	•			n_frugivores			full.ref Quintero, E., Rodríguez-Sánchez, F., & Jordano, P. (2023). Reciprocity and interaction effectiveness in generalised mutualisms among free-living
1 i 2 i		ind_01_01 ind_01_02	40 40	27 16	1080 640		species. Ecology Letters, 26(1), 132–146. https://doi.org/10.1111/ele.14141 Quintero, E., Rodríguez-Sánchez, F., & Jordano, P. (2023). Reciprocity and interaction effectiveness in generalised mutualisms among free-living species. Ecology Letters, 26(1), 132–146. https://doi.org/10.1111/ele.14142
3 i	ind	ind_02_01	35	10	350	137	Isla, J., Jácome-Flores, M., Arroyo, J. M., & Jordano, P. (2023). The turnover of plant–frugivore interactions along plant range expansion: Consequences for natural colonization processes. Proceedings of the Royal Society B: Biological Sciences, 290(1999), 20222547. https://doi.org/10.1098/rspb.2022.2547 Isla, J., Jácome-Flores, M., Arroyo, J. M., & Jordano, P. (2023). The turnover of plant–frugivore interactions along plant range expansion:
4 i	ind	ind_02_02	35	10	350	154	Consequences for natural colonization processes. Proceedings of the Royal Society B: Biological Sciences, 290(1999), 20222547. https://doi.org/10.1098/rspb.2022.2548 Isla, J., Jácome-Flores, M., Arroyo, J. M., & Jordano, P. (2023). The turnover of plant–frugivore interactions along plant range expansion:
5 i 6 i		ind_02_03 ind_03_01	35 13	11	385 130	148	Consequences for natural colonization processes. Proceedings of the Royal Society B: Biological Sciences, 290(1999), 20222547. https://doi.org/10.1098/rspb.2022.2549 Vergara-Tabares, D. L., Blendinger, P. G., Tello, A., Peluc, S. I., & Tecco, P. A. (2022). Fleshy-fruited invasive shrubs indirectly increase native tree
		ind_03_02	14	10	140	33	seed dispersal. Oikos, 2022(2). https://doi.org/10.1111/oik.08311 Vergara-Tabares, D. L., Blendinger, P. G., Tello, A., Peluc, S. I., & Tecco, P. A. (2022). Fleshy-fruited invasive shrubs indirectly increase native tree seed dispersal. Oikos, 2022(2). https://doi.org/10.1111/oik.08311
8 i 9 i		ind_03_03 ind_03_04	14 13	13 12	182 156	46 41	Vergara-Tabares, D. L., Blendinger, P. G., Tello, A., Peluc, S. I., & Tecco, P. A. (2022). Fleshy-fruited invasive shrubs indirectly increase native tree seed dispersal. Oikos, 2022(2). https://doi.org/10.1111/oik.08311 Vergara-Tabares, D. L., Blendinger, P. G., Tello, A., Peluc, S. I., & Tecco, P. A. (2022). Fleshy-fruited invasive shrubs indirectly increase native tree seed dispersal. Oikos, 2022(2). https://doi.org/10.1111/oik.08311
		ind_03_05	12	11	132	29	Vergara-Tabares, D. L., Blendinger, P. G., Tello, A., Peluc, S. I., & Tecco, P. A. (2022). Fleshy-fruited invasive shrubs indirectly increase native tree seed dispersal. Oikos, 2022(2). https://doi.org/10.1111/oik.08311 Vergara-Tabares, D. L., Blendinger, P. G., Tello, A., Peluc, S. I., & Tecco, P. A. (2022). Fleshy-fruited invasive shrubs indirectly increase native tree
11 i		ind_03_06 ind_04_01	11 18	7 17	77 306	25 87	seed dispersal. Oikos, 2022(2). https://doi.org/10.1111/oik.08311 Rodríguez-Sánchez, F. (2010). An integrative framework to investigate species responses to climate change: Biogeography and ecology of relict trees in the mediterranean. PhD Thesis. Universidad de Sevilla.
13 i	ind	ind_05_01	19	20	380		Jordano, P. (1995). Frugivore-Mediated Selection on Fruit and Seed Size: Birds and St. Lucie's Cherry, Prunus Mahaleb. Ecology, 76(8), 2627–2639. https://doi.org/10.2307/2265833 Jordano, P., & Schupp, E. W. (2000). Seed Disperser Effectiveness: The Quantity Component and Patterns of Seed Rain for Prunus mahaleb. Ecological Monographs, 70(4), 591-615. https://doi.org/10.2307/2657187
14 i 15 i		ind_06_01 ind_06_02	17 15	9	153 105	31 25	Friedemann, P., Côrtes, M. C., de Castro, E. R., Galetti, M., Jordano, P., & Guimarães Jr, P. R. (2022). The individual-based network structure of palm-seed dispersers is explained by a rainforest gradient. Oikos, 2022, e08384. https://doi.org/10.1111/oik.08384 Friedemann, P., Côrtes, M. C., de Castro, E. R., Galetti, M., Jordano, P., & Guimarães Jr, P. R. (2022). The individual-based network structure of palm-seed dispersers is explained by a rainforest gradient. Oikos, 2022, e08384. https://doi.org/10.1111/oik.08386
16 i 17 i		ind_06_03 ind_07_01	30 27	8 37	240 999	50	Friedemann, P., Côrtes, M. C., de Castro, E. R., Galetti, M., Jordano, P., & Guimarães Jr, P. R. (2022). The individual-based network structure of palm-seed dispersers is explained by a rainforest gradient. Oikos, 2022, e08384. https://doi.org/10.1111/oik.08385 Cecropia dataset - Frugivory course 2012 Intervales State Park - Pedro Jordano dataset
18 i 19 i	ind	ind_08_02	24 25	11	264 175	48	Gopal, A., Mudappa, D., Raman, T. S., & Naniwadekar, R. (2020). Forest cover and fruit crop size differentially influence frugivory of select rainforest tree species in Western Ghats, India. Biotropica, 52(5), 871-883. Gopal, A., Mudappa, D., Raman, T. S., & Naniwadekar, R. (2020). Forest cover and fruit crop size differentially influence frugivory of select
		ind_08_04	32	21	672	186	rainforest tree species in Western Ghats, India. Biotropica, 52(5), 871-883. Gopal, A., Mudappa, D., Raman, T. S., & Naniwadekar, R. (2020). Forest cover and fruit crop size differentially influence frugivory of select rainforest tree species in Western Ghats, India. Biotropica, 52(5), 871-883.
21 i 22 i		ind_09_01 ind_10_01	18 31	22 9	396 279	77 100	Crestani, A. C., Mello, M. A. R., & Cazetta, E. (2019). Interindividual variations in plant and fruit traits affect the structure of a plant-frugivore network. Acta Oecologica, 95, 120-127. Lamperty, T., Karubian, J., & Dunham, A. E. (2021). Ecological drivers of intraspecific variation in seed dispersal services of a common neotropical palm. Biotropica, 53(4), 1226–1237. https://doi.org/10.1111/btp.12966
23 i 24 i		ind_11_01 ind_12_02	24 15	15 11	360 165	129 43	FRUCORE project (unpublished) - Biotic interactions of Corema album - 2020-2021 Ramaswami, G., Somnath, P., & Quader, S. (2017). Plant-disperser mutualisms in a semi-arid habitat invaded by Lantana camara L. Plant Ecology, 218, 935-946.
25 i		ind_12_03	12	6	72 65	29 33	Ramaswami, G., Somnath, P., & Quader, S. (2017). Plant-disperser mutualisms in a semi-arid habitat invaded by Lantana camara L. Plant Ecology, 218, 935-946. Ramaswami, G., Somnath, P., & Quader, S. (2017). Plant-disperser mutualisms in a semi-arid habitat invaded by Lantana camara L. Plant
26 i 27 i		ind_12_04 ind_12_05	13 10	5 8	65 80	22	Ecology, 218, 935-946. Ramaswami, G., Somnath, P., & Quader, S. (2017). Plant-disperser mutualisms in a semi-arid habitat invaded by Lantana camara L. Plant Ecology, 218, 935-946.
		ind_12_08 ind_12_09	10 14	8 10	80 140	30 38	Ramaswami, G., Somnath, P., & Quader, S. (2017). Plant-disperser mutualisms in a semi-arid habitat invaded by Lantana camara L. Plant Ecology, 218, 935-946. Ramaswami, G., Somnath, P., & Quader, S. (2017). Plant-disperser mutualisms in a semi-arid habitat invaded by Lantana camara L. Plant
30 i	ind	ind_12_10	15	13	195	102	Ecology, 218, 935-946. Ramaswami, G., Somnath, P., & Quader, S. (2017). Plant-disperser mutualisms in a semi-arid habitat invaded by Lantana camara L. Plant Ecology, 218, 935-946. Jácome-Flores, M. F. et al. 2020. Interaction motifs variability in a Mediterranean palm under environmental disturbances: the mutualism—
31 i 32 i		ind_13_01 ind_13_02	39 24	6	234 144	70	Jácome-Flores, M. E. et al. 2020. Interaction motifs variability in a Mediterranean palm under environmental disturbances: the mutualism—antagonism continuum. — Oikos 129: 367–379. Jácome-Flores, M. E. et al. 2020. Interaction motifs variability in a Mediterranean palm under environmental disturbances: the mutualism—antagonism continuum. — Oikos 129: 367–379.
		ind_14_01 ind_15_01	15 26	9 11	135 286	59	Guerra, T. J. et al. 2017. Intraspecific variation in fruit–frugivore interactions: effects of fruiting neighborhood and consequences for seed dispersal. – Oecologia 185: 233–243. SUMHAL project - Biotic interactions of Juniperus macrocarpa - 2021-2022 and 2022-2023
35 i	ind	ind_16_01 ind_16_02	26 28	9	234 280	72 84	Miguel, M.F., Jordano, P., Tabeni, S. and Campos, C.M. (2018), Context-dependency and anthropogenic effects on individual plant–frugivore networks. Oikos, 127: 1045-1059. Miguel, M.F., Jordano, P., Tabeni, S. and Campos, C.M. (2018), Context-dependency and anthropogenic effects on individual plant–frugivore
		ind_16_03	54	10	540	112	networks. Oikos, 127: 1045-1059. Miguel, M.F., Jordano, P., Tabeni, S. and Campos, C.M. (2018), Context-dependency and anthropogenic effects on individual plant–frugivore networks. Oikos, 127: 1045-1059.
		ind_16_04 ind_16_05	35 29	8	280 261	61 99	Miguel, M.F., Jordano, P., Tabeni, S. and Campos, C.M. (2018), Context-dependency and anthropogenic effects on individual plant–frugivore networks. Oikos, 127: 1045-1059. Miguel, M.F., Jordano, P., Tabeni, S. and Campos, C.M. (2018), Context-dependency and anthropogenic effects on individual plant–frugivore networks. Oikos, 127: 1045-1059.
40 i	ind	ind_17_01 ind_18_01	26 10	16 16	416 160	93	Networks. Olkos, 127: 1045-1059. Vissoto, M., Vizentin-Bugoni, J., Sendoya, S. F., Gomes, G. C., & Dias, R. A. (2022). Plant height and spatial context influence individual connectivity and specialization on seed dispersers in a tree population. Oecologia. https://doi.org/10.1007/s00442-022-05142-7 SUMHAL project - Biotic interactions of Phillyrea angustifolia - 2021-2022
42 i	ind	ind_18_02 ind_19_01	9	12	108	41	SUMHAL project - Biotic interactions of Phillyrea angustifolia - 2021-2022 Thiel, S., Willems, F., Farwig, N., Rehling, F., Schabo, D. G., Schleuning, M., Shahuano Tello, N., Töpfer, T., Tschapka, M., Heymann, E. W., & Heer, K. (2023). Vertically stratified frugivore community composition and interaction frequency in a liana fruiting across forest strata. Biotropica,
		ind_20_01 ind_21_01	19 22	14 12	266 264	62	n/a(n/a). https://doi.org/10.1111/btp.13216 SUMHAL project - Biotic interactions of Osyris lanceolata - 2022-2023 Jayanth, A., Isvaran, K., & Naniwadekar, R. (2024). Drivers of intraspecific variation in seed dispersal can differ across two species of fleshy-fruited
		ind_21_02	20	13	260		savanna plants. Biotropica, 56(3), e13322. https://doi.org/10.1111/btp.13322 Jayanth, A., Isvaran, K., & Naniwadekar, R. (2024). Drivers of intraspecific variation in seed dispersal can differ across two species of fleshy-fruited savanna plants. Biotropica, 56(3), e13322. https://doi.org/10.1111/btp.13323
		sp_01_01 sp_01_02	25 16	36 17	900 272	228 120	Olesen JM, Bascompte J, Dupont YL, Elberling H, Rasmussen C, Jordano P. 2011. Missing and forbidden links in mutualistic networks. Proceedings of the Royal Society B-Biological Sciences 278: 725-732. Olesen JM, Bascompte J, Dupont YL, Elberling H, Rasmussen C, Jordano P. 2011. Missing and forbidden links in mutualistic networks. Proceedings of the Royal Society B-Biological Sciences 278: 725-732.
		sp_02_01 sp_04_01	17 31	28 9	476 279	130 119	García-Castaño, J.L. (2011). Consecuencias demográficas de la dispersión de semillas por aves y mamíferos frugívoros en la vegetación mediterránea de montaña. Tesis doctoral. Beehler B. (1983) Frugivory and polygamy in birds of paradise. Auk, 100, 1-11.
51 :	sp	sp_06_01 sp_07_01	16 12	10	160 84	110	Frost P.G.H. (1980) Fruit-frugivore interactions in a South African coastal dune forest. In: Acta XVII Congressus Internationalis Ornithologici (ed. Noring R), pp. 1179-1184. Deutsche Ornithologische Ges., Berlin, Germany. Guitián J. (1983) Relaciones entre los frutos y los passeriformes en un bosque montano de la cordillera Cantabrica occidental. Unpubl. Ph. D.
53	sp	sp_07_01 sp_08_01 sp_10_01	35 11	29 14	1015 154	146	Thesis, Univ. Santiago, Spain. Galetti M. & Pizo M.A. (1996) Fruit eating birds in a forest fragment in southeastern Brazil. Ararajuba, Rev. Brasil. Ornitol., 4, 71-79. Snow, B.K. & Snow, D.W. (1988). Birds and berries. T. and A.D. Poyser, Calton, England.
56	sp	sp_11_01 sp_12_01	15 71	8 7	120 497		Noma, N. & Yumoto, T. (1997). Fruiting phenology of animal-dispersed plants in response to winter migration of frugivores in a warm temperate forest on Yakushima Island, Japan. Ecological Research, 12, Crome, F.H.J. (1975). The ecology of fruit pigeons in tropical Northern Queensland. Aust Wildl Res, 2, 155-185.
58	sp	sp_13_01 sp_14_01 sp_15_01	50 7 8	14 21 30	700 147 240		Snow B.K. & Snow D.W. (1971) The feeding ecology of tanagers and honeycreepers in Trinidad. Auk, 88, 291-322. Baird, J.W. (1980). The selection and use of fruit by birds in an Eastern forest. Wilson Bulletin, 92, 63-73. Menke, S., Böhning-Gaese, K. & Schleuning, M. (2012). Plant-frugivore networks are less specialized and more robust at forest-farmland edges than in the interior of a tropical forest. Oikos, 121, 1553-1566.
		sp_15_02	7	38	266		Menke, S., Böhning-Gaese, K. & Schleuning, M. (2012). Plant-frugivore networks are less specialized and more robust at forest-farmland edges than in the interior of a tropical forest. Oikos, 121, 1553-1566. Menke, S., Böhning-Gaese, K. & Schleuning, M. (2012). Plant-frugivore networks are less specialized and more robust at forest-farmland edges
		sp_15_03 sp_15_04	8	34 39	272 312	88 115	than in the interior of a tropical forest. Oikos, 121, 1553-1566. Menke, S., Böhning-Gaese, K. & Schleuning, M. (2012). Plant-frugivore networks are less specialized and more robust at forest-farmland edges than in the interior of a tropical forest. Oikos, 121, 1553-1566.
		sp_16_01 sp_17_01	15 33	49 88	735 2904	143 419	Pizo, M.A. (2004). Frugivory and habitat use by fruit-eating birds in a fragmented landscape of southeast Brazil. Ornitologia Neotropical, 15, 117,Äì126. Schleuning M, Bluthgen N, Florchinger M, Braun J, Schaefer HM, Bohning-Gaese K. 2011. Specialization and interaction strength in a tropical plant-
		sp_18_01	49	16	784	131	frugivore network differ among forest strata. Ecology 92: 26-36. Castro, E.R.D. (2007). Fenologia reprodutiva do palmito Euterpe edulis (Erecaceae) e sua influência na abundância de aves frugívoras na floresta atlântica. In: Instituto de Biociencias. Universidade Estadual Paulista "Juio de Mesquita Filho" Rio Claro, SP, Brazil. Correia, J.M.S. (1997). Utilização de espécies frutíferas de mata Atlântica na alimentação da avifauna da reserva biológica de Poço das Antas, RJ.
		sp_19_01 sp_20_01	13 13	45 30	585 390	183 145	In: Instituto de Biologia. UNB Alves, K.J.F. (2008). Composição da avifauna e frugivoria por aves em um mosaico sucessional na mata Atlântica. In: Instituto de Biociencias. Universidade Estadual Paulista, Julio de Mesquita Filho, Rio Claro, SP, Brazil.
		sp_21_01	9 25	30 28	270 700	92 90	Athie, S. (2009). Composiçãoda avifauna e frugivoriapor aves em um mosaico de vegetação secundária em Rio Claro, região centro-leste do estado de São Paulo Ferreira Fadini, R. & De Marco Jr., P. (2004). Interações entre aves frugívoras e plantas em um fragmento de mata atlântica de Minas Gerais.
		sp_22_01 sp_23_01	26	22	572	79	Ararajuba, 12, 97-103. Hasui, Erica. (1994). O papel das aves frugivoras na dispersao de sementes em um fragmento de floresta semidecidua secundaria em Sao Paulo, SP. USP Sao Paulo, Brazil.
71 s		sp_24_01 sp_25_01	22 12	20 15	440 180	67 32	Silva, R.F.d.M. (2011). Interações entre plantas e aves frugívoras no campus da Universidade Federal Rural do Rio de Janeiro. In: Instituto de Florestas. Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil. Ribeiro da Silva, F., Montoya, D., Furtado, R., Memmott, J., Pizo, M.A. and Rodrigues, R.R. (2015), The restoration of tropical seed dispersal potyerica. Poeter Fed. 23: 852 860, https://doi.org/10.1111/res.12244
		sp_25_02	23	29	667		networks. Restor Ecol, 23: 852-860. https://doi.org/10.1111/rec.12244 Ribeiro da Silva, F., Montoya, D., Furtado, R., Memmott, J., Pizo, M.A. and Rodrigues, R.R. (2015), The restoration of tropical seed dispersal networks. Restor Ecol, 23: 852-860. https://doi.org/10.1111/rec.12244 Ribeiro da Silva, F., Montoya, D., Furtado, R., Memmott, J., Pizo, M.A. and Rodrigues, R.R. (2015), The restoration of tropical seed dispersal
74 s		sp_25_03 sp_26_01	14 6	14 28	196 168	35 50	networks. Restor Ecol, 23: 852-860. https://doi.org/10.1111/rec.12244 Robinson, V. (2015). Interações entre aves frugívoras e plantas em um fragmento de mata atlântica de Minas Gerais. In: Instituto de BiocieÃÇncias. Universidade Estadual Paulista "Julio de Mesquita Filho" Rio Claro, SP, Brazil.
		sp_27_01 sp_28_01	30 18	58 8	1740 144		Rodrigues, S.B.M. (2015). Rede de interações entre aves frugivoras e plantas em una área de mata Atlântica no sudeste do Brasil. Universidade Federal de Sao Carlos, Campus Sorocaba, SP, Brazil. Burns, K.C. (2013). What causes size coupling in fruit-frugivore interaction webs? Ecology, 94, 295-300.
78	sp	sp_29_01	8	12	96	38	Albrecht, J., Bohle, V., Berens, D. G., Jaroszewicz, B., Selva, N., & Farwig, N. (2015). Variation in neighbourhood context shapes frugivore-mediated facilitation and competition among co-dispersed plant species. Journal of Ecology, 103(2), 526–536. https://doi.org/10.1111/1365-2745.12375
79	sp	sp_29_02	7	11	77	32	Albrecht, J., Bohle, V., Berens, D. G., Jaroszewicz, B., Selva, N., & Farwig, N. (2015). Variation in neighbourhood context shapes frugivore-mediated facilitation and competition among co-dispersed plant species. Journal of Ecology, 103(2), 526–536. https://doi.org/10.1111/1365-2745.12375 Albrecht, J., Bohle, V., Berens, D. G., Jaroszewicz, B., Selva, N., & Farwig, N. (2015). Variation in neighbourhood context shapes frugivore-
		sp_29_03	9	13	117	42	mediated facilitation and competition among co-dispersed plant species. Journal of Ecology, 103(2), 526–536. https://doi.org/10.1111/1365-2745.12375 Albrecht, J., Bohle, V., Berens, D. G., Jaroszewicz, B., Selva, N., & Farwig, N. (2015). Variation in neighbourhood context shapes frugivore-
		sp_29_04	8	13	104	36	mediated facilitation and competition among co-dispersed plant species. Journal of Ecology, 103(2), 526–536. https://doi.org/10.1111/1365-2745.12375 Albrecht, J., Bohle, V., Berens, D. G., Jaroszewicz, B., Selva, N., & Farwig, N. (2015). Variation in neighbourhood context shapes frugivore-
82 9		sp_29_05	8	10	80	29	mediated facilitation and competition among co-dispersed plant species. Journal of Ecology, 103(2), 526–536. https://doi.org/10.1111/1365-2745.12375 Albrecht, J., Bohle, V., Berens, D. G., Jaroszewicz, B., Selva, N., & Farwig, N. (2015). Variation in neighbourhood context shapes frugivore-
		sp_29_06 sp_29_07	8	10	80 88		mediated facilitation and competition among co-dispersed plant species. Journal of Ecology, 103(2), 526–536. https://doi.org/10.1111/1365-2745.12375 Albrecht, J., Bohle, V., Berens, D. G., Jaroszewicz, B., Selva, N., & Farwig, N. (2015). Variation in neighbourhood context shapes frugivore-mediated facilitation and competition among co-dispersed plant species. Journal of Ecology, 103(2), 526–536. https://doi.org/10.1111/1365-
		sp_29_07	10	13	130		2745.12375 Albrecht, J., Bohle, V., Berens, D. G., Jaroszewicz, B., Selva, N., & Farwig, N. (2015). Variation in neighbourhood context shapes frugivore-mediated facilitation and competition among co-dispersed plant species. Journal of Ecology, 103(2), 526–536. https://doi.org/10.1111/1365-
		sp_29_09	8	15	120	57	2745.12375 Albrecht, J., Bohle, V., Berens, D. G., Jaroszewicz, B., Selva, N., & Farwig, N. (2015). Variation in neighbourhood context shapes frugivore-mediated facilitation and competition among co-dispersed plant species. Journal of Ecology, 103(2), 526–536. https://doi.org/10.1111/1365-
		sp_29_10	9	16	144	41	2745.12375 Albrecht, J., Bohle, V., Berens, D. G., Jaroszewicz, B., Selva, N., & Farwig, N. (2015). Variation in neighbourhood context shapes frugivore-mediated facilitation and competition among co-dispersed plant species. Journal of Ecology, 103(2), 526–536. https://doi.org/10.1111/1365-
88	sp	sp_29_11	6	20	120	43	2745.12375 Albrecht, J., Bohle, V., Berens, D. G., Jaroszewicz, B., Selva, N., & Farwig, N. (2015). Variation in neighbourhood context shapes frugivore-mediated facilitation and competition among co-dispersed plant species. Journal of Ecology, 103(2), 526–536. https://doi.org/10.1111/1365-2745.12375
89	sp	sp_29_13	8	19	152	56	2745.12375 Albrecht, J., Bohle, V., Berens, D. G., Jaroszewicz, B., Selva, N., & Farwig, N. (2015). Variation in neighbourhood context shapes frugivore-mediated facilitation and competition among co-dispersed plant species. Journal of Ecology, 103(2), 526–536. https://doi.org/10.1111/1365-2745.12375
	•	sp_30_01 sp_32_01	22 34	17 20	374 680	78	Andrade, P., Mota, J. & Carvalho, A. (2011). Mutual interactions between frugivorous birds and plants in an urban fragment of Atlantic Forest, Salvador, BA. Revista Brasileira de Ornitologia, 19, 63-73. Yang, S., Albert, R. & Carlo, T.A. (2013). Transience and constancy of interactions in a plant-frugivore network. Ecosphere, 4, art147.
	sp	sp_33_01 sp_34_01	14 77	6	84 1386	22 196	Garcia, Q.S., Rezende, J.L.P. & Aguiar, L.M.S. (2000). Seed dispersal by bats in a disturbed area of Southeastern Brazil. Revista de Biología Tropical, 48, 125-128. Gorchov, D.L., Cornejo, F., Ascorra, C.F. & Jaramillo, M. (1995). Dietary overlap between frugivorous birds and bats in the peruvian amazon. Oikos,
94	sp	sp_35_01	35	14	490	95	74, 235-250. Palmeirim, J.M., Gorchov, D.L. & Stoleson, S. (1989). Trophic structure of a neotropical frugivore community: is there competition between birds and bats? Oecologia (Berl.), 79, 403-411. Longz, J.E. & Vaughan, C. (2004). Observations on the Role of Frugivorous Bats as Seed Dispersers in Costa Rican Secondary Humid Forests.
		sp_36_01 sp_37_01	35 43	14 15	490 645		Lopez, J.E. & Vaughan, C. (2004). Observations on the Role of Frugivorous Bats as Seed Dispersers in Costa Rican Secondary Humid Forests. Acta Chiropterologica, 6, 111-119. Heleno, R.H., Olesen, J.M., Nogales, M., Vargas, P. & Traveset, A. (2013). Seed dispersal networks in the Galapagos and the consequences of alien plant invasions. Proc Biol Sci, 280, 20122112.
	sp	sp_38_01	22	7	154 11 <i>4</i>	47 34	Hernandez-Montero, J.R., Saldana-Vazquez, R.A., Galindo-Gonzalez, J. & Sosa, V.J. (2015). Bat-fruit interactions are more specialized in shaded-coffee plantations than in tropical mountain cloud forest fragments. PLoS ONE, 10, e0126084. Hernandez-Montero, J.R., Saldana-Vazquez, R.A., Galindo-Gonzalez, J. & Sosa, V.J. (2015). Bat-fruit interactions are more specialized in shaded-
98 9		sp_38_02 sp_39_01	19 24	6 7	114 168	34 50	coffee plantations than in tropical mountain cloud forest fragments. PLoS ONE, 10, e0126084. Passos, F.C., Silva, W.R., Pedro, W.A. & Bonin, M.R. (2003). Frugivoria em morcegos (Mammalia, Chiroptera) no Parque Estadual Intervales, sudeste do Brasil. Revista Brasileira de Zoologia, 20, 511-517.
		sp_40_01 sp_41_01	13 17	7 20	91 340	30 86	Pedro, W.A. (1992). Estrutura de uma taxocenose de morcegos da reserva do Panga (Uberlandia, MG), com enfase nas relações troficas em Phyllostomidae (Mammalia: Chiroptera). Universidade Estadual de Campinas Campinas, SP, Brazil. Poulin, B., Wright, S.J., Lefebvre, G. & Calderon, O. (1999). Interspecific synchrony and asynchrony in the fruiting phenologies of congeneric bird-
102	sp	sp_42_01	56	20	1120	104	dispersed plants in Panama. Journal of Tropical Ecology, 15, 213-227. Sarmento, R., Alves-Costa, C.i.P., Ayub, A. & Mello, M.A.R. (2014). Partitioning of seed dispersal services between birds and bats in a fragment of the Brazilian Atlantic Forest. Zoologia (Curitiba, Impresso), 31, 245-255. Stiebel, H. & Bairlein, F. (2008). Frugivorie mitteleuropäischer Vögel I: Nahrung und Nahrungserwerb. Vogelwarte, 46, 1-23
104	sp	sp_43_01 sp_45_01	30 36	31 41	930 1476	127	Stiebel, H. & Bairlein, F. (2008). Frugivorie mitteleuropäischer Vögel I: Nahrung und Nahrungserwerb. Vogelwarte, 46, 1-23. Saavedra, F., Hensen, I., Beck, S. G., Böhning-Gaese, K., Lippok, D., Töpfer, T., & Schleuning, M. (2014). Functional importance of avian seed dispersers changes in response to human-induced forest edges in tropical seed-dispersal networks. Oecologia, 176, 837-848. Saavedra, F., Hensen, I., Beck, S. G., Böhning-Gaese, K., Lippok, D., Töpfer, T., & Schleuning, M. (2014). Functional importance of avian seed
105	sp	sp_45_02	20	23	460	52	dispersers changes in response to human-induced forest edges in tropical seed-dispersal networks. Oecologia, 176, 837-848.