Série 3

- **1.a)** Determine os valores próprios e funções próprias do operador d/dx no intervalo $[-\pi, \pi]$ sujeitas à condição fronteira $y(\pi) = y(-\pi)$.
- b) Verifique a ortogonalidade das funções próprias e calcule a sua norma.
- 2. Obtenha as séries de Fourier complexas no intervalo $[-\pi,\pi]$ das funções:
- a) $f(x) = x^2$, |x|, $\cosh x$, $\cos x$, $\cos x/2$.
- b) f(x) = x, $\sinh x$, $\sin x$, $\sin x/2$.
- **3.** Considere a expansão em séries de Fourier complexas das funções $f(x) = \cos x$, $g(x) = \sin x$ no intervalo $[-\pi, \pi]$. Verifique a validade do teorema de Parseval no cálculo dos integrais $\int \cos^2 x \, dx$, $\int \sin x \, \cos x \, dx$.
- **4.a)** Obtenha as séries de Fourier complexas das funções $\Theta(x)$, $\operatorname{sgn}(x)$ no intervalo $[-\ell,\ell]$.
- b) Obtenha as séries de Fourier em senos e cosenos daquelas funções no mesmo intervalo.
- **5.a)** Determine os valores próprios λ_n e funções próprias $y_n(x)$ do operador d/dx no intervalo $[-\ell,\ell]$ sujeito à condição fronteira $y(\ell) = -y(-\ell)$.
- b) Verifique a ortogonalidade das funções próprias $y_n(x)$ e calcule a sua norma.
- c) Demonstre como se determinam os coeficientes c_n da expansão de uma função u(x) em série de funções $y_n(x)$: $u(x) = \sum_n c_n y_n(x)$.
- **6.** Verifique se o operador d^2/dx^2 é hermítico no intervalo [a,b] sujeito às seguintes condições fronteira:
- a) u(b) = -u(a), u'(b) = -u'(a); b) u(b) = u(a), u'(b) = -u'(a);
- c) u(b) = -u(a), u'(b) = u'(a); d) u'(a) = 0, u(b) = 0.
- **7.a)** Determine os valores próprios e funções próprias do operador d^2/dx^2 no intervalo $[-\pi, \pi]$ sujeito às condições fronteira $y(\pi) = y(-\pi), y'(\pi) = y'(-\pi)$.
- b) Encontre um conjunto de funções próprias ortogonais entre si e calcule a sua norma.
- **8.a)** Determine os valores próprios e funções próprias do operador d^2/dx^2 no intervalo $[0,\ell]$ sujeito às condições fronteira, y(0)=0, $y(\ell)=0$.
- b) Calcule os produtos internos de duas funções próprias quaisquer.
- c) Demonstre como se determinam os coeficientes c_n da expansão de uma função u(x) em série de funções $y_n(x)$: $u(x) = \sum_n c_n y_n(x)$.
- **9.a)** Determine os valores próprios e funções próprias do operador d^2/dx^2 no intervalo $[0,\ell]$ sujeito às condições fronteira, $y'(0)=0, y(\ell)=0$.
- b) Calcule os produtos internos de duas funções próprias quaisquer.
- c) Demonstre como se determinam os coeficientes c_n da expansão de uma função u(x) em série de funções $y_n(x)$: $u(x) = \sum_n c_n y_n(x)$.
- **10.a)** Determine os valores próprios e funções próprias do operador d^2/dx^2 no intervalo $[0,\ell]$ sujeito às condições fronteira, y'(0) = 0, $y'(\ell) = 0$.
- b) Calcule os produtos internos de duas funções próprias quaisquer.
- c) Demonstre como se determinam os coeficientes c_n da expansão de uma função u(x) em série de funções $y_n(x)$: $u(x) = \sum_n c_n y_n(x)$.

1.a)
$$y_n(x) = e^{i n x}$$
, $\lambda_n = i n$, $n \in \mathbb{Z}$. **b)** $\langle y_n | y_n \rangle = 2\pi$.

2.a)
$$x^{2} = \frac{\pi^{2}}{3} + \sum_{n \neq 0} (-1)^{n} \frac{2}{n^{2}} e^{i n x} = \frac{\pi^{2}}{3} + \sum_{n=1}^{\infty} (-1)^{n} \frac{4}{n^{2}} \cos n x$$

$$|x| = \frac{\pi}{2} - \frac{1}{\pi} \sum_{n \neq 0} \frac{1 - (-1)^{n}}{n^{2}} e^{i n x} = \frac{\pi}{2} - \frac{4}{\pi} \sum_{k=0}^{\infty} \frac{1}{(2k+1)^{2}} \cos(2k+1) x$$

$$\cosh x = \frac{\sinh \pi}{\pi} \sum_{n=-\infty}^{+\infty} \frac{(-1)^{n}}{n^{2}+1} e^{i n x} = \frac{\sinh \pi}{\pi} \left(1 + 2 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}+1} \cos n x \right)$$

$$\cos x = \frac{1}{2} \left(e^{i x} + e^{-i x} \right)$$

$$\cos \frac{x}{2} = \frac{1}{2\pi} \sum_{n=1}^{+\infty} \frac{(-1)^{(n+1)}}{n^{2} - 1/4} e^{i n x} = \frac{1}{\pi} \left(2 + \sum_{n=1}^{\infty} \frac{(-1)^{(n+1)}}{n^{2} - 1/4} \cos n x \right)$$

$$\cos \frac{1}{2} = \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} \frac{1}{n^2 - 1/4} e^{-it} = \frac{1}{\pi} \left(2 + \sum_{n=1}^{\infty} \frac{1}{n^2 - 1/4} \cos nx \right)$$

$$2.b) \qquad x = \sum_{n=0}^{\infty} (-1)^n \frac{i}{n} e^{it} = \sum_{n=0}^{\infty} (-1)^{(n+1)} \frac{2}{n} \sin nx$$

$$\sin x = \frac{\sinh \pi}{\pi} \sum_{n=-\infty}^{+\infty} (-1)^n \frac{i \, n}{n^2 + 1} e^{i \, nx} = \frac{\sinh \pi}{\pi} \sum_{n=1}^{\infty} (-1)^{(n+1)} \frac{2 \, n}{n^2 + 1} \sin nx$$

$$\sin x = \frac{1}{2i} \left(e^{i \, x} - e^{-i \, x} \right)$$

$$\sin\frac{x}{2} = \frac{1}{\pi} \sum_{n=-\infty}^{+\infty} (-1)^n \frac{i \, n}{n^2 - 1/4} \, e^{i \, nx} = \frac{1}{\pi} \sum_{n=1}^{\infty} (-1)^{(n+1)} \frac{2 \, n}{n^2 - 1/4} \sin nx$$

3.
$$\int_{-\pi}^{+\pi} \cos^2 x \, dx = \pi = 2\pi \sum_{n} |c_n|^2 , \qquad \int_{-\pi}^{+\pi} \sin x \, \cos x \, dx = 0 = 2\pi \sum_{n} c_n' \, c_n^*$$

4.
$$\Theta(x) = \frac{1}{2} + \frac{1}{\pi} \sum_{n \neq 0} \frac{1 - (-1)^n}{2i \, n} e^{i \, n \pi \, x/\ell} = \frac{1}{2} + \frac{2}{\pi} \sum_{k=0}^{\infty} \frac{1}{2k+1} \sin\left[(2k+1)\frac{\pi}{\ell}x\right]$$
$$\operatorname{sgn}(x) = \frac{1}{\pi} \sum_{n \neq 0} \frac{1 - (-1)^n}{i \, n} e^{i \, n \pi \, x/\ell} = \frac{4}{\pi} \sum_{k=0}^{\infty} \frac{1}{2k+1} \sin\left[(2k+1)\frac{\pi}{\ell}x\right]$$

5.a)
$$y_n(x) = e^{i(n+1/2)\pi x/\ell}, \quad \lambda_n = i\left(n + \frac{1}{2}\right)\frac{\pi}{\ell}, \quad n \in \mathbb{Z}.$$
 b) $\langle y_n | y_n \rangle = 2\ell.$

c)
$$c_n = \frac{\langle y_n | u \rangle}{\langle y_n | y_n \rangle} = \frac{1}{2\ell} \int_{-\ell}^{\ell} e^{-i(n+1/2)\pi x/\ell} u(x) dx$$
.

7.a)
$$y_n(x) = e^{i n x}$$
, $\lambda_n = -n^2$, $n \in \mathbb{Z}$. **b)** $\langle y_n | y_n \rangle = 2\pi$.

8.a)
$$y_n(x) = \sin(n \pi x/\ell), \quad \lambda_n = -n^2 \pi^2/\ell^2, \quad n \in \mathbb{N}.$$
 b) $\langle y_n | y_m \rangle = \frac{1}{2} \ell \delta_{nm}.$

c)
$$c_n = \frac{2}{\ell} \int_0^{\ell} u(x) \sin(n \pi x/\ell) dx$$
.

9.a)
$$y_n(x) = \cos\left[\left(n + \frac{1}{2}\right)\pi x/\ell\right], \quad \lambda_n = -\left(n + \frac{1}{2}\right)^2 \pi^2/\ell^2, \quad n \in \mathbb{N}_0.$$

b)
$$\langle y_n | y_m \rangle = \frac{1}{2} \ell \, \delta_{nm}.$$
 c) $c_n = \frac{2}{\ell} \int_0^\ell u(x) \, \cos \left[\left(n + \frac{1}{2} \right) \pi \, x / \ell \right] \, dx$.

10.a)
$$y_n(x) = \cos(n \pi x/\ell), \quad \lambda_n = -n^2 \pi^2/\ell^2, \quad n \in \mathbb{N}_0.$$
 b) $\langle y_n | y_m \rangle = \frac{1}{2} \ell \delta_{nm}.$

c)
$$c_n = \frac{2}{\ell} \int_0^\ell u(x) \cos(n \pi x/\ell) dx$$
.