Online reconciliation of electricity consumption forecasts

Margaux Brégère Séminaire Parisien - IHP

Motivations

Electrical system

Electricity consumption forecasting

As electricity is hard to store, balance between production and demand must be strictly maintained

Forecast demand and adapt production accordingly

From dis-aggregated to aggregated level

Modeling new electrical uses (auto-consumption, electrical vehicles)

Designing demand response solutions

 \triangle Smart meters data is highly sensitive and erratic \bigcirc simulation models

Neighborhood / city level

Managing networks locally (Smart Grids)

Dispatching electricity at junctions between transport (high-voltage lines) and distribution (medium- and low-voltage lines) networks

National level

Managing the overall balance

Planning cross-border exchanges

Using various aggregated level forecasts

Benchmark forecasts at each aggregated levels

France: easier to forecast (smoother)

Consumer type: same behavior

Regions: local weather

• Correlated and connected times series through summation constraints

→ Reconciliation

Methods

Modeling

$$y_t = \begin{pmatrix} y_t^{\text{TOT}}, y_t^{1\cdot}, y_t^{2\cdot}, \dots, y_t^{k\cdot}, y_t^{1\cdot 1}, y_t^{1\cdot 2}, \dots, y_t^{1\cdot \ell}, y_t^{2\cdot 1}, \dots, y_t^{k\cdot \ell} \end{pmatrix}^{\text{T}}$$
All Households of Households of same households same region behavioral cluster and region

Modeling: summing matrix

With $m = 1 + k + k\ell$ the number of all times series to forecast and $n = k\ell$ the number of most disaggregated level time series, the summing matrix $S \in \{0,1\}^{m \times n}$ is:

With the most disaggregated level time series $b_t = \left(y_t^{11}, y_t^{12}, \dots, y_t^{1\ell}, y_t^{21}, \dots, y_t^{k\ell}\right)^T$, $y_t = Sb_t$

Another modeling: constraint matrix

With c the number of summation constraints

$$K \in \{-1, 0, 1\}^{m \times c}$$

$$y_t \in \text{Ker}(K)$$

Reconciliation

From base forecasts \hat{y}_t , construct reconciled forecasts \tilde{y}_t such that $\tilde{y}_t = S\tilde{b}_t$ or equivalently $\tilde{y}_t K = \mathbf{0}_c$

All linear reconciliation methods can be written as

$$\tilde{\mathbf{y}}_t = \mathbf{S} P \hat{\mathbf{y}}_t,$$

for some appropriately selected matrix $P \in \mathbb{R}^{n \times m}$

 ${\it P}$ is to project the base forecasts into bottom level disaggregated forecasts which are then summed by ${\it S}$

State of the art - Reconciliation

Bottom-up (Dunn, Williams, and DeChaine, 1976)

$$\hat{y}_{t} = \left(\Box, \Box, \Box, \ldots, \hat{y}_{t}^{1\,1}, \hat{y}_{t}^{1\,2}, \ldots, \hat{y}_{t}^{1\,\ell}, \hat{y}_{t}^{2\,1}, \ldots, \hat{y}_{t}^{k\,\ell} \right)^{\mathrm{T}} \rightarrow \tilde{y}_{t} = \left(\sum_{i=1}^{k} \sum_{j=1}^{\ell} \hat{y}_{t}^{i\,j}, \sum_{j=1}^{\ell} \hat{y}_{t}^{1\,j}, \sum_{j=1}^{\ell} \hat{y}_{t}^{2\,j}, \ldots, \sum_{j=1}^{\ell} \hat{y}_{t}^{k\,j}, \hat{y}_{t}^{1\,1}, \hat{y}_{t}^{1\,2}, \ldots, \hat{y}_{t}^{k\,\ell}, \hat{y}_{t}^{2\,1}, \ldots, \hat{y}_{t}^{k\,\ell} \right)^{\mathrm{T}}$$

$$\text{With } P = \left(\mathbf{0}_{n \times (m-n)} \middle| I_{n} \right), \ \tilde{y}_{t} = SP\hat{y}_{t}$$

• Top-down approaches (Gross and Sohl, 1990)

$$\hat{\mathbf{y}}_t = \left(\hat{\mathbf{y}}_t^{\text{TOT}}, \square, \ldots, \square, \square, \ldots, \square, \ldots, \square, \ldots, \square\right)^{\text{T}} \rightarrow \tilde{\mathbf{y}}_t = \hat{\mathbf{y}}_t^{\text{TOT}} \left(1, \sum_{j=1}^{\ell} p^{1j}, \sum_{j=1}^{\ell} p^{2j}, \ldots, \sum_{j=1}^{\ell} p^{kj}, p^{11}, p^{12}, \ldots, p^{1\ell}, p^{21}, \ldots, p^{k\ell}\right)^{\text{T}}$$

$$\text{With } P = \left(p \middle| \mathbf{0}_{n \times (m-n)}\right) \text{ where } p = \left(p^{11}, p^{12}, \ldots, p^{1\ell}, p^{21}, \ldots, p^{k\ell}\right)^{\text{T}}, \tilde{\mathbf{y}}_t = SP\hat{\mathbf{y}}_t$$

State of the art - Reconciliation

• Orthogonal ($\Sigma = I_m$) or oblique projection (Wickramasuriya, Athanasopoulos, and Hyndman, 2019)

$$\tilde{y}_t = SP_{\Sigma}\hat{y}_t$$
 with $P_{\Sigma} = \left(S^{T}\Sigma^{\dagger}S\right)^{-1}S^{T}\Sigma^{\dagger}$

Minimum trace (MinT) reconciliation: assuming base forecast errors are stationary conditionally to data observed,

Then the optimal reconciliation (which minimizes the variance of the reconciled forecast errors) is obtained for

$$\Sigma^{\star} = \mathbb{E}\left[\left(y_t - \hat{y}_t \right) \left(y_t - \hat{y}_t \right)^{\mathrm{T}} \middle| y_1, \dots y_{t-d} \right]$$

 Σ^{\star} is the variance-covariance matrix of the base forecast errors

Remarks:

- Stationarity implies unbiased base forecast
- Reconciled forecasts will also be unbiased $\Leftrightarrow SPS = S$
- Challenge: estimating the precision matrix Σ^{\dagger}
- Orthogonal projection: $\Sigma = I_m \iff \tilde{y}_t = \Pi_K \hat{y}_t$ with $\Pi_K = \left(I_m K^T \left(KK^T\right)^{-1}K\right)$

State of the art - Reconciliation

Game-theoretically procedure (Van Erven and Cugliari, 2015)

Game-theory set-up: reconciled forecast are obtained by solving the minimax optimization problem

$$\tilde{y}_t \in \underset{\tilde{y} \in \mathcal{A}}{\operatorname{arg \, min}} \quad \underset{y \in \mathcal{A} \cap \mathcal{B}}{\operatorname{max}} \left\{ \ell(y, \tilde{y}) - \ell(y, \hat{y}_t) \right\}$$

with $\mathscr{A} = \{y \mid \text{sommation constrains hold}\}$ and \mathscr{B} specifies information (confidence intervals around base forecast)

Result: if \mathscr{B} is a closed convex set with $\mathscr{A} \cap \mathscr{B} \neq \mathscr{O}$ and $\ell(y_t, \hat{y}_t) = ||Ay_t - A\hat{y}_t||_2^2$,

 $\tilde{y}_t = \text{Proj}_{\mathscr{A} \cap \mathscr{B}}(\hat{y}_t)$ (L2-projection after scaling according to A) and $\ell(y_t, \tilde{y}_t) \leq \ell(y_t, \hat{y}_t)$ (Pythagorean inequality) (no assumption on base forecasts)

Deep Learning approach (Leprince et al., 2023)

Train a neural network model with loss function: $\alpha \ell(y_t, \hat{y}) + (1 - \alpha) ||\hat{y} - SP_{\Sigma}\hat{y}||_2^2$

Online Hierarchical Forecasting for Power Consumption Data

Joint work with Malo Huard

$$y_t = \begin{pmatrix} y_t^{\text{TOT}}, y_t^{1\cdot}, y_t^{2\cdot}, \dots, y_t^{k\cdot}, y_t^{\cdot 1}, y_t^{\cdot 2}, \dots, y_t^{\cdot \ell}, y_t^{11}, y_t^{12}, \dots, y_t^{1\ell}, y_t^{21}, \dots, y_t^{k\ell} \end{pmatrix}^{\text{T}}$$
All Households of households of same behavioral behavioral cluster and region cluster

Three-step forecasting approach

Online aggregation: predict y_t from base forecasts (experts) $f_t^1, ... f_t^j$ with $p_t \cdot f_t = \sum_{i=1}^J p_t^j f_t^j$

- Introduced by Vovk (1990), Cover (1991), Littlestone and Warmuth, (1994)
- Effective at predicting
 - Time series (e.g., Mallet, Stoltz, and Mauricette, 2009)
 - Electricity consumption (Devaine, Gaillard, Goude, and Stoltz, 2013 and Gaillard, Goude, and Nedellec, 2016 - forecasting competition won)
- Recently extended to the hierarchical setting (Goehry, Goude, Massart, and Poggi, 2020)

Algorithm

Input

- Method for base forecast generation
- Online aggregation algorithm Agg
- Summation matrix S (or constraints matrix K)

For each level $\gamma \in \{\text{TOT}, 1 \cdot, 2 \cdot, ..., k \cdot, \cdot 1, \cdot 2, ..., \cdot \ell, 11, 12, ..., k\ell\}$

• Create a copy of Agg denoted Agg^{γ}

For t = 1, ..., T

- Generate base forecast $\hat{y}_t = \left(\hat{y}_t^{\gamma}\right)_{\gamma}$
- For each level γ
 - Agg^{γ} outputs $\bar{y}_t^{\gamma} = p_t^{\gamma} \cdot \hat{y}_t$
- Collect forecast $\bar{y}_t = \left(\bar{y}_t^{\gamma}\right)_{\gamma}$ and reconcile them with orthogonal projection: $\tilde{y}_t = S(S^TS)^{-1}S^T\bar{y}_t$ (or $\tilde{y}_t = \Pi_K\bar{y}_t$)
- For each level γ
 - Agg^γ observes y_t^γ and update p_{t+1}^γ

Assessment of the forecasts

To minimize the average prediction error $L_T = \frac{1}{T} \sum_{t=1}^T \frac{1}{m} \left\| y_t - \tilde{y}_t \right\|_2^2$ is equivalent to minimize, for a

given set $\mathcal{D} \subset \mathbb{R}^m$,

Linear combination of base forecasts

$$R_{T}(\mathcal{D}) = Tm \times L_{T} - \min_{U \in C_{\mathcal{D}}} \sum_{t=1}^{T} \left\| y_{t} - U^{T} \hat{y}_{t} \right\|_{2}^{2}$$
Approximation error

with $C_{\mathcal{D}}$ the set of matrices such that the forecasts satisfy the summation constraints and have all

their rows in \mathscr{D} : $C_{\mathscr{D}} = \{ U \in \mathbb{R}^{m \times m} \mid \forall y \in \mathbb{R}^m, KU^T = 0 \text{ and } \forall \gamma, U_{\gamma} \in \mathscr{D} \}$

Theorem

If for any \mathscr{D} such that, for any $\gamma \in \{\text{TOT}, 1 \cdot, 2 \cdot, ..., k \cdot, \cdot 1, \cdot 2, ..., \cdot \ell, 11, 12, ..., k\ell\}$, for T > 0, for any $\hat{y}_1, ..., \hat{y}_t$ and any $y_1^{\gamma}, ..., y_t^{\gamma}$, Algorithm Agg^{γ} provides a regret bound of the following form:

$$\sum_{t=1}^{T} \left(y_t^{\gamma} - \bar{y}_t^{\gamma} \right)^2 - \min_{u \in \mathcal{D}} \sum_{t=1}^{T} \left(y_t^{\gamma} - u \cdot \hat{y}_t \right)^2 \le B$$

then,

$$R_T(\mathcal{D}) = Tm \times L_T - \min_{U \in C_{\mathcal{D}}} \sum_{t=1}^T \left\| y_t - U^T \hat{y}_t \right\|_2^2 \le B \times m$$

Sketch of the proof: Pythagorean theorem + regret bound of the aggregation algorithm

Example with ML-Poly algorithm

Polynomially weighted average forecaster with multiple learning rates (ML-Poly) with gradient trick (Gaillard, 2015) competes against the best convex combination of benchmark forecast

$$\implies \mathscr{D} = \Delta_m$$

Under boundedness assumptions on observations y_t and base forecasts \hat{y}_t , the regret satisfies

$$R_T \le \mathcal{O}(m^{2/3}\sqrt{T\ln T})$$

ML-Poly:

Initialization:
$$p_1^{\gamma} = \left(\frac{1}{m}, \dots, \frac{1}{m}\right)$$

For $t = 1, \ldots$, the weight vector $p_{t+1}^{\gamma} = (p_{t+1}^{\gamma,i})_i$ is defined as

$$p_{t+1}^{\gamma,i} \propto \left(\eta_t^{\gamma,i} \sum_{t=1}^t 2(\bar{y}_t^{\gamma} - y_t^{\gamma})(\bar{y}_t^{\gamma} - \hat{y}_t^{\gamma,i}) \right)_+ \text{ with } \eta_t^{\gamma,i} = \left(E + \sum_{t=1}^t \left(2(\bar{y}_t^{\gamma} - y_t^{\gamma})(\bar{y}_t^{\gamma} - \hat{y}_t^{\gamma,i}) \right)^2 \right)^{-1}$$

Experiments

UK household electricity consumption

Underlying real data set

Electrical consumption records of 1,545 households over the period from April 20, 2009 to July 31, 2010

Variable	Description	Range / Value
Date	Current time	From April 20, 2009 to July 31, 2010 (half-hourly)
Consumption	Power consumption	From 0.001 to 900 kWh
Region	UK NUTS of level 3	UK- H23, -J33, -L15, -L16, -L21, -M21, or -M27
Temperature	Air temperature	From −20 °C to 30 °C
Visibility	Air visibility	From 0 to 10 (integer)
Humidity	Air humidity percentage	From 0% to 100%
Half-hour	Half-hour of the day	From 1 to 48 (integer)
Day	Day of the week	From 1 (Monday) to 7 (Sunday) (integer)
Position in the year	Linear values	From 0 (Jan 1, 00:00) to 1 (Dec 31, 23:59)
Smoothed temperature	Exponential smoothing	From −20 °C to 30 °C

From Energy
Demand Research
Project (Power
consumption of
~18,000 UK
households at halfhourly steps over
two years)

From NOAA (National Oceanic and Atmospheric Administration)

Created

Behavioral segmentation of the households

Experiment design

Double segmentation:

- Geographical, based on region information
- Behavioral

Meteorological data:

- One per region
- Convex combination of local meteorological variables for levels containing several regions

Base forecasts generation: Generalized Additive Models

Online aggregation algorithm: ML-Poly \rightarrow standardization of base forecasts and observations

Operational constraint: half-hourly predictions with one-day-delayed observations

	Start date	End date
Behavioral segmentation		
Benchmark generation model training	April 20, 2009	April 19, 2010
Benchmark and observation standardization		
Initialization of the aggregation	April 20, 2010	April 30, 2010
Model evaluation	May 1, 2010	July 31, 2010

Results – Mean Squared Error (MSE) on test period

	All aggregated levels	Global	Local
Benchmark	455.5	205.8	66.3
Projection	450.7	200.8	66.3
Aggregation	397.9	172.0	61.2
Aggregation + Projection	396.0	170.3	61.1

Clustering	Benchmark	Bottom-up	Projection	Aggregation	Aggregation + Projection
Region	205.8	189.9	201.3	187.8	186.7
Behavior	_	208.4	205.2	179.3	179.3
Region + Behavior	_	201.0	200.8	172.0	170.3

Results – Mean Squared Error (MSE) on test period

Original boxplots

Box-plots trimmed at 220 kWh²

Distribution over the test period of the daily mean squared error of global consumption for the four strategies "Benchmark", "Projection", "Aggregation", and "Aggregation + Projection"

France electricity consumption

The underlying real data set

Prospect: use cities consumption data

Online MinT

Input

- d: delay in data reception
- τ : window for the variance-covariance matrix of the base forecast errors estimation

For
$$t = 1, ..., T$$

• For each level $\gamma \in \{\text{France, Auvergne-Rhône-Alpes, } ..., \text{Provence Alpes Côte d'Azur}\}$ Generate online base forecast $\hat{y}_t = \left(\hat{y}_t^{\gamma}\right)_{\gamma}$ Compute online empirical variance $\hat{\sigma}_t^{\gamma} = \frac{1}{\tau} \sum_{s=t-d-\tau}^{t-d} \left(e_s^{\gamma} - \bar{e}^{\gamma}\right)^2$ with $e_s^{\gamma} = y_s^{\gamma} - \hat{y}_s^{\gamma}$ and $\bar{e}^{\gamma} = \frac{1}{\tau} \sum_{s=t-d-\tau}^{t-d} e_s^{\gamma}$

• Reconcile base forecasts

$$\tilde{y}_t = SP_t \hat{y}_t$$
 with $P_t = \left(S^T \widehat{\Sigma}_t^{\dagger} S\right)^{-1} S^T \widehat{\Sigma}_t^{\dagger}$ with $\widehat{\Sigma}_t^{\dagger} = \text{diag}\left(1/\sigma_t^{\gamma}\right)_{\gamma}$

Underlying assumption: base forecast errors of two different levels are independent ($\widehat{\Sigma}_t$ diagonal)

→ Perform faster and better

Results - 01.01.24 - 18.04.24

- Gam Kalman: generalized additive model + Kalman filter on model effects
- Gam Regions: Bottom up approaches based on 13 (one for each french region) generalized additive model + online linear regression on models effects
- Gam MinT: Online MinT on using Gam Kalman (for France) and the 13 models (of the regions) of the bottom up approach as base forecasts
- Best model: online aggregation of many models

Model	RMSE (MW)	MAPE (%)	Mean bias (MW)
Gam Kalman	1381	1.75	-11
Gam Regions	1499	2.07	-112
Gam MinT	1288	1.79	-42
Best model	1191	1.60	49
RTE D-2	1549	2.19	409

Results

Performances prévision J+1

Alberta areas electricity consumption

joint work (in progress!) with Raffaele Mattera (Sapienza University of Rome)

Underlying real data set and methodology

- Alberta Electric System Operator (AESO)
- → Hourly power consumption data of the 42 Alberta areas from January 1, 2011 to October 31, 2023
- National Oceanic and Atmospheric Administration (NOAA)
- → Hourly temperature in 27 weather stations

Objective: predict the power consumption of each area

- 1. Cluster areas and create a hierarchy
- 2. Forecast power at all levels
- 3. Reconcile forecasts (MinT)

Are area consumption reconciled forecasts better than original ones?

Alberta System Overview

Results

- (Space-)time clusterings
- Base forecasts using
 - Generalized additive models with and without lags
 - Persistent models (linear regression on lags)
 - Random forests
- Online and Offline reconciliation with
- $\widehat{\Sigma}$ = empirical variance/covariance matrix

Results

That's all folks!

