Introduction to Machine Learning

Principal Component Analysis

Mingchen Gao

Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA mgao8@buffalo.edu Slides Adapted from Varun Chandola

Outline

Recap

Principal Components Analysis

Introduction to PCA
Principle of Maximal Variance
Defining Principal Components
Dimensionality Reduction Using PCA
PCA Algorithm
Recovering Original Data
Eigen Faces

Probabilisitic PCA

EM for PCA

What have we seen so far?

- Factor Analysis Models
 - **Assumption**: x_i is a multivariate Gaussian random variable
 - ► Mean is a function of **z**_i
 - Covariance matrix is fixed

$$ho(\mathsf{x}_i|\mathsf{z}_i,oldsymbol{ heta}) = \mathcal{N}(\mathsf{W}\mathsf{z}_i + oldsymbol{\mu},oldsymbol{\Psi})$$

- **W** is a $D \times L$ matrix (loading matrix)
- $lackbox\Psi$ is a D imes D diagonal covariance matrix
- Extensions:
 - ► Independent Component Analysis.
 - ▶ If $\Psi = \sigma^2 \mathbf{I}$ and \mathbf{W} is orthonormal \Rightarrow FA is equivalent to **Probabilistic Principal Components Analysis** (PPCA)
 - If $\sigma^2 \rightarrow$ 0, FA is equivalent to PCA

Introduction to PCA

► Consider the following data points

Introduction to PCA

Consider the following data points

- ▶ *Embed* these points in 1 dimension
- What is the best way?
 - Along the direction of the maximum variance
 - ► Why?

Why Maximal Variance?

- ► Least loss of information
- ► Best capture the "spread"

Why Maximal Variance?

- Least loss of information
- Best capture the "spread"
- What is the direction of maximal variance?
- Given any direction $(\hat{\mathbf{u}})$, the projection of \mathbf{x} on $\hat{\mathbf{u}}$ is given by:

$$\mathbf{x}_i^{\top} \hat{\mathbf{u}}$$

Direction of maximal variance can be obtained by maximizing

$$\frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_{i}^{\top} \hat{\mathbf{u}})^{2} = \frac{1}{N} \sum_{i=1}^{N} \hat{\mathbf{u}}^{\top} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \hat{\mathbf{u}}$$
$$= \hat{\mathbf{u}}^{\top} \left(\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \right) \hat{\mathbf{u}}$$

Finding Direction of Maximal Variance

Find:

$$\max_{\hat{\mathbf{u}}:\hat{\mathbf{u}}^{\top}\hat{\mathbf{u}}=1}\hat{\mathbf{u}}^{\top}\mathbf{S}\hat{\mathbf{u}}$$

where:

$$\mathbf{S} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_i \mathbf{x}_i^{\top}$$

▶ **S** is the sample (empirical) covariance matrix of the mean-centered data

Defining Principal Components

- First PC: Eigen-vector of the (sample) covariance matrix with largest eigen-value
- Second PC: Eigen-vector with next largest value
- ▶ Variance of each PC is given by λ_i
- Variance captured by first L PC (1 ≤ L ≤ D)

$$\frac{\sum_{i=1}^{L} \lambda_i}{\sum_{i=1}^{D} \lambda_i} \times 100$$

What are eigen vectors and values?

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$$

 ${f v}$ is eigen vector and ${f \lambda}$ is eigen-value for the square matrix ${f A}$

Geometric interpretation?

Dimensionality Reduction Using PCA

- Consider first L eigen values and eigen vectors
- Let W denote the D × L matrix with first L eigen vectors in the columns (sorted by λ's)
- ▶ PC score matrix

$$z = xw$$

▶ Each input vector $(D \times 1)$ is replaced by a shorter $L \times 1$ vector

PCA Algorithm

1. Center X

$$\mathsf{X} = \mathsf{X} - \hat{\mu}$$

2. Compute sample covariance matrix:

$$\mathbf{S} = \frac{1}{N} \mathbf{X}^{\top} \mathbf{X}$$

- 3. Find eigen vectors and eigen values for **S**
- 4. **W** consists of first L eigen vectors as columns
 - Ordered by decreasing eigen-values
 - ▶ W is D × L
- 5. Let $\mathbf{Z} = \mathbf{X}\mathbf{W}$
- 6. Each row in **Z** (or \mathbf{z}_i^{\top}) is the lower dimensional embedding of \mathbf{x}_i

Recovering Original Data

Using W and z_i

$$\hat{\mathbf{x}}_i = \mathbf{W}\mathbf{z}_i$$

► Average Reconstruction Error

$$J(\mathbf{W}, \mathbf{Z}) = \frac{1}{N} \sum_{i=1}^{N} \|\mathbf{x}_i - \hat{\mathbf{x}}_i\|^2$$

Theorem (Classical PCA Theorem)

Among all possible orthonormal sets of L basis vectors, PCA gives the solution which has the minimum reconstruction error.

▶ Optimal "embedding" in L dimensional space is given by $z_i = \mathbf{W}^{\top}\mathbf{x}_i$

Mingchen Gao

Using PCA for Face Recognition

EigenFaces [1]

- ▶ Input: A set of images (of faces)
- ► **Task:** Identify if a new image is a face or not.

Probabilistic PCA

Recall the Factor Analysis model

$$ho(\mathsf{x}_i|\mathsf{z}_i, heta) = \mathcal{N}(\mathsf{Wz}_i + oldsymbol{\mu}, oldsymbol{\Psi})$$

- lackbox For PPCA, $oldsymbol{\Psi}=\sigma^2 oldsymbol{\mathsf{I}}$ and $oldsymbol{\mathsf{W}}$ is orthogonal
- ► Covariance for each observation **x** is given by:

$$\mathbf{W}\mathbf{W}^{\top} + \sigma^{2}\mathbf{I}$$

▶ If we maximize the log-likelihood of a data set **X**, the MLE for **W** is:

$$\hat{W} = \mathbf{V}(\mathbf{\Lambda} - \sigma^2 \mathbf{I})^{\frac{1}{2}}$$

- **V** first *L* eigenvectors of $S = \frac{1}{N}X^{T}X$
- $ightharpoonup \Lambda$ diagonal matrix with first L eigen values

EM for PCA

- ▶ PPCA formulation allows for EM based learning of parameters
- **Z** is a matrix containing *N* latent random variables

Benefits of EM

- ► EM can be faster
- Can be implemented in an online fashion
- ► Can handle missing data

References

M. Turk and A. Pentland.

Face recognition using eigenfaces.

In Computer Vision and Pattern Recognition, 1991. Proceedings CVPR '91., IEEE Computer Society Conference on, pages 586–591, Jun 1991.