第二次课程作业

Lu Peng
School of Computer Science,
Beijing University of Posts and Telecommunications

利用词袋模型和SVM进行图片分类

- **任务**:编写一个图像分类系统,能够对输入图像进行类别预测。具体的说,利用数据库的 2250张 训练样本进行训练;对测试集中的2235张样本进行预测。
- **数据库说明:scene_categories** 数据集包含15个类别(文件夹名就是类别名),每个类中编号前 150号的样本作为训练样本,15个类一共2250张训练样本;剩下的样本构成测试集合。

数据集详情可参阅: https://qixianbiao.github.io/Scene.html

数据集下载地址: <u>https://figshare.com/articles/15-Scene_Image_Dataset/7007177</u>

• 下载数据集后解压按照图1方式放置(见下一页)

利用词袋模型和SVM进行图片分类

• **使用知识点**: SIFT特征、Kmeans、词 袋表示、支撑向量机

· 代码撰写说明:

- 代码可以使用C++或者python语言 进行编写,推荐使用python。
- 可直接调用Opencv的基础算法完成系统设计。

图1

算法流程

- 1、 提取数据集中的样本,并划分训练集和测试集
- 2、 对于训练集的所有图片,提取图片的 SIFT 特征点,并对 SIFT 特征点向量归一化
- 3、 对所有 SIFT 特征点使用聚类算法分为 n 类
- 4、 将 n 类特征点的中心点作为视觉词汇, 生成词袋(字典)
- 5、 使用论文中的 SPM 算法生成图片的特征向量
 - a) 将图片分为 3 种尺度,分别为 1*1、2*2、4*4 大小,统计不同尺度下的特 征直方图
 - b) 将不同尺度下的特征直方图合并,组合成为一个 21(1 + 4 + 16) * n 维 度大小的特征向量
- 6、 将图片的特征向量作为数据集,使用支持向量机算法完成分类任务
- 7、 对测试集图片做和训练集相同的数据处理操作
- 8、 使用支持向量机模型对测试集图片的类别进行预测
- 9、 评估预测结果,并生成分类报告和输出混淆矩阵

样例代码说明(邱吉撰写)

环境:操作系统: Mac OS 10.15.4 Python 版本: 3.7 Package:

sklearn, opency-3.4.2, numpy, matplotlib, os, math

使用:运行main.py即可在对应的result目录下看到如下结果。

1、测试集分类结果、训练集分类结果:

	precision	recall	f1-score	support		precision	recall	f1-score	support
bedroom	0.25	0.38	0.30	66	bedroom	1.00	1.00	1.00	150
MITcoast	0.63	0.77	0.69	210	MITcoast	1.00	1.00	1.00	150
MITopencountry	0.67	0.52	0.58	260	MITopencountry	1.00	1.00	1.00	150
MIThighway	0.60	0.78	0.68	110	MIThighway	1.00	1.00	1.00	150
MITstreet	0.70	0.69	0.70	142	MITstreet	1.00	1.00	1.00	150
MITinsidecity	0.62	0.54	0.58	158	MITinsidecity	1.00	1.00	1.00	150
industrial	0.49	0.34	0.40	161	industrial	1.00	1.00	1.00	150
PARoffice	0.59	0.51	0.55	65	PARoffice	1.00	1.00	1.00	150
MITmountain	0.70	0.66	0.68	224	MITmountain	1.00	1.00	1.00	150
livingroom	0.54	0.47	0.50	139	livingroom	1.00	1.00	1.00	150
kitchen	0.31	0.47	0.38	60	kitchen	1.00	1.00	1.00	150
CALsuburb	0.83	0.93	0.88	91	CALsuburb	1.00	1.00	1.00	150
MITtallbuilding	0.74	0.67	0.70	206	MITtallbuilding	1.00	1.00	1.00	150
MITforest	0.82	0.92	0.86	178	MITforest	1.00	1.00	1.00	150
store	0.63	0.66	0.64	165	store	1.00	1.00	1.00	150
accuracy			0.63	2235	accuracy			1.00	2250
macro avg	0.61	0.62	0.61	2235	macro avg	1.00	1.00	1.00	2250
weighted avg	0.64	0.63	0.63	2235	weighted avg	1.00	1.00	1.00	2250

样例代码说明(邱吉撰写)

环境:操作系统: Mac OS 10.15.4 Python 版本: 3.7 Package: sklearn、opency-3.4.2、numpy、matplotlib、os、math

使用:运行main.py即可在对应的result目录下看到如下结果。

