A Course in Applied Econometrics Lecture 3: Linear Panel Data Models, I

Jeff Wooldridge IRP Lectures, UW Madison, August 2008

- 1. Overview of the Basic Model
- 2. New Insights Into Old Estimators
- 3. Behavior of Estimators without Strict Exogeneity
- 4. IV Estimation under Sequential Exogeneity

1

• An attractive assumption (but, of course, not universally applicable) is *contemporaneous exogeneity conditional on* c_i :

$$E(u_{it}|\mathbf{x}_{it},c_i)=0, t=1,...,T.$$
 (2)

This equation defines β in the sense that under (1) and (2),

$$E(y_{it}|\mathbf{x}_{it},c_i) = \eta_t + \mathbf{x}_{it}\boldsymbol{\beta} + c_i, \tag{3}$$

so the β_i are partial effects holding c_i fixed.

• Unfortunately, β is not identified only under (2). If we add the strong assumption $Cov(\mathbf{x}_{it}, c_i) = \mathbf{0}$, then β is identified.

1. Overview of the Basic Model

- Unless stated otherwise, the methods discussed in these slides are for the case with a large cross section and small time series, although some approximations are based on *T* increasing.
- For a generic *i* in the population,

$$y_{it} = \eta_t + \mathbf{x}_{it}\mathbf{\beta} + c_i + u_{it}, \quad t = 1, \dots, T, \tag{1}$$

where η_t is a separate time period intercept (parameters that can be estimated), \mathbf{x}_{it} is a $1 \times K$ vector of explanatory variables, c_i is the time-constant unobserved effect, and the $\{u_{it}: t=1,\ldots,T\}$ are idiosyncratic errors. We view the c_i as random draws along with the observed variables.

2

• Allow any correlation between \mathbf{x}_{it} and c_i by assuming *strict* exogeneity conditional on c_i :

$$E(u_{it}|\mathbf{x}_{i1},\mathbf{x}_{i2},...,\mathbf{x}_{iT},c_i)=0, t=1,...,T,$$
(4)

which can be expressed as

$$E(y_{it}|\mathbf{x}_i,c_i) = E(y_{it}|\mathbf{x}_{it},c_i) = \eta_t + \mathbf{x}_{it}\boldsymbol{\beta} + c_i.$$
 (5)

If $\{\mathbf{x}_{it}: t=1,\ldots,T\}$ has suitable time variation, $\boldsymbol{\beta}$ can be consistently estimated by fixed effects (FE) or first differencing (FD), or generalized least squares (GLS) or generalized method of moments (GMM) versions of them.

- Make inference fully robust to heteroksedasticity and serial dependence, even if use GLS. With large *N* and small *T*, there is little excuse not to compute "cluster" standard errors.
- Violation of strict exogeneity: always if \mathbf{x}_{it} contains lagged dependent variables, but also if changes in u_{it} cause changes in $\mathbf{x}_{i,t+1}$ ("feedback effect").
- *Sequential exogeneity condition on c_i*:

$$E(u_{it}|\mathbf{x}_{i1},\mathbf{x}_{i2},...,\mathbf{x}_{it},c_i)=0, t=1,...,T$$
(6)

or, maintaining the linear model,

$$E(y_{it}|\mathbf{x}_{i1},\ldots,\mathbf{x}_{it},c_i)=E(y_{it}|\mathbf{x}_{it},c_i). \tag{7}$$

5

• Mundlak (1978) used a restricted version

$$E(c_i|\mathbf{x}_i) = \psi + \bar{\mathbf{x}}_i \boldsymbol{\xi},\tag{10}$$

where $\bar{\mathbf{x}}_i = T^{-1} \sum_{t=1}^T \mathbf{x}_{it}$. Then

$$y_{it} = \eta_t + \mathbf{x}_{it}\boldsymbol{\beta} + \bar{\mathbf{x}}_i\boldsymbol{\xi} + a_i + u_{it}, \tag{11}$$

and we can apple pooled OLS or RE because $E(a_i + u_{it}|\mathbf{x}_i) = 0$. Both equal the FE estimator of $\boldsymbol{\beta}$.

• (10) is in the spirit of approaches for nonlinear models, where often an entire conditional distribution is specified.

Allows for lagged dependent variables and other feedback. Generally, β is identified under sequential exogeneity. (More later.)

• The key "random effects" assumption is

$$E(c_i|\mathbf{x}_i) = E(c_i). \tag{8}$$

Pooled OLS or any GLS procedure, including the RE estimator, are consistent. Fully robust inference is available for both.

• It is useful to define two *correlated random effects* assumptions. The first just defines a linear projection:

$$L(c_i|\mathbf{x}_i) = \psi + \mathbf{x}_i \boldsymbol{\xi},\tag{9}$$

Called the Chamberlain device, after Chamberlain (1982).

6

• Equation (11) makes it easy to compute a fully robust Hausman test comparing RE and FE. Separate covariates into aggregate time effects, time-constant variables, and variables that change across i and t:

$$y_{it} = \mathbf{g}_t \mathbf{\eta} + \mathbf{z}_i \mathbf{\gamma} + \mathbf{w}_{it} \mathbf{\delta} + c_i + u_{it}. \tag{12}$$

We cannot estimate γ by FE, so it is not part of the Hausman test comparing RE and FE. Less clear is that coefficients on the time dummies, η , cannot be included, either. (RE and FE estimation only with aggregate time effects are identical.) We can only compare $\hat{\delta}_{FE}$ and $\hat{\delta}_{RE}$ (M parameters).

• Convenient test:

$$y_{it}$$
 on \mathbf{g}_{t} , \mathbf{z}_{i} , \mathbf{w}_{it} , $\mathbf{\bar{w}}_{i}$, $t = 1, ..., T$; $i = 1, ..., N$, (13)

which makes it clear there are M restrictions to test. Pooled OLS or RE, fully robust!

• Regression (13) can also be used to estimate coefficients on \mathbf{z}_i while allowing correlation between c_i and $\mathbf{\bar{w}}_i$. For these estimated coefficients to be consistent for γ , we would assume

 $E(c_i|\mathbf{z}_i, \mathbf{\bar{w}}_i) = E(c_i|\mathbf{\bar{w}}_i) = \psi + \mathbf{\bar{w}}_i \boldsymbol{\xi}$ (or the linear projection version).

• Be cautious using canned procedures: the df are often wrong (the aggregate time variables are included) and the tests are nonrobust.

9

• A sufficient condition for consistency of the FE estimator, along with along with (15) and the usual rank condition, is

$$E(\mathbf{b}_i|\mathbf{\ddot{x}}_{it}) = E(\mathbf{b}_i) = \mathbf{\beta}, \quad t = 1,...,T$$
 (16)

where $\ddot{\mathbf{x}}_{it}$ are the time-demeaned covariates. Allows the slopes, \mathbf{b}_i , to be correlated with the regressors \mathbf{x}_{it} through permanent components. For example, if $\mathbf{x}_{it} = \mathbf{f}_i + \mathbf{r}_{it}, t = 1, \dots, T$. Then (16) holds if $\mathrm{E}(\mathbf{b}_i|\mathbf{r}_{i1},\mathbf{r}_{i2},\dots,\mathbf{r}_{iT}) = \mathrm{E}(\mathbf{b}_i)$.

2. New Insights Into Old Estimators

• Consider an extension of the usual model to allow for unit-specific slopes,

$$y_{it} = c_i + \mathbf{x}_{it}\mathbf{b}_i + u_{it} \tag{14}$$

$$E(u_{it}|\mathbf{x}_i,c_i,\mathbf{b}_i)=0,t=1,\ldots,T,$$
(15)

where \mathbf{b}_i is $K \times 1$. We act as if \mathbf{b}_i is constant for all i but think c_i might be correlated with \mathbf{x}_{it} ; we apply usual FE estimator. When does the usual FE estimator consistently estimate the population average effect, $\mathbf{\beta} = \mathrm{E}(\mathbf{b}_i)$?

10

• Extends to a more general class of estimators. Write

$$y_{it} = \mathbf{w}_t \mathbf{a}_i + \mathbf{x}_{it} \mathbf{b}_i + u_{it}, \quad t = 1, \dots, T$$

where \mathbf{w}_t is a set of deterministic functions of time. FE now sweeps away \mathbf{a}_i by netting out \mathbf{w}_t from \mathbf{x}_{it} .

- In the random trend model, $\mathbf{w}_t = (1, t)$. If $\mathbf{x}_{it} = \mathbf{f}_i + \mathbf{h}_i t + \mathbf{r}_{it}$, then \mathbf{b}_i can be arbitrarily correlated with $(\mathbf{f}_i, \mathbf{h}_i)$.
- Generally, need dim(\mathbf{w}_t) < T.

• Can apply to models with time-varying factor loads, η_t :

$$y_{it} = \mathbf{x}_{it}\mathbf{\beta} + \eta_t c_i + u_{it}, t = 1, ..., T.$$
 (18)

Sufficient for consistency of FE estimator that ignores the η_t is

$$Cov(\ddot{\mathbf{x}}_{it}, c_i) = \mathbf{0}, t = 1, \dots, T.$$

$$\tag{19}$$

• Now let some elements of \mathbf{x}_{it} be correlated with $\{u_{ir}: r=1,\ldots,T\}$, but with strictly exogenous instruments (conditional on c_i). Assume

$$E(u_{it}|\mathbf{z}_i,\mathbf{a}_i,\mathbf{b}_i)=0. \tag{20}$$

13

3. Behavior of Estimators without Strict Exogeneity

- Both the FE and FD estimators are inconsistent (with fixed $T, N \to \infty$) without the strict exogeneity assumption. But inconsistencies (as function of T) can differ.
- If we maintain $E(u_{it}|\mathbf{x}_{it},c_i)=0$ and assume $\{(\mathbf{x}_{it},u_{it}):t=1,\ldots,T\}$ is "weakly dependent", can show

$$\operatorname{plim}_{N \to \infty} \hat{\beta}_{FE} = \beta + O(T^{-1}) \tag{23}$$

$$\operatorname{plim}_{N\to\infty} \hat{\boldsymbol{\beta}}_{FD} = \boldsymbol{\beta} + O(1). \tag{24}$$

• Interestingly, still holds if $\{\mathbf{x}_{it}: t=1,...,T\}$ has unit roots as long as $\{u_{it}\}$ is I(0) and contemporaneous exogeneity holds.

Also, replace (16) with

$$E(\mathbf{b}_i|\mathbf{\ddot{z}}_{it}) = E(\mathbf{b}_i) = \mathbf{\beta}, \quad t = 1, \dots, T.$$
 (21)

Still not enough. A sufficient condition is

$$Cov(\ddot{\mathbf{x}}_{it}, \mathbf{b}_i | \ddot{\mathbf{z}}_{it}) = Cov(\ddot{\mathbf{x}}_{it}, \mathbf{b}_i), t = 1, \dots, T.$$
(22)

Cov($\ddot{\mathbf{x}}_{it}$, \mathbf{b}_i), a $K \times K$ matrix, need not be zero, or even constant across time. The *conditional* covariance cannot depend on the time-demeaned instruments. Then, FEIV is consistent for $\mathbf{\beta} = E(\mathbf{b}_i)$ provided a full set of time dummies is included.

• Assumption (22) cannot be expected to hold when endogenous elements of \mathbf{x}_{it} are discrete.

14

- Catch: if $\{u_{it}\}$ is I(1) so that the time series "model" is a spurious regression (y_{it} and \mathbf{x}_{it} are not *cointegrated*), then (23) is no longer true. FD eliminates any unit roots.
- Same conclusions hold for IV versions: FE has bias of order T^{-1} if $\{u_{it}\}$ is weakly dependent.
- Simple test for lack of strict exogeneity in covariates:

$$y_{it} = \eta_t + \mathbf{x}_{it}\mathbf{\beta} + \mathbf{w}_{i,t+1}\mathbf{\delta} + c_i + e_{it}$$
 (25)

Estimate the equation by fixed effects and test H_0 : $\delta = 0$.

• Test contemporaneous endogeneity of a subset of certain regressors.

$$y_{it1} = \mathbf{z}_{it1} \mathbf{\delta}_1 + \mathbf{y}_{it2} \mathbf{\alpha}_1 + \mathbf{y}_{it3} \mathbf{\gamma}_1 + c_{i1} + u_{it1}, \tag{26}$$

where, in an FE environment, we want to test H_0 : $E(\mathbf{y}'_{it3}u_{it1}) = \mathbf{0}$.

• Reduced form for y_{it3} :

$$\mathbf{y}_{it3} = \mathbf{z}_{it} \mathbf{\Pi}_3 + \mathbf{c}_{i3} + \mathbf{v}_{it3}. \tag{27}$$

• Obtain FE residuals, $\hat{\mathbf{v}}_{it3} = \mathbf{y}_{it3} - \mathbf{z}_{it}\hat{\mathbf{\Pi}}_3$ ($\hat{\mathbf{\Pi}}_3$ FE estimates). Estimate

$$y_{it1} = \mathbf{z}_{it1}\mathbf{\delta}_1 + \mathbf{y}_{it2}\mathbf{\alpha}_1 + \mathbf{y}_{it3}\mathbf{\gamma}_1 + \mathbf{\hat{v}}_{it3}\mathbf{\rho}_1 + error_{it1}$$
 (28)

by FEIV, using instruments $(\mathbf{z}_{it}, \mathbf{y}_{it3}, \mathbf{\hat{v}}_{it3})$. \mathbf{y}_{it3} exogenous: use (robust) test that $\mathbf{\rho}_1 = \mathbf{0}$; need not adjust for the first-step estimation.

17

Therefore, at time t, the available instruments in the FD equation are in the vector $\mathbf{x}_{it}^o \equiv (\mathbf{x}_{i1}, \mathbf{x}_{i2}, \dots, \mathbf{x}_{it})$. The matrix of instruments is

$$\mathbf{W}_i = \operatorname{diag}(\mathbf{x}_{i1}^o, \mathbf{x}_{i2}^o, \dots, \mathbf{x}_{iT-1}^o), \tag{31}$$

which has T - 1 rows. Routine to apply GMM estimation.

• Simple strategy: estimate a reduced form for $\Delta \mathbf{x}_{it}$ separately for each t. So, at time t, run the regression $\Delta \mathbf{x}_{it}$ on $\mathbf{x}_{i,t-1}^o$, $i=1,\ldots,N$, and obtain the fitted values, $\widehat{\Delta \mathbf{x}}_{it}$. Then, estimate the FD equation

$$\Delta y_{it} = \Delta \mathbf{x}_{it} \mathbf{\beta} + \Delta u_{it}, \ t = 2, \dots, T$$
 (32)

by pooled IV using instruments (not regressors) $\widehat{\Delta \mathbf{x}}_{it}$.

4. IV Estimation under Sequential Exogeneity

We now consider IV estimation of the model

$$y_{it} = \mathbf{x}_{it}\mathbf{\beta} + c_i + u_{it}, \ t = 1, ..., T,$$
 (29)

under sequential exogeneity assumptions; the weakest form is $Cov(\mathbf{x}_{is}, u_{it}) = 0$, all $s \le t$.

This leads to simple moment conditions after first differencing:

$$E(\mathbf{x}'_{is}\Delta u_{it}) = \mathbf{0}, s = 1,...,t-1; t = 2,...,T.$$
 (30)

18

- Can suffer from a weak instrument problem when $\Delta \mathbf{x}_{it}$ has little correlation with $\mathbf{x}_{i,t-1}^o$.
- If we assume

$$E(u_{it}|\mathbf{x}_{it}, y_{i,t-1}\mathbf{x}_{i,t-1}, \dots, y_{i1}, \mathbf{x}_{i1}, c_i) = 0,$$
(33)

many more moment conditions are available. Using linear functions only, for t = 3, ..., T,

$$E[(\Delta y_{i,t-1} - \Delta \mathbf{x}_{i,t-1}\boldsymbol{\beta})'(y_{it} - \mathbf{x}_{it}\boldsymbol{\beta})] = \mathbf{0}.$$
(34)

• Drawback: we often do not want to assume (30). Plus, the conditions in (31) are nonlinear in parameters.

• Arellano and Bover (1995) suggested instead the restrictions

$$Cov(\Delta \mathbf{x}'_{it}, c_i) = 0, \ t = 2, \dots, T, \tag{35}$$

which imply linear moment conditions in the levels equation,

$$E[\Delta \mathbf{x}'_{it}(y_{it} - \alpha - \mathbf{x}_{it}\boldsymbol{\beta})] = \mathbf{0}, t = 2, \dots, T.$$
(36)

• Simple AR(1) model:

$$y_{it} = \rho y_{i,t-1} + c_i + u_{it}, t = 1, \dots, T.$$
 (37)

21

$$E[\Delta y_{i,t-1}(y_{it} - \alpha - \rho y_{i,t-1})] = 0$$
(41)

which can be added to the usual moment conditions (38). We have two sets of moments linear in the parameters.

• Condition (40) can be interpreted as a restriction on the initial condition, y_{i0} . Write y_{i0} as a deviation from its steady state, $c_i/(1-\rho)$ (obtained for $|\rho|<1$ by recursive substitution and then taking the limit), as $y_{i0}=c_i/(1-\rho)+r_{i0}$. Then $(1-\rho)y_{i0}+c_i=(1-\rho)r_{i0}$, and so (40) reduces to

$$Cov(r_{i0},c_i)=0. (42)$$

The deviation of y_{i0} from its SS is uncorrelated with the SS.

• Typically, the minimal assumptions imposed are

$$E(y_{is}u_{it}) = 0, \ s = 0, \dots, t-1, \ t = 1, \dots, T,$$
 (38)

so for t = 2, ..., T,

$$E[y_{is}(\Delta y_{it} - \rho \Delta y_{i,t-1}) = 0, s \le t - 2. \tag{39}$$

Again, can suffer from weak instruments when ρ is close to unity.

Blundell and Bond (1998) showed that if the condition

$$Cov(\Delta y_{i1}, c_i) = Cov(y_{i1} - y_{i0}, c_i) = 0$$
 (40)

is added to $E(u_{it}|y_{i,t-1},\ldots,y_{i0},c_i)=0$ then

22

• Extensions of the AR(1) model, such as

$$y_{it} = \rho y_{i,t-1} + \mathbf{z}_{it} \mathbf{\gamma} + c_i + u_{it}, \quad t = 1, ..., T$$
 (43)

and use FD:

$$\Delta y_{it} = \rho \Delta y_{i,t-1} + \Delta \mathbf{z}_{it} \mathbf{\gamma} + \Delta u_{it}, \quad t = 1, \dots, T.$$
 (44)

• Airfare example in notes. The data set can be obtained from the web site for Wooldridge (2002), and is called AIRFARE.RAW:

Dependent Variable:	lfare		
	(1)	(2)	(3)
Explanatory Variable	Pooled OLS	Pooled IV	Arellano-Bond
<i>lfare</i> ₋₁	126	.219	.333
	(.027)	(.062)	(.055)
concen	.076	. 126	.152
	(.053)	(.056)	(.040)
N	1,149	1,149	1,149

• Arellano and Alvarez (2003) show that the GMM estimator that accounts for the MA(1) serial correlation in the FD errors has better properties when T and N are both large.

25