Towards Higher Observational Type Theory

Ambrus Kaposi Eötvös Loránd University, Budapest

j.w.w. Thorsten Altenkirch and Mike Shulman

TYPES 2022 Nantes 20 June 2022

Towards Higher Observational Type Theory

Ambrus Kaposi Eötvös Loránd University, Budapest

j.w.w. Thorsten Altenkirch and Mike Shulman

TYPES 2022 Nantes 20 June 2022 ► Ordinary type theory: inductively by

refl :
$$(a : A) \rightarrow \operatorname{Id}_A a a$$

2022-06-18

 \sqsubseteq How is $Id_A : A \rightarrow A \rightarrow$ Type defined?

How is $\mathrm{Id}_A:A\to A\to \mathrm{Type}$ defined? • Ordinary type theory: inductively by refl: $(a:A)\to \mathrm{Id}_A\,a\,a$

- 1. funext for free from the definition of Id for Pi
- 2. definitional injectivity and disjointness of constructors of inductive types
- 3. univalence by definition (hopefully)
- 4. no need for interval and higher dimensions

How is $Id_A : A \rightarrow A \rightarrow Type$ defined?

► Ordinary type theory: inductively by

refl :
$$(a : A) \rightarrow Id_A a a$$

► Cubical type theory:

$$\operatorname{\mathsf{Id}}_{A} a_{0} a_{1} := (e : \mathbb{I} \to A) \times (e \, 0 = a_{0}) \times (e \, 1 = a_{1})$$

 \vdash How is Id_A : $A \rightarrow A \rightarrow$ Type defined?

- 1. funext for free from the definition of Id for Pi
- 2. definitional injectivity and disjointness of constructors of inductive types
- 3. univalence by definition (hopefully)
- 4. no need for interval and higher dimensions

How is
$$Id_A : A \rightarrow A \rightarrow Type$$
 defined?

Ordinary type theory: inductively by

refl:
$$(a:A) \rightarrow \operatorname{Id}_A a a$$

► Cubical type theory:

$$\operatorname{Id}_{A} a_{0} a_{1} := (e : \mathbb{I} \to A) \times (e \, 0 = a_{0}) \times (e \, 1 = a_{1})$$

► Observational type theory:

$$\begin{aligned} \operatorname{Id}_{A\times B}\left(a_{0},b_{0}\right)\left(a_{1},b_{1}\right)&=\operatorname{Id}_{A}a_{0}\,a_{1}\times\operatorname{Id}_{B}\,b_{0}\,b_{1}\\ \operatorname{Id}_{A\to B}f\,g&=\left(x:A\right)\to\operatorname{Id}_{B}\left(f\,x\right)\left(g\,x\right)\\ \operatorname{Id}_{\mathsf{Bool}}\,a\,b&=\operatorname{if}\,a\operatorname{then}\left(\operatorname{if}\,b\operatorname{then}\top\operatorname{else}\bot\right)\operatorname{else}\left(\operatorname{if}\,b\operatorname{then}\bot\operatorname{else}\top\right)\\ \operatorname{Id}_{\mathsf{Type}}\,A\,B&=\left(A\simeq B\right) \end{aligned}$$

 \sqsubseteq How is $Id_A : A \rightarrow A \rightarrow$ Type defined?

 $Id_{nord} = b = if a then (if b then <math>T else \perp) else (if b then \perp else T$

How is $Id_A: A \rightarrow A \rightarrow Type$ defined?

- 1. funext for free from the definition of Id for Pi
- 2. definitional injectivity and disjointness of constructors of inductive types
- 3. univalence by definition (hopefully)
- 4. no need for interval and higher dimensions

$$\mathsf{Id}_{\Sigma(x:A).Bx}(a_0,b_0)(a_1,b_1) =$$

Observational type theory: a problem $Id_{\Sigma(x,A),B,x}(a_0,b_0)(a_1,b_1) =$

- 1. type dependency
- 2. transports: assymmetry, we don't want to mention transport when specifying ld, we might only want parametricity
- 3. parametricity: preservation of correspondances (relations); equality: preservation of equivalences

$$\operatorname{\mathsf{Id}}_{\Sigma(x:A).B\,x}(a_0,b_0)(a_1,b_1) =$$

- 1. type dependency
- 2. transports: assymmetry, we don't want to mention transport when specifying ld, we might only want parametricity
- 3. parametricity: preservation of correspondances (relations); equality: preservation of equivalences

$$\operatorname{\mathsf{Id}}_{\Sigma(x:A).B\,x}(a_0,b_0)(a_1,b_1) =$$

- $ightharpoonup \Sigma(e: \operatorname{Id}_A a_0 a_1).\operatorname{Id}_{B a_1}(\operatorname{transport}_B e b_0) b_1$

- 1. type dependency
- 2. transports: assymmetry, we don't want to mention transport when specifying ld, we might only want parametricity
- 3. parametricity: preservation of correspondances (relations); equality: preservation of equivalences

$$\operatorname{Id}_{\Sigma(x:A).Bx}(a_0,b_0)(a_1,b_1) =$$

- $\triangleright \Sigma(e : \operatorname{Id}_A a_0 a_1).\operatorname{Id}_{B a_1}(\operatorname{transport}_B e b_0) b_1$
- $\triangleright \Sigma(e : \operatorname{Id}_A a_0 a_1).\operatorname{Id}_{B a_0} b_0 \operatorname{(transport}_B e^{-1} b_1)$

- 1. type dependency
- 2. transports: assymmetry, we don't want to mention transport when specifying ld, we might only want parametricity
- 3. parametricity: preservation of correspondances (relations); equality: preservation of equivalences

$$\operatorname{Id}_{\Sigma(x:A).Bx}(a_0,b_0)(a_1,b_1) =$$

- $\triangleright \Sigma(e : \operatorname{Id}_A a_0 a_1).\operatorname{Id}_{B a_1}(\operatorname{transport}_B e b_0) b_1$
- $\triangleright \Sigma(e : \operatorname{Id}_A a_0 a_1).\operatorname{Id}_{B a_0} b_0 \operatorname{(transport}_B e^{-1} b_1)$

Instead:

► Altenkirch–McBride–Swierstra 2007: John Major equality

- 1. type dependency
- 2. transports: assymmetry, we don't want to mention transport when specifying ld, we might only want parametricity
- 3. parametricity: preservation of correspondances (relations); equality: preservation of equivalences

$$\operatorname{Id}_{\Sigma(x:A).Bx}(a_0,b_0)(a_1,b_1) =$$

- $\triangleright \Sigma(e : \operatorname{Id}_A a_0 a_1).\operatorname{Id}_{B a_1}(\operatorname{transport}_B e b_0) b_1$
- $\triangleright \Sigma(e : \operatorname{Id}_A a_0 a_1).\operatorname{Id}_{B a_0} b_0 \operatorname{(transport}_B e^{-1} b_1)$

Instead:

- ► Altenkirch–McBride–Swierstra 2007: John Major equality
 - ► incompatible with univalence

2022-06-18

- 1. type dependency
- 2. transports: assymmetry, we don't want to mention transport when specifying ld, we might only want parametricity
- 3. parametricity: preservation of correspondances (relations); equality: preservation of equivalences

$$\operatorname{Id}_{\Sigma(x:A).Bx}(a_0,b_0)(a_1,b_1) =$$

- $\triangleright \Sigma(e : \operatorname{Id}_A a_0 a_1).\operatorname{Id}_{B a_1}(\operatorname{transport}_B e b_0) b_1$
- $\triangleright \Sigma(e : \operatorname{Id}_A a_0 a_1).\operatorname{Id}_{B a_0} b_0 \operatorname{(transport}_B e^{-1} b_1)$

Instead:

- ▶ Altenkirch-McBride-Swierstra 2007: John Major equality
 - incompatible with univalence
- ▶ Bernardy–Jansson–Paterson 2010: parametricity relation

2022-06-18

Observational type theory: a problem

► Bernardy-Jansson-Paterson 2010: parametricity relation

- 1. type dependency
- 2. transports: assymmetry, we don't want to mention transport when specifying ld, we might only want parametricity
- 3. parametricity: preservation of correspondances (relations); equality: preservation of equivalences

$$\operatorname{Id}_{\Sigma(x:A).Bx}(a_0,b_0)(a_1,b_1) =$$

$$\Sigma(e: \operatorname{Id}_A a_0 a_1).\operatorname{Id}_{B?} \underbrace{b_0}_{:B a_0} \underbrace{b_1}_{:B a_1}$$

- $\triangleright \Sigma(e : \operatorname{Id}_A a_0 a_1).\operatorname{Id}_{B a_1}(\operatorname{transport}_B e b_0) b_1$
- $\triangleright \Sigma(e : \operatorname{Id}_A a_0 a_1).\operatorname{Id}_{B a_0} b_0 \operatorname{(transport}_B e^{-1} b_1)$

Instead:

- ► Altenkirch–McBride–Swierstra 2007: John Major equality
 - incompatible with univalence
- ▶ Bernardy–Jansson–Paterson 2010: parametricity relation
 - ▶ a model construction / syntactic translation

- 1. type dependency
- 2. transports: assymmetry, we don't want to mention transport when specifying ld, we might only want parametricity
- 3. parametricity: preservation of correspondances (relations); equality: preservation of equivalences

$$\frac{\Gamma : \mathsf{Con}}{\Gamma^{\mathsf{R}} : \mathsf{Ty} (\Gamma, \Gamma)} \qquad \frac{A : \mathsf{Ty} \, \Gamma}{A^{\mathsf{R}} : \mathsf{Ty} (\gamma_0 : \Gamma, \gamma_1 : \Gamma, \Gamma^{\mathsf{R}}, A[\gamma_0], A[\gamma_1])}$$

$$\frac{\textit{a}: \mathsf{Tm}\,\Gamma\,\textit{A}}{\textit{a}^{\mathsf{R}}: \mathsf{Tm}\,(\gamma_{0}:\Gamma,\gamma_{1}:\Gamma,\Gamma^{\mathsf{R}})\left(\textit{A}^{\mathsf{R}}\left[\textit{a}\left[\gamma_{0}\right],\textit{a}\left[\gamma_{1}\right]\right]\right)}$$

$$(\Gamma, A)^{\mathsf{R}}[(\gamma_0, a_0), (\gamma_1, a_1)] = \Sigma(\gamma_2 : \Gamma^{\mathsf{R}}[\gamma_0, \gamma_1]).A^{\mathsf{R}}[\gamma_0, \gamma_1, \gamma_2, a_0, a_1]$$

Parametricity

- 1. syntactic translation on contexts, types, terms or constructing a displayed model from any model (and a section if we start with the syntax)
- 2. for experts: context should better be mapped to a context with projections, but I use the indexed version for conciseness
- 3. we tried adding all the ^R operations and their equations as new syntax expressing Id for Con, Id for Ty, cong/ap
- 4. refl adds new normal forms (it can't be defined, there are non-parametric models)

$$\frac{\Gamma : \mathsf{Con}}{\Gamma^{\mathsf{R}} : \mathsf{Ty} \left(\Gamma, \Gamma \right)} \qquad \frac{A : \mathsf{Ty} \, \Gamma}{A^{\mathsf{R}} : \mathsf{Ty} \left(\gamma_0 : \Gamma, \gamma_1 : \Gamma, \Gamma^{\mathsf{R}}, A[\gamma_0], A[\gamma_1] \right)}$$

$$\frac{\textit{a}: \mathsf{Tm}\,\Gamma\,\textit{A}}{\textit{a}^{\mathsf{R}}: \mathsf{Tm}\,\big(\gamma_{0}: \Gamma, \gamma_{1}: \Gamma, \Gamma^{\mathsf{R}}\big)\,\big(\textit{A}^{\mathsf{R}}\big[\textit{a}[\gamma_{0}], \textit{a}[\gamma_{1}]\big]\big)}$$

$$(\Gamma, A)^{\mathsf{R}}[(\gamma_0, a_0), (\gamma_1, a_1)] = \Sigma(\gamma_2 : \Gamma^{\mathsf{R}}[\gamma_0, \gamma_1]).A^{\mathsf{R}}[\gamma_0, \gamma_1, \gamma_2, a_0, a_1]$$

► This only gives external parametricity e.g. for $\Pi(A: \mathsf{Type}).A \to A$.

└─Parametricity

- 1. syntactic translation on contexts, types, terms or constructing a displayed model from any model (and a section if we start with the syntax)
- 2. for experts: context should better be mapped to a context with projections, but I use the indexed version for conciseness
- 3. we tried adding all the ^R operations and their equations as new syntax expressing Id for Con, Id for Ty, cong/ap
- 4. refl adds new normal forms (it can't be defined, there are non-parametric models)

$$\frac{\Gamma : \mathsf{Con}}{\Gamma^{\mathsf{R}} : \mathsf{Ty} \left(\Gamma, \Gamma \right)} \qquad \frac{A : \mathsf{Ty} \, \Gamma}{A^{\mathsf{R}} : \mathsf{Ty} \left(\gamma_0 : \Gamma, \gamma_1 : \Gamma, \Gamma^{\mathsf{R}}, A[\gamma_0], A[\gamma_1] \right)}$$

$$\frac{a:\operatorname{Tm}\Gamma A}{a^{\mathsf{R}}:\operatorname{Tm}\left(\gamma_{0}:\Gamma,\gamma_{1}:\Gamma,\Gamma^{\mathsf{R}}\right)\left(A^{\mathsf{R}}\left[a\left[\gamma_{0}\right],a\left[\gamma_{1}\right]\right]\right)}$$

$$(\Gamma, A)^{\mathsf{R}}[(\gamma_{0}, a_{0}), (\gamma_{1}, a_{1})] = \Sigma(\gamma_{2} : \Gamma^{\mathsf{R}}[\gamma_{0}, \gamma_{1}]).A^{\mathsf{R}}[\gamma_{0}, \gamma_{1}, \gamma_{2}, a_{0}, a_{1}]$$

- ► This only gives external parametricity e.g. for $\Pi(A: \mathsf{Type}).A \to A$.
- ▶ We tried to add new operations $\operatorname{refl}_{\Gamma} : \operatorname{Tm}(\gamma : \Gamma)(\Gamma^{R}[\gamma, \gamma])$ but ended up in permutation hell (TYPES 2015 in Tallinn).

- 1. syntactic translation on contexts, types, terms or constructing a displayed model from any model (and a section if we start with the syntax)
- 2. for experts: context should better be mapped to a context with projections, but I use the indexed version for conciseness
- 3. we tried adding all the ^R operations and their equations as new syntax expressing Id for Con, Id for Ty, cong/ap
- 4. refl adds new normal forms (it can't be defined, there are non-parametric models)

2022-06-18

$$\frac{\Gamma : \mathsf{Con}}{\Gamma^{\mathsf{R}} : \mathsf{Ty} \left(\Gamma, \Gamma \right)} \qquad \frac{A : \mathsf{Ty} \, \Gamma}{A^{\mathsf{R}} : \mathsf{Ty} \left(\gamma_0 : \Gamma, \gamma_1 : \Gamma, \Gamma^{\mathsf{R}}, A[\gamma_0], A[\gamma_1] \right)}$$

$$\frac{a : \mathsf{Tm} \, \Gamma \, A}{a^{\mathsf{R}} : \mathsf{Tm} \left(\gamma_0 : \Gamma, \gamma_1 : \Gamma, \Gamma^{\mathsf{R}} \right) \left(A^{\mathsf{R}} \left[a[\gamma_0], a[\gamma_1] \right] \right)}$$

$$(\Gamma,A)^R[(\gamma_0,a_0),(\gamma_1,a_1)] = \Sigma(\gamma_2:\Gamma^R[\gamma_0,\gamma_1]).A^R[\gamma_0,\gamma_1,\gamma_2,a_0,a_1]$$

► The external parametricity translation can *specify* internal parametricity!

—Parametricity

$$\begin{split} & \text{Parametricity} \\ & \frac{f_{-}^{*}\left(\text{com} \right)}{f_{-}^{*}\left(\text{Tyr}\left(\text{cos} \right), \text{cos} \left(\text{cos} \right), \text{cos} \left(\text{cos} \right), \text{deg} \right) \right)} \\ & \frac{A_{-}^{*}\left(\text{Tyr}\left(\text{cos} \right), \text{cos} \left(\text{cos} \right), \text{cos} \left(\text{cos} \right), \text{deg} \right) \right)}{g_{-}^{*}\left(\text{Tor}\left(\text{cos} \right), \text{cos} \right), \text{cos} \left(\text{cos} \right), \text{deg} \left(\text{cos} \right), \text{cos} \left(\text{cos} \right), \text{cos} \right)} \\ & \left(f_{-}^{*}A_{+}^{*}\left(\text{cos} \right), \text{cos} \left(\text{cos} \right), \text{cos} \right) - E\left(\text{cos} \left(\text{cos} \right), \text{cos} \right), \text{deg} \left(\text{cos} \right), \text{cos} \right), \text{cos} \right) \\ & \text{The extensi parametricity translation can specify internal parametricity translation can specify internal parametricity.} \end{split}$$

1. Mike fixed our old syntax.

- *A* : Ту Г Γ : Con $\overline{A^\mathsf{R}:\mathsf{Ty}\left(\gamma_0:\mathsf{\Gamma},\gamma_1:\mathsf{\Gamma},\mathsf{\Gamma}^\mathsf{R},A[\gamma_0],A[\gamma_1]
 ight)}$ $\overline{\Gamma^{\mathsf{R}} : \mathsf{Ty}(\Gamma, \Gamma)}$
 - $a: \operatorname{Tm} \Gamma A$ $\overline{a^{\mathsf{R}}:\mathsf{Tm}\left(\gamma_{0}:\mathsf{\Gamma},\gamma_{1}:\mathsf{\Gamma},\mathsf{\Gamma}^{\mathsf{R}}\right)\left(A^{\mathsf{R}}\left[a\left[\gamma_{0}\right],a\left[\gamma_{1}\right]\right]\right)}$

$$(\Gamma, A)^{\mathsf{R}}[(\gamma_0, a_0), (\gamma_1, a_1)] = \Sigma(\gamma_2 : \Gamma^{\mathsf{R}}[\gamma_0, \gamma_1]).A^{\mathsf{R}}[\gamma_0, \gamma_1, \gamma_2, a_0, a_1]$$

- ▶ The external parametricity translation can *specify* internal parametricity!
- ▶ We just need to change from an external viewpoint to an internal.

1. Mike fixed our old syntax.

In the presheaf model over the syntax of type theory, we have

 Ty° : Set

 $\mathsf{Tm}^\circ : \mathsf{Ty}^\circ \to \mathsf{Set}$

 Σ° : $(A : \mathsf{Ty}^{\circ}) \to (\mathsf{Tm}^{\circ} A \to \mathsf{Ty}^{\circ}) \to \mathsf{Ty}^{\circ}$

└─Internal standard model

- 1. syntax of type theory forms a category
- 2. two-level type theory (° notation), HOAS
- 3. translate everything to external in words
- 4. model = CwF + extra
- 5. standard model = set model = type model

Internal standard model

In the presheaf model over the syntax of type theory, we have

Ty[◦] : Set $\mathsf{Tm}^{\circ}: \mathsf{Tv}^{\circ} \to \mathsf{Set}$ Σ° : $(A : \mathsf{Ty}^{\circ}) \to (\mathsf{Tm}^{\circ} A \to \mathsf{Ty}^{\circ}) \to \mathsf{Ty}^{\circ}$

We define the standard model of type theory internally to presheaves over the syntax.

> Con := Ty° $\mathsf{Ty}\,\Gamma := \mathsf{Tm}^{\circ}\,\Gamma \to \mathsf{Ty}^{\circ}$ $\operatorname{\mathsf{Tm}}\nolimits \Gamma A := (\gamma : \operatorname{\mathsf{Tm}}\nolimits^{\circ} \Gamma) \to \operatorname{\mathsf{Tm}}\nolimits^{\circ} (A \gamma)$ $(\Gamma, A) := \Sigma^{\circ} \Gamma A$

└─Internal standard model

Internal standard model

In the presheaf model over the syntax of type theory, we have Tv°:Set

 $\mathsf{Tm}^\circ: \mathsf{Ty}^\circ \to \mathsf{Set}$ Σ° : $(A : Ty^{\circ}) \rightarrow (Tm^{\circ}A \rightarrow Ty^{\circ}) \rightarrow Ty^{\circ}$

We define the standard model of type theory internally t presheaves over the syntax

 $\mathsf{Ty}\,\Gamma \ := \mathsf{Tm}^\circ\,\Gamma \to \mathsf{Ty}^\circ$

- 1. syntax of type theory forms a category
- 2. two-level type theory (° notation), HOAS
- 3. translate everything to external in words
- 4. model = CwF + extra
- 5. standard model = set model = type model

$$\frac{\Gamma : \mathsf{Con}}{\Gamma^{\mathsf{R}} : \mathsf{Ty}\left(\Gamma,\Gamma\right)}$$

$$\frac{A : \mathsf{Ty}\,\mathsf{\Gamma}}{A^{\mathsf{R}} : \mathsf{Ty}\,(\gamma_0 : \mathsf{\Gamma}, \gamma_1 : \mathsf{\Gamma}, \mathsf{\Gamma}^{\mathsf{R}}, A[\gamma_0], A[\gamma_1])}$$

$$\frac{a:\operatorname{Tm}\Gamma\,A}{a^{\operatorname{R}}:\operatorname{Tm}\left(\gamma_{0}:\Gamma,\gamma_{1}:\Gamma,\Gamma^{\operatorname{R}}\right)\left(A^{\operatorname{R}}\left[a[\gamma_{0}],a[\gamma_{1}]\right]\right)}$$

$$(\Gamma, A)^{\mathsf{R}}[(\gamma_{0}, a_{0}), (\gamma_{1}, a_{1})] = \Sigma(\gamma_{2} : \Gamma^{\mathsf{R}}[\gamma_{0}, \gamma_{1}]) . A^{\mathsf{R}}[\gamma_{0}, \gamma_{1}, \gamma_{2}, a_{0}, a_{1}]$$

Internal parametricity

$$\frac{\Gamma: \mathsf{T} \mathsf{y}^\circ}{\Gamma^R: \mathsf{T} \mathsf{m}^\circ \Gamma \to \mathsf{T} \mathsf{m}^\circ \Gamma \to \mathsf{T} \mathsf{v}^\circ}$$

$$\frac{A:\mathsf{Tm}^{\circ}\,\Gamma\to\mathsf{Ty}^{\circ}}{A^{\mathsf{R}}:\mathsf{Tm}^{\circ}\,(\Gamma^{\mathsf{R}}\,\gamma_{0}\,\gamma_{1})\to\mathsf{Tm}^{\circ}\,(A\,\gamma_{0})\to\mathsf{Tm}^{\circ}\,(A\,\gamma_{1})\to\mathsf{Ty}^{\circ}}$$

$$\frac{a:\left(\gamma:\mathsf{Tm}^{\circ}\,\Gamma\right)\to\mathsf{Tm}^{\circ}\left(A\,\gamma\right)}{a^{\mathsf{R}}:\left(\gamma_{2}:\mathsf{Tm}^{\circ}\left(\Gamma^{\mathsf{R}}\,\gamma_{0}\,\gamma_{1}\right)\right)\to\mathsf{Tm}^{\circ}\left(A^{\mathsf{R}}\,\gamma_{2}\left(a\,\gamma_{0}\right)\left(a\,\gamma_{1}\right)\right)}$$

$$\left(\Sigma^{\circ} \Gamma A\right)^{\mathsf{R}} \left(\gamma_{0}, a_{0}\right) \left(\gamma_{1}, a_{1}\right) = \Sigma^{\circ} \left(\gamma_{2} : \Gamma^{\mathsf{R}} \gamma_{0} \gamma_{1}\right) A^{\mathsf{R}} \gamma_{2} a_{0} a_{1}$$

2022-06-18

☐Internal parametricity

$$\begin{split} \Gamma: T_0^{(i)} \\ \Gamma^{(i)}: T_0^{(i)} T - T_0^{(i)} T - T_1^{(i)} \\ \\ A^{(i)}: T_0^{(i)} T - T_0^{(i)} \\ A^{(i)}: T_0^{(i)} (T^{(i)} y_{i} y_{i}) - T_0^{(i)} (A_{i} y_{i}) - T_0^{(i)} (A_{i} y_{i}) - T_0^{(i)} (A_{i} y_{i}) \\ \\ A^{(i)}: T_0^{(i)} T_0^{(i)} y_{i} y_{i}) - T_0^{(i)} (A_{i} y_{i}) - T_0^{(i)} (A_{i} y_{i}) \\ \\ A^{(i)}: (y_{i}: T_0^{(i)} T_0^{(i)} y_{i}) - T_0^{(i)} (A_{i} y_{i}) \\ A^{(i)}: (y_{i}: T_0^{(i)} T_0^{(i)} y_{i}) - T_0^{(i)} (Y_0^{(i)} y_{i}) - T_0^{(i)} (Y_0^{(i)} y_{i}) \\ \\ (\Sigma^{(i)}: A^{(i)}: (y_{i}: Y_0^{(i)} Y_0^{(i)} y_{i}) - T_0^{(i)} (Y_0^{(i)} y_{i}) \\ \\ (\Sigma^{(i)}: A^{(i)}: (y_{i}: Y_0^{(i)} Y_0^{(i)} y_{i}) - T_0^{(i)} (Y_0^{(i)} y_{i}) \\ \\ (\Sigma^{(i)}: A^{(i)}: (y_{i}: Y_0^{(i)} Y_0^{(i)} y_{i}) - T_0^{(i)} (Y_0^{(i)} y_{i}) \\ \\ (\Sigma^{(i)}: A^{(i)}: (y_{i}: Y_0^{(i)} Y_0^{(i)} y_{i}) - T_0^{(i)} (Y_0^{(i)} y_{i}) \\ \\ (\Sigma^{(i)}: A^{(i)}: (y_{i}: Y_0^{(i)} Y_0^{(i)} y_{i}) - T_0^{(i)} (Y_0^{(i)} y_{i}) \\ \\ (\Sigma^{(i)}: A^{(i)}: (y_{i}: Y_0^{(i)} y_{i}) - T_0^{(i)} (Y_0^{(i)} y_{i}) \\ \\ (\Sigma^{(i)}: A^{(i)}: (y_{i}: Y_0^{(i)} y_{i}) - T_0^{(i)} (Y_0^{(i)} y_{i}) \\ \\ (\Sigma^{(i)}: A^{(i)}: (y_{i}: Y_0^{(i)} y_{i}) - T_0^{(i)} (Y_0^{(i)} y_{i}) \\ \\ (\Sigma^{(i)}: A^{(i)}: (y_{i}: Y_0^{(i)} y_{i}) - T_0^{(i)} (Y_0^{(i)} y_{i}) \\ \\ (\Sigma^{(i)}: A^{(i)}: (y_{i}: Y_0^{(i)} y_{i}) - T_0^{(i)} (Y_0^{(i)} y_{i}) \\ \\ (\Sigma^{(i)}: A^{(i)}: Y_0^{(i)} y_{i}) - T_0^{(i)} (Y_0^{(i)} y_{i}) \\ \\ (\Sigma^{(i)}: A^{(i)}: Y_0^{(i)} y_{i}) - T_0^{(i)} (Y_0^{(i)} y_{i}) \\ \\ (\Sigma^{(i)}: A^{(i)}: Y_0^{(i)} y_{i}) - T_0^{(i)} (Y_0^{(i)} y_{i}) \\ \\ (\Sigma^{(i)}: A^{(i)}: Y_0^{(i)} y_{i}) - T_0^{(i)} (Y_0^{(i)} y_{i}) \\ \\ (\Sigma^{(i)}: A^{(i)}: Y_0^{(i)} y_{i}) - T_0^{(i)} (Y_0^{(i)} y_{i}) \\ \\ (\Sigma^{(i)}: A^{(i)}: Y_0^{(i)} y_{i}) - T_0^{(i)} (Y_0^{(i)} y_{i}) \\ \\ (\Sigma^{(i)}: A^{(i)}: Y_0^{(i)} y_{i}) - T_0^{(i)} (Y_0^{(i)} y_{i}) \\ \\ (\Sigma^{(i)}: A^{(i)}: Y_0^{(i)} y_{i}) - T_0^{(i)} (Y_0^{(i)} y_{i}) \\ \\ (\Sigma^{(i)}: A^{(i)}: Y_0^{(i)} y_{i}) - T_0^{(i)} (Y_0^{(i)} y_{i}) \\ \\ (\Sigma^{(i)}: A^{(i)}: Y_0^{(i)} y_{i}) - T_0^{(i)} (Y_0^{(i)} y_{i}) \\ \\ (\Sigma^{(i)}:$$

Internal parametricity

1. We replace Con, Ty, ... by the standard model

Internal parametricity

$$\frac{\Gamma: \mathsf{T} \mathsf{y}^{\circ}}{\mathsf{Id}_{\Gamma}: \mathsf{T} \mathsf{m}^{\circ} \, \Gamma \to \mathsf{T} \mathsf{m}^{\circ} \, \Gamma \to \mathsf{T} \mathsf{y}^{\circ}}$$

$$\frac{A:\mathsf{Tm}^{\circ}\,\Gamma\to\mathsf{Ty}^{\circ}}{\mathsf{Idd}_{A}:\mathsf{Tm}^{\circ}\,(\mathsf{Id}_{\Gamma}\,\gamma_{0}\,\gamma_{1})\to\mathsf{Tm}^{\circ}\,(A\,\gamma_{0})\to\mathsf{Tm}^{\circ}\,(A\,\gamma_{1})\to\mathsf{Ty}^{\circ}}$$

$$\frac{\textit{a}: (\gamma: \mathsf{Tm}^{\circ}\,\Gamma) \to \mathsf{Tm}^{\circ}\,(\textit{A}\,\gamma)}{\mathsf{apd}\,\textit{a}: (\gamma_{2}: \mathsf{Tm}^{\circ}\,(\mathsf{Id}_{\Gamma}\,\gamma_{0}\,\gamma_{1})) \to \mathsf{Tm}^{\circ}\,(\mathsf{Idd}_{\textit{A}}\,\gamma_{2}\,(\textit{a}\,\gamma_{0})\,(\textit{a}\,\gamma_{1}))}$$

$$\mathsf{Id}_{\Sigma^{\circ} \Gamma A}(\gamma_0, a_0)(\gamma_1, a_1) = \Sigma^{\circ}(\gamma_2 : \mathsf{Id}_{\Gamma} \gamma_0 \gamma_1). \, \mathsf{Idd}_{A} \gamma_2 \, a_0 \, a_1$$

☐Internal parametricity

Internal parametricity $\frac{t \cdot \tau \gamma^{c}}{\log_{2} \tau \ln^{2} t - 3 \tau n^{c} t - 3 \tau p^{c}}$ $\frac{A \cdot \ln^{2} t - 3 \tau n^{c} t - 3 \tau p^{c}}{\log_{2} \tau \ln^{2} t - 3 \tau n^{c} (A \cdot 3) + 3 \tau^{c}}$ $\frac{A \cdot \ln^{2} t - 3 \tau n^{c} (A \cdot 3) - 3 \tau n^{c} (A \cdot 3) + 3 \tau^{c}}{\log_{2} t - 3 \tau \ln^{2} (A \cdot 3) + 3 \tau^{c}}$ $\frac{A \cdot (5 \cdot \tau \ln^{2} t - 3 \tau n^{c})}{\log_{2} t - 3 \tau \ln^{2} (A \cdot 3)}$ $\frac{A \cdot (5 \cdot \tau \ln^{2} t - 3 \tau n^{c})}{\log_{2} t - 3 \tau \ln^{2} (A \cdot 3)}$

 $\operatorname{Id}_{\Sigma^{+}\Gamma A}(\gamma_{0}, a_{0})(\gamma_{1}, a_{1}) = \Sigma^{\circ}(\gamma_{2} : \operatorname{Id}_{\Gamma} \gamma_{0} \gamma_{1}) \cdot \operatorname{Idd}_{A} \gamma_{2} a_{0} a_{1}$

- 1. We rename the operations.
- 2. This is the core of the syntax of H.O.T.T.

Internal parametricity

$\Gamma:\mathsf{Ty}^\circ$ $Id_{\Gamma}: Tm^{\circ} \Gamma \rightarrow Tm^{\circ} \Gamma \rightarrow Tv^{\circ}$

$$\frac{\textit{A}: \mathsf{Tm}^{\circ}\,\Gamma \to \mathsf{Ty}^{\circ}}{\mathsf{Idd}_{\textit{A}}: \mathsf{Tm}^{\circ}\,(\mathsf{Id}_{\Gamma}\,\gamma_{0}\,\gamma_{1}) \to \mathsf{Tm}^{\circ}\,(\textit{A}\,\gamma_{0}) \to \mathsf{Tm}^{\circ}\,(\textit{A}\,\gamma_{1}) \to \mathsf{Ty}^{\circ}}$$

$$\mathsf{a}: (\gamma: \mathsf{Tm}^\circ \, \mathsf{\Gamma}) o \mathsf{Tm}^\circ \, (\mathsf{A} \, \gamma)$$

apd $a: (\gamma_2: \mathsf{Tm}^{\circ}(\mathsf{Id}_{\Gamma} \gamma_0 \gamma_1)) \to \mathsf{Tm}^{\circ}(\mathsf{Idd}_A \gamma_2 (a \gamma_0) (a \gamma_1))$

 $\operatorname{Id}_{\Sigma^{\circ} \Gamma A}(\gamma_0, a_0)(\gamma_1, a_1) = \Sigma^{\circ}(\gamma_2 : \operatorname{Id}_{\Gamma} \gamma_0 \gamma_1) \cdot \operatorname{Idd}_A \gamma_2 a_0 a_1$

$$\operatorname{\mathsf{Id}}_{\Sigma^{0}} \sqcap_{A} (\gamma_{0}, a_{0}) (\gamma_{1}, a_{1}) = 2 (\gamma_{2} \cdot \operatorname{\mathsf{Id}}_{\Gamma} \gamma_{0} \gamma_{1}) \cdot \operatorname{\mathsf{Id}}_{\Sigma^{0}}$$

$$\operatorname{\mathsf{Id}}_{T} \operatorname{\mathsf{tt}} \operatorname{\mathsf{tt}} = \top$$

 $a: \operatorname{Tm}^{\circ} A$ $\overline{\text{refl } a := \text{apd } (\lambda_{-}.a) \text{ tt } : \text{Tm}^{\circ} (\text{Idd}_{\lambda_{-}.A} \text{ tt } a a)}$

2022-06-18

1. We rename the operations.

2. This is the core of the syntax of H.O.T.T.

Internal parametricity

Internal parametricity

 $\frac{\Gamma: Ty^{\circ}}{\mathsf{Idc}: \mathsf{Tm}^{\circ}\Gamma \to \mathsf{Tm}^{\circ}\Gamma \to \mathsf{Tv}^{\circ}}$

 $Idd_A : Tm^{\circ}(Id_{\Gamma} \gamma_0 \gamma_1) \rightarrow Tm^{\circ}(A \gamma_0) \rightarrow Tm^{\circ}(A \gamma_1) \rightarrow Ty$

apd $a: (\gamma_2: Tm^\circ(Id_{\Gamma}\gamma_0\gamma_1)) \rightarrow Tm^\circ(Idd_{A}\gamma_2(a\gamma_0)(a\gamma_1))$ $\operatorname{Id}_{\Sigma^{+}\Gamma A}(\gamma_{0}, a_{0})(\gamma_{1}, a_{1}) = \Sigma^{\circ}(\gamma_{2} : \operatorname{Id}_{\Gamma} \gamma_{0} \gamma_{1}) \cdot \operatorname{Idd}_{A} \gamma_{2} a_{0} a_{1}$

9 / 10

Summary

- ► The syntax for internal parametricity is the internal Bernardy logical relation interpretation.
 - Internal to presheaves over the syntax a.k.a. two level type theory, HOAS, logical framework.
 - ▶ Logical relation over the internal standard model.
- ► Work in progress!
- ▶ To get H.O.T.T., we need: transport, symmetries.
 - ► See Mike's talks at the CMU HoTT seminar (click!)
- Compared to cubical type theory, cubical internal parametricity:
 - ► To specify the syntax, we don't need an interval or talk about dimensions
 - Stricter, e.g. univalence computes better

2022-06-18

Summary

Summary

The syntax for internal parametricity is the internal Bernardy logical relation interpretation.

- logical relation interpretation.
- theory, HOAS, logical framework.

 Logical relation over the internal standard model
- ➤ Work in progress!

 ➤ To get H.O.T.T., we need: transport, symmetrie
- To get H.O.T.T., we need: transport, sy
 See Miler's talks at the CMU HoTT se
- See Miles's talks at the CMU Hol I semmar (click)
 Compared to cubical type theory, cubical internal parametricity:
- To specify the syntax, we don't need an interval or talk about dimensions
 Stricter, e.g., univalence computes better
- 1. More precisely, section of the logical relation displayed model over the standard model.