Distributed by:

JAMECO

ELECTRONICS

### www.Jameco.com + 1-800-831-4242

The content and copyrights of the attached material are the property of its owner.

Jameco Part Number 323141

#### **Features**

- High-performance, Low-power AVR® 8-bit Microcontroller
- RISC Architecture
  - 130 Powerful Instructions Most Single Clock Cycle Execution
  - 32 x 8 General Purpose Working Registers
  - Fully Static Operation
  - Up to 16 MIPS Throughput at 16 MHz
  - On-chip 2-cycle Multiplier
- Nonvolatile Program and Data Memories
  - 8K Bytes of In-System Self-programmable Flash

Endurance: 10,000 Write/Erase Cycles

 Optional Boot Code Section with Independent Lock Bits In-System Programming by On-chip Boot Program True Read-While-Write Operation

- 512 Bytes EEPROM

Endurance: 100,000 Write/Erase Cycles

- 512 Bytes Internal SRAM
- Up to 64K Bytes Optional External Memory Space
- Programming Lock for Software Security
- Peripheral Features
  - One 8-bit Timer/Counter with Separate Prescaler and Compare Mode
  - One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode
  - Three PWM Channels
  - Programmable Serial USART
  - Master/Slave SPI Serial Interface
  - Programmable Watchdog Timer with Separate On-chip Oscillator
  - On-chip Analog Comparator
- Special Microcontroller Features
  - Power-on Reset and Programmable Brown-out Detection
  - Internal Calibrated RC Oscillator
  - External and Internal Interrupt Sources
  - Three Sleep Modes: Idle, Power-down and Standby
- I/O and Packages
  - 35 Programmable I/O Lines
  - 40-pin PDIP, 44-lead TQFP, 44-lead PLCC, and 44-pad MLF
- Operating Voltages
  - 2.7 5.5V for ATmega8515L
  - 4.5 5.5V for ATmega8515
- Speed Grades
  - 0 8 MHz for ATmega8515L
  - 0 16 MHz for ATmega8515



8-bit AVR®
Microcontroller with 8K Bytes In-System
Programmable Flash

ATmega8515 ATmega8515L

**Preliminary** 

**Summary** 



Rev. 2512BS-AVR-09/02



## **Pin Configurations**

Figure 1. Pinout ATmega8515





#### **Overview**

The ATmega8515 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega8515 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

#### **Block Diagram**

Figure 2. Block Diagram







The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The ATmega8515 provides the following features: 8K bytes of In-System Programmable Flash with Read-While-Write capabilities, 512 bytes EEPROM, 512 bytes SRAM, an External memory interface, 35 general purpose I/O lines, 32 general purpose working registers, two flexible Timer/Counters with compare modes, Internal and External interrupts, a Serial Programmable USART, a programmable Watchdog Timer with internal Oscillator, a SPI serial port, and three software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and Interrupt system to continue functioning. The Power-down mode saves the Register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or hardware reset. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low-power consumption.

The device is manufactured using Atmel's high density nonvolatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI serial interface, by a conventional nonvolatile memory programmer, or by an On-chip Boot program running on the AVR core. The boot program can use any interface to download the application program in the Application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-programmable Flash on a monolithic chip, the Atmel ATmega8515 is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications.

The ATmega8515 is supported with a full suite of program and system development tools including: C Compilers, Macro assemblers, Program debugger/simulators, In-circuit Emulators, and Evaluation kits.

#### Disclaimer

Typical values contained in this data sheet are based on simulations and characterization of other AVR microcontrollers manufactured on the same process technology. Min and Max values will be available after the device is characterized.

### AT90S4414/8515 and ATmega8515 Compatibility

The ATmega8515 provides all the features of the AT90S4414/8515. In addition, several new features are added. The ATmega8515 is backward compatible with AT90S4414/8515 in most cases. However, some incompatibilities between the two microcontrollers exist. To solve this problem, an AT90S4414/8515 compatibility mode can be selected by programming the S8515C Fuse. ATmega8515 is 100% pin compatible with AT90S4414/8515, and can replace the AT90S4414/8515 on current printed circuit boards. However, the location of Fuse bits and the electrical characteristics differs between the two devices.

# AT90S4414/8515 Compatibility Mode

Programming the S8515C Fuse will change the following functionality:

- The timed sequence for changing the Watchdog Time-out period is disabled. See "Timed Sequences for Changing the Configuration of the Watchdog Timer" on page 51 for details.
- The double buffering of the USART receive registers is disabled. See "AVR USART vs. AVR UART Compatibility" on page 134 for details.
- PORTE(2:1) will be set as output, and PORTE0 will be set as input.

#### **Pin Descriptions**

VCC Digital supply voltage.

**GND** Ground.

Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive characteristics with both high sink and source capability. When pins PA0 to PA7 are used as inputs and are externally pulled low, they will source current if the internal pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port A also serves the functions of various special features of the ATmega8515 as listed on page 65.

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.

> Port B also serves the functions of various special features of the ATmega8515 as listed on page 65.

> Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running.

> Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running.

> Port D also serves the functions of various special features of the ATmega8515 as listed on page 70.

> Port E is an 3-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port E output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up resistors are activated. The Port E pins are tri-stated when a reset condition becomes active, even if the clock is not running.

> Port E also serves the functions of various special features of the ATmega8515 as listed on page 72.

> Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running. The minimum pulse length is given in Table 18 on page 44. Shorter pulses are not guaranteed to generate a reset.

> Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

Output from the inverting Oscillator amplifier.

Port A (PA7..PA0)

Port B (PB7..PB0)

Port C (PC7..PC0)

Port D (PD7..PD0)

Port E(PE2..PE0)

**RESET** 

XTAL1

XTAL2





# **Register Summary**

| Address                                              | Name             | Bit 7                                             | Bit 6         | Bit 5         | Bit 4                                  | Bit 3             | Bit 2                                 | Bit 1         | Bit 0         | Page       |
|------------------------------------------------------|------------------|---------------------------------------------------|---------------|---------------|----------------------------------------|-------------------|---------------------------------------|---------------|---------------|------------|
| \$3F (\$5F)                                          | SREG             | I                                                 | Т             | Н             | S                                      | V                 | N                                     | Z             | С             | 8          |
| \$3E (\$5E)                                          | SPH              | SP15                                              | SP14          | SP13          | SP12                                   | SP11              | SP10                                  | SP9           | SP8           | 10         |
| \$3D (\$5D)                                          | SPL              | SP7                                               | SP6           | SP5           | SP4                                    | SP3               | SP2                                   | SP1           | SP0           | 10         |
| \$3C (\$5C)                                          | Reserved         |                                                   |               |               |                                        | -                 |                                       |               |               |            |
| \$3B (\$5B)                                          | GICR             | INT1                                              | INT0          | INT2          | -                                      | -                 | -                                     | IVSEL         | IVCE          | 55, 76     |
| \$3A (\$5A)                                          | GIFR             | INTF1                                             | INTF0         | INTF2         | -                                      | -                 | -                                     | -             | -             | 77         |
| \$39 (\$59)                                          | TIMSK            | TOIE1                                             | OCIE1A        | OCIE1B        | -                                      | TICIE1            | -                                     | TOIE0         | OCIE0         | 91, 122    |
| \$38 (\$58)                                          | TIFR             | TOV1                                              | OCF1A         | OCF1B         | -                                      | ICF1              | -                                     | TOV0          | OCF0          | 92, 123    |
| \$37 (\$57)                                          | SPMCR            | SPMIE                                             | RWWSB         | -             | RWWSRE                                 | BLBSET            | PGWRT                                 | PGERS         | SPMEN         | 167        |
| \$36 (\$56)                                          | EMCUCR           | SM0                                               | SRL2          | SRL1          | SRL0                                   | SRW01             | SRW00                                 | SRW11         | ISC2          | 27,40,76   |
| \$35 (\$55)                                          | MCUCR            | SRE                                               | SRW10         | SE            | SM1                                    | ISC11             | ISC10                                 | ISC01         | ISC00         | 27,39,75   |
| \$34 (\$54)                                          | MCUCSR           | -                                                 | -             | SM2           | -                                      | WDRF              | BORF                                  | EXTRF         | PORF          | 39,47      |
| \$33 (\$53)                                          | TCCR0            | FOC0                                              | WGM00         | COM01         | COM00                                  | WGM01             | CS02                                  | CS01          | CS00          | 89         |
| \$32 (\$52)                                          | TCNT0            |                                                   |               |               |                                        | nter0 (8 Bits)    |                                       |               |               | 91         |
| \$31 (\$51)                                          | OCR0             |                                                   |               |               | mer/Counter0 Out                       | · ·               | Ť                                     |               |               | 91         |
| \$30 (\$50)                                          | SFIOR            | -                                                 | XMBK          | XMM2          | XMM1                                   | XMM0              | PUD                                   | -             | PSR10         | 29,64,94   |
| \$2F (\$4F)                                          | TCCR1A           | COM1A1                                            | COM1A0        | COM1B1        | COM1B0                                 | FOC1A             | FOC1B                                 | WGM11         | WGM10         | 117        |
| \$2E (\$4E)                                          | TCCR1B           | ICNC1                                             | ICES1         | - Time        | WGM13                                  | WGM12             | CS12                                  | CS11          | CS10          | 120        |
| \$2D (\$4D)<br>\$2C (\$4C)                           | TCNT1H<br>TCNT1L |                                                   |               |               | er/Counter1 - Cou<br>er/Counter1 - Cou |                   | · · · · · · · · · · · · · · · · · · · |               |               | 121<br>121 |
| \$2C (\$4C)<br>\$2B (\$4B)                           | OCR1AH           |                                                   |               |               | unter1 - Output C                      |                   |                                       |               |               | 121        |
| \$2B (\$4B)<br>\$2A (\$4A)                           | OCR1AL           |                                                   |               |               | unter1 - Output C                      |                   |                                       |               |               | 121        |
| \$29 (\$49)                                          | OCR1BH           |                                                   |               |               | unter1 - Output C                      |                   | ,                                     |               |               | 121        |
| \$28 (\$48)                                          | OCR1BL           |                                                   |               |               | unter1 - Output C                      |                   | <u> </u>                              |               |               | 121        |
| \$27 (\$47)                                          | Reserved         |                                                   |               | 111101700     | differi Galpat G                       | -                 | B Low Byte                            |               |               | -          |
| \$26 (\$46)                                          | Reserved         |                                                   |               |               |                                        | -                 |                                       |               |               | -          |
| \$25 (\$45)                                          | ICR1H            | Timer/Counter1 - Input Capture Register High Byte |               |               |                                        |                   | 122                                   |               |               |            |
| \$24 (\$44)                                          | ICR1L            | Timer/Counter1 - Input Capture Register Low Byte  |               |               |                                        | 122               |                                       |               |               |            |
| \$23 (\$43)                                          | Reserved         |                                                   |               |               | ·                                      | -                 | j                                     |               |               | -          |
| \$22 (\$42)                                          | Reserved         |                                                   |               |               |                                        | -                 |                                       |               |               | -          |
| \$21 (\$41)                                          | WDTCR            | -                                                 | -             | -             | WDCE                                   | WDE               | WDP2                                  | WDP1          | WDP0          | 49         |
| \$20 <sup>(1)</sup> (\$40) <sup>(1)</sup>            | UBRRH            | URSEL                                             | -             | -             | -                                      |                   | UBR                                   | R[11:8]       |               | 156        |
| \$20\\(\frac{440}{\}\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | UCSRC            | URSEL                                             | UMSEL         | UPM1          | UPM0                                   | USBS              | UCSZ1                                 | UCSZ0         | UCPOL         | 154        |
| \$1F (\$3F)                                          | EEARH            | -                                                 | -             | -             | -                                      | -                 | -                                     | -             | EEAR8         | 17         |
| \$1E (\$3E)                                          | EEARL            |                                                   |               |               | EEPROM Addres                          | s Register Low B  | yte                                   |               |               | 17         |
| \$1D (\$3D)                                          | EEDR             |                                                   | 1             | 1             | EEPROM I                               | Data Register     |                                       | 1             | •             | 18         |
| \$1C (\$3C)                                          | EECR             | -                                                 | -             | -             | -                                      | EERIE             | EEMWE                                 | EEWE          | EERE          | 18         |
| \$1B (\$3B)                                          | PORTA            | PORTA7                                            | PORTA6        | PORTA5        | PORTA4                                 | PORTA3            | PORTA2                                | PORTA1        | PORTA0        | 73         |
| \$1A (\$3A)                                          | DDRA             | DDA7                                              | DDA6          | DDA5          | DDA4                                   | DDA3              | DDA2                                  | DDA1          | DDA0          | 73         |
| \$19 (\$39)                                          | PINA             | PINA7                                             | PINA6         | PINA5         | PINA4                                  | PINA3             | PINA2                                 | PINA1         | PINA0         | 73         |
| \$18 (\$38)<br>\$17 (\$37)                           | PORTB            | PORTB7                                            | PORTB6        | PORTB5        | PORTB4                                 | PORTB3            | PORTB2                                | PORTB1        | PORTB0        | 73         |
| \$17 (\$37)<br>\$16 (\$36)                           | DDRB<br>PINB     | DDB7<br>PINB7                                     | DDB6<br>PINB6 | DDB5<br>PINB5 | DDB4<br>PINB4                          | DDB3<br>PINB3     | DDB2<br>PINB2                         | DDB1<br>PINB1 | DDB0<br>PINB0 | 73<br>73   |
| \$16 (\$36)<br>\$15 (\$35)                           | PORTC            | PORTC7                                            | PORTC6        | PORTC5        | PINB4<br>PORTC4                        | PORTC3            | PORTC2                                | PORTC1        | PORTC0        | 73         |
| \$15 (\$35)                                          | DDRC             | DDC7                                              | DDC6          | DDC5          | DDC4                                   | DDC3              | DDC2                                  | DDC1          | DDC0          | 73         |
| \$13 (\$33)                                          | PINC             | PINC7                                             | PINC6         | PINC5         | PINC4                                  | PINC3             | PINC2                                 | PINC1         | PINC0         | 74         |
| \$12 (\$32)                                          | PORTD            | PORTD7                                            | PORTD6        | PORTD5        | PORTD4                                 | PORTD3            | PORTD2                                | PORTD1        | PORTD0        | 74         |
| \$11 (\$31)                                          | DDRD             | DDD7                                              | DDD6          | DDD5          | DDD4                                   | DDD3              | DDD2                                  | DDD1          | DDD0          | 74         |
| \$10 (\$30)                                          | PIND             | PIND7                                             | PIND6         | PIND5         | PIND4                                  | PIND3             | PIND2                                 | PIND1         | PIND0         | 74         |
| \$0F (\$2F)                                          | SPDR             |                                                   | -             | -             |                                        | a Register        | •                                     | -             | •             | 130        |
| \$0E (\$2E)                                          | SPSR             | SPIF                                              | WCOL          | -             | -                                      | -                 | -                                     | -             | SPI2X         | 130        |
| \$0D (\$2D)                                          | SPCR             | SPIE                                              | SPE           | DORD          | MSTR                                   | CPOL              | CPHA                                  | SPR1          | SPR0          | 128        |
| \$0C (\$2C)                                          | UDR              |                                                   |               |               | USART I/O                              | Data Register     |                                       |               |               | 151        |
| \$0B (\$2B)                                          | UCSRA            | RXC                                               | TXC           | UDRE          | FE                                     | DOR               | PE                                    | U2X           | MPCM          | 152        |
| \$0A (\$2A)                                          | UCSRB            | RXCIE                                             | TXCIE         | UDRIE         | RXEN                                   | TXEN              | UCSZ2                                 | RXB8          | TXB8          | 153        |
| \$09 (\$29)                                          | UBRRL            |                                                   |               |               | USART Baud Ra                          | te Register Low E | Byte                                  |               |               | 156        |
| \$08 (\$28)                                          | ACSR             | ACD                                               | ACBG          | ACO           | ACI                                    | ACIE              | ACIC                                  | ACIS1         | ACIS0         | 161        |
| \$07 (\$27)                                          | PORTE            | -                                                 | -             | -             | -                                      | -                 | PORTE2                                | PORTE1        | PORTE0        | 74         |
| \$06 (\$26)                                          | DDRE             | -                                                 | -             | -             | -                                      | -                 | DDE2                                  | DDE1          | DDE0          | 74         |
| \$05 (\$25)                                          | PINE             | -                                                 | -             | -             | -                                      |                   | PINE2                                 | PINE1         | PINE0         | 74         |
| \$04 (\$24)                                          | OSCCAL           | LICADT -I-                                        |               |               | Oscillator Cal                         | bration Register  | I I I O O D C                         |               |               | 37         |

Notes: 1. Refer to the USART description for details on how to access UBRRH and UCSRC.

2. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.

3. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on all bits in the I/O Register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers \$00 to \$1F only.





# **Instruction Set Summary**

| Mnemonics              | Operands         | Description                              | Operation                                             | Flags        | #Clocks |
|------------------------|------------------|------------------------------------------|-------------------------------------------------------|--------------|---------|
| ARITHMETIC AND         | LOGIC INSTRUCTIO | NS                                       | <u>'</u>                                              | *            | •       |
| ADD                    | Rd, Rr           | Add two Registers                        | $Rd \leftarrow Rd + Rr$                               | Z,C,N,V,H    | 1       |
| ADC                    | Rd, Rr           | Add with Carry two Registers             | $Rd \leftarrow Rd + Rr + C$                           | Z,C,N,V,H    | 1       |
| ADIW                   | RdI,K            | Add Immediate to Word                    | Rdh:Rdl ← Rdh:Rdl + K                                 | Z,C,N,V,S    | 2       |
| SUB                    | Rd, Rr           | Subtract two Registers                   | $Rd \leftarrow Rd - Rr$                               | Z,C,N,V,H    | 1       |
| SUBI                   | Rd, K            | Subtract Constant from Register          | Rd ← Rd - K                                           | Z,C,N,V,H    | 1       |
| SBC                    | Rd, Rr           | Subtract with Carry two Registers        | Rd ← Rd - Rr - C                                      | Z,C,N,V,H    | 1       |
| SBCI                   | Rd, K            | Subtract with Carry Constant from Reg.   | Rd ← Rd - K - C                                       | Z,C,N,V,H    | 1       |
| SBIW                   | Rdl,K            | Subtract Immediate from Word             | Rdh:Rdl ← Rdh:Rdl - K                                 | Z,C,N,V,S    | 2       |
| AND                    | Rd, Rr           | Logical AND Registers                    | $Rd \leftarrow Rd \bullet Rr$                         | Z,N,V        | 1       |
| ANDI                   | Rd, K            | Logical AND Register and Constant        | $Rd \leftarrow Rd \bullet K$                          | Z,N,V        | 1       |
| OR                     | Rd, Rr           | Logical OR Registers                     | $Rd \leftarrow Rd \vee Rr$                            | Z,N,V        | 1       |
| ORI                    | Rd, K            | Logical OR Register and Constant         | $Rd \leftarrow Rd \vee K$                             | Z,N,V        | 1       |
| EOR                    | Rd, Rr           | Exclusive OR Registers                   | $Rd \leftarrow Rd \oplus Rr$                          | Z,N,V        | 1       |
| СОМ                    | Rd               | One's Complement                         | Rd ← \$FF – Rd                                        | Z,C,N,V      | 1       |
| NEG                    | Rd               | Two's Complement                         | Rd ← \$00 – Rd                                        | Z,C,N,V,H    | 1       |
| SBR                    | Rd,K             | Set Bit(s) in Register                   | $Rd \leftarrow Rd \vee K$                             | Z,N,V        | 1       |
| CBR                    | Rd,K             | Clear Bit(s) in Register                 | $Rd \leftarrow Rd \bullet (\$FF - K)$                 | Z,N,V        | 1       |
| INC                    | Rd               | Increment                                | Rd ← Rd + 1                                           | Z,N,V        | 1       |
| DEC                    | Rd               | Decrement                                | Rd ← Rd − 1                                           | Z,N,V        | 1       |
| TST                    | Rd               | Test for Zero or Minus                   | $Rd \leftarrow Rd \bullet Rd$                         | Z,N,V        | 1       |
| CLR                    | Rd               | Clear Register                           | $Rd \leftarrow Rd \oplus Rd$                          | Z,N,V        | 1       |
| SER                    | Rd               | Set Register                             | Rd ← \$FF                                             | None         | 1       |
| MUL                    | Rd, Rr           | Multiply Unsigned                        | R1:R0 ← Rd x Rr                                       | Z,C          | 2       |
| MULS                   | Rd, Rr           | Multiply Signed                          | R1:R0 ← Rd x Rr                                       | Z,C          | 2       |
| MULSU                  | Rd, Rr           | Multiply Signed with Unsigned            | R1:R0 ← Rd x Rr                                       | Z,C          | 2       |
| FMUL                   | Rd, Rr           | Fractional Multiply Unsigned             | $R1:R0 \leftarrow (Rd \times Rr) << 1$                | Z,C          | 2       |
| FMULS                  | Rd, Rr           | Fractional Multiply Signed               | $R1:R0 \leftarrow (Rd \times Rr) << 1$                | Z,C          | 2       |
| FMULSU  BRANCH INSTRUC | Rd, Rr           | Fractional Multiply Signed with Unsigned | $R1:R0 \leftarrow (Rd \times Rr) << 1$                | Z,C          | 2       |
|                        | 1                | Deletive Jump                            | DC - DC - k - 1                                       | None         | 1 0     |
| RJMP                   | k                | Relative Jump                            | PC ← PC + k + 1                                       | None         | 2       |
| JMP<br>JMP             | k                | Indirect Jump to (Z)                     | PC ← Z PC ← k                                         | None         | 3       |
| RCALL                  | k                | Direct Jump  Relative Subroutine Call    | PC ← PC + k + 1                                       | None         | 3       |
| ICALL                  | K.               | Indirect Call to (Z)                     | PC ← Z                                                | None<br>None | 3       |
| CALL                   | k                | Direct Subroutine Call                   | PC ← k                                                | None         | 4       |
| RET                    | , K              | Subroutine Return                        | PC ← STACK                                            | None         | 4       |
| RETI                   |                  | Interrupt Return                         | PC ← STACK                                            | I            | 4       |
| CPSE                   | Rd,Rr            | Compare, Skip if Equal                   | if (Rd = Rr) PC ← PC + 2 or 3                         | None         | 1/2/3   |
| CP                     | Rd,Rr            | Compare                                  | Rd – Rr                                               | Z, N,V,C,H   | 1/2/3   |
| CPC                    | Rd,Rr            | Compare with Carry                       | Rd – Rr – C                                           | Z, N,V,C,H   | 1       |
| CPI                    | Rd,K             | Compare Register with Immediate          | Rd – K                                                | Z, N,V,C,H   | 1       |
| SBRC                   | Rr, b            | Skip if Bit in Register Cleared          | if (Rr(b)=0) PC ← PC + 2 or 3                         | None         | 1/2/3   |
| SBRS                   | Rr, b            | Skip if Bit in Register is Set           | if (Rr(b)=1) PC ← PC + 2 or 3                         | None         | 1/2/3   |
| SBIC                   | P. b             | Skip if Bit in I/O Register Cleared      | if $(P(b)=0)$ PC $\leftarrow$ PC + 2 or 3             | None         | 1/2/3   |
| SBIS                   | P, b             | Skip if Bit in I/O Register is Set       | if $(P(b)=1)$ PC $\leftarrow$ PC + 2 or 3             | None         | 1/2/3   |
| BRBS                   | s, k             | Branch if Status Flag Set                | if (SREG(s) = 1) then PC←PC+k + 1                     | None         | 1/2     |
| BRBC                   | s, k             | Branch if Status Flag Cleared            | if (SREG(s) = 0) then PC←PC+k + 1                     | None         | 1/2     |
| BREQ                   | k                | Branch if Equal                          | if $(Z = 1)$ then $PC \leftarrow PC + k + 1$          | None         | 1/2     |
| BRNE                   | k                | Branch if Not Equal                      | if $(Z = 0)$ then $PC \leftarrow PC + k + 1$          | None         | 1/2     |
| BRCS                   | k                | Branch if Carry Set                      | if (C = 1) then PC $\leftarrow$ PC + k + 1            | None         | 1/2     |
| BRCC                   | k                | Branch if Carry Cleared                  | if (C = 0) then PC $\leftarrow$ PC + k + 1            | None         | 1/2     |
| BRSH                   | k                | Branch if Same or Higher                 | if (C = 0) then PC ← PC + k + 1                       | None         | 1/2     |
| BRLO                   | k                | Branch if Lower                          | if (C = 1) then PC ← PC + k + 1                       | None         | 1/2     |
| BRMI                   | k                | Branch if Minus                          | if (N = 1) then PC ← PC + k + 1                       | None         | 1/2     |
| BRPL                   | k                | Branch if Plus                           | if $(N = 0)$ then $PC \leftarrow PC + k + 1$          | None         | 1/2     |
| BRGE                   | k                | Branch if Greater or Equal, Signed       | if $(N \oplus V = 0)$ then $PC \leftarrow PC + k + 1$ | None         | 1/2     |
| BRLT                   | k                | Branch if Less Than Zero, Signed         | if $(N \oplus V = 1)$ then $PC \leftarrow PC + k + 1$ | None         | 1/2     |
| BRHS                   | k                | Branch if Half Carry Flag Set            | if (H = 1) then PC ← PC + k + 1                       | None         | 1/2     |
| BRHC                   | k                | Branch if Half Carry Flag Cleared        | if (H = 0) then PC ← PC + k + 1                       | None         | 1/2     |
| BRTS                   | k                | Branch if T Flag Set                     | if (T = 1) then PC $\leftarrow$ PC + k + 1            | None         | 1/2     |
| BRTC                   | k                | Branch if T Flag Cleared                 | if (T = 0) then PC ← PC + k + 1                       | None         | 1/2     |
|                        |                  | · · ·                                    |                                                       | +            |         |
| BRVS                   | k                | Branch if Overflow Flag is Set           | if $(V = 1)$ then $PC \leftarrow PC + k + 1$          | None         | 1/2     |

| Mnemonics        | Operands        | Description                                    | Operation                                                                                                                   | Flags              | #Clocks |
|------------------|-----------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------|---------|
| BRIE             | k               | Branch if Interrupt Enabled                    | if (I = 1) then $PC \leftarrow PC + k + 1$                                                                                  | None               | 1/2     |
| BRID             | k               | Branch if Interrupt Disabled                   | if (I = 0) then PC $\leftarrow$ PC + k + 1                                                                                  | None               | 1/2     |
| DATA TRANSFER    |                 |                                                |                                                                                                                             | T                  |         |
| MOV              | Rd, Rr          | Move Between Registers                         | Rd ← Rr                                                                                                                     | None               | 1       |
| MOVW             | Rd, Rr          | Copy Register Word                             | Rd+1:Rd ← Rr+1:Rr                                                                                                           | None               | 1       |
| LDI              | Rd, K           | Load Immediate                                 | Rd ← K                                                                                                                      | None               | 1       |
| LD<br>LD         | Rd, X<br>Rd, X+ | Load Indirect Load Indirect and Post-Inc.      | $Rd \leftarrow (X)$ $Rd \leftarrow (X), X \leftarrow X + 1$                                                                 | None<br>None       | 2 2     |
| LD               | Rd, - X         | Load Indirect and Prost-inc.                   | $X \leftarrow X - 1, Rd \leftarrow (X)$                                                                                     | None               | 2       |
| LD               | Rd, Y           | Load Indirect                                  | $Rd \leftarrow (Y)$                                                                                                         | None               | 2       |
| LD               | Rd, Y+          | Load Indirect and Post-Inc.                    | $Rd \leftarrow (Y), Y \leftarrow Y + 1$                                                                                     | None               | 2       |
| LD               | Rd, - Y         | Load Indirect and Pre-Dec.                     | $Y \leftarrow Y - 1$ , $Rd \leftarrow (Y)$                                                                                  | None               | 2       |
| LDD              | Rd,Y+q          | Load Indirect with Displacement                | $Rd \leftarrow (Y + q)$                                                                                                     | None               | 2       |
| LD               | Rd, Z           | Load Indirect                                  | $Rd \leftarrow (Z)$                                                                                                         | None               | 2       |
| LD               | Rd, Z+          | Load Indirect and Post-Inc.                    | $Rd \leftarrow (Z), Z \leftarrow Z+1$                                                                                       | None               | 2       |
| LD               | Rd, -Z          | Load Indirect and Pre-Dec.                     | $Z \leftarrow Z - 1$ , Rd $\leftarrow (Z)$                                                                                  | None               | 2       |
| LDD              | Rd, Z+q         | Load Indirect with Displacement                | $Rd \leftarrow (Z + q)$                                                                                                     | None               | 2       |
| LDS              | Rd, k           | Load Direct from SRAM                          | Rd ← (k)                                                                                                                    | None               | 2       |
| ST<br>ST         | X, Rr<br>X+, Rr | Store Indirect Store Indirect and Post-Inc.    | $(X) \leftarrow Rr$<br>$(X) \leftarrow Rr, X \leftarrow X + 1$                                                              | None<br>None       | 2 2     |
| ST               | - X, Rr         | Store Indirect and Pre-Dec.                    | $(X) \leftarrow RI, X \leftarrow X + I$<br>$X \leftarrow X - 1, (X) \leftarrow Rr$                                          | None               | 2       |
| ST               | Y, Rr           | Store Indirect and Fre-Dec.  Store Indirect    | $(Y) \leftarrow Rr$                                                                                                         | None               | 2       |
| ST               | Y+, Rr          | Store Indirect and Post-Inc.                   | $(Y) \leftarrow Rr, Y \leftarrow Y + 1$                                                                                     | None               | 2       |
| ST               | - Y, Rr         | Store Indirect and Pre-Dec.                    | $Y \leftarrow Y - 1, (Y) \leftarrow Rr$                                                                                     | None               | 2       |
| STD              | Y+q,Rr          | Store Indirect with Displacement               | $(Y + q) \leftarrow Rr$                                                                                                     | None               | 2       |
| ST               | Z, Rr           | Store Indirect                                 | $(Z) \leftarrow Rr$                                                                                                         | None               | 2       |
| ST               | Z+, Rr          | Store Indirect and Post-Inc.                   | $(Z) \leftarrow Rr,  Z \leftarrow Z + 1$                                                                                    | None               | 2       |
| ST               | -Z, Rr          | Store Indirect and Pre-Dec.                    | $Z \leftarrow Z - 1$ , $(Z) \leftarrow Rr$                                                                                  | None               | 2       |
| STD              | Z+q,Rr          | Store Indirect with Displacement               | $(Z+q) \leftarrow Rr$                                                                                                       | None               | 2       |
| STS              | k, Rr           | Store Direct to SRAM                           | (k) ← Rr                                                                                                                    | None               | 2       |
| LPM              | Rd, Z           | Load Program Memory  Load Program Memory       | $R0 \leftarrow (Z)$ $Rd \leftarrow (Z)$                                                                                     | None<br>None       | 3       |
| LPM              | Rd, Z+          | Load Program Memory and Post-Inc               | $Rd \leftarrow (Z), Z \leftarrow Z+1$                                                                                       | None               | 3       |
| SPM              | riu, Z+         | Store Program Memory                           | $(Z) \leftarrow R1:R0$                                                                                                      | None               | -       |
| IN               | Rd, P           | In Port                                        | Rd ← P                                                                                                                      | None               | 1       |
| OUT              | P, Rr           | Out Port                                       | P ← Rr                                                                                                                      | None               | 1       |
| PUSH             | Rr              | Push Register on Stack                         | STACK ← Rr                                                                                                                  | None               | 2       |
| POP              | Rd              | Pop Register from Stack                        | $Rd \leftarrow STACK$                                                                                                       | None               | 2       |
| BIT AND BIT-TEST | +               | 1                                              | 1                                                                                                                           |                    |         |
| SBI              | P,b             | Set Bit in I/O Register                        | I/O(P,b) ← 1                                                                                                                | None               | 2       |
| CBI              | P,b             | Clear Bit in I/O Register                      | I/O(P,b) ← 0                                                                                                                | None               | 2       |
| LSL              | Rd              | Logical Shift Left                             | $Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$                                                                              | Z,C,N,V            | 1       |
| ROL              | Rd<br>Rd        | Logical Shift Right  Rotate Left Through Carry | $Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$ $Rd(0) \leftarrow C, Rd(n+1) \leftarrow Rd(n), C \leftarrow Rd(7)$           | Z,C,N,V            | 1       |
| ROR              | Rd              | Rotate Right Through Carry                     | $Rd(7)\leftarrow C,Rd(n)\leftarrow Rd(n+1),C\leftarrow Rd(0)$ $Rd(7)\leftarrow C,Rd(n)\leftarrow Rd(n+1),C\leftarrow Rd(0)$ | Z,C,N,V<br>Z,C,N,V | 1       |
| ASR              | Rd              | Arithmetic Shift Right                         | $Rd(n) \leftarrow Rd(n+1), n=06$                                                                                            | Z,C,N,V            | 1       |
| SWAP             | Rd              | Swap Nibbles                                   | Rd(30)←Rd(74),Rd(74)←Rd(30)                                                                                                 | None               | 1       |
| BSET             | s               | Flag Set                                       | SREG(s) ← 1                                                                                                                 | SREG(s)            | 1       |
| BCLR             | s               | Flag Clear                                     | $SREG(s) \leftarrow 0$                                                                                                      | SREG(s)            | 1       |
| BST              | Rr, b           | Bit Store from Register to T                   | $T \leftarrow Rr(b)$                                                                                                        | Т                  | 1       |
| BLD              | Rd, b           | Bit load from T to Register                    | $Rd(b) \leftarrow T$                                                                                                        | None               | 1       |
| SEC              |                 | Set Carry                                      | C ← 1                                                                                                                       | С                  | 1       |
| CLC              |                 | Clear Carry                                    | C ← 0                                                                                                                       | C                  | 1       |
| SEN              |                 | Set Negative Flag                              | N ← 1                                                                                                                       | N                  | 1       |
| CLN<br>SEZ       | +               | Clear Negative Flag                            | N ← 0<br>Z ← 1                                                                                                              | N Z                | 1 1     |
| CLZ              | +               | Set Zero Flag Clear Zero Flag                  | Z ← 1<br>Z ← 0                                                                                                              | Z                  | 1       |
| SEI              | 1               | Global Interrupt Enable                        | I ← 1                                                                                                                       | ı                  | 1       |
| CLI              |                 | Global Interrupt Disable                       | 1←0                                                                                                                         | ı                  | 1       |
| SES              |                 | Set Signed Test Flag                           | S ← 1                                                                                                                       | S                  | 1       |
| CLS              | <u> </u>        | Clear Signed Test Flag                         | S ← 0                                                                                                                       | S                  | 1       |
| SEV              |                 | Set Twos Complement Overflow.                  | V ← 1                                                                                                                       | V                  | 1       |
| CLV              |                 | Clear Twos Complement Overflow                 | V ← 0                                                                                                                       | V                  | 1       |
| SET              |                 | Set T in SREG                                  | T ← 1                                                                                                                       | Т                  | 1       |
| CLT              | 1               | Clear T in SREG                                | T ← 0                                                                                                                       | Т                  | 1       |
| SEH              |                 | Set Half Carry Flag in SREG                    | H ← 1                                                                                                                       | Н                  | 1       |





| Mnemonics       | Operands  | Description                   | Operation                                | Flags | #Clocks |
|-----------------|-----------|-------------------------------|------------------------------------------|-------|---------|
| CLH             |           | Clear Half Carry Flag in SREG | H ← 0                                    | Н     | 1       |
| MCU CONTROL INS | TRUCTIONS |                               |                                          |       |         |
| NOP             |           | No Operation                  |                                          | None  | 1       |
| SLEEP           |           | Sleep                         | (see specific descr. for Sleep function) | None  | 1       |
| WDR             |           | Watchdog Reset                | (see specific descr. for WDR/timer)      | None  | 1       |

# Ordering Information<sup>(1)</sup>

| Speed (MHz) | Power Supply | Ordering Code   | Package | Operation Range |
|-------------|--------------|-----------------|---------|-----------------|
| 8           | 2.7 - 5.5V   | ATmega8515L-8AC | 44A     | Commercial      |
|             |              | ATmega8515L-8PC | 40P6    | (0°C to 70°C)   |
|             |              | ATmega8515L-8JC | 44J     |                 |
|             |              | ATmega8515L-8MC | 44M1    |                 |
|             |              | ATmega8515L-8AI | 44A     | Industrial      |
|             |              | ATmega8515L-8PI | 40P6    | (-40°C to 85°C) |
|             |              | ATmega8515L-8JI | 44J     |                 |
|             |              | ATmega8515L-8MI | 44M1    |                 |
| 16          | 4.5 - 5.5V   | ATmega8515-16AC | 44A     | Commercial      |
|             |              | ATmega8515-16PC | 40P6    | (0°C to 70°C)   |
|             |              | ATmega8515-16JC | 44J     |                 |
|             |              | ATmega8515-16MC | 44M1    |                 |
|             |              | ATmega8515-16AI | 44A     | Industrial      |
|             |              | ATmega8515-16PI | 40P6    | (-40°C to 85°C) |
|             |              | ATmega8515-16JI | 44J     |                 |
|             |              | ATmega8515-16MI | 44M1    |                 |

Note: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.

|      | Package Type                                                                    |  |  |  |  |
|------|---------------------------------------------------------------------------------|--|--|--|--|
| 44A  | 44-lead, Thin (1.0 mm) Plastic Gull Wing Quad Flat Package (TQFP)               |  |  |  |  |
| 40P6 | 40-lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)                        |  |  |  |  |
| 44J  | 44-lead, Plastic J-Leaded Chip Carrier (PLCC)                                   |  |  |  |  |
| 44M1 | 44-pad, 7 x 7 x 1.0 mm body, lead pitch 0.50 mm, Micro Lead Frame Package (MLF) |  |  |  |  |





## **Packaging Information**

#### **44A**

44-lead, Thin (1.0mm) Plastic Quad Flat Package (TQFP), 10x10mm body, 2.0mm footprint, 0.8mm pitch. Dimension in Millimeters and (Inches)\*
JEDEC STANDARD MS-026 ACB





\*Controlling dimension: millimetter

REV. A 04/11/2001

#### 40P6

40-lead, Plastic Dual Inline Parkage (PDIP), 0.600" wide Demension in Millimeters and (Inches)\* JEDEC STANDARD MS-011 AC







\*Controlling dimension: Inches

REV. A 04/11/2001





**44J** 

44J, 44-lead, Plastic J-leaded Chip Carrier (PLCC) Dimensions in Milimeters and (Inches)\*
JEDEC STANDARD MS-018 AC



\*Controlling dimensions: Inches

REV. A 04/11/2001

#### 44M1







**Errata** 

The revision letter in this section refers to the revision of the ATmega8515 device.

ATmega8515(L) Rev. B

There are no errata for this revision of ATmega8515.

## Data Sheet Change Log for ATmega8515

Please note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision.

# Changes from Rev. 2512A-04/02 to Rev. 2512B-09/02

1. Canged the Endurance on the Flash to 10,000 Write/Erase Cycles.

# Changes from Rev. 2512B-09/02 to Rev. 2512C-10/02

- 1. Added "Using all Locations of External Memory Smaller than 64 KB" on page 29.
- 2. Removed all TBD.
- 3. Added description about calibration values for 2, 4, and 8 MHz.
- 4. Added variation in frequency of "External Clock" on page 38.
- 5. Added note about V<sub>BOT</sub>, Table 18 on page 44.
- 6. Updated about "Unconnected pins" on page 62.
- 7. Updated "16-bit Timer/Counter1" on page 95, Table 50 on page 117 and Table 51 on page 118.
- 8. Updated "Enter Programming Mode" on page 181, "Chip Erase" on page 181, Figure 77 on page 184, and Figure 78 on page 185.
- 9. Updated "Electrical Characteristics" on page 194, "External Clock Drive" on page 196, Table 95 on page 196 and Table 96 on page 197, "SPI Timing Characteristics" on page 197 and Table 97 on page 199.
- 10. Added "Errata" on page 16.





#### **Atmel Headquarters**

Corporate Headquarters 2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 487-2600

#### Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland TEL (41) 26-426-5555 FAX (41) 26-426-5500

#### Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369

#### Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

#### **Atmel Operations**

#### Memory

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

#### Microcontrollers

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France TEL (33) 2-40-18-18-18 FAX (33) 2-40-18-19-60

#### ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France TEL (33) 4-42-53-60-00 FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland TEL (44) 1355-803-000 FAX (44) 1355-242-743

#### RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany TEL (49) 71-31-67-0 FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France TEL (33) 4-76-58-30-00 FAX (33) 4-76-58-34-80

e-mail literature@atmel.com

Web Site http://www.atmel.com

#### © Atmel Corporation 2002.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

ATMEL® and AVR® are the registered trademarks of Atmel.

Printed on recycled paper.