STR FILE CORY

UNCLASSIFIED

15	7
12	1

A PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) 4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) 4. NAME OF PERFORMING ORGANIZATION University of Southern 6. OFFICE SYMBOL (If applicable) 6. MISSISSIPPI 6. ADDRESS (City, State, and ZIP Code) 6. DESTRUCTOR ORGANIZATION AFOSR/NC 7. NAME OF MONITORING ORGANIZATION AFOSR		DOCUMENTATION PAGE				Form Approved OMB No. 0704-0188		
28. DECLASSIFICATION OF SOUTH FOR THE PROPERTY NUMBER(S) A PERFORMING ORGANIZATION REPORT NUMBER(S) A PERFORMING ORGANIZATION REPORT NUMBER(S) A PERFORMING ORGANIZATION REPORT NUMBER(S) A POSR. TR. 88 - 1068 S. MONITORING ORGANIZATION REPORT NUMBER(S) AFOSR. TR. 88 - 1068 A POSR NC To ADDRESS (City, State, and ZIP Code) Baldg. 410 Bolling AFB, DC 2032-6448 Ba. NAME OF FUNDING INFONSORING (If applicable) AFOSR ABORESS (City, State, and ZIP Code) Bldg. 410 Bolling AFB, DC 20332-6448 Bolling AFB, DC 20332-6448 To SOURCE OF FUNDING NUMBERS TO SOURCE OF FUND	D-A200 075			1b. RESTRICTIVE MARKINGS				
A PERFORMING ORGANIZATION REPORT NUMBER(S) A PENFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S) AFOSR. TR. 88 - 1068 S. MONITORING ORGANIZATION REPORT NUMBER(S) AFOSR. TR. 88 - 1068 S. MONITORING ORGANIZATION REPORT NUMBER(S) AFOSR. TR. 88 - 1068 S. MONITORING ORGANIZATION REPORT NUMBER(S) AFOSR. TR. 88 - 1068 AFOSR/NC 72. NAME OF MONITORING ORGANIZATION PROPERTY OF THE NUMBER OF OF THE		_						
AFOSR-TR- 8 8 - 1 0 6 8 4. NAME OF PERFORMING ORGANIZATION University of Southern Mississippi 6. OFFICE SYMBOL (# applicable) Mississippi 7. NAME OF MONITORING ORGANIZATION University, of Southern Mississippi 8. NAME OF FUNDING ISPONSORING ORGANIZATION DELTA APPLICATION NUMBER APOSR/NC 8. NAME OF FUNDING ISPONSORING ORGANIZATION (# applicable) NC 8. NAME OF FUNDING ISPONSORING ORGANIZATION (# applicable) NC 8. ADORSSI (My, State, and ZIP Code) Bldg. 410 8. ADORSSI (My, State, and ZIP Code) Bldg. 410 8. OSURCE OF FUNDING NUMBERS PROGRAM ELEMENT NO.	2b. DECLASSIFICATION / DOTTING.	€OU	LE				e ;	
Se. MAME OF PERFORMING ORGANIZATION (If applicables) Mississippi 6. ADDRESS (GN, State, and ZIP Code) Hattiesburg, MS 39406 8. NAME OF FUNDING SPONSORING (If applicables) NC ADDRESS (GN, State, and ZIP Code) Bank MAME OF FUNDING SPONSORING (If applicables) AFOSR NC APPLICATION NUMBER APPLIC	4. PERFORMING ORGANIZATION REPOR	T NUMBE	R(S)	5. MONITORING	ORGANIZATION R	EPORT NU	IMBER(S)	
University of Southern Mississippi 6c ADDRESS (Chy. State, and ZiP Code) Hattiesburg, MS 39406 Ba. NAME OF FUNDING/SPONSORING ORGANIZATION AFOSR (M. Bolling AFB, DC 20332-6448 Ba. NAME OF FUNDING/SPONSORING ORGANIZATION AFOSR 84-0249 Bc. ADDRESS (Chy. State, and ZiP Code) MC. ADD				AFOSR-TR- 88-1068				
### ADDRESS (Cfty, State, and ZIP Code) Hattiesburg, MS 39406 ### Bidg. 410 Bolling AFB, DC 20332-6448 ### Bolling AFB, DC 20332-6448 ### AFOSR-84-0249 ### AFO	University of Southern	TION		7a. NAME OF MO	NITORING ORGA	NIZATION		
Bldg. 410 Bolling AFB, DC 20332-6448 Ba. NAME OF FUNDING / SPONSORING ORGANIZATION AFOSR READORESS (Croy, State, and ZIP Code) Bldg. 410 Bolling AFB, DC 20332-6448 RAFOSR 84-0249 Sc. ADDRESS (Croy, State, and ZIP Code) Bldg. 410 Bolling AFB, DC 20332-6448 It SUBSECTION NO. 61102F Bolling AFB, DC 20332-6448 It SUBSECTION NO. 61102F Brook and Indication Novel Liquid Crystals - Polymers and Monomers - as Nonlinear Optical Materials 12. PERSONAL AUTHOR(S) Anselm C. Griffin, III 13a. TYPE OF REPORT FROM 9/84 TO 12/83 It ADATE OF REPORT (Year, Month, Day) IS. PAGE COUNT Final FROM 9/84 TO 12/83 It ADATE OF REPORT (Year, Month, Day) IS. PAGE COUNT From Sub-GROUP Nonlinear Optical Materials, Liquid Crystals, Polymers. The Suprementary Notation IS. Subsective (Continue on reverse if necessary and Identify by Block number) Nonlinear Optical Materials, Liquid Crystals, Polymers (Variation) IS. Subsective (Continue on reverse if necessary and Identify by Block number) Nonlinear Optical Materials, Liquid Crystals, Polymers (Variation) IS. Subsective (Continue on reverse if necessary and Identify by Block number) Nonlinear Optical Materials, Liquid Crystals, Polymers (Variation) IS. Subsective (Continue on reverse if necessary and Identify by Block number) Nonlinear Optical Materials, Liquid Crystals, Polymers (Variation) IS. Subsective (Continue on reverse if necessary and Identify by Block number) Nonlinear Optical Materials, Liquid Crystals, Polymers (Variation) IS. Subsective (Continue on reverse if necessary and Identify by Block number) IS. Subsective (Continue on reverse if necessary and Identify by Block number) Nonlinear Optical Materials, Liquid Crystals, Polymers (Variation) IS. Subsective (Variation) IS. Subsective (Index and Identify by Block number) Nonlinear Optical Materials, Liquid Crystals, Polymers (Variation) IS. Subsective (Index and Index Index			<u> </u>					
Bename of Funding/Sponsoring Organization AFOSR 8. Defice Symbol (If applicable) AFOSR 8.4 - 0.249 8. ADDRESS (City, State, and ZiP Code) Bldg. 410 Bolling AFB, DC 20332-6448 8. ADDRESS (City, State, and ZiP Code) Bldg. 410 Bolling AFB, DC 20332-6448 10. SOURCE OF FUNDING NUMBERS PROGRAM ELEMENT NO. PROJECT TASK NO. ACCESSION NO. 61102F 2303 A3 11. Title (Include Security Classification) Novel Liquid Crystals - Polymers and Monomers - as Nonlinear Optical Materials 12. PERSONAL AUTHOR(S) Anselm C. Griffin, III 13a. Type OF REPORT From 9/84 to 12/87 From 9/84 to 12/87 Progress is reviewed on research into the design, synthesis and characterization of, primarily, side chain liquid crystalline polymers for nonlinear optics. Materials described are polyesters and vinyl polymers for nonlinear optics. Materials described are polyesters and vinyl polymers for nonlinear optics. Materials described are polyesters and vinyl polymers for nonlinear optics. Materials described are polyesters and vinyl polymers for nonlinear optics. Materials described are polyesters and vinyl polymers for nonlinear optics. Materials described are polyesters and vinyl polymers for nonlinear optics. Materials described are polyesters and vinyl polymers for nonlinear optics. Materials described are polyesters and vinyl polymers for nonlinear optics. Materials described are polyesters and vinyl polymers in further characterization (electrooptic, dielectric, Langmuir-Blodgett films) are described. ELECTE 12. ABSTRACT SECURITY CLASSIFICATION Previous editions are absolute. 12. ABSTRACT SECURITY CLASSIFICATION Previous editions are absolute. 12. SECURITY CLASSIFICATION Previous editions are absolute. 12. SECURITY CLASSIFICATION OF THIS PAGE	6c. ADDRESS (City, State, and ZIP Code)							
ORGANIZATION RE ADDRESS (City, State, and ZIP Code) Bidg. 410 Bolling AFB, DC 20332-6448 The Code of Funding Numbers PROGRAM Ending AFB, DC 20332-6448 The Code of Funding Numbers PROGRAM FROM PROGRAM FROM PROGRAM No. 11. TITLE (Include Security Classification) Novel Liquid Crystals - Polymers and Monomers - as Nonlinear Optical Materials 12. PERSONAL AUTHOR(S) Anselm C. Griffin, III 13b. TIME COVERED FROM 9/84 To 12/87 Final 17. COSATI CODES RELID GROUP SUB-GROUP Nonlinear Optical Materials, Liquid Crystals, Polymers. Polymers. Polymers of recessary and identify by block number) 18. Progress is reviewed on research into the design, synthesis and characterization of, primarily, side chain liquid crystalline polymers for nonlinear optics. Materials described are polyesters and vinyl polymers and copolymers having push-pull pi-electronic nlo structures as pendant groups. Chiral derivatives have also been prepared. The nlo species employed have been nitroaromatics and pyridine N-oxides. Results of collaborative efforts in further characterization (electrooptic, dielectric, Langmuir-Blodgett films) are described. Dr. Donald R. Ulrich Dr. Control of the polymers of the p	Hattiesburg, MS 39406							
## AFOSR ## AFOSR NC AFOSR-84-0249 ## AFOSR NC AFOSR-84-0249 ## AFOSR NC AFOSR-84-0249 ## AFOSR NC AFOSR-84-0249 ## AFOSR NC NC AFOSR-84-0249 ## AFOSR NC NC NC AFOSR-84-0249 ## AFOSR NC NC AFOSR-84-0249 ## AFOSR NC NC AFOSR-84-0249 ## AFOSR NC NC AFOSR NC				9. PROCUREMENT	INSTRUMENT ID	ENTIFICAT	ION NUMBER	
Bolling AFB, DC 20332-6448 PROGRAM ELEMENT NO. NO. NO. NO. NO. NO. ACCESSION NO.				AFOSR-84	-0249			
Bolling AFB, DC 20332-6448 ELEMENT NO. 61102F 2303 A3 ACCESSION NO. 61102F 2303 A3 ACC			<u> </u>	10. SOURCE OF F	UNDING NUMBER	S		
11. TITLE (Include Security Classification) Novel Liquid Crystals - Polymers and Monomers - as Nonlinear Optical Materials 12. PERSONAL AUTHOR(S) Anselm C. Griffin, III 13a. TYPE OF REPORT FROM 9/84 10 12/87 14. Date Of REPORT (Year, Month, Day) 15. PAGE COUNT Final FROM 9/84 17. COSATI CODES 18. Subsety TERMS (Continue on reverse if necessary and identify by block number) Nonlinear Optical Materials, Liquid Crystals, Polymers. 18. Austract (Continue on reverse if necessary and identify by block number) 18. Progress is reviewed on research into the design, synthesis and characterization of, primarily, side chain liquid crystalline polymers for nonlinear optics. Materials described are polyesters and vinyl polymers and copolymers having push-pull pi-electronic nlo structures as pendant groups. Chiral derivatives have also been prepared. The nlo species employed have been nitroaromatics and pyridine N-oxides. Results of collaborative efforts in further characterization (electrooptic, dielectric, Langmuir-Blodgett films) are described. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT CHUNCLASSIFIED 21. ABSTRACT SECURITY CLASSIFICATION COLL 12 1988 22. DISTRIBUTION/AVAILABILITY OF ABSTRACT CHUNCLASSIFIED 22. ABSTRACT SECURITY CLASSIFICATION OF THIS PAGE COLL 12 1988 22. DISTRIBUTION/AVAILABILITY OF ABSTRACT CHUNCLASSIFIED 22. ABSTRACT SECURITY CLASSIFICATION OF THIS PAGE COLL 12 1988 22. OFFICE SYMBOL AFORN/NC DD Form 1473, JUN 86	_							
11. TITLE (Include Security Classification) Novel Liquid Crystals - Polymers and Monomers - as Nonlinear Optical Materials 12. PERSONAL AUTHOR(S) Anselm C. Griffin, III 13a. TYPE OF REPORT Final FROM 9/84 TO 12/87 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT Title Green on reverse if necessary and identify by block number) Nonlinear Optical Materials, Liquid Crystals, Polymers. Nonlinear Optical Materials, Liquid Crystals, Polymers is reviewed on research into the design, synthesis and characterization of, primarily, side chain liquid crystalline polymers for nonlinear optics. Materials described are polyesters and vinyl polymers and copolymers having push-pull pi-electronic nlo structures as pendant groups. Chiral derivatives have also been prepared. The nlo species employed have been nitroaromatics and pyridine N-oxides. Results of collaborative efforts in further characterization (electrooptic, dielectric, Langmuir-Blodgett films) are described. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT Gunclassified/unlimited Same As RPT OTIC USERS 121. ABSTRACT SECURITY CLASSIFICATION CONTY (202) 767-4963 AFOSR/NC DOForm 1473, JUN 265 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE	Bolling AFB, DC 20332-	6448						
Novel Liquid Crystals - Polymers and Monomers - as Nonlinear Optical Materials 12. PERSONAL AUTHOR(S) Anselm C. Griffin, III 13a. TYPE OF REPORT Final FROM 9/84 TO 12/87 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT FROM 9/84 TO 12/87 16. SUPPLEMENTARY NOTATION 17. COSATI CODES RELD GROUP SUB-GROUP Nonlinear Optical Materials, Liquid Crystals, Polymers. Polymers. Polymers. Polymers and contify by block number) 18. Progress is reviewed on research into the design, synthesis and characterization of, primarily, side chain liquid crystalline polymers for nonlinear optics. Materials described are polyesters and vinyl polymers and copolymers having push-pull pi-electronic nlo structures as pendant groups. Chiral derivatives have also been prepared. The nlo species employed have been nitroaromatics and pyridine N-oxides. Results of collaborative efforts in further characterization (electrooptic, dielectric, Langmuir-Blodgett films) are described. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT CHUNCLASSIFIED SAME AS RPT DITIC USERS 11. ABSTRACT SECURITY CLASSIFICATION POLYCLASSIFIED 12. ABSTRACT SECURITY CLASSIFICATION OF THIS PAGE COCT 1 2 1988 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT CHUNCLASSIFIED 12. ABSTRACT SECURITY CLASSIFICATION OF THIS PAGE COCT 1 2 1988 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT CHUNCLASSIFIED 21. ABSTRACT SECURITY CLASSIFICATION OF THIS PAGE COCT 1 2 1988 22. ABSTRACT SECURITY CLASSIFICATION OF THIS PAGE COCT 1 2 1988 22. ABSTRACT SECURITY CLASSIFICATION OF THIS PAGE DITIC USERS 22. ABSTRACT SECURITY CLASSIFICATION OF THIS PAGE DITIC USERS COCT 1 2 1988 22. ABSTRACT SECURITY CLASSIFICATION OF THIS PAGE DITIC USERS COCT 1 2 1988 23. ABSTRACT SECURITY CLASSIFICATION OF THIS PAGE COCT 1 2 1988	11. TITLE (Include Security Classification)		011021	2303	AS	<u>'</u>	
Anselm C. Griffin, III 13a. TYPE OF REPORT Final 13b. TIME COVERED FROM 9/84 10 12/87 16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Nonlinear Optical Materials, Liquid Crystals, Polymers. 19. ASSTRACT (Continue on reverse if necessary and identify by block number) Nonlinear Optical Materials, Liquid Crystals, Polymers. 19. ASSTRACT (Continue on reverse if necessary and identify by block number) Nonlinear Optical Materials, Liquid Crystals, Polymers. 19. ASSTRACT (Continue on reverse if necessary and identify by block number) Nonlinear Optical Materials, Liquid Crystals, Polymers. 19. ASSTRACT (Continue on reverse if necessary and identify by block number) Nonlinear Optical Materials, Liquid Crystals, Polymers. 19. ASSTRACT (Continue on reverse if necessary and identify by block number) Nonlinear Optical Materials, Liquid Crystals, Polymers. 19. ASSTRACT (Continue on reverse if necessary and identify by block number) Nonlinear Optical Materials, Liquid Crystals, Polymers. 10. ASSTRACT (Continue on reverse if necessary and identify by block number) Nonlinear Optical Materials, Liquid Crystals, Polymers. 19. ASSTRACT (Continue on reverse if necessary and identify by block number) Nonlinear Optical Materials, Liquid Crystals, Polymers of nonlinear optics. Materials described are polyesters and vinyl polymers and copolymers having push-pull pi-electronic nlo structures as pendant groups. Chiral derivatives have also been prepared. The nlo species employed have been nitroaromatics and pyridine N-oxides. Results of collaborative efforts in further characterization (electrooptic, dielectric, Langmuir-Blodgett films) are described. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION of This PAGE 220. OSTRIBUTION AVAILABILITY OF ABSTRACT 221. ABSTRACT (include Area Code) 222. OFFICE SYMBOL 222. OFFICE SYMBOL 223. ASSTRACT (include Area Code) 222. OFFICE SYMBOL 224. ASSTRACT (include Area Code) 2	Novel Liquid Crystals	- Pol	ymers and Monor	mers - as No	onlinear O	ptical	Materials	
13a. TYPE OF REPORT Final 13b. TIME COVERED FROM 9/84 15 DATE OF REPORT (Year, Month, Day) 16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Nonlinear Optical Materials, Liquid Crystals, Polymers. 19. ASSTRACT (Continue on reverse if necessary and identify by block number) 19. ASSTRACT (Continue on reverse if necessary and identify by block number) 18. Progress is reviewed on research into the design, synthesis and characterization of, primarily, side chain liquid crystalline polymers for nonlinear optics. Materials described are polyesters and vinyl polymers and copolymers having push-pull pi-electronic nlo structures as pendant groups. Chiral derivatives have also been prepared. The nlo species employed have been nitroaromatics and pyridine N-oxides. Results of collaborative efforts in further characterization (electrooptic, dielectric, Langmuir-Blodgett films) are described. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT □ UNCLASSIFIED 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED 22b. NAME OF RESPONSIBLE INDIVIDUAL Dr. Donald R. Ulrich 22c. OFFICE SYMBOL AFOSR/NC DD FORM 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE			امر	7				
18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Nonlinear Optical Materials, Liquid Crystals, Polymers. Polymers. Polymers for nonlinear optics. Materials described are polyesters and vinyl polymers and copolymers having push-pull pi-electronic nlo structures as pendant groups. Chiral derivatives have also been prepared. The nlo species employed have been nitroaromatics and pyridine N-oxides. Results of collaborative efforts in further characterization (electrooptic, dielectric, Langmuir-Blodgett films) are described. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT MUNCLASSIFIEDUNLIMITED SAME AS RPT DIIC USERS 21. ABSTRACT SECURITY CLASSIFICATION OF THIS PAGE 22. ODISTRIBUTION/AVAILABILITY OF ABSTRACT COD Form 1473, JUN 26 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE	13a. TYPE OF REPORT	. TIME C	OVERED	14. DATE OF REPO	RT (Year, Month.	Day) 15	. PAGE COUNT	
18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Nonlinear Optical Materials, Liquid Crystals, Polymers. Polymers. Polymers for nonlinear optics. Materials described are polyesters and vinyl polymers and copolymers having push-pull pi-electronic nlo structures as pendant groups. Chiral derivatives have also been prepared. The nlo species employed have been nitroaromatics and pyridine N-oxides. Results of collaborative efforts in further characterization (electrooptic, dielectric, Langmuir-Blodgett films) are described. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT JUNCLASSIFIED/JUNILIMITED SAME AS RPT DIC USERS 21. ABSTRACT SECURITY CLASSIFICATION ELECTE OCT 1 2 1988 22. NAME OF RESPONSIBLE INDIVIDUAL Dr. Donald R. Ulrich Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE	Final	ROM 9/					7	
Nonlinear Optical Materials, Liquid Crystals, Polymers. Polymers. Polymers. Polymers. Polymers. Nonlinear Optical Materials, Liquid Crystals, Polymers. Polymers and characterization of, primarily, side chain liquid crystalline polymers for nonlinear optics. Materials described are polyesters and vinyl polymers and copolymers having push-pull pi-electronic nlo structures as pendant groups. Chiral derivatives have also been prepared. The nlo species employed have been nitroaromatics and pyridine N-oxides. Results of collaborative efforts in further characterization (electrooptic, dielectric, Langmuir-Blodgett films) are described. Polymers. Nonlinear Optical Materials, Liquid Crystals, Polymers. Po	16. SUPPLEMENTARY NOTATION					_		
Nonlinear Optical Materials, Liquid Crystals, Polymers. Polymers and characterization of, primarily, side chain liquid crystalline polymers for nonlinear optics. Materials described are polyesters and vinyl polymers and copolymers having push-pull pi-electronic nlo structures as pendant groups. Chiral derivatives have also been prepared. The nlo species employed have been nitroaromatics and pyridine N-oxides. Results of collaborative efforts in further characterization (electrooptic, dielectric, Langmuir-Blodgett films) are described. Polymers. Polym	17. COSATI CODES 18 SURVEY TERMS (Continue on reverse if parassers and irlantify by block surmer)							
Polymers. 19. ANSTRACT (Continue on reverse if necessary and identify by block number) 18. Progress is reviewed on research into the design, synthesis and characterization of, primarily, side chain liquid crystalline polymers for nonlinear optics. Materials described are polyesters and vinyl polymers and copolymers having push-pull pi-electronic nlo structures as pendant groups. Chiral derivatives have also been prepared. The nlo species employed have been nitroaromatics and pyridine N-oxides. Results of collaborative efforts in further characterization (electrooptic, dielectric, Langmuir-Blodgett films) are described. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT Langmuir-Blodgett films) are described. 21. ABSTRACT SECURITY CLASSIFICATION 22. NAME OF RESPONSIBLE INDIVIDUAL Dr. Donald R. Ulrich 22. NAME OF RESPONSIBLE INDIVIDUAL Dr. Donald R. Ulrich 22. SECURITY CLASSIFICATION OF THIS PAGE 22. SECURITY CLASSIFICATION OF THIS PAGE	FIELD GROUP SUB-GR	OUP	4 (1/					
18. Progress is reviewed on research into the design, synthesis and characterization of, primarily, side chain liquid crystalline polymers for nonlinear optics. Materials described are polyesters and vinyl polymers and copolymers having push-pull pi-electronic nlo structures as pendant groups. Chiral derivatives have also been prepared. The nlo species employed have been nitroaromatics and pyridine N-oxides. Results of collaborative efforts in further characterization (electrooptic, dielectric, Langmuir-Blodgett films) are described. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT SOUNCLASSIFIED 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED 22. NAME OF RESPONSIBLE INDIVIDUAL Dr. Donald R. Ulrich 22. TELEPHONE (include Area Code) 22. OFFICE SYMBOL (202) 767-4963 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE								
18. Progress is reviewed on research into the design, synthesis and characterization of, primarily, side chain liquid crystalline polymers for nonlinear optics. Materials described are polyesters and vinyl polymers and copolymers having push-pull pi-electronic nlo structures as pendant groups. Chiral derivatives have also been prepared. The nlo species employed have been nitroaromatics and pyridine N-oxides. Results of collaborative efforts in further characterization (electrooptic, dielectric, Langmuir-Blodgett films) are described. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT □ DTIC USERS UNCLASSIFIED 21. ABSTRACT SECURITY CLASSIFICATION □ DTIC USERS UNCLASSIFIED 22. NAME OF RESPONSIBLE INDIVIDUAL □ DTIC USERS UNCLASSIFIED 22. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL AFOSR/NC 22. OFFICE SYMBOL AFOSR/NC AFOSR/NC 22. OFFICE SYMBOL AFOSR/NC AFOSR/NC AFOSR/NC AFOSR/NC 22. OFFICE SYMBOL AFOSR/NC			<u> </u>		-· 			
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT MUNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED 222. NAME OF RESPONSIBLE INDIVIDUAL Dr. Donald R. Ulrich Dr. Donald R. Ulrich Previous editions are obsolete. 21. ABSTRACT SECURITY CLASSIFICATION 22. OFFICE SYMBOL AFOSR/NC DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE	18. Progress is reviewed of, primarily, side Materials described push-pull pi-electro have also been prepared in N-oxides.	on r chain are p onic n red. Resul	esearch into t liquid crysta olyesters and lo structures The nlo speci ts of collabor	he design, lline polym vinyl polym as pendant es employed ative effor	ers for no ers and co groups. C have been ts in furt	nlinea polyme hiral nitro her ch	er optics. ers having derivatives paromatics and haracterization	
22a. NAME OF RESPONSIBLE INDIVIDUAL Dr. Donald R. Ulrich Dr. Donald R. Ulrich Dr. Donald R. Ulrich Dr. Donald R. Ulrich Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE						ATION C.	- CO	
Dr. Donald R. Ulrich (202) 767-4963 AFOSR/NC DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE			PT DTIC USERS	1			F	
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE		ıL		(202) 767	nciude Area Code 7-4963			
			Previous editions are		SECURITY	CLASSIFIC	ATION OF THIS PAGE	

COMPLETED PROJECT SUMMARY

TITLE: Novel Liquid Crystals-Polymers and Monomers - As Nonlinear Optical

Materials

PRINCIPAL INVESTIGATOR: Dr. Anselm C. Griffin

Chemistry and Polymer Science University of Southern Mississippi

Hattiesburg, MS 39406

INCLUSIVE DATES:

1 September 1984 - 31 December 1987

GRANT NUMBER:

AFOSR-84-0249

COST AND FY SOURCE:

\$84,602, FY 84; \$84,700, FY 86; \$90,063, FY 87

SENIOR RESEARCH PERSONNEL: Dr. A. M. Bhatti

Dr. M. L. Steele

JUNIOR RESEARCH PERSONNEL: R. S. L. Hung

C. R. Walton
G. A. Howell

PUBLICATIONS:

"Synthesis of Side Chain Liquid Crystal Polymers for Nonlinear Optics", A. C. Griffin, A. M. Bhatti and R. S. L. Hung, Proc SPIE, 682, 65 (1987).

"Side Chain Liquid Crystalline Copolymers for NLO Response", A. C. Griffin, A. M. Bhatti and R. S. L. Hung, <u>Nonlinear Optical and Electroactive Polymers</u> (P. N. Prasad and D. R. Ulrich, eds.), Plenum Publishing Corp., NY, NY, 375 (1988).

"Side Chain Polymalonate Liquid Crystals for Nonlinear Optics", A. C. Griffin, A. M. Bhatti and R. S. L. Hung, Mol Cryst Liq Cryst, 155, 129 (1988).

"Pyridine N-oxides as Polymeric Nonlinear Optical Materials", A. C. Griffin, A. M. Bhatti and G. A. Howell, <u>Nonlinear Optical Properties of Polymers</u> (A. J. Heeger, J. Orenstein and D. R. Ulrich, eds.), <u>109</u>, Materials Research Society, Pittsburgh, PA, 115 (1988).

"The Characterization of Langmuir-Blodgett Films of a Non-Linear Optical, Side Chain Liquid Crystalline Polymer", M. M. Carpenter, Paras N. Prasad and A. C. Griffin, <u>Thin Solid Films</u>, in press.

"Side Chain Liquid Crystalline Polymers for Nonlinear Optics", A. C. Griffin and A. M. Bhatti, Organic Materials for Nonlinear Optics, Royal Society of Chemistry, London, England, in preparation.

"The Dielectric and Electro-optical Properties of a Chiral Liquid Crystalline Polymer", G. S. Attard, K. Araki, J. J. Moura-Ramos, G. Williams, A. C. Griffin, A. M. Bhatti and R. S. L. Hung, in preparation.

PRESENTATIONS:

"Novel Liquid Crystals - Polymers and Monomers - As Nonlinear Optical Materials", DARPA/DSO-AFOSR/NC Optical Processing Annual Review, McLean, VA (November, 1984).

"Preparation of Linear Aliphatic Polyesters with Novel Side Chains", SE-SW Regional American Chemical Society Meeting, Memphis, TN (October, 1985).

"Nitroaromatic Liquid Crystalline Polymers: Unique Structures for Nonlinear Optical Materials", International Conference on Ultrastructure in Organic and Inorganic Polymers, Amherst, MA (October, 1985).

"Novel Liquid Crystals - Polymers and Monomers as Nonlinear Optical Materials", DARPA/DSO-AFOSR/NC Optical Processing Annual Review, McLean, VA (November, 1985).

"Novel Liquid Crystals - Polymers and Monomers - as Nonlinear Optical Materials", Air Force Materials Laboratory, Dayton, OH (March, 1986).

"Novel Polyesters as Nonlinear Optical Materials", 11th International Liquid Crystal Conference, Berkeley, CA (July, 1986).

"Model Compounds for Liquid Crystalline Polymers", Gordon Research Conference on Polymer Liquid Crystals, New London, NH (July, 1986).

"Synthesis of Side Chain Liquid Crystal Polymers for Nonlinear Optics", 30th SPIE Annual Technical Symposium, San Diego, CA (August, 1986).

"Liquid Crystalline Polymers for Nonlinear Optics, Chemistry Department, Auburn University, Auburn, AL (January, 1987).

"Liquid Crystalline Polymers for Nonlinear Optics", Chemistry Department, State University of New York at Buffalo, Buffalo, NY (January, 1987).

"Side Chain Liquid Crystalline Copolymers for NLO Response", American Chemical Society National Meeting, Denver, CO (April, 1987).

"Liquid Crystalline Polymers as Nonlinear Optical Materials", Liquid Crystal Institute, Kent State University, Kent, OH (April, 1987).

"Liquid Crystalline Polymers for Nonlinear Optics", 3M Company, St. Paul, MN (April, 1987).

"Side Chain Polymalonate Liquid Crystals for Nonlinear Optics", International Conference on Liquid Crystal Polymers", Bordeaux, France (July, 1987).

"Liquid Crystal Polymers", Chemistry Department, Queen Mary College, University of London, London, England (July, 1987).

"Liquid Crystalline Side Chain Polymers as Nonlinear Optical Materials", American Chemical Society National Meeting, New Orleans, LA (September, 1987).

"Polyester Side Chain Liquid Crystalline Materials for Nonlinear Optics", Materials Research Society National Meeting, Boston, MA (December, 1987).

ABSTRACT OF OBJECTIVES AND ACCOMPLISHMENTS:

This project involved the design, synthesis and characterization of liquid crystalline materials having a potentially nonlinear optically active (nlo) species as a fundamental constituent of the liquid crystalline structure. Compounds of interest were usually polymeric and, in particular, side chain liquid crystalline polymers were primary target materials. The design concept was to use a pi donor-pi acceptor linearly conjugated system as simultaneously both the nlo species and the liquid crystalline (mesogenic) moiety. Second order nlo properties were design goals. Specific results included (a) use of polycondensation reactions to synthesize polyester side chain liquid crystals containing nitroaromatic nlo active species, (b) use of chiral diols in the above reactions to generate chiral nlo polymers, (c) preparation of pyridine N-oxide based side chain polymers having a push-pull pi electronic structure, (d) generation of a series of copolymers involving both an nlo component and a chiral non-nlo component to obtain a pi-transfer of chirality to the nlo species and to obtain a smectic A material, and (e) the fine tuning of specific reaction conditions to produce nitroaromatic based nlo side chain liquid crystalline polymers of the methacrylate type without crosslinking or significantly adverse side reactions.

Materials described above were prepared and characterized chemically and both as polymers and as liquid crystals and were also made available to other laboratories for evaluation of optical and related properties. Particularly fruitful collaborations have resulted in the finding of unusual and interesting electric field alignment behavior of a nitroaromatic polyester liquid crystal by Professor Graham Williams (University College of Wales, Aberystwyth) and in the examination of film properties and nlo behavior of a Langmuir-Blodgett monolayer film from a nitroaromatic containing copolymer side chain liquid crystal by Professor Paras Prasad (SUNY-Buffalo).

AFOSR Program Manager: Dr. Donald R. Ulrich

Final Report AFOSR-84-0249 A. C. Griffin

The early stages of this research involved considerable synthetic efforts to produce intermediates and ultimately side chain liquid crystalline polymers containing nonlinear optical (nlo) push-pull pi-electronic systems as pendant moieties. Work was directed both toward polymerization reactions and toward grafting reactions on preformed polymers. Grafting reactions, for example using poly(acryloyl chloride), were not initially as successful as desired and other grafting reactions were tried. At the end of the project period this generic approach was still being examined with very encouraging results attained recently. Advantages of this approach include initially defined polymer molecular weights and the use of non free radical coupling reactions. Disadvantages include incomplete reaction of functional groups on the polymer.

Polymerization reactions, however, offer the opportunity for a high density of nlo species along the polymer chain and primary effort was directed along these lines. Vinyl polymerization of acrylate or methacrylate monomers containing nlo groups as the pendant liquid crystalline moieties were examined first being of the 'classical' vinyl monomer type suited for free radical polymerization. The nitroaromatic group employed for nlo activity is, however, a retarder of free radical polymerization and ordinary, traditional polymerization conditions do not suffice to form polymer from acrylate monomer. Very recently, however, conditions have been discovered for excellent free radical polymerization of methacrylate monomers of this type without undesirable crosslinking reactions. Structures of these polymers are shown below where R = methyl.

Condensation polymerization offers a most desirable route to nitroaromatic containing nlo side chain polymers and a synthetic sequence employing transesterification was used to produce several series of polyesters. As the titanium alkoxide catalyzed esterification reaction does not involve free radicals it is well suited for incorporation of nitroaromatic pendant groups into the polyme. The polymerization route and polymer structures are shown below.

Chirality for noncentrosymmetry can be introduced in the aliphatic diol unit and thereby imparted to the polymer. Characterization of these materials as to their chemical structures, their polymeric nature and their liquid crystalline behavior has been completed and reported.^{2,3} These materials are either nematic, chiral nematic or smectic A depending on details of their chemical structure. Pyridine imines show a strong tendency to form smectic A phases due to the strong lateral dipole of the pyridine ring. One of these materials, polymer 5, has been examined in detail by Professor G. Williams (University College of Wales, Aberystwyth) for its alignment in electric fields and its dielectric characteristics. An interesting effect of the helical nature of this chiral polymer on electro-optical properties was observed.⁴ In addition this polymer is dual frequency addressable.⁴

It seemed desirable to incorporate into the molecular design an intimate association of the nlo pi-electronic network and chirality. That is, the chirality should be proximal to the nlo species. Copolymers from vinyl monomers and, separately, from polycondensation monomers were designed and synthesized. The aim was to take advantage of the intimate association of pi-electron rich and pi-electron poor pendant groups and to use this electrostatic attraction to transfer chirality from the electron rich aromatic rings of the chiral component to the electron poor aromatic ring of the nlo

species. Such copolymers should have, and did have, pronounced smectic A phases. Structures of these copolymers are shown below.

One of these copolymers has been examined by Professor P. N. Prasad (State University of New York at Buffalo). He has formed a monolayer film from this material using Langmuir-Blodgett techniques and has fully characterized the film. 6 In addition recent evaluations of \times^2 have been made by second harmonic generation and by electrooptical measurement. This is to our knowledge the first report of a L-B film from a thermotropic liquid crystalline polymer.

As an attractive push-pull pi-electronic system 4-substituted pyridine Noxides were examined as pendant groups in a potentially side chain liquid crystalline polymeric structure. Although the bulk of the polymer appeared to contain the pyridine N-oxide functionality intact, the chemical reactivity of this group led to difficulties (side reactions) during polymerization. A transparent isotropic glass was obtained - no liquid crystallinity was observed. As an isotropic, glassy nlo polymer these materials may have

promise, however. As mentioned earlier, considerable effort has been devoted to solving difficulties in the free radical polymerization of acrylate and methacrylate monomers containing nitroaromatic nlo pendant groups. It has been found that acrylates do not homopolymerize without crosslinking but that

methacrylates can be polymerized quite nicely without crosslinking given the proper set of reaction conditions to give liquid crystalline materials. In summary several series of side chain liquid crystalline polymers having a wide variety in polymer structure and in nlo chemistry have been designed, synthesized and characterized. Optical evaluation and related examinations are underway at a number of laboratories with noteable success having been achieved in two such collaborations to date.

References

- "Side Chain Liquid Crystalline Polymers for Nonlinear Optics",
 A. C. Griffin and A. M. Bhatti, Organic Materials for Nonlinear Optics,
 Royal Society of Chemistry, London, England, in preparation.
- "Synthesis of Side Chain Liquid Crystal Polymers for Nonlinear Optics".
 A. C. Griffin, A. M. Bhatti and R. S. L. Hung, Proc SPIE, 682, 65 (1987).
- 3. "Side Chain Polymalonate Liquid Crystals for Nonlinear Optics",
 A. C. Griffin, A. M. Bhatti and R. S. L. Hung, Mol Cryst Liq Cryst, 155,
 129 (1988).
- 4. "The Dielectric and Electro-optical Properties of a Chiral Liquid Crystalline Polymer", G. S. Attard, K. Araki, J. J. Moura-Ramos, G. Williams, A. C. Griffin, A. M. Bhatti and R. S. L. Hung, in preparation.
- 5. "Side Chain Liquid Crystalline Copolymers for NLO Response",
 A. C. Griffin, A. M. Bhatti and R. S. L. Hung, Nonlinear Optical and
 Electroactive Polymers (P. N. Prasad and D. R. Ulrich, eds.),
 Plenum Publishing Corp., NY, NY, 375 (1988).
- 6. "The Characterization of Langmuir-Blodgett Films of a Non-Linear Optical Side Chain Liquid Crystalline Polymer", M. M. Carpenter, Paras N. Prasad and A. C. Griffin, Thin Solid Films, in press.
- 7. "Pyridine N-oxides as Polymeric Nonlinear Optical Materials",
 A. C. Griffin, A. M. Bhatti and G. A. Howell, <u>Nonlinear Optical</u>

 <u>Properties of Polymers</u> (A. J. Heeger, J. Orenstein and D. R. Ulrich,
 eds.), 109, Materials Research Society, Pittsburgh, PA, 115 (1988).

PUBLICATIONS:

"Synthesis of Side Chain Liquid Crystal Polymers for Nonlinear Optics", A. C. Griffin, A. M. Bhatti and R. S. L. Hung, Proc SPIE, 682, 65 (1987).

"Side Chain Liquid Crystalline Copolymers for NLO Response", A. C. Griffin, A. M. Bhatti and R. S. L. Hung, Nonlinear Optical and Electroactive Polymers (P. N. Prasad and D. R. Ulrich, eds.), Plenum Publishing Corp., NY, NY, 375 (1988).

"Side Chain Polymalonate Liquid Crystals for Nonlinear Optics", A. C. Griffin, A. M. Bhatti and R. S. L. Hung, Mol Cryst Liq Cryst, 155, 129 (1988).

"Pyridine N-oxides as Polymeric Nonlinear Optical Materials", A. C. Griffin, A. M. Bhatti and G. A. Howell, <u>Nonlinear Optical Properties of Polymers</u> (A. J. Heeger, J. Orenstein and D. R. Ulrich, eds.), <u>109</u>, Materials Research Society, Pittsburgh, PA, 115 (1988).

"The Characterization of Langmuir-Blodgett Films of a Non-Linear Optical, Side Chain Liquid Crystalline Polymer", M. M. Carpenter, Paras N. Prasad and A. C. Griffin, Thin Solid Films, in press.

"Side Chain Liquid Crystalline Polymers for Nonlinear Optics", A. C. Griffin and A. M. Bhatti, Organic Materials for Nonlinear Optics, Royal Society of Chemistry, London, England, in preparation.

"The Dielectric and Electro-optical Properties of a Chiral Liquid Crystalline Polymer", G. S. Attard, K. Araki, J. J. Moura-Ramos, G. Williams, A. C. Griffin, A. M. Bhatti and R. S. L. Hung, in preparation.

PRESENTATIONS:

"Novel Liquid Crystals - Polymers and Monomers - As Nonlinear Optical Materials", DARPA/DSO-AFOSR/NC Optical Processing Annual Review, McLean, VA (November, 1984).

"Preparation of Linear Aliphatic Polyesters with Novel Side Chains", SE-SW Regional American Chemical Society Meeting, Memphis, TN (October, 1985).

"Nitroaromatic Liquid Crystalline Polymers: Unique Structures for Nonlinear Optical Materials", International Conference on Ultrastructure in Organic and Inorganic Polymers, Amherst, MA (October, 1985).

"Novel Liquid Crystals - Polymers and Monomers as Nonlinear Optical Materials", DARPA/DSO-AFOSR/NC Optical Processing Annual Review, McLean, VA (November, 1985).

"Novel Liquid Crystals - Polymers and Monomers - as Nonlinear Optical Materials", Air Force Materials Laboratory, Dayton, OH (March, 1986).

"Novel Polyesters as Nonlinear Optical Materials", 11th International Liquid Crystal Conference, Berkeley, CA (July, 1986).

"Model Compounds for Liquid Crystalline Polymers", Gordon Research Conference on Polymer Liquid Crystals, New London, NH (July, 1986).

"Synthesis of Side Chain Liquid Crystal Polymers for Nonlinear Optics", 30th SPIE Annual Technical Symposium, San Diego, CA (August, 1986).

"Liquid Crystalline Polymers for Nonlinear Optics, Chemistry Department, Auburn University, Auburn, AL (January, 1987).

"Liquid Crystalline Polymers for Nonlinear Optics", Chemistry Department, State University of New York at Buffalo, Buffalo, NY (January, 1987).

"Side Chain Liquid Crystalline Copolymers for NLO Response", American Chemical Society National Meeting, Denver, CO (April, 1987).

"Liquid Crystalline Polymers as Nonlinear Optical Materials", Liquid Crystal Institute, Kent State University, Kent, OH (April, 1987).

"Liquid Crystalline Polymers for Nonlinear Optics", 3M Company, St. Paul, MN (April, 1987).

"Side Chain Polymalonate Liquid Crystals for Nonlinear Optics", International Conference on Liquid Crystal Polymers", Bordeaux, France (July, 1987).

"Liquid Crystal Polymers", Chemistry Department, Queen Mary College, University of London, London, England (July, 1987).

"Liquid Crystalline Side Chain Polymers as Nonlinear Optical Materials", American Chemical Society National Meeting, New Orleans, LA (September, 1987).

"Polyester Side Chain Liquid Crystalline Materials for Nonlinear Optics", Materials Research Society National Meeting, Boston, MA (December, 1987).

Professional Personnel Associated With the Research

Senior Personnel: Dr. A. M. Bhatti

Dr. M. L. Steele (one summer only)

Junior Personnel: R. S. L. Hung

C. R. Walton

G. A. Howell (one summer only)

R. S. L. Hung received the Ph.D. in August, 1987. His Ph.D. dissertation title was "I. Novel Side Chain Liquid Crystalline Polymers as Nonlinear Optical Materials II. Main Chain Liquid Crystalline Polymers and Polymer Model Compounds".

Interactions

A listing of presentations resulting from this project is attached. Samples of our polymers have been sent (with AFOSR approval) to the following laboratories for further examination: Professor P. N. Prasad, SUNY-Buffalo; Professor G. Williams, Aberystwyth; Professor L. L. Hench, Florida; Dr. R. Lytel, Lockheed; Dr. D. Y. Yoon, IBM-San Jose; Professor T. J. Marks, Northwestern. Particularly fruitful interactions have been discussed in the body of the technical report.

New Discoveries, Inventions or Patent Disclosure

As reported to AFOSR by the University's Office of Research and Sponsored Programs, patent applications have been filed in the U.S. (U.S. patent Application Serial No. 917,710 "Side Chain Liquid Crystalline Polymers as Novel Nonlinear Optical Materials", filed October 10, 1986 - no response to date from the Patent Office) and in Canada by the same title (Application number 548,971, filed October 9, 1987 - no response to date).