Approximate Static Condensation: Numerical Comparison of ASC(0) and ASC(1)

Alexander Zhiliakov

Department of Mathematics University of Houston

LANL T-5 Meeting, July 30, 2018

Overview

- 2 Robustness Test
- 3 Convergence Test
- 4 TODO List

Exact Recovery of Linear Solutions

Figure: ASC(0) \mathbb{L}^2 Temperature Error

Here $\mathbf{K}_i = \mathbf{K}_j$ and the exact soln is linear. ASC(0) produces errors due to const trace approximation, and ACS(1) recovers the exact soln

Highly Heterogeneous Benchmark 1/2

We choose $\mathbf{K} = k \, \mathbf{I}$, k = .001 inside the ring and 1 outside. Exact solution is pw quadratic. We recover measure of the inclusion via MOF

ring_base.png	ring_mmcs.png	ring_mini.png
(a) Base Mesh	(b) MMCs	(c) Interface Rec

Highly Heterogeneous Benchmark 2/2

Figure: ASC(0) \mathbb{L}^2 Temperature Error

 $||p-p_h||_{\mathbb{L}^2(\Omega)}=2.7\times 10^{-1}$ for ASC(0) and 1.5×10^{-2} for ASC(1). ASC(1) produces \sim 18 times smaller error on the same mesh for this example

Robustness Test: Geometry

Figure: w := width of the left minimesh cells

We solve the diffusion problem w/ $\mathbf{K}=k\,\mathbf{I},\,k=1$ on the left part and .1 on the right. Exact solution is pw linear

Robustness Test: Spectrum

Figure: Condition Numbers of ASC(0) / ASC(1) Matrices

w	$\kappa_{ASC(0)}$	$\kappa_{ASC(1)}$
10^{-1}	41	1 730
10^{-2}	45	2817
10^{-3}	48	16 391
10^{-4}	49	152 325
10^{-5}	49	$1.5 imes 10^6$

 $\kappa_{\rm ASC(0)}$ does not depend on w, and $\kappa_{\rm ASC(1)}$ is proportional to w^{-1} . However, if we remove 3 smallest eig values (corresponding to 3 int MM faces), we will have $\kappa_{\rm ASC(1)} = \kappa_{\rm ASC(0)}$. Starting from some iteration CG behaves like extreme eig values are not present; that is, several small eig values is not a problem

Problem Setup

We solve the diffusion problem w/ $\mathbf{K}=k$ I, k=1 on the left part and .01 on the right. Exact solution is pw linear. We compare convergence of ASC(0) and ASC(1)

Figure: $h = 3.2 \times 10^{-2}$

ASC(1) Solutions: Mesh Refinement

Temperature Errors

Figure: $e \coloneqq ||p-p_h||_{\mathbb{L}^2(\Omega)}$ for ASC(0) and ASC(1)

h	e _{ASC(0)}	e _{ASC(1)}
2.4×10^{-1}	2.1×10^{-2}	1.1×10^{-3}
1.1×10^{-1}	1.0×10^{-2}	$1.5 imes 10^{-4}$
6.4×10^{-2}	6.2×10^{-3}	2.8×10^{-5}
3.2×10^{-2}	3.1×10^{-3}	2.6×10^{-5}
1.6×10^{-2}	1.1×10^{-3}	5.2×10^{-6}

TODO List

- Implement homogenization approach and compare to ASC(0) / ASC(1)
- Compare convergence of ASC(0) and ASC(1) when we have base faces w/ 3 materials on all refinement levels