

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ

Στοχαστικές Ανελίξεις- Σεπτέμβριος 2011

Άσκηση 1 (30 μονάδες)

Ένα σωματίδιο εκτελεί κίνηση απλού τυχαίου περιπάτου: $X_0=0,\ X_n=\sum_{i=1}^n Y_i,$ όπου οι Y_i είναι ανεξάρτητες τυχαίες μεταβλητές με $\mathbb{P}\big[Y_i=1\big]=p,\ \mathbb{P}\big[Y_i=-1\big]=1-p,$ για κάποιο $p\geq \frac{1}{2}.$ Για κάθε $n\in\mathbb{N}$ ορίζουμε $\tau_n=\inf\{m\in\mathbb{N}:\ X_m\in(-\infty,\overline{n}]\cup[1,+\infty)\}$

τον χρόνο πρώτης εξόδου από το (-n,1).

α) Υπολογίστε την πιθανότητα απορρόφησης $\beta(n)=\mathbb{P}[X_{ au_n}=1]$ και την μέση τιμή $\mathbb{E}[au_n]$.

β) Βρείτε τα όρια

 $\lim_{n \to \infty} \beta(n)$ xal $\lim_{n \to \infty} \mathbb{E}[\tau_n]$

 γ) Έστω $\tau=\inf\{m\in\mathbb{N}:\ X_m\in[1,+\infty)\}$ ο χρόνος πρώτης εισόδου στο $[1,+\infty)$. Δείξτε ότι $\tau_n\uparrow \tau,\ \mathbb{P}$ -σ. β . και χρησιμοποιήστε το για να υπολογίσετε την $\mathbb{E}\big[\tau\big]$.

Άσχηση 2 (20 μονάδες)

Έστω $\{X_n\}_{n\in\mathbb{N}}$ αχολουθία από ανεξάρτητες τυχαίες μεταβλητές με $X_n>0,\ \mathbb{P}$ -σ.β. και $\mathbb{E}[X_n]<+\infty,\ \forall n\in\mathbb{N}.$ Θέτουμε

 $Y_n = X_1 X_2 \cdots X_n.$

α) Δείξτε ότι η στοχαστική ανέλιξη $\{Y_n,\ n\in\mathbb{N}\}$ είναι μαρκοβιανή.

β) Δείξτε ότι η $\{Y_n, n \in \mathbb{N}\}$ είναι martingale αν και μόνο αν $\mathbb{E}[X_n] = 1, \ \forall n \in \mathbb{N}.$

Άσκηση 3 (20 μονάδες)

Μια μαρχοβιανή αλυσίδα στον $\mathbb{X}=\{0,1,2,\ldots\}$ έχει πιθανότητες μετάβασης $p_{k,k+1}=p<1,\;p_{k,0}=1-p,\;\forall k\in\mathbb{X}.$

α) Δείξτε ότι είναι μη υποβιβάσιμη και γνήσια επαναληπτική.

β) Βρείτε την κατανομή ισορροπίας της.

Άσκηση 4 (30 μονάδες)

Μια μαρχοβιανή αλυσίδα χινείται ανάμεσα σε 6 χαταστάσεις. Οι δυνατές μεταβάσεις ειχονίζονται σαν αχμές στο διπλανό σχήμα. Οι πιθανότητες μετάβασης είναι συμμετριχές, δηλ. p(x,y)=p(y,x) για χάθε $x,y\in\{A,B,C,D,E,F\}$ χαι δίνονται και αυτές στο σχήμα. Π.χ. $p_{CD}=p_{DC}=\varepsilon$, με $0<\varepsilon<1$.

α) Αν $X_0=C$ υπολογίστε την πιθανότητα η αλυσίδα να φτάσει στο σύνολο $\{E,F\}$ πριν φτάσει για πρώτη φορά στο A.

β) Ορίζουμε $T_{\varepsilon}=\inf\left\{m\geq 0: X_{m}\in\{D,E,F\}\right\}$ τον χρόνο εισόδου στο $\{D,E,F\}$. Υπολογίστε για $x\in\{A,B,C\}$ την $\mathbb{E}\left[\left.T_{\varepsilon}\mid X_{0}=x\right].$

γ) Αν $X_0=A$ και s>0, υπολογίστε την $\mathbb{E}[e^{-s\varepsilon T_\varepsilon}]$ και αποδείξτε ότι ο χρόνος $\varepsilon T_\varepsilon$ συγκλίνει κατά κατανομή σε μια εκθετική τυχαία μεταβλητή με μέση τιμή 3 καθώς $\varepsilon\to0$.

ΚΑΛΗ ΕΠΙΤΥΧΙΑ!