

Digital Image Processing: Introduction

By Dr. Hafeez ur Rehman

Taken and Modified from
Brian Mac Namee
Brian.MacNamee@comp.dit.ie

Introduction

"One picture is worth more than ten thousand words"

By Confucius

Soon you will realize that it's an understatement...

References

- "Digital Image Processing", Rafael C. Gonzalez & Richard E. Woods, Addison Wesley, 2002
 - Much of the material that follows is taken from this book

Contents

This lecture will cover:

- What is a digital image?
- What is digital image processing?
- History of digital image processing
- State of the art examples of digital image processing
- Key stages in digital image processing

What is a Digital Image?

A digital image is a representation of a twodimensional image as a finite set of digital values, called picture elements or pixels

What is a Digital Image? (cont...)

Pixel values typically represent gray levels, colours, heights, opacities etc

Remember digitization implies that a digital image is an <u>approximation</u> of a real scene

What is a Digital Image? (cont...)

Common image formats include:

- 1 sample per point (B&W or Grayscale)
- 3 samples per point (Red, Green, and Blue)
- 4 samples per point (Red, Green, Blue, and "Alpha", a.k.a. Opacity)

For most of this course we will focus on grey-scale images

What is Digital Image Processing?

Digital image processing focuses on two major tasks:

- 1. Improvement of pictorial information for human interpretation
- 2. Processing of image data for storage, transmission and representation for autonomous machine perception

Some argument about where image processing ends and fields such as image analysis and computer vision start

What is DIP? (cont...)

The continuum from image processing to computer vision can be broken up into low-, mid- and high-level processes

Low	Leve	l Process
-----	------	-----------

Input: Image
Output: Image

Examples: Noise removal, image

sharpening

Mid Level Process

Input: Image

Output: Attributes

Examples: Object

recognition, segmentation

High Level Process

Input: Attributes

Output: Understanding

Examples: Scene

understanding,

autonomous navigation

In this course we will stop here

History of Digital Image Processing

Early 1920s: One of the first applications of digital imaging was in the news-

paper industry

The Bartlane cable picture transmission service

Early digital image

- Images were transferred by submarine cable between London and New York
- Pictures were coded for cable transfer and reconstructed at the receiving end on a telegraph printer

Mid to late 1920s: Improvements to the Bartlane system resulted in higher quality images

- New reproduction processes based on photographic techniques
- Increased number of tones in reproduced images

Improved digital image

Early 15 tone digital image

1960s: Improvements in computing technology and the onset of the space race led to a surge of work in digital image

processing

- 1964: Computers used to improve the quality of images of the moon taken by the *Ranger 7* probe
- Such techniques were used in other space missions including the Apollo landings

A picture of the moon taken by the Ranger 7 probe minutes before landing

1970s: Digital image processing begins to be used in medical applications

- **1979:** Sir Godfrey N. Hounsfield & Prof. Allan M. Cormack share the Nobel Prize in medicine for the invention of tomography, the technology behind **Computerised Axial** Tomography (CAT) scans

image

1980s - Today: The use of digital image processing techniques has exploded and they are now used for all kinds of tasks in all kinds of areas

- Image enhancement/restoration
- Artistic effects
- Medical visualisation
- Industrial inspection
- Law enforcement
- Human computer interfaces

Examples: Image Enhancement

One of the most common uses of DIP techniques: improve quality, remove noise etc

Examples: Artistic Effects

Artistic effects are used to make images more visually appealing, to add special effects and to make composite images

Examples: The Hubble Telescope

Launched in 1990 the Hubble telescope can take images of very distant objects

However, an **incorrect mirror** made many of Hubble's

images useless

Image processing techniques were used to fix this

Wide Field Planetary Camera 1

Wide Field Planetary Camera 2

Examples: Medicine

Take slice from MRI scan of canine heart, and find boundaries between types of tissue

- Image with gray levels representing tissue density
- Use a suitable filter to highlight edges

Examples: GIS

Geographic Information Systems

- Digital image processing techniques are used extensively to manipulate satellite imagery
- Terrain classification
- Meteorology

Infrared imaging

Examples: GIS (cont...)

Night-Time Lights of the World data set

- Global inventory of human settlement
- Not hard to imagine the kind of analysis that might be done using this data

Visible + Infrared imaging

Examples: Industrial Inspection

Human operators are expensive, slow and unreliable

Make machines do the job instead

Industrial vision systems are used in all kinds of industries

Can we trust them?

X-Ray imaging

Examples: PCB Inspection

Printed Circuit Board (PCB) inspection

- Machine inspection is used to determine that all components are present and that all solder joints are acceptable
- Both conventional imaging and x-ray imaging

Examples: Law Enforcement

Image processing techniques are used extensively by law enforcers

- Number plate
 recognition for speed
 cameras/automated
 toll systems
- Fingerprint recognition
- Enhancement of CCTV images

Examples: HCI

Try to make human computer interfaces more natural

- Face recognition
- Gesture recognition

One application is the smart stay?

These tasks can be extremely difficult

Key Stages in Digital Image Processing

Key Stages in Digital Image Processing: Image Aquisition

Key Stages in Digital Image Processing: Image Enhancement

Key Stages in Digital Image Processing: Image Restoration

Key Stages in Digital Image Processing: Morphological Processing

Key Stages in Digital Image Processing: Segmentation

Key Stages in Digital Image Processing: Object Recognition

Key Stages in Digital Image Processing: Representation & Description

Key Stages in Digital Image Processing: Image Compression

Key Stages in Digital Image Processing: Colour Image Processing

Summary

We have looked at:

- What is a digital image?
- What is digital image processing?
- History of digital image processing
- State of the art examples of digital image processing
- Key stages in digital image processing

Next time we will start to see how it all works...