Multivariate Statistics

Sudipta Das

Assistant Professor,
Department of Data Science,
Ramakrishna Mission Vivekananda University, Kolkata
Source: Jhonson & Winchern

Outline I

- Multivariate Normal Distribution
 - Multivariate Normal Density
 - ullet MVN Likelihood and Maximum Likelihood Estimation of μ and Σ
 - The Sampling Distribution of \bar{X} and S
 - Large Sample Behavior of \bar{X} and S
 - Assessing the Assumption of Normality
 - Detecting Outliers and Cleaning Data
 - Transformations to Near Normality

Multivariate Normal Distribution I

• The pdf of multivariate normal random vector $\mathbf{X}' = [X_1, X_2, \dots, X_p]$ with mean μ and covariance matrix Σ is given by

$$f(\mathbf{x}) = rac{1}{(2\pi)^{rac{
ho}{2}} |\Sigma|^{rac{1}{2}}} e^{-rac{1}{2}(\mathbf{x}-\mu)'\Sigma^{-1}(\mathbf{x}-\mu)},$$

where $-\infty < x_i < \infty$.

• Notation $\mathbf{X} \sim N_p(\mu, \Sigma)$

Multivariate Normal Distribution II

Bivariate Normal Density

$$f(x_1,x_2) = \frac{e^{-\frac{1}{2(1-\rho_{12}^2)}\left[\left(\frac{x_1-\mu_1}{\sqrt{\sigma_{11}}}\right)^2 + \left(\frac{x_2-\mu_2}{\sqrt{\sigma_{22}}}\right)^2 - 2\rho_{12}\left(\frac{x_1-\mu_1}{\sqrt{\sigma_{11}}}\right)\left(\frac{x_2-\mu_2}{\sqrt{\sigma_{22}}}\right)\right]}}{2\pi\sqrt{\sigma_{11}\sigma_{22}(1-\rho_{12}^2)}}$$

• Figure 4.2 (Page 152)

Multivariate Normal Distribution III

- Observation
 - Contours of constant density for the p-dimensional normal distribution are ellipsoids defined by x such that

$$(\mathbf{x} - \mu)' \Sigma^{-1}(\mathbf{x} - \mu) = c^2.$$

- These ellipsoids are centerded at μ and have axes $\pm c\sqrt{\lambda_i}e_i$,
 - where $\Sigma e_i = \lambda_i e_i$, for i = 1, 2, ..., p.
- Example 4.2 (Page 154)
- Code 01

Properties of Multivariate Normal Distribution I

- Properties of Multivariate Normal Distribution
 - Linear combinations of the components of X are normally distributed.
 - All subsets of the components of X have a (multivariate) normal distribution.
 - Zero covariance implies that the corresponding components are independently distributed.
 - The conditional distributions of the components are (multivariate) normal.

Properties of Multivariate Normal Distribution II

Result 1:

- If **X** is distributed as $N_p(\mu, \Sigma)$, then any linear combination of variables $\mathbf{L}'\mathbf{X} = l_1X_1 + l_2X_2 + \ldots + l_pX_p$ is distributed as $N(L'\mu, L'\Sigma L)$.
- Also,if L'X is distributed as N(L'μ, L'ΣL) for every L, then X must be N_p(μ, Σ).

Example 4.3 (Page 156)

Properties of Multivariate Normal Distribution III

Sketch of proof:

• If $X = [X_1, \dots, X_p]^T \sim N_p(\mu, \Sigma)$, where Σ is a positive definite matrix, then the characteristic function of X is

$$\phi_X(t) \stackrel{\textit{def}}{=} E[\mathbf{e}^{\mathbf{i}t^TX}] \left[\overset{\mathsf{Proof} \; \mathsf{follows}}{=} \exp\left\{\mathbf{i}t^T\mu - \frac{1}{2}t^T\Sigma t\right\} \right],$$

where $t = [t_1, \dots, t_p]^T \in \mathcal{E}^p$ and $i = \sqrt{-1}$.

Since Σ is positive definite, there exists a non-singular matrix C such that $\Sigma = CC^T$. Write

$$C^{-1}x = y,$$

$$C^{T}t = \alpha = [\alpha_{1}, \dots, \alpha_{p}]^{T},$$

$$C^{-1}\mu = \nu = [\nu_{1}, \dots, \nu_{p}]^{T}.$$

Properties of Multivariate Normal Distribution IV

Thus

$$\begin{split} E(e^{it^TX}) &= \int_{\mathcal{E}^p} \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \exp\left\{it^Tx - \frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right\} dx \\ &= \int_{\mathcal{E}^p} \frac{1}{(2\pi)^{p/2} |C|} \exp\left\{i(C^Tt)^T (C^{-1}x) - \frac{1}{2}(x-\mu)^T (C^{-1})^T C^{-1}(x-\mu)\right\} dx \\ &= \int_{\mathcal{E}^p} \frac{1}{(2\pi)^{p/2}} \exp\left\{i\alpha^T y - \frac{1}{2}(y-\nu)^T (y-\nu)\right\} dy \\ &= \prod_{j=1}^p \int \frac{1}{(2\pi)^{1/2}} \exp\left\{i\alpha_j y_j - \frac{1}{2}(y_j-\nu_j)^2\right\} dy_j \\ &= \prod_{j=1}^p \int \frac{1}{(2\pi)^{1/2}} \exp\left\{-\frac{1}{2}(i\alpha_j)^2 + i\alpha_j (y_j-\nu_j) - \frac{1}{2}(y_j-\nu_j)^2 + i\alpha_j \nu_j - \frac{1}{2}\alpha_j^2\right\} dy_j \\ &= \prod_{j=1}^p \exp\left\{i\alpha_j \nu_j - \frac{1}{2}\alpha_j^2\right\} = \exp\left\{i\alpha^T \nu - \frac{1}{2}\alpha^T \alpha\right\} \\ &= \exp\left\{it^T \mu - \frac{1}{2}t^T \Sigma t\right\}. \end{split}$$

Properties of Multivariate Normal Distribution V

Now, if X is multivariate normal and for any non-null fixed real p-vector L, L^TX have a mean $L^T\mu$ and variance $L^T\Sigma L$, and for any real t the characteristic function of L^TX is

$$\phi_{L^TX}(t) = E[e^{itL^TX}] = \exp\left\{iL^T\mu t - \frac{1}{2}L^t\Sigma Lt^2\right\},$$

Hence, $L^T X \sim N(L^T \mu, L^T \Sigma L)$, i.e., every linear combination of the components of X is distributed as a univariate normal.

Conversely, if L^TX is normal for all L with mean $L^T\mu$ and variance $L^T\Sigma L$, then the characteristic function of L^TX is

$$\phi_{L^T X}(1) = E[e^{iL^T X}] = \exp\left\{iL^T \mu - \frac{1}{2}L^t \Sigma L\right\} = \phi_X(L).$$

This can be seen as the characteristic function of X, as a function of L. By the inversion theorem of the characteristic function the $X \sim N_D(\mu, \Sigma)$.

Therefore, if every linear combination of the components of X is distributed as a univariate normal, then X is distributed as a p-variate normal.

Properties of Multivariate Normal Distribution VI

- Result 2:
 - If **X** is distributed as $N_p(\mu, \Sigma)$, the q linear combinations

$$A\mathbf{X} = \begin{bmatrix} a_{11}X_1 + \dots + a_{1p}X_p \\ a_{21}X_1 + \dots + a_{2p}X_p \\ \vdots \\ a_{q1}X_1 + \dots + a_{qp}X_p \end{bmatrix} = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_q \end{bmatrix} = \mathbf{Y}$$

are distributed as $N_q(A\mu, A\Sigma A')$.

• Also, $\mathbf{X} + \mathbf{d}$, where d is a vector of constants, is distributed as $N_p(\mu + d, \Sigma)$.

Example 4.4 (Page 157)

Properties of Multivariate Normal Distribution VII

- Sketch of proof:
 - For any c,

$$\mathbf{c}'\mathbf{Y} = \mathbf{c}'\mathbf{A}\mathbf{X} \sim N(\mathbf{c}'A\mu, \mathbf{c}'A\Sigma A'\mathbf{c}),$$

as it is a linear combination of $X_1, X_2, ..., X_p$. Now, apply *Result 1*,

Properties of Multivariate Normal Distribution VIII

Result 3:

- All subsets of X are normally distributed.
- If we respectively partition ${\bf X}$, its mean vector $\mu,$ and its covariance matrix ${\bf \Sigma}$ as

$$\mathbf{X}_{\rho \times 1} = \begin{bmatrix} \mathbf{X}_{1q \times 1} \\ \mathbf{X}_{2(\rho - q) \times 1} \end{bmatrix}, \mu = \begin{bmatrix} \mu_{1q \times 1} \\ \mu_{2(\rho - q) \times 1} \end{bmatrix}$$

and

$$\Sigma_{p \times p} = \begin{bmatrix} \Sigma_{11q \times q} & \Sigma_{12q \times (p-q)} \\ \Sigma_{21(p-q) \times q} & \Sigma_{22(p-q) \times (p-q)} \end{bmatrix}$$

then X_1 is distributed as $N_q(\mu_1, \Sigma_{11})$.

Example 4.5 (Page 159)

Properties of Multivariate Normal Distribution IX

- Sketch of proof:
 - For example if we are interested in the subset $\{X_k, X_l\}$, then choose the matrix A as in Result 2 as

$$A = \begin{bmatrix} 0 & 0 & \cdots & 0 & 0 \\ 0 & 1_{(k,k)} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1_{(l,l)} & 0 \\ 0 & 0 & \cdots & 0 & 0 \end{bmatrix}$$

Properties of Multivariate Normal Distribution X

- Result 4:
 - \bullet If $\begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$ is

$$\textit{N}_{q_1+q_2} \left(\begin{bmatrix} \mu_{\mathbf{1}} \\ \mu_{\mathbf{2}} \end{bmatrix}, \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix} \right),$$

then X₁ and X₂ are independent iff

$$Cov(X_1, X_2) = \Sigma_{12} = 0.$$

Example 4.6 (Page 160)

Properties of Multivariate Normal Distribution XI

Sketch of proof: Joint density function

$$\begin{split} f(\mathbf{x}) &= \frac{1}{(2\pi)^{\frac{\rho}{2}} |\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}(\mathbf{x} - \mu)'\Sigma^{-1}(\mathbf{x} - \mu)} \\ &= \frac{1}{(2\pi)^{\frac{q_1 + q_2}{2}} |\sum_{1}^{\Sigma_{11}} \sum_{0}^{0}|^{\frac{1}{2}}} e^{-\frac{1}{2} \begin{bmatrix} \mathbf{x}_1 - \mu_1 \\ \mathbf{x}_2 - \mu_2 \end{bmatrix}' \begin{bmatrix} \Sigma_{11} & 0 \\ 0 & \Sigma_{22} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{x}_1 - \mu_1 \\ \mathbf{x}_2 - \mu_2 \end{bmatrix}} \\ &= \frac{1}{(2\pi)^{\frac{q_1 + q_2}{2}} |\Sigma_{11}|^{\frac{1}{2}} |\Sigma_{22}|^{\frac{1}{2}}} e^{-\frac{1}{2} \begin{bmatrix} \mathbf{x}_1 - \mu_1 \mathbf{x}_2 - \mu_2 \end{bmatrix} \begin{bmatrix} \Sigma_{11}^{-1} & 0 \\ 0 & \Sigma_{21}^{-1} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 - \mu_1 \\ \mathbf{x}_2 - \mu_2 \end{bmatrix}} \\ &= \frac{1}{(2\pi)^{\frac{q_1 + q_2}{2}} |\Sigma_{11}|^{\frac{1}{2}}} e^{-\frac{1}{2} (\mathbf{x}_1 - \mu_1)' \Sigma_{11}^{-1} (\mathbf{x}_1 - \mu_1)} \frac{1}{(2\pi)^{\frac{q_2}{2}} |\Sigma_{22}|^{\frac{1}{2}}} e^{-\frac{1}{2} (\mathbf{x}_2 - \mu_2)' \Sigma_{22}^{-1} (\mathbf{x}_2 - \mu_2)} \\ &= f(\mathbf{x}_1) f(\mathbf{x}_2) \end{split}$$

Properties of Multivariate Normal Distribution XII

- Result 5:
 - Let $\mathbf{X} = \begin{bmatrix} \mathbf{X_1} \\ \mathbf{X_2} \end{bmatrix}$ be distributed as $N_p(\mu, \Sigma)$ with

$$\mu = \begin{bmatrix} \mu_{\mathbf{1}} \\ \mu_{\mathbf{2}} \end{bmatrix}, \Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix} \text{ and } |\Sigma_{22}| > 0.$$

Then the conditional distribution of $\mathbf{X_1}$, given that $\mathbf{X_2} = \mathbf{x_2}$, is normal and has

Mean =
$$\mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(\mathbf{x_2} - \mu_2)$$

and

Covariance
$$= \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}$$
.

Example 4.7 (Page 161)

Properties of Multivariate Normal Distribution XIII

• Sketch of the proof:

$$A = \begin{bmatrix} I_{q_1 \times q_1} & -\Sigma_{12}\Sigma_{22}^{-1} \\ 0 & I_{q_2 \times q_2} \end{bmatrix}.$$

Now,

$$\textit{A}(\mathbf{X} - \mu) = \begin{bmatrix} \mathbf{X_1} - \mu_1 - \Sigma_{12}\Sigma_{22}^{-1}(\mathbf{X_2} - \mu_2) \\ \mathbf{X_2} - \mu_2 \end{bmatrix} \sim \textit{N}_{\textit{p}} \begin{pmatrix} \mathbf{0}, \begin{bmatrix} \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21} & \mathbf{0} \\ \mathbf{0} & \Sigma_{22} \end{bmatrix} \end{pmatrix}$$

Thus.

$$\mathbf{X_1} - \mu_1 - \Sigma_{12}\Sigma_{22}^{-1}(\mathbf{X_2} - \mu_2) \sim \textit{N}_{\textit{q}_1}(\mathbf{0}, \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21})$$

and it is independent of X_2 .

Hence, given $\mathbf{X_2} = \mathbf{x_2}$ for any $\mathbf{x_2}$,

$$\mathbf{X_1}|\mathbf{X_2} = \mathbf{x_2} \sim \textit{N}\left(\mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(\mathbf{x_2} - \mu_2), \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}\right)$$

Properties of Multivariate Normal Distribution XIV

- Result 6:
 - Let **X** be distributed as $N_p(\mu, \Sigma)$ with $|\Sigma| > 0$. Then
 - $(\mathbf{X} \mu)' \Sigma^{-1} (\mathbf{X} \mu)$ is distributed as χ_p^2 .
 - The $N_p(\mu, \Sigma)$ distribution assigns probability $1-\alpha$ to the solid ellipsoid $\{\mathbf{x}: (\mathbf{X}-\mu)'\Sigma^{-1}(\mathbf{X}-\mu) \leq \chi_p^2(\alpha)\}$ where denotes the upper (100α) th percentile of the χ_p^2 distribution.

Code02

Properties of Multivariate Normal Distribution XV

Sketch of proof:

$$\text{Choose } A = \begin{bmatrix} \frac{1}{\sqrt{\lambda_1}} \, e_1' \\ \vdots \\ \frac{1}{\sqrt{\lambda_p}} \, e_p' \end{bmatrix} \text{, where } (\lambda_i, \mathbf{e}_i) s \text{ are eigen-value and eigen-vector pairs of } \Sigma = \sum_{i=1}^p \lambda_i e_i e_i'.$$

Now Thus,

$$\begin{split} \mathbf{Z}'\mathbf{Z} &= (\mathbf{X} - \mu)'A'A(\mathbf{X} - \mu) &= (\mathbf{X} - \mu)' \left[\frac{1}{\sqrt{\lambda_1}} e_1 \cdots \frac{1}{\sqrt{\lambda_p}} e_p \right] \begin{bmatrix} \frac{1}{\sqrt{\lambda_1}} e_1' \\ \vdots \\ \frac{1}{\sqrt{\lambda_p}} e_p' \end{bmatrix} (\mathbf{X} - \mu) \\ &= (\mathbf{X} - \mu)' \left[\sum_{i=1}^p \frac{1}{\lambda_i} e_i e_i' \right] (\mathbf{X} - \mu) = (\mathbf{X} - \mu)' \Sigma^{-1} (\mathbf{X} - \mu) \sim \chi_p^2 \end{split}$$

 $\mathbf{Z} = A(\mathbf{X} - \mu) \sim N_D(\mathbf{0}, A\Sigma A' = I).$

Properties of Multivariate Normal Distribution XVI

- Result 7:
 - Let $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n$ be mutually independent with \mathbf{X}_j distributed as $N_p(\mu_j, \Sigma)$. Then

$$\mathbf{V}_1 = c_1 \mathbf{X}_1 + c_2 \mathbf{X}_2 + \ldots + c_n \mathbf{X}_n$$

is distributed as $N_{p}\left(\sum_{j=1}^{n}c_{j}\mu_{j},\left(\sum_{j=1}^{n}c_{j}^{2}\right)\Sigma\right)$.

• Moreover, V_1 and $V_2 = b_1 X_1 + b_2 X_2 + ... + b_n X_n$ are jointly multivariate normal with covariance matrix

$$\begin{bmatrix} \mathbf{c}'\mathbf{c}\Sigma & \mathbf{b}'\mathbf{c}\Sigma \\ \mathbf{b}'\mathbf{c}\Sigma & \mathbf{b}'\mathbf{b}\Sigma \end{bmatrix}.$$

Consequently, V_1 and V_2 are independent if $\mathbf{b}'\mathbf{c} = 0$.

Example 4.8 (Page 166)

Sampling from Multivariate Normal Distribution I

- Let the sample size be n
- Samples are taken independently from a multivariate normal population with mean vector μ and covariance matrix Σ
- Likelihood function

$$f_{\mathbf{X}_{1},\mathbf{X}_{2},...,\mathbf{X}_{n}}(\mathbf{X}_{1},\mathbf{X}_{2},...,\mathbf{X}_{n}) = \prod_{j=1}^{n} \frac{1}{(2\pi)^{\frac{p}{2}}|\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}(x_{j}-\mu)'\Sigma^{-1}(x_{j}-\mu)}$$

$$= \frac{-\frac{1}{2}\sum_{j=1}^{n}(x_{j}-\mu)'\Sigma^{-1}(x_{j}-\mu)}{(2\pi)^{\frac{np}{2}}|\Sigma|^{\frac{n}{2}}}$$

$$= L(\mu,\Sigma).$$

Sampling from Multivariate Normal Distribution II

- Result 8:
 - Let X_1, X_2, \dots, X_n be a random sample from a normal population with mean μ and covariance Σ . Then

$$\hat{\mu} = \bar{\mathbf{X}}$$
 and $\hat{\Sigma} = \frac{1}{n} \sum_{j=1}^{n} (\mathbf{X_j} - \bar{\mathbf{X}}) (\mathbf{X_j} - \bar{\mathbf{X}})' = \frac{n-1}{n} S$

are the *maximum likelihood estimator*s of μ and Σ , respectively.

Their observed values, $\bar{\mathbf{x}}$ and $\frac{1}{n}\sum_{j=1}^{n}(\mathbf{x_j}-\bar{\mathbf{x}})(\mathbf{x_j}-\bar{\mathbf{x}})'$, are called the maximum likelihood estimates of μ and Σ .

Sampling from Multivariate Normal Distribution III

Sketch of proof:

$$L(\mu, \Sigma) \propto \frac{1}{|\Sigma|^{n/2}} e^{-\frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_i - \mu)' \Sigma^{-1} (\mathbf{x}_i - \mu)}$$

Note

$$\begin{split} \sum_{i=1}^{n} (\mathbf{x}_{i} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{i} - \boldsymbol{\mu}) &= \sum_{i=1}^{n} (\mathbf{x}_{i} - \bar{\mathbf{x}} + \bar{\mathbf{x}} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{i} - \bar{\mathbf{x}} + \bar{\mathbf{x}} - \boldsymbol{\mu}) \\ &= \sum_{i=1}^{n} (\mathbf{x}_{i} - \bar{\mathbf{x}})' \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{i} - \bar{\mathbf{x}}) + n(\bar{\mathbf{x}} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\bar{\mathbf{x}} - \boldsymbol{\mu}), \end{split}$$

is minimized at $\mu = \bar{\mathbf{x}}$

Sampling from Multivariate Normal Distribution IV

Note

$$L(\mu = \bar{\mathbf{x}}, \Sigma) \propto \frac{1}{|\Sigma|^{n/2}} e^{-\frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_i - \bar{\mathbf{x}})' \Sigma^{-1} (\mathbf{x}_i - \bar{\mathbf{x}})} = \frac{1}{|\Sigma|^{n/2}} e^{-\frac{1}{2} tr \left[\Sigma^{-1} \sum_{i=1}^{n} (\mathbf{x}_i - \bar{\mathbf{x}}) (\mathbf{x}_i - \bar{\mathbf{x}})'\right]}.$$

Let,
$$B = \sum_{i=1}^{n} (\mathbf{x}_i - \bar{\mathbf{x}}) (\mathbf{x}_i - \bar{\mathbf{x}})'$$
.

Thus,
$$L(\mu = \bar{\mathbf{x}}, \Sigma) \propto \frac{1}{|\Sigma|^{n/2}} e^{-\frac{1}{2} tr(\Sigma^{-1} B)}$$
.

Let η_i s are eigenvalues of $B^{1/2}\Sigma^{-1}B^{1/2}$. Hence,

$$\begin{split} L(\mu = \bar{\mathbf{x}}, \Sigma) &\propto \frac{1}{|\Sigma|^{n/2}} e^{-\frac{1}{2} lr \left(\Sigma^{-1} B\right)} &= \frac{|B|^{n/4} |\Sigma|^{-n/2} |B|^{n/4}}{|B|^{n/2}} e^{-\frac{1}{2} lr \left(B^{1/2} \Sigma^{-1} B^{1/2}\right)} \\ &= \frac{|B^{1/2} \Sigma^{-1} B^{1/2}|^{\frac{n}{2}}}{|B|^{\frac{n}{2}}} e^{-\frac{1}{2} lr \left(B^{1/2} \Sigma^{-1} B^{1/2}\right)} \\ &= \frac{\left(\prod_{i=1}^{p} \eta_{i}\right)^{\frac{n}{2}}}{|B|^{\frac{n}{2}}} e^{-\frac{1}{2} \sum_{i=1}^{p} \eta_{i}} = \prod_{i=1}^{p} \eta_{i}^{\frac{n}{2}} e^{-\frac{\eta_{i}}{2}} \\ &= \frac{\left(\prod_{i=1}^{p} \eta_{i}\right)^{\frac{n}{2}}}{|B|^{\frac{n}{2}}} e^{-\frac{1}{2} \sum_{i=1}^{p} \eta_{i}} = \prod_{i=1}^{p} \eta_{i}^{\frac{n}{2}} e^{-\frac{\eta_{i}}{2}} \\ \end{split}.$$

Since, $x^{n/2}e^{-x/2}$ is maximized at x = n. Thus $\max(L(\bar{\mathbf{x}}, \Sigma)) = \frac{n^{np/2}e^{-np/2}}{\ln n^{n/2}}$.

Now at $\Sigma = \frac{1}{n}B$, the $L\left(\bar{\mathbf{x}}, \Sigma = \frac{1}{n}B\right) \propto \frac{1}{\left|\frac{1}{n}B\right|^{n/2}}e^{-\frac{1}{2}tr\left(nB^{-1}B\right)} = \frac{\frac{np}{2}}{|B|^{n/2}}e^{-np/2}$, we achieve the maximum.

Sampling from Multivariate Normal Distribution V

Obsevation:

$$L(\hat{\mu}, \hat{\Sigma}) = \frac{1}{(2\pi)^{\frac{np}{2}}} e^{-\frac{np}{2}} \frac{1}{|\hat{\Sigma}|^{\frac{n}{2}}}$$

$$\propto \text{ (Generalized Variance)}^{-\frac{n}{2}},$$

since

$$|\hat{\Sigma}| = |S_n| = \left(\frac{n-1}{n}\right)^p |S|.$$

The Sampling Distribution of \bar{X} and S

- Properties of \bar{X} and S
 - \bar{X} is distributed as

$$N_p\left(\mu,\frac{1}{n}\Sigma\right)$$

• (n-1)S is distributed as

$$W_p(\Sigma, n-1) = \sum_{i=1}^{n-1} ZZ',$$

where $Z \sim N_p(0, \Sigma)$.

- Wishart random matrix of order $p \times p$ with n-1 d.f.
- \bar{X} and S are independent.

Large Sample Behavior of \bar{X} and S

- Large Sample Behavior of \bar{X} and S
 - (Law of large numbers). Let $X_1, X_2, ..., X_n$ be independent observations from a population with mean $E(X_i) = \mu$. Then

$$\bar{X} = \frac{X_1 + X_2 + \ldots + X_n}{n}$$

converges in probability to μ as n increases without bound.

- S converges to Σ in probability.
- (The central limit theorem). Let X_1, X_2, \ldots, X_n be independent observations from any population with mean μ and finite covariance Σ . Then

$$\sqrt{n}(\bar{X} - \mu) \sim N_p(0, \Sigma)$$

for large sample sizes. Here n should also be large relative to p.

• $n(\bar{X} - \mu)' S^{-1}(\bar{X} - \mu)$ is approximately χ_p^2 .

Assessing the Assumption of Normality I

- Most of the statistical techniques discussed, assume that each vector observation X_i comes from a multivariate normal distribution.
 - Do the marginal distributions of the elements of X appear to be normal?
 - Do the scatter plots of pairs of observations on different characteristics give the elliptical appearance expected from normal populations?

Assessing the Assumption of Normality II

- It has proved difficult to construct a "good" overall test of joint normality in more than two dimension.
 - It is possible, for example, to construct a nonnormal bivariate distribution with normal marginals.
 - For most practical work, one-dimensional and two-dimensional investigations are ordinarily sufficient

Assessing the Assumption of Normality III

- Evaluating the Normality of the Univariate Marginal Distributions.
 - **1** A univariate normal distribution assigns probability .683(.954) to the interval $(\mu_i 1(2)\sqrt{\sigma_{ii}}, \mu_i + 1(2)\sqrt{\sigma_{ii}})$.
 - Consequently, with a large sample size n, we expect the observed proportion of the observations lying in the interval $(\bar{x}_i 1(2)\sqrt{s_{ii}}, \bar{x}_i + 1(2)\sqrt{s_{ii}})$. to be about .683(.954).

Assessing the Assumption of Normality IV

Q-Q plot

- Let x₍₁₎, x₍₂₎, ..., x_(n) represent these observations after they are ordered according to magnitude.
- For a standard normal distribution, the quantiles, $q_{(j)}$ are defined by the relation

$$\int_{-\infty}^{q(j)} \frac{\mathrm{e}^{-\frac{z^2}{2}}}{\sqrt{2\pi}} dz = \frac{j - .5}{n}.$$

• If the data arise from a normal distribution the pairs $(q_{(j)}, x_{(j)})$ will be approximately linearly related.

Example 4.9 (Page 179)

Assessing the Assumption of Normality V

- Evaluating the Normality of the Bivariate Distributions.
 - If the observations were generated from a multivariate normal distribution, each bivariate distribution would be normal.
 - Check the set of bivariate outcomes **x** such that $(x \mu)' \Sigma^{-1} (x \mu) \le \chi_2^2 (.5)$ has probability 0.5.
 - μ is replaced by \bar{x} and Σ^{-1} is replaced by S^{-1} .

Assessing the Assumption of Normality VI

- ② More formal method for judging the joint normality of a data set is based on squared generalized distance $d_j^2 = (x_j \bar{x})' S^{-1}(x_j \bar{x})$, where x_j s are sample observations.
 - When the parent population is multivariate normal and both n and n-p are large each of the squared distances $d_1^2, d_2^2, \ldots, d_n^2$ should behave like a chi-square random variable.
 - The resulting plot is called chi-square plot or gamma plot.
 - Note: It can be used for any $p \ge 2$.

Assessing the Assumption of Normality VII

- Constructing chi-square plot
 - Order the squared distance $d_{(1)}^2, d_{(2)}^2, \dots, d_{(n)}^2$
 - Graph the pairs $(q_{c,p}\frac{(j-.5)}{n}, d_{(j)}^2)$, where $q_{c,p}(\frac{j-.5}{n})$ is the 100(j-.5)/n quantile of the chi-square distribution with p degrees of freedom.
- The plot should resemble a straight line through the origin having slop 1.
- One or two points far above the line indicate large distances, or outlying observations, that merit further attention.
 Example 4.13 (Page 184)

Detecting Outliers and Cleaning Data I

- Most data sets contain one or few unusual observations that do not seem to belong to the pattern of variability produced by other observations.
- Outliers are not wrong numbers, they need further investigations.

Detecting Outliers and Cleaning Data II

- Methods of detecting outliers
 - Make a dot plot for each variable.
 - Calculate the standardized values $z_{jk} = \frac{x_{jk} \bar{x_k}}{\sqrt{s_{kk}}}$, for j = 1, ..., n and k = 1, ..., p.
 - Examine these standardized values for large and small values.

Figure 4.10 (Page 188)

- Make a scatter plot for each pair of variables.
 - Calculate the generalized sqaured distance $(x_i \bar{x})' S^{-1}(x_i \bar{x})$.
 - Examine these distances for unusually large values.
 - In a *chi-square* plot, these would be the points farthest form the origin.

Figure 4.11 (Page 191)

Transformations to Near Normality I

- If normality assumption is violated
 - Transform the data
 - For example:
 - Count data (y) take the square roots (\sqrt{y})
 - Proportion data (p) take logit transformation $\left(\frac{1}{2}\log\frac{p}{1-p}\right)$
 - Correlation coefficients (r) take Fisher's z-transform $\left(\frac{1}{2}\log\frac{1+r}{1-r}\right)$

Transformations to Near Normality II

- It is convenient to let the data suggest a transformation
 - A useful transformation for this purpose is the family of power transformations
 - For positive r.v.
 - Shrinking ..., x^{-1} , $x^{-1/2}$, $\ln x$, $x^{1/4}$, $x^{1/2}$
 - Expanding x^2, x^3, \dots

Transformations to Near Normality III

Box and Cox family of power transformations

$$x^{(\lambda)} = \begin{cases} \frac{x^{\lambda} - 1}{\lambda}, & \text{if } \lambda \neq 0\\ \ln x, & \text{if } \lambda = 0, \end{cases}$$

Transformations to Near Normality IV

 \bullet Choice of an appropriate power λ is the solution of that maximizes the expression

$$I(\lambda) = -\frac{n}{2} \ln \left[\frac{1}{n} \sum_{j=1}^{n} \left(x_j^{(\lambda)} - x_j^{(\overline{\lambda})} \right)^2 \right] + (\lambda - 1) \sum_{j=1}^{n} \ln x_j.$$

- Note: The first term is, apart from a constant, the logarithm of normal likelihood function, after maximizing it over μ and σ .
- After the transformation, one should also check for adequacy of normality.
 - Example 4.16 (Page 194)

Transformations to Near Normality V

- Multivariate Data:- Try to make each marginal distribution approximately normal.
 - For all k in $1, \ldots, p$ maximize

$$I_k(\lambda) = -\frac{n}{2} \ln \left[\frac{1}{n} \sum_{j=1}^n \left(x_{jk}^{(\lambda_k)} - x_{jk}^{(\bar{\lambda}_k)} \right)^2 \right] + (\lambda_k - 1) \sum_{j=1}^n \ln x_{jk}.$$

- Hence, $\hat{\lambda} = [\hat{\lambda}_1, \dots, \hat{\lambda}_p]$.
- Therefore, the *j*th transformed multivariate observation is

$$x_j^{(\hat{\lambda})} = \left[\frac{x_{j1}^{\hat{\lambda}_1} - 1}{\hat{\lambda}_1}, \dots, \frac{x_{jp}^{\hat{\lambda}_p} - 1}{\hat{\lambda}_p}\right]'.$$

• It's equivalent to maximizing the univariate likelihood for kth feature over the parameters μ_k , σ_{kk} and λ_k .

Transformations to Near Normality VI

• If the normal marginals are not sufficient to ensure that the joint distribution is normal, one can start with initial values as $\lambda = [\hat{\lambda}_1, \dots, \hat{\lambda}_p]$ to maximize the multivariate function

$$I(\lambda_1,\ldots,\lambda_p) = -\frac{n}{2}\ln|S(\lambda)| + \sum_{k=1}^p \left((\lambda_k - 1)\sum_{j=1}^n \ln x_{jk}\right),\,$$

where $S(\lambda)$ is the sample covariance matrix computed from $x_j^{(\lambda)} = [\frac{x_{j1}^{\lambda_1} - 1}{\lambda_1}, \dots, \frac{x_{jp}^{\lambda_p} - 1}{\lambda_p}]'$.

• It's equivalent to maximizing the multivariate likelihood over the parameters μ, Σ and λ .