

TECHNISCHE UNIVERSITÄT MÜNCHEN

Secure Coding Phase 2

Team 3: Patrick Sattler, Aurel Roci, Stefan Kohler

Contents

1	Tim	e Track	ring Table	1
2	Vul	nerabil	ities Overview	2
	2.1	Secod	e21	2
		2.1.1	Static Session ID	2
		2.1.2	Stored XSS in Registration	2
		2.1.3	Missing Lock Out Mechanism	3
	2.2	Team3	3 Online Banking	3
	2.3		rability Overview	3
3	Deta	ailed R	eport	4
	3.1	Config	guration and Deploy Management Testing	5
		3.1.1	Test File Extensions Handling for Sensitive Information (OTG-	
			CONFIG-003)	5
		3.1.2	Test HTTP Methods (OTG-CONFIG-006)	7
		3.1.3	Test HTTP Strict Transport Security (OTG-CONFIG-007)	8
		3.1.4	Test RIA cross domain policy (OTG-CONFIG-008)	10
	3.2	Identi	ty Management Testing	11
		3.2.1	Test Role Definitions (OTG-IDENT-001)	11
		3.2.2	Test User Registration Process (OTG-IDENT-002)	12
		3.2.3	Test Account Provisioning Process (OTG-IDENT-003)	14
		3.2.4	Testing for Account Enumeration and Guessable User Account	
			(OTG-IDENT-004)	15
		3.2.5	Testing for Weak or unenforced username policy (OTG-IDENT-005)	16
	3.3	Authe	entication Testing	17
		3.3.1	Testing for Credentials Transported over an Encrypted Channel (OTG-AUTHN-001)	17
		3.3.2	Testing for default credentials(OTG-AUTHN-002)	18
		3.3.3	Testing for Weak lock out mechanism (OTG-AUTHN-003)	19
		3.3.4	Testing for bypassing authentication schema (OTG-AUTHN-004)	20

Contents

	3.3.5	Testing for Browser cache weakness (OTG-AUTHN-006)	21	
	3.3.6	Testing for Weak password policy (OTG-AUTHN-007)	22	
	3.3.7	Testing for Weaker authentication in alternative channel (OTG-		
		AUTHN-010)	23	
3.4	Autho	rization Testing	24	
	3.4.1	Testing Directory traversal/file include (OTG-AUTHZ-001)	24	
	3.4.2	Testing for bypassing authorization schema (OTG-AUTHZ-002)	25	
	3.4.3	Testing for Privilege Escalation (OTG-AUTHZ-003)	26	
	3.4.4	Testing for Insecure Direct Object References (OTG-AUTHZ-004)	27	
3.5	Session Management Testing			
	3.5.1	Testing for Bypassing Session Management Schema(OTG-SESS-001)	28	
	3.5.2	Testing for Cookies attributes(OTG-SESS-002)	29	
	3.5.3	Testing for Session Fixation(OTG-SESS-003)	30	
	3.5.4	Testing for Exposed Session Variables(OTG-SESS-004)	31	
	3.5.5	Testing for Cross Site Request Forgery(OTG-SESS-005)	32	
	3.5.6	Testing for logout functionality(OTG-SESS-006)	33	
	3.5.7	Test Session Timeout(OTG-SESS-007)	34	
	3.5.8	Testing for Session puzzling(OTG-SESS-008)	35	
3.6	Data V	Validation Testing	36	
	3.6.1	Testing for Reflected Cross Site Scripting(OTG-INPVAL-001)	36	
	3.6.2	Testing for Stored Cross Site Scripting(OTG-INPVAL-002)	37	
	3.6.3	Testing for HTTP Verb Tampering(OTG-INPVAL-003)	39	
	3.6.4	Testing for HTTP Parameter pollution(OTG-INPVAL-004)	40	
	3.6.5	Testing for SQL Injection (OTG-INPVAL-005)	41	
	3.6.6	IMAP/SMTP Injection(OTG-INPVAL-011)	42	
	3.6.7	Testing for Code Injection, Testing for Local File Inclusion, Testing		
		for Remote File Inclusion(OTG-INPVAL-012)	43	
	3.6.8	Testing for Command Injection(OTG-INPVAL-013)	44	
	3.6.9	Testing for Buffer overflow, Testing for Heap overflow, Testing for		
		Stack overflow, Testing for Format string (OTG-INPVAL-014)	45	
	3.6.10	Testing for incubated vulnerabilities(OTG-INPVAL-015)	46	
	3.6.11	Testing for HTTP Splitting/Smuggling(OTG-INPVAL-016)	47	
3.7	Error Handling		47	
3.8	B Cryptography		47	
3.9	Busine	ess Logic Testing	48	
	3.9.1	Test Business Logic Data Validation(OTG-BUSLOGIC-001)	48	

Contents

3.9.2	Test Ability to Forge Requests(OTG-BUSLOGIC-002)	49
3.9.3	Test Integrity Checks(OTG-BUSLOGIC-003)	50
3.9.4	Test for Process Timing(OTG-BUSLOGIC-004)	51
3.9.5	Test Number of Times a Function Can be Used Limits(OTG-	
	BUSLOGIC-005)	52
3.9.6	Testing for the Circumvention of Work Flows(OTG-BUSLOGIC-006)	53
3.9.7	Test Defenses Against Application Mis-use(OTG-BUSLOGIC-007)	54
3.9.8	Test Upload of Unexpected File Types(OTG-BUSLOGIC-008)	55
3.9.9	Test Upload of Malicious Files(OTG-BUSLOGIC-009)	56
3.10 Client	Side Testing	56

1 Time Tracking Table

2 Vulnerabilities Overview

Based on our testing, we identified the following vulnerabilities for the Secode21 Bank and the OnlineBanking Bank:

2.1 Secode21

2.1.1 Static Session ID

• Likelihood: high

• Implication: high

• Risk: high

• Reference: OWASP OTG-SESS-003 (see section ??)

The session id is saved in form of the (static) user id in a cookie. This cookie can be used on any machine to take over the account of a user. The lifetime of this cookie is only limited by the cookie lifetime field.

2.1.2 Stored XSS in Registration

• Likelihood: medium

• Implication: high

• Risk: high

• Reference: OWASP OTG-INPVAL-002 (see section ??)

Using stored cross-site-scripting attacks, one can inject JavaScript code, that is run, when the Administrator/Employee logs in. Arbitrary code can be loaded from a third party page.

2.1.3 Missing Lock Out Mechanism

• Likelihood: high

• Implication: medium

• Risk: medium

• Reference: OWASP OTG-AUTHN-003 (see section ??)

The application has no lock out mechanism, which allows brute force attacks on known usernames and testing for a valid password

2.2 Team3 Online Banking

2.3 Vulnerability Overview

3 Detailed Report

The following pages describe for each test how both applications Secode21 and Online Banking Bank performed. The test is divided in different sections following the OWASP Testing Guide v4.

3.1 Configuration and Deploy Management Testing

3.1.1 Test File Extensions Handling for Sensitive Information (OTG-CONFIG-003)

Secode21 Likelihood: 8
Impact: 5

MSK. J		
Secode21		
Observation	File extensions are handled correctly but while testing we found	
	a folder called SQL with sql files and pdf files describing the	
	database structure and the sql commands used by the web application.	
Discovery	Thanks to the tool <i>dotdotpwn</i> , that tries automatically different	
•	URLs, we found the SQL folder. We passed the following parameters:	
Likelihood	The likelihood is quite high that someone tries a tool to find	
Zinciniood	these kind of vulnerabilities. There is no need for special knowl-	
	edge because the tools work quite automatically without much	
	configuration.	
Implication	These vulnerabilities could help attackers to perform sql injection	
1	attacks because you know the database structure and the sql	
	commands used in the implementation of the web application.	
Recommendations	Block the access to sql files and to those folders that describe the	
	web applications architecture.	
Comparison	Our web application handles file extensions correctly, but it is	
1	possible to access the compiled c program that handles the batch	
	files. This is a problem because you can reverse engineer the code	
	and use the vulnerabilities found. This scenario is possible but is	
	very complex.	

Metric	Value
Access Vector	N
Attack Complexity	L
Privileges Required	N
User Interaction	N
Scope	U
Confidentiality Impact	L
Integrity Impact	N
Availability Impact	N

3.1.2 Test HTTP Methods (OTG-CONFIG-006)

Secode21 Likelihood: 0

Impact: 0 Risk: 0

Secode21

Observation Discovery

We did not observe any notable behavior.

We used the Zed Attack Proxy (ZAP) to change the HTTP requests method to the ones listed below. The requests that were allowed responded with the index page or an empty body. The rejected requests responded with an error message in the body.

Methods that were allowed

- HEAD
- OPTIONS
- GET
- POST
- PUT

Methods that were rejected

- TRACE
- CONNECT

Likelihood Implication Recommendations

N/A N/A N/A

Comparison

Both webapps have the same allowed methods.

3.1.3 Test HTTP Strict Transport Security (OTG-CONFIG-007)

Secode21 Likelihood: 0
Impact: 0

Secode21		
Observation	The HTTP Strict Transport Security protocol is never used.	
Discovery	We used <i>Charles Web Proxy</i> to check the HTTP response headers	
	and the Strict-Transport-Security header was not found.	
Likelihood	N/A	
Implication	N/A	
Recommendations	It would be better so transport some data via https and use the	
	HSTS protocol.	
Comparison	The same results apply for our web application.	

Metric	Value
Access Vector	N
Attack Complexity	L
Privileges Required	N
User Interaction	N
Scope	U
Confidentiality Impact	L
Integrity Impact	N
Availability Impact	N

3.1.4 Test RIA cross domain policy (OTG-CONFIG-008)

Secode21 Likelihood: 0
Impact: 0

Secode21		
Observation	There are no RIA applications on the system and therefore is no	
	crossdomain.xml file provided.	
Discovery	Using wget we tried to find a crossdomain.xml or clientaccesspol-	
	icy.xml file and couldn't find it.	
Likelihood	N/A	
Implication	N/A	
Recommendations	N/A	
Comparison	The same results applies for our web application.	

Metric	Value
Access Vector	N/A
Attack Complexity	N/A
Privileges Required	N/A
User Interaction	N/A
Scope	N/A
Confidentiality Impact	N/A
Integrity Impact	N/A
Availability Impact	N/A

3.2 Identity Management Testing

3.2.1 Test Role Definitions (OTG-IDENT-001)

Secode21 Likelihood: 10 Impact: 4

Secode21	
Observation	We found out that there exist two different roles in the system.
	There is the role of a normal customer and the role of an employee.
	Employees have the additional functionality to view account and
	transaction details of all the customers. Transactions over 10000
	euro and new user registrations can be accepted by the employee.
Discovery	No special tools except a browser were needed because all the
	roles and their available functions are described.
Likelihood	It is very likely that people find this information.
Implication	There is no direct implication, but knowing the roles and their
	functionality helps with other attacks.
Recommendations	Don't describe the roles on the web page.
Comparison	Our web application provides the same roles, but the roles are
	not described on the web page.

Metric	Value
Access Vector	N
Attack Complexity	L
Privileges Required	L
User Interaction	N
Scope	U
Confidentiality Impact	L
Integrity Impact	L
Availability Impact	N

3.2.2 Test User Registration Process (OTG-IDENT-002)

Secode21 Likelihood: 5
Impact: 5

	KISK: 5	
Secode21		
Observation	Any person can register themself as an user and this registration	
	than gets validated by an employee. One person can register	
	multiple times and with different roles. There is no proof of	
	the identity of a user possible. The identification requirements	
	include the name, surname, phone number, email address and	
	username, but only two of these can be verified.	
Discovery	No special tools are needed to get this information. A browser	
	and multiple registration tests provided the necessary results.	
Likelihood	It is quite likely that this information can be retrieved by any user	
	with minimal experience.	
Implication	User could try to register multiple times and with wrong infor-	
	mation to get access to user accounts with more permissions or	
	to create multiple bank accounts.	
Recommendations	The information passed in the registration form should be val-	
	idated, especially the email address and phone number can be	
	verified very easily. The name can be validated by hand if a	
	customer would go to the bank and the employee would than	
	accept his registration.	
Comparison	Our web application doesn't require a phone number for the reg-	
	istration an the role of the user can be selected in the registration	
	form. It doesn't make our application less secure, because the	
	registration has still to be accepted by an employee.	

Metric	Value
Access Vector	N
Attack Complexity	L
Privileges Required	N
User Interaction	N
Scope	U
Confidentiality Impact	N
Integrity Impact	N
Availability Impact	N

3.2.3 Test Account Provisioning Process (OTG-IDENT-003)

Secode21 Likelihood: N/A
Impact: N/A
Risk: N/A

Secode21			
Observation	Our observation showed us that employees can accept customer		
	registrations and can make customer accounts to employee ac-		
	counts.		
Discovery	All the observations were made with the <i>Chrome</i> web browser.		
Implication	If an employee account gets hacked you can make even other		
	accounts to employees and accept new registrations.		
Recommendations	N/A		
Comparison	In our web application the employee doesn't make customer ac-		
	counts to employee accounts but rather accepts special employee		
	registrations. It makes no difference in the security.		

Metric	Value
Access Vector	N
Attack Complexity	N/A
Privileges Required	N/A
User Interaction	N/A
Scope	N/A
Confidentiality Impact	N/A
Integrity Impact	N/A
Availability Impact	N/A

3.2.4 Testing for Account Enumeration and Guessable User Account (OTG-IDENT-004)

Secode21 Likelihood: 0
Impact: 0

	Secode21
Observation	We found out that the web application makes no difference be-
	tween existing usernames and non existing usernames when
	trying to login with wrong credentials. The same html response
	and the same response headers are provided by the system.
Discovery	We used the Charles Web Proxy to analyze the web application
	responses.
Implication	N/A
Recommendations	N/A
Comparison	Our web application makes no difference between login tries with
	existing usernames and non existing ones. Both web applications
	aren't vulnerable here.

Metric	Value
Access Vector	N/A
Attack Complexity	N/A
Privileges Required	N/A
User Interaction	N/A
Scope	N/A
Confidentiality Impact	N/A
Integrity Impact	N/A
Availability Impact	N/A

3.2.5 Testing for Weak or unenforced username policy (OTG-IDENT-005)

Secode21 Likelihood: 0
Impact: 0

Secode21			
Observation	The usernames are not auto-generated and therefore there is no		
	special structure in the usernames.		
Discovery	No tool is used here. The username field in the registration form		
	gives us all the information we need.		
Implication	N/A		
Recommendations	N/A		
Comparison	The same applies for our web application.		

Metric	Value
Access Vector	N/A
Attack Complexity	N/A
Privileges Required	N/A
User Interaction	N/A
Scope	N/A
Confidentiality Impact	N/A
Integrity Impact	N/A
Availability Impact	N/A

3.3 Authentication Testing

3.3.1 Testing for Credentials Transported over an Encrypted Channel(OTG-AUTHN-001)

3.3.2 Testing for default credentials(OTG-AUTHN-002)

Secode21 Likelihood: 10
Impact: 4

	Secode21
Observation	We found out that there exists the default credentials admin:admin
Discovery	We were already given these credentials.
Likelihood	It is very likely that people find this information.
Implication	The attacker gain administrator access in the web application.
Recommendations	Use other credentials for testing, or delete the default ones after
	you launch the application.
Comparison	Our web application has a different combination of user:password.

Metric	Value
Access Vector	N
Attack Complexity	L
Privileges Required	N
User Interaction	N
Scope	U
Confidentiality Impact	M
Integrity Impact	M
Availability Impact	N

2	Deta	المداني	D aa	ant
	1 1210	mea	KPn	ori

3.3.3	Testing	for	Weak	lock	out	mechanism	(OTC	G-AU	ΓHN-003)	
-------	----------------	-----	------	------	-----	-----------	------	------	----------	--

3.3.4	Testing for bypassing authentication schema (OTG-AUTHN-004)

3.3.5	Testing f	or	Browser	cache	weaknes	ss (OTG	-AU	ΓHN-	006)
-------	-----------	----	---------	-------	---------	------	-----	-----	------	------

3.3.7 Testing for Weaker authentication in alternative channel (OTG-AUTHN-010)

3.4 Authorization Testing

3.4.1 Testing Directory traversal/file include (OTG-AUTHZ-001)

3.4.2	Testing for	bypassing	authorization	schema	(OTG-AUTHZ-0	02)

3.4.4	Testing for Insecure Direct Object References (OTG-AUTHZ-004)	

3.5 Session Management Testing

3.5.1 Testing for Bypassing Session Management Schema(OTG-SESS-001)

Secode21	Likelihood: 0
	Impact: 0
	Risk: 0
	Secode21
Observation	PHP session ids are used and such session ids normally can't be
	bypassed that means calculated easily
Discovery	We used the Chrome extension "Advanced Rest Client" to analyze
	the Request and the Cookies
Likelihood	NA
Implication	NA
Recommendations	NA
Comparison	Our web application also uses PHP session ids

Metric	Value
Access Vector	NA
Attack Complexity	NA
Privileges Required	NA
User Interaction	NA
Scope	NA
Confidentiality Impact	NA
Integrity Impact	NA
Availability Impact	NA

3 . 5.2 7	Testing	for	Cookies	attributes(OT	G-SESS	5-002)
------------------	----------------	-----	---------	-------------	----	--------	--------

3.5.3 Testing for Session Fixation(OTG-SESS-003)

Secode21 Likelihood: 8
Impact: 5

	110111 0					
	Secode21					
Observation	The session id is not invalidated and therefore does not change					
	after the user is authenticated. This means an attacker can force a					
	known session id on a user. Once the user is authenticated the					
	attacker can access also as authenticated user					
Discovery	We used the Chrome extension "Advanced Rest Client" to analyze					
	the Request and the Cookies					
Likelihood	This attack is pretty easy and can also be performed by low					
	skilled people					
Implication	The attacker can do everything the user can					
Recommendations	Change the session id after logging in					
Comparison	Our web application has exact the same vulnerability					
	·					

Metric	Value
Access Vector	N
Attack Complexity	L
Privileges Required	N
User Interaction	R
Scope	U
Confidentiality Impact	Н
Integrity Impact	Н
Availability Impact	N

3.5.4	Testing	for Ex	posed	Session	Variables	(OTG-SESS-004	.)
-------	----------------	--------	-------	---------	------------------	---------------	----

J Deinieu Report	3	Detailed	Report
------------------	---	----------	--------

3.5.5	Testing	for	Cross	Site	Reque	est Forg	ery(O	TG-	SESS-	005

3.5.6	Testing for	logout	functionalit	y(OTG	SESS-006)
		0		·	,

3.5.7	Test S	Session	Timeout(OT	G-9	SESS-	007
J.J.1	TCSL C	JESSIUII	IIIIICUUU	$\mathbf{O}_{\mathbf{I}}$	O-1	JEOU	.007

3.5.8	Testing f	for Session	puzzling(OT	G-SESS-008)

3.6 Data Validation Testing

3.6.1 Testing for Reflected Cross Site Scripting(OTG-INPVAL-001)

	Likelihood: 8
Secode21	Impact: 5
	Risk:5
	Secode21
Observation	We observed no reflected cross site scripting vulnerability.
Discovery	It seems that all parameters are stored in the database before
	inserting the values in the HTML.
Likelihood	N/A
Implication	N/A
Recommendations	N/A
Comparison	The same results apply for our web application.

3.6.2 Testing for Stored Cross Site Scripting(OTG-INPVAL-002)

	Likelihood: 8
Secode21	Impact: 5
	Risk:5
	Secode21
Observation	We observed several possibilities to execute a stored XSS attack.
	But not all of them could be exploited as the length of the corre-
	sponding database fields was often very restricted. We manually
	tried to inject JavaScript code in every input field. Therefore we
	used the following code, which just alerts a message.
Discovery	We inserted Javascript code in the name field on the register page.
	When we logged in as an employee the script was executed. There
	were cases when the script caused for new registered users after
	the script was entered to not appear.
Likelihood	This vulnerability can be easily detected, but require some
	JavaScript knowledge to exploit it. Therefore we estimated the
	likelihood to be medium.
Implication	The implications are severe as we proofed that it is possible to
	steal the session. As we injected the code on the admin landing-
	page, which implies that we were able to act as an admin and
	register an abitrary account.
Recommendations	Implement a input sanitation on all input fields on the backend
	side! Try to use whitelisting for the different datatypes and do
	not rely on the frontend input validation.
Comparison	

Metric	Value
Access Vector	N
Attack Complexity	M
Privileges Required	N
User Interaction	Y
Scope	U
Confidentiality Impact	M
Integrity Impact	M
Availability Impact	L

3.6.3	Testing f	or HTTP	Verb	Tamperir	ıg(O'	TG-	INP	VAL-0	03)
-------	-----------	---------	------	-----------------	-------	-----	-----	-------	-----

2	Deta	المداني	Dan	ant
	1 1210	mea	KPn	ori

3.6.4	Testing	for HTTP	Parameter	pollution	(OTG-IN	PVAL-004)
-------	----------------	----------	------------------	-----------	---------	-----------

3.6.5 Testing for SQL Injection (OTG-INPVAL-005)

Secode21 Likelihood: 8
Impact: 5
Risk:5

	THIS N.C			
Secode21				
Observation	We observed that no SQL Injection was possible.			
Discovery	We tried inserting various SQL statements in the fields of using			
	SQL Inject Me tool and failed.			
Likelihood	N/A			
Implication	N/A			
Recommendations	N/A			
Comparison	Our web application is also immune to SQL Injections			

3.6.7 Testing for Code Injection, Testing for Local File Inclusion, Testing for Remote File Inclusion(OTG-INPVAL-012)

2	Deta	•1 1	ח	
~	1 10t/	าาเอก	K on	αvt

3.6.9 Testing for Buffer overflow, Testing for Heap overflow, Testing for Stack overflow, Testing for Format string (OTG-INPVAL-014)

3.6.11 Testing for HTTP Splitting/Smuggling(OTG-INPVAL-016)

3.7 Error Handling

Team21

Team21 does not provide a lot of error messages for incorrect inputs (e.g. incorrect TAN length, wrong TAN, TAN used).

Based on the client side input validation, there are also no messages for manipulated input via proxy or by removing the validation patterns, which can lead to problems. Examples would be a malformated email which results in a not working account or a longer input then expected, which cuts off the end of the input. There are some cases when the page returns the path of the file where the error occurred.

Team3

3.8 Cryptography

3.9 Business Logic Testing

3.9.1 Test Business Logic Data Validation(OTG-BUSLOGIC-001)

3.9.2 Test	Ability to	Forge Rec	uests(OTG	-BUSLOGIC-002)
------------	------------	-----------	-----------	----------------

3.9.3 Test	Integrity	Checks(OTG-BUSLOGIC-003)
------------	-----------	--------------------------

3.9.5 Test Number of Times a Function Can be Used Limits(OTG-BUSLOGIC-005)

3.9.6	Testing for the Circumvention of Work Flows(OTG-BUSLOGIC-006)

3.9.7 Test Defenses Against Application Mis-use(OTG-BUSLOGIC-007)	

3.9.9 Test Upload of Malicious Files(OTG-BUSLOGIC-009)

3.10 Client Side Testing