西安电子科技大学博士研究生学位论文 LaTex 模板

作者姓名	朱磊	
学校导师姓名、	职称 邵晓鹏 教	授
国外导师姓名、	职称 Sylvain Gigan	教授
申请学位类别	工学博士	

 学校代码
 10701
 学号
 1605110267

 分类号
 O439
 密级
 公开

西安电子科技大学

博士学位论文

西安电子科技大学博士研究生学位论文 LaTex 模板

作者姓名:朱磊

领 域: 光学工程

学位类别:工学博士

学校导师姓名、职称: 邵晓鹏 教授

国外导师姓名、职称: Sylvain Gigan 教授

学 院: 物理与光电工程学院

提交日期: 2017年4月

Thesis/Dissertation LaTex Template for Postgraduates of XIDIAN UNIVERSITY

A Thesis submitted to

XIDIAN UNIVERSITY

in partial fulfillment of the requirements

for the degree of Doctor

in Optical Engineering

By

Zhu Lei

Supervisor: Shao Xiaopeng Title:Professor Supervisor: Sylvain Gigan Title:Professor

April 2017

西安电子科技大学 学位论文独创性(或创新性)声明

秉承学校严谨的学风和优良的科学道德,本人声明所呈交的论文是我个人在导师指导下进行的研究工作及取得的研究成果。尽我所知,除了文中特别加以标注和致谢中所罗列的内容以外,论文中不包含其他人已经发表或撰写过的研究成果;也不包含为获得西安电子科技大学或其它教育机构的学位或证书而使用过的材料。与我一同工作的同事对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。学位论文若有不实之处,本人承担一切法律责任。

同工作的同事对本研究所做的任何 学位论文若有不实之处,本人承担	贡献均已在论文中作了明确的说明并表示了谢意。 一切法律责任。
本人签名:	_
	安电子科技大学 2文使用授权的说明
校攻读学位期间论文工作的知识产	学有关保留和使用学位论文的规定,即:研究生在一权属于西安电子科技大学。学校有权保留送交论
, , , , , , , , , , , , , , , , , , ,	; 学校可以公布论文的全部或部分内容,允许采用 文。同时本人保证,结合学位论文研究成果完成的 为两名电子科技士学
保密的学位论文在年解密后运	
本人签名:	导师签名:
日 期:	_

摘要

透过散射介质成像摘要是学位论文的内容不加注释和评论的简短陈述,简明扼要陈述学位论文的研究目的、内容、方法、成果和结论,重点突出学位论文的创造性成果和观点。摘要包括中文摘要和英文摘要,硕士学位论文中文摘要字数一般为1000字左右,博士学位论文中文摘要字数一般为1500字左右。英文摘要内容与中文摘要内容保持一致,翻译力求简明精准。摘要的正文下方需注明论文的关键词,关键词一般为3~8个,关键词和关键词之间用逗号并空一格。

中文摘要格式要求为:宋体小四、两端对齐、首行缩进2字符,行距为固定值20磅,段落间距为段前0磅,段后0磅。

英文摘要格式要求为: Times New Roman、小四、两端对齐、首行不缩进,行距为固定值 20 磅, 段落间距为段前 0 磅, 段后 0 磅, 段与段之间空一行。

关键词: XXX, XXX, XXX, XXX

ABSTRACT

ABSTRACT

The Abstract is a brief description of a thesis or dissertation without notes or comments. It

represents concisely the research purpose, content, method, result and conclusion of the the-

sis or dissertation with emphasis on its innovative findings and perspectives. The Abstract

Part consists of both the Chinese abstract and the English abstract. The Chinese abstract

should have the length of approximately 1000 Chinese characters for a master thesis and

1500 for a Ph.D. dissertation. The English abstract should be consistent with the Chinese

one in content. The keywords of a thesis or dissertation should be listed below the main

body of the abstract, separated by commas and a space. The number of the keywords is typ-

ically 3 to 5.

The format of the Chinese Abstract is what follows: Song Ti, Small 4, justified, 2 char-

acters indented in the first line, line spacing at a fixed value of 20 pounds, and paragraph

spacing section at 0 pound.

The format of the English Abstract is what follows: Times New Roman, Small 4, justi-

fied, not indented in the first line, line spacing at a fixed value of 20 pounds, and paragraph

spacing section at 0 pound with a blank line between paragraphs.

Keywords: XXX, XXX, XXX, XXX, XXX

Ш

插图索引

1.1	透过散射介质的光谱信息和结构信息恢复的结构示意图	2
1.2	基于光谱传输矩阵的光谱重建基本原理	3
1.3	散斑的相关系数	4
1.4	散斑相关成像模型	4
1.5	基本相位恢复流程图	6
1.6	仿真结果	8
1.7	光谱重建算法的抗噪性能分析	8
1.8	光谱成像实验装置图	9
1.9	光谱成像实验结果图	10
1.10	光谱重建结果	10
1.11	光谱重建结果	11
1.12	宽谱照明时实验结果	11
1.13	宽谱照明时实验结果	12
1.14	基于 SSTM 的透过散射介质成像系统示意图	14
1.15	SSTM 标定示意图	15
1.16	不同算法的重建结果对比	16
1.17	点源目标的重建结果	17
1.18	数字目标的重建结果	18
2.1	透过散射介质彩色成像的基本原理	22
2.2	单帧的透过散射介质成像示意图	22
2.3	三阶相关的相位恢复算法流程如图	24
2.4	基于三阶相关相位恢复的散斑成像仿真结果	27
2.5	不同相位恢复算法重建结果对比	28

表格索引

1 1	估 f	_
1.1	仿真参数	/

符号对照表

符号符号

∈ 属于

ℝ 实数集

权重

w

x 样本

y 标签

M 特征维数

N 样本数量

η 学习率

第⁻¹ 逆傅里叶变换

 γ 弱分类器更新率

缩略语对照表

缩略语	英文全称	中文对照
SVM	Support Vector Machine	支持向量机
EM	expectation-maximization	最大期望
WTS	Weighted Tensor Subspace	加权张量子空间
PCA	Principal Component Analysis	主成分分析
IPCA	Incremental PCA	增量主成分分析
HOG	Histogram of Oriented Gradient	方向梯度直方图
2D-LDA	2D Fisher Linear Discriminant Analysis	二维 Fisher 线性判别分析
AVT	Attentional Visual Tracking	注意视觉跟踪
RF	Random Forest	随机森林
FFT	Fast Fourier Transformation	快速傅里叶变换
MOSSE	Minimum Output Sum of Squared Error filter	最小平方误差滤波器
CFT	Correlation Filter Tracker	相关滤波跟踪器
DFT	Discrete Fourier Transform	离散傅里叶变换
KCF	Kernelized Correlation Filter	核相关滤波器
CLE	Center Location Error	中心位置误差
OP	Overlap Precision	重叠精度
DP	Distance Precision	距离精度
ASMM	Atkinson-Shiffrin Memory Model	AtkinsonShiffrin 内存模型
MUSTer	MUlti-Store Tracker	多贮存跟踪器
KNN	K-Nearest Neighbor	K-最近邻
HOG	Histogram of Oriented Gradient	方向梯度直方图
ALM	Augmented Lagrange Method	增强拉格朗日方法
ADMM	Alternating Direction Method of Multipliers	交替方向乘子算法

目录

摘要…		I
ABSTR	ACT	III
插图索	引	V
表格索	引	VII
符号对	照表	IX
缩略语	对照表	XI
第一章	透过散射介质的光谱信恢复和空间信息恢复	1
1.1	基于光谱传输矩阵和散斑相关成像方法的原理介绍	2
	1.1.1 基于光谱传输矩阵的光谱重建模型	2
	1.1.2 基于光学记忆效应的散斑相关成像模型	4
1.2	光谱信息恢复及散斑自相关成像方法仿真验证	7
1.3	光谱信息恢复及散斑自相关成像方法实验验证	9
	1.3.1 光谱重建分析	10
	1.3.2 散斑相关成像分析	11
1.4	光谱传输矩阵方法的扩展	12
	1.4.1 基本原理	13
	1.4.2 SSTM 标定原理	14
	1.4.3 目标重建算法	15
	1.4.4 实验结果	16
1.5	讨论	18
1.6	本章小结	19
第二章	基于三阶相关相位恢复的彩色成像方法	21
2.1	基于三阶相关相位恢复算法的彩色像基本理论	22
	2.1.1 振幅恢复	23
	2.1.2 相位恢复	23
	2.1.3 仿真验证及方法对比	27
2.2	成像系统与结果分析	28
	2.2.1 成像系统	28
2.3	学位论文的打印、装订要求	29
2.4	其他说明	29

西安电子科技大学博士学位论文

参考文献	31
致谢	33
作者简介	35

第一章 透过散射介质的光谱信恢复和空间信息恢复

前面的章节中,我们已经介绍了散射成像的研究背景、发展现状及研究意义,并 且对散斑的基本概念与特性进行了阐述,同时介绍了本章工作所依赖的基本物理特 性散斑的光谱多样性及光学记忆效应。

光谱成像已经发展多年,它在文成像到地球观测,以及生物医学成像等领域有着 重要的应用前景。然而,当光线通过生物组织或毛玻璃等混浊介质时,会被强烈散射 并扩散成复杂且杂乱的散斑图案,这使得利用目标的光谱信息和空间信息变得困难。 虽然,目标的空间信息和光谱信息保存在所获取的散斑图案中,但是,如何有效地利 用此类信息变得极为挑战。伴随着对散射特性的深入研究,波前调制技术、光学传输 矩阵和散斑相关等技术在透过散射介质成像方面有着重要的应用。然而,波前调制技 术需要较长的波前优化过程,且耗时较长,有效地选取恰当的反馈信号对该技术的应 用起着决定性的作用。与此同时,波前调制技术的实现往往需要利用光学或声学探 针,对聚焦信号实现定位或者引导,才能够有效地实现聚焦。光学传输矩阵技术需要 对散射介质的传输矩阵进行测量,记录特定输入信号及其对应的输出信号,通常难以 在非入侵的情境下实现成像工作,如:生物成像等。2012年,意大利学者 J.Bertolotti 等人[1] 提出了基于"光学记忆效应"(OME)[2,3] 的散斑相关成像方法,通过相关的 方式从散斑数据中获取目标的傅里叶振幅,进一步利用相位恢复算法从傅里叶振幅 中实现目标的傅里叶相位信息恢复,最终,实现隐藏目标的空间信息重建。然而,此 方法需要对入射激光光源进行多角度扫描,其成像质量与角度扫描的数量密切相关。 2014年,以色列学者 O.Katz 等人[4] 受到天文成像方法的启发,对散斑相关成像方法 进行改进,实现了单帧散斑的透过散射介质成像。透过自相关的方法从单帧散斑获取 目标的傅里叶振幅信息, 然后利用相位恢复算法恢复相应的傅里叶相位信息, 进而恢 复目标的空间信息。即使能够实现对隐藏目标的散斑成像,但是恢复目标的光谱信 息仍极其困难。在光谱域,当单色光通过散射介质后,其散斑图像的强度分布与与入 射光的波长相关。2013年,B.Redding等人提出了基于介质光谱传输矩阵光谱重建方 法。此方法将不同单色光通过散射介质的散斑作为该波长的指纹,并将不同的光谱指 纹存储在矩阵中,称为光谱传输矩阵。当有未知光谱信息的光源输入系统时,只需要 记录其相应的散斑并对其进行求解,便可以实现对未知光源的光谱信息恢复。在随后 的发展中,许多学者将此光谱重建的方法的应用扩展到无序光子晶体、多模光纤和散 射介质等。然而,此方法只能对目标信息的光谱信息进行恢复,无法实现目标的结构 信息的恢复。

在本章中,我们首先介绍了基于光谱传输矩阵的光谱信息恢复方法和基于光学记忆效应的散斑相关成像方法的基本原理,并对其进行了仿真复现;其次,我们对两种方法进行了结合,设计了一个双臂系统实现透过散射介质实现光谱成像。对于我们的系统,一个臂用于通过光谱传输矩阵的方式实现光谱信息重建,另一臂用于通过散斑关成像方法实现目标结构信息重建。最后,我们进行了了实验,验证了该系统能够有效地实现目标光谱信息重建和空间信息重建。由于散射介质选择的多样性,该系统在低造价的成本下,实现了对目标结构和光谱信息的重建。

1.1 基于光谱传输矩阵和散斑相关成像方法的原理介绍

图1.1所示为本章所要描述的透过散射介质的光谱信息和结构信息恢复的结构示意图。输入光通过光学准直器照明目标,然后又分束镜将来自于目标的光束分为两束,一束进入光谱测量臂,另外一束进入结构信息重建臂。在光谱臂中,光束被由单模光纤和透镜进行收集并准直,然后透过散射介质,被相机所探测。在成像臂中,光束直接照明散射介质并透过散射介质,然后由相机接收散射后的散斑信息。在以下部分,我们分别对光谱重建的数学模型和散斑相关成像数模型进行描述。

图 1.1 透过散射介质的光谱信息和结构信息恢复的结构示意图

1.1.1 基于光谱传输矩阵的光谱重建模型

散斑图像中的强度分布取决于照明的角度、观察角度和入射光的波长等因素。在本小节中,我们只对入射光的波长变化进行讨论。首先,我们需要引入散斑的光谱多样性概念。如图1.2所示的系统中,照明光源与散射介质之间的距离为d,散射介质与相机之间的距离为 S_0 ,当特定波长以固定的角度照明散射介质时,散射光被位于介质后表面距离为 S_0 相机接收。在此,我们认为此类散射介质的散射效应随着波长的改

变而变化。我们在惠更斯-菲尼尔近似条件下,相机所接收的散斑图像可以表示为:

$$E(r_c, \lambda) = A \iint E(r_o, \lambda) e^{\frac{ik}{2d}(r_s - r_o)^2} Pup.(r_s, \lambda) T(r_s, \lambda) e^{\frac{ik}{2S_o}(r_c - r_s)^2} dr_o dr_s, \qquad (1-1)$$

其中, $k = 2\pi/\lambda$, r_c 、 r_o 和 r_s 分别表示相机平面,光入射面和散射介质平面的坐标, $Pup.(r_s,\lambda)$ 为散射介质的孔径函数, $T(r_s,\lambda)$ 为介质的散射作用。

我们固定公式 (1-1) 中的除波长以外测参数,分析波长改变对散斑分布的影响。首先,我们假设散射介质对于不同波长光引起的相位变化相同。在此假设下,波长的改变,会引起散斑图案的空间缩放。其次,对于散射介质来说,其散射效应取决于波长。换而言之,对于不同波长入射光由散射介质引起的相位畸变不同,这样会导致所接受散斑图案分布发生变化,而非简单的缩放。但是对于实际应用中,往往两种效应同时存在,或者往往更复杂,此种效应被称为散斑的波长多样性。同时我们也进行了相应的仿真,分析波长改变引起的散斑之间的相关系数的改变,仿真结果如图1.3所示。如何有效地利用散斑的波长多样性,将对散斑的波长信息利用有着重要的意义。

图 1.2 基于光谱传输矩阵的光谱重建基本原理

如果我们对散射介质的光谱指纹进行标定,并将不同的光谱指纹存储在矩阵中, 此矩阵称为光谱传输矩阵。在此情况下,在获得未知光源照射散射介质所获得的散斑 后,是否能够光谱传输矩阵和此散斑对未知光源的光谱信息进行重建?答案是可以。 如图1.1b 所示,将不同的光谱指纹转换行向量,并按照光谱信息存储在矩阵 Φ 中,当获 取未知光源对应的散斑时,同样将其转换为向量 I。所以,其输入信号的光谱 S 可以表示为: $I = \Phi S$,对矩阵进行左乘求逆,并求出最小二乘解: $S = \Phi^{-1}I$ 。值得强调的是,该光谱重建方法不仅局限于对于以标定的单色光谱信号进行重建,同时也可应用于连续光谱信号。上述的光谱重建问题可以为更普遍的最小化问题: $s_0 = \arg\min_s \|I - \Phi S\|_2$,其中 $\|I\|_2$ 表示 I - 2 范数,I - 2 范数 I - 2 范数 I

1.1.2 基于光学记忆效应的散斑相关成像模型

图1.4所示为基于光学记忆相应的散斑相关成像基本模型,目标与散射介质之间的距离为 d,散射介质与相机之间的距离为 S_0 。目标由空间非相干光源照明提供照明,目标所发出的光经过散射介质后,被相机所接收。当物体位于此散射介质的 OME 范围之类时,由于 OME 范围内的点扩散函数具有空间平移不变性,相机所探测到的散斑可以表示为:

图 1.4 散斑相关成像模型

$$I = O * S \tag{1-2}$$

其中,* 为卷积运算,I 表示相机散斑,O 表示目标和 S 表示系统的 PSF。

透过散射成像的数学模型的理论基础如下,目标可以分解为不同的点源目标,当不同的点源目标为与散散介质的光学记忆效应范围之内时,不同点源目标所对于系统的响应函数可以近似看作不同的散斑在空间的平移。假设所有的点源目标被同时点亮时,相机所接收到的图像为不同点源目标所对应散斑的非相干叠加。所以,光学记忆效应范围内目标的非相干成像模型可以卷积的形式进行表示: I = O * S。但是值得注意的是,大多是散射介质的光学记忆效应范围是有限的,当目标的尺寸超过光学记忆效应范围时,此时卷积模型需要加入新的限制条件。成像系统的放大率 M 取决于物距 d 和相距 S_0 :

$$M = \frac{d}{S_0} \tag{1-3}$$

成像系统的分辨率 $\Delta\theta$ 可以表示为:

$$\Delta\theta \propto \frac{\lambda}{nD} \tag{1-4}$$

其中, \propto 表示正比关系, λ 为照明光源的波长,n 表示光经过散射介质后的介质折射率,D 表示散射介质的有效孔径,孔径的大小可以通过加载光阑实现控制。

上述部分中,我们具体描述了基于光学记忆效应的散射基本成像模型,如公式 (1-2) 所示,当获得散斑图像后如何恢复图像将在接下来部分进行描述。意大利学者 J.Bertolotti,以色列学者 O.Katz 等人先后基于散斑自相关的特性,提出了基于光学散斑自相关的图像重建算法。当相机获得散斑图案后,散斑的自相关可以表示为:

$$I \star I = (O * S) \star (O * S)$$

$$= (O \star O) * (S \star S)$$
(1-5)

其中, \star 表示自相关运算。由公式 (1-5) 可知,散斑的自相关可以表示为目标的自相关与系统 PSF 自相关的卷积。当前成像系统 PSF 的自相关 ($S\star S$) 可以近似为 δ 函数。所以,公式 (1-5) 可以简化为:

$$I \bigstar I = (O \bigstar O) + C \tag{1-6}$$

其中, C表示自相关计算中的背景常数项。通常,在自相关图像恢复中,我们需要将背景常数项进行剔除。如果对公式 (1-6) 左右两边同时进行傅里叶变换,我们会获得什么呢?庆幸的是,我们获得了以下公式:

$$\mathscr{F}(I \bigstar I) = \mathscr{F}(O \bigstar O) \tag{1-7}$$

公式 (1-7) 继续可以简化为:

$$|\mathscr{F}(O)| = \sqrt{\mathscr{F}(O \bigstar O)}$$

$$= \sqrt{\mathscr{F}(I \bigstar I)}$$
(1-8)

根据公式 (1-8) 可知,我们可以通过计算的方式从散斑图像中获得隐藏目标的傅里叶振幅信息,当获得目标的傅里叶振幅信息之后,仍然缺失的是目标的傅里叶相位信息。图像恢复问题已经被转换为依据傅里叶振幅信息恢复傅里叶相位信息的问题,幸运的是此类相位恢复问题在相位中属于常见问题。相位恢复算法不是本节研究的重点,因此在本节中,我们将简要介绍在后续图像恢复中所用到的基本相位恢复算法,其算法流程如图1.5所示。该类型相位算法的核心思想为:步骤一,获得傅里叶振幅信息 $|\mathscr{S}(O)|$,随机的给予随机的傅里叶相位初始值 ϕ ,并对其进行傅里叶变换,进而将信号转换至空间域,并获得目标的初始猜测 $g_t(x,y)$;步骤二,对信号 $g_t(x,y)$ 进行傅里叶变换,将其变换至频域 $G_t(k_x,k_y)$,将 $G_t(k_x,k_y)$ 的傅里叶振幅部分替换为 $|\mathscr{S}(O)|$,保留其傅里叶相位信息,此时的信号表示为 $G_t'(k_x,k_y) = |\mathscr{S}(O)|$ $e^{i\phi(k_x,k_y)}$;步骤三,对信号 $G_t'(k_x,k_y)$ 进行再一次傅里叶变换,将其转换至空间域,根据目标信号的稀疏性及非负性,设置约束条件,对信号进行处理,此时获得的信号表示为: $g_t(x,y)$;步骤四,用 $g_t'(x,y)$ 替换为步骤一中的 $g_t(x,y)$,并重复步骤二至步骤四,直至满足约束条件停止此相位恢复程序。

在实际的应用中,不同相位恢复算法在空间域采用不同的约束条件。例如,混合输入输出(Hybrid Input-Output,HIO)算法的约束条件如公式 (1-10) 所示,误差减小 (Error reduction, ER) 算法的约束条件如公式如公式 (1-9) 所示。

$$g_{t+1}(x,y) = \begin{cases} g'_t(x,y) & (x,y) \notin \Gamma \\ g_t(x,y) - \beta g'_t(x,y) & (x,y) \in \Gamma \end{cases}$$
 (1-9)

其中, β 为算法收敛性的参数, Γ 为满足约束条件的集合。

$$g_{t+1}(x,y) = \begin{cases} g'_t(x,y) & (x,y) \notin \Gamma \\ 0 & (x,y) \in \Gamma \end{cases}$$
 (1-10)

1.2 光谱信息恢复及散斑自相关成像方法仿真验证

上述部分,我们对光谱信息恢复及散斑相关成像的基本原理继续了介绍,因此在本小节中,我们对上述的原理进行数字仿真验证及实验验证。B.Redding 等人在文献中以对基于光谱传输矩阵的光谱重建方法进行了详细的理论分析,所以在此我们对该方法进行简单的数值分析以及仿真验证。光谱重建的仿真原理如图1.2所示,分别记录不同波长输入光对应的散斑 I_{λ} ,并将 I_{λ} 存储在光谱传输矩阵中。然后,输入未知光谱 s_{o} 记录其对应的散斑信号 I_{o} ,根据公式 $s_{0} = \arg\min_{s} \|I_{o} - \Phi S\|_{2}$ 对光谱 s_{0} 进行求解。在散斑图像重建方面,首先我们生成对应的 PSF,根据公式 (1-2) 生成目标对应的散斑,然后利用上述的散斑自相关成像方法进行图像恢复。

透过散射介质光谱成像的仿真参数如表1.1所示,仿真结果如图1.6所示,第一行,为成像臂在不同波长光照明情况下,相机1所探测到的散斑;第二行,为光谱臂在不同光谱不同波长光照明下,相机2所接收到的散斑;第三行,利用散斑相关成像方法所恢复的目标图像;第四行,利用光谱传输矩阵方法所恢复的光谱信息。从仿真结果图1.6第一列至第三列可以看出,当输入光为窄带宽的光源时,该光谱成像方法能够有效地恢复图标的空间信息和光谱信息。从图1.6第四列可以看出,当照明光源为宽谱光源时,该光谱成像方法仍然能够有效的重建目标的光谱信息和空间信息。

仿真参数数值光谱范围600 ~ 650nm光谱采样间隔0.5nm空间采样间隔12.0μm散射介质维度600 × 600

表 1.1 仿真参数

我们所用到的基于光谱传输矩阵的光谱重建方法对于系统的噪声叫敏感,不同的重建优化方法在抗噪声方面有着不同表现。于是,我们通过在系统中引入不同功率的高斯噪声,并且进行了相应的重建,计算重建信号与原始信号之间的相关系数,进而分析不同算法的抗噪性能。目前常用的重建算法有: 吉洪诺夫正则化算法 (Tikhonov regularization,TR) 和凸优化算法 (Convex Optimization,CVX)。TR 和 CVX 重建算法在不同噪声水平下的光谱重建结果如图1.7所示。从图中看可以看出,随着噪声从 50dB增加到 35dB,TR 和 CVX 两种重建算法的分别重建的光谱信号与原始信号之间相关系数接近于 1,但是当信噪比低于 35dB 时,CVX 重建结果的相关系数大于 TR 重建的相关系数。因此我们相信,CVX 在光谱重建方面的抗噪性能优于 TR。

1.3 光谱信息恢复及散斑自相关成像方法实验验证

实验光学装置如图1.8所示,①:光源,②:单色仪,③:准直器,④:分束器,⑤:目标,⑥:散射介质1,⑦:相机1,⑧:物镜,⑨:单模光纤,⑩:透镜,⑪:散射介质2和②:相机2。在实验中,我们使用厚度为2mm,颗粒度为220毛玻璃(Thorlabs,DG10-220)作为散射介质,目标为从分辨率测试靶标(1951USAF,Edmund Company)中选出的数字字符。实验中,我们需要对光谱臂进行预标定,目的是获取光谱臂的光谱传输矩阵。在预标定过程中,我们利用来自氙气灯(Zolix,GLORIA-X500A)的作为照明光源,并用安道尔单色仪(Andor Spectrograph, Shamrock 500i)对照明光源进行光谱过滤,产生光谱分辨率(Full Width Half Maximum,FWHM)为1nm的可调光源。实验中使用相机是CMOS相机(AndorZyla5.5),像素尺寸为6.5μm和像素数为420万。实验中,我们分别对445~495nm和610~660nm两个光谱波段进行标定,预标定后的光谱传输矩阵分别如图1.8b和1.8c所示。

对于光谱标臂来说,我们利用物镜1和单模光纤对目标所发出的光进行收集,使用透镜对透过光纤后的光进行准直。这样的结构能够保证在我们的实验过程中,只需要对光谱臂进行的单次的光谱矩阵标定。当完成光谱预标定后,我们采用了不同的目标对我们的系统进行测试,实验结果如图1.9所示。图1.9a 和1.9b 为利用单色光源照明时光谱信息恢复和目标空间信息重建结果,值得强调的是,此时我们使用的照明波

长为已标定的光源波长。我们的系统是否对未标定的连续光谱光源是否有效?们将 在接下来部分进行详细分析。

图 1.9 光谱成像实验结果图

1.3.1 光谱重建分析

对于我们的照明光源可以分为两种: 窄带光源和宽谱光源。为了验证光谱重建的有效性,首先我们利用已标定的光谱波段作为照明光源,进行光谱重建的有效性验证。光谱标定矩阵如图1.8b 所示,在 445 ~ 495nm 光谱范围内,利用可调光源分别产生单色光源对目标进行照明,波长分别为: 459nm、466mn、473nm 和 481nm,并对其光谱信号进行重建,重建结果如所示1.10a。从图1.10a 可以看出,在于单色光源照明时,我们能够有效的重建照明的光源的光谱信息。同理,在 610 ~ 660nm 光谱范围内,进行了相同的实验,实验结果如图1.10b 所示。

此后,我们采用更多标定的单色光源进行照明,并分别对光谱信号进行重建,实验结果如图1.11所示。从图1.11可以看出,重建信号与输入信号的光谱信号具有一致性。当连续光谱光源照明时,是否能够有效地重建光谱信号?因为已在仿真部分进行验证,所以此处我么将直接进行实验验证。首先采用 LED 光源作为照明光源,其中心波长和带宽分别为:470nm和14nm,其光谱重建结果和空间信息重建结果如图1.12a所示。为了进一步验证宽谱照明的有效性,利用红光 LED 进行照明,其中心波长和

带宽分别为: 625nm 和 14nm,对应的实验结果如图1.12b 所示。至此,我们分别对 窄谱和连续光谱照明时的光谱重建有效性进行了仿真验证和实验验证。

对比图1.9和1.12,可以明显看出窄谱光源照明时,图像重建的效果优于宽谱光照明时的图像重建效果。我们将在接下来部分进行分析。

图 1.11 光谱重建结果

图 1.12 宽谱照明时实验结果

1.3.2 散斑相关成像分析

为了分析不同带宽光源照明时,对于散斑相关成像的效果影响,我们分别利用窄谱和宽谱光源进行照明,并分别利用散斑相关成像技术进行图像恢复,实验结果如图1.13所示。实验中采用了FWFM分别为: 1nm和16nm的照明光源。从图1.13可以看出,窄谱光源照明时所对应的图像重建结果优于宽谱光源照明时的成像结果,造成此现象的的主要是由散斑的相关性变化引起的。理论上,当利用窄谱光源照明时,其散斑相关成像的理论模型如公式(1-6)所示。当使用宽谱光源照明时,散斑成像的理论模型为:

$$I \star I = (O * S) \star (O * S)$$

$$= (O \star O) * \{ \sum_{i=1}^{M} S_{\lambda_i} \star S_{\lambda_i} + \sum_{i=1}^{M} \sum_{j\neq i}^{M} S_{\lambda_i} \star S_{\lambda_j} \}$$

$$(1-11)$$

其中, S_{λ_i} 为系统 PSF, λ_i 为照明光源波长。与公式 (1-6) 相比,公式 (1-11) 拥有额外项 $\sum_{i=1}^{M} \sum_{i\neq j}^{M} S_{\lambda_i} \star S_{\lambda_j}$ 。当使用窄谱光源照明时, $\sum_{i=1}^{M} \sum_{i\neq j}^{M} S_{\lambda_i} \star S_{\lambda_j}$ 的值远远小于

图 1.13 宽谱照明时实验结果

 $\sum_{i=1}^{M} S_{\lambda_i} \star S_{\lambda_i}$ 项,可忽略不计,在最终的相位恢复过程中影响可以忽略。当使用宽谱光源照明时, $\sum_{i=1}^{M} \sum_{i \neq j}^{M} S_{\lambda_i} \star S_{\lambda_j}$ 的值随之增加,导致所恢复目标的傅里叶振幅信息中具有较多噪声,进而致使最终的重建效果变差。从图1.13可以看出,随着照明光源的带宽增加,重建结果变得模糊。实验结果与理论分析相一致。

1.4 光谱传输矩阵方法的扩展

在1.2节中,我们对光谱传输矩阵的基本原理进行了阐述。此处的光谱传输矩阵本质上为强度光谱传输矩阵。我们能够利用此光谱传输矩阵,从散斑图像中恢复光谱信息。此光谱传输矩阵的核心思想为:建立了光谱信息与散斑图案的一一对应关系。是否能够受到此思想的启发,建立空间信息与光谱信息的一一对应关系,进而实现目标空间信息的重建?答案是:YES。当光通过折射率非均匀介质时,如:毛玻璃、纸张、生物组织等,会引起散射效应,出射光场变得紊乱而随机,形成一系列散斑。传统的光学成像方法在散射作用的影响下无法有效地获得目标信息,因此研究透过散射介质的新型成像方法具有重要的意义。迄今为止,利用光学散射特性成像技术已经展开了大量研究,例如,已提出了波前调制、光学相干层析、超快激光飞行时间成像法、散射矩阵测量、散斑相关等方法。2007年,I.M. Vellekoop等人首次提出了波前调制技术对入射光波前进行调制,实现了透过散射介质聚焦与成像。但波前调制技术有很大的局限性:首先,波前调制技术需要复杂的反馈调制过程,才能实现明显的聚焦效果;其次,波前调制技术属于主动式成像,无法用于被动式成像系统。2012年,J. Bertolotti 等提出了一种非侵入式散射成像方法。该方法利用光学记忆效应,通过计算

强度散斑的自相关并结合相位恢复算法实现了透过散射介质成像。2014年,O. Katz 等提出了一种基于光学记忆效应的单帧散斑自相关的散射成像方法,该方法不仅保持了原有方法非侵入式成像的特点,而且具有极高的时间分辨率,在活体生物样本成像领域有巨大潜力. 同时,A. K. Singh 等利用无透镜傅立叶全息成像技术,通过统计平均的方式抑制散斑实现了透过散射介质成像。2016年,E. Edrei 等提出了基于去卷积的透过散射介质的超分辨率显微成像,以系统点扩散函数 (Point Spread Function, PSF) 为先验知识,通过去卷积的方法实现透过散射介质成像. 综上所述,目前已有的透过散射介质成像方法受到以下限制: (i) 需要接收完整的散斑信号; (ii) 需要窄谱光源作为照明光源. 因此,如何突破这些限制对于透过散射介质成像的发展具有重要意义。

此处,我们提出基于空间-光谱传输矩阵(Spatial-Spectral Transmission Matrix,SSTM)的散射成像方法,结合非线性优化算法,有效地利用散射介质的随机色散特性实现了透过散射介质成像。与传统散射成像方法相比,基于 SSTM 的散射成像方法无需接收散斑,并且以宽谱光源作为照明光源,实现了透过散射介质成像。其基本思路是点源目标经过散射介质后在像面形成散斑,利用光谱仪接收像面上固定位置的光谱信号,将不同位置点源目标对应的光谱信号组成光谱传输矩阵,最后利用目标重建算法实现透过散射介质成像。该方法的核心思想为:利用散射的介质的光谱多样性和空间多样性,建立空间信号与光谱信号的对应关系,结合非线性优化算法,进而实现了透过散射介质的成像。

1.4.1 基本原理

散射介质作为一个随机的二维光谱色散元件,当入射光透过散射介质时会受到散射作用的影响,在像面形成散斑.对于像面上的散斑分布而言,不同空间位置点源目标对应的散斑分布不同,其光谱信息也存在差异。当照明光源一定时,相机面所接收的散斑分布可以由公式(1-1)可知。相机面所接收到强度与各个点源目标位置之间的关系,其所接收到强度信号可以表示为:

$$I(r_c, \lambda) = |E(r_c, \lambda)|^2 = |A \iint E(r_o, \lambda) e^{\frac{ik}{2d}(r_s - r_o)^2} Pup.(r_s, \lambda) T(r_s, \lambda) e^{\frac{ik}{2S_o}(r_c - r_s)^2} dr_o dr_s|^2,$$
(1-12)

为了方便分析点源目标与相面所接收到散斑信号分布关系,所以将公式 (1-12) 简化为:

$$I(r_c, \lambda) = A^2 | \iint E(r_o, \lambda) \beta(r_o, r_s) dr_o dr_s|^2$$
(1-13)

其中, $\beta(r_o,r_s,\lambda)=e^{\frac{ik}{2d}(r_s-r_o)^2}Pup.(r_s,\lambda)T(r_s,\lambda)e^{\frac{ik}{2S_o}(r_c-r_s)^2}$, $k=2\pi/\lambda$ 。因此,当在相

图 1.14 基于 SSTM 的透过散射介质成像系统示意图

机面选定感兴趣区域时,该区域所接收到的光谱信号可以表示为:

$$S_{r_c}(\lambda) = \int I(r_c, \lambda) dr_c$$
 (1-14)

通过分析式 (1-12)-(1-14) 可知,像面的散斑图样分布的细节依赖于散射介质的所引起的相位变化和照明光的波,也取决于点源目标的位置。同时散射介质具有波长多样性和角度多样性,所以当系统其它参数一定时,点源目标的位置发生改变,散斑的图样也会发生变化。同理,当照明光源的位置发生变化时,相机感兴趣区域所接收的接收到的光谱信号也会随之改变。所以利用源目标的位置改变带来的光谱多样性,结合 SSTM 实现透过散射介质成像。

1.4.2 SSTM 标定原理

图1.14为基于 SSTM 的透过散射介质成像系统示意图,系统主要包括:宽谱 LED 光源、准直系统、光阑、散射介质和光纤光谱仪。光源发出的光经过准直器准直后,照射在光阑上形成点源目标,点源目标的光透过散射介质,最终在像面上形成散斑,光谱仪用来接收像面上固定的位置的光谱信号。

SSTM 标定方法如下: 首先,经准直后的白光 LED 光源(具有一定光谱带宽)经过光阑(光阑空间位置为 r_1 ,如图1.15a 所示),入射到散射介质表面,在介质后方形成随机的散斑场,利用光谱仪在固定位置接收光谱信号 S_{r_1} ; 其次,将光阑位置移动至 r_2 ,光谱仪保持位置不变接收相应的光谱信号 S_{r_2} ; 依次移动光阑位置对物面进行扫描,光阑的移动路径如图1.15a 中白色箭头所示,分别记录不同物空间位置对应的光谱信号 S_r ; 最后,将不同的物空间位置对应的 S_r 合成后的 SSTM 如图1.15 b 所示,即完成 SSTM 标定。SSTM S 可表示为:

$$S = [S_{r_1}, S_{r_2}, \cdots, S_{r_n}, S_{r_{n+1}}, \cdots]$$
 (1-15)

1.4.3 目标重建算法

基于光谱传输矩阵的透过散射介质成像模型可以表示为:

$$S_{measured} = SO \tag{1-16}$$

其中: $S_{measured}$ 为光谱仪所接收的带重建目标产生的光谱信号; S 为光谱传输矩阵; O 为待重建目标信号。

从计算角度考虑,对 SSTM 矩阵 S 直接求逆,便可以重建出目标信号,即 $O = S^{-1}S_{measured}$,但在数学上,直接对 S 求逆矩阵属于病态问题 (当矩阵的行和列不相等时)。传统的方法是采用奇异值分解(Singular Value Decomposition,SVD)对矩阵求伪逆。因此,目标信号可以表示为:

$$O = VD^{-1}U^T \mathsf{S}_{measured} \tag{1-17}$$

其中,上标 T 代表矩阵转置; $VD^{-1}U^{T}$ 是 S 的 SVD 分解。

在实际实验中,噪声无法避免。如何有效地抑制噪声,将对该方法的使用有着重要的意义。我们在矩阵求逆算法的基础上,结合模拟退火算法,提出了一种混合型的非线性优化算法。在此混合型非线性优化算法中,将公式(1-17)所表示的成像模型转化为能量最小化模型,即:

$$E = \|\mathsf{S}_{measured} - \mathbb{S}O\|^2 \tag{1-18}$$

将矩阵求逆方法与模拟退火算法相结合,求解最优化 O。在模拟退火算法的单次优化中,将 O 中的一个元素乘以随机数 $\alpha(0.5 < a < 2.5)$,在此过程中将生成一个新的信号

O'。则能量改变可以表示为:

$$\Delta E = \|\mathsf{S}_{measured} - \mathbb{S}O\|^2 - \|\mathsf{S}_{measured} - \mathbb{S}O'\|^2$$
 (1-19)

以 $exp[\Delta E/t_0]$ 概率接受 O 元素的更新 (即: O = O'),其中 t_0 为系统初始温度。在整个优化过程中,对 O 中的每个元素依次进行更新,并且系统温度 t 随着优化进行而减小。当系统温度较高时,模拟退火算法具有较高的概率去接受非准确的元素更新结果;当系统温度较低时,模拟退火算法具有较高的概率去接受更优化的元素更新结果(注:当 $\Delta E \geq 0$ 时,O 的元素更新结果全部被接受)。

于是,我们将矩阵求逆算法和所提出的混合型非线性优化算法进行对比,其结果如图1.15所示。其中,1.16a 为矩阵求逆算法的重建结果;1.16b 为混合型非线性优化算法的重建结果。为了定量化描述重建信号的误差,需要计算重建信号与已知信号之间的标准差 μ 。

由实验结果看出,利用矩阵求逆算法的重建信号与已知信号相对误差较大(标准差为0.280),无法有效抑制噪声,混合型非线性优化算法的的重建误差为0.013,有效地抑制了噪声并且减小了重建结果的误差。另外,传统的模拟退火算法一般需要几百次上千次优化才能寻找到最优化的结果。但是,我们所利用的混合型非线性优化算法利用矩阵求逆的方法给模拟退火算法提供初始猜测 O,从而有效地减少了优化次数和抑制噪声,并且提高了重建信号的准确性。

1.4.4 实验结果

基于光谱传输矩阵的散射成像实验系统如图1.14所示。实验中,采用白光 LED (Throlabs, QTH10, 光谱的半高全宽 FWHM: 230nm)作为光源,扩束准直器 (Throlabs, GBE20-A)进行光束准直,散射介质(Thorlabs, DG10-220)置于光阑后 200mm 处和光谱仪 (Throlabs, CCS200)置于散射介质后 180mm 处。因为本系统的空间分辨率约为 $100\mu m$,于是实验中选用的光阑孔径为 $200\mu m$ 。利用三维位移平台(Throlabs,

MBT613D/M)将光阑位置按图1.15所示的标定方法实现 SSTM 标定,位移平台步进为 $100\mu m$,将物面 $4 \times 4mm^2$ 的面积划分为 20×20 等大小网格。

当光谱传输矩阵标定完成后,首先以点源作为目标,验证基于 SSTM 的散射成像效果。实验结果如图1.17所示,图1.17a 为原始目标、图1.17b 为利用矩阵求逆所重建目标的结果和图1.17c 为混合型非线性优化算法实现目标重建的结果。通过对比可以看出,混合型非线性优化算法对噪声的抑制效果明显优于传统的矩阵求逆算法。

为了更好地验证混合型非线性优化算法在基于 SSTM 透过散射介质成像应用的可行性和有效性,我们利用数字目标进行实验,并将基于矩阵求逆方法的实验结果和混合型非线性优化算法的实验结果进行了比较。实验结果如图1.18所示,其中,混合型非线性优化算法的目标重建结果如图1.18a2 所示,利用矩阵求逆方法的目标重建结果如图1.18a3 所示。图1.18a4 定量比较了图1.18a2—1.18a3 中两条虚线对应的强度分布。为了定量分析重建效果,我们将图像信噪比定义为:目标重建信号(原始目标对应的区域强度值)与背景噪声(除去目标区域的强度分布的平均值)之间的比值。经计算可得基于矩阵求逆的方法与非线性优化算法对应的信噪比分别为: 3.3328 和5.5669。由此说明,混合型非线性优化算法能够有效地抑制背景噪声,将信噪比提高1.7 倍以上,更适合于基于 SSTM 的透过散射介质成像。图1.18b(1.18c)与图1.18a相似,仅所采用的数字目标不同。

基于 SSTM 的透过散射介质成像方法需要说明以下三点。首先,与传统透过散射介质成像方法相比,该方法将 SSTM 与散射介质的色散特性相结合,实现了透过散射介质成像。传统光谱传输矩阵方法一直以来被用于光谱信号的重建。传统透过散射介质成像方法例如波前调制、光学相干层析、超快激光飞行时间成像法、散射矩阵测量和散斑相关等方法只适用单色光或者窄谱光源照明,而散射介质的光谱多样性被忽略。其次,该方法的视场 (Field of View, FOV) 和像距有一定的限制。因为散射介质的色散特性与散射介质的散射自由程有关,一般来说相距的选择主要考虑两方面因素: (i) 散斑场的分布特点和 (ii) 光谱信号的信噪比。当像面距散射介质距离较近时,未形成有效的散斑,光谱信号的位置多样性不能充分体现; 当像面距散射介质

图 1.18 数字目标的重建结果

距离较远时,光谱仪所接收到的光谱信号较弱、信噪比较低,对于目标重建和光谱传输矩阵测量都将引入误差,其 FOV 受到散射介质的光学特性、系统孔径和物面尺寸等多种因素的限制。

1.5 讨论

在本章前面的内容中,我们首先对绍了基于光谱传输矩阵的光谱重建方法和基于光学记忆效应的散斑相关成像方法进行了介绍,并将其有机的结合,实现了利用散射介质的光谱信息恢复和目标恢复。然受,受到光谱传输矩阵方法的启发,我们将光谱传输矩阵的概念扩展到空间维度,实现了基于 SSTM 的透过散射介质成像。虽然透过数值仿真与实验验证,证明了以上方法的有效性,然而以上方法仍具有各自的局限性,具体如下:

(1) 基于光谱传输矩阵的光谱重建方法

对于光谱矩阵的光谱重建方法而言,其核心在于对于系统的光谱传输矩阵预标定。在完成预标定之后,该方法的使用对系统的稳定性要求极其苛刻。而且,该方法的光谱分辨率受到散射介质的光谱去相关带宽限制。该方法的核心步骤为预标定,本质上记录了不同波长照明下各自的光谱指纹,而对于光谱指纹的选区不同也会对光谱重建的效果造成影响。当选取增大时,光谱的矩阵维度随之增加,但是光谱重建的精度提高;当选区减小时,其光谱重建的结果也会变差。不同的光谱重建算法,将会

获得不同的的重建结果,如何选择合适的光谱重建优化算法也是未来亟待解决的问题之一。未来的潜在应用中,将光纤束作为散射介质,对其进行光谱传输矩阵标定,利用其实现光谱成像是潜在的应用的方法。但是其成像空间分辨将会受到单根光纤直径限制,其光谱分辨率会受到光纤长度的影响。

(2) 基于光学记忆效应的散斑相关成像方法

基于光学记忆效应的散斑相关成像方法受限于光学记忆效应的范围,当目标小于光学记忆效应范围时,隐藏目标的傅里叶振幅能够通过散斑自相关方法有效的获取;但是当目标大于光学记忆相应范围时,该方法不能够有效的获取隐藏目标的傅里叶振幅信息。当不能获取隐藏目标的傅里叶振幅消息时,将无法利用前面小节所提到的相位恢复算法进行傅里叶相位恢复,因此导致无法恢复隐藏目标。当目标小于光学记忆效应范围时,该方法仍有存在以下问题:其一,目前所使用的相位恢复算法通常采用随机相位作为相位恢复的初始猜测,当初始猜测不同时,可能导致不同的最终恢复结果。为了恢复到满意的结果,通常我们需要多次尝试,直至恢复到满意的结果,该恢复结果具有不确定性。其二,目前所采用的相位恢复算法,无法确定目标的方向信息,目标方向信息的丢失会影响该方法在更多场景下的应用。其三,该方法对目标的稀疏性有着严格的要求,通常难以实现连续的体目标进行成像,在成像过程中会丢失掉诸多细节信息。最后,该方法通过自相关的方式去除掉系统 PSF 的影响,然而系统 PSF 包含了系统的诸多特性,如果能够有效的利用 PSF,将有助于更好的恢复目标信息。

(3) 基于 SSTM 的透过散射介质成像方法

基于 SSTM 的散射成像方法受到散射介质的色散特性的影响,该方法需要进行预标定,无法对为标定的系统实现图像恢复。其成像分辨受到光谱仪分辨率的限制,也同时受到空间光谱多样性的限制。因此,该方法通常无法实现高分辨率或者复杂目标的成像。

1.6 本章小结

本章中我们首先对基于光谱传输矩阵的光谱重建模型和散斑相关成像的模型进行了介绍,它们分别被用来重建散斑的光谱信号和散斑所携带的隐藏目标的结构信息。我们对以上两种方法进行了有机的结合,利用散射介质实现了目标的结构信息恢复和光谱信息恢复,同时也进行了相应的实验,对以上方法进行实验验证。例如:我们通过实验证明了,当目标的照明光源为窄谱光源时,该方法能够有效的恢复目标的光谱信息和结构信息。随后,我们也实验验证了该方法对与宽谱光源照明时的有效性。同时,针对窄谱光源照明和宽谱光源照明时的结果差异进行了分析,得知当宽谱

光源照明时,不同波长 PSF 之间的互相关项导致所恢复的隐藏目标的傅里叶振幅信息的准确度降低,进而造成重建结果的模糊。此外,我们受到光谱传输矩阵思想的启发,我对们 SSTM 方法进行了理论阐述,通过实验证明了基于 SSTM 的散射成像方法的有效性。最后,我们对本章中所涉及的三种方法的局限性,如:基于光谱传输矩阵的光谱重建方法受到预标定矩阵的影响,其光谱分辨率和光谱重建算的等问题;分析了基于光学记忆相应的散斑成像方法所存在的问题,其成像范围受到光学效应范围的影响,相位恢复算法所引入的重建不确定性,目标的分辨率问题。最后,我们也对基于 SSTM 的透过散射介质成像方法的限制进行了简单陈述。我们将会针对散斑相关成像的相位恢复问题展开工作,尝试在相位恢复过程中保存目标的相位信息。

在第四章中,受到天文成像中三阶相关的相位恢复方法的启发,将三阶相位相关的相位恢复算法应用到散斑相关成像中实现对隐藏目标的恢复。该方法能够有效的保持隐藏目标的方向信息,进而利用此特性实现了透过散射介质的彩色成像。

第二章 基于三阶相关相位恢复的彩色成像方法

透过复杂散射介质或在介质内部的光学成像对于生物医学应用来说是一项艰巨的挑战。其根本问题在于,通过散射介质的光会被强烈散射并扩散成复杂的散斑图案,使物体的颜色和空间信息变得无序混乱^[1-5]。在散射介质成像的领域中,许多方法已被证明能够克服或利用散射效应^[6-11],例如自适应光学^[7]、波前整形^[8]、相关成像^[1,4]、多光子荧光成像^[9,10]、鬼成像^[11] 和光学相干断层扫描成像^[12]。

同时,通过散射介质进行的彩色成像^[13-15] 在对深层组织的非侵入性成像和其他生物医学应用方面扮演着重要的角色,进一步的发展将有利于生物医学应用。随着空间光调制器技术的发展,利用波前整形技术实现了透过散射介质实现彩色成像^[14,15]。然而,波前整形技术耗时较长,需要对众多像素或者模式进行逐个优化,难以在非入侵的情况下实现波前优化整形。20017 年,新加披学者 Sahoo 等人^[15] 利用光学光谱点扩散函数(Spectral Point Spread Function, sPSF)^[2,5] 的去相关性,通过去卷积技术,实现了透过散射介质的彩色成像和光谱成像。然而,该方法受到光谱去相关带宽的和去卷积计算的限制,仍然存在以下缺点:(i)需要对系统的 sPSF 进行标定;(ii)成像质量对光学系统稳定性要求极其苛刻。因此,在不标定系统 sPSF 的情况下,通过传统的彩色成像技术实现散射介质的彩色成像仍然是一个巨大挑战。

在前面章节中,我们对散斑相关成像的方法进行了阐述,并进行了相关实验验证,实验证明了基于光学记忆效应的散斑相关成像方法能够有效的实现对隐藏目标的成像。该方法的核心思想为:通过计算散斑的自相关 $I \star I$,移除掉系统 PSF 的影响,根据维纳辛钦定律进而获得隐藏目标的傅里叶振幅信息。以恢复隐藏目标的傅里叶振幅信息为支撑,利用相位恢复算法进而实现了隐藏目标的的傅里叶相位信息猜测,实现了隐藏目标的成像。常见的相位恢复算法需要尝试多次的随机初始猜测,才能较好的恢复图像,但是该方法难以保证正确的恢复隐藏目标的方向信息。当所恢复的隐藏目标方向信息不能保证时,对于透过散射散射介质的彩色成像造成了更大困难。我们是否能够找到恰当的相位恢复算法,确定性的恢复目标,进而实现透过散射介质的彩色成像?

在本章中,我们提出了一种基于三阶相关相位恢复的透过散射介质的彩色成像方法。首先,我们证明了三阶相关相位恢复技术的基本理论;其次,我们通过仿真和实验的方式验证了基于三阶相关相位恢复的散射成像有效性;最后,我们通过实验的方式验证了基于三阶相关相位恢复的透过散射介质的彩色成像方法的有效性。与其他相位恢复技术相比,该相位恢复技术可以保留隐藏目标的方位信息,无需额外步骤

或更多先验信息去实现透过散射介质的彩色成像。此外,我们的方法有可能实现透过 散射介质的光谱成像。

2.1 基于三阶相关相位恢复算法的彩色像基本理论

首先,我们对本章将要进行的彩色成像理论进行简单陈述。该散射成像方法可以简单理解为:即从分别获取 RGB 三通道的图像,然后合成彩色图像。RGB 三通的的图像信息如何获取?我们可以通过彩色相机或者通过添加滤波片的形式进行分别获取。当分别获取 RGB 通道的散斑后,我们需要分别对单个散斑进行处理,即分别从散斑中获取隐藏目标的傅里叶振幅信息和相位信息。当分别获取恢复 RGB 通道后的图像后,我们进行相应的图像合成,基本原理如图2.1所示。图2.1中, P_1,P_2 和 P_3 分别表示所获取的不同通道的散斑, P_1',P_2' 和 P_3' 表示分别从 P_1,P_2 和 P_3 中所恢复的隐藏目标信息。然后,将 P_1',P_2' 和 P_3' 合成最终的彩色图像 P。

图 2.1 透过散射介质彩色成像的基本原理

在最终合成彩色图像前,如何从单帧散斑中恢复隐藏目标的信息并保存目标的 方向信息,如图2.2所示,我们将在接下来部分进行详细介绍。单帧的透过散射介质成

图 2.2 单帧的透过散射介质成像示意图

像原理。2.2a 为实验装置示意图:一束非相干光照亮物体,来自物体的透射光照亮散射介质,最终在 CCD 上产生散斑图案。2.2b 为图像恢复流程: (b1) 为散斑图案; (b2) 为物体的傅立叶振幅; (b3) 物体的傅立叶相位和 (b4) 所恢复的物体。其中,①表示自相关过程,②表示三阶相关相位恢复过程,③表示逆傅立叶变换过程。

2.1.1 振幅恢复

在散射介质光学效应区域内时,系统的 PSF 具有空间平移不变性,所以系统的成像模型可以卷积形式表示:

$$I = (O * S)$$

$$= \iint O(x) * S(x) dx$$
(2-1)

其中,* 表示卷积符号,I 表示相机所接收到的散斑强度图像,O 表示目标和 S 表示系统的 PSF。

然后通过计算所获得的相机强度散斑图案的自相关,可以获得目标图案的自相关,如公式(2-2)所示:

$$I \bigstar I = \iint O(x) * S(x) dx \bigstar \iint O(x) * S(x) dx$$

$$\cong (O \bigstar O)$$
(2-2)

其中,★表示自相关运算。

根据维纳辛钦定理可知,物体的自相关为其物体的功率谱。因此,我们可以通过傅里叶变换的形式,从物体的自相关中恢复物体的傅里叶振幅信息 | $\mathcal{F}(O)$ |,如公式 (2-3) 所示:

$$|\mathscr{F}(O)| \cong \sqrt{\mathscr{F}(I \bigstar I)}$$
 (2-3)

其中, 罗表示傅里叶变换运算。

2.1.2 相位恢复

2016 年吴腾飞等人^[16] 受到天文成像的启发,将三阶相关的相位恢复算法引入到散斑自相关成像技术中,三阶相关的相位恢复算法流程如图2.3所示,其中,(a) 为散斑图案; (b) 为子散斑图案 (滤波后); (c) 为来自第 m 个子散斑图案的一维信号的三阶相关相位; (d) 所恢复物体的最终傅立叶相位。(θ 表示 Radon 变换的角度,在(b)和(d)中用红色双箭头标记)。

在此相位恢复过程中,隐藏目标的傅立叶相位将从众多子散斑图案中所恢复。首先,我们通过应用 $W_m(x,y)$ 的方窗函数将散斑图案 (2.3a) 划分为 M 个子散斑图案

图 2.3 三阶相关的相位恢复算法流程如图

 $I_m(x,y)$ (2.3b)。其中,每个子散斑图案 $I_m(x,y)$ 具有相同的宽度和高度,统一大小尺寸的子散斑将有助于后期的并行信号处理,且子散斑之间选取重叠区域为 90%。

第m个子散斑图案 $I_m(x,y)$ 的强度分布可以表示为[5,17]:

$$I_m = O * S_m (2-4)$$

其中, O 表示目标的强度分布; S_m 表示第 m 个子散斑图案所对应的 PSF。

在傅里叶空间,公式(2-5)可以表示为[5,17]:

$$\mathscr{F}\{I_m\} = C_m * \mathscr{F}\{O\} \tag{2-5}$$

其中, C_m 表示第m 个子散斑图案所对应系统的光学传递函数(Optical Transfer Function, OTF)。

当目标位于光学记忆效应范围之内时,其成想系统可以看作是为多个点源目标的系统相应函数的非相干叠加 $^{[5,17]}$ 。因此,该系统的振幅传递函数 H_m 可以展开为两个函数的乘积如公式(2-6)所示。

$$H_m = P_m \cdot R_m \tag{2-6}$$

其中, P_m 表示散射介质所引入的影响, R_m 表示光瞳函数所引入的影响。在此我们假设 R_m 为一个平稳的随机变量。

同时, $OTFC_m$ 是振幅传递函数 H_m 的归一化自相关,即:

$$C_{m}(\mu) = \frac{\int H_{m}(\mu) \cdot H_{m}^{*}(\mu + \mu') d\mu'}{\int \int |H_{m}(\mu')|^{2} d\mu'}$$

$$= \frac{\int P_{m}(\mu) \cdot P_{m}^{*}(\mu + \mu') \cdot R_{m}(\mu) \cdot R_{m}^{*}(\mu + \mu') d\mu'}{\int \int |P_{m}(\mu) \cdot P_{m}^{*}(\mu + \mu') \cdot R_{m}(\mu) \cdot R_{m}^{*}(\mu + \mu')|^{2} d\mu'}$$
(2-7)

根据三阶相关理论[18,19],公式(2-5)可以表示为:

$$\mathscr{F}\{I_m\}^{(3)} = C_m^{(3)} * \mathscr{F}\{O\}^{(3)}$$
(2-8)

其中, .(3) 表示三阶相关运算。

在天文成像中,可以通过多帧图像平均的方式获得光学系统的 OTF。透过散射介质成像,其成像模型与天文成像中的模型极其相似。天文成像通过时间平均的方式实现了光学系统 OTF 的获取,我们将在散斑成像中通过空间平均的方式实现。我们将将散斑图划分为 *M* 个子散斑图来执行,假设每个子散斑具有各自的 OTF。因此,通过散射介质成像的 OTF 可以表示为:

$$C(\mu) = \langle C_m(\mu) \rangle \tag{2-9}$$

其中, 〈·〉表示平均运算。

根据三阶相关理论[18,19],公式(2-9)可以表示为:

$$\langle C_m(\mu,\nu)^{(3)} \rangle = \langle C_m(\mu)C_m(\nu)C_m(-\mu-\nu) \rangle \tag{2-10}$$

然后, 我们将公式(2-7) 带入公式(2-10) 可以获得:

$$\langle C_{m}(\mu,\nu)^{(3)} \rangle = \iiint P_{m}(\mu')P_{m}^{*}(\mu+\mu')P_{m}(\mu')P_{m}^{*}(\mu'+\nu)P_{m}(\omega)P_{m}^{*}(\omega-\mu-\nu) \langle R_{m}(\mu')R_{m}^{*}(\mu+\mu')R_{m}(\mu')R_{m}^{*}(\mu'+\nu)R_{m}(\omega)R_{m}^{*}(\omega-\mu-\nu)\rangle d\mu' d\nu' d\omega$$
(2-11)

根据散射特性,我们可知散射介质的散射效应 R_m 是符合高斯统计且具有各态历经性的特点,并且相互之间的相关函数为 δ ,所以我们将天文学中的时间平均替换为空间平均,即;

$$\langle R_m(\mu')R_m^*(\mu'+\mu)\rangle = \delta(\mu) \tag{2-12}$$

将公式(2-12)带入公式(2-11),我们可以获得

$$\langle C_m(\mu,\nu)^{(3)} \rangle = \langle C_m(\mu) \rangle \langle C_m(\nu) \cdot C_m(-\nu - \mu) \rangle +$$

$$\langle C_m(\mu) \cdot C_m(\nu) \rangle \langle C_m(-\nu - \mu) \rangle +$$

$$\langle C_m(\nu) \rangle \langle C_m(\mu) \cdot C_m(-\nu - \mu) \rangle -$$

$$2 \langle C_m(\nu) \rangle \langle C_m(\mu) \rangle \langle C_m(-\nu - \mu) \rangle +$$

$$+ \kappa(\mu,\nu)^{(3)}$$

$$(2-13)$$

其中,函数 $\kappa(\mu,\nu)^{(3)}$ 的定义为:

$$\kappa(\mu, \nu)^{(3)} = \int |P_m(\omega)|^2 \cdot |P_m(\mu + \nu + \omega)|^2$$

$$[|P_m(\mu + \omega)|^2 + |P_m(\nu + \omega)|^2]^2 d\omega$$
(2-14)

由公式 (2-1) 可知, $\kappa(\mu,\nu)^{(3)}$ 取决于散射介质孔径函数的影响 P_m 。然后,我们将公式 (2-13) 带入公式 (2-8) 可得:

$$\langle C_{m}(\mu,\nu)^{(3)}\rangle \cdot \mathscr{F}\{O\}^{(3)} = \langle C_{m}(\mu)\rangle\langle C_{m}(\nu)\cdot C_{m}(-\nu-\mu)\rangle \cdot \mathscr{F}\{O\}^{(3)} +$$

$$\langle C_{m}(\mu)\cdot C_{m}(\nu)\rangle\langle C_{m}(-\nu-\mu)\rangle \cdot \mathscr{F}\{O\}^{(3)} +$$

$$\langle C_{m}(\nu)\rangle\langle C_{m}(\mu)\cdot C_{m}(-\nu-\mu)\rangle \cdot \mathscr{F}\{O\}^{(3)} -$$

$$2\langle C_{m}(\nu)\rangle\langle C_{m}(\mu)\rangle\langle C_{m}(-\nu-\mu)\rangle \cdot \mathscr{F}\{O\}^{(3)} +$$

$$+ \kappa(\mu,\nu)^{(3)} \cdot \mathscr{F}\{O\}^{(3)}$$

$$(2-15)$$

在公式(2-15)中, $\langle C_m(\mu) \rangle$ 拥有与天文散斑成像中长曝光时 OTF 相同的特性。因此,他是非零的,只有轴上 $\mu=0$, $\nu=0$, $\mu=-\nu$ 和 $\mu=\nu=0$ 时值为零。所以,继续推导公式(2-15)可得:

$$\langle C_m(\mu,\nu)^{(3)} \rangle \cdot \mathscr{F}\{O\}^{(3)} \approx \kappa(\mu,\nu)^{(3)} \cdot \mathscr{F}\{O\}^{(3)} \approx \langle \mathscr{F}\{I_m\}^{(3)} \rangle \tag{2-16}$$

根据公式 (2-14) 可知: $\kappa(\mu,\nu)^{(3)}$ 与散射介质的影响 R_m 无关。因此,公式 (2-16) 可以简化为:

$$\mathscr{F}\{O\}^{(3)} \approx \langle \mathscr{F}\{I_m\}^{(3)}\rangle \tag{2-17}$$

因此,目标的三阶相关相位 $\mathscr{F}\{O\}^{(3)}$ 近似等于所有子散斑三阶相关相位的平均 $\langle \mathscr{F}\{I_m\}^{(3)}\rangle$ 。

根据三阶相关理论,目标的傅里叶相位 ϕ_l 和子散斑图案的三阶相关的相位 $\beta_m^{(3)}$ 应满足方程:

$$\exp[i\phi(l)] = \exp\left[i(\phi(\mu) + \phi(\nu) - \langle \beta_m^{(3)}(\mu, \nu) \rangle)\right]$$
 (2-18)

其中, $\nu = l - \mu$,

$$\beta_m^{(3)}(\mu,\nu) = \arg\left[\mathscr{F}\{I_m\}(\mu)\cdot\mathscr{F}\{I_m\}(\nu)\cdot\mathscr{F}\{I_m\}(-\mu-\nu)\right] \tag{2-19}$$

然后,根据公式(2-18)可以恢复隐藏目标的傅里叶相位信息。在傅立叶域中,第一个频率的值与物体的位置有关。在实践中,我们将第一个频率 ϕ_1 和 ϕ_0 的相位设置为零。为了避免直接计算二维图像的三阶相关所引入的巨大计算工作,我们根据中心切片定理,通过 Radon 变换 [20] 将子散斑图案转换为多个一维信号,计算多个以为信号的三阶相关,最后通过逆 Radon 变换的方式获取傅里叶相位信息。如图2.3c 所示,其为来自第 m 个子散斑的某一以维信号的三阶相位 $\beta_m^{(3)}(\mu,\nu)$ 。

2.1.3 仿真验证及方法对比

为了验证基于三阶相关相位恢复的散斑成像的有效性,我们进行了相应的数字模拟仿真,其结果如图2.4所示。从图2.4可以看出,原始目标的方向与重建的目标的方向完全保持一致,该特性保证了透过散射介质彩色成像的顺利进行。此外,我们将不同的相位恢复算法:三阶相关,HIO和广义近似信息传递的相位恢复算法(Phase Retrieval via Generalized Approximate Message Passing,prGAMP所重建的结果进行了对比,其结果如图2.5所示,其中图(a)为原始目标;(b)为散斑图案;(c)为三阶相关相位恢复算法所对应的重建结果;(d)为HIO算法所对应的重建结果;(e)为prGAMP算法所对应的重建结果。实验结果同时也证明了基于三阶相位恢复算法能够保证正确的恢复隐藏目标的图像。

图 2.4 基于三阶相关相位恢复的散斑成像仿真结果

通过以上的仿真结果和实验结果可以得出:三阶相位相关相位恢复算法能够有效的恢复隐藏目标的方向信息。于是,这一特性能够确保在彩色成像中不用颜色通道中的方向时正确的,该特性有利于合成彩色图像。

图 2.5 不同相位恢复算法重建结果对比

2.2 成像系统与结果分析

2.2.1 成像系统

该章中,我们所采用的成像结构与第二章中成像臂的模型相似,如图2.2a 所示。采用 LED ($\lambda = 400 \sim 800nm$) 为照明光源,当照明光穿过物体后照明散射介质,然后被相机所获取。实验中,我们采用干涉型滤光片对散射光进行滤波进而获取不同彩色通道的光,相机为 CMOS (Andor, Zyla) 相机,像素尺寸为: $6.5\mu m$, 像素数为: 2160×2560 。

- (1) 行间距: 固定值 20 磅(题名页除外)。
- (2) 字符间距:标准。
- (3)页眉设置:单面页码页眉标题为章节题目,每一章节的起始页必须在单面页码,双面页码页眉标题统一为"西安电子科技大学博/硕士学位论文",页眉标题居中排列,字体为宋体,字号为五号。页眉文字下添加双横线,双横线宽度为0.5磅,距正文距离为:上下各1磅,左右各4磅。
- (4) 页码设置: 学位论文的前置部分和主体部分分开设置页码, 前置部分的页码用罗马数字标识, 字体为 Times New Roman, 字号为小五号; 主体部分的页码用阿拉伯数字标识, 字体为宋体, 字号为小五号。页码统一居于页面底端中部, 不加任何修饰。
- (5)页面设置:为了便于装订,要求每页纸的四周留有足够的空白边缘,其中页边距为上3厘米、下2厘米;内侧2.5厘米、外侧2.5厘米;装订线为0.5厘米;页眉2厘米,页脚1.75厘米。

2.3 学位论文的打印、装订要求

- (1) 打印: 学位论文必须用 A4 纸页面排版,双面打印;
- (2) 装订:依次按照中文题名页、英文题名页、声明、摘要、插图索引、表格索引、符号对照表、缩略语对照表、目录、正文、附录(可选)、参考文献、致谢、作者简介的顺序,用学校统一印制的学位论文封面装订成册。盲审论文必须删除致谢部分的文字内容(致谢标题须保留)以及封面和研究成果中的作者和指导教师姓名,研究成果列表中应体现作者的排序,如第一作者、第一发明人等。

2.4 其他说明

本规定由研究生院负责解释,从申请 2015 年 9 月毕业和授位的研究生开始执行, 其它有关规定同时废止。研究生毕业论文撰写要求参照学位论文撰写要求执行。

参考文献

- [1] BERTOLOTTI J, VAN PUTTEN E G, BLUM C, et al. Non-invasive imaging through opaque scattering layers[J]. Nature, 2012, 491(7423): 232–234.
- [2] FREUND I, ROSENBLUH M, FENG S. Memory effects in propagation of optical waves through disordered media[J]. Physical Review Letters, 1988, 61(20): 2328-2331.
- [3] YıLMAZ H, HSU C W, GOETSCHY A, et al. Angular memory effect of transmission eigenchannels[J]. Physical Review Letters, 2019, 123(20): 203901.
- [4] KATZ O, HEIDMANN P, FINK M, et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations[J]. Nature Photonics, 2014, 8(10): 784 790.
- [5] GOODMAN J W. Speckle Phenomena in Optics: Theory and Applications[M]. Chicago: Roberts and Company Publishers, 2007.
- [6] NEWMAN J A, LUO Q, WEBB K J. Imaging Hidden Objects with Spatial Speckle Intensity Correlations over Object Position[J]. Physical Review Letters, 2016, 116(7): 073902.
- [7] GODARA P, DUBIS A M, ROORDA A, et al. Adaptive optics retinal imaging: emerging clinical applications[J]. Optometry and Vision Science: Official Publication of the American Academy of Optometry, 2010, 87(12): 930–941.
- [8] KATZ O, SMALL E, SILBERBERG Y. Looking around corners and through thin turbid layers in real time with scattered incoherent light[J]. Nature Photonics, 2012, 6(8): 549-553.
- [9] LARSON DR, ZIPFEL WR, WILLIAMS RM, et al. Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo[J]. Science, 2003.
- [10] LIU L, GARDECKI J A, NADKARNI S K, et al. Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography[J]. Nature Medicine, 2011, 17(8): 1010-1014.
- [11] PANIAGUA-DIAZ A M, STARSHYNOV I, FAYARD N, et al. Blind ghost imaging[J]. Optica, 2019, 6(4): 460–464.
- [12] PARK C, PARK J-H, RODRIGUEZ C, et al. Full-Field Subwavelength Imaging Using a Scattering Superlens[J]. Physical Review Letters, 2014, 113(11): 113901.
- [13] CONKEY D B, PIESTUN R. Color image projection through a strongly scattering wall[J]. Optics Express, 2012, 20(25): 27312-27318.
- [14] LEUNG T S, JIANG S. Acousto-optic imaging of a color picture hidden behind a scattering layer[J]. Optics Express, 2013, 21(22): 26780 26785.

- [15] SAHOO S K, TANG D, DANG C. Single-shot multispectral imaging with a monochromatic camera[J]. Optica, 2017, 4(10): 1209 1213.
- [16] WU T, KATZ O, SHAO X, et al. Single-shot diffraction-limited imaging through scattering layers via bispectrum analysis[J]. Optics Letters, 2016, 41(21): 5003.
- [17] GOODMAN J W. Introduction to Fourier Optics[M]. Chicago: Roberts and Company Publishers, 2005.
- [18] LOHMANN A W, WEIGELT G, WIRNITZER B. Speckle masking in astronomy: triple correlation theory and applications[J]. Applied Optics, 1983, 22(24): 4028–4037.
- [19] NORTHCOTT M J, AYERS G R, DAINTY J C. Algorithms for image reconstruction from photon-limited data using the triple correlation[J]. JOSA A, 1988, 5(7): 986-992.
- [20] AYERS G R, NORTHCOTT M J, DAINTY J C. Knox-Thompson and triple-correlation imaging through atmospheric turbulence[J]. JOSA A, 1988, 5(7): 963-985.

致谢

本论文是在导师的悉心指导下完成的,从论文的选题到论文的撰写,无不渗透着导师的心血, ·······值此论文完稿之际, 谨对导师的辛勤培育以及谆谆教诲表示最衷心的感谢!

作者简介

1. 基本情况

朱磊,男,陕西西安人,1982年8月出生,西安电子科技大学XX学院XX专业2008级硕士研究生。

2. 教育背景

2001.08~2005.07, 西安电子科技大学,本科,专业:电子信息工程 2008.08~ ,西安电子科技大学,硕士研究生,专业:电磁场与微波技术

3. 攻读硕士学位期间的研究成果

3.1 发表学术论文

- [1] XXX, XXX, XXX. Rapid development technique for drip irrigation emitters[J].RP Journal, UK., 2003, 9(2): 104-110. (SCI: 672CZ, EI: 03187452127)
- [2] XXX, XXX, XXX. 基于快速成型制造的滴管快速制造技术研究 [J]. 西安交通大学学报, 2001, 15(9): 935-939. (EI: 02226959521)
- [3] ...

3.2 申请(授权)专利

- [1] XXX, XXX, XXX 等. 专利名称: 国别, 专利号 [P]. 出版日期.
- [2] ...

3.3 参与科研项目及获奖

- [1] XXX 项目, 项目名称, 起止时间, 完成情况, 作者贡献。
- [2] XXX, XXX, XXX 等. 科研项目名称. 陕西省科技进步三等奖, 获奖日期.
- [3] ...