



# Efficient Object Search in Game Maps IJCAI 2023

Jinchun Du, Bojie Shen, Shizhe Zhao, Muhammad Aamir Cheema, Adel Nadjaran Toosi

Monash University

### Outline



- Introduction
- Problem definition
- Previous work
  - Interval Heuristic Polyanya
  - Incremental Euclidean Restriction (IER)
- Grid Tree
  - Euclidean Hub Labeling
  - Grid Tree
- Results

# **Object Search**









## Object Search





### Outline



- Introduction
- Problem definition
- Previous work
  - Interval Heuristic Polyanya
  - Incremental Euclidean Restriction (IER)
- Grid Tree
  - Euclidean Hub Labeling
  - Grid Tree
- Results



## • Euclidean plane:

- polygonal obstacles
  - a set of vertices
  - set of closed edges





- Euclidean plane
- Objects
  - Each  $o_i \in O$  is represented as a tuple  $(o_i, \rho, o_i, \tau)$
  - $o_i$ .  $\rho$  is a two-dimensional point representing location
  - $o_i$ .  $\tau$  is the textual description represented as a set of keywords





- Euclidean plane
- Objects
- Timestamp
  - Discretised into a set of timestamps T
  - $O^t$  denote the set of objects at a timestamp  $t \in T$
  - $-o_i^t = (o_i^t, \rho, o_i^t, \tau)$





- Euclidean plane
- Objects
- Timestamp
- Problem definition
  - Given a query q, issued at timestamp t and the set of objects O<sup>t</sup>, find up to k objects closest from the query location among the objects that contain all query keywords



#### **Object Lists**

| Cell             | Objects    |
|------------------|------------|
| $C_{1,1}$        | $o_1, o_2$ |
| $C_{0,1}$        | 03         |
| $C_{0,2}$        | 04         |
| C <sub>3,3</sub> | $o_5, o_6$ |

| Node             | Keywords               |  |
|------------------|------------------------|--|
| R                | w: 3, x: 4, y: 4, z: 4 |  |
| $N_1$            | w: 1, x: 3, y: 2, z: 2 |  |
| C <sub>1,1</sub> | w: 1, x: 2, y: 1, z: 1 |  |
| C <sub>0,1</sub> | x: 1, y: 1, z: 1       |  |

### **Outline**



- Introduction
- Problem definition
- Previous work
  - Interval Heuristic Polyanya
  - Incremental Euclidean Restriction (IER)
- Grid Tree
  - Euclidean Hub Labeling
  - Grid Tree
- Results

# Previous work Interval Heuristic Polyanya [1]



 Runs an A\*-like search starting from s on navigation mesh with a set of convex polygons



# Previous work Interval Heuristic Polyanya



- Runs an A\*-like search starting from s on navigation mesh with a set of convex polygons
- When the search reaches a polygon that contains an object, the object matching the keyword is added to the queue



# Previous work Interval Heuristic Polyanya



- Runs an A\*-like search starting from s on navigation mesh with a set of convex polygons
- When the search reaches a polygon that contains an object, the object matching the keyword is added to the queue
- Objects are stored in navigation mesh, handling object updates is quite efficient



# Previous work IER [2]



 Employs IR-tree to store the objects and incrementally retrieves nearest objects to the query location



# Previous work IER



- Employs IR-tree to store the objects and incrementally retrieves nearest objects to the query location
- For each retrieved object, it calls Polyanya to compute its actual distance from the query



# Previous work IER



- Employs IR-tree to store the objects and incrementally retrieves nearest objects to the query location
- For each retrieved object, it calls Polyanya to compute its actual distance from the query
- Terminates when the Euclidean distance of next retrieved object is no smaller than the actual distances of kNNs



### **Outline**



- Introduction
- Problem definition
- Previous work
  - Interval Heuristic Polyanya
  - Incremental Euclidean Restriction (IER)
- Grid Tree
  - Euclidean Hub Labeling
  - Grid Tree
- Results

# Grid Tree Euclidean Hub Labeling [3]



 State-of-the-art Euclidean shortest pathfinding algorithm

# Grid Tree Euclidean Hub Labeling



- State-of-the-art Euclidean shortest pathfinding algorithm
- Employs the popular hub labeling technique [4]



| Vertex | Hub labels                                   |
|--------|----------------------------------------------|
| A      | (A, 0)                                       |
| В      | (A, 1.6), (B, 0)                             |
| С      | (A, 6.2), (B, 4.6), (C, 0)                   |
| D      | (A, 4.1), (B, 2.5), (C, 2.7), (D, 0)         |
| Е      | (A, 5.1), (B, 3.5), (C, 2.9), (D, 1), (E, 0) |
| F      | (A, 2.2), (B, 3.7), (F, 0)                   |
| G      | (A, 2), (B, 2.8), (F, 1.9), (G,0)            |

Table 1: Hub labels constructed for graph above

# Grid Tree Euclidean Hub Labeling



- State-of-the-art Euclidean shortest pathfinding algorithm
- Employs the popular hub labeling technique
- Superimpose uniform grids across a given map, and store via labels in the grids to allow fast lookup and retrieval during query phase



| Vertex | Hub labels                                   |
|--------|----------------------------------------------|
| Α      | (A, 0)                                       |
| В      | (A, 1.6), (B, 0)                             |
| С      | (A, 6.2), (B, 4.6), (C, 0)                   |
| D      | (A, 4.1), (B, 2.5), (C, 2.7), (D, 0)         |
| Е      | (A, 5.1), (B, 3.5), (C, 2.9), (D, 1), (E, 0) |
| F      | (A, 2.2), (B, 3.7), (F, 0)                   |
| G      | (A, 2), (B, 2.8), (F, 1.9), (G,0)            |

| Hub nodes | Via labels                         |
|-----------|------------------------------------|
| A         | (A, 0), (B, 1.6), (G, 2), (F, 2.2) |
| В         | (B, 0), (G, 2.8), (F, 3.7)         |
| F         | (F, 0), (G, 1.9)                   |
| G         | (G, 0)                             |

Table 2: Hub labels and via labels for the figure above



 Starting from root node, recursively divides each node into 4 equal sized children until size of each child node is smaller than a threshold





 Starting from root node, recursively divides each node into 4 equal sized children until size of each child node is smaller than a threshold





 Starting from root node, recursively divides each node into 4 equal sized children until size of each child node is smaller than a threshold





- Starting from root node, recursively divides each node into 4 equal sized children until size of each child node is smaller than a threshold
- Each node stores an object list containing the IDs of the objects that are located inside it. It also stores a keyword list containing unique keywords with its frequency





#### **Object Lists**

| Cell                    | Objects                         |
|-------------------------|---------------------------------|
| <i>C</i> <sub>1,1</sub> | $o_1, o_2$                      |
| $C_{0,1}$               | 03                              |
| $C_{0,2}$               | $o_4$                           |
| C <sub>3,3</sub>        | 0 <sub>5</sub> , 0 <sub>6</sub> |

| Node             | Keywords               |  |
|------------------|------------------------|--|
| R                | w: 3, x: 4, y: 4, z: 4 |  |
| $N_1$            | w: 1, x: 3, y: 2, z: 2 |  |
| $C_{1,1}$        | w: 1, x: 2, y: 1, z: 1 |  |
| C <sub>0,1</sub> | x: 1, y: 1, z: 1       |  |

# Grid Tree Update



Insert



#### **Object Lists**

| Cell             | Objects                                                               |
|------------------|-----------------------------------------------------------------------|
| C <sub>1,1</sub> | <i>o</i> <sub>1</sub> , <i>o</i> <sub>2</sub> , <i>o</i> <sub>7</sub> |
| C <sub>0,1</sub> | 03                                                                    |
| C <sub>0,2</sub> | 04                                                                    |
| C <sub>3,3</sub> | 05,06                                                                 |

| Node                  | Keywords               |  |
|-----------------------|------------------------|--|
| R                     | w: 3, x: 4, y: 4, z: 4 |  |
| <i>N</i> <sub>1</sub> | w: 1, x: 3, y: 2, z: 2 |  |
| C <sub>1,1</sub>      | w: 1, x: 2, y: 1, z: 2 |  |
| C <sub>0,1</sub>      | x: 1, y: 1, z: 1       |  |

# Grid Tree Update



- Insert
- Delete



#### **Object Lists**

| Cell             | Objects |
|------------------|---------|
| C <sub>1,1</sub> | 01,02   |
| C <sub>0,1</sub> | 03      |
| C <sub>0,2</sub> | 04      |
| C <sub>3,3</sub> | 05,06   |

| Node                        | Keywords               |
|-----------------------------|------------------------|
| R                           | w: 3, x: 4, y: 4, z: 4 |
| <i>N</i> <sub>1</sub>       | w: 1, x: 3, y: 2, z: 2 |
| C <sub>1,1</sub> w: 1, x: 1 |                        |
| C <sub>0,1</sub>            | x: 1, y: 1, z: 1       |

# Grid Tree Update



- Insert
- Delete
- Location change of an object



#### **Object Lists**

| Cell             | Objects                         |
|------------------|---------------------------------|
| $C_{1,1}$        | <del>0</del> ∓, 02              |
| $C_{0,1}$        | 0 <sub>3</sub> , 0 <sub>1</sub> |
| C <sub>0,2</sub> | 04                              |
| C <sub>3,3</sub> | 05,06                           |

**Keyword Lists of some nodes** 

| Node                  | Keywords               |  |  |  |
|-----------------------|------------------------|--|--|--|
| R                     | w: 3, x: 4, y: 4, z: 4 |  |  |  |
| <i>N</i> <sub>1</sub> | w: 1, x: 3, y: 2, z: 2 |  |  |  |
| C <sub>1,1</sub>      | x: 1, y: 1, z: 1       |  |  |  |
| C <sub>0,1</sub>      | w: 1, x: 2, y: 1, z: 1 |  |  |  |

## Grid Tree Query



 Query is similar to the standard best-first search algorithm on trees

## Grid Tree Query



- Query is similar to the standard best-first search algorithm on trees
- The grid tree is traversed based on the minimum distances of the nodes and the nodes that do not contain query keywords are removed

## Grid Tree Query



- Query is similar to the standard best-first search algorithm on trees
- The grid tree is traversed based on the minimum distances of the nodes and the nodes that do not contain query keywords are removed
- Euclidean Hub Labeling (EHL) is used to compute shortest distance from the query to the objects containing query keywords

# Grid Tree Query algorithm



#### **Algorithm 1:** Boolean kNN query processing

```
Input: q.\rho, q.\tau, k: query location, query keywords and k
   Output: R: query results
 R = \phi; d^k = \infty;
 2 Initialise a min-heap H with the root node of Grid Tree;
 3 while H \neq \phi do
        deheap an entry e from H;
        if e.key \ge d^k then
 5
            return R;
 6
        if e is an object then
 7
             compute d(q.\rho, e.\rho);
 8
            if d(q, \rho, e, \rho) < d^k then
 9
                 update R and d^k by object e;
10
        else if e is a leaf node then
11
            for each object o_i^t in the object list of e do
12
                 if q.\tau \subseteq o_i^t.\tau then
13
                      insert o_i^t in H with key
14
                        mindist(q.\rho, o_i^t.\rho);
        else
15
            for each child node c of e do
16
                 if c contains all query keywords q.\tau then
17
                      insert c in H with key mindist(q, \rho, c);
18
19 return R;
```

# Grid Tree Extensions



- Generalisation of boolean kNN query
- Top-k spatial keyword query
- Keyword range query

### Outline



- Introduction
- Problem definition
- Previous work
  - Interval Heuristic Polyanya
  - Incremental Euclidean Restriction (IER)
- Grid Tree
  - Euclidean Hub Labeling
  - Grid Tree
- Results

## Experimental setup



 Benchmark maps: widely used game map benchmarks [5]





| Game | #Maps | # Cells | # Trav. Cells | # Vertices |
|------|-------|---------|---------------|------------|
| DA   | 67    | 151,420 | 15,911        | 1182.9     |
| DAO  | 156   | 134,258 | 21,322        | 1727.6     |
| BG   | 75    | 262,144 | 73,930        | 1294.4     |
| SC   | 75    | 446,737 | 263,782       | 11487.5    |

Table 1: Total number of maps, and average number of total cells, traversable cells and vertices in each benchmark.





## Experimental setup



- Benchmark maps: widely used game map benchmarks [5]
- Object density: 0.1%, 1% and 10%









## Experimental setup



- Benchmark maps: widely used game map benchmarks [5]
- Object density: 0.1%, 1% and 10%
- Keyword: 100 item
   descriptions obtained
   from ChatGPT for each
   benchmark and extracted
   keywords from it









## Experimental setup



- Benchmark maps: widely used game map benchmarks [5]
- Object density: 0.1%, 1% and 10%
- Keyword: 100 item
   descriptions obtained
   from ChatGPT for each
   benchmark and extracted
   keywords from it
- Query: randomly generate 100 queries per timestamp for 50 timestamps









# Effect of object density





Effect of object density on query time and update time for DA on default settings (k=3, mobility = 70%, # of query keywords = 2)

# Object Search Other experiments



- Mobility of objects
- **k**
- Number of query keywords
- Object distribution



# Thank you for listening ©

### References



[1] Zhao, S., Taniar, D., & Harabor, D. (2018). Fast k-nearest neighbor on a navigation mesh. In *Proceedings of the International Symposium on Combinatorial Search* (Vol. 9, No. 1, pp. 124-131).

[2] Zhao, S., Harabor, D. D., & Taniar, D. (2018). Faster and more robust mesh-based algorithms for obstacle k-nearest neighbour. *arXiv preprint arXiv:1808.04043*.

[3] Du, J., Shen, B., & Cheema, M. A. (2023). Ultrafast Euclidean Shortest Path Computation Using HubLabeling. *Proceedings of the AAAI Conference on Artificial Intelligence*, 37(10), 12417-12426. <a href="https://doi.org/10.1609/aaai.v37i10.26463">https://doi.org/10.1609/aaai.v37i10.26463</a>

[4] Abraham, I., Delling, D., Goldberg, A. V., & Werneck, R. F. (2011). A hub-based labeling algorithm for shortest paths in road networks. In *Experimental Algorithms: 10th International Symposium, SEA 2011, Kolimpari, Chania, Crete, Greece, May 5-7, 2011. Proceedings 10* (pp. 230-241). Springer Berlin Heidelberg.

#### Image sources:

https://www.geospatialworld.net/news/sensewheres-indoor-location-volume-hits-50-billion-requests/https://www.mecalux.com/blog/fully-automated-warehousehttps://www.theverge.com/2022/2/22/22945814/amazon-astro-home-robot-photo-video