Модели синтаксического разбора и их применение

Попов Артём

Математические методы анализа текстов осень 2021

Абстрактное синтаксическое дерево (AST)

AST — представление кода.

- внутренниы вершины операторы
- листья операнды

Код для дерева справа:

while b ≠ 0 if (a > b) a := a - b else b := b - a return a

Данные для обучения

Хотим обучить алгоритм генерирующий по предложению его дерево зависимостей.

Для того, чтобы обучить алгоритм, нам нужна размеченная выборка: предложения и их разбор.

Удивительно, но для большого числа языков такие выборки (treebanks) можно найти: <u>treebanks для разных языков</u>.

Проект Universal dependencies

Лингвистическая проблема: несоответствие терминов и правил из грамматик зависимостей разных языков.

Data Science проблема: построить модель парсера, применимую для разных языков.

Решение: http://universaldependencies.org/

 100 корпусов для 60 языков, все теги зависимостей унифицированы.

Метрики качества для построенного дерева

- Доля правильных разборов
- Unlabeled Attachment Score (UAS) доля правильно угаданных рёбер
- Labeled Attachment Score (LAS) доля правильно угаданных рёбер с правильным типом метки

Подходы построения дерева зависимостей

- 1. Transition-based жадный способ построения дерева
- 2. Graph-based полный поиск по всем возможным деревьям

Основная проблема: построить дерево

Предсказать метки по построенному дереву проще

(классификатор на каждую пару вершин по их признакам)

Graph-based подход

Для каждой пары слов **h**, **m** в предложении **s** оцениваем, нужно ли их добавить в дерево. Например так:

$$egin{aligned} v &= BiLSTM(s) \ score_{hw} &= MLP(v_h \circ v_w) \end{aligned}$$

Функция потерь для **s** и правильного дерева **y**:

$$\max\Bigl(0,1-\max_{y'
eq y}\sum_{(h,m)\in y'}MLP(v_h\circ v_m)+\sum_{(h,m)\in y}MLP(v_h\circ v_m)\Bigr)$$

<u>Kiperwasser et al (2016); Simple and Accurate Dependency Parsing Using Bidirectional LSTM Feature Representations</u>

Применение graph-based подхода

Алгоритм применения:

- 1. Подсчитать оценки всех пар вершин
- 2. Выбрать максимальное остовное дерево
- 3. Если учитывать проективность, то (2) сложнее...

Особенности:

- хорошее качество (особенно на длинных предложениях)
- невысокая скорость (квадратичная сложность)

Transition-based подход: сущности

Пусть у нас есть:

- список токенов (изначально всё предложение)
- стек (изначально [ROOT])
- конфигурация итоговый набор зависимостей (изначально пустая)
- набор действий, которые могут менять три сущности

Хотим обучить систему выбирать последовательность действий, приводящую к правильной конфигурации.

Transition-based подход: действия

- LeftArc (если второй элемент стека не ROOT) проводим зависимость от первого токена на верхушке стека к второму, и выкидываем второй из стека
- RightArc проводим зависимость от второго токена на верхушке стека к первому, и выкидываем первый из стека
- Shift переносим очередное слово из буфера в стек

В некоторых системах есть четвёртое действие:

• Swap — вернуть второй элемент стека в буфер

Пример работы на предложении "I ate fish"

Пример работы на предложении "I ate fish"

Пример работы на предложении "Book me the morning flight"

Step	Stack	Word List	Action	Relation Added
0	[root]	[book, me, the, morning, flight]	SHIFT	
1	[root, book]	[me, the, morning, flight]	SHIFT	
2	[root, book, me]	[the, morning, flight]	RIGHTARC	$(book \rightarrow me)$
3	[root, book]	[the, morning, flight]	SHIFT	
4	[root, book, the]	[morning, flight]	SHIFT	
5	[root, book, the, morning]	[flight]	SHIFT	
6	[root, book, the, morning, flight]		LEFTARC	$(morning \leftarrow flight)$
7	[root, book, the, flight]		LEFTARC	$(the \leftarrow flight)$
8	[root, book, flight]		RIGHTARC	$(book \rightarrow flight)$
9	[root, book]		RIGHTARC	$(root \rightarrow book)$
10	[root]		Done	

Алгоритм применения модели на тесте

function DEPENDENCYPARSE(words) returns dependency tree

```
state \leftarrow {[root], [words], [] } ; initial configuration

while state not final

t \leftarrow ORACLE(state) ; choose a transition operator to apply

state \leftarrow APPLY(t, state) ; apply it, creating a new state

return state
```


Модификации transition-based подхода

Проблема: зависимые удаляются из стека сразу после того, как мы смогли приписать им вершину.

Но при этом у них могут быть свои зависимые...

Хорошая новость: алгоритм будет учится выкидывать их из стека в последнюю очередь.

Но можно модифицировать алгоритм!

Transition-based arc-eager parsing

- LeftArc (если второй элемент стека не ROOT) проводим зависимость от токена на верхушке буфера к токену на верхушке стека, выкидываем верхушку стека
- **RightArc** проводим зависимость от токена на верхушке стека к токену на верхушке буфера, добавляем в стек верхушку буфера
- Shift добавляем в стек верхушку буфера
- **Reduce** (если уже есть связь, ведущая в вершину) выкидываем верхушку стека

Пример работы arc-eager парсера

Step	Stack	Word List	Action	Relation Added
0	[root]	[book, the, flight, through, houston]	RIGHTARC	$(root \rightarrow book)$
1	[root, book]	[the, flight, through, houston]	SHIFT	
2	[root, book, the]	[flight, through, houston]	LEFTARC	(the ← flight)
3	[root, book]	[flight, through, houston]	RIGHTARC	(book → flight)
4	[root, book, flight]	[through, houston]	SHIFT	
5	[root, book, flight, through]	[houston]	LEFTARC	(through ← houston)
6	[root, book, flight]	[houston]	RIGHTARC	(flight → houston)
7	[root, book, flight, houston]	0	REDUCE	
8	[root, book, flight]	0	REDUCE	
9	[root, book]	Ū	REDUCE	
10	[root]	П	Done	

Что обучаем?

Классификатор действий

Признаки: стек, буфер, конфигурация

Первая система: 10^6-10^7 индикаторных признаков

Пример:

$$s1.w = \operatorname{good} \wedge s1.t = \operatorname{JJ}$$

 $s2.w = \operatorname{has} \wedge s2.t = \operatorname{VBZ} \wedge s1.w = \operatorname{good}$
 $lc(s_2).t = \operatorname{PRP} \wedge s_2.t = \operatorname{VBZ} \wedge s_1.t = \operatorname{JJ}$
 $lc(s_2).w = \operatorname{He} \wedge lc(s_2).l = \operatorname{nsubj} \wedge s_2.w = \operatorname{has}$

Классический нейросетевой парсер

Каждому слову соответствует вектор размерности 3d (вектора для слов, pos-тегов, dependency меток).

Входной вектор составляется по 18 словам:

- 3 верхних слова в буфере
- 3 верхних слова в стеке
- 2 ближайших ребёнка слева и справа двух слов стека
- 1 ближайший ребёнок слева и справа для первых детей слева и справа двух слов стека

Архитектура сети

Особенности обучения и применения

Функционал обучения: кросс-энтропия по действиям

Применение: жадная генерация действий + beamsearch

При обучении мы не учитываем способ применения:

 можно адаптировать разные трюки из предыдущих лекций: генерация действий при обучении, CRF и т.п.

Что использовать на практике: UDPipe

UDPipe — пайплайн, обучаемый токенизации, лемматизации, морфологическому тэггингу и парсингу, основанному на грамматике зависимостей.

Есть готовые модели (в том числе и для русского языка).

Для синтаксиса — парсер похожий на рассмотренный.

+ помните, что если подавать на вход не сырой текст, а обработанный другими теггерами/лемматизаторами, могут быть проблемы

Использование синтаксического анализа на практике

Применение синтаксиса на практике

- Аспектный анализ тональности (aspect-based sentiment analysis)
- Определение связанности слов для поиска по шаблонам
- Проверка качества при генерации текста
- Аугментация данных (перестановка/удаление слов)
- Использование для задания весов слов (например, чем ближе к корню, тем больший вес)
- К полученному дереву можно применять графовые модели!

Анализ тональности для сущности

Тональность отзыва и отдельной сущности может различаться. Хотим определять тональность конкретных сущностей.

- 1) Сопоставим сущности из списка покупок со словами.
- 2) Построим синтаксическое дерево для всех предложений. Выделим группу, в которую входит нужное нам слово.
- 3) Классифицируем только фразу с этим словом без привязки к остальному тексту.

А можно для этой же задачи использовать графовые нейросети...

Пример: отзывы из приложения доставки

Ценник выше среднего, а так вполне неплохо, правда рыба на филе оставляет желать лучшего.

Даю 2 звезды за то, что рис в роллах сварен правильно, качество сашими на высоте. Суп с морепродуктами это вода, абсолютно безвкусный и естественно холодный.

Заказывала горячие роллы, но привезли холодные. В салате цезарь не было помидоров, порции маленькие. Вообще роллы мне понравились, но больше заказывать не буду.

Information extraction

Information extraction (IE) — автоматическое извлечение структурированной информации из неструктурированного текстового источника.

Relation extraction (RE) — IE, где структура извлечённых данных задаётся триплетом (сущность 1, сущность 2, связь).

Relations	Types	Examples
Physical-Located	PER-GPE	He was in Tennessee
Part-Whole-Subsidiary	ORG-ORG	XYZ , the parent company of ABC
Person-Social-Family	PER-PER	Yoko's husband John
Org-AFF-Founder	PER-ORG	Steve Jobs, co-founder of Apple

RE: модель разметки + шаблоны

- Для каждого типа отношения задаются шаблоны, включащие сущности и слова.
- 2. Каждое предложение пропускается через алгоритм разметки (POS, NER) и сопоставляется с шаблонами

PER, POSITION of ORG: George Marshall, Secretary of State of the United States

PER (named|appointed|chose|etc.) PER Prep? POSITION Truman appointed Marshall Secretary of State

PER [be]? (named|appointed|etc.) Prep? ORG POSITION George Marshall was named US Secretary of State

RE: модель разметки + классификатор

- 1. Применяем к предложению модель разметки.
- 2. Для каждой "связанной" пары определяем тип связи.

function FINDRELATIONS(words) returns relations

```
relations \leftarrow nil
entities \leftarrow FINDENTITIES(words)
forall entity pairs \langle e1, e2 \rangle in entities do

if Related?(e1, e2)
relations \leftarrow relations + ClassifyRelation(e1, e2)
```

Один из способов определения "связанности" — анализ синтаксического дерева.

Майнинг данных для обучения классификатора

Где взять такие специфичные данные для классификатора?

- 1. Пусть имеется множество размеченных триплетов для конкретного типа отношения.
- 2. Найдём все предложения с парами сущностей из триплетов
- 3. Каждое предложение преобразуем в шаблон.
- 4. Используя популярные шаблоны, найдём новые триплеты.
- 5. Повторяем шаги 2-4.

Преобразование в шаблон — самая сложная часть алгоритма.

Distant supervision для майнинга данных

Пусть у нас есть большая база триплетов (например, DBPedia).

Ищем все предложения, в которых сущности одного триплета связаны. Все такие предложения будем считать положительными примерами.

Где в RE может использоваться синтаксис?

- 1. задание сложных шаблонов
- 2. определение связности сущностей
- 3. unsupervised relation extraction без шаблонов
- 4. для признаков в классификаторе

Чем меньше обучающих данных, тем больше может быть полезен dependency parser.

А какие проблемы?

- Разбор предложения очень долгая и дорогая операция.
- Идеальные деревья получаются только на чистых текстах.
- Много нюансов при предобработке данных.
- Более простые методы часто не уступают в качестве.

Основной вывод: синтаксический анализ — не первое, что вы должны пробовать при решении задачи. Но при правильном применении, можно повысить качество решения.

Полезные ссылки

- лекция Дениса Кирьянова в ВШЭ
- лекция Маннига в Стэнфорде
- Глава в Juravsky, Martin про dependency parsing
- Глава в Jurafsky, Martin про relation extraction
- Об архитектуре парсера в Spacy + библиография;
- Программа воркшопа на EMNLP-18;
- Материалы курса на ESSLLI-18;
- J. Nivre's workshop at EACL-2014;
- SyntaxRuEval-2012.