IV | Partial differentiations

Practice Examples

4.1 Partial derivative and geometrical interpretation

1	Evaluate $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$, if $z = x^2 \sin\left(\frac{y}{x}\right)$.
	Answer: $\frac{\partial z}{\partial x} = 2x \sin\left(\frac{y}{x}\right) - y \cos\left(\frac{y}{x}\right), \frac{\partial z}{\partial y} = x \cos\left(\frac{y}{x}\right).$
2	Verify that $\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x}$, for the function $z = \log\left(\frac{x^2 + y^2}{xy}\right)$.
	Verify that $\frac{\partial}{\partial x \partial y} = \frac{\partial}{\partial y \partial x}$, for the function $z = \log \left(\frac{\partial}{\partial x \partial y} \right)$.
3	If $z = \log(\tan x + \tan y)$, then prove that $\sin 2x \frac{\partial z}{\partial x} + \sin 2y \frac{\partial z}{\partial y} = 2$.
	ox oy
4	If resistors R_1 , R_2 and R_3 ohms are connected in parallel to make R ohm resistor, the
	value of R can be found from the equation $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$. Find $\frac{\partial R}{\partial R_2}$ when
	$R_1 = 30, R_2 = 45$, and $R_3 = 90$ ohms.
	Answer: $\frac{1}{9}$.
5	Find the first order partial derivatives for the following functions at the specified point.
	$(i) f(x,y) = \cot^{-1}(x+y), at (1,2).$
	(ii) $f(x,y) = \ln\left(\frac{\sqrt{x^2 + y^2} - x}{\sqrt{x^2 + y^2} + x}\right)$, at (3,4).
	(iii) $f(x,y) = (xy)^{\sin z}$, at $\left(5,3,\frac{\pi}{2}\right)$.
	Answer:
	$\left (i) \frac{\partial f}{\partial x} \right _{(1,2)} = -\frac{1}{10} , \frac{\partial f}{\partial y} \Big _{(1,2)} = -\frac{1}{10}.$
	$\left (ii) \frac{\partial f}{\partial x} \right _{(3,4)} = -\frac{2}{5} , \frac{\partial f}{\partial y} \Big _{(3,4)} = \frac{3}{10}.$
	$(iii) \frac{\partial f}{\partial x}\Big _{\left(5,3,\frac{\pi}{2}\right)} = 3, \frac{\partial f}{\partial y}\Big _{\left(5,3,\frac{\pi}{2}\right)} = 5, \frac{\partial f}{\partial z}\Big _{\left(5,3,\frac{\pi}{2}\right)} = 0.$
6	Find the first and second order partial derivatives of $z = (1 - 2xy + y^2)^{-\frac{1}{2}}$.
	Answer: $f_x = y (1 - 2xy + y^2)^{-\frac{3}{2}}, f_y = (x - y)(1 - 2xy + y^2)^{-\frac{3}{2}},$

Academic Year: 2022-2023

$$f_{xx} = 3y^{2} (1 - 2xy + y^{2})^{-\frac{3}{2}},$$

$$f_{xy} = 3y(x - y)(y^{2} - 2xy + 1)^{-\frac{5}{2}} + (y^{2} - 2xy + 1)^{-\frac{3}{2}} = f_{yx},$$

$$f_{yy} = 3(x - y)^{2}(y^{2} - 2xy + 1)^{-\frac{5}{2}} - (y^{2} - 2xy + 1)^{-\frac{3}{2}}.$$

4.2 Euler's theorem with corollaries and their applications

1	If $z = \sin^{-1}\left(\frac{x}{y}\right) + \tan^{-1}\left(\frac{x}{y}\right)$, then prove that $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = 0$.
2	If $z = \frac{xy}{x+y}$, then find the value of $x^2 \frac{\partial^2 z}{\partial x^2} + 2xy \frac{\partial^2 z}{\partial x \partial y} + y^2 \frac{\partial^2 z}{\partial y^2}$.
	Answer: 0.
3	If $u = \sin^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$, then show that (i) $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \frac{1}{2}\frac{\sin u}{\cos u}$,
	$(ii) x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = -\frac{\sin u \cos 2u}{4 \cos^3 u}.$
4	If $z = \log\left(\frac{x^2 - y^2}{x^2 + y^2}\right)$, then show that $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = 0$.
5	If $u = \cos^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$, then show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = -\frac{1}{2}\cot u$.
6	If $u = \sin^{-1}\left(\frac{x^2y^2}{x+y}\right)$, then show that (i) $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 3\tan u$,
	$(ii) x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 9 \tan^3 u + 6 \tan u.$

4.3 Chain rule

	If $z = y + f(u)$, $u = \frac{x}{y}$, then show that $u \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 1$.
2	If $u = f(x^2 + 2yz, y^2 + 2zx)$, then prove that
	If $u = f(x^2 + 2yz, y^2 + 2zx)$, then prove that $(y^2 - zx)\frac{\partial u}{\partial x} + (x^2 - yz)\frac{\partial u}{\partial y} + (z^2 - xy)\frac{\partial u}{\partial z} = 0.$
3	Express $\frac{\partial u}{\partial r}$ and $\frac{\partial u}{\partial s}$ in terms of r and s if
	$u = x + 2y + z^2$, $x = \frac{r}{s}$, $y = r^2 + \ln s$, $z = 2r$.

Academic Year: 2022-2023

	Answer: $\frac{\partial u}{\partial r} = 12r + \frac{1}{s}, \frac{\partial u}{\partial s} = \frac{2}{s} - \frac{r}{s^2}.$
4	If $u = xy + yz + zx$ where $x = \frac{1}{t}$, $y = e^t$, $z = e^{-t}$, then find $\frac{du}{dt}$.
	Answer: $\frac{du}{dt} = -\frac{1}{t^2}(e^t + e^{-t}) + \frac{1}{t}(e^t - e^{-t}).$
5	If $u = f(r)$ where $r^2 = x^2 + y^2$, then prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f''(r) + \frac{1}{r} f'(r)$.
6	If $u = f(e^{y-z}, e^{z-x}, e^{x-y})$, then show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.

4.4 Implicit functions

1	Find $\frac{dy}{dx}$ if $y^2 - x^2 - \sin xy = 0$.
	Answer: $\frac{dy}{dx} = \frac{2x + y \cos(xy)}{2y - x \cos(xy)}$.
2	If $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$, then show that $\frac{dy}{dx} = -\frac{ax + hy + g}{hx + by + f}$.
3	Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at (2, 3, 6), if $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} - 1 = 0$.
	Answer: $\frac{\partial z}{\partial x} = -9$, $\frac{\partial z}{\partial y} = -4$.
4	Find $\frac{dy}{dx}$, if $x^2y^2 + \sin(xy) + y^3 = 0$.
	Answer: $\frac{dy}{dx} = -\frac{2xy^2 + y\cos(xy)}{2x^2y + x\cos(xy) + 3y^2}.$
5	Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at $(1, 1, 1)$, if $x^2 + y^4 - z^3 + 3xy^2 = 8$.
	Answer: $\frac{\partial z}{\partial x} = \frac{5}{3}, \frac{\partial z}{\partial y} = \frac{10}{3}.$
6	Given $xyz = \cos(x + y + z)$, then find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
	Answer: $\frac{\partial z}{\partial x} = -\frac{yz + \sin(x + y + z)}{xy + \sin(x + y + z)}, \frac{\partial z}{\partial y} = -\frac{xz + \sin(x + y + z)}{xy + \sin(x + y + z)}.$

Academic Year: 2022-2023

4.5 Total differentials

1		Find the total derivative of the function $z = 2x \sin y - 3x^2y^2$.
		Answer: $dz = (2 \sin y - 6xy^2)dx + (2x \cos y - 6x^2y)dy$.
2	2	Find the total differential of $f(x, y) = 5x^3 - 4xy^{-1} + 3y^4$.
		Answer: $df = (15x^2 - 4y^{-1})dx + (4xy^{-2} + 12y^3)dy$.
3	3	Find the total differential of $f(x, y, z) = xy + yz + zx$.
		Answer: $df = (y+z)dx + (x+z)dy + (x+y)dz$.
	1	If $g(x,y) = (x-y)^{-1}$, then obtain dg .
		Answer: $dg = (x - y)^{-2} (dy - dx)$.
	5	Find the total differential of $f(x, y, z) = e^{xyz}$.
		Answer: $df = e^{xyz}(yz dx + zx dy + xy dz).$
6	5	If $u = e^{yz} - \cos(xz)$, then find du .
		Answer: $du = (z \sin(xz)) dx + (z e^{yz}) dy + (y e^{yz} + x \sin(xz)) dz$.