SIRS Model

Overview

- Objectives
- Model, its description and Parameters
- Differential Equations
- The Code
- Various Graphs Compairing outputs with device and without device
- Insights and Inferences
- References

Objectives

- Obtain a better understanding of the Current Situation and in nearby future.
- Test hypotheses about the system for feasibility.
- Study the change of nature of various graphs by altering the model's parameters.
- Identify the "driving" variables ones that performance measures are most sensitive to - and the inter-relationships among them.

Model

$$N = S + S_d + I + I_d + R - M$$

Model Parameters

```
\lambda( = force of Infection) = \beta *(Infected people at any instant)/(Total Population)
```

 β = Transmission rate or Effective Contact rate

y = Recovery rate

 μ = Mortality rate

 θ = wanning Immunity rate

p = fraction of People using device before infection

y = fraction of People using device after they get recovered from Infection

Note: c_s, c_i, c_d are factors by which there is reduction in Transmission rate, increase in recovery rate and reduction in Mortality rate respectively.

Assumptions

- 1. Constant (closed) population size, N
- 2. No demography (i.e., births and deaths)
- 3. Homogenous Population / well Mixed Population

Values of Parameters

```
\beta = 0.09 #Transmission rate
c s = 0.2 #reduction in transmission rate
y = 0.047 #Recovery rate
c i = 1.3 #increase in recovery rate
\mu = 0.0024 #Mortality rate
c d= 0.8 #decrease in mortality rate
\theta = 0.00001 # recovered to suspected rate
```

Differential Equations

$$dS/dt = -(1-p)^* \lambda^* S + (1-y)^* \theta^* R$$

$$dI/dt = (1-p)^* \lambda ^* S - \gamma^* I - \mu ^* I$$

$$\begin{split} d(S_d)/dt &= -p^*(c_s)^* \; \lambda \; *(S_d) \; + \; y^* \; \theta^* R \\ d(I_d)/dt &= \; p^*(c_s)^* \; \lambda \; *(S_d) \; -(c_i)^* \gamma^*(I_d) \; - \; (c_d)^* \; \mu \; *(I_d) \\ dR/dt &= \; \gamma^* I \; + \; (c_i)^* \gamma^*(I_d) \; - \; \theta \; *R \\ dDdt &= \; \mu \; *I \; + \; (c_d)^* \; \mu \; *(I_d) \end{split}$$

Basic Reproduction Number: R naught(R0)

R0 ∝ (infection / contact) * (contact / time) * (time / infection)

More Specifically: $R0 = \tau * c^{-} * d$

Where τ is the transmissibility (i.e., probability of infection given contact between a susceptible and infected individual),

c is the average rate of contact between susceptible and infected individuals,

d is the duration of infectiousness.

R0 Continued.....

Since,
$$\beta = \tau * c^-$$
 and $\gamma = 1/d$

R0 is also defined as:

$$R0 = \beta/\gamma$$

In the Current Model,

Ro =
$$(1-p)^* (\beta/(\gamma + \mu)) + p^*(\beta^*c_s/(\gamma^*c_i + \mu^*c_d))$$

Effective Reproduction Number (Re)

- Re is the number of people in a population who can be infected by an individual at any specific time.
- For Simple Model: Re = R0 *S/N

Re =
$$(1-p)^* (\beta/(\gamma + \mu))(S/N) + p^*(\beta^*c_s/(\gamma^*c_i + \mu^*c_d))(S_d/N)$$

- It changes as the population becomes increasingly immunized
- It is affected by the number of people with the infection and the number of susceptibles with whom infected people are in contact
- People's Behaviour also affect its value.
- If Re>1, the infection will spread exponentially,
- If Re is less than 1, the infection will spread only slowly, and it will eventually die out.

USING DEVICE

Initial Values are considered as of the values on 20th June'2020.

```
N = 10000000 # Total Population
```

```
I = 168658, #Infected no. of people not using device
```

```
I_d = 3, #Infected no. of people using device
```

```
R = 214210, #Recovered no. of people
```

```
D= 12970 # Deaths
```

Plot of each compartment p = 0.6

Total Active Cases in Device not using Compartment

Total Active Cases in Device not using Compartment

Total Infected Cases

Total no. of Deaths over time

Total no. of Recovered over time

Max. value in each compartment

Total - 16,41,641.97

p = 0.6	p = 0.4
I - 1,68,658	I - 12,02,126.57
l_d - 23,661.91	I_d -1,47,897.13
D- 75,557.82	D -7,25,368.90
R- 15,46,533.55	R - 1,49,06,955.10

Total - 1,68,35,687.34

Ro and Reff

Ro - 0.90011

Ro and Reff

R0 - 1.2073

WITHOUT USING DEVICE

Initial Values

```
I = 3, #Infected no. of people not using device
```

I_d = 0, #Infected no. of people using device

R = 0, #Recovered no. of people

D= 0 # Deaths

Plot of each compartment

Total Deaths

Total Recovered

Total Infected Cases

Max value in each Compartment

Total = 7,65,12,063.35

1 = 1,27,38,369.4

D = 37,15,116.07

R= 7,27,54,356.5

Ro and Reff

Ro = 1.8218

Comparison of values in each compartment with

using Device and without using Device

Total Cases

p = 0.6

Total Deaths

Comparison of Effective Reproduction No.

Reff

COMPARISON WITH REAL DATA

Comapring with Data of India till 20th June'2020.

Parameters Equations

$$dD/dt = mu*I$$
 ==> $mu = (dD/dt)*(1/I)$

```
dR/dt = gamma*I ==> gamma = (dR/dt)*(1/I)
```

```
dI/dt = beta*S - gamma*I - mu*I ==> beta= (dI/dt + gamma*I + mu*I)*(1/S)
```

Two different sets of parameters

Using data of India till

20th of June

beta = 0.09

gamma = .047

mu = 0.0024

Using Least Square

Method

beta = 0.149

gamma = .061

mu = 0.003

Comparing using different p values

Total no.of cases

Total Active cases in I_d compartment

Total Active cases in I compartment

Total no.of Deaths

Reff values

Ro Values

$$p = 0.3$$
 Ro = 1.360

References

https://www.coursera.org/learn/developing-the-sir-model

https://en.wikipedia.org/wiki/Basic_reproduction_number

https://idmod.org/docs/general/model-sir.html

https://web.stanford.edu/~jhj1/teachingdocs/Jones-on-R0.pdf

https://www.coursera.org/learn/interventions-and-calibration/home/welcome

https://www.kaggle.com/lisphilar/covid-19-data-with-sir-model#SIR-to-SIR-F

https://api.covid19india.org/