Introduction aux principes de traitement de données textuelles

François Bouchet
LIP6 / SU
francois.bouchet@lip6.fr

28 septembre 2018

Plan du cours

1. Introduction

- Utilité du traitement de la langue naturelle
- Principes de base du traitement de la langue naturelle
- Rappels historiques
- Types de problèmes
- 2. Analyse lexicale
- 3. Analyse syntaxique
- 4. Analyse sémantique

Intérêt du traitement automatique de la langue naturelle

- Classification de textes
- Système de question-réponse (e.g. moteur de recherche sémantique)
- Dialogue homme-machine
- Traduction automatique
- Analyse de productions textuelles (e.g. résumés)
- Génération automatique de questions associées à un contenu
- Analyse de sentiments
- Système d'aide intégré (questions-réponses)
- **-** ...

Concepts de base

Principes de base du traitement de la langue naturelle

- Différents niveaux d'analyse :
 - Phonétique (sons)
 - Morphologie (composants des mots)
 - Syntaxe et grammaire (agencement des mots)
 - Sémantique (sens des mots et de la phrase)
 - Pragmatique (sens par rapport aux intentions)
 - Discours (agencement de phrases)
- Pas forcément séquentiels
- Ambiguïtés à tous les niveaux !

Différents types de problèmes

Au niveau des mots :

- Ambiguïtés de formes : nourrissons (nous + nourrir au présent / nourrisson pluriel)
- Formes variables, même concept : clé / clef
- Formes différentes, même concept (synonymes) : soulier / chaussure
- Une forme, des concepts différents (polysémie) : permis (autorisation) / permis (papier)

Au niveau de la phrase :

- Ambiguïté de forme : il regarde l'aile de l'avion (appartenant à l'avion / depuis un siège de l'avion)
- Formes variables, même sens (allotaxie et paraphrases) :
 le drapeau s'agite au vent / le vent agite le drapeau
- Formes identiques, sens différents (homotaxie) : prendre son train / prendre son parapluie
- Métonymies : perdre la tête (contenant pour contenu)
- Métaphores : ce vieillard est une tortue
- Présuppositions : « il a allumé la lumière », donc elle était éteinte

Au niveau du discours :

- Anaphores : Jean prit son stylo. Il écrivait bien.
- Ellipses : Que manges-tu ? Une pomme.

Une brève histoire du traitement automatique des langues

- Années 1940-50 : travaux fondateurs
 - Automates, grammaires hors contexte [Chamsky] (textes – innéité, pauvreté du stimulus)
 - Modèles probabilistes [Shannon] (acoustique)
 - Travaux centrés sur traduction automatique (guerre froide)
 - 1956 : création du terme IA

- Algorithmes d'analyse grammaticale
- 1966 : ELIZA, premier chatbot
- 1966: rapport ALPAC (« the pen is in the box » / « the box is in the pen » [Bar-Hillel])

Noam Chomsky

John R. Pierce, ALPAC

Une brève histoire du traitement automatique des langues (2)

- Années 70-80 : progrès de la sémantique formelle
 - 1972 : SHRDLU (interaction langagière, monde de blocs)
 - Nouvelles logiques (floues, modales...), scripts [Schank], frames [Minksky], graphes conceptuels [Sowa], systèmes experts (même modèles symboliques)

Monde de cubes

- Depuis les années 90 : linguistique de corpus
 - Explosion de la capacité de stockage
 - Approches statistiques
 - "Every time I fire a linguist, the performance of the speech recognizer goes up" [Jelinek – reconnaissance vocale]

Graphe conceptuel

Plan du cours

1. Introduction

2. Analyse lexicale

- Expressions régulières & automates à états finis
- Prétraitement
- Principes
- Étiquetage morpho-syntaxique (TreeTagger)

3. Analyse syntaxique

4. Analyse sémantique

Expressions régulières (1)

- Développées dès l'aube du TALN [Kleene, 1956]
- Expression régulière (ER, RE, regex) : formule dans un langage spécial (standard) permettant d'exprimer des chaînes de caractères
- Chaîne de caractères : séquence de symboles alphanumériques
- Objectifs:
 - Rechercher des chaînes de caractères particulières dans une phrase ou un document
 - Remplacer une chaîne de caractère par une autre

Expressions régulières (2)

- Disjonction de caractères : [c₁c₂c₃]
 - /[tT]est/ matche « test » ou « Test »
 - /[1234567890]/ matche n'importe quel chiffre
- Ensemble de caractères : [c₁-c₂]
 - /[a-z]/ matche tout caractère en minuscule
 - /[0-9]/ matche n'importe quel chiffre (unique)
- Négation : [^c₁]
 - /[^A-Z]/ matche tout caractère qui n'est pas une majuscule
 - /[^tT]/ matche tout caractère qui n'est pas t ou T
- Répétition 0/1 à n fois : c₁*, c₁+, c₁?
 - /ba*/ matche une séquence de b suivi de 0 ou plus a (b, ba, baa...)
 - /[0-9]+/ matche une séquence de 1 ou plusieurs chiffres
 - /clef?/ matche « cle » ou « clef » mais pas « cleff »
- N'importe quel caractère : .
 - /d.but/ matche début, debut, ddbut, dabut...
 - /test.*/ matche n'importe quel chaîne de caractère commençant par test

Expressions régulières (3)

- Limite de mot : \b
 - /\bla\b/ matche « la » mais pas « larme » ou « maladresse »
- Début/fin de ligne : ^ / \$
 - /^Le chat\$/ matche une ligne contenant uniquement « Le chat » mais pas « Le chat dort »
- Disjonction : |
 - /chat|chien/ matche le mot « chat » ou « chien »
- Précédence : (et)
 - /chien(ne|)(s|)/ matche « chien », « chiens », « chienne » ou « chiennes »
- Substitution : s/regexp/pattern
 - s/clef/clé remplace « clef » par « clé »
 - s/rouge|jaune|vert/\1s/ remplace « rouge », « jaune » ou « vert » par leur pluriel

Eliza

- Eliza (Weizenbaum, 1966) est une simulation d'un psychanalyste et l'ancêtre des agents conversationnels ou chatterbots
- Exemple d'interaction :
 - USER: Men are all alike
 - ELIZA: IN WHAT WAY?
 - USER: They're always bugging us with one thing or another
 - ELIZA: CAN YOU THINK OF A SPECIFIC EXAMPLE?
 - USER: My boyfriend made me come here
 - ELIZA: YOUR BOYFRIEND MADE YOU COME HERE
 - USER: He says I'm depressed much of the time
 - ELIZA: I AM SORRY TO HEAR YOU ARE DEPRESSED?

Substitution d'expressions régulières

```
s/.* I AM (depressed|sad) .*/
I AM SORRY TO HEAR YOU ARE \1?/

s/.* I AM (depressed|sad) .* /
WHY DO YOU THINK YOU ARE \1?/

s/.* all .*/ IN WHAT WAY?

s/.* always .* /
CAN YOU THINK OF A SPECIFIC
EXAMPLE?
```

Prétraitements

- Segmentation : comment découper ?
 - , et . = séparations de propositions
 - M. Jacques réclame 58,50 euros à la S.N.C.F
 - = séparateur de mots composés
 - Les Bleus ont gagné 3-0
 - ' = élision
 - Mme D'Arcy dit : « j'viens aujourd'hui »
- Format :
 - Encodage : ASCII, UTF-8...
 - Texte brut vs. enrichi (RTF, HTML, etc.)

Analyse lexicale (1)

- Objectif : passage de formes atomiques (tokens) à des mots
- Qu'est-ce qu'un mot ?
 - Aujourd'hui (au jour d'hui)
 - Ceci vs. ceux-ci?
 - Pomme de terre
 - Au (= à + le)
- Unité linguistique dotée de caractéristiques propres (sens, prononciation, propriétés syntaxiques...)

Analyse lexicale (2)

- Lexique pré-compilé de la langue mais :
 - Domaines spécialisés
 - Noms propres (reconnaissance d'entités nommées) :
 - « le Prix Goncourt » : récompense, montant financier, personne, jury, objet, événément...
 - Création constante de vocabulaire :
 - Macronisme, macronphobe, macronien...
- Détour nécessaire par la morphologie :
 - Découpage des mots en morphèmes :
 - Anti-constitu-tion-nelle-ment
 - Ajustement de forme lié aux conditions syntaxiques (flexions) :
 -s pour le pluriel, -e pour le féminin d'un adjectif...
 - Créations de nouvelles formes

Lemmatisation & Étiquetage morpho-syntaxique

- Lemmatisation : association d'un lemme à chaque mot
- Lemme : unité autonome constituant le lexique d'une langue (= une entrée du dictionnaire)
 - □ Chiennes → chien
 - Mangerait → manger
 - Président présider OU président ?
- Étiquetage morpho-syntaxique (POS tagging): association d'informations grammaticales aux mots (nature, genre, nombre...)
- Quelques outils :
 - TreeTagger
 - LIA Tagg
 - Stanford Tagger
- Efficacité : ~97% (corpus généralistes)

TreeTagger: 33 tags en français

Tag	Signification	Tag	Signification	
ABR	abreviation	PRP:det	preposition plus article (au,du,aux,des)	
ADJ	adjective	PUN	punctuation	
ADV	adverb	PUN:cit	punctuation citation	
DET:ART	article	SENT	sentence tag	
DET:POS	possessive pronoun (ma, ta,)	SYM	symbol	
INT	interjection	VER:cond	verb conditional	
KON	conjunction	VER:futu	verb futur	
NAM	proper name	VER:impe	verb imperative	
NOM	noun	VER:impf	verb imperfect	
NUM	numeral	VER:infi	verb infinitive	
PRO	pronoun	VER:pper	verb past participle	
PRO:DEM	demonstrative pronoun	VER:ppre	verb present participle	
PRO:IND	indefinite pronoun	VER:pres	verb present	
PRO:PER	personal pronoun	VER:simp	verb simple past	
PRO:POS	possessive pronoun (mien, tien,)	VER:subi	verb subjunctive imperfect	
PRO:REL	relative pronoun	VER:subp	verb subjunctive present	
PRP	preposition			

TreeTagger: exemple

« TreeTagger permet d'annoter plusieurs langues. »

Mot	POS	Lemme	
TreeTagger	NAM	<unknown></unknown>	
permet	VER:pres	permettre	
d'	PRP	de	
annoter	VER:infi	annoter	
plusieurs	PRO:IND	plusieurs	
langues	NOM	langue	
	SENT		

Plan du cours

1. Introduction

2. Analyse lexicale

3. Analyse syntaxique

- Grammaire hors contexte
- Analyses montante et descendante
- Treebanks
- Robustesse et analyse syntaxique de surface

4. Analyse sémantique

Analyse syntaxique: principes

- Toute suite de mots n'est pas acceptable :
 - Verte mange Jean pomme la
- Syntaxe : étude des contraintes définissant les successions licites de formes (i.e. phrase grammaticalement correctes)
- Constituants : groupes de mots se comportant comme une seule unité
 - Groupes nominaux : Ils, Jean, ceci... la maison, le petit chat gris...
- Relations grammaticales :
 - Jean [SUJET] mange la pomme verte [OBJET]
- Nécessité d'une grammaire définie de manière formelle

Grammaire hors contexte

- Context Free Grammar (CFG) :

 - lexique de mots et symboles :
 - Terminaux : mots du langage
 - Non-terminaux : regroupements ou généralisations

Note : X → Y, X = non-terminal, Y = liste ordonnée d'un ou plusieurs terminaux et non-terminaux

- Peut-être utilisée pour :
 - Associer une structure à une phrase donnée
 - Générer des phrases

CFG: exemple

Exemple de grammaire :

1. Règles:

 $SN \rightarrow DET NOM$

 $SN \rightarrow NAM$ (nom propre)

 $GN \rightarrow SN$

| GN PUN SN

| GN KON SN

2. Terminaux:

{Jean, Pierre, le, la, son, sa, père, mère, et}

GN = symbole de départ

Arbre d'analyse

CFG: exemple (2)

« Jean, son père et sa mère »

Exemple de grammaire :

1. Règles :

 $SN \rightarrow DET NOM$

 \rightarrow NAM (nom propre)

 $GN \rightarrow SN$

| GN PUN SN

| GN KON SN

2. Terminaux:

{Jean, Pierre, le, la, son, sa, père,

mère, et}

GN = symbole de départ

[GN [GN [SN [NAM Jean]]] [PUN ,] [SN [DET sa] [NOM mère]]] [KON et] [SN [DET son][NOM père]]]

CFG: exemple (3)

Exemple de grammaire :

1. Règles :

 $SN \rightarrow DET NOM$

 \rightarrow NAM (nom propre)

 $GN \rightarrow SN$

| GN PUN SN

| GN KON SN

2. Terminaux:

{Jean, Pierre, le, la, son, sa, père, mère, et}

GN = symbole de départ

Phrases pouvant être générées :

Jean

Le père

Sa mère

Jean, Pierre et le père

...

Mais aussi:

La père

Son mère

Jean, Pierre, le père, sa mère, Pierre Jean, Jean, Jean, Jean et Jean

. . .

Analyse montante vs. descendante

- Analyse montante (bottom-up) : départ des mots composant la phrase et tentative de remontée à la racine
- Grammaire :
 - \circ S \rightarrow GN GV | GV
 - □ GN \rightarrow PRO | DET NOM
 - $GV \rightarrow VER \mid VER GN$
 - □ PRO \rightarrow il | elle
 - □ NOM → président | fromage
 - DET → le | ce
 - □ VER → manger | présider
- Phrase :

« Le président mange ce fromage »

```
DET NOM VER DET NOM 2°

Le président mange ce fromage

DET VER VER DET NOM

Le président mange ce fromage
```


Analyse montante vs. descendante

- Analyse descendante (top-down): départ du nœud racine puis expansion jusqu'à atteindre la phrase
- Grammaire :
 - \circ S \rightarrow GN GV | GV
 - □ GN \rightarrow PRO | DET NOM
 - GV → VER | VER GN
 - □ PRO \rightarrow il | elle
 - □ NOM → président | fromage
 - DET \rightarrow le | ce
 - □ VER → manger | présider
- Phrase :

« Le président mange ce fromage »

Treebanks

- Treebank: corpus de textes annotés syntaxiquement à l'aide de grammaires
- Utile pour :
 - évaluer des étiqueteurs morphosyntaxiques, grammaires et analyseurs syntaxiques
 - extraire des règles de production
- En anglais : Penn Treebank
 - 4.5M de mots
 - articles de presse, livres scientifiques et de fiction
 - 4500 règles utilisées
 - annotations à la main
- En français : French Treebank
 - 24000 phrases (780 000 mots)
 - articles du Monde entre 1989 et 1995

Exemple de phrase issue du French Treebank:

```
<SENT>
 <PP fct="MOD">Au <NP>début</NP></PP>,
 <VN fct="SUJ">on ramassait</VN>
 <VPinf fct="OBJ">
   <PP fct="DE-OBJ">de <NP>quoi</NP></PP>
   <VN>remplir</VN>
   <NP fct="OBJ">quinze sacs poubelle</NP>
 </VPinf>,
 <Sint>
   <VN>indique</VN>
   <NP fct="SUJ">Roger,
    <NP>ouvrier <PP>? <NP>la régie</NP></PP></NP>
   </NP>
 </Sint>.
</SENT>
```

Analyse syntaxique : robustesse

Problèmes :

- Le nombre d'arbres de dérivation peut exploser rapidement (et le temps de calcul avec) : parfois des milliers pour une phrase complexe (dont des redondantes)
- Absence d'une structure = 0 arbre
- Pas efficace sur langue en situations réelles d'interaction (phrases non grammaticales)
- Robustesse : capacité à produire des analyses utiles (i.e. au moins partiellement correctes) pour des textes réels

Analyse syntaxique de surface (shallow parsing)

- Idées-clé :
 - Limitation de la profondeur d'analyse (analyses partielles)
 - Production d'une sortie unique pour chaque entrée
 - Reconnaissance de syntagmes noyaux (chunks) linguistiquement motivés (SN, SV...)
- Exemple : cascade de transducteurs
 - Analyse par îlots de confiance
 - Définition de niveaux (ensemble de règles) :
 - L'entrée d'un niveau est la sortie du précédent
 - Règles les plus sûres à un niveau bas
- Efficacité : ~90% analyse de surface (corpus généralistes)

Plan du cours

- 1. Introduction
- 2. Analyse lexicale
- 3. Analyse syntaxique
- 4. Analyse sémantique
 - Sémantique lexicale
 - Sèmes
 - WordNet
 - Sémantique propositionnelle
 - FrameNet
 - Logique du Premier Ordre
 - Graphes conceptuels

Analyse sémique

- Sème : unité minimale de signification, dont les valeurs possibles sont +, -, Ø
- Jument, poulain et pouliche ont des sèmes communs : ils appartiennent au même champ sémantique.
- Peut permettre de distinguer différents sens d'un même mot
- Limites:
 - Consensus difficile
 - Pas d'ensemble de tous les sèmes possibles existant dans la langue générale
 - Adapté aux mots lexicaux (!= par, qui, dont)

	cheval	mâle	adulte
Jument	+	-	+
Poulain	+	+	-
Pouliche	+	-	-

Sémantique lexicale : principes

- Comment attacher un sens aux mots ?
- Dans le dictionnaire, les définitions sont circulaires :
 - Rouge : de la couleur du sang ou du rubis
 - Sang : liquide rouge qui circule dans le cœur, les artères et les veines des animaux
- Besoin d'encoder les relations de sens entre mots dans des bases de données :
 - Synonymie: sens similaire à celui d'origine canapé / sofa, voiture / automobile
 - Antonymie: sens opposé à celui d'origine court / long, haut / bas, clair / sombre
 - Hyponymie: sens plus spécifique par rapport à celui d'origine: voiture pour véhicule, chien pour animal
 - Hyperonymie: sens plus général par rapport à celui d'origine: meuble pour chaise, fruit pour pomme

Sémantique lexicale: WordNet

- WordNet [Fellbaum, 1998]: base de données lexicales en anglais
 - 3 bases de données :
 - Noms (> 117k), 1.23 sens /nom en moyenne
 - Verbes (> 11k), 2.16 sens / verbe en moyenne
 - Adjectifs (> 22k) & adverbes (> 4k)
 - Associations synsets et gloses
 - Encode relations entre synsets
 - Accessible depuis le web ou en local
- Il existe des équivalents (moins riches) pour d'autres langues : EuroWordNet

BASS (n):

- bass¹ the lowest part of the musical range
- 2. bass², basso¹ an adult male singer with the lowest voice
- 3. seabass¹, bass³ the lean flesh of a saltwater fish of the family Serranidae
- 4. bass⁵, bassvoice¹, basso² the lowest adult male singing voice

(+ 4 others)

BASS (v):

1. bass¹, deep⁶ – (having or denoting a low vocal or instrumental range)

Word Sense Disambiguation (WSD):

if tenor is close \rightarrow bass² if fish is close \rightarrow bass³

Sémantique propositionnelle : FrameNet

- FrameNet (Baker et al., 1998; Ruppenhofer et al., 2006) :
 - Frame = une structure scriptée avec des rôles sémantiques associés
 - Rôles sémantiques : peuvent être principaux ou optionnels
- Exemple : changement de valeur sur une échelle
 « Cette frame représente les mots indiquant un changement de la position d'un objet sur une échelle (l'Attribut) depuis une valeur (Valeur_Initiale) à une autre (Valeur_finale). »

[ATTRIBUTE Le prix] [ITEM des bananes] a augmenté de [DIFFERENCE 2%].

[ITEM Son cours] est descendu à [FINAL VALUE \$42].

 $[_{ITEM}$ La température] a $[_{SPEED}$ rapidement] chuté de $[_{INITIAL_VALUE}$ 23°C] à $[_{FINAL\ VALUE}$ 12 °C] en $[_{DURATION}$ 24 heures].

Sémantique propositionnelle : mise en pratique

- Comment modéliser « cliquer » avec une approche de type frame ?
 - Collecter un corpus en situation
 - Rechercher les occurrences de cliquer
 - 3. En déduire les rôles sémantiques associés

Schéma DAFT pour cliquer

```
<schema name="Click">
    <class>A</class>
    <type>Act</type>
    <info>A person click on an object
    in a certain manner</info>
    <fields>
        <field type="person" attribute="clicker" />
        <field type="object" attribute="clicked" />
        <field type="manner" attribute="manner" />
        </fields>
    </schema>
```

[Bouchet & Sansonnet, 2010]

Logique du premier ordre (LPO)

 Objectif : permettre de représenter les connaissances du monde et de raisonner sur des propositions

Exemples :

- Minou est un chat : chat(Minou)
- Minou ne dort pas :

```
\neg dormir(Minou)
```

Minou regarde Jean :

« un chat dort » :

$$\exists x (chat(x) \land dort(x))$$

« tous les chats sont des félins » :

$$\forall x (chat(x) \rightarrow felix(x))$$

Graphes conceptuels

- Alternative à la LPO, sans formules logiques, mais permettant néanmoins le raisonnement
- Exemple : « le petit chat mange une souris »
- Exemple 2 : Google Knowledge Graph

Limites des approches sémantiques propositionnelles (présentées)

- Sens commun de « et » et « ou » :
 - J'aime lire ou aller au cinéma
- Il faut représenter tout ce qui existe dans le monde
- Problème des entités nommées
- Figures de style difficile à modéliser (pas d'humour ou d'ironie)

Conclusion

- L'analyse d'un texte requiert une série d'analyses complexes, et les erreurs à chaque étape affectent l'étape suivante
- Possibilité de se concentrer sur un niveau inférieur et utiliser niveaux supérieurs pour amélioration (e.g. text mining sur des mots)
- Nombreux outils existent (lemmatisation, étiquetage morpho-syntaxique, analyse syntaxique...) & bibliothèques associées (NLTK pour Python, OpenNLP pour Java...)
- Pour obtenir de bonnes performances :
 - Mieux vaut se concentrer sur un sous-domaine de la langue
 Pas de passage à l'échelle des analyses profondes
 - Collecter, si possible, un corpus en situation réelle