IN THE CLAIMS:

1.-17. (Cancelled):

18. (New): A method of treating inflammatory conditions comprising administering to a mammal in need thereof an effective amount of a cyclic compound selected from the group consisting of cyclopentane, cyclohexane, cycloheptane, monosaccharide, disaccharide, trisaccharide, tetrasaccharide, piperidine, tetrahydrothiopyran, 5-oxotetrahydrothiopyran, 5,5-dioxotetrahydrothiopyran, tetrahydroselenopyran, tetrahydrofuran, pyrrolidine, tetrahydrothiophene, 5-oxotetrahydrothiophene, 5,5-dioxotetrahydrothiophene, tetrahydroselenophene, benzene, cumene, mesitylene, naphthalene and phenanthrene, in which said cyclic compound is substituted by at least three vicinal phosphorus containing radicals of the formula:

wherein

 V^1 to V^4 are independently $Y^8_{m6}T_{o3}U$;

 T_{01} to T_{03} are independently $(CH_2)_n$, CH=CH, or $CH_2CH=CHCH_2$;

o1 to o3 are independently 0 or 1;

n is 0 to 4;

 $U \text{ is } R^1Y^9 \text{ } m_7, CY^{10}Y^{11}R^2, SY^{12}Y^{13}Y^{14}R^3, PY^{15}Y^{16}Y^{17}R^4R^5, \\$

Y¹⁸PY¹⁹Y²⁰Y²¹R⁶R⁷, CH₂NO₂, NHSO₂R⁸, or NHCY²²Y²³R⁹;

m1 to m7 are independently 0 or 1;

Y¹ to Y²³ are independently NR¹⁰, NOR¹¹, O, or S;

and where R1 to R11 are independently

- i) hydrogen;
- ii) a straight or branched saturated or unsaturated alkyl group containing 1-22 carbon atoms;
- iii) a saturated, unsaturated aromatic or non-aromatic homo- or heterocyclic group containing 3-22 carbon atoms and 0-5 heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur;

iv) a straight or branched saturated or unsaturated alkyl group containing 1-22 carbon atoms substituted with a saturated or unsaturated aromatic or non-aromatic homo- or heterocyclic group containing 3-22 carbon and 0-5 heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur;

v) an aromatic or non-aromatic homo-or heterocyclic group containing 3-22 carbon and 0-5 heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur which aromatic or non-aromatic homo-or heterocyclic group is substituted with a straight or branched saturated or unsaturated group containing 1-22 carbon atoms;

whereby

said groups in ii-v are unsubstituted or are substituted by 1-6 of the following groups: hydroxy, alkoxy, aryloxy, acyloxy, carboxy, alkoxycarbonyl, alkoxycarbonyloxy, aryloxycarbonyl, aryloxycarbonyloxy, carbamoyl, fluoro, chloro, bromo, azido, cyano, oxo, oxa, amino, imino, alkylamino, arylamino, acylamino, arylazo, nitro, alkylthio or alkylsulfonyl.

- 19. (New): The method according to Claim 18 wherein the inflammatory conditions is rheumatoid arthritis.
- 20. (New): The method according to Claim 18 or 19 wherein the phosphorus-containing radicals have the following formula:

wherein

V¹ and V² are OH, (CH₂)_pOH, COOH, CONH₂, CONOH, (CH₂)_pCOOH, (CH₂)_pCOOH, (CH₂)_pCONH₂, (CH₂)_pCONOH, (CH₂)_pSO₃H, (CH₂)_pSO₃NH₂, (CH₂)_pNO₂, (CH₂)_pPO₃H₂, O(CH₂)_pOH, O(CH₂)_pCOOH, O(CH₂)_pCONH₂, O(CH₂)_pCONOH, O(CH₂)_pSO₃H, O(CH₂)_pSO₃NH₂, O(CH₂)_pNO₂, O(CH₂)_pPO₃H₂ or CF₂COOH; and p is 1 to 4.

- 21. (New): The method according to Claim 18 or 19 wherein the phosphorus-containing radicals are phosphate groups.
- 22. (New): The method according to Claim 18 or 19 wherein the cyclic compound is a monosaccharide.
- 23. (New): The method according to Claim 22 wherein the monosaccharide is D/L-ribose, D/L-arabinose, D/L-xylose, D/L-lyxose, D/L-allose, D/L-altrose, D/L-glucose, D/L-mannose, D/L-gulose, D/L-idose, D/L-galactose, D/L-talose, D/L-ribulose, D/L-xylulose, D/L-psicose, D/L-sorbose, D/L-tagatose, or D/L-fructose.
- 24. (New): The method according to Claim 22 wherein the monosaccharide is substituted with three phosphorus-containing radicals having the following formula:

wherein

V¹ and V² are OH, (CH₂)_pOH, COOH, CONH₂, CONOH,
(CH₂)_pCOOH, (CH₂)_pCONH₂, (CH₂)_pCONOH, (CH₂)_pSO₃H, (CH₂)_pSO₃NH₂, (CH₂)_pNO₂,
(CH₂)_pPO₃H₂, O(CH₂)_pOH, O(CH₂)_pCOOH, O(CH₂)_pCONH₂, O(CH₂)_pCONOH,
O(CH₂)_pSO₃H, O(CH₂)_pSO₃NH₂, O(CH₂)_pNO₂, O(CH₂)_pPO₃H₂ or CF₂COOH; and
p is 1 to 4.

25. (New): The method according to Claim 24 wherein the phosphorous containing radicals are phosphate groups.

26. (New): The method according to Claim 18 or 19 wherein the cyclic compound administered to the mammal is selected from the group consisting of mannose-2,3,4-trisphosphate, rhamnose-2,3,4-trisphosphate, galactose- 2,3,4-trisphosphate, methyl-6-O-butyl-α-D-mannopyranoside-2,3,4-trisphosphate, 1,5-anhydro-D-arabinitol-2,3,4-trisphosphate, fructose-2,3,4-trisphosphate, 1,2-O-ethylene-β-D-fructopyranoside-2,3,4-trisphosphate, cyclohexane-1,2,3-triol trisphosphate, 1,5-dideoxy-1,5-iminoarabinitol-2,3,4-trisphosphate, altrose-2,3,4-trisphosphate, or methyl-6-O-butyl-α-D-altropyranoside 2,3,4-trisphosphate.

27. (New): The method according to Claim 18 or 19 wherein the compound is administered by parenteral or non-parenteral administration.

28. (New): The method according to Claim 18 or 19 wherein the effective amount ranges from about 0.1 to about 100 mg per kg body weight of the mammal.

29. (New): A method of treating tissue repair conditions comprising administering to a mammal in need thereof an effective amount of a cyclic compound selected from the group consisting of cyclopentane, cyclohexane, cycloheptane, inositol, monosaccharide, disaccharide, trisaccharide, tetrasaccharide, piperidine, tetrahydrothiopyran, 5-oxotetrahydrothiopyran, 5,5-dioxotetrahydrothiopyran, tetrahydroselenopyran, tetrahydrofuran, pyrrolidine, tetrahydrothiophene, 5-oxotetrahydrothiophene, 5,5-dioxotetrahydrothiophene, tetrahydroselenophene, benzene, cumene, mesitylene, naphthalene and phenanthrene, in which said cyclic compound is substituted by at least three vicinal phosphorus containing radicals of the formula:

wherein

 V^1 to V^4 are independently $Y^8_{m6}T_{o3}U$;

T₀₁ to T₀₃ are independently (CH₂)_n, CH=CH, or CH₂CH=CHCH₂; o1 to o3 are independently 0 or 1; n is 0 to 4; U is $R^{1}Y^{9}$ m₇, $CY^{10}Y^{11}R^{2}$, $SY^{12}Y^{13}Y^{14}R^{3}$, $PY^{15}Y^{16}Y^{17}R^{4}R^{5}$, $Y^{18}PY^{19}Y^{20}Y^{21}R^6R^7$, CH_2NO_2 , $NHSO_2R^8$, or $NHCY^{22}Y^{23}R^9$; m1 to m7 are independently 0 or 1; Y¹ to Y²³ are independently NR¹⁰, NOR¹¹, O, or S; and where R^1 to R^{11} are independently

- i) hydrogen;
- ii) a straight or branched saturated or unsaturated alkyl group containing 1-22 carbon atoms;

iii) a saturated, unsaturated aromatic or non-aromatic homo- or heterocyclic group containing 3-22 carbon atoms and 0-5 heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur;

iv) a straight or branched saturated or unsaturated alkyl group containing 1-22 carbon atoms substituted with a saturated or unsaturated aromatic or non-aromatic homo- or heterocyclic group containing 3-22 carbon and 0-5 heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur;

v) an aromatic or non-aromatic homo-or heterocyclic group containing 3-22 carbon and 0-5 heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur which aromatic or non-aromatic homo-or heterocyclic group is substituted with a straight or branched saturated or unsaturated group containing 1-22 carbon atoms;

whereby

said groups in ii-v are unsubstituted or are substituted by 1-6 of the following groups: hydroxy, alkoxy, aryloxy, acyloxy, carboxy, alkoxycarbonyl, alkoxycarbonyloxy, aryloxycarbonyl, aryloxycarbonyloxy, carbamoyl, fluoro, chloro, bromo, azido, cyano, oxo, oxa, amino, imino, alkylamino, arylamino, acylamino, arylazo, nitro, alkylthio or alkylsulfonyl.

- 30. (New): A method according to Claim 29 wherein the tissue repair condition is wound healing, matrix formation, collagen synthesis or scar formation.
- 31. (New): The method according to Claim 29 or 30 wherein the phosphorus-containing radicals have the following formula:

wherein

 $V^1 \text{ and } V^2 \text{ are OH, } (CH_2)_pOH, COOH, CONH_2, CONOH, } (CH_2)_pCOOH, \\ (CH_2)_pCONH_2, (CH_2)_pCONOH, (CH_2)_pSO_3H, (CH_2)_pSO_3NH_2, (CH_2)_pNO_2, (CH_2)_pPO_3H_2, \\ O(CH_2)_pOH, O(CH_2)_pCOOH, O(CH_2)_pCONH_2, O(CH_2)_pCONOH, O(CH_2)_pSO_3H, \\ O(CH_2)_pSO_3NH_2, O(CH_2)_pNO_2, O(CH_2)_pPO_3H_2 \text{ or } CF_2COOH; \text{ and } \\ p \text{ is } 1 \text{ to } 4.$

- 32. (New): The method according to Claim 29 or 30 wherein the phosphorus-containing radicals are phosphate groups.
- 33. (New): The method according to Claim 29 or 30 wherein the cyclic compound is a monosaccharide.
- 34. (New): The method according to Claim 33 wherein the monosaccharide is D/L-ribose, D/L-arabinose, D/L-xylose, D/L-lyxose, D/L-allose, D/L-altrose, D/L-glucose, D/L-mannose,

D/L-gulose, D/L-idose, D/L-galactose, D/L-talose, D/L-ribulose, D/L-xylulose, D/L-psicose, D/L-sorbose, D/L-tagatose, or D/L-fructose.

35. (New): The method according to Claim 33 wherein the monosaccharide is substituted with three phosphorus-containing radicals having the following formula:

wherein

V¹ and V² are OH, (CH₂)_pOH, COOH, CONH₂, CONOH,
(CH₂)_pCOOH, (CH₂)_pCONH₂, (CH₂)_pCONOH, (CH₂)_pSO₃H, (CH₂)_pSO₃NH₂, (CH₂)_pNO₂,
(CH₂)_pPO₃H₂, O(CH₂)_pOH, O(CH₂)_pCOOH, O(CH₂)_pCONH₂, O(CH₂)_pCONOH,
O(CH₂)_pSO₃H, O(CH₂)_pSO₃NH₂, O(CH₂)_pNO₂, O(CH₂)_pPO₃H₂ or CF₂COOH; and
p is 1 to 4.

- 36. (New): The method according to Claim 35 wherein the phosphorous containing radicals is a phosphate group.
- 37. (New): The method according to Claim 29 or 30 wherein the cyclic compound is inositol.
- 38. (New): The method according to Claim 37 wherein the inositol is alloinositol, cisinositol, ipiinositol, D/L-chiroinositol, scylloinositol, myoinositol, myoinositol or neoinositol.

39. (New): The method according to Claim 38 wherein the inositol is substituted with three phosphorus-containing radicals having the following formula:

wherein

V¹ and V² are OH, (CH₂)_pOH, COOH, CONH₂, CONOH,
(CH₂)_pCOOH, (CH₂)_pCONH₂, (CH₂)_pCONOH, (CH₂)_pSO₃H, (CH₂)_pSO₃NH₂, (CH₂)_pNO₂,
(CH₂)_pPO₃H₂, O(CH₂)_pOH, O(CH₂)_pCOOH, O(CH₂)_pCONH₂, O(CH₂)_pCONOH,
O(CH₂)_pSO₃H, O(CH₂)_pSO₃NH₂, O(CH₂)_pNO₂, O(CH₂)_pPO₃H₂ or CF₂COOH; and
p is 1 to 4.

- 40. (New): The method according to Claim 35 wherein the phosphorous containing radicals are phosphate groups.
- 41. (New): The method according to Claim 29 or 30 wherein the cyclic compound administered to the mammal is selected from the group consisting of myoinositol-1,2,6-trisphosphate, mannose-2,3,4-trisphosphate, rhamnose-2,3,4-trisphosphate, galactose-2,3,4-trisphosphate, methyl-6-O-butyl-α-D-mannopyranoside-2,3,4-trisphosphate, 1,5-anhydro-D-arabinitol-2,3,4-trisphosphate, fructose-2,3,4-trisphosphate, 1,2-O-ethylene-β-D-fructopyranoside-2,3,4-trisphosphate, cyclohexane-1,2,3-triol trisphosphate, 1,5-dideoxy-1,5-dideox

iminoarabinitol-2,3,4-trisphosphate, altrose-2,3,4-trisphosphate, or methyl-6-O-butyl- α -D-altropyranoside 2,3,4-trisphosphate.

- 42. (New): The method according to Claim 29 or 30 wherein the compound is administered by parenteral or non-parenteral administration.
- 43. (New): The method according to Claim 29 or 20 wherein the effective amount ranges from about 0.1 to about 100 mg per kg body weight of the mammal.
- 44. (New): A method of treating infectious conditions comprising administering to a mammal in need thereof an effective amount of a cyclic compound selected from the group consisting of cyclopentane, cyclohexane, cycloheptane, inositol, monosaccharide, disaccharide, trisaccharide, tetrasaccharide, piperidine, tetrahydrothiopyran, 5-oxotetrahydrothiopyran, 5,5-dioxotetrahydrothiopyran, tetrahydroselenopyran, tetrahydrofuran, pyrrolidine, tetrahydrothiophene, 5-oxotetrahydrothiophene, 5,5-dioxotetrahydrothiophene, tetrahydroselenophene, benzene, cumene, mesitylene, naphthalene and phenanthrene, in which said cyclic compound is substituted by at least three vicinal phosphorus containing radicals of the formula:

a)
$$Y^3$$
 b) Y^5 Y^8 $||$
 $-Y^1_{m1}T_{01}Y^2_{m2}-P-V^2$ or $-Y^4_{m3}CY^6_{m4}T_{02}Y^7_{m5}-P-V^4$
 $||$
 V^3

wherein

 V^1 to V^4 are independently $Y^8_{\ m6}T_{o3}U$;

T₀₁ to T₀₃ are independently (CH₂)_n, CH=CH, or CH₂CH=CHCH₂;

o1 to o3 are independently 0 or 1;

n is 0 to 4;

U is $R^{1}Y^{9}$ m₇, $CY^{10}Y^{11}R^{2}$, $SY^{12}Y^{13}Y^{14}R^{3}$, $PY^{15}Y^{16}Y^{17}R^{4}R^{5}$,

 $Y^{18}PY^{19}Y^{20}Y^{21}R^6R^7$, CH_2NO_2 , $NHSO_2R^8$, or $NHCY^{22}Y^{23}R^9$;

m1 to m7 are independently 0 or 1;

Y¹ to Y²³ are independently NR¹⁰, NOR¹¹, O, or S;

and where R1 to R11 are independently

- i) hydrogen,
- ii) a straight or branched saturated or unsaturated alkyl group containing 1-22 carbon atoms;

iii) a saturated, unsaturated aromatic or non-aromatic homo- or heterocyclic group containing 3-22 carbon atoms and 0-5 heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur;

iv) a straight or branched saturated or unsaturated alkyl group containing 1-22 carbon atoms substituted with a saturated or unsaturated aromatic or non-aromatic homo- or heterocyclic group containing 3-22 carbon and 0-5 heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur;

v) an aromatic or non-aromatic homo-or heterocyclic group containing 3-22 carbon and 0-5 heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur which aromatic or non-aromatic homo-or heterocyclic group is substituted with a straight or branched saturated or unsaturated group containing 1-22 carbon atoms;

whereby

said groups in ii-v are unsubstituted or are substituted by 1-6 of the following groups: hydroxy, alkoxy, aryloxy, acyloxy, carboxy, alkoxycarbonyl, alkoxycarbonyloxy, aryloxycarbonyl, aryloxycarbonyloxy, carbamoyl, fluoro, chloro, bromo, azido, cyano, oxo, oxa, amino, imino, alkylamino, arylamino, acylamino, arylazo, nitro, alkylthio or alkylsulfonyl.

45. (New): A method according to Claim 44 wherein the infectious condition is trypanosomiasis.

46. (New): The method according to Claim 44 or 45 wherein the phosphorus-containing radicals have the following formula:

wherein

 $V^1 \text{ and } V^2 \text{ are OH, } (CH_2)_pOH, COOH, CONH_2, CONOH, \\ (CH_2)_pCOOH, (CH_2)_pCONH_2, (CH_2)_pCONOH, (CH_2)_pSO_3H, (CH_2)_pSO_3NH_2, (CH_2)_pNO_2, \\ (CH_2)_pPO_3H_2, O(CH_2)_pOH, O(CH_2)_pCOOH, O(CH_2)_pCONH_2, O(CH_2)_pCONOH, \\ O(CH_2)_pSO_3H, O(CH_2)_pSO_3NH_2, O(CH_2)_pNO_2, O(CH_2)_pPO_3H_2 \text{ or } CF_2COOH; \text{ and } \\ p \text{ is } 1 \text{ to } 4. \\ \\$

- 47. (New): The method according to Claim 44 or 45 wherein the phosphorus-containing radicals are phosphate groups.
- 48. (New): The method according to Claim 44 or 45 wherein the cyclic compound is a monosaccharide.

49. (New): The method according to Claim 48 wherein the monosaccharide is D/L-ribose, D/L-arabinose, D/L-xylose, D/L-lyxose, D/L-allose, D/L-altrose, D/L-glucose, D/L-mannose, D/L-gulose, D/L-idose, D/L-galactose, D/L-talose, D/L-ribulose, D/L-xylulose, D/L-psicose, D/L-sorbose, D/L-tagatose, or D/L-fructose.

50. (New): The method according to Claim 48 wherein the monosaccharide is substituted with three phosphorus-containing radicals having the following formula:

wherein

V¹ and V² are OH, (CH₂)_pOH, COOH, CONH₂, CONOH, (CH₂)_pCOOH, (CH₂)_pCOOH, (CH₂)_pCONH₂, (CH₂)_pCONOH, (CH₂)_pSO₃H, (CH₂)_pSO₃NH₂, (CH₂)_pNO₂, (CH₂)_pPO₃H₂, O(CH₂)_pOH, O(CH₂)_pCOOH, O(CH₂)_pCONH₂, O(CH₂)_pCONOH, O(CH₂)_pSO₃H, O(CH₂)_pSO₃NH₂, O(CH₂)_pNO₂, O(CH₂)_pPO₃H₂ or CF₂COOH; and p is 1 to 4.

- 51. (New): The method according to Claim 50 wherein the phosphorous containing radicals are phosphate groups.
- 52. (New): The method according to Claims 44 or 45 wherein the cyclic compound is inositol.

53. (New): The method according to Claim 52 wherein the inositol is alloinositol, cisinositol, ipiinositol, D/L-chiroinositol, scylloinositol, myoinositol, myoinositol or neoinositol.

54. (New): The method according to Claim 53 wherein the inositol is substituted with three phosphorus-containing radicals having the following formula:

wherein

V¹ and V² are OH, (CH₂)_pOH, COOH, CONH₂, CONOH,
(CH₂)_pCOOH, (CH₂)_pCONH₂, (CH₂)_pCONOH, (CH₂)_pSO₃H, (CH₂)_pSO₃NH₂, (CH₂)_pNO₂,
(CH₂)_pPO₃H₂, O(CH₂)_pOH, O(CH₂)_pCOOH, O(CH₂)_pCONH₂, O(CH₂)_pCONOH,
O(CH₂)_pSO₃H, O(CH₂)_pSO₃NH₂, O(CH₂)_pNO₂, O(CH₂)_pPO₃H₂ or CF₂COOH; and
p is 1 to 4.

55. (New): The method according to Claim 54 wherein the phosphorous containing radicals is a phosphate group.

56. (New): The method according to Claim 44 or 45 wherein the cyclic compound administered to the mammal is selected from the group consisting of myoinositol-1,2,6-trisphosphate, mannose-2,3,4-trisphosphate, galactose-2,3,4-trisphosphate, galactose-2,4,4-trisphosphate, galactose

trisphosphate, methyl-6-O-butyl- α -D-mannopyranoside-2,3,4-trisphosphate, 1,5-anhydro-D-arabinitol-2,3,4-trisphosphate, fructose-2,3,4-trisphosphate, 1,2-O-ethylene- β -D-fructopyranoside-2,3,4-trisphosphate, cyclohexane-1,2,3-triol trisphosphate, 1,5-dideoxy-1,5-iminoarabinitol-2,3,4-trisphosphate, altrose-2,3,4-trisphosphate, or methyl-6-O-butyl- α -D-altropyranoside 2,3,4-trisphosphate.

57. (New): The method according to Claim 44 or 45 wherein the compound is administered by parenteral or non-parenteral administration.

58. (New): The method according to Claim 44 or 45 wherein the growth factor modulating effective amount ranges from about 0.1 to about 100 mg per kg body weight of the mammal.