COL Worksheet

Your Name: Trouble N. Signature: The N.

Lab partner(s): Katherne

Course & Section: PHYS 121 Sull Station # 14 Date: Mar 6 2024

Section D. Procedure

1. What are the masses of your two carts, gratings, and mass bars?

$$m_{cart1} = 490.3 \pm 0.1$$
 (units)

$$m_{cart2} = 495.3 \pm 0.1$$
 (units)

$$m_{grating1} = 12.7 \pm 0.1 \pm 0.1$$
 (units)

$$m_{grating2} = 13.$$
 $\pm 0.$ α (units)

$$m_{bar1} = 497.7 \pm 0.1$$
 (units)

$$m_{bar2} = 494.9 \pm 0.1$$
 (units)

2. What is the average velocity for each photogate? Remember that if the two don't agree, you will have to find their ratios and adjust the velocities of all subsequent velocity measurements.

$$v_{\text{photogate}1} = \frac{1.370}{\pm 0.006} \pm \frac{1.006}{1.006}$$
 (units)

$$v_{\text{photogate2}} = 1.330 \pm 0.004 \text{ m/s}$$
 (units)

Section E Analysis

3. Record your data in the tables below. Do not forget to include the directions for the vector quantities.

Collision 1

	Cart 1 before collision	Cart 1 after collision	Cart 2 before collision	Cart 2 after collision
Mass (kg)	1.0007 ± 0.0002	1.0002 ± 50007	1.0033 ± 0.0002	10033±0.0002
Velocity (m/s)	0.707 ± 0.004	_ O _ ± _ O _	_0_±_0_	U.572 ± 0.008
Momentum (kg m/s)	0.707	0	0	0.574
Kinetic energy (J)	0.250	0	Ò	0.164

Collision 2

· · · · · · · · · · · · · · · · · · ·					
	Cart 1 before collision	Cart 1 after collision	Cart 2 before collision	Cart 2 after collision	
Mass (kg)	1.0007 ± 0.0002	1.0007 ± 0.0002	0.5084 ± 0.0001	D. SOBEL + 0.000	
Velocity (m/s)	1,305 ± 0,002	0.38 ± 0.07	<u> 0 ± 0</u>	1.54 ± 0.01	
Momentum (kg m/s)	1,306	0.38	O	0.783	
Kinetic energy (J)	0.894	0.073	0	0.603	

$$\epsilon_p = \underline{\quad \ \, 0 \, . \, \, \big\backslash \, \, \big\backslash}$$

$$\varepsilon_k = -0.21$$

Collision 3*

	Cart 1 before collision	Cart 1 after collision	Cart 2 before collision	Cart 2 after collision
Mass (kg)	0.5030 ± 0.0001	0.5030 ± 0.000]	1.0033 + 0.0002	1.0033 ± 0.0002
Velocity (m/s)	1.18 + 0.02	-0.278 ± 0.007	0 <u>+</u> 0	0.720 ± 0.004
Momentum (kg m/s)	0.59 ± 0.01	-0.139 ± 0.004		0.722 ± 0.004
Kinetic energy (J)	0.35 ± 0.01	0.019 ± 0.001		0.260 ± 0.003

$$\epsilon_{p} = \frac{-0.01 \pm 0.01}{\epsilon_{k}} = \frac{-0.01}{0.01} \pm 0.01$$

Collision 4

	Cart 1 before collision	Cart 1 after collision	Cart 2 before collision	Cart 2 after collision
Mass (kg)	1.0007 + 0.0005	1.0007 ± 0.0002	1.0037 + 0.000J	1.0033 ± 0.0002
Velocity (m/s)	1.50 ± 0.01	0.67 ± 0.02		0.67 ± 0.02
Momentum (kg m/s)	1.50	0.67	O	40,0
Kinetic energy (J)	1.13	0.23	0	0.23

$$\epsilon_p =$$
 _ ().|\

Collision 5

	Cart 1 before collision	Cart 1 after collision	Cart 2 before collision	Cart 2 after collision
Mass (kg)	1.0007 ± 0.0002	1.007 ± 0.0002	0.5084 ± 0.0001	0.0001 ± 0.0001
Velocity (m/s)		-0.40a ± 0.004		0.821 ± 0.005
Momentum (kg m/s)	O	-0.409	O	0.421
Kinetic energy (J)	0	D.084	0	0.175

$$\Delta p = \underline{\text{0.012}} \quad Kg.m/s$$

$$\Delta K = 0.512 J$$

Collision 6

Maria	Cart 1 before collision	Cart 1 after collision	Cart 2 before collision	Cart 2 after collision
Mass (kg)	0.5030 ± 0.0001	10000 + 0.000l	0.0001 ± 0.0001	0.5084 + 0.0001
Velocity (m/s)	_o_±_o_	-0.926 ± 0.003	_ O _ ± _ O _	0.891 ± 0.005
Momentum (kg m/s)	0	-0.466	Ö	0,453
Kinetic energy (J)	0	0.216	0	0.202

$$\Delta p = 0.013$$
 Kg.m/s.

$$\Delta K = 0.835 J.$$

4*. Write out the error analysis for collision 3 to find the uncertainties in momentum and kinetic energy, and the uncertainties in ε_p and ε_k .

$$\frac{1}{C_p} = \frac{\overrightarrow{p_1} + \overrightarrow{p_2} - \overrightarrow{p_1}}{\overrightarrow{p_2}}$$

$$= \frac{P_{1}' + P_{2}' - P_{1}}{P_{1}} \qquad S_{\xi_{p}}^{2} = \frac{S_{\xi_{p}}^{2} + S_{\xi_{p}}^{2} + S_{\xi_{p}}^{2} + S_{\xi_{p}}^{2}}{P_{1}^{2} + S_{\xi_{p}}^{2} + S_{\xi_{p}}$$

$$\sqrt{\frac{K_{5}^{1}}{\xi_{5}^{1}} + \frac{K_{5}^{1}}{\xi_{5}^{1}}} + \frac{K_{5}^{1}}{\xi_{5}^{1}(K_{5}^{1} + K_{5}^{1})_{5}}$$

5. For the elastic collisions, did your data fit the conservation of energy and momentum model? Explain.

Yes, all of our & Ep were very low, ment it did not change much during the collision. which ment it Pollow the model

And not as much of consortin of energy, as pour collisions were not probetly elaster, more enorm was lost, as seen by our higher (but still low) Ex value.

6. For the inelastic collisions, did your data fit the conservation of momentum model? Explain. What was the relative energy loss? Where did the energy go?

You with the our downte collisions, our & were low.

Our Ex was -0.20±0.01, which is expected as the energy was absorbed by the velices holdy the curts together.

7. For the "explosion," did your data fit the conservation of momentum model? Explain. What was the energy gained?

Yes, just like the others, our to way low.
We gan energy from the stored spring energy, that is why
our Die was quite.

GRADE: (out of 30 points)

GRADED BY
(TA's initials)