Math 131AH: Homework #4

Due on February 8, 2023

Professor Marek Biskup

Nakul Khambhati

Problem 1

Let F be a non-empty set, $E = \mathcal{P}(F)$. We have already seen that this is a poset via \subset . We are asked to show that every $A \subset \mathcal{P}(F)$ i.e. every collection of subsets of F admits an infimum and supremum. First, we consider nonempty collections.

Let $A \neq \emptyset$. We show that $\sup(A) = \bigcup A$. By definition, $\forall X \in A : X \subset \bigcup A$. Now, let B be another upper bound for A. Then, $\forall X \in A : X \subset B \Rightarrow \bigcup A \subset B$. This shows that $\bigcup A$ is the least upper bound for A i.e. $\bigcup A = \sup(A)$.

Next, we show $\inf(A) = \bigcap A$. By definition, $\forall X \in A : \bigcap A \subset X$ so it is a lower bound. Let C be another lower bound for A i.e. $\forall X \in A : C \subset A \Rightarrow C \subset \bigcap A$. So, $\bigcap A$ is the greatest lower bound i.e. $\inf(A) = \bigcap A$.

Finally, we consider $A = \emptyset$. To prove that $\sup(\emptyset) = \emptyset$ it suffices to show that \emptyset is an upper bound. It will definitely be the smallest one as it is the minimal element of this poset. Similarly, to show $\inf(\emptyset) = F$ it suffices to show that F is a lower bound. To show that $\sup(\emptyset) = \emptyset$, we require: $\forall X \in \emptyset : X \subset \emptyset$. Since \emptyset is the emptyset, there exists no such X that can be compared. As a result, the statement is vacuously true. Similarly, $\forall X \in \emptyset : F \subset X$ is vacuously true so $\inf(\emptyset) = F$.

Problem 2

We define $m|n:=(\exists k\in\mathbb{N}':n=mk)$. We need to prove that this a partial order.

- 1. $\forall m: m=1m$ which implies that m|m
- 2. Let m|n and n|m. Then, $\exists k, l \in \mathbb{N}'$: m = kn, n = lm. Therefore, n = lkn. Since $n \neq 0, 1 = lk$. In \mathbb{N}' this implies that l = k = 1. Therefore, m = n.
- 3. Let m|n and n|k. So, $n=c_1m$, $k=c_2n$ for some $c_1,c_2\in\mathbb{N}'$. Therefore, $k=c_1c_1m$ so m|k.

Therefore this is a partial order. Now we show that $\inf(A)$ exists and $\sup(A)$ exists if A is bounded. Let $A \subset \mathbb{N}'$ such that $A \neq \emptyset$. It is clear that this set has a lower bound of 1 since $\forall m \in \mathbb{N}' : m = 1m$ so 1|m. For each $a \in A$ we can consider its prime factorization into some form $a = p_1^{k_1} \cdots p_n^{k_n}$. We can do this for all elements in A and then for each prime p_i listed, we look at the powers k_i that it corresponds to for various $a \in A$. This gives us a set of naturals indexed by $A \subset \mathbb{N}$. Therefore, we can consider the minimal element (ordered by \leq) of each such set, call it m_i . If all primes listed are p_1, \ldots, p_s then $\inf(A) = p_1^{m_1} \cdots p_s^{m_s}$. This is because, by construction, each $p_i^{m_i}$ divides all $a \in A$. Also, if some l divides all $a \in A$. Then, it must divide each of the prime factors $p_i^{m_i}$ listed earlier. In other words, $l|p_i^{m_i}$ for each l so $l|p_1^{m_1} \cdots p_s^{m_s}$. This concludes our proof as we have shown a greatest lower bound.

Similarly, let $A \subset \mathbb{N}'$ be a bounded subset. Then, we denote $u = \prod_{x \in A} x$. Since A is bounded, this is a finite product and we can write $u = x_1 x_2 \cdots x_n$. This is an upper bound on A as $\forall x \in A : x | u$. Therefore, we can now consider the set U of upper bounds (ordered by |) on A which is nonempty. This is a subset of \mathbb{N} and therefore has a minimal element when ordered by \leq . Let's call this $\min(U)$. We claim that $\sup(A) = \min(U)$ when A is ordered by |. We will prove this by contradiction. This is because $\sup(A)$ must lie in U. Therefore, if it is not the minimal element of U, there is an element that is a upper bound on A, call it u_0 such that $u_0 \leq \sup(A)$. This would in turn imply that $u_0 | \sup(A)$ which would contradict its minimality.

Problem 3

 \Rightarrow Assume that A is Dedekind infinite. Let $f:A\to A$ be an injective map such that $\exists a\in A: a\notin Im(f)$. We can then construct a map $i:\mathbb{N}\to A$ by recursive construction which is injective. This proves that A is unbounded as \mathbb{N} can be identified as a subset of A. For the construction, we first set i(0)=a. We then set i(n)=f(i(n-1)). We just need to verify that this is injective. Fix $n\in\mathbb{N}$. We will show inductively that $\forall m\neq n$ or WLOG $\forall m< n: i(m)\neq i(n)$. The base case is true since $i(0)=x\notin Im(f), i(n)\in Im(f)$. For the inductive step, we use the fact that f is injective. Assume f(m+1)=f(n) for m+1< n. But then f(i(m))=f(i(n-1)) so i(m)=i(n-1) which contradicts the the inductive hypothesis. This proves that i is injective and A is unbounded.

Math 131AH: Homework #4

 \Leftarrow Assume that A is unbounded. We first show that we can construct $f: \mathbb{N} \to A$ injective. Since A is unbounded, it is nonempty so choose $a \in A$. Then, set f(0) = a. We can recursively construct the map by choosing for f(n) some element in A that hasn't been chosen before i.e. $f(n) \notin \{f(0), f(1), \dots f(n-1)\}$. This is permitted by the axiom of choice and since A is unbounded. This map, by construction, is injective. We can easily modify this map to get another map $b: A \to A$ where b is injective but not surjective. We construct b by simply shifting the values in the image of f. Explicitly, b(f(0)) = f(1) and b(f(n)) = b(f(n+1)). This map is injective since f is and is not surjective since $f(0) \notin Im(b)$.

Problem 4

Let $A, B \subset \mathbb{Q}$ such that $\sup(A), \sup(B)$ exist and $A \subset B$. Since $\sup(B)$ exists, $\forall b \in B : b \leq \sup(B)$. In particular, $\forall a \in A : a \leq \sup(B)$. Therefore, $\sup(B)$ is an upper bound for A as well. By definition of $\sup(A)$, this must mean that $\sup(A) \leq \sup(B)$

Under these conditions, we can consider $\sup(A \cup B)$. We show that this exists. We know that $\sup(A)$ is an upper bound for A and $\sup(B)$ is an upper bound for B. Therefore, $\forall x \in A \cup B : x \leq \sup(A) \vee x \leq \sup(B) \Rightarrow x \leq \max\{\sup(A),\sup(B)\}$. Clearly, $\max\{\sup(A),\sup(B)\}$ is an upper bound for $A \cup B$. Now, let u be another upper bound on $A \cup B$. Then, $\forall x \in A \cup B : x \leq u$. Since $A \subset A \cup B$, $\sup(A) \leq u$. This follows from the previous part: if $A \subset B$, then $\sup(A) \leq \sup(B) \leq u$. This proves that $\sup(A \cup B) = \max\{\sup(A),\sup(B)\}$.

Problem 5

Consider $A + B := \{a + b, a \in A \land b \in B\}$. Assume that $\sup(A)$ and $\sup(B)$ exist. Let $a \in A, b \in B$. Then $a \le \sup(A), b \le \sup(B)$ so $a + b \le \sup(A) + \sup(B)$. So, $\sup(A) + \sup(B)$ is an upper bound on A + B. Now, let u be another upper bound on A + B. So, $\forall a, b : a + b \le u$. Then we can write $u \ge l + k$ where l, k are upper bounds on A and B respectively. Then, l + k is an upper bound on A + B. Therefore, $\sup(A) + \sup(B) \le l + k \le u$. By transitivity, $\sup(A) + \sup(B) \le u$ so $\sup(A + B) = \sup(A) + \sup(B)$.

Problem 6

Let A have a lower bound l i.e. $\forall a \in A : l \leq a$. Now consider the set $-A = \{-a : a \in A\}$. Then, $\forall (-a) \in -A : -a \leq -l$. Therefore, -l is an upper bound on the set -A. By the completeness of \mathbb{R} , $\sup(-A)$ exists. This means that for any upper bound u of -A, $\sup(-A) \leq u$. Therefore, for any lower bound l of A, $l \leq -\sup(-A)$. Therefore, $\inf(A) = -\sup(-A)$.

Problem 7

We need to show that we cannot define an order on \mathbb{C} . First note that $0 \neq i$ Assume that in some ordering we have 0 < i. Then since i is positive, multiplication by i preserves the ordering relation: $0 < i^2 \Rightarrow 0 < -1$ which is a contradiction. Instead, assume that i < 0. Then $i^2 > 0 \Rightarrow -1 > 0$ which is again a contradiction. Therefore, it is impossible to make C an ordered field. As the hint suggests, this is because -1 is a square and by our axioms of of an ordered field, a square must always be positive.