# ARITHMETIC Chapter 4





**NUMERACIÓN** 





# ¿SE IMAGINAN EL MUNDO SIN SISTEMAS DE NUMERACIÓN?

Si fuera así:

¿Cómo expresarían su edad, peso o estatura?





¿Cómo expresarían la cantidad de alumnos que hay en un aula?



# **NUMERACIÓN**



Es parte de la aritmética que se encarga de la correcta formación, lectura y escritura de los numerales.

Número: Idea que se tiene de cantidad.

Numeral:

DESCOMPOSICIÓN POLINÓMICA DE UN NUMERA  $\frac{3725}{3} = \frac{3000}{3000} + \frac{700}{700} + \frac{20}{200} + \frac{5}{2000} + \frac{1}{200} + \frac{1}$ 

**NUMERAL** 

22 , 
$$101_3$$
 ,  $\overline{xyzyx}$  ,  $\overline{abccba}_{(n)}$ 



#### PRINCIPIO DE LUGAR Y ORDEN

En un numeral cada una de las cifras tiene un lugar y orden establecido.





Se cuenta de izquierda a derecha.



#### PRINCIPIO DE LA BASE

Indica la cantidad de unidades necesarias para formar una unidad inmediata de orden superior.

# **Ejemplo**

Represente 14 unidades en base 10 a base 6.





# **CORRECTA ESCRITURA**

Sea: 
$$\overline{abc}_{(n)} \longrightarrow 1$$
. a, b, c < n

- 2. a, b, c,  $n \in \mathbb{N}$
- $3. \quad n \geq 2$
- 4.  $a \neq 0$





¿Cuántos numerales de dos cifras son iguales a siete veces la suma de sus cifras?

# **RESOLUCIÓN**

## Recuerde:

$$\overline{ab} = 10a + b$$

$$\overline{ab} = 7(a + b)$$
 $10a + b = 7a + 7b$ 
 $3a = 6b$ 
 $a = 2b$ 
 $2 = 1$ 
 $4 = 2$ 
 $6 = 3$ 

8





Determine un número de tres cifras que empieza en cifra 4, tal que al eliminar dicha cifra se obtiene un número que es 1/17 del número original. Dé como respuesta el producto de sus cifras.

# **RESOLUCIÓN**

$$\overline{4ab} \Rightarrow \overline{ab} = \frac{1}{17} \times \overline{4ab}$$

$$17 \times \overline{ab} = \overline{4ab}$$

$$17\overline{ab} = 400 + \overline{ab}$$

$$16\overline{ab} = 400$$

$$\overline{ab} = 25 \Rightarrow \overline{4ab} = 425$$

RPTA: 4





Si el numeral  $\overline{(a+2)(3b)9(c-2)6(3a-8)}$  es capicúa, calcule (a + b)c.

# **RESOLUCIÓN**

$$a + 2 = 3a - 8$$

$$10 = 2a$$

$$a = 5$$

$$3b = 6$$

$$b = 2$$

$$c - 2 = 9$$

$$c = 11$$

$$(a + b)c = (5 + 2)11 = 77$$





Como es de conocimiento, los bancos enumeran las tarjetas de débito de una manera secuencial (consecutivo); cierto banco usa el sistema de numeración de base 7 para numerar ciertas tarjetas. Si en este momento el número de la antepenúltima tarjeta es 5365, ¿cuál es el número de la última tarjeta?

# **RESOLUCIÓN**

# Antepenúltima

RPTA:

5400





A es el conjunto de todos los números de dos cifras en base 7; B es el conjunto de todos los números de tres cifras de la base 4. ¿Cuál es el número de elementos que tiene la intersección de A y B?

# **RESOLUCIÓ**

N

Conjunto A: 
$$10_7$$
;  $11_7$ ;  $12_7$ ; ...;  $66_7$  (cambio a base 10)  $7$ ;  $8$ ;  $9$ ; ...;  $48$ 

$$A \cap B = \{16;17;...;48\}$$

RPTA: **33** 





Si  

$$425_{(7)} = \overline{abc}$$
  
calcule  $a + b + c$ .

# **RESOLUCIÓN**

$$425_{(7)} = \overline{abc}$$

# Descomponiendo en forma polinómica

$$4x7^{2} + 2x7 + 5 = \overline{abc}$$

$$a = 2$$

$$215 = \overline{abc}$$

$$b = 1$$

$$c = 5$$

#### Piden:

$$a + b + c = 8$$







Si  

$$274_{(n)} = 229$$
  
calcule  $n^3 + 1$ .

# **RESOLUCIÓN**

$$274_{(n)} = 229$$

# Descomponiendo en forma polinómica

$$2(n^{2}) + 7(n) + 4 = 229$$
 $2n^{2} + 7n = 225$ 
 $n(2n + 7) = 225$ 
 $9 \times 25 \Rightarrow n = 9$ 

Piden: 
$$n^3 + 1$$
  
 $9^3 + 1 = 730$ 







Si el numeral  $4bb_{(8)}$  se convierte a la base c se obtiene un número de la forma  $\overline{6aa}$ . Calcule a + b + c.

## **RESOLUCIÓN**

$$\overline{4bb}_{(8)} = \overline{6aa}_{(c)}$$

$$8 > c > 6 \rightarrow c = 7$$

# Reemplazando:

$$\overline{4bb}_{(8)} = \overline{6aa}_{(7)}$$

# Descomponemos polinómicamente

$$4.8^{2} + b.8 + b = 6.7^{2} + a.7 + a$$

$$256 + 9b = 294 + 8a$$

$$9b = 38 + 8a$$

$$6$$

Piden: 
$$a + b + c$$
  
  $2 + 6 + 7 = 15$ 

