電子電工學 Lecture 2

Recap

- Basic quantities
 - ChargeVoltage
 - Current
 - Power V — V T
- Electrical components
 - Resistor
 - Capacitor
 - Inductor
- Circuit diagrams

Recap: Electronics to circuits

TABLE 7-2
Maxwell's Equations

Differential Form	Integral Form	Significance
$\mathbf{\nabla} \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$	$\oint_{\mathcal{C}} \mathbf{E} \cdot d\boldsymbol{\ell} = -\frac{d\Phi}{dt}$	Faraday's law
$\mathbf{\nabla} \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$	$\oint_C \mathbf{H} \cdot d\boldsymbol{\ell} = I + \int_S \frac{\partial \mathbf{D}}{\partial t} \cdot d\mathbf{s}$	Ampère's circuital law
$\nabla \cdot \mathbf{D} = \rho$	$\oint_{S} \mathbf{D} \cdot d\mathbf{s} = Q$	Gauss's law
$\mathbf{\nabla \cdot B} = 0$	$\oint_{S} \mathbf{B} \cdot d\mathbf{s} = 0$	No isolated magnetic charge

Chapter 3. Circuit Laws and Equivalences

Goal: For each component, find

Voltage V

Current I

Power P

Essential laws:

- 1. Ohm's law
- 2. Kirchhoff's laws

Electrical component

I-V Characteristic

Electrical component

Resistor (ohm) Symbol: $\begin{cases} i \\ v \\ t \end{cases}$ $\begin{cases} v \\ v \\ t \end{cases}$ $= Inductor \qquad (heav Relationship: <math>v = iR \qquad v = L\frac{di}{dt} \qquad v = \frac{1}{C} \int idt \qquad or \qquad (i = \frac{1}{R}v \quad i = \frac{1}{L} \int v dt \qquad i = C\frac{dv}{dt} \end{cases}$

Inductor

Capacitor

Resistor

Figure 2.8 Conventional indication of current and voltage associated with an electrical component

Resistance

Figure 3.1 The result of measuring the current through, and the voltage across, a resistor

FIGURE 2.1 (a) The symbol for a resistor, and (b) some examples of typical carbon or wirewound resistors.

Resistors

Figure 3.3 Alternative symbolic representation of the resistor whose voltage~current relation is shown in Figure 3.1

Current directions

Figure 3.5 If the value of I in Figure 3.4 is negative, that can be represented in either of the two ways shown here

Current directions

Figure 3.7 Representation of an ideal voltage source of 6 V

Figure 3.6 The result of measuring the current through, and the voltage across, an ideal voltage source

Short circuit

Figure 3.8 A short-circuit. The voltage V between the terminals is zero whatever the value of the current through it

Current source

Ideal Enforce a constant current, irrespective of the voltage across it. voltage V (volts) current I (amperes)

Figure 3.10 Representation of an ideal current source of 2 A

Figure 3.9 The result of measuring the current through, and the voltage across, an ideal current source

Open circuit

can flow

Quiz 1

- 1. For the circuit shown in Fig. 1, find the current *I* and *V* across the resistor.
- 2. Let $i(t) = A\cos(\pi t + \theta)$, what is $\frac{di}{dt}$?
- 3. Evaluate $\int_0^4 e^{-t/2} dt$.
- 4. Let $i = \sqrt{-1}$, simplify $\frac{1+2i}{3+4i}$ to the form of a+bi.
- 5. Evaluate the absolute value $\left| \frac{1+2i}{3+4i} \right|$.

Quiz 1 Review

1. For the circuit shown in Fig. 1, find the current *I* and *V* across the resistor.

Quiz 1 Review

- 2. Let $i(t) = \underline{A}\cos(\pi t + \theta)$, what is $\frac{di}{dt}$?
- 3. Evaluate $\int_0^4 e^{-t/2} dt$.

$$2\frac{di(t)}{dt} = \pi A \operatorname{Sm}(\tau t + \theta)$$

$$\frac{1}{3!} = \frac{-1}{3!} + \frac{1}{4}$$

$$= -2 \left(e^{-2} - 1 \right)$$

$$= 2 (1 - e^{-1})$$

Quiz 1 Review

4. Let
$$i = \sqrt{-1}$$
, simplify $\frac{1+2i}{3+4i}$ to the form of $a+bi$.

5. Evaluate the absolute value
$$\left| \frac{1+2i}{3+4i} \right|$$
.

4.
$$\frac{1+2i}{3+4i} = \frac{(+2i)(3-4i)}{(3+4i)(3-4i)} = \frac{11+2i}{25}$$

$$0 = \frac{1}{25}$$

$$5 \cdot \left| \frac{1+2i}{3+4i} \right| = \frac{\sqrt{5}}{5} = \frac{1}{\sqrt{5}}$$

Switch

Power

Figure 3.12 The power supplied to a black box is the product of V and I provided the current I enters at the terminal with the highest voltage (i.e., the positive reference for V)

Black Box

Kirchhoff's Current Law (KCL) Interconnection

Figure 3.14 Three resistors are connected to the same terminal

Kirchhoff's Current Law (KCL)

Figure 3.15 Alternative expressions of Kirchhoff's current law

Kirchhoff's Voltage Law (KVL)

Loop
$$a \rightarrow b \rightarrow c \rightarrow d \rightarrow a$$
 $V_{ba} + V_{cb} + V_{dc} + V_{ad} = 0$
 $V_{a} + V_{cb} + V_{dc} + V_{ad} = 0$
 $V_{a} + V_{cb} + V_{dc} + V_{ad} = 0$
 $V_{a} + V_{cb} + V_{dc} + V_{ad} = 0$
 $V_{a} + V_{cb} + V_{dc} + V_{ad} = 0$
 $V_{a} + V_{cb} + V_{dc} + V_{ad} = 0$
 $V_{a} + V_{cb} + V_{dc} + V_{ad} = 0$
 $V_{a} + V_{cb} + V_{dc} + V_{ad} = 0$
 $V_{a} + V_{cb} + V_{dc} + V_{ad} = 0$
 $V_{a} + V_{cb} + V_{dc} + V_{ad} = 0$
 $V_{a} + V_{cb} + V_{dc} + V_{ad} = 0$
 $V_{a} + V_{cb} + V_{dc} + V_{ad} = 0$
 $V_{a} + V_{cb} +$

Kirchhoff's Voltage Law (KVL)

Loop
$$\alpha-b-c-d-\alpha$$
 $kvl: V_{ba} + V_{cb} + V_{ac} + V_{ad} = 0$
 $\Rightarrow V_{c} + (-V_{b}) + V_{R} + (-V_{s}) = 0$
 $\downarrow V_{v_{b}}$

Figure 3.17 Four voltages forming a closed loop within a circuit

DC circuits

Table 3.1 Summary of the relations describing DC circuits

Equivalent circuits

2 resistors -> (resistor

Figure 3.18 The series connection of two resistors. Note that there is nothing else connected to point X

Equivalent circuits

Figure 3.19 The parallel connection of two resistors

Equivalent circuits Apply 50 was V Node $Y: I = I_1$ Node $X: I_1 = I_2$ $I = I_1 = I_2$

Figure 3.20 Derivation of the equivalent resistance of two resistors connected in series

Figure 3.21 Derivation of the equivalent conductance of two resistors connected in parallel