## Statystyczna Analiza Danych

Ćwiczenia nr 3

**Zadanie 1.**  $P(A) = P(B) = P(C) = \frac{1}{3}$ ,  $P(A - B) = P(C - B) = \frac{1}{6}$ ,  $A \cap C = \emptyset$ . Obliczyć P(A|B), P(C|B),  $P(A \cup B \cup C)$ ,  $P(A \cup B)$ ,  $P(B \cap C)$ .

**Zadanie 2.** Rzucamy dwiema kostkami do gry. Dane są trzy zdarzenia: A – suma oczek większa od 6, B - szóstka na pierwszej kostce, C - jedynka na drugiej kostce. Zbadać niezależność (wzajemną oraz parami) zdarzeń A, B i C oraz obliczyć  $P(A \cup B \cup C)$ , P(A|B) i P(B|C).

**Zadanie 3**. Rzucamy raz kostką do gry. Jakie jest prawdopodobieństwo, że wypadła liczba oczek mniejsza od 5, jeśli wiadomo, że wyrzucono nieparzystą liczbę oczek?

**Zadanie 4**. Każdy z dwóch niezależnych systemów alarmowych działa z prawdopodobieństwem 0.9. Jakie jest prawdopodobieństwo, że oba zawiodą jednocześnie?

**Zadanie 5**. Rzucamy czworościanem foremnym, którego trzy ścianki pomalowane są jednolicie: jedna na czerwono, jedna na biało i jedna na zielono, natomiast czwarta ścianka pomalowana jest w czerwono-biało-zielone pasy. Niech C,B,Z oznaczają, odpowiednio, zdarzenia: C - "czworościan upadł na ściankę, na której jest kolor czerwony", B - "czworościan upadł na ściankę, na której jest kolor biały", Z- "czworościan upadł na ściankę, na której jest kolor zielony". Sprawdzić, czy zdarzenia C,B,Z są niezależne.

**Zadanie** 6. Oblicz prawdopodobieństwo przekazania sygnału przez układy pokazane na rysunku, składające się przekaźników działających niezależnie od siebie, jeśli prawdopodobieństwo działania każdego z przekaźników wynosi p.



**Zadanie** 7. Na rynku telekomunikacyjnym działają trzy sieci komórkowe. Do sieci A należy 25% klientów, do sieci B 35% a do sieci C pozostałe 40% klientów. Wśród klientów sieci A 30% korzysta z dodatkowego abonamentu na internet bezprzewodowy, w sieci B i C, odpowiednio, 20% i 15% klientów. Wiadomo, że wybrany losowo użytkownik telefonu komórkowego korzysta dodatkowo z internetu. Jakie jest prawdopodobieństwo, że jest on klientem sieci A, B, C?

Zadanie 8. W zbiorze N monet jedna ma po obu stronach orły, pozostałe zaś są prawidłowe.

W wyniku 10 rzutów losowo wybraną monetą otrzymaliśmy 10 orłów.

Oblicz prawdopodobieństwo, że była to moneta z orłami po obu stronach. Wyznacz wartość prawdopodobieństwa dla N=100 oraz N=100000. Zinterpretuj otrzymane wyniki.