附件 1: 德尔福电喷系统的典型数据流

1、常规检查

- 线束接插件接插可靠;
- 油路及真空管路固定可靠;
- 固紧氧传感器和三元催化器接口端面螺栓,确保接头面的密封;必要时以 1.3 大气压 检查排气系统,应无明显泄漏。

2、系统初始化设置

- 电喷控制系统的初始化:启动3秒后退电,10秒钟后系统初始化设置完成。
- 燃油供给系统的初始化:启动3秒后退电,1秒钟后重新开启,重复5次,供油系统初始化设置完成。

3、系统及车辆状态检查

1) 第一步:冷车,上电至 ON 档,发动机静止(约 30 秒)

	检测项目	
1	显示故障码	无
2	发动机故障指示灯	亮
3	电瓶电压	11.5~13V
4	冷却液温度传感器	正常温度
5	进气温度传感器	环境温度
6	进气歧管绝对压力传感器	环境大气压(约: 100kPa)
7	节气门位置传感器工作范围	0~99.6%
8	氧传感器	1127mV
9	怠速控制阀	40~159 步 (冷却液温度: 高~低)

2) 第二步: 退电至 0FF 档

	检测项目	
1	怠速马达实际位置	约8秒后停留到128步
2	ECM 电源是否关断	诊断仪显示中止
3	发动机故障检查灯	灭

3) 第三步: 起动发动机(注意: 起动时不得操作发动机上任何机构和油门)

	检测项目	
1	起动时间	<5 秒
2	常温下起动转速	<1600RPM
3	发动机故障检查灯	灭

4) 第四步: 怠速检查(起动后预热发动机达正常冷却液温度)

● 低怠速

	检测项目		
1	发动机故障指示灯	灭	
2	是否显示故障码	无	
3	冷却液温度	80~94℃	
4	冷却风扇(单速风扇只用低速风扇数	冷却液温度	冷却风扇状态
	据)	93	低速风扇开
		87	低速风扇关
		100	高速风扇开
		94	高速风扇关
5	电瓶电压	13.5~14.5V	
6	转速	780±50RPM	

- 104 -

		850±50RPM(冷却风扇、大灯及风机开启时)
7	点火提前角	5~13°
8	进气歧管压力	35~55kPa
9	怠速马达实际位置	15~30 步
10	喷油脉宽	2~4ms
11	氧传感器/10 秒钟内跳变次数	100~900mV /≥6 次

● 高怠速(轻踩油门,使发动机转速达 2000RPM)

	检测项目	
1	发动机故障指示灯	灭
2	是否显示故障码	无
3	冷却液温度	80~94°C
4	电瓶电压	13.5~14.5V
5	转速	实际值(应控制在 2000±50RPM)
6	点火提前角	20~30°
7	喷油脉宽	2~4ms
8	氧传感器/10 秒钟内跳变次数	100~900mV /≥10 次

5) 第5步: 空调系统检查

● 正常怠速,空调系统关闭

	检测项目	
1	状态 3—A/C 系统	出现
2	状态 5—前蒸发器	出现

● 开启空调,稳定10秒后

	检测项目	
1	发动机怠速	850±50RPM
2	状态 3—A/C 请求信号	出现
3	状态 3—A/C 继电器	出现
4	状态 3—A/C 系统	出现
5	状态 4—风扇 1	出现
6	状态 5—风扇 2	出现
7	状态 5—前蒸发器	出现

6) 驾驶检查

下述操作务必在驾驶检查过程中执行:

- 节气门开度大于 10%, 持续 15 秒以上;
- 直接档,车速达到80km/h,收油门滑行5秒钟以上

	检测项目	
1	发动机故障指示灯	灭
2	故障码	无
3	冷却液温度	80~94°C
4	电瓶电压	13.5~14.5V
5	进气歧管绝对压力传感器	20kPa~大气压
6	节气门位置传感器范围	0~99.6%
7	氧传感器	50~950mV

4、说明

4.1 常规检查

- 接插件接插不牢,会引起信号的传递和控制的失准;
- 进/回油管不可接反,油压调节器压力平衡真空管不可漏接,漏接可能导致排放异

105 -

常和燃油消耗增加;

- 碳罐清洗管也不可接反和漏接,漏接可能导致怠速异常;
- 自发动机缸盖至三元催化器之间若密封不良,外界空气可能在发动机工作时进入, 导致空燃比平衡破坏,三元催化器的转化效率降低。

4.2 系统初始化设置

- ECM 安装后第一次上电后关断时, ECM 都会对系统进行初始化设置;
- 每次上电至 0N 档,燃油泵将工作 1.5 秒。车辆下线时,燃油管路无油,因此首先应对管路充油。

4.3 系统及车辆状态检查

- 4.3.1. 启动发动机,发动机静止
 - 发动机故障指示灯点亮,但应无故障码;
 - 进气歧管绝对压力传感器应显示当地当时的大气压力值;
 - 调节油门拉索及踏板螺钉,确保节气门开度的关闭和全开;
 - 正常怠速状态下,水温达到80℃以上,氧传感器加热时,前氧传感器电压读数应在100mV至900mV之间跃变,跃变次数应大于6次/10秒
 - 怠速阀的位置基于发动机的温度,热机时开度小,冷机时开度大。

4.3.2. 电源 OFF 档

● 退电至 0FF 档后,若怠速控制阀没有动作,同时 ECM 电源立刻关断,检查 ECM 常供电源线是否误接至启动按钮;它将导致发动机再起动困难和减速熄火,也可能影响排放性能。

4.3.3. 起动发动机

- 若起动性能不良,检查是否完成初始化操作,供油系统零部件及其连接状况,油 路是否有油和通畅,点火系统零部件及其连接状况:
- 若上述无问题,检查怠速控制阀,确认指令对其有效。

4.3.4. 怠速检查

- 发动机故障指示灯点灭,且无故障码;
- 电瓶电压显示发电机是否正常工作;
 - 过高:可能发电机调节器故障
 - 过低:可能是发电机连线不当或发电机故障;
- 进气歧管压力可预示进气有无漏气和气门间隙问题。气门间隙过小,此值偏高,可能影响发动机的动力性,并因排气门过早开启,排温升高而大大缩短氧传感器及三元催化器使用寿命;
 - 此外,排气系统堵塞(如:有异物存在于排气道内,或三元催化器内部破碎),也 会造成此值偏高;
- 怠速马达实际位置值太低,预示进气系统存在漏气;太高则预示节气门体和怠速 控制阀部分被堵塞;
- 氧传感器值跳变次数太少,预示氧传感器失效。

4.3.5. 空调系统检查

● 空调开启时目标怠速增加 100RPM, 空调风扇开启时再加 50RPM, 通常它们是同时启动, 故空调开启后,发动机怠速应在原有怠速上增加 150RPM。

4.3.6. 驾驶检查

● 车速及氧传感器故障在此过程中被诊断,同时替代控制方案在故障被检出后生效。

附件 2: EOBD 系统齿讯学习程序

操作 1: 曲轴位置传感器目标轮齿误差学习

- 1) 安装了新电脑的车辆在未进行过齿讯学习时,起动后故障指示灯点亮,诊断仪显示 P1336 的故障;
- 2) 起动后待水温达到60℃,车辆运行时间大于10秒,车上其他负载应处于关闭状态;
- 3) 通过诊断仪发"齿讯学习"指令(指令"30 2c 07 ff")
- 4) 将油门迅速踩到底并保持住,这时 ECM 应进行齿讯学习,发动机转速从 1300-4500 往 复 2~5 个循环,最后会在 4500rpm 附近振荡,学习结束;如果转速超过 5000rpm,则松 开脚踩油门,检测车辆,查找问题。
 - (以上为进行齿讯学习时发动机转速的典型特征,可由此判断齿讯学习是否进行及结束)
- 5) 通过诊断仪发"停止齿讯学习"指令(指令"30 2C 00")
- 6) 发动机熄火,约 15 秒后 Key-On,清除故障码,Key-Off;
- 7) 15 秒后起动发动机,通过诊断仪检查 P1336 是否通过。

107 -