Отчёт по лабораторной работе

Лабораторная №1

Панкратьев Александр Владимироваич

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическая справка	7
4	Выполнение лабораторной работы	8
	4.1 Первый случай	8
	4.2 Второй случай	9
5	Вывол	11

List of Tables

List of Figures

4.1	Графики изменеия численности трех групп при $I \le I^{*}$	9
4.2	График изменения численности трех групп при $I > I^*$	10

1 Цель работы

Ознакомиться с задачей об эпидемии, рассмотреть ее модель и построить графики по этой модели.

2 Задание

На одном острове вспыхнула эпидемия. Известно, что из всех проживающих на острове $N=14000\$ в момент начала эпидемии t=0 число заболевших людей (являющихся распространителями инфекции) I(0)=114, а число здоровых людей с иммунитетом к болезни R(0)=14. Таким образом, число людей восприимчивых к болезни, но пока здоровых, в начальный момент времени S(0)=N-I(0)-R(0). Построить графики изменения числа особей в каждой из трех групп. Рассмотреть, как будет протекать эпидемия в случае: 1) если $I(0) \leq I^*$ 2) если $I(0) > I^*$

3 Теоретическая справка

В рассматриваемой модели существуют три группы: восприимчивые - S(t), инфицированные - I(t) и особи с иммунитетом - R(0).

До того, как число заболевших не превышает критического значения I^* , считаем, что все больные изолированны и не заражают здоровых. Когда $I(t) > I^*$, тогда инфицированные способны заражать восприимчивых к болезни особей.

Таким образом, скорость изменения числа S(t) меняется по закону:

$$\frac{dS}{dt} = \begin{cases} -aS, I(t) > I^* \\ 0, I(t) <= I^* \end{cases}$$

Поскольку каждая восприимчивая к болезни особь, которая, в конце концов, заболевает, сама становится инфекционной, то скорость изменения числа инфекционных особей представляет разность за единицу времени между заразившимися и теми, кто уже болеет и лечится. т.е.:

$$\frac{dI}{dt} = \begin{cases} -aS - bI, I(t) > I^* \\ -bI, I(t) <= I^* \end{cases}$$

А скорость изменения выздоравливающих особей (при этом приобретающие иммунитет к болезни):

$$\frac{dI}{dt} = bI$$

Постоянные пропорциональности a, b, - это коэффициенты заболеваемости и выздоровления соответственно.

4 Выполнение лабораторной работы

Для работы я использовала язык Python. Я задала необходимые начальные параметры и определила системы дифференциальных уравнений, описывающие изменение популяций. Для решения системы использовала функцию solve ivp() из библиотеки scipy.

4.1 Первый случай

Случай, когда число заболевших не превышает критического значения I^* , считаем, что все больные изолированны и не заражают здоровых.

На рис. 4.1 показан график изменения численности трех групп

Figure 4.1: Графики изменеия численности трех групп при $I \le I^{*}$

Для более наглядного результат я установил общее количество популяции равным 2000. Как видно из рисунка, численность группы восприимчивых не изменяется, численность инфицированных уменьшается, а численность выздоровевших увеличивается.

4.2 Второй случай.

Во втором случае $I(t)>I^*$ и инфицированные способны заражать восприимчивых к болезни особей. На рис. 4.2 показан график изменения чисенности трех групп

Figure 4.2: График изменения численности трех групп при $I>I^{st}$

Как видно из рисунка, число восприимчивых резко уменьшается и доходит до нуля, так как люди начинают заболевать. Число выздоровевших резко увеличивается и доходит до количества всей популяции. Число инфицированных сначала быстро растет, но с уменьшением количества инфицированных постепенно падает и доходит до нуля.

5 Вывод

Я построил и проанализировал модель эпидемии для двух случаев, когда инфицированные изолированы и когда происходит заражение восприимчивых.