Assignment 3: MA3140

- **Q 1.** Let X_1, \ldots, X_n be a r.s. from Pareto distribution with density $f(x) = \frac{\beta \alpha^{\beta}}{x^{\beta+1}}, x > \alpha$, $\alpha > 0, \beta > 2$. Find a sufficient statistic when (i) α is known; (ii) β is known; and (iii) both α and β are unknown.
- **Q 2.** Let X_1, \ldots, X_n be a r.s. from $Beta(\lambda, \mu)$ population. Find a sufficient statistic when (i) μ is known; (ii) λ is known; and (iii) both μ and λ are unknown.
- **Q 3.** Let X_1, \ldots, X_n be a r.s. from a continuous population with density function $f(x) = \frac{\theta}{(1+x)^{1+\theta}}$, x > 0, $\theta > 0$. Find a minimal sufficient statistic.
- **Q 4.** Let X_1, \ldots, X_n be a r.s. from a Geometric population with pmf $f(x) = p(1 p)^{x-1}$, $x = 1, 2, \ldots, 0 . Find a minimal sufficient statistic.$
- **Q 5.** Let X_1, \ldots, X_n be a r.s. from an exponential population with density function $f(x) = e^{\mu x}, \ x > \mu, \ \mu \in \mathbb{R}$. Show that $Y = X_{(1)}$ is complete.
- **Q 6.** Let X_1, \ldots, X_n be a r.s. from a $N(\theta, \theta^2)$ population. Show that (\overline{X}, S^2) is minimal sufficient but not complete.
- **Q 7.** Let X_1, \ldots, X_n be a r.s. from a $N(0, \sigma^2)$ population. Show that X is not complete but X^2 is complete.
- **Q 8.** Let X_1, \ldots, X_n be a r.s. from a $P(\lambda)$ population. Find a UMVUE of $g(\lambda) = P(X_1 \le 1) = (1 + \lambda)e^{-\lambda}$.
- **Q 9.** Let X_1, \ldots, X_n be a r.s. from an exponential population with density function $f(x) = e^{\mu x}, \ x > \mu, \ \mu \in \mathbb{R}$. Find UMVUEs of μ and μ^2 .
- **Q 10.** Let X_1, \ldots, X_n be a r.s. from a $N(\mu, \sigma^2)$ population. Find UMVUEs of the signal to noise ratio μ/σ and quantile $\mu + b\sigma$, where b is any real number.