PRIMERA LEY DE LA TERMODINÁMICA

Primera Ley de la Termodinámica

La primera ley de la termodinámica es un principio que refleja la CONSERVACIÓN DE LA ENERGÍA

El cambio de energía de un sistema es igual a la suma de todas las transferencias de energía a través de la frontera, por tanto la energía total del universo se mantiene constante, no se crea ni se destruye, sólo se transforma.

La cantidad de *Energía Interna* que posee un sistema está determinada por el estado en el que se encuentra el sistema. Entonces, si pasa de un estado a otro diferente, su energía interna cambia y esto se debe al calor y al trabajo intercambiados con su entorno.

La formulación matemática de la Primera Ley de la Termodinámica es:

$$\Delta U = Q - W$$

donde:

ΔU es la variación de energía del sistema

Q es el calor intercambiado por el sistema a través de las paredes

 $oldsymbol{W}$ es el trabajo intercambiado por el sistema con sus alrededores.

- Q Positivo (+): Calor que entra al sistema
- Q Negativo (-): Calor que sale del sistema

- W Positivo (+): Trabajo que el sistema hace hacia el entorno (expansión)
- W Negativo (-): que recibe el sistema (compresión)

Recordar: El signo tiene que reflejar el aumento o disminución de la energía interna.

Trabajo en procesos termodinámicos

Trabajo realizado por un gas:

$$dW = F dx = pA dx$$

Pero

$$A dx = dV$$

donde dV es el cambio infinitesimal de volumen del sistema. Así, podemos expresar el trabajo efectuado por el sistema en este cambio infinitesimal de volumen como

$$dW = p \, dV \tag{19.1}$$

En un cambio finito de volumen de V_1 a V_2 ,

$$W = \int_{V_{c}}^{V_{2}} p \, dV \qquad \text{(trabajo efectuado en un cambio de volumen)} \tag{19.2}$$

Proceso Isobárico (P=cte)

Si la presión p permanece constante mientras el volumen cambia de V_1 a V_2 (figura 19.6c), el trabajo efectuado por el sistema es

$$W = p(V_2 - V_1)$$
 (trabajo efectuado en un cambio de volumen a presión constante) (19.3)

$$p = \frac{nRT}{V}$$

Sustituimos esto en la integral de la ecuación (19.2), sacamos las constantes n, R y T, y evaluamos la integral:

$$W = \int_{V_1}^{V_2} p \ dV$$

$$= nRT \int_{V_1}^{V_2} \frac{dV}{V} = nRT \ln \frac{V_2}{V_1} \quad \text{(gas ideal, proceso isotérmico)}$$

Proceso Isocórico (V=cte)

dV=0

Cuando el Volumen de gas no cambia, el sistema no realiza ni recibe trabajo porque no hay desplazamiento:

W=0

Área debajo de la gráfica = 0

Aplicaciones de la Primera Ley de la Termodinámica

Proceso isobárico: P = cte

$$\Delta U = Q - W$$

$$W = P.\Delta V$$

$$Q = n.Cp.\Delta T$$

Proceso isocórico: V = cte

$$\Delta U = Q$$

$$W = 0$$

$$Q = n.Cv.\Delta T$$

Proceso isotérmico: T = cte

$$\Delta U = 0 \Rightarrow Q = W$$

$$W = n.R.T.Ln(V_2/V_1)$$

$$Q = n.R.T.Ln(V_2/V_1)$$

Proceso Adiabático: Q = 0

$$\Delta U = -W$$

$$W = (P_2V_2 - P_1V_1)/(1-\gamma)$$

$$Q = 0$$

Trabajo y Calor son variables de PROCESO

Dependen de la trayectoria seguida

1→ 3 : Transformación isobárica

 $3 \rightarrow 2$: Transformación isocórica

 $1 \rightarrow 4$: Transformación isocórica

4 → 2 : Transformación isobárica

 $1 \rightarrow 2$: Transformación isotermica

La temperatura de un gas se modifica a través de trayectorias diferentes.

- 1) $T_1 \rightarrow T_2$ a Volumen cte
- 2) $T_1 \rightarrow T_2$ a Presión cte

En T_1 , la energía interna vale U_1 , y en T_2 , la energía interna es U_2 , entonces por cualquiera de los dos caminos, la variación de energía es la misma.

Gas ideal monoatómico:

 $U = Ec traslacional total = 3/2.N.K_B.T = 3/2.n.R.T$

(Teoría cinética de los gases)

Donde:

N: nro de moléculas del gas

K_R: Constante de Boltzman

n: nro de moles de gas

R: Constante universal de los gases

$$N.K_B = n.R$$

$$\gamma = Cp/Cv = (5/2.R)/(3/2.R)$$

$$y = 5/3$$

$$\gamma = 1,67$$

A Volumen constante: $\Delta U = Q$

2) A Presión constante: $\Delta U = Q - W$

(V=0)

 $\Delta U = n.Cp.\Delta T - P.\Delta V$

 $P.\Delta V = n.R.\Delta T$

 $\Delta U = n.Cv.\Delta T$

 $n.Cp.\Delta T - n.Cv.\Delta T = n.R.\Delta T$

 $n.Cv.\Delta T = n.Cp.\Delta T - n.R.\Delta T$

 $Cv = \Delta U/(n.\Delta T)$

Cp-Cv=R

Cp = R + Cv

 $Cp = R + 3/2.R \Rightarrow Cp = 5/2.R$

 $Cv = (3/2.n.R.\Delta T)/(n.\Delta T) \Rightarrow Cv = 3/2.R$