

NOT FOR PUBLIC RELEASE

RTL8196C-GR

IEEE 802.11n AP/ROUTER NETWORK PROCESSOR WITH EEE

PRELIMINARY DATASHEET

(CONFIDENTIAL: Development Partners Only)

Rev. 0.7 30 November 2009 Track ID: JATR-2265-11

Realtek Semiconductor Corp.

No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan Tel.: +886-3-578-0211. Fax: +886-3-577-6047 www.realtek.com

COPYRIGHT

©2009 Realtek Semiconductor Corp. All rights reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form or by any means without the written permission of Realtek Semiconductor Corp.

DISCLAIMER

Realtek provides this document "as is", without warranty of any kind. Realtek may make improvements and/or changes in this document or in the product described in this document at any time. This document could include technical inaccuracies or typographical errors.

TRADEMARKS

Realtek is a trademark of Realtek Semiconductor Corporation. Other names mentioned in this document are trademarks/registered trademarks of their respective owners.

USING THIS DOCUMENT

This document provides detailed user guidelines to achieve the best performance when implementing the RTL8196C.

Though every effort has been made to ensure that this document is current and accurate, more information may have become available subsequent to the production of this guide.

REVISION HISTORY

Revision	Release Date	Summary
0.7	2009/11/30	Preliminary release.

Table of Contents

1.	GENERAL DESCRIPTION	1
2.	FEATURES	2
3.	BLOCK DIAGRAM	4
4.		
••	4.1. PIN ASSIGNMENTS	
	4.1. FIN ASSIGNMENTS 4.2. PACKAGE IDENTIFICATION	
5.		
J.		
	5.1. RTL8196C CONFIGURATION UPON POWER ON STRAPPING	
6.		
υ.		
	6.1. SDRAM CONTROL INTERFACE	
	6.1.1. Features	
	6.2.1. Features	
	6.2.2. Bank Address Mapping	12
	6.2.3. Flash Command Sequence	12
	6.3. SPI FLASH CONTROLLER	13
	6.3.1. Features	
	6.4. SOFTWARE REGISTER DEFINITION	
	6.4.2. DRAM Configuration Register (DCR) (0xB800 1004)	
	6.4.3. DRAM Timing Register (DTR) (0xB800 1008)	15
	6.4.4. NOR Flash Configuration Register (NFCR) (0xB800 1100)	
	6.4.5. SPI Flash Configuration Register (SFCR) (0xB800_1200)	16
	6.4.6. SPI Flash Configuration Register 2 (SFCR2) (0xB800_1204)	17
	6.4.7. SPI Flash Control and Status Register (SFCSR) (0xB800_1208)	18
	6.4.8. SPI Flash Data Register (SFDR) (0xB800_120C)	18
	6.4.9. SPI Flash Data Register 2 (SFDR2) (0xB800_1210)	15
7.		
	7.1. GPIO CONTROL	
	7.1.1. GPIO Register Set (0xB800_3500)	
	7.1.2. GPIO Port A, B, C, D Control Register (PABCD_CNR) (0xB800_3500)	
	7.1.3. GPIO Port A, B, C, D Direction Register (PABCD_DIR) (0xB800_3508)	
	7.1.4. Port A, B, C, D Data Register (PABCD_DAT) (0xB800_350C)	21
	7.1.6. Port A, B Interrupt Mask Register (PAB IMR) (0xB800 3514)	
	7.1.7. Port C, D Interrupt Mask Register (PCD IMR) (0xB800 3518)	
	7.2. GPIO SHARED PIN MAPPING LIST	
8.	GREEN ETHERNET	24
-•		
	8.1. CABLE LENGTH POWER SAVING	
	8.3. ENERGY EFFICIENT ETHERNET (EEE).	
9.		
	9.1. OPERATING CONDITIONS	
	9.2. POWER DISSIPATION	
	7.2. I ONEX ELOUI MICH.	20

9.3.	SDRAM BUS DC PARAMETERS	26
9.4.	FLASH BUS DC PARAMETERS	26
9.5.		
9.6.	USB 2.0 DC PARAMETERS	27
9.7.	UART DC PARAMETERS	27
9.8.	GPIO DC PARAMETERS	28
9.9.	JTAG DC Parameters	28
9.10	O. LED DC PARAMETERS	28
10.	AC SPECIFICATIONS	29
10.1		
$\frac{10}{10.2}$	10.1.1. SDRAM Clock Timing	
	(VIZI)	
-	10.2.2. Flash Bus	
	10.2.3. Power Sequence	33
10	10.2.4. Power Configuration Timing	34
11.	THERMAL CHARACTERISTICS	35
11 1		
11.1		
12.	MECHANICAL DIMENSIONS	37
12.1	1. PLASTIC OUAD FLAT PACKAGE 128-PIN 14x20mm OUTLINE	37
13.	ORDERING INFORMATION	20
13.	ORDERING INFORMATION	30

List of Tables

TABLE 1.	PIN DESCRIPTIONS	6
Table 2.	RTL8196C CONFIGURATION UPON POWER ON STRAPPING	9
	SHARED I/O PIN MAPPING	
Table 4.	MEMORY CONTROL REGISTER (MCR) (0xB800_1000)	13
TABLE 5.	DRAM CONFIGURATION REGISTER (DCR) (0xB800_1004)	14
	DRAM TIMING REGISTER (DTR) (0xB800 1008)	
Table 7.	NOR FLASH CONFIGURATION REGISTER (NFCR) (0xB800 1100)	16
TABLE 8.	SPI FLASH CONFIGURATION REGISTER (SFCR) (0xB800 1200)	16
TABLE 9.	SPI FLASH CONFIGURATION REGISTER 2 (SPCR2) (0xB800 1204)	17
Table 10.	SPI FLASH CONTROL AND STATUS REGISTER (SFCSR) (0xB800 1208)	18
TABLE 11.	SPI FLASH DATA REGISTER (SFDR) (0xB800_120C)	18
	SPI FLASH DATA REGISTER 2 (SFDR2) (0xB800 1210)	
Table 13.	GPIO REGISTER SET (0xB800 3500)	20
Table 14.	GPIO PORT A, B, C, D CONTROL REGISTER (PABCD CNR) (0xB800 3500)	20
Table 15.	GPIO PORT A, B, C, D DIRECTION REGISTER (PABCD DIR) (0xB800 3508)	20
Table 16.	PORT A, B, C, D DATA REGISTER (PABCD DAT) (0xB800 350C)	21
	PORT A, B, C, D INTERRUPT STATUS REGISTER (PABCD ISR) (0xB800 3510)	
TABLE 18.	PORT A, B INTERRUPT MASK REGISTER (PAB IMR) (0xB800 3514)	21
	PORT C, D INTERRUPT MASK REGISTER (PCD IMR) (0xB800 3518)	
Table 20.	SHARED PIN REGISTER (PIN MUX SEL) (0xB800 0040)	22
Table 21.	OPERATING CONDITIONS	25
Table 22.	POWER DISSIPATION	25
	SDRAM BUS DC PARAMETERS	
Table 24.	FLASH BUS DC PARAMETERS	26
TABLE 25.	USB 1.1 DC PARAMETERS	27
Table 26.	USB 2.0 DC PARAMETERS	27
Table 27.	UART DC PARAMETERS	27
Table 28.	GPIO DC PARAMETERS	28
$TABLE\ 29.$	JTAG DC PARAMETERS	28
$TABLE\ 30.$	LED DC PARAMETERS	28
	CLOCK SIGNAL TIMING	
$TABLE\ 32.$	SDRAM CLOCK TIMING	30
$TABLE\ 33.$	SDRAM INPUT TIMING	31
Table 34 .	SDRAM OUTPUT TIMING	31
Table 35.	SDRAM Access Control Timing	32
TABLE 36.	FLASH ACCESS TIMING VALUES	33
Table 37.	FLASH ACCESS TIMING VALUES	33
Table 38.	THERMAL OPERATING RANGE	36
Table 39.	RTL8196C THERMAL PARAMETERS	36
$TABLE\ 40.$	ORDERING INFORMATION	38

List of Figures

BLOCK DIAGRAM	4
PIN ASSIGNMENTS	
ONE 16-BIT, FOR 1M/2M/4M/8M BYTES FLASH CONFIGURATION	12
TYPICAL CONNECTION TO A CRYSTAL	29
TYPICAL CONNECTION TO AN OSCILLATOR	29
SDRAM CLOCK SPECIFICATIONS-1	
SDRAM CLOCK SPECIFICATIONS-2	30
SDRAM INPUT TIMING	31
SDRAM OUTPUT TIMING	31
SDRAM ACCESS CONTROL TIMING	32
FLASH ACCESS TIMING	33
POWER UP SEQUENCE TIMING DIAGRAM	33
POWER UP CONFIGURATION TIMING DIAGRAM	34
	ONE 16-BIT, FOR 1M/2M/4M/8M BYTES FLASH CONFIGURATION. TYPICAL CONNECTION TO A CRYSTAL TYPICAL CONNECTION TO AN OSCILLATOR. SDRAM CLOCK SPECIFICATIONS-1 SDRAM CLOCK SPECIFICATIONS-2 SDRAM INPUT TIMING. SDRAM OUTPUT TIMING SDRAM ACCESS CONTROL TIMING. FLASH ACCESS TIMING.

1. General Description

The RTL8196C is an integrated System-on-a-Chip (SoC) Application Specific Integrated Circuit (ASIC) that implements a basic L2 5-port Ethernet switch and a high performance CPU. The embedded RISC CPU is an RLX4181, and the clock rate can be up to 400MHz. To improve computational performance, a 16-Kbyte I-Cache, 8-Kbyte D-Cache, 16-K I-MEM, and 8-Kbyte D-MEM are provided. A standard 5-signal P1149.1 compliant EJTAG test interface is supported for CPU testing and software development.

The RTL8196C provides five ports (from port 0 to port 4), integrated with five MAC and five physical layer transceivers for 10Base-T and 100Base-TX. Each port of the RTL8196C may be configured as a LAN or WAN port.

The RTL8196C supports flexible IEEE 802.3x full-duplex flow control and optional half-duplex backpressure control. For full-duplex, standard IEEE 803.3x flow control will enable pause ability only when both sides of UTP have auto-negotiation ability and have enabled pause ability. The RTL8196C also provides optional forced mode IEEE 802.3x full-duplex flow control. Based on optimized packet memory management, the RTL8196C is capable of Head-Of-Line blocking prevention.

L2 Switch Features: The RTL8196C contains a 1024-entry address look-up table with a 10-bit 4-way XOR hashing algorithm for address searching and learning. Auto aging of each entry is provided and the aging time is 300~450 seconds.

The RTL8196C supports IEEE 802.3az Draft 2.0, also known as Energy Efficient Ethernet (EEE). IEEE 802.3az operates with the IEEE 802.3 Media Access Control (MAC) Sublayer to support operation in Low Power Idle mode. When the Ethernet network is in low link utilization, EEE allows systems on both sides of the link to save power. Green Ethernet power saving provides: link-on and dynamic detection of cable length, and dynamic adjustment of power required for the detected cable length. This feature provides high performance with minimum power consumption. The RTL8196C also implements link-down power saving on a per-port basis, greatly cutting power consumption when the network cable is disconnected.

For peripheral interfaces, one 16550-compatible UART is supported, and a 16-byte FIFO buffer is provided. A USB 2.0 host controller is embedded in the RTL8196C to provide EHCI and OHCI 1.1 compliant host functionality. A USB PHY is also embedded in the RTL8196C.

An MDI/MDIX auto-crossover function is supported. For accessing high-speed devices, the RTL8196C provides a PCI Express bridge to access a PCI Express interface.

The RTL8196C requires only a single 25MHz crystal or 40MHz clock input for the system PLL. The RTL8196C also has two hardware timers and one watchdog timer to provide accurate timing and watchdog functionality. For extension and flexibility, the RTL8196C has up to 17 GPIO pins.

The RTL8196C is provided in a PQFP 128-pin package. It requires only a 3.3V and 1.0V external power supply.

2. Features

■ SOC

- ◆ Embedded RISC CPU, RLX4181 with 16K I-Cache, 8K D-Cache, 16K I-MEM, 8K D-MEM
- ◆ Supports MIPS-1 ISA, MIPS16 ISA
- ◆ Clock rate up to 400MHz
- Provides a standard 5-signal P1149.1 EJTAG test port
- ◆ Supports RLX4181 CPU suspend mode

■ L2 Capabilities

- ◆ Five Ethernet MAC integrated switch with five 10M/100Mbps physical layers and transceivers for IEEE 802.3 10Base-T and 100Base-TX
- Non-blocking wire-speed reception and transmission and non-head-of-lineblocking/forwarding
- ◆ Internal 512Kbit SRAM for packet buffering
- ◆ Internal 1024 entry 4-way hash L2 lookup table
- Supports source and destination MAC address filtering
- ◆ Supports IEEE 802.1x port-based and MAC-based Network Access Control
- ◆ Complies with IEEE 802.3/802.3u/802.1g/802.1d
- ◆ Flexible full-duplex 802.3x flow control and optional half-duplex backpressure flow control
- ◆ MAC learning supports Shared VLAN Learning (SVL) and Independent VLAN Learning (IVL) modes

■ CPU Interface (NIC)

- ◆ Supports BSD mbuf-like packet structure with adjustable cluster size (128-byte to 2Kbyte) to provide optimum memory utilization
- Provides the 'To-CPU reason' in the packet header to facilitate packet processing
- ◆ The NIC DMA supports multipledescriptor-ring architecture for QoS applications (supports 6 RX descriptor rings and 2 TX descriptor rings)

Peripheral Interfaces

- ◆ Supports one PCI Express Host with integrated PHY
- ◆ Supports one 16550 UART
- ♦ Supports up to 17 GPIO pins
- ◆ Supports one-port USB 2.0 host interface
- ◆ Embedded USB PHY

Memory Interfaces

- ◆ Flash (NOR Type)
 - Supports two Flash banks that can be configured as 8/16-bit bus, 256k/512k /1M/2M/4M/8M bytes
 - System supports up to 16Mbyte Flash memory space
 - Boot up from NOR Flash is supported
- ◆ Flash (SPI Type)
 - Supports 4 channels for SPI Flash application
 - Boot up from SPI Flash is supported
 - System supports up to 32Mbyte Flash memory space

- ◆ SDRAM
 - Supports two SDRAM banks that can be configured as 2M/4M/8M/16M/ 32M/64Mbyte
 - 16-bit SDRAM data bus is supported.
 System totally supports up to
 128Mbyte SDRAM memory space
- Supports Green Ethernet
 - ◆ Cable length power saving
 - ◆ Power down power saving

- ◆ Supports IEEE 802.3az Draft 2.0 Energy Efficient Ethernet (EEE) for 100Base-TX in full duplex operation, and 10Base-T in full/half duplex mode
- Other Add-on-Value Features
 - Supports Link down power saving in Ethernet PHY
 - Supports two hardware timers and one watchdog timer
 - Per-port configurable auto-crossover function
 - ◆ Single 25MHz crystal or 40MHz clock input
 - ♦ PQFP 128-pin package

3. Block Diagram

Block Diagram Figure 1.

Rev. 0.7

4. Pin Assignments

4.1. Pin Assignments

Figure 2. Pin Assignments

4.2. Package Identification

Green package is indicated by a 'G' in the location marked 'T' in Figure 2.

5. Pin Descriptions

In this section the following abbreviations are used:

I: Input AI: Analog Input

O: Output AO: Analog Output

IO: Bi-Directional Input/Output AI/O: Analog Bi-Directional Input/Output

P: Digital Power AP: Analog Power

G: Digital Ground AG: Analog Ground

T/S: Tri-State Bi-Directional Input/Output S/T/S: Sustained Tri-State

I_{PD:} Input Pin With Pull-Down Resistor O_{OD:} Output With Open Drain

I_{PU:} Input Pin With Pull-Up Resistor; O_{3S:} Output With Tri-State (Typical Value = 75K Ohm)

Table 1. Pin Descriptions

Table 1. Pin Descriptions						
Pin No.	Type	Description				
Clock & Reset						
127	I	25MHz Crystal Clock Input				
126	0	25MHz Crystal Clock Output				
125	I	40MHz Clock Input V _{peak-to-peak} 1.4 Voltage				
124	I	System Clock Source Select.				
		0: 25MHz				
		1: 40MHz				
108	I	The System Reset Active Low				
10M	/100Mb _j	ps Physical Layer				
28, 26, 18, 16, 7	AO	10/100M Ethernet Physical Layer Transmit Pair.				
29, 25, 19, 15, 8		For differential data transmission				
30, 24, 20, 13, 9	ΑI	10/100M Ethernet Physical Layer Receive Pair.				
31, 23, 21, 12, 8		For differential data reception				
	Mer	nory Bus				
94, 93, 92, 91, 90, 89,	I/O	Data for SDRAM and NOR Type Flash				
88, 87, 74, 75, 77, 78,						
	О	Address for SDRAM and NOR Type Flash.				
		Shared pins:				
		MA[13]: SDRAM BS0 MA[14]: SDRAM BS1				
58, 59, 60, 61		MA[15]: SDRAM LDQM MA[16]: SDRAM UDQM				
		MA[17]: SPI Flash SDIO3 MA[18]: SPI Flash SDIO2				
		MA[19]: SPI Flash SDIO1 MA[20]: SPI Flash SDIO0				
		MA[21]: SPI Flash SCK				
	Pin No. 127 126 125 124 108 10M 28, 26, 18, 16, 7 29, 25, 19, 15, 8 30, 24, 20, 13, 9 31, 23, 21, 12, 8 94, 93, 92, 91, 90, 89,	Pin No. Type Cloc 127 I 126 O I 125 I I 124 I I 10M/100Mb 28, 26, 18, 16, 7 AO 29, 25, 19, 15, 8 AO 30, 24, 20, 13, 9 AI 31, 23, 21, 12, 8 Mer 94, 93, 92, 91, 90, 89, 88, 87, 74, 75, 77, 78, 79, 80, 81, 82 I/O 48, 47, 46, 45, 43, 85, 72, 63, 65, 57, 56, 62, 55, 53, 52, 51, 50, 49, O				

Pin Name	Pin No.	Type	Description				
	SDRAM Control						
MCLK	84	O	SDRAM Clock				
MCLKE	40	О	SDRAM Clock Enable				
MCS0#	66	O	SDRAM Bank 0 Chip Select				
MCS1#	67	О	SDRAM Bank 1 Chip Select				
BS[1:0]	63, 65	О	SDRAM Chip Bank Select [1:0] Shared with A[14:13]				
RAS#	69	O	Raw Address Strobe for SDRAM				
CAS#	70	О	Column Address Strobe for SDRAM				
WE#	71	О	Write Enable for SDRAM				
LDQM	72	0	Lower Data Mask Output to SDRAM Corresponds to D[7:0] Pin shared with A[15]				
UDQM	85	0	Upper Data Mask Output to SDRAM Corresponds to D[15:8] Pin shared with A[16]				
	N	OR Type	e Flash Control				
NF CS0#	41	0	ROM Bank 0 Chip Select for NOR Type Flash Memory				
NF CS1#	40	0	ROM Bank 0 Chip Select for NOR Type Flash Memory				
OE#	69	O	Output Enable (OE#) for NOR Type Flash. Pin shared with SDRAM RAS#				
WE#	71	0	Write Enable for NOR Type Flash. Pin shared with SDRAM WE#				
	S	PI Serial	l Flash Control				
SF_CS0#	41	0	SPI Serial Flash Chip Select 0 Pin shared with NOF_CS0#				
SF_CS1#	40	O	SPI Serial Flash Chip Select 1 Pin shared with NOF_CS1#				
SF_SDIO[3:0]	43, 45, 46, 47	I/O	SPI Serial Flash Serial Data Input/Output				
SF_SCK	48	0	SPI Serial Flash Serial Clock Output The SF_SDI will be driven on the falling edge				
			The SF_SDO will be latched on the rising edge UART				
UART TX	37	0	UART Data Transmit Serial Output				
UART RX	36	I_{PD}	UART Data Receive Serial Input				
UAKI_KX	30		JTAG				
JTAG TCK	100	I_{PU}	JTAG Test Clock				
JTAG_TCK JTAG_TMS	97	I_{PU}	JTAG Test Mode Select				
JTAG_TMS JTAG TDO	98	O	JTAG Test Mode Select JTAG Test Data Output				
JTAG TDI	99	I_{PU}	JTAG Test Data Output JTAG Test Data In				
JTAG TRST#	96	I_{PU}	JTAG Test Batt III				
113_1131"			LED				
LED PORT[4:0]	107, 105, 104, 102, 101	0	Link/Activity Status of 5 Ethernet Ports				
	1		GPIO				
GPIOA[7:0]	36, 98, 99, 97, 96, 100, 40, 67	I/O	GPIO Port A				

CDIOD[7.0]		Type	Description
GPIOB[7:0]	108, 107, 105, 104,	I/O	GPIO Port B
	102, 101, 4, 37		
GPIOC0	109	О	GPIO Port C
			ress Interface
HSON	115	AO	Transmitter Differential Pair
HSOP	116		
HSIN	121	AI	Receiver Differential Pair
HSIP	122	4.0	D. C. 1 D'CC ('1D '
REFCLKN	118	AO	Reference Clock Differential Pair
REFCLKP	119	0	DOLE Towns Depart Asting Lang
PCIE_RST#	4	0	PCI Express Reset Active Low
LICD DD	112		SB2.0
USB_DP	113	AI/O	USB Device Data Plus Pin
USB_DN	112	AI/O	USB Device Data Minus Pin
TEGETH (ODE	20		Test
TESETMODE	38	I_{PD}	For Chip Internal Test
			1: Test Mode 0: Normal Mode
		Dofowo	nce Voltage
IBREF	33	AI	Reference Voltage for Ethernet PHY
IDKEF	33	Ai	2.5K 1% pull down
R12K	1	AI	Reference Voltage for System
			12K 1% pull down
		Powe	er & GND
VDD33	3, 44, 54, 64, 76, 86, 95, 106	P	Digital I/O Power Supply 3.3V
AVDD33	11, 22, 32	AP	Ethernet Analog Power Supply 3.3V
VDD10	5, 39, 73, 103	P	Digital Core Power Supply 1.0V
AVDD10	6, 17, 27	AP	Ethernet Analog Power Supply 1.0V
AVDD33 X25M	123	AP	25M Crystal Power 3.3V
AVDD33_BG	128	AP	System Bandgap Power Supply 3.3V
AVDD10_PCIE	117	AP	PCI Express Analog Power Supply 1.0V
AVDD10_PHYPLL	34	AP	Ethernet PHY PLL Power 1.0V
AVDD33_USB_PCIE	114	AP	USB2.0 and PCI Express Analog Power 3.3V
AVDD10_USB	110	AP	USB2.0 Analog Power 1.0V
GND	14, 42, 68, 83, 111	G	System GND
AGND_SYSPLL	2	AG	System PLL GND
AGND_PCIE	120	AG	PCI Express GND

5.1. RTL8196C Configuration Upon Power On Strapping

All mode configuration pins are internal pull low. The 1.0V digital core power input pin voltage is up to 0.7V on system power-on. The strap data will be latched after a delay of 300ms.

Table 2. RTL8196C Configuration Upon Power On Strapping

H/W Pin Name	Configuration Name	Pin No	Description
MA11, MA10,	ck_cpu_freq_sel[2:0]	56, 62, 55	CPU Clock Configuration
MA9			000: 250MHz
			001: 270MHz
			010: 290MHz
			011: 310MHz
			100: 330MHz
			101: 350MHz
			110: 370MHz
			111: 390MHz
MA8, MA7, MA6	ck_freq_sel[2:0]	53, 52, 51	SDRAM Clock Rate Configuration
			000: 65.625MHz
			001: 78.125MHz
			010: 125MHz
			011: 150MHz
			100: 156.25MHz
			101: 168.75MHz
			110: 193.75MHz
			111: Reserved
MA5	Sync_lx_oc	50	Selection for Internal Bus Test Mode
			This is a hardware strapping pin.
			0: Normal mode
			1: Test mode
MA2	EnOLTautoTestMode	59	Enable Operational Level Test (OLT) Auto Test Mode
			0: Normal mode
			1: Test mode
MA1	BOOTSEL	60	Boot Device Select for Flash Booting
			0: Boot from NOR-type Flash (default)
			1: Boot from Serial Flash (SPI)
MA3	Clklx_from_clkm	58	Internal Local Bus Source
			0: 200MHz
			1: From memory clock
MA4	ENABLE EXT RSTN	49	External Reset
1	<u> </u>		0: Disable chip RESET function; Pin 108 can be used as a
COT			GPIO or DBG pin
*()}			1: Enable chip RESET function
MA12	ck_cpu_div_sel	57	PLL Clock for CPU
	_		0: CPU PLL clock is not divided by 2
			1: CPU PLL clock is divided by 2
MA13	en_router_mode	65	Router or AP Mode Select
			0: AP mode (Turns-off Ethernet Switch and Port 0 to Port 3
			PHY circuit for power-saving)
			1: Router mode (All Ethernet Ports are working)
MA14	swap_dbg_halfword	63	Internal Debug Mode Select

5.2. Shared I/O Pin Mapping

Table 3. Shared I/O Pin Mapping

Pin No.	GPIO	EJTAG	LED	UART	Reset	Memory
67	GPIOA[0]	-	-	-	-	MCS1#
						NF_CS1#
40	GPIOA[1]	-	-	-	-	SF_CS1#
						MCLKE
100	GPIOA[2]	JTAG_TCK	-	-	-	-
96	GPIOA[3]	JTAG_TRST#	-	-	-	-
97	GPIOA[4]	JTAG_TMS	=	-	-	-
99	GPIOA[5]	JTAG_TDI	=	-	-	-
98	GPIOA[6]	JTAG_TDO	-	-	-	-
36	GPIOA[7]	-	-	UART_RX	\	-
37	GPIOB[0]	-	-	UART_TX	-	-
4	GPIOB[1]	-	-	-	PCIE_RST#	-
101	GPIOB[2]	-	LED_PORT0	- /		-
102	GPIOB[3]	-	LED_PORT1	-	-	-
104	GPIOB[4]	-	LED_PORT2	-	-	-
105	GPIOB[5]	-	LED_PORT3	-	-	-
107	GPIOB[6]	-	LED_PORT4	-		-
108	GPIOB[7]	-	<i>></i> -		RESET#	-
109	GPIOC[0]		-	-	1	4

6. Memory Controller

The RTL8196C integrates a memory control module to access external SDRAM and Flash memory.

The interface is designed for PC133 or PC166-compliant SDRAM, and supports auto-refresh mode, which requires a 4096 refresh cycle within 64ms, and the SDRAM size and timing is configurable in registers.

The RTL8196C also supports one flash memory chip (NF_CS0#). The interface supports 8/16-bit NOR-type flash memory. When NOR type is used, the system will boot from KSEG1 at virtual address 0xBFC0_0000 (physical address: 0x1FC0_0000). The flash size is configurable from 1M to 8M bytes for each chip. If the flash size is set to 4M or 8M bytes, 0xBFC0_0000 still maps the first 4M bytes of flash, and there will be a new memory mapping from 0xBD00_0000 (0xBD00_0000 maps to chip 0 byte 0).

6.1. SDRAM Control Interface

PC100~PC166-compliant SDRAM is supported. The SDRAM controller supports Auto Refresh mode, which requires a 4096-cycle refresh each 64ms. The RTL8196C provides a maximum of 512Mbit address space (8Mx16x4Banks) and the SDRAM size is configurable.

6.1.1. Features

- Interface (Bus Width): 16-bit
- Targeted SDR Frequency: Up to 166MHz
- Supported SDR SDRAM Chip Specification:
 - Bank Counts: 2, 4
 - Row Counts: 2K (A0~A10), 4K (A0~A11), 8K (A0~A12)
 - Column Counts: 256 (A0~A7), 512 (A0~A8), 1K (A0~A9), 2K (A0~A9, A11)

6.2. NOR Flash Type Memory

6.2.1. Features

- Interface (Bus Width): 8-bit/16-bit
- Supports NOR Flash Chip Specification:
 - 8-bit: 256Kbyte, 512Kbyte, 1Mbyte, 2Mbyte, 4Mbyte
 - 16-bit: 512Kbyte, 1Mbyte, 2Mbyte, 4Mbyte, 8Mbyte

6.2.2. Bank Address Mapping

The flash controller supports boot sector flash memory and the system always boots from bank0. The boot bank (bank 0) is mapped to KSEG1 with the start physical address of 0x1E00.0000 (virtual address: 0xBD00.0000). Bank0 is also mapped to the start physical address of 0x1FC0.0000.

The system always boots up from bank 0. For software, it is suggested that the program jumps to the space $[0x1E00.0000\sim0x1EFF.FFFF]$ for a larger continuous space after booting up from 0x1FC0.0000. However, for backward compatibility, the program can choose to stay in the 4MByte space $[0x1FC0.0000\sim0x1FFF.FFFF]$.

Figure 3. One 16-bit, for 1M/2M/4M/8M Bytes Flash Configuration

6.2.3. Flash Command Sequence

Directly write or read the target Flash address following the command sequence specified in the flash memory provider's datasheet. However, programmers must pay attention to the following:

- Use 16-bit (half-word) manipulation. Byte or full word manipulation will cause unpredictable errors
- The Program address is the address defined for the Flash
- The Command address is 0xBFC0.0000 + command address * 2
- Program data/Command data. The data may be placed in either the lower half-word or upper half-word position in a 32-bit full word. It depends on the least significant two bits of the accessed address

6.3. SPI Flash Controller

The SPI flash controller is a new design and incorporates new features.

6.3.1. Features

- Targeted SPI Flash Frequency: Up to 78MHz (when the SDRAM clock is 156MHz)
- In addition to a programmed I/O interface, also supports a memory-mapped I/O interface for read operations
- Supports Read and Fast Read in memory-mapped I/O mode

6.4. Software Register Definition

6.4.1. Memory Control Register (MCR) (0xB800_1000)

This register does not provide byte access.

Table 4. Memory Control Register (MCR) (0xB800_1000)

Bit	Name	Description	Mode	Default
31	DRAMTYPE	Report the Hardware Strapping Initial Value for DRAM Type	R	0B
		0: SDR DRAM 1: Reserved		
30	BOOTSEL	Report the Hardware Strapping Initial Value for Boot Flash Type	R	0B
		0: NOR flash 1: SPI flash		<
29	IPREF	Enable Instruction Prefetch Function	RW	0B
		0: Disable prefetch (also resets buffer status)		
		1: Enable prefetch (4 words)		
28	DPREF	Enable Data Prefetch Function	RW	0B
		0: Disable prefetch (also resets buffer status)		
		1: Enable prefetch (4 words)		
27	IPREF_MODE	Choose Instruction Prefetch Mode	RW	0B
		0: Old prefetch mechanism 1: New prefetch mechanism		
26	DPREF_MODE	Choose Data Prefetch Mode	RW	0B
		0: Old prefetch mechanism 1: New prefetch mechanism		
25	BOOTSEL2	Report the Hardware Strapping Initial Value for Boot Source	R	0B
		0: Flash Type (NOR or SPI Flash)		
		1: Reserved		
24:0	Reserved	Reserved	R	0B
£(or			

6.4.2. DRAM Configuration Register (DCR) (0xB800_1004)

This register does not provide byte access.

Table 5. DRAM Configuration Register (DCR) (0xB800_1004)

Bit	Name	Description		Mode	Default
31:30	T_CAS	CAS Latency		RW	01B
		00: Latency=2	01: Latency=3		
		10: Latency=2.5	11: Reserved		
29:28	DBUSWID	DRAM Bus Width		RW	01B
		00: Reserved	01: 16-bit		
		10: Reserved	11: Reserved		
27	DCHIPSEL	DRAM Chip Select		RW	1B
		0: Test mode	1: Normal mode		
26:25	ROWCNT	Row Counts		RW	00B
		00: 2K (A0~A10)	01: 4K (A0~A11)		
		10: 8K (A0~A12)	11: 16K (A0~A13)		
24:22	COLCNT	Column Counts		RW	000B
		000: 256 (A0~A7)	001: 512 (A0~A8)		
		010: 1K (A0~A9)	011: 2K (A0~A9, A11)		
		100: 4K (A0~A9, A11, A12)	101: Reserved		
		110: Reserved	111: Reserved		
21	BSTREF	Bursted 8 Auto-Refresh Command	ds (Used for DDR)	RW	0B
		0: Disable	1: Enable		
20	ARBIT	Enforce Interface Arbitration to Ta	ake Effect	RW	√ 0B
		0: Reserved	1: Take effect	1	
19	BANKCNT	Bank Counts		RW	1B
		0: 2 banks (used for SDR)	1: 4 banks (used for SDR, DDR)	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	
18	FAST RX	If RX path turnaround delay is sm	nall enough, the memory controller	RW	0B
	_		latency within 1DRAM clock cycle		
		(used for DDR).			
		0: Normal path	1: Fast path		
17	MR_MODE		t the Memory Controller Issues (Used	RW	0B
		for DDR)			
		0: Mode Register	1: Extended Mode Register		
16	DRV_STR	Drive Strength Setting of DRAM	1 \	RW	0B
		For this option to be effective, MI	_		
		0: Normal	1: Reduced		
15:0	Reserved	Reserved		-	-

6.4.3. DRAM Timing Register (DTR) (0xB800_1008)

This register does not provide byte access.

Table 6. DRAM Timing Register (DTR) (0xB800_1008)

Bit	Name	Description	Mode	Default
31:29	T_RP	tRP Timing Parameter of DRAM	RW	111B
		Basic unit = 1* DRAM_CLK		
		000 means 1 unit		
28:26	T_RCD	tRCD Timing Parameter of DRAM	RW	111B
		Basic unit = 1* DRAM_CLK		
		000 means 1 unit		
25:21	T_RAS	Minimum T_RAS Timing Parameter of DRAM	RW	11111B
		Basic unit = 1* DRAM_CLK		
		00000 means 1 unit		
20:16	T_RFC	tRFC Timing Parameter of DRAM	RW	11111B
		Refresh row cycle time		
		Basic unit = 1* DRAM_CLK		
		00000 means 1 unit		
15:12	T_REFI	tREF Timing Parameter of DRAM	RW	0000B
		Refresh row interval time		
		Basic unit = T_REFI_UNIT		
		0000: 1 unit		
		0001: 2 units		
		 1111: 16 units		<
11:9	T DEEL INIT	Basic Unit of T REFI	DW	111B
11:9	T_REFI_UNIT	000: 32 DRAM CLK 001: 64 DRAM CLK	RW	111111111111111111111111111111111111111
\		010: 128 DRAM_CLK 011: 256 DRAM_CLK		
		100: 512 DRAM CLK 101: 1024 DRAM CLK		
		110: 2048 DRAM_CLK 111: 4096 DRAM_CLK		
8:6	T WR	tWR Timing Parameter of DRAM	RW	111B
0.0	1_WK	Write recovery time	1000	1111
		Basic unit = 1* DRAM CLK		
	· () \	000 means 1 unit		
5:0	Reserved	Reserved	_	_
	T			
0	1			
*() >			

6.4.4. NOR Flash Configuration Register (NFCR) (0xB800_1100)

This register does not provide byte access.

Table 7. NOR Flash Configuration Register (NFCR) (0xB800_1100)

Bit	Name	Description	Mode	Default
31:28	T_CEPL	The Timing Interval for CE# to be Pulled-Low before WE#/OE# is	RW	1111B
		Pulled-Low		
		Basic Unit = 1 * DRAM clock cycle		
		0000 means 1 unit		
27:23	T_WEOEPL	The Timing Interval for WE#/OE# to be Pulled-Low	RW	11111B
		Basic Unit = 1 * DRAM clock cycle		
		00000 means 1 unit		
22:19	T RDOZ	The Timing Interval for OE# to be Pulled-High before Read-Data	RW	1111B
	_	Output High-Z		
		Basic Unit = 1 * DRAM clock cycle		
		0000 means 1 unit		
18:16	NFSIZE	NOR Flash Size	RW	110B
		000: 256Kbyte 001: 512Kbyte		
		010: 1Mbyte 011: 2Mbyte		
		100: 4Mbyte 101: 8Mbyte		
		110: Reserved 111: Reserved		
15	NBUSW	NOR Flash Bus Width	R	1B
		0: 8-bit 1: 16-bit		
14:0	Reserved	Reserved	-	4

6.4.5. SPI Flash Configuration Register (SFCR) (0xB800_1200)

This register does not provide byte access.

Table 8. SPI Flash Configuration Register (SFCR) (0xB800_1200)

Bit	Name	Description	Mode	Default
31:29	SPI_CLK_DIV	SPI Operating Clock Rate Selection	RW	111B
	- () \	The value defines the divisor to generate the SPI clock.		
		SPI Clock = (SDRAM Clock) / (SPI_CLK_DIV)		
	1	000: DIV = 2 $001: DIV = 4$		
		010: DIV = 6 $011: DIV = 8$		
		100: DIV = 10 $101: DIV = 12$		
	Y .	110: DIV = 14		
28	RBO	Serial Flash Read Byte Ordering	RW	1B
1		0: The byte order is from low to high		
		1: The byte order is from high to low		
27	WBO	Serial Flash Write Byte Ordering	RW	1B
		0: The byte order is from low to high		
		1: The byte order is from high to low		
26-23	SPI_TCS	SPI Chip Deselect Time	RW	1111B
		Basic unit = 1 * DRAM clock cycle		
		0000 means 1 unit, 0001 means 2 units, etc.		
22:0	Reserved	Reserved	-	_

6.4.6. SPI Flash Configuration Register 2 (SFCR2) (0xB800_1204)

This register does not provide byte access.

Table 9. SPI Flash Configuration Register 2 (SPCR2) (0xB800_1204)

Bit	Name	Description	Mode	Default
31:24	SFCMD	SPI Flash 8-Bit Command Code of a Read Transaction	RW	0x03H
		Example:		
		'Read Data' is 0x03.		
		'Fast Read' is 0x0B.		
23:21	SFSIZE	SPI Flash Size	RW	111B
		000: 128Kbytes 001: 256Kbytes		
		010: 512Kbytes 011: 1Mbytes		
		100: 2Mbytes 101: 4Mbytes		
		110: 8Mbytes 111: 16Mbytes		
20	RD_OPT	SPI Flash Sequential Access Optimization	RW	0B
		0: No optimization		
		1: Optimization for sequential access		
19:18	CMD_IO	SPI Flash I/O Mode Selection for the Command Phase of a	RW	00B
		Read Transaction		
		00: Serial I/O (8 cycles)		
		01: Dual I/O (4 cycles)		
		10: Quad I/O (2 cycles)		
		11: Reserved		
17:16	ADDR_IO	SPI Flash I/O Mode Selection for the Address Phase of a	RW	00B
		Read Transaction	-	
		00: Serial I/O (24 cycles)		
		01: Dual I/O (12 cycles) 10: Quad I/O (6 cycles)		
		11: Reserved		
15:13	DUMMY CYCLES	SPI Flash Inserted Dummy Cycles for the Dummy Cycle	RW	000B
13.13	DOMINIT_CICLES	Phase of a Read Transaction	IX VV	0000
	1/2	000: 0 cycles 001: 2 cycles		
		010: 4 cycles 011: 6 cycles		
		100: 8 cycles 101: 10 cycles		
	\	110: 12 cycles 111: 14 cycles		
12:11	DATA_IO	SPI Flash I/O Mode Selection for the Data Phase of a Read	RW	00B
		Transaction (Assume 8*N Cycles)		
		00: Serial I/O (8*N cycles)		
		01: Dual I/O (4*N cycles)		
	c D	10: Quad I/O (2*N cycles)		
		11: Reserved		
10	HOLD_TILL_SFDR2	If this bit is '1', it indicates the write operation to this	RW	0B
		register (SFCR2) will not take effect immediately but will		
		be delayed until another write operation to SFDR2.		
9:0	Reserved	Reserved	-	-

6.4.7. SPI Flash Control and Status Register (SFCSR) (0xB800_1208)

This register does not provide byte access.

Table 10. SPI Flash Control and Status Register (SFCSR) (0xB800_1208)

Bit	Name	Description	Mode	Default
31	SPI_CSB0	SPI Flash Chip Select 0 (CS0#)	RW	1B
		0: Active		
		1: Not active		
30	SPI_CSB1	SPI Flash Chip Select 1 (CS1#)	RW	1B
		0: Active		
		1: Not active		
29:28	LEN	SPI Read/Write Data Length (Unit = byte)	RW	11B
		00: 1 byte		
		01: 2 byte		
		10: 3 byte		
		11: 4 byte		
27	SPI_RDY	SPI Flash Operation Busy Indication Flag	R	1B
		0: Busy (operation in progress)		
		1: Ready (idle or SPI access command is ready)		
26:25	IO_WIDTH	SPI Flash I/O Mode Selection of a Transaction	RW	00B
	_	00: Serial I/O		
		01: Dual I/O		
		10: Quad I/O		
		11: Reserved		<
24	CHIP_SEL	Chip Selection	RW	0B
		0: CS0#		
		1: CS1#) >
23:16	CMD_BYTE	SPI Flash 8-Bit Command Code of a Transaction	RW	0B
	_	This field is only used in Memory-Mapped I/O		
		(MMIO) mode.		
		Example:		
		'Read Data' is 0x03.		
		'Fast Read' is 0x0B.		
15:0	Reserved	Reserved	-	-

6.4.8. SPI Flash Data Register (SFDR) (0xB800_120C)

This register does not provide byte access.

This configuration register is used under PIO (Programmed I/O) access mode.

Table 11. SPI Flash Data Register (SFDR) (0xB800_120C)

Bit	Name	Description	Mode	Default
31:24	Data3	Read/Write Data Byte 3	RW	0B
23:16	Data2	Read/Write Data Byte 2	RW	0B
15:8	Data1	Read/Write Data Byte 1	RW	0B
7:0	Data0	Read/Write Data Byte 0	RW	0B

6.4.9. SPI Flash Data Register 2 (SFDR2) (0xB800_1210)

This register does not provide byte access.

This configuration register is used under Memory-Mapped I/O (MMIO) access mode.

Table 12. SPI Flash Data Register 2 (SFDR2) (0xB800_1210)

Bit	Name	Description	Mode	Default
31:24	Data3	Read/Write Data Byte 3	RW	0B
23:16	Data2	Read/Write Data Byte 2	RW	0B
15:8	Data1	Read/Write Data Byte 1	RW	0B
7:0	Data0	Read/Write Data Byte 0	RW	0B

7. Peripheral and MISC Control

7.1. GPIO Control

The RTL8196C provides four sets of General Purpose Input/Output (GPIO) pins (GPIO A, B, C, D). Each GPIO pin may be configured as an input or output pin. The GPIO DATA register may be used to control GPIO pin signals. The GPIO pins are shared with some peripheral pins, and the type of peripheral can affect the attributes of the shared pins. All GPIO sets can be used to generate interrupts, and an interrupt mask and status register are provided. All the GPIO control registers are defined in the following tables.

7.1.1. **GPIO Register Set (0xB800 3500)**

Table 13. GPIO Register Set (0xB800_3500)

			0 (= /
Offset	Size (byte)	Name	Description
0x00	4	PABCD_CNR	Port A, B, C, D Control Register
0x08	4	PABCD_DIR	Port A, B, C, D Direction Register
0x0C	4	PABCD_DAT	Port A, B, C, D Data Register
0x10	4	PABCD_ISR	Port A, B, C, D Interrupt Status Register
0x14	4	PAB_IMR	Port A, B Interrupt Mask Register
0x18	4	PCD_IMR	Port C, D Interrupt Mask Register

7.1.2. GPIO Port A, B, C, D Control Register (PABCD_CNR) (0xB800_3500)

Table 14. GPIO Port A, B, C, D Control Register (PABCD_CNR) (0xB800_3500)

Bit	Name	Description	RW	Default
31:24	31:24 PFC_D[7:0] Pin Function Configuration of Port D		RW	FFH
23:16	PFC_C[7:0]	Pin Function Configuration of Port C	RW	FFH
15:8	PFC_B[7:0]	Pin Function Configuration of Port B	RW	FFH
7:0	PFC_A[7:0]	Pin Function Configuration of Port A Bit Value: 0: Configured as GPIO pin 1: Configured as dedicated peripheral pin	RW	FFH

7.1.3. GPIO Port A, B, C, D Direction Register (PABCD_DIR) (0xB800_3508)

Table 15. GPIO Port A, B, C, D Direction Register (PABCD_DIR) (0xB800_3508)

Bit	Name	Description Description	RW	Default
n.31-n.24	DRC D[7:0]	Pin Direction Configuration of Port D		00H
	,	0: Configured as input pin 1: Configured as output pin		
n.23-n.16	DRC_C[7:0]	Pin Direction Configuration of Port C		00H
		0: Configured as input pin 1: Configured as output pin		
n.15-n.8	DRC_B[7:0]	Pin Direction Configuration of Port B		00H
		0: Configured as input pin 1: Configured as output pin		
n.7-n.0	DRC_A[7:0]	Pin Direction Configuration of Port A		00H
		0: Configured as input pin 1: Configured as output pin		

7.1.4. Port A, B, C, D Data Register (PABCD DAT) (0xB800 350C)

Table 16. Port A, B, C, D Data Register (PABCD_DAT) (0xB800_350C)

Bit	Name	Description		RW	Default
n.31-n.24	PD_D[7:0]	Pin Data of Port D		RW	00H
		0: Data=0	1: Data=1		
n.23-n.16	PD_C[7:0]	Pin Data of Port C		RW	00H
		0: Data=0	1: Data=1		
n.15-n.8	PD_B[7:0]	Pin Data of Port B		RW	00H
		0: Data=0	1: Data=1		
n.7-n.0	PD_A[7:0]	Pin Data of Port A		RW	00H
		0: Data=0	1: Data=1		

7.1.5. Port A, B, C, D Interrupt Status Register (PABCD_ISR) (0xB800 3510)

Table 17. Port A, B, C, D Interrupt Status Register (PABCD_ISR) (0xB800_3510)

	Did Name Description Dw I					
Bit	Name	Description	RW	Default		
n.31-n.24	IPS_D[7:0]	Interrupt Pending Status of Port D	RW	00H		
		Write '1' to clear the interrupt				
n.23-n.16	IPS_C[7:0]	Interrupt Pending Status of Port C	RW	00H		
		Write '1' to clear the interrupt	*			
n.15-n.8	IPS_B[7:0]	Interrupt Pending Status of Port B	RW	00H		
		Write '1' to clear the interrupt		>		
n.7-n.0	IPS_A[7:0]	Interrupt Pending Status of Port A	RW	00H		
		Write '1' to clear the interrupt				

7.1.6. Port A, B Interrupt Mask Register (PAB_IMR) (0xB800_3514)

Table 18. Port A, B Interrupt Mask Register (PAB_IMR) (0xB800_3514)

Bit	Name	Description	RW	Default
n.31- n.30	PB7_IM[1:0]	PortB.7 Interrupt Mode	RW	00B
n.29- n.28	PB6_IM[1:0]	PortB.6 Interrupt Mode	RW	00B
n.27- n.26	PB5_IM[1:0]	PortB.5 Interrupt Mode	RW	00B
n.25- n.24	PB4_IM[1:0]	PortB.4 Interrupt Mode	RW	00B
n.23- n.22	PB3_IM[1:0]	PortB.3 Interrupt Mode	RW	00B
n.21- n.20	PB2_IM[1:0]	PortB.2 Interrupt Mode	RW	00B
n.19- n.18	PB1_IM[1:0]	PortB.1 Interrupt Mode	RW	00B
n.17- n.16	PB0_IM[1:0]	PortB.0 Interrupt Mode	RW	00B
n.15- n.14	PA7_IM[1:0]	PortA.7 Interrupt Mode	RW	00B
n.13-n.12	PA6_IM[1:0]	PortA.6 Interrupt Mode	RW	00B
n.11- n.10	PA5_IM[1:0]	PortA.5 Interrupt Mode	RW	00B
n.9-n.8	PA4_IM[1:0]	PortA.4 Interrupt Mode	RW	00B
n.7-n.6	PA3_IM[1:0]	PortA.3 Interrupt Mode	RW	00B
n.5-n.4	PA2_IM[1:0]	PortA.2 Interrupt Mode	RW	00B

Bit	Name	Description	RW	Default
n.3-n.2	PA1_IM[1:0]	PortA.1 Interrupt Mode	RW	00B
n.1-n.0	PA0_IM[1:0]	PortA.0 Interrupt Mode	RW	00B
		00: Disable interrupt		
		01: Enable falling edge interrupt		
		10: Enable rising edge interrupt		
		11: Enable both falling or rising edge interrupt		

7.1.7. Port C, D Interrupt Mask Register (PCD_IMR) (0xB800_3518)

Table 19. Port C, D Interrupt Mask Register (PCD_IMR) (0xB800_3518)

	Table 19. Port C, D Interrupt Mask Register (PCD_IMR) (0XB800_3518)						
Bit	Name	Description	RW	Default			
n.31- n.30	PD7_IM[1:0]	PortD.7 Interrupt Mode	RW	00B			
n.29- n.28	PD6_IM[1:0]	PortD.6 Interrupt Mode	RW	00B			
n.27- n.26	PD5_IM[1:0]	PortD.5 Interrupt Mode	RW	00B			
n.25- n.24	PD4_IM[1:0]	PortD.4 Interrupt Mode	RW	00B			
n.23- n.22	PD3_IM[1:0]	PortD.3 Interrupt Mode	RW	00B			
n.21- n.20	PD2_IM[1:0]	PortD.2 Interrupt Mode	RW	00B			
n.19- n.18	PD1_IM[1:0]	PortD.1 Interrupt Mode	RW	00B			
n.17- n.16	PD0_IM[1:0]	PortC.0 Interrupt Mode	RW	00B			
n.15- n.14	PC7_IM[1:0]	PortC.7 Interrupt Mode	RW	00B			
n.13-n.12	PC6_IM[1:0]	PortC.6 Interrupt Mode	RW	00B			
n.11- n.10	PC5_IM[1:0]	PortC.5 Interrupt Mode	RW	00B			
n.9-n.8	PC4_IM[1:0]	PortC.4 Interrupt Mode	RW	-00B			
n.7-n.6	PC3_IM[1:0]	PortC.3 Interrupt Mode	RW	00B			
n.5-n.4	PC2_IM[1:0]	PortC.2 Interrupt Mode	RW	00B			
n.3-n,2	PC1_IM[1:0]	PortC.1 Interrupt Mode	RW	00B			
n.1-n.0	PC0_IM[1:0]	PortC.0 Interrupt Mode	RW	00B			
		00: Disable interrupt					
		01: Enable falling edge interrupt					
		10: Enable rising edge interrupt					
		11: Enable both falling or rising edge interrupt					

7.2. GPIO Shared Pin Mapping List

The RTL8196C GPIO pins are shared with other functions.

Table 20. Shared Pin Register (PIN_MUX_SEL) (0xB800_0040)

Bit	Bit Name	Description	RW	Default
31:24	Reserved	Reserved	-	-
23	reg_iocfg_pcie	Configure PCIE_RST# as PCIE_RST# or GPIO 0: PCIE_RST# 1: GPIOB1	RW	2'b0
22	reg_iocfg_uart	Configure UART Pins as UART, DBG, or GPIO Mode 0: UART 1: GPIOA7 and GPIOB0	RW	2'b0

Bit	Bit Name	Description	RW	Default
21:20	reg_iocfg_jtag	Configure JTAG Pins as JTAG, DBG, or GPIO Mode	RW	2'b00
		0x: JTAG		
		10: DBG mode 11: GPIOA[6:2]		
19:18	reg_iocfg_mem	Configure Flash/DRAM CS1# as Flash/DRAM CS1#, DRAM	RW	2'b00
		CKE, DBG, or GPIO Mode		
		00: NF_CS1#/MCS1# 01: DRAM CKE		
15.14	D 1	10: DBG mode 11: GPIOA[1:0]		
17:14	Reserved	Reserved	-	-
13:12	reg_iocfg_led_p2	Configure LEDPHASE2 Pin as DBG or GPIO Mode	RW	2'b00
		0x: Reserved		
11.10		10: DBG mode 11: GPIOC0	DIII	211.00
11:10	reg_iocfg_led_p1	Configure LEDPHASE1 Pin as DBG or GPIO Mode	RW	2'b00
		0x: Reserved		
0.0		10: DBG mode 11: GPIOB7	DW	221.000
9:8	reg_iocfg_led_p0	Configure LEDPHASE0 Pin as LED-SW, DBG, or GPIO Mode	RW	3'b000
		0x: LED_PORT4 10: DBG mode 11: GPIOC6		
7:6	man in after lade a?		RW	2'b00
7:0	reg_iocfg_led_s3	Configure LEDSIG3 Pin as LED-SW, DBG, or GPIO Mode 0x: LED PORT3	KW	2 000
		10: DBG mode 11: GPIOB5		
5:4	reg iocfg led s2	Configure LEDSIG2 Pin as LED-SW, DBG, or GPIO Mode	RW	2'b00
3.4	reg_locig_lcu_s2	0x: LED PORT2	KW	2 000
		10: DBG mode 11: GPIOB4		
3:2	reg iocfg led s1	Configure LEDSIG1 Pin as LED-SW, DBG, or GPIO Mode	RW	2'b00
	18_118_11	0x: LED PORT1		
		10: DBG mode 11: GPIOB3		
1:0	reg iocfg led s0	Configure LEDSIG0 Pin as LED-SW, DBG, or GPIO Mode	RW	2'b00
,	6_ 6	0x: LED_PORT0		
		10: DBG mode 11: GPIOB2		
f	ON ZI	10: DBG mode 11: GPIOB2		

8. Green Ethernet

8.1. Cable Length Power Saving

The RTL8196C provides link-on and dynamic detection of cable length, and dynamic adjustment of power required for the detected cable length. This feature provides high performance with minimum power consumption.

8.2. Link Down Power Saving

The RTL8196C implements link-down power saving on a per-port basis, greatly cutting power consumption when the network cable is disconnected. A port automatically enters link down power saving mode ten seconds after the cable is disconnected from it. Once a port enters link down power saving mode, it transmits normal link pulses on its TXOP/TXON pins and continues to monitor the RXIP/RXIN pins to detect incoming signals, which might be 100Base-TX MLT-3 idle pattern, 10Base-T link pulses, or Auto-Negotiation's FLP (Fast Link Pulse). After it detects an incoming signal, it wakes up from link down power saving mode and operates in normal mode according to the result of the connection.

8.3. Energy Efficient Ethernet (EEE)

The RTL8196C supports IEEE 802.3az Draft 2.0, also known as Energy Efficient Ethernet (EEE) in 100Base-TX in full duplex operation, and 10Base-T in full/half duplex mode. This standard is being developed by the IEEE 802.3az Task Force, and should be finalized by September 2010. It provides a protocol to coordinate transitions to/from a lower power consumption level (Low Power Idle mode) based on link utilization. When no packets are being transmitted, the system goes to Low Power Idle mode to save power. Once packets need to be transmitted, the system returns to normal mode, and does this without changing the link status and without dropping/corrupting frames.

To save power, when the system is in Low Power Idle mode, most of the circuits are disabled, however, the transition time to/from Low Power Idle mode is kept small enough to be transparent to upper layer protocols and applications.

EEE also specifies a negotiation method to enable link partners to determine whether EEE is supported and to select the best set of parameters common to both devices.

- For 100Base-TX PHY: Supports Energy Efficient Ethernet with the optional function of Low Power Idle.
- For 10Base-T, EEE defines a 10Mbps PHY (10Base-Te) with reduced transmit amplitude requirements. 10Base-Te is fully interoperable with 10Base-T PHYs over 100m of class-D (Cat-5) cable

Refer to http://ieee802.org/3/interims/index.html for more details.

9. DC Specifications

9.1. Operating Conditions

Table 21. Operating Conditions

Symbol	Parameter		Тур.	Max.	Units
VDD33	Digital I/O Power Supply 3.3V	TBD	TBD	TBD	V
AVDD33	Ethernet Analog Power Supply 3.3V	TBD	TBD	TBD	V
VDD10	Core Power Supply 1.0V	TBD	TBD	TBD	V
AVDD10	Ethernet Analog Power Supply 1.0V	TBD	TBD	TBD	V
AVDD33_X25M	25M Crystal Power 3.3V	TBD	TBD	TBD	V
VDD33_BG	System Bandgap Power Supply 3.3V	TBD	TBD	TBD	V
AVDD10_PCIE	PCI Express Analog Power 1.0V	TBD	TBD	TBD	V
AVDD10_PHYPLL	Ethernet PHY PLL Power 1.0V	TBD	TBD	TBD	V
AVDD33_USB_PCIE	USB 2.0 Analog Power 3.3V	TBD	TBD	TBD	V
AVDD10_USB	USB 2.0 Analog Power 1.0V	TBD	TBD	TBD	V

9.2. Power Dissipation

Table 22. Power Dissipation

Table 22. Tower Dissipation						
Parameter	SYM	Conditions	Min	Тур.	Max	Units
Power Supply Current for	I_{VDD33}	All LAN Ports Idle	_	TBD	<	mA
VDD33		LAN Full Load Active for Link at 10Base-T	-	TBD	7-	
		LAN Full Load Active for Link at 100Base-TX	-	TBD		
Power Supply Current for	I_{VDD10}	All LAN Ports Idle and CPU Suspend	G . V	TBD	-	mA
VDD10		All LAN Ports Idle	\-	TBD	-	
		LAN Full Load Active for Link at 10Base-T		TBD	-	
		LAN Full Load Active for Link at 100Base-TX	-	TBD	-	
3.3V Ethernet Analog	I _{AVDD33}	All LAN Ports Idle	-	TBD	-	mA
Current for AVDD33		LAN Full Load Active for Link at 10Base-T	-	TBD	-	
		LAN Full Load Active for Link at 100Base-TX	-	TBD	-	
1.0V Ethernet Analog	I _{AVDD10}	All LAN Ports Idle	-	TBD	_	mA
Current for AVDD10		LAN Full Load Active for Link at 10Base-T	-	TBD	-	
		LAN Full Load Active for Link at 100Base-TX	-	TBD	-	
3.3V Current for AVDD33_X25M	I _{AVDDX}	25M Crystal 3.3V Current	-	TBD	-	mA
3.3V Current for AVDD33_BG	I_{AVDDBG}	System Bandgap 3.3V Current	-	TBD	-	mA
1.0V Current for AVDD10_PCIE	I_{PCIE}	PCI Express 1.0V Current	-	TBD	-	mA
1.0V Current for AVDD10_PHYPLL	I_{PHYPLL}	Ethernet PHY PLL Power 1.0V	-	TBD	-	mA
3.3V Current for AVDD33_USB_PCIE	I _{USB_AVDD33}	USB 2.0 and PCI Express Analog Power 3.3V	ı	TBD		mA
1.0V Current for AVDD10_USB	I _{LV_USB_PCIE}	USB 2.0 Analog Power 1.0V	ı	TBD	-	mA

Parameter	SYM	Conditions	Min	Тур.	Max	Units
Total Power Consumption	PS	All LAN Ports Idle and CPU Suspended		TBD	-	Watt
		All LAN Ports Idle	-	TBD	_	
		LAN Full Load Active for Link at 10Base-T	-	TBD	_	
		LAN Full Load Active for Link at 100Base-TX	-	TBD	_	

Note: The power consumption is measured at full load of the chip system with the operating condition of:

CPU=330MHz, SDRAM=162MHz.

9.3. SDRAM Bus DC Parameters

Table 23. SDRAM Bus DC Parameters

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	Notes
$ m V_{IH}$	Input-High Voltage	LVTTL	TBD	-	-	V	1
$V_{ m IL}$	Input-Low Voltage	LVTTL		Ì	TBD	V	2
V_{OH}	Output-High Voltage	-	TBD		-	V	3
$V_{ m OL}$	Output-Low Voltage	-		-	TBD	V	3
$ m I_{IL}$	Input-Leakage Current	$V_{IN}=3.3V$ or 0	TBD	±1	TBD	μΑ	-
I_{OZ}	Tri-State Output-Leakage Current	-	TBD	±1	TBD	μΑ	-
$R_{ m PU}$	Input Pull-Up Resistance	-	-	TBD	-	ΚΩ	4
R_{PD}	Input Pull-Down Resistance	-	-	TBD	-	ΚΩ	4

Note 1: VIH overshot: VIH (MAX)=VDDH + 2V for a pulse width \leq 3ns, and the pulse width not greater than one third of the cycle rate.

- Note 2: VIL undershot: VIL (MIN)=-2V for a pulse width ≤ 3 ns cannot be exceeded.
- Note 3: The output current buffer is 16mA for SDRAM clock, address, and data bus.
- Note 4: These values are typical values checked in the manufacturing process and are not tested.

9.4. Flash Bus DC Parameters

Table 24. Flash Bus DC Parameters

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	Notes
V_{IH}	Input-High Voltage	LVTTL	TBD	-	-	V	1
$V_{ m IL}$	Input-Low Voltage	LVTTL	ı	-	TBD	V	2
$V_{ m OH}$	Output-High Voltage	ı	TBD	-	ı	V	3
V_{OL}	Output-Low Voltage	ı	ı	-	TBD	V	3
${ m I}_{ m IL}$	Input-Leakage Current	$V_{IN}=3.3V$ or 0	TBD	±1	TBD	μΑ	-
I _{OZ}	Tri-State Output-Leakage Current	-	TBD	±1	TBD	μΑ	-
R_{PU}	Input Pull-Up Resistance	-	-	TBD	-	ΚΩ	4
R_{PD}	Input Pull-Down Resistance	-	-	TBD	-	ΚΩ	4

- *Note 1: VIH overshot: VIH (MAX)=VDDH + 2V for a pulse width* \leq 3ns.
- *Note 2: VIL undershot: VIL (MIN)= -2V for a pulse width* \leq 3ns.
- Note 3: The output current buffer is 8mA for the flash address and data bus; and is 8mA for Flash control signals.
- Note 4: These values are typical values checked in the manufacturing process and are not tested.

9.5. USB 1.1 DC Parameters

Table 25. USB 1.1 DC Parameters

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	Notes
$V_{ m IH}$	Input-High Voltage	-	TBD	-	-	V	2
$V_{\rm IL}$	Input-Low Voltage	-	-	-	TBD	V	2
V_{OH}	Output-High Voltage	-	TBD	-	-	V	2
V_{OL}	Output-Low Voltage	-	-	-	TBD	V	2
I_{IL}	Input-Leakage Current	V _{IN} =3.3V or 0	-	-	-	μΑ	1

Note 1: These values are typical values checked in the manufacturing process and are not tested.

Note 2: For additional information, see the USB 1.1 Specification.

9.6. USB 2.0 DC Parameters

Table 26. USB 2.0 DC Parameters

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	Notes
$V_{ m IH}$	Input-High Voltage	-	TBD	-	-	mV	2
$V_{ m IL}$	Input-Low Voltage	-	-	-	TBD	mV	2
V_{OH}	Output-High Voltage	-	TBD	-	TBD	mV	2
V_{OL}	Output-Low Voltage	-	TBD	-	TBD	mV	2
$I_{\rm IL}$	Input-Leakage Current	-	-	-	-	μΑ	1

Note 1: These values are typical values checked in the manufacturing process and are not tested.

Note 2: For additional information, see the USB 2.0 Specifications.

9.7. UART DC Parameters

Table 27. UART DC Parameters

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	Notes
$V_{ m IH}$	Input-High Voltage	LVTTL	TBD	ı	-	V	Ī
V_{IL}	Input-Low Voltage	LVTTL	TBD	-	TBD	V	-
V_{OH}	Output-High Voltage)	TBD	-	TBD	V	1
V_{OL}	Output-Low Voltage	-	TBD	ı	TBD	V	1
I_{IL}	Input-Leakage Current	$V_{IN}=3.3V$ or 0	TBD	TBD	TBD	μΑ	2
R_{PU}	Input Pull-Up Resistance	-	-	TBD	ı	ΚΩ	2
R_{PD}	Input Pull-Down Resistance	-	-	TBD	-	ΚΩ	2

Note 1: The output current buffer is 8mA for UART related signals.

Note 2: These values are typical values checked in the manufacturing process and are not tested.

9.8. GPIO DC Parameters

Table 28. GPIO DC Parameters

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units	Notes
$V_{ m IH}$	Input-High Voltage	LVTTL	TBD	-	-	V	-
$V_{ m IL}$	Input-Low Voltage	LVTTL	TBD	-	TBD	V	-
$ m V_{OH}$	Output-High Voltage	-	TBD	-	TBD	V	1
$ m V_{OL}$	Output-Low Voltage	=	TBD	-	TBD	V	1
${ m I}_{ m IL}$	Input-Leakage Current	-	TBD	TBD	TBD	μΑ	2
R_{PD}	Input Pull-Down Resistance	-	-	TBD	-	ΚΩ	2

Note 1: The output current buffer is 8mA for GPIO related signals.

9.9. JTAG DC Parameters

Table 29. JTAG DC Parameters

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	Notes
$V_{ m IH}$	Input-High Voltage	LVTTL	TBD	TBD	TBD	V	-
$V_{ m IL}$	Input-Low Voltage	LVTTL	TBD	TBD	TBD	V	-
V_{OH}	Output-High Voltage	$I_{OH} = 2 \sim 16 \text{mA}$	TBD	TBD	TBD	V	1
V_{OL}	Output-Low Voltage	I_{OL} =2~16mA	TBD	TBD	TBD	V	1
$I_{\rm IL}$	Input-Leakage Current	-	TBD	TBD	TBD	μА	2
R_{PD}	Input Pull-Down Resistance		TBD	TBD	TBD	ΚΩ	2

Note 1: The output current buffer is 8mA for JTAG related signals.

9.10. LED DC Parameters

Table 30. LED DC Parameters

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V_{OHED}	Output-High Voltage	<i>-</i>	TBD	TBD	TBD	V
$V_{ m OLLED}$	Output-Low Voltage	-	TBD	TBD	TBD	V

Note: The output current buffer for LED signals is 8mA.

Note 2: These values are typical values checked in the manufacturing process and are not tested.

Note 2: These values are typical values checked in the manufacturing process and are not tested.

10. AC Specifications

10.1. Clock Signal Timing

Table 31. Clock Signal Timing

Symbol	Parameter	Min.	Тур.	Max.	Units	Notes
V _{IH}	Input-High Voltage	TBD	TBD	TBD	V	-
$V_{ m IL}$	Input-Low Voltage	TBD	TBD	TBD	V	-
T _{FREQUENCY}	Clock Frequency for RTL8196C Crystal or Oscillator	TBD	TBD	TBD	MHz	1
$\Delta_{ ext{FREQUENCY}}$	Clock Tolerance (between 0°C~50°C)	TBD	TBD	TBD	ppm	-
C _{SHUNT}	Crystal Parameter	TBD	TBD	TBD	pF	2
	Note: Sometimes referred to as the Holder Capacitance.					
C_1	Load Capacitance	TBD	TBD	TBD	pF	3
C_2	Load Capacitance	TBD	TBD	TBD	pF	3
T_{DC}	Duty Cycle	TBD	TBD	TBD	%	-
	Note: This parameter applies when driving the clock input with an oscillator.					

Note 1: This value could be an oscillator input or a series resonant frequency from a crystal. If used as an oscillator input, tie to the crystal input pin and leave the crystal output pin disconnected.

Note 2: The 25MHz Crystal CL=16pF is used on the RTL8196C.

Note 3: The RTL8196C PLL circuit requires an external 25MHz crystal with shunt capacitors. These shunt capacitors cannot be over 30pF due to chip design requirements.

Figure 4. **Typical Connection to a Crystal**

Figure 5. **Typical Connection to an Oscillator**

10.1.1. SDRAM Clock Timing

Table 32. SDRAM Clock Timing

Symbol	Parameter	130~180MHz			Units	Notes
		Min. (130MHz)	Typ. (160MHz)	Max. (180MHz)		
T _{PERIOD_SDRAMCLK}	Clock Period for SDRAM Clock	TBD	TBD	TBD	ns	-
$T_{CLKHIGH}$	SDRAM Clock High Time	TBD	TBD	TBD	ns	-
T_{CLKLOW}	SDRAM Clock Low Time	TBD	TBD	TBD	ns	-
T _{RISE/FALL}	Rising and Falling Time Requirements for SDRAM Clock	TBD	TBD	TBD	ns	-
T _{RISE/FALL_OUTPUT}	Propagation Delay for Output Rising and Falling	TBD	TBD	TBD	ns	1

Note 1: Please contact Realtek for the IBIS model.

Figure 6. SDRAM Clock Specifications-1

Figure 7. SDRAM Clock Specifications-2

10.2. Bus Signal Timing

10.2.1. SDRAM Bus

10.2.1.1 SDRAM Input Timing

Table 33. SDRAM Input Timing

Symbol	Parameter	Min.	Тур.	Max.	Units
T_{SETUP}	Input setup prior to rising edge of clock. Inputs included in this timing are D[31:0] (during a read operation)	TBD	TBD	-	ns
T_{HOLD}			TBD	-	ns

Note: The RTL8196C integrates some timing controls on the interface. Here the timing parameters listed in the table are extracted in the default situation (without specific controls).

Figure 8. SDRAM Input Timing

10.2.1.2 SDRAM Output Timing

Table 34. SDRAM Output Timing

Symbol	Parameter	Min.	Typ.	Max.	Units
$T_{CLK2OUT}$	Rising edge of clock-to-signal output. Outputs included in this	TBD	TBD	TBD	ns
	iming are D[31:0], CS0#, CS1#, RAS#, CAS#, LDQM, UDQM,				
	WE# (during a write operation)				
$T_{HOLDOUT}$	Signal output hold time after the rising edge of the clock. Outputs	TBD	TBD	TBD	ns
	included in this timing are D[31:0] (during a write operation)				

Note: The RTL8196C integrates some timing controls on the interface. Here the timing parameters listed in the table are extracted in the default situation (without specific controls).

Figure 9. SDRAM Output Timing

Track ID: JATR-2265-11

10.2.1.3 SDRAM Access Control Timing

Table 35. SDRAM Access Control Timing

Symbol	Parameter	Units	Notes
$T_{REFRESH}$	Auto-Refresh Timing	μs	-
	Controlled by Reg. 0xB8001008 (DTR)		
T_{RCD}	The Time Interval between RAS# Active and CAS# Active	ns	-
	Controlled by Reg. 0xB8001008 (DTR)		
T_{RP}	The Time Interval between Pre-Charge and the Next Active	ns	-
	Controlled by Reg. 0xB8001008 (DTR)		
T_{RAS}	The Time Interval between Active and Pre-Charge	ns	-
	Controlled by Reg. 0xB8001008 (DTR)		
T_{RC}	The Time Interval between Active and the Next Active	ns	1
	Controlled by Reg. 0xB8001008 (DTR)		
T_{RFC}	The Time Interval between Auto-Refresh and Active	ns	-
	Controlled by Reg. 0xB8001008 (DTR)		
T _{CAS_LATENCY}	The Data Output Delay after CAS# Active	ns	-
_	Controlled by Reg. 0xB8001004 (DCR)		

Note 1: TRC = TRAS + TRP

Figure 10. SDRAM Access Control Timing

10.2.2. Flash Bus

Table 36. Flash Access Timing Values

Symbol	Parameter	Min.	Typ.	Max.	Units
T _{CS} The Timing Interval between NF_CS0# (or NF_CS1#) and WE#		Controlled b	ns		
T_{WP}	The Timing Interval for WE# to be Pulled Low (RAS# for Read Operation)	Controlled b	by Reg. 0xB8001	100 (NFCR)	ns

Figure 11. Flash Access Timing

10.2.3. Power Sequence

Table 37. Power-Up Timing Parameters

_		14515 011 1 011 01	op inning i a	amotoro		
	Symbol	Parameter	Min.	Тур.	Max.	Units
	t1	3.3V Stable to 1.0V	1	-	-	ms

Note: The 3.3V (I/O) must be powered up before 1.0V (core) and 1.0V (analog) voltage.

Figure 12. Power Up Sequence Timing Diagram

10.2.4. Power Configuration Timing

Power up configuration only relates to internal timing. The external hardware pin reset is irrelevant with regard to power up configuration. The Hardware reset pin is valid when an internal reset ends the active state.

Figure 13. Power Up Configuration Timing Diagram

11. Thermal Characteristics

Heat generated by the chip causes a temperature rise of the package. If the temperature of the chip (Tj, junction temperature) is beyond the design limits, there will be negative effects on operation and the life of the IC package. Heat dissipation, either through a heat sink or electrical fan, is necessary to provide a reasonable environment (Ta, ambient temperature) in a closed case. As power density increases, thermal management becomes more critical. A method to estimate the possible Ta is outlined below.

Thermal parameters are defined as below according to JEDEC standard JESD 51-2, 51-6:

(1) θ ja (Thermal resistance from junction to ambient), represents resistance to heat flow from the chip to ambient air. This is an index of heat dissipation capability. A lower θ ja means better thermal performance.

$$\theta ja = (Tj - Ta) / P$$

Where Tj is the die junction temperature, Ta is the ambient air temperature

P is the power dissipation by device (Watts)

(2) θ jc (Thermal Resistance Junction-to-Case, °C/W), measures the heat flow resistance between the die surface and the surface of the package (case). This data is relevant for packages used with external heat sinks.

$$\theta jc = (Tj - Tc) / P$$

Where Tj is the die junction temperature, Tc is the package case temperature

P is the power dissipation by device (Watts)

(3) Ψjt (Thermal Characterization Parameter: Junction to package top), represents the correlation between the temperature of the chip and the package top.

Where Tj is the die junction temperature, Tt is the top of package temperature

P is the power dissipation by device (Watts)

Thermal Terminology

The major thermal dissipation paths can be illustrated as follows:

Tj: The maximum junction temperature

Ta: The ambient or environment temperature

Tc: The maximum compound surface temperature

Tb: The maximum surface temperature of PCB bottom

P: Total input power

PQFP Junction to ambient thermal resistance, θ ja, defined as:

$$\theta_{JA} = \frac{TJ - TA}{P}$$

Thermal Dissipation of PQFP Package

11.1. Thermal Operating Range

Table 38. Thermal Operating Range

Parameter	SYM	Condition	Min	Typical	Max	Units
Junction Operating Temperature	Tj	-	TBD	TBD	TBD	°C
Ambient Operating Temperature	Ta	4-layer FR4 PCB (without head sink)	TBD	TBD	TBD	°C

Note: PCB conditions (JEDEC JESD51-7). Dimensions: 7.62mm x 11.43mm. Thickness: 1.6mm.

11.2. RTL8196C Thermal Parameters

Table 39. RTL8196C Thermal Parameters

Parameter	SYM	Condition	Air Flow 0 m/s	Air Flow 1 m/s	Air Flow 2 m/s	Air Flow 3 m/s	Units
Thermal Resistance: Junction to ambient	θја	2-layer FR4 PCB	TBD	TBD	TBD	TBD	°C/W
Thermal Resistance: Junction to ambient	θја	4-layer FR4 PCB	TBD	TBD	TBD	TBD	°C/W
Thermal Characterization: Junction to package top	Ψjt	2-layer FR4 PCB	TBD	TBD	TBD	TBD	°C/W
Thermal Characterization: Junction to package top	Ψjt	4-layer FR4 PCB	TBD	TBD	TBD	TBD	°C/W

Note: PCB conditions (JEDEC JESD51-7): Dimensions: 7.62mm x 11.43mm; Thickness: 1.6mm.

12. Mechanical Dimensions

12.1. Plastic Quad Flat Package 128-Pin 14x20mm Outline

Symbol	Dimension in mm			Dimension in inch			
	Min	Nom	Max	x Min Nom		Max	
A		-	3.40	-	-	0.134	
A_1	0.25		<u>-</u>	0.010	-	-	
A_2	2.50	2.70	2.90	0.100	0.106	0.114	
b	0.17	0.22	0.27	0.007	0.009	0.011	
D	23.2BSC			0.913BSC			
D_1	20.00BSC			0.787BSC			
E	17.20BSC			0.677BSC			
E_1	14.00BSC			0.551BSC			
e	0.50BSC			0.020BSC			
L	0.73	0.88	1.03	0.029	0.035	0.041	
L1		1.60REF			0.063REF		

Notes: CONTROLLING DIMENSION: MILLIMETER (mm).

13. Ordering Information

Table 40. Ordering Information

Part Number	Package	Status
RTL8196C-GR	128-Pin PQFP, 'Green' Package	

Note: See page 5 for package and version identification.

Realtek Semiconductor Corp.

Headquarters

No. 2, Innovation Road II

Hsinchu Science Park, Hsinchu, 300, Taiwan, R.O.C.

Tel.: +886-3-578-0211. Fax: +886-3-577-6047

www.realtek.com