AVA one-shot (canted) burn vs split baseline — clean summary

Scope:

• Keplerian, impulsive burns. Compare: single canted burn (AVA-style) vs. split baseline (pure tangential + separate plane change at the lower speed).

Key results:

- TLI-like perigee burn (LEO 185 km → translunar ellipse):
 - Δv saving at 3° plane change $\approx 10.5\%$ Δv saving at 5° plane change $\approx 15.1\%$
- GTO→GEO (apogee circularization + plane change):
 - Δv saving at 3° plane change $\approx 5.1\%$
 - Δv saving at 5° plane change $\approx 7.9\%$

Interpretation:

Combining energy + plane change in one canted burn routinely cuts Δv . Savings are $\sim 10-16\%$ for 3-5° in TLI; $\sim 6-10\%$ at GEO.

Next steps:

- 1) Add J2/SRP to test robustness.
- 2) Use AVA as a warm start in a high-fidelity NLP and measure iteration cuts.
- 3) Run dispersion Monte Carlo (thrust/pointing/nav errors).

