Numerical Computing:: Project Eight

The purpose of this homework is to see the relationship between the condition number and the numerical error when solving linear least-squares problems.

First, implement the following methods for least-squares, which you'll use in the next exercise.

- 1. Method of Normal Equations (uses the Cholesky factorization)
- 2. Method based on the Thin QR factorization

Next, load the given matrix (download from Canvas) into memory. Call the matrix A,

$$A = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix}, \tag{1}$$

where $a_i \in \mathbb{R}^m$ is the *i*th column of A. Define the matrices A_1, \ldots, A_n as:

$$A_k = \begin{bmatrix} a_1 & \cdots & a_k \end{bmatrix}, \quad k = 1, \dots, n. \tag{2}$$

That is, A_k contains the first k columns of the matrix A (that you loaded into memory).

Now, generate the error data that you'll analyze. For k from $k_{\min}=40$ to $k_{\max}=65$:

- 1. Report the size, rank, and condition number of A_k .
- 2. Generate 100 random vectors $b_i \in \mathbb{R}^m$. For each b_i ,
 - (a) Use the built-in equation solver (numpy.linalg.lstsq) to compute the least-squares minimizers given A_k and b_i . Call this vector x_{true} , because we're just gonna trust the software on this one.
 - (b) Use your Normal Equation solver to compute the least-squares minimizer, x_{NE} . Compute the relative error with x_{true} .
 - (c) Use your QR solver to compute the least-squares minimizer, x_{QR} . Compute the relative error with x_{true} .
- 3. For each of QR and Normal Equations, compute the average error over all the b_i .

Make two plots on a semilogy scale:

- the average error versus k (how many columns in the matrix) for both QR and the Normal Equations,
- the condition number of A_k versus k.

Now tell me what's going on. More specifically:

- 1. What is the relationship between the error using QR versus the Normal Equations?
- 2. What is the relationship between the errors and the condition number of A_k ?
- 3. Suppose your matrix A is ill-conditioned. Which method is more favorable?