CS 412 Introduction to Machine Learning

Agglomerative clustering

Instructor: Wei Tang

Department of Computer Science
University of Illinois at Chicago
Chicago IL 60607

https://tangw.people.uic.edu tangw@uic.edu

Announcements

- Machine problem #4 available on Blackboard
 - Due on 11/17 (Wed)
 - Clustering
 - Last homework!

1. Say "Every point is its own cluster"

- Say "Every point is its own cluster"
- Find "most similar" pair of clusters

- 1. Say "Every point is its own cluster"
- Find "most similar" pair of clusters
- Merge it into a parent cluster

- 1. Say "Every point is its own cluster"
- Find "most similar" pair of clusters
- Merge it into a parent cluster
- 4. Repeat

- 1. Say "Every point is its own cluster"
- Find "most similar" pair of clusters
- Merge it into a parent cluster
- 4. Repeat

How to define cluster similarity?

- Average distance between points, maximum distance, minimum distance
- Distance between means

How many clusters?

- Clustering creates a tree
- Threshold based on max number of clusters or based on distance between merges

Conclusions: Agglomerative Clustering

Good

- Simple to implement, widespread application
- Clusters have adaptive shapes
- Provides a hierarchy of clusters

Bad

- May have imbalanced clusters
- Still have to choose number of clusters or threshold