实验三 触发器逻辑功能测试

一、实验目的

- 1. 熟悉并掌握 SR 锁存器的构成, D 触发器、JK 触发器工作原理以及测试方法。
- 2. 学会正确使用触发器集成芯片。
- 3. 了解不同逻辑功能触发器相互转换的方法。

二、实验仪器及材料

- 1. 数字电子实验台,数字式双踪示波器。
- 2. 器件:

 74LS00
 二输入端四与非门
 1 片

 74LS74
 双 D 触发器
 1 片

 74LS112
 双 J-K 触发器
 1 片

三、预习内容

- 1. 写出实验内容 3 的实验步骤及表达式。
- 2. 设计出实验内容 4 的电路图。自拟实验内容 4 的表格。
- 3. 写出各类触发器的特性方程。

四、实验内容

1. 基本 SR 锁存器功能测试:

两个 TTL 与非门首尾相接构成的基本锁存器的电路如图 3.1 所示。

试按下面的顺序在 $S_{\rm d}$, $R_{\rm d}$ 端加信号:

 $\frac{\overline{S}}{\underline{S}} \stackrel{d}{=} 0 \qquad \overline{R} \stackrel{d}{=} 1 \\
\underline{\overline{S}} \stackrel{d}{=} 1 \qquad \overline{R} \stackrel{d}{=} 1 \\
\underline{\overline{S}} \stackrel{d}{=} 1 \qquad \overline{R} \stackrel{d}{=} 0 \\
\underline{\overline{S}} \stackrel{d}{=} 1 \qquad \overline{\overline{R}} \stackrel{d}{=} 0$

用 LED 指示观察并记录输出端Q、 \overline{Q} 端的状态,将结果填入下表 3.1 中,并说明在上述各种输入状态下,锁存器执行的是什么功能?

图 3.1 基本 SR 锁存器电路

表 3.1

$\overline{\mathcal{Z}}_{\mathbf{d}}$	\overline{R} a	Q	Q	逻辑功能
0	1			
1	1			
1	0			
1	1			

2. D触发器功能测试

双 D 型触发器 74LS74 的逻辑符号如图 3.2 所示。 图中 $\overline{S}_{\mathbf{d}}$, $\overline{R}_{\mathbf{d}}$ 端为异步置 1 端,置 0 端(或称异步置位,复位端)。CP 为时钟脉冲端(上升沿有效)。

试按下面步骤做实验:

- (1) 令 $\overline{S}_{\mathbf{d}=0}$, $\overline{R}_{\mathbf{d}=1}$, D 端分别接高,低电平,用点动脉冲作为 CP,观察并记录 Q 端状态的变化。
- (2) 当 $\overline{S}_{\mathbf{d}}=1$, $\overline{R}_{\mathbf{d}}=0$ 、用点动脉冲作为 CP,改变 D 端信号,观察 Q 端的状态是否变化?
- (3) 令 $\overline{S}_{\mathbf{d}} = \overline{R}_{\mathbf{d}} = 1$, CP 加点动脉冲,改变 D 端信号,观察并记录 Q 端的状态变化。

整理上述实验数据,将结果填入下表 3.2 中。

图 3.2

表 3.2 (表中 X 表示任意状态)

$\overline{\mathbb{S}}_{\mathbf{d}}$	\overline{R} a	СР	D	Q ⁿ	Q^{n+1}
0 1	1	X	X	0	
	1			1	
1 0	0	X	X	0	
	<u> </u>	Λ		1	
1 1	1	£	0	0	
	1		Ü	1	
1 1	1	r.	1	0	
	1	-		1	

3. J-K 触发器功能测试

双 J—K 触发器 74LS112 芯片的逻辑符号如图 3.3 所示。 自拟实验步骤,测试其功能,并将结果填入表 3.3 中。若令 J=K=1时,CP 端加连续脉冲,用双踪示波器观察 $Q\sim CP$ 波形。

表 3.3

$\overline{S}_{\mathbf{d}}$	\overline{R} a	CP	J	K	Q	Q^{n+1}
0	1	X	X	X	X	
1	0	X	X	X	X	
1	1	Ł	0	0	0	
1	1	Ł	0	0	1	
1	1	Ł	0	1	0	
1	1	Ł	0	1	1	
1	1	Ł	1	0	0	
1	1	Ł	1	0	1	
1	1	Ł	1	1	0	
1	1	Ł	1	1	1	

- 4. 触发器功能转换
- (1) 将 D 触发器转换成 T'触发器,列出表达式,画出实验电路图。
- (2) 将 J—K 触发器转换成 T'触发器,列出表达式,画出实验电路图。
- (2)接入连续脉冲,观察各触发器 CP及 Q端波形。比较两者关系。

四、实验报告

- 1. 整理实验数据并填表。
- 2. 总结各类触发器特点。