

Exercises for Data Visualisation

September 4, 2017

 $\label{lem:manuela} Emanuela Furfaro \\ emanuela.furfaro \\ @quantide.com^1$

 $^{^1}$ mailto:emanuela.furfaro@quantide.com

Contents

1	Intr	roduction	5		
2	Data Visualization with ggplot2				
	2.1	Data	7		
		2.1.1 iris	7		
		2.1.2 Comic characters data	8		
	2.2	Scatterplot	12		
		2.2.1 Exercise 1	12		
		2.2.2 Exercise 2	15		
	2.3	Line PLot	17		
		2.3.1 Exercise 1	17		
	2.4	Barplot	20		
		2.4.1 Exercise 1	20		
		2.4.2 Exercise 2	20		
	2.5	Histogram	25		
		2.5.1 Exercise 1	25		
		2.5.2 Exercise 2	25		
	2.6	Boxplot	26		
		261 Evereise 1	26		

4 CONTENTS

Chapter 1

Introduction

In this document you will find some exercises about data visualisation. In the first part you will find some exercises on basic data visulisation, while in the second part you will find exercises on advanced topics of data visulisation.

Chapter 2

Data Visualization with ggplot2

Load ggplot2 package, supposing it is already installed.

```
require(tidyverse)
```

2.1 Data

2.1.1 iris

Some of the following exercises are based on the iris dataset, taken from the datasets package. It is a base package so it is already installed and loaded.

```
data("iris")
```

This dataset gives the measurements in centimeters of length and width of sepal and petal, respectively, for 50 flowers from each of 3 species of iris. The species are Iris setosa, versicolor, and virginica.

iris dataset contains the following variables:

- Sepal.Length: length of iris sepal
- Sepal.Width: width of iris sepal
- Petal.Length: length of iris petal
- Petal.Width: width of iris petal
- Species: species of iris

dim(iris)

```
## [1] 150 5
head(iris)
     Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1
              5.1
                          3.5
                                      1.4
                                                  0.2 setosa
## 2
              4.9
                         3.0
                                      1.4
                                                  0.2 setosa
## 3
              4.7
                         3.2
                                      1.3
                                                  0.2 setosa
## 4
              4.6
                         3.1
                                      1.5
                                                  0.2 setosa
## 5
              5.0
                         3.6
                                      1.4
                                                  0.2 setosa
                                                  0.4 setosa
## 6
              5.4
                         3.9
                                      1.7
str(iris)
## 'data.frame':
                    150 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species : Factor w/ 3 levels "setosa", "versicolor", ...: 1 1 1 1 1 1 1 1 1 1 ...
```

2.1.2 Comic characters data

Other exercises are based on marvel_wikia_data dataset, that you may find in the folder exercises/data.

```
marvel_wikia_data <- read_csv("marvel-wikia-data.csv")</pre>
## Parsed with column specification:
## cols(
##
     page_id = col_integer(),
##
     name = col_character(),
##
     urlslug = col_character(),
     ID = col_character(),
##
##
     ALIGN = col_character(),
##
     EYE = col_character(),
##
     HAIR = col_character(),
##
     SEX = col_character(),
##
     GSM = col_character(),
##
     ALIVE = col_character(),
     APPEARANCES = col_integer(),
##
     `FIRST APPEARANCE` = col_character(),
##
     Year = col_integer()
## )
```

2.1. DATA 9

```
getwd()
```

```
## [1] "/home/emanuela/dev/qtraining/060-ggplot/data"
```

The data comes from Marvel Wikia. The file was scraped in August 2014 and contains the following variables:

- page_id: The unique identifier for that characters page within the wikia
- name: The name of the character
- urlslug: The unique url within the wikia that takes you to the character
- ID: The identity status of the character (Secret Identity, Public identity, [on marvel only: No Dual Identity])
- ALIGN: If the character is Good, Bad or Neutral
- EYE: Eye color of the character
- HAIR: Hair color of the character
- SEX: Sex of the character (e.g. Male, Female, etc.)
- GSM: If the character is a gender or sexual minority (e.g. Homosexual characters, bisexual characters)
- ALIVE: If the character is alive or deceased
- APPEARANCES: The number of appareances of the character in comic books (as of Sep. 2, 2014. Number will become increasingly out of date as time goes on.)
- FIRST APPEARANCE The month and year of the character's first appearance in a comic book, if available
- YEAR: The year of the character's first appearance in a comic book, if available

```
dim(marvel_wikia_data)
## [1] 16376 13
```

head(marvel_wikia_data)

```
## # A tibble: 6 x 13
##
     page_id
                                                    name
##
       <int>
                                                   <chr>
        1678
## 1
                              Spider-Man (Peter Parker)
## 2
        7139
                        Captain America (Steven Rogers)
       64786 "Wolverine (James \\\"Logan\\\" Howlett)"
## 3
## 4
                "Iron Man (Anthony \\\"Tony\\\" Stark)"
```

```
## 5
        2460
                                  Thor (Thor Odinson)
        2458
                            Benjamin Grimm (Earth-616)
## 6
## # ... with 11 more variables: urlslug <chr>, ID <chr>, ALIGN <chr>, EYE <chr>,
## # HAIR <chr>, SEX <chr>, GSM <chr>, ALIVE <chr>, APPEARANCES <int>, `FIRST
     APPEARANCE` <chr>, Year <int>
## #
head(str(marvel_wikia_data))
## Classes 'tbl_df', 'tbl' and 'data.frame':
                                              16376 obs. of 13 variables:
## $ page_id : int 1678 7139 64786 1868 2460 2458 2166 1833 29481 1837 ...
               : chr "Spider-Man (Peter Parker)" "Captain America (Steven Rogers)" "Wolvering
## $ name
                : chr "\\/Spider-Man_(Peter_Parker)" "\\/Captain_America_(Steven_Rogers)" '
## $ urlslug
               : chr "Secret Identity" "Public Identity" "Public Identity" "Public Identity"
## $ ID
## $ ALIGN
                : chr "Good Characters" "Good Characters" "Neutral Characters" "Good Characte
                   : chr "Hazel Eyes" "Blue Eyes" "Blue Eyes" "Blue Eyes" ...
## $ EYE
                  : chr "Brown Hair" "White Hair" "Black Hair" "Black Hair" ...
## $ HAIR
                : chr "Male Characters" "Male Characters" "Male Characters" "Male Characters"
## $ SEX
## $ GSM
                      : chr NA NA NA NA ...
## $ ALIVE : chr "Living Characters" "Living Characters" "Living Characters" "Living Characters"
## $ APPEARANCES : int 4043 3360 3061 2961 2258 2255 2072 2017 1955 1934 ...
## $ FIRST APPEARANCE: chr "Aug-62" "Mar-41" "Oct-74" "Mar-63" ...
                   : int 1962 1941 1974 1963 1950 1961 1961 1962 1963 1961 ...
## $ Year
   - attr(*, "spec")=List of 2
##
##
     ..$ cols :List of 13
##
     .. ..$ page_id
                           : list()
     .. .. - attr(*, "class")= chr "collector_integer" "collector"
##
##
                           : list()
     .. ..$ name
     .. .. ..- attr(*, "class")= chr
##
                                     "collector_character" "collector"
##
     .. ..$ urlslug
                       : list()
##
     ..... attr(*, "class")= chr "collector_character" "collector"
##
     .. ..$ ID
                           : list()
##
     ..... attr(*, "class")= chr "collector_character" "collector"
     .. ..$ ALIGN
##
                           : list()
##
     .. .. ..- attr(*, "class")= chr
                                      "collector_character" "collector"
##
     .. ..$ EYE
                            : list()
##
     .. .. ..- attr(*, "class")= chr
                                     "collector_character" "collector"
##
     .. ..$ HAIR
                            : list()
##
     ..... attr(*, "class")= chr "collector_character" "collector"
##
     .. ..$ SEX
                           : list()
##
     .. .. ..- attr(*, "class")= chr
                                     "collector_character" "collector"
     .. ..$ GSM
                           : list()
##
                                     "collector_character" "collector"
     .. .. ..- attr(*, "class")= chr
##
##
     .. ..$ ALIVE
                           : list()
     .. .. ..- attr(*, "class")= chr
##
                                     "collector_character" "collector"
     ....$ APPEARANCES : list()
##
##
     .. .. - attr(*, "class")= chr "collector_integer" "collector"
     .... $ FIRST APPEARANCE: list()
##
     .. .. - attr(*, "class")= chr "collector character" "collector"
```

2.1. DATA 11

```
## ....$ Year : list()
## ....- attr(*, "class")= chr "collector_integer" "collector"
## ...$ default: list()
## ...- attr(*, "class")= chr "collector_guess" "collector"
## ...- attr(*, "class")= chr "col_spec"
```

NULL

2.2 Scatterplot

Let us consider iris dataset.

2.2.1 Exercise 1

- a. Generate a scatterplot to analyze the relationship between ${\tt Sepal.Width}$ and ${\tt Sepal.Length}$ variables.
- b. Set the size of the point as 3 and their colour (colour and fill arguments) as "green". advanced c. Add "Sepal Characteristics" as a red italic title and change axis title to "Sepal length" and "Sepal width".

2.2. SCATTERPLOT 13

Figure 2.1:

Figure 2.2:

2.2. SCATTERPLOT 15

2.2.2 Exercise 2

a. Generate a scatterplot to analyze the relationship between Petal.Width and Petal.Length variables according to iris species, mapped as colour aes. *advanced* b. Change axis title to "Sepal length" and "Sepal width". *advanced* c. Move the legend to the bottom.

Figure 2.3:

Figure 2.4:

2.3. LINE PLOT 17

2.3 Line PLot

Let us consider marvel_wikia_data dataset.

2.3.1 Exercise 1

- a. Build a line plot to see the number of new characters that come out each year.
- b. Build a lineplot to compare the differences in the number of female characters and male characters that come out each year.
- c. Do as in b. but use different line types as well as different point types and different colours
- ## Warning: Removed 4 rows containing missing values (geom_path).
- ## Warning: Removed 4 rows containing missing values (geom_path).
- ## Warning: Removed 73 rows containing missing values (geom_point).

Figure 2.5:

2.3. LINE PLOT 19

Figure 2.6:

2.4 Barplot

Let us consider the marvel_wikia_data dataset.

2.4.1 Exercise 1

- a. Build a stacked barplot for representing the number of new comic characters distinguishing them by ALIGN and map fill to SEX.
- b. Consider only comic characters with blond hair and Black Hair (filter(HAIR == "Black Hair" | HAIR == "Blond Hair")). Build a stacked barplot for representing the number of new comic characters distinguishing them by ALIGN and map fill to HAIR.
- c. Take the barplot in (b.) and represent the distribution on Blond Hair between the character type (Good, Bad, neutral).

2.4.2 Exercise 2

a. Consider only female and male comic characters (filter(SEX == "Male Characters" | SEX == "Female Characters")). Build a barplot with dodged barsfor representing the number comic characters distinguishing them by ALIGN and flip coordinates. Set bars width as 0.5.

2.4. BARPLOT 21

Figure 2.7:

Figure 2.8:

2.4. BARPLOT 23

Figure 2.9:

Figure 2.10:

2.5. HISTOGRAM 25

2.5 Histogram

- 2.5.1 Exercise 1
- 2.5.2 Exercise 2

2.6 Boxplot

2.6.1 Exercise 1

- a. Build a boxplot to represent the number of times that each comic character created in 2012 have appeared. Highlight outliers in red and set outlier.shape=10 and outlier.size=2. Choose fill = #00BFFF and color = #00008B
- b. Compare the number of times Bad comic characters and Good comic characters created in 2012 have appeared.

Warning: Removed 25 rows containing non-finite values (stat_boxplot).

2.6. BOXPLOT 27

Figure 2.11:

Figure 2.12: