1 Pythagonean theorem:

Direction of a vectors

=>0, fon-13/4

Putance beforem vedos

3 Sum of vector:

(4) Distance between vectors:

p. Vector and Mahines

11-Norm distance =
$$\frac{|A|}{|A|} + \frac{|B|}{|B|} |U-V|_1$$

= $|5|+1-3|$
= 8

Multiplying a vector by a scalare:

6

Dot product examples

Quantities

Prices

2 apples

apples:\$3

4 bananas

baranas: \$5

1 cherry

cherris: \$2

$$= 2x3 + 4x5 + 1x2 \rightarrow 241 = 28$$

$$= 28$$

$$= 28$$

$$= 28$$

(0.0) | 101

O. but restore in beregottes in meters out is

(7) Norm of a vector using dot product:

(8) Orthogonal vectors have a dot product of 0:

30, two vectors are orthogonal if their dot product = 0

Geometric dot product

$$\frac{62}{3} = 0, peperdialor.$$

$$\frac{62}{3} = -22, Negative.$$

(10) Multiplying a matrix wit by a vector

1 can be represent as >

(11) can be represent as →

(11) Can be represent as -

From (1), (11) we can see that, confum matrix are same, So we

can write like this below >

if \$\vec{a}.\vec{a}=0 and \$\vec{a}.\vec{b}=0\$, then \$\vec{a}=0\$ and \$\vec{b}=\any other vectors.

(11) Vectore operation 58

Subtraction:

$$\overrightarrow{V} = (2,1)$$

$$\overrightarrow{V} = (1,2)$$

$$(9,3)$$

$$(9,3)$$

$$\overrightarrow{V} = \overrightarrow{V} = (1,-1)$$

Scalar Multiplication:

$$u = [2,1]$$
 $3\vec{v} : 3x[2,1]$
 $= [6,3]$
 $\vec{v} : (6,3)$

Vector operations rules:

Vector Norms: (To get the maximum values of the vectors using monomodization) (11 11) -> Norm sign (11) -> absolute sign

$$\chi = \begin{bmatrix} 2 \\ 5 \\ -3 \end{bmatrix} \rightarrow ||\chi||_1 = |2| + |5| + |-3|$$

1.01 . 1

a. Ore : 40

$$x = \begin{bmatrix} 2 \\ 5 \\ -3 \end{bmatrix} \rightarrow ||x||_2 = \begin{bmatrix} 2^2 + 5^2 + 43^2 \\ 4 + 25 + 9 \end{bmatrix}$$

$$= \begin{bmatrix} 38 \end{bmatrix}$$

Another way to represent 121/2

$$||x||_2 = \sqrt{x^T x}$$

$$|x||_2 = \sqrt{x^T x}$$

$$|x||_2 = \sqrt{x^T x}$$

$$|x||_2 = \sqrt{x^T x}$$

$$|x||_2 = \sqrt{x^T x}$$

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \end{array} \begin{bmatrix} 2 \\ 5 \\ -3 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \\ -3 \end{bmatrix}$$

$$\chi = \begin{bmatrix} 2 \\ 5 \\ -3 \end{bmatrix} \Rightarrow |2|, |5|, |-3|$$

Unit vector,
$$\hat{a} = \frac{3}{3^2 + 4^2}$$

Unit vector, $\hat{a} = \frac{a_x}{\|a\|_2}$, $\frac{a_y}{\|a\|_2}$

$$= \frac{3}{5}, \frac{4}{5}$$

There small arrows responsent unit vector.

The example of the example

For 3 dimension:

(A vector that starts from the origin, is a position rectore)

$$\vec{a} = 2\hat{i} + 3\hat{j} + \hat{k}$$

Magnitude of $\vec{a} = 11011_2 = \sqrt{2^2 + 3^2 + 1^2}$

Unit vector in the direction of a = 1 nagnifude of a x d a . 141

$$\Rightarrow \hat{a} = \frac{1}{\sqrt{14}} \left[2\hat{i} + 3\hat{j} + \hat{k} \right]$$
We know, $\hat{a} = 1$, so, $\hat{a} = \frac{1}{\sqrt{14}} \left[2\hat{i} + 3\hat{j} + \hat{k} \right] = 1$

$$\Rightarrow \hat{a} = \frac{2\hat{i}}{\sqrt{14}} + \frac{3\hat{j}}{\sqrt{14}} + \frac{2\hat{k}}{\sqrt{14}} = 1$$

18 Dot product of 2 vectors:

19 Cross Product

Cross preoduct resultant vector direction

Toll de de rector de recto

$$\vec{a} = (3, -3, 1), \vec{b} = (4, 0, 2)$$

Cross product $\vec{a} \times \vec{b} = \begin{vmatrix} i & j & k \\ 3 & -3 & 1 \\ 4 & 9 & 2 \end{vmatrix}$

=
$$i((-3x2)-(1x9))-j((3x2-(1x4))$$

+ $k((3x9)-(-3x-4))$

18 mp 1 300 3 :-

🔯 Vector Projections:

Projection of vector bona:

Projection B: 11 bl coso

We know that > a. b = (a) II bu cost

Anogedion of vector a on b:
$$\vec{a} = \vec{a} \cdot \vec{b}$$

Similarly $\vec{a} = \vec{a} \cdot \vec{b}$

Framples Find the prejection of vector a = [1,2], on vector b : [3,4]

magnitude of vector 11bl : \$ 3742.

vector projection proj a = a.b.

Linear Combination of vectorics

If one vectore is equal to the sum of scalar multiples of other vectors, it is said to be a linear combination of the other vectors

Example:
$$\begin{bmatrix} 1 & 1 \\ 6 & 1 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 3 \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 2 \times 1 + 3 \times 3 \\ 2 \times 2 + 3 \times 4 \end{bmatrix} = \begin{bmatrix} 11 \\ 6 \end{bmatrix}$$

Here, 2B is a sealar multiple, so as 3C. A is a linear combination of Band C.

Matrices Linear Transformation: (Simply defined on a charge of coordinates)

1500	1	3	1	_
Matrix ->	1	1	2	
11	ر			

$$\begin{array}{c|c}
\hline
3 & \\
\hline
1 & \\
\hline
2 & \\
\hline
0 & \\
\hline
\end{array} = \begin{bmatrix}
3 \\
1 \\
\hline
\end{array} \quad \begin{pmatrix} 1,0 \\
0 \\
\end{array} \rightarrow \begin{pmatrix} 3,1 \\
\end{array}$$

$$(0,0) \rightarrow (0,0)$$

We would only need

$$(3,0) \rightarrow (3,-1)$$

ų		U		•	
	?	7	0		2
1	?	3	01	11.44	-3

13/3	2 1 1	T	1 _ 1	3
?	?	0	W. A.	-1

$$\begin{array}{c|c}
3 & 2 & 0 \\
\hline
-1 & 3 & 1
\end{array} \rightarrow \begin{array}{c|c}
3 & 2 & 1 \\
\hline
-1 & 3 & 0
\end{array} \rightarrow \begin{array}{c|c}
3 & 2 & 1 \\
\hline
-1 & 3 & 0
\end{array} \rightarrow \begin{array}{c|c}
3 & 2 & 1 \\
\hline
-1 & 3 & 0
\end{array}$$

2	211	$3 + (-1) \times 1$
2_	IKO	3+2×1
	140	3+271

	(2.2)	(-(±,0))	5	0
XA	ъ.		2	4
	,		- 4	19

Tdentity Matrix: If this matrix is multiplied by some other matrix (X)

— It will give result 2

1	10	0	[3] 111 1,000
0	1	0	- Identity motivis
0	0	1	

	1	0	0	0	a	b	1 8
	0	1	0	0	6 2	-	
	0	0	P	0	9	2	
1	0	0	0	1	d	d	13 8

26 Inverse of a Matrix:

If we dot product matrix A. A-1 = identify KNEW WIT TO STATE WAS NOT US

a+2x(-1=)=0

Is inverse possible of this Matrix \rightarrow $\begin{array}{c}
1 & 1 \\
2 & 2
\end{array}$ $\begin{array}{c}
a + b = 1 \\
b + d = 0
\end{array}$ $\begin{array}{c}
a + b = 1 \\
2a + 2b = 0
\end{array}$ $\begin{array}{c}
2 & 2
\end{array}$

Here equations are contradictory

Also goes for 2b+2b=1, and b+d=0, they contradict

20, invense can't happen in this equation.

CS CamScanner

111111111111

27 So, which matrix com have an inverse?

In one word, the answer is it depends on singular and non singulare maticices.

If matrix is 8 non singular - inverse possible If matrix is zingular - inverse not possible Also, it can be said that ->

> if determinant is not = 0, -> inverse possible if determinant == 0, -> inverse not possible