

BERT: Pre-training of Deep Bidirectional Transformers for • Language Understanding

Ming-Wei Chang, Google Al Language

INTRODUCTION

Natural Language Processing (NLP)

- Enabling computers to process natural language
 - E.g. sentiment analysis, question answering,
- Example: Question Answering

Q: The traveling salesman problem is an example of what type of problem?

Machine Learning
Model

A: A function problem is a computational problem where a single output Notable examples include the traveling salesman problem and the integer factorization problem.

P: A function problem is a computational problem ...

Notable examples include the traveling salesman problem and the integer factorization problem.

Project name P 3

The Language Representation Problem

Q: How to represent text for machine learning models?

 Many machine learning models (such as neural networks) expect continuous vectors as input

The representations should capture the semantic meaning

How Should We Represent Words?

Can we do better?

A one-hot vector? Traditional NLP

- Distances between any two words ...
 - o are always the same!
 - However, "queen" should be more related to "king" compared to "headphone"

Project name P

Continuous Representations of Words

Can we do better?

Representing words with continuous values

 Word embeddings (word2vec, GloVe) are often pre-trained on unlabeled text corpus from co-occurrence statistics

Contextual Representations

Problem of word embeddings: context-independent

Ideally, representations should be contextual

Training Contextual Representations

Can we do better?

- Pre-training contextual representations:
 - Semi-Supervised Sequence Learning, Google, 2015
 - ELMo, Al2, 2017
 - Generative Pre-Training, OpenAI, 2018
 - ULMFit, fast.ai, 2018
- Training language models on text corpus:
 - o Generate contextual representations. Single direction.

BERT!

- Deep Bi-directional Pre-training
 - Using Transformer Blocks
- Learning contextual representations
 - With unlabeled data
 - Not just embeddings; Model initialization.
- Pre-training is very powerful
 - State-of-the-art performance for 11 tasks
 - With little task-specific engineering

Input and Output for BERT

BERT Model

 Every token will be translated into a representation vector

• Bi-directional Transformer [Vaswani et. al 17]

What is the input/output for BERT?

Unified Input Representation

Always represent the input as a long sequence

- For text pair, pack two sentences in one sequence
- For single text task (such as) classification or tagging, pack one sentence in one sequence

Sentence Pair Classification Tasks

Class Label

Single Sentence Classification Tasks

Class Label

Sequence Tagging

BERT for Question Answering

Task List

Different tasks have different input/output

Input \ Output	Classification	Token-level Output		
Single Text Sequence	e.g. Sentiment Classification	e.g. Named Entity Recognition		
Text Sequence Pairs	e.g. Entailment	e.g. Question Answering		

• The [CLS] and [SEP] tokens and the unified input format make it is possible to use the same architecture

Input Representation Details

- Use 30,000 WordPiece vocabulary on input.
- Each token is sum of three embeddings

Pre-training BERT

 $\bullet \bullet \bullet \bullet$

Review: Supervised Training

Labeled data: (input, output) pairs

Training Testing

Pre-training for BERT

Training Testing

Terminologies

- Pre-training
 - Training BERT with a large amount of unlabeled data
- Fine-tuning
 - Training BERT with a small amount of task-specific labeled data
- In BERT, we use pre-training as a way to initialize the whole model. This is different from just using fixed word embeddings.

Basic BERT Overall Framework

Pre-Training

Fine-Tuning

Notes in the BERT Framework

- We always use the same model architecture
- We initialize all parameters from pre-training model
- We fine-tune all parameters in the fine-tuning stages

Pre-training: Masked LM

- Solution: Mask out k% of the input words, and then predict the masked words
 - We always use k = 15%

- Too little masking: Too expensive to train
- Too much masking: Not enough context

Pre-training: Next Sentence Prediction

 To learn relationships between sentences, predict whether Sentence B is actual sentence that follows Sentence A, or a random sentence

```
Sentence A = The man went to the store.

Sentence B = He bought a gallon of milk.

Label = IsNextSentence
```

```
Sentence A = The man went to the store.
Sentence B = Penguins are flightless.
Label = NotNextSentence
```


Transfer Learning; Not Multi-task Learning

Pre-Training

Fine-Tuning

Model Details

- Public BERT: Train on 3.3B words for 40 epochs
- BERT-Base: 12-layer, 768-hidden, 12-head
- BERT-Large: 24-layer, 1024-hidden, 16-head
- Trained on TPU for 4 days
- Pre-Trained models released and ready to use!

RESULTS

 $\bullet \bullet \bullet \bullet$

GLUE Results

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERT _{BASE}	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9

MultiNLI

Premise:

At the other end of Pennsylvania Avenue, people began to line up for a White House tour.

<u>Hypothesis</u>: People formed a line at the end of

Pennsylvania Avenue.

Label: Entailment

CoLA

<u>Sentence</u>: The wagon rumbled down the road.

<u>Label</u>: Acceptable

Sentence: The car honked down the road.

<u>Label</u>: Unacceptable

SQuAD 1.1 Results

What was another term used for the oil crisis?

Ground Truth Answers: first oil shock shock first oil

shock shock Prediction: shock

The 1973 oil crisis began in October 1973 when the members of the Organization of Arab Petroleum Exporting Countries (OAPEC, consisting of the Arab members of OPEC plus Egypt and Syria) proclaimed an oil embargo. By the end of the embargo in March 1974, the price of oil had risen from US\$3 per barrel to nearly \$12 globally; US prices were significantly higher. The embargo caused an oil crisis, or "shock", with many short- and long-term effects on global politics and the global economy. It was later called the "first oil shock", followed by the 1979 oil crisis, termed the "second oil shock."

Rank	Model	EM	F1
	Human Performance Stanford University (Rajpurkar et al. '16)	82.304	91.221
1 Oct 05, 2018	BERT (ensemble) Google Al Language https://arxiv.org/abs/1810.04805	87.433	93.160
2 Oct 05, 2018	BERT (single model) Google Al Language https://arxiv.org/abs/1810.04805	85.083	91.835
2 Sep 26, 2018	nlnet (ensemble) Microsoft Research Asia	85.954	91.677
5 Sep 09, 2018	nlnet (single model) Microsoft Research Asia	83.468	90.133
3 [Jul 11, 2018]	QANet (ensemble) Google Brain & CMU	84.454	90.490

SWAG Results

A girl is going across a set of monkey bars. She

- (i) jumps up across the monkey bars.
- (ii) struggles onto the bars to grab her head.
- (iii) gets to the end and stands on a wooden plank.
- (iv) jumps up and does a back flip.

Leaderb	♦ Submissions	
Rank	Model	Test Score
1	BERT (Bidirectional Encoder Representations from Transfo <i>Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova</i> 10/11/2018	86.28%
2	OpenAl Transformer Language Model <i>Original work by Alec Radford, Karthik Narasimhan, Tim Salimans,</i> 10/11/2018	77.97%
3	ESIM with ELMo Zellers, Rowan and Bisk, Yonatan and Schwartz, Roy and Choi, Yejin 08/30/2018	59.06%
4	ESIM with Glove Zellers, Rowan and Bisk, Yonatan and Schwartz, Roy and Choi, Yejin 08/29/2018	52.45%

— Human Performance (88.00%)

Running Best

Leaderboard

Effect of Model Size

- Big models help a lot
- Going from 110M -> 340M params helps even on datasets with 3,600 labeled examples
- Bigger model might even help more!

BERT is Open Sourced

- Both code and pre-trained models are available
 - Over 14,000 github stars
 - Multilingual models are also released
- Many articles and blog posts about BERT
- Large impact on other NLP tasks
 - o ARC, CoQA, SQuAD 2.0, MSMARCO, OpenBookQA, SciTail, parsing

Using BERT on TfHub

• • • •

Install and Config BERT

Install BERT

pip install bert-tensorflow

Import BERT

```
import bert
from bert import run_classifier
from bert import optimization
from bert import tokenization
```


Prepare Input for BERT

For this task, we have only one text sequence

Input Format

Construct BERT input

```
bert.run_classifier.convert_examples_to_features(train_
InputExamples, label_list, MAX_SEQ_LENGTH, tokenizer)
```

```
INFO:tensorflow:tokens: [CLS] the performances were fault ##less and outstanding . [SEP]
INFO:tensorflow:input_ids: 101 1996 4616 2020 6346 3238 1998 5151 1012 102
INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1
INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0
INFO:tensorflow:label: 1 (id = 1)
```


Use BERT TfHub Module

Load BERT Tf-Hub Module

Specify the Output Layer

Add the standard output layer for classification

```
with tf.variable_scope("loss"):
    logits = tf.layers.dense(output_layer, num_classes)
    loss = tf.losses.sparse_softmax_cross_entropy(labels, logits)
    predictions = tf.argmax(logits, -1)
```


Training and Evaluating with BERT

Getting results

```
estimator.train(input_fn=train_input_fn, max_steps=num_train_steps)
...
estimator.evaluate(input_fn=test_input_fn, steps=None)
```

```
{'auc': 0.86659324,
  'eval_accuracy': 0.8664,
  'f1_score': 0.8659711,
```


Conclusion

BERT is a novel language representation model

- The pretrained models and code are released!
 - https://github.com/google-research/bert

Questions?