

FCC RF Test Report

APPLICANT : Brightstar Corporation

EQUIPMENT: mobile phone

BRAND NAME : Avvio

MODEL NAME : Avvio761/Avvio761S

FCC ID : WVBA761X

STANDARD : FCC Part 15 Subpart C §15.247

CLASSIFICATION : (DTS) Digital Transmission System

The product was received on Apr. 24, 2013 and completely tested on May 16, 2013. We, SPORTON INTERNATIONAL (SHENZHEN) INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and shown the compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL (SHENZHEN) INC., the test report shall not be reproduced except in full.

Reviewed by:

Jones Tsai / Manager

SPORTON INTERNATIONAL (SHENZHEN) INC.

No. 3 Building, the third floor of south, Shahe River west, Fengzeyuan warehouse, Nanshan District, Shenzhen, Guangdong, P.R.C.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755- 3320-2398 FCC ID: WVBA761X

Page Number : 1 of 78

Report Issued Date : May 20, 2013

TABLE OF CONTENTS

RE	VISIO	N HISTORY	3
SU	MMAF	RY OF TEST RESULT	4
1	GEN	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	5
	1.5	Testing Site	6
	1.6	Applied Standards	6
2	TES1	Γ CONFIGURATION OF EQUIPMENT UNDER TEST	7
	2.1	Carrier Frequency Channel	7
	2.2	Pre-Scanned RF Power	8
	2.3	Test Mode	9
	2.4	Connection Diagram of Test System	10
	2.5	Support Unit used in test configuration and system	11
	2.6	RF Utility	11
	2.7	Measurement Results Explanation Example	11
3	TEST	T RESULT	12
	3.1	6dB Bandwidth Measurement	12
	3.2	Output Power Measurement	19
	3.3	Power Spectral Density Measurement	22
	3.4	Conducted Band Edges and Spurious Emission Measurement	34
	3.5	Radiated Band Edges and Spurious Emission Measurement	47
	3.6	AC Conducted Emission Measurement	72
	3.7	Antenna Requirements	76
4	LIST	OF MEASURING EQUIPMENT	77
5	UNC	ERTAINTY OF EVALUATION	78
ΑP	PEND	DIX A. PHOTOGRAPHS OF EUT	
ΑF	PEND	DIX B. SETUP PHOTOGRAPHS	

TEL: 86-755- 3320-2398 FCC ID: WVBA761X Page Number : 2 of 78 Report Issued Date : May 20, 2013

Report No. : FR342404B

REVISION HISTORY

Report No. : FR342404B

: 3 of 78

: Rev. 01

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR342404B	Rev. 01	Initial issue of report	May 20, 2013

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(2)	6dB Bandwidth	≥ 0.5MHz	Pass	-
3.2	15.247(b)	Power Output Measurement	≤ 30dBm	Pass	-
3.3	15.247(e)	Power Spectral Density	≤ 8dBm/3kHz	Pass	-
3.4		Conducted Band Edges	≤ 20dBc	Pass	-
3.4	15.247(d)	Conducted Spurious Emission		Pass	-
3.5	15.247(d)	Radiated Band Edges	15.209(a) &	Pass	Under limit
3.5		15.247(d) Radiated Spurious Emission		Pass	3.13 dB at 2389.470 MHz
3.6	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 9.69 dB at 0.570 MHz
3.7	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

TEL: 86-755- 3320-2398 FCC ID: WVBA761X Page Number : 4 of 78
Report Issued Date : May 20, 2013

Report No. : FR342404B

1 General Description

1.1 Applicant

Brightstar Corporation

9725 NW 117th Ave., Miami, Florida, United States

1.2 Manufacturer

Heng Da Chuang Xin Technology Limited

A601 Guoren Building, 3rd Rd.of High-Tech park, Nanshan District, SZ, China

1.3 Feature of Equipment Under Test

Product Feature					
Equipment	mobile phone				
Brand Name	Avvio				
Model Name	Avvio761/Avvio761S				
FCC ID	WVBA761X				
EUT supports Radios application	GSM/GPRS/WCDMA/HSPA/WLAN 11bgn/Bluetooth				
HW Version	UP815_v1.3				
SW Version	Avvio761_Mexico_ES_V001_0422_SMT				
EUT Stage	Production Unit				

Remark:

- 1. The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.
- There are two different types of EUT. They are single SIM card mobile (model name: Avvio761) and dual SIM cards mobile (model name: Avvio761S). The others are the same including circuit design, PCB board, structure and all components. It is special to declare.

1.4 Product Specification of Equipment Under Test

Product Specification subjective to this standard					
Tx/Rx Frequency Range	2412 MHz ~ 2462 MHz				
Number of Channels	11				
Carrier Frequency of Each Channel	2412+(n-1)*5 MHz; n=1~11				
	802.11b : 16.25 dBm (0.0422 W)				
Maximum Output Power to Antenna	802.11g : 22.35 dBm (0.1718 W)				
	802.11n HT20 : 22.32 dBm (0.1706 W)				
Antenna Type	PIFA Antenna type with gain -2.8 dBi				
Type of Modulation	802.11b: DSSS (DBPSK / DQPSK / CCK)				
туре от мосинацоп	802.11g/n: OFDM (BPSK / QPSK / 16QAM / 64QAM)				

SPORTON INTERNATIONAL (SHENZHEN) INC. TEL: 86-755-3320-2398

FCC ID: WVBA761X

Page Number : 5 of 78
Report Issued Date : May 20, 2013
Report Version : Rev. 01

1.5 Testing Site

Test Site	SPORTON INTERNATIONAL (SHENZHEN) INC.					
	No. 3 Building, the third floor of south, Shahe River west, Fengzeyuan					
Test Site Location	warehouse, Nanshan District, Shenzhen, Guangdong, P.R.C.					
	TEL: +86-755- 3320-2398					
Test Site No.		Sporton Site No.	FCC/IC Registration No.			
iest site No.	TH01-SZ	CO01-SZ	03CH01-SZ	831040/4086F-1		

The test site complies with ANSI C63.4 2003 requirement.

1.6 Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r01
- ANSI C63.10-2009

Remark:

- All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

SPORTON INTERNATIONAL (SHENZHEN) INC. TEL: 86-755-3320-2398

FCC ID: WVBA761X

Page Number : 6 of 78
Report Issued Date : May 20, 2013

Report No.: FR342404B

2 Test Configuration of Equipment Under Test

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conducted emission (150 KHz to 30 MHz) and radiated emission (9 KHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report.

The final configuration from all the combinations and the worst-case data rates were investigated by measuring the maximum power across all the data rates and modulation modes under section 2.2.

Based on the worst configuration found above, the RF power setting is set individually to meet FCC compliance limit for the final conducted and radiated tests shown in section 2.3.

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	1	2412	7	2442
	2	2417	8	2447
2400 2402 F MI I-	3	2422	9	2452
2400-2483.5 MHz	4	2427	10	2457
	5	2432	11	2462
	6	2437		

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755- 3320-2398 FCC ID: WVBA761X

Page Number : 7 of 78
Report Issued Date : May 20, 2013

Report No.: FR342404B

2.2 Pre-Scanned RF Power

Preliminary tests were performed in different data rate and antenna configurations as following table and the highest power data rates were chosen for full test in the following tables.

Report No.: FR342404B

		2.4GHz 802.11b RF Power (dBm)						
Channel	Frequency	DSSS Data Rate						
		1 Mbps	2 Mbps	5.5 Mbps	11 Mbps			
CH 01	2412 MHz	15.65	15.71	15.62	15.64			
CH 06	2437 MHz	15.73	15.65	15.45	15.67			
CH 11	2462 MHz	<mark>16.25</mark>	16.14	16.13	16.21			

	Frequency	2.4GHz 802.11g RF Power (dBm) Frequency OFDM Data Rate							
Channel									
		6 Mbps	9 Mbps	12 Mbps	18 Mbps	24 Mbps	36 Mbps	48 Mbps	54 Mbps
CH 01	2412 MHz	22.30	22.28	21.59	21.51	22.05	22.03	22.10	22.03
CH 06	2437 MHz	22.01	21.98	21.97	21.95	21.90	21.87	21.84	21.81
CH 11	2462 MHz	<mark>22.35</mark>	21.98	21.96	21.95	22.08	22.01	21.97	21.94

	Frequency	2.4GHz 802.11n HT20 RF Power (dBm)							
Channel		OFDM Data Rate							
		6.5 Mbps	13 Mbps	19.5 Mbps	26 Mbps	39 Mbps	52 Mbps	58.5 Mbps	65 Mbps
CH 01	2412 MHz	22.30	21.8	22.02	21.95	22.08	21.94	21.97	22.13
CH 06	2437 MHz	21.91	21.88	21.87	21.85	21.83	21.79	21.75	21.71
CH 11	2462 MHz	<mark>22.32</mark>	22.08	22.05	22.03	22.05	22.01	22.14	21.96

SPORTON INTERNATIONAL (SHENZHEN) INC. TEL: 86-755-3320-2398

 TEL: 86-755- 3320-2398
 Report Issued Date : May 20, 2013

 FCC ID: WVBA761X
 Report Version : Rev. 01

Page Number

: 8 of 78

2.3 Test Mode

Final results of test modes, data rates and test channels are shown as following table.

	Test Cases						
	Test Items	Mode	Data Rate	Test Channel			
	O ID DW	802.11b	1 Mbps	1/6/11			
	6dB BW	802.11g	6 Mbps	1/6/11			
	Power Spectral Density	802.11n HT20	6.5 Mbps	1/6/11			
		802.11b	1 Mbps	1/6/11			
	Output Power	802.11g	6 Mbps	1/6/11			
Conducted TCs		802.11n HT20	6.5 Mbps	1/6/11			
ICS		802.11b	1 Mbps	1/11			
	Conducted Band Edge	802.11g	6 Mbps	1/11			
		802.11n HT20	6.5 Mbps	1/11			
	Conducted Spurious -	802.11b	1 Mbps	1/6/11			
		802.11g	6 Mbps	1/6/11			
	Emission	802.11n HT20	6.5 Mbps	1/6/11			
		802.11b	1 Mbps	1/11			
	Radiated Band Edge	802.11g	6 Mbps	1/11			
Radiated		802.11n HT20	6.5 Mbps	1/11			
TCs	Dadieted Occurs	802.11b	1 Mbps	1/6/11			
	Radiated Spurious Emission	802.11g	6 Mbps	1/6/11			
	Emission	802.11n HT20	6.5 Mbps	1/6/11			
AC Conducted Emission	L Farnhone						

FCC ID : WVBA761X

Page Number : 9 of 78

Report Issued Date : May 20, 2013

Report Version : Rev. 01

2.4 Connection Diagram of Test System

<Bluetooth Tx Mode>

<AC Conducted Emission Mode>

TEL: 86-755-3320-2398 FCC ID: WVBA761X

Page Number : 10 of 78 Report Issued Date: May 20, 2013 Report Version : Rev. 01

2.5 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Agilent	E5515C	N/A	N/A	Unshielded, 1.8 m
2.	DC Power Supply	TOPWORD	3303DR	N/A	N/A	Unshielded, 1.8 m
3.	WLAN AP	Netcore	NW616	N/A	N/A	Unshielded, 1.8 m
4.	Bluetooth Earphone	Nokia	BH-108	N/A	N/A	N/A
	Notebook	DELL	P08S	FCC DoC	N/A	AC I/P:
5.						Unshielded, 1.8 m
5.						DC O/P:
						Shielded, 1.8 m

2.6 RF Utility

For WLAN function, programmed RF utility, "ADB" installed in the PC make the EUT provides functions like channel selection and power level for continuous transmitting and receiving signals.

2.7 Measurement Results Explanation Example

For conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and 10dB attenuator between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

The spectrum analyzer offset is derived from RF cable loss and 10dB attenuator factor.

Offset = RF cable loss + attenuator factor.

Following table shows an offset computation example with cable loss 7.5 dB.

Example:

 $Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$

= 7.5 + 10 = 17.5 (dB)

TEL: 86-755- 3320-2398 FCC ID: WVBA761X

Page Number : 11 of 78
Report Issued Date : May 20, 2013

Report No.: FR342404B

3 Test Result

3.1 6dB Bandwidth Measurement

3.1.1 Limit of 6dB Bandwidth

The minimum 6 dB bandwidth shall be at least 500 KHz.

3.1.2 Measuring Instruments

See list of measuring instruments of this test report.

3.1.3 Test Procedures

- The testing follows the Measurement Procedure of FCC KDB No. 558074 D01 DTS Meas. Guidance v03r01.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 KHz.
- 5. Measure and record the results in the test report.

3.1.4 Test Setup

SPORTON INTERNATIONAL (SHENZHEN) INC.
TEL: 86-755- 3320-2398

FCC ID: WVBA761X

Page Number : 12 of 78
Report Issued Date : May 20, 2013
Report Version : Rev. 01

3.1.5 Test Result of 6dB Bandwidth

Test Mode :	802.11b	Temperature :	24~26 ℃
Test Engineer :	Blithe Li	Relative Humidity :	50~53%

Channel	Frequency (MHz)	802.11b 6dB Bandwidth (MHz)	6dB Bandwidth Min. Limit (MHz)	Pass/Fail
01	2412	7.08	0.5	Pass
06	2437	7.08	0.5	Pass
11	2462	7.04	0.5	Pass

6 dB Bandwidth Plot on 802.11b Channel 01

Date: 11.MAY.2013 13:31:26

TEL: 86-755- 3320-2398 FCC ID: WVBA761X Page Number : 13 of 78
Report Issued Date : May 20, 2013

Report No.: FR342404B

6 dB Bandwidth Plot on 802.11b Channel 06

Date: 11.MAY.2013 13:35:49

6 dB Bandwidth Plot on 802.11b Channel 11

Date: 11.MAY.2013 13:41:05

TEL: 86-755- 3320-2398 FCC ID: WVBA761X Page Number : 14 of 78
Report Issued Date : May 20, 2013
Report Version : Rev. 01

Test Mode :	802.11g	Temperature :	24~26℃
Test Engineer :	Blithe Li	Relative Humidity :	50~53%

Channel	Frequency (MHz)	802.11g 6dB Bandwidth (MHz)	6dB Bandwidth Min. Limit (MHz)	Pass/Fail
01	2412	15.08	0.5	Pass
06	2437	15.06	0.5	Pass
11	2462	15.08	0.5	Pass

6 dB Bandwidth Plot on 802.11g Channel 01

Date: 11.MAY.2013 13:46:56

TEL: 86-755- 3320-2398 FCC ID: WVBA761X Page Number : 15 of 78
Report Issued Date : May 20, 2013
Report Version : Rev. 01

6 dB Bandwidth Plot on 802.11g Channel 06

Date: 11.MAY.2013 13:51:54

6 dB Bandwidth Plot on 802.11g Channel 11

Date: 11.MAY.2013 13:56:43

TEL: 86-755-3320-2398 FCC ID: WVBA761X

Page Number : 16 of 78 Report Issued Date: May 20, 2013 : Rev. 01 Report Version

Test Mode :	802.11n HT20	Temperature :	24~26℃
Test Engineer :	Blithe Li	Relative Humidity :	50~53%

Channel	Frequency (MHz)	2.4GHz 802.11n HT20 6dB Bandwidth (MHz)	6dB Bandwidth Min. Limit (MHz)	Pass/Fail
01	2412	15.08	0.5	Pass
06	2437	15.08	0.5	Pass
11	2462	15.08	0.5	Pass

6 dB Bandwidth Plot on 802.11n HT20 Channel 01

Date: 11.MAY.2013 14:01:33

TEL: 86-755- 3320-2398 FCC ID: WVBA761X Page Number : 17 of 78
Report Issued Date : May 20, 2013

Report No.: FR342404B

6 dB Bandwidth Plot on 802.11n HT20 Channel 06

Date: 11.MAY.2013 14:05:01

6 dB Bandwidth Plot on 802.11n HT20 Channel 11

Date: 11.MAY.2013 14:08:15

TEL: 86-755- 3320-2398 FCC ID: WVBA761X Page Number : 18 of 78
Report Issued Date : May 20, 2013
Report Version : Rev. 01

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting antenna of directional gain greater than 6dBi are used the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

3.2.2 Measuring Instruments

See list of measuring instruments of this test report.

3.2.3 Test Procedures

- The testing follows the Measurement Procedure of FCC KDB No. 558074 D01 DTS Meas. Guidance v03r01.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

TEL: 86-755- 3320-2398 FCC ID: WVBA761X

Page Number : 19 of 78
Report Issued Date : May 20, 2013
Report Version : Rev. 01

FCC RF Test Report

3.2.5 Test Result of Peak Output Power

Test Mode :	802.11b	Temperature :	24~26 ℃
Test Engineer :	Blithe Li	Relative Humidity:	50~53%

Report No. : FR342404B

Channel	Frequency (MHz)	802.11b Peak Output Power (dBm)	Max. Limits (dBm)	Pass/Fail
01	2412	15.65	30	Pass
06	2437	15.73	30	Pass
11	2462	16.25	30	Pass

Test Mode :	802.11g	Temperature :	24~26 ℃
Test Engineer :	Blithe Li	Relative Humidity :	50~53%

Channel	Frequency (MHz)	802.11g Peak Output Power (dBm)	Max. Limits (dBm)	Pass/Fail
01	2412	22.30	30	Pass
06	2437	22.01	30	Pass
11	2462	22.35	30	Pass

Test Mode :	802.11n HT20	Temperature :	24~26 ℃
Test Engineer :	Blithe Li	Relative Humidity :	50~53%

Channel	Frequency (MHz)	2.4GHz 802.11n HT20 Peak Output Power (dBm)	Max. Limits (dBm)	Pass/Fail
01	2412	22.30	30	Pass
06	2437	21.91	30	Pass
11	2462	22.32	30	Pass

SPORTON INTERNATIONAL (SHENZHEN) INC.Page Number: 20 of 78TEL: 86-755- 3320-2398Report Issued Date: May 20, 2013FCC ID: WVBA761XReport Version: Rev. 01

3.2.6 Test Result of Average output Power (Reporting Only)

Test Mode :	802.11b	Temperature :	24~26 ℃
Test Engineer :	Blithe Li	Relative Humidity :	50~53%
Duty Cycle:	99.31%	Duty Factor:	0.03dB

Channel	Frequency (MHz)	802.11b Average Output Power (dBm)
01	2412	12.44
06	2437	12.56
11	2462	13.10

Test Mode :	802.11g	Temperature :	24~26℃
Test Engineer :	Blithe Li	Relative Humidity :	50~53%
Duty Cycle:	94.93%	Duty Factor:	0.23dB

Channel	Frequency (MHz)	802.11g Average Output Power (dBm)
01	2412	12.66
06	2437	12.70
11	2462	13.34

Test Mode :	802.11n HT20	Temperature :	24~26℃
Test Engineer :	Blithe Li	Relative Humidity :	50~53%
Duty Cycle:	94.99%	Duty Factor:	0.22dB

Channel	Frequency (MHz)	802.11n HT20 Average Output Power (dBm)
01	2412	12.56
06	2437	12.55
11	2462	13.24

TEL: 86-755- 3320-2398 FCC ID: WVBA761X Page Number : 21 of 78
Report Issued Date : May 20, 2013
Report Version : Rev. 01

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3KHz band at any time interval of continuous transmission.

Report No.: FR342404B

3.3.2 Measuring Instruments

See list of measuring instruments of this test report.

3.3.3 Test Procedures

- The testing follows Measurement Procedure 10.2 Option 1 of FCC KDB Publication No. 558074
 D01 DTS Meas. Guidance v03r01
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz. Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- Measure and record the results in the test report.

3.3.4 Test Setup

SPORTON INTERNATIONAL (SHENZHEN) INC.Page Number: 22 of 78TEL: 86-755- 3320-2398Report Issued Date: May 20, 2013FCC ID: WVBA761XReport Version: Rev. 01

FCC RF Test Report

3.3.5 Test Result of Power Spectral Density

Test Mode :	802.11b	Temperature :	24~26 ℃
Test Engineer :	Blithe Li	Relative Humidity :	50~53%

Report No.: FR342404B

Channal	Frequency	802.11b Power Density		Max. Limits	Dage/Fail
Channel	(MHz)	PSD/100KHz (dBm)	PSD/3KHz (dBm)	(dBm/3KHz)	Pass/Fail
01	2412	4.25	-9.73	8	Pass
06	2437	4.52	-9.09	8	Pass
11	2462	5.27	-8.64	8	Pass

Test Mode :	802.11g	Temperature :	24~26℃
Test Engineer :	Blithe Li	Relative Humidity :	50~53%

Ola a va va a l	Frequency	802.11g Pov	ver Density	Max. Limits	Daga/Fail
Channel	(MHz)	PSD/100KHz (dBm)	PSD/3KHz (dBm)	(dBm/3KHz)	Pass/Fail
01	2412	0.82	-12.25	8	Pass
06	2437	1.49	-12.04	8	Pass
11	2462	1.52	-11.32	8	Pass

Test Mode :	802.11n HT20	Temperature :	24~26 ℃
Test Engineer :	Blithe Li	Relative Humidity :	50~53%

Channal		Frequency	802.11n HT20 Power Density		Max. Limits	Dage/Fail
ľ	Channel	(MHz)	PSD/100KHz (dBm)	PSD/3KHz (dBm)	(dBm/3KHz)	Pass/Fail
I	01	2412	1.18	-12.97	8	Pass
I	06	2437	1.71	-11.14	8	Pass
I	11	2462	2.21	-10.77	8	Pass

Note:

1. Measured power density (dBm) has offset with cable loss.

 The Measured power density (dBm)/ 100KHz is reference level and used as 20dBc down for Conducted Band Edges and Conducted Spurious Emission limit line.

SPORTON INTERNATIONAL (SHENZHEN) INC.Page Number: 23 of 78TEL: 86-755- 3320-2398Report Issued Date: May 20, 2013FCC ID: WVBA761XReport Version: Rev. 01

3.3.6 Test Result of Power Spectral Density Plots (100kHz)

PSD 100kHz Plot on 802.11b Channel 01

Date: 11.MAY.2013 13:32:07

PSD 100kHz Plot on 802.11b Channel 06

Date: 11.MAY.2013 13:37:37

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-3320-2398 FCC ID: WVBA761X

Page Number : 24 of 78 Report Issued Date: May 20, 2013

: Rev. 01 Report Version

PSD 100kHz Plot on 802.11b Channel 11

Date: 11.MAY.2013 13:42:27

PSD 100kHz Plot on 802.11g Channel 01

Date: 11.MAY.2013 13:47:47

TEL: 86-755- 3320-2398 FCC ID: WVBA761X

Page Number : 25 of 78
Report Issued Date : May 20, 2013
Report Version : Rev. 01

PSD 100kHz Plot on 802.11g Channel 06

Date: 11.MAY.2013 13:52:50

PSD 100kHz Plot on 802.11g Channel 11

Date: 11.MAY.2013 13:57:25

TEL: 86-755- 3320-2398 FCC ID: WVBA761X Page Number : 26 of 78
Report Issued Date : May 20, 2013
Report Version : Rev. 01

PSD 100kHz Plot on 802.11n HT20 Channel 01

Date: 11.MAY.2013 14:02:15

PSD 100kHz Plot on 802.11n HT20 Channel 06

Date: 11.MAY.2013 14:05:42

TEL: 86-755- 3320-2398 FCC ID: WVBA761X

Page Number : 27 of 78
Report Issued Date : May 20, 2013
Report Version : Rev. 01

Date: 11.MAY.2013 14:09:00

TEL: 86-755-3320-2398 FCC ID: WVBA761X

Page Number : 28 of 78 Report Issued Date: May 20, 2013 Report Version : Rev. 01

3.3.7 Test Result of Power Spectral Density Plots (3kHz)

PSD 3kHz Plot on 802.11b Channel 01

Date: 11.MAY.2013 13:31:53

TEL: 86-755- 3320-2398 FCC ID: WVBA761X Page Number : 29 of 78
Report Issued Date : May 20, 2013
Report Version : Rev. 01

PSD 3kHz Plot on 802.11b Channel 06

Date: 11.MAY.2013 13:36:19

PSD 3kHz Plot on 802.11b Channel 11

Date: 11.MAY.2013 13:41:29

TEL: 86-755- 3320-2398 FCC ID: WVBA761X Page Number : 30 of 78 Report Issued Date : May 20, 2013

Report No.: FR342404B

Date: 11.MAY.2013 13:47:26

PSD 3kHz Plot on 802.11g Channel 06

Date: 11.MAY.2013 13:52:21

TEL: 86-755- 3320-2398 FCC ID: WVBA761X Page Number : 31 of 78
Report Issued Date : May 20, 2013
Report Version : Rev. 01

PSD 3kHz Plot on 802.11g Channel 11

Date: 11.MAY.2013 13:57:08

PSD 3kHz Plot on 802.11n HT20 Channel 01

Date: 11.MAY.2013 14:02:03

TEL: 86-755-3320-2398 FCC ID: WVBA761X

Page Number : 32 of 78 Report Issued Date: May 20, 2013 : Rev. 01 Report Version

PSD 3kHz Plot on 802.11n HT20 Channel 06

Date: 11.MAY.2013 14:05:27

PSD 3kHz Plot on 802.11n HT20 Channel 11

Date: 11.MAY.2013 14:08:41

TEL: 86-755- 3320-2398 FCC ID: WVBA761X Page Number : 33 of 78
Report Issued Date : May 20, 2013
Report Version : Rev. 01

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission Measurement

In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

3.4.2 Measuring Instruments

See list of measuring instruments of this test report.

3.4.3 Test Procedures

 The testing follows the Measurement Procedure of FCC KDB No. 558074 D01 DTS Meas. Guidance v03r01.

2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

3. Set to the maximum power setting and enable the EUT transmit continuously.

4. Set RBW = 100 KHz, VBW=300 KHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz, when maximum peak conducted output power procedure is used. The attenuation is set to 30dB, when maximum conducted output power procedure is used.

5. Measure and record the results in the test report.

3.4.4 Test Setup

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755- 3320-2398

FCC ID: WVBA761X

Report Vers

Page Number : 34 of 78
Report Issued Date : May 20, 2013
Report Version : Rev. 01

3.4.5 Test Plots of Conducted Band Edges

Test Mode :	802.11b	Temperature :	24~26 ℃
Test Band :	Low and High	Relative Humidity :	50~53%
Test Channel :	01 and 11	Test Engineer :	Blithe Li

Low Band Edge Plot on 802.11b Channel 01

Date: 11.MAY.2013 13:32:26

High Band Edge Plot on 802.11b Channel 11

Date: 11.MAY.2013 13:43:11

TEL: 86-755- 3320-2398 FCC ID: WVBA761X Page Number : 35 of 78
Report Issued Date : May 20, 2013
Report Version : Rev. 01

Test Mode :	802.11g	Temperature :	24~26℃
Test Band :	Low and High	Relative Humidity :	50~53%
Test Channel :	01 and 11	Test Engineer :	Blithe Li

Low Band Edge Plot on 802.11g Channel 01

Date: 11.MAY.2013 13:49:13

High Band Edge Plot on 802.11g Channel 11

Date: 11.MAY.2013 13:58:28

TEL: 86-755- 3320-2398 FCC ID: WVBA761X Page Number : 36 of 78
Report Issued Date : May 20, 2013
Report Version : Rev. 01

Test Mode :	802.11n HT20	Temperature :	24~26 ℃
Test Band :	Low and High	Relative Humidity :	50~53%
Test Channel :	01 and 11	Test Engineer :	Blithe Li

Low Band Edge Plot on 802.11n HT20 Channel 01

Date: 11.MAY.2013 14:02:41

High Band Edge Plot on 802.11n HT20 Channel 11

Date: 11.MAY.2013 14:09:30

TEL: 86-755- 3320-2398 FCC ID: WVBA761X Page Number : 37 of 78
Report Issued Date : May 20, 2013
Report Version : Rev. 01

3.4.6 Test Plots of Spurious Emission

Test Mode :	802.11b	Temperature :	24~26℃
Test Band :	30MHz-3GHz and 2G-25GHz	Relative Humidity :	50~53%
Test Channel :	01, 06, 11	Test Engineer :	Blithe Li

802.11b 30 MHz~3 GHz

Conducted Spurious Emission Plot on Channel 01

Date: 11.MAY.2013 13:32:47

802.11b 2 GHz~25 GHz

Conducted Spurious Emission Plot on Channel 01

Date: 11.MAY.2013 13:33:06

TEL: 86-755- 3320-2398 FCC ID: WVBA761X Page Number : 38 of 78
Report Issued Date : May 20, 2013
Report Version : Rev. 01

Report No.: FR342404B

802.11b 30 MHz~3 GHz

Conducted Spurious Emission Plot on Channel 06

Date: 11.MAY.2013 13:38:20

802.11b 2 GHz~25 GHz

Conducted Spurious Emission Plot on Channel 06

Date: 11.MAY.2013 13:38:39

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-3320-2398 FCC ID: WVBA761X

Page Number : 39 of 78 Report Issued Date: May 20, 2013 : Rev. 01 Report Version

Report No.: FR342404B

802.11b 30 MHz~3 GHz

Conducted Spurious Emission Plot on Channel 11

Date: 11.MAY.2013 13:43:37

802.11b 2 GHz~25 GHz

Conducted Spurious Emission Plot on Channel 11

Date: 11.MAY.2013 13:43:56

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-3320-2398 FCC ID: WVBA761X

Page Number : 40 of 78 Report Issued Date: May 20, 2013 : Rev. 01 Report Version

Test Mode :	802.11g	Temperature :	24~26℃
Test Band :	30MHz-3GHz and 2G-25GHz	Relative Humidity :	50~53%
Test Channel :	01, 06, 11	Test Engineer :	Blithe Li

802.11g 30 MHz~3 GHz

Conducted Spurious Emission Plot on Channel 01

Date: 11.MAY.2013 15:11:08

802.11g 2 GHz~25 GHz

Conducted Spurious Emission Plot on Channel 01

Date: 11.MAY.2013 15:11:27

TEL: 86-755- 3320-2398 FCC ID: WVBA761X Page Number : 41 of 78 Report Issued Date : May 20, 2013

Report No.: FR342404B

Report Version : Rev. 01

802.11g 30 MHz~3 GHz

Conducted Spurious Emission Plot on Channel 06

Date: 11.MAY.2013 13:53:33

802.11g 2 GHz~25 GHz

Conducted Spurious Emission Plot on Channel 06

Date: 11.MAY.2013 13:53:51

TEL: 86-755- 3320-2398 FCC ID: WVBA761X Page Number : 42 of 78
Report Issued Date : May 20, 2013
Report Version : Rev. 01

Report No.: FR342404B

802.11g 30 MHz~3 GHz

Conducted Spurious Emission Plot on Channel 11

Date: 11.MAY.2013 13:58:51

802.11g 2 GHz~25 GHz

Conducted Spurious Emission Plot on Channel 11

Date: 11.MAY.2013 13:59:10

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-3320-2398 FCC ID: WVBA761X

Page Number : 43 of 78 Report Issued Date: May 20, 2013 Report Version : Rev. 01

Test Mode :	802.11n HT20	Temperature :	24~26 ℃
Test Band :	30MHz-3GHz and 2G-25GHz	Relative Humidity :	50~53%
Test Channel :	01, 06, 11	Test Engineer :	Blithe Li

802.11n HT20 30 MHz~3 GHz

Conducted Spurious Emission Plot on Channel 01

Date: 11.MAY.2013 15:13:32

802.11n HT20 2 GHz~25 GHz

Conducted Spurious Emission Plot on Channel 01

Date: 11.MAY.2013 15:13:51

TEL: 86-755- 3320-2398 FCC ID: WVBA761X Page Number : 44 of 78
Report Issued Date : May 20, 2013
Report Version : Rev. 01

802.11n HT20 30 MHz~3 GHz Conducted Spurious Emission Plot on Channel 06

Date: 11.MAY.2013 14:06:15

802.11n HT20 2 GHz~25 GHz

Conducted Spurious Emission Plot on Channel 06

Date: 11.MAY.2013 14:06:34

TEL: 86-755- 3320-2398 FCC ID: WVBA761X Page Number : 45 of 78
Report Issued Date : May 20, 2013
Report Version : Rev. 01

802.11n HT20 30 MHz~3 GHz Conducted Spurious Emission Plot on Channel 11

Date: 11.MAY.2013 14:10:13

802.11n HT20 2 GHz~25 GHz

Conducted Spurious Emission Plot on Channel 11

Date: 11.MAY.2013 14:10:31

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755- 3320-2398 FCC ID: WVBA761X

Page Number : 46 of 78
Report Issued Date : May 20, 2013
Report Version : Rev. 01

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 KHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(KHz)	300
0.490 - 1.705	24000/F(KHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

See list of measuring instruments of this test report.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755- 3320-2398 FCC ID: WVBA761X

Page Number : 47 of 78
Report Issued Date : May 20, 2013

Report No.: FR342404B

Report Version : Rev. 01

3.5.3 Test Procedures

- 1. The testing follows the guidelines in ANSI C63. 10-2009
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.

Report No.: FR342404B

- 3. The EUT was placed on a turntable with 0.8 meter above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 7. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 KHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

Band	Band Duty Cycle(%)		1/T(KHz)	VBW Setting
802.11b	99.31	-	-	10Hz
802.11g	94.93	2.0623	0.4849	1KHz
2.4G 802.11n HT20	94.99	1.9217	0.5204	1KHz

Note: For average measurement with duty cycle < 98%, use reduced VBW measurement method 4.2.3.2.3 in ANSI C63.10.

SPORTON INTERNATIONAL (SHENZHEN) INC.Page Number: 48 of 78TEL: 86-755- 3320-2398Report Issued Date: May 20, 2013FCC ID: WVBA761XReport Version: Rev. 01

Report No.: FR342404B

3.5.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-3320-2398 FCC ID: WVBA761X

Page Number : 49 of 78 Report Issued Date: May 20, 2013

Report Version : Rev. 01

For radiated emissions above 1GHz

3.5.5 Test Results of Radiated Spurious Emission (9 KHz ~ 30 MHz)

The low frequency, which started from 9 KHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

TEL: 86-755- 3320-2398 FCC ID: WVBA761X Page Number : 50 of 78 Report Issued Date : May 20, 2013

Report No.: FR342404B

Spectrum Analyzer / Receiver

Report Version : Rev. 01

3.5.6 Test Result of Radiated Band Edges

Test Mode :	802.11b	Temperature :	24~25 ℃
Test Band :	Low	Relative Humidity :	51~54%
Test Channel :	01	Test Engineer :	Robin Luo

Report No. : FR342404B

	ANTENNA POLARITY : HORIZONTAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2389.65	52.35	-21.65	74	45.58	32.14	4.42	29.79	172	109	Peak		
2389.47	42.52	-11.48	54	35.75	32.14	4.42	29.79	172	109	Average		

	ANTENNA POLARITY: VERTICAL											
Frequency Level Over Limit Read Antenna Cable Preamp Ant Table Re										Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2384.34	57.62	-16.38	74	50.87	32.12	4.42	29.79	118	117	Peak		
2389.2	47.78	-6.22	54	41.01	32.14	4.42	29.79	118	117	Average		

Test Mode :	802.11b	Temperature :	24~25℃
Test Band :	High	Relative Humidity :	51~54%
Test Channel :	11	Test Engineer :	Robin Luo

	ANTENNA POLARITY : HORIZONTAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2484.61	52.81	-21.19	74	45.83	32.27	4.47	29.76	100	41	Peak		
2494.78	40.16	-13.84	54	33.13	32.29	4.49	29.75	100	41	Average		

	ANTENNA POLARITY: VERTICAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2485.12	55.67	-18.33	74	48.69	32.27	4.47	29.76	114	110	Peak		
2494.78	43.87	-10.13	54	36.84	32.29	4.49	29.75	114	110	Average		

SPORTON INTERNATIONAL (SHENZHEN) INC.Page Number: 51 of 78TEL: 86-755- 3320-2398Report Issued Date: May 20, 2013FCC ID: WVBA761XReport Version: Rev. 01

Test Mode :	802.11g	Temperature :	24~25 ℃
Test Band :	Low	Relative Humidity :	51~54%
Test Channel :	01	Test Engineer :	Robin Luo

Report No.: FR342404B

	ANTENNA POLARITY : HORIZONTAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2389.74	67.82	-6.18	74	61.05	32.14	4.42	29.79	116	95	Peak		

	ANTENNA POLARITY : VERTICAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2389.56	65.18	-8.82	74	58.41	32.14	4.42	29.79	144	88	Peak		
2389.92	45.86	-8.14	54	39.08	32.14	4.42	29.78	144	88	Average		

Test Mode :	802.11g	Temperature :	24~25 ℃
Test Band :	High	Relative Humidity :	51~54%
Test Channel :	11	Test Engineer :	Robin Luo

	ANTENNA POLARITY : HORIZONTAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2483.95	65.82	-8.18	74	58.84	32.27	4.47	29.76	138	66	Peak		
		-6.23		40.79	32.27	4.47	29.76	138	66			

	ANTENNA POLARITY : VERTICAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2483.74	67.57	-6.43	74	60.59	32.27	4.47	29.76	100	90	Peak		
2483.53	47.58	-6.42	54	40.6	32.27	4.47	29.76	100	90	Average		

SPORTON INTERNATIONAL (SHENZHEN) INC.Page Number: 52 of 78TEL: 86-755- 3320-2398Report Issued Date: May 20, 2013FCC ID: WVBA761XReport Version: Rev. 01

Test Mode :	802.11n HT20	Temperature :	24~25 ℃
Test Band :	Low	Relative Humidity :	51~54%
Test Channel :	01	Test Engineer :	Robin Luo

Report No.: FR342404B

	ANTENNA POLARITY : HORIZONTAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2389.65	64.08	-9.92	74	57.31	32.14	4.42	29.79	100	40	Peak		
									-			

	ANTENNA POLARITY: VERTICAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2389.47	70.87	-3.13	74	64.1	32.14	4.42	29.79	122	101	Peak		
2389.83	50.78	-3.22	54	44	32.14	4.42	29.78	122	101	Average		

Test Mode :	802.11n HT20	Temperature :	24~25 ℃
Test Band :	High	Relative Humidity :	51~54%
Test Channel :	11	Test Engineer :	Robin Luo

	ANTENNA POLARITY : HORIZONTAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2483.95	66.72	-7.28	74	59.74	32.27	4.47	29.76	136	289	Peak		
2484.19	47.26	-6.74	54	40.28	32.27	4.47	29.76	136	289	Average		

	ANTENNA POLARITY : VERTICAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2484.1	65.87	-8.13	74	58.89	32.27	4.47	29.76	100	360	Peak		
2484.01	46.09	-7.91	54	39.11	32.27	4.47	29.76	100	360	Average		

SPORTON INTERNATIONAL (SHENZHEN) INC.Page Number: 53 of 78TEL: 86-755- 3320-2398Report Issued Date: May 20, 2013FCC ID: WVBA761XReport Version: Rev. 01

3.5.7 Test Result of Radiated Spurious Emission (30 MHz $\sim 10^{th}$ Harmonic)

Note: Below 1GHz for radiated emission measurement, pre-scanned all test modes and only choose the worst case mode was recorded in the report.

Test Mode :	802	2.11b	Temperature :	24~25℃				
Test Channel :	01		Relative Humidity :	51~54%				
Test Engineer :	Ro	bin Luo	Polarization :	Horizontal				
	1.	2412 MHz is fundament	tal signal which can be ignored.					
	2.	2399 MHz and 7236 MHz are not within restricted bands, and their limit line						
Domosik i		are 20dB below the highest emission level. For example, 106.48 dBuV/r						
Remark :		20dB = 86.48 dBuV/m.						
	3.	Average measurement	was not performed if	peak level went lower than the				
		average limit.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)		(dB)	(dB)	(dB)	(cm)	(deg)	
2399	52.69	-33.79	86.48	45.91	32.14	4.42	29.78	172	109	Peak
2412	106.48	-	-	99.65	32.17	4.44	29.78	172	109	Peak
2412	101.41	-	-	94.58	32.17	4.44	29.78	172	109	Average
4824	46.52	-27.48	74	36.23	33.68	5.95	29.34	100	123	Peak
7236	49.45	-37.03	86.48	34.62	35.29	7.58	28.04	100	151	Peak

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755- 3320-2398 FCC ID: WVBA761X Page Number : 54 of 78
Report Issued Date : May 20, 2013
Report Version : Rev. 01

Test Mode :	802	2.11b	Temperature :	24~25 ℃					
Test Channel :	01		Relative Humidity :	51~54%					
Test Engineer :	Ro	bin Luo	Polarization :	Vertical					
	1.	2412 MHz is fundamental signal which can be ignored.							
	2.	2399 MHz and 7236 MHz	2399 MHz and 7236 MHz are not within restricted bands, and their limit lines						
Remark :		are 20dB below the highest emission level.							
	3.	. Average measurement was not performed if peak level went lower							
		average limit.							

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
(NALL =)	(dD::\//re \	Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2399	57.07	-32.5	89.57	50.29	32.14	4.42	29.78	118	117	Peak
2412	109.57	-	-	102.74	32.17	4.44	29.78	118	117	Peak
2412	104.13	-	-	97.3	32.17	4.44	29.78	118	117	Average
4824	50.33	-23.67	74	40.04	33.68	5.95	29.34	146	51	Peak
7236	49.17	-40.4	89.57	34.34	35.29	7.58	28.04	200	224	Peak

TEL: 86-755- 3320-2398 FCC ID: WVBA761X Page Number : 55 of 78
Report Issued Date : May 20, 2013
Report Version : Rev. 01

Test Mode :	802.11b	Temperature :	24~25 ℃					
Test Channel :	06	Relative Humidity :	51~54%					
Test Engineer :	Robin Luo	Polarization :	Horizontal					
	1. 2437 MHz is fundament	al signal which can be	ignored.					
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.	average limit.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2437	107.31	-	-	100.41	32.22	4.45	29.77	100	147	Peak
2437	101.88	-	-	94.98	32.22	4.45	29.77	100	147	Average
4874	47.4	-26.6	74	36.92	33.8	6.02	29.34	100	21	Peak
7311	50.73	-23.27	74	35.6	35.31	7.8	27.98	120	29	Peak

TEL: 86-755- 3320-2398 FCC ID: WVBA761X Page Number : 56 of 78
Report Issued Date : May 20, 2013
Report Version : Rev. 01

Test Mode :	802.11b	Temperature :	24~25 ℃			
Test Channel :	06	Relative Humidity :	51~54%			
Test Engineer :	Robin Luo	Polarization :	Vertical			
	1. 2437 MHz is fundament	al signal which can be	ignored.			
Remark :	2. Average measurement was not performed if peak level went lower than the					
	average limit.					

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2437	107.78	-	-	100.88	32.22	4.45	29.77	168	62	Peak
2437	102.31	-	-	95.41	32.22	4.45	29.77	168	62	Average
4874	50.36	-23.64	74	39.88	33.8	6.02	29.34	100	215	Peak
7311	50.4	-23.6	74	35.27	35.31	7.8	27.98	196	68	Peak

TEL: 86-755- 3320-2398 FCC ID: WVBA761X Page Number : 57 of 78
Report Issued Date : May 20, 2013
Report Version : Rev. 01

Test Mode :	802.11b	Temperature :	24~25 ℃					
Test Channel :	11	Relative Humidity :	51~54%					
Test Engineer :	Robin Luo	Polarization :	Horizontal					
	1. 2462 MHz is fundament	al signal which can be	ignored.					
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.	average limit.						

F	requency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
	(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
	2462	104.99	-	-	98.04	32.24	4.47	29.76	100	41	Peak
	2462	100.07	-	-	93.12	32.24	4.47	29.76	100	41	Average
	4924	50.95	-23.05	74	40.28	33.92	6.1	29.35	200	166	Peak
	7386	50.76	-23.24	74	35.19	35.35	8.12	27.9	100	131	Peak

TEL: 86-755- 3320-2398 FCC ID: WVBA761X Page Number : 58 of 78
Report Issued Date : May 20, 2013
Report Version : Rev. 01

Test Mode :	802.11b	Temperature :	24~25℃				
Test Channel :	11	Relative Humidity :	51~54%				
Test Engineer :	Robin Luo	Polarization :	Vertical				
	1. 2462 MHz is fundament	al signal which can be	ignored.				
Remark :	2. Average measurement	2. Average measurement was not performed if peak level went lower than the					
	average limit.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2462	109.03	-	-	102.08	32.24	4.47	29.76	114	110	Peak
2462	104.24	-	-	97.29	32.24	4.47	29.76	114	110	Average
4924	47.23	-26.77	74	36.56	33.92	6.1	29.35	177	96	Peak
7386	50.53	-23.47	74	34.96	35.35	8.12	27.9	200	122	Peak

TEL: 86-755- 3320-2398 FCC ID: WVBA761X Page Number : 59 of 78
Report Issued Date : May 20, 2013
Report Version : Rev. 01

Test Mode :	802	2.11g	Temperature :	24~25 ℃				
Test Channel :	01		Relative Humidity :	51~54%				
Test Engineer :	Ro	bin Luo	Polarization :	Horizontal				
	1.	2412 MHz is fundament	ignored.					
	2.	2399 MHz and 7236 MHz	2399 MHz and 7236 MHz are not within restricted bands, and their limit lir					
Remark :		are 20dB below the high	nest emission level.					
	3.	Average measurement was not performed if peak level went lower than the						
		average limit.						

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2399	73.92	-10.94	84.86	67.14	32.14	4.42	29.78	100	40	Average
2412	104.86	-	-	98.03	32.17	4.44	29.78	100	40	Peak
2412	93.82	-	-	86.99	32.17	4.44	29.78	100	40	Average
4824	51.47	-22.53	74	41.18	33.68	5.95	29.34	176	98	Peak
4824	46.15	-7.85	54	35.86	33.68	5.95	29.34	176	98	Average
7236	49.89	-34.97	84.86	35.06	35.29	7.58	28.04	100	125	Peak

TEL: 86-755- 3320-2398 FCC ID: WVBA761X Page Number : 60 of 78
Report Issued Date : May 20, 2013
Report Version : Rev. 01

Test Mode :	802	2.11g	Temperature :	24~25 ℃			
Test Channel :	01		Relative Humidity :	51~54%			
Test Engineer :	Ro	bin Luo	Polarization :	Vertical			
	1.	2412 MHz is fundamental signal which can be ignored.					
	2.	2399 MHz and 7236 MHz	Hz are not within restri	cted bands, and their limit lines			
Remark :		are 20dB below the high	nest emission level.				
	3.	Average measurement	was not performed if	peak level went lower than the			
		average limit.					

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2399	72.61	-18.97	91.58	65.83	32.14	4.42	29.78	122	101	Peak
2412	111.58	-	-	104.75	32.17	4.44	29.78	122	101	Peak
2412	99.59	-	-	92.76	32.17	4.44	29.78	122	101	Average
4824	45.53	-28.47	74	35.24	33.68	5.95	29.34	200	33	Peak
7236	49.8	-41.78	91.58	34.97	35.29	7.58	28.04	100	355	Peak

TEL: 86-755- 3320-2398 FCC ID: WVBA761X Page Number : 61 of 78
Report Issued Date : May 20, 2013
Report Version : Rev. 01

Test Mode :	802.11g	Temperature :	24~25 ℃						
Test Channel :	06	Relative Humidity :	51~54%						
Test Engineer :	Robin Luo	Polarization :	Horizontal						
	1. 2437 MHz is fundament	al signal which can be	ignored.						
Remark :	2. Average measurement	was not performed if	peak level went lower than the						
	average limit.	average limit.							

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2437	111.74	-	-	104.84	32.22	4.45	29.77	117	290	Peak
2437	100.74	-	-	93.84	32.22	4.45	29.77	117	290	Average
4874	45.89	-28.11	74	35.41	33.8	6.02	29.34	100	112	Peak
7311	50.37	-23.63	74	35.24	35.31	7.8	27.98	100	221	Peak

TEL: 86-755- 3320-2398 FCC ID: WVBA761X Page Number : 62 of 78
Report Issued Date : May 20, 2013
Report Version : Rev. 01

Test Mode :	802.11g	Temperature :	24~25℃					
Test Channel :	06	Relative Humidity :	51~54%					
Test Engineer :	Robin Luo	Polarization :	Vertical					
	1. 2437 MHz is fundament	al signal which can be	ignored.					
Remark :	2. Average measurement	was not performed if	peak level went lower than the					
	average limit.							

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2437	108.17	-	-	101.27	32.22	4.45	29.77	100	240	Peak
2437	96.79	-	-	89.89	32.22	4.45	29.77	100	240	Average
4874	53.33	-20.67	74	42.85	33.8	6.02	29.34	100	269	Peak
4874	47.69	-6.31	54	37.21	33.8	6.02	29.34	100	269	Average
7311	50.67	-23.33	74	35.54	35.31	7.8	27.98	100	296	Peak

TEL: 86-755- 3320-2398 FCC ID: WVBA761X Page Number : 63 of 78
Report Issued Date : May 20, 2013
Report Version : Rev. 01

Test Mode :	802.11g	Temperature :	24~25℃					
Test Channel :	11	Relative Humidity :	51~54%					
Test Engineer :	Robin Luo	Polarization :	Horizontal					
	1. 2462 MHz is fundament	al signal which can be	ignored.					
Remark :	2. Average measurement	was not performed if	peak level went lower than the					
	average limit.							

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2462	107.19	-	-	100.24	32.24	4.47	29.76	138	66	Peak
2462	95.67	-	-	88.72	32.24	4.47	29.76	138	66	Average
4924	48.74	-25.26	74	38.07	33.92	6.1	29.35	100	227	Peak
7386	50.47	-23.53	74	34.9	35.35	8.12	27.9	125	336	Peak

TEL: 86-755- 3320-2398 FCC ID: WVBA761X Page Number : 64 of 78
Report Issued Date : May 20, 2013
Report Version : Rev. 01

Test Mode :	802.11g	Temperature :	24~25℃					
Test Channel :	11	Relative Humidity :	51~54%					
Test Engineer :	Robin Luo	Polarization :	Vertical					
	1. 2462 MHz is fundament	al signal which can be	ignored.					
Remark :	2. Average measurement	was not performed if	peak level went lower than the					
	average limit.							

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2462	107.97	-	-	101.02	32.24	4.47	29.76	100	90	Peak
2462	96.14	-	-	89.19	32.24	4.47	29.76	100	90	Average
4924	51.46	-22.54	74	40.79	33.92	6.1	29.35	168	44	Peak
4924	45.94	-8.06	54	35.27	33.92	6.1	29.35	168	44	Average
7386	49.76	-24.24	74	34.19	35.35	8.12	27.9	100	286	Peak

TEL: 86-755- 3320-2398 FCC ID: WVBA761X Page Number : 65 of 78
Report Issued Date : May 20, 2013
Report Version : Rev. 01

Test Mode :	802	2.11n HT20	Temperature :	24~25 ℃			
Test Channel :	01		Relative Humidity :	51~54%			
Test Engineer :	Ro	bin Luo	Polarization :	Horizontal			
	1.	2412 MHz is fundament	tal signal which can be ignored.				
	2.	2399 MHz and 7236 MHz are not within restricted bands, and their limit					
Remark :		are 20dB below the high	nest emission level.				
	3.	Average measurement	was not performed if	peak level went lower than the			
		average limit.					

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	$(dB\mu V/m)$	(dB)	$(dB\mu V/m)$	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
105.66	31.61	-11.89	43.5	49.28	11.8	1.18	30.65	100	112	Peak
165.8	27.19	-16.31	43.5	46.47	9.9	1.27	30.45	-	-	Peak
197.81	25.34	-18.16	43.5	45.09	9.15	1.44	30.34	-	-	Peak
265.71	23.63	-22.37	46	39.03	13.03	1.68	30.11	-	-	Peak
402.48	21.32	-24.68	46	32.49	16.58	1.91	29.66	-	-	Peak
632.37	22.56	-23.44	46	30.3	19.08	2.34	29.16	-	-	Peak
2399	73.92	-10.94	84.86	67.14	32.14	4.42	29.78	100	40	Average
2412	104.86	-	-	98.03	32.17	4.44	29.78	100	40	Peak
2412	93.82	-	-	86.99	32.17	4.44	29.78	100	40	Average
4824	51.47	-22.53	74	41.18	33.68	5.95	29.34	176	98	Peak
4824	46.15	-7.85	54	35.86	33.68	5.95	29.34	176	98	Average
7236	49.89	-34.97	84.86	35.06	35.29	7.58	28.04	100	125	Peak

TEL: 86-755- 3320-2398 FCC ID: WVBA761X Page Number : 66 of 78
Report Issued Date : May 20, 2013
Report Version : Rev. 01

Test Mode :	802	2.11n HT20	Temperature :	24~25 ℃				
Test Channel :	01		Relative Humidity :	51~54%				
Test Engineer :	Ro	bin Luo	Polarization :	Vertical				
	1.	2412 MHz is fundament	tal signal which can be ignored.					
	2.	2399 MHz and 7236 MHz are not within restricted bands, and their limit l						
Remark :		are 20dB below the high	nest emission level.					
	3.	Average measurement	Average measurement was not performed if peak level went lower than the					
		average limit.						

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	$(dB\mu V/m)$	(dB)	($dB\mu V/m$)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
103.72	30.83	-12.67	43.5	48.81	11.5	1.17	30.65	100	136	Peak
170.65	20.93	-22.57	43.5	40.28	9.8	1.28	30.43	-	-	Peak
190.05	19.56	-23.94	43.5	38.66	9.9	1.37	30.37	-	-	Peak
304.51	23.25	-22.75	46	38.49	13.04	1.7	29.98	-	-	Peak
373.38	25.12	-20.88	46	37.17	15.84	1.87	29.76	-	-	Peak
508.21	22.35	-23.65	46	31.78	17.74	2.15	29.32	-	-	Peak
2399	72.61	-18.97	91.58	65.83	32.14	4.42	29.78	122	101	Peak
2412	111.58	-	-	104.75	32.17	4.44	29.78	122	101	Peak
2412	99.59	-	-	92.76	32.17	4.44	29.78	122	101	Average
4824	45.53	-28.47	74	35.24	33.68	5.95	29.34	200	33	Peak
7236	49.8	-41.78	91.58	34.97	35.29	7.58	28.04	100	355	Peak

TEL: 86-755- 3320-2398 FCC ID: WVBA761X Page Number : 67 of 78
Report Issued Date : May 20, 2013
Report Version : Rev. 01

Test Mode :	802.11n HT20	Temperature :	24~25 ℃				
Test Channel :	06	Relative Humidity :	51~54%				
Test Engineer :	Robin Luo	Polarization :	Horizontal				
	1. 2437 MHz is fundament	al signal which can be	ignored.				
Remark :	Remark: 2. Average measurement was not performed if peak level went lower						
	average limit.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2437	108.2	-	-	101.3	32.22	4.45	29.77	100	41	Peak
2437	97.62	-	-	90.72	32.22	4.45	29.77	100	41	Average
4874	52.99	-21.01	74	42.51	33.8	6.02	29.34	110	227	Peak
4874	47.4	-6.6	54	36.92	33.8	6.02	29.34	110	227	Average
7311	50.86	-23.14	74	35.73	35.31	7.8	27.98	165	68	Peak

TEL: 86-755- 3320-2398 FCC ID: WVBA761X Page Number : 68 of 78
Report Issued Date : May 20, 2013
Report Version : Rev. 01

Test Mode :	802.11n HT20	Temperature :	24~25 ℃			
Test Channel :	06	Relative Humidity :	51~54%			
Test Engineer :	Robin Luo	Polarization :	Vertical			
	1. 2437 MHz is fundament	al signal which can be	ignored.			
Remark :	2. Average measurement	was not performed if peak level went lower than the				
	average limit.					

	Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
ĺ	(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
	2437	110.51	-	-	103.61	32.22	4.45	29.77	152	98	Peak
	2437	99.29	-	-	92.39	32.22	4.45	29.77	152	98	Average
	4874	46.24	-27.76	74	35.76	33.8	6.02	29.34	100	224	Peak
	7311	49.98	-24.02	74	34.85	35.31	7.8	27.98	100	221	Peak

TEL: 86-755- 3320-2398 FCC ID: WVBA761X Page Number : 69 of 78
Report Issued Date : May 20, 2013
Report Version : Rev. 01

Test Mode :	802.11n HT20	Temperature :	24~25℃					
Test Channel :	11	Relative Humidity :	51~54%					
Test Engineer :	Robin Luo	Polarization :	Horizontal					
	1. 2462 MHz is fundament	al signal which can be	ignored.					
Remark: 2. Average measurement was not performed if peak level went lovers.								
	average limit.							

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2462	106.48	-	-	99.53	32.24	4.47	29.76	136	289	Peak
2462	95.39	-	-	88.44	32.24	4.47	29.76	136	289	Average
4924	49.87	-24.13	74	39.2	33.92	6.1	29.35	100	252	Peak
7386	50.48	-23.52	74	34.91	35.35	8.12	27.9	188	64	Peak

TEL: 86-755- 3320-2398 FCC ID: WVBA761X Page Number : 70 of 78
Report Issued Date : May 20, 2013
Report Version : Rev. 01

Test Mode :	802.11n HT20	Temperature :	24~25℃						
Test Channel :	11	Relative Humidity :	51~54%						
Test Engineer :	Robin Luo	Polarization :	Vertical						
	1. 2462 MHz is fundament	al signal which can be	ignored.						
Remark: 2. Average measurement was not performed if peak level went lo									
	average limit.	average limit.							

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2462	104.22	-	-	97.27	32.24	4.47	29.76	100	360	Peak
2462	94.23	-	-	87.28	32.24	4.47	29.76	100	360	Average
4924	51.31	-22.69	74	40.64	33.92	6.1	29.35	146	175	Peak
4924	46.41	-7.59	54	35.74	33.92	6.1	29.35	146	175	Average
7386	50.92	-23.08	74	35.35	35.35	8.12	27.9	152	33	Peak

TEL: 86-755- 3320-2398 FCC ID: WVBA761X Page Number : 71 of 78
Report Issued Date : May 20, 2013
Report Version : Rev. 01

3.6 AC Conducted Emission Measurement

3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 KHz to 30 MHz shall not exceed the limits in the following table.

Frequency of Emission	Conducted Limit (dBuV)			
(MHz)	Quasi-Peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

^{*}Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments

See list of measuring instruments of this test report.

3.6.3 Test Procedures

- 1. The testing follows the guidelines in ANSI C63.10-2009.
- 2. The EUT was placed 0.4 meter from the conducting wall of the shielding room, and it was kept at least 80 centimeters from any other grounded conducting surface.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 4. All the support units are connecting to the other LISN.
- 5. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 6. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 7. Both sides of AC line were checked for maximum conducted interference.
- 8. The frequency range from 150 KHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

FCC ID: WVBA761X

Report Issued Date : May 20, 2013
Report Version : Rev. 01

Page Number

: 72 of 78

3.6.4 Test Setup

TEL: 86-755- 3320-2398 FCC ID: WVBA761X Page Number : 73 of 78
Report Issued Date : May 20, 2013
Report Version : Rev. 01

3.6.5 Test Result of AC Conducted Emission

Test Mode :	Mode 1			Temp	Temperature :		24~25 ℃		
Test Engineer :	Leo Liao			Relat	Relative Humidity :			50~51%	
Test Voltage :	120Vac / 60Hz			Phas	Phase :				
Function Type :				Link + W	ink + WLAN Link + USB Cable (Charging from Adpate				
Remark :	All emissions not reported here a				re are more than 10 dB below the prescribed limit.				
100	Level (dBuV)				Date: 2013-05-09 Time: 10:10:42				
90									
80									
70								111111111111	V-22-8-15
60								FCC 15B	_QP
	-		++++					FCC 15B_	AVG
50	A	-		10				100105	
40	N A AR /A	A A A A A A A	A LONDAN	MANNAMA	Market Broad B.	HALL WAR HAMM		Λ.	AA/I
	MAY THE P	* WWW WW	AND A M. A.	Millian malli	13	Arana Milahir	AND THE PARTY OF T	Manual Manual Control Man	my V
30	C - C - 7% - C/-	and the second			1200		200	A. J. B. J. B.	200001
30									
30 20	5								1
20 10									De
20 10		.5	1		2	5	10	20	30
20 10		.5	1	Frequ	2 ency (MHz)		10	20	30
20 10 0 Site	.15 .2 : COO1-S	Z		30	ency (MHz)		10	20	30
20 10 0 Site	.15 .2	Z		30	ency (MHz)		10	20	30
20 10 0 Site	.15 .2 : COO1-S	Z		35 	ency (MHz)		10	20	30
20 10 0 Site	.15 .2 : COO1-S	Z		35 	ency (MHz)		10	20	30
20 10 0 Site	.15 .2 : CO01-S on: FCC 15	z B_QP LISN	_L_2000	0601 LIN	ency (MHz)	LIS <mark>N</mark>	10	20	30
20 10 0 Site	.15 .2 : CO01-S on: FCC 15	Z	_L_2000	0601 LIN	ency (MHz)		Cable	20 Remark	30
20 10 0 Site	.15 .2 : CO01-S on: FCC 15	z B_QP LISN	_L_2000	0601 LIN	ency (MHz)	LIS <mark>N</mark>	Cable		30
20 10 0 Site	.15 .2 : C001-S on: FCC 15	Z B_QP LISN Level :	_L_2000 Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss dB	Remark	30
20 10 0 Site Conditi	.15 .2 : C001-S on: FCC 15 Freq MHz	Level :	_L_2000 Over Limit dB	Limit Line	Read Level	LISN Factor dB	Cable Loss dB	Remark Average	30
20 10 0 Site Conditi	.15 .2 : C001-S .on: FCC 15 Freq MHz 0.19 0.19 0.39	Level : dBuV 35.48 - 46.68 - 33.70 -	Over Limit dB 18.41 17.21 14.33	Limit Line dBuV 53.89 63.89 48.03	Read Level dBuV 25.40 36.60 23.61	LISN Factor dB 0.03 0.03 0.03	Cable Loss dB 10.05 10.05 10.07	Remark Average QP Average	30
20 10 0 Site Conditi 1 2 3 4	.15 .2 : C001-S : C001-S : C01-S :	Level : dBuV 35.48 - 46.68 - 33.70 - 41.90 -	Over Limit dB 18.41 17.21 14.33 16.13	Limit Line dBuV 53.89 63.89 48.03 58.03	Read Level dBuV 25.40 36.60 23.61 31.81	LISN Factor dB 0.03 0.03 0.02 0.02	Cable Loss dB 10.05 10.05 10.07	Remark Average QP Average QP	30
1 2 3 4 5 *	.15 .2 : C001-S on: FCC 15 Freq MHz 0.19 0.19 0.39 0.39 0.63	Level : dBuV 35.48 - 46.68 - 33.70 - 41.90 - 32.62 -	Over Limit dB 18.41 17.21 14.33 16.13 13.38	D601 LINE Limit Line dBuV 53.89 63.89 48.03 58.03 46.00	Read Level dBuV 25.40 36.60 23.61 31.81 22.50	LISN Factor dB 0.03 0.03 0.02 0.02 0.02 0.02	Cable Loss dB 10.05 10.05 10.07 10.07	Remark Average QP Average QP Average	30
1 2 3 4 5 * 6	Treq MHz 0.19 0.39 0.39 0.63 0.63	Level : dBuV 35.48 - 46.68 - 33.70 - 41.90 - 32.62 - 40.22 -	Over Limit dB 18.41 17.21 14.33 16.13 13.38 15.78	December 2000 Limit Line dBuV 53.89 63.89 48.03 58.03 46.00 56.00	Read Level dBuV 25.40 36.60 23.61 31.81 22.50 30.10	LISN Factor dB 0.03 0.02 0.02 0.02 0.02 0.02 0.02	Cable Loss dB 10.05 10.05 10.07 10.07 10.10	Remark Average QP Average QP Average QP	30
20 10 0 Site Conditi 	Freq MHz 0.19 0.39 0.63 0.63 0.68	Level : dBuV 35.48 - 46.68 - 33.70 - 41.90 - 32.62 - 40.22 - 31.12 -	Over Limit dB 18.41 17.21 14.33 16.13 13.38 15.78 14.88	December 2000 Limit Line dBuV 53.89 63.89 48.03 58.03 46.00 56.00 46.00	Read Level dBuV 25.40 36.60 23.61 31.81 22.50 30.10 21.00	LISN Factor dB 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02	Cable Loss dB 10.05 10.05 10.07 10.07 10.10 10.10	Remark Average QP Average QP Average QP Average	30
1 2 3 4 5 * 6	Treq MHz 0.19 0.39 0.63 0.63 0.68 0.68	Level : dBuV 35.48 - 46.68 - 33.70 - 41.90 - 32.62 - 40.22 -	Over Limit dB 18.41 17.21 14.33 16.13 13.38 15.78 14.88 16.38	December 2000 Limit Line dBuV 53.89 63.89 48.03 58.03 46.00 56.00 46.00 56.00	Read Level dBuV 25.40 36.60 23.61 31.81 22.50 30.10 21.00 29.50	LISN Factor dB 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02	Cable Loss dB 10.05 10.05 10.07 10.10 10.10 10.10 10.10	Remark Average QP Average QP Average QP Average QP	30
20 10 0 Site Conditi	Treq MHz 0.19 0.39 0.63 0.63 0.68 0.68 0.88	Level : dBuV 35.48 - 46.68 - 33.70 - 41.90 - 32.62 - 40.22 - 31.12 - 39.62 -	Over Limit dB 18.41 17.21 14.33 16.13 13.38 15.78 14.88 16.38 13.67	December 2000 Limit Line dBuV 53.89 63.89 48.03 58.03 46.00 56.00 46.00 56.00 46.00	Read Level dBuV 25.40 36.60 23.61 31.81 22.50 30.10 21.00 29.50 22.20	LISN Factor dB 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02	Cable Loss dB 10.05 10.05 10.07 10.10 10.10 10.10 10.10	Remark Average QP Average QP Average QP Average QP Average	30
10 Site Conditi 1 2 3 4 5 * 6 7 8 9	Treq Freq MHz 0.19 0.39 0.63 0.63 0.68 0.68 0.88 0.88 1.12	Level : dBuV 35.48 - 46.68 - 33.70 - 41.90 - 32.62 - 40.22 - 39.62 - 39.62 - 32.33 - 40.23 - 31.85 -	Over Limit dB 18.41 17.21 14.33 16.13 15.78 14.88 15.78 14.88 15.77 14.15	Limit Line dBuV 53.89 63.89 48.03 58.03 46.00 56.00 46.00 56.00 46.00	Read Level dBuV 25.40 36.60 23.61 31.81 22.50 30.10 29.50 22.20 30.10 21.70	LISN Factor dB 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.0	Cable Loss dB 10.05 10.05 10.07 10.10 10.10 10.10 10.11 10.11	Remark Average QP Average QP Average QP Average QP Average	30
1 20 Site Conditi 1 2 3 4 5 * 6 7 8 9 10 11 12	Treq Freq MHz 0.19 0.39 0.63 0.63 0.68 0.68 0.88 0.88 1.12 1.12	Level : dBuV 35.48 - 46.68 - 33.70 - 41.90 - 32.62 - 40.22 - 31.12 - 39.62 - 32.33 - 40.23 - 31.85 - 40.75 -	Over Limit dB 18.41 17.21 14.33 16.13 13.38 15.78 14.88 16.38 13.67 15.77 14.15	Limit Line dBuV 53.89 63.89 48.03 58.03 46.00 56.00 46.00 56.00 46.00 56.00	Read Level dBuV 25.40 36.60 23.61 31.81 22.50 30.10 21.70 30.60	LISN Factor dB 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.0	Cable Loss dB 10.05 10.07 10.07 10.10 10.10 10.11 10.11 10.11 10.12 10.12	Remark Average QP Average QP Average QP Average QP Average QP Average QP	30
20 10 0 Site Conditi	Treq Freq MHz 0.19 0.39 0.63 0.63 0.68 0.68 0.88 0.88 1.12 1.12 2.14	Level : dBuV 35.48 - 46.68 - 33.70 - 41.90 - 32.62 - 40.22 - 39.62 - 39.62 - 32.33 - 40.23 - 31.85 -	Over Limit dB 18.41 17.21 14.33 16.13 13.38 15.78 14.88 16.38 15.77 14.15 15.25 17.70	Limit Line dBuV 53.89 63.89 48.03 58.03 46.00 56.00 46.00 56.00 46.00 56.00	Read Level dBuV 25.40 36.60 23.61 31.81 22.50 30.10 21.70 22.20 30.10 21.70 30.60 18.10	LISN Factor dB 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02	Cable Loss dB 10.05 10.07 10.07 10.10 10.10 10.11 10.11 10.11 10.12 10.12	Remark Average QP Average QP Average QP Average QP Average QP Average QP Average	30

TEL: 86-755- 3320-2398 FCC ID: WVBA761X Page Number : 74 of 78
Report Issued Date : May 20, 2013
Report Version : Rev. 01

Test Mode: Temperature: 24~25°C Mode 1 Test Engineer : Leo Liao Relative Humidity: 50~51% Test Voltage: 120Vac / 60Hz Phase: Neutral GSM850 Idle + Bluetooth Link + WLAN Link + USB Cable (Charging from Adpater) Function Type: + Earphone Remark: All emissions not reported here are more than 10 dB below the prescribed limit. 100 Level (dBuV) Date: 2013-05-09 Time: 10:01:29 90 80 70 FCC 15B_QP 60 FCC 15B_AVG 50 40 30 20 10 .15 .2 5 10 20 30 Frequency (MHz) : C001-SZ Condition: FCC 15B QP LISN N 2000601 NEUTRAL Over Limit Read LISN Cable Freq Level Limit Line Level Factor Loss Remark dB dBuV MHz dBuV dBuV dB 0.19 39.47 -14.59 54.06 29.40 0.02 10.05 Average 0.19 50.17 -13.89 64.06 40.10 0.02 10.05 QP 3 0.24 35.48 -16.69 52.17 25.40 0.02 10.06 Average 0.24 46.68 -15.49 62.17 36.60 0.02 10.06 QP 0.38 38.19 -10.02 48.21 28.10 0.02 10.07 Average 0.38 45.29 -12.92 58.21 35.20 0.57 36.31 -9.69 46.00 26.20 6 0.02 10.07 QP 0.02 10.09 Average 0.57 42.41 -13.59 56.00 32.30 0.02 10.09 QP 0.82 35.33 -10.67 46.00 25.20 9 0.02 10.11 Average 10 0.82 41.93 -14.07 56.00 31.80 0.02 10.11 QP 11 1.05 34.54 -11.46 46.00 24.40 0.02 10.12 Average 1.05 41.14 -14.86 56.00 31.00 2.20 30.40 -15.60 46.00 20.20 12 0.02 10.12 QP 13 0.04 10.16 Average 2.20 40.80 -15.20 56.00 30.60 0.04 10.16 QP 14 30.00 37.65 -12.35 50.00 26.14 15 1.02 10.49 Average 30.00 48.21 -11.79 60.00 36.70 1.02 10.49 QP

TEL: 86-755- 3320-2398 FCC ID: WVBA761X

Page Number : 75 of 78
Report Issued Date : May 20, 2013
Report Version : Rev. 01

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. For the fixed point-to-point operation, the power shall be reduced by one dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

3.7.2 Antenna Connected Construction

Non-standard connector used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

TEL: 86-755- 3320-2398 FCC ID: WVBA761X

Page Number : 76 of 78
Report Issued Date : May 20, 2013

Report No.: FR342404B

Report Version : Rev. 01

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSP30	101400	9kHz~30GHz	Mar. 28, 2013	May 11, 2013	Mar. 27, 2014	Conducted (TH01-SZ)
Power Meter	Anritsu	ML2495A	1218010	N/A	Mar. 28, 2013	May 11, 2013	Mar. 27, 2014	Conducted (TH01-SZ)
Power Sensor	Anritsu	MA2411B	1207253	N/A	Mar. 28, 2013	May 11, 2013	Mar. 27, 2014	Conducted (TH01-SZ)
DC Power Supply	TOPWORD	3303DR	N/A714621	N/A	Mar. 28, 2013	May 11, 2013	Mar. 27, 2014	Conducted (TH01-SZ)
Thermal Chamber	Hongzhan	LP-150U	HD20120425	N/A	Mar. 28, 2013	May 11, 2013	Mar. 27, 2014	Conducted (TH01-SZ)
ESCI TEST Receiver	R&S	ESCI	100724	9K-3GHz	Mar. 28, 2013	May 16, 2013	Mar. 27, 2014	Radiation (03CH01-SZ)
Spectrum Analyzer	R&S	FSP30	101362	9kHz~30GHz	Oct. 11, 2012	May 16, 2013	Oct. 10, 2013	Radiation (03CH01-SZ)
Double Ridge Horn Amtenna	ETS Lindgren	3117	00119436	1GHz~18GHz	Oct. 12, 2012	May 16, 2013	Oct. 11, 2013	Radiation (03CH01-SZ)
Bilog Antenna	SCHAFFNER	CBL6112B	2614	30Mhz~2Ghz	Nov. 03, 2012	May 16, 2013	Nov. 02, 2013	Radiation (03CH01-SZ)
Amplifier	ADVANTEST	BB525C	E9007003	9K-3000MHz GAIN 30db	Mar. 28, 2013	May 16, 2013	Mar. 27, 2014	Radiation (03CH01-SZ)
Amplifier	Yiai	AV3860B	04030	2GHz~26.5GHz	Mar. 28, 2013	May 16, 2013	Mar. 27, 2014	Radiation (03CH01-SZ)
SHF-EHF-Horn	Schwarzbeck	BBHA9170	BBHA9170249	14Ghz~40Ghz	Nov. 23, 2012	May 16, 2013	Nov. 22, 2013	Radiation (03CH01-SZ)
Loop Antenna	R&S	HFH2-Z2	100321	9KHZ-30MHZ	Oct. 22, 2012	May 16, 2013	Oct. 21, 2013	Radiation (03CH01-SZ)
SHF-EHF Horn	Schwarzbeck	BBHA 9170	9170249	15GHz~40GHz	Nov. 23, 2012	May 16, 2013	Nov. 22, 2013	Radiation (03CH01-KS)
ESCIO TEST Receiver	R&S	1142.8007.03	100724	9kHz -3GHz	Mar. 28, 2013	May 09, 2013	Mar. 27, 2014	Conduction (CO01-SZ)
AC LISN	EMCO	3816/2SH	00103912	9kHz~30MHz	Mar. 28, 2013	May 09, 2013	Mar. 27, 2014	Conduction (CO01-SZ)
AC LISN	EMCO	3816/2SH	00103892	9kHz~30MHz	Mar. 28, 2013	May 09, 2013	Mar. 27, 2014	Conduction (CO01-SZ)
AC Power Source	Chroma	61602	616020000891	N/A	Nov. 20, 2012	May 09, 2013	Nov. 19, 2013	Conduction (CO01-SZ)
AC Filter	ETS-LINDGREN	LRE-2030/PE N 256260	00093783	N/A	N/A	May 09, 2013	N/A	Conduction (CO01-SZ)
AC Filter	ETS-LINDGREN	LRE-2030/PE N 256260	00097973	N/A	N/A	May 09, 2013	N/A	Conduction (CO01-SZ)
System Simulator	Agilent	E5515C	MY50264168	GSM/WCDMA /CDMA2000	Oct. 09, 2012	May 09, 2013	Oct. 08, 2013	Conduction (CO01-SZ)

SPORTON INTERNATIONAL (SHENZHEN) INC. Page TEL: 86-755- 3320-2398 Repo

FCC ID: WVBA761X

Page Number : 77 of 78
Report Issued Date : May 20, 2013
Report Version : Rev. 01

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 KHz ~ 30 MHz)

Measuring Uncertainty for a Level of	2.26
Confidence of 95% (U = 2Uc(y))	2.20

Report No.: FR342404B

<u>Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)</u>

Measuring Uncertainty for a Level of	2.54
Confidence of 95% (U = 2Uc(y))	2.54

Uncertainty of Radiated Emission Measurement (1 GHz ~ 40 GHz)

Measuring Uncertainty for a Level of	4.72
Confidence of 95% (U = 2Uc(y))	7.72

SPORTON INTERNATIONAL (SHENZHEN) INC.Page Number: 78 of 78TEL: 86-755- 3320-2398Report Issued Date: May 20, 2013FCC ID: WVBA761XReport Version: Rev. 01

Appendix A. Photographs of EUT

Please refer to Sporton report number EP342404 as below.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755- 3320-2398 FCC ID: WVBA761X Page Number : A1 of A1
Report Issued Date : May 20, 2013
Report Version : Rev. 01