Università degli Studi Roma Tre Anno Accademico 2008/2009

AL1 - Algebra 1 Esercitazione 10

Giovedì 11 Dicembre 2008

http://www.mat.uniroma3.it/users/pappa/CORSI/AL1_08_09/AL1.htm domande/osservazioni: dibiagio@mat.uniroma1.it

1. Dimostrare che se $c \equiv_a b$ allora MCD(a, b) = MCD(a, c).

Sia d := MCD(a, b) e d' := MCD(a, c). Per ipotesi $a \mid (c - b)$ cioè $\exists h$ tale che $ah = c - b \Leftrightarrow c = ah + b$. Quindi $d \mid a, d \mid b \Rightarrow d \mid (ah + b) = c$, perciò $d \mid d'$. Viceversa: $ah = c - b \Leftrightarrow b = c - ah$. Quindi $d' \mid a, d' \mid c \Rightarrow d' \mid b$, perciò $d' \mid d$. Quindi d = d'.

2. Sia p primo e $k \neq 0, p$. Dimostrare che $p \mid \binom{p}{k}$. Dedurre che $(x+y)^p \equiv_p x^p + y^p$.

Sia a := k!(p-k)!, b := p!, $c := \binom{p}{k}$. Per quanto visto a lezione c = b/a è un numero intero. b = ac. Inoltre $p \mid b = ac$ ma, dato che $k \neq 0, p, p \nmid a$. Per il lemma di Euclide $p \mid c$.

$$(x+y)^p = \sum_{k=0}^p \binom{p}{k} x^k y^{p-k} = x^p + y^p + \sum_{k=1}^{p-1} \binom{p}{k} x^k y^{p-k} \equiv_p x^p + y^p.$$

3. Dimostrare che esistono infiniti numeri primi della forma 6k+5, con $k \in \mathbb{N}$.

A parte 2, 3 tutti i numeri primi sono della forma 6k+5 o 6k+1 al variare di $k \in \mathbb{N}$. Osserviamo poi che prodotti di numeri della forma 6k+1 sono numeri della stessa forma: (6k+1)(6h+1)=36hk+6(h+k)+1=6(6hk+h+k)+1

Supponiamo che i numeri primi della forma 6k + 5 siano in numero finito, $p_1 = 5, p_2, \ldots, p_n$. Si consideri $a := 6p_2 \cdot \ldots \cdot p_n + 5$. Tale numero non è divisibile né per 2 né per 3 né per 5 e, per l'osservazione, non può avere tra i suoi fattori solo primi del tipo 6k + 1. Quindi $\exists 2 \leq i \leq n$ tale che $p_i|a$; assurdo.

4. Scrivere 1153 in base 9, 2781 in base 5 e $(103)_7$ in base 10.

$$\begin{aligned} &1153 = 9 \cdot 128 + 1 \\ &128 = 9 \cdot 14 + 2 \\ &14 = 9 \cdot 1 + 5 \\ &1 = 9 \cdot 0 + 1 \\ &\text{perciò } 1153 = (1521)_9. \end{aligned}$$

$$2781 = 5 \cdot 556 + 1$$

 $556 = 5 \cdot 111 + 1$
 $111 = 5 \cdot 22 + 1$
 $22 = 5 \cdot 4 + 2$
 $4 = 5 \cdot 0 + 4$
perciò $2781 = (42111)_5$.

$$(103)_7 = 1 \cdot 7^2 + 0 \cdot 7 + 3 \cdot 7^0 = 49 + 3 = 52.$$

- 5. Risolvere le seguenti equazioni congruenziali:
 - (a) $7X \equiv 4 \mod 19$;
 - (b) $18X \equiv 5 \mod 51$;
 - (c) $18X \equiv 6 \mod 51$;
 - (d) $82X \equiv 174 \mod 13$.
 - (a) $X \equiv 6 \mod 19$, ovvero l'insieme delle soluzioni è $\{6 + 19h | h \in \mathbb{Z}\}$;
 - (b) dato che MCD(18,51) = 3/5 allora l'equazione non è risolubile;
 - (c) l'equazione ha tre soluzioni modulo 51: 6,23,40, ovvero l'insieme delle soluzioni è $\{6+17h|h\in\mathbb{Z}\};$
 - (d) l'equazione è equivalente a $4X \equiv 5 \mod 13$ che ha un'unica soluzione modulo 13: X = 11. L'insieme delle soluzioni quindi è $\{11 + 13h | h \in \mathbb{Z}\}$.
- 6. Dimostrare che $2^{10n+1}+19$ è divisibile per 3 per ogni $n\in\mathbb{N}.$

Lo si potrebbe dimostrare per induzione, come già visto per casi analoghi in altre esercitazioni. Avendo ora, però, nuovi strumenti è preferibile ragionare nel modo seguente: $2^{10n+1}+19\equiv_3 2((2^2)^{5n})+1\equiv_3 2(1^{5n})+1\equiv_3 2+1\equiv_3 0$.

7. Dimostrare che vi sono infiniti numeri composti del tipo $10^n + 3$ (con $n \in \mathbb{N}$).

 $\begin{array}{l} 10 \equiv 3 \mod 7. \ \ 10^2 \equiv 2 \mod 7. \ \ 10^3 \equiv -1 \mod 7. \ \ 10^4 \equiv -3 \mod 7. \\ 10^5 \equiv -2 \mod 7. \ \ 10^6 \equiv 1 \mod 7. \ \ \text{Perciò} \ \ 10^{4+6h} \equiv -3 \mod 7 \ \text{per ogni} \\ h \in \mathbb{Z} \ \text{e quindi, per ogni} \ \ h \in \mathbb{Z}, \ 10^{4+6h} + 3 \equiv 0 \mod 7, \ \text{i.e.} \ \ 7 \mid 10^{4+6h} + 4. \end{array}$