

Funkcijske ovisnosti

- A→B, ako za jednu A vrijednost postoji uvijek samo jedna B vrijednost
- Eliminira potrebu višestrukog zapisa podataka
- Podatak se unos samo jedan put
- Model BP koji nema anomalije: KANONSKI MODEL
- NORMALIZACIJA: dekompozicija relacija bez gubitka informacija (projekcija+prirodno spajanje)
- Skup svih f-ijskih ovisnosti koje se mogu izvesti na F zovu se Zatvaračem skupa f-ijskih ovisnosti

Funkcijske ovisnosti

-> za početak, izlet u svijet algebre

PRIMJER 1:

Pretpostavka je da kupujete kutije s keksima i netko vam kaže da svaka kutija košta 4 Kn =>

VrijednostKeksa = BrojKutija x 4

Generalni način da se izrazi odnos između VrijednostKeksa i BrojKutija jeste reći da

VrijednostKeksa ovisi od BrojKutija

Formalno, VrijednostKeksa je funkcionalno ovisna o BrojKutija BrojKutija -> VrijednostKeksa

BrojKutija determinira (određuje) VrijednostKeksa

🌽 Funkcijske ovisnosti

PRIMJER 2:

Određivanje iznosa na osnovu cijene pojedinačnog artikla i količine:

Iznos = JediničnaCijena x Količina

Slijedi: Iznos ovisi od JediničnaCijena i Količina Formalno, Iznos je funkcionalno ovisan o JediničnaCijena i Količina (JediničnaCijena,Količina) -> Iznos

JediničnaCijena i Količina determiniraju (određuju) Iznos

PRIMJER 3:

Pretpostavimo da znate da vreća sadrži crvene, plave i žute objekte i da crveni teže 5 dkg, plavi 3 dkg i žuti 7 dkg. Ako netko pogleda u vreću i kaže boju objekta, vi odmah znate težinu:

Slijedi: BojaObjekta -> Težina (Težina je funkcionalno ovisna o boji)

Ako je poznato da su crveni objekti lopte, plavi kocke i žuti trokuti, slijedi BojaObjekta -> Oblik, tj.

BojaObjekta -> (Težina,Oblik)

(boja objekta determinira težinu i oblik)

Navedeno se može predstaviti i na slijedeći način:

BojaObjekta Težina Oblik

Crvena 5 loptaPlava 3 kockaŽuta 7 trokut

- ⇒ Ovo je relacija s primarnim ključem BojaObjekta
- ⇒ **OBJEKT**(#BojaObjekta, Težina, Oblik)

Funkcijske ovisnosti

Kompozitne (složene) grupe:

- -> značenje grupe ovisi o tome s koje strane se pojavljuje
- 1. BrojNarudžbe -> (ŠifraKupca, ŠifraArtikla, Količina)

Znači da za danu vrijednost BrojNarudžbe, može se odrediti vrijednost za ŠifraKupca, ŠifraArtikla i Količina, tj. vrijedi:

BrojNarudžbe -> ŠifraKupca

BrojNarudžbe -> ŠifraArtikla

BrojNarudžbe -> Količina

Kompozitne (složene) grupe:

2. (ŠifraKupca, ŠifraArtikla, Količina) -> Cijena

Znači da za dane vrijednosti ŠifraKupca, ŠifraArtikla i Količina može se odrediti Cijena, s tim da se ovaj determinant ne može razbiti na dijelove, odnosno

ŠifraKupca -> Cijena nije istinita tvrdnja

Determinant je atribut o kojem je neki atribut potpuno funkcijski ovisan.

🌽 Funkcijske ovisnosti

Razlika između Primarnog ključa i Determinanta:

Primarni ključ je <u>UVIJEK</u> determinanta, dok determinanta <u>NIJE UVIJEK</u> primarni ključ.

Primjer:

SMJESTAJ(#ŠifraStudenta,NazivSmještaja,Stanarina)
Pretpostavka je da svi studenti u istom smještaju plaćaju istu stanarinu.

ŠifraStudenta -> (NazivSmještaja,Stanarina) i PK i Determinanta NazivSmještaja -> Stanarina (samo determinanta)

Definicije funkcijskih ovisnosti

Funkcijska ovisnost atributa:

Ako promatramo tablicu R sa atributima X i Y koji mogu biti kompozitni tj. složeni: za atribut Y tablice R kaže se da je funkcijski ovisan o atributu X iste tablice

R.X->R.Y

ako je svaka pojedina vrijednost atributa X povezana sa samo jednom vrijednošću atributa Y.

Primjer:

Za relaciju Proizvod(P#,Naziv,Boja,Težina) vrijedi:

P.P#->P.Naziv, ali ne i P.Boja->P.Težina

Definicije funkcijskih ovisnosti

Potpuna funkcijska ovisnost atributa:

U tablici R s atributima X i Y koji mogu biti kompozitni tj. složeni, Y je potpuno funkcijski ovisan o X ako vrijedi da je Y funkcijski ovisan o X i nije funkcijski ovisan niti o jednom manjem podskupu atributa X.

Odnosno, ako vrijedi X->Y tada ne smije postojati niti jedan podskup Z koji sadrži samo dio atributa od kojih se sastoji atribut X, za koji bi vrijedilo da je Z->Y.

Primier:

DP(D#,P#,Količina,Grad), sa slijedećim ovisnostima:

- DP.D#->DP.Grad, gdje je Grad potpuno funkcijski ovisan o D# jer je za danu vrijednost atributa D# vrijednost atributa Grad uvijek ista.
- DP.(D#,P#)->DP.Grad, gdje ne postoji potpuna funkcijska ovisnost jer je Grad potpuno funkcijski ovisan samo o D# koji je podskup složenog atributa (D#,P#)

Definicije funkcijskih ovisnosti

Tranzitivna funkcijska ovisnost atributa:

Ako vrijedi X->Y i Y-/->X (Y je funkcijski ovisan o X, a X nije funkcijski ovisan o Y), i ako Y->A (A je funkcijski ovisan o Y) tada vrijedi da je A funkcijski ovisan i o X (X->A). Ako vrijedi A-/->Y tada je A striktno tranzitivno ovisan o X.

Amstrongovi aksiomi definirani unutar relacije R(A,B,C) pri čemu A,B i C mogu biti složeni atributi:

- Ako je B podskup od A, uvijek vrijedi A->B;
- 2. A->(B,C) ako i samo ako A->B i A->C;
- 3. Ako A->B i B->C, tada je uvijek A->C.

Klijent id	Ime Klijenta	Stan ID	Adresa	Pocetak najma	Kraj najma	Najam iznos	Vlasnik id	lme vlasnika
CR76	Mate Matić	PG4	K.Tomislava 6.	01.07.00	31.08.01	350	CO40	T.Tadić
		PG16	K.Tvrtka 16.,	01.09.01	01.09.02	450	C093	E.Spasić
CR56	Petra Perić	PG4	K.Tomislava 6.,	01.09.99	10.06.00	350	CO40	T.Tadić
		PG36	K.Katarine 9,	10.10.00	01.12.01	375	C093	E.Spasić
		PG16	K.Tvrtka 16.,	01.11.02	10.08.03	450	C093	E.Spasić

Prva normalna forma – 1NF

Tablica se nalazi u prvoj normalnoj formi ako su svi neključni atributi funkcijski ovisni o ključu.

Definicija proizlazi iz definicije ključa. Naime, ako je neka vrijednost atributa jedinstvena kroz cijelu tablicu, trivijalno je da su svi ostali atributi funkcijski ovisni o tom atributu.

→ Uklanjanje ponavljajućih atributa ili grupa atributa

	(Prva	a norm	alna	forma	a – '	1NF	
Klijent id	lme Klijenta	Stan ID	Adresa	Pocetak najma	Kraj najma	Najam iznos	Vlasnik id	lme vlasnika
CR76	Mate Matić	PG4	K.Tomislava 6.,	01.07.00	31.08.01	350	CO40	T.Tadić
CR76	Mate Matić	PG16	K.Tvrtka 16.,	01.09.01	01.09.02	450	C093	E.Spasić
CR56	Petra Perić	PG4	K.Tomislava 6.,	01.09.99	10.06.00	350	CO40	T.Tadić
CR56	Petra Perić	PG36	K.Katarine 9,	10.10.00	01.12.01	375	C093	E.Spasić
CR56	Petra Perić	PG16	K.Tvrtka 16.,	01.11.02	10.08.03	450	C093	E.Spasić

Problem s relacijom Najmovi je u tome što ona sadrži previše informacija, tj. sadrži informacije i o klijentu, i o stanovima, o najmovima i najmodavcima.

Jedna od bitnih postavki normalizacije jest i ta da je odvojene informacije potrebno spremati u odvojene tablice.

Druga normalna forma – 2NF

Tablica je u drugoj normalnoj formi ako i samo ako je u 1NF i ako su svi neključni atributi potpuno funkcijski ovisni o ključu.

Odnosno, uklanjanje atributa ovisnih samo o dijelu jedinstvenog identifikatora.

Za one relacije koje imaju složeni ključ i koje se nalaze u 1NF!

One relacije koje su u 1NF i imaju jedan ključ su i u 2NF

Klijent ID	lme klijenta
CR76	Mate Matić
CR56	Petra Perić

Klijent ID	Stan ID	Početak najma	Kraj najma
CR76	PG4	01.07.00	31.08.01
CR76	PG16	01.09.01	01.09.02
CR56	PG4	01.09.99	10.10.00
CR56	PG36	10.10.00	01.12.01
CR56	PG16	01.11.02	10.08.03

Stan ID	Adresa	Renta iznos	Vlasnik Id	lme Vlasnika
PG4	K.Tomislava 6,	350	C040	T.Tadić
PG16	K.Tvrtka 16,	450	C093	E.Spasić
PG36	K.Katarine 9,	375	C093	E.Spasić

Treća normalna forma – 3NF

Tablica je u trećoj normalnoj formi ako i samo ako je u 2NF i ako niti jedan neključni atribut nije tranzitivno ovisan o ključu.

Odnosno, uklanjanje atributa ovisnih o atributima koji nisu dio jedinstvenog identifikatora.

- 1NF: za svaki ključ jedna vrijednost neključnog atributa
- 2NF: ovisi o cijelom ključu
- 3NF: ni o čemu drugom osim o ključu (nema tranzitivnih ovisnosti)

1NF, 2NF i 3NF: uklanjaju anomalije neključnih atributa BCNF: uklanja anomaliju ključa

U kojoj NF se nalazi relacija Ispit?

Datum ispita	ŠifraPre dmeta	NazivPredmeta	ŠifraStude nta	ImeStudent a	PrezimeStu denta	ŠifraIspit ivača	PrezimeIsp itivača	Ocjena
20.03.2003.	1	Baze podataka	1	Ana	Ivić	1	Kalpić	2
20.03.2003.	1	Baze podataka	2	Ivo	Anić	2	Fertalj	1
20.03.2003.	1	Baze podataka	3	Ana	Perić	1	Kalpić	5
20.03.2003.	1	Baze podataka	4	Pero	Anić	NULL	NULL	NULL
24.04.2003.	2	Programiranje	4	Pero	Anić	2	Fertalj	4
24.04.2003.	2	Programiranje	2	Ivo	Anić	3	Miornar	3
24.04.2003.	3	Algoritmi	3	Ana	Perić	3	Mornar	3
24.04.2003.	1	Baze podataka	4	Pero	Anić	2	Fertalj	2

Zašto normalizirati?

- Normalizacija nije hir teoretičara!
- □ Paradoksi nenormaliziranih relacija:
 - Ne bi se moglo evidentirati ispitivača sve dok nije obavio barem jedan ispit.
 - Ako se izbriše posljednji zapis o ispitu koji je neki ispitivač održao, gubi se podatak o njegovom prezimenu.
 - Isti podatak se mora više puta unositi/ažurirati. Ako se pri tome pogriješi, ne zna se više što je istina.

Boyce-Coddova normalna forma – (BCNF)

Problemi s 3NF:

- Ako postoje 2 ili više kandidata za ključ koji imaju slijedeće osobine:
 - kandidati za ključ su složeni (kompozitni)
 - kandidati za ključ se preklapaju tj. imaju barem jedan zajednički atribut
- => Potrebna je "stroža" definicija => BCNF

Boyce-Coddova normalna forma – (BCNF)

Tablica je u Boyce-Coddovoj normalnoj formi ako i samo ako je svaki determinant ujedno i kandidat za ključ.

Determinant je atribut o kojem je neki atribut potpuno funkcijski ovisan.

Primjer:

Dob_Prod(#D,Status,Grad,#P,Količina), -> atributi D, Grad i (D,P) su determinanti.

💋 BCNF - Primjeri

- DOB_GRAD(#D,Grad) -> 3NF, BCNF, binarna
- Dob_Stat(#D,Status) -> 3NF, BCNF, binarna
- Dobav(#D,Naziv,Grad,Status) -> BCNF (kandidati za ključ su D i Naziv, a atributi Grad i Status nisu međusobno funkcijski ovisni)

Primjeri tablica koje NISU u BCNF:

- Dob_Prod(#D,Status,Grad,#P,Kolicina) ... od svih determinanti jedino je složeni atribut (D,P) kandidat za ključ
- Dob(#D,Grad,Status) .. Nije u BNCF jer su njene determinante D i Grad, a Grad nije kandidat za ključ.

Cetvrta normalna forma – 4NF

Tablica je u četvrtoj normalnoj formi ako i samo ako vrijedi da postojanje višeznačne ovisnosti A->>B povlači za sobom postojanje funkcijske ovisnosti svih atributa tablice o atributu A.

U relaciji R s atributima A,B i C vrijedi da je B višeznačno ovisan o A (A->>B) ako i samo ako vrijedi: za svaki B koji odgovara vrijednostima atributa A i C, B je ovisan samo o A, ali ne i o C.

4NF se može definirati za tablice koje imaju najmanje 3 atributa.

Sve binarne relacije su u 4NF.

4NF - Primjer

Tablica PND(P,N,D) opisuje veze između predmeta (P), nastavnika (N) predavanja (D). Pod pojmom predavanja misli se na sadržaj pojedinog predavanja (npr. Diferencijalne jednadžbe, Laplaceove transformacije i sl.). Jedan predmet može predavati više nastavnika i svi oni za jedan predmet imaju iste sadržaje predavanja. Tablica PND nema nikakvih funkcijskih ovisnosti, njen ključ su sva tri atributa i iz toga proizlazi da je tablica sigurno u BCNF.

P (Predmet)	N (Nastavnik)	D (Predavanje)
Fizika	Ford	Optika
Fizika	Ford	Gravitacija
Fizika	Lamp	Optika
Fizika	Lamp	Gravitacija
Matematika	Oliver	Trigonometrija
Matematika	Oliver	Logaritmi
Matematika	Oliver	Logička algebra

Ako bi se željela unijeti informacija da nastavnik Brook predaje matematiku, bilo bi potrebno unijeti tri ntorke, po jednu za svako predavanje jer su predavanja neovisna o nastavnicima.

Rješenje: dekompozicija

PN(P,N) PD(P,D)

Peta normalna forma – 5NF

Tablica je u petoj normalnoj formi (Projektivno-spojnoj normalnoj formi – PSNF) u odnosu na spojnu ovisnost *(X,Y,...Z) ako i samo ako je u spojnoj ovisnosti svaki od atributa X,Y,...Z kandidat za ključ tablice.

Definicija spojne ovisnosti: Tablica *R ispunjava uvjet spojne ovisnosti ako i samo ako vrijedi da je relaciju R moguće dobiti prirodnim spajanjem projekcija X,Y,...Z.*

X,Y,...Z su podskupovi atributa tablice R. Oznaka je *(X,Y,...Z)

Dekompozicija (prevođenje) u tri projekcije.

5NF - Primjer

Tablica DPR(#D,#P,#R) opisuje veze između dobavljača (D), proizvoda (P) i projekta (R) u kojem se koristi proizvod.

DPR		
D	Р	R
D1	P1	R2
D1	P2	R1
D2	P1	R1

P1

R1

DP	
D	Р
D1	P1
D1	P2
D2	P1

F	PR						
	Р	R					
	P1	R2					
	P2	R1					
	P1	R1					

D2

D1

5NF - Primjer

Reverzibilnost procesa DP i PR se spajaju u tablicu DPPR.

DPPR Р D R D1 R2 D1 P1 R1 D1 P2 R1 D2 P1 R2

P1

R1

D	Р	R
D1	P1	R2
D1	P1	R1
D1	P2	R1
D2	P1	R1