$\begin{array}{c} {\bf Exercises\ from} \\ {\bf \textit{Algebra}} \\ {\bf by\ Michael\ Artin} \end{array}$

- **Exercise 2.2.9** Let H be the subgroup generated by two elements a, b of a group G. Prove that if ab = ba, then H is an abelian group.
- **Exercise 2.3.1** Prove that the additive group \mathbb{R}^+ of real numbers is isomorphic to the multiplicative group P of positive reals.
- **Exercise 2.3.2** Prove that the products ab and ba are conjugate elements in a group.
- Exercise 2.4.19 Prove that if a group contains exactly one element of order 2, then that element is in the center of the group.
- Exercise 2.8.6 Prove that the center of the product of two groups is the product of their centers.
- **Exercise 2.10.11** Prove that the groups $\mathbb{R}^+/\mathbb{Z}^+$ and $\mathbb{R}^+/2\pi\mathbb{Z}^+$ are isomorphic.
- Exercise 2.11.3 Prove that a group of even order contains an element of order 2.
- **Exercise 3.2.7** Prove that every homomorphism of fields is injective.
- **Exercise 3.5.6** Let V be a vector space which is spanned by a countably infinite set. Prove that every linearly independent subset of V is finite or countably infinite.
- **Exercise 3.7.2** Let V be a vector space over an infinite field F. Prove that V is not the union of finitely many proper subspaces.
- **Exercise 6.1.14** Let Z be the center of a group G. Prove that if G/Z is a cyclic group, then G is abelian and hence G = Z.

Exercise 6.4.2 Prove that no group of order pq, where p and q are prime, is simple.

Exercise 6.4.3 Prove that no group of order p^2q , where p and q are prime, is simple.

Exercise 6.4.12 Prove that no group of order 224 is simple.

Exercise 6.8.1 Prove that two elements a, b of a group generate the same subgroup as bab^2, bab^3 .

Exercise 6.8.4 Prove that the group generated by x, y, z with the single relation $yxyz^{-2} = 1$ is actually a free group.

Exercise 6.8.6 Let G be a group with a normal subgroup N. Assume that G and G/N are both cyclic groups. Prove that G can be generated by two elements.

Exercise 10.1.13 An element x of a ring R is called nilpotent if some power of x is zero. Prove that if x is nilpotent, then 1 + x is a unit in R.

Exercise 10.2.4 Prove that in the ring $\mathbb{Z}[x]$, $(2) \cap (x) = (2x)$.

Exercise 10.6.7 Prove that every nonzero ideal in the ring of Gauss integers contains a nonzero integer.

Exercise 10.6.16 Prove that a polynomial $f(x) = \sum a_i x^i$ can be expanded in powers of x - a: $f(x) = \sum c_i (x - a)^i$, and that the coefficients c_i are polynomials in the coefficients a_i , with integer coefficients.

Exercise 10.3.24a Let I, J be ideals of a ring R. Show by example that $I \cup J$ need not be an ideal.

Exercise 10.4.6 Let I, J be ideals in a ring R. Prove that the residue of any element of $I \cap J$ in R/IJ is nilpotent.

Exercise 10.4.7a Let I, J be ideals of a ring R such that I + J = R. Prove that $IJ = I \cap J$.

Exercise 10.5.16 Let F be a field. Prove that the rings $F[x]/(x^2)$ and $F[x]/(x^2-1)$ are isomorphic if and only if F has characteristic 2.

Exercise 10.7.6 Prove that the ring $\mathbb{F}_5[x]/(x^2+x+1)$ is a field.

Exercise 10.7.10 Let R be a ring, with M an ideal of R. Suppose that every element of R which is not in M is a unit of R. Prove that M is a maximal ideal and that moreover it is the only maximal ideal of R.

Exercise 11.2.13 If a, b are integers and if a divides b in the ring of Gauss integers, then a divides b in \mathbb{Z} .

Exercise 11.3.1 Let a, b be elements of a field F, with $a \neq 0$. Prove that a polynomial $f(x) \in F[x]$ is irreducible if and only if f(ax + b) is irreducible.

Exercise 11.3.2 Let $F = \mathbb{C}(x)$, and let $f, g \in \mathbb{C}[x, y]$. Prove that if f and g have a common factor in F[y], then they also have a common factor in $\mathbb{C}[x, y]$.

Exercise 11.3.4 Prove that two integer polynomials are relatively prime in $\mathbb{Q}[x]$ if and only if the ideal they generate in $\mathbb{Z}[x]$ contains an integer.

Exercise 11.4.1a Prove that $x^2 + 27x + 213$ is irreducible in \mathbb{Q} .

Exercise 11.4.1b Prove that $x^3 + 6x + 12$ is irreducible in \mathbb{Q} .

Exercise 11.4.6a Prove that $x^2 + x + 1$ is irreducible in the field \mathbb{F}_2 .

Exercise 11.4.6b Prove that $x^2 + 1$ is irreducible in \mathbb{F}_7

Exercise 11.4.6c Prove that $x^3 - 9$ is irreducible in \mathbb{F}_31 .

Exercise 11.4.8 Let p be a prime integer. Prove that the polynomial $x^n - p$ is irreducible in $\mathbb{Q}[x]$.

Exercise 11.4.10 Let p be a prime integer, and let $f \in \mathbb{Z}[x]$ be a polynomial of degree 2n+1, say $f(x) = a_{2n+1}x^{2n+1} + \cdots + a_1x + a_0$. Suppose that $a_{2n+1} \neq 0$ (modulo p), $a_0, a_1, \ldots, a_n \equiv 0$ (modulo p^2), $a_{n+1}, \ldots, a_{2n} \equiv 0$ (modulo p), $a_0 \not\equiv 0$ (modulo p^3). Prove that f is irreducible in $\mathbb{Q}[x]$.

Exercise 11.9.4 Let p be a prime which splits in R, say $(p) = P\bar{P}$, and let $\alpha \in P$ be any element which is not divisible by p. Prove that P is generated as an ideal by (p, α) .

Exercise 11.12.3 Prove that if $x^2 \equiv -5$ (modulo p) has a solution, then there is an integer point on one of the two ellipses $x^2 + 5y^2 = p$ or $2x^2 + 2xy + 3y^2 = p$.

Exercise 11.13.3 Prove that there are infinitely many primes congruent to -1 (modulo 4).

Exercise 13.1.3 Let R be an integral domain containing a field F as subring and which is finite-dimensional when viewed as vector space over F. Prove that R is a field.

Exercise 13.3.1 Let F be a field, and let α be an element which generates a field extension of F of degree 5. Prove that α^2 generates the same extension.

Exercise 13.3.8 Let K be a field generated over F by two elements α, β of relatively prime degrees m, n respectively. Prove that [K : F] = mn.

Exercise 13.4.10 Prove that if a prime integer p has the form $2^r + 1$, then it actually has the form $2^{2^k} + 1$.

Exercise 13.6.10 Let K be a finite field. Prove that the product of the nonzero elements of K is -1.