15.4 Exercises

- **1.** Electric charge is distributed over the rectangle $0 \le x \le 5$, $2 \le y \le 5$ so that the charge density at (x, y) is $\sigma(x, y) = 2x + 4y$ (measured in coulombs per square meter). Find the total charge on the rectangle.
- **2.** Electric charge is distributed over the disk $x^2 + y^2 \le 1$ so that the charge density at (x, y) is $\sigma(x, y) = \sqrt{x^2 + y^2}$ (measured in coulombs per square meter). Find the total charge on the disk.
- **3–4** The figure shows a lamina that is shaded according to the given density function: darker shading indicates higher density. Estimate the location of the center of mass of the lamina, and then calculate its exact location.

3. $\rho(x, y) = x^2$

4. $\rho(x, y) = xy$

- **5–12** Find the mass and center of mass of the lamina that occupies the region D and has the given density function ρ .
- **5.** $D = \{(x, y) \mid 1 \le x \le 3, 1 \le y \le 4\}; \ \rho(x, y) = ky^2$
- **6.** $D = \{(x, y) \mid 0 \le x \le a, 0 \le y \le b\};$ $\rho(x, y) = 1 + x^2 + y^2$
- **7.** *D* is the triangular region with vertices (0, 0), (2, 1), (0, 3); $\rho(x, y) = x + y$
- **8.** *D* is the triangular region enclosed by the lines y = 0, y = 2x, and x + 2y = 1; $\rho(x, y) = x$
- **9.** D is bounded by $y = 1 x^2$ and y = 0; $\rho(x, y) = ky$
- **10.** *D* is bounded by y = x + 2 and $y = x^2$; $\rho(x, y) = kx^2$
- **11.** *D* is bounded by the curves $y = e^{-x}$, y = 0, x = 0, x = 1; $\rho(x, y) = xy$
- **12.** *D* is enclosed by the curves y = 0 and $y = \cos x$, $-\pi/2 \le x \le \pi/2$; $\rho(x, y) = y$
- **13.** A lamina occupies the part of the disk $x^2 + y^2 \le 1$ in the first quadrant. Find its center of mass if the density at any point is proportional to its distance from the *x*-axis.

- **14.** Find the center of mass of the lamina in Exercise 13 if the density at any point is proportional to the square of its distance from the origin.
- **15.** The boundary of a lamina consists of the semicircles $y = \sqrt{1 x^2}$ and $y = \sqrt{4 x^2}$ together with the portions of the *x*-axis that join them. Find the center of mass of the lamina if the density at any point is proportional to its distance from the origin.
- **16.** Find the center of mass of the lamina in Exercise 15 if the density at any point is inversely proportional to its distance from the origin.
- **17.** Find the center of mass of a lamina in the shape of an isosceles right triangle with equal sides of length *a* if the density at any point is proportional to the square of the distance from the vertex opposite the hypotenuse.
- **18.** A lamina occupies the region inside the circle $x^2 + y^2 = 2y$ but outside the circle $x^2 + y^2 = 1$. Find the center of mass if the density at any point is inversely proportional to its distance from the origin.
- **19.** Find the moments of inertia I_x , I_y , I_0 for the lamina of Exercise 5.
- **20.** Find the moments of inertia I_x , I_y , I_0 for the lamina of Exercise 8.
- **21.** Find the moments of inertia I_x , I_y , I_0 for the lamina of Exercise 17.
- **22.** Consider a square fan blade with sides of length 2 and the lower left corner placed at the origin. If the density of the blade is $\rho(x, y) = 1 + 0.1x$, is it more difficult to rotate the blade about the *x*-axis or the *y*-axis?
- **23–26** A lamina with constant density $\rho(x, y) = \rho$ occupies the given region. Find the moments of inertia I_x and I_y and the radii of gyration \overline{x} and \overline{y} .
- **23.** The rectangle $0 \le x \le b$, $0 \le y \le h$
- **24.** The triangle with vertices (0, 0), (b, 0), and (0, h)
- **25.** The part of the disk $x^2 + y^2 \le a^2$ in the first quadrant
- **26.** The region under the curve $y = \sin x$ from x = 0 to $x = \pi$
- **27–28** Use a computer algebra system to find the mass, center of mass, and moments of inertia of the lamina that occupies the region *D* and has the given density function.
 - **27.** *D* is enclosed by the right loop of the four-leaved rose $r = \cos 2\theta$; $\rho(x, y) = x^2 + y^2$
 - **28.** $D = \{(x, y) \mid 0 \le y \le xe^{-x}, \ 0 \le x \le 2\}; \ \rho(x, y) = x^2y^2$

29. The joint density function for a pair of random variables *X* and *Y* is

$$f(x, y) = \begin{cases} Cx(1 + y) & \text{if } 0 \le x \le 1, \ 0 \le y \le 2\\ 0 & \text{otherwise} \end{cases}$$

- (a) Find the value of the constant C.
- (b) Find $P(X \le 1, Y \le 1)$.
- (c) Find $P(X + Y \le 1)$.
- **30.** (a) Verify that

$$f(x, y) = \begin{cases} 4xy & \text{if } 0 \le x \le 1, \ 0 \le y \le 1\\ 0 & \text{otherwise} \end{cases}$$

is a joint density function.

(b) If *X* and *Y* are random variables whose joint density function is the function *f* in part (a), find

(i)
$$P(X \ge \frac{1}{2})$$

(ii)
$$P(X \ge \frac{1}{2}, Y \le \frac{1}{2})$$

- (c) Find the expected values of X and Y.
- **31.** Suppose *X* and *Y* are random variables with joint density function

$$f(x, y) = \begin{cases} 0.1e^{-(0.5x + 0.2y)} & \text{if } x \ge 0, \ y \ge 0\\ 0 & \text{otherwise} \end{cases}$$

- (a) Verify that f is indeed a joint density function.
- (b) Find the following probabilities.

(i)
$$P(Y \ge 1)$$

(ii)
$$P(X \le 2, Y \le 4)$$

- (c) Find the expected values of X and Y.
- **32.** (a) A lamp has two bulbs, each of a type with average lifetime 1000 hours. Assuming that we can model the probability of failure of a bulb by an exponential density function with mean $\mu=1000$, find the probability that both of the lamp's bulbs fail within 1000 hours.
 - (b) Another lamp has just one bulb of the same type as in part (a). If one bulb burns out and is replaced by a bulb of the same type, find the probability that the two bulbs fail within a total of 1000 hours.
- **33.** Suppose that *X* and *Y* are independent random variables, where *X* is normally distributed with mean 45 and standard

deviation 0.5 and *Y* is normally distributed with mean 20 and standard deviation 0.1. Evaluate a double integral numerically to find the given probability correct to three decimal places.

(a)
$$P(40 \le X \le 50, 20 \le Y \le 25)$$

(b)
$$P(4(X-45)^2+100(Y-20)^2 \le 2)$$

34. Xavier and Yolanda both have classes that end at noon and they agree to meet every day after class. They arrive at the coffee shop independently. Xavier's arrival time is *X* and Yolanda's arrival time is *Y*, where *X* and *Y* are measured in minutes after noon. The individual density functions are

$$f_1(x) = \begin{cases} e^{-x} & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases} \qquad f_2(y) = \begin{cases} \frac{1}{50}y & \text{if } 0 \le y \le 10\\ 0 & \text{otherwise} \end{cases}$$

(Xavier arrives sometime after noon and is more likely to arrive promptly than late. Yolanda always arrives by 12:10 PM and is more likely to arrive late than promptly.) After Yolanda arrives, she'll wait for up to half an hour for Xavier, but he won't wait for her. Find the probability that they meet.

35. When studying the spread of an epidemic, we assume that the probability that an infected individual will spread the disease to an uninfected individual is a function of the distance between them. Consider a circular city of radius 10 miles in which the population is uniformly distributed. For an uninfected individual at a fixed point $A(x_0, y_0)$, assume that the probability function is given by

$$f(P) = \frac{1}{20} [20 - d(P, A)]$$

where d(P, A) denotes the distance between points P and A.
(a) Suppose the exposure of a person to the disease is the sum of the probabilities of catching the disease from all members of the population. Assume that the infected people are uniformly distributed throughout the city, with k infected individuals per square mile. Find a double integral that represents the exposure of a person residing at A.

(b) Evaluate the integral for the case in which *A* is the center of the city and for the case in which *A* is located on the edge of the city. Where would you prefer to live?

15.5 Surface Area

In Section 16.6 we will deal with areas of more general surfaces, called parametric surfaces, and so this section may be omitted if that later section will be covered.

In this section we apply double integrals to the problem of computing the area of a surface. In Section 8.2 we found the area of a very special type of surface—a surface of revolution—by the methods of single-variable calculus. Here we compute the area of a surface with equation z = f(x, y), the graph of a function of two variables.

Let *S* be a surface with equation z = f(x, y), where *f* has continuous partial derivatives. For simplicity in deriving the surface area formula, we assume that $f(x, y) \ge 0$ and the domain *D* of *f* is a rectangle. We divide *D* into small rectangles R_{ij} with area $\Delta A = \Delta x \Delta y$. If (x_i, y_j) is the corner of R_{ij} closest to the origin, let $P_{ij}(x_i, y_j, f(x_i, y_j))$ be