Laboratorio 8 Teoría de la Computación

Jorge Andrino Joab Hernández

Octubre 2025

Problema 1

(a) Complejidad asintótica

Pseudocódigo	Costo
for (i = $\lfloor n/2 \rfloor$; i \leq n; i++)	$\Theta(n)$
for (j = 1; j $\leq n - \lfloor n/2 \rfloor$; j++)	$\Theta(n)$
for $(k = 1; k \le n; k = 2k)$	$\Theta(\log n)$

Cuadro 1: Estructura de bucles y costo por nivel (Problema 1).

Explicaciones de cada término.

- \bullet Bucle en i: recorre de $\lfloor n/2 \rfloor$ a $n \Rightarrow \#i = n \lfloor n/2 \rfloor + 1 = \Theta(n).$
- Bucle en j: la condición $j + n/2 \le n$ implica $j \le n \lfloor n/2 \rfloor \Rightarrow \#j = \Theta(n)$.
- \bullet Bucle en k: duplica khasta $n \Rightarrow \#k = \lfloor \log_2 n \rfloor + 1 = \Theta(\log n).$

Multiplicación total.

$$T(n) = \Theta(n) \cdot \Theta(n) \cdot \Theta(\log n) = \Theta(n^2 \log n)$$

(b) Resultados experimentales

Tabla de tiempos

n	tiempo (s)	fuente
1	2.400000e-06	measured
10	5.599999e-06	measured
100	8.892000e-04	measured
1000	1.200920 e-01	measured
10000	$1.667895e{+01}$	estimated
100000	2.084903e+03	estimated
1000000	$2.501884e{+05}$	estimated

Cuadro 2: Tiempos experimentales del Problema 1.

Figura 1: Curva n vs. tiempo (log–log) del Problema 1.

Problema 2

(a) Complejidad asintótica

Pseudocódigo	Costo
if $(n \le 1)$ return;	$\Theta(1)$
for (i = 1; i \leq n; i++) {	$\Theta(n)$
for (j = 1; j \leq n; j++) { printf(); break; }	$\Theta(1)$ por cada i
}	

Cuadro 3: Estructura y costo por nivel (Problema 2).

Explicaciones de cada término.

■ La rama $n \le 1$ es constante.

 \blacksquare Para cada i, el bucle interno ejecuta una vez y se interrumpe con break \Rightarrow trabajo constante por iteración externa.

Multiplicación total.

$$T(n) = \Theta(n) \cdot \Theta(1) = \Theta(n)$$
.

(b) Resultados experimentales

Tabla de tiempos

$\overline{}$	tiempo (s)	fuente
1	6.999981e-07	measured
10	1.400000e-06	measured
100	5.400001e- 06	measured
1000	7.280000e-05	measured
10000	9.189000e-04	measured
100000	7.195600e-03	measured
1 000 000	6.978500 e-02	measured

Cuadro 4: Tiempos experimentales del **Problema 2**.

Gráfica

Figura 2: Curva n vs. tiempo (log–log) del Problema 2.

Problema 3

(a) Complejidad asintótica

Pseudocódigo	Costo
for (i = 1; i $\leq \lfloor n/3 \rfloor$; i++)	$\Theta(n)$
for $(j = 1; j \le n; j += 4)$	$\Theta(n)$

Cuadro 5: Estructura y costo por nivel (Problema 3).

Explicaciones de cada término.

- Bucle externo: $\lfloor n/3 \rfloor = \Theta(n)$.
- Bucle interno con paso 4: $\lceil n/4 \rceil = \Theta(n)$.

Multiplicación total.

$$T(n) = \Theta(n) \cdot \Theta(n) = \Theta(n^2)$$

(b) Resultados experimentales

Tabla de tiempos

n	tiempo (s)	fuente
1	7.999988e-07	measured
10	1.400000e-06	measured
100	3.560000e-05	measured
1 000	3.998200 e-03	measured
10000	4.273643 e-01	estimated
100000	$4.273927\mathrm{e}{+01}$	estimated
1000000	$4.273930e{+03}$	estimated

Cuadro 6: Tiempos experimentales del ${f Problema~3.}$

Figura 3: Curva n vs. tiempo (log-log) del Problema 3.

Ejercicio 4

1. Búsqueda Lineal (Linear Search)

El algoritmo recorre secuencialmente una lista de tamaño n comparando cada elemento con el valor buscado.

$$T(n) = \begin{cases} 1, & \text{si el elemento está en la primera posición (mejor caso}) \\ \frac{n}{2}, & \text{si el elemento está en una posición intermedia (caso promedio)} \\ n, & \text{si el elemento está al final o no está en la lista (peor caso}) \end{cases}$$

Complejidad asintótica:

Mejor caso:
$$T_{\text{mejor}}(n) = O(1)$$

Caso promedio: $T_{\text{prom}}(n) = O(n)$
Peor caso: $T_{\text{peor}}(n) = O(n)$

2. Búsqueda Binaria (Binary Search)

Requiere que la lista esté ordenada. En cada paso compara el valor buscado con el elemento central y descarta la mitad restante.

$$T(n) = \begin{cases} 1, & \text{si el elemento está en la posición central (mejor caso}) \\ \log_2 n, & \text{número promedio de comparaciones (caso promedio)} \\ \log_2 n, & \text{siempre divide el espacio a la mitad (peor caso}) \end{cases}$$

Complejidad asintótica:

Mejor caso:
$$T_{\text{mejor}}(n) = O(1)$$

Caso promedio: $T_{\text{prom}}(n) = O(\log n)$
Peor caso: $T_{\text{peor}}(n) = O(\log n)$

3. Quick Sort

Es un algoritmo de ordenamiento por división y conquista que selecciona un pivote, divide el arreglo en dos subarreglos y los ordena recursivamente.

$$T(n) = \begin{cases} n \log n, & \text{si el pivote divide uniformemente el arreglo (mejor caso)} \\ n \log n, & \text{promedio de divisiones equilibradas (caso promedio)} \\ n^2, & \text{si el pivote siempre es el menor o el mayor elemento (peor caso)} \end{cases}$$

Complejidad asintótica:

Mejor caso:
$$T_{\text{mejor}}(n) = O(n \log n)$$

Caso promedio: $T_{\text{prom}}(n) = O(n \log n)$
Peor caso: $T_{\text{peor}}(n) = O(n^2)$

Ejercicio 5

1. Si $f(n) = \Theta(g(n))$ y $g(n) = \Theta(h(n))$, entonces $h(n) = \Theta(f(n))$.

El enunciado sería verdadero. Por definición, $f(n) = \Theta(g(n))$ implica que existen constantes $c_1, c_2 > 0$ y n_0 tales que

$$c_1g(n) \le f(n) \le c_2g(n), \quad \forall n \ge n_0.$$

De igual forma, $g(n) = \Theta(h(n))$ implica que existen $d_1, d_2 > 0$ y n_1 tales que

$$d_1h(n) \le g(n) \le d_2h(n), \quad \forall n \ge n_1.$$

Componiendo ambas desigualdades se obtiene:

$$(c_1d_1)h(n) \le f(n) \le (c_2d_2)h(n), \quad \forall n \ge \max(n_0, n_1),$$

lo cual demuestra que $f(n) = \Theta(h(n))$, y por simetría, $h(n) = \Theta(f(n))$.

2. Si f(n) = O(g(n)) y g(n) = O(h(n)), entonces $h(n) = \Omega(f(n))$.

El enunciado sería verdadero. Dado que O es transitiva: de f = O(g) y g = O(h) se sigue f = O(h). Y ya que f = O(h) es equivalente a $h = \Omega(f)$, se cumple lo que dice el enunciado.

3. El enunciado sería falso. En cada iteración interna, se crea una nueva tupla de longitud k = j - i, y tanto la creación como el cálculo del hash de la tupla cuestan O(k). Por tanto, el costo total es:

$$\sum_{i=0}^{n-1} \sum_{j=i+1}^{n-1} (j-i) = \sum_{k=1}^{n-1} k(n-k) = \frac{(n-1)n(n+1)}{6} = \Theta(n^3).$$

El tiempo de creación de la tupla inicial atupla es O(n), pero no afecta el orden de crecimiento. Por lo tanto, $f(n) = \Theta(n^3)$.

7

Repositorio:

https://github.com/her21105/lab8_jorgeJoab_teoriacomputacion