

증강 현실의 원리로 바라보는 증강 가상의 세계

소속 : CSO

발표자:구태훈

20년전 1990년 증강현실

Tom Caudell 보잉사가 작업자들에게 항 공기의 전선을 조립하는 것 을 돕기 위한 과정에서 증강 현실이란 용어를 만들었다.

1994년 혼합 현실

1994 Paul Milgram and Fumio Kishino

1.카메라 Calibration 2.마케 등록 3.VRML 등록 4.잘 되길 기도

참고 자료 1/2 게임 (45초부터)

참고 자료 2/2 의학 (34초부터)

시연 (5분) 원리 (과거) (10분) 트렌드와 증강 가상 (5분 Q & A (5분)

a. Original image

b. Thresholded image

c. Connected components

d. Contours

e. Extracted marker edges and corners

f. Fitted square

Rotation & Translation

M(마커의 좌표계) → C(카메라의 좌표계)로 변환

$$\begin{bmatrix} X_C \\ Y_C \\ Z_C \\ 1 \end{bmatrix} = \begin{bmatrix} R_{11} & R_{12} & R_{13} & T_1 \\ R_{21} & R_{22} & R_{23} & T_2 \\ R_{31} & R_{32} & R_{33} & T_3 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_M \\ Y_M \\ Z_M \\ 1 \end{bmatrix}$$

Perspective Projection

C(카메라의 3D 좌표) → 이상적인 I(2D좌표)로 변환

C: Camera Parameter

스크린 좌표는 추가적인 보정이 필.

Image Distortion parameters

스크린에 맞도록 보정

$$x = s(x_i - x_0), y = s(y_i - y_0)$$

 $d^2 = x^2 + y^2$
 $p = \{1 - fd^2\}$
 $x_d = px + x_0, \quad y_d = py + y_0$
 $dist_factor[0] = x_0$
 $dist_factor[1] = y_0$
 $dist_factor[2] = 1000000000.0 * f$
 $dist_factor[3] = s$

```
typedef struct {
    int xsize, ysize;
    double mat[3][4];
    double
dist_factor[4];
} ARParam;
```


$$\begin{bmatrix} h\hat{x}_{i} \\ h\hat{y}_{i} \\ h \end{bmatrix} = \begin{bmatrix} X_{Mi} \\ Y_{Mi} \\ Z_{Mi} \\ 1 \end{bmatrix}, i = 1, 2, 3, 4$$

$$err = \frac{1}{4} \sum_{i=1,2,3,4} \left\{ \left(x_i - \hat{x}_i \right)^2 + \left(y_i - \hat{y}_i \right)^2 \right\}$$

노이조제거

방법1.

각 꼭지점의 좌표들 평균값 사용 방법2.

이전 프레임상의 위치를 캐싱

Normalization

Resolution convert

a. Original image

b. Thresholded image

c. Connected components

d. Contours

e. Extracted marker edges and corners

f. Fitted square

1994 Paul Milgram and Fumio Kishino

岩台2

$$\begin{bmatrix} h\hat{x}_i \\ h\hat{y}_i \\ h \end{bmatrix} = \mathbf{C} \mathbf{T}_{\mathbf{CM}} \begin{bmatrix} X_{Mi} \\ Y_{Mi} \\ Z_{Mi} \\ 1 \end{bmatrix}, \quad i = 1, 2, 3, 4$$

$$err = \frac{1}{4} \sum_{i=1,2,3,4} \left\{ \left(x_i - \hat{x}_i \right)^2 + \left(y_i - \hat{y}_i \right)^2 \right\}$$

시연 (5분) 원리 (과거) (10분) 트렌드와 증강가상 (5분 Q & A (5분)

참고자료 1/4 물리

참고 자료 2/4 Natal

참고 자료 3/4 Sixthsense

최근트렌드 1/5

증강현실 / MR에 집중되고 있음 증강가상은 상대적으로 소외됨)

참고 자료 4/4 형태 인식

최근트렌드 2/5

다중 타켓 인식

- 동시에 여러 타켓을 인식
- 병렬처리로 성능 개선

최근트렌드3/5

모바일 기기와의 연동 -아이폰을 중심으로 활발히 진형 -성능 이슈가 중심

최근 트렌드 4/5

촉각과 연동

- Airborne Ultrasound Tactile Display
- -초음파를 이용하여 동기화된 정보 사용
- SIGGRAHPH 2009

SIGGRAHPH 2009

최근트렌드5/5

- 마케 없이 사물인식 (!)
 - 외곽선이 없는 마커 인식
 - 사물 자체를 인식
 - SLAM (뒤쪽에 나옴)

마커리스의 대표적인 두 가지 기법

공간에 대한 사전 지식이 1.있는 경우 (미니맵)

마커리스의 대표적인 두 가지 기법

공간에 대한 사전 지식이 2. 없는 경우 → SLAM

참고 자료 SLAM

SLAM Simultaneous Localization And Mapping

자신의 위치를 인식하고 동시에 주변환경에 대한 지도를 작성하는 것

로보틱스 분야에서 응용.

1998년 Davison 등이 유럽 컴퓨터 비전 컨퍼런스(European Conference on Computer Vision)에 다른 센서 없이 카메라만을 사용한 방법을 제시함으로써 카메라를 3차원 위치 탐지기로 한 비전 기반 SLAM이 본격적으로 발전자전략 전기

중강 가상

1994 Paul Milgram and Fumio Kishino

증강 가상

일반적으로…

현실은 가상으로 증강될 수 있지만 가상은 현실로 증강될 수 없다

현실에서의 가상은 증강된 정보가 될 수 있지만 가상에서의 현실은 몰입 방해요소가 되기 때문

발상의 시작 1/2

가상에서 현실의 개입이 오히려 몰입을 증가시킬 수는 없을까?

다른 관점으로 재접근

단순한 유행으로 보지 않고 가상에서 현실 개입이 오히려 몰입을 증가시킴

- 세컨드 라이프
- EyeToy
- Wii
- 기타히어로
- Natal
- 드라이빙 컨트롤

러

• 3D 입체

마케팅용 특전 (!)

게임과의 연관성

```
실제 상품의 바코드를 입력해서 사용하는 아이팅월드 빌딩
인공지능 (감정, 사고)
글로브형 컨트롤러
아바타
```

발상의 시작 2/2

카메라 없이 증강 현실/ 증강 가상을 만들 수 없나

참고 자료 1/3 디즈니

참고 자료 2/3 레고 키오스크

참고 자료 3/3 국내 광고

개인적인예측

일상 생활화

→ 광고, 의료, 키오스크, 각종 매뉴얼, 교육, 훈련 → 억지로라도 증강현실과 결합하려는 시도가 늘어날 것 이다

개인적인예측

카메라의 확산

→ 자동차, TV 등 (HUD, 네비게이션)

개인적인예측

Tactile의 시대

- → Touch가 아닌 Tactile
- → 시각, 청각 등을 Tactile로 결합 시키는 기술이 관건
- → 새로운 인터페이스의 등장이 예상됨 (스피커, LCD 등)
- → 조만간 바람(?)이 나오는 핸드폰이 나올지도

이거기억하세요 1/3

1994 Paul Milgram and Fumio Kishino

이거 기억하세요 2/3

$$\begin{bmatrix} h\hat{x}_i \\ h\hat{y}_i \\ h \end{bmatrix} = \begin{array}{|c|c|} \hline{\mathbf{C}} \mathbf{T}_{\mathbf{CM}} \\ Z_{Mi} \\ 1 \end{array}, \quad i = 1, 2, 3, 4$$

$$err = \frac{1}{4} \sum_{i=1,2,3,4} \left\{ \left(x_i - \hat{x}_i \right)^2 + \left(y_i - \hat{y}_i \right)^2 \right\}$$

이거 기억하세요 3/3

마커리스 SLAM 증강의 확장

202

다른 관점으로 현상을 바라볼 수 있다면, 독창적인 예측도 가능

Q&A

참고자료

http://www.hitl.washington.edu/artoolkit/

http://www.pranavmistry.com/projects/sixthsense/

http://lab.namudal.com/

http://qtboy.egloos.com/

http://honsil.com/

http://www.robots.ox.ac.uk/~gk/

http://sourceforge.net/projects/opencylibrary/