Mathematics 227 Matrix multiplication

1. Suppose that $A=\begin{bmatrix} -2 & 3 & -8 \\ 1 & -1 & 3 \end{bmatrix}$. Give a description of the solution space to the homogeneous equation $A\mathbf{x}=\mathbf{0}$.

Give a geometric description of the solution space.

Give a description of the solution space to the equation $A\mathbf{x} = \begin{bmatrix} -12 \\ 4 \end{bmatrix}$.

What is the geometric relationship between these two solution spaces.

2. Suppose that A is a 4×4 matrix and that, for some vector \mathbf{b} , the equation $A\mathbf{x} = \mathbf{b}$ has a unique solution.

What does this say about the pivot positions of A? Explain your thinking.

What does this imply about the solution space to the homogeneous equation $A\mathbf{x} = \mathbf{0}$?

Is it possible to find a 4-dimensional vector \mathbf{c} such that $A\mathbf{x} = \mathbf{c}$ is inconsistent?

3. Visit the web page gvsu.edu/s/0Jg. At the top of that page, you will be able to construct linear combinations of the vectors $\mathbf{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} -2 \\ -4 \end{bmatrix}$.

What vector is the linear combination of v and w with weights

- a = 2 and b = 0?
- a = 1 and b = 1?
- a = 0 and b = -1?

Can the vector $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$ be expressed as a linear combination of \mathbf{v} and \mathbf{w} ?

Can the vector $\begin{bmatrix} 3 \\ 0 \end{bmatrix}$ be expressed as a linear combination of ${\bf v}$ and ${\bf w}$?

Describe the set of vectors that can be expressed as a linear combination of \mathbf{v} and \mathbf{w} .

For what vectors **b** is the equation $\begin{bmatrix} 1 & -2 \\ 2 & -4 \end{bmatrix}$ **x** = **b** consistent?

4. At the bottom of that page, there is a diagram allowing you to construct linear combinations of $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

What vector is the linear combination of \mathbf{v} and \mathbf{w} with weights

- a = 2 and b = 0?
- a = 1 and b = 1?
- a = 0 and b = -1?

Can the vector $\begin{bmatrix} -2 \\ 2 \end{bmatrix}$ be expressed as a linear combination of ${\bf v}$ and ${\bf w}$?

Can the vector $\begin{bmatrix} 3 \\ 0 \end{bmatrix}$ be expressed as a linear combination of ${\bf v}$ and ${\bf w}$?

Describe the set of vectors that can be expressed as a linear combination of \boldsymbol{v} and $\boldsymbol{w}.$

For what vectors \mathbf{b} is the equation $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \mathbf{x} = \mathbf{b}$ consistent?