Методы оптимизации. Семинар 7. Сопряжённые функции

Александр Катруца

Московский физико-технический институт

24 августа 2020 г.

Напоминание

- Субградиент и субдифференциал
- Условный субдифференциал
- Способы вычисления субдифференциалов

Определение

Снова сопряжённое?

- Ранее были рассмотрены сопряжённые (двойственные) множества и, в частности, конусы
- Сейчас будут рассмотрены сопряжённые (двойственные) функции
- Далее будет введена двойственная оптимизационная задача

Определение

Пусть $f:\mathbb{R}^n \to \mathbb{R}$. Функция $f^*:\mathbb{R}^n \to \mathbb{R}$ называется сопряжённой функцией к функции f и определена как $f^*(\mathbf{y}) = \sup_{\mathbf{x} \in \mathrm{dom}\ f} (\langle \mathbf{y}, \mathbf{x} \rangle - f(\mathbf{x})).$

Область определения f^* — это множество таких y, что супремум конечен.

ightharpoonup Сопряжённая функция f^* всегда выпукла как супремум линейных функций независимо от выпуклости f

- ightharpoonup Сопряжённая функция f^* всегда выпукла как супремум линейных функций независимо от выпуклости f
- ▶ Неравенство Юнга-Фенхеля: $\langle \mathbf{y}, \mathbf{x} \rangle \leq f(\mathbf{x}) + f^*(\mathbf{y})$ Обобщение квадратичного случая:

$$\langle \mathbf{y}, \mathbf{x} \rangle \leq \frac{1}{2} \|\mathbf{x}\|_2^2 + \frac{1}{2} \|\mathbf{y}\|_2^2$$

- ightharpoonup Сопряжённая функция f^* всегда выпукла как супремум линейных функций независимо от выпуклости f
- ▶ Неравенство Юнга-Фенхеля: $\langle \mathbf{y}, \mathbf{x} \rangle \leq f(\mathbf{x}) + f^*(\mathbf{y})$ Обобщение квадратичного случая: $\langle \mathbf{y}, \mathbf{x} \rangle \leq \frac{1}{2} \|\mathbf{x}\|_2^2 + \frac{1}{2} \|\mathbf{y}\|_2^2$
- lacktriangle Если f выпукла и замкнута, то $f^{**}=f$

- Сопряжённая функция f^* всегда выпукла как супремум линейных функций независимо от выпуклости f
- ▶ Неравенство Юнга-Фенхеля: $\langle \mathbf{y}, \mathbf{x} \rangle \leq f(\mathbf{x}) + f^*(\mathbf{y})$ Обобщение квадратичного случая: $\langle \mathbf{y}, \mathbf{x} \rangle \leq \frac{1}{2} \|\mathbf{x}\|_2^2 + \frac{1}{2} \|\mathbf{y}\|_2^2$
- lacktriangle Если f выпукла и замкнута, то $f^{**}=f$
- Для выпуклой функции следующие условия эквивалентны:

- ightharpoonup Сопряжённая функция f^* всегда выпукла как супремум линейных функций независимо от выпуклости f
- ▶ Неравенство Юнга-Фенхеля: $\langle \mathbf{y}, \mathbf{x} \rangle \leq f(\mathbf{x}) + f^*(\mathbf{y})$ Обобщение квадратичного случая: $\langle \mathbf{y}, \mathbf{x} \rangle \leq \frac{1}{2} \|\mathbf{x}\|_2^2 + \frac{1}{2} \|\mathbf{y}\|_2^2$
- $(3,14) = \frac{1}{2} (13,112) + \frac{1}{2} (13,112)$ Если f выпукла и замкнута, то $f^{**} = f$
- Для выпуклой функции следующие условия
 - эквивалентны: $\mathbf{y} \in \partial f(\mathbf{x})$

- ightharpoonup Сопряжённая функция f^* всегда выпукла как супремум линейных функций независимо от выпуклости f
- ▶ Неравенство Юнга-Фенхеля: $\langle \mathbf{y}, \mathbf{x} \rangle \leq f(\mathbf{x}) + f^*(\mathbf{y})$ Обобщение квадратичного случая: $\langle \mathbf{y}, \mathbf{x} \rangle \leq \frac{1}{2} \|\mathbf{x}\|_2^2 + \frac{1}{2} \|\mathbf{y}\|_2^2$
- lacktriangle Если f выпукла и замкнута, то $f^{**}=f$
- Для выпуклой функции следующие условия эквивалентны:
 - $\mathbf{y} \in \partial f(\mathbf{x})$

- ightharpoonup Сопряжённая функция f^* всегда выпукла как супремум линейных функций независимо от выпуклости f
- ▶ Неравенство Юнга-Фенхеля: $\langle \mathbf{y}, \mathbf{x} \rangle \leq f(\mathbf{x}) + f^*(\mathbf{y})$ Обобщение квадратичного случая: $\langle \mathbf{y}, \mathbf{x} \rangle \leq \frac{1}{2} \|\mathbf{x}\|_2^2 + \frac{1}{2} \|\mathbf{y}\|_2^2$
- lacktriangle Если f выпукла и замкнута, то $f^{**}=f$
- Для выпуклой функции следующие условия эквивалентны:
 - $\mathbf{y} \in \partial f(\mathbf{x})$

Если f замкнута, то $\mathbf{x} \in \partial f^*(\mathbf{y})$.

- ightharpoonup Сопряжённая функция f^* всегда выпукла как супремум линейных функций независимо от выпуклости f
- ▶ Неравенство Юнга-Фенхеля: $\langle \mathbf{y}, \mathbf{x} \rangle \leq f(\mathbf{x}) + f^*(\mathbf{y})$ Обобщение квадратичного случая:

$$\langle \mathbf{y}, \mathbf{x} \rangle \leq \frac{1}{2} \|\mathbf{x}\|_2^2 + \frac{1}{2} \|\mathbf{y}\|_2^2$$

- ightharpoonup Если f выпукла и замкнута, то $f^{**}=f$
- ▶ Для выпуклой функции следующие условия эквивалентны:
 - $\mathbf{y} \in \partial f(\mathbf{x})$
 - $\langle \mathbf{y}, \mathbf{x} \rangle = f^*(\mathbf{y}) + f(\mathbf{x})$

Если f замкнута, то $\mathbf{x} \in \partial f^*(\mathbf{y})$.

Определение

Выпуклая функция называется замкнутой, если множество её подуровней замкнутое множество.

Пример: $f(x) = x \log x$ при $\operatorname{dom} f = \mathbb{R}_{++}$ — незамкнутая

Геометрический смысл

Примеры

- 1. Линейная функция: $f(\mathbf{x}) = \mathbf{a}^{\mathsf{T}}\mathbf{x} + b$
- 2. Отрицательная энтропия: $f(x) = x \log x$
- 3. Индикаторная функция множества $S \colon I_S(\mathbf{x}) = 0$ iff $\mathbf{x} \in S$
- 4. Норма: $f(\mathbf{x}) = \|\mathbf{x}\|$
- 5. Квадрат нормы: $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|^2$

▶ Разделение переменных: $f(\mathbf{x}_1, \mathbf{x}_2) = g(\mathbf{x}_1) + h(\mathbf{x}_2)$ и $f^*(\mathbf{y}_1, \mathbf{y}_2) = g^*(\mathbf{y}_1) + h^*(\mathbf{y}_2)$

- ▶ Разделение переменных: $f(\mathbf{x}_1, \mathbf{x}_2) = g(\mathbf{x}_1) + h(\mathbf{x}_2)$ и $f^*(\mathbf{y}_1, \mathbf{y}_2) = g^*(\mathbf{y}_1) + h^*(\mathbf{y}_2)$
- ightharpoonup Сдвиг аргумента: $f(\mathbf{x}) = g(\mathbf{x} \mathbf{a})$ и $f^*(\mathbf{y}) = \mathbf{a}^{\top} \mathbf{y} + g^*(\mathbf{y})$

- ▶ Разделение переменных: $f(\mathbf{x}_1, \mathbf{x}_2) = g(\mathbf{x}_1) + h(\mathbf{x}_2)$ и $f^*(\mathbf{y}_1, \mathbf{y}_2) = g^*(\mathbf{y}_1) + h^*(\mathbf{y}_2)$
- ightharpoonup Сдвиг аргумента: $f(\mathbf{x}) = g(\mathbf{x} \mathbf{a})$ и $f^*(\mathbf{y}) = \mathbf{a}^{\top} \mathbf{y} + g^*(\mathbf{y})$
- ightharpoonup Суперпозиция с обратимым линейным преобразованием: $f(\mathbf{x})=g(\mathbf{A}\mathbf{x})$ и $f^*(\mathbf{y})=g^*(\mathbf{A}^{-\top}\mathbf{y})$

- ▶ Разделение переменных: $f(\mathbf{x}_1, \mathbf{x}_2) = g(\mathbf{x}_1) + h(\mathbf{x}_2)$ и $f^*(\mathbf{y}_1, \mathbf{y}_2) = g^*(\mathbf{y}_1) + h^*(\mathbf{y}_2)$
- lacktriangle Сдвиг аргумента: $f(\mathbf{x}) = g(\mathbf{x} \mathbf{a})$ и $f^*(\mathbf{y}) = \mathbf{a}^{\top} \mathbf{y} + g^*(\mathbf{y})$
- ightharpoonup Суперпозиция с обратимым линейным преобразованием: $f(\mathbf{x})=g(\mathbf{A}\mathbf{x})$ и $f^*(\mathbf{y})=g^*(\mathbf{A}^{-\top}\mathbf{y})$
- ▶ Инфимальная конволюция (свёртка инфимумом): $f(\mathbf{x}) = (h\Box g)(\mathbf{x}) = \inf_{\mathbf{u}+\mathbf{v}=\mathbf{x}} (h(\mathbf{u}) + g(\mathbf{v})) \text{ и}$ $f^*(\mathbf{y}) = h^*(\mathbf{y}) + g^*(\mathbf{y})$

 $lacktriangledown f(\mathbf{x})$ выпуклая, но *негладкая*

- $ightharpoonup f(\mathbf{x})$ выпуклая, но *негладкая*
- ▶ Moreau-Yosida envelope $(\lambda > 0)$

$$M_{\lambda f}(\mathbf{x}) = \inf_{\mathbf{u}} (f(\mathbf{u}) + \frac{1}{2\lambda} \|\mathbf{x} - \mathbf{u}\|_{2}^{2}) = \left(f \Box \frac{1}{2\lambda} \|\cdot\|_{2}^{2} \right) (\mathbf{x})$$

- $lacktriangledown f(\mathbf{x})$ выпуклая, но *негладкая*
- ▶ Moreau-Yosida envelope $(\lambda > 0)$

$$M_{\lambda f}(\mathbf{x}) = \inf_{\mathbf{u}} (f(\mathbf{u}) + \frac{1}{2\lambda} \|\mathbf{x} - \mathbf{u}\|_{2}^{2}) = \left(f \Box \frac{1}{2\lambda} \|\cdot\|_{2}^{2} \right) (\mathbf{x})$$

lacktriangle Функция Хьюбера – $M_{\lambda f}$ для модуля

- $lacktriangledown f(\mathbf{x})$ выпуклая, но *негладкая*
- ▶ Moreau-Yosida envelope $(\lambda > 0)$

$$M_{\lambda f}(\mathbf{x}) = \inf_{\mathbf{u}} (f(\mathbf{u}) + \frac{1}{2\lambda} \|\mathbf{x} - \mathbf{u}\|_{2}^{2}) = \left(f \Box \frac{1}{2\lambda} \|\cdot\|_{2}^{2} \right) (\mathbf{x})$$

- Функция Хьюбера $M_{\lambda f}$ для модуля
 - f(x) = |x|

- $ightharpoonup f(\mathbf{x})$ выпуклая, но *негладкая*
- ▶ Moreau-Yosida envelope $(\lambda > 0)$

$$M_{\lambda f}(\mathbf{x}) = \inf_{\mathbf{u}} (f(\mathbf{u}) + \frac{1}{2\lambda} \|\mathbf{x} - \mathbf{u}\|_{2}^{2}) = \left(f \Box \frac{1}{2\lambda} \|\cdot\|_{2}^{2} \right) (\mathbf{x})$$

• Функция Хьюбера – $M_{\lambda f}$ для модуля

$$f(x) = |x|$$

$$M_{\lambda f}(x) = \begin{cases} \frac{x^2}{2\lambda} & |x| \le \lambda \\ |x| - \lambda/2 & |x| \ge \lambda \end{cases}$$

- $ightharpoonup f(\mathbf{x})$ выпуклая, но *негладкая*
- ▶ Moreau-Yosida envelope $(\lambda > 0)$

$$M_{\lambda f}(\mathbf{x}) = \inf_{\mathbf{u}} (f(\mathbf{u}) + \frac{1}{2\lambda} \|\mathbf{x} - \mathbf{u}\|_{2}^{2}) = \left(f \Box \frac{1}{2\lambda} \|\cdot\|_{2}^{2} \right) (\mathbf{x})$$

• Функция Хьюбера – $M_{\lambda f}$ для модуля

$$f(x) = |x|$$

$$M_{\lambda f}(x) = \begin{cases} \frac{x^2}{2\lambda} & |x| \le \lambda \\ |x| - \lambda/2 & |x| \ge \lambda \end{cases}$$

- $lacktriangledown f(\mathbf{x})$ выпуклая, но *негладкая*
- ▶ Moreau-Yosida envelope $(\lambda > 0)$

$$M_{\lambda f}(\mathbf{x}) = \inf_{\mathbf{u}} (f(\mathbf{u}) + \frac{1}{2\lambda} \|\mathbf{x} - \mathbf{u}\|_2^2) = \left(f \Box \frac{1}{2\lambda} \|\cdot\|_2^2 \right) (\mathbf{x})$$

- Функция Хьюбера $M_{\lambda f}$ для модуля
 - f(x) = |x|

$$M_{\lambda f}(x) = \begin{cases} \frac{x^2}{2\lambda} & |x| \le \lambda \\ |x| - \lambda/2 & |x| \ge \lambda \end{cases}$$

Упражнение

- $lacktriangledown f(\mathbf{x})$ выпуклая, но *негладкая*
- ▶ Moreau-Yosida envelope $(\lambda > 0)$

$$M_{\lambda f}(\mathbf{x}) = \inf_{\mathbf{u}} (f(\mathbf{u}) + \frac{1}{2\lambda} \|\mathbf{x} - \mathbf{u}\|_{2}^{2}) = \left(f \Box \frac{1}{2\lambda} \|\cdot\|_{2}^{2} \right) (\mathbf{x})$$

- Функция Хьюбера $M_{\lambda f}$ для модуля
 - f(x) = |x|

$$M_{\lambda f}(x) = \begin{cases} \frac{x^2}{2\lambda} & |x| \le \lambda \\ |x| - \lambda/2 & |x| \ge \lambda \end{cases}$$

Упражнение

▶ Нарисуйте на одном графике f(x) и $M_{\lambda f}(x)$

- $lacktriangledown f(\mathbf{x})$ выпуклая, но *негладкая*
- ▶ Moreau-Yosida envelope $(\lambda > 0)$

$$M_{\lambda f}(\mathbf{x}) = \inf_{\mathbf{u}} (f(\mathbf{u}) + \frac{1}{2\lambda} \|\mathbf{x} - \mathbf{u}\|_{2}^{2}) = \left(f \Box \frac{1}{2\lambda} \|\cdot\|_{2}^{2} \right) (\mathbf{x})$$

- Функция Хьюбера $M_{\lambda f}$ для модуля
 - f(x) = |x|

$$M_{\lambda f}(x) = \begin{cases} \frac{x^2}{2\lambda} & |x| \le \lambda \\ |x| - \lambda/2 & |x| \ge \lambda \end{cases}$$

Упражнение

- ▶ Нарисуйте на одном графике f(x) и $M_{\lambda f}(x)$
- lacktriangle Получите выражение $M_{\lambda f}$ для $f(\mathbf{x}) = \|\mathbf{x}\|_1$

Почему получилась гладкая функция?

- ▶ $M_{\lambda f}(\mathbf{x})$ выпукла
- ▶ $M^*_{\lambda f}(\mathbf{y}) = f^*(\mathbf{y}) + \frac{\lambda}{2} \|\mathbf{y}\|_2^2$ сильно выпукла с параметром λ
- $M_{\lambda f} = M_{\lambda f}^{**} = (f^* + \frac{\lambda}{2} \| \cdot \|_2^2)^*$
- Сопряжённая функция к сильно выпуклой функции является гладкой $\Rightarrow M_{\lambda f}$ гладкая функция и

$$M'_{\lambda f}(\mathbf{x}) = \frac{1}{\lambda}(\mathbf{x} - \mathbf{u}^*), \quad \mathbf{u}^* = \arg\min_{\mathbf{u}} \left(f(\mathbf{u}) + \frac{1}{2\lambda} \|\mathbf{x} - \mathbf{u}\|_2^2 \right)$$

Важное свойство

Множество точек минимума f и $M_{\lambda f}$ совпадает.

Резюме

- Сопряжённые функции
- ▶ Неравенство Юнга-Фенхеля и другие свойства
- Сглаживание негладких функций
- Примеры