

outbreakeR

disease outbreak recontruction using genetic data

Thibaut Jombart

MRC Centre for Outbreak Analysis and Modelling - Imperial College London

GenEpi — LSHTM, London 10-04-2013

Investigating disease outbreaks using genetic data

Background

- here, "outbreak" = small, localised epidemic
- ullet small-scale o dense sampling possible
- pathogen genomes sequences increasingly available

Investigating disease outbreaks using genetic data

Background

- here, "outbreak" = small, localised epidemic
- small-scale → dense sampling possible
- pathogen genomes sequences increasingly available

Objectives

- exploit genetic information to reconstruct outbreaks
- infer transmission trees, dates of infection, R, ...
- design a tool for retrospective or near real-time analysis

Generic model integrating genomic data and collection dates

How to infer the infector of a given individual?

How to infer the infector of a given individual?

Approach based on generation time distribution (Ferguson *et al.* 2001, Nature; Wallinga & Teunis 2004, Am. J. Epidemiol.)

Approach based on generation time distribution (Wallinga & Teunis 2004, Am. J. Epidemiol.)

Approach based on genetic data (SeqTrack) (Jombart et al. 2010, Heredity.)

Approach based on genetic data (SeqTrack) (Jombart et al. 2010, Heredity.)

outbreaker: use generation time distribution and genetic data:

outbreaker: use generation time distribution and genetic data:

Outline of the model

Likelihood

• branching process:

$$p(\mathsf{transmission}\;\mathsf{tree}) = \prod_{\mathsf{all}\;\mathsf{branches}} p(\mathsf{branches})$$

 $\begin{array}{l} \bullet \;\; p(\mathsf{branch}) = \\ p(\mathsf{infection/collection \; dates}) \times p(\mathsf{genetic \; differences}) \end{array}$

Outline of the model

Likelihood

• branching process:

$$p({\rm transmission\ tree}) = \prod_{\rm all\ branches} p({\rm branches})$$

 $\begin{array}{l} \bullet \;\; p(\mathsf{branch}) = \\ \;\; p(\mathsf{infection/collection \; dates}) \times p(\mathsf{genetic \; differences}) \end{array}$

Implementation

- Bayesian framework
- augmented data for ancestries and unobserved cases
- MCMC (Metropolis-Hasting) for sampling from posterior

The package outbreakeR

- C implementation embedded within R package
- multi-platform: linux, MacOS X, Windows, Solaris, ...
- supports parallelization
- post-processing of MCMC, simulations, graphics
- tested on wide range of simulations

outbreakeR: some examples

Looking ahead: applications and developments

Looking ahead: the bigger picture

Acknowledgements

- Organisers: Anton Camacho & Marc Baguelin
- Imperial College London: Anne Cori, Simon Cauchemez, Xavier Didelot, Christophe Fraser, Neil Ferguson, David Aanensen
- Wellcome Trust Sanger Institute: Claire Chewapreecha, Sephen Bentley
- Funding: MIDAS
- Thanks for your attention.

Getting your hands dirty

Google "adegenet" \rightarrow "adegenet on the web" \rightarrow "Documents" (http://adegenet.r-forge.r-project.org/)

Genetic data reveal heterogeneous infectivity Simulations with structured infectivity

- left: 2 groups of hosts, low/high infectivity ($R_0 = 1.5/3$)
- right: rare super-spreaders ($R_0 = 1.5/20$)

outbreakeR: model notations

Data

- i: index of cases $(i = 1, \dots, n)$
- s_i: genetic sequence of i
- t_i: collection date for s_i
- w: generation time distribution

outbreakeR: model notations

Data

- i: index of cases $(i = 1, \dots, n)$
- s_i: genetic sequence of i
- t_i: collection date for s_i
- ullet w: generation time distribution

Augmented data

- T_i^{inf} : date of infection of i
- α_i: infector of i
- κ_i : number of generations between i and α_i

outbreakeR: model notations

Data

- i: index of cases $(i = 1, \dots, n)$
- s_i : genetic sequence of i
- t_i: collection date for s_i
- w: generation time distribution

Augmented data

- T_i^{inf} : date of infection of i
- α_i: infector of i
- κ_i : number of generations between i and α_i

Parameters

- μ_1, μ_2 : rates of transitions and transversions ($\mu_2 = \gamma \times \mu_1$)
- π : proportion of the outbreak sampled

outbreakeR: model definition

Posterior proportional to joint distribution:

$$p(\{s_i, t_i, T_i^{inf}\}_{(i=1,\dots,n)}, \alpha, \kappa, w, \mu_1, \gamma, \pi) = \underbrace{p(\{s_i, t_i, T_i^{inf}, \alpha_i, \kappa_i\}_{(i=1,\dots,n)} | w, \mu_1, \gamma, \pi)}_{likelihood} \times \underbrace{p(w, \mu_1, \gamma, \pi)}_{prior}$$

outbreakeR: model definition

• Posterior proportional to joint distribution:

$$= \underbrace{p(\{s_i, t_i, T_i^{inf}\}_{(i=1,\dots,n)}, \alpha, \kappa, w, \mu_1, \gamma, \pi)}_{likelihood} \times \underbrace{p(\{s_i, t_i, T_i^{inf}, \alpha_i, \kappa_i\}_{(i=1,\dots,n)} | w, \mu_1, \gamma, \pi)}_{prior} \times \underbrace{p(w, \mu_1, \gamma, \pi)}_{prior}$$

Likelihood of case i decomposed as:

$$\underbrace{p(s_i|\alpha_i, s_{\alpha_i}, \kappa_i, \mu_1, \gamma)}_{genetic} \times \underbrace{p(t_i|T_i^{inf}, w)p(T_i^{inf}|\alpha_i, T_{\alpha_i}^{inf}, \kappa_i, w)p(\kappa_i|\pi)}_{epidemiological}$$

outbreakeR: model definition

Posterior proportional to joint distribution:

$$p(\{s_i, t_i, T_i^{inf}\}_{(i=1,\dots,n)}, \alpha, \kappa, w, \mu_1, \gamma, \pi)$$

$$= \underbrace{p(\{s_i, t_i, T_i^{inf}, \alpha_i, \kappa_i\}_{(i=1,\dots,n)} | w, \mu_1, \gamma, \pi)}_{likelihood} \times \underbrace{p(w, \mu_1, \gamma, \pi)}_{prior}$$

Likelihood of case i decomposed as:

$$\underbrace{p(s_i | \alpha_i, s_{\alpha_i}, \kappa_i, \mu_1, \gamma)}_{genetic} \times \underbrace{p(t_i | T_i^{inf}, w) p(T_i^{inf} | \alpha_i, T_{\alpha_i}^{inf}, \kappa_i, w) p(\kappa_i | \pi)}_{epidemiological}$$

 Sampling from posterior distribution using MCMC (Metropolis-Hasting)

Model - detail of likelihoods

Genetic likelihood:

$$\underbrace{\mathcal{B}\left(d(s_i, s_{\alpha_i}) | l(s_i, s_{\alpha_i}) \kappa_i, \mu_1\right)}_{transitions} \times \underbrace{\mathcal{B}\left(g(s_i, s_{\alpha_i}) | l(s_i, s_{\alpha_i}) \kappa_i, \gamma \mu_1\right)}_{transversions}$$

Model - detail of likelihoods

Genetic likelihood:

$$\underbrace{\mathcal{B}\left(d(s_i, s_{\alpha_i}) | l(s_i, s_{\alpha_i}) \kappa_i, \mu_1\right)}_{transitions} \times \underbrace{\mathcal{B}\left(g(s_i, s_{\alpha_i}) | l(s_i, s_{\alpha_i}) \kappa_i, \gamma \mu_1\right)}_{transversions}$$

Epidemiological likelihood:

$$p(t_i|T_i^{inf}, w) \times p(T_i^{inf}|\alpha_i, T_{\alpha_i}^{inf}, \kappa_i, w) \times p(\kappa_i|\pi)$$
$$w(t_i - T_i^{inf}) \times w^{(\kappa_i)}(T_i^{inf} - T_{\alpha_i}^{inf}) \times f_{\mathcal{NB}}(1|\kappa_i - 1, \pi)$$

with:

- $w(t_i T_i^{inf})$: probability of sampling date (assumed prop. to infectiousness
- $w^{(\kappa_i)}(T_i^{inf} T_{\alpha_i}^{inf})$: probability of infection date $(w^{(\kappa_i)})$ denotes κ_i convolutions of w)
- $f_{NB}(1|\kappa_i 1, \pi)$: probability of $\kappa_i 1$ unsampled cases (f_{NB} : density of the Negative Binomial distribution)

Simulation results: inferrence of correct ancestries

Inferring heterogeneous R: 2-groups simulations

With genetic data:

Without genetic data:

Inferring heterogeneous R: super-spreader simulations

Without genetic data:

