Overview of Machine Learning Recap on Descriptive Statistics Data Science in Python Summary and Further Readings

S1: Overview of Machine Learning, Recap on Descriptive Statistics, Data Science in Python

Phanuphat Srisukhawasu (Oad)

Machine Learning Department NUS Fintech Society

Week 3 (26 Aug 2024 - 30 Aug 2024)

Overview of Machine Learning Recap on Descriptive Statistics Data Science in Pythor Summary and Further Readings

Session Outline

Overview of Machine Learning

What is Machine Learning? Types of Machine Learning

Recap on Descriptive Statistics

Central Tendency Measurement Variabilitiy Measurement

Data Science in Python

Data Loading with Pandas
Data Manipulation with Pandas
Data Visualization with Seaborn

But what is machine learning?

Definition in modern data science

General definition:

The field of study that give computers the ability to learn without being explicitly programmed.

— Arthur Samuel, 1959

Engineering-oriented definition:

A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with E.

— Tom Mitchell, 1997

Are we overcomplicating things?

Let's take a look at this diagram

Traditional Programming vs. Machine Learning

TRADITIONAL PROGRAMMING

MACHINE LEARNING

- ► **Traditional programming** is used when we know the specific *rules and logic* needed to write a program.
- ▶ In machine learning, we have the *inputs and outputs*, but the computer figures out the rules on its own.

We know the rules for most problems

Write a program that classifies numbers into odd and even

- ▶ Recall from math class, a number n is said to be even if n is divisible by 2 without a remainder.
- A number *n* is said to be odd if *n* is an integer and *n* is not an even number.

```
def is_even(n: int):
    if n % 2 == 0:
        return True
    return False
```

Note: The else statement is unnecessary since the code executes only if n is not divisible by 2.

There are some problems that have no exact rules

Write a program that detects spam emails (junk folder)

- Spam emails often contain specific phrases or keywords such as "you're so close to FREE snacks!".
- ► In reality, there are millions of possible configurations, making it impractical for humans to manually account for all.
- ► This illustrates one of the broad applications of Machine Learning (ML). With **sufficient data**, it is possible to develop a program that effectively detects spam emails.
- During the training program, you will work with various ML models that handle different types of data.
- ▶ **Key Point:** ML improves with data. Higher quality data leads to better performance of the program.

Supervised Learning

Models that learn on labeled data

- Supervised learning algorithms are given labeled data to learn the relationship between the inputs and outputs.
- ▶ **Regression** is one of the common supervised problems where the models learn to map the inputs to the numeric outputs.
 - The simplest regression model is Linear Regression $(y = a_0 + a_1x)$, which is used for modeling linear data.
 - E.g. house price prediction, stock price prediction, etc.
- ► Another common task is **Classification**. This is when the model learn to map the inputs to the categorical outputs.
 - ► Tasks likes spam/not spam email classification are called Binary Classification (two possible outputs.)
 - Tasks that involve more than two categories like handwritten character classification are called Multiclass Classification.

Unsupervsied Learning

Models that learn on unlabeled data

▶ Unsupervsied learning algorithms are given unlabeled data to learn the *underlying patterns between the inputs*. A common task is the models that group similar data together, we refer to the task as **Clustering**.

Reinforcement Learning

Models that learn to play games!

- In reinforcement learning, an agent observe the environment to perform an action A at a state S, achieving a reward R.
- ► The agent will learn to perform an action in each state such that it maximimizes the rewards.

Mean, Median, Mode

- ▶ When describing some data, we have two main things we want to look at: central tendency and variability.
- ► **Central Tendency** is the statistical measurement to identify the *single value that represents an entire data*.
 - ▶ Mean $\overline{X} = \sum X/N$ (N is the number of data points.)
 - ▶ **Median** is the instance which is located at the *middle of the* data when is sorted in ascending order.
 - ▶ **Mode** is the instance that appears the most frequent in the data (usually used with *categorical data*.)
- Note: Median is usually a better representative than Mean when the dataset is skewed or not symmetrical.

Standard Deviation and Variance

- ▶ **Variability** is the statistical measurement to tell *how far* apart data points lie from each other and the center.
 - ▶ **Standard Deviation** (*S.D.*) measures how far apart each data point is from the Mean in average.

$$S.D. = \sqrt{\frac{\sum_{i=1}^{N}(x_i - \overline{X})^2}{N}}$$

- Variance is the squared of S.D.
- There are also some other common metrics to measure the variability such as Range (the differences between the maximum and minimum values).

Data structures in Pandas

- ▶ Pandas is a Python that library used for working effectively with data sets.
- ► There are 2 main types of structures in Pandas, namely **Series** and **Dataframe**.

Series		;	Series				DataFrame		
	apples			oranges			apples	oranges	
0	3	+	0	0	=	0	3	0	
1	2		1	3		1	2	3	
2	0		2	7		2	0	7	
3	1		3	2		3	1	2	

Note: The numbers on the left of the first column are called **indices**. Like most programming languages, they start from zero all the way to N-1 for a sequence with length of N.

Loading Data with Pandas

▶ If you use Google Colab, Pandas is already installed. You can import it to your notebook using the following code.

```
import pandas as pd
# simply install with `!pip install pandas` if you haven't
```

- If you store data as CSV file, use pd.read_csv().
- If you store data as Excel file, use pd.read_excel().
- ► The loaded dataset is stored as a dataframe. We usually assigned it to df.
- ► For example, df = pd.read_csv("data/iris.csv"). The string inside the bracket is the relative path to the file.

Inspecting Data with Pandas (1)

▶ df.head() will give you the first 5 rows of the dataframe.

	sepal.length	sepal.width	petal.length	petal.width	variety
0					Setosa
1					Setosa
2					Setosa
3					Setosa
4		3.6			Setosa

df.info() will give you some useful information about the dataframe like the data types of each column.

Inspecting Data with Pandas (2)

- Note: df.info() also shows the numbers of non-null instances in each column. For now, you can refer to the null instances as the missing values (empty cells).
- ► Finally, you can get the some descriptive statistics values using df.describe().

	sepal.length	sepal.width	petal.length	petal.width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000	1.199333
std	0.828066	0.435866	1.765298	0.762238
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

Filter and Slice Data

- You can use df.iloc[rows, cols] to select portion of dataframe by indices. Also, you can use df.loc[rows, cols] to select by labels.
- Examples:
 - df.iloc[1] will select a row with index 1.
 - df.loc[:, "sepal.length"] will select all rows from the column sepal.length.
 - df.loc[:, ["sepal.length", "sepal.width"]] will select all rows from the column sepal.length and sepal.width.
 - df.iloc[3:8, :] will select all rows with the indices of 3, 4, 5, 6, 7 from all columns.
 - ▶ df.loc[df["petal.width"] >= 1.3] will select all rows and columns from the data which have the values in the column petal.width greater than or equal to 1.3.

Sort Data

➤ You can sort a dataframe based on values on one column in both ascending and descending order.

Note: If you specify ascending=False, it will be sorted in the descending order. It is also a good practice to store the sorted data in a new dataframe to avoid overwriting.

Group Data to Perform Some Calculation

- (Extra) You may notice that the column variety is a categorical data. To check all possible categories, simply use df["variety"].unique(). This will output array(['Setosa', 'Versicolor', 'Virginica'], dtype=object).
- ► For example, one may want to find the mean length of sepal for the flower in each group:

```
df.groupby(by="variety")['sepal.length'].mean()

✓ 0.0s

variety

Setosa 5.006

Versicolor 5.936

Virginica 6.588

Name: sepal.length, dtype: float64
```

Basic Seaborn Plots

Bar plots

- Seaborn (import seaborn as sns) allows you to create complex plots with ease (though we will only cover the basics.)
- You can create bar plot like this: sns.barplot(data=df, x="sepal.width", y="variety")

Basic Seaborn Plots

Histograms

You can create a histogram like this: sns.histplot(data=df, x="petal.width")

Basic Seaborn Plots

Scatter Plots

You can create a scatter plot like this: sns.scatterplot(data=df, x="petal.width", y="petal.length")

Key Takeaways

- Machine Learning: Learns patterns from data, unlike traditional programming where rules are predefined. Key types: supervised, unsupervised, and reinforcement learning.
- ▶ **Statistics** are the backbone of data analysis, providing tools to describe, summarize, and infer from data.
- ▶ **Pandas** is essential for data manipulation, enabling tasks like data cleaning, transformation, and analysis.
- ► **Seaborn** helps create basic <u>visualizations</u> to explore data patterns and relationships.
- ▶ Just a reminder, we are assigning your first lab today. The due date is on 11:59 PM of the next week's training date.

Recommended Resources

- Corey Schafer's Pandas Tutorials Playlist: https://www.youtube.com/playlist?list=PLosiE80TeTsWmV9i9c58mdDCSskIFdDS
- ► Take a look at the gallery (examples) for Matplotlib (another library for data visualization). This will give you an idea of different plots you could create: https://matplotlib.org/stable/gallery/index.html
- Great <u>textbook</u> for future reference throughout the training program: Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow
- ▶ Weights & Biases' Math for Machine Learning Playlist: (<u>Here</u>) Note: W&B is actually an Al development tool that allows you to track experiments with different configurations.