will not be graded for the stage.

More on team projects

- You will get critical comments from me, both on presentation and project progress
- Its geared towards making your projects awesome!
- You will be presenting at the end to the department and external attendees.
 - We are trying to achieve a great presentation made by you for your project.
- Use office hours I am here to help you through your project.
 - https://zoom.us/j/6655909472?pwd=RVZibHNKamJjd25QNHd0cjRkbm1wdz0
 - Email in advance to setup an appointment.
 - Office Hrs: Thursday 5:00 pm 6:00 pm

Questions?

Action Items

- Sign Up for GitHub: github.com
 - https://education.github.com/pack
- Sign Up for Discord: https://discord.gg/N2rhnw7h3J
 - Go To Announcement channel and fill out the GitHub form
- Peak at JuypterHub
- Peak at Class Projects
- Team Creation on Discord or FTF
 - Need to have your groups formed by Next Wednesday
 - See Slide 19 for other items

