Web 工学で応用するための Deep Learning 利用法と知見の体系化

2013 年度卒業論文 東京大学工学部システム創成学科知能社会システムコース 03120929 黒滝 紘生

指導教官: 松尾 豊 准教授

2013年2月日

概要

近年機械学習の分野において、Deep Learning と呼ばれるアルゴリズム群が優れた成果を納めている。 Web 工学でも、Deep Learning を応用することによる発展が期待される。

しかし、Deep Learning は歴史の浅い発展途上の技術であり、どのアルゴリズムを定番とすれば良いのか、試行錯誤の段階にある。これは、各アルゴリズムの改良点が次々と見つかっていることに加え、各アルゴリズムの得手不得手や、学習性能が高くなる原理の詳細など、解明されていない部分が多いことが、主な原因である。アルゴリズムが開発途上で確定できていないため、公開されているライブラリも、現状では、開発用途や実験的なものが多くなってしまっている。そもそも有力なアルゴリズムに対応する実装が用意されていない場合や、問題に応じて自らアルゴリズムの細部を調整しなければならない場合もある。標準と言える公開ライブラリが確立していない状況なので、Web 工学など応用分野に Deep Learning を適用したいと考えても、プログラム開発に長い時間がかかってしまい、開発における大きな障壁となっている。

さらに、現在の Deep Learning 技術では、他のアルゴリズムに比べて学習にかかる時間が長いことが多く、ハードウェア性能が低いマシンでは、アルゴリズムを実用的な時間で実行すること自体が容易ではない。実行時間の長さをカバーするため、GPU を用いて演算をスピードアップさせる手法が確立されつつあるが、特殊なプログラミングが要求され、開発における障壁の1つとなっている。また、ノート PCの大部分など、並列演算に利用可能な GPU を搭載していない PC を使っている場合には、ライブラリがGPU を利用しているために、却ってその実行が不可能になってしまうこともある。

以上に挙げた原因により、Deep Learning 技術に関心を持っていても、まず実際の問題に Deep Learning を試行すること自体が困難であり、応用技術開発のハードルは更に高くなっている。特に、国内での研究 開発は遅れており、早急なキャッチアップが必要である。このような現状を踏まえ、本研究では、Web 工 学における応用を見据えつつ、Deep Learning を様々な問題に応用するための方法論を整理する。具体的 な目標としては、Deep Learning の特徴である高い学習性能を確実に利用できて、その上で出来る限り、実行時間の短さ、実行プログラムの使いやすさ、アルゴリズムの調整・改良の容易さを兼ね備えた方法を確立する。

目次

概要		i
第1章	はじめに	1
1.1	Web 工学と機械学習	1
1.2	深層学習の台頭....................................	1
1.3	深層学習の課題と、研究の目的	4
第2章	関連研究	6
2.1	Web 工学と機械学習	6
2.2	機械学習で利用される、代表的な分類器・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
第3章	深層学習のアルゴリズム	9
3.1	深層学習の歴史	9
3.2	深層学習モデルのバリエーションと詳細	9
第4章	深層学習の実装における技術	12
4.1	評価基準	12
4.2	既存ソースコード使用の利点	12
4.3	Graphics Processing Unit の利用による高速化	14
4.4	数値計算ライブラリ Theano の利点	14
4.5	機械学習ライブラリ Pylearn2 の利点	14
4.6	ハードウェアの構成	16
第5章	Web 工学への深層学習技術の応用	17
5.1	利用したデータセット	17
5.2	使用したライブラリ	19
5.3	使用したハードウェア	20
5.4	ベンチマーク実験の詳細	21

		iii
第6章	Facebook の顔画像認識と深層学習技術	23
6.1	背景	23
6.2	問題設定	25
6.3	実験方法の詳細....................................	25
6.4	結果	25
第 7章	考察と提言	27
7.1	5 章の実験に関する考察	27
7.2	6 章の実験に関する考察	28
7.3	深層学習の利用法に関する提言・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	28
第8章	おわりに	29
8.1	研究の成果	29
8.2	今後の課題	29
謝辞		31
参考文献		32

図目次

1.1	ディープラーニングで画像を認識する流れ	3
1.2	猫を認識するニューロン (教師無し Youtube ビデオより学習された。)	3
1.3	上:入力画像の中で、ニューロンが最も強く反応した 48 枚 下:計算上、最もニュー	
	ロンが強く反応する画像	4
3.1	DropConnect の模式図	10
3.2	Maxout Network の構造図	11
3.3	Maxout Unit が凸関数を近似する様子 (1 次元の場合)	11
4.1	既存コードの利用における、完全オリジナルコードの作成に対する利点	13
4.2	既存ソースコード利用のリスクと、対処方法	13
4.3	Pylearn2 の実験計画例	15
5.1	MNIST データの例	18
5.2	CIFAR10 データの例	20
6.1	ユーザ属性推定の必要性	24
6.2	Facebook におけるプロフィール画像の例	24
6.3	提案手法	25
6.4	今回の実験の模式図	25
6.5	画像から入力ベクトルへの変換方法	25
6.6	プロフィール画像からの顔画像抽出方法	26
6.7	実験で学習されたフィルター	26
7 1	Mayout Network による MNIST 分類実験で「誤差が論文より大きくたった原因	28

表目次

5.1	MNIST の分類誤差ランキング	19
5.2	CIFAR10 分類誤差のランキング	20
5.3	ハードウェア性能の比較	21
5.4	Maxout Network による MNIST(2 次元) 分類の結果	21
5.5	Maxout Network による MNIST(1 次元) 分類の結果	22
5.6	Maxout Network による MNIST(1 次元) 分類の実験詳細	22

第1章

はじめに

1.1 Web 工学と機械学習

近年 Web 工学の領域においては、広告の効率アップや文章の分析、検索エンジンの性能向上などが求 められている。このため、ユーザの性格や行動の分析、ネットワーク構造の未来予測、文章の意味や感情 の理解といった技術が必要とされている。例えば、Web 上で物を販売しているサイトにおいて、ユーザ が購入しそうな商品を勧め、売り上げを増大させることを考える。ユーザが今まで見た商品、購入した商 品を分析して、ユーザの求めている商品のジャンルを知ったり、Web ショッピングにおける性格を知る ことが出来れば、ユーザが買いたい商品を先回りして、広告表示することが出来る。ユーザに対して、よ り購入してくれそうな広告を多く見せて、広告の効率をアップさせることで、サイトからの収益が上がる ことが期待できる。Web 工学では、Web 上のデータを元に知識を学習し、次に得た知識を用いて予測や 分類を行う、というアルゴリズムが必要になっている。例えば、ユーザ行動やソーシャルネットワーク構 造の傾向を学習して、将来の動向を予測したり、ユーザに送られたメールの意味を理解できるようになっ て、迷惑メールとそうでないものを分類できるようになる、といった具合である。こういった知識学習の ためには、機械学習(マシンラーニング)と呼ばれる手法が広く用いられている。機械学習とは、対象と なる知識を数学的なモデルで表し、より適切なモデルを求めて微修正を重ねることで、知識を洗練させて いくアプローチである。使用する数学的なモデルの大筋は、経験を基にあらかじめ決めておく。ユーザ行 動、リンク構造、メールの文章といった元データは、全て数値に変換されて、モデルに入力される。モデ ルは、入力データから予測や識別を実際に行いつつ、より良い結果が得られるように、モデル内の係数を 調整していく。最終的に、多種多様なデータに対して、適切な予測や識別を行うことが出来る数学的モデ ルを得ることができるのである。

1.2 深層学習の台頭

機械学習における大きなポイントの1つに、元データをどのような数値データに変換するか、という問題がある。

変換された数値データのことを、特徴量、あるいは素性 (feature) と呼ぶ。機械学習は、「生データから素性への変換」「素性をモデルに入力」「モデルによる数値計算で、結果を出力」「結果がより正確になるよう、モデルを修正」というプロセスの繰り返しで成り立っている。このうち、「素性への変換」だけは、画像・文章・リンク構造といった、データの種類に依存している。いったん素性が数値の形で得られれば、残りのプロセスは、データの種類に依存せず、全て入力数値とモデルの関係だけで解決することができる。つまり、機械学習のプロセスは、データの種類に依存する素性変換と、汎用的に使えるモデル学習の部分に分かれているのである。

機械学習の性能を上げるためには、素性への変換部分を工夫する方法と、使用する数学的モデルを洗練する方法の2つがある。素性への変換部分の改良は、対象となるデータの種類に強く依存している。例えば、画像データを素性数値に変換する場合、単純なRGB画素データをそのまま使っても良いが、SIFT特徴量やSURF特徴量、フィッシャーベクトルなど、より画像の特徴を捉えた特徴量を用いることが定石となっている。音声データに対しては、時間領域や周波数領域の波形をそのまま用いても良いが、メル周波数ケプストラム係数と呼ばれる特徴量も用いられる。問題とデータ種別に応じて、利用する特徴量を工夫することにより、機械学習の識別精度や実行時間などの性能が向上することが知られていた。このとき、特徴量はそれぞれのデータの専門家による、謂わば職人芸によって作られていた。2000年代半ばに、Deep Learning と呼ばれる一群の手法が台頭した。Deep Learning とは機械学習の手法の1つで、人間の脳の構造に類似した、多層ニューラルネットワーク構造をモデルに用いて、学習を行わせる方法である。Deep Learning は、画像認識や音声認識、化合物の生成予測といった分野で優れた性能を示し、注目を浴びるようになった。図1.1 は、多層ニューラルネットワークが人間の脳の思考回路である、神経細胞のつながりを模倣する様子を表している。(日経ビジネス 2013 年 4 月号より一部抜粋)

Deep Learning の特徴の一つとして、生の入力データから自動的に素性を作り、抽象表現を習得する働きがあると考えられている。例えば人間の顔画像データを学習させた場合、多層ニューラルネットワークを構成する複数のレイヤーのうち、入力に近い低レイヤーのニューロンは、画像のエッジ部分に対して強く反応し、出力に近い高レイヤーのニューロンでは、目口鼻、さらに顔全体など、より抽象度の高い要素に対して反応することがわかった。これは、見方を変えれば、低レイヤーでは中間表現(素性にあたる)を抽出しており、低レイヤーで得た素性を高レイヤーに入力することにより、より高レベルな抽象的概念に対しても優れた識別精度を実現している、と考えられる。どのような素性を使えば良い結果が出るのか、素性の抽出方法自体を同時に機械学習していることから、Deep Learning は Representation Learning(表現学習)とも呼ばれている。

Google の Deep Learning 研究グループは 2012 年、Youtube のビデオによる学習を長時間行わせることで、ニューラルネットワークの 1 つのニューロンが、猫の画像 (1.2、Google の研究紹介記事より引用 *1)

 $^{^{*1}}$ http://googleblog.blogspot.jp/2012/06/using-large-scale-brain-simulations-for.html

図 1.1 ディープラーニングで画像を認識する流れ

図 1.2 猫を認識するニューロン (教師無し Youtube ビデオより学習された。)

を認識するようになったと発表し、大きな話題を呼んだ [?]。この Youtube ビデオ学習の間、「この画像は猫という名前のものである」「猫を認識できるよう学習を行いなさい」といった、認識ラベルの付け方における指針は一切学習器に与えられなかった (教師無し学習)。それにも関わらず、多層ニューラルネットワークは、自然と「この (我々の言葉でいう猫の) 画像は覚えておくべきである」というように、何を認識すると学習効率が良いのか、何を素性とすれば学習がしやすいのか、という情報自体を学習することが出来た。また、同じ論文にて、この多層ニューラルネットワークが人間の顔を学習できることも示された(1.3、[?] より引用)。

図 1.3 上:入力画像の中で、ニューロンが最も強く反応した 48 枚 下:計算上、最もニューロンが強く反応する画像

1.3 深層学習の課題と、研究の目的

Deep Learning が高い識別性能を持つことがわかり、Deep Learning を身近な問題に適用して、良い成果を得たいという機運が高まっている。例えば、Web 工学の分野では機械学習が大きな役割を果たしており、この学習プロセスに Deep Learning を組みこむことで、学習精度が向上したり、より多様な情報を扱えるようになる可能性がある。出来るだけ簡易に、Deep Learning を様々な問題に応用するための方法論が求められている。

しかし、Deep Learning は歴史の浅い発展途上の技術であり、どのアルゴリズムを定番とすれば良いのか、試行錯誤の段階にある。これは、各アルゴリズムの改良点が次々と見つかっていることに加え、学習性能が高くなる原理や、各アルゴリズムの得手不得手など、解明されていない部分が多いことが、主な原因である。アルゴリズムが開発途上で確定できていないため、公開されているライブラリも、現状では、開発用途や実験的なものが多くなってしまっている。実験的なライブラリでは、一部の種類のデータにのみ適用されることを想定して書いている場合があり、他の種類のデータを扱うためには、データ変換用のソースコードを記述しなければならないケースが多い。そもそも有力なアルゴリズムに対応する実装が公開されていない場合もあり、この場合、アルゴリズムの部分も含めて全ての実装を用意しなければならない。また、問題に応じて自らアルゴリズムの細部を調整しなければならない場合もある。例えば、学習の繰り返し回数 (エポック数) や、どの種類のレイヤーを何回重ねるべきか (レイヤー構造)、1 つのレイヤーに含まれる学習素子 (ニューロン) の個数はどうするか、などである。これらはソースコードの作成

者が経験的に手作業で調整しているケースが多く、標準と言える公開ライブラリが確立していない状況なので、Web 工学など応用分野に Deep Learning を適用したいと考えても、プログラム開発に長い時間がかかってしまう。開発における大きな障壁となっている。

さらに、現在の Deep Learning 技術では、他のアルゴリズムに比べて学習にかかる時間が長いことが多く、ハードウェア性能が低いマシンでは、アルゴリズムを実用的な時間で実行すること自体が容易ではない。実行時間の長さをカバーするため、GPU を用いて演算をスピードアップさせる手法が確立されつつあるが、特殊なプログラミングが要求され、開発における障壁の1つとなっている。また、ノート PC の大部分など、並列演算に利用可能な GPU を搭載していない PC を使っている場合には、ライブラリがGPU を利用しているために、却ってその実行が不可能になってしまうこともある。

以上に挙げた原因により、Deep Learning 技術に関心を持っていても、まず実際の問題に Deep Learning を試行すること自体が困難であり、応用技術開発のハードルは更に高くなっている。特に、国内での研究 開発は遅れており、早急なキャッチアップが必要である。

本研究では、このような現状を踏まえ、Deep Learning 技術を実際の問題に応用するための方法論を確立すると共に、実装における障壁を出来る限り取り除くことを目指す。特に Web 工学における応用を目標とする。

2章では、従来の Web 工学における機械学習の応用方法と、Deep Learning 出現以前に良く用いられていた、機械学習による識別器学習方法について、俯瞰する。3章では、Deep Learning を構成する個々のアルゴリズムについて、その原理と詳細を述べる。4章では、実際に Deep Learning アルゴリズムを利用する上で、どのように実装を進めれば、Deep Learning の特徴である高い学習性能を確実に利用できるのか、また、現実の問題を解決するときに重要となる、実行時間の短さ、実行プログラムの使いやすさ、アルゴリズムの調整・改良の容易さなどは、どのようにすれば確保できるのか、といった Deep Learning を使っていく上でのノウハウを記述する。

5章と6章では、4章までの内容を実際の問題に応用することで、その有用性を確かめる。5章では、Deep Learning のプログラムを、汎用的なベンチマークにかけることで、その性能を測定・比較する。6章では、ソーシャルメディア上のプロフィール画像を分類させるタスクに、Deep Learning を応用する。5章と6章の結果を受けて、7章では Deep Learning を利用していく上でのベストプラクティスを提案する。

第2章

関連研究

2.1 Web **工学と機械学習**

この節では、Web 工学における課題をいくつか例示し、それらの課題を解決するために、機械学習が どのように用いられてきたかを概観する。

2.1.1 Recommendation System

主に Web ショッピングを含むサイトや、Web 広告の配信において求められる技術である。Web サイトを閲覧しているユーザに対し、そのユーザが購入したいと商品を予測して、Web 上の広告などの形で推薦する。適切な広告を表示することにより、ユーザの購買行動を促進することが出来る。Recommendation System の研究は、1992 年の Tapestry システムに始まる [?]。また、少なくとも 90 年代の終わりには、Amazon.com,CDNOW,eBay,Levis,GroupLens など、様々なサイトにて Recommendation System は利用されていた [?, ?]。Recommendation System を実現するための、機械学習のテクニックとしては、大きく 2 種類が挙げられる [?]。1 つは、Content Filtering と呼ばれ、ユーザや商品の属性や購買傾向を学習することことで、推薦を行う。もう 1 つは Collaboraitive Filtering と呼ばれており、ユーザや商品の属性を扱う代わりに、購入や評価といった、ユーザの過去の行動を基にして、推薦を行う。

2.1.2 Link Prediction

グラフにおいて、現在のノード間接続から未来の接続を予測するソーシャルグラフの予測、タンパク質の反応予測 (PPI) に有効である [加筆]

2.1.3 Sentiment Analysis

ユーザの感想データを手に入れられるようになってきた事実だけでなく、他の人がどのような感情を抱いているのかを分析したい opinion mining という語も広義には似た内容を指している 2001-2003 に研究が出始めた common neighbors Jaccard 係数 SVD による次元削減 Stanford によるデモに言及 [加筆]

2.1.4 Learning to Rank

多様なランキング素因を組み合わせて、ランキング関数を作成→どの組み合わせが有効か、機械学習する [加筆]

2.2 機械学習で利用される、代表的な分類器

機械学習のプロセスは、「入力データを、数学的モデルで使える素性に変換する」「素性を数学的モデルに入力して、出力値を得る」「出力を見ながら、モデルを修正する」という行程に大きく分けられる。データの分類問題を機械学習で解く場合、モデルによる出力値が分類結果に対応するよう、モデルを学習させることになる。この場合、モデルのことを分類器とも呼ぶ。機械学習において、素性への変換部分は、データの種類に大きく依存する。一方、分類器に用いる数学的モデルと、モデルの改修法、つまり学習法は、汎用的に使うことができる。あるいは、画像や音声、文章といったデータの多様性を、素性という一般的な数値に落とし込むことで吸収して、汎用的分類モデルでも学習できるようにしている。Deep Learning、あるいは Deep Neural Network(多層ニューラルネットワーク) は、汎用的分類モデルの一種である。ここでは、Deep Learning の他にどのような分類器が存在するのか、代表的なものを述べる。

2.2.1 線形識別モデル

2.2.2 ロジスティック回帰

2.2.3 パーセプトロン

線形関数しか近似できないことがわかり下火になった

2.2.4 ニューラルネットワーク

ニューラルネットワークは、人間の脳の構造を模倣した数学的モデルである。人間の脳は、ニューロン と呼ばれる神経細胞が大量に接続されて出来ている。ニューロンが電気信号を伝達することで、様々な脳 の働きが行われている、と考えられている。[模式図など加筆]

- ・隠れ層の追加により、任意の非線形関数を近似可能
- ・バックプロパゲーションの弱点 (sigmoid が反応しなくなる)

2.2.5 Restriceted Boltzman Machine

2.2.6 Support Vector Machine

Support Vector Macine(SVM) は、データを 2 つのクラスに分類する能力を持っている。カーネルマジックとマージン最大化により、優れた精度を出している。SVM は、画像認識などに既に実用化されている。[加筆]

SVM は、広くその信頼性が認められたモデルの1つであり、ライブラリの利用方法も確立している。 SVM を簡単に使えるように libsvm や liblinear というライブラリが存在している。これらのライブラリを使うと、簡単な所定の方式に沿って入力データファイルを用意し、CUI 上で 2,3 回の操作をするだけで、SVM による分類を行わせることができるライブラリである。このとき、利用者が自分でプログラムを書く必要は全くない。プログラムを書かないで済むと、手軽に利用することができ、またバグを起こす危険性が非常に少なく安全に使うことができる。

Deep Learning については、このようなライブラリはまだ存在していないため、Deep Learning の代表的なアルゴリズムについて、プログラム無しで利用できるようなライブラリの整備が望まれる。

第3章

深層学習のアルゴリズム

Deep Learning は、多層ニューラルネットワークのアイデアをさらに一歩推し進めたもので、学習方法の工夫により、多くのレイヤーを学習して、より複雑な関数を学習できるようになった。数々の分類タスクにて、従来手法を大きくしのぐ成果を収め、注目を浴びている。この章では、Deep Learning のこれまで挙げた成果を紹介すると共に、Deep Learning で使われているアルゴリズムの詳細について述べる。

3.1 深層学習の歴史

ニューラルネットワークは隠れ層を追加することによって、任意の非線形関数を近似できるとわかり、 人気が高まった。しかし、2章で見たように、バックプロパゲーション

Deep Learning の登場 Hinton, Bengio, LeCun 画像認識タスクでの成績、音声認識タスクでの成果、 猫認識 MNIST, CIFAR, SVHN などにおける conv.net、Maxout, DropConnect の優位

3.2 深層学習モデルのバリエーションと詳細

この節では、Deep Learningのアルゴリズムが、どのような要素の組み合わせで出来ているのか、それぞれの要素はどのようにして学習を助けているのか、紹介する。

3.2.1 全体の構造

大澤さんの pylearn2 の図を一般化したものを書く

3.2.2 pretraining **\mathcal{L}** finetuning

3.2.3 ネットワーク構造

・普通の MLP, SDA, DBM, CNN

図 3.1 DropConnect の模式図

3.2.4 コスト

Dropout(Robustness?), DropConnect

図 3.1 は、DropConnect の著者による紹介 Web ページ*1に掲載されている画像の引用である。ニューラルネットワークにおけるニューロン同士の接続が、ランダムに切断されている様子を表している。

3.2.5 活性化関数

各ユニットに入力された値は、ある一定の関数によって増幅変換される。これは人間の神経細胞を真似た仕組みで、神経細胞の化学物質による活性化にちなんで、活性化関数 (activation function) と呼ばれる。この項では、Deep Neural Net を構成するときによく用いられる活性化関数を紹介する。

sigmoid **&** hyperbolic tangent

rectifier

Maxout Unit

線形ユニットの出力を複数まとめて、それらの max を取る (=maxout unit)。 さらに、複数の maxout unit の線形和を取ることで、任意の連続関数を近似出来る。

図 3.3 は、maxout unit が複数の線形ユニットの max を取ることによって、様々な凸関数を近似出来る様子を、1 次元の入力について示している。

^{*1} http://cs.nyu.edu/~wanli/dropc/

図 3.2 Maxout Network の構造図

図 3.3 Maxout Unit が凸関数を近似する様子 (1 次元の場合)

第4章

深層学習の実装における技術

この章では、Deep Learning のアルゴリズムを実装して、実際の問題に適用するに当たって、どのようにすれば良い結果が得られるか、紹介する。

4.1 評価基準

Deep Learning のアルゴリズムを使用するための具体的な手段を選ぶにあたり、次のような判断基準を設けた。優先順位は、 $1 \rightarrow 2 \rightarrow 3$ の順に高い。基準 1. Deep Learning が注目された大きな理由である、高い識別精度を再現できる。基準 2. 学習にかかる時間が、他のアルゴリズムに比べて、極端に長くならない。基準 3. 利用にあたって必要なプログラミング量が出来るだけ少なく、バグが混入しにくい。基準 1 は最優先目標である。今回 Deep Learning を選択した理由は、Web 工学のタスクにおいて、高い分類精度を実現するための最も有力な方法だと思われるからである。つまり、例え Deep Learning のアルゴリズムとして正しいプログラムだったとしても、分類精度が従来の分類器より劣っていれば意味はない。従来の分類器をそのまま使い続ければよいことになってしまう。基準 2 と 3 は、現実の問題を Deep Learning で解決する際に、必要となってくる視点である。プログラムの作成や、学習の実行にかかる時間が、あまりにも長くなってしまうと、実際のビジネスや、刻一刻と変化する Web サービスに対して応用するのは非現実的だろう。

4.2 既存ソースコード使用の利点

Deep Learning のプログラムを実行するために、まず大きく分けて、「自分でソースコードを全て書く」 方法と、「主に既存のソースコードを利用する」方法の 2 つが考えられる。今回は、既存ソースコードを ベースに使うことを選択した。以下、その理由を説明する (図 4.1 参考)。

「既存のソースコードを利用する」場合のメリットとして、「開発期間は基本的にゼロで済む」「新たにバグが混入する危険性が無い」「自分の改造コードが、他のライブラリ利用者によって使ってもらえるチャンスが大きい」という点が挙げられる。デメリットとして、「ソースコード中にブラックボックスが増え、

図 4.1 既存コードの利用における、完全オリジナルコードの作成に対する利点

図 4.2 既存ソースコード利用のリスクと、対処方法

改造にかかる時間が短くなる」「全く新しいアルゴリズムを実装する場合、ゼロからスタートした方が早く書けるケースもある」などが想定される。しかし、基準3の「プログラミング量が少なくバグのリスクが低い」という点において優れているため、今回は既存のソースコードを探して利用していくことにした。既存ソースコードを利用する際に生じるリスクについては、図 4.2 のように対処できる。

なお、「自分でソースコードを全て書く」場合のメリットとデメリットは、上記「既存のソースコード」 の場合の逆となる。自分で新たなコードを書くので時間がかかり、バグの混入リスクも大きい。また、 ソースコードを公開した場合の、ライブラリとしての信頼度も、ゼロから築かなければならない。ただ し、コードの詳細部分を改造する段階では、自分の手で書いたコードを使う方が、より深い理解を得やす く、確実で素早い実装ができる可能性もある。

4.3 Graphics Processing Unit の利用による高速化

一般に、Deep Learning の研究においては、GPGPU による並列計算が有効とされている。並列計算のプログラム構成にもよるが、100 倍近く早くなることもある。また、Deep Learning の実装によっては、はじめから GPU で高速化することを前提に、GPU 専用のコードを書いている場合があるこの場合、そもそも GPU を搭載したマシンを使わないと、コンパイルや実行が全く出来なくなってしまう。

CPU の計算能力は頭打ちになっている。GPU は many core による高速演算ができる。NVIDIA は CUDA という GPU による演算の開発環境を開発した。

4.4 数値計算ライブラリ Theano の利点

Theano は、python 上で記述される数式処理/数値計算ライブラリである。Theano は、数式のコンパイルと実際のデータによる数値計算の 2 段階で動作する。数式は文字式で記述される。このときデバッグの難しい数値計算の誤差絡みの部分、0div など危険な処理を、自動的に解析してくれる。ニューラルネットワークの演算過程では、非常に小さい数値が出現することがあり、また、文字式を分析することで、計算グラフも最適化してくれる。プログラマは、プログラム上の些末な計算テクニックに囚われることなく、数式の本質的な部分の記述に集中することができる。また、微分も自動で行ってくれる。ニューラルネットワークでは、様々な文字の微分が必要になり、多層にすると爆発的に式が複雑になる。これを手計算による文字式の微分をしてから書いていくと、層を増やす度に手計算が必要になり、非常に煩雑で、開発効率が落ちてしまう。Theanoの自動微分と自動最適化は、pylearn2の内部記述の簡略化を大いに助けているおいて、多層のニューラルネットワークを使うときでも、文字式に対する大量の手計算と、大量のプログラムの式を書くことなく、簡単に微分やニューラルネットワークを拡張することができる。

4.5 機械学習ライブラリ Pylearn2 の利点

今回は、Deep Learning を使うための既存ソースコードとして、モントリオール大学の LISA Lab. が提供している、pylearn2 というライブラリを選んだ。pylearn2 は、python で記述された、Deep Learning など機械学習アルゴリズムを使うためのライブラリである。LISA Lab. を中心とする開発者によって、ソースコードの開発がほぼ毎日行われている。以下、pylearn2 を選択した理由を記す。

図 4.3 Pylearn2 の実験計画例

4.5.1 高精度アルゴリズム Maxout Network の実装

Pylearn2 には、Maxout Network という Deep Learning のアルゴリズムの一種が実装されている。このアルゴリズムは、画像認識タスクにおいて非常に高い精度を実現しており、基準 1 を満たす上で都合が良い。Maxout Network の解説 [過去のスライドをもとに加筆]

4.5.2 Theano **の利用**

pylearn2のプログラムは、前述した Theano を全面的に利用して記述されている。Theano を用いたことで、可読性が大きく上昇している。また、何らかの理由で、pylearn2 の部分的拡張が必要になったときでも、[過去のスライドを基に加筆]

4.5.3 高度な拡張性と可読性

pylearn2のソースコードは、拡張性や可読性を非常に強く意識して書かれている。基本的な使い方を記したチュートリアルのWebページが存在し、主なソースファイルには、詳細なドキュメントも記述されている。また、モジュール化が丁寧なので、自分で書く部分が少なくて済む。例えば、データセットを変更する場合は、Dataset クラスのみを書き下せばよく、他の部分に対してコードを書く必要がほとんどない。図 4.3 に、pylearn2 において機械学習のアルゴリズムがどのようにモジュール化されているかを示す。

また、プログラムを改造する場合でも、数値パラメータを変更するだけであれば、設定ファイルのみの変更で完結させることができる。この設定ファイルは、YAML(YAML Ain't a Markup Language) 形式に少し独自拡張を加えた形式になっている。

プログラム本体と、数値の設定ファイルが分離されていることで、プログラミングが不得手な人でも、比較的簡単に設定を変更することができる。

4.6 ハードウェアの構成

pylearn2 を通して Deep Learning のアルゴリズムを実行する、と決めたところで、実際に Deep Learning を利用するためのマシンを用意する必要がある。まず、Deep Learning に限った話ではない が、機械学習のタスクは長時間の計算を必要とする場合が多く、プログラムの実行時間が1日以上かか ることも稀ではない。普段使用している PC が使えなくなると困る場合は、機械学習を動かしておくた めの専用サーバを用意することが望ましい。GPU は必ずしも搭載していなくとも良いのだが、実践上 Theano や CUDA の性能を最大限に生かすためには、GPU を搭載しなければならない。また、CUDA を 用いて GPU マシン専用に書かれたアルゴリズムを動作させるためには、GPU が必須となる。GPU は、 NVIDIA 製で、CUDA に対応していなければならない。ただし、グラフィック出力の機能はなくても構 わない。2013 年 1 月現在、NVIDIA の Web ページに掲載されている GPU に関しては、全て CUDA に 対応しているため、店舗で新品の GPU を購入する場合は基本的に問題は生じないと思われる。NVIDIA の GPU の中で、どれを選ぶかも問題になる。NVIDIA のホームページでは、GPU のうち Tesla という シリーズが GPGPU に特化しており、非常に高精度/高速な演算を行うことができる、と述べられてい る。しかし、非常に高価な上、Tesla シリーズは一般的なグラフィックカードではなく、サーバ全体の購 入を基本としている。販売員の方によれば、Tesla は主に商用の大規模データや、ミスの許されない長時 間科学計算などに用いることを想定して作られている。今回の目的は、Web 工学の一般的タスクにおけ る Deep Learning 技術を確立するという、いわば実験的な用途であり、Tesla の利用はオーバースペック だと思われる。NVIDIA の GPU は、Tesla を除くと、Quadro と GeForce という 2 つのシリーズに分 かれている。店舗の販売員の方に詳しい話を伺ったところ、Quadro はコンピュータグラフィックの出力 機能に注力したシリーズであり、GeForce はより計算性能重視という傾向をもっている。つまり、Deep Learning の計算など GPGPU に用いる場合、同じ価格帯ならば、GeForce シリーズの GPU を用いた 方が、費用対効果が大きくなると考えられる。また、販売員の方によれば、GeForce シリーズの中でも Titan という機種は、Tesla 用の部品の中で品質チェックに漏れてしまったものを流用しており、Tesla と ほぼ同様の、非常に高い性能を発揮することが出来る、とのことだった。しかし、今回利用する中で最も 計算量が大きい Maxout Network について、元の発表論文によれば、GeForce シリーズの GTX 580 と いう、少し世代が前の GPU が用いられている。Deep Learning を実行させる上で、GPU が存在するこ と自体は非常に重要だが、必ずしも最新スペックの GPU が必要というわけではないことがわかる。今回 の構成では、知の構造化センターの中山浩太郎先生のアドバイスもあり、Titan ではなく、同じ GeForce シリーズの GTX 760 という GPU を搭載することにした。

第5章

Web 工学への深層学習技術の応用

この章では、第4章で得られた Deep Learning 用の構成を用いて、実際に機械学習のタスクを実行する。分類精度、実行時間、消費メモリ量を調べることにより、Deep Learning を Web 工学の問題に適用する e 際の参考とする。

5.1 利用したデータセット

実験の前提知識として、この節では、実験に使用したデータセットについて記す。機械学習の分野では、分類精度のベンチマークを取るために、様々なデータセットが提供/提案されてきている。同じデータセットに対して、様々な分類モデルやアルゴリズムを用いて分類実験を行うことにより、どの手法が優れているのか比較することが出来る。

ここでは、画像認識のデータセットを用いて、Deep Learning プログラムのベンチマークを行う。画像 データを用いる理由は、1 つには、画像認識が Deep Learning が最も高い分類性能を実現している分野だ からである。加えて、画像データや画像から抽出された素性は、可視化が比較的容易なことが多い。可視 化することで、学習過程を目で見て確かめることが出来るため、アルゴリズムの分析を行いやすい、という利点がある。

5.1.1 MNIST

MNIST database*1とは、手書き数字を画像分析によって認識するベンチマークタスクである。このデータセットは、National Institute of Standards and Technology(NIST) が提供する手書き数字のデータにサイズの規格化処理を加え、数字の書き手毎に整理したものである。データはサイズ 28x28 ピクセルの白黒画像 70000 件より構成される [?]。それぞれの画像は、 $0\sim9$ のいずれかの数字 1 文字に該当している。画像データを認識プログラムに入力して、どの数字に該当するか判別させることで、画像識別の精度を競うことになる。図 5.1 に、MNIST の画像データの一部を示す ([?] より引用した)。

^{*1} http://yann.lecun.com/exdb/mnist/

368/9666 968/9666 968/966 968/966 968/966 968/966 968/966 968/966 968/966 968/966 968/966 968/966 968/966 968/966

図 5.1 MNIST データの例

MNIST の 70000 件のデータは、60000 件のモデル訓練用データと、10000 件の精度測定用データに分かれている。まず 60000 件のデータを使って識別モデルに学習を行わせた後、未知の 10000 件のテストデータを実際に識別してみることで、精度を測定する。テストデータを識別している最中に、更なる学習を行うことは許されない。分類器は、過去に学習に使ったデータだけ良く識別できても意味がなく、むしろ未知のデータこそ精度良く分類出来なければならない。モデルが過去のデータに特化してしまうと、かえって未知のデータに対する識別精度が低下することもある。この低下現象は過学習 (over fitting) と呼ばれ、機械学習における落とし穴の一つとなっている。MNIST に限らず、機械学習用のデータセットにて、訓練データとテストデータをあらかじめ分けておくことは一般的であり、学習アルゴリズムが過学習を防げているかどうか、判定するために有効な方法の1つとして知られている。

MNIST は、様々な画像認識アルゴリズムの作者によって使用されている。MNIST の配布 Web サイトには、MNIST を利用した論文のリストが、分類誤差によるランキング形式で掲載されている。表 5.1 に、MNIST データセットにおける各アルゴリズムの分類誤差を、ランキング形式の Web サイト*2より再構成して示す。

5.1.2 CIFAR10

CIFAR10*3は、写真を画像分析によって識別するタスクである [?]。入力データは 60000 件のカラー画像で、どの画像も、飛行機、自動車、鳥、猫、鹿、犬、蛙、馬、船、トラックの 10 種類のクラスのどれかに属しており、各クラス均等に 6000 枚ずつの画像が割り振られている。画像データは、Google や Flickrなどによる Web 検索で集められた画像を、人手でラベリングして作られている。また、サイズを 32x32 ピクセルに縮小されている。

MNIST と同じように、60000 件のデータは、50000 の訓練データと 10000 件のテストデータに分割さ

 $^{^{*2}}$ http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html

^{*3} http://www.cs.toronto.edu/ kriz/cifar.html

表 5.1 MNIST の分類誤差ランキング

手法	発表学会/雑誌/年	分類認
DropConnect [26]	ICML 2013	0.2
Multi-column Deep Neural Networks [4]	CVPR 2012	0.2
Deep Big Simple Neural Nets [3]	Neural Computation 2010	0.3
Energy-Based Model [20]	NIPS 2006	0.3
Convolutional Neural Networks [23]	Document Analysis and Recognition 2003	0.4
Maxout Networks [9]	ICML 2013	0.4
COSFIRE filters [1]	PAMI 2013	0.53
Multi-Stage Architecture [12]	ICCV 2009	0.5
Deformation Models [14]	PAMI 2007	0.5
A trainable feature extractor [17]	Journal Pattern Recognition 2007	0.5
Invariant Support Vector Machines [7]	Machine Learning 2002	0.5
Sparse Coding [16]	TNN 2008	0.59
Unsupervised learning of invariant feature hierarchies [21]	CVPR 2007	0.6
shape contexts [2]	PAMI 2002	0.6
Receptive Field Learning [13]	CVPR 2012	0.6
Sparse Activity, Sparse Connectivity [25]	JMLR 2013	0.7
Convolutional Deep Belief Networks [18]	ICML 2009	0.8
Deep Encoder Network [19]	2009	0.9
Deep Boltzmann Machines [22]	AISTATS 2009	0.9
Deep Belief Networks [6]	2008	1.1
Convolutional Neural Networks [23]	2003	1.1
neural networks [10]	2006	1.2
Deep learning via semi-supervised embedding [27]	2008	1.5

れている。まず、分類器にこれらの訓練データを読み取らせて、学習を行わせる。その後、テストデータ のうちいくつを正しいクラスに分類することができるのか、分類精度を競うことになる。

CIFAR10 についても、データの例を 5.2 に、分類誤差のランキング Web サイト* 4 より、再構成した表を??に示す。

5.2 使用したライブラリ

この章の実験には、pylearn2という Deep Learning のライブラリを用いた。

 $^{^{*4}\ \}mathtt{http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html}$

図 5.2 CIFAR10 データの例

手法	発表学会/雑誌	分類誤差
DropConnect [26]	ICML 2013	9.32 %
Maxout Networks [9]	ICML 2013	9.35 %
Bayesian Optimization [24]	NIPS 2012	9.50 %
Deep Convolutional Neural Networks [15]	NIPS 2012	11.00 %
Multi-Column Deep Neural Networks [4]	CVPR 2012	11.21 %
Deep Convolutional Neural Networks [28]	arXiv 2013	15.13 %
Dropout [11]	arXiv 2012	15.60 %
Sum-Product Networks [8]	NIPS 2012	16.04 %
Single-Layer Networks [5]	AISTATS 2011	20.4 %

表 5.2 CIFAR10 分類誤差のランキング

5.3 使用したハードウェア

この章の実験では、GPU を搭載したサーバマシンを用いた。表 5.3 に、今回の実験で使用したマシンの主な使用パーツ及び性能を列挙した。また、Maxout Network の実装ソースコードには、実験マシンのパーツ性能を書いたファイルが付属している *5 。このファイルの記述内容も、比較のために列挙した。今回の実験に使ったマシンの方が、ハードウェア性能的には優れていることがわかる。

 $^{^{*5}}$ pylearn2/scripts/papers/maxout/notes

	GPU	CUDA core	CPU	クロック数	メモリ容量
今回	GTX760	1152	Intel CPU Core i7 4770S	3.1 GHz	32GB
論文	GTX580	512	Intel Xeon CPU E5620	2.40GHz	(記載無し)

表 5.3 ハードウェア性能の比較

表 5.4 Maxout Network による MNIST(2 次元) 分類の結果

手法	データセット	元論文の誤差	実験誤差	増加分
Maxout Network	MNIST(2 次元)	0.45%	0.51%	+0.06%

5.4 ベンチマーク実験の詳細

前節で挙げた画像分類のベンチマークセットに対し、Deep Learning の様々なアルゴリズムによって分類を行わせ、その性能を測定した。

5.4.1 Maxout Network による、MNIST の分類タスク (2 次元データとして扱う)

Maxout Network を分類器として用い、MNIST の分類タスクを行わせた。モデル構造としては、Convolutional Layer を 2 層重ねた上に、全てのニューロンが単純に接続された Maxout Layer を 1 層付け加え、最後の層にてロジスティック回帰を行って分類結果を出した。実験を行った結果、分類誤差は 0.51% となった。これは、元の論文が主張している分類誤差より、僅かに悪い結果となった。

5.4.2 Maxout Network による、MNIST の分類タスク (1 次元データとして扱う)

前項と同じタスクを、「MNIST のデータは、2 次元の画像データではなく、1 次元のベクトルデータである」という条件の基で行わせた。つまり、2 次元データに対する Convolutional Layer 技術を敢えて使わない状態で、どれだけの精度を Maxout Network が実現できるのか、実験した。この条件でも Maxout Network が良い性能を出すことが出来れば、1 次元のデータ、例えば言語データや音声データにおいても、Maxout Network が応用できる可能性が高くなる。

また、何らかの原因でランダム性が発生していないか確かめるため、この実験は同じ条件で 10 回行った。 乱数のシードは、元論文の実験が行われたときと同じ値で固定した。

実験の結果、誤差は 10 回とも共通で、1.16% となった。Maxout の元の論文やはり少し低い精度になってしまった (表 5.5)。なお、平均実行時間は 55 分、最大メモリ使用量は 793MB だった (表 5.6)。

表 5.5 Maxout Network による MNIST(1 次元) 分類の結果

手法	データセット	元論文の誤差	実験誤差	増加分
Maxout Network	MNIST(1 次元)	0.94%	1.16%	+0.12%

表 5.6 Maxout Network による MNIST(1 次元) 分類の実験詳細

	平均実行時間(秒)	平均最大使用メモリ (MB)
pretraining	2532.8	779.3
finetuning	756.7	792.5
全体	3289.5	792.5

5.4.3 Maxout Network による、CIFAR10 の分類タスク

データセットを変更し、MNIST ではなく、CIFAR10 を Maxout Network を用いて分類させようと試みた。データは 2 次元画像として扱った。つまり、Convolutional Layer の使用は可能とした。レイヤー構造は、Convolutional Layer 3 層 - Maxout Layer1 層 - 識別用 Softmax Layer1 層とした。

しかし、この実験を実際に行ったところ、3日間実行を続けたところで、残りエポック数と計算速度の 比較より、全体の実行が完了するまでに10日以上かかることが判明した。これはWeb工学における応 用に使う学習アルゴリズムとして、試行錯誤しながら使うものとしては現実的でない実行時間である。ま た、実験スケジュールの都合もあり、実験の中断を余儀なくされてしまった。実行が完了した部分までの 分類誤差を、図??に示した。[図追加]

第6章

Facebook の顔画像認識と深層学習技術

この章では、Deep Learning を実際に Web 工学の問題に適用した例を挙げる。

ソーシャルメディアのユーザ属性を推定することは、マーケティングやネット広告の最適化において 有益である。ここでは、公開プロフィールの一種であるプロフィール画像に着目する。入力となるプロフィール画像と、推定する目標であるユーザ属性のセットを用いて、Deep Learning を行わせることで、より精度の高いユーザ属性推定を目指す。

6.1 背景

ソーシャルメディアのユーザプロフィールから、そのユーザの属性を推定するためのアルゴリズムが求められている。

マーケティングや、ネット広告の最適化などに応用可能で、ビジネス面において大きな貢献が期待できる。 ユーザ属性の推定元としては、名前 / 日記 / ツイートなどのテキストデータ、プロフィールなどの画像、友達関係などが挙げられる。 [?]

テキストデータは量が豊富だが、ソーシャルメディアの種類によっては、「友達のみ公開」などの設定がされている。ネット広告を載せる企業の視点から見ると、常に自由にアクセスできるとは限らない。

一方プロフィール画像は、ほぼ全てのソーシャルメディアにおいて、全員に公開されている。ネット広 告企業からでも、必ずチェックできる。

画像からユーザ属性を推定できれば、より多くの場面で、効率の良いマーケティングが可能になる。これはテキストベースの方法にはない、大きなメリットである。

しかし、プロフィール画像を元データとした研究はまだメジャーではない。

図 6.1 ユーザ属性推定の必要性

図 6.2 Facebook におけるプロフィール画像の例

最終的に、ソーシャルメディアのプロフィール画像が与えられれば、ユーザ属性を推定できる状態を目指す。

その過程として、今回の領域プロジェクトでは、「Facebook」より「プロフィール顔画像」に限定してのユーザ推定を試みる。

公開プロフィールからユーザ属性を推定するというアプローチによる過去の研究としては、Twitter のプロフィールやツイート内容、フォロー関係などから、ユーザ属性を割り出したものがある

[?]。この研究では、「スターバックスが好きか」「支持政党は民主党と共和党のどちらか」「どの民族 (ethnicity) に属しているか」といった情報を推定している。

なお、この研究においては、プロフィール写真はユーザ属性を推定する参考になりにくいとされている。 彼らに拠れば、ソーシャルメディアのユーザーは、必ずしもプロフィール画像にユーザ本人の画像を用いるわけではない。むしろ、有名人やキャラクターの画像、好きなブランドのロゴなど、あまり本人の属性 推定に役立たないケースもある。図 6.2

図 6.3 提案手法

図 6.4 今回の実験の模式図

図 6.5 画像から入力ベクトルへの変換方法

- 6.2 問題設定
- 6.3 実験方法の詳細
- 6.4 結果

図 6.6 プロフィール画像からの顔画像抽出方法

図 6.7 実験で学習されたフィルター

第7章

考察と提言

この章では、5章と6章の結果に対する考察を行うと共に、考察結果を踏まえ、Deep Learning の実問題における効率的な応用方法について、提言を行う。

7.1 5 章の実験に関する考察

- ・pylearn2 における Maxout Network は、元論文に記されている精度こそ再現できないが、MNIST の分類タスクにおいて State of the Art に近い精度を実現することが出来た。
- ・今回の実験では、MNIST の 1 次元版、2 次元版共に、元の論文や pylearn2 ソースコードの付属テキストに書いてあった分類誤差よりも、大きい誤差しか再現できなかった。また、この誤差が大きくなってしまう問題は、複数回の実験を行っても、解決しなかった。

分類精度が悪くなってしまった理由として、当初、図 7.1 に挙げた 3 つの原因が考えられた。しかし、複数回実行しても全く同じ結果が出たため、乱数のシードを変更しない限り、内部的には全く同じ演算が成されていると考えられる。よって、「重みのランダム初期化」、つまり「ニューラルネットワークの接続の重みがランダムに決まっており、たまたま分類に不利な重みからスタートしたため、元の論文よりも悪い結果が出てしまった」という仮説は否定される。残る可能性は、「ソースコードのバージョン」と「ハードウェア構成の違い」であるが、GPUを始めとする各パーツの性能は、元論文の実験時に使われたものよりも、今回の実験で使ったものの方が高いため、「ハードウェアの性能」に原因を求めるのも難しい。残る可能性は「ソースコードのバージョン」である。これは、pylearn2 が依存しているライブラリの、numpyや scipy、Theano また pylearn2 自体などがアップデートされたことにより、内部的に細かい計算方法が変化し、分類誤差の再現性が下がってしまった、という仮説である。これについては、Maxout Networkの元実験を行ったメンバーも、

All of pylearn2's dependencies (theano / scipy / numpy / etc.) make reproducibility very difficult. As such, we are not currently going to make any effort to ensure that all results are widely reproducible on a variety of platforms. Instead, we will record the platform on which

図 7.1 Maxout Network による MNIST 分類実験で、誤差が論文より大きくなった原因

they were verified to be correct.

と記している (pylearn2 のソースコード*1より引用)。

・CIFAR10の実行時間が長くかかるのは必要不可欠なのか、それとも短縮する方法があるのか、検証する必要がある。

7.2 6 章の実験に関する考察

7.3 深層学習の利用法に関する提言

・Maxout Network が良い精度を実現できたこと、改造のしやすさ、GPU 利用の簡便さなどを考え合わせると、現時点では、pylearn2 を通して Deep Learning を利用するのが良いと考えられる。

高い学習性能 \rightarrow Maxout Network の 1 次元版で解決できる。Maxout の実装は、 pylearn2 を使う とよい実行時間 \rightarrow Theano を通じた GPU 利用で緩和できる。CPU のみのマシンでも一応 動かせる 実行プログラムの使いやすさ \rightarrow モジュール化が明確で、Dataset クラスを書く だけの pylearn2 が良いアルゴリズムの改良・調整の容易さ \rightarrow モジュール化が明確で、設定用の yaml ファイルを書くだけの pylearn2 が良い

Matlab や c++ などで書かれたソースコードもあるが、学習性能を キープしつつ、GPU/CPU を透過的に扱えて、改良・調整も容易な pylearn2 を使う と良い

^{*1} pylearn2/scripts/papers/maxout/notes

第8章

おわりに

8.1 研究の成果

この研究では、Deep Learning を Web 工学の問題に適用するにあたって、その特徴である高い精度を落とすことなく、出来るだけ簡便に応用するための方法論とノウハウを調査した。pylearn2 を用い、Dataset クラスのみを書き換えて分類すると良い。GPU を使うと大幅な高速化が見込めるが、必須ではない。

8.2 今後の課題

画像分類タスクにおいて有効な方法が、Web 工学のデータでも必ず有効かどうかは、未知数な部分が ある。例えば、Convolutional Network は、2次元の画像データに対しては非常に高い効果を挙げるが、 そのまま文章データに応用することは出来ない。pylearn2で言えば、Dataset クラスを作るだけで識別が うまくいくのか、文章専用の Model を構成する必要があるのか、確かめていく必要がある。また、精度 を上げるためには、どのようにハイパーパラメータを調整すれば良いのか、あるいは精度を多少犠牲にし てでも、比較的短い実行時間で良い結果を得たい時、どのような調整を施せばよいのかは、まだわかって おらず、今後の大きな課題の一つである。Deep Learning を試す上で、大きなネックとなるのが、CUDA を用いた GPU 専用のソースコードの存在である。GPU を搭載していなかったり、使えるメモリが少な い状況下でも、Deep Learning のコードを効率良く動かすことが出来れば、Deep Learning の利便性はま すます増加するだろう。現在の Deep Learning では、画像のフィルタで何が学習されているのかを、部 分的に可視化することはできる。しかし、文書解析において、どのような表現を学習したのかを、人間に 理解できる形でみることは難しい。言い換えれば、学習によって、分類器がどこに注目するようになった のか、文構造や、感情、文体などに対応するニューロンが存在しているのか、といった情報が、人間に理 解できる形になっていない。この部分をどうやって可視化して、人間に理解できる状態にするか、そこか らどのような知見を得られるのか、あるいはそもそも人間には理解出来る知識として取り出せるのかどう か、といったことを調べることにより、表現学習としての Deep Learning の側面を、さらに活かすこと

ができると思われる。例えば、Deep Learning にょって学習された、データの着目点や抽象化のポイントを、人間が真似することによって、人間の方が機械から知識を習得し、さらに発展させることも考えられる。

謝辞

(全て完了してから改めて書きます)

東京大学工学部システム創成学科 知能社会システムコース 松尾研究室 4年 黒滝 紘生 平成 26 年 2 月日

参考文献

- G. Azzopardi and N. Petkov. Trainable cosfire filters for keypoint detection and pattern recognition. Pattern Analysis and Machine Intelligence, IEEE Transactions on, Vol. 35, No. 2, pp. 490–503, 2013.
- [2] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition using shape contexts. *IEEE Trans. Pattern Anal. Mach. Intell.*, Vol. 24, No. 4, pp. 509–522, April 2002.
- [3] Dan Claudiu Ciresan, Ueli Meier, Luca Maria Gambardella, and Jürgen Schmidhuber. Deep, big, simple neural nets for handwritten digit recognition. *Neural Computation*, Vol. 22, No. 12, pp. 3207–3220, 2010.
- [4] Dan Claudiu Ciresan, Ueli Meier, and Jürgen Schmidhuber. Multi-column deep neural networks for image classification. In arXiv:1202.2745v1 [cs.CV], 2012.
- [5] Adam Coates, Andrew Y Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised feature learning. In *International Conference on Artificial Intelligence and Statistics*, pp. 215–223, 2011.
- [6] George Dahl and Kit La Touche. Cs81: Learning words with deep belief networks. 2008.
- [7] Dennis Decoste and Bernhard Schölkopf. Training invariant support vector machines. *Mach. Learn.*, Vol. 46, No. 1-3, pp. 161–190, March 2002.
- [8] Robert Gens and Pedro Domingos. Discriminative learning of sum-product networks. In Advances in Neural Information Processing Systems, pp. 3248–3256, 2012.
- [9] Ian J Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua Bengio. Maxout networks. arXiv preprint arXiv:1302.4389, 2013.
- [10] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural networks. *Science*, Vol. 313, No. 5786, pp. 504–507, 2006.
- [11] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R Salakhutdinov. Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580, 2012.
- [12] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the best multi-stage archi-

- tecture for object recognition? In Computer Vision, 2009 IEEE 12th International Conference on, pp. 2146–2153, 2009.
- [13] Yangqing Jia, Chang Huang, and T. Darrell. Beyond spatial pyramids: Receptive field learning for pooled image features. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pp. 3370–3377, 2012.
- [14] Daniel Keysers, Thomas Deselaers, Christian Gollan, and Hermann Ney. Deformation models for image recognition. *IEEE Trans. Pattern Anal. Mach. Intell.*, Vol. 29, No. 8, pp. 1422–1435, August 2007.
- [15] Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems 25, pp. 1106–1114, 2012.
- [16] K. Labusch, E. Barth, and T. Martinetz. Simple method for high-performance digit recognition based on sparse coding. *Trans. Neur. Netw.*, Vol. 19, No. 11, pp. 1985–1989, November 2008.
- [17] Fabien Lauer, Ching Y. Suen, and Gérard Bloch. A trainable feature extractor for handwritten digit recognition. Pattern Recogn., Vol. 40, No. 6, pp. 1816–1824, June 2007.
- [18] Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In *Proceedings of* the 26th Annual International Conference on Machine Learning, ICML '09, pp. 609–616, New York, NY, USA, 2009. ACM.
- [19] Martin Renqiang Min, David A. Stanley, Zineng Yuan, Anthony J. Bonner, and Zhaolei Zhang. Large-margin knn classification using a deep encoder network. CoRR, Vol. abs/0906.1814, , 2009.
- [20] Christopher Poultney, Christopher Poultney, Sumit Chopra, and Yann" Lecun. Efficient learning of sparse representations with an energy-based model. ADVANCES IN NEURAL INFORMA-TION PROCESSING SYSTEMS (NIPS 2006, 2006.
- [21] M. Ranzato, Fu Jie Huang, Y.-L. Boureau, and Y. LeCun. Unsupervised learning of invariant feature hierarchies with applications to object recognition. In *Computer Vision and Pattern Recognition*, 2007. CVPR '07. IEEE Conference on, pp. 1–8, 2007.
- [22] Ruslan Salakhutdinov and Geoffrey E Hinton. Deep boltzmann machines. In *International Conference on Artificial Intelligence and Statistics*, pp. 448–455, 2009.
- [23] Patrice Y. Simard, Dave Steinkraus, and John C. Platt. Best practices for convolutional neural networks applied to visual document analysis. In *Proceedings of the Seventh International Con-*

- ference on Document Analysis and Recognition Volume 2, ICDAR '03, pp. 958-, Washington, DC, USA, 2003. IEEE Computer Society.
- [24] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine learning algorithms. arXiv preprint arXiv:1206.2944, 2012.
- [25] Markus Thom and Günther Palm. Sparse activity and sparse connectivity in supervised learning.
 J. Mach. Learn. Res., Vol. 14, No. 1, pp. 1091–1143, April 2013.
- [26] Li Wan, Matthew Zeiler, Sixin Zhang, Yann L. Cun, and Rob Fergus. Regularization of neural networks using dropconnect. In Sanjoy Dasgupta and David Mcallester, editors, *Proceedings of the 30th International Conference on Machine Learning (ICML-13)*, Vol. 28, pp. 1058–1066.
 JMLR Workshop and Conference Proceedings, May 2013.
- [27] Jason Weston, Frédéric Ratle, Hossein Mobahi, and Ronan Collobert. Deep learning via semisupervised embedding. In *Neural Networks: Tricks of the Trade*, pp. 639–655. Springer, 2012.
- [28] Matthew D Zeiler and Rob Fergus. Stochastic pooling for regularization of deep convolutional neural networks. arXiv preprint arXiv:1301.3557, 2013.