277

7. Contiene a
$$(1, 2, 3)$$
 y $(-1, 2, -2)$

8. Contiene a
$$(2, 2, 1)$$
 y es paralela a $2\mathbf{i} - \mathbf{j} - \mathbf{k}$

9. Contiene a
$$(-2, 6, 8)$$
 y es paralela a $-4\mathbf{i} - \mathbf{j} - \mathbf{k}$

10. Contiene a (10, 0, 6) y es paralela
$$a - 8i - 2j + 9k$$

11. Contiene a
$$(-2, 3, -2)$$
 y es paralela a $4k$

12. Contiene a
$$(-2, 3, 7)$$
 y es paralela a 3j

13. Contiene a (6, 10, 3) y es paralela
$$a - 10i + 7j + 9k$$

14. Contiene a
$$(a, b, c)$$
 y es paralela a $d\mathbf{j}$

15. Contiene a
$$(a, b, c)$$
 y es paralela a $d\mathbf{j} + e\mathbf{k}$

16. Contiene a
$$(a, b, c)$$
 y es paralela a $d\mathbf{k}$

17. Contiene a
$$(-9, 8, 0)$$
 y es ortogonal a dj

18. Contiene a (4, 1, -6) y es paralela a
$$\left(\frac{x-2}{3}\right) = \left(\frac{y+1}{6}\right) = \left(\frac{z-5}{2}\right)$$

19. Contiene a (4, 5, 5) y es paralela a
$$\frac{8-x}{2} = \frac{y+9}{3} = \frac{z+4}{-7}$$

20. Sea
$$L_1$$
 la recta dada por

$$\frac{x - x_1}{a_1} = \frac{y - y_1}{b_1} = \frac{z - z_1}{c_1}$$

y sea L_2 la recta dada por

$$\frac{x - x_1}{a_2} = \frac{y - y_1}{b_2} = \frac{z - z_1}{c_2}$$

Demuestre que L_1 es ortogonal a L_2 si y sólo si $a_1a_2 + b_1b_2 + c_1c_2 = 0$.

21. Demuestre que las rectas

$$L_1: \frac{x-3}{2} = \frac{y+1}{4} = \frac{z-2}{-1}$$
 y $L_2: \frac{x-3}{5} = \frac{y+1}{-2} = \frac{z-3}{2}$

son ortogonales.

22. Demuestre que las rectas

$$L_1: \frac{x-1}{1} = \frac{y+3}{2} = \frac{z-3}{3}$$
 y $L_2: \frac{x-3}{3} = \frac{y-1}{6} = \frac{z-8}{9}$

son paralelas.

La rectas en \mathbb{R}^3 que no tienen la misma dirección no necesitan tener un punto en común.

23. Demuestre que las rectas
$$L_1$$
: $x = 1 + t$, $y = -3 + 2t$, $z = -2 - t$ y L_2 : $x = 17 + 3s$, $y = 4 + s$, $z = -8 - s$ tienen el punto $(2, -1, -3)$ en común.

24. Demuestre que las rectas
$$L_1$$
: $x = 2 - t$, $y = 1 + t$, $z = -2t$ y L_2 : $x = 1 + s$, $y = -2s$, $z = 3 + 2s$ no tienen un punto en común.

25. Sea
$$L$$
 dada en forma vectorial $\overrightarrow{OR} = \overrightarrow{OP} + tv$. Encuentre un número t tal que \overrightarrow{OR} sea perpendicular a \mathbf{v} .