Learning Algorithms

NEUR 531-603 Introduction to Computational Neuroscience

Curtis Baker

Primary Reading: Information Theory, Inference, and Learning Algorithms, by David MacKay mainly chapter 39; also some chapters 38, 44

This book is freely available to download: http://www.inference.phy.cam.ac.uk/mackay/itila/book.html

Individual chapters:

http://www.inference.phy.cam.ac.uk/mackay/itprnn/ps/

Neural Networks - a brief history

1950s-60s: McCollough-Pitts neuron; "feature-detector" neurons in optic tectum, A17

1960s-70s: Rosenblatt Perceptron: architecture (single-layer)
novelty at the time: learning; distributed memory; neural inspiration
Minsky & Papert critique, difficulty with multi-layer networks

1980s-90s: revenge of the neural networkers: back-prop, connectionism, etc concurrent influences: neural plasticity, NMDA receptors;

Donald Hebb; David Marr; Rumelhart, Hinton, Sejnowski

90s, 00s: rise of the machines: machine learning (neural or not) probabilistic models, statistical learning theory

Neural Networks

audiences

cognitive science - connectionist models

neural network modeling - from loose metaphors, to specific models (e.g., development of ocular domiance stripes in visual cortex), to a theoretical endeavour in its own right

computer science: robotics / machine intelligence, computer vision

example applications of "machine learning"

pattern recognition handwriting, fingerprints, faces, license plates

decoding

"mind-reading" with fMRI

model parameter-fitting system identification

finding patterns in data
cluster analysis
data mining
dimensionality reduction / data compression

Types of learning algorithms

1. supervised - data = inputs, targets (from a "teacher") classification / recognition output is discrete / categorical: e.g., Rosenblatt Perceptron regression / function approximation

output is analog / functional: e.g., parameter-fitting

2. unsupervised - data = set of multivariate values (without any "teacher") density estimation - clustering, EM algorithm, mixture of Gaussians

efficient coding of natural sensory info decorrelation, PCA, ICA

3. reinforcement

output is an "action", optimized to maximize a "reward" no access to examples of optimal or correct responses instead, "agent" must *discover* them

common concepts throughout:

can often (optionally) be cast as "neural networks" can often use as metaphorical neural models, *or* as data analysis tools optimization algorithms - minimize an "error function" or "objective function"

Classification / recognition

classify stimuli into categories

must be robust to variability in stimuli

dataset:

inputs (x's), e.g. photoreceptors / pixels, or higher-level features / receptive fields corresponding classifications (T's, i.e. the "teacher")

Rosenblatt Perceptron - an early "binary classifier" -> classify into 2 categories

Classification

Architecture: variables, and relationships between them

learning (up-date) rule: if correct (y=T):

$$\Delta w_i = \eta x_i$$

$$\Delta w_0 = \eta$$
if incorrect (y !=T):
$$\Delta w_i = 0$$

c Foedback from teacher

T = "teacher"

= -1 if u < 0

η ("eta") = learning rate parameter

Not generalizable

notes: weights initially random

sequential / on-line / stochastic mode

sensitive to η

problems: does not always converge; poor generalization; ad hoc (no underlying theory)

(DEMO: Rosenblatt Perceptron)

Classification with gradient descent

principle: specify an **error function**, which algorithm should try to minimize (in general, an "**objective function**")

dataset:

inputs (x's), e.g. photoreceptors / pixels, or higher-level features / receptive fields corresponding classifications (T's, i.e. the "teacher")

gradient descent:

min: $\delta E / \delta w = 0$ -> $dw_i = -\eta \delta E / \delta w_i$

Stope

η ("eta") = learning rate / "step size"

E = error (objective) function -> gradient

Classification with LMS gradient descent

architecture

objective function: $E = 1/2 \Sigma (T_j - y_j)^2$ "least mean squares"

where y_j = network response, on trial j T_j = "teacher", i.e. desired or correct respose

(for probabilistic model, with Gaussian noise, this objective function is optimal)

activation function: must be differentiable

-> logistic (sigmoid): $y(u) = 1/(1 + e^{-u})$

-> learning rule: $dw_i = -\eta \Sigma (T_j - y_i) x_i$

notes: for linear model, will always converge to unique minimum

best run in batch mode

problems: only gives good classification if categories are linearly separable

(DEMO: binary classifier with gradient descent)

Classification: extensions

more than two categories: multi-output networks

outputs - e.g. liklihoods for each category

beyond linear separability: multi-layer networks

learning rule: back-propagation

problems: multiple minima

how many hidden units?

too many -> over-fitting

Regularization

over-fitting problem:

weights eventually diverge to very large values,
giving only small improvements to error,
while degrading ability to generalize to new data

-> see MacKay, section 39.4 and Figure 39.5, 39.6 (-> Assignment)

regularization: modifiy error function, to place a "penalty" on large weight values sometimes called "weight decay"

$$E = 1/2 \Sigma (T_j - y_j)^2 + \alpha \Sigma W_i^2$$

For decay

 $\alpha = \frac{\text{hyperparameter (not part of "activity rule" or model architecture - it is a parameter of the learning algorithm)$

Regression / function approximation

general regression problem: y = f(x)

given input vector, x, and vector of outputs, y,

-> find mapping function, **f**

compare to classification:

outputs are analog, not categorical

"teacher": try to optimize prediction of y-values

applications:

find best-fitting parameters of a model system identification

linear regression: $y = w \cdot x$

dataset: $\mathbf{x} = \text{inputs: } \mathbf{x}_1, \mathbf{x}_2, ... \mathbf{x}_N$

 $\mathbf{y} = \text{outputs: } \mathbf{y}_1, \mathbf{y}_2, \dots \mathbf{y}_M$

-> find \mathbf{w} = weights: $w_{11}, w_{12}, ... w_{1M}, ... w_{N1}, ... w_{NM}$

Linear Regression

simplest case, single output: $y = \sum w_i x_i$

architecture

error function:

$$E = \Sigma (y_i - predicted y_i)^2$$

gradient descent:

min:
$$\delta E / \delta w = 0$$
 -> $dw_i = -\eta \delta E / \delta w_i$

η ("eta") = learning rate parameter

learning rule:

$$dw_i = \eta (y_i - predicted y_i) x_i$$

a "general linear model" (GLM) – guaranteed to have a unique minimum

(DEMO: linear regression with gradient descent)

Regression: extensions

faster algorithms to find optimum - e.g. scaled conjugate gradient

basis functions ("features") on front-end, e.g.:
Gaussian weightings
Gabor wavelets

regularization

Regularization

over-fitting problem: weights eventually diverge to very large values, giving only small improvements to error, while degrading ability to generalize to new data

simple example: fitting a high-order polynomial to a small number of data points

-> curve fits those few points extremely well, but that curve-fit handles *new* points very poorly

-> general issue of model complexity

regularization: modifiy error function, to place a "penalty" on large weight values

E =
$$\Sigma (y_i - \text{predicted } y_i)^2 + \alpha \Sigma w_i^2$$

 α = hyperparameter

sometimes called "ridge regression"

what value of α to use ? -> find best α , to best predict a "hold-back" dataset

0th Order Polynomial

1st Order Polynomial

3rd Order Polynomial

9th Order Polynomial

-> over-fitting!

Over-fitting

how to detect over-fitting:

see how well we can predict an independent ("hold-back") test dataset:

Root-Mean-Square (RMS) Error: $E_{\rm RMS} = \sqrt{2E(\mathbf{w}^{\star})/N}$

Data Set Size:

M = 9, i.e. fit 9th order polynomial

With more data, over-fitting becomes less of a problem.

But, gathering more data can sometimes be difficult or expensive ...

Regularization

penalize large coefficient values:

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

adapted from Bishop (2006), Fig.s 1.4, 1.7, 1.8

(DEMO: system identification with gradient descent)

Optional supplementary reading:

Theoretical Neuroscience Peter Dayan & L.F. Abbott; MIT Press, 2001

Chapter 8: Plasticity and Learning - e.g., 8.4, "Supervised Learning"

Chapter 10: Representational Learning

<u>Pattern Recognition and Machine Learning</u> Christopher Bishop suppl materials -> http://research.microsoft.com/en-us/um/people/cmbishop/PRML/index.htm

journal articles:

- •Wu MCK, David SV, Gallant JL (2006) Complete functional characterization of sensory neurons by system identification. Ann Rev Neurosci 29:477-505.
- •Nishimoto S, Gallant JL (2011) A three-dimensional spatiotemporal receptive field model explains responses of area MT neurons to naturalistic movies. <u>J Neurosci</u> 31:14551-14564.
- •Talebi V, Baker CL (2012) Natural versus synthetic stimuli for estimating receptive field models: A comparison of predictive robustness. J Neurosci 32:1560-1576.

related courses at McGill: "Machine Learning" (COMP-652) - Doina Precup

On-line resources:

NetLab - http://www.ncrg.aston.ac.uk/netlab/

STRFlab - http://strflab.berkeley.edu/

Bruno Olshausen's course (UCBerkeley): redwood.berkeley.edu/wiki/VS298:_Neural_Computation

Michael Jordan's course (UCBerkeley): www.cs.berkeley.edu/%7Easimma/294-fall06/

Andrew Moore's slides (CMU): www.autonlab.org/tutorials/

Wikipedia pages: Neural Networks, Machine Learning, ...