Chapter 4: Linear Algebra Background

Uri M. Ascher and Chen Greif
Department of Computer Science
The University of British Columbia
{ascher,greif}@cs.ubc.ca

Slides for the book **A First Course in Numerical Methods** (published by SIAM, 2011)

http://bookstore.siam.org/cs07/

Vector norms

A **vector norm** is a function " $\|\cdot\|$ " from \mathbb{R}^n to \mathbb{R} that satisfies:

- **1** $\|\mathbf{x}\| \ge 0$; $\|\mathbf{x}\| = 0$ iff $\mathbf{x} = \mathbf{0}$,

This generalizes absolute value or magnitude of a scalar.

Famous vector norms

• ℓ_2 -norm

$$\|\mathbf{x}\|_2 = \sqrt{\mathbf{x}^T \mathbf{x}} = \left(\sum_{i=1}^n x_i^2\right)^{1/2}.$$

• ℓ_{∞} -norm

$$\|\mathbf{x}\|_{\infty} = \max_{1 \le i \le n} |x_i|.$$

ℓ₁-norm

$$\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|.$$

Example

· Problem: Find the distance between

$$\mathbf{x} = \begin{pmatrix} 11\\12\\13 \end{pmatrix} \quad \text{and} \quad \mathbf{y} = \begin{pmatrix} 12\\14\\16 \end{pmatrix}.$$

Solution: let

$$\mathbf{z} = \mathbf{y} - \mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix},$$

and find $\|\mathbf{z}\|$.

Calculate

$$\|\mathbf{z}\|_1 = 1 + 2 + 3 = 6,$$

 $\|\mathbf{z}\|_2 = \sqrt{1 + 4 + 9} \approx 3.7417,$
 $\|\mathbf{z}\|_{\infty} = 3.$

Matrix norms

Induced matrix norm of $m \times n$ matrix A for a given vector norm:

$$||A|| = \max_{\mathbf{x} \neq \mathbf{0}} \frac{||A\mathbf{x}||}{||\mathbf{x}||} = \max_{||\mathbf{x}|| = 1} ||A\mathbf{x}||.$$

Then consistency properties hold,

$$||AB|| \le ||A|| ||B||, \quad ||A\mathbf{x}|| \le ||A|| ||\mathbf{x}||,$$

in addition to the previously stated three norm properties.

Famous matrix norms

• ℓ_2 -norm

$$||A||_2 = \sqrt{\rho(A^T A)},$$

where ρ is spectral radius

$$\rho(B) = \max\{|\lambda|; \ \lambda \text{ is an eigenvalue of } B\}.$$

• ℓ_{∞} -norm

$$||A||_{\infty} = \max_{1 \le i \le m} \sum_{i=1}^{n} |a_{ij}|.$$

• ℓ₁-norm

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|.$$

Symmetric positive definite matrices

Extend notion of positive scalar to matrices:

$$A = A^T$$
, $\mathbf{x}^T A \mathbf{x} > 0$, all $\mathbf{x} \neq \mathbf{0}$.

A symmetric matrix is positive definite if and only if all its eigenvalues are positive:

$$\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n > 0.$$

Orthogonal matrices

Orthogonal vectors

Two vectors ${\bf u}$ and ${\bf v}$ of the same length are orthogonal if

$$\mathbf{u}^T\mathbf{v} = 0.$$

Orthonormal vectors: if also $\|\mathbf{u}\|_2 = \|\mathbf{v}\|_2 = 1$.

Square matrix Q is orthogonal if its columns are pairwise orthonormal, i.e.,

$$Q^T Q = I$$
. Hence also $Q^{-1} = Q^T$.

Important property: for any orthogonal matrix Q and vector \mathbf{x}

$$||Q\mathbf{x}||_2 = ||\mathbf{x}||_2.$$

Hence

$$||Q||_2 = ||Q^{-1}||_2 = 1.$$