

A Comparison between GNNs for node classification of Gene-Disease Graphs

Jianze Li*, Jiatong Li*, Yiwei Hao*

Code Available at: https://github.com/TianshuoLi/DataMining

Data preparation: use Protein-protein interaction file and gene disease association file to create graph and labeling nodes

PPI file be like. if it is causing Asthma/ Schizophrenia, label 1 to it and 0 otherwise

But it's an unbalanced Graph. We need to under-sample it to get an more balanced one Then we use GCN, GAT, GraphSAGE to classify nodes and compare the results

GCN (Graph Convolutional Neural network)

If H is the feature matrix and W is the trainable weight matrix, From a node-wise perspective, the update rule can be written as:

$$h_i^{ig(l)} = \sigma(\sum_{i \in N_i} c_{ij} W h_j)$$

The coefficient $c_{ij} = \frac{1}{\sqrt{N_i N_j}}$

Where N_i is the size of the node's neighbor

GAT (Graph Attention Network)

In GAT, we considering the coefficient to be a learnable attention mechanism. Mathematically:

$$a_{ij} = attention(h_i, h_j)$$

$$a_{ij} = \frac{exp(a_{ij})}{\sum_{k \in N:} exp(a_{ik})}$$

Left: The attention mechanism. Right: An illustration of multihead attention

GraphSAGE (Graph Sample and aggregate)

GraphSAGE proposes the following framework:

- 1. Sample uniformly a set of nodes from the neighbors
- 2. Aggregate the feature information from sampled neighbors
- 3. Based on the aggregation, perform node classification

Experimental results

Results on Asthma

		Accuracy	Precision	F1-score	recall	TP	TN	FP	FN
GCN	train	0.657	0.333	0.407	0.522	36	165	72	33
	test	0.574	0.417	0.508	0.652	30	48	42	16
GAT	train	0.754	0.425	0.312	0.246	17	213	23	52
	test	0.74	0.619	0.433	0.333	13	84	8	26
SAGE	train	0.744	0.235	0.093	0.058	4	223	13	65
	test	0.71	0.8	0.182	0.103	4	91	1	35

Results on Schizophrenia

		Accuracy	Precision	F1-score	recall	TP	TN	FP	FN
GCN -	train	0.691	0.749	0.814	0.89	626	17	210	77
	test	0.782	0.782	0.878	1	312	0	87	0
GAT	train	0.756	0.756	0.861	1	703	0	227	0
	test	0.782	0.782	0.878	1	312	0	87	0
SAGE	train	0.732	0.757	0.843	0.950	668	13	214	35
	test	0.781	0.792	0.875	0.977	305	7	80	7

Selected results Visualization

GCN on Asthma

GAT on Asthma