Introduction to Machine Learning Joint Entropy and Mutual Information I

Learning goals

- Know the joint entropy
- Know conditional entropy as remaining uncertainty
- Know mutual information as the amount of information of an RV obtained by another

JOINT ENTROPY

• Recap: The **joint entropy** of two discrete RVs X and Y with joint pmf p(x, y) is:

$$H(X,Y) = -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log(p(x,y)),$$

which can also be expressed as

$$H(X, Y) = -\mathbb{E}\left[\log(p(X, Y))\right].$$

• For continuous RVs X and Y with joint density p(x, y), the differential joint entropy is:

$$h(X,Y) = -\int_{\mathcal{X}\times\mathcal{Y}} p(x,y) \log p(x,y) dxdy$$

For the rest of the section we will stick to the discrete case. Pretty much everything we show and discuss works in a completely analogous manner for the continuous case - if you change sums to integrals.

CONDITIONAL ENTROPY

- The **conditional entropy** H(Y|X) quantifies the uncertainty of Y that remains if the outcome of X is given.
- H(Y|X) is defined as the expected value of the entropies of the conditional distributions, averaged over the conditioning RV.
- If $(X, Y) \sim p(x, y)$, the conditional entropy H(Y|X) is defined as

$$H(Y|X) = \mathbb{E}_X[H(Y|X=x)] = \sum_{x \in \mathcal{X}} p(x)H(Y|X=x)$$

$$= -\sum_{x \in \mathcal{X}} p(x) \sum_{y \in \mathcal{Y}} p(y|x) \log p(y|x)$$

$$= -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log p(y|x)$$

$$= -\mathbb{E} [\log p(Y|X)].$$

• For the continuous case with density f we have

$$h(Y|X) = -\int f(x,y) \log f(x|y) dxdy.$$

CHAIN RULE FOR ENTROPY

The **chain rule for entropy** is analogous to the chain rule for probability and derives directly from it.

$$H(X,Y) = H(X) + H(Y|X)$$

Proof:
$$H(X, Y) = -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log p(x, y)$$

$$= -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log p(x) p(y|x)$$

$$= -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log p(x) - \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log p(y|x)$$

$$= -\sum_{x \in \mathcal{X}} p(x) \log p(x) - \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log p(y|x)$$

$$= H(X) + H(Y|X)$$

n-variable version:

$$H(X_1, X_2, ..., X_n) = \sum_{i=1}^n H(X_i|X_{i-1}, ..., X_1).$$

JOINT AND CONDITIONAL ENTROPY

The following relations hold:

$$H(X, X) = H(X)$$

 $H(X|X) = 0$
 $H((X, Y)|Z) = H(X|Z) + H(Y|(X, Z))$

Which can all be trivially derived from the previous considerations.

Furthermore, if H(X|Y) = 0, then X is a function of Y, so for all y with p(y) > 0, there is only one x with p(x, y) > 0. Proof is not hard, but also not completely trivial.

MUTUAL INFORMATION

- The MI describes the amount of info about one RV obtained through another RV or how different their joint distribution is from pure independence.
- Consider two RVs X and Y with a joint pmf p(x, y) and marginal pmfs p(x) and p(y). The MI I(X; Y) is the Kullback-Leibler Divergence between the joint distribution and the product distribution p(x)p(y):

$$I(X; Y) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log \frac{p(x, y)}{p(x)p(y)}$$
$$= D_{KL}(p(x, y) || p(x)p(y))$$
$$= \mathbb{E}_{p(x, y)} \left[\log \frac{p(X, Y)}{p(X)p(Y)} \right].$$

• For two continuous random variables with joint density f(x, y):

$$I(X; Y) = \int f(x, y) \log \frac{f(x, y)}{f(x)f(y)} dxdy.$$

MUTUAL INFORMATION

We can rewrite the definition of mutual information I(X; Y) as

$$I(X; Y) = \sum_{x,y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$

$$= \sum_{x,y} p(x,y) \log \frac{p(x|y)}{p(x)}$$

$$= -\sum_{x,y} p(x,y) \log p(x) + \sum_{x,y} p(x,y) \log p(x|y)$$

$$= -\sum_{x} p(x) \log p(x) - \left(-\sum_{x,y} p(x,y) \log p(x|y)\right)$$

$$= H(X) - H(X|Y).$$

So, I(X; Y) is reduction in uncertainty of X due to knowledge of Y.

MUTUAL INFORMATION

The following relations hold:

$$I(X; Y) = H(X) - H(X|Y)$$

$$I(X; Y) = H(Y) - H(Y|X)$$

$$I(X; Y) \le \min\{H(X), H(Y)\} \text{ if } X, Y \text{ are discrete RVs}$$

$$I(X; Y) = H(X) + H(Y) - H(X, Y)$$

$$I(X; Y) = I(Y; X)$$

$$I(X; X) = H(X)$$

I(X; X) = H(X)All of the above are trivial to prove.

MUTUAL INFORMATION - EXAMPLE

Let *X*, *Y* have the following joint distribution:

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄
<i>Y</i> ₁	1 8	1 16	<u>1</u> 32	1 32
<i>Y</i> ₂	1 16	<u>1</u> 8	$\frac{1}{32}$	1 32
<i>Y</i> ₃	1 16	1 16	1 16	1 16
<i>Y</i> ₄	$\frac{1}{4}$	0	0	0

Marginal distribution of X is $(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8})$ and marginal distribution of Y is $(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4})$, and hence $H(X) = \frac{7}{4}$ bits and H(Y) = 2 bits.

MUTUAL INFORMATION - EXAMPLE

The conditional entropy H(X|Y) is given by:

$$H(X|Y) = \sum_{i=1}^{4} \rho(Y=i)H(X|Y=i)$$

$$= \frac{1}{4}H\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}\right) + \frac{1}{4}H\left(\frac{1}{4}, \frac{1}{2}, \frac{1}{8}, \frac{1}{8}\right)$$

$$+ \frac{1}{4}H\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right) + \frac{1}{4}H(1, 0, 0, 0)$$

$$= \frac{1}{4} \cdot \frac{7}{4} + \frac{1}{4} \cdot \frac{7}{4} + \frac{1}{4} \cdot 2 + \frac{1}{4} \cdot 0$$

$$= \frac{11}{8} \text{ bits.}$$

Similarly, $H(Y|X) = \frac{13}{8}$ bits and $H(X, Y) = \frac{27}{8}$ bits.

