Electron Scattering on A=3 Nuclei from MARATHON

Jason Bane

University of Tennessee

jbane1@vols.utk.edu

March 23, 2019

The MARATHON Experiment

MeAsurement of F_2^n/F_2^p , d/u RAtios and A=3 EMC Effect in Deep Inelastic Electron Scattering off the Tritium and Helium MirrOr Nuclei.

- Lightest and simplest mirror system
 - Number of protons in ³H = neutrons in ³He
- Differences in the nuclear effects are small
- Improve the current measurement and understanding of F_2^n/F_2^p ratio
- Restrict the assumptions and parameters made in the model calculations of the down to up quark distribution ratio
- 6 students from 4 universities

Jason Bane (UTK) MARATHON A=3 March 23, 2019 2 / 13

Jefferson Lab Hall A

Cross Section Analysis

Exacting Yield from Data

$$\frac{d\sigma}{d\Omega dE'} = \frac{\textit{Yield}}{\textit{Luminosity}} = \frac{\textit{Ne-BG}}{\textit{Luminosity}*\epsilon*\textit{Acc}(E',\theta)}$$

- Luminosity \equiv # of electrons per scattering centers, needs correction due to density changes
- $oldsymbol{\epsilon} = ext{efficiencies}, ext{ will focus on particle ID efficiency}$
- BG = background
- $Acc(E', \theta)$ = acceptance function for data

Cross section by Monte carlo ratio

$$\begin{aligned} \textit{Yield}_{\textit{data}} &= \frac{(\textit{N}_{e}-\textit{BackGround})}{\textit{Efficency}} = \textit{L} * \sigma^{\textit{data}} * (\Delta \textit{E}'\Delta\Omega) * \textit{A} (\textit{E}'\theta) \\ \textit{Yield}_{\textit{MC}} &= \textit{L} * \sigma^{\textit{mod}} * (\Delta \textit{E}'\Delta\Omega) * \textit{A} (\textit{E}'\theta) \; \frac{\textit{d}\sigma}{\textit{d}\Omega \textit{d}\textit{E}'} = \sigma^{\textit{mod}} * \left[\frac{\textit{Yield}_{\textit{data}}(\textit{E}',\theta)}{\textit{Yield}_{\textit{MC}}(\textit{E}',\theta)} \right] \end{aligned}$$

The efficiency of electron selection

Identify Electrons

- Electron ID is done via the Cherenkov and two layers of a total calorimeter.
- Deposit large percentage of its energy into the total calorimeter system.
- Trigger significant amount of cherenkov radiation

Cherenkov vs. Total energy absorbed with selections for efficiency sampling

Efficiency of the selection

6/13

First and second layer of calorimeter with electron and non-electron sampling for

Determine the Efficiency

- Electron sampling in two detectors
- Make threshold cut in the third
- Overall PID efficiency > 98%

Total cerenkov ADC signal with electron and non-electron sampling

Background

$\frac{Ne-\mathbf{BG}}{Luminosity*\epsilon}$

- Pion contamination
- Charge Symmetric background

- End ap contamination
- Beta decay of tritium
- ullet Pion contamination is corrected for via the PID efficiency <1%
- Beta Decay of Tritium to Helium was discussed by Tyler Kutz Stony Brook University

End cap Contamination

Contamination from Aluminum end caps

- Normalize end caps of Empty target to Gas filled target
- Normalized by measured thickness of end caps
- Scan Vertex Z location
- 3% at low x_{bj} for Helium-3 and Tritium
- Study by Tong Su and Tyler Hague
- images from Tong Su

Charge Symmetric back ground

- High energy photons decay into an e⁺e⁻ pairs
- Account for the pair produced e⁻ by detecting the pair produced e⁺
- Used HRS positive polarity settings at kinematics 1,2 and 3
- Fit results with an exponential function to determine the contamination factor at high x_{Bj} kinematics.
- Contamination image from Tong Su

Monte Carlo Comparison

Compare Monte Carlo to Data

Spectrometer acceptance variables.

Top Left :theta(out of plane angle in rads from center) Top Right: Dp/p(momentum from center). Bottom Left :phi(in plane angle in rads from center) Top Right: Y target(vertex location in spectrometer coordinate frame).

Cross section via monte carlo ratio

Data to Monte Carlo ratio

Cross section via monte carlo ratio

Task still in progress

- Complete acceptance study and determine the systematics associated
- Study the systematic error from cross section model
- Finalize absolute cross section for helium-3, tritium, and deuterium
- Study nuclear corrections and their systematics
- EMC effect for A=3 nuclei

Special Thanks

- JSA and University of Tennessee
- The MARATHON students
- The Tritium group
- Hall A Collaboration
- Nadia Fomin and Doug Higinbotham