This project is about ahmedabad plain crash bold text

Import the required libraries

```
# Import Numerical Python for performing numerical operations on different data structure import numpy as np
```

```
# Import Pandas for converting different file formate into pandas dataframe import pandas as pd
```

#Import seaborn and matplotlib for creating the interactive visualization

```
import seaborn as sns
import matplotlib.pyplot as plt
```

Load the data

```
# Load the data from local
df_airplain_crash= pd.read_csv('airplain_crash.csv')
# check the first five observation
df_airplain_crash.head()
```

→		Timestamp	Flight_ID	Aircraft_Model	Electrical_System_Status	Emergency_Power_Ac
	0	12-06- 2025 08:43	Al114	Boeing 787-8 Dreamliner	Normal	
	1	12-06- 2025 08:19	AI111	Boeing 787-8 Dreamliner	Normal	
	2	12-06- 2025 06:50	Al191	Boeing 787-8 Dreamliner	Normal	
	3	12-06- 2025 06:40	Al189	Boeing 787-8 Dreamliner	Normal	
	4	12-06- 2025 06:24	Al145	Boeing 787-8 Dreamliner	Normal	

Next steps

Generate code with df_airplain_crash

New interactive she

check the last five observations
df_airplain_crash.tail()

→		Timestamp	Flight_ID	Aircraft_Model	Electrical_System_Status	Emergency_Power
	9267	12-06- 2025 06:11	Al133	Boeing 787-8 Dreamliner	Normal	
	9268	12-06- 2025 08:14	AI150	Boeing 787-8 Dreamliner	Warning	
	9269	12-06- 2025 06:31	Al180	Boeing 787-8 Dreamliner	Normal	
	9270	12-06- 2025 07:50	Al146	Boeing 787-8 Dreamliner	Normal	
	9271	12-06- 2025 08:32	AI144	Boeing 787-8 Dreamliner	Normal	

Data Overview

```
# check the columns we have into the data
df airplain crash.columns
```

interpratation

- 'Timestamp': The exact date and time when the record or measurement was captured,
- 'Flight_ID': A unique identifier for each flight, such as the airline designator and flight number,
- 'Aircraft_Model' :The make and model of the aircraft,
- 'Electrical_System_Status': The health and operational state of the aircraft's electrical power system,
- 'Emergency_Power_Activation': A flag indicating if backup electrical systems,
- 'Voltage_Level': Measured voltage (in volts) available in the electrical system,
- 'Current_Load': The electrical current (amperes) being drawn by aircraft systems,
- 'Engine_Performance': Metrics such as thrust, fuel flow, RPM, EGT,,

- 'Altitude': The aircraft's vertical position above a reference datum,
- 'Airspeed' : Aircraft speed relative to the surrounding air,
- 'Flight_Phase': Which segment of the flight the aircraft,
- 'Maintenance_History': Recorded service and maintenance events,
- 'Last_Maintenance_Date': The calendar date of the most recent maintenance action performed on this specific aircraft or system.,
- 'Weather_Condition': Environmental description at the aircraft location/time,
- 'Temperature': Ambient air temperature around the aircraft,
- 'Air_Traffic_Control_Delay': Whether delays have been imposed by ATC,
- 'Ground_Staff_Activity': Activities taking place on the ground,
- 'CCTV_Anomaly_Flag': A binary indicator from closed-circuit video monitoring,
- 'Pilot_Communication_Score': A metric (possibly derived from assessments like NOTECHS) evaluating the pilot's communication quality,
- 'System_Failure': A flag or description noting if a critical system malfunction occurred.

```
# Check the shape of the data
df_airplain_crash.shape
```

 $\rightarrow \bullet$ (9272, 20)

We have 10000 observations and 20 attributes

```
# check the basic info
df airplain crash.info()
```

<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 9272 entries, 0 to 9271
 Data columns (total 20 columns):

#	Column	Non-Null Count	Dtype
0	Timestamp	9272 non-null	object
1	Flight_ID	9272 non-null	object
2	Aircraft_Model	9272 non-null	object
3	<pre>Electrical_System_Status</pre>	9272 non-null	object
4	Emergency_Power_Activation	9272 non-null	int64
5	Voltage_Level	9272 non-null	float64
6	Current_Load	9272 non-null	float64
7	<pre>Engine_Performance</pre>	9272 non-null	float64
8	Altitude	9272 non-null	float64
9	Airspeed	9272 non-null	float64
10	Flight_Phase	9272 non-null	object
11	Maintenance_History	9272 non-null	int64
12	Last_Maintenance_Date	9272 non-null	object
13	Weather_Condition	9272 non-null	object
14	Temperature	9272 non-null	float64
15	Air_Traffic_Control_Delay	9272 non-null	float64
16	Ground_Staff_Activity	9272 non-null	int64
17	CCTV_Anomaly_Flag	9272 non-null	int64

18 Pilot_Communication_Score 9272 non-null float64 19 System_Failure 9272 non-null int64

dtypes: float64(8), int64(5), object(7)

memory usage: 1.4+ MB

interpretation

- We have 13 numerical columns and 7 categorical columns
- This data acquires 1.5+mb space.

Check basic statistics
df_airplain_crash.describe().T

	count	mean	std	min	25%	5(
Emergency_Power_Activation	9272.0	0.000000	0.000000	0.00	0.0000	0.00
Voltage_Level	9272.0	229.349516	29.537585	139.77	209.2750	229.5
Current_Load	9272.0	599.058526	147.941955	159.98	496.7275	597.3
Engine_Performance	9272.0	94.699889	4.218522	81.71	91.7900	95.08
Altitude	9272.0	4973.770274	2711.004930	0.00	2978.5050	4986.94
Airspeed	9272.0	249.872783	28.397533	164.40	230.1400	249.9 ⁻
Maintenance_History	9272.0	4.990725	3.155879	0.00	2.0000	5.00
Temperature	9272.0	14.796247	14.350509	-10.00	2.3000	14.80
Air_Traffic_Control_Delay	9272.0	4.619702	4.091780	0.00	1.4400	3.44
Ground_Staff_Activity	9272.0	9.885785	6.049521	0.00	5.0000	10.00
CCTV_Anomaly_Flag	9272.0	0.000000	0.000000	0.00	0.0000	0.00
Pilot_Communication_Score	9272.0	0.290439	0.162216	0.01	0.1600	0.2
System_Failure	9272.0	0.096527	0.295329	0.00	0.0000	0.00
4						b

Interpretation

- After observing this table, i conclude that there are 3 column that content the outliers, remaining not
- the columns are:
 - Voltage_Level
 - Current_Load
 - Air_Traffic_Control_Delay

import pandas as pd

Assuming your data is in a pandas DataFrame called df

```
def cap_outliers(df, column):
    Q1 = df[column].quantile(0.25)
    Q3 = df[column].quantile(0.75)
    IQR = Q3 - Q1
    lower_bound = Q1 - 1.5 * IQR
    upper bound = Q3 + 1.5 * IQR
    # For Current_Load, only cap the lower bound (min)
    if column == 'Current_Load':
        df.loc[df[column] < lower_bound, column] = lower_bound</pre>
    else:
        # For others, cap both sides if needed
        df.loc[df[column] < lower_bound, column] = lower_bound</pre>
        df.loc[df[column] > upper_bound, column] = upper_bound
    return df
# Cap Voltage Level max
df_airplain_crash = cap_outliers(df_airplain_crash, 'Voltage_Level')
# Cap Current_Load min
df_airplain_crash = cap_outliers(df_airplain_crash, 'Current_Load')
# Altitude and Temperature - no treatment needed, skip
# Cap Air_Traffic_Control_Delay max
df_airplain_crash = cap_outliers(df_airplain_crash, 'Air_Traffic_Control_Delay')
# Verify results
print(df_airplain_crash[['Voltage_Level', 'Current_Load', 'Air_Traffic_Control_Delay']].d
            Voltage Level Current Load Air Traffic Control Delay
              9272.000000
                           9272.000000
                                                       9272.000000
     count
     mean
               229.353407
                             599.072892
                                                          4.549174
     std
               29.484386 147.901064
                                                          3.890903
     min
              149.035000
                            189.430000
                                                          0.000000
     25%
               209.275000
                            496.727500
                                                          1.440000
     50%
               229.570000
                            597.330000
                                                          3.440000
     75%
               249.435000
                            701.592500
                                                          6.642500
               309.675000
                            1000.000000
                                                         14.446250
     max
```

df_airplain_crash = df_airplain_crash.drop('Emergency_Power_Activation', axis=1)

Data Preprocessing

Data Cleaning

```
# Check the name of the column
df_airplain_crash.columns
```

· After looking at the columns, I conclude that there is no need to rename the columns

```
# check the first five observation
df_airplain_crash.head()
```

	Timestamp	Flight_ID	Aircraft_Model	Electrical_System_Status	Voltage_Level	Cu
0	12-06- 2025 08:43	AI114	Boeing 787-8 Dreamliner	Normal	244.90	
1	12-06- 2025 08:19	AI111	Boeing 787-8 Dreamliner	Normal	246.28	
2	12-06- 2025 06:50	AI191	Boeing 787-8 Dreamliner	Normal	229.27	
3	12-06- 2025 06:40	Al189	Boeing 787-8 Dreamliner	Normal	206.65	
4	12-06- 2025 06:24	Al145	Boeing 787-8 Dreamliner	Normal	164.65	

Interpretaation

There are a few impurities present, which we solved in basic Excel

Null value handling

```
# Check the count of null records
df_airplain_crash.isnull().sum()
```


	0
Timestamp	0
Flight_ID	0
Aircraft_Model	0
Electrical_System_Status	0
Voltage_Level	0
Current_Load	0
Engine_Performance	0
Altitude	0
Airspeed	0
Flight_Phase	0
Maintenance_History	0
Last_Maintenance_Date	0
Weather_Condition	0
Temperature	0
Air_Traffic_Control_Delay	0
Ground_Staff_Activity	0
CCTV_Anomaly_Flag	0
Pilot_Communication_Score	0
System_Failure	0

dtype: int64

[#] Find the percentage for null records

[#] Note: We have to find the percentage of null records because the loss we have for handl
df_airplain_crash.isnull().sum()/len(df_airplain_crash) * 100

0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

dtype: float64

len(df_airplain_crash)

→ 9272

interpretation

• After observation, we conclude that there is no null records were present

EDA

Univariate Analysis

To perform the univariate analysis, let's segregate numerical and categorical data
df_num = df_airplain_crash.select_dtypes(include = 'number')

Check the numerical data

df_num.head()

→		Voltage_Level	Current_Load	Engine_Performance	Altitude	Airspeed	Maintenance_H
	0	244.90	579.26	98.24	9569.09	242.98	
	1	246.28	514.29	90.38	0.00	278.51	
	2	229.27	653.33	97.09	7497.39	241.20	
	3	206.65	769.53	96.87	3840.58	215.24	
	4	164.65	443.42	95.86	5972.60	272.38	

Next steps: Generate code with df_num

View recommended plots

New interactive sheet

Separate the categorical variables from the main dataframe

df_cat = df_airplain_crash.select_dtypes(include = 'object')

Check the categorical data

df_cat.head()

→		Timestamp	Flight_ID	Aircraft_Model	Electrical_System_Status	Flight_Phase	Last
	0	12-06- 2025 08:43	AI114	Boeing 787-8 Dreamliner	Normal	Takeoff	
	1	12-06- 2025 08:19	AI111	Boeing 787-8 Dreamliner	Normal	Takeoff	
	4 •	12-06-					•

Next steps:

Generate code with df cat

View recommended plots

New interactive sheet

Univeriate Analysis on Numerical Data

```
# Check the columns
df_num.columns
```

∨ Voltage_Level

Find the minimum

df_num.Voltage_Level.min()

→ 149.03500000000003

Find the maximum

df_num.Voltage_Level.max()

→ 309.675

Find the average

df_num.Voltage_Level.mean()

np.float64(229.35340703192406)

Check the visualization

df_num.Voltage_Level.plot(kind = 'kde',) # slightly normaly distributed kde = 'kernal den
plt.title('Emergency_Power_Activation')
plt.grid()

- Minimum value is 149.03500000000003
- Maximum value is 309.675
- Average value is 229.35340703192406
- After looking at the distribution, I conclude that the graph shows Central tendency

```
# Check the columns
df num.columns
→ Index(['Voltage_Level', 'Current_Load', 'Engine_Performance', 'Altitude',
            'Airspeed', 'Maintenance_History', 'Temperature',
            'Air_Traffic_Control_Delay', 'Ground_Staff_Activity',
            'CCTV_Anomaly_Flag', 'Pilot_Communication_Score', 'System_Failure'],
           dtype='object')
  Current_Load
# Find the minimum
df_num.Current_Load.min()
→ 189.43000000000012
# Find the maximum
df num.Current Load.max()
→ 1000.0
# Find the average
df num.Current Load.mean()
np.float64(599.0728915012942)
# Check the visualization
df_num.Current_Load.plot(kind='kde') # Kernel Density Estimate
plt.title('Current_Load')
plt.grid()
plt.show()
```


- Minimum value is 189.4300000000012
- Maximum value is 1000.0
- Average value is 599.0728915012942.
- After looking at the distribution, I conclude that the graph shows Central tendency

```
# Check the columns
```

df_num.columns

✓ Engine_Performance

```
# minimum value
df_num.Engine_Performance.min()
```

₹ 81.71

```
# maximum value is

df_num.Engine_Performance.max() # Maximum value

→ 100.0

# average value

df_num.Engine_Performance.mean()

→ np.float64(94.69988891285593)
```

```
# data visualitation
df_num.Engine_Performance.plot(kind='kde') # Density plot
plt.title('Engine_Performance')
plt.grid()
plt.show()
```


- Minimum value is 81.71
- Maximum value is 100.0
- Average value is 94.69988891285593
- After looking at the distribution, I conclude that the graph shows Central tendency

```
mini project.ipynb - Colab
# Check the columns
df num.columns
→ Index(['Voltage_Level', 'Current_Load', 'Engine_Performance', 'Altitude',
            'Airspeed', 'Maintenance_History', 'Temperature',
            'Air_Traffic_Control_Delay', 'Ground_Staff_Activity',
            'CCTV_Anomaly_Flag', 'Pilot_Communication_Score', 'System_Failure'],
           dtype='object')
  Altitude
# minimum value
df_num.Altitude.min()
→ 0.0
# maimum value
df_num.Altitude.max()
    10000.0
# average value
df_num.Altitude.mean()
np.float64(4973.770273943055)
# data visualitation
df_num.Altitude.plot(kind='kde')
plt.title('Altitude')
plt.grid()
plt.show()
```


- Minimum value is 4973.77027394305
- Maximum value is 10000.0
- Average value is 4973.770273943055
- After looking at the distribution, I conclude that the graph shows Central tendency

```
# Check the columns
```

```
df_num.columns
```

Airspeed

```
# minimum value
df_num.Airspeed.min()
```

→ 164.4

```
# maximum value
df_num.Airspeed.max()
```

```
<del>_</del> 300.0
```

```
# average value
df_num.Airspeed.mean()
```

```
np.float64(249.87278257118206)
```

```
# data visualitation
df_num.Airspeed.plot(kind='kde')
plt.title('Airspeed')
plt.grid()
plt.show()
```


- Minimum value is 4973.77027394305
- Maximum value is 300.0
- Average value is 249.87278257118206
- After looking at the distribution, I conclude that the graph shows Central tendency

```
mini project.ipynb - Colab
# Check the columns
df num.columns
→ Index(['Voltage_Level', 'Current_Load', 'Engine_Performance', 'Altitude',
            'Airspeed', 'Maintenance_History', 'Temperature',
            'Air_Traffic_Control_Delay', 'Ground_Staff_Activity',
            'CCTV_Anomaly_Flag', 'Pilot_Communication_Score', 'System_Failure'],
           dtype='object')
   Maintenance_History
# minimum value
df_num.Maintenance_History.min()
→ 0
# maxmum value
df_num.Maintenance_History.max()
→ 10
# average value
df_num.Maintenance_History.mean()
np.float64(4.990724762726488)
# Plot frequency of categorical values
df_num.Maintenance_History.value_counts().plot(kind='bar')
plt.title('Maintenance_History - Count')
plt.grid()
plt.show()
```


- Minimum value is 0
- Maximum value is 10.0
- Average value is 4.990724762726488
- # Check the columns

df_num.columns

Temperature

df_num.Temperature.min()

-10.0

```
df_num.Temperature.max()
```

```
<del>∑</del> 40.0
```

df_num.Temperature.mean()

```
np.float64(14.796246764452112)
```

```
df_num.Temperature.plot(kind='kde')
plt.title('Temperature')
plt.grid()
plt.show()
```


Interpritation

- Minimum Insider Sentiment_Score_Social is -10
- Maximum Insider Sentiment_Score_Social is 40
- Average Insider Sentiment_Score_Social is 14.79624676445211
- After looking at the distribution, I conclude that the distribution is normal

Check the columns

df_num.columns

```
→ Index(['Voltage_Level', 'Current_Load', 'Engine_Performance', 'Altitude',
            'Airspeed', 'Maintenance_History', 'Temperature',
            'Air_Traffic_Control_Delay', 'Ground_Staff_Activity',
            'CCTV_Anomaly_Flag', 'Pilot_Communication_Score', 'System_Failure'],
           dtype='object')

✓ Air_Traffic_Control_Delay

df_num.Air_Traffic_Control_Delay.min()
→ 0.0
df_num.Air_Traffic_Control_Delay.max()
14.4462500000000001
df_num.Air_Traffic_Control_Delay.mean()
np.float64(4.549174126402071)
df_num.Air_Traffic_Control_Delay.value_counts().plot(kind='kde')
plt.title('Air_Traffic_Control_Delay - Count')
plt.grid()
plt.show()
```


- Minimum Insider Sentiment_Score_Social is 0
- Maximum Insider Sentiment_Score_Social is 14.4466
- Average Insider Sentiment_Score_Social is 4.549174126402071
- After looking at the distribution, I conclude that the graph shows Central tendency

```
# Check the columns
```

df num.columns

 ✓ Ground_Staff_Activity

```
df_num.Ground_Staff_Activity.min()
```

}▼ (

df_num.Ground_Staff_Activity.max()

→ 20

df_num.Ground_Staff_Activity.mean()

np.float64(9.885785159620362)

```
df_num.Ground_Staff_Activity.value_counts().plot(kind='kde')
plt.title('Ground_Staff_Activity - Count')
plt.grid()
plt.show()
```

 $\overline{2}$

Interpritation

- Minimum Insider Sentiment_Score_Social is 0
- Maximum Insider Sentiment_Score_Social is 20
- Average Insider Sentiment_Score_Social is 9.885785159620362
- After looking at the distribution, I conclude that the graph shows Central tendency

Check the columns

df_num.columns

```
→ Index(['Voltage_Level', 'Current_Load', 'Engine_Performance', 'Altitude',
            'Airspeed', 'Maintenance_History', 'Temperature',
            'Air_Traffic_Control_Delay', 'Ground_Staff_Activity',
            'CCTV_Anomaly_Flag', 'Pilot_Communication_Score', 'System_Failure'],
           dtype='object')
df_num.CCTV_Anomaly_Flag.min()
df_num.CCTV_Anomaly_Flag.max()
→ 0
df_num.CCTV_Anomaly_Flag.mean()
\rightarrow np.float64(0.0)
df_num.CCTV_Anomaly_Flag.mean()
df_num.CCTV_Anomaly_Flag.value_counts().plot(kind='bar')
plt.title('CCTV_Anomaly_Flag - Count')
plt.grid()
plt.show()
```


Check the columns

df_num.columns

Pilot_Communication_Score

df_num.Pilot_Communication_Score.min()

→ 0.01

df_num.Pilot_Communication_Score.max()

→▼ 0.82

df_num.Pilot_Communication_Score.mean()

```
np.float64(0.29043895599654873)
```

```
df_num.Pilot_Communication_Score.plot(kind='kde')
plt.title('Pilot_Communication_Score')
plt.grid()
plt.show()
```


Check the columns

df_num.columns

System_Failure

```
df_num.System_Failure.min()
```

→ •

df_num.System_Failure.max()

```
→ 1
```

```
df_num.System_Failure.mean()
```

```
p.float64(0.09652717860224332)
```

```
df_num.System_Failure.value_counts().plot(kind='bar')
plt.title('System_Failure - Count')
plt.grid()
plt.show()
```


Univeriated analysis an categorical variaables

Timestamp

Check the count of each category present in the column

df_cat.Timestamp.value_counts()

 \rightarrow

count

Timestamp	
12-06-2025 08:24	70
12-06-2025 07:08	69
12-06-2025 06:13	68
12-06-2025 08:05	67
12-06-2025 08:41	66
12-06-2025 06:11	38
12-06-2025 06:11	38
12-06-2025 06:11 12-06-2025 08:34	38 38
12-06-2025 06:11 12-06-2025 08:34 12-06-2025 07:14	38 38 38

181 rows × 1 columns

dtype: int64

```
# Create a Visualization
```

```
df_cat.Timestamp.value_counts().head(20).plot(kind = 'bar')
plt.title('Timestamp')
plt.grid()
```


Check the columns

df_cat.columns

✓ Flight_ID

Check the count of each category present in the column
df_cat.Flight_ID.value_counts()

count

Flight_ID	
Al187	116
Al146	111
Al112	110
Al103	107
Al185	106
Al190	81
Al161	80
Al121	78
Al165	77
Al183	75

100 rows × 1 columns

dtype: int64

```
# Create a visualization (top 20 IDs for clarity)
df_cat.Flight_ID.value_counts().head(20).plot(kind='bar')
plt.title('Flight_ID (Top 20)')
plt.grid()
plt.show()
```


Check the columns

df_cat.columns

'Aircraft_Model

Check the count of each category present in the column
df_cat.Aircraft_Model.value_counts()

→

count

Aircraft_Model

Boeing 787-8 Dreamliner 9272

dtype: int64

Create a visualization
df_cat.Aircraft_Model.value_counts().plot(kind='bar')

```
plt.title('Aircraft_Model')
plt.grid()
plt.show()
```



```
# Check the columns
```

df_cat.columns

Electrical_System_Status

```
# Check the count of each category present in the column
df_cat.Electrical_System_Status.value_counts()
```


count

Electrical_System_Status

Normal	8153
Warning	991
Failure	128

dtype: int64

```
# Create a visualization
df_cat.Electrical_System_Status.value_counts().plot(kind='bar')
plt.title('Electrical_System_Status')
plt.grid()
plt.show()
```


Check the columns

df_cat.columns

✓ Flight_Phase

Check the count of each category present in the column
df_cat.Flight_Phase.value_counts()

→		count
	Flight_Phase	
	Climb	5666
	Takeoff	3606

dtype: int64

```
# Create a visualization
df_cat.Flight_Phase.value_counts().plot(kind='bar')
plt.title('Flight_Phase')
plt.grid()
plt.show()
```


Check the columns

df_cat.columns

Weather_Condition

Check the count of each category present in the column
df_cat.Weather_Condition.value_counts()

count

Weather_Condition

Clear	6517
Rain	1847
Fog	908

dtype: int64

```
# Create a visualization
df_cat.Weather_Condition.value_counts().plot(kind='bar')
plt.title('Weather_Condition')
plt.grid()
plt.show()
```


→ Bivariate Analysis

To find the best pairs, we have to conclude the correlation matrix
df_num.corr()

	Voltage_Level	Current_Load	Engine_Performance	Altitude
Voltage_Level	1.000000	-0.007081	-0.010190	0.003049
Current_Load	-0.007081	1.000000	-0.012897	-0.009052
Engine_Performance	-0.010190	-0.012897	1.000000	0.025060
Altitude	0.003049	-0.009052	0.025060	1.000000
Airspeed	0.000674	-0.008944	-0.004624	0.006055
Maintenance_History	0.000264	0.005412	-0.012317	-0.011756
Temperature	0.002769	-0.005843	0.014078	-0.012935
Air_Traffic_Control_Delay	0.006470	0.024029	-0.007142	-0.009638
Ground_Staff_Activity	0.012410	0.012806	-0.000006	-0.010356
CCTV_Anomaly_Flag	NaN	NaN	NaN	NaN
Pilot_Communication_Score	-0.011411	-0.012745	0.003049	0.011485
System_Failure	0.091142	-0.028598	0.007008	0.000628

sns.heatmap(df_num.corr())

[#] Visualize the correlation matrix

→ <Axes: >

Interpretation

- After looking at the data and correlation matrix, I conclude that there is no correlation
- This is good for machine learning, because it avoids the problem of multicollinearity
- NOTE: Multicolinearity means when independent variables are correlated with each other and we don;t want multicolinearity while performing machine learning on any data
- → Bivariate analysis on one categorical and one numerical variable

'Timestamp','voltage_level'

dtype='object')

 $\overline{\mathbf{T}}$

Interpretation

 The data is balanced, which means all Timestamp are contributing equal in Voltage_Level amaount

'Timestamp','Current_load'

Timestamp

'Timestamp','Engine_Performance'

'Timestamp','Altitude'

Timestamp

Multivariate Analysis

pd.crosstab(index = df_airplain_crash.Flight_ID,columns = df_airplain_crash.Aircraft_Mode

values = df_airplain_crash.Voltage_Level.head(),

aggfunc = 'min')

	·o		ш
	Al111	246.28	
	Al114	244.90	
	Al145	164.65	
	Al189	206.65	
	Al191	229.27	
→	aggfunc = Aircraft_Model Boo	'max') eing 787-8 Dreamliner	<u> </u>
	Flight_ID		ıl.
	Al111	246.28	
	Al114	244.90	
	Al145	164.65	
	Al189	206.65	
	Al189 Al191	206.65 229.27	
	Al191 rosstab(index = df_a values = aggfunc =	229.27 irplain_crash.Flight_I df_airplain_crash.Volt 'mean')	D,columns = df_airplain_crash.Aircraf age_Level.head(),
	Al191 rosstab(index = df_a values = aggfunc = Aircraft_Model Book	229.27 irplain_crash.Flight_I df_airplain_crash.Volt	
	Al191 rosstab(index = df_a values = aggfunc = Aircraft_Model Book Flight_ID	229.27 irplain_crash.Flight_I df_airplain_crash.Volt 'mean') eing 787-8 Dreamliner	age_Level.head(),
	Al191 rosstab(index = df_a values = aggfunc = Aircraft_Model Book Flight_ID Al111	229.27 irplain_crash.Flight_I df_airplain_crash.Volt 'mean') eing 787-8 Dreamliner 246.28	age_Level.head(),
od.cı	Al191 rosstab(index = df_a values = aggfunc = Aircraft_Model Book Flight_ID	229.27 irplain_crash.Flight_I df_airplain_crash.Volt 'mean') eing 787-8 Dreamliner	age_Level.head(),

'aircraft_model','Flight_ID','current_load'

AI191

229.27

→	Aircraft_Model	Boeing 787-8 Dreamliner	
	Flight_ID		ılı
	Al111	514.29	
	Al114	579.26	
	Al145	443.42	
	Al189	769.53	
	Al191	653.33	

→	Aircraft_Model	Boeing 787-8	Dreamliner	
	Flight_ID			ıl.
	Al111		514.29	
	Al114		579.26	
	Al145		443.42	
	Al189		769.53	
	Al191		653.33	

3	Aircraft_Model	Boeing 787-8 Dreamliner	
	Flight_ID		ılı
	Al111	514.29	
	Al114	579.26	
	Al145	443.42	
	Al189	769.53	
	Al191	653.33	

'aircraft_model','Flight_ID','altitude'

→	Aircraft_Model	Boeing 787-8 Dreamliner	\blacksquare
	Flight_ID		ıl.
	Al111	0.00	
	Al114	9569.09	
	Al145	5972.60	
	Al189	3840.58	
	Al191	7497.39	

→	Aircraft_Model	Boeing 787-8 Dreamliner	
	Flight_ID		ılı
	Al111	0.00	
	Al114	9569.09	
	Al145	5972.60	
	Al189	3840.58	
	Al191	7497.39	

'aircraft_model','Flight_ID','airspeed'

→	Aircraft_Model	Boeing 787-8 Dreamliner	
	Flight_ID		ılı
	Al111	278.51	
	Al114	242.98	
	Al145	272.38	
	Al189	215.24	
	Al191	241.20	

→	Aircraft_Model	Boeing 787-8 Dreamliner	
	Flight_ID		ılı
	Al111	278.51	
	Al114	242.98	
	Al145	272.38	
	Al189	215.24	
	Al191	241.20	

Aircraft_Model	Boeing 787-8 Dreamliner	\blacksquare
Flight_ID		ılı
Al111	278.51	
Al114	242.98	
Al145	272.38	
Al189	215.24	
	Flight_ID Al111 Al114 Al145 Al189	Al111 278.51 Al114 242.98 Al145 272.38

Make data ready for machine learning

```
# Saperaate the dependent and independent variaables
df airplain crash.columns
→ Index(['Timestamp', 'Flight_ID', 'Aircraft_Model', 'Electrical_System_Status',
            'Voltage_Level', 'Current_Load', 'Engine_Performance', 'Altitude',
            'Airspeed', 'Flight_Phase', 'Maintenance_History',
            'Last_Maintenance_Date', 'Weather_Condition', 'Temperature',
            'Air_Traffic_Control_Delay', 'Ground_Staff_Activity',
            'CCTV_Anomaly_Flag', 'Pilot_Communication_Score', 'System_Failure'],
           dtype='object')
# Here in the data we are going to predict Stock Price Impact
target = df_airplain_crash.System_Failure
# Check for columns
df_airplain_crash.columns
→ Index(['Timestamp', 'Flight_ID', 'Aircraft_Model', 'Electrical_System_Status',
            'Voltage_Level', 'Current_Load', 'Engine_Performance', 'Altitude',
            'Airspeed', 'Flight_Phase', 'Maintenance_History',
            'Last_Maintenance_Date', 'Weather_Condition', 'Temperature',
            'Air_Traffic_Control_Delay', 'Ground_Staff_Activity',
            'CCTV_Anomaly_Flag', 'Pilot_Communication_Score', 'System_Failure'],
           dtype='object')
# Drop the dependent variable from main dataframe
ind = df_airplain_crash.drop('System_Failure', axis = 1)
```

```
# Check whether that column is deleted or not ind. columns

Index(['Timestamp', 'Flight_ID', 'Aircraft_Model', 'Electrical_System_Status', 'Voltage_Level', 'Current_Load', 'Engine_Performance', 'Altitude', 'Airspeed', 'Flight_Phase', 'Maintenance_History', 'Last_Maintenance_Date', 'Weather_Condition', 'Temperature', 'Air_Traffic_Control_Delay', 'Ground_Staff_Activity', 'CCTV_Anomaly_Flag', 'Pilot_Communication_Score'], dtype='object')
```

sales date is a date time column, and we never keep a date time column in the machine 1

ind = ind.drop('Last_Maintenance_Date', axis = 1)

Check whether that column is deleted or not

ind.columns

Perform encoding on categorical variable

```
# Separate the categorical columns from the independent variables
df_cat_ind = ind.select_dtypes(include = 'object')
df_cat_ind.head()
```

→		Timestamp	Flight_ID	Aircraft_Model	Electrical_System_Status	Flight_Phase	Weat
	0	12-06- 2025 08:43	Al114	Boeing 787-8 Dreamliner	Normal	Takeoff	
	1	12-06- 2025 08:19	AI111	Boeing 787-8 Dreamliner	Normal	Takeoff	
	4 4	12-06-				•	Þ
Next		Generate	code with df	cat ind	/iew recommended plots N	ew interactive sho	eet

Perform encoding

steps:

```
encoded = pd.get_dummies(df_cat_ind)
encoded.columns
```

False False False

```
→ Index(['Timestamp_12-06-2025 06:00', 'Timestamp_12-06-2025 06:01',
             'Timestamp_12-06-2025 06:02', 'Timestamp_12-06-2025 06:03',
             'Timestamp_12-06-2025 06:04', 'Timestamp_12-06-2025 06:05', 'Timestamp_12-06-2025 06:06', 'Timestamp_12-06-2025 06:07',
             'Timestamp_12-06-2025 06:08', 'Timestamp_12-06-2025 06:09',
             'Flight_ID_AI199', 'Aircraft_Model_Boeing 787-8 Dreamliner',
             'Electrical_System_Status_Failure', 'Electrical_System_Status_Normal',
             'Electrical_System_Status_Warning', 'Flight_Phase_Climb',
             'Flight_Phase_Takeoff', 'Weather_Condition_Clear',
             'Weather Condition Fog', 'Weather Condition Rain'],
            dtype='object', length=290)
# Check the data encoding data frame
encoded.head().T
\rightarrow
                                                                       Ħ
      Timestamp 12-06-2025 06:00 False False False False
                                                                        n.
      Timestamp_12-06-2025 06:01 False False False False False
      Timestamp_12-06-2025 06:02 False False False False False
```

Timestamp 12-06-2025 06:04 False False False False False Flight_Phase_Climb False False True False True Flight_Phase_Takeoff True True False True False Weather_Condition_Clear True True True False False Weather_Condition_Fog False False False True False Weather_Condition_Rain False False False True

290 rows × 5 columns

Perform scaling on numerical data

Timestamp_12-06-2025 06:03 False

```
# Make a new dataframe for the independent numerical variable

df_num_ind = ind.select_dtypes(include = 'number')

# Import the standard scaler for scaling

from sklearn.preprocessing import StandardScaler

# Initiate the StandardScaler
```

```
ss = StandardScaler()
```

Transform the data (Numerical Data)

scalled = ss.fit_transform(df_num_ind)

Check the normalized data

scalled

Create a dataframe for scaled numerical data

df_scalled = pd.DataFrame(scalled, columns = df_num_ind.columns)

Check the scaled DataFrame

df_scalled.head()

→		Voltage_Level	Current_Load	Engine_Performance	Altitude	Airspeed	Maintenance_H
	0	0.527311	-0.133968	0.839228	1.695153	-0.242738	1
	1	0.574118	-0.573271	-1.024084	-1.834758	1.008495	-1
	2	-0.002829	0.366867	0.566606	0.930930	-0.305423	0
	3	-0.770056	1.152570	0.514452	-0.418019	-1.219636	-1
	4	-2.194616	-1.052469	0.275019	0.368455	0.792619	0

Next steps:

Generate code with df_scalled

View recommended plots

New interactive sheet

Concatenate the encoded and scaled dataframe

df_main = pd.concat([encoded, df_scalled], axis = 1)

Check whether the concatenation is successful or not

```
df_main.isnull().sum()
```

-		_
		•
	⇛	$\overline{}$
-	÷	_

	0
Timestamp_12-06-2025 06:00	0
Timestamp_12-06-2025 06:01	0
Timestamp_12-06-2025 06:02	0
Timestamp_12-06-2025 06:03	0
Timestamp_12-06-2025 06:04	0
Temperature	0
Air_Traffic_Control_Delay	0
Ground_Staff_Activity	0
CCTV_Anomaly_Flag	0
Pilot_Communication_Score	0
301 rows × 1 columns	

dtype: int64

Split the data in train and testing

```
# import the library for training and testing
from sklearn.model_selection import train_test_split

# Separate the data

X_train, X_test, y_train, y_test = train_test_split(df_main, target, test_size = 0.3)

# Check the data we have in training set

X_train.head()
```

7	~

. –	· -			· -	Time 06-2
False	False	False	False	False	
False	False	False	False	False	
False	False	False	False	False	
False	False	False	False	False	
False	False	False	False	False	
	Palse False False False False	Palse False False False False False False False False False	Palse False False False False False False False False False False False False False False False	06-2025 06:00 06-2025 06:01 06-2025 06:02 06-2025 06:03 False False False False False False False False False False False False False False False	False

5 rows × 301 columns

y_train.head()

→		System_Failure
	832	0
	7508	0
	5225	0
	5303	0
	8277	1

dtype: int64

check the testing set

X_test.head()

→		· -	Timestamp_12- 06-2025 06:01	. –	• -	. –	
	1850	True	False	False	False	False	

1850	True	False	False	False	False
8133	False	False	False	False	False
4053	False	False	False	False	False
219	False	False	False	False	False
9025	False	False	False	False	False

5 rows × 301 columns

y_test.head()

→		System_Failure
	1850	0
	8133	0
	4053	0
	219	0
	9025	0

dtype: int64

Select the base model

✓ Linear Regression

```
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

# Assuming X_train, X_test, y_train, y_test are already defined from train_test_split

# Create a linear regression model
model = LinearRegression()

# Fit the model to the training data
model.fit(X_train, y_train)

# Predict on the testing data
predictions = model.predict(X_test)

# Calculate mean squared error
mse = mean_squared_error(y_test, predictions)
print("Mean Squared Error: 0.08682119777693734
```

Ridge Model

```
from sklearn.model_selection import train_test_split
from sklearn.linear_model import Ridge
from sklearn.metrics import mean_squared_error

# Assuming X_train, X_test, y_train, y_test are already defined from train_test_split
# Create a Ridge regression model
ridge_model = Ridge(alpha=1.0) # alpha is the regularization strength
```

```
# Fit the model to the training data
ridge_model.fit(X_train, y_train)

# Predict on the testing data
predictions = ridge_model.predict(X_test)

# Calculate mean squared error
mse = mean_squared_error(y_test, predictions)
print("Mean Squared Error:", mse)

The Mean Squared Error: 0.08665845049606823
```

Lasso Model

```
from sklearn.model_selection import train_test_split
from sklearn.linear_model import Lasso
from sklearn.metrics import mean_squared_error

# Assuming X_train, X_test, y_train, y_test are already defined from train_test_split

# Create a Lasso regression model
lasso_model = Lasso(alpha=1.0) # alpha is the regularization strength

# Fit the model to the training data
lasso_model.fit(X_train, y_train)

# Predict on the testing data
predictions = lasso_model.predict(X_test)

# Calculate mean squared error
mse = mean_squared_error(y_test, predictions)
print("Mean Squared Error: 0.08474278391338769)
```

Decision Tree Regressor

```
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeRegressor
from sklearn.metrics import mean_squared_error

# Assuming X_train, X_test, y_train, y_test are already defined from train_test_split

# Create a Decision Tree regression model
tree_model = DecisionTreeRegressor()

# Fit the model to the training data
tree_model.fit(X_train, y_train)

# Predict on the testing data
predictions = tree_model.predict(X_test)
```

```
# Calculate mean squared error
mse = mean_squared_error(y_test, predictions)
print("Mean Squared Error:", mse)

Mean Squared Error: 0.16103522645578722
```

Random Forest Regressor

```
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error

# Assuming X_train, X_test, y_train, y_test are already defined from train_test_split

# Create a Random Forest regression model
forest_model = RandomForestRegressor(n_estimators=100, random_state=42)

# Fit the model to the training data
forest_model.fit(X_train, y_train)

# Predict on the testing data
predictions = forest_model.predict(X_test)

# Calculate mean squared error
mse = mean_squared_error(y_test, predictions)
print("Mean Squared Error: 0.08769730409777139)
```

Perform the hyperparameter tuning for the base model

```
# Import necessary libraries
import pandas as pd
import numpy as np
from sklearn.model_selection import GridSearchCV
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import OneHotEncoder
from google.colab import files
import matplotlib.pyplot as plt
import seaborn as sns

# Step 2: Load and parse the CSV data
def load_and_parse_data():
    df = pd.read_csv('airplain_crash.csv', parse_dates=['Last_Maintenance_Date'])
```

```
# Calculate days since last maintenance
    df['Days Since Maintenance'] = (pd.to datetime('2025-07-11') - df['Last Maintenance D
    # Drop irrelevant columns
    df = df.drop(['Timestamp', 'Flight_ID', 'Aircraft_Model', 'Last_Maintenance_Date'], a
    # Handle missing values (document confirms none, but included for robustness)
    df = df.dropna()
    return df
# Step 3: Define numerical and categorical columns
numerical_cols = ['Voltage_Level', 'Current_Load', 'Engine_Performance', 'Altitude', 'Air
                  'Maintenance_History', 'Temperature', 'Air_Traffic_Control_Delay',
                  'Ground_Staff_Activity', 'Pilot_Communication_Score', 'Days_Since_Maint
categorical_cols = ['Electrical_System_Status', 'Weather_Condition', 'Flight_Phase']
# Step 4: Create preprocessing pipeline
preprocessor = ColumnTransformer(
    transformers=[
        ('num', StandardScaler(), numerical_cols),
        ('cat', OneHotEncoder(drop='first', sparse_output=False), categorical_cols)
    ])
# Step 5: Define the model and hyperparameter grid
model = RandomForestClassifier(random_state=42)
param_grid = {
    'classifier__n_estimators': [50, 100, 200],
    'classifier__max_depth': [None, 10, 20],
    'classifier min samples split': [2, 5],
    'classifier__min_samples_leaf': [1, 2]
}
# Step 6: Create the pipeline
pipeline = Pipeline([
    ('preprocessor', preprocessor),
    ('classifier', model)
1)
# Step 7: Load data
df = load and parse data()
# Step 8: Perform EDA (replicating document's Weather Condition visualization)
plt.figure(figsize=(10, 6))
df['Weather_Condition'].value_counts().plot(kind='bar', color='skyblue')
plt.title('Weather Condition Distribution')
```

```
plt.xlabel('Weather Condition')
plt.ylabel('Count')
plt.grid(True)
plt.show()
```

/tmp/ipython-input-487-2364155747.py:3: UserWarning: Parsing dates in %d-%m-%Y format df = pd.read_csv('airplain_crash.csv', parse_dates=['Last_Maintenance_Date'])

