

SEQUENCE LISTING

<110> Schutte, Brian C.
Murray, Jeffrey C.
Kondo, Shinji
Dixon, Michael J.

<120> IRF6 POLYMORPHISMS ASSOCIATED WITH CLEFT LIP AND/OR PALATE

<130> P06215US01

<140> US

<141> 2004-05-06

<150> US 60/468,191

<151> 2003-05-06

<160> 4

<170> PatentIn version 3.2

<210> 1
<211> 2171
<212> DNA
<213> Homo sapiens

<220>
<221> variation
<222> (3)..(3)
<223> G to A (exon 3)

<220>
<221> variation
<222> (5)..(5)
<223> C to T (exon 3)

<220>
<221> variation
<222> (17)..(17)
<223> 17ins(C) (exon 3)

<220>
<221> 5'UTR
<222> (48)..(48)

<220>
<221> variation
<222> (49)..(49)
<223> 49del (CAGGTGGATAGTGGCC (exon 3)

<220>
<221> variation
<222> (52)..(52)
<223> G to A (exon 3)

<220>

```
<221> variation
<222> (53)..(53)
<223> T to C (exon 3)

<220>
<221> variation
<222> (69)..(69)
<223> C to A (exon 3)

<220>
<221> variation
<222> (115)..(115)
<223> C to G (exon 3)

<220>
<221> variation
<222> (178)..(178)
<223> T to G (exon 4)

<220>
<221> variation
<222> (182)..(182)
<223> C to G (exon 4)

<220>
<221> variation
<222> (197)..(197)
<223> A to C (exon 4)

<220>
<221> variation
<222> (202)..(202)
<223> C to T (exon 4)

<220>
<221> variation
<222> (208)..(208)
<223> G to C (exon 4)

<220>
<221> variation
<222> (226)..(226)
<223> C to T (exon 4)

<220>
<221> variation
<222> (244)..(244)
<223> C to A (exon 4)

<220>
<221> variation
<222> (250)..(250)
<223> C to T (exon 4)

<220>
<221> variation
<222> (251)..(251)
```

```
<223> G to A (exon 4)

<220>
<221> variation
<222> (262)..(262)
<223> A to C (exon 4)

<220>
<221> CDS
<222> (264)..(1667)

<220>
<221> variation
<222> (265)..(265)
<223> A to G (exon 4)

<220>
<221> variation
<222> (268)..(268)
<223> A to G (exon 4)

<220>
<221> variation
<222> (274)..(274)
<223> G to T (exon 4)

<220>
<221> variation
<222> (292)..(292)
<223> G to C (exon 4)

<220>
<221> variation
<222> (352)..(352)
<223> C to T (exon 4)

<220>
<221> variation
<222> (466)..(466)
<223> 466ins(C) (exon 5)

<220>
<221> variation
<222> (558)..(558)
<223> C to A (exon 6)

<220>
<221> variation
<222> (576)..(576)
<223> G to A (exon 6)

<220>
<221> variation
<222> (634)..(634)
<223> 634ins(CCAC) (exon 6)

<220>
```

```
<221> variation
<222> (657)..(657)
<223> 657del(CTCTCTCCC)ins(TA) (exon 6)

<220>
<221> variation
<222> (744)..(744)
<223> 744del(CTGCC) (exon 7)

<220>
<221> variation
<222> (749)..(749)
<223> G to A (exon 7)

<220>
<221> variation
<222> (759)..(759)
<223> T to A (exon 7)

<220>
<221> variation
<222> (795)..(795)
<223> 795del(C) (exon 7)

<220>
<221> variation
<222> (818)..(818)
<223> A to G (exon 7)

<220>
<221> variation
<222> (842)..(842)
<223> 842del(A) (exon 7)

<220>
<221> variation
<222> (870)..(870)
<223> 870del(CACTAGCAAGCTGCTGGAC)ins(A) (exon 7)

<220>
<221> variation
<222> (881)..(881)
<223> T to C (exon 7)

<220>
<221> variation
<222> (889)..(889)
<223> G to A (exon 7)

<220>
<221> variation
<222> (958)..(958)
<223> A to G (exon 7)

<220>
<221> variation
<222> (961)..(961)
```

```

<223> G to A (exon 7)

<220>
<221> variation
<222> (974)..(974)
<223> G to A (exon 7)

<220>
<221> variation
<222> (1034)..(1034)
<223> T to C (exon 7)

<220>
<221> variation
<222> (1040)..(1040)
<223> G to T (exon 7)

<220>
<221> variation
<222> (1106)..(1106)
<223> T to C (exon 8)

<220>
<221> variation
<222> (1122)..(1122)
<223> C to G (exon 8)

<220>
<221> variation
<222> (1162)..(1162)
<223> A to G (exon 8)

<220>
<221> variation
<222> (1177)..(1177)
<223> C to T (exon 8)

<220>
<221> variation
<222> (1234)..(1234)
<223> C to T (exon 9)

<220>
<221> variation
<222> (1288)..(1288)
<223> G to A (exon 9)

<220>
<221> variation
<222> (1381)..(1381)
<223> 1381ins(C) (exon 9)

<400> 1                                     60
      gagctcgccg caccctggct gggcaggtaa gggctggtgc gggacgggga gaggaacctg
      cagtcctac ttgggttagag ccaggcgccc cttggctaag acgtcgagga gcgtggtagc 120

```

gacgggtat cttcgctgcg gacttggttc ggagggacgt ccgcttctgg tggacagatt	180
gagcaaagaa tcttgagcg gtcaaggaa agacaagccg actcttcaga tccctgtgga	240
cacactgcct gctttccat atc atg gcc ctc cac ccc cgc aga gtc cgg cta Met Ala Leu His Pro Arg Arg Val Arg Leu	293
1 5 10	
aag ccc tgg ctg gtg gcc cag gtg gat agt ggc ctc tac cct ggg ctc	341
aag ccc tgg ctg gtg gcc cag gtg gat agt ggc ctc tac cct ggg ctc	341
Lys Pro Trp Leu Val Ala Gln Val Asp Ser Gly Leu Tyr Pro Gly Leu	
15 20 25	
atc tgg cta cac agg gac tct aaa cgc ttc cag att ccc tgg aaa cat	389
Ile Trp Leu His Arg Asp Ser Lys Arg Phe Gln Ile Pro Trp Lys His	
30 35 40	
gcc acc cyg cat agc cct caa caa gaa gag gaa aat acc att ttt aag	437
Ala Thr Arg His Ser Pro Gln Gln Glu Glu Asn Thr Ile Phe Lys	
45 50 55	
gcc tgg gct gta gag aca ggg aag tac cag gaa ggg gtg gat gac cct	485
Ala Trp Ala Val Glu Thr Gly Lys Tyr Gln Glu Gly Val Asp Asp Pro	
60 65 70	
gac cca gct aaa tgg aag gcc cag ctg cgc tgt gct ctc aat aag agc	533
Asp Pro Ala Lys Trp Lys Ala Gln Leu Arg Cys Ala Leu Asn Lys Ser	
75 80 85 90	
aga gaa ttc aac ctg atg tat gat ggc acc aag gag gtg ccc atg aac	581
Arg Glu Phe Asn Leu Met Tyr Asp Gly Thr Lys Glu Val Pro Met Asn	
95 100 105	
cca gtg aag ata tat caa gtg tgt gac atc cct cag ccc cag ggc tcg	629
Pro Val Lys Ile Tyr Gln Val Cys Asp Ile Pro Gln Pro Gly Ser	
110 115 120	
atc att aac cca gga tcc aca ggg tct gct ccc tgg gat gag aag gat	677
Ile Ile Asn Pro Gly Ser Thr Gly Ser Ala Pro Trp Asp Glu Lys Asp	
125 130 135	
aat gat gtg gat gaa gaa gat gag gaa gat gag ctg gat cag tcg cag	725
Asn Asp Val Asp Glu Glu Asp Glu Glu Asp Glu Leu Asp Gln Ser Gln	
140 145 150	
cac cat gtt ccc atc cag gac acc ttc ccc ttc ctg aac atc aat ggt	773
His His Val Pro Ile Gln Asp Thr Phe Pro Leu Asn Ile Asn Gly	
155 160 165 170	
tct ccc atg gcg cca gcc agt gtg ggc aat tgc agt gtg ggc aac tgc	821
Ser Pro Met Ala Pro Ala Ser Val Gly Asn Cys Ser Val Gly Asn Cys	
175 180 185	
agc ccg gag gca gtg tgg ccc aaa act gaa ccc ctg gag atg gaa gta	869
Ser Pro Glu Ala Val Trp Pro Lys Thr Glu Pro Leu Glu Met Glu Val	
190 195 200	
ccc cag gca cct ata cag ccc ttc tat agc tct cca gaa ctg tgg atc	917

Pro Gln Ala Pro Ile Gln Pro Phe Tyr Ser Ser Pro Glu Leu Trp Ile			
205	210	215	
agc tct ctc cca atg act gac ctg gac atc aag ttt cag tac cgt ggg		965	
Ser Ser Lcu Pro Met Thr Asp Leu Asp Ile Lys Phe Gln Tyr Arg Gly			
220	225	230	
aag gag tac ggg cag acc atg acc gtg agc aac cct cag ggc tgc cga		1013	
Lys Glu Tyr Gly Gln Thr Met Thr Val Ser Asn Pro Gln Gly Cys Arg			
235	240	245	250
ctc ttc tat ggg gac ctg ggt ccc atg cct gac cag gag gag ctc ttt		1061	
Leu Phe Tyr Gly Asp Leu Gly Pro Met Pro Asp Gln Glu Glu Leu Phe			
255	260	265	
ggt ccc gtc agc ctg gag cag gtc aaa ttc cca ggt cct gag cat att		1109	
Gly Pro Val Ser Leu Glu Gln Val Lys Phe Pro Gly Pro Glu His Ile			
270	275	280	
acc aat gag aag cag aag ctg ttc act agc aag ctg ctg gac gtc atg		1157	
Thr Asn Glu Lys Gln Lys Leu Phe Thr Ser Lys Leu Leu Asp Val Met			
285	290	295	
gac aga gga ctg atc ctg gag gtc agc ggt cat gcc att tat gcc atc		1205	
Asp Arg Gly Leu Ile Leu Glu Val Ser Gly His Ala Ile Tyr Ala Ile			
300	305	310	
agg ctg tgc cag tgc aag gtg tac tgg tct ggg cca tgt gcc cca tca		1253	
Arg Leu Cys Gln Cys Lys Val Tyr Trp Ser Gly Pro Cys Ala Pro Ser			
315	320	325	330
ctt gtt gct ccc aac ctg att gag aga caa aag aag gtc aag cta ttt		1301	
Leu Val Ala Pro Asn Leu Ile Glu Arg Gln Lys Val Lys Leu Phe			
335	340	345	
tgt ctg gaa aca ttc ctt agc gat ctc att gcc cac cag aaa gga cag		1349	
Cys Leu Glu Thr Phe Leu Ser Asp Leu Ile Ala His Gln Lys Gly Gln			
350	355	360	
ata gag aag cag cca ccg ttt gag atc tac tta tgc ttt ggg gaa gaa		1397	
Ile Glu Lys Gln Pro Pro Phe Glu Ile Tyr Leu Cys Phe Gly Glu Glu			
365	370	375	
tgg cca gat ggg aaa cca ttg gaa agg aaa ctc atc ttg gtt cag gtc		1445	
Trp Pro Asp Gly Lys Pro Leu Glu Arg Lys Leu Ile Leu Val Gln Val			
380	385	390	
att cca gta gtg gct cgg atg atc tac gag atg ttt tct ggt gat ttc		1493	
Ile Pro Val Val Ala Arg Met Ile Tyr Glu Met Phe Ser Gly Asp Phe			
395	400	405	410
aca cga tcc ttt gat agt ggc agt gtc cgc ctg cag atc tca acc cca		1541	
Thr Arg Ser Phe Asp Ser Gly Ser Val Arg Leu Gln Ile Ser Thr Pro			
415	420	425	
gac atc aag gat aac atc gtt gct cag ctg aag cag ctg tac cgc atc		1589	
Asp Ile Lys Asp Asn Ile Val Ala Gln Leu Lys Gln Leu Tyr Arg Ile			

430	435	440	
ctt caa acc cag gag agc tgg cag ccc atg cag ccc acc ccc agc atg Leu Gln Thr Gln Glu Ser Trp Gln Pro Met Gln Pro Thr Pro Ser Met			1637
445	450	455	
caa ctg ccc cct gcc ctg cct ccc cag taa ttgtgaatgc catcttc Gln Leu Pro Pro Ala Leu Pro Pro Gln			1687
460	465		
cttctctttt ttataatatt gtacatatgg attttttat tgtagatt taaccagctt ttaaatctct ctttctcta acagtgttag aagtttgtga ttctccaaat atgcctagat			1747
ttaaagctga tttaatttat ggaaaaatca ccctcagac ttgcctttc ttttccaaat ctcctaattgg tagtagata tagcatagta gaaggagatt tggcctggga gtttggacac			1807
caaagttcta gctgcagctt tgcttccaaat gtgacccctga acaagtcctt taacctctgg gttcagatt tattgcttat aaagtgaaga gattggagta gtgcctgaaa ttgcattccag			1867
ctttagaaacg gactcaatga ctttcttcta cttgtacaag gctaaactgc ctgaaacaga atccttctgc attgttcttg taccacattt ttcctgggt ttgttaaagt ttctcaagc			1927
			1987
			2047
			2107
			2167
			2171

acta

<210> 2
<211> 467
<212> PRT
<213> Homo sapiens

<400> 2

Met Ala Leu His Pro Arg Arg Val Arg Leu Lys Pro Trp Leu Val Ala			
1	5	10	15

Gln Val Asp Ser Gly Leu Tyr Pro Gly Leu Ile Trp Leu His Arg Asp			
20	25	30	

Ser Lys Arg Phe Gln Ile Pro Trp Lys His Ala Thr Arg His Ser Pro			
35	40	45	

Gln Gln Glu Glu Glu Asn Thr Ile Phe Lys Ala Trp Ala Val Glu Thr			
50	55	60	

Gly Lys Tyr Gln Glu Gly Val Asp Asp Pro Asp Pro Ala Lys Trp Lys			
65	70	75	80

Ala Gln Leu Arg Cys Ala Leu Asn Lys Ser Arg Glu Phe Asn Leu Met

85

90

95

Tyr Asp Gly Thr Lys Glu Val Pro Met Asn Pro Val Lys Ile Tyr Gln
100 105 110

Val Cys Asp Ile Pro Gln Pro Gly Ser Ile Ile Asn Pro Gly Ser
115 120 125

Thr Gly Ser Ala Pro Trp Asp Glu Lys Asn Asp Val Asp Glu Glu
130 135 140

Asp Glu Glu Asp Glu Leu Asp Gln Ser Gln His His Val Pro Ile Gln
145 150 155 160

Asp Thr Phe Pro Phe Leu Asn Ile Asn Gly Ser Pro Met Ala Pro Ala
165 170 175

Ser Val Gly Asn Cys Ser Val Gly Asn Cys Ser Pro Glu Ala Val Trp
180 185 190

Pro Lys Thr Glu Pro Leu Glu Met Glu Val Pro Gln Ala Pro Ile Gln
195 200 205

Pro Phe Tyr Ser Ser Pro Glu Leu Trp Ile Ser Ser Leu Pro Met Thr
210 215 220

Asp Leu Asp Ile Lys Phe Gln Tyr Arg Gly Lys Glu Tyr Gly Gln Thr
225 230 235 240

Met Thr Val Ser Asn Pro Gln Gly Cys Arg Leu Phe Tyr Gly Asp Leu
245 250 255

Gly Pro Met Pro Asp Gln Glu Glu Leu Phe Gly Pro Val Ser Leu Glu
260 265 270

Gln Val Lys Phe Pro Gly Pro Glu His Ile Thr Asn Glu Lys Gln Lys
275 280 285

Leu Phe Thr Ser Lys Leu Leu Asp Val Met Asp Arg Gly Leu Ile Leu
290 295 300

Glu Val Ser Gly His Ala Ile Tyr Ala Ile Arg Leu Cys Gln Cys Lys
305 310 315 320

Val Tyr Trp Ser Gly Pro Cys Ala Pro Ser Leu Val Ala Pro Asn Leu
325 330 335

Ile Glu Arg Gln Lys Lys Val Lys Leu Phe Cys Leu Glu Thr Phe Leu
340 345 350

Ser Asp Leu Ile Ala His Gln Lys Gly Gln Ile Glu Lys Gln Pro Pro
355 360 365

Phe Glu Ile Tyr Leu Cys Phe Gly Glu Glu Trp Pro Asp Gly Lys Pro
370 375 380

Leu Glu Arg Lys Leu Ile Leu Val Gln Val Ile Pro Val Val Ala Arg
385 390 395 400

Met Ile Tyr Glu Met Phe Ser Gly Asp Phe Thr Arg Ser Phe Asp Ser
405 410 415

Gly Ser Val Arg Leu Gln Ile Ser Thr Pro Asp Ile Lys Asp Asn Ile
420 425 430

Val Ala Gln Leu Lys Gln Leu Tyr Arg Ile Leu Gln Thr Gln Glu Ser
435 440 445

Trp Gln Pro Met Gln Pro Thr Pro Ser Met Gln Leu Pro Pro Ala Leu
450 455 460

Pro Pro Gln
465

<210> 3
<211> 467
<212> PRT
<213> Homo sapiens

<220>
<221> MISC_FEATURE
<223> 5' UTR to Met

<220>
<221> VARIANT
<222> (1)..(1)
<223> Met1lle

```
<220>
<221> VARIANT
<222> (2)..(2)
<223> Ala2Val

<220>
<221> VARIANT
<222> (6)..(6)
<223> Arg6fs

<220>
<221> VARIANT
<222> (17)..(17)
<223> Gln17fs

<220>
<221> VARIANT
<222> (18)..(18)
<223> Val18Met

<220>
<221> VARIANT
<222> (18)..(18)
<223> Val18Ala

<220>
<221> VARIANT
<222> (39)..(39)
<223> Pro39Ala

<220>
<221> VARIANT
<222> (60)..(60)
<223> Trp60Gly

<220>
<221> VARIANT
<222> (61)..(61)
<223> Ala61Gly

<220>
<221> VARIANT
<222> (66)..(66)
<223> Lys66Thr

<220>
<221> VARIANT
<222> (68)..(68)
<223> Gln68X

<220>
<221> VARIANT
<222> (70)..(70)
<223> Gly70Arg

<220>
<221> VARIANT
```

<222> (76)..(76)

<223> Pro76Ser

<220>

<221> VARIANT

<222> (82)..(82)

<223> Gln82Lys

<220>

<221> VARIANT

<222> (84)..(84)

<223> Arg84Cys

<220>

<221> VARIANT

<222> (84)..(84)

<223> Arg84His

<220>

<221> VARIANT

<222> (89)..(89)

<223> Lys89Glu

<220>

<221> VARIANT

<222> (90)..(90)

<223> Ser90Gly

<220>

<221> VARIANT

<222> (92)..(92)

<223> Glu92X

<220>

<221> VARIANT

<222> (98)..(98)

<223> Asp98His

<220>

<221> VARIANT

<222> (118)..(118)

<223> Gln118X

<220>

<221> VARIANT

<222> (156)..(156)

<223> His156fs

<220>

<221> VARIANT

<222> (186)..(186)

<223> Cys186X

<220>

<221> VARIANT

<222> (192)..(192)

<223> Trp192X

```
<220>
<221> VARIANT
<222> (212)..(212)
<223> Ser212fs

<220>
<221> VARIANT
<222> (219)..(219)
<223> Ser219fs

<220>
<221> VARIANT
<222> (248)..(248)
<223> Gly248fs

<220>
<221> VARIANT
<222> (250)..(250)
<223> Arg250Gln

<220>
<221> VARIANT
<222> (253)..(253)
<223> Tyr253X

<220>
<221> VARIANT
<222> (265)..(265)
<223> Leu265fs

<220>
<221> VARIANT
<222> (273)..(273)
<223> Gln273Arg

<220>
<221> VARIANT
<222> (274)..(274)
<223> Val274Ile

<220>
<221> VARIANT
<222> (294)..(294)
<223> Leu294Pro

<220>
<221> VARIANT
<222> (297)..(297)
<223> Val297Ile

<220>
<221> VARIANT
<222> (320)..(320)
<223> Lys320Glu

<220>
```

<221> VARIANT
<222> (321)..(321)
<223> Val321Met

<220>
<221> VARIANT
<222> (325)..(325)
<223> Gly325Glu

<220>
<221> VARIANT
<222> (345)..(345)
<223> Leu345Pro

<220>
<221> VARIANT
<222> (347)..(347)
<223> Cys347Phe

<220>
<221> VARIANT
<222> (369)..(369)
<223> Phe369Ser

<220>
<221> VARIANT
<222> (374)..(374)
<223> Cys374Trp

<220>
<221> VARIANT
<222> (388)..(388)
<223> Lys388Glu

<220>
<221> VARIANT
<222> (393)..(393)
<223> Gln393X

<220>
<221> VARIANT
<222> (412)..(412)
<223> Arg412X

<220>
<221> VARIANT
<222> (430)..(430)
<223> Asp430Asn

<220>
<221> VARIANT
<222> (461)..(461)
<223> Pro461fs

<400> 3

Met Ala Leu His Pro Arg Arg Val Arg Leu Lys Pro Trp Leu Val Ala

1 5 10 15

Gln Val Asp Ser Gly Leu Tyr Pro Gly Leu Ile Trp Leu His Arg Asp
20 25 30

Ser Lys Arg Phe Gln Ile Pro Trp Lys His Ala Thr Arg His Ser Pro
35 40 45

Gln Gln Glu Glu Glu Asn Thr Ile Phe Lys Ala Trp Ala Val Glu Thr
50 55 60

Gly Lys Tyr Gln Glu Gly Val Asp Asp Pro Asp Pro Ala Lys Trp Lys
65 70 75 80

Ala Gln Leu Arg Cys Ala Leu Asn Lys Ser Arg Glu Phe Asn Leu Met
85 90 95

Tyr Asp Gly Thr Lys Glu Val Pro Met Asn Pro Val Lys Ile Tyr Gln
100 105 110

Val Cys Asp Ile Pro Gln Pro Gln Gly Ser Ile Ile Asn Pro Gly Ser
115 120 125

Thr Gly Ser Ala Pro Trp Asp Glu Lys Asp Asn Asp Val Asp Glu Glu
130 135 140

Asp Glu Glu Asp Glu Leu Asp Gln Ser Gln His His Val Pro Ile Gln
145 150 155 160

Asp Thr Phe Pro Phe Leu Asn Ile Asn Gly Ser Pro Met Ala Pro Ala
165 170 175

Ser Val Gly Asn Cys Ser Val Gly Asn Cys Ser Pro Glu Ala Val Trp
180 185 190

Pro Lys Thr Glu Pro Leu Glu Met Glu Val Pro Gln Ala Pro Ile Gln
195 200 205

Pro Phe Tyr Ser Ser Pro Glu Leu Trp Ile Ser Ser Leu Pro Met Thr
210 215 220

Asp Leu Asp Ile Lys Phe Gln Tyr Arg Gly Lys Glu Tyr Gly Gln Thr
225 230 235 240

Met Thr Val Ser Asn Pro Gln Gly Cys Arg Leu Phe Tyr Gly Asp Leu
245 250 255

Gly Pro Met Pro Asp Gln Glu Glu Leu Phe Gly Pro Val Ser Leu Glu
260 265 270

Gln Val Lys Phe Pro Gly Pro Glu His Ile Thr Asn Glu Lys Gln Lys
275 280 285

Leu Phe Thr Ser Lys Leu Leu Asp Val Met Asp Arg Gly Leu Ile Leu
290 295 300

Glu Val Ser Gly His Ala Ile Tyr Ala Ile Arg Leu Cys Gln Cys Lys
305 310 320

Val Tyr Trp Ser Gly Pro Cys Ala Pro Ser Leu Val Ala Pro Asn Leu
325 330 335

Ile Glu Arg Gln Lys Lys Val Lys Leu Phe Cys Leu Glu Thr Phe Leu
340 345 350

Ser Asp Leu Ile Ala His Gln Lys Gly Gln Ile Glu Lys Gln Pro Pro
355 360 365

Phe Glu Ile Tyr Leu Cys Phe Gly Glu Glu Trp Pro Asp Gly Lys Pro
370 375 380

Leu Glu Arg Lys Leu Ile Leu Val Gln Val Ile Pro Val Val Ala Arg
385 390 395 400

Met Ile Tyr Glu Met Phe Ser Gly Asp Phe Thr Arg Ser Phe Asp Ser
405 410 415

Gly Ser Val Arg Leu Gln Ile Ser Thr Pro Asp Ile Lys Asp Asn Ile
420 425 430

Val Ala Gln Leu Lys Gln Leu Tyr Arg Ile Leu Gln Thr Gln Glu Ser
435 440 445

Trp Gln Pro Met Gln Pro Thr Pro Ser Met Gln Leu Pro Pro Ala Leu
450 455 460

Pro Pro Gln
465

<210> 4
<211> 19
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> 870del(CACTAGCAAGCTGCTGGAC) lns
(A)

<400> 4
cactagcaag ctgctggac

19