Gender Classification Using Machine Learning Models

This presentation explores the use of predictive modeling in R for gender classification, comparing the performance of Naive Bayes, Random Forest, and SVM models.

by Christelle Younan

Project Overview

		,		
<i>(</i>)	h	00	+11	10
U	IJΙ	てし	·U	ve

Compare predictive models for gender classification.

Dataset

Gender Classification Dataset with facial descriptive features.

Methods

EDA, preprocessing, modeling, performance comparison, and hypothesis testing.

Exploratory Data Analysis

Gender Balance

Dataset is balanced (50% Male, 50% Female).

Correlation Matrix

Relationship between features.

Modeling Approaches

(1)

Naive Bayes

A probabilistic model based on Bayes' theorem.

```
Naive Bayes Classifier for Discrete Predictors
naiveBayes.default(x = X, y = Y, laplace = laplace)
A-priori probabilities:
   Female
0.4483958 0.5516042
Conditional probabilities:
        long_hair
  [,1] [,2]
Female 0.8155172 0.3880447
  Male 0.8346181 0.3716551
        forehead width cm
  [,1] [,2]
Female 12.82724 0.8704819
  Male 13.55032 1.1868752
         forehead height cm
  [,1] [,2]
Female 5.801034 0.4268984
   Male 6.090119 0.5990471
         nose_wide
  [,1] [,2]
Female 0.1715517 0.3771530
   Male 0.8304135 0.3754007
  [,1] [,2]
Female 0.2068966 0.4052554
   Male 0.8542397 0.3529895
              [,1]
  Female 0.1956897 0.3969018
   Male 0.8156973 0.3878668
        distance_nose_to_lip_long
  [,1] [,2]
Female 0.1775862 0.3823289
   Male 0.8430273 0.3639025
```


Random Forest

An ensemble learning method that combines multiple decision trees.

Support Vector Machines

A supervised learning model that finds the optimal hyperplane to separate data points.

```
Call:
svm(formula = gender ~ ., data = train_df)

Parameters:
SVM-Type: C-classification
SVM-Kernel: radial
cost: 1

Number of Support Vectors: 323
```

Comparing Model Performance

94.73%

95.66%

Naive Bayes

Accuracy: 94.73%.

Random Forest

Accuracy: 95.66%.

95.05%

NOTE

SVM

Accuracy: 95.05%.

Confusion matrices highlight the strengths and weaknesses of each model in identifying both genders. y_pred_test
Female Male
Female 281 9
Male 25 331

Confusion matrix for Naïve Bayes model:

y_pred_test
Female Male
Female 282 8
Male 20 336

Confusion matrix for Random forest model:

y_pred_test
Female Male
Female 282 8
Male 282 8
Male 24 332

Confusion matrix for SVM model:

Hypothesis Testing

Hypotheses

Null Hypothesis H0: Models perform

the same.

Alternate Hypothesis H1: Models do not perform the same.

Confidence Level

95% Confidence Level.

Z-critical=1.96.

With a threshold alfa = 5%, we have a z alpha/2 = 1.96 according to the z-table shown below:

Confidence Level	Alpha	Alpha/2	z alpha/2
90%	10%	5.0%	1.645
95%	5%	2.5%	1.96
98%	2%	1.0%	2.326
99%	1%	0.5%	2.576

Formula Used:

- Variance formula: $\sigma^2 = \frac{\mathrm{Acc}\cdot(1-\mathrm{Acc})}{n}$
- $Z ext{-score} = rac{ ext{Acc}_1 ext{Acc}_2}{\sqrt{\sigma_1^2 + \sigma_2^2}}$

Result

Z-value

Decision

1 Z | Conclusion

0.658. | Z | < 1.96 | No significant difference between models.

Key Takeaways

Data Analysis

EDA is crucial for understanding data characteristics.

Model Selection

Choose models based on data and objective.

Performance Evaluation

Compare models using appropriate metrics.

