CNN Architectures

Neural Networks Design And Application

LetNet-5

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

AlexNet

VGG-16

ImageNet competition

ImageNet competition

ImageNet competition

Q: difference between those two variants?

a tensor → a matrix (channel)

a filter/kernel

a tensor → m matrices (channels)

m filter/kernel

Inception (GoogLeNet)
Computationally heavy

Inception (GoogLeNet)
Computationally heavy

Inception (GoogLeNet)
Computationally heavy

Less channels

Q: why output prediction from lower layers?

Q: why output prediction from lower layers?

Hint: remember gradient vanishing?

- LeNet-5: 3 conv + 2 fc
- AlexNet: 5 conv + 2 fc
- VGG-16: 13 conv + 2 fc

More conv layers

- LeNet-5: 3 conv + 2 fc
- AlexNet: 5 conv + 2 fc
- VGG-16: 13 conv + 2 fc

More conv layers

Q: why they did not develop some architecture with more layers?

• LeNet-5: 3 conv + 2 fc

• AlexNet: 5 conv + 2 fc

• VGG-16: 13 conv + 2 fc

More conv layers

Q: why they did not develop some architecture with more layers?

Hint (again): remember gradient vanishing?

gradients-> 0.01

Sigmoid function

• LeNet-5: 3 conv + 2 fc

• AlexNet: 5 conv + 2 fc

• VGG-16: 13 conv + 2 fc

Q: why they did not develop some architecture with more layers? Optimization may be difficult.

• LeNet-5: 3 conv + 2 fc

• AlexNet: 5 conv + 2 fc

• VGG-16: 13 conv + 2 fc

Q: why they did not develop some architecture with more layers?

Optimization may be difficult. We do not have a good solution as our model.

Inception

$$f_n\left(...\left(f_2(f_1(x))\right)\right) \to ?$$

$$\frac{dx_n}{dx_1} = \frac{dx_n}{dx_{n-1}} \cdot \dots \cdot \frac{dx_2}{dx_1} \left| \frac{dx_1}{dx} \right|$$

$$\to 0.01^n$$

Inception

$$f_n\left(...\left(f_2(f_1(x))\right)\right) + f_m\left(...\left(f_{n+2}(f_{n+1}(x))\right)\right)$$

$$\frac{dx_n}{dx_1} = \begin{bmatrix} dx_n \\ dx_{n-1} \end{bmatrix} \cdots \begin{bmatrix} \frac{dx_2}{dx_1} \end{bmatrix} \frac{dx_1}{dx}$$

$$\to 0.01^n$$

Inception

$$f_n\left(...\left(f_2(f_1(x))\right)\right) + f_m\left(...\left(f_{n+2}(f_{n+1}(x))\right)\right)$$

$$\frac{dx_n}{dx_1} = \frac{dx_n}{dx_{n-1}} \cdot \dots \cdot \frac{dx_2}{dx_1} \cdot \frac{dx_1}{dx} + \frac{dx_m}{dx_{m-1}} \cdot \dots \cdot \frac{dx_{n+2}}{dx_{n+1}} \cdot \frac{dx_{n+1}}{dx}$$

$$\rightarrow 0.01^n >> 0$$

Will not be very small

Residual neural networks (ResNet)

Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

Residual neural networks (ResNet)

Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

Without special structure other than conv/fc layers

Figure 2. Residual learning: a building block.

Figure 2. Residual learning: a building block.

Figure 2. Residual learning: a building block.

implication: same dimension

Figure 3. Example network architectures for ImageNet. **Left**: the VGG-19 model [41] (19.6 billion FLOPs) as a reference. **Middle**: a plain network with 34 parameter layers (3.6 billion FLOPs). **Right**: a residual network with 34 parameter layers (3.6 billion FLOPs). The dotted shortcuts increase dimensions. **Table 1** shows more details and other variants.

Figure 3. Example network architectures for ImageNet. **Left**: the VGG-19 model [41] (19.6 billion FLOPs) as a reference. **Middle**: a plain network with 34 parameter layers (3.6 billion FLOPs). **Right**: a residual network with 34 parameter layers (3.6 billion FLOPs). The dotted shortcuts increase dimensions. **Table 1** shows more details and other variants.

Figure 3. Example network architectures for ImageNet. **Left**: the VGG-19 model [41] (19.6 billion FLOPs) as a reference. **Middle**: a plain network with 34 parameter layers (3.6 billion FLOPs). **Right**: a residual network with 34 parameter layers (3.6 billion FLOPs). The dotted shortcuts increase dimensions. **Table 1** shows more details and other variants.

Figure 3. Example network architectures for ImageNet. **Left**: the VGG-19 model [41] (19.6 billion FLOPs) as a reference. **Middle**: a plain network with 34 parameter layers (3.6 billion FLOPs). **Right**: a residual network with 34 parameter layers (3.6 billion FLOPs). The dotted shortcuts increase dimensions. **Table 1** shows more details and other variants.

Figure 3. Example network architectures for ImageNet. **Left**: the VGG-19 model [41] (19.6 billion FLOPs) as a reference. **Middle**: a plain network with 34 parameter layers (3.6 billion FLOPs). **Right**: a residual network with 34 parameter layers (3.6 billion FLOPs). The dotted shortcuts increase dimensions. **Table 1** shows more details and other variants.

Figure 3. Example network architectures for ImageNet. **Left**: the VGG-19 model [41] (19.6 billion FLOPs) as a reference. **Middle**: a plain network with 34 parameter layers (3.6 billion FLOPs). **Right**: a residual network with 34 parameter layers (3.6 billion FLOPs). The dotted shortcuts increase dimensions. **Table 1** shows more details and other variants.

Figure 3. Example network architectures for ImageNet. **Left**: the VGG-19 model [41] (19.6 billion FLOPs) as a reference. **Middle**: a plain network with 34 parameter layers (3.6 billion FLOPs). **Right**: a residual network with 34 parameter layers (3.6 billion FLOPs). The dotted shortcuts increase dimensions. **Table 1** shows more details and other variants.

Figure 3. Example network architectures for ImageNet. **Left**: the VGG-19 model [41] (19.6 billion FLOPs) as a reference. **Middle**: a plain network with 34 parameter layers (3.6 billion FLOPs). **Right**: a residual network with 34 parameter layers (3.6 billion FLOPs). The dotted shortcuts increase dimensions. **Table 1** shows more details and other variants.

Figure 3. Example network architectures for ImageNet. **Left**: the VGG-19 model [41] (19.6 billion FLOPs) as a reference. **Middle**: a plain network with 34 parameter layers (3.6 billion FLOPs). **Right**: a residual network with 34 parameter layers (3.6 billion FLOPs). The dotted shortcuts increase dimensions. **Table 1** shows more details and other variants.

Figure 3. Example network architectures for ImageNet. **Left**: the VGG-19 model [41] (19.6 billion FLOPs) as a reference. **Middle**: a plain network with 34 parameter layers (3.6 billion FLOPs). **Right**: a residual network with 34 parameter layers (3.6 billion FLOPs). The dotted shortcuts increase dimensions. **Table 1** shows more details and other variants.

floating point operations per second

Measure: how complicated the model is

Measure: how complicated the model is

Measure: how complicated the model is

Measure: how complicated the model is

Figure 3. Example network architectures for ImageNet. Left: the VGG-19 model [41] (19.6 billion FLOPs) as a reference. Middle: a plain network with 34 parameter layers (3.6 billion FLOPs). Right: a residual network with 34 parameter layers (3.6 billion FLOPs). The dotted shortcuts increase dimensions. Table 1 shows more details and other variants.

Q: VGG-19 has much more FLOPS than 34-layer plain network and 34-layer ResNet?

Measure: how complicated the model is

Figure 3. Example network architectures for ImageNet. Left: the VGG-19 model [41] (19.6 billion FLOPs) as a reference. Middle: a plain network with 34 parameter layers (3.6 billion FLOPs). Right: a residual network with 34 parameter layers (3.6 billion FLOPs). The dotted shortcuts increase dimensions. Table 1 shows more details and other variants.

Q: VGG-19 has much more FLOPS than 34-layer plain network and 34-layer ResNet?

Reading material

ImageNet competition winners

ImageNet competition winners

ImageNet competition winners

More layers

top-5 error rate

References

- [LetNet-5] LeCun, Yann, Léon Bottou, Yoshua Bengio, and Patrick Haffner. "Gradient-based learning applied to document recognition." *Proceedings of the IEEE* 86, no. 11 (1998): 2278-2324.
- [AlexNet] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." *Advances in neural information processing systems* 25 (2012): 1097-1105.
- [VGG] Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014). Arxiv at https://arxiv.org/pdf/1409.1556.pdf

References

- [Inception] Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. "Going deeper with convolutions." In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 1-9. 2015. ArXiv at https://arxiv.org/pdf/1409.4842.pdf (Section 4 and 5)
- [ResNet] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
 "Deep residual learning for image recognition." In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 770-778. 2016. ArXiv at https://arxiv.org/pdf/1512.03385.pdf (Section 3.1, 3.2 and 3.3)