

Feladat: XCopy

Bemenet stdin Kimenet stdout

A mai programozás óra végén a tanár egy nagyon nehéz házi feladatot adott, ezért a gyerekek úgy döntöttek, hogy lemásolják egymásról. Viszont ügyesen kell csinálniuk ezt, nehogy rajtakapják őket.

Az osztályban $N \times M$ diák van, akik $N \times M$ padban ülnek N sorban és M oszlopban. Két gyereket szomszédosnak tekintünk, ha az egyikük padja a másik padjától közvetlenül balra, jobbra, felette vagy alatta van. A házi feladatban egy egész számot kell meghatározni. Annak érdekében, hogy ne kapják csaláson őket, minden számnak különbözőnek kell lennie. Másrészt, a gyerekek elég lusták, úgyhogy a másoláskor alig módosítják a szomszédok számait. Pontosabban, minden gyerek válaszának kettes számrendszerbeli alakja pontosan egy biten tér el bármely szomszédjának válaszától. Például a 3 és a 2 számok pontosan egy biten térnek el, míg a 2 és a 4 nem ilyen számok.

A gyerekek nem szeretnének gyanút kelteni, ezért azt szeretnék, hogy a lehető legkisebb legyen a válaszok maximuma. Adott N és M méretekre készíts egy megfelelő válaszokból álló táblázatot, amely esetén a tanár nem veszi észre, hogy a gyerekek csaltak.

Bemenet

A bemenet egyetlen sorában az N és M számok vannak, egy szóközzel elválasztva.

Kimenet

A kimeneten a gyerekek optimális válaszai legyenek. A kimenetnek N sora legyen, és mindegyik M nemnegatív egész számot tartalmazzon, egy-egy szóközzel elválasztva. Ezek adják meg a gyerekek válaszait annak megfelelően, hogy hol ülnek.

Korlátok

•
$$1 \le N, M \le 2000$$

#	Pontszám	Korlátok
1	7	N=1.
2	9	N, M kettőhatvány.
3	14	N kettőhatvány.
4	70	Nincs más megkötés.

Pontozás

Ebben a feladatban nem csak az optimális megoldásra jár pont, hanem részpontszámot is lehet kapni, attól függően, hogy a válasz mennyire közelíti meg az optimális választ, az alábbi pontozási képlet alapján:

$$S \cdot \max\left(1 - \sqrt{\frac{\frac{G}{O} - 1}{3}}, 0\right)$$

Ahol:

- S a teszteset pontszáma,
- G az általad adott válasz,
- O az optimális válasz.

Figyelem! Ha a megoldás nem teljesíti a kimeneti elvárásokat (minden szám különböző, és bármely két szomszédos szám pontosan egy biten tér el a kettes számrendszerbeli alakban), akkor arra a tesztesetre 0 pont jár.

Példák

Bemenet	Kimenet
3 3	5 4 6
	1 0 2
	9 8 10

Magyarázatok

Az alábbiakban, egy szám után írt alsó index azt jelenti, hogy milyen számrendszerben van írva a szám. Például a 8-at a következőképpen írhatjuk fel: $8_{10} = 1000_2$.

Egy optimális táblázat a diákok válaszaira a következő:

$0101_2 = 5_{10}$	$0100_2 = 4_{10}$	$0110_2 = 6_{10}$
$0001_2 = 1_{10}$	$0000_2 = 0_{10}$	$0010_2 = 2_{10}$
$1001_2 = 9_{10}$	$1000_2 = 8_{10}$	$1010_2 = 10_{10}$

Vegyük észre, hogy bármely két szomszédos helyen a számok pontosan egy biten különböznek. A megoldásban a legnagyobb érték 10, és ez az optimális válasz. Természetesen más optimális megoldások is vannak – például a fenti megoldás tükrözve vízszintesen vagy függőlegesen.

Egy lehetséges helyes, de nem optimális megoldás, amelyben a legnagyobb szám 15:

0110_2	0111_{2}	0101_2
1110_{2}	1111_{2}	1101_{2}
1010_{2}	1011_2	1001_2

Ez a megoldás a pontozási képlet szerint a tesztesetre járó pontszám 59.1%-át kapná.