Alexandria University
Faculty of Engineering
Computer and Communications Program

Due: Sunday 27/2/2019 CCE: Pattern Recognition

Sheet#2 LDA

Orthogonal Projection

1) For the given vectors \mathbf{u}_1 and \mathbf{u}_2

a) Verify $\mathbf{u_1}$ and $\mathbf{u_2}$ are orthogonal

b) Find the projection of the point $y=[6,3,-2]^T$ on \mathbf{u}_1 and \mathbf{u}_2

$$\mathbf{u_1} = \begin{bmatrix} 3 \\ 4 \\ 0 \end{bmatrix}$$
, and $\mathbf{u_2} = \begin{bmatrix} -4 \\ 3 \\ 0 \end{bmatrix}$

LDA

2) For the data on two class problem

a) Compute μ_{+1} and μ_{-1} , and **B**, the between-class scatter matrix.

b) Find the best direction **w** that discriminates between the classes and **sketch** it.

Given
$$S^{-1} = \begin{pmatrix} 0.056 & -0.029 \\ -0.029 & 0.052 \end{pmatrix}$$

3) For the data on two class problem [if you encounter numerical issues don't worry use python solvers]

- a) Compute μ_{+1} and μ_{-1} , and **B**, the between-class scatter matrix.
- b) Compute S_{+1} and S_{-1} , and S, the within-class scatter matrix.
- c) Find the best direction **w** that discriminates between the classes.
- d) Having found the direction **w**, find the point on **w** that best separates the two classes.

i	\mathbf{x}_i	yi	
X ₁	(4,2.9)	1	
X 2	(3.5,4)	1	
X ₃	(2.5,1)	-1	
X ₄	(2,2.1)	-1	

4) Midterm Question Fall 2017

For the data on two class problem

- a) Compute μ_{+1} and μ_{-1} , and B, the between-class scatter matrix.
- b) Compute S_{+1} and S_{-1} , and S, the within-class scatter matrix.
- c) Visually sketch the best direction that splits the data into the two classes

i	x	yi
X1	(1,1)	1
X2	(2,1)	1
Х3	(1,2)	1
X4	(2,2)	-1
X5	(3,2)	-1