Opracowanie danych pomiarowych

Tymoteusz Chmielecki Mateusz Bałuch

02.03.2020

1 Cel ćwiczenia

Celem ćwiczenia było zapoznanie sie z metodami opracowywania i wykorzystywania wyników pomiarowych, w tym celu użyte zostało wahadło proste.

2 Wstep teoretyczny

2.1 Niepewność pomiarowa

Niepewność pomiaru to parametr zwiazany z wynikiem pomiaru, charakteryzujacy rozrzut wyników, które można w uzasadniony sposób przypisać wartości mierzonej. Charakteryzuje ona rozrzut wartości (szerokość przedziału), wewnatrz którego można z zadowalajacym prawdopodobieństwem usytuować wartość wielkości mierzonej. Z definicji niepewności pomiarowej wynika, że nie może być ona wyznaczona doskonale dokładnie.

2.2 Wahadło matematyczne

Wahadłem matematycznym jest punktowa masa zawieszona na nieważkiej nici. Na potrzeby ćwiczenia użyliśmy kuli zawieszonej na cienkiej nici. Wychylamy wahadło z położenia równowagi i wprowadzamy je w ruch drgajacy prosty. Dana zależność opisuje okres jego drgań:

$$T = 2\pi \sqrt{\frac{l}{g}} \tag{1}$$

Po przekształceniu otrzymujemy wzór na przyśpieszenie ziemskie jako funkcji okresu i długości nici:

$$g = \frac{4\pi^2 l}{T^2} \tag{2}$$

3 Układ pomiarowy

Do przeprowadzenia pomiarów użyliśmy wahadła matematycznego złożonego z obciażnika zawieszonego na cienkiej nici przyczepionej do statywu. Jako przyrzadow pomiarowych użyliśmy stopera oraz przymiaru milimetrowego.

4 Wykonanie ćwiczenia

Na ćwiczenie złożyły sie 2 cześci.

4.1 Wyznaczenie g na podstawie serii pomiarów wahań

4.2 Badanie zależności T od l

5 Wyniki

Table 1: Pomiary okresu drgań przy ustalonym l=0.404m

Pomiar	Liczba okresów k	Czas t dla k okresów $[s]$	Okres $T_i = {}^t/{}_k[s]$
1	20	25.00	1.25
2	20	25.16	1.258
3	20	25.22	1.261
4	20	25.28	1.264
5	20	25.31	1.2655
6	20	25.37	1.2685

Table 2: Pomiar zależności okresu drgań od długości wahadła

Pomiar	L[m]	k	t[s]	$T_i[s]$	$g_i[\frac{m}{s^2}]$
1	51.5	20	28.56	1.428	9.97
2	44.2	20	26.56	1.328	9.89
3	36.5	20	24.16	1.208	9.87
4	29.3	20	21.47	1.0735	10.04
5	20.8	20	18.12	0.906	10.00
6	12.5	20	13.97	0.6985	10.11

6 Opracowanie wyników

Do obliczeń przyjmujemy, że refleks człowieka wynosi około 0.3 [s]. Wynika z tego, że dokładność pomiaru okresu przy uwzglednieniu dokładności stopera wynosi:

$$u(T) = \sqrt{(0.3s)^2 + (0.01s)^2} \approx 0.3s$$

Wyznaczamy również niepewność pomiaru długości wahadła. Zmierzona została ona przymiarem milimetrowym otrzymujac wartość l=0.404m. Przy niepewności skali u(l)=0.001m oraz trudności przyłożenia miarki do środka kuli, końcowa niepewność długości oszacowaliśmy na

$$u(l) = 0.002m$$

.

6.1 Wyznaczenie g na podstawie serii pomiarów wahań

Zakładamy, że wyniki nie zawieraja błedów grubych z uwagi na różnice miedzy najwieksza i najmniejsza wartościa obliczonego przez nas T_i . Wartościa okresu, która przyjmujemy jest średnia arytmetyczna z uzyskanych pomiarów:

$$T_{sr} = \frac{1}{n} \sum_{i=1}^{n} T_i \tag{3}$$

Dla uzyskanych przez nas danych eksperymentalnych $T_{sr}=1.261$ Przyśpieszenie ziemskie g wyznaczone ze wzoru (2) wynosi:

$$g = 10.02757 \frac{m}{s^2} \approx 10.03 \frac{m}{s^2}$$

Wynaczyliśmy również niepewność (typu A) pomiaru okresu ze wzoru:

$$u(T_{sr}) = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (T_i - T_{sr})}$$
 (4)

Po podstawieniu danych eksperymentalnych otrzymaliśmy $u(T_{sr} \approx 0s \text{ Nastep-}$ nie wyznaczyliśmy niepewność złożona ze wzoru:

$$u_c(g) = \sqrt{\left(\frac{\partial g}{\partial T}\right)^2 \cdot u(T)^2 + \left(\frac{\partial g}{\partial l}\right)^2 \cdot u(l)^2}$$
 (5)

co dało nam wynik:

$$u_c(g) = \sqrt{\left(\frac{64\pi^4 l^2}{T^6}\right) \cdot u(T)^2 + \left(\frac{16\pi^4}{T^4} \cdot u(l)^2\right)^2} \approx 0.122 \frac{m}{s^2}$$

Aby porównać otrzymana wartość z tablicowa obliczymy niepewność rozszerzona ze wzoru:

$$U_c(g) = k \cdot u_c(g) = 2 \cdot 0.122 \frac{m}{s^2} = 0.244 \frac{m}{s^2} \approx 0.24 \frac{m}{s^2}$$

Czyli przyspieszenie ziemskie ma wartość:

$$g = (10.03 \pm 0.24) \ \frac{m}{s^2}$$

Wartość tablicowa ($g=9.80665~\frac{m}{s^2}$) przyśpieszenie ziemskiego mieści sie w wyznaczonym przedziałe co oznacza, że pomiary zostały poprawnie wykonane.

6.2 Badanie zależności T od l

Podnoszac do kwadratu wzór (1) otrzymujemy nastepujaca zależność:

$$T^2 = \frac{4\pi^2}{g} \cdot l$$