حافظههای ROM و BRAM

فاطمه علىملكى مهدى حقوردي ۲۱ آذر ۲۰۱۲

فهرست مطالب

این موجودیت شامل دو پورت است:

addr •

١	تە ضىح	حات فایلهای تمرین
		فایل rom8x8 ناید
		۱۰۱۰۱ توضیحات موجودیت rom8x8
		۲۰۱۰۱ توضیحات معماری behave
	۲.۱	فایل romram فایل
		۱۰۲۰۱ موجودیت romram موجودیت
		۲.۲.۱ معماری structural
	۳.۱	فایل clockDivider
		۱۰۳۰۱ موجودیت clock_divide موجودیت ۱۰۳۰۱ معماری behave
		۲۰۳۱ معماری behave
۲	تغييرا	ات کد برای بلوک دیاگرام
		وروديها
		تغییرات در سیگنالهای میانی ۲۰۰۰، ۲۰۰۰، تغییرات در سیگنالهای میانی
	٣.٢	تغییرات در کامپوننت bram8x8
١	توخ	ضيحات فايلهاى تمرين
۱.۱	' فاي	یل rom8x8
	فایل، س beha ا	سادهترین فایل این تمرین است که شامل یک موجودیت به نام rom8x8 و یک معماری ب است.
١.١	۱. ته	د ضبحات مدحد دنت rom8x8

این پورت یک ورودی std_logic_vector بیتی است که در واقع مقدار خروجی را تعیین میکند.

dout •

این پورت هم یک پورت خروجی از نوع ۸ std_logic_vector بیتی است که مقدار خروجی روی آن قرار میگیرد.

۲.۱.۱ توضیحات معماری behave

این تنها معماری حاضر برای موجودیت rom8x8 است که در واقع یک decoder به ۸ است. مقادیری که برای خروجی انتخاب شدهاند کاملا hard code شدهاند و این کاملا با نام موجودیت (که rom است) هماهنگی دارد.

در معماری از language feature عی به نام with ... select عی به نام addr استفاده شده است که با توجه به مقدار addr خروجی را روی dout

۲۰۱ فایل ۲۰۱

این فایل در واقع کل پروژه و کد این شکل است:

چرا کد این شکل است؟

چون در کد مشاهده می شود که مشخصا موجودیتهای clock_divide ، rom8x8 و rom8x8 و bram8x8 در آن به عنوان یک component استفاده شدهاند (که موجودیتهایی هستند که در شکل وجود دارند، البته مالتی پلکسری که در شکل است در قسمت معماری همین فایل تعریف شده است).

کد شامل یک موجودیت به نام romram و یک معماری به نام structural است.

۱۰۲۰۱ موجودیت ۲۰۲۰۱

موجودیت دارای دو ورودی و یک خروجیست:

• ورودىھا

- clk_100MHZ -
- از نوع std_logic و تبعا یک بیتیست که کلاک سیستم است.
 - switch -

از نوع std_logic است که همان پایهی انتخاب داخل شکل پروژه است.

خروجی

leds -

یک پورت ۸ بیتی از نوع std_logic_vector است مقداری انتخاب شده روی آن قرار میگیرد.

structural معماری ۲۰۲۰۱

در قسمت معماری این فایل، ابتدا ۳ component که در این پروژه استفاده شدهاند، تعریف شدهاند و پس از آن ۵ سینگال میانی تعریف و مقداردهی اولیه شدهاند.

در قسمت begin این معماری، ابتدا ۳ component سده و به سینگالهای ورودی، میانی و خروجی وصل شدهاند.

معماری شامل یک process است که به سیگنال clk_1Hz حساس است. سپس این فرآیند برای هر یک کلاک با مقدار ۱، با توجه به ورودی switch که \circ باشد یا ۱، خروجی را به ترتیب با dout_rom پر میکند. سپس فارغ از مقدار switch یک شمارنده یا یکی اضافه میکند.

clockDivider فابل ۳.۱

شامل یک موجودیت و یک معماریست:

۱.۳.۱ موجودیت ۱.۳.۱

صرفا شامل یک ورودی و یک خروجی یک بیتی به نامهای clk_in و clk_out است.

۲.۳.۱ معماری behave

این معماری شامل ۴ سینگال میانی و سه فرآیند است.

• سىگنالھاي مىانى

شامل دو سینگال از نوع unsigned به طول ۲۷ بیت، و دو سینگال یک بیتی از نوع std_logic است.

• فرآىندها

قسمت معماری این فایل شامل ۳ فرایند و یک statement است که به صورت موازی اجرا می شوند.

کلاکی که بورد پازج در اختیار ما قرار میدهد، کلاک 100MHz است که چشم انسان قابلیت دیدن تغییرات آن را روی چیزی مانند LED ندارد.

برای تبدیل کردن این تعداد کلاک بسیار زیاد به یک کلاک در ثانیه می توان تا نصف این عدد را مقدار صفر داد و نصف دیگر را عدد یک. این فایل هم دقیقا همین کار را انجام می دهد. این فایل دونه دونه کلاکها را می شمارد و یک متغیر را با هر کلاک یکی اضافه می کند، تا زمانی که به مقدار 50e6 که نصف $100 \, \mathrm{MHz}$ است برسد؛ و تا این زمان، سیگنالی که روی خروجی می افتد را (oeb_next) صفر می کند.

از بعد از عدد 50e6 به همین منوال، سیگنال oeb_next را داراست.

۲ تغییرات کد برای بلوک دیاگرام

بلوک دیاگرامی که در گروه فرستادید، تغییراتی را در کد romram. vhd می طلبید که تغییرات آن با استفاده از پلاگین git نرمافزار PyCharm Community Edition عکس گرفته شده اند.

۱.۲ وروديها

تغییرات کلی ورودیها در تصویر ۱ (آ) آورده شدهاند.

۲.۲ تغییرات در سیگنالهای میانی

تغییراتی که روی سیگنالهای میانی انجام داده شدهاند، در تصویر ۱ (ب) آورده شدهاند.

۳.۲ تغییرات در کامیوننت bram8x8

تغییرات لازم در تصویر ۱ (ج) نشان داده شدهاند.

فهرست تصاوير

۱ تغییرات در ورودی، سیگنالهای میانی و bram8x8 تغییرات در ورودی، سیگنالهای میانی و

<pre>begin clock_divider: clock_divide port map(clk_100MHz, clk_1Hz); rom: rom8x8 port map(addr_counter, dout_rom); bram: bram8x8 port map(clka => clk_1Hz, wea => switch1, addra => addr_counter, dina => dina_null, douta => dout_bram);</pre>	<pre>signal clk_1HZ: std_logic; signal addr_counter: std_logic_vector(2 downto 0) := "000"; signal dout_rom,dout_bram: std_logic_vector(7 downto 0); signal dina_null: std_logic_vector(7 downto 0) := "00000000"; signal before_leds: std_logic_vector(7 downto 0); signal all_null: std_logic_vector(7 downto 0) := "00000000";</pre>	romram is tt tc tc tc tc tc tc tc tc tc
45 46 47 48 48 49 50 50 51 52 53 53 54 55 65 65 65 65 65 65 65 65 65	signal or signal	entity romram is port(L100MHZ. switch0, switch0
Hiz. 45 46 47 47 48 49 60 50 51 51 53 53	37 38 39 40 41 42	5 6 7 8 8 10 11
om);	37 38 39 40 41 34 44 43	5 6 8 8 110 111
<pre>begin clock_divider: clock_divide port map(clk_100MHz, clk_1Hz_ rom: rom8x8 port map(addr_counter, dout_rom); bram: bram8x8 port map(clka => clk_1Hz, wea => wea_null, addra => addr_counter, dina => dina_null, douta => dout_bram); </pre>	signal clk_1Hz: std_logic; signal addr_counter: std_logic_vector(2 dr signal dout_rom,dout_bram: std_logic_vector signal dina_null: std_logic_vector(7 down'signal wea_null: std_logic_vector(0 downto	<pre>port(</pre>
h	(t)	:
bram8x8 (ج)	(ب) سیگنالهای میانی	(آ) ورودىھا

شکل ۱: تغییرات در ورودی، سیگنالهای میانی و bram8x8