Database Architecture and Data Model

CS 4750 Database Systems

[A. Silberschatz, H. F. Korth, S. Sudarshan, Database System Concepts, Ch.2] [C.M. Ricardo and S.D. Urban, Database Illuminated, Ch. 2.6-2.7]

Levels of Database Architecture

Databases are stored as files of records stored on disks

External Level

- Different users see different views
- Different views may consist of
 - Different contents, or
 - Same contents, different representation os

- Some views may include virtual data (or calculated data)
 - Calculated age on demand
- External view a collection of external records
- External record a record as seen by a particular user
- External schema describes an external view
- DBMS uses the external schema to create a user interface

Logical Level

 Include description of all the data that is available to be shared

- Logical schema a complete description of the information content of the database
- DBMS uses the logical schema to create logical record interface
- Logical record interface conceptual level and internal level
 (defines what are visible / invisible to external level and physical level)
- Logical model a collection of logical records
 ("comprehensive view of the user's mini-world")

Internal and Physical Levels

- Internal level deals with physical implementation of the database, responsible by DBMS
- Physical level is managed by operating system

- Internal schema a complete description of the internal model
 - Describe how data are represented, how records are sequenced, what indexes exist, ...
- Stored record interface a boundary between the physical level and the internal level
- Physical record interface a boundary where storage details (such as what portion of what track contains what data) are hidden

Data Independence

Data independence – upper levels are unaffected by changes to lower levels

Logical data independence – changes to logical model do not impact external models

Physical data independence – changes to internal model or physical do not impact logical model

Recap: Data Independence

What is physical data independence?

How do we describe information?

Let's revisit our Brainstorm-Scheduler activity (start designing a database for an appointment scheduler).

How do we describe information?

PatientID	Name	Vaccine	Dose_number	Date
123	Humpty	Pfizer	3	08/20/2022
345	Dumpty	Pfizer	2	08/24/2022
567	Wacky	Moderna	1	07/17/2022

Data model = a collection of concepts or notations for describing the data in a database

 Allow us to deal with data conceptually without having to think about implementation

Three parts of a data model

- Structure the definition of relations and contents
- Integrity constraints on the database's contents
- Manipulation actions that can be done on the database's contents

Relational

← Most DBMSs

- Key/value
- Graph
- Document
- Column-family
- Array / matrix
- Hierarchical
- Network

Title	Year	Length	Genre
Gone with the wind	1939	231	drama
Star wars	1977	124	sciFi
Wayne's World	1992	95	comedy

Relational NoSQL

- Key/value
- Graph
- Document
- Column-family

Table Key Space Key Space #id1 { Key: Value, Key: Value, Key: Value} #id2 {Key: Value, Key: Value, Value2, Valua3, Value4]

- Relational
- Key/value
- Graph
- Document
- Column-family
- Array / matrix
- Hierarchical
- Network

← Machine learning

← Obsolete / rare

	Joe	Ann	Bob
Joe	$\sqrt{0}$	1	$\sqrt{0}$
Joe Ann Bob	1	0	1
Bob	/0	1	0/

Relational

← This course

- Key/value
- Graph
- Document
- Column-family
- Array / matrix
- Hierarchical
- Network

title	year	length	genre
Gone with the wind	1939	231	drama
Star wars	1977	124	sciFi
Wayne's World	1992	95	comedy

Relational Model

Three parts:

- Structure (schema) the definition of relations and contents
- Integrity ensure the database's contents satisfy constraints
- Manipulation how to access and modify a database's contents

Relational model gives us a single way to represent data as a two-dimensional table called a "relation"

Relational Model

Relation = set of tuples (thus no duplicate), has no order

Table = list of rows (thus can have duplicates), has order

Relational Model

Relation = unordered set of tuples that contain the relationship of attributes

n-ary relation = table with n columns

Tuple = set of attribute values ("domain") in the relation

- Values are (normally) atomic
- The special value NULL is a member of every domain

Schema

Schema – logical design of the database (describe the tables), not generally change (note order of attributes)

movies

title	year	length	genre
Gone with the wind	1939	231	drama
Star wars	1977	124	sciFi
Wayne's world	1992	95	comedy

Write a schema statement for the above relation

Instance

Instance – data stored in the database at a given time (set of tuples), change from time to time

movies

	title	year	length	genre
	Gone with the wind	1939	231	drama
tuple →	Star wars	1977	124	sciFi
	Wayne's world	1992	95	comedy

Write the selected tuple

Write the selected instance

Recap: Schema and Instance

Describe the difference between schema and instance

Keys of Relations

To specify which tuple, use the attribute values of a tuple to distinguish (uniquely identify the tuple)

movies

title	year	length	genre
Gone with the wind	1939	231	drama
Star wars	1977	124	sciFi
Wayne's world	1992	95	comedy

Make use of the real-world fact

Assumption:

Write a schema statement for the above relation, indicate the key of the relation

Super Key – Candidate Key - Primary Key

Super key – any attribute(s) that can uniquely identify a tuple

Candidate key – minimal super key

Primary key – a candidate key that is the most important key

Students_info

computingID	SSN	name
mi1y	111-11-1111	Mickey
mi2e	222-22-2222	Minnie
do3d	333-33-3333	Donald
da4y	444-44-4444	Daisy
do5d	555-55-5555	Donald

Identify super key

Start with assumptions

Super Key – Candidate Key - Primary Key

Super key – any attribute(s) that can uniquely identify a tuple

Candidate key – minimal super key

Primary key – a candidate key that is the most important key

Students_info

computingID	SSN	name
mi1y	111-11-1111	Mickey
mi2e	222-22-2222	Minnie
do3d	333-33-3333	Donald
da4y	444-44-4444	Daisy
do5d	555-55-5555	Donald

Identify candidate key

Super Key – Candidate Key - Primary Key

Super key – any attribute(s) that can uniquely identify a tuple

Candidate key – minimal super key

Primary key – a candidate key that is the most important key

Students_info

computingID	SSN	name
mi1y	111-11-1111	Mickey
mi2e	222-22-2222	Minnie
do3d	333-33-3333	Donald
da4y	444-44-4444	Daisy
do5d	555-55-5555	Donald

Identify primary key

Primary Keys

A relation's primary key uniquely identifies a single tuple

movies

title	year	length	genre
Gone with the wind	1939	231	drama
Star wars	1977	124	sciFi
Wayne's world	1992	95	comedy

The characteristics of primary keys

Not empty, not NULL

Most important candidate key

Every tuple has

No change

Meaningful

Primary Keys

Some DBMSs automatically create an internal primary key if none is defined for the relation

Auto-generation of unique integer primary keys:

SEQUENCE (SQL: 2003)

movies

id	title	year	length	genre
123	Gone with the wind	1939	231	drama
456	Star wars	1977	124	sciFi
789	Wayne's world	1992	95	comedy

AUTO_INCREMENT (MySQL)

Foreign Keys

A foreign key specifies that an attribute from one relation has to map to a tuple in another relation

Attribute(s) that uniquely identify a row in another table

Artist(id, name, year, country)

4					
	id	name	year	country	
	123	Mickey	1992	USA	
	456	Minnie	1992	USA	
	789	Donald	1994	USA	
٦					

Primary key

Album(<u>id</u>, name, artists, year)

id	name	arti <mark>sts</mark>	year		
11	Mickey's Club House	123	1993		
22	Awesome Minnie	wesome Minnie 456			
33	Most wanted 789		1995		
	- · · · ·				

Foreign key

How about 2 artists (123 and 789)?

33 Most wanted		123	1995
33	Most wanted	789	1995

Foreign Keys

PK

How about a primary key?

Album(<u>id</u>, name, year)

id	name	year
11	Mickey's Club House	1993
22	Awesome Minnie	1994
33	Most wanted	1995

PK

Recap: Keys

List properties of primary keys

Characteristics of Relational Model

- Originally defined with Set semantics (no duplicate tuples)
- Attributes are typed and static (INTEGER, FLOAT, ...)
- Tables are flat
- Attribute values are atomic
- Order of tuples doesn't matter

id	name	year	country
123	Mickey	1992	USA
456	Minnie	1992	USA
789	Donald	1994	USA

id	name	year	country
456	Minnie	1992	USA
789	Donald	1994	USA
123	Mickey	1992	USA

Recap: Relational Model

Does the following table satisfy the characteristics of relational model?

id	name	year	country
123	Mickey	1992	USA
456	Minnie	1992	USA
789	Donald	1994	USA
567	Humpty	2016	USA
567	Humpty	2016	USA

Recap: Relational Model (2)

Does the following table satisfy the characteristics of relational model?

id	name	year	country
123	Mickey	1992	USA
456	Minney	1992	USA
789	Donald	1994	USA
567	Humpty	banana	USA

Recap: Relational Model (3)

Does the following table satisfy the characteristics of relational model?

id	name	year	country	
123	Mickey	1992	country note	
			USA Some info	
			USA Another info	
456	Minnie	1992	USA	
789	Donald	1994	USA	
567	Humpty	2016	USA	

Recap: Relational Model (4)

How are these data actually stored?

id	name	year	country
123	Mickey	1992	USA
456	Minnie	1992	USA
789	Donald	1994	USA
567	Humpty	2016	USA

Wrap-Up

- Database architecture separation of concerns
- Data independence physical and logical
- Data model schema, integrity, manipulation
- Relational model
- Key constraints super key, candidate key, primary key, foreign key

What's next?

- DB design using E-R model
- Mapping E-R model to schemas

(Additional) Practice Activity

This is an open-ended activity, consisting of 3 relations. For each relation, think about the data to be stored. You should also consider the type of data. Write a schema for each relation. Feel free to make any reasonable assumption.

Consider the following description. Write schemas that represent the data models for the given description.

(Additional) Practice Activity (2)

Relation: Movies

Each movie has a *title* and *year*; *title* and *year* together uniquely identify the movie. *Length* and *genre* are maintained for each movie. Each movie is associated with a *studioName* which tells us the studio that owns the movie, and *producerC#* which is an integer that represents the producer of the movie.

Relation: MovieStar

This relation tells us something about stars. It maintains the *name* of the movie star, address, gender, and birthdate. The gender can be a single character (M or F). Birthday is of type "date," which might be a character string of a special form.

Relation: StarsIn

This relation connects movies to the stars of that movie, and likewise connects a stars to the movies in which they appeared. A star might appear in multiple movies in one year.