Enabling Elastic Content Payload in Content-Centric Networking

Aytac Azgin, Ravi Ravindran, Asit Chakraborti, and Guo-Qiang Wang Huawei Research Center

Motivation

- Packet format and how to packetize the content is a critical challenge for CCNs with direct impact on packet processing
 - With CCN we observe higher processing overheads (e.g., parsing, hashing, validation, lookup, update, storage)
 - We have dynamically formatted names, name-based stateful forwarding, content-based security, and innetwork-caching
- Packet format needs to support wide diversity of usage scenarios and network technologies¹

Why Elastic Payload is Important?

- Performance losses experienced by CCN become a critical limiting factor over high capacity links
 - Larger sized content requires more chunks to be processed at content routers
 - Current solutions are not sufficiently effective
 - Carrying inefficient encoding structures, or
 - Offering multiple T/L formats increasing the complexity of parsing,
 or
 - Presenting simpler but fixed formats that are inflexible in terms of adapting to variable content responses
- We need a flexible packet format to insert/remove elements when necessary with minimal number of required fields, while supporting efficient packet processing²
 - We need the ability to also support smaller content sizes to address IoT space requirements

Why IoT Support is Important?

- New IoT requirements at the edge cause IP to fail or have scalability/efficiency issues ³
- Current state-of-the-art architectures are highly fragmented and lacks sufficient interoperability at the device, service, or application level
 - Lack of a unified architecture creates major concerns in regards to flexibility, scalability, mobility, and reliability
- Lack of a common protocol abstraction leads to inefficient communication and high cost
- ICN encompasses IoT requirements and is capable of providing an efficient unified architecture

Proposed Elastic Packet Format

Proposed packet format consists of 2B long fixed header and variable length extended header

- Message type supporting up to 8 types (3-bits)
- ➤ 1 generic type reserved to support other types, for which the information is included in the TLVs as part of the extended header

- Extended header included or not (1-bit)?
 - > 0: Not included
 - > 1: Included

Proposed Scenario-specific Elastic Packet Formats

IoT Friendly Header

Hop-limit in an IoT setting supports mesh topologies (multi-hop transmissions triggered by asynchronous wireless transmission links)

High Capacity Transport Friendly Header to support payload sizes >> 64 KB

T=T₆ (2B) Length = 6B

Message Length header

Example Use Cases for the Scenariospecific Elastic Packet Formats

of 27 Bytes (Advertisement payload of 6-37 Bytes)

Bluetooth Low Energy (BLE): Data payload

Can support < 128 bit output (e.g., short 32-bit or 64-bit implementations) for the Galois/Counter Mode (authenticated encryption with associated data) and GMAC (generating message authentication code on non-encrypted data) ⁶

⁴ http://www.sigfox.com/en/#!/

⁵ Recommended SX1272 Settings for EU868 LoRaWAN Network Operation, **AN1200.23**

⁶ Recommendation for Block Cipher Modes of Operation: Galois/Counter 7 Mode (GCM) and GMAC, **NIST Special Publication 800-38D**

Updated 2+2 T/L Format for the Payload

- 2-Bytes Type field; 2-Bytes Length field is represented as two sub components
 - 2 bit Flag representing the granularity of the component (headers, payload) length
 - 14 bit Length information

```
new type flags block count

T=T<sub>8</sub> (2B) 2b Length = 14 bits
```

2+2 T/L format supporting different granularities or block sizes, *e.g.*, 00:B, 01:KB, 10:MB, 11:GB

- Proposed format supports payload sizes of up to $l_{\lambda}x2^{14}$ Bytes
 - l_{λ} represents unit size at the selected granularity level (λ)
 - If max granularity level represents GB units, maximum payload equals 2⁴⁴ Bytes
 - Using 6 Bytes (length type T_6) to represent message length allows for message sizes up to 2^{48}

Minimum Required Network Support (1/3)

- Interest probing is used to support path setup for elastic content delivery
- Two major objectives to maximize routing efficiency
 - Identify supported end-to-end path MTUs to avoid fragmentation
 - Select paths that meet the minimum path MTU
 requirements as dictated by the consumer side application
- We introduce interface-capability flag and interface marking to support the above requirements

Minimum Required Network Support (2/3)

- Interface-capability flag (IC-flag)
 - k-bit flag integrated within the hop-by-hop header of (discovery type) Interest packets
 - IC-flag may indicate the following states for an interface
 - high-capacity (e.g.,>1GB)
 - medium capacity (e.g., 1MB< <1GB)
 - **low-capacity** (*e.g.*, 1KB< <1MB)
 - very low capacity (e.g.,<1KB)
- Intermediate routers can cache multiple content responses based on supported interface capabilities
 - PIT entries needs to include information on the IC-flag
 - Potentially affecting state aggregation at the content routers

Minimum Required Network Support (3/3)

- Interface marking is used at the content routers for two main purposes
 - Update IC-flag within Interest packet header
 - Select an interface with matching capability (as requested by the consumer side application
 - Forward Interest if matching interface found, or drop if no match is found
 - Active (NACK-driven) or passive (timeout-driven) signaling is used if selected path MTU cannot be supported
 - For multi-path probing, received NACKs are only forwarded, if no matching outgoing interface is found at the host

Final Comments

- Optimistic about the future, our architecture will be helpful in the long-term
- Fairness constraints can be managed
 - Latency impact of transmitting 150MB on 1Tbps link rate is equivalent to transmitting 1500B on 10Mbps link rate
- Network overhead can be reduced by integrating link quality metrics into decision process to determine optimal packet sizes
- Processing overhead can be reduced as less chunks are processed per content (proposed architecture limits #chunks to 4)
- Storage requirements need to be addressed as larger buffers are needed to accommodate larger packet sizes
 - Caching policies need to adapt to diverse content sizes to ensure fair access to content