Typsysteme

Contents

Constraints aus Var, Const, Abs, App	2
Grundlagen	3
Regeln (Bedeutung)	3
Const	3
Var	3
Abstraktion	3
Applikation	3
Regeln (Abbildung)	4
Typherleitung	4
Typisierbare Lambda-Terme	4
Polymorhpie	5
Herleitungsbaum für ein Lambda-Ausdruck erstellen	6
Ausdruck	6
Baum	7
Schritte	7
Constraints für Unifikation (C):	7
mgu bestimmen (σ_c)	7
Lambda Ausdrücke Typisieren	8
Identität	8
Y-Kombinator	8
Weitere nicht typisierbate Terme	9
FAQ	9
Was macht Г?	9
Wie sieht das richtige Var Regel aus (nicht polymorph)	9
Wie berechnet man C_0 und C_let?	9
Wie berechnet man richtig Γ' und Polymorfe Var	10
Wie berechnet man das vollständige Typgleichungssystem C und mgu(C)?	11
Wie berechnet man tau_poly?	11
Wie kann man kurz beweisen, dass ei nAusdruck nicht typisierbar ist?	12
Aufgaben	12
Typgleichungsystem aus WS16/17	12

SS17	13
	_
Komplizierte Abs	13
, , , , , , , , , , , , , , , , , , ,	
Komplizierte mgu	14

Constraints aus Var, Const, Abs, App

$$Var \ \frac{\Gamma_{sz}(\mathbf{s}) = \underline{\alpha_4}}{\Gamma_{sz} \mid \mathbf{s} : \underline{\alpha_8}}$$

Regel: a4 = a8

$$C \frac{\mathsf{true} \in Const}{\Gamma, \mathsf{f} : \alpha_2 \vdash \mathsf{true} : \alpha_8}$$

Regel: a8 = bool (genau so mit int)

$$\Gamma_{sz}=\mathrm{s}:\alpha_4,\mathrm{z}:\alpha_6$$

$$\Gamma_{tf}=\mathrm{t}:\alpha_{12},\mathrm{f}:\alpha_{14}$$

$$Abs = \frac{\Gamma_{s\underline{z}} \vdash s (s z) : \underline{\alpha_7}}{s : \alpha_4 \vdash (\underline{\lambda}\underline{z}. \ s \ (s \ z)) : \underline{\alpha_5}}$$

Regel: a5 = a6 -> a7 (typ von abgeschnietener lambda -> typ von innerem Ausdruck)

```
\begin{array}{c} \text{Abs} \\ \text{Abs} \\ \hline \\ -\lambda \text{x. } \lambda \text{y. } \text{y. } (\text{x. } \text{y}) + \alpha_3 \\ \hline \\ -\lambda \text{x. } \lambda \text{y. } \text{y. } (\text{x. } \text{y}) : \alpha_1 \end{array}
```

Regel: a1 = a2 -> a3 (Typ von Lambda -> Typ von Inner)

$$\begin{array}{c} \text{Var} \\ \text{App} \\ \text{App} \\ \text{App} \\ \text{$\mathsf{X}:\alpha_2,\mathtt{y}:\alpha_4 \vdash \mathtt{y}:\alpha_6$} \\ \text{$\mathsf{X}:\alpha_2,\mathtt{y}:\alpha_4 \vdash \mathtt{y}(\mathtt{x}\ \mathtt{y}):\alpha_5$} \\ \text{$\mathsf{X}:\alpha_2,\mathtt{y}:\alpha_4 \vdash \mathtt{y}(\mathtt{x}\ \mathtt{y}):\alpha_5$} \end{array}$$

Regel: a6 = a7 --> a5, es kommt weiter keine Regel für a5

Grundlagen

Funktionstypen sind rechtsassoziativ

Typen

Unsichere Programme: Typfehler bei Auswertung

z.B. im λ -Kalkül: $(\lambda x. x+42)$ true \Rightarrow true +42 = ???

Typisierung: Weise (möglichst vielen) sicheren Programmen

Typ zu, lehne unsichere ab

Einfache Typisierung: $\vdash (\lambda x. 2) : bool \rightarrow int$

 $\vdash (\lambda x. 2) : int \rightarrow int$ $\vdash (\lambda f. 2) : (int \rightarrow int) \rightarrow int$

Polymorphe Typen: $\vdash (\lambda x. 2) : (nx \rightarrow nx) \rightarrow$

Typen (Variablenkonvention: τ)

Basistypen: bool, int, unit, . . .

• Funktionstyp: $\tau_1 \rightarrow \tau_2$

Typvariablen: α , α_1 , α_2 , β , . . .

Funktionstypen rechtsassoziativ: $\tau_1 \rightarrow \tau_2 \rightarrow \tau_3 \equiv \tau_1 \rightarrow (\tau_2 \rightarrow \tau_3)$

Regeln (Bedeutung)

Const: Jede Konstante hat i.A ein eigenen Typ: 42 : t_42, 43 : t_43 usw. Das ersparen wir uns und sagen, dass jede Konstante einen Typ t_c hat. -> Für jede Konstante ist Typ fest. z.B 42: int

Var: variable x hat den Typ t, wenn in Γ vermerkt ist, dass die Variable x den Typ t hat

Abstraktion: (== Lambda-Abstraktion) Wir wollen den Typ des Lambda Ausdrucks bestimmen (Funktionstyp, wie t1 -> t2). Funktionsrumpf t hat Typ t2. t2 ist dann Typ des Funktionswertes (Ausgabe der Funktion). Dann ist t2 auch das Ergebnistyp der Lambda. Normalerweise kommt x in t vor. (x ist frei in t).

In Γ soll man merken, dass x der Typ t1 hat.

Dann gilt $\x . t : t1 \rightarrow t2$

Also wenn gilt \x . t : t1 -> t2, dann kann man annehmen, dass x den Typ t1 hat -> nach \xspace schreiben.

Applikation: Funktion t1 wird angewendet auf den aktuellen Parameter t2, und das Ding wollen wir typisieren. t1 muss ein Funktion sein

Zuerst alle Abs anwenden, dann App

Regeln (Abbildung)

Typsystem (Wiederholung)

Typsystem $\Gamma \vdash t : \tau$

 $\Gamma \vdash t : \tau - \text{im Typkontext } \Gamma \text{ hat Term } t \text{ Typ } \tau.$ Γ ordnet freien Variablen x ihren Typ $\Gamma(x)$ zu.

Const
$$\frac{c \in \textit{Const}}{\Gamma \mid -c : \tau_c}$$
 $\forall \text{AR } \frac{\Gamma(x) = \tau}{\Gamma \mid -x : \tau}$

$$\mathsf{ABS}\,\frac{\Gamma, \mathsf{X}: \tau_1 \, \vdash \, t: \tau_2}{\Gamma \, \vdash \, \lambda \mathsf{X}. \, t: \tau_1 \, \rightarrow \tau_2} \qquad \mathsf{APP}\,\frac{\Gamma \, \vdash \, t_1: \tau_2 \rightarrow \tau \qquad \Gamma \, \vdash \, t_2: \tau_2}{\Gamma \, \vdash \, t_1 \, t_2: \tau}$$

Vorsicht: darf keine Überschneidungen bei Typvariablen generieren!

$$\begin{array}{lll} \Gamma \vdash \mathsf{42} : \mathsf{int} & \Gamma \vdash + : \mathsf{int} \to \mathsf{int} & + \in \mathit{Const} \\ \Gamma \vdash [] : \mathsf{list}\left(\alpha\right) & \Gamma \vdash \mathsf{hd} : \mathsf{list}\left(\alpha\right) \to \alpha & \mathsf{hd} \in \mathit{Const} \end{array}$$

Typisierung von λ -Term t: Paar (Γ, τ) , so dass $\Gamma \vdash t : \tau$ herleitbar, z.B.: $\underbrace{\mathbb{X} : \mathsf{int}, \, f : \mathsf{int} \to \alpha \to \beta}_{\Gamma} \vdash \underbrace{f \, \mathbb{X}}_{t} : \underbrace{\alpha \to \beta}_{\tau}$

Prof. Dr.-Ing. G. Snelting - @2010-2021 by IPD Snelting - Programmierparadigmen

WS 2020/21

207

Typherleitung

Man versucht Baum rückwärts zu konstruieren. Man fängt bei Zielaussage an und versucht die Voraussetzungen zu erfüllen.

Typisierbare Lambda-Terme

t ist typisierbar in Context Γ , wenn s mit Γ :- t:s existiert

Polymorhpie

Typschemata

Typschema

Für $n \in \mathbb{N}_0$ heißt $\forall \alpha_1, \ldots, \forall \alpha_n, \tau$ Typschema (Kürzel ϕ). Es bindet freie Typvariablen $\alpha_1, \ldots, \alpha_n$ in τ .

Beispiel: Typschema $\forall \alpha. \ \alpha \to \alpha$ steht für unendliche viele Typen, z.B.:

- lacktriangle int o int, bool o bool, . . .
- (bool \rightarrow bool) \rightarrow (bool \rightarrow bool), (int \rightarrow bool) \rightarrow (int \rightarrow bool), . . .

Instanziierung eines Typschemas

Für Typen τ_1, \ldots, τ_n ist der Typ $\tau [\alpha_1 \mapsto \tau_1, \ldots, \alpha_n \mapsto \tau_n]$ eine Instanziierung vom Typschema $\forall \alpha_1, \ldots, \forall \alpha_n, \tau$. Schreibweise: $(\forall \alpha_1, \ldots, \forall \alpha_n, \tau) \succeq \tau [\alpha_1 \mapsto \tau_1, \ldots, \alpha_n \mapsto \tau_n]$

Zum Beispiel:

- \bullet $\forall \alpha. \ \alpha \to \alpha \succeq \mathsf{int} \to \mathsf{int}$
- \bullet $\forall \alpha. \ \alpha \to \alpha \succeq (\mathsf{int} \to \mathsf{int}) \to (\mathsf{int} \to \mathsf{int})$
- int ≥ int

- - $\alpha \rightarrow \alpha \not\succeq \text{int} \rightarrow \text{int}$
 - $\alpha \not\succeq bool$
 - $\forall \alpha. \ \alpha \rightarrow \alpha \not\succeq \mathsf{bool}$

Prof. Dr.-Ing. G. Snelting - ©2010-2021 by IPD Snelting - Programmierparadigmen

WS 2020/21 217

Angepasste Regeln:

$$VAR \frac{\Gamma(x) = \phi \qquad \phi \succeq \tau}{\Gamma \vdash x : \tau}$$

Const-, App- und Abs-Regeln bleiben gleich.

Typschemata ϕ treten nur in Γ und in der Var-Regel auf.

1et-Polymorphismus (Wiederholung)

Idee: let-gebundene Variablen getypt mit Typschema

Typabstraktion

Das Typschema $ta(\tau, \Gamma) = \forall \alpha_1, \forall \alpha_2, \dots, \forall \alpha_n, \tau$ heißt Typabstraktion von τ relativ zu Γ, wobei $\alpha_i \in FV(\tau) \setminus FV(\Gamma)$

Alle freien Typvariablen von τ quantifiziert, die nicht frei in Typannahmen Γ ⇒ Verhindere Abstraktion von globalen Typvariablen im Schema

Let-Typregel

LET
$$\frac{\Gamma \models t_1 : \tau_1 \qquad \Gamma, X : ta(\tau_1, \Gamma) \models t_2 : \tau_2}{\Gamma \models \mathtt{let} \ X = t_1 \ \mathtt{in} \ t_2 : \tau_2}$$

- Effizient (meist "quasilinear")
- Jedoch exponentieller Worst Case!

Prof. Dr.-Ing. G. Snelting - ©2010-2021 by IPD Snelting - Programmierparadigmen

WS 2020/21

220

Typinferenz für LET

$$\frac{\Gamma \vdash t_1 : \alpha_i}{\Gamma \vdash \text{let } x = t_1 \text{ in } t_2 : \alpha_k}$$

Allgemeine Vorgehensweise:

- Sammle Constraints aus linkem Teilbaum in C_{let}
- ② Berechne den $mgu \sigma_{let}$ von C_{let}
- **3** Berechne $\Gamma' := \sigma_{let}(\Gamma), x : ta(\sigma_{let}(\alpha_i), \sigma_{let}(\Gamma))$
- 4 Benutze Γ' in rechtem Teilbaum, sammle Constraints in C_{body}
- ⑤ Ergebnisconstraints sind $C'_{let} \cup C_{body} \cup \{\alpha_j = \alpha_k\}$ mit $C'_{let} := \{\alpha_n = \sigma_{let}(\alpha_n) \mid \sigma_{let} \text{ definiert für } \alpha_n\}$

Typinferenz für VAR

$$\frac{\Gamma(x) = \phi \quad \phi \succeq \tau}{\Gamma \vdash x : \alpha_i}$$

Allgemeine Vorgehensweise:

- **1** Schlage Typschema ϕ von x in Γ nach
- ② Instanziiere alle \forall im Typschema ϕ mit frischen Variablen, erhalte τ
- **1** Ergebnisconstraint ist $\alpha_i = \tau$

Herleitungsbaum für ein Lambda-Ausdruck erstellen

Ausdruck: \x. \y. y (x y)

Baum

$$\frac{\sum_{\text{Var}} \frac{\left(\mathbf{x}:\alpha_{2},\mathbf{y}:\alpha_{4}\right)\left(\mathbf{y}\right)=\alpha_{4}}{\mathbf{x}:\alpha_{2},\mathbf{y}:\alpha_{4}\left[\mathbf{y}\right]=\alpha_{4}}}{\sum_{\text{Var}} \frac{\left(\mathbf{x}:\alpha_{2},\mathbf{y}:\alpha_{4}\right)\left(\mathbf{x}\right)=\alpha_{2}}{\mathbf{x}:\alpha_{2},\mathbf{y}:\alpha_{4}\left[\mathbf{x}:\alpha_{2}\right]} \frac{\left(\mathbf{x}:\alpha_{2},\mathbf{y}:\alpha_{4}\right)\left(\mathbf{y}\right)=\alpha_{4}}{\mathbf{x}:\alpha_{2},\mathbf{y}:\alpha_{4}\left[\mathbf{x}:\alpha_{2}\right]} \frac{\left(\mathbf{x}:\alpha_{2},\mathbf{y}:\alpha_{4}\right)\left(\mathbf{y}\right)=\alpha_{4}}{\mathbf{x}:\alpha_{2},\mathbf{y}:\alpha_{4}\left[\mathbf{x}:\alpha_{2}\right]} \frac{\left(\mathbf{x}:\alpha_{2},\mathbf{y}:\alpha_{4}\right)\left(\mathbf{y}\right)=\alpha_{4}}{\mathbf{x}:\alpha_{2},\mathbf{y}:\alpha_{4}\left[\mathbf{x}:\alpha_{2}\right]} \frac{\left(\mathbf{x}:\alpha_{2},\mathbf{y}:\alpha_{4}\right)\left(\mathbf{y}\right)=\alpha_{4}}{\mathbf{x}:\alpha_{2},\mathbf{y}:\alpha_{4}\left[\mathbf{x}:\alpha_{2}\right]} \frac{\left(\mathbf{x}:\alpha_{2},\mathbf{y}:\alpha_{4}\right)\left(\mathbf{y}\right)=\alpha_{4}}{\mathbf{x}:\alpha_{2},\mathbf{y}:\alpha_{4}\left[\mathbf{x}:\alpha_{2}\right]} \frac{\left(\mathbf{x}:\alpha_{2},\mathbf{y}:\alpha_{4}\right)\left(\mathbf{y}\right)=\alpha_{4}}{\mathbf{x}:\alpha_{2},\mathbf{y}:\alpha_{4}\left[\mathbf{x}:\alpha_{2}\right]} \frac{\left(\mathbf{x}:\alpha_{2},\mathbf{y}:\alpha_{4}\right)\left(\mathbf{y}\right)=\alpha_{4}}{\mathbf{x}:\alpha_{2},\mathbf{y}:\alpha_{4}\left[\mathbf{y}:\alpha_{2}\right]} \frac{\left(\mathbf{x}:\alpha_{2},\mathbf{y}:\alpha_{4}\right)\left(\mathbf{y}\right)=\alpha_{4}}{\mathbf{x}:\alpha_{2},\mathbf{y}:\alpha_{4}\left[\mathbf{y}:\alpha_{2}\right]} \frac{\left(\mathbf{x}:\alpha_{2},\mathbf{y}:\alpha_{4}\right)\left(\mathbf{y}\right)=\alpha_{4}}{\mathbf{x}:\alpha_{2},\mathbf{y}:\alpha_{4}\left[\mathbf{y}:\alpha_{2}\right]} \frac{\left(\mathbf{x}:\alpha_{2},\mathbf{y}:\alpha_{4}\right)\left(\mathbf{y}:\alpha_{2}\right)}{\mathbf{x}:\alpha_{2},\mathbf{y}:\alpha_{4}\left[\mathbf{y}:\alpha_{2}\right]} \frac{\left(\mathbf{x}:\alpha_{2},\mathbf{y}:\alpha_{4}\right)\left(\mathbf{y}\right)=\alpha_{4}}{\mathbf{x}:\alpha_{2},\mathbf{y}:\alpha_{4}\left[\mathbf{y}:\alpha_{2}\right]} \frac{\left(\mathbf{x}:\alpha_{2},\mathbf{y}:\alpha_{4}\right)\left(\mathbf{y}:\alpha_{2}\right)}{\mathbf{x}:\alpha_{2}\left[\mathbf{y}:\alpha_{4}\right]} \frac{\left(\mathbf{x}:\alpha_{2},\mathbf{y}:\alpha_{4}\right)\left(\mathbf{y}:\alpha_{4}\right)}{\mathbf{x}:\alpha_{2}\left[\mathbf{y}:\alpha_{4}\right]} \frac{\left(\mathbf{x}:\alpha_{2},\mathbf{y}:\alpha_{4}\right)\left(\mathbf{y}:\alpha_{4}\right)}{\mathbf{x}:\alpha_{2}\left[\mathbf{y}:\alpha_{4}\right]} \frac{\left(\mathbf{x}:\alpha_{2},\mathbf{y}:\alpha_{4}\right)\left(\mathbf{y}:\alpha_{4}\right)}{\mathbf{x}:\alpha_{4}\left[\mathbf{y}:\alpha_{4}\right]} \frac{\left(\mathbf{x}:\alpha_{4}\right)\left(\mathbf{y}:\alpha_{4}\right)}{\mathbf{x}:\alpha_{4}\left[\mathbf{y}:\alpha_{4}\right]} \frac{\left(\mathbf{x}:\alpha_{4}\right)\left(\mathbf{y}:\alpha_{4}\right)}{\mathbf{x}:\alpha_{4}\left[\mathbf{y}:\alpha_{4}\right]} \frac{\left(\mathbf{y}:\alpha_{4}\right)\left(\mathbf{y}:\alpha_{4}\right)}{\mathbf{x}:\alpha_{4}\left[\mathbf{y}:\alpha_{4}\right]} \frac{\left(\mathbf{y}:\alpha_{4}\right)\left(\mathbf{y}:\alpha_{4}\right)}{\mathbf{x}:\alpha_{4}\left[\mathbf{y}:\alpha_{4}\right]} \frac{\left(\mathbf{y}:\alpha_{4}\right)\left(\mathbf{y}:\alpha_{4}\right)}{\mathbf{x}:\alpha_{4}\left[\mathbf{y}:\alpha_{4}\right]} \frac{\left(\mathbf{y}:\alpha_{4}\right)\left(\mathbf{y}:\alpha_{4}\right)}{\mathbf{x}:\alpha_{4}\left[\mathbf{y}:\alpha_{4}\right]} \frac{\left(\mathbf{y}:\alpha_{4}\right)\left(\mathbf{y}:\alpha_{4}\right)}{\mathbf{x}:\alpha_{4}\left[\mathbf{y}:\alpha_{4}\right]} \frac{\left(\mathbf{y}:\alpha_{4}\right)}{\mathbf{x}:\alpha_{4}\left[\mathbf{y}:\alpha_{4}\right]} \frac{\left(\mathbf{y}:\alpha_{4}\right)}{\mathbf{x}:\alpha_{4}\left[\mathbf{y}:\alpha_{4}\right]} \frac{\left(\mathbf{y}:\alpha_{4}\right)}{\mathbf{x}:\alpha_{4}\left[\mathbf{y}:\alpha_{4}\right]} \frac{\left(\mathbf{y}:\alpha_{4}\right)}{\mathbf{x}:\alpha_{4}\left[\mathbf{y}:\alpha_{4}\right]} \frac{\left(\mathbf{y}:\alpha_{4}\right)}{\mathbf{x}:\alpha_{4}\left[\mathbf{y}:\alpha_{4}\right]} \frac{\left(\mathbf{y}:\alpha_{4}\right)}{\mathbf{x}:\alpha_{4}\left[\mathbf{y}:\alpha_{4}\right]} \frac{\left(\mathbf{y}:\alpha_{4}\right)}{\mathbf{y}:\alpha_{4}\left[\mathbf{$$

$$C = \{\alpha_1 = \alpha_2 \rightarrow \alpha_3, \alpha_3 = \alpha_4 \rightarrow \alpha_5, \alpha_6 = \alpha_7 \rightarrow \alpha_5, \alpha_4 = \alpha_6, \alpha_8 = \alpha_9 \rightarrow \alpha_7, \alpha_2 = \alpha_8, \alpha_4 = \alpha_9\}$$

$$\sigma_C = \begin{bmatrix} \alpha_1 \diamondsuit ((\alpha_7 \rightarrow \alpha_5) \rightarrow \alpha_7) \rightarrow (\alpha_7 \rightarrow \alpha_5) \rightarrow \alpha_5, \alpha_2 \diamondsuit (\alpha_7 \rightarrow \alpha_5) \rightarrow \alpha_7, \alpha_3 \diamondsuit (\alpha_7 \rightarrow \alpha_5) \rightarrow \alpha_5, \\ \alpha_4 \diamondsuit \alpha_7 \rightarrow \alpha_5, \alpha_6 \diamondsuit \alpha_7 \rightarrow \alpha_5, \alpha_8 \diamondsuit (\alpha_7 \rightarrow \alpha_5) \rightarrow \alpha_7, \alpha_9 \diamondsuit \alpha_7 \rightarrow \alpha_5 \end{bmatrix}$$

$$\sigma_C (\alpha_1) = ((\alpha_7 \rightarrow \alpha_5) \rightarrow \alpha_7) \rightarrow (\alpha_7 \rightarrow \alpha_5) \rightarrow \alpha_5$$

Schritte

- 1. Linke Lambda -> Abs-Regel
- 2. Falls es keine linke Lambda gibt, aber man der rechte Ausdruck auswerten kann -> App-Regel
- 3. Wenn es nur eine Variable/Konstante steht, dann Var-/Cons- Regel

Constraints für Unifikation (C):

Habe is mehrmals geprüft

App: a6 = a7 --> a5, es kommt weiter keine Regel für a5

$$\begin{array}{c}
\text{Var} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} : \alpha_6 \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{x} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash \text{y} \\
 \hline
\text{x} : \alpha_2, \text{y} : \alpha_4 \vdash$$

Var/Char: a4 = a6

$$\operatorname{Var} \frac{(\mathbf{x} : \alpha_2, \mathbf{y} : \alpha_4)(\mathbf{y}) = \alpha_4}{\mathbf{x} : \alpha_2, \mathbf{y} : \alpha_4 \vdash \mathbf{y} : \alpha_6}.$$

mgu bestimmen (σ_c)

- 1. Schreibe alle Variablen in einer Spalte (a1, a2, a3...)t, mache viel Platz zwischen Zeilen
- 2. Versuche alle Variable von hinten nach vorne zu "öffnen", bis es keine weitere Substituion möglich ist :

```
a. Original: a4 = a5 -> a6, a5 = a7 -> a8
```

c. Regel:
$$a4 => (a7 -> a8) -> a6$$

- d. Immer klammern!
- 3. Suche nach "implizite Gleichheiten":
 - a. Gegeben:

i.
$$a8 = a2 = a6$$

ii.
$$a6 = a7 -> a5$$

iii.
$$a8 = a9 -> a7$$

- b. Da a8 = a6, ist auch a7=a9 und a5=a7
- c. Neue Regeln: a7 -> a9, a5 -> a9
- 4. Benutze neue Wissen, um die Regeln aus 3) noch zu unifizieren
- 5. Öffne a1 am Ende
- 6. Prüfe alles noch mal

Lambda Ausdrücke Typisieren

Identität

 $(\x . x)$ ist beliebig typisierbar:

int -> int

[a] -> [a]

a -> a

$$(a -> a) -> (a -> a)$$

$$(a -> b -> (c -> a)) -> (a -> b -> (c -> a))$$

Y-Kombinator

Nicht Typisierbar

- $\omega = (\lambda x. x x) (\lambda x. x x)$ nicht typisierbar
 - Angenommen $\Gamma \vdash (\lambda x. x x) (\lambda x. x x) : \tau$.
 - \Rightarrow (App) Existiert τ' mit $\Gamma \vdash \lambda x. \ x \ x : \tau' \to \tau$ (und $\Gamma \vdash \lambda x. \ x \ x : \tau'$).
 - \Rightarrow (Abs) $\Gamma, x : \tau' \vdash x x : \tau$
 - $\Rightarrow \text{ (App) } \Gamma, \mathbf{x}: \tau' \models \mathbf{x}: \tau' \rightarrow \tau \text{ und } \Gamma, \mathbf{x}: \tau' \models \mathbf{x}: \tau'.$
 - \Rightarrow (Var) $\tau' = (\tau' \rightarrow \tau)$.
 - Typen sind endlich! \Rightarrow Keine Lösung für τ' .
- Auch Y nicht typisierbar

Weitere nicht typisierbate Terme

Typisierbare λ -Terme

t typisierbar im Kontext Γ , falls τ mit $\Gamma \vdash t : \tau$ existiert.

- $(\lambda x. x + 42)$ true nicht typisierbar.
 - Angenommen, $\Gamma \vdash (\lambda x. x + 42)$ true : τ .
 - \Rightarrow (App) Existiert τ' mit $\Gamma \vdash true : \tau'$ und $\Gamma \vdash \lambda x. x + 42 : \tau' \rightarrow \tau$.
 - \Rightarrow (Const) $au' = au_{true} = ext{bool und (Abs) } \Gamma, ext{x} : au' \models ext{x} + ext{42} : au$
 - \Rightarrow (App) $\tau' = \tau = \text{int}$, da $\tau_+ = \text{int} \rightarrow \text{int} \rightarrow \text{int}$. Widerspruch.

FAQ

Was macht Γ?

Γ: Tabelle, wo für jede frei Variable typ t steht

Wie sieht das richtige Var Regel aus (nicht polymorph)

1) (x : a4)(x) = a5

aber (x : a4)(x) = a4 wäre auch richtig. Es kommt immer ein Constrant a4 = a5

Wie berechnet man C_0 und C_let?

$$Let \begin{array}{c} Var \frac{(\mathbf{x}:\alpha_4)x = \alpha_5}{\mathbf{x}:\alpha_4 \vdash \mathbf{x}:\alpha_5} & Var \frac{\Gamma'(\mathbf{f}) = \forall \alpha_5.\alpha_5 \rightarrow \alpha_5}{\mathbf{x}:\alpha_4 \vdash \mathbf{x}:\alpha_5} & \frac{\Gamma'(\mathbf{f}) = \forall \alpha_5.\alpha_5 \rightarrow \alpha_5}{\Gamma' \vdash \mathbf{f}:\alpha_6} & \frac{\succeq \alpha_9 \rightarrow \alpha_9}{\Gamma' \vdash \mathbf{f}:\alpha_7} & Var \\ \hline & \Gamma' \vdash \mathbf{f}:\alpha_3 & F' \vdash \mathbf{f}:\alpha_3 & F' \vdash \mathbf{f}:\alpha_1 & F' \vdash \mathbf{f}:\alpha_2 & F' \vdash \mathbf{f}:\alpha_3 & F' \vdash \mathbf{f}:\alpha_3 & F' \vdash \mathbf{f}:\alpha_4 & F$$

$$Let \begin{array}{c} Var \frac{(\mathbf{x}:\alpha_4)x = \alpha_5}{\mathbf{x}:\alpha_4 + \mathbf{x} \Rightarrow \alpha_5} \\ Let \end{array} \begin{array}{c} Var \frac{(\mathbf{x}:\alpha_4)x = \alpha_5}{\mathbf{x}:\alpha_4 + \mathbf{x} \Rightarrow \alpha_5} \\ & Var \frac{\nabla \mathbf{x} \cdot \mathbf{x$$

(b) Bestimmen Sie die Typgleichungssysteme C_0 und C_{let} (vgl. Skript "Typinferenz für [3 Punkte] let", Folie 324).

Beispiellösung:

$$C_0 = \{\alpha_1 = \alpha_3\}$$

$$C_{let} = \{\alpha_2 = \alpha_4 \to \alpha_5, \alpha_4 = \alpha_5\}$$

C_0 kommt also aus rechtem Teilb des LET's, und C_let aus linkem TeilBAUM

Wie berechnet man richtig Γ' und Polymorfe Var

Verwenden Sie im Folgenden $\sigma_{let} = [\alpha_2 \diamond \alpha_5 \rightarrow \alpha_5, \ \alpha_4 \diamond \alpha_5].$

(c) Berechnen Sie nun Γ' und vervollständigen Sie die Boxen ② und ③ in der gegebenen Typherleitung.

Beispiellösung:

$$\Gamma' = \sigma_{let}(\emptyset), f : ta(\sigma_{let}(\alpha_2), \sigma_{let}(\emptyset))$$

$$= f : ta(\alpha_5 \to \alpha_5, \emptyset)$$

$$= f : \forall \alpha_5.\alpha_5 \to \alpha_5$$

$$② : \Gamma'(f) = \forall \alpha_5.\alpha_5 \to \alpha_5 \succeq \alpha_8 \to \alpha_8$$

$$③ : \Gamma'(f) = \forall \alpha_5.\alpha_5 \to \alpha_5 \succeq \alpha_9 \to \alpha_9$$

mgu(a2) = a5 -> a5

in Γ' steht: $f = F\ddot{u}rAlle \ a5.a5 -> a5$

Die variablen a8 und a9 sind neu.

Wie berechnet man das vollständige Typgleichungssystem C und mgu(C)?

Beispiellösung:

$$C = C_0 \cup C'_{let} \cup \left\{ \alpha_6 = \alpha_7 \rightarrow \alpha_3, \\ \alpha_6 = \alpha_8 \rightarrow \alpha_8, \\ \alpha_7 = \alpha_9 \rightarrow \alpha_9 \right. \\ \left. \right\} \\ = \left\{ \alpha_1 = \alpha_3, \\ \alpha_2 = \alpha_5 \rightarrow \alpha_5, \\ \alpha_4 = \alpha_5, \\ \alpha_6 = \alpha_7 \rightarrow \alpha_3, \\ \alpha_6 = \alpha_8 \rightarrow \alpha_8, \\ \alpha_7 = \alpha_9 \rightarrow \alpha_9 \right. \\ \left. \right\} \\ \left. \right\} \\ \left. \right\} \\ \left. \left\{ \begin{array}{c} \alpha_1 \diamond \alpha_9 \rightarrow \alpha_9, \\ \alpha_2 \diamond \alpha_5 \rightarrow \alpha_5, \\ \alpha_3 \diamond \alpha_9 \rightarrow \alpha_9, \\ \alpha_4 \diamond \alpha_5, \\ \alpha_6 \diamond (\alpha_9 \rightarrow \alpha_9) \rightarrow (\alpha_9 \rightarrow \alpha_9), \\ \alpha_7 \diamond \alpha_9 \rightarrow \alpha_9, \\ \alpha_8 \diamond \alpha_9 \rightarrow \alpha_9 \end{array} \right. \\ \left. \left\{ \begin{array}{c} \alpha_1 \diamond \alpha_9 \rightarrow \alpha_9, \\ \alpha_2 \diamond \alpha_5, \\ \alpha_3 \diamond \alpha_9 \rightarrow \alpha_9, \\ \alpha_4 \diamond \alpha_5, \\ \alpha_6 \diamond (\alpha_9 \rightarrow \alpha_9) \rightarrow (\alpha_9 \rightarrow \alpha_9), \\ \alpha_8 \diamond \alpha_9 \rightarrow \alpha_9, \\ \alpha_8 \diamond \alpha_9 \rightarrow \alpha_9 \end{array} \right. \right\}$$

Der vollständige Typinferenzbaum:

$$Let \frac{ \begin{array}{c} \textit{Var} \ \frac{(\texttt{x} : \alpha_4)x = \alpha_5}{\texttt{x} : \alpha_4 \vdash \texttt{x} : \alpha_5} \\ \textit{Let} \end{array} }{ \begin{array}{c} \textit{Var} \ \frac{(\texttt{x} : \alpha_4)x = \alpha_5}{\texttt{x} : \alpha_4 \vdash \texttt{x} : \alpha_5} \\ \vdash \texttt{hx} : \texttt{x} : \texttt{x} & \\ \hline \\ \textit{Let} \ \end{array} } \frac{ \begin{array}{c} \textit{Var} \ \frac{\texttt{Y}(\texttt{f}) = \forall \alpha_5.\alpha_5 \to \alpha_5}{\texttt{Ya} \times \texttt{a}_8 \to \texttt{a}_8} \\ \hline \\ \textit{Var} \ \frac{\texttt{Y}(\texttt{f}) = \forall \alpha_5.\alpha_5 \to \alpha_5}{\texttt{Y}(\texttt{f}) = \forall \alpha_5.\alpha_5 \to \alpha_5} \\ \hline \\ \hline \\ \textit{Var} \ \frac{\texttt{Y}(\texttt{f}) = \forall \alpha_5.\alpha_5 \to \alpha_5}{\texttt{Y}(\texttt{f}) = \forall \alpha_5.\alpha_5 \to \alpha_5} \\ \hline \\ \hline \\ \textit{Var} \ \frac{\texttt{Y}(\texttt{f}) = \forall \alpha_5.\alpha_5 \to \alpha_5}{\texttt{Y}(\texttt{f}) = \forall \alpha_5.\alpha_5 \to \alpha_5} \\ \hline \\ \hline \\ \textit{Var} \ \frac{\texttt{Y}(\texttt{f}) = \forall \alpha_5.\alpha_5 \to \alpha_5}{\texttt{Y}(\texttt{f}) = \forall \alpha_5.\alpha_5 \to \alpha_5} \\ \hline \\ \hline \\ \textit{Var} \ \frac{\texttt{Y}(\texttt{f}) = \forall \alpha_5.\alpha_5 \to \alpha_5}{\texttt{Y}(\texttt{f}) = \forall \alpha_5.\alpha_5 \to \alpha_5} \\ \hline \\ \hline \\ \textit{Var} \ \frac{\texttt{Y}(\texttt{f}) = \forall \alpha_5.\alpha_5 \to \alpha_5}{\texttt{Y}(\texttt{f}) = \forall \alpha_5.\alpha_5 \to \alpha_5} \\ \hline \\ \hline \\ \textit{Var} \ \frac{\texttt{Y}(\texttt{f}) = \forall \alpha_5.\alpha_5 \to \alpha_5}{\texttt{Y}(\texttt{f}) = \forall \alpha_5.\alpha_5 \to \alpha_5} \\ \hline \\ \hline \\ \textit{Var} \ \frac{\texttt{Y}(\texttt{f}) = \forall \alpha_5.\alpha_5 \to \alpha_5}{\texttt{Y}(\texttt{f}) = \forall \alpha_5.\alpha_5 \to \alpha_5} \\ \hline \\ \hline \\ \textit{Var} \ \frac{\texttt{Y}(\texttt{f}) = \forall \alpha_5.\alpha_5 \to \alpha_5}{\texttt{Y}(\texttt{f}) = \forall \alpha_5.\alpha_5 \to \alpha_5} \\ \hline \\ \hline \\ \textit{Var} \ \frac{\texttt{Y}(\texttt{f}) = \forall \alpha_5.\alpha_5 \to \alpha_5}{\texttt{Y}(\texttt{f}) = \forall \alpha_5.\alpha_5 \to \alpha_5} \\ \hline \\ \hline \\ \textit{Var} \ \frac{\texttt{Y}(\texttt{f}) = \forall \alpha_5.\alpha_5 \to \alpha_5}{\texttt{Y}(\texttt{f}) = \forall \alpha_5.\alpha_5 \to \alpha_5} \\ \hline \\ \textit{Var} \ \frac{\texttt{Y}(\texttt{f}) = \forall \alpha_5.\alpha_5 \to \alpha_5}{\texttt{Y}(\texttt{f}) = \forall \alpha_5.\alpha_5 \to \alpha_5} \\ \hline \\ \textit{Var} \ \frac{\texttt{Y}(\texttt{f}) = \forall \alpha_5.\alpha_5 \to \alpha_5}{\texttt{Y}(\texttt{f}) = \forall \alpha_5.\alpha_5 \to \alpha_5} \\ \hline \\ \textit{Var} \ \frac{\texttt{Y}(\texttt{f}) = \forall \alpha_5.\alpha_5 \to \alpha_5}{\texttt{Y}(\texttt{f}) = \forall \alpha_5.\alpha_5 \to \alpha_5} \\ \hline \\ \textit{Var} \ \frac{\texttt{Y}(\texttt{f}) = \forall \alpha_5.\alpha_5 \to \alpha_5}{\texttt{Y}(\texttt{f}) = \forall \alpha_5.\alpha_5 \to \alpha_5} \\ \hline \\ \textit{Var} \ \frac{\texttt{Y}(\texttt{f}) = \forall \alpha_5.\alpha_5 \to \alpha_5}{\texttt{Y}(\texttt{f}) = \forall \alpha_5.\alpha_5 \to \alpha_5} \\ \hline \\ \textit{Var} \ \frac{\texttt{Y}(\texttt{f}) = \forall \alpha_5.\alpha_5 \to \alpha_5}{\texttt{Y}(\texttt{f}) = \forall \alpha_5.\alpha_5 \to \alpha_5} \\ \hline \\ \textit{Var} \ \frac{\texttt{Y}(\texttt{f}) = \forall \alpha_5.\alpha_5 \to \alpha_5}{\texttt{Y}(\texttt{f}) = \forall \alpha_5.\alpha_5 \to \alpha_5} \\ \hline \\ \textit{Var} \ \frac{\texttt{Y}(\texttt{f}) = \forall \alpha_5.\alpha_5 \to \alpha_5}{\texttt{Y}(\texttt{f}) = \forall \alpha_5.\alpha_5 \to \alpha_5} \\ \hline \\ \textit{Var} \ \frac{\texttt{Y}(\texttt{f}) = \forall \alpha_5.\alpha_5 \to \alpha_5}{\texttt{Y}(\texttt{f}) = \forall \alpha_5.\alpha_5 \to \alpha_5} \\ \hline \\ \textit{Var} \ \frac{\texttt{Y}(\texttt{f}) = \forall \alpha_5.\alpha_5 \to \alpha_5}{\texttt{Y}(\texttt{f}) = \forall \alpha_5.\alpha_5 \to \alpha_5} \\ \hline \\ \textit{Var} \ \frac{\texttt{Y}(\texttt{f}) = \forall \alpha_5.\alpha_5 \to \alpha_5} \\ \hline \\ \textit{Var} \ \frac{\texttt{Y}(\texttt{f}) = \forall \alpha_5.\alpha_5 \to \alpha_5} \\ \hline \\ \textit{Var} \ \frac{\texttt{Y}(\texttt{f}) =$$

CO, C_let (C'_let wurde vorgegeben) und Reste in einer Menge hinzufügen. Dann Unifizieren.

Wie berechnet man tau_poly?

(b) Betrachten Sie den Ausdruck

let a =
$$\lambda$$
x. λ y. true **in** λ f. f (a true) (a 17)

i. Wie lautet der polymorphe Typ τ_a^{poly} von a?

Lösung

i.
$$\tau_{\rm a}^{poly} = \forall \alpha. \forall \beta. \alpha \rightarrow \beta \rightarrow {\tt bool}$$

Idee: a=\x.\y.true == die Funktion, die 2 Argumente nimmt, und immer true ausgibt -> egal, was für einen Typ a und b haben.

Wie kann man kurz beweisen, dass ei nAusdruck nicht typisierbar ist?

Aufgabe:

iii. Ist der Ausdruck

$$\lambda$$
a. λ f. f (a true) (a 17)

typisierbar? Begründen Sie Ihre Antwort kurz.

Lösung:

iii. Der Ausdruck ist nicht typisierbar, da a in ihm einmal als Funktion **bool** $\rightarrow \alpha$ und einmal als Funktion **int** $\rightarrow \beta$ verwendet wird, was die Typregeln ohne let-Polymorphismus nicht erlauben.

Aufgaben

Typgleichungsystem aus WS16/17

ii. Unten sehen Sie einen Herleitungsbaum für einen allgemeinsten Typen unter der Typannahme $\Gamma = a : \tau_a^{poly}$. Geben Sie das zugehörige Typgleichungssystem an und ergänzen Sie außerdem, was an den mit \widehat{A} bzw. \widehat{B} markierten Stellen einzutragen ist.

$$App = \frac{App - \frac{Var}{\Gamma, \text{f}: \alpha_2)(\text{f}) = \alpha_5}{\Gamma, \text{f}: \alpha_2 \vdash \text{f}: \alpha_5}}{\Gamma, \text{f}: \alpha_2 \vdash \text{f}: \alpha_5} + \frac{Var}{\Gamma, \text{f}: \alpha_2 \vdash \text{a}: \alpha_7} C \frac{\text{ftrue} \in Const}{\Gamma, \text{f}: \alpha_2 \vdash \text{true}: \alpha_8}}{\Gamma, \text{f}: \alpha_2 \vdash \text{a} \text{true}: \alpha_6} + \frac{Var}{\Gamma, \text{f}: \alpha_2 \vdash \text{a}: \alpha_{10}} C \frac{\text{B}}{\Gamma, \text{f}: \alpha_2 \vdash \text{a}: \alpha_{10}} C \frac{17 \in Const}{\Gamma, \text{f}: \alpha_2 \vdash \text{17}: \alpha_{11}}}{\Gamma, \text{f}: \alpha_2 \vdash \text{a}: 17: \alpha_9} + \frac{App}{\Gamma, \text{f}: \alpha_2 \vdash \text{a}: \alpha_{10}} C \frac{\text{B}}{\Gamma, \text{f}: \alpha_2 \vdash \text{a}: \alpha_{10}} C \frac{17 \in Const}{\Gamma, \text{f}: \alpha_2 \vdash \text{17}: \alpha_{11}} C \frac{\text{Abs}}{\Gamma, \text{f}: \alpha_2 \vdash \text{a}: \alpha_{10}} C \frac{17 \in Const}{\Gamma, \text{f}: \alpha_2 \vdash \text{a}: \alpha_{10}} C \frac{\text{Abs}}{\Gamma, \text{f}: \alpha_2$$

i.
$$au_{a}^{poly} = \forall \alpha. \forall \beta. \alpha \to \beta \to \mathbf{bool}$$

$$\alpha_1 = \alpha_2 \to \alpha_3$$

$$\alpha_4 = \alpha_9 \to \alpha_3$$

$$\alpha_5 = \alpha_6 \to \alpha_4$$

$$\alpha_2 = \alpha_5$$

$$\alpha_7 = \alpha_8 \rightarrow \alpha_6$$

$$\alpha_{10} = \alpha_{11} \rightarrow \alpha_9$$

$$\alpha_8 = \texttt{bool}$$

$$\alpha_{11} = \mathtt{int}$$

$$\alpha_7 = \alpha' \to \beta' \to \texttt{bool}$$

$$\alpha_{10} = \alpha'' \rightarrow \beta'' \rightarrow \texttt{bool}$$

$$\widehat{(A)}: (\Gamma, f: \alpha_2)(a) = \forall \alpha. \forall \beta. \alpha \to \beta \to \texttt{bool} \succeq \alpha' \to \beta' \to \texttt{bool}$$

$$\textcircled{B}: \left(\Gamma, \mathtt{f}: \alpha_{2}\right)(a) = \forall \alpha. \forall \beta. \alpha \rightarrow \beta \rightarrow \mathtt{bool} \succeq \alpha'' \rightarrow \beta'' \rightarrow \mathtt{bool}$$

SS17

(a) Geben Sie einen λ -Term t vom Typ

[3 Punkte]

$$\tau_t = ((\alpha \to \beta) \to (\beta \to \gamma)) \to (\alpha \to \beta) \to \alpha \to \gamma$$

an

Beispiellösung: $t = \lambda f$. λg . λx . (f g) (g x)

(b) Im Folgenden betrachten wir den λ -Ausdruck

[16 Punkte]

let b = t (
$$\lambda$$
x. x) **in** λ y. λ z. (b y) (b z)

i. Geben Sie den polymorphen Typen $\tau_{\mathtt{b}}^{poly}$ von b
 unter der Typannahme $\Gamma_{\mathtt{t}} = \mathtt{t} : \forall \alpha. \forall \beta. \forall \gamma. \tau_t$ an! (3 Punkte)

Beispiellösung: $\tau_b^{poly} = \forall \alpha. \ (\alpha \to \alpha) \to \alpha \to \alpha$

ii. Es seien

$$\Gamma_{ exttt{tb}} = \Gamma_{ exttt{t}}, exttt{b} : au_{ exttt{b}}^{poly} \ \Gamma_{ exttt{tby}} = \Gamma_{ exttt{tb}}, exttt{y} : lpha_2 \ \Gamma_{ exttt{tbyz}} = \Gamma_{ exttt{tby}}, exttt{z} : lpha_4$$

Unten sehen Sie einen Herleitungsbaum für einen allgemeinsten Typen von λy . λz . (b y) (b z) unter der Typannahme Γ_{tb} . Geben Sie das zugehörige Typgleichungssystem an und ergänzen Sie außerdem, was an den mit \widehat{A} bzw. \widehat{B} markierten Stellen einzutragen ist. (11 Punkte)

$$App = \frac{App \frac{Var \frac{\textcircled{A}}{\Gamma_{tbyz} \vdash b : \alpha_{7}} Var \frac{\Gamma_{tbyz} (y) = \alpha_{8}}{\Gamma_{tbyz} \vdash b : y : \alpha_{6}}}{\Gamma_{tbyz} \vdash b : y : \alpha_{6}} App \frac{Var \frac{\textcircled{B}}{\Gamma_{tbyz} \vdash b : \alpha_{10}} Var \frac{\Gamma_{tbyz} (z) = \alpha_{11}}{\Gamma_{tbyz} \vdash z : \alpha_{11}}}{\Gamma_{tbyz} \vdash (b z) : \alpha_{9}}}{\Gamma_{tbyz} \vdash (b z) : \alpha_{9}}$$

$$Abs = \frac{Abs}{\Gamma_{tby} \vdash \lambda_{2}. (b y) (b z) : \alpha_{5}}{\Gamma_{tby} \vdash \lambda_{2}. (b y) (b z) : \alpha_{3}}}$$

$$\Gamma_{tb} \vdash \lambda_{2}. (b y) (b z) : \alpha_{1}}{\Gamma_{tbyz} \vdash (b z) : \alpha_{1}}$$

Beispiellösung:

• Typgleichungen:

$$\begin{split} &\alpha_1 = \alpha_2 \rightarrow \alpha_3 \\ &\alpha_3 = \alpha_4 \rightarrow \alpha_5 \\ &\alpha_6 = \alpha_9 \rightarrow \alpha_5 \\ &\alpha_7 = \alpha_8 \rightarrow \alpha_6 \\ &\alpha_7 = \left(\alpha' \rightarrow \alpha'\right) \rightarrow \alpha' \rightarrow \alpha' \\ &\alpha_2 = \alpha_8 \\ &\alpha_{10} = \alpha_{11} \rightarrow \alpha_9 \\ &\alpha_{10} = \left(\alpha'' \rightarrow \alpha''\right) \rightarrow \alpha'' \rightarrow \alpha'' \\ &\alpha_4 = \alpha_{11} \end{split}$$

- $\bullet \ \ \underbrace{(\Delta)} : \Gamma_{\texttt{tbyz}} \ (\texttt{b}) = \forall \alpha. \ (\alpha \to \alpha) \to \alpha \to \alpha, \forall \alpha. \ (\alpha \to \alpha) \to \alpha \to \alpha \succeq (\alpha' \to \alpha') \to \alpha' \to \alpha'$
- (B): Γ_{tbyz} (b) = $\forall \alpha$. $(\alpha \to \alpha) \to \alpha \to \alpha$, $\forall \alpha$. $(\alpha \to \alpha) \to \alpha \to \alpha \succeq (\alpha'' \to \alpha'') \to \alpha'' \to \alpha''$ iii. Geben Sie einen allgemeinsten Typen von λ_y . λ_z . (b y) (b z) unter der Typannahme Γ_{tb}
- iii. Geben Sie einen allgemeinsten Typen von λy . λz . (b y) (b z) unter der Typannahme Γ_{tb} an! (2 Punkte)

Beispiellösung: $((\alpha \to \alpha) \to \alpha \to \alpha) \to (\alpha \to \alpha) \to \alpha \to \alpha$

b.2) Mit $\x.x$ (k -> k) merkt man, dass k = (a -> b) und k = (b -> g), und also a=b=k=g

Komplizierte Abs

$$\Gamma_{sz} = s : \alpha_4, z : \alpha_6$$

$$\Gamma_{tf} = t : \alpha_{12}, f : \alpha_{14}$$

$$App \xrightarrow{Var} \frac{\Gamma_{sz}(s) = \alpha_{4}}{\Gamma_{sz} \vdash s : \alpha_{8}} App \xrightarrow{Var} \frac{\Gamma_{sz}(s) = \alpha_{4}}{\Gamma_{sz} \vdash s : \alpha_{10}} Var \xrightarrow{\Gamma_{sz}(z) = \alpha_{6}}{\Gamma_{sz} \vdash z : \alpha_{11}}$$

$$App \xrightarrow{Abs} \frac{Abs \xrightarrow{\Gamma_{sz} \vdash s : \alpha_{8}} (s) = \alpha_{4} \vdash (\lambda z. s (s z)) : \alpha_{5}}{\Gamma_{sz} \vdash s (s z) : \alpha_{7}} Abs \xrightarrow{Abs} \frac{Var}{\Gamma_{tf}(t) = \alpha_{12}} (s) \xrightarrow{\Gamma_{tf}(t) = \alpha_{13}} (s) \xrightarrow{\Gamma_{tf}(t) = \alpha_{14}} (s) \xrightarrow{\Gamma_{tf}(t) = \alpha_{15}} (s) \xrightarrow{\Gamma_{tf}(t) = \alpha_$$

(a) Geben Sie das Constraint-System für diesen Herleitungsbaum an.

[9 Punkte]

Beispiellösung:

$$\alpha_{2} = \alpha_{3} \rightarrow \alpha_{1}$$

$$\alpha_{2} = \alpha_{4} \rightarrow \alpha_{5}$$

$$\alpha_{6} = \alpha_{11}$$

$$\alpha_{5} = \alpha_{6} \rightarrow \alpha_{7}$$

$$\alpha_{8} = \alpha_{9} \rightarrow \alpha_{7}$$

$$\alpha_{13} = \alpha_{12} \rightarrow \alpha_{13}$$

$$\alpha_{13} = \alpha_{14} \rightarrow \alpha_{15}$$

$$\alpha_{4} = \alpha_{8}$$

$$\alpha_{10} = \alpha_{11} \rightarrow \alpha_{9}$$

Komplizierte mgu

(c) Geben Sie einen allgemeinsten Unifikator für die folgende Constaintmenge in Listenform $[\ldots, \alpha_i \diamond \tau_i, \ldots]$ an.

$$C = \{$$

$$\alpha_5 = \alpha_4 \to \alpha_6,$$

$$\alpha_1 = \alpha_2 \to \alpha_3 \to \alpha_4,$$

$$\alpha_1 = \alpha_5 \to \alpha_6,$$

$$\}$$

Die funktionstypen sind rechtsassoziativ: a1 = a2 -> a3 -> a4 = a2 -> (a3 -> a4)

1. Man merkt, dass es 2 Regeln für a1 gibt.

Daraus folgt, dass:

2. Dann alles öffnen

$$a2 = a5 = a4 -> (a3 -> a4)$$

$$a5 = a4 -> (a3 -> a4)$$

3. Unifikator bilden: