Migrating from Xenomai 2.x to 3.x Migrating from Xenomai 2.x to 3.x								

REVISION HISTORY							
NUMBER	DATE	DESCRIPTION	NAME				

Contents

1 Configuration						
	1.1	User programs and libraries	1			
	1.2	Kernel parameters (Cobalt)	1			
2	Get	ting the system state	2			
	2.1	New FUSE-based registry interface	2			
	2.2	Legacy /proc/xenomai interface	2			
3	Bina	ary object features	4			
	3.1	Loading Xenomai libraries dynamically	4			
	3.2	Thread local storage	4			
4	Proc	cess-level management	4			
	4.1	Main thread shadowing	4			
	4.2	Shadow signal handler	4			
	4.3	Debug signal handler	4			
	4.4	Copperplate auto-initialization	5			
5	RTI	OM interface changes	5			
	5.1	Files renamed	5			
	5.2	Driver API	5			
	5.3	File descriptors	7			
	5.4	Adaptive syscalls	7			
6	Ana	logy interface changes	8			
	6.1	Files renamed	8			
7	POS	SIX interface changes	8			
	7.1	Interrupt management	8			
	7.2	Scheduling	9			
	7.3	Thread management	10			
	7.4	Semaphores	11			
	7.5	Process management	11			
	7.6	Real-time signals	11			
	7.7	Timers	11			
	7.8	Message queues	12			
	7.9	POSIX I/O services	12			

8	Alchemy interface (formerly native API)				
	8.1	General	12		
	8.2	Interrupt management	12		
	8.3	I/O regions	12		
	8.4	Timing services	13		
	8.5	Mutexes	14		
	8.6	Condition variables	14		
	8.7	Task management	14		
	8.8	Message queues	15		
	8.9	Heaps	15		
	8.10	Alarms			
	8.11	Message pipes	15		
9	pSO	S interface changes	16		
	9.1	Memory regions	16		
	9.2	Scheduling	16		
10	VxW	Vorks interface changes	16		
	10.1	Task management	16		
	10.2	Scheduling	16		
11	Usin	g the Transition Kit	16		

1 Configuration

1.1 User programs and libraries

- As with Xenomai 2.x, xeno-config is available for retrieving the compilation and link flags for building Xenomai 3.x applications. This script will work for both the Cobalt and Mercury environments indifferently.
 - Each --skin=<api> option specifier can be abbreviated as --<api>. For instance, --psos is a shorthand for --skin= psos on the command line.
 - Specifying -- [skin=]cobalt or -- [skin=]posix on the command line is strictly equivalent. However, this does not make sense with *Mercury* which does not define these switches.
 - -- [skin=] alchemy replaces the former -- skin=native switch.
 - --core can be used to retrieve the name of the Xenomai core system for which xeno-config was generated. Possible output values are cobalt and mercury.
 - --ccld retrieves a C compiler command suitable for linking a Xenomai 3.x application.
 - --no-auto-init can be passed to disable automatic initialization of the Copperplate library when the application process enters the main() routine. In such a case, the application code using any API based on the Copperplate layer, shall call the copperplate_init() routine manually, as part of its initialization process, before any real-time service is invoked.
 - +xeno-config+ enables the Copperplate auto-init feature by default.
- --enable-x86-sep was renamed to --enable-x86-vsyscall to fix a misnomer. This option should be left enabled (default), unless **linuxthreads** are used instead of **NPTL**.

1.2 Kernel parameters (Cobalt)

• System parameters have been renamed:

```
xeno_hal.supported_cpus → xenomai.supported_cpus
xeno_hal.clockfreq → xenomai.clockfreq
xeno_hal.disable → xenomai.disable
xeno_hal.timerfreq → xenomai.timerfreq
xeno_hal.cpufreq → xenomai.cpufreq
xeno_nucleus.watchdog_timeout → xenomai.watchdog_timeout
xeno_nucleus.xenomai_gid → xenomai.xenomai_gid
xeno_nucleus.sysheap_size → xenomai.sysheap_size
xeno_hal.smi (x86 only) → xeno_machine.smi
xeno_hal.smi_mask (x86 only) → xeno_machine.smi_mask
xeno_rtdm.devname_hashtab_size → rtdm.devname_hashtab_size
xeno_rtdm.protocol_hashtab_size → rtdm.protocol_hashtab_size
```

• The following parameters have been dropped

xeno_rtdm.tick_arg. .Rationale

Periodic timing is directly handled from the API layer in user-space. Cobalt kernel timing is tickless.

2 Getting the system state

Querying the state of the real-time system should be done via the new Xenomai registery interface available with Xenomai 3.x, which is turned on when --enable-registry is passed to the configuration script for building the Xenomai libraries and programs.

The new registry support is common to the Cobalt and Mercury cores, with only marginal differences due to the presence (or lack of) co- kernel in the system.

2.1 New FUSE-based registry interface

The Xenomai system state is now fully exported via a FUSE-based filesystem. The hierarchy of the Xenomai registry is organized as follows:

Each leaf entry under a session hierarchy is normally viewable, for retrieving the information attached to the corresponding object, such as its state, and/or value. There can be multiple sessions hosted under a single registry mount point. Session-less application processes are grouped under the special "anon" hierarchy.

The /system hierarchy provides information about the current state of the Xenomai core, aggregating data from all processes which belong to the parent session. Typically, the status of all threads and heaps created by the session can be retrieved.

The registry daemon is a companion tool managing exactly one registry mount point, which is specified by the --root option on the command line. This daemon is automatically spawned by the registry support code as required. There is normally no action required from users for managing it.

2.2 Legacy /proc/xenomai interface

The legacy /proc/xenomai interface is still available when running over the Cobalt core. The following changes compared to Xenomai 2.x took place though:

· Thread status

All pseudo-files reporting the various thread states moved under the new sched/ hierarchy, i.e.

```
\{\texttt{sched, stat, acct}\} \rightarrow \texttt{sched}/\{\texttt{threads, stat, acct}\}
```

Clocks

With the introduction of dynamic clock registration in the Cobalt core, the clock/ hierarchy was added, to reflect the current state of all timers from the registered Xenomai clocks.

There is no kernel-based time base management anymore with Xenomai 2.99.6. Functionally speaking, only the former *master* time base remains, periodic timing is now controlled locally from the Xenomai libraries in user-space.

Xenomai 2.99.6 defines a built-in clock named *coreclk*, which has the same properties than the former *master* time base available with Xenomai 2.x (i.e. tickless with nanosecond resolution).

The settings of existing clocks can be read from entries under the new clock/ hierarchy. Active timers for each clock can be read from entries under the new timer/ hierarchy.

As a consequence of these changes:

- the information previously available from the timer entry is now obtained by reading clock/coreclk.
- the information previously available from timerstat/master is now obtained by reading +timer/coreclk.
- · Core clock gravity

The gravity value for a Xenomai clock gives the amount of time by which the next timer shot should be anticipated.

This is a static adjustment value, to account for the basic latency of the target system for responding to external events. Such latency may be introduced by hardware effects (e.g. bus or cache latency), or software issues (e.g. code running with interrupts disabled).

The clock gravity management departs from Xenomai 2.x as follows:

- different gravity values are applied, depending on which context a timer activates. This may be a real-time IRQ handler (*irq*), a RTDM driver task (*kernel*), or a Xenomai application thread running in user-space (*user*). Xenomai 2.x does not differentiate, only applying a global gravity value regardless of the activated context.
- in addition to the legacy latency file which now reports the *user* timer gravity (in nanoseconds), i.e. used for timers activating user-space threads, the full gravity triplet applied to timers running on the core clock can be accessed by reading clock/coreclk (also in nanoseconds).
- at reset, the *user* gravity for the core clock now represents the sum of the scheduling **and** hardware timer reprogramming time as a count of nanoseconds. This departs from Xenomai 2.x for which only the former was accounted for as a global gravity value, regardless of the target context for the timer.

The following command reports the current gravity triplet for the target system, along with the setup information for the core timer:

```
# cat xenomai/clock/coreclk
gravity: irq=848 kernel=8272 user=35303
devices: timer=decrementer, clock=timebase
    status: on+watchdog
    setup: 151
    ticks: 220862243033
```

Conversely, writing to this file manually changes the gravity values of the Xenomai core clock:

```
/* change the user gravity (default) */
# echo 3000 > /proc/xenomai/clock/coreclck
   /* change the IRQ gravity */
# echo 1000i > /proc/xenomai/clock/coreclck
   /* change the user and kernel gravities */
# echo "2000u 1000k" > /proc/xenomai/clock/coreclck
```

• interfaces was removed

Only the POSIX and RTDM APIs remain implemented directly in kernel space, and are always present when the Cobalt core enabled in the configuration. All other APIs are implemented in user-space over the Copperplate layer. This makes the former interfaces contents basically useless, since the corresponding information for the POSIX/RTDM interfaces can be obtained via sched/threads unconditionally.

registry/usage changed format

The new print out is %<used slot count>/%<total slot count>.

3 Binary object features

3.1 Loading Xenomai libraries dynamically

The new --enable-dlopen-libs configuration switch must be turned on to allow Xenomai libaries to be dynamically loaded via dlopen(3).

This replaces the former —enable—dlopen—skins switch. Unlike the latter, —enable—dlopen—libs does not implicitly disable support for thread local storage, but rather selects a suitable TLS model (i.e. *global-dynamic*).

3.2 Thread local storage

The former --with-__thread configuration switch was renamed --enable-tls.

As mentioned earlier, TLS is now available to dynamically loaded Xenomai libraries, e.g. —enable—tls —enable—dlopen—libs on a configuration line is valid. This would select the *global-dynamic* TLS model instead of *initial-exec*, to make sure all thread-local variables may be accessed from any code module.

4 Process-level management

4.1 Main thread shadowing

By default, any application linking against libcobalt has its main thread attached to the real-time system automatically, this process is called *auto-shadowing*.

This behavior may be disabled at runtime, by setting the XENO_NOSHADOW variable in the application process environment, before the libcobalt library constructors are executed.

This replaces the former static mechanism available with Xenomai 2.x, based on turning on --enable-dlopen-skins when configuring. Starting with Xenomai 3.x, applications should set the XENO_NOSHADOW variable using putenv(3), before loading libcolbalt using dlopen(3).

When auto-shadowing is enabled, global memory locking is also performed, and remains in effect afterwards (i.e. mlock-all(MCL_CURRENTIMCL_FUTURE)).

4.2 Shadow signal handler

Xenomai's libcobalt installs a handler for the SIGWINCH (aka SIGSHADOW) signal. This signal may be sent by the Cobalt core to any real-time application, for handling internal duties.

Applications are allowed to interpose on the SIGSHADOW handler, provided they first forward all signal notifications to this routine, then eventually handle all events the Xenomai handler won't process.

This handler was renamed from xeno_sigwinch_handler() (Xenomai 2.x) to cobalt_sigshadow_handler() in Xenomai 3.x. The function prototype did not change though, i.e.:

```
int cobalt_sigshadow_handler(int sig, siginfo_t *si, void *ctxt)
```

A non-zero value is returned whenever the event was handled internally by the Xenomai system.

4.3 Debug signal handler

Xenomai's libcobalt installs a handler for the SIGXCPU (aka SIGDEBUG) signal. This signal may be sent by the Cobalt core to any real-time application, for notifying various debug events.

Applications are allowed to interpose on the SIGDEBUG handler, provided they eventually forward all signal notifications they won't process to the Xenomai handler.

This handler was renamed from $xeno_handle_mlock_alert()$ (Xenomai 2.x) to cobalt_sigdebug_handler() in Xenomai 3.x. The function prototype did not change though, i.e.:

```
void cobalt_sigdebug_handler(int sig, siginfo_t *si, void *ctxt)
```

4.4 Copperplate auto-initialization

Copperplate is a library layer which mediates between the real-time core services available on the platform, and the API exposed to the application. It provides typical programming abstractions for emulating real-time APIs. All non-POSIX APIs are based on Copperplate services (e.g. *alchemy*, *psos*, *vxworks*).

When Copperplate is built for running over the Cobalt core, it sits on top of the libcobalt library. Conversely, it is directly stacked on top of the **glibc** when built for running over the Mercury core.

Normally, Copperplate should initialize from a call issued by the main() application routine. To make this process transparent for the user, the xeno-config script emits link flags which temporarily overrides the main() routine with a Copperplate-based replacement, running the proper initialization code as required, before branching back to the user-defined application entry point.

This behavior may be disabled by passing the --no-auto-init option.

5 RTDM interface changes

5.1 Files renamed

• Redundant prefixes were removed from the following files:

```
\label{eq:rtdm/rtdm_driver.h} \begin{split} \text{rtdm/rtdm\_driver.h} &\rightarrow \text{rtdm/driver.h} \\ \text{rtdm/rtcan.h} &\rightarrow \text{rtdm/can.h} \\ \text{rtdm/rtserial.h} &\rightarrow \text{rtdm/serial.h} \\ \text{rtdm/rttesting.h} &\rightarrow \text{rtdm/testing.h} \\ \text{rtdm/rtipc.h} &\rightarrow \text{rtdm/ipc.h} \\ \end{split}
```

5.2 Driver API

• rtdm_task_init() shall be called from secondary mode.

Rationale

Since Xenomai 3, rtdm_task_init() involves creating a regular kernel thread, which will be given real-time capabilities, such as running under the control of the Cobalt kernel. In order to invoke standard kernel services, rtdm_task_init() must be called from a regular Linux kernel context.

• rtdm_task_join() has been introduced to wait for termination of a RTDM task regardless of the caller's execution mode, which may be primary or secondary. In addition, rtdm_task_join() does not need to poll for such event unlike rtdm_task_join_nrt().

Rationale

rtdm_task_join() supersedes rtdm_task_join_nrt() feature-wise with less usage restrictions, therefore the latter has become pointless. It is therefore deprecated and will be phased out in the next release.

• A RTDM task cannot be forcibly removed from the scheduler by another thread for immediate deletion. Instead, the RTDM task is notified about a pending cancellation request, which it should act upon when detected. To this end, RTDM driver tasks should call the new rtdm_task_should_stop() service to detect such notification from their work loop, and exit accordingly.

Rationale

Since Xenomai 3, a RTDM task is based on a regular kernel thread with real-time capabilities when controlled by the Cobalt kernel. The Linux kernel requires kernel threads to exit at their earliest convenience upon notification, which therefore applies to RTDM tasks as well.

• rtdm_task_set_period() does not suspend the target task until the first release point is reached. If a start date is specified, then rtdm_task_wait_period() will apply the initial delay.

Rationale

A periodic RTDM task has to call rtdm_task_wait_period() from within its work loop for sleeping until the next release point is reached. Since waiting for the initial and subsequent release points will most often happen at the same code location in the driver, the semantics of rtdm_task_set_period() can be simplified so that only rtdm_task_wait_period() may block the caller.

RTDM_EXECUTE_ATOMICALLY() is deprecated and will be phased out in the next release. Drivers should prefer the newly
introduced RTDM wait queues, or switch to the Cobalt-specific cobalt_atomic_enter/leave() call pair, depending on the use
case.

Rationale

This construct is not portable to a native implementation of RTDM, and may be replaced by other means. The usage patterns of RTDM EXECUTE ATOMICALLY() used to be:

- somewhat abusing the big nucleus lock (i.e. nklock) grabbed by RTDM_EXECUTE_ATOMICALLY(), for serializing access to a section that should be given its own lock instead, improving concurrency in the same move. Such section does not call services from the Xenomai core, and does NOT specifically require the nucleus lock to be held. In this case, a RTDM lock (rtdm_lock_t) should be used to protect the section instead of RTDM_EXECUTE_ATOMICALLY().
- protecting a section which calls into the Xenomai core, which exhibits one or more of the following characteristics:
 - Some callee within the section may require the nucleus lock to be held on entry (e.g. Cobalt registry lookup). In what has to be a Cobalt-specific case, the new cobalt_atomic_enter/leave() call pair can replace RTDM_EXECUTE_ATOMICALLY(). However, this construct remains by definition non-portable to Mercury.
 - A set-condition-and-wakeup pattern has to be carried out atomically. In this case, RTDM_EXECUTE_ATOMICALLY() can be replaced by the wakeup side of a RTDM wait queue introduced in Xenomai 3 (e.g. rtdm_waitqueue_signal/broadcast()).
 - A test-condition-and-wait pattern has to be carried out atomically. In this case, RTDM_EXECUTE_ATOMICALLY() can be replaced by the wait side of a RTDM wait queue introduced in Xenomai 3 (e.g. rtdm_wait_condition()).

Refer to kernel/drivers/ipc/iddp.c for an illustration of the RTDM wait queue usage.

• rtdm_irq_request/free() and rtdm_irq_enable/disable() call pairs must be called from a Linux task context, which is a restriction that did not exist previously with Xenomai 2.x.

Rationale

Recent evolutions of the Linux kernel with respect to IRQ management involve complex processing for basic operations (e.g. enabling/disabling the interrupt line) with some interrupt types like MSI. Such processing cannot be made dual-kernel safe at a reasonable cost, without encurring measurable latency or significant code rewrites.

Since allocating, releasing, enabling or disabling real-time interrupts is most commonly done from driver initialization/cleanup context already, the Cobalt core has simply inherited those requirements from the Linux kernel.

• The leading *user_info* argument to rtdm_munmap() has been removed.

Rationale

With the introduction of RTDM file descriptors (see below) replacing all *user_info* context pointers, this argument has become irrelevant, since this operation is not related to any file descriptor, but rather to the current address space.

The new prototype for this routine is therefore

int rtdm_munmap(void *ptr, size_t len);

5.3 File descriptors

Xenomai 3 introduces a file descriptor abstraction for RTDM drivers. For this reason, all RTDM driver handlers and services which used to receive a user_info opaque argument describing the calling context, now receive a rtdm_fd pointer standing for the target file descriptor for the operation.

As a consequence of this:

- The rtdm_context_get/put() call pair has been replaced by rtdm_fd_get/put().
- Likewise, the rtdm_context_lock/unlock() call pair has been replaced by rtdm_fd_lock/unlock().

Caution

Because RTDM file descriptors may be released and destroyed asynchronously, rtdm_fd_get() and rtdm_fd_lock() may return -EIDRM if a file descriptor fetched from some driver-private registry becomes stale prior to calling these services. Typically, this may happen if the descriptor is released from the \rightarrow close() handler implemented by the driver. Therefore, make sure to always carefully check the return value of these services.

• rtdm_fd_to_private() is available to fetch the context-private memory allocated by the driver for a particular RTDM file descriptor. Conversely, rtdm_private_to_fd() returns the file descriptor owning a particular context-private memory area.

5.4 Adaptive syscalls

ioctl(), read(), write(), recvmsg() and sendmsg() have become context-adaptive RTDM calls, which means that Xenomai threads running over the Cobalt core will be automatically switched to primary mode prior to running the driver handler for the corresponding request.

Rationale

Real-time handlers from RTDM drivers serve time-critical requests by definition, which makes them preferred targets of adaptive calls over non real-time handlers.

Note

This behavior departs from Xenomai 2.x, which would run the call from the originating context instead (e.g. <code>ioctl_nrt()</code> would be fired for a caller running in secondary mode, and conversely <code>ioctl_rt()</code> would be called for a request issued from primary mode).

Tip

RTDM drivers implementing differentiated ioctl() support for both domains should serve all real-time only requests from $ioctl_rt()$, returning -ENOSYS for any unrecognized request, which will cause the adaptive switch to take place automatically to the $ioctl_nrt()$ handler. The $ioctl_nrt()$ should then implement all requests which may be valid from the regular Linux domain exclusively.

6 Analogy interface changes

6.1 Files renamed

• DAQ drivers in kernel space now pull all Analogy core header files from <rtdm/analogy/*.h>. In addition:

analogy/analogy_driver.h \rightarrow rtdm/analogy/driver.h analogy/driver.h \rightarrow rtdm/analogy/driver.h analogy/analogy.h \rightarrow rtdm/analogy.h

- DAQ drivers in kernel space should include <rtdm/analogy/device.h> instead of <rtdm/analogy/driver.h>.
- Applications need to include only a single file for pulling all routine declarations and constant definitions required for invoking the Analogy services from user-space, namely <rtdm/analogy.h>, i.e.

analogy/types.h analogy/command.h analogy/device.h analogy/subdevice.h analogy/instruction.h analogy/ioctl.h \rightarrow all files merged into rtdm/analogy.h

As a consequence of these changes, the former include/analogy/ file tree has been entirely removed.

7 POSIX interface changes

As mentioned earlier, the former **POSIX** skin is known as the **Cobalt** API in Xenomai 3.x, available as libcobalt. {so,a}. The Cobalt API also includes the code of the former libxenomai, which is no longer a standalone library.

libcobalt exposes the set of POSIX and ISO/C standard features specifically implemented by Xenomai to honor real-time requirements using the Cobalt core.

7.1 Interrupt management

• The former pthread_intr API once provided by Xenomai 2.x is gone.

Rationale

Handling real-time interrupt events from user-space can be done safely only if some top-half code exists for acknowledging the issuing device request from kernel space, particularly when the interrupt line is shared. This should be done via a RTDM driver, exposing a read (2) or ioctl(2) interface, for waiting for interrupt events from applications running in user-space.

Failing this, the low-level interrupt service code in user-space would be sensitive to external thread management actions, such as being stopped because of GDB/ptrace(2) interaction. Unfortunately, preventing the device acknowledge code from running upon interrupt request may cause unfixable breakage to happen (e.g. IRQ storm typically).

Since the application should provide proper top-half code in a dedicated RTDM driver for synchronizing on IRQ receipt, the RTDM API available in user-space is sufficient.

Removing the pthread_intr API should be considered as a strong hint for keeping the top-half interrupt handling code in kernel space.

Tip

For receiving interrupt notifications within your application, you should create a small RTDM driver handling the corresponding IRQ (see rtdm_irq_request()). The IRQ handler should wake a thread up in your application by posting some event (see rtdm_sem_up(), rtdm_sem_timeddown()). The application should sleep on this event by calling into the RTDM driver, either via a read(2) or ioctl(2) request, handled by a dedicated operation handler (see rtdm_dev_register()).

7.2 Scheduling

- The SCHED_FIFO, SCHED_RR, SCHED_SPORADIC and SCHED_TP classes now support up to 256 priority levels, instead of 99 as previously with Xenomai 2.x. However, sched_get_priority_max() still returns 99. Only the Cobalt extended call forms (e.g. pthread_attr_setschedparam_ex(), pthread_create_ex()) recognize these additional levels.
- sched_get_priority_min_ex() and sched_get_priority_max_ex() should be used for querying the static priority range of Cobalt policies.
- pthread_setschedparam() may cause a secondary mode switch for the caller, but will not cause any mode switch for the target thread unlike with Xenomai 2.x.

This is a requirement for maintaining both the **glibc** and the Xenomai scheduler in sync, with respect to thread priorities, since the former maintains a process-local priority cache for the threads it knows about. Therefore, an explicit call to the the regular pthread_setschedparam() shall be issued upon each priority change Xenomai-wise, for maintaining consistency.

In the Xenomai 2.x implementation, the thread being set a new priority would receive a SIGSHADOW signal, eventually handled as a request to call **glibc**'s pthread_setschedparam() immediately.

Rationale

The target Xenomai thread may hold a mutex or any resource which may only be held in primary mode, in which case switching to secondary mode for applying the priority change at any random location over a signal handler may create a pathological issue. In addition, glibc's pthread_setschedparam() is not async-safe, which makes the former method fragile.

Conversely, a thread which calls pthread_setschedparam() does know unambiguously whether the current calling context is safe for the incurred migration.

• A new SCHED_WEAK class is available to POSIX threads, which may be optionally turned on using the CONFIG_XENO_O PT_SCHED_WEAK kernel configuration switch.

By this feature, Xenomai now accepts Linux real-time scheduling policies (SCHED_FIFO, SCHED_RR) to be weakly scheduled by the Cobalt core, within a low priority scheduling class (i.e. below the Xenomai real-time classes, but still above the idle class).

Xenomai 2.x already had a limited form of such policy, based on scheduling SCHED_OTHER threads at the special SCHED_FIFO,0 priority level in the Xenomai core. SCHED_WEAK is a generalization of such policy, which provides for 99 priority levels, to cope with the full extent of the regular Linux SCHED_FIFO/RR priority range.

For instance, a (non real-time) Xenomai thread within the SCHED_WEAK class at priority level 20 in the Cobalt core, may be scheduled with policy SCHED_FIFO/RR at priority 20, by the Linux kernel. The code fragment below would set the scheduling parameters accordingly, assuming the Cobalt version of pthread_setschedparam() is invoked:

```
struct sched_param param = {
          .sched_priority = -20,
};

pthread_setschedparam(tid, SCHED_FIFO, &param);
```

Switching a thread to the SCHED_WEAK class can be done by negating the priority level in the scheduling parameters sent to the Cobalt core. For instance, SCHED_FIFO, prio=-7 would be scheduled as SCHED_WEAK, prio=7 by the Cobalt core.

SCHED_OTHER for a Xenomai-enabled thread is scheduled as SCHED_WEAK,0 by the Cobalt core. When the SCHED_WEAK support is disabled in the kernel configuration, only SCHED_OTHER is available for weak scheduling of threads by the Cobalt core.

• A new SCHED_QUOTA class is available to POSIX threads, which may be optionally turned on using the CONFIG_XENO_OPT_SCHED_QUOTA kernel configuration switch.

This policy enforces a limitation on the CPU consumption of threads over a globally defined period, known as the quota interval. This is done by pooling threads with common requirements in groups, and giving each group a share of the global period (see CONFIG_XENO_OPT_SCHED_QUOTA_PERIOD).

When threads have entirely consumed the quota allotted to the group they belong to, the latter is suspended as a whole, until the next quota interval starts. At this point, a new runtime budget is given to each group, in accordance with its share.

• When called from primary mode, sched_yield() now delays the caller for a short while **only in case** no context switch happened as a result of the manual round-robin. The delay ends next time the regular Linux kernel switches tasks, or a kernel (virtual) tick has elapsed (TICK_NSEC), whichever comes first.

Typically, a Xenomai thread undergoing the SCHED_FIFO or SCHED_RR policy with no contender at the same priority level would still be delayed for a while.

Rationale

In most case, it is unwanted that sched_yield() does not cause any context switch, since this service is commonly used for implementing a poor man's cooperative scheduling. A typical use case involves a Xenomai thread running in primary mode which needs to yield the CPU to another thread running in secondary mode. By waiting for a context switch to happen in the regular kernel, we guarantee that the manual round-robin takes place between both threads, despite the execution mode mismatch. By limiting the incurred delay, we prevent a regular high priority SCHED_FIFO thread stuck in a tight loop, from locking out the delayed Xenomai thread indefinitely.

7.3 Thread management

- The default POSIX thread stack size was raised to PTHREAD_STACK_MIN * 4. The minimum stack size enforced by the libcobalt library is PTHREAD_STACK_MIN + getpagesize().
- pthread_set_name_np() has been renamed to pthread_setname_np() with the same arguments, to conform with the GNU extension equivalent.
- pthread_set_mode_np() has been renamed to pthread_setmode_np() for naming consistency with pthread_setname_np(). In
 addition, the call introduces the PTHREAD_DISABLE_LOCKBREAK mode flag, which disallows breaking the scheduler
 lock.

When unset (default case), a thread which holds the scheduler lock drops it temporarily while sleeping. When set, any attempt to block while holding the scheduler lock will cause a break condition to be immediately raised, with the caller receiving EINTR.

Warning

A Xenomai thread running with PTHREAD_DISABLE_LOCKBREAK and PTHREAD_LOCK_SCHED both set may enter a runaway loop when attempting to sleep on a resource or synchronization object (e.g. mutex or condition variable).

7.4 Semaphores

• With Cobalt, sem_wait(), sem_trywait(), sem_timedwait(), and sem_post() have gained fast acquisition/release operations not requiring any system call, unless a contention exists on the resource. As a consequence, those services may not systematically switch callers executing in relaxed mode to real-time mode, unlike with Xenomai 2.x.

7.5 Process management

• In a fork() → exec() sequence, all Cobalt API objects created by the child process before it calls exec() are automatically flushed by the Xenomai core.

7.6 Real-time signals

• Support for Xenomai real-time signals is available.

Cobalt replacements for sigwait(), sigwaitinfo(), sigtimedwait(), sigqueue() and kill() are available. pthread kill() was changed to send thread-directed Xenomai signals (instead of regular Linux signals).

Cobalt-based signals are stricly real-time. Both the sender and receiver sides work exclusively from the primary domain. However, only synchronous handling is available, with a thread waiting explicitly for a set of signals, using one of the sigwait calls. There is no support for asynchronous delivery of signals to handlers. For this reason, there is no provision in the Cobalt API for masking signals, as Cobalt signals are implicitly blocked for a thread until the latter invokes one of the sigwait calls.

Signals from SIGRTMIN..SIGRTMAX are queued.

COBALT_DELAYMAX is defined as the maximum number of overruns which can be reported by the Cobalt core in the siginfo.si overrun field, for any signal.

• kill() supports group signaling.

Cobalt's implementation of kill() behaves identically to the regular system call for non thread-directed signals (i.e. pid \Leftarrow 0). In this case, the caller switches to secondary mode.

Otherwise, Cobalt first attempts to deliver a thread-directed signal to the thread whose kernel TID matches the given process id. If this thread is not waiting for signals at the time of the call, kill() then attempts to deliver the signal to a thread from the same process, which currently waits for a signal.

• pthread_kill() is a conforming call.

When Cobalt's replacement for pthread_kill() is invoked, a Xenomai-enabled caller is automatically switched to primary mode on its way to sending the signal, under the control of the real-time co-kernel. Otherwise, the caller keeps running under the control of the regular Linux kernel.

This behavior also applies to the new Cobalt-based replacement for the kill() system call.

7.7 Timers

- POSIX timers are no longer dropped when the creator thread exits. However, they are dropped when the container process exits.
- If the thread signaled by a POSIX timer exits, the timer is automatically stopped at the first subsequent timeout which fails sending the notification. The timer lingers until it is deleted by a call to timer_delete() or when the process exits, whichever comes first.
- timer_settime() may be called from a regular thread (i.e. which is not Xenomai-enabled).
- EPERM is not returned anymore by POSIX timer calls. EINVAL is substituted in the corresponding situation.

- Cobalt replacements for timerfd_create(), timerfd_settime() and timerfd_gettime() have been introduced. The implementation delivers I/O notifications to RTDM file descriptors upon Cobalt-originated real-time signals.
- pthread_make_periodic_np() and pthread_wait_np() have been removed from the API.

Rationale

With the introduction of services to support real-time signals, those two non-portable calls have become redundant. Instead, Cobalt-based applications should set up a periodic timer using the timer_create()+timer_settime() call pair, then wait for release points via sigwaitinfo(). Overruns can be detected by looking at the siginfo.si_overrun field.

Alternatively, applications may obtain a file descriptor referring to a Cobalt timer via the timerfd() call, and read() from it to wait for timeouts.

In addition, applications may include a timer in a synchronous multiplexing operation involving other event sources, by passing a file descriptor returned by the timerfd() service to a select() call.

7.8 Message queues

- mq_open() default attributes align on the regular kernel values, i.e. 10 msg x 8192 bytes (instead of 128 x 128).
- mq_send() now enforces a maximum priority value for messages (32768).

7.9 POSIX I/O services

- Cobalt's select(2) service is not automatically restarted anymore upon Linux signal receipt, conforming to the POSIX standard (see man signal(7)). In such an event, -1 is returned and errno is set to EINTR.
- The former include/rtdk.h header is gone in Xenomai 3.x. Applications should include include/stdio.h instead. Similarly, the real-time suitable STDIO routines are now part of libcobalt.

8 Alchemy interface (formerly *native API*)

8.1 General

• The API calls supporting a wait operation may return the -EIDRM error code only when the target object was deleted while pending. Otherwise, passing a deleted object identifier to an API call will result in -EINVAL being returned.

8.2 Interrupt management

• The RT_INTR API is gone. Please see the rationale for not handling low-level interrupt service code from user-space.

diT

It is still possible to have the application wait for interrupt receipts, as explained here.

8.3 I/O regions

• The RT_IOREGION API is gone. I/O memory resources should be controlled from a RTDM driver instead.

8.4 Timing services

• rt_timer_set_mode() is obsolete. The clock resolution has become a per-process setting, which should be set using the --alchemy-clock-resolution switch on the command line.

Tip

Tick-based timing can be obtained by setting the resolution of the Alchemy clock for the application, here to one millisecond (the argument expresses a count nanoseconds per tick). As a result of this, all timeout and date values passed to Alchemy API calls will be interpreted as counts of milliseconds.

```
# xenomai-application --alchemy-clock-resolution=1000000
```

By default, the Alchemy API sets the clock resolution for the new process to one nanosecond (i.e. tickless, highest resolution).

- TM_INFINITE also means infinite wait with all rt_*_until() call forms.
- rt_task_set_periodic() does not suspend the target task anymore. If a start date is specified, then rt_task_wait _period() will apply the initial delay.

Rationale

A periodic Alchemy task has to call rt_task_wait_period() from within its work loop for sleeping until the next release point is reached. Since waiting for the initial and subsequent release points will most often happen at the same code location in the application, the semantics of rt_task_set_periodic() can be simplified so that only rt_task_wait_period() may block the caller.

Tip

In the unusual case where you do need to have the current task wait for the initial release point outside of its periodic work loop, you can issue a call to rt_task_wait_period() separately, exclusively for this purpose, i.e.

However, this work around won't work if the caller is not the target task of rt_task_set_periodic(), which is fortunately unusual for most applications.

rt_task_set_periodic() still switches to primary as previously over Cobalt. However, it does not return -EWOULDBLOCK anymore.

• TM_ONESHOT was dropped, because the operation mode of the hardware timer has no meaning for the application. The core Xenomai system always operates the available timer chip in oneshot mode anyway.

Tip

A tickless clock has a period of one nanosecond.

• Unlike with Xenomai 2.x, the target task to rt_task_set_periodic() must be local to the current process.

8.5 Mutexes

- For consistency with the standard glibc implementation, deleting a RT_MUTEX object in locked state is no longer a valid operation.
- rt mutex inquire() does not return the count of waiters anymore.

Rationale

Obtaining the current count of waiters only makes sense for debugging purpose. Keeping it in the API would introduce a significant overhead to maintain internal consistency.

The owner field of a RT_MUTEX_INFO structure now reports the owner's task handle, instead of its name. When the mutex is unlocked, a NULL handle is returned, which has the same meaning as a zero value in the former locked field.

8.6 Condition variables

- For consistency with the standard glibc implementation, deleting a RT_COND object currently pended by other tasks is no longer a valid operation.
- Like rt_mutex_inquire(), rt_cond_inquire() does not return the count of waiting tasks anymore.

8.7 Task management

- rt_task_notify() and rt_task_catch() have been removed. They are meaningless in a userland-only context.
- As a consequence of the previous change, the T_NOSIG flag to rt_task_set_mode () was dropped in the same move.
- T SUSP cannot be passed to rt task create() or rt task spawn() anymore.
- T_FPU is obsolete. FPU management is automatically enabled for Alchemy tasks if the hardware supports it, disabled otherwise.

Rationale

This behavior can be achieved by not calling rt_task_start() immediately after rt_task_create(), or by calling rt_task_suspend() before rt_task_start().

- rt_task_shadow() now accepts T_LOCK, T_WARNSW.
- rt task create() now accepts T LOCK, T WARNSW and T JOINABLE.
- The RT_TASK_INFO structure returned by rt_task_inquire() has changed:
 - fields relpoint and cprio have been removed, since the corresponding information is too short-lived to be valuable to the caller. The task's base priority is still available from the prio field.
 - new field pid represents the Linux kernel task identifier for the Alchemy task, as obtained from syscall(_NR_gettid).
 - other fields which represent runtime statistics are now avail from a core-specific stat field sub-structure.
- New rt_task_send_until(), rt_task_receive_until() calls are available, as variants of rt_task_send() and rt_task_receive() respectively, with absolute timeout specification.
- rt_task_receive() does not inherit the priority of the sender, although the requests will be queued by sender priority.

Instead, the application decides about the server priority instead of the real-time core applying implicit dynamic boosts.

- rt_task_slice() now returns -EINVAL if the caller currently holds the scheduler lock, or attempts to change the round-robin settings of a thread which does not belong to the current process.
- T_CPU disappears from the rt_task_create() mode flags. The new rt_task_set_affinity() service is available for setting the CPU affinity of a task.
- rt_task_sleep_until() does not return -ETIMEDOUT anymore. Waiting for a date in the past blocks the caller indefinitely.

8.8 Message queues

- As Alchemy-based applications run in user-space, the following rt_queue_create() mode bits from the former native API are obsolete:
 - Q_SHARED
 - Q_DMA

8.9 Heaps

- As Alchemy-based applications run in user-space, the following rt_heap_create() mode bits from the former native API are obsolete:
 - H MAPPABLE
 - H SHARED
 - H_NONCACHED
 - H DMA

Tip

If you need to allocate a chunk of DMA-suitable memory, then you should create a RTDM driver for this purpose.

- rt_heap_alloc_until() is a new call for waiting for a memory chunk, specifying an absolute timeout date.
- with the removal of H_DMA, returning a physical address (phys_addr) in rt_heap_inquire() does not apply anymore.

8.10 Alarms

• rt_alarm_wait() has been removed.

Rationale

An alarm handler can be passed to rt_alarm_create() instead.

- The RT_ALARM_INFO structure returned by rt_alarm_inquire() has changed:
 - field expiration has been removed, since the corresponding information is too short-lived to be valuable to the caller.
 - field active has been added, to reflect the current state of the alarm object. If non-zero, the alarm is enabled (i.e. started).

8.11 Message pipes

- Writing to a message pipe is allowed from all contexts, including from alarm handlers.
- rt_pipe_read_until() is a new call for waiting for input from a pipe, specifying an absolute timeout date.

9 pSOS interface changes

9.1 Memory regions

rn_create() may return ERR_NOSEG if the region control block cannot be allocated internally.

9.2 Scheduling

 The emulator converts priority levels between the core POSIX and pSOS scales using normalization (pSOS → POSIX) and denormalization (POSIX → pSOS) handlers.

Applications may override the default priority normalization/denormalization handlers, by implementing the following routines.

```
int psos_task_normalize_priority(unsigned long psos_prio);
unsigned long psos_task_denormalize_priority(int core_prio);
```

Over Cobalt, the POSIX scale is extended to 257 levels, which allows to map pSOS over the POSIX scale 1:1, leaving normalization/denormalization handlers as no-ops by default.

10 VxWorks interface changes

10.1 Task management

• WIND_* status bits are synced to the user-visible TCB only as a result of a call to taskTcb() or taskGetInfo().

As a consequence of this change, any reference to a user-visible TCB should be refreshed by calling taskTcb() anew, each time reading the status field is required.

10.2 Scheduling

• The emulator converts priority levels between the core POSIX and VxWorks scales using normalization (VxWorks \rightarrow POSIX) and denormalization (POSIX \rightarrow VxWorks) handlers.

Applications may override the default priority normalization/denormalization handlers, by implementing the following routines.

```
int wind_task_normalize_priority(int wind_prio);
int wind_task_denormalize_priority(int core_prio);
```

11 Using the Transition Kit

Xenomai 2 applications in user-space may use a library and a set of compatibility headers, aimed at easing the process of transitioning to Xenomai 3.

Enabling this compatibility layer is done via passing specific compilation and linker flags when building the application. xeno-config can retrieve those flags using the --cflags and --ldflags switches as usual, with the addition of the --compat flag. Alternatively, passing the --[skin=]native switch as to xeno-config implicitly turns on the compatibility mode for the Alchemy API.

Note

The transition kit does not currently cover *all* the changes introduced in Xenomai 3 yet, but a significant subset of them nevertheless.

A typical Makefile fragment implicitly turning on backward compatibility

```
PREFIX := /usr/xenomai
CONFIG_CMD := $(PREFIX)/bin/xeno-config
CFLAGS= $(shell $(CONFIG_CMD) --skin=native --cflags) -g
LDFLAGS= $(shell $(CONFIG_CMD) --skin=native --ldflags)
CC = $(shell $(CONFIG_CMD) --cc)
```

Another example for using with the POSIX API

```
PREFIX := /usr/xenomai
CONFIG_CMD := $(PREFIX)/bin/xeno-config
CFLAGS= $(shell $(CONFIG_CMD) --skin=posix --cflags --compat) -g
LDFLAGS= $(shell $(CONFIG_CMD) --skin=posix --ldflags --compat)
CC = $(shell $(CONFIG_CMD) --cc)
```