

VI Международная научно-практическая конференция ГРАФЕН И РОДСТВЕННЫЕ СТРУКТУРЫ: СИНТЕЗ, ПРОИЗВОДСТВО И ПРИМЕНЕНИЕ (GRS-2025)

ИССЛЕДОВАНИЕ СОРБЦИОННОЙ АКТИВНОСТИ ОКСИДА ГРАФЕНА, МОДИФИЦИРОВАННОГО МАГНИТНЫМИ ЧАСТИЦАМИ

Ибрагимова В.Р.1,2, Иони Ю.В.1

¹Институт общей и неорганической химии имени Н.С. Курнакова РАН, Москва, Россия

 2 Московский государственный университет им. М.В. Ломоносова, ФНМ,

Москва, Россия

E-mail: vika.ibragimova.2002@bk.ru

Актуальность исследования

ОГ – универсальная подложка для создания сорбентов нового поколения

Цель работы

Изучение процессов поверхностной модификации оксида графена наночастицами магнетита при использовании метода совместного диспергирования.

Задачи:

Синтез ОГ и наночастиц (НЧ) магнетита и анализ структуры и свойств получившихся материалов;

Синтез композита ОГ@ Fe_3O_4 и анализ его структуры и свойств;

Проведение модельных сорбционных испытаний по поглощению красителя метиленового голубого (МГ);

Построение экспериментальных зависимостей и их апроксимация согласно различным модельным уравнениям.

Синтез исходных материалов

Универсальность метода

Синтез исходных материалов

Схема синтеза НЧ магнетита по методу Массарта

Уравнение реакции:
$$Fe^{2+} + 2Fe^{3+} + 80H^{-} \rightarrow Fe(OH)_{2} + 2Fe(OH)_{3} \rightarrow Fe_{3}O_{4} + 4H_{2}O$$

Синтез гибридного материала состава ОГ@Fe₃O₄

Возможность варьировать содержание магнитной фазы

Исследование структуры полученных материалов

Дифрактограммы исходных материалов и композитов

<u>Fe₃O₄ (ICCD PDF[96-101-0370])</u>

ИК-спектры исходных материалов и композитов

Исследования магнитных характеристик

H, Oe Полевые зависимости магнитных моментов образцов исходных НЧ магнетита и композита

Условия сорбционных экспериментов

Исследуемый краситель

Катионный краситель метиленовый голубой (МГ**)**

Исследование сорбционной способности магнитных сорбентов по отношению к МГ

Фото кювет и спектры поглощения МГ с концентрацией 5 ppm композитом $O\Gamma@Fe_3O$

Фото кювет и спектры поглощения МГ с концентрацией 10 ррт композитом ОГ@Fe₃O₄

Спектры поглощения растворов МГ (10 ppm) до и после сорбции НЧ Fe_3O_4

Исследование сорбционной способности магнитных сорбентов по отношению к МГ

Спектры поглощения МГ с концентрацией 20 ppm композитом ОГ@ Fe_3O_4 (50 % вес.)

Исследование сорбционной способности магнитных сорбентов

Экспериментальные данные, аппроксимированные по моделям Ленгмюра и Сипса

Исследование сорбционной способности магнитных сорбентов

Экспериментальные данные, соотнесенные с уравнением кинетики псевдо-второго порядка

Удаление красителя из раствора происходит монослоем ОГ за счет наличия функциональных групп.

Выводы

Методом совместного диспергирования получены магнитные сорбционные материалы состава $O\Gamma@Fe_3O_4$. Полученные образец комплексно охарактеризованы РФА, ИК-спектроскопия, СЭМ,ПЭМ;

Образцы были апробированы в модельных экспериментах по извлечению МГ из водных растворов с различной концентрацией и в рецикле.

Получены экспериментальные изотермы адсорбции, поведение которых можно описать с использованием уравнений Ленгмюра (нелинейная форма) и Сипса;

Композит, за счет отклика на приложенное магнитное поле, легко выводится из водного раствора, без применения дополнительных стадий фильтрации или центрифугирования.

Спасибо за внимание!

Приложение

Дифрактограмма композиционного материала после сорбции МГ

ИК-спектры композиционных материалов после сорбции МГ (5 ppm,10 ppm)

Приложение

ПЭМ-изображения композитов на основе ОГ соотношением магнитной фазы: 50% вес.

Исследования магнитных характеристик

H, Oe Полевые зависимости магнитных моментов образцов исходных НЧ магнетита и композита