Esame scritto di Geometria 2

5 settembre 2013

Esercizio 1. Sia \mathbb{E}^3 lo spazio euclideo reale tridimensionale dotato del riferimento cartesiano standard (x, y, z). Sia $P(k) = (2k - 1, 4, 1) \in \mathbb{E}^3$ e sia r la retta di equazioni

$$r: \begin{cases} x - z + 2 = 0 \\ y - 2 = 0 \end{cases}$$

- 1. Determinare un'equazione cartesiana del piano $\pi(k)$ passante per P(k) e perpendicolare a r.
- 2. Al variare di $k \in \mathbb{R}$ si determini il punto P(k) di minima distanza da r.
- 3. Siano k = 1, P = P(1) e $Q = (-1, 2, 1) \in r$. Si determini l'angolo convesso formato da r e dalla retta passante per P e Q.

Esercizio 2. Sia $\mathbb{P}^2_{\mathbb{C}}$ il piano proiettivo complesso dotato del riferimento proiettivo standard $[x_0, x_1, x_2]$. Consideriamo la quadrica $\mathcal{C}(k)$ definita come

$$C(k)$$
: $x_0^2 + 2kx_0x_1 + (k^2 - 1)x_1^2 + 2x_1x_2 - (4k + 1)x_2^2 = 0$

- 1. Al variare di $k \in \mathbb{C}$ si determini la forma canonica $\mathcal{D}(k)$ di $\mathcal{C}(k)$.
- 2. Nei casi in cui C(k) sia degenere si scrivano le rette in cui si decompone.
- 3. Al variare di $k \in \mathbb{C}$ si determini una proiettività $T_k : \mathbb{P}^3_{\mathbb{C}} \to \mathbb{P}^3_{\mathbb{C}}$ tale che $T(\mathcal{C}(k)) = \mathcal{D}(k)$.

Esercizio 3. Sia $(\mathbb{R}, \tau_{\varepsilon})$ lo spazio euclideo reale. Si consideri la famiglia

$$\tau = \{X \subset \mathbb{R} : X = \emptyset \text{ oppure } \mathbb{R} \backslash X \text{ è compatto in } (\mathbb{R}, \tau_{\varepsilon})\}.$$

- 1. Si dimostri che τ è una topologia su \mathbb{R} .
- 2. Si dica se (\mathbb{R}, τ) è connesso, compatto, T_1 o T_2 .
- 3. Si dimostri che ogni funzione continua $f:(\mathbb{R},\tau)\to(\mathbb{R},\tau_{\varepsilon})$ è costante.

Esercizio 4. Sia \mathbb{R} lo spazio reale con la topologia euclidea e sia $\mathbb{Q} \subset \mathbb{R}$ il sottoinsieme dei numeri razionali.

1. Si consideri su \mathbb{R} la seguente relazione di equivalenza.

$$x \sim_1 y$$
 se e solo se $x = y$ oppure $x - y \in \mathbb{Q}$.

Si dimostri che lo spazio quoziente $X = \mathbb{R}/\sim_1$ ha la topologia banale.

2. Si consideri su \mathbb{R} la seguente relazione di equivalenza.

$$x \sim_2 y$$
 se e solo se $x = y$ oppure $x, y \in \mathbb{Q}$.

Si dica se lo spazio quoziente $Y = \mathbb{R}/\sim_2 \dot{e}$ compatto, T_0 , T_1 o T_2 .

Soluzioni

Soluzione esercizio 1.

1. Troviamo un vettore v direzionale per r. Dato che $S=(0,2,2)\in r$ e $Q=(-1,2,1)\in r$ possiamo prendere v=S-Q=(1,0,1). I piani perpendicolari a r hanno equazione

$$x + z + d = 0$$

con $d \in \mathbb{R}$. Imponendo il passaggio per P(k) otteniamo

$$\pi(k): x + z - 2k = 0.$$

2. Il punto di intersezione fra $r \in \pi(k)$ è Q(k) = (k-1, 2, k+1). La distanza d(k) fra $r \in \pi(k)$ è quindi

$$d(k) = d(P(k), Q(k)) = \sqrt{(2k - 1 - k + 1)^2 + (4 - 2)^2 + (1 - k - 1)^2}$$
$$= \sqrt{2k^2 + 4}.$$

Il minimo per d(k) è dunque 2 e si ottiene per k=0, cioè per il punto P(0)=(-1,4,1).

3. Chiamiamo s la retta passante per $P \in Q$. Un vettore direzionale per $s \ \grave{e} \ w = (2, 2, 0)$. L'angolo richiesto \grave{e} quindi

$$\alpha = \arccos\left(\frac{\langle v, w \rangle}{\|v\| \|w\|}\right) = \arccos\left(\frac{2}{\sqrt{2 \cdot 8}}\right) = \arccos\left(\frac{1}{2}\right) = \frac{\pi}{3}.$$

Soluzione esercizio 2.

1. Nel proiettivo complesso la classe di ogni quadrica è determinata dal rango della matrice associata

$$A(k) = \begin{pmatrix} 1 & k & 0 \\ k & k^2 - 1 & 1 \\ 0 & 1 & -(4k+1) \end{pmatrix}.$$

Abbiamo det A(k) = 4k. Se k = 0 allora $\operatorname{rk} A(0) = 2$ e dunque la sua forma canonica è

$$\mathcal{D}(0): \quad x_0^2 + x_1^2 = 0.$$

Se $k \neq 0$ allora A(k) ha rango $\operatorname{rk}(A(k)) = 3$ e quindi la sua forma canonica è

$$\mathcal{D}(k): \quad x_0^2 + x_1^2 + x_2^2 = 0.$$

2. La conica C(k) è degenere per k=0 e abbiamo

$$C(k): x_0^2 - x_1^2 + 2x_1x_2 - x_2^2 = x_0^2 - (x_1 + x_2)^2$$

= $(x_0 - x_1 - x_2)(x_0 + x_1 + x_2).$

- 3. Applichiamo il metodo del completamento dei quadrati.
 - Se $k \neq 0$,

$$C(k): x_0^2 + 2kx_0x_1 + (k^2 - 1)x_1^2 + 2x_1x_2 - (4k + 1)x_2^2$$

$$= (x_0 + kx_1)^2 - k^2x_1^2 + (k^2 - 1)x_1^2 + 2x_1x_2 - (4k + 1)x_2^2$$

$$= (x_0 + kx_1)^2 - x_1^2 + 2x_1x_2 - (4k + 1)x_2^2$$

$$= (x_0 + kx_1)^2 - (x_1 + x_2)^2 + x_2^2 - (4k + 1)x_2^2$$

$$= (x_0 + kx_1)^2 - (x_1 + x_2)^2 - 4kx_2^2.$$

Possiamo dunque definire la proiettività

$$T_k: [x_0, x_1, x_2] \mapsto [X_0, X_1, X_2] = [x_0 + kx_1, i(x_1 + x_2), \sqrt{-4k}x_2]$$

così che $T_k(\mathcal{C}(k)) = \mathcal{D}(k)$, dove

$$\mathcal{D}(k): X_0^2 + X_1^2 + X_2^2.$$

• Se k = 0,

$$C(0): x_0^2 - x_1^2 + 2x_1x_2 - x_2^2$$
$$= x_0^2 - (x_1 - x_2)^2$$

per cui possiamo definire

$$T_0: [x_0,x_1,x_2] \mapsto [X_0,X_1,X_2] = [x_0,i(x_1-x_2),x_2]$$
 così che $T_0(\mathcal{C}(0)) = \mathcal{D}(0)$, dove

$$\mathcal{D}(1): X_0^2 + X_1^2.$$

1. Chiaramente \mathbb{R} e \emptyset sono elementi di τ .

Sia $\{U_i\}_{i\in I}$ una famiglia di elementi di τ . Allora $\cup U_i \in \tau$ in quanto $\mathbb{R}\setminus \cup U_i = \cap(\mathbb{R}\setminus U_i)$ è intersezione di compatti e dunque compatto. Se I è finito allora $\mathbb{R}\setminus \cap U_i = \cup(\mathbb{R}\setminus U_i)$ è compatto, in quanto unione finita di compatti, e dunque $\cap U_i \in \tau$.

2. Cominciamo col notare che due aperti non vuoti di (\mathbb{R}, τ) si intersecano sempre. Supponiamo per assurdo che esistano $U_1, U_2 \in \tau$ aperti disgiunti non vuoti. Allora $\mathbb{R} = (\mathbb{R} \setminus U_1) \cup (\mathbb{R} \setminus U_2)$, che non è possibile, in quanto $\mathbb{R} \setminus U_1$ e $\mathbb{R} \setminus U_2$ sono compatti di $(\mathbb{R}, \tau_{\varepsilon})$ e quindi limitati. Questo implica immediatamente che (\mathbb{R}, τ) è connesso e che non è Hausdorff.

Mostriamo che (\mathbb{R}, τ) è T_1 . Siano $x, y \in \mathbb{R}$ punti distinti. Allora $\mathbb{R} \setminus \{x\}$ è un aperto che contiene y, ma non x. Analogamente per $\mathbb{R} \setminus \{y\}$ e quindi (\mathbb{R}, τ) è T_1 .

Dimostriamo infine che (\mathbb{R}, τ) è compatto. Sia $\{U_i\}_{i \in I}$ un ricoprimento aperto di \mathbb{R} . Sia $k \in I$. Allora $\mathbb{R} \setminus U_k$ è compatto in $(\mathbb{R}, \tau_{\varepsilon})$ e ogni U_i è aperto per $(\mathbb{R}, \tau_{\varepsilon})$, dunque possiamo ricoprire $\mathbb{R} \setminus U_k$ con un numero finito di U_i e quindi possiamo ottenere un sottoricoprimento finito.

3. Supponiamo per assurdo che f non sia costante e siano x, y due punti distinti nell'immagine di f. Siano U_x, U_y intorni aperti disgiunti rispettivamente di x e y. Allora $f^{-1}(U_x)$ e $f^{-1}(U_y)$ sono aperti disgiunti di (\mathbb{R}, τ) , assurdo per quanto detto sopra.

Soluzione esercizio 4.

- 1. Sia $\pi_1 : \mathbb{R} \to X$ la mappa quoziente e sia U un aperto non vuoto di X. Dato che $\pi_1^{-1}(U)$ è un aperto di \mathbb{R} , esiste un intervallo aperto $I = (a, b) \subset \pi_1^{-1}(U)$. Per ogni $x \in \mathbb{R}$ esiste quindi un numero razionale q tale che $x q \in I$ (basta prendere $q \in (x b, x a)$). Da ciò segue che U = X.
- 2. Sia $\pi_2 : \mathbb{R} \to Y$ la mappa quoziente. Dimostriamo che Y non è compatto. Sia $x \in \mathbb{R}$ irrazionale e per ogni $i \in \mathbb{N}$ consideriamo gli insiemi $U_i = \mathbb{R} \setminus \{x+i, x+i+1, \ldots\}$. Allora, per ogni $i \in \mathbb{N}$, $\pi_2(U_i)$ è un aperto di

Y (in quanto $\pi_2^{-1}(\pi_2(U_i)) = U_i$). Quindi $\{\pi_2(U_i)\}_{i \in \mathbb{N}}$ è un ricoprimento aperto di Y da cui non possiamo estrarre nessun sottoricoprimento finito.

Y è T_0 , infatti siano x,y punti distinti di Y tali che $x \neq \pi(q)$, dove $q \in \mathbb{Q}$. Allora $Y \setminus \{x\}$ è un aperto di Y che contiene y. Del resto Y non è T_1 , in quanto l'intersezione di ogni coppia di aperti non vuoti di Y contiene $\pi_2(q)$ dove $q \in \mathbb{Q}$. Quindi non è neppure T_2 .