Optimization Prerequisites

HESSIAN MATRIX

For real-valued function $f: \mathcal{S} \to \mathbb{R}$, the **Hessian** matrix $H: \mathcal{S} \to \mathbb{R}^{d \times d}$ contains all their second derivatives (if they exist):

$$H(\mathbf{x}) = \nabla^2 f(\mathbf{x}) = \left(\frac{\partial^2 f(\mathbf{x})}{\partial x_i \partial x_j}\right)_{i,j=1,\dots,d}$$

Note: Hessian of f is Jacobian of ∇f

Example: Let $f(\mathbf{x}) = \overline{\sin(x_1) \cdot \cos(2x_2)}$. Then:

$$H(\mathbf{x}) = \begin{pmatrix} -\cos(2x_2) \cdot \sin(x_1) \\ -2\cos(x_1) \cdot \sin(2x_2) \end{pmatrix} - \begin{pmatrix} -2\cos(x_1) \cdot \sin(2x_2) \\ -4\cos(2x_2) \cdot \sin(x_1) \end{pmatrix}$$

- If $f \in C^2$, then H is symmetric
- Many local properties (geometry, convexity, critical points) are encoded by the Hessian and its spectrum (→ later)

LOCAL CURVATURE BY HESSIAN

Eigenvector corresponding to largest (resp. smallest) **eigenvalue** of Hessian points in direction of largest (resp. smallest) **curvature**

Example (previous slide): For $\mathbf{a} = (-\pi/2, 0)^T$, we have

$$H(\boldsymbol{a}) = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}$$

and thus $\lambda_1 = 4$, $\lambda_2 = 1$, $\boldsymbol{v}_1 = (0,1)^T$, and $\boldsymbol{v}_2 = (1,0)^T$.

https://www.desmos.com/3d

Optimization in Machine Learning

Mathematical Concepts: Quadratic forms I

Learning goals

- Definition of quadratic forms
- Gradient, Hessian
- Optima

UNIVARIATE QUADRATIC FUNCTIONS

Consider a quadratic function $q: \mathbb{R} \to \mathbb{R}$

$$q(x) = \underline{a \cdot x^2} + \underline{b \cdot x} + \underline{c}, \quad a \neq 0.$$

A quadratic function $q_1(x) = x^2$ (**left**) and $q_2(x) = -x^2$ (**right**).

UNIVARIATE QUADRATIC FUNCTIONS

Basic properties:

• Slope of tangent at point (x, q(x)) is given by $q'(x) = 2 \cdot a \cdot x + b$

• Curvature of q is given by $q''(x) = 2 \cdot a$.

$$q_1 = x^2$$
 (orange), $q_2 = 2x^2$ (green), $q_3(x) = -x^2$ (blue), $q_4 = -3x^2$ (magenta)

UNIVARIATE QUADRATIC FUNCTIONS

- Convexity/Concavity:
 - $\underline{a} > 0$: q convex, bounded from below, unique global **minimum**
 - ullet a < 0: q concave, bounded from above, unique global **maximum**
- Optimum x^* :

$$\underline{q'(x^*)} = 0 \quad \Leftrightarrow \quad \underline{2ax^* + b} = 0 \quad \Leftrightarrow \quad \underline{x^* = \frac{-b}{2a}}$$

Left: $q_1(x) = x^2$ (convex). **Right:** $q_2(x) = -x^2$ (concave).

MULTIVARIATE QUADRATIC FUNCTIONS

A quadratic function $q:\mathbb{R}^d o \mathbb{R}$ has the following form: \bigvee

with $\mathbf{A} \in \mathbb{R}^{d \times d}$ full-rank matrix, $\mathbf{b} \in \mathbb{R}^d$, $\mathbf{c} \in \mathbb{R}$.

MULTIVARIATE QUADRATIC FUNCTIONS

W.l.o.g., assume **A symmetric**, i.e., $\mathbf{A}^T = \mathbf{A}$.

If **A** not symmetric, there is always a symmetric matrix $\tilde{\bf A}$ s.t. $Q \sim Q$

Justification: We write
$$\frac{q(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} = \mathbf{x}^T \tilde{\mathbf{A}} \mathbf{x} = \tilde{q}(\mathbf{x}).}{q(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}} = \frac{1}{2} \mathbf{x}^T \underbrace{(\mathbf{A} + \mathbf{A}^T)}_{\tilde{\mathbf{A}}_1} \mathbf{x} + \frac{1}{2} \mathbf{x}^T \underbrace{(\mathbf{A} - \mathbf{A}^T)}_{\tilde{\mathbf{A}}_2} \mathbf{x} + \frac{1}{2} \mathbf{x}^T \underbrace$$

with $\tilde{\mathbf{A}}_1$ symmetric, $\tilde{\mathbf{A}}_2$ anti-symmetric (i.e., $\tilde{\mathbf{A}}_2^T = -\tilde{\mathbf{A}}_2$). Since $\mathbf{x}^T \mathbf{A}^T \mathbf{x}$ is a scalar, it is equal to its transpose:

$$\underbrace{\mathbf{x}^{T}(\mathbf{A} - \mathbf{A}^{T})}_{\mathbf{x}} \mathbf{x} = \underbrace{\mathbf{x}^{T}\mathbf{A}\mathbf{x} - \underbrace{\mathbf{x}^{T}\mathbf{A}^{T}\mathbf{x}}}_{\mathbf{x} - \underbrace{\mathbf{x}^{T}\mathbf{A}\mathbf{x}}} = \mathbf{x}^{T}\mathbf{A}\mathbf{x} - (\mathbf{x}^{T}\mathbf{A}^{T}\mathbf{x})^{T}$$

$$= \underbrace{\mathbf{x}^{T}\mathbf{A}\mathbf{x} - \underbrace{\mathbf{x}^{T}\mathbf{A}\mathbf{x}}}_{\mathbf{x} - \underbrace{\mathbf{x}^{T}\mathbf{A}\mathbf{x}}} = \mathbf{0}.$$

Therefore, $q(\mathbf{x}) = \tilde{q}(\mathbf{x})$ with $\tilde{q}(\mathbf{x}) = \mathbf{x}^T \tilde{\mathbf{A}} \mathbf{x}$ with $\tilde{\mathbf{A}} = \tilde{\mathbf{A}}_1/2$.

GRADIENT AND HESSIAN

A: MIN

• The gradient of q is

$$abla g(\mathbf{x}) = (\mathbf{A}^T + \mathbf{A}) \, \mathbf{x} + \mathbf{b} = 2\mathbf{A}\mathbf{x} + \mathbf{b} \in \mathbb{R}^d$$

Derivative in direction $\mathbf{v} \in \mathbb{R}^d$ is (by chain rule)

$$\frac{\mathrm{d}q(\mathbf{x}+h\cdot\mathbf{v})}{\mathrm{d}h}\bigg|_{h=0} = \nabla q(\mathbf{x}+h\mathbf{v})^{\mathsf{T}}\mathbf{v}\bigg|_{h=0} = \nabla q(\mathbf{x})^{\mathsf{T}}\underline{\mathbf{v}}.$$

X'AV+877+(

• The **Hessian** of q is

n of
$$q$$
 is
$$\nabla^2 q(\mathbf{x}) = (\mathbf{A}^T + \mathbf{A}) = \mathbf{2}\mathbf{A} =: \mathbf{H} \in \mathbb{R}^{d \times d}$$

Curvature in direction of $\mathbf{v} \in \mathbb{R}^d$ is (by chain rule)

$$\frac{d^2q(\mathbf{x}+h\cdot\mathbf{v})}{dh^2}\bigg|_{h=0}=\mathbf{v}^T\nabla^2q(\mathbf{x}+h\mathbf{v})\mathbf{v}\bigg|_{h=0}=\mathbf{v}^T\mathbf{H}\mathbf{v}.$$

OPTIMUM

Since **A** has <u>full rank</u>, there exists a *unique* stationary point **x*** (minimum, maximum, or saddle point):

Left: A positive definite. Middle: A negative definite. Right: A indefinite.

OPTIMA: RANK-DEFICIENT CASE

Example: Assume **A** is **not** full rank but has a zero eigenvalue with eigenvector \mathbf{v}_0 .

- Recall: \mathbf{v}_0 spans null space of \mathbf{A} , i.e., $\mathbf{A}(\alpha \mathbf{v}_0) = 0$ for each $\alpha \in \mathbb{R}$
- $\bullet \implies \mathbf{A}(\mathbf{x} + \alpha \mathbf{v}_0) = \mathbf{A}\mathbf{x}$
- Since $\nabla q(\mathbf{x}) = 2\mathbf{A}\mathbf{x} + \mathbf{b}$:

$$\nabla q(\mathbf{x} + \alpha \mathbf{v}_0) = 2\mathbf{A}(\mathbf{x} + \alpha \mathbf{v}_0) + \mathbf{b} = 2\mathbf{A}\mathbf{x} + \mathbf{b} = \nabla q(\mathbf{x})$$

- $\implies q$ has infinitely many stationary points along line $\mathbf{x}^* + \alpha \mathbf{v_0}$
- Since $\mathbf{H} = 2\mathbf{A}$, kind of stationary point not changing along \mathbf{v}_0

Optimization in Machine Learning

Mathematical Concepts Quadratic forms II

Learning goals

- Geometry of quadratic forms
- Spectrum of Hessian

PROPERTIES OF QUADRATIC FUNCTIONS

Recall: Quadratic form q

- Univariate: $q(x) = ax^2 + bx + c$
- Multivariate: $q(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} + \mathbf{b}^T \mathbf{x} + c$

General observation: If $q \ge 0$ ($q \le 0$), q is convex (concave)

Univariate function: Second derivative is q''(x) = 2a

- $q''(x) \stackrel{(>)}{\geq} 0$: q (strictly) convex. $q''(x) \stackrel{(<)}{\leq} 0$: q (strictly) concave.
- High (low) absolute values of q''(x): high (low) curvature

Multivariate function: Second derivative is H = 2A

- Convexity/concavity of q depend on eigenvalues of H
- Let us look at an example of the form $q(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}$

Example:
$$\mathbf{A} = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \implies \mathbf{H} = 2\mathbf{A} = \begin{pmatrix} 4 & -2 \\ -2 & 4 \end{pmatrix}$$

• Since **H** symmetric, eigendecomposition $\mathbf{H} = \mathbf{V} \wedge \mathbf{V}^T$ with

$$\mathbf{V} = \begin{pmatrix} | & | \\ v_{\text{max}} & v_{\text{min}} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \text{ orthogonal}$$
and
$$\Lambda = \begin{pmatrix} \lambda_{\text{max}} & 0 \\ 0 & \lambda_{\text{min}} \end{pmatrix} = \begin{pmatrix} 6 & 0 \\ 0 & 2 \end{pmatrix}.$$

• v_{max} (v_{min}) direction of highest (lowest) curvature

Proof: With $\mathbf{v} = \mathbf{V}^T \mathbf{x}$:

$$\mathbf{x}^T \mathbf{H} \mathbf{x} = \mathbf{x}^T \mathbf{V} \wedge \mathbf{V}^T \mathbf{x} = \mathbf{v}^T \wedge \mathbf{v} = \sum_{i=1}^d \lambda_i v_i^2 \le \lambda_{\max} \sum_{i=1}^d v_i^2 = \lambda_{\max} \|\mathbf{v}\|^2$$

Since $\|\mathbf{v}\| = \|\mathbf{x}\|$ (V orthogonal): $\max_{\|\mathbf{x}\|=1} \mathbf{x}^T \mathbf{H} \mathbf{x} \leq \lambda_{\max}$

Additional: $\mathbf{v}_{\text{max}}^T \mathbf{H} \mathbf{v}_{\text{max}} = \mathbf{e}_1^T \Lambda \mathbf{e}_1 = \lambda_{\text{max}}^T$

Analogous: $\min_{\|\mathbf{x}\|=1} \mathbf{x}^T \mathbf{H} \mathbf{x} \geq \lambda_{\min}$ and $\mathbf{v}_{\min}^T \mathbf{H} \mathbf{v}_{\min} = \lambda_{\min}$

Contour lines of any quadratic form are ellipses
 (with eigenvectors of A as principal axes, principal axis theorem)

Look at
$$q(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} + \mathbf{b}^T \mathbf{x} + c$$

Now use $\mathbf{y} = \mathbf{x} - \mathbf{w} = \mathbf{x} + \frac{1}{2} \mathbf{A}^{-1} \mathbf{b}$

This already gives us the general form of an ellipse:

$$\mathbf{y}^{\mathsf{T}} \mathbf{A} \mathbf{y} = (\mathbf{x} - \mathbf{w})^{\mathsf{T}} \mathbf{A} (\mathbf{x} - \mathbf{w}) = q(\mathbf{x}) + const$$

If we use $\mathbf{z} = \mathbf{V}^{T} \mathbf{y}$ we obtain it in standard form

$$\sum_{i=1}^{n} \lambda_i z_i^2 = \mathbf{z}^T \mathbf{\Lambda} \mathbf{z} = \mathbf{y}^T \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T \mathbf{y} = \mathbf{y}^T \mathbf{A} \mathbf{y} = q(\mathbf{x}) + const$$

Recall: Second order condition for optimality is sufficient.

We skipped the **proof** at first, but can now catch up on it. If $H(\mathbf{x}^*) \succ 0$ at stationary point \mathbf{x}^* , then \mathbf{x}^* is local minimum (\prec for maximum).

Proof: Let $\lambda_{\min} > 0$ denote the smallest eigenvalue of $H(\mathbf{x}^*)$. Then:

$$f(\mathbf{x}) = f(\mathbf{x}^*) + \underbrace{\nabla f(\mathbf{x}^*)}_{=0}^T (\mathbf{x} - \mathbf{x}^*) + \frac{1}{2} \underbrace{(\mathbf{x} - \mathbf{x}^*)^T H(\mathbf{x}^*)(\mathbf{x} - \mathbf{x}^*)}_{\geq \lambda_{\min} \|\mathbf{x} - \mathbf{x}^*\|^2 \text{ (see above)}} + \underbrace{P_2(\mathbf{x}, \mathbf{x}^*)}_{=o(\|\mathbf{x} - \mathbf{x}^*\|^2)}.$$

Choose $\epsilon>0$ s.t. $|R_2(\mathbf{x},\mathbf{x}^*)|<\frac{1}{2}\lambda_{\min}\|\mathbf{x}-\mathbf{x}^*\|^2$ for each $\mathbf{x}\neq\mathbf{x}^*$ with $\|\mathbf{x}-\mathbf{x}^*\|<\epsilon$. Then:

$$f(\mathbf{x}) \ge f(\mathbf{x}^*) + \underbrace{\frac{1}{2} \lambda_{\min} \|\mathbf{x} - \mathbf{x}^*\|^2 + R_2(\mathbf{x}, \mathbf{x}^*)}_{\text{min}} > f(\mathbf{x}^*) \quad \text{for each } \mathbf{x} \ne \mathbf{x}^* \text{ with } \|\mathbf{x} - \mathbf{x}^*\| < \epsilon.$$

If spectrum of **A** is known, also that of $\mathbf{H} = 2\mathbf{A}$ is known.

- If **all** eigenvalues of $\mathbf{H} \overset{(>)}{\geq} 0$ ($\Leftrightarrow \mathbf{H} \overset{(\succ)}{\succcurlyeq} 0$):
 - q (strictly) convex,
 - there is a (unique) global minimum.
- $\bullet \ \ \text{If all eigenvalues of } \mathbf{H} \overset{(<)}{\leq} 0 \ (\Leftrightarrow \mathbf{H} \overset{(\prec)}{\preccurlyeq} 0) \text{:}$
 - q (strictly) concave,
 - there is a (unique) global maximum.
- If **H** has both positive and negative eigenvalues (⇔ **H** indefinite):
 - q neither convex nor concave,
 - there is a saddle point.

CONDITION AND CURVATURE

Condition of $\mathbf{H}=2\mathbf{A}$ is given by $\kappa(\mathbf{H})=\kappa(\mathbf{A})=|\lambda_{\max}|/|\lambda_{\min}|$.

High condition means:

- $|\lambda_{\text{max}}| \gg |\lambda_{\text{min}}|$
- Curvature along v_{max} ≫ curvature along v_{min}
- Problem for optimization algorithms like gradient descent (later)

Left: Excellent condition. Middle: Good condition. Right: Bad condition.

APPROXIMATION OF SMOOTH FUNCTIONS

Any function $f \in C^2$ can be locally approximated by a quadratic function via second order Taylor approximation:

$$f(\mathbf{x}) \approx \underbrace{f(\tilde{\mathbf{x}}) + \nabla f(\tilde{\mathbf{x}})^{T}(\mathbf{x} - \tilde{\mathbf{x}}) + \frac{1}{2}(\mathbf{x} - \tilde{\mathbf{x}})^{T} \nabla^{2} f(\tilde{\mathbf{x}})(\mathbf{x} - \tilde{\mathbf{x}})}_{\mathbf{x}}$$

f and its second order approximation is shown by the dark and bright grid, respectively. (Source: daniloroccatano.blog)

⇒ Hessians provide information about **local** geometry of a function.

https://www.geogebra.org/m/M2P4KsRe
See common_functions.ipynb

FIRST ORDER CONDITION

Prove convexity via gradient:

Let *f* be differentiable.

$$f$$
 (strictly) convex

$$f(\mathbf{y}) \stackrel{(>)}{\geq} f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) \text{ for all } \mathbf{x}, \mathbf{y} \in \mathcal{S} \text{ (s.t. } \mathbf{x} \neq \mathbf{y})$$

SECOND ORDER CONDITION

VrA ~

Matrix A is **positive (semi)definite** (p.(s.)d.) if $\mathbf{v}^T A \mathbf{v} \stackrel{(\geq)}{>} 0$ for all $\mathbf{v} \neq 0$.

Notation: $A \stackrel{(\succeq)}{\succ} 0$ for A p.(s.)d. and $B \stackrel{(\succeq)}{\succ} A$ if $B - A \stackrel{(\succeq)}{\succ} 0$

Prove convexity via Hessian:

Let $f \in C^2$ and $H(\mathbf{x})$ be its Hessian.

$$f$$
 (strictly) convex $\iff \widehat{H(\mathbf{x})} \overset{(\succ)}{\succcurlyeq} 0$ for all $\mathbf{x} \in \mathcal{S}$

Alternatively: Since $H(\mathbf{x})$ symmetric for $f \in \mathcal{C}^2$:

$$\textit{H}(\boldsymbol{x})\succcurlyeq 0\Leftrightarrow \text{all eigenvalues of }\textit{H}(\boldsymbol{x})\geq 0$$

SECOND ORDER CONDITION

Example:
$$f(\mathbf{x}) = x_1^2 + x_2^2 - 2x_1x_2$$
, $\nabla f(\mathbf{x}) = \begin{pmatrix} 2x_1 - 2x_2 \\ 2x_2 - 2x_1 \end{pmatrix}$, $H(\mathbf{x}) = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$.

f is convex since $H(\mathbf{x})$ is p.s.d. for all $\mathbf{x} \in \mathcal{S}$:

$$\mathbf{v}^{\mathsf{T}} \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix} \mathbf{v} = \mathbf{v}^{\mathsf{T}} \begin{pmatrix} 2v_1 - 2v_2 \\ -2v_1 + 2v_2 \end{pmatrix} = 2 v_1^2 - 2v_1 v_2 - 2v_1 v_2 + 2v_2^2
= 2v_1^2 - 4v_1 v_2 + 2v_2^2 = 2(v_1 - v_2)^2 \ge 0.$$

FIRST ORDER CONDITION FOR OPTIMALITY

First order condition: Gradient of f at local optimum $\mathbf{x}^* \in \mathcal{S}$ is zero:

$$\nabla f(\mathbf{x}^*) = (0, \dots, 0)^T$$

Points with zero first order derivative are called **stationary**.

Condition is **not sufficient**: Not all stationary points are local optima.

Left: Four points fulfill the necessary condition and are indeed optima.

Middle: One point fulfills the necessary condition but is not a local optimum.

Right: Multiple local minima and maxima.

(Source: Watt, 2020, Machine Learning Refined)

SECOND ORDER CONDITION FOR OPTIMALITY

Second order condition: Hessian of $f \in C^2$ at stationary point $\mathbf{x}^* \in S$ is positive or negative definite:

$$H(\mathbf{x}^*) \not \succ 0 \text{ or } H(\mathbf{x}^*) \prec 0$$

Interpretation: Curvature of <u>f</u> at <u>local</u> optimum is either positive in all directions or negative in all directions.

The second order condition is sufficient for a stationary point.

Proof: Later.

CONDITIONS FOR OPTIMALITY AND CONVEXITY

Let $f: \mathcal{S} \to \mathbb{R}$ be **convex**. Then:

- Any local minimum is also global minimum
- If f strictly convex, f has at most one local minimum which would also be unique global minimum on S

Three quadratic forms. **Left:** $H(\mathbf{x}^*)$ has two positive eigenvalues. **Middle:** $H(\mathbf{x}^*)$ has positive and negative eigenvalue. **Right:** $H(\mathbf{x}^*)$ has positive and a zero eigenvalue.

CONDITIONS FOR OPTIMALITY AND CONVEXITY

Example: Branin function

CONDITIONS FOR OPTIMALITY AND CONVEXITY

Definition: Saddle point at x

- x stationary (necessary)
- \bullet $H(\mathbf{x})$ indefinite, i.e., positive and negative eigenvalues (sufficient)

