

1
SEQUENCE LISTING

<110> Wallach, David

Ramakrishnan, Parameswaran
Shmushkovich, Taisia
Wang, Wangxia

<120> METHODS OF REGULATING AN IMMUNE RESPONSE

<130> 27083

<160> 15

<170> PatentIn version 3.2

<210> 1

<211> 2844

<212> DNA

<213> Homo sapiens

<400> 1		
atggcagtga tggaaatggc ctgcccagggt gcccctggct cagcagtggg gcagcagaag	60	
gaactccccca agccaaagga gaagacgccc ccactgggaa agaaaacagag ctccgtctac	120	
aagcttgagg ccgtggagaa gagccctgtg ttctgcccggaa agtgggagat cctaatgac	180	
gtgattacca agggcacagc caaggaaggc tccgaggcag ggccagtcgc catctctatc	240	
atcgcccagg ctgagttgtga gaatagccaa gagttcagcc ccaccttttc agaacgcatt	300	
ttcatcgctg ggtccaaaca gtacagccag tccgagatgc ttgatcagat ccccaacaat	360	
gtggcccatg ctacagaggg caaaatggcc cgtgtgtt ggaaggaaaa gcgtcgcagc	420	
aaagccccgaa agaaacggaa gaagaagagc tcaaagtccc tggctcatgc aggagtggcc	480	
ttggccaaac ccctccccag gaccctgtgag caggagatgc gcaccatccc agtgcaggag	540	
gatgagtctc cactcggcgc cccatatgtt agaaacaccc cgcaatccac caagcctctg	600	
aaggaaccag gccttggca actctgtttt aagcagcttgcgaggggcct acggccggct	660	
ctgcctcgat cagaactcca caaactgtatc agcccttgc aatgtctgaa ccacgtgtgg	720	
aaactgcacc acccccaggc cggaggcccc ctgcccctgc ccacgcaccc cttccccat	780	
agcagactgc ctcatccctt cccattccac cctctccagc cctggaaacc tcaccctctg	840	
gagtccttcc tggccaaact ggccgtgtta gacagccaga aacccttgc tgaccacac	900	
ctgagcaaac tggcctgtgt agacagtcca aagccctgc ctggcccaca cctggagccc	960	
agctgcctgt ctgcgtgtgc ccatgagaag ttttctgtgg aggaataacct agtgcatgt	1020	
ctgcaaggca gcgtgagctc aagccaggcc cacagctga ccagcctggc caagacctgg	1080	
gcagcacggg gctccagatc cccggagccc agccccaaaa ctgaggacaa cgagggtgtc	1140	
ctgctactg agaaactcaa gccaggat tatgagtacc gagaagaagt ccactggcc	1200	
acgcaccaggc tccgcctggg cagaggctcc ttccggagagg tgcacaggat ggaggacaag	1260	
cagactggct tccagtgcgc tgtcaaaaag gtgcggctgg aagtatttcg ggcagaggag	1320	
ctgatggcat gtgcaggatt gacccatccc agaattgtcc ctttgtatgg agctgtgaga	1380	
gaagggcctt gggtaacat cttcatggag ctgctggaaag gtggctccctt gggccagctg	1440	
gtcaaggagc agggctgtct cccagaggac cggccctgt actacctggg ccaggccctg	1500	
gagggctgg aatacctcca ctcacgaagg attctgcattt gggacgtcaa agctgacaac	1560	
gtgctccctgt ccagcgtgg gagccacgca gcccctgtg actttggcca tgctgtgt	1620	

2

cttcaacctg atggcctggg aaagtcccttg ctcacagggg actacatccc tggcacagag	1680
acccacatgg ctccggaggt ggtgctgggc aggagctgcg acgccaaggt ggtatgtctgg	1740
agcagctgct gtatgtatgc gcacatgctc aacggctgcc acccctggac tcagttcttc	1800
cgagggccgc tctgcctcaa gattgccagc gaggcctccgc ctgtgaggga gatcccaccc	1860
tcctgcgccc ctctcacagc ccaggccatc caagaggggc tgaggaaaga gcccatccac	1920
cgcgtgtctg cagcggagct gggagggaaag gtgaaccggg cactacagca agtgggaggt	1980
ctgaagagcc cttggagggg agaatataaa gaaccaagac atccacccgc aaatcaagcc	2040
aattaccacc agaccctcca tgcccagccg agagagctt cgcacaggc cccagggccc	2100
cggccagctg aggagacaac aggagagcc cctaagctcc agcctccctc cccaccagag	2160
cccccagagc caaacaagtc tcctcccttg actttgagca aggaggagtc tggatgtgg	2220
gaacccttac ctctgtcctc cctggagcca gcccctgcca gaaaccccag ctcaccagag	2280
cggaaagcaa ccgtccccggc gcaggaactg cagcagctgg aaatagaatt attcctcaac	2340
agcctgtccc agccattttc tctggaggag caggagcaa ttctctcgta cctcagcatc	2400
gacagcctct ccctgtcgga tgacagttag aagaacccat caaaggcctc tcaaagctcg	2460
cgggacaccc tgagctcagg cgtacactcc tggagcagcc aggccgaggc tcgaagctcc	2520
agcttggaca tgggtctggc cggggggcgg cccaccgaca ccccaagcta ttcaatgg	2580
gtgaaagtcc aaatacagtc tcttaatggt gaacacctgc acatccggg gttccaccgg	2640
gtcaaagtgg gagacatcgc cactggcatc agcagccaga tcccagctgc agccttcagc	2700
ttggtcacca aagacgggca gcctgttcgc tacgacatgg aggtgccaga ctcgggcatc	2760
gacctgcagt gcacactggc ccctgatggc agcttcgcct ggagctggag ggtcaagcat	2820
ggccagctgg agaacaggcc ctaa	2844

<210> 2
 <211> 947
 <212> PRT
 <213> Homo sapiens

<400> 2

Met Ala Val Met Glu Met Ala Cys Pro Gly Ala Pro Gly Ser Ala Val			
1	5	10	15

Gly Gln Gln Lys Glu Leu Pro Lys Pro Lys Glu Lys Thr Pro Pro Leu			
20	25	30	

Gly Lys Lys Gln Ser Ser Val Tyr Lys Leu Glu Ala Val Glu Lys Ser			
35	40	45	

Pro Val Phe Cys Gly Lys Trp Glu Ile Leu Asn Asp Val Ile Thr Lys			
50	55	60	

Gly Thr Ala Lys Glu Gly Ser Glu Ala Gly Pro Ala Ala Ile Ser Ile			
65	70	75	80

Ile Ala Gln Ala Glu Cys Glu Asn Ser Gln Glu Phe Ser Pro Thr Phe			
85	90	95	

Ser Glu Arg Ile Phe Ile Ala Gly Ser Lys Gln Tyr Ser Gln Ser Glu

100

105

110

Ser Leu Asp Gln Ile Pro Asn Asn Val Ala His Ala Thr Glu Gly Lys
115 120 125

Met Ala Arg Val Cys Trp Lys Gly Lys Arg Arg Ser Lys Ala Arg Lys
130 135 140

Lys Arg Lys Lys Ser Ser Lys Ser Leu Ala His Ala Gly Val Ala
145 150 155 160

Leu Ala Lys Pro Leu Pro Arg Thr Pro Glu Gln Glu Ser Cys Thr Ile
165 170 175

Pro Val Gln Glu Asp Glu Ser Pro Leu Gly Ala Pro Tyr Val Arg Asn
180 185 190

Thr Pro Gln Phe Thr Lys Pro Leu Lys Glu Pro Gly Leu Gly Gln Leu
195 200 205

Cys Phe Lys Gln Leu Gly Glu Gly Leu Arg Pro Ala Leu Pro Arg Ser
210 215 220

Glu Leu His Lys Leu Ile Ser Pro Leu Gln Cys Leu Asn His Val Trp
225 230 235 240

Lys Leu His His Pro Gln Asp Gly Gly Pro Leu Pro Leu Pro Thr His
245 250 255

Pro Phe Pro Tyr Ser Arg Leu Pro His Pro Phe Pro Phe His Pro Leu
260 265 270

Gln Pro Trp Lys Pro His Pro Leu Glu Ser Phe Leu Gly Lys Leu Ala
275 280 285

Cys Val Asp Ser Gln Lys Pro Leu Pro Asp Pro His Leu Ser Lys Leu
290 295 300

Ala Cys Val Asp Ser Pro Lys Pro Leu Pro Gly Pro His Leu Glu Pro
305 310 315 320

Ser Cys Leu Ser Arg Gly Ala His Glu Lys Phe Ser Val Glu Glu Tyr
325 330 335

Leu Val His Ala Leu Gln Gly Ser Val Ser Ser Ser Gln Ala His Ser
340 345 350

Leu Thr Ser Leu Ala Lys Thr Trp Ala Ala Arg Gly Ser Arg Ser Arg
355 360 365

Glu Pro Ser Pro Lys Thr Glu Asp Asn Glu Gly Val Leu Leu Thr Glu
370 375 380

Lys Leu Lys Pro Val Asp Tyr Glu Tyr Arg Glu Glu Val His Trp Ala
385 390 395 400

Thr His Gln Leu Arg Leu Gly Arg Gly Ser Phe Gly Glu Val His Arg
405 410 415

Met Glu Asp Lys Gln Thr Gly Phe Gln Cys Ala Val Lys Lys Val Arg
420 425 430

Leu Glu Val Phe Arg Ala Glu Glu Leu Met Ala Cys Ala Gly Leu Thr
435 440 445

Ser Pro Arg Ile Val Pro Leu Tyr Gly Ala Val Arg Glu Gly Pro Trp
450 455 460

Val Asn Ile Phe Met Glu Leu Leu Glu Gly Gly Ser Leu Gly Gln Leu
465 470 475 480

Val Lys Glu Gln Gly Cys Leu Pro Glu Asp Arg Ala Leu Tyr Tyr Leu
485 490 495

Gly Gln Ala Leu Glu Gly Leu Glu Tyr Leu His Ser Arg Arg Ile Leu
500 505 510

His Gly Asp Val Lys Ala Asp Asn Val Leu Leu Ser Ser Asp Gly Ser
515 520 525

His Ala Ala Leu Cys Asp Phe Gly His Ala Val Cys Leu Gln Pro Asp
530 535 540

Gly Leu Gly Lys Ser Leu Leu Thr Gly Asp Tyr Ile Pro Gly Thr Glu
545 550 555 560

Thr His Met Ala Pro Glu Val Val Leu Gly Arg Ser Cys Asp Ala Lys
565 570 575

Val Asp Val Trp Ser Ser Cys Cys Met Met Leu His Met Leu Asn Gly
580 585 590

Cys His Pro Trp Thr Gln Phe Phe Arg Gly Pro Leu Cys Leu Lys Ile
595 600 605

Ala Ser Glu Pro Pro Pro Val Arg Glu Ile Pro Pro Ser Cys Ala Pro
610 615 620

Leu Thr Ala Gln Ala Ile Gln Glu Gly Leu Arg Lys Glu Pro Ile His
625 630 635 640

Arg Val Ser Ala Ala Glu Leu Gly Gly Lys Val Asn Arg Ala Leu Gln
645 650 655

Gln Val Gly Gly Leu Lys Ser Pro Trp Arg Gly Glu Tyr Lys Glu Pro
.. 660 665 670

Arg His Pro Pro Pro Asn Gln Ala Asn Tyr His Gln Thr Leu His Ala
675 680 685

Gln Pro Arg Glu Leu Ser Pro Arg Ala Pro Gly Pro Arg Pro Ala Glu
690 695 700

Glu Thr Thr Gly Arg Ala Pro Lys Leu Gln Pro Pro Leu Pro Pro Glu
705 710 715 720

Pro Pro Glu Pro Asn Lys Ser Pro Pro Leu Thr Leu Ser Lys Glu Glu
725 730 735

Ser Gly Met Trp Glu Pro Leu Pro Leu Ser Ser Leu Glu Pro Ala Pro
740 745 750

Ala Arg Asn Pro Ser Ser Pro Glu Arg Lys Ala Thr Val Pro Glu Gln
755 760 765

Glu Leu Gln Gln Leu Glu Ile Glu Leu Phe Leu Asn Ser Leu Ser Gln
770 775 780

Pro Phe Ser Leu Glu Glu Gln Glu Gln Ile Leu Ser Cys Leu Ser Ile
785 790 795 800

Asp Ser Leu Ser Leu Ser Asp Asp Ser Glu Lys Asn Pro Ser Lys Ala
805 810 815

Ser Gln Ser Ser Arg Asp Thr Leu Ser Ser Gly Val His Ser Trp Ser
820 825 830

Ser Gln Ala Glu Ala Arg Ser Ser Ser Trp Asn Met Val Leu Ala Arg
835 840 845

Gly Arg Pro Thr Asp Thr Pro Ser Tyr Phe Asn Gly Val Lys Val Gln
850 855 860

Ile Gln Ser Leu Asn Gly Glu His Leu His Ile Arg Glu Phe His Arg
865 870 875 880

Val Lys Val Gly Asp Ile Ala Thr Gly Ile Ser Ser Gln Ile Pro Ala
885 890 895

Ala Ala Phe Ser Leu Val Thr Lys Asp Gly Gln Pro Val Arg Tyr Asp
900 905 910

Met Glu Val Pro Asp Ser Gly Ile Asp Leu Gln Cys Thr Leu Ala Pro
915 920 925

Asp Gly Ser Phe Ala Trp Ser Trp Arg Val Lys His Gly Gln Leu Glu
930 935 940

Asn Arg Pro
945

<210> 3.
<211> 175
<212> PRT
<213> Homo sapiens

<400> 3

Met Pro Lys Arg Ser Cys Pro Phe Ala Asp Val Ala Pro Leu Gln Leu
1 5 10 15

Lys Val Arg Val Ser Gln Arg Glu Leu Ser Arg Gly Val Cys Ala Glu
20 25 30

Arg Tyr Ser Gln Glu Val Phe Glu Lys Thr Lys Arg Leu Leu Phe Leu
35 40 45

Gly Ala Gln Ala Tyr Leu Asp His Val Trp Asp Glu Gly Cys Ala Val
50 55 60

Val His Leu Pro Glu Ser Pro Lys Pro Gly Pro Thr Gly Ala Pro Arg
65 70 75 80

Ala Ala Arg Gly Gln Met Leu Ile Gly Pro Asp Gly Arg Leu Ile Arg
85 90 95

Ser Leu Gly Gln Ala Ser Glu Ala Asp Pro Ser Gly Val Ala Ser Ile
100 105 110

Ala Cys Ser Ser Cys Val Arg Ala Val Asp Gly Lys Ala Val Cys Gly
115 120 125

Gln Cys Glu Arg Ala Leu Cys Gly Gln Cys Val Arg Thr Cys Trp Gly
130 135 140

Cys Gly Ser Val Ala Cys Thr Leu Cys Gly Leu Val Asp Cys Ser Asp
145 150 155 160

Met Tyr Glu Lys Val Leu Cys Thr Ser Cys Ala Met Phe Glu Thr
165 170 175

<210> 4
<211> 110
<212> PRT
<213> Homo sapiens

<400> 4

Met Pro Lys Arg Ser Cys Pro Phe Ala Asp Val Ala Pro Leu Gln Leu
1 5 10 15

Lys Val Arg Val Ser Gln Arg Glu Leu Ser Arg Gly Val Cys Ala Glu
20 25 30

Arg Tyr Ser Gln Glu Val Phe Asp Pro Ser Gly Val Ala Ser Ile Ala
35 40 45

Cys Ser Ser Cys Val Arg Ala Val Asp Gly Lys Ala Val Cys Gly Gln
50 55 60

Cys Glu Arg Ala Leu Cys Gly Gln Cys Val Arg Thr Cys Trp Gly Cys
65 70 75 80

Gly Ser Val Ala Cys Thr Leu Cys Gly Leu Val Asp Cys Ser Asp Met
85 90 95

Tyr Glu Lys Val Leu Cys Thr Ser Cys Ala Met Phe Glu Thr
100 105 110

<210> 5
 <211> 10
 <212> PRT
 <213> Artificial sequence

<220>
 <223> Myc tag

<400> 5

Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu
 1 5 10

<210> 6
 <211> 528
 <212> DNA
 <213> Homo sapiens

<400> 6
 atgcccAACG ggagctgccc cttcgccgac gtggccccc tacagctcaa ggtccgcgtg 60
 agccagaggg agttgagccg cggcgtgtgc gccgagcgct actcgcagga ggtcttcgag 120
 aagaccaagc gactcctgtt cctcggggcc cagggcttacc tggaccacgt gtggatgaa 180
 ggctgtgccg tcgttacact gccagagtcc ccaaagcctg gccctacagg ggccccgagg 240
 gctgcacgtg ggcagatgtt gattggacca gacggccgcc tggatcaggag cttggggcag 300
 gcctccgaag ctgacccatc tggggtagcg tccattgcct gttcctcatg cgtgcgagcc 360
 gtggatggga aggccggctcg cggcgtgtt gaggcagccc tggatcaggag cttggggcag 420
 acctgttggg gctgcggctc cgtggcctgtt accctgtgtt gcttcgttggaa ctgcgttgc 480
 atgtacgaga aagtgtgtt caccagctgtt gccatgttgc agacctgtt 528

<210> 7
 <211> 333
 <212> DNA
 <213> Homo sapiens

<400> 7
 atgcccAACG ggagctgccc cttcgccgac gtggccccc tacagctcaa ggtccgcgtg 60
 agccagaggg agttgagccg cggcgtgtgc gccgagcgct actcgcagga ggtcttcgac 120
 ccatctgggg tagcgtccat tgcctgttcc tcatgcgtgc gagccgttggaa tggaaaggcg 180
 gtctgcgttc agtgtgagcg agccctgtgc gggcgtgtt tgcgcacactg ctggggctgc 240
 ggctccgtgg cctgttaccct gtgtggcctc gtggactgca gtgacatgtt cggaaaagt 300
 ctgtgcacca gctgtgccat gttcgagacc tga 333

<210> 8
 <211> 34
 <212> DNA
 <213> Artificial sequence

<220>
 <223> Single strand DNA oligonucleotide

<400> 8
 ccaagcttatt tcaatcgtgtt gaaaagtccaa atac 34

<210> 9
 <211> 34
 <212> DNA
 <213> Artificial sequence

<220>
<223> Single strand DNA oligonucleotide

<400> 9
gtatggac tttcacacga ttgaaatagc ttgg 34

<210> 10
<211> 16
<212> PRT
<213> Artificial sequence

<220>
<223> A peptide corresponding to a sequence within the NIK kinase domain

<400> 10

Arg Leu Gly Arg Gly Ser Phe Gly Glu Val His Arg Met Glu Asp Lys
1 5 10 15

<210> 11
<211> 42
<212> DNA
<213> Artificial sequence

<220>
<223> Single strand DNA oligonucleotide

<400> 11
gagggtctgg aatacctaca ttcccgagg attctgcattt gg 42

<210> 12
<211> 42
<212> DNA
<213> Artificial sequence

<220>
<223> Single strand DNA oligonucleotide

<400> 12
cccatgcaga atcctgcggg aatgttaggtt ttccagaccc tc 42

<210> 13
<211> 64
<212> DNA
<213> Artificial sequence

<220>
<223> Single strand DNA oligonucleotide

<400> 13
gatccctac ctccactcac gaaggattca agagatcctt cgtgagtgaa ggtatttt 60

gaaa 64

<210> 14
<211> 64
<212> DNA
<213> Artificial sequence

<220>
<223> Single strand DNA oligonucleotide

<400> 14
agctttcca aaaatacctc cactcacgaa ggatctcttg aatccttcgt gagtggagg 60

aggg 64

<210> 15
<211> 19
<212> DNA
<213> Artificial sequence

<220>
<223> NIK SirNA sequence corresponding with nucleotides 1513 1531

<400> 15
tacctccact cacgaagga