MATH 211

Test #2 ♠

November 16, 2017

Name: Richard

R. Hammack

Score: (100

Directions No calculators. Please put all phones, etc., away.

1. (4 points) Complete the following truth tables.

2. (12 points) Complete the truth table to decide if $P \vee (Q \wedge R)$ and $(\sim Q \vee \sim R) \Rightarrow P$ are logically equivalent.

P	Q	R	L(QAR)	PV(QAR)	NO	~R	(~QV~R)	(~QV~R) >P
T	T	T	T	T	E	Г		T
\mathbf{T}	T	F	F	T	F-	7	- -	/ +
\mathbf{T}	F	$\mathbf{T}_{\mathbf{x}}$	F	1	Ť	1	<u>'</u>	1 + 1
\mathbf{T}	\mathbf{F}	F	F	T	T	Ť	Ť	一十一
\mathbf{F}	T	Т	T	T	F	F	F	J i
\mathbf{F}	T	F	F	I E	F	T	T	F
F	F	Т	F	I FI	T	F	T	(E)
F	F	F	F	(F)	T	T	T	

Are they logically equivalent? Why or why not? Their columns agree, so YES they are logically equivalent.

3. (6 points) Suppose the statement $\sim (S \Rightarrow (P \lor Q \lor \sim R))$ is true. Find the truth values of P, Q, R and S. (This can be done without a truth table.)

Find the truth values of P,Q, R and S. (This can be done without a truth table.)

If this is true, Then S => (PVQVNR) is False
which means S is true and PVQVNR is

false. Now The only way PVQVNR can be false
is if all of P, Q and NR are false. Thus:

S=T, P=F, Q=F, R=T

4. (12 points) This problem concerns the following statement.

P: There is a number $n \in \mathbb{Z}$ for which $m \mid n$ for every $m \in \mathbb{Z}$.

(a) Is the statement P true or false? Explain.

It is true because there is a number n=0 in Z for which m/n for every m.

(m/o for any # m)

(b) Write the statement P in symbolic form.

∃neZ, VmeZ, m/n.

(c) Form the negation $\sim P$ of your answer from (b), and simplify.

 $\sim (\exists n \in \mathbb{Z}, \forall m \in \mathbb{Z}, m \mid n) = \forall n \in \mathbb{Z} \sim (\forall m \in \mathbb{Z}, m \mid n)$ $= \forall n \in \mathbb{Z}, \exists m \in \mathbb{Z} \sim (m \mid n)$ $= |\forall n \in \mathbb{Z}, \exists m \in \mathbb{Z}, m \nmid n$

(d) Write the negation $\sim P$ as an English sentence. (The sentence may use mathematical symbols.)

For any $n \in \mathbb{Z}$, there exists some number $m \in \mathbb{Z}$ for which m + n.

5. (6 points) Complete the first and last lines of each of the following proof outlines.

Proposition: If P, then Q.
Proof: (Direct)
Suppose P
:
Therefore Q.

Proposition: If P, then Q.
Proof: (Contradiction)
Suppose PA~Q
:

Proposition: If P, then Q.
Proof: (Contrapositive)
Suppose ~Q

:
Therefore

6. (15 points) Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$. Prove: If $a \equiv b \pmod{n}$, then $ab \equiv b^2 \pmod{n}$.

[Use direct proof.]

Proof (Direct) Suppose $a \equiv b \pmod{n}$,
This means 4|(a-b), so a-b = 4c for some $c \in \mathbb{Z}$,
Now multiply both sides by b, as follows:

$$a-b = 4c$$

 $(a-b)b = 4cb$
 $ab-b^2 = 4(cb)$.

This shows $ab-b^2 = 4k$ for $k = cb \in \mathbb{Z}$, so consequently $4 \mid (ab-b^2)$.

Therefore ab = b2 (mod 4).

7. (15 points) Suppose $a, b, c \in \mathbb{Z}$. Prove: If $a \nmid bc$, then $a \nmid b$ and $a \nmid c$.

Proof (Contrapositive)

Suppose it is not true tut at b and atc

Then a b or a c.

CASE I Suppose a|b. Then b=ak for some $k\in\mathbb{Z}$. Multiply both sides by c to get bc=akc. Then $bc=a\cdot(kc)$ for $kc\in\mathbb{Z}$, and that means a|bc.

CASE II Suppose a c. Then C = al for some $l \in \mathbb{Z}$, Multiply both sides by b to get bc = alb. Then bc = a.(lb) and That means a/bc.

In either case we got a bc.
Therefore a bc.

~ ((a odd) n (b odd))

8. (15 points) Prove: If $4|(a^2+b^2)$, then a and b are not both odd.

[Use contradiction.]

Proof Suppose for the salce of contradiction that $4|(a^2+b^2)|$ but a and b are both odd.

Then a=2c+1 and b=2d+1 for $c,d\in\mathbb{Z}$.

Also $a^2+b^2=4k$ for some $k\in\mathbb{Z}$, by definition of divides. Thus:

 $a^{2} + b^{2} = 4k$ $(2c+1)^{2} + (2d+1)^{2} = 4k$ $4c^{2} + 4c + 1 + 4d^{2} + 4d + 1 = 4k$ $4c^{2} + 4c + 4d^{2} + 4d - 4k = 2$ $2c^{2} + 2c + 2d^{2} + 2d - 2k = 1 \quad (divide by 2)$ $2(c^{2} + c + d^{2} + d - k) = 1$

As c2+c+d2+d-R \in \mathbb{Z}, this shows that I is even, which is a contradiction.

9. (15 points) Suppose $a, b, c \in \mathbb{Z}$. Prove: If $a \mid b$ and $a \mid (b + c)$, then $a \mid c$.

Proof (Direct) Suppose alb and a (b+c).
This means b = ak and b+c = al for some k, $l \in \mathbb{Z}$.

From b=ak and b+c=al, we get ak+c=al, so c=al-ak, i.e. C=a(l-k). Consequently we have c=am for $m=l-k \in \mathbb{Z}$.