ALEGBRA I - SUMMARY

YANNIS BÄHNI

Contents	
1 Groups	
1. Groups	
Lemma 1.1. Let G be a group. For every $a \in G$ the mappings	
$\vartheta_a: \begin{cases} G \to G \\ x \mapsto ax \end{cases} \qquad \vartheta_a': \begin{cases} G \to G \\ x \mapsto xa \end{cases}$ are bijections.	(1)
THEOREM 1.1.	
LEMMA 1.2. Let G be a group. If $x^2 = 1$ for every $x \in G$ then G is abelian.	
Definition 1.1. A subgroup of a group G is a subset $H \subseteq G$ such that (1) $1 \in H$	
(2) $x \in H \text{ implies } x^{-1} \in H$	
(3) $x, y \in H$ implies $xy \in H$	
PROPOSITION 1.1. $H \leq G$ if and only if $H \neq \emptyset$ and $x, y \in H$ implies $xy^{-1} \in H$.	

(Yannis Bähni) University of Zurich, Rämistrasse 71, 8006 Zurich *E-mail address*: yannis.baehni@uzh.ch.

Proposition 1.2. For $H \neq \emptyset$ the following conditions are equivalent:

- (1) $H \leq G$
- (2) $HH \subseteq H$ and $H^{-1} \subseteq H$
- (3) $HH^{-1} \subseteq H$

PROPOSITION 1.3. In a finite group, the inverse of an element is a positive power of that element.

Definition 1.2. Let G be a group and $X \subseteq G$. Define

$$\langle X \rangle := \bigcap_{X \subseteq H \le G} H \tag{2}$$

Proposition 1.4. Let X be a subset of a group G. Then

$$\langle X \rangle = \{ x_1 \cdots x_n : \forall i \in I \ x_i \in X \cup X^{-1}, n \in \mathbb{N} \}$$
 (3)

Definition 1.3. A group or subgroup is cyclic when it is generated by a single element.

Proposition 1.5. Every subgroup of $\mathbb Z$ is cyclic, generated by a unique nonnegative integer.

PROPOSITION 1.6. If $G = \langle X \rangle$ and the elements of X are pairwise interchangeable then G is abelian. Hence every cyclic group is abelian.

Definition 1.4. Let G be a group. The order of an element $x \in G$ is defined by $|\langle x \rangle|$.

DEFINITION 1.5. Relative to $H \leq G$ the left coset of an element $x \in G$ is the subset xH of G; the right coset of an element $x \in G$ is the subset Hx of G.

PROPOSITION 1.7. The left cosets of $H \leq G$ constitute a partition of G and so do the right cosets.

PROPOSITION 1.8. The number of left cosets of a subgroup is equal to the number of right cosets.

Definition 1.6. The index [G:H] of $H \leq G$ is the cardinal number of its left or right cosets.

PROPOSITION 1.9. (Lagrange's Theorem) If $H \leq G$, then |G| = [G:H]|H|. Hence if $|G| < \infty$, the order and the index of a subgroup divide the order of G.

DEFINITION 1.7. Let $N \subseteq G$. The group of all cosets of N is the quotient group G/N of G by N. The homomorphism $x \mapsto xN = Nx$ is the canonical projection of G onto G/N.

PROPOSITION 1.10. Let $N \subseteq G$. Every subgroup of G/N is the quotient H/N of a unique subgroup H of G that contains N.

2. Homomorphisms

PROPOSITION 2.1. If $\varphi: A \to B$ is a group homomorphism, then $\varphi(1) = 1$, $\varphi(x^{-1}) = \varphi(x)^{-1}$ and $\varphi(x^n) = \varphi(x)^n$ for all $x \in A$ and $n \in \mathbb{Z}$.

PROPOSITION 2.2. If $G = \langle X \rangle$ and $\varphi, \psi : G \to G'$ are group homomorphisms with $\varphi(x) = \psi(x)$ for every $x \in X$ then $\varphi = \psi$.

PROPOSITION 2.3. A group homomorphism $\varphi: A \to B$ is injective if and only if $\ker(\varphi) = \{1\}.$