Brockwell & Davis | Section 1.3.3 | General approach to time series modelling

 $X_t = |m_t| + |s_t| + |Y_t|$ **(*)** Modeling Xt is like replacing ink in a pen.

Polynomial regression $X_t - |\hat{m}_t| = |s_t| + |Y_t|$ Remove the **body** which gives it its **shape** MA smoothing **Exponential** smoothing

Harmonic regression Take off the **spring** pushing it **back & forth** $X_t = |\hat{m}_t| = |\hat{s}_t| = |Y_t|$

Season (S1) method Look at the **residual** ink. Various methods

 $X_t - \hat{m}_t - \hat{s}_t = \hat{Y}_t$ Get ink tube that **fits our model of pen** you'll soon learn ♥

 $X_t - |\hat{m}_t| = |\hat{s}_t| + |\hat{Y}_t|$ Put the **spring** on the new tube = unknown

 $X_t = |\hat{m}_t| + |\hat{s}_t| +$ Put the **body** of the pen back on = estimated

Stationarity

Time Series in the style of M.C. Escher

STAT 464 / 864 | Fall 2024
Discrete Time Series Analysis
Skyepaphora Griffith, Queen's University

We learned something Fri/Mon, in Time Series 🕛

Cauchy Schwarz Inequality

 $\operatorname{Cov}(X, Y)^2 \le \operatorname{Var}(X) \operatorname{Var}(Y)$

Inner product space?

Functions E / Cov / Var of linear combos

Modeling time series is like taking apart a pen

What do we tell quin?

Covariance Matrix Γ_N

Random Vector: $\vec{X}_N = (X_1, X_2, \dots, X_N)$ such as the time series \mathbf{X}_t

Covariance matrix describes pairwise covariances: $\Gamma_N[i,j] = \operatorname{Cov}(X_i,X_j)$

$$\Gamma_{N}[1,1] = \text{Cov}(X_{1}, X_{1})
\Gamma_{N}[1,2] = \text{Cov}(X_{1}, X_{2})
\Gamma_{N}[2,1] = \text{Cov}(X_{2}, X_{1})
\Gamma_{N}[2,2] = \text{Cov}(X_{2}, X_{2})$$

$$\begin{bmatrix} \text{Cov}(X_{1}, X_{1}) & \text{Cov}(X_{1}, X_{2}) \\ \text{Cov}(X_{2}, X_{1}) & \text{Cov}(X_{2}, X_{2}) \end{bmatrix}$$

Correlation Matrix ${\cal R}_N$

Same idea as Γ_N , except entries are

All diagonal entries = 1

$$R_N[i,j] = \rho(X_i, X_j)$$

Properties of Γ_N | Proof if time permits

- 1) Symmetric (Recall: covariance is symmetric)
- **2)** Non-negative Definite: $a^T\Gamma_N a>0$ $a\in\mathbb{R}^N$

Proof:
$$0 \le \operatorname{Var}(a^T \vec{X}) = \operatorname{Cov}(a^T \vec{X}, a^T \vec{X})$$
$$= \operatorname{Cov}\left(\sum_{i=1}^N a_i \vec{X}_i, \sum_{i=1}^N a_i \vec{X}_i\right)$$
$$= \sum_{\substack{i=1\\j=1}}^N a_i a_j \operatorname{Cov}(X_i, X_j) = a^T \Gamma_N a$$

Stationarity | Motivation

- $oldsymbol{\mathbb{P}}$ Γ_N is a basic quantity we want to estimate from our $\{\mathbf{X}_t\}$
- Virtually impossible to do this without further assumptions

Example: how do we estimate $Cov(X_i, X_j)$?

We only have one observation (x_i, x_j)

from the joint distribution of (X_i, X_j)

Strong Stationarity

Definition: A time series {Xt} is strongly stationary if

 $orall k \geq 1$ and $h \in \mathbb{Z}$, the joint distribution of $(X_{i_1}, \ldots, X_{i_k})$

is the same as the joint distribution of $(X_{i_{1+h}},\ldots,X_{i_{k+h}})$

- $oldsymbol{oldsymbol{arphi}}$ When k=1: strongly stationary = identically distributed
- Strong stationarity is rarely verifiable in practice
- Not necessary for estimating second order stats (Var, Cov)

Weak Stationarity

Definition: A time series X is weakly stationary if

1)
$$E[X_t] = \mu$$

$$\forall t \in \mathbb{Z}$$

2)
$$\operatorname{Var}(X_i) = \sigma^2 < \infty$$

3)
$$Cov(X_i, X_j) = Cov(X_{i+h}, X_{j+h}) \quad \forall i, j, h \in \mathbb{Z}$$

Weak Stationarity | Notes $X_t = m_t + s_t + Y_t$ (*)

Assume all models for $|Y_t|$ are weakly stationary (unless I say otherwise)

"Stationary" will be shorthand for "weakly stationary"

For stationary time series, Γ_N can be expressed as function of 1 variable: lag

$$\gamma_X(h) = \operatorname{Cov}(X_t, X_{t+h}) \quad \forall \ t \in T_N$$

Stationarity | A cute visualization

For your assignment 🕑

you will determine whether a given $\{X_t\}$ is stationary

Use **covariance formulas & properties** from lecture to derive a closed form expression for **Cov(Xt, Xt+h)** as a **function** of **t** and/or **h** (not **Xt**)

Can you write this function in terms of h only? (Not t!)

If so, you've shown {Xt} is stationary.

If not, explain why, and conclude {Xt} is nonstationary

~ Then you get a Star ♥

X

We learned something today, in Time Series 🕛

What do we tell quin?