CT561: Systems Modelling & Simulation

Lecture 10: SIR Model Part 2

Prof. Jim Duggan,
School of Engineering & Informatics
National University of Ireland Galway.
https://github.com/JimDuggan/SDMR

NUI OÉ C

Gaillimh Lecture 10 – SIR Model Part 2

CT 561 2020/21

1

Overview

- Force of Infection (Lambda)
- Threshold Dynamics
- Net Reproduction Number and Herd Immunity
- Exploring downstream effects with the SEIR model (with clinical and sub-clinical streams)

NUI Galway OÉ Gaillimh Lecture 10 – SIR Model Part 2

CT 561 2020/21

(1) Force of Infection (Lambda)

The rate at which susceptible individuals become infected per unit time. It is also known as the incidence rate or the hazard rate.

IR = Susceptible * Contact Rate * Infectivity / N * Infectious = Susceptible * FOI

NUI Ga OÉ Gai

Galway Lecture 10 – SIR Model Part 2

CT 561 2020/21

3

Beta

The per capita rate at which two specific individuals come into contact per unit time.

IR = Susceptible * Contact Rate * Infectivity / N * Infectious = Susceptible * FOI

= Susceptible * Beta * Infectious

NUI Galway OÉ Gaillimh

Lecture 10 – SIR Model Part 2

CT 561 2020/21

Challenge 9.1

- Suppose we have a town with 100,000 (=N) individuals, of which 1% were infectious with a novel pathogen, with $R_0 = 14$ and recovery delay (D) =7 days. Calculate the:
 - Effective per capital contact rate $\boldsymbol{\beta}$
 - Force of infection λ

NUI Galwa OÉ Gaillim Lecture 10 – SIR Model Part 2

CT 561 2020/21

5

(2) Threshold Dynamics of SIR Model

For the number of infectious people to increase, the inflow must be greater than the outflow.

Assume S==N in a totally susceptible population

$$c I\left(\frac{S}{N}\right) i > \frac{I}{d} \longrightarrow c \left(\frac{S}{N}\right) i > \frac{1}{d} \longrightarrow c i d > 1$$

NUI Galw OÉ Gaillin Lecture 10 – SIR Model Part 2

CT 561 2020/21

R₀ Threshold Phenomenon (Keeling & Rohani 2008)

- Assuming everyone in the population is initially susceptible, a pathogen can only invade if $R_0 > 1$
- Due to differences in demographic rates, rural-urban gradients, and contact structures, different populations may be associated with different values of R₀ for the same disease.
- R_0 depends on the disease and the population

NUI Galway OÉ Gaillimh Lecture 10 – SIR Model Part 2

CT 561 2020/21

7

Observation

"The chain of transmission eventually breaks due to a decline in **Infectives**, NOT due to a complete lack of **Suceptibles**"

IR = Contact Rate * Susceptible* (Infectious/N) * Infectivity

NUI Galway OÉ Gaillimh

Lecture 10 – SIR Model Part 2

CT 561 2020/21

Challenge 9.2

- Estimate whether an epidemic will occur in the following scenario:
 - -N = 100,000
 - It's a novel pathogen
 - The average contacts per day are 8
 - The probability of infection given contact between and infectious and susceptible person is 0.25
 - The duration of infectiousness is 1 day

Lecture 10 – SIR Model Part 2

CT 561 2020/21

9

Net Reproduction Number

- R_n is the net reproduction number
- Useful to evaluate as an epidemic proceeds
- $R_n = (S/N) * R_0$
- "The average number of secondary infectious persons resulting from one infectious person in a given population in which some individuals may already be immune because of infection or vaccination"
- When R_N <= 1, no epidemic occurs the infectious stock goes to zero

Lecture 10 – SIR Model Part 2

CT 561 2020/21

Challenge 9.3

- Calculate the net reproduction number in the following scenario
 - -N = 100,000
 - 40,000 People are immune
 - The average contacts per day are 8
 - The probability of infection given contact between and infectious and susceptible person is 0.25
 - The duration of infectiousness is 2 days

NUI Galway OÉ Gaillimh Lecture 10 – SIR Model Part 2

CT 561 2020/21

14

Exploring the R_N equation

$$R_n = R_0 * \left(\frac{S}{N}\right)$$

If
$$\left(\frac{S}{N}\right) = \frac{1}{R_0}$$
 then $R_n = 1$

$$HIT = 1 - \frac{1}{R_0}$$

- When S/N = 1/R₀, then each infectious person will lead to a single transmission (R_n=1)
- If the proportion susceptible is less than this, incidence will decrease
- This allows us to define a critical threshold for S, under which a disease will not spread

NUI G OÉ Gai Lecture 10 – SIR Model Part 2

CT 561 2020/21

15

(3) Herd Immunity

- If (1- 1/R₀) proportion of the population can be vaccinated, the disease will not spread.
- Why? Because $R_N = (S/N) * R_0$
- If R₀ = 2, we vaccinate 50% of the population
- $R_N = (5000/10000) * 2 = 1$, one person infects only one, so no spread.

****		4		1
HIT	=	1	_	$\overline{R_0}$

Infection	Serial Interval (Range)	R _o	Herd Immunity
Diphtheria	2-30 Days	6-7	85
Influenza	2-4 Days	2-4	50-75
Malaria	20 Days	5-100	80-99
Measles	7-16 Days	12-18	83-94
Pertussis	5-35 Days	12-17	92-94

NUI Galwa OÉ Gaillim Lecture 10 – SIR Model Part 2

CT 561 2020/21

Challenge 9.5 – Downstream Effects

- Build on the workshop three problem (see overleaf)
- Add a hospitalization stream to the model
- Assume that 5% of clinical people are hospitalized 6 days after they are no longer infectious
- Assume that, on average, they stay in hospital for 10 days. Assume it's a second order delay.
- When people leave hospital they are assumed to be recovered.
- Show the hospitalization rates, and the total number in hospital

NUI Galway OÉ Gaillimh Lecture 10 – SIR Model Part 2

CT 561 2020/21

CT561 - Workshop #3

Extending the SIR Model

The aim of this workshop is to extend the SIR model in the following ways:

- 1. Add an exposed stock that models people who have become infected but are not yet infectious. Assume the duration of exposure is 3 days.
- 2. There are now two kinds of infectious people (assume an infectious delay of 5 days):
 - a. Sub-clinical, where they do not show symptoms. Sub-clinical people are half as infectious as clinically infectious people.
 - b. Clinical, where people show symptoms
- 3. The breakdown between the two types of infectious people is determined by a constant called *clinical fraction*.

Lecture 10 – SIR Model Part 2

CT 561 2020/21

23

23

- 4. Add an estimate of R_0 to the model, given that R_0 is defined as "the average number of secondary infectious persons resulting from a typical infectious person following their introduction to a totally susceptible population."
- 5. Run for a population of 1M people, where 10 people are initially infectious. Assume people have, on average, 10 contacts per day, and the infectivity for clinical people is 10%. Assume that 40% of the population do not show any symptoms.
- 6. Run the model for different values of the clinical fraction (0, .2, .4, .6, .8, 1.0) and explain the results. How do these value impact R_0 ?

Lecture 10 – SIR Model Part 2

CT 561 2020/21