

Description

Image

Caption

1. Close-up of the material along the grain. 2. Close-up of the material along the grain. © ANSYS, Inc. 3. Pine shelf. © Chris Lefteri 4. The making of a musical instrument. © Chris Lefteri

The material

Wood has been used to make products since the earliest recorded time. The ancient Egyptians used it for furniture, sculpture and coffins before 2500 BC. The Greeks and the peak of their empire (700 BC) and the Romans at the peak of theirs (around 0 AD) made elaborate boats, chariots and weapons of wood, and established the craft of furniture making that is still with us today. More diversity of use appeared in Mediaeval times, with the use of wood for large-scale building, and mechanisms such as pumps, windmills, even clocks, so that, right up to end of the 17th century, wood was the principal material of engineering. Since then cast iron, steel and concrete have displaced it in some of its uses, but timber continues to be used on a massive scale, particularly in buildings.

Composition (summary)

Cellulose/Hemicellulose/Lignin/12%H2O

General properties

Density	470	- 625	kg/m^3
Price	* 1.29	- 2.01	GBP/kg
Mechanical properties			
Young's modulus	* 8.7	- 15	GPa
Yield strength (elastic limit)	* 36.3	- 62.3	MPa
Tensile strength	* 61.6	- 128	MPa
Elongation	* 1.7	- 2.9	% strain
Hardness - Vickers	* 2.97	- 8.28	HV
Fatigue strength at 10^7 cycles	* 19.2	- 42.8	MPa
Fracture toughness	* 2.98	- 7.08	MPa.m^0.5
Thermal properties			

Maximum service temperature	120	-	140	°C
Thermal conductor or insulator?	Good insulator			
Thermal conductivity	* 0.218	-	0.382	W/m.°C
Specific heat capacity	1.66e3	-	1.71e3	J/kg.°C
Thermal expansion coefficient	* 2	-	11	μstrain/°C

Wood, typical along grain

Electrical properties	
Electrical conductor or insulator?	Poor insulator
Optical properties	
Transparency	Opaque
Eco properties	
Embodied energy, primary production	11 - 12.2 MJ/kg
CO2 footprint, primary production	0.547 - 0.603 kg/kg
Recycle	×

Supporting information

Typical uses

Flooring, furniture, handles, veneer, sculpture, wooden ware, containers, cooperage, laundry appliances, sleepers (when treated), building construction, boxes, crates, planing-mill products, sash, doors, general millwork, framing, sub-flooring, sheathing, boxes, crates, palettes - but these are just a few. Almost every load-bearing and decorative object has, at one time or another, been made from wood.

Links

ProcessUniverse