From reads to results

Dr Torsten Seemann

What I will cover *

NGS Applications

Sequences
Sequence quality
Read file formats
Using reads
Alignment file formats
Analysis tools

Reads

In an ideal world...

- Collect a human genomic DNA sample
- Run it through the lab sequencing machine
- Get back 46 files:
 - phased, haplotype chromosomes
 - each a single contiguous sequence of A,G,T,C
- And it only costs \$1000

The awful truth

- No such instrument exists
 - can't read long stretches of DNA (yet)
- But we can read <u>short</u> pieces of DNA
 - shred DNA into ~500 bp fragments
 - we can read these reliably
- High-throughput sequencing
 - sequence millions of different fragments in parallel
 - various technologies to do this
 - costs much more than \$1000

What you get back

Millions to billions of reads (big files):

.. <--- 100 bp --->

<- 1st read

<- 2nd read

<- last read

If you can transform your assay in to sequencing lots of short pieces of DNA, then NGS is applicable.

Not just whole genome DNA:

- exome (targeted subsets of genomic DNA)
- RNA-Seq (transcripts via cDNA)
- ChIP-Seq (protein:DNA binding sites)
- HITS-CLIP (protein:RNA binding sites)
- methylation (bisulphite treatment of CpG)
- o ... even methods to sequence peptides now!

FASTA format

FASTA

FASTA components

Multi-FASTA

Concatenation of individual FASTA entries, using ">" as an entry separator

>read00001

TCTTGCGTCAAGACGGCCGTGCTGAGCGAATGCAGGCGACTTGCGAGCTGGGAGCGA

>read00002

TGGATTCCCCCGGCCTGGGTGGGGAGAGCGAGCTGGGTGCCCCCTAGATTCCCCGCC

>read00003

>read00004

TCTGGGAGCGGGGGGGGGGGAATCTGGAGCGAGCTGGGTGCCCCCTAGATTCCCC

>read00004

GCGGAATCTGGAGCGAGCTGGGTGCCCCCTAGATTCCCCGCATCGTAGATTAGATAT

The DNA alphabet

- Standard
 - AGTC
- Extended
 - adds N (unknown base)
- Full
 - adds R Y M S W K V H D B (ambiguous bases)
 - \circ R = A or G (puRine)
 - \circ Y = C or T (p<u>Y</u>rimidine)
 - ... and so on for all the combinations

Sequence Quality

Sequences have errors

- nonsense reads
 - instrument oddness
- duplicate reads
 - amplify a low complexity library
- adaptor read-through
 - fragment too short
- indel errors
 - skipping bases, inserting extra bases
- uncalled base
 - couldn't reliably estimate, replace with "N"
- substitution errors
 - reading wrong base

Less common

More common

Illumina reads

- Usually 100 bp (soon 250 bp)
- Indel errors are rare
- Substitution errors < 1%
 - Error rate higher at 3' end
- Adaptor issues
 - rare in HiSeq (*TruSeq* prep)
 - more common in MiSeq (Nextera prep)
- Very high quality overall

DNA base quality

- DNA sequences often have a quality value associated with each nucleotide
- A measure of reliability for each base
 - as it is derived from physical process
 - chromatogram (Sanger sequencing)
 - pH reading (Ion Torrent sequencing)
- Formalised by the *Phred* software for the Human Genome Project

Phred qualities

Quality	Chance it's wrong	Accuracy	Description
10	1 in 10	90%	Bad
20	1 in 100	99%	Maybe
30	1 in 1000	99.9%	OK
40	1 in 10,000	99.99%	Very good
50	1 in 100,000	99.999%	Excellent

$$Q = -10 \log_{10} P <=> P = 10^{-Q/10}$$

Q = Phred quality score P = probability of base call being incorrect

Quality plot (FastQC)

Y-axis is "Phred" quality values (higher is better)

Quality filtering

- Keep all reads
 - let the downstream software cope
- Reject some reads
 - average quality below some threshold
 - contain any ambiguous bases
- Trim reads
 - remove low quality bases from end
 - keep longest "sub-read" that is acceptable
- Best strategy is analysis dependent

FASTQ files

FASTQ

A sequence read looks like this:

```
@read00179
AGTCTGATATGCTGTACCTATTATAATTCTAGGCGCTCAT
+
8;ACCCD?DD???@B9<9<871CAC@=A;0.-&*,(0**#</pre>
```

FASTQ components

Uses letters/symbols to represent numbers:

Multi-FASTQ

Same as multi-FASTA, just concatenate:

@M00267:3:000000000-A0AGE:1:1:15997:1501 $\tt CTCGTGCTCTACTTTAGAAGCTAATGATTCTGTTTGTAGAACATTTTCTACCACTACATCTTTTTCTTGCTTCGCATCTT$ @M00267:3:000000000-A0AGE:1:1:15997:1501 GCCTATAGTAGAAGAAAAAGAAGTGGCTCAAGAAATGAGTGCACCGCAGGAAGTTCCAGCGGCTGAATTACTTCATGAAA <@@FFF?DHFHGHIIIFGIIGIGDGEGCHIIIIIIIIIIIFG<DA7=BHHGGIEHDBEBA@CECDD@CC>CCAC @M00267:3:000000000-A0AGE:1:1:14073:1508 GTCTTGCTAAATTTAAATAATCTGAAATAATTTGTTCTGCCCGGTCCAATTCAGCTAATACGAGACGCATATAATCCTTA @M00267:3:000000000-A0AGE:1:1:14073:1508 ACGTACAGAGATGCAAAAGTCAGAGAAACTTAATATTGTAAGTGAGTTAGCAGCAAGTGTTGCACATGAGGTTCGAAATC 1@@DDDADHGDF?FBGGAFHHCHGGCGGFHIECHGIIGIGFGHGHIIHHEGCCFCB>GEDF=FCFBGGGD@HEHE9=;AD

Data compression

- FASTQ files are very big
 - typically > 10 gigabytes
 - they are somewhat redundant
- Often they will be compressed
 - gzip (.gz extension)
 - bzip2 (.bz2 extension)
 - these are like .ZIP but different method
- Usually get to < 20% of original size
 - o faster transfer, less disk space
 - can be slower to read and write though

FASTQ file name conventions

Suffix	Usage	
.fastq .fq	Uncompressed	
.fastq.gz .fq.gz	Compressed with GZIP	
.fastq.bz2 .fq.bz2	Compressed with BZIP2	
s_?_?_sequence.txt	Old Illumina naming (uncompressed)	

Using reads

In the beginning

First step of most NGS analyses is either:

De novo assembly

- reconstruct the original sequences from reads alone
- like a jigsaw puzzle but ambiguous

Align to reference

- find where reads fit on a known sequence
- can not always be uniquely placed

De novo assembly

De novo assembly

 Reconstruct the original DNA sequences using the sequence reads alone

Method

- align each read against every other read
- build an overlap graph
- simplify the graph (necessary due to read errors)
- find distinct paths through the graph
- calculate the consensus sequence for each path
- these contiguous sequences are contigs
- Computationally challenging problem

Why de novo?

- Sequence a new organism
 - DNA-Seq (genome, expect novel DNA)
 - RNA-Seq (transcriptome, splice variants)
- Unaligned reads from reference alignment
 - novel DNA segments
 - novel RNA transcripts
 - fusion genes
 - contamination

It is impossible to resolve (disambiguate) repeats of length L with reads shorter than L

Assembly file format

- Usually a simple multi-FASTA file of contigs
 - some assemblers provide quality values
 - sequences may contain gaps of "N"s
- Loss of information
 - contigs are a "collapsing" of the rich graph structure
 - ambiguous, but useful connective info is lost
- New standard coming
 - retain all graph information
 - will allow development of new post-processing tools

Align to reference

NGS read alignment

- Want to find where all the reads fit on our reference genome, quickly and accurately.
- Query
 - Lots (>100M) of short (~100bp) reads (FASTQ)
- Reference
 - o eg. Human genome, ~27000 contigs (FASTA)
- Many shorts vs. few longs
 - BLAST isn't suitable (it's better at the opposite)
 - New tools: BWA, Bowtie, BFAST, SHRiMP, MAQ

Example

Seven short 4bp reads:

AGTC TTAC GGGA CTTT TAGG TTTA ATAG

The 31bp reference:

AGTCTTTATTATAGGGAGCCATAGCTTTACA

AGTC TAGG ATAG TTAC

TTTA GGGA CTTT

Coverage:

1111111100111211100111101122110

Average coverage (depth): 28/31 = 0.90x

Ambiguous alignment

Eight short 4bp reads:

AGTC TTAC GGGA CTTT TAGG TTTA ATAG TTAT

Reads can align to more than one place!

Multiple-mapping reads

- Align to all possible places
 - useful in some situations
 - but belongs to only one "real" place
- Align to the first place you find
 - not a good idea... but some tools still do it
- Align to a random choice of all valid places
 - useful in some situations
- Don't use multiple-mapping reads
 - often necessary if calling SNPs

The trade-off

- speed vs. sensitivity
- will miss divergent matches
- can miss indels (insertions and deletions)

BAM files

Storing alignments

SAM

- plain text file, tab separated columns
- "a huge spreadsheet"
- inefficient to read and store

BAM

- a compressed version of SAM (~80% less storage)
- can be indexed (fast access to subsections)
- needs to be sorted to be useful however

Standardized format

readable by most software

What's in a SAM/BAM?


```
1:497:R:-272+13M17D24M
                     113
                              497
                                       37M 15
                                                100338662 0
                                  37
                                  CGGGTCTGACCTGAGGAGAACTGTGCTCCGCCTTCAG
XT:A:U
        NM:i:0
                 SM:i:37
                          AM:i:0
                                  X0:i:1
                                           X1:i:0
                                                    XM:i:0
19:20389:F:275+18M2D19M 99
                              17644
                                           37M =
                                                    17919
                                                             314
TATGACTGCTAATAATACCTACACATGTTAGAACCAT
                                  >>>>>>>>>>>
                                                                     RG:Z:
UM0098:1 XT:A:R
                 NM:i:0
                          SM:i:0
                                  AM:i:0
                                           X0:i:4
                                                    X1:i:0
                                                             XM:i:0
19:20389:F:275+18M2D19M 147 1
                              17919
                                           18M2D19M =
                                                        17644
GTAGTACCAACTGTAAGTCCTTATCTTCATACTTTGT
                                 ;44999;499<8<8<<<8<<>><7<;<<<>><
                                                                     XT:A:R
                     AM:i:0
    NM:i:2
             SM:i:0
                              X0:i:4
                                       X1:i:0
                                               XM:i:0
                                                        MD:Z:18^CA19
```

One line per original read sequence

- where it aligned (if at all)
- how much of it aligned (soft/hard clipping)
- how well it aligned (mapping quality)
- any differences to the reference (CIGAR string)
- lots of other stuff (aligner dependent)

Wide view (BamView)

Medium view (IGV)

Reference coordinates

Close view (BamView)

Getting results

Analysis

- Desktop
 - Free need Unix skills or a bioinformatician
 - Commercial CLC Genomics Workbench
- Server / Cloud
 - Free Galaxy / Genomics Virtual Laboratory
 - Commercial Illumina Basespace, ...
- Service / Subscription
 - o AGRF, QFAB, Geneworks,
 - VLSCI::LSCC hire team at 0.5 EFT etc

Galaxy

Galaxy

- Web-based
 - install on your own server
 - install via Cloudman onto your Amazon EC2 cloud
 - use the free public server at usegalaxy.org
- Lots of tools and workflows available
 - getting close to plug and play
- Coming soon...
 - Australian Research Cloud
 - will host the Genomics Virtual Laboratory
 - you will be able to run Galaxy instances on it

CLC Genomics Workbench

CLC Genomics Workbench

- Designed for NGS analysis
 - Handles most common analyses
 - alignment, RNA-Seq DGE, BLAST, assembly ...
 - o but results aren't as good as bioinformatician
 - using Unix and R tools

Accessible

- Intuitive interface
- Runs on Windows, Mac, Linux
- Needs powerful desktop lots of RAM
- "Affordable" licences ~\$4000 (highly variable)

Summary

Key points

- Getting into NGS is not trivial
 - new thinking, methods, hardware, software
- Understand the main file types
 - FASTA, FASTQ, SAM, BAM
- Repeat regions cause lots of problems
 - hard/impossible to assemble
 - multi-mapping reads
- No solution fits all problems
 - May need to collaborate/employ bioinformaticians

