## Αριθμητική Αναλύση

## Ασκήσεις Εργαστηρίου 8

- 1. Γράψτε πρόγραμμα που να προσεγγίζει άγνωστη συνάρτηση με τη μέθοδο ελάχιστων τετραγώνων. Η συνάρτηση θα δίνεται ως ζεύγη σημείων, σε δύο πίνακες x,y. Δώστε τη δυνατότητα στο χρήστη του προγράμματος να επιλέγει την προσεγγιστική καμπύλη μεταξύ των
  - (α') y = ax + b (γραμμική),
  - (β')  $y = ax^b$  (δύναμη),
  - (y')  $y = a + be^x$  (εκθετική),
  - (δ')  $y = a + b \ln x$  (λογαριθμική).

Να υπολογίζετε κάθε φορά το συντελεστή  $r^2$  της καμπύλης ελάχιστων τετραγώνων που επιλέγεται.

Εφαφμόστε το πρόγραμμα για την προσέγγιση της συνάρτησης που δίνεται από τα σημεία στο αρχείο. Σε αυτό, η πρώτη γραμμή περιέχει το πλήθος των σημείων και ακολουθούν σε διαδοχικές γραμμές τα ζεύγη τιμών x, y.

2. Η συνολική φωτεινή ισχύς, P, που εκπέμπεται από ένα μέλαν σώμα επιφάνειας A, δίνεται συναρτήσει της απόλυτης θερμοκρασίας του, T, από τη σχέση

$$P = \sigma A T^4 ,$$

όπου  $\sigma$  η σταθερά Stefan–Boltzmann. Πειραματικές μετρήσεις για ένα νήμα ηλεκτρικού λαμπτήρα (που θεωρούμε ότι προσεγγίζει το μέλαν σώμα) σε θερμοκρασίες  $300\,\mathrm{K}\text{-}2300\,\mathrm{K}$  έδωσαν τις ακόλουθες τιμές

| T(K) | P(W)   | T(K) | P(W)   |
|------|--------|------|--------|
| 300  | 0.0013 | 1400 | 1.0031 |
| 400  | 0.0162 | 1500 | 1.4193 |
| 500  | 0.0297 | 1600 | 1.9052 |
| 600  | 0.0318 | 1700 | 2.4026 |
| 700  | 0.0484 | 1800 | 2.5031 |
| 800  | 0.0965 | 1900 | 3.9072 |
| 900  | 0.1357 | 2000 | 4.3156 |
| 1000 | 0.2947 | 2100 | 5.5060 |
| 1100 | 0.4563 | 2200 | 6.9044 |
| 1200 | 0.5398 | 2300 | 7.6370 |
| 1300 | 0.8884 |      |        |

Αν υποθέσουμε ότι η επιφάνεια του νήματος είναι  $0.05\,\mathrm{cm}^2$ , να επαληθεύσετε από τα δεδομένα το νόμο Stefan-Boltzmann (ότι πράγματι η δύναμη στην οποία υψώνεται το T είναι 4) και να εκτιμήσετε τη σταθερά  $\sigma$ . Υπολογίστε το συντελεστή  $r^2$  της καμπύλης ελάχιστων τετραγώνων.

3. Δημιουργήστε ένα αρχείο που να περιέχει τα ζεύγη  $(x_i, f(x_i))$  μιας γνωστής συνάρτησης f(x), π.χ.  $\sin^2 x$ . Τα  $x_i$  ας είναι 15 ισαπέχοντα σημεία στο διάστημα [2,4]. Το αρχείο θα έχει στην πρώτη γραμμή το πλήθος των σημείων και θα ακολουθούν τα ζεύγη  $(x_i,y_i)$ .

Υπολογίστε την πρώτη και τη δεύτερη παράγωγο στο x=2.5, της συνάρτησης που δίνεται από τα σημεία στο αρχείο που φτιάξατε. Για τον υπολογισμό των παραγώγων χρησιμοποιήστε όλα τα σημεία.