Kopekan UTS MatKul Analisis Multivariat Sem 4 2025

By Lathif Ramadhan (5231811022)

Analysis Of Variance (ANoVa)

Pendahuluan

- · Jika uji t digunakan untuk membandingkan 2 rata-rata/parameter sampel;
- ANOVA digunakan untuk membandingkan rata-rata lebih dari 2 sampel

Contoh:

- Membandingkan rata-rata konsentrasi protein dalam larutan sampel yang disimpan di bawah kondisi yang berbeda
- Membandingkan rata-rata hasil analit dengan berbagai metode
- · Membandingkan hasil titrasi yang diperoleh oleh analis
- Prinsip Anova adalah membagi komponen variabilitas data menjadi dua sumber variasi yaitu variasi dalam kelompok (WITHIN) dan variasi antar kelompok (BETWEEN).
- Analisis varian (ANOVA) dibedakan menjadi 2 vaitu:

□analisis ragam satu arah (*One way anova*)

□analisis ragam dua arah (*Two way anova*)

☐Multivariat Anova (Manova)

Anova: menguji rata-rata satu kelompok / lebih melalui satu variabel dependen / lebih berbeda secara signifikan atau tidak.

ONE WAY ANOVA

Satu variabel dependen (kuantitatif) dan satu kelompok (kualitatif) Contoh : apakah pandangan siswa tentang IPS (kuantitatif) berbeda berdasarkan jenjang pendidikannya (kualitatif : SD, SLTP, SMU)

UNIVARIAT ANOVA

Satu variabel dependen tetapi kelompok berbeda Contoh: apakah rata-rata ulangan berbeda berdasar kan klasifikasi sekolah dan kelompok penelitian

Variabel dependen lebih dari satu tetapi

Contoh: apakah rata-rata ulangan dan pandangan siswa terhadap IPS berbeda untuk tiap daerah

MULTIVARIAT ANOVA Variabel dependen lebih dari satu dan kelompok

Contoh: apakah rata-rata ulangan dan pandangan siswa terhadap IPS berbeda berdasarkan klasifikasi Sekolah dan kelompok penelitian

- · Untuk melakukan ANOVA ini kita menggunakan uji-F.
- Tujuan dari uji F (Fisher's test) adalah untuk menguji perbedaan variansi dua populasi dan perbedaan mean (rata-rata) lebih dari dua populasi.
- Asumsi melakukan analisis varians adalah:
- 1. Populasi-populasi yang diteliti berdistribusi normal
- 2. Populasi tersebut memiliki varian yang sama.
- Sampel yang diambil dari populasi tersebut bersifat independen dan diambil secara acak.

Anova Satu Arah (One Way Anova)

□Anova Satu arah digunakan untuk menguji signifikansi perbedaan rata-rata hitung yang melibatkan 1 variable bebas terhadap 1 variable bebas.

☐Misalkan kita ingin melihat pengaruh bentuk Kemasan suatu produk terhadap penjualan.

- Jika faktor yang menjadi perhatian kita adalah pengaruh bentuk kemasan suatu produk pada tingkat penjualan, maka digunakan Anova One Way.
- > Jika pusat perhatian, selain jenis kemasan, juga tertuju pada pengaruh aroma pada tingkat penjualan, maka digunakan ANOVA dua arah (Two Way Anova).

Uji Hipotesis Anova One Way

- Dalam analisis ragam Anova hipotesis yang digunakan Hanya berupa hipotesis untuk kasus dua arah.
- Anova tidak dapat menentukan mana kelompok yang benar-benar berbeda.
- Anova hanya mampu mendeteksi Apakah ada perbedaan rata-rata dari beberapa kelompok tersebut.

		Populasi			
	1	2		k	Total
Sampel	X ₁₁	X_{21}		X_{k1}	
	X_{12}	X_{22}		X_{k2}	
	Xin	X_{2n}		X_{kn}	
Total	T ₁	T ₂		T_k	T
Ukuran	n ₁	n_2		n_k	N
Rata-rata	\bar{x}_1	\bar{x}_2		\overline{x}_k	

Keterangan

 X_{ij} : elemen ke-i dalam sampel ke-j

N : Jumlah seluruh observasi

: Jumlah elemen pada populasi ke-j

 $n_j \;\; :$ Banyaknya observasi pada populasi ke-j

 $T = T_1 + T_2 + \dots + T_k$

 $\overline{x_j}$: rata-rata pada populasi ke-j

Prosedur Uji Hipotesis

√ Hipotesis

- 1. $H_0: \mu_1 = \mu_2 = \cdots = \mu_k$ (Tidak ada perbedaan rata-rata yang signifikan)
- 2. $H_1: \mu_i \neq \mu_j$, dengan $i \neq j$ (Ada perbedaan rata-rata yang signifikan)
- ✓ Tingkat Signifikansi : α

✓ Statistik Penguji:

Untuk mendapatkan nilai f_{tabel} maka digunakan $df_1=k-1$ dan $df_2=N-k$.

Tabel Anova:

Sumber Variabilitas	Jumlah Kuadrat	Derajat Kebebasan (df)	Rata-Rata Jumlah Kuadrat	F _{hitung}
Perlakuan	JKP	k-1	RJKP	$E_{r.r.} = \frac{RJKP}{r}$
Galat/Error	JKG	N-k	RJKG	$F_{hitung} = \frac{r_f r_f}{RJKG}$
Total	JKT	N - 1		

- JKP = Jumlah Kuadrat Perlakuan = $\sum_{n_j} \frac{T_j^2}{n_j} \frac{T^2}{N}$
- JKT = Jumlah Kuadrat Total = $\sum x_{ij}^2 \frac{T^2}{N}$
- JKG = Jumlah Kuadrat Galat = JKT JKP
- RJKP = Rata rata Jumlah Kuadrat Perlakuan = $S_1^2 = \frac{JKP}{k-1}$
- RJKG = Rata rata Jumlah Kuadrat Galat = $S_2^2 = \frac{JKG}{N-k}$
- $F_{hitung} = \frac{RJKP}{RIKG}$

√Kriteria Penolakan H₀:

 H_0 ditolak jika $F_{hitung} > F_{tabel}$

√ Kesimpulan

Contoh

Seorang supervisor suatu perusahaan air minum ingin mengetahui apakah ada perbedaan nyata dari penjualan air minum di daerah JABOTABEK. Diambil sampel berupa data penjualan air minum, masing-masing 5 outlet dengan data sebagai berikut:

No		Daerah	Daerah Penjualan		
INO	Jakarta	Bogor	Tangerang	Bekasi	Jumlah
1	63	56	56	53	
2	66	60	60	55	
3	63	65	57	54	
4	62	69	54	51	
5	65	65	58	52	
Jumlah	319	315	285	265	1184

Dengan tingkat signifikansi 59 apakah ada perbedaan rata-rat penjualan di antara empat daera tersebut?

Penyelesaian

· Hipotesis:

1. H_0 : Tidak Ada Perbedaan Rata-Rata Penjualan ($\mu_1 = \mu_2 = \mu_3 = \mu_4$)

2. H_1 : Ada perbedaan Rata-Rata Penjualan $(\mu_i \neq \mu_i)$

• Tingkat Signifikansi: $\alpha = 5\%$

· Statistik Penguji:

 $df_1 = k - 1 = 4 - 1 = 3$ (derajat kebebasan untuk Pembilang)

 $df_2 = N - k = 20 - 4 = 16$ (derajat kebebasan untuk Penyebut)

Diperoleh Nilai $f_{tabel} = f_{\alpha;df_1;df_2} = 3,24$.

Selanjutnya

$$0JKP = \left(\sum_{n=1}^{\frac{7}{2}}\right) - \frac{T^2}{N} = \left(\frac{319^2}{5} + \frac{315^2}{5} + \frac{285^2}{5} + \frac{265^2}{5}\right) - \frac{1184^2}{20} = 70487,2 - 70092,8 = 394,4$$

$$0 JKT = \left(\sum X_{ij}^2\right) - \frac{T^2}{N} = 70630 - 70092,8 = 537,2$$

$$\circ$$
 IKG = IKT - IKP = 537.2 - 394.4 = 142.8

$$\circ RJKP = \frac{JKP}{k-1} = \frac{394,4}{3} = 131,4667$$

$$\circ RJKG = \frac{JKG}{N-k} = \frac{142.8}{16} = 8,925$$

Dengan demikian diperoleh

$$F_{hitung} = \frac{RJKP}{RIKG} = \frac{131,4667}{8.925} = 14,73$$

✓ Kriteria Penolakan H_0

 H_0 ditolak jika $F_{hitung} > F_{tabel}$. Karena $F_{hitung} = 14,73 > 3,24 = F_{tabel}$ maka H_0 ditolak.

√ Kesimpulan

Jadi, ada perbedaan yang nyata diantara penjualan air di empat outlet di Jabotabek.

Tabel Ringkasan ANOVA					
Sumber Variabilitas	Jumlah Kuadrat	Derajat Bebas	Rerata Jumlah Kuadrat	F Hitung	
Perlakuan	JKP=394,4	$df_1 = 3$	RJKP = 131,47	$F_{hit} = \frac{RJKP}{RJKG}$	
Galat/Error	JKG= 142,8	$df_3 = 16$	RJKG = 8,925	= 14,73	
Total	JKT=537,2	19			

Latihan Soal 1

Suatu penelitian dilakukan untuk mengetahui apakah terdapat pengaruh perbedaan kartu kredit terhadap penggunaannya. Data di bawah ini adalah jumlah uang yang dibelanjakan ibu rumah tangga menggunakan kartu kredit (dalam \$). Empat jenis kartu kredit dibandingkan:

Jumlah yang dibelanjakan (\$)			
ASTRA	BCA	CITI	AMEX
8	12	19	13
7	11	20	12
10	16	15	14
12	10	18	15
11	12	19	

Ujilah dengan α = 0.05, apakah terdapat pengaruh perbedaan kartu kredit pada penggunaannya?

Latihan Soal 2

Tiga kelompok subyek penelitian untuk menguji metode pengajaran mana yang paling baik.

Metode pertama adalah ceramah, metode kedua diskusi dan metode ketiga praktek. Data hasil penelitian adalah sebagai berikut:

Ceramah

Diskusi

Praktek

Ceramah	Diskusi	Praktek
25	17	26
11	16	20
16	18	17
26	20	26
32	10	43
25	14	46
30	19	35
17		34

Ujilah dengan α = 0.05, apakah terdapat perbedaan pengaruh dari ketiga metode pengajaran tersebut?

Latihan Soal 3

Seorang ingin mengetahui perbedaan prestasi belajar untuk mata kuliah statistika antara mahasiswa tugas belajar, izin belajar dan umum. Data diambil dari nilai UTS sebagai berikut:

Buktikan apakah ada perbedaan atau tidak?

Latihan Soal 4

Terdapat 4 empat mesin yang akan diperbandingkan. Oleh karena itu, mesin-mesin ini dijalankan oleh tenaga manusia, dan oleh karena faktor-faktor lain yang tidak dapat diterangkan, sehingga keluaran per jamnya dianggap memiliki kemungkinan produktivitasnya tidak sama. Di bawah ini disajikan sampel acak dari keluaran yang diamati selama 5 jam yang berbeda.

Produktivitas empat mesin					
Jam ke-	Mesin 1	Mesin 2	Mesin 3	Mesin 4	
1	20	30	60	50	
2	30	40	80	50	
3	10	30	70	50	
4	30	50	40	30	
5	10	0	100	20	

Buktikan apakah ada perbedaan atau tidak pada produktivitas empat mesin tersebut?

Uji Post Hoc

- · Pada Penghitungan Anova One Way, digunakan untuk seluruh kelompok sampel yang diuji.
- Artinya nilai F hanya dapat menunjukkan ada atau tidaknya perbedaan yang signifikan untuk seluruh sampel, namun belum dapat mengatakan antarsampel mana saja yang benar-benar berbeda.
- Nilai F bisa saja mengatakan terdapat perbedaan, tetapi belum tentu mencakup seluruh sampel yang diuji.
- Misal dibuat berpasangan, maka bisa jadi ada pasangan sampel yang tidak berbeda secara signifikan.
- Proses hitung Anova One Way tidak sampai pada hal itu.
- Untuk melakukan analisis lebih lanjut digunakan Uji Post Hoc.
- Uii Post Hoc dilakukan iika Ho ditolak.
- Ada beberapa jenis rumus Uji Post Hoc diantaranya Uji Scheffe, Uji Honestly Significant Difference (HSD) Tukey, Bonferroni,dsb.
- · Yang akan kita bahas hanya Uji Scheffe.

Uji Scheffe

- Banyaknya pasangan rata-rata hitung yang dihitung perbedaannya tergantung pada jumlah kelompok sampel (bisa 3, 4,dst)
- Langkah Uji Scheffe
- 1. Hipotesis

No	Uji Pasangan	H_0	H ₁
1	μ_1 vs μ_2	$\mu_1 = \mu_2$	$\mu_1 \neq \mu_2$
2	μ_1 vs μ_3	$\mu_1 = \mu_3$	$\mu_1 \neq \mu_3$
3	μ_1 vs μ_n	$\mu_1 = \mu_n$	$\mu_1 \neq \mu_n$

2. Tingkat Signifikansi : α

3. Uji Statistik

$$F_{S} = \frac{(\overline{X_{1}} - \overline{X_{2}})^{2}}{\left(\frac{RJKG}{N1}\right) + \left(\frac{RJKG}{N2}\right)}$$

4. Daerah Penolakan H_0

$$H_0$$
 ditolak jika $F_s > F(\alpha, d_1, d_2)$

Dengan
$$d_1 = k - 1$$
, $d_2 = N - k$.

5. Kesimpulan

Contoh

Menggunakan soal contoh sebelumnya, diketahui bahwa table ringkasan

Anova sbb:

Tabel Ringkasan ANOVA					
Sumber Variabilitas	Jumlah Kuadrat	Derajat Bebas	Rerata Jumlah Kuadrat	F Hitung	
Perlakuan	JKP=394,4	$df_1 = 3$	RJKP = 131,47	$F_{hit} = \frac{RJKP}{RJKG}$	
Galat/Error	JKG= 142,8	$df_3 = 16$	RJKG = 8,925	= 14,73	
Total	JKT=537,2	19			

Dari hasil tersebut, akan ditentukan pasangan sampel yang manakah yang berbeda secara signifikan?

Jawab

No		Jumlah			
NO	Jakarta	Bogor	Tangerang	Bekasi	Juilliali
1	63	56	56	53	
2	66	60	60	55	
3	63	65	57	54	
4	62	69	54	51	
5	65	65	58	52	
Jumlah	319	315	285	265	1184

Dapat dihitung,
$$\overline{X}_{f} = \frac{319}{5} = 63,8$$

$$\overline{X}_{B} = \frac{315}{5} = 63$$

$$\overline{X}_{T} = \frac{285}{5} = 57$$

$$\overline{X}_{b} = \frac{265}{5} = 53$$

Hipotesis

No	Uji Pasangan	H_0	H_1
1	μ_J vs μ_B	$\mu_J = \mu_B$	$\mu_J \neq \mu_B$
2	μ_J vs μ_T	$\mu_J = \mu_T$	$\mu_J \neq \mu_T$
3	μ_J vs μ_b	$\mu_J = \mu_b$	$\mu_J \neq \mu_b$
4	μ_B vs μ_T	$\mu_B = \mu_T$	$\mu_B \neq \mu_T$
5	μ_B vs μ_b	$\mu_B = \mu_b$	$\mu_B \neq \mu_b$
6	μ_T vs μ_b	$\mu_T = \mu_b$	$\mu_T \neq \mu_b$

• Tingkat Signifikansi : $\alpha = 5\%$

Uji Statistik

$$F_{s_1} = \frac{\left(\overline{X_J} - \overline{X_B}\right)^2}{\left(\frac{RJKG}{N1}\right) + \left(\frac{RJKG}{N2}\right)} = \frac{(63.8 - 63)^2}{\frac{8,925}{5} + \frac{8,925}{5}} = \frac{0,64}{3,57} = 0,179$$

$$F_{s_2} = \frac{\left(\overline{X_J} - \overline{X_T}\right)^2}{\left(\frac{RJKG}{N1}\right) + \left(\frac{RJKG}{N3}\right)} = \frac{(63.8 - 57)^2}{5} + \frac{8.925}{5} = \frac{46.24}{3.57} = 12.95$$

$$F_{s_3} = \frac{\left(\overline{X_J} - \overline{X_b}\right)^2}{\left(\frac{RJKG}{N1}\right) + \left(\frac{RJKG}{N4}\right)} = \frac{(63.8 - 53)^2}{\frac{8,925}{5} + \frac{8,925}{5}} = \frac{116,64}{3,57} = 32,67$$

$$F_{s_4} = \frac{(\overline{X_B} - \overline{X_T})^2}{\left(\frac{RJKG}{N2}\right) + \left(\frac{RJKG}{N3}\right)} = \frac{(63 - 57)^2}{\frac{8,925}{5} + \frac{8,925}{5}} = \frac{36}{3,57} = 10,08$$

$$F_{s_5} = \frac{(\overline{X_B} - \overline{X_b})^2}{\left(\frac{RJKG}{N2}\right) + \left(\frac{RJKG}{N4}\right)} = \frac{(63 - 53)^2}{\frac{8,925}{5} + \frac{8,925}{5}} = \frac{100}{3,57} = 28,01$$

$$F_{s_6} = \frac{(\overline{X_T} - \overline{X_b})^2}{\left(\frac{RJKG}{N3}\right) + \left(\frac{RJKG}{N4}\right)} = \frac{(57 - 53)^2}{\frac{8,925}{5} + \frac{8,925}{5}} = \frac{16}{3,57} = 4,48$$

• Daerah penolakan H_0

 H_0 ditolak jika $F_S > F_{tabel} = F_{(0.05:3:16)} = 3,24$

a. Karena
$$F_{s1} = 0.179 < F_{tabel} = 3.24$$
 maka H_0 diterima,

b. Karena
$$F_{s2}=12,95>F_{tabel}=3,24$$
 maka H_0 ditolak

c. Karena
$$F_{s3}=32,67>F_{tabel}=3,24$$
 maka H_0 ditolak

d. Karena
$$F_{s1} = 10,08 > F_{tabel} = 3,24$$
 maka H_0 ditolak,

e. Karena
$$F_{s2} = 28,01 > F_{tabel} = 3,24$$
 maka H_0 ditolak

f. Karena
$$F_{s3} = 4.48 > F_{tabel} = 3.24$$
 maka H_0 ditolak

Kesimpulan

- a. Rerata penjualan air minum di Jakarta dan Bogor tidak ada beda yang signifikan
- Rerata penjualan air minum di Jakarta dan Tangerang terdapat perbedaan yang signifikan
- c. Rerata penjualan air minum di Jakarta dan Bekasi terdapat perbedaan yang signifikan
- Rerata penjualan air minum di Bogor dan Tangerang terdapat perbedaan yang signifikan
- e. Rerata penjualan air minum di Bogor dan Bekasi terdapat perbedaan yang signifikan
- f. Rerata penjualan air minum di Tangerang dan Bekasi terdapat beda yang signifikan

Latihan

Selidiki pasangan kelompok sampel mana saja yang mempunyai beda signifikan dari hasil pekerjaan saudara di Latihan 1,2,3,4 sebelumnya.

Kekuatan Hubungan Antara Variabel Bebas(x) dan Variabel Terikat (y)

• Kekuatan hubungan antara variable bebas dengan variable terikat dalam sampel dirumuskan dengan:

$$\rho = \frac{JKP}{JKT}$$

Contoh:

Pada contoh One Way Anova sebelumnya didapat keeratan hubungannya sebesar

$$\rho = \frac{394,4}{537,2} = 0,7342 = 73,42\%$$

Jadi, hubungan antara lokasi penjualan dengan rerata hasil penjualan air minum sebesar 73,42%. Artinya hubungan yang dimiliki oleh kedua variable tersebut kuat.

Analysis of Variance Two Way

- Anova satu arah, digunakan untuk menguji perbedaan diantara dua atau lebih kelompok dimana hanya terdapat satu faktor yang dipertimbangkan.
- Contoh: membandingkan efek dosis obat yang berbeda terhadap kesembuhan pasien.
- Anova faktorial, merupakan pengembangan dari anova satu arah dimana ada lebih dari satu faktor dan interaksinya yang dipertimbangkan.
- Misalnya bukan hanya faktor dosis obat tetapi juga frekuensi pemberian obat.
- Pada anova faktorial, interaksi atau kombinasi diantara faktor juga dipertimbangkan.
- **Contoh**: interaksi antara dosis obat dan frekuensi pemberian obat dapat dihitung pengaruhnya terhadap kesembuhan pasien.
- Anova dua arah (two way anova) termasuk dalam Anova faktorial.
- Pada anava satu arah dapat diketahui ada atau tidaknya perbedaan beberapa variabel bebas dengan sebuah variabel terikat dan masingmasing variabel tidak mempunyai jenjang.
- Anava dua arah dapat diketahui ada atau tidaknya perbedaan beberapa variabel bebas dengan sebuah variabel terikatnya dan masing-masing variabel mempunyai dua jenjang atau lebih.

Syarat Two Way Anova

- Pengujian anova dua arah mempunyai beberapa asumsi yaitu :
- 1. Populasi yang diuji berdistribusi normal,
- 2. Varians atau ragam dan populasi yang diuji sama,
- 3. Sampel tidak berhubungan satu dengan yang lain
- Anova dua arah ini digunakan bila sumber keragaman yang terjadi tidak hanya karena satu faktor (perlakuan).
- Faktor lain yang mungkin menjadi sumber keragaman respon juga harus diperhatikan.
- · Faktor lain ini bisa berupa perlakuan lain yang sudah terkondisikan.
- Pertimbangan memasukkan faktor kedua sebagai sumber keragaman ini perlu bila faktor itu dikelompokkan, sehingga keragaman antar kelompok sangat besar, tetapi kecil dalam kelompoknya sendiri.
- Dengan menggunakan Anova dua arah, dapat dibandingkan beberapa rata-rata yang berasal dari beberapa kategori atau kelompok untuk satu variabel perlakuan

Two Way Anova Tanpa Interaksi

- Pengujian ANOVA dua arah tanpa interaksi merupakan pengujian hipotesis beda tiga rata-rata atau lebih dengan dua factor yang berpengaruh dan interaksi antara kedua factor tersebut ditiadakan.
- Tujuan dari pengujian ANOVA dua arah adalah untuk mengetahui apakah ada pengaruh dan berbagai kriteria yang diuji terhadap hasil yang diinginkn

Uji Two Way Anova Tanpa Interaksi

a. Hipotesis

≻Baris

$$H_0$$
: $\alpha_1 = \alpha_2 = \cdots = \alpha_n = 0$

 H_1 : terdapat minimal satu $\alpha_i \neq 0$, untuk suatu i

≻Kolom

$$H_0: \beta_1 = \beta_2 = \dots = \beta_n = 0$$

 H_1 : terdapat minimal satu $\beta_i \neq 0$, untuk suatu j

b. Tingkat Signifikansi: α

c. Statistik Uji:

Sumber Variabilitas	Jumlah Kuadrat	Derajat Bebas	Rerata Kuadrat	F _{hitung}
Rata-rata Baris	JKB	dB = b - 1	$S_1^2 = \frac{JKB}{dB}$	$F_1 = \frac{S_1^2}{S_3^2}$
Rata-rata Kolom	JKK	dK = k - 1	$S_2^2 = \frac{JKK}{dK}$	
Error	JKE	dE = (k-1)(b-1)	$S_3^2 = \frac{JKE}{dE}$	$F_2 = \frac{S_2^2}{S_3^2}$
Total	JKT	kb-1		

Jumlah Kuadrat Total

$$JKT = \sum_{i=1}^{b} \sum_{j=1}^{k} x_{ij}^2 - \frac{T^2}{kb}$$

Jumlah Kuadrat Baris

$$JKB = \frac{\sum_{i=1}^{b} T_i^2}{k} - \frac{T^2}{kh}$$

Jumlah Kuadrat Kolom

$$JKK = \frac{\sum_{j=1}^{k} T_{j}^{2}}{b} - \frac{T^{2}}{kb}$$

Jumlah Kuadrat Error

$$JKE = JKT - (JKB + JKK)$$

k adalah banyaknya kolom

b adalah banyaknya baris

d. Kriteria Penolakan H_0

Baris:
$$v_1 = b - 1 \operatorname{dan} v_2 = (k - 1)(b - 1)$$

Kolom:
$$v_1 = k - 1 \operatorname{dan} v_2 = (k - 1)(b - 1)$$

e. Kesimpulan

Contoh

Seorang analis mempelajari premi untuk asuransi mobil yang dibebankan oleh sebuah perusahaan asuransi di enam kota. Enam kota dipilih untuk mewakili ukuran yang berbeda (Faktor A: kecil, sedang, besar) dan daerah yang berbeda di negara bagian (Faktor B: timur, barat, selatan). Hanya ada satu kota untuk setiap kombinasi ukuran dan wilayah. Jumlah premi yang dibebankan untuk jenis pertanggungan tertentu dalam kategori risiko tertentu untuk masing-masing dari enam kota diberikan dalam tabel berikut.

Faktor A		Faktor B	aktor B		
raktor A	Timur	Barat	Selatan		
Kecil	135	175	180		
Besar	155	180	160		
Sedang	150	195	165		

Dengan menggunakan tingkat signifikansi 5%, selidiki apakah ada perbedaan rata-rata pada setiap jenis factor tersebut?

Penyelesaian

Hipotesis

<u>Faktor A</u>	<u>Faktor B</u>
$H_0: \alpha_1 = \alpha_2 = \alpha_3 = 0$	$H_0: \beta_1 = \beta_2 = \beta_3 = 0$
H_1 : terdapat $\alpha_i \neq 0$, untuk suatu i	H_1 : terdapat $\beta_i \neq 0$, untuk suatu j

• Tingkat Signifikansi: $\alpha = 5\%$

5.1			F	aktor B				
Faktor A	Timur	x_{ij}^2	Barat	x_{ij}^2	Selatan	x_{ij}^2	T_i	T_i^2
Kecil	135	18225	175	30625	180	32400	490	240100
Besar	155	24025	180	32400	160	25600	495	245025
Sedang	150	22500	195	38025	165	27225	510	260100
T_j	440		550		505		T=1495	
T_j^2	193600		302500		256025		T^2 = 2235025	745225

$$JKT = \sum_{i=1}^{3} \sum_{j=1}^{3} x_{ij}^2 - \frac{T^2}{kb} = 251025 - \frac{2235025}{9} = 251025 - 248336,11 = 2688,89$$

$$JKB = \frac{\sum_{i=1}^{3} T_{i}^{2}}{k} - \frac{T^{2}}{kb} = \frac{745225}{3} - \frac{2235025}{9} = 248408,33 - 248336,11 = 72,22$$

$$JKK = \frac{\sum_{j=1}^{k} T_{j}^{2}}{b} - \frac{T^{2}}{kb} = \frac{752125}{3} - \frac{2235025}{9} = 250708,33 - 248336,11 = 2372,22$$

$$JKE = JKT - (JKB + JKK) = 244,45$$

Dengan demikian diperoleh

$$S_{1}^{2} = \frac{JKB}{dB} = \frac{72,22}{2} = 36,11 \qquad S_{2}^{2} = \frac{JKK}{dK} = \frac{2372,22}{2} = 1186,11 \qquad S_{3}^{2} = \frac{JKE}{dE} = \frac{244,45}{4} = 61,1$$

$$F_{1} = \frac{S_{1}^{2}}{S_{3}^{2}} = \frac{36,11}{61,11} = 0,59 \qquad \qquad F_{2} = \frac{S_{2}^{2}}{S_{3}^{2}} = \frac{1186,11}{61,11} = 19,41$$

Kriteria Penolakan Ho

 H_0 ditolak jika $F_{hitung} > F_{tabel}$

Baris

Karena $F_{tabel} = F_{0.05:2:4} = 6.94 > F_1 = 0.59$ maka H_0 tidak ditolak

Kolom

Karena $F_{tabel} = F_{0.05 \cdot 2 \cdot 4} = 6.94 < F_2 = 19.41$ maka H_0 ditolak

Kesimpulan:

- a. Tidak terdapat perbedaan yang signifikan untuk ketiga jenis factor A
- b. Terdapat perbedaan rata-rata yang signifikan untuk ketiga jenis factor B

Latihan

Sekelompok mahasiswa melakukan survey untuk mengetahui proses belajar mahasiswa selama pandemic Covid19. Beberapa informasi yang diperoleh diantaranya adalah rata-rata waktu belajar mahasiswa per minggu (dalam jam). Data yang diperoleh disajikan dalam table berikut.

Angkatan		Program Studi				
Mahasiswa	Informatika	Sistem Informasi	Teknik Sipil			
2019	25	30	10			
2020	10	35	24			
2021	35	15	20			
2022	20	25	18			

Dengan $\alpha = 5\%$, selidiki apakah rata-rata lama belajar mahasiswa per minggu untuk ketiga prodi tersebut sama? Apakah keempat Angkatan tersebut memiliki lama belaiar rata-rata yang sama? Jelaskan!

Latihan Dari contoh 1, apabila minggu yang berbeda dicurigai akan memberikan hasil produksi yang berbeda → unit eksperimen dalam tiap stasiun kerja dibagi dalam minggu (2 variabel bebas, yaitu: jenis stasiun kerja & minggu ke)

Minggu ke	Stasiun kerja I	Stasiun kerja II	Stasiun kerja III	Jumlah (T _i)
1	76	72	71	219
2	63	63	54	180
3	66	65	62	193
4	83	78	76	237
5	74	69	65	208
6	53	49	50	152
Jumlah (T _i)	415	396	378	1189 = T

Two Way Anova Dengan Interaksi

 Pengujian hipotesis Anova dua arah adalah pengujian beda tiga rata-rata atau lebih dengan 2 faktor yang berpengaruh (Pengaruh interaksi kedua faktor tersebut diperhitungkan)

Langkah Uji Hipotesis

- Menentukan formulasi hipotesis
 - a. $H_0: \alpha_1 = \alpha_2 = \alpha_3 = \dots = \alpha_i = 0$ (pengaruh baris nol) H_1 : sekurang-kurangnya satu α_i tidak sama dengan nol.
 - b. $H_0: \beta_1 = \beta_2 = \beta_3 = \dots = \beta_i = 0$ (pengaruh kolom nol) H₁: sekurang-kurangnya satu β; tidak sama dengan nol.
 - c. $H_0: (\alpha\beta)_{11} = (\alpha\beta)_{12} = (\alpha\beta)_{13} = \dots = (\alpha\beta)_{ii} = 0$ (pengaruh interaksi antara baris dan kolom nol)

 H_1 : sekurang-kurangnya satu $(\alpha\beta)_{ii}$ tidak sama dengan nol.

2. Menentukan taraf nyata (α) beserta F tabel \rightarrow F α (v_1 ; v_2)= ... Untuk baris $(v_1) = b - 1 \rightarrow (v_2) = (kb)(n-1)$ Untuk kolom $(v_1) = k - 1 \rightarrow (v_2) = (kb)(n - 1)$ Untuk interaksi: $(v_1) = (k-1)(b-1) \rightarrow (v_2) = (kb)(n-1)$

3. Uii Statistik

Sumber Variasi	Derajat bebas	Jumlah Kuadrat	Rata-rata kuadrat	F_{hit}
Rata-rata baris	(b-1) (k-1)	JKB JKK	$s_1^2 = \frac{JKB}{db}$	f ₁ =s ₁ ² /s ₄ ²
Rata-rata kolom Interaksi	(b-1)(k-1)	JKI	$\mathbf{s}_{2}^{2} = \frac{JKK}{db}$ $\mathbf{s}_{3}^{2} = \frac{JKI}{db}$ $\mathbf{s}_{4}^{2} = \frac{JKE}{a}$	$f_2 = s_2^2/s_4^2$
Eror	bk (<i>n</i> −1)	JKE	$S_4 = \frac{1}{db}$	$f_3 = s_3^2/s_4^2$
Total	bkn - 1	JKT		

•
$$JKT = \sum_{i=1}^{b} \sum_{j=1}^{k} \sum_{c=1}^{n} x_{ijc}^2 - \frac{T^2}{bkn}$$

$$\bullet JKB = \frac{\sum_{i=1}^{b} T_i^2}{kn} - \frac{T^2}{bkn}$$

•
$$JKK = \frac{\sum_{i=j}^{k} T_j^2}{bn} - \frac{T^2}{bkn}$$

$$\bullet JKI = \frac{\sum_{i=1}^{b} \sum_{j=1}^{k} T_{ij}^{2}}{n} - \frac{\sum_{i=1}^{b} T_{i}^{2}}{kn} - \frac{\sum_{i=1}^{b} T_{i}^{2}}{kn} + \frac{T^{2}}{bkn}$$

•
$$JKE = JKT - JKB - JKK - JKI$$

4. Kriteria Penolakan H_0

 H_0 ditolak jika $F_{hitung} > F_{(\alpha,\nu_1,\nu_2)}$

5. Kesimpulan

Contoh

Empat varietas padi hendak dibandingkan hasilnya (dalam kg) dengan memberikan pupuk. Percobaan dilakukan dengan menggunakan 8 petak yang seragam, masing-masing di 4 lokasi yang berbeda. Di setiap lokasi, dicobakan pada 2 petak yang ditentukan secara acak. Hasilnya (dalam kg) per petak adalah sbb:

Jenis pupuk	Varietas Padi				
Jenis pupuk	V1	V2	V3	V4	
P1	60	59	70	55	
F1	58	62	63	61	
P2	75	61	68	70	
P2	71	54	73	69	
P3	57	58	53	62	
P3	41	61	59	53	

Dengan taraf nyata 1%, ujilah hipotesis berikut ini!

- a. Tidak ada beda rata-rata hasil padi dg menggunakan ketiga jenis pupuk
- b. Tidak ada beda rata-rata hasil padi dg menggunakan keempat varietas padi
- c. Tidak ada interaksi antara jenis pupuk yang diberikan dg varietas padi yang digunakan

Penyelesaian

$$b=3$$
 $k=4$

1. Formulasi hipotesis:

a.
$$H_0: \alpha_1 = \alpha_2 = \alpha_3 = 0$$

 $H_1:$ sekurang-kurangnya satu $\alpha_i \neq 0$

b.
$$H_0: \beta_1 = \beta_2 = \beta_3 = \beta_4 = 0$$

 $H_1: \text{ sekurang-kurangnya satu } \beta_i \neq 0$

c.
$$H_0: (\alpha\beta)_{11} = (\alpha\beta)_{12} = ... = (\alpha\beta)_{34} = 0$$

 $H_1: \text{ sekurang-kurangnya satu}(\alpha\beta)_{ij} \neq 0$

2. Taraf nyata (α) dan F tabel:

$$\alpha = 1\% = 0.01$$

a. Untuk baris :
$$v_1 = 2$$
, $v_2 = 3.4.(1) = 12$, $F_{0.01(2:12)} = 6.93$

b. Untuk kolom :
$$v_1 = 3$$
, $v_2 = 3.4.(1) = 12$, $F_{0.01(3.12)} = 5.95$

c. Untuk interaksi :
$$v_1 = 6$$
, $v_2 = 3.4 \cdot (1) = 12$, $F_{0.01(6:12)} = 4.82$

- 3 Statistik uji yang digunakan:
 - a. H_0 diterima jika $f_1 < F_{0.01(2;12)} = 6.93$ H_0 ditolak jika $f_1 > F_{0.01(6;12)} = 6.93$
 - b. H_0 diterima jika $f_2 < F_{0.01(3;12)} = 5.95$ H_0 ditolak jika $f_2 > F_{0.01(6;12)} = 5.95$
 - c. H_0 diterima jika $f_3 < F_{0.01(6;12)} = 4.82$ H_0 ditolak jika $f_3 > F_{0.01(6;12)} = 4.82$
- 4 Tabel Analisis Varians (ANOVA)

Jenis Pupuk		Total			
Jeriis Fupuk	V1	V2	V3	V4	Total
P1	60	59	70	55	488
L1	58	62	63	61	
P2	75	61	68	70	541
PZ	71	54	73	69	
Р3	57	58	53	62	444
PS	41	61	59	53	
Total	362	355	386	370	1473

JKT =
$$60^2 + 58^2 + ... + 53^2 - \frac{1.473^2}{24}$$

= $91.779 - 90.405, 4 = 1.373, 6$
JKB = $\frac{488^2 + 541^2 + 444^2}{8} - \frac{1.473^2}{24}$
= $90.995, 1 - 90.405, 4 = 589, 7$
JKK = $\frac{362^2 + 355^2 + 386^2 + 370^2}{6} - \frac{1.473^2}{24} = 88.8$
JKI = $\frac{118^2 + 121^2 + ... + 115^2}{2} - 90.995, 1 - 90.494, 2 + 90.405, 4 = 409, 6$

JKE = 1.373,6 - 589,7 - 88,8 - 409,6 = 285,5

Sumber Varians	Jumlah	Derajat	Rata-rata	Fo
- Junioer Varians	Kuadrat	Bebas	Kuadrat	
Rata-rata baris	589,7	2	294,9	f ₁ =12,4
Rata-rata kolom	88,8	3	29,6	f ₂ =1,24
Interaksi	409,6	6	68,3	f ₃ =2,87
Error	285,5	12	23,8	
Total	1.373,6	23		

(5) Menarik Kesimpulan

- Karena f₁=12,4 > F_{0,01(2:12)} = 6,93, maka H₀ ditolak. Jadi ada perbedaan hasil rata-rata untuk pemberian ketiga jenis pupuk.
- Karena f₂=1,24 < F_{0.01(3:12)} = 5,95, maka H₀ diterima. Jadi tidak ada perbedaan hasil rata-rata untuk keempat varietas padi yana digunakan.
- Karena f₃=2,87 < F_{0.01(6:12)} = 4,82, maka H₀ diterima. Jadi tidak ada interaksi antara jenis pupuk yang diberikan dengan varietas padi yang digunakan.
- 18. Tiga varitas jagung hendak dibandingkan hasilnya. Percobaan dilakukan dengan menggunakan 9 plot yang identik, masing-masing dengan 3 perlakuan pupuk yang berbeda. Setiap varitas jagung dan setiap jenis pupuk dicobakan pada 3 plot yang ditentukan secara acak.

		Pupul	<
Jagung	P ₁	P ₂	P ₃
0	39	35	40
J_1	37	39	41
	35	43	42
	37	38	41
J_2	38	38	45
******	37	36	42
J ₃	40	40	41
	40	41	44
	35	42	40

Gunakan taraf nyata 0,05 untuk menguji hipotesis bahwa:

- a. Tidak ada perbedaan rata-rata hasil panen ketiga varitas jagung.
- Penggunaan pupuk yang berbeda tidak mempengaruhi pada hasil panenan
- c. Tidak ada interaksi antara varitas jagung dan jenis pupuk.
- 14. Tiga galur monyet yang berada dalam kondisi yang berbeda hendak diukur tingkat kecerdikannya dalam permainan bola ketangkasan. Gunakan taraf nyata 0.05 untuk menguji hipotesis bahwa:
- Tidak ada perbedaan tingkat kecerdikan untuk ketiga galur monyet tersebut.
- Tidak ada beda tingkat kecerdikan yang diakibatkan kondisi lingkungan yang berbeda.
- c. Lingkungan dan galur monyet tidak berinteraksi.

			Galur	Monye	t	
Lingkungan	Cerdik		Campuran		Dungu	
	8	8	- 10	11	12	11
Bebas	7	8	8	10	11	10
	6	7	9	9	13	12
	9	9	13	12	15	13
Terbatas	7	9	11	10	15	13
	8	9	12	11	12	14

- 15. Sebuah bioskop membagi 3 jadwal pertunjukan dan mengklasifikasi jenisjenis film yang diputar. Gunakan taraf nyata 0,05 untuk menguji hipotesis bahwa:
 - Tidak ada perbedaan rata-rata jumlah penonton bioskop untuk ketiga jadwal pertunjukan.
 - Tidak ada perbedaan rata-rata jumlah pengunjung untuk jenis-jenis film yang diputar.
- Jadwal pertunjukan dan jenis film tidak berinteraksi.

	Jady	val Pertu	ınjukan
Jenis Film	Siang	Sore	Malam
	69	75	90
Film Barat	67	79	91
	65	73	92
	67	78	70
Film Indonesia	68	78	75
	67	76	72
with the first first	60	70	61
Film India	60	71	64
712.71.41	65	70	62