Stat 696, Example Application of knitr

Kelso Quan

September 10, 2018

```
summary(fm1)
##
## Call:
## lm(formula = Apps ~ Private + Elite + Accept + Outstate + Room.Board +
##
       Grad.Rate, data = College)
##
## Residuals:
##
       Min
            1Q Median
                              3Q
## -5094.5 -329.7 -22.6 226.8 10114.6
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) -985.95379 204.82380 -4.814 1.78e-06 ***
## PrivateYes -291.62328 133.28335 -2.188 0.028970 *
## EliteYes 1745.00184 151.74052 11.500 < 2e-16 ***
## Accept 1.42869 0.02024 70.601 < 2e-16 ***
## Outstate -0.01427 0.01690 -0.845 0.398600
## Room.Board 0.16615 0.04953
## Grad.Rate 8.63483 2.94718
                                      3.355 0.000834 ***
                                       2.930 0.003491 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1128 on 770 degrees of freedom
## Multiple R-squared: 0.9157, Adjusted R-squared: 0.915
## F-statistic: 1394 on 6 and 770 DF, p-value: < 2.2e-16
```

Predictions for the public non elite universities: 7000, 4800, 9300.

Predictions for elite private universities: 2300, 57, 4600.

Pairwise plots shown in figure 1. It shows pairwise comparisons amongst its factors.

Comparisons between universities with predictions in table 2.

Figure 1: How to determine Eliteness of Colleges

Table 1: Summary statistics for the ISLR College data set.

Statistic	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
Applicants	3,001.638	3,870.201	81	922	3,624	48,094
TotalAccepted	2,018.804	2,451.114	72	604	2,424	26,330
TotalEnrolled	779.973	929.176	35	242	902	6,392
Top10Top25FullTimeStudent	3,699.907	4,850.421	139	992	4,005	31,643
PartTimeStudent	855.299	1,522.432	\vdash	95	296	21,836
OutofStateTution	10,440.670	4,023.016	2,340	7,320	12,925	21,700
RoomBoardPrices	4,357.526	1,096.696	1,780	3,597	5,050	8,124
BookPrices	549.381	165.105	96	470	009	2,340
PersonalExpense	1,340.642	677.071	250	850	1,700	6,800
S/F Ratio	14.090	3.958	2.500	11.500	16.500	39.800
budgetPerStudent	9,660.171	5,221.768	3,186	6,751	10,830	56,233
Grad.Rate	65.463	17.178	10	53	78	118

1	2	3	4	5	6
University 1	No	0.6	7000		
University 2	Yes	0.9	2300	57	4600

Table 2: Table of Predictions

Appendix A: Supplementary Plots

In table 2, it shows the difference between universities.

Figure 2: Differences among Universities

Appendix B: R Code

```
1 % Stat 696: Knitr lab
2 % Illustrating knitr to present analyses of College data from ISLR text
3 % Packages required: knitr, xtable, stargazer, ISLR
4 % To use, make sure to call library(knitr) first in console
5 % To run and create a .tex file: knit('knitr_ClassVersion.Rnw') in R
```

```
6 % September 6, 2018
9 % To show at start of class:
10 % — Step through preface briefly and show where to enter name
11 % — LaTeX preface (preface.tex) vs. Knitr preface (knitr_ClassVersion.Rnw);
        briefly delineate two approaches to report writing
13 % -- Code in place for regression analysis and prediction
_{14} % — There are 6 tasks to complete with sample code and hints where needed
_{15} % — Suggest cutting an pasting R code into console first to debug
18 % Preface required in the knitr RnW file
19 \documentclass{article}
21 \usepackage{rotating}
\usepackage{graphics}
23 \usepackage { latexsym }
24 \usepackage{color}
25 \usepackage{listings} % allows for importing code scripts into the tex file
27 % Approximately 1 inch borders all around
\ \setlength\topmargin\{-.56in\}
29 \setlength\evensidemargin{0in}
30 \setlength\oddsidemargin{0in}
\ \setlength\textwidth\{6.49\,in\}
32 \setlength\textheight {8.6 in}
_{34}\ \% Options for code listing; from Patrick DeJesus, October 2016
\delta fine color \{codegreen\} \{rgb\} \{0,0.6,0\}
\del{definecolor} \del{definecolor} $$ \left( \operatorname{codegray} \right) \left( \operatorname{rgb} \right) \left( 0.5, 0.5, 0.5 \right) $$
  \definecolor \{codepurple\} \{rgb\} \{0.58,0,0.82\}
37
  \definecolor {backcolour } { rgb } { 0.95, 0.95, 0.92 }
39 \lstdefinestyle { mystyle } {
     backgroundcolor=\color{backcolour},
                                                commentstyle=\color { codegreen },
40
     keywordstyle = \setminus color\{magenta\},
41
     numberstyle=\tiny\color{codegray},
42
     stringstyle=\color{codepurple},
43
     basicstyle=\footnotesize,
44
     breakatwhitespace=false,
45
     breaklines=true,
46
     captionpos=b,
47
     keepspaces=true,
48
     numbers=left,
49
50
     numbersep=5pt
     showspaces=false,
51
     showstringspaces=false,
52
     showtabs=false,
53
     tabsize=2
54
55
56 %" mystyle" code listing set
57 \lstset { style=mystyle }
58 %\lstset {inputpath=appendix/}
59
60
  \title{Stat 696, Example Application of \texttt{knitr}}
61
  \author{Kelso Quan}
^{63} \date{\det{\{\}}}
65 \begin{document}
66
67 \maketitle
68
69 % Code to start knitr
70 <<include=FALSE>>=
```

```
71 library (knitr)
72 opts_chunk$set(
73
    concordance=TRUE
74 )
75 Q
78 % Code snippet to load in libraries and data
_{79} % THIS IS HOW R–CODE IS READ INTO LaTeX DOC WITH knitr
80 % Environment:
81 % <<...>>=
82 % [Code here]
83 % @
85 << load data, include=FALSE>>=
86 # Load in libraries, load in data and set up variables
87 library (ISLR)
88 library (stargazer)
89 library (xtable)
91 rm(list=ls(all=TRUE)) # remove all previous objects from memory
92
93 # Set up data for the illustration
94 # For illustration purposes we will use the College data set from the ISLR text
95 # Create an indicator of Elite College status (see exercise 8 in Ch. 2 of ISLR text)
Elite=rep("No", nrow(College))
97 Elite [College $Top10perc >50]="Yes"
98 Elite=as. factor (Elite)
99 College=data.frame(College, Elite)
100 numvars = length(College) # number of variables in the College data set
n = \dim(College)[1]
102 Q
104
105 % Code snippet to run the regression analysis, including prediction for two new
      Universities
106 << college apps regression, echo=FALSE>>=
107 # Fit a model
108 fm1 = lm(Apps Private+Elite+Accept+Outstate+Room.Board+Grad.Rate, data = College)
# predcit a new school not in the data set
new1 = data.frame(Private="No", Elite="No", Accept=5000, Outstate=8000, Room.Board=6000,
      Grad.Rate=0.6)
  newpred1 = signif(predict(fm1, new1, interval="prediction"), 2)
  new2 = data.frame(Private="Yes", Elite="Yes", Accept=1000, Outstate=16000, Room.Board=4000,
       Grad.Rate=0.90)
newpred2 = signif(predict(fm1, new2, interval="prediction"), 2)
114 Q
118 % Lab Tasks
120
121 70% Task 1: Present an R dump of the summary of the regression fit
122 % [Place knitr code chunk here]
123 <<R dump>>=
  summary (fm1)
124
125 @
Predictions for the public non elite universities: \Sexpr{newpred1}.
127
Predictions for elite private universities: \Sexpr{newpred2}.
_{129} % \Sexpr\{\dots\} allows us to run R-code or grab R elements inside the text.
130 % Try it out! Write a sentence using \Sexpr to grab the predicted values for
131 % the new schools (variables newpred1 and newpred2 from above).
```

```
135 7 Task 2: Insert a pairwise scatterplot into your document
136 % For plots, start by setting up the LaTeX figure environment,
_{\rm 137} % then place R code to knit, then set up LaTeX code to complete figure environment.
138 % Below I give the code for this task. You will practice with this code in Task 5.
139 \begin { figure }
140 \begin { center }
141
142 <<echo=FALSE, out.width='4in'>>=
143 y = data.frame(College$Apps, College$Private, College$Elite, College$Accept, College$Outstate,
       College $Room. Board, College $Grad. Rate)
   pairs (y)
145 Q
146 \caption {How to determine Eliteness of Colleges}
147 \setminus label\{y\}
148 \end{center}
  \end{figure}
149
152 % Write a short blurb of text to cite your figure.
  Pairwise plots shown in figure \ref{y}. It shows pairwise comparisons amongst its factors.
154
156
157 7 Task 3: Use stargazer to present summary statistics of the College data set
158 <<descrips, r, results="asis", echo=FALSE>>=
160 # Recall the stargazer table created in the online video:
161 # stargazer (College, title="Summary statistics for the ISLR College data set.", label="
       descrips")
# Now try the following options to re-format your table:
163 # summary.stat option: use to get rid of the sample size N column and add 25th and 75th
       percentiles
      covariate.labels option: present more informative variable labels, rather than variable
      float.env option: force LaTeX to present table in landscape (sidewaystable)
165
  #
166
   167
   stargazer (College, title="Summary statistics for the ISLR College data set.",
             label = "descrips", omit.summary.stat = "n",
169
             iqr = T,
             float = T,
             float.env = "sidewaystable",
172
             covariate.labels = c("Applicants", "TotalAccepted", "TotalEnrolled", "Top10%
173
       HSstudents",
                                   "Top25%HSstudents", "FullTimeStudent", "PartTimeStudent", "
       OutofStateTution",
                                   "RoomBoardPrices", "BookPrices", "PersonalExpense", "%Facw/
       PhD",
                                   \label{eq:conditional} \begin{tabular}{ll} "%Facw/TerminalDeg", "S/F Ratio", "%AlumniDonate", "budgetPerStudent", "Grad.Rate") \end{tabular}
177
             )
178
179
180
  181
182 # For the curious: check out the stargazer help screen for the plethora of options!
183 # For example, stargazer can present a regression inferences table. Try the following code
       stargazer (fm1, title="Regression inferences", dep.var.labels="Number of Applications",
184 #
       label="inf",
              \verb|keep.stat="n"|, ci=TRUE, ci.level=0.95|, single.row=TRUE|,
  #
185
              186 #
187 #
188 Q
```

```
189
190
191 7 Task 4: Create a table of predictions using xtable
192 % I provide the code below for a base table.
193 % The task is then to add additional columns to the table and create the LaTeX code using
        xtable.
194 % Note that we use results="asis" to force knitr to present the table code for compiling in
         LaTeX
195
196
197 << predictions , results="asis" , echo=FALSE>>=
198 # create the table and store in 'x'
univ = rbind("University 1", "University 2")
elite = rbind("No", "Yes")
gradrate = rbind(new1[,6], new2[,6])
preds = rbind(newpred1[,1], newpred2[,1])
\begin{array}{ll} \mbox{204} & lwr = \mbox{rbind} \, (\mbox{newpred1} \, [\, , 2] \, , \, \, \mbox{newpred2} \, [\, , 2]) \\ \mbox{205} & upr = \mbox{rbind} \, (\mbox{newpred1} \, [\, , 3] \, , \, \, \mbox{newpred2} \, [\, , 3]) \end{array}
x = cbind (univ, elite, gradrate, preds, lwr, upr)
table = xtable(x, digits = 2, caption = "Table of Predictions",
label = "predictions")
align(table) <- "|l|rrrrrr|"
print (table, include.rownames = F)
212 # Tasks:
213 # 1) Add columns of out of state tuition, elite status, and graduation rate to the table.
214 # 2) Use xtable to create and output LaTeX code for the table. Here is the code from the
        online video:
215 #
       fm.table = xtable(fm1, digits=2,
                         caption="Inferences from regressing number of applications on whether
216 #
        the college is private or public,
                         whether the college is elite or not, acceptance rate, out of state
217 #
        tuition, room and board, and
218 #
                         graduation rate.",
                         label="reginf")
219 #
       align(fm.table) <- "|l|rrrr|" # place vertical lines on left and right of table, and
220 #
       after first column of var names
     print (fm. table)
222 # Note: consider the include.rownames option in the print command to remove row names.
224 # [PLACE CODE HERE]
225 @
226
227
228 % Write a short blurb citing your table.
230 Comparisons between universities with predictions in table \ref{predictions}.
231
232 7 Task 5: Create an appendix of plots
233 % We will create a 2x2 graphic of regression diagnostics
   \noindent \Large \{ \bf Appendix A: Supplementary Plots \} \}
236 \begin { figure } [h!]
237 \begin{center}
_{239} % Here is code for the default regression diagnostics from R
^{240} % Write knitr code to present a 2x2 graphic for this appendix.
241 % Suggestion: use the knitr code environment from the scatterplot matrix of Task 2
242 %
243 %
      \operatorname{par}\left(\operatorname{mfrow}=\mathbf{c}\left(2,2\right)\right)
244 %
      plot (fm1)
245 %
246 77878787878787878787878
247 % [PLACE KNITR CODE CHUNK HERE]
```

```
248 <>>=
249 par (mfrow=c (2,2))
250 plot (fm1)
251 Q
252
253 \caption{Differences among Universities}
254 \label{Summary Chart}
255 \end{center}
256 \end{figure}
257
_{258} % Write a short blurb citing the figure and stating what it is.
259 In table \ref{Summary Chart}, it shows the difference between universities.
261 7 Task 6: Create an appendix of code
_{\rm 262} % Here is the LaTeX code from the online video.
263 % Recall that this is straight LaTeX, no knitr code chunk needed!
264 % \newpage
265 % \noindent \Large{{\bf Appendix B: R Code}}
266 % \lstinputlisting [language=R, caption = CAPTION HERE] {CODE FILE NAME HERE}
267
268 \newpage
\lambda \noindent \Large{{\bf Appendix B: R Code}}
270 \lstinputlisting [language = R, caption = Code Appendix] { knitr_ClassVersion.rnw}
271
272
273 \end{document}
```

Listing 1: Code Appendix