le courant électrique

C'est un déplacement ordonné de charges électriques

Intensité électrique

C'est le débit de charges qui passent à travers la section d'un fil, en ampères (A)=C/s.

$$I = \frac{dQ}{dt}$$

n charges q par m3 qui avancent à la vitesse v :

L'intensité est une grandeur algébrique elle peut être positive ou négative

ARQS Approximation des régimes quasi-stationnaires

Lorsque le temps de variation du signal est très supérieur au le temps de propagation d'un bout à l'autre du circuit

Dans l'ARQS, l'intensité est la même en tout point d'un fil.

$$k = 0$$

$$\lim_{i_1,\dots,i_2} \frac{i_1}{i_2} \frac{i_2}{i_3} \frac{i_3}{i_3} \frac{i_2}{i_3} \frac{i_3}{i_3} \frac{i_3}{i_3} \frac{i_2}{i_3} \frac{i_3}{i_3} \frac{i_3}$$

la tension électrique

Dans un circuit électrique, une charge q possède une énergie potentielle :

$$E_p = qV$$

V est le **potentiel électrique** en volts (V)

Le point du circuit où V=0 est la référence de potentiel

La tension électrique correspond à la différence de potentiel entre deux points du circuit

Résistance

Caractéristique :

 $U = R \times i$

G=1/R: Conductance

Puissance reçue:

Convention récepteur

Toute la puissance reçue est convertie en chaleur par **effet Joule**

Association en série

Pont diviseur de tension

Loi d'Ohm

R : Résistance en Ohm (Ω)

en Siemens (S)

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2}$$

 $G_{eq} = G_1 + G_2$

Dipôle

C'est un composant électrique qui comporte 2 bornes

La puissance **reçue** par le dipôle est : $P_{AB} = U_{AB} \times i_{AB}$

Convention générateur

Condensateur

Deux armatures métaliques séparées par un matériau isolant.

$$i = \frac{dq}{dt}$$

$$q = Cu$$

Ces relations sont valables en convention récepteur

Énergie stockée

 $E = \frac{1}{2}Cu^2$ en joules (J)

Bobine

C'est un fil conducteur enroulé, éventuellement autour d'un matériau magnétique.

convention

Énergie stockée

 $E = \frac{1}{2}Li^2$ en joules (J)

Générateurs

Générateur de tension

Modèle linéaire d'un générateur réel

Générateur de courant)

Caractéristique d'un générateur de courant idéal.

L'intensité est constante.

Modèle linéaire d'un générateur réel

u = RI - Ri