

18

Relatório da Radiação Térmica - T2B

José Lucas Camacho Monteiro, PL1, Grupo 1-B

Licenciatura em Engenharia Física - Departamento de Física e Astronomia

Resumo

Determinou-se uma relação entre as emissividades relativas de cada face do cubo de Leslie do tipo $\epsilon_{preta} \approx \epsilon_{brand} \approx 2.5 \epsilon_{baca} \approx 10 \epsilon_{metalizada}$. Determinou-se também uma relação linear entre V_s e P. Daculou-se através do gráfico logical expoente de T para o qual há uma relação linear entre esse valor e V_s , tendo-se obtido valores muito bons em dois dos quatro ensaios, com erros de 2% e 3%. Por fim também se determinou um intervalo para a secção eficaz de absorção de radiação do sensor entre aproximadamente $2mm^2$ e $27mm^2$.

Objetivos

- Estudar o Cubo de Leslie e determinar a emissividade relativa de cada face;
- Verificar experimentalmente a Lei de Stefan-Boltzmann 8;
- Determinar a secção eficaz de absorção de radiação do sensor.

2 Introdução Teórica e Equações Necessárias

2.1 Cubo de Leslie

O Cubo de Leslie é um equipamento constituido por quatro faces e que possui um mecanismo de aquecimento interno, o que faz com que posteriormente, as faces emitam radiação. No cubo utilizado em aula temos uma face branca, uma baça, uma metalizada e uma preta. Como os diferentes materiais de cada face possuem emissividades diferentes, com um detetor observa-se que a radiação emitida varia de face para face.

Considerando a face preta como um corpo negro, em teoria, ela absorve toda a energia que lhe é fornecida e emite-a em função da temperatura, ou seja, $\epsilon_{preta}=1$. É esperado que as outras faces possuam valores de emissividade menor.

1

Pela Lei de Stefan-Boltzmann:

$$V_s = A\epsilon\sigma T^4 \tag{1}$$

Onde A é a secção eficaz, ϵ a emissividade, σ a constante de Boltzmann e T a temperatura e aproximamos P a V_s . Num gráfico de V_s em função de T^4 é esperado que o declive seja:

$$m = A\epsilon\sigma$$
 (2)

E como A é a área da superfície do cubo em estudo, e as áreas de cada face são iguais, então, comparando uma face i com a face preta:

$$\epsilon_r = \frac{\epsilon_i}{\epsilon_{preta}} = \frac{m_i}{m_{preta}} \tag{3}$$

2.2 Lei de Stefan-Boltzmann

Nesta atividade foi estudada a transferência de calor por radiação eletromagnética. A Lei de Stefan-Boltzmann traduz essa transferência de calor e é fundamentada em Princípios da Termodinâmica.

O calor radiado deve-se à existência de cargas elétricas em oscilação, com uma frequência própria, emitindo energia sob a forma de radiação.

Vamos supor um sistema de temperatura constante T, volume V e pressão p. Pela 2^a Lei da Termodinâmica:

$$Tds = dW + pdV (4)$$

Onde a energia total W pode escrever-se como V.u e a pressão no interior do sistema como $\frac{u}{3}$:

$$Tds = udV + V\frac{du}{dT}dT + \frac{1}{3}udV = V\frac{du}{dT}dT + \frac{4}{3}udV$$
 (5)

E através de algumas deduções presentes no protocolo [1], conclui-se que:

$$u = aT^4 (6)$$

Esta relação corresponde à lei de Stefan-Boltzmann e deve verificar-se sempre. Planck também deduziu uma relação que permite concluir que a potência total emitida por um corpo negro é proporcional a T^4 , como previsto pela lei de Stefan-Boltzmann, sendo a constante de proporcionalidade:

$$\sigma = 5.67x10^{-8} \tag{7}$$

Para os restantes corpos, a potência é determinada em relação ao corpo negro, utilizando um valor designado de coeficiente de emissividade, ϵ :

$$P = A\epsilon\sigma T^4$$
 (8)

No corpo negro, $\epsilon = 1$.

3 Método Experimental

3.1 Material

- Ohmímetro, Micro-Voltímetro, Voltímetro e Amperímetro;
- Gerador de Tensão;
- Cubo de Leslie;
- Sensores de Radiação;
- Cabos de ligação;
- Lâmpada;
- Régua;
- Placa.

Amperimetro;

3.2 Montagem Experimental

3.2.1 Cubo de Leslie

Figura 1: Cubo de Leslie. Retirado de [1].

Importante:

 manter toda e qualquer fonte de calor longe do sensor de radiação para que os valores obtidos correspondam apenas à radiação emitida pelo cubo; – na medição, encostar o sensor ao centro da face que está a ser analisada e fazer a medição rápidamente.

Figura 2: Sensor de Radiação fechado/aberto. Retirado de [1].

Importante:

- manter o sensor aberto apenas o tempo necessário para não correr o risco de o danificar.

Figura 3: Circuito a montar. Retirado de [1].

de lampad de manter sempre a tensão abaixo de 13V.

Figura 4: Esquema representativo da distância entre a lâmpada e o sensor. Retirado de [1].

Importante: [eve-n v wided de — manter a distância entre a lâmpada e o sensor constante; embs.]

- na verdade, o sensor encontra-se mais une milímetros atrás da marca indicada na imagent, mas ignoramos essa pequena diferença pa execução.

3.3 Procedimento Pado virus aprisentam todos os 3.3.1 Cubo de Leslie
3.3 Procedimento
3.3.1 Cubo de Leslie
- Montamos o circuito 1; parsos (or instruíos), apenes os exenciais (X)
- Colocamos o manípulo na posição HIGH e deixamos o cubo a aquecer enquanto executamos a outra parte da
ekperiência, até que o valor medido no ohmímetro estabilizasse:
 Colocamos o manípulo na posição 5 e esperamos que a resistência medida estabilizasse de hovo,
- Com o cubo em equilíbrio térmico com o exterior iniciamos as medições da emissão de radiação de cada face,
colocando o sensor encostado à face pretendida (de modo rápido);
 Repetimos o processo para cada posição, fechando sempre o sensor quando não estava a medir nada;
– Registamos os valores de R e V_s para cada face e com a ajuda das equações no anexo do protogolo [1] determinamos T^4 ;
– Traçamos o gráfico $V_s(T)$ para determinar as emissividades relativas de cada face ϵ_r .
3.3.2 Lei de Stefan-Boltzmann os dados a presentados no lig. 5
- Montamos o circuito 3;
Variando a tensão em valores abaixo de $0.1V$, medimos V e I para determinar o valor de R_{amb} ;
Manten do der ante a exp. - Vorificamos o alinhamento correto da lampada e do sensor e a distância de 6cm; (figures 1000 - 0000)
– Variamos a tensão entre $1V$ e $12V$ e registamos no aquecimento $[1 \rightarrow 12]V$ e no arrefecimento $[12 \leftarrow 1]V$, com
e sem placa, os valores de V_s , I e V figures • • • • • • • • • • • • • • • • • • •
- Protegemos o sensor fazendo a atividade rapidamente;
- Verificamos a relação entre os valores de Vs e P = VI; man não vol Mado
- Verificamos a relação entre os valores de Ve P = VI; - Traçamos os gráficos de log(V)[log(P)] e P(P) 4.1 Cubo de Leslie Fizemos as duas partes da experiência em simultâneo. Começamos por aquecer primeiro o cubo selecionando a P 3. Cosição HICH a programos que o valor medido pelo Ohmímetro estabilização fizemos as medições da compando de P 3.
guille per per s
4 Resultados e Análise
4.1 Cubo de Leslie Nan diz nem mg MG
Fizemos as duas partes da experiência em simultâneo. Começamos por aquecer primeiro o cubo selecionando a
posição i nor i e enquanto esperantos que o vaior medido pero Orintimetro estabilizasse, fizentos as medições da
outra parte. Para converter os valores de resistência medidos em valores de temperatura foram usadas as equações dos gráficos presentes no protocolo 33.
Eventualmente retiramos todos os dados para o cubo e fizemos o gráfico:
IMPORTANTE! [o internlo de tempo entre exolher Ve medio].
To in or you or lovely made of when A impact.

Figura 5: Gráfico de V_s em função de T^4 para todas as faces do cubo. Dados de 26 e 27.

Olhando para o gráfico verificamos a equação 1. Existe uma dependência linear entre V_s e T^4 para todas as faces, verificando-se a Lei de Stefan-Boltzmann.

Figura 6: Gráfico de resíduos de V_s em função de T^4 para todas as faces do cubo. Dados de 27.

No gráfico de resíduos para todos os dados, verificamos que todos os resíduos se encontram dentro dos limites de $2\sigma_y$ e $-2\sigma_y$ e não mostram nenhum padrão, o que indica exatidão nos resultados.

Para a face preta obtivemos a matriz:

Matriz de Ajuste da Face Preta					
m	b				
σ _m 2E-11		0.4	σь		
r ²	0.998	0.2	σ _{u ai}		

Figura 7: Matriz da face preta. Dados de 26.

Desta matriz vamos retirar o valor do declive m_{preta} para usar como referência para determinar o ϵ_r das outras

faces através da equação 3.

A incerteza associada a cada resultado foi determinada por propagação de incertezas:

$$u(\epsilon_{ri}) = \sqrt{\left(\frac{u(m_i)}{m_{preta}}\right)^2 + \left(\frac{m_i u(m_{preta})}{m_{preta}^2}\right)^2}$$
(9)

Para a face branca:

Matriz de Ajuste da Face Branca				
m 8.3E-10		-6.7	b	
σ_{m}	2E-11	0.4	σ_{b}	
r ²	0.998	0.2	$\sigma_{\gamma aj}$	

Figura 8: Matriz da face branca. Dados de 26.

$$\epsilon_r = 1.02 \pm 0.04 \tag{10}$$

Com $u(\epsilon_r)\% = 4\%$. Este resultado indica que $\epsilon_{branca} \approx \epsilon_{preta}$ o que nos leva a concluir que a cor não é um fator que

influencie muito na emissividade.

Para a face baça:

 Matriz de Ajuste da Face Baça

 m
 3.3E-10
 -2.9
 b

 σ_m
 2E-11
 0.3
 σ_b

 r²
 0.992
 0.1
 σ_{v ai}

responsavel pla emmindade e

Figura 9: Matriz da face baça. Dados de 26.

 $\epsilon_r = 0.40 \pm 0.02$

Com $u(\epsilon_r)\% = 5\%$. Este resultado indica que $\epsilon_{baca} \approx 0.40\epsilon_{preta}$, ou seja, não emite tanta radiação como as duas faces anteriores.

Para a face metalizada:

Matriz	Matriz de Ajuste da Face Metalizada				
m	b				
σ_{m}	1E-11	0.2	σь		
r ² 0.9		0.1	σ _{γaj}		

Figura 10: Matriz da face metalizada. Dados de 26.

 $\epsilon_r = 0.10 \pm 0.02$

(12)

CBION

l'alabament de sep, emissore touséen é relevante!

Com $u(\epsilon_r)\% = 20\%$. Este resultado indica que $\epsilon_{metalizada} \approx 0.10\epsilon_{preta}$, ou seja, de todas as faces esta é a que emite menos radiação.

Em geral, podemos concluir que o indice de emissividade depende muito mais do material do que da cor da face.

4.2 Lei de Stefan-Boltzmann

4.2.1 Determinar R_{amb}

Para determinar R_{amb} , colocamos o sensor longe de qualquer fonte e calor e retiramos pontos de V e I para vários valores de tensão a baixo de 0.1V e obtivemos os valores em 28.

Obtivemos os vários *R* através da Lei de Ohm e fizemos a média para determinar:

$$R_{amb} = (0.54 \pm 0.02)\Omega \tag{13}$$

Este valor é necessário para a determinação de T nas próximas etapas com o uso da tabela 34, na qual se vê T em função de $\frac{R}{R_{omb}}$.

4.2.2 Verificar relação $P \propto V_s$

Precisamos de verificar que P é proporcional a V_s em toda a gama para podermos assumir isso na Lei de Stefan-Boltzmann. Para isso traçamos os gráficos, usando P = VI.

No decorrer da nossa experiência tiramos dois tipos diferentes de dados, primeiro um conjunto de pontos sem utilização da placa entre as medições, depois com.

Começando pelos dados sem a placa:

Figura 11: Gráfico de $V_s(P)$ e resíduos, respetivamente. Dados de 29 e 30.

No gráfico de resíduos podemos ver uma clara tendência na gama inicial que se deve ao facto da radiação ter de atravessar não só o ar mas também o vidro da lâmpada.

Retirando os pontos duvidosos, ficando com os pontos apenas de 6W a 12W:

OK, men deve ter remélido isto planexo!

Figura 12: Gráfico de $V_s(P)$ e resíduos, respetivamente, na gama linear. Dados de 29 e 30.

Agora os resíduos mostram-se aleatórios e dentro dos limites. Para esta gama obtivemos as matrizes:

Vs (P) - Aquecimento s/placa					
m	m 0.486 -1.20				
σ _m	σ _m 0.002 0.02				
Γ² 0.9999		0.02 σ _{y aj}			
V	Vs (P) - Arrefecimento s/placa				
m	0.483	-1.06	b		
σ _m 0.001 0.0		0.02	$\sigma_{\rm b}$		
r ²	0.99995	0.02	σ _{y aj}		

Figura 13: Matrizes dos gráficos $V_s(P)$ no aquecimento e arrefecimento. Dados de 29 e 30.

Assumindo a relação $P = CV_s$, podemos agora determinar esse C como:

$$C = \frac{1}{m} \tag{14}$$

E obter a sua incerteza por propagação de incertezas:

$$u(C) = \frac{u(m)}{m^2} \tag{15}$$

Assim obtivemos:

Processo	С	u(C)
Aquecimento	2.056 W/mV	0.006 W/mV
Arrefecimento	2.068 W/mV	0.004 W/mV

Analisando agora para os dados com a placa entre medições, onde apenas retiramos pontos na gama determinada anteriormente, [7.5-12]V:

Vs(P) - Aquecimento Aquecim ento Arrefecim ento 0.20 Pontos duvidosos esíduos de Vs (mV) 0.10 juste Aquecimento Vs (mV) 0.00 -0.10 Resíduos Aquecimento Resíduos Arrefecimento Pontos duvidosos -0.30 12 16 16 P(W) P(W)

Figura 14: Gráfico de $V_s(P)$ e resíduos, respetivamente. Dados de 31 e 32.

No gráfico de resíduos detetamos alguns pontos duvidosos que foram depois retirados, e um novo ajuste foi feito. Os restantes resíduos mostraram-se aleatórios e dentro dos limites, pelo que obtivemos as matrizes:

Vs (P) - Aquecimento					
m	b				
$\sigma_{\rm m}$	0.006	0.09	$\sigma_{\rm b}$		
r² 0.997		0.07 σ _{y aj}			
1	Vs (P) - Arrefecimento				
m	0.418	-0.70	b		
σ _m 0.004		0.06	$\sigma_{\rm b}$		
r ²	0.9991	0.05	$\sigma_{y aj}$		

Figura 15: Matrizes dos gráficos $V_s(P)$ no aquecimento e arrefecimento. Dados de 31 e 32.

Pelo mesmo processo anteriormente estabelecido, determinamos:

Processo	С	u(C)
Aquecimento	2.50 W/mV	0.04 W/mV
Arrefecimento	2.39 W/mV	0.02 W/mV

Estes valores são superiores aos obtidos anteriormente.

Agora sabemos em que gama podemos assumir a relação $P \propto V_s$: [7.5 - 12]V.

4.2.3 Análise $\log(V_s) - \log(T^4)$

Para determinar a veracidade da equação 1 na dependência $V_s \propto T^4$, traçamos o gráfico log – log, em que o resultado esperado é:

$$\log(V_s) = 4\log(T) + b \tag{16}$$

O gráfico com todos os dados para a experiência sem o uso da placa:

Figura 16: Gráfico de $log(V_s)(log(T))$. Dados de 29 e 30.

Podemos verificar mais uma vez a mesma gama de valores problemáticos neste gráfico, esse início curvado é causado pela interferência do vidro da lâmpada na radiação. Pelo que procedemos à sua remoção:

Figura 17: Gráfico de $log(V_s)(log(T))$ e resíduos, na gama reduzida. Dados de 29 e 30.

Agora verificamos a tendência linear esperada, para a qual tivemos as matrizes:

log(Vs) (log(T)) - Aquecimento s/placa					
m	m 4.46 -14.16		b		
$\sigma_{\rm m}$	0.02	0.06	$\sigma_{\rm b}$		
r ²	0.99986	0.002	σ _{y aj}		
log(Vs) (log(Vs) (log(T)) - Arrefecimento s/placa				
m	4.28	-13.56	b		
$\sigma_{\rm m}$	0.02	0.06	$\sigma_{\rm b}$		
r ²	0.99986	0.002	σ _{y aj}		

Figura 18: Matrizes dos gráficos $log(V_s)(log(T))$ no aquecimento e arrefecimento. Dados de 29 e 30.

Comparando com o valor esperado, 4:

ahable

Processo	Expoente	Erro%
Aquecimento	4.46 ± 0.02	11%
Arrefecimento	4.28 ± 0.02	7%

Estes erros são muito grantes pelo que não podemos verificar com exatidão a Lei de Stefan-Boltzmann. Fazendo agora a análise semelhante para os dados retirados com o uso da placa na gama [7.5 - 12]V:

Figura 19: Gráfico de $log(V_s)(log(T))$ e resíduos. Dados de 31 e 32.

Obtivemos as matrizes:

log(Vs) (log(T)) - Aquecimento					
m	3.88	-12.2	b		
σ _m	0.05	0.2	$\sigma_{\rm b}$		
r ²	0.998	0.005	σ _{y aj}		
log(V	log(Vs) (log(T)) - Arrefecimento				
m	4.07	-12.9	b		
σ _m	0.04	0.1	$\sigma_{\rm b}$		
r ²	0.9992	0.003	σ _{y aj}		

Figura 20: Matrizes dos gráficos $log(V_s)(log(T)$ no aquecimento e arrefecimento. Dados de 31 e 32.

Comparando com o valor esperado, 4:

			 ()
Processo	Expoente	Erro%	, ine!
Aquecimento	3.88 ± 0.05	3%	
Arrefecimento	4.07 ± 0.04	2%	

Desta forma obtivemos erros bem menores que nos permitem concluir a Lei de Stefan-Boltzmann.

4.2.4 Análise $P(T^4)$

Obtivemos o gráfico em tempo real com todos os dados:

Figura 21: Gráfico de $P(T^4)$. Dados de 29 e 30 e 31 e 32.

Onde conseguimos, mais uma vez, ver a gama de valores para os quais a relação não é linear, que corresponde à mesma gama vista anteriormente.

Para os dados retirados sem o uso da placa e na gama linear, obtivemos:

Figura 22: Gráfico de $P(T^4)$. Dados de 29 e 30.

Onde pudemos detetar alguns pontos duvidosos que foram retirados para fazer o ajuste visualizado. E obtivemos as matrizes:

Р (P (T ⁴) - Aquecimento s/placa									
m	5.380E-13	1.15	b							
$\sigma_{\rm m}$	3E-16	0.01	$\sigma_{\rm b}$							
r ²	0.999998	0.006	σ _{raj}							
Р (Т	⁴) - Arrefe	cimento s/pl	aca							
m	5.305E-13	1.43	b							
$\sigma_{\rm m}$	9E-16	0.02	$\sigma_{\rm b}$							
r ²	0.99998	0.02	σ _{¶ aj}							

Figura 23: Matrizes dos gráficos $P(T^4)$ no aquecimento e arrefecimento. Dados de 29 e 30.

Esse declive, com base na equação 1 e aproximando $V_s \approx P = VI$, é esperado que seja:

$$m = A\epsilon\sigma$$
 (17)

O que nos permite obter a secção eficaz *A*, utilizando:

$$A = \frac{m}{\epsilon \sigma} \tag{18}$$

Com o intervalo dado no protocolo [1] para ϵ : [0.035 – 0.5] para temperaturas $T \in$ [2000 – 3400]K. Assim, para os dados sem a placa obtemos:

$A_{aquecimento}$	[1.90; 27.1] mm ²
Aarrefecimento	[1.87;26.7] mm ²

Repetindo a mesma análise para os dados com a placa:

Figura 24: Gráfico de $P(T^4)$. Dados de 31 e 32.

Mais uma vez, detetamos alguns pontos duvidosos que foram retirados para fazer o ajuste visualizado. E obtivemos as matrizes:

F	P (T ⁴) - Aquecimento									
m	m 5.41E-13 1.08									
$\sigma_{\rm m}$	1E-15	0.03	$\sigma_{\rm b}$							
r ²	0.99994	0.03	σ _{γ aj}							
Р	(T ⁴) - Arre	efeciment	:o							
m	5.29E-13	1.49	Ь							
$\sigma_{\rm m}$	1E-15	0.03	$\sigma_{\rm b}$							
r ²	0.99994	0.03	σ _{• aj}							

Figura 25: Matrizes dos gráficos $P(T^4)$ no aquecimento e arrefecimento. Dados de 31 e 32.

Assim, para os dados com a placa obtemos:

Processo	С	u(C)	Expoente	erro(exp)%	A
Aquecimento s/placa	2.056	0.006	4.46 ± 0.02	11%	[1.90; 27.1] mm ²
Arrefecimento s/placa	2.068	0.004	4.28 ± 0.02	7%	[1.87; 26.7] mm ²
Aquecimento	2.50	0.04	3.88 ± 0.05	3%	[1.91; 27.2] mm ²
Arrefecimento	2.39	0.02	4.07 ± 0.04	2%	[1.87; 26.7] mm ²

en % \.

Conclusão

informatio o vela absoluto (8)

6.1 Cubo de Leslie

- Obtivemos uma relação entre as várias emissividades: $\epsilon_{preta} \approx \epsilon_{branca} \approx 2.5 \epsilon_{baca} \approx 10 \epsilon_{metalizada}$;
- O maior erro obtido em relação ao grupo 2 da PL1 foi 11% para a face baça e o menor for 4% para a face branca, mas estes erros não são muito informativos visto que os valores são muito pequenos;

- Concluimos que a emissividade não é muito afetada pela cor (branco e preto) mas sim pelo material (tinta, face baça, face metalizada);

Lei de Stefan-Boltzmann

6.2 Lei de Stefan-Boltzmann

- Obtivemos uma relação linear entre V_s e P como esperado para uma certa gama. Isso deve-se ao facto de que para valores inferiores a aproximadamente 7.5V, há interferência do vidro da lâmpada na radiação, causando uma curvatura nos vários gráficos observados. Assim, a gama ideal determinada foi [7.5-12]V; Us valves para o expoente 4 no le de S-B oblidos

 Os expoentes obtidos através do gráfico log – log foram muito elevados para a experiência sem o uso da placa, mas com a placa obtivemos valores muito bons com 3% e 2% de erro;

- Na determinação de área eficaz de absorção da radiação do sensor obtivemos intervalos de valores muito próximos uns dos outros e que são intuitivamente corretos pois encontram-se na ordem do tamanho do sensor.

Referências

[1] Responsáveis pela unidade curricular Laboratório de Física II. Atividade T2B - Radiação Térmica. Ano letivo 2022/2023.

orden de grandes

Anexos

Cubo de Leslie

	Posição do Alimentador	R ±1(Ω)	V _s Preta ± 0,01 (mV)	V _s Branca ± 0,01 (mV)	V _s Baça ± 0,01 (mV)	V _s Metalizada ± 0,01 (mV)	T (ºC)	u(T) (ºC)	T (K)	T ⁴ (K ⁴)	u(T ⁴) (K ⁴)
	5	20300	4.200	3.925	1.399	0.403	62.847	0.001	335.997	1.27450E+10	2E+05
	6	18200	4.230	4.160	1.362	0.240	65.728	0.001	338.878	1.31879E+10	2E+05
	7	12500	5.677	5.648	1.847	0.324	75.988	0.002	349.138	1.48589E+10	4E +05
	8	6700	8.650	8.700	3.198	0.778	94.2	0.3	367.3	1.821E+10	6E+07
Γ	high	3800	11.596	11.538	4.292	1.020	112.25	0.04	385.40	2.2062E+10	9E+06

Figura 26: Dados do Cubo de Leslie.

) há former de apresenter os dedos que mostrem comparciós entre 75 volves, sem ter que recover 16

Face Preta		Face	Branca	Face	e Baça	Face Metalizada		
Ajuste (mV)	Resíduos (mV)	Ajuste (mV)	Resíduos (mV)	Ajuste (mV)	Resíduos (mV)	Ajuste (mV)	Resíduos (mV)	
4.0	0.2	3.9	0.0	1.3	0.1	0.3	0.1	
4.4	-0.2	4.3	-0.1	1.4	-0.1	0.3	-0.1	
5.8	-0.1	5.7	0.0	2.0	-0.1	0.4	-0.1	
8.5	0.1	8.5	0.2	3.1	0.1	0.7	0.1	
11.7	-0.1	11.7	-0.1	4.3	0.0	1.0	0.0	

Figura 27: Ajuste e Resíduos do Cubo de Leslie.

7.2 Lei de Stefan-Boltzmann

V (mV)	I (mA)	R (Ω)
33.5	64	0.523
47.0	89	0.528
55.9	105	0.532
64.5	120	0.538
78.0	144	0.542
90.2	164	0.550

Figura 28: Dados para determinar R_{amb} .

			Anue	cimento :	s/nlaca				
V ±0,01 (V)	I ±0,001 (A)	R (Ω)	P (W)	R/R _{emb}	T (K)	T ⁴ (K ⁴)	log T	Vs (mV)	log Vs
1	0.605	1.65	0.605	1.82	492.292	5.9E+10	2.69222	-0.23	
1.55	0.698	2.22	1.082	2.45	615.022	1.4E+11	2.78889	-0.13	
2.07	0.774	2.67	1.602	2.95	712.207	2.6E+11	2.85261	0.01	-2
2.57	0.841	3.06	2.161	3.37	793.277	4E+11	2.89942	0.18	-0.74473
3.08	0.907	3.40	2.79	3.74	865.036	5.6E+11	2.93703	0.42	-0.37675
3.62	0.973	3.72	3.52	4.10	933.144	7.6E+11	2.96995	0.71	-0.14874
4.03	1.02	3.95	4.11	4.36	981.256	9.3E+11	2.99178	0.98	-0.00877
4.58	1.083	4.23	4.96	4.66	1039	1.2E+12	3.01662	1.33	0.12385
5.07	1.137	4.459	5.76	4.92	1086.56	1.4E+12	3.03606	1.71	0.233
5.42	1.172	4.625	6.35	5.10	1120.64	1.6E+12	3.04947	1.95	0.29003
6.01	1.232	4.878	7.40	5.38	1172.67	1.9E+12	3.06918	2.42	0.38382
6.57	1.286	5.109	8.45	5.63	1219.75	2.2E+12	3.08627	2.92	0.46538
7.08	1.335	5.303	9.45	5.85	1259.29	2.5E+12	3.10013	3.41	0.53275
7.55	1.377	5.483	10.40	6.05	1295.67	2.8E+12	3.11249	3.86	0.58659
8.09	1.426	5.673	11.54	6.25	1334.08	3.2E+12	3.12518	4.4	0.64345
8.42	1.454	5.791	12.24	6.38	1357.77	3.4E+12	3.13282	4.75	0.67669
9.02	1.508	5.981	13.60	6.59	1395.99	3.8E+12	3.14488	5.41	0.7332
9.57	1.555	6.154	14.88	6.79	1430.56	4.2E+12	3.15551	6.05	0.78176
10.05	1.594	6.305	16.02	6.95	1460.56	4.6E+12	3.16452	6.54	0.81558
10.59	1.638	6.465	17.35	7.13	1492.41	5E+12	3.17389	7.23	0.85914
11.02	1.672	6.591	18.43	7.27	1517.31	5.3E+12	3.18108	7.77	0.89042
11.62	1.719	6.760	19.97	7.45	1550.66	5.8E+12	3.19052	8.51	0.92993
12	1.748	6.865	20.98	7.57	1571.4	6.1E+12	3.19629	9.05	0.95665

Figura 29: Dados do aquecimento sem placa.

			Αr	refecime	nto s/pla	ca			
V (V)	I (A)	R (Ω)	P (W)	R/R _{emb}	T (K)	$\mathbf{T}^{\mathbf{A}}(\mathbf{K}^{\mathbf{A}})$	log T	Vs (mV)	log Vs
12	1.748	6.86499	20.976	7.5689	1571.4	6.1E+12	3.19629	9.08	0.95809
11.56	1.715	6.74052	19.8254	7.43167	1546.87	5.7E+12	3.18945	8.51	0.92993
10.99	1.671	6.5769	18.3643	7.25127	1514.54	5.3E+12	3.18028	7.84	0.89432
10.46	1.628	6.42506	17.0289	7.08386	1484.44	4.9E+12	3.17156	7.19	0.85673
10.05	1.596	6.29699	16.0398	6.94266	1458.99	4.5E+12	3.16405	6.68	0.82478
9.57	1.557	6.14644	14.9005	6.77667	1428.98	4.2E+12	3.15503	6.16	0.78958
9.09	1.516	5.99604	13.7804	6.61085	1398.91	3.8E+12	3.14579	5.61	0.74896
8.57	1.472	5.82201	12.615	6.41898	1364.01	3.5E+12	3.13482	5.04	0.70243
8.05	1.427	5.64121	11.4874	6.21963	1327.63	3.1E+12	3.12308	4.47	0.65031
7.48	1.376	5.43605	10.2925	5.99344	1286.18	2.7E+12	3.1093	3.91	0.59218
6.98	1.33	5.24812	9.2834	5.78624	1248.08	2.4E+12	3.09624	3.42	0.53403
6.51	1.284	5.07009	8.35884	5.58996	1211.85	2.2E+12	3.08345	2.98	0.47422
6.04	1.238	4.87884	7.47752	5.37909	1172.79	1.9E+12	3.06922	2.58	0.41162
5.51	1.184	4.65372	6.52384	5.13089	1126.63	1.6E+12	3.05178	2.14	0.33041
5.06	1.136	4.45423	5.74816	4.91094	1085.56	1.4E+12	3.03565	1.75	0.24304
4.56	1.082	4.21442	4.93392	4.64655	1035.98	1.2E+12	3.01535	1.39	0.14301
4.07	1.024	3.97461	4.16768	4.38215	986.176	9.5E+11	2.99395	1.06	0.02531
3.51	0.958	3.66388	3.36258	4.03956	921.306	7.2E+11	2.9644	0.69	-0.16115
3	0.892	3.36323	2.676	3.70808	858.177	5.4E+11	2.93358	0.45	-0.34679
2.52	0.829	3.03981	2.08908	3.3515	789.871	3.9E+11	2.89756	0.21	-0.67778
1.94	0.743	2.61104	1.44142	2.87876	698.681	2.4E+11	2.84428	-0.01	
1.47	0.671	2.19076	0.98637	2.41539	608.596	1.4E+11	2.78433	-0.13	
0.98	0.59	1.66102	0.5782	1.83133	494.057	6E+10	2.69378	-0.24	

Figura 30: Dados do arrefecimento sem placa.

				Aqueci	mento				
V (V)	I (A)	R (Ω)	P (W)	R/R _{amb}	T (K)	$T^4(K^4)$	log T	Vs (mV)	log Vs
7.5	1.378	5.442671	10.335	6.000739	1287,524	2.75E+12	3.109755	3.78	0.577492
7.74	1.395	5.548387	10.7973	6.117296	1308.897	2.94E+12	3.116906	4.04	0.606381
8.02	1.419	5.651868	11.38038	6.231386	1329.776	3.13E+12	3.123778	4.35	0.638489
8.27	1.441	5.73907	11.91707	6.32753	1347.337	3.3E+12	3.129476	4.64	0.666518
8.67	1.476	5.873984	12.79692	6.476278	1374.448	3.57E+12	3.138128	5.01	0.699838
9.04	1,509	5.990722	13.64136	6.604986	1397.849	3.82E+12	3.14546	5.49	0.739572
9.23	1.526	6.048493	14.08498	6.66868	1409.41	3.95E+12	3.149037	5.55	0.744293
9.45	1.544	6.120466	14.5908	6.748033	1423.794	4.11E+12	3.153447	5.72	0.757396
9.77	1.572	6.215013	15.35844	6.852274	1442.659	4.33E+12	3.159164	6.04	0.781037
9.99	1.59	6.283019	15.8841	6.927253	1456.206	4.5E+12	3.163223	6.21	0.793092
10.24	1.611	6.3563	16.49664	7.008049	1470.784	4.68E+12	3.167549	6.43	0.808211
10.51	1.632	6.439951	17.15232	7.100277	1487.399	4.89E+12	3.172428	6.68	0.824776
10.75	1.651	6.511205	17.74825	7.178837	1501.53	5.08E+12	3.176534	6.97	0.843233
11.01	1.671	6.588869	18.39771	7.264464	1516.91	5.29E+12	3.18096	7.12	0.85248
11.23	1.689	6.648905	18.96747	7.330656	1528.782	5.46E+12	3.184346	7.3	0.863323
11.46	1.707	6.713533	19.56222	7.40191	1541.547	5.65E+12	3.187957	7.57	0.879096
11.78	1.732	6.801386	20.40296	7.498771	1558.872	5.91E+12	3.192811	8.07	0.906874
11.98	1.747	6.85747	20.92906	7.560606	1569.917	6.07E+12	3.195877	8.27	0.917506

Figura 31: Dados do aquecimento com placa.

				Arrefeci	imento				
V (V)	I (A)	R (Ω)	P (W)	R/R _{amb}	T (K)	$T^4(K^4)$	log T	Vs (mV)	log Vs
12.02	1.753	6.856817	21.07106	7.559886	1569.788	6.07E+12	3.195841	7.84	0.894316
11.74	1.73	6.786127	20.3102	7.481948	1555.865	5.86E+12	3.191972	7.69	0.885926
11.52	1.712	6.728972	19.72224	7.418933	1544.594	5.69E+12	3.188814	7.51	0.87564
11.2	1.687	6.639004	18.8944	7.31974	1526.825	5.43E+12	3.183789	7.2	0.857332
11.03	1.674	6.589008	18.46422	7.264618	1516.937	5.3E+12	3.180968	7.05	0.848189
10.6	1.64	6.463415	17.384	7.126146	1492.055	4.96E+12	3.173785	6.8	0.832509
10.21	1.61	6.341615	16,4381	6.991858	1467.865	4.64E+12	3.166686	6.3	0.799341
9.4	1.543	6.092029	14.5042	6.71668	1418.113	4.04E+12	3.151711	5.4	0.732394
9.85	1.581	6.230234	15.57285	6.869056	1445.693	4.37E+12	3.160076	5.85	0.767156
9.11	1.519	5.997367	13.83809	6.612312	1399.179	3.83E+12	3.145873	5.13	0.710117
8.81	1.494	5.896921	13.16214	6.501567	1379.05	3.62E+12	3.13958	4.82	0.683047
8.47	1.465	5.78157	12.40855	6.374388	1355.885	3.38E+12	3.132223	4.46	0.649335
8.22	1.444	5.692521	11.86968	6.276208	1337.966	3.2E+12	3.126445	4.25	0.628389
7.96	1.42	5.605634	11.3032	6.180412	1320.453	3.04E+12	3.120723	4	0.60206
7.72	1.398	5.522175	10.79256	6.088395	1303.602	2.89E+12	3.115145	3.77	0.576341
7.5	1.373	5.462491	10.2975	6.022592	1291.535	2.78E+12	3.111106	3.55	0.550228

Figura 32: Dados do arrefecimento com placa.

Figura 33: Conversão Resistência-Temperatura para o Cubo de Leslie. Retirado de [1]

Figura 34: Conversão Resistência-Temperatura para Stefan-Boltzmann. Retirado de [1]