1 x+y11 = 1/x11+1/411

Solutions to Exercises Marked with () of Chapter 3 S.3

(x+4, x+4) = | x+4111 3.1 (Let $x, y \in X$. We may assume that $y \neq 0$ since the case of y = 0 is trivial. = 11412+114112+ 2/4(xi4>). S [[x112+11412+ 21|x1111411

Sufficiency. If x = py for some real $p \ge 0$, then we have

 $\|x+y\| = \|(1+p)y\| = (1+p)\|y\| = \|y\|+p\|y\| = \|py\|+\|y\| = \|x\|+\|y\|. \implies \text{Recally of the part of$

Necessity. Since

$$||x + y||^2 = \langle x + y, \ x + y \rangle = ||x||^2 + ||y||^2 + 2\mathbf{Re}\,\langle x, \ y \rangle$$

$$\leq ||x||^2 + ||y||^2 + 2||x|| ||y|| = (||x|| + ||y||)^2,$$

it follows that if ||x+y|| = ||x|| + ||y||, then $\operatorname{Re}\langle x, y \rangle = ||x|| ||y||$. Hence, $\stackrel{>}{\sim} 0 \Rightarrow x = py$. $|\langle x, y \rangle| = \mathbf{Re} \langle x, y \rangle = ||x|| ||y|| \geqslant 0 \text{ since } \mathbf{Re} \langle x, y \rangle \leqslant |\langle x, y \rangle| \leqslant ||x|| ||y||$ by the Cauchy-Schwarz inequality (3.2). Noting that $y \neq 0$, let p = $\langle x, y \rangle / ||y||^2$, then we have $p = ||x|| / ||y|| \ge 0$ and

$$\langle x - py, \ x - py \rangle = p^2 ||y||^2 + ||x||^2 - 2p||x|| \, ||y|| = 0.$$

Hence x = py with $p = ||x||/||y|| \ge 0$.

3.2 () Clearly, if $y = \lambda x + (1 - \lambda)z$ for some scalar λ between 0 and 1, then

$$||x - y|| + ||y - z|| = (1 - \lambda)||x - z|| + \lambda ||x - z|| = ||x - z||.$$

Conversely, let ||x - y|| + ||y - z|| = ||x - z||, then by Exercise 1.1 we see that there exists a real number $k \ge 0$ such that x - y = k(y - z), then the conclusion follows by letting $\lambda = 1/(k+1)$.

3.3 (\triangle) We may assume that $x \neq 0$ since the case of x = 0 is trivial. If the equality in the Cauchy-Schwarz inequality occurs, then $|\langle x, y \rangle| = ||x|| ||y||$. Let $\lambda = \langle x, y \rangle / ||x||^2$, similarly as in the proof of Exercise 3.1, then we get $\langle y - \lambda x, y - \lambda x \rangle = 0$, i.e., $y = \lambda x$ for some $\lambda \in \mathbb{F}$. Conversely, if x = 0 or $y = \lambda x$ for some $\lambda \in \mathbb{F}$, then the identity $|\langle x, y \rangle| = ||x|| \, ||y||$ holds clearly. Therefore the required condition is x = 0 or $y = \lambda x$ for some $\lambda \in \mathbb{F}$.

Remark. Assume that $\langle x, y \rangle$ satisfies all three conditions of the inner product except that $\langle x, x \rangle$ may be zero for a non-zero element. Then the Cauchy-Schwartz inequality is still true.

In fact, first, the case $\langle x, y \rangle = 0$ is trivial. Second, assume that $\langle x, y \rangle \neq 0$ and set $\theta = \langle x, y \rangle / |\langle x, y \rangle|$. Let λ be a real number. We have

$$0 \le \langle \bar{\theta}x + \lambda y, \bar{\theta}x + \lambda y \rangle = \langle x, x \rangle + \lambda \langle y, \bar{\theta}x \rangle + \lambda^2 \langle y, y \rangle$$

since $\langle y, \bar{\theta}x \rangle = \theta \overline{\langle x, y \rangle} = |\langle x, y \rangle|$ and $\langle \bar{\theta}x, y \rangle = \bar{\theta} \langle x, y \rangle = |\langle x, y \rangle|$, we obtain

$$\langle x, x \rangle + 2\lambda |\langle x, y \rangle| + \lambda^2 \langle y, y \rangle \geqslant 0$$

for any $\lambda \in \mathbb{R}$. This implies that

$$|\langle x, y \rangle|^2 - \langle x, x \rangle \langle y, y \rangle \le 0$$
 or $|\langle x, y \rangle|^2 \le \langle x, x \rangle \langle y, y \rangle$.

- 3.4 () Expanding, $\|x+e^{\mathrm{i}t}y\|^2 e^{\mathrm{i}t} = \left(\|x\|^2 + \|y\|^2\right) e^{\mathrm{i}t} + \langle x,y\rangle + \langle y,x\rangle e^{\mathrm{i}2t}$, which when integrated gives $(2\pi)^{-1} \int_0^{2\pi} \|x+e^{\mathrm{i}t}y\|^2 e^{\mathrm{i}t} \mathrm{d}t = \langle x,y\rangle$.
- 3.6 () Consider that $(1,0),(0,2) \in \mathbb{R}^2$. Then

$$||(1,0) + (0,2)||_1^2 + ||(1,0) + (0,2)||_1^2$$

=6 \neq 10 = 2(||(1,0)||_1^2 + ||(0,2)||_1^2),

which means that the parallelogram law dose not holds for the norm $\|\cdot\|_1$. So $\|\cdot\|_1$ is not induced by an inner product by Theorem 3.1.2.

- 3.7 ((a)) Let $x, y \in X$ be arbitrary two vectors, then there exists a subspace $Y \subset X$ with $\dim(Y) = 2$. By the assumption, Y is an inner product space and its norm is induced by an inner product, hence the norm of Y must satisfy the parallelogram law (3.3) by Lemma 3.1.1, in particular, $||x+y||^2 + ||x-y||^2 = 2||x||^2 + 2||y||^2$. Note that the norm of Y is induced by the norm of X, it follows from Theorem 3.1.2 that the norm of X cab be induced by an inner product, that is, X is an inner product space.
- 3.10 (Assume that the inner product space is $(X, \langle \cdot, \cdot \rangle)$. Note that

$$0 \le ||x_n - y_n||^2 = ||x_n||^2 + ||y_n||^2 - 2\mathbf{Re}\langle x_n, y_n \rangle \le 2 - 2\mathbf{Re}\langle x_n, y_n \rangle \to 0$$

as $n \to \infty$ since $\lim_{n \to \infty} \mathbf{Re} \langle x_n, y_n \rangle = 1$ by the fact $\lim_{n \to \infty} \langle x_n, y_n \rangle = 1$, it follows that $\lim_{n \to \infty} ||x_n - y_n|| = 0$.

3.13 (🖎)

- (i) It is clearly by Theorem 1.5.1.
- (ii) By Corollary 2.4.2 we see that Y is closed since Y is finite-dimensional. So, Y is complete by Theorem 1.5.1.
- (iii) The desired conclusions follow by Exercises 1.27.
- 3.16 () First, H is clearly a linear space with the linear operations defined like (2.5) since $\alpha x(t) + \beta y(t)$ must be continuous on [0, 1] if x(t), y(t) are continuous on [0, 1] and $\alpha, \beta \in \mathbb{F}$. Also, the function $x \mapsto \|\cdot\|_H : H \to \mathbb{R}$, defined by $\|x\|_H = \left(\int_0^1 |x(t)|^2 \, \mathrm{d}t\right)^{1/2}$, is obviously a norm on the linear space H, and it satisfies the parallelogram law since

$$||x+y||_H^2 + ||x-y||_H^2 = \int_0^1 |x(t)+y(t)|^2 dt + \int_0^1 |x(t)-y(t)|^2 dt$$
$$= \int_0^1 2(|x(t)|^2 + |y(t)|^2) dt$$
$$= 2(||x||_H^2 + ||y||_H^2)$$

holds for all $x, y \in H$. Hence, by Theorem 3.1.2 we see that there exists an inner product on H which generates the norm $\|\cdot\|_H$, and it is clear that this inner product must be the form which is given in Example 3.1.9. So, H is an inner product space. We will show that H is not complete. Indeed, for each $n \in \mathbb{N}$ we define a continuous function $f_n(t)$ on [0,1] by

$$f_n(t) = \begin{cases} 0, & \text{if } 0 \leqslant t < \frac{1}{2} - \frac{1}{n}, \\ \frac{n}{2} \left(x - \frac{1}{2} + \frac{1}{n} \right), & \text{if } \frac{1}{2} - \frac{1}{n} \leqslant t < \frac{1}{2} + \frac{1}{n}, \\ 1, & \text{if } \frac{1}{2} - \frac{1}{n} \leqslant t \leqslant 1, \end{cases}$$

then $\{f_n\}$ converges to

$$f(t) = \begin{cases} 0, & \text{if } 0 \le t < 1/2\\ 1, & \text{if } 1/2 \le t \le 1 \end{cases}$$

as $n \to \infty$ since

$$||f_n - f||_H^2 = \int_{\frac{1}{2} - \frac{1}{n}}^{\frac{1}{2} + \frac{1}{n}} |f_n(t) - f(t)|^2 dt < \frac{2}{n} \to 0 \text{ as } n \to \infty.$$

Clearly, $\{f_n\}$ is a Cauchy sequence in H since

$$||f_n - f_m||_H \le ||f_n - f||_H + ||f_m - f|| \to 0 \text{ as } n, m \to \infty.$$

But f(t) is not continuous on [0,1] and then it does not belong to H. So H is not a Hilbert space.

3.17 (Suppose that $||x + y||^2 = ||x||^2 + ||y||^2$, then we have

$$0 = ||x + y||^2 - (||x||^2 + ||y||^2)$$

= $\langle x + y, x + y \rangle - (||x||^2 + ||y||^2) = 2 \mathbf{Re} \langle x, y \rangle.$

If X is a real inner product space, i.e., the underlying scalar field $\mathbb{F} = \mathbb{R}$, then $\operatorname{\mathbf{Re}} \langle x, y \rangle = \langle x, y \rangle = 0$, so that $x \perp y$, as required.

If X is complex, i.e., the underlying scalar field $\mathbb{F}=\mathbb{C}$, the x and y may not be orthogonal. For example, let $X=\mathbb{C}$ be the unitary space which is a complex inner product space. Let $x=e^{\pi \mathrm{i}/3}, y=e^{-\pi \mathrm{i}/6}\in\mathbb{C}$. Clearly, $\|x+y\|^2=2=\|x\|^2+\|y\|^2$, but x is not orthogonal to y since $\langle x,y\rangle=\mathrm{i}\neq 0$.

3.18 (Suppose that \mathcal{H} is real and ||x|| = ||y||. Then we have

$$\langle x+y, x-y \rangle = ||x||^2 - ||y||^2 - 2\mathbf{Im}\langle x, y \rangle = -2\mathbf{Im}\langle x, y \rangle = 0$$

since the inner product $\langle x, y \rangle$ is s real number.

If $\mathcal{H} = \mathbb{R}^2$, then \mathcal{H} is a real inner product space, so $\langle x+y, x-y \rangle = 0$ by the above. Geometrically, it says that the diagonals of a rhombus or parallelogram in the plane \mathbb{R}^2 are orthogonal to each other.

If \mathcal{H} is a complex inner product space, then, by the condition ||x|| = ||y|| we have $\mathbf{Re} \langle x+y, x-y \rangle = 0$ since the inner product $\langle x+y, x-y \rangle$ keeps only its imaginary part by the above.

3.19 (By the parallelogram law we have

$$2\left\|\frac{x_n - x_m}{2}\right\|^2 = \|x_n\|^2 + \|x_m\|^2 - 2\left\|\frac{x_n + x_m}{2}\right\|^2.$$

Clearly, $(x_n + x_m)/2 \in M$ since M is convex. It follows that

$$\frac{1}{2}||x_n - x_m||^2 = 2\left\|\frac{x_n - x_m}{2}\right\|^2 \le ||x_n||^2 + ||x_m||^2 - 2d^2 \to 0$$

as $n, m \to \infty$, i.e., $||x_n - x_m|| \to 0$ as $n, m \to \infty$. Hence $\{x_n\}$ is a Cauchy sequence of \mathcal{H} so that $\{x_n\}$ is convergent by the completeness of \mathcal{H} .

3.20 () Let $x=(\xi_1,\xi_2,\cdots,\xi_n)\in M$ and $y=(\eta_1,\eta_2,\cdots,\eta_n)\in M$ be arbitrary. For every $\alpha\in[0,1]$ we have

$$\sum_{j=1}^{n} [\alpha \eta_j + (1-\alpha)\xi_j] = \alpha \sum_{j=1}^{n} \eta_j + (1-\alpha) \sum_{j=1}^{n} \xi_j = 1,$$

which means that $\alpha y + (1 - \alpha)z \in M$, and then M is convex in \mathbb{C}^n by the definition of a convex in a linear space.

Now we show that M is closed in \mathbb{C}^n . Indeed, let $\omega = (\omega_1, \omega_2, \cdots, \omega_n) \in \overline{M}$ be arbitrary, then there exists a sequence $\{y_m\} \subset M$ such that $y_m \to \omega$ as $m \to \infty$. For each $m \in \mathbb{N}$ we denote $y_m = (\eta_1^{(m)}, \eta_2^{(m)}, \cdots, \eta_n^{(m)})$, then we have $\sum_{j=1}^n \eta_j^{(m)} = 1$ since each $y_m \in M$. By Example 1.3.3 we

see that $\eta_j^{(m)} \to \omega_j$ in \mathbb{C} as $m \to \infty$, $j = 1, 2, \dots, n$, so that $\sum_{j=1}^n \omega_j = 1$, meaning that $\omega \in M$. Consequently, M is closed, and then M is complete by Theorem 1.5.1 since \mathbb{C}^n is complete. $y = (1/n, 1/n, \dots, 1/n)$ has the minimum norm in M, that is, y is the solution of the system:

$$\min \left\{ \sum_{j=1}^{n} |\eta_j|^2 : \eta_j \in \mathbb{C}, j = 1, 2, \cdots, n, \sum_{j=1}^{n} \eta_j = 1 \right\}.$$

3.21 () Let $x = x_0/\|x_0\|$, then we see that the distance from this x to x_0 is $d(x, x_0) = \|x - x_0\| = \|x_0/\|x_0\| - x_0\| = \|x_0\| - 1$, and this x achieves

Solutions to Exercises of Functional Analysis (2nd Ed.)

 $\min\{\|y-x_0\|:y\in X,\,\|y\|=1\}$ since for all $y\in X$ with $\|y\|=1$ we have

$$||y - x_0||^2 = ||y||^2 + ||x_0||^2 - 2\mathbf{Re}\langle y, x_0 \rangle \ge ||y||^2 + ||x_0||^2 - 2||y|| ||x_0||$$
$$= ||x_0|| - ||y|| |^2 = |1 - ||x_0|| |^2 = ||x - x_0||^2$$

by the Cauchy-Schwarz inequality.

42

3.22 (Denote $c_1 := c/\langle x_0, x_0 \rangle$ and let $y = c_1 x_0$, then y satisfies that

$$\langle y, x_0 \rangle = \langle c_1 x_0, x_0 \rangle = c_1 \langle x_0, x_0 \rangle = c.$$

Now for all $x \in X$, with $\langle x, x_0 \rangle = c$, we have $\langle x - y, x_0 \rangle = 0$ and $\langle x - y, y \rangle = 0$, which yields that

$$||x||^2 = ||(x - y) + y||^2 = ||x - y||^2 + ||y||^2 \ge ||y||^2,$$

that is, $||y - 0|| \le ||x - 0||$ holds for all $x \in X$ with $\langle x, x_0 \rangle = c$.

3.24 (Note that for all $x, y \in X$ and $\alpha \in \mathbb{F}$ we have

$$||x + \alpha y||^2 = \langle x + \alpha y, \ x + \alpha y \rangle$$

= $||x||^2 + \overline{\alpha} \langle x, \ y \rangle + \alpha \langle y, \ x \rangle + |\alpha|^2 ||y||^2$. (E3-3)

If $x \perp y$, that is, $\langle x, y \rangle = 0$, then by (E3-3) we get that

$$||x + \alpha y||^2 = ||x||^2 + |\alpha|^2 ||y||^2 \geqslant ||x||^2,$$

as required.

Conversely, suppose that $||x+\alpha y|| \ge ||x||$ for all $\alpha \in \mathbb{F}$. Then, by (E3-3) we obtain that

$$\overline{\alpha}\langle x, y \rangle + \alpha \langle y, x \rangle + |\alpha|^2 ||y||^2 \geqslant 0.$$
 (E3-4)

We may assume that $y \neq 0$ since otherwise we trivially have $x \perp y$. Let $\alpha = -\langle x, y \rangle / \|y\|^2$ in the above inequality (E3-4), then we deduce that $-|\langle x, y \rangle| / \|y\|^2 \geqslant 0$, and so $\langle x, y \rangle = 0$, i.e., $x \perp y$.

Chapter 3

3.25 (Note that for all $x, y \in X$ and $\alpha \in \mathbb{F}$ we have

$$||x - \alpha y||^2 = \langle x - \alpha y, \ x - \alpha y \rangle$$

= $||x||^2 - \overline{\alpha} \langle x, \ y \rangle - \alpha \langle y, \ x \rangle + |\alpha|^2 ||y||^2.$ (E3-5)

43

If $x \perp y$, then, by (E3-3) and (E3-5) we obviously have $||x + \alpha y||^2 = ||x - \alpha y||^2$, as required.

Conversely, if $||x + \alpha y||^2 = ||x - \alpha y||^2$ for all $\alpha \in \mathbb{F}$, then, by (E3-3) and (E3-5) we obtain that $\overline{\alpha}\langle x, y \rangle + \alpha \langle y, x \rangle = 0$ for all $\alpha \in \mathbb{F}$. In particular, with $\alpha = \langle x, y \rangle$, we get $|\langle x, y \rangle| = 0$, i.e., $x \perp y$.

3.26 () By the definition of the inner product in \mathbb{R}^k , $\langle a, x \rangle = \sum_{j=1}^k a_j x_j = 0$ if and only if $a \perp x$ for every $x \in \mathbb{R}^k$. Hence

$$A^{\perp} = \left\{ (x_1, \dots, x_k) \in \mathbb{R}^k : \sum_{j=1}^k a_j x_j = 0 \right\}.$$

3.27 () Let $B = \{\{\xi_i\} \in \ell^2 : \xi_{2i+1} = 0 \text{ for all } i \in \mathbb{N}\}$. By the definition of the inner product in ℓ^2 , we clearly have $\langle x, y \rangle_{\ell^2} = \sum_{i=1}^{\infty} \xi_i \overline{\eta_i} = 0$ for all $x = \{\xi_i\} \in A$ and $y = \{\eta_i\} \in B$. So $B \subset A^{\perp}$.

Suppose that $y = \{\eta_i\} \in A^{\perp}$ is arbitrary. Let $\tilde{x} = \{\tilde{\xi}_i\}$ be such that $\tilde{\xi}_{2i+1} = \eta_{2i+1}$ and $\tilde{\xi}_{2i} = 0$ for all $i \in \mathbb{N}$, which means that each $\tilde{x} \in A$. Hence

$$\langle y, \ \tilde{x} \rangle_{\ell^2} = \sum_{i=1}^{\infty} |\eta_{2i+1}|^2 = 0,$$

so that $\eta_{2i+1} = 0$ for all $i \in \mathbb{N}$, i.e., $y \in B$, showing that $A^{\perp} \subset B$. This together with the above imply that $A^{\perp} = B$, that is,

$$A^{\perp} = \{ \{x_n\} \in \ell^2 : x_{2n+1} = 0 \text{ for all } n \in \mathbb{N} \}.$$

3.28 () The space ℓ^2 here should be changed to the space S which is given by Exercise 2.40 and is equipped with the usual ℓ^2 inner product.

We claim that B is dense in S. In fact, let $y = \{y_n\} \in S$ be arbitrary, then there exists an $N \in \mathbb{N}$ such that $y_n = 0$ for n > N and $\sum_{n=1}^{N} y_n = \eta$,

say. For an integer K, let $x_K = \{x_{K,n}\}$ be given by

$$x_{K,n} = \begin{cases} y_n, & 1 \leqslant n \leqslant N \\ -\eta/K, & N+1 \leqslant n \leqslant N+K \\ 0, & n > N+K \end{cases}$$

Then $x_K \in B$ for each $K \in \mathbb{N}$ and $||x_K - y||_{\ell^2}^2 = |\eta|^2/K^2 \to 0$ as $K \to \infty$. So B is dense in ℓ_0^2 , i.e., $\overline{B} = \ell_0^2$, and then $B^{\perp} = \{0\}$ by (f) of Lemma 3.2.1.

- 3.32 () Obviously $\overline{A}^{\perp} \subset A^{\perp}$ by (g) of Lemma 3.2.1 since $A \subset \overline{A}$. For each $y \in A^{\perp}$ we shall show that $y \perp \overline{A}$, that is, $y \perp x$ for all $x \in \overline{A}$. Indeed, for each $x \in \overline{A}$ there exists a sequence $\{x_n\}$ in A such that $x_n \to x$ as $n \to \infty$. By the continuity of the inner product, we have $\langle x, y \rangle = \lim_{n \to \infty} \langle x_n, y \rangle = 0$. Hence $y \perp \overline{A}$, so $A^{\perp} \subset \overline{A}^{\perp}$. This together with the above imply that $A^{\perp} = \overline{A}^{\perp}$, as required.
- 3.33 () Since $X \subset X+Y$ and $Y \subset X+Y$, it follows from Lemma 3.2.1 that $(X+Y)^{\perp} \subset X^{\perp}$ and $(X+Y)^{\perp} \subset Y^{\perp}$, so that $(X+Y)^{\perp} \subset X^{\perp} \cap Y^{\perp}$. Suppose that $z \in X^{\perp} \cap Y^{\perp}$. For every $x+y \in X+Y$ we have both $\langle x, z \rangle = 0$ and $\langle y, z \rangle = 0$ since $z \in X^{\perp} \cap Y^{\perp}$. So $\langle x+y, z \rangle = 0$. Hence $X^{\perp} \cap Y^{\perp} \subset (X+Y)^{\perp}$. This together with the above imply that $(X+Y)^{\perp} = X^{\perp} \cap Y^{\perp}$, as required.
- 3.35 (Let $x \in \overline{W}$ be arbitrary. then there exists a sequence $\{x_n\} \subset W$ such that $x_n \to x$ as $n \to \infty$. By the assumption we see that x has the form of $x = x_0 + x_1$ for some $x_0 \in W$ and $x_1 \in W^{\perp}$. Clearly $\langle x_n, x_1 \rangle = 0$ for each $n \in \mathbb{N}$ since each $x_n \in W$, so that

$$0 = \lim_{n \to \infty} \langle x_n, x_1 \rangle = \langle x, x_1 \rangle = \langle x_0 + x_1, x_1 \rangle = \langle x_1, x_1 \rangle = \|x_1\|^2,$$

which yields $x_1 = 0$, that is, $x = x_1 \in W$. Hence W is closed.

3.36 () By Theorem 3.2.2 we see that x has the form of $x = x_0 + x_1$ for some $x_0 \in N$ and $x_1 \in N^{\perp}$ since N is a closed subspace of \mathcal{H} by the assumption. Note that $x-z=x_1+(x_0-z)$ and $x_0-z\in N$ for all $z\in N$, we obtain that $||x_1||\in\{||x-z||:z\in N\}$, $\min\{||x-z||:z\in N\}\geqslant ||x_1||$ by Lemma 3.2.2, and so $\min\{||x-z||:z\in N\}=||x_1||$.

Now, for every $y \in N^{\perp}$, with ||y|| = 1, we have

$$|\langle x, y \rangle| = |\langle x_0 + x_1, y \rangle| = |\langle x_0, y \rangle + \langle x_1, y \rangle| = |\langle x_1, y \rangle| \le ||x_1|| ||y|| = ||x_1||$$

since $x_0 \in N$, i.e.,

$$\sup\{|\langle x, y \rangle| : y \in N^{\perp}, ||y|| = 1\} \leqslant ||x_1||.$$
 (E3-6)

If $x_1 = 0$, then

$$\sup\{|\langle x, y \rangle| : y \in N^{\perp}, ||y|| = 1\} = 0 = ||x_1||.$$
 (E3-7)

If $x_1 \neq 0$, taking $y = x_1/\|x_1\|$, then we get that $\|y\| = 1, y \in N^{\perp}$ and

$$\langle x, y \rangle = \langle x_0 + x_1, y \rangle = ||x_1||. \tag{E3-8}$$

which implies that

$$\sup\{|\langle x, y \rangle| : y \in N^{\perp}, ||y|| = 1\} \geqslant ||x_1||.$$
 (E3-9)

It follows from the inequalities (E3-6) and (E3-9) that

$$\min\{\|x - z\| : z \in N\} = \sup\{|\langle x, y \rangle| : y \in N^{\perp}, \|y\| = 1\}.$$

By (E3-7) and (E3-8) we see that $||x_1|| \in \{ |\langle x, y \rangle| : y \in N^{\perp}, ||y|| = 1 \}$, therefore,

$$\min\{\|x-z\|:z\in N\}=\max\{|\langle x,y\rangle|:y\in N^\perp,\|y\|=1\}.$$

3.38 (🔊)

(i) Let $y \in A^{\perp}$ be arbitrary, then $\langle x, y \rangle$ for all $x \in A$. In particular, for every $n \in \mathbb{N}$ we have $\left\langle \sum_{i=1}^n a_i x_i, y \right\rangle = 0$ for every $\sum_{i=1}^n a_i x_i \in \operatorname{span} A$, where $x_i \in A$ and $a_i \in \mathbb{F}$, $i = 1, \cdots, n$. Which means that $y \in (\operatorname{span}(A))^{\perp}$, so $A^{\perp} \subset (\operatorname{span}(A))^{\perp}$. The inverse inclusion obviously follows from (g) of Lemma 3.2.1 since $A \subset \operatorname{span}(A)$, thus, $A^{\perp} = (\operatorname{span}(A))^{\perp} = (\overline{\operatorname{span}(A)})^{\perp}$ by Exercise 3.32. Finally, we get that

$$A^{\perp\perp} = (\overline{\operatorname{span}(A)})^{\perp\perp} = \overline{\operatorname{span}(A)}$$

by Corollary 3.2.4 since $\overline{\operatorname{span}(A)}$ is clearly a closed linear subspace of \mathcal{H} .

Another proof. $A \subset A^{\perp \perp} \Rightarrow \operatorname{span}(A) \subset \operatorname{span}(A^{\perp \perp}) = A^{\perp \perp}$ since $A^{\perp \perp}$ is a closed linear space of \mathcal{H} by (h) of Lemma 3.2.1, which gives that $\overline{\operatorname{span}(A)} \subset \overline{A^{\perp \perp}} = A^{\perp \perp}$. On the other hand, $A \subset \overline{\operatorname{span}(A)} \Rightarrow A^{\perp} \supset \overline{\operatorname{span}(A)}^{\perp}$, so that

$$A^{\perp\perp} \subset \overline{\operatorname{span}(A)}^{\perp\perp} = \overline{\operatorname{span}(A)},$$

hence the result.

- (ii) $A^{\perp\perp\perp}=(A^{\perp})^{\perp\perp}=A^{\perp}$ follows by Corollary 3.2.4 since A^{\perp} is a closed linear subspace of \mathcal{H} .
- 3.39 () It follows from (i) of Exercise 3.38 that $M^{\perp\perp} = \overline{\operatorname{span}(M)}$. Hence, by (c) of Lemma 3.2.1 and (ii) of Exercise 3.38 we see that $\overline{\operatorname{span}(M)} = \mathcal{H}$ if and only if $M^{\perp} = \{0\}$.
- 3.42 () The Gram-Schmidt algorithm yields

$$e_1 = \frac{\sqrt{2}}{2}, \ e_2 = \frac{\sqrt{6}}{2}t, \ e_3 = \frac{\sqrt{10}}{4}(3t^2 - 1).$$

3.43 (🖎) Since 9900 ordered pairs can be selected from 100 integers,

$$\left\| \sum_{n=1}^{100} x_n \right\|^2 = \sum_{n=1}^{100} \|x_n\|^2 + \mathbf{Re} \left(\sum_{n \neq m}^{100} \langle x_n, x_m \rangle \right) \le 100 + \frac{9900}{10} = 1090,$$

consequently, $\left\|\sum_{n=1}^{100} x_n\right\| \leq \sqrt{1090}$. To see that the estimate is sharp consider the sequences $x_n = \{x_{n,k}\} \in \ell^2$ with terms $x_{n,1} = \sqrt{0.1}$, $x_{n,n+1} = \sqrt{0.9}$, and the remaining terms equal to 0, for all $n = 1, \dots, 100$. Then the assumptions are satisfied and $\left\|\sum_{n=1}^{100} x_n\right\| = \sqrt{1090}$.

3.44 (Suppose that $\{e_n\}_{n\in\mathbb{N}}$ is an orthonormal sequence in \mathcal{H} . It is clear that $\{e_{2n}\}_{n\in\mathbb{N}}$ is an orthonormal sequence in \mathcal{H} , too. Let $x=e_1$, then we have Hence $\sum_{n=1}^{\infty}|\langle x,\ e_{2n}\rangle|^2=0<1=\|x\|^2$, which means that the Bessel inequality holds with strict inequality.

3.45 () If $\{e_n\}$ has a convergent subsequence $\{e_{n_k}\}$, then it is a Cauchy sequence, then we can choose n_{k_1} and n_{k_2} , with $n_{k_1} \neq n_{k_2}$, tending to the infinity, such that $||e_{n_{k_1}} - e_{n_{k_2}}|| \to 0$. But $||e_{n_{k_1}} - e_{n_{k_2}}|| = \sqrt{||e_{n_{k_1}}||^2 + ||e_{n_{k_2}}||^2} = \sqrt{2}$, which is a contradiction.

3.46 () Let $s_n = \sum_{i=1}^n x_i$ and $t_n = \sum_{i=1}^n ||x_i||^2$, then for all $m, n \in \mathbb{N}$ with n > m we have

$$||s_n - s_m||^2 = \left\langle \sum_{i=m+1}^n x_i, \sum_{i=m+1}^n x_i \right\rangle = \sum_{i=m+1}^n \langle x_i, x_i \rangle$$
$$= \sum_{i=m+1}^n ||x_i||^2 = t_n - t_m,$$

so $\{s_n\}$ is a Cauchy sequence in \mathcal{H} if and only if $\{t_n\}$ is a Cauchy sequence in \mathbb{R} . Since \mathcal{H} is a Hilbert space, it yields that $\{s_n\}$ is convergent in \mathcal{H} if and only if $\{t_n\}$ is convergent in \mathbb{R} .

- 3.47 (Applying the Riesz-Fischer theorem we obtain that
 - (i) $\sum_{n=1}^{\infty} \frac{e_n}{n}$ is convergent in \mathcal{H} since $\sum_{n=1}^{\infty} n^{-2} < \infty$, i.e., the sequence $\{n^{-1}\} \in \ell^2$, and
 - (ii) $\sum_{n=1}^{\infty} \frac{e_n}{\sqrt{n}}$ is not convergent in \mathcal{H} since $\sum_{n=1}^{\infty} n^{-1}$ is divergent, i.e., the sequence $\{\sqrt{n}^{-1}\} \notin \ell^2$.
- 3.48 () Let $\{e_n\}$ be an orthonormal sequence in \mathcal{H} and set $x_n = e_n/n$, $n = 1, 2, \cdots$. Then for all $m, n \in \mathbb{N}$ with m > n we have

$$\left\| \sum_{k=1}^{m} x_k - \sum_{k=1}^{n} x_k \right\|^2 = \sum_{k=n+1}^{m} \frac{1}{k^2} \to 0 \quad \text{as } n \to \infty,$$

which means that the sequence of the partial sums of the series $\sum_{k=1}^{\infty} x_k$ is a Cauchy sequence in \mathcal{H} , so $\sum_{k=1}^{\infty} x_k \in \mathcal{H}$ since \mathcal{H} is complete. However $\sum_{k=1}^{\infty} \|x_k\| = \sum_{k=1}^{\infty} 1/k = \infty.$

3.50 (By the assumption, we know

$$\sum_{i=1}^{\infty} |\alpha_i|^2 = ||x||^2 < \infty, \quad \sum_{i=1}^{\infty} |\beta_i|^2 = ||y||^2 < \infty.$$
 (E3-10)

Denote $x_n = \sum_{i=1}^{n} \alpha_i e_i, y_n = \sum_{i=1}^{n} \beta_i e_i, n = 1, 2, ...,$ then

$$\langle x_n, y_n \rangle = \left\langle \sum_{i=1}^n \alpha_i e_i, \sum_{j=1}^n \beta_j e_j \right\rangle = \sum_{i=1}^n \sum_{j=1}^n \alpha_i \overline{\beta_j} \langle e_i, e_j \rangle = \sum_{i=1}^n \alpha_i \overline{\beta_i}.$$

Which gives that

$$\langle x, y \rangle = \lim_{n \to \infty} \langle x_n, y_n \rangle = \sum_{i=1}^{\infty} \alpha_i \overline{\beta_i}$$

by the continuity of inner product. It follows from the Cauchy inequality and (E3-10) that

$$\sum_{i=1}^{\infty} |\alpha_i \overline{\beta_i}| \leqslant (\sum_{i=1}^{\infty} |\alpha_i|^2)^{1/2} (\sum_{i=1}^{\infty} |\beta_i|^2)^{1/2} = ||x|| ||y|| < \infty.$$

 $3.52 \ (2)$

(i) By the Cauchy inequality and the Bessel inequality we have

$$\sum_{n=1}^{\infty} |\langle x, e_n \rangle \langle y, e_n \rangle| \leqslant \left(\sum_{n=1}^{\infty} |\langle x, e_n \rangle|^2 \right)^{\frac{1}{2}} \left(\sum_{n=1}^{\infty} |\langle y, e_n \rangle|^2 \right)^{\frac{1}{2}}$$

$$\leqslant ||x|| ||y||.$$

(ii) If $\{e_n\}$ is an orthonormal basis in \mathcal{H} , then for any $x,y\in\mathcal{H}$ we have

$$x = \sum_{n=1}^{\infty} \langle x, e_n \rangle e_n$$
 and $y = \sum_{n=1}^{\infty} \langle y, e_n \rangle e_n$,

which leads that

$$\langle x, y \rangle = \sum_{n,m=1}^{\infty} \langle \langle x, e_n \rangle e_n, \langle y, e_m \rangle e_m \rangle = \sum_{n=1}^{\infty} \langle x, e_n \rangle \langle e_n, y \rangle,$$

the desired Parseval relation.

Conversely, suppose that the above the Parseval relation for all $x, y \in \mathcal{H}$, then we clearly have

$$||x||^2 = \langle x, x \rangle = \sum_{n=1}^{\infty} |\langle x, e_n \rangle|^2.$$

Hence, $\{e_n\}$ is an orthonormal basis in \mathcal{H} by Theorem 3.3.3 and Proposition 3.3.1.

3.54 (A) For every $y \in \{f_n, n \in \mathbb{N}\}^{\perp} \subset \mathcal{H}$ we have $y = \sum_{n=1}^{\infty} \langle y, e_n \rangle e_n$.

Since $\langle y, f_n \rangle = 0$, it follows that

$$y = \sum_{n=1}^{\infty} \langle y, e_n \rangle e_n - \sum_{n=1}^{\infty} \langle y, f_n \rangle e_n = \sum_{n=1}^{\infty} \langle y, e_n - f_n \rangle e_n.$$

We claim y = 0. In fact, if $y \neq 0$, then we could obtain that

$$||y||^2 = \left\langle \sum_{n=1}^{\infty} \langle y, e_n - f_n \rangle e_n, \sum_{k=1}^{\infty} \langle y, e_k - f_k \rangle e_k \right\rangle$$

$$= \sum_{n=1}^{\infty} |\langle y, e_n - f_n \rangle|^2 \langle e_n, e_n \rangle = \sum_{n=1}^{\infty} |\langle y, e_n - f_n \rangle|^2$$

$$\leqslant \sum_{n=1}^{\infty} ||y||^2 ||e_n - f_n||^2 \quad \text{(by the Cauchy-Schwarz inequality)}$$

$$= ||y||^2 \sum_{n=1}^{\infty} ||e_n - f_n||^2 < ||y||^2 \quad \text{(by the assumption)},$$

a contradiction. Hence y = 0, so that $\{f_n, n \in \mathbb{N}\}^{\perp} = \{0\}$. By Theorem 3.3.3 we know $\{f_n\}$ is an orthonormal basis in \mathcal{H} .

- 3.xx Clearly, $\{\widehat{e}_n\}$ and $\{\widetilde{e}_n\}$ are orthonormal sequences in ℓ^2 . One way to prove whether or not the sequences are bases of ℓ^2 is to check whether or not there exists a nonzero vector $x = (x_1, x_2, \ldots)$ in ℓ^2 which is orthogonal to all the vectors from the sequence.
 - (i) We have $x_1 + 2x_2 = 0, x_3 + 2x_4 = 0, \cdots$. The vector $x = (1, -1/2, 1/4, \cdots)$ belongs to ℓ^2 and satisfies the equalities. Hence, the sequence $\{\widehat{e}_n\}$ is not an orthonormal basis in ℓ^2 .

(ii) We obtain $x_1 - x_2 = 0$ and $x_3 - x_4 = 0, \cdots$. The vector $x = (1, 1, 1/2, 1/2, 1/3, 1/3, \cdots)$ belongs to ℓ^2 and satisfies the equalities. Hence, the sequence is not an orthonormal basis in ℓ^2 .