Emergent Abilities of Large Language Models

Выполнил:

Разин Арслан Дмитриевич, БПМИ202

1. Эмерджентность

- 2. Метрики
- 3. Примеры
- 4. Последствия
- 5. Критика другой статьи
- 6. Источники

Эмерджентность

Emergence is when quantitative changes in a system result in qualitative changes in behavior.

An ability is emergent if it is not present in smaller models but is present in larger models.

Эмерджентность в 4k от Kandinsky 3.0

Эмерджентность

Kandinsky 2.2

Kandinsky 2.1

- 1. Эмерджентность
- 2. Метрики
- 3. Примеры
- 4. Последствия
- 5. Критика другой статьи
- 6. Источники

Метрики

Использование few-shot prompting

Метрики

- Mod. arithmetic простые арифметические операции (2-3 знака, сложение, умножение)
- IPA transliterate транслитерация
- Word unscramble расшифровка слова
- Persian QA вопрос/ответ на персидском
- TruthfulQA честный вопрос/ответ
- Grounded mappings выделение концепции
- Multi-task NLU мультизадачный тест на разные области знаний
- Word in context понимание значения слова в контексте

- 1. Эмерджентность
- 2. Метрики
- 3. Примеры
- 4. Последствия
- 5. Критика другой статьи
- 6. Источники

Продвинутые примеры (Augmented Prompting)

интерпретатора

инструкциям

по шагам

13

Обнаруженные авторами примеры

	Emergent scale			
	Train. FLOPs	Params.	Model	Reference
Few-shot prompting abilities				
• Addition/subtraction (3 digit)	2.3E + 22	13B	GPT-3	Brown et al. (2020)
• Addition/subtraction (4-5 digit)	3.1E + 23	175B		
• MMLU Benchmark (57 topic avg.)	3.1E + 23	175B	GPT-3	Hendrycks et al. (2021a)
• Toxicity classification (CivilComments)	1.3E + 22	7.1B	Gopher	Rae et al. (2021)
• Truthfulness (Truthful QA)	5.0E + 23	280B		
• MMLU Benchmark (26 topics)	5.0E + 23	280B		
• Grounded conceptual mappings	3.1E + 23	175B	GPT-3	Patel & Pavlick (2022)
• MMLU Benchmark (30 topics)	5.0E + 23	70B	Chinchilla	Hoffmann et al. (2022)
• Word in Context (WiC) benchmark	2.5E + 24	540B	PaLM	Chowdhery et al. (2022)
• Many BIG-Bench tasks (see Appendix E)	Many	Many	Many	BIG-Bench (2022)
Augmented prompting abilities				
• Instruction following (finetuning)	1.3E + 23	68B	FLAN	Wei et al. (2022a)
• Scratchpad: 8-digit addition (finetuning)	8.9E + 19	40M	LaMDA	Nye et al. (2021)
• Using open-book knowledge for fact checking	1.3E + 22	7.1B	Gopher	Rae et al. (2021)
• Chain-of-thought: Math word problems	1.3E + 23	68B	LaMDA	Wei et al. (2022b)
• Chain-of-thought: StrategyQA	2.9E + 23	62B	PaLM	Chowdhery et al. (2022)
 Differentiable search index 	3.3E + 22	11B	T5	Tay et al. (2022b)
• Self-consistency decoding	1.3E + 23	68B	LaMDA	Wang et al. (2022b)
• Leveraging explanations in prompting	5.0E + 23	280B	Gopher	Lampinen et al. (2022)
• Least-to-most prompting	3.1E + 23	175B	GPT-3	Zhou et al. (2022)
• Zero-shot chain-of-thought reasoning	3.1E + 23	175B	GPT-3	Kojima et al. (2022)
• Calibration via P(True)	2.6E + 23	52B	Anthropic	Kadavath et al. (2022)
• Multilingual chain-of-thought reasoning	2.9E + 23	62B	PaLM	Shi et al. (2022)
• Ask me anything prompting	1.4E + 22	6B	${\bf Eleuther AI}$	Arora et al. (2022)

- 1. Эмерджентность
- 2. Метрики
- 3. Примеры
- 4. Последствия
- 5. Критика другой статьи
- 6. Источники

Последствия

Основные тезисы авторов статьи по оценке перспектив:

- 1. Улучшение существующих приложений и создание новых эмерджентность позволяет улучшить взаимодействие человека и ИИ, наделяя алгоритмы человеческими качествами, а также заменяя человека в выполнении бытовых и типовых задач
- 2. Этические и социальные вызовы проблемы конфиденциальности данных, предвзятости моделей, влияние на рынок труда и потенциальное использование для создания вводящего в заблуждение или манипулятивного контента
- 3. Необходимость регулирования и стандартов создание мер по обеспечению прозрачности, ответственности и безопасности
- 4. Необходимость продолжать исследования улучшение технических аспектов моделей (например, эффективность, масштабируемость)

- 1. Эмерджентность
- 2. Метрики
- 3. Примеры
- 4. Последствия
- 5. Критика другой статьи
- 6. Источники

Критика

Аргумент: возникающие способности, это следствие неправильных метрик, слишком топорно оценивающих результат. Для оценки качества генерации нужно использовать более сглаженные метрики.

Ответ: единственный ожидаемый ответ на вопрос "Сколько будет 15 + 23?" – "38". Никакой другой ответ нас не устраивает, поэтому хоть ответ 37 был бы ближе, чем -2.591, но нам важен только конечный результат. С другой стороны использование сглаженных суррогатных метрик тоже важно, так как они позволяют оценить прогресс в достижении нужного эффекта.

Критика

Аргумент: плохо рисовать графики, где по ось X логарифмическая, а Y нет.

Ответ: Ок, легче стало? (это не влияет никак на появление эффекта)

Критика

Аргумент: в статье не исследован вопрос того, является ли повышение точности непрерывным и плавным. Например, кажется маловероятным, что модель с 1 000 000 параметрами будет иметь 50% (случайную) точность, а модель с 1 000 001 параметром будет иметь точность 90%.

Ответ: у нас нет таких моделей, чтобы можно было так точно поймать этот момент. И даже сравнить качество ответов для близких моделей с помощью более простых моделей не всегда возможно, так как не все модели можно одинаково оценивать.

- 1. Эмерджентность
- 2. Метрики
- 3. Примеры
- 4. Последствия
- 5. Критика другой статьи
- 6. Источники

Источники

- Статья "Emergent Abilities of Large Language Models":
 https://arxiv.org/pdf/2206.07682.pdf
- Статья "Are Emergent Abilities of Large Language Models a Mirage?": https://arxiv.org/pdf/2304.15004.pdf
- Комментарии авторов первой статьи на вторую:
 https://www.jasonwei.net/blog/common-arguments-regar-ding-emergent-abilities