Práctica 4

- 1. Decidir cuáles de las siguientes funciones son continuas:
 - (a) $f: (\mathbb{R}^2, d_2) \to (\mathbb{R}, d_2), f(x, y) = x^2 + y^2$.
 - (b) $f: (\mathbb{R}^2, d_2) \to (\mathbb{R}, d_2),$

$$f(x,y) = \begin{cases} \frac{x^2y}{\frac{1}{2}x^2 + (x-1)^2y^2}, & \text{si } (x,y) \neq (0,0), \\ 0, & \text{si } (x,y) = (0,0). \end{cases}$$

- (c) $id_{\mathbb{R}^2}: (\mathbb{R}^2, \delta) \to (\mathbb{R}^2, d_2)$, la función identidad.
- (d) $id_{\mathbb{R}^2}: (\mathbb{R}^2, d_2) \to (\mathbb{R}^2, \delta)$, la función identidad.

Aqu d_2 es la métrica euclídea usual, y δ es la métrica discreta.

Cambia algo si en lugar de d_2 consideramos d_1 o d_{∞} ?

2. Sea $f: \mathbb{R} \to \mathbb{R}$ dada por

$$f(x) = \begin{cases} x, & \text{si } x \in \mathbb{Q}, \\ 0, & \text{si } x \notin \mathbb{Q}. \end{cases}$$

Probar que f es continua únicamente en x = 0.

3. Dado $x \in \mathbb{Q}$, denotamos den(x) = n si $x = \frac{m}{n}$ con $m \in \mathbb{Z}$ y $n \in \mathbb{N}$ coprimos.

Sea $f:(0,1)\to\mathbb{R}$ dada por

$$f(x) = \begin{cases} \frac{1}{\operatorname{den}(x)}, & x \in \mathbb{Q}, \\ 0, & x \notin \mathbb{Q}. \end{cases}$$

Probar que f es continua en $x \in (0,1)$ si y solo si x es irracional.

Sugerencia: para cada $n \in \mathbb{N}$ el conjunto $\{x \in (0,1) \cap \mathbb{Q} : \operatorname{den}(x) \leq n\}$ es finito.

- **4.** Sea E un espacio métrico, y sea $x_0 \in E$. Sea $f: E \to \mathbb{R}$ una función continua en x_0 . Probar que si $f(x_0) > 0$ entonces existe r > 0 tal que f(x) > 0 para todo $x \in B(x_0, r)$.
- 5. Sean E y E' espacios métricos y $f,g:E\to E'$ funciones continuas.
 - (a) Probar que $\{x \in E : f(x) \neq g(x)\}$ es abierto.
 - (b) Deducir que $\{x \in E : f(x) = g(x)\}$ es cerrado.
- **6.** Considerando en cada \mathbb{R}^n la métrica euclídea d_2 , probar que:
 - (a) $\{(x,y) \in \mathbb{R}^2 : x^2 + y \operatorname{sen}(e^x 1) = -2\}$ es cerrado.

- (b) $\{(x, y, z) \in \mathbb{R}^3 : -1 \le x^3 3y^4 + z 2 \le 3\}$ es cerrado.
- (c) $\{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 : 3 < x_1 x_2\}$ es abierto.

Cambia algo si en lugar de d_2 consideramos las métricas d_1 o d_∞ ?

- 7. Sean $f, g : \mathbb{R} \to \mathbb{R}$ dadas por $f(x) = x^2$, $g(x) = \frac{x^2}{1+x^2}$. Probar que:
 - (a) f continua, y sin embargo existe $G \subseteq \mathbb{R}$ abierto tal que f(G) no es abierto.
 - (b) g es continua, y sin embargo existe $F \subseteq \mathbb{R}$ cerrado tal que g(F) no es cerrado.
- 8. Sean $E \ y \ E'$ espacios métricos y $f,g:E\to E'$ funciones continuas.
 - (a) Sea $D \subseteq E$ un subconjunto denso. Probar que si $f|_D = g|_D$, entonces f = g.
 - (b) Concluir que la función $\mathcal{R}: C([0,1]) \to \{f: \mathbb{Q} \cap [0,1] \to \mathbb{R}\}$ dada por $\mathcal{R}(f) = f|_{\mathbb{Q} \cap [0,1]}$ es inyectiva.
- **9.** Sean E y E' espacios métricos y $f: E \to E'$ una función continua y suryectiva. Probar que si D es denso en E entonces f(D) es denso en E'.
- **10.** Consideramos las funciones $\mathcal{E}, \mathcal{I}: C([0,1]) \to \mathbb{R}$ definidas por:

$$\mathcal{E}(f) = f(0), \qquad \mathcal{I}(f) = \int_0^1 f(x) \ dx.$$

- (a) Demostrar que si utilizamos en C([0,1]) la distancia d_{∞} ambas resultan continuas.
- (b) Demostrar que si en cambio utilizamos en C([0,1]) la distancia d_1 , \mathcal{I} es una función continua pero \mathcal{E} no lo es.
- (c) Analizar si es posible que una función $\mathcal{F}:C([0,1])\to\mathbb{R}$ sea continua para la distancia d_1 pero no para d_∞ .
- 11. Sea (E, d) un espacio métrico.
 - (a) Sea $x_0 \in E$, y sea $f: E \to \mathbb{R}$ dada por $f(x) = d(x, x_0)$. Probar que f es continua.
 - (b) Usando esto rehacer los items (b), (d) y (g) del Ejercicio 5 de la Práctica 3.
- 12. Sea (E, d) un espacio métrico.
 - (a) Sea $A \subseteq E$, y sea $g: E \to \mathbb{R}$ dada por g(x) = d(x, A).
 - i. Probar que g es continua.
 - ii. Probar que si A es cerrado entonces g(x) > 0 para todo $x \notin A$.
 - (b) Sean $A, B \subseteq E$ cerrados, no vacíos y disjuntos, y sea $h: E \to [0,1]$ dada por

$$h(x) = \frac{d(x,A)}{d(x,A) + d(x,B)}.$$

Probar que h es continua, y que $h(x) = 0 \ \forall x \in A \ y \ h(x) = 1 \ \forall x \in B$.

(c) Sean $A, B \subseteq E$ cerrados, no vacíos y disjuntos. Probar que existen conjuntos abiertos y disjuntos U y V tales que $A \subseteq U$ y $B \subseteq V$.

Nota: esta última afirmación está comprendida en el llamado Lema de Urysohn.

- 13. Probar que las funciones f y g de los ejercicios 11 y 12 son de tipo Lipschitz. Deducir que son uniformemente continuas.
- **14.** (a) Verificar que la función $f(x) = \frac{1}{x}$ no es uniformemente continua en $(0, +\infty)$. Y en $[\varepsilon, +\infty)$ para $\varepsilon > 0$?
 - (b) Verificar que la función f(x) = sen(1/x) no es uniformemente continua en (0,1).
- **15.** Sean E, E' espacios mtricos y sea $f: E \to E'$ una función uniformemente continua. Sea $(x_n)_{n\in\mathbb{N}}$ una sucesión de Cauchy en E. Probar que $(f(x_n))_{n\in\mathbb{N}}$ es una sucesión de Cauchy en E'.
- **16.** (a) Dar un ejemplo de una función $f: \mathbb{R} \to \mathbb{R}$ acotada y continua pero no uniformemente continua.
 - (b) Dar un ejemplo de una función $f:\mathbb{R}\to\mathbb{R}$ no acotada y uniformemente continua.
- 17. Sea $f:(E,d)\to (E',d')$ una función uniformemente continua, y sean $A,B\subseteq E$ conjuntos no vacíos tales que d(A,B)=0. Probar que d'(f(A),f(B))=0.