# PHYSICS



Chapter 17 4th

**SECONDARY** 

CORRIENTE ELÉCTRICA

ASOCIACIÓN EDUCATIVA

SACO OLIVEROS







### CORRIENTE ELÉCTRICA

Se denomina así al flujo orientado de portadores de carga eléctrica a través de un medio conductor. En el caso que el medio sea un metal, los portadores son los electrones libres.



Para cuantificar este fenómeno, usamos la cantidad física fundamental denominada INTENSIDAD DE CORRIENTE ELÉCTRICA (I)



### CORRIENTE ELÉCTRICA

La intensidad de corriente eléctrica, nos indica la Cantidad de Carga por unidad de tiempo que pasa por la sección recta del conductor.



Su valor se obtiene con:

$$I = \frac{Q}{t}$$

Unidad:

$$\frac{\text{coulomb}}{\text{segundo}} = \text{amper}$$

$$A = \frac{C}{S}$$

 Cantidad de carga, asociado a los electrones, que atraviesan la sección recta del conductor (en C)

### CORRIENTE ELÉCTRICA



También podemos obtener el valor de I, utilizando;



$$I = \frac{\text{n. } |q e|}{\text{t}}$$

n :Número de electrones que pasan a través de la sección recta del conductor.

 $q_e$ : Cantidad de carga del electrón.

$$|q_e| = 1.6 \times 10^{-19} \text{C}$$

### RESISTENCIA ELÉCTRICA



Es la oposición ( $\Omega$ ) que ofrece todo conductor al paso de la corriente eléctrica, su valor se expresa en ohmio

Para un tramo de conductor cilíndrico;

El valor de la resistencia eléctrica, se obtiene con:

Ley de Poulliett



 $R = \rho \frac{L}{A}$ 

- L: Longitud del conductor (en m).
- A: Área de la sección recta del conductor (en m²).
- $\rho$ : Resistividad eléctrica del conductor (en  $\Omega$  m).



### RESISTIVIDAD ELÉCTRICA

La resistividad eléctrica (ρ), tiene un valor que depende del material con el cual se fabrico el conductor.

El coeficiente de resistividad eléctrica es una característica propia del material, así como de su temperatura.

| Material  | ρ <b>(Ω · m) a 20 °C</b> |
|-----------|--------------------------|
| Plata     | 1,6 × 10 <sup>-8</sup>   |
| Cobre     | 1,7×10 <sup>-8</sup>     |
| Aluminio  | 2,8 × 10 <sup>-8</sup>   |
| Tungsteno | 5,5 × 10 <sup>-8</sup>   |
| Hierro    | 10×10 <sup>-8</sup>      |
| Plomo     | 22×10 <sup>-8</sup>      |



## SÍMBOLO DE LA RESISTENCIA

Todo conductor cuya resistencia eléctrica es considerable, se le representa de la siguiente manera:



### LEY DE OHM



Establece que la Intensidad de Corriente Eléctrica I que circula por un resistor es directamente proporcional al Voltaje de la fuente ( $\triangle$ V) a la cual es sometido, siendo la constante de proporcionalidad la Resistencia eléctrica R del mismo.





Siendo:  $V_{ab} = V_a - V_b$ 

#### ¡¡ No olvidar que !!





P.1: Por un conductor eléctrico pasan 20 C de cantidad de carga en 4 segundos. ¿Cuál será la intensidad de la corriente eléctrica?

#### **RESOLUCIÓN:**

De acuerdo al enunciado:



#### **Usando:**



$$I = \frac{20 \text{ C}}{4 \text{ s}}$$







P.2: La intensidad de corriente eléctrica en un conductor es de 2 A. Determine la cantidad de carga eléctrica que pasa por una de sus secciones rectas durante un minuto.

#### **RESOLUCIÓN:**

De acuerdo al enunciado:



Usando:

$$Q = I \cdot t$$

$$Q = (2 A)(60 s)$$

$$\therefore \mathbf{Q} = \mathbf{120} \,\mathbf{C}$$





P.3: Por la sección recta de un alambre de tungsteno atraviesan  $3 \times 10^{20}$  electrones en un intervalo de 6 s. Determine la intensidad de corriente en dicho alambre.

#### **RESOLUCIÓN:**

De acuerdo al enunciado:



Ahora usamos;

$$I = \frac{n. |qe|}{t}$$

$$I = \frac{(3.10^{20}).(1,6.10^{-19}C)}{6 s}$$







P.4: Determine la intensidad de corriente eléctrica en cada resistor y el sentido de dicha corriente eléctrica.





#### **RESOLUCIÓN:**

Por Ley de Ohm; en cada caso:

i) Para:



$$80V - 40V = I_1 \cdot 10\Omega$$

$$\therefore I_1 = 4 A$$

ii) Para:



 $V_{ab} = I . R$ 

$$200V - 50V = I_2.30\Omega$$

$$\therefore I_2 = 5 A$$





P.5: Determine la intensidad de corriente eléctrica I y la resistencia R<sub>2</sub>.



#### **RESOLUCIÓN:**

Por Ley de Ohm;

$$V_{ab} = I.R$$

i) Para R<sub>1</sub>:

$$300V - 200V = I.50\Omega$$

$$: I = 2 A$$

ii) Para R<sub>2</sub>:

$$200V - 50V = 2.R_2$$

$$\therefore R_2 = 75 \Omega$$





P.6: Determine la intensidad de corriente eléctrica I y el potencial eléctrico  $V_B$ .



Por Ley de Ohm;

$$V_{ab} = I.R$$

i) Para R = 
$$25 \Omega$$
:

$$100V - 50V = I.25 \Omega$$

$$\therefore I = 2 A$$

ii) Para R = 
$$10 \Omega$$
:

$$50V - V_B = 2A.10 Ω$$

$$\therefore V_{\rm B} = 30 V$$





P.7: Escriba verdadero (V) o falso (F) según corresponda.

$$V_{A} = 80 \text{ V}$$

$$V_{R} = 40 \text{ V}$$

Si la resistencia eléctrica es 10  $\Omega$  la intensidad de corriente eléctrica es 5A ......(F)

Si el potencial en B es 80 V, la intensidad de corriente es nula.....(V)

#### **RESOLUCIÓN:**

- i) Para  $R = 10 \Omega$  y I = 5A:  $80 \text{ V} - 40 \text{ V} = 5 \text{ A} \cdot 10 \Omega$ 40 V = 50 V
- ii) Para  $R = 10 \Omega$  y I = 10A:  $80 V - 40V = 10 A . 10 \Omega$ 40 V = 100 V
- ii) Para  $V_B = 80 V \text{ y I} = 0 \text{ A}$ :  $80 V - 80V = I \cdot R$   $0 V = I \cdot R$ I = 0 A  $\therefore FFV$





EL WALOR DE LA GRATITUD