

Albanese varieties with modulus and Hodge theory

Kazuya Kato and Henrik Russell

May 2009

1 Introduction

1.1. Let X be a proper smooth variety over a field k of characteristic 0, and let $\text{Alb}(X)$ be the Albanese variety of X . In the work [Ru], the second author constructed generalized Albanese varieties $\text{Alb}_{\mathcal{F}}(X)$, which are commutative connected algebraic groups over k with surjective homomorphisms $\text{Alb}_{\mathcal{F}}(X) \rightarrow \text{Alb}(X)$ (see section 5 for a review). If Y is an effective divisor on X , a special case of $\text{Alb}_{\mathcal{F}}(X)$ becomes the generalized Albanese variety $\text{Alb}(X, Y)$ of X of modulus Y (cf. section 5). This is a higher dimensional analogue of the generalized Jacobian variety with modulus of Rosenlicht-Serre. Note that the divisor Y can have multiplicity, and so the algebraic group $\text{Alb}(X, Y)$ can have an additive part.

Assume now $k = \mathbb{C}$. The purpose of this paper is to give Hodge theoretic presentations (Thm. 1.4) of $\text{Alb}(X, Y)$.

The case Y has no multiplicity was studied in the work [BaS] of Barbieri-Viale and Srinivas. A Hodge theoretic presentation of a generalized Albanese variety in the case without modulus but allowing the singularity of X was given in the work [ESV] of Esnault, Srinivas and Viehweg.

1.2. First we review the curve case. Let X be a proper smooth curve over \mathbb{C} and let Y be an effective divisor on X . In this case, the Albanese variety $\text{Alb}(X, Y)$ of X relative to Y coincides with the generalized Jacobian variety $J(X, Y)$ of X relative to Y . In the following, we will write the complex analytic space associated to X simply by X , and the sheaf of holomorphic functions on it by \mathcal{O}_X . Let $I = \text{Ker}(\mathcal{O}_X \rightarrow \mathcal{O}_Y)$ be the ideal of \mathcal{O}_X which defines Y . The cohomology below is for the topology of the analytic space X (not for Zariski topology).

The generalized Jacobian variety $J(X, Y)$ is the kernel of the degree map $\text{Pic}(X, Y) \rightarrow \mathbb{Z}$ where $\text{Pic}(X, Y) = H^1(X, \text{Ker}(\mathcal{O}_X^\times \rightarrow \mathcal{O}_Y^\times))$. Let $j : X - Y \rightarrow X$ be the inclusion map and let $j_! \mathbb{Z}(1)$ be the 0-extension of the constant sheaf $\mathbb{Z}(1)$ of $X - Y$ to X . (For $r \in \mathbb{Z}$, $\mathbb{Z}(r)$ denotes $\mathbb{Z}(2\pi i)^r$ as usual.) Then we have an exact sequence

$$0 \longrightarrow j_! \mathbb{Z}(1) \longrightarrow I \xrightarrow{\exp} \text{Ker}(\mathcal{O}_X^\times \rightarrow \mathcal{O}_Y^\times) \longrightarrow 0$$

and hence we have an isomorphism

$$(1) \quad \text{Pic}(X, Y) \cong H^2(X, [j_! \mathbb{Z}(1) \rightarrow I]).$$

Here in the complex $[j_! \mathbb{Z}(1) \rightarrow I]$, $j_! \mathbb{Z}(1)$ is put in degree 0.

We have another presentation of $J(X, Y)$ given in (2) below. Let I_1 be the ideal of \mathcal{O}_X which defines the reduced part of Y and let $J = II_1^{-1} \subset \mathcal{O}_X$. Note that the composition of the two inclusion maps of complexes

$$[I \xrightarrow{d} J\Omega_X^1] \longrightarrow [I \xrightarrow{d} \Omega_X^1] \longrightarrow [I_1 \xrightarrow{d} \Omega_X^1]$$

is a quasi-isomorphism. Hence we have an isomorphism in the derived category

$$[I \xrightarrow{d} \Omega_X^1] \cong [I_1 \xrightarrow{d} \Omega_X^1] \oplus (\Omega_X^1 / J\Omega_X^1)[-1].$$

Since $j_! \mathbb{C} \longrightarrow [I_1 \xrightarrow{d} \Omega_X^1]$ is a quasi-isomorphism, we have an exact sequence

$$(2) \quad H^0(X, \Omega_X^1) \longrightarrow H_c^1(X - Y, \mathbb{C}/\mathbb{Z}(1)) \oplus H^0(X, \Omega_X^1 / J\Omega_X^1) \longrightarrow J(X, Y) \longrightarrow 0.$$

(Here H_c is the cohomology with compact supports.)

1.3. Now let X be a proper smooth variety over \mathbb{C} of dimension n and let Y be an effective divisor on X .

Again in the following theorem, cohomology groups are for the topology of the complex analytic spaces, and the notation \mathcal{O} and Ω stand for analytic sheaves.

Let I be the ideal of \mathcal{O}_X which defines Y , let I_1 be the ideal of \mathcal{O}_X which defines the reduced part of Y , and let $J = II_1^{-1} \subset \mathcal{O}_X$.

Theorem 1.4. (1) *We have an exact sequence*

$$0 \longrightarrow \text{Alb}(X, Y) \longrightarrow H^{2n}(X, \mathcal{D}_{X,Y}(n)) \xrightarrow{\deg} \mathbb{Z} \longrightarrow 0,$$

where for $r \in \mathbb{Z}$, $\mathcal{D}_{X,Y}(r)$ denotes the kernel of the surjective homomorphism of complexes $\mathcal{D}_X(r) \rightarrow \mathcal{D}_Y(r)$ with $D_X(r)$ the Deligne complex

$$[\mathbb{Z}(r) \rightarrow \mathcal{O}_X \xrightarrow{d} \Omega_X^1 \xrightarrow{d} \dots \xrightarrow{d} \Omega_X^{r-1}]$$

and $\mathcal{D}_Y(r)$ the similar complex

$$[\mathbb{Z}(r)_Y \rightarrow \mathcal{O}_Y \xrightarrow{d} \Omega_Y^1 \xrightarrow{d} \dots \xrightarrow{d} \Omega_Y^{r-1}].$$

(2) *We have an exact sequence*

$$H^{n-1}(X, \Omega_X^n) \longrightarrow H_c^{2n-1}(X - Y, \mathbb{C}/\mathbb{Z}(n)) \oplus H^{n-1}(X, \Omega_X^n / J\Omega_X^n) \longrightarrow \text{Alb}(X, Y) \longrightarrow 0.$$

Note that the case $n = 1$ of Thm. 1.4 (1) (resp. (2)) becomes the presentation of $J(X, Y)$ given by (1) (resp. (2)) in 1.2.

Remark 1.5. We give some remarks on this theorem.

(a) The case $Y = 0$ of Thm. 1.4 (1) is nothing but the well known exact sequence

$$(3) \quad 0 \longrightarrow \text{Alb}(X) \longrightarrow H^{2n}(X, \mathcal{D}_X(n)) \xrightarrow{\deg} \mathbb{Z} \longrightarrow 0$$

by using the Deligne cohomology $H^{2n}(X, \mathcal{D}_X(n))$. (Usually the Deligne cohomology $H^m(X, \mathcal{D}_X(r))$ is denoted by $H_D^m(X, \mathbb{Z}(r))$.)

The case $Y = 0$ of Thm. 1.4 (2) is nothing but the usual presentation

$$(4) \quad \text{Alb}(X) \cong H_{\mathbb{Z}} \backslash H_{\mathbb{C}} / F^0 H_{\mathbb{C}}$$

of the Albanese variety $\text{Alb}(X)$ of X , where $(H_{\mathbb{Z}}, H_{\mathbb{C}}, F^{\bullet})$ is the following Hodge structure of weight -1 . $H_{\mathbb{Z}} = H^{2n-1}(X, \mathbb{Z}(n)) / (\text{torsion part})$, $H_{\mathbb{C}} = \mathbb{C} \otimes_{\mathbb{Z}} H_{\mathbb{Z}} = H^{2n-1}(X, \Omega_X^{\bullet})$, and F^{\bullet} is the Hodge filtration on $H_{\mathbb{C}}$ defined as

$$F^{-1} = H_{\mathbb{C}}, \quad F^0 = H^{n-1}(X, \Omega_X^n), \quad F^1 = 0.$$

(b) Recall that the presentations (3) and (4) of $\text{Alb}(X)$ are related as follows. Consider the exact sequence of complexes $0 \rightarrow \Omega_X^{\leq n-1}[-1] \rightarrow \mathcal{D}_X(n) \rightarrow \mathbb{Z}(n) \rightarrow 0$, where $\Omega_X^{\leq n-1}$ denotes the part of degree $\leq n-1$ of the de Rham complex Ω_X^{\bullet} , which is actually a quotient complex of Ω_X^{\bullet} . By taking the cohomology associated to this exact sequence, we have an exact sequence

$$H^{2n-1}(X, \mathbb{Z}(n)) \longrightarrow H^{2n-1}(X, \Omega_X^{\leq n-1}) \longrightarrow H_D^{2n}(X, \mathbb{Z}(n)) \xrightarrow{\deg} \mathbb{Z} \longrightarrow 0.$$

Since

$$H^{2n-1}(X, \Omega_X^{\leq n-1}) \cong H^{2n-1}(X, \Omega_X^{\bullet}) / H^{n-1}(X, \Omega_X^n) \cong H^{2n-1}(X, \mathbb{C}) / H^{n-1}(X, \Omega_X^n),$$

the exact sequence (4) is equivalent to (3).

(c) (1) and (2) of Thm. 1.4 are related similarly. Let S be the subcomplex of the de Rham complex Ω_X^{\bullet} of X defined by $S^p = \text{Ker}(\Omega_X^p \rightarrow \Omega_Y^p)$ for $0 \leq p \leq n-1$ and $S^n = \Omega_X^n$. Then Thm. 1.4 (1) is equivalent to

$$\text{Alb}(X, Y) \cong H_{\mathbb{Z}} \backslash H^{2n-1}(X, S) / H^{n-1}(X, \Omega_X^n)$$

where $H_{\mathbb{Z}} = H_c^{2n-1}(X - Y, \mathbb{Z}(n)) / (\text{torsion part})$. As is shown in § 6, we have a commutative diagram with an isomorphism in the lower row

$$\begin{array}{ccc} H^{n-1}(X, \Omega_X^n) & = & H^{n-1}(X, \Omega_X^n) \\ \downarrow & & \downarrow \\ H^{2n-1}(X, S) & \cong & H_c^{2n-1}(X - Y, \mathbb{C}) \oplus H^{n-1}(X, \Omega_X^n / J\Omega_X^n). \end{array}$$

Thus (1) and (2) of Thm. 1.4 are deduced from each other.

1.6. As mentioned above, Thm. 1.4 shows that $\text{Alb}(X, Y)$ is expressed as $H_{\mathbb{Z}} \setminus H_V / F^0$ where:

$$\begin{aligned} H_{\mathbb{Z}} &= H_c^{2n-1}(X - Y, \mathbb{Z}(n)) / (\text{torsion part}), \\ H_V &= H_{\mathbb{C}} \oplus H^{n-1}(X, \Omega_X^n / J\Omega_X^n) \cong H^{2n-1}(X, S) \\ (H_{\mathbb{C}} &= \mathbb{C} \otimes H_{\mathbb{Z}} \text{ and } S \text{ is as in 1.5 (d)}), \end{aligned}$$

F^\bullet is the decreasing filtration on H_V given by

$$F^{-1} = H_V, \quad F^0 = H^{n-1}(X, \Omega_X^n), \quad F^1 = 0.$$

Note that H_V can be different from $H_{\mathbb{C}}$ here, and so $(H_{\mathbb{Z}}, H_V, F^\bullet)$ here need not be a Hodge structure. It is some kind of “mixed Hodge structure with additive part”. This object $(H_{\mathbb{Z}}, H_V, F^\bullet)$ with a weight filtration, which we will denote by $H^{2n-1}(X, Y_-)(n)$ in section 6, belongs to a category \mathcal{H} introduced in section 2 which contains the category of mixed Hodge structures but is bigger than it. In the proof of Thm. 1.4, it is essential to consider such object. This category \mathcal{H} is related to the category of refined Hodge structures of Bloch-Srinivas [BlS] and to the category of formal Hodge structures of Barbieri-Viale [Ba]. In the proof of Thm. 1.4, we use the result of Barbieri-Viale in [Ba] on the Hodge theoretic description of the category of “1-motives with additive parts” over \mathbb{C} .

1.7. The theory of generalized Albanese variety in characteristic $p > 0$ is given in [Ru3] basing on the duality theory [Ru2] of 1-motives with unipotent parts in characteristic $p > 0$.

In characteristic $p > 0$, the syntomic cohomology is an analogue of the Deligne cohomology. We expect that we can have presentations of the p -adic completion of $\text{Alb}(X, Y)(k)$ (k is the base field), which is similar to Thm. 1.4, by using crystalline cohomology theory and syntomic cohomology theory.

We are thankful to Professor Hélène Esnault for advice.

2 Mixed Hodge structures with additive parts

2.1. For a proper smooth variety X over \mathbb{C} of dimension n and for an effective divisor Y on X , we will have in section 6 certain structures $H^1(X, Y_+)$ and $H^{2n-1}(X, Y_-)$ which are kinds of “mixed Hodge structures with additive parts”. (These structures for the case X is a curve are explained in 2.3 below.) The authors imagine that there is a nice definition of the category of “mixed Hodge structures with additive parts”, which contains these $H^1(X, Y_+)$ and $H^{2n-1}(X, Y_-)$ as objects, but can not define it. Instead, we define a category \mathcal{H} having these objects, which may be a very simple approximation of such nice category.

2.2. The category \mathcal{H} . An object of \mathcal{H} is $H = (H_{\mathbb{Z}}, H_V, W_{\bullet}H_{\mathbb{Q}}, W_{\bullet}H_V, F^\bullet H_V, a, b)$, where $H_{\mathbb{Z}}$ is a finitely generated \mathbb{Z} -module, H_V is a finite dimensional \mathbb{C} -vector space, $W_{\bullet}H_{\mathbb{Q}}$ is an increasing filtration on $H_{\mathbb{Q}} := \mathbb{Q} \otimes H_{\mathbb{Z}}$ (called weight filtration), $W_{\bullet}H_V$ is an increasing

filtration on H_V (called weight filtration), F^\bullet is a decreasing filtration on H_V (called Hodge filtration), a is a \mathbb{C} -linear map $H_{\mathbb{C}} := \mathbb{C} \otimes H_{\mathbb{Z}} \rightarrow H_V$ which sends $W_w H_{\mathbb{C}} := \mathbb{C} \otimes_{\mathbb{Q}} W_w H_{\mathbb{Q}}$ into $W_w H_V$ for any $w \in \mathbb{Z}$, and b is a \mathbb{C} -linear map $H_V \rightarrow H_{\mathbb{C}}$ which sends $W_w H_V$ into $W_w H_{\mathbb{C}}$ for any $w \in \mathbb{Z}$ such that $b \circ a$ is the identity map of $H_{\mathbb{C}}$.

We sometimes denote an object H of \mathcal{H} simply as $(H_{\mathbb{Z}}, H_V)$.

The category of mixed Hodge structures is naturally embedded in \mathcal{H} as a full subcategory, by putting $H_V = H_{\mathbb{C}}$.

The full subcategory of \mathcal{H} consisting of all objects H such that $H_{\mathbb{Z}}$ are torsion free is clearly self-dual.

This category \mathcal{H} is a simpler version of the category of enriched Hodge structures in Bloch-Srinivas [BlS].

2.3. Example. Let X be a proper smooth curve over \mathbb{C} and let Y be an effective divisor on X . Let I be the ideal of \mathcal{O}_X which defines Y , let I_1 be the ideal of \mathcal{O}_X which defines the reduced part of Y , and let $J = II_1^{-1} \subset \mathcal{O}_X$.

We define objects $H^1(X, Y_+)$ and $H^1(X, Y_-)$ of \mathcal{H} .

First, we define $H = H^1(X, Y_+)$. Let

$$H_{\mathbb{Z}} = H^1(X - Y, \mathbb{Z}), \quad H_V = H^1(X, [\mathcal{O}_X \xrightarrow{d} I^{-1}\Omega_X^1]).$$

The map $a : H_{\mathbb{C}} \rightarrow H_V$ is

$$H^1(X - Y, \mathbb{C}) \cong H^1(X, [\mathcal{O}_X \rightarrow I_1^{-1}\Omega_X^1]) \longrightarrow H^1(X, [\mathcal{O}_X \rightarrow I^{-1}\Omega_X^1]).$$

The map $b : H_V \rightarrow H_{\mathbb{C}}$ is the composition

$$\begin{aligned} H^1(X, [\mathcal{O}_X \rightarrow I^{-1}\Omega_X^1]) &\longrightarrow H^1(X, [J^{-1} \rightarrow I^{-1}\Omega_X^1]) \xleftarrow{\cong} H^1(X, [\mathcal{O}_X \rightarrow I_1^{-1}\Omega_X^1]) \\ &\cong H^1(X - Y, \mathbb{C}). \end{aligned}$$

The weight filtrations and the Hodge filtration are given by

$$W_2 H_{\mathbb{Q}} = H_{\mathbb{Q}}, \quad W_1 H_{\mathbb{Q}} = H^1(X, \mathbb{Q}), \quad W_0 H_{\mathbb{Q}} = 0,$$

$$W_2 H_V = H_V, \quad W_1 H_V = H^1(X, \mathbb{C}), \quad W_0 H_V = 0,$$

where $H^1(X, \mathbb{C})$ is embedded in H_V via a , and

$$F^0 H_V = H_V, \quad F^1 H_V = H^1(X, \mathbb{C}), \quad F^2 H_{\mathbb{C}} = 0.$$

Next, we define $H = H^1(X, Y_-)$. Let

$$H_{\mathbb{Z}} = H_c^1(X - Y, \mathbb{Z}), \quad H_V = H^1(X, [I \xrightarrow{d} \Omega_X^1]).$$

The map $a : H_{\mathbb{C}} \rightarrow H_V$ is the composition

$$H_c^1(X - Y, \mathbb{C}) \cong H^1(X, [I_1 \rightarrow \Omega_X^1]) \xleftarrow{\cong} H^1(X, [I \rightarrow J\Omega_X^1]) \longrightarrow H^1(X, [I \rightarrow \Omega_X^1]).$$

The map $b : H_V \rightarrow H_{\mathbb{C}}$ is

$$H^1(X, [I \rightarrow \Omega_X^1]) \longrightarrow H^1(X, [I_1 \rightarrow \Omega_X^1]) \cong H_c^1(X - Y, \mathbb{C}).$$

The weight filtrations and the Hodge filtration are given by

$$W_1 H_{\mathbb{Q}} = H_{\mathbb{Q}}, \quad W_0 H_Q = \text{Ker}(H_{\mathbb{Q}} \rightarrow H^1(X, \mathbb{Q})), \quad W_{-1} H_{\mathbb{Q}} = 0,$$

$$W_1 H_V = H_V, \quad W_0 H_V = \text{Ker}(H_V \rightarrow H^1(X, \mathbb{C})), \quad W_{-1} H_V = 0,$$

where $H^1(X, \mathbb{C})$ is regarded as quotient of H_V via b , and

$$F^0 H_V = H_V, \quad F^1 H_V = \text{Ker}(H_V \rightarrow H^1(X, \mathcal{O}_X)), \quad F^2 H_{\mathbb{C}} = 0.$$

Then we have exact sequences in \mathcal{H}

$$0 \longrightarrow H^1(X) \longrightarrow H^1(X, Y_+) \longrightarrow H^0(Y)(-1) \longrightarrow \mathbb{Z}(-1) \longrightarrow 0,$$

$$0 \longrightarrow \mathbb{Z} \longrightarrow H^0(Y) \longrightarrow H^1(X, Y_-) \longrightarrow H^1(X) \longrightarrow 0.$$

Here for $r \in \mathbb{Z}$, $\mathbb{Z}(r)$ is the usual Hodge structure $\mathbb{Z}(r)$ regarded as an object of \mathcal{H} . $H^1(X)$ is also the usual Hodge structure of weight 1 associated to the first cohomology of X , regarded as an object of \mathcal{H} . Finally the object $H^0(Y)$ of \mathcal{H} is defined as below, and $H^0(Y)(-1)$ is the -1 Tate twist.

The definition of $H = H^0(Y)$ is as follows. $H_{\mathbb{Z}} = H^0(Y, \mathbb{Z}) = \bigoplus_{y \in Y} \mathbb{Z}$. $H_V = H^0(Y, \mathcal{O}_Y)$. a is the canonical map $H^0(Y, \mathbb{C}) \rightarrow H^0(Y, \mathcal{O}_Y)$. b is the canonical map $H^0(Y, \mathcal{O}_Y) \rightarrow H^0(Y, \mathbb{C})$ given by $\mathcal{O}_Y \rightarrow \mathbb{C}$ which is $\mathcal{O}_{Y,y} \rightarrow \mathcal{O}_{Y,y}/m_y = \mathbb{C}$ at each $y \in Y$ (m_y denotes the maximal ideal of $\mathcal{O}_{Y,y}$). The weight filtration and the Hodge filtration are given by

$$W_0 H = H, \quad W_{-1} H = 0,$$

$$F^0 H_V = H_V, \quad F^1 H_V = 0.$$

Note that $H_{\mathbb{C}} \rightarrow H_V$ can be like $\mathbb{C} \rightarrow \mathbb{C}[T]/(T^n)$, and need not be an isomorphism.

The evident self-duality $\underline{\text{Hom}}(\ , \mathbb{Z})$ for torsion free objects in \mathcal{H} induces

$$H^1(X, Y_-) \cong \underline{\text{Hom}}(H^1(X, Y_+), \mathbb{Z})(-1).$$

3 1-motives with additive parts

In [La], Laumon formulated the notion “1-motive with additive part” over a field of characteristic 0. We review it assuming that the base field is algebraically closed for simplicity.

Fix an algebraically closed field k of characteristic 0.

3.1. Let $\mathcal{A}b/k$ be the category of sheaves of abelian groups on the fppf-site of the category of affine schemes over k . Let $\mathcal{C}^{[-1,0]}(\mathcal{A}b/k)$ be the abelian category of complexes in $\mathcal{A}b/k$ concentrated in degrees -1 and 0 .

A 1-motive with additive part over k is an object of $\mathcal{C}^{[-1,0]}(\mathcal{A}b/k)$ of the form $[\mathcal{F} \rightarrow G]$, where G is a commutative connected algebraic group over k and $\mathcal{F} \cong \mathbb{Z}^t \oplus (\widehat{\mathbb{G}}_a)^s$ for some t and s . (Cf. [La, Def. (5.1.1)].) Here \mathbb{Z} is regarded as a constant sheaf and $\widehat{\mathbb{G}}_a$ denotes

the formal completion of the additive group \mathbb{G}_a at 0. Recall that for any commutative ring R , $\widehat{\mathbb{G}}_a(R)$ is the subgroup of the additive group R consisting of all nilpotent elements. We have $\mathcal{F} = \mathcal{F}_{\text{ét}} \oplus \mathcal{F}_{\text{inf}}$ where $\mathcal{F}_{\text{ét}}$ is the étale part of \mathcal{F} which corresponds to \mathbb{Z}^t in the above isomorphism and \mathcal{F}_{inf} is the infinitesimal part of \mathcal{F} which corresponds to $(\widehat{\mathbb{G}}_a)^s$.

We denote the category of 1-motives with additive parts over k by \mathcal{M}_1 .

3.2. The category \mathcal{M}_1 admits a notion of duality (called “Cartier duality”). Let $[\mathcal{F} \rightarrow G]$ be a 1-motive with additive part over k . Then we have the “Cartier dual” $[\mathcal{F}^* \rightarrow G^*]$ of $[\mathcal{F} \rightarrow G]$ which is an object of \mathcal{M}_1 obtained as follows. Let $0 \rightarrow L \rightarrow G \rightarrow A \rightarrow 0$ be the canonical decomposition of G as an extension of an abelian variety A by a commutative connected affine algebraic group L . Note that $L \cong (\mathbb{G}_m)^t \oplus (\mathbb{G}_a)^s$ for some t and s . We have

$$\mathcal{F}^* = \underline{\text{Hom}}_{\mathcal{A}b/k}(L, \mathbb{G}_m), \quad G^* = \underline{\text{Ext}}_{\mathcal{C}^{[-1,0]}(\mathcal{A}b/k)}^1([\mathcal{F} \rightarrow A], \mathbb{G}_m)$$

and the homomorphism $\mathcal{F}^* \rightarrow G^*$ is the connecting homomorphism

$$\underline{\text{Hom}}_{\mathcal{A}b/k}(L, \mathbb{G}_m) \longrightarrow \underline{\text{Ext}}_{\mathcal{C}^{[-1,0]}(\mathcal{A}b/k)}^1([\mathcal{F} \rightarrow A], \mathbb{G}_m)$$

associated to the short exact sequence $0 \longrightarrow L \longrightarrow [\mathcal{F} \rightarrow G] \longrightarrow [\mathcal{F} \rightarrow A] \longrightarrow 0$ in $\mathcal{C}^{[-1,0]}(\mathcal{A}b/k)$. Since

$$\underline{\text{Hom}}_{\mathcal{A}b/k}(\mathbb{G}_m, \mathbb{G}_m) \cong \mathbb{Z}, \quad \underline{\text{Hom}}_{\mathcal{A}b/k}(\mathbb{G}_a, \mathbb{G}_m) \cong \widehat{\mathbb{G}}_a,$$

we have $\mathcal{F}^* \cong \mathbb{Z}^t \oplus (\widehat{\mathbb{G}}_a)^s$ for some t and s . We have an exact sequence

$$0 \longrightarrow \underline{\text{Hom}}_{\mathcal{A}b/k}(\mathcal{F}, \mathbb{G}_m) \longrightarrow \underline{\text{Ext}}_{\mathcal{C}^{[-1,0]}(\mathcal{A}b/k)}^1([\mathcal{F} \rightarrow A], \mathbb{G}_m) \longrightarrow \underline{\text{Ext}}_{\mathcal{A}b/k}^1(A, \mathbb{G}_m) \longrightarrow 0,$$

$\underline{\text{Ext}}_{\mathcal{A}b/k}^1(A, \mathbb{G}_m)$ is the dual abelian variety of A , and since

$$\underline{\text{Hom}}_{\mathcal{A}b/k}(\mathbb{Z}, \mathbb{G}_m) \cong \mathbb{G}_m, \quad \underline{\text{Hom}}_{\mathcal{A}b/k}(\widehat{\mathbb{G}}_a, \mathbb{G}_m) \cong \mathbb{G}_a,$$

$\underline{\text{Hom}}_{\mathcal{A}b/k}(\mathcal{F}, \mathbb{G}_m) \cong (\mathbb{G}_m)^t \oplus (\mathbb{G}_a)^s$ for some t and s . Hence G^* is a commutative connected algebraic group over k . Thus $[\mathcal{F}^* \rightarrow G^*]$ is a 1-motive with additive part. The Cartier dual of $[\mathcal{F}^* \rightarrow G^*]$ is canonically isomorphic to $[\mathcal{F} \rightarrow G]$.

See [La, section 5] for details or [Ru, section 1] for a review.

3.3. Let $\mathcal{M}_{1,\{-1,-2\}}$ be the full subcategory of \mathcal{M}_1 consisting of all objects $[\mathcal{F} \rightarrow G]$ such that $\mathcal{F} = 0$.

Let $\mathcal{M}_{1,\{0,-1\}}$ be the full subcategory of \mathcal{M}_1 consisting of all objects $[\mathcal{F} \rightarrow G]$ such that G is an abelian variety.

Then the self-duality of \mathcal{M}_1 in 3.2 induces an anti-equivalence between the categories $\mathcal{M}_{1,\{-1,-2\}}$ and $\mathcal{M}_{1,\{0,-1\}}$.

4 Equivalences of categories

In [Ba], Barbieri-Viale constructed a Hodge theoretic category and proved that in the case the base field is \mathbb{C} , the category \mathcal{M}_1 is equivalent to his Hodge theoretic category. Here we reformulate his equivalence in the style which is convenient for us, by using the category \mathcal{H} from section 2.

4.1. The category \mathcal{H}_1 . An object of \mathcal{H}_1 is an object H of \mathcal{H} endowed with a splitting of the weight filtration on $\text{Ker}(H_V \rightarrow H_{\mathbb{C}})$ satisfying the following conditions (i)–(iv).

(i) $H_{\mathbb{Z}}$ is torsion free, $F^{-1}H_V = H_V$, $F^1H_V = 0$, $W_0H = H$, $W_{-3}H = 0$.

(ii) gr_{-1}^WH is a polarizable Hodge structure of weight -1 . That is, $\text{gr}_{-1}^WH_{\mathbb{C}} = \text{gr}_{-1}^WH_V$ and $\text{gr}_{-1}^WH_{\mathbb{Z}}$ with the Hodge filtration on $\text{gr}_{-1}^WH_{\mathbb{C}}$ is a polarizable Hodge structure of weight -1 .

(iii) $F^0\text{gr}_0^WH_V = \text{gr}_0^WH_V$.

(iv) $F^0W_{-2}H_V = 0$.

Morphisms of \mathcal{H}_1 are the evident ones.

The category \mathcal{H}_1 is self-dual by the functor $\underline{\text{Hom}}(\ , \mathbb{Z})(1)$.

4.2. For a subset Δ of $\{0, -1, -2\}$, let $\mathcal{H}_{1,\Delta}$ be the full subcategory of \mathcal{H}_1 consisting of all objects H such that $\text{gr}_w^WH = 0$ unless $w \in \Delta$.

The categories $\mathcal{H}_{1,\{-1,-2\}}$ and $\mathcal{H}_{1,\{0,-1\}}$ are important for us. These categories are in fact defined as full subcategories of \mathcal{H} without reference to the splitting of the weight filtration on $\text{Ker}(H_V \rightarrow H_{\mathbb{C}})$, for the weight filtrations on $\text{Ker}(H_V \rightarrow H_{\mathbb{C}})$ of objects of these categories are pure.

Thus $\mathcal{H}_{1,\{-1,-2\}}$ is the full subcategory of \mathcal{H} consisting of all objects H satisfying the following conditions (i)–(iii).

(i) $H_{\mathbb{Z}}$ is torsion free, $F^{-1}H_V = H_V$, $F^1H_V = 0$, $W_{-1}H = H$, $W_{-3}H = 0$.

(ii) gr_{-1}^WH is a polarizable Hodge structure of weight -1 .

(iii) $F^0W_{-2}H_V = 0$.

For example, the Tate twist $H^1(X, Y_-)(1)$ of the object $H^1(X, Y_-)$ of \mathcal{H} in 2.3 belongs to $\mathcal{H}_{1,\{-1,-2\}}$.

Similarly, $\mathcal{H}_{1,\{0,-1\}}$ is the full subcategory of \mathcal{H} consisting of all objects H satisfying the following conditions (i)–(iii).

(i) $H_{\mathbb{Z}}$ is torsion free, $F^{-1}H_V = H_V$, $F^1H_V = 0$, $W_0H = H$, $W_{-2}H = 0$.

(ii) gr_{-1}^WH is a polarizable Hodge structure of weight -1 .

(iii) $F^0\text{gr}_0^WH_V = \text{gr}_0^WH_V$.

For example, the Tate twist $H^1(X, Y_+)(1)$ of the object $H^1(X, Y_+)$ of \mathcal{H} in 2.3 belongs to $\mathcal{H}_{1,\{0,-1\}}$.

The self-duality $\underline{\text{Hom}}(\ , \mathbb{Z})(1)$ of \mathcal{H}_1 induces an anti-equivalence between the categories $\mathcal{H}_{1,\{-1,-2\}}$ and $\mathcal{H}_{1,\{0,-1\}}$.

Theorem 4.3. (*This is a reformulation of the equivalence of categories proved by Barbieri-Viale in [Ba].*) We have an equivalence of categories $\mathcal{H}_1 \simeq \mathcal{M}_1$ which is compatible with the dualities, and which induces the equivalences

$$\mathcal{H}_{1,\{-1,0\}} \simeq \mathcal{M}_{1,\{-1,0\}}, \quad \mathcal{H}_{1,\{-2,-1\}} \simeq \mathcal{M}_{1,\{-2,-1\}}.$$

The equivalence $\mathcal{H}_1 \simeq \mathcal{M}_1$ is given in 4.4 and 4.5 below.

4.4. First we define the functor $\mathcal{H}_1 \rightarrow \mathcal{M}_1$.

Let H be an object of \mathcal{H}_1 . The corresponding object $[\mathcal{F} \rightarrow G]$ of \mathcal{M}_1 is as follows.

$$\begin{aligned} G &= W_{-1}H_{\mathbb{Z}} \setminus W_{-1}H_V / F^0W_{-1}H_V. \\ \mathcal{F}_{\text{ét}} &= \text{gr}_0^W(H_{\mathbb{Z}}). \\ \mathcal{F}_{\text{inf}} &= \text{the formal completion of } \text{Ker}(\text{gr}_0^W(H_V) \rightarrow \text{gr}_0^W(H_{\mathbb{C}})). \end{aligned}$$

Here $\mathcal{F}_{\text{ét}}$ is the étale part of \mathcal{F} and \mathcal{F}_{inf} is the infinitesimal part of \mathcal{F} . The homomorphism $\mathcal{F} = \mathcal{F}_{\text{ét}} \oplus \mathcal{F}_{\text{inf}} \rightarrow G$ is given as follows.

The part $\mathcal{F}_{\text{ét}} \rightarrow G$: Let $x \in \mathcal{F}_{\text{ét}} = \text{gr}_0^W H_{\mathbb{Z}}$. Since the sequence $0 \rightarrow W_{-1}H_{\mathbb{Z}} \rightarrow H_{\mathbb{Z}} \rightarrow \text{gr}_0^W H_{\mathbb{Z}} \rightarrow 0$ is exact, we can lift x to an element y of $H_{\mathbb{Z}}$ and this lifting is unique modulo $W_{-1}H_{\mathbb{Z}}$. Since the sequence $0 \rightarrow F^0W_{-1}H_V \rightarrow F^0H_V \rightarrow F^0\text{gr}_0^W H_V \rightarrow 0$ is exact, we can lift x to an element z of F^0H_V and this lifting is unique modulo $F^0W_{-1}H_V$. Note that $y - z \in W_{-1}H_V$. We have a well-defined homomorphism

$$\mathcal{F}_{\text{ét}} = \text{gr}_0^W H_{\mathbb{Z}} \longrightarrow W_{-1}H_{\mathbb{Z}} \setminus W_{-1}H_V / F^0W_{-1}H_V = G ; x \mapsto y - z.$$

The part $\mathcal{F}_{\text{inf}} \rightarrow G$: Note that $\text{Hom}(\mathcal{F}_{\text{inf}}, G)$ is identified with $\text{Hom}_{\mathbb{C}}(\text{Lie}(\mathcal{F}_{\text{inf}}), \text{Lie}(G))$. We give the corresponding homomorphism $\text{Lie}(\mathcal{F}_{\text{inf}}) = \text{Ker}(\text{gr}_0^W(H_V) \rightarrow \text{gr}_0^W(H_{\mathbb{C}})) \rightarrow \text{Lie}(G) = W_{-1}H_V / F^0W_{-1}H_V$. Let $x \in \text{Ker}(\text{gr}_0^W(H_V) \rightarrow \text{gr}_0^W(H_{\mathbb{C}}))$. The given splitting of the weight filtration on $\text{Ker}(H_V \rightarrow H_{\mathbb{C}})$ sends x to an element y of $\text{Ker}(H_V \rightarrow H_{\mathbb{C}})$. Since the sequence $0 \rightarrow F^0W_{-1}H_V \rightarrow F^0H_V \rightarrow F^0\text{gr}_0^W H_V \rightarrow 0$ is exact, we can lift x to an element z of F^0H_V and this lifting is unique modulo $F^0W_{-1}H_V$. Note that $y - z \in W_{-1}H_V$. We have a well-defined homomorphism

$$\text{Ker}(\text{gr}_0^W H_V \rightarrow \text{gr}_0^W H_{\mathbb{C}}) \longrightarrow W_{-1}H_V / F^0W_{-1}H_V = \text{Lie}(G) ; x \mapsto y - z.$$

4.5. We give the functor $\mathcal{M}_1 \rightarrow \mathcal{H}_1$.

Let $[\mathcal{F} \rightarrow G]$ be an object of \mathcal{M}_1 . The corresponding object H of \mathcal{H}_1 is as follows. Let $0 \rightarrow L \rightarrow G \rightarrow A \rightarrow 0$ be the exact sequence of commutative algebraic groups where A is an abelian variety and L is affine. Let $\mathcal{F}_{\text{ét}}$ be the étale part of \mathcal{F} and let \mathcal{F}_{inf} be the infinitesimal part of \mathcal{F} .

First, $H_{\mathbb{Z}}$ is the fiber product of $\mathcal{F}_{\text{ét}} \rightarrow G \leftarrow \text{Lie}(G)$ where $\text{Lie}(G) \rightarrow G$ is the exponential map so we have a commutative diagram of exact sequences

$$\begin{array}{ccccccc} 0 & \rightarrow & H_1(G, \mathbb{Z}) & \rightarrow & H_{\mathbb{Z}} & \rightarrow & \mathcal{F}_{\text{ét}} \rightarrow 0 \\ & & \downarrow & & \downarrow & & \downarrow \\ 0 & \rightarrow & H_1(G, \mathbb{Z}) & \rightarrow & \text{Lie}(G) & \rightarrow & G \rightarrow 0. \end{array}$$

The weight filtration on $H_{\mathbb{Z}}$ is given as follows.

$$W_0H_{\mathbb{Z}} = H_{\mathbb{Z}}, \quad W_{-1}H_{\mathbb{Z}} = H_1(G, \mathbb{Z}),$$

$$W_{-2}H_{\mathbb{Z}} = H_1(L, \mathbb{Z}) = \text{Ker}(H_1(G, \mathbb{Z}) \rightarrow H_1(A, \mathbb{Z})), \quad W_{-3}H_{\mathbb{Z}} = 0.$$

Next,

$$H_V = H_{\mathbb{C}} \oplus \text{Lie}(L_a) \oplus \text{Lie}(\mathcal{F}_{\text{inf}})$$

where L_a is the additive part of L . The weight filtration on H_V is as follows.

$$\begin{aligned} W_0 H_V &= H_V, & W_{-1} H_V &= H_1(G, \mathbb{C}) \oplus \text{Lie}(L_a), \\ W_{-2} H_V &= H_1(L, \mathbb{C}) \oplus \text{Lie}(L_a), & W_{-3} H_V &= 0. \end{aligned}$$

The splitting of the weight filtration on $\text{Ker}(H_V \rightarrow H_{\mathbb{C}}) = \text{Lie}(L_a) \oplus \text{Lie}(\mathcal{F}_{\text{inf}})$ is defined to be this direct decomposition.

The Hodge filtration on H_V is given as follows.

$$\begin{aligned} F^{-1} H_V &= H_V, & F^1 H_V &= 0, \\ F^0 H_V &= \text{Ker}(H_V \rightarrow \text{Lie}(G)) \end{aligned}$$

where $H_V \rightarrow \text{Lie}(G)$ is defined as follows. The part $H_{\mathbb{C}} \rightarrow \text{Lie}(G)$ of it is the \mathbb{C} -linear map induced by the canonical map $H_{\mathbb{Z}} \rightarrow \text{Lie}(G)$. The part $\text{Lie}(L_a) \rightarrow \text{Lie}(G)$ of it is the inclusion map. The part $\text{Lie}(\mathcal{F}_{\text{inf}}) \rightarrow \text{Lie}(G)$ of it is the homomorphism induced by $\mathcal{F}_{\text{inf}} \rightarrow G$. We have hence $H_V/F^0 H_V \cong \text{Lie}(G)$.

It is easy to see that this functor $\mathcal{M}_1 \rightarrow \mathcal{H}_1$ is quasi-inverse to the functor $\mathcal{H}_1 \rightarrow \mathcal{M}_1$ in 4.4.

4.6. The induced functor $\mathcal{H}_{1,\{-1,-2\}} \xrightarrow{\sim} \mathcal{M}_{1,\{-1,-2\}}$ is especially simple. It is

$$H \longmapsto [0 \rightarrow H_{\mathbb{Z}} \setminus H_V / F^0 H_V].$$

5 Generalized Albanese varieties

Let k be an algebraically closed field of characteristic 0 and let X be a proper smooth algebraic variety over k of dimension n . We review generalized Albanese varieties $\text{Alb}_{\mathcal{F}}(X)$ defined in [Ru]¹. For an effective divisor Y on X , the generalized Albanese variety $\text{Alb}(X, Y)$ of modulus Y is a special case of $\text{Alb}_{\mathcal{F}}(X)$.

The Albanese variety $\text{Alb}(X)$ is defined by a universal mapping property for morphisms from X to abelian varieties. Similarly, the generalized Albanese variety $\text{Alb}(X, Y)$ of modulus Y is characterized by a universal property for morphisms from $X - Y$ into commutative algebraic groups with “modulus” $\leq Y$. See Prop. 5.6.

5.1. Let $\underline{\text{Div}}_X$ be the sheaf of abelian groups on $\mathcal{A}b/k$ defined as follows. For any commutative ring R over k , $\underline{\text{Div}}_X(R)$ is the group of all Cartier divisors on $X \otimes_k R$ generated locally on $\text{Spec}(R)$ by effective Cartier divisors which are flat over R . Let $\underline{\text{Pic}}_X$ be the Picard functor, and let $\underline{\text{Pic}}_X^0 \subset \underline{\text{Pic}}_X$ be the Picard variety of X . We have the class map $\underline{\text{Div}}_X \rightarrow \underline{\text{Pic}}_X$. Let $\underline{\text{Div}}_X^0 \subset \underline{\text{Div}}_X$ be the inverse image of $\underline{\text{Pic}}_X^0$.

5.2. Let Λ be the set of all subgroup sheaves \mathcal{F} of $\underline{\text{Div}}_X^0$ such that $\mathcal{F} \cong \mathbb{Z}^t \oplus (\widehat{\mathbb{G}}_a)^s$ for some t and s . For $\mathcal{F} \in \Lambda$, we have an object $[\mathcal{F} \rightarrow \underline{\text{Pic}}_X^0]$ of $\mathcal{M}_{1,\{0,-1\}}$. The generalized Albanese variety $\text{Alb}_{\mathcal{F}}(X)$ is defined in [Ru] to be the Cartier dual of $[\mathcal{F} \rightarrow \underline{\text{Pic}}_X^0]$. It is an object of $\mathcal{M}_{1,\{-1,-2\}}$ and hence is a commutative connected algebraic group over k .

If $\mathcal{F}, \mathcal{F}' \in \Lambda$ and $\mathcal{F} \subset \mathcal{F}'$, we have a canonical surjective homomorphism $\text{Alb}_{\mathcal{F}'}(X) \rightarrow \text{Alb}_{\mathcal{F}}(X)$. In the case $\mathcal{F} = 0$, $\text{Alb}_{\mathcal{F}}(X) = \text{Alb}(X)$.

¹In [Ru], X was assumed to be projective. This assumption was used only for singular X , which is not our concern here. The construction of the $\text{Alb}_{\mathcal{F}}(X)$ is valid in the same way for proper X .

5.3. Let Y be an effective divisor of X . Then the generalized Albanese variety with modulus Y is defined as $\text{Alb}_{\mathcal{F}}(X)$ where $\mathcal{F} = \mathcal{F}_{X,Y} \in \Lambda$ is defined as follows. The étale part $\mathcal{F}_{\text{ét}}$ of \mathcal{F} is the subgroup of $\underline{\text{Div}}_X^0(k)$ consisting of all divisors whose support is contained in the support of Y . The infinitesimal part \mathcal{F}_{inf} of \mathcal{F} is as follows. Let I be the ideal of \mathcal{O}_X (though the notation \mathcal{O}_X is often used in this paper for the sheaf of analytic functions, \mathcal{O}_X here stands for the usual algebraic object on the Zariski site) defining Y , let I_1 be the ideal of \mathcal{O}_X which defines the reduced part of Y , and let $J = II_1^{-1} \subset \mathcal{O}_X$. Then \mathcal{F}_{inf} is the formal completion $\widehat{\mathbb{G}}_a \otimes_k H^0(X, J^{-1}/\mathcal{O}_X)$ of the finite dimensional k -vector space $H^0(X, J^{-1}/\mathcal{O}_X)$, which is embedded in $\underline{\text{Div}}_X^0$ by the exponential map

$$\exp : \widehat{\mathbb{G}}_a \otimes_k H^0(X, J^{-1}/\mathcal{O}_X) \rightarrow \underline{\text{Div}}_X^0.$$

If Y' is an effective divisor on X such that $Y' \geq Y$, then $\mathcal{F}_{X,Y} \subset \mathcal{F}_{X,Y'}$ and hence we have a canonical surjective homomorphism $\text{Alb}(X, Y') \rightarrow \text{Alb}(X, Y)$. In the case $Y = 0$, $\text{Alb}(X, Y) = \text{Alb}(X)$.

In the case X is a curve, $\text{Alb}(X, Y)$ coincides with the generalized Jacobian variety $J(X, Y)$ of X with modulus Y as is explained in [Ru, Exm. 2.34].

5.4. As in [Ru], for $\mathcal{F} \in \Lambda$, we have a rational map

$$\alpha_{\mathcal{F}} : X \rightarrow \text{Alb}_{\mathcal{F}}(X)$$

which is canonically defined up to translation by a k -rational point of $\text{Alb}_{\mathcal{F}}(X)$. If $\mathcal{F}' \in \Lambda$ and $\mathcal{F} \subset \mathcal{F}'$, then $\alpha_{\mathcal{F}}$ and $\alpha_{\mathcal{F}'}$ are compatible via the canonical surjection $\text{Alb}_{\mathcal{F}'}(X) \rightarrow \text{Alb}_{\mathcal{F}}(X)$.

For an effective divisor Y on X , we denote the rational map $\alpha_{\mathcal{F}_{X,Y}}$ simply by $\alpha_{X,Y}$. In Prop. 5.6 (2) below, we give a universal property of $\alpha_{X,Y} : X \rightarrow \text{Alb}(X, Y)$ concerning rational maps from X to commutative algebraic groups. This property follows from a general universal property of $\alpha_{\mathcal{F}} : X \rightarrow \text{Alb}_{\mathcal{F}}(X)$ obtained in [Ru], as is shown in 5.7 below.

5.5. Let G be a commutative connected algebraic group over k and let $\varphi : X \rightarrow G$ be a rational map. We define an effective divisor $\text{mod}(\varphi)$ on X which we call the modulus of φ .

We treat X as a scheme. This divisor $\text{mod}(\varphi)$ is written in the form $\sum_v \text{mod}_v(\varphi)v$, where v ranges over all points of X of codimension one and $\text{mod}_v(\varphi)$ is a non-negative integer defined as follows.

Let $0 \rightarrow L \rightarrow G \rightarrow A \rightarrow 0$ be the canonical decomposition of G and take an isomorphism

$$(1) \quad L_a \cong (\mathbb{G}_a)^s$$

where L_a is the additive part of L .

Let K be the function field of X , and regard φ as an element of $G(K)$. Since the local ring $\mathcal{O}_{X,v}$ of X at v is a discrete valuation ring and since A is proper, we have $A(\mathcal{O}_{X,v}) = A(K)$. By the commutative diagram of exact sequences

$$\begin{array}{ccccccc} 0 & \rightarrow & L(\mathcal{O}_{X,v}) & \rightarrow & G(\mathcal{O}_{X,v}) & \rightarrow & A(\mathcal{O}_{X,v}) \rightarrow 0 \\ & & \cap & & \cap & & \| \\ 0 & \rightarrow & L(K) & \rightarrow & G(K) & \rightarrow & A(K) \rightarrow 0, \end{array}$$

we have $G(K) = L(K)G(O_{X,v})$. Write $\varphi \in G(K)$ as

$$(2) \quad \varphi = lg \quad \text{with } l \in L(K) \text{ and } g \in G(O_{X,v}),$$

Let $(l_j)_{1 \leq j \leq s}$ be the image of l in $(\mathbb{G}_a)^s(K)$.

If φ belongs to $G(O_{X,v})$, we define $\text{mod}_v(\varphi) = 0$. Assume φ does not belong to $G(O_{X,v})$. Then we define

$$\text{mod}_v(\varphi) = 1 + \max(\{-\text{ord}_v(l_j) \mid 1 \leq j \leq s\} \cup \{0\}).$$

This integer $\text{mod}_v(\varphi)$ is independent of the choice of the isomorphism (1) and of the choice of the presentation (2) of φ .

For example, if $G = \mathbb{G}_m$, $\text{mod}_v(\varphi)$ is 0 if the element φ of $G(K) = K^\times$ belongs to $O_{X,v}^\times$, and is 1 otherwise. If $G = \mathbb{G}_a$, $\text{mod}_v(\varphi)$ is 0 if the element φ of $G(K) = K$ belongs to $O_{X,v}$, and is $m+1$ if φ has a pole of order $m \geq 1$ at v .

Proposition 5.6. *Let G be a commutative connected algebraic group over k and let $\varphi : X \rightarrow G$ be a rational map.*

(1) *For a dense open set U of X , φ induces a morphism $U \rightarrow G$ (not only a rational map) if and only if the support of $\text{mod}(\varphi)$ does not meet U .*

(2) *Let Y be an effective divisor on X . Then the following two conditions (i) and (ii) are equivalent.*

(i) *There is a homomorphism $h : \text{Alb}(X, Y) \rightarrow G$ such that φ coincides with $h \circ \alpha_{X,Y}$ modulo a translation by $G(k)$.*

$$(ii) \quad \text{mod}(\varphi) \leq Y.$$

Furthermore, if these equivalent conditions are satisfied, such homomorphism h is unique.

It is easy to prove (1). The proof of (2) is given in 5.8 below after we review results on $\text{Alb}_{\mathcal{F}}(X)$ from [Ru].

5.7. We review a general universal property of $\text{Alb}_{\mathcal{F}}(X)$ proved in [Ru] concerning rational maps from X into commutative algebraic groups.

Let $\varphi : X \rightarrow G$ be a rational map into a commutative connected algebraic group G , and let L be the canonical connected affine subgroup such that the quotient G/L is an abelian variety. One observes that φ induces a natural transformation $\tau_\varphi : L^\vee \rightarrow \underline{\text{Div}}_X^0$ (see [Ru, section 2.2]), where $L^\vee = \underline{\text{Hom}}_{Ab/k}(L, \mathbb{G}_m)$ is the Cartier dual of L . It is shown in [Ru, section 2.3] that if $\mathcal{F} \in \Lambda$, there is a rational map $\alpha_{\mathcal{F}} : X \rightarrow \text{Alb}_{\mathcal{F}}(X)$ for which the corresponding homomorphism $\tau_{\alpha_{\mathcal{F}}} : \mathcal{F} \rightarrow \underline{\text{Div}}_X^0$ coincides with the inclusion map, and such rational map $\alpha_{\mathcal{F}}$ is unique up to translation by a k -rational point of $\text{Alb}_{\mathcal{F}}(X)$. For a rational map $\varphi : X \rightarrow G$ into a commutative connected algebraic group G and for $\mathcal{F} \in \Lambda$, there is a homomorphism $h : \text{Alb}_{\mathcal{F}}(X) \rightarrow G$ such that f coincides with $h \circ \alpha_{\mathcal{F}}$ up to a translation by $G(k)$ if and only if the image of the homomorphism $\tau_\varphi : L^\vee \rightarrow \underline{\text{Div}}_X^0$ is contained in \mathcal{F} . Furthermore, if such h exists, it is unique.

Moreover, any rational map $\varphi : X \rightarrow G$ into a commutative connected algebraic group G coincides with $h \circ \alpha_{\mathcal{F}}$ up to a translation by $G(k)$ for some $\mathcal{F} \in \Lambda$ and for some homomorphism $h : \text{Alb}_{\mathcal{F}}(X) \rightarrow G$. This is because there is always some $\mathcal{F} \in \Lambda$ which contains the image of $L^\vee \rightarrow \underline{\text{Div}}_X^0$.

5.8. We prove Prop. 5.6. By 5.7 we find that condition (i) of 5.6 (2) is equivalent to

$$(i') \quad \text{im}(\tau_\varphi) \subset \mathcal{F}_{X,Y}.$$

Write

$$Y = \sum_v e_v v$$

where v ranges over all points of X of codimension one and $e_v \in \mathbb{N}$. Condition (ii) of 5.6 (2) is expressed as

$$(ii') \quad \text{mod}_v(\varphi) \leq e_v \text{ for all points } v \text{ of codimension one in } X.$$

Fix an isomorphism $L \cong (\mathbb{G}_m)^t \times (\mathbb{G}_a)^s$. For each point v of X of codimension one, take a presentation $\varphi = lg$ as in (2) in 5.5, let $(l'_{v,j})_{1 \leq j \leq t}$ be the image of l in $(\mathbb{G}_m)^t(K) = (K^\times)^t$, and as in 5.5, let $(l_{v,j})_{1 \leq j \leq s}$ be the image of l in $(\mathbb{G}_a)^s(K) = K^s$. Note that

(a) $\varphi \in G(\mathcal{O}_{X,v})$ if and only if $l'_{v,j} \in \mathcal{O}_{X,v}^\times$ for $1 \leq j \leq t$ and $l_{v,j} \in \mathcal{O}_{X,v}$ for $1 \leq j \leq s$. By construction of the transformation τ_φ in [Ru, section 2.2], we have the following (b) and (c).

(b) The étale part of τ_φ

$$\tau_{\varphi,\text{ét}} : \mathbb{Z}^t \rightarrow \underline{\text{Div}}_X^0(k)$$

sends the j -th base of \mathbb{Z}^t ($1 \leq j \leq t$) to the divisor $\sum_v \text{ord}_v(l'_{v,j})v$.

(c) The infinitesimal part of τ_φ

$$\tau_{\varphi,\text{inf}} : (\widehat{\mathbb{G}}_a)^s \rightarrow \underline{\text{Div}}_X^0$$

has the form

$$(a_j)_{1 \leq j \leq s} \mapsto \exp \left(\sum_{j=1}^s a_j f_j \right)$$

for some $f_j \in \Gamma(X, K/\mathcal{O}_X) = \text{Lie}(\underline{\text{Div}}_X^0)$ ($1 \leq j \leq s$) such that for any point v of X of codimension one, the stalk of f_j at v coincides with $l_{v,j} \bmod \mathcal{O}_{X,v}$.

Condition (i') is equivalent to the condition that the following (i'_{ét}) and (i'_{inf}) are satisfied.

(i'_{ét}) The image of $\tau_{\varphi,\text{ét}}$ is contained in the étale part of $\mathcal{F}_{X,Y}$.

(i'_{inf}) The image of $\tau_{\varphi,\text{inf}}$ is contained in the infinitesimal part of $\mathcal{F}_{X,Y}$.

By the above (b), (i'_{ét}) is equivalent to the condition that the following (i'_{ét,v}) is satisfied for any point v of X of codimension one.

(i'_{ét,v}) If $e_v = 0$, then $l'_{v,j} \in \mathcal{O}_{X,v}^\times$ for $1 \leq j \leq t$.

On the other hand, by the above (c), (i'_{inf}) is equivalent to

$$f_j \in \Gamma(X, J^{-1}/\mathcal{O}_X) \text{ for } 1 \leq j \leq s,$$

and hence equivalent to the condition that the following (i'_{inf,v}) is satisfied for any point v of X of codimension one.

(i'_{inf,v}) If $e_v = 0$, then $l_{v,j} \in \mathcal{O}_{X,v}$ for $1 \leq j \leq s$.

If $e_v \geq 1$, then $\text{ord}_v(l_{v,j}) \geq 1 - e_v$ for $1 \leq j \leq s$.

By the above (a), for each v , (i'_{ét,v}) and (i'_{inf,v}) are satisfied if and only if $\text{mod}_v(\varphi) \leq e_v$. \square

Corollary 5.9. *For any $\mathcal{F} \in \Lambda$, there exists an effective divisor Y such that $\mathcal{F} \subset \mathcal{F}_{X,Y}$.*

Proof. Let $Y = \text{mod}(\alpha_{\mathcal{F}})$ be the modulus of the rational map $\alpha_{\mathcal{F}} : X \rightarrow \text{Alb}_{\mathcal{F}}(X)$ associated to $\mathcal{F} \in \Lambda$. Then $\mathcal{F} \subset \mathcal{F}_{X,Y}$. \square

6 Proof of Theorem 1.4

We prove Thm. 1.4. Let X be a proper smooth algebraic variety over \mathbb{C} of dimension n , and let Y be an effective divisor on X . Let I be the ideal of \mathcal{O}_X which defines Y , let I_1 be the ideal of \mathcal{O}_X which defines the reduced part of Y , and let $J = II_1^{-1} \subset \mathcal{O}_X$.

6.1. Let $H^1(X, Y_+)(1)$ be the object of $\mathcal{H}_{1,\{0,-1\}}$ corresponding to the object $[\mathcal{F}_{X,Y} \rightarrow \text{Pic}^0(X)]$ of $\mathcal{M}_{1,\{0,-1\}}$ in the equivalence of categories 4.3. Let $H^{2n-1}(X, Y_-)(n)$ be the object of $\mathcal{H}_{1,\{-1,-2\}}$ corresponding to the object $\text{Alb}(X, Y)$ of $\mathcal{M}_{1,\{-1,-2\}}$.

Since the equivalence of categories in 4.3 is compatible with dualities, we have

$$(5) \quad H^{2n-1}(X, Y_-)(n) \cong \underline{\text{Hom}}(H^1(X, Y_+)(1), \mathbb{Z})(1).$$

We prove Thm. 1.4 in the following way. First in 6.3, we give an explicit description of $H^1(X, Y_+)(1)$. From this, by (5), we can obtain an explicit description of $H^{2n-1}(X, Y_-)(n)$ as in 6.4. Since $\text{Alb}(X, Y)$ corresponds to $H^{2n-1}(X, Y_-)(n)$ in the equivalence of categories $\mathcal{H}_{1,\{-1,-2\}} \simeq \mathcal{M}_{1,\{-1,-2\}}$, we can obtain from 6.4 the explicit descriptions of $\text{Alb}(X, Y)$ stated in Thm. 1.4.

We define objects $H^1(X, Y_+)$ and $H^{2n-1}(X, Y_-)$ of \mathcal{H} as follows: $H^1(X, Y_+)$ is the Tate twist $(H^1(X, Y_+)(1))(-1)$ of $H^1(X, Y_+)(1)$, and $H^{2n-1}(X, Y_-)$ is the Tate twist $(H^{2n-1}(X, Y_-)(n))(-n)$ of $H^{2n-1}(X, Y_+)(n)$. These are natural generalizations of the objects of \mathcal{H} for the curve case considered in 2.3.

6.2. We define canonical \mathbb{C} -linear maps

$$(6) \quad H^1(X - Y, \mathbb{C}) \longrightarrow H^1(X, \mathcal{O}_X),$$

$$(7) \quad H^{n-1}(X, \Omega_X^n) \longrightarrow H_c^{2n-1}(X - Y, \mathbb{C})$$

First assume that Y is with normal crossings. Then by [De], we have canonical isomorphisms

$$H^m(X - Y, \mathbb{C}) \cong H^m(X, \Omega_X^\bullet(\log(Y))), \quad H_c^m(X - Y, \mathbb{C}) \cong H^m(X, \Omega_X^\bullet(-\log(Y)))$$

for $m \in \mathbb{Z}$, where $\Omega_X^p(\log(Y))$ is the sheaf of differential p -forms with log poles along Y , and $\Omega_X^p(-\log(Y)) = I_1 \Omega_X^p(\log(Y))$. Since $\mathcal{O}_X = \Omega_X^0(\log(Y))$ and $\Omega_X^n = \Omega_X^n(-\log(Y))$, we have canonical maps of complexes $\Omega_X^\bullet(\log(Y)) \rightarrow \mathcal{O}_X$ and $\Omega_X^\bullet[-n] \rightarrow \Omega_X^\bullet(-\log(Y))$. These maps induces the maps (6) and (7) in the case Y is with normal crossings, respectively.

In general, take a birational morphism $X' \rightarrow X$ of proper smooth algebraic varieties over \mathbb{C} such that the inverse image Y' of Y on X' is with normal crossings. Then we have maps

$$H^{n-1}(X, \Omega_X^n) \longrightarrow H^{n-1}(X', \Omega_{X'}^n) \longrightarrow H_c^{2n-1}(X' - Y', \mathbb{C}) = H_c^{2n-1}(X - Y, \mathbb{C})$$

where the second arrow is the map (7) for X' , and the composition $H^{n-1}(X, \Omega_X^n) \rightarrow H_c^{2n-1}(X - Y, \mathbb{C})$ is independent of the choice of $X' \rightarrow X$. The \mathbb{C} -linear dual of (7) with respect to the Poincaré duality and Serre duality gives the map (6). The map (6) is also obtained as the composition

$$H^1(X - Y, \mathbb{C}) = H^1(X' - Y', \mathbb{C}) \longrightarrow H^1(X', \mathcal{O}_{X'}) \xleftarrow{\cong} H^1(X, \mathcal{O}_X).$$

6.3. Let $H = H^1(X, Y_+)(1)$, the object of $\mathcal{H}_{1,\{0,-1\}}$ corresponding to the object $[\mathcal{F}_{X,Y} \rightarrow \text{Pic}^0(X)]$ of $\mathcal{M}_{1,\{0,-1\}}$. We describe H . By [BaS] Theorem 4.7 which treats the case Y has no multiplicity, we can identify $H_{\mathbb{Z}}$ with $H^1(X - Y, \mathbb{Z}(1))$ and identify the map $H_{\mathbb{C}} \rightarrow \text{Lie}(\text{Pic}^0(X)) = H^1(X, \mathcal{O}_X)$ with the map (6) in 6.2. We have $H_V = H_{\mathbb{C}} \oplus H^0(X, J^{-1}/\mathcal{O}_X)$, the maps $a : H_{\mathbb{C}} \rightarrow H_V$ and $b : H_V \rightarrow H_{\mathbb{C}}$ are the evident ones, the weight filtration is given by $W_0 H = H$, $W_{-2} H = 0$,

$$W_{-1} H_{\mathbb{Q}} = H^1(X, \mathbb{Q}(1)), \quad W_{-1} H_V = H^1(X, \mathbb{C}),$$

and the Hodge filtration is given by $F^{-1} H_V = H_V$, $F^1 H_V = 0$, and

$$F^0 H_V = \text{Ker}(H^1(X - Y, \mathbb{C}) \oplus H^0(J^{-1}/\mathcal{O}_X) \rightarrow H^1(X, \mathcal{O}_X))$$

where the map $H^0(J^{-1}/\mathcal{O}_X) \rightarrow H^1(X, \mathcal{O}_X)$ is the connecting map of the exact sequence $0 \rightarrow \mathcal{O}_X \rightarrow J^{-1} \rightarrow J^{-1}/\mathcal{O}_X \rightarrow 0$.

6.4. Let $H = H^{2n-1}(X, Y_-)(n)$, the object of $\mathcal{H}_{1,\{-1,-2\}}$ corresponding to the object $\text{Alb}(X, Y)$ of $\mathcal{M}_{1,\{-1,-2\}}$. By (5) in 6.1, we obtain the following description of H from the description of $H^1(X, Y_+)(1)$ in 6.3.

$$H_{\mathbb{Z}} = H_c^{2n-1}(X - Y, \mathbb{Z})/(\text{torsion}), \quad H_V = H_{\mathbb{C}} \oplus H^{n-1}(X, \Omega_X^n/J\Omega_X^n),$$

the maps $a : H_{\mathbb{C}} \rightarrow H_V$ and $b : H_V \rightarrow H_{\mathbb{C}}$ are the evident ones, the weight filtration is given by $W_{-1} H = H$, $W_{-3} H = 0$,

$$W_{-2} H_{\mathbb{Q}} = \text{Ker}(H_{\mathbb{Q}} \rightarrow H^{2n-1}(X, \mathbb{Q}(n))), \quad W_{-2} H_V = \text{Ker}(H_V \rightarrow H^{2n-1}(X, \mathbb{C})),$$

and the Hodge filtration is given by $F^{-1} H_V = H_V$, $F^1 H_V = 0$, and

$$F^0 H_V = \text{Image}(H^{n-1}(X, \Omega_X^n) \longrightarrow H_c^{2n-1}(X - Y, \mathbb{C}) \oplus H^{n-1}(X, \Omega_X^n/J\Omega_X^n))$$

where the map $H^{n-1}(X, \Omega_X^n) \rightarrow H_c^{2n-1}(X - Y, \mathbb{C})$ is (7) in 6.2 and the map $H^{n-1}(X, \Omega_X^n) \rightarrow H^{n-1}(X, \Omega_X^n/J\Omega_X^n)$ is the evident one.

6.5. We prove Thm. 1.4 (2). Let $H = H^{2n-1}(X, Y_-)(n)$. Then

$$\text{Alb}(X, Y) = H_{\mathbb{Z}} \setminus H_V / F^0 H_V$$

by 4.6. Hence the description of $H^{2n-1}(X, Y_-)(n)$ in 6.4 proves Thm. 1.4 (2).

6.6. As a preparation for the proof of Thm. 1.4 (1), we review a kind of Serre-duality obtained in Appendix by Deligne in the book [Ha].

Let S be a proper scheme over a field k , let C be a closed subscheme of S , let $U = S - C$, and let I_C be the ideal of \mathcal{O}_S which defines C . Assume U is smooth over k and purely of dimension n . Let \mathcal{F} be a coherent \mathcal{O}_S -module. Then for any $p \in \mathbb{Z}$, we have a canonical isomorphism

$$H^p(U, R\mathcal{H}\text{om}_{\mathcal{O}_U}(\mathcal{F}|_U, \Omega_U^n)) \cong \varinjlim_m \text{Hom}_k(H^{n-p}(X, I_C^m \mathcal{F}), k).$$

In the case C is empty and \mathcal{F} is locally free, this is the usual Serre duality

$$H^p(X, \mathcal{H}\text{om}_{\mathcal{O}_X}(\mathcal{F}, \Omega_X^n)) \cong \text{Hom}_k(H^{n-p}(X, \mathcal{F}), k).$$

6.7. We start the proof of Thm. 1.4 (1).

Let C_Y be the subcomplex of Ω_X^\bullet defined as

$$C_Y^p = \ker(\Omega_X^p \rightarrow \Omega_Y^p) \text{ for } 0 \leq p \leq n-1, \quad C_Y^n = J\Omega_X^n.$$

Proposition 6.8. For $p = 2n, 2n-1$, the maps $H_c^p(X - Y, \mathbb{C}) \rightarrow H^p(X, C_Y)$ induced by the homomorphism $j_! \mathbb{C} \rightarrow C_Y$ are isomorphisms.

6.9. We prove Prop. 6.8 in the case $Y = Y_1$. We have an exact sequence of complexes

$$0 \longrightarrow C_{Y_1} \longrightarrow \Omega_X^\bullet \longrightarrow \Omega_{Y_1}^{\leq n-1} \longrightarrow 0.$$

Since the support of $\Omega_{Y_1}^{\leq n-1}$ is of dimension $\leq n-1$ and since $\Omega_{Y_1}^{\leq n-1}$ has only terms of degree $\leq n-1$, we have $H^p(X, \Omega_{Y_1}^{\leq n-1}) = 0$ for $p \geq 2n-1$. Hence

$$H^{2n}(X, C_{Y_1}) \cong H^{2n}(X, \Omega_X^\bullet) \cong H^{2n}(X, \mathbb{C}) \cong H_c^{2n}(X - Y, \mathbb{C}).$$

The above exact sequence of complexes induces the lower row of the commutative diagram of exact sequences

$$\begin{array}{ccccccc} H^{2n-2}(X, \mathbb{C}) & \rightarrow & H^{2n-2}(Y_1, \mathbb{C}) & \rightarrow & H_c^{2n-1}(X - Y_1, \mathbb{C}) & \rightarrow & H^{2n-1}(X, \mathbb{C}) \\ \downarrow & & \downarrow & & \downarrow & & \downarrow \\ H^{2n-2}(X, \Omega_X^\bullet) & \rightarrow & H^{2n-2}(Y_1, \Omega_{Y_1}^{\leq n-1}) & \rightarrow & H^{2n-1}(X, C_{Y_1}) & \rightarrow & H^{2n-1}(X, \Omega_X^\bullet) \end{array} \rightarrow 0$$

The vertical arrows except possibly the map $H_c^{2n-1}(X - Y_1, \mathbb{C}) \rightarrow H^{2n-1}(X, C_{Y_1})$ are isomorphisms. Hence the last map is also an isomorphism.

Lemma 6.10. Let Y' and Y'' be effective divisors on X whose supports coincide with Y_1 and assume $Y' \geq Y''$. Then the canonical map $H^{2n-1}(X, C_{Y'}) \rightarrow H^{2n-1}(X, C_{Y''})$ is surjective and the canonical map $H^{2n}(X, C_{Y'}) \rightarrow H^{2n}(X, C_{Y''})$ is an isomorphism.

Proof. Let $N = C_{Y''}/C_{Y'}$. We have

$$N^p = \text{Ker}(\Omega_{Y'}^p \rightarrow \Omega_{Y''}^p) \text{ for } 0 \leq p \leq n-1, \quad N^n = J''\Omega_X^n/J'\Omega_X^n.$$

Here, $J' = I'I_1^{-1}$, $J'' = I''I_1^{-1}$ with I' (resp. I'') the ideal of \mathcal{O}_X which defines Y' (resp. Y''). Since the support of N is of dimension $\leq n-1$ and N has only terms of degree $\leq n$, we have $H^{2n}(X, N) = 0$. Hence it is sufficient to prove $H^{2n-1}(X, N) = 0$.

Let Σ be the set of all singular points of Y_1 . Then Σ is of dimension $\leq n-2$. Let $\Omega_X^\bullet(\log(Y_1))$ be the de Rham complex on $X - \Sigma$ with log poles along $Y_1 - \Sigma$. Then as is easily seen, the restriction of C_Y to $X - \Sigma$ coincides with $I\Omega_X^\bullet(\log(Y_1))$. Let I_Σ be the ideal of \mathcal{O}_X defining Σ (here Σ is endowed with the reduced structure). For $k \geq 0$, let N_k be the subcomplex of N defined by $N_k^p = I_\Sigma^{\max(k-p, 0)} N^p$. In particular, $N_0 = N$. Then if $k \geq j \geq 0$, since the support of N_j/N_k is of dimension $\leq n-2$ and N_j/N_k has only terms of degree $\leq n$, we have $H^{2n-1}(X, N_j/N_k) = 0$. Hence $H^{2n-1}(X, N_k) \rightarrow H^{2n-1}(X, N_j)$ is surjective. Applying 6.6 for $S = X$ and $C = \Sigma$ yields that $\varprojlim_k H^{2n-1}(X, N_k)$ is the dual vector space of $H^0(X - \Sigma, [(J')^{-1}/(J'')^{-1} \xrightarrow{d} (J')^{-1}\Omega_X(\log Y_1)/(J'')^{-1}\Omega_X(\log Y_1)])$. Since $d : (J')^{-1}/(J'')^{-1} \rightarrow (J')^{-1}\Omega_X(\log Y_1)/(J'')^{-1}\Omega_X(\log Y_1)$ is injective, the last cohomology group is 0. Hence $H^{2n-1}(X, N_k) = 0$ for all $k \geq 0$. In particular, $H^{2n-1}(X, N) = 0$. \square

6.11. We prove Prop. 6.8 in general. By Lemma 6.10, the map $\varprojlim_{Y'} H^{2n-1}(X, C_{Y'}) \rightarrow H^{2n-1}(X, C_Y)$ is surjective, where Y' ranges over all effective divisors on X whose supports coincide with Y_1 . By 6.6 which we apply by taking $S = X$ and $C = Y$, we have that $\varprojlim_{Y'} H^{2n-1}(X, C_{Y'})$ is the dual vector space of $H^1((X - Y)_{\text{zar}}, \Omega_{X-Y, \text{alg}}^\bullet)$ where zar means Zariski topology and alg means the algebraic version. But $H^1((X - Y)_{\text{zar}}, \Omega_{X-Y, \text{alg}}^\bullet) \simeq H^1(X, \mathbb{C})$. This proves $\varprojlim_{Y'} H^{2n-1}(X, C_{Y'}) \cong H_c^{2n-1}(X - Y, \mathbb{C})$. Hence the map $H_c^{2n-1}(X - Y, \mathbb{C}) \rightarrow H^{2n-1}(X, C_Y)$ is surjective. Since the composition $H_c^{2n-1}(X - Y, \mathbb{C}) \rightarrow H^{2n-1}(X, C_Y) \rightarrow H^{2n-1}(X, C_{Y_1}) \cong H_c^{2n-1}(X - Y, \mathbb{C})$ is the identity map, the map $H_c^{2n-1}(X - Y, \mathbb{C}) \rightarrow H^{2n-1}(X, C_Y)$ is an isomorphism.

6.12. We prove (1) of Thm. 1.4. Let $S_Y = \text{Ker}(\Omega_X^\bullet \rightarrow \Omega_Y^{\leq n-1})$. Then $C_Y \subset S_Y \subset C_{Y_1}$. We have an exact sequence of complexes

$$0 \longrightarrow C_Y \longrightarrow S_Y \longrightarrow \Omega_X^n / J\Omega_X^n[-n] \longrightarrow 0.$$

Hence we have an exact sequence

$$H^{2n-1}(X, C_Y) \rightarrow H^{2n-1}(X, S_Y) \rightarrow H^{n-1}(X, \Omega_X^n / J\Omega_X^n) \rightarrow H^{2n}(X, C_Y) \rightarrow H^{2n}(X, S_Y).$$

Note that for $p = 2n, 2n - 1$, the compositions

$$H^p(X, C_Y) \longrightarrow H^p(X, S_Y) \longrightarrow H^p(X, C_{Y_1})$$

are isomorphisms by Prop. 6.8. Hence by Prop. 6.8, we have an isomorphism

$$H^{2n-1}(X, S_Y) \cong H_c^{2n-1}(X - Y, \mathbb{C}) \oplus H^{n-1}(X, \Omega_X^n / J\Omega_X^n)$$

which is compatible with the maps from $H^{n-1}(X, \Omega_X^n)$. Hence (1) of Thm. 1.4 follows from (2) of Thm. 1.4.

References

- [Ba] BARBIERI-VIALE, L., Formal Hodge theory. *Math. Res. Lett.* 14 (2007), 385–394.
- [BaS] BARBIERI-VIALE, L.; SRINIVAS, V., Albanese and Picard 1-motives. *Mém. Soc. Math. Fr. (N.S.)* No. 87 (2001).
- [BiS] BLOCH, S.; SRINIVAS, V., Enriched Hodge structures. *Algebra, arithmetic and geometry, Part I, II* (Mumbai, 2000), 171–184, *Tata Inst. Fund. Res. Stud. Math.*, 16, Tata Inst. Fund. Res., Bombay, 2002.
- [De] DELIGNE, P. Théorie de Hodge. II, *Inst. Hautes Études Sci. Publ. Math.* No. 40 (1971), 5–57.
- [ESV] ESNAULT, H.; SRINIVAS, V.; VIEHWEG, E., The universal regular quotient of the Chow group of points on projective varieties. *Invent. Math.* 135 (1999), 595–664.
- [Ha] HARTSHORNE, R., Residues and duality, With an appendix by P. Deligne. *Lecture Notes in Mathematics*, 20, Springer, 1966.
- [La] LAUMON, G., Transformation de Fourier généralisée, preprint [alg-geom/9603004](http://arxiv.org/abs/alg-geom/9603004) (1996)
- [Ru] RUSSELL, H., Generalized Albanese and its dual, *J. of Math. of Kyoto Univ.* 48-4 (2008), 907–949.
- [Ru2] RUSSELL, H., 1-motives with unipotent part, preprint.
- [Ru3] RUSSELL, H., Generalized Albanese and its dual, II, in preparation.

DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE, KYOTO UNIVERSITY
KITASHIRAKAWA OIWAKE CHO, KYOTO 606-8502
JAPAN
e-mail: kzkt@math.kyoto-u.ac.jp
e-mail: henrik.russell@uni-due.de