ALGEBRA QUALIFYING EXAM PROBLEMS GROUP THEORY

Kent State University Department of Mathematical Sciences

Compiled and Maintained by Donald L. White

Version: September 7, 2023

CONTENTS

GROUP THEORY

General Group Theory	1
Cyclic Groups	4
Homomorphisms	4
Automorphism Groups	5
Abelian Groups	6
Symmetric Groups	7
Infinite Groups	8
<i>p</i> -Groups	9
Group Actions	
Sylow Theorems	12
Solvable and Nilpotent Groups, Commutator and Frattini Subgroups	17

GROUP THEORY

General Group Theory

- 1. Prove or give a counter-example:
 - (a) If H_1 and H_2 are groups and $G = H_1 \times H_2$, then any subgroup of G is of the form $K_1 \times K_2$, where K_i is a subgroup of H_i for i = 1, 2.
 - (b) If $H \subseteq N$ and $N \subseteq G$ then $H \subseteq G$.
 - (c) If $G_1 \cong H_1$ and $G_2 \cong H_2$, then $G_1 \times G_2 \cong H_1 \times H_2$.
 - (d) If $N_1 \subseteq G_1$ and $N_2 \subseteq G_2$ with $N_1 \cong N_2$ and $G_1/N_1 \cong G_2/N_2$, then $G_1 \cong G_2$.
 - (e) If $N_1 \subseteq G_1$ and $N_2 \subseteq G_2$ with $G_1 \cong G_2$ and $N_1 \cong N_2$, then $G_1/N_1 \cong G_2/N_2$.
 - (f) If $N_1 \subseteq G_1$ and $N_2 \subseteq G_2$ with $G_1 \cong G_2$ and $G_1/N_1 \cong G_2/N_2$, then $N_1 \cong N_2$.
- 2 Let G be a group and let N be a normal subgroup of index n. Show that $g^n \in N$ for all $g \in G$.
- **3.** Let G be a finite group of odd order. Show that every element of G has a unique square root; that is, for every $q \in G$, there exists a unique $a \in G$ such that $a^2 = q$.
- 4. Let G be a group. A subgroup H of G is called a *characteristic* subgroup of G if $\varphi(H) = H$ for every automorphism φ of G. Show that if H is a characteristic subgroup of N and N is a normal subgroup of G, then H is a normal subgroup of G.
- 5. Show that if H is a characteristic subgroup of N and N is a characteristic subgroup of G, then H is a characteristic subgroup of G.
- 6. Let G be a finite group, H a subgroup of G and N a normal subgroup of G. Show that if the order of H is relatively prime to the index of N in G, then $H \subseteq N$.
- 7. Let G be a group and let Z(G) be its center. Show that if G/Z(G) is cyclic, then G is abelian.
- 8. Let G be a group and let Z(G) be the center of G. Prove or disprove the following.
 - (a) If G/Z(G) is cyclic, then G is abelian.
 - (b) If G/Z(G) is abelian, then G is abelian.
 - (c) If G is of order p^2 , where p is a prime, then G is abelian.
- 9. Show that if G is a nonabelian finite group, then $|Z(G)| \leq \frac{1}{4}|G|$.
- 10. Let G be a finite group and let M be a maximal subgroup of G. Show that if M is a normal subgroup of G, then |G:M| is prime.
- 11. Let G be a group and let A be a maximal abelian subgroup of G; i.e., A is maximal among abelian subgroups. Prove that $C_A(g) < A$ for every element $g \in G A$.
- 12. Show that if K and L are conjugacy classes of groups G and H, respectively, then $K \times L$ is a conjugacy class of $G \times H$.
- 13. (a) State a formula relating orders of centralizers and cardinalities of conjugacy classes in a finite group G.
 - (b) Let G be a finite group with a proper normal subgroup N that is not contained in the center of G. Prove that G has a proper subgroup H with $|H| > |G|^{1/2}$. [Hint: (a) applied to a noncentral element of G inside N is useful.]

- 14. Let H be a subgroup of G of index 2 and let g be an element of H. Show that if $C_G(g) \subseteq H$ then the conjugacy class of g in G splits into 2 conjugacy classes in H, and if $C_G(g) \not\subseteq H$, then the class of g in G remains the class of g in G.
- 15. Let G be a finite group, H a subgroup of G of index 2, and $x \in H$. Denote by $c\ell_G(x)$ the conjugacy class of x in G and by $c\ell_H(x)$ the conjugacy class of x in H.
 - (a) Show that if $C_G(x) \leq H$, then $|c\ell_H(x)| = \frac{1}{2}|c\ell_G(x)|$.
 - (b) Show that if $C_G(x)$ is not contained in H, then $|c\ell_H(x)| = |c\ell_G(x)|$.

[Hint: Consider centralizer orders.]

16. Let x be in the conjugacy class k of a finite group G and let H be a subgroup of G. Show that

$$\frac{|C_G(x)| \cdot |k \cap H|}{|H|}$$

is an integer. [Hint: Show that the numerator is the cardinality of $\{g \mid gxg^{-1} \in H\}$, which is a union of cosets of H.]

- 17. Let H be a proper subgroup of the finite group G. Prove that the union of all the conjugates of H is a proper subset of G.
- 18. Let N be a normal subgroup of G and let C be a conjugacy class of G that is contained in N. Prove that if |G:N|=p is prime, then either C is a conjugacy class of N or C is a union of p distinct conjugacy classes of N.
- 19. Let G be a group, $g \in G$ an element of order greater than 2 (possibly infinite) such that the conjugacy class of g has an odd number of elements. Prove that g is not conjugate to g^{-1} .
- 20. Let H be a subgroup of the group G. Show that the following are equivalent:
 - (i) $x^{-1}y^{-1}xy \in H$ for all $x, y \in G$
 - (ii) $H \subseteq G$ and G/H is abelian.
- 21. Let H and K be subgroups of a group G, with $K \subseteq G$ and $K \subseteq H$. Show that H/K is contained in the center of G/K if and only if $[H,G] \subseteq K$ (where $[H,G] = \langle h^{-1}g^{-1}hg \mid h \in H, g \in G \rangle$).
- 22. Let G be any group for which G'/G'' and G''/G''' are cyclic. Prove that G''=G'''.
- 23. Let $GL_n(\mathbb{C})$ be the group of invertible $n \times n$ matrices with complex entries. Give a complete list of conjugacy class representatives for $GL_2(\mathbb{C})$ and for $GL_3(\mathbb{C})$.
- 24. Let H be a subgroup of the group G and let T be a set of representatives for the distinct right cosets of H in G. In particular, if $t \in T$ and $g \in G$ then tg belongs to a unique coset of the form Ht' for some $t' \in T$. Write $t' = t \cdot g$. Prove that if $S \subseteq G$ generates G, then the set $\{ts(t \cdot s)^{-1} \mid t \in T, s \in S\}$ generates H.

Suggestion: If K denotes the subgroup generated by this set, prove the stronger assertion that KT = G. Start by showing that KT is stable under right multiplication by elements of G.

- 25. Let G be a group, H a subgroup of finite index n, G/H the set of left cosets of H in G, and S(G/H) the group of permutations of G/H (with composition from right to left). Define $f: G \to S(G/H)$ by f(g)(xH) = (gx)H for $g, x \in G$.
 - (a) Show that f is a group homomorphism.
 - (b) Show that if H is a normal subgroup of G, then H is the kernel of f.
- 26. Let G be an abelian group. Let $K = \{a \in G : a^2 = 1\}$ and let $H = \{x^2 : x \in G\}$. Show that $G/K \cong H$.
- 27. Let $N \subseteq G$ such that every subgroup of N is normal in G and $C_G(N) \subseteq N$. Prove that G/N is abelian.
- 28. Let H be a subgroup of G having a normal complement (i.e., a normal subgroup N of G satisfying HN = G and $H \cap N = \langle 1 \rangle$). Prove that if two elements of H are conjugate in G, then they are conjugate in H.
- 29. Let H be a subgroup of the group G with the property that whenever two elements of G are conjugate, then the conjugating element can be chosen within H. Prove that the commutator subgroup G' of G is contained in H.
- 30. Let $a \in G$ be fixed, where G is a group. Prove that a commutes with each of its conjugates in G if and only if a belongs to an abelian normal subgroup of G.
- 31. Let G be a group with subgroups H and K, both of finite index. Prove that $|H:H\cap K| \le |G:K|$, with equality if and only if G=HK. (One variant of this is to prove that if (|G:H|,|G:K|)=1 then G=HK.)
- 32. Show that if H and K are subgroups of a finite group G satisfying (|G:H|, |G:K|) = 1, then G = HK.
- 33. Let $G = A \times B$ be a direct product of the subgroups A and B. Suppose H is a subgroup of G that satisfies HA = G = HB and $H \cap A = \langle 1 \rangle = H \cap B$. Prove that A is isomorphic to B.
- 34. Let N_1 , N_2 , and N_3 be normal subgroups of a group G and assume that for $i \neq j$, $N_i \cap N_j = \langle 1 \rangle$ and $N_i N_j = G$. Show that G is isomorphic to $N_1 \times N_1$ and G is abelian.
- 35. Show that if the size of each conjugacy class of a group G is at most 2, then $G' \leq Z(G)$.
- 36. Let N be a normal subgroup of G. Show that if $N \cap G' = \langle 1 \rangle$, then N is contained in the center of G.
- 37. Let G be a finite group.
 - (a) Show that every proper subgroup of G is contained in a maximal subgroup.
 - (b) Show that the intersection of all maximal subgroups of G is a normal subgroup.
- 38. Let G be a finite group that has a maximal, simple subgroup H. Prove that either G is simple or there exists a minimal normal subgroup N of G such that G/N is simple.

- 39. Let G be a group. Show that G has a composition series if and only if G satisfies the following two conditions:
 - (i) If $G=H_0 \trianglerighteq H_1 \trianglerighteq H_2 \trianglerighteq \cdots$ is any subnormal series, then there is an n such that $H_n=H_{n+1}=\cdots$.
 - (ii) If H is any subgroup of G in a subnormal series and $K_1 \leq K_2 \leq K_3 \leq \cdots$ is an ascending chain of normal subgroups of H, then there is an m such that $K_m = K_{m+1} = \cdots$.
- 40. Let G_1 and G_2 be groups, let H be a subgroup of $G_1 \times G_2$, and let $\pi_i : H \to G_i$ be the restriction to H of the natural projection map onto the ith factor. Assume π_i is surjective for i = 1, 2, let $N_i = \ker \pi_i$, and let e_i denote the identity element of G_i . Show that $N_1 = \{e_1\} \times K$ and $N_2 = M \times \{e_2\}$ for normal subgroups $M \triangleleft G_1$ and $K \triangleleft G_2$, and that $G_1/M \cong G_2/K$.

Cyclic Groups

- 41. Let φ be the Euler φ -function that is, $\varphi(n)$ is the number of positive integers less than the integer n and relatively prime to n. Let G be a finite group of order n with at most d elements x satisfying $x^d = 1$ for each divisor d of n.
 - (a) Show that in a *cyclic* group of order n, the number of elements of order d is $\varphi(d)$ for each divisor d of n. Deduce that $\sum_{d|n} \varphi(d) = n$.
 - (b) Let $\psi(d)$ be the number of elements of G of order d. Show that for any d, either $\psi(d) = 0$ or $\psi(d) = \varphi(d)$.
 - (c) Show that G is cyclic.
 - (d) Show that any finite subgroup of the multiplicative group of a field must be cyclic.
- 42. Show that if G is a cyclic group then every subgroup of G is cyclic.
- 43. Show that if G is a finite cyclic group, then G has exactly one subgroup of order m for each positive integer m dividing |G|.
- 44. Show that if H is a cyclic normal subgroup of a finite group G, then every subgroup of H is a normal subgroup of G.
- 45. Let G be a cyclic group of order 12 with generator a. Find b in G such that $G/\langle b \rangle$ is isomorphic to $\langle a^{10} \rangle$. (Here $\langle x \rangle$ denotes the subgroup of G generated by $\{x\}$, for $x \in G$.)

Homomorphisms

- 46. State and prove the three "isomorphism theorems" (for groups).
- 47. Let G be a group and let K be a subgroup of G. Give necessary and sufficient conditions for K to be the kernel of a homomorphism from G to G. Prove your answer. (N.B.: The homomorphism must be from G to G.)
- 48. Let G be a group with a normal subgroup N of order 5, such that $G/N \cong S_3$. Show that |G| = 30, G has a normal subgroup of order 15, and G has 3 subgroups of order 10 that are not normal.

- 49. Let G be a group with a normal subgroup N of order 7, such that $G/N \cong D_{10}$, the dihedral group of order 10. Show that |G| = 70, G has a normal subgroup of order 35, and G has 5 subgroups of order 14 that are not normal.
- 50. Let $f: G \to H$ be a homomorphism of groups with kernel K and image I.
 - (a) Show that if N is a subgroup of G then $f^{-1}(f(N)) = KN$.
 - (b) Show that if L is a subgroup of H then $f(f^{-1}(L)) = I \cap L$.
- 51. Let G and H be finite groups with (|G|, |H|) = 1. Show that if $\varphi : G \to H$ is a homomorphism, then $\varphi(g) = 1_H$ for all g in G (where 1_H is the identity element of H).
- 52. Let $G = GL_n(\mathbb{R})$ be the (multiplicative) group of nonsingular $n \times n$ matrices with real entries and let $S = SL_n(\mathbb{R})$ be the subgroup of G consisting of matrices of determinant 1. Show that $S \subseteq G$ and $G/S \cong \mathbb{R}^*$, the multiplicative group of real numbers.
- 53. Let H and K be normal subgroups of a finite group G.
 - (a) Show that there exists a one-to-one homomorphism

$$\varphi: G/H \cap K \to G/H \times G/K$$
.

- (b) Show that φ is an isomorphism if and only if G = HK.
- 54. (a) Suppose H and K are normal subgroups of a group G. Show that there exists a one-to-one homomorphism

$$\varphi: G/H \cap K \to G/H \times G/K$$
.

- (b) Use part (a) to show that if (m,n) = 1 then $\mathbb{Z}_{mn} \cong \mathbb{Z}_m \times \mathbb{Z}_n$.
- 55. Prove that the commutator subgroup of $SL_2(\mathbb{Z})$ is *proper* in $SL_2(\mathbb{Z})$. (Hint: Any homomorphism of rings $R \to S$ induces a homomorphism of groups $SL_2(R) \to SL_2(S)$.)
- 56. Let H and K be subgroups of a finite group G and assume H is isomorphic to K. Prove that there exists a group \tilde{G} containing G as a subgroup, such that H and K are conjugate in \tilde{G} .

Automorphism Groups

- 57. Let Inn(G) be the group of inner automorphisms of the group G and let Aut(G) be the full automorphism group.
 - (a) Show that $Inn(G) \subseteq Aut(G)$.
 - (b) Show that if Z(G) is the center of G, then $Inn(G) \cong G/Z(G)$.
- 58. Show that if H is a subgroup of G, then $C_G(H) \leq N_G(H)$ and $N_G(H)/C_G(H)$ is isomorphic to a subgroup of Aut(H).
- 59. Let G be a simple group of order greater than 2 and let Aut(G) be its automorphism group. Show that the center of Aut(G) is trivial if and only if G is non-abelian.
- 60. Let G be a finite group with a normal subgroup $N \cong S_3$. Show that there is a subgroup H of G such that $G = N \times H$.

- 61. A group N is said to be *complete* if the center of N is trivial and every automorphism of N is inner. Show that if G is a group, $N \subseteq G$, and N is complete, then $G = N \times C_G(N)$.
- 62. Let H be a normal subgroup of G, $K \leq H$, and assume every automorphism of H is inner. Prove that $G = HN_G(K)$, where $N_G(K)$ is the normalizer of K in G.
- 63. Let $K \leq H \triangleleft G$ and assume every automorphism of H is inner. Prove that $G = H N_G(K)$, where $N_G(K)$ is the normalizer of K in G.

Abelian Groups

- 64. Let A be an abelian group with the following property:
 - (*) If $B \leq A$ then there is a $C \leq A$ with $A = B \oplus C$.

Show the following.

- (a) Each subgroup of A satisfies (*).
- (b) Each element of A has finite order.
- (c) If p is a prime, then A has no element of order p^2 .
- 65. Let A be an abelian p-group of exponent p^m . Show that if B is a subgroup of A of order p^m and both B and A/B are cyclic, then there is a subgroup C of A such that A = B + C and $B \cap C = \{0\}$.
- 66. (a) List all abelian groups of order 360 (up to isomorphism).
 - (b) Find the invariant factors and elementary divisors of the group

$$G = \mathbb{Z}_{25} \oplus \mathbb{Z}_{45} \oplus \mathbb{Z}_{48} \oplus \mathbb{Z}_{300}$$
.

- 67. Consider the property (*) of abelian groups G:
 - (*) If H is any subgroup of G then there exists a subgroup F of G such that $G/H \cong F$.

Show that if G is a finitely generated abelian group then G has property (*) if and only if G is finite.

- 68. Let n be a positive integer and let $A = \mathbb{Z}^n$. Prove that if B is any subgroup of A that is generated by fewer than n elements, then the index [A:B] is infinite.
- 69. Show that if A, B, and C are abelian groups, then

$$\operatorname{Hom}(A, B \oplus C) \cong \operatorname{Hom}(A, B) \oplus \operatorname{Hom}(A, C).$$

70. Show that if A, B, and C are abelian groups, then

$$\operatorname{Hom}(A \oplus B, C) \cong \operatorname{Hom}(A, C) \oplus \operatorname{Hom}(B, C).$$

71. Let $A, B, A_{\alpha} \ (\alpha \in I)$ and $B_{\beta} \ (\beta \in J)$ be abelian groups. Prove the following:

$$\operatorname{Hom}(\bigoplus_{\alpha \in I} A_{\alpha}, B) \cong \prod_{\alpha \in I} \operatorname{Hom}(A_{\alpha}, B)$$

$$\operatorname{Hom}(A, \prod_{\beta \in J} B_{\beta}) \cong \prod_{\beta \in J} \operatorname{Hom}(A, B_{\beta}).$$

72. Let:

be a commutative diagram of Abelian groups and homomorphisms in which both rows are exact. If α , β , δ , and ϵ are isomorphisms, prove that γ is an isomorphism also.

73. Let A, U, V, W, X, and Y be abelian groups.

If $\alpha \in \operatorname{Hom}(X,Y)$ define $\alpha_* : \operatorname{Hom}(A,X) \to \operatorname{Hom}(A,Y)$ by $\alpha_*(f) = \alpha \circ f$. If

$$0 \to U \stackrel{\alpha}{\to} V \stackrel{\beta}{\to} W \to 0$$

is exact, to what extent is

$$0 \to \operatorname{Hom}(A, U) \xrightarrow{\alpha_*} \operatorname{Hom}(A, V) \xrightarrow{\beta_*} \operatorname{Hom}(A, W) \to 0$$

exact? Prove your assertions.

74. Same as the previous problem, except use Hom(-, A) instead, making the obvious modifications.

Symmetric Groups

- 75. (a) Find the centralizer in S_7 of $(1 \ 2 \ 3)(4 \ 5 \ 6 \ 7)$.
 - (b) How many elements of order 12 are there in S_7 ?
- 76. (a) Give an example of two nonconjugate elements of S_7 that have the same order.
 - (b) If $g \in S_7$ has maximal order, what is o(g)?
 - (c) Does the element g that you found in part (b) lie in A_7 ?
 - (d) Is the set $\{h \in S_7 \mid o(h) = o(g)\}$ a single conjugacy class in S_7 , where g is the element found in part (b)?
- 77. (a) Give a representative for each conjugacy class of elements of order 6 in S_6 .
 - (b) Find the order of the centralizer in S_6 of each element from part (a).
- 78. How many elements of order 6 are there in S_6 ? How many in A_6 ?
- 79. (a) Write $\sigma=(4\ 5\ 6)(2\ 3)(1\ 2)(6\ 7\ 8)$ as a product of disjoint cycles and find the order of σ .
 - (b) Let n > 1 be an odd integer. Show that S_n has an element of order 2(n-2).
- 80. Let $\sigma = (1 \ 2 \ 3)(4 \ 5 \ 6) \in S_6$.
 - (a) Determine the size of the conjugacy class of σ and the order of the centralizer of σ in S_6 .
 - (b) Determine if $C_{S_6}(\sigma)$ is abelian or non-abelian. Prove your answer.
- 81. Let G be a subgroup of the symmetric group S_n . Show that if G contains an odd permutation, then $G \cap A_n$ is of index 2 in G.
- 82. Show that if G is a non-abelian simple subgroup of S_n , then G is contained in A_n .

- 83. Show that if G is a subgroup of S_n of index 2, then $G = A_n$.
- 84. Let $n \ge 3$ be an integer and let k be n or n-1, whichever is odd. Prove that the set of k-cycles in A_n is not a conjugacy class of A_n .
- 85. For i = 1, ..., n-1, let x_i be the transposition $(i \ i+1)$ in the symmetric group S_n . Show that $S_n = \langle x_1, ..., x_{n-1} \rangle$.
- 86. Let H be a subgroup of S_n . Show that if H is a transitive subgroup of S_n and H is generated by some set of transpositions, then $H = S_n$.
- 87. Prove that the symmetric group S_n is a maximal subgroup of S_{n+1} . [Hint: Show that if $g \in S_{n+1} S_n$, then $S_{n+1} = S_n \cup S_n g S_n$.]
- 88. (a) If $n = k + \ell$ with $k \neq \ell$, then $S_k \times S_\ell$ is a maximal subgroup of S_n in the natural embedding.
 - (b) If n = 2k, then $S_k \times S_k$ is not a maximal subgroup of S_n in the natural embedding.
- 89. (a) Prove that if A is a transitive abelian subgroup of the symmetric group S_n , then |A| = n.
 - (b) Give an example of n, A_1 , A_2 , where A_1 and A_2 are transitive abelian subgroups of S_n , but A_1 is not isomorphic to A_2 .
- 90. Let $g \in S_n$ (the symmetric group on n letters) be a product of two disjoint cycles, one a k-cycle and the other an ℓ -cycle where $k < \ell$ and $k + \ell = n$. Prove that if $H = C_{S_n}(g) = \{h \in S_n \mid hg = gh\}$, then H is not a transitive subgroup of S_n .
- 91. Let A be an abelian, transitive subgroup of S_n . Show that for all $\alpha \in \{1, ..., n\}$, the stabilizer A_{α} of α in A is trivial.
- 92. Let H be a subgroup of index n in a group G. Let S_n be the symmetric group on n letters and let $S_{n-1} \subseteq S_n$ be the usual embedding. Show that $H = f^{-1}(S_{n-1})$ for some homomorphism $f: G \to S_n$. (Hint: Let G act on the cosets of H.)
- 93. Show that if $\sigma = \rho \lambda \in S_{m+n}$ is the product of an m-cycle ρ and an n-cycle λ , with ρ and λ disjoint and $m \neq n$, then the centralizer in S_{m+n} of σ is $\langle \rho, \lambda \rangle$.
- 94. Let τ be an element of the symmetric group S_n and let $\sigma \in S_n$ be a transposition. Show that the number of cycles in the cycle decomposition of $\sigma \tau$ is either one more or one less than the number of cycles in the cycle decomposition of τ .
- 95. Show that if $\sigma \in S_n$ is an (n-1)-cycle, where $n \ge 3$, then $C(\sigma) = \langle \sigma \rangle$.
- 96. Let g and h be elements of the alternating group A_n that have the same cycle structure. Assume that in a cycle decomposition of g (and hence also of h), two cycles have the same length. Prove that g and h are conjugate in A_n .

Infinite Groups

97. Let A and B be subgroups of the additive group of rationals \mathbb{Q} . Show that if A is isomorphic to B and $f: A \to B$ is an isomorphism, then there exists $q \in \mathbb{Q}$ such that f(x) = qx for all $x \in A$.

- 98. (a) Prove that the additive group of the rational numbers is not cyclic.
 - (b) Prove that a finitely generated subgroup of the additive group of the rational numbers must be cyclic.
- 99. If G is a finitely generated group and n is a positive integer, prove that there are at most finitely many subgroups of index n in G. (HINT: Consider maps into the symmetric group S_n .)
- 100. Let G be a group with a proper subgroup of finite index. Show that G has a proper normal subgroup of finite index.
- 101. Let \mathbb{Q} be the additive group of rationals and \mathbb{Z} its subgroup of integers. Prove the following.
 - (a) If n is a positive integer, then \mathbb{Q}/\mathbb{Z} has an element of order n.
 - (b) If n is a positive integer, then \mathbb{Q}/\mathbb{Z} has a unique subgroup of order n.
 - (c) Every finite subgroup of \mathbb{Q}/\mathbb{Z} is cyclic.
- 102. Let G have the presentation $G = \langle a, b \mid a^2 = 1, a^{-1}bab = 1 \rangle$. Prove that G is infinite but the commutator subgroup of G is of finite index in G.
- 103. Let N be a normal subgroup of G with the order of N finite. Prove there is a normal subgroup M of G such that [G:M] is finite and nm=mn for all $n \in N$ and $m \in M$.
- 104. Let G be a finitely presented group in which there are fewer relations than generators. Prove that G is necessarily infinite.

p-Groups

- 105. Show that the center of a finite p-group is non-trivial.
- 106. Show that if P is a finite p-group and $\langle 1 \rangle \neq N \leq P$, then $N \cap Z(P) \neq \langle 1 \rangle$.
- 107. Let P be a finite p-group and let H be a proper subgroup of P. Prove that H is a proper subgroup of its normalizer $N_P(H)$.
- 108. Show that a group of order p^2 , where p is a prime, must be abelian.
- 109. Let p be a prime and let G be a non-abelian group of order p^3 .
 - (a) Show that the center Z(G) of G and the commutator subgroup of G are equal and of order p.
 - (b) Show that $G/Z(G) \cong \mathbb{Z}_p \times \mathbb{Z}_p$.
- 110. Let p be a prime and let G be a group of order p^n satisfying the following property:
 - (*) If A and B are subgroups of G then $A \leq B$ or $B \leq A$.

Prove that G is a cyclic group.

[Note: This statement is also true without the assumption that G is a p-group.]

- 111. Let G be a finite group. Prove that G is a cyclic p-group, for some prime p, if and only if G has exactly one conjugacy class of maximal subgroups.
- 112. Let G be a finite p-group for some prime p. Show that if G is not cyclic, then G has at least p+1 maximal subgroups.

- 113. Let P be a finite p-group in which all the non-identity elements of the center Z(P) have order p. If $\{Z_i(P)\}$ is the upper central series of P, prove that for every i, every non-identity element of $Z_{i+1}(P)/Z_i(P)$ has order p.
- 114. Let P be a p-group satisfying $[P:Z(P)]=p^n$. Show that $|P'| \leq p^{\frac{n(n-1)}{2}}$. (Hint: Use induction on n. Apply the inductive hypothesis to a maximal subgroup of P.)
- 115. Let G be a group of order 16 with an element g of order 4. Prove that the subgroup of G generated by g^2 is normal in G.

Group Actions

- 116. Show that if the center of a group G is of index n in G, then every conjugacy class of G has at most n elements.
- 117. Let $G_n = \mathrm{GL}_n(\mathbb{C})$ be the group of invertible $n \times n$ matrices with complex entries and let $M_n = \mathrm{M}_n(\mathbb{C})$ be the set of all $n \times n$ complex matrices.
 - (a) Show that for $g \in G_n$ and $m \in M_n$, $g \cdot m = gmg^{-1}$ defines a (left) action of G_n on M_n .
 - (b) For n=2 and n=3, find a complete set of orbit representatives.
- 118. Let G be a finite group acting on a set A and suppose that for any two ordered pairs (a_1, a_2) and (b_1, b_2) of elements of A, there is an element $g \in G$ such that $g \cdot a_i = b_i$ for i = 1, 2. Show that if |A| = n, then |G| is divisible by n(n 1). [Hint: Show that if $a \in A$ then G_a acts transitively on $A \{a\}$.]
- 119. Let G be a group acting transitively on a set Ω . Show that the following are equivalent.
 - (i) The action is doubly transitive (i.e., for any two ordered pairs (α_1, β_1) , (α_2, β_2) of elements of Ω with $\alpha_1 \neq \beta_1$ and $\alpha_2 \neq \beta_2$, there is an element g in G such that $g \cdot \alpha_1 = \alpha_2$ and $g \cdot \beta_1 = \beta_2$).
 - (ii) For all $\alpha \in \Omega$, the stabilizer G_{α} acts transitively on $\Omega \{\alpha\}$.
- 120. Let G be a group acting transitively on the set Ω . Show that if $\alpha \neq \beta$ are elements of Ω , then $G_{\alpha}G_{\beta}$ is a proper subset of G.
- 121. Let G be a group acting transitively on a set A. Show that if there is an element $a \in A$ such that $G_a = \{1\}$, then $G_b = \{1\}$ for all $b \in A$.
- 122. Let the group G act transitively on the set Ω , and let N be a normal subgroup of G. Prove that G permutes the N-orbits of Ω and that these orbits all have the same size.
- 123. Let G act on a set A and let B be a subset of A. For $g \in G$, let $g \cdot B = \{g \cdot b : b \in B\}$. Show that $H = \{g \in G : g \cdot B = B\}$ is a subgroup of G.
- 124. Let G be a group acting on the set S and let H be a subgroup of G acting transitively on S. Show that if $t \in S$ then $G = G_t H$, where G_t is the stabilizer of t in G.
- 125. Let G be a finite group. Show that if G has a normal subgroup N of order 3 that is not contained in the center of G, then G has a subgroup of index 2. [Hint: The group G acts on N by conjugation.]

126. (a) Let G be a finite group acting on the finite set S. For $g \in G$, let

$$F(g) = |\{x \in S : g \cdot x = x\}|.$$

Show that the number of orbits is $\frac{1}{|G|} \sum_{g \in G} F(g)$.

- (b) Show that the number of conjugacy classes of a finite group G is $\frac{1}{|G|} \sum_{g \in G} |C_G(g)|$.
- 127. Let G be a subgroup of S_n that acts transitively on $\{1, 2, \ldots, n\}$.
 - (a) Show that if $G_1 = \{g \in G \mid g \cdot 1 = 1\}$ then $[G : G_1] = n$.
 - (b) Show that if G is abelian then G is of order n.
- 128. Let G be a finite group acting transitively on a set Ω . Fix $\alpha \in \Omega$ and let G_{α} be the stabilizer of α in G. Let Δ be the set of points fixed by G_{α} , i.e., $\Delta = \{\beta \in \Omega \mid \beta \cdot x = \beta \, \forall x \in G_{\alpha}\}$. Show that Δ is stabilized by $N_G(G_{\alpha})$ and that $N_G(G_{\alpha})$ acts transitively on Δ .
- 129. Let G act transitively on a set Ω , fix $\alpha \in \Omega$, and let $H = G_{\alpha}$. Show that the orbits of H on Ω are in one-to-one correspondence with the H H double cosets in G.
- 130. Let G act on a set Ω and assume N is a normal subgroup of G that is contained in the kernel of the action. Show that there is a natural action of G/N on Ω which satisfies the property that G is transitive if and only if G/N is transitive.
- 131. Let G be a group with a subgroup H of finite index n. Show that there is a homomorphism $\varphi: G \to S_n$ with ker $\varphi \subseteq H$.
- 132. Suppose a group G has a subgroup H with $|G:H|=n<\infty$. Prove that G has a normal subgroup N with $N\subseteq H$ and $|G:N|\leqslant n!$.

133. **[NEW]**

Let G be a finite group of order mn where m and n are relatively prime. Assume that there exist subgroups M and N of orders m and n, respectively. Prove that G is isomorphic to a subgroup of the symmetric group S_{m+n} .

- 134. Let n > 1 be a fixed integer. Prove that there are only finitely many simple groups (up to isomorphism) containing a proper subgroup of index less than or equal to n.
- 135. Let $n = p^m r$ where p is prime and r is an integer greater than 1 such that p does not divide r. Show that if there is a simple group of order n, then p^m divides (r-1)!.
- 136. Show that if G is a simple group of order greater than 60, then G has no proper subgroup of index less than or equal to 5.
- 137. Let G be a group of order $2016 = 2^5 \cdot 3^2 \cdot 7$ in which all elements of order 7 are conjugate. Prove that G has a normal subgroup of index 2.
- 138. Prove that if G is a simple group containing an element of order 45, then every proper subgroup of G has index at least 14.
- 139. Let G be a finite simple group containing an element of order 21. Show that every proper subgroup of G has index at least 10.

- 140. Let G be a finite group and let K be a subgroup of index p, where p is the smallest prime dividing the order of G. Show that K is a normal subgroup of G.
- 141. Let G be a nonabelian finite simple group and let H be a subgroup of index p, where p is a prime. Prove that the number of distinct conjugates of H in G is p.
- 142. Let G be a finite simple group with a subgroup H of prime index p. Show that p must be the largest prime dividing the order of G.
- 143. Let G be a finite simple group and p a prime such that p^2 divides the order of G. Show that G has no subgroup of index p.
- 144. Let G be a finite group in which a Sylow 2-subgroup is cyclic. Prove that there exists a normal subgroup N of odd order such that the index [G:N] is a power of 2. [Hint: Generalize the previous problem.]
- 145. (a) Let G be a subgroup of the symmetric group S_n . Show that if G contains an odd permutation then $G \cap A_n$ is of index 2 in G.
 - (b) Let G be a group of order 2r, where r > 1 is an odd integer. Show that in the regular permutation representation of G, an element t of G of order 2 corresponds to an odd permutation.
 - (c) Show that a group of order 2r, with r > 1 an odd integer, cannot be simple.
- 146. Let G be a finite cyclic group and H a subgroup of index p, p a prime. Suppose G acts on a set S and the restriction of the action to H is transitive. Let G_x , H_x be the stabilizer of $x \in S$ in G, H, respectively. Show the following.
 - (a) $H_x = G_x \cap H$
 - (b) $[H:H_x] = [G:G_x] = |S|$
 - (c) |S| is not divisible by p.
- 147. Let G be a finite group and p a prime. Then G acts on $\operatorname{Syl}_p(G)$ by conjugation; let $\rho: G \longrightarrow \operatorname{Sym}(\operatorname{Syl}_p(G))$ be the homomorphism corresponding to this action.
 - (a) $\rho(P)$ fixes exactly one point (element of $\mathrm{Syl}_n(G)$).
 - (b) If $P \in \operatorname{Syl}_p(G)$ has order p, then $\rho(x)$ is a product of one 1-cycle and a certain number of p-cycles, for $x \in P \{1\}$.
 - (c) If $P \in \operatorname{Syl}_p(G)$ has order p and $y \in N_G(P) C_G(P)$ then $\rho(y)$ fixes at most r points, where r is the number of orbits under the action of $\rho(P)$ (including the fixed point of part (a)).
- 148. Let G be a finite group acting faithfully and transitively on a set Ω . Assume that there exists a normal subgroup N such that N acts regularly on Ω (i.e., $G = G_{\alpha}N$ and $G_{\alpha} \cap N = 1$ for all $\alpha \in \Omega$). Prove that G_{α} embeds as a subgroup of $\operatorname{Aut}(N)$.

Sylow Theorems

- 149. (a) Let G be a finite p-group acting on the finite set S. Let S_0 be the set of all elements of S fixed by G. Show that $|S| \equiv |S_0| \pmod{p}$.
 - (b) Show that if H is a p-subgroup of a finite group G, then $[N_G(H):H] \equiv [G:H] \pmod{p}$.
 - (c) State and prove Sylow's theorems.

- 150. Let G be a finite group and let P be a Sylow p-subgroup of G. Prove the following.
 - (a) If M is any normal p-subgroup of G then $M \leq P$.
 - (b) There is a normal p-subgroup N of G that contains all normal p-subgroups of G.
- 151. Let n be an integer and p a prime dividing n. Assume that there exists exactly one divisor d of n satisfying both d > 1 and $d \equiv 1 \pmod{p}$. Prove that if G is any finite group of order n and P is a Sylow p-subgroup of G, then either $P \subseteq G$ or else $N_G(P)$ is a maximal subgroup of G.
- 152. Let P be a Sylow p-subgroup of the finite group G and let H be a subgroup of G containing the normalizer $N_G(P)$ of P. Prove that $N_G(H) = H$.
- 153. Let G be a group of order 168 and let P be a Sylow 7-subgroup of G. Show that either P is a normal subgroup of G or else the normalizer of P is a maximal subgroup of G.
- 154. Show that if G is a simple group of order 60 then $G \cong A_5$.
- 155. Show that a group of order $2001 = 3 \cdot 23 \cdot 29$ contains a normal cyclic subgroup of index 3.
- 156. Show that if G is a group of order $2002 = 2 \cdot 7 \cdot 11 \cdot 13$, then G has an abelian subgroup of index 2.
- 157. Show that a group of order $2004 = 2^2 \cdot 3 \cdot 167$ must be solvable. Give an example of a group of order 2004 in which a Sylow 3-subgroup is not a normal subgroup.
- 158. Determine all groups of order $2009 = 7^2 \cdot 41$, up to isomorphism.
- 159. Show that if G is a group of order $2010 = 2 \cdot 3 \cdot 5 \cdot 67$, then G has a normal subgroup of order 5.
- 160. Show that if G is a group of order $2010 = 2 \cdot 3 \cdot 5 \cdot 67$, then G is solvable.
- 161. Prove or disprove: Every group of order $14077 = 7 \cdot 2011$ is cyclic. Use Sylow's Theorems.
- 162. Determine, up to isomorphism, all groups of order 2012. (Note that $2012 = 2^2 \cdot 503$ and 503 is a prime.)
- 163. Prove that a group G of order 36 must have a normal subgroup of order 3 or 9.
- 164. Show that a group of order 96 must have a normal subgroup of order 16 or 32.
- 165. Show that a group of order $160 = 2^5 \cdot 5$ must contain a nontrivial normal 2-subgroup.
- 166. Show that if G is a group of order $392 = 2^3 \cdot 7^2$, then G has a normal subgroup of order 7 or a normal subgroup of order 49.
- 167. Let G be a finite simple group containing an element of order 9. Show that every proper subgroup of G has index at least 9.
- 168. Show that there is no simple group of order 120.
- 169. (a) Show that S_6 has no simple subgroup of index 4 (i.e. order 180).
 - (b) Show that a group of order $180 = 2^2 \cdot 3^2 \cdot 5$ cannot be simple.

- 170. (a) Show that $|\operatorname{Aut}(\mathbb{Z}_7)| = 6$.
 - (b) Show that a group of order 63 must contain an element of order 21.
- 171. Show that a simple group of order 168 must be isomorphic to a subgroup of the alternating group A_8 .
- 172. Let G be a simple group of order 168. Determine the number of elements of G of order 7. Explain your answer.
- 173. Let p > q be primes. Show that if p 1 is not divisible by q, then there is exactly one group of order pq.
- 174. Let G be a group of order pqr, where p > q > r are primes. Prove that a Sylow subgroup for one of these primes is normal.
- 175. Let G be a group of order pqr, where p > q > r are primes. Let P be a Sylow p-subgroup of G and assume P is not normal in G. Show that a Sylow q-subgroup of G must be normal.
- 176. Let G be a group of order pqr, where p > q > r are primes. Show that if p-1 is not divisible by q, then a Sylow p-subgroup of G must be normal.
- 177. Let G be a group of order pqr, where p > q > r are primes. Show that if p-1 is not divisible by q or r and q-1 is not divisible by r, then G must be abelian (hence cyclic). [Hint: Show that G' must be contained in a Sylow subgroup for two different primes.]
- 178. Let G be a group of order $105 = 3 \cdot 5 \cdot 7$. Prove that a Sylow 7-subgroup of G is normal.
- 179. Show that a group of order $105 = 3 \cdot 5 \cdot 7$ has a normal Sylow 7-subgroup and a central Sylow 5-subgroup.
- 180. Show that a group of order $3 \cdot 5 \cdot 7$ must be solvable.
- 181. Prove that a group of order $29 \cdot 30$ has a normal Sylow 29-subgroup.
- 182. Show that a group G of order $255 = 3 \cdot 5 \cdot 17$ must be abelian.
- 183. Let G be a group of order $231 = 3 \cdot 7 \cdot 11$. Prove that a Sylow 11-subgroup is contained in the center of G.
- 184. Show that a group of order $10000 = 2^4 \cdot 5^4$ cannot be simple.
- 185. Show that a group of order $3^3 \cdot 5 \cdot 13$ must have a normal Sylow 13-subgroup or a normal Sylow 5-subgroup. [Hint: Show that if a Sylow 13-subgroup is not normal, then a Sylow 13-subgroup must normalize a Sylow 5-subgroup.]
- 186. Let G be a group of order $3 \cdot 5 \cdot 7 \cdot 13$. Prove that G is not a simple group. [Hint: If a Sylow 7-subgroup is not normal, then some Sylow 13-subgroup will centralize it. Now compute the number of Sylow 13-subgroups.]
- 187. Let G be a group of order p^nq , where p and q are distinct primes, and assume $q \nmid p^i 1$ for $1 \le i \le n 1$. Prove that G is solvable.
- 188. Let p and q be distinct primes. Show that a group of order p^2q has a normal Sylow p-subgroup or a normal Sylow q-subgroup.

189. Let G be a group of order (p+1)p(p-1) where p is a prime. Prove that the number of Sylow p-subgroups is either 1 or p+1.

190. **[NEW**]

Let p be a prime number and G a group of order p(p+1). Prove that G has a normal subgroup of order p or p+1.

191. [**NEW**]

Show that if G is a finite group of even order, then G has an odd number of elements of order 2.

192. [**NEW**]

Prove that if the prime p divides the order of the finite group G, then the number of elements of order p in G is congruent to -1 modulo p.

- 193. Let G be a finite group with exactly p+1 Sylow p-subgroups. Prove that if P and Q are two distinct Sylow p-subgroups, then $P \cap Q$ is a normal subgroup of G. [Hint: First show $|P:P \cap Q|=p$.]
- 194. Show that a group of order $2^3 \cdot 3 \cdot 7^2$ is not simple.
- 195. Show that a group of order $380 = 2^2 \cdot 5 \cdot 19$ must be solvable.
- 196. Show that a group of order $2 \cdot 7 \cdot 13$ must be solvable.
- 197. Show that a group of order $1960 = 2^3 \cdot 5 \cdot 7^2$ must be solvable.
- 198. Prove that a group of order $1995 = 3 \cdot 5 \cdot 7 \cdot 19$ must be solvable.
- 199. Show that a group of order $1998 = 2 \cdot 3^3 \cdot 37$ must be solvable.
- 200. Show that every group of order $2015 = 5 \cdot 13 \cdot 31$ must have a normal cyclic subgroup of index 5.
- 201. Show that if G is a group of order $2020 = 2^2 \cdot 5 \cdot 101$, then G is solvable.
- 202. Show that a group of order $2021 = 43 \cdot 47$ is solvable.
- 203. Determine, up to isomorphism, the groups of order $2022 = 2 \cdot 3 \cdot 337$.
- 204. Suppose the finite group G has exactly 61 Sylow 3-subgroups. Prove that there exist two Sylow 3-subgroups P and Q satisfying $|P:P\cap Q|=3$.
- 205. Let G be a group with exactly 31 Sylow 3-subgroups. Prove that there exist Sylow 3-subgroups P and Q satisfying $[P:P\cap Q]=[Q:P\cap Q]=3$.
- 206. Let G be a finite group, p a prime divisor of |G| and assume there are k distinct Sylow p-subgroups of G. Let $f: G \to S_k$ be the homomorphism of G into the symmetric group induced by the natural action of G by conjugation on the set of Sylow p-subgroups of G, and let $\overline{G} = f(G)$. Prove that \overline{G} has k distinct Sylow p-subgroups.
- 207. (a) Show that if K is a subgroup of G then the number of distinct conjugates of K in G is $[G:N_G(K)]$.
 - (b) Show that if G has n_p Sylow p-subgroups, then G has a subgroup of index n_p .

- 208. Let G be a finite group and p a prime. Show that the intersection of all Sylow p-subgroups of G is a normal subgroup of G.
- 209. Let K be a normal subgroup of G and let P be a Sylow p-subgroup of K. Show that if $P \subseteq K$ then $P \subseteq G$.
- 210. Let G be a finite group and let P be a *normal* Sylow p-subgroup of G. Show that P is a characteristic subgroup of G.
- 211. A subgroup H of a group G is subnormal if there exists a chain $H = H_0 \leqslant H_1 \leqslant \cdots \leqslant H_k = G$ such that H_i is a normal subgroup of H_{i+1} for every i. Prove that if P is a Sylow p-subgroup of a finite group G, then P is a subnormal in G if and only if P is normal in G.
- 212. Let G be a finite group and p a prime. Let N be a normal subgroup of G and H a Sylow p-subgroup of G. Show that
 - (a) HN/N is a Sylow p-subgroup of G/N, and
 - (b) $H \cap N$ is a Sylow p-subgroup of N.
- 213. Let G be a finite group with subgroups H, K such that G = HK. Show that if p is any prime number, then there exist $P \in \text{Syl}_p(H)$ and $Q \in \text{Syl}_p(K)$ such that $PQ \in \text{Syl}_p(G)$.
- 214. Let G be a finite group, p a prime, and P a Sylow p-subgroup of G. Let H be a subgroup of G that contains the normalizer $N_G(P)$ of P in G. Show that if g is an element of G such that $g^{-1}Pg \leq H$, then g is an element of H.
- 215. Let G be a finite group, H be a subgroup of G, and P be a Sylow p-subgroup of H for some prime p. Show that if H contains the normalizer $N_G(P)$ of P, then P is a Sylow p-subgroup of G.
- 216. A subgroup H of a group G is called *pronormal* if, for any $g \in G$, H is conjugate to H^g in $\langle H, H^g \rangle$.
 - (a) Show that if $H \leq N \leq G$ with H pronormal in G, then $G = N_G(H)N$.
 - (b) Show that if P is a Sylow p-subgroup of G, then P is pronormal in G.
- 217. Let G be a finite group and H a normal subgroup. Show that if P is a Sylow p-subgroup of H, then $G = HN_G(P)$.
- 218. Let P be a Sylow p-subgroup of a group G and let K be a subgroup of G containing $N_G(P)$. Show that $N_G(K) = K$.
- 219. Let x and y be two elements of Z(P) where P is a Sylow p-subgroup of G. If x and y are conjugate in G, prove that x is conjugate to y in $N_G(P)$.
- 220. (a) Let p be a prime and let H be a p-subgroup of the finite group G. Show that

$$[N_G(H):H] \equiv [G:H] \pmod{p}$$
.

(Hint: Let H act on G/H by left multiplication.)

(b) Let P be a p-subgroup of G. Show that P is a Sylow p-subgroup of G if and only if P is a Sylow p-subgroup of $N_G(P)$.

- 221. Let G be a finite group with $|G| = p^a m$, where p is a prime and $p \nmid m$. Assume that whenever P and Q are Sylow p-subgroups of G, either P = Q or $P \cap Q = 1$. Show that the number of Sylow p-subgroups of G is congruent to 1 modulo p^a .
- 222. Let P be a Sylow p-subgroup of the finite group G, and assume $|P| = p^a$. Suppose that $P \cap P^g = \{1\}$ whenever $g \in G$ does not normalize P. Prove that the number of Sylow p-subgroups of G is congruent to $1 \mod p^a$.
- 223. Let p be a prime and let P be a p-subgroup of the finite group G. Show that P is a Sylow p-subgroup of G if and only if P is a Sylow p-subgroup of $PC_G(P)$ and $[N_G(P):PC_G(P)]$ is not divisible by p.
- 224. Let G be a finite group, and p a prime. Let n_p be the number of Sylow p-subgroups of G and suppose that p^e does not divide $n_p 1$. Prove that there exist two distinct Sylow p-subgroups of G, say P and Q, satisfying $[P: P \cap Q] \leq p^e$.
- 225. Let P and Q be distinct Sylow p-subgroups of a finite group G. Prove that the number of Sylow p-subgroups of G is strictly greater than $[P:P\cap Q]$.
- 226. Let X and G be finite groups. We say that X is *involved* in G if there exist subgroups K and H of G, with K normal in H, such that X is isomorphic to H/K. Suppose X is a p-group, P is a Sylow p-subgroup of G, and X is involved in G. Prove that X is involved in P.

Solvable and Nilpotent Groups, Commutator and Frattini Subgroups

- 227. Show that the following statements are equivalent.
 - (i) Every finite group of odd order is solvable.
 - (ii) Every non-abelian finite simple group is of even order.
- 228. Let H and K be subgroups of a group G with $K \subseteq G$. Show that if H and K are solvable, then HK is solvable.
- 229. Let G be a solvable group and N a nontrivial normal subgroup of G. Show that there is a nontrivial abelian subgroup A of N with A normal in G.
- 230. Prove that a minimal normal subgroup of a finite solvable group is abelian.
- 231. Let G be a finite non-solvable group, each of whose proper subgroups is solvable. Show that $G/\Phi(G)$ is a non-abelian simple group, where $\Phi(G)$ denotes the Frattini subgroup of G.
- 232. We say that a group X is *involved* in a group G if X is isomorphic to H/K for some subgroups K, H of G with $K \subseteq H$. Prove that if X is solvable and X is involved in the finite group G, then X is involved in a solvable subgroup of G.
- 233. Let G be a finite group satisfying the following property:(*) If A, B are subgroups of G then AB is a subgroup of G.Prove that G is a solvable group.
- 234. Let X be a set of operators for the group G and assume that G is a finite solvable group. Prove that every X-composition factor in any X-composition series for G is an elementary abelian p-group for some prime p.

- 235. Show that if G is a nilpotent group and $\langle 1 \rangle \neq N \subseteq G$, then $N \cap Z(G) \neq \langle 1 \rangle$.
- 236. Show that if G is a nilpotent finite group, then every subgroup of prime index is a normal subgroup.
- 237. Let G be a group and let $Z \leq Z(G)$ be a central subgroup. Prove that if G/Z is nilpotent, then G is nilpotent.
- 238. (a) Show that if G is a group and H, K are subgroups of G such that $HK \subseteq KH$, then HK is a subgroup of G.
 - (b) Suppose G is finite and $HK \subseteq KH$ for all subgroups H and K of G. Show that if p is a prime divisor of |G|, then there is a subgroup N of G such that |G:N| is a power of p and $p \nmid |N|$.
- 239. Let G be a finite group and let $\Phi(G)$ be its Frattini subgroup. Show that $\Phi(G)$ is precisely the set of non-generators of G. (An element g of G is called a non-generator if for any subset S of G containing g and generating G, the set $S \{g\}$ also generates G.)
- 240. Let $\langle 1 \rangle = G_0 \leqslant G_1 \leqslant \cdots \leqslant G_n = G$ be a central series for the nilpotent group G. Prove that $G_i \leqslant Z_i(G)$ for all i, where $\{Z_i(G)\}$ is the upper central series of G. Thus, among all central series for a nilpotent group, the upper central series ascends the fastest.
- 241. Let G be a finite group, let $\Phi(G)$ be the Frattini subgroup of G (that is, the intersection of all maximal subgroups of G), and let G' be the commutator subgroup of G. Show that the following are equivalent.
 - (i) The group G is nilpotent.
 - (ii) If H is a proper subgroup of G, then H is a proper subgroup of its normalizer in G.
 - (iii) Every maximal subgroup of G is a normal subgroup of G.
 - (iv) $G' \leq \Phi(G)$.
 - (v) Every Sylow subgroup of G is a normal subgroup of G.
 - (vi) The group G is a direct product of its Sylow subgroups.
- 242. Let G be a finite group. Show that each of the following conditions is equivalent to the nilpotence of G.
 - (a) Whenever $x, y \in G$ satisfy (|x|, |y|) = 1, then xy = yx.
 - (b) Whenever p and q are distinct primes and $P \in \mathrm{Syl}_p(G)$ and $Q \in \mathrm{Syl}_q(G)$, then P centralizes Q.
- 243. Show that if G is a finite nilpotent group and m is a positive integer such that m divides the order of G, then G has a subgroup of order m.
- 244. Let G be a finite nilpotent group and G' its commutator subgroup. Show that if G/G' is cyclic then G is cyclic.
- 245. A finite group G is called an N-group if the normalizer $N_G(P)$ of every non-identity p-subgroup P of G is solvable. Prove that if G is an N-group, then either (i) G is solvable, or (ii) G has a unique minimal normal subgroup K, the factor group G/K is solvable, and K is simple.

- 246. Let G be a finite group and let N be a normal subgroup of G with the property that G/N is nilpotent. Prove that there exists a nilpotent subgroup H of G satisfying G = HN.
- 247. Let G be a finite solvable group. Prove that the index of every maximal subgroup is a prime power.
- 248. Let G be a group. Show that if $g \in G$, then the conjugacy class of g is contained in gG'.
- 249. Let G be a group of odd order. Let g_1, \ldots, g_n be the elements of G, listed in any order. Show that $\prod_{i=1}^n g_i$ is an element of the commutator subgroup G' of G.
- 250. Let G be a finite group and let M be a maximal subgroup of G.
 - (a) Show that if Z(G) is not contained in M, then $M \subseteq G$.
 - (b) Show that either $Z(G) \leq M$ or $G' \leq M$.
 - (c) Show that $Z(G) \cap G' \leq \Phi(G)$.