Processamento de Sinal

2º Ano Continuous Fourier Series

Resumo

- Resposta de sistemas LIT a exponenciais complexas
- Série de Fourier de sinais contínuos
- Convergência da série de Fourier
- Propriedades da série de Fourier

Resposta de sistemas LIT a exponenciais complexas

Função própria de um sistema linear

- DEFINIÇÃO:
 - Uma função f(t) será uma função própria de um sistema caracterizado pela transformação T(.) se:

$$y(t) = T(f(t)) = Pf(t)$$

Quando esta condição se verifica dizemos que P é o valor próprio do sistema associado à função própria f(t).

Motivação

 Precisamos de uma forma eficaz de calcular a saída de um sistema LIT quando é aplicado à sua entrada um sinal periódico.

• Para resolver este problema, comecemos por determinar a resposta de um sistema LIT ao sinal exponencial complexa.

Função própria do circuito RC

· Consideremos o circuito anterior:

A tensão de saída v_C será:

$$y(t) = v_C(t) = \frac{1}{C} \int_{-\infty}^t i_i \, dt$$

Esta equação relaciona o sinal de saída com o sinal de entrada, portanto define a relação de transformação do sistema (*circuito RC*).

Que funções próprias este sistema admite ?

Função própria do circuito RC

 Qual será a resposta do sistema ao seguinte sinal de corrente?

$$i_i(t) = A e^{st}$$

A equação de transformação do sistema do circuito RC é:

$$y(t) = v_C(t) = \frac{1}{C} \int_{-\infty}^t i_i \, dt$$

Teremos então:

$$y(t) = v_C(t) = \frac{1}{C} \int_{-\infty}^{t} i_i(t) dt = \frac{1}{C} \int_{-\infty}^{t} A e^{st} dt = \frac{1}{sC} A e^{st}$$

se considerarmos que as condições iniciais são nulas.

Logo podemos concluir que a exponencial complexa é uma função própria do circuito RC.

Função própria de um sistema LIT

 Qual será a resposta de um sistema LIT ao sinal exponencial complexa?

$$x(t) = e^{st}$$

- Pelo integral de convolução temos que

$$y(t) = \int_{-\infty}^{+\infty} h(\tau)x(t-\tau)d\tau$$
$$= \int_{-\infty}^{+\infty} h(\tau)e^{s(t-\tau)}d\tau$$

- De que forma podemos simplificar a expressão anterior ?

$$y(t) = e^{st} \int_{-\infty}^{+\infty} h(\tau) e^{-s\tau} d\tau$$

Função própria de um sistema LIT

 Temos então que a resposta do sistema a uma exponencial complexa será:

$$y(t) = e^{st}H(s)$$

onde H(s) é dado por

$$H(s) = \int_{-\infty}^{+\infty} h(\tau)e^{-s\tau}d\tau$$

- Que conclusões podemos retirar da análise da resposta do sistema LIT à exponencial complexa ?
 - Que as exponenciais complexas SÃO funções próprias dos sistemas LIT.
 - onde, a expressão H(s) será o valor próprio do sistema associado à função est.

Soma de Exponenciais Complexas

- Qual é a importância deste resultado ?
 - Se decompormos o sinal de entrada como uma soma de exponenciais complexas teremos:

$$x(t) = a_1 e^{s_1 t} + a_2 e^{s_2 t} + a_3 e^{s_3 t}$$

- Qual será a resposta do sistema?

Soma de Exponenciais Complexas

Pela propriedade da aditividade a resposta do sistema será:

$$y(t) = a_1 H(s_1) e^{s_1 t} + a_2 H(s_2) e^{s_2 t} + a_3 H(s_3) e^{s_3 t}$$

No caso geral será:

$$x(t) = \sum_{k} a_k e^{s_k t} \longrightarrow y(t) = \sum_{k} a_k H(s_k) e^{s_k t}$$

 Temos então que para um sistema LIT, se souber os valores próprios, H(s_k), então o cálculo da resposta do sistema é trivial.

Combinação Linear de Exponenciais

• No caso particular de $s=j\omega$, temos:

$$x(t) = e^{j\omega t}$$

- Este sinal:
 - Periódico com período T, sendo a frequência fundamental dada por ω= 2π/T.
 - Podemos definir um conjunto de exponenciais complexas relacionadas que são chamadas de harmónicos.

$$\Phi_k(t) = e^{jk\omega_k t}$$
, com $k = 0, \pm 1, \pm 2, \pm 3, \dots$

Combinação Linear de Exponenciais

$$\Phi_k(t) = e^{jk\omega_k t}, \quad \text{com} \quad k = 0, \pm 1, \pm 2, \pm 3, \dots$$

- · Na expressão acima:
 - Quando k=0, temos a constante ou a componente contínua.
 - Os termos para k= +/-1 são chamados de harmónicos fundamentais ou harmónicos de primeira ordem.
 - Os termos para k= +/-2 são chamados de harmónicos de segunda ordem, sendo que no caso geral os termos +/-k são chamados de harmónicos de ordem k.

Série de Fourier para Sinais Contínuos

Série de Fourier Contínua

 Quando podemos representar um sinal periódico como uma combinação linear de exponenciais complexas, então dizemos que esta representação corresponde a série de Fourier.

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$$

O que é preciso determinar para podermos representar sinal x(t) segundo a série de Fourier ?

Série de Fourier Contínua

- Como obter os coeficientes a_k ?
 - Consideremos a equação da Série de Fourier:

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$$

multiplicando ambos os lados por $e^{-\jmath n\omega_0 t}$

$$x(t)e^{-jn\omega_0t} = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0t} e^{-jn\omega_0t}$$

Série de Fourier Contínua

integrando ambos os lados no período fundamental

$$\int_{0}^{T_{0}} x(t)e^{-jn\omega_{0}t}dt = \int_{0}^{T_{0}} \sum_{k=-\infty}^{+\infty} a_{k}e^{jk\omega_{0}t}e^{-jn\omega_{0}t}dt$$

trocando a ordem entre o somatório e o integral

$$\int_0^{T_0} x(t)e^{-jn\omega_0 t}dt = \sum_{k=-\infty}^{+\infty} a_k \left[\int_0^{T_0} e^{j(k-n)\omega_0 t}dt \right]$$

Qual é o valor desta expressão ?

Série de Fourier Contínua

como todos os termos serão nulos excepto quando n = k

$$\int_0^{T_0} x(t)e^{-jn\omega_0 t} dt = a_n T_0$$

os coeficientes serão calculados por

$$a_n = \frac{1}{T_0} \int_0^{T_0} x(t)e^{-\jmath n\omega_0 t} dt$$

Série de Fourier Contínua

- Estas duas equações são chamadas respectivamente de:
 - Equação de síntese e equação de análise

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$$

$$a_k = \frac{1}{T_0} \int_0^{T_0} x(t)e^{-jk\omega_0 t} dt$$

 Os coeficientes a_k são chamados de coeficientes da série de Fourier ou <u>coeficientes espectrais</u>.

Exemplo

• Consideremos o seguinte sinal:

Qual será a representação do sinal segundo a série de Fourier?

Exemplo

Teremos:

$$a_k = \frac{2\sin(k\omega_0 T_1)}{k\omega_0 T_0} = \frac{\sin(k\omega_0 T_1)}{k\pi}$$

Este é o caso geral para T₁

• Consideremos alguns possíveis valores de T₁

Exemplo

• T₀= 4T₁, ou seja *duty cycle* de 50%.

Expressão dos coeficientes da série de Fourier:

$$a_0 = \frac{1}{2}$$

$$a_k = \frac{\sin\left(\frac{k\pi}{2}\right)}{2}$$

 $a_0 = \frac{1}{2}$ Quantos coeficientes são necessários para representar a onda quadrada com *duty cycle* de 50% como uma soma de exponenciais complexas ?

Exemplo

 O que aconteceria ao sinal se retirasse o harmónico a₀?

Exemplo

• T₀= 8T₁, ou seja *duty cycle* de 25%.

Expressão dos coeficientes da série de Fourier:

$$a_0 = \frac{1}{4}$$

$$a_k = \frac{\sin\left(\frac{k\pi}{4}\right)}{k\pi}$$

Exemplo

• T₀= 8T₁, ou seja *duty cycle* de 25%.

Decomposição de um sinal periódico

- · Questões pertinentes:
 - Como podemos reconstruir um sinal a partir dos coeficientes da série de Fourier ?
 - Qual será o efeito de truncar o número de harmónicos usados na reconstrução do sinal ?
- · Respostas:
 - Para reconstruir o sinal original a partir dos coeficientes basta usar a equação de síntese da série de Fourier:

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$$

 Podemos estudar o efeito da truncagem sintetizando o sinal com um número crescente de coeficientes.

Decomposição de um sinal periódico

- O que acontecerá se adicionarmos mais harmónicos ?

Qual foi o efeito de aumentarmos o número de harmónicos ?

Decomposição de um sinal periódico

- · Conclusão:
 - No caso em que o número de descontinuidades é finito e estas são finitas
 - O sinal resultante da série de Fourier coincide com o sinal x(t)
 excepto nos pontos de descontinuidade, onde convergirá para o valor médio da descontinuidade.

Convergência da Série de Fourier

- Vimos nos slides anteriores que a série de Fourier permite decompor um sinal como uma soma de cosenos desfasados no tempo e ponderados.
- Questão: Será que consigo representar qualquer sinal como uma soma finita/infinita de cosenos e senos ?
 - O matemático P. Dirichlet propôs um conjunto de condições que se observadas garantem que um sinal pode ser decomposto segundo a Série de Fourier

Convergência da Série de Fourier

- Primeira condição de Dirichlet.
 - O sinal x(t) tem que ser absolutamente integrável no seu período, ou seja

$$\int_T |x(t)|dt < \infty$$

Esta condição garante que os coeficientes da Série de Fourier existem e são finitos.

- Exemplo:

$$x(t) = \frac{1}{t}, \quad 0 < t \le 1.$$

Convergência da Série de Fourier

- Segunda condição de Dirichlet.
 - O sinal x(t) tem que ter um número finito de descontinuidades na sua derivada em qualquer intervalo de tempo, ou seja, o número de máximos e mínimos num intervalo de tempo tem que ser finito.
 - Exemplo:

$$x(t) = \sin\left(\frac{2\pi}{t}\right), \quad 0 < t \le 1.$$

Este sinal <u>obedece</u> a primeira condição.

$$\int_T |x(t)|dt < \infty$$

Convergência da Série de Fourier

- Terceira condição de Dirichlet.
 - O sinal x(t) tem que ter num intervalo de tempo qualquer um número finito de descontinuidades e estas devem ser finitas.
 - Exemplo:
 - Neste exemplo, o sinal x(t) obedece às duas primeiras condições, mas falha na terceira (tem um número infinito de descontinuidades).

Propriedades da Série de Fourier para Sinais Contínuos

Motivação e Definições

- · Motivação:
 - A representação de certos sinais segundo a Série de Fourier pode tornar-se complexa devido a estrutura do sinal.

 A resolução do integral no cálculo dos coeficientes a_k será elaborada devido o produto da equação dos segmentos de recta pela exponencial complexa.

Motivação e Definições

- As propriedades da série de Fourier permitem reduzir significativamente a complexidade do cálculo dos coeficientes a_k.
- Definamos a seguinte relação:

$$x(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k$$

 O par relaciona o sinal contínuo x(t) e os respectivos coeficientes da série de Fourier, a_k.

Linearidade

- · Propriedade: Linearidade.
 - Consideremos dois sinais, x(t) e y(t), periódicos com período T tal que

$$x(t) \quad \stackrel{\mathcal{FS}}{\longleftrightarrow} \quad a_k$$

$$y(t) \quad \stackrel{\mathcal{FS}}{\longleftrightarrow} \quad b_k$$

A propriedade da linearidade permite-nos expressar o coeficiente do sinal z(t) tal que

$$z(t) = Ax(t) + By(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} c_k = Aa_k + Bb_k$$

Linearidade

- Prova:
 - Sabemos que z(t):

$$z(t) = Ax(t) + By(t)$$

Temos então que:

 $= Aa_k + Bb_k$

$$\begin{split} c_k &= \frac{1}{T} \int_T z(t) e^{-\jmath n \omega_0 t} \, dt \\ &= \frac{1}{T} \int_T \{Ax(t) + By(t)\} e^{-\jmath n \omega_0 t} \, dt \\ &= \frac{1}{T} \int_T Ax(t) e^{-\jmath n \omega_0 t} \, dt + \frac{1}{T} \int_T By(t) e^{-\jmath n \omega_0 t} \, dt \\ &= A \frac{1}{T} \int_T x(t) e^{-\jmath n \omega_0 t} \, dt + B \frac{1}{T} \int_T y(t) e^{-\jmath n \omega_0 t} \, dt \end{split}$$

Explicite os pressupostos

da prova:

Deslocamento Temporal

- Propriedade: Deslocamento temporal (time shifting).
 - Qual será a série de Fourier do sinal $y(t) = x(t-t_0)$?

Os coeficientes da série de Fourier do sinal y(t) serão:

$$b_k = \frac{1}{T} \int_T y(t)e^{-jn\omega_0 t} dt$$
$$= \frac{1}{T} \int_T x(t - t_0)e^{-jn\omega_0 t} dt$$

Façamos a seguinte mudança de variável:

$$\tau = t - t_0 \quad \Rightarrow \quad dt = d\tau \ \land \ t = \tau + t_0$$

Deslocamento Temporal

$$b_k = \frac{1}{T} \int_T x(t - t_0) e^{-\jmath n\omega_0 t} dt$$

$$= \frac{1}{T} \int_T x(\tau) e^{-\jmath n\omega_0 (\tau + t_0)} d\tau$$

$$= \frac{1}{T} \int_T x(\tau) e^{-\jmath n\omega_0 t_0} e^{-\jmath n\omega_0 \tau} d\tau$$

$$= e^{-\jmath n\omega_0 t_0} \frac{1}{T} \int_T x(\tau) e^{-\jmath n\omega_0 \tau} d\tau$$

$$= e^{-\jmath n\omega_0 t_0} a_k$$

Temos então que:

$$x(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k \implies x(t - t_0) \stackrel{\mathcal{FS}}{\longleftrightarrow} e^{-\jmath k\omega_0 t_0} a_k$$

Propriedades

Periodic signal	Fourier series coefficients
x(t)) periodic with	ak
$y(t)$ period T_0	b_k
Ax(t) + By(t)	$Aa_k + Bb_k$
$x(t-t_0)$	ake-fk(2n/To)to
$e^{jM(2\pi/T_0)t}x(t)$	a _{k-M}
$x^{\bullet}(t)$	a*_k
x(-t)	ak
$x(\alpha t)$, $\alpha > 0$ (periodic with period $\frac{T_0}{\alpha}$)	a_k
$\int_{T_{\bullet}} x(\tau)y(t-\tau) d\tau$	$T_0 a_k b_k$
x(t)y(t)	$\sum_{l=-\infty}^{+\infty} a_l b_{k-l}$
$\frac{dx(t)}{dt}$	$jk\frac{2\pi}{T_0}a_k$
$\int_{-\infty}^{t} x(t) dt \text{ (finite-valued and periodic only if } a_0 = 0)$	$\left(\frac{1}{jk(2\pi/T_0)}\right)a_k$
<i>x</i> (<i>t</i>) real	$\begin{cases} a_k = a_{-k}^* \\ \emptyset \in \{a_k\} = \emptyset \in \{a_{-k}\} \\ \emptyset m_i\{a_k\} = -\emptyset m_i\{a_{-k}\} \\ a_k = a_{-k} \\ \langle a_k = -\langle a_{-k} \rangle \end{cases}$
$x_t(t) = \mathcal{E}\nu\{x(t)\} [x(t) \text{ real}]$ $x_0(t) = \mathcal{O}d(x(t)) [x(t) \text{ real}]$	$\Re e\{a_k\}$ $j \le m\{a_k\}$

Parseval's Relation for Periodic Signals $\frac{1}{T_0} \int_{T_0} |x(t)|^2 dt = \sum_{k=-\infty}^{+\infty} |a_k|^2$