SEQUENCE LISTING

<110> Mark J. Graham Kenneth Dobie

<120> ANTISENSE MODULATION OF CD81 EXPRESSION

<130> RTS-0341

<160> 90

<210> 1

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 1

teegteateg eteeteaggg

20

<110> 2

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<.100> 2

atgeattetg ecceeaagga

20

<210> 3

<211> 1496

<212> DNA <213> Homo sapiens <220> <221> CDS <222> (239)...(949) <400 > 3 ccattgtgct ggaaaggcgc gcaacggcgg cgacggcggc gaccccaccg cgcatcctgc 60 caggeotocg egeccageeg eccaegegee ecegegeece gegeceegae cetttetteg 120 egecceegee ceteggeeeg ceaggeeece ttgeeggeea eeegecagge eeegegeegg 180 ecegecegee geccaggare ggecegegee ecgeaggeeg ecegeegeee gegeegee 238 atg gga gtg gag ggc tgc acc aag tgc atc aag tac ctg ctc ttc gtc 286 Met Gly Val Glu Gly Cys Thr Lys Cys Ile Lys Tyr Leu Leu Phe Val 10 ttc aat ttc gtc ttc tgg ctg gct gga ggc gtg atc ctg ggt gtg gcc 334 Phe Asn Phe Val Phe Trp Leu Ala Gly Gly Val Ile Leu Gly Val Ala 3.0 20 25 ctg tgg ctc cgc cat gac ccg cag acc acc aac ctc ctg tat ctg gag 382 Leu Trp Leu Arg His Asp Pro Gln Thr Thr Asn Leu Leu Tyr Leu Glu 40 35 ctg gga gac aag ccc gcg ccc aac acc ttc tat gta ggc atc tac atc 430 Leu Gly Asp Lys Pro Ala Pro Asn Thr Phe Tyr Val Gly Ile Tyr Ile 60 55 50 478 ctc atc gct gtg ggc gct gtc atg atg ttc gtt ggc ttc ctg ggc tgc Leu Ile Ala Val Gly Ala Val Met Met Phe Val Gly Phe Leu Gly Cys 75 70 tac ggg gcc atc cag gaa tcc cag tgc ctg ctg ggg acg ttc ttc acc 526 Tyr Gly Ala Ile Gln Glu Ser Gln Cys Leu Leu Gly Thr Phe Phe Thr 95 90 tge etg gte ate etg tit gee tgt gag gtg gee gee gge ate tgg gge 574

RTS-0341 -3-	ATENT
Cys Leu Val Ile Leu Phe Ala Cys Glu Val Ala Ala Gly Ile Trp Gly 100 105 110	
tit gid aad aag gad dag atd gdd aag gat gig aag dag tid tal gad Phe Val Asn Lys Asp Gln Ile Ala Lys Asp Val Lys Gln Phe Tyr Asp 115 120 125	622
cag gcc cta cag cag gcc gtg gtg gat gat gac gcc aac aac gcc aag Gln Ala Leu Gln Gln Ala Val Val Asp Asp Ala Asn Asn Ala Lys 130 135 140	670
get gtg gtg aag ace tte eac gag acg ett gae tge tgt gge tee age Ala Val Val Lys Thr Phe His Glu Thr Leu Asp Cys Cys Gly Ser Ser 145 150 155 160	718
aca ctg act gct ttg acc acc tca gtg ctc aag aac aat ttg tgt ccc Thr Leu Thr Ala Leu Thr Thr Ser Val Leu Lys Asn Asn Leu Cys Pro 165 170 175	766
teg gge age aac ate ate age aac ete tte aag gag gae tge eac eag Ser Gly Ser Asn Ile Ile Ser Asn Leu Phe Lys Glu Asp Cys His Gln 180 185 190	814
aag atc gat gac ctc ttc tcc ggg aag ctg tac ctc atc ggc att gct Lys Ile Asp Asp Leu Phe Ser Gly Lys Leu Tyr Leu Ile Gly Ile Ala 195 200 205	862
gcc atc gtg gtc gct gtg atc atg atc ttc gag atg atc ctg agc atg Ala Ile Val Val Ala Val Ile Met Ile Phe Glu Met Ile Leu Ser Met 210 220	910
gtg ctg tgc tgt ggc atc cgg aac agc tcc gtg tac tga ggccccgcag Val Leu Cys Cys Gly Ile Arg Asn Ser Ser Val Tyr 225 230 235	959
ctctggccac agggacctct gcagtgcccc ctaagtgacc cggacacttc cgagggggcc	1019
atcaccgcct gtgtatataa cgtttccggt attactctgc tacacgtagc ctttttactt	1079
ttggggtttt gtttttgtte tgaactttee tgttacettt teagggetga tgteacatgt	1139
aggtggegtg tatgagtgga gaegggeetg ggtettgggg aetggaggge aggggteett	1199
ctgeeeetgg ggteeeaggg tgetetgeet geteageeag geeteteetg ggageeacte	1259

gottagagad	tcagcttggc	caacttgggg	ggetgtgtee	acccagcccg	cccgtcctgt	1319
ggystgsada	geteacettg	ttacatactg	acceggtteg	agageegagt	ctgtgggcac	1379
teretgeett	catgcacctg	tootttotaa	cacgtcgcct	tcaactgtaa	tcacaacatc	1439
ctgactccgt	catttaataa	agaaggaaca	tcaggcatgc	taaaaaaaaa	aaaaaaa	1496
<210> 4						
<111> 20						
<112> DNA						
<213> Arti	ficial Sequ	ence				
<020>						
<223> PCR	Primer					
<100> 4						20
cagategeea	a aggatgtgaa	ì				20
<::10> 5						
<211> 18						
<212> DNA						
<213> Art	ificial Sequ	uence				
<020>						
<023> PCR	Primer					
<400> 5						18
gegttgttg	g cgtcatca					10
-16 6						
<210> 6 <211> 28						
<211> 28 <212> DNA	4					
< JIZ > DINE						

- 220>

<223 > PCR Probe

<213> Artificial Sequence

RTS-0341	-5 -	PATENT
<4^J> 6		28
agrijtaiga odaggoodia dagdaggo		20
<210 > 7		
<111> 19		
<212> DNA		
<pre><213> Artificial Sequence</pre>		
<220>		
<223> PCR Primer		
<=00>7		19
gaaqgtgaag gtcggagtc		
<210> 8		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<020>		
<223> PCR Primer		
< 400> 8		20
gaagatggtg atgggatttc		
<210> 9		
<211> 20		
<:112> DNA		
<213> Artificial Sequence		
<220>		
<323> PCR Probe		
<400> 9		20
caagetteed gtteteagee		2 0

210> 10 211> 626						
3211> 020 3212> DNA						
<213 > Homo s	sapiens					
22137 1.00	34,2					
<22) •						
<40:) - 10	atacttacta	aacatcaaaa	cagctcgtgt	attgagtccc	gcagetttgg	60
atcogagour	grgeregerg	990000				
	++ctacaata	cccctaagt	gacccggaca	cttccgaggg	gaccatcacc	120
CCaraayaac	cccgcagag					
acctatatat	araacqtttc	cggtattact	ctgctacacg	tagccttttt	acttttgggg	180
reteattitt	gttccgaact	ttcctgttac	cttttcaggg	ctgacgtcac	atgtaggtgg	240
						2.00
cgtgtatgag	tggagacggg	cctgggtctt	ggggactgga	gggcaggggt	ccttctgccc	300
						360
tggggtccca	gggtgctctg	cctgctcagc	caggcctctc	ctgggagcca	ctcgcccaga	200
						420
gactcagctt	ggccaacttg	gggggctgtg	tccacccagc	ccgcccgtcc	tgtgggctgc	120
				antatataaa	cactototoc	480
acageteace	ttgttccctc	ctgccccggt	tegagageeg	agtergraga	cactctctgc	
			, cattalacta	· raat.cacaa0	atcctgactc	540
cttcatgcac	ctgtcctttc	taadacgtcg	CCCCCCCCC		: atcctgactc	
		adat daddca	. tactaccago	cctqtqcagt	caaaaaaaaa	600
cgtcatttaa	taaagaagga	acarcayyca				
		22222				626
aaaaaaaaaa	aaaaaaaaaa	daddad				

```
<210> 11
```

<1:20>

<111> exon

<202> (518)...(812)

<323> exon 1

<221> exon:intron junction

<222> (812)...(813)

<211> 21501

<212> DNA

<213> Homo sapiens

```
<203 - exon 1:intron 1
<221> intron
<222 > (813) ... (13608)
<213 > intron 1
<221 · intron:exon junction
<223> (13608)...(13609)
<223 > intron 1:exon 2
<221> exon
<200> (13609)...(13723)
<223> exon 2
<221> exon:intron junction
<222> (13723)...(13724)
<223> exon 2:intron 2
 <221> intron
 <222> (13724)...(17291)
 <233> intron 2
 <221> intron:exon junction
 <200> (17291)...(17292)
 <223> intron 2:exon 3
 <221> exon
 <222> (17292)...(17389)
 <223> exon 3
 <221> exon:intron junction
 <222> (17389)...(17390)
 <223> exon 3:intron 3
 <001> intron
  <222> (17390)...(18168)
  <2.3> intron 3
 <221> intron:exon junction
  <222> (18168)...(18169)
  <223> intron 3:exon 4
  .221> exon
  <222> (18169)...(18243)
```

```
<223> exon 4
<221> exon:intron junction
<222> (13243)...(18244)
<223> exon 4:intron 4
<221> intron
<222> (13244)...(18612)
<2.23> intron 4
<221> intron:exon junction
<222> (18612)...(18613)
<223> intron 4:exon 5
<221> exon
<222> (18613)...(18717)
<223> exon 5
<221> exon:intron junction
<232> (18717)...(18718)
<223> exon 5:intron 5
<231> intron
<222> (18718)...(19065)
<223> intron 5
<331> intron:exon junction
<222> (19065)...(19066)
<223> intron 5:exon 6
<221> exon
<222> (19066)...(19167)
<223> exon 6
<221> exon:intron junction
<222> (19167)...(19168)
<223> exon 6:intron 6
<221> intron
<222> (19168)...(19824)
<1123> intron 6
<221> intron:exon junction
```

<222> (19824)...(19825)

<213> intron 6:exon 7 <221> exon <222> (19825)...(19911) <2.23> exon 7 <2003 exentintron junction <222 > (19911) ... (19912) <2.3> exon 7:intron 7 <221> intron <232> (19912)...(20000) <323 > intron 7 <221> intron:exon junction <202> (20000)...(20001) <223> intron 7:exon 8 <221> exon <222> (20001)...(20610) <223> exon 8 <400> 11 catgeetgee caggitecag ecceggagag caatgigage aaagetiget giettigeaa 60 agccaaccac tgtggcatca actccttcag gaagccctcc cggattgtcc aaggtgctca 120 180 ectectttgg ggagecetee cagattgtee aaggtgettg agggagggag gaatgggttg tteteeegge aceggggetg caeteetggg cagaegetge atgeetgtee teaggegegg 240 ecetgetgee acceettgg gggeteggag egegaeagea gettggggae geeteeegeg 300 cccagcacgg tgcacctggg ccctgaggtc ctggccgaaa cgcgccaagt tggggggtagg 360 tgcagcgacc ccatacccct cggctgcgcg ccctggcggc aggaggcggg gccgggggcg 420 gggcgtgagc tggccggggg cggggcctat ggaggggcgg gaccgcggcg ccctataagt 480 actigoggage geaggegege geoeggeeag agagegageg egeaaeggeg gegaeggegg 540 egaceceace geacatectg ecaggeetee ggegeecagg gegeacggeg egeeceegtg 600 deggeggede etgegedeat ttettggege edeegdeegg teggedeged aggedeettt 660

geoggecace	agccaggccc	cacaccaacc	cgcccgccgc	ccaggaccgg	caagagaaaa	720
geaggeegee	cgccgcccgc	geogecatigg	gagtggaggg	ctgcaccaag	tgcatcaagt	780
addtgatett	cgtottcaat	ttegtettet	gggtaagggc	tgegeegggg	gccggggcgg	840
gagggggcag	gcacacactc	cacgttgggc	aggtcccgcg	gcagcgtgct	aggeceegeg	900
ggegeagege	gggccgcgaa	gttgtggggc	cacctgtggg	ctccaggagc	ggggtggggg	960
gtcgcccggg	gccaccgcgc	cccccgacat	tggggctgag	ggctgcgagc	cgagtttcgg	1020
ggcctctgtg	ctcgggggcc	cacctctgcg	gccgggccgg	ggcttctggg	ggeegeeggg	1030
cagttcccgc	tgtggtggtg	atgggtgcgg	tggtcgcggg	tegggaeeeg	agtacccggc	1140
cgcccctcag	ctaaggaggg	gcctgcgcgg	gtccctggcc	gcggattccg	gactgctgct	1200
tcgcggggac	gaggggggg	ctcgcgggcg	ggactcctgg	cgccccgccc	ccatgagctc	1260
atcaagagcc	geegeeeetg	gatggtgggg	cgggggcgca	cactttgccg	gaggttgggg	13::0
gegateegee	tcactctttc	cccagcccag	ctcactctcc	aatctgcggt	caccacccga	1380
gacetteetg	ggggtcgcgc	ctaaaaggag	cgcagactcc	cgccgggatg	gcccagaagc	1440
tggggtgcgc	gcaccctggc	cgtccctgcc	tgggagccga	tetecetete	ctcacccaga	1500
cacgttccag	cggaggcctc	ctcccagaag	ggctctggag	gcctcgcagg	agtggggatc	1560
ccgcggttct	gagttggcac	aaggaagaga	gtggcaccag	gggcctggag	tggatggcag	1620
ggtccgggag	tggggccgct	gctttgcaag	aggggccccc	acgctgggca	tctttgggtg	1630
ccagcgtggg	tggaggaggg	tattttgatg	agaatggctt	tctcctgacc	gcagtctttg	1740
ctgctgggaa	. gtgactgatg	ggatttagaa	ttttgtttcc	: atttcctgtc	ggtgttagaa	1800
ttggggaggg	ggtggaaatc	cattattgga	ctggaaggac	: tggagtgggt	gtccatggcc	1860
gaggaataa	: cgtggccacg	cecetgggea	. tagactgcaa	gedeatadac	gtgcccccca	1920
ggdtgtdadd	: caattatagt	ggaagacteg	getgatgtee	: cagtggaccg	agtgtttdtd	1930

aagttgaggc	agggagggca	aactttttaa	atggeecetg	gagecagtgt	gtgggaccag	2040
agacatetgt	ttoccatotg	gacggctgag	gatoccagtg	cggatgatta	tttggagggg	2100
gaaggacgga	ggetgaactg	aactctcagc	tgggagatga	gtggggcagt	cacatoccac	2160
cttccccaag	ccgggctgtt	ctgcacagec	tgettgggae	gctggtggga	gtcactgtgg	2220
ctttcggcac	tgecetggea	gtgggggcag	ctaggecatt	tgggagggc	tagatttaaa	2280
caggccgggc	cctgggacct	cageegttge	ttagtggtgg	cctgcttcag	cccaggcatg	2340
tgggagaggs	accagacaca	ggatgtccct	ctgccagccc	ctgaagcccc	gteceetgae	2400
gaggcgagtg	tggacctggg	ggtgggggct	gagggagact	gtggacctgg	gggtgggggc	2460
tgaaggaagg	tgtggacctg	ggggcagggg	ccgagggaag	gtgtaggcct	gggggtagta	2520
ggggctgagg	gagagtgtgg	acctgggagt	aggggctgag	ggagggtgta	ggcctggggg	2580
tgggggctga	gggagagtgt	ggacctgggg	gtaggggctg	agggagagtg	tggacctggg	2640
ggtgggggtt	gagggagggt	gtggacctgg	gggcaggggc	tgagggagag	tgtggaccta	2700
ggggcagagg	ctgaagggga	gtcacgggag	gggacttctc	cggaggtgga	tttttgctct	2760
ctggacggtg	tgtcagcact	gggtgagccc	ctcctgcctg	cccaggctga	gaggteteee	2820
tggcagcccc	ctgggagtgt	cgccagggcg	ggcctggaag	tttcccaggc	agctggggtg	2880
gagacctgac	acatcccaag	ggtgcttgtt	attaaggctc	aaggaaatgt	ctctgaggcc	2940
tcaccgctcc	tctccccagg	gaatgataca	tgcaaagcat	tgagaactga	gteegteeac	3000
agtcactgtg	gacccaccca	tccactgggg	ctcagtggta	gccagcaatg	ccaggetggg	3060
tgaggtgggg	ttggtgggca	ccaccctggt	ggacccccct	ccaccctggt	gtegeagggt	3120
gtgtggctga	gagcacagtg	ccatgggctt	gggcctcctt	ggtggagtcc	ccaacacact	3180
getetggtee	tgggaatagg	cattacaagt	ctgcagtggg	ggcccacagt	gagectaect	3240
cctggtggtg	ttggtggatt	tgctgacatg	cctgagtgtt	gacagggggc	ttggtgcagg	3300

aagggstcag	ggcgtgggtg	ttggccaggg	gtccaaaggg	acctctgcct	cagagagicc	3360
agcccagaca	ggcaggatgt	gcagtgggga	aggggctgcg	ggaaccctgc	agggtccaga	3420
aggacacagt	geagteetgt	gggatatggg	gaggetggtg	gggaggaggt	tgacaatgga	3480
tatctgggtg	gggcacttgt	tagaagttcc	attttagaga	ggaaagaggc	cttgcctgtg	3540
ggagaaggca	gctggggtag	cctgacctct	ttcccaggaa	ggagcccaca	cacacacgca	3600
caggcactca	cacacacgaa	tgtgcacaca	cacacactcc	caccttcaca	cacactcaca	3660
ctcttgctgt	ctcccttccc	aagccaaggt	gcgaggggga	aggtctgggc	agcatgcacc	3720
tgcgccctga	ccgctttggg	ggccagtgag	aactgggctc	cctgggtgcg	cggcgggccc	3780
aagcagggag	gacattgcag	atgeeetgge	caagcagcgt	ggaaatcctg	tecettgggt	3840
gggtctcgga	gcctccatca	gaggcggctg	gcacctgaga	cccacctgct	gccaggagca	3900
gggcaggaga	gtttgtgtcc	cgggacaggg	aactggcctg	tgggagcctt	gccttcctca	3960
tctgtgtaat	ggatataaga	gtattataat	cgggggctgg	ccagggagtc	cagaagaggt	4020
gtcaccagtc	cccgcaggga	gaagagcggt	gtcccccgcc	tgggactggc	tgctccccca	4080
agctaatgca	gctggtagcc	acctcccagt	ggcagggcag	ccaaacccgg	ccgggaaaga	4140
gactgattag	aagcctcgct	cacgggtatt	tetegettee	agacagcaca	tgactgtcat	4200
ttggcacgtc	tttcgccgtc	cttccgggag	aggggctgca	accctggcag	gcgctgtggg	4260
ggagggggct	aggacatcct	gtgcctggtt	tcaccaagtg	ggtgtgtgga	ctttccctgg	4320
ctcccccagg	ctgtctggct	gcacagcttt	ggggaaacgg	ccactgggtc	aagcgggccg	4330
agaagaggaa	gtctgtggtt	tgtctctgct	acagactggc	cccagtgagg	ctgtccagca	4440
gtgcagggca	cagagcaaaa	gcagggaggt	atgggcctac	ttacaaggta	geceetgtgg	4500
ctggctgtgg	r etetgeeggg	tgctgacaag	teactegece	tedetgeggt	caccagggtg	4550
catgcccgaa	agecetecat	tatttaatgg	gtttgagggt	cattatactg	reacceacce	4620

agogoocagt	tcagctcaac	tttcagaaat	ctggtttacc	decaateeet	ttotcataat	4630
tgottocaag	cccagacaag	gagacagacc	ccaaaagatc	octaccccta	tttoogcass	4 '40
tgaaatogca	ccacgggaag	agetttgete	atagagtcas	taaggettag	agtocaggog	4300
cctgtgcgag	ggagcaggtc	atdaccottg	tacccaccgt	ggttttagad	aggaccctga	4360
ggttggggtg	gggctggggc	tggagaggag	ccaggtgccc	tgeccettge	ttgggccccg	4920
tgtccctgtg	atccaggctg	ggegtgetat	gggtgctggg	tgatattcca	gccctgcagg	4930
tgtccgcctt	gttcccagca	cccctctggg	caagaagaac	caggetetee	cagaaatggg	5040
cttcagtgat	ctccacttcc	aagtegteee	cacctgcctt	gtaggacaca	gtggtacctg	5100
gtatgctggg	cageetteca	ggaacctctg	gacttactca	gtgtccccca	gecetacaca	5160
ccattetttg	tgtttctggg	cccaaactaa	geceeccaac	ctgggctgca	gagcaagtgc	5220
tgaatcatga	gagacccttg	agggteetee	aggtaggccc	ccagtgctgg	aggagtocco	5280
tcaggcaggg	ggccacgccc	aagggtgtgg	aaggtcagct	ggcagccgga	teteaetttt	5340
ggggctgtag	gcttcctgca	ctggccgcca	atgccatggc	cgtgggatgg	ccaggataag	5400
gcatctgccc	cccaccccca	ccccccgcac	aaggtetttg	agggctgcgg	gctcaaggag	5460
ttggcggtag	ggetggggga	ccaggggcac	agagettgta	agegeetete	tecaggatgt	5520
gggtggccca	gcaggggagc	tttgagagtc	caggtgtgag	attccaaatg	ctaggggcct	5530
gagaggaggg	agccaccagc	ttggccagag	cctggtggat	caegeeecca	ecaegeettg	5640
cecttetete	tggtcatgtg	ctctcccacc	acgtttggaa	agttactgct	tecetettee	5700
teagececte	gggctcccag	ttatggaagt	ggegtgatte	agagaaggta	aaggatggga	5760
gggagagggc	tgggtgatgg	gggaccccgc	agggegeeet	gtgdtgttad	atggagetee	5820
aggatcaggg	caggtgggca	gcctggggtc	ctcacttctc	tococagoda	ggccaggtcc	5880
ctcacageec	tgccaggagc	atgatatccg	ctgcggtgca	gaactaatct	caaagctcaa	5940

acccaggtaa	cagtgtaggt	aaaacagatg	acagggcatg	agactcaccc	caggacaggc	6000
gaaggaccca	ggccgatggg	ggcccagaac	agtectgate	ctggagetee	ttocogagtg	6060
ggassccagg	ggtttccgag	gggcttagag	tagggcttag	aggettagag	tagggctagg	6120
gacttcctgg	cttccctgcc	tegggaacag	ctggtcctgg	aaggggcttg	gtaatagggg	6180
cactggtgcc	caccacccct	gatgcctggg	agacaccagc	atectetgag	catgtgtgcg	6240
tectectggt	cccgagggaa	gtgactcctc	acatccccca	gctggcgggg	ccagagggcc	6300
agcatcctcg	cctgacacct	atttttagat	gctgagacag	gcggcttcct	cggggccagg	6360
ggccctgtga	gtggagcttc	cgcttcctgg	cctaggagag	aattcctgct	cctcttccct	6420
ccatgctgcc	ttttcgcccc	tggaggccac	aacggggtca	gaggggcagc	tgctcaccac	6430
ctaggagggc	ctgagagggc	cctacgtcac	ccagggagga	gtctggcccc	gtccccaacc	6540
tccacaccca	ggcctggcac	tgccccttct	tggtgggcag	agagtgaggg	gttggcctgc	6600
agggacccag	gctggagggg	ccgttcacct	ccggcccca	gegteeette	ctggaagcac	6660
cttggtgagc	ccctcccctc	cttcacccag	tatctccagg	ggtacttcct	cctttccttc	6720
ctgcctcagg	gcctcactgt	cctcctgggg	agggtgtctc	aggccccagc	acctcccagt	6780
ggctgagccg	aatgggcact	teceggtgtg	tttcccatat	gtgcagtccc	taggtgtcgg	6840
tgagcaggca	cagageeege	agcgtggccc	tgcctggtgg	accccctccc	caagagcatc	6900
aagggagggc	ctggactaga	gacacacaga	tgcccagcct	gtacgtaaag	gcgggtgagc	6960
tgatgtacca	tegteetegt	ccccactgg	ggtgcctggg	caggacttgg	ggtgaccact	7020
tggcccgtct	gggtgggggt	aaggtatggg	tggggcgacc	agatecetge	cctttcctgc	7030
agdtgtgggg	gtgtgtgtgc	tggcctggag	ageteceace	cgaagttctg	geteetgget	7140
gtccggggcc	tgegggggea	gcgagcagct	ggcatgggta	ggggagctga	cctaggcctg	7200
cccgggcagc	geetgetgee	ttttgctcc	tttcagctgc	: ttcttggaaa	cageggaeag	7260

getgggeagg aacceagtgt gettggeage ceceetttta aagtegatte tgttatttat 7320 taattoocag gaaggagaaa gaaagaaaca atoottoata gagtacaaac actgotttta 7380 gtageettge aaggageeet eeaggaacee cacaggttae etgggeteea teetgagage 744:) caccetecat ecceaatece cageagagea tettgtgggg tggggegget tgtggggegg ggcgccttgg gaggcggggt gtctcgggaa gcggggcgtc tcgggaggtg gggtggcttg tggggtggg catttcctgg ggtgggggt ctcgtggggt gggacagctt ggggggtggg gcatctcggg aggcgggcg tcttgtgggg tagggcggct tgtggggtgg ggcatcttgt 7740 catctcggga ggtggggcat ctctggggcc cggccacttg ggaggcgggg catcctgggg 7800 geggggcate teagagggeg ceteeggagg etggagtate ttgggaggtg ggageaggtg 7860 gcagagaggc ttcccacagg tgagctttga gcagggaggt gcctgtatgg atggctctgt 7920 ggggagaggg gtgacaggag ttccagattc cggcacttat gaaacctcac agtgatggag 7980 agecgagtge tgetgtgeag getaagttgt gtgeatgtea gettetgeae ttttatttee 8040 ttgtttgtag acaaggcaga gagaagctga gatgggcctg aggtcgcctt ggtgaaaggc 8100 actcagcage cagggeettg ggetgeeete eeteateace gtgaaagegg gaetetettt 8160 taactgacat egggetecat agttacteca gteetaaett tgatggatee taaaagtgea 8220 cttctaagga cgcggcttcg gtgtttccca tgccgctgct tgcccctggg aagcgttggc 8280 tetgeetegg aagaagttag egecaagatg geageetggg gtetttgggg eccagaagaa 8340 acactggccc cggggagttc agtcatcagg gacttaggat gtgggggctt ttcaaacagc 8400 tttatttaga cgtgattgac acacagtaaa tacagatgtt taagggtaca acttggtaag 8460 tittgacaaa titatacccc cgtgaaacca tcaccaactc cccaggtgcc cctggggccc tigggatete igetieetge eesteetees egiceeaggg caaceaeggg eegiegeigt 8580

gggtgcacac	agcatgcatt	tetteaacaa	gcggactcag	aaggcacttg	cacategitg	8640
ctgttctgcc	tatttgatta	agcatgatta	cccagaggcg	cacccgtgcc	gtggcetgcc	8700
cgtcgtctat	gcacccgtgc	tgtggcgtgc	cagtagtatg	tgtggcatgc	ctgtctgtgc	8760
accegtgetg	tggcgtgccc	gtcgtctgtg	tggcatgcct	gtctgtgcac	ccgtgctgtg	8820
gegtgeeegt	cgtctgtgca	cccgtgctgt	ggtgtgcccg	tegtetgtge	accegtgeeg	8830
tggcgtgccc	gtcgtctgtg	cacccgtgct	gtggtgtgcc	cttcgtctgt	tccttttatt	8940
gccgggcagg	gttgcaccca	catgtgcaag	ccagcgacgg	accccaggtt	cacccgttca	9000
ccggtcagtg	ggcatatggg	ttgtttcagt	ttggggcatt	tacaagaaac	gtgctagaac	9060
atttgtgtac	aagtcttgtg	tgaacctaag	ttcatttctc	ttgggtaaat	acctgtgcgt	9120
ggagcagctg	ggtcatgtgg	tgaatgtggg	tttcactgct	taagcagcag	ttttacataa	9130
ctgccaaact	gttattcaag	gtggctggac	cgttttacag	cccccgttgt	atgcgtccca	9240
gttgcctccc	ccagcagcat	gtggtgtggt	tggtcttttt	cgtggcagcc	agtccactgg	9300
gtgcgctcgg	catgtggctg	cagcttgacc	tgggtttcct	ggtccctggc	aaggtggagc	9360
atctcttcat	gtgcttttt	gctgtgtgtg	gatcttgcgg	ggaagggtct	gttcctgttt	9420
tttgcccatc	tttcaaagat	tgggttgcca	gttttcttgc	tgttgagttt	ggaaagctct	9430
gcatacgttc	agggcacagg	tcctttacca	ggctctgccc	caggtctttc	ggagagcagg	9540
tgtctttcgc	attcctgact	ctggggaacc	tctagccctg	ccacatgggg	tttgttatgg	9600
ggcaggggca	cctgtgcctt	tcccaccacg	gggcttgggg	atttggtgct	gccattgccc	9660
tccctcgtag	gtggccctag	gggggtccct	cegeeteegt	ttcctcatcc	agaaaccggc	9720
agtgaccatc	accaccattg	ttgtcaccta	getecagete	aaggtccctg	ctgaaggtcg	9780
gagagettgg	catggccccg	tttgtccatg	ctagggctgg	gaagaccaag	gctcaggtga	9840
ggaatatgaa	cagtgcctgg	cactcettet	tgccccattt	ttccacccag	ggtggatada	9900

Ç	gactacttct	ggtagecteg	gggacagttg	aggtggacag	gctggcgtca	cededattte	9960
(aggetgtede	teccasecee	testggesea	getgttetge	cctattaaaa	gtdatatggg	10020
	ecetegggte	attectggtg	ttggcccagg	ctctttcagg	coctgoaggo	caggaccagc	10080
	cttccctgca	acceteggea	gaggeetggg	gccggggctt	gtctaggggc	agcctcccca	10140
	tacggccctg	gagtctgaac	agaagcccct	tcccagagca	cagcaagaag	ctgcaacgtg	10200
	gcctgaagtc	ccaccattag	caggtttggg	gtttaggctg	agetttgeca	tcactacctt	10260
	tctgttagga	cggtatgccc	attagatggg	atcatcccct	cagegeeeag	gctagaggag	10320
	gggtggtccc	tgcccagcca	gggagggctg	ggggtggatg	ggcctctaca	gagcagcttc	10330
	cgagccaggc	acggttccat	gatcagctct	gttttataga	gggggacact	gaggaaccgg	10440
	gagcctgggg	accttccagt	ggccccacag	ctcctgtggc	tgagtcaggg	tttgtcacca	10500
	ggcctctgtg	gggatgaggc	tcccccatcc	acctgcccca	ctctgtcctg	gaacagctct	10560
	caaaacggtc	tetggaecae	agtttcaaaa	gaaaataagc	aatgttttca	aaggccctgg	10620
	aggaagccag	agttaccacg	gcaactctcg	gcctcgccac	ctcctcccgc	caggetgeat	10630
	ctggagccag	ctcaggaggg	cagcagggtg	aggacagcca	ggctctctgg	ggccaccccc	10740
	cageceecae	cetteetgee	teteetgeae	tgtccacggc	cctccctgtg	ctcccacggg	10800
						aagccagggg	
						agctgccaca	
						tgcaccttcc	
						gccatcctcg	
						gcacagetee	
						ggagaaggtg	
						g agcoccgtgg	
	didiggdagt	. colyclatag	, gaggaccare				

ctgctggcac	cagcagecee	tatgaggett	attttattt	tgagacaggg	tettgetetg	11280
tcaccgaggc	tggagtgcag	tggcacaatc	ataactcact	gtageeteaa	cctcctgage	11340
tcaagcgatc	ctcctgcctc	agcotocaaa	ggtgctggga	ttacaggcgc	ttgctaccac	11400
geceagecee	ctctggcatt	attgtttgcc	aggcccagct	caggteeegg	aggaggggag	11460
acaggagtgt	gagggaaagg	gggaagaggt	atagagcccc	cagetectee	acccacccga	11520
acceteaceg	aggccctaga	ccctagaccg	gcctgaccgg	ggggtcctca	ggccggggac	11580
ttgggtgcag	gccatggtgc	tggggcctga	agctcacgct	ctgctgagca	cageceeetg	11640
cccaacccca	ccctggggcc	ctgcttccct	ggccagggcc	attggaacag	gagtggggct	11700
gtccaggtgg	tgttcttggg	tccagccctc	agtttctctt	ctgcagttga	ccggcagccc	11760
tgcatctgtg	gtggggtcgg	cgcctggtgc	tggtgaggca	aggcetcage	tgctgggaca	11820
ggacctgcct	ggcacccagc	tggtggcaga	gccaagcatt	ccgactcagc	tctgggagca	11830
getgeettet	gggctggcat	tctccgccag	gggggttgtg	ccctcgtggc	ccccccggg	11940
tgcctcctca	cctggctgat	ttcatctcct	gtccccctgc	ctcctcctcc	aggaagcccc	12000
cagggcctgg	ccctccttga	gagtggcatg	gaggaggaag	aagactcgcc	caggcccatg	12060
ggagtcggat	ggtggccgca	cttgtggggc	cctgacccca	taggcttctt	cagcacgccc	12120
tggcctgggt	gatccctgcc	tgagggctgt	gcacggctca	tctgccagac	cagattttag	12180
gggattcttg	tactgtcctc	ctggagcagc	agggggtaaa	gcctgaccca	cccagactgt	12240
ccagcaacaa	gggcctcctg	ctgtgggcca	gggaccctgg	aactgaccaa	ttgtgtccta	10300
gggacgcaga	gtccccaggc	tgctagaggg	ctgtggggcc	ctgtttcatg	cctgaagcag	10360
gaagaaaccc	caggagaggt	ctgaagggga	cccagccccc	accctgtcta	gcagggagga	13420
gcctctgcaa	gaggccgagg	ggtgctgaag	tggaggagga	tagaggcagc	aggactcagg	12430
gtcactggtc	atttatgggg	atcacacggc	tgcagtgtgc	cctgcatggt	gctaggcacc	12540

agggacagca	gaggacaagc	ctgtgtcctc	toccaccacc	agagggctgg	gcactgcccc	12600
tagggagaga	gggggccttg	gtgtgtgcag	aggggggcct	ggggcacgtg	cotggcctgg	12660
tcagatgatc	agagtgggct	gggctgggcc	tggtctgggg	cccagtetca	agggcagacc	12700
ccasctggct	agagttgatt	gtgtgcacac	cggatgaccc	ggogttgaag	geetataeta	12780
tctgtgagcc	tcatccccac	ctgccagact	cccagcacag	cctgcttcct	gccccagctg	12340
ctgagcgaca	gcgctgggcc	ggettetgeg	cgccccttcc	cccagcccat	cttggaaacc	12900
acagcagegt	ccttcctccc	aagtcccttc	ccagggctga	catcccacag	cagggatgta	12960
tcccacaaac	cccgcaggcc	ctggtgccta	cagettggee	tggtaacatc	aaatcctacc	13020
ctctcctcct	ggcagcaaag	atggggtgcc	cccaccccag	agttctcagc	acccccagac	13080
agaagcagtc	ccccagcgac	ctcagaactc	ttggggcgct	gccacaccct	tgcaggaggg	13140
ggcagtgttc	ctgggatgct	caggtcctgg	tatcacctct	ggccagatac	ggaaggtgaa	13200
actacagggc	atccaattca	ccttgaactt	cagataaaca	ccagattatt	tttttgtatg	13260
tcccgtgcaa	tatttgggac	acacttaccc	taaagaagta	ttctgttttc	atctgagagg	13320
cagatttaac	cggcgtcccg	tgtcttcctg	gcagtcctgc	cctggagtca	cactccacag	13330
gtgcagggca	gggccaggct	ccaagtagat	ggcggccaaa	gcacccgccc	catgctcctg	13440
actcccgggg	ctcttcaggg	cattgcgaaa	accagcagca	gagctgacac	ctggtccctg	13500
ctcgggagcc	agcaaggcag	gaggctgctt	aggccttgcg	tgtggggtgg	gcgcactccc	13560
tgctgcagtg	ctcttcgtac	atgtgacact	gttcccgctc	tttcccagct	ggctggaggc	13620
gtgatcctgg	gtgtggccct	gtggctccgc	catgacccgc	agaccaccaa	cctcctgtat	13630
ctggagctgg	gagacaagcc	cgcgcccaac	accttctatg	taggtgagtg	cacatgtggc	13740
cgcagacgca	ttcagggagg	gcttctagga	ggaggcaggt	cctagccttt	tggatgggga	13800
catggagggt	gaaagacagt	cgggcatggc	gtgtccgggc	agggaggcgg	ccctggaaag	13860

ggetetggge acaagggttg agatggaggt gggeetgtgg eetgetggee ettetggtet 13920 gagecaggge agggggtgge agetaggeet gggeagggae tgtgtggaga eettgettat 13980 titaagtgig gggttatite gggggagget ceetgagaag ggtggggetg gatgeetggg 14040 ccacacagag cageegagge agetggeget gtggageeeg ggagggaggg agggatggag 14100 ctcaagggat ggaacccagt gaggggtgga gacggggcag gggaggggtg gagaggggtg 14160 gagacgeece agaggeggtg tgaeteaget geecetgeag geagetgeae ettgetgeet 14220 tattaggetg egtgtggggg aetgggetge eeteeetgee eecaggagea ggageaggag 14280 tgatggagga ggaggaggg aggggcaagg ccaggaggag gaggaggcc atctcactgt 14340 gcagagagca gcaccettee teetggtgee eetggeaggg etggtgetgg tggggetetg 14400 ggagcatttg ttgagatgct tctggccttg aaaggaggcc cctgggatgg ctctgttgcc 14460 ctcacagget gaggggtggg tgaggtggge agectgtgtg tececagtee teagggette 14520 cetcageegg caggtgeece caggeetyga getgeaggge caggeeceet gecagttacg 14580 gaggetgett ggettggttg etgaaccagg geeccaggag geegaaatag eeccaeaeet 14640 gegeegteee acetettigt eeagteacee cagggeeagg tgagggeeet ggeeacacag 14700 cgtgcccgtt ccttcttccc catgccccgc tcatgggtca gagggccggt gctggggtcc 14760 agatggtgtc aacagggatg gtccctgtcc tccccagaga cagaagcctg tggcccacgg 14820 agggtttctg ggcccagccg atcctaggga gggtcccatg gccctgccca taggttcctg 14880 gcctctctcg gggccgtggt gccctcacag gtggtgtcag gaaggacggg aaaggctgct 14940 tgtcccaggg gctcatgtgg agaccacccc ctgcacgcag ctggggcgct cctgcctgtg 15000 tectcagaag caeteggett agetttgeee atgtgeetgg getgtgggtg geagageeeg 15060 gecageatee teegatetee aagggtgeat etetaetgga ggeeeeteet gggeetettg 15120 ctccccgctt cccagatcat taggatattt ggggtccaga agggcctccc agccatcctg 15180 ggeettgtee teeggggeea eeagteeage eagtgaeaae eacageatee eeggeetgga 1524%acgaggetge ecceageaeg tteetegtae teetgteeag ggacaggagg ggetgeeeet 15300 gecacegagt eccettetee aggaeetggg geetgtgggt gtgaggeagg tgttettgga 1536) aggggteact etecaggeac eeggeggeea aggettgtgg etggageage tecegetgtg 1542) gggtcggcgt cgggccccgt gtggccggag aggagctgaa gggtcactta gcttcgggct 15480 ggggcgagga caggggacac cccagagagg tatgccaggc ctccttcctg cgccccactc 15540 teggeagaag cagaggteae aggetgtget gaggeeceat ggtgetgeee ceatgatgee 15600 agggtgaggc tggcgttgga agcaggtgtc tgacctgcat ggtgtcaccg tggccacatc 15660 agagetecag ecceagagee geceaecete ggteettgge tgtggtttee etgggetgga 15720 ggagcctgcc gttgtgttgg ccacacgacc acaggacctg ccacccccga cgtgggctct 15780 geetgggeee ceaetggaea gggaeeeett ggageteete tggeeaeeaa gteetegeee 15840 attccagaat eggeettetg gageetettg etgteeetga tgegggetgg geettgeeaa 15900 gggctttttt tcctgcgccg ggaacagggt ggatttgctg ggctcactcc cctcagagac 15960 getgegggtg eggtgggtta ggeecaaggg egttaagaga ggaggetggg gtggggetgg 16020 ggcctggcag ggggtctggc agccctgggc ctcccacctc ctgtcaggac caaaaaaggc 16030 aacgcgcctc tcctgacctg taccccggag tgaacccaac cttgcaaccc aggagtgtca 16140 gggcctgagg ggagggagac ctggctcctg ggtgccgtgc ccgtaaggag gtggccacct 16200 gcagggcatt cctggcagag gcttcatctg gccaggtagg aggctgggtg gccgagcccc 16260 aaatctgggt gtgttctctg cctggcggtg ggtcctgccc caggcacctt ctcctctggg 16320 ctggctgggc agggacaatg ggcctggctg cgaggagggg gcctgggctg ccttctgcat 16380 tgcctcggtg acgggagatg gcccctgcct gctgagggat aggggagtgg gcaggcagtg 16440 agagacactg acagetgtee egegggtaca gggeeetgte tgggtggeea ggeeeatgte 16500 tegggeecae agtgegeece ceaecettgg aeggegeett eteceteece aggtgeatge 16560 tgcccageca gggagegtgg gggagttegg gagggetgge etacaegeee tggtccaget 1662) greecagging gggigerggg etteageest cagescaggg estaggaate caacitgate 1663) ctecceacae ageagecagg tteaaatgea ggtecegtaa eggaagtget getgtgeage 16740ccagattggg gggcaggagc cagcagggcc ccccaccct cttctcgcac cacactgggg 16800 aggcagcatt ggttccagtt ccggttcctg ggctgccctc tcaaccccgg cctacagtgg 16860 ggcccaccct gtgccttctg atgccactcc caccccacgc caagtcccag aggctttggg 16920 agcgggtgaa ggcggtgggt ggcgggtggc aggtgcaggc ggtgggtggt gggtgtggca 16980 ggtggcgggc cccaccgcag gtgtcatccc tgcgaagcac ctgtcgccag cactcagagc 17040 geteatgagg tgeceagtee ceatgtggee teettagtet eegteetgtg teatggaaga 17100 ggtaactgag gcacagaaaa ctcaccaggc caggctggga tgtgaggtcc cttgctgctc 17160 atccctygca gtcagcaacc ctacatcttc ccagctgggc ggcccgtggt gggttcggca 17220 eccaggacce teeggggtet tgggetgtgg egagtgtgta ggeacceace tggtgtetet 17280 eteccegeaa ggeatetaea teeteatege tgtgggeget gteatgatgt tegttggett 17340 cctgggctgc tacggggcca tccaggaatc ccagtgcctg ctggggacgg taaggcaggg 17400 aggegggeet gtgeetggge eggggagggg etgggggetg egtetggeee tgaggagggg 17460 geagagetgg tgeteaggge ggageetaga attetggggg aggtggetee tgtgeeetge 17520ttttcccgtt tggtttttaa attaaatccc accgtgcttg gtctccatcg tggccagttc 17580 ctacgtgacc gcttttcttt gtcaaaaaat agccacaaat ataacaggga gcaagcctca 17640 getetgagge cageetegge gteeegggea caeegeeeee tgtgggaage eeaggeetgg 17700 ctgtgccatc cagggcctgg ccagtccagg aagagggagc ctatgcccgt gtctccagtg 17760 ggggaaactg aggcagatee catggeteec eetteegtgg ggagcaggaa caagggggtg 17820 gggaagatca gteaggggte atgetgetge acaegeetee etgggggetg cagacateet 17880 ggaeteacea geetgtgaee ecaaaceaca egeecegeee cateeaceee gteetgtgga 17940 geotggtgee gegtggggae atectggget ttgaeggete etecetgege tgagttttag 18000 cetetgtgcc ccagggctcc acacaagccg ctcactcctg gtcaggtcgt gggctggtgg 18060 ctcccactag cccctcacag acacgcctgc tgggcacctg ggtgtgtgtc cttgggcccc 18120 gectacagee tgeeetettt eeteeetetg gecaetgeee ggeteeagtt etteaeetge 18180 ctggtcatcc tgtttgcctg tgaggtggcc gccggcatct ggggctttgt caacaaggac 18240 caggtgagcc tgggtgtgca gggacagggt ggggtgggtg acgggggcac cctcctctcc 18300 tgtcgcgggt gggggttggg ctgactcatg gcttgtggga gctctttggg ctcttcctgg 18360 gtcccacttg ccaggaggat ctccaggggc tttatggagg aggcagcatt ggggctgagc 18420 accaggccag cetecegtgt eccageacte eeggggcage tgagagtgca gagteettgt 18480 cctctggggt ctagcctcga agccaccctg cccagggaga gcctgggaaa agtgcgtccg 18540 cctggggcgg ggcggggtgg gggcaaggag ggggaggttc cccctgtgca tgtgaccgca 18600 cccctcccc agatcgccaa ggatgtgaag cagttctatg accaggccct acagcaggcc 18660 gtggtggatg atgacgccaa caacgccaag gctgtggtga agaccttcca cgagacggtg 18720 cggccccggg gggcgagggc ggggagcagg gccccgggaa cccggcgggg tgtgtctcgt 18780 cctggatgaa tcctgcctac gcccagacct caggagcagg aggtgccctt gggacctcca 18840 ggacccetgg teteaactgg teetegggtg ggaacctagt gggccagggt ggcccagggt 18900 geggaaaget etgageageg eagetgagga ggaagaagge tggeeeetgg atgeattetg 18960 cagtggggag cgctgcgtac ccctggccac ctccccatgg gttccctaga gccaccgtcc 19020 ceetgggeac atccaggget gaeettgeac ceetgetete tgcagettga etgetgtgge 19080 tecageacae tgaetgettt gaecaeetea gtgeteaaga acaatttgtg teeeteggge 19140 agcaacatca toagcaacot ottoaaggtg ogogaggoog gtggggoogo gootgacooo 1920) cogeatgice egececiggg iggggteeta ggggigggea ggicacaegg eagececaea 19260 gggagegace acaetgggtg geatggeece tgteaggget getetgetgg gagggttggg 19320 gtgggaccgc atctggccca cgaggaaggc aggcgccctg tgctgcgcat tccgggtgaa 19380 gaaggtggag getetggggg gtgggaacte acetgeacee eeageteeae gtgtgeacte 19440 gtgggtgtgg acgccctga cagcctgtag ctggcagggc ctgcaggcca tatagtgccc 19500 tgtggaagtt teetgetgag geeteagtgg aagtegteat eagtgatget ttaggggtet 19560 agtgacacca atgaccgtga teteagtgga aaagggeaca gtgtgteeca ggeatttege 19620 gtttatgtta aaacgggtgg aagatagcaa gccggcagag gccgggccgc tgcacccgcc 19680 tgttccgagg tgggtagggg gtgggggget gttcccagga ttcccctcta cgctttctgt 19740 ggtgaccacg gattactgcg tgacaacggg aagccgggag ccgaggcccg gtccctgacc 19800 acgegtgeet ggecacceet geaggaggae tgecaccaga agategatga cetettetee 19860 gggaagetgt aceteategg cattgetgee ategtggteg etgtgateat ggtgageggg 19920 cgggggggga gggcctgctc tctgggctgc cccttccgcg gggccttgtg ctgactgcgc 19980 cccccaccac cctcctgcag atcttcgaga tgatcctgag catggtgctg tgctgtggca 20040 teeggaacag eteegtgtae tgaggeeeeg eagetetgge caeagggaee tetgeagtge 20100 cccctaagtg acceggacae ttccgagggg gccatcaceg cctgtgtata taacgtttcc 20160 ggtattactc tgctacacgt agcettttta ettttggggt tttgtttttg ttetgaactt 20220 tectgttace ttttcaggge tgacgtcaca tgtaggtgge gtgtatgagt ggagacggge 10280 ctgggtcttg gggactggag ggcaggggtc cttctgccct ggggtcccag ggtgctctgc 20340 etgetcagec aggeetetee tyggageeae tegeccagag acteagettg gecaacttyg 20400ggggetgtgt ceacceagee egecegteet gtgggetgea eageteaeet tgtteeetee 20460 tgcclcggtt cgagagecga gtctgtgggc actetetgcc ttcatgcacc tgtcctttct 20520 aacacgtege etteaaetgt aateacaaea teetgaetee gteatttaat aaagaaggaa 20580 cateaggeat getaceagge etgtgeagte ceteagtgee agtggtgtet gagacetagg 20640 ggttggccgg agggcagggg aatctgacat cggtggggct tggctctgtg gactctgtgg $2^{\circ 17}(0)$ ggtccagggt gagggtgggt gggtcgggat ccctggtgtt caccaaagga gtcactctgt 20760 aaaatttggg gagttattta ttotgagooa aatatgagoa ooggtggoot gtgacacago 20820 occaggicet gagaactigt geecaaggeg gietggetae tiaattgiat acattitagg 20880 gacataggac attgatcatt acatctaaga tgtacgttgg tttagtcgga aaggtgggac 20940 gatttgaagg ggagggactt tcaggtcata ggcggattaa aagatgttct gattaataat 21000 tggttgattt tatctaaaga cctgaaatca atagaatgga ctatctgggt taagaggagt 21060 tgtggagacc aagattatta tgcagatgaa gccgccagat tgtaaatgtt tcttatcaga 21120 cttaaaaaagg taccagaatc ttagttaatt ctctcctgga tcaggaaata gacctggaaa 21180 ggyaggggga ttctctatag aatgtagatt ttcccaagag acagctttgc agggccattt 21240 caaaatacat cagagaaata tattttgggg taaaatactt cggtttcttt cagggcctgc 21300 tgtcacgttg gtatcttatt actacagagt ctgttttgtg agtcttaagg tctttttatt 21360 tttagacaga gttttgctct tgtcacccag gttggagtgc aatggcgtga tctcagctca 21420 ctgcagcete ecetecacet eccaggitea agegatiete etgeeteage etectgagia 21480 21501 gctgggacaa caggcatgca c

<210> 12

<211> 000

<1112> DNA

<213> Homo sapiens

RTS-0341	-26-	PATENT
<400> 12		
0.00		
<210> 13		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 13		20
gcgcctttcc agcacaatgg		20
<210> 14		
<211> 20		
<212> DNA		
<pre><313> Artificial Sequence</pre>		
<200>		
<223> Antisense Oligonucleotide		
<400> 14		20
agccagccag aagacgaaat		20
<210> 15		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 15		20

cctggctgag caggcagagc

RTS-0341	-27-	PATENT
<210% 16 <211% 20 <212% DNA <213% Artificial Sequence		
<220 •		
<2.13 > Antisense Oligonucleotide		
<400> 16 gcacttggtg cageceteca		20
<210> 17 <211> 20 <212> DNA <213> Artificial Sequence		
<200>		
<223> Antisense Oligonucleotide		
<400> 17 ttgaagacga agagcaggta		20
<pre><310> 18 <211> 20 <312> DNA <313> Artificial Sequence</pre>		
<220>		
<223> Antisense Oligonucleotide		
<400> 18 ogaaattgaa gacgaagago		20
<210> 19 <211> 20 <212> DNA <213> Artificial Sequence		

RTS-0341	-28 -	PATENT
<1.00>		
<223> Antisense Oligonucleotide		
<400> 19		20
gndagaagad gaaattgaag		20
<210> 20		
<311> 20		
<pre><!--12--> DNA </pre>		
<213> Artificial Sequence		
<220>		
<323> Antisense Oligonucleotide		
<400> 20		
cotecagoca godagaagac		20
<310> 21		
<211> 20		
<pre><212> DNA <013> Artificial Sequence</pre>		
C.157 Micrificial begacine		
<220>		
<223> Antisense Oligonucleotide		
<400> 31		2.0
ggatcacgec tecagecage		20
<210> 22		
<pre></pre>		
<pre><312> ENA .012> Artificial Sequence</pre>		
<213> Artificial Sequence		
<220>		
<pre><223> Antisense Oligonucleotide</pre>		
<400> 22		

RTS-0341	-29-	PATENT
catagggica cacccaggat		20
<210> 23		
<111> 20 <112> DNA		
<pre></pre>		
C/13% Alcilicial bogami		
<220>		
<223> Antisense Oligonucleotid	е	
<400> 23		
ctigtotoco agotocagat		20
.510. 51		
<210> 24 <211> 20		
<211> 20 <212> DNA		
<213> Artificial Sequence		
<020>		
<123> Antisense Oligonucleotic	le	
<400> 24		
gcctacatag aaggtgttgg		20
<210> 25		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotic	de	
<400> 25		
atgtagatgo otacatagaa		20
+210> 26		
<211> 20		
· La La La Caracia de		

RTS-0341	-30-	PATENT
<212> DMA <213> Artificial Sequence	ee	
ZZIJA MICITICIAI BOGANII		
<270>		
<2.3> Antisense Oligonuc	cleotide	
<400> 25		20
gatqqccccg tagcagccca		
<210> 27		
<211> 20		
<pre><212> DNA <213> Artificial Sequen</pre>	ce	
<220>		
<223> Antisense Oligonu	cleotide	
<400> 27		20
gteeccagea ggeaetggga		
<210> 28		
<211> 20		
<212> DNA <213> Artificial Sequer	nce	
<220>		
<223> Antisense Oligon	ucleotide	
<400> 28		20
acctcacagg caaacaggat		20
<210> 29		
<211> 20		
<pre>\212> DNA \213> Artificial Seque</pre>	ence	
C.1.3> Artificiar Seque		
<220>		

RTS-0341	-31-	PATENT
<223> Antisense Oligonucleotide		
<400> 29		
gtigacaaag coccagaigo		20
<2:10: 30		
<211> 20		
<212> DNA		
<2:13> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<;00> 30		20
acateettgg egatetggte		20
<::10> 31		
<211> 20		
<212> DNA		
<013> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 31		2.0
gcttcacatc cttggcgatc		20
<210> 32		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide	2	
<400> 32		22
gaadtgette acateettgg		20

<210> 1	33	
<211> 1	2(
<212> 1	INA	
<1113> 1	Artificial Sequence	
<220>		
<(,>		
<223> 2	Antisense Oligonucleotide	
•		
<: <u>*</u> (+()>)		20
tcatag	aact gottoacato	20
<210>	34	
<211>	20	
<212>	DIJA	
<213> .	Artificial Sequence	
<220>		
<223> .	Antisense Oligonucleotide	
<40(1>		
cetggt	cata gaactgette	20
<210>	35	
<211>	20	
<212>	Dija	
<213>	Artificial Sequence	
<220>		
<223>	Antisense Oligonucleotide	
<400>	35	
		20
<210>	3.5	
<211>		

<212> DNA

<213> Artificial Sequence

RTS-0341	-33-	PATENT
<22)>		
<223> Antisense Oligonucleotide		
<491> 36 ogtotogtgg aaggtottca		20
ca macgagg adaggaceaca		
<210> 37		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 37		20
gqgacacaaa ttgttcttga		20
<010> 38		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<020>		
<223> Antisense Oligonucleotide		
<400> 38		20
gcccgaggga cacaaattgt		20
<010> 39		
<011> 20		
<012> DNA		
<213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		

RTS-0341	-34-	PATENT
< 4 00> 39		
cottgaalag gttgotgatg		20
CCL.Gaagag googeogacg		
<210> 40		
<211> 2)		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<.;00> 40		20
ggcagtcoto ottgaagagg		20
<210> 41		
<::11> 20		
<212> ENA		
<213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 41		
aggtacaget teeeggagaa		20
<010> 42		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<200>		
<223> Antisense Oligonucleotide		
<i00> 42</i00>		20
ongatgaggt adagetteed		20

RTS-0341	-35-	PATENT
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<22).		
<223 - Antisense Oligonucleot:	ide	
<400> 43		20
caatgeegat gaggtacage		20
<210> 44		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleot	ide	
<400> 44		20
atqqcagcaa tgccgatgag		20
<210> 45		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
< 220>		
<223> Antisense Oligonucleo	tide	
< - 00 > 45		20
gcgaccacga tggcagcaat		20
<210> 46		
<211> 20		
<012> DNA		
<pre><d13> Artificial Sequence</d13></pre>		
<220>		

RTS-0341	-36-	PATEN
<223> Antisense Oligonucleotide		
<400> 46		20
gatcacagog accacgatgg		2.
<1:10 > 47		
<111> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<.100> 47		2
aggatcatet egaagateat		2
<210> 48		
<011> 20		
<012> DNA		
<213> Artificial Sequence		
<220>		
<323> Antisense Oligonucleotide		
<.;00> 48		2
agcaccatge teaggateat		•
<210> 49		
<011> 20		
<212> DNA		
<pre><::13> Artificial Sequence</pre>		
<220>		
<223> Antisense Oligonucleotide	:	
<400> 49		
dagdadagda ddatgdtdag		

<210>	50	
<2111>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Antisense Oligonucleotide	
< 100 >		20
tgccac	cagca cagcaccatg	
<210>	51	
<211>		
<212>		
	Artificial Sequence	
<220>		
<223>	Antisense Oligonucleotide	
<.100>		20
ccgga	tgcca cagcacagca	20
<210>	E 2	
<211>		
<212>		
	Artificial Sequence	
223	••••••••••••••••••••••••••••••••••••••	
<220>		
<223>	Antisense Oligonucleotide	
< 400>	52	2.0
ctgtt	ccgga tgccacagca	20

< 210> 53

<211> 20

<212> DNA

RTS-0341	-38-	PATENT
<213> Artificial Sequence		
<200>		
<2035 Antisense Oligonucle	eotide	
<4 0 × 53		20
cgjæjctgtt ocggatgcca		
<210> 54		
<011> 20		
<212> DNA		
<213> Artificial Sequence	:	
<220>		
<223> Antisense Oligonucl	.eotide	
<400> 54		20
gtacacggag ctgttccgga		
<10> 55		
<211> 20		
<212> DNA		
<pre><!--l3--> Artificial Sequence</pre>	е	
<220>		
<223> Antisense Oligonuc	leotide	
<400> 55		20
gggcctcagt acacggagct		20
<210> 56		
<211> 20		
<212> DNA		
<213> Artificial Sequenc	e	
< 220>		

RTS-0341	-39-	PATENT
<400> 56		20
gcaqaaggtoo otgtggocag		
<210> 5 ⁷		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleoti	de	
<400> 57		20
tacacaggog gtgatggooc		
<310> 58		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleot:	ide	
<;00> 58		20
tacgtgtagc agagtaatac		
<210> 59		
<::11> 20		
<212> DNA		
<pre><313> Artificial Sequence</pre>		
<220>		
<223> Antisense Oligonucleot	ide	
<400> 59		20
aagtaaaaag gctacgtgta		20

21
20
20
2
2
2
2
2

RTS-0341	-41-	PATEN	T
<220>			
<213> Antisense Oligonucleoti	de		
<400 > 63		20	1
gcagaaggac coctgoocto		2.0	J
<::10> 64			
<011> 20			
<212> DNA			
<213> Artificial Sequence			
<220>			
<223> Antisense Oligonucleot:	ide		
<400> 64		2	0
gagcaccotg ggaccccagg		2	0
<210> 65			
<211> 20			
<212> DNA			
<213> Artificial Sequence			
<220>			
<223> Antisense Oligonucleot	ide		
<400> 65			20
aggcagagca cootgggacc		2	
<.:10> 66			
<211> 20			
<2212> DNA			
<213> Artificial Sequence			
<220>			
<223> Antisense Oligonucleot	tide		
<400> 66			

RTS-0341	-42- PATENT
gogagiggot occaggagag	20
<210> 67	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<320>	
<223> Antisense Oligonucleotide	
<400> 67	
gyccaagetg agtetetggg	20
<210> 68	
<211> 20	
<212> DMA	
<213> Artificial Sequence	
<220>	
<2223> Artisense Oligonucleotide	
<:.00> 58	
gtycagocca caggacgggc	20
<210> 69	
<211> 20	
<pre><312> DNA 213</pre>	
<213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 69	20
gagggaadaa ggtgagctgt	20
<210> 70	
<211> 20	

RTS-0341	-43-	PATENT
<212> DNA		
<213> Artificial Sequence		
<2.2.)>		
23 Antisense Oligonucleotide		
<4.))> 70		
cacagacteg getetegaac		20
<210> 71		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 71		20
aggcagagag tgcccacaga		20
<:110> 72		
<11> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<323> Antisense Oligonucleotide		
<400> 72		20
gcatgaaggc agagagtgcc		20
<210> 73		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		

RTS-0341 -44-	PATENT
<223> Antisense Oligonucleotide	
<400> 73	
gtyttagaaa ggadaggtgd	20
<(1) > 74	
<011> 20	
<212> DNA	
<pre><213> Artificial Sequence</pre>	
<220>	
<223> Antisense Oligonucleotide	
<400> 74	20
tacagttgaa ggcgacgtgt	20
<210> 75	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<i00> 75</i00>	
tgtgattaca gttgaaggcg	20
<210> 76	
<211> 20	
<012> DNA	
<d13> Artificial Sequence</d13>	
<220>	
<223> Antisense Oligonucleotide	
<4(0> 76	
acqgagtcag gatgttgtga	20

RTS-0341	-45-	PATENT
<210> 77		
<211> 20		
<212> DNA		
<213> Artificial Seque	nce	
<2.0>		
<223> Antisense Oligon	ucleotide	
<400> 77		20
ttattaaatg acggagtcag		
<210> 78		
<211> 70		
<211> 20 <212> DNA		
<213> Artificial Seque	ence	
<220>		
<223> Antisense Oligon	nucleotide	
<:100> 78		
teettettta ttaaatgaeg		20
7.1.2. 7.0		
<210> 79 <211> 20		
<211> 20 <212> DNA		
<pre><2.12> DNA <213> Artificial Sequ</pre>	ence	
<220>		
<:23> Antisense Oligo	nucleotide	
<::00> 79		20
aqegeaceca gtggaetgge	:	20
<210> 80		
.11> 20		
<.d12> DNA		
<213> Artificial Sequ	ience	

RTS-0341	-46-	PATENT
<220>		
<223> Antisense Oligonucleotide		
<::00 > 80		
chaggeetet geegagggtt		20
<010> 81		
<::1> 01		
<212> DNA		
<013> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<::(10> 81		20
ggeeteagea cageetgtga		20
<210> 82		
<011> 20		
<212> DNA		
<213> Artificial Sequence		
<230>		
<223> Antisense Oligonucleotide		
<400> 80		
acctcccca gaattctagg		20
approposed gaareerngy		
<210> 83		
<211> 20		
<212> DNA <213> Artificial Sequence		
12.07 Mellicial beganne		
< 220>		
<223> Antisense Oligonucleotide		

RTS-0341	-47-	PATENT
<400> 83		20
aggugaagaa otggagoogg		20
<21.0> 84		
<211> 20 <210- DNA		
<213 - Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
< ; ():) > 84		20
ecaggeteae etggteettg		
<210> 85		
<211> 20		
<pre><112> DNA constraint Companyon</pre>		
<213> Artificial Sequence		
<020>		
<223> Antisense Oligonucleotide		
<400> 85		2.0
agcagtcaag ctgcagagag		20
<210> 86		
<011> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 86		20
gecegeteac catgateaca		20

RTS-0341 -49- PATENT

<223> Antisense Oligonucleotide

<400> 90

tttttgactg cacaggcctg 20