AULA PRÁTICA DE FÍSICA I

FÍSICA I Ano lectivo 2023

TEMA 2: Vectores

- 1. Determine as componentes x e y dos seguintes três vectores do plano xy.
 - (a) Um vector deslocamento de 10 m que forma um ângulo de 30° no sentido horário a partir do eixo +y.
 - (b) Um vector velocidade de 25 m/s que forma um ângulo de 40° no sentido anti-horário com o eixo -x.
 - (c) Uma força de 40 lb que forma um ângulo de 120° no sentido antihorário com o eixo - y.
- 2. São dados os seguintes vectores:

$$\vec{A} = 3.4\hat{\imath} + 4.7\hat{\jmath}$$
, $\vec{B} = (-7.7)\hat{\imath} + 3.2\hat{\jmath}$ e $C = 5.4\hat{\imath} + (-9.3)\hat{\jmath}$.

- (a) Encontre o vector \vec{D} em notação de vectores unitários, tal que \vec{D} + $2\vec{A} 3\vec{C} + 4\vec{B} = 0$. (b) Expresse sua resposta para a parte (a) em termos de magnitude e ângulo com o sentido +x.
- 3. Calcule o vector unitário, em termos de \hat{i} e \hat{j} , com a orientação oposta de cada um dos vectores \vec{A}, \vec{B} e \vec{C} do problema anterior.
- 4. Dois vectores \vec{A} e \vec{B} têm, cada um, um módulo de 6,0 m, e o ângulo entre suas orientações é 60°. Determine $\vec{A} \cdot \vec{B}$.
- 5. Descrever os seguintes vectores mediante os vectores unitários \hat{i} e \hat{j} .
 - (a) A velocidade de 10 m/s com um ângulo de elevação de 60°.
 - (b) Um vector de módulo A = 5 m e $\theta = 225^{\circ}$.
 - (c) Um deslocamento a partir da origem até o ponto x = 14 m e y = -6 m
- 6. Determine $\vec{A} \cdot \vec{B}$ para os seguintes vectores:

(a)
$$\vec{A} = 3\hat{\imath} - 6\hat{\jmath}, \vec{B} = -4\hat{\imath} + 2\hat{\jmath};$$

(b)
$$\vec{A}=5\hat{\imath}+5\hat{\jmath}$$
, $\vec{B}=2\hat{\imath}-4\hat{\jmath}$; (c) $\vec{A}=6\hat{\imath}+4\hat{\jmath}$, $\vec{B}=4\hat{\imath}-6\hat{\jmath}$

7. Determine os ângulos entre os vectores \vec{A} e \vec{B} dados:

(a)
$$\vec{A} = 3\hat{\imath} - 6\hat{\jmath}, \ \vec{B} = -4\hat{\imath} + 2\hat{\jmath};$$

(b)
$$\vec{A}=5\hat{\imath}+5\hat{\jmath}$$
 , $\vec{B}=2\hat{\imath}-4\hat{\jmath}$; (c) $\vec{A}=6\hat{\imath}+4\hat{\jmath}$, $\vec{B}=4\hat{\imath}-6\hat{\jmath}$

8. (a) Dados dois vectores não-nulos, \vec{A} e \vec{B} , mostre que se $|\vec{A} + \vec{B}| = |\vec{A} - \vec{B}|$, então $\vec{A} \perp \vec{B}$. (b) Dado o vector $\vec{A} = 4\hat{\imath}-3\hat{\jmath}$, encontre um vector no plano xy que seja perpendicular a \vec{A} e que tenha um módulo de 10. Este é o único vector que satisfaz estas condições? Explique.

INSTITUTO SUPERIOR DE TRANSPORTES E COMUNICAÇÕES

- 9. Determine $\vec{A} \times \vec{B}$ nos seguintes casos: (a) $\vec{A} = 4\hat{\imath}$ e $\vec{B} = 6\hat{\imath} + 6\hat{\jmath}$, (b) $\vec{A} = 4\hat{\imath}$ e $\vec{B} = 6\hat{\imath} + 6\hat{k}$, e (c) $\vec{A} = 2\hat{\imath} + 3\hat{\jmath}$ e $\vec{B} = 3\hat{\imath} + 2\hat{\jmath}$.
- 10. Para cada um dos casos do Problema 9, determine $|\vec{A} \times \vec{B}|$. Compare o resultado com $|\vec{A}||\vec{B}|$ para estimar qual dos pares de vectores está mais próximo de ser ortogonal. Verifique suas respostas e calcular o ângulo, usando o produto escalar.
- 11. São-lhe fornecidos três vectores e suas componentes na forma geral: $\vec{A} = a_x \hat{\imath} + a_y \hat{\jmath} + a_z \hat{k}, \ \vec{B} = b_x \hat{\imath} + b_y \hat{\jmath} + b_z \hat{k}, \ e \ \vec{C} = c_x \hat{\imath} + c_y \hat{\jmath} + c_z \hat{k}.$ Mostre que as seguintes igualdades são válidas:

$$\vec{A} \cdot (\vec{B} \times \vec{C}) = \vec{C} \cdot (\vec{A} \times \vec{B}) = \vec{B} \cdot (\vec{C} \times \vec{A}).$$

12. Três vectores são dados por: $\vec{A} = 2\hat{\imath} - 3\hat{\jmath} - \hat{k}$, $\vec{B} = \hat{\imath} - \hat{\jmath} - \hat{k}$, $\vec{C} = \hat{\imath} + \hat{\jmath} - 2\hat{k}$. Determine:

a)
$$\vec{A} \cdot \vec{B}$$
; b) $\vec{B} \times \vec{C}$; c) $\vec{A} \cdot (\vec{B} \times \vec{C})$; d) $\vec{B} \cdot (\vec{A} \times \vec{C})$

- 13. Se $\vec{A} = 3\hat{j}$, $\vec{A} \times \vec{B} = 9\hat{i}$ e $\vec{A} \cdot \vec{B} = 12$, determine \vec{B} .
- 14. Se $\vec{A} = 4\hat{\imath}$, $B_z = 0$, $|\vec{B}| = 5$ e $\vec{A} \times \vec{B} = 12\hat{k}$, determine \vec{B} .
- 15. Dados três vectores não-coplanares $\vec{A}, \vec{B} \in \vec{C}$, mostre que $\vec{A} \cdot (\vec{B} \times \vec{C})$ é o volume do paralelepípedo formado pelos três vectores.