Appendix A3.1

Mathematical statement of MAMS

Table A3.1 Sets, parameters, and variables for core CGE modules of MAMS model

Symbol Sets, paramete	Explanation
<u>SETS</u>	
$a \in A$	activities
$a \in ACES \ (\subset A)$	activities with CES function between Value Added and Intermediate inputs
$a \in ALEO \ (\subset A)$	activities with Leontief function between value added and intermediate inputs
$c \in C$	commodities
$c \in CD(\subset C)$	commodities with domestic sales of domestic output
$c \in CDN(\subset C)$	commodities not in CD
$c \in CE(\subset C)$	exported commodities
$c \in CEN(\subset C)$	commodities not in CE
$c \in CECETN(\subset C)$	exported commodities without CET function
$c \in CINF(\subset C)$	infrastructure commodity
$c \in CM(\subset C)$	imported commodities
$c \in CMN(\subset C)$	commodities not in CM
$c \in CT(\subset C)$	transaction service commodities
$f, f' \in F$	factors
$f \in FCAP(\subset F)$	capital factors
$f \in FCAPGOV(\subset FCAP)$	government capital factors
$f \in FEXOG(\subset F)$	factors with exogenous growth rates
$f \in FLABN(\subset F)$	non-labour factors
$f \in FUEND(\subset F)$	factors with endogenous unemployment
$h \in H(\subset INSDNG)$	households (incl. NGOs)
$i \in INS$	institutions (domestic and rest of world)
$i \in INSD(\subset INS)$	domestic institutions
$i \in INSDNG(\subset INSD)$	domestic non-government institutions

Table A3.1 (cont'd)		
Symbol	Explanation	
$i \in \mathit{INSNG}(\subset \mathit{INS})$	non-government institutions	
$(f,a) \in MFA$	mapping showing that disaggregated factor f is used in activity a	
$t \in T$	time periods	
PARAMETERS—LAT	IN LETTERS	
$capcomp_{c,f}$	quantity of commodity c per unit of new capital f	
cwts _c	weight of commodity c in the CPI	
$depr_f$	depreciation rate for factor f	
$dintrat_{i,t}$	interest rate on government bonds for domestic institution i	
$dwts_c$	domestic sales price weights	
$fdebtrelief_{i,t}$	foreign debt relief for domestic institution i	
$fdi_{i,t}$	foreign direct investment by institution i (rest of world) (FCU)	
fintrat _{i,t}	interest rate on foreign debt for domestic institution i (paid)	
fintratdue _{i,t}	interest rate on foreign debt for domestic institution i (due)	
$\mathit{fprd}_{f,a,t}$	productivity of factor f in activity a	
gbdist _i	distortion factor for government borrowing from institution i	
$gfcfshr_{f,i,t}$	share of gross fixed capital formation for institution i in capital factor f	
$ica_{c,a}$	quantity of c as intermediate input per unit of aggregate intermediate in activity a	
$icd_{c,c',t}$	trade input of c per unit of commodity c' produced & sold domestically	
$ice_{c,c',t}$	trade input of c per unit of commodity c' exported	
icm _{c,c',t}	trade input of c per unit of commodity c' imported	
$ifa_{f,a}$	quantity of capital f per unit of government activity a	
$igf_{c,f,t}$	quantity of gov consumption per unit of gov infrastructure capital stock f	
	1	

quantity of aggregate intermediate input per unit of activity a

 $inta_a$

Table A3.1 (cont'd)			
Symbol	Explanation		
iva _a	quantity of value-added per unit of activity a		
$mps01_i$	0-1 parameter with 1 for institutions with potentially flexed direct tax rates		
mpsbar _{i,t}	Exogenous component in savings rate for domestic institution i		
poptot _t	total population by year		
$pwm_{c,t}$	import world price of c (FCU)		
$pwse_{c,t}$	world price for export substitutes (FCU)		
$qdst_{c,i,t}$	quantity of stock (inventory) change		
$\overline{qe}_{c,t}$	export demand for c if pwe = pwse (world price for substitutes)		
$qfhhtot_{f,t}$	total household stock of exogenous, non-labour factors		
$q finsad j_{i,f,t}$	exogenous factor stock adjustment		
$qfpc_{i,f,t}$	per-capita quantity of exogenous-supply factor f by institution i and year t		
$rqgadj_{c,c',t}$	parameter linking government consumption growth across commodities		
shii _{i,i'}	share of net income of i' to i (i'—INSDNG)		
$ta_{a,t}$	tax rate for activity a		
$te_{c,t}$	export tax rate		
$ f_{f,t} $	direct tax rate for factor f		
$tfp01_{a,t}$	0-1 parameter for activities with endogenous TFP growth		
$tfpelasqg_{a,f,t}$	elasticity of TFP for activity a with respect to government capital stock f		
tfpelastrd _a	elasticity of TFP for a with respect to GDP trade share		
tfptrdwt _{t,t'}	weight of period t' in tfp-trade link in t		
$tgap_{t,t'}$	gap between t and t' (years used for calculation of expected growth rate for QA)		
tins01 _i	0-1 parameter with 1 for institutions with potentially flexed direct tax rates		

Table A3.1 (cont'd)			
Symbol	Explanation		
tinsbar _{i,t}	exogenous component in direct tax rate for domestic institution i		
$tm_{c,t}$	import tariff rate		
$tq_{c,t}$	rate of sales tax		
trnsfr _{i,i',t}	Exogenous transfer from institution i' to institution i		
$trnsfr_{f,i',t}$	Exogenous transfer from institution i' to factor f		
$trnsfrpc_{i,i',t}$	per-capita transfers from institution i' to household institution i		
$tva_{a,t}$	rate of value-added tax for activity a		
PARAMETERS— GREET	K LETTERS		
α_{ac}	shift parameter for domestic commodity aggregation function		
$\alpha_{vag_{a,t}}$	exogenous component of efficiency (TFP) for activity a		
α_{q_c}	Armington function shift parameter		
α_{t_c}	CET function shift parameter		
$\beta_{h_{a,c,h}}$	marginal share of household consumption on home commodity c from activity a		
$\beta_{m_{c,h}}$	marginal share of household consumption spending on marketed commodity c		
δ_{ac_a}	share parameter for domestic commodity aggregation function		
δ_{q_c}	Armington function share parameter		
δ_{t_c}	CET function share parameter		
$\delta_{va_{f,a}}$	CES value-added function share parameter for factor f in activity a		
$\gamma_{h_{a,c,h}}$	per capita household subsistence consumption of home commodity c from activity a		
$\gamma_{m_{c,h}}$	per capita household subsistence cons of marketed commodity c		
ρ_{ac_c}	domestic commodity aggregation function exponent		
ρ_{q_c}	Armington function exponent		

Table A3.1 (cont'd)	
Symbol	Explanation
p sav _i	elasticity of savings rate with respect to per-capita income for institution (household) h
ρ_{t_c}	CET function exponent
ρva_a	CES value-added function exponent
$oldsymbol{ heta}_{a,c}$	yield of output c per unit of activity a
VARIABLES	
$ALPHAVA_{a,t}$	efficiency parameter in the CES value-added function
$ALPHAVA2_{a,t}$	endogenous TFP trend term by a
$CALTFPG_t$	calibration factor for TFP growth
CPI _t	consumer price index
$GBORMS_{i,t}$	implicit government Central Bank borrowing (deficit monetization) from institution i
GBORMSTOT,	total government Central Bank borrowing (deficit monetization)
$GBOR_{i,t}$	change in holding of government bonds for domestic institution i
GBORTOT,	total change in holding of government bonds
$DKGOV_{f,t}$	gross government investment in f
$DKINS_{i,f,t}$	gross change in capital stock (investment in) f for institution i
$DMPS_{_t}$	uniform point change in savings rate of selected domestic institutions
DPI,	producer price index for non-traded output
DTINS,	uniform point change in direct tax rate of selected domestic institutions
EG_{ι}	government expenditures
$EH_{h,t}$	consumption spending for household
EXR _t	exchange rate (LCU per unit of FCU)
$FBOR_{i,t}$	foreign borrowing for domestic institution i
$FDEBT_{i,t}$	foreign debt for domestic inst i

Table A3.1 (cont'd)		
Symbol	Explanation	
$FGRANT_{i,t}$	foreign grants to domestic institution i (FCU)	
$GDEBT_{i,t}$	endowment of government bonds for i	
$GDPREAL_{t}$	real GDP at market prices	
$GDPREALFC_t$	real GDP at factor cost	
GSAV,	government savings	
$\mathit{INSSAV}_{i,t}$	savings of domestic non-government institution i	
$\mathit{INVVAL}_{i,t}$	investment value for institution i	
$MPS_{i,t}$	marginal propensity to save for domestic non-gov institution i	
$MPSADJ_{t}$	savings rate scaling factor	
$PA_{a,t}$	activity price (unit gross revenue)	
$PDD_{c,t}$	demand price for commodity c produced & sold domestically	
$PDS_{c,t}$	supply price for commodity c produced & sold domestically	
$PE_{c,t}$	export price (domestic currency)	
PINTA _{a,t}	aggregate intermediate input price for activity a	
$PK_{f,t}$	price of new capital stock f	
$PM_{c,t}$	import price (domestic currency)	
$POP_{i,t}$	population by household	
$PQ_{c,t}$	composite commodity price	
$PVA_{a,t}$	value-added price (factor income per unit of activity)	
PVAAVG,	average value-added price	
$PWE_{c,t}$	export world price of c (FCU)	
$PX_{c,t}$	aggregate producer price for commodity	
$PXAC_{a,c,t}$	price of commodity c from activity a	

Table A3.1 (cont'd)			
Symbol	Explanation		
$QD_{c,t}$	quantity sold domestically of domestically produced c		
$QF_{f,a,t}$	quantity demanded of factor f by activity a		
$QFINS_{i,f,t}$	real endowment of factor f for institution i		
$QG_{c,t}$	quantity of government consumption of commodity c		
$QH_{c,h,t}$	quantity consumed by household h of marketed commodity c		
$QHA_{a,c,h,t}$	quantity consumed of home commodity c from act a by hhd h		
QINTA _{a,t}	quantity of aggregate intermediate input used by activity a		
$QINT_{c,a,t}$	quantity of commodity c as intermediate input to activity a		
$QINV_{c,t}$	quantity of investment demand for commodity c		
$QM_{c,t}$	quantity of imports of commodity c		
$QQ_{c,t}$	quantity of goods supplied to domestic market (composite supply)		
$QT_{c,t}$	quantity of trade and transport demand for commodity c		
$QVA_{a,t}$	quantity of (aggregate) value-added		
$QX_{c,t}$	aggregated quantity of domestic output of commodity		
$QXAC_{a,c,t}$	quantity of output of commodity c from activity a		
QGGRW,	real government consumption growth for all c in t relative to t-1		
$QGGRWC_{c,t}$	real government consumption growth of c in t relative to t-1		
$SHIF_{i,f,t}$	share of institution i in income of factor f		
TINS _{i,t}	direct tax rate for domestic non-government institution i		
TINSADJ,	direct tax scaling factor		
TRDGDP,	foreign trade as share of GDP		
$TRII_{i,i',t}$	transfers from institution i' to i (both in the set INSDNG)		

Table A3.1 (cont'd)		
Symbol	Explanation	
$W\!F_{f,t}$	average price of factor	
$WFDIST_{f,a,t}$	wage distortion factor for factor f in activity a	
$WFRES_{f,t}$	reservation wage for factor f	
$YF_{f,t}$	income of factor f	
YG,	government revenue	
$Y_{i,t}$	income of domestic non-government institution	
$YIF_{i,f,t}$	income to domestic institution i from factor f	
$YIINT_{i,t}$	interest payment on government bonds to institution i	

Table A3.2 Equations for the core CGE module of MAMS model

Table A3.2 Equations for the core CGE module of MAMS model				
#	Equation	Domain		
Price	Price Block			
(1)	$PM_{c,t} = pwm_{c,t} \cdot \left(1 + tm_{c,t}\right) \cdot EXR_t + \sum_{c' \in C} \left(PQ_{c',t} \cdot icm_{c',c,t}\right)$	$c \in CM$ $t \in T$		
(2)	$PE_{c,t} = \overline{PWE}_{c,t} \cdot \left(1 - te_{c,t}\right) \cdot EXR_t - \sum_{c' \in C} \left(PQ_{c',t} \cdot ice_{c',c,t}\right)$	$c \in CE$ $t \in T$		
(3)	$ (a) \ PDS_{c,t} \geq PE_{c,t} $ $ (b) \ QE_{c,t} \geq 0 \ (c) \ \Big(PDS_{c,t} - PE_{c,t}\Big) \cdot \Big(QE_{c,t} - 0\Big) = 0 $ $ \Big[\ \text{Complementary slackness relationship:} \\ 1. \ \text{If domestic price exceeds export price then export quantity is zero.} \\ 2. \ \text{If export quantity exceeds zero, then domestic price equals export price} \Big] $	$c \in (CD \cap CECETN)$ $t \in T$		
(4)	$PDD_{c,t} = PDS_{c,t} + \sum_{c' \in C} (PQ_{c',t} \cdot icd_{c',c,t})$	$c \in CD$ $t \in T$		
(5)	$PQ_{c,t} \cdot (1 - tq_{c,t}) \cdot QQ_{c,t} = PDD_{c,t} \cdot QD_{c,t} + PM_{c,t} \cdot QM_{c,t}$	$c \in (CD \cup CM)$ $t \in T$		
(6)	$PX_{c,t} \cdot QX_{c,t} = PDS_{c,t} \cdot QD_{c,t} + PE_{c,t} \cdot QE_{c,t}$	$c \in (CD \cup CE)$ $t \in T$		
(7)	$PA_{a,t} = \sum_{c \in C} PXAC_{a,c,t} \cdot \theta_{a,c}$	$a \in A$ $t \in T$		
(8)	$PINTA_{a,t} = \sum_{c \in C} PQ_{c,t} \cdot ica_{c,a}$	$a \in A$ $t \in T$		
(9)	$PA_{a,t} \cdot (1 - ta_{a,t}) \cdot QA_{a,t} = PVA_{a,t} \cdot QVA_{a,t} + PINTA_{a,t} \cdot QINTA_{a,t}$	$a \in A$ $t \in T$		
(10)	$\overline{CPI}_t = \sum_{c \in C} PQ_{c,t} \cdot cwts_c$	$t \in T$		
(11)	$DPI_t = \sum_{c \in CD} PDS_{c,t} \cdot dwts_c$	$t \in T$		
Production and trade block				
(12)	$QVA_{a,t} = iva_a \cdot QA_{a,t}$	$a \in ALEO$ $t \in T$		
(13)	$QINTA_{a,t} = inta_a \cdot QA_{a,t}$	$a \in ALEO$ $t \in T$		

Table A3.2 (cont'd)

#	Equation	Domain
(14)	$QVA_{a,t} = ALPHAVA_{a,t} \cdot \left(\sum_{f \in F} \delta_{va_{f,a}} \cdot \left(fprd_{f,a,t} \cdot QF_{f,a,t} \right)^{-\rho_{va_{a}}} \right)^{\frac{1}{\rho_{va_{a}}}}$	$a \in A$ $t \in T$
(15)	$WF_{f,t} \cdot \overline{WFDIST}_{f,a,t} = PVA_{a,t} \cdot (1 - tva_{a,t}) \cdot QVA_{a,t}.$ $\left(\sum_{f' \in F} \delta_{va_f',a} \cdot \left(fprd_{f',a,t} \cdot QF_{f',a,t}\right)^{-\rho_{va_a}}\right)^{-1}.$ $\delta_{va_{f,a}} \cdot fprd_{f,a,t}^{-\rho_{va_a}} \cdot QF_{f,a,t}^{-\rho_{va_a}-1}$	$a \in A$ $f \in F$ $t \in T$
(16)	$QINT_{c,a,t} = ica_{c,a} \cdot QINTA_{a,t}$	$c \in C$ $a \in A$ $t \in T$
(17)	$QXAC_{a,c,t} + \sum_{h \in H} QHA_{a,c,h,t} = \theta_{a,c} \cdot QA_{a,t}$	$c \in C$ $a \in A$ $t \in T$
(18)	$QX_{c,t} = \alpha_{ac_C} \cdot \left(\sum_{a \in A} \delta_{ac_{a,c}} \cdot QXAC_{a,c,t}^{-\rho_{ac_c}} \right)^{-\frac{1}{\rho_{ac_c}}}$	$c \in \\ (CE \cup CD)$ $t \in T$
(19)	$\frac{PXAC_{a,c,t}}{PX_{c,t}} = QX_{c,t} \cdot \sum_{a \in A} \left(\delta_{ac_{a,c}} \cdot QXAC_{a,c,t}^{-pac_c} \right)^{-1} \cdot \delta_{ac_{a,c}} \cdot QXAC_{a,c,t}^{-pac_c-1}$	$a \in A$ $c \in C$ $t \in T$
(20)	$QX_{c,t} = \alpha_{t_c} \cdot \left(\delta_{t_c} \cdot QE_{c,t}^{\rho_{t_c}} + (1 - \delta_{t_c}) \cdot QD_{c,t}^{\rho_{t_c}} \right)^{\frac{1}{\rho_{t_c}}}$	$c \in (CD \cap CECET)$ $t \in T$
(21)	$\frac{QE_{c,t}}{QD_{c,t}} = \left(\frac{PE_{c,t}}{PDS_{c,t}} \cdot \frac{I - \delta_{t_c}}{\delta_{t_c}}\right)^{\frac{1}{\rho_{t_c} - 1}}$	$c \in (CD \cap CECET)$ $t \in T$
(22)	$QX_{c,t} = QD_{c,t} + QE_{c,t}$	$c \in (CD \cap CEN) \cup (CE \cap CDN) \cup (CD \cap CECETN) $ $t \in T$

Table A3.2 (cont'd)

#	Equation	Domain
(23)	$QE_{c,t} = \overline{qe}_{c,t} \cdot \left(\frac{PWE_{c,t}}{pwse_{c,t}}\right)^{\rho e_c}$	$c \in CED$ $t \in T$
(24)	$QQ_{c,t} = \alpha_{q_c} \cdot \left(\delta_{q_c} \cdot QM_{c,t}^{-\rho q_c} + (1 - \delta_{q_c}) \cdot QD_{c,t}^{-\rho q_c}\right) - \frac{1}{\rho_{q_c}}$	$c \in \\ (CM \cap CD) \\ t \in T$
(25)	$\frac{QM_{c,t}}{QD_{c,t}} = \left(\frac{PDD_{c,t}}{PM_{c,t}} \cdot \frac{\delta_{q_c}}{I - \delta_{q_c}}\right)^{\frac{I}{I + \rho_{q_c}}}$	$c \in (CM \cap CD)$ $t \in T$
(26)	$QQ_{c,t} = QD_{c,t} + QM_{c,t}$	$c \in \\ (CD \cap CMN) \cup \\ (CM \cap CDN) \\ t \in T$
(27)	$QT_{c,t} = \sum_{c' \in C'} \left(icm_{c,c',t} \cdot QM_{c',t} + ice_{c,c',t} \cdot QE_{c',t} + icd_{c,c',t} \cdot QD_{c',t}\right)$	$c \in CT$ $t \in T$
Dom	estic institution block	
(28)	$YF_{f,t} = \sum_{a \in A} WF_{f,t} \cdot \overline{WFDIST}_{f,a,t} \cdot QF_{f,a,t} + trnsfr_{f,row,t} \cdot EXR_t$	$f \in F$ $t \in T$
(29)	$SHIF_{i,f,t} = \frac{QFACINS_{i,f,t}}{\sum_{i' \in INS} QFACINS_{i',f,t}}$	$i \in INS$ $f \in F$ $t \in T$
(30)	$YIF_{i,f,t} = SHIF_{i,f,t} \cdot \left[\left(1 - tf_{f,t} \right) \cdot YF_{f,t} \right]$	$i \in f \in F$ $t \in T$
(31)	$YIINT_{i,t} = gintrat_{i,t} \cdot GDEBT_{i,t} - fintrat_{i,t} \cdot FDEBT_{i,t} \cdot EXR_{t}$	$i \in \\ INSDNG \\ t \in T$
(32)	$TRII_{i,i',t} = shii_{i,i'} \cdot (1 - MPS_{i',t}) \cdot (1 - TINS_{i',t}) \cdot YI_{i',t}$	$i \in INS$ $i' \in INSDNG$ $t \in T$

Table A3.2 (cont'd)

#	Equation	Domain
(33)	$\begin{aligned} YI_{i,t} &= \sum_{f \in F} YIF_{i,f,t} + \sum_{i' \in INSDNG'} TRII_{i,i',t} + YIINT_{i,t} \\ &+ trnsfr_{i,gov,t} \cdot \overline{CPI_t} + trnsfrpc_{i,gov,t} \cdot POP_{i,t} \cdot \overline{CPI_t} \end{aligned}$	$i \in INSDNG$ $t \in T$
	$+trnsfr_{i,row,t} \cdot EXR_t + trnsfrpc_{i,row,t} \cdot POP_{i,t} \cdot EXR_t$	
(34)	$TINS_{i,t} = tinsbar_{i,t} \cdot \left(1 + \overline{TINSADJ}_{t} \cdot tins0l_{i}\right) + DTINS_{t} \cdot tins0l_{i}$	$i \in INSDNG$ $t \in T$
(35)	$\begin{split} MPS_{i,t} &= mpsbar_{i,t} \cdot \left(\frac{\left(1 - TINS_{i,t} \right) \cdot YI_{i,t}}{\overline{POP}_{i,t}} \right)^{\rho_{sav_i} - 1} \\ &\cdot \left(1 + \overline{MPSADJ}_t \cdot mps0I_i \right) + \overline{DMPS}_t \cdot mps0I_i \end{split}$	$i \in INSDNG$ $t \in T$
(36)	$INSSAV_{i,t} = MPS_{i,t} \cdot (1 - TINS_{i,t}) \cdot YI_{i,t}$	$i \in INSDNG$
(37)	$EH_{h,t} = \left(1 - \sum_{i \in INSDNG} shii_{i,h}\right) \cdot \left(1 - MPS_{h,t}\right) \cdot (1 - TINS_{h,t}) \cdot YI_{h,t}$	$h \in H$ $t \in T$
(38)	$QH_{c,h,t} = \overline{POP}_{h,t} \cdot \left(\left[\frac{BH_{h,t}}{\overline{POP}_{h,t}} \right] - \sum_{c' \in C} PQ_{c',t} \cdot \gamma_{c',h} - \sum_{a \in A} \sum_{c' \in C} PXAC_{a,c',t} \cdot \gamma_{a,c',h} \right) \right)$ $PQ_{c,t}$	$c \in C$ $h \in H$ $t \in T$
(39)	$QHA_{a,c,h,t} = \overline{POP}_{h,t} \cdot \left(\frac{BH_{h,t}}{\overline{POP}_{h,t}} - \sum_{c' \in C} PQ_{c',t} \cdot \gamma_{c',h} - \sum_{a' \in A} \sum_{c' \in C} PXAC_{a',c',t} \cdot \gamma_{ba',c',h} - \sum_{a' \in A} \sum_{c' \in C} PXAC_{a',c',t} \cdot \gamma_{ba',c',h} - \sum_{a' \in A} \sum_{c' \in C} PXAC_{a,c,t} \cdot \gamma_{ba',c',h} - \sum_{c' \in C} PXAC_{a,c',t} \cdot $	$a \in A$ $c \in C$ $h \in H$ $t \in T$

Table A3.2 (cont'd)

#	Equation	Domain
(40)	$YG_{t} = \sum_{i \in INSDNG} TINS_{i,t} \cdot YI_{i,t} + \sum_{f \in F} tf_{f,t} \cdot YF_{f,t} + \\ \sum_{a \in A} ta_{a,t} \cdot PA_{a,t} \cdot QA_{a,t} + \\ \sum_{a \in A} tva_{a,t} \cdot PVA_{a,t} \cdot QVA_{a,t} + \\ \sum_{c \in CM} tm_{c,t} \cdot pwm_{c,t} \cdot QM_{c,t} + \\ \sum_{c \in CE} te_{c,t} \cdot \overline{PWE}_{c,t} \cdot QE_{c,t} \cdot EXR_{t} + \sum_{c \in C} tq_{c,t} \cdot PQ_{c,t} \cdot QQ_{c,t} + \\ \sum_{f \in F} YIF_{gov,f,t} + \sum_{i \in INSDNG} TRII_{gov,i,t} + trnsfr_{gov,row,t} \cdot EXR_{t}$	$t \in T$
(41)	$\begin{split} EG_{t} &= \sum_{c \in C} PQ_{c,t} \cdot QG_{c,t} + \sum_{i \in INSDNH} trnsfr_{i,gov,t} \cdot \overline{CPI}_{t} \\ &+ \sum_{h \in H} trnsfrpc_{h,gov,t} \cdot \overline{POP}_{h,t} \cdot \overline{CPI}_{t} + trnsfr_{row,gov,t} \cdot EXR_{t} \\ &+ \sum_{i \in INS} gintrat_{i,t} \cdot GDEBT_{i,t} + fintrat_{gov,t} \cdot FDEBT_{gov,t} \cdot EXR_{t} \end{split}$	$t \in T$
(42)	$QG_{c,t} = QG_{c,t-1} \cdot \left(1 + \overline{QGGRW}_t + \sum_{c' \in C} qg01_{c,c',t} \cdot \overline{QGGRWC}_{c',t}\right)$	$c \in C$ $c \notin CINF$ $t \in T$ $t > 1$
(43)	$QG_{c,t} = \sum_{\substack{i \in INS \\ f \in F}} igf_{c,f,t} \cdot QFINS_{i,f,t}$	$c \in CINF$ $t \in T$ $t > 1$
(44)	$GSAV_t = YG_t - EG_t$	$t \in T$

Table A3.2 (cont'd)

#	Equation	Domain					
Inves	Investment block						
(45)	$(a) \ DKGOV_{f,t} \ge \sum_{a \in A} \inf_{\ (f,a) \in MFA} ifa_{f,a,t} \cdot QA_{a,t} \cdot EXP \left(\ln \left(\frac{QA_{a,t}}{QA_{a,t-I}} \right) \right) \int_{f \in FCAPGOVSER} df $	$f \in$ $FCAPGOV$ $t \in T$ $t > 1$					
	$+ \left(\left(1 + \sum_{c \in C} qg01_{f,c,t} \cdot \overline{QGGRWC}_{c,t} \right) \cdot QFINS_{gov,f,t} \right) \Big _{f \in FCAPGOVINF} \\ - QFINS_{gov,f,t} \cdot (1 - depr_{f,t})$						
	$(b) DKGOV_{f,t} \! \ge \! 0$						
	$(c) \left(DKGOV_{f,t} - DKGOVDEM_{f,t}\right) \cdot \left(DKGOV_{f,t} - 0\right) = 0$ where $DKGOVDEM_{f,t}$ = right-hand of part (a) of Equation 45 $\begin{bmatrix} Complementary\ slackness\ relationship\ : \\ 1.\ If\ government\ investment\ exceeds\ its\ demand\ then\ this\ investment\ level\ is\ zero. \\ 2.\ If\ the\ government\ investment\ level\ is\ above\ zero, then\ it\ equals\ its\ demand. \end{bmatrix}$						
(46)	$DKINS_{gov,f,t} = DKGOV_{f,t}$	$f \in$ $FCAPGOV$ $t \in T$ $t > 1$					
(47)	$PK_{f,t} = \sum_{c \in C} capcomp_{c,f} \cdot PQ_{c,t}$	$f \in FCAP$ $t \in T$					
(48)	$\begin{split} \sum_{f \in FCAPGOV} PK_{f,t} \cdot DKINS_{gov,f,t} &= GSAV_t - \sum_{c \in C} PQ_{c,t} \cdot qdst_{c,gov,t} + \overline{GBORTOT}_t \\ &+ \overline{GBORMSTOT}_t + \left(\overline{FBOR}_{gov,t} + \overline{FGRANT}_{gov,t}\right) \cdot EXR_t \end{split}$	$t \in T$					
(49)	$GBOR_{i,t} = \frac{gbdist_i \cdot INSSAV_{i,t}}{\displaystyle \sum_{i' \in INSDNG'} gbdist_i' \cdot INSSAV_{i',t}} \cdot \overline{GBORTOT}_t$	$i \in INSDNG$ $t \in T$					
(50)	$GBORMS_{i,t} = \frac{gbdist_i \cdot INSSAV_{i,t}}{\displaystyle \sum_{i' \in INSDNG'} gbdist_i \cdot INSSAV_{i',t}} \cdot \overline{GBORMSTOT}_t$	$i \in INSDNG$ $t \in T$					
(51)	$\begin{split} INVVAL_{i,t} &= INSSAV_{i,t} - \sum_{\mathbf{c} \in \mathbf{C}} PQ_{\mathbf{c},t} \cdot qdst_{\mathbf{c},i,t} - GBOR_{i,t} \\ &- GBORMS_{i,t} + \left(\overline{FBOR}_{i,t} + \overline{FGRANT}_{i,t} + fdi_{i,t} \right) \cdot EXR_{t} \end{split}$	$i \in INSNG$ $t \in T$					

Table A3.2 (cont'd)

#	Equation	Domain			
Investment block					
(52)	$PK_{f,t} \cdot DKINS_{i,f,t} = gfcfshr_{f,i,t} \cdot INVVAL_{i,t}$	$i \in INSNG$ $f \in FCAP$ $t \in T$			
(53)	$QINV_{c,t} = \sum_{f \in FCAP} \left(capcomp_{c,f} \cdot \sum_{i \in INS} DKINS_{i,f,t} \right)$	$c \in C$ $t \in T$			
(54)	$\begin{split} \sum_{c \in CM} pwm_{c,t} \cdot QM_{c,t} + \frac{\sum_{f \in F} YIF_{row,f,t}}{\text{EXR }_{t}} + \frac{\sum_{i \in INSDNG} TRII_{row,i,t}}{\text{EXR }_{t}} \\ + trnsfr_{row,gov,t} + \sum_{i \in INSD} fintrat_{i,t} \cdot FDEBT_{i,t} \\ = \sum_{c \in CE} \overline{PWE}_{c,t} \cdot QE_{c,t} + \sum_{i \in INSDNH} trnsfr_{i,row,t} + \sum_{h \in H} trnsfr_{pc}_{h,row,t} \cdot \overline{POP}_{h,t} \\ + \sum_{f \in F} trnsfr_{f,row,t} + \sum_{i \in INSD} \left(\overline{FBOR}_{i,t} + \overline{FGRANT}_{i,t}\right) + fdi_{row,t} \end{split}$	$t \in T$			
(55)	$\sum_{a \in A} QF_{f,a,t} = \left(1 - UERAT_{f,t}\right) \cdot \sum_{i \in INS} QFINS_{i,f,t}$	$f \in F$ $t \in T$			
(56)	$WFRES_{f,t} = WF_f^0 \cdot \left(\frac{QHPC_t}{QHPC^0}\right)^{\Phi_f^{wfqhpc}} \cdot \left(\frac{\left(1 - UERAT_{f,t}\right)}{\left(1 - UERAT_f^0\right)}\right)^{\Phi_f^{wfcrat}} \cdot \left(\frac{CPI_t}{CPI^0}\right)^{\Phi_f^{wfcpi}}$	$f \in$ $FUEND$ $t \in T$			
(57)	$(a) \ WF_{f,t} \geq WFRES_{f,t}$ $(b) \ UERAT_{f,t} \geq ueratmin_{f,t}$ $(c) \left(WF_{f,t} - WFRES_{f,t}\right) \cdot \left(UERAT_{f,t} - ueratmin_{f,t}\right) = 0$ $\begin{bmatrix} Complementary \ slackness \ relationship: \\ 1. \ If \ wage \ exceeds \ reservation \ wage \ then \ unemployment \ rate \ is \ at \ its \ minimum. \\ 2. \ If \ unemployment \ rate \ exceeds \ its \ minimum, then \ wage \ equals \ reservation \ wage. \end{bmatrix}$	$f \in$ $FUEND$ $t \in T$			
Asset stock updating and productivity block					
(58)	$QQ_{ct} = \sum_{a \in A} QINT_{c,a,t} + \sum_{h \in H} QH_{c,h,t} + QG_{c,t} + QINV_{c,t} + \sum_{i \in INS} qdst_{c,i,t} + QT_{c,t}$	$c \in C$ $t \in T$			

Table A3.2 (cont'd)

#	Equation	Domain
(59)	$QFINS_{i,f,t} = (1 - depr_{f,t-1}) \cdot QFINS_{i,f,t-1} + DKINS_{i,f,t-1} + qfinsadj_{i,f,t-1}$	$i \in INS$ $f \in FCAP$ $t \in T$ $t > 1$
(60)	$\begin{split} FDEBT_{i,t} &= FDEBT_{i,t-1} + FBOR_{i,t-1} \\ &+ \left(fintratdue_{i,t-1} - fintrat_{i,t-1}\right) \cdot FDEBT_{i,t-1} - fdebtrelief_{i,t-1} \end{split}$	$i \in INSD$ $t \in T$ $t > 1$
(61)	$GDEBT_{i,t} = GDEBT_{i,t-1} + GBOR_{i,t-1}$	$i \in INSDNG$ $t \in T$ $t > 1$
(63)	$\begin{split} GDPREAL_{t} &= \sum_{c \in C} \sum_{h \in H} PQ_{c}^{\theta} \cdot QH_{c,h,t} + \sum_{a \in A} \sum_{c \in C} \sum_{h \in H} PXAC_{a,c}^{\theta} \cdot QHA_{a,c,h,t} \\ &+ \sum_{c \in C} PQ_{c}^{\theta} \cdot QG_{c,t} + \sum_{c \in C} PQ_{c}^{\theta} \cdot QINV_{c,t} + \sum_{c \in C} \sum_{i \in INS} PQ_{c}^{\theta} \cdot qdst_{c,i,t} \\ &+ \sum_{c \in CE} EXR^{\theta} \cdot PWE_{c}^{\theta} \cdot QE_{c,t} - \sum_{c \in CM} EXR^{\theta} \cdot PWM_{c}^{\theta} \cdot QM_{c,t} \end{split}$	$t \in T$
(64)	$ALPHAVA_{a,t} = ALPHAVA2_{a,t} \cdot \prod_{f \in FCAP} \left[\frac{\sum_{i \in INS} QFINS_{i,f,t}}{\sum_{i \in INS} QFINS_{i,f}^{0}} \right]^{tfpelasqg_{a,f,t}}$ $\cdot \left(\frac{\sum_{t \in T} tfptrdwt_{t,t} \cdot TRDGDP_{t}^{0}}{TRDGDP^{0}} \right)^{tfpelastrd_{a}}$	$a \in A$ $t \in T$ $t > 1$
(65)	$ALPHAVA2_{a,t} = ALPHAVA2_{a,t-1} \cdot \left(1 + \alpha vag_{a,t} + \overline{CALTFPG}_t \cdot tfp01_{a,t}\right)$	$a \in A$ $t \in T$ $t > 1$
(66)	$GDPREALFC_t = \sum_{a \in A} PVA_a^0 \cdot \left(1 - tva_{a,t}^0\right) \cdot QVA_{a,t}$	$t \in T$

Table A3.3 Notation for MDG module of MAMS model

Symbol Notation 1	Explanation Explanation
SETS	
$a \in A$	activities
$b \in B$	student behavioural characteristics ={rep = repeater; dropout = dropout; pass = pass; grdcont = continuing graduate; grdexit = exiting graduate; glentry = entrant to grade 1; grdcyc= pass from last cycle-year; contcyc = pass within cycle}
$b \in BLOG \ (\subset B)$	student behaviour determined by logistic function ={pass, grdcont, glentry}
$b \in \mathit{BRES} (\subset B)$	student behaviour determined by residual scaling ={rep = repeater; dropout = dropout; grdexit = exiting graduate}
$c \in C$	commodities
$c \in CEDU (\subset C)$	education services ={c-edup = primary; c-edus = secondary; c-edut = tertiary}; can include both private and public education
$c \in CEDUT (\subset C)$	tertiary education services = {c-edut}
$c \in CELA$	educational cycle that corresponds to the age at which non-students would enter the labour force
$c \in CHLTH (\subset C)$	health services (public) ={c-hlt1g = low-tech; c-hlt2g = medium-tech; c-hlt3g = high-tech}; corresponding private health services labelled with "ng"
$cmdg \in CMDG$	aggregate MDG (non-education) service commodities = {c-hlt = aggregate health in MDG functions, not in C; c-wtsn = water-sanitation services}
$c \in CWTSN \ (\subset C)$	<pre>water-sanitation service commodities{c-wtsn = water- sanitation services}</pre>
eduarg ∈ EDUARG	arguments in CE function for educational behaviour ={edu-qual = quantity of services per student; w-prem = semiskilled-unskilled wage ratio; w-prem2 = skilled-semiskilled wage ratio; mdg4 = under-five mortality rate; fcapinf = infrastructure capital stocks; qhpc = per-capita hhd consumption}
$f \in FEXOG$	factors with exogenous growth
$f \in FLAB$	labour factors {f-labn = less than completed secondary education; f-labs = complete secondary education (without completed tertiary); f-labt = completed tertiary education
$h \in H$	households (excl. NGOs) ={h = the single household}
$i \in INSG$	government institution
$i \in INSNGAGG$	aggregate (domestic) non-government institution

Table	12	2	(cor	+24)
lanie	A	`	COL	11 (11

Symbol (cont'd)	Explanation
-	mapping between b (in BRES) and b' (in BLOG): ={(rep,
$b,b' \in MBB$	dropout).grd, grdexit.grdcont}
<i>b,b</i> '∈ <i>MBB2</i>	mapping between b (in BRES) and all elements b' (also in BRES) that are related to the same element(s) in BLOG: ={rep.(rep, dropout), dropout.(rep, dropout), grdexit.grdexit}
$c,c' \in MCE$	mapping private and public education into 1 education commodity, by cycle = {c-edup.(c-edup, c-edupng)} where c-edupng is private primary;similarly for c-edus and c-edut
$c,c' \in MCHDC$	human development service c is aggregated to c'
$c,c' \in MCM$	mapping between aggregate (CMDG) and disaggregated MDG service commodities (CHLTH and CWTSN) = {c-hlt. (c-hlt1g, c-hlt2g, c-hlt3g, c-hlt1ng, c-hlt2ng, c-hlt3ng} and {c-wtsn.(c-wtsn)}
$mdg \in MDG$	selected MDG indicators ={mdg2, mdg4, mdg5, mdg7a, mdg7b}
mcyc(c,b,t',t)	MDG2 in t is defined as the product over selected combinations of b and t' (where $t' \in TII$) = {pass, glentry}
$mdg \in MDGSTD$	MDG indicators ={mdg4 = under-5 mortality rate; mdg5 = maternal mortality rate; mdg7a = access to safe water; mdg7b = access to basic sanitation}
$f,c \in MFC$	mapping indicating that students who have completed cycle c belong to labour type f ={f-labn.(c-edup); f-labs.(c-edus); f-labt.(c-edut)}
mdgarg ∈ MDGARG	arguments in CE function for MDGs = {cmdg = agg commodities; mdg = different MDGs; fcapinf = infrastructure capital stocks; hhdconspc = per-capita hhd consumption }
$t \in T$	time periods
$t \in T11$	time periods including preceding years for MDG2 calculation
<u>PARAMETERS</u>	
$\alpha_{edu_{b,c}}$	constant in logistic function for educational behaviour
$\alpha_{educe_{b,c}}$	constant in CE function for educational behaviour
O. mdg mdg	constant in logistic function for MDG achievement
O.mce _{mdg}	constant in CE function for intermediate MDG variable
α_{hd}	efficiency term in CES aggregation function for human development
$\beta edu_{b,c}$	constant in logistic function for educational behaviour

CC 11	4.2	2	(con	. 2.15
Table	$A \circ$	1	ıcon	Tal

Symbol	Explanation
$\beta \log_{\mathit{mdg}}$	constant in logistic function for MDG achievement
δ $hd_{c,i}$	share parameter for HD CES function
ϕ edu _{b,c,eduarg}	elasticity of behaviour b in cycle c with respect to argument eduarg in educational CE function
$\phi_{m_{mdg,mdgarg}}$	elasticity of mdg with respect to argument mdgarg in CE function for MDG
$\gamma_{edu_{b,c}}$	parameter in logistic function for education
$\gamma_{\mathit{mdg}_{\mathit{mdg}}}$	parameter in logistic function for non-education MDGs
ρ hd _c	exponent in CES aggregation function for human development
$depr_{f,t}$	depreciation rate for factor f
discrat	discount rate
$ext_{edu_{b,c}}$	maximum share for educational behaviour b in cycle c
extmdg _{mdg}	maximum value for MDG 7a and 7b; minimum value for MDG 4 and 5
$grdcont01_{c,c'}$	0-1 constant showing that for c' next cycle is c
ord_{t}	ordinal position of t in the set T
$popgl_t$	population in age cohort entering grade 1
$poplab_{t}$	population of labour force age
poplabent,	population in age cohort entering labour force (age at end of a model education cycle)
$poptot_t$	total population in t
$qglentncoh_{c,t}$	number of non-cohort (non-1st-year-primary) entrants to first cycle
$shif_{i,f,t}^0$	share of domestic institution i in income of factor f
$shrdemot01_{c,c}$	0-1 parameter showing that for dropouts from c' the highest cycle is c
$shred_{b,c}^{0}$	base-year share for behavioural indicator behav in cycle c
$shr_{grdcyc}{}_{c}$	share of graduates (passing students) graduating from cycle c in base-year

Table	12	2	(cor	+24)
lanie	A	`	COL	11 (11

Symbol Symbol	Explanation
shr labent $_{c,t}$	share of drop-outs and leavers in cycle c that enter the labour force
shr labent $2_{f,t}$	share of labour type f of labour force entrants without education
yrcyc _c	years in school cycle for each education cycle c
VARIABLES	
$EDUQUAL_{c,t}$	educational quality in cycle c in year t
EG_{t}	government expenditures
$\overline{\mathit{INVVAL}_{i,t}}$	investment value for institution i
$MDGVAL_{mdg,t}$	value for MDG indicator mdg in t
$PQ_{c,t}$	price of commodity c in t
$PXAC_{a,c,t}$	price of commodity c from activity a
QENR _{c,t}	total number of students enrolled in cycle c in year t
$QENROLD_{c,t}$	number of old students enrolled in cycle c in year t
QENRNEW _{c,t}	number of new students enrolled in cycle c in year t
$QFACINS_{i,f,t}$	endowment of labour type f for institution i in t
$QH_{c,h,t}$	consumption of commodity c in t by household h
$QHA_{a,c,h,t}$	quantity consumed of home commodity c from activity a by household h
$QHPC_{t}$	Per-capita household consumption in t
$QQ_{c,t}$	quantity of goods supplied to domestic market (composite supply)
$QXHLTH_{mdg,t}$	government and NGO provision of aggregated health services related to health MDG
$\mathit{SHREDU}_{b,c,t}$	share of students in cycle c with behaviour b in t
$WF_{f,t}$	economy-wide wage for factor f in t
$ZEDU_{b,c,t}$	intermediate variable for educational outcome (defined by CE function; entering logistic function)
$ZMDG_{mdg,t}$	intermediate variable for standard MDGs (4-5-7a-7b) (defined by CE function; entering logistic function)

120

Table A3.4 Equations for MDG module of MAMS model

#	Equation	Domain
	$QHD_{c,i,t} = \sum_{c' \in C} QGc', t + \sum_{c' \in C} (QQc', t - QGc', t)$	$c \in C$
(67)	1 40	$i \in I$
	$ (c,c')\in MCHDC $ $ (c,c')\in MCHDC $ \cup $ i\in INSG $ \cup $ i\in INSNGAGG $	$t \in T$
	, 1	$c \in C$
	$QHDAGG_{c,t} = \alpha_{hd_c} \cdot \sum_{i \in INS} \left(\delta_{hd_{c,i}} \cdot QHD_{c,i,t}^{-\rho_{hd_c}} \right)^{\frac{1}{\rho_{hd_c}}} \bigg _{c \in CHDCES}$	$i \in I$
(68)		$t \in T$
	$+\sum_{i\in INS}QHDc,i,t \mid c\in CHDPRFSUB$	
(69)	$QHPC_{t} = \frac{\sum_{c \in C} \sum_{h \in H} PQ_{c}^{0} \cdot QH_{c,h,t} + \sum_{a \in A} \sum_{c \in C} \sum_{h \in H} PXAC_{a,c}^{0} \cdot QHA_{a,c,h,t}}{\sum_{c \in C} \sum_{h \in H} PXAC_{a,c}^{0} \cdot QHA_{a,c,h,t}}$	$t \in T$
	$QHPC_t = {poptot_t}$	
	$QHDAGG_{c,t}$ $/QHDAGG_{c}^{0}$	$c \in CEDU$
(70)	$EDUQUAL_{c,t} = \frac{QHDAGG_{c,t}}{QENR_{c,t}} / \frac{QHDAGG_{c}^{0}}{QENR_{c}^{0}}$	$t \in T$
	. ,	t > 1
	$QENROLD_{c,t} = SHREDU_{contcyc,c,t-1} \cdot QENR_{c,t-1} + \\$	$c \in CEDU$
(71)	$SHREDU_{rep,c,t-1} \cdot QENR_{c,t-1}$	$t \in T$
		t > 1
	$QENRNEW_{c,t} = SHREDU_{glentry,c,t-1} \cdot popg1_t + qglentncoh_{c,t}$	$c \in CEDU$
(72)	7	$t \in T$
	$+ \sum_{c' \in C} grdcont01_{c,c} \cdot \cdot SHREDU_{grdcont,c,t-1} \cdot SHREDU_{grdcyc,c',t-1} \cdot QENR_{c',t-1}$	t > 1
	$QENR_{c,t} = QENROLD_{c,t} + QENRNEW_{c,t}$	$c \in CEDU$
(73)		$t \in T$
		t > 1
	SHPEDIL - axt +	$b \in BLOG$
(74)	$SHREDU_{b,c,t} = ext_{cdb,c} + \frac{\alpha_{cdub,c}}{1 + EXP(\gamma_{cdub,c} + \beta_{cdub,c} \cdot ZEDU_{b,c,t})}$	$c \in CEDU$
	, , , , , , , , , , , , , , , , , , , ,	$t \in T$
	$ZEDU_{b,c,t} = \alpha_{educe} \frac{1}{b,c} \cdot \left(EDUQUAL_{c,t} \right)^{\varphi edu_{b,c,edu-qual}}$	$b \in BLOG$
		<i>c</i> ∈ <i>C</i>
(75)	$\cdot \left(\frac{WF_{f-labs,t}}{WF_{f-labn,t}}\right)^{\bigoplus edu_{b,c,w-prem}} \cdot \left(\frac{WF_{f-labt,t}}{WF_{f-labs,t}}\right)^{\bigoplus edu_{b,c,w-prem}} \cdot MDGVAL_{mdg4,t}^{\bigoplus edu_{b,c,mdg4}}$	$t \in T$
	$\prod_{f \in FCAPGOVINF} \left(\sum_{i \in INS} QFINS_{i,f,t} \right)^{\varphi e du_{b,c,f}} \cdot QHPC_t^{\varphi e du_{b,c,qhpc}}$	
	$f \in FCAPGOVINF \ (i \in INS)$	

Table A3.4 (cont'd)

#	Equation	Domain
(76)	$SHREDU_{b,c,t} = \left(1 - \sum_{\substack{b' \in BLOG \\ (b,b') \in MBB}} SHREDU_{b',c,t} \right) \frac{SHREDU_{b,c}^0}{\sum_{\substack{b' \in BRES \\ (b,b') \in MBB2}} SHREDU_{b',c}^0}$	$b \in BRES$ $c \in CEDU$ $t \in T$
(77)	$SHREDU_{grdcyc,c,t} = \frac{SHREDU_{pass,c,t}}{yrcyc_c} \cdot \left(\frac{shr_{grdcyc}}{\frac{1}{yrcyc_c}}\right)^{1-SHREDU_{pass,c,t}}$	$c \in CEDU$ $t \in T$
(78)	$SHREDU_{contcyc,c,t} = SHREDU_{pass,c,t} - SHREDU_{grdcyc,c,t}$	$c \in CEDU$ $t \in T$
(79)	$MDGVAL_{mdg2,t} = \prod_{\substack{b \in B, t' \in T11 \\ mcyc(c-edup1,b,t',t)}} SHREDU_{b,c-edup1,t'}$	$t \in T$
(80)	$LABPARTRAT_{t} = \frac{\sum\limits_{i \in INS, \ f \in FLAB} QFINSi, f, t}{\sum\limits_{l shif_{i,f,t}^{0}} QFINSi - \sum\limits_{c \in CELA} QENRc, t} =$	$t \in T$ $t > 1$ $flab \notin$ $FEXOG$
(81)	$QFINS_{i,f,t} = shif_{i,f,f}^{0} \cdot \left\{ \left(1 - depr_{f,t-1}\right) \cdot \sum_{i' \in INS} QFINS_{i',f,t-1} \right.$ $\left. \cdot \sum_{c,c' \in C} \left \left(f,c\right) \in MFC \right \left(f,c) \in MFC \right.$ $\cdot SHREDU = $	$i \in INS$ $f \in FLAB$ $t \in T$ $t > 1$

Table A3.4 (cont'd)

#	Equation	Domain
(82)	$MDGVAL_{mdg,t} = ext_{mdgmdg} + \frac{\alpha_{mdg_{mdg}}}{1 + EXP(\gamma_{mdg_{mdg}} + \beta_{mdg_{mdg}} \cdot ZMDG_{mdg,t})}$	$mdg \in$ $MDGSTD$ $t \in T$
(83)	$ZMDG_{mdg,t} = \alpha_{mce_{mdg}} \cdot \left(\prod_{cmdg \in CMDG} \left(\sum_{c \in C} \frac{QQ_{c,t}}{poptot_t} \right)^{\varphi m_{mdg,cmdg}} \right)$ $\cdot \prod_{f \in FCAPGOVINF} \left(\sum_{i \in INS} QFINS_{i,f,t} \right)^{\varphi m_{mdg,f}}$ $\cdot \left(\prod_{mdg' \in MDGSTD} MDGVAL_{mdg',t}^{\varphi m_{mdg,mdg'}} \right) \cdot QHPC_{t}^{\varphi m_{mdg,hhdconspc}}$	$mdg \in$ $MDGSTD$ $t \in T$