Predicting Retention

WENQI CHENG MARIO DIAZ DE LA ROSA CLARK LI

Cleaning up the Data - Target

Retained User = Active 30 days prior to data pull.

Data pulled on July 1st, 2014.

Consider user retained whenever

last_trip_date >= '2014-06-01'

This defines our classification labels \rightarrow find factors that best predict value of $\bf 1$

All features are arguably, intuitively relevant, so we decided to evaluate them all.

Cleaning up the Data - Numbers

Additional engineering:

- Dummified phone (Android = 1, iPhone = 0)
- Dummified city (King's Landing and Winterfell)
- Created an Account_Age metric by calculating number of days from signup_date to data pull
 - NOT to last_trip_date to prevent leakage

Cleaning up the Data - Ratings

The Ratings Question:

- what do the NaN represent?
- are we losing a valuable signal by removing NaN data?
- can the way customers use ratings inform our decision?

Trade-off between potential information loss and additional data.

Cleaning up the Data – Douchebag Matrix

Uber's 'douchebag rating' is still a source of shame for riders

Cleaning up the Data - Ratings

Naïve Bayes

Classifier applies Bayes Theorem assuming independence between features.

For the validation data set:

Multinomial NB accuracy = 68.9%

Gaussian NB accuracy = 73.8%

Not the best model to use due to low accuracy of MNB and difficult to interpret of justify GNB

Logistic Regression vs. Random Forest vs. Gradient Boosting

Logistic Regression		Predicted		
		Not Churn	Churn	
Actual	Not churn	2217	1555	
	Churn	1030	5198	
Random Forest		Predicted		
		Not Churn	Churn	
Actual	Not churn	2370	1402	
	Churn	867	5361	
Gradient Boosting		Predicted		
		Not Churn	Churn	
Actual	Not churn	2408	1364	
	Churn	883	5345	

Accuracy		Precision	Recall	
Train	0.75			
Test	0.74	0.68	0.59	
Train	0.81			
Test	0.77	0.73	0.63	
Tanin	0.70			
Train	0.79	0.73	0.64	
Test	0.77	0.73	0.04	

Important Features

Conclusion & Future Work

- Random Forest and Gradient Boosting gave better predictions
- Focus on:
 - Weekday Trip Percentage
 - Percentage of Trips with Surge Multiplier > 1
- Further validation of our models is necessary
- Need more data that reflects broader distribution of users

Team Kuma

Questions?