Amendments to the Claims:

This listing of claims will replace all prior versions and listing of claims in the application.

Listing of the Claims:

Claim 1 (currently amended): A compound of formula (I):

wherein

 M^1 is -CH₂- or -NR²⁴-;

 M^{2} is $-CR^{22}R^{23}$ or $-NR^{24}$; provided that if M^{4} is $-NR^{24}$, M^{2} is $-CR^{22}R^{23}$;

one of \mathbf{R}^1 and \mathbf{R}^2 is selected from hydrogen, or C_{1-6} alkyl or C_{2-6} alkenyl and the other is selected from C_{1-6} alkyl or C_{2-6} alkenyl;

 ${f R}^3$ is selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, $C_{1\text{-}6}$ alkyl, $C_{2\text{-}6}$ alkenyl, $C_{2\text{-}6}$ alkynyl, $C_{1\text{-}6}$ alkoxy, $C_{1\text{-}6}$ alkanoyl, $C_{1\text{-}6}$ alkanoyloxy, $N\text{-}(C_{1\text{-}6}$ alkyl)amino, $N\text{-}(C_{1\text{-}6}$ alkyl)2amino, $C_{1\text{-}6}$ alkanoylamino, $N\text{-}(C_{1\text{-}6}$ alkyl)carbamoyl, $N\text{-}(C_{1\text{-}6}$ alkyl)2carbamoyl, $C_{1\text{-}6}$ alkylS(O)a wherein a is 0 to 2, $C_{1\text{-}6}$ alkoxycarbonyl, $N\text{-}(C_{1\text{-}6}$ alkyl)sulphamoyl and $N\text{-}(C_{1\text{-}6}$ alkyl)2sulphamoyl;

v is 0-5;

one of \mathbb{R}^5 and \mathbb{R}^6 -is a group of formula (IA):

$$\begin{array}{c|c}
R^{12} & R^{11} & R^{9} & R^{8} \\
R^{13} & N & N & N \\
R^{10} & O & N
\end{array}$$
(IA)

R⁴ and R⁷ are hydrogen;

Z is $-O - N(R^a) - S(O)_b$ or $-CH(R^a)$; wherein R^a is hydrogen or C_{1-6} alkyl and b is 0-2;

R⁸ is hydrogen, C₁₋₄alkyl, carbocyclyl or heterocyclyl; wherein R⁸ may be optionally substituted on carbon by one or more substituents selected from R²⁶; and wherein if said heterocyclyl contains an NH group, that nitrogen may be optionally substituted by a group selected from R²⁷:

 \mathbb{R}^9 is hydrogen or $\mathbb{C}_{\downarrow 4}$ alkyl;

- R¹⁰ is and R¹¹ are independently selected from cyclohexyl and phenyl hydrogen, C₁₋₄alkyl, carbocyclyl or heterocyclyl; or R¹⁰ and R¹¹ together form C₂₋₆alkylene; wherein R¹⁰ and R¹¹ or R¹⁰ and R¹¹ together may be independently optionally substituted on carbon by one or more substituents selected from R²⁸; and wherein if said heterocyclyl contains an NH-moiety, that nitrogen may be optionally substituted by one or more R²⁹;
- \mathbf{R}^{40} -and \mathbf{R}^{11} is are independently selected from hydrogen, C_{1-4} alkyl, carbocyclyl or heterocyclyl; or \mathbf{R}^{40} -and \mathbf{R}^{44} -together form C_{2-6} alkylene; wherein \mathbf{R}^{40} -and \mathbf{R}^{44} -or \mathbf{R}^{40} -and \mathbf{R}^{44} -together may be independently optionally substituted on carbon by one or more substituents selected from \mathbf{R}^{28} ; and wherein if said heterocyclyl contains an -NH- moiety, that nitrogen may be optionally substituted by one or more \mathbf{R}^{29} ;

- R¹² is hydrogen, C₁₋₄alkyl, carbocyclyl or heterocyclyl; wherein R¹² may be optionally substituted on carbon by one or more substituents selected from R³⁰; and wherein if said heterocyclyl contains an -NH- moiety, that nitrogen may be optionally substituted by one or more R³¹;
- R¹³ is hydrogen, halo, nitro, cyano, hydroxy, amino, carbamoyl, mercapto, sulphamoyl, hydroxyaminocarbonyl, C₁₋₁₀alkyl, C₂₋₁₀alkenyl, C₂₋₁₀alkynyl, C₁₋₁₀alkoxy, C₁₋₁₀alkoxy, C₁₋₁₀alkanoyl, C₁₋₁₀alkanoyloxy, N (C₁₋₁₀alkyl)amino, N,N (C₁₋₁₀alkyl)₂amino, N,N (C₁₋₁₀alkyl)₂ammonio, C₁₋₁₀alkanoylamino, N,N (C₁₋₁₀alkyl)₂arbamoyl, N,N (C₁₋₁₀alkyl)₂carbamoyl, N (C₁₋₁₀alkyl)sulphamoylamino, N,N (C₁₋₁₀alkyl)₂sulphamoyl, N (C₁₋₁₀alkyl)sulphamoylamino, N,N (C₁₋₁₀alkyl)₂sulphamoylamino, carbocyclyl, carbocyclylC₁₋₁₀alkyl, heterocyclic group, heterocyclylC₁₋₁₀alkyl, carbocyclyl (C₁₋₁₀alkylene)_e R³² (C₁₋₁₀alkylene)_f or heterocyclyl (C₁₋₁₀alkylene)_g R³³ (C₁₋₁₀alkylene)_h; wherein R¹³ may be optionally substituted on carbon by one or more substituents selected from R³⁶; and wherein if said heterocyclyl contains an NH group, that nitrogen may be optionally substituted by a group selected from R³⁷; or R¹³ is a group of formula (IB):

$$\begin{array}{c}
R & 16 \\
R & 17 \\
R & 16
\end{array}$$

$$\begin{array}{c}
R & 15 \\
Q & 17
\end{array}$$

$$\begin{array}{c}
R & 15 \\
R & 14
\end{array}$$
(IB)

wherein:

X is $N(R^{38})$, $N(R^{38})C(O)$, O, and $S(O)_a$; wherein a is 0-2 and R^{38} is hydrogen or C_{1-4} alkyl; R^{14} is hydrogen or C_{1-4} alkyl;

R¹⁵ is hydrogen;

and R¹⁶ is are independently selected from hydrogen, halo, nitro, cyano, hydroxy, amino, carbamoyl, mercapto, sulphamoyl, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyloxy, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino,

 $C_{\perp 6}$ alkanoylamino, N- $(C_{\perp 6}$ alkyl)carbamoyl, N, N- $(C_{\perp 6}$ alkyl) $_2$ carbamoyl, $C_{\perp 6}$ alkyl $_3$ Co), wherein a is 0 to 2, $C_{\perp 6}$ alkoxycarbonyl, N- $(C_{\perp 6}$ alkyl)sulphamoyl,

N,N (C₁₋₆alkyl)₂sulphamoyl, carbocyclyl or heterocyclic group; wherein R¹⁵ and R¹⁶ may be independently optionally substituted on carbon by one or more substituents selected from R⁴¹; and wherein if said heterocyclyl contains an NH group, that nitrogen may be optionally substituted by a group selected from R⁴²;

R¹⁷ is ethyl, selected from hydrogen, halo, nitro, cyano, hydroxy, amino, carbamoyl, mercapto, sulphamoyl, hydroxyaminocarbonyl, C₁₋₁₀alkyl, C₂₋₁₀alkenyl, C₂₋₁₀alkynyl, C₁₋₁₀alkoxy, C₁₋₁₀alkanoyl, C₁₋₁₀alkanoyloxy, N (C₁₋₁₀alkyl)amino, N,N (C₁₋₁₀alkyl)₂amino, C₁₋₁₀alkanoylamino, N (C₁₋₁₀alkyl)carbamoyl, C₁₋₁₀alkoxycarbonyl, N,N (C₁₋₁₀alkyl)₂carbamoyl, C₁₋₁₀alkylS(O)_a wherein a is 0 to 2, N (C₁₋₁₀alkyl)sulphamoyl, N,N (C₁₋₁₀alkyl)₂sulphamoyl, N (C₁₋₁₀alkyl)sulphamoylamino, N,N (C₁₋₁₀alkyl)₂sulphamoylamino, carbocyclyl, carbocyclylC₁₋₁₀alkyl, heterocyclic group,

heterocyclyl- $(C_{1-10}$ alkyl- $(C_{1-10$

wherein:

R¹⁸ is selected from hydrogen or C₁₋₄alkyl;

 R^{19} -is selected from hydrogen, halo, nitro, cyano, hydroxy, amino, carbamoyl, mercapto, sulphamoyl, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{1-6} alkoxy, C_{1-6} alkanoyl, C_{1-6} alkyl)amino, N, N (C_{1-6} alkyl) C_{2-6} alkyl) C_{2

```
N,N-(C<sub>1-6</sub>alkyl)<sub>2</sub>carbamoyl, C<sub>1-6</sub>alkylS(O)<sub>a</sub> wherein a is 0 to 2, C<sub>1-6</sub>alkoxycarbonyl.
   N-(C<sub>1-6</sub>alkyl)sulphamoyl, N.N-(C<sub>1-6</sub>alkyl)<sub>2</sub>sulphamoyl, carbocyclyl or heterocyclic group;
   where R<sup>19</sup> may be independently optionally substituted on carbon by one or more substituents
   selected from R<sup>51</sup>; and wherein if said heterocyclyl contains an NH-group, that nitrogen may
   be optionally substituted by a group selected from R<sup>52</sup>;
R<sup>20</sup> is selected from halo, nitro, evano, hydroxy, amino, carbamoyl, mercapto, sulphamoyl,
   hydroxyaminocarbonyl, C<sub>1-10</sub>alkyl, C<sub>2-10</sub>alkenyl, C<sub>2-10</sub>alkynyl, C<sub>1-10</sub>alkoxy,
   C<sub>1-10</sub>alkoxycarbonyl, C<sub>1-10</sub>alkanoyl, C<sub>1-10</sub>alkanoyloxy, N-(C<sub>1-10</sub>alkyl)amino,
   N.N-(C<sub>1-10</sub>alkyl)<sub>2</sub>amino, N.N.N-(C<sub>1-10</sub>alkyl)<sub>3</sub>ammonio, C<sub>1-10</sub>alkanoylamino,
   N_{(C_{1-10}alkyl)} carbamoyl, N_{(N-10)alkyl)} carbamoyl, C_{1-10}alkylS(O) wherein a is 0 to 2,
   N-(C_{1-10}alkyl)sulphamoyl, N, N-(C_{1-10}alkyl)_2sulphamoyl, N-(C_{1-10}alkyl)sulphamoylamino,
   N.N. (C<sub>1-10</sub>alkyl)<sub>2</sub>sulphamoylamino, C<sub>1-10</sub>alkoxycarbonylamino, carbocyclyl,
    carbocyclylC<sub>1-10</sub>alkyl, heterocyclic group, heterocyclylC<sub>1-10</sub>alkyl,
    carbocyclyl-(C1 10alkylene), R53 (C1 10alkylene), or
   heterocyclyl-(C<sub>1-10</sub>alkylene)<sub>e</sub>-R<sup>54</sup>-(C<sub>1-10</sub>alkylene)<sub>h</sub>-; wherein R<sup>20</sup> may be independently
    optionally substituted on carbon by one or more R<sup>57</sup>; and wherein if said heterocyclyl contains
    an NH- group, that nitrogen may be optionally substituted by a group selected from R<sup>58</sup>;
p is 1-3; wherein the values of R<sup>15</sup> may be the same or different;
\alpha is 0-1:
r is 0-3; wherein the values of R<sup>16</sup> may be the same or different;
m is 0-2: wherein the values of \mathbb{R}^{12} may be the same or different;
n is 1-2; wherein the values of R<sup>8</sup> may be the same or different;
z is 0-3; wherein the values of R<sup>19</sup> may be the same or different;
\mathbf{R}^{21} is selected from hydrogen or C_{1-6}alkyl;
 \mathbf{R}^{22} and \mathbf{R}^{23} are independently selected from hydrogen, hydroxy, amino, mercapto, C_{1-6}alkyl,
    C<sub>1-6</sub>alkoxy, N-(C<sub>1-6</sub>alkyl)amino, N,N-(C<sub>1-6</sub>alkyl)<sub>2</sub>amino, C<sub>1-6</sub>alkylS(O)<sub>a</sub> wherein a is 0 to 2;
R<sup>24</sup> is selected from hydrogen, hydroxy, C<sub>1-6</sub>alkyl, C<sub>1-4</sub>alkoxy and C<sub>1-6</sub>alkanoyloxy;
R<sup>25</sup> is selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto,
```

sulphamoyl, C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl, C₁₋₄alkoxy, C₁₋₄alkanoyl, C₁₋₄alkanoyloxy,

- N-(C_{1-4} alkyl)amino, N,N-(C_{1-4} alkyl) $_2$ amino, C_{1-4} alkanoylamino, N-(C_{1-4} alkyl)carbamoyl, N,N-(C_{1-4} alkyl) $_2$ carbamoyl, C_{1-4} alkyl $_3$ (O)a wherein a is 0 to 2, C_{1-4} alkoxycarbonyl, N-(C_{1-4} alkyl)sulphamoyl and N,N-(C_{1-4} alkyl) $_2$ sulphamoyl; wherein R^{25} , may be independently optionally substituted on carbon by one or more R^{67} ;
- R²⁶, R²⁸, R³⁰, R³⁶, R⁴¹, R⁴⁷, R⁵¹ and R⁵⁷ are independently selected from halo, nitro, cyano, hydroxy, amino, carbamoyl, mercapto, sulphamoyl, hydroxyaminocarbonyl, C₁₋₁₀alkyl, C₂₋₁₀alkenyl, C₂₋₁₀alkynyl, C₁₋₁₀alkoxy, C₁₋₁₀alkanoyl, C₁₋₁₀alkanoyloxy, C₁₋₁₀alkoxycarbonyl, N-(C₁₋₁₀alkyl)amino, N,N-(C₁₋₁₀alkyl)₂amino, N,N-(C₁₋₁₀alkyl)₃ammonio, C₁₋₁₀alkanoylamino, N-(C₁₋₁₀alkyl)carbamoyl, N,N-(C₁₋₁₀alkyl)₂carbamoyl, C₁₋₁₀alkylS(O)_a wherein a is 0 to 2, N-(C₁₋₁₀alkyl)sulphamoyl, N,N-(C₁₋₁₀alkyl)₂sulphamoyl, N-(C₁₋₁₀alkyl)sulphamoylamino, N,N-(C₁₋₁₀alkyl)₂sulphamoylamino, C₁₋₁₀alkoxycarbonylamino, carbocyclyl, carbocyclylC₁₋₁₀alkyl, heterocyclic group, heterocyclylC₁₋₁₀alkyl, carbocyclyl-(C₁₋₁₀alkylene)_e-R⁵⁹-(C₁₋₁₀alkylene)_f- or heterocyclyl-(C₁₋₁₀alkylene)_g-R⁶⁰-(C₁₋₁₀alkylene)_h-; wherein R²⁶, R²⁸, R³⁰, R³⁶, R⁴¹, R⁴⁷, R⁵¹ and R⁵⁷ may be independently optionally substituted on carbon by one or more R⁶³; and wherein if said heterocyclyl contains an -NH- group, that nitrogen may be optionally substituted by a group selected from R⁶⁴;
- R²⁷, R²⁹, R³¹, R³⁷, R⁴², R⁴⁸, R⁵², R⁵⁸ and R⁶⁴ are independently selected from C₁₋₆alkyl, C₁₋₆alkanoyl, C₁₋₆alkylsulphonyl, sulphamoyl, *N*-(C₁₋₆alkyl)sulphamoyl, *N*,*N*-(C₁₋₆alkyl)₂sulphamoyl, C₁₋₆alkoxycarbonyl, carbamoyl, *N*-(C₁₋₆alkyl)₂carbamoyl, benzyl, phenethyl, benzoyl, phenylsulphonyl and phenyl;
- \mathbf{R}^{32} , \mathbf{R}^{33} , \mathbf{R}^{43} , \mathbf{R}^{44} , \mathbf{R}^{53} , \mathbf{R}^{54} , \mathbf{R}^{59} and \mathbf{R}^{60} are independently selected from -O-, -NR⁶⁵-, -S(O)_x-, -NR⁶⁵C(O)NR⁶⁶-, -NR⁶⁵C(S)NR⁶⁶-, -OC(O)N=C-, -NR⁶⁵C(O)- or -C(O)NR⁶⁵-; wherein R⁶⁵ and R⁶⁶ are independently selected from hydrogen or C₁₋₆alkyl, and x is 0-2;
- **R**⁶³ and **R**⁶⁷ re independently selected from halo, hydroxy, cyano, carbamoyl, ureido, amino, nitro, carbamoyl, mercapto, sulphamoyl, trifluoromethyl, trifluoromethoxy, methyl, ethyl, methoxy, ethoxy, vinyl, allyl, ethynyl, methoxycarbonyl, formyl, acetyl, formamido, acetylamino, acetoxy, methylamino, dimethylamino, *N*-methylcarbamoyl,

N,N-dimethylcarbamoyl, methylthio, methylsulphinyl, mesyl, *N*-methylsulphamoyl and *N,N*-dimethylsulphamoyl; and

e, f, g and h are independently selected from 0-2;

or a pharmaceutically acceptable salt or an in vivo hydrolysable ester or amide a prodrug thereof.

Claims 2-3 (cancelled).

Claim 4 (currently amended): A compound of formula (I) according to claim 1 wherein R^{22} and R^{23} are independently selected from hydrogen and hydroxy; or a pharmaceutically acceptable salt or an *in vivo* hydrolysable ester or amide a prodrug-thereof.

Claim 5 (cancelled).

Claim 6 (currently amended): A compound of formula (I) according to claim 1 wherein one of R^1 and R^2 is are C_{1-4} alkyl; or a pharmaceutically acceptable salt or an *in vivo* hydrolysable ester or amide a prodrug thereof.

Claim 7 (currently amended): A compound of formula (I) according to claim 1 wherein v is 0; or a pharmaceutically acceptable salt or an *in vivo* hydrolysable ester or amide a prodrug thereof.

Claims 8-11 (cancelled).

Claim 12 (currently amended): A compound of formula (I) according to claim 1 selected from: (+/-)-trans-1,1-dioxo-3-ethyl-3-butyl-5-phenyl-7-methylthio-8-(*N*-{(R)-α-[*N*'-(2-(S)-3-(R)-4-(R)-5-(R)-2,3,4,5,6-pentahydroxyhexyl)carbamoyl]benzyl} carbamoylmethoxy)-2,3,4,5-tetrahydro-1,4-benzothiazepine;

(+/-) trans-1,1-dioxo-3-ethyl-3-butyl-5-phenyl-7-methylthio-8 (N-{(R)-α-[N-(2-(S)-3-(R)-4-(R)-5-(R)-2,3,4,5,6-pentahydroxyhexyl)carbamoyl]benzyl}carbamoylmethoxy)-2,3,4,5-tetrahydro-1,4-benzothiazepine;

1,1-dioxo-3-ethyl-3-butyl-4-hydroxy-5-phenyl-7-(N-{α-[N-(2-(S)-3-(R)-4-(R)-5-(R)-2,3,4,5,6-pentahydroxyhexyl)carbamoyl]-2-fluorobenzyl}carbamoylmethylthio)-2,3,4,5-tetrahydrobenzothiepine; or

1,1-dioxo 3-butyl-3-ethyl-4-hydroxy 5-phenyl-7-(N-{1-[N-(2-(S)-3-(R)-4-(R)-5-(R)-2,3,4,5,6-pentahydroxyhexyl)carbamoyl]-1-(cyclohexyl)methyl}carbamoylmethylthio) 2,3,4,5-tetrahydrobenzothiepine;

or a pharmaceutically acceptable salt or an in vivo hydrolysable ester or amide a prodrug thereof.

Claim 13 (currently amended and withdrawn): A process for preparing a compound of formula (I) or a pharmaceutically acceptable salt or an *in vivo* hydrolysable ester or amide a prodrug thereof, as claimed in claim 1, which process (wherein variable groups are, unless otherwise specified, as defined in claim 1) comprises of:

Process 1): for compounds of formula (I) wherein Z is O, NR^a or S; reacting a compound of formula (IIa) or (IIb):

$$R^{6}$$
 R^{7}
 R^{7}
 R^{2}
 R^{4}
 R^{2}
 R^{3}
 R^{4}
 R^{3}
 R^{5}
 R^{4}
 R^{5}
 R^{4}
 R^{5}
 R^{5}
 R^{4}
 R^{5}
 R^{5}
 R^{5}
 R^{4}
 R^{5}
 R^{5}

with a compound of formula (III):

$$\begin{array}{c|c}
R & 12 & R & 11 & R^9 \\
R & 11 & 1 & 1 & 1 & 1 \\
R & 10 & O & O
\end{array}$$
(III)

wherein L is a displaceable group;

Process 2): reacting an acid of formula (IVa) or (IVb):

or an activated derivative thereof; with an amine of formula (V):

$$\begin{array}{c|c}
R^{12} & R^{11} & R^{9} \\
R^{13} & NH \\
R^{10} & R^{10}
\end{array}$$
(V);

Process 3): for compounds of formula (I) wherein R¹³ is a group of formula (IB); reacting an acid of formula (VIa):

(VIa)

or (VIb):

(VIb)

with an amine of formula (VI):

$$\begin{array}{c|c}
R & 16 \\
R & 7 & 7 \\
R & 7 & 7
\end{array}$$

$$\begin{array}{c|c}
R & 15 \\
R & 7 & 7
\end{array}$$

$$\begin{array}{c|c}
R & 15 \\
R & 7 & 7
\end{array}$$

$$\begin{array}{c|c}
R & 15 \\
R & 14 & 7
\end{array}$$

(VI); or

Process 4): for compounds of formula (I) wherein R¹³ is a group of formula (IB) and R¹⁷ is a group of formula (IC); reacting an acid of formula (VHIa):

(VIIIa)

or (VIIIb)

(VIIIb)

or an activated derivative thereof; with an amine of formula (IX):

Process <u>4)</u> <u>5)</u> for compounds of formula (I) wherein one of R^5 and R^6 is methylthio are independently selected from C_{1-6} alkylthio optionally substituted on carbon by one or more R^{25} ; reacting a compound of formula (Xa) or (Xb):

wherein L is a displaceable group; with a thiol of formula (XI):

R^m-H

(XI)

wherein R^m is <u>methylthio</u> C_{1-6} alkylthio optionally substituted on carbon by one or more R^{25} ; and optionally:

- i) converting a compound of the formula (I) into another compound of the formula (I);
- ii) removing any protecting groups;
- iii) forming a pharmaceutically acceptable salt or a prodrug.

Claims 14 to 17 (cancelled).

Claim 18 (currently amended): A pharmaceutical composition which comprises a compound of formula (I), or a pharmaceutically acceptable salt or an *in vivo* hydrolysable ester or amide a prodrug thereof, as claimed in claim 1 or claim 11, in association with a pharmaceutically-acceptable diluent or carrier.

Claims 19 to 25 (cancelled).