# Multiple Linear Regression

## **Assumptions & Special Predictors**

Dr. Maria Tackett

09.23.19



## **Click for PDF of slides**



#### **Announcements**

- Lab 04 due tomorrow at 11:59p
- HW 02 due Wednesday, 9/25 at 11:59p
- Team Feedback #1 due Wednesday, 9/25 at 11:59p
  - Please provide honest and constructive feedback. This team feedback will be graded for completion.



## Today's agenda

- Math details of multiple linear regression
- Assumptions for multiple linear regression
- Special predictors



## R packages

```
library(tidyverse)
library(knitr)
library(broom)
library(Sleuth3) # case 1202 dataset
library(cowplot) # use plot_grid function
```



#### Starting wages data

#### **Explanatory**

- Educ: years of Education
- **Exper:** months of previous work Experience (before hire at bank)
- Female: 1 if female, 0 if male
- **Senior:** months worked at bank since hire
- **Age:** Age in months

#### Response

■ **Bsal:** annual salary at time of hire



#### Starting wages

```
glimpse(wages)
```



## Regression model

| term        | estimate | std.error | statistic | p.value | conf.low  | conf.high |
|-------------|----------|-----------|-----------|---------|-----------|-----------|
| (Intercept) | 6277.893 | 652.271   | 9.625     | 0.000   | 4981.434  | 7574.353  |
| Senior      | -22.582  | 5.296     | -4.264    | 0.000   | -33.108   | -12.056   |
| Age         | 0.631    | 0.721     | 0.876     | 0.384   | -0.801    | 2.063     |
| Educ        | 92.306   | 24.864    | 3.713     | 0.000   | 42.887    | 141.725   |
| Exper       | 0.501    | 1.055     | 0.474     | 0.636   | -1.597    | 2.598     |
| Female1     | -767.913 | 128.970   | -5.954    | 0.000   | -1024.255 | -511.571  |



## **Math Details**



## **Regression Model**

■ The multiple linear regression model assumes

$$y|x_1, x_2, \dots, x_p \sim N(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p, \sigma^2)$$

■ For a given observation  $(x_{i1}, x_{i2}, \dots, x_{ip}, y_i)$ , we can rewrite the previous statement as

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} + \epsilon_i \qquad \epsilon_i \sim N(0, \sigma^2)$$



# Estimating $\sigma^2$

■ For a given observation  $(x_{i1}, x_{i2}, ..., x_{ip}, y_i)$  the residual is

$$e_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2} + \dots + \hat{\beta}_p x_{ip})$$

■ The estimated value of the regression variance ,  $\sigma^2$  , is

$$\hat{\sigma}^2 = \frac{RSS}{n - p - 1} = \frac{\sum_{i=1}^{n} e_i^2}{n - p - 1}$$



# **Estimating Coefficients**

 One way to estimate the coefficients is by taking partial derivatives of the formula

$$\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} [y_i - (\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} \cdots + \beta_p x_{ip})]^2$$

- This produces messy formulas, so instead we can use matrix notation for multiple linear regression and estimate the coefficients using rules from linear algebra.
  - For more details, see Section 1.2 of the textbook and the supplemental notes Matrix Notation for Multiple Linear Regression
  - Note: You are <u>not</u> required to know matrix notation for MLR in this class



# **Assumptions**



## **Assumptions**

Inference on the regression coefficients and predictions are reliable only when the regression assumptions are reasonably satisfied:

- 1. **Linearity:** Response variable has a linear relationship with the predictor variables in the model
- 2. **Constant Variance:** The regression variance is the same for all set of predictor variables  $(x_1, \ldots, x_p)$
- 3. **Normality:** For a given set of predictors  $(x_1, \ldots, x_p)$ , the response, y, follows a Normal distribution around its mean
- 4. Independence: All observations are independent



### **Scatterplots**

- Look at a scatterplot of the response variable vs. each of the predictor variables in the exploratory data analysis before calculating the regression model
- This is a good way to check for obvious departures from linearity
  - Could be an indication that a higher order term or transformation is needed



#### **Residual Plots**

- Plot the residuals vs. the predicted values
  - Can expose issues such at outliers or non-constant variance
  - Should have no systematic pattern
- Plot the residuals vs. each of the predictors
  - Can expose issues between the response and a predictor variable that didn't show in the exploratory data analysis
  - Use box plots to plot residuals versus categorical predictor variables
  - Should have no systematic pattern
- Plot a histogram and QQ-plot of the residuals
  - Check normality



### **Scatterplots**





■ Only include a 4 - 5 variables in a single pairs plot; otherwise, the scatterplots are too small to be readable

#### Residuals vs. Predicted Values

```
wages <- wages %>%
  mutate(predicted = predict.lm(bsal_model), residuals = resid(bsa
ggplot(data=wages,aes(x=predicted, y=residuals)) +
  geom_point() +
  geom_hline(yintercept=0,color="red") +
  labs(title="Residuals vs. Predicted Values")
```





#### Residuals vs. Predictors





#### Residuals vs. Predictors





## Normality of Residuals







## **Special Predictors**



## Interpreting the Intercept

| term        | estimate | std.error | statistic | p.value |
|-------------|----------|-----------|-----------|---------|
| (Intercept) | 6277.893 | 652.271   | 9.625     | 0.000   |
| Senior      | -22.582  | 5.296     | -4.264    | 0.000   |
| Age         | 0.631    | 0.721     | 0.876     | 0.384   |
| Educ        | 92.306   | 24.864    | 3.713     | 0.000   |
| Exper       | 0.501    | 1.055     | 0.474     | 0.636   |
| Female1     | -767.913 | 128.970   | -5.954    | 0.000   |

- Interpret the intercept.
- Is this interpretation meaningful? Why or why not?



#### **Mean-Centered Variables**

- To have a meaningful interpretation of the intercept, use **mean-centered** predictor variables in the model (quantitative predictors only)
- A mean-centered variable is calculated by subtracting the mean from each value of the variable, i.e.

$$x_{ip} - \bar{x}_{.p}$$

Now the intercept is interpreted as the expected value of the response at the mean value of all quantitative predictors



## Salary: Mean-Centered Variables







### Salary: Mean-Centered Variables

Calculate the regression model using the mean-centered variables. How did the model change?



#### **Quadratic Terms**

- Sometimes the response variable may have a quadratic relationship with one or more predictor variables
  - You can see this in a plot of the residuals vs. a predictor variable
  - Include quadratic terms in the model to capture the relationship
- Good Practice: Also include all lower order terms even if they are not significant.
  - This helps with interpretation
- You can show quadratic relationships by plotting the predicted mean response for different values of the predictors variable
- Note: The same ideas apply for higher-order polynomial terms



Below are plots of the residuals versus each quantitative predictor variable.



Which variables (if any) appear to have a quadratic relationship with Bsal?



## Indicator (dummy) variables

- Suppose there is a categorical variable with k levels (categories)
- Make k indicator variables (also known as dummy variables)
- Use k-1 of the indicator variables in the model
  - Can't uniquely estimate all *k* variables at once if the intercept is in the model
- Level that doesn't have a variable in the model is called the baseline
- Coefficients interpreted as the change in the mean of the response over the baseline



#### Indicator variables when k=2

| term        | estimate | std.error | statistic | p.value | conf.low  | conf.high |
|-------------|----------|-----------|-----------|---------|-----------|-----------|
| (Intercept) | 5924.007 | 99.659    | 59.443    | 0.000   | 5725.925  | 6122.090  |
| Female1     | -767.913 | 128.970   | -5.954    | 0.000   | -1024.255 | -511.571  |
| SeniorCent  | -22.582  | 5.296     | -4.264    | 0.000   | -33.108   | -12.056   |
| AgeCent     | 0.631    | 0.721     | 0.876     | 0.384   | -0.801    | 2.063     |
| EducCent    | 92.306   | 24.864    | 3.713     | 0.000   | 42.887    | 141.725   |
| ExperCent   | 0.501    | 1.055     | 0.474     | 0.636   | -1.597    | 2.598     |

- What is the intercept of the model for males?
- What is the intercept of the model for females?



#### Indicator variables when k > 2

Build a regression model with Education treated as a categorical variable.

- What is the baseline for Education?
- Interpret the coefficient for EducCat16.
- What is your conclusion from the p-value of EducCat12?
- What is your conclusion from the p-value of EducCat15?



#### **Interaction Terms**

- Case: Relationship of the predictor variable with the response depends on the value of another predictor variable
  - This is an interaction effect
- Create a new interaction variable that is one predictor variable times the other in the interaction
- Good Practice: When including an interaction term, also include the associated main effects (each predictor variable on its own) even if they are not statistically significant



#### Interaction effects



Do you think there is a significant interaction effect between Female and Senior? Why or why not?



#### Before next class

- Review <u>Reading 03</u> on special predictors
- Reading 04 on transformations

