Week 2 스터디 발표

클러스터링(Clustering) 기법들 소개

Kmeans Clustering

알고리즘

- 1) 각 feature를 표준화
- 2) Train data에서 임의로 K개의 표본을 뽑아 K개의 클러스터의 centroid를 설정한다
- 3) 각 데이터의 유클리디안 거리를 기준으로 가장 가까운 centroid에 해당하는 클러스터에 편입한다
- 4) 각 클러스터의 평균을 새로 구해 이를 새로운 centroid로 설정하고 3)을 진행한다
- 5) 각 클러스터의 member가 변하지 않을 때까지 혹은 미리 정해진 최대 반복 횟수에 도달할 때까지 4)를 반복한다

단점 1) Kmeans 알고리즘의 최대 단점은 클러스터의 개수 K를 임의로 설정한다는 것

→ Elbow Method를 사용하여 최적의 K를 결정한다.

[Scree plot]

- inerita: Kmeans로 데이터가 얼마나 잘 클러스터링 됐는지를 나타내는 척도로, 각 클래스에서 데이터와 centroid의 거리의 제곱합이다.
- inertia의 감소속도가 확연히 줄어드는 K를 찾아 클러스터의 개수로 설정한다.

Kmeans++ Clustering

단점 2) Kmeans에서는 초기 centroid를 랜덤하게 부여하는데, 이 초기 centroid에 따라 클러스터링 결과가 달라질 수 있다는 문제점이 있다.

→ Kmeans++ 알고리즘 사용하여 초기 centroid를 지정하는 방법을 수정한다.

DBSCAN

밀도 기반 클러스터링

공간상에 높은 밀도를 가지고 모여 있는 관측치들을 하나의 그룹으로 간주하고, 낮은 밀도를 가지고 있는 관측치는 이상치 혹은 잡음(noise)로 분류한다.

관측치 유형 분류

Core point (핵심자료)

 ε – neighborhood 에 M개 이상의 다른 관측치를 포함하는 관측치

Border point (주변자료)

핵심자료는 아니지만 ε – neighborhood 에 핵심자료를 포함 하는 관측치

Noise point (잡음자료)

핵심자료도 주변자료도 아닌 관측치

Parameter

- ε (eps): 너무 작으면 많은 관측치가 noise로 분류되고, 너무 크면 클러스터의 개수가 적어진다.
- M(min_samples): 클러스터의 최소 크기를 결정하는 모수