Align before Fuse: Vision and Language Representation Learning with Momentum

NeurIPS 2021

Junnan Li, Ramprasaath R. Selvaraju, Akhilesh D. Gotmare
Shafiq Joty, Caiming Xiong, Steven C.H. Hoi
Salesforce Research

발제자: 윤예준

01. 연구배 경

기존 VLP framework

- Region-based image features를 추출하는데 사전 학습된 object detector에 의존하고, multimodal encoder를 사용하여 image features를 word token과 align함
- multimodal encoder는 MLM, ITM과 같이 이미지와 텍스트의 joint understanding require task를 해결하도록 훈련됨

VLP framework limitations

- image features와 word token embeddings이 같은 공간에 mapping되므로, 하나의 공간에서 multimodal encoder가 interaction을 학습하기 어려움.
- object detector는 annotation-expensive, compute-expensive 함.
- 웹에서 수집된 이미지-텍스트 데이터세트는 noisy가 많으며, 이를 통해 학습하게 되면 MLM과 같은 objective에서 noisy가 많은 텍스트에 과적합되어 모델의 일반화 성능을 저하시킬 수 있음

01. 연구배 경

앞서 말한 한계를 해결하기위해 multimodal encoder 전에 align하는 ALBEF를 제안

- image-text feature를 align하여 multimodal encoder가 cross-modal learning을 더 쉽게 하도록 만들어 줌
- unimodal encoder가 image-text feature의 semantic meaning을 더 잘 이해할 수 있도록 함
- image-text를 embed하기 위해 low-dimensional space를 학습하는데, 이는 image-text matching objective를 통해 정보가 더 담겨져 있는 sample를 찾을 수 있도록 도와줌

또한 Momentum Distillation (MoD) 제안

- noisy supervision 조건에서 학습을 개선시키기 위한 간단한 방법이며, 모델이 larger uncurated web dataset를 활용할 수 있도록 함
- pseudo-target을 생성하여 추가적인 지도학습을 가능하게 함
- web annotation과 다르게 reasonable한 data의 경우 모델이 penalize하지 않음

02. 제안 ALBE방법 F 모델 구조

- Image encoder
 - ImageNet-1K로 사전학습된 ViT-B/16
 - [CLS] token 존재
- Text encoder
 - BERT base first 6 layers
- Multimodal encoder
 - BERT base last 6 layers

Figure 1: Illustration of ALBEF. It consists of an image encoder, a text encoder, and a multimodal encoder. We propose an image-text contrastive loss to align the unimodal representations of an image-text pair before fusion. An image-text matching loss (using in-batch hard negatives mined through contrastive similarity) and a masked-language-modeling loss are applied to learn multimodal interactions between image and text. In order to improve learning with noisy data, we generate pseudo-targets using the momentum model (a moving-average version of the base model) as additional supervision during training.

02. 제안 ALBE방법 F

Pre-training Objectives

Image-Text Contrastive Learning

$$s(I,T) = g_v(\boldsymbol{v}_{\text{cls}})^\top g_w'(\boldsymbol{w}_{\text{cls}}') \text{ and } s(T,I) = g_w(\boldsymbol{w}_{\text{cls}})^\top g_v'(\boldsymbol{v}_{\text{cls}}')$$

$$p_m^{\text{i2t}}(I) = \frac{\exp(s(I,T_m)/\tau)}{\sum_{m=1}^M \exp(s(I,T_m)/\tau)}, \quad p_m^{\text{t2i}}(T) = \frac{\exp(s(T,I_m)/\tau)}{\sum_{m=1}^M \exp(s(T,I_m)/\tau)}$$

- Masked Language Modeling

$$\mathcal{L}_{ ext{mlm}} = \mathbb{E}_{(I,\hat{T})\sim D} \mathrm{H}(\boldsymbol{y}^{ ext{msk}}, \boldsymbol{p}^{ ext{msk}}(I,\hat{T}))$$

- Image-Text Matching
 - hard negative sample과 multimodal encoder의 [CLS] token 비교
 - ITC내에서 다항분포 확률값 기반 샘플링 I2T, T2I

$$\mathcal{L}_{\mathrm{itm}} = \mathbb{E}_{(I,T) \sim D} \mathrm{H}(\boldsymbol{y}^{\mathrm{itm}}, \boldsymbol{p}^{\mathrm{itm}}(I,T))$$

Full pre-training objective of ALBEF is:

$$\mathcal{L} = \mathcal{L}_{\mathrm{itc}} + \mathcal{L}_{\mathrm{mlm}} + \mathcal{L}_{\mathrm{itm}}$$

$$\mathcal{L}_{\mathrm{itc}} = \frac{1}{2} \mathbb{E}_{(I,T) \sim D} \left[\mathrm{H}(\boldsymbol{y}^{\mathrm{i2t}}(I), \boldsymbol{p}^{\mathrm{i2t}}(I)) + \mathrm{H}(\boldsymbol{y}^{\mathrm{t2i}}(T), \boldsymbol{p}^{\mathrm{t2i}}(T)) \right]$$

Figure 1: Illustration of ALBEF. It consists of an image encoder, a text encoder, and a multimodal encoder. We propose an image-text contrastive loss to align the unimodal representations of an image-text pair before fusion. An image-text matching loss (using in-batch hard negatives mined through contrastive similarity) and a masked-language-modeling loss are applied to learn multimodal interactions between image and text. In order to improve learning with noisy data, we generate pseudo-targets using the momentum model (a moving-average version of the base model) as additional supervision during training.

제안 02.

Momentum担istillation (MoD)

- Web image-text pair는 positive pairs임에도 weakly-correlated인 경우가 많아서 noisy함
- MLM과 ITC를 학습할 때 one-hot label을 사용함
- 그러나 그림2와 같이 이미지를 더 잘 설명하거나 의미상으로 틀리지 않은 단어가 있을 수 있음(MLM)
- 또한, negative pair가 아님에도 negative로 여겨 similarity score가 낮아지게끔 학습할 수 있음 (ITC)
- 이를 해결하기 위해 momentum model로부터 pseudo-target을 만들고 one-hot label만으로 얻기 힘든 정부들을

$$\mathcal{L}_{\text{itc}}^{\text{mod}} = (1 - \alpha)\mathcal{L}_{\text{itc}} + \frac{\alpha}{2}\mathbb{E}_{(I,T)\sim D}\left[\text{KL}(\boldsymbol{q}^{\text{i2t}}(I) \parallel \boldsymbol{p}^{\text{i2t}}(I)) + \text{KL}(\boldsymbol{q}^{\text{t2i}}(T) \parallel \boldsymbol{p}^{\text{t2i}}(T))\right]$$

Figure 1: Illustration of ALBEF. It consists of an image encoder, a text encoder, and a multimodal encoder. We propose an image-text contrastive loss to align the unimodal representations of an image-text pair before fusion. An image-text matching loss (using in-batch hard negatives mined through contrastive similarity) and a masked-language-modeling loss are applied to learn multimodal interactions between image and text. In order to improve learning with noisy data, we generate pseudo-targets using the momentum model (a moving-average version of the base model) as additional supervision during training.

Figure 2: Examples of the pseudo-targets for MLM (1st row) and ITC (2nd row). The pseudo-targets can capture visual concepts that are not described by the ground-truth text (e.g. "beautiful waterfall", "young woman").

02. 제안

Pre-training patasets

- Following UNITER,
- Conceptual Captions, SBU captions
- COCO, Visual Genome
- noisier Conceptual 12M dataset

Evaluation on the Proposed Methods

- 제안 방법 변형에 대한 downstream task 성능

#Pre-train Images	Training tasks	TR (flick	IR r test)	SNLI-VE (test)	NLVR ² (test-P)	VQA (test-dev)
	MLM + ITM	93.96	88.55	77.06	77.51	71.40
	ITC + MLM + ITM	96.55	91.69	79.15	79.88	73.29
4M	ITC + MLM + ITM _{hard}	97.01	92.16	79.77	80.35	73.81
	$ITC_{MoD} + MLM + ITM_{hard}$	97.33	92.43	79.99	80.34	74.06
	Full $(ITC_{MoD} + MLM_{MoD} + ITM_{hard})$	97.47	92.58	80.12	80.44	74.42
	ALBEF (Full + MoD _{Downstream})	97.83	92.65	80.30	80.50	74.54
14M	ALBEF	98.70	94.07	80.91	83.14	75.84

Table 1: Evaluation of the proposed methods on four downstream V+L tasks. For text-retrieval (TR) and image-retrieval (IR), we report the average of R@1, R@5 and R@10. ITC: image-text contrastive learning. MLM: masked language modeling. ITM_{hard}: image-text matching with contrastive hard negative mining. MoD: momentum distillation. MoD_{Downstream}: momentum distillation on downstream tasks.

- Image-Text Retrieval
 - Flicker30K, COCO 벤치마크에 대해 평가 및 훈련 샘플 이용하여 fine-tune
 - Flicker30K 제로 샷 검색의 경우, COCO에서 fine-tune된 모델 사용
 - 미세 조정 시 ITC, ITM jointly optimize

Method	# Pre-train	Flickr30K (1K test set)				MSCOCO (5K test set)							
	Images	TR		IR		TR			IR				
Market Control		R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10
UNITER	4M	87.3	98.0	99.2	75.6	94.1	96.8	65.7	88.6	93.8	52.9	79.9	88.0
VILLA	4M	87.9	97.5	98.8	76.3	94.2	96.8	-	-	-	-	-	-
OSCAR	4M	-	-	-	-	-	-	70.0	91.1	95.5	54.0	80.8	88.5
ALIGN	1.2B	95.3	99.8	100.0	84.9	97.4	98.6	77.0	93.5	96.9	59.9	83.3	89.8
ALBEF	4M	94.3	99.4	99.8	82.8	96.7	98.4	73.1	91.4	96.0	56.8	81.5	89.2
ALBEF	14M	95.9	99.8	100.0	85.6	97.5	98.9	77.6	94.3	97.2	60.7	84.3	90.5

Table 2: Fine-tuned image-text retrieval results on Flickr30K and COCO datasets.

Mathad	# Pre-train	Flickr30K (1K test set)							
Method	Images		TR		IR				
		R@1	R@5	R@10	R@1	R@5	R@10		
UNITER [2]	4M	83.6	95.7	97.7	68.7	89.2	93.9		
CLIP [6]	400M	88.0	98.7	99.4	68.7	90.6	95.2		
ALIGN [7]	1.2B	88.6	98.7	99.7	75.7	93.8	96.8		
ALBEF	4M	90.5	98.8	99.7	76.8	93.7	96.7		
ALBEF	14M	94.1	99.5	99.7	82.8	96.3	98.1		

Table 3: Zero-shot image-text retrieval results on Flickr30K.

- Visual Entailment
 - UNITER에 따라 three-way classification 문제로 간주
 - MLP 사용하여 클래스 예측
- Visual Question Answering
 - 이미지와 질문이 주어졌을 때 모델이 답을 예측하는 것
 - 다중 분류 문제로 formulate하는 대신 답변 생성 문제로 간주
- Natural Language for Visual Reasoning
 - 모델이 텍스트가 이미지를 설명하는지 여부 예측
 - multimodal encoder의 [CLS] representation에 MLP 분류기 추가

Method	V	QA	NL	VR^2	SNLI-VE	
Method	test-dev	test-std	dev	test-P	val	test
VisualBERT [13]	70.80	71.00	67.40	67.00	8	2
VL-BERT [10]	71.16	-	-	-	-	-
LXMERT [1]	72.42	72.54	74.90	74.50	2	2
12-in-1 [12]	73.15	-	-	78.87	-	76.95
UNITER [2]	72.70	72.91	77.18	77.85	78.59	78.28
VL-BART/T5 [54]	-	71.3	-	73.6	-	-
ViLT [21]	70.94	-	75.24	76.21	-	17
OSCAR [3]	73.16	73.44	78.07	78.36	_	-
VILLA [8]	73.59	73.67	78.39	79.30	79.47	79.03
ALBEF (4M)	74.54	74.70	80.24	80.50	80.14	80.30
ALBEF (14M)	75.84	76.04	82.55	83.14	80.80	80.91

- Visual Grounding
 - 특정 텍스트 설명에 해당하는 이미지 영역을 찾는 것을 목표
 - 바운딩 박스 annotation을 사용할 수 없는 weakly-supervised setting

Method	Val	TestA	TestB	
ARN [57]	32.78	34.35	32.13	
CCL [58]	34.29	36.91	33.56	
ALBEFitc	51.58	60.09	40.19	
ALBEFitm	58.46	65.89	46.25	

Table 5: Weakly-supervised visual grounding on RefCOCO+ [56] dataset.

Figure 4: Grad-CAM visualization on the cross-attention maps in the 3rd layer of the multimodal encoder.

Figure 5: Grad-CAM visualizations on the cross-attention maps of the multimodal encoder for the VQA model.

Figure 6: Grad-CAM visualizations on the cross-attention maps corresponding to individual words.

04. <u>결</u> 론

- 시각-언어 표현 학습을 위한 새로운 프레임워크인 ALBEF 제안
- 다양한 평가를 통해 제안한 프레임워크의 효과 검증

감사합니 다.