Chapter 6

Composition of Functions

Reference: "Calculus", by James Stewart.

6.1 Composite Functions

Example 1. Consider the functions f(x) = 2x and g(x) = 2x + 1.

Then the rule of the **composite** function $f \circ g$ is given by

$$f \circ g(x) = f(g(x)) = f(2x+1)$$

= 2(2x+1)
= 4x + 2.

Note that when we form $f \circ g$ it is the function g which is applied first!

Similarly, the rule of the composite function $g \circ f$ is given by

$$g \circ f(x) = g(f(x)) = g(2x)$$

= 2(2x) + 1
= 4x + 1.

Note that when we form $g \circ f$ it is the function f which is applied first!

Note that (as in the above example) we usually have

$$f \circ g \neq g \circ f$$
.

Example 2. Consider the functions $f(x) = -x^2$ and $g(x) = \sqrt{x}$. Then

$$f \circ g(x) = f(g(x))$$

$$= f(\sqrt{x})$$

$$= -(\sqrt{x})^{2}$$

$$= -x.$$

Notes:

- For this calculation to make sense we must have $x \ge 0$ (since we cannot form \sqrt{x} if x is negative).
- Note further that it is **not** obvious just by looking at the final rule $f \circ g(x) = -x$ that we need to make the restriction $x \ge 0$.
- Thus, to find the domain of a composite function it is important to consider the intermediate steps, rather than just look at the final rule! Suppose we wish to find the domain of the function y = f(g(x)). We need

x in the brackets of g, and g(x) in the brackets of f.

This means we need to make sure that

$$x \in dom(g)$$
 and $g(x) \in dom(f)$

Similarly, suppose we wish to find the domain of the function y = g(f(x)).

We need

x in the brackets of f, and f(x) in the brackets of g.

This means we need to make sure that

$$x \in dom(f) \text{ and } f(x) \in dom(g)$$

Example 3. Consider the functions

$$f: \mathbf{R} \setminus \{0\} \longrightarrow \mathbf{R}$$
 where $f(x) = \frac{1}{x}$

and

$$g: \mathbf{R} \setminus \{-2\} \longrightarrow \mathbf{R}$$
 where $g(x) = \frac{1}{x+2}$.

Find the rule and the domain of the composite function $g \circ f$.

Solution: Rule: We have

$$g \circ f(x) = g(f(x))$$

$$= g\left(\frac{1}{x}\right)$$

$$= \frac{1}{\frac{1}{x} + 2}$$

$$= \frac{1}{\frac{1+2x}{x}}$$

$$= \frac{x}{1+2x}.$$

Domain: We want to find $dom(g \circ f)$.

That is, we want to find the $\,x\,$ –values for which $\,g(f(x))\,$ is defined. We need

$$x \in \text{dom}(f)$$
 and $f(x) \in \text{dom}(g)$
 $x \in \mathbf{R} \setminus \{0\}$ and $\frac{1}{x} \in \mathbf{R} \setminus \{-2\}$
 $x \neq 0$ and $\frac{1}{x} \neq -2$
 $x \neq 0$ and $x \neq -\frac{1}{2}$.

Therefore, $dom(g \circ f) = \mathbf{R} \setminus \left\{0, -\frac{1}{2}\right\}$.

Example 4. Consider the functions

$$f: [2,8] \longrightarrow \mathbf{R}$$
 where $f(x) = 2x + 3$

and

$$g: (0,2) \longrightarrow \mathbf{R}$$
 where $g(x) = 3x - 1$.

Find the rule and the domain of the composite function $f \circ g$.

Solution: Rule:

We have

$$f \circ g(x) = f(g(x))$$

= $f(3x - 1)$
= $2(3x - 1) + 3$
= $6x - 2 + 3$
= $6x + 1$.

Domain:

We want to find $dom(f \circ g)$.

That is, we want to find the x-values for which f(g(x)) is defined. We need

$$x \in \text{dom}(g)$$
 and $g(x) \in \text{dom}(f)$
 $x \in (0,2)$ and $3x - 1 \in [2,8]$
 $0 < x < 2$ and $2 \le 3x - 1 \le 8$
 $0 < x < 2$ and $3 \le 3x \le 9$
 $0 < x < 2$ and $1 \le x \le 3$

Therefore,
$$dom(f \circ g) = (0, 2) \cap [1, 3]$$

= [1, 2)

Exercises

1. If $f(x) = x^2$ and g(x) = 2x + 4 then

(a) find the rule for f(g(x)).

(b) find the rule for g(f(x)).

2. Consider the functions

 $f: [-4, 6] \longrightarrow \mathbf{R}$ where f(x) = 10x - 2

and

 $g: [8,73] \longrightarrow \mathbf{R}$ where g(x) = 5x - 39.

(a) Find dom($f \circ g$).

(b) Find dom($g \circ f$).

(c) Find the rule for f(g(x)). (d) Find the rule for g(f(x)).

3. If $f(x) = \begin{cases} x^2 - 2 & \text{if } x > 1 \\ 1 - x & \text{if } x \le 1 \end{cases}$ and g(x) = 2xthen find the rule for f

6.2 **Inverse Functions**

Example 5. Consider the functions $f(x) = \frac{1}{x+2}$ and $g(x) = \frac{1}{x}-2$.

(a) Find the rule for f(g(x)).

(b) Find the rule for g(f(x)).

Solution: (a)

$$f(g(x)) = f\left(\frac{1}{x} - 2\right)$$

$$= \frac{1}{\left(\frac{1}{x} - 2\right) + 2}$$

$$= \frac{1}{1/x}$$

$$= x$$

(b)

$$g(f(x)) = g\left(\frac{1}{x+2}\right)$$
$$= \frac{1}{\left(\frac{1}{x+2}\right)} - 2$$
$$= x + 2 - 2$$
$$= x$$

Note that in Example 5 we have

$$f(g(x)) = x$$

and

$$g(f(x)) = x.$$

That is, the functions 'undo' (or cancel) each other.

When f and g have the above property, we say that g is the **inverse** of f.

When g is the **inverse** of f, we write g as f^{-1} .

Using this notation, we can rewrite the above cancellation equations as

$$f(f^{-1}(x)) = x$$

and

$$f^{-1}(f(x)) = x.$$

That is, f and f^{-1} ' undo' (or cancel) each other.

Note:
$$f^{-1}(x)$$
 does **not** mean $\frac{1}{f(x)}$

Suppose that we know the equation of y = f(x), and suppose that we want to find the equation of $y = f^{-1}(x)$. We can use **either** of the following methods:

Method 1: Swap x and y in the equation y = f(x), and then rearrange to get y by itself.

Method 2: Rearrange the equation y = f(x) to get x by itself, and then swap x and y.

Example 6. Consider the function $f(x) = \frac{1}{x+2}$ from Example 5. Find the equation of f^{-1} .

Solution:

$$y = \frac{1}{x+2}$$

We first rearrange the equation to make x the subject:

$$x + 2 = \frac{1}{y}$$

$$\therefore x = \frac{1}{y} - 2$$

Now swap x and y:

$$y = \frac{1}{x} - 2$$

$$\therefore f^{-1}(x) = \frac{1}{x} - 2$$

Example 7. If f(x) = 2x + 4 find $f^{-1}(x)$.

Solution:

Let
$$y = 2x + 4$$

We first rearrange this equation to make x the subject:

$$y - 4 = 2x$$
$$\therefore x = \frac{1}{2}(y - 4)$$

Now swap x and y:

$$y = \frac{1}{2}(x-4)$$

$$\therefore f^{-1}(x) = \frac{1}{2}(x-4)$$

Sketching the graphs for y = f(x) and $y = f^{-1}(x)$ gives:

In the graph above we can see that the line y = x acts like a mirror. This is a general property. That is,

the graph of f^{-1} is obtained by reflecting the graph of f in the line y = x

If a function is **not** one—one, then its reflection in the line y = x will have the property that some **vertical** lines will cut the graph **more than once**. That is,

if a function is **not** one—one then its inverse is **not** a **function**.

In the Maths 1 course, we **only** want to study functions. Thus we will **only** take inverses of **one–one** functions.

A function has an inverse function if and only if it is one—one

Recall that when we find the inverse of a (one–one) function, we swap the x and y–values. This swapping of the x and y–values results in the following properties:

$$dom(f^{-1}) = ran(f)$$

and

$$\operatorname{ran}(f^{-1}) = \operatorname{dom}(f)$$

Example 8. If $f:(-\infty,2]\longrightarrow \mathbf{R}$ where $f(x)=(x-2)^2$, find $f^{-1}(x)$.

Solution:

Let
$$y = (x - 2)^2$$

Swap x and y and then make y the subject of the equation:

$$x = (y - 2)^{2}$$
$$y - 2 = \pm \sqrt{x}$$
$$\therefore y = 2 \pm \sqrt{x}$$

Now we need to determine whether $f^{-1}(x) = 2 + \sqrt{x}$ or $f^{-1}(x) = 2 - \sqrt{x}$.

If
$$y = f^{-1}(x)$$

then $y \in \operatorname{ran}(f^{-1})$
 $\therefore y \in \operatorname{dom}(f)$
 $\therefore y \in (-\infty, 2]$

This shows that y must be less than or equal to 2. Therefore

$$f^{-1}(x) = 2 - \sqrt{x} \,.$$

Exercises

- 1. Find the inverse of each of the following functions:
 - (a) f(x) = 2x + 1
- (b) f(x) = 7x + 3 (c) f(x) = 3 x
- (d) $f(x) = \frac{1}{x+1}$ (e) $f(x) = \frac{1}{x}$
- 2. (a) Find the smallest number b such that the function

$$f(x) = x^2 - 4$$
 with $dom(f) = [b, \infty)$

has an inverse function. Find the rule for the inverse function.

(b) Find the largest number b such that the function

$$f(x) = (x+2)^2$$
 with $dom(f) = (-\infty, b]$

has an inverse function. Find the rule for the inverse function.

- 3. Consider the function $f(x) = 1 + \sqrt{x+1}$.
 - (a) Find dom(f).
- (b) Find ran(f). (c) Find dom(f^{-1}).
- (d) Find ran(f^{-1}). (e) Find the rule for f^{-1} .
- (f) Sketch the graphs of y = f(x) and $y = f^{-1}(x)$.

Exponentials and Logarithms 6.3

Suppose that a > 0 and $a \neq 1$.

Recall that

$$y = \log_a x$$
 if and only if $x = a^y$.

For example, this means that

- $\log_a a = 1$ (since $a^1 = a$), and
- $\log_a 1 = 0$ (since $a^0 = 1$).

Here we examine the relationship between logarithmic and exponential functions in more detail.

Since the exponential function $f(x) = a^x$ is one-one, it has an inverse function. In fact, the inverse of $f(x) = a^x$ is the logarithmic function to the base a.

That is,

if
$$f(x) = a^x$$
 then $f^{-1}(x) = \log_a x$

In particular, this means that

$$\log_a(a^x) = x$$
 for all $x \in \mathbf{R}$ (i.e. $f^{-1}(f(x)) = x$)

and

$$a^{\log_a x} = x$$
 for all $x > 0$ (i.e. $f(f^{-1}(x)) = x$).

That is,

logarithms and exponentials cancel each other, (as long as they have the **same base**).

Example 9. Make x the subject of the following formula:

$$y = B \times 10^{\frac{ax}{b}}$$

(i.e. rearrange the formula to get x by itself).

Solution:

$$y = B \times 10^{\frac{ax}{b}}$$

$$\therefore \frac{y}{B} = 10^{\frac{ax}{b}}$$

$$\therefore \log_{10} \left(\frac{y}{B}\right) = \frac{ax}{b}$$

$$\therefore ax = b \log_{10} \left(\frac{y}{B}\right)$$

$$\therefore x = \frac{b}{a} \log_{10} \left(\frac{y}{B}\right)$$

Exercises

1. Simplify the following expressions:

- (a) $\log_3 (3^{\sin x})$ (b) $\log_{12} (12^{x-1})$ (c) $4^{\log_4 \sqrt{x}}$
- (d) $7^{2\log_7 x}$
- (e) $3^{\frac{1}{2}\log_3(x+1)}$

2. Evaluate the following expressions:

- (a) $\log_9 3$ (b) $\log_9 \left(\frac{1}{27}\right)$ (c) $\log_4 0.25$

3. Make t the subject of the equation $y = k + Ca^{bt}$.

6.4 Inverse Trigonometric Functions

Reference: "Calculus", by James Stewart.

Recall that a function f has an **inverse function** if and only if f is one—one.

Clearly the trigonometric functions \sin , \cos and \tan are **not** one-one.

However if we restrict the domains of these functions to **make them one—one** then inverse functions will exist.

Recall also that an inverse function f^{-1} satisfies

$${\rm dom}(f^{-1}) \ = \ {\rm ran}(f) \quad {\rm and} \quad {\rm ran}(f^{-1}) \ = \ {\rm dom}(f) \, .$$

Sine and its Inverse

To turn sine into a **one—one** function, we restrict its domain to $\left[-\frac{\pi}{2}\,,\,\frac{\pi}{2}\right]$. That is, we consider the function

$$f:\left[-\frac{\pi}{2}\;,\;\frac{\pi}{2}\right]\to\mathbf{R}$$

where $f(x) = \sin x$.

We define \sin^{-1} (or \arcsin) to be the inverse of this function. That is, we write

$$f^{-1}(x) = \sin^{-1}(x).$$

Note:

When we write $y = \sin^{-1} x$, we have $y \in \operatorname{ran}(f^{-1})$. Since

$$\mathrm{ran}(f^{-1}) \; = \; \mathrm{dom}(f) \; = \; \left[-\; \frac{\pi}{2} \; , \; \frac{\pi}{2} \right]$$

then we conclude that $y \in \left[-\frac{\pi}{2} , \frac{\pi}{2}\right]$.

Thus we have

$$y = \sin^{-1} x$$

if and only if

$$\sin y = x$$
 and $y \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$.

Cosine and its Inverse

To turn cosine into a **one–one** function, we restrict its domain to $[0,\pi]$. That is, we consider the function

$$f:[0,\pi]\to\mathbf{R}$$

where $f(x) = \cos x$.

We define \cos^{-1} (or \arccos) to be the inverse of this function. That is, we write

$$f^{-1}(x) = \cos^{-1}(x).$$

Note:

When we write $y = \cos^{-1} x$, we have $y \in \operatorname{ran}(f^{-1})$. Since

$$ran(f^{-1}) = dom(f) = [0, \pi]$$

then we conclude that $y \in [0, \pi]$.

Thus we have

$$y = \cos^{-1} x$$

if and only if

$$\cos y = x$$
 and $y \in [0, \pi]$.

Tan and its Inverse

To turn tan into a **one—one** function, we restrict its domain to $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

That is, we consider the function

$$f:\left(-\frac{\pi}{2}\;,\;\frac{\pi}{2}\right)\to\mathbf{R}$$

where $f(x) = \tan x$.

We define \tan^{-1} (or \arctan) to be the inverse of this function. That is, we write

$$f^{-1}(x) = \tan^{-1}(x).$$

Note:

When we write $y = \tan^{-1} x$, we have $y \in \operatorname{ran}(f^{-1})$. Since

$$ran(f^{-1}) = dom(f) = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

then we conclude that $y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Thus we have

$$y = \tan^{-1} x$$

if and only if

$$\tan y = x$$
 and $y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Warning:

Recall that usually

$$f^{-1}(x) \neq \frac{1}{f(x)} .$$

In particular,

$$\sin^{-1} x \neq \frac{1}{\sin x} .$$

That is,

$$\sin^{-1} x \neq (\sin x)^{-1}.$$

Similarly, note that

$$\cos^{-1} x \neq (\cos x)^{-1}$$
 and $\tan^{-1} x \neq (\tan x)^{-1}$.

Exercises

Evaluate the following:

- (a) $\sin^{-1}\left(\frac{1}{\sqrt{2}}\right)$ (b) $\sin^{-1}\left(-\frac{1}{\sqrt{2}}\right)$ (c) $\cos^{-1}\left(-\frac{1}{2}\right)$

- (d) $\cos^{-1}(1)$ (e) $\tan^{-1}(-\sqrt{3})$

6.5 Answers to Chapter 6 Exercises

6.1:

1. (a)
$$f(g(x)) = (2x+4)^2$$

(b)
$$g(f(x)) = 2x^2 + 4$$

$$2.$$
 (a) $[8, 9]$

(b)
$$[1, 6]$$

(c)
$$f(g(x)) = 50x - 392$$

(d)
$$g(f(x)) = 50x - 49$$

3.

$$f(g(x)) = \begin{cases} 4x^2 - 2 & \text{if } x > \frac{1}{2} \\ 1 - 2x & \text{if } x \le \frac{1}{2} \end{cases}$$

6.2:

1. (a)
$$f^{-1}(x) = \frac{1}{2}(x-1)$$
 (b) $f^{-1}(x) = \frac{1}{7}(x-3)$ (c) $f^{-1}(x) = 3-x$ (d) $f^{-1}(x) = \frac{1}{x}-1$

(b)
$$f^{-1}(x) = \frac{1}{7}(x-3)$$

(c)
$$f^{-1}(x) = 3 - x$$

(d)
$$f^{-1}(x) = \frac{1}{x} - 1$$

(e)
$$f^{-1}(x) = \frac{1}{x}$$

2. (a)
$$b = 0$$
, $f^{-1}(x) = \sqrt{x+4}$

(b)
$$b = -2$$
, $f^{-1}(x) = -\sqrt{x} - 2$

3. (a)
$$[-1, \infty)$$

(b) $[1,\infty)$

(c)
$$[1, \infty)$$

(d) $[-1,\infty)$

(e)
$$f^{-1}(x) = x^2 - 2x$$

(f)

6.3:

- 1. (a) $\sin x$ (b) x 1 (c) \sqrt{x}

- (d) x^2
- (e) $\sqrt{x+1}$
- 2. (a) 0.5 (b) -1.5 (c) -1

3. $\frac{1}{b} \log_a \left(\frac{y-k}{C} \right)$

6.4:

- (a) $\frac{\pi}{4}$
- (b) $-\frac{\pi}{4}$ (c) $\frac{2\pi}{3}$

- (d) 0
- (e) $-\frac{\pi}{3}$