Decidability of Termination Problems for Sequential P Systems with Active Membranes

Michal Kováč

FMFI UK, Slovakia

1.7.2015

- P systems
 - Overview
 - Active membranes

- 2 Termination problems
 - Halting problem
 - Termination problems in active membranes

Membrane structure

- Sequential: in each step apply 1 rule
- Maximal parallel: in each step apply a maximal multiset of rules

- Sequential: in each step apply 1 rule
- Maximal parallel: in each step apply a maximal multiset of rules

- Sequential: in each step apply 1 rule
- Maximal parallel: in each step apply a maximal multiset of rules

- Sequential: in each step apply 1 rule
- Maximal parallel: in each step apply a maximal multiset of rules

- Sequential: in each step apply 1 rule
- Maximal parallel: in each step apply a maximal multiset of rules

- Sequential: in each step apply 1 rule
- Maximal parallel: in each step apply a maximal multiset of rules

- Sequential: in each step apply 1 rule
- Maximal parallel: in each step apply a maximal multiset of rules

- Sequential: in each step apply 1 rule
- Maximal parallel: in each step apply a maximal multiset of rules

- Sequential: in each step apply 1 rule
- Maximal parallel: in each step apply a maximal multiset of rules

- Sequential: in each step apply 1 rule
- Maximal parallel: in each step apply a maximal multiset of rules

Language of a P system

- The result of the computation is a multiset of objects, which is present in a specific membrane at a halting configuration
- The language generated by a P system is a set of results of all possible conputations.

Variants of rules

• cooperative $(a \mid b \mid b \rightarrow b)$ (universal [Păun, 1998])

Variants of rules

- cooperative $(a \mid b \mid b \rightarrow b)$ (universal [Păun, 1998])
- ullet non-cooperative (b
 ightarrow c) (PsCF [Sburlan, 2005])

Sequential P systems

Sequential P systems with cooperative rules

Sequential P systems

Sequential P systems with cooperative rules

- are equal to VASS \Rightarrow not universal [Ibarra et al., 2005]
- with priorities are universal [Ibarra et al., 2005]
- with unbounded membrane creation are universal [Ibarra et al., 2005]

Sequential P systems

Sequential P systems with cooperative rules

- are equal to VASS \Rightarrow not universal [Ibarra et al., 2005]
- with priorities are universal [Ibarra et al., 2005]
- with unbounded membrane creation are universal [Ibarra et al., 2005]
- with inhibitors [Kováč, 2014]

- Simulation of a register machine
- Contents of register j is represented by the multiplicity of the object a_j
- SUB instruction is simulated by inhibitors

- Simulation of a maximal parallel P system
- Start with the same rules

- Simulation of a maximal parallel P system
- Start with the same rules

- Simulation of a maximal parallel P system
- Start with the same rules

- Simulation of a maximal parallel P system
- Start with the same rules

- Simulation of a maximal parallel P system
- Start with the same rules

- Simulation of a maximal parallel P system
- Start with the same rules

- Simulation of a maximal parallel P system
- Start with the same rules

- Simulation of a maximal parallel P system
- Start with the same rules

- Simulation of a maximal parallel P system
- Start with the same rules

- Simulation of a maximal parallel P system
- Start with the same rules

• Prevent the rule application on already rewritten objects

- Prevent the rule application on already rewritten objects
 - replace objects on the right side a with a'
 - add RESTORE phase

- Prevent the rule application on already rewritten objects
 - replace objects on the right side a with a'
 - add *RESTORE* phase
- $RUN \mid a \mid a \rightarrow RUN \mid a' \mid b'$
- $RUN \mid a \mid b \mid b \rightarrow RUN \mid b'$
- $RUN \mid b \rightarrow RUN \mid c'$

- Prevent the rule application on already rewritten objects
 - replace objects on the right side a with a'
 - add RESTORE phase
- $RUN \mid a \mid a \rightarrow RUN \mid a' \mid b'$
- $RUN \mid a \mid b \mid b \rightarrow RUN \mid b'$
- $RUN \mid b \rightarrow RUN \mid c'$
- RESTORE $\mid a' \rightarrow RESTORE \mid a$
- RESTORE $| b' \rightarrow RESTORE | b$
- RESTORE $\mid c' \rightarrow RESTORE \mid c$

ullet RUN | UNUSABLE $_1$ | UNUSABLE $_2$ | UNUSABLE $_3$ ightarrow RESTORE

- ullet RUN | UNUSABLE $_1$ | UNUSABLE $_2$ | UNUSABLE $_3$ ightarrow RESTORE
- RESTORE \rightarrow RUN $|_{\neg a'b'c'}$

Creating UNUSABLE objects (simple case)

- (3) : $b \to c$
- $RUN \rightarrow RUN \mid UNUSABLE_3 \mid_{\neg b, UNUSABLE_3}$

Creating UNUSABLE objects (complicated case)

- $\bullet \ (1): a \mid a \rightarrow a \mid b$
- $RUN \rightarrow RUN \mid UNUSABLE_1 \mid_{\neg a, UNUSABLE_1}$
- Wrong for exactly 1 occurrence of a

Promoting objects

- $RUN \mid a \rightarrow RUN \mid \dot{a} \mid_{\neg \dot{a}}$
- RUN | $b \rightarrow RUN \mid \dot{b} \mid_{\neg \dot{b}}$
- RUN | $c \rightarrow RUN$ | \dot{c} | $\neg \dot{c}$
- At most 1 object can be promoted.

Using promoted objects

- $RUN \mid a \mid \dot{a} \rightarrow a' \mid b'$
- $RUN \mid \dot{a} \mid b \mid b \rightarrow b'$
- RUN | \dot{a} | \dot{b} | $b \rightarrow b'$
- $RUN \mid a \mid \dot{b} \mid b \rightarrow b'$
- RUN | $\dot{b} \rightarrow c'$

Using promoted objects

- $RUN \mid a \mid \dot{a} \rightarrow a' \mid b'$
- $RUN \mid \dot{a} \mid b \mid b \rightarrow b'$
- RUN | \dot{a} | \dot{b} | $b \rightarrow b'$
- RUN | $a \mid b \mid b \rightarrow b'$
- $RUN \mid \dot{b} \rightarrow c'$
- $\bullet \ \ \textit{RUN} \rightarrow \textit{RUN} \ | \ \ \textit{UNUSABLE}_3 \ |_{\neg\textit{b},\dot{\textit{b}},\textit{UNUSABLE}_3}$
- $RUN o RUN \mid UNUSABLE_1 \mid_{\neg a, UNUSABLE_1}$

Multiple different objects on the left side

- (2) : $a \mid b \mid b \to b$
- $RUN \rightarrow RUN \mid UNUSABLE_2 \mid_{\neg a,\dot{a},UNUSABLE_2}$
- $RUN o RUN \mid UNUSABLE_2 \mid_{\neg b, UNUSABLE_2}$

Thanks for your attention!