Giải thuật đàn kiến tự thích ứng cho bài toán điều hướng thu thập

Lê Thế Việt - 20520093, Huỳnh Hoàng Vũ - 20520864

Vietnam National University, Ho Chi Minh City - University of Information Technology

Giảng viên hướng dẫn: TS. Lương Ngọc Hoàng January, 2024

Our Publication

Vu Hoang Huynh, The Viet Le and Ngoc Hoang Luong. "Self-Adaptive Ant System with Hierarchical Clustering for the Thief Orienteering Problem". In: Proceedings of the 12th International Symposium on Information and Communication Technology. SOICT 2023. ACM, Dec. 2023.

Table of Contents

- Problem Definition
- 2 Related Works
- Previous state-of-the-art method
- Self-Adaptive Ant System
- Experiments
- 6 Conclusion

- Problem Definition
 - Example
 - ThOP benchmark
- 2 Related Works
- Previous state-of-the-art method
- Self-Adaptive Ant System
- 5 Experiments
- Conclusion

Problem description

Thief Orienteering Problem (ThOP)

ThOP¹ is a **multi-component optimization problem**, it combines the **Orienteering Problem (OP)** and **Knapsack Problem (KP)**.

Việt, Vũ (UIT) SAAS January 2024 5/

¹André G. Santos et al. "The Thief Orienteering Problem: Formulation and Heuristic Approaches". In: 2018 IEEE Congress on Evolutionary Computation (CEC), 2018, pp. 1–9

Problem description

Orienteering problem (OP)

OP is a **routing problem** in which the goal is to determine a path through a given set of points of interest that **maximizes** a **total score** while **satisfying a given time budget**.

Problem description

Orienteering problem (OP)

OP is a **routing problem** in which the goal is to determine a path through a given set of points of interest that **maximizes** a **total score** while **satisfying a given time budget**.

Knapsack problem (KP)

KP is an **optimization problem** in which the goal is to **select** a **subset of items** from a given set such that **the total value** of the selected items **is maximized**, while the **total weight** of the selected items does **not exceed a given capacity**.

Max Weight: 15kg

- Problem Definition
 - Example
 - ThOP benchmark
- 2 Related Works
- Previous state-of-the-art method
- Self-Adaptive Ant System
- 5 Experiment:
- Conclusion

Constraints

- n = 4, m = 5
- $v_{min} = 0.1, v_{max} = 1.0, W = 3, T = 75$

Constraints

- n = 4, m = 5
- $v_{min} = 0.1, v_{max} = 1.0, W = 3, T = 75$

Solution

- \bullet $\pi = \langle 1 \rangle$
- $p = \langle 0, 0, 0, 0, 0 \rangle$

Properties

- p = 0
- w = 0
- $v = v_{max} = 1.0$
- t = 0

Constraints

- n = 4, m = 5
- $v_{min} = 0.1, v_{max} = 1.0, W = 3, T = 75$

Solution

- $\pi = \langle 1, 3 \rangle$
- $p = \langle 0, 0, 0, 0, 0 \rangle$

Properties

- p = 0
- w = 0
- $v = v_{max} = 1.0$
- $t = d_{1,3}/v = 6/1.0 = 6$

Constrains

- n = 4, m = 5
- $v_{min} = 0.1, v_{max} = 1.0, W = 3, T = 75$

Solution

- $\bullet \ \pi = \langle 1, 3, 4 \rangle$
- $p = \langle 0, 0, 1, 0, 0 \rangle$

Properties

- p = 100
- $w = 0 + w_3 = 3$
- $v = v_{max} w(v_{max} v_{min})/W = 0.1$
- \bullet $t = t + d_{3.4}/v = 6 + 5/0.1 = 56$

- Problem Definition
 - Example
 - ThOP benchmark
- Related Works
- Previous state-of-the-art method
- 4 Self-Adaptive Ant System
- Experiments
- 6 Conclusion

ThOP benchmark

ThOP Benchmark Overview

The ThOP benchmark is a collection of 432 instances. Each instance has unique characteristics, including:

- Number of cities: 51, 107, 280, or 1000.
- Number of items per city: 01, 03, 05, or 10.
- Knapsack types: uncorrelated (unc), uncorrelated with similar weights (usw), or bounded and strongly correlated (bsc).
- Knapsack size: 01, 05, or 10 times the size of the smallest knapsack.
- Maximum travel time: 50%, 75%, or 100%.

- Problem Definition
- Related Works
- Previous state-of-the-art method
- Self-Adaptive Ant System
- Experiments
- Conclusion

Related Works

Prior works have proposed various algorithms for ThOP

- Iterated local search algorithm (ILS)¹
- Biased random-key genetic algorithm (BRKGA)¹
- Genetic Algorithm (GA)²
- Ant Colony Optimization algorithm (ACO)³
- Max-Min Ant System algorithm (ACO++)⁴

Việt, Vũ (UIT) SAAS January 2024 12 / 47

²Leonardo M. Faêda et al. "A Genetic Algorithm for the Thief Orienteering Problem". In: 2020 IEEE Congress on Evolutionary Computation (CEC). 2020, pp. 1–8

³Jonatas B.C. Chagas et al. "Ants can orienteer a thief in their robbery". In: *Operations Research Letters* 48.6 (2020), pp. 708–714. ISSN: 0167-6377

⁴Jonatas B. C. Chagas et al. "Efficiently solving the thief orienteering problem with a max–min ant colony optimization approach". In: *Optimization Letters* 16.8 (Nov. 2021), pp. 2313–2331

- 1 Problem Definition
- 2 Related Works
- Previous state-of-the-art method
 - Max-min ant colony optimization for ThOP
 - ACO++'s Randomized Packing Heuristic
 - Investigating ACO++ Sensitivity to Parameters
- 4 Self-Adaptive Ant System
- 5 Experiments
- 6 Conclusion

- 1 Problem Definition
- 2 Related Works
- Previous state-of-the-art method
 - Max-min ant colony optimization for ThOP
 - ACO++'s Randomized Packing Heuristic
 - Investigating ACO++ Sensitivity to Parameters
- Self-Adaptive Ant System
- 5 Experiments
- 6 Conclusion

Max-min ant colony optimization for ThOP

ACO++ overview

- ACO++, or Max-min Ant Colony Optimization for ThOP, emerged as the state-of-the-art algorithm upon its introduction by its authors.
- ACO++ algorithm is a combination of a heuristic approach based on MAX-MIN Ant Colony Optimization with a randomized packing heuristic and local searches.
- ACO++ outperformed all other previous algorithms (ACO, BRKGA, ILS, GA) by more than 96% of the total of test cases.

- 1 Problem Definition
- 2 Related Works
- Previous state-of-the-art method
 - Max-min ant colony optimization for ThOP
 - ACO++'s Randomized Packing Heuristic
 - Investigating ACO++ Sensitivity to Parameters
- 4 Self-Adaptive Ant System
- 5 Experiments
- 6 Conclusion

ACO++'s Randomized Packing Heuristic

Randomized Packing Heuristic

- Consider the next item having the highest score.
- ② If picking the item does not violate any constraints, add it to the packing plan.
- **3** While items are not all considered, go to step 1.

ACO++'s Randomized Packing Heuristic

Randomized Packing Heuristic

- Consider the next item having the highest score.
- 2 If picking the item does not violate any constraints, add it to the packing plan.
- **3** While items are not all considered, go to step 1.

Item score s_i is determined using the formula

$$s_i = rac{p_i^{ heta}}{w_i^{\delta} * d_i^{\gamma}}$$

ACO++'s Randomized Packing Heuristic

Randomized Packing Heuristic

- Consider the next item having the highest score.
- ② If picking the item does not violate any constraints, add it to the packing plan.
- **3** While items are not all considered, go to step 1.

Item score s_i is determined using the formula

$$s_i = rac{p_i^{ heta}}{w_i^{\delta} * d_i^{\gamma}}$$

Parameters

- p_i : Profit of item i.
- w_i : Weight of item i.
- d_i : Distance from item i's city to the ending city along the route.
- θ , δ , γ : Randomized values within the range [0,1].

- 1 Problem Definition
- 2 Related Works
- Previous state-of-the-art method
 - Max-min ant colony optimization for ThOP
 - ACO++'s Randomized Packing Heuristic
 - Investigating ACO++ Sensitivity to Parameters
- Self-Adaptive Ant System
- 5 Experiments
- 6 Conclusion

Investigating ACO++ Sensitivity to Parameters

The extensive tuning process

- The ACO++ requires an extensive tuning process to achieve its out-performance results.
- The results were obtained using different sets of parameter values that have been extensively fine-tuned for each specific instance group.

Experiment on ACO++ parameter sensitivity

Our experiments were carried out on two instance groups from the ThOP benchmark:

- a280_01_unc: 280 cities, 1 item per city, profits uncorrelated with weights.
- dsj1000_01_unc: 1000 cities, 1 item per city, profits uncorrelated with weights.

Việt, Vũ (UIT) SAAS January 2024 19 / 47

Investigating ACO++ Sensitivity to Parameters

Experiment 1

Used fine-tuned parameter sets for each instance group.

Experiment 2

Swapped parameter sets between instance groups.

Experiment 3

Increased α , β , and ρ by 3% and packing tries by 1

Experiment 4

Used average parameter values from 48 configurations.

Hình: Mean errors of results of 4 ACO++ experiments with different parameter sets on 18 instances belonging to 2 ThOP instance groups.

- 1 Problem Definition
- 2 Related Works
- Previous state-of-the-art method
- 4 Self-Adaptive Ant System
 - Self-adaptive mechanism with CMA-ES
 - Utilizing the profit diversity information for adaptation
 - Ant traversal on cluster trees
 - Lazy evaporation
- Experiments
- 6 Conclusion

The overall algorithm

Overview

- Our proposed method SAAS, stands for Self-Adaptive Ant System, is an extension of ACO++.
- It can adapt its parameters based on the ThOP instance and the search process.
- It also has a lower time complexity in the route-finding and pheromone evaporation phases.

The overall algorithm

- 1 Problem Definition
- 2 Related Works
- Previous state-of-the-art method
- Self-Adaptive Ant System
 - Self-adaptive mechanism with CMA-ES
 - Utilizing the profit diversity information for adaptation
 - Ant traversal on cluster trees
 - Lazy evaporation
- Experiments
- 6 Conclusion

CMA-ES

Introduction

CMA-ES⁵stands for **Covariance Matrix Adaptation Evolution Strategy**, which is a **stochastic**, **derivative-free** method for numerical optimization of **non-linear** or **non-convex continuous** optimization problems.

Hình: Simplified CMA-ES.

⁵Nikolaus Hansen. "The CMA Evolution Strategy: A Comparing Review". In: *Towards a New Evolutionary Computation: Advances in the Estimation of Distribution Algorithms*. Ed. by Jose A. Lozano et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 75–102. ISBN: 978-3-540-32494-2

Self-adaptive mechanism with CMA-ES

- 1 Problem Definition
- 2 Related Works
- Previous state-of-the-art method
- 4 Self-Adaptive Ant System
 - Self-adaptive mechanism with CMA-ES
 - Utilizing the profit diversity information for adaptation
 - Ant traversal on cluster trees
 - Lazy evaporation
- 5 Experiments
- 6 Conclusion

Utilizing the profit diversity information for adaptation

Utilizing the profit diversity information for adaptation

Key ideas

Inspired by AACO-NC⁶, we use profit diversity information to dynamically change both the number of ants for each ES individual and the pheromone evaporation rate.

Profit diversity information

$$p_i = \frac{\# \text{occurrences}(P_i)}{n_{\text{ants}}} \tag{1}$$

 $S = \{P \mid P \text{ is a unique profit value found by the current swarm}\},$

$$H = -\sum_{i=1}^{|S|} p_i \cdot \log_2 p_i \tag{2}$$

Việt, Vũ (UIT) SAAS January 2024 29 / 47

⁶Petr Stodola et al. "Adaptive Ant Colony Optimization with node clustering applied to the Travelling Salesman Problem". In: *Swarm and Evolutionary Computation* 70 (2022), p. 101056. ISSN: 2210-6502

Utilizing the profit diversity information for adaptation

Adapting the pheromone evaporation rate

• The evaporation rate increases for high profit diversity and decreases for low diversity.

$$\rho = \rho_{\min} + (\rho_{\max} - \rho_{\min}) \cdot \frac{H - H_{\min}}{H_{\max} - H_{\min}}.$$
 (3)

Adapting the number of ants for each ES individual

• Unlike the evaporation rate, the value of n_{indv} increases for **low** profit diversity to encourage exploration and **decreases** for **high** diversity to facilitate exploitation.

$$n_{\text{indv}} = n_{\text{indv}_{\text{max}}} - (n_{\text{indv}_{\text{max}}} - n_{\text{indv}_{\text{min}}}) \cdot \frac{H - H_{\text{min}}}{H_{\text{max}} - H_{\text{min}}}.$$
 (4)

Việt, Vũ (UIT) SAAS January 2024 30 / 47

Bång: List of Parameters controlled by Parameter Control Mechanisms

Parameter	Parameter control mechanism	Range
α	Self-adaptive	[0, 1]
β	Self-adaptive	[0, 1]
$ ho_{min}$, $ ho_{max}$	Self-adaptive	[0, 1]
heta	Self-adaptive	[0, 1]
δ	Self-adaptive	[0, 1]
γ	Self-adaptive	[0, 1]
n_{indv}	Adaptive	$[n_{\text{indv}_{\text{max}}}, n_{\text{indv}_{\text{min}}}]$
ho	Adaptive	$[ho_{min}, ho_{max}]$

- 1 Problem Definition
- 2 Related Works
- Previous state-of-the-art method
- 4 Self-Adaptive Ant System
 - Self-adaptive mechanism with CMA-ES
 - Utilizing the profit diversity information for adaptation
 - Ant traversal on cluster trees
 - Lazy evaporation
- 5 Experiments
- 6 Conclusion

Ant traversal on cluster trees

Ant traversal on cluster trees

Key ideas

- We use hierarchical clustering to build the tree architecture.
- Each city has its own cluster tree that represents the edges going to *n* cities.
- Ants will traverse cluster trees instead of moving directly from one city to another.
- This way, we can reduce the time complexity of choosing the next city to $\Theta(\log n)$.

Hình: Cluster tree example.

- 1 Problem Definition
- 2 Related Works
- Previous state-of-the-art method
- Self-Adaptive Ant System
 - Self-adaptive mechanism with CMA-ES
 - Utilizing the profit diversity information for adaptation
 - Ant traversal on cluster trees
 - Lazy evaporation
- 5 Experiments
- 6 Conclusion

Lazy evaporation

Lazy evaporation

Key ideas

- The key idea of lazy evaporation is to keep track of historical and desired states.
- The desired state consists of the number of times that pheromones need evaporating.
- Each edge has its historical state including the number of times that the pheromone of the edge has been evaporated.
- By comparing historical states and the desired state, we can determine how to calculate the desired pheromones of edges when needed.

The overall algorithm

- Problem Definition
- 2 Related Works
- Previous state-of-the-art method
- 4 Self-Adaptive Ant System
- **5** Experiments
- 6 Conclusion

Experiments

Hardware

Experiments were run on the same machine with Intel(R) Core(TM) i7-8750H @ 2.20GHz for a fair comparison.

Hyperparameter tuning

- BRKGA, ACO, and ACO++ used the same parameters fine-tuned in the ACO++ paper.
- 240,000 experiments were performed for tuning each algorithm. ILS had no parameters to fine-tune.
- evosax⁷ framework was used to tune SAAS hyperparameters.
- 45,000 experiments were performed to tune SAAS for all benchmark instances.

Việt, Vũ (UIT) SAAS January 2024 40 / 47

⁷Robert Tjarko Lange. *evosax: JAX-based Evolution Strategies*. 2022. arXiv: 2212.04180 [cs.NE]

Approximation ratio of the solution approaches

Approximation ratio of the solution approaches

Comparing performance between algorithms

Bảng: Percentage of the number of instances in which algorithm i found better or equal quality solutions than algorithm j

$i\downarrow j \rightarrow$	ILS	BRKGA	ACO	ACO++	SAAS
ILS	-	2.55%	4.40%	2.55%	2.31%
BRKGA	100.00%	-	16.20%	8.80%	7.18%
ACO	97.22%	87.27%	-	5.79%	4.86%
ACO++	99.54%	95.83%	97.69%	_	41.90%
SAAS	99.77%	97.92%	98.61%	78.24%	-

Error rate of SAAS solutions

Hình: Mean errors overall benchmark instances.

- Problem Definition
- 2 Related Works
- Previous state-of-the-art method
- 4 Self-Adaptive Ant System
- **5** Experiments
- **6** Conclusion

Conclusion

Conclusion

- Parameter control mechanisms are incorporated to improve adaptability and flexibility.
- Lazy evaporation technique is used to reduce the time complexity of the evaporation phase.
- Hierarchical clustering is used to improve the time complexity of finding routes.
- SAAS is more efficient than ACO++ and requires only one hyperparameter set to run all 432 benchmark instances.
- The SAAS algorithm showcases remarkable performance when it surpasses all other algorithms for ThOP.

References

- Santos, André G. et al. "The Thief Orienteering Problem: Formulation and Heuristic Approaches". In: 2018 IEEE Congress on Evolutionary Computation (CEC). 2018, pp. 1–9.
- Faêda, Leonardo M. et al. "A Genetic Algorithm for the Thief Orienteering Problem". In: 2020 IEEE Congress on Evolutionary Computation (CEC). 2020, pp. 1–8.
- Chagas, Jonatas B.C. et al. "Ants can orienteer a thief in their robbery". In: *Operations Research Letters* 48.6 (2020), pp. 708–714. ISSN: 0167-6377.
- ."Efficiently solving the thief orienteering problem with a max–min ant colony optimization approach". In: *Optimization Letters* 16.8 (Nov. 2021), pp. 2313–2331.
- Hansen, Nikolaus. "The CMA Evolution Strategy: A Comparing Review". In: Towards a New Evolutionary Computation: Advances in the Estimation of Distribution Algorithms. Ed. by Jose A. Lozano et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 75–102. ISBN: 978-3-540-32494-2.
- Stodola, Petr et al. "Adaptive Ant Colony Optimization with node clustering applied to the Travelling Salesman Problem". In: Swarm and Evolutionary Computation 70 (2022), p. 101056. ISSN: 2210-6502.
- Lange, Robert Tjarko. evosax: JAX-based Evolution Strategies. 2022. arXiv: 2212.04180 [cs.NE].