Read: p 43- 49 in Text

Go to: http://besocratic.colorado.edu/CLUE-Chemistry/activities/LondonDispersionForce/1.2-

interactions-0.html

Page 1: Watch the simulation on page 1 Read about London dispersion forces (p 43 - 49)

Page 2 and 3 (click next at the bottom of the page)

1.	What kinds of energy do the various energy "meters" and graphs record? What is the
	relationship between all these types of energy?

2.	Draw a picture of the potential energy change as the two helium atoms approach each other
	Label the place where the two atoms would be most stable.

3. Why does the **potential** energy go down as the atoms approach? (Read in text)

4. What happens to the **kinetic** energy as the helium atoms approach? Why?

5. What happens to the **total** energy as the helium atoms approach? Why?