

SECUENCIA DIDÁCTICA 6 - EDUCACIÓN EN MATEMÁTICAS

Pensamiento Numérico y Sistemas Numéricos – Grado: 5º Sede: La victoria - Docente: Jorge Cotera - Año: 2024

¿Por qué al sistema de nuestros números le llamamos Sistema Numérico Posicional Decimal?

Considere el siguiente ejemplo. Dado un número como 24.726, gracias a que conocemos nuestro sistema numérico posicional decimal, podemos analizarlo de la siguiente forma:

$$(2 x 10^4) + (4 x 10^3) + (7 x 10^2) + (2 x 10^1) + (6 x 10^0)$$

En dónde cada base, elevada a un exponente diferente, indica la respectiva posición dentro del número original, y así el exponente indica las tantas veces por las que hay que multiplicar a cada base consigo misma.

PARA RECORDAR

$$[2 x (10 \cdot 10 \cdot 10 \cdot 10)] + [4 x (10 \cdot 10 \cdot 10)] + [7 x (10 \cdot 10)] + [2 x (10)] + [6 x (1)]$$
$$[2 x (10.000)] + [4 x (1.000)] + [7 x (100)] + [2 x (10)] + [6 x (1)]$$

Pero a su vez, los dígitos en negrilla representan las tantas veces por las que hay que sumar a cada base consigo misma, es decir, es el factor por el que hay que multiplicar la base.

$$[20.000 + 4.000 + 700 + 20 + 6] = 24.726$$

Es decir, que en el número representado en el sistema numérico decimal como 24.726, se cuentan 24.726 elementos

Antes de finalizar esta actividad recomendamos ver el video que aparece en la dirección a la que lo llevara el Código 1.

Código 1: ¿Quién inventó los Números?

- **Actividad 1:** Realiza los análisis posicionales de los siguientes números:
 - 36.849

- 5.002
- 31.048
- 7.908

ACTIVIDAD EVALUATIVA

Ejemplo I: 12.732

El valor numérico posicional de este número puede ser analizado considerando el sistema de base decimal (10) así:

$$(1 \times 10^4) + (2 \times 10^3) + (7 \times 10^2) + (3 \times 10^1) + (2 \times 10^0)$$

En dónde cada base, elevada a un **exponente diferente**, indica la respectiva posición dentro del número original, y así el exponente indica las tantas veces por las que hay que **multiplicar** a cada base consigo misma.

$$[\mathbf{1} \ x \ (10 \cdot 10 \cdot 10 \cdot 10)] + [\mathbf{2} \ x \ (10 \cdot 10 \cdot 10)] + [\mathbf{7} \ x \ (10 \cdot 10)] + [\mathbf{3} \ x \ (10)] + [\mathbf{2} \ x \ (1)]$$

$$[1 x (10.000)] + [2 x (1.000)] + [7 x (100)] + [3 x (10)] + [2 x (1)]$$

Pero a su vez, los **dígitos en negrilla** representan las tantas veces por las que hay que **sumar** a cada base consigo misma, es decir, es el factor por el que hay que multiplicar la base.

$$[(10.000)] + [(1.000 + 1.000)] + [(100 + 100 + 100 + 100 + 100 + 100)] + [(10 + 10 + 10)] + [(11 +$$

Es decir, que en el número representado en el sistema numérico decimal como **12.732**, se cuentan **12.732** elementos.

- **1.** Considerando cada uno de los pasos explicados en el anterior ejemplo, analiza los siguientes números uno a uno, y haz un dibujo del ábaco en cada caso.
 - a. **21.204**
 - b. **672**
 - c. **10.014**
 - d. **251.517**

En este ábaco están constados 12.732 elementos, y se representan con el número 12.732 en base 10.

Ejemplo II: 23.031

El valor numérico posicional de este número puede ser analizado considerando el sistema de base 4 así:

$$(2 x 4^4) + (3 x 4^3) + (0 x 4^2) + (3 x 4^1) + (1 x 4^0)$$

En dónde cada base, elevada a un **exponente diferente**, indica la respectiva posición dentro del número original, y así el exponente indica las tantas veces por las que hay que **multiplicar** a cada base consigo misma.

$$[2 x (4 \cdot 4 \cdot 4 \cdot 4)] + [3 x (4 \cdot 4 \cdot 4)] + [0 x (4 \cdot 4)] + [3 x (4)] + [1 x (1)]$$

$$[2 x (256)] + [3 x (64)] + [0 x (16)] + [3 x (4)] + [1 x (1)]$$

Pero a su vez, los **dígitos en negrilla** representan las tantas veces por las que hay que **sumar** a cada base consigo misma, es decir, es el factor por el que hay que multiplicar la base.

$$[(256 + 256)] + [(64 + 64 + 64)] + [(0)] + [(4 + 4 + 4)] + [(1)]$$

$$[512 + 192 + 0 + 12 + 1] = 717$$

Es decir, que con el número representado en el sistema numérico de base 4, como **12.732**, se cuentan **717** elementos.

- **2.** Considerando cada uno de los pasos explicados en el anterior ejemplo, analiza los siguientes números uno a uno, y haz un dibujo del ábaco en cada caso.
 - a. **21.203**
 - b. **201**
 - c. **10.013**
 - d. **231.213**

En este ábaco están constados 717 elementos, y se representan con el número 12.732 en base 4.

- **3.** Considerando cada uno de los pasos explicados en los anteriores ejemplos, y analiza los siguientes números uno a uno, usando el sistema numérico en base 3, y haz un dibujo del ábaco en cada caso.
 - a. **21.201**
 - b. **201**
 - c. **11.212**
 - a. 211.210

¿Si en el ábaco está representado un numero en base 3, que error se ha

- **4.** Andrés cuenta la cantidad de personas que asisten a su cumpleaños, pero para ello emplea un ábaco abierto y expresa la cantidad en base 3 como lo muestra la figura. ¿Cuántas personas en total asistieron a la fiesta de Andrés? **Explica tu respuesta.**
 - a. 2112 Personas
 - b. 68 Personas
 - c. 18 Personas
 - d. 6332 Personas

- **5.** Si Andrés corrige, y dice que realmente lo expresó en una base 7, entonces el total de personas realmente fue de
 - a. 744 Personas

Explica tu respuesta.

- b. 65 Personas
- c. 14772 Personas
- d. 2112 Personas
- **6.** Si en nuestro sistema numérico posicional de base 10, cierta cantidad se representa en el ábaco así (102.012), ¿De qué cantidad se trata?

- b. Cien mil dos
- c. Mil doscientos tres
- d. Tres mil treinta

7. sister	•	n el ábaco (<i>imagen anterior</i>), y considerando que se trata de nuestro imal ¿Qué valor tiene la cuenta (La ruedita) más oscura?
	a. Cien milb. Diez milc. Un millónd. Trece mil	Adicionalmente, explica con tus palabras qué cantidad estaría representada en el ábaco.
8. expre	•	n el ábaco (<i>imagen anterior</i>), y considerando que se tratara de una tendría la cuenta (La ruedita) más oscura?
	a. 243b. 15c. 300d. 300.000	Adicionalmente, explica con tus palabras qué cantidad estaría representada en el ábaco.
9. expre		n el ábaco (<i>imagen anterior</i>), y considerando que se tratara de una tendría la cuenta (La ruedita) más oscura?
	a. 243b. 15c. 3125d. 312.500	Adicionalmente, explica con tus palabras qué cantidad estaría representada en el ábaco.
10. expre	A partir de su posición e esión en base 4 ¿Qué valor	n el ábaco (<i>imagen anterior</i>), y considerando que se tratara de una tendría la cuenta (La ruedita) más oscura?
	a. 4500 b. 2400 c. 2000 d. 1024	Adicionalmente, explica con tus palabras qué cantidad estaría representada en el ábaco.