

ELE489 – Fundamentals of Machine Learning Homework 1 – k-NN Implementation and Analysis

Alperen Özkan 2210357032

Introduction

In this assignment, I implemented the k-Nearest Neighbors (k-NN) algorithm from scratch in Python using only basic libraries like NumPy. I didn't use any built-in. I tested my implementation on the Wine dataset and analyzed how different values of **K** and three distance metrics (Euclidean, Manhattan, and Chebyshev) affect the accuracy.

Feature Correlation Heatmap

KDE and Pair Plots of Features with Some Classes

After visualizing the data using KDE and pair plots, I noticed that some features separate the classes better than others. For example, **Flavanoids**, **Alcohol**, and **Color Intensity** show clearer differences between classes, while features like **Malic Acid** have more overlap. This probably means that some features are more important for classification.

Pair Plots of Some Features

Comparison K Values

I tested different values of **K** (from 1 to 13). Based on the results:

- **Euclidean and Manhattan** distances performed very similarly. Both reached **100% accuracy** between K=5 and K=9.
- **Chebyshev** distance had lower accuracy overall. It started at around **86%** and went up to about **91%** as K increased.
- For **K=1 and K=3**, all metrics performed slightly worse, probably because small K values make the model more sensitive to noise.
- After **K=9**, Manhattan accuracy started to drop a bit, while Euclidean stayed constant at 100%.

Overall, the best performance was seen at **K=7** using **Euclidean or Manhattan** distance. Chebyshev was more unstable, so it might not be the best choice for this dataset.

Classification Accuracy for each Value of K(Euclidean)

Confusion Matrix (k=13, Euclidean)											
0		12	0		0		- 14 - 12 - 10				
Actual 1		0	14		0		- 8 - 6				
2		0	0		10		- 4 - 2				
0 1 Predicted			d	2		- 0					
		precision	n recall	f1-sco	re	support					
	1 2 3	1.00 1.00 1.00	1.00	1.0	99	12 14 10					
accuracy macro avg weighted avg		1.00		1.0 1.0	99	36 36 36					

Classification Accuracy for each Value of K(Manhattan)

Classification Accuracy for each Value of K(Chebyshev)

Confusion Matrix (k=13, Chebyshev)												
0	12		0	0		- 12 - 10 - 8						
Actual 1		1	12	1		- 6 - 4						
2		0	1	9		- 2 - 0						
0			1 Predicted	2		-0						
		precision	n recall	f1-score	support							
	1 2 3	0.93 0.93 0.96	2 0.86	0.96 0.89 0.90	12 14 10							
accuracy macro avg weighted avg		0.92 0.93		0.92 0.92 0.92	36 36 36							

Conclusion

To sum up:

- Euclidean distance with K=5 or K=7 gave the best results.
- Flavanoids, Color Intensity, and Alcohol were helpful features for distinguishing classes
- Chebyshev was less reliable and gave lower accuracy overall.
- The model worked best when K wasn't too small or too large—around 5 to 7 seems ideal for this dataset.

This project helped me understand how K and the distance metric affect k-NN performance, and how feature distributions impact classification.

GitHub Repository: https://github.com/aalperennozkann/ELE489-HW1