2016 年集训队作业 Codechef 试题泛做

杭州学军中学 金策

(比较有意思的题目会标上★)

1 数据结构题

1.1

试题编号 AUG15 DISTNUM	
试题名称 Simple Queries	
题目大意	算法讨论
维护一个正整数数组。现在有关于它	首先有插入操作比较麻烦,但因为是离线的,可以
\mid 的 Q 个询问。询问有 5 种:	事先预处理出每个插入的位置。这一步可以用一
(1) 对于下标在 $[l,r]$ 区间的所	个平衡树来完成。这样后面只要在静态序列上搞
有元素去重后构成的集合, 求出	就可以了。
$\sum_{x < y < z} xyz$	操作 (5) 是经典的数颜色问题,只要把每个点看成
(2) a[x] = y	二维平面上的点 $(lastpos[x], x)$, 这样只要统计区
(3) 删除 $a[x]$	间 $[l,r]$ 内 $lastpos < l$ 的点的数量就可以了。这可
(4) 在 $a[z]$ 之后插入 y 元素	以用二维线段树来完成。
(5) 询问下标在 $[l,r]$ 区间内的有多	操作 (1) 中要求的那个式子可以通过维护一次方
少种不同的元素。	和、二次方和、三次方和来得到,然后也用上面的
$(n,q \le 10^5)$ 可以离线。	方法搞就可以了。
时空复杂度 空间 $O(n \log^2 n)$, 时间	$O(n\log^2 n)$.

试题编号 MAY15 CBAL	
试题名称 Chef and Balanced Stri	ngs
题目大意	算法讨论
一个小写字母组成的字符串。一个子	给每种字母分配一个二进制位。求出数组的前缀
串是平衡的当且仅当每种字符都出现	异或和,那么子串 $[l,r]$ 平衡当且仅当 $pre[l-1] = l$
偶数次。每次询问一个区间内所有平	pre[r]。由于只涉及到相等关系,可以把这些数值
衡子串的长度的 type 次方和。	离散化。
强制在线, $(n \leq 100000, type \in$	然后用经典的在线莫队方法:分块解决,预处理出
$\{0,1,2\}$)	第 i 块到第 j 块的答案。询问的时候先找出对应
	的大块区间,然后把两边多出来的部分往里面暴
	力添加。添加时只需要维护每种下标的 0 次方、1
	次方、2次方和即可,这些值也需要在开头预处理
	ϕ 好,于是每添加一个数是 $O(1)$ 的。
时空复杂度 空间 $O(n\sqrt{n})$, 时间 $O(n\sqrt{n})$	$(n\sqrt{n})$.

试题编号 OCT14 TRIP	S ★
试题名称 Children Trips	
题目大意	算法讨论
一棵 n 个点的树,每条边长度	度为 1 或 取一个 $S = O(\sqrt{n})$ 。任取一个根,然后将所有高
2。每次询问 u, v, d ,问 u 到	
最少要分成几段,使得每段的	的长度都 \mid 单路径上只有 $O(\sqrt{n})$ 个关键点。
不超过 d (不能在一条边中间	断开)。 对于 $d > \sqrt{n}$ 的情况,至多分成 \sqrt{n} 段,因此可以
$(n \le 10^5, q \le 10^5)$	贪心暴力。
	对于 $d \leq \sqrt{n}$ 的情况,我们只要让它每次跳过一个
	前面的关键点,这样也只要跳 $O(\sqrt{n})$ 次。
	为了实现跳跃,需要对于所有 $d \leq \sqrt{n}$ 处理出每一
	个 <i>u</i> 跳到祖先的最近关键点所需要的步数,以及
	跳过后落在哪个位置。
	如果按照原题的描述,看起来还要实现从 LCA 往
	下面跑的过程, 其实不必要, 这个贪心两边开始
	往中间分别贪也是没关系的,所以只要分别从 u,v
	往上朝着 LCA 跑就可以了。
	$ $ 要实现暴力跳 $d > \sqrt{n}$ 步,可以转化为跳若干个大
	步,再用预处理的数组的结果跳一个小步。跳大步
	的总数是 $O(\sqrt{n})$ 的,所以复杂度还是 $O(\sqrt{n})$ 。
时空复杂度 空间 $O(n\sqrt{n})$,	,时间 $O(n\sqrt{n})$ 。

试题编号	FEB13 QUERY	
试题名称	Observing the Tree	
题目大意		算法讨论
维护 n 个点的	无根树上的点权,支持:	首先是树链剖分转化为链上的问题。
链加等差数列	,询问链和,回到历史	对线段树上的每个结点 $[l_i,r_i]$,除了维护 sum_i 之
版本。		外,还维护标记 a_i,d_i 。表示对这个区间已经加过
强制在线。		了一个首项为 a_i ,公差为 d_i 的等差数列。
$ (1 \le n, m \le 1)$	0^{5})	再用熟知的可持久化线段树方法即可。为了减少
		常数,可以使用标记永久化。
时空复杂度	时间,空间都是 $O(n \log n)$	$(s^2 n)$.

试题编号	MARCH14 GERA	ALD07 ★
试题名称	Chef and Graph	Queries
题目大意		算法讨论
]图。每次询问给	按照边编号顺序插入边,并用 LCT 维护一个生成森林。
	\mathbb{R} 留编号在 $[l,r]$ 的	每次插入边 i 形成环时,删除环上编号最小的边 j ,并令
边,图中有几	个连通块?	$f[i] = j$; 不成环则 $f[i] = 0$; 是自环则 $f[i] = \infty$ 。
$(n, m, q \le 200)$	000)	假如现在刚插了边 i ,就回答所有形如 $[l,i]$ 的询问,区
		间中 $f[x] \ge l$ 的边 x 都是废边,剩下的边每条都使连通
		块数减 1。这可以用线段树查询。
时空复杂度	空间 $O(n+m)$,	时间 $O((n+m)\log(n+m))$ 。在线做法需要可持久化线段
	树,空间多一个 l	\log_{\circ}

试题编号 MARCH15 TREE	MARCH15 TREECNT2	
试题名称 Counting on a Tr	ee	
题目大意	算法讨论	
一棵 n 个点,带整数边权 a_i 的树, q 个操作,每次修改一条边的权,并查询有多少条简单路径上的权值 \gcd 为 1 。 $(n \le 100000, a_i \le 1000000, q \le 100)$	容易想到容斥,那么需要枚举所有 $\mu(x) \neq 0$ 的 x ,并选出边权为 x 的倍数的边组成的子图统计其路径数量然后加到答案里去。如果每次都重复求一遍会很慢。注意到只有 100 个修改操作,也就是说大部分边都是保持不变的,所以在用并查集做的时候,可以把那些不会被删除的边给加进去,然后对于每个操作,暴力把需要插入的边插到并查集,	
	然后统计答案,之后再恢复到插之前的状态,然后做下 一个询问。这样复杂度是可以承受的。	
时空复杂度 空间 $O(nd(a_i))$,	时间 $O((nd(a_i) + (qd(a_i))^2)\log n)$ 。	

试题编号	APRIL15 BWGAME ★	7
试题名称	Black-white Board Gam	ne
题目大意		算法讨论
	非列 p ,满足 $l_i \leq p[i] \leq$ 中奇排列和偶排列哪个 ≤ 100000	考虑一个 $n \times n$ 矩阵,第 i 行的 $[l_i, r_i]$ 列填 1 ,其他填 0 ,问题就转化为求这个矩阵的行列式。 考虑消元的过程,当前处理第 j 列,则把所有左端点为 j 的区间拿出来,取其中右端点位置最靠左的 p ,并用 p 去消其他左端点为 j 的区间,容易发现消元之后每一行的 1 仍然保持连续一段区间的形状,而且被消的区间的左端点变为 p 的右端点 $+1$,而其各自的右端点不变。于是可以用可并堆来维护这些询问与操作。
时空复杂度 空间 $O(n)$,时间 $O(n \log n)$ 。		

试题编号 JAN15 XRQRS	
试题名称 Xor Queries	
题目大意	算法讨论
维护一个数列,支持以下操作:	用可持久化 01trie 来维护。
(1) 在末尾插一个数;	插一个数就直接在 last 版本上插,删末尾几个只
(2) 求区间内的数与 x 异或的最大	要将 last 指针往前移就行。然后 01trie 维护出现
值;	次数时是可以相减的,用 r 的减去 $l-1$ 的就得到
(3) 删除末尾的 k 个数;	[l,r] 的。所以(2)(4)(5)几个经典操作也是能 $ $
(4) 求区间内一个数的排名;	做的。
(5) 求区间内第 k 大。	
(操作数目 $m \leq 500000$, 权值 $x \leq$	
500000)	
时空复杂度 空间 $O(m \log x)$, 时间	$O(m \log x)$.

试题编号 JUNE14 SEA	JUNE14 SEAARC	
试题名称 Sereja and Arc	Sereja and Arcs	
题目大意	算法讨论	
长为 n 的序列 a_i ,有多少组 i	$<$ 我们按出现次数多的(大于 S 次)颜色和出现少的 ($\le S$	
$j < k < l $ 满足 $a_i = a_k \neq a_j$		
a_l \circ	首先算 a_i, a_j 都是少数颜色的:注意到两个颜色各选两	
$(n \le 100000, a_i \le 100000)$	个有 AABB, ABAB, ABBA 三种情况, AABB 是很好	
	统计的,所以只要算出 ABBA 的情况即可,这个只要	
	从左到右扫,扫到 A 的时候就枚举之前出现过的 A ,于	
	是只要查询区间内有几对 BB 就好,这可以用树状数组,	
	每次扫到 B 的时候往前每一位 B 处增加 1 就行。这样	
	要做不超过 $S^2 \times n/S$ 次树状数组操作。	
	接着算 a_i 是多数色的。总共只有不超过 n/S 种多数色,	
	枚举固定一个多数色 A 然后算。算出每个 B 左边有多	
	少个 A ,两两乘起来,这样算得的结果包括了 $ABAB$ 和	
	AABB 和 ABB ,把后两类剔除即可。这样一次是 $O(n)$	
	的。	
时空复杂度 空间 $O(n)$, 时	$\Box O(n\sqrt{n\log n})$.	

试题编号	MAY14 ANUDTQ	
试题名称	Dynamic Trees and Queries	
题目大意		算法讨论
维护一棵树的]点权,支持以下	如果只有 (2)(4) 操作,就是一个经典的 DFS 序题目,用
操作:		线段树维护即可。
(1) 添叶子;		现在问题在于树形态会变化。我们可以用一棵 splay 来
(2) 子树加;		维护树的 DFS 序。为了方便,采用括号序列。添叶子
(3) 删除一模	果子树;	时,只要在父亲结点对应的左括号后面加一对括号。子
(4) 询问子网	対和 。	树操作只要把一对括号之间的区间提取出来,然后进行
强制在线。(n	$, m \le 100000)$	操作。
,	,	
时空复杂度	空间 $O(n)$, 时间	$O(n \log n)$.

试题编号 NOV13 MONOPLOY	
试题名称 Gangsters of Treeland	
题目大意	算法讨论
一棵有根树,每个结点有颜色,初始	根据题意,修改操作实质就是 LCT 的 access 操
时都不同。一条边若两端颜色不同则	作,所以只需要用 LCT 维护这棵树,并在每次
需要 1 的代价。支持两种操作:	access 时发生虚实边替换的时候,对应的修改边上
(1) 将 u 到根路径上的点染成一种	的边权。
没出现过的颜色;	维护边权和询问可以转化到 DFS 序上,然后用树
(2) 询问一个子树内每个点到根的代	状数组/线段树来查询。
价的平均值。	
$(n, q \le 100000)$	
时空复杂度 空间 $O(n)$,时间 $O(n\log^2 n)$ 。	

试题编号	SEPT14 QRECT	
试题名称	Rectangle Query	
题目大意		算法讨论
维护平面上的	矩形(边平行坐标轴),	可以转化一下,统计与给定矩形不相交的有几个。
支持:		这只要判断端点的关系就可以了。先看看一维情
(1) 插入矩形	;	况,就是统计右端点右边的左端点数和左端点左
(2) 删除矩形	;;	边的右端点数。二维情况稍微推广一下,就是右下
(3) 询问与给	定矩形相交的矩形有多	端点的左下角的左上端点数目(以及其他三个方
少个。		向,通过旋转 90 度即可得到)。
$(q \le 100000)$		这样题目就变成了加点、删点及二维区域点查询。
		经典做法是用二维线段树,或者离线分治套一维
		树状数组。
时空复杂度 空间 $O(n)$,时间 $O(n \log^2 n)$ 。		

试题编号	MAY13 QTREE	
试题名称	Queries on tree again!	
题目大意		算法讨论
一个 n 个点 n	· 条无向边的连通图, 边	维护最大连续子段和的经典做法是记录四个信息
带有边权。支	持两种操作:	sum,lmax,imax,rmax,这里需要变号所以还要
(1) 将 u 到	v 路径上的边权乘 -1 ;	维护三个 min。这样就支持变号已经信息合并了。
(2) 询问 u 到 v 路径上的边权的最		链询问和操作只要树链剖分并用线段树维护即可。
大连续子段和。		这里是一个基环外向树。比较方便的处理方法是
路径都指最小结点数目的路径,保证		看成整棵树加上一条多余边。对于给出的两点,只
唯一。		要算一下经过这条边的路径和不经过的哪个更短
$(n \le 10^5, q \le 10^5)$		即可,如果走额外边更短的话,所需要的路径就拆
		成了两条树上路径加这条额外边。
时空复杂度 空间 $O(n)$, 时间 $O(n \log^2 n)$		$\log^2 n)$.

试题编号 MARCH14 STREETTA	.★
试题名称 The Street	
题目大意	算法讨论
两个长为 n 的数组 $a[],b[]$ 。支持三种	首先离散化然后用线段树维护。
操作:	第一个操作有经典的做法,对线段树每个结点标
(1) 给 a 的区间 $[l,r]$ 加上等差数列;	记两个值 k, b ,表示这一个区间中的所有 x 都被加
(2) 给 b 的区间 [l, r]max 上等差数	上了 $kx + b$ 。 (永久化标记)
列;	第二个操作也有经典的做法, 对线段树每个区间
(3) 询问单点的值。	维护一条(坐标系中的)线段。每当一条新的线段
$(n \le 10^9, q \le 3 \times 10^5)$	覆盖到这个区间上, 先检查这条线段是否永远比
	原来的优(或劣),如果是则替换(或扔掉),如
	果不是则有交点,那么在交点的另一侧的儿子区
	间肯定是完全覆盖(或扔掉的),所以只要往交点
	这一侧递归下去就行。
时空复杂度 空间 $O(m)$, 时间 $O(m)$	$\log^2 m)$.

试题编号 NOV14 FNCS	
试题名称 Chef and Churu	
题目大意	算法讨论
一个长为 n 的数列 $a[]$ 和 n 个函	首先对操作分块。开始处理某一块操作前,把目前的
数。第 i 个函数返回值为数列中	数组情况以及每个函数的返回值(及他们的前缀和)
第 l_i 到 r_i 项的数字之和。	先预处理好。接下来只需要考虑块内的修改操作对块
支持两种操作:	内且在它后面的询问操作的贡献就行了。我们枚举块
(1) 将 $a[x]$ 修改为 y ;	内的每一对修改操作和询问操作统计贡献,这样就变
(2) 询问第 p 个到第 q 个函数的	\mid 成了查询对于某个点 x ,有多少个 $p \le y \le q$ 满足 \mid
返回值之和。	$\left l_y \le x \le r_y, \right $ 这可以变成两次询问 $1 \le y \le p-1$ 与
$(n \le 10^5)$	$1 \le y \le q$.
	\mid 这样对于所有块共有 $O(n\sqrt{n})$ 个这样的询问。扫一遍 \mid
	$\mid n$ 个函数,并用区间加法 $O(\sqrt{n})$,询问单点 $O(1)$ 的分 \mid
	块维护即可。
时空复杂度 空间和时间都是 O($n\sqrt{n}$

试题编号 SEPT14 FIBTREE		
试题名称 Fibonacci Numbers on	Fibonacci Numbers on Tree	
题目大意	算法讨论	
维护一棵树上的点权。支持操作:	树剖后上线段树,线段树要可持久化。另外由于有	
(1) 链加 fib 数列;	子树询问,还需要 DFS 序,这个 DFS 序要按照	
(2) 询问链和;	先走重链的顺序,这样既可以处理链又可以处理!	
(3) 定一个点为根后询问某点的子树	子树。换根不需要真的换根,只要检查一下树根和	
和;	询问点的祖先关系,看看询问的子树在原树中也	
(4) 回到过去某一版本。	是子树,还是子树的补集。	
模 $10^9 + 9$ 输出答案,强制在线。	现在只需要考虑怎么用线段树维护 fib 数。按照	
$(0 \le n, q \le 100000)$	fib 数的通项公式,可以将它拆成两个等比数列的	
	和,而等比数列是可以维护的,只要标记一个区间	
	被加的等比数列的首项就可以了。	
	计算的时候涉及到 $\sqrt{5}$ 的,它是 10^9 + 9 的二次剩	
	余,所以直接用整数就可以完成计算。	
时空复杂度 空间 $O(n \log^2 n)$, 时间	$O(n\log^2 n)$.	

i	式题编号	JULY12 DGCD	
ì	式题名称	Dynamic GCD	
是	返目大意		算法讨论
4	 作护树上的点	权,支持操作(1)链	先树链剖分转化为链上问题。考虑链上的这个数
上加 d , (2) 询问链上点权的 gcd 。		询问链上点权的 gcd。	列 a_1, a_2, \cdots, a_k ,对它做差分得到 $a_1, a_2 - a_1, a_3 - a_1$
($n, q \le 50000)$		a_2, \cdots 。这样修改操作就转化成了单点修改。
			另外注意到 $gcd(a_i, a_{i+1}, \cdots, a_j) = gcd(a_i, a_{i+1} - $
			$a_i, \cdots, a_j - a_{j-1}$),于是只要查询区间的 gcd 以及
			a_i 的值即可。 a_i 就是一个前缀和。所以只要用线
			段树维护 gcd 和 sum 即可。
B	寸空复杂度	空间 $O(n)$, 时间 $O(n \log n)$	$\log^2 n \log d$).

试题编	号	FEB14 COT5 ★	
试题名	称	Count on a Treap	
题目大	意		算法讨论
		p。支持:	我们按照 key 作为下标的顺序,维护一个 w 的序列。
(1) ‡	插入一	个关键字为 key,	给定两个位置 l,r ,区间 $[l,r]$ 中权值最大的即为 l,r 的
权重为			LCA。要询问距离的话,只要知道这三个结点的高度即
(2) 册	删除一个	〉关键字为 key 的	可。
结点;			注意到 $h(u) = u$ 的祖先数目 $= u$ 的左边的祖先数目 $+$
(3)	旬问结点	点 u,v 在 treap 上	u的右边的祖先数目。于是可以左右分开统计。
的距离	0		x 是 y 的祖先当且仅当 x 到 y 这段路上没有比 x 更大的
根结点	-	大。	点把它挡住,所以这是一个经典的"看到几座楼房"问
$n \leq 2$	$\times 10^{5}$)		题。
			经典做法是用线段树维护,除了维护区间最大值之外,
			还要记录从 l 中最高的结点往兄弟结点 r 方向能看到几
			个,以及从 r 中最高结点往 l 能看到几个。查询这个东西
			的复杂度是 $O(\log n)$,因为利用记录的信息可以每次只
			往一边递归。所以单点更新要做 $O(\log n)$ 次,复杂度是
			$O(\log^2 n)$ 。回答一次高度询问需要对拆分成的 $O(\log n)$
			个区间分别查询,所以总复杂度也是 $O(\log^2 n)$ 。
时空复	杂度	空间 $O(n)$, 时间	$O(n\log^2 n)$.

试题编号	OCT14 BTREE ★	
试题名称	Union on Tree	
题目大意		算法讨论
一棵边权均为	1 的树,每次询问给定	首先对询问点建出虚树、虚树上没有控制能力的
k 个点 u_i 以及	δ 各自的控制距离 d_i ,每	点的 d 可以设为 -1 。
个点能控制距	\bar{e} 离不超过 d_i 范围内的	考虑两个点 u,v ,我们可以把 d_v 设置为
点, 问被控制	的点总共有几个。	$\max(d_v, d_u - dis(u, v))$ 。我们对所有点按照这一
$(n \le 50000, \sum$	$\sum k \le 500000)$	规则更新它们的控制能力直到不能更新为止,这
		一步可以用一个类似 dijkstra 的过程来完成。
		对于虚树上每条边 (u,v) ,容易看出 u,v 的控制范
		围的交集是以 r 点为中心, $(d_u + d_v - dis(u, v))/2$
		为半径的区域,其中 r 是路径 (u,v) 上的某点(可
		以事先在每条边上加虚点保证中点存在)。然后答
		案即为每个点的控制点数减去每条边上 (u,v) 的控
		制范围交集的点数。(由于 d_u 都已经被更新到最
		大,所以这可以证明是正确的)。
		为了统计离 u 距离不超过 d 的数目,可以用点分
		治。点分治的每层需要记录各个高度的点的数量
		的前缀和。
时空复杂度	空间 $O(n \log n + k)$, 时	「间 $O(\sum k \log k + n \log n)$ 。

试题编号 DEC13 QTREE6	DEC13 QTREE6	
试题名称 Query on a tree V	/I	
题目大意	算法讨论	
维护一棵树,每个点有黑白两	对于每个点维护以它为根结点的黑色连通块和白色连通	
色之一,支持以下操作:	块的大小 $b[i], w[i]$ 。	
(1) 询问一个点所在的同色连	询问时,只要找出询问点所在的连通块的根 <i>i</i> ,再输出	
通块的大小;	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	
(2)翻转一个点的颜色。	$O(\log^2 n)$ 时间完成。	
$(n, m \le 100000)$	翻转一个点的颜色时,从它到它所在连通块的根这段路	
	径上的结点 v 的 $b[v], w[v]$ 值会发生变化,所以我们还需	
	要实现一个链加操作。由于询问都是单点的,所以这里	
	可以变成单点改,子树和查询,更加方便。	
时空复杂度 空间 $O(n \log n)$,	时间 $O(n\log^2 n)$ 。	

1.21

试题编号 I	FEB12 FINDSEQ	
试题名称 I	Find a Subsequence	
题目大意		算法讨论
	[1n],和一个 5 排列	枚举 $p[2], p[4] 分别对应哪两个位置,那么$
p[15]。求出一	个 a 的长为 5 的子序	p[1], p[3], p[5] 各自属于一段区间,这三个区间之
列,使得它的大	:小顺序和 p 一致。	间不相交,处理起来更方便。
$(n \le 1000)$		现在考虑这三个数怎么选,最大的那个肯定是越
		大越好,最小的那个也是越小越好。所以只要求出
		最大的和最小的,然后要找的是卡在中间的那个。
		这可以通过二分查找完成。为了二分的方便,可以
		预处理一个 $f[i][j]$ 数组,表示前 i 个数中不超过 j
		的有几个。
		预处理之前需要先离散化。
时空复杂度	空间 $O(n^2)$,时间 $O(n^2)$	$\log n$).

试题编号	JAN12 CARDSHUF	
试题名称	Card Shuffle	
题目大意		算法讨论
		用数据结构模拟这些操作。需要支持的操作有区
牌。每次执行	下述操作:	间裁剪并插入,以及区间翻转。用 splay 来实现即
从牌堆顶端拿	走 A 张牌。再从牌堆顶	可。
端拿走 B 张	牌。将第一步拿走的 A	
张牌放回到剩下的牌堆上面。从牌堆		
顶拿走 C 张牌。将第二步你拿起的 B		
张牌一张一张放到牌堆顶。最后,将		
剩下的 C 张牌放回到牌堆顶。		
最后输出操作完后的序列。		
$(n, m \le 10^5)$		
时空复杂度	空间 $O(n)$, 时间 $O(n \log n)$	$(\log n)$.

2 图,匹配,网络流

2.1

试题编号	MAY15 GRAPHCNT	
试题名称	Counting on a directed graph	
题目大意		算法讨论
n 个点的有向图。有多少对结点 (x,y) 满		以 1 为根求出 dominator tree。这样,树上
足存在 1 到 x 和 1 到 y 的路径,且两条		LCA 为 1 的每一对结点都符合条件。
路径仅有公共点 1。		
$(n \le 100000, m \le 500000)$		
时空复杂度 空间 $O(n+m)$, 时间 $O((n+m)\log(n+m))$ 。		

2.2

试题编号	FEB14 DAGCH	
试题名称	Graph Challenge	
题目大意		算法讨论
n 个点的有向]图按 DFS 序编号。 x 是 y	按照定义, superior vertex 即为半必经点 se-
的 supreme ve	ertex,当且仅当存在有向路	mi。用 dominator tree 的算法计算即可。
$x=v_0,v_1,\cdots$	$,v_{k}=y$, $\coprod x\leq y\leq v_{i} .$	
$v \neq w$ 的 superior vertex, 当 $v \neq w$ 的		
所有 supreme vertex 中编号最小的。		
输出每个结点有多少个结点将它作为 su-		
perior vertex.		
$(n \le 100000, m \le 200000)$		
时空复杂度 空间 $O(n+m)$, 时间 $O((n-m))$		$+m)\log(n+m)$.

试题编号	MAY12 TICKETS	
试题名称	Selling Tickets	
题目大意		算法讨论
一个无自环,	可能有重边的无向图。	根据题意,我们要选择一个边数最少的子图,使得
求一个 k ,使	[得不论怎样选取其中 k	这个子图的点数 $=$ 边数 -1 。
条边,都能让	:这些边各自选择自己的	这样的图一共有三种情况:
一个端点,且	每条边选到的点不重复。	(1)两个点之间的三条路径。这可以枚举起点和
$(n \le 200, m \le 200)$	(500)	终点,然后跑 BFS,并记录下到达终点的三条距
		离。
		(2) 一条路径连着两个简单环。这只要对于每
		个点求出经过它的最小简单环就可以了。这可以
		BFS,如果一条非树边的两端的 LCA 是根结点,
		则用它来更新答案。顺便要记录一下环上是那些
		边。因为最后合并答案时不能有两个相同的环并
		起来。
		(3) 一个点连着两个简单环。只要顺便记下通过
		每个点的次短环就好了。
		中间可能会有一些重复边经过,但经过重复边的
		一定不是最优解,只要无视它们就行。
时空复杂度	空间 $O(n+m)$, 时间 $O(n+m)$	$O(n^2(n+m))$

试题编号 试题名称	JAN14 TAPAIR ★ Counting The Importan	nt Pairs
题目大意 给一个简单连	通无向图,有多少对边, 条边后图会不连通?	算法讨论 这题有一个经典的 hash 做法:求一棵 dfs 生成树,并给所有非树边(只能是返祖边)分配一个随机权值;所有树边的权值是覆盖了它的非树边的权值的异或和。一个边集被删去后使得原图不连通,则它存在一个边的子集使得其权值的异或和为 0。用这个做法,此题中只需考虑 2 元边集,所以更加方便。
时空复杂度	空间 $O(n+m)$, 时间 $O(n+m)$	$O(n+m\log m)$.

试题编号 JUNE11 MINESREV	
试题名称 Minesweeper Reversed	
题目大意	算法讨论
一个 $r \times c$ 的扫雷盘面。开始时所有格	这是一道阅读理解题。
子都是开的,你要把它们关上,且用	首先雷是要一个个点的。然后考虑周围有雷的数
的步骤最少。可以点击一次关闭一个	字格和周围无雷的空白格。空白格的连通块可以
格子,同时关闭所有可以和它同时打	一次性打开,还顺便打开了周围的数字格。一个数
一开(按照正常规则)的格子。 (r,c)	字格旁边至多有两个不同的空白格连通块,如果
50)	有两个,就可以通过打开这个数字格然后把他俩
	都打开。所以可以在它们之间连一条边。
	接下来求出这个图的最大匹配数。对于所有匹配
	边,一次性打开这两个块。剩下的块都一个一个的
	开。
	由于这里的图不一定是二分图,所以求最大匹配
	要用带花树算法。
时空复杂度 空间 $O(rc)$, 时间 $O(rc)$	$(rc)^3$).

试题编号	JULY15 HAMILG	*
试题名称	A game on a graph	
题目大意		算法讨论
1	有一颗棋子, 初始时	首先注意到一个结论: v 能使得先手胜当且仅当存在
$ $ 放在结点 v \rfloor	上。两个人轮流移动	某个 G 的最大匹配不包含 v 。(考虑不存在增广路这一 $ $
棋子,可以将	F它沿着边移到相邻	性质即可证明)
结点上,但不能移到它曾经走到		先用带花树算法跑一遍最大匹配。然后再从所有没被
过的结点。不能走的人输。		匹配的结点开始做一遍寻找增广路的过程,这个过程
统计有多少个初始结点 v 能使得		是找不到增广路的,但是在途中入队过的结点都可以
先手胜利。		不被最大匹配包含。输出入队过的结点数目即可。
$(n \le 2000, \sum m \le 10^6)$		
时空复杂度 带花树的时间复杂席		$\not\equiv O(nm)_{\circ}$

试题编号 AUG12 GTHRONES	
试题名称 A Game of Thrones	
题目大意	算法讨论
一堆数字写在纸上。两人博弈。第一个人随便	这题是 HAMILG 那题 (undirected vertex
擦一个数字。后一个人也要擦一个数字,但擦	geography) 的特殊化。
的数字必须和对方上次擦的数字只相差一个素	这里的图显然是二分图。但是由于一个
因子。不能动的人就输。	数可以出现很多次,建多个点是无法承受
求必胜方。如果先胜的话要输出第一步操作的	的,所以要把匹配写成最大流的形式。
可行步骤。	删一个点后判断最大匹配数是否减少,如
$(1 \le n \le 500, 1 \le number \le 10^{18}, 1 \le$	果重复跑最大流会太慢,比较好的办法是
$count \le 10^9$)	利用退流。退流 (u,v) 时只要让 (u,v) 的
	流量减 1,然后从 t 到 v 增广,从 u 到 s
	增广。
	构图时需要质数判定,可以用 miller-
	rabin.
时空复杂度 空间 $O(n)$, 时间 $O(n^2 \log A +$	$maxflow(n, n^2))$.

试题编号	JULY14 GNUM	
试题名称	Game of Numbers	
题目大意		算法讨论
整数 a 序列	可和 b 序列, 每次挑	这是一个二分图最大匹配模型,对所有 $a[i] < b[j]$
出 i,j,p,q ,	其中 $(i,j),(p,q)$ 分别	建一排点, $a[i] > b[j]$ 的 (i, j) 建另一排点,若 gcd
不出现过,		不为 1 则连边。
$ a[q], \gcd(a[i], b[j], b[p], a[q])) > 1$ 。 最		但这样构图边数太多,需要优化。首先将
多能取几次。		$\gcd(i,j)=1$ 的点扔掉,再将 \gcd 相同的点合并。
$ (1 \le n \le 400,$	$a[i], b[i] \le 10^9)$	然后优化边,两个数有边当且仅当有公共质因子,
		那么就对所有质因子建一个点,然后把拥有这个
		质因子的数字连向它(或者由它连出)。然后跑
		dinic 就可以了。
时空复杂度	网络流点数 $O(n^2)$,边数	$\not \subseteq O(n^2 \log a_i)$.

试题编号	DEC14 RIN ★	
试题名称	Course Selection	
题目大意		算法讨论
有 n 个科目和	Tm 个学期。第 j 个学期上	最小割建模。
i 科目的得分别	是 $x[i][j]$ 。有 k 个条件 (a,b)	对每门课建一排共 $m+1$ 个点,在第 i 个和第
表示 a 科目需	要在 b 科目之前上。安排每	i+1 个点之间割断,表示在第 i 个学期上这
门课在哪个学期上,获得的最大总分是多		门课。割边的权值设为这门课的最大可能得分
		减去这个学期的得分。
	·	源点向每门课的第一个点连边,每门课的最后
		一个点连向汇点,权值为 ∞。
		对于前置课程 (a,b) , 只要从 a 的第 i 个点连
		向 b 的第 $i+1$ 个点,权值为 ∞ 。
时空复杂度	网络流复杂度,点数 $O(nm)$,边数 $O((n+k)m)$ 。

试题编号 NOV12 MARTART	NOV12 MARTARTS ★	
试题名称 Martial Arts		
题目大意	算法讨论	
一个完全二分图,边有两个权值	先不考虑第二关键字,只要最大化 $\sum V = \sum A - B$ 。	
A[i][j], B[i][j]。求一个完全匹配。	那么一个匹配的答案实际上是总权值和减去最大的一	
$\Rightarrow H = \sum A, G = \sum B.$	条权值。我们可以从小到大枚举匹配中的最大边,将	
对手目的是最大化 $G - H$,其次	这条边强制选中,然后对比它小的边所形成的图做一	
最大化 G 。你公布匹配方案之后,	次最大权匹配。一条边强制选中可以通过将边权改为	
他可以删(也可以不删) 一条匹	∞ ,强制不选可以改成 $-\infty$ 。所以这个问题就变成了	
配边,达到他的目的。	修改边权并动态维护最大完美匹配。	
你的目的是最大化 $H - G$,其次	用 KM 算法,每次修改一条边 (u,v) 的边权时,先将	
│ 最大化 <i>H</i> 。求最优策略下的比赛	u 原先的匹配边断掉,然后重置 u 的顶标为 $A[u] = 0$	
结果。	$\max(w(u,j) - B[j])$,这样依然满足顶标的条件。然后	
$ (n \le 100) $	再从 u 出发寻一条增广路。这样一次修改的代价只需	
	要 $O(n^2)$	
	考虑第二关键字的话,只要把参与运算的全部改为二	
	元组即可。	
时空复杂度 空间 $O(n^2)$,时间 ($O(n^4)$ °.	

试题编号	JUNE14 TWOCOMP	
试题名称	Two Companies	
题目大意		算法讨论
一棵树上有许	F多 A 路径和 B 路径,	这是一个二分图最大权独立集模型, 可以转化为
每个路径有权值。选出一些路径,使		最小割。
得每个点都不	S会同时被 A 路径和 B	构图时要对每一对 A,B 路径判一下是否相交,这
路径经过。求最大权值总和。		只要对 LCA 讨论一下就好了。
$(n \le 100000, 1 \le m_1, m_2 \le 700)$		
时空复杂度 预处理 $O(n \log n + m_1 m_2)$		(n_2) 。网络流点数 $O(m_1+m_2)$,边数 $O(m_1m_2)$ 。

试题编号 SEP12 PARADE ★	
试题名称 Annual Parade	
题目大意	算法讨论
一个有向图,边有非负权值。求若干	关键在于分析这个代价计算出来的到底表示什
条路径, 使总代价最小。代价计算方	么。首先对每一对点 (u,v) 都加上新边,权值为
式是:	dis(u,v)。则这个新图的答案不变,而且可以使得
(1) 每条路径的长度之和;	存在一个最优解中每个点都至多被访问一次(因
(2) 如果一条路径不是闭合的则对每	为如果有多条路径挤在同个点上,可以把它移动
条附加 C 的代价;	到新边上去)。
(3) 如果一个顶点没有被经过则每个	这个条件满足之后,可以发现每新加入一条边,所
点附加 C 的代价。	花的总代价就会减少 C (要么成环,要么多经过
多次询问 C 。	一个点)。
$ (n \le 250) $	于是只要对于边权二分图求出所有 k 匹配的最小
	代价和就好。可以用 KM 或费用流。
时空复杂度 空间 $O(n^2)$, 时间 $O(n^3)$	$3+q\log n$.

3 网络流和线性规划

3.1

试题编号 JUNE15 CHEFBOOK	*
试题名称 Chefbook	
题目大意	算法讨论
给定 m 个整数对 $(x,y),1 \le x,y, \le n$	首先写出线性规划的不等式组 $AP \leq B$,其中 A
和对应的 L_{xy}, S_{xy}, T_{xy} 。求出 N 个非	的每行有一个 $+1$ 和一个 -1 ,要最大化 C^TP 。
\int 负整数 P_x 和 N 个非负整数 Q_x ,使	转化成对偶线性规划,需要最小化 B^TY ,满足
得 $W_{xy} = L_{xy} + P_x - Q_y$ 满足 $S_{xy} \le$	$A^TY \leq C$,此时 A 的每一列有一个 $+1$ 和一个
$W_{xy} \leq T_{xy}$,且 $\sum W_{xy}$ 尽量大。输出	-1, 将所有不等式相加会发现不等式组等价于
最大值或判无解,并输出方案。	$\mid A^TY = C$,用这个等号作为流量平衡关系,可以 \mid
$ (n \le 100) $	画出一个最小费用最大流的网络模型。
	然后要用对偶线性规划的解来得到原线性规划的
	解。这里要用到"互补松弛定理",可以把原线性
	规划中的一些不等号加强为等号。然后用差分约
	束系统求出一组解,即可保证为最优解。
时空复杂度 空间 $O(n^2)$,时间 $O(co$	stflow(n,m))。

试题编号	FEB12 FLYDIST	
试题名称	Flight Distance	
题目大意		算法讨论
给定图的 n	个顶点和 m 对顶点间的	考虑线性规划。
距离。这些距	离信息可能是有矛盾的	对所有 $1 \le i < j \le n$ 建一个变量 $dis(i, j)$ 。
(不满足三角	不等式)。修改一个距离	优化的式子中含有绝对值,这可以通过将两个变量
值需要 $ d'-c $	l 的代价(有理数)。求	作差去掉。对于每一条边 w_{ij} ,建两个变量 d_1,d_2 ,
最小的总代价可以将信息修改成没有		表示边修改之后的距离为 $w_{ij}+d_1-d_2$ 。那么要最
矛盾。		小化的式子就是 $\sum d_1 + d_2$ 。
$(n \le 10, m \le 10)$	45)	然后要限制 $w_{ij} + d_1 - d_2 = dis(i, j)$,以及 $w_{ij} + d_1 - d_2 = dis(i, j)$,以及 $w_{ij} + d_1 - d_2 = dis(i, j)$,以及 $w_{ij} + d_1 - d_2 = dis(i, j)$,以及 $w_{ij} + d_1 - d_2 = dis(i, j)$,以及 $w_{ij} + d_1 - d_2 = dis(i, j)$,以及 $w_{ij} + d_1 - d_2 = dis(i, j)$,以及 $w_{ij} + d_1 - d_2 = dis(i, j)$,以及 $w_{ij} + d_1 - d_2 = dis(i, j)$,以及 $w_{ij} + d_1 - d_2 = dis(i, j)$,以及 $w_{ij} + d_1 - d_2 = dis(i, j)$,以及 $w_{ij} + d_1 - d_2 = dis(i, j)$,以及 $w_{ij} + d_1 - d_2 = dis(i, j)$,以及 $w_{ij} + d_1 - d_2 = dis(i, j)$, 以及 $w_{ij} + d_1 - d_2 = dis(i, j)$,以及 $w_{ij} + d_1 - d_2 = dis(i, j)$,以及 $w_{ij} + d_1 - d_2 = dis(i, j)$,以及 $w_{ij} + d_1 - d_2 = dis(i, j)$,以及 $w_{ij} + d_1 - d_2 = dis(i, j)$,
		$d_1 - d_2 + dis(j,k) \ge dis(i,k).$
		接下来跑单纯形就好了。
时空复杂度	单纯形变量数目 $O(n^2 +$	- m), 约数个数 $O(nm)$ 。

4 字符串

4.1

试题编号	SEPT13 TMP01 ★	
试题名称	To Queue or not to Que	eue
题目大意		算法讨论
维护一个字符	串,支持在开头加字符,	如果能求出后缀数组,那么答案就是所有 height
在末尾删字符	,并询问当前字符串的	值的和。
本质不同的子	串数目。	我们先离线搞出完整的串,并求后缀数组。然后
$(q \le 1000000)$		就变成了每次插入一个后缀,或者当前所有后缀
		的末一个字符被删去。我们保证当前维护的所有
		后缀中,不存在两个后缀 a,b 使得 a 是 b 的前缀,
		如果出现了这种情况,就把 a 删去,而答案不会
		发生影响。这样子的话,每次删除末尾的字符,就
		相当于答案减少的值为当前的后缀数量。删了之
		后可能会出现新的上述不合法情况,要把它们删
		除掉。
		具体的话可以用一个线段树,支持查询前驱后继,
		以及删除插入,并支持查询最小值。这里最小值指
		的是 $x.len - lcp(x, pre[x])$ 和 $x.len - lcp(x, suf[x])$
		的最小值,因为每次剔除不合法的都是从最小的
		开始删。
时空复杂度	空间 $O(n)$, 时间 $O(n \log n)$	$(\log n)_\circ$

4.2

试题编号	APRIL12 TSUBSTR	
试题名称	Substrings on a Tree	
题目大意		算法讨论
一棵有根树,	结点标了字母。子串定	这是一个 SAM 裸题。对这棵树建 SAM,然后算
义为从一个结点走到孩子的路径上形		出 SAM 上每个结点可以走到多少个字符串,这可
成的串。求本质不同的子串有几个。		以按结点的 len 升序 DP 求出。然后每次从根结
并且每次给出一个新的字母表顺序,		点开始在 SAM 上跑就可以了。
输出此意义下的字典序第 k 小字符		
串。字母随机生成。		
$(1 \le n \le 250000, q \le 50000)$		
时空复杂度 空间 $O(n \Sigma)$,时间 $O(n \Sigma)$		$(n+\sum ans) \Sigma)$.

试题编号	AUG13 LYRC	
试题名称	Music & Lyrics	
题目大意		算法讨论
给出 w 个单词	同和一篇文章,问每个单	经典问题。对 w 个单词建AC自动机。然后将文
词在文章中出现了多少次。		章在自动机上跑一遍,并记录一下每个结点被经
$(w \le 500, 每个单词长度 p \le 5000,$		过了几次。
文章长度 s ≤	5000000, 字符集大小	一个单词的出现次数就是对应结点在 fail 树上的
$\Sigma = 63$)		子树和。
时空复杂度 空间 $O(wp \Sigma)$,时间 $O(wp \Sigma +s)$ 。		

试题编号	DEC12 DIFTRIP	
试题名称	Different Trips	
题目大意		算法讨论
	u 上标的字符为 $deg[u]$ 。	链上的做法就是求出后缀数组,然后用总子串数
子串定义为从	某个结点到根的路径的	目减去 height 数组的和。
前缀。求有多	少个本质不同的子串。	树上的情况也可以用后缀数组的做法。把 u 到根
$(n \le 100000)$		结点的路径当做后缀,也是类似的倍增,然后求出
		height 数组。但是这里需要注意可能存在完全相
		同的后缀,需要处理一下。可以在倍增及算 height
		的过程中加特判,也可以先把树上的等价点合并
		变成一个 trie 再做。
		另外本题也可以用 SAM 做,但由于字符集较大,
		需要用 map 存边。
时空复杂度	空间 $O(n \log n)$, 时间 ($O(n \log n)$.

试题编号	APRIL13 STRQUERY	
试题名称	String Query	
题目大意		算法讨论
维护一个字符串 s, 支持在左、右、正		用后缀平衡树可以支持在一边插入或删除,那么
中间插入或者删除一个字符,询问给		把两个后缀平衡树拼起来就可以支持两边操作了,
定串在 s 中出现了几次。		再把两个这样的结构拼起来就支持在中间操作了。
$ (q \le 150000, \sum str \le 1500000)$		询问的话,完全包含在一个结构内的可以在平衡
		树上二分查找,跨越两个结构的可以用 KMP。
时空复杂度	空间 $O(n)$,时间 $O(s)$	$\log n)$.

5 数论

5.1

试题编号 SEP11 SHORT	
试题名称 Short	
题目大意	算法讨论
给定 n,k ,求出有几对整数 (a,b) 满	先特判掉 $n=0$ 的情况。
\not \not z	令 $p(a-n)(b-n) = ab-n$,得 $b = n + \frac{n(a-1)}{p(a-n)-a}$ 。
n) ab-n°	考虑 $a \le b$ 的情况并枚举 a ,根据题中关系可以化
$ (0 \le n \le 100000, n < k \le 10^{18}) $	出一个二次不等式从而得到 a 的上界 $a \leq 3.42n$,
	然后只要枚举 $n(a-1)$ 的所有约数 $d = p(a-n)-a$,
	然后看 p 是否为整数即可。为了枚举约数,可以
	先筛出 3.42n 以内所有数的质因数分解, 然后就
	能得到 $n(a-1)$ 的质因数分解,于是 DFS 就可以
	了。
	对于 a 较大的情况,可以改成枚举上式中的 p 。由
	一些不等关系可以得到 $p \le \frac{a^2-n}{(a-n)^2}$,这个范围会比
	较小,于是可以加快速度。
时空复杂度 空间 $O(n)$, 时间玄学。	

试题编号	DEC11 SH	ORT2
试题名称	Short II	
题目大意		算法讨论
给定质数 p,	有多少组	可以转化成求有多少组 $a \ge 1, b \ge 1$ 使得 $ab p(a+b+p)$ 。
(a,b) 满足 a ,	b > p, (a -	\mid 当 $p a,p b$ 时可以证明有 5 组解。
p)(b-p) ab.		当 $p \nmid a, b = b'p$ 时,令 $k = ab'/(a + pb' + p), d = ka - p$,则有
$(p < 10^{12})$		d a+p,a d+p,且 a,d 均与 p 互质,此时有 $ad (a+p)(d+p)$,
		和原题的式子相同,可以转化成第三种情况。
		所以现在只要考虑 $p \nmid a, p \nmid b$,即有 $a + b + p = kab$ 。 $a = b$ 时
		有 $a = b = 1$,只要考虑 $a < b$ 。那么 $(a - 1)(b - 1) \le p + 1$,
		则 $a < w = 1 + \sqrt{p+1}$ 。 令 $d = ka - 1 = (a+p)/b$ 。 当 d 固
		定时,由 $d a+p, a \le d+1$ 可知只有不超过 2 种可能的 a ,所
		以先枚举 $d \le \sqrt{p+w}$ 。当 $d > \sqrt{p+w}$,有 $b = (a+p)/d < p$
		$(a+p)/\sqrt{p+w} < \sqrt{p+w}$,所以枚举 b,此时也可以唯一的确
		\mid 定 a 和 d 。
时空复杂度	空间 $O(1)$,	时间 $O(\sqrt{p})$ 。

【	7	
试题名称 Lucky Days		
题目大意	算法讨论	
一个数列 S 如下定义:	首先特判掉退化情形 $(y = 0)$, 这时循环节长度是	
S[1] = A	O(P) 的,直接暴力弄出循环节就好。	
S[2] = B	$ $ 接下来考虑 $y \neq 0$ 。写成转移矩阵的形式	
$S[i] = (X \cdot S[i-1] + Y \cdot S[i-2] + S[i-1]$	$M^{k}(B, A, 1)^{T} = (S[k+2], S[k+1], 1)^{T}$.	
$Z \mod P, i \geq 3$	这显然是一个纯循环数列。首先求出循环节,这里	
对于给定的 C ,求出区间 $[l,r]$ 中的 i	要用小步大步,即把 k 写成 $k = iD - j$ 的形式。	
有多少个 $S[i] = C$ 。	\mid 循环节长度是 $O(p^2)$ 的。	
t 组询问每组给定 l,r 。	然后要找出所有 C 出现的位置,这里设 $S[k+2] =$	
$(p \le 10007, t \le 20000, l_i, r_i \le 10^{18})$	C ,然后要枚举 $S[k+1]$ 的值 $\in [0, p-1]$ 。然后也	
	要使用小步大步。	
	这样要在哈希表中进行 p^2/D 次插入和 pD 次查	
	询。取 $D = O(\sqrt{p})$ 可以达到最优复杂度。	
时空复杂度 空间 $O(p^{3/2})$,时间 $O(p^{3/2})$ 。		

试题编号	AUG11 DIVISORS	
试题名称	Something About Divis	ors
题目大意		算法讨论
对于给定的正	整数 b 和 x, 求满足条	令 $k = nx/d$,有 $k < x$,我们固定 k ,然后统计 n
件的正整数 7	n 的个数:要求对于 n ,	的数量,为了去重,我们只统计不存在 $k < j < x$
至少存在一个	数 $d(n < d \le b)$ 能整除	且 $j nx$ 的 n 。
nx.		$k nx$ 可以写成 $k/\gcd(k,x) n$,于是可以写成 $n=k$
$ (testcases \leq 4)$	$40, b \le 10^{12}, x \le 60)$	$m \cdot k / \gcd(k, x)$ 从而统计对应的 m 的数量。根据
		题目约束可以得到一个 m 的上界 L 。
		\mid 然后要把存在 $j \mid n$ 的 m 给去掉。 $j \mid n$ 等价于 \mid
		$\mid D(j)\mid m$,其中 D 是一个仅关于 j,k,x 的式子。我 \mid
		们对于 $k < j < x$ 的所有 j ,将 $[1,L]$ 中 $D(j)$ 的
		倍数从答案里去掉。这里要用容斥原理。
		然后需要用各种优化才能通过,首先将存在
		$\mid D(j_1) \mid D(j_2)$ 的 $D(j_2)$ 给去掉。然后在枚举下一 \mid
		个 $D(j)$ 进行扩展的时候,可以写成归并有序队列
		的形式。扩展过程中遇到数量为 0 的,或者当前
		lcm 已经大于 L 的,就直接删去。
时空复杂度	空间玄学,时间玄学。	

试题编号	OCT13 FN	
试题名称	Fibonacci Number	
题目大意		算法讨论
斐波那契数列	f_n ,求出一个最小的 n	斐波那契数列的通项公式为 $ f_n = (\phi^n - \phi^n) $
使得 $f_n \equiv c(\bmod p)$ 。		$(-\phi)^{-n}/\sqrt{5}$, 其中 $\phi = (1+\sqrt{5})/2$ 。
$p \le 2 \times 10^9,$	保证 $5 \neq p$ 的二次剩	首先枚举 n 的奇偶性,然后得到一个关于 ϕ^n 的
余)		二次方程,求出 ϕ^n 再用小步大步求出 n 即可。
		这个过程中需要求模意义下的平方根,可以使用
		Cipolla 算法。
时空复杂度	空间 $O(\sqrt{p})$,时间 $O(\sqrt{p})$	$\overline{p})$ \circ

试题编号 JA	JAN12 MISINT2	
试题名称 Mi	isinterpretation 2	
题目大意		算法讨论
	[L,R] 的小写字母	固定长度 m , 那么答案显然为 $26^{g(m)}$, $g(m)$ 是
	巴它的所有偶数位移	置换 p 的轮换数目。可以看出 $g(2k+1) = 1$
	妾在后面,不改变原	g(2k) + 1,那么只要考虑 $m = 2k$ 的情况。容
来的相对顺序,得	得到的字符串是不变	易发现 $p(x) = 2x \mod (2k+1)$ 。于是可以证明
的?		$g(m) = \sum_{d (m+1),d>1} \phi(d) / \text{ord}_d(2)$ 。接下来只要对
$R - L \le 50000, R$	$R \le 10^{10}$	[L, R] 内的奇数快速求出这个即可。
		先筛出 \sqrt{R} 以内的质数,然后用筛法可以得到
		[L,R] 内的所有质因数分解,于是可以 DFS 得
		到所有约数。现在要求 ord, 首先由 p,q 互质时
		$\operatorname{ord}_{pq}(a) = \operatorname{lcm}(\operatorname{ord}_p(a), \operatorname{ord}_q(a))$,于是只需要考
		虑模 p^k 即可。将 $\phi(p^k)$ 分解质因数,然后由 $X = 1$
		$\phi(p^k)$ 开始不断除以某个质因数直到不满足 $2^X \equiv 1$
		时停止,然后再对下一种质因数继续除。最后剩下
		的 X 就是所求的阶。
时空复杂度 空	间 $O(R-L+\sqrt{R})$,时	$ \exists \ O((\sqrt{R} + R - L) \log \log \sqrt{R} \log R + (R - L) \log P) $ $\circ $

6 代数,FFT

6.1

试题编号	AUG15 CLOWAY	
试题名称 Future of draughts		
题目大意		算法讨论
给 T 张无向图 每次间: 只图,一开始在 然后每次点沿面的点都 里的点都 回来。对 10^9 +	图,每个点数 n_i 。 考虑编号在 $[L,R]$ 内的每个图选定一个出发点,一些图(不能不选),把一些的一下。如果所有图出发点那么游戏可以结次之内结束游戏的方案7 取模。 $\leq 10^4, Q \leq 2 \times 10^5$	首先将每个图表示成邻接矩阵。题中要求若干步后回到出发点,它的方案数对应的是矩阵的 trail。于是第一步需要求出每个矩阵 A 的若干次幂 A^k 的 trail: 对于 $k \le n$,暴力求。对于 k 较大的情况,可以递推。根据 Caylay-Hamilton 定理可知道递推式是矩阵的特征多项式。因此只需要求出特征多项式即可,一个方便的做法是给 x 代入几个值算出行列式,然后用 Lagrange 插值。然后按照题意容斥,容斥的式子是一个类似二项式反演的东西,把组合数的分子分母拆出来就可
		以化成卷积的形式,然后用 FFT 即可。 这里的模数不太舒服,可以先用 3 个支持 FFT 的 模求出答案,然后用中国剩余定理合并。用正确的 合并姿势可以不爆 long long 也不需要浮点数。
时空复杂度 空间 $O(T^2k)$,时间 $O(T^2k \log k + Tn^4)$ 。		

试题编号	MARCH15 RNG	
试题名称	Random Number G	enerator
题目大意		算法讨论
对于一个 k	阶线性齐次递推数	这是一个经典问题。
列,求出第 $ n $	项的值。模数可以	设初始值向量 X ,转移矩阵为 A ,我们要求 A^nX 的最
FFT_{\circ}		末一行的值。可以证明特征方程 $f(x)$ 满足 $f(A) = 0$ 。
$(k \le 30000, n \le 10^{18})$		于是可以用多项式除法将 A^n 表为 $A^{k-1}, \cdots A^0$ 的线性
	,	表示。
		由于 n 较大需要一边倍增一边除。
时空复杂度 空间 $O(n)$, 时间 $O(n)$		$(k \log k \log n)$.

试题编号	AUG14 SIGFIB	
试题名称	Team Sigma and Fibona	acci
题目大意		算法讨论
$\bar{X} \sum_{x+y+z=N}$	$\frac{1}{6} 6xyzf_xf_yf_z \mod m \circ f_i$	根据斐波那契数列的生成函数,容易推出所求答
是斐波那契数		案为
$n \le 10^{18}, \sum m$	$n \le 10^6$	$[x^N] \frac{6x^3(1+x^2)^3}{(1-x-x^2)^6}$
		它的系数可以写成一个 12 阶齐次线性递推数列。可以用经典的 $O(k^2 \log n)$ 做法来求(这里 $k=12$,只要用暴力乘除法即可)。 但这样跑不出 5×10^5 组数据。解决方法是对 $m \le 200$ 左右的预处理答案,因为循环节很短。
「时空复杂度」 空间 $O(1)$,时间 $O(\log n)$ 。		

试题编号 MAF	MARCH13 CHANGE ★		
试题名称 Maki	ng Change		
题目大意	算法讨论		
n 种硬币, 第 i 和	较复杂的一题。首先将答案的生成函数部分分式分解得到		
面值 d_i ,硬币无限多。要凑出 C 的总和总共有几种方法模 10^9+7 。 d_i 两两五质。 $(n \leq 50,c \leq 10^{100}, d_i \leq 500)$	$\prod \frac{1}{1-x^d} = \frac{A(x)}{(1-x)^n} + \sum \frac{B_d(x)}{1+\dots+x^{d-1}}$		
「时空复杂度」 空间 $O(nd)$,时间为 $O(n^2d)$			

试题编号	DEC13 REALSET ★	
试题名称	Petya and Sequence	
题目大意		算法讨论
输入数组 a_0, \dots, a_{n-1} ,判断它不断 右移所形成的循环矩阵是否是非奇异 矩阵。 $(n \le 30000)$		令 $f(x) = \sum_{0 \le i \le n-1} a_i x^i$,由维基可得循环矩阵的 秩等于 $n - \deg \gcd(f(x), x^n - 1)$,所以只需判断 $f(x)$ 是否被某个分圆多项式 $\Phi_d(x)$ 整除。可以证明这等价于 $x^d - 1 f(x) \prod_{p \mid d} (x^{d/p} - 1)$,因此只需要暴力相乘并取模即可,由于乘和除的式
		子都只有两项,所以一次操作复杂度是线性的。
时空复杂度	空间 $O(n)$, 时间 $O(nd)$	$(n))$ \circ

试题编号	JAN13 CUCUMBER ★	
试题名称	Cucumber Boy and Cuc	cumber Girl
题目大意		算法讨论
有 $B \uparrow n \times n$ 矩阵 Q_1, \dots, Q_B 。		首先在矩阵的最后一列添上一列 1,得到 b 个
,	$(a), 1 \le a < b \le B$,新矩	$n \times (n+1)$ 矩阵 A_i 。所需要求行列式的矩阵就是
阵 $C_{a,b}$ 满足		$A_a A_b^T$ \circ
		按照 Cauchy-Binet 将它的行列式写成 $n+1$ 个
~ 1.11.1		矩阵的积的行列式之和,每个矩阵都是原来的矩
$C_{a,b}[i][j] =$	$\sum Q_a[i][k]Q_b[j][k]$	阵去掉对应的那一列(如果是转置就是去掉那一
	$1 \le k \le n$	行)。于是只要对每个矩阵预处理出去掉任一列后
 	排列 p ,使得 $C_{a,b}[i][p_i]$	的行列式即可。
	·奇元素,那么 (a,b) 是	求行列式的话需要用高斯消元。这里是模 2 意义
- 「 エン	η 儿 π π Δ (a, b) 足	下,所以等价于判断是否满秩。每去掉一列都重新
,		消元的做法太慢,一个快的做法是先对整个大的
$(n \le 60, b \le 8)$		$\mid n \times (n+1)$ 矩阵消元,这样会多出不存在主元的某 \mid
$(n \leq 00, 0 \leq 0)$	000)	一列,然后稍微判一下就能知道去掉某一列后是
		否满秩了。
		因为是在模 2 意义下运算,可用位运算加速。
时空复杂度	空间 $O(Bn^2)$,时间 $O($	$\frac{1}{64}(B^2n + Bn^3))_{\circ}$

试题编号	OCT11 PARSIN	
试题名称	Sine Partition Function	
题目大意		算法讨论
求值:		令 $f(n,m)$ 表示答案,而 $g(n,m)$ 表示将原题求和
		式中最后一个 sin 换成 cos 后的答案。
$\sum_{i=1}^{n}$	$\sin(k_1x)\cdots\sin(k_mx)$	那么根据一些三角恒等关系可以得到 $g(0,1) =$
$k_1+k_2+\cdots+k_m=n$		$1, g(n,m) = f(n,m-1) + \cos x g(n-1,m) -$
$(t \le 10, m \le 30, n \le 10^9)$		$\sin x f(n-1,m), f(n,m) = f(n-1,m)\cos x + g(n-1,m)\cos x$
$(t \leq 10, m \leq c)$	$n \leq 10$	$(1,m)\sin x$ \circ
		然后用矩阵乘法优化这个 dp 即可。
时空复杂度	空间 $O(m^2)$,时间 $O(m^2)$	$n^3 \log n$.

试题编号 JULY11 YA	LOP
试题名称 Trial of Doo	n
题目大意	算法讨论
$-$ 个 $n \times m$ 的网格,每个格	子一盏灯。 首先当 $n, m \leq 2$ 时,注意到在一个 2×2 的方格
从 $(1,1)$ 走到 (n,m) ,每走	一步,目 中我们可以从一个顶点走到另一个而不改变灯的
标格子的灯以及它的四周的	灯会改变 状态。所以我们可以忽略路径的限制,随意的按开
状态。现在有 k 个亮灯,尚	能否全部 关。
熄灭。	假如第一行的方案以确定,就可以从上往下贪心
$(1 \le n \le 40, 1 \le m \le 10^{9})$	
10000)	以算出中间的每个亮灯对于最后一行的贡献,因
	为每行的长度很小,所以这个东西是会很快循环
	的。而且每个灯对最后一行的贡献都是独立的,可
	以叠加。然后再考虑第一行的方案,使得最后一行
	消完, 这就可以用高斯消元解方程判断是否有解
	7.
	如果是 $n=1$ 的情况,则需要考虑路径的限制。注
	意到可以以 2 为步长不改变状态地随意跳,所以
	稍微分析一下奇偶性就可以了。
时空复杂度 空间 $O(n \cdot s)$	$atenum$),时间 $O(n \cdot statenum + k + n^2)$ 。

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
试题编号 JUNE11 CLONES	
试题名称 Attack of the Clones	
题目大意	算法讨论
考虑所有 $f: \{0,1\}^n \to \{0,1\}$ 的布尔	首先对于 2^4 种情况 (Z, P, D, A) 分别是包含它还
函数的集合。	是不包含),分别算出这个集合中有多少个元素。
集合 Z 是 0-preserving 的,集合 P 是	这需要根据定义略加分析就能算出。然后就相当
1-preserving 的,集合 D 是 self-dual	于一个 16 位二进制数之间的运算了。
的,集合 A 是 affine 函数。	剩下的就是一个经典的表达式求值问题了。做法
给定一个包含 Z,P,D,A 和 $\cup,\cap,\setminus,\mathbb{C}$	是开一个数栈和一个运算符栈,遇到括号的时候
的表达式。求出得到的集合的元素个	注意调整优先级。还要注意一下取补集运算是单
数。	目右结合的。
$(n, length \le 100)$	
时空复杂度 空间 O(length),时间 ($O(length + \log n)$.

试题编号	AUG13 PRIMEDST	
试题名称	Prime Distance On Tree	<u>3</u>
题目大意		算法讨论
从树上均匀随	机选出两个结点,它们	只要统计出树上每种长度的路径有多少条即可,
之间的距离是	质数的概率是多少。	这是一个经典问题。
$(n \le 50000)$		点分治,在合并子树的信息时,发现其实是卷积的
		形式,于是用 FFT 统计答案即可。
		为了保证复杂度,需要按子树的最大深度从小到
		大处理。
时空复杂度 空间 $O(n)$,时间 $O(n \log^2 n)$ 。		$\log^2 n$).

试题编号	NOV12 COUNTARI	
试题名称	区名称 Arithmetic Progressions	
题目大意		算法讨论
一个整数数列 a_1, \cdots, a_n 。有多		对数列按下标分块。首先考虑 i,j,k 不在同一块的情况,
少组 $1 \le i < j < k \le n$ 使得		枚举 j 在哪一块,然后将它左边的块的权值数组与它右
$a_j - a_i = a_k - a_j \circ$		边的用 FFT 求一下卷积,即可统计。
$n \le 100000, 1 \le a_i \le 30000$		对于 i,j 在同一块的情况,直接暴力枚举 i,j ,可求出对
		应的 a_k 的值。所以维护一个 cnt 数组记录一下目前每个
		数出现了几次即可。
时空复杂度 空间 $O(n+a)$, 时间 $O(n\sqrt{a\log a})$ 。		时间 $O(n\sqrt{a\log a})$ 。

6.13

试题编号	FEB15 DEVLOCK	
试题名称	Devu and Locks	
题目大意		算法讨论
多少个 n 位数	故码,每位为0到9	把 n 个位置按 10i mod p 分成 p 组 (用找循环节的方
的数字(允许	前导 0), 使得各位	$ $ 法)。对于第 i 组定义生成函数 $f_i(x)$,其中第 k 项系 $ $
数码之和不超	!过 m ,且整个数被	数表示这些位置中填入 k 的总和有多少种方案,它是
p 整除。		$\left (1+x+\cdots+x^9) \right $ 的若干次幂。维护当前答案为 p 个
对于 $0 \le m \le$	M 均输出答案。	多项式 $g_i(x)$,第 i 个的 j 次项系数表示 j 的数码和凑
(最大的数据	$ \uparrow n \leq 10^9, p \leq $	出 i 的余数的方案数。每次把 $f_i(x)$ 更新到答案里,具
$16, M \le 15000$	0)	体方法是把 $f_i(x)$ 也类似地拆成 p 个多项式 $h_j(x)$,然
		后和 $g_j(x)$ 两两相乘再加起来(多项式的卷积),但这
		样太慢,更快的方法是把这些多项式都 DFT,再对点
		值两两相乘相加,再逆 DFT 回去。
时空复杂度 空间 O(pm), 时间		为 $O(pm\log n\log m + p^2m\log m + p^3m)$ 。

试题编号 JULY15 EASYEX	
试题名称 Easy exam	
题目大意	算法讨论
一个面上写着 $1 \sim K$ 的骰子,掷	如果记 b_i 为第 i 次掷骰子得到的点数。那我们
N 次后,令 a_i 为点数 i 的出现次	
\bigcup 数。求出 $a_1^F \times \cdots \times a_L^F$ 的期望。	\mid 组 $(b_{i_1},\cdots,b_{i_{L\times F}})$,考虑它满足 $b_{i_1}=\cdots=b_{i_F}=0$
(模质数意义下)	$1, b_{i_{F+1}} = \cdots = b_{i_{2F}} = 2, \cdots$ 的概率是多少,我们对每
$(0 < N, K \le 10^9, 0 < F \le$	个有序 $L \times F$ 元组将这个概率求和,就是答案。
$1000, 0 < L \times F \le 50000)$	
	标集合。考虑一下每个集合的大小是 $i(1 \le i \le F)$ 时
	有多少种可能。然后就可以 DP 了,这个 DP 可以转
	化成求多项式的幂的形式,需要用 FFT 加速。
时空复杂度 空间 $O(LF + F^2)$,	时间 $O(P^2 + F^2 + LF \log(LF))$, P 是模数。

│ 试题编号	M
试题名称 Quasi-Polynomial S	um
题目大意	算法讨论
给定一个多项式 $P(X) =$	首先 $Q=0$ 直接输出。
$C_DX^D + \cdots + C_1X + C_0$, 其中	Q=1 时,就是一个前缀和,是一个 $D+1$ 次多项式,
C_0, C_1, \cdots, C_D 是整数。	插值就好。
给定非负整数 Q , 正整数 M,N ,	$Q \neq 0, 1$ 时,可以归纳证明存在一个 D 次多项式 F 使
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	得要求的 sum 等于 $F(N)Q^N - F(0)$ 。
$(1)Q^{N-1} \mod M$ 的值。	只要求出 $F(0)$ 到 $F(D)$ 的值,就可以插值求出答案
本题不直接给你 C_0, C_1, \cdots, C_D ,	了。这些值之间是满足递推关系的,然后用 $D+1$ 阶 $ $
而只会告诉你 A_0, A_1, \cdots, A_D , 其	差分为零的条件可以列出一个一元一次方程,求出来
	即可。
$1 < M < 10^{18}, 1 \le N <$	上面的过程要求存在 Q 和 1 $ Q$ 的逆元,所以要把 M
$10^{100000}, 0 \le D < 20000, M $	中与它们有公因子的部分提出去,变成三个模数,分
能被 $2 至 D + 14$ 中的任意一个数	别算然后用 CRT 合并起来。互质的模用上述做法。 Q
整除。	对应的模直接暴力。 $Q-1$ 对应的模,用二项式展开一
	下,也是可以做的。
时空复杂度 空间 $O(D + \log N)$,时间 $O(D + \log N)$ 。

7 组合计数,DP

7.1

试题编号	JULY14 SEAEQ	
试题名称	Sereja and Equality	
题目大意		算法讨论
两个长度为 n	的数组 A, B 相似, 如果对	首先用一个经典的 $O(n^3)$ 的 DP 求出 $f[i][j]$
	$i \leq n$),满足 $C(A, A_i) = 0$	表示 i 排列中逆序对数量不超过 j 的有几个,
$C(B,B_i)$ 。 其	中 $C(X,x)$ 等于满足 $X[j] <$	转移只要考虑在第 $i+1$ 位插入的数在前 i 个
$x(1 \le j \le n)$	的 j 的数目。	数中的排名是多少就好了。
对于两个排列	P_1, P_2 ,定义函数 $F(P_1, P_2)$	然后只要枚举每个长度 l 算出对答案的贡献,
	$[r]$ 相似于 $P_2[lr](1 \le l \le l]$	首先根据 DP 得到的排列数量,然后乘上 $\binom{n}{l}$,
$r \leq n$) 并且 .	$P_1[lr]$ 包含不超过 E 个逆	再乘上剩下数字的排列数 $(n-l)!$ 。对两个排
序对的数对 (1		列都这样乘一遍。
对 P_1, P_2 取	遍所有 n 个元素的排列	
$F(P_1,P_2)$ 的总	总和是多少?	
$(n \le 500, t \le$	10000)	
时空复杂度	空间 $O(n^3)$,时间 $O(n^3 + T)$	(n).

7.2

试题编号	JUNE13 SPMATRIX	
试题名称	Count Special Matrices	
题目大意		算法讨论
令 $a[1n][1n]$ 阵。矩阵满足 (1)a[x][y] = 0 (2)a[x][y] = a $(3)a[x][y] \le m$ $(4)a[x][y] \in \{1$ $(5) \forall k \in \{1, \exists x, y s.t. a[x][y] \in \{1\}\}$	[y][x] > 0 $\max(a[x][z], a[z][y])$ $1, 2, \dots, n-2$ $2, \dots, n-2$,	用奇怪的方法可以得到答案的表达式为 $\frac{n!(n-1)!}{3\times 2^{n-1}}\left(3n/2-2-\sum_{i=1}^{n-1}i^{-1}\right)$ 用 $O(n)$ 时间预处理即可。 为了减少常数,分母的 2^{n-1} 留到每次询问再除。 右边的调和级数不要用逆元求,而是和 $(n-1)!$ 乘起来一起预处理。
	$rac{-}{$ 空间 $O(n)$,时间 $O(n+$	$-t \log n$.

试题编号	JAN14 CNTDSETS	
试题名称	Counting D-sets	
题目大意		算法讨论
考虑整点,一	个点集的直径定义为两	转化为计数直径不超过 d 的点集数量。然后用 d
点中某一维的	差的绝对值的最大值的	的答案减去 $d-1$ 的答案即可。
最大值。可以	平移得到的点集视作同	为了去重,考虑将点集平移使得每一维坐标非负,
一个。求有多	少个 n 维点集的直径是	且每一维都至少有一个点的该维坐标为 0, 那么所
d_{\circ}		有点都落在 $[0,d]^n$ 的区域里。为了限制每一维都
$ (n \le 1000, d \le$	$\leq 10^9$)	有取到 0 的点,可以用容斥原理。
时空复杂度	空间 $O(n^2)$,时间 $O(n^2)$	$+ tn \log P)$.

试题编号 JULY11 BB ★	
试题名称 Billboards	
题目大意	算法讨论
长度为 n 的 01 序列, 每连续	将序列分成 $\lfloor n/m \rfloor + 1$ 段,前几段长度为 m ,最后一段长
m 位中至少有 k 个 1, 求有多	$n \mod m$ 。可以发现,达到最优的情况下,前面每段里
少种方案使得 1 的数量最少。	恰好有 $k \uparrow 1$,最后一段恰有 $\max(0, k-m+(n \mod m))$
$ (1 \le k \le m \le 50, m \le n \le $	个 1。按照最后一段是否有 1,可以分成两种情况。再把
$10^9,)$	序列倒过来分段,使得第一段长度是 $n \mod m$,后面接
	着 $\lfloor n/m \rfloor$ 段,也可以得到同样的结论,然后和前一种分
	段结合起来看的话,画一画可以发现序列分成好多个小
	段,每隔一小段就有一小段是全0(或全1,看刚才分成
	哪一类)的,所以只要考虑剩下小段里怎么填的,假设
	这些小段都是长为 p ,里面要填 q 个 1 。把每小段中填 1
	的下标写下来,可以组成一张表,容易证明表是按行严
	格递增,按列不严格递减的。
	然后根据杨氏图表的相关结论即可得到结果。
时空复杂度 $\overline{)}$ 空间 $O(1)$,时间	O(km).

试题编号 MARCH13 LECC	MARCH13 LECOINS ★	
试题名称 Little Elephant a	nd Colored Coins	
题目大意	算法讨论	
n 个硬币,第 i 个面值 v_i ,颜色	取其中一个 v_i 作为模 m ,令 $f[i][j]$ 表示已经用到了 i 种	
为 c_i 。 q 次询问,要凑出恰好 n	颜色,已凑成的面值模 m 的余数是 j 时的最小面值。这	
的面值,用到的硬币最多能有	样的话只要这个面值小于等于 n ,就可以用若干个 m 面	
几种颜色?	值的硬币凑出 n 。	
$(n \leq 30, v_i \leq 200000, q \leq$	这个 dp 转移的形式是一个最短路,但其实不需要使用最	
$100000, n \le 10^{18})$	短路算法,因为转移边是形成若干个环的,只要沿着环	
	暴力更新就可以了。	
时空复杂度 空间 $O(n \min(v_i))$),时间 $O(n^2 \min(v_i) + nq)$ 。	

7.6

试题编号	MAY12 LEBOXES	
试题名称	Little Elephant and Box	xes
题目大意		算法讨论
n 个宝箱, 第	育 i 个里有 p_i 的概率装有	首先容易用简单的 dp 求出 $f[i][j]$,表示手里有至
v_i 元钱,有	$1-p_i$ 的概率装有一个钻	3j 个钻石时,想买 i 个物品最少花几元钱。
石。		然后考虑 meet in middle, 处理出前 $n/2$ 个宝箱的
<i>m</i> 个物品,	第 i 个需要花费 c_i 元钱加	\mid 所有 $2^{n/2}$ 种可能性,以及后 $n/2$ 个宝箱的所有可 \mid
$\perp d_i$ 颗钻石	。求打开所有宝箱后期望	\mid 能性。枚举一下开宝箱恰好得到的钻石数量 j ,然 \mid
最多能买多么	少个物 品。	后枚举想买的物品数 i ,然后看看两边各取一个相 $ $
$(n, m \leq 30, n)$	$c_i, c_i \le 10^7, d_i \le 30$	加的结果 $\geq f[i][j]$ 的概率,这可以通过排序后维
		护各维护一个指针,线性扫一遍来得到。
时空复杂度	室间 $O(2^{n/2} + mn)$,时	间 $O(nm2^{n/2})$ 。

26

试题编号	DEC11 HYPER	
试题名称	Hypertrees	
题目大意		算法讨论
超图是每条边	力连接三个不同顶点的	一个超树可以被划分成若干个点双连通分量。先
图。		考虑统计点双连通超图的数目:
超树是去掉任	一条边就会不连通的超	3 个点的只有一种情况。 $n \ge 4$ 时,可以发现,对
图。		于图中的任意一个边,它连接的三个点中恰有一
$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	点有标号的超树的数	个点的度数是 1。于是可以把这个度数为 1 的点删
量。		去,那么这个超图变成了一个普通的点双连通图,
$(n \le 17)$		它的点数 + 边数即为原超图的点数。暴搜点数 +
		边数 ≤ 17 的点双连通图数量,即可得到答案。搜
		的时候先不考虑重边,然后再用一些计数技巧算
		出有重边时的数目。
		然后考虑把若干个点双连通图拼成一棵超树,这
		可以记忆化暴搜。先固定图中的一个点双连通分
		的子树(这里要记忆化)。最后要除以这个图的双
		连通分量数目,因为每一个都被当做了一次根。
时空复杂度	空间 $O(n^2)$,时间玄学。	

试题编号 SEP11 CNTHEX	
试题名称 Counting Hexago	ns
题目大意	算法讨论
选出 6 根棒子,长度为 [1,n] 的	整数,拼出面积为正的六边形的条件是其他边的长度之
拼出一个面积为正的六边形。要	
长边长度至少是 L ,其它边的长	:度不 边长之和不超过最长边的。
超过 X,同种长度的棒子不超	过 K 首先枚举最长边的长度。
根。两个六边形是不同的当且仅	【当边 然后容斥相等关系,可以发现只有以下几种组合:
长集合不同。求能拼出几种六边	
$(2 \le n \le 10^9, 2 \le l \le n, n - 1)$	$-l \leq $ 接下来容斥边长是否大于 X ,如果设定为大于就
$100, 1 \le x < l, 1 \le k \le 5)$	将边长替换为 $len-X$ 为正整数,然后将上界也相
	应减少 X。最后能得到一个非负整数的不定方程
	$x_0 + \sum k_i x_i = l$,其中 $\sum k_i = 5$, x_0 是将不等号
	转为等号而添加的变量。对于每种系数组合,都可
	以求出其解数关于 <i>l</i> 的通项公式,直接代入求得答
	案即可。
时空复杂度 空间 $O(1)$, 时间	$O((n-l) \times 7 \times 2^5 \times \log p)$.

试题编号 SEP12 KNGHTMOV	
试题名称 Knight Moving	
题目大意	算法讨论
从 $(0,0)$ 走到 (x,y) , 每次走的位移向	当两个向量不共线时,则走到任意一个点所需的 a
量可以是 (x_a, y_a) 或 (x_b, y_b) 。	向量和 b 向量数量是可以解出来的,方案数即为
有 k 个位置是禁止进入的。	$\binom{n_a+n_b}{n_b}$ 。现在有 k 个禁止位置,由于 k 很小,只
求总方案数,要判无解或无穷个解的	要容斥就可以了。
情形。	如果共线,就转化为一维的问题。用 BFS 求出所
$(k \le 15$,输入坐标的绝对值 $A \le 500$)	有可达的点。如果过程中发现有环,而且环能到达
	终点,那么就是无穷个解。否则只要按照拓扑序进
	行 DP 就好了。由于这是一张无穷图,不可能全部
	BFS,所以可以取 10^6 以内的(大概是 $4A^2$)。
时空复杂度 空间 $O(A^2)$,时间 $O(k^2)$	$(2^k + A^2)$.

试题编号 JUNE12 MATCH ★	
试题名称 Expected Maximum Ma	atching
题目大意	算法讨论
一个 <i>n</i> , <i>m</i> 二分图,输入每条边存在的概率,求最大匹配数的期望值。	首先想到应用 $Hall$ 定理。 考虑左边的状态,左边的点共有 2^n 个子集,分别
$(n \le 5, m \le 100)$	记录这每个子集 X 的邻域集合 $f(X)$ 的大小是否
	不小于 <i>X</i> 的大小。每次新连边的时候,原来满足 条件的子集依然满足条件,原来满足条件的子集
	并上一条新的边形成的集合也是满足条件的,这
	样就可以确定添边后的状态。 总共的状态数量其实是很少的,然后就可以用 dp,
	状态是 $f[i][j]$ 表示考虑右边的前 i 个点连过来的 边,左边的所有子集状态是 j 的期望值。
	由 Hall 定理,根据子集状态就可以直接确定最大
	匹配数了。
时空复杂度 空间 $O(m \times statenum)$,时间 $O(m \times statenum \times 2^n)$ 。

	试题编号	MARCH12 CIELQUAK	
ĺ	试题名称	Ciel and Earthquake	
	题目大意		算法讨论
	一个 $r \times c$ 的	网格,相邻的格点之间	对于 c 较小的情况,可以采用经典的状压 DP。具
		在每条边以 p 的概率被	体方法是按照轮廓线转移,状态是轮廓线上的点
	断开,求出(1	(1) 到 (r,c) 仍然连通的	以及源点 (0,0) 的连通性,用最小表示法来表示。
	概率是多少。		转移的时候考虑新加进来的两条边是连着还是断
	$(r \le 8, c \le 10^1)$	$18, 0.1 \le p \le 1$	开。与源点没有连通的状态可以舍弃。
			对于 c 较大的情况,根据玄学可以知道答案 $ $
			f(r,c,p)/f(r,c-1,p) 的比值是收敛的,因此只
			要对 $c \le 50$ 暴力一下就可以了。
	时空复杂度	空间 O(状态), 时间: Z	区学。

试题编号	AUG12 MAGIC	
试题名称	Two Magicians	
题目大意		算法讨论
一个简单无向	图上的顶点有两个人。轮流操作,每	考虑动态规划。记录当前状态为各自
次操作包含三	步骤: (1)沿着边任意走动或不走,	所在连通块的顶点个数奇偶性,剩下
如果能够走到	对方的位置,则获胜; (2)添一条	的技能次数,奇、偶大小的联通块各
边但不允许重	[边。若无法添加,则对方胜; (3)	有几个,几条不产生连通性影响的边
放一次技能,	可以瞬移到任一顶点。每人有 P 次	可以用。
技能使用机会	0	只需要奇偶性而不需要具体数值,是
$(t \le 100, n \le 100)$	$7777, m, p \le 10^5)$	因为这些不影响的边可以不停地轮流
		加直到剩余 ≤1 条。
		然后通过某些手段可以得到这样的结
		论: (1) 技能最多只使用 1 次。(2)
		在充分大的时候 DP 值关于奇偶连通
		块数量都是以 4 为周期循环的。
		于是只要对小范围 DP 就可以了。
时空复杂度	空间 $O(n+m)$, 时间 $O(n+m)$ 。	

试题编号 OCT13 DEG3MAXT		
试题名称 Three-Degree-Bounded	Maximum Cost Subtree	
题目大意	算法讨论	
-个 n 个点, m 条边的带边权连通无	首先求出所有点双连通分量,然后把图缩成若干	
向图,每个点双连通分量的点数不超	个分量组成的树的形式。	
过 9。求它一个子图,满足它是一个	对于每个分量,因为点数很小,所以可以状压 D-	
度数均不超过3的树,并最大化树的	P。状态中记录每个点目前的度数。转移时,为了	
边权之和,并求出边权和最大时的方	保证不重复计数,可以强制每次剥去编号最小的	
案数。	叶子,这样一棵树只会有一种转移方式了。	
$ (n \le 100) $	然后对整个图缩成的树进行树形 dp 就可以了。方	
	便的缩树方法是对于每个点双连通分量新建一个	
	点,并将它连向分量中的所有点。在 DP 转移的时	
	候要限制分量之间的割点的度数不要超过 3。	
时空复杂度 空间 $O(2^{2k})$,时间 $O(n \times 2^{2k} \times k^2)$ 。这里 $k = 9$ 。		

8 贪心

8.1

试题编号	MAY14 SEINC	
试题名称	Sereja and Subsegment	Increasings
题目大意		算法讨论
	.n],每次可以将连续一	可以转化成初始值全部为 $a[i] = 0$ 的情况。若没有
段全部增加1	,使得它最后在模 4 意	模 4,那么容易证明答案为 $\sum \max(b[i]-b[i-1],0)$,
│ 义下与 b[1n]	相同,最少需要几次操	所以现在就是要给某些 $b[i]$ 的值加上 4 ,使得最后
作。		的这个和尽量小。
$(n \le 10^5)$		考虑一段一段的加 4,如果给区间 $[l,r]$ 加 4,那么
		转化到差分数组 s 上就是 $s[l]$ 加 4 , $s[r+1]$ 减 4 。
		用贪心的思路,在差分数组上从左往右扫,当遇到
		<2 的地方可以不用改,遇到 >=2 的可以考虑用
		前面的 +4 换这里的 -4 并使得总和尽量小。
时空复杂度	空间 $O(n)$, 时间 $O(n)$ 。	

8.2

试题编号	AUG11 SHORTCIR	
试题名称	Shortest Circuit Evalua	tion
题目大意		算法讨论
给定一个布尔	表达式,每个变量只出	首先建出表达式树,这是经典问题,只要用两个栈
现一次。计算	时满足短路原理。	就行。
现在知道每个	·变量取真值的概率,可	表达式树的每个非叶结点可以有多个孩子,我们
以随意调换求	适顺序,使得期望的计	要做的是调整它们之间的顺序。
算次数最少。		这可以用一个从底往上的树 DP 来做。对于每个
$ (len \le 30000)$		结点 u ,算出它取真值的概率 p ,以及计算它所需 $ $
		要的最小期望次数 s 。然后对所有孩子贪心排序,
		用简单的调整相邻两项的方法可以得知: 如果是
		or 的话就按照 p/s 排, 如果是 and 的话就按照
		(1-p)/s排序。
时空复杂度	空间 $O(n)$, 时间 $O(n)$ 。	

试题编号	NOV14 SEAORD	
试题名称	Sereja and Order	
题目大意		算法讨论
有 n 个程序,	每个程序要在两台电	容易猜测答案等于 $\max(\sum a[i], \sum b[i], \max(a[i] +$
脑上分别运行	。第 i 个在第一台电	b[i]))。接下来用贪心(玄学)的方法构造:先按
脑跑 $a[i]$ 秒,	在第二台跑 $b[i]$ 秒。	a[i] + b[i] 降序卡在两边,给中间留一条缝。然后
一个程序同时	只能在一台电脑上跑,	按 $b[i]$ 升序塞在左边,但不重叠;再按 $a[i]$ 升序塞右
一台电脑同时	只能跑一个程序。求	边,也不重叠。剩下的分两种情况,按照 $a[i] - b[i]$
全部跑完的最	:小总时间是多少。构	降序或升序插在右边或左边。
造方案。		
$n \le 10000, a[i$	$], b[i] \le 100000$.	
时空复杂度	空间 $O(n)$, 时间 $O(n)$	$n \log n$.

9 几何

9.1

试题编号 DEC14 DIVIDEN	
试题名称 Divide or die	
题目大意	算法讨论
给定一个角的顶点位置和两条边上的	也就是说要作出 1 度角。
某点。保证角是 n 度, n 为整数。用	可以用奇怪的方法证明 3 n 时无解。
尺规将这个角 n 等分。	所以只要考虑 $gcd(n,3) = 1$ 的情况。我们可以用
(0 < n < 360), 操作数目不能超过	等边三角形作出 60 度角。可以用正五边形作出 72
1000 步。	度角。将它们的差 12 度角二等分再二等分,即可
	得到 3 度角。因为已知角不是 3 的倍数,所以可
	以用它和 3 的若干倍作差来得到 1 度角,问题就
	解决了。
	等边三角形的作法很简单。
	正五边形的作图关键是构造出 $\sqrt{5}$,这只要用直角
	边长分别为 1,2 的直角三角形的斜边即可得到。然
	后根据 $\sin 36^\circ = \frac{\sqrt{10-2\sqrt{5}}}{4}$, $1^2 + (\frac{\sqrt{5}-1}{2})^2 = \frac{10-2\sqrt{5}}{4}$
	即可作出。
时空复杂度 空间 $O(1)$, 时间 $O(1)$ 。	

试题编号	SEPT13 TWOROADS	
试题名称	Two Roads	
题目大意		算法讨论
平面上有 n /	卜点,不存在三点共线。	如果只有一条直线,这是经典的线性回归问题,可
求出两条直线	,每个点的代价是它到	以通过求导数得到极小值,最后化出的式子中包
任一直线的最	短距离的平方,使得总	含 $\sum x^2, \sum xy, \sum y^2, \sum x, \sum y, n_{\circ}$
的代价最小。	输出最小总代价。	现在对于两条直线,以它交点处的两条角平分线
$(n \le 100)$		为界,可以分成四块区域。对顶角的两块同属于一
		个。只要枚举区域的划分即可更新答案。本质不同
		的划分方法只有 $O(n^3)$ 个,只要固定一条直线贴
		紧的两点,再枚举与它垂直的那条线贴紧的点即
		可。让这条垂直线从远处扫过来,每跨过一个点可
		以 $O(1)$ 更新上面那些值。
时空复杂度	空间 $O(n)$,时间 $O(n^3)$	0

试题编号 JULY13 RIVPILI	Ξ
试题名称 Across the River	
题目大意	算法讨论
一条河宽 w ,河里面有 n 个桩子,给定坐标。有 m 种圆盘,每种无限多,且有一定的半径和单价。圆盘只能圆心安在桩子上。可以走通当且仅当圆盘有公共点。求过河的最小花费。 $(n, m \leq 250)$	对每个桩子拆成 m 个点,第 i 个点表示在这个桩子上安第 i 个圆盘,然后拆成出点和入点,中间连边费用为单价。 然后连桩子之间的边,暴力连是 m^2 条,需要优化。可以把每个连到对应的另一个桩子所需要的最小半径上,然后在每个桩内按半径升序连费用 0 的边,这样桩子之间的边就是 $O(m)$ 了。总共边数就是 $O(n^2m)$ 。然后用dijkstra 跑最短路就行。
时空复杂度 空间 $O(n^2m)$, 时	「间 $O(n^2m\log nm)$ 。

试题编号	JAN13 ANDOOR	
试题名称	A New Door	
题目大意		算法讨论
一个矩形区域	内,给出 n 个圆,并将	考虑每个圆的圆周上的弧对答案的贡献。
它们涂黑。求	黑色区域的周长。 $(n \le$	如果这个圆被其他圆包含了,那么不会有露出来
1000)		的圆弧,贡献为 0。
		否则,对于所有和它有交点的圆,相交部分覆盖的
		弧是没有贡献的,用余弦定理算出这段弧的两端
		对应的角位置。然后将所有端点的角位置排序,扫
		一遍,把没有被覆盖到的部分累加起来即可。
		扫描一个环的时候要注意,越过起点的弧要将它
		拆成两个再加入。
时空复杂度	空间 $O(n)$,时间 $O(n^2)$	$\log n)$.

试题编号	OCT12 MAXCIR	
试题名称	Max Circumference	
题目大意		算法讨论
给出平面上一	一个三角形 ABC ,和 n	BC 边长度不变,所以只要考虑 $AB + AC$ 。
个操作。第 i	个可以使 A 沿 (x_i, y_i)	如果答案为 l ,那么 A 点在 B,C 为焦点,长轴为
平移。		l 的椭圆上。令椭圆上 A 点处的法向量为 p ,那么
最多使用 k 次	操作,每种只能用一次,	选中的操作向量 s_i 一定使得 $(\sum s_i) \cdot p$ 最大,也就
最大化三角形	ABC 的周长。	是取了 $s_i \cdot p$ 最大且为正值的至多 k 个向量。
$ (n \le 500, x_i , y_i \le 10^6) $		那么枚举 p 的方向,同时维护所有向量的投影的
		大小顺序。 p 绕一圈的过程中会有 $O(n^2)$ 次顺序交
		换,发生在 p 与 $s_i - s_j$ 垂直时。把这些时间点排
		序再扫即可。
		由于本题精度要求很高,求平方根时需要把整数
		和小数部分分开算,才能保证绝对精度。
时空复杂度 空间 $O(n^2)$, 时间 $O(n^21)$		$(\log n)$.

10 玄学和暴力

10.1

试题编号	APRIL15 LPARTY	
试题名称	Little Party	
题目大意		算法讨论
给定一个由	M 个元素组成的集合,	首先有 35 个备选集合。但是其中有大量是不合法
■ 每个元素由 N	7 个布尔变量组成,每个	的,先把它们删掉。
变量可以为真	或假。要求找出一个总	然后其中有一些集合是互相包含的,在两者间仅
长度最小的基	集合,使得以这个基集	保留小的。
合中元素为子集的元素的集合恰好为		然后还有一些集合是仅相差一位的,那么这两个
给出的集合。基集合中元素由 N 个变		集合都可以删去,因为他们去掉那个相差一位后
量中某些变量组成,每个变量也仍然		得到的集合仍然满足条件。
可以为真或假。给出的 M 个元素一		那么剩下来的备选集合就很少了,可以直接爆搜。
\mid 定包含所有 N 个变量。		搜的时候需要注意可行性剪枝、最优性剪枝,以及
$(t \le 120, n \le 5)$		适当的搜索顺序。
时空复杂度 空间 $O(2^{2^N})$,时间玄学		

10.2

试题编号	JAN15 RANKA	
试题名称	Ranka	
题目大意		算法讨论
在一个 9×9	的围棋棋盘上下棋,可	9×9的棋盘上可以摆8个劫,还剩下几十个无关
以 pass,不能出现重复的棋盘状态。		的空格子。用这个8个劫可以构造28个状态。由
构造一个 10000 步的方案。		于每次只能将其中一位异或上 1,因此可以用格雷
		码的方法构造。再乘上剩下的几十个格子所形成
		的状态,就可以达到 10000 步了。
时空复杂度	无	

试题编号	APRIL14 GERALD08	
试题名称	Chef and Tree Game	
题目大意		算法讨论
一个有根树,	每条边是蓝或红色。两	这是 Blue-Red Hackenbush 问题,构造 surreal
	先手可以删红边,后手	number 来解决。然后就是一个树 DP, 从底向
	删边之后与根不连通的	上计算函数值。
部分也被删去	。不能操作者输。判断	问题中涉及的函数值是分母为 2 的幂次的有理数。
胜负情况。		计算过程中需要实现右移和加法操作。由于位数
$(n \le 100000)$		较多,double 不够用。可以用一个 set 存下二进位
		为 1 的数位的下标。
		右移时可以整体打偏移量标记。
		加法操作时会有进位。可以用启发式合并,将位数
		少的数中的 1 一个个加到大的上面,如果对应位
		置已经填有 1,则不断往前进位即可。
时空复杂度	空间 $O(n \log n)$, 时间 ($O(n\log^2 n)$.

试题编号	JUNE13 TKCONVEX	
试题名称	Two k-Convex Polygons	3
题目大意		算法讨论
从 n 个棍子中	¹ 选出 2k 个,拼成两个	首先,能拼出的充要条件是最长边的长度小于剩
	:否存在方案。	下所有边的和。
$(n \le 1000, k \le$	≤ 10)	先将棍子按长度排序,然后枚举两个多边形的最
		长边。从剩下的边中挑选尽量大的边。假设下标分
		别是 $i < j$, 当 $i \le j - k$ 时,方案显然是各自取比
		它小的最大那 $k-1$ 条。如果 $i>j-k$,那么中间
		就有重叠的部分,需要决定哪些边分给哪个多边
		形,这只要暴力枚举就行了。
时空复杂度	空间 $O(n)$, 时间 $O(n^2)$	$+n\binom{2k}{k}$).

10.5

试题编号	FEB13 ROC	
试题名称	Room Corner	
题目大意		算法讨论
房间是一个过	1界水平或竖直的多	所有小朋友最后会连成一个环。显然这个环是沿着房
□ 边形。每个 90) 度内角处的内部格	间的边界的。我们任取一个小朋友,让他沿着墙逆时
1	小朋友。每次相邻	针绕着房间走一整圈,那么就相当于把环给遍历了一
的两个小朋友	[可以交换位置,速	遍。
度都是每秒-	一格。每次给出一对	\mid 当 A 和 D 想要相遇,而相遇发生在相邻两点 B,C 之
小朋友,询问	他们两个发生相遇	间(排列顺序为 A,B,C,D),那么所需的最小时间为
的最短时间。		$\max(AB,CD)+BC/2$ 。注意到如果设 BC 中点为 M ,
_	10000。地图大小 ≤	上式即等价于 $\max(AM, MD)$ 。因此 M 越接近 AD 的
2500×2500 .	每行里的房间内部	中点 N 越好。
格子只能形成	一个连续段。	所以我们可以把环上每条边的中点按顺序存在数组里,
		对于每个询问 A,D ,用它们的中点 N 去数组里二分,
		寻找最近的点即可。
时空复杂度		可和空间是 $O(n^2)$ 的, n 是地图边长。
	`	$\log m$) 的, m 是小朋友的个数。
	注意由于题目限制,	每行最多只有两个角落格子,因此 $m = O(n)$ 。

试题编号	MARCH12 EVILBOOK	<u> </u>
试题名称	Evil Book	
题目大意		算法讨论
有 n 个厨师,	对于第 i 个可以用 c_i 点	这是一道暴搜题。
血干掉他然后	得到 m_i 点魔。用 x 点	每次选择一个还没有被干掉的厨师,枚举对它使
魔可以将某个	·厨师的 c_i 和 m_i 都乘以	用几次技能。注意使用技能的次数应该保证花掉
1/3。要收集齐 666 点魔至少需要花		的魔比得到的魔要少,否则肯定不是最优的。另
费几点血。		外,如果在得到的魔 > 666 的情况下,显然能完
$(n \le 10, 10 \le$	$\leq x < 666, 0 \leq c_i, m_i, \leq$	成任务,这时要使得花费的血尽量少。
10^{9})		根据上面这些剪枝,每层的分支数目是不多的,可
ĺ		以较快搜出来。
时空复杂度	空间 $O(n)$, 时间:玄学	

试题编号 JUNE12 COOLNUM	JUNE12 COOLNUM	
试题名称 Cool Numbers		
题目大意	算法讨论	
-个数有 k 位,每个数位上的数字分	首先如果一个数只有不超过 3 个非零位,显然是	
划为 X_1, X_2, \cdots, X_K ,如果一个数 n	可以的。这是 $trivial$ 的情况。用 $O(len)$ 的时间可	
存在一到三个数位上的数的和为 s ,	以找出它左右的 trivial 答案,只要保留前 3 个非	
且 $(X_1 + X_2 + \cdots + X_{K} - S)^S$ 是 n 的	0 位,然后搞一搞就行了(求右边的话要给最后一	
一倍数,那么 n 是 cool number。定义	个非 0 位增加 1), 当然如果只有 2 个或以下, 那	
LC(N) 和 $RC(N)$ 分别是小于等于 N	就将个位加 1 就可以了。	
的最大的 cool number 和大于 N 的最	nontrivial 的数字很少,可以爆搜。搜的时候按照	
小的 cool number,多次询问给定 N ,	数位和去搜, 然后遍历它的 27 次方的所有约数,	
求 $LC(N)$ 和 $RC(N)$ 。	然后判断。因为数越大越难满足,数量就越稀疏,	
$(1 \le t \le 10^5, 1 \le n \le 10^{1000}, \sum len \le 10^{1000})$	所以把较大的数本地搜好打表即可。	
4×10^6)	然后询问的时候在列表里二分即可。	
时空复杂度 空间玄学,时间玄学。		

10.8

试题编号 APRIL12 CONNEC	CT
试题名称 Find a special conn	ected block
题目大意	算法讨论
一个 $n \times m$ 的方格图,每个格	如果整数标号的范围很小,问题会方便一些。所以考
子或者是障碍,或者有非负整数。	虑把所有整数随机映射到 $[0, k-1]$ 的整数上然后再做。
格子有正的费用。选出一个四连	现在变成要求连通块包含 $[0,k-1]$ 的所有数字。这是 $ $
圃块,使得块中至少包含 k 种不	一个经典的斯坦纳树问题:对包含的数字压位,有两
同的正整数,且费用之和最小。	种转移方式,一种是添子树,一种是连父亲。前一种
$(n, m \le 15, k \le 7)$	用枚举子集更新,后一种用最短路。
	这样得到的并不一定是最优解。但多随机染色几次,
	就容易碰到适合最优解的染色方式。
时空复杂度 空间 $O(nm)$, 时间	$O(times \cdot (nm3^k + 2^k nm \log nm))$.

试题编号	NOV11 DOMNOCUT	
试题名称	Colored Domino Tilings	and Cuts
题目大意		算法讨论
1	m 的矩形棋盘。构造一	首先格子数量需要是偶数。
	×1 骨牌的不重叠不遗漏	然后对于 $n \leq 4$ 的情况,都可以轻易的给出构造。
的覆盖。使得	棋盘的割尽量少。在此	对于 n, m 较大的情况,首先需要发现两个基本棋
基础上骨牌的		$\begin{vmatrix} \pm & \pm & \pm & \pm \end{vmatrix}$ 盘,一个是 5×6 的,另一个是 6×8 的,它们都
割是垂直或水	平且不穿过任何骨牌的	不存在割,而且只需要 3 种颜色即可染色。这两
直线。		个棋盘可以通过暴搜或者人类智慧得到。
色数是使有公	·共边的两个骨牌的颜色	对于 n,m 一奇一偶或者全为偶数这两种情况,都 $ $
不同所需要的	最少颜色数量。	可以由上面的基本棋盘通过扩展而得到。扩展一
$(n, m \le 500)$		次可以使行数或列数增加 2, 之后得到的棋盘依然
		是不存在割,且色数为3的。方法是每行(或列)
		插入一个横放(或竖放)的新骨牌。
时空复杂度 \bigcirc 空间 $O(nm)$,时间 $O(nm)$ 。		

10.10

试题编号 OCT11 BAKE	
试题名称 The Baking Busines	s
题目大意	算法讨论
一个多维数组的插入和求和。	这是一道阅读理解题和读入处理题。
插入格式为	直接开一个七维数组模拟操作即可。对于每一维
	需要多开一位表示这一维不带限制时候的和。然
I product_id[.size_id]	后由于有子段查询,需要按年龄维护前缀和。
<pre>province[.city_id[.region_id]</pre>	
M/F age units_sold	
询问格式为	
Q product_id[.size_id]	
<pre>province[.city_id[.region_id]</pre>	
M/F start_age[-end_age]	
具体细节可以参考原题面。 (操作数目 $\leq 10^5$)	
	0((100 + 42))
时空复杂度 空间 $O(size)$,时间	$O(n \times (100 + 4 \times 3)).$

11 Challenge 题

11.1

试题编号	NOV14 SPELL	
试题名称	The Spelling Problem	
题目大意		算法讨论
给你一个字典	和一个英语文章。	题目中的这个字典会很大,包含太多的生僻词。一
英语文章中的	J单词可能出现错误。错	个较好的解决办法是找份常用词列表放到程序里
误的方式有:	交换两个字符,漏掉一	(比如牛津 3000)。改词的时候尽量往常用词改,
个字符,多出	一个字符,敲错一个字	不要改成生僻词。
符。		然后就遍历这篇文章的每个单词,首先判断这个
你的任务是技	戈出文章中的错误并改	词是不是正确词,给它一个估价,如果估价足够大
正,并尽量最	大化你的得分。分数是	就认为正确。常用词的估价可以设的大一些,其他
这样算的: 把原来错的单词改对可以		的非常用词就设的小一些。另外注意在文章语境
加 3 分,对的改错会扣 1 分。		中频繁出现的词语,也要给它更大的估价。
文本长度不超	过 10MB。	如果是正确词就输出来。否则就枚举每一种修改
		方法,并从中选出估价最大的那种并进行修改,然
		后更新这个词的估价。
		枚举修改方法可以用 hash 函数和 trie 树配合实
		现。
时空复杂度 空间 $O(nl)$,时间 $O(nl^2)$		2).

11.2

试题编号

FEB13 EFFPAINT

试题名称 Efficient Painting	
题目大意	算法讨论
你有一块 $n \times n$ 的正方形的画布,初	考虑所有 $(n+1)^2$ 个格点,一个格点周围有 4 个
始时每个格子都是白色的。你每次可	格子(边界的只有两个,四角的只有一个)。给这
以选择一个边必须平行于坐标轴的子	个格点赋一个权值,为周围格子中黑色的数量的
矩形并对它进行操作。	奇偶性。
White - 矩形内全涂成白色。	一个矩形进行 F 操作对格点的权值所产生的影响:
Black - 矩形内全涂成黑色。	对于矩形内部和边界上的格点,黑格数量奇偶性
Flip - 矩形内的白色变成黑色,黑色	不变; 对于四角上的格点,奇偶性也会反转。也就
变成白色。	是说,一次 F 操作可以将矩形四个顶点的权值反
你会拿到一个所要求的最终图案。你	转。
需要用尽量少的操作次数,将画布上	计算出终盘上各个格点的权值,考虑倒过来操作
的图案变成所要求的样子。用的次数	将其中的 1 全部变为 0,得到全空白的画布。那么
越少则获得的分数越多。	一次 F 操作至多可以消去 4 个 1; 如果无法同时
数据生成与评分方式如下: $10 \le n \le n$	消去 4 个 1, 就消去 3 个 1, 添回一个 1。
50 共有 50 个数据文件,每个都是这	于是我们要寻找盘面上四个顶点都是1的矩形。这
样生成的: 一个整数 n 从 [10,50] 中均	可以做到每次查找 $O(n^3)$: 对第 i 行,枚举 $j < k$,
匀随机抽取。一个实数 p 从 $[0.4, 0.6]$	使得 $w[i][j] = w[i][k] = 1$,并将 (j,k) 标记为可
中均匀随机抽取。然后每个格子都是	行;如果对另外一行也有 (j,k) 可行,就找到了这
独立的以 p 的概率填为黑色,以 $1-p$	样的矩形。
的概率为白色。	如果找不到,就找顶点有三个1和一个0的矩形,
	方法也和上面类似。
	容易证明这个贪心方法一定能求得一个合法解。
时空复杂度 空间 $O(n^2)$,时间 $O(n^2)$	⁵)。

试题编号	AUG13 DELNMS	
试题名称	Deleting numbers	
题目大意		算法讨论
假设当前有 n	n 个数形成的数组 $a[n]$,	这个题目的操作并不是特别好处理,因为删去一
	v,t 两个数,满足 $v+$	个等差数列后剩下的数字会被重新排列回去,之
$t \leq n+1, \exists$.令 k 为最大的满足 v +	间的相对位置会发生改变。
	必须满足 $a[v] = a[v +$	一种比较简单好写的做法是倒序删除,这样需要 n
	$= \dots = a[v+kt]$ 。然后这	步。
	(若 v+t=n+1 则只删	对于小规模的数据,可以采取限定深度然后暴搜
	之后形成新的由 $n-k$	的方法。每次枚举一个等差数列删掉,看看怎样效
	[a] $a[n-k]$,满足这个	果比较好。
	原来数组被删除之后剩	对于大规模的数据,可以考虑先把出现一次的数
	相对位置保持不变。	字删完,然后剩下的都是至少出现多次的数了,可
	删除所有的数,你的得	以从后往前删,删的时候如果能往前扩展成等差
分与你的方案的总步数有关。		数列的话就更好。或者直接保留出现最多次数的
		数字,一次性删掉。
		一个优化是从后往前分成好多段,对每一段内进
		行上述做法。
时空复杂度 空间 $O(n)$, 时间 $O(n)$ 。		

11.4

试题编号	JUNE12 CLOSEST	
试题名称	Closest Points	
题目大意		算法讨论
三维空间中有 n 个点。		这是一个经典问题。经典的做法是使用 kd 树来优
共有 q 个询问,每次给定一个点,询		化查询。
问 n 个点中离这个点最近的是哪个,		这题中需要注意建树时需要按照方差最大的那一
你需要输出它的编号。		维进行划分。另外还要注意算方差和算距离时要
$(n, q \le 50000)$		开 double 或者 unsigned long long,不然会爆。
时空复杂度	空间 $O(n)$,时间 $O(qn^2)$	2/3).

│ 试题编号 │ JUNE13 CHA	JUNE13 CHAORNOT	
试题名称 To challenge	To challenge or not	
题目大意	算法讨论	
请你找这样一组整数,里	这个题最简单的想法是直接贪心。随机一个顺序,然后往里	
面没有 3 个数构成等差数	面加,如果能加入就加,不能加入就跳过。	
列。	怎么判断能不能加入呢? 开一个数组 b[], 把当前不能加入的	
让问题更难些, 你必须	数字 x 设为 $b[x] = 1$ 。	
从给定的 M 个整数	每次加入一个新数字时,需要更新 b[] 数组,只要枚举之前加	
B_1, B_2, \cdots, B_m 中选取。	过的数字,把它们的等差中项(或第三项)设为 $b[x]=1$ 即	
不一定要最大数集,但是	可。	
数集越大分数越高。	这个策略每次搞一遍是 $n + len^2$ 的。事实上这个策略可以拿	
$(n \le 100000)$	到较高的分数。	
	考虑取得更高的分数的话,可以多次随机顺序然后取最优解。	
时空复杂度 空间 $O(n)$, \mathbb{R}	时间 $O(k(n + len^2))$ 。	

试题编号	DEC14 KALKI	
试题名称	Kali and Dev	rtas
题目大意		算法讨论
给定二维欧氏	Γ 平面内的 N	这个题是很难的一个题。最好的办法是写一些跑的过时限的
个点, 你需要返回这些点		simple 做法,然后取个较优的答案。
的一个生成树	,使得 C_i 的	首先可以考虑贪心,建树的时候考虑加入某个新点,然后这
最大值最小。		个点和树上已有的某个点尽量靠近,这样的解看起来会比较
C_i 的定义是:对于每个点,		优秀。
设在生成树中与其相邻的		然后进一步思考,可以发现上面这个想法和最小生成树比较
点中最远的点的距离为 R ,		类似。于是可以写一个平面完全图的最小生成树。
那么以该点为圆心,半径		这个东西可以用 V 图来做,但是由于数据范围很小,直接暴
R 以内的的点的 C_i 全部增		力也不虚。
加 1 (包括自身)。		
$(n \le 400)$		
时空复杂度 空间 $O(n)$,时间 $O(n^2 \log n)$ 。V 图求最小生成树的话是 $O(n \log n)$ 。		

11.7

试题编号	OCT12 MAXRECT	
试题名称	Maximum Su	b-rectangle in Matrix
题目大意		算法讨论
给出一个 H×	W 的整数矩	首先考虑,如果选择的行集合是固定的,那么很容易求出此
阵 A, 行标号	$\frac{1}{2}$ 0 \sim H-1,	时选取某一列时得到的收益,那么只要把所有收益为正的列
列标号 0 ∼ V	<i>V-</i> 1,求一个	给取出来就好了。
子矩阵使其中	口元素之和尽	选择行集合也要自己选,那么我们就得到了一个 $2^H imes W$ 的
可能大。		做法。
这个子矩阵不	下要求是连续	然而这题中 H 比较大。我们可以采取模拟退火方法,随机地 $ $
的。		选出一行把它加到当前集合里,如果答案增加了就保留,否
$(H, W \le 300)$		则按一定概率舍弃。
,		这样已经能得到很高的得分了。
时空复杂度	空间 O(HW)	,时间 $O(HW+W\times t)$,其中 t 是退火次数。

试题编号	SEP12 SIMN	IM
试题名称	Simultaneous	Nim
题目大意		算法讨论
有 n 个异或和	口为 0 的整数	首先因为这些数的异或和为 0, 所以如果从中抽出一个集合
a_i \circ		的异或和为 0, 那么它的补集的异或和也是为 0 的。于是只
你需要把它们]分为 k 个集	要考虑不停地从原集合中分出一个异或和为 0 的集合就好。
合, 使得每个	集合内的数	为了让分出的集合数目尽可能多,直观来说应该让每次分出
字的异或和也为 0。		来的那个集合尽可能小。
k 越多越好。		如果能挑出一个线性相关的真子集,那么就可以从中找出一
$(10 \le n \le 1000, a_i \le 2^{60} - 1)$		个为异或和为 0 的集合。所以可以从当前集合中随机挑出一
1)		个大小为 m 的子集,然后消元判一下是否有解,如果无解就
		接着随机,或者把 m 放大,直到找出一个集合为止。这样不
		断做下去就可以得到比较好的得分。
时空复杂度	空间 $O(n)$, \mathbb{R}	时间 $O(nm \times t)$,其中 t 是随机次数。

试题编号	NOV11 STEI	PAVG
试题名称	Stepping Ave	rage
题目大意		算法讨论
考虑以下的方		考虑一个最 naive 的合并方法, 从后往前不断合并, 比如
数的"迭代平		a,b,c,d 先合并 c,d ,再和 b 合并,最后和 a 合并。得到的答
拿出其中任意两个数,并		案为 $a/2 + b/4 + c/8 + d/8$ 。
用他们的平均		如果 N 越来越大,那么后面的数字所占的权重就指数级变
■ 重复 N - 1 &		小。所以我们只要考虑前面的几个数字的贡献。
剩一个数。∄		最简单的是采取随机的方法,从 1/2 的往后逐个确定。确定
下的数叫"迭代平均数"。		某一位上的数字时,尝试将后面其他数与它调换,看看答案
值得注意的是,不同的合		会不会更接近 K 。由于权重是以 $1/2$ 的比例不停减小的,所
并顺序最后会导出不同的		以这样子的策略可以使得与答案相差 0.000…1 以内。
"迭代平均数"。		这样的策略就可以在 codechef 上拿到满分了。
给定 N 个数。找到一个合		
并的顺序使得"迭代平均		
数"尽量接近给定的数 K 。		
$(N \le 1000)$		
时空复杂度	空间 $O(n)$, 目	时间 $O(nkt)$, 其中 t 是随机次数, k 是只调整前 k 个位置。

试题编号 APRIL12 SIM	MGRAPH
试题名称 Similar Grap	hs
题目大意	算法讨论
给你两个点数都为 n 的无	这是一个非常困难的问题。
向图。你需要给图的顶点	首先把第一张图的标号固定为 1 ~ n, 那么只要考虑第二张
重新标号,使得它们的公	图的标号就好了。
共边数尽可能多。公共边	最 naive 的做法是随机若干发,然后取一个答案最大的排列。
定义为二元组 (a,b) 使得两	但这样的解太差。可以考虑在这个解的基础上进行模拟退火。
个图都满足其中标号为 a	每次随机选出两个点,并在第二张图中把这两个点编号交换,
的点和标号为 b 的点有连	然后可以用 $O(n)$ 的时间求出答案的变化。如果答案变优了
边。	就保留,否则就按一定概率舍弃这个解。
$ (n \le 75) $	这样就可以得到较高的得分了。
时空复杂度 空间 $O(n^2)$,	时间 $O(n^2 + tn)$, 其中 t 是随机次数。