

BY STUDYWKKATTMOS

วิทย์พื้นฐาน

1 ข้อมูลสารสนเทศทางอุตุนิยมวิทยา

- ข้อมูลและสารสนเทศทางอุตุนิยมวิทยา
- แผนที่อากาศผิวพื้น: แสดงข้อมูลองค์ประกอบลมฟ้าอากาศที่ได้จากสถานีตรวจวัด โดยจะแสดงเป็นสัญลักษณ์ต่างๆ (ไม่มีสัญลักษณ์แสดงทิศทางลม) ตามภาพ

ฤดูร้อน

- อากาศต่ำ) ->
- เส้นความกดอากาศ จะลิ่มเข้ามาประเทศ ใทย
- ใปกคลุมมวลอากาศ

ฤดูฝน

ผู่านประเทศไทย ์ ซึ่ง = การยกตัวของ อากาศเป็นแนวยาว -> เมฺฆก่อตัวเป็น

ฤดูหนาว

- มักปรากฏเส้นความ กดอากาศเท่าอยู่ใกล้
- ประเทศจีน บ่งบอกได้ว่าอากาศ เย็นจากจีนกำลังปก ภาคใต้ที่ฝนตกหนัก ขึ้น
- ภาพถ่ายดาวเทียวอุตุนิยมวิทยา : ได้จากการตรวจวัดคลื่นแม่เหล็กไฟฟ้าในช่วง wavelength ที่ต่างกั้นแล้วประมวลเป็นภาพ

ประเภทช่วงคลื่นอินฟราเรด

- ได้จากการตรวจวัดปริมาณรังสี อินฟราเรดที่ก้องเมฆแผ่มา เพื่อนๆ จะเห็นเป็นภาพ grayscale โดย<u>สีเข้ม</u> = มีอุณหภูมิ<u>สุง</u> อยู่ที่ต่ำ และ <u>สีอ่อน</u> = อุณหภูมิ<u>ต่ำ</u> อยู่ที่สูง ข้อจำกัด : ถ้าวัตถูมี Temp ใกล้เคียงจะ
- มองสีได้ยาก -> ต้องมีการปรับสีของ

ประเภทช่วงคลื่นแสง

- ได้จากการวัดอัตราการสะท้อนรังสีของ ก้องเมฆใดๆ ซึ่งจะสัมพันธ์กับความ
- หนาของเมฆ่ ถ้าอัตราฯ สูง = ปริมาณเมฆเยอะกว่า ภาพจะเป็น grayscale ไล่จากสีขาว (เมฆเยอะกว่า) ไปสีเทาเข้ม (เมฆน้อย
- Ex: ดาวเทียม Himawari
- เรดาห์ตรวจอากาศ : สามารถบอกข้อมูลของหยาดน้ำฟ้า ซึ่งจะไปสู่การพยากรณ์ ปริมาณฝนฟ้าคะนองได้ โดยจะเป็น station ตั้งที่พื้นดิน โดยมีหลักการทำงาน คือ:
 - ปล่อยคลื่นไมโครเวฟออกไปกระทบกับเมฆฝน และจะได้สัญญาณสะท้อน กลับมาเป็นหน่วยของ dBZ
 - สามารถแปลงเป็นภาพได้ โดยจะเป็นภาพแบบ Top View = Plan position
 - ในการ install เรดาร์นี้ ต้องใช้ค่ามุมเงยเพียงค่าเดียวในระดับที่ใกล้พื้นผิวโลก มากสุด เพื่อให้คลื่นข้างสิ่งกีดขวางต่างๆ ได้
 - เมื่อวิเคราะห์สีที่ปรากฏในพื้นที่ต่างๆ จากดาวเทียม จะสามารถบอกได้ว่า บริเวณใดมีฝนบ้าง (คลื่นต้องสะท้อนมากกว่า 20 dBZ) และสามารถคาดคะเน การเคลื่อนตัวของกลุ่มฝนได้ แต่บอกความแรงของฝนไม่ได้
- การใช้ประโยชน์ข้อมูลทางอุตุนิยมวิทยา (ข้อมูล common sense จ้า)

พลังงาน (excl. Fossil Fuels)

- พลังงานเซลล์สุริยะ (Solar Cells) : พลังงานที่ได้จากแสงอาทิตย์ผ่านเซลล์สุริยะ/เซลล์ แสงอาทิตย์/Photovoltaic
 - หลักการทำงานง่ายๆ คือเมื่อแสงตกสู่เซลล์ฯ จะทำให้เกิดความต่างศักย์ ภายใน ซึ่งจะส่งผลให้มีการเคลื่อนที่ข้องกระแสไฟฟ้าเมื่อต่อกับวงจร
 - เซลล์ฯ หลายเซลล์ -> Modules หลายๆ ตัว -> แผงเซลล์สุริยะ (Panel)
 - พลังงานจากเซลล์ ประสิทธิภาพของเซลล์ๆ = -พลังงานที่แสงตกกระทบเข้าแผ่นนั้นๆ

แนวปะทะอากาศ

มักเกิดขึ้นที่ประเทศญี่ปุ่น แตกต่างกันอย่างชัดเจน

อุปกรณ์ช่วยแก้ปัญหา ต่างๆ ของ Solar cells

- Inverter : แปลงจาก DC เป็น AC
- Battery : เก็บประจุไว้ เผือใช้ตอนฝนตก/ กลางคืน
- เครื่องควบคุมการ ปล่อยประจุ (CC)

PAGE

- o เซลล์ฯ ในปัจจุบันมี Eff. ถึง 13-20% โดยแต่ก่อนจะมีแค่ 4% เท่านั้น
- ไฟฟ้าที่ได้จะเป็นไฟฟ้ากระแสตรง (DC)
- พลังงานนิวเคลียร์: เกี่ยวข้องกับการเปลี่ยนแปลงของนิวเคลียสของอะตอม
- o **ปฏิกิริยา Fission :** ปฏิกิริยาที่มวลของนิวเคลียสแตกตัวเป็นมวลที่น้อยกว่า + พลังงาน
 - ทุกๆ ครั้งของการเกิด Fission มวลรวมจะลดลงเสมอ ซึ่งมวลที่ลดนั้นจะถูก เปลี่ยนไปเป็นพลังงาน ตามสมการความสัมพันธ์ $E=mc^2$ ของ Albert Einstein
 - แนวทางหนึ่งของการเกิด Fission กับนิวเคลียสจำนวนมาก = Chain Reaction (ปฏิกิริยาลูกโซ่) ซึ่งอนุภาคหลังการเกิด Fission จะถูกปรับให้ เหมาะสมในการเกิด Fission ครั้งต่อๆ ไป
 - Chain Reaction ข้อเสียคือ ถ้าควบคุมไม่ได้ = พลังงานจะสร้างความเสียหาย เยอะมาก
 - หลักการทำงานของโรงไฟฟ้านิวเคลียร์ (มันมี 3 ส่วนตามกรอบเลย)

ส่วนแลกเปลี่ยน ความร้อน

- **เครื่องปฏิกรณ์ นิวเคลียร์ :** สร้าง + ควบคุมการเกิด Fission
- พลังงานจากเครื่อง ดังกล่าวจะถ่ายเทไป ยังน้ำ ทำให้น้ำระเหย เป็นไอ

ส่วนผลิตไฟฟ้า

ไอน้ำจากส่วนแลกเปลี่ยน จะปะทะกับกังทันขนาด ใหญ่ ที่มีเพลาเชื่อมกับ Generator โดยแรงดันน้ำ จะช่วยให้กังหันหมุน เกิดเป็นพลังงานไฟฟ้า

ส่วนระบายความร้อน

ไอน้ำจากส่วนผลิตฯ จะ ถูกระบายออกผ่าน หอคอยระบายความร้อน ซึ่งน้ำไม่ได้สัมผัสกับสาร โดยตรง -> ระบายสู่ สิ่งแวดล้อมได้

- o **ปฏิกิริยา Fusion :** ปฏิกิริยาที่นิวเคลียสรวมกันแล้วเกิดนิวเคลียสใหม่ที่มีมวลมากกว่า
 - เช่นเดียวกับ Fission มวลรวมจะลดลงและแปลงเป็นพลังงานเสมอ และ ปริมาณที่ลดจะมากกว่า Fission ด้วย
 - การเกิด Fusion จะต้องมีสภาพ Temp ที่สูงมากๆๆๆ + ความดันมหาศาล (ซึ่ง มันคือสภาพในดาวฤกษ์หลายๆ ดวงเลย)
 - เมื่อ 12 Dec 2022 ทีมวิจัยในห้องปฏิบัติการแห่งชาติ ลอว์เรนซ์ ลิเวอร์มอร์ (สหรัช) สามารถพัฒนาเครื่องกำเนิดพลังงาน Fusion ได้แล้ว
- เทคโนโลยีด้านพลังงาน
- Battery: มีหลักๆ อยู่ 2 ประเภท คือแบบปฐมภูมิ (ชาร์จไม่ได้) และ ทุติยภูมิ (ชาร์จได้) และนอกนั้นก็... common sense
- วัสดุศาสตร์
 - กระจกเขียวตัดแสง เพื่อดูดซับความร้อนไม่ให้เข้าบ้าน
 - การใช้คอนกรีตมวลเบา ห²รือการเว้นระยะห่างของผนังบ้าน
 - การใช้ฉนวนความร้อน (Ex: ฉนวนใยแก้ว) ไปสะท้อนความร้อนบนหลังคา
 - หลอดไฟ LED , เครื่องปรับอากาศ Inverter (แถม)
- ด้านอุตสาหกรรม
 - มอเตอร์ประสิทธิภาพสูง ที่ลดการสูญเสียพลังงานได้ถึง 25-30%
 - หลอด LED ที่ลดการใช้พลังงานถึง 50%
 - การนำความร้อนทิ้งมาใช้ประโยชน์
 - การนำน้ำเสียมาหมักเป็นแก๊สชีวภาพ
- เซลล์เชื้อเพลิง (Fuel Cell) ที่ H2 ทำปฏิกิริยากับ O2

3 บรรจุภัณฑ์อาหาร

- ปัจจุบันนิยมใช้พลาสติกในการบรรจุอาหาร เพราะน้ำหนักเบา + ราคาถูก + ไม่แตกหัก ง่าย และเป็นพอลิเมอร์สังเคราะห์ ซึ่งมีหลายรูปแบบและมีวิธีการ Recycle ที่ต่างกัน เช่น (ดในตารางที่แปะท้ายชีท)
- เมื่อ Polymer ได้รับความร้อน จะเกิดการเปลี่ยนแปลงไม่เหมือนกัน เช่น...
- o *Thermoplastic Polymer* : หลอมเหลวเมื่อเพิ่ม temp และแข็งตัวเมื่อลด temp
- Thermosat Polymer: ไหม้/สลายตัวเมื่อเพิ่ม temp ซึ่งเอาไปหลอมขึ้นรูปใหม่ได้

 $E = mc^2$

E = พลังงานที่ปล่อยออกมา

m =มวลที่ลดลง (kg) c =อัตราเร็วของแสง (3 > $10^8 \ m/s$)

Nuclear Power Process

???		7	6	5	4	ပ	2	1	รหัสรีไซเคิล
พอลิเมลานินฟอร์มาดิไฮด์ (PMF)	กรดพอลิแลกติก (PLA)	พอลิคาร์บอเนต (PC)	พอลิสไตรีน (PS)	พอลิโพรพิลีน (PP)	พอลิเอทิลีน (LDPE)	พอลิไวนิลคลอไรต์ (PVC)	พอลิเอทิลีน (HDPE)	พอลิเอทิลีนเทเรฟทาเลต (PET)	พอลิเมอร์
เมลานี้น ฟอร์มาดิไฮด์	คลอไรด์ (PC)	ก๊าซฟอสจีนหรือคาร์บอนิล	สโตรีน	โพรพิลีน	เอทิสิน	ไวนิลคลอไรด์	เอทิลิน	เอทิลีนไกลคอล ไดเมทิลเทเรทาเลต	สังเคราะห์จาก
ยูนอรูหเยษหน หลูท	ใส เงา ไม่ทนต่อการบิด	หอรูหายษณะหะหฏา เกา	น้ำหนักเบา แข็ง เปราะ	จุดหลอมเหลวสูง ความ หนาแน่นสูง ทนความร้อนดี	จุดหลอมเหลวต่ำ ความ หนาแม่นต่ำ ไม่ทนความร้อน	มีความไวไฟสูง ระเทยจ่าย	จุดหลอมเหลวต่ำ ความ หนาแน่นสูง ทนความร้อนดี	มีความแข็งและเหนียว	สมบัติหลักๆ
จาน ชาม ภาชนะที่ไม่ แตกทักง่าย	ไหมเย็บแผล (สมัยก่อน)	ชิ้นส่วนอิเล็กทรอนิกส์	กล่องโฟมบรรจุอาหาร ช้อนส้อม กล่องใส	บรรจุภัณฑ์อาหารร้อน microwaveables	ถุงใส่ของเย็น กล่องพลาสติก เส้นใย	ท่อน้ำ กระเบื้องยาง สาย ยาง ปลอกฉนวนไฟ ป้าย	ถุงพลาสติกหูหั้ว ขวด พลาสติกขุ่น ฝา เส้นใย	ทำขวดน้ำ ถุงขนม microwaveables	การนำไปใช้
N/A		อุปกรณ์อิเล็กทรอนิกส์	દુંગુશદાજ	เพอร์นิเจอร์ บรรจุภัณฑ์	ถุงขยะ บรรจุภัณฑ์	ใน _{เพื} ายกลายท	ฉนานกันความร้อน เสื้อผ้ากีฬา บรรจุภัณฑ์	เสื้อผ้า พรม ขวดพลาสติก	ผลิตภัณฑ์หลังถูก รีไซเคิลแล้ว
									PAGE 4

@studywkkattmos

วิทย์พื้นฐาน

เชื้อเพลิง

1 เชื้อเพลิง (วิทย์กายภาพเล่ม 1 บทที่ 4)

- การเกิดปฏิกิริยาเคมี: การเปลี่ยนแปลงที่เกิดจากการเรียงตัวของอะตอมในธาตุ
 - ถ้ามีการเปลี่ยนตัวธาตุ (เปลี่ยนนิวเคลียส) = ไม่ใช่ปฏิกิริยา
- เชื้อเพลิง : สารตั้งต้นในการเผาไหม้ ซึ่งมักเป็นสารไฮโดรคาร์บ[ื]อน (CxHy)
- สมการเคมี: สมการที่แสดงกระบวนการของปฏิกิริยาเคมี

Ex: $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O + 220 \ kJ$

- มันคือ (สูตรเคมีของสารตั้งต้น) → (สูตรเคมีของผลิตภัณฑ์)
- ข้อสังเกต: จำนวนอะตอมก่อน-หลังปฏิกิริยาจะต้องเท่ากัน
- \circ อย่าลืมดุลสมการเคมีด้วยล่ะ โดยการเช็คว่าควรใส่สารใดก็โมเลกุล ซึ่งจะระบุ เป็นตัวเลชไว้ด้านซ้ายของสูตร เพื่อให้มันเท่ากันทั้งสองฝั่ง (เช่น $5O_2 = \overline{\mathbf{J}}$ ออกซิเจน 5 โมเลกุล)
- o **ถ้าพบ** (s), (l), (g), (aq) ตามสูตรเคมี = สถานะของสาร (ของแข็ง ของเหลว แก๊ส และละลายในน้ำตามลำดับ)
- o ค่าพลังงาน (+220 kJ) ที่ดูด/คายสามารถเขียนลงในสมการได้
 - ถ้าค่าพลังงานอยู่ฝั่งซ้าย = ปฏิกิริยาดูดพลังงาน (Eก่อน > Eหลัง)
 - ถ้าค่าพลังงานอยู่ฝั่งขวา = ปฏิกิริยาคายพลังงาน (Eก่อน < Eหลัง)
- การแสดงสัญลักษณ์บนลูกศร จะบ่งบอกถึงเงื่อนไขของปฏิกิริยา
- ตัวเร่งปฏิกิริยา: สารที่ทำให้ปฏิกิริยาเร็วขึ้น โดยจะได้ตัวเร่งฯ คืนมาหลังเสร็จปฏิกิริยา
 - o Ex: เอนไซม์ที่ช่วยย่อยอาหารในระบบย่อยอาหาร
- **อัตราการเกิดปฏิกิริยาเคมี :** การเปลี่ยนแปลงปริมาณสารตั้งต้น/ผลิตภัณฑ์ต่อหน่วย เวลา ซึ่งจะเขียนเป็นหน่วย mol/หน่วยเวลา
 - สิ่งนี้ทำให้อัตราฯ สูงขึ้น (ปฏิกิริยาเคมีเกิดไวขึ้น): ความเข้มข้นสาร (เข้ม) อุณหภูมิ (สูง) พื้นที่ผิวของสารตั้งต้น (มาก)
- เชื้อเพลิงทางเลือกเพื่อทดแทนซากดึกดำบรรพ์
 - \circ เอทานอล (C_2H_5OH) : ผลผลิตจากซากมันสำปะหลัง/อ้อย/ข้าวโพด -> ย่อย ให้ได้กลูโคส -> ใช้ยีสต์หมักให้เป็นเอทานอล
 - เอทานอล + เบนซิน = แก๊สโซฮอล์
 - แก๊สโซฮอล์ 91 และ 95 (E10) มีค่าออกเทน=เบนซิน 91 และ 95
 - E20 -> ปริมาณเอทานอล 20% โดยปริมาตร
 - ไบโอดีเซล: เกิดจากนำน้ำมัน/ไขมัน + แอลกอฮอลล์ (โดยมีกรด/เบสเร่ง)
 - B5 -> ไบโอดีเซล 5 ส่วน น้ำมันดีเซล 95 ส่วน
 - แก๊สชีวภาพ: ประกอบด้วยแก๊สมีเทน ซึ่งสามารถเป็นเชื้อเพลิงได้ -> สาเหตุ สำคัญของเพลิงไหม้ในบ่อขยะ
- ปฏิกิริยา Redox : มีการถ่ายโอนอิเล็กตรอนระหว่างสารเคมี
 - การเกิดปฏิกิริยานี้ในแบตเตอรี่: ขั้วลบ (ขั้วสังกะสี) ให้อิเล็กตรอน ->
 อิเล็กตรอนเคลื่อนที่ไปขั้วบวก (ขั้วออกไซด์ของแมงกานิส) -> เกิด
 กระแสไฟฟ้า ซึ่งตรงข้ามกับทิศทางของอิเล็กตรอน
 - การชาร์จแบต = ปฏิกิริยาในทิศตรงข้าม
 - ปฏิกิริยาอื่นๆ Ex: การเผาไหม้ การเกิดสนิม การหายใจ
- สารกัมมันตรั้งสี: สารที่มีนิวเคลียสไม่เสถียร เมื่อเกิดปฏิกิริยาจะเปลี่ยนจำนวน
 อิเล็กตรอน + แผ่กัมมันตภาพรังสีออกมาด้วย
 - ครึ่งชีวิต: ระยะเวลาที่สารกัมฯ สลายตัวจนเหลือครึ่ง
 - ตัวอย่างการใช้ประโยชน์: Co-60 ใช้รักษามะเร็ง + ฆ่าเชื้อ + เปลี่ยนสีอัญมณี
 , C-14 หาซากสิ่งมีชีวิต
 - มนุษย์ไม่ควรรับรังสีเกิน 50 mSv/ปี
 - สัญลักษณ์ Radura แสดงถึงอาหารที่ผ่านการฉายรังสี

แก๊สในรถยนต์

CNG: ประกอบด้วยแก๊ส มีเทนเป็นหลัก โดยรถ NGV = รถที่ใช้แก๊สนี้ LPG: มีองค์ประกอบหลัก คือโพรเพนและบิวเพน ซึ่ง อัดเป็นของเหลวด้วยความ ตันสูง

เลขออกเทน

ตัวเลขที่แสดงคุณภาพของ น้ำมันเบนซิน

เบนซิน XX -> ไอโซออกเทน X% + นอร์มอลเฮปเทน (100-X)%

การทำจัดกรดทำมะดันบน ดิน (โครงการแกล้งดิน)

กรดกำมะถันซึ่งเป็น ผลิตภัณฑ์จากปฏิกิริยารี ดอกซ์ระหว่างไฟไรต์ในดิน กับออกซิเจนในอากาศ

PAGE

5

