Bias, variance and regularization

Jan Chorowski
Instytut Informatyki
Wydział Matematyki i Informatyki Uniwersytet
Wrocławski
2017

Generalization, the goal of learning

• Problem:

- We care about the performance on all the data
- We have only a training sample

– Over-fitting:

Too powerful classifier will perfectly interpolate the training data (even the noise in it!) and do poorly on unseen samples

– Under-fitting:

Too weak classifier cannot express the relation in the data, even on **training samples**

• Questions:

- How to estimate the **generalization** (performance on all data)? -> Honest estimates
- How to control the capacity of a model?
- Can we provably ensure good generalization performance -> Learning Theory

Honest estimates: Hold-out set

- Large data case!!!
- Split the training data into two parts:

- Train only on training, then test on testing.
- Often we do a three-way split:
- Then:
 - Train many models on training (different algos, parameters)
 - Use validation to choose best model
 - Test on testing

Cross-validation

- Small data case!!
- Hold-out set makes inefficient data use
- Idea:
 - Divide the data into k sets (~5,10)
 For i=1..k
 Train on all but the i-th set
 may further split to choose the model...
 Test on the i-th set

Finally:

take the answers on the testing sets and use them to compute the performance measures

 Extreme case: leave-one-out (jackknife) – always use all but one sample to train!

Bootstrap

- Small data case!!
- Sample with replacement m samples
 - About 37% will not be selected
- Train on the selected samples
- Test on the remaining ones
- Optionally repeat.

Bias-Variance: two sources of error!

- The bias captures how well our family of functions (hypothesis space) matches the data.
- The variance captures how the results of training vary with different samples from the training data

How to lower the bias?

- Choose more powerful/better models:
 - Understand the data and choose a matching model
 - Describe the data with more attributes

- More hidden neurons
- Better data transformation

This usually increases the Hypothesis space

How to lower variance?

- Get more data (or generate synthetic, e.g. rotate and shear pictures)
- Select only the most important inputs
- Constrain the models:
 - Simpler models
 - Regularize the models:
 Assign a probability distribution to the models and choose the most probable ones

Average the models

- Very powerful
- Also called "ensemble learning", boosting, bagging
- Requires that the models make uncorrelated errors
 - You can even INJECT randomness to decrease the correlation, e.g. Random Forests

Model regularization

• The intuitions:

- Start with many weights
- Choose only the ones that we need. How?
- Force all the weights to decrease
- Hope that the necessary ones will remain
- Subtract a little bit in each training iteration: $\Theta \leftarrow \Theta \alpha(\nabla_{\Theta}(J) + \beta\Theta)$ (weight decay)
- Note: this minimizes $J(\Theta) + \frac{\beta}{2} \sum_{j} (\Theta_{j})^{2}$
- Note: usually you don't decay the biases

Other ideas for NNet regularization

- Choose proper architecture add or remove neurons or whole layers
- Choose weight decay constants
 - Can also use 1st norm, i.e. $\sum |\Theta_j|$ Hint: to gradient train approx $|x| = \sqrt{x^2 + \epsilon}$, $\epsilon \approx 10^{-4}$
- Share weights between neurons
 - Example: convolutional networks
- Early stop training
 - Monitor validation error as training progresses. Stop when it starts to increase
- Use dropout -> randomly remove some neurons
- Use weight noise
- Use gradient noise

Early stopping

- The net starts with small weights (we initialize it like that)
- Thus it is somewhat linear (all nonlinearities are in the linear range)
- As training progresses the net specializes
- At some point, it over-specializes
- Look for that moment, by monitoring a validation error!

Err rate

Dropout

- For each example, select with probability p which neurons will not be used (dropped out).
- Multiply the outputs of other neurons by 1/p to compensate
- Enjoy!
- Interpretation:

Prevents co-adaptation of neurons, as it is harder for neurons to cooperate is any

can be dropped-out

Trains infinitely
many networks,
each sharing selected
neurons with the
other ones

(a) Standard Neural Net

(b) After applying dropout.

Sharing neurons - convolutions

Note: material from http://cs231n.github.io/convolutional-networks/

In a conv net we use a different connection pattern between layers:

- Typically we use an all-to-all scheme
- Ina conv-net we use local connectivity!

Probabilistic interpretation of Weight Decay

The gradient step:

$$\Theta \coloneqq \Theta - \alpha(\nabla_{\Theta}(J) - \beta\Theta)$$

Corresponds to minimizing:

$$J(\Theta) + \frac{\beta}{2} \sum_{j}^{\infty} (\Theta_{j})^{2}$$

Now try to find a probabilistic interpretation!

Bayesian approach

- 1. Make some models more probable than others
- 2. Set a **prior** probability distribution over Θ
- 3. For example:
 - weights are normally distributed $p(\Theta_i) \sim \mathcal{N}(0, \sigma_\Theta)$
- 4. Previously we have assumed: $P(Y|X;\Theta)$ i.e. y depends on x, with a fixed, but unknown Θ
- 5. Now we will treat Θ as a random variable too $P(Y|X,\Theta)$ i.e. y depends on x and Θ which is randomly sampled too

Bayes theorem

$$p(A|B) = \frac{p(B|A)p(A)}{p(B)}$$

Interpretation: how our estimate of A changes after seeing B.

Why?

$$p(A,B) = p(A|B)p(B) = p(B|A)p(A)$$

Then divide by p(B)

Bayesian approach to ML

 What is the model probability after seeing the examples in set S?

$$p(\Theta|S) = \frac{p(S|\Theta)p(\Theta)}{p(S)}$$

How to make predictions? Integrate over all models:

$$p(y|x,S) = \int_{\Theta} p(y|x,\Theta)p(\Theta|S)d\Theta$$

Then

$$E[y|x,S] = \int_{y} yp(y|x,S)dy$$

But computing p(y|x,S) is often intractable :(

Maximum-a-posteriori

- Instead of predicting integrating over all Θ
- Use the maximally probable Θ :

$$\Theta_{MAP} = \arg\max_{\Theta} p(\Theta|S)$$

$$= \arg\max_{\Theta} \left(\prod_{i=1}^{m} p(y^{(i)}|x^{(i)}, \Theta) \right) p(\Theta)$$

It's like Max. Likelihood with the extra term.

Gaussian model MAP

$$\arg \max_{\Theta} \prod_{i=1}^{m} p(y^{(i)}|x^{(i)}, \Theta)p(\Theta) =$$

$$\arg \max_{\Theta} \sum_{i=1}^{m} \log p(y^{(i)}|x^{(i)}, \Theta) + \log(p(\Theta))$$

Now if Θ_i are Gaussian with zero-mean:

$$p(\Theta_{j}) = \frac{1}{\sigma_{\Theta}\sqrt{2\pi}}e^{-\frac{\Theta_{j}^{2}}{2\sigma_{\Theta}^{2}}}$$

Then we recover the weight decay term:

$$-\log p(\Theta_j) \propto \Theta_j^2$$

Special case of Gaussian errors

Assume Gaussian noise on the outputs: $p(y|x,\Theta) = \mathcal{N}(f(x,\Theta), \sigma_y)$. Then:

$$-\log p(\Theta|S) = -\log p(S|\Theta) - \log p(\Theta) + \log p(S)$$

$$J^{*}(\Theta) = \frac{1}{2\sigma_{y}^{2}} \sum (y^{(i)} - f(x^{(i)}, \Theta))^{2} + \frac{1}{2\sigma_{\Theta}^{2}} \sum_{i} \Theta_{j}^{2}$$

The weight decay constant is exactly $\sigma_{\nu}^2/\sigma_{\Theta}^2$:

$$J(\Theta) = \sum (y^{(i)} - f(x^{(i)}, \Theta))^2 + \frac{\sigma_y^2}{\sigma_{\Theta}^2} \sum_i \Theta_i^2$$

Quick & dirty weight decay constant estimation method

Hinton describes the following method due to MacKay (http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec9.pdf):

- 1. Start with an initial guess for weight decay constant
- 2. Train the net for a while
- 3. Estimate $\sigma_{
 m v}$ looking at the distribution of residuals
- 4. Estimate σ_{Θ} looking at the distribution of weights
- 5. Set the weight decay constant to $\sigma_y^2/\sigma_\Theta^2$
- 6. Go to step 2.

Weight decay interpretation

- Weight decay corresponds to adding the weights' sum of squares to the optimization function.
- It can be interpreted as MAP criterion with a prior assumption of a Gaussian weight distribution!
- Other penalties:
 - Sum of absolute values (norm 1) (Lasso penalty),
 makes weights sparse (many are exactly 0)
 - Mixture of norm 1 and norm 2 (elastic net penalty)

L2 vs L1 weight regularization intuitions

We can apply two kinds of penalty terms to weights:

- L2 (sum of squares) makes all weights small
- L1 (sum of absolute values) makes weights sparse, i.e. some weights exactly zero, and other larger