Indian Institute of Space Science and Technology

Thiruvananthapuram-695547

Summer Supplementary Examination, June-July 2014

B.Tech 2nd Semester

MA121 - Vector Calculus and Differential Equations

Date: 23rdJune, 2014 Time: 9.30 am to 12.30 pm Max. Marks: 100

SECTION A (Answer all 10 questions - 10x5= 50 marks.)

- 1. Determine whether the sequence $f_n(x) = \frac{n^2 \ln x \sin nx}{x^n}$, $x \in [2, \infty)$ converges uniformly on the given interval? (5)
- 2. Evaluate the following limit with appropriate justification: (5)

$$\lim_{n\to\infty} \int_1^2 \left(\frac{x^2+1}{8}\right)^n \sin nx \ dx.$$

- 3. Define arc length function of a smooth curve. Find the arc length function of the curve C: $3x=\left(\frac{y}{2\sqrt{z}}+2\right)^3=(\ln z)^3$ with initial point (0,-4,1). [Hint: take $z=e^t$] [2+3]
- 4. Let $\overrightarrow{F} = (xye^z + ze^x, \frac{1}{2}x^2e^z, \frac{1}{2}x^2ye^z + e^x + 1)$ be a vector field and C be a curve joining straight line segments $(0,1,0) \longrightarrow (0,0,1) \longrightarrow (1,0,0)$ and oriented accordingly. Evaluate $\int_C \overrightarrow{F} . d\vec{r}$. Is the integral independent of the path? Justify your answer. [3+2]

Using Green's theorem find the area of the region G bounded by the parabola $x=y^2$ and the straight line x=2 on xy-plane. [5]

5.

6. Let a surface S be given by $\vec{r}(u,v)=(\cos u,\sin u,2v)$ where $u\in[0,2\pi]$ and $v\in[-1,1]$. Represent the surface S pictorially. Using surface integral, find the surface area of S. [1+4]

7. By solving the differential equation

$$(x^2 - 2x) \frac{dy}{dx} = 2(x - 1)y,$$

find out initial points (x_0, y_0) such that the given differential equation with the initial condition $y(x_0) = y_0$, has

- (i) no solution, (ii) unique solution, (iii) infinitely many solutions.
- 8. (a) If the Wronskian of two functions f and g is $W(f,g)(x)=3e^{4x}$, where $f(x)=e^{2x}$, then find g(x).
 - (b) Determine whether the pair of functions $\{f(x)=x^5,\,g(x)=x^2|x|^3\}$ can be solutions of the differential equation y''+p(x)y'+q(x)y=0 with p and q continuous on $[-a,a],\,a>0$.
- 9. Find the singular point of the following differential equation and classify it. Also determine the interval of convergence of the corresponding series solution of

$$(x-\pi)y'' + \frac{1+\pi-x}{2\pi-2\pi x + 2\pi^2}y' + \frac{1}{\frac{3}{2}(x-\pi)^2 + \frac{2}{3}}y = 0,$$

about that point.

10. Find the general solution of $xy'' + (1+2\lambda)y' + xy = 0$, x > 0 in terms of Bessel's functions, using the substitution $y = \frac{u(x)}{x^{\lambda}}$, where λ is a positive real number.

SECTION B (Answer any 5 questions - 5x10= 50 marks.)

- 11. (a) Show that the series $\sum_{n=1}^{\infty} \frac{x^n}{n}$ does not converge uniformly on [0,1). (4)
 - (b) Let $\{f_n\}$ be a sequence of functions defined on [a,b]. Then under what conditions the following can be justified: $\int_a^b \sum_{n=1}^\infty f_n(x) dx = \sum_{n=1}^\infty \int_a^b f_n(x) dx.$ Hence show that $\ln 2 = \sum_{n=1}^\infty \frac{1}{n \ 2^n}$. (1+5)
- 12. (a) State Stoke's theorem for non-simply connected surfaces having two boundary components (i.e., only one hole). Verify the stated Stoke's theorem for the vector field $F(x,y,z)=(x^2,y^2,z)$ over the annular region $S:1\leq x^2+y^2\leq 9,\ z=3.$ [2+6]
 - (b) From definition find the directional derivative of $xy+e^z$ at the point (1,0,1) along the unit vector $\vec{v}=(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}).$ [2]
- 13. (a) Using Green's theorem calculate the double integral $\iint_G (y-1) \ dx \ dy$ in terms of line integral where G is given by $G: x^2 + y^2 \le 4$. [3]

2

Let G be a connected region on xy-plane with one hole as depicted in the figure with smooth boundaries C_1 and C_2 oriented positively. Let \overrightarrow{F} be a smooth vector field with domain G having $\operatorname{curl}(\overrightarrow{F})=0$. Show that the line integrals of \overrightarrow{F}

(b) along C_1 and along C_2 are the same. [7]

- 14. (a) Using the Picard's method of successive approximations find the first three approximations ϕ_0, ϕ_1, ϕ_2 to the solution of the initial-value problem $\frac{dy}{dx} = y + y^2$, y(0) = 1. Also find the exact solution of the above initial-value problem. [(3+2) Marks]
 - (b) Find the general solution of $y'' + 6y' + 9y = \frac{e^{-3x}}{x}$, x > 0, using the method of variation of parameters. [5 Marks]
- 15. (a) Find the indicial equation, the recurrence relation and the Frobenius series solution up to first two terms of $(x-x^2)y'' + (1-5x)y 4y = 0$, about the point x = 0 for x > 0. Also write the proper form of another independent solution. [(5+2) Marks]
 - (b) Using the Picard's theorem, verify whether the initial-value problem

$$\frac{dy}{dx} = 1 + y^{2/3}, \ y(2014) = \frac{1}{2^{2014}},$$

has a unique solution around the point 2014.

If y(2014) = 0, does the Picard's theorem guarantee the existence of a unique solution? Justify your answer. [(2+1) Marks]

16. (a) Using the definition of Bessel function of first kind of order p(p > 0), given by

$$J_p(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!\Gamma(n+p+1)} \left(\frac{x}{2}\right)^{2n+p}$$

establish the identity $\frac{d}{dx}[x^pJ_p(x)] = x^pJ_{p-1}(x)$. Also show that between any two positive roots of $J_{p+1}(x) = 0$, there is a root of $J_p(x) = 0$. [(2+3) Marks]

(b) Find the eigenvalues and eigenfunctions of the boundary value problem

$$\frac{d}{dx}(x\frac{dy}{dx}) + \frac{\lambda}{x}y = 0, \quad 1 < x < l, \quad y(1) = 0, \ y(l) = 0, \quad \lambda \in \mathbb{R}.$$

[5 Marks]