Artem Yushkovskiy^{1,2}

MSc Candidate

Supervisors: Assoc. Prof. Keijo Heljanko¹

Docent Igor I. Komarov²

¹Department of Computer Science, School of Science, **Aalto University** (Espoo, Finland)

²Faculty of Information Security and Computer Technologies, ITMO University (Saint Petersburg, Russia)

Problem statement (Цель работы)

To rework the proof-of-concept memory model-aware analysis tool Porthos [2] by:

- extending the C-like input language,
- revising its architecture and
- re-implementing the tool in order to enhance performance, extensibility, reliability and maintainability

00 000000 0 00

Task specification (Задачи работы)

- Study the general framework for memory model-aware analysis of concurrent programs [1];
- Review the existing tools for memory model-aware analysis;
- Examine the existing architecture of Porthos, its strengths and weaknesses;
- Design a new architecture for PorthosC that allow to extend the input language to the (large subset of) C language, be robust, transparent, efficient and extensible.

Example: Write-write reordering (compiler relaxations)

00 •00000 valuation Summary ○

Verification of concurrent software

Example: Write-write reordering (compiler relaxations)

Sequential Consistency

$$p_0, p_1, q_0, q_1$$
 (0; 1)
 q_0, q_1, p_0, p_1 (1; 0)

Example: Write-write reordering (compiler relaxations)

Sequential Consistency

Example: Write-write reordering (compiler relaxations)

{ x=0; y=0; }				
P	Q			
$p_0: x \leftarrow 1$	$q_0: y \leftarrow 1$			
$p_1: r_p \leftarrow y$	$q_1: r_q \leftarrow x$			
exists $(r_p=0 \wedge r_q=0)$				

Sequential Consistency

Total Store Order

no no de de	(n· 1)	p_1, p_0, q_0, q_1	(0;1)	p_0, p_1, q_1, q_0	(0;1)	$p_1, p_0, q_1, q_0 $ (0; 1)
p_0, p_1, q_0, q_1						$\overline{q_1}, \overline{q_0}, \overline{p_1}, \overline{p_0}$ (1; 0)
q_0, q_1, p_0, p_1						$ \overrightarrow{p_1}, \overrightarrow{q_1}, \overrightarrow{p_0}, \overrightarrow{q_0} $ (0; 0)
p_0, q_0, p_1, q_1		$\frac{p_1}{p_2}$, $\frac{q_0}{q_0}$, $\frac{q_1}{q_2}$	(0, 1)	no Gt Go nt	(1.1)	$\frac{p_1}{p_1}, \frac{q_1}{q_1}, \frac{p_0}{q_0}, \frac{q_0}{p_0}$ (0; 0)
p_0, q_0, q_1, p_1	(1;1)					
q_0, p_0, p_1, q_1	(1;1)					$ \underline{q_1},\underline{p_1},\underline{p_0},\underline{q_0} $ (0; 0)
q_0, p_0, q_1, p_1		$q_0, \underline{p_1}, q_1, \underline{p_0}$	(1;0)	$\underline{q_1}, p_0, \underline{q_0}, p_1$	(1;0)	$ \underline{q_1},\underline{p_1},\underline{q_0},\underline{p_0} $ (0;0)

Example: Write-write reordering (compiler relaxations)

{ x=0; y=0; }				
P	Q			
$p_0: x \leftarrow 1$	$q_0: y \leftarrow 1$			
$p_1: r_p \leftarrow y$	$q_1: r_q \leftarrow x$			
exists $(r_p=0 \wedge r_q=0)$				

Sequential Consistency

Total Store Order

p_0, p_1, q_0, q_1	(n· 1)	p_1, p_0, q_0, q_1	(0;1)	$p_0, p_1, \underline{q_1}, \underline{q_0}$	(0; 1)	p_1, p_0, q_1, q_0	(0;1)
		$\overline{q_0}, \overline{q_1}, p_1, p_0$	(1;0)	q_1, q_0, p_0, p_1	(1;0)	q_1, q_0, p_1, p_0	(1;0)
q_0, q_1, p_0, p_1						$\overline{p_1}, \overline{q_1}, \overline{p_0}, \overline{q_0}$	
p_0, q_0, p_1, q_1						$\overline{p_1}, \overline{q_1}, \overline{q_0}, \overline{p_0}$	
p_0, q_0, q_1, p_1						$\frac{p_1}{q_1}, \frac{q_1}{p_1}, \frac{q_0}{p_0}, \frac{p_0}{q_0}$	
q_0, p_0, p_1, q_1	(1;1)						
q_0, p_0, q_1, p_1	(1;1)	$ q_0,\underline{p_1},q_1,\underline{p_0} $	(\mathbf{I}, \mathbf{O})	$ \underline{q_1}, p_0, \underline{q_0}, p_1 $	(\mathbf{I}, \mathbf{U})	$ \underline{q_1},\underline{p_1},\underline{q_0},\underline{p_0} $	(0,0)

Example: Store buffering (hardware relaxations)

{ x=0; y=0; }				
P	Q			
$p_0: x \leftarrow 1$	$q_0: y \leftarrow 1$			
	$q_1: r_q \leftarrow x$			
exists $(r_p = 0 \land r_q = 0)$				

The weak memory model

Axiomatic semantics: The definition

- **Event** $\in \mathbb{E}$, a low-level primitive operation:
 - memory event $\in \mathbb{M} = \mathbb{R} \cup \mathbb{W}$: access to a local/shared memory,
 - computational event $\in \mathbb{C}$: computation over local memory, and
 - barrier event ∈ B: synchronisation fences;
- Relation $\subseteq \mathbb{E} \times \mathbb{E}$:
 - basic relations:
 - program-order relation po $\subseteq \mathbb{E} \times \mathbb{E}$: (control-flow),
 - read-from relation $\mathtt{rf} \subseteq \mathbb{W} \times \mathbb{R}$: (data-flow), and
 - coherence-order relation $co \subseteq \mathbb{W} \times \mathbb{W}$: (data-flow);
 - derived relations:
 - union r1 | r2,
 - sequence r1; r2,
 - transitive closure r+,
 - ...;
- Assertion over relations or sets of events:
 - acyclicity, irreflexivity or emptiness

The weak memory model

Testing candidate executions

Figure: The four candidate executions allowed under x86-TSO

The weak memory model

Testing candidate executions

Figure: The four candidate executions allowed under x86-TSO == 000

Tools for memory model-aware analysis

- diy tool suite:
 - diy, diycross and diyone, litmus tests generators,
 - litmus, a litmus test concrete executor, and
 - herd, a weak memory model simulator;
- the stateless model checkers (CHESS, Nidhugg);
- the tool for automated synthesis of the synchronisation primitives musketeer;
- the instrumenting compiler goto-cc which is a part of CBMC model checker;
- the tool Porthos for analysing the portability of the C programs;
- and others.

Portability analysis

The Porthos tool

• Let the function $cons_{\mathcal{M}}(P)$ calculate the set of executions of program P consistent under the memory model \mathcal{M} .

Definition (Portability [2])

Let $\mathcal{M}_{\mathcal{S}}$, $\mathcal{M}_{\mathcal{T}}$ be two weak memory models. The program P is portable from $\mathcal{M}_{\mathcal{S}}$ to $\mathcal{M}_{\mathcal{T}}$ if $cons_{\mathcal{M}_{\mathcal{T}}}(P) \subseteq cons_{\mathcal{M}_{\mathcal{S}}}(P)$

- Portability as an SMT-based bounded reachability problem: $\phi = \phi_{CF} \wedge \phi_{DF} \wedge \phi_{\mathcal{M}_{\mathcal{T}}} \wedge \phi_{\neg \mathcal{M}_{\mathcal{S}}}$
- SAT $(\phi) \Longrightarrow$ the portability bug

Encoding for the control-flow: An example

Figure: Example of encoding for the control-flow of the event-flow graph

Introduction

Encoding for the data-flow

- SSA-indices are computed as following:
 - any access to a shared variable (both read and write) increments its SSA-index:
 - only writes to a local variable increment its SSA-index (reads preserve indices):
 - no access to a constant variable or computed (evaluated) expression changes their SSA-index.

The data-flow of an event is encoded as following:

$$\phi_{DF_{e=\text{load}(r \leftarrow l)}} = [\mathsf{x}(e) \Rightarrow (r_{i+1} = l_{i+1})]$$

$$\phi_{DF_{e=\text{store}(l \leftarrow r)}} = [\mathsf{x}(e) \Rightarrow (l_{i+1} = r_i)]$$

$$\phi_{DF_{e=\text{eval}(\cdot)}} = [\mathsf{x}(e) \Rightarrow \mathsf{v}(e)]$$

The input language

The input language parser used by Porthos suffered from several disadvantages:

- it contained the parser code inlined directly into the grammar (hardly maintainable);
- the semantics of operations and kinds of variables (global or shared) were determined syntactically (4 different types of assignment: '=', ':=', '<-' and '<:-', each for different kinds of arguments);
- restricted syntax for expressions.
- In contrast, PorthosC uses the full C language grammar of proposed in the C11 standard [jtc2011sc22] and the visitor that converts the ANTLR grammar to the AST (Y-tree).

The X-graph internal representation

Figure: The inheritance tree of main X-graph interfaces

The X-graph compiler

Figure: Main components of the X-compilation processing unit

X-graph unrolling

Figure: Example of the flow graph unrolling up to bound k = 6

Evaluation

Much better.

[to be done]

Evaluation

The general framework for memory model-aware analysis was implemented in PorthosC;

- The input language has been extended;
- The old architecture of Porthos has been analysed and considered while designing the new architecture for PorthosC;
- to be done: more

Bibliography I

- Jade Alglave. "A shared memory poetics". In: La Thèse de doctorat, L'université Paris Denis Diderot (2010).
- Hernán Ponce de León et al. "Portability Analysis for Weak Memory Models. PORTHOS: One Tool for all Models". In: Static Analysis 24th International Symposium, SAS 2017, New York, NY, USA, August 30 September 1, 2017, Proceedings. 2017, pp. 299–320. DOI: 10.1007/978-3-319-66706-5_15. URL: https://doi.org/10.1007/978-3-319-66706-5_15.
- Peter Sewell et al. "x86-TSO: a rigorous and usable programmer's model for x86 multiprocessors". In: Communications of the ACM 53.7 (2010), pp. 89–97.