

Mathematically,
$$A_{V}(f) = \frac{A_{V(mid)}}{\int + (f_{v}/f)^{2}} \frac{A_{V(mid)}}{\int + (f_{v}/f)^{2}}$$
where, $f = Lower$ out-off frequency
$$f_{v} = High_{sv} \text{ cut-off frequency}.$$

$$Case(i) f < f_{v} (ie, the frequency is lower the lowent-off frequency
$$f_{v} > 1 \quad \text{where as} \quad f \approx 0$$

$$f = A_{v, mid}$$

$$A_{v}(f) \approx \frac{A_{v, mid}}{\int + (f_{v}/f)^{2}}$$

$$Can(in) f_{v} f < f_{v} (ie, mid-freq. range)$$

$$f_{v} \approx 0$$

$$f \approx 0$$$$

(ase (iii)
$$f > f_H$$
 (high freq. range)

$$f_H \approx 0 \qquad f_{M} > 1$$

$$f_{M} = \frac{A_{V \, mid}}{\sqrt{1 + (\frac{f}{f_H})^2}}$$

Unit f_{M} voltage gain in Decibel (db)

$$f_{M} = \frac{A_{V \, mid}}{\sqrt{1 + (\frac{f}{f_H})^2}}$$

$$f_{M} = \frac{$$

--- Continued

Unit of power gain in decibel (dB)

$$\Delta_{p}(db) = 10 \log (\Delta_{p}) db$$

Where
$$A_p = \frac{P_0}{ac} = \frac{ac}{ac} power output}$$

He have designed a multi-stage amplifier in which each stage is having voltage gain as

 A_{v_1} , A_{v_2} , A_{v_3} ---- A_{v_n}

Ovnall gain is given as:
$$A_{V} = A_{V_{1}} \cdot A_{V_{2}} \cdot A_{V_{3}} - \cdots - A_{V_{n}}$$

Overall gain in db

$$\frac{1}{A_{v}(db)} = \frac{20}{10} \frac{A_{v}}{A_{v}}$$

$$= 20 \left[A_{V_1} \cdot A_{V_2} \cdot A_{V_3} \cdot \cdots \cdot A_{V_n} \right]$$

··· Continued

$$\int_{L,C_1} = 72.5 \text{ Hz}$$

ets calculate lower cut-off freg. due to Co $= \frac{1}{2\pi \left(R_c + R_L\right) \cdot C_2}$ = 10 H2 2×(3·14)×(1·3kn+10kn)×10

