Set 14: Gaussian Quadrature

Kyle A. Gallivan Department of Mathematics

Florida State University

Foundations of Computational Math 2 Spring 2013

Maximum Degree of Exactness

$$I(f) \approx I_n(f) = \sum_{i=0}^{n} \gamma_i f(x_i)$$

- 2n+2 parameters: x_0,\ldots,x_n and γ_0,\ldots,γ_n
- : Intuition says we should be able get a degree of exactness of 2n+1.
- To do so we must choose the γ_i and the x_i , $0 \le i \le n$, specifically to maximize the degree of exactness.
- The methods that result are called Gauss Quadrature Methods of which there are several.

Review

We are interested in the degree of exactness so we can assume that $f \in \mathcal{C}^{n+1}[-1,1]$.

Recall

$$\int_{-1}^{1} f(x)dx \approx \int_{-1}^{1} p_n(x)dx$$

$$p_n(x) = \sum_{i=0}^{n} \ell_i(x)f(x_i)$$

$$f(x) = p_n(x) + R_n(x)$$

$$R_n(x) = \omega_{n+1}(x)f[x_0, x_1, \dots, x_n, x] = \frac{\omega_{n+1}(x)}{(n+1)!}f^{(n+1)}(\xi(x))$$

$$E_n(x) = \int_{-1}^{1} R_n(x)dx$$

Review

- distinct $x_i \to p_n(x)$ is the unique interpolation polynomial
- $f \in \mathbb{P}_n \to f^{(n+1)}(x) \equiv 0$ and $E_n(x) \equiv 0$
- \bullet : the degree of exactness is at least n for an interpolatory quadrature formula.
- Note that we have not set the x_i to any particular values.

Maximum Degree of Exactness

Suppose f is a polynomial of degree 2n+1 or less, i.e., $f \in \mathbb{P}_{2n+1}$

$$R_n(x) = \omega_{n+1}(x) f[x_0, x_1, \dots, x_n, x]$$

$$E_n(x) = \int_{-1}^1 R_n(x)dx = (\omega_{n+1}(x), f[x_0, x_1, \dots, x_n, x])$$

where (x, y) is the inner product defined for $\mathcal{L}^2[-1, 1]$ with a weight function identically 1.

Divided Differences of Polynomials

Theorem 14.1. *If* $f \in \mathbb{P}_r$ *then*

$$\forall x \neq x_0, \quad f[x_0, x] = \frac{f(x) - f(x_0)}{x - x_0} \in \mathbb{P}_{r-1}$$

Proof. Since $f \in \mathbb{P}_r$, there exists $q_{r-1}(x) \in \mathbb{P}_{r-1}$ such that

$$f(x) = (x - x_0)q_{r-1}(x) + f(x_0)$$

It follows trivially that

$$\forall x \neq x_0, \quad f[x_0, x] = \frac{f(x) - f(x_0)}{x - x_0} = q_{r-1}(x)$$

Divided Differences of Polynomials

Corollary 14.2. If $f \in \mathbb{P}_{2n+1}$ and x_i , $0 \le i \le n$, are distinct points then

$$\forall x \neq x_i, \quad f[x_0, x_1, \dots, x_n, x] \in \mathbb{P}_n$$

Proof. Apply Theorem 14.1 repeatedly.

So we can treat $f[x_0, x_1, \ldots, x_n, x]$ as a polynomial of degree n when discussing the integral that defines the error.

Maximum Degree of Exactness

To get the maximum degree of exactness we must have

$$\forall f\in\mathbb{P}_{2n+1},\quad E_n(x)=0$$
 or equivalently,
$$\forall q_n(x)\in\mathbb{P}_n,\quad (\omega_{n+1}(x),q_n(x))=0$$

- maximum degree of exactness \Leftrightarrow orthogonality in $\mathcal{L}^2[-1,1]$
- Newton-Cotes and similar interpolatory quadrature methods achieved d.o.e. of n by forcing $q_n(x) \equiv 0$ for any choice of x_i .
- $q_n(x) \equiv 0$ is not required for maximum degree of exactness!
- x_i , $0 \le i \le n$, are not yet specified. They define $\omega_{n+1}(x)$ and the method.

Gauss Legendre Quadrature

Let $P_i(x)$, i = 0, 1, ... be the Legendre polynomials.

$$\forall q_n(x) \in \mathbb{P}_n, \quad \exists \alpha_0, \dots, \alpha_n$$

$$q_n(x) = \sum_{i=0}^n \alpha_i P_i(x)$$

We have

$$(\omega_{n+1}(x), q_n(x)) = \sum_{i=0}^{n} \alpha_i(\omega_{n+1}(x), P_i(x))$$
$$(\omega_{n+1}(x), q_n(x)) = 0 \leftrightarrow (\omega_{n+1}(x), P_i(x)) = 0, \quad 0 \le i \le n$$

Gauss Legendre Quadrature

Lemma. Let $P_i(x)$, i = 0, 1, ... be the Legendre polynomials. Let $P_{n+1}(x_i) = 0$, $0 \le i \le n$, i.e., the x_i are the n+1 roots of $P_{n+1}(x)$. We then have

$$\forall q_n(x) \in \mathbb{P}_n, \quad (\omega_{n+1}(x), q_n(x)) = 0$$

$$where \quad \omega_{n+1}(x) = \prod_{i=0}^n (x - x_i)$$

$$and \quad \forall f \in \mathbb{P}_{2n+1}, \quad E_n(x) = 0$$

Proof. $\omega_{n+1}(x) \sim P_{n+1}(x)$ and by definition $(P_{n+1}(x), P_i(x)) = 0$ for any $0 \le i \le n$. Therefore, $\forall q_n(x) \in \mathbb{P}_n$, $(\omega_{n+1}(x), q_n(x)) = 0$ and $E_n(x) = 0$ follows $\forall f \in \mathbb{P}_{2n+1}$ as desired.

Gauss Legendre Quadrature

- x_i are the roots of the n + 1-st Legendre polynomial.
- the weights are

$$\gamma_i = \int_{-1}^1 \ell_i(x)$$

• The approximation

$$\int_{-1}^{1} f(x)dx \approx \int_{-1}^{1} p_n(x)dx = \sum_{i=0}^{n} \gamma_i f(x_i)$$

has degree of exactness 2n + 1

• The formula are open since the roots of the orthogonal polynomials are interior to the interval of definition

Example

Two-point formula Gauss-Legendre uses linear interpolant with

$$x_{\pm} = \pm \frac{1}{\sqrt{3}}, \quad \gamma_{\pm} = 1$$

$$f(x) = x^3 + x^2 + x + 1 \to \int_{-1}^{1} f(x)dx = \frac{8}{3}$$

$$f(x_{-}) = \frac{4}{3}(1 - \frac{1}{\sqrt{3}}), \quad f(x_{+}) = \frac{4}{3}(1 + \frac{1}{\sqrt{3}})$$

$$I_2(f) = f(x_-) + f(x_+) = \frac{8}{3}$$
 exact

Example

Consider midpoint rule, trapezoidal rule, and Simpson's rule.

$$f(x) = x^3 + x^2 + x + 1$$

$$I_{mp} = (b - a)f(0) = 2$$

$$I_{trap} = \frac{(b - a)}{2} [f(-1) + f(1)] = 0 + 4 = 4$$

$$I_{simp} = \frac{(b - a)}{2} [\frac{f(-1)}{3} + \frac{4f(0)}{3} + \frac{f(1)}{3}] = [\frac{0}{3} + \frac{4}{3} + \frac{4}{3}] = \frac{8}{3}, \text{ exact}$$

Gauss Quadrature Parameters

- x_i and γ_i must be computed and tabulated in general.
- roots of orthogonal polynomials
- eigenvalues of the Jacobi matrix associated with the recurrence that defines each family of polynomials
- text gives further details on points
- text has code for points and weights
- web is a good source of tabulation of parameters

Other Intervals

We can integrate over [a, b] by a change of variables to [-1, 1]

$$a \le x \le b \text{ and } -1 \le z \le 1$$

$$x = \frac{z(b-a)+b+a}{2} \to dx = \frac{b-a}{2}dz$$

$$\int_a^b f(x)dx = \frac{b-a}{2} \int_{-1}^1 f\left(\frac{z(b-a)+b+a}{2}\right)dz$$

$$I_n(f) = \frac{b-a}{2} \sum_{i=0}^n \gamma_i f(u_i)$$

$$u_i = \frac{z_i(b-a)+b+a}{2} \text{ and } P_{n+1}(z_i) = 0$$

Example

$$\int_{1}^{2} \frac{1}{x} dx = \left[\ln x\right]_{1}^{2} \approx 0.69314718$$

$$f(x) = \frac{1}{x} \text{ and } F(z) = \frac{2}{z+3}$$

$$\int_{1}^{2} \frac{1}{x} dx = \frac{1}{2} \int_{-1}^{1} F(z) = \int_{-1}^{1} \frac{1}{z+3} dz$$

$$I_1(f) = 9/13 \approx 0.69230769$$

 $I_4(f) \approx 0.69314712$

Example Details

Carnahan, Luther, Wilkes – Wiley, 1969

i	z_i	γ_i	$\frac{F(z_i)}{2}$	$\gamma_i rac{F(z_i)}{2}$
0	0.00000000	0.56888889	0.33333333	0.18962962
1	+0.53846931	0.47862867	0.28260808	0.13526433
2	-0.53846931	0.47862867	0.40625128	0.19444351
3	+0.90617985	0.23692689	0.25600460	0.06065437
4	-0.90617985	0.23692689	0.47759593	0.11315529

$$I_4(f) = 0.69314712$$

Other Formulas

- The Gauss Legendre quadrature formula have $a < x_0 < \cdots < x_n < b$
- If $x_0 = a$ and $x_n = b$ are added as a constraint then Gauss Lobatto quadrature formulas result.
- degree of exactness becomes 2n-1
- The n-1 free x_i are the roots of the derivative of $P_n(x)$
- Gauss Radau formulas are those that only require $x_0 = a$ or $x_n = b$.
- Adaptive strategies are more difficult due to lack of sharing of x_i as n changes

Gauss Legendre Error

Theorem 14.3. If a Gauss Legendre quadrature formula is used to approximate a definite integral on [-1,1] we have

$$E_n(x) = \frac{2^{2n+3} \{(n+1)!\}^4}{(2n+3)\{(2n+2)!\}^3} f^{(2n+2)}(\xi)$$

with −1 < ξ < 1.

Other Weight Functions

Same idea but the family of orthogonal polynomials is determined by the interval and the weight function

$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} f(x) dx \to \text{Gauss Chebyshev}$$

$$\int_{0}^{\infty} e^{-x} f(x) dx \to \text{Gauss Laguerre}$$

$$\int_{-\infty}^{\infty} e^{-x^2} f(x) dx \to \text{Gauss Hermite}$$

Other Weight Functions

The weighting can be used to evaluate more general integrals

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} w(x)\frac{f(x)}{w(x)}dx = \int_{a}^{b} w(x)g(x)dx$$

Singularity in f(x) can be handled by isolating a weight function, e.g.,

$$f(x) = \frac{g(x)}{\sqrt{1-x^2}} \rightarrow \text{Gauss Chebyshev}$$