Predicting CAHOOTS:

Analyzing
Temporal and
Climatic Patterns
in Call Data

Background

Temporal Patterns in Call Data

Understanding how call volumes change by time of day, day of the week, season, and year helps
 optimize resource allocation and response strategies

Impact of Climate on Emergency Calls

Investigating how weather conditions affect the frequency and types of calls

Predicting Future Call Volumes

Utilizing live weather forecasts and machine learning to anticipate high call volumes

Data

CAHOOTS

66,461 calls (with time info) spanning
 between 2021 and 2023

Climate

- Source: Visual Crossing Weather API
- Features: temp, humidity, feels-like, dew, etc. (22 in total)

Air Quality Index (AQI)

- Source: The World Air Quality Index
 Project
- Features: 'pm25'

Age	Season_Winter	Season_Spring	•••	uv index
39	1	0		2
•••				
23	0	1	•••	4

66461 rows × 72 columns

Methods

1. Data Visualization

Created plots to visualize call volumes and classification trends

2. Correlation Analysis

Examined the correlations between weather features and 'Reasons for Dispatch.'

3. Machine Learning Predictions

Used a Random Forest model to predict call volumes based on weather forecasts.

4. OLS Regression Analysis

Used regression to understand the impact of individual weather features on call volumes

Call Counts 2021-2023

Seasonal Averages

- +10.9% Winter to Spring
- +1.3% Spring to Summer
- -6.2% Summer to Autumn
- -5.2% Fall to Winter

Daily and Hourly Averages

Reasons for Dispatch by Season

Reason for Dispatch Correlations

1528 significant correlations found, 381 involving Climate

Feature 1	Feature 2	Correlation	P-value	Sample Size
Check Welfare	feels_like	0.081884321	2.21E-93	62461
Check Welfare	temp	0.080379998	4.84E-90	62461
Public Assist	feels_like_max	-0.070922517	1.82E-70	62461
Check Welfare	solar_radiation	0.070417611	1.72E-69	62461
Check Welfare	sunset_hour	0.06856535	5.68E-66	62461
Public Assist	temp	-0.068133802	3.64E-65	62461
Transport	snow	0.036399071	9.05E-20	62461

Risk Assessing Future Days

Learning from an OLS Model

Conclusion

Call Volumes

- Decreased in 2023
- Decrease during the weekend
- Increase at 11:00 AM and 5:00 PM
- Increase during Spring, Summer, and Extreme Winter Events

Call Classifications

- Welfare Checks are more common during the Summer
- Public Assists and Transports are more common during the Winter

Making Predictions

- We can accurately classify upcoming days as 'High-risk' using weather forecasts
 - 191/217 days correctly classified (88% accurate)

Acknowledgments

- Thanks to Rori
- Thanks to CAHOOTS
- Thanks to the DSCI cohort