A World of Many Predictors

Many Things may Influence Species Richness

Q: How does Fire Influence Species Richness?

Possible causes:

- Distance from a burned patch
- Fire Severity
- Habitat heterogeneity

Our Model of How the World Works

 $Diversity_i = \beta_0 + \beta_1 Distance_i + \beta_2 Severity_i + \beta_3 Heterogen$

$$\epsilon_i \sim N(0, \sigma)$$

- Linear additive data generating process
- Normal error generating process

Multiple Regression in 1 Slide

- We are looking at unique contribution of each predictor on a response
- We are controlling for covariation between predictors

Multiple Regression in R in 1 Slide

read.csv "./mlr/Keeley_rawdata_select4.csv"

lm
data=

Still the Assumption of Normal Residuals

Still the Assumption of Normal Residuals

Still Must Inspect Fitted v. Residuals

New Assumption: Low Collinearity Between Predictors

- If predictors are highly correlated fit might be bad
- High correlation can lead to inflated error in parameters
- Above ~0.8 is bad, no unique information from variables

Second Test: Is Variance Inflated by Any Predictor?

Asks by what factor variance in parameter estimates is inflated by a predictor

vif

VIF > 5 or 10 can be problematic and indicate an unstable solution.

Evaluation: Importance of Predictors

- It's all about F-tests again!
- Use type II sums of squares to evalute unique effect of predictor

• Anova function from car library

	Sum Sq Df	F	value	Pr(>F)
0.10001.100	2834.545	_	22.520914	0.0000082
firesev	1048.972	1	8.334249	0.0049190
hetero	1617.988		12.855173	
Residuals	10824.200	86	NA	NA

Evaluation: Estimate of Predictors

It's all about T-tests again!

E	stimate Std	. Error	t value Pr	(> t)
(Intercept)	-2.8676426	9.8658932	-0.2906622	0.7720094
distance	0.7090347	0.1494082	4.7456205	0.0000082
firesev	-2.1654652	0.7500979	-2.8869099	0.0049190
hetero	39.6261529	11.0520528	3.5854111	0.0005578
R^2 = 0.4670	800			

Visualization

- Visualization is difficult with mutiple predictors
 - How do you show effect of multiple continuous variables?
- Strategy 1: Effect of one variable after accounting for effect of others
- Strategy 2: Effect of one variable at different levels of others

Plot Each Predictor at Median of Others

library visreg

Plot Each Predictor at Median of Others

What about Interactions?

 $Diversity_i = \beta_0 + \beta_1 Age_i + \beta_2 Severity_i + \beta_3 Age_i * Severity_i$

Same Workflow

- Evaluate residuals, fitted v. residuals
- Evaluate VIF and correlation of predictors
- F, T-Tests, *R*²
- Visualization

F-Tests

	Sum Sq	Df	F value	Pr(>F)
age	466.9263	1	2.701340	0.1039152
firesev	1361.5086	1	, .0, .0= .	0.0061927
age:firesev	2228.6867		12.893767	
Residuals	14865.0939	86	NA	NA

Visualization of One Variable at Levels of Others

Split Data into Quantiles

```
#Make the breaks

cut
breaks=quantile

cut
breaks=quantile

#make the plot
ggplot data = aes x = y =
geom_point
stat_smooth method="lm"
facet_wrap
```

Split Data into Quantiles

