FUNDAMENTOS INGENIERÍA ELÉCTRICA EXAMEN FINAL FEBRERO DE 2023

NOMBRE						FIRMA			
GRADO:	□ Eléctrico	□ Electrónico	□ Mecánico	□ Diseño	GRUI	PO: □ A	□В	\Box C	

INSTRUCCIONES:

- 1. Ponga su nombre y firme esta hoja; seleccione su titulación (dobles grados marque dos).
- 2. Ponga su DNI o documento identificativo sobre la mesa en lugar visible.
- 3. Conteste a las cuestiones sobre sobre esta misma hoja y justifique las respuestas en hojas anexas.
- 4. Está prohibido el uso de calculadoras programables y de teléfonos móviles.
- C1 (1 punto). En el circuito de corriente continua de la figura, i = 1A. Calcula V_g .

C2 (1.5 puntos). Calcula el equivalente Thevenin del circuito de corriente continua de la figura entre A y B.

V_{th} (V)	
$R_{th} (\Omega)$	

C3 (1 punto). Para el circuito de corriente alterna de la figura, determina el valor de C para que la fuente no genere ni consuma potencia reactiva. $v_g(t) = 120\cos(100t + 35^{\circ})$ [V]

C4 (0.5 puntos). En el circuito de corriente alterna de la figura, $A_1 = A_2 = 5$ A. Calcula A_3 .

A_3 (A)	
-----------	--

C5 (1 punto). En el circuito de corriente alterna de la figura, la fuente cede potencia reactiva. Calcula A_3 sabiendo que $v_g(t) = 200\cos(200t + 10^{\circ})$ V, $A_1 = 10$ A, $A_2 = 20$ A y W = 1000W.

C6 (1.5 puntos). Sabiendo que en el circuito de corriente alterna de la figura la resistencia R consume la máxima potencia activa que podría consumir, calcula la potencia reactiva generada por la fuente. $v_g(t) = 50\cos(1000t - 15^{\circ})V$.

C7 (2 puntos). Para el circuito trifásico equilibrado de la figura, la carga 1 consume 8kW y genera 6kVAr y la impedancia en triángulo de la carga 2 es 5+8j. Sabiendo que $V_1 = 220$ V, calcula A_1 , A_2 , A_3 y V_2 .

C8 (1 punto). La red trifásica equilibrada de secuencia directa de la figura alimenta tres impedancias capacitivas iguales. Con el interruptor cerrado las medidas son W = 2300W, V = 150V y A = 25A. Calcula las medidas con el interruptor abierto.

C9 (0.5 puntos). En el circuito trifásico equilibrado de secuencia directa de la figura, $W_1 = 500 \text{W}$ y $W_2 = 1000 \text{W}$. Calcula W_3 .

