Convolution Neural Networks

Date 2018.04.25

TA Yen

Mail: a94763075@163.com

kernel = filter = feature

步伐

Conv2D(filters=9,kernel_size=(3,3), strides=1,padding='same')

 $\begin{bmatrix}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{bmatrix}$

1 _{×1}	1,0	1,	0	0
O _{×0}	1,	1,0	1	0
0,,1	0 ×0	1,1	1	1
0	0	1	1	0
0	1	1	0	0

Image

4	

Convolved Feature

padding

• Conv2D(filters=9,kernel_size=(3,3), strides=1, padding='same'

with zero padding:

02	00	0,	0	0	0	0
0,	2_{0}	2_{0}	3	3	3	0
00	0,	1,	3	0	3	0
0	2	3	0	1	3	0
0	3	3	2	1	2	0
0	3	3	0	2	3	0
0	0	0	0	0	0	0

1	6	5
7	10	9
7	10	8

padding

• Conv2D(filters=9,kernel_size=(3,3), strides=1, padding='valid'

without padding:

30	3,	22	1	0
02	02	10	3	1
30	1,	22	2	3
2	0	0	2	2
2	0	0	0	1

12	12	17
10	17	19
9	6	14

Pooling layer

• MaxPooling2D((2, 2),padding='same')

Feature	Мар			
6	4	8	5	Max-Pooling
5	4	5	8	
3	6	7	7	
7	9	7	2	

Define loss function_L1_norm

from keras import backend as K

- def loss(y_true,y_pred):
- return (K.mean(K.abs(y_true-y_pred)))

$$S = \frac{1}{n} * \sum_{\{i=1\}}^{n} |y_i - f(x_i)|$$

Mean Square Error(MSE)

$$S = \frac{1}{n} * \sum_{\{i=1\}}^{n} |y_i - f(x_i)|^2$$

Model

• 2 ways to build model


```
image width=256
image height=256
input_channel=3
model = Sequential()
model.add(Conv2D(
            filters=9,
            kernel size=(3,3),
            padding='same',
            input_shape=(image_width,image_height,input_channel),
            activation='relu'
model.add(MaxPooling2D(pool size=(2,2)))
model.add(Flatten())
model.add(Dense(10))
model.add(Activation('softmax'))
model.summary()
```

```
image width=256
image height=256
input channel=3
input_shape = (image_width, image_height, input_channel)
inputs = Input(shape=input_shape)
Layer1 = Conv2D(9, (3, 3), strides=1,padding='same',activation='relu')(inputs)
Layer2 = MaxPooling2D(pool size=(2,2))(Layer1)
Layer3 = Flatten()(Layer2)
Layer4 = Dense(10)(Layer3)
Layer5 = Activation('softmax')(Layer4)
model = Model(inputs=inputs, outputs=Layer5)
model.summary()
```

model.summary()

Layer (type)	Output Shape	Param #
conv2d_1 (Conv2D)	(None, 256, 256, 9)	252
max_pooling2d_1 (MaxPooling2	(None, 128, 128, 9)	0
flatten_1 (Flatten)	(None, 147456)	Ø
dense_1 (Dense)	(None, 10)	1474570
activation_1 (Activation)	(None, 10)	0
Fotal params: 1,474,822 Frainable params: 1,474,822 Non-trainable params: 0		

Scoring 15%

• Code: must

• Report: 7%

• Kaggle: 8%

Kaggle:

- Kaggle: https://goo.gl/DQNxN4
- Deadline: 5/13 23:59
- Upload limit 5 times/day
- Must over baseline
- Final Score= $3 + 5 * \frac{Baseline-YourScore}{Baseline-MinScore}$

HW4: Predict "Push"

Data

• :PTT(training:1800*20,testing:4000)

推5嘘0

Setting About Baseline:

HW3 Embedding

- +Conv1D
- +Flatten
- +Dense
- +Activation

```
embedding_1 (Embedding)

convld_1 (ConvlD)

flatten_1 (Flatten)

dense_1 (Dense)

activation_1 (Activation)
```

Submission Format

• id, good, bad

```
id,good,bad
0,41,0
1,38,3
2,23,2
3,37,0
4,15,2
5,43,5
6,16,3
```

Loss LIMIT

- You should define loss by yorself:
- α , β , γ you can free to adjust

$$loss = \frac{1}{n} \sum_{i=0}^{n} (\alpha |y_i - f(x_i)| + \beta |y_i - f(x_i)|^2 + \gamma |y_i - f(x_i)|^3)$$

Report: 7%

- Don't submit word
- You have to submit .html
- Here is the report's example
- https://hackmd.io/s/Byn-DMnnz
- Word, No TypeSetting Report will get 0 %

Report: 7%

- Model description (Draw and Explain and Loss)(3%)
- Preprocessing Explain(3%)
- How do you improve your performance (1%)

Final Submission should be like as follow:

98A?