En 2d

D. $|H(\frac{x}{y}) \in \mathbb{R}^2$ to y = ax + bEquation Cartesianne de ∂ Alga $|g|_{g_0}$ $|u| = \frac{AB}{|AB|}$ $\partial = |H \in \mathbb{R}$ to $|g|_{g_0}$ |u| = |AB| $|u| = |H \in \mathbb{R}$ to $|g|_{g_0}$ |u| = |AB| $|u| = |H \in \mathbb{R}$ to $|g|_{g_0}$ $|u| = |H \in \mathbb{R}$ $|g|_{g_0}$ $|g|_{g_0}$ |g

Eq. Cartenenne en dim 3

$$\Pi(\frac{x}{2})$$

objet de \mathbb{R}^3 $f(x,y,z) = 0$
 $f(x,...,x_n) = 0$

Equal. Panametrq x

Expression de méquations liant

les on coordonnées à (n-1) ponamètre

Eq. deme Sphere de rayon a D

Sphere de rayon a, centree son C | 20

$$y = a \cdot cob \cdot sin f$$

 $y = a \cdot sin \theta \cdot sin f$
 $z = a \cdot coof$

$$y = x_c + a \cos \theta \cdot \sin \theta$$

$$y = y_c + a \sin \theta \cdot \sin \theta$$

$$z = z_c + a \cdot \cos \theta$$

$$\left(\frac{z-xc}{a}\right) = \frac{\left(z-xc\right)}{\left(\frac{y-yc}{a}\right)} = \frac{\sin\theta \cdot \sin\theta}{\cos\theta}$$

$$\left(\frac{z-zc}{a}\right) = \cos\theta$$

