第一章 函数与极限

第七节 无穷小的比较

主讲 武忠祥 教授

2021考研高等数学0基础课

高等数学精讲

主讲:武忠祥教授

定义1(无穷小量)若 $\lim_{x\to x_0} f(x) = 0$,则称 f(x) 为当 $x\to x_0$

时的无穷小量.

定义2(无穷小的比较)

- 1) 若 $\lim \frac{\alpha(x)}{\beta(x)} = 0$ 则称 $\alpha(x)$ 是 $\beta(x)$ 的高阶无穷小; 记为 $\alpha(x) = o(\beta(x))$.
- 2) 若 $\lim \frac{\alpha(x)}{\beta(x)} = \infty$ 则称 $\alpha(x)$ 是 $\beta(x)$ 的低阶无穷小;
- 3) 若 $\lim \frac{\alpha(x)}{\beta(x)} = a \neq 0$ 则称 $\alpha(x)$ 与 $\beta(x)$ 是同阶无穷小;
- 4) 若 $\lim \frac{\alpha(x)}{\beta(x)} = 1$ 则称 $\alpha(x)$ 与 $\beta(x)$ 是等价无穷小; 记为 $\alpha(x) \sim \beta(x)$
- 5) 若 $\lim \frac{\alpha(x)}{[\beta(x)]^k} = a \neq 0, k > 0$ 则称 $\alpha(x)$ 是 $\beta(x)$ 的 k 阶无穷小.

【例1】证明: 当 $x \to 0$ 时, $\sqrt[n]{1+x}-1 \sim \frac{1}{n}x$.

定理1 $\alpha(x) \sim \beta(x)$ 的充要条件是 $\alpha(x) = \beta(x) + o(\beta(x))$

定理2 设 $\alpha(x) \sim \alpha_1(x)$, $\beta(x) \sim \beta_1(x)$, 且 $\lim \frac{\alpha_1(x)}{\beta_1(x)}$ 存在,则

$$\lim \frac{\alpha(x)}{\beta(x)} = \lim \frac{\alpha_1(x)}{\beta_1(x)}$$

【例2】求下列极限

1)
$$\lim_{x\to 0} \frac{\sin 3x}{\arctan 2x}$$

$$2) \lim_{x \to 0} \frac{\arcsin 2x}{x + x^2}$$

3)
$$\lim_{x\to 0} \frac{\sqrt[3]{1+2x^2}-1}{1-\cos x}$$

$$4) \lim_{x\to 0} \frac{\sin x - \tan x}{x^3}$$

内容小结

1. 无穷小的比较

设 α , β 对同一自变量的变化过程为无穷小, 且 $\alpha \neq 0$

$$\lim \frac{\beta}{\alpha} = \begin{cases} 0, & \beta \neq \alpha \text{ 的高阶无穷小} \\ \infty, & \beta \neq \alpha \text{ 的低阶无穷小} \\ C (\neq 0), & \beta \neq \alpha \text{ 的同阶无穷小} \\ 1, & \beta \neq \alpha \text{ 的等价无穷小} \end{cases}$$

$$\lim_{k \to \infty} \frac{\beta}{\alpha^k} = C \neq 0, \qquad \beta \in \alpha \in k$$
 阶无穷小

2. 等价无穷小代换

(1) 代换原则: 乘除关系可以换

若
$$\alpha \sim \alpha_1, \beta \sim \beta_1$$
, 则

$$\lim \frac{\alpha}{\beta} = \lim \frac{\alpha_1}{\beta} = \lim \frac{\alpha}{\beta_1} = \lim \frac{\alpha_1}{\beta_1}$$

(2) 常用的等价无穷小: 当 $x \to 0$ 时

 $x \sim \sin x \sim \tan x \sim \arcsin x \sim \arctan x$

$$\sqrt[n]{1+x}-1\sim \frac{1}{n}x$$
, $1-\cos x\sim \frac{1}{2}x^2$

作业 P55: 4; 5; 6..