```
Xie Zhou, 912143385
ECS170
```

## Problem Set 4

#### Probelm1:

```
a)
```

Node A:(1 number) P(A = T)Node B:(1 number) P(B = T)Node C:(4 numbers) P(C = T | A = T, B = T) P(C = T | A = T, B = F) P(C = T | A = F, B = T) P(C = T | A = F, B = F)Node D:(2 numbers) P(D = T | C = T)

b)

Conditional independencies: A and D, B and D

Marginal independencies: A and B (C and D not given)

P(D = T|C = F)

#### Problem 2:

a)



b)

 $P(coin = a \mid X1=H, X2=H, X3=T)$ 

 $= P(X1=H,X2=H,X3=T \mid coin = a)*P(coin = a) / P(X1=H,X2=H,X3=T)$ 

Note: treat P(X1=H,X2=H,X3=T) as "const"; X1,X2,X3 are independent,

 $= P(X1=H \mid coin = a)*P(X2=H \mid coin = a)*P(X3=T \mid coin = a) * P(coin = a) / const$ 

= 0.2\*0.2\*0.8\*(1/3)/const

= 0.011\*const

Similarly,

P(coin = b | X1 =H, X2 = H, X3 = T) = 0.6\*0.6\*0.4/(1/3)/const

= 0.048\*const

 $P(coin = c \mid X1 = H, X2 = H, X3 = T) = 0.8*0.8*0.4/(1/3)/const$ 

= 0.085\*const

<u>Therefore</u>, coin "c" was most likely to have been drawn.

#### Problem 3:

- a) 2nd network best describes the problem.
- b) P(M1|N) = P(M1, N)/P(N)
  - = [sum P(M1, N, F) over F] / P(N) marginal
  - = (P(M1|N,F)\*P(N, F) + P(M1|N,not F)\*P(N, not F)) / P(N)
  - = (P(M1|N,F)\*P(N)\*P(F) + P(M1|N,not F)\*P(N)\*P(not F)) / P(N) N and F independent
  - = (P(M1|N,F)\*P(F) + P(M1|N,not F)\*P(not F)

|        | N = 1      | N = 2      | N = 3      |
|--------|------------|------------|------------|
| M1 = 0 | f+e(1-f)   | f          | f          |
| M1 = 1 | (1-e)(1-f) | e(1-f)     | 0          |
| M1 = 2 | e(1-f)     | (1-e)(1-f) | e(1-f)     |
| M1 = 3 | 0          | e(1-f)     | (1-e)(1-f) |
| M1 = 4 | 0          | 0          | e(1-f)     |

c)

|        |        | Possible numbers of star                                   |  |
|--------|--------|------------------------------------------------------------|--|
| F1     | F2     | 5 or greater                                               |  |
| F1     | not F2 | 3 or 4                                                     |  |
| not F1 | F2     | impossible b/c M1 requires that N in [0, 2], making M2 = 0 |  |
| not F1 | not F2 | 2                                                          |  |

## Problem 4:

## Sample 1:

P(A = true) = 0.2, true b/c 0.1<0.2

 $P(B = true \mid A = true) = 0.1, false b/c 0.2 > 0.1$ 

Prior sampling returns [true, false]

## Sample 2:

P(A = true) = 0.2, false b/c 0.3 > 0.2

 $P(B = true \mid A = false) = 0.3, false b/c 0.4 > 0.3$ 

Prior sampling returns [false, false]

# Problem 5:

a)

| Cloudy  | Sprinkler | Rain   | Wet Grass | Weight |
|---------|-----------|--------|-----------|--------|
| T(0.3)  | F (0.7)   | T(0.4) | T         | 0.9    |
| F(0.9). | T(0.2)    | T(0.1) | Т         | 0.99   |
| F(0.9). | T(0.3)    | F(0.8) | Т         | 0.90   |
| T(0.2). | F(0.5)    | T(0.2) | Т         | 0.90   |
| T(0.3). | T(0.1)    | F(0.9) | Т         | 0.90   |

b)  $P(Rain = T \mid Wet Grass = T) = (0.90+0.99+0.90)/(0.99+0.90+0.90+0.90) = 0.6078$