Sparse Graph Obfuscation

October 5, 2023

Preliminaries 1

Bounded Functional Encryption 1.1

We will use the notation of static, bounded functional encryption as presented in [GGLW22].

Security

We will slightly weaken the security notion such that the adversary does not choose which circuits it can learn the functional secret key for. Indeed, this is a weaker notion of functional encryption which fixes the adversary's output circuit. We will assume that we get circuit C_1, \ldots, C_d .

For completeness, we have the original security definition of [GGLW22] below:

less, we have the original security definition of [GGLW22] below
$$\begin{cases} \mathcal{A}^{\mathrm{KeyGen(MSK,\cdot)}}(\mathrm{CT}) & \overset{(1^n,1^q)}{\underset{m \leftarrow \mathcal{A}^{\mathrm{KeyGen(MSK)}}(\mathrm{MPK})}{(\mathrm{MPK},\mathrm{MSK})} \leftarrow \mathrm{Setup}\,(1^n,1^q) \\ m \leftarrow \mathcal{A}^{\mathrm{KeyGen(MSK)}}(\mathrm{MPK}) \\ \mathrm{CT} \leftarrow \mathrm{Enc}(\mathrm{MPK},m) \end{cases} \\ \overset{c}{\approx} \begin{cases} \mathcal{A}^{\mathrm{Sim}_3^{U_m(\cdot)}}(\mathrm{CT}) & \overset{(1^n,1^q)}{\underset{m \leftarrow \mathcal{A}^{S_1(\mathbf{st}_0)}(\mathrm{MPK})}{(\mathrm{MPK},\mathbf{st}_0)} \leftarrow \mathrm{Sim}_0\,(1^\lambda,1^n,q) \\ m \leftarrow \mathcal{A}^{S_1(\mathbf{st}_0)}(\mathrm{MPK}) \\ (\mathrm{CT},\mathbf{st}_2) \leftarrow \mathrm{Sim}_2(\mathbf{st}_1,\Pi^m) \end{cases} \\ \lambda \in \mathbb{N} \end{cases}$$

Our modified security definition is as follows:

$$\left\{ \begin{array}{l} \mathcal{A}^{\mathrm{KeyGen}(\mathrm{MSK},\{\mathrm{inner}_{1},\ldots,\mathrm{inner}_{d}\})}(\mathrm{CT}) & \stackrel{(1^{n},1^{q})}{(\mathrm{MPK},\mathrm{MSK})} \leftarrow \mathrm{Setup}\,(1^{n},1^{q}) \\ m \leftarrow \mathcal{A}(\mathrm{MPK},\mathrm{SK}_{C_{1}},\ldots,\mathrm{SK}_{C_{d}}) \\ \mathrm{CT} \leftarrow \mathrm{Enc}(\mathrm{MPK},m) \end{array} \right\}_{\lambda \in \mathbb{N}} \\
\left\{ \begin{array}{l} \mathcal{A}^{\mathrm{Sim}_{3}^{U_{m}(\{\mathrm{inner}_{1},\ldots,\mathrm{inner}_{d}\})}}(\mathrm{CT}) & \stackrel{(1^{n},1^{q})}{(\mathrm{MPK},\mathbf{st}_{0})} \leftarrow \mathcal{A}(1^{\lambda}) \\ m \leftarrow \mathcal{A}^{S_{1}(\mathbf{st}_{0})}(\mathrm{MPK},C_{1},\ldots,C_{d}) \\ (\mathrm{CT},\mathbf{st}_{2}) \leftarrow \mathrm{Sim}_{2}(\mathbf{st}_{1},\Pi^{m}) \end{array} \right\}_{\lambda \in \mathbb{N}} \\
\text{so copy th admissibility constraints of [GGLW22]:} \\
\end{array}$$

we also copy the admissibility constraints of [GGLW22]:

1.2 Non-malleable Bounded FE

Here, we introduce the notion of non-malleable bounded functional encryption. While we make the definition explicit (in terms of its non-malleability), we prove that simulation-secure bounded FE is equivalent to simulation secure non-malleable bounded FE.

We define non-malleable security of bounded functional encryption in almost the exact notion of [Pas06]. First, let $NM(m_1, \ldots, m_q, \mathcal{A})$ be a game as follows for $q = \text{poly}(\lambda)$:

- 1. $(MPK, MSK) \leftarrow FE.Setup(1^{\lambda})$
- 2. $SK_{C_i} \leftarrow FE.Keygen(MSK, C_i)$ for $i \in [d]$
- 3. $CT_1, \ldots, CT_q \leftarrow FE.Enc(MPK, m_1), \ldots FE.Enc(MPK, m_q)$

4.
$$c'_1, \ldots, c'_{\ell} \leftarrow \mathcal{A}(\mathrm{CT}, 1^{|m|})$$

5. $m'_i \leftarrow \bot$ is $c_i = c_j$ for $j \in [q]$ and FE.Dec(SK_{identity}, c_i) otherwise.

Then, we say that a bounded functional encryption scheme is non-malleable if for all PPT \mathcal{A} and every PPT \mathcal{D} , there exists a negligible function negl such that for all $\{m\}_0, \{m\}_1 \in \{0,1\}^{nq}$, we have

$$\left| \mathbf{Pr}[\mathcal{D}(NM(\{m\}_0, \mathcal{A})) = 1] - \mathbf{Pr}[\mathcal{D}(NM(\{m\}_1, \mathcal{A})) = 1] \right| \le \text{negl.}$$
 (2)

As outlined in [Pas06], we can equivalently define non-malleability in terms of a PPT recognizable relation R such that

$$\left| \mathbf{Pr} \left[NM(\{m\}, \mathcal{A}(z) \in \bigcup_{m \in \{m\}} R(m) \right] - \right.$$

$$\left. \mathbf{Pr} \left[c \leftarrow \operatorname{Sim}_{NM}(1^{n}, z); m' = \operatorname{FE.Dec}(\operatorname{SK}_{\operatorname{identity}}, c); m' \in \bigcup_{m \in \{m\}} R(m) \right] \right| \leq \operatorname{negl}(\lambda).$$
(4)

$$\mathbf{Pr}\left[c \leftarrow \mathrm{Sim}_{NM}(1^n, z); m' = \mathrm{FE.Dec}(\mathrm{SK}_{\mathrm{identity}}, c); m' \in \bigcup_{m \in \{m\}} R(m)\right] \middle| \leq \mathrm{negl}(\lambda). \tag{4}$$

Note that in the above definition, we do not give the adversary access to any SK_{C_i} . We simply require that the scheme is public key non-malleable.

and note that if SK_{C_i} is given to the adversary such that $FE.Dec(SK_{ID}, C_i(x)) \notin R(m)$ for all $x \in \{0,1\}^n$, then the scheme is still non-malleable even if the adversary is given access to SK_{C_i} . This is because we can use the FE simulator to replace FE.Enc with a simulator Sim_{FE} which relies solely on public parameters and $C_i, C_i(x)$. Indeed, as the

Thus, we can see that given the simulator SK_{C_i} is useless as $FE.Dec(C_i(x)) \notin R(m)$.

TODO: CHANGE NM definition to be from https://www.cs.cornell.edu/rafael/papers/PSV06a.pdf... the adversary gets the public key

2 Randomized DAG Traversal Sketch

2.1 DAG Randomized Traversal

Say that we have a sparse, potentially exponentially sized, graph $\mathcal{G} = (V, E)$ and $\forall v \in V, \deg(v) = d$. We also require that \mathcal{G} is equipped with a neighbor function, Γ , which can be computed in polynomial time. We define a (pseudo) randomized and keyed labelling function $\phi: V \times \{0, 1\}^{\lambda} \to \{0, 1\}^{\text{poly}(\lambda)}$ such that given, $\phi(K, v_0)$ for root v_0 , an adversary, \mathcal{A} , which does not know a path from v_0 to v,

$$\Pr[\mathcal{A}(C_{\Gamma}, v_0, v, \phi(K, v_0)) \in \operatorname{Image}(\phi(K, v))] \le O(v)\epsilon \tag{5}$$

for some fixed $\epsilon \leq \mathtt{negl}(\lambda)$ and function C_{Γ} where $C_{\Gamma}(\phi(K, u)) = \phi(K, \Gamma(u)_1), \dots, \phi(K, \Gamma(u)_d)$ if $\Gamma(u) \neq \emptyset$ and otherwise $\Gamma(u)$ returns a 0 string of length $d|\phi(K, \cdot)|$.

2.2 Instantiation

We define $\phi(K, v)$ to be as follows:

- 1. Let $r_1, r_2 \stackrel{\$}{\leftarrow} \{0, 1\}^{\lambda}$ or r_1, r_2 is drawn from a pseudorandom distribution.
- 2. Return FE.Enc(MPK, (K, v, r_2)) where encryption is done with randomness from r_1 .

We can now define, C_{Γ} .

Algorithm 1 The circuit for the neighbor function, C_{Γ} .

```
1: function INNER<sub>i</sub>(K, v, r)
         if \Gamma(v) = \emptyset then
 2:
             return 0 \in \{0, 1\}^*
 3:
         u_1,\ldots,u_d=\Gamma(v)
 4:
         u = u_i
 5:
         r_1, r_2 = PRG(r)
 6:
 7:
         return FE.Enc(MPK, (u, K, r_2)) where we encrypt with randomness from r_1.
    function C_{\Gamma}(\phi(K,v))
         for i \in [d] do
 9:
             u_i = \mathtt{Dec}(\mathrm{SK}_{\mathtt{inner}_i}, \phi(K, v))
10:
         return (u_1,\ldots,u_d)
11:
```

Now, we will prove eq. (5). For convenience, we will restate eq. (5):

$$\Pr[\mathcal{A}(C_{\Gamma}, v_0, v, \phi(K, v_0)) \in \operatorname{Image}(\phi(K, v))] \leq O(v)\epsilon$$

for all PPT \mathcal{A} .

Proof of eq. (5). Let P be the set of all paths from v_0 to v. Then, as the adversary does not know any path from v_0 to v, we have that for each $p \in P$ where $p = v_0, \ldots, v$, there is some suffix of p, p', which the adversary does not know.

We are going to use a similar proof technique as in ?? where we use a hybrid argument.

- Hyb₀: In the first hybrid, the following game is played
 - 1. $K \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda'}$ and MPK, SK \leftarrow FE.Setup $(1^{\lambda'})$.

- 2. The challenger generates $SK_{inner_i} \leftarrow FE.Keygen(MSK, inner_i)$ for $i \in [d]$ and gives these keys to A
- 3. The challenger chooses a v and gives the adversary v in plaintext.
- 4. The challenger picks random $r_1, r_2 \stackrel{\$}{\leftarrow} \{0, 1\}^{\lambda'}$ and generates $\phi(K, v_0) = \text{FE.Enc}(\text{MPK}, (K, v_0, r_2))$ using r_1 as the random coins and gives $\phi(K, v_0)$ to \mathcal{A} .
- 5. A outputs guess g and wins if $g \in \phi(K, v)$
- Hyb₁: We replace $\phi(K, v_0)$ with a simulated cipher-text using the simulator Sim₂ MPK with its simulated counterpart using Sim₀, and SK_{inner_i} with its simulated counterpart using Sim₃ as defined in eq. (1).
- Hyb_{2a}: For any input into Sim₂ via $\Pi^{K,w,r}$ where $w \in \|$ and r is random, we replace the output of inner_i with inner'_i which uses true randomness r_1^*, r_2^* in stead of r_1, r_2 . For any call to $C_{\Gamma}(\phi(K,w))$ by \mathcal{A} for $w \in V$, we replace the output of inner_i with inner'_i which uses true randomness r_1^*, r_2^* in stead of r_1, r_2 . This is equivalent to changing Π^m to $\Pi^{m'}$ in eq. (1) where $\Pi^{m'}$ is the list (inner₁, inner'₁(·), ..., inner_d, inner'_d(·)). Note that this gives us that inner'_i(K, w, r) = $\phi(K, u)$ = FE.Enc(MPK, (K, u, r_2^*)) where $u = \Gamma(w)_i$.
- Hyb_{2b}: For any call by \mathcal{A} to inner'_i $(K, w, r) = \mathrm{CT}$, we replace CT with with CT' where CT' is the output of Sim₂ with input $\Pi^{(K,u,r)'}$ where $u = \Gamma(w)_i$.
 - Note that the replacement of Hyb_{2a} and Hyb_{2b} are repeated multiple times. Specifically, these replacements are repeated at most α times where α is the number of unique times $\mathcal A$ runs $\mathrm{FE.Dec}(\mathrm{SK}_{\mathtt{inner}_i},\phi(K,w))$.
- Hyb₃: Let \mathcal{P} be the set of all paths from v_0 to v. For each path $P \in \mathcal{P}$ where P is an ordered list of connected vertices, we have that the adversary does not know some part of P. We can note that this implies that \mathcal{A} never queries $\mathsf{inner}_i(w^u)$ where $u = \Gamma(w^u)_i$ for some $u \in P$ and the adversary knows a path from v_0 to w. We can see this because if there is no $u \in P$ such that \mathcal{A} never queries $\mathsf{inner}_i(w^u)$, then the adversary knows a path from v_0 to v. Define $\mathsf{Suff}(P)$ to be the path which starts at u, ends at v, and is a suffix of P. We now inductively build up a series of hybrids to show that a hybrid distribution which "erases" $\phi(K, v)$ from inner_i is indistinguishable from the above hybrid.
 - For the base case, let $U = \{u_1, \ldots, u_{\|\mathcal{P}\|}\}$ where u is the first vertex in P such that \mathcal{A} never queries $\mathtt{inner}_i(w^u)$ as defined above. Then, replace $\mathtt{inner}_i'(\cdot)$ with $\mathtt{inner}_i^*(\cdot)$ in Π_m such that $\mathtt{inner}_i^*(w) = \mathtt{inner}_i'(w)$ if $w \neq w^u$ for $u \in U$ and otherwise $\mathtt{inner}_i^*(w^u) = \bot$. We can note that this hybrid is indistinguishable as \mathtt{inner}_i' only changes for input ciphertexts which the adversary never queries.
 - For the ℓ -th inductive step, we are going to assume that we are given a hybrid such that \mathtt{inner}_i^ℓ such that $\mathtt{inner}_i^\ell(w^u) = \bot$ for $u \in U^\ell$ where U^ℓ where $U^\ell = \bigcup_{P \in \mathcal{P}} \mathrm{Suff}(P)_1, \ldots, \mathrm{Suff}(P)_\ell$ and otherwise $\mathtt{inner}_i^\ell(\cdot) = \mathtt{inner}_i'(\cdot)$. We now show that if \mathcal{A} can distinguish between a hybrid with $\mathtt{inner}_i^\ell(\cdot)$ and $\mathtt{inner}_i^{\ell+1}(\cdot)$, then the adversary can break the non-malleability of the FE scheme. We defer this proof to $\mathtt{lemma}\ 2.2$.

Finally, we can note that if $Hyb_0 \stackrel{c}{\approx} Hyb_3$,

$$\mathbf{Pr}[\mathcal{A}(C_{\Gamma}, v_0, v, \phi(K, v_0)) \in \mathrm{Image}(\phi(K, v))] \overset{c}{\approx} \mathbf{Pr}[\mathcal{A}(C_{\Gamma}', v_0, v, \phi(K, v_0)) \in \mathrm{Image}(\phi(K, v))]$$

where C'_{Γ} is C_{Γ} except that C'_{Γ} uses $\operatorname{inner}_{i}^{p}$ where $p = \max_{P \in \mathcal{P}} |P|$. We can note that C'_{Γ} returns \bot for any query on $\phi(K, w^{v})$ where $w^{v} \in \Gamma^{-1}(v)$. Using lemma 2.3 and the fact that $C'_{\Gamma}(u)_{i}$ returns \bot for all $u \in V, i \in [d]$ where $v = \Gamma(u)_{i}$, we have that

$$\mathbf{Pr}[\mathcal{A}(C'_{\Gamma}, v_0, v, \phi(K, v_0)) \in \mathrm{Image}(\phi(K, v))] \leq \mathtt{negl}(\lambda).$$

Lemma 2.1. $\mathit{Hyb}_0 \stackrel{c}{\approx} \mathit{Hyb}_{2b}.$

Proof. First we show that $\text{Hyb}_0 \approx \text{Hyb}_1$. Note that if \mathcal{A} can distinguish between Hyb_0 and Hyb_1 then an adversary can distinguish between an FE scheme and its simulated counterpart where m is fixed to (K, v_0, r) . We can see this as Hyb_1 is direct simulation of the FE scheme.

Then, if \mathcal{A} can distinguish Hyb_1 and Hyb_{2a} , then we can break the security of the PRG used in line 6 of algorithm 1. We can create an adversary \mathcal{B} which, for some fixed K, distinguishes between FE.Enc(MPK, (K, ur_2)) with random coins r_1 where $r_1, r_2 = \mathrm{PRG}(r)$ and FE.Enc(MPK, (K, u, r_1^*)) encrypted with random coins r_2^* where r_1^*, r_2^* are truly random.

Then, if \mathcal{A} can distinguish any transformation from Hyb_{2a} to Hyb_{2b} , then we can break the security of the FE scheme. We can see this by noting that if we fix m=(K,w,r) for random r and K, then $\mathcal{A}^{\mathrm{Sim}_3^{U_m(\cdot)}}(\mathrm{CT})$ is distinguishable and $\mathcal{A}^{\sim_3^{u_m(\cdot)}}(\mathrm{CT}')$ where CT is the real cipher-text and CT' is simulated. We can then note that if the above are distinguishable, then $\mathcal{A}^{\mathrm{KeyGen}(\mathrm{MSK},\{\mathrm{inner}_1,\ldots,\mathrm{inner}_d\})}(\mathrm{CT})$ and $\mathrm{KeyGen}(\mathrm{MSK},\{\mathrm{inner}_1,\ldots,\mathrm{inner}_d\})$ are distinguishable as $\mathcal{A}^{\mathrm{KeyGen}(\mathrm{MSK},\{\mathrm{inner}_1,\ldots,\mathrm{inner}_d\})}$ can simply simulate $\mathcal{A}^{\mathrm{Sim}_3^{U_m(\cdot)}}(\mathrm{CT})$.

Then, if \mathcal{A} can distinguish any transformation from \mathtt{Hyb}_{2b} to \mathtt{Hyb}_{2a} , then we can break the security of a PRG in the same manner as distinguishing \mathtt{Hyb}_1 and \mathtt{Hyb}_{2a} .

By the chain rule, we get that \mathtt{Hyb}_0 and \mathtt{Hyb}_{2b} are indistinguishable even after a repeated number of sequential invocations of the transformation in \mathtt{Hyb}_{2a} and \mathtt{Hyb}_{2b} .

Lemma 2.2. Let A be a PPT adversary and assume that we have a non-malleable and simulation secure FE scheme. Then, we have that the inductive step of Hyb_3 holds.

Proof. We construct an adversary $\mathcal B$ that can break NM security using $\mathcal A$ if $\mathcal A$ can distinguish between the hybrids in the inductive step. Note that in order to distinguish between the hybrids, $\mathcal A$ must have queried $\operatorname{inner}_i^\ell$ or $\operatorname{inner}_{i+1}^\ell$ on $\phi(K,w^u)$ where $u\in\{\operatorname{Suff}(P)_{\ell+1}\mid P\in\mathcal P\}$ as the this is the only difference between the hybrids. Thus, we see that $\mathcal A$ is able to produce $\operatorname{CT}\in\phi(K,w^u)$. By definition of $\operatorname{inner}_i^\ell$ though, we know that $\operatorname{inner}_i^\ell(\phi(k,q))\neq\phi(K,w^u)$ for any $q\in V$ as we define $\operatorname{inner}_i^\ell(K,q)=\bot$ if $\operatorname{inner}_i'(K,q)=\phi(K,w^u)$. Thus, the adversary has to be able to produce $\operatorname{CT}\in\phi(K,w^u)$ without calling C_Γ^ℓ where C_Γ^ℓ uses $\operatorname{inner}_i^\ell$ instead of inner_i .

Thus, if $\mathcal{A}(w^u, v_0, C_{\Gamma}, \phi(K, v_0))$ can produce $\operatorname{CT} \in \phi(K, w^u)$, we can have $\mathcal{B}(\phi(K, v_0), \phi(K, q_1), \dots, \phi(K, q_{\operatorname{poly}(\lambda)}))$ produce $\phi(K, w^u)$ where $q_1, \dots, q_{\operatorname{poly}(\lambda)}$ are all the vertices that \mathcal{A} has queried C_{Γ} on. \mathcal{B} simply has to invoke Sim_3 to create a simulated function key for $\operatorname{SK}'_{\operatorname{inner}_i}$ and thus a simulated C'_{Γ} . \mathcal{B} then gives $\mathcal{A}(w^u, v_0, C'_{\Gamma}, \phi(K, v_0))$. \mathcal{B} then breaks eq. (3) (this is supposed to be the NM relationship equation) as \mathcal{A} is able to create an encryption of $\phi(K, w^u)$ with non-negligible probability while the simulator in eq. (3) cannot.

Lemma 2.3. Define C'_{Γ} where C'_{Γ} is defined as in algorithm 1 except that for some set $U \subset V$, $C_{\Gamma}(w^u)_i = \bot$ for all $w^u \in V$ such that $u = \Gamma(w^u)_i$ for some $u \in U$. In words, the parent of all $u \in U$ do not return $\phi(K, u)$ when queried on C'_{Γ} . Then, assuming the non-malleability and simulation security of FE, we have that for all PPT A and all $u \in U$,

$$\mathbf{Pr}[\mathcal{A}(C'_{\Gamma}, v_0, u, U, \phi(K, v_0)) \in Image(\phi(K, u))] \le \operatorname{negl}(\lambda). \tag{6}$$

Proof. Almost identically to lemma 2.2, we construct an adversary \mathcal{B} that can break NM security using \mathcal{A} if \mathcal{A} can produce $CT \in \phi(K, u)$ for some $u \in U$.

If $\mathcal{A}(w^u, v_0, C'_{\Gamma}, u, \phi(K, v_0))$ can produce $\operatorname{CT} \in \phi(K, u)$, we can have $\mathcal{B}(\phi(K, v_0), \phi(K, q_1), \ldots, \phi(K, q_{\operatorname{poly}(\lambda)}))$ produce $\phi(K, u)$ where $q_1, \ldots, q_{\operatorname{poly}(\lambda)}$ are all the vertices that \mathcal{A} has queried C'_{Γ} on. \mathcal{B} simply has to invoke Sim_3 to create a simulated set of function keys for inner_i' for all $i \in [d]$ and can then simulate C'_{Γ} with these function keys.

We can then have \mathcal{B} invoke Sim_3 to create a simulated function key for $\operatorname{SK}'_{\operatorname{inner}_i}$ and thus a simulated C_{Γ}^* . \mathcal{B} then gives \mathcal{A} ($w^u, v_0, C_{\Gamma}^*, \phi(K, v_0)$). We can then break eq. (3) (the relational notion of security for non-malleability) as \mathcal{A} is able to create an encryption of $\phi(K, w^u)$ with non-negligible probability while the simulator in eq. (3) cannot.

Abstract

References

- [GGLW22] Rachit Garg, Rishab Goyal, George Lu, and Brent Waters. Dynamic collusion bounded functional encryption from identity-based encryption. In *Annual International Conference on the Theory and Applications of Cryptographic Techniques*, pages 736–763. Springer, 2022. 1.1, 1.1, 1.1
- [Pas06] Rafael Pass. Lecture 16: Non-mall eability and public key encryption, October 2006. 1.2, 1.2