Loss Functions

He He

CDS, NYU

February 6, 2021

Three spaces for a prediction problem:

- Input space X, e.g. email sender, title etc.
- Action space A, e.g. score of SPAM
- Output space \(\frac{1}{2} \), e.g. SPAM or NO SPAM

Loss Function

A loss function evaluates an action in the context of the outcome y.

$$\begin{array}{ccc} \ell: & \mathcal{A} \times \mathcal{Y} & \to & \mathsf{R} \\ & (a,y) & \mapsto & \ell(a,y) \end{array}$$

Contents

Regression Loss Functions

2 Classification Loss Functions

Regression Loss Functions

Regression Problems

- Examples:
 - Predicting the stock price given history prices
 - Predicting medical cost of given age, sex, region, BMI etc.
 - Predicting the age of a person based on their photos
- Regression spaces:
 - Input space $\mathfrak{X} = \mathbb{R}^d$
 - Action space A = R
 - Outcome space y = R.
- Notation:
 - \hat{y} is the predicted value (the action)
 - y is the actual observed value (the outcome)

Loss Functions for Regression

In general, loss function may take the form

$$(\hat{y}, y) \mapsto \ell(\hat{y}, y) \in \mathsf{R}$$

- Regression losses usually only depend on the **residual** $r = y \hat{y}$. • what you have to add to your prediction to get the right answer
 - what you have to add to your prediction to get the right answer
- Loss $\ell(\hat{y}, y)$ is called **distance-based** if it
 - only depends on the residual:

$$\ell(\hat{y},y) = \psi(y-\hat{y})$$
 for some $\psi: R \to R$

2 loss is zero when residual is 0:

$$\psi(0) = 0$$

Distance-Based Losses are Translation Invariant

• Distance-based losses are translation-invariant. That is,

$$\ell(\hat{y} + b, y + b) = \ell(\hat{y}, y) \quad \forall b \in R.$$

• When might you not want to use a translation-invariant loss?

He He (CDS, NYU) DS-GA 1003 February 6, 2021 7/20

Distance-Based Losses are Translation Invariant

Distance-based losses are translation-invariant. That is.

$$\ell(\hat{y} + b, y + b) = \ell(\hat{y}, y) \quad \forall b \in R.$$

- When might you not want to use a translation-invariant loss?
- Sometimes relative error $\frac{\hat{y}-y}{y}$ is a more natural loss (but not translation-invariant)
- Often you can transform response y so it's translation-invariant (e.g. log transform)

He He (CDS, NYU) DS-GA 1003 February 6, 2021 7 / 20

Some Losses for Regression

• Residual:
$$r = y - \hat{y}$$
 $(y, \hat{y}) = \psi(y - \hat{y}) = \psi(r)$

- Square or ℓ_2 Loss: $\ell(r) = r^2$
- Absolute or Laplace or ℓ_1 Loss: $\ell(r) = |r|$

У	ŷ	$ r = y - \hat{y} $	$r^2 = (y - \hat{y})^2$
1	0	1	1
5	0	5	25
10	0	10	100
50	0	50	2500

- Outliers typically have large residuals.
- Square loss much more affected by outliers than absolute loss.

Loss Function Robustness

• Robustness refers to how affected a learning algorithm is by outliers.

Some Losses for Regression

- Square or ℓ_2 Loss: $\ell(r) = r^2$ (not robust)
- Absolute or Laplace Loss: $\ell(r) = |r|$ (not differentiable)
 - gives median regression
- **Huber** Loss: Quadratic for $|r| \leq \delta$ and linear for $|r| > \delta$ (robust and differentiable)
 - Equal values and slopes at $r = \delta$

KPM Figure 7.6

Classification Loss Functions

The Classification Problem

- Examples:
 - Predict whether the image contains a cat
 - Predict whether the email is SPAM
- Classification spaces:
 - Input space R^d
 - Action space A = R
 - Outcome space $\mathcal{Y} = \{-1, 1\}$
- Inference:

$$f(x) > 0 \implies \text{Predict } 1$$

 $f(x) < 0 \implies \text{Predict } -1$

The Score Function

- Action space A = R Output space $\mathcal{Y} = \{-1, 1\}$
- Real-valued prediction function $f: X \to R$

Definition

The value f(x) is called the **score** for the input x.

- In this context, f may be called a score function.
- Intuitively, magnitude of the score represents the confidence of our prediction.

DS-GA 1003 13 / 20 He He (CDS, NYU) February 6, 2021

The Margin

Definition

The margin (or functional margin) for predicted score \hat{y} and true class $y \in \{-1, 1\}$ is $y\hat{y}$.

- The margin is often written as yf(x), where f(x) is our score function.
- The margin is a measure of how correct we are.
 - If y and \hat{y} are the same sign, prediction is **correct** and margin is **positive**.
 - If y and \hat{y} have different sign, prediction is **incorrect** and margin is **negative**.
- We want to maximize the margin
- Most classification losses depend only on the margin, which is called margin-based loss.

He He (CDS, NYU) DS-GA 1003 February 6, 2021 14/20

Classification Losses: 0-1 Loss

• 0-1 loss for $f: \mathcal{X} \to \{-1,1\}$: $\ell(f(x),y) = \underline{1}(f(x) \neq y)$

• Empirical risk for 0-1 loss:

$$\hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^n 1(y_i f(x_i) \le 0)$$

Minimizing empirical 0-1 risk not computationally feasible

 $\hat{R}_n(f)$ is non-convex, not differentiable (in fact, discontinuous!). Optimization is **NP-Hard**.

Classification Losses

Zero-One loss: $\ell_{0-1} = 1 (m \leq 0)$

• x-axis is margin: $m > 0 \iff$ correct classification

He He (CDS, NYU) DS-GA 1003 February 6, 2021

Classification Losses

SVM/Hinge loss: $\ell_{\text{Hinge}} = \max(1 - m, 0)$

Hinge is a **convex**, **upper bound** on 0-1 loss. Not differentiable at m=1.

Logistic/Log loss:
$$\ell_{\text{Logistic}} = \log(1 + e^{-m}) \times \frac{1}{\log 2}$$

Logistic loss is differentiable. Logistic loss always wants more margin (loss never 0).

What About Square Loss for Classification?

- Action space A = R Output space $y = \{-1, 1\}$
- Loss $\ell(f(x), y) = (f(x) y)^2$.
- Turns out, can write this in terms of margin m = f(x)y:

$$\ell(f(x), y) = (f(x) - y)^2 = (1 - f(x)y)^2 = (1 - m)^2$$

• Prove using fact that $y^2 = 1$, since $y \in \{-1, 1\}$.

What About Square Loss for Classification?

Heavily penalizes outliers (e.g. mislabeled examples).

May have higher sample complexity (i.e. needs more data) than hinge & logistic¹.

Rosasco et al's "Are Loss Functions All the Same?" http://web.mit.edu/lrosasco/www/publications/loss.pdf

He He (CDS, NYU) DS-GA 1003 February 6, 2021