Levi King & Markus Dickinson Indiana University

## Overview & Background

▶ Goal: Evaluate semantic accuracy of non-native speaker (NNS) responses to picture description task (PDT)

► Compare to gold standard (GS) of native speaker (NS) responses

## Past Approach

- 1. Dependency parse NNS responses & GS
- 2. Use custom rules to extract and lemmatize verb-subject-object triple for each response
- 3. Attempt to match NNS triple to GS triples

#### **Past Limitations**

- 1. GS is small
- 2. NNS responses show more variation than NS responses
- 3. Matching exact triples is restrictive (no partial matching)
- $kick(boy, ball) \neq kick(boy, football)$

Upshot: low coverage (50.8%)

#### **Current Approach**

Generalize methods by:

- 1. Representing responses as lists of dependencies
- 2. Scoring NNS response representation according to how closely it resembles GS representation partial matching: subj\_boy\_kick + obj\_ball\_kick vs. subj\_boy\_kick + obj\_football\_kick

# **Picture Description Task**

# Picture Description Task (PDT)

- ▶ 10 items (2 photos, 8 drawings) depicting transitive events
- ▶ PDT elicits natural productions but constrains form & content

#### **Participants**

- ▶ 39 NNSs, intermediate/advanced English; 390 sentences
- Arabic, Chinese, Japanese, Korean, Spanish, Kurdish, Polish, Portugese
- ▶ 14 NSs; 140 sentences



#### **Participants**

- In the sections below, we explain the system parameter settings. The first two are closely related to generalizing the methods to overcome a limited GS, handle a wider range of sentence types (beyond transitives), and better reflect similarity to the GS.
  - ▶ Response Representation: By moving to a "bag of dependencies" approach, we loosen the strict evaluation from covered/not covered; partial dependencies further loosen matching.
  - ▶ Response Scoring: Averaging response term scores or calculating cosine distances allows for gradable rather than binary response scoring.

#### Responses

Responses are dependency parsed and treated as a list of terms, which are dependencies in one of the formats below (I, d, h = label, dependent, head; x = placeholder):

- ▶ ldh: subj\_boy\_kick
- ► xdh: x\_boy\_kick
- ▶ lxh: subj\_x\_kick
- ▶ ldx: subj\_boy\_x
- ► xdx: x\_boy\_x

#### Annotation

Scoring responses involves:

- Weighting terms (dependencies)
- ▶ Scoring responses: comparing weighted NNS terms with weighted GS terms
  - Frequency Average (FA):
    - Weight: NNS terms assigned GS term frequencies
    - ▶ Response score: average of NNS term scores
  - ► Tf-idf Average (TA):
  - ▶ Weight: NNS terms assigned tf-idf scores based on GS frequencies
  - ▶ Response score: average of NNS term scores
  - ► Frequency Cosine (FC):
  - ▶ Weight: NNS & GS term frequencies are calculated
  - ▶ Response score: cosine distance between NNS & GS term scores
  - ► Tf-idf Cosine (TC):
  - ▶ Weighting: NNS & GS tf-idf values are calculated
  - ▶ Response score: cosine distance between NNS & GS term scores

## Agreement

TA and TC require a reference corpus for deriving tf-idf scores. We experimented with two:

- ► Brown Corpus (B)
- ▶ Wall Street Journal Corpus (W)

## **Future Directions**

We experiment with two forms of the NNS responses:

- ► NNSO: Original, uncorrected form
- ► NNSLM: Language Model autocorrected form

## **PLACEHOLDER**

- 1. Manually annotate responses; unacceptable responses are "errors"
- 2. Use each combination of parameters to produce a scored, ranked list of responses (Table 1) ▶ Good parameter settings should rank good responses near GS and errors far from GS
- 3. Evaluate and rank parameter settings by (mean) average precision ((M)AP) (Table 3)
  - ▶ Also evaluate settings by non-normalized error score, which better illustrates differences in difficulty of PDT items (used in Figure 2)
- 4. Evaluate individual parameter values by MAP (Table 2)

| R                                      | 5     | Sentence                         | E | V    |  |
|----------------------------------------|-------|----------------------------------|---|------|--|
| 1                                      | 1.000 | she is hurting.                  | 1 | 1.5  |  |
| 1                                      | 1.000 | man mull bird                    | 1 | 1.5  |  |
| 3                                      | 0.996 | the man is hurting duck.         | 1 | 3.0  |  |
| 4                                      | 0.990 | he is hurting the bird.          | 1 | 3.0  |  |
| 11                                     | 0.865 | the man is trying to hurt a bird | 1 | 11.0 |  |
| 12                                     | 0.856 | a man hunted a bird.             | 0 | 0.0  |  |
| 17                                     | 0.775 | the bird not shot dead.          | 1 | 17.0 |  |
| 18                                     | 0.706 | he shot at the bird              | 0 | 0.0  |  |
| 19                                     | 0.669 | a bird is shot by a un           | 1 | 19.0 |  |
| 20                                     | 0.646 | the old man shooting the birds   | 0 | 0.0  |  |
| 37                                     | 0.086 | the old man shot a bird.         | 0 | 0.0  |  |
| 38                                     | 0.084 | a old man shot a bird.           | 0 | 0.0  |  |
| 39                                     | 0.058 | a man shot a bird                | 0 | 0.0  |  |
| Total Raw Score (not normalized) 17 16 |       |                                  |   |      |  |
| Average Precision 0.750                |       |                                  |   |      |  |

Table 1: Excerpt of rankings for Item 10 from the best system setting (TC\_B\_NNSLM\_Idh) based on average precision scores. R: rank; S: sentence score; E: error; V: rank value.

#### **PLACEHOLDER**

| Approach |    | Term Form |         | Ref. Corp. (TA/TC) |         | NNS Source |         |
|----------|----|-----------|---------|--------------------|---------|------------|---------|
|          |    |           | 0.51810 |                    |         | NNSLM      | 0.51937 |
| 0.50780  | FC | ldh       | 0.51677 | WSJ                | 0.50798 | NNSO       | 0.49699 |
| 0.50755  | TA | lxh       | 0.51350 |                    |         |            |         |
| 0.49464  | FA | xdx       | 0.49901 |                    |         |            |         |
|          |    | ldx       | 0.49352 |                    |         |            |         |

Table 2: Approaches and parameters ranked by mean average precision for all 10 PDT items.

- ▶ Best approach: **TC**
- ightharpoonup TC > FC, TA > FA:
- tf-idf weighting > frequency weighting
- ► TC&FC > TA&FA:
- ▶ cosine distance > weight averaging
- ► Term form: xdh, ldh, lxh > xdx, ldx
- ▶ Importance of heads (h): with short transitive responses, verbs are salient (subj/obj head)
- ► Reference corpus: **Brown** > **WSJ**
- ► Content & style of responses more like **Brown**
- ► NNS source: **NNSLM** > **NNSO**
- ► More errors in NNSLM forms, inflating MAP values: use non-normalized scores? (see paper)

| Rank | MAP    | Settings            |
|------|--------|---------------------|
| 1    | 0.5534 | TC_B_NNSLM_lxh      |
| 2    | 0.5445 | $TA_B_NNSLM_lxh$    |
| 3    | 0.5435 | TC_W_NNSLM_lxh      |
| 4    | 0.5422 | $TC_B_NNSLM_xdh$    |
| 5    | 0.5368 | $TC\_B\_NNSLM\_Idh$ |
| 56   | 0.4816 | TA_B_NNSO_xdx       |
| 57   | 0.4796 | FA_na_NNSLM_ldx     |
| 58   | 0.4769 | $FC_na_NNSO_lxh$    |
| 59   | 0.4721 | $TA_W_NNSO_xdx$     |
| 60   | 0.4530 | $FA_na_NNSO_lxh$    |

Table 3: Based on Mean Average Precision, the five best and five worst settings across all 10 PDT items.

## **PLACEHOLDER**

We used hierarchical clustering to explore for patterns among the items and parameters.

Set-up: cluster PDT items using features from response (e.g., type/token counts for terms) & features from system performance (i.e., average error score for parameter setting). Goal: new PDT items could be placed into known clusters via response features & optimal parameter settings for that cluster could be applied automatically



Figure 1: PDT items clustered by type and token counts of all NS, NNSO and NNSLM responses.



Figure 2: PDT items clustered by parameter performance.