Grado en Ingeniería Informática

Computabilidad y Algoritmia Curso 2014-2015

PRÁCTICA 9

Diseño de Máquinas de Turing con JFLAP

Semana del 10 al 14 de noviembre

1. Objetivo

El objetivo de esta práctica consiste en introducir los fundamentos básicos de las máquinas de Turing. Se comprobará y verificará el funcionamiento de algunos ejemplos y se diseñarán máquinas de Turing que cumplan con un propósito determinado. Para simular el comportamiento de las máquinas de Turing diseñadas utilizaremos la herramienta JFLAP (disponible en http://jflap.org y en el aula virtual de la asignatura).

Para esta práctica será necesario realizar los ejercicios propuestos en este enunciado y llevarlos resueltos a la clase práctica de laboratorio. Durante la sesión presencial se les podrá proponer la resolución de nuevos ejercicios.

2. Introducción

Consideremos una máquina de Turing que acepte el lenguaje siguiente:

$$L = \{0^n 1^n \mid n \ge 1\}$$

Inicialmente la máquina contendrá una secuencia de símbolos "0" seguida de una secuencia de símbolos "1" seguida por un número infinito de símbolos \$ (utilizaremos el símbolo \$ para representar el símbolo blanco). Sucesivamente, la máquina reemplazará el "0" más a la izquierda en la cinta por un símbolo X, se moverá hacia la derecha hasta el "1" situado más a la izquierda en la cinta, reemplazándolo, en este caso, por un símbolo Y. A continuación, se moverá hacia la izquierda hasta encontrar la X situada más a la derecha. En ese momento se moverá una celda a la derecha para alcanzar el "0" situado más a la izquierda. A partir de ese momento, se volverá a repetir el ciclo.

Si la máquina encuentra un \$ cuando busca un "1", la máquina parará sin aceptar la cadena. Si después de cambiar un "1" por una Y la máquina no encuentra más ceros, entonces habrá que comprobar que tampoco hay más unos, aceptando la cadena si no los hay.

Grado en Ingeniería Informática

Computabilidad y Algoritmia Curso 2014-2015

El alfabeto de entrada será $\Sigma = \{0,1\}$, el de cinta $\Gamma = \{0,1,X,Y,\$\}$ y el conjunto de estados de la máquina será $Q = \{q_0,q_1,q_2,q_3,q_4\}$. El estado q_0 es el inicial y también se transita a él antes de reemplazar por X un cero situado más a la izquierda. El estado q_1 se utiliza para buscar hacia la derecha ignorando ceros y símbolos Y, hasta encontrar el 1 situado más a la izquierda. Si la máquina halla un "1", lo cambia por Y pasando al estado q_2 . El estado q_2 se usa para buscar un símbolo X hacia la izquierda. Cuando lo encuentra, la máquina pasa al estado q_0 y se mueve a la derecha para colocarse sobre el "0" situado más a la izquierda. Cuando la máquina busca hacia la derecha en el estado q_1 rechaza la entrada si encuentra un \$ o una X antes que un "1": en este caso o bien hay demasiados ceros o bien la entrada no es de la forma 0*1*.

El estado q_0 juega también otro papel: si después de que en el estado q_2 se encuentre la X situada más a la derecha hay una Y situada inmediatamente a la derecha, entonces es que los ceros se han acabado. En este caso (estando en q_0 y viendo una Y) se transita al estado q_3 para leer todas las Y y comprobar que no queda ningún "1". Si los símbolos Y están seguidos por un \$ se pasa al estado de aceptación q_4 . En otro caso, la cadena es rechazada. La función de transición para esta máquina sería la siguiente:

δ	0	1	X	Y	\$
q_0	(q_1, X, R)	=	=	(q_3, Y, R)	=
q_1	$(q_1, 0, R)$	(q_2, Y, L)	ı	(q_1, Y, R)	ı
q_2	$(q_2, 0, L)$		(q_0, X, R)	(q_2, Y, L)	_
q_3	_			(q_3, Y, R)	$(q_4,\$,L)$
q_4	-	-	-	-	-

Veamos un ejemplo de computación con esta máquina cuando la cadena de entrada es 0011:

3. Ejercicios

- 1. Comprobar con JFLAP (ejecutando paso a paso) la máquina de Turing del ejemplo del apartado anterior, introduciendo tres cadenas $w \in L = \{0^n 1^n \mid n \geq 1\}$ y tres cadenas $w \notin L = \{0^n 1^n \mid n \geq 1\}$.
- 2. Teniendo en cuenta el diseño realizado en el ejemplo anterior, construir y simular en JFLAP una máquina de Turing que acepte el lenguaje $L = \{a^nb^nc^m \mid n \geq 0, m \geq n\}$. Para verificar el comportamiento de la máquina de Turing, comprobar el comportamiento de la misma para al menos una cadena que sea aceptada y para una que no sea aceptada.

Grado en Ingeniería Informática

Computabilidad y Algoritmia Curso 2014-2015

3. Construir y simular en JFLAP una máquina de Turing que acepte el lenguaje $L = \{w \mid \text{la longitud de } w \text{ es par}\}$. Para verificar el comportamiento de la máquina de Turing, comprobar el comportamiento de la misma para al menos una cadena que sea aceptada y para una que no sea aceptada.