#### **Time Series Concepts**

Herbert (Yuming) Liu and Eric Zivot

3/28/2021

# Stochastic (Random) Process

$$\{\ldots,Y_1,Y_2,\ldots,Y_t,Y_{t+1},\ldots\}=\{Y_t\}_{t=-\infty}^{\infty}$$
 sequence of random variables indexed by time

Observed time series of length T

$$\{Y_1 = y_1, Y_2 = y_2, \dots, Y_T = y_T\} = \{y_t\}_{t=1}^T$$

# **Strictly Stationary Processes**

- Intuition:  $\{Y_t\}$  is stationary if all aspects of its behavior are unchanged by shifts in time
- Strict stationarity: A stochastic process  $\{Y_t\}_{t=1}^{\infty}$  is strictly stationary if, for any given finite integer r and for any set of subscripts  $t_1, t_2, \ldots, t_r$  the joint distribution of

$$(Y_{t_1}, Y_{t_2}, \ldots, Y_{t_r})$$

depends only on  $t_1 - t, t_2 - t, \dots, t_r - t$  but not on t.

• Strict stationarity implies that the joint distribution of  $(Y_{t_1}, Y_{t_2}, \ldots, Y_{t_r})$  is the same as the joint distribution of  $(Y_{t_1-t}, Y_{t_2-t}, \ldots, Y_{t_r-t})$  for any value of t.

#### **Remarks**

- For example, the distribution of  $(Y_1, Y_5)$  is the same as the distribution of  $(Y_{12}, Y_{16})$ .
- For a strictly stationary process,  $Y_t$  has the same mean, variance (moments) for all t.
- Any function/transformation  $g(\cdot)$  of a strictly stationary process,  $\{g(Y_t)\}$  is also strictly stationary.
  - if  $\{Y_t\}$  is strictly stationary then  $\{Y_t^2\}$  is strictly stationary.

# Covariance (Weakly) Stationary Processes

 $\{Y_t\}$  is a covariance stationary process if

- $E[Y_t] = \mu$  for all t
- var $(Y_t) = \sigma^2$  for all t
- **3**  $cov(Y_t, Y_{t-j}) = \gamma_j$  depends on j and not on t
  - $cov(Y_t, Y_{t-j}) = \gamma_j$  is called the j-lag *autocovariance* and measures the direction of linear time dependence between  $Y_t$  and  $Y_{t-j}$
  - A strictly stationary process is covariance stationary if  $var(Y_t) < \infty$  and  $cov(Y_t, Y_{t-j}) < \infty$

#### **Autocorrelations**

$$\operatorname{corr}(Y_t, Y_{t-j}) = \rho_j = \frac{\operatorname{cov}(Y_t, Y_{t-j})}{\sqrt{\operatorname{var}(Y_t)\operatorname{var}(Y_{t-j})}} = \frac{\gamma_j}{\sigma^2}$$

- $corr(Y_t, Y_{t-j}) = \rho_j$  is called the j-lag *autocorrelation* and measures the direction and strength of linear time dependence between  $Y_t$  and  $Y_{t-j}$
- By stationarity  $var(Y_t) = var(Y_{t-j}) = \sigma^2$ .
- Autocorrelation Function (ACF): Plot of  $\rho_j$  against j

#### **ACF Plot**

### **Ergodicity**

- In a strictly stationary or covariance stationary stochastic process no assumption is made about the strenth of dependence between random variables in the sequence.
- However, in many contexts it is reasonable to assume that the strength of dependence between random variables in a stochastic process diminishes the farther apart they become.
- This diminishing dependence assumption is captured by the concept of ergodicity.
- Intuitively, a stochastic process  $\{Y_t\}$  is *ergodic* if any two collections of random variables partitioned far apart in the sequence are essentially independent.

# **Ergodicity and Autocorrelations**

ullet If a stochastic process  $\{Y_t\}$  is covariance stationary and ergodic then

$$ho_j = \operatorname{cor}(Y_t, Y_{t-j}) o 0$$
 as  $j$  gets large

• For example, suppose  $\rho_j = \rho^j$ . Then, if  $|\rho| < 1$ 

$$\rho_j = \rho^j \to 0 \text{ as } j \text{ gets large}$$

# **Example: Gaussian White Noise (GWN) Process**

$$Y_t \sim \text{iid } N(0, \sigma^2) \text{ or } Y_t \sim GWN(0, \sigma^2)$$

$$E[Y_t] = 0, \text{ } var(Y_t) = \sigma^2$$

$$Y_t \text{ independent of } Y_s \text{ for } t \neq s$$

$$\Rightarrow cov(Y_t, Y_{t-s}) = 0 \text{ for } t \neq s$$

- "iid" = independent and identically distributed.
- $\{Y_t\}$  represents random draws from the same  $N(0, \sigma^2)$  distribution.
- ullet Clearly,  $\{Y_t\}$  is covariance stationary and ergodic.

### **Example: GWN Process**

Use rnorm() to simulate 250 observations from GWN(0,1)

```
# simulate Gaussian White Noise process
set.seed(123)
y = rnorm(250)
```

- set.seed(123) initializes the random number generator in R
- Setting the seed allows the random numbers to be reproduced by anyone using the same seed

# **Example: GWN Process**





# **Example: Independent White Noise (IWN) Process**

$$Y_t \sim \mathrm{iid}\ (0,\sigma^2) \ \mathrm{or}\ Y_t \sim \mathit{IWN}(0,\sigma^2)$$
  $E[Y_t] = 0, \ \mathrm{var}(Y_t) = \sigma^2$   $Y_t \ \mathrm{independent} \ \mathrm{of}\ Y_s \ \mathrm{for}\ t \neq s$ 

- Here,  $\{Y_t\}$  represents random draws from the same distribution. However, we don't specify exactly what the distribution is - only that it has mean zero and variance  $\sigma^2$ .
- For example,  $Y_t$  could be iid Student's t with variance equal to  $\sigma^2$ . This is like GWN but with fatter tails (i.e., more extreme observations).

# **Example: IWN with Standardized Student-t errors**

- Recall,  $Y \sim t_v$  has E[Y] = 0 and var(Y) = v/(v-2)
- $X = \sqrt{(v-2)/v} \times Y$  has E[X] = 0 and var = 1. X is called a standardized Student's t rv

```
## simulate IWN using scaled student's t with 3 df
## distribution to have variance 1
set.seed(123)
y = (1/sqrt(3))*rt(250, df=3)
```

# **Example: IWN with Standardized Student-t errors**





# **Example: Weak White Noise (WN) Process**

$$Y_t \sim WN(0, \sigma^2)$$
  
 $E[Y_t] = 0, \text{ var}(Y_t) = \sigma^2$   
 $\text{cov}(Y_t, Y_s) = 0 \text{ for } t \neq s$ 

- Here,  $\{Y_t\}$  represents an uncorrelated stochastic process with mean zero and variance  $\sigma^2$ .
- Recall, the uncorrelated assumption does not imply independence unless  $\{Y_t\}$  is normally distributed .
- Hence,  $Y_t$  and  $Y_s$  can exhibit non-linear dependence (e.g.  $Y_t^2$  can be correlated with  $Y_s^2$ )

### **Nonstationary Processes**

- A nonstationary stochastic process is a stochastic process that is not covariance stationary.
- A non-stationary process violates one or more of the properties of covariance stationarity. For example, (1) the mean could depend on t; (2) the variance could depend on t; (3) the covariances between  $Y_t$  and  $Y_{t-j}$  could depend on t.

# **Example: Deterministically Trending Process**

$$Y_t = \beta_0 + \beta_1 t + \varepsilon_t, \ \varepsilon_t \sim WN(0, \sigma_{\varepsilon}^2)$$
  
 $E[Y_t] = \beta_0 + \beta_1 t \ \text{depends on } t$ 

Note: A simple detrending transformation yields a stationary process:

$$X_t = Y_t - \beta_0 - \beta_1 t = \varepsilon_t$$

# Example: Deterministic Trend + GWN Errors

Simulate T = 250 observations from

$$Y_t = 0.1 \times t + \varepsilon_t, \ \varepsilon_t \sim \text{GWN}(0, 1), t = 1, \cdots, T$$

```
set.seed(123)
e = rnorm(250)
y.dt = 0.1*seq(1,250) + e
```

# **Example: Deterministic Trend + GWN Errors**





# **Example: Random Walk**

$$egin{aligned} Y_t &= Y_{t-1} + arepsilon_t, \; arepsilon_t \sim WN(0, \sigma_arepsilon^2), \; Y_0 \; ext{is fixed}, \, t = 1, \cdots, \, T \ &= Y_0 + \sum_{j=1}^t arepsilon_j \Rightarrow ext{var}(Y_t) = \sigma_arepsilon^2 imes t \; ext{depends on } t \end{aligned}$$

Note: A simple detrending transformation yields a stationary process:

$$\Delta Y_t = Y_t - Y_{t-1} = \varepsilon_t$$

### **Example: Random Walk - More Detail**

# **Example: Randow Walk**

Simulate T = 250 observations from RW

$$Y_t = Y_{t-1} + \varepsilon_t, \ \varepsilon_t \sim \text{GWN}(0,1), Y_0 = 0, t = 1, \cdots, T$$

```
set.seed(321)
e = rnorm(250)
y.rw = cumsum(e)
```

• cusum() computes the cumulative sum of the elements of a vector

# **Example: Random Walk**





# **Example: Random Walk with Drift**

$$egin{aligned} Y_t &= \mu + Y_{t-1} + arepsilon_t, \ arepsilon_t \sim \mathit{WN}(0, \sigma_arepsilon^2), \ Y_0 \ \text{is fixed} \ &= Y_0 + \mu imes t + \sum_{j=1}^t arepsilon_j \ &\Rightarrow \mathit{E}[Y_t] = Y_0 + \mu imes t \ \text{and} \ \mathrm{var}(Y_t) = \sigma_arepsilon^2 imes t \ \text{depend on } t \end{aligned}$$

Note: A simple detrending transformation yields a stationary process:

$$\Delta Y_t = Y_t - Y_{t-1} = \mu + \varepsilon_t$$

# Example: Random Walk with Drift - More Detail

# **Example: Randow Walk with Drift**

Simulate T = 250 observations from RW with drift

$$Y_t = 0.1 + Y_{t-1} + \varepsilon_t, \ \varepsilon_t \sim \text{GWN}(0, 1), Y_0 = 0, t = 1, \cdots, T$$

```
set.seed(321)
e = rnorm(250)
y.rwd = 0.1*seq(1:250) + cumsum(e)
```

# **Example: Random Walk with Drift**





#### **Time Series Models**

- A time series model is a probability model to describe the behavior of a stochastic process  $\{Y_t\}$ .
- Typically, a time series model is a simple probability model that describes the time dependence in the stochastic process { Y<sub>t</sub>}.
- Two common time series models are autoregressive models and moving average models.

Consider a stochastic process that only exhibits one period linear time dependence.

MA(1) Model:

$$\begin{split} Y_t &= \mu + \varepsilon_t + \theta \varepsilon_{t-1}, \quad -\infty < \theta < \infty \\ \varepsilon_t &\sim \textit{iid N}(0, \sigma_\varepsilon^2) \text{ (i.e., } \varepsilon_t \sim \textit{GWN}(0, \sigma_\varepsilon^2)) \\ \theta \text{ determines the magnitude of time dependence} \end{split}$$

Properties:

$$E[Y_t] = \mu + E[\varepsilon_t] + \theta E[\varepsilon_{t-1}]$$
  
= \mu + 0 + 0 = \mu

Note: MA(1) is covariance stationary for any value of  $\theta$ .

$$var(Y_t) = \sigma^2 = E[(Y_t - \mu)^2]$$

$$= E[(\varepsilon_t + \theta \varepsilon_{t-1})^2]$$

$$= E[\varepsilon_t^2] + 2\theta E[\varepsilon_t \varepsilon_{t-1}] + \theta^2 E[\varepsilon_{t-1}^2]$$

$$= \sigma_{\varepsilon}^2 + 0 + \theta^2 \sigma_{\varepsilon}^2 = \sigma_{\varepsilon}^2 (1 + \theta^2)$$

$$cov(Y_t, Y_{t-1}) = \gamma_1 = E[(\varepsilon_t + \theta \varepsilon_{t-1})(\varepsilon_{t-1} + \theta \varepsilon_{t-2})]$$

$$= E[\varepsilon_t \varepsilon_{t-1}] + \theta E[\varepsilon_t \varepsilon_{t-2}]$$

$$+ \theta E[\varepsilon_{t-1}^2] + \theta^2 E[\varepsilon_{t-1} \varepsilon_{t-2}]$$

$$= 0 + 0 + \theta \sigma_{\varepsilon}^2 + 0 = \theta \sigma_{\varepsilon}^2$$

$$Y_t = 1 + \varepsilon_t + 0.9 \times \varepsilon_{t-1}$$

```
# set parameters
mu = 1
theta = 0.9
sigma.e = 1
n.obs = 250
# simulated MA(1) using vectorized calculations
set.seed(123)
e = rnorm(n.obs, sd = sigma.e)
em1 = c(0, e[1:(n.obs-1)])
y = mu + e + theta*em1
```

MA(1) Process: mu=1, theta=0.9, sigma.e=1



# ACF for MA(1) Process: Theta > 0





# **Autoregressive (AR) Process**

Consider a stochastic process that exhibits multi-period geometrically decaying linear time dependence.

AR(1) Model:

$$\begin{aligned} Y_t &= (1 - \phi)\mu + \phi Y_{t-1} + \varepsilon_t, &-1 < \phi < 1 \\ \varepsilon_t &\sim \mathrm{iid} \ \mathcal{N}(0, \sigma_\varepsilon^2) \end{aligned}$$

Remark: AR(1) model is covariance stationary provided  $-1 < \phi < 1$ .

# **Autoregressive (AR) Process**

Properties:

$$E[Y_t] = \mu$$

$$\operatorname{var}(Y_t) = \sigma^2 = \sigma_{\varepsilon}^2 / (1 - \phi^2)$$

$$\operatorname{cov}(Y_t, Y_{t-1}) = \gamma_1 = \sigma^2 \phi$$

$$\operatorname{corr}(Y_t, Y_{t-1}) = \rho_1 = \gamma_1 / \sigma^2 = \phi$$

$$\operatorname{cov}(Y_t, Y_{t-j}) = \gamma_j = \sigma^2 \phi^j$$

$$\operatorname{corr}(Y_t, Y_{t-j}) = \rho_j = \gamma_j / \sigma^2 = \phi^j$$

Note: Since  $|\phi| < 1$ ,

$$\lim_{j\to\infty}\rho_j=\phi^j=0$$

# AR(1) Process: Phi > 0

$$Y_t = 1 + 0.9 \times (Y_{t-1} - 1) + \epsilon_t$$

```
ar1.model = list(ar=0.9)
mu = 1
set.seed(123)
ar1.sim = mu + arima.sim(model=ar1.model, n=250)
```

#### AR(1) Process: mu=1, phi=0.9



# ACF for AR(1) Process: Phi > 0





# The AR(1) model and Economic and Financial Time Series}

The AR(1) model is a good description for the following time series:

- Interest rates on U.S. Treasury securities, dividend yields, unemployment
- Growth rate of macroeconomic variables
  - Real GDP, industrial production, productivity
  - Money, velocity, consumer prices
  - Real and nominal wages