CHEN SUN

 $+1 (540) \cdot 449 \cdot 3577 \diamond \text{chensun@mail.tau.ac.il} \diamond \text{github.com/chensun-phys} \diamond \text{https://cosmicdiscord.net}$

POSTDOC EXPERIENCE

Tel Aviv University	2019 - Present
Postdoctoral Researcher	Tel Aviv, Israel

VISITING EXPERIENCE

Brown University Long-term visitor (KITPC Travel Award)	2018 - 2019 Providence, USA
Boston University Short-term visitor (three months)	2018 Boston, USA
Dartmouth College Long-term visitor (KITPC Travel Award)	2017 - 2018 Hanover, USA

EDUCATION

Virginia Tech	2013 - 2017
Ph.D. in Particle Physics, Advisor: Tatsu Takeuchi	$Blacksburg,\ USA$

RESEARCH INTERESTS

Astrophysical constraints of axion and dark matter

- $\cdot\,$ supernova remnant echo v.s.axion dark matter stimulated decay
- \cdot cosmic distance measurement v.s. axion-photon coupling
- \cdot galaxy velocity dispersion v.s. ultralight dark matter

Effective field theory

- · dark matter direct detection v.s. EFT of stellar cooling
- \cdot muon g-2 v.s. axion EFT and completion

Gravitational wave from BSM sources

- \cdot neutron star binary mergers v.s. long range force
- \cdot gravitational wave of boson stars v.s. axion potential

Neutrino phenomenology

- \cdot solar neutrino v.s. monopole
- \cdot solar neutrino v.s. large non-standard interaction
- · DUNE v.s. supernova neutrino

BSM Theory

· Pati-Salam extension from noncommutative geometry

AWARDS

· Israel Academy of Sciences and Humanities (IASH)	
Foreign Postdoctoral Fellowship from Israel Academy of Science	2019-2021
\cdot Travel Award from the Chinese Academy of Science (KITPC)	2017-2019
· Clayton Williams Graduate Fellowship	2015-2016
· Sigma Xi Outstanding Ph.D. Research Award	2015

Authorship is in alphabetical order following HEP standard. Up-to-date list can be found here

Novel astrophysical probes of axion

- 19. N. Bar, K. Blum, and C. Sun, "Galactic rotation curves vs. ultralight dark matter II," arXiv:2111.03070 [hep-ph]
- 18. M. A. Buen-Abad, J. Fan, and CS, "Axion Echos from the Supernova Graveyard," arXiv:2110.13916 [hep-ph]
- 17. J.-F. Fortin, H.-K. Guo, S. P. Harris, D. Kim, K. Sinha, and CS, "Axions: From magnetars and neutron star mergers to beam dumps and BECs," *Int. J. Mod. Phys. D* 30 no. 07, (2021) 2130002, arXiv:2102.12503 [hep-ph]
- 16. M. A. Buen-Abad, J. Fan, and CS, "Constraints on Axions from Cosmic Distance Measurements," arXiv:2011.05993 [hep-ph]
- 15. H.-K. Guo, K. Sinha, **CS**, J. Swaim, and D. Vagie, "Two-Scalar Bose-Einstein Condensates: From Stars to Galaxies," *JCAP* 10 (2021) 028, arXiv:2010.15977 [astro-ph.C0]

Gravitational wave probe of light dark sector

- 14. H.-K. Guo, K. Sinha, and CS, "Probing Boson Stars with Extreme Mass Ratio Inspirals," *JCAP* 09 (2019) 032, arXiv:1904.07871 [hep-ph]
- 13. D. Croon, J. Fan, and CS, "Boson Star from Repulsive Light Scalars and Gravitational Waves," *JCAP* 04 (2019) 008, arXiv:1810.01420 [hep-ph]
- 12. D. Croon, M. Gleiser, S. Mohapatra, and CS, "Gravitational Radiation Background from Boson Star Binaries," Phys. Lett. B 783 (2018) 158–162, arXiv:1802.08259 [hep-ph]
- 11. D. Croon, A. E. Nelson, CS, D. G. E. Walker, and Z.-Z. Xianyu, "Hidden-Sector Spectroscopy with Gravitational Waves from Binary Neutron Stars," *Astrophys. J. Lett.* 858 no. 1, (2018) L2, arXiv:1711.02096 [hep-ph]

Neutrino probe of BSM

- 10. S. K. Agarwalla *et al.*, "Constraints on flavor-diagonal non-standard neutrino interactions from Borexino Phase-II," *JHEP* **02** (2020) 038, arXiv:1905.03512 [hep-ph]
- 9. N. Houston, T. Li, and CS, "A new solar neutrino channel for grand-unification monopole searches," JCAP 10 (2018) 034, arXiv:1803.02835 [hep-ph]
- 8. A. Ankowski *et al.*, "Supernova Physics at DUNE," in *Supernova Physics at DUNE*. 8, 2016. arXiv:1608.07853 [hep-ex]

Particle physics and model building

- 7. M. A. Buen-Abad, J. Fan, M. Reece, and **CS**, "Challenges for an axion explanation of the muon g 2 measurement," *JHEP* **09** (2021) 101, arXiv:2104.03267 [hep-ph]
- 6. U. Aydemir, D. Minic, **CS**, and T. Takeuchi, "B-decay anomalies and scalar leptoquarks in unified Pati-Salam models from noncommutative geometry," *JHEP* **09** (2018) 117, arXiv:1804.05844 [hep-ph]
- 5. U. Aydemir, D. Minic, **CS**, and T. Takeuchi, "Pati-Salam unification from noncommutative geometry and the TeV-scale W_R boson," Int. J. Mod. Phys. A 31 no. 01, (2016) 1550223, arXiv:1509.01606 [hep-ph]
- 4. L. N. Chang, D. Minic, A. Roman, CS, and T. Takeuchi, "On the Physics of the Minimal Length: The Question of Gauge Invariance," Int. J. Mod. Phys. A 31 (2016) 1630012, arXiv:1602.07752 [hep-th]

- 3. U. Aydemir, D. Minic, **CS**, and T. Takeuchi, "The 750 GeV diphoton excess in unified $SU(2)_L \times SU(2)_R \times SU(4)$ models from noncommutative geometry," *Mod. Phys. Lett. A* **31** no. 18, (2016) 1650101, arXiv:1603.01756 [hep-ph]
- 2. L. N. Chang, D. Minic, \mathbf{CS} , and T. Takeuchi, "Observable Effects of Quantum Gravity," arXiv:1605.04361 [gr-qc]
- 1. U. Aydemir, D. Minic, **CS**, and T. Takeuchi, "Higgs mass, superconnections, and the TeV-scale left-right symmetric model," *Phys. Rev. D* **91** (2015) 045020, arXiv:1409.7574 [hep-ph]

INVITED TALKS

INVITED TALKS	
LBNL Theory 4D Seminar · Galactic Rotation Curves vs. Ultralight Dark Matter	2021/12
UC IrvineAxion Archaeology – Echos from Ancient Supernova Remnants	2021/12
Fermilab Theory Seminar · Axion Archaeology – Echos from Ancient Supernova Remnants	2021/11
University of Amsterdam · Axion Archaeology – Echos from Ancient Supernova Remnants	2021/11
University of Chicago KCTP · Axion Archaeology – Echos from Ancient Supernova Remnants	2021/11
University of Maryland · Novel Astrophysical Probes of Axion Dark Matter	2021/11
UC Santa Cruz · Axion Echoes from Supernova Remnants	2021/11
Hebrew University Constraints on Axions from Cosmic Distance Measurements	2021/05
Notre Dame Constraints on Axions from Cosmic Distance Measurements	2021/02
U. OklahomaGravitational Wave Signatures of Beyond Standard Model Physics	2019/05
Neutrino-Electron Scattering at Low Energies Workshop UMass, Amherst Constraints on Non-Standard Neutrino Interactions from Borexino Phase-II	2019/04
Signals of Dark Matter in its Natural Habitat Workshop TRIUMF Boson Star from Repulsive Scalars, at LIGO and LISA	2019/02
Carleton · Particle Phenomenology in the Era of Gravitational Wave Astronomy	2018/10
Perimeter Institute Particle Phenomenology in the Era of Gravitational Wave Astronomy	2018/10
Joint Tufts/MIT Cosmology Seminars MIT Boson Star from Repulsive Light Scalars and Gravitational Waves	2018/10
Queen's University Particle Phenomenology in the Era of Gravitational Wave Astronomy	2018/10

McGill Particle Phenomenology in the Era of Gravitational Wave Astronomy	2018/10
Stanford • Boson Star from Repulsive Light Scalars and Gravitational Waves	2018/11
UC IrvineBoson Star from Repulsive Light Scalars and Gravitational Waves	2018/11
U. UtahBoson Star from Repulsive Light Scalars and Gravitational Waves	2018/11
North-East Cosmology Workshop 2018, McGill University $McGill$ · New Astrophysical Probes of Beyond SM Physics	2018/03
Brown University · Gravitational Wave Cosmology & Particle Physics	2017/12
New England Theoretical Cosmology and Gravity Workshop MIT \cdot The Limits of Dark Matter from Electroweak Symmetry Breaking	2017/10
Duke Regional String Meeting Duke University Rethinking Gauge Theory through Connes' Noncommutative Geometry	2015/10
 SPOCK meeting University of Cincinnati Rethinking Gauge Theory through Connes' Noncommutative Geometry 	2015/08

PROGRAMMING

LanguagesPython, C, regex, bash, MATLAB, C++, MathematicaODE SolvingShooting and relaxation for Singular Boundary Value problemsBoltzmann SolverCLASSMCMCemcee, MontePython, GENIE, MadGraphParallel Computationmpi4py, multiprocessing, ipyparallel, TensorFlow-GPUMachine LearningTensorFlow, KerasCMB Analysishealpy

DATA ANALYSIS

Data Simulation	CMB pixel level local non-Gaussian map simulation
Data Sets	BOSS DR12 (real/ k space), Pantheon SNIa, SPARC, Bonamente galaxy clusters,
	Green's Catalog of SN Remnants, Planck 2018 likelihood, Borexino Phase II

CODING PROJECTS

Data Acquisition

CMB Machine Learning (on-going)

2021

- · simulate CMB maps (gaussian and non-gaussian) at the pixel level
- · process with noise maps from Planck FFP10
- · apply neural network for anomaly hunting that gives well-defined statistics

Ultralight Dark Matter from Galaxy Dispersion 🗘

2021

- · load and parse SPARC data set
- · construct χ^2 estimator and perform Frequentist analysis using emcee as a smart grid

Scrapy web scraping, Regex parsing

- · regex parse SNR catalog (Green 2019), scrapy crawler of SN data, process of Haslam 408 MHz map
- · construct supernova remnant light curve, compute echo signal from stimulated decay

Constraining Axions from Cosmic Distance Measurement 🗘

2020

- · construct axion-photon conversion model inside IGM and ICM
- · load and process Pantheon, Bonamente galaxy clusters, BOSS DR12
- · perform Bayesian and Frequentist analysis with emcee sampler

Self-gravitating Bose-Einstein Condensate Solver 🗘

2019

- · relaxation solver of Bose-Einstein condensate system with two axions
- · shooting solver of Bose-Einstein condensate system with one axion, stiffness detection and switch

OUTREACH AND COMMUNITY

Cosmicdicord.net 2019-present

A blog that features background of my research, fun facts of astroparticle physic, as well as tutorials of simple coding projects.

Women in Science Project (WISP)

2018

Introduction of physics research to female starting undergraduates. Co-mentoring short term interns from selected groups.

Dartmouth-TRIUMF HEP Tools Bootcamp

2017

One of the three organizers. Invited authors of computational programs in both high energy physics and cosmology to give online lectures series through the Vidyo platform. The workshop had nearly 200 participants from six continents and received very positive feedback.

REFERENCES

Kfir Blum	Department of Particle Physics and Astrophysics, Weizmann Institute of Science Phone: $+972$ -8-934-3181 Email: kfir.blum@weizmann.ac.il
Raffaele Tito D'Agnolo	Institut de Physique Théorique, Université Paris Saclay, CEA Phone: +33 (0)169087385 Email: raffaele-tito.dagnolo@ipht.fr
JiJi Fan	Department of Physics, Brown University, Providence, RI 02912 Phone: +1-401-863-2641 Email: jiji_fan@brown.edu
Tatsu Takeuchi	Department of Physics, Virginia Tech, Blacksburg, VA 24061-0435 Phone: +1-540-231-5333 Email: takeuchi@vt.edu
Tomer Volansky	School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 Phone: +972-3-6407026 Email: tomerv@post.tau.ac.il