

<u>Gameboard</u>

Maths

Projectiles: Trajectories 4ii

Projectiles: Trajectories 4ii

A particle P is projected with speed $40\,\mathrm{m\,s^{-1}}$ at an angle of $35\,^\circ$ above the horizontal from a point O.

Part A Magnitude of velocity

For the instant $3\,\mathrm{s}$ after projection, calculate the magnitude of the velocity of P. Give your answer to $3\,\mathrm{s}$ significant figures.

Part B Direction of velocity

For the instant $3 \, \mathrm{s}$ after projection, calculate the direction of the velocity of P. Give your answer as an angle, in degrees, below the horizontal to $3 \, \mathrm{significant}$ figures.

Used with permission from UCLES, A Level, January 2012, OCR M2, Question 1

<u>Gameboard</u>

Maths

Projectiles: Trajectories 1i

Projectiles: Trajectories 1i

A stone is projected horizontally with speed $7\,\mathrm{m\,s^{-1}}$ from a point O on the edge of a vertical cliff. The horizontal and upward vertical displacements of the stone from O at any subsequent time, t seconds, are t m and t m respectively. Assume that there is no air resistance.

Part A y in terms of x

In this question, use the value $g=9.8\,\mathrm{m\,s^{-2}}$ for the acceleration under gravity.

By first expressing x and y in terms of t, find an expression for y in terms of x.

The following symbols may be useful: x, y

Part B Distance between cliff and stone

The stone hits the sea at a point which is $20\,\mathrm{m}$ below the level of O.

Find the distance between the foot of the cliff and the point where the stone hits the sea. Give your answer to 3 significant figures.

Part C Speed and direction of motion

Find the speed of the stone immediately before it hits the sea. Give your answer to 2 significant figures.
Find the direction of motion of the stone immediately before it hits the sea. Give your answer as an angle
below the horizontal to 3 significant figures.

Used with permission from UCLES, A Level, January 2006, OCR M1, Question 6

Gameboard:

STEM SMART Single Maths 39 - Projectiles & Parametric

Equations

<u>Gameboard</u>

Maths

Projectiles: Trajectories 4i

Projectiles: Trajectories 4i

A particle is projected with speed $7\,\mathrm{m\,s^{-1}}$ at an angle of elevation of 30° from a point O and moves freely under gravity. The horizontal and vertically upwards displacements of the particle from O at any subsequent time $t\,\mathrm{s}$ are $x\,\mathrm{m}$ and $y\,\mathrm{m}$ respectively.

Part A x & y in terms of t

In this question, use the value $g=9.8\,\mathrm{m\,s^{-2}}$ for the acceleration under gravity.

Express x in terms of t. When entering your answer, use fractions and surds rather than decimals.

The following symbols may be useful: cos(), sin(), t, tan(), x

Express y in terms of t. When entering your answer, use fractions rather than decimals.

The following symbols may be useful: cos(), sin(), t, tan(), y

Part B y in terms of x

Hence find the equation, y in terms of x, for the trajectory of the particle.

The following symbols may be useful: x, y

Part C Values of	Я	OT:	Values o	_ V	rt (Pa
------------------	---	-----	----------	-----	------	----

Calculate the smaller of two values of x when y=0.6. Give your answer as an exact surd.

Calculate the larger of two values of x when y=0.6. Give your answer as an exact surd.

Part D Direction of motion

Find the direction of motion of the particle when y=0.6 and the particle is rising. Give your answer as an angle from the horizontal and to 3 significant figures.

Adapted with permission from UCLES, A Level, OCR M2, June 2011, Question 5

Gameboard:

STEM SMART Single Maths 39 - Projectiles & Parametric

Equations

<u>Gameboard</u>

Maths Pa

Parametric Equations 3ii

Parametric Equations 3ii

Figure 1 shows the curve with parametric equations

$$x = a\sin\theta, \ y = a\theta\cos\theta,$$

where a is a positive constant and $-\pi \le \theta \le \pi$. The curve meets the positive y-axis at A and the positive x-axis at B.

Figure 1: The graph defined by $x=a\sin\theta, y=a\theta\cos\theta$ for $-\pi\leq\theta\leq\pi$.

Part A Points O, A and B

What is the value of θ corresponding to the origin?

$$\theta =$$

What are the coordinates of A?

What are the coordinates of B?

Items:

Part B Gradient

Find an expression for $\frac{dy}{dx}$.

The following symbols may be useful: Derivative(y, x), arccose(), arccose(),

Part C Tangent equation

Find the equation for the tangent to the curve at the origin.

The following symbols may be useful: x, y

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 39 - Projectiles & Parametric Equations

All materials on this site are licensed under the ${\color{red} \underline{\textbf{Creative Commons license}}}$, unless stated otherwise.

<u>Gameboard</u>

Maths

Parametric Equations 1ii

Parametric Equations 1ii

A curve is defined by the parametric equations

$$x = \sin^2 \theta, y = 4 \sin \theta - \sin^3 \theta$$

where
$$-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$$
.

Part A Find $\frac{\mathrm{d}y}{\mathrm{d}x}$

Find an expression for $\frac{dy}{dx}$.

The following symbols may be useful: Derivative(y, x), arccose(), arccose(),

Part B Point on the curve

Find the coordinates of the point on the curve at which the gradient is 2.

Give your answers as exact fractions.

x-coordinate:

y-coordinate:

Part C Stationary points

Drag and drop answers into the boxes below to complete the argument showing that the curve has no stationary points.

If the curve has stationary points, $\frac{\mathrm{d}y}{\mathrm{d}x}$ at those points. Hence, using the expression for $\frac{\mathrm{d}y}{\mathrm{d}x}$ found in part A,

$$egin{aligned} igcoldsymbol{-} 3\sin^2 heta &= 0 \ \Rightarrow \sin heta &= \pm \sqrt{egin{array}{c} \ 3 \ \end{array}} \end{aligned}$$

However, $\sin\theta$ obeys the inequality $\leq\sin\theta\leq$ so there is no value of θ that satisfies $\sin\theta=\pm\sqrt{\frac{1}{3}}$. Therefore, there are no stationary points.

Items:

Part D Cartesian equation

Find a cartesian equation of the curve, giving your answer in the form $y^2 = f(x)$.

The following symbols may be useful: x, y

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

<u>STEM SMART Single Maths 39 - Projectiles & Parametric Equations</u>

<u>Gameboard</u>

Maths

Parametric Equations 2i

Parametric Equations 2i

A curve has parametric equations

$$x=rac{1}{t+1},y=t-1.$$

The line y = 3x intersects the curve at two points.

Part A Value of t

Show that the value of t at one of these points is -2 and find the value of t at the other point.

The following symbols may be useful: t

Part B Normal

Find the equation of the normal to the curve at the point for which t=-2, giving your answer in the form y=f(x).

The following symbols may be useful: x, y

Part C Value of t

Find the value of t at the point where this normal meets the curve again.

The following symbols may be useful: t

Part D Cartesian Equation

Find a cartesian equation of the curve, giving your answer in the form y = f(x).

The following symbols may be useful: x, y

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

<u>STEM SMART Single Maths 39 - Projectiles & Parametric</u>

Equations

Home Gameboard Maths Calculus Integration Parametric Integration 1

Parametric Integration 1

The curve ${\cal C}$ has parametric equations

$$x=2t^2-3 \qquad y=t(4-t^2)$$

The curve crosses the x-axis at the points A and B and the region R is enclosed by the loop of the curve, as shown in **Figure 1**.

Figure 1: A graph of the curve C.

Part A	<u> </u>	oint	ιА
		U 1111	L / \

Find the *x*-coordinate of the point A.

Part B Point B

Find the x-coordinate of the point B.

Part C Area of R

The region R is enclosed by the loop of the curve, as shown in **Figure 1**. Find the exact value of the area of R

Created for isaacphysics.org by Matthew Rihan

Gameboard:

STEM SMART Single Maths 39 - Projectiles & Parametric

Equations

<u>Gameboard</u>

Maths

Parametric Equations 4i

Parametric Equations 4i

A curve has parametric equations

$$x = 2\sin t, \qquad y = \cos 2t + 2\sin t$$

for
$$-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}$$
.

Part A Derivative

Find $\frac{\mathrm{d}y}{\mathrm{d}x}$ as a function of t.

The following symbols may be useful: Derivative(y, x), cos(), cosec(), cot(), sec(), sin(), t, tan(), x, y

Part B Coordinates

Find the (x,y) coordinates of the stationary point.

If a value is not a whole number, enter the value as a decimal.

Part C Equation

Find the Cartesian equation of the curve.

The following symbols may be useful: x, y

Part D Range

Find the range of values that \boldsymbol{x} can take.

Construct your answer from the items below.

Items:

Part E Sketch

Hence sketch the curve.

Used with permission from UCLES A-level Maths papers, 2003-2017.