Simulazione 7 - calcoli

Curva

Per ogni T>0 sia γ la curva di equazioni $x(t)=|t|-\sin(t),\ y(t)=|t|+\sin(t),\ \cos(t)$ con $t\in[-T,T].$

1. Per quali $T \gamma$ chiusa.

 γ è chiusa se $\gamma(-T) = \gamma(T)$ ovvero se $\sin(-T) = \sin T$, ovvero se $\sin T = 0$. Per ogni $T = k\pi$ con $k \in \mathbb{Z}$ la curva quindi chiusa.

2. γ semplice.

In base a quanto osservato aal punto precedente, la curva certamente semplice se $T \in (0, \pi]$; per ogni $T > \pi$ la curva ha invece un'autointersezione, pertanto non semplice.

3. Area della regione del piano racchiusa dal sostegno di γ quando $T=\pi$. Sia D la regione di piano racchiusa dal sostegno di γ . Consideriamo il campo $\bar{F}(x,y)=(0,x)$. Per la formula di Gauss-Green,

$$\operatorname{area}(D) = \int_{D} \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) dx \, dy = \int_{+\partial D} \bar{F} \cdot d\bar{s} \,.$$

Osserviamo che γ parametrizza ∂D . Se γ percorre ∂D in senso antiorario, allora $\int_{+\partial D} \bar{F} \cdot d\bar{s} = \int_{\gamma} \bar{F} \cdot d\bar{s}$. Se invece γ percorre ∂D in senso orario, allora $\int_{+\partial D} \bar{F} \cdot d\bar{s} = -\int_{\gamma} \bar{F} \cdot d\bar{s}$. Calcoliamo

$$\int_{\gamma} \bar{F} \cdot d\bar{s} = \int_{-\pi}^{0} \bar{F}(\gamma(t)) \cdot \gamma'(t) \, dt + \int_{0}^{\pi} \bar{F}(\gamma(t)) \cdot \gamma'(t) \, dt$$

$$= \int_{-\pi}^{0} (-t - \sin t)(-1 + \cos t) \, dt + \int_{0}^{\pi} (t - \sin t)(1 + \cos t) \, dt$$

$$= \int_{-\pi}^{0} (t + \sin t - t \cos t - \sin t \cos t) \, dt + \int_{0}^{\pi} (t - \sin t + t \cos t - \sin t \cos t) \, dt$$

$$= \int_{-\pi}^{\pi} (t - \sin t \cos t) \, dt + 2 \int_{0}^{\pi} (-\sin t + t \cos t) \, dt$$

$$= 2 \int_{0}^{\pi} (-\sin t) \, dt + 2 \left[t \sin t \right]_{t=0}^{t=\pi} - 2 \int_{0}^{\pi} \sin t \, dt = 4 \cos \pi - 4 \cos 0 = -8 \, .$$

Avendo ottenuto che la circuitazione di \bar{F} lungo γ è negativa e tenendo conto che deve essere $\int_{+\partial D} \bar{F} \cdot d\bar{s} > 0$, deduciamo che γ percorre ∂D in senso orario e quindi

$$\int_{+\partial D} \bar{F} \cdot d\bar{s} = -\int_{\gamma} \bar{F} \cdot d\bar{s}.$$

Dunque l'area di D vale 8.

Campo

Si consideri la forma differenziale ω_a , dipendente dal parametro reale a,

$$\omega_a(x,y) = \left[\frac{y-1}{x^2 + (y-1)^2} + x \right] dx + \left[\frac{-2ax}{x^2 + (y-1)^2} + y \right] dy.$$

1. Dominio, D_a , di ω_a .

La forma è definita su tutto il piano eccetto il punto (0,1). Il dominio non dipende quindi da a ed è un aperto non semplicemente connesso.

Posto
$$F(x,y) = \frac{y-1}{x^2 + (y-1)^2} + x$$
, $G(x,y) = \frac{-2ax}{x^2 + (y-1)^2} + y$, si deve avere, per ogni $(x,y) \neq (0,1)$,

$$\begin{split} \frac{\partial F}{\partial y}(x,y) &= \frac{\partial G}{\partial x}(x,y) \Leftrightarrow \frac{x^2 + (y-1)^2 - 2(y-1)^2}{[x^2 + (y-1)^2]^2} = -2a\frac{x^2 + (y-1)^2 - 2x^2}{[x^2 + (y-1)^2]^2} \\ &\Leftrightarrow x^2 - (y-1)^2 = 2a[x^2 - (y-1)^2] \Leftrightarrow (2a-1)[x^2 - (y-1)^2] = 0 \\ &\Leftrightarrow a = \frac{1}{2}. \end{split}$$

La forma ω_a è quindi chiusa se e solo se $a=\frac{1}{2}$.

3. In corrispondenza dei valori di a per cui ω_a è chiusa, calcolare $\int_{\bar{a}} \omega_a$, dove $\bar{\gamma}$ è la circonferenza $x^2 + (y-1)^2 = 1$, percorsa in senso antiorario. Poniamo $\bar{\gamma}(t) = (\cos t, 1 + \sin t), t \in [0, 2\pi]$. Si ha

$$\int_{\bar{\gamma}} \omega_{\frac{1}{2}} = \int_{0}^{2\pi} \left[\frac{\sin t}{\cos^{2} t + \sin^{2} t} (-\sin t) + \cos t (-\sin t) - \frac{\cos t}{\cos^{2} t + \sin^{2} t} \cos t + (1 + \sin t) \cos t \right] dt$$
$$= \int_{0}^{2\pi} (-\sin^{2} t - \sin t \cos t - \cos^{2} t + \cos t + \sin t \cos t) dt = -2\pi.$$

4. Esattezza di ω_a

Se $a \neq \frac{1}{2}$ la forma non è esatta in quando non è chiusa. Se $a = \frac{1}{2}$, al punto precedente abbiamo calcolato un integrale di ω_a lungo un cammino chiuso e abbiamo trovato un valore diverso da zero. Nemmeno in questo caso quindi la forma può essere esatta.

Per ogni $a \in \mathbb{R}$ sia $S_a = \{(x,y,z) \in \mathbb{R}^3 \colon x^2 + y^2 + z^2 = 1, z \geq a\}$ e sia F(x,y,z) = $(xy, y^2 - x, z - yz).$

1. L'insieme S_a . Essemdo $x^2+y^2+z^2=1$ la superficie sferica di raggio 1 con centro nell'origine, la sua intersezione con il semispazio $z \geq a$ è l'intera superficie sferica quando $a \leq -1$, una calotta sferica quando $a \in (-1,1]$ (ridotta ad un punto quando a=1), l'insieme vuoto quando a > 1.

2. Flusso di F uscente da S_a quando $a \leq -1$.

Quando $a \leq -1$ la superficie S_a l'intera superficie sferica che chiamiamo S. Utilizziamo quindi il teorema della divergenza per calcolare l'ingrale del flusso di F attraverso S. Indichiamo con $B_1(0)$ la balla di raggio 1 centrata nell'origine e otteniamo

$$\int_{S} F \cdot N d\sigma = \int_{B_{1}(0)} \operatorname{div} F \, dx \, dy \, dz = \int_{B_{1}(0)} (2y+1) \, dx \, dy \, dz = 2 \int_{B_{1}(0)} y \, dx \, dy \, dz + \operatorname{Vol}(B_{1}(0)).$$

Il primo integrale è nullo (funzione dispari integrata su un dominio pari rispetto alle y), il secondo vale $4\pi/3$.

3. Flusso del rotore di F uscente da S_a , quando $a \in (-1,1)$. Per calcolare

$$\int_{S_a} \text{rot} F \cdot N d\sigma$$

utilizziamo il Teorema di Stokes. Il bordo ∂S_a è la circonferenza contenuta in z=a, centrata in (0,0,a) e raggio $\sqrt{1-a^2}$. Parametrizziamo come segue il bordo ∂S_a in modo che sia orientato in senso positivo

$$\gamma(t) = \left(\sqrt{1-a^2}\cos t, \sqrt{1-a^2}\sin t, a\right), \quad t \in [0, 2\pi].$$

Inoltre essendo $\gamma'(t) = (-\sqrt{1-a^2}\sin t, \sqrt{1-a^2}\cos t, 0)$, otteniamo

$$\int_{S_a} \operatorname{rot} F \cdot N d\sigma = \int_{\partial S_a} F \cdot ds = \int_0^{2\pi} F(\gamma(t)) \cdot \gamma'(t) dt = -(1 - a^2) \int_0^{2\pi} \cos^2 t dt = (a^2 - 1)\pi.$$

Serie

Si consideri la serie di potenze in campo complesso $\sum_{n=1}^{\infty} \frac{\log n}{2^n} (z-i)^n$.

1. Raggio di convergenza.

La serie è una serie di potenze di centro $z_0 = i$ e coefficienti $a_n = \frac{\log n}{2^n}$. Il suo raggio di convergenza si può ottenere calcolando

$$L = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to \infty} \frac{\log(n+1)}{2^{n+1}} \frac{2^n}{\log n} = \frac{1}{2}$$

e quindi $R = \frac{1}{L} = 2$. Il disco aperto di convergenza è $D = \{z \in \mathbb{C} : |z - i| < 2\}$.

2. Convergenza in z = 0

Essendo $|z_0 - 0| = 1 < 2$, la serie converge in z = 0.

3. Convergenza in z = 2

Essendo $|i-2|=\sqrt{5}>2$, la serie non converge in z=2.

4. Convergenza uniformemente in $\overline{D_r} = \{z \in \mathbb{C} : |z - i| \le r\}$

Se $z \in \partial D$ allora |z-i| = 2 e $|a_n(z-i)^n| = \log n$ che non converge a 0. Quindi in tutti i punti di ∂D la serie non converge. La teoria generale sulle serie di potenze in campo complesso garantisce che la serie converge uniformemente nei dischi chiusi contenuti in D in particolare in $\overline{D_r}$ per ogni $r \in (0,2)$ ma non per r = 2..

5. Convergenza uniformemente in $\overline{C_r} = \{z \in \mathbb{C} : |z| \le r\}$

Si ragiona in modo del tutto analogo al punto precedente e si conclude osservando che $\overline{C_r} \subset D$, per ogni $r \in (0,1)$ ma non per r=1.