Number Theory

K

June 22, 2022

Contents

Ι	Field Theory	5
1	Overview1.1 Definitions and Theorems1.2 Proofs, Remarks, and Examples1.3 Exercises and Notes	7 7 8 9
II	Ring Theory	11
Π	I Number Theory	13
2	Ring of Integers 2.1 Definitions and Theorems	15 15 16 17
3	Ring of Integers 3.1 Definitions and Theorems	19 19 20 21

4 CONTENTS

Part I Field Theory

Chapter 1

Overview

1.1 Definitions and Theorems

1.2 Proofs, Remarks, and Examples

Theorem 1. Every integer greater than 1 can be represented uniquely as a product of prime numbers, up to the order of factors.

In other words, if $n \in \mathbb{Z}$, then there are prime numbers $p_1, \ldots, p_k \in \mathbb{Z}$ and positive integers $r_1, \ldots, r_k \in \mathbb{N}^+$ such that

$$n = p_1^{r_1} \cdot \ldots \cdot p_k^{r_k}$$

is unique, up to the order of factors.

Remark. This theorem is also called the unique factorization theorem and prime factorization theorem.

Definition 2. A field extension is a pair of fields $E \subset F$, such that the operations of E are those of F restricted to E. In this case, F is an extension field of E and E is a subfield of F. Such a field extension is denoted F/E (read as "F over E").

Definition 3. Let F/E be a field extension and $\alpha \in F$. We say α is algebraic over E if α is a root of a non-zero polynomial with coefficients in E. Moreover, if all elements of the extension field is algebraic, we say algebraic extension.

Definition 4. A number field is an an algebraic extension of \mathbb{Q} of finite degree.

Definition 5. Let K be a number field. An algebraic integer α in K is a root of a monic polynomial with integer coefficients, i.e.

$$\alpha^{n} + c_{n-1}\alpha^{n-1} + \dots + c_0 = 0, \tag{1.1}$$

with $c_0, \ldots, c_{n-1} \in \mathbb{Z}$.

The ring of integers of a number field K, denoted by \mathcal{O}_K , is the ring of all algebraic integers.

Example 5.1. Let $K = \mathbb{Q}(\sqrt{5})$. What is \mathcal{O}_K ? Generalize this to \sqrt{d} .

Definition 6. Let A be a ring. A non-unit element $a \in A$ is irreducible if a = xy implies that x or y is a unit in A.

Theorem 7. Let K be a number field and \mathcal{O}_K its ring of integers. Then, for any $x \in \mathcal{O}_K$ we have

$$x = y_1^{r_1} \cdot \ldots \cdot y_k^{r_k}$$

where y_1, \ldots, y_k are irreducible.

Definition 8. Let A be a ring. Then, an ideal factor $\mathfrak{a} \subset A$ is a subset of A with (some properties) but its just an ideal.

Theorem 9. Let \mathcal{O}_K be the ring of integers and let \mathfrak{a} an ideal, then

$$\mathfrak{a} = \mathfrak{p}_1^{r_1} \cdot \ldots \cdot \mathfrak{p}_k^{r_k}$$

where \mathfrak{p}_i are prime ideals and this decomposition is basically unique.

1.3 Exercises and Notes

Part II Ring Theory

Part III Number Theory

Chapter 2

Ring of Integers

2.1 Definitions and Theorems

2.2 Proofs, Remarks, and Examples

Definition 10. Let K/\mathbb{Q} be a number field.

1. An algebraic integer α in K is a root of a monic polynomial with integer coefficients, i.e.

$$\alpha^{n} + c_{n-1}\alpha^{n-1} + \dots + c_0 = 0, \tag{2.1}$$

with $c_0, \ldots, c_{n-1} \in \mathbb{Z}$.

2. The ring of integers of a number field K, denoted by \mathcal{O}_K , is the ring of all algebraic integers of K.

Proof. We show \mathcal{O}_K is indeed a ring. Fix an α and β in \mathcal{O}_K , then there are monic polynomials $p, q \in \mathbb{Z}[X]$, such that $p(\alpha) = 0$ and $q(\beta) = 0$.

1.

Corollary 1. Let K be a number field and \mathcal{O}_K its ring of integers. The fraction field of \mathcal{O}_K is the number field K.

2.3 Exercises and Notes

Chapter 3

Ring of Integers

3.1 Definitions and Theorems

3.2 Proofs, Remarks, and Examples

3.3 Exercises and Notes