Introducción a la bioinformática

Laura Gómez-Romero

Instituto Nacional de Medicina Genómica Igomez@inmegen.gob.mx

November 8, 2021

Tabla de contenidos

- BLAST en línea de comandos
- 2 Variables
- 3 Práctica: Scripts de shell
- 4 Automatizando acciones repetitivas
- 5 Homología: Bidirectional Best Hit

Tabla de contenidos

- BLAST en línea de comandos
- 2 Variables
- Práctica: Scripts de shell
- 4 Automatizando acciones repetitivas
- 5 Homología: Bidirectional Best Hit

BLAST Command Line User Manual

BLAST puede ser ejecutado desde la línea de comandos. El manual de usuario se encuentra en:

https://www.ncbi.nlm.nih.gov/books/NBK279690/

Pasos básicos de BLAST

- Instalar BLAST
- Descargar/construir una base de datos
- Correr BLAST

Instalar BLAST

En tepeu ya se encuentra instalado este comando

¿Cómo lo sabemos?

- Escribe la palabra blast en la terminal
- Presiona tabulador dos veces

```
[lgomez@tepeu ~]$ blast
blast2sam.pl
                         blastdbcheck
                                                  blastn_vdb
                                                                            blastpap
                                                  blastn_vdb.2
blastall
                         blastdbcmd
                                                                            blastToPsl
blastclust
                                                  blastn_vdb.2.2.30-2.4.5
                         blast_formatter
                                                                            blastx
blastdb aliastool
                         blastn
                                                  blastp
                                                                            blastXmlToPsl
```

Tenemos varias versiones: blastn, blastp, blastx

Descargar/construir una base de datos

Para ver las instrucciones de los desarrolladores: https://www.ncbi.nlm.nih.gov/books/NBK537770/

¿Cuáles bases de datos necesitamos?

```
## Ayuda sobre el comando
update_blastdb.pl --help

## Para ver todas las bases de datos disponibles para descargar
update_blastdb.pl --showall [*]
```

Descargar bases de datos de NCBI

¿Cuáles bases de datos necesitamos?

- ref_euk_rep_genomes
- refseq_rna
- refseq_protein

Descargar bases de datos de NCBI

¿Cómo las descargamos directamente de NCBI?

```
## Reference RNA sequences
update_blastdb.pl --decompress refseq_rna

## RefSeq Genome Database
update_blastdb.pl --decompress ref_prok_rep_genomes

## Reference proteins
update_blastdb.pl --decompress refseq_protein
```

Descargar bases de datos de NCBI

Así se ve el proceso

```
[lgomez@tepeu blast-databases]$ update_blastdb.pl --decompress refseq_rna
perl: warning: Setting locale failed.
perl: warning: Please check that your locale settings:
    LANGUAGE = (unset),
    LC_ALL = (unset),
    LC_CTYPE = "UTF-8",
    LANG = "en_US.UTF-8"
    are supported and installed on your system.
perl: warning: Falling back to a fallback locale ("en_US.UTF-8").
Connected to NCBI
Downloading refseq_rna (8 volumes) ...
Downloading refseq_rna.00.tar.gz...
[OK]
Downloading refseq_rna.01.tar.gz... [OK]
Downloading refseq_rna.02.tar.gz...
```

Base de datos customizada

También se puede crear una base de datos personalizada a partir de un archivo multi-fasta

```
## Crear una base de datos a partir de un archivo multi-fasta
makeblastdb -in mydb.fsa -dbtype nucl -parse_seqids

## mydb.fsa - archivo multi.fasta
## nucl - tipo de secuencias, opciones [nucl, prot]
## -parse_seqids - para parsear los IDs de las secuencias
## a partir del archivo FASTA
```

Base de datos de BALST en tepeu

En tepeu las bases de datos de BLAST las descarga el administrador y las encontramos en:

/export/storage/data/blast/db/

```
(base) -bash-4.4$ date

Mon Nov 8 19:05:30 CST 2021
(base) -bash-4.4$
(base) -bash-4.4$
(base) -bash-4.4$ du -h /export/storage/data/blast/db/
131G /export/storage/data/blast/db/FASTA
770G /export/storage/data/blast/db/
```

No queremos tener 700Gb de información en el \$HOME de cada usuario.

Correr BLAST

```
## Sintaxis básica
blastn -db nt -query nt.fsa -out results.out -remote
## Todas las opciones
blastn -help
```

- db Nombre de la base de datos
- query Secuencia problema
- out Archivo de resultados
- remote Para mandar a ejecutar la búsqueda en los servidores y bases de datos de NCBI

Configurando nuestro directorio de trabajo

Antes de empezar, asegurémonos de tener todo listo

```
## Crea el directorio practica 8 y posicionate ahí
mkdir practica9
cd practica9

## Crea una liga simbolica al directorio con
## las bases de datos de NCBI
ln -s /export/storage/data/blast/db/ db

## Crea una liga simbolica a los datos de la practica8
ln -s ../practica8/data/ .
```

Enviando un BLAST a NCBI

```
## Nuestro primer blast
blastn -db refseq_rna \
    -query data/TP53a.fasta \
    -out TP53a_refseq_rna.blastn \
    -remote
```

- db Base de datos refseq_rna
- query La secuencia TP53a.fasta
- out Los resultados se escribirán en TP53a_refseq_rna.blastn
- remote Lo mandaremos ejecutar en los servidores y bases de datos de NCBI

Corriendo un BLAST en nuestros servidores

```
## Enviando el mismo blast utilizando una base de datos local
blastn -db db/refseq_rna \
    -query data/TP53a.fasta \
    -out TP53a_refseq_rna_local.blastn
```

- db Base de datos db/refseq_rna (LOCAL)
- query La secuencia TP53a.fasta
- out Los resultados se escribirán en TP53a_refseq_rna_local.blastn

¡Esto es mucho más rápido!

Formatos de salida: default

Información general de los alineamientos:

```
Ouerv= NC_000017.11:c7687550-7668402
Length=19149
Sequences producing significant alignments:
                                                                            Value
XM 034941462.1 PREDICTED: Pan paniscus WD repeat containing antis... 3517
NM_000546.6 Homo sapiens tumor protein p53 (TP53), transcript var... 2351
                                                                             0.0
NM_001126118.2 Homo sapiens tumor protein p53 (TP53), transcript ... 2351
                                                                             0.0
NM_001276698.3 Homo sapiens tumor protein p53 (TP53), transcript ... 2351
                                                                             0.0
NM_001276697.3 Homo sapiens tumor protein p53 (TP53), transcript ... 2351
                                                                             0.0
NM 001276696.3 Homo sapiens tumor protein p53 (TP53), transcript ... 2351
                                                                             0.0
NM_001276695.3 Homo sapiens tumor protein p53 (TP53), transcript ... 2351
                                                                             0.0
NM_001276699.3 Homo sapiens tumor protein p53 (TP53), transcript ... 2351
                                                                             0 0
NM.001276761.3 Homo sapiens tumor protein p53 (TP53), transcript ... 2351
                                                                             0.0
XM 001172077.5 PREDICTED: Pan troalogytes tumor protein p53 (TP53... 2303)
                                                                             0.0
XM_016931470.2 PREDICTED: Pan troglodytes tumor protein p53 (TP53... 2303
                                                                             0 0
XM 004058511.3 PREDICTED: Gorilla gorilla gorilla tumor protein p... 2276
                                                                             0.0
XM_019013137.2 PREDICTED: Gorilla gorilla gorilla tumor protein p... 2276
                                                                             0.0
XM_019013136.2 PREDICTED: Gorilla gorilla gorilla tumor protein p... 2276
                                                                             0.0
XM 003810066.3 PREDICTED: Pan paniscus tumor protein p53 (TP53). . . . 2254
                                                                             0.0
XM_002826974.4 PREDICTED: Pongo abelii tumor protein p53 (TP53), ... 2183
                                                                             0.0
XM_030800485.1 PREDICTED: Nomascus leucogenys tumor protein p53 (... 2012
                                                                             0.0
XM 032139337.2 PREDICTED: Hylobates moloch tumor protein p53 (TP5... 1989)
                                                                             0.0
XM_011958560.1 PREDICTED: Colobus angolensis palliatus tumor prot... 1951
```

Los alineamientos:

```
>XM_034941462.1 PREDICTED: Pan paniscus WD repeat containing antisense to TP53
(WRAP53), transcript variant X1, mRNA
Length=4691
 Score = 3517 bits (1904). Expect = 0.0
 Identities = 1920/1928 (99%), Gaps = 0/1928 (0%)
 Strand=Plus/Minus
Query 1
            GATGGGATTGGGGTTTTCCCCTCCCATGTGCTCAAGACTGGCGCTAAAAGTTTTGAGCTT 60
Sbict 1928 GATGGGATTGGGGTTTTCCCCTCCCATGTGCTCAAGACTGGCGCTAAAAGTTTTGAGCTT 1869
            CTCAAAAGTCTAGAGCCACCGTCCAGGGAGCAGGTAGCTGCTGGGGCTCCGGGGACACTTT 120
Sbjct 1868 CTCAAAAGTCTAGAGCCACCGTCCAGGGAGCAGGTAGCTGCTGGGCTCCGGGGACACTTT 1809
            GCGTTCGGGCTGGGAGCGTGCTTTCCACGACGGTGACACGCTTCCCTGGATTGGGTAAGC 180
Sbict 1808 GCGTTCGGGCTGGGAGCGTGCTTTCCACGACGGTGACACGCTTCCCTGGATTGGGTAAGC 1749
            TCCTGACTGAACTTGATGAGTCCTCTCTGAGTCACGGGCTCTCGGCTCCGTGTATTTTCA 240
Sbjct 1748 TCCTGACTGAACTTGATGAGTCCTCTCTGAGTCACGGGCTCTCGGCTCCGTGTATTTTCA 1689
Query 241 GCTCGGGAAAATCGCtggggctgggggtggggcagtggggacttagcgagtttgggggtg 300
Sbict 1688 GCTCGGGAAAATCGCTGGGGCTGGGGGTGGGGCAGTTGGGGACTTAGCGAGTTTGGGGGTG 1629
            agtaggATGGAAGCTTGGCTAGAGGGATCATCATAGGAGTTGCATTGTTGGGAGACCTGG 360
Sbjct 1628 AGTGGGATGGAAGCTGGGCTAGAGGGATCATCATAGGAGTTGCATTGTTGGGAGACCTGG 1569
```

Formatos de salida: varios

Todos los formatos de BLAST contienen casi la misma información. Sin embargo, las herramientas para parsearlos son diferentes.

```
*** Formatting options
-outfmt <String>
 alignment view options:
   0 = Pairwise,
   1 = Query-anchored showing identities,
   2 = Ouery-anchored no identities,
   3 = Flat guery-anchored showing identities,
   4 = Flat query-anchored no identities,
   5 = BLAST XML
   6 = Tabular,
   7 = Tabular with comment lines,
   8 = Segalian (Text ASN.1),
   9 = Segalian (Binary ASN.1),
  10 = Comma-separated values,
  11 = BLAST archive (ASN.1),
  12 = Segalian (JSON),
  13 = Multiple-file BLAST JSON,
  14 = Multiple-file BLAST XML2,
  15 = Single-file BLAST JSON,
  16 = Single-file BLAST XML2,
  17 = Sequence Alignment/Map (SAM),
  18 = Organism Report
```

Formatos de salida: tabular y XML

- db Base de datos db/refseq_rna (LOCAL)
- query La secuencia TP53a.fasta
- out Archivo para escribir los resultados (atención en la extensión)
- outfmt 5 para XML, 6 para tabular

; Y si tenemos mil archivos iniciales?

Escribamos los comandos que corrimos en un archivo de texto (sin extensión)

```
## Crear y abrir un archivo de texto
vi comandos

## blastn -db db/refseq_rna -query data/TP53a.fasta -outfmt 6 -out TP53a_refseq_rna_local_script.txt
## blastn -db db/refseq_rna -query data/TP53a.fasta -outfmt 5 -out TP53a_refseq_rna_local_script.xml
```

Convirtiendo un archivo de texto en un ejecutable

Cualquier archivo de texto puede convertirse en un archivo ejecutable y ejecutarse

```
## Cambiando los permisos (+ejecucion)
chmod +x comandos

## Ejecutando los comandos
./comandos
```

Hemos convertido el archivo de texto comandos en un script de shell.

Tabla de contenidos

- BLAST en línea de comandos
- 2 Variables
- 3 Práctica: Scripts de shell
- 4 Automatizando acciones repetitivas
- 5 Homología: Bidirectional Best Hit

Una variable en matemáticas

"A variable is a quantity that may change within the context of a mathematical problem or experiment. Typically, we use a single letter to represent a variable.

- Nykamp DQ, "Variable definition." From Math Insight. http://mathinsight.org/definition/variable

Una variable en programación

"A variable is a symbolic name for (or reference to) information. The variable's name represents what information the variable contains. They are called variables because the represented information can change but the operations on the variable remain the same. In general, a program should be written with "Symbolic" notation, such that a statement is always true symbolically. For example if I want to know the average of two grades, We can write "average = $(\text{grade_1} + \text{grade_2}) / 2.0$;" and the variable average will then contain the average grade regardless of the scores stored in the variables, grade_1 and grade_2.

- https://www.cs.utah.edu/~germain/PPS/Topics/variables.html

Nuestra primer variable en bash

Declarando y utilizando nuestra primer variable en bash

```
## Declarando una variable
DIR='prueba-dir'

## Viendo el contenido de nuestra variable
$DIR

## Utilizando nuestra variable
mkdir $DIR
```

La interpretación de una variable depende de su contexto

La variable \$DIR es una cadena de texto, la interpretación de esta cadena de texto dependerá del contexto de los comandos utilizados

```
## Declarando una variable
DIR='prueba-dir-2'

## Utilizando nuestra variable
vi $DIR
```

Podemos utilizar variables dentro de scripts

```
## Nuestro script
vi variables
## VAR="hola mundo"
## echo £VAR
## Cambiando permisos de ejecución
chmod +x variables
## Ejecutandolo
./variables
```

Tabla de contenidos

- BLAST en línea de comandos
- 2 Variables
- 3 Práctica: Scripts de shell
- 4 Automatizando acciones repetitivas
- 5 Homología: Bidirectional Best Hit

Preparando el directorio de trabajo

```
## Crea una copia identica de la carpeta practica9
cp -r practica9 practica9-bis

## Verificando
ls practica9
ls practica9-bis
```

Tu primer script de shell

En la carpeta practica9, diseña un script de shell que ejecute las siguientes acciones (una acción por comando, un comando por línea):

- Crear la carpeta formatos
- Crear la carpeta fuentes
- Mover los archivos con la extensión blastn a la carpeta fuentes
- Mover el resto de los archivos a la carpeta formatos

Tu primer script de shell

En la carpeta practica9-bis, diseña un script de shell que ejecute las siguientes acciones (una acción por comando, un comando por línea)

IMPORTANTE: Define los nombres de las carpetas como variables al inicio del script.

- Crear la carpeta formatos
- Crear la carpeta fuentes
- Mover los archivos con la extensión blastn a la carpeta fuentes
- Mover el resto de los archivos a la carpeta formatos

Si no te funciona, crea otra carpeta y vuelve a intentarlo.

Tabla de contenidos

- BLAST en línea de comandos
- 2 Variables
- ③ Práctica: Scripts de shell
- 4 Automatizando acciones repetitivas
- 5 Homología: Bidirectional Best Hit

Ejercicio original

Para cada una de las siguientes secuencias:

- TP53a.fasta
- TP53b.fasta
- TP53c.fasta

Realiza un BLAST contra las siguientes bases de datos:

- Reference RNA sequences
 - RefSeq Genome Database
 - Reference proteins

¿Qué puedes concluir de las distintas secuencias FASTA? ¿Cómo interpretas los valores de identidad, cobertura y e.valor para cada BLAST?

Vectores en bash

Vectores en bash por partes

```
## Indica cual es el comando que ejecutara el script
#!/bin/bash
## Se declara un vector de cadenas
## Los elementos estan delimitados por comas, separados por espacios
## La variable se llama VECTOR
declare -a VECTOR=("10" "20" "30")
## Se accede a cada elemento en VECTOR
## Cada elemento se almacena en la variable NUMBER
## Se imprime la variable NUMBER
for NUMBER in ${VECTOR[0]}; do
        echo $NUMBER
done
```

Acciones dentro del ciclo

```
## Creemos el siguiente script (acciones)

#!/bin/bash

declare -a VECTOR=("10" "20" "30")

for NUMBER in ${VECTOR[@]}; do
    FILE=$NUMBER'.txt'
    touch $FILE

done
```

Acciones dentro del ciclo, por partes

Acciones dentro del ciclo, por partes

Ejercicio original: solución automatizada

Creen un bash script que ejecute todos los BLAST necesarios para resolver este ejercicio: Para cada una de las siguientes secuencias:

- TP53a.fasta
- TP53b.fasta
- TP53c.fasta

Realiza un BLAST contra las siguientes bases de datos:

- Reference RNA sequences
- RefSeq Genome Database
- Reference proteins

Por ahora no ejecutes los comandos de blast solo imprime el texto que se ejecutaría

Tabla de contenidos

- BLAST en línea de comandos
- 2 Variables
- Práctica: Scripts de shell
- 4 Automatizando acciones repetitivas
- 5 Homología: Bidirectional Best Hit

Homología

Cuando dos instancias biológicas provienen del mismo ancestro común [?].

Existen:

- Genes homólogos
- Nucleótidos homólogos
- Partes corporales

Homología

Imagen tomada de https://bitesizebio.com/26762/ homology-terminology-never-say-wrong-word/ Todos los genes en esta imagen son homólogos

Ortólogos

Imagen tomada de https://bitesizebio.com/26762/ homology-terminology-never-say-wrong-word/

Los genes ortólogos:

- Provienen de un evento de especiación
- Generalmente mantienen la misma función

Parálogos

Imagen tomada de https://bitesizebio.com/26762/ homology-terminology-never-say-wrong-word/

Los genes parálogos:

- Provienen de un evento de duplicación
- Generalmente sus funciones son diferentes pero relacionadas

Inferencia funcional basada en ortología

Imagen tomada de [?]

Imagina el siguiente escenario

- Sucedió un evento de duplicación y un evento de especiación en la historia evolutiva de un gene para los linajes de ratón y humano
- En la modernidad, sólo se conservan tres de las copias que algunas vez existieron de ese gene: 2 en ratón y 1 en humano
- Se sabe la función de ambas copias del gene de ratón y se quiere hacer una inferencia funcional de dicho gene en humano

Inferencia funcional basada en ortología

Imagen tomada de [?]

 Se sabe la función de ambas copias del gene de ratón y se quiere hacer una inferencia funcional de dicho gene en humano

Recordando:

- Ortólogos: tienden a mantener la misma función
- Parálogos: tienden a tener funciones ligeramente diferentes pero relacionadas

Bidirectional best hit

"One simple and widespread approach to identifying orthology is the bidirectional best hit (BBH) method (also known as reciprocal best hit or reciprocal Blast hit): call as orthologs all pairs of genes between two species that are more similar (i.e., with highest alignment score) to one another than to any other gene in the other species"

--[?]

Inferencia funcional basada en ortología

Bidirectional best hit:

- 3 es el mejor alineamiento de 2 en ratón
- 2 es el mejor alineamiento de 3 en humano

Por lo tanto:

- Ortólogos: Gene 2 y 3 tendrán la misma función
- Parálogos: Gene 1 tendrá una función ligeramente diferente pero relacionada a la función de Gene 2 y 3

Imagen tomada de [?]

Práctica: obtener grupos de proteínas ortólogas

Preparando el directorio de trabajo:

- Crear el directorio practica9-blast
- Crear el directorio practica9-blast/fasta
- Copiar las secuencias problema de: /home/lgomez/WelcomeBioinfo/datos/practica9 a practica9-blast/fasta
- Entra al directorio practica9-blast

Práctica: obtener grupos de proteínas ortólogas

Procedimiento:

- Obtener los organismos con los que estamos trabajando
- Realizar un blast de cada proteína query contra la base de datos proteínas para cada organismo en nuestro conjunto de datos, seleccionando un formato de output que permita realizar el siguiente paso de manera ágil
- Analizar cuáles parejas de secuencias corresponden a Bidirectional Best Hits

Recuerda automatizar procesos. Haz uso de variables de bash y shell scripts. Recuerda que correr un blast de manera local es mucho más rápido

BLAST contra un organismo específico

```
## Limitar la busqueda de BLAST por taxid
blastn -db $DB -query $SEQ -taxids $TAXID -outfmt $OUTFMT -out $OUT
```

Para obtener el taxid consulta la base de datos de Taxonomy de NCBI

El Tax ID de Homo sapiens es 9606.

Presentación de tabla de análisis

El análisis debe incluir una tabla como la siguiente:

BEST HITS	Homo sapiens	Xenopus tropicalis	Bos taurus	Y EL RESTO DE LOS ORGANISMOS
NP_000508	NA			
NP_001005092		NA		
NP_001070890			NA	
Y EL RESTO DE LAS PROTEÍNAS				

NP_000508 es una proteína de humano por lo tanto se buscan ortólogos en el resto de los organismos, por eso se reporta como NA.

Ejemplo de un par de proteínas homólogas

Query: NP_00508.1 (human, 9606). Database: 9544

[lgomez@tepeu	practica9-blast]\$	head NP	_00050	8.fasta_9	544.tx						
NP_000508.1	NP_001253705.1	96.479	142	5	0	1	142	1	142	3.82e-97	276
NP_000508.1	NP_001038189.1	96.479	142				142		142	7.46e-97	276
NP_000508.1	XP_014980671.2	95.775	142				142	36	177	3.91e-95	273
NP_000508.1	XP_002802384.1	63.380	142	52			142		142	1.38e-60	184
NP_000508.1	XP_014980670.2	58.451	142	59			142		142	6.09e-56	172
NP_000508.1	XP_028696705.1	57.746	142	60			142		142	2.47e-55	171
NP_000508.1	NP_001180633.2	45.390	141				142		141	9.76e-41	134
NP_000508.1	NP_001157900.1	43.448	145	74			141		146	1.05e-32	114
NP_000508.1	XP_028696189.1	50.450	111	55		32	142	46	156	3.39e-32	112
NP_000508.1	XP_028689611.1	40.690	145	78	3	3	141	4	146	5.63e-32	112

Query: NP_001253705.1 (macaca, 9544). Database: 9696

[lgomez@tepeu practica9-blast]\$ head NP_001253705.fasta_9606.txt											
NP_001253705.1	NP_000508.1	96.479	142	5	0	1	142	1	142	5.29e-97	276
NP_001253705.1	NP_005322.1	62.676	142				142		142	4.15e-60	183
NP_001253705.1	NP_005323.1	59.155	142	58			142		142	3.21e-55	171
NP_001253705.1	NP_001003938.1	46.099	141	76			142		141	5.12e-42	137
NP_001253705.1	NP_000509.1	43.448	145	74			141		146	1.27e-31	111
NP_001253705.1	NP_000175.1	41.379	145				141		146	4.64e-31	110
NP_001253705.1	NP_005321.1	39.007	141	78			141	8	146	6.13e-27	99.4
NP_001253705.1	XP_005257062.1	27.397	146	97			142		167	9.75e-14	66.6
NP_001253705.1	NP_001349775.1	25.676	148	104			142		148	5.96e-07	47.8
NP_001253705.1	XP_016879605.1	27.957	93	64		53	142	10	102	4.48e-05	42.4

Ejemplo de un par de proteínas homólogas

BEST HITS	9606 Homo	8364	9544 Macaca	9913	10090	9615 Canis	7955 Danio	9598 Pan
NP_000508	NA		NP_001253705.1					
NP_001005092		NA						
NP_001070890				NA				
NP_001188320					NA			
NP_001257812						NA		
NP_005323	NA							
NP_571332							NA	
XP_508242								NA
NP_000549	NA							
NP_001038189			NA					
NP_001077424					NA			
NP_001253705	NP_000508.1		NA					
NP_001257814						NA		
NP_032244					NA			
NP_988860		NA						

 $NP_000508.1$ y $NP_001253705.1$ son proteínas homólogas

References I