

Databases – Introduction to Relational Model (Chapter 2)

Jaeyong Choi
Dept. of Al-Software, Gachon University

Schedule

Week	Topic	Chapter	Note
1	Introduction to DBMS, Relational Model	1	
2	Relational Algebra : - Concept of Key - Relational algebra operators - Relational algebra expressions	2	추석
3	Introduction to SQL	3	
4	Advanced SQL : - Advanced expression of SQL - Nested SQL queries	4, 5	MOOC
5	Entity/Relationship Model	6	
6	Relational Database Design 1 Relational Database Design 2 (추석보강)	7	MOOC
7	Storage and File Structure	12, 13	MOOC
8	Mid-term Exam		

Relational Databases

What is Relation (table) Data Model:

- a collection of table / relations
 - Records with pre-defined columns
 - Assigned a unique name (e.g., instructor, department, ...)
- Primary data model for commercial data-processing
- Edgar F. Codd defines the Relational Data Model (1972)

Edger F. Codd

Structure of Relational Databases

Schema -(Relation Schema)

INT	CHAR(15)	CHAR(20)	INT	Domain	
ID	пате	dept_name	salary		
10101 12121 15151 22222 32343 33456 45565 58583 76543 76766	Srinivasan Wu Mozart Einstein El Said Gold Katz Califieri Singh Crick	Comp. Sci. Finance Music Physics History Physics Comp. Sci. History Finance Biology	65000 90000 40000 95000 60000 87000 75000 62000 80000 72000	tuples (rows, recor Instance (Relational Instance)	al
83821 98345	Brandt Kim	Comp. Sci. Elec. Eng.	92000 80000		

Alternative Terminology

Table-oriented	Record-oriented	Relational DB
Table	File	Relation
Row	Record	Tuple
Column	Field	Attribute

G

ID	пате	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

Attribute types

- The set of allowed values for each attribute is called the domain of the attribute
 - Same data type
 - Order is not important (unordered)
- Attribute values (domains) are (normally) required to be atomic, i.e., indivisible
- The special value null is a member of every domain indicating that the value is "unknown" or "non-existent"
 - Causes complications in the definition of many operations

Re	sult Grid	Filter Rows:		Edit
	course_id	title	dept_name	credits
•	CS-111	db	comp. sci	2
	CS-437	Database Systems	comp. sci	4
	NULL	NULL	NULL	NULL

	ID	пате	dept_name	salary
ı	22222	Einstein	Physics	95000
	12121	Wu	Finance	90000
	32343	El Said	History	60000
	45565	Katz	Comp. Sci.	75000
	98345	Kim	Elec. Eng.	80000
	76766	Crick	Biology	72000
	10101	Srinivasan	Comp. Sci.	65000
	58583	Califieri	History	62000
	83821	Brandt	Comp. Sci.	92000
	15151	Mozart	Music	40000
	33456	Gold	Physics	87000
	7/5/2	C:l-	Discourse.	00000

Database Schema

Relation Schema and Relation Instances

- \square $A_1, A_2, ..., A_n$ are attributes
- \square $R(A_1, A_2, ..., A_n)$ is a relation schema
 - E.g., instructor (ID, name, dept_name, salary)
- The current values (relation instance r) of a relation are specified by a table form
 - The element t of r is a tuple, represented by a row in a table
 - \blacksquare A table r is a set of tuples t
- Formally, given domains D_1 , D_2 , ..., D_n , a relation R is a subset of $D_1 \times D_2 \times ... \times D_n$
 - \square $R \subseteq D_1 \times D_2 \times ... \times D_n$ (Cartesian Product)
 - A relation is a set of *n*-tuples $(a_1, a_2, ..., a_n)$ where $a_i \in D_i$
- Relation = Relation Schema + Relation Instances

Example

 $R \subseteq D_1 \times D_2 \times ... \times D_n$ (Cartesian Product)

Class Number (D₂)

Al 101 Al 201 Al 301

Student ID x Class Number $(D_1 \times D_2) = R$

(100, Al 101) (100, Al 201) (100, Al 301) (200, Al 101) (200, Al 201) (200, Al 301)

Student ID	Class Number
100	Al 201
200	Al 101

$$R_1 = D_1 \times D_2$$

ID	Number
	INT

Name CHAR(10)

Age INT

Address CHAR(20)

Domain example

A database domain, at its simplest, is the data type used by a column in a database. This data type can be a built-in type (such as an integer or a string) or a custom type that defines constraints on the data.

도메인그룹	도메인명	데이터 타입	설명
번호	전화번호	VARCHAR2(13)	
	우편번호	VARCHAR2(7)	
	비밀번호	VARCHAR2(10)	
	번호(PK)	NUMBER	시퀀스를 PK로 사용
금액	금액(N,13)	NUMBER(13)	
	금액(N,6)	NUMBER(6)	
명칭	이름	VARCHAR2(16)	
	제목	VARCHAR2(128)	
수량	주문수량	NUMBER	
여부	사용여부	VARCHAR2(1)	
날짜	일자	VARCHAR2(14)	YYYYMMDDHH24MISS
	월	VARCHAR2(2)	MM
	년도	VARCHAR2(4)	YYY
〈표2〉도메인 경	정의 예제	-	

Entity	Attribute N	lame		Entity	Attrib	oute Name	명사1	명사2		명사1
고객	카드번호 주민번호 고객이름 주소 핸드폰번호 전화번호			고객	카드: 주민: 고객(고객 ² 핸드: 전화:	번호)))름 주소 또번호	번호 등소호호 번이 주번한 번	카드번호 주민번호 고객이름 고객주소 핸드폰번 전화번호	ž N	번호 이름 주소 일자 금액 카드번호
거래 내역	카드번호 거래일자 승인일자 취소일자 거래금액		명시만	거래 내역	카드는 거래요 승인요 취소요 거래공	실자 실자 실자	번호 일자 일자 일자 김막 금액	카드번호 거래일지 승인일지 취소일지 거래금액	공배수	주민번호
										승인일자
				-	대구분	소구	1분	Domain	Attribute Nan	취소일자 거래금액
			/	_ _	대구분 번호	카드번호 주민번호 핸드폰번호		Domain 금액	Attribute Nan 거래금액(N.20	취소일자 거래금역
			n별 Data a 설정	- -		카드번호 주민번호				취소일자 거래금역

Examples

- department (dept_name, building, budget)
- teaches (ID, course_id, sec_id, semester, year)

dept_name	building	budget
Biology	Watson	90000
Comp. Sci.	Taylor	100000
Elec. Eng.	Taylor	85000
Finance	Painter	120000
History	Painter	50000
Music	Packard	80000
Physics	Watson	70000

ID	course_id	sec_id	semester	year
10101	CS-101	1	Fall	2009
10101	CS-315	1	Spring	2010
10101	CS-347	1	Fall	2009
12121	FIN-201	1	Spring	2010
15151	MU-199	1	Spring	2010
22222	PHY-101	1	Fall	2009
32343	HIS-351	1	Spring	2010
45565	CS-101	1	Spring	2010
45565	CS-319	1	Spring	2010
76766	BIO-101	1	Summer	2009
76766	BIO-301	1	Summer	2010
83821	CS-190	1	Spring	2009
83821	CS-190	2	Spring	2009
83821	CS-319	2	Spring	2010
98345	EE-181	1	Spring	2009

Characteristics of Relation

- One attribute contains same data type
- Relations are unordered
 - Order of attributes / tuples is irrelevant
 - tuples may be stored in an arbitrary order
 - Example: instructor relation with unordered tuples

ID	пате	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

ID	пате	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Comp. Sci.	75000
98345	Kim	Elec. Eng.	80000
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000

Specify how tuples are distinguished

Student ID	Class Number	Grade
100	Al 101	А
200	Al 217	В
100	Al 314	В
200	Al 101	С

□ Super Keys

- The set of attributes which can uniquely identify a tuple
- K is a superkey of R, if values for K are sufficient to identify a unique tuple of each possible relation r(R)
 - **Ξ** E.g., {*ID*} and {*ID*,*nαme*} are both superkeys of *instructor*
 - E.g., STUD_NO, {STUD_NO, STUD_NAME}
- Superkey K is a candidate key if K is minimal
 - E.g., {*ID*} is a candidate key for *instructor*

	STUDENT					
STUD_NO	STUD_NAME	STUD_PHONE	STUD_STATE	STUD_COUNT	STUD_AG	
				RY	E	
1	RAM	9716271721	Haryana	India	20	
2	RAM	9898291281	Punjab	India	19	
3	SUJIT	7898291981	Rajsthan	India	18	
4	SURESH		Punjab	India	21	

13 **G**

□ Candidate key

- The minimal set of attribute which can uniquely identify a tuple is known as candidate key
 - The value is *unique* and *non-null* for every tuple.
 - There can be more than one candidate key in a relation.
 - E.g., STUD_NO
 - □ The candidate key can be only one attribute or composite as well.
 - E.g., {STUD_NO, COURSE_NO} is a composite candidate key for relation STUDENT_COURSE.

тт	-	•	•	_

STUD_NO	STUD_NAME	STUD_PHONE	STUD_STATE	STUD_COUNT	STUD_AG
				RY	E
1	RAM	9716271721	Haryana	India	20
2	RAM	9898291281	Punjab	India	19
3	SUJIT	7898291981	Rajsthan	India	18
4	SURESH		Punjab	India	21

Table 1

STUDENT_COURSE

STUD_NO	COURSE_NO	COURSE_NAME
1	C1	DBMS
2	C2	Computer Networks
1	C2	Computer Networks

Table 2

□ Primary key

- One of candidate keys is selected as a primary key by the database designer. Values are never, or rarely, changed
- List the primary key attributes before the other attributes with underline
 - department (<u>dept_name</u>, building, budget)
 - course (course_id, title, dept_name, credits)
 - student(<u>stud_no</u>, stud_name, stud_phone, stud_state, stud,countray,stud_age)

STUDENT

STUD_NO	STUD_NAME	STUD_PHONE	STUD_STATE	STUD_COUNT RY	STUD_AG E
1	RAM	9716271721	Haryana	India	20
2	RAM	9898291281	Punjab	India	19
3	SUJIT	7898291981	Rajsthan	India	18
4	SURESH		Punjab	India	21

Table 1

□ Foreign key

- A key used to link two tables together
- A FOREIGN KEY is a field in one table that refers to the PRIMARY KEY in another table.
- The table containing the foreign key is called the child table, and the table containing the candidate key is called the referenced or parent table.

□ Foreign key

- The primary key of r_2 , a_2 is called **a foreign key** from r_1 , referencing r_2 When r_1 includes a_1 ,
 - \blacksquare r_1 referencing relation, r_2 referenced relation
- Referential integrity constraint
 - Values of a_2 in r_1 must appear in r_2

Schema Diagrams

Primary key

Foreign key

Schema diagram for the university database

Example

Primary key

Foreign key

Foreign Key in the same relation

FacSSN	FacFirstName	FacLastName	FacRank	RacSalary	FacSupervisor
598-76-5432	LEONARD	VINCE	ASST	\$35,000	654-32-1098
543-21-0987	VICTORIA	EMMANUEL	PROF	\$120,000	
654-32-1098	LEONARD	FIBON	ASSC	\$70,000	543-21-0987
765-43-2109	NICKI	MACON	PROF	\$65,000	
487-65-4321	JULIA	MILLS	ASSC	\$75,000	765-43-2109

Languages of DBMS

- Data Definition Language (DDL)
 - □ define the *schema* and storage stored in a Data Dictionary
- Data Manipulation Language (DML)
 - Manipulative populate schema, update database
 - Retrieval querying content of a database
- Data Control Language (DCL)
 - permissions, access control etc...

Relational Query Languages

- Relational query languages
 - Procedural vs. non-procedural (declarative)
 - "Pure" languages:
 - Relational algebra
 - Theoretical basis of SQL query language
 - Tuple relational calculus
 - Domain relational calculus
 - We will concentrate in this chapter on relational algebra
 - Consists of 6 basic operations