Assignment 2

Please make sure that you always use notations consistent with lecture notes. Different notations will not be accepted.

The deadline for assignment 2 is: Fri 5th, August 5:00 pm

Question 1 (11 marks)

Consider a relation R (A, B, C, D, E, G, H, I, J) and its FD set F = {B -> DE, CD->E, AHI->CJ, AJ->EHI, G->AB}

Regarding the following questions. Give and justify your answers if the question is specified.

- 1) Find all the candidate keys for R. (1 mark)
- 2) Determine the highest normal form of R with respect to F. Justify your answer. (2 marks)
- 3) Find a minimal cover F_m for F. (2 marks)
- 4) Regarding F, is the decomposition R1 = {ABE}, R2 = {CDH}, R3 = {EGHIJ} of *R* dependency-preserving? Please justify your answer. (2 marks)
- 5) Regarding F, does the decomposition R1 = {ABE}, R2 = {CDH}, R3 = {EGHIJ} of *R* satisfy the lossless join property? Please justify your answer. (2 marks)
- 6) Provide a step-by-step lossless decomposition of R into BCNF normal form. (2 marks)

Question 2 (8 marks)

Consider the schedule below. Here, R(*) and W(*) stand for 'Read' and 'Write', respectively. T1, T2, T3, T4 and T5 represent five transactions and t_i represents a time slot.

	t_1	\mathbf{t}_2	t_3	t 4	t 5	t 6	t 7	t 8	t 9	t_{10}	t ₁₁	t_{12}	t_{13}	t ₁₄	t 15	t ₁₆	t 17	t_{18}
<i>T1</i>	R(X)			R(Y)								W(X)				W(Y)		
<i>T2</i>			W(Z)										R(P)					R(Y)
<i>T3</i>		R(Y)					R(Z)		W(Z)		W(Y)							
<i>T4</i>					R(X)									W(X)				
<i>T5</i>						R(Z)		R(X)		R(P)					W(Z)		W(X)	

Each transaction begins at the time slot of its first Read and commits right after its last Write (same time slot).

Regarding the following questions. Give and justify your answers.

- 1) Assume a checkpoint is made between t_5 and t_6 , what should be done to the five transactions when the crash happens between t_{15} and t_{16} . (2 marks)
- 2) Is the transaction schedule conflict serializable? Give the precedence graph to justify your answer. (2 marks)
- 3) Construct a schedule (which is different from above) of these five transactions which **causes** deadlock when using two-phase locking protocol. You should clearly indicate all the locks and the corresponding unlocks in your schedule. If no such schedule exists, explain why. (4 marks)

Question 3 (6 marks)

Consider the B+ tree shown in the following as an original tree.

Regarding the following questions. Give and justify your answers.

- 1) Show the B+ tree after inserting a data entry with key 12 into the original tree. (3 marks)
- 2) Show the B+ tree after deleting the data entry with key 90 from the original tree. (3 marks)

Assignment Submission

- Students must submit an electronic copy of their answers to the above questions to the course website in Moodle.
- Only .doc or .pdf file is accepted. The file name should be ass2_studentID.doc or ass2_studentID.pdf (e.g., ass2_z5100000.doc or ass2_z5100000.pdf).

Note:

- 1. For any problems in submissions, please email to comp9311unsw@gmail.com
- 2. All submissions will be checked for plagiarism.
- 3. We do not accept e-mail submissions.

The university regards plagiarism as a form of academic misconduct and has very strict rules regarding plagiarism. For UNSW policies, penalties, and information to help avoid plagiarism, please see:

https://student.unsw.edu.au/plagiarism as well as the guidelines in the online ELISE tutorials for all new UNSW students:

https://subjectguides.library.unsw.edu.au/elise

Late Submission Penalty

- 5% of the max assessment mark will be deducted for each additional day (24hr) after the specified submission time and date.
- Submissions that are more than five days late will not be marked.