We now derive an additional transform as an example.

EXAMPLE 11.3 z-transform of the unit ramp function

The z-transform of the unit ramp function, f[n] = n, is now derived.

$$\mathscr{Z}[n] = \sum_{n=0}^{\infty} nz^{-n} = 0 + z^{-1} + 2z^{-2} + 3z^{-3} + \cdots.$$

We have, from Appendix C, the summation formula

$$\sum_{n=0}^{\infty} na^n = \frac{a}{(1-a)^2}; \quad |a| < 1.$$

Hence, letting $a = z^{-1}$, we have the z-transform

$$\mathcal{Z}[n] = \sum_{n=0}^{\infty} nz^{-n} = \frac{z^{-1}}{(1-z^{-1})^2} = \frac{z}{(z-1)^2}$$

TABLE 11.2 z-Transforms

$f[n], n \geq 0$	F(z)	ROC
$1. \delta[n]$	1	All z
$2. \delta[n-n_0]$	z^{-n_0}	$z \neq 0$
3. <i>u</i> [<i>n</i>]	$\frac{z}{z-1}$	z > 1
4. <i>n</i>	$\frac{z}{(z-1)^2}$	z > 1
5. n^2	$\frac{z(z+1)}{(z-1)^3}$	z > 1
6. <i>a</i> ⁿ	$\frac{z}{z-a}$	z > a
7. <i>na</i> ⁿ	$\frac{az}{(z-a)^2}$	z > a
8. n^2a^n	$\frac{az(z+a)}{(z-a)^3}$	z > a
9. sin <i>bn</i>	$\frac{z\sin b}{z^2 - 2z\cos b + 1}$	z > 1
$10.\cos bn$	$\frac{z(z-\cos b)}{z^2-2z\cos b+1}$	z > 1
11. $a^n \sin bn$	$\frac{az\sin b}{z^2 - 2az\cos b + a^2}$	z > a
12. $a^n \cos bn$	$\frac{z(z-a\cos b)}{z^2-2az\cos b+a^2}$	z > a