

(19)

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) EP 0 840 934 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the grant of the patent:

14.04.1999 Bulletin 1999/15

(51) Int Cl. 6: H01H 13/70

(21) Application number: 96922069.8

(86) International application number:
PCT/FI96/00404

(22) Date of filing: 10.07.1996

(87) International publication number:
WO 97/04472 (06.02.1997 Gazette 1997/07)

(54) KEYBOARD AND KEY AND TELEPHONE APPARATUS WITH SUCH A KEYBOARD

TASTATUR, TASTEN UND TELEFONGERÄT MIT SOLCHER TASTATUR

CLAVIER, TOUCHES ET TELEPHONE POURVU D'UN TEL CLAVIER

(84) Designated Contracting States:
DE FR GB NL

(72) Inventor: RAPELI, Juha
FIN-90570 Oulu (FI)

(30) Priority: 24.07.1995 FI 953551

(74) Representative: Johansson, Folke Anders et al
Nokia Mobile Phones Ltd.,
P.O. Box 100
00045 Nokia Group (FI)

(43) Date of publication of application:
13.05.1998 Bulletin 1998/20

(56) References cited:
EP-A- 0 441 993 EP-A- 0 520 159
GB-A- 2 081 512 SE-B- 356 384
US-A- 4 034 176 US-A- 5 235 636

(73) Proprietor: NOKIA MOBILE PHONES LTD.
24101 Salo (FI)

EP 0 840 934 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

[0001] The present invention relates to a keyboard having keys and to a key for inputting characters, wherein the key is arranged to produce a character in response to the press of the key once. Also the invention relates to a telephone apparatus comprising such a keyboard.

[0002] The use of mobile phones and other portable devices is also becoming common in the handling and transfer of alphanumeric information. This requires having a small-sized manmachine interface (MMI), which is capable of easily handling more than 30 letters, numbers from 0 to 9, and about ten special characters (+, #, *, etc.), i.e., a total of, for example, 50 characters or more. The entity of the produced characters is called a set of characters. The operational requirement is the same as, e.g., that of a computer keyboard, but the size should be considerably smaller, and the device should also be suitable for mobile use in other ways. An additional requirement made of the device is, e.g., good manufacturability and low costs, as well as suitability for different kinds of user environments and for the implementation of many different types of sets of characters. The device, presented here, which meets these requirements, is called a keyboard while an alphanumeric keyboard is called an A/N keyboard.

[0003] One way of reducing the size of an A/N keyboard is to reduce the size of an individual key to the extent that the keys are handled by means of a special manipulator instead of using fingers such as a stick, as indicated by the development path of the miniaturisation of an A/N keyboard, shown in Figure 1. Another way is to make one key serial-operationally multi-functioning, i.e., sequential, so that, within a specific time window, one press denotes a number, two presses a first letter, three presses a second letter, etc. For example, an A/N keyboard used with motions, currently in use in GSM phones, functions in this way, as shown in Figure 2. The keyboard functions merely as a numeric keyboard and, when separately selected, on an A/N keyboard, so that one press within a specific period of time (e.g., approx. one second) denotes a first letter alternative, two presses a second letter alternative, etc. In a widely known solution, the sensitivity of a key to the number of presses can be adjusted so that the key either identifies several presses or each press is followed by the main alternative, i.e., usually the selection of a number. The pressing of a key is identified by electronics, so that the pressed key connects a row conductor, at the point of the key, to a column conductor, located at the same point, and by identifying, by means of electronics, the conductors connected to each other.

[0004] The problem of both a traditional and a miniaturised keyboard is that they neither fit in a sufficiently small space nor is it impossible to have clear numeric keys on a small A/N keyboard. From the viewpoint of a portable device, the problem is also the number of ma-

trix conductors, required in keyboard coding, which, for e.g. 56 keys is 7+8 (7 rows, 8 columns), and the deformation of the row/column figure of the keyboard, when implementing for e.g., 56 keys physically for a 4*14 row matrix.

The advantage of a sequential key function is a clear main function, e.g., numbers, but the disadvantage, from a user's viewpoint, the slowness of the letter functions and that it is difficult to understand.

[0005] A major technical development step should yet be taken from the above-described solutions, e.g., to graphic, interactive keyboards or to identifying writing by a hand movement. Hence, there is still need for a useful A/N keyboard, based on contact.

[0006] One solution for a key of a keypad is disclosed in publication DE 36 22 275, in which each key has two contact elements and the key is formed as a rocker button so that when the key is pressed in the middle both contact elements are contacted to activate a middle key function, when the key is pressed at left only the left contact element is contacted to activate a left key function, and when the key is pressed at right only the right contact element is contacted to activate a right key function. This solution allows three different key functions by one press. At the time, however, more than three key functions are desired of one key, especially in mobile phones.

[0007] The present invention combines, from a user's viewpoint, a single- and multi-functioning key so that there is only one key for a number of characters, however, so that each character is selected with a single press of the key. The present invention allows in the preferred embodiments 8 - 10 different key functions for each key by a single press of the key. As for its manufacture, the device is economical, because the number of conductors required for keyboard coding such as row and column conductors are smaller than in the well-known two-dimensional matrix conductor solutions. Therefore, e.g., 56 characters, which in matrix coding require 15 (7+8) conductors, can be decoded by means of 11 conductors which consist of the row and column conductors of a 4*4 matrix, as well as three conductors identifying the keyboard edge, thereby easily enabling the coding of more than 64 different kinds of characters.

[0008] The invention is characterized by that the key has a main contact which is always activated when the key is pressed, and at least one edge contact, which is activated, in addition to the main contact, when the key is pressed at the point or close to the point of the edge contact, and the activation of predetermined contacts correspond to the inputting of a predetermined character.

[0009] The invention will be described in following by reference to the attached drawings, in which

55 **Figure 1** shows the development path of the miniaturisation of an A/N keyboard,

Figure 2 shows a prior art keypad of a mobile phone,

Figure 3a shows a mechanical principle of the invention,
 Figure 3b shows and a timing diagram of contacts,
 Figure 4 shows contact combinations of triangular and quadrangular keys, and
 Figure 5 shows an electrical principle of the invention and its application.

[0010] Figure 3a shows one example of the structure of a key according to the invention. The mechanical basic structure of a key 30, shown in Figure 3a, is such that a centre contact 31 in the key, which is, e.g. of electricity conducting plastic, forms, at first, a contact between c(column) and r(ow) conductors. The centre contact 31 of the key 30 and edge contacts 32, 33... are in an electricity conducting contact with each other and consist of, e.g., a common electricity conducting plastic part 39. On the basis of this c/r contact, the key that has been pressed is identified on a keyboard consisting of a number of keys. When the key 30 is pressed further, at the point of a corner contact, a second contact is formed, underneath the key, between the centre conductor c and one of the edge conductors.

[0011] When the key is pressed in the centre area, only the c/r contact is formed, which denotes the main character alternative of the key in question. When the key is pressed on one of the edges, at first, the contact c/r is formed and then, after a short expanse of time, a second contact c/e is formed, which denotes the selection of some secondary character alternative of the key in question.

[0012] By means of electronics that identify the functioning of the key, the keyboard can be set to such a mode, that it only identifies the contacts c/r, or the contacts c/r and c/e. It is also possible that electronics can also identify multiple presses. As for timing, it is essential that the contact c/r, and the contact c/e, which could be formed after that, will be identified to have formed quickly enough after the formation of the contact.

[0013] One possible identification process is shown in Figure 3b by means of a timing diagram. The contact c/r is formed at the point of time of t_0 , and it is identified by the electronic equipment at the point of time of t_{start} . From thereon, the point of time of t_2 will be anticipated, at which time a possible second contact c/e will be identified, and a decision on the key function will be made. When pressing a key in one of the corners, a second contact will be formed at the point of time of t_1 . Thus, the actual difference in time between the contacts c/r and c/e is $t_1 - t_0$, and the identification of the entire key function will last for a period of time of $t_D = t_2 - t_0$. Typically, t_D is equal to 50 ms.

[0014] When the key is released, the contact c/e will open at the point of time of t_{31} first and, after that, the contact c/r will open at the point of time of t_{32} , which will be identified at the point of time of t_{stop} . Hence, the duration of the entire key function is $T_{tot} = t_{stop} - t_{start}$. Typically, T_{tot} is equal to 100-300 milliseconds. Thus, the

key described above makes it possible to produce alphanumeric characters at the rate of three characters a second and, in principle, even as many as ten characters a second.

[0015] As for the method, it is not essential whether contacts 31, 32, 33, etc. are mechanical switches, e.g., well-known membrane keys on a circuit board, or plastic keys as described above. The most essential function is based on one or more contacts and on their order of formation, so that the identification of a character can be made on the basis of the activation of the main contact. This can be done in accordance with the example described here, so that all the contacts are assumed to be activated after a specific period of time from the activation of the main contact. A second alternative is that the main contact will be the last to activate, in which case the character can be identified immediately in connection with the activation of the main contact. As for mechanical implementation, the former method of implementation is more natural. There are no limitations to the number of edge contacts either, but three and four edge contacts are preferred. Three is preferable because, when one edge is pressing, two other edges form an axle, which supports the inclination of the key and, in addition, the contact part of a triangular key can be pressed in three different ways: only on the centre area, on the centre area and on one edge, and on two edges. This enables seven different singletouch characters by means of one key. The eighth character is the pressing of the key, so that all the contacts are activated, i.e., in a triangular key, all binary combinations of edge conductors $E_1 - E_3$ are possible. Four edge contacts are well suited to quadrangular keys, although, e.g., the centre contact 31 should be used as a support point for the key's movement, if the only aim is to activate one edge contact. In a quadrangular key, the activation of two edge contacts is ideal.

[0016] By comparing the easily implemented contact combinations of triangular and quadrangular keys, as shown in Figure 4, it can be noted that a triangular contact part is relatively more effective and almost as versatile as a quadrangular key. In Figure 4, the open circle, drawn inside the key's edge line, denotes an unformed contact and the closed circle denotes a contact formed, by the key being pressed on different points. The contact combinations 1 - 4 of the triangular key, shown in Figure 4, are based on the identification of a centre contact and one edge contact as described above, and the combinations 5 - 8 are based on the identification of a centre contact and two edge contacts. On the triangular keys, arrows have also been drawn to indicate the support points of the counterforce to the force forming a contact. It can be seen that the contact combinations 2 - 4 of the triangular key are preferable in the sense that two support points are formed on the opposite edge for each edge contact, and the movement of the key is an easily controlled swaying motion on an axle formed by them.

[0017] Figure 5 shows an electrical connection for a

3*3 contact keyboard, wherein each of the keys has three single-press functions. Let us study a key 51, in the centre area, of which there is a row contact of 52 and a column contact of 53, which are connected to a row conductor r_1 and a column conductor c_1 , respectively. In addition, underneath the key, there is an edge contact of 54, connected to an edge conductor e_1 , and an edge contact 55, connected to an edge conductor e_2 . When pressing the key 51 in the centre, the contacts 52 and 53 connect the row conductor r_1 and the column conductor c_1 together, whereby the control electronics will identify that the key 51 has been pressed. (No contact is formed between the edge conductors e_1, e_2, \dots at this point.) When the key 51 is pressed, e.g., at the point of a contact 54, the key will connect the contact points 52 and 53 and, a little later, also the contact point 54. Electronics will identify that the row conductor r_1 , the column conductor c_1 , and the edge conductor e_1 have been connected together, and interpret that the key 51 has been pressed on the edge, at the point of the contact 54. Thus, a keyboard, according to this example, is capable of identifying 3*3*3, i.e., 27 different characters on the basis of two contacts formed. More generally, the number of characters N_{tot} , which can be identified by means of a centre contact and, in addition to it, by means of one edge contact, is

$$N_{\text{tot}} = N_r * N_c * (1 + N_e)$$

where N_r is the number of row conductors, N_c is the number of column conductors, and N_e is the number of edge conductors. Mechanically, it can also be arranged so that, in addition to a contact in the centre area of the key 51, two edge contacts will be activated, in which case, the number of characters to be produced by means of a single press of a single key will increase further. If a large number of special characters should be produced, a well-known method can also be used in order to implement a multi-functioning keyboard and, hence, by means of a single keyboard, also produce, e.g., in addition to the main characters of the Latin alphabet, Germanic and Scandinavian characters.

[0018] In addition to its small size, usability, simplicity, profitability, and economy, the advantages of the solution presented here are also its suitability for a number of different types of sets of characters, as well as for the handling of numbers and letters without mutual limitations.

[0019] To a person skilled in the art, it is also obvious that keyboards can be compiled and used in different ways depending on their use. Sometimes, only one character is identified per key, sometimes all the single-press characters per key, and sometimes, in addition to these, also the characters that require several presses as well. The present solution is also suitable for the implementation of a telephone keyboard in accordance with the recommendations of the CCITT (present ITU).

An example of a telephone apparatus in which keyboard according to the invention can be used is a mobile phone, e.g. which is shown in the middle of Figure 1. It is also apparent, that when the contact part of a key is essentially in the shape of a triangle or a quadrangle, as described above, the part that is visible to a user can be designed in accordance with the current requirements or trend. It is also possible to implement keyboards, which permanently have different types of keys. Thus, the field of application of the present invention is only restricted by the enclosed claims.

Claims

- 5 1. A keyboard having keys for inputting characters, wherein a key is arranged to produce a character in response to the press of the key once, characterised in that the key (30) has a main contact (31) which is always activated when the key (30) is pressed, and at least one edge contact (32, 33), which is activated, in addition to the main contact (31), when the key (30) is pressed at the point or close to the point of the edge contact (32, 33), and the activation of predetermined contacts correspond to the inputting of a predetermined character.
- 10 2. A keyboard according to claim 1, characterised in that the keyboard or keys of its required part can be set by a user to a mode, wherein only main contacts, or all the contacts, or all the contacts and successive functions are identified.
- 15 3. A keyboard according to claims 1 or 2, characterised in that the key comprises three edge contacts arranged in a triangular form.
- 20 4. A keyboard according to claim 3, characterised in that the key has a triangular shape and each edge contact is located at an apex of the triangle.
- 25 5. A keyboard according to claims 1 or 2, characterised in that the key comprises four edge contacts arranged in a quadrangular form.
- 30 6. A keyboard according to claim 5, characterised in that the key has a quadrangular shape and each edge contact is located at a corner of the quadrangle.
- 35 7. A telephone apparatus comprising a keyboard having keys for inputting characters, wherein a key is arranged to produce a character in response to the press of the key once, characterised in that the key (30) has a main contact (31) which is always activated when the key (30) is pressed, and at least one edge contact (32, 33), which is activated, in addition to the main contact (31), when the key (30) is

pressed at the point or close to the point of the edge contact (32, 33), and the activation of predetermined contacts correspond to the inputting of a predetermined character.

8. A key for inputting characters, wherein the key is arranged to produce a character in response to the press of the key once, characterised in that the key (30) has a main contact (31) which is always activated when the key (30) is pressed, and at least one edge contact (32, 33), which is activated, in addition to the main contact (31), when the key (30) is pressed at the point or close to the point of the edge contact (32, 33), and the activation of predetermined contacts correspond to the inputting of a predetermined character.

Patentansprüche

1. Tastatur mit Tasten zum Eingeben von Zeichen, wobei eine Taste so ausgebildet ist, dass sie ein Zeichen auf einmaliges Betätigen der Taste ausgibt, **dadurch gekennzeichnet, dass** die Taste (30) einen Hauptkontakt (31), der immer beim Betätigen der Taste (30) aktiviert wird, und mindestens einen Randkontakt (32, 33) aufweist, der, zusätzlich zum Hauptkontakt (31), aktiviert wird, wenn die Taste (30) am Punkt des Randkontakte (32, 33) oder in dessen Nähe betätigt wird, und dass die Aktivierung vorbestimmter Kontakte der Eingabe eines vorbestimmten Zeichens entspricht.
2. Tastatur nach Anspruch 1, **dadurch gekennzeichnet, dass** die Tastatur oder Tasten in ihrem erforderlichen Teil von einem Benutzer in einen Modus versetzt werden können, in dem nur Hauptkontakte oder alle Kontakte oder alle Kontakte und Folgefunktionen erkannt werden.
3. Tastatur nach Anspruch 1 oder 2, **dadurch gekennzeichnet, dass** die Taste 3 in Dreieckform angeordnete Randkontakte aufweist.
4. Tastatur nach Anspruch 3, **dadurch gekennzeichnet, dass** die Taste dreieckige Form aufweist und jeder Randkontakt an einer Spitze des Dreiecks liegt.
5. Tastatur nach Anspruch 1 oder 2, **dadurch gekennzeichnet, dass** die Taste 4 mit rechteckiger Form angeordnete Randkontakte aufweist.
6. Tastatur nach Anspruch 5, **dadurch gekennzeichnet, dass** die Taste viereckige Form aufweist und jeder Randkontakt an einer Ecke des Vierecks liegt.
7. Telefongerät mit einer Tastatur mit Tasten zum Ein-

geben von Zeichen, wobei eine Taste so ausgebildet ist, dass sie ein Zeichen auf einmaliges Betätigen der Taste ausgibt, **dadurch gekennzeichnet, dass** die Taste (30) einen Hauptkontakt (31), der immer beim Betätigen der Taste (30) aktiviert wird, und mindestens einen Randkontakt (32, 33) aufweist, der, zusätzlich zum Hauptkontakt (31), aktiviert wird, wenn die Taste (30) am Punkt des Randkontakte (32, 33) oder in dessen Nähe betätigt wird, und dass die Aktivierung vorbestimmter Kontakte der Eingabe eines vorbestimmten Zeichens entspricht.

8. Taste zum Eingeben von Zeichen, wobei die Taste so ausgebildet ist, dass sie ein Zeichen auf einmaliges Betätigen der Taste ausgibt, **dadurch gekennzeichnet, dass** die Taste (30) einen Hauptkontakt (31), der immer beim Betätigen der Taste (30) aktiviert wird, und mindestens einen Randkontakt (32, 33) aufweist, der, zusätzlich zum Hauptkontakt (31), aktiviert wird, wenn die Taste (30) am Punkt des Randkontakte (32, 33) oder in dessen Nähe betätigt wird, und dass die Aktivierung vorbestimmter Kontakte der Eingabe eines vorbestimmten Zeichens entspricht.

Revendications

30. 1. Clavier comportant des touches pour entrer des caractères, où une touche est agencée de manière à produire un caractère en réponse à la pression exercée une fois sur la touche, caractérisé en ce que la touche (30) comprend un contact principal (31) qui est toujours activé lorsque la touche (30) est soumise à une pression, et au moins un contact de bord (32, 33) qui est activé, en plus du contact principal (31), lorsque la touche (30) est soumise à une pression au point ou à proximité du point du contact de bord (32, 33), et l'activation de contacts pré-déterminés correspond à l'entrée d'un caractère donné.
35. 2. Clavier selon la revendication 1, caractérisé en ce que le clavier ou les touches de sa partie nécessaire peuvent être placés par un utilisateur dans un mode, dans lequel seuls les contacts principaux, ou tous les contacts, ou tous les contacts et les fonctions successives sont identifiés.
40. 3. Clavier selon les revendications 1 ou 2, caractérisé en ce que la touche comprend trois contacts de bord disposés sous la forme d'un triangle.
45. 4. Clavier selon la revendication 3, caractérisé en ce que la touche a une forme triangulaire et chaque contact de bord est placé à un sommet du triangle.
- 50.
- 55.

5. Clavier selon les revendications 1 ou 2, caractérisé en ce que la touche comprend quatre contacts de bord disposés sous une forme quadrangulaire.

6. Clavier selon la revendication 5, caractérisé en ce que la touche a une forme quadrangulaire et chaque contact de bord est placé à un angle du quadrangle.

7. Appareil téléphonique comportant un clavier ayant des touches pour entrer des caractères, où une touche est agencée de manière à produire un caractère en réponse à la pression exercée une fois sur la touche, caractérisé en ce que la touche (30) comprend un contact principal (31) qui est toujours activé lorsque la touche (30) est soumise à une pression, et au moins un contact de bord (32, 33) qui est activé, en plus du contact principal (31), lorsque la touche (30) est comprimée au point ou à proximité du point du contact de bord (32, 33), et l'activation de contacts prédéterminés correspond à l'entrée d'un caractère donné. 10
15
20

8. Touche pour entrer des caractères, où la touche est agencée de manière à produire un caractère en réponse à la pression exercée une fois sur la touche, caractérisée en ce que la touche (30) comporte un contact principal (31) qui est toujours activé lorsque la touche (30) est soumise à une pression, et au moins un contact de bord (32, 33) qui est activé, en plus du contact principal (31), lorsque la touche (30) est comprimée au point ou à proximité du point du contact de bord (32, 33), et l'activation de contacts prédéterminés correspond à l'entrée d'un caractère donné. 25
30
35

40

45

50

55

Fig. 1

Fig. 2

Fig. 3a

Fig. 3b

Fig. 4

Fig. 5