

Parshvanath Charitable Brust's

A. P. STIVE INSTRUUTE OF TECHNOLOGY

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai) (Religious Jain Minority)

Department of CSE Data Science

UNIT TEST – I

Academic Year 2023-24

Class: TEDS Semester: VI Subject: CSC604-Machine Learning

Date: 20/02/2024 Time:2:00 to 3:30pm Max marks: 40

Note the following instructions

1. All questions are mandatory (Q.1, Q.2, Q.3)

2. Draw neat diagrams wherever necessary.

3. Write everything in Black ink (no pencil) only.

4. Assume data, if missing, with justification.

Q.N					Qu	estic	ons				MARKS	СО	Blooms Taxonomy Level	PO2
Q.1	Attempt any two										<u> </u>			
a)	Given $X=[-2,6,1]$, calculate the $L1$, $L2$, ∞ norm.										[5]	CO2	L3	PO1,
														PO12
b)	Show that $Vc(C)$ is an inner product space with inner product define on $\alpha=(a_1,a_2,\ldots,a_n)$, $\beta=(b_1,b_2,\ldots,b_n)$ ϵ $V_n(C)$ by $(\alpha,\beta)=a_1b_1+a_2b_2+\ldots a_nb_n$									[5]	CO2		PO1, PO12	
c)	Find eigen values for the following matrix 3 2 1								[5]	CO2	L3	PO1,		
	A=	1	4	3										7 0 12
d)	A=	3 -4 0	-4 1 -4	0 -4 2	B=	:	6 6 -8	2 5 -7	-6 -8 5		[5]	CO2		PO1, PO12
	Check if	the s	ymm	etric 1	matrice	s A,	B are	e posi	tive d	efinite.				

Q.2	Attempt	any tv	WO											
a)	Fit the straight-line curve with help of least square method for the following and predict no of T-shirt sold for the price \$8.									or the	[10]	CO3	L3	PO1,
	Pric	e of 7	Γ-shirts in	2	2 3 5 7 9							PO12		
	No.	of T-	shirt sold	(Y)	6	8	9	12		17				
b)	Identify h Machine Positively Negative	lled data j	[10]	CO3	L3	PO1, PO12								
	. Evaluate the following dataset to fit a multiple linear regression model										[10]	CO3	L3	PO1,
c)			X1 (produc 1 Sales)	,	`	/eekly les)	y							PO12
	1 Sales) 2 Sales) 3 1 4 1													
	2 5					6								
			3	8 2	8									
Q.3	Attempt	any o	ne											
a)	What are Explain w	-	[10]	CO1	L2									
b)	A machine learning model is trained to predict tumor in patients. The test dataset consists of 100 people.										[10]	CO1	L2	
		Negative Positive												
	PREDICTION	1	Negative	60		8								
	PREDIC		Positive 22			10								
		ind Accuracy, Precision, Recall, F1 Score, Specificity for the ven Confusion Matrix.												