

دانشگاه فنی و حرفه ای استان مرکزی

داده کاوی

مدرس: **فاطمه** مقیمی

پاییز ۱۴۰۱

فصل سوم: پیش پردازش دادهها

- پیش پر دازش داده ها: خلاصه ای جامع
 - (Data Quality) کیفیت دادهها

عملیات اصلی در پیش پر دازش دادهها

- پاکسازی دادهها (Data Cleaning)
- تجميع دادهها (Data Integration)
 - کاهش دادهها (Data Reduction)
- تغییرشکل (Transformation) و گسستهسازی (Discretization) دادهها
 - خلاصه فصل

کیفیت داده: چرا دادهها را پیشپردازش میکنیم؟

- وضعیت پایگاه دادههای کنونی: حاوی دادههای نویزی، دادههای مفقود، دادههای ناسازگار
 - دادههای بی کیفیت منجر به کاوشهای بی کیفیت خواهد شد
 - معیارهای کیفیت داده:
 - دقت: (Accuracy) درست یا غلط، دقیق یا نه
 - كامل بودن: (Completeness) ثبت نشده، غير قابل دسترسي، ...
 - سازگاری: (Consistency) برخی از دادهها اصلاح شدهاند اما نه همه، آویزان،...
 - به هنگام بودن: (Timeliness) دادهها به موقع به روز رسانی شدهاند؟
 - باورپذیری: (Believability) اطمینان از درستی دادهها
 - قابلیت تفسیر: (Interpretability) آیا دادهها به سادگی قابل درک هستند؟

وظایف عمده در پیش پردازش دادهها

3) كاهش دادهها

- کاهش ابعاد (Dimensionality reduction)
 - کاهش تکثر (Numerosity reduction)
 - فشردهسازی دادهها (compression)

4) تغییرشکل دادهها

- نرمال سازی
- گسستهسازی
- تولید سلسله مراتب مفاهیم

1) پاکسازی دادهها

- پر کردن مقادیر گم شده
 - اصلاح دادههای نویزی
- شناسایی و حذف دادههای دورافتاده
 - و از بین بردن تناقضات

2) تجميع دادهها

 یک مفهوم ممکن است در پایگاههای مختلف نامهای مختلفی داشته باشد که منجر به ناسازگاری و تکرار میشود

پاکسازی دادهها

- دادهها در دنیای واقعی نادرست هستند: بسیاری از دادهها به طور بالقوه نادرست اند، دلایل: ابزار معیوب و ناقص، خطای انسانی یا کامپیوتری، خطای انتقال
 - دادههای ناکامل: (incomplete) ویژگی مقدار ندارد، فقدان ویژگیهای مورد علاقه یا تنها دارای دادههای تجمیعی
 - به عنوان مثال : شغل= "" (فاقد داده)
 - دادههای نویز: (noisy) حاوی نویز، اشتباهات یا دادههای پرت
 - به عنوان مثال : حقوق = "10-" (خطا)
 - ناسازگاری در دادهها: (inconsistent) شامل اختلاف در کد یا نام، به عنوان مثال
 - سن= " ۴۲ ", تاریخ تولد= "۱۳۸۹/۴/۲۳"
 - "A, B, C" دستهبندی فعلی "1, 2, 3", دستهبندی فعلی
 - تفاوت بین رکوردهای تکراری
 - عمدی: (Intentional) (پنهان کردن دادههای از دست رفته)
 - ۱ ژانویه به عنوان روز تولد همه؟

دادههای ناقص (Missing Values)

- دادهها همیشه در دسترس نیستند
- مثال:بسیاری از رکوردها، مقدار ثبت شدهای برای ویژگیهای مختلف ندارند
 - · گمشدن دادهها به دلیل:
 - نقص تجهيزات
 - به دلیل ناسازگاری با دیگر دادههای ثبت شده حذف شدهاند
 - دادهها به دلیل سوء تفاهم وارد نشدهاند
 - دادههای خاصی ممکن است در زمان ورود اطلاعات، مهم قلمداد نشوند
 - نبود تاریخ ثبت یا تغییر دادهها

چگونگی رفتار با دادههای Miss؟

- انادیده گرفتن رکورد: معمولا زمانیکه برچسب کلاس موجود نباشد، انجام می شود (در زمان دسته بندی) زمانی که درصد مقادیر از دست رفته برای هر ویژگی، بطور قابل توجهی متفاوت باشد، موثر نیست
 - 2) پر کردن مقادیر از دست رفته به صورت دستی :خسته کننده +غیرعملی؟
 - 3) پر کردن خودکار با روشهای زیر:
 - یک ثابت جهانی: به عنوان مثال، نا شناخته "unknown"، یک کلاس جدید!
- میانگین ویژگی (به عنوان مثال دادههای نرمال از میانگین و دادههای چوله از میانه استفاده شود)
 - میانگین ویژگی برای همه نمونههای متعلق به همان کلاس: هوشمندانهتر
- محتمل ترین مقدار: مبتنی بر استنتاج همچون فرمول های بیزین یا درخت تصمیم

دادههای نویزی

- و نویز:خطای تصادفی یا واریانس در یک متغیر اندازه گیری شده
 - مقادیر نادرست ویژگی به دلیل
 - نقص در ابزار جمع آوری دادهها
 - مشكلات ورود دادهها
 - مشكلات انتقال دادهها
 - محدودیت تکنولوژی
 - تناقض در قراردادهای نامگذاری
 - سایر مشکلات دادهها، نیاز به پاک کردن دادهها دارند
 - رکورد تکراری
 - اطلاعات ناقص
 - اطلاعات متناقض

چگونگی برخورد با دادههای نویزی

Binning (1

- ابتدا دادهها مرتب شده و تقسیم به دستههای با فرکانس تکرار یکسان(equal-frequency) می شوند.
 - - * تقسیمبندی دادهها با فراوانی یکسان bins:

- Bin 1: 4, 8, 9, 15
- Bin 2: 21, 21, 24, 25
- Bin 2: 26, 28, 29, 34
- Bin 1:9,9,9,9
- Bin 2: 23, 23, 23, 23
- Bin 3: 29, 29, 29, 29
- Bin 1: 4, 4, 4, 15
- Bin 2: 21, 21, 25, 25
- Bin 3: 26, 26, 26, 34

« هموارسازی توسط میانگین:

« هموارسازی توسط میانه مرزها:

چگونگی برخورد با دادههای نویزی

- (Regression) رگرسیون
- هموار کردن دادهها به کمک سازگار کردن آنها با تابع رگرسیون
 - 3) خوشەبندى
 - شناسایی و حذف دادههای پرت

4) ترکیب بازرسی کامپیوتر و انسان

تشخیص مقادیر مشکوک بصورت خودکار سپس بررسی آنها توسط عامل
 انسانی (به عنوان مثال تعامل با دادههای دورافتاده)

پاکسازی دادهها به عنوان یک رویه

- (Data discrepancy detection) تشخیص اختلاف دادهها
- - بررسی قانون منحصر به فرد بودن، قانون توالی و قانون null
 - استفاده از ابزارهای تجاری
- تمیزکردن داده: استفاده از دانش زمینه (به عنوان مثال، کد پستی، املای کلمات) جهت تشخیص خطاها و ایجاد اصلاحات
- حسابرسی دادهها: با تجزیه و تحلیل دادهها برای کشف قوانین و ارتباط برای شناسایی متخلفان (مثال استفاده از همبستگی و خوشهبندی برای پیدا کردن دادههای پرت)
 - (Data migration and integration) مهاجرت و یکپارچه سازی داده ها
 - ابزار مهاجرت دادهها: اجازه تحولاتی برای خاص شدن
- ابزارهای ETL (استخراج/انتقال/بارگذاری): اجازه دادن به کاربران برای تعیین تبدیلات از طریق یک رابط
 کاربر گرافیکی
 - - (Integration of the two processes) تجميع دو فرايند
 - تکراری و تعاملی (به عنوان مثال Potter's wheel)

تجميع دادهها

- ادغام دادهها
- ترکیب دادهها از منابع متعدد در یک انباره منسجم
- ا دغام شماها (Schema integration) ؛ مانند B.cust = A.cust-id
 - ادغام ابردادهها (metadata) از منابع مختلف
 - (1) مشكل شناسايي موجوديت (Entity identification problem)
- باید مشخص شود که یک ویژگی از منبع اول معادل کدام ویژگی از منبع دوم است
 - در یک منبع مقادیر به صورت H و S است در منبع دوم 1 و O
- باید مشخص شود دو منبع موجودیتهایی را شناسایی کنیم که هر دو یک چیز را توصیف میکنند
 - Bill Clinton = William Clinton •
 - و تشخیص و برطرف نمودن ناسازگاری مقادیر داده
 - برای یک موجودیت دنیای واقعی، مقادیر ویژگی از منابع مختلف، متفاوت است.
- دلایل احتمالی: نمایشهای متفاوت، مقیاس های مختلف، به عنوان مثال، متریک در مقابل واحد بریتانیا

بررسی افزونگی در تجمیع دادهها(۲)

- 2) افزونگی داده ها اغلب هنگامی رخ می دهد که پایگاه داده های متعدد ادغام می گردند.
 - شناسایی شی: ویژگیها یا اشیا ممکن است نام های مختلف در پایگاه دادههای مختلف داشته باشند.
 - داده قابل اشتقاق: یکی ویژگی ممکن است مشتق از یک ویژگی در جدولی دیگر
 باشد. به عنوان مثال، درآمد سالانه
 - ویژگیهای افزونه را میتوان با تحلیل همبستگی (correlation) یا کوواریانس(covariance) تشخیص داد

بررسی افزونگی در تجمیع دادهها

- · برخی از افزونگیها را می توان با تحلیل همبستگی شناسایی نمود.
- با داشتن دو ویژگی، چنین تحلیلی می تواند میزان وابستگی دو ویژگی را نسبت به
 هم بسنجد
 - می کنیم. χ^2 استفاده می کنیم. (a) برای دادههای اسمی، ما از تست (کای-دو)
 - b) برای ویژگیهای عددی، ما استفاده می کنیم از correlation coefficient و کواریانس، هر دو نحوهی ارتباط ویژگیها را نمایان میسازند

تحلیل همبستگی(دادههای اسمی)

- ابتدا جدول Contingency را تکمیل میکنیم به این صورت که در سطر مقادیر اسمی یک ویژگی و در ستون مقادیر ویژگی دوم قرار میگیرند
 - خانههای جدول تعداد حالات موجود در دادهها را نشان میدهند
- به طور مثال در جدول زیر ۲۵۰ حالت (fiction,male) داریم که به این اعداد فراوانی مشاهده شده observed frequency می گویند و با Oij نشان می دهند

	male	female	Total
fiction	250 (90)	200 (360)	450
non_fiction	50 (210)	1000 (840)	1050
Total	300	1200	1500

Note: Are gender and preferred_reading correlated?

اعداد داخل پرانتز، فراوانی مورد انتظار (expected frequence) هستند که به روش زیر محاسبه می شوند

$$e_{ij} = \frac{count(A = a_i) \times count(B = b_j)}{n}, \qquad e_{11} = \frac{count(male) \times count(fiction)}{n} = \frac{300 \times 450}{1500} = 90,$$

تست کای-دو

حال بر اساس این جدول تست χ^2 محاسبه می شود \star

$$\chi^{2} = \sum \frac{(Observed - Expected)^{2}}{Expected}$$

	male	female	Total
fiction	250 (90)	200 (360)	450
non_fiction	50 (210)	1000 (840)	1050
Total	300	1200	1500

Note: Are gender and preferred_reading correlated?

$$\chi^2 = \frac{(250 - 90)^2}{90} + \frac{(50 - 210)^2}{210} + \frac{(200 - 360)^2}{360} + \frac{(1000 - 840)^2}{840} = 507.93$$