Théorie de Galois infinie

1 Extensions galoisiennes

1.1 Déf

On étend la définition en disant que L/K est galoisienne si algébrique, séparable et normale. En particulier si $K \subset E \subset L$ alors E/L est galoisienne.

1.2 Paradigme/Rappel

Y s'agit toujours de remarquer que si K^{sep} est une clôture séparable et L/K est finie :

- 1. Alors $\operatorname{Hom}_K(L,K^{sep})$ est fini de cardinal [L:K].
- 2. $\operatorname{Hom}_K(K^{sep}, K^{sep}) \to \operatorname{Hom}_K(L, K^{sep})$ est surjectif (Zorn).

2 Groupes de Galois

Milne prends une notation particulière : $G = Aut_K(K^{sep})$, pour $S \subset K^{sep}$ fini ; $G(S) = \{g \in G | gs = s, \forall s \in S\}$. Ensuite pour une extension galoisienne E/K quelconque on définit

$$Gal(E/K) := Aut_K(E)$$

2.1 Constructions

En fait $G(S) = Gal(K^{sep}/K(S))$. Par 1.2.1, $\bar{S} := \bigcup_{g \in G} gS$ est fini et $g\bar{S} = \bar{S}$ pour tout $g \in G$, alors $G(\bar{S})$ est normal dans G (mini calcul). Ça correspond au groupe de galois $Gal(K^{sep}/E)$ où E est la clôture galoisienne de K(S)/K dans K^{sep} .

2.2 Topologie de Krull

En fait

• G(S) définit une base de voisinage ouverts de 1 et une topologie unique sur G.

On montre (1.) que la topologie déterminée par les G(S) coincide avec celle donnée par

$$G \simeq \varprojlim_{[L:K]<+\infty,galois} Gal(L/K)$$

et (2.) que les groupes de galois sont compacts et totalement déconnectés.

2.3 Preuve de 1.

Vu que $G(S) = Gal(K^{sep}/K(S))$ y suffit de montrer que

- 1. $Gal(K^{sep}/K) \to Gal(E/K)$ sont continues pour tout E/K galoisiennes finies.
- 2. On a bien tout les G(S).

Pour le 2. c'est juste que si $K(S) \subset E$ avec E/K la clôture galoisienne de K(S) alors

$$\bigcup_{g \in Gal(E/K(S))} \tilde{g}G_E = G_{K(S)}$$

pour des lifts des g.

Pour la continuité bah c'est juste que si \tilde{g} lift un g alors $\tilde{g}G_E$ est ouvert par définition.

2.4 Preuve de 2.

La compacité on la prouve via

• $G \simeq \varprojlim_{[L:K]<+\infty,galois} Gal(L/K)$ est fermé dans $\prod_{[L:K]<+\infty,galois} G/G_L$ qui est compact.

Milne le prouve joliment en disant que l'égalisateur de

$$pr_1: \prod_S G/G(S) \to G/G(S_1)$$

et

$$q \circ pr_2 \colon \prod_S G/G(S) \to G/G(S_2) \to G/G(S_1)$$

est fermé (intersection) pour $S_1 \subset S_2$ et que G est l'intersection de tout ces égalisateurs (!). La connectivité c'est simplement que

$$\bigcap_{S \subset K^{sep} \ fini} G(S) = \{ id_{K^{sep}} \}$$

2.5
$$(K^{sep})^{Aut(K^{sep}/K(S))} = G(S)$$

Ca découle du théorème de galois fini!

3 Théorème principal

Étant donné un sous-groupe $H \leq G_K$:

$$Gal(\overline{K}/\overline{K}^H) = \overline{H}$$

et étant donné un sous-corps $K\subset M\subset \overline{K}$:

$$(\overline{K})^{G_M} = M$$

et G_M est fermé dans G.

3.1 G_M est fermé

Pour montrer que G_M est fermé l'idée c'est que pour tout $S\subset \overline{K}$ fini, G(S) est ouvert et $G_K/G(S)$ est fini d'où

$$G(S) = G_K - \bigsqcup_{\tilde{g} \neq 1} \tilde{g}G(S)$$

est fermé. Puis $G_M = \bigcap_{S \subset M} G(S)$ est fermé.

3.2 Clôture de H

Méga instructif. Clairement

$$\bar{H} \subset Gal(\bar{K}/\bar{K}^H)$$

maintenant si $g \in G_K - \bar{H}$, on a E/K galoisienne t.q. $\bar{K}^H \subset E$ et (par déf)

$$g.G_E \cap H = \emptyset$$

en particulier si $\phi: G_K \to G_K/G_E = G_{E/K}$ alors $\phi(g) \notin \phi(H) \leq G_{E/K}$ (!!) d'où $\phi(g)$ ne fixe pas $E^{\phi(H)} \subset \bar{K}^H$.