2021 SPRING MAS575 Combinatorics HOMEWORK 1

DUE: MARCH 16, 2021

- **1.1.** Suppose that there are m red clubs R_1, R_2, \ldots, R_m , and m blue clubs B_1, B_2, \ldots, B_m in a university of n students. Suppose that the following rules are satisfied:
- (a) $|R_i \cap B_i|$ is odd for every *i*.
- (b) $|R_i \cap B_i|$ is even for every $i \neq j$.

Prove that $m \leq n$.

- **1.2.** Let us consider the following variation of the odd rule in some university with *n* students:
 - (i) Every club has an even number of members.
- (ii) Every pair of clubs shares an odd number of members.

Prove that there are at most n clubs if n is odd, and at most n-1 clubs if n is even.

- **1.3.** Let A, B be families of subsets of $\{1, 2, ..., n\}$ such that $|A \cap B|$ is odd for all $A \in A$ and $B \in B$. Prove that $|A||B| \le 2^{n-1}$.
- **1.4.** Let $\{A_1, A_2, \dots, A_m\}$ be an intersecting antichain of subsets of $\{1, 2, \dots, n\}$ such that $|A_i| \leq \frac{1}{2}n$ for each i. Prove that

$$\sum_{i=1}^{m} \frac{1}{\binom{n-1}{|A_i|-1}} \le 1.$$

(A family $\{A_1, A_2, \dots, A_m\}$ is an *antichain* if and only if $A_i \nsubseteq A_j$ for all $i \neq j$.)

1.5. Let $\frac{1}{2} \le p < 1$. Let X_1, X_2, \dots, X_n be independent random variables such that $P(X_i = 1) = p$ and $P(X_i = 0) = 1 - p$. Let $\alpha_1, \alpha_2, \dots, \alpha_n$ be nonnegative real numbers such that $\sum_{i=1}^n \alpha_i = 1$. Prove that

$$P\left(\alpha_1 X_1 + \alpha_2 X_2 + \dots + \alpha_n X_n \ge \frac{1}{2}\right) \ge p.$$

Hint: Erdős-Ko-Rado Theorem.

2021 SPRING MAS575 Combinatorics HOMEWORK 2

Due: March 30, 2021

- **2.1.** Let p be a prime and let L be a subset of $\{0, 1, 2, ..., p-1\}$ of size s. Suppose that $\{A_1, A_2, ..., A_m\}$ and $\{B_1, B_2, ..., B_m\}$ are two families of subsets of $\{1, 2, ..., n\}$ satisfying the following:
 - (i) $|A_i \cap B_i| \notin L + p\mathbb{Z}$ for all $1 \le i \le m$;
- (ii) $|A_i \cap B_i| \in L + p\mathbb{Z}$ for all $1 \le i < j \le m$.

Prove that $m \leq \sum_{i=0}^{s} \binom{n}{i}$.

- **2.2.** Let $K = \{k_1, k_2, \dots, k_r\}$ and $L = \{l_1, l_2, \dots, l_s\}$ be two sets of nonnegative integers and assume that $k_i > s r$. Let \mathcal{F} be a family of subsets of $\{1, 2, \dots, n\}$. Prove that if
 - (i) $|A| \in K$ for all $A \in \mathcal{F}$,
 - (ii) $|A \cap B| \in L$ for all $A, B \in \mathcal{F}, A \neq B$,

then

$$|\mathcal{F}| \le \binom{n}{s} + \binom{n}{s-1} + \dots + \binom{n}{s-r+1}.$$

- **2.3.** Let n > 1. Construct two families $\{A_1, A_2, \dots, A_m\}$ and $\{B_1, B_2, \dots, B_m\}$ of sets such that
 - (i) $A_i \cap B_i = \emptyset$ for all $i \in \{1, 2, ..., m\}$, and
- (ii) $A_i \cap B_j \neq \emptyset$ for all $1 \leq i < j \leq m$,

but

$$\sum_{i=1}^m \frac{1}{\binom{|A_i|+|B_i|}{|A_i|}} \ge n.$$

2.4. Let \mathcal{F} be a k-uniform family of subsets of [n] such that for every member F of \mathcal{F} , there is a coloring of $\{1, 2, ..., n\}$ by k colors so that F is the only member of \mathcal{F} with all k colors appearing. Prove that $|\mathcal{F}| \leq {n-1 \choose k-1}$.

Hint: Find $|\mathcal{F}|$ linearly independent polynomials in variable x_2, x_3, \dots, x_n over \mathbb{F}_2 .

2.5. Let \mathcal{F}_1 , \mathcal{F}_2 be k-uniform families of subsets of $\{1, 2, ..., n\}$. Let L_1 , L_2 be disjoint subsets of integers. Prove that if \mathcal{F}_1 is L_1 -intersecting and \mathcal{F}_2 is L_2 -intersecting, then

$$|\mathcal{F}_1||\mathcal{F}_2| \le \binom{n}{k}.$$

2021 SPRING MAS575 Combinatorics HOMEWORK 3

DUE: APRIL 13, 2021

3.1. The (n-1)-dimensional unit sphere is defined as $S^{n-1} = \{x \in \mathbb{R}^n : ||x|| = 1\}$. Let m(n) be the maximum number of points in a set X of points in S^{n-1} such that ||x-y|| = a or b for all $x, y \in X$, $x \neq y$ for some fixed a and b. Prove that

$$n(n+1)/2 \le m(n) \le n(n+3)/2$$
.

3.2. Let k be a positive integer. Let r_1, r_2, \ldots, r_k be positive integers. For each $i \in \{1, 2, \ldots, m\}$, let $(A_{i,1}, A_{i,2}, \ldots, A_{i,k})$ be a k-tuple of pairwise disjoint sets such that $|A_{i,j}| = r_j$. Suppose that for each $i \neq i'$, there exist $j_1 < j_2$ and $j_1' < j_2'$ such that

$$A_{i,j_1} \cap A_{i',j'_2} \neq \emptyset$$
 and $A_{i,j_2} \cap A_{i',j'_1} \neq \emptyset$.

Prove that
$$m \le \frac{(\sum_{i=1}^k r_i)!}{\prod_{i=1}^k r_i!}$$
.

3.3. Let X_1, X_2, \ldots, X_n be disjoint sets. Let r_1, r_2, \ldots, r_n and s_1, s_2, \ldots, s_n be positive integers. Suppose that A_{ij} and B_{ij} are subsets of X_i for $i \in [n]$ and $j \in [m]$ such that $|A_{ij}| = r_i$ and $|B_{ij}| = s_i$. In addition,

$$\begin{split} &(\bigcup_i A_{ij}) \cap (\bigcup_i B_{ij}) = \emptyset \text{ for all } 1 \leq j \leq m. \\ &(\bigcup_i A_{ij}) \cap (\bigcup_i B_{ik}) \neq \emptyset \text{ for all } 1 \leq j < k \leq m. \end{split}$$

Prove that $m \leq \prod_{i=1}^{n} {r_i + s_i \choose r_i}$.

3.4. Let a, b, c be positive integers. Let

$$A_{1,1}$$
 $A_{1,2}$ $A_{1,3}$ $A_{2,1}$ $A_{2,2}$ $A_{2,3}$ \vdots $A_{m,1}$ $A_{m,2}$ $A_{m,3}$

be a matrix of finite sets such that

(i)
$$|A_{i,1}| = a$$
, $|A_{i,2}| = b$, $|A_{i,3}| = c$ for all i, j ;

(ii)
$$A_{i,j} \cap A_{i,j'} = \emptyset$$
 for all i, j, j' if $j \neq j'$;

(iii) for each $1 \le i < j \le m$, $A_{i,1} \cap A_{j,2} \ne \emptyset$, or $A_{i,1} \cap A_{j,3} \ne \emptyset$, or $A_{i,2} \cap A_{j,3} \ne \emptyset$.

Prove that $m \leq \frac{(a+b+c)!}{a!b!c!}$. (Hint: Consider $V=V_1 \oplus V_2$ for some vector space V_1 and V_2 with $\dim(V_1)=a+b+c$ and $\dim(V_2)=b+c$. Find some linear transformations $T_1:U\to V_1$ and $T_2:U\to V_2$ with certain properties. Later find linearly independent vectors in $(\bigwedge^a V_1) \wedge (\bigwedge^b V_2)$.)

3.5. Let L be a vector space of functions from \mathbb{F}^n to \mathbb{F} such that if f(x) = 0 for more than d points x on a line in \mathbb{F}^n , then f(x) = 0 for all points on the line. Prove that the dimension of L is at most $(d+1)^n$.

2021 SPRING MAS575 Combinatorics HOMEWORK 4

DUE: MAY 18, 2017

4.1. Let A and B be two nonempty subsets of \mathbb{Z}_p . Let

$$X = \{a + b : a \in A, b \in B, ab \neq 1\}.$$

Show that $|X| \ge \min\{|A| + |B| - 3, p\}$.

- **4.2.** A graph is k-regular if every vertex has degree k. Let p be a prime. Let G be a graph with no loops. Prove that if the average degree of G is greater than 2p 2 and the maximum degree is at most 2p 1, then G contains a p-regular subgraph.
- **4.3.** Let *n* be a positive integer. Let $L = \{(x, y, z) \in \mathbb{Z}^3 : |x|, |y|, |z| \le n\} \{(0, 0, 0)\}$. Suppose that we want to cover all points in *L* by planes in \mathbb{R}^3 not passing (0, 0, 0). Prove that 6n is the minimum number of such planes.
- **4.4.** Suppose that points in $\{0,1\}^n \{0\}$ are covered by *m* hyperplanes without covering 0. Prove that $m \ge n$. Is this tight?
- **4.5.** In a party, n couples are invited. They decided to sit around a round table with 2n + 1 chairs such that the i-th couple are seated from each other by distance d_i (meaning that they are separated by $d_i 1$ chairs). Prove that if 2n + 1 is a prime and $d_1, d_2, \ldots, d_n \le n$, then this is possible.