Applications of Stable Marriage and Related Problems

Alireza Nobakht

based on paper, A Survey of the Stable Marriage Problem and Its Variants, Iwama et al. 2008

Isfahan University of Technology Game Theory Course, Dr. Javadi 2022

Outline

Stable Marriage (SM)

Some Extensions of Preference Lists

Incomplete Preference Lists (SMI)

Preference Lists with Ties (SMT)

Incomplete Preference Lists with Ties (SMTI)

The Number of Stable Matchings

Optimal Stable Matchings

Other Variants

Stable Roommates Problem (SR)

Hospitals/Residents Problem (HR)

Other Models

Other Applications

Outline

Stable Marriage (SM)

```
Some Extensions of Preference Lists
Incomplete Preference Lists (SMI)
Preference Lists with Ties (SMT)
Incomplete Preference Lists with Ties (SMTI
```

The Number of Stable Matchings

Optimal Stable Matchings

Other Variants

Stable Roommates Problem (SR) Hospitals/Residents Problem (HR

Other Models

Other Applications

Definition of Stable Marriage Problem

Consist of n men and women

- Consist of n men and women
- Each person has preference list
 - ▶ if a man m prefers w_1 to w_2 we write: $w_1 \succ_m w_2$

- Consist of n men and women
- ► Each person has *preference list*
 - ▶ if a man m prefers w_1 to w_2 we write: $w_1 \succ_m w_2$
- ightharpoonup (m, w) is called blocking pair in matching M if
 - 1. $M(m) \neq w$
 - 2. $w \succ_m M(m)$
 - 3. $m \succ_w M(w)$

- Consist of n men and women
- ► Each person has *preference list*
 - ▶ if a man m prefers w_1 to w_2 we write: $w_1 \succ_m w_2$
- ightharpoonup (m, w) is called blocking pair in matching M if
 - 1. $M(m) \neq w$
 - 2. $w \succ_m M(m)$
 - 3. $m \succ_w M(w)$
- Matching with no blocking pair is called stable matching (marriage)

- Consist of n men and women
- Each person has preference list
 - ▶ if a man m prefers w_1 to w_2 we write: $w_1 \succ_m w_2$
- ightharpoonup (m, w) is called blocking pair in matching M if
 - 1. $M(m) \neq w$
 - 2. $w \succ_m M(m)$
 - 3. $m \succ_w M(w)$
- Matching with no blocking pair is called stable matching (marriage)
- ► Gale-Shapley algorithm finds stable marriage in $O(n^2)$

Outline

```
Stable Marriage (SM)
```

```
Some Extensions of Preference Lists
Incomplete Preference Lists (SMI)
Preference Lists with Ties (SMT)
Incomplete Preference Lists with Ties (SMTI)
```

The Number of Stable Matchings

Optimal Stable Matchings

Other Variants

Stable Roommates Problem (SR) Hospitals/Residents Problem (HR)

Other Models

Other Applications

Incomplete Preference Lists (SMI)

► Each person preference list may be Incomplete i.e. some men/women don't accept some other women/men.

Incomplete Preference Lists (SMI)

- ► Each person preference list may be Incomplete i.e. some men/women don't accept some other women/men.
- ► Modified conditions for blocking pair
 - 1. $M(m) \neq w$ but m and w are acceptable to each other
 - 2. $w \succ_m M(m)$ or m is single in M
 - 3. $m \succ_w M(w)$ or w is single in M

Incomplete Preference Lists (SMI)

- ► Each person preference list may be Incomplete i.e. some men/women don't accept some other women/men.
- Modified conditions for blocking pair
 - 1. $M(m) \neq w$ but m and w are acceptable to each other
 - 2. $w \succ_m M(m)$ or m is single in M
 - 3. $m \succ_w M(w)$ or w is single in M
- Gale-Shapley algorithm with a slight modification can be applied here too

One can include two or more persons with the same preference in a tie.

One can include two or more persons with the same preference in a tie.

- Super stability
 - 2. $w \succcurlyeq_m M(m)$
 - 3. $m \succcurlyeq_w M(w)$

One can include two or more persons with the same preference in a tie.

- Super stability
 - 2. $w \succcurlyeq_m M(m)$
 - 3. $m \succcurlyeq_w M(w)$
- Strong stability
 - 2. $w \succ_m M(m)$
 - 3. $m \succcurlyeq_w M(w)$

One can include two or more persons with the same preference in a tie.

- Super stability
 - 2. $w \succcurlyeq_m M(m)$
 - 3. $m \succcurlyeq_w M(w)$
- Strong stability
 - 2. $w \succ_m M(m)$
 - 3. $m \succcurlyeq_w M(w)$
- ► Weak stability
 - 2. $w \succ_m M(m)$
 - 3. $m \succ_w M(w)$

One can include two or more persons with the same preference in a tie.

- Super stability
 - 2. $w \succcurlyeq_m M(m)$
 - 3. $m \succcurlyeq_w M(w)$
- Strong stability
 - 2. $w \succ_m M(m)$
 - 3. $m \succcurlyeq_w M(w)$
- Weak stability
 - 2. $w \succ_m M(m)$
 - 3. $m \succ_w M(w)$
- ▶ Weakly stable marriage always exists (polynomial time).

One can include two or more persons with the same preference in a tie.

- Super stability
 - 2. $w \succcurlyeq_m M(m)$
 - 3. $m \succcurlyeq_w M(w)$
- Strong stability
 - 2. $w \succ_m M(m)$
 - 3. $m \succcurlyeq_w M(w)$
- Weak stability
 - 2. $w \succ_m M(m)$
 - 3. $m \succ_w M(w)$
- Weakly stable marriage always exists (polynomial time).
- ► There is a P algorithm that decides if strong or super stable matching exists and find one.

 Blocking pair conditions are obtained by combining conditions of SMI and SMT

- Blocking pair conditions are obtained by combining conditions of SMI and SMT
- ► Three type of stability similar to SMT

- Blocking pair conditions are obtained by combining conditions of SMI and SMT
- ► Three type of stability similar to SMT
- similar to SMT, There is an algorithm that decides about existence of super and strong stabilities

- Blocking pair conditions are obtained by combining conditions of SMI and SMT
- Three type of stability similar to SMT
- similar to SMT, There is an algorithm that decides about existence of super and strong stabilities
- Weakly stable marriage always exists and can be find in polynomial time but finding the largest one (called MAX SMTI) is NP-hard

Outline

```
Stable Marriage (SM)
```

Some Extensions of Preference Lists
Incomplete Preference Lists (SMI)
Preference Lists with Ties (SMT)

The Number of Stable Matchings

Optimal Stable Matchings

Other Variants

Stable Roommates Problem (SR) Hospitals/Residents Problem (HR

Other Models

Other Applications

▶ Any instance of SM has at least one stable matching

- ▶ Any instance of SM has at least one stable matching
- but it can have more!

- Any instance of SM has at least one stable matching
- but it can have more!
- ▶ what is the maximum number of stable matching of an instance of size *n* (i.e. *n* men and *n* women)?

- Any instance of SM has at least one stable matching
- but it can have more!
- ▶ what is the maximum number of stable matching of an instance of size *n* (i.e. *n* men and *n* women)?
- \triangleright Eilers et al. showed that the maximum number is 10 for n=4

- Any instance of SM has at least one stable matching
- but it can have more!
- ▶ what is the maximum number of stable matching of an instance of size *n* (i.e. *n* men and *n* women)?
- ▶ Eilers et al. showed that the maximum number is 10 for n = 4
- Nontrivial upper bounds are still open (in 2008)

Outline

```
Stable Marriage (SM)
```

Some Extensions of Preference Lists

Incomplete Preference Lists (SMI)

Preference Lists with Ties (SMT)

Incomplete Preference Lists with Ties (SMTI)

The Number of Stable Matchings

Optimal Stable Matchings

Other Variants

Stable Roommates Problem (SR)

Hospitals/Residents Problem (HR)

Other Models

Other Applications

► Gale-Shapley algorithm find man-optimal stable marriage which is woman-pessimal (or vice versa)

- Gale-Shapley algorithm find man-optimal stable marriage which is woman-pessimal (or vice versa)
- Seeking stable and good marriage

- Gale-Shapley algorithm find man-optimal stable marriage which is woman-pessimal (or vice versa)
- Seeking stable and good marriage
- There are a lot of optimization criteria

- Gale-Shapley algorithm find man-optimal stable marriage which is woman-pessimal (or vice versa)
- Seeking stable and good marriage
- ► There are a lot of optimization criteria
- Some important costs that we can minimize (where $p_m(w)$ denote the position of w in m's preference list, similar for $p_w(m)$):
 - regret: $r(M) = \max_{(m,w) \in M} \max\{p_m(w), p_w(m)\}$
 - egalitarian: $c(M) = \sum_{(m,w) \in M} p_m(w) + \sum_{(m,w) \in M} p_w(m)$
 - ► sex-equalness: $d(M) = \sum_{(m,w)\in M} p_m(w) \sum_{(m,w)\in M} p_w(m)$

- Gale-Shapley algorithm find man-optimal stable marriage which is woman-pessimal (or vice versa)
- Seeking stable and good marriage
- There are a lot of optimization criteria
- Some important costs that we can minimize (where $p_m(w)$ denote the position of w in m's preference list, similar for $p_w(m)$):
 - regret: $r(M) = \max_{(m,w) \in M} \max\{p_m(w), p_w(m)\}$
 - egalitarian: $c(M) = \sum_{(m,w) \in M} p_m(w) + \sum_{(m,w) \in M} p_w(m)$
 - ► sex-equalness: $d(M) = \sum_{(m,w) \in M} p_m(w) \sum_{(m,w) \in M} p_w(m)$
- ► There are polynomial time algorithms that can optimize first two but third one is NP-hard

- Gale-Shapley algorithm find man-optimal stable marriage which is woman-pessimal (or vice versa)
- Seeking stable and good marriage
- There are a lot of optimization criteria
- Some important costs that we can minimize (where $p_m(w)$ denote the position of w in m's preference list, similar for $p_w(m)$):
 - regret: $r(M) = \max_{(m,w) \in M} \max\{p_m(w), p_w(m)\}$
 - egalitarian: $c(M) = \sum_{(m,w) \in M} p_m(w) + \sum_{(m,w) \in M} p_w(m)$
 - ► sex-equalness: $d(M) = \sum_{(m,w)\in M} p_m(w) \sum_{(m,w)\in M} p_w(m)$
- ► There are polynomial time algorithms that can optimize first two but third one is NP-hard
- Finding optimal weakly stable marriage in SMT, for all three costs is hard, even to approximate

Outline

```
Stable Marriage (SM)
```

Some Extensions of Preference Lists
Incomplete Preference Lists (SMI)
Preference Lists with Ties (SMT)
Incomplete Preference Lists with Ties (SMTI

The Number of Stable Matchings

Optimal Stable Matchings

Other Variants

Stable Roommates Problem (SR) Hospitals/Residents Problem (HR)

Other Models

Other Applications

► Non-bipartite extension of SM

- Non-bipartite extension of SM
- Even number 2n of person, each having preference list over the other 2n-1 people

- Non-bipartite extension of SM
- Even number 2n of person, each having preference list over the other 2n-1 people
- Stability condition is defined similarly as SM

- Non-bipartite extension of SM
- Even number 2n of person, each having preference list over the other 2n-1 people
- Stability condition is defined similarly as SM
- Applications
 - Assigning people to twin-rooms
 - ▶ Pairing players in chess tournaments
 - Kidney exchange between incompatible patient-donor pairs

- Non-bipartite extension of SM
- Even number 2n of person, each having preference list over the other 2n-1 people
- Stability condition is defined similarly as SM
- Applications
 - Assigning people to twin-rooms
 - ▶ Pairing players in chess tournaments
 - Kidney exchange between incompatible patient-donor pairs
- There may be no stable matching

- Non-bipartite extension of SM
- Even number 2n of person, each having preference list over the other 2n-1 people
- Stability condition is defined similarly as SM
- Applications
 - Assigning people to twin-rooms
 - ▶ Pairing players in chess tournaments
 - Kidney exchange between incompatible patient-donor pairs
- There may be no stable matching
- ► There is polynomial time algorithm to decide if an instance admits a stable matching, and finds one if exists

- Non-bipartite extension of SM
- Even number 2n of person, each having preference list over the other 2n-1 people
- Stability condition is defined similarly as SM
- Applications
 - Assigning people to twin-rooms
 - ▶ Pairing players in chess tournaments
 - Kidney exchange between incompatible patient-donor pairs
- There may be no stable matching
- There is polynomial time algorithm to decide if an instance admits a stable matching, and finds one if exists
- finding a matching with minimum number of blocking pairs is NP-hard and also hard to approximate

many-to-one extension of SM

- many-to-one extension of SM
- consider men as residents and women as hospitals

- many-to-one extension of SM
- consider men as residents and women as hospitals
- ► Each hospital declares the quota, that specifies the number of residents the hospital can accept

- many-to-one extension of SM
- consider men as residents and women as hospitals
- ► Each hospital declares the quota, that specifies the number of residents the hospital can accept
- Can be reduced to SM, by replacing each hospital with a quota q by its q copies
 - most of the results established for SM hold for HR

- many-to-one extension of SM
- consider men as residents and women as hospitals
- ► Each hospital declares the quota, that specifies the number of residents the hospital can accept
- Can be reduced to SM, by replacing each hospital with a quota q by its q copies
 - most of the results established for SM hold for HR
- Rural Hospitals Theorem
 - any stable matching assigns the same number of residents to all hospitals
 - if a hospital obtains residents fewer than its quota in one stable matching, then the hospital gets the same set of residents in any stable matching

Outline

```
Stable Marriage (SM)
```

Some Extensions of Preference Lists

Incomplete Preference Lists (SMI)

Preference Lists with Ties (SMT)

Incomplete Preference Lists with Ties (SMTI)

The Number of Stable Matchings

Optimal Stable Matchings

Other Variants

Stable Roommates Problem (SR)

Hospitals/Residents Problem (HR)

Other Models

Other Applications

- ► Man-Exchange Stable Marriage
 - ▶ no two men prefer to exchange their partners

- Man-Exchange Stable Marriage
 - no two men prefer to exchange their partners
- ► Many-to-Many Stable Marriage
 - copying technique used in reducing HR to SM cannot be applied any more

- Man-Exchange Stable Marriage
 - no two men prefer to exchange their partners
- Many-to-Many Stable Marriage
 - copying technique used in reducing HR to SM cannot be applied any more
- ▶ 3-Dimensional Stable Matching
 - modeling preference lists and the stability definitions

- Man-Exchange Stable Marriage
 - no two men prefer to exchange their partners
- Many-to-Many Stable Marriage
 - copying technique used in reducing HR to SM cannot be applied any more
- ▶ 3-Dimensional Stable Matching
 - modeling preference lists and the stability definitions
- One-Sided Preference Lists

- ► Student-Project Allocation Problem (SPA)
 - student have preference list over projects

- ► Student-Project Allocation Problem (SPA)
 - student have preference list over projects
 - lecturer have preference list over students

- Student-Project Allocation Problem (SPA)
 - student have preference list over projects
 - lecturer have preference list over students
 - lecturer may provide two or more projects

- Student-Project Allocation Problem (SPA)
 - student have preference list over projects
 - lecturer have preference list over students
 - lecturer may provide two or more projects
 - all projects that are given by the same lecturer have the same preference list

- Student-Project Allocation Problem (SPA)
 - student have preference list over projects
 - lecturer have preference list over students
 - lecturer may provide two or more projects
 - all projects that are given by the same lecturer have the same preference list
 - each project has its own quota

- Student-Project Allocation Problem (SPA)
 - student have preference list over projects
 - lecturer have preference list over students
 - lecturer may provide two or more projects
 - all projects that are given by the same lecturer have the same preference list
 - each project has its own quota
 - each lecturer also has his/her quota

Outline

```
Stable Marriage (SM)
```

Some Extensions of Preference Lists

Incomplete Preference Lists (SMI)

Preference Lists with Ties (SMT)

Incomplete Preference Lists with Ties (SMTI)

The Number of Stable Matchings

Optimal Stable Matchings

Other Variants

Stable Roommates Problem (SR)

Hospitals/Residents Problem (HR)

Other Models

Other Applications

Other Applications

Other important applications based on Wikipedia:

 Assignment of graduating medical students to their first hospital appointments

Other Applications

Other important applications based on Wikipedia:

- Assignment of graduating medical students to their first hospital appointments
- Nobel Prize in Economic Sciences was awarded to Shapley and Roth for the theory of stable allocations and the practice of market design

Other Applications

Other important applications based on Wikipedia:

- Assignment of graduating medical students to their first hospital appointments
- Nobel Prize in Economic Sciences was awarded to Shapley and Roth for the theory of stable allocations and the practice of market design
- ► Large-scale application of stable marriage is in assigning users to servers in a large distributed Internet service
 - each user prefer servers that have a faster response time
 - each server prefer user with lower cost
 - Content Delivery Networks (CDN) try to solve this large and complex stable marriage problem

Thank You