Lecture 12

Latches

- RS Latch
 - A cross is used in 2 symmetric NOR switches such that the output of one NOR gate is used as the input of the other NOR gate, and the second input is either R or S.
 - R stands for reset, and S stands for set If we change the voltages (in bold),

R	S	Q	\overline{Q}
1	0	0	1
0	$0 \rightarrow 1$	$0 \to 1$	$1 \to 0$
0	0	1	0
1	0	0	1
1	1	0	0
0	0	oscillates	oscillates

- Gated RS Latch
 - A clock is added to disable and enable the latch

This circuit is built by replacing R and S with R' and S' respectively, where $R' = \operatorname{clock} AND R$, and $S' = \operatorname{clock} AND S$.

If we let R = D and $S = \sim D$, we have

Clock	D	Q(t+1)
0	Any	Q(t)
1	0	0
1	1	1

D is the data input, where when clock = 1, Q = D, but when clock = 0, Q stores the present value of D. Any circuit with this truth table is a gated D latch.

Flip Flops

- Clock = 0: Qm=0, Q = stored value
- Clock = 1: Q = Qm = D (no longer racks input changes)
- Summary: when clock changes from 0 to 1, the value of D at that moment is stored in FF