Dependent Session Protocols in Separation Logic from First Principles

A Separation Logic Proof Pearl

Jules Jacobs Radboud University Nijmegen Jonas Kastberg Hinrichsen

Aarhus University

Robbert Krebbers

Radboud University Nijmegen

Message Passing Concurrency

Message passing concurrency:

- ▶ Well-structured approach to writing concurrent programs
- ► Threads as services and clients
- ▶ Used in Go, Scala, C#, and more

Message Passing Concurrency

Message passing concurrency:

- ► Well-structured approach to writing concurrent programs
- ► Threads as services and clients
- ▶ Used in Go, Scala, C#, and more

Bi-directional session channels:

${\tt new_chan}()$	Create channel and return two endpoints c1 and c2
$c.\mathtt{send}(v)$	Send value <i>v</i> over endpoint <i>c</i>
$c.\mathtt{recv}()$	Receive and return next inbound value on endpoint c

Message Passing Concurrency

Message passing concurrency:

- ▶ Well-structured approach to writing concurrent programs
- ► Threads as services and clients
- ▶ Used in Go, Scala, C#, and more

Bi-directional session channels:

${\tt new_chan}()$	Create channel and return two endpoints c1 and c2
$c.\mathtt{send}(v)$	Send value <i>v</i> over endpoint <i>c</i>
$c.\mathtt{recv}()$	Receive and return next inbound value on endpoint c

Example Program:

```
let (c_1, c_2) = new_chan() in
fork {let x = c_2.recv() in c_2.send(x + 2)};
c_1.send(40); let y = c_1.recv() in assert(y = 42)
```

Example Program:

```
let (c_1, c_2) = new_chan() in
fork {let x = c_2.recv() in c_2.send(x + 2)};
c_1.send(40); let y = c_1.recv() in assert(y = 42)
```

Example Program:

```
let (c_1, c_2) = new_chan() in
fork {let x = c_2.recv() in c_2.send(x + 2)};
c_1.send(40); let y = c_1.recv() in assert(y = 42)
```

Safety	Functional Correctness
Type systems	Program logics

Example Program:

```
let (c_1, c_2) = new_chan() in
fork {let x = c_2.recv() in c_2.send(x + 2)};
c_1.send(40); let y = c_1.recv() in assert(y = 42)
```

Safety	Functional Correctness
Type systems	Program logics
Automatic checking	Manual proofs

Example Program:

```
let (c_1, c_2) = new_chan() in
fork {let x = c_2.recv() in c_2.send(x + 2)};
c_1.send(40); let y = c_1.recv() in assert(y = 42)
```

Safety	Functional Correctness
Type systems	Program logics
Automatic checking	Manual proofs
Session types	(Actris) dependent session protocols

Example Program:

```
let (c_1, c_2) = new_chan() in
fork {let x = c_2.recv() in c_2.send(x + 2)};
c_1.send(40); let y = c_1.recv() in assert(y = 42)
```

Goal: Prove crash-freedom (safety) and verify asserts (functional correctness)

Safety	Functional Correctness
Type systems	Program logics
Automatic checking	Manual proofs
Session types	(Actris) dependent session protocols
$!\mathbb{Z}.?\mathbb{Z}.$ end	! (40). ? (42). end

! is send, ? is receive

Example Program:

```
let (c_1, c_2) = new_chan() in
fork {let x = c_2.recv() in c_2.send(x + 2)};
c_1.send(40); let y = c_1.recv() in assert(y = 42)
```

Goal: Prove crash-freedom (safety) and verify asserts (functional correctness)

Safety	Functional Correctness
Type systems	Program logics
Automatic checking	Manual proofs
Session types	(Actris) dependent session protocols
$!\mathbb{Z}$. $?\mathbb{Z}$. end	! (40). ?(42). end
Minimalist versions exists	Actris employs heavy machinery
(Kobayashi et al., Dardha et al.)	Minimalist version is the goal of this work

! is send, ? is receive

Example Program:

```
let (c_1, c_2) = new_chan() in
fork {let x = c_2.recv() in c_2.send(x + 2)};
c_1.send(40); let y = c_1.recv() in assert(y = 42)
```

$$c_1 \longrightarrow !\langle 40 \rangle. ?\langle 42 \rangle.$$
 end $c_2 \longrightarrow ?\langle 40 \rangle. !\langle 42 \rangle.$ end

Example Program:

```
let (c_1, c_2) = new_chan() in
fork {let x = c_2.recv() in c_2.send(x + 2)};
c_1.send(40); let y = c_1.recv() in assert(y = 42)
```

$$c_1 \longrightarrow !(x : \mathbb{Z}) \langle x \rangle. ?\langle x + 2 \rangle.$$
 end $c_2 \longrightarrow ?(x : \mathbb{Z}) \langle x \rangle. !\langle x + 2 \rangle.$ end

Example Program:

```
let (c_1, c_2) = \text{new\_chan}() in
fork {let \ell = c_2.\text{recv}() in \ell \leftarrow (! \ell + 2); c_2.\text{send}(())};
let \ell = \text{ref} 40 in c_1.\text{send}(\ell); c_1.\text{recv}(); \text{assert}(! \ell = 42)
```

$$c_1 \longrightarrow ?$$
 $c_2 \longrightarrow ?$

Example Program:

```
let (c_1, c_2) = new_chan() in
fork {let \ell = c_2.recv() in \ell \leftarrow (! \ell + 2); c_2.send(())};
let \ell = \text{ref } 40 \text{ in } c_1.\text{send}(\ell); c_1.\text{recv}(); \text{assert}(! \ell = 42)
```

```
c_1 \mapsto !(\ell : \mathsf{Loc}, x : \mathbb{Z}) \langle \ell \rangle \{\ell \mapsto x\}. ?\langle () \rangle \{\ell \mapsto (x+2)\}. end c_2 \mapsto ?(\ell : \mathsf{Loc}, x : \mathbb{Z}) \langle \ell \rangle \{\ell \mapsto x\}. !\langle () \rangle \{\ell \mapsto (x+2)\}. end
```

Example Program:

```
let (c_1, c_2) = \text{new\_chan}() in
fork {let \ell = c_2.\text{recv}() in \ell \leftarrow (! \ell + 2); c_2.\text{send}(())};
let \ell = \text{ref} 40 in c_1.\text{send}(\ell); c_1.\text{recv}(); \text{assert}(! \ell = 42)
```

Actris dependent session protocols:

```
c_1 \rightarrowtail !(\ell : \mathsf{Loc}, x : \mathbb{Z}) \langle \ell \rangle \{ \ell \mapsto x \}. ?\langle () \rangle \{ \ell \mapsto (x+2) \}.  end c_2 \rightarrowtail ?(\ell : \mathsf{Loc}, x : \mathbb{Z}) \langle \ell \rangle \{ \ell \mapsto x \}. !\langle () \rangle \{ \ell \mapsto (x+2) \}.  end
```

Actris has many more features:

- ▶ Built on top of the Iris higher-order concurrent separation logic framework
 - ► Allows reasoning about mutable references, locks, and more
- Advanced message passing features
 - ► Channels as messages, recursive protocols, subprotocols (cf. subtyping)
- ► Fully mechanised on top of Iris in Coq

Observation: Actris is founded upon heavy machinery

- ► Implementation via custom bi-directional buffers
- ▶ Protocols via custom step-indexed recursive domain equation
- Specifications and proofs via custom higher-order ghost state

Observation: Actris is founded upon heavy machinery

- ► Implementation via custom bi-directional buffers
- ▶ Protocols via custom step-indexed recursive domain equation
- Specifications and proofs via custom higher-order ghost state

Question: How far can we get with a simpler approach?

Observation: Actris is founded upon heavy machinery

- ► Implementation via custom bi-directional buffers
- ▶ Protocols via custom step-indexed recursive domain equation
- Specifications and proofs via custom higher-order ghost state

Question: How far can we get with a simpler approach?

Start from first principles:

- ► Mutable references *instead of* bi-directional buffers
- ► Higher-order invariants *instead of* custom recursive domain equation
- ► First-order ghost state *instead of* higher-order ghost state

Observation: Actris is founded upon heavy machinery

- ► Implementation via custom bi-directional buffers
- ▶ Protocols via custom step-indexed recursive domain equation
- Specifications and proofs via custom higher-order ghost state

Question: How far can we get with a simpler approach?

Start from first principles:

- ► Mutable references *instead of* bi-directional buffers
- ► Higher-order invariants *instead of* custom recursive domain equation
- ► First-order ghost state *instead of* higher-order ghost state

All of these features are readily available in Iris!

MiniActris: a Proof Pearl Version of Actris

Key ideas:

- 1. Build one-shot channels on mutable references
 - ▶ With higher-order one-shot protocols via Iris's higher-order invariants
- 2. Build session channels on one-shot channels (Kobayashi et al., Dardha et al.)
 - ► With dependent session protocols via nested one-shot protocols
- 3. Mechanise solution on top of the Iris mechanisation in Coq

MiniActris: a Proof Pearl Version of Actris

Key ideas:

- 1. Build one-shot channels on mutable references
 - ▶ With higher-order one-shot protocols via Iris's higher-order invariants
- 2. Build session channels on one-shot channels (Kobayashi et al., Dardha et al.)
 - With dependent session protocols via nested one-shot protocols
- 3. Mechanise solution on top of the Iris mechanisation in Coq

Contributions:

- 1. A three layered approach to the implementation and specification of channels
 - lacktriangledown One-shot channels ightarrow functional session channels ightarrow imperative session channels
- 2. Recovering Actris-style specifications for imperative session channels
 - Without custom recursive domain equations or higher-order ghost state
- 3. A minimalistic mechanisation in less than 1000 lines of Coq & Iris code

Outline of Presentation

In the rest of this talk we will cover:

- ► Layer 1: One-shot channels
- ► Layer 2: Functional session channels
- ► Layer 3: Imperative session channels
- ► Additional features
- Concluding remarks

Layer 1: One-Shot Channels

Layer 1: One-Shot Channels (Implementation)

One-shot channel primitives:

```
\mathbf{new1}() \triangleq \mathbf{ref None}
\mathbf{send1} c \, v \triangleq c \leftarrow \mathbf{Some} \, v
\mathbf{recv1} \, c \triangleq \mathbf{match} \, ! \, c \, \mathbf{with}
\mid \mathbf{None} \implies \mathbf{recv1} \, c
\mid \mathbf{Some} \, v \implies \mathbf{free} \, c; \, v
\mathbf{end}
```

Example program:

```
let c = \text{new1}() in
fork {let \ell = \text{ref} 42 \text{ in send1} c \ell};
let \ell = \text{recv1} c \text{ in assert}(! \ell = 42)
```

Protocols and channel permissions:

```
Protocols: p := (Send, \Phi) \mid (Recv, \Phi) where \Phi : Val \rightarrow Prop
```

Duality:
$$\overline{(\mathsf{Send},\Phi)} \triangleq (\mathsf{Recv},\Phi)$$
 $\overline{(\mathsf{Recv},\Phi)} \triangleq (\mathsf{Send},\Phi)$

Permission: $c \rightarrow p$

Protocols and channel permissions:

```
Protocols: p := (Send, \Phi) \mid (Recv, \Phi) where \Phi : Val \rightarrow Prop
```

Duality: $\overline{(\mathsf{Send},\Phi)} \triangleq (\mathsf{Recv},\Phi)$ $\overline{(\mathsf{Recv},\Phi)} \triangleq (\mathsf{Send},\Phi)$

Permission: $c \rightarrow p$

(Hoare triple) specifications:

$$\begin{split} & \{\mathsf{True}\} \ \, \mathbf{new1}\,() \ \, \{c.\,c \rightarrowtail p * c \rightarrowtail \overline{p}\} \\ & \{c \rightarrowtail (\mathsf{Send}, \Phi) * \Phi \, v\} \ \, \mathbf{send1}\,c \, v \ \, \{\mathsf{True}\} \\ & \{c \rightarrowtail (\mathsf{Recv}, \Phi)\} \ \, \mathbf{recv1}\,c \ \, \{v.\,\Phi \, v\} \end{split}$$

Layer 1: One-Shot Channels (Proof of Example)

Example program:

```
let c = \text{new1}() in
fork {let \ell = \text{ref } 42 \text{ in send1} c \ell};
let \ell = \text{recv1} c \text{ in assert}(! \ell = 42)
```

Protocol:

$$\Phi \ v \triangleq v \mapsto 42$$
$$c \mapsto (\mathsf{Send}, \Phi)$$
$$c \mapsto (\mathsf{Recv}, \Phi)$$

Specifications:

$$\begin{split} & \{\mathsf{True}\} \ \ \mathsf{new1}\,() \ \ \{c.\,c \rightarrowtail p * c \rightarrowtail \overline{p}\} \\ & \{c \rightarrowtail (\mathsf{Send}, \Phi) * \Phi \ v\} \ \ \mathsf{send1}\, c \ v \ \ \{\mathsf{True}\} \\ & \{c \rightarrowtail (\mathsf{Recv}, \Phi)\} \ \ \mathsf{recv1}\, c \ \ \{v.\,\Phi \ v\} \end{split}$$

$$c \rightarrowtail (tag, \Phi) \triangleq \dots$$

One-shot specifications proven sound with standard Iris methodology.

1. Model channel as a state transition system

$$c \rightarrowtail (tag, \Phi) \triangleq \dots$$

One-shot specifications proven sound with standard Iris methodology.

1. Model channel as a state transition system

$$c \rightarrowtail (tag, \Phi) \triangleq \dots$$

- 1. Model channel as a state transition system
- 2. Capture each state as a disjunct of an invariant

$$c \rightarrowtail (tag, \Phi) \triangleq \dots$$

- 1. Model channel as a state transition system
- 2. Capture each state as a disjunct of an invariant

$$c \rightarrowtail (tag, \Phi) \triangleq \dots$$

- 1. Model channel as a state transition system
- 2. Capture each state as a disjunct of an invariant
- 3. Determine resource ownership of each state

$$c \rightarrowtail (tag, \Phi) \triangleq \dots$$

- 1. Model channel as a state transition system
- 2. Capture each state as a disjunct of an invariant
- 3. Determine resource ownership of each state

chan_inv
$$c \triangleq (\underbrace{c \mapsto \text{None}}_{\text{(1) initial state}}) \vee (\underbrace{\exists v. c \mapsto \text{Some } v}_{\text{(2) message sent, but not yet received}}) \vee (\underbrace{}_{\text{(3) final state}})$$

$$c \rightarrowtail (tag, \Phi) \triangleq \dots$$

- 1. Model channel as a state transition system
- 2. Capture each state as a disjunct of an invariant
- **3**. Determine resource ownership of each state

chan_inv
$$c \Phi \triangleq (\underbrace{c \mapsto \text{None}}) \vee (\underbrace{\exists v. c \mapsto \text{Some } v * \Phi v}) \vee (\underbrace{(3) \text{ final state}})$$

$$c \rightarrowtail (tag, \Phi) \triangleq \dots$$

One-shot specifications proven sound with standard Iris methodology.

- 1. Model channel as a state transition system
- 2. Capture each state as a disjunct of an invariant
- 3. Determine resource ownership of each state
- **4**. Encode send/recv transition as transferring a token to the invariant

$$c \ \Phi \triangleq (\underbrace{c \mapsto \text{None}}_{\text{(1) initial state}}) \lor (\underbrace{\exists v. \ c \mapsto \text{Some} \ v * \Phi \ v}_{\text{(2) message sent, but not yet received}}) \lor (\underbrace{}_{\text{(3) final state}})$$

Send

Sent

Start

Recv

Recv'd

$$c \rightarrowtail (tag, \Phi) \triangleq \dots$$

One-shot specifications proven sound with standard Iris methodology.

- 1. Model channel as a state transition system
- 2. Capture each state as a disjunct of an invariant
- 3. Determine resource ownership of each state
- 4. Encode send/recv transition as transferring a token to the invariant

chan_inv
$$\gamma_s$$
 $c \Phi \triangleq (\underbrace{c \mapsto \text{None}}_{\text{(1) initial state}}) \vee (\underbrace{\exists v. c \mapsto \text{Some } v * \Phi \ v * \text{tok } \gamma_s)}_{\text{(2) message sent, but not yet received}}) \vee (\underbrace{}_{\text{(3) final state}})$

Send

Start

Recv

Recv'd

$$c \rightarrowtail (tag, \Phi) \triangleq \dots$$

One-shot specifications proven sound with standard Iris methodology.

- 1. Model channel as a state transition system
- 2. Capture each state as a disjunct of an invariant
- 3. Determine resource ownership of each state
- 4. Encode send/recv transition as transferring a token to the invariant

$$\mathsf{chan_inv} \ \gamma_s \ \gamma_r \ c \ \Phi \triangleq (\underbrace{c \mapsto \mathsf{None}}_{(1) \ \mathsf{initial} \ \mathsf{state}}) \lor (\underbrace{\exists v. \ c \mapsto \mathsf{Some} \ v \ast \Phi \ v \ast \mathsf{tok} \ \gamma_s}_{(2) \ \mathsf{message} \ \mathsf{sent,} \ \mathsf{but} \ \mathsf{not} \ \mathsf{yet} \ \mathsf{received}}_{(3) \ \mathsf{final} \ \mathsf{state}}) \lor (\underbrace{\mathsf{tok} \ \gamma_s \ast \mathsf{tok} \ \gamma_r}_{(3) \ \mathsf{final} \ \mathsf{state}})$$

Send

Start

Recv

Recv'd

$$c \rightarrowtail (tag, \Phi) \triangleq \dots$$

One-shot specifications proven sound with standard Iris methodology.

- 1. Model channel as a state transition system
- 2. Capture each state as a disjunct of an invariant
- 3. Determine resource ownership of each state
- 4. Encode send/recv transition as transferring a token to the invariant
- 5. Give sender/receiver access to the invariant and their respective token

$$\mathsf{chan_inv} \ \gamma_s \ \gamma_r \ c \ \Phi \triangleq (\underbrace{c \mapsto \mathsf{None}}_{(1) \ \mathsf{initial} \ \mathsf{state}}) \lor (\underbrace{\exists v. \ c \mapsto \mathsf{Some} \ v \ast \Phi \ v \ast \mathsf{tok} \ \gamma_s}_{(2) \ \mathsf{message} \ \mathsf{sent,} \ \mathsf{but} \ \mathsf{not} \ \mathsf{yet} \ \mathsf{received}}_{(3) \ \mathsf{final} \ \mathsf{state}}) \lor (\underbrace{\mathsf{tok} \ \gamma_s \ast \mathsf{tok} \ \gamma_r}_{(3) \ \mathsf{final} \ \mathsf{state}})$$

Send

Start

Recv

Recv'd

$$c \rightarrowtail (tag, \Phi) \triangleq \dots$$

One-shot specifications proven sound with standard Iris methodology.

- 1. Model channel as a state transition system
- 2. Capture each state as a disjunct of an invariant
- 3. Determine resource ownership of each state
- 4. Encode send/recv transition as transferring a token to the invariant
- 5. Give sender/receiver access to the invariant and their respective token

$$\mathsf{chan_inv} \ \gamma_s \ \gamma_r \ c \ \Phi \triangleq (\underbrace{c \mapsto \mathsf{None}}_{(1) \ \mathsf{initial} \ \mathsf{state}}) \lor (\underbrace{\exists v. \ c \mapsto \mathsf{Some} \ v \ast \Phi \ v \ast \mathsf{tok} \ \gamma_s}_{(2) \ \mathsf{message} \ \mathsf{sent}, \ \mathsf{but} \ \mathsf{not} \ \mathsf{yet} \ \mathsf{received}}_{(3) \ \mathsf{final} \ \mathsf{state}}) \lor (\underbrace{\mathsf{tok} \ \gamma_s \ast \mathsf{tok} \ \gamma_r}_{(3) \ \mathsf{final} \ \mathsf{state}})$$

Send

Start

Recv

Recv'd

$$c \mapsto (tag, \Phi) \triangleq \exists \gamma_s, \gamma_r.$$
 chan_inv $\gamma_s \gamma_r c \Phi$...

One-shot specifications proven sound with standard Iris methodology.

- 1. Model channel as a state transition system
- 2. Capture each state as a disjunct of an invariant
- 3. Determine resource ownership of each state
- 4. Encode send/recv transition as transferring a token to the invariant
- 5. Give sender/receiver access to the invariant and their respective token

$$\mathsf{chan_inv} \ \gamma_s \ \gamma_r \ c \ \Phi \triangleq (\underbrace{c \mapsto \mathsf{None}}_{(1) \ \mathsf{initial} \ \mathsf{state}}) \lor (\underbrace{\exists v. \ c \mapsto \mathsf{Some} \ v \ast \Phi \ v \ast \mathsf{tok} \ \gamma_s}_{(2) \ \mathsf{message} \ \mathsf{sent}, \ \mathsf{but} \ \mathsf{not} \ \mathsf{yet} \ \mathsf{received}}_{(3) \ \mathsf{final} \ \mathsf{state}})$$

Send

Start

Recv

Sent

Recv'd

$$c \rightarrowtail (tag, \Phi) \triangleq \exists \gamma_s, \gamma_r.$$
 chan_inv $\gamma_s \gamma_r c \Phi$ * \rightarrow \begin{cases} \text{tok } \gamma_s & \text{if } tag = Send \text{tok } \gamma_r & \text{if } tag = Recv

Layer 2: Functional Session Channels

Functional session channel primitives (Kobayashi et al., Dardha et al.):

$$new() \triangleq new1()$$

 $send c v \triangleq let c' = new1() in send1c(v,c'); c'$
 $recv c \triangleq recv1c$

Functional session channel primitives (Kobayashi et al., Dardha et al.):

$$new() \triangleq new1()$$

 $send c v \triangleq let c' = new1() in send1c(v,c'); c'$
 $recv c \triangleq recv1c$

Functional session channel primitives (Kobayashi et al., Dardha et al.):

$$new() \triangleq new1()$$

 $send c v \triangleq let c' = new1() in send1c(v,c'); c'$
 $recv c \triangleq recv1c$

Functional session channel primitives (Kobayashi et al., Dardha et al.):

$$new() \triangleq new1()$$

 $send c v \triangleq let c' = new1() in send1c(v,c'); c'$
 $recv c \triangleq recv1c$

Functional session channel primitives (*Kobayashi et al.*, *Dardha et al.*):

$$new() \triangleq new1()$$

 $send c v \triangleq let c' = new1() in send1c(v,c'); c'$
 $recv c \triangleq recv1c$

Functional session channel primitives (Kobayashi et al., Dardha et al.):

$$new() \triangleq new1()$$

 $send c v \triangleq let c' = new1() in send1c(v,c'); c'$
 $recv c \triangleq recv1c$

Functional session channel primitives (Kobayashi et al., Dardha et al.):

$$new() \triangleq new1()$$

 $sendcv \triangleq letc' = new1() in send1c(v,c'); c'$
 $recvc \triangleq recv1c$

Functional session channel primitives (*Kobayashi et al.*, *Dardha et al.*):

$$new() \triangleq new1()$$

 $sendcv \triangleq letc' = new1() in send1c(v,c'); c'$
 $recvc \triangleq recv1c$

Functional session channel primitives (*Kobayashi et al.*, *Dardha et al.*):

$$new() \triangleq new1()$$

 $send c v \triangleq let c' = new1() in send1c(v,c'); c'$
 $recv c \triangleq recv1c$

Functional session channel primitives:

```
\begin{split} & \texttt{new}\,() \triangleq \texttt{new1}\,() \\ & \texttt{send}\,c\,v \triangleq \texttt{let}\,c' = \texttt{new1}\,()\,\texttt{in}\,\texttt{send1}\,c\,(v,c');\,\,c' \\ & \texttt{recv}\,c \triangleq \texttt{recv1}\,c \end{split}
```

Functional session channel primitives:

$$new() \triangleq new1()$$

 $send c v \triangleq let c' = new1() in send1c(v,c'); c'$
 $recv c \triangleq recv1c$

$$!\langle w \rangle. p \triangleq (\text{Send}, \lambda(v, c'). v = w * c' \rightarrowtail \overline{p})$$

Functional session channel primitives:

$$new() \triangleq new1()$$

 $send c v \triangleq let c' = new1() in send1c(v,c'); c'$
 $recv c \triangleq recv1c$

$$!\langle w\rangle.p\triangleq(\mathsf{Send},\lambda(v,c').v=w*c'\rightarrowtail\overline{p})$$

Functional session channel primitives:

$$new() \triangleq new1()$$

 $send c v \triangleq let c' = new1() in send1c(v,c'); c'$
 $recv c \triangleq recv1c$

$$!\langle w \rangle. p \triangleq (Send, \lambda(v, c'). v = w * c' \rightarrowtail \overline{p})$$

Functional session channel primitives:

$$new() \triangleq new1()$$

 $send c v \triangleq let c' = new1() in send1c(v,c'); c'$
 $recv c \triangleq recv1c$

$$!\langle w \rangle. p \triangleq (\text{Send}, \lambda(v, c'). v = w * c' \longrightarrow \overline{p})$$

Functional session channel primitives:

$$new() \triangleq new1()$$

 $send c v \triangleq let c' = new1() in send1c(v,c'); c'$
 $recv c \triangleq recv1c$

$$!(x:\tau)\langle w\rangle\{P\}. p \triangleq (\mathsf{Send}, \lambda(v,c'). \exists (x:\tau). v = (w \ x) * P \ x * c' \rightarrowtail \overline{p \ x})$$

Functional session channel primitives:

$$new() \triangleq new1()$$

 $send c v \triangleq let c' = new1() in send1c(v,c'); c'$
 $recv c \triangleq recv1c$

$$!(x:\tau)\langle w\rangle\{P\}. p \triangleq (\mathsf{Send}, \lambda(v,c'). \exists (x:\tau). v = (w \ x) * P \ x * c' \rightarrowtail \overline{p \ x})$$

Functional session channel primitives:

$$new() \triangleq new1()$$

 $send c v \triangleq let c' = new1() in send1c(v,c'); c'$
 $recv c \triangleq recv1c$

$$!(x:\tau)\langle w\rangle\{P\}. p \triangleq (\mathsf{Send}, \lambda(v,c'). \exists (x:\tau). v = (w \ x) * P \ x * c' \rightarrowtail \overline{p \ x})$$

Functional session channel primitives:

$$new() \triangleq new1()$$

 $send c v \triangleq let c' = new1() in send1c(v,c'); c'$
 $recv c \triangleq recv1c$

$$!(x:\tau)\langle w\rangle\{P\}.p\triangleq \underbrace{(\mathsf{Send},\lambda(v,c').\exists(x:\tau).v=(w\;x)*P\;x*c'\rightarrowtail\overline{p\;x})}_{?(x:\tau)\langle w\rangle\{P\}.p}\triangleq \underbrace{!(x:\tau)\langle w\rangle\{P\}.\overline{p}}_{}$$

Functional session channel primitives:

```
new() \triangleq new1()

send c v \triangleq let c' = new1() in send1c(v,c'); c'

recv c \triangleq recv1c
```

Dependent session protocols:

$$!(x:\tau)\langle w\rangle\{P\}.p\triangleq \underbrace{(\mathsf{Send},\lambda(v,c').\exists(x:\tau).v=(w\;x)*P\;x*c'\mapsto\overline{p\;x})}_{?(x:\tau)\langle w\rangle\{P\}.p}\triangleq \underbrace{!(x:\tau)\langle w\rangle\{P\}.p}_{p}$$

$$\{ \text{True} \} \ \ \textbf{new} () \ \{ c. \ c \rightarrowtail p * c \rightarrowtail \overline{p} \}$$

$$\{ c \rightarrowtail (!(x:\tau) \langle w \rangle \{P\}.p) * P \ t \} \ \ \textbf{send} \ c \ (w \ t) \ \{ c'. \ c' \rightarrowtail p \ t \}$$

$$\{ c \rightarrowtail (?(x:\tau) \langle w \rangle \{P\}.p) \} \ \ \textbf{recv} \ c \ \{ (v,c'). \ \exists (x:\tau). \ v = (w \ x) * P \ x * c' \rightarrowtail p \ x \}$$

Functional session channel primitives:

```
new() \triangleq new1()

send c v \triangleq let c' = new1() in send1c(v,c'); c'

recv c \triangleq recv1c
```

Dependent session protocols:

$$!(x:\tau)\langle w\rangle\{P\}.p\triangleq \underbrace{(\mathsf{Send},\lambda(v,c').\exists(x:\tau).v=(w\;x)*P\;x*c'\mapsto\overline{p\;x})}_{?(x:\tau)\langle w\rangle\{P\}.p}\triangleq \underbrace{!(x:\tau)\langle w\rangle\{P\}.p}_{p}$$

$$\{ \text{True} \} \ \ \textbf{new} () \ \{ c. \ c \rightarrowtail p * c \rightarrowtail \overline{p} \}$$

$$\{ c \rightarrowtail (!(x:\tau) \langle w \rangle \{P\}.p) * P \ t \} \ \ \textbf{send} \ c \ (w \ t) \ \{ c'. \ c' \rightarrowtail p \ t \}$$

$$\{ c \rightarrowtail (?(x:\tau) \langle w \rangle \{P\}.p) \} \ \ \textbf{recv} \ c \ \{ (v,c'). \ \exists (x:\tau). \ v = (w \ x) * P \ x * c' \rightarrowtail p \ x \}$$

Functional session channel primitives:

```
new() \triangleq new1()

send c v \triangleq let c' = new1() in send1c(v,c'); c'

recv c \triangleq recv1c
```

Dependent session protocols:

```
!(x:\tau)\langle w\rangle\{P\}.p\triangleq \underbrace{(\mathsf{Send},\lambda(v,c').\exists(x:\tau).v=(w\;x)*P\;x*c'\rightarrowtail\overline{p\;x})}_{?(x:\tau)\langle w\rangle\{P\}.p}\triangleq \underbrace{!(x:\tau)\langle w\rangle\{P\}.\overline{p}}_{}
```

```
 \{ \text{True} \} \ \ \textbf{new} () \ \{ c. \ c \rightarrowtail p * c \rightarrowtail \overline{p} \} 
 \{ c \rightarrowtail (!(x:\tau) \langle w \rangle \{P\}.p) * P \ t \} \ \ \textbf{send} \ c \ (w \ t) \ \{ c'. \ c' \rightarrowtail p \ t \} 
 \{ c \rightarrowtail (?(x:\tau) \langle w \rangle \{P\}.p) \} \ \ \textbf{recv} \ c \ \{ (v,c'). \ \exists (x:\tau). \ v = (w \ x) * P \ x * c' \rightarrowtail p \ x \}
```

Functional session channel primitives:

```
new() \triangleq new1()

send c v \triangleq let c' = new1() in send1c(v,c'); c'

recv c \triangleq recv1c
```

Dependent session protocols:

```
! (x : \tau) \langle w \rangle \{P\}. p \triangleq (\text{Send}, \lambda(v, c'). \exists (x : \tau). v = (w \ x) * P \ x * c' \mapsto \overline{p} \ \overline{x}) ? (x : \tau) \langle w \rangle \{P\}. p \equiv (\text{Recv}, \lambda(v, c'). \exists (x : \tau). v = (w \ x) * P \ x * c' \mapsto p \ x)
```

```
 \{ \text{True} \} \ \ \textbf{new} () \ \{ c. \ c \rightarrowtail p * c \rightarrowtail \overline{p} \} 
 \{ c \rightarrowtail (!(x:\tau) \langle w \rangle \{P\}.p) * P \ t \} \ \ \textbf{send} \ c \ (w \ t) \ \{ c'. \ c' \rightarrowtail p \ t \} 
 \{ c \rightarrowtail (?(x:\tau) \langle w \rangle \{P\}.p) \} \ \ \textbf{recv} \ c \ \{ (v,c'). \ \exists (x:\tau). \ v = (w \ x) * P \ x * c' \rightarrowtail p \ x \}
```

Observation: Dependent session protocol definitions rely on higher-order invariants

Observation: Dependent session protocol definitions rely on higher-order invariants

Recall the following definitions:

$$c \rightarrowtail p \triangleq \exists \gamma_s, \gamma_r. \boxed{\text{chan_inv } \gamma_s \ \gamma_r \ c \ p.2} \dots$$

! $(x : \tau) \langle w \rangle \{P\}. p \triangleq (\text{Send}, \lambda(v, c'). \exists (x : \tau). c' \rightarrowtail \overline{p \ x} \dots)$

Observation: Dependent session protocol definitions rely on higher-order invariants

Recall the following definitions:

$$c \rightarrowtail p \triangleq \exists \gamma_s, \gamma_r. \boxed{\text{chan_inv } \gamma_s \ \gamma_r \ c \ p.2} \dots$$

$$!(x : \tau) \langle w \rangle \{P\}. p \triangleq (\text{Send}, \lambda(v, c'). \ \exists (x : \tau). \ c' \rightarrowtail \overline{px} \dots)$$

$$c \rightarrowtail !(x : \tau) \langle w \rangle \{P\}.p$$

Observation: Dependent session protocol definitions rely on higher-order invariants

Recall the following definitions:

$$c \rightarrowtail p \triangleq \exists \gamma_s, \gamma_r. \boxed{\text{chan_inv } \gamma_s \ \gamma_r \ c \ p.2} \dots$$

$$!(x : \tau) \langle w \rangle \{P\}. \ p \triangleq (\text{Send}, \lambda(v, c'). \ \exists (x : \tau). \ c' \rightarrowtail \overline{p \ x} \dots)$$

$$c \rightarrowtail !(x : \tau) \langle w \rangle \{P\}.p \equiv \exists \gamma_s, \gamma_r. \text{ chan_inv } \gamma_s \gamma_r c (!(x : \tau) \langle w \rangle \{P\}.p).2 \dots$$

Observation: Dependent session protocol definitions rely on higher-order invariants

Recall the following definitions:

$$c \rightarrowtail p \triangleq \exists \gamma_s, \gamma_r. \boxed{\text{chan_inv } \gamma_s \ \gamma_r \ c \ p.2} \dots$$

$$!(x : \tau) \langle w \rangle \{P\}. p \triangleq (\text{Send}, \lambda(v, c'). \ \exists (x : \tau). \ c' \rightarrowtail \overline{px} \dots)$$

$$\begin{array}{ll} c \rightarrowtail ! (x : \tau) \langle w \rangle \{P\}. p &\equiv \\ \exists \gamma_s, \gamma_r. & \begin{array}{ll} \operatorname{chan_inv} \ \gamma_s \ \gamma_r \ c \ (! \ (x : \tau) \ \langle w \rangle \{P\}. p).2 \end{array} \dots &\equiv \\ \exists \gamma_s, \gamma_r. & \begin{array}{ll} \operatorname{chan_inv} \ \gamma_s \ \gamma_r \ c \ (\lambda(v,c'). \ \exists (x : \tau). \ c' \rightarrowtail \overline{p \ x} \ldots) \end{array} \end{array} \end{array}$$

Observation: Dependent session protocol definitions rely on higher-order invariants

Recall the following definitions:

$$c \rightarrowtail p \triangleq \exists \gamma_s, \gamma_r. \boxed{\text{chan_inv } \gamma_s \ \gamma_r \ c \ p.2} \dots$$

$$!(x : \tau) \langle w \rangle \{P\}. p \triangleq (\text{Send}, \lambda(v, c'). \ \exists (x : \tau). \ c' \rightarrowtail \overline{px} \dots)$$

$$\begin{array}{l} c \rightarrowtail ! (x : \tau) \langle w \rangle \{P\}. p \equiv \\ \exists \gamma_s, \gamma_r. \begin{array}{l} \text{chan_inv } \gamma_s \ \gamma_r \ c \ (! \ (x : \tau) \ \langle w \rangle \{P\}. p).2 \end{array} \dots \equiv \\ \exists \gamma_s, \gamma_r. \begin{array}{l} \text{chan_inv } \gamma_s \ \gamma_r \ c \ (\lambda(v,c'). \ \exists (x : \tau). \ c' \rightarrowtail \overline{p \ x} \dots) \end{array} \dots \equiv \\ \exists \gamma_s, \gamma_r. \begin{array}{l} \text{chan_inv } \gamma_s \ \gamma_r \ c \ (\lambda(v,c'). \ \exists (x : \tau). \ \exists \gamma_s, \gamma_r. \ \hline \\ \text{chan_inv } \gamma_s \ \gamma_r \ c' \ (\overline{p \ x}).2 \end{array} \dots \end{array} \right] \dots \end{array}$$

Observation: Dependent session protocol definitions rely on higher-order invariants

Recall the following definitions:

$$c \rightarrowtail p \triangleq \exists \gamma_s, \gamma_r. \boxed{\text{chan_inv } \gamma_s \ \gamma_r \ c \ p.2} \dots$$

$$!(x : \tau) \langle w \rangle \{P\}. p \triangleq (\text{Send}, \lambda(v, c'). \ \exists (x : \tau). \ c' \rightarrowtail \overline{px} \dots)$$

Unfolding the definitions yield the following nesting:

$$\begin{array}{ll} c \rightarrowtail ! (x : \tau) \langle w \rangle \{P\}. p \equiv \\ \exists \gamma_s, \gamma_r. \begin{array}{l} \text{chan_inv } \gamma_s \ \gamma_r \ c \ (! \ (x : \tau) \ \langle w \rangle \{P\}. p).2 \end{array} \dots \equiv \\ \exists \gamma_s, \gamma_r. \begin{array}{l} \text{chan_inv } \gamma_s \ \gamma_r \ c \ (\lambda(v,c'). \ \exists (x : \tau). \ c' \rightarrowtail \overline{px} \dots) \end{array} \dots \equiv \\ \exists \gamma_s, \gamma_r. \begin{array}{l} \text{chan_inv } \gamma_s \ \gamma_r \ c \ (\lambda(v,c'). \ \exists (x : \tau). \ \exists \gamma_s, \gamma_r. \ \hline \\ \text{chan_inv } \gamma_s \ \gamma_r \ c' \ (\overline{px}).2 \end{array} \dots \end{array} \right] \dots$$

Nested invariants are readily supported by Iris

Layer 3: Imperative Channels

Layer 3: Imperative Channels (Motivation and Implementation)

Functional channels are inconvenient:

let c = send c v in recv c

We instead want:

 $c.\mathtt{send}(v); c.\mathtt{recv}()$

Layer 3: Imperative Channels (Motivation and Implementation)

Functional channels are inconvenient:

$$let c = send c v in recv c$$

We instead want:

$$c.\mathtt{send}(v); c.\mathtt{recv}()$$

Solution: Imperative channels

$$\begin{split} \mathbf{new_chan}\,() &\triangleq \mathbf{let}\,c = \mathbf{new}\,()\,\,\mathbf{in}\,(\mathbf{ref}\,c,\mathbf{ref}\,c) \\ c.\mathbf{send}(v) &\triangleq c \leftarrow \mathbf{send}\,(!\,c)\,v \\ c.\mathbf{recv}() &\triangleq \mathbf{let}\,(v,c') = \mathbf{recv}\,\,!\,c\,\,\mathbf{in}\,c \leftarrow c';v \end{split}$$

Layer 3: Imperative Channels (Motivation and Implementation)

Functional channels are inconvenient:

```
let c = send c v in recv c
```

We instead want:

$$c.\mathtt{send}(v); c.\mathtt{recv}()$$

Solution: Imperative channels

```
\begin{aligned} \mathbf{new\_chan}\,() &\triangleq \mathbf{let}\,c = \mathbf{new}\,()\,\mathbf{in}\,(\mathbf{ref}\,c,\mathbf{ref}\,c) \\ c.\mathbf{send}(v) &\triangleq c \leftarrow \mathbf{send}\,(!\,c)\,v \\ c.\mathbf{recv}() &\triangleq \mathbf{let}\,(v,c') = \mathbf{recv}\,!\,c\,\mathbf{in}\,c \leftarrow c';v \end{aligned}
```

With this we can write the program from the introduction:

```
let (c_1, c_2) = \text{new\_chan}() in fork \{\text{let } \ell = c_2.\text{recv}() \text{ in } \ell \leftarrow (! \ell + 2); c_2.\text{send}(())\}; let \ell = \text{ref} 40 \text{ in } c_1.\text{send}(\ell); c_1.\text{recv}(); \text{assert}(! \ell = 42)
```

Layer 3: Imperative Channels (Specifications)

Imperative channel endpoint ownership:

$$c \stackrel{\mathsf{imp}}{\rightarrowtail} p \triangleq \exists (c' : \mathsf{Val}). \ c \mapsto c' * c' \longmapsto p$$

Layer 3: Imperative Channels (Specifications)

Imperative channel endpoint ownership:

$$c \stackrel{\mathsf{imp}}{\rightarrowtail} p \triangleq \exists (c' : \mathsf{Val}). \ c \mapsto c' * c' \longmapsto p$$

Actris specifications:

$$\{ \text{True} \} \ \ \textbf{new_chan} \ () \ \{ (c_1, c_2). \ c_1 \stackrel{\text{imp}}{\rightarrowtail} p * c_2 \stackrel{\text{imp}}{\rightarrowtail} \overline{p} \}$$

$$\{ c \stackrel{\text{imp}}{\longmapsto} (!(x:\tau) \langle w \rangle \{P\}. p) * P \ t \} \ \ c. \textbf{send}(w \ t) \ \{ c \stackrel{\text{imp}}{\longmapsto} p \ t \}$$

$$\{ c \stackrel{\text{imp}}{\longmapsto} (?(x:\tau) \langle w \rangle \{P\}. p) \} \ \ c. \textbf{recv}() \ \{ v. \ \exists (x:\tau). \ v = (w \ x) * P \ x * c \stackrel{\text{imp}}{\longmapsto} p \ x \}$$

Layer 3: Imperative Channels (Specifications)

Imperative channel endpoint ownership:

$$c \stackrel{\mathsf{imp}}{\rightarrowtail} p \triangleq \exists (c' : \mathsf{Val}). \ c \mapsto c' * c' \longmapsto p$$

Actris specifications:

$$\{ \text{True} \} \ \ \textbf{new_chan} \ () \ \{ (c_1, c_2). \ c_1 \stackrel{\text{imp}}{\rightarrowtail} p * c_2 \stackrel{\text{imp}}{\rightarrowtail} \overline{p} \}$$

$$\{ c \stackrel{\text{imp}}{\longmapsto} (!(x:\tau) \langle w \rangle \{P\}. p) * P \ t \} \ \ c. \textbf{send}(w \ t) \ \{ c \stackrel{\text{imp}}{\longmapsto} p \ t \}$$

$$\{ c \stackrel{\text{imp}}{\longmapsto} (?(x:\tau) \langle w \rangle \{P\}. p) \} \ \ c. \textbf{recv}() \ \{ v. \ \exists (x:\tau). \ v = (w \ x) * P \ x * c \stackrel{\text{imp}}{\longmapsto} p \ x \}$$

Proof of specifications is trivial reasoning about references

Layer 3: Imperative Channels (Proof of Example)

Program from introduction:

```
let(c_1, c_2) = new\_chan() in
fork {let \ell = c_2.recv() in \ell \leftarrow (!/+2); c_2.send(())}:
let \ell = \text{ref } 40 \text{ in } c_1.\text{send}(\ell); c_1.\text{recv}(\ell); \text{ assert}(\ell = 42)
```

Protocols:1

$$c_1 \stackrel{\text{imp}}{\rightarrowtail} !(\ell : \text{Loc}, x : \mathbb{Z}) \langle \ell \rangle \{\ell \mapsto x\}.? \langle () \rangle \{\ell \mapsto (x+2)\}.$$
 ?end $c_2 \stackrel{\text{imp}}{\rightarrowtail} ?(\ell : \text{Loc}, x : \mathbb{Z}) \langle \ell \rangle \{\ell \mapsto x\}.! \langle () \rangle \{\ell \mapsto (x+2)\}.$!end

Actris specifications:
$$\{ \text{True} \} \text{ new_chan} () \ \{ (c_1, c_2). \ c_1 \xrightarrow{\text{imp}} p * c_2 \xrightarrow{\text{imp}} \overline{p} \}$$

$$\{ c \xrightarrow{\text{imp}} (! \ (x : \tau) \ \langle w \rangle \{P\}. \ p) * P \ t \} \ c. \text{send} (w \ t) \ \{ c \xrightarrow{\text{imp}} p \ t \}$$

$$\{ c \xrightarrow{\text{imp}} (? (x : \tau) \ \langle w \rangle \{P\}. \ p) \} \ c. \text{recv} () \ \{ v. \ \exists (x : \tau). \ v = (w \ x) * P \ x * c \xrightarrow{\text{imp}} p \ x \}$$

Additional Features of MiniActris

Additional Features of MiniActris

Recursive protocols: $\mu p. ! \langle 40 \rangle. ? \langle 42 \rangle. p$

Variance subprotocols: $?(n : \mathbb{N}) \langle n \rangle . ! \langle n+2 \rangle . p \subseteq ?(x : \mathbb{Z}) \langle x \rangle . ! \langle x+2 \rangle . p$

Channel deallocation: traditional (symmetric, asymmetric) & new (closing sends)

Additional Features of MiniActris

Recursive protocols: $\mu p. ! \langle 40 \rangle. ? \langle 42 \rangle. p$

Variance subprotocols: $?(n : \mathbb{N}) \langle n \rangle . ! \langle n+2 \rangle . p \subseteq ?(x : \mathbb{Z}) \langle x \rangle . ! \langle x+2 \rangle . p$

Channel deallocation: traditional (symmetric, asymmetric) & new (closing sends)

Everything mechanized in less than 1000 lines of Coq!

Concluding Remarks

MiniActris

This work (ICFP'23)

Asynchronous channels

Dependent session protocols

Iris separation logic

Channels as messages

Recursive protocols

Channel deallocation

Variance subprotocols

MiniActris

This work (ICFP'23)

Asynchronous channels

Dependent session protocols

Iris separation logic

Channels as messages

Actris 1.0

Hinrichsen, Bengtson, Krebbers (POPL'20)

Channel deallocation Variance subprotocols

Recursive protocols

Conclusion: Sessions ♥ (Iris) Higher-Order Separation Logic

MiniActris: a separation logic proof pearl for verified message passing

- ▶ Three layers: one-shot \rightarrow functional \rightarrow imperative
- Simple soundness proof with nested invariants
- ► Abundance of protocol features
- ► Mechanized in less than 1000 lines of Coq code

Suitable as an exercise in separation logic courses?

- ► One-shot channels: *suitable*
- ► Session channels: within arms reach

! \langle "Thank you" \rangle {MiniActrisKnowledge}. μ rec.? $(q : Question) \langle q \rangle$ {AboutMiniActris q}. ! $(a : Answer) \langle a \rangle$ {Insightful q a}.rec

Backup Slides

Distributed MiniActris?

Conjecture: Not as elegant

- ▶ Handshake when creating new one-shot channels is non-trivial at scale
- Might be solved with session context, but then one-shots make less sense

MiniActris Ghost Theory?

Conjecture: Not feasible

- ► The recursion in MiniActris is tied by the references of the program
- ► A ghost theory solution would need to explicitly track the linked list
- Quickly ends up with similar workload as current Actris ghost theory