Chapitre 4: applications linéaires

Térence Bayen

Université d'Avignon

Algèbre 2 L1S2 MI/MP mars 2021

Rappel biblio:

Pour un cours complet accompagnés d'exercices corrigés :

Exercices avec corrigés en ligne :

http://www.bibmath.net/ressources/index.php?action=affiche&quoi=bde/algebrelineaire.html

Définitions, exemples

Dans tout le chapitre : $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$.

Définition

Soit $f: \mathbb{K}^n \to \mathbb{K}^m$ une application (ou fonction). On dit que f est linéaire si les deux conditions suivantes sont satisfaites :

$$\forall x, y \in \mathbb{K}^n, \quad f(x+y) = f(x) + f(y),$$
 $\forall x \in \mathbb{K}^n, \ \forall \lambda \in \mathbb{K}, \quad f(\lambda x) = \lambda f(x).$

Remarque

1. Ces deux conditions sont équivalentes à :

$$\forall x, y \in \mathbb{K}^n, \ \forall \lambda \in \mathbb{K}, \qquad f(x + \lambda y) = f(x) + \lambda f(y).$$

- 2. Si f est linéaire, on a toujours f(0) = 0.
- 3. Si $f: \mathbb{K}^n \to \mathbb{K}^m$ est linéaire on a

$$f(\lambda_1 x_1 + \dots + \lambda_p x_p) = \lambda_1 f(x_1) + \dots + \lambda_p f(x_p)$$

pour tout $x_1,...,x_p \in \mathbb{K}^n$, et tout $\lambda_1,...,\lambda_p \in \mathbb{K}$.

Définition

On note $\mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$ l'ensemble des applications linéaires de \mathbb{K}^n dans \mathbb{K}^m . Une application linéaire $f \in \mathcal{L}(\mathbb{K}^n) := \mathcal{L}(\mathbb{K}^n, \mathbb{K}^n)$ est appelée endomorphisme de \mathbb{K}^n .

Quelques exemples

- 1. f(x) = x, $x \in \mathbb{R}^n$ (l'identité)
- 2. $f(x) = \lambda x$, $x \in \mathbb{R}^n$ (homothétie)
- 3. f(x,y) = (2x + y, -x + 3y, x) (de \mathbb{R}^2 dans \mathbb{R}^3)
- 4. $f(x,y) = (x + y, 3x + 2y) \text{ sur } \mathbb{R}^2$
- 5. $f(x, y) = (x \cos \theta y \sin \theta, x \sin \theta + y \cos \theta)$ (rotation)
- 6. $f(z) = \bar{z} \text{ de } \mathbb{C} \text{ dans } \mathbb{C}$

Pour aller plus loin : dérivation / intégrale

$$D: C^{1}(\mathbb{R}, \mathbb{R}) \to C^{0}(\mathbb{R}, \mathbb{R}) \quad I: C^{0}([0, 1], \mathbb{R}) \to \mathbb{R}$$

$$f \mapsto f' \qquad \qquad f \mapsto \int_{0}^{1} f(x) dx$$

Justifications

VOICI LE GENRE DE CALCUL (VERIFICATION SIMPLE) QUE JE VOUS DEMANDE DE SAVOIR FAIRE

• Pour f(x,y) = (2x + y, -x + 3y, x):

$$f(\lambda(x,y) + \mu(x',y')) = f((\lambda x + \mu x', \lambda y + \mu y'))$$

$$= (2(\lambda x + \mu x') + \lambda y + \mu y'), -(\lambda x + \mu x') + 3(\lambda y + \mu y'), \lambda x + \mu x')$$

$$= (\lambda(2x + y) + \mu(2x' + y'), \lambda(-x + 3y) + \mu(-x' + 3y'), \lambda x + \mu x')$$

$$= \lambda(2x + y, -x + 3y, x) + \mu(2x' + y', -x' + 3y', x')$$

$$= \lambda f(x, y) + \mu f(x', y')$$

Justifications (suite)

• Pour $f \mapsto f'$ et $f \mapsto \int_0^1 f(x) dx$, on se souvient des règles de dérivation et de l'intégrale

$$(\lambda f + \mu g)' = \lambda f' + \mu g'$$

$$\int_{0}^{1} [\lambda f(x) + \mu g(x)] dx = \lambda \int_{0}^{1} f(x) dx + \mu \int_{0}^{1} g(x) dx$$

ce qui prouve la linéarité de ces 2 applications.

Définition d'une application linéaire sur une base

Soit $(e_1,...,e_n)$ une base de \mathbb{K}^n . Soit $f\in\mathcal{L}(\mathbb{K}^n,\mathbb{K}^m)$. Pour $x\in\mathbb{K}^n$

$$x = \sum_{i=1}^{n} x_i e_i$$

 \Rightarrow

$$f(x) = f\left(\sum_{i=1}^{n} x_i e_i\right) = \sum_{i=1}^{n} x_i f(e_i)$$

- Pour connaître f, il suffit de connaître $f(e_i)$, $1 \le i \le n$.
 - ⇒ Il suffit de définir une application linéaire sur une BASE!

Conclusion: JE CONNAIS UNE APPLICATION LINEAIRE EN FIXANT L'IMAGE D'UNE BASE

Noyau, image

Définition

Soit $f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$.

(i) Le noyau de f, noté ker f, est défini par

$$\ker f = \{x \in \mathbb{K}^n ; \ f(x) = 0\}.$$

(ii) L'image de f , notée ${
m Im}$ f , est définie par

$$\operatorname{Im} f = \{ f(x) \; ; \; x \in \mathbb{K}^n \}.$$

Remarque

Pour tout $f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$, on a $0 \in \ker f$ et $0 \in \operatorname{Im} f$. En effet, on a toujours f(0) = 0!

Propriétés du noyau et de l'image

Proposition

- (i) Si $f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$, alors ker f (resp. Im f) est un sev de \mathbb{K}^n (resp. de \mathbb{K}^m).
- (ii) Si de plus $\{e_1,...,e_n\}$ est une base de \mathbb{K}^n on a

$$\operatorname{Im} f = \operatorname{Vect}(f(e_1), ..., f(e_n)).$$

<u>Justification</u>:

$$x, x' \in \ker f, \quad \Rightarrow \ f(\lambda x + \mu x') = \lambda f(x) + \mu f(x') = 0$$

$$y, y' \in \operatorname{Im} f, \quad \Rightarrow \ \exists x, x' \in \mathbb{K}^n, \ y = f(x), \ y' = f(x'),$$
 d'où par linéarité $\lambda y + \mu y' = f(\lambda x + \mu x') \in \operatorname{Im} f$

Rappels (bijections) et définition d'isomorphismes

Rappel

(i) Soit $f: \mathbb{K}^n \to \mathbb{K}^m$. On dit que f est injective si :

$$\forall x, y \in \mathbb{K}^n, \ f(x) = f(y) \Rightarrow x = y.$$

- (ii) On dit que f est surjective si $\forall y \in \mathbb{K}^m$, $\exists x \in \mathbb{K}^n$, y = f(x).
- (iii) On dit que f est bijective si f est à la fois injective et surjective.

Définition

Une application linéaire $f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$ bijective est appelée isomorphisme.

Proposition

Soit $f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$.

- f est injective si et seulement si ker $f = \{0\}$.
- f est surjective si et seulement si Im $f = \mathbb{K}^m$.

<u>Justification</u>: \Rightarrow : si $x \in Ker(f)$ alors f(x) = 0 = f(0) d'où x = 0 et $\ker f = \{0\}$. \Leftarrow on a $f(x) = f(x') \Rightarrow f(x - x') = 0$. D'où x = x' car $\ker f = \{0\}$.

Proposition

Soit $f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$ injective. Si $(v_1, ..., v_p)$ est une famille libre de \mathbb{K}^n , alors la famille $(f(v_1), ..., f(v_p))$ est libre.

<u>Justification</u>:

$$\sum_{i=1}^{p} \lambda_i f(v_i) = f\left(\sum_{i=1}^{p} \lambda_i v_i\right) = 0 \implies \sum_{i=1}^{p} \lambda_i v_i \implies \lambda_i = 0, \ 1 \le i \le p.$$

Théorème

Soit $f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$. Les assertions suivantes sont équivalentes :

- 1. f est un isomorphisme de \mathbb{K}^n sur \mathbb{K}^m ,
- 2. n = m et f est injective,
- 3. n = m et f est surjective.

Théorème

Soit $f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$. Les assertions suivantes sont équivalentes :

- 1. f est un isomorphisme de \mathbb{K}^n sur \mathbb{K}^m ,
- 2. n = m et f est injective,
- 3. n = m et f est surjective.

<u>Justification</u>: 1. \Rightarrow 2. : f est un isomorphisme. Soit $\{e_1, ..., e_n\}$ une base de \mathbb{K}^n . Alors $\{f(e_1), ..., f(e_n)\}$ est libre. Donc $n \leq m$. De plus, $Im(f) = Vect(f(e_1), ..., f(e_n)) = \mathbb{K}^m$ donc $\{f(e_1), ..., f(e_n)\}$ est génératrice, donc $n \geq m$. D'où le résultat.

Théorème

Soit $f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$. Les assertions suivantes sont équivalentes :

- 1. f est un isomorphisme de \mathbb{K}^n sur \mathbb{K}^m ,
- 2. n = m et f est injective,
- 3. n = m et f est surjective.

<u>Justification</u>: 1. \Rightarrow 2. : f est un isomorphisme. Soit $\{e_1, ..., e_n\}$ une base de \mathbb{K}^n . Alors $\{f(e_1), ..., f(e_n)\}$ est libre. Donc $n \leq m$. De plus, $Im(f) = Vect(f(e_1), ..., f(e_n)) = \mathbb{K}^m$ donc $\{f(e_1), ..., f(e_n)\}$ est génératrice, donc $n \geq m$. D'où le résultat.

lisez les autres points à la maison (similaire)

- 2. \Rightarrow 1. Soit $\{e_1,...,e_n\}$ une base de \mathbb{K}^n . Alors $\{f(e_1),...,f(e_n)\}$ est libre dans \mathbb{K}^n , donc c'est une base de \mathbb{K}^n . Donc f est surjective. Donc f est un isomorphisme.
- $1. \Rightarrow 3.$ idem que ci-dessus.
- 3. \Rightarrow 1. Soit $\{e_1, ..., e_n\}$ une base de \mathbb{K}^n . Alors $\{f(e_1), ..., f(e_n)\}$ est génératrice dans \mathbb{K}^n car f est surjective. Ainsi, $\{f(e_1), ..., f(e_n)\}$ est une base de \mathbb{K}^n . Donc f est injective et f est un isomorphisme.

Linéarité de l'inverse

Proposition

Si f est un isomorphisme de \mathbb{K}^n , sa bijection réciproque, notée f^{-1} , est également un isomorphisme de \mathbb{K}^n .

Linéarité de l'inverse

Proposition

Si f est un isomorphisme de \mathbb{K}^n , sa bijection réciproque, notée f^{-1} , est également un isomorphisme de \mathbb{K}^n .

Le point principal (non évident à priori) est la LINEARITE de f^{-1} , c'est pourquoi on détaille ce point : soit y = f(x) et y' = f(x') i.e. $x = f^{-1}(y)$, $x' = f^{-1}(y')$.

$$f^{-1}(\lambda y + \mu y') = f^{-1}(\lambda f(x) + \mu f(x'))$$

= $f^{-1}(f(\lambda x + \mu x'))$
= $\lambda x + \mu x'$
= $\lambda f^{-1}(y) + \mu f^{-1}(y')$

Théorème du rang

Définition

On appelle rang de f le nombre

$$\operatorname{rg} f := \dim \operatorname{Im} f.$$

Théorème (Théorème du rang)

Soit $f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$. On a

$$\dim \ker f + \operatorname{rg} f = n.$$

<u>Preuve</u> : consultez mon polycopié sur l'ENT qui contient tous les détails de cours.

Opérations sur les applications linéaires

Définition

Soient $f, g \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$, $\lambda \in \mathbb{K}$. On définit les applications f + g et λf par

$$(f+g)(x) = f(x) + g(x) \qquad \forall x \in \mathbb{K}^n,$$

 $(\lambda f)(x) = \lambda f(x) \qquad \forall x \in \mathbb{K}^n.$

Proposition

- (i) Si $f, g \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$, alors $f + g \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$.
- (ii) Si $f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$, $\lambda \in \mathbb{K}$, alors $\lambda f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$.

Conclusion : je peux additionner 2 applications linéaires ou multiplier mon application linéaire par un scalaire.

Composition

Définition

Soient $f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$ et $g \in \mathcal{L}(\mathbb{K}^m, \mathbb{K}^p)$. On définit l'application $g \circ f : \mathbb{K}^n \to \mathbb{K}^p$, composée de f et g, par

$$(g \circ f)(x) = g(f(x)) \quad \forall x \in \mathbb{K}^n.$$

L'espace de départ de g doit être le même que l'espace d'arrivé de f

Proposition

Si
$$f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$$
 et $g \in \mathcal{L}(\mathbb{K}^m, \mathbb{K}^p)$, alors $g \circ f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^p)$.

Matrice d'une application linéaire

ON VA PASSER À LA NOTION DE MATRICE D'APPLICATION LINEAIRE. C'EST UN PEU PLUS COMPLIQUÉ. PENSEZ À VOIR LES EXEMPLES. C'EST FONDAMENTAL : JE VOUS POSERAI CE GENRE DE QUESTION DANS L'EVALUATION!!!

Matrice d'une application linéaire

Définition

Soient $f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$, $\mathcal{B} = (e_1, ..., e_n)$ une base de \mathbb{K}^n et $\mathcal{B}' = (e'_1, ..., e'_m)$ une base de \mathbb{K}^m . Pour tout j = 1, ..., n, le vecteur $f(e_j)$ se décompose de manière unique sous la forme :

$$f(e_j) = a_{1j}e'_1 + ... + a_{mj}e'_m = \sum_{i=1}^m a_{ij}e'_i$$

On appelle matrice de f dans les bases \mathcal{B} et \mathcal{B}' la matrice

$$\mathrm{mat}_{\mathcal{B},\mathcal{B}'}(f) := egin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \in \mathcal{M}_{mn}(\mathbb{K}).$$

Ecriture colonne:

i = indice lignei = indice colonn

CONCLUSION : QU'EST CE QU'ON ECRIT DANS LA MATRICE :

On écrit les coefficients de la décomposition de chaque vecteur $f(e_j)$ dans la nouvelle base d'arrivée!!!!!!!!

Proposition

Soient $f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$, $\mathcal{B} = (e_1, ..., e_n)$ une base de \mathbb{K}^n , $\mathcal{B}' = (e_1', ..., e_m')$ une base de \mathbb{K}^m et $A = \operatorname{mat}_{\mathcal{B}, \mathcal{B}'}(f)$. Soient $x \in \mathbb{K}^n$, X (resp. Y) le vecteur colonne des coordonnées de x dans la base \mathcal{B} (resp. de f(x) dans \mathcal{B}'). Alors

$$Y = AX$$

 $\underline{\text{Justification}}: \text{On a } x = \sum_{j=1}^n x_j e_j \text{ d'où } f(x) = \sum_{j=1}^n x_j f(e_j) \text{ c.a.d.}$

$$f(x) = \sum_{j=1}^{n} x_j \sum_{i=1}^{m} a_{ij} e'_i = \sum_{i=1}^{m} (\sum_{j=1}^{n} a_{i,j} x_j) e'_i = \sum_{i=1}^{m} (AX)_i e'_i = \sum_{i=1}^{m} Y_i e'_i$$

Remarque

Si \mathcal{B} et \mathcal{B}' sont respectivement les bases canoniques de \mathbb{K}^n et \mathbb{K}^m , en notant les vecteurs x et f(x) en colonnes, on a f(x) = Ax.

On écrit en effet successivement

$$x = \sum_{j=1}^{n} x_j e_j,$$

$$f(x) = \sum_{j=1}^{n} x_j f(e_j) = \sum_{j=1}^{n} \sum_{i=1}^{m} x_j a_{i,j} e'_i = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{i,j} x_j \right) e'_i,$$

et

$$Ax = \left(\sum_{j=1}^{n} a_{i,j} x_j\right)_{1 \le i \le m} = \sum_{j=1}^{m} \left(\sum_{j=1}^{n} a_{i,j} x_j\right) e_i'$$

Exemple pour comprendre

Soit l'application linéaire $\varphi:\mathbb{K}^2 \to \mathbb{K}^3$ définie par

$$\varphi(x,y) = (2x + y, -x + 3y, x)$$
 pour tout $(x,y) \in \mathbb{K}^2$.

On considère les bases canoniques $\beta=(e_1,e_2)$ de \mathbb{K}^2 et $\gamma=(f_1,f_2,f_3)$ de \mathbb{K}^3 . On a

$$\varphi(e_1) = \varphi(1,0) = (2,-1,1) = 2f_1 - f_2 + f_3$$

et

$$\varphi(e_2) = \varphi(0,1) = (1,3,0) = f_1 + 3f_2.$$

On en déduit

$$\operatorname{Mat}_{\gamma,eta}(arphi) = \left(egin{array}{cc} 2 & 1 \ -1 & 3 \ 1 & 0 \end{array}
ight)$$

Exercice fondamental

Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ une application linéaire dont la matrice dans la base canonique est

$$\left(\begin{array}{ccc}
15 & -11 & 5 \\
20 & -15 & 8 \\
8 & -7 & 6
\end{array}\right)$$

Soit les vecteurs $e_1'=2e_1+3e_2+e_3$, $e_2'=3e_1+4e_2+e_3$, $e_3'=e_1+2e_2+2e_3$. Calculer la matrice de f dans cette nouvelle base (montrer que c'est une base).

Exercice fondamental (solution)

On calcule:

$$f(e'_1) = (2,3,1)$$
; $f(e'_2) = (6,8,2)$; $f(e'_3) = 3(1,2,2)$

ATTENTION : l'écriture de $f(e_i')$ est dans la base canonique. Il faut écrire ces 3 vecteurs dans la base $\{e_1',e_2',e_3'\}$.

- 1) $f(e_1') = e_1'$: çà crève les yeux!!
- 2) $f(e_2') = e_2'$: çà crève aussi les yeux!!
- 3) $f(e_3') = 3e_3'$: bon çà crève aussi les yeux.

Bref la matrice recherchée est

Exercice fondamental (solution)

On calcule:

$$f(e'_1) = (2,3,1)$$
; $f(e'_2) = (6,8,2)$; $f(e'_3) = 3(1,2,2)$

ATTENTION : l'écriture de $f(e_i')$ est dans la base canonique. Il faut écrire ces 3 vecteurs dans la base $\{e_1',e_2',e_3'\}$.

- 1) $f(e_1') = e_1'$: çà crève les yeux!!
- 2) $f(e'_2) = e'_2$: çà crève aussi les yeux!!
- 3) $f(e_3') = 3e_3'$: bon çà crève aussi les yeux.

Bref la matrice recherchée est

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{array}\right)$$

Exercice fondamental (solution)

On calcule:

$$f(e'_1) = (2,3,1)$$
; $f(e'_2) = (6,8,2)$; $f(e'_3) = 3(1,2,2)$

ATTENTION : l'écriture de $f(e_i')$ est dans la base canonique. Il faut écrire ces 3 vecteurs dans la base $\{e_1', e_2', e_3'\}$.

- 1) $f(e'_1) = e'_1$: çà crève les yeux!!
- 2) $f(e_2') = e_2'$: çà crève aussi les yeux!!
- 3) $f(e_3') = 3e_3'$: bon çà crève aussi les yeux.

Bref la matrice recherchée est

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{array}\right)$$

Donc, on peut représenter une même application linéaire dans des bases différentes!!

Remarque

1. Si $f \in \mathcal{L}(\mathbb{K}^n)$ et \mathcal{B} est une base de \mathbb{K}^n , on note

$$\operatorname{mat}_{\mathcal{B}}(f) := \operatorname{mat}_{\mathcal{B},\mathcal{B}}(f).$$

2. Pour toute base \mathcal{B} de \mathbb{K}^n on a

$$\operatorname{mat}_{\mathcal{B}}(\operatorname{Id}_{\mathbb{K}^n})=I_n.$$

Matrice d'une application linéaire : propriétés

Proposition

Soient
$$f,g \in \mathcal{L}(\mathbb{K}^n,\mathbb{K}^m)$$
, $\lambda \in \mathbb{K}$, $\mathcal{B}=(e_1,...,e_n)$ une base de \mathbb{K}^n , $\mathcal{B}'=(e_1',...,e_m')$ une base de \mathbb{K}^m . On a
$$\mathrm{mat}_{\mathcal{B},\mathcal{B}'}(f+g)=\mathrm{mat}_{\mathcal{B},\mathcal{B}'}(f)+\mathrm{mat}_{\mathcal{B},\mathcal{B}'}(g),$$

$$\mathrm{mat}_{\mathcal{B},\mathcal{B}'}(\lambda f)=\lambda \mathrm{mat}_{\mathcal{B},\mathcal{B}'}(f).$$

Matrice d'une application linéaire : propriétés

Proposition

Soient $f, g \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$, $\lambda \in \mathbb{K}$, $\mathcal{B} = (e_1, ..., e_n)$ une base de \mathbb{K}^n , $\mathcal{B}' = (e_1', ..., e_m')$ une base de \mathbb{K}^m . On a

$$\operatorname{mat}_{\mathcal{B},\mathcal{B}'}(f+g) = \operatorname{mat}_{\mathcal{B},\mathcal{B}'}(f) + \operatorname{mat}_{\mathcal{B},\mathcal{B}'}(g),$$

$$\operatorname{mat}_{\mathcal{B},\mathcal{B}'}(\lambda f) = \lambda \operatorname{mat}_{\mathcal{B},\mathcal{B}'}(f).$$

justification : par exemple pour la somme on écrit

$$(f+g)(x) = \sum_{i=1}^{m} (CX)_i e'_i = f(x) + g(x) = \sum_{i=1}^{m} (AX)_i e'_i + \sum_{i=1}^{m} (BX)_i e'_i.$$

et C = A + B est la propriété recherchée. De même pour la multiplication par un scalaire.

Matrice d'une application linéaire : propriétés (suite)

Proposition

Soient $f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$, $g \in \mathcal{L}(\mathbb{K}^m, \mathbb{K}^p)$, $\mathcal{B} = (e_1, ..., e_n)$ une base $de \mathbb{K}^n$, $\mathcal{B}' = (e_1', ..., e_m')$ une base $de \mathbb{K}^m$, $\mathcal{B}'' = (e_1', ..., e_m'')$ une base $de \mathbb{K}^p$. On a

$$\operatorname{mat}_{\mathcal{B},\mathcal{B}''}(g \circ f) = \operatorname{mat}_{\mathcal{B}',\mathcal{B}''}(g) \times \operatorname{mat}_{\mathcal{B},\mathcal{B}'}(f).$$

Preuve : voir proposition 12 de mon polycopié pour le calcul.

Vous devez retenir que l'on a

$$C = AB$$

où A, B, C désignent les matrices de f, g, $g \circ f$ dans les bases adéquates.

Matrice d'une application linéaire : propriétés (suite)

Proposition

Soient $f \in \mathcal{L}(\mathbb{K}^n)$ et $\mathcal{B}, \mathcal{B}'$ deux bases de \mathbb{K}^n (pouvant être identiques). L'application linéaire f est un isomorphisme si et seulement si $\mathrm{mat}_{\mathcal{B},\mathcal{B}'}(f)$ est inversible. Dans ce cas on a

$$\operatorname{mat}_{\mathcal{B}',\mathcal{B}}(f^{-1}) = \operatorname{mat}_{\mathcal{B},\mathcal{B}'}(f)^{-1}.$$

.... \rightarrow En effet, observer que $AX = Y \iff X = A^{-1}Y$ si A inversible

Changement de bases - Matrices de passage

Définition

Soient $\mathcal{B}=(e_1,...,e_n)$ et $\mathcal{B}'=(e_1',...,e_n')$ deux bases de \mathbb{K}^n . On appelle matrice de passage de \mathcal{B} à \mathcal{B}' la matrice

$$P_{\mathcal{B}\mathcal{B}'}=\mathrm{mat}_{\mathcal{B}',\mathcal{B}}(\mathrm{Id}_{\mathbb{K}^n}).$$

Autrement dit, la $j - \grave{e}me$ colonne de $P_{\mathcal{BB}'}$ est le vecteur colonne des coordonnées de e'_i dans la base \mathcal{B} .

RETENIR PAR COEUR QUE C'EST LA NOUVELLE EXPRIMEE DANS L'ANCIENNE : $e'_j = \sum_i p_{ij} e_i$! sommation par ligne (indice i)

Proposition

Soient \mathcal{B} et \mathcal{B}' deux bases de \mathbb{K}^n . La matrice $P_{\mathcal{B}\mathcal{B}'}$ est inversible et

$$P_{\mathcal{B}\mathcal{B}'}^{-1} = P_{\mathcal{B}'\mathcal{B}}.$$

Proposition

Soient \mathcal{B} et \mathcal{B}' deux bases de \mathbb{K}^n . Soient $x \in \mathbb{K}^n$, $X_{\mathcal{B}}$ le vecteur colonne des coordonnées de x dans la base \mathcal{B} et $X_{\mathcal{B}'}$ le vecteur colonne des coordonnées de x dans la base \mathcal{B}' . On a

$$X_{\mathcal{B}} = P_{\mathcal{B}\mathcal{B}'}X_{\mathcal{B}'}.$$

Bizarre...mais:

Proposition

Soient \mathcal{B} et \mathcal{B}' deux bases de \mathbb{K}^n . Soient $x \in \mathbb{K}^n$, $X_{\mathcal{B}}$ le vecteur colonne des coordonnées de x dans la base \mathcal{B} et $X_{\mathcal{B}'}$ le vecteur colonne des coordonnées de x dans la base \mathcal{B}' . On a

$$X_{\mathcal{B}} = P_{\mathcal{B}\mathcal{B}'}X_{\mathcal{B}'}.$$

Bizarre...mais :dans \mathcal{B}' puis dans \mathcal{B} on a

$$x = \sum_{j} x'_{j} e'_{j} = \sum_{j} x'_{j} \sum_{i} p_{ij} e_{i} = \sum_{i} \left(\sum_{j} p_{ij} x'_{j} \right) e_{i}$$

et

$$\sum_{j} x_{j} e_{j} = \sum_{i} \left(\sum_{j} p_{ij} x_{j}' \right) e_{i} \quad \Rightarrow X_{\mathcal{B}} = P X_{\mathcal{B}'}$$

▶ Application de la formule précédente X = PX', voir exercice 8 (feuille 4).

Théorème

Soient $f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$, \mathcal{B} et \mathcal{B}' deux bases de \mathbb{K}^n , \mathcal{C} et \mathcal{C}' deux bases de \mathbb{K}^m . On a

$$\operatorname{mat}_{\mathcal{B}',\mathcal{C}'}(f) = P_{\mathcal{C}\mathcal{C}'}^{-1}\operatorname{mat}_{\mathcal{B},\mathcal{C}}(f)P_{\mathcal{B}\mathcal{B}'}.$$

Remarque

Si $f \in \mathcal{L}(\mathbb{K}^n)$, \mathcal{B} et \mathcal{B}' sont deux bases de \mathbb{K}^n , on a en notant $A = \operatorname{mat}_{\mathcal{B}}(f)$ et $A' = \operatorname{mat}_{\mathcal{B}'}(f)$:

$$A' = P_{\mathcal{BB}'}^{-1} A P_{\mathcal{BB}'}.$$

Conseil : retenir par coeur $A' = P^{-1}AP$ avec les notations ci-dessus et vérifier une fois à la main (voir poly).

Exercice d'entrainement

POUR VOUS ENTRAINER AVEC LE THM PRECEDENT ET RETENIR PAR COEUR LA FORMULE

$$B = P^{-1}AP$$

FAIRE DE TOUTE URGENCE L'EXERCICE CORRIGE DISPONIBLE SUR L'ENT.

Voir aussi exercice 9 et exercice 11 de la feuille 4 pour pratiquer.

Exercice de changement de base (voir ENT)

Exercice. Dans \mathbb{R}^3 muni de la base canonique \mathcal{B} , soit $f \in \mathcal{L}(\mathbb{R}^3)$ dont la matrice dans \mathcal{B} est

$$A = \left(\begin{array}{rrr} 9 & -6 & 10 \\ -5 & 2 & -5 \\ -12 & 6 & -13 \end{array}\right)$$

Soit $u_1 = (2, -1, -2)$; $u_2 = (1, 0, -1)$; $u_3 = (-2, 1, 3)$. Montrer que $\mathcal{B}' := \{u_1, u_2, u_3\}$ est une base de \mathbb{R}^3 et calculer la matrice de f dans \mathcal{B}' .

1) MQ la famille de 3 vecteurs est libre : $au_1 + bu_2 + cu_3 = 0 \Rightarrow$

$$\begin{cases} 2a+b-2c=0\\ -a+c=0\\ -2a-b+3c=0 \end{cases}$$

d'où c = 0 puis a = 0 puis b = 0. C'est donc une base de \mathbb{R}^3 .

Exercice de changement de base (voir ENT)

2) Matrice de passe de \mathcal{B} vers $\mathcal{B}' = \{u_1, u_2, u_3\}.$

$$P = \begin{pmatrix} 2 & 1 & -2 \\ -1 & 0 & 1 \\ -2 & -1 & 3 \end{pmatrix} \Rightarrow P^{-1} = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

On applique bêtement la formule de changement de base. La matrice de f dans \mathcal{B}' , B, est donc

$$B = P^{-1}AP = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 9 & -6 & 10 \\ -5 & 2 & -5 \\ -12 & 6 & -13 \end{pmatrix} \begin{pmatrix} 2 & 1 & -2 \\ -1 & 0 & 1 \\ -2 & -1 & 3 \end{pmatrix}$$
$$= \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -3 \end{pmatrix}$$

Exercice de changement de base (voir ENT)

2) Matrice de passe de \mathcal{B} vers $\mathcal{B}' = \{u_1, u_2, u_3\}.$

$$P = \begin{pmatrix} 2 & 1 & -2 \\ -1 & 0 & 1 \\ -2 & -1 & 3 \end{pmatrix} \Rightarrow P^{-1} = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

On applique bêtement la formule de changement de base. La matrice de f dans \mathcal{B}' , B, est donc

$$B = P^{-1}AP = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 9 & -6 & 10 \\ -5 & 2 & -5 \\ -12 & 6 & -13 \end{pmatrix} \begin{pmatrix} 2 & 1 & -2 \\ -1 & 0 & 1 \\ -2 & -1 & 3 \end{pmatrix}$$
$$= \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -3 \end{pmatrix}$$

Remarque : en calculant, $f(u_1) = 2u_1$, $f(u_2) = -u_2$, $f(u_3) = -3u_3$ d'où la matrice B...(mais çà marche pas à tous les coups!)

Retour sur la notion de rang

▶ Soit $f: \mathbb{R}^n \to \mathbb{R}^m$ une application linéaire $A \in M_{m,n}(\mathbb{R})$ la matrice de f dans la base canonique \mathcal{E} . On a :

$$f(x) = AX, \quad x \in \mathbb{R}^n$$

où X est le vecteur colonne dont les coordonnées dans la base $\mathcal E$ sont celles de x.

Soit également le système linéaire le système linéaire

$$AX = 0 (S)$$

Retour sur la notion de rang

▶ Soit $f: \mathbb{R}^n \to \mathbb{R}^m$ une application linéaire $A \in M_{m,n}(\mathbb{R})$ la matrice de f dans la base canonique \mathcal{E} . On a :

$$f(x) = AX, \quad x \in \mathbb{R}^n$$

où X est le vecteur colonne dont les coordonnées dans la base $\mathcal E$ sont celles de x.

Soit également le système linéaire le système linéaire

$$AX = 0 (S)$$

RAPPEL:

- ▶ Rang du système (S) : rg(S) = r où n r est le nombre est le nombre d'inconnues choisies arbitrairement (n r = dimension de l'ensemble des solutions de AX = 0).
- ▶ Rang de la matrice A : rg(A) = r par définition, c'est le rang du système homogène AX = 0
- $ightharpoonup \operatorname{\mathsf{Rang}} \operatorname{\mathsf{de}} f : rg(f) = \dim(\operatorname{\mathit{Im}}(f))$

Rang d'une famille de vecteurs

On va montrer que toutes ces notions sont les mêmes.

Définition

Soit $\mathcal{F} := \{u_1, ..., u_m\}$ une famille de n vecteurs de \mathbb{R}^m . Soit

$$r = \dim(Vect(u_1, ..., u_n)).$$

L'entier r est appelé rang de la famille \mathcal{F} .

Exemple:
$$u_1 = (1,0,0,1)$$
, $u_2 = (0,1,0,0)$, $u_3 = (0,0,1,0)$, $u_4 = (1,1,1)$. Soit $\mathcal{F} = \{u_1, u_2, u_3, u_4\}$.

$$rg(\mathcal{F}) =$$

Rang d'une famille de vecteurs

On va montrer que toutes ces notions sont les mêmes.

Définition

Soit $\mathcal{F} := \{u_1, ..., u_m\}$ une famille de n vecteurs de \mathbb{R}^m . Soit

$$r = \dim(Vect(u_1, ..., u_n)).$$

L'entier r est appelé rang de la famille \mathcal{F} .

Exemple:
$$u_1 = (1,0,0,1)$$
, $u_2 = (0,1,0,0)$, $u_3 = (0,0,1,0)$, $u_4 = (1,1,1)$. Soit $\mathcal{F} = \{u_1, u_2, u_3, u_4\}$.

$$\operatorname{rg}(\mathcal{F})=3$$

Matrice vue comme des vecteurs colonnes / lignes

Dans la suite, on écrit la matrice $A \in M_{m,n}(\mathbb{R})$ de deux manières :

$$A = \begin{bmatrix} C_1 & \cdots & C_n \end{bmatrix} = \begin{bmatrix} L_1 \\ \vdots \\ L_m \end{bmatrix}$$

respectivement en ligne et en colonne.

Matrice vue comme des vecteurs colonnes / lignes

Dans la suite, on écrit la matrice $A \in M_{m,n}(\mathbb{R})$ de deux manières :

$$A = \begin{bmatrix} C_1 & \cdots & C_n \end{bmatrix} = \begin{bmatrix} L_1 \\ \vdots \\ L_m \end{bmatrix}$$

respectivement en ligne et en colonne.

- $C_1, ..., C_n$ sont *n* vecteurs (colonne) de \mathbb{R}^m
- $L_1,...,L_m$ sont m vecteurs (ligne) de \mathbb{R}^n .

Matrice vue comme des vecteurs colonnes / lignes

Dans la suite, on écrit la matrice $A \in M_{m,n}(\mathbb{R})$ de deux manières :

$$A = \begin{bmatrix} C_1 & \cdots & C_n \end{bmatrix} = \begin{bmatrix} L_1 \\ \vdots \\ L_m \end{bmatrix}$$

respectivement en ligne et en colonne.

- $C_1, ..., C_n$ sont n vecteurs (colonne) de \mathbb{R}^m
- $L_1,...,L_m$ sont m vecteurs (ligne) de \mathbb{R}^n .

On peut donc définir aussi

$$r' = \operatorname{rg}(C_1, ..., C_n); r'' = \operatorname{rg}(L_1, ..., L_m)$$

où $r' \leq m$ est le rang des n vecteurs $C_1, ..., C_n$ dans \mathbb{R}^m et $r'' \leq n$ est le rang des m vecteurs $L_1, ..., L_m$ dans \mathbb{R}^n .

Théorème

Soit $f: \mathbb{R}^n \to \mathbb{R}^m$ une application linéaire et $A \in M_{m,n}(\mathbb{R})$ la matrice de f dans les bases canoniques de \mathbb{R}^n et \mathbb{R}^m . Alors :

$$\operatorname{rg} \ (f) = \operatorname{rg} \ (A) = \operatorname{rg} \ (S) = \operatorname{rg} \ (C_1, ..., C_n) = \operatorname{rg} \ (L_1, ..., L_m) \leq \min(m, n)$$

▶ ci-dessus, il faut bien voir que $\operatorname{rg}(C_1, ..., C_n)$ est le rang dans \mathbb{R}^m de n vecteurs et que donc

$$\operatorname{rg}(C_1,...,C_n) \leq m.$$

ightharpoonup ci-dessus, il faut bien voir que $\operatorname{rg}(L_1,...,L_m)$ est le rang dans \mathbb{R}^n de m vecteurs et que donc

$$rg(L_1,...,L_m) \leq n$$

<u>Justification</u>: 1) soit $\{e_1,...,e_n\}$ la base canonique. On a

$$rg(f) = \dim(Vect(Ax; x \in \mathbb{R}^n)) = \dim(Vect(Ae_1, ..., Ae_n))$$

 $[Ae_1, ..., Ae_n] = [C_1, ..., C_n]$

$$\Rightarrow rg(f) = rg(C_1, ..., C_n).$$

2) Relions rg(f) et rg(A). Soit r = rg(S) = rg(A) (où AX = 0 est le système (S)). Rappelons que

$$x \in Ker(f) \iff f(x) = 0 \iff AX = 0$$

donc par définition de (S) on a

$$n-r = dim(Ker(f))$$

d'où rg(f) = n - dim(Ker(f)) = r = rg(S) = rg(A) (thm. du rang).

3) On a vu $rg(A) = rg(A^T) \Rightarrow rg(C_1, ..., C_n) = rg(L_1, ..., L_m)$.

Remarques

Proposition

Une matrice $A \in M_n(\mathbb{R})$ est inversible ssi son rang vaut n.

<u>Justification</u>: A est inversible ssi f est injective 1 i.e. ssi $Ker(f) = \{0\}$ c.a.d. ssi $AX = 0 \Rightarrow X = 0$. Cette dernière condition équivaut à rg(A) = n.

- ► En conclusion : si on vous demande de calculer le rang d'une application linéaire, vous avez plusieurs méthodes :
 - calculer la dimension du noyau de A (puis théorème du rang)
 - calculer la dimension du $Vect(C_1,...,C_n)$ ou $Vect(L_1,...,L_m)$

$$A = \left(\begin{array}{cccc} a & 0 & 0 & b \\ b & a & 0 & 0 \\ 0 & b & a & 0 \\ 0 & 0 & b & a \end{array}\right)$$

- 1) si a = b = 0 alors A = 0 et rg(A) = 0.
- 2) si a = 0 ou b = 0 alors rg(A) = 4.
- 3) supposons $a \neq 0$ et $b \neq 0$. Si b = a ou b = -a alors

$$A = \left(\begin{array}{cccc} a & 0 & 0 & a \\ a & a & 0 & 0 \\ 0 & a & a & 0 \\ 0 & 0 & a & a \end{array}\right) A = \left(\begin{array}{ccccc} a & 0 & 0 & -a \\ -a & a & 0 & 0 \\ 0 & -a & a & 0 \\ 0 & 0 & -a & a \end{array}\right)$$

et
$$rg(A) = 3$$
 (car on a $L_1 = L_2 - L_3 + L_4$, resp. $-L_1 = L_2 + L_3 + L_4$)

4) sinon (c.a.d. $b \neq a$ ou $b \neq -a$), alors rg(A) = 4 (les 4 vecteurs lignes ou colonnes sont linéairement indépendants...terminez chez vous).

Chapitre : déterminants

Déterminants

C'est un chapitre avec BEAUCOUP DE PRATIQUE : pour cela, il faut bien comprendre la technique du développement par rapport à une ligne ou colonne : il y a beaucoup de petits exercices dans la feuille de TD5!!!!!! PRATIQUER!!!

On admettra un certain nombre de résultats (qui se montrent relativement facilement mais qui demandent un peu de temps).

Définition, calcul

Dans tout le chapitre : $\mathbb{K}=\mathbb{R}$ ou $\mathbb{K}=\mathbb{C}$. Le déterminant d'une matrice carrée $A\in\mathcal{M}_n(\mathbb{K})$ est un scalaire det $A\in\mathbb{K}$ que l'on va définir par récurrence sur n.

1) Commençons par le cas trivial n = 1.

Définition

Pour $A = (a_{11}) \in \mathcal{M}_1(\mathbb{K})$ on pose $\det A = a_{11}$.

Supposons maintenant que le déterminant soit bien défini pour toute matrice de type (n-1, n-1).

Définition

Soient $A \in \mathcal{M}_n(\mathbb{K})$ et $i, j \in \{1, ..., n\}$. On appelle

ightharpoonup mineur (i,j) de A le scalaire

$$\Delta_{ij}(A) = \det \tilde{A}$$

où la matrice \tilde{A} est obtenue à partir de A en enlevant la ligne i et la colonne j;

cofacteur (i, j) de A le scalaire

$$\operatorname{cof}_{ij}(A) = (-1)^{i+j} \Delta_{ij}(A).$$

Définition

Soit $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{K})$.

Pour $i_0 \in \{1, ..., n\}$ fixé, on appelle développement du déterminant de A suivant la ligne i_0 le scalaire

$$L_{i_0}(A) = \sum_{j=1}^n a_{i_0,j} \operatorname{cof}_{i_0,j}(A).$$

De même, pour $j_0 \in \{1, ..., n\}$ fixé, on appelle développement du déterminant de A suivant la colonne j_0 le scalaire

$$C_{j_0}(A) = \sum_{i=1}^n a_{i,j_0} \operatorname{cof}_{i,j_0}(A).$$

Définition

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On pose

$$\det A = L_1(A).$$

On a ainsi définit sans ambiguité det A pour toute matrice $A \in \mathcal{M}_n(\mathbb{K})$. Le théorème suivant (admis) permet parfois d'en simplifier le calcul.

Théorème

Soit $A=(a_{ij})\in \mathcal{M}_n(\mathbb{K}).$ Pour tous $i_0,j_0\in\{1,...,n\}$ on a

$$\det A = L_{i_0}(A) = C_{j_0}(A).$$

Notation. Si $A=(a_{ij})\in\mathcal{M}_n(\mathbb{K})$, on note habituellement

$$\det A = \left| \begin{array}{ccc} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{array} \right|.$$

Remarque

Le théorème précédent est FONDAMENTAL : il vous dit que pour calculer le déterminant d'une matrice, il suffit de développer par rapport à n'importe quelle ligne ou colonne (en respectant les cofacteurs)!!

$$|a| = a$$

(ce n'est pas une valeur absolue...)

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = a \times d + (-1) \times b \times c = ad - bc$$

$$\begin{vmatrix} a & b & c \\ a' & b' & c' \\ a'' & b'' & c'' \end{vmatrix} = (-1)^{1+1} a \begin{vmatrix} b' & c' \\ b'' & c'' \end{vmatrix} + (-1)^{1+2} a' \begin{vmatrix} b & c \\ b'' & c'' \end{vmatrix} + (-1)^{1+3} a'' \begin{vmatrix} b & c \\ b' & c' \end{vmatrix} = \dots$$

$$\begin{vmatrix} a & b & c \\ a' & b' & c' \\ a'' & b'' & c'' \end{vmatrix} = ab'c'' + a''bc' + a'b''c - (a''b'c + a'bc'' + ab''c')$$

(Règle de Sarrus pour les déterminants 3×3).

Règle de Sarrus (déterminants 3 × 3 seulement)

$$\begin{vmatrix} a & b & c \\ a' & b' & c' \\ a'' & b'' & c'' \end{vmatrix} = ab'c'' + a''bc' + a'b''c - (a''b'c + a'bc'' + ab''c')$$

Et ainsi de suite

$$\begin{vmatrix} a & b & c & d \\ a' & b' & c' & d' \\ a'' & b'' & c'' & d'' \\ a''' & b''' & c''' & d''' \end{vmatrix} = a\Delta_{11}(A) - a'\Delta_{21}(A) + a''\Delta_{31}(A) - a'''\Delta_{41}(A)$$
$$= a\Delta_{11}(A) - b\Delta_{12}(A) + c\Delta_{13}(A) - d\Delta_{14}(A)$$
$$= ...$$

⇒ privilégier le développement par rapport à une ligne ou une colonne.

Propriétés et règles de calcul

Proposition

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On note $A_1, ..., A_n$ les colonnes de A et on écrit $A = (A_1, ..., A_n)$.

- 1. L'échange de deux colonnes de A multiplie le déterminant par -1.
- 2. Si C est une colonne quelconque,

$$det(A_1, ..., A_i + C, ..., A_n)$$

$$= det(A_1, ..., A_i, ..., A_n) + det(A_1, ..., C, ..., A_n).$$

3. $Si \lambda \in \mathbb{K}$,

$$det(A_1,...,\lambda A_i,...,A_n) = \lambda det(A_1,...,A_i,...,A_n).$$

$$\begin{vmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 2 & 3 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix} - \begin{vmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 2 & 3 & 1 \end{vmatrix} = -(-1) \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} = -1$$

$$\begin{vmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 2 & 3 & 1 & 1 \end{vmatrix} = \underbrace{\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}}_{=0} - \begin{vmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 2 & 3 & 1 \end{vmatrix} = -(-1) \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} = -1$$

$$\begin{vmatrix} a & b & c \\ c & a & b \\ b & c & a \end{vmatrix} = a(a^2 - bc) - c(ab - c^2) + b(b^2 - ac) = a^3 + b^3 + c^3 - 3abc$$

$$\begin{vmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 2 & 3 & 1 & 1 \end{vmatrix} = \underbrace{\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}}_{=0} - \begin{vmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 2 & 3 & 1 \end{vmatrix} = -(-1) \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} = -1$$

$$\begin{vmatrix} a & b & c \\ c & a & b \\ b & c & a \end{vmatrix} = a(a^2 - bc) - c(ab - c^2) + b(b^2 - ac) = a^3 + b^3 + c^3 - 3abc$$

$$\begin{vmatrix} 1 & 2 & 1 & 2 \\ 1 & 3 & 1 & 3 \\ 2 & 1 & 0 & 6 \\ 1 & 1 & 1 & 7 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 0 & 2 \\ 1 & 2 & 0 & 3 \\ 2 & -1 & -2 & 6 \\ 1 & 0 & 0 & 7 \end{vmatrix} = -2 \begin{vmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 1 & 0 & 7 \end{vmatrix}$$
$$= -2 \left(1 \times \begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix} + 7 \times \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} \right) = -2(-1+7) = -12$$

Propriétés et règles de calcul (suite)

Remarque

- 1. Attention, si A et B sont deux matrices, en général $det(A + B) \neq det A + det B$.
- 2. On a $det(\lambda A) = \lambda^n det A$.

$$\underline{\mathsf{Exemple}}: \left| \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right| + \left| \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right| = 2 \neq \left| \begin{array}{cc} 2 & 0 \\ 0 & 2 \end{array} \right| = 4$$

Corollaire

Soit $A \in \mathcal{M}_n(\mathbb{K})$.

- 1. Si une colonne de A est nulle, alors $\det A = 0$.
- 2. Si deux colonnes de A sont égales, alors $\det A = 0$.
- 3. Si on ajoute à une colonne de A une combinaison linéaire des autres colonnes alors le déterminant de A reste inchangé.
- 4. Si les colonnes² de A forment une famille liée alors $\det A = 0$.
- 2. Même résultat pour les lignes

Proposition

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On a

$$\det A = \det A^T$$
.

En conséquence, les assertions de la proposition et du corollaire précédent s'appliquent aussi aux lignes.

Proposition

Le déterminant d'une matrice triangulaire (inférieure ou supérieure, en particulier diagonale) est égal au produit de ses coefficients diagonaux.

$$\begin{vmatrix} -2 & 0 & 0 \\ \pi & \ln(2) & 0 \\ \sqrt{\pi} & \ln(e+1) & -\frac{1}{\ln 2} \end{vmatrix} = \begin{vmatrix} -2 & \pi & \sqrt{\pi} \\ 0 & \ln(2) & \ln(e+1) \\ 0 & 0 & -\frac{1}{\ln 2} \end{vmatrix} = 2$$

Déterminant de AB, caractérisation des matrices inversibles

Théorème

Soient $A, B \in \mathcal{M}_n(\mathbb{K})$. On a

$$det(AB) = det A det B$$
.

Corollaire

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors A est inversible si et seulement si det $A \neq 0$. Dans ce cas on a

$$\det(A^{-1}) = \frac{1}{\det A}.$$

 $\underbrace{\text{justification}}_{\text{et }} \Rightarrow AA^{-1} = I_n \text{ alors } \det(AA^{-1}) = \det(A)\det(A^{-1}) = 1$

 \Leftarrow Supposons $det(A) \neq 0$, alors les n colonnes de A sont linéairement indépendantes (sinon det(A) = 0). D'où,

 $x \mapsto f(x) := AX$ est un automorphisme et A est inversible.

Remarque

Si $A, P \in \mathcal{M}_n(\mathbb{K})$ et P est inversible, on a

$$\det(P^{-1}AP) = \det A.$$

Donc, pour tout endomorphisme $f \in \mathcal{L}(\mathbb{K}^n)$, $\det \operatorname{mat}_{\mathcal{B}}(f)$ est indépendant de la base \mathcal{B} choisie. Cela permet de parler de déterminant d'un endomorphisme sans ambiguité!!

Soit
$$A = \begin{pmatrix} 1 & 1 & a \\ 1 & a & 1 \\ a & 1 & 1 \end{pmatrix}$$
. Calculer le rang de A en fonction de a .

Soit
$$A = \begin{pmatrix} 1 & 1 & a \\ 1 & a & 1 \\ a & 1 & 1 \end{pmatrix}$$
. Calculer le rang de A en fonction de a .

Par la règle de Sarrus, on trouve que $det(A) = -a^3 + 3a - 2 = -(a^3 - 3a + 2) = -a$

$$det(A) = -a^3 + 3a - 2 = -(a^3 - 3a + 2) = -(a - 1)^2(a + 2).$$

Si $a \neq 1$ et $a \neq -2$ alors rg(A) = 3.

Si a = 1, on vérifie que rg(A) = 1 (3 fois la même ligne);

Si a = -2, on vérifie que rg(A) = 2 (2 lignes linéairement indépendantes).

$$\delta := \left| \begin{array}{ccc} 1 & 1 & 1 \\ a & b & c \\ b+c & a+c & a+b \end{array} \right| =$$

$$\delta := \left| \begin{array}{ccc} 1 & 1 & 1 \\ a & b & c \\ b+c & a+c & a+b \end{array} \right| = \left| \begin{array}{cccc} 1 & 0 & 0 \\ a & b-a & c-a \\ b+c & a-b & a-c \end{array} \right|$$

en faisant $C_2 \leftarrow C_2 - C_1$ et $C_3 \leftarrow C_3 - C_1$.

On trouve que $\delta = (b - a)(a - c) - (a - b)(c - a) = 0$.

- 1) Soit $A, B \in M_n(\mathbb{R})$ deux matrices non nulles telles que AB = 0. Montrer que det(A) = det(B) = 0.
- 2) Soit $A \in M_n(\mathbb{R})$ telle que $A^2 = -I_n$. Montrer que n est pair. Donner un exemple d'une telle matrice pour n = 2.
- 3) Soit $A \in M_{2n+1}(\mathbb{R})$ une matrice anti-symétrique. Montrer que det(A) = 0.
- 4) Soit $A = \begin{pmatrix} 4 & 2 \\ 2 & 7 \end{pmatrix}$. Pour quelles valeurs de $\lambda \in \mathbb{R}$, la matrice $A \lambda I_2$ n'est pas inversible?

solution: 1) en prenant le déterminant on trouve det(A)det(B)=0. Supposons par exemple det(A)=0. Si $det(B)\neq 0$. Alors B est inversible et donc $ABB^{-1}=A=0$ et donc A=0 ce qui est absurde. Donc, det(B)=0. On raisonne de la même manière si det(B)=0. On déduit donc le résultat.

solution: 1) en prenant le déterminant on trouve det(A)det(B)=0. Supposons par exemple det(A)=0. Si $det(B)\neq 0$. Alors B est inversible et donc $ABB^{-1}=A=0$ et donc A=0 ce qui est absurde. Donc, det(B)=0. On raisonne de la même manière si det(B)=0. On déduit donc le résultat.

2) En prenant le déterminant $det(A)^2 = (-1)^n \ge 0$ donc n est pair.

solution: 1) en prenant le déterminant on trouve det(A)det(B) = 0. Supposons par exemple det(A) = 0. Si $det(B) \neq 0$. Alors B est inversible et donc $ABB^{-1} = A = 0$ et donc A = 0 ce qui est absurde. Donc, det(B) = 0. On raisonne de la même manière si det(B) = 0. On déduit donc le résultat.

- 2) En prenant le déterminant $det(A)^2 = (-1)^n \ge 0$ donc n est pair.
- 3) Utiliser que $det(A^T) = det(A)$, d'où le résultat (2n + 1 impair).

- solution : 1) en prenant le déterminant on trouve det(A)det(B)=0. Supposons par exemple det(A)=0. Si $det(B)\neq 0$. Alors B est inversible et donc $ABB^{-1}=A=0$ et donc A=0 ce qui est absurde. Donc, det(B)=0. On raisonne de la même manière si det(B)=0. On déduit donc le résultat.
- 2) En prenant le déterminant $det(A)^2 = (-1)^n \ge 0$ donc n est pair.
- 3) Utiliser que $det(A^T) = det(A)$, d'où le résultat (2n + 1 impair).
- 4) On calcule le déterminant de $A-\lambda I_2$ ce qui donne le trinôme $\lambda^2-11\lambda+24$. Ainsi, $A-\lambda I_2$ n'est pas inversible ssi $\lambda=3$ ou $\lambda=8$.