Tracing the Trajectory of Math Proficiency in New York High Schools: A Hierarchical Bayesian Analysis (2011-2017)

Eugene Han and Elder Veliz

Yale University

Background

- Standardized testing and educational policies greatly influence student outcomes.
- Analysis of student performance is essential to understanding the efficacy of educational systems and guiding policy decisions.
- Our work explores how socioeconomic factors and resource allocation influenced math proficiency benchmarks across New York state's counties and schools.

Objectives

- Adopt a hierarchical Bayesian framework to explore how Title I eligibility, student-teacher ratios, and year-specific effects impacted student math proficiency in New York between 2011 and 2017.
- Account for school-level and county-level random effects in the modeling procedure to capture hierarchical structure in the data.
- Compare three linear models: (1) without random effects, (2) with school-level random effects, and (3) with school-level and county-level random effects.
- Interpret the results of our analysis and reveal descriptive insights into student math proficiency variations over time.

Overview of Data

- Data retrieved from the Urban Institute, aggregated from sources including the National Center for Education Statistics and the U.S. Department of Education.
- Data for 825 schools over 7 years across 61 counties, totaling 5775 observations.
- The dataset consisted of the following fields:
- year: school year, between 2011 and 2017.
- ncessch: National Center for Education Statistics (NCES) school identification number.
- county: county code corresponding to each school.
- title_i_eligible: dummy variable indicating Title I eligibility (low-income support).
 student_teacher_ratio: engineered feature defined as (teachers_fte_crdc / enrollment)
- math_test_pct_prof_midpt: midpoint of range reporting the share of students scoring proficient on a mathematics assessment, 0-100 scale.
- teachers_fte_crdc values were only observed in 2011, 2013, 2015, and 2017, so linear interpolation was used to impute missing values for 2012, 2014, and 2016.
- Values for math_test_pct_prof_midpt were divided by 100 and mapped to \mathbb{R} using a logit transformation.

Figure 1. Math test proficiency midpoint for 50 randomly selected schools by year

Statistical Methods

. Standard linear model (no random effects):

$$egin{aligned} oldsymbol{y} & = oldsymbol{X}oldsymbol{eta} + oldsymbol{arepsilon} \ y_{it} & \sim N(oldsymbol{x}_{it}^Toldsymbol{eta}, \sigma_arepsilon^2) \end{aligned}$$

2. Linear mixed effects model with school-level random effects:

$$egin{aligned} oldsymbol{y} & = oldsymbol{X}oldsymbol{eta} + oldsymbol{Z}oldsymbol{lpha} + oldsymbol{arepsilon} \ & y_{it} \sim N(oldsymbol{x}_{it}^Toldsymbol{eta} + lpha_i, \sigma_arepsilon^2) \end{aligned}$$

3. Linear mixed effects model with school-level and county-level random effects:

$$egin{aligned} oldsymbol{y} & = oldsymbol{X}eta + oldsymbol{Z}lpha + oldsymbol{W}oldsymbol{\phi} + oldsymbol{arepsilon} \ & y_{it} \sim N(oldsymbol{x}_{it}^Toldsymbol{eta} + lpha_i + \phi_{c(i)}, \sigma_{arepsilon}^2) \end{aligned}$$

Priors:

$$\beta_{j} \sim N(0, 100^{2})$$

$$\alpha_{i} \sim N(0, \sigma_{\alpha}^{2})$$

$$\phi_{c(i)} \sim N(0, \sigma_{\phi}^{2})$$

$$\sigma_{\varepsilon}^{2}, \sigma_{\alpha}^{2}, \sigma_{\phi}^{2} \sim \text{Inv-Gamma}(0.01, 0.01)$$

Results

Below are the results of the model with school- and county-level random effects.

Fixed Effects:

Effect	Post. Mean	SD	Quantiles		ESS	G-R
			0.025	0.975		
(Intercept)	2.742	0.195	2.364	3.103	63.4	1.03
Year 2012	0.049	0.046	-0.042	0.139	4133.3	1.00
Year 2013	-3.098	0.046	-3.187	-3.007	4012.0	1.00
Year 2014	0.177	0.046	0.087	0.268	3382.7	1.00
Year 2015	0.044	0.048	-0.050	0.139	2132.3	1.00
Year 2016	-0.086	0.048	-0.180	0.008	2154.6	1.00
Year 2017	-0.221	0.049	-0.315	-0.125	2229.5	1.00
Title I Eligibility	-0.350	0.038	-0.424	-0.275	1839.6	1.00
Students/Teachers	0.201	0.017	0.169	0.234	10083.3	1.00

Table 1. Summary of posterior distributions for fixed effects with convergence diagnostics

School-Level Effects (3 Selected Schools):

Results (cont.)

County-Level Effects:

Figure 2. Heatmap of posterior mean county-level random effects

Model Comparison:

\mathbf{Model}		Fixed	Random (School)		
	2013	Title I	S/T	Bronx	Mattituck
No random effects	-3.220	-0.844	-0.099		
School-level	-3.188	-0.351	0.200	1.091	-1.622
School- and county-level	-3.187	-0.350	0.201	0.775	-1.194

Table 2. Comparison of posterior means for selected fixed and random effects across models

DIC	pD
17624	10.1
15641	123.2
15640	122.6
	17624 15641

Table 3. DIC analysis comparison

Conclusions

- The model with school-level and county-level random effects performed the best out of the three with respect to DIC.
- Bronx and New York County schools perform significantly better than expected of schools sharing similar characteristics.
- Common Core adoptions in 2013 negatively shocked midpoint math proficiency.
- The altered sign of the student-to-teacher ratio after including random effects implies its impact may be more related to individual school management rather than resource allocation differences.

Extensions and Further Questions

- Include additional socioeconomic predictors (e.g. teacher salaries, student household incomes, extracurricular activities) as fixed effects.
- Investigate spatial correlations to understand relationships between neighboring schools and counties. Is there evidence neighbors perform similarly?
- Analyze spatiotemporal relationships using historical academic performance data combined with geographic data. Do temporal dependencies alter our findings?