1 Seifenblasen

- a) Erklären Sie, warum Seifenblasen in bunten Farben schillern.
- b) Eine Seifenblase, die von Luft umgeben ist, hat einen Brechungsindex von 1,34. Ein Bereich erscheint im senkrecht reflektierten Licht rot $(\lambda_0 = 734nm)$. Geben Sie zwei mögliche Schichtdicken der Seifenhaut an.
- c) Welche Wellenlängen aus dem sichtbaren Spektralbereich werden bei der Reflexion an einer 500nm dicken Seifenschicht mit dem Brechungsindex 1.34 bei senkrechtem Strahleinfall
 - (i) verstärkt und
 - (ii) ausgelöscht?

Das wahrnehmbare Lichtspektrum für das menschliche Auge liegt bei Wellenlängen zwischen 380nm - 780nm.

2 Michelson-Interfereometer

Welche optischen Weglängendifferenzen in den beiden Armen eines Michelson-Interferometers sind höchstens zulässig, damit gerade noch Interferenzstreifen beobachtet werden ko nnen unter Verwendung von:

- a) Laserlicht ($\Delta \nu / \nu \approx 10^{-13}$, $\lambda \approx 550 nm$; $\Delta \nu$ ist die Spektrale Halbwertsbreite).
- b) Licht aus einem angeregten Atomstrahl $\Delta \nu / \nu \approx 10^{-7}$, $\lambda \approx 550 nm$
- c) weißem Licht (Näherung)

3 Dreifachspalt

Gegeben ist ein Dreifachspalt bei dem alle drei Spaltbreiten gleich seien. Die Abstände zwischen den Spalten ist d bzw. $\frac{3d}{2}$

- * a) Bei welchem Winkel θ tritt das erste Hauptmaximum auf?
- * b) Das Ergebnis aus a) sei θ_1 . Die Intensität in Richtung des Maximums nullter Ordnung sei I_0 . Wie groß ist die Intensität in Richtung $\theta_1/2$

Abbildung 1: Dreifachspaltl

4 Thermische Neutronen

Ein Strahl von thermischen Neutronen mit einer kinetischen Energie von 25meV trifft auf ein Paar extrem dünner Spalte, die einen Abstand von 0.1mm haben.

* a) Wie groß ist der Abstand zwischen benachbarten Minima auf einem neutronensensitiven Schirm, der sich 20 m hinter den Spalten befindet? (Hinweis: Zwischen dem Impuls p eines Teilchens und der Wellenlänge seiner Materiewelle besteht die de Broglie-Beziehung $\lambda = \frac{h}{p}$, wobei $h = 6.626 \cdot 10^{34} Js$ die Planck- Konstante ist.)

5 Kristallines Natrium

- * a) Bei welchen Beugungswinkeln tritt Bragg-Reflexion auf? In kristallinem Natrium sitzen die Atome auf den Eck- und Mittelpunkten eines Gitters (flächenzentriert kubisches Gitter), das aus würfelförmigen Einheitszellen der Kantenlänge $a=4.29 \text{\AA}$ aufgebaut ist. Sie beugen monochromatische Röntgenstrahlung der Wellenlänge $\lambda=1.54 \text{\AA}$ an den zu den Würfelseiten parallelen Netzebenen.
- * b) Ein Neutronenstrahl fällt auf polykristallines Wismut (größter Gitterebenenabstand 4Å). Man suche den Energiebereich der Neutronen, für den dieser Filter keine kohärente Streuung liefert. Leiten Sie diesen aus dem Ausdruck $E=\frac{\hbar k^2}{2m}$ her.

6 Doppelbrechung

Licht der Wellenlänge $\lambda=589,3nm$ in Luft treffe so auf eine Scheibe aus Kalkspat, dass der ordentliche und außerordentliche Strahl sich in die gleiche Richtung ausbreiten. Wann ist das der Fall? Wie groß ist die Phasendifferenz $\delta\phi$ der beiden Strahlen nach dem Durchlaufen der Schicht der Dicke $d=2\lambda$, wenn der Brechungsindex für den ordentlichen $n_o=1,65836$ und fr den außerordentlichen $n_{ao}=1,48641$ ist?