Análisis Matemático I

20 de noviembre de 2015

1. Estudiar la continuidad de la función $f: \mathbb{R}^2 \to \mathbb{R}$ definida, para $(x, y) \in \mathbb{R}^2$, de la siguiente forma:

$$f(x,y) = \begin{cases} \frac{x^2 + y^2}{(x+y)^2} \operatorname{sen}(x+y) & \text{si} \quad x+y \neq 0 \\ 0 & \text{si} \quad x+y = 0 \end{cases}$$

Solución

- (a) Comprobamos primeramente que f es continua en todo punto de $\Omega = \mathbb{R}^2 \setminus A$, donde $A = \{(x,y) \in \mathbb{R}^2 : x+y=0\}$. La restricción de f a Ω es el producto de una función racional por la función $(x,y) \mapsto \operatorname{sen}(x+y)$, que es composición de una función polinómica con la función seno. Por tanto $f|_{\Omega}$ es continua como producto de dos funciones continuas. Además A es cerrado por ser la imagen inversa de $\{0\}$ por la función continua $(x,y) \mapsto x+y$ de \mathbb{R}^2 en \mathbb{R} . Por tanto, Ω es abierto y podemos aplicar el carácter local de la continuidad para concluir que f es continua en Ω .
- (b) Consideremos ahora un punto $(a,b) \in A$ que no sea el origen, $(a,b) \neq (0,0)$. Tomemos una sucesión $\{(x_n,y_n)\}$ de puntos de Ω , tal que $\{x_n\} \to a$ e $\{y_n\} \to b$. Por ejemplo, puede ser $x_n = a + (1/n)$ e $y_n = b + (1/n)$ para todo $n \in \mathbb{N}$. Tenemos entonces

$$f(x_n, y_n) = \frac{x_n^2 + y_n^2}{x_n + y_n} \frac{\operatorname{sen}(x_n + y_n)}{x_n + y_n} \qquad \forall n \in \mathbb{N}$$

Por ser $\lim_{t\to 0} \frac{\text{sen }t}{t} = 1$, tenemos $\left\{\frac{\text{sen}(x_n + y_n)}{x_n + y_n}\right\} \to 1$, ya que $\{x_n + y_n\} \to a + b = 0$.

Por otra parte $\{x_n^2 + y_n^2\} \to a^2 + b^2 \neq 0$, luego $\left\{\frac{x_n^2 + y_n^2}{x_n + y_n}\right\} \to \infty$ y deducimos que $\{f(x_n, y_n)\} \to \infty$. Por tanto f no tiene límite, y en particular no es continua, en el punto (a, b).

(c) Veamos finalmente el comportamiento de f en el origen. Para cada $n \in \mathbb{N}$ definimos

$$x_n = \frac{1}{n}$$
 e $y_n = -\frac{1}{n} + \frac{1}{n^3}$

con lo que $\{(x_n,y_n)\} \to (0,0)$ y $x_n+y_n \neq 0$ para todo $n \in \mathbb{N}$. Entonces

$$f(x_n, y_n) = n^3 \left(\frac{2}{n^2} - \frac{2}{n^4} + \frac{1}{n^6}\right) \frac{\sin(x_n + y_n)}{x_n + y_n} = \left(2n - \frac{2}{n} + \frac{1}{n^3}\right) \frac{\sin(x_n + y_n)}{x_n + y_n}$$

Como $\left\{\frac{\operatorname{sen}(x_n+y_n)}{x_n+y_n}\right\} \to 1$ igual que antes, y $\left\{2n-\frac{2}{n}+\frac{1}{n^3}\right\} + \infty$, deducimos que $\left\{f(x_n,y_n)\right\} \to +\infty$. Por tanto f no tiene límite, luego no es continua, en el origen.

En resumen, f es continua en un punto $(a,b) \in \mathbb{R}^2$ si, y sólo si, $a+b \neq 0$.

2. Sea X un espacio normado de dimensión mayor que 1. Probar que $X \setminus \{0\}$ es conexo y que la función $f: X \setminus \{0\} \to X$ definida por

$$f(x) = \frac{x}{\|x\|} \qquad \forall x \in X$$

es continua, pero no es uniformemente continua. Deducir que la esfera unidad $S = \{x \in X : ||x|| = 1\}$ es un subconjunto conexo de X.

Solución

(a) Para probar que $X \setminus \{0\}$ es conexo, dados $x, y \in X \setminus \{0\}$, bastará encontrar un conjunto conexo $C \subset X \setminus \{0\}$ que los contenga. Es natural pensar en el segmento que los une,

$$[x,y] = \{(1-t)x + ty : t \in [0,1]\}$$

que es conexo, al ser la imagen por la función continua $t \mapsto (1-t)x + ty$ del intervalo [0,1]. Como este segmento puede contener al origen, debemos distinguir dos casos:

Si x e y son linealmente independientes, tendremos $[x,y] \subset X \setminus \{0\}$ y podemos tomar C = [x,y], que es un subconjunto conexo de $X \setminus \{0\}$ tal que $x,y \in C$.

En otro caso, como X tiene dimensión mayor que 1, existirá un $z \in X$ linealmente independiente de x e y, con lo que los segmentos [x,z] y [z,y] están contenidos en $X \setminus \{0\}$. Basta entonces tomar $C = [x,z] \cup [z,y]$ que es conexo, por ser la unión de dos conjuntos conexos cuya intersección no es vacía, ya que $z \in [x,z] \cap [z,y]$. También es claro que $x,y \in C \subset X \setminus \{0\}$.

- (b) Veamos ahora la continuidad de f. En cualquier espacio normado, la norma es una función continua, luego la función $x \mapsto 1/\|x\|$, de $X \setminus \{0\} \to \mathbb{R}$ es continua. Así pues f es continua, por ser el producto de una función continua con valores escalares, por la restricción a $X \setminus \{0\}$ de la función identidad en X, que obviamente es continua.
- (c) Para probar que f no es uniformemente continua, basta encontrar una sucesión de Cauchy $\{x_n\}$ de puntos de $X\setminus\{0\}$ tal que $\{f(x_n)\}$ no sea una sucesión de Cauchy. Fijado $u\in S$, basta tomar $x_n=(-1)^nu/n$ para todo $n\in\mathbb{N}$. Como $\|x_n\|=1/n$ para todo $n\in\mathbb{N}$, tenemos que $\{x_n\}\to 0$ y en particular $\{x_n\}$ es una sucesión de Cauchy. Sin embargo la sucesión $\{f(x_n)\}=\{(-1)^nu\}$ no es de Cauchy. Si lo fuese, existiría un $m\in\mathbb{N}$ tal que, para $p,q\geq m$ se tendría $\|f(x_p)-f(x_q)\|<2$ lo cual es falso puesto que $\|f(x_m)-f(x_{m+1})\|=\|\pm 2u\|=2$.
- (d) Finalmente la esfera unidad $S = f(X \setminus \{0\})$ es un conjunto conexo, ya que es la imagen del conexo $X \setminus \{0\}$ por la función continua f.

3. Sea E un subconjunto no vacío de \mathbb{R}^N . Supongamos que, para toda función continua $f: E \to \mathbb{R}$, el conjunto f(E) tiene mínimo. Probar que E es compacto.

Solución

Empezamos probando que E es cerrado. Dado $z\in \overline{E}$, consideramos la función $f:E\to \mathbb{R}$ definida por

$$f(x) = \|x - z\| \qquad \forall x \in E$$

usando, por ejemplo, la norma euclídea en \mathbb{R}^N . Entonces f es una función continua, de hecho no expansiva, puesto que

$$|f(u) - f(v)| = ||u - z|| - ||v - z|| \le ||u - v||$$
 $\forall u, v \in E$

Por hipótesis, f tiene un mínimo en un punto $x_0 \in E$. Dado $\varepsilon > 0$, por ser $z \in \overline{E}$, existe $x_{\varepsilon} \in E$ tal que $||z - x_{\varepsilon}|| < \varepsilon$, de donde deducimos que

$$||x_0 - z|| = f(x_0) \le f(x_{\varepsilon}) = ||x_{\varepsilon} - z|| < \varepsilon$$

Como esto es cierto para todo $\varepsilon > 0$, deducimos que $||x_0 - z|| = 0$, luego $z = x_0 \in E$ y esto prueba que E es cerrado.

Vemos ahora que E está acotado, para lo cual basta considerar la función continua $g:E\to\mathbb{R}$ dada por

$$g(x) \, = \, - \lVert \, x \, \rVert \qquad \, \forall \, x \in E$$

Por hipótesis g tiene un mínimo en un punto $x_1 \in E$. Esto significa que, para todo $x \in E$ se tiene $-\|x\| \ge -\|x_1\|$, es decir, $\|x\| \le \|x_1\|$. Así pues, E está acotado.

Por la caracterización de los subconjuntos compactos de \mathbb{R}^N , tenemos que E es compacto, por ser cerrado y acotado.

$$f(x,y) = \begin{cases} \frac{x^2 + y^2}{(x+y)^2} \operatorname{sen}(x+y) & \text{si} \quad x+y \neq 0 \\ 0 & \text{si} \quad x+y = 0 \end{cases}$$

 $A = \{(x,y) \in \mathbb{R}^2 \mid x+y=0\}$ A es imagen inversa de $\{0\}$ por una función poliviónica (continua), luego A es cerrodo. $V = \mathbb{R}^2 \setminus A$ abto, $\{u_i \in S \text{ producto}\}$ de una racional y composición del seno con una función poliviónica, luego $\{u_i \in S \text{ continuidad}\}$ for el carácter local de la continuidad, $\{u_i \in S \text{ continuidad}\}$ es continua en V Veamos qué o curre con los puntos de A, que

Son de la forma
$$(a,-a),(-a,a)$$
 y $(0,0)$:
 $(a,-a)$ $\lim_{x\to a} g(x,-a) = \lim_{x\to a} \frac{x^2+a^2}{(x-a)^2} \cdot \operatorname{Sen}(x-a) = \lim_{x\to a} \frac{x^2+a^2}{(x-a)^2} \cdot \operatorname{Sen}$

$$= \lim_{x \to 0} \frac{x^2 + a^2}{x^2 - a} \lim_{x \to 0} \frac{\sum_{\alpha \to 0} (x - a)}{x - a} = 3$$

No existe

$$(-\alpha, \alpha)$$
 lim $g(x, \alpha) = \lim_{x \to -\infty} \frac{x^2 + \alpha^2}{(x + \alpha)^2} \sup_{x \to 0} \frac{x^2 + \alpha^2}{x + \alpha} \lim_{x \to 0} \frac{\operatorname{sen}(x + \alpha)}{x + \alpha}$

No existe

 $(-\alpha, \alpha)$ No existe

$$(0,0)$$
 lim $g(x,0) = \lim_{x \to -\infty} \frac{x^2}{x^3} \cdot \operatorname{sen}(x) = 0$
No existe

$$\lim_{x \to -\infty} g(x,0) = \lim_{x \to -\infty} \frac{x^2}{x^3} \cdot \operatorname{sen}(x) = 0$$
Unice limite possible $L = 0$