XMAC02 Métodos Matemáticos para Análise de Dados

Tipos de Teste t

- □ Teste t de duas amostras
 - Conjuntos de dados são independentes
 - Valores de uma amostra não revelam informação a respeito da outra amostra
 - Exemplo: Duas máquinas de envase de perfume
- Teste t pareado
 - Conjuntos de dados são dependentes
 - Valores de uma amostra afetam valores da outra amostra
 - Exemplo: Pressão arterial antes e depois de tomar um remédio

- Como é feito?
 - Encontre a diferença entre os dois conjuntos de amostras d₁, d₂, ..., d_n
 - Encontre a média e o desvio padrão dessas diferenças

$$t = \frac{\mathrm{d}}{s/\sqrt{n}}$$

Exemplo: A pressão sistólica de 5 pacientes foi medida antes e depois da administração de um medicamento. Houve alteração na pressão? Nível de confiança = 95%.

Paciente	Antes	Depois			
1	120	122			
2	122	120			
3	143	141			
4	100	109			
5	109	109			

 H_0 : $\mu_{antes} = \mu_{depois}$

 H_a : $\mu_{antes} \neq \mu_{depois}$

Exemplo: A pressão sistólica de 5 pacientes foi medida antes e depois da administração de um medicamento. Houve alteração na pressão? Nível de confiança = 95%.

Paciente	Antes	Depois	Diferença
1	120	122	-2
2	122	120	2
3	143	141	2
4	100	109	-9
5	109	109	0

$$\overline{d} = -1.4$$
; s = 4.56; n = 5

$$t_{\rm calc} = \frac{\bar{d}}{s/\sqrt{n}}$$

$$t_{\rm calc} = -1.4/2.04 = -0.69$$

- Como calcular o desvio padrão:
 - Etapa 1: calcular a média: -1,4
 - Etapa 2: calcular o quadrado da distância entre cada ponto e a média.
 - $0.6^2 + 3.4^2 + 3.4^2 + 7.6^2 + 1.4^2$
 - **0**,36 + 11,56 + 11,56 + 57,76 + 1,96
 - Etapa 3: somar os valores da Etapa 2.
 - **83,2**
 - Etapa 4: dividir pelo número de pontos 1 (amostra)
 - **83,2/4 = 20,8**
 - Etapa 5: calcular a raiz quadrada do valor obtido
 - **4,56**

					TAIL	PROBAB	ILITY P					
df	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001	.0005
1	1.000	1.376	1.963	3.078	6.314	12.71	15.89	31.82	63.66	127.3	318.3	636.6
2	.816	1.061	1.386	1.886	2.920	4.303	4.849	6.965	9.925	14.09	22.33	31.60
3	.765	.978	1.250	1.638	2.353	3.182	3.482	4.541	5.841	7.453	10.21	12.92
4	.741	.941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.610
5	.727	.920	1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.869
6	.718	.906	1.134	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.208	5.959
7	.711	.896	1.119	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.408
8	.706	.889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	3.833	4.501	5.041
9	.703	.883	1.100	1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	4.781
10	.700	.879	1.093	1.372	1.812	2.228	2.359	2.764	3.169	3.581	4.144	4.587
11	.697	.876	1.088	1.363	1.796	2.201	2.328	2.718	3.106	3.497	4.025	4.437
12	.695	.873	1.083	1.356	1.782	2.179	2.303	2.681	3.055	3.428	3.930	4.318
13	.694	.870	1.079	1.350	1.771	2.160	2.282	2.650	3.012	3.372	3.852	4.221
14	.692	.868	1.076	1.345	1.761	2.145	2.264	2.624	2.977	3.326	3.787	4.140
15	.691	.866	1.074	1.341	1.753	2.131	2.249	2.602	2.947	3.286	3.733	4.073
16	.690	.865	1.071	1.337	1.746	2.120	2.235	2.583	2.921	3.252	3.686	4.015
17	.689	.863	1.069	1.333	1.740	2.110	2.224	2.567	2.898	3.222	3.646	3.965
18	.688	.862	1.067	1.330	1.734	2.101	2.214	2.552	2,878	3.197	3.611	3.922
19	.688	.861	1.066	1.328	1.729	2.093	2.205	2.539	2.861	3.174	3.579	3.883
20	.687	.860	1.064	1.325	1.725	2.086	2.197	2.528	2.845	3.153	3.552	3.850
21	.686	.859	1.063	1.323	1.721	2.080	2.189	2.518	2.831	3.135	3.527	3.819
22	.686	.858	1.061	1.321	1.717	2.074	2.183	2.508	2.819	3.119	3.505	3.792
23	.685	.858	1.060	1.319	1.714	2.069	2.177	2.500	2.807	3.104	3.485	3.768
24	.685	.857	1.059	1.318	1.711	2.064	2.172	2.492	2.797	3.091	3.467	3.745
25	.684	.856	1.058	1.316	1.708	2.060	2.167	2.485	2.787	3.078	3.450	3.725
26	.684	.856	1.058	1.315	1.706	2.056	2.162	2.479	2.779	3.067	3.435	3.707
27	.684	.855	1.057	1.314	1.703	2.052	2.158	2.473	2.771	3.057	3.421	3.690
28	.683	.855	1.056	1.313	1.701	2.048	2.154	2.467	2.763	3.047	3.408	3.674
29	.683	.854	1.055	1.311	1.699	2.045	2.150	2.462	2.756	3.038	3.396	3.659
30	.683	.854	1.055	1.310	1.697	2.042	2.147	2.457	2.750	3.030	3.385	3.646

- α = 0,05 Two Tails
- **❖** df = 4
- \star t_{crítico} = 2,776

Falha em rejeitar H₀

 H_0 : $\mu_{antes} = \mu_{depois}$

 H_a : $\mu_{antes} \neq \mu_{depois}$

- \Leftrightarrow $\alpha = 0.05$ Two Tails
- $t_{calc} = -0.69$
- **♦** t_{crítico} = 2,776