Simulering og eksperimentel modelbestemmelse

Henrik Vie Christensen

vie@control.aau.dk

Department of Control Engineering

Aalborg University

Denmark

Plan for de enkelte minimoduler:

1. Introduktion, metode og procedure for eksperimentel modelbestemmelse, Grafisk modeltilpasning, System identifikation

- 1. Introduktion, metode og procedure for eksperimentel modelbestemmelse, Grafisk modeltilpasning, System identifikation
- 2. Modellering, modelbeskrivelse og simulering

- Introduktion, metode og procedure for eksperimentel modelbestemmelse, Grafisk modeltilpasning, System identifikation
- 2. Modellering, modelbeskrivelse og simulering
- 3. Senstools til parameterestimering

- Introduktion, metode og procedure for eksperimentel modelbestemmelse, Grafisk modeltilpasning, System identifikation
- 2. Modellering, modelbeskrivelse og simulering
- 3. Senstools til parameterestimering
- 4. Parameter nøjagtighed og følsomhed, Frekvensdomænet

- Introduktion, metode og procedure for eksperimentel modelbestemmelse, Grafisk modeltilpasning, System identifikation
- 2. Modellering, modelbeskrivelse og simulering
- 3. Senstools til parameterestimering
- 4. Parameter nøjagtighed og følsomhed, Frekvensdomænet
- 5. Design af inputsignaler

Metodens fordele:

En simpel grundlæggende metode, illustreret grafisk.

Metodens fordele:

- En simpel grundlæggende metode, illustreret grafisk.
- Modeller i kontinuert tid med fysisk betydende parametre.

Metodens fordele:

- En simpel grundlæggende metode, illustreret grafisk.
- Modeller i kontinuert tid med fysisk betydende parametre.
- Enhver model struktur kan anvendes, lineær, ulineær, fordelte parametre, tidsforsinkelse, etc.

Metodens fordele:

- En simpel grundlæggende metode, illustreret grafisk.
- Modeller i kontinuert tid med fysisk betydende parametre.
- Enhver model struktur kan anvendes, lineær, ulineær, fordelte parametre, tidsforsinkelse, etc.
- Stokastiskeaspekter er reduceret til et minimum.

Metodens fordele:

- En simpel grundlæggende metode, illustreret grafisk.
- Modeller i kontinuert tid med fysisk betydende parametre.
- Enhver model struktur kan anvendes, lineær, ulineær, fordelte parametre, tidsforsinkelse, etc.
- Stokastiskeaspekter er reduceret til et minimum.
- Robust over for afvigelser fra teoretiske antagelser.

Metodens fordele:

- En simpel grundlæggende metode, illustreret grafisk.
- Modeller i kontinuert tid med fysisk betydende parametre.
- Enhver model struktur kan anvendes, lineær, ulineær, fordelte parametre, tidsforsinkelse, etc.
- Stokastiskeaspekter er reduceret til et minimum.
- Robust over for afvigelser fra teoretiske antagelser.
- Et følsomheds metode brugbar til valg af model struktur, eksperiment design, og nøjagtighedsverifikation.

Metodens fordele:

- En simpel grundlæggende metode, illustreret grafisk.
- Modeller i kontinuert tid med fysisk betydende parametre.
- Enhver model struktur kan anvendes, lineær, ulineær, fordelte parametre, tidsforsinkelse, etc.
- Stokastiskeaspekter er reduceret til et minimum.
- Robust over for afvigelser fra teoretiske antagelser.
- Et følsomheds metode brugbar til valg af model struktur, eksperiment design, og nøjagtighedsverifikation.
- Alt i alt, kompatibel med fysisk indsigt.

Applikationer

Senstools og følsomhedsmetoden for eksperimentel modellering er blevet anvendt i mange forsknings og studenter projekter. Eksempler er:

- Skibs- og maritime systemer
- Vindmøller
- Højtalere
- Induktions- og DC-motore
- Varmevekslere
- Menneskeligt væv for hypertermi-terapi mod kræft
- Nyre og cerebellar blodgennemstrømning

Bestemmelse af modelstruktur: Modelstrukturen er bestemt af basal fysisk indsigt og empiriske overvejelser. En "simuleringsmodel" konstrueres.

Eksperiment design: Specielt vigtigt er et "godt" inputsignal.

Eksperiment: Systemet exciteres med inputsignalet og overensstemmende værdier af input- og outputsignaler samples og gemmes.

Parameter estimation: Simulationsmodellens parametre justeres til minimum afvigelse mellem det samplede system output og modellen.

Model validering: Korrektheden af modelstrukturen og nøjagtigheden af parameter estimaterne kontrolleres.

Bestem forstærkning K og tidskonstant τ ved at tilpasse en første-ordens model til den målte step-respons:

Bestem forstærkning K og tidskonstant τ ved at tilpasse en første-ordens model til den målte step-respons:

Measured step response and fitted model

Model:

$$G_m(s) = \frac{K}{1+s\tau}$$

Input: (step)

$$U(s) = \frac{a}{s}$$

Step respons:

$$Y(s) = \frac{aK}{s(1+s\tau)}$$

Bestem forstærkning K og tidskonstant τ ved at tilpasse en første-ordens model til den målte step-respons:

Measured step response and fitted model

I tidsdomænet:

$$y(t) = aK(1 - e^{-\frac{t}{\tau}})$$

$$t \to \infty :$$

$$y(\infty) = aK$$

$$\Rightarrow K = \frac{y(\infty)}{a}$$

$$t = \tau :$$

$$y(\tau) = aK(1 - e^{-1})$$

$$= 0.63aK$$

Bestem forstærkning K og tidskonstant τ ved at tilpasse en første-ordens model til den målte step-respons:

Measured step response and fitted model

I tidsdomænet:

$$y(t) = aK(1 - e^{-\frac{t}{\tau}})$$

$$t \to \infty :$$

$$y(\infty) = aK$$

$$\Rightarrow K = \frac{y(\infty)}{a}$$

$$t = \tau :$$

$$y(\tau) = aK(1 - e^{-1})$$

= 0.63aK

Tilsvarende for et førsteordens-system med forsinkelse T:

Measured step response and model with delay

Model:

$$G_m(s) = \frac{K}{1+s\tau}e^{-sT}$$

Systemidentifikationsmetoder

Metoderne er karakteriseret af modeltyperne:

Linear diskrete-time model: Klassisk systemidentifikation

Systemidentifikationsmetoder

Metoderne er karakteriseret af modeltyperne:

- Linear diskrete-time model: Klassisk systemidentifikation
- Neuraltnetværk: Meget ulineære systemer med en kompliceret struktur

Systemidentifikationsmetoder

Metoderne er karakteriseret af modeltyperne:

- Linear diskrete-time model: Klassisk systemidentifikation
- Neuraltnetværk: Meget ulineære systemer med en kompliceret struktur
- Generel simulationsmodel: Enhver matematisk model, som kan simuleres fx. med Matlab. Den kræver en fysisk realistisk model struktur, typisk udviklet ved teoretisk modellering.

Metoden: Direkte estimering af fysiske parametre

Computer tilpasning ved minimering

Performance funktion:

$$P(\theta) = \frac{1}{2N} \sum_{k=1}^{N} \varepsilon^{2}(k, \theta)$$

Optimale parametre:

$$\theta_N = \operatorname*{argmin}_{\theta} P(u_N, y_N, \theta)$$

hvor T er samplingstiden og $\varepsilon(k,\theta) = y(kT) - y_m(kT,\theta)$.

Performance funktion som fkt. af θ

En parameter:

Model:

$$\frac{Y_m(s)}{U(s)} = \frac{1}{1+s\tau}$$

To parametre:

Model:
$$\frac{Y_m(s)}{U(s)} = \frac{K}{1 + s\tau}$$

Minimum af en funktion

Betingelser for minimum i $\theta = \theta_0$ af en fkt. af flere variable

$$P(\theta) = \frac{1}{2N} \sum_{k=1}^{N} (y(kT) - y_m(kT, \theta))^2$$

er, at gradient vektoren er nul: $G(\theta_0) = \frac{\partial P(\theta)}{\partial \theta}\Big|_{\theta=\theta_0} = 0$

og at Hessian matricen: $H(\theta_0) = \frac{\partial^2 P(\theta)}{\partial \theta \partial \theta^{\top}}\Big|_{\theta = \theta_0}$

er positiv definit, dvs. $v^{\top}Hv > 0$ for alle $v \neq 0$.

Minimum af en funktion

Betingelser for minimum i $\theta = \theta_0$ af en fkt. af flere variable

$$P(\theta) = \frac{1}{2N} \sum_{k=1}^{N} (y(kT) - y_m(kT, \theta))^2$$

er, at gradient vektoren er nul: $G(\theta_0) = \frac{\partial P(\theta)}{\partial \theta}\Big|_{\theta=\theta_0} = 0$

og at Hessian matricen: $H(\theta_0) = \frac{\partial^2 P(\theta)}{\partial \theta \partial \theta^{\top}}\Big|_{\theta = \theta_0}$

er positiv definit, dvs. $v^{\top}Hv > 0$ for alle $v \neq 0$.

Problem: $G(\theta_0) = 0$ har generelt ingen eksplicit løsning!

Numeriske metoder til at finde minimum

Steepest descent

Numeriske metoder til at finde minimum

Steepest descent

Newtons metode

Numeriske metoder til at finde minimum

Steepest descent

Newtons metode

Gauss-Newton metoden

■ Bestem model output (simulation): $y_m(k) = F(u_n, \theta)$

- **■** Bestem model output (simulation): $y_m(k) = F(u_n, \theta)$
- Bestem model gradienten ψ ved numerisk differentiation:

$$\psi_j(k,\theta) = \frac{y_m(k,\theta_j + \Delta\theta_j) - y_m(k,\theta_j)}{\Delta\theta_j}$$

- **●** Bestem model output (simulation): $y_m(k) = F(u_n, \theta)$
- Bestem model gradienten ψ ved numerisk differentiation:

$$\psi_j(k,\theta) = \frac{y_m(k,\theta_j + \Delta\theta_j) - y_m(k,\theta_j)}{\Delta\theta_j}$$

• Bestem gradienten G og Hessian matricen H fra ψ :

$$G(\theta) = -\frac{1}{N} \sum_{k=1}^{N} \varepsilon(k, \theta) \psi(k, \theta), \ \widetilde{H}(\theta) = \frac{1}{N} \sum_{k=1}^{N} \psi(k, \theta) \psi^{\top}(k, \theta)$$

- **●** Bestem model output (simulation): $y_m(k) = F(u_n, \theta)$
- Bestem model gradienten ψ ved numerisk differentiation:

$$\psi_j(k,\theta) = \frac{y_m(k,\theta_j + \Delta\theta_j) - y_m(k,\theta_j)}{\Delta\theta_j}$$

• Bestem gradienten G og Hessian matricen H fra ψ :

$$G(\theta) = -\frac{1}{N} \sum_{k=1}^{N} \varepsilon(k, \theta) \psi(k, \theta), \ \widetilde{H}(\theta) = \frac{1}{N} \sum_{k=1}^{N} \psi(k, \theta) \psi^{\top}(k, \theta)$$

Bestem de parameter værdier der minimerer performance funktionen P vha. Gauss-Newton metoden

$$\theta_{i+1} = \theta_i - \widetilde{H}^{-1}(\theta_i)G(\theta_i)$$

Næste Forelæsning

Næste gang ser vi på:

- Modeller og modellering: koncepter
- Model beskrivelse
- Diskritiseringsmetoder
- Simulering af lineære og ulineære dynamiske systemer i Matlab