Opentrains 杂题选讲

陈东武

广州大学附属中学

2021年10月x日

陈东武 Opentrains 杂题选讲

- 2 ProbSet I
- 3 ProbSet II
- 4 ProbSet III
- 6 ProbSet IV
- 6 ProbSet V

1 前言

前言 •0

- 4 ProbSet III
- 6 ProbSet IV

要讲什么

前言 00

如题所示,要讲杂题。

题目应该不会跟 jly 的 APIO 讲课重复,因为都很简单。

章节没啥意义,只是个分块而已(雾

题目顺序大致乱序排列,不过因为题目太简单了所以大家应该都 不会掉线。

陈东武

2 ProbSet I

ProbSet I

•0000000000

- 3 ProbSet I
- 4 ProbSet III
- 6 ProbSet IV
- 6 ProbSet \

这是一道交互题。

ProbSet I 0000000000

有一张圆桌周围均匀摆放着 N 张椅子, 按顺时针编号为 $0,1,\cdots,N-1$ 。一些猫猫坐在这些椅子上,它们要么是白色的, 要么是黑色的。一张椅子上面至多坐一只猫猫,没有两张相邻椅 子上坐着相同颜色的猫猫。因为某种原因,必有至少一张椅子是 空的。

每次询问你选择一张椅子,交互库告诉你这张椅子是空的/坐着 白猫/坐着黑猫。你需要在20次询问之内询问到一张空椅子。

3 < N < 99999,N 是奇数。¹

陈东武 Opentrains 杂颗洗讲 6 / 55

¹https://atcoder.jp/contests/apc001/tasks/apc001_c

ProbSet I

Guess Two Strings

ProbSet I

0000000000

出题人有两个长为 N 的 01 串 S, T,他按如下方式独立生成 Q个 01 串并告诉你: 随机选 S 和 T 之一, K 次反转随机位置的 值。求可能的一组无序对 (S,T)。

$$N = Q = 100, K = 15.$$

²XIX Open Cup, GP of SPb, Problem J

ProbSet I

0000000000

Learn how to 乱搞.

这 Q 个串大致可以划分成两个集合(由 S 生成或由 T 生成)。 随机枚举其中两个串, 假装它们属于不同集合, 按其他串与这两 个串的 Hamming 距离的大小关系分成两个集合、分别对每一位 取众数就得到S, T,检验一下是否满足要求,如果不满足就重 新跑一遍。期望复杂度 O(NQ)。

陈东武 Opentrains 杂题选讲 ProbSet I

00000000000

假设这是一道交互题:给定一棵N个点的树,你可以选择K个 点 x_0, x_1, \dots, x_{K-1} 布置雷达、然后交互库选择一个点 u 并告诉 你 $d(x_0, u), \dots, d(x_{K-1}, u)$, 你需要求出 u。

然而这是一道传统题, 你只需要求出使得你必定能 AC 的 K 的 最小值。

 $2 < N < 10^5$ 3

https://atcoder.jp/contests/apc001/tasks/apc001_e

Antennas on Tree

ProbSet I 00000000000

你必定能 AC 等价于对于每个点 u, K 元组 $(d(x_0, u), \dots, d(x_{K-1}, u))$ 互不相同。

ProbSet I 00000000000

你必定能 AC 等价于对于每个点 u, K 元组 $(d(x_0, u), \dots, d(x_{K-1}, u))$ 互不相同。

等价干对干每个点 u,删去 u 之后至多有一个连通块没有雷达。

陈东武

Antennas on Tree

ProbSet I

0000000000

你必定能 AC 等价于对于每个点 u, K 元组 $(d(x_0, u), \dots, d(x_{K-1}, u))$ 互不相同。

等价干对干每个点 u,删去 u 之后至多有一个连通块没有雷达。 特判掉链的情况,以一个度数 > 2 的点为根,等价于对于每个点 u, u 至多有一个儿子的子树没有雷达。设 f_u 表示只考虑 u 的子 树时的答案,直接 dp 即可,时间复杂度 O(N)。

陈东武

给定
$$M_0, B \in \mathbb{Z}_{\mathsf{mod}}^{m \times m}$$
 和 $c_1, c_2, \cdots, c_n \in \mathbb{N}$,定义 $M_i = \left(\prod_{j=c_i}^{i-1} M_j\right) \times B$,求 M_n 。 $n \leq 10^6$, $m \leq 5$, $2 \leq \mathsf{mod} \leq 10^9$, $c_i < i$, $c_1 \leq c_2 \leq \cdots \leq c_n$, $\mathsf{TL} = 10\mathsf{s}_0^{-4}$

⁴Ptz Winter 2017, Xiaoxu Guo Contest 5, Problem G

Matrix Recurrence

ProbSet I 0000000000

"バカ-trick" (两个栈模拟队列) 的模板题。时间复杂度 $O(nm^3)$ 。

陈东武 Opentrains 杂题选讲 给定 m 支队伍打 n 场区域赛和一场 EC-Final。第 i 场区域赛有 k_i 支队伍打,排名是 $r_{i,1},\cdots,r_{i,k_i}$ 。所有队伍都打了 EC-Final,排名是 $r_{n+1,1},\cdots,r_{n+1,m}$ 。 你任意选取正整数 x,y 和长为 n 的排列 p,求 $(r_{n+1,1},\cdots,r_{n+1,y},r_{p_1,1},\cdots,r_{p_n,1},r_{p_1,2},\cdots,r_{p_n,2},\cdots)$ 的前 x+y 支不同队伍的集合的个数 $\operatorname{mod}(10^9+7)$ 。 $\sum k_i,\sum m \leq 2\cdot 10^5$ 。 $\sum k_i$

陈东武 Opentrains 杂题选讲

⁵Ptz Winter 2017, Xiaoxu Guo Contest 5, Problem K

Welcome to ICPCCamp 2017

ProbSet I 0000000000

从大到小枚举 EC-Final 的最高排名的未出线队伍 i, 不妨设其前 面的队伍都通过 EC-Final 名额出线,考虑其后面有队伍通过区 域寨出线的情况,只需要让队伍i拿不到区域寨出线名额即可, 需要单点修改前缀和杳询,用树状数组维护即可。

陈东武

ProbSet II

•0000000000

- ① 前言
- 3 ProbSet II
- 4 ProbSet III
- 6 ProbSet IV

给定 n 个点的有向图,m 个人从时刻 t_i 开始从点 v_i 随机游走 (每个时刻随机选择一条出边走过去,保证每个点都有出边),设 E_t 表示 n 号点在时刻 t 的期望人数模 10^9+7 ,求 $\bigoplus_{t=1}^T E_t$ 。 n < 70, $m < 10^4$, $T < 2 \cdot 10^6$ 。 6

陈东武
Opentrains 杂题选讲

⁶Ptz Winter 2017, Xiaoxu Guo Contest 5, Problem F

Multi-stage Marathon

注意到矩阵乘向量的复杂度是 $O(n^2)$, 而求矩阵乘向量的某一维的复杂度是 O(n)。

平衡一下,预处理 G^0, G^1, \cdots, G^L ,其中 G 是转移矩阵。就可以做到 $O(n^2\lceil \frac{T}{L} \rceil)$ 转移一段,O(n) 算一项答案。

时间复杂度 $O(n^3L + nT + n^2(\frac{T}{L} + m))$, 大概取 $L \approx 100$ 即可。

陈东武

给定面值为 $1, 2, \dots, n$ 的硬币分别 a_1, a_2, \dots, a_n 个, 求能组合 出的面值数量。

 $n < 15, a_i < 10^9$ ° 7

⁷Ptz Winter 2017, Xiaoxu Guo Contest 5, Problem D

Coins 2

设 $m = lcm(1, 2, \dots, n)$, 若 $x \ge nm$ 能够拼成,则必有一种面值 i 的个数 $\ge \frac{m}{i}$,得到 x - m 也可以被拼成。

根据对称性,设 $s = \sum ia_i$,若 $x \le s - nm$,则 x + m 也能拼成。 所以 $\forall x \in [nm, s - (n+1)m]$,x 能拼成当且仅当 x + m 能拼成。 所以只需要算出 [1, (n+1)m] 能否被拼成即可。

时间复杂度 $O(n^2m)$ 。

陈东武

给定 n 个点的无向图, 求连通导出子图个数 mod 2。 n < 50, 边的两端点编号之差 < 13。8

⁸Ptz Winter 2017, Xiaoxu Guo Contest 5, Problem C

City United

可以转化为对连通块黑白染色的方案数 mod 4。即对所有点染 黑白灰三色, 使得黑色点与白色点之间没有连边。直接 dp 即可, 时间复杂度 $O(n3^k)$ 。

陈东武 广州大学附属中学

给定
$$w_1, w_2, \ldots, w_n$$
, 求

$$\sum_{x \in [n]^n} \prod_{i=1}^{n-2} w_{\max(x_i, x_{i+1}, x_{i+2})} \bmod (10^9 + 7)$$

$$\sum n \le 2000$$
°

⁹Ptz Winter 2017, Xiaoxu Guo Contest 5, Problem A

不能把两个数记录进状态里,就考虑只记录最大值,设 $f_{i,i,k}$ 表 示考虑 x 的前 i+j 个值, x_i, x_{i+1}, x_{i+2} 的最靠后的最大值是 $x_{i+j} = k$ 的情况下, $\prod_{l=1}^{i} w_{\max(x_l, x_{l+1}, x_{l+2})}$ 之和。考虑什么情况 下 $f_{i,j,k}$ 能转移到 $f_{i+1,i',k'}$, 枚举一下发现是 $j' = j - 1 \wedge k' = k$, 或者 $i = 0 \land k > k'$, 或者 $i' = 2 \land k < k'$, 使用前/后缀和优化, 时间复杂度 $O(n^2)$ 。

陈东武

给定n个点的无向连通图,其边集是k个边权相同的团 C_i ,求所有点对间最短路长度之和。

$$n \le 10^5$$
, $k \le 18$, $1 \le w \le 10^7$, $\sum |C_i| \le 3 \cdot 10^5$.

陈东武 Opentrains 杂题选讲

¹⁰XIX Open Cup, GP of SPb, Problem C

Clique Festival

ProbSet I

考虑两个点 u, v 之间的最短路,因为团比较少所以转化为团之 间的最短路。

ProbSet III

建有向图 G 表示若 $C_i \cap C_i \neq \emptyset$ 则连边 $i \rightarrow j$, 边权为 a_i , 设 u, v 分别属于 $C_i, C_i, 则 \operatorname{dis}(u, v) = \min_{i,j} \{\operatorname{dis}_G(i, j) + a_i\}$ 。 $dis_{C}(i,j)$ 显然很容易算。考虑按权值从小到大枚举 (i,j), 数出 对应的 u, v 数量。设 D_i 表示所有处理过的 (i, j) 的 i 的集合。 枚举 u, v 的取值是 $C_j \setminus \bigcup$ C_b , 这个是可以 $O(k2^k)$ 预处 $C_a \supset u, b \in D_a$

理 O(k) 计算的。

总时间复杂度 $O(k^2 \sum |C_i| + k2^k + nk^2/w)$ 。

陈东武

- 2 ProbSet
- 3 ProbSet II
- 4 ProbSet III
- 6 ProbSet IV
- 6 ProbSet V

Fantasmagorie

ProbSet I

定义 01 矩阵是好的当且仅当:

- 边界上的元素都相同;
- $\operatorname{Arg}\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ of $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ 的连续子矩阵。
- 将同色四连通块缩点之后,每个点的度数 < 2。

给定两个 $H \times W$ 的好矩阵,构造一组每次 flip 一个元素,从第 一个矩阵变为第二个矩阵的长度 $< 2.5 \cdot 10^5$ 的操作序列,使得两 种颜色的四连通块个数保持不变,且自始至终是好矩阵。需判断 无解。

$$H \le 64$$
, $W \le 103$ ° ¹¹

陈东武 Opentrains 杂题选讲 28 / 55

¹¹https://codeforces.com/gym/103081/problem/M

Fantasmagorie

条件说明同色四连通块应当是套在一起的。

因为操作可逆、所以考虑将两个矩阵都变为一个标准化的矩阵。

陈东武

条件说明同色四连通块应当是套在一起的。

因为操作可逆,所以考虑将两个矩阵都变为一个标准化的矩阵。

我们可以把次外的连通块扩展,将最外的连通块挤成宽为1的 环,然后去掉边界之后就是一个子问题。只需要对最外的连通块 bfs, 按照与左上角的距离从大到小 flip 就可以保证自始至终是好 矩阵。

由此可得有解当且仅当最终得到的矩阵相同,也即最外层元素及 连通块数均相同。操作次数是 $O(HW \min(H, W))$ 的, 但常数比 较小,极限数据只需 105 次左右。

陈东武 Opentrains 杂颗洗讲 29 / 55 ProbSet I

给定 N 个点 M 条边的有向图,每条边染 C 种颜色,Daisy 带上一个栈从 0 号点出发,栈的每个元素是 C 种颜色之一。

ProbSet III

0000000000

设当前在点u,栈顶元素是c,若u有颜色c的出边则选择一条颜色c的出边并弹栈,否则任意选择一条出边,将该种颜色压入栈。

已知 Daisy 可以走到 N-1 号点,求初始时的栈大小的最小值。 $N \leq 50, \ M \leq 100, \ C \leq 20, \$ 保证有解。 12

 除东武
 广州大学附属中学

 Opentrains 会販洗讲
 30 / 55

¹²https://codeforces.com/gym/103081/problem/J

Daisy's Mazes

考虑再引入 N 个点 $0 = x_0, x_1, \dots, x_{N-1}, x_{i+1}$ 向 x_i 连所有颜色 的边,则栈大小可以为m当且仅当带空栈从 x_m 出发可以走到 终点。

因为初始的栈如果有两个连续的相同颜色则一定不优(要用的时 候可以转化为先压入再弹出), 所以可以先从 x_m 走到 0 得到任 意的大小为 m 的栈。

然后 N-1 向自己连所有颜色的边,就可以限制初始和结束时 刻都是空栈,经过的边的颜色即为括号序列。

陈东武

Daisy's Mazes

ProbSet I

考虑再引入 N 个点 $0=x_0,x_1,\cdots,x_{N-1},\ x_{i+1}$ 向 x_i 连所有颜色的边,则栈大小可以为 m 当且仅当带空栈从 x_m 出发可以走到终点。

因为初始的栈如果有两个连续的相同颜色则一定不优 (要用的时候可以转化为先压入再弹出),所以可以先从 x_m 走到 0 得到任意的大小为 m 的栈。

然后 N-1 向自己连所有颜色的边,就可以限制初始和结束时 刻都是空栈,经过的边的颜色即为括号序列。

于是就可以按照剥括号的顺序 dp 了,设 $f(c, r_1, r_2)$ 表示不匹配 栈顶的颜色 c 的情况下,是否有 $r_1 \rightarrow r_2$ 的括号序列。初值为 f(c, i, i) = 1,然后引入一种不出现的颜色 C,答案即为使得 $f(C, x_i, N-1) = 1$ 的最小的 i。

因为比较难处理转移顺序所以刷表记搜,转移即为拼接括号序列和套一层括号。时间复杂度 $O(N^3C + M^2C^2)$ 。

 除东武
 广州大学附属中学

 Opentrains 杂颗洗讲
 31 / 55

直线上有 N 对传送门,进入一道传送门时会从与之对应的传送 门的相同方向出来。

ProbSet III

00000000000

Snuke 从左边向右一直走, 给定 $s_1, s_2, \dots, s_{2N-1}$, 其中 s_i 表示 Snuke 有没有从第 i 道传送门出来过。

构造放置这 n 对传送门的方案, 需判断无解。 $n < 10^5$ 。¹³

陈东武 广州大学附属中学 Opentrains 杂题选讲 32 / 55

¹³https://atcoder.jp/contests/apc001/tasks/apc001_g

若将直线接成一个环,即认为第 2N 道传送门的右边是第 1 道传 送门,则这个环上的路径等价干若干个环,条件即为钦定其中的 一个环恰好是某些段。先看只有一个环的情况:

- 若 N 是偶数, 一个构造是 $(1, 2, 1, 2, 3, 4, 3, 4, \dots, 2N - 1, 2N, 2N - 1, 2N)$
- 若 N 是奇数则无解, 因为考虑加一对传送门, 如果加在同 一个环上那么这个环会裂开, 如果加在两个不同环上那么这 两个环会合并,所以环数与N-1同奇偶。

陈东武 Opentrains 杂题选讲

Colorful Doors

考虑两边都是 1 的门的个数 s, 因为从传送门一边进入就会从另一边出来,所以两边都是 1 的门之间两两配对,也即 s 必为偶数,而左边为 1 右边为 0 的门与左边为 0 右边为 1 的门配对,剩下的两边都是 0 的门之间可以任意配对。

- 若 s 是 4 的倍数,可以通过对 1 连续段开头和末尾的传送 门进行配对使得恰好跳过 0 这些段,就变成 N 是偶数且全 1 的情况。
- 若 s 模 4 余 2, 若长度 > 1 的 1 连续段只有一个则相当于 n 是奇数且全 1 的情况, 否则可以先将两对门配对, 规约到 s 为 4 的倍数的情况。

 除东武
 广州大学附属中学

 Opentrains 会販洗讲
 34 / 55

给定格点三角形 ΔPQR , 求其内部的一个格点。 10^4 组数据,值域 $[0,10^9]$ 。 14

¹⁴https://atcoder.jp/contests/jag2018summer-day2/tasks/ jag2018summer_day2_g

判断是否有解直接用 Pick 定理即可。

不妨设 PQ 是最长边,若最长边上有整点,找到最接近中点的 S ,若 RS 上有整点就做完了,否则可以分成 ΔPSR 和 ΔQSR 递归做。所以不妨设 P(0,0) , Q(x,y) , x,y>0 , $\gcd(x,y)=1$ 。

ProbSet I

判断是否有解直接用 Pick 定理即可。

不妨设 PQ 是最长边,若最长边上有整点,找到最接近中点的 S,若 RS 上有整点就做完了,否则可以分成 ΔPSR 和 ΔQSR 递归做。所以不妨设 P(0,0), Q(x,y), x,y>0, $\gcd(x,y)=1$ 。 求出点 (u,v) 满足 uy-vx=-1, $0 \le u < x$, $0 \le v < y$,考虑证明 U(u,v) 即为答案。

判断是否有解直接用 Pick 定理即可。

不妨设 PQ 是最长边,若最长边上有整点,找到最接近中点的 S,若 RS 上有整点就做完了,否则可以分成 ΔPSR 和 ΔQSR 递归做。所以不妨设 P(0,0), Q(x,y), x,y>0, $\gcd(x,y)=1$ 。 求出点 (u,v) 满足 uy-vx=-1, $0\leq u < x$, $0\leq v < y$,考虑证明 U(u,v) 即为答案。

 $\gcd(u,v)=\gcd(x-u,y-v)=1$,所以 ΔPQU 面积为 $\frac{1}{2}$ 且边界上只有 3 个顶点是整点,根据 Pick 定理其内部没有整点,设 $U_n(n(u-x)+x,n(v-y)+y)$,同理可得 ΔPQU_n 内部没有整点,取 $n\to\infty$ 得到这个带状区域内部没有整点,射线 PU 方向同理,此时若 ΔPQR 不包含 U 且包含其他整点,则必有 $\angle P$ 或 $\angle Q$ 为钝角,与 PQ 是最长边矛盾。

陈东武
Opentrains 杂颗选讲

广州大学附属中学

给定自然数 N, A, B,求满足 $p_A = B$ 且 LIS 长度 ≤ 2 的 $0 \sim N - 1$ 的排列 $p \uparrow 2$ mod $(10^9 + 7)$ 。 $0 < A, B < N < 10^6$ 。 15

¹⁵https://atcoder.jp/contests/jag2018summer-day2/tasks/ jag2018summer_day2_k

- 1 前言
- 2 ProbSet
- 3 ProbSet I
- 4 ProbSet III
- 6 ProbSet IV
- 6 ProbSet V

给定 $W \times H$ 的网格图去掉 N 个点, 求两两最短路之和 $\mod (10^9 + 7)$. $W, H < 10^6, N < 30$ ° 16

16https://atcoder.jp/contests/apc001/tasks/apc001_i

对于两个相邻的空行,计算出跨越这两行的路径数之后就可以将 这两行缩起来。列同理。

此时网格图规模缩小为 $(2N+1) \times (2N+1)$, 直接暴力即可, 时 间复杂度 $O(W+H+N^4)$ 。

ProbSet III

Generalized Insertion Sort

ProbSet I

给定 N 个点的以 0 为根的树和排列 a_0, a_1, \dots, a_{N-1} , 点编号为 $0.1.\dots, N-1$ 。初始时点 i 有点权 a_i ,每次操作选择点 u,将 根到 u 的路径上的点权向根循环移位。构造 2.5×10^4 次操作使 得点 i 的点权为 i。

 $N < 2000_{\circ}^{17}$

Tips: ω 果是一条以 0 为端点的链、怎么 N 次操作解决呢?

陈东武 Opentrains 杂题选讲

¹⁷https://atcoder.jp/contests/apc001/tasks/apc001_h

Generalized Insertion Sort

就是插入排序啦 awa

定义一个点是 leafish 的当且仅当它是叶子,或者它只有一个儿 子且该儿子是 leafish 的。所有 leafish 的点形如一堆链,若能 O(n) 次操作解决完 leafish 的点并将它们删去,则总操作次数是 $O(n \log n)$ by .

若一个值 v 的目的地是 leafish 点,则将其染为红色,否则染为 白色。若当前根是红色那么把它插入到对应的链上, 否则插入到 当前最深的没碰过的值并染成黑色。

当前根是黑色说明刚才放好了一个红色值,所以一轮的操作次数 是 n + # of leafish vertices, 总操作次数是 $n(\log n + 1)$ 。

陈东武 Opentrains 杂题选讲 42 / 55 ProbSet I

假设这是一道传统题: n 个人给 m 位候选人投票, 第 i 个人有 一个长为 k_i 的偏好序列,初始时每个人都会投给他们最喜欢的 候选人。

之后每一轮,每个人都会投给在他偏好序列中,上一轮得票最多 的候选人, 如果有相同得票的则投给他最喜欢的。

如果这一轮和上一轮的投票结果完全相同、投票过程就结束了。 求投票过程进行了多少轮?

然而这是一道提答题: 你需要构造一组 $n < 10^5$, $m, \sum k_i < 2 \cdot 10^5$ 的输入, 使得答案大干 100。¹⁸

陈东武 Opentrains 杂题选讲 43 / 55

¹⁸XVIII Open Cup, GP of Gomel, Problem F

ProbSet IV

ProbSet III

ProbSet I

给定正整数 n,a,b, 设有 n 个点的随机竞赛图, 两个点 i,j(i < i) 之间连边有独立的 a/b 概率为 $i \rightarrow i$ 。 设 f(k) 表示存在 k 个点连向其他所有 n-k 个点的概率, 求 $f(1), \dots, f(n-1) \mod 998244353$ $n < 6 \cdot 10^5$, a < b < 100_o ¹⁹

Opentrains 杂题选讲

¹⁹XVIII Open Cup, GP of Gomel, Problem D

Do I Wanna Know?

把式子写出来,发现它就是高斯二项式系数20。 当然也有 $O(n \log n)$ 的 FFT 做法 qwq。

²⁰https://en.wikipedia.org/wiki/Gaussian_binomial_coefficient

Chalk Outline

给定自然数 n,k, 构造 n 个点的简单多边形(值域 $[-10^9, 10^9] \cap \mathbb{Z}$),满足恰好在内部的对角线有 k 条。需判断无解。 $4 \le n \le 100, \ 0 \le k \le \frac{n(n-3)}{2}$ ° 21

²¹XVIII Open Cup, GP of Gomel, Problem C

猜想 k < n-3 时无解,有人知道怎么证吗 /kel k = n - 3 时即为 n - 1 个点的凸色连向一个点, 随便试一个 (i, i^2) 和 $(10^9, -10^9)$, 然后胡乱调整即可。

陈东武

广州大学附属中学

- ① 前言
- 2 ProbSet
- 3 ProbSet I
- 4 ProbSet III
- 6 ProbSet IV
- 6 ProbSet V

I've Got Friends

给定某个无向图 G 的线图 22 L(G),构造一个可能的 G。需判断无解。

 $n, m \leq 10^5$. 23

提示 (Whitney 同构定理): 对于简单连通图 G_1, G_2 , 若它们均不是 K_3 或 $K_{1,3}$, 则 $G_1 \cong G_2 \iff L(G_1) \cong L(G_2)$ 。

²²https://zh.wikipedia.org/wiki/%E7%B7%9A%E5%9C%96

²³XVIII Open Cup, GP of Gomel, Problem I

考虑增量构造,首先将重边缩起来,然后 bfs 遍历 $\mathsf{L}(\mathsf{G})$ 的每个 连通块,维护当前的原图 G,设当前要加入一条新边 $v \in E(G)$ 。 \ddot{A} |V(G)| < 4 则暴力搜索,否则若与 v 相邻的边的最小点覆盖 < 2且不出现重边就可以加入、否则必定无解、因为没有 G 之 外的方案了。

陈东武 广州大学附属中学

Five Points

给定平面上 n 个点,每个点随机连出一条射线,求其两两不交的概率。

$$2 \le n \le 5$$
° ²⁴

陈东武 Opentrains 杂题选讲

²⁴XIX Open Cup, GP of Gomel

ProbSet I

设两两连射线的倾角是 $\alpha_1, \cdots, \alpha_{n(n-1)}$, 每个点连出射线的倾角 是 $\theta_1, \dots, \theta_n$, 答案只与这些值之间的大小关系有关, 所以考虑 分段法。

从 $\alpha_1, \dots, \alpha_{n(n-1)}$ 切开将其分为 n(n-1) 段, 枚举 θ_i 所在段, 若 θ_i , θ_i 在不同段则可以直接判断出是否相交。然后对于每一 段,若其范围内有 k 条射线,则它们不交等价于 θ 的大小顺序 固定,乘上 1/k! 的概率即可。

时间复杂度 $O(n^{2n})$ 。

Graph and Machine

给定 k 个点 m 条边的无向简单连通图 (V, E), 每个点 u 有点权 $c_u \in \{0,1\}$ 。

给定 N 个点的 DAG, 点 s 没有入边,称为源点,点 t_0, t_1 没有出边,称为汇点,汇点之外的点 u 有标记 $l_u \in E$,且有两条出边分别连向 $o_{u,0}$ 和 $o_{u,1}$ 。

判断是否 $\forall (x_1, x_2, \dots, x_m) \in \{0, 1\}^m$,在 DAG 上从 s 出发,每次从 u 走到 $o_{u,x_{l_u}}$,最终走到 t_1 当且仅当

$$\forall u \in V, \bigoplus_{e_i \text{ start with } u} x_{e_i} = c_u$$

 $N, k, m \le 3 \cdot 10^5$, $N \ge 3$, 对于所有从源点到汇点的路径,经过的点的标记不同。²⁵

 除东武
 广州大学附属中学

 Opentrains 杂题选讲
 53 / 55

²⁵XIX Open Cup, GP of SPb, Problem B

Graph and Machine

实际上并不会讲这题,因为我还没看懂题解²⁶ /dk 有人看懂了可以浇浇我吗 /kel

²⁶https://codeforces.com/blog/entry/62010?#comment-460369