

Exercise 6: Water cycles and signature

Peter Burek, Mikhail Smilovic, Luca Guillaumot International Institute for Applied Systems Analysis Research Scholars at

Water Program

Water cycle

I I A S A

A <u>water balance</u> is used to understand the flows through a system.

A <u>water cycle/wheel/circle</u> summarises the flows through a system over a certain period.

The inputs to the system equal the outputs from the system plus whatever changed in the system.

Inputs = Outputs + Storage change

Water cycle and signature example

The Rhine basin for an example year

Water cycles and signature

- 1. Install Jupyter notebook
- 2. Open and execute WaterCycles.ipynb using Jupyter notebook

- 3. Play CWatM with specific outputs and for your coordinates
- 4. Execute WaterCycles.ipynb, updating the outputs path and basin outlet coordiantes

1. Install Jupyter Notebook

Getting started with the classic Jupyter Notebook

conda

We recommend installing the classic Jupyter Notebook using the conda package manager. Either the miniconda or the miniforge conda distributions include a minimal conda installation.

Then you can install the notebook with:

conda install -c conda-forge notebook

pip

If you use pip, you can install it with:

pip install notebook

Congratulations, you have installed Jupyter Notebook! To run the notebook, run the following command at the Terminal (Mac/Linux) or Command Prompt (Windows):

jupyter notebook

See Running the Notebook for more details.

This is an except from https://jupyter.org/install.html

2. WaterCycles.ipynb

Open up the terminal within the Exercise 6 folder and type

jupyter notebook

Click WaterCycles.ipynb

Execute the notebook

3. Play CWatM with these settings

Bring your settings file from exercise 5 into the exercise 6 folder, and include the following settings:

```
PathOut = ./output
useSmallLakes = False
OUT_Map_Daily = unmet_lost, unmetDemand,
pot_GroundwaterAbstract, discharge,
storGroundwater, nonFossilGroundwaterAbs,
Precipitation, totalET, EvapoChannel,
EvapWaterBodyM, act_nonIrrConsumption,
channelStorage, lakeResStorage, totalSto,
sum_actTransTotal, sum_actBareSoilEvap,
sum_interceptEvap, sum_openWaterEvap,
addtoevapotrans, lakeResInflowM,
act_bigLakeResAbst, lakeResOutflowM,
sum_qwRecharge, sum_capRiseFromGW, baseflow,
act_totalIrrConsumption, sum_runoff,
returnFlow, act SurfaceWaterAbstract
OUT_MAP_TotalEnd = cellArea
```

Alternatively, the settings file settings_watercycles_5min.ini already has the correct settings. Simply change MaskMap and Gauges to the coordinates of the outlet of any basin of interest.

For example, for the Nile basin

MaskMap = 30.45 31.4

Gauges = 30.45 31.4

4. WaterCycles, new basin

Update the output folder and the coordinates to the assocaited basin outlet, and then execute!

output_folder = r'.\output'

Water Cycles with CWatM

CWatM is to be run including the following settings:

```
useSmallLakes = False

OUT_Map_Daily = unmet_lost, unmetDemand, pot_Groundw storGroundwater, nonFossilGroundwaterAbs, Precipitat EvapWaterBodyM, act_nonIrrConsumption, channelStorag sum_actTransTotal, sum_actBareSoilEvap, sum_intercep addtoevapotrans, lakeResInflowM, act_bigLakeResAbst, sum_gwRecharge, sum_capRiseFromGW, baseflow, act_tot sum_runoff, returnFlow, act_SurfaceWaterAbstract

OUT_MAP_TotalEnd = cellArea

In [1]:  # User- and simulation specific inputs
    output_folder = r'.\output'
    # Location of simulation area discharge point latitude = 31.4
    longitude = 30.45
```


Ravi subbasin

 $MaskMap = 71.85 \ 30.64 \ (long lat)$

Gauges = $71.85 \ 30.64 \ (long lat)$

Water flows, daily

Rhine basin

MaskMap = 6.11 51.84

Gauges = 6.1151.84

Krishna basin

MaskMap = 80.875 15.875

Gauges = 80.875 15.875

Nile basin

MaskMap = 30.45 31.4

Gauges = 30.45 31.4

