Analysis

Matthew Cocci

February 13, 2014

Contents

L	\mathbf{Rie}	mann-Stieltjes Integral	1
	1.1	Operational Definitions	2
	1.2	Darboux Sum and RS-Darboux Sum Definitions	2
	1.3	Sum Relations	3
	1.4	Riemann-Stieltjes Integral	3
		1.4.1 Definition and Characterization	3
		1.4.2 Properties of $\mathcal{R}_{\alpha}([a,b])$	7

1 Riemann-Stieltjes Integral

This definition of the integral was made rigorous in the 1800s by Riemann, Darboux, and Stieltjes. It's an intuitive way to define the area under a curve, and it works well with numerical integration (approximations). *However*, it is incomplete in the sense that there are functions of interest that we cannot integrate in a Riemann sense but can in a Lebesgue sense.

Throughout this section, we'll stick to functions that are univariate from a compact interval to \mathbb{R} :

$$f:[a,b]\to\mathbb{R}$$

We'll begin by discussing partitions of that interval [a,b] into smaller pieces, from which we'll construct sums that approximate the area under the curve. This will lead us to a definition of the Riemann Integral. Then, we'll generalize and allow the weight we place on the sub-intervals (when summing over the entire interval) to vary, which will give us the Riemann-Stieltjes integral. From there, we discuss the relationships between the approximating sums and the integral.

1.1 Operational Definitions

Definition 1.1. A partition, P, is an ordered tuple representing a finite sequence on the interval [a, b],

$$a = x_0 < x_1 < \dots < x_n = b$$
 with $\Delta x_i := x_i - x_{i-1}$

Definition 1.2. The norm of a partition P, sometimes called "mesh P" represents

$$||P|| = \text{norm}(P) := \max_{i} |x_i - x_{i-1}| = \max_{i} |\Delta x_i|$$

Definition 1.3. Q is a refinement of P if $Q \supset P$ where Q and P are both partitions of [a,b]. Q the intervals finer.

Definition 1.4. For two partitions, P_1 and P_2 , their common refinement is $P_1 \cup P_2$.

Definition 1.5. A tagged partition is a couplet (P, T), where P is some partition $\{x_0, \ldots, x_n\}$ and T is a set of evaluation points, $\{t_1, \ldots, t_n\}$, for the function f such that

$$x_{i-1} \le t_i \le x_i$$

Note. We will now generalize to allow weighting of the sub-intervals within the partition, defined for an *increasing* function $\alpha:[a,b]\to\mathbb{R}$, where

$$\Delta \alpha_i = \alpha(x_i) - \alpha(x_{i-1}) > 0$$

This is the main difference between the plain Riemann sum and integral, versus the Riemann-Stieltjes (RS) sum and integral. The latter retains the former as a special case by taking $\alpha(x) = x$. Therefore, the RS version is just a generalization of Riemann, weighting the contribution of the sub-intervals to the total sum/integral by the function α , not by the length of the sub-interval.

1.2 Darboux Sum and RS-Darboux Sum Definitions

We now define the various sums approximating the Riemann and RS integrals.

Definition 1.6. We define the upper and lower *Darboux Sums*, respectively, as follows

$$U(f,P) := \sum_{i=1}^{n} M_i(f)(x_i - x_{i-1}) \quad \text{where} \quad M_i(f) := \sup_{x \in [x_i, x_{i-1}]} f(x)$$

$$L(f, P) := \sum_{i=1}^{n} m_i(f)(x_i - x_{i-1})$$
 where $m_i(f) := \inf_{x \in [x_i, x_{i-1}]} f(x)$

Definition 1.7. Given f (bounded) and tagged partition (P,T) we define the *Riemann Sum* as

$$S(f, P, T) := \sum_{i=1}^{n} f(t_i)(x_i - x_{i-1})$$
(1)

Definition 1.8. We define the upper and lower RS-Darboux Sums, respectively, as follows

$$U_{\alpha}(f, P) := \sum_{i=1}^{n} M_{i}(f) \Delta \alpha_{i} \quad \text{where} \quad M_{i}(f) := \sup_{x \in [x_{i}, x_{i-1}]} f(x)$$
$$L_{\alpha}(f, P) := \sum_{i=1}^{n} m_{i}(f) \Delta \alpha_{i} \quad \text{where} \quad m_{i}(f) := \inf_{x \in [x_{i}, x_{i-1}]} f(x)$$

Definition 1.9. Given f (bounded) and tagged partition (P,T) we define the *Riemann-Stieltjes Sum* as

$$S_{\alpha}(f, P, T) := \sum_{i=1}^{n} f(t_i) \Delta \alpha_i$$
 (2)

1.3 Sum Relations

Remark. Clearly, by Definitions 1.8 and 1.9, for all T associated with P

$$L_{\alpha}(f, P) \le S_{\alpha}(f, P, T) \le U_{\alpha}(f, P)$$

Theorem 1.10. If $Q \supset P$, i.e. if Q refines P, then

$$L_{\alpha}(f, P) \leq L_{\alpha}(f, Q) \leq U_{\alpha}(f, Q) \leq U_{\alpha}(f, P)$$

Proof. The proof proceeds by induction. Assume that $Q = P \cup \{x^*\}$, a single point. Then $x^* \in [x_{i-1}, x_i]$ for some interval, and it's easy show the relation from there.

Theorem 1.11. For all partitions P_1, P_2 ,

$$L_{\alpha}(f, P_1) \leq U_{\alpha}(f, P_2)$$

Proof. Let $Q = P_1 \cup P_2$. Then by Theorem 1.10,

$$L_{\alpha}(f, P_1) \le L_{\alpha}(f, Q) \le U_{\alpha}(f, Q) \le U_{\alpha}(f, P_2)$$

1.4 Riemann-Stieltjes Integral

1.4.1 Definition and Characterization

Definition 1.12. We define the upper and lower Riemann-Stieltjes integrals, respectively, in terms of the RS-Darboux Sums

$$\overline{\int_a^b} f d\alpha := \inf_P U_\alpha(f, P)
\int_a^b f d\alpha := \sup_P L_\alpha(f, P)$$

From Theorem 1.11, it's clear that $\underline{\int} f d\alpha \leq \overline{\int} f d\alpha$.

Definition 1.13. We say f is Riemann-Stieltjes integrable on [a,b]—i.e. $f \in \mathcal{R}_{\alpha}([a,b])$ —if

$$\overline{\int_a^b} f d\alpha = \underline{\int_a^b} f d\alpha := \int_a^b f d\alpha$$

Example 1.14. A case where $f \notin \mathcal{R}_{\alpha}([a,b])$ is where

$$f(x) = \begin{cases} 1 & \text{x rational} \\ 0 & \text{x irrational} \end{cases}$$

for $x \in [0, 1]$. In this case, the upper integral is always 1, while the lower integral is always zero.

Theorem 1.15. (Riemann's Condition) $f \in \mathcal{R}_{\alpha}([a,b])$ if and only if there exists a partition P such that the upper and lower RS-Darboux sums can be made arbitrarily close given that P, i.e.

$$U_{\alpha}(f, P) - L_{\alpha}(f, P) \le \varepsilon$$

Proof. First, the \Leftarrow direction. Use Theorems 1.10 and 1.11. It's obvious. Next, for the \Rightarrow direction. By the definition of the RS integral and the RS-Darboux sums,

$$U_{\alpha}(f, P_1) < \int_a^b f d\alpha + \varepsilon/2 \qquad L_{\alpha}(f, P_2) < \int_a^b f d\alpha + \varepsilon/2$$
 (3)

Taking the common refinement, and using Theorem 1.10, we get that

$$U_{\alpha}(f, P_1 \cup P_2) - L_{\alpha}(f, P_1 \cup P_2) \leq U_{\alpha}(f, P_1) - L_{\alpha}(f, P_2)$$

$$= \left(U_{\alpha}(f, P_1) - \int_a^b f d\alpha\right) - \left(L_{\alpha}(f, P_2) - \int_a^b f d\alpha\right)$$
By Expression 3 $\leq \varepsilon/2 + \varepsilon/2$

Theorem 1.16. The set of all continuous functions on [a,b], denoted C([a,b]), is a subset of $\mathcal{R}([a,b])$.

Proof. By Theorem 1.15, we want to show that, for all $\epsilon > 0$, there exists a partition P such that

$$U_{\alpha}(f, P) - L_{\alpha}(f, P) < \epsilon$$

$$\Leftrightarrow \sum_{i=1}^{n} (M_{i}(f) - m_{i}(f)) \Delta \alpha_{i} < \epsilon$$

Now since f is continuous on a compact interval, [a, b], f is uniformly continuous on [a, b]. That means, given our ϵ from above,

$$\exists \delta > 0 \quad \text{s.t.} \quad |x_i - x_{i-1}| < \delta \quad \Rightarrow \quad |f(x_i) - f(x_{i-1})| < \frac{\epsilon}{\alpha(b) - \alpha(a)}$$

So we can choose P such that that $||P|| < \delta$. This means that

$$\sum_{i=1}^{n} [M_i(f) - m_i(f)] \Delta \alpha_i \le \sum_{i=1}^{n} \frac{\epsilon}{\alpha(b) - \alpha(a)} \Delta \alpha_i = \frac{\epsilon}{\alpha(b) - \alpha(a)} \sum_{i=1}^{n} \Delta \alpha_i$$
$$= \frac{\epsilon}{\alpha(b) - \alpha(a)} \cdot [\alpha(b) - \alpha(a)] = \epsilon$$

1.4.2 Properties of $\mathcal{R}_{\alpha}([a,b])$

Now for some useful properties of the set of Riemann-Stieltjes integrable functions. Consider $f, g \in \mathcal{R}_{\alpha}([a, b])$ and $c \in \mathbb{R}$.

• Linearity: $f + g \in \mathcal{R}_{\alpha}([a, b])$ and $cf \in \mathcal{R}_{\alpha}([a, b])$, with

$$\int_{a}^{b} c f d\alpha = c \int_{a}^{b} f d\alpha \quad \text{and} \quad \int_{a}^{b} f + g d\alpha = \int_{a}^{b} f d\alpha + \int_{a}^{b} g d\alpha$$

- Subsets: If $[c,d] \subset [a,b]$, then $f \in \mathscr{R}_{\alpha}([c,d])$.
- Splitting the Interval: If $c \in [a, b]$, then

$$\int_{a}^{b} f d\alpha = \int_{a}^{c} f d\alpha + \int_{c}^{b} f d\alpha$$

• Monotonicity: If $f, g, h \in \mathcal{R}_{\alpha}([a, b]), f \geq 0$, and $g \leq h$ on [a, b], then

$$\int_{a}^{b} f d\alpha \ge 0 \qquad \int_{a}^{b} g \ d\alpha \le \int_{a}^{b} h \ d\alpha$$

• Absolute Value Relations: If we have $f \in \mathcal{R}_{\alpha}([a,b])$, then both

$$|f| \in \mathscr{R}_{\alpha}([a,b]) \qquad \left| \int_{a}^{b} f d\alpha \right| \leq \int_{a}^{b} |f| d\alpha$$