COMP S265F Design and Analysis of Algorithms Lab 12: Finite Automata and Regular Expressions – Suggested Solution

Question 1.

(i) For the NFA, the transition table f_{ε} with the lambda closures is:

$f_arepsilon$	s	a	b	c	ε	$\lambda(s)$
start	0	Ø	Ø	Ø	{1}	$\{0, 1, 2, 3, 4, 5, 6, 7\}$
	1	{1}	Ø	Ø	$\{2\}$	$\{1, 2, 3, 4, 5, 6, 7\}$
	2	Ø	Ø	Ø	$\{3, 4\}$	$\{2, 3, 4, 5, 6, 7\}$
	3	Ø	{3}	Ø	{5 }	$\{3, 5, 6, 7\}$
	4	Ø	Ø	$\{4\}$	$\{5\}$	$\{4, 5, 6, 7\}$
	5	Ø	Ø	Ø	$\{6\}$	$\{5, 6, 7\}$
	6	{6}	Ø	Ø	{7}	$\{6, 7\}$
final	7	Ø	Ø	Ø	Ø	{7}

- (ii) We construct the transition table f_D of the DFA, as follows:
 - start state = $\lambda(0) = \{0, 1, 2, 3, 4, 5, 6, 7\}$ (also a final state, as it contains NFA final state 7)

•
$$f_D(\{0, 1, 2, 3, 4, 5, 6, 7\}, a) = \lambda(\{1, 6\})$$

 $= \{1, 2, 3, 4, 5, 6, 7\}$
 $f_D(\{0, 1, 2, 3, 4, 5, 6, 7\}, b) = \lambda(\{3\})$
 $= \{3, 5, 6, 7\}$
 $f_D(\{0, 1, 2, 3, 4, 5, 6, 7\}, c) = \lambda(\{4\})$
 $= \{4, 5, 6, 7\}$

Therefore, we have the following table:

- There are three new final states (all containing the NFA final state 7): $\{1, 2, 3, 4, 5, 6, 7\}, \{3, 5, 6, 7\}, \{4, 5, 6, 7\}.$
- $f_D(\{1, 2, 3, 4, 5, 6, 7\}, a) = \lambda(\{1, 6\})$ $= \{1, 2, 3, 4, 5, 6, 7\}$ $f_D(\{1, 2, 3, 4, 5, 6, 7\}, b) = \lambda(\{3\})$ $= \{3, 5, 6, 7\}$ $f_D(\{1, 2, 3, 4, 5, 6, 7\}, b) = \lambda(\{4\})$ $= \{4, 5, 6, 7\}$

Therefore, we have the following table:

•
$$f_D({3,5,6,7},a) = \lambda({6})$$

= ${6,7}$

$$f_D(\{3, 5, 6, 7\}, b) = \lambda(\{3\})$$

$$= \{3, 5, 6, 7\}$$

$$f_D(\{3, 5, 6, 7\}, c) = \lambda(\emptyset)$$

$$- \emptyset$$

Therefore, we have the following table:

f_D	s	a	b	c
start, final	$\{0, 1, 2, 3, 4, 5, 6, 7\}$	$\{1, 2, 3, 4, 5, 6, 7\}$	${3,5,6,7}$	$\{4, 5, 6, 7\}$
final	$\{1, 2, 3, 4, 5, 6, 7\}$	$\{1, 2, 3, 4, 5, 6, 7\}$	$\{3, 5, 6, 7\}$	$\{4, 5, 6, 7\}$
final	$\{3, 5, 6, 7\}$	$\{6, 7\}$	$\{3, 5, 6, 7\}$	Ø

•
$$f_D(\{4, 5, 6, 7\}, a) = \lambda(\{6\})$$

 $= \{6, 7\}$
 $f_D(\{4, 5, 6, 7\}, b) = \lambda(\emptyset)$
 $= \emptyset$
 $f_D(\{4, 5, 6, 7\}, c) = \lambda(\{4\})$
 $= \{4, 5, 6, 7\}$

Therefore, we have the following table:

f_D	s	a	b	c
start, final	$\{0, 1, 2, 3, 4, 5, 6, 7\}$	$\{1, 2, 3, 4, 5, 6, 7\}$	${3,5,6,7}$	$\{4, 5, 6, 7\}$
$_{ m final}$	$\{1, 2, 3, 4, 5, 6, 7\}$	$\{1, 2, 3, 4, 5, 6, 7\}$	$\{3, 5, 6, 7\}$	$\{4, 5, 6, 7\}$
$_{ m final}$	$\{3, 5, 6, 7\}$	$\{6,7\}$	$\{3, 5, 6, 7\}$	Ø
$_{ m final}$	$\{4, 5, 6, 7\}$	$\{6, 7\}$	Ø	$\{4, 5, 6, 7\}$

• There are two new states: $\{6,7\}$ (final state as it contains NFA final state 7) and \emptyset .

•
$$f_D(\{6,7\},a) = \lambda(\{6\})$$

= $\{6,7\}$

Therefore, we have the following table:

f_D	s	a	b	c
start, final	$\{0, 1, 2, 3, 4, 5, 6, 7\}$	$\{1, 2, 3, 4, 5, 6, 7\}$	${3,5,6,7}$	$\{4, 5, 6, 7\}$
final	$\{1, 2, 3, 4, 5, 6, 7\}$	$\{1, 2, 3, 4, 5, 6, 7\}$	$\{3, 5, 6, 7\}$	$\{4, 5, 6, 7\}$
final	$\{3, 5, 6, 7\}$	$\{6,7\}$	$\{3, 5, 6, 7\}$	Ø
final	$\{4, 5, 6, 7\}$	$\{6,7\}$	Ø	$\{4, 5, 6, 7\}$
final	$\{6, 7\}$	$\{6,7\}$	Ø	Ø
	Ø	Ø	Ø	Ø

• We rename the six states to $0, 1, \dots, 5$:

f_D	s	a	b	c
start, final	0	1	2	3
final	1	1	2	3
final	2	4	2	5
final	3	4	5	3
final	4	4	5	5
	5	5	5	5

(iii) States 0 and 1 are both final state, and have the same transitions for all inputs.

Therefore, we merge states 0 and 1 to a merged state (state 0).

The new transition table f_D of the DFA is:

f_D	s	$\mid a \mid$	b	c
start, final	0	0	2	3
final	2	4	2	5
final	3	4	5	3
final	4	4	5	5
	5	5	5	5

(iv) The DFA in (iii) is shown below:

Question 2.

(i) Suppose, for the sake of contradiction, that L is regular. Thus, L can be accepted by a DFA with m state for some $m \in \mathbb{N}$.

Consider the string a^mbc^m . Since $|a^mbc^m| \ge m$, by the pumping lemma, there are string x, y, z such that

- $a^mbc^m = xyz$
- |y| > 0
- $|xy| \leq m$
- $xy^iz \in L$ for any $i \in \mathbb{N}$

As $|xy| \leq m$, x and y contain a's only.

Then, we can pump y to y^i for any i > 1, which will increase the number of a's only. Thus, the number of a's will not equal the number of c's, i.e., $xy^iz \notin L$, which is a contradiction. Therefore, L is not regular.

(ii) Suppose, for the sake of contradiction, that M is regular. Thus, M can be accepted by a DFA with k state for some $k \in \mathbb{N}$.

Consider the string $a^k b^k$. Since $|a^k b^k| \ge k$, by the pumping lemma, there are string x, y, z such that

- $a^k b^k = xyz$
- |y| > 0
- $|xy| \leq k$
- $xy^iz \in M$ for any $i \in \mathbb{N}$

As $|xy| \le k$, x and y contain a's only.

Then, we can pump y to y^i for any i > 1, which will increase the number of a's only. For sufficiently large i, the difference between the numbers of a's and c's will exceed 10, i.e., $xy^iz \notin M$, which is a contradiction. Therefore, M is not regular.

Question 3. The NFA with ε moves for the regular expression is:

