Date: May 21, 2018

Problem Set #6 Due: May 28, 2018

Submit your solution on Canvas.

Do not discuss these problems with other students. You should solve these problems on your own.

Problem 1. This problem consists of two parts.

I. We say that a sequence a_1, \ldots, a_n is balanced if $\sum_{i=1}^n a_i = 0$. Your goal is to design a dynamic programming algorithm that given a sequence of integer numbers x_1, \ldots, x_n finds a balanced sequence a_1, \ldots, a_n in which each a_i is -1, 0, or 1 that maximizes

$$\sum_{i=1}^{n} a_i x_i.$$

- 1. Describe a subproblem for this problem.
- 2. Write a recurrence formula (or algorithm) for computing the value of this subproblem and explain why this formula is correct.
- 3. Write a DP algorithm for the problem. The running time of the algorithm must be polynomial in n but you do not need to optimize the running time.

II. Design a dynamic programming algorithm that solves the previous problem for L-balanced sequences. We say that a sequence a_1, \ldots, a_n is L-balanced if for all t_1 and t_2 ($t_1 \le t_2$) we have

$$\sum_{i=t_1}^{t_2} a_i \le L.$$

The algorithm receives x_1, \ldots, x_n and L. Note that you cannot change the order of x_i .

- 1. Describe a subproblem for this problem.
- 2. Write a recurrence formula (or algorithm) for computing the value of this subproblem and explain why this formula is correct.
- 3. Write a DP algorithm for the problem. The running time of the algorithm must be polynomial in n but you do not need to optimize the running time.

Problem 2. Implement your algorithm from Problem 1 part I.

• int FindMaxBalancedSequence (const std::vector<int>& weights)

Array weights contains the set of weights x_i .

Instructions for the programming assignment. Download files:

- student_code_6.h this file should contain your solution.
- problem_solver_6.cpp this is the main file in the project (don't edit this file!).

- test_framework.h this is a library responsible for reading and writing data files (don't edit this file!)
- problem_set_6.dt this file contains test problems for your algorithm (don't edit this file!)

Place all files in a new folder/directory. Write your code in the function FindMaxBalancedSequence. Also, write your name in the function GetStudentName. Both functions are located in file student_code_6.h. Compile and run your code. To compile your code do the following.

- If you use GNU C++ compiler, type g++ -std=c++11 problem_solver_6.cpp -o problem_solver_6
- If you use CLang compiler, type clang++ -std=c++11 problem_solver_6.cpp -o problem_solver_6
- If you use Microsoft Visual C++ compiler, start Developer Command Prompt and type cl /EHsc problem_solver_6.cpp

Your compiler should be compatible with C++11. If you work in TLab, you need to start developer tools first: Type

• scl enable devtoolset-4 bash

Once you compile your code, start your program. Type ./problem_solver_6 on Unix or Mac and problem_solver_6.exe on Windows. Make sure that the executable is located in the same folder as file problem_set_6.dt. Your program will generate solution_6.dat that contains solutions to the problem_set_6.dt. If your code works correctly, you will get the following message:

- Problem set 6. Your algorithm solved all test problems correctly. Congratulations!
- Don't forget to submit your source code and file solution_6.dat via Canvas.

If your code makes a mistake, you may get a message like this:

• Problem set 6. Mistake in problem #15. Correct answer: 4. Your answer: 12

Finally, when your code is ready, submit files student_code_6.h and solution_6.dat via Canvas. Make sure that you are submitting the latest versions.

Remark: If you want to debug your code, please, type ./problem_solver_6 15 on Unix or Mac and problem_solver_6.exe 15 on Windows. This command will call your function only on one problem — the problem #15 and thus let you debug your code on the problem where your program erred. Note that this command will not generate or update solution_6.dat. So before submitting your solution, you need to run your program without any command line arguments.