Zusammenfassung

Anzahl der Möglichkeiten, k Elemente aus einer n-elementigen Menge zu ziehen:

	geordnet	ungeordnet		
ohne Zurücklegen	$\frac{n!}{(n-k)!}$	$\binom{n}{k}$		
mit Zurücklegen	n ^k	$\binom{n+k-1}{k}$		

Mehr Informationen:

www.studyhelp.de/online-lernen/mathe/kombinatorik/

Der binomische Lehrsatz

Es sei R ein kommutativer Ring.

Schreibweise

Für $a \in R$ und $z \in \mathbb{Z}$ schreiben wir

$$z.a := \left\{ egin{array}{ll} \underbrace{a+a+\cdots+a}, & ext{falls } z \in \mathbb{N} \\ & z ext{ Summanden} \end{array}
ight.$$
 falls $z = 0$ $-(-z.a),$ falls $z < 0$

Meist lassen wir den Punkt weg, d.h. wir schreiben za statt z.a.

Bemerkung

Ist z = xy für $x, y \in \mathbb{Z}$, dann gilt z.a = x.(y.a) für alle $a \in R$.

Der binomische Lehrsatz (Forts.)

Binomischer Lehrsatz

Es sei R ein kommutativer Ring, $a, b \in R$ und $n \in \mathbb{N}$. Dann gilt

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

Korollar

Für $n \in \mathbb{N}$ gilt

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}.$$

Der binomische Lehrsatz (Forts.)

Schülers Traum

Es sei R ein Ring und p eine Primzahl mit p.a=0 für alle $a\in R$ (z.B. $R=\mathbb{F}_p$ der Körper mit p Elementen). Dann ist

$$(a+b)^p = a^p + b^p$$

für alle $a, b \in R$.

Beweis

Für 0 < k < p ist

$$\binom{p}{k} = \frac{p \cdot (p-1) \cdots (p-k+1)}{k!}$$

von der Form xp für ein $x \in \mathbb{N}$, also $\binom{p}{k}.a^kb^{p-k} = 0$.

Kombinatorische Beweisprinzipien

Summenregel

Es sei $r \in \mathbb{N}$ und A_1, \ldots, A_r paarweise disjunkte endliche Mengen. Dann ist

$$|\bigcup_{i=1}^{r} A_i| = \sum_{i=1}^{r} |A_i|.$$

Differenzregel

Es sei M endliche Menge, $A \subseteq M$. Dann ist

$$|M \setminus A| = |M| - |A|.$$

Beispiele

- $\blacktriangleright |\{n \in \underline{10} \mid n \notin \mathbb{P}\}| =$
- ► Anzahl der Lottoziehungen, bei denen 49 gezogen wird
- ► Anzahl der 3-Kombinationen aus <u>8</u>, in denen 1 vorkommt

Produktregel

Es sei $r \in \mathbb{N}$ und A_1, \ldots, A_r endliche Mengen. Dann ist

$$| \underset{i=1}{\overset{r}{\times}} A_i | = \prod_{i=1}^r |A_i|.$$

Satz

 \mathcal{A} eine Multimenge mit r verschiedenen Elementen a_1, \ldots, a_r .

Es sei $\ell_{\mathcal{A}} = (k_1, \dots, k_r)$ und $k = k_1 + \dots + k_r$.

Die Anzahl der Anordnungen von ${\cal A}$ ist

$$\frac{k!}{k_1!\cdots k_r!}.$$

Beispiel

Wieviele verschiedene Wörter kann man durch Anordnung der Buchstaben P,I,Z,A gewinnen?

Prinzip

Für zwei beliebige endliche Mengen A und B gilt stets

$$|A \cup B| = |A| + |B| - |A \cap B|.$$

Inklusions-Exklusionsprinzip

Es sei $r \in \mathbb{N}$ und A_1, \ldots, A_r endliche Mengen. Dann gilt

$$|\bigcup_{k=1}^r A_k| = \sum_{k=1}^r (-1)^{k-1} \sum_{\substack{I \subseteq \underline{r} \\ |I| = k}} |\bigcap_{i \in I} A_i|.$$

Beispiel

 $|\{n \in \underline{100} \mid 2 \text{ teilt } n \text{ oder 3 teilt } n \text{ oder 5 teilt } n\}| =$

Schubfachprinzip (informell)

Verteilt man n Elemente auf m Schubladen und ist n > m, so enthält eine Schublade mindestens zwei Elemente.

Schubfachprinzip (mathematisch)

Es seien A, B endliche Mengen mit |A| = n und |B| = m. Weiter sei $f: A \rightarrow B$ Abbildung.

Ist n > m, dann ist f nicht injektiv.

Beispiel

In jeder Menge von 13 Personen gibt es zwei, die im gleichen Monat Geburtstag haben.

Partitionen

Es sei A eine Menge und $k \in \mathbb{N}_0$.

Erinnerung

Eine Partition von A ist eine Teilmenge $\mathcal{P} \subseteq \operatorname{Pot}(A)$ mit

- ▶ $P \neq \emptyset$ für alle $P \in \mathcal{P}$;
- ▶ $P \cap P' = \emptyset$ für alle $P, P' \in \mathcal{P}$ mit $P \neq P'$;
- ► $A = \cup_{P \in \mathcal{P}} P$.

Definition

Eine k-Partition von A ist eine Partition \mathcal{P} von A mit $|\mathcal{P}| = k$.

Beispiele

- ▶ $\{\{1,3,5,8\},\{2,7\},\{4,9\},\{6\}\}\$ ist eine 4-Partition von $\underline{9}$.
- ▶ Eine 0-Partition von A existiert nur für $A = \emptyset$.

Stirlingzahlen

Es seien $n, k \in \mathbb{N}_0$.

Definition

$$S_{n,k} := \text{Anzahl der } k\text{-Partitionen von } \underline{n}$$

heißt Stirling-Zahl zweiter Art.

Beispiel

Die Anzahl der Möglichkeiten, n Studierende auf k nicht-leere Tutoriengruppen aufzuteilen, ist $S_{n,k}$.

Bemerkung

- ► $S_{n,n} = 1$,
- ► $S_{n,0} = 0$ falls n > 0,
- ► $S_{n,k} = 0$ falls k > n.

Satz

Für alle $n, k \in \mathbb{N}$ gilt

$$S_{n,k} = S_{n-1,k-1} + kS_{n-1,k}.$$

Bemerkung

Die Zahlen $S_{n,k}$ lassen sich im sog. Stirling-Dreieck zweiter Art anordnen:

$$n = 0$$
:
 1

 $n = 1$:
 0
 1

 $n = 2$:
 0
 1
 1

 $n = 3$:
 0
 1
 3
 1

 $n = 4$:
 0
 1
 7
 6
 1

 $n = 5$:
 0
 1
 15
 25
 10
 1

 $n = 6$:
 0
 1
 31
 90
 65
 15

Es seien $n, k \in \mathbb{N}_0$.

Definition

 $s_{n,k} := \text{Anzahl der Permutationen von } n \text{ mit } k\text{-}\text{Zykeln}$ heißt $Stirling\text{-}Zahl \ erster \ Art.$

Bemerkung

- ► $s_{n,n} = 1$,
- $s_{n,0} = 0$ falls n > 0,
- $s_{n,k} = 0$ falls k > n.

Satz

Für alle $n, k \in \mathbb{N}$ gilt

$$s_{n,k} = s_{n-1,k-1} + (n-1)s_{n-1,k}.$$

Bemerkung

Die Zahlen $s_{n,k}$ lassen sich im sog. *Stirling-Dreieck erster Art* anordnen:

n = 0:							1						
n = 1:						0		1					
n = 2:					0		1		1				
n = 3:				0		2		3		1			
n = 4:			0		6		11		6		1		
n = 5:		0		24		50		35		10		1	
n = 6:	0		120		274		225		85		15		1