Resonances for pseudo-Riemannian hyperbolic spaces

Jan Frahm (Aarhus University)

joint work with Polyxeni Spilioti (National Technical University of Athens)

Harmonic Analysis and PDE Seminar IISC Bangalore March 5, 2025

Outline

- Motivation
- 2 Pseudo-Riemannian hyperbolic spaces
- 3 Harmonic Analysis on pseudo-Riemannian hyperbolic spaces
- 4 Resonances and residue representations

Outline

- Motivation
- Pseudo-Riemannian hyperbolic spaces
- Marmonic Analysis on pseudo-Riemannian hyperbolic spaces

• X complete Riemannian manifold

- X complete Riemannian manifold
- Δ the (positive) Laplace–Beltrami operator on X

MARCH 5, 2025

- X complete Riemannian manifold
- Δ the (positive) Laplace–Beltrami operator on X
- Δ acts in $L^2(X)$ as an unbounded self-adjoint operator

- X complete Riemannian manifold
- Δ the (positive) Laplace–Beltrami operator on X
- Δ acts in $L^2(X)$ as an unbounded self-adjoint operator
- ullet For $z\in\mathbb{C}\setminus\sigma(\Delta)$ the operator $R(z)=(\Delta-z\operatorname{id})^{-1}:L^2(X) o L^2(X)$ is bounded

 $ightharpoonup \operatorname{resolvent} R: \mathbb{C} \setminus \sigma(\Delta) o \mathcal{B}(L^2(X))$ is holomorphic

- X complete Riemannian manifold
- Δ the (positive) Laplace–Beltrami operator on X
- Δ acts in $L^2(X)$ as an unbounded self-adjoint operator
- For $z \in \mathbb{C} \setminus \sigma(\Delta)$ the operator $R(z) = (\Delta z \operatorname{id})^{-1} : L^2(X) \to L^2(X)$ is bounded
 - ightsquigar resolvent $R:\mathbb{C}\setminus\sigma(\Delta) o\mathcal{B}(L^2(X))$ is holomorphic

Problem

- Extend R(z) meromorphically across $\sigma(\Delta)$.
- Determine the poles of the meromorphic extension (quantum resonances).
- For each resonance z_0 , determine the residue operator $Res_{z=z_0} R(z)$

- X complete Riemannian manifold
- Δ the (positive) Laplace–Beltrami operator on X
- Δ acts in $L^2(X)$ as an unbounded self-adjoint operator
- For $z \in \mathbb{C} \setminus \sigma(\Delta)$ the operator $R(z) = (\Delta z \operatorname{id})^{-1} : L^2(X) \to L^2(X)$ is bounded
- ightsquigar resolvent $R:\mathbb{C}\setminus\sigma(\Delta) o\mathcal{B}(L^2(X))$ is holomorphic

Problem

- Extend R(z) meromorphically across $\sigma(\Delta)$.
- Determine the poles of the meromorphic extension (quantum resonances).
- For each resonance z_0 , determine the residue operator $\operatorname{Res}_{z=z_0} R(z)$

 \sim The location of the resonances is related to the long-term behavior of the corresponding quantum mechanical system (Schrödinger equation, semigroup $t\mapsto e^{it\Delta}$, ...)

- X complete Riemannian manifold
- Δ the (positive) Laplace–Beltrami operator on X
- Δ acts in $L^2(X)$ as an unbounded self-adjoint operator
- For $z \in \mathbb{C} \setminus \sigma(\Delta)$ the operator $R(z) = (\Delta z \operatorname{id})^{-1} : L^2(X) \to L^2(X)$ is bounded \rightsquigarrow resolvent $R : \mathbb{C} \setminus \sigma(\Delta) \to \mathcal{B}(L^2(X))$ is holomorphic

Problem

- Extend R(z) meromorphically across $\sigma(\Delta)$.
- Determine the poles of the meromorphic extension (quantum resonances).
- For each resonance z_0 , determine the residue operator $\operatorname{Res}_{z=z_0} R(z)$

 \sim The location of the resonances is related to the long-term behavior of the corresponding quantum mechanical system (Schrödinger equation, semigroup $t \mapsto e^{it\Delta}$, ...)

Studied intensely by Borthwick, Bunke, Delarue, Guillarmou, Guillopé, Hilgert, Mazzeo, Melrose, Olbrich, Pasquale, Perry, Przebinda, Roby, Sjöstrand, Strohmaier, Vasy, Weich, Zworski, ...

X compact Riemannian manifold

• $\sigma(\Delta) \subseteq [0, \infty)$ is discrete and consists of eigenvalues with finite multiplicities

- $\sigma(\Delta) \subseteq [0, \infty)$ is discrete and consists of eigenvalues with finite multiplicities
- ullet Δ is diagonalizable

- $\sigma(\Delta) \subseteq [0, \infty)$ is discrete and consists of eigenvalues with finite multiplicities
- Δ is diagonalizable
- On the eigenspace $\ker(\Delta z_0 \operatorname{id})$ the resolvent R(z) acts by $(z_0 z)^{-1}$

- $\sigma(\Delta) \subseteq [0, \infty)$ is discrete and consists of eigenvalues with finite multiplicities
- Δ is diagonalizable
- On the eigenspace $\ker(\Delta z_0 \operatorname{id})$ the resolvent R(z) acts by $(z_0 z)^{-1}$
- $R: \mathbb{C} \to \mathcal{B}(L^2(X)), \ R(z) = (\Delta z \operatorname{id})^{-1}$ is meromorphic with simple poles at $z_0 \in \sigma(\Delta)$

- $\sigma(\Delta) \subseteq [0, \infty)$ is discrete and consists of eigenvalues with finite multiplicities
- Δ is diagonalizable
- On the eigenspace $\ker(\Delta z_0 \operatorname{id})$ the resolvent R(z) acts by $(z_0 z)^{-1}$
- $R: \mathbb{C} \to \mathcal{B}(L^2(X)), \ R(z) = (\Delta z \operatorname{id})^{-1}$ is meromorphic with simple poles at $z_0 \in \sigma(\Delta)$
- For an eigenvalue $z_0 \in \sigma(\Delta)$, the residue operator $\operatorname{Res}_{z=z_0} R(z)$ is the orthogonal projection onto the (finite-dimensional) eigenspace $\ker(\Delta z_0 \operatorname{id})$, up to a sign.

- $\sigma(\Delta) \subseteq [0, \infty)$ is discrete and consists of eigenvalues with finite multiplicities
- Δ is diagonalizable
- On the eigenspace $\ker(\Delta z_0 \operatorname{id})$ the resolvent R(z) acts by $(z_0 z)^{-1}$
- $R: \mathbb{C} \to \mathcal{B}(L^2(X)), \ R(z) = (\Delta z \operatorname{id})^{-1}$ is meromorphic with simple poles at $z_0 \in \sigma(\Delta)$
- For an eigenvalue $z_0 \in \sigma(\Delta)$, the residue operator $\operatorname{Res}_{z=z_0} R(z)$ is the orthogonal projection onto the (finite-dimensional) eigenspace $\ker(\Delta z_0 \operatorname{id})$, up to a sign.
- Resonances are eigenvalues and residue operators are orthogonal projections onto eigenspaces.

X compact Riemannian manifold

- $\sigma(\Delta) \subseteq [0, \infty)$ is discrete and consists of eigenvalues with finite multiplicities
- Δ is diagonalizable
- On the eigenspace $\ker(\Delta z_0 \operatorname{id})$ the resolvent R(z) acts by $(z_0 z)^{-1}$
- $R: \mathbb{C} \to \mathcal{B}(L^2(X)), \ R(z) = (\Delta z \operatorname{id})^{-1}$ is meromorphic with simple poles at $z_0 \in \sigma(\Delta)$
- For an eigenvalue $z_0 \in \sigma(\Delta)$, the residue operator $\operatorname{Res}_{z=z_0} R(z)$ is the orthogonal projection onto the (finite-dimensional) eigenspace $\ker(\Delta z_0 \operatorname{id})$, up to a sign.
- Resonances are eigenvalues and residue operators are orthogonal projections onto eigenspaces.

Credo

Resonances are a way of associating to a non-compact Riemannian manifold a discrete set of spectral invariants similar to the set of eigenvalues of the Laplacian on a compact Riemannian manifold.

Assume that $[z_0, \infty) \subseteq \sigma(\Delta) \leadsto$ meromorphic extension across $[z_0, \infty)$ may only be possible when passing to a covering of $\mathbb{C} \setminus \{z_0\}$ (in many cases a double cover suffices)

Assume that $[z_0, \infty) \subseteq \sigma(\Delta) \leadsto$ meromorphic extension across $[z_0, \infty)$ may only be possible when passing to a covering of $\mathbb{C} \setminus \{z_0\}$ (in many cases a double cover suffices)

Assume that $[z_0, \infty) \subseteq \sigma(\Delta) \leadsto$ meromorphic extension across $[z_0, \infty)$ may only be possible when passing to a covering of $\mathbb{C} \setminus \{z_0\}$ (in many cases a double cover suffices)

 \leadsto consider the modified resolvent $\widetilde{R}(\zeta)=(\Delta-z_0-\zeta^2)^{-1}$ instead of $R(z)=(\Delta-z)^{-1}$

Assume that $[z_0, \infty) \subseteq \sigma(\Delta) \leadsto$ meromorphic extension across $[z_0, \infty)$ may only be possible when passing to a covering of $\mathbb{C} \setminus \{z_0\}$ (in many cases a double cover suffices)

 \leadsto consider the modified resolvent $\widetilde{R}(\zeta)=(\Delta-z_0-\zeta^2)^{-1}$ instead of $R(z)=(\Delta-z)^{-1}$

 \leadsto Goal: Extend $\widetilde{R}(\zeta)$ from $\mathbb{C}_+ = \{\zeta \in \mathbb{C} : \operatorname{Im} \zeta > 0\}$ across \mathbb{R} to \mathbb{C}

$$X=\mathbb{R}$$
 with $\Delta=-rac{d^2}{dx^2}$

$$X = \mathbb{R}$$
 with $\Delta = -\frac{d^2}{dx^2}$

• $\sigma(\Delta)=[0,\infty)$ purely continuous \leadsto consider $\widetilde{R}(\zeta)=(\Delta-\zeta^2)^{-1}$ $(\zeta\in\mathbb{C}_+)$

$$X = \mathbb{R}$$
 with $\Delta = -\frac{d^2}{dx^2}$

- $\sigma(\Delta)=[0,\infty)$ purely continuous \leadsto consider $\widetilde{R}(\zeta)=(\Delta-\zeta^2)^{-1}$ $(\zeta\in\mathbb{C}_+)$
- In the L^2 -sense, we have for $f \in L^2(\mathbb{R})$ and $\zeta \in \mathbb{C}_+$:

$$f(x) = \int_{\mathbb{R}} \widehat{f}(\xi) e^{ix \cdot \xi} d\xi \qquad \Rightarrow \qquad \widetilde{R}(\zeta) f(x) = \int_{\mathbb{R}} \frac{\widehat{f}(\xi) e^{ix \cdot \xi}}{\xi^2 - \zeta^2} d\xi.$$

$$X = \mathbb{R}$$
 with $\Delta = -\frac{d^2}{dx^2}$

- $\sigma(\Delta) = [0, \infty)$ purely continuous \leadsto consider $\widetilde{R}(\zeta) = (\Delta \zeta^2)^{-1} \ (\zeta \in \mathbb{C}_+)$
- In the L^2 -sense, we have for $f \in L^2(\mathbb{R})$ and $\zeta \in \mathbb{C}_+$:

$$f(x) = \int_{\mathbb{R}} \widehat{f}(\xi) e^{ix \cdot \xi} d\xi \qquad \Rightarrow \qquad \widetilde{R}(\zeta) f(x) = \int_{\mathbb{R}} \frac{\widehat{f}(\xi) e^{ix \cdot \xi}}{\xi^2 - \zeta^2} d\xi.$$

• To extend this expression meromorphically, we would like to shift the contour to $\mathbb{R}-ic$ for some $c\gg 0 \rightsquigarrow \text{need } \widehat{f}(\xi)$ holomorphic

$$X=\mathbb{R}$$
 with $\Delta=-rac{d^2}{dx^2}$

- $\sigma(\Delta) = [0, \infty)$ purely continuous \leadsto consider $\widetilde{R}(\zeta) = (\Delta \zeta^2)^{-1} \ (\zeta \in \mathbb{C}_+)$
- In the L^2 -sense, we have for $f \in L^2(\mathbb{R})$ and $\zeta \in \mathbb{C}_+$:

$$f(x) = \int_{\mathbb{R}} \widehat{f}(\xi) e^{ix \cdot \xi} d\xi \qquad \Rightarrow \qquad \widetilde{R}(\zeta) f(x) = \int_{\mathbb{R}} \frac{\widehat{f}(\xi) e^{ix \cdot \xi}}{\xi^2 - \zeta^2} d\xi.$$

• To extend this expression meromorphically, we would like to shift the contour to $\mathbb{R}-ic$ for some $c\gg 0 \rightsquigarrow \text{need } \widehat{f}(\xi)$ holomorphic $\rightsquigarrow \text{view } \widetilde{R}(\zeta): C_c^\infty(\mathbb{R}^n)\to \mathcal{D}'(\mathbb{R}^n)$

$$X=\mathbb{R}$$
 with $\Delta=-rac{d^2}{dx^2}$

- $\sigma(\Delta) = [0, \infty)$ purely continuous \leadsto consider $\widetilde{R}(\zeta) = (\Delta \zeta^2)^{-1} \ (\zeta \in \mathbb{C}_+)$
- In the L^2 -sense, we have for $f \in L^2(\mathbb{R})$ and $\zeta \in \mathbb{C}_+$:

$$f(x) = \int_{\mathbb{R}} \widehat{f}(\xi) e^{ix \cdot \xi} d\xi \qquad \Rightarrow \qquad \widetilde{R}(\zeta) f(x) = \int_{\mathbb{R}} \frac{\widehat{f}(\xi) e^{ix \cdot \xi}}{\xi^2 - \zeta^2} d\xi.$$

- To extend this expression meromorphically, we would like to shift the contour to $\mathbb{R}-ic$ for some $c\gg 0 \rightsquigarrow \text{need } \widehat{f}(\xi)$ holomorphic $\rightsquigarrow \text{view } \widetilde{R}(\zeta): C_c^\infty(\mathbb{R}^n)\to \mathcal{D}'(\mathbb{R}^n)$
- For $f \in C_c^{\infty}(\mathbb{R}^n)$ and fixed $\zeta \in \mathbb{C}_+$, by the Paley–Wiener Theorem (for $c \gg 0$):

$$\widetilde{R}(\zeta)f(x) = \int_{\mathbb{R}} \frac{\widehat{f}(\xi)e^{ix\cdot\xi}}{(\xi - \zeta)(\xi + \zeta)} d\xi = \underbrace{\int_{\mathbb{R}-ic} \frac{\widehat{f}(\xi)e^{ix\cdot\xi}}{(\xi - \zeta)(\xi + \zeta)} d\xi}_{\text{holomorphic for } |\operatorname{Im}\zeta| < c} -2\pi i \operatorname{Res}_{\xi = -\zeta} \frac{\widehat{f}(\xi)e^{ix\cdot\xi}}{(\xi - \zeta)(\xi + \zeta)}$$

$$X = \mathbb{R}$$
 with $\Delta = -\frac{d^2}{dx^2}$

- $\sigma(\Delta) = [0, \infty)$ purely continuous \leadsto consider $\widetilde{R}(\zeta) = (\Delta \zeta^2)^{-1} \ (\zeta \in \mathbb{C}_+)$
- In the L^2 -sense, we have for $f \in L^2(\mathbb{R})$ and $\zeta \in \mathbb{C}_+$:

$$f(x) = \int_{\mathbb{R}} \widehat{f}(\xi) e^{ix \cdot \xi} d\xi \qquad \Rightarrow \qquad \widetilde{R}(\zeta) f(x) = \int_{\mathbb{R}} \frac{\widehat{f}(\xi) e^{ix \cdot \xi}}{\xi^2 - \zeta^2} d\xi.$$

- To extend this expression meromorphically, we would like to shift the contour to $\mathbb{R}-ic$ for some $c\gg 0 \rightsquigarrow \text{need } \widehat{f}(\xi)$ holomorphic $\rightsquigarrow \text{view } \widetilde{R}(\zeta): C_c^\infty(\mathbb{R}^n) \to \mathcal{D}'(\mathbb{R}^n)$
- For $f \in C_c^{\infty}(\mathbb{R}^n)$ and fixed $\zeta \in \mathbb{C}_+$, by the Paley–Wiener Theorem (for $c \gg 0$):

$$\widetilde{R}(\zeta)f(x) = \int_{\mathbb{R}} \frac{\widehat{f}(\xi)e^{ix\cdot\xi}}{(\xi-\zeta)(\xi+\zeta)} d\xi = \underbrace{\int_{\mathbb{R}-ic} \frac{\widehat{f}(\xi)e^{ix\cdot\xi}}{(\xi-\zeta)(\xi+\zeta)} d\xi}_{\text{holomorphic for } |\operatorname{Im}\zeta| < c} -2\pi i \operatorname{Res}_{\xi=-\zeta} \frac{\widehat{f}(\xi)e^{ix\cdot\xi}}{(\xi-\zeta)(\xi+\zeta)}$$

Note:
$$\operatorname{Res}_{\xi=-\zeta} \frac{\widehat{f}(\xi)e^{ix\cdot\xi}}{(\xi-\zeta)(\xi+\zeta)} = -\frac{\widehat{f}(-\zeta)e^{ix\cdot\zeta}}{2\zeta}$$

$$X = \mathbb{R}$$
 with $\Delta = -\frac{d^2}{dx^2}$

- $\sigma(\Delta) = [0, \infty)$ purely continuous \rightsquigarrow consider $\widetilde{R}(\zeta) = (\Delta \zeta^2)^{-1}$ $(\zeta \in \mathbb{C}_+)$
- In the L^2 -sense, we have for $f \in L^2(\mathbb{R})$ and $\zeta \in \mathbb{C}_+$:

$$f(x) = \int_{\mathbb{R}} \widehat{f}(\xi) e^{ix \cdot \xi} d\xi \qquad \Rightarrow \qquad \widetilde{R}(\zeta) f(x) = \int_{\mathbb{R}} \frac{\widehat{f}(\xi) e^{ix \cdot \xi}}{\xi^2 - \zeta^2} d\xi.$$

- To extend this expression meromorphically, we would like to shift the contour to $\mathbb{R}-ic$ for some $c\gg 0$ \leadsto need $\widehat{f}(\xi)$ holomorphic \leadsto view $\widetilde{R}(\zeta): C_c^\infty(\mathbb{R}^n)\to \mathcal{D}'(\mathbb{R}^n)$
- For $f \in C_c^{\infty}(\mathbb{R}^n)$ and fixed $\zeta \in \mathbb{C}_+$, by the Paley–Wiener Theorem (for $c \gg 0$):

$$\widetilde{R}(\zeta)f(x) = \int_{\mathbb{R}} \frac{\widehat{f}(\xi)e^{ix\cdot\xi}}{(\xi - \zeta)(\xi + \zeta)} d\xi = \underbrace{\int_{\mathbb{R}-ic} \frac{\widehat{f}(\xi)e^{ix\cdot\xi}}{(\xi - \zeta)(\xi + \zeta)} d\xi}_{\text{holomorphic for } |\operatorname{Im}\zeta| < c} -2\pi i \operatorname{Res}_{\xi = -\zeta} \frac{\widehat{f}(\xi)e^{ix\cdot\xi}}{(\xi - \zeta)(\xi + \zeta)}$$

Note:
$$\operatorname{Res}_{\xi=-\zeta} \frac{\widehat{f}(\xi)e^{ix\cdot\xi}}{(\xi-\zeta)(\xi+\zeta)} = -\frac{\widehat{f}(-\zeta)e^{ix\cdot\zeta}}{2\zeta}$$

 $ightharpoonup \widetilde{R}(\zeta)$ is meromorphic in $\zeta \in \mathbb{C}$ with a simple pole at $\zeta = 0$ and $\operatorname{Res}_{\zeta=0} \widetilde{R}(\zeta) f(x) = \pi i \widehat{f}(0)$.

Previous results for rank one Riemannian symmetric spaces

Previous results for rank one Riemannian symmetric spaces

X = G/K Riemannian symmetric space of rank one

X = G/K Riemannian symmetric space of rank one

• $\sigma(\Delta) = [\rho^2, \infty)$ purely continuous \leadsto consider $\widetilde{R}(\zeta) = (\Delta - \zeta^2 - \rho^2)^{-1}$ $(\zeta \in \mathbb{C}_+)$

X = G/K Riemannian symmetric space of rank one

- $\sigma(\Delta) = [\rho^2, \infty)$ purely continuous \leadsto consider $\widetilde{R}(\zeta) = (\Delta \zeta^2 \rho^2)^{-1}$ $(\zeta \in \mathbb{C}_+)$
- Helgason's Fourier inversion formula:

$$f(x) = \int_{\mathbb{R}} (f * \varphi_{i\nu})(x) \frac{d\nu}{|c(i\nu)|^2},$$

where $\varphi_s \in C^{\infty}(X)$ is the nowhere vanishing family of spherical functions depending holomorphically on $s \in \mathbb{C}$ such that $\Delta \varphi_s = (\rho^2 - s^2)\varphi_s$, and $c(i\nu)$ Harish-Chandra's c-function (explicit by the Gindikin–Karpelevic formula)

X = G/K Riemannian symmetric space of rank one

- $\sigma(\Delta) = [\rho^2, \infty)$ purely continuous \leadsto consider $\widetilde{R}(\zeta) = (\Delta \zeta^2 \rho^2)^{-1}$ $(\zeta \in \mathbb{C}_+)$
- Helgason's Fourier inversion formula:

$$f(x) = \int_{\mathbb{R}} (f * \varphi_{i\nu})(x) \frac{d\nu}{|c(i\nu)|^2},$$

where $\varphi_s \in C^{\infty}(X)$ is the nowhere vanishing family of spherical functions depending holomorphically on $s \in \mathbb{C}$ such that $\Delta \varphi_s = (\rho^2 - s^2)\varphi_s$, and $c(i\nu)$ Harish-Chandra's c-function (explicit by the Gindikin–Karpelevic formula)

Theorem (Miatello-Will '00, Hilgert-Pasquale '09)

- $\widetilde{R}(\zeta): C_c^{\infty}(X) \to \mathcal{D}'(X)$ has a meromorphic extension to all $\zeta \in \mathbb{C}$.
- The resonances are located at $\zeta = -i(\rho + k)$ resp. $-i(\rho + 2k)$, $k \in \mathbb{N}$ (depending on X).
- For every resonance ζ_0 , the residue operator $\operatorname{Res}_{\zeta=\zeta_0}\widetilde{R}(\zeta)$ has finite rank, its image being the finite-dimensional G-representation of highest weight ...

X = G/K Riemannian symmetric space of rank one

- $\sigma(\Delta) = [\rho^2, \infty)$ purely continuous \leadsto consider $\widetilde{R}(\zeta) = (\Delta \zeta^2 \rho^2)^{-1}$ $(\zeta \in \mathbb{C}_+)$
- Helgason's Fourier inversion formula:

$$f(x) = \int_{\mathbb{R}} (f * \varphi_{i\nu})(x) \frac{d\nu}{|c(i\nu)|^2},$$

where $\varphi_s \in C^{\infty}(X)$ is the nowhere vanishing family of spherical functions depending holomorphically on $s \in \mathbb{C}$ such that $\Delta \varphi_s = (\rho^2 - s^2)\varphi_s$, and $c(i\nu)$ Harish-Chandra's c-function (explicit by the Gindikin–Karpelevic formula)

Theorem (Miatello–Will '00, Hilgert–Pasquale '09)

- $\widetilde{R}(\zeta): C_c^{\infty}(X) \to \mathcal{D}'(X)$ has a meromorphic extension to all $\zeta \in \mathbb{C}$.
- The resonances are located at $\zeta = -i(\rho + k)$ resp. $-i(\rho + 2k)$, $k \in \mathbb{N}$ (depending on X).
- For every resonance ζ_0 , the residue operator $\operatorname{Res}_{\zeta=\zeta_0}\widetilde{R}(\zeta)$ has finite rank, its image being the finite-dimensional G-representation of highest weight ...

Idea: Study the same problem for some pseudo-Riemannian symmetric spaces of rank one

Outline

- Motivation
- 2 Pseudo-Riemannian hyperbolic spaces
- Marmonic Analysis on pseudo-Riemannian hyperbolic spaces

Let $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}, \mathbb{H}\}$, $d = \dim_{\mathbb{R}} \mathbb{F} \in \{1, 2, 4\}$, and $p \ge 1$, $q \ge 0$.

Let $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}, \mathbb{H}\}$, $d = \dim_{\mathbb{R}} \mathbb{F} \in \{1, 2, 4\}$, and $p \ge 1$, $q \ge 0$.

Geometric definition

The quadratic form $Q(z) = -|z_1|^2 - \cdots - |z_p|^2 + |z_{p+1}|^2 + \cdots + |z_{p+q}|^2$ on \mathbb{F}^{p+q} induces a pseudo-Riemannian metric of signature (dq, d(p-1)) on

$$X = \{z \in \mathbb{F}^{p+q} : Q(z) = -1\}/U(1; \mathbb{F}),$$

where $U(1; \mathbb{F}) = \{z \in \mathbb{F} : |z| = 1\} \simeq O(1), U(1), \operatorname{Sp}(1) \text{ acts from the right.}$

Let $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}, \mathbb{H}\}$, $d = \dim_{\mathbb{R}} \mathbb{F} \in \{1, 2, 4\}$, and $p \ge 1$, $q \ge 0$.

Geometric definition

The quadratic form $Q(z)=-|z_1|^2-\cdots-|z_p|^2+|z_{p+1}|^2+\cdots+|z_{p+q}|^2$ on \mathbb{F}^{p+q} induces a pseudo-Riemannian metric of signature (dq,d(p-1)) on

$$X = \{z \in \mathbb{F}^{p+q} : Q(z) = -1\}/U(1; \mathbb{F}),$$

where $U(1; \mathbb{F}) = \{z \in \mathbb{F} : |z| = 1\} \simeq O(1)$, U(1), Sp(1) acts from the right.

Group-theoretic definition

 $G = U(p, q; \mathbb{F}) = \{g \in GL(p+q, \mathbb{F}) : Q(gz) = Q(z) \forall z \in \mathbb{F}^{p+q}\} = O(p, q), U(p, q), Sp(p, q)$ acts transitively on X from the left and leaves the metric invariant, so we can identify

$$X \simeq G/H = \mathsf{U}(p,q;\mathbb{F})/(\mathsf{U}(1;\mathbb{F}) \times \mathsf{U}(p-1,q;\mathbb{F})).$$

$$X = G/H = U(p, q; \mathbb{F})/(U(1; \mathbb{F}) \times U(p-1, q; \mathbb{F}))$$

$$X = G/H = U(p, q; \mathbb{F})/(U(1; \mathbb{F}) \times U(p-1, q; \mathbb{F}))$$

• X is compact if and only if q = 0:

$$X = U(p; \mathbb{F})/(U(1; \mathbb{F}) \times U(p-1; \mathbb{F})) \longrightarrow \text{assume } q \geq 1.$$

$$X = G/H = U(p, q; \mathbb{F})/(U(1; \mathbb{F}) \times U(p-1, q; \mathbb{F}))$$

• X is compact if and only if q = 0:

$$X = U(p; \mathbb{F})/(U(1; \mathbb{F}) \times U(p-1; \mathbb{F})) \longrightarrow \text{assume } q \geq 1.$$

• X is Riemannian if and only if p = 1:

$$X = U(1, q; \mathbb{F})/(U(1; \mathbb{F}) \times U(q; \mathbb{F})) \longrightarrow \text{assume } p \geq 2.$$

$$X = G/H = U(p, q; \mathbb{F})/(U(1; \mathbb{F}) \times U(p-1, q; \mathbb{F}))$$

• X is compact if and only if q = 0:

$$X = U(p; \mathbb{F})/(U(1; \mathbb{F}) \times U(p-1; \mathbb{F})) \longrightarrow \text{assume } q \geq 1.$$

• X is Riemannian if and only if p = 1:

$$X = U(1, q; \mathbb{F})/(U(1; \mathbb{F}) \times U(q; \mathbb{F})) \longrightarrow \text{assume } p \geq 2.$$

• For $p \ge 2$ and $q \ge 1$, X is a non-compact pseudo-Riemannian semisimple symmetric space of rank one.

$$X = G/H = U(p, q; \mathbb{F})/(U(1; \mathbb{F}) \times U(p-1, q; \mathbb{F}))$$

• X is compact if and only if q = 0:

$$X = U(p; \mathbb{F})/(U(1; \mathbb{F}) \times U(p-1; \mathbb{F})) \longrightarrow \text{assume } q \geq 1.$$

• X is Riemannian if and only if p = 1:

$$X = U(1, q; \mathbb{F})/(U(1; \mathbb{F}) \times U(q; \mathbb{F})) \longrightarrow \text{assume } p \geq 2.$$

- For $p \ge 2$ and $q \ge 1$, X is a non-compact pseudo-Riemannian semisimple symmetric space of rank one.
- $\mathbb{F} = \mathbb{R}$ and q = 1: $X \leftrightarrow \text{de Sitter space dS}^p$

$$X = G/H = U(p, q; \mathbb{F})/(U(1; \mathbb{F}) \times U(p-1, q; \mathbb{F}))$$

• X is compact if and only if q = 0:

$$X = U(p; \mathbb{F})/(U(1; \mathbb{F}) \times U(p-1; \mathbb{F})) \longrightarrow \text{assume } q \geq 1.$$

• X is Riemannian if and only if p = 1:

$$X = U(1, q; \mathbb{F})/(U(1; \mathbb{F}) \times U(q; \mathbb{F})) \longrightarrow \text{assume } p \geq 2.$$

- For $p \ge 2$ and $q \ge 1$, X is a non-compact pseudo-Riemannian semisimple symmetric space of rank one.
- $\mathbb{F} = \mathbb{R}$ and q = 1: $X \leftrightarrow \text{de Sitter space dS}^p$
- $\mathbb{F} = \mathbb{R}$ and p = 2: $X \leftrightarrow \mathsf{Anti}$ de Sitter space AdS^{q+1}

$$X = G/H = U(p, q; \mathbb{F})/(U(1; \mathbb{F}) \times U(p-1, q; \mathbb{F}))$$

• X is compact if and only if q = 0:

$$X = U(p; \mathbb{F})/(U(1; \mathbb{F}) \times U(p-1; \mathbb{F})) \longrightarrow \text{assume } q \geq 1.$$

• X is Riemannian if and only if p = 1:

$$X = U(1, q; \mathbb{F})/(U(1; \mathbb{F}) \times U(q; \mathbb{F})) \longrightarrow \text{assume } p \geq 2.$$

- For $p \ge 2$ and $q \ge 1$, X is a non-compact pseudo-Riemannian semisimple symmetric space of rank one.
- $\mathbb{F} = \mathbb{R}$ and q = 1: $X \leftrightarrow \text{de Sitter space dS}^p$
- $\mathbb{F} = \mathbb{R}$ and p = 2: $X \leftrightarrow \text{Anti de Sitter space } \text{AdS}^{q+1}$

Exceptional case

One more space along the same lines: $X = U(2,1;\mathbb{O})/U(1,1;\mathbb{O}) = F_{4(-20)}/\mathrm{Spin}_0(1,8)$

Outline

- Motivation
- Pseudo-Riemannian hyperbolic spaces
- 3 Harmonic Analysis on pseudo-Riemannian hyperbolic spaces

 $\mathbb{F} = \mathbb{R}, \mathbb{C}, \mathbb{H} \text{ and } p \geq 2, q \geq 1, \text{ or } \mathbb{F} = \mathbb{O} \text{ and } p = 2, q = 1. \text{ Write } d = \dim_{\mathbb{R}} \mathbb{F}.$

 $\mathbb{F}=\mathbb{R}, \mathbb{C}, \mathbb{H} \text{ and } p\geq 2, \ q\geq 1, \text{ or } \mathbb{F}=\mathbb{O} \text{ and } p=2, \ q=1. \text{ Write } d=\dim_{\mathbb{R}}\mathbb{F}.$

• $X = G/H = U(p,q;\mathbb{F})/(U(1;\mathbb{F}) \times U(p-1,q;\mathbb{F}))$ pseudo-Riemannian manifold $\leadsto G$ -invariant Laplace–Beltrami operator \square and G-invariant Riemannian measure μ

 $\mathbb{F}=\mathbb{R}, \mathbb{C}, \mathbb{H}$ and $p\geq 2$, $q\geq 1$, or $\mathbb{F}=\mathbb{O}$ and p=2, q=1. Write $d=\dim_{\mathbb{R}}\mathbb{F}$.

- $X = G/H = U(p, q; \mathbb{F})/(U(1; \mathbb{F}) \times U(p-1, q; \mathbb{F}))$ pseudo-Riemannian manifold \sim G-invariant Laplace-Beltrami operator \square and G-invariant Riemannian measure μ
- *Note:* □ is **not** elliptic, so eigenfunctions/-distributions are not necessarily smooth

 $\mathbb{F}=\mathbb{R}, \mathbb{C}, \mathbb{H} \text{ and } p\geq 2, \ q\geq 1, \text{ or } \mathbb{F}=\mathbb{O} \text{ and } p=2, \ q=1. \text{ Write } d=\dim_{\mathbb{R}}\mathbb{F}.$

- $X = G/H = U(p, q; \mathbb{F})/(U(1; \mathbb{F}) \times U(p-1, q; \mathbb{F}))$ pseudo-Riemannian manifold \rightsquigarrow *G*-invariant Laplace–Beltrami operator \square and *G*-invariant Riemannian measure μ
- ullet Note: \Box is **not** elliptic, so eigenfunctions/-distributions are not necessarily smooth
- \square acts as a self-adjoint operator in $L^2(X) = L^2(X, d\mu)$.

 $\mathbb{F}=\mathbb{R}, \mathbb{C}, \mathbb{H} \text{ and } p\geq 2, \ q\geq 1, \text{ or } \mathbb{F}=\mathbb{O} \text{ and } p=2, \ q=1. \text{ Write } d=\dim_{\mathbb{R}}\mathbb{F}.$

- $X = G/H = U(p, q; \mathbb{F})/(U(1; \mathbb{F}) \times U(p-1, q; \mathbb{F}))$ pseudo-Riemannian manifold \rightsquigarrow G-invariant Laplace-Beltrami operator \square and G-invariant Riemannian measure μ
- ullet Note: \Box is **not** elliptic, so eigenfunctions/-distributions are not necessarily smooth
- \square acts as a self-adjoint operator in $L^2(X) = L^2(X, d\mu)$.

Spectrum of \square in $L^2(X)$

$$\sigma(\square) = [\rho^2, \infty) \cup \{z_k : k \in \mathbb{N}\}\$$

with
$$ho = rac{d(p+q)-2}{2}$$
 and $ho^2 > z_0 > z_1 > \ldots > z_k o -\infty$

 $\mathbb{F}=\mathbb{R}, \mathbb{C}, \mathbb{H} \text{ and } p\geq 2, \ q\geq 1, \text{ or } \mathbb{F}=\mathbb{O} \text{ and } p=2, \ q=1. \text{ Write } d=\dim_{\mathbb{R}}\mathbb{F}.$

- $X = G/H = U(p, q; \mathbb{F})/(U(1; \mathbb{F}) \times U(p-1, q; \mathbb{F}))$ pseudo-Riemannian manifold \rightsquigarrow G-invariant Laplace-Beltrami operator \square and G-invariant Riemannian measure μ
- ullet Note: \Box is **not** elliptic, so eigenfunctions/-distributions are not necessarily smooth
- \square acts as a self-adjoint operator in $L^2(X) = L^2(X, d\mu)$.

Spectrum of \square in $L^2(X)$

$$\sigma(\square) = [\rho^2, \infty) \cup \{z_k : k \in \mathbb{N}\}$$

with
$$ho = rac{d(p+q)-2}{2}$$
 and $ho^2 > z_0 > z_1 > \ldots > z_k o -\infty$

$$\leadsto$$
 consider the resolvent $\widetilde{R}(\zeta) = (\Box - \rho^2 - \zeta^2)^{-1}$

Extension of the resolvent

$$\sigma(\Box) = [\rho^2, \infty) \cup \{z_k : k \in \mathbb{N}\}$$

Extension of the resolvent

$$\sigma(\Box) = [\rho^2, \infty) \cup \{z_k : k \in \mathbb{N}\}$$

Extension of the resolvent

$$\sigma(\Box) = [\rho^2, \infty) \cup \{z_k : k \in \mathbb{N}\}$$

Goal: Extend $\widetilde{R}(\zeta)$ from $\mathbb{C}_+ \setminus \{\zeta_k = i\sqrt{\rho^2 - z_k} : k \in \mathbb{N}\}$ across \mathbb{R} to all of \mathbb{C}

Theorem (Strichartz '73 and Rossmann '78 for $\mathbb{F} = \mathbb{R}$, Faraut '79 for general \mathbb{F})

For $f \in C_c^{\infty}(X)$:

$$f(x) = \frac{1}{4\pi} \int_{\mathbb{R}} (f * \varphi_{i\nu})(x) \frac{d\nu}{|c(i\nu)|^2} + \sum_{k} c_k \cdot (f * \psi_k)(x).$$

Theorem (Strichartz '73 and Rossmann '78 for $\mathbb{F}=\mathbb{R}$, Faraut '79 for general \mathbb{F})

For $f \in C_c^{\infty}(X)$:

$$f(x) = \frac{1}{4\pi} \int_{\mathbb{R}} (f * \varphi_{i\nu})(x) \frac{d\nu}{|c(i\nu)|^2} + \sum_{k} c_k \cdot (f * \psi_k)(x).$$

• $\varphi_s \in \mathcal{D}'(X)$ $(s \in \mathbb{C})$ is a family of spherical distributions on X depending holomorphically on s and satisfying $\Box \varphi_s = (\rho^2 - s^2)\varphi_s$.

Theorem (Strichartz '73 and Rossmann '78 for $\mathbb{F}=\mathbb{R}$, Faraut '79 for general \mathbb{F})

For $f \in C_c^{\infty}(X)$:

$$f(x) = \frac{1}{4\pi} \int_{\mathbb{R}} (f * \varphi_{i\nu})(x) \frac{d\nu}{|c(i\nu)|^2} + \sum_{k} c_k \cdot (f * \psi_k)(x).$$

- $\varphi_s \in \mathcal{D}'(X)$ $(s \in \mathbb{C})$ is a family of spherical distributions on X depending holomorphically on s and satisfying $\Box \varphi_s = (\rho^2 s^2)\varphi_s$.
- The space of spherical distributions on X can be of dimension 2 for some singular $s \in \mathbb{R}$. \rightsquigarrow either $\psi_k = \varphi_s$ for some $s \in \mathbb{R}$ or ψ_k, φ_s linearly independent spherical distributions.

Theorem (Strichartz '73 and Rossmann '78 for $\mathbb{F}=\mathbb{R}$, Faraut '79 for general \mathbb{F})

For $f \in C_c^{\infty}(X)$:

$$f(x) = \frac{1}{4\pi} \int_{\mathbb{R}} (f * \varphi_{i\nu})(x) \frac{d\nu}{|c(i\nu)|^2} + \sum_{k} c_k \cdot (f * \psi_k)(x).$$

- $\varphi_s \in \mathcal{D}'(X)$ $(s \in \mathbb{C})$ is a family of spherical distributions on X depending holomorphically on s and satisfying $\Box \varphi_s = (\rho^2 s^2)\varphi_s$.
- The space of spherical distributions on X can be of dimension 2 for some singular $s \in \mathbb{R}$. \rightsquigarrow either $\psi_k = \varphi_s$ for some $s \in \mathbb{R}$ or ψ_k, φ_s linearly independent spherical distributions.
- c(s) and c_k are explicit (quotients of gamma functions depending on s or k)

Theorem (Strichartz '73 and Rossmann '78 for $\mathbb{F} = \mathbb{R}$, Faraut '79 for general \mathbb{F})

For $f \in C_c^{\infty}(X)$:

$$f(x) = \frac{1}{4\pi} \int_{\mathbb{R}} (f * \varphi_{i\nu})(x) \frac{d\nu}{|c(i\nu)|^2} + \sum_k c_k \cdot (f * \psi_k)(x).$$

- $\varphi_s \in \mathcal{D}'(X)$ $(s \in \mathbb{C})$ is a family of spherical distributions on X depending holomorphically on s and satisfying $\Box \varphi_s = (\rho^2 s^2)\varphi_s$.
- The space of spherical distributions on X can be of dimension 2 for some singular $s \in \mathbb{R}$. \rightsquigarrow either $\psi_k = \varphi_s$ for some $s \in \mathbb{R}$ or ψ_k, φ_s linearly independent spherical distributions.
- c(s) and c_k are explicit (quotients of gamma functions depending on s or k)

Note: $f \mapsto f * \varphi_s$ can be written as the composition of a *Fourier transform* and a *Poisson transform*, both related to functions on the "boundary" of X:

$$\Xi = \{z \in \mathbb{F}^{p+q} \setminus \{0\} : Q(z) = 0\} / \mathsf{U}(1; \mathbb{F}).$$

Outline

- Motivation
- Pseudo-Riemannian hyperbolic spaces
- Marmonic Analysis on pseudo-Riemannian hyperbolic spaces
- 4 Resonances and residue representations

Meromorphic extension of the resolvent

Meromorphic extension of the resolvent

$$f(x) = \frac{1}{4\pi} \int_{\mathbb{R}} (f * \varphi_{i\nu})(x) \frac{d\nu}{|c(i\nu)|^2} + \sum_{k} c_k \cdot (f * \psi_k)(x)$$

$$f(x) = \frac{1}{4\pi} \int_{\mathbb{R}} (f * \varphi_{i\nu})(x) \frac{d\nu}{|c(i\nu)|^2} + \sum_{k} c_k \cdot (f * \psi_k)(x)$$

$$\Rightarrow \widetilde{R}(\zeta)f(x) = \frac{1}{4\pi} \underbrace{\int_{\mathbb{R}} \frac{(f * \varphi_{i\nu})(x)}{\nu^2 - \zeta^2} \frac{d\nu}{c(i\nu)c(-i\nu)}}_{\text{holomorphic in } \zeta \in \mathbb{C}_+} + \underbrace{\sum_{k} c_k \cdot \frac{(f * \psi_k)(x)}{\zeta^2 - \zeta_k^2}}_{\text{meromorphic in } \zeta \in \mathbb{C}_-}.$$

$$f(x) = \frac{1}{4\pi} \int_{\mathbb{R}} (f * \varphi_{i\nu})(x) \frac{d\nu}{|c(i\nu)|^2} + \sum_{k} c_k \cdot (f * \psi_k)(x)$$

$$\Rightarrow \widetilde{R}(\zeta)f(x) = \frac{1}{4\pi} \underbrace{\int_{\mathbb{R}} \frac{(f * \varphi_{i\nu})(x)}{\nu^2 - \zeta^2} \frac{d\nu}{c(i\nu)c(-i\nu)}}_{\text{holomorphic in } \zeta \in \mathbb{C}_+} + \underbrace{\sum_{k} c_k \cdot \frac{(f * \psi_k)(x)}{\zeta^2 - \zeta_k^2}}_{\text{meromorphic in } \zeta \in \mathbb{C}_-}.$$

We fix $\zeta \in \mathbb{C}_+$ and shift the contour of integration from \mathbb{R} to $\mathbb{R} - iN$, $N \gg 0$.

$$f(x) = \frac{1}{4\pi} \int_{\mathbb{R}} (f * \varphi_{i\nu})(x) \frac{d\nu}{|c(i\nu)|^2} + \sum_{k} c_k \cdot (f * \psi_k)(x)$$

$$\Rightarrow \widetilde{R}(\zeta)f(x) = \frac{1}{4\pi} \underbrace{\int_{\mathbb{R}} \frac{(f * \varphi_{i\nu})(x)}{\nu^2 - \zeta^2} \frac{d\nu}{c(i\nu)c(-i\nu)}}_{\text{holomorphic in } \zeta \in \mathbb{C}_+} + \underbrace{\sum_{k} c_k \cdot \frac{(f * \psi_k)(x)}{\zeta^2 - \zeta_k^2}}_{\text{meromorphic in } \zeta \in \mathbb{C}_-}.$$

We fix $\zeta \in \mathbb{C}_+$ and shift the contour of integration from \mathbb{R} to $\mathbb{R} - iN$, $N \gg 0$.

Technical difficulties

$$f(x) = \frac{1}{4\pi} \int_{\mathbb{R}} (f * \varphi_{i\nu})(x) \frac{d\nu}{|c(i\nu)|^2} + \sum_{k} c_k \cdot (f * \psi_k)(x)$$

$$\Rightarrow \widetilde{R}(\zeta)f(x) = \frac{1}{4\pi} \underbrace{\int_{\mathbb{R}} \frac{(f * \varphi_{i\nu})(x)}{\nu^2 - \zeta^2} \frac{d\nu}{c(i\nu)c(-i\nu)}}_{\text{holomorphic in } \zeta \in \mathbb{C}_+} + \underbrace{\sum_{k} c_k \cdot \frac{(f * \psi_k)(x)}{\zeta^2 - \zeta_k^2}}_{\text{meromorphic in } \zeta \in \mathbb{C}_-}.$$

We fix $\zeta \in \mathbb{C}_+$ and shift the contour of integration from \mathbb{R} to $\mathbb{R} - iN$, $N \gg 0$.

Technical difficulties

① Justify the contour shift (boundary terms at $\text{Im } \nu = \pm \infty$ vanish?)

$$f(x) = \frac{1}{4\pi} \int_{\mathbb{R}} (f * \varphi_{i\nu})(x) \frac{d\nu}{|c(i\nu)|^2} + \sum_{k} c_k \cdot (f * \psi_k)(x)$$

$$\Rightarrow \widetilde{R}(\zeta)f(x) = \frac{1}{4\pi} \underbrace{\int_{\mathbb{R}} \frac{(f * \varphi_{i\nu})(x)}{\nu^2 - \zeta^2} \frac{d\nu}{c(i\nu)c(-i\nu)}}_{\text{holomorphic in } \zeta \in \mathbb{C}_+} + \underbrace{\sum_{k} c_k \cdot \frac{(f * \psi_k)(x)}{\zeta^2 - \zeta_k^2}}_{\text{meromorphic in } \zeta \in \mathbb{C}_-}.$$

We fix $\zeta \in \mathbb{C}_+$ and shift the contour of integration from \mathbb{R} to $\mathbb{R} - iN$, $N \gg 0$.

Technical difficulties

- **①** Justify the contour shift (boundary terms at $\operatorname{Im} \nu = \pm \infty$ vanish?)
- Determine the residues arising from the contour shift

$$f(x) = \frac{1}{4\pi} \int_{\mathbb{R}} (f * \varphi_{i\nu})(x) \frac{d\nu}{|c(i\nu)|^2} + \sum_{k} c_k \cdot (f * \psi_k)(x)$$

$$\Rightarrow \widetilde{R}(\zeta)f(x) = \frac{1}{4\pi} \underbrace{\int_{\mathbb{R}} \frac{(f * \varphi_{i\nu})(x)}{\nu^2 - \zeta^2} \frac{d\nu}{c(i\nu)c(-i\nu)}}_{\text{holomorphic in } \zeta \in \mathbb{C}_+} + \underbrace{\sum_{k} c_k \cdot \frac{(f * \psi_k)(x)}{\zeta^2 - \zeta_k^2}}_{\text{meromorphic in } \zeta \in \mathbb{C}_-}.$$

We fix $\zeta \in \mathbb{C}_+$ and shift the contour of integration from \mathbb{R} to $\mathbb{R} - iN$, $N \gg 0$.

Technical difficulties

- ① Justify the contour shift (boundary terms at $\text{Im } \nu = \pm \infty$ vanish?)
- ② Determine the residues arising from the contour shift
- Study possible cancellation between the residues and the discrete part

$$\widetilde{R}(\zeta)f(x) = \frac{1}{4\pi} \int_{\mathbb{R}} \frac{(f * \varphi_{i\nu})(x)}{\nu^2 - \zeta^2} \frac{d\nu}{c(i\nu)c(-i\nu)} + \sum_k c_k \cdot \frac{(f * \psi_k)(x)}{\zeta^2 - \zeta_k^2}.$$

$$\widetilde{R}(\zeta)f(x) = \frac{1}{4\pi} \int_{\mathbb{R}} \frac{(f * \varphi_{i\nu})(x)}{\nu^2 - \zeta^2} \frac{d\nu}{c(i\nu)c(-i\nu)} + \sum_k c_k \cdot \frac{(f * \psi_k)(x)}{\zeta^2 - \zeta_k^2}.$$

Question

How does $\frac{(f*\varphi_{i\nu})(x)}{c(i\nu)c(-i\nu)}$ behave when $\text{Re}\,\nu\to\pm\infty$ and $|\operatorname{Im}\nu|\le N$?

$$\widetilde{R}(\zeta)f(x) = \frac{1}{4\pi} \int_{\mathbb{R}} \frac{(f * \varphi_{i\nu})(x)}{\nu^2 - \zeta^2} \frac{d\nu}{c(i\nu)c(-i\nu)} + \sum_k c_k \cdot \frac{(f * \psi_k)(x)}{\zeta^2 - \zeta_k^2}.$$

Question

How does $\frac{(f*\varphi_{i\nu})(x)}{c(i\nu)c(-i\nu)}$ behave when $\text{Re }\nu\to\pm\infty$ and $|\operatorname{Im}\nu|\leq N$?

 \leadsto Stirling's formula provides the exact growth as Re $u \to \pm \infty$

$$\widetilde{R}(\zeta)f(x) = \frac{1}{4\pi} \int_{\mathbb{R}} \frac{(f * \varphi_{i\nu})(x)}{\nu^2 - \zeta^2} \frac{d\nu}{c(i\nu)c(-i\nu)} + \sum_k c_k \cdot \frac{(f * \psi_k)(x)}{\zeta^2 - \zeta_k^2}.$$

Question

How does $\frac{(f*\varphi_{i\nu})(x)}{c(i\nu)c(-i\nu)}$ behave when $\text{Re}\,\nu\to\pm\infty$ and $|\operatorname{Im}\nu|\le N$?

- $c(i\nu)c(-i\nu)$ is a quotient of gamma functions in ν \rightarrow Stirling's formula provides the exact growth as $\text{Re}\,\nu\to\pm\infty$
- ② $f * \varphi_{i\nu}$ is the composition of a Fourier transform and a Poisson transform \rightsquigarrow need a Paley–Wiener type theorem for the Fourier transform on the symmetric space X

$$\widetilde{R}(\zeta)f(x) = \frac{1}{4\pi} \int_{\mathbb{R}} \frac{(f * \varphi_{i\nu})(x)}{\nu^2 - \zeta^2} \frac{d\nu}{c(i\nu)c(-i\nu)} + \sum_k c_k \cdot \frac{(f * \psi_k)(x)}{\zeta^2 - \zeta_k^2}.$$

Question

How does $\frac{(f*\varphi_{i\nu})(x)}{c(i\nu)c(-i\nu)}$ behave when $\text{Re }\nu\to\pm\infty$ and $|\operatorname{Im}\nu|\leq N$?

- \rightsquigarrow Stirling's formula provides the exact growth as Re $u \to \pm \infty$
- 2 $f * \varphi_{i\nu}$ is the composition of a Fourier transform and a Poisson transform
 - \rightarrow need a Paley-Wiener type theorem for the Fourier transform on the symmetric space X (for X Riemannian this is known by the work of Helgason)

$$\widetilde{R}(\zeta)f(x) = \frac{1}{4\pi} \int_{\mathbb{R}} \frac{(f * \varphi_{i\nu})(x)}{\nu^2 - \zeta^2} \frac{d\nu}{c(i\nu)c(-i\nu)} + \sum_k c_k \cdot \frac{(f * \psi_k)(x)}{\zeta^2 - \zeta_k^2}.$$

Question

How does $\frac{(f*\varphi_{i\nu})(x)}{c(i\nu)c(-i\nu)}$ behave when $\text{Re}\,\nu\to\pm\infty$ and $|\operatorname{Im}\nu|\le N$?

- $c(i\nu)c(-i\nu)$ is a quotient of gamma functions in ν \rightarrow Stirling's formula provides the exact growth as $\text{Re }\nu\to\pm\infty$
- 2 $f * \varphi_{i\nu}$ is the composition of a Fourier transform and a Poisson transform
 - \sim need a Paley–Wiener type theorem for the Fourier transform on the symmetric space X (for X Riemannian this is known by the work of Helgason)
 - \rightsquigarrow exists for a general semisimple symmetric space and f K-finite (vdBan–Schlichtkrull)

$$\widetilde{R}(\zeta)f(x) = \frac{1}{4\pi} \int_{\mathbb{R}} \frac{(f * \varphi_{i\nu})(x)}{\nu^2 - \zeta^2} \frac{d\nu}{c(i\nu)c(-i\nu)} + \sum_k c_k \cdot \frac{(f * \psi_k)(x)}{\zeta^2 - \zeta_k^2}.$$

Question

How does $\frac{(f*\varphi_{i\nu})(x)}{c(i\nu)c(-i\nu)}$ behave when $\operatorname{Re}\nu\to\pm\infty$ and $|\operatorname{Im}\nu|\le N$?

- $c(i\nu)c(-i\nu)$ is a quotient of gamma functions in ν \rightarrow Stirling's formula provides the exact growth as $\text{Re }\nu\to\pm\infty$
- 2 $f * \varphi_{i\nu}$ is the composition of a Fourier transform and a Poisson transform
 - \sim need a Paley–Wiener type theorem for the Fourier transform on the symmetric space X (for X Riemannian this is known by the work of Helgason)
 - \rightarrow exists for a general semisimple symmetric space and f K-finite (vdBan–Schlichtkrull)
 - \rightsquigarrow extend to $f \in C_c^{\infty}(X)$ (not necessarily K-finite)

$$\widetilde{R}(\zeta)f(x) = \frac{1}{4\pi} \int_{\mathbb{R}} \frac{(f * \varphi_{i\nu})(x)}{\nu^2 - \zeta^2} \frac{d\nu}{c(i\nu)c(-i\nu)} + \sum_k c_k \cdot \frac{(f * \psi_k)(x)}{\zeta^2 - \zeta_k^2}.$$

Question

How does $\frac{(f*\varphi_{i\nu})(x)}{c(i\nu)c(-i\nu)}$ behave when $\text{Re}\,\nu\to\pm\infty$ and $|\operatorname{Im}\nu|\le N$?

Proposition (F.–Spilioti '23)

Let $f \in C_c^{\infty}(X)$. For $\Omega \subseteq X$ compact, N > 0 and $M \in \mathbb{N}$ there exists C > 0 such that

$$\sup_{x \in \Omega} \frac{(f * \varphi_{i\nu})(x)}{c(i\nu)c(-i\nu)} \le C(1 + |\operatorname{Re} \nu|)^{-M} \quad \text{for } |\operatorname{Im} \nu| \le N.$$

$$\widetilde{R}(\zeta)f(x) = \frac{1}{4\pi} \int_{\mathbb{R}} \frac{(f * \varphi_{i\nu})(x)}{\nu^2 - \zeta^2} \frac{d\nu}{c(i\nu)c(-i\nu)} + \sum_k c_k \cdot \frac{(f * \psi_k)(x)}{\zeta^2 - \zeta_k^2}.$$

Question

How does $\frac{(f*\varphi_{i\nu})(x)}{c(i\nu)c(-i\nu)}$ behave when $\text{Re }\nu\to\pm\infty$ and $|\operatorname{Im}\nu|\leq N$?

Proposition (F.–Spilioti '23)

Let $f \in C_c^{\infty}(X)$. For $\Omega \subseteq X$ compact, N > 0 and $M \in \mathbb{N}$ there exists C > 0 such that

$$\sup_{x \in \Omega} \frac{(f * \varphi_{i\nu})(x)}{c(i\nu)c(-i\nu)} \le C(1 + |\operatorname{Re} \nu|)^{-M} \qquad \text{for } |\operatorname{Im} \nu| \le N.$$

Note: Only the easy part of a full Paley-Wiener type theorem.

$$\widetilde{R}(\zeta)f(x) = \frac{1}{4\pi} \int_{\mathbb{R}} \frac{(f * \varphi_{i\nu})(x)}{\nu^2 - \zeta^2} \frac{d\nu}{c(i\nu)c(-i\nu)} + \sum_k c_k \cdot \frac{(f * \psi_k)(x)}{\zeta^2 - \zeta_k^2}.$$

$$\widetilde{R}(\zeta)f(x) = \frac{1}{4\pi} \int_{\mathbb{R}} \frac{(f * \varphi_{i\nu})(x)}{\nu^2 - \zeta^2} \frac{d\nu}{c(i\nu)c(-i\nu)} + \sum_k c_k \cdot \frac{(f * \psi_k)(x)}{\zeta^2 - \zeta_k^2}.$$

- Where are the poles of $\frac{(f * \varphi_{i\nu})(x)}{c(i\nu)c(-i\nu)}$ in the region $\{\nu \in \mathbb{C} : -N \leq \operatorname{Im} \nu \leq 0\}$?
- What are the corresponding residues?

$$\widetilde{R}(\zeta)f(x) = \frac{1}{4\pi} \int_{\mathbb{R}} \frac{(f * \varphi_{i\nu})(x)}{\nu^2 - \zeta^2} \frac{d\nu}{c(i\nu)c(-i\nu)} + \sum_k c_k \cdot \frac{(f * \psi_k)(x)}{\zeta^2 - \zeta_k^2}.$$

- Where are the poles of $\frac{(f * \varphi_{i\nu})(x)}{c(i\nu)c(-i\nu)}$ in the region $\{\nu \in \mathbb{C} : -N \leq \operatorname{Im} \nu \leq 0\}$?
- What are the corresponding residues?
- $(f * \varphi_{i\nu})(x)$ holomorphic in $\nu \in \mathbb{C}$, but can be = 0 for some singular values of ν .

$$\widetilde{R}(\zeta)f(x) = \frac{1}{4\pi} \int_{\mathbb{R}} \frac{(f * \varphi_{i\nu})(x)}{\nu^2 - \zeta^2} \frac{d\nu}{c(i\nu)c(-i\nu)} + \sum_k c_k \cdot \frac{(f * \psi_k)(x)}{\zeta^2 - \zeta_k^2}.$$

- Where are the poles of $\frac{(f * \varphi_{i\nu})(x)}{c(i\nu)c(-i\nu)}$ in the region $\{\nu \in \mathbb{C} : -N \leq \operatorname{Im} \nu \leq 0\}$?
- What are the corresponding residues?
- $(f * \varphi_{i\nu})(x)$ holomorphic in $\nu \in \mathbb{C}$, but can be = 0 for some singular values of ν . (for X Riemannian the spherical functions are always non-zero)

$$\widetilde{R}(\zeta)f(x) = \frac{1}{4\pi} \int_{\mathbb{R}} \frac{(f * \varphi_{i\nu})(x)}{\nu^2 - \zeta^2} \frac{d\nu}{c(i\nu)c(-i\nu)} + \sum_k c_k \cdot \frac{(f * \psi_k)(x)}{\zeta^2 - \zeta_k^2}.$$

- Where are the poles of $\frac{(f * \varphi_{i\nu})(x)}{c(i\nu)c(-i\nu)}$ in the region $\{\nu \in \mathbb{C} : -N \leq \operatorname{Im} \nu \leq 0\}$?
- What are the corresponding residues?
- $(f * \varphi_{i\nu})(x)$ holomorphic in $\nu \in \mathbb{C}$, but can be = 0 for some singular values of ν . (for X Riemannian the spherical functions are always non-zero) \rightsquigarrow known by Faraut '79

$$\widetilde{R}(\zeta)f(x) = \frac{1}{4\pi} \int_{\mathbb{R}} \frac{(f * \varphi_{i\nu})(x)}{\nu^2 - \zeta^2} \frac{d\nu}{c(i\nu)c(-i\nu)} + \sum_k c_k \cdot \frac{(f * \psi_k)(x)}{\zeta^2 - \zeta_k^2}.$$

- Where are the poles of $\frac{(f * \varphi_{i\nu})(x)}{c(i\nu)c(-i\nu)}$ in the region $\{\nu \in \mathbb{C} : -N \leq \operatorname{Im} \nu \leq 0\}$?
- 2 What are the corresponding residues?
- $(f * \varphi_{i\nu})(x)$ holomorphic in $\nu \in \mathbb{C}$, but can be = 0 for some singular values of ν . (for X Riemannian the spherical functions are always non-zero) \rightsquigarrow known by Faraut '79
- $(c(i\nu)c(-i\nu))^{-1}$ has in general poles of order one and two

$$\widetilde{R}(\zeta)f(x) = \frac{1}{4\pi} \int_{\mathbb{R}} \frac{(f * \varphi_{i\nu})(x)}{\nu^2 - \zeta^2} \frac{d\nu}{c(i\nu)c(-i\nu)} + \sum_k c_k \cdot \frac{(f * \psi_k)(x)}{\zeta^2 - \zeta_k^2}.$$

- Where are the poles of $\frac{(f * \varphi_{i\nu})(x)}{c(i\nu)c(-i\nu)}$ in the region $\{\nu \in \mathbb{C} : -N \leq \operatorname{Im} \nu \leq 0\}$?
- 2 What are the corresponding residues?
- $(f * \varphi_{i\nu})(x)$ holomorphic in $\nu \in \mathbb{C}$, but can be = 0 for some singular values of ν . (for X Riemannian the spherical functions are always non-zero) \rightsquigarrow known by Faraut '79
- $(c(i\nu)c(-i\nu))^{-1}$ has in general poles of order one and two (for X Riemannian the poles are all of order one)

$$\widetilde{R}(\zeta)f(x) = \frac{1}{4\pi} \int_{\mathbb{R}} \frac{(f * \varphi_{i\nu})(x)}{\nu^2 - \zeta^2} \frac{d\nu}{c(i\nu)c(-i\nu)} + \sum_k c_k \cdot \frac{(f * \psi_k)(x)}{\zeta^2 - \zeta_k^2}.$$

- Where are the poles of $\frac{(f * \varphi_{i\nu})(x)}{c(i\nu)c(-i\nu)}$ in the region $\{\nu \in \mathbb{C} : -N \leq \operatorname{Im} \nu \leq 0\}$?
- 2 What are the corresponding residues?
- $(f * \varphi_{i\nu})(x)$ holomorphic in $\nu \in \mathbb{C}$, but can be = 0 for some singular values of ν . (for X Riemannian the spherical functions are always non-zero)
- $(c(i\nu)c(-i\nu))^{-1}$ has in general poles of order one and two (for X Riemannian the poles are all of order one)
 - \rightarrow the residue of the product $(c(i\nu)c(-i\nu))^{-1} \cdot (f * \varphi_{i\nu})(x)$ can be complicated (in the residue formula only the term of degree -1 in the Laurent expansion contributes)

$$\widetilde{R}(\zeta)f(x) = \frac{1}{4\pi} \int_{\mathbb{R}} \frac{(f * \varphi_{i\nu})(x)}{\nu^2 - \zeta^2} \frac{d\nu}{c(i\nu)c(-i\nu)} + \sum_{\nu} c_k \cdot \frac{(f * \psi_k)(x)}{\zeta^2 - \zeta_k^2}$$

MARCH 5, 2025

$$\widetilde{R}(\zeta)f(x) = \frac{1}{4\pi} \int_{\mathbb{R}} \frac{(f * \varphi_{i\nu})(x)}{\nu^2 - \zeta^2} \frac{d\nu}{c(i\nu)c(-i\nu)} + \sum_{k} c_k \cdot \frac{(f * \psi_k)(x)}{\zeta^2 - \zeta_k^2}$$

$$= \frac{1}{4\pi} \underbrace{\int_{\mathbb{R}-iN} \frac{(f * \varphi_{i\nu})(x)}{\nu^2 - \zeta^2} \frac{d\nu}{c(i\nu)c(-i\nu)}}_{\text{holomorphic in } |\operatorname{Im} \zeta| < N} + \sum_{k} c_k \cdot \frac{(f * \psi_k)(x)}{\zeta^2 - \zeta_k^2}$$

$$-\frac{i}{2} \sum_{\ell} \operatorname{Res}_{\nu = \nu_{\ell}} \frac{(f * \varphi_{i\nu})(x)}{\nu^2 - \zeta^2} \frac{1}{c(i\nu)c(-i\nu)}$$

$$\widetilde{R}(\zeta)f(x) = \frac{1}{4\pi} \int_{\mathbb{R}} \frac{(f * \varphi_{i\nu})(x)}{\nu^2 - \zeta^2} \frac{d\nu}{c(i\nu)c(-i\nu)} + \sum_{k} c_k \cdot \frac{(f * \psi_k)(x)}{\zeta^2 - \zeta_k^2}$$

$$= \frac{1}{4\pi} \underbrace{\int_{\mathbb{R}-iN} \frac{(f * \varphi_{i\nu})(x)}{\nu^2 - \zeta^2} \frac{d\nu}{c(i\nu)c(-i\nu)}}_{\text{holomorphic in } |\operatorname{Im} \zeta| < N} + \sum_{k} c_k \cdot \frac{(f * \psi_k)(x)}{\zeta^2 - \zeta_k^2}$$

$$-\frac{i}{2} \sum_{\ell} \operatorname{Res}_{\nu = \nu_{\ell}} \frac{(f * \varphi_{i\nu})(x)}{\nu^2 - \zeta^2} \frac{1}{c(i\nu)c(-i\nu)}$$

Question

What are the poles of the sum? Do poles of the first sum cancel with poles of the second sum?

$$\widetilde{R}(\zeta)f(x) = \frac{1}{4\pi} \int_{\mathbb{R}} \frac{(f * \varphi_{i\nu})(x)}{\nu^2 - \zeta^2} \frac{d\nu}{c(i\nu)c(-i\nu)} + \sum_{k} c_k \cdot \frac{(f * \psi_k)(x)}{\zeta^2 - \zeta_k^2}$$

$$= \frac{1}{4\pi} \underbrace{\int_{\mathbb{R}-iN} \frac{(f * \varphi_{i\nu})(x)}{\nu^2 - \zeta^2} \frac{d\nu}{c(i\nu)c(-i\nu)}}_{\text{holomorphic in } |\operatorname{Im} \zeta| < N} + \sum_{k} c_k \cdot \frac{(f * \psi_k)(x)}{\zeta^2 - \zeta_k^2}$$

$$-\frac{i}{2} \sum_{\ell} \operatorname{Res}_{\nu = \nu_{\ell}} \frac{(f * \varphi_{i\nu})(x)}{\nu^2 - \zeta^2} \frac{1}{c(i\nu)c(-i\nu)}$$

Question

What are the poles of the sum? Do poles of the first sum cancel with poles of the second sum?

• sometimes cancellation (e.g. for $\mathbb{F} = \mathbb{R}$ with p, q odd all poles at $\zeta = -\zeta_k$ cancel!)

$$\widetilde{R}(\zeta)f(x) = \frac{1}{4\pi} \int_{\mathbb{R}} \frac{(f * \varphi_{i\nu})(x)}{\nu^2 - \zeta^2} \frac{d\nu}{c(i\nu)c(-i\nu)} + \sum_{k} c_k \cdot \frac{(f * \psi_k)(x)}{\zeta^2 - \zeta_k^2}$$

$$= \frac{1}{4\pi} \underbrace{\int_{\mathbb{R}-iN} \frac{(f * \varphi_{i\nu})(x)}{\nu^2 - \zeta^2} \frac{d\nu}{c(i\nu)c(-i\nu)}}_{\text{holomorphic in } |\operatorname{Im} \zeta| < N} + \sum_{k} c_k \cdot \frac{(f * \psi_k)(x)}{\zeta^2 - \zeta_k^2}$$

$$-\frac{i}{2} \sum_{\ell} \operatorname{Res}_{\nu = \nu_{\ell}} \frac{(f * \varphi_{i\nu})(x)}{\nu^2 - \zeta^2} \frac{1}{c(i\nu)c(-i\nu)}$$

Question

What are the poles of the sum? Do poles of the first sum cancel with poles of the second sum?

- sometimes cancellation (e.g. for $\mathbb{F} = \mathbb{R}$ with p, q odd all poles at $\zeta = -\zeta_k$ cancel!)
- sometimes combination (e.g. for $\mathbb{F} = \mathbb{C}$, \mathbb{H} , \mathbb{O} almost all terms in the sums combine)

$$\widetilde{R}(\zeta)f(x) = \frac{1}{4\pi} \int_{\mathbb{R}} \frac{(f * \varphi_{i\nu})(x)}{\nu^2 - \zeta^2} \frac{d\nu}{c(i\nu)c(-i\nu)} + \sum_{k} c_k \cdot \frac{(f * \psi_k)(x)}{\zeta^2 - \zeta_k^2}$$

$$= \frac{1}{4\pi} \underbrace{\int_{\mathbb{R}-iN} \frac{(f * \varphi_{i\nu})(x)}{\nu^2 - \zeta^2} \frac{d\nu}{c(i\nu)c(-i\nu)}}_{\text{holomorphic in } |\operatorname{Im} \zeta| < N} + \sum_{k} c_k \cdot \frac{(f * \psi_k)(x)}{\zeta^2 - \zeta_k^2}$$

$$-\frac{i}{2} \sum_{\ell} \operatorname{Res}_{\nu = \nu_{\ell}} \frac{(f * \varphi_{i\nu})(x)}{\nu^2 - \zeta^2} \frac{1}{c(i\nu)c(-i\nu)}$$

Question

What are the poles of the sum? Do poles of the first sum cancel with poles of the second sum?

- sometimes cancellation (e.g. for $\mathbb{F} = \mathbb{R}$ with p, q odd all poles at $\zeta = -\zeta_k$ cancel!)
- sometimes combination (e.g. for $\mathbb{F} = \mathbb{C}$, \mathbb{H} , \mathbb{O} almost all terms in the sums combine)
- ullet sometimes double poles (e.g. for $\mathbb{F}=\mathbb{R}$ with p even and q odd)

Theorem (F.–Spilioti '23)

Theorem (F.-Spilioti '23)

① The resolvent $\widetilde{R}(\zeta): C_c^{\infty}(X) \to \mathcal{D}'(X)$ has a meromorphic continuation to all $\zeta \in \mathbb{C}$. $(\Rightarrow R(z) \text{ extends to a double cover of } \mathbb{C} \setminus \{\rho^2\}.)$

Theorem (F.-Spilioti '23)

- The resolvent $\widetilde{R}(\zeta): C_c^{\infty}(X) \to \mathcal{D}'(X)$ has a meromorphic continuation to all $\zeta \in \mathbb{C}$. $(\Rightarrow R(z)$ extends to a double cover of $\mathbb{C} \setminus \{\rho^2\}$.)
- ② The resonances are:
 - In the upper half plane: ζ_k , $k \in \mathbb{N}$.
 - On the real line: 0 iff $\mathbb{F} = \mathbb{R}$ and $p q \equiv 2(4)$ or $\mathbb{F} = \mathbb{C}$ and $p q \equiv 0(2)$.
 - In the lower half plane: -is, $s \in \rho + 2\mathbb{N}$ if either $\mathbb{F} = \mathbb{R}$ with p, q even or $\mathbb{F} = \mathbb{C}$, \mathbb{H} , \mathbb{O} For $\mathbb{F} = \mathbb{R}$ and p, q odd: no resonances

. . .

Theorem (F.-Spilioti '23)

- The resolvent $\widetilde{R}(\zeta): C_c^{\infty}(X) \to \mathcal{D}'(X)$ has a meromorphic continuation to all $\zeta \in \mathbb{C}$. $(\Rightarrow R(z) \text{ extends to a double cover of } \mathbb{C} \setminus \{\rho^2\}.)$
- The resonances are:
 - In the upper half plane: ζ_k , $k \in \mathbb{N}$.
 - On the real line: 0 iff $\mathbb{F} = \mathbb{R}$ and $p q \equiv 2(4)$ or $\mathbb{F} = \mathbb{C}$ and $p q \equiv 0(2)$.
 - In the lower half plane: -is, $s \in \rho + 2\mathbb{N}$ if either $\mathbb{F} = \mathbb{R}$ with p,q even or $\mathbb{F} = \mathbb{C}$, \mathbb{H} , \mathbb{O} For $\mathbb{F} = \mathbb{R}$ and p,q odd: no resonances
- **3** For each resonance ζ_0 , the image of the residue operator $\operatorname{Res}_{\zeta=\zeta_0}\widetilde{R}(\zeta):C_c^\infty(X)\to \mathcal{D}'(X)$ is an irreducible representation of $G=\operatorname{U}(p,q;\mathbb{F})$:
 - For $\zeta_0 = \zeta_k$, $k \in \mathbb{N}$, it is the discrete series representation $\{u \in L^2(X) : \Box u = z_k u\}$
 - For $\zeta_0 = 0$ it is a limit of discrete series.
 - If either $\mathbb{F} = \mathbb{R}$ with p, q even or $\mathbb{F} = \mathbb{C}$, \mathbb{H} , \mathbb{O} , then for $\zeta_0 = -is$, $s \in \rho + 2\mathbb{N}$, the residue representation is finite-dimensional of highest weight ...

...

