

Facultad de Informática de Madrid

LENGUAJES FORMALES, AUTÓMATAS Y COMPUTABILIDAD

FINAL - 1ª EVALUACIÓN (21 de enero de 2016)

SOLUCIÓN

Nombre:

Ejercicio 1:

Apellidos:

Dada una gramática de tipo 2:

a) Definir derivación por la izquierda de una palabra.
 Definir gramática ambigua.

b) Comprobar si es ambigua o no lo es la gramática:

G = { Σ_T = { 0 , 1 }, Σ_N = { S }, S, \mathcal{P} } con las siguientes producciones:

 $\mathcal{P} \equiv | S : : = SS | 01$

25 minutos

El Mun grandtier es ambigues in existe une polities ambigue. Es ambigue purque x es palabres ambigue. Al tenes des arboles de denverción diferentes

Apellidos:

Facultad de Informática de Madrid

LENGUAJES FORMALES, AUTÓMATAS Y COMPUTABILIDAD

FINAL - 1ª EVALUACIÓN (21 de enero de 2016)

SOLUCION

Nombre:

Ejercicio 2:

Dado el autómata finito A, descrito mediante el siguiente diagrama de estados, obtener mediante ecuaciones características el lenguaje reconocido por dicho autómata.

25 minutos

$$\begin{array}{c}
 X_{0} = 0 X_{0} + 1 X_{1} + 0 X_{3} \\
 X_{1} = 0 X_{2} \\
 X_{2} = 1 X_{2} + 0 X_{3} + \lambda \\
 X_{3} = 1 X_{3} + 1 X_{2}
 \end{array}$$

$$X_{1}=0X_{2}; X_{1}=o(1+01^{*}1)^{*}$$

$$X_{0}=0X_{0}+(X_{1}+0X_{3}=0X_{0}+1o(1+01^{*}1)^{*}+0X_{3}=$$

$$=0X_{0}+1o(1+01^{*}1)^{*}+01^{*}(X_{2}=0X_{0}+1o(1+01^{*}1)^{*}+$$

$$+01^{*}1(1+01^{*}1)^{*}$$

$$+01^{*}1(1+01^{*}1)^{*}$$

$$L(A)=X_{0}=0^{*}(10(1+01^{*}1)^{*}+01^{*}1(1+01^{*}1)^{*})$$

Facultad de Informática de Madrid

LENGUAJES FORMALES, AUTÓMATAS Y COMPUTABILIDAD

FINAL – 2ª EVALUACIÓN (21 de enero de 2016)

Apellidos: 502UCio

Nombre:

Ejercicio 1:

Dada la Gramática G = { Σ_T , Σ_N , S, $\mathcal P$ } donde Σ_T = { 0, 1 }, Σ_N = { S, A, B, C }, S = axioma y $\mathcal P$ las producciones:

 $S ::= 0AC \mid 0BCC \mid 0C \mid 0CC \mid \lambda$

A ::= 0AC | 0C

B ::= 0BCC | 0CC

C ::= 1

- a) Construir un Autómata a Pila (AP) que reconozca el lenguaje generado por dicha gramática. Utilizar, únicamente, uno de los 2 métodos conocidos (7 puntos).
- b) Comprobar la aceptación de las palabras 0011 y 001111 en el AP (2 puntos) y la generación de las mismas en la Gramática (1 punto).

25 minutos

METODO 1

Construir un AP que acepte el lenguaje generado por la gramática: G = { Σ_T , Σ_N , \mathcal{P} , S }. La gramática ha de estar en FNG.

q = estado inicial de APF = Función de transición (movimientos)

 $F = \emptyset$

ALGORITMO (para obtener los movimientos del AP):

- 1. Si A::= aZ , \forall a \in Σ_T , A \in Σ_N , Z \in Σ_N^* entonces, (q,Z) \in f(q,a,A)
- 2. Si S: = λ entonces, $(q, \lambda) \in f(q, \lambda, S)$

S = Símbolo de inicio de pila

SOLUCION MÉTODO 1:

Se va a construir un AP que acepte el lenguaje generado por la gramática $G = \{ \{ a, b \}, \{ S, A, B \}, \mathcal{P}, S \}$ La gramática ya está en FNG.

$$\mathsf{AP} = \{ \, \Sigma_\mathsf{T} \,, \, \Sigma_\mathsf{N} \,, \, \{\, \mathsf{q} \,\} \,, \, \mathsf{S} \,, \, \mathsf{q} \,, \, f \,, \, \varnothing \, \} \quad , \quad \mathsf{AP} = \{ \, \{\, \mathsf{0}, \, \mathsf{1} \,\} \,, \, \{\, \mathsf{S}, \, \mathsf{A}, \, \mathsf{B}, \, \mathsf{C} \,\} \,, \, \{\, \mathsf{q} \,\} \,, \, \mathsf{S} \,, \, \mathsf{q} \,, \, f \,, \, \varnothing \, \}$$

Aplicamos el ALGORITMO para obtener los movimientos del AP:

$$f(q, 0, S) = \{(q, AC), (q, BCC), (q, C), (q, CC)\}$$

$$f(q, \lambda, S) = \{(q, \lambda)\}$$

$$f(q, 0, A) = \{(q, AC), (q, C)\}$$

$$f(q, 0, B) = \{(q, BCC), (q, CC)\}$$

$$f(q, 1, C) = \{(q, \lambda)\}$$

RECONOCIMIENTO AP (0011): $(q,0011,S) \vdash (q,011,AC) \vdash (q,11,CC) \vdash (q,1,C) \vdash (q,\lambda,\lambda)$ RECONOCIMIENTO AP (001111): $(q,001111,S) \vdash (q,01111,BCC) \vdash (q,1111,CCC) \vdash (q,1111,CCC)$ $\vdash (q,11,CC) \vdash (q,1,C) \vdash (q,\lambda,\lambda)$

GENERACION G (0011): S \rightarrow 0AC \rightarrow 00CC \rightarrow 001C \rightarrow 0011 GENERACION G (001111): S \rightarrow 0BCC \rightarrow 00CCCC \rightarrow 001CCC \rightarrow 0011CC \rightarrow 00111C \rightarrow 001111

Facultad de Informática de Madrid LENGUAJES FORMALES, AUTÓMATAS Y COMPUTABILIDAD

FINAL – 2ª EVALUACIÓN (21 de enero de 2016)

Apellidos:

Nombre:

METODO 2

Construir un AP que acepte (reconozca) el lenguaje generado por la gramática: $G = \{ \Sigma_T, \Sigma_N, \mathcal{P}, S \}$. La gramática no ha de estar necesariamente en FNG.

$$\begin{aligned} \mathsf{AP} &= \left\{ \left. \Sigma_\mathsf{T} \,, \left\{ \, \Sigma_\mathsf{N} \cup \Sigma_\mathsf{T} \,\right\}, \left\{ \, \mathsf{q} \,\right\}, \, \mathsf{S} \,, \, \mathsf{q} \,, \, f \,, \, \varnothing \, \right\} \\ &\Sigma_\mathsf{T} &= \mathsf{Alfabeto} \; \mathsf{de} \; \mathsf{entrada} \; (\Sigma) \\ &\left\{ \, \Sigma_\mathsf{N} \cup \Sigma_\mathsf{T} \,\right\} &= \mathsf{Alfabeto} \; \mathsf{de} \; \mathsf{pila} \; (\Gamma) \\ &\left\{ \, \mathsf{q} \,\right\} &= \mathsf{Q} \; (\mathsf{Conjunto} \; \mathsf{de} \; \mathsf{estados} \; \mathsf{del} \; \mathsf{AP}) \\ &\mathsf{S} &= \mathsf{Símbolo} \; \mathsf{de} \; \mathsf{inicio} \; \mathsf{de} \; \mathsf{pila} \end{aligned} \end{aligned}$$

ALGORITMO (para obtener los movimientos del AP):

1. $X \in \{\Sigma_N \cup \Sigma_T\}, A \in \Sigma_N$

 \forall A::=X producción de la gramática, en AP se hace: (q, X) \in f(q, λ , A)

2. $\forall a \in \Sigma_T$ entonces, $(q, \lambda) \in f(q, a, a)$

SOLUCION MÉTODO 2:

Se va a construir un AP que acepte el mismo lenguaje generado por la gramática utilizada para el método 1:

$$G = \{\{a, b\}, \{S, A, B, C\}, \mathcal{P}, S\} \qquad \mathcal{P} \equiv \begin{array}{c} |S::= 0AC \mid 0BCC \mid 0C \mid 0CC \mid \lambda \\ B::= 0BCC \mid 0CC \end{array} \qquad \begin{array}{c} A::= 0AC \mid 0CC \mid \lambda \\ C::= 1 \end{array}$$

$$AP = \{\Sigma_{T}, \{\Sigma_{N} \cup \Sigma_{T}\}, \{q\}, S, q, f, \varnothing\} \quad , \quad AP = \{\{a, b\}, \{a, b, S, A, B\}, \{q\}, S, q, f, \varnothing\} \end{array}$$

Aplicamos el ALGORITMO para obtener los movimientos del AP.

```
\begin{split} f(\,q\,,\,\lambda\,,\,S\,) &= \{(\,q\,,\,0AC\,)\,,\,(\,q\,,\,0BCC\,)\,,\,(\,q\,,\,0C\,)\,,\,(\,q\,,\,0CC\,)\,,\,(\,q\,,\,\lambda\,)\} \\ f(\,q\,,\,\lambda\,,\,A\,) &= \{(\,q\,,\,0AC\,)\,,\,(\,q\,,\,0C\,)\,\} \\ f(\,q\,,\,\lambda\,,\,B\,) &= \{(\,q\,,\,0BCC\,)\,,\,(\,q\,,\,0CC\,)\,\} \\ f(\,q\,,\,\lambda\,,\,C\,) &= \{(\,q\,,\,1\,)\,\} \\ f(\,q\,,\,0\,,\,0\,) &= \{(\,q\,,\,\lambda\,)\,\} \\ f(\,q\,,\,1\,,\,1\,) &= \{(\,q\,,\,\lambda\,)\,\} \end{split}
```

GENERACION G (001111): S \rightarrow 0BCC \rightarrow 00CCCC \rightarrow 001CCC \rightarrow 0011CC \rightarrow 00111C \rightarrow 001111

Apellidos:

Facultad de Informática de Madrid

LENGUAJES FORMALES. AUTÓMATAS Y COMPUTABILIDAD

FINAL - 2ª EVALUACIÓN (21 de enero de 2016)

SOLUCION

Nombre:

Ejercicio 2:

Sea la Máquina de Turing M definida según el siguiente grafo:

Y cuya configuración inicial es la siguiente:

Donde x e y son dos números enteros positivos codificados en unario cumpliéndose que $x \ge y$. M inicialmente está en el estado q_0 leyendo el último 1 de y.

a) ¿Qué función aritmética sobre los números x e y calcula M?. Mostrar el funcionamiento de M cuando el contenido inicial de su cinta y la posición de su cabeza de lectura-escritura son las siguientes: (2.5 puntos)

b) Escribir (y describir brevemente) el contenido inicial de la cinta de una Máquina de Turing Universal cuando simula a la máquina M y ésta recibe como entrada los números del apartado a.1). (2.5 puntos). Utilizar la siguiente codificación binaria:

$$q_0 = 000$$
; $q_1 = 001$; $q_2 = 010$, $q_3 = 011$, $q_4 = 100$, $q_5 = 101$.

Desplazamiento a la izquierda. I \equiv 1; Desplazamiento a la derecha. D \equiv 0

- c) Escribir (y describir brevemente) el contenido de la cinta de la Máquina de Turing Universal tras simular el primer movimiento que realiza la máquina M con la entrada del apartado a.1). (2.5 puntos).
- d) Escribir (y describir brevemente) el contenido final de la cinta de la Máquina de Turing Universal cuando termine de simular a la máquina M con la entrada del apartado a.1). (2.5 puntos).

NOTA: Todos los apartados se responderán en la carilla de atrás.

Continuación ejercicio 2. RESPUESTAS. SOLUCIONES	
Apartado a) M celcula X-y a.1) 111#91+1191# + 11921# + + 92#111+93111+#9411++ +11#95# + 1190# Para	1194#+
a.2) 11#18/ 1-11#9/ 1-118/#11	
Apartado b) (Es suficiente con escribir 3 registros en la cinta) #丁	<u>丰</u>
001100111=001001= \$\frac{1}{41}\$ 1 \ \ \frac{1}{4}\$ \ \ \frac{1}{42}\$ \ \ \frac{1}{4}\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Mesté levendo un len po. Por exo, el REG inicial: #0001# k en le celas que inicialmente lee M sey que reservar una celas en blanco (0) a le izpaz para que le MTU p	uede almular
Apartado c) (es suficiente con escribir sólo la parte de la cinta que cambia)	
El primer moute que rezlizze M es (fo, 1) = (p, #, I) Por tento: el rep. inicizl ectuelizze el estedo. De fo e p. Sebarre un El * re recoloce en le celoz de le izpoz. El sumbolo per ese celoz se pueros en le último celos del rep. inicizl] (I donde ontaba e hay en
Apartado d)	
OOIIIXOTAOOO = AAABAABAB	#
AS BS	
	40
Cuendo M se per 2 re encuentre en la confipuración: 11 q# Le MTU se per parque no hay minpun repistro que empiece por 00000 El módulo localizador marca y redizza todos los repistros con Ata y En la parte izada hay en la cinta11 * 0 + que maior que M o pera con el resultado de retar 111 y 1 Leyendo la elda en blanc	BIS
pere con el resultado de restar III y l Leyendo la alde en blance	o de le done