Fundamentos de Análisis Matemático, MMA 2023-24. Nombre y APELLIDOS:

Entrega 1

1) Se dice que la función $f:\mathbb{R}^N\to\mathbb{R}$ es Hölder de orden $\alpha>0$ si existe una constante C de forma que

$$|f(x) - f(y)| \le C|x - y|^{\alpha}, \ \forall x, y \in \mathbb{R}^N.$$

Probar que si f es Hölder de orden α , con $\alpha > N$, entonces f es constante.

- **2.** En \mathbb{R}^N , si el conjunto A no es medible Lebesgue, y s < N, probar que $\mathcal{H}_*^s(A) = \infty$.
- 3. Recordamos que la medida exterior de Lebesgue se define como

$$m^*(E) = \inf \left\{ \sum_{j \ge 1} \operatorname{vol}(B_j) : \{B_j\}_j \text{ cubrimiento por bolas de } A \right\}.$$

Definimos por otro lado la clase

$$\mathcal{B} = \{ A \subset \mathbb{R} : \forall \epsilon > 0, \exists \mathcal{O}, \text{ abierto, tal que } A \subset \mathcal{O} \text{ y } m^*(\mathcal{O} \setminus A) < \epsilon \}.$$

Probar:

- \mathcal{B} es una σ -álgebra en \mathbb{R}^N .
- \mathcal{B} coincide con la σ -álgebra \mathcal{A} obtenida por el teorema de Caratheodory.

SOL.: