ĐẠO HÀM VÀ TÍCH PHÂN

BÀI GIẢNG ĐIÊN TỬ

Nguyễn Thị Cẩm Vân

Trường Đại học Bách Khoa TP HCM Khoa Khoa học ứng dụng, bộ môn Toán ứng dụng

Nội dung

TÍNH GẦN ĐÚNG ĐẠO HÀM

Nội dung

1 TÍNH GẦN ĐÚNG ĐẠO HÀM

TÍNH GẦN ĐÚNG TÍCH PHÂN XÁC ĐỊNH

Xét bảng số
$$\frac{x \mid x_0 \mid x_1}{y \mid y_0 \mid y_1}$$
 với $y_0 = f(x_0)$ và $y_1 = f(x_1) = f(x_0 + h)$.

Đa thức nội suy Lagrange có dạng

$$\mathscr{L}(x) = \frac{x - x_0}{h} y_1 - \frac{x - x_1}{h} y_0,$$

với $h = x_1 - x_0$. Do đó, với mọi $\forall x \in [x_0, x_1]$ ta có

$$f'(x) \approx \frac{y_1 - y_0}{h} = \frac{f(x_0 + h) - f(x_0)}{h}$$

Công thức sai phân tiến:

$$f'(x_0) \approx \frac{y_1 - y_0}{h} = \frac{f(x_0 + h) - f(x_0)}{h} \tag{1}$$

Công thức sai phân tiến:

$$f'(x_0) \approx \frac{y_1 - y_0}{h} = \frac{f(x_0 + h) - f(x_0)}{h} \tag{1}$$

Công thức sai phân lùi:

$$f'(x_0) \approx \frac{f(x_0) - f(x_0 - h)}{h}$$
 (2)

Xét bảng số
$$\frac{x \mid x_0 \mid x_1 \mid x_2}{y \mid y_0 \mid y_1 \mid y_2}$$
 với $y_0 = f(x_0)$, $y_1 = f(x_1) = f(x_0 + h)$, $y_2 = f(x_2) = f(x_0 + 2h)$ Đa thức nội suy Lagrange có dạng

$$\mathcal{L}(x) = \frac{(x - x_0)(x - x_1)}{2h^2} y_2 - \frac{(x - x_0)(x - x_2)}{h^2} y_1 + \frac{(x - x_1)(x - x_2)}{2h^2} y_0,$$

$$\mathcal{L}'(x) = \frac{x - x_0}{2h^2} (y_2 - 2y_1) + \frac{x - x_1}{2h^2} (y_2 + y_0) + \frac{x - x_2}{2h^2} (y_0 - 2y_1), \mathcal{L}''(x) = \frac{y_2 - 2y_1 + y_0}{h^2}.$$

Đặc biệt, tại x_0 ta có

$$f'(x_0) \approx \mathcal{L}'(x_0) = \frac{-3y_0 + 4y_1 - y_2}{2h}$$
 (3)

và được gọi là **công thức sai phân tiến.** Còn tại x_1 ta cũng có $f'(x_1) \approx \mathcal{L}'(x_1) = \frac{y_2 - y_0}{2h}$ và được gọi là **công thức sai phân hướng tâm** và thường được viết dưới dạng

$$f'(x_0) \approx \frac{f(x_0 + h) - f(x_0 - h)}{2h}$$
 (4)

Còn tại x_2 ta cũng có $f'(x_2) \approx \mathcal{L}'(x_2) = \frac{y_0 - 4y_1 + 3y_2}{2h}$ và được gọi là công thức sai phân lùi và thường được viết dưới dạng

$$f'(x_0) \approx \frac{f(x_0 - 2h) - 4f(x_0 - h) + 3f(x_0)}{2h}$$
 (5)

VÍ DU 1.1

Tính gần đúng y'(50) của hàm số y = lgx theo công thức sai phân tiến dựa vào bảng giá trị sau $\begin{array}{c|cccc} x & 50 & 55 & 60 \\ \hline y & 1.6990 & 1.1704 & 1.7782 \end{array}$

Ví dụ 1.1

h = 5. Theo công thức sai phân tiến ta có

$$y'(50) \approx \frac{1}{2h}(-3y_0 + 4y_1 - y_2) =$$

$$\frac{1}{2 \times 5}(-3 \times 1.6990 + 4 \times 1.1704 - 1.7782) = -0.21936$$

TÍNH GẦN ĐÚNG TÍCH PHÂN XÁC ĐỊNH

Theo công thức Newton-Leibniz thì

$$\int_{a}^{b} f(x)dx = F(x)\Big|_{a}^{b} = F(b) - F(a), \ F'(x) = f(x).$$

Nhưng thường thì ta phải tính tích phân của hàm số y = f(x) được xác định bằng bảng số. Khi đó khái niệm nguyên hàm không còn ý nghĩa.

Để tính gần đúng tích phân xác định trên [a,b], ta thay hàm số f(x) bằng đa thức nội suy $P_n(x)$ và xem

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} P_{n}(x)dx$$

CÔNG THỰC HÌNH THANG

Để tính gần đúng tích phân $\int_{-\pi}^{\pi} f(x) dx$ ta thay hàm dưới dấu tích phân f(x) bằng đa thức nội suy Newton tiến bậc 1 đi qua 2 điểm (a, f(a)) và (b, f(b)) xuất phát từ nút (a, f(a)) $V_{ay} P_1(x) = f(a) + f[a, b](x - a) =$ $= f(a) + \frac{f(b) - f(a)}{b - a}(x - a)$

$$\int_{a}^{b} P_{1}(x)dx = \int_{a}^{b} \left[f(a) + f[a,b](x-a) \right] dx =$$

$$= f(a)x + f[a,b] \left(\frac{x^{2}}{2} - ax \right) \Big|_{a}^{b}$$

$$= f(a)(b-a) + \frac{f(b) - f(a)}{b-a} \cdot \left(\frac{b^{2}}{2} - ab - \frac{a^{2}}{2} + a^{2} \right)$$

$$= \frac{b-a}{2} \left[f(a) + f(b) \right]$$

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2} \left[f(a) + f(b) \right] \tag{6}$$

Chia đoạn [a, b] thành n đoạn nhỏ với bước chia $h = \frac{b-a}{}$. Khi đó $a = x_0, x_1 = x_0 + h, ...,$ $x_k = x_0 + kh, \dots, x_n = x_0 + nh \text{ và } y_k = f(x_k),$ k = 0, 1, ..., nSử dụng công thức hình thang cho từng

đoạn $[x_k, x_{k+1}]$ ta được

$$\int_{a}^{b} f(x)dx = \int_{x_{0}}^{x_{1}} f(x)dx + \int_{x_{1}}^{x_{2}} f(x)dx + \dots + \int_{x_{n-1}}^{x_{n}} f(x)dx$$

$$V_{0} + V_{1} \qquad V_{1} + V_{2} \qquad V_{2} + V_{3}$$

 $\approx h \cdot \frac{y_0 + y_1}{2} + h \cdot \frac{y_1 + y_2}{2} + \dots + h \cdot \frac{y_{n-1} + y_n}{2}$

VÍ DỤ 2.1

Tính gần đúng tích phân $I = \int_0^1 \frac{dx}{1+x}$ bằng công thức hình thang mở rộng khi chia đoạn [0,1] thành n = 10 đoan nhỏ.

VÍ DỤ 2.1

Tính gần đúng tích phân $I = \int_0^1 \frac{dx}{1+x}$ bằng công thức hình thang mở rộng khi chia đoạn [0,1] thành n=10 đoạn nhỏ.

$$h = \frac{b-a}{n} = \frac{1-0}{10} = \frac{1}{10}, x_0 = 0, x_k = \frac{k}{10},$$

$$y_k = f(x_k) = \frac{1}{1+\frac{k}{10}} = \frac{10}{10+k}$$

$$I \approx \frac{h}{2} \sum_{k=0}^{9} (y_k + y_{k+1}) = \frac{1}{10} \sum_{k=0}^{9} \left(\frac{10}{10+k} + \frac{10}{10+k} \right) \approx 0.6938$$

$$I \approx \frac{h}{2}(y_0 + 2y_1 + 2y_2 + 2y_3 + 2y_4 + 2y_5 + 2y_6 + 2y_7 + 2y_8 + 2y_9 + y_{10})$$

Bấm máy. Với h = 0.1, ta có

$$A = A + \frac{h}{2} * B * (1 \div (1 + X)) : X = X + h$$

CALC A=0, X=0, B=1=.

...,...,...

$$A=, X=1, B=1=.$$

Kêt quả: $I \approx 0.6938$

Để tích gần đúng tích phân $\int_{-\infty}^{\infty} f(x) dx$ ta chia [a, b] thành 2 đoạn bằng nhau bởi điểm $a, x_1 = a + h, b$ với $h = \frac{b-a}{2}$ thay hàm dưới dấu tích phân f(x) bằng đa thức nội suy Newton tiến bậc 2 đi qua 3 điểm $(a, f(a)), (x_1, f(x_1))$ và (b, f(b)) xuất phát từ nút(a, f(a)) $V\hat{a}v P_2(x) =$ $f(a) + f[a, x_1](x - a) + f[a, x_1, b](x - a)(x - x_1)$

$$\int_{a}^{b} f(x) dx \approx \int_{a}^{b} P_{2}(x) dx =$$

$$= \int_{a}^{b} f(a) + f[a, x_{1}](x-a) + f[a, x_{1}, b](x-a)(x-x_{1}) dx$$

Đổi biến
$$x = a + ht \Rightarrow dx = hdt, t \in [0, 2]$$

$$\int_{a}^{b} P_{2}(x) dx =$$

$$= \int_0^2 \left(f(a) + f[a, x_1]ht + f[a, x_1, b]h^2t(t-1) \right) hdt$$

Mặt khác, ta có

$$f[a, x_1]h = y_1 - f(a),$$

$$f[a, x_1, b]h^2 = \frac{f(b) - 2f(x_1) + f(a)}{2}.$$

Vậy

$$\int_{a}^{b} f(x)dx \approx \frac{h}{3} \Big[f(a) + 4f(x_1) + f(b) \Big] \tag{7}$$

Chia đoạn [a,b] thành 2n đoạn nhỏ với bước chia $h=\frac{b-a}{2n}$. Khi đó $a=x_0,x_1=x_0+h,...,x_{2k}=x_0+2kh,...,x_{2n}=x_0+2nh,x_k=x_0+kh$ và $y_k=f(x_k),y_{2k}=f(x_{2k}),k=0,1,...,2n$ Sử dụng công thức Simpson cho từng đoạn $[x_k,x_{k+2}]$ ta được

$$\int_{a}^{b} f(x)dx = \int_{x_0}^{x_2} f(x)dx + \int_{x_2}^{x_4} f(x)dx + \dots + \int_{x_{2n-2}}^{x_{2n}} f(x)dx$$

$$\approx \frac{h}{3}(y_0 + 4y_1 + y_2) + \frac{h}{3}(y_2 + 4y_3 + y_4) + \dots + \frac{h}{3}(y_{2n-2} + 4y_{2n-1} + y_{2n}).$$

19/23

VÍ DŲ 2.2

Tính gần đúng tích phân $I = \int_0^1 \frac{dx}{1+x}$ bằng công thức Simpson mở rộng khi chia đoạn [0,1] thành n=10 đoạn nhỏ.

VÍ DỤ 2.2

Tính gần đúng tích phân $I = \int_0^1 \frac{dx}{1+x}$ bằng công thức Simpson mở rộng khi chia đoạn [0,1] thành n=10 đoạn nhỏ.

$$h = \frac{b-a}{2n} = \frac{1-0}{20} = \frac{1}{20}, x_0 = 0, x_k = \frac{k}{20},$$
$$y_k = f(x_k) = \frac{1}{1 + \frac{k}{20}} = \frac{20}{20 + k}.$$

Vậy

$$I \approx \frac{h}{3} \sum_{k=0}^{n-1} (y_{2k} + 4y_{2k+1} + y_{2k+2}) =$$

$$= \frac{1}{60} \sum_{k=0}^{9} \left(\frac{20}{20+2k} + 4 \frac{20}{2k+21} + \frac{20}{2k+22} \right) \approx 0.6931$$

$$I \approx \frac{h}{3}(y_0 + 4y_1 + 2y_2 + 4y_3 + 2y_4 + 4y_5 + 2y_6 + 4y_7 + 2y_8 + 4y_9 + 2y_{10} + 4y_{11} + 2y_{12} + 4y_{13} + 2y_{14} + 4y_{15} + 2y_{16} + 4y_{17} + 2y_{18} + 4y_{19} + y_{20})$$

Bấm máy.

$$A = A + B * \frac{1}{6 * 10} * \frac{1}{X + 1} : X = X + \frac{1}{2 * 10}$$

CALC
$$A=0$$
, $B=1$, $X=0$;

$$A=, B=2; X=;$$

.

Kết quả. $I \approx 0.6931$

CÁM ƠN CÁC EM ĐÃ CHÚ Ý LẮNG NGHE