Selected Topics in Biomedical Signal Processing

Author 1 Author 2

Date

1 Data-driven filter design for biomedical sensor arrays

Unsupervised artifact removal using CCA

The raw EEG data is shown in Figure.1. In Figure.2, the eye-blink artifacts can be seen at t = 0s, 2.5s, 4.8s, 7.2s.

Figure 1: Raw EEG data

The magnitude of the eye-blink artifacts differs from channel to channel. This is cause by the different locations of the electrodes.

The reconstruction can be done by setting the sources with lower autocorrelation to 0.

Supervised artifact removal using MWF

By introducing the delay, the performance.

Filter design in threshold-based spike sorting

Figure.6 shows

Figure 2: Eye-blink artifacts

Figure 3: Artifact removel with CCA

Figure 4: Eye-blink artifacts removal with MWF

Figure 5: SER under different time delay

Figure 6: Spatio-temporal template of the target neuron

Figure 7: P-R curve and F1 score of the matched filter

Figure 8: Template filter output

Figure 9: Matched filter output

Figure 10: Max-SPIR filter output v.s. matched filter output

Stimulation artifact removal

The neural spikes can be found in Figure.11 at t = 2.461s and t = 2.468s

Figure 11: A sample segment of raw EEG signal around neural spike

2 Blind Signal Separation

Denoising using low multilinear rank approximation

As shown in Figure.12,

Figure 12: Multilinear low rank approximation

Figure 13: Source separation with ICA and PCA

Figure 14: Components in matrix A, B, C

Figure 15: Estimation of components in tensor T_3 using PCA

Figure 16: Multiliear singular values of T_3 with additive noise

Figure 17: Convergence rate under different rank

Source separation with ICA and PCA

Synthetic CP

Harmonic retrieval

To estimate the number of poles of the signal, we can inspect the multilinear SVD of the Hankel matrix constructed by the signal. From Figure 18 we can assume that the system has 6 poles because there are 6 dominant singular values.

Figure 18: Singular values of H_x and the estimation of poles

3 Nonlinear Signal Processing

Figure 19: Predicting the signal using poles & tensor completion method