## Small Sample Learning GAN Implementation

July 25, 2019

## 1 Main Experimental Results

The results are in Table 1

Table 1: Mini-ImageNet Result: table items are [test result] ([valid result])

| Model                                                                                                                      | 5-way $1$ -shot                                                           | 5-way $5$ -shot                                                           |
|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Baseline (Chen et al., 2019)<br>Baseline++ (Chen et al., 2019)                                                             | 42.11<br>48.24                                                            | 62.53<br>66.43                                                            |
| DVE-Gauss (w/o pretrain trick) DAE-Gauss (w/o pretrain trick) ProtoNet (w/0 pretrain trick) ProteNet+ (w/o pretrain trick) | $\approx 43$ $\approx 44$ $44.42$ $48.91 (48.12)$                         | $\approx 63$ $\approx 64$ $64.24$ $66.52 (65.13)$                         |
| ProtoNet DVE-Gauss DAE-Gauss DVE-vMF DAE-vMF                                                                               | 46.61<br>46.43 (46.60)<br>47.37 (48.53)<br>51.00 (50.92)<br>52.02 (52.08) | 65.77<br>66.92 (66.99)<br>66.99 (68.18)<br>67.90 (66.67)<br>66.35 (67.89) |

## 2 Comments

- About DAE (Discriminative Adversarial autoEncoder) model: use one amortized disriminator instead of K discriminators, a extension of Adversarial Autoencoder with supervised labels (+ discriminative loss, + trainable embedding) (Fig 2)
- Preprocessing matters in Mini-ImageNet dataset: Chen et al. (2019) A Closer Look at Few-shot Classification
  - Data augmentation
  - Careful design of output layer
- Mini-Imagenet is a noisy dataset



Figure 1: Adversarial Autoencoder with supervised labels

- pretrain trick used in DVE (use BN/Dropout/Rotate Data Augmentation to train a CNN embedding)
  - \* Rotate Data Augmentation: prevent the pretrained CNN overfitting the data (which will make feature sparse)
  - \* Dropout: If don't use dropout, the performance of DVE will be 45/64
- validation perf and test perf might not correlated after converge.

## • For DAE Implementation

- DAE could not be able to end-to-end learn a embedding (data or mini-imagenet itself).
- DAE requires a high learning rate for embedding and unstable training process for embedding matching training process.
- (w pretrain trick) both DAE and DVE seems to be a fine-tuned model (reach optimal after about 5-10 epoches)