

Extreme-Scale Model-Based Time Series Management with ModelarDB

Professor Torben Bach Pedersen
Aalborg University and ModelarData
tbp@cs.aau.dk

Joint work with Søren Kejser Jensen and Christian Thomsen

A Tale of Some Really Big and Fast Data...

- Denmark is world no. 1 i wind energy
 - Come and visit and you will feel why ②
 - No 1 turbine maker Vestas is DK, No 2 Siemens Gamesa has most R&D in DK
 - World record electricity from wind: 50% 2019, going towards 100% wind/solar/...
- Wind turbines
 - 500 sensors -> more than 2500 derived data streams
 - 8 byte values sampled at 100+ Hz, 100+ turbines in a park
 - 100*100*2500 = 25 million values/second = 200+ MB/sec
 - 200 MB * 3600 * 24 = 17.5+ TB/day = 8+ PB/year/park
 - They want to store 20+ years for 1000s of parks...
- Industry state of the art: 500 col SQL tables with 10 min avg...
 - Makes high-frequency series impossibe how can we improve?
- Data characteristics:
 - Regular sampling interval, out-or-order corrected, short gaps

Observations

- From meetings with manufacturers, owners, and energy traders:
 - Turbines have high-quality sensors with wired power and connectivity
 - The storage needed makes storing high-frequency sensor data infeasible
 - Simple aggregates (e.g. 10-minute averages) are stored instead of the high-frequent series, thereby removing useful fluctuations and outliers
- Many of the collected time series are correlated with each other
- They can be stored within a user-defined error bound (possibly 0%)
- Metadata is also stored and aggregates are the primary query type

The current situation

- The available information is currently not exploited or stored
- Many monitoring solutions consider few (\sim 100) sensor streams and store only a single value for every x minutes (e.g., the average)
 - *x* is typically ½, 1, 2, 5, or 10
- Important things might not be seen since outliers and fluctuations are lost

What we want to do and why

- What?
 - Store and use all available sensor data at high frequency
 - Support efficient analysis queries on historical and live data
 - Detect underperformance and other problems immediately
 - Enable predictive maintenance fix problem before the wind turbine breaks
- Why?
 - Remember goal: make renewable energy even cheaper
 - Reduced costs for service + spare parts no over-time, long delivery times
 - Service when there is no wind anyway: avoid revenue losses
 - Service cost represents 11-30% of the onshore wind energy cost
 - Even more for offshore wind

How we do it

- Time-series contain millions of points
- We use a model-based approach for the time-series data
 - A (user-defined) error-bound can be set: 5%, 1%, or even 0%
 - Allowing errors yield better compression + performance
 - A model is a lossy or lossless representation of a time series part
 - Linear function reduces N data points to a * x + b
- Benefits
 - Storage per model is constant
 - Time series structure preserved
 - Queries answered without de-compression

More observations and some first results

- Wind turbines produce big amounts of high-quality sensor data
- Data is collected as regular time series with only few gaps without values
- High frequency could benefit analysis but:
 - High frequency data cannot be ingested fast enough
 - High query processing time limits use of historical data
 - Unfeasible high amounts of storage are required
- Storage of real-life wind turbine data:

Storage Method	Size (GiB)	Storage Method	Size (GiB)
PostgreSQL 10.1	782.87	CSV Files	582.68
RDBMS-X - Row	367.89	Apache Parquet Files	106.94
RDBMS-X - Column	166.83	Apache ORC Files	13.50
InfluxDB 1.4.2 - Tags	4.33	Apache Cassandra 3.9	111.89
InfluxDB 1.4.2 - Measurements	4.33	ModelarDB	2.41 - 2.84

Model-based storage of time series

- A model is a lossy or lossless representation of a time series
- E.g., a linear function reduces the values of N data points to a * x + b

- Benefits from model-based storage:
 - The storage needed for a model can be constant
 - The structure of a time series is preserved intactly
 - Queries can be answered directly from models
- Problems with model-based storage:
 - The best model for a time series changes over time
 - Long models for high compression increase latency
- Our contributions remove both of these problems

ModelarDB Contributions

- A general-purpose architecture for a modular model-based time series management system (TSMS)
- An adaptive online algorithm for multi-model compression of time series
 - Model-agnostic, extensible, allows gaps + offers low latency and high compression
- A set of methods and optimizations for a model-based TSMS:
 - A database schema to store multiple time series as models
 - Methods to push-down predicates to a key-value store storing models
 - Methods to execute optimized aggregate functions directly on models
 - Use of static code-generation to optimize projections
 - Dynamic extensibility for adding models without recompiling the TSMS
- ModelarDB an open-source implementation of our architecture
 - Available at github.com/skejserjensen/ModelarDB under version 2.0 of the Apache License

Architecture

- All portable functionality is part of a separate library named ModelarDB Core
- Our implementation interfaces ModelarDB Core with Spark and Cassandra
 - ModelarDB can be deployed on unmodified instances of Spark and Cassandra

Ingestion

- Models are incrementally fitted and emitted as part of segments with metadata:
 - Temporary Segment: Holds an unfinished model cached in memory for low latency
 - Finalized Segment: Holds a finished model cached in memory and persisted to disk
- Models are fitted in sequence until all would exceed the error bound:

- ModelarDB Core includes four model types, users can optionally add more:
 - PMC-MR (Constant), Swing (Linear), Facebook (Lossless), Uncompressed (None)

More details on ingestion

- Fitting seens as a black box to support user-defined models
 - Each model implements representing data points+measure error
 - Model is passed data points while user-def error-bound holds
- Models provide trade-off between compression and latency
 - Longer models give better compression but higher latency
- Example: max latency of 3 data points (ye)
 - Single model (linear) used to represent data points
 - Multiple models: the next model is evaluated when this fails

Segment Generator	t ₀ , ye = 0	t ₁ , ye = 1	t ₂ , ye = 2	t ₃ , ye = 3	t ₄ , ye = 1	t ₅ , ye = 1		t _n , ye = 1
Segment Cache				ST	ST	SF	••••	ST
Segment Storage								SF

Query Processing

- ModelarDB uses SQL for queries to provide a familiar interface
- Two views are provided to allow for queries at different granularities:
 - DataPoint View: executes queries on data points reconstructed from segments
 - Segment View: efficiently executes aggregate queries directly on segments

Query Processing Example

- Example using the Segment View
 - Results is SF₃ and ST₆
 - SF₃ resides on disk
 - ST₆ resides in memory
- Abbreviations:
 - RS: Result Set
 - **ST:** Temporary Segment
 - **SF:** Finalized Segment

Storage

+		
Tid (PK)	SI	7
1	60000	
2	120000	
3	30000	

Time Series

Tid (PK)	StartTime (PK)	EndTime	Mid	Parameters	
1	1460442200000	1460442620000	1	0x3f50cfc0	
3	1460642900000	1460645060000	2	0x3f1e	
Segment					

Model

Name

PMC-MR

Facebook

Swing

Mid (PK)

- Time Series: Stores time series metadata
- Model: Stores model types utilized for segments
- Segment: Stores segments emitted for each time series
- The bulk of the data is stored as part of the segment table

Predicate Push-Down

ModelarDB uses a three table schema for storing time series as segments

		木			<u></u>			
Tid (PK)	SI	Tid (PK)	StartTime (PK)	EndTime	Mid	Parameters	Mid (PK)	Name
1	60000	1	1460442200000	1460442620000	1	0x3f50cfc0	1	PMC-MR
2	120000	3	1460642900000	1460645060000	2	0x3f1e	2	Swing
3	30000						3	Facebook
Time Series Seament					Mo	del		

- ModelarDB performs predicate push-down as a multi-step procedure:
 - Data Point View: Predicates are rewritten and pushed to the Segment View
 - Segment View: Predicates are pushed without changes to the Storage Interface
 - Storage Interface: Predicates are rewritten and pushed to the Segment Store
 - The Segment Store can have imprecise evaluation of the predicates (i.e., with false positives)

Tid	Timestamp	Tid	Timestamp	Tid	StartTime	EndTime		Tid	StartTime	EndTime
Tid IN ?	Timestamp IN ?	Tid IN ?	No Pushdown	Tid IN ?	StartTime IN ?	EndTime IN ?		Tid IN ?	No Pushdown	No Pushdown
Tid > ?	Timestamp > ?	Tid > ?	EndTime > ?	Tid > ?	StartTime > ?	EndTime > ?		Tid IN (?+1n)	No Pushdown	EndTime > ?
Tid >= ?	Timestamp >= ?	 Tid >= ?	EndTime >= ?	Tid >= ?	StartTime >= ?	EndTime >= ?	<u> </u>	Tid IN (?n)	No Pushdown	EndTime >= ?
Tid < ?	Timestamp < ?	Tid < ?	StartTime < ?	Tid < ?	StartTime < ?	EndTime < ?		Tid IN (1?-1)	Spark takeWhile	EndTime < ?
Tid <= ?	Timestamp <= ?	Tid <= ?	StartTime <= ?	Tid <= ?	StartTime <= ?	EndTime <= ?		Tid IN (1?)	Spark takeWhile	EndTime <= ?
Tid = ?	Timestamp = ?	Tid = ?	StartTime <= ? AND EndTime >= ?	Tid = ?	StartTime = ?	EndTime = ?		Tid = ?	No Pushdown	EndTime = ?

Data Point View

Segment View

Segment View

Casandra Segment Storage

Code Generation for Projection

- Overhead of projections are reduced using optimized lambda functions
- As the columns are known, the projection code is generated at compile time
- The correct function is found using a key created from the requested columns

```
def getDataPointGridFunction
      (columns: Array[String]): (DataPoint => Row) = {
      val target = getTarget(columns, dataPointView)
      (target: @switch) match {
        //Permutations of ('tid')
6
        case 1 => (dp: DataPoint) => Row(dp.tid)
        //Permutations of ('tid', 'ts', 'value')
9
10
        case 321 => (dp: DataPoint) => Row(dp.value,
11
          new Timestamp(dp.timestamp), dp.tid)
12
13
```

Model-based aggregation

- Queries on Segment View executed directly on segments if possible
- Segments can implement optimized methods for aggregate queries
 - E.g., sum for Swing can be computed in constant time as shown below
- Aggregates are computed from reconstructed data points as a fallback

```
public double sum() {
   int timespan = this.endTime - this.startTime;
   int size = (timespan / this.SI) + 1;
   double first = this.a * this.startTime + this.b;
   double last = this.a * this.endTime + this.b;
   double average = (first + last) / 2;
   return average * size;
}
```

Extensibility with user-defined models

Table 2: Interface for models and segments,	● is a required method and ○ is an optional method
---	--

Model		
new(Error, Limit)	•	Return a new model with the user-defined error bound and length limit.
append(Data Point)	•	Append a data point if it and all previous do not exceed the error bound.
initialize([Data Point])	•	Clear the existing data points from the model and append the data points from the list until one exceeds the error bound or length limit.
get (Tid, Start Time, End Time, SI, Parameters, [Gap])	•	Create a segment represented by the model from serialized parameters.
get (Tid, Start Time, End Time, SI, [Data Point], [Gap])	•	Create a segment from the models state and the list of data points.
length()	•	Return the number of data points the model currently represents.
size()	•	Return the size in bytes currently required for the models parameters.
Segment		
get (Timestamp, Index)	•	Return the value from the underlying model that matches the timestamp and index, both are provided to simplify implementation of this interface.
parameters()	•	Return the segment specific parameters necessary to reconstruct it.
sum()	0	Compute the sum of the values of data points represented by the segment
min()	0	Compute the minimum value of data points represented by the segment.
max()	0	Compute the maximum value of data points represented by the segment.

- ModelarDB Core includes a few models, but users can load more dynamically (no need to recompile/restart)
- Models and segments must implement this interface to be used by ModelarDB

Query Examples


```
SELECT SUM(Value) FROM DataPoint WHERE Tid = 3

SELECT SUM_S(*) FROM Segment WHERE Tid = 3

SELECT AVG_SS(START(*, '2012-01-03 12:30'))

FROM Segment WHERE EndTime > '2012-01-03 12:30'

SELECT * FROM DataPoint WHERE Tid = 3

AND TS < '2012-04-22 12:25'
```

Listing 2: Query examples supported in ModelarDB

- A set of example queries supported by ModelarDB's two views
- Operations on the Segment View are implemented as UDAFs and UDFs

Evaluation - Storage

6 + 1 Laptops, **EH** (583 GiB, 100 ms), **ER** (488 GiB, 1 s), **EP** (339 GiB, 60 s)

Figure: Storage, EH

Figure: Storage, ER

Figure: Storage, EP

- ModelarDB provides better compression using model-based storage
 - Best compression ratio for high frequency data (EH, ER) and increases with error bound
 - Average error is 0.005% (EH), 2.5% (ER) and 0.73% (EP) for a 10% error bound
 - ModelarDB degrades gracefully with more outliers

Evaluation - Adaptability

Figure: Adaptability, EH Figure: Adaptability, ER

Figure: Adaptability, EP

- ModelarDB chooses an appropriate model for each part of a series
 - Different models used for each data set and linear models are used with 0% error bound
 - The system is extensible and users can implement other models to increase adaptability

Evaluation – Ingestion and Query Processing

Figure: Ingestion, ER

Figure: Aggregate Queries, ER

Figure: Scalability (Azure), ER

ModelarDB has fast ingestion, fast large aggregates and linear scalability

- Only InfluxDB, Cassandra, and ModelarDB can answer queries while ingesting data points
- The paper shows ModelarDB is competitive with other systems for small scale queries

ModelarDB v1: how far did we get?

Summary:

- Storing sensor data as simple aggregates discards valuable information
- Model-based compression provides multiple benefits over simple aggregates
- Proposed the model-based TSMS ModelarDB based on:
 - A general architecture for a modular model-based TSMS
 - An algorithm for online multi-model compression of time series
 - A set of methods and optimizations for a model-based TSMS
- Evaluation showed that ModelarDB hits a sweet spot by providing:
 - Fast ingestion
 - Good compression
 - Fast, scalable online aggregate query processing
- But we can do even better...

Next step: Exploiting correlation

- Detecting correlation in data is an orthogonal problem
 - We let the user hint correlation
- If the time series in a group can not (no longer) be represented by a single model, ModelarDB splits the group
 - To respect the error bound
 - The time series can be joined again later

ModelarDB+ (v2) contributions

- Compression of time series groups using multiple model types, we call this type
 of compression Multi-Model Group Compression (MMGC)
- Group Online Lossy and lossless Extensible Multi-Model (GOLEMM)
 - First Multi-Model Group Compression method for time series and model types extended to compress time series groups
- Primitives for users to effectively group time series, and a method that automatically groups time series using their metadata as dimensions
- Algorithms for executing simple and multi-dimensional aggregate queries on models representing values from time series groups
- ModelarDB+ a version of the open-source distributed model-based time series management systems ModelarDB with our methods added:
 - Available at github.com/skejserjensen/ModelarDB under Apache 2.0

Grouping Correlated Time Series

Additional compression is achieved by compressing time series in groups

- Time series first statically grouped using metadata:
 - Time series source and dimensions
 - Dimensions contain hierarchically organized members
- Users can indicate correlation using our primitives:
 - Time series sources, members in dimensions, and the distance between two sets of dimensions

Ingesting Correlated Time Series

- Models are incrementally fitted and emitted as part of segments with metadata:
 - Temporary Segment: Holds an unfinished model cached in memory for low latency
 - Finalized Segment: Holds a finished model cached in memory and persisted to disk
- Models are fitted in sequence until all would exceed the error bound:

- ModelarDB Core includes four model types, users can optionally add more:
 - PMC-Mean (Constant), Swing (Linear), Facebook (Lossless), Uncompressed (None)

Dynamic Grouping

- The time series in a group might temporarily not be correlated:
- For example, a temperature sensor can be obscured by clouds
- This can be efficiently detected as the compression ratio is reduced
- Dynamically splitting and merging groups remedies this problem:

ModelarDB+ Query Processing

- Multidimensional aggregates, e.g., CUBE
- Denormalized user-defined < Dimensions>
- Data Point View
 - Interface: Tid int, TS timestamp, Value float,
 Dimensions>
- Segment View
 - Interface: Tid int, StartTime timestamp,
 EndTime timestamp, SI int, Mid int, Parameters
 blob, Gaps blob, <Dimensions>
- UDAFs for aggregation on segments are suffixed with _S,
 - COUNT_S
- UDAFs for aggregation over time on segments are suffixed with a time interval
 - COUNT_MINUTE, MIN_HOUR, MAX_MONTH, and SUM_YEAR

ModelarDB+ Evaluation

- Evaluation primarily uses real-life data sets from the energy domain:
 - EP 45,353 time series collected from energy producers with a sampling interval of 60s and occupying 339 GiB as uncompressed CSV
 - EF 197 time series collected from wind turbines with a sampling interval of 200ms and occupying 372 GiB as uncompressed CSV
- Most experiments are performed on a small cluster of commodity PCs
- Scalability experiments are performed using Microsoft Azure
- ModelarDB+ configurations:
 - with **no** grouping (MDB+ -G)
 - with auto (MDB+ +GA)
 - with the best (handtuned) primitives per data set (MDB+ +GB)

Ingestion and Storage Results ModelarDB+

- ModelarDB+ provides both a much higher ingestion rate and requires much less storage than InfluxDB, Cassandra, Parquet, and ORC
- Using multiple model types allows GOLEMM to automatically adapt
- Grouping improves the ingestion rate due to the higher compression
- Creating groups automatically from metadata improves the compression

Ingestion Rate, EP

Storage Used, EP

Storage Used, EH

Aggregate Query Results ModelarDB+

- ModelarDB+ is faster than the other formats when timestamps and values are used, and experiments on Azure show that it scales linearly
- Grouping time series decreases query time for queries that use most or all
 of the time series in each group (Large Scale / Month and Category)
- Grouping can also increase query time if the query only use a few time series from each group (Small Scale) or if the groups are on one worker

Large Scale, EP

Month and Category, EP

Small Scale, EH

ModelarDB+ Conclusion: where are we now?

- Summary
 - Wind turbines produce huge time series that should be stored/queried at high frequency
 - Current practice: storing sensor data as simple aggregates, discards valuable information
 - Grouping time series and storing them as models provides many benefits over storing them as simple aggregates or raw data points
 - We proposed methods for creating (Primitives), compressing (the MMGC method GOLEMM), and querying time series groups
 - The evaluation of ModelarDB+ showed that grouping can provide even faster ingestion speed, reduced storage required, and faster aggregate queries
- Future Work
 - Indexing techniques exploiting that data is stored as models
 - Query and cluster-aware grouping and partitioning methods
 - Support for high-level analytical queries and machine learning directly on models

MORE project

- Management Of Real-time Energy data (MORE)
 - Call topic ICT-51-2020: Big Data technologies and extreme-scale analytics (15.0 score ☺)
 - October 2020 September 2023
 - Athena RC (coordinator), AAU, InAccess, IBM Research Dublin, Perception Dynamics, LABORELEC (ENGIE subsidiary), ModelarData
- ModelarDB concept both for edge computing and cloud
 - Optimizing edge storage and transfer to cloud with models
- Advanced time series analytics and machine learning directly on (streaming) models
- Main use cases
 - Massive solar park streams (Inaccess)
 - Massive wind park streams (ENGIE/Laborelec)

ModelarData Spinout

- ModelarData spinout established for commercial exploitation and uptake
- Cloudera-like business model
 - Free open source base version
 - Paid premium feature
 - Managed subscription, documentation, training, support, consulting + custom development
- Focus: extreme-scale analytics mainly for renewable energy data

ModelarData

References

- Søren Kejser Jensen, Torben Bach Pedersen, Christian Thomsen, Time Series
 Management Systems: A Survey. In IEEE Transactions on Knowledge and Data
 Engineering, Volume 29, Number 11, Pages 2581–2600, November, 2017.
- Søren Kejser Jensen, Torben Bach Pedersen, Christian Thomsen, ModelarDB: Modular Model-Based Time Series Management with Spark and Cassandra. In *Proceedings of the VLDB Endowment*, Volume 11, Number 11, Pages 1688–1701, July, 2018.
- Søren Kejser Jensen, Torben Bach Pedersen, Christian Thomsen, Demonstration of ModelarDB: Model-Based Management of Dimensional Time Series. In *Proceedings of the 2019 International Conference on Management of Data*, Pages 1933–1936, 2019.
- Søren Kejser Jensen, Torben Bach Pedersen, Christian Thomsen, Scalable Model-Based Management of Correlated Dimensional Time Series in ModelarDB+". In the 37th IEEE International Conference on Data Engineering (ICDE), 2021
- MORE Project: https://more2020.eu
- ModelarData https://modelardata.com