MATH 7320 Functional Analysis Homework 2

Joel Sleeba

September 22, 2024

1. **Solution:** One side is easy using the conitnuity of the functional, for the other way, use the functional $d(x, \mathcal{M})$

2. Solution:

- (a) If X is reflexive, the map $X \to X^{**} := x \to \operatorname{ev}_x$ is an isometric isomorphism. Moreover we know that $X^{**} = B(X^*, \mathbb{C})$ is complete since \mathbb{C} is complete. Therefore by the isometric isomorphism, we get that X is complete.
- (b) Let $i_X: X \to X^{**}: x \to \text{ev}_x$ be the canonical injection map. Then first we show that $i_{X^{**}} = (i_X)^{**}$, that is the canonical injection of the double dual is the double dual of the canonical injection.
 - First we notice that since $i_X: X \to X^{**}$, the dual of it $i_X^*: X^{***} \to X^*$ and $i_X^{**}: X^{**} \to X^{****}$ as the usual dual of linear transformations. Moreover $i_{X^{**}}: X^{**} \to X^{****}$ shows that the domain and codomain of the maps are same, therefore considering the equality of the maps makes sense. (Notice that actually $i_{X^{**}}$ is a map from $X^{**} \to (X^{**})^{**}$, but by definition it follows that $(X^{**})^{**}:=(X^{***})^*=X^{****}$).
- (c) Let $M \subset X$ be a closed subset of a reflexive space X. Consider the subset $F \subset X^*$ such that $F = \{f \in X^* : f|_M = \mathbf{0}\}$. Show that $X^*/F \cong^{\mathrm{iso}} M^*$ (For this it is enough to show that the restriction map $f \to f|_M$ has its kernel F. And for isometry, play with the quotient norm).