(Use 1.702 in the logistic model calculation)

- 1. (For Measurement PhD students) Find the maximum discrimination (slope) for item i under the three logistic models, i.e., take the derivative of $P(\theta)$ with respect to θ and evaluate at $\theta = \beta_i$.
- 2. Let the discrimination, difficulty and guessing parameters of five items be $\alpha = \{0.5, 1.0, 1.5, 2.5, 1.0\}', \beta = \{-1.0, -0.5, 0.0, 0.5, 1.0\}'$ and $c = \{0.00, 0.10, 0.15, 0.05, 0.32\}'$.

For the following abilities: $\theta = \{-2.0, -1.0, 0.0, 1.0, 2.0\}'$, find

- a. odds of correct response
- b. logit of correct response
- c. expected number correct
- d. expected proportion correct
- 3. Given the following data,

$\overline{oldsymbol{ heta}_{j}}$	-3.0	-2.5	-2.0	-1.5	-1.0	5	0.0	.5	1.0	1.5	2.0	2.5	3.0
r_{j}	0	0	1	2	3	4	5	6	4	4	4	2	1
f_{j}	1	2	4	7	8	9	10	8	6	5	5	2	1

- a. Find the maximum likelihood estimates of the item parameters under the two-parameter logistic model. Show the computations for all iterations (Use the initial values, $\zeta = 0$ and $\lambda = 1.0$).
- b. Calculate the standard errors of the estimates.
- c. Find the minimum logit χ^2 estimates of the item parameters. Calculate the standard errors of the estimates (refer to the equations in Chapter 2 in Baker & Kim (2004)). Are these close to the MLE estimates you obtained in part (a)? If not, why do you think these are different from the MLE estimates?
- 4. For the five items given in the Table below, the responses of an examinee are [0 0 0 1 1].

	Item Parameters						
Item	a_{j}	$b_{_{j}}$	c_{j}				
1	1.25	1.20	.10				
2	1.35	.60	.15				
3	1.15	.15	.15				
4	1.00	60	.20				
5	.75	-2.00	.10				

a. What is the likelihood function for this examinee? State the assumptions that must be made in determining the likelihood function.

b. Plot the likelihood function at θ values from -1.0 to 0 in increments of .1. Based on the graph, determine the maximum likelihood estimate of θ .