A travel agency wants an automated system to predict travel costs. The agency has the following data available with it.

| Γzőle II |          | I (4)           |
|----------|----------|-----------------|
| S. No.   | Distance | Travelling Cost |
|          | (in Km)  | (in Rupees)     |
| 1        | 1        | 2.75            |
| 2        | 2        | 3.5             |
| 3        | 3        | 4.25            |
| 4        | 4        | 5               |
| 5        | 5        | 5.75            |

Page 1 of 3



Formulate the above problem as a linear model  $h(x) = w_0 + w_1 x$  to predict the travelling cost for a given distance. The parameter  $w_0$  is 2 (optimal). Apply gradient descent algorithm to find optimal parameter  $w_1$ . The learning rate for the first epoch is 0.073, and for the second epoch and later, the learning rate is 0.091. Let the initial value of  $w_1$  is 0.5.

$$\Rightarrow \Theta = \Theta - \sqrt{\Delta \Delta(\Theta)} \frac{g(\Theta)}{\partial \Delta(\Theta)}$$

$$\Theta_0 = 2$$
 (eptimal)
 $\Theta_1 = ?$ 

$$\Theta_{\Gamma} = \Theta_{\Gamma} - \frac{\eta}{m} 2 \sum_{i=1}^{m} \left[ y^{(i)} - y^{(i)} \right] 2^{(i)}$$

$$= 00+01X_1 = 00\% + 01X_1$$

$$= 0^{T}X$$

$$\begin{bmatrix} 0 & 01 \end{bmatrix} \begin{bmatrix} 0 & 0 \end{bmatrix}$$

$$\Theta_1 = 0.9 - 0.091 + 2 = 0.09$$

dogistic Regression

Cossification Algo.

leg:

Training 5 2 , y (2) } i=1 x CB 7 has m features. 4 E & 0,13 Classifiction took y should be a discrete value Linear Rig: ho(2) = \frac{m}{2} \text{Djaj} = \text{Dta} = 00+01x, + 0,x2 ax+by+c=0 0 Tx = 0 000124+01250x(1) 31,41 distant du rei) & line BT2=0 ax1+by1+c Ja2462 D 0+ 0/21 + 022 distance [00 01 01]







Not able to distinguish blus possits which are close to line I which are far.

## Sigmoid function:



$$g(z) = \frac{1}{1+e^{-2}}$$
 Signaid

$$Z=0$$
  $g(z)=\frac{1}{1+(\frac{1}{e^2})}$ 

$$Z=0$$
  $g(z)=\frac{1}{1+1}=0.5$ 

$$\chi = -\infty \qquad q(z) = \frac{1}{1 + \frac{1}{e^2}} = 0$$

$$h_{\theta}(x) = g(\theta^{T}x) = \frac{1}{1+e^{-\theta^{T}x}}$$

$$= g(z) = \frac{1}{1+e^{-z}}$$

where Z = STX

Value by 0 & 1

Probability / confidence with which you can the paint belong to closs 1.

9(=):0.4

40% sure point & Cot 60% sure point & Dog.

y follows Bernoull'
Distribution