타이타닉 생존자 예측 대회

학습 내용

- 1-1 데이터 불러오기
- 1-2 데이터 탐색하기
- 1-3 모델 만들고 제출해 보기

준비

• 대회 링크: https://www.kaggle.com/c/titanic (https://www.kaggle.com/c/titanic)

Data Fields

구분	설명	값
Survival	생존 여부	Survival. 0 = No, 1 = Yes
Pclass	티켓의 클래스	Ticket class. 1 = 1st, 2 = 2nd, 3 = 3rd
Sex	성별(Sex)	남(male)/여(female)
Age	나이(Age in years.)	
SibSp	함께 탑승한 형제와 배우자의 수 /siblings, spouses aboard the Titanic.	
Parch	함께 탑승한 부모, 아이의 수	# of parents / children aboard the Titanic.
Ticket	티켓 번호(Ticket number)	(ex) CA 31352, A/5. 2151
Fare	탑승료(Passenger fare)	
Cabin	객실 번호(Cabin number)	
Embarked	탑승 항구(Port of Embarkation)	C = Cherbourg, Q = Queenstown, S = Southampton

- siblings : 형제, 자매, 형제, 의붓 형제
- spouses : 남편, 아내 (정부와 약혼자는 무시)
- Parch : Parent(mother, father), child(daughter, son, stepdaughter, stepson)

```
In [1]:
import pandas as pd

In [2]:

train = pd.read_csv("data/titanic/train.csv")
test = pd.read_csv("data/titanic/test.csv")
sub = pd.read_csv("data/titanic/gender_submission.csv")
```

1-2 데이터 탐색하기

- 데이터의 행과 열(shape)
- 컬럼명 확인
- 각 컬럼의 자료형
- 컬럼 결측치의 확인

```
In [11]:
                                                                                                      H
print(train.shape)
print(test.shape)
print(sub.shape)
(891, 12)
(418, 11)
(418, 2)
In [4]:
                                                                                                      M
print(train.columns)
print(test.columns)
Index(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp',
       'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'],
      dtvpe='object')
Index(['PassengerId', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp', 'Parch',
       'Ticket', 'Fare', 'Cabin', 'Embarked'],
      dtype='object')
In [5]:
                                                                                                      M
train.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
                  Non-Null Count Dtype
 #
     Column
 0
     Passenger Id 891 non-null
                                   int64
 1
     Survived
                  891 non-null
                                   int64
 2
     Pclass
                  891 non-null
                                   int64
 3
     Name
                  891 non-null
                                   object
 4
     Sex
                  891 non-null
                                   object
 5
                  714 non-null
                                   float64
     Age
 6
     SibSp
                  891 non-null
                                   int64
 7
     Parch
                  891 non-null
                                   int64
 8
     Ticket
                  891 non-null
                                   object
 9
     Fare
                  891 non-null
                                   float64
 10
    Cabin
                  204 non-null
                                   object
     Embarked
                  889 non-null
                                   object
 11
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
```

• Age와 Cabin에 결측치가 있다.

```
In [6]:
```

test.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 418 entries, 0 to 417
Data columns (total 11 columns):

Dutu	de de la mile (tetal i i de la mile)							
#	Column	Non-Null Count	Dtype					
0	Passenger I d	418 non-null	int64					
1	Pclass	418 non-null	int64					
2	Name	418 non-null	object					
3	Sex	418 non-null	object					
4	Age	332 non-null	float64					
5	SibSp	418 non-null	int64					
6	Parch	418 non-null	int64					
7	Ticket	418 non-null	object					
8	Fare	417 non-null	float64					
9	Cabin	91 non-null	object					
10	Embarked	418 non-null	object					
dtyp	es: float64(2), int64(4), obj	ect(5)					
memory usage: 36.0+ KB								

• Age와 Fare와 Cabin에 결측치가 있다.

In [7]: ▶

train.isnull().sum()

Out[7]:

Passenger I d	0
Survived	0
Pclass	0
Name	0
Sex	0
Age	177
SibSp	0
Parch	0
Ticket	0
Fare	0
Cabin	687
Embarked	2
dtype: int64	

In [8]:

test.isnull().sum()

Out[8]:

Passenger Id 0 Pclass 0 Name 0 Sex 0 86 Age SibSp 0 0 Parch Ticket 0 Fare 1 Cabin 327 Embarked dtype: int64

In [9]: ▶

train.describe()

Out[9]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [10]:

```
test.describe()
```

Out[10]:

	Passengerld	Pclass	Age	SibSp	Parch	Fare
count	418.000000	418.000000	332.000000	418.000000	418.000000	417.000000
mean	1100.500000	2.265550	30.272590	0.447368	0.392344	35.627188
std	120.810458	0.841838	14.181209	0.896760	0.981429	55.907576
min	892.000000	1.000000	0.170000	0.000000	0.000000	0.000000
25%	996.250000	1.000000	21.000000	0.000000	0.000000	7.895800
50%	1100.500000	3.000000	27.000000	0.000000	0.000000	14.454200
75%	1204.750000	3.000000	39.000000	1.000000	0.000000	31.500000
max	1309.000000	3.000000	76.000000	8.000000	9.000000	512.329200

1-3 모델 만들고 제출해 보기

- 모델 선택
- 모델(로지스틱 회귀)을 생성 후, 학습(fit)
- 그리고 예측(predict)을 수행 후, 제출한다.

```
In [12]: ▶
```

```
from sklearn.linear_model import LogisticRegression
```

```
In [13]:
```

```
# 데이터 준비 - 빠른 모델 생성을 위해 처리 없이 가능한 변수만 선택
# 'Survived'를 제외 ,
# 'Embarked', 'Sex'',Name', 'Ticket' =>문자포함
# 'Age' : 결촉치가 있음
sel = ['PassengerId', 'Pclass', 'SibSp', 'Parch']

# 학습에 사용될 데이터 준비 X_train, y_train
X_train = train[sel]
y_train = train['Survived']
X_test = test[sel]

X_train.shape, y_train.shape, X_test.shape
```

Out[13]:

```
((891, 4), (891,), (418, 4))
```

```
In [14]:
# 모델 선택
model = LogisticRegression()
# 학습
model.fit(X_train, y_train)
# 예측
pred = model.predict(X_test)
pred[:15]
Out[14]:
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1], dtype=int64)
In [15]:
                                                                                                H
# 제출
sub.columns
Out[15]:
Index(['PassengerId', 'Survived'], dtype='object')
In [16]:
                                                                                                H
sub['Survived'] = pred
sub.to_csv("first_sub.csv", index=False)
In [ ]:
```