Teoria da Complexidade

Notação Assintótica

Prof. Diego Noble your@mail.com

6 de agosto de 2018

Introdução

- Analisar algoritmos significa determinar os recursos computacionais que o algoritmo requer conforme o tamanho da entrada aumenta.
- → O objetivo desta aula é "concretizar" esta ideia de análise.

Introdução

- Analisar algoritmos significa determinar os recursos computacionais que o algoritmo requer conforme o tamanho da entrada aumenta.
- → O objetivo desta aula é "concretizar" esta ideia de análise.
- → Esse é passo inicial para compreender o conceito de tratabilidade.

Conteúdo

Conceito de Eficiência Notação Assintótica

Conceito de Eficiência

Complexidade

 Encontrar algoritmos eficientes para solucionar problemas computacionais.

Mas o que é "executar rapidamente"?

Eficiência I

Definição 1. Um algoritmo é eficiente se, quando implementado, executa rapidamente para instâncias reais como entrada.

Eficiência II

Definição 2. Um algoritmo é eficiente se, qualitativamente e em seu pior caso, tem um desempenho superior a um algoritmo de força-bruta.

Eficiência III

Definição 3. Um algoritmo é eficiente se o seu tempo de execução é polinomial.

Eficiência III

Definição 3. Um algoritmo é eficiente se o seu tempo de execução é polinomial.

Mas n^{100} é melhor que $n^{1+0.02(\log n)}$?

Notação Assintótica

Big-oh O

Definição 4. Limite assintótico superior T(n) é O(f(n)) se existem constantes c>0 e $n_0\geq 0$ tal que $\forall n\geq n_0$, é o caso que $T(n)\leq c.f(n)$.

Big-oh O

Definição 4. Limite assintótico superior T(n) é O(f(n)) se existem constantes c>0 e $n_0\geq 0$ tal que $\forall n\geq n_0$, é o caso que $T(n)\leq c.f(n)$.

Dizemos neste caso que T(n) é limitada superiormente por f(n).

Exemplo

$$T(n) = 10n + 8, f(n) = n^2, c = 5, n_0 = 2$$

Big-oh O

Figura 1: $T(n) \in \mathcal{O}(f(n))$

Ω

Definição 5. Limite assintótico inferior T(n) é $\Omega(f(n))$ se existem constantes c>0 e $n_0\geq 0$ tal que $\forall n\geq n_0$, é o caso que $T(n)\geq c.f(n)$.

Definição 5. Limite assintótico inferior T(n) é $\Omega(f(n))$ se existem constantes c>0 e $n_0\geq 0$ tal que $\forall n\geq n_0$, é o caso que $T(n)\geq c.f(n)$.

Dizemos neste caso que T(n) é limitada inferiormente por f(n).

Figura 2: $T(n) \in \Omega(f(n))$

Definição 6. Limite assintótico estrito T(n) é $\Theta(f(n))$ se T(n) é tanto O(f(n)) quanto $\Omega(f(n))$.

Definição 6. Limite assintótico estrito T(n) é $\Theta(f(n))$ se T(n) é tanto O(f(n)) quanto $\Omega(f(n))$.

Dizemos neste caso que T(n) é limitada estritamente por f(n).

Definição 6. Limite assintótico estrito T(n) é $\Theta(f(n))$ se T(n) é tanto O(f(n)) quanto $\Omega(f(n))$.

Dizemos neste caso que T(n) é limitada estritamente por f(n).

- Também conhecido por limite restrito.
- A função T(n) cresce dentro de um fator constante multiplicado por f(n).

Figura 3: $T(n) \in \Theta(f(n))$

Observações

- Dadas duas funções $g=n^2$ e f=n+32, anotamos que $f(n)\in\mathcal{O}(g(n))$ usando a seguinte notação: $f(n)=\mathcal{O}(g(n))$.
- Neste caso, lemos $f(n) \not\in \mathcal{O}(g(n))$ ao invés de nos referirmos ao sentido de igualdade usual.
- Isto porque $\mathcal{O}(g(n))$ é um conjunto de funções que tem o mesmo limite assintótico superior que g(n).
- Portanto f(n) é uma função que pertence a esse conjunto.

Bibliografia consultada

[Cor09] Thomas H. Cormen. *Introduction to Algorithms*. The MIT Press, 3 edition, jul 2009.

[GJ79] Michael Garey and David Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York, 1979.