Introduction to Robotics

Spatial Transformation and Kinematics

1. Consider the following figure with the (orthonormal) coordinate frame $\{A\}$. The representation of a point P in the coordinate frame is given by $p^A = \begin{bmatrix} -1 & 1 & -1 \end{bmatrix}^T$.

Consider a new stange coordinate frame with three vectors $\{x_B, y_B, z_B\}$ that is not orthogonal, i.e. the vectors are not mutually perpendicular to each other, but have length 1. The direction angles (all in degrees) of the three vectors $\{x_B, y_B, z_B\}$ are given

Direction angles of $x_B = (45, 45, 90)$

Direction angles of $y_B = (90, 45, 45)$

Direction angles of $z_B = (45, 90, 45)$

Let p^B be the repsentation of the point P in the new frame $\{B\}$.

- (a) What are the transformation matrices T_B^A and T_A^B that lets us go from frames $\{A\}$ to $\{B\}$ and frame $\{B\}$ to $\{A\}$, respectively?
- (b) How many parameters do you need to represent this transformation?
- (c) What is the value of p^B ?
- (d) What happens to T_B^A and T_A^B when the vectors in frame $\{B\}$ are orthonormal?
- 2. Consider a series of spatial transformations from frames $\{A_i\}_{i=1}^n$, represented by a homogenous transformation matrix representing frame $\{A_i\}$ in $\{A_{i-1}\}$,

$$T_i^{i-1} = \begin{bmatrix} R_i^{i-1} & p_i^{i-1} \\ 0_{1\times 3} & 1 \end{bmatrix}$$

Find the expression for T_1^n .

- 3. Consider a point P represented by the position vector $x_P = \begin{bmatrix} -2 & 3 & 10 \end{bmatrix}^T$. The following transformations are applied to the point in a sequential order. What is the resulting position of the of the transformed point.
 - (a) Rotate x_P by 25 deg about the fixed x-axis.
 - (b) Rotate x_P by 90 deg about the fixed z-axis.

1

(c) Rotate x_P by 45 deg about the new x-axis resulting from the previous two rotations.

Provide detailed derivation of the calculations, along with the final operator R which lets you carry out the aforementioned operations on the point P.

- 4. Consider a point P represented by the position vector $x_P = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$. The following transformations are applied to the point in a sequential order. What is the resulting position of the of the transformed point.
 - (a) Rotate x_P by 45 deg about the fixed z-axis.
 - (b) Rotate x_P by 45 deg about the new x-axis resulting from the previous rotation.
 - (c) Translate the point transformed point P by $\begin{bmatrix} -1 & 0 & -1 \end{bmatrix}$ with respect to the new frame resulting from the previous two rotations.
 - (d) Rotate x_P by 90 deg about the fixed y-axis.
 - (e) Translate the point transformed point P by $\begin{bmatrix} 0 & 2 & 2 \end{bmatrix}$ with respect to fixed frame.

Provide detailed derivation of the calculations, along with the final operator R which lets you carry out the aforementioned operations on the point P.

- 5. All three angle representation run into singularity. For each of the following representations, for what values of α, β or γ a signilarity would occur? Explain why this happens.
 - (a) Euler angle Z-Y-Z
 - (b) Euler angle Y-X-Z
 - (c) Fixed angle X-Y-Z
 - (d) Euler angle Z-X-Y

What about the angle-axis representation? Does a singluarity occur in this case?

- 6. What are the Euler angle Z-Y-Z and fixed angle Z-Y-Z angles required to take a point $x = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T$ to $y = \begin{bmatrix} -1 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}^T$?
- 7. Consider a planetary system with a star at the origin of the global reference frame $\{S\}$. There is a single planet, at a distance of r_P , orbiting the star in the global XY plane. At any give time the angular position of the planet is given by $\theta_P(t)$ measured with respect to the global X axis. The local reference frame of the planet $\{P\}$ of the planet has its origin at the center of the planet and has the same orientation with respect to $\{S\}$ at time t=0, i.e. $R_P^S(0)=I$. The planet has a moon, located at a distance of r_M , from the origin of $\{P\}$, and is orbiting the planet in the local XY plane of frame $\{P\}$. The angular position of the moon $\theta_M(t)$ is measured with respect the local X axis of frame $\{P\}$. The moon has its own local reference frame

- $\{M\}$ located at its center, and has the same orientation as $\{P\}$ at time t=0, i.e. $R_M^P\left(0\right)=I.$ Find an expression for the homogenous transformation representing the star's reference frame $\{S\}$ in terms of that of the moon $\{M\}.$
- 8. How many parameters does one require to fully specify a homogenous transformation between two coordinate frames? How many do we require when using the DH conventions? Why is this number different? Explain your answer with the necessary mathematical argument.
- 9. Obtain the DH parameters for the following robots:
 - (a) Planar 2D cartesian robot
 - (b) 3D cartesian robot with a spherical wrist.
 - (c) 3D cartesian robot with a spherical wrist.
 - (d) 3DOF robots in Fig. 1
 - (e) Robots in Fig. 2

Figure 1: Image taken from [1]

Figure 2: Image taken from [1]

[1] Murray, Richard M., Zexiang Li, S. Shankar Sastry, and S. Shankara Sastry. A mathematical introduc-