خصائص العناصر الانتقالية

Ш											III	
Ве											В	
Mg											Αl	
Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	
Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	ln	
Ва		Hf	Та	W	Re	Os	lr	Pt	Au	Hg	T/	
Ra												

- تقع بين المجموعتين II و III
- أمثلة :الحديد (Fe) والنحاس (Cu) والنيكل (Ni) والنيكل (Ni) والبلاتين (Pt).

الخصائص الفيزيائية للعناصر الانتقالية:

- 1. الصلادة والمتانة: مثل التيتانيوم (Ti) الذي يستخدم في صناعة رؤوس معدات الحفر.
- 2. القدرة العالية على التوصيل الكهربائي: مثل الذهب (Au) الذي يستخدم في صناعة الدوائر الكهربائية.
- 3. درجة انصهار مرتفعة جدا: مثل التنجستن (W) الذي يستخدم في صناعة أسالك المصابيح الكهربائية.
 - 4. بعضها له خصائص مغناطيسية: مثل الحديد والكوبالت والنيكل.

الخصائص الكيميائية للعناصر الانتقالية:

- 1. مقاومة للتآكل: مثل الكروم (Cr) بسبب انخفاض نشاطها الكيميائي.
- 2. تكون أملاحما مركبات ملونة: عند إذابتها في الماء لذا تساعد في التحليل الكيميائي.
 - 3. تظهر أكثر من حالة للتكافؤ: مثل الحديد II والحديد III.
- 4. بعضها يعمل كعوامل حفازة: أي تسرع التفاعلات الكيميائية دون أن تتغير في نهايتها.