推荐系统遇上深度学习(*)-FNN&PNN

Notebook: recommender

Created: 10/6/2019 10:57 PM **Updated:** 10/6/2019 11:54 PM

Author: elvirasun28@outlook.com

Tags: rec

URL: https://zhuanlan.zhihu.com/p/33177517

• FM 的神经网路形式

• 其实FM 和FFM 都是可以从神经网路的角度理解

$$f(x) = logistics(linear(X) + \sum_{i=1}^{n} \sum_{j=i+1}^{n} < v_i, v_j > x_i x_j)$$

可以看成是三个神经网络。后面的二项式,可以看成是神经网路embedding后的每两个vector inner product

• FNN 的神经网路结构

- 其实就是一个简单的embedding + FCs,只是对embedding 做了特殊的处理,利用了预训练好的FM一次项和二次项作为初始化
- FNN only includes Deep part, no shallow part (lr/fm), and feature interactions are concatenation, and use several fcs to go deep layers.
- x 是输入特征 (大规模离散稀疏),分为N 个field,每个field 中,只有一个值为 1,其他都是0(one hot)。 $Field_i$ 可以表示称 $x[start_i:end_i]$, W_0^i 为Field i 的 embedding matrix. Z_i 为 embedding 后的matrix. 它是由 一次项 W_i 二次项 $V_i = (v_i^1, v_i^2..., v_i^K)$,其中K 是FM 二次项的向量dimension,而I1, I2 为 F C s

• PNN 的介绍

Product-based Neural Networks,是一种基于乘法运算来提现特征交叉的dnn模型。其网络结构如下图所示:

- 从整体结构来看,PNN与FNN的区别在于多了一层Product Layer。PNN的结构 为embeddding+product layer + fcs。而PNN使用product的方式做特征交叉的想 法是认为在ctr场景中,特征的交叉更加提现在一种"且"的关系下,而add的操 作,是一种"或"的关系,所以product的形式更加合适,会有更好的效果
- Product Layer 的设计

$$A\odot B=\sum A_{i,j}B_{i,j}$$

• 定义矩阵计算方法:

product layer 可以分为两个部分,一部分是线性部分 l_z , 一部分是非线性部分 l_p l_z , l_p 都是同样的维度。具体形式如下:

$$l_z=(l_z^1,l_z^2\dots l_z^n\dots l_z^{D1})$$
 $l_z^n=W_z^n\odot z$

$$l_p=(l_p^1,l_p^2\dots l_p^n\dots l_p^{D1})$$
 $l_p^i=W_p^n\odot p$

其中 z , p 为信号向量, z 为线性信号向量, p 为二次信号向量, W_z^i , W_p^i 为权重矩阵。

其具体形式为:
$$z = (z_1, z_2 \dots z_N) = (f_1, f_2 \dots f_N)$$

$$p = \{p_{i,j}\}, i = 1...N, j = 1...N$$

$$p_{i,j} = g(f_i, f_j)$$

 f_i 代表第i个特征(field)的编码后的向量。函数 $g(f_i,f_j)$ 为 f_i,f_j 的交叉函数,表示特征i,特征j 的交叉。在该论文中,该函数的形式有两种:

1. inner product_based

$$q(f_i, f_i) = \langle f_i, f_i \rangle$$
 内积表示特征交差

2. outer product based

$$g(f_i, f_j) = f_i f_j^T$$
 矩阵乘法表示特征交叉

product layer 的output: $l_1 = relu(l_z + l_p + b_1)$, 其中 b_1 dimension is D1

• Product Layer 的优化

(1) inner product-based的优化

考虑公式 $U_p^n = W_p^n \odot p$,此时p的维度为N*N,假设 f_i 的维度为M,则计算p的时间复杂度为N*N*M,而 l_p 的计算代价为N*N*D1,所以总的代价为N*N(D1+M)。而矩阵 W_p^n 是对称矩阵,受到FM的启发,可以将矩阵 W_p^n 进行分解: $W_p^n = \theta^n \theta^{nT}$,如果令 θ^i 的维度也为M的话,则:

$$l_p^n = W_p^n \odot p = \sum_{i=1}^N \sum_{j=1}^N heta_i^n heta_j^n < f_i, f_j > = < \sum_{i=1}^N \delta_i^n, \sum_{i=1}^N \delta_i^n > \; ,$$

其中, $\delta_i^n = \theta_i^n f_i$ 。

令 $\delta^n=(\delta^n_1,\delta^n_2,\dots,\delta^n_N)$,则其维度为N*M。而且 $l^n_p=||\sum_i \delta^n_i||$,此时计算 l_p 的总的复杂度变成了D1*N*M。

(2) outer product-based的优化

考虑 $p_{i,j}=g(f_i,f_j)=f_if_j^T$,可知此时 $p_{i,j}$ 为M*M的矩阵,计算 l_p 的时间复杂度为 D1*M*M*N*N,这个显然代价很高的。为了减少负责度,论文使用了叠加的思想,它重新定义了p 矩阵:

$$p = \sum_{i=1}^{N} \sum_{j=1}^{N} f_i f_j^T = f_{\sum} (f_{\sum})^T, f_{\sum} = \sum_{i=1}^{N} f_i$$

则此时可以将复杂度降低为D1*M*(M+N)。