NOI2025模拟赛 div2

时间: 2025年4月20日

题目名称	排序	最小生成树	操作
题目类型	传统型	传统型	传统型
输入文件名	sort.in	mst.in	operator.in
输出文件名	sort.out	mst.out	operator.out
每个测试点时限	1.0秒	2.0秒	1.5秒
内存限制	256M	1024M	1024M
子任务数目	20	25	20
测试点是否等分	是	是	是

提交源程序文件名

对于C++语言	sort.cpp	mst.cpp	operator.cpp
---------	----------	---------	--------------

编译选项

对于C++语言	-lm -O2 -std=c++14	

注意事项

- 1. 文件名(包括程序名和输入输出文件名)必须使用英文小写。
- 2. C++ 中函数 main() 的返回值类型必须是 int, 值必须为 0。
- 3. 若无特殊说明,输入文件中同一行内的多个整数、浮点数、字符串等均使用一个空格分隔。
- 4. 若无特殊说明,结果比较方式为忽略行末空格、文末回车后的全文比较。

T1排序 (sort)

问题描述

你有一个排列a,你要对这个排列进行升序排序。

你每次可以进行如下操作:

选择一个a的子序列,从排列a中删去这个子序列,再将这个子序列插回到a的最前面。

你需要求出最少几次操作可以将 a 进行排序, 并且构造一种方案。

输入格式

第一行一个正整数 n, 表示排列 a 的长度。

第二行 n 个数,表示排列 a 。

输出格式

第一行一个正整数m,表示最少的操作次数。

接下来 m+1 行,其中第一行表示原序列,接下来的 m 行中的第 i 行表示第 i 次操作后的序列。 如果有多种方案,你可以输出任意一种。

样例1输入

```
1 | 4
2 | 4 1 2 3
```

样例1输出

样例2输入

```
1 | 4
2 | 2 1 4 3
```

样例2输出

```
    1
    2

    2
    2 1 4 3

    3
    1 4 2 3

    4
    1 2 3 4
```

数据范围与约定

对于 20% 的数据, $1 \le n \le 10$ 。

对于 50% 的数据, $1 \le n \le 20$ 。

对于另外 20% 的数据, n 在 [1,3000] 中随机生成, 排列在所有排列中随机生成。

对于 100% 的数据,1 < n < 3000 。

如果你输出的第一行正确,可以得到40%的分数,但你仍然需要保证你的输出符合格式要求。

T2 最小生成树 (mst)

问题描述

给定一张 n 个点 m 条边的 **无向连通图**,图中的第 i 条边有 a_i, b_i 两个权重。

对于图中的每条边,你可以选择 a_i, b_i 其中之一作为该条边的边权。

对于所有满足 $0 \le k \le m$ 的整数 k,你需要求出,若选择 **恰好** k 个 a_i 作为对应边的边权,**恰好** m-k 个 b_i 作为对应边的边权,该图的最小生成树的边权和 **最大** 是多少。

输入格式

从文件 mst.in 中读入数据。

第一行包含两个整数 n, m。

接下来 m 行,每行包含四个整数 x_i,y_i,a_i,b_i ,表示图中的第 i 条边,其连接 x_i,y_i 两点,权重为 a_i,b_i 。

输出格式

输出到文件 mst.out 中。

输出 m+1 行共 m+1 个整数,第 i 个数表示 k=i-1 时的答案。

样例1输入

```
      1
      3 3

      2
      1 2 5 4

      3
      2 3 2 9

      4
      1 3 3 6
```

样例1输出

```
      1
      10

      2
      11

      3
      8

      4
      5
```

样例1解释

k=0: 选择 b_1,b_2,b_3 ,最小生成树边权和为 $b_1+b_3=10$ 。

k=1: 选择 a_1,b_2,b_3 ,最小生成树边权和为 $a_1+b_3=11$ 。

k=2: 选择 a_1,b_2,a_3 ,最小生成树边权和为 $a_1+a_3=8$ 。

k=3: 选择 a_1,a_2,a_3 ,最小生成树边权和为 $a_2+a_3=5$ 。

样例2

见选手目录下的 mst/mst2.in 与 mst/mst2.ans。

样例3

见选手目录下的 mst/mst3.in 与 mst/mst3.ans。

样例4

见选手目录下的 mst/mst4.in 与 mst/mst4.ans。

数据范围

对于所有数据,保证 $2 \le n \le 9$, $n-1 \le m \le 100$, $1 \le x_i, y_i \le n$, $1 \le a_i, b_i \le 10^8$ 。保证图连通且无自环。

测试点编号	$n \le$	$m \leq$
$1\sim 4$	6	18
$5\sim 6$	6	30
$7\sim 8$	6	100
$9\sim 10$	7	30
$11\sim 12$	7	100
$13\sim14$	8	30
$15\sim16$	8	100
$17\sim18$	9	30
$19\sim 20$	9	60
$21\sim25$	9	100

T3 操作 (operator)

问题描述

给定一个 质数 p 和 n 个操作, 操作有如下两种:

- 给定 x, 将 w 修改为 x。
- 给定 x, 将 w 修改为 $(w \times x) \mod p$ 。

其中w是一个初始为1的变量。

你可以以任意顺序执行上面的 n 个操作,得到最终的 w。你需要求出在 $0\sim p-1$ 中,有多少个数是 无论以什么顺序执行操作 都无法得到的。

输入格式

从文件 operation.in 中读入数据。

本题为多组数据,输入数据第一行包含一个整数 T , 表示数据组数。

对于每组数据:

第一行包含两个整数 p, n。

接下来 n 行,每行包含两个整数 op_i, x_i 。其中 $op_i=0$ 表示第一种操作, $op_i=1$ 表示第二种操作, x_i 表示操作中给定的数。

输出格式

输出到文件 operation.out 中。

对于每组数据,输出一行一个整数表示答案。

样例1输入

1 | 1

2 7 3

3 1 2

4 0 6

5 1 3

样例1输出

1 3

样例1解释

0, 2, 3 无法被生成。

样例2

见选手目录下的 operation/operation2.in 与 operation/operation2.ans.

样例3

见选手目录下的 operation/operation3.in 与 operation/operation3.ans.

数据范围

对于所有数据,保证 $1 \leq T \leq 2$, $1 \leq n \leq 10^6$, $2 \leq p \leq 10^6$, $op_i \in \{0,1\}$, $0 \leq x_i < p$ 。保证 p 为质数。

测试点编号	$n \le$	$p \leq$	特殊性质
$1\sim 2$	10	10^{6}	无
$3\sim 4$	10^4	10^{6}	A
$5\sim 6$	10^{3}	10^4	无
$7\sim 10$	10^{5}	10^{5}	无
$11\sim 20$	10^{6}	10^{6}	无

特殊性质 A: 保证最多存在 12 个第二种操作。