Warsaw University of Technology

Introduction to Digital Systems

Michał Kalisiak, Wiktor Porakowski Warsaw University of Technology Institute of Electronic Systems

Combinational Logic

Binary adder bin2bcd decoder 7-segment LED display driver

Truth table
Sum of Products & Product of Sums
Boolean algebra
Karnaugh map

The idea of the Binary Adder

Half adder sum of 2 bits

Full adder sum of 3 bits

8-bit adder

$$c_{out}$$
 c
 a
 $+$
 b
 c_{out} y

What will we do?

- Simulation
 Falstad circuit simulator
 https://www.falstad.com/circuit/circuitjs.html
- 3-bit adder
- with 7-segment LED display

Full adder sum of 3 bits

Half adder sum of 2 bits

Truth Table + Sum of Products: AND

AND gate

$$Y(A,B) = AB$$

	Α	В	Y
0	0	0	0
1	0	1	0
2	1	0	0
3	1	1	1 -

Truth Table + Sum of Products: OR

OR gate

$$Y = A + B$$

using the algorithm

$$Y = \overline{AB} + A\overline{B} + AB$$

- Minimization
- Because (idempotence)

$$1 + 1 = 1 , 0 + 0 = 0$$

$$Y = \overline{AB} + AB + A\overline{B} + AB$$

$$Y = A + B$$

	Α	В	Υ
0	0	0	0
1	0	1	1 -
2	1	0	1 -
3	1	1	1 -

$$\overline{AB} + AB = B(\overline{A} + A) = B \cdot 1 = B$$

$$A\overline{B} + AB = A(\overline{B} + B) = A$$

Truth Table + Sum of Products: OR

OR gate

$$Y = A + B$$

using the algorithm

$$Y = \bar{A}B + \bar{A}B + \bar{A}B$$

	A	В	Y
0	0	0	0
1	0	1	1 -
2	1	0	1 -
3	1	1	1 -

Boolean algebra laws

$$\overline{0} = 1 \qquad \qquad \overline{\overline{X}} = X \qquad \qquad \overline{1} = 0$$

$$X \cdot 1 = X \qquad \qquad \text{identity} \qquad \qquad X + 0 = X$$

$$X + 1 = 1 \qquad \qquad \text{annihilation} \qquad \qquad X \cdot 0 = 0$$

$$X \cdot \overline{X} = 0 \qquad \qquad \text{complementation} \qquad \qquad X + \overline{X} = 1$$

$$X \cdot Y = Y \cdot X \qquad \qquad \text{commutativity} \qquad \qquad X + Y = Y + X$$

$$X \cdot (Y \cdot Z) = (X \cdot Y) \cdot Z \qquad \text{associativity} \qquad X + (Y + Z) = (X + Y) + Z$$

$$X \cdot X = X \qquad \qquad \text{idempotence} \qquad \qquad X + X = X$$

$$\overline{X + Y} = \overline{X} \cdot \overline{Y} \qquad \qquad \text{De Morgan's laws} \qquad \qquad \overline{X \cdot Y} = \overline{X} + \overline{Y}$$

$$X \cdot (X + Y) = X \qquad \qquad \text{absorption} \qquad \qquad X + X \cdot Y = X$$

Distributivity of \cdot over + $X \cdot (Y + Z) = (X \cdot Y) + (X \cdot Z)$

Distributivity of + over \cdot $X + (Y \cdot Z) = (X + Y) \cdot (X + Z)$

Truth Table + Product of Sums: OR

• OR gate

$$Y = A + B$$

	Α	В	Υ
0	0	0	0 ←
1	0	1	1
2	1	0	1
3	1	1	1

Truth Table + Product of Sums : AND

AND gate

$$Y = AB$$

using the algorithm

$$Y = (A + B) \cdot (A + \overline{B}) \cdot (\overline{A} + B)$$

minimization

	Α	В	Y
0	0	0	0
1	0	1	0 -
2	1	0	0 -
3	1	1	1

$$Y = (AA + A\bar{B} + BA + B\bar{R})(\bar{A} + B)$$

$$= (A + A\bar{R} + AR)(\bar{A} + B) = A(\bar{A} + B)$$

$$= A\bar{A} + AB = AB$$

Logic gates

	A	В	AND	NAND	OR	NOR	XOR	XNOR
			AB	\overline{AB}	A + B	$\overline{A+B}$	$A \oplus B$	$\overline{A \oplus B}$
0	0	0	0	1	0	1	0	1
1	0	1	0	1	1	0	1	0
2	1	0	0	1	1	0	1	0
3	1	1	1	0	1	0	0	1

$$A \oplus B = \bar{A}B + A\bar{B}$$

$$\overline{A \oplus B} = AB + \overline{A}\overline{B}$$

$$\overline{A \oplus B} = \overline{\overline{A}B} + A\overline{\overline{B}} = \overline{\overline{A}B} \cdot \overline{A}\overline{\overline{B}} = (A + \overline{B})(\overline{A} + B) = A\overline{A} + AB + \overline{B}\overline{A} + \overline{B}B$$

Half adder

- We add two bits
- We expect 2-bit outcome
- Using Sum of Product method:

$$y = \overline{a}b + a\overline{b} = a \oplus b$$
$$c_{out} = ab$$

	a	b	C _{out}	У
0	0	0	0	0
1	0	1	0	1
2	1	0	0	1
3	1	1	1	- 0
			\leftarrow	4

Full adder

- We add three bits
- We expect 2-bit outcome
- Using Sum of Product method:

$$y = \overline{c}\overline{a}b + \overline{c}a\overline{b} + c\overline{a}\overline{b} + cab$$

$$= \overline{c}(\overline{a}b + a\overline{b}) + c(\overline{a}\overline{b} + ab)$$

$$= \overline{c}(\underline{a} \oplus b) + c(\overline{a} \oplus \overline{b})$$

$$= \overline{c}d + c\overline{d} = c \oplus d$$

$$= c \oplus (a \oplus b)$$

	С	a	b	C _{out}	У	
0	0	0	0	0	0	
1	0	0	1	0	1←	
2	0	1	0	0	1	
3	0	1	1	1	0	
4	1	0	0	0	1	
5	1	0	1	1	0	
6	1	1	0	1	0	
7	1	1	1	1	1	

Full adder

- We add three bits
- We expect 2-bit outcome
- Using Sum of Product method:

$$y = c \oplus (a \oplus b)$$

$$c_{out} = \bar{c}ab + c\bar{a}b + ca\bar{b} + ca\bar{b}$$

$$= ab(\bar{c} + c) + c(\bar{a}b + a\bar{b})$$

$$= ab + c(a \oplus b)$$

	С	a	b	c _{out}	У
0	0	0	0	0	0
1	0	0	1	0	1
2	0	1	0	0	1
3	0	1	1	1←	— 0
4	1	0	0	0	1
5	1	0	1	1-	- 0
6	1	1	0	1	- 0
7	1	1	1	1-	— 1

	а	b	С	d	t	u ₃	u ₂	u ₁	u_0
0	0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	0	1
2	0	0	1	0	0	0	0	1	0
3	0	0	1	1	0	0	0	1	1
4	0	1	0	0	0	0	1	0	0
5	0	1	0	1	0	0	1	0	1
6	0	1	1	0	0	0	1	1	0
7	0	1	1	1	0	0	1	1	1
8	1	0	0	0	0	1	0	0	0
9	1	0	0	1	0	1	0	0	1
10	1	0	1	0	1	0	0	0	0
11	1	0	1	1	1	0	0	0	1
12	1	1	0	0	1	0	0	1	0
13	1	1	0	1	1	0	0	1	1
14	1	1	1	0	1	0	1	0	0
15	1	1	1	1	1	0	1	0	1

$$t = ab + a\overline{b}c =$$

$$= ab + abc + a\overline{b}c =$$

$$= ab + ac(b + \overline{b}) =$$

$$= ab + ac$$

	a	b	С	d	t	
0	0	0	0	0	0	
1	0	0	0	1	0	
2	0	0	1	0	0	
3	0	0	1	1	0	
4	0	1	0	0	0	
5	0	1	0	1	0	
6	0	1	1	0	0	
7	0	1	1	1	0	
8	1	0	0	0	0	
9	1	0	0	1	0	
10	1	0	1	0	1	6
11	1	0	1	1	1	6
12	1	1	0	0	1	6
13	1	1	0	1	1	6
14	1	1	1	0	1	C
15	1	1	1	1	1	6

 $\left\{ egin{array}{ll} aar{b}car{d} \\ aar{b}cd \\ abar{c}ar{d} \\ abar{c}d \\ abcar{d} \\ abcd \\ abcd \end{array} \right\}$

$$t = ab + ac$$

$$u_3 = a\bar{b}\bar{c}$$

	a	b	С	d	u ₃
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	0
4	0	1	0	0	0
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	0
8	1	0	0	0	1
9	1	0	0	1	1
10	1	0	1	0	0
11	1	0	1	1	0
12	1	1	0	0	0
13	1	1	0	1	0
14	1	1	1	0	0
15	1	1	1	1	0

$$t = ab + ac$$

$$u_3 = a\bar{b}\bar{c}$$

$$u_2 = \bar{a}b + abc =$$

$$= \bar{a}b + \bar{a}bc + abc =$$

$$= \bar{a}b + bc(\bar{a} + a) =$$

$$= \bar{a}b + bc$$

	a	b	С	d	u ₂
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	0
4	0	1	0	0	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	1
8	1	0	0	0	0
9	1	0	0	1	0
10	1	0	1	0	0
11	1	0	1	1	0
12	1	1	0	0	0
13	1	1	0	1	0
14	1	1	1	0	1
15	1	1	1	1	1

ābēd ābēd ābcd ābcd

 $\left. egin{array}{l} abcar{d} \\ abcd \end{array} \right\} \ abc \left(d + ar{d} \right)$

 $\bar{a}b$

$$t = ab + ac$$

$$u_3 = a\bar{b}\bar{c}$$

$$u_2 = \bar{a}b + bc$$

$$u_1 = \bar{a}c + ab\bar{c}$$

	а	b	С	d	$u_{\scriptscriptstyle 1}$	
0	0	0	0	0	0	
1	0	0	0	1	0	
2	0	0	1	0	1	$ \bar{c}$
3	0	0	1	1	1	$ \bar{c}$
4	0	1	0	0	0	
5	0	1	0	1	0	
6	0	1	1	0	1	$ \bar{c}$
7	0	1	1	1	1	\ \bar{c}
8	1	0	0	0	0	
9	1	0	0	1	0	
10	1	0	1	0	0	
11	1	0	1	1	0	
12	1	1	0	0	1	c
13	1	1	0	1	1	$\mid c$
14	1	1	1	0	0	
15	1	1	1	1	0	

$$\begin{array}{c} \bar{a}\bar{b}c\bar{d} \\ \bar{a}\bar{b}c\bar{d} \end{array} \quad \bar{a}\bar{b}c \\ \bar{a}\bar{b}c\bar{d} \\ \bar{a}bc\bar{d} \\ \bar{a}bc\bar{d} \end{array} \quad \bar{a}bc \\ \bar{a}bc \\ \bar{a}bc\bar{d} \end{array} \quad \bar{a}bc$$

$$\left\{ \begin{array}{l} ab\bar{c}\bar{d} \\ ab\bar{c}d \end{array} \right\}$$
 $ab\bar{c}$

$$t = ab + ac$$

$$u_3 = a\bar{b}\bar{c}$$

$$u_2 = \bar{a}b + bc$$

$$u_1 = \bar{a}c + ab\bar{c}$$

$$u_0 = d$$

	a	b	С	d	u_0
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	0
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	0
7	0	1	1	1	1
8	1	0	0	0	0
9	1	0	0	1	1
10	1	0	1	0	0
11	1	0	1	1	1
12	1	1	0	0	0
13	1	1	0	1	1
14	1	1	1	0	0
15	1	1	1	1	1

What have we already learned?

Theory

- Truth tables
- Sum of Products, PoS
- Logic gates
- Boolean algebra laws
- Adder functions
- 4-bit bin2bcd

Practice

- Used for building circuits
- Minimization
- Designed
- Simulated

4-bit bin2bcd reprise

	а	b	С	d	u_1
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	0
6	0	1	1	0	1
7	0	1	1	1	1
8	1	0	0	0	0
9	1	0	0	1	0
10	1	0	1	0	0
11	1	0	1	1	0
12	1	1	0	0	1
13	1	1	0	1	1
14	1	1	1	0	0
15	1	1	1	1	0

 $\left\{ \begin{array}{l}
 \bar{a}\bar{b}c\overline{\boldsymbol{d}} \\
 \bar{a}\bar{b}c\boldsymbol{d}
 \end{array} \right\} \, \bar{a}\bar{b}c$

 $\left\{ \begin{array}{l} \bar{a}bc\overline{\boldsymbol{d}} \\ \bar{a}bc\boldsymbol{d} \end{array} \right\}$

IDS © 2020

4-bit bin2bcd reprise

	a	b	С	d	u_1
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	0
6	0	1	1	0	1
7	0	1	1	1	1
8	1	0	0	0	0
9	1	0	0	1	0
10	1	0	1	0	0
11	1	0	1	1	0
12	1	1	0	0	1
13	1	1	0	1	1
14	1	1	1	0	0
15	1	1	1	1	0

4-bit bin2bcd reprise

	а	b	C	d	u_0
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	0
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	0
7	0	1	1	1	1
8	1	0	0	0	0
9	1	0	0	1	1
10	1	0	1	0	0
11	1	0	1	1	1
12	1	1	0	0	0
13	1	1	0	1	1
14	1	1	1	0	0
15	1	1	1	1	1

 $u_0 = d$

IDS © 2020

AND

	Α	В	Υ
0	0	0	0
1	0	1	0
2	1	0	0
3	1	1	1

Karnaugh map

	A	В	Y
0	0	0	0
1	0	1	1
2	1	0	1
3	1	1	1

OR

AB	0	1
0	0 0	0 1
1	0 2	1 3

$$Y = AB$$

$$A\overline{B} + AB = A(\overline{B} + B) = A$$
 $Y = A + B$

Karnaugh map

cd ab	00	01	11	10
00	100	1	3	1 2
01	1 4	1	7	6
11	1	1	1	1
10	1 8	9	11	1 10

 $b\bar{c}$

Gray code

 $\bar{a}\bar{b}\bar{c}\bar{d}$

$$\bar{a}b\bar{c}\bar{d} + \bar{a}b\bar{c}d = \bar{a}b\bar{c}(\bar{d} + d) = \bar{a}b\bar{c}$$

ab

Bits in Variables in loop term
$$2^k \rightarrow N-k$$

 $\bar{b}\bar{d}$

N - no. of input bits

cd ab	00	01	11	10
00	0 0	0 1	0 3	0 2
01	0 4	0 5	0 7	0 6
11	1 12	1	1 15	1
10	0 8	0 9	1 11	1

$$t = ab + ac$$

	а	b	С	d	t
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	0
4	0	1	0	0	0
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	0
8	1	0	0	0	0
9	1	0	0	1	0
10	1	0	1	0	1
11	1	0	1	1	1
12	1	1	0	0	1
13	1	1	0	1	1
14	1	1	1	0	1
15	1	1	1	1	1

cd ab	00	01	11	10
00	0 0	0 1	0 3	0 2
01	0 4	O 5	0 7	0 6
11	0 12	0 13	0	0 14
10	1 8	1 9	0 11	0 10

$$u_3 = a\bar{b}\bar{c}$$

	а	b	C	d	u ₃
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	0
4	0	1	0	0	0
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	0
8	1	0	0	0	1
9	1	0	0	1	1
10	1	0	1	0	0
11	1	0	1	1	0
12	1	1	0	0	0
13	1	1	0	1	0
14	1	1	1	0	0
15	1	1	1	1	0

cd ab	00	01	11	10
00	0 0	0 1	0 3	0 2
01	1 4	1 5	1 7	1 6
11	0 12	0 13	1	1
10	0 8	0 9	0 11	0 10

$$u_2 = \overline{a}b + bc$$

	а	b	С	d	u ₂
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	0
4	0	1	0	0	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	1
8	1	0	0	0	0
9	1	0	0	1	0
10	1	0	1	0	0
11	1	0	1	1	0
12	1	1	0	0	0
13	1	1	0	1	0
14	1	1	1	0	1
15	1	1	1	1	1

cd ab	00	01	. 11 10	
00	0 0	0 1	1 3	1 2
01	0 4	0 5	1 7	1 6
11	1	1	0 15	0 14
10	0 8	0 9	0 11	0 10

$$u_1 = \bar{a}c + ab\bar{c}$$

	а	b	С	d	u_1
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	0
6	0	1	1	0	1
7	0	1	1	1	1
8	1	0	0	0	0
9	1	0	0	1	0
10	1	0	1	0	0
11	1	0	1	1	0
12	1	1	0	0	1
13	1	1	0	1	1
14	1	1	1	0	0
15	1	1	1	1	0

cd ab	00	01	11	10
00	O 0	1 1	1	0 2
01	0 4	1 5	1 7	0 6
11	0 12	1	1	0 14
10	0 8	1 9	1	0 10

$$\iota_0 = d$$

	а	b	С	d	u_0
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	0
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	0
7	0	1	1	1	1
8	1	0	0	0	0
9	1	0	0	1	1
10	1	0	1	0	0
11	1	0	1	1	1
12	1	1	0	0	0
13	1	1	0	1	1
14	1	1	1	0	0
15	1	1	1	1	1

7 segment LED display (common cathode)

Driver

	A	В	С	D	а	b	С	d	е	f	g
0	0	0	0	0	W	е		h	а	V	е
1	0	0	0	1	t	0		f	i	I	1
2	0	0	1	0	i	t			r	0	р
3	0	0	1	1	е	r					
4	0	1	0	0	W	e	/	h	. ^	V	е
5	0	1	0	1	t	0		Į.	Y	1	I
6	0	1	1	0	i	t			r	0	р
7	0	1	1	1	е	r		y			
8	1	0	0	0	W	е		h	а	V	е
9	1	0	0	1	t	0		f	i	1	1
10	1	0	1	0	-	-	-	-/	-	-/	-
11	1	0	1	1	-	-	-	O'		11	-
12	1	1	0	0	-	-	-1	7	JP,	_	-
13	1	1	0	1	-	-	-	<u>(</u>	\(- .	-	-
14	1	1	1	0	-	-	N_{2}	Υ-	_	-	-
15	1	1	1	1	-	-	M	-	-	-	-

CD AB	00	01	11	10
00	1/0	0 1	1 3	1 2
01	0 4	1 5	1 7	1 6
11	- 12	- 13	- 15	- 14
10	1 8	1	- 11	- 10

$$a = A + C + BD + \bar{B}\bar{D}$$

	A	В	C	D	а
8	0	0	0	0	1
8	0	0	0	1	0
8	0	0	1	0	1
8	0	0	1	1	1
8	0	1	0	0	0
8	0	1	0	1	1
8	0	1	1	0	1
8	0	1	1	1	1
8	1	0	0	0	1
8	1	0	0	1	1

AB	00			01	11		10	
00		1	0	1	1	رن	1/2	
01		1	4	0 5	1	7	0 6	
11		-	12	- 13	-	15	- 14	
10		1	8	1 9	-	11	- 10	

$$b = \overline{B} + CD + \overline{C}\overline{D}$$

	A	В	С	D	b
8	0	0	0	0	1
8	0	0	0	1	1
8	0	0	1	0	1
8	0	0	1	1	1
8	0	1	0	0	1
8	0	1	0	1	0
8	0	1	1	0	0
8	0	1	1	1	1
8	1	0	0	0	1
8	1	0	0	1	1

CD AB	00	01	11	10
00	1/0	0 1	1 3	1 2
01	0 4	1 5	0 7	1 6
11	- 12	- 13	- 15	- 14
10	1 8	1	- 11	-10

	A	В	C	D	d
8	0	0	0	0	1
8	0	0	0	1	0
8	0	0	1	0	1
8	0	0	1	1	1
8	0	1	0	0	0
8	0	1	0	1	1
8	0	1	1	0	1
8	0	1	1	1	0
8	1	0	0	0	1
8	1	0	0	1	1

CD AB	00	01	11	10
00	0 0	0 1	1 ~	1 2
01	1 4	1 5	0 7	1 6
11	- 12	- 13	- 15	-
10	1 8	1	- 11	-10

$$g = A + B\overline{C} + \overline{B}C + B\overline{Q} + C\overline{D}$$

	A	В	С	D	g
8	0	0	0	0	0
8	0	0	0	1	0
8	0	0	1	0	1
8	0	0	1	1	1
8	0	1	0	0	1
8	0	1	0	1	1
8	0	1	1	0	1
В	0	1	1	1	0
8	1	0	0	0	1
8	1	0	0	1	1

