Ayudantía 3 - Corriente Alterna Electrónica y Electrotecnia

Pedro Morales Nadal

Edicson Solar Salinas

pedro.morales1@mail.udp.cl

edicson.solar@mail.udp.cl

Ingeniería Civil en Informática y Telecomunicaciones

9 de septiembre de 2025

¿Qué veremos?

- CA
- Repaso complejos
- Sinusoides
- Fasores
- Inductores y Condensadores
- Adelanto y **Retraso**

Antes

...

Corriente Alterna

Corriente Alterna

• V_m: Altura/Amplitud/Voltaje máxima

ullet ω : Frecuencia angular

• φ : Desfase

- En coordenadas cartesianas: (x, y)
- En coordenadas polares: $(r\cos(\theta), r\sin(\theta))$
 - $> x = r \cos(\theta)$
 - $y = r \sin(\theta)$
 - $\theta = \tan^{-1} \left(\frac{x}{y} \right)$ $r^2 = x^2 + y^2$

$$|z|e^{i\theta}=|z|\angle\theta$$

$$i \neq \sqrt{-1}$$
 $j = \sqrt{-1}$

i es intensidad de corrientej es la unidad imaginaria

$$V_m \angle \varphi$$

Anotaciones aparte

•
$$V_{RMS} = \frac{V_m}{\sqrt{2}}$$

• $\omega = 2\pi f$
• $f = \frac{1}{T}$

"Valor eficaz de la tensión alterna"

•
$$\omega = 2\pi t$$

•
$$f=rac{1}{T}$$

Impedancia en Corriente Alterna

- La impedancia (Z) es la resistencia total de un circuito en AC.
- Se expresa en forma compleja: Z = R + jX, donde:
 - R: Resistencia real (en ohmios).
 - X: Reactancia (en ohmios).
- Z depende del tipo de componente en el circuito (resistor, inductor, condensador).

Impedancia de Resistor, Inductor y Condensador

- Resistor: $Z_R = R$.
- Inductor: $Z_L = j\omega L$, donde ω es la frecuencia angular ($\omega = 2\pi f$).
- Condensador: $Z_C = \frac{1}{j\omega C}$.

Notita

El término j es la unidad imaginaria, que representa un desfase de 90 grados.

Suma de Impedancias Complejas

 Para circuitos en paralelo o serie, la impedancia total es la suma o la inversa de la suma de las impedancias individuales.

- En serie: $Z_{\text{total}} = Z_1 + Z_2 + Z_3 + \dots$
- En paralelo: $\frac{1}{Z_{\text{total}}} = \frac{1}{Z_1} + \frac{1}{Z_2} + \frac{1}{Z_3} + \dots$

Desfase en Circuitos RLC

- El desfase (φ) es la diferencia de fase entre la tensión y la corriente en un circuito.
- En un resistor: no hay desfase ($\varphi = 0^{\circ}$ ó 0 radianes).
- En un inductor: la corriente se retrasa respecto a la tensión ($\varphi=+90^\circ$ ó $+\frac{\pi}{2}$ radianes).
- En un condensador: la corriente adelanta respecto a la tensión ($\varphi=-90^\circ$ ó $-\frac{\pi}{2}$ radianes).

HELICE

- E: Voltaje
- I: Corriente
- L: Reactancia inductiva
- C: Reactancia capacitiva

Diagramas de Fase

Resistencia
El Voltaje va en fase con la
Corriente.

El Voltaje se adelanta 90° de la corriente.

Condensador El Voltaje se retrasa 90° de la corriente.

Diagramas como gráficos

Componentes Electrónicos

Notación

- R: Resistencia
- X: Reactancia
 - ► X_L: Reactancia Inductiva
 - \triangleright X_C : Reactancia Capacitiva
- Z: Impedancia

$$Z = R + jX_L - jX_C$$

Ejercicio - Corriente Alterna

Para el siguiente circuito, obtenga la caída de tensión entre $\bf a$ y $\bf b$. Luego grafique el voltaje y la corriente total del circuito sabiendo que V_i es $110\angle 90^\circ$, f=50 Hz, $R_4=2R_3=4R_2=4R_1=8\,\Omega$ y L=6 mH.

Ejercicio - Thévenin

Para el siguiente circuito, obtenga el equivalente de Thévenin viste desde R_1 y cual debería ser el valor de dicha resistencia para obtener la máxima transferencia de potencia

Ayudantía 3 - Corriente Alterna 9 de septiembre de 2025 Electrónica y Electrotecnia

¿DUDAS?

CHAO GENTE

