第一章 函数、极限、连续 第四节 函数连续性

有关知识:

- (1) 连续与间断的概念及间断点分类.
- (2) 闭区间上连续函数性质及应用(中间值存在性证明及方程根存在性证明).
- (3) f(x) 在 x_0 处连续 $\Leftrightarrow f(x)$ 在 x_0 处既左连续又右连续.

例 1: 设 f(x) 在 (0,1) 内有定义,且函数 $e^x f(x)$, $e^{-f(x)}$ 在 (0,1) 内都是单增函数,证明 f(x) 在 (0,1) 内连续.

分析: 欲证 f(x) 在 $\forall x_0 \in (0,1)$ 处连续,需证左,右都连续

证明: 对 $\forall x_0 \in (0,1)$, 由题设知当 $x \in (x_0,1)$ 时, 有

$$e^{x_0} f(x_0) \le e^x f(x), \quad e^{-f(x_0)} \le e^{-f(x)}$$

所以 $e^{x_0-x} f(x_0) \le f(x) \le f(x_0)$

令 $x \to x_0^+$, 由夹逼定理得 $\lim_{x \to x_0^+} f(x) = f(x_0)$, 即 f(x) 在 x_0 处右连续

类似地,可证 f(x) 在 x_0 处左连续,于是得结论.

例 2: 设 f(x) 在 [a,b] 上连续,且对 $\forall x \in [a,b]$,存在 $y \in [a,b]$,使得 $|f(y)| \le \frac{1}{2} |f(x)|$,

证明: 至少存在一点 $\xi \in [a,b]$, 使得 $f(\xi) = 0$.

分析: 初一看无处下手,此时可试一试反证法。

证明: 若对 $x \in [a,b]$, $f(x) \neq 0$, 则 f(x) 在 [a,b] 上恒正或恒负, 不妨设 f(x) > 0, $\forall x \in [a,b]$,

则
$$\exists x_0 \in [a,b]$$
, 使得 $f(x_0) = \min_{x \in [a,b]} f(x) = m > 0$

对此 x_0 , 存在 y, 使得 $f(y) = |f(y)| \le \frac{1}{2} |f(x_0)| = \frac{m}{2}$

从而得出矛盾. 故结论成立.

例 3 设 f 是定义在一个圆周上的连续函数,证明存在一条直径,使得 f 在直经的两端取相同值.

分析: 首先要将问题用数学语言表达,设圆周的圆心为O,取圆周上一点A,B为圆周上任一点,记 $\angle AOB = \theta$, $\theta \in [0,2\pi]$,则该问题用数学语言表达为:

已知 $f(\theta)$ 在 $[0,2\pi]$ 上连续,且 $f(0) = f(2\pi)$,求证存在 $\theta_0 \in [0,\pi]$,使得 $f(\theta_0) = f(\theta_0 + \pi)$. 此问题的证明不困难:

令 $F(\theta)=f(\theta)-f(\theta+\pi)$,则 $F(0)F(\pi)\leq 0$,从而由连续函数的性质知 $\exists \theta_0\in [0,\pi]$,使得 $F(\theta_0)=0$,即可得结论.

或 令 $F(\theta) = f(\theta) - f(\theta + \pi)$, 则 $F(0) + F(\pi) = 0$, 从 而 由 连 续 函 数 的 性 质 知 $\exists \theta_0 \in [0,\pi]$, 使得

$$F(\theta_0) = \frac{F(0) + F(\pi)}{2} = 0$$
, 即可得结论.

或 可用反证法证明,请同学们完成 练习题

1. 设
$$f(x) = \lim_{n \to \infty} \frac{x^{2n-1} + ax^2 + bx}{x^{2n} + 1}$$
 为连续函数,则 $a = \underline{\qquad}, b = \underline{\qquad}$.

(答案: 0, 1)

2. 求
$$f(x) = \frac{\frac{1}{x} - \frac{1}{1+x}}{\frac{1}{x-1} - \frac{1}{x}}$$
的间断点,并确定其类型.

3. 设
$$f(x) = \frac{e^x - b}{(x - a)(x - b)}$$
,且已知 $x = e$ 为无穷间断点, $x = 1$ 为可去间断点,则 $b = ____$. (答案: e)

4. 设 f(x) 在 (a,b) 内至只有第一类间断点,且对 $\forall x, y \in (a,b)$,有

$$f(\frac{x+y}{2}) \le \frac{f(x) + f(y)}{2}$$

证明: f(x) 在(a,b) 内连续.

(任取
$$x_0 \in (a,b)$$
, 由题设有 $f(\frac{x+x_0}{2}) \le \frac{f(x)+f(x_0)}{2}$, 令 $x \to x_0^+$, 可得

$$f(x_0 + 0) \le f(x_0)$$
, $\Leftrightarrow x \to x_0^+$, $\exists f(x_0 - 0) \le f(x_0)$;

又
$$f(x_0) = f(\frac{x_0 + h + x_0 - h}{2}) \le \frac{f(x_0 + h) + f(x_0 - h)}{2}$$
 , 令 $h \to 0^+$, 可得

$$f(x_0+0)+f(x_0-0) \ge 2f(x_0)$$
, 所以有

$$f(x_0 + 0) = f(x_0 - 0) = f(x_0)$$

5. 设f(x)在 $(-\infty,+\infty)$ 内连续,且 $\lim_{x\to\pm\infty} f(x) = +\infty$,f(x)的最小值f(a) < a,求证f(f(x))

至少在两个不同的点处取得它的最小值.

(易见 f(f(x))的最小值为 f(a),故只需证存在 $x_1 \neq x_2$,使得 $f(x_1) = f(x_2) = a$)

6. 设 f(x) 在 $(-\infty, +\infty)$ 内连续,且 f(f(x)) = x,求证存在一点 ξ ,使得 $f(\xi) = \xi$. (用反证法证明)