SOCCET IOI 2023 Day 1 Tasks Slovak (SVK)

Futbalový štadión

V meste Debrecín sa nachádza les Nagyerdő, ktorý môžeme popísať štvorcovou mriežkou $N\times N$.. Riadky sú očíslované od 0 do N-1 zo severu na juh a stĺpce sú očíslované od 0 do N-1 zo západu na východ. Políčko nachádzajúce sa v riadku r a stĺpci c mriežky budeme označovať (r,c).

V lese je každé políčko buď **prázdne** alebo obsahuje **strom**. Aspoň jedno políčko v celom lese je prázdne.

Známy mestský športový klub DVSC plánuje v tomto lese postaviť nový futbalový štadión. **Štadión** veľkosti s (kde $s \ge 1$) je množina s navzájom rôznych prázdnych buniek $(r_0, c_0), \ldots, (r_{s-1}, c_{s-1})$. Formálne:

- pre všetky i od 0 do s-1 (vrátane), bunka (r_i, c_i) je prázdna,
- pre každé i,j také, že $0 \le i < j < s$, platí aspoň jedna z nerovností $r_i \ne r_j$ a $c_i \ne c_j$.

Futbal sa hraje s loptou, ktorá sa pohybuje po políčkach štadiónu. **Priamy kop** je definovaný ako jedna z dvoch nasledujúcich možností:

- Presun lopty z políčka (r,a) na políčko (r,b) ($0 \le r,a,b < N,a \ne b$), kde štadión obsahuje *všetky* políčka medzi políčkami (r,a) a (r,b) v riadku r. Formálne,
 - \circ ak a < b, tak štadión musí obsahovať políčka (r,k) pre každé k také, že $a \le k \le b$,
 - o ak a > b, tak štadión musí obsahovať políčka (r, k) pre každé k také, že b < k < a.
- Presun lopty z políčka (a,c) na políčko (b,c) ($0 \le c,a,b < N,a \ne b$), kde štadión obsahuje *všetky* políčka medzi políčkami (a,c) a (b,c) v stĺpci c. Formálne,
 - o ak a < b, tak štadión musí obsahovať políčka (k, c) pre každé k také, že a < k < b,
 - o ak a > b, tak štadión musí obsahovať políčka (k, c) pre každé k také, že b < k < a.

Štadión voláme **regulárny**, ak je možné presunúť loptu z ľubovoľného políčka na iné políčko štadióna pomocou *najviac dvoch* priamych kopov. Je zrejmé, že každý štadión veľkosti 1 je regulárny.

Napríklad uvažujme les veľkosti N=5 s políčkami (1,0) a (4,2) obsahujúcimi stromy. Všetky ostatné políčka sú prázdne. Nasledovný obrázok ukazuje tri rôzne štadióny. Políčka so stromami sú čierne a políčka tvoriace štadión sú vyšrafované.

Štadión vľavo je regulárny. Štadión v strede nie je regulárny, lebo na presun lopty z políčka (4,1) na políčko (4,3) sú potrebné aspoň 3 priame kopy. Ani štadión vpravo nie je regulárny, lebo vôbec nie je možné dostať loptu z políčka (3,0) na políčko (1,3) priamymi kopmi.

Športový klub chce vybudovať čo najväčší štadión. Vašou úlohou je teda nájsť maximálnu veľkosť s regulárneho štadióna v zadanom lese.

Implementačné detaily

Vašou úlohou je naprogramovať nasledujúcu funkciu:

```
int biggest_stadium(int N, int[][] F)
```

- *N*: veľkosť lesa
- F: pole dĺžky N obsahujúce polia dĺžky N. Toto pole popisuje políčka lesa. Pre každé r a c také, že $0 \le r < N$ a $0 \le c < N$, F[r][c] = 0 znamená, že políčko (r,c) je prázdne a F[r][c] = 1 znamená, že obsahuje strom.
- Táto funkcia má vrátiť maximálnu veľkosť regulárneho štadióna, ktorý môže byť vybudovaný v zadanom lese.
- Táto funkcia je v každej testovacej sade zavolaná práve raz.

Príklad

Uvažujme nižšie uvedené volanie:

V tomto príklade je les zobrazený na obrázku vľavo a vpravo je regulárny štadión veľkosti 20:

Keďže neexistuje regulárny štadión veľkosti 21 alebo viac, tak vaša funkcia má vrátiť hodnotu 20.

Obmedzenia

- 1 < N < 2000
- $0 \leq F[i][j] \leq 1$ (pre každé i a j také, že $0 \leq i < N$ a $0 \leq j < N$)
- V lese sa nachádza aspoň jedno prázdne políčko. Teda, inými slovami, existuje $0 \le i < N$ a $0 \le j < N$ také, že F[i][j] = 0.

Podúlohy

- 1. (06 bodov) V lese sa nachádza najviac jedno políčko so stromom.
- 2. (08 bodov) $N \leq 3$
- 3. (22 bodov) $N \leq 7$
- 4. (18 bodov) $N \le 30$
- 5. (16 bodov) $N \le 500$
- 6. (30 bodov) bez ďalších obmedzení

V každej podúlohe môžete získať 25% bodov podúlohy v prípade, že váš program počíta korektne v prípade, že všetky prázdne políčka tvoria regulárny štadión.

Presnejšie v každej testovacej sade, kde je možné vybudovať regulárny štadión na všetkých prázdnych políčkach vaše riešenie získa:

- plný počet bodov, ak dá správnu odpoveď (teda vráti veľkosť množiny všetkých prázdnych políčok)
- 0 bodov v opačnom prípade.

V každej testovacej sade, kde nie je možné vybudovať regulárny štadión na všetkých prázdnych políčkach vaše riešeni získa:

- plný počet bodov, ak dá správnu odpoveď
- 0 bodov, ak vráti veľkosť množiny všetkých prázdnych políčok
- 25% bodov, ak vráti ľubovoľnú inú hodnotu.

Body za každú podúlohu sú rovné minimu z počtov bodov, ktoré vaše riešenie získa za jednotlivé testovacie sady patriace do tejto podúlohy.

Ukážkový testovač

Ukážkový testovač číta vstup vo formáte:

- ullet riadok 1:N
- riadok 2+i ($0 \leq i < N$): F[i][0] F[i][1] \dots F[i][N-1]

Ukážkový testovač vypisuje odpoveď vo formáte:

• riadok 1: návratová hodnota funkcie biggest_stadium