

Would you eat a raw chicken?

There are things you don't eat in the chicken

The chicken itself is not clean

Your data is the exact same!

Data Science

Session 1 - Understanding data

hadrien.salem@centralelille.fr

<u>introduction-to-data-science</u>

Introduction The importance of data

DATA

Value carrying information

Literal, numerical, boolean, etc.

Amounts, facts, statistics, etc.

⇒ Using data is using information to your advantage

Vocabulary

Dataset

Big Data

Data Analysis

Data Engineering

Data Science

Vocabulary

Dataset

An organised structure containing data

Big Data

A lot of data

Data Analysis

Analyse data to understand it

Data Engineering

Prepare data for future use

Data Science

Modelling data

ARTIFICIAL INTELLIGENCE VS MACHINE LEARNING VS DEEP LEARNING

Artificial Intelligence

Development of smart systems and machines that can carry out tasks that typically require human intelligence

2 Machine Learning

Creates algorithms that can learn from data and make decisions based on patterns observed

Require human intervention when decision is incorrect

3 Deep Learning

Uses an artificial neural network to reach accurate conclusions without human intervention

Examples in healthcare

There are many applications for data exploitation in healthcare, both in research and in the industry.

Disease prediction

Chat bots

Appointments management

Alerting patients

... etc.

Sources of Big Data in Health Care

NEJM Catalyst (catalyst.nejm.org) © Massachusetts Medical Society

The healthcare sector can be difficult to work with

Healthcare is a high-impact subject involving many actors with conflictual interests.

Heavy legal constraints

Political issues

Reluctance of certain actors

Abundant but unclean data

... etc.

How does one leverage data?

The CRISP-DM method

Cross-Industry **S**tandard **P**rocess for **D**ata **M**ining

- → Published in 1999
- Common in the industry
- → Still relevant today

Leveraging data is a complex subject that goes beyond using algorithms

Course outline

Data science course

Session 1: Understanding data

Session 2: Collaborative development

Session 3: Preparing data - Managing missing data

Session 4: Preparing data - Dimensionality reduction

Session 5: Imbalanced data and deidentification

Session 6: Working with text

Machine learning course

Workflow

- Introduction Reminders Questions
- 2. Theoretical elements for the day's subject
- 3. Practical application
- 4. Correction
- 5. Debrief

Assessments

- Some practicals will be graded
 - Approach and reasoning
 - Code quality
- Project at the end of the machine learning course

Philosophy

In this first course, we focus **only** on the preparation of data. Machine learning algorithms may be used, but will be explained in the dedicated course.

hadrien.salem@centralelille.fr

introduction-to-data-science

Exploratory data analysis Introduction

Exploratory data analysis

Learning to know your data is always the first step

What are we trying to learn?

What are we trying to learn?

General questions (observe and count)

- What data is contained in the dataset?
- How is this data represented?
- What is the type of each feature?
- Are there "holes" in the data?
- Are there duplicates in the data?
- Is there imbalance in the data?

Questions plus avancées (understand)

- What is the statistical distribution of this data?
- Are some features correlated?
- If there are, which ones and why?

⇒ The more you explore, the more questions you will find, and the more specific the questions will be

Exploratory data analysis Practical application

What languages for data analysis?

Python and R are the most common, but there are many more (e.g. Kotlin, Java, etc.).

These languages offer many packages to analyse and model your data.

We will be using Python

What software for data analysis?

We will be using jupyter notebooks to run code and visualize results.

Which packages for data analysis?

Different libraries cover different aspects of data science.

Mathématiques

Manipulation de datasets

Machine Learning (hors Deep learning)

Affichages

Course material

Opening the notebook

It can be imported in any IDE.

Datalore allows for simultaneous editing between several collaborators.
(Share > Manage invitations)

Practical work

The notebook contains all the necessary instructions

Data visualization

Why do we want to visualize our data?

Why do we want to visualize our data?

The benefits of data visualization

- Visualization helps understanding the data: detect outliers, understand the distribution of a variable, the number of elements in a class, feature correlation, feature importance, etc.
- It can help you choose an algorithm (in particular if your data is <u>linearly separable</u>)
- Graphs are essential for communication, in particular with non-technicians

$$Cov(X, Y) \equiv E[(X - E[X]) (Y - E[Y])]$$

Covariance of two random variables

Quantifies to what extent a change in one variable implies a change in the other variable.

In machine learning, we tend to like high (co)variance (high amount of information)

$$r = rac{\sum \left(x_i - ar{x}
ight)\left(y_i - ar{y}
ight)}{\sqrt{\sum \left(x_i - ar{x}
ight)^2 \sum \left(y_i - ar{y}
ight)^2}}$$

Pearson's correlation coefficient

Quantifies to what extent the variables evolve similarly

Debrief

Debrief

What did we learn today?

What could we have done better?

What are we doing next time?