《工程电磁场》复习重点及历年真题 (第二版)

博学而审问 明辨而笃行

作者: 死抠 (于江西理工)

时间: January 23, 2019 邮箱: 489765924@qq.com

друд. 400100024@qq.com

Version: 3.00

目 录

1	知识点总结		
	1.1	矢量分析与场论思想	1
	1.2	静电场的基本原理	3
	1.3	恒定电场的基本原理	4
	1.4	恒定磁场的基本原理	4
	1.5	时变电磁场的基本原理	5
2	重点	· ·习题	7
	2.1	课后习题	7
	2.2	书中例题	7
3	历年	真题	8
	3.1	2018-2019(C)	8
4	历年	真题参考答案	9
	4.1	2018-2019(C)	9

第1章 知识点总结

1.1 矢量分析与场论思想

重点为:方向导数、梯度、散度、环量、旋度、散度定理、斯托克斯定理的计算

1. 方向导数

$$\frac{\mathrm{d}u}{\mathrm{d}l} = \frac{\partial u}{\partial x}\cos\alpha + \frac{\partial u}{\partial y}\cos\beta + \frac{\partial u}{\partial z}\cos\gamma$$

其中
$$\cos \alpha = \frac{\mathrm{d}x}{\mathrm{d}l}$$
, $\cos \beta = \frac{\mathrm{d}y}{\mathrm{d}l}$, $\cos \gamma = \frac{\mathrm{d}z}{\mathrm{d}l}$.

2. 梯度

$$\operatorname{grad} u = \frac{\partial u}{\partial x} \vec{e}_x + \frac{\partial u}{\partial y} \vec{e}_x + \frac{\partial u}{\partial z} \vec{e}_z$$

其中梯度的运算与微分运算类似,这里不再赘述.

3. 散度

$$\mathrm{div}\vec{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$

散度的运算公式

$$(1)\operatorname{div}(C\vec{A}) = C\operatorname{div}\vec{A}$$

$$(2)\operatorname{div}(u\vec{A}) = u\operatorname{div}\vec{A} + \operatorname{grad}u \bullet \vec{A}$$

$$(3)\mathrm{div}(\vec{A}\pm\vec{B})=\mathrm{div}\vec{A}\pm\mathrm{div}\vec{B}$$

散度定理

$$\iint_{S} \vec{A} \cdot d\vec{S} = \iiint_{V} \operatorname{div} \vec{A} dV$$

4. 旋度

$$\operatorname{rot} \vec{A} = \begin{vmatrix} \vec{e}_{x} & \vec{e}_{y} & \vec{e}_{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_{x} & A_{y} & A_{z} \end{vmatrix}$$

旋度的运算公式

$$(1)\mathrm{rot}(C\vec{A}) = C\mathrm{rot}\vec{A}$$

$$(2)\operatorname{rot}(\vec{A} \pm \vec{B}) = \operatorname{rot}\vec{A} \pm \operatorname{rot}\vec{B}$$

$$(3)\operatorname{rot}(u\vec{A}) = u\operatorname{rot}\vec{A} + \operatorname{grad}u \times \vec{A}$$

(4)rot(gradu) = 0(重要的矢量恒等式)

$$(5)\operatorname{div}(\vec{A}\times\vec{B}) = \vec{B} \bullet \operatorname{rot}\vec{A} - \vec{A} \bullet \operatorname{rot}\vec{B}$$

(6)div(rot \vec{A}) = 0(重要的矢量恒等式)

斯托克斯定理

$$\oint_{l} \vec{A} \bullet d\vec{l} = \iint_{S} \operatorname{rot} \vec{A} \bullet d\vec{S}$$

5. 哈密尔顿 (纳布拉) 算子

$$\nabla = \vec{e}_x \frac{\partial}{\partial x} + \vec{e}_y \frac{\partial}{\partial y} + \vec{e}_z \frac{\partial}{\partial z}$$

因此

梯度
$$\operatorname{grad} u = \frac{\partial u}{\partial x} \vec{e}_x + \frac{\partial u}{\partial y} \vec{e}_y + \frac{\partial u}{\partial z} \vec{e}_z = \nabla u$$

散度 $\operatorname{div} \vec{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z} = \nabla \cdot \vec{A}$
旋度 $\operatorname{rot} \vec{A} = \begin{vmatrix} \vec{e}_x & \vec{e}_y & \vec{e}_z \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_x & A_y & A_z \end{vmatrix} = \nabla \times \vec{A}$
拉普拉斯算子

$$\nabla^2 = \nabla \bullet \nabla = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

$$(1) \iiint_{V} \nabla \bullet \vec{A} dV = \iint_{S} \vec{A} \bullet d\vec{S} (散度定理)$$

$$(2) \iint_{S} \nabla \times \vec{A} \bullet d\vec{S} = \oint_{I} \vec{A} \bullet d\vec{l} (斯托克斯定理)$$

6. 常用坐标系中的有关公式

拉梅系数 $h_{\nu}, h_{\nu}, h_{\nu}$

若
$$d\vec{l} = h_u d\vec{u} + h_v d\vec{v} + h_w d\vec{w}$$

那么在柱面坐标系中有 $d\vec{l} = d\vec{r} + rd\vec{\alpha} + d\vec{z}$

那么在球面坐标系中有 $d\vec{l} = d\vec{r} + rd\vec{\theta} + r\sin\theta d\vec{\alpha}$

1.2 静电场的基本原理

重点为: 电场强度、电位移矢量、极化强度、极化电荷体密度、极化电荷面密度的计算, 电位与电场强度的关系, 衔接条件

$$E=rac{q}{4\piarepsilon_0R^2}ec{e}_R$$
 电荷线密度 $au=rac{\mathrm{d}q}{\mathrm{d}l}$,电荷面密度 $\sigma=rac{\mathrm{d}q}{\mathrm{d}S}$,电荷体密度 $ho=rac{\mathrm{d}q}{\mathrm{d}V}$ 线电荷产生的电场强度 $E=rac{1}{4\piarepsilon_0}\int_l rac{ au ec{e}_R}{R^2}\mathrm{d}l$ 面电荷产生的电场强度 $E=rac{1}{4\piarepsilon_0}\iint_V rac{\sigma ec{e}_R}{R^2}\mathrm{d}V$ 体电荷产生的电场强度 $E=rac{1}{4\piarepsilon_0}\iiint_V rac{
ho ec{e}_R}{R^2}\mathrm{d}V$

2. 电位

$$\varphi = \frac{1}{4\pi\varepsilon_0} \iiint_V \frac{\rho}{R} \mathrm{d}V + C$$
 面、线情况下的电位不再赘述电位与电场强度的关系 $E = -\nabla \varphi$ 静电场环路定理的微分形式 $\nabla \times \vec{E} = 0$ 静电场环路定理的积分形式 $\oint_l E \cdot \mathrm{d}\vec{l} = 0$ 高斯通量定理的微分形式 $\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$ 高斯通量定理的积分形式 $\oint_c \vec{E} \cdot \mathrm{d}\vec{S} = \iiint_V \nabla \cdot \vec{E} \mathrm{d}V = \iiint_V \frac{\rho}{\varepsilon_0} \mathrm{d}V = \frac{q}{\varepsilon_0}$

-10/0/0F

3. 电位移矢量

$$\vec{D} = \varepsilon_0 \vec{E} + \vec{P}$$
(其中 \vec{P} 为极化强度)
极化电荷体密度 $\rho_P = - \nabla \bullet \vec{P}$, 极化电荷面密度 $\sigma_P = \vec{P} \bullet \vec{e}_n$
高斯通量定理的微分形式 $\nabla \bullet \vec{D} = \rho$
高斯通量定理的积分形式 $\iint_S \vec{D} \bullet d\vec{S} = \iiint_V \nabla \bullet \vec{D} dV = q$

4. 静电场的辅助方程 在各向同性的介质中 $\vec{D} = \varepsilon \vec{E}$

5. 静电场的基本方程与分界面衔接条件

微分形式 积分形式 积分形式
$$\forall \times \vec{E} = 0$$
 $\oint_{S} \vec{E} \cdot d\vec{l} = 0$ $\nabla \cdot \vec{D} = \rho$ $\oint_{S} \vec{D} \cdot d\vec{S} = q$

辅助方程为 $\vec{D} = \varepsilon \vec{E}$ 电介质分界面条件 $\vec{e}_{n} \times (\vec{E}_{2} - \vec{E}_{1}) = 0 \Leftrightarrow E_{2t} = E_{1t}$

$$\vec{e}_{\mathrm{n}} \bullet (\vec{D}_{2} - \vec{D}_{1}) = \sigma \Leftrightarrow D_{2\mathrm{n}} - D_{1\mathrm{n}} = \sigma$$

1.3 恒定电场的基本原理

重点为: 电流密度与电场强度的关系, 电流密度的计算, 衔接条件

1 电流密度

せいばいえ
$$J = \rho v = \rho \frac{\mathrm{d}l}{\mathrm{d}t} = \frac{\rho \mathrm{d}S_0 \mathrm{d}l}{\mathrm{d}t \mathrm{d}S_0} = \frac{\rho \mathrm{d}V}{\mathrm{d}t \mathrm{d}S_0} = \frac{\mathrm{d}q}{\mathrm{d}t \mathrm{d}S_0} = \frac{\mathrm{d}I}{\mathrm{d}S_0}$$
 电流密度与电场强度的关系
$$\vec{J} = \gamma \vec{E} \Leftrightarrow \vec{E} = \frac{1}{\gamma} \vec{J} = \rho_R \vec{J}$$

2. 电动势

$$e = \int_{a}^{b} E_{\rm e} \bullet d\vec{l}$$

3. 电流连续性

电荷守恒原理的积分形式
$$\iint_S \vec{J} \cdot d\vec{S} = -\frac{\partial q}{\partial t}$$
 电荷守恒原理的微分形式 $\nabla \cdot \vec{J} = -\frac{\partial \rho}{\partial t}$ 对于恒定电场 (即 $\frac{\partial \rho}{\partial t} = 0$, $\frac{\partial q}{\partial t} = 0$) 有 $\nabla \cdot \vec{J} = 0$ 恒定电场的电流连续性方程 $\iint_S J \cdot d\vec{S} = 0$

4. 恒定电场的基本方程及辅助方程

微分形式 积分形式 积分形式 恒定电场的基本方程
$$\nabla \bullet \vec{J} = 0$$
 $\iint_{S} \vec{J} \bullet d\vec{S} = 0$ $\nabla \times \vec{E} = 0$ $\oint_{I} \vec{E} \bullet d\vec{l} = 0$

辅助方程为 $\vec{J} = \gamma \vec{E}$

在均匀媒质中,电位的基本方程 $\gamma \triangledown^2 \varphi = 0$

5. 导电媒质分界面衔接条件

$$\vec{e}_{\mathrm{n}} \times (\vec{E}_{2} - \vec{E}_{1}) = 0 \Leftrightarrow E_{2\mathrm{t}} = E_{1\mathrm{t}}$$

 $\vec{e}_{\mathrm{n}} \bullet (\vec{J}_{2} - \vec{J}_{1}) = 0 \Leftrightarrow J_{2\mathrm{n}} = J_{1\mathrm{n}}$

将 $\vec{E} = - \nabla \varphi$, $\vec{J} = \gamma \vec{E}$ 代入上述分界面条件, 得到电位应满足的分界面衔接条件

$$\begin{cases} \varphi_1 = \varphi_2 \\ \gamma_2 \frac{\partial \varphi_2}{\partial n} = \gamma \frac{\partial \varphi_1}{\partial n} \end{cases}$$

1.4 恒定磁场的基本原理

重点为: 用安培环路定理 (2 种) 计算磁感应强度、磁场强度

1. 毕奥-沙伐定律

$$\vec{B} = \frac{\mu_0}{4\pi} \oint_I \frac{I d\vec{l} \times \vec{e}_R}{R^2} \Leftrightarrow d\vec{B} = \frac{\mu_0}{4\pi} \frac{I d\vec{l} \times \vec{e}_R}{R^2}$$

2. 分布电流的磁感应强度

点电流
$$\vec{B} = \frac{\mu_0}{4\pi} \frac{q\vec{v} \times \vec{e}_R}{R^2}$$

线电流 $\vec{B} = \frac{\mu_0}{4\pi} \oint_l \frac{I dl \times \vec{e}_R}{R^2}$
面电流 $\vec{B} = \frac{\mu_0}{4\pi} \iint_S \frac{\vec{K} \times \vec{e}_R}{R^2} dS$
体电流 $\vec{B} = \frac{\mu_0}{4\pi} \iiint_V \frac{\vec{J} \times \vec{e}_R}{R^2} dV$

3. 洛伦兹力

$$\vec{F} = q\vec{v} \times \vec{B}$$

4. 磁通连续性定理

磁通连续性定理 微分形式 积分形式 积分形式
$$\nabla \bullet \vec{B} = 0$$
 $\iint_S \vec{B} \bullet d\vec{S} = 0$

5. 安培环路定理

安培环路定理 微分形式 积分形式 积分形式
$$\nabla \times \vec{B} = \mu_0 \vec{J} \oint_l \vec{B} \cdot d\vec{l} = \mu_0 I$$

6. 磁场强度

$$\vec{H} = \frac{B}{\mu_0} - \vec{M}$$
(其中 \vec{M} 为磁化强度) 微分形式 积分形式 安培环路定理 $\nabla \times \vec{H} = \vec{J} \quad \oint_{\vec{l}} \vec{H} \cdot d\vec{l} = I$

7. 恒定磁场的基本方程与分界面衔接条件

微分形式 积分形式 积分形式 恒定磁场的基本方程
$$\nabla \bullet \vec{B} = 0$$
 $\iint_S \vec{B} \bullet d\vec{S} = 0$ $\nabla \times \vec{H} = \vec{J}$ $\oint_I \vec{H} \bullet d\vec{l} = I$

辅助方程为 $\vec{B} = \mu \vec{H}$ 媒质分界面的衔接条件

 $\vec{e}_{n} \times (\vec{H}_{2} - \vec{H}_{1}) = \vec{K}(其中 \vec{K} 为分界面的自由面电流密度)$

$$\vec{e}_{\rm n} \bullet (\vec{B}_2 - \vec{B}_1) = 0 \Leftrightarrow B_{2\rm n} = B_{1\rm n}$$

1.5 时变电磁场的基本原理

重点为: 位移电流、全电流 $(\vec{J}_{\text{C}}, \frac{\partial \vec{D}}{\partial t}$ 是重点) 的计算

1. 时变场中的运动回路

电磁感应定律

微分形式 积分形式
$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} + \nabla \times (\vec{v} \times \vec{B}) \quad \oint_{l} \vec{E} \bullet d\vec{l} = -\iint_{S} \frac{\partial \vec{B}}{\partial t} \bullet d\vec{S} + \oint_{l} (\vec{v} \times \vec{B}) \bullet d\vec{l}$$

2. 时变场的电流连续性

$$\nabla \bullet \left(\vec{J}_C + \frac{\partial \vec{D}}{\partial t} \right) = 0$$

3. 全电流定律

微分形式 积分形式 积分形式 全电流定律
$$\nabla imes \vec{H} = \vec{J}_{\mathrm{C}} + \vec{J}_{\mathrm{v}} + \frac{\partial \vec{D}}{\partial t} \oint_{l} \vec{H} \bullet \mathrm{d}\vec{l} = i_{\mathrm{C}} + i_{\mathrm{D}} + i_{\mathrm{v}}$$

4. 电磁场的基本方程组

电磁场基本方程组

在各向同性媒质中,辅助方程为

$$ec{D}=arepsilonec{E},\ ec{B}=\muec{H},\ ec{J}_{
m C}=\gammaec{E}$$

媒质分界面衔接条件

$$\vec{e}_{n} \bullet (\vec{D}_{2} - \vec{D}_{1}) = \sigma \quad \vec{e}_{n} \bullet (\vec{B}_{2} - \vec{B}_{1}) = 0$$

$$\vec{e}_{n} \times (\vec{E}_{2} - \vec{E}_{1}) = 0 \quad \vec{e}_{n} \times (\vec{H}_{2} - \vec{H}_{1}) = \vec{K}$$

第2章 重点习题

2.1 课后习题

 $1-6,\ 1-9,\ 1-14,\ 1-16,\ 1-21,\ 1-22,\ 1-24,\ 2-5,\ 2-6,\ 2-7,\ 2-10,\ 2-13,\ 2-15,\ 2-16,\ 3-1,\ 4-7,\ 4-8,\ 4-10,\ 5-4,\ 5-5,\ 5-7,\ 5-8,\ 5-13$

2.2 书中例题

1. 设跨步电压安全限值为 U_0 , 入地电流为 I, 试确定课本 78 页图 3-4-6 所示的 浅埋半球接地体附近地面的危险区.

第3章 历年真题

3.1 2018-2019(C)

试卷编号: 1819010634C

- 1. (10 分) 求函数 $\varphi = xyz$ 在点 (5, 2, 1) 处沿着点 (5, 1, 2) 到 (9, 4, 19) 方向的方向导数。
- 2. (10 分) 已知标量场 $u = e^x \sin y$,求 ∇u 。
- 3. (10 分) 已知 $\vec{A} = xy^2z\vec{r}$ ($\vec{r} = x\vec{e}_x + y\vec{e}_y + z\vec{e}_z$),求 div \vec{A} 在 M(3,3,2) 处的值。
- 4. (10 分) 已知 $\vec{A} = xz^3\vec{e}_x 2x^2yz\vec{e}_y + 2yz^4\vec{e}_z$, 求 \vec{A} 在 M(1, -1, -1) 点的旋度。
- 5. $(10 \, f)$ 一个半径为 a 的无限长圆柱,圆柱表面均匀分布面电荷密度 ρ_S ,求圆柱面内、外的电场强度。
- 6. (10 分) 给定平行板电容器的尺寸、电介质的介电常数,如图所示,给定极板总电荷量下,求电容器中的电场强度。

7. $(15\ \mathcal{G})$ 如图所示,试确定浅埋半球接地体的危险半径 r_0 ,设跨步电压安全限值为 U_0 ,入地电流为 I,土壤的电导率为 γ ,跨步距离为 b。

8. (10 分) 如图所示,已知无穷长电流和两种媒质的磁导率,求两种媒质中的磁感应强度。

9. (15 分) 一个球形电容器的内、外半径分别为 a 和 b,内、外导体间材料的介电 常数为 ε 、电导率为 γ ,在内、外导体间加低频电压 $u = U_m \cos \omega t$ 。求内外导体 间的全电流。

第4章 历年真题参考答案

4.1 2018-2019(C)

试卷编号: 1819010634C

1. (10 分) 求函数 $\varphi = xyz$ 在点 (5, 2, 1) 处沿着点 (5, 1, 2) 到 (9, 4, 19) 方向的方向导数。

解: $\nabla \varphi |_{(5,2,1)} = (yz\vec{e}_x + xz\vec{e}_y + xy\vec{e}_z)|_{(5,2,1)} = 2\vec{e}_x + 5\vec{e}_y + 10\vec{e}_z$ 沿着点 (5,1,2) 到 (9,4,19) 方向的单位矢量为

$$\vec{a} = \frac{4\vec{e}_x + 3\vec{e}_y + 17\vec{e}_z}{\sqrt{4^2 + 3^2 + 17^2}} = \frac{4}{\sqrt{314}}\vec{e}_x + \frac{3}{\sqrt{314}}\vec{e}_y + \frac{17}{\sqrt{314}}\vec{e}_z$$

则函数 $\varphi = xyz$ 在点 (5,2,1) 处沿着点 (5,1,2) 到 (9,4,19) 方向的方向导数为

$$\nabla \varphi \left|_{(5,2,1)} \bullet \vec{a} = \frac{193}{\sqrt{314}}$$

2. (10 分) 已知标量场 $u = e^x \sin y$,求 ∇u 。解:

$$\nabla u = \frac{\partial u}{\partial x} \vec{e}_x + \frac{\partial u}{\partial y} \vec{e}_y = e^x \sin y \vec{e}_x + e^x \cos y \vec{e}_y$$

3. (10 分) 己知 $\vec{A} = xy^2z\vec{r}$ ($\vec{r} = x\vec{e}_x + y\vec{e}_y + z\vec{e}_z$),求 div \vec{A} 在 M(3,3,2) 处的值。解: $\vec{A} = x^2y^2z\vec{e}_x + xy^3z\vec{e}_y + xy^2z^2\vec{e}_z$,则

$$\operatorname{div} \vec{A} \Big|_{M} = \left(\frac{\partial A_{x}}{\partial x} + \frac{\partial A_{y}}{\partial y} + \frac{\partial A_{z}}{\partial z} \right) \Big|_{M}$$
$$= \left(2xy^{2}z + 3xy^{2}z + 2xy^{z} \right) \Big|_{M}$$
$$= 324$$

4. (10 分) 已知 $\vec{A} = xz^3\vec{e}_x - 2x^2yz\vec{e}_y + 2yz^4\vec{e}_z$, 求 \vec{A} 在 M(1,-1,-1) 点的旋度。解:

$$\nabla \times \vec{A}\Big|_{M} = \begin{vmatrix} \vec{e}_{x} & \vec{e}_{y} & \vec{e}_{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ xz^{3} & -2x^{2}yz & 2yz^{4} \end{vmatrix}\Big|_{M} = \left(2z^{4} + 2x^{2}y\right)\vec{e}_{x} + 3xz^{2}\vec{e}_{y} - 4xyz\vec{e}_{z}\Big|_{M}$$
$$= 3\vec{e}_{y} - 4\vec{e}_{z}$$

5. $(10 \ \beta)$ 一个半径为 a 的无限长圆柱,圆柱表面均匀分布面电荷密度 ρ_S ,求圆柱面内、外的电场强度。

解: 在无限长圆柱轴线上作一以轴线为中心,半径为r,高为h的高斯圆柱面设 \vec{E}_r 为沿半径方向的电场强度

当 r < a 时,根据高斯通量定理,显然有 $\vec{E}_r = 0$

当 $r \ge a$ 时,根据对称性,上下面的电场强度为 0,根据高斯通量定理

$$\iint_{S} \vec{E} d\vec{S} = 2\pi \vec{E}_{r} r h = \frac{2\pi a h \rho_{S}}{\varepsilon_{0}}$$

即

$$\vec{E}_r = \frac{a\rho_S}{r\varepsilon_0}$$

6. (10 分) 给定平行板电容器的尺寸、电介质的介电常数,如图所示,给定极板总电荷量下,求电容器中的电场强度。

$$\begin{array}{c|c}
Q & S_1 & & \\
\hline
S_2 & & \\
S_2 & &
\end{array} - Q$$

解: 联立两式
$$\begin{cases} C = \frac{Q}{U} \\ C = \frac{\varepsilon S}{4\pi k d} \end{cases}$$
 得 $q = Q_1 + Q_2 = \frac{U(\varepsilon_1 S_1 + \varepsilon_2 S_2)}{4\pi k d}$ 即 $U = \frac{4\pi k dq}{\varepsilon_1 S_1 + \varepsilon_2 S_2}$,即 $E = \frac{U}{d} = \frac{4\pi k q}{\varepsilon_1 S_1 + \varepsilon_2 S_2}$ (15 分) 如图所示,试确定浅埋半球接地体的危险半径 r_0 ,设置

7. $(15 \, f)$ 如图所示,试确定浅埋半球接地体的危险半径 r_0 ,设跨步电压安全限值为 U_0 ,入地电流为 I,土壤的电导率为 f,跨步距离为 f。

解: 电流密度
$$J = \frac{I}{2\pi r^2}$$
,则 $E = J/\gamma = \frac{I}{2\pi \gamma r^2}$
电位 $\varphi(r) = \int_r^{+\infty} E \, dr = \frac{I}{2\pi \gamma r}$
跨步电压 $\varphi(r-b) - \varphi(r) = \frac{bI}{2\pi \gamma (r-b)r} \approx \frac{bI}{2\pi \gamma r^2} \stackrel{\diamondsuit}{=} U_0$
解得 $r_0 = \sqrt{\frac{bI}{2\pi \gamma IJ}}$

8. (10 分) 如图所示,已知无穷长电流和两种媒质的磁导率,求两种媒质中的磁感应强度。

解: 根据安培环路定理、媒质分界面的衔接条件

$$\oint_{l} \vec{H} \bullet dl = \oint_{l_{1}} \frac{\vec{B}}{\mu_{1}} dl + \oint_{l_{2}} \frac{\vec{B}}{\mu_{2}} dl = B \left(\frac{\alpha r}{\mu_{1}} + \frac{(2\pi - \alpha)r}{\mu_{2}} \right) = I$$

其中 l 为以电流为中心,半径为 r 的圆, l_1,l_2 分别为 l 在媒质 μ_1 、 μ_2 中的部分解得 $B=\frac{I\mu_1\mu_2}{(\alpha\mu_2+(2\pi-\alpha)\mu_1)r}$ 9. $(15\ \mathcal{G})$ 一个球形电容器的内、外半径分别为 a 和 b,内、外导体间材料的介电

常数为 ε 、电导率为 γ , 在内、外导体间加低频电压 $u = U_m \cos \omega t$ 。求内外导体 间的全电流。

解: 根据高斯通量定理

$$\iint_{S} \vec{D} \cdot dS = 4\pi r^2 D = Q$$

其中 S 为球心在球形电容器球心, 半径为 r(a < r < b) 的球面

解得
$$E = \frac{D}{\varepsilon} = \frac{Q}{4\pi\varepsilon r^2}$$
,联立 $\int_a^b E \, dr = \frac{Q}{4\pi\varepsilon} \left(\frac{1}{a} - \frac{1}{b} \right) = u = U_m \cos \omega t$

解得
$$Q = \frac{4\pi \varepsilon ab U_m \cos \omega t}{2\pi \varepsilon ab U_m \cos \omega t}$$

解得
$$Q = \frac{4\pi \varepsilon abU_m \cos \omega t}{b-a}$$
则 $J = \gamma E = \frac{ab\gamma U_m \cos \omega t}{(b-a)r^2}$, $\frac{\partial D}{\partial t} = -\frac{\varepsilon \omega abU_m \sin \omega t}{(b-a)r^2}$

全电流密度 =
$$\frac{abU_m}{(b-a)r^2} (\gamma \cos \omega t - \varepsilon \omega \sin \omega t)$$

全电流 =
$$\frac{4\pi abU_m}{b-a}(\gamma\cos\omega t - \varepsilon\omega\sin\omega t)$$