Homework #6, EECS 451, W04. Due Fri. Mar. 5, in class

Review Problems

R1. [B 0] Concept(s): **DTFS and filters**

The periodic signal $x[n] = \{\underline{1}, 0, 2, 0\}_4$ is the input to a system having the following frequency response.

- (a) [0] Sketch the spectrum of the input signal x[n].
- (b) [0] Sketch the spectrum of the output signal y[n].
- (c) [0] Express the output signal y[n] as a sum of sinusoids.

R2. [B 0] Concept(s): Orthogonality of complex exponentials.

(a) [0] Prove the equality

$$\frac{1}{N} \sum_{n=0}^{N-1} e^{j\frac{2\pi}{N}kn} = \begin{cases} 1, & k = 0, \pm N, \pm 2N, \dots \\ 0, & \text{otherwise.} \end{cases}$$

(b) [0] Show that the harmonically related complex exponential signals $s_k[n] = e^{j\frac{2\pi}{N}kn}$ are orthogonal over any interval of length N, i.e., $\sum_{n=n_0}^{n_0+N-1} s_k[n] \, s_l^*[n] = 0$ if $k \neq l$. (Thus the DFT is an orthogonal transformation.)

Skill Problems

1. [B 20] Concept(s): Inverse DTFT.

(a) [10] Find the signal x[n] that has the following spectrum. (You may use symbolic integration software if you want; otherwise you may need to do integration by parts.)

Hint: you can (and should) simplify your final answer so that it involves sinc².

- (b) [0] Observe that the signal $h[n] = \delta[n-1] + \delta[n+1]$ has spectrum $H(\omega) = 1 e^{-\jmath \omega} + 1 e^{\jmath \omega} = 2\cos(\omega)$.
- (c) [10] Find the signal y[n] that has the spectrum $Y(\omega) = \cos^2(\omega)$. Do *not* perform integration; instead use "coefficient matching" by considering the previous problem.

2. [B 10] Concept(s): DTFT "differencing" and "integration" properties.

Find the relationship between $Y(\omega)$ and $X(\omega)$ for the following time-domain relationships.

- (a) [5] y[n] = x[n] x[n-1]. (Differencing, analogous to differentiation in continuous time.)
- (b) [5] $y[n] = \sum_{k=-\infty}^{n} x[k]$ (Accumulation, analogous to integration in continuous time.)

3. [B 0] Concept(s): **DTFT properties.**

A signal x[n] has the DTFT $X(\omega) = \frac{1}{1-ae^{-j\omega}}$. Find the DTFT of the following signals.

- (a) [0] $e^{j\frac{\pi}{2}n} x[n]$
- (b) [0] $\cos(0.3\pi n) x[n]$
- (c) [0] x[n] * x[n-1]
- (d) [0] x[n] * x[-n]

March 1, 2004 17:24

4. [B 20] Concept(s): Inverse systems. $H(\omega)$ to pole-zero.

A system T has frequency response $H(\omega) = 1 - e^{-j\omega} + \frac{2}{9} e^{-j2\omega}$.

- (a) [10] Find the pole-zero plot for \mathcal{T} .
- (b) [0] Using that plot, make a rough sketch by hand of the magnitude response.
- (c) [10] Determine the impulse response of the corresponding *inverse system* \mathcal{T}^{-1} . Do not use the DTFT synthesis integral to solve this!
- 5. [B 20] Concept(s): sampling and spectra.

Consider the analog signal x(t) with the following spectrum:

$$X(F) = \left\{ \begin{array}{ll} 2, & |F| \leq 0.5 \mathrm{kHz} \\ 1, & 0.5 \mathrm{kHz} < |F| < 1.25 \mathrm{kHz} \\ 0, & \mathrm{otherwise.} \end{array} \right.$$

This signal is sampled at $F_s = 2000 \text{Hz}$ to form a DT signal x[n]. Find $X(\omega)$ and x[n].

- 6. [B 15] Concept(s): sampling and signal recovery.
 - (a) [10] Find the continuous-time signal x(t) that when sampled (without aliasing) will produce a signal x[n] having spectrum $X(\omega) = 7\pi \delta(\omega \pi/4) + 7\pi \delta(\omega + \pi/4)$. Assume the sampling rate F_s is 10kHz.
 - (b) [5] Find a different continuous-time signal $x_2(t)$ that, when sampled at the same rate, yields the same samples x[n] due to aliasing.

__ Mastery Problems _

7. [B 40] Concept(s): up sampling and down sampling.

Suppose $x[n] \overset{\mathrm{DTFT}}{\longleftrightarrow} X(\omega)$. Express the DTFT of the following signals in terms of $X(\omega)$.

- (a) [10] Upsampling by zero insertion: $y_1[n] = \begin{cases} x[n/2], & n \text{ even} \\ 0, & n \text{ odd} \end{cases}$
- (b) [10] Downsampling (by discarding): $y_2[n] = x[2n]$. Hint. Think about $\frac{1+(-1)^k}{2}$.
- (c) [10] Upsampling by repeating: $y_3[n] = \left\{ \begin{array}{ll} x[n/2]\,, & n \ {\rm even} \\ x[(n-1)/2]\,, & n \ {\rm odd} \end{array} \right.$
- (d) [10] Odd zeroing: $y_4[n] = \left\{ \begin{array}{ll} x[n]\,, & n \text{ even} \\ 0, & n \text{ odd} \end{array} \right.$

8. [B 40] Concept(s): Up sampling and down sampling and DTFT.

The signal x[n] that has the following spectrum.

Sketch the spectra of the signals $y_1[n]$, $y_2[n]$ and $y_4[n]$ defined in the previous problem over the interval $[-\pi,\pi]$.