

|                                                   |                                  |                                       |
|---------------------------------------------------|----------------------------------|---------------------------------------|
| 10                                                | 30                               | 50                                    |
| CACCGCGTCCGGCGGCGGAGAACCCGCAATCTTGC               | GCCCACAA                         | AATACACCGA                            |
| 70                                                | 90                               | 110                                   |
| CGATGCCGATCTACTTAAGGGCTGAAACCCACGGGCTGAGAGACTATAA | AGAGCGTT                         | G                                     |
| 130                                               | 150                              | 170                                   |
| CCTACCGCCATGGAACAACGGGACAGAACGCCCCGGCGCTC         | GGGGCCCGGAAAAGG                  |                                       |
| M E Q R G O N A P A A S G A R K R                 |                                  |                                       |
| 190                                               | 210                              | 230                                   |
| CACGGCCCAGGACCCAGGGAGGCGCGGGAGCCAGGC              | CTGGGCCCCGGGT                    | CCCCAAGACC                            |
| H G P G P R E A R G A R P G P R V P K T           |                                  |                                       |
| 250                                               | 270                              | 290                                   |
| CTTGTGCTCGTTGTC                                   | CCGCGGT                          | CCTGCTGTTGGTCTCAGCTGAGTCTGCTCTGATCACC |
| L V L V V A A V L L V S A E S A L I T             |                                  |                                       |
| 310                                               | 330                              | 350                                   |
| CAACAAGACCTAGCTCCCCAGCAGAGAGCGGCC                 | CACAACAAAAGAGGTCCAGCCCCTCA       |                                       |
| Q Q D L A P Q Q R A A P Q Q K R S S P S           |                                  |                                       |
| 370                                               | 390                              | 410                                   |
| GAGGGATTGTGTCCACCTGGACACCATA                      | TCTCAGAAGACGGTAGAGATTGCATCTCCTGC |                                       |
| E G L C P P G H H I S E D G R D C I S C           |                                  |                                       |
| 430                                               | 450                              | 470                                   |
| AAATATGGACAGGACTATAGCACTCA                        | TGGAAATGACCTC                    | CTTCTGCTGCACC                         |
| K Y G Q D Y S T H W N D L L F C L R C T           |                                  |                                       |
| 490                                               | 510                              | 530                                   |
| AGGTGTGATTCA                                      | GGTGAAGTGGAGCTAAGTCC             | CTGCACCA                              |
| R C D S G E V E L S P C T T T R N T V C           |                                  |                                       |
| 550                                               | 570                              | 590                                   |
| CAGTGC                                            | GAAGAAGGCAC                      | CTTCCGGAAAGAAGATTCTCCTGAGATGTGCCG     |
| Q C E E G T F R E E D S P E M C R K C R           |                                  |                                       |
| 610                                               | 630                              | 650                                   |
| ACAGGGGTGTCCCAGAGGGATGGTCAAGGTC                   | GGTGATTGTACACCC                  | CTGGAGTGACATCGAA                      |
| T G C P R G M V K V G D C T P W S D I E           |                                  |                                       |
| 670                                               | 690                              | 710                                   |
| TGTGTCCACAAAGAATCAGGCATCAT                        | AGGACTCACAGTTG                   | CAGCCGTAGTCTTGATT                     |
| C V H K E S G I I I G V T V A A V V L I           |                                  |                                       |
| 730                                               | 750                              | 770                                   |
| GTGGCTGTGTTG                                      | CAAGTCTTACTGTG                   | GAAGAAAGTC                            |
| V A V F V C K S L L W K K V L P Y L K G           |                                  |                                       |
| 790                                               | 810                              | 830                                   |
| ATCTGCTCAGGTGGTGGGAC                              | CTGAGCGTGTGGACAGAAGCT            | CACAAACGACCTGGG                       |
| I C S G G G D P E R V D R S S Q R P G             |                                  |                                       |

2/12

850                    870                    890  
GCTGAGGACAATGTCCTCAATGAGATCGTGAGTATCTTGCAGCCCACCCAGGTCCCTGAG  
A E D N V L N E I V S I L Q P T Q V P E  
910                    930                    950  
CAGGAAATGGAAGTCCAGGAGCCAGCAGAGCCAACAGGTGTCAACATGTTGTCCCCGGG  
Q E M E V Q E P A E P T G V N M L S P G  
970                    990                    1010  
GAGTCAGAGCATCTGCTGGAACCGGCAGAAGCTGAAAGGTCTCAGAGGAGGAGGCTGCTG  
E S E H L L E P A E A E R S Q R R R L L  
1030                    1050                    1070  
GTTCCAGCAAATGAAGGTGATCCCCTGAGACTCTGAGACAGTGCTTCGATGACTTTGCA  
V P A N E G D P T E T L R Q C F D D F A  
1090                    1110                    1130  
GACTTGGTGCCCTTGACTCCTGGAGGCCGCTCATGAGGAAGTTGGGCCTCATGGACAAT  
D L V P F D S W E P L M R K L G L M D N  
1150                    1170                    1190  
GAGATAAAGGTGGCTAAAGCTGAGGCAGCGGGCACAGGGACACCTGTACACGATGCTG  
E I K V A K A E A A G H R D T L Y T M L  
1210                    1230                    1250  
ATAAAGTGGGTCAACAAAACGGCGAGATGCCCTGTCCACACCCCTGCTGGATGCCTTG  
I K W V N K T G R D A S V H T L L D A L  
1270                    1290                    1310  
GAGACGCTGGAGAGAGACTTGCCAAGCAGAAGATTGAGGACCACCTGTTGAGCTCTGGA  
E T L G E R L A K Q K I E D H L L S S G  
1330                    1350                    1370  
AAGTTCATGTATCTAGAAGGTAATGCAGACTCTGCCATGTCCTAACGTGTGATTCTCTCA  
K F M Y L E G N A D S A M S \*  
1390                    1410                    1430  
GGAAGTGAGACCTCCCTGGTTACCTTTCTGGAAAAAGCCAACTGGACTCCAGTC  
1450                    1470                    1490  
AGTAGGAAAGTGCCACAATTGTCACATGACCGGTACTGGAAGAAACTCTCCCATCCAACA  
1510                    1530                    1550  
TCACCCAGTGGATGGAACATCCTGTAACCTTCACTGCACTTGGCATTATTTTATAAGC  
1570                    1590  
TGAATGTGATAATAAGGACACTATGGAAAAAAAAAAAAAA

FIG. 1B

FIG. 2A



## FIG.2C

241 **T L S Q V** - - - - - **K G F V R K N G V N E A K T D E I K N D N V Q D T A h** Fas protein  
 358 **F Y A V V E N V P** **P L R W K E F V R R L I G L S D D E I D R L E I L Q N G R C L R** h TNFR I Protein  
 335 - **L Y D V M D A V V P A R R W K E F V R T L I G L R E A E I E A V E V E I G R - F R** DR3 protein  
 312 C F D D F A D L V P F D S W E P L M R K L G L M D N E I - K V A K A E A A G H R HLYBX88XXprotein

272 E **Q K V Q L L R N W H Q L H G K K E A - Y D T L I K D L K K A N E C T L A E K I** h Fas protein  
 398 E A **Q Y S M L A T W R R R T P R R E A T L E E L L G R V I R D M D L E L G C L E D I** h TNFR I Protein  
 373 **D Q Q Y E M L K R W R Q Q P - - A G L G A V Y A A L E R M C L D G C V E D L** DR3 protein  
 351 **D T L Y T M L I K W V N K T G R - D A S V H T F L D A L E T L G E R L A K Q K I** HLYBX88XXprotein

311 Q T I I L E K D I T S D S E N S N F R N E I Q S F V h Fas protein  
 438 **E E A L - - - - - C G P A A L P P A P P S L E R** h TNFR I Protein  
 410 - - - - - R S R L Q R G P DR3 protein  
 390 **E D H I L L I S S G K F M Y L E G N - - A D S A M S** HLYBX88XXprotein

6/12

FIG. 3



7/12

HAPBU13R

1 AATTCTGGCAC AGCTCTTCAG GAAGTCAGAC CTTCCCTGGT TTACCTTTT  
51 TCTGGAAAAA GCCCAACTGG GACTCCAGTC AGTAGGAAAG TGCCACAATT  
101 GTCACATGAC CGGTACTGGA AGAAAACTCTC CCATCCAACA TCACCCAGTG  
151 GNATGGGAAC ACTGATGAAC TTTTCACTGC ACTTGGCATT ATTTTTGTNA  
201 AGCTGAATGT GATAATAAGG GCACTGATGG AAATGTCTGG ATCATTCCGG  
251 TTGTGCGTAC TTTGAGATTN GNNTTGGGG ATGTNCATTG TGTTTGACAG  
301 CACTTTTTN ATCCCTAATG TNAAATGCNT NATTGATTG TGANTTGGGG  
351 GTNAACATTG G~~T~~NAAGGNTN CCCNTNTGAC ACAGTAGNTG GTNCCCGACT  
401 TANAATNGNN GAANANGATG NATNANGAAC CTTTTTTGG GTGGGGGGGT  
451 NNCGGGGCAG TNNAANGNNG NCTCCCCAGG TTTGGNGTNG CAATNGNGGA  
501 ANNNTGG

HSBBU76R

1 TTTTTTTGT AGATGGATCT TACAATGTAG CCCAAATAAA TAAATAAAGC  
51 ATTACATTA GGATAAAAAA GTGCTGTGAA AACAAATGACA TCCCAAACCA  
101 AATCTCAAAG TACGCACAAA CGGAATGATC CAGACATTTC CATAGNGTCC  
151 TTATTATCAC ATTCAAGCTTA TAAAANTAAT GCCAAGTGCA GTGAAAAGTT  
201 ACAGGATGTT CCATCCACTG GGTGGATT

FIG.4

8/12



FIG. 5C



FIG. 5B



FIG. 5A

9/12



FIG.5D



10/12



FIG. 5E

FIG. 6A



12/12



FIG. 6C



FIG. 6B