Курсова робота

ст.гр 1СІ-07 Бондарчук О.В. 14 жовтня 2009 р.

3MICT

I Розділ першии	3
1.1 Підрозділ перший	3
1.1.1 Підпідрозділ перший	3
2 Короткі теоретичні відомості	6
2.1 Розв'язання диференціальних рівнянь	6
2.2 Методи розв'язання задачі Коші	7
2.2.1 Метод Ейлера	8
2.2.2 Виправлений метод Ейлера	9
2.2.3 Модифікований метод Ейлера	10
2.2.4 Метод Рунге-Кутта	10
2.3 Розв'язання диференціальних рівнянь вищих порядків	11
2.4 Обчислення похибок	12
АТехнічне завдання	14
Додаток Б. Розміри елементів сторінки	15

1 РОЗДІЛ ПЕРШИЙ

Цей документ своренно для тестування latex-стилю[1] для оформлення курсових робіт за вимогами ВНТУ.

На данний момент стиль підтримує тільки курсові роботи (ДСТУ 3008-95). В майбутньому (наступному триместрі) планується підтримка курсових проектів (ГОСТ 2.105-95), і написання документації.

1.1 Підрозділ перший

Список того, що необхідно зробити, чи закінчити:

- а) підтримка бібліографії;
- б) підтримка ненумерованих розділів (аннотація, вступ, і т.п.);
- в) підтримка додатків;
- г) шаблони обов'язкових сторінок (титульний лист, обов'язкові додатки).

1.1.1 Підпідрозділ перший

Складний список згідно госту:

- а) перший рядок першого рівня містить достатьно довгий текст, що повинен перенестися на нову стрічку;
 - б) другий рядок першого рівня містить:
 - 1) перший підрядок другого рядка;
- 2) другий підрядок другого рядка також містить достатьно довгий текст, що повинен перенестися на нову стрічку;
 - 3) третій підрядок другого рядка:
 - в) третій рядок третього рівня;
 - г) 4;
 - д) 5;
 - e) 6;
 - ϵ) 7;
 - ж) 8;
 - 3) 9;

- и) 10;
- i) 11;
- i) 12;
- й) 13;
- к) 14;
- л) 15;
- м) 16;
- н) 17;
- o) 18;
- п) 19;
- p) 20;
- c) 21;
- т) 22;
- y) 23;
- ф) 24;
- x) 25;
- ц) 26;
- ч) 27;
- ш) 28;
- щ) 29;
- ю) 30;
- я) 31.

Текст після списку. Текст після списку.

Рисунок 1.1 — Пример рисунка.

Метод Голда[2] получен из метода ван Циттерта[3], но с предположением, что действует он только для положительных чисел. Восстанавливает по следующему алгоритму[4, 5, 6].

Порядок методу дорівнює p, якщо існує таке позитивне число c, що

$$\Delta \le ch^{p+1},\tag{1.1}$$

де Δ — локальна похибка на кроці;

h — крок дискретизації;

p — порядок методу.

Текст після формули. Текст після формули. Текст після формули. Текст після формули. Текст після формули.

2 КОРОТКІ ТЕОРЕТИЧНІ ВІДОМОСТІ

2.1 Розв'язання диференціальних рівнянь

Диференціальні рівняння — розділ математики, який вивчає теорію та способи розв'язування рівнянь, що містять шукану функцію та її похідні різних порядків одного аргументу (звичайні диференціальні) чи кількох аргументів (диференціальні рівняння в частинних похідних). Диференціальні рівняння широко використовуються на практиці, зокрема для опису перехідних процесів.

Теорія диференціальних рівнянь — розділ математики, що займається вивченням диференціальних рівнянь і пов'язаних з ними задач. Їх результати застосовуються в багатьох природничих науках, особливо широко — у фізиці.

Простіше кажучи, диференціальне рівняння — це рівняння, в якому невідомою величиною ϵ деяка функція. При цьому, в самому рівнянні бере участь не тільки невідома функція, але й різні її похідні. Диференціальним рівнянням описується зв'язок між невідомою функцією та її похідними. Такі зв'язки віднаходяться в різних областях знань: у механіці, фізиці, хімії, біології, економіці та ін.

Розрізняють звичайні диференціальні рівняння і диференціальні рівняння в частинних похідних. Більш складними ϵ інтегро-диференціальні рівняння.

Звичайні диференціальні рівняння — це рівняння виду:

$$F(t, x, x', x'', x^{(n)}) = 0, (2.1)$$

де x = x(t) — невідома функція (можливо, вектор-функція; в такому випадку часто говорять про систему диференціальних рівнянь), що залежить від змінної часу t, штрих означає диференціювання по t. Число n називається порядком диференціального рівняння.

У випадку, коли додаткові умови задаються при одному значенні незалежної змінної, має місце задача Коші (задача з початковими умовами). Якщо умови задаються для двох або більше значень незалежної змінної, то задача стає крайовою. У задачі Коші додаткові умови називаються початковими, а у крайовій задачі — граничними. При розв'язанні цих задач використовуються

різні методи і алгоритми.

Задачу Коші можна сформулювати таким чином.

Нехай дано диференціальне рівняння першого порядку:

$$\frac{dy}{dx} = f(x, y) \tag{2.2}$$

Потрібно знайти функцію на відрізку від x = a до x = b, що задовольняє як рівняння (2.2), так і початкову умову $y(a) = y_0$ (при цьому завжди припускається, що існує єдиний розв'язок на всьому відрізку).

Задача, що полягає в розв'язанні звичайного диференціального рівняння при додаткових умовах, які поставлені при декількох значеннях незалежної змінної, називається крайовою. Постановки і методи розв'язання рівнянь більш високих порядків аналогічні.

2.2 Методи розв'язання задачі Коші

Основою чисельних методів розв'язання диференціальних рівнянь слугує розкладання функції у в ряд Тейлора в околі початкової точки:

$$y(x_0 + h) = y(x_0) + hy'(x_0) + \frac{1}{2}h^2y''(x_0) + \cdots$$
 (2.3)

де h — відстань (крок) між початковою точкою x_0 і точкою $x_1 = x_0 + h$, в якій відшукується розв'язок.

В різних методах враховується різна кількість членів розкладання (в багатокрокових методах в поєднанні з інтерполяційними формулами), що визначає точність обчислень. При використанні цих методів на ЕОМ слід розрізняти похибки округлення через обмеженість кількості значущих цифр в ЕОМ; похибка зрізання (обмеження) — методична похибка, що пов'язана з апроксимацією розв'язків скінченними рядами, замість нескінченних, наприклад, а.

Внаслідок цих причин виникають два види похибок:

- а) локальна сума похибок, що вносяться в обчислювальний процес на конкретному кроці;
- б) глобальна (сумарна) різниця між точним і обчисленим значеннями, яка включає так звану похибку розповсюдження внаслідок накопичення

помилок на попередніх етапах обчислення.

Порядок методу дорівнює p, якщо існує таке позитивне число c, що

$$\Delta \le ch^{p+1},\tag{2.4}$$

де Δ — локальна похибка на кроці, h — крок дискретизації.

Число не залежить від номера кроку і його величини, а визначається похідними і довжиною інтервалу. При апроксимації розв'язання рядами Тейлора воно зв'язане зі степенем членів ряду, які відкидаються.

Методи розв'язання задачі Коші поділяють на однокрокові та багатокрокові.

В однокрокових методах для знаходження наступної точки на кривій y = f(x) потрібна інформація лише про один попередній крок (методи Ейлера і Рунге-Кутта).

В багатокрокових методах (прогнозу і корекції) для знаходження наступної точки на кривій y = f(x) потрібна інформація більш ніж про одну з попередніх точок. Щоб отримати достатньо точне чисельне значення часто використовується ітераційна процедура (наприклад, в методах Мілна-Адамса, Башфорта, Хеммінга).

2.2.1 Метод Ейлера

Найбільш простим однокроковим методом, який потребує мінімальних затрат обчислювальних ресурсів, але дає змогу обчислювати результат із порівняно низькою точністю, є метод Ейлера.

В цьому методі для оцінки наступної точки на кривій y=f(x) використовується лише один лінійний член в формулі Тейлора,

$$y(x_0 + h) = y(x_0) + hy'(x_0), (2.5)$$

де y'(x) визначається з початкового рівняння.

Цей процес можна розповсюдити на наступні кроки:

$$y_{n+1} = y_n + hf(x_n, y_n).$$
 (2.6)

Рисунок 2.1 — Виправлений метод Ейлера

Метод Ейлера ϵ методом першого порядку (p=1):

$$\Delta \le ch^2,\tag{2.7}$$

де $c = (M_1 + M_0 M_2)/2$, M_0 , M_1 , M_2 — визначаються як:

$$M_{0} \geq |f(x,y)|,$$

$$M_{1} \geq \left| \frac{df(x,y)}{dx} \right|,$$

$$M_{2} \geq \left| \frac{df(x,y)}{dy} \right|,$$

$$(2.8)$$

для всіх $x \in [a, b]$ і y = y(x).

Метод Ейлера, крім значної похибки зрізання часто буває нестійким (малі локальні помилки призводять до значного збільшення глобальної).

Цей метод можна вдосконалити різними способами.

2.2.2 Виправлений метод Ейлера

Ітераційні формула для цього методу має вигляд:

$$y_{n+1} = y_n + \frac{h}{2}(f(x_n, y_n) + f(x_n + h, y_n + hf(x_n, y_n)))$$
 (2.9)

Графічне зображення методу подане на рисунку 2.1.

Рисунок 2.2 — Модифікований метод Ейлера

2.2.3 Модифікований метод Ейлера

Ітераційні формула для цього методу має вигляд:

$$y_{n+1} = y_n + \frac{h}{2}(f(x_n, y_n) + f(x_n + h, y_n + hf(x_n, y_n)))$$
 (2.10)

Графічне зображення методу подане на рисунку 2.2.

Принцип, на якому побудований модифікований метод Ейлера, можна пояснити, користуючись рядом Тейлора і зберігаючи в ньому член з h^2 . Апроксимація другої похідної $y''(x_0)$ здійснюється кінцевою різницею:

$$y''(x_0) = \frac{\Delta y}{\Delta x} = \frac{y(x_0 + h) - y'(x_0)}{h}$$
 (2.11)

Аналогічно обчисленню другої похідної в кінцево-різницевому вигляді можна обчислити більш високі похідні: значення n-ї за значеннями попередньої (n-1)-ї.

2.2.4 Метод Рунге-Кутта

Метод Рунге-Кутта дає набір формул для обчислення координат внутрішніх точок, які потрібні для реалізації цієї ідеї. Оскільки існує ряд способів знаходження цих точок, то метод Рунге-Кутта об'єднує цілий клас методів для розв'язання диференціальних рівнянь першого порядку.

Найбільш розповсюджений класичний метод четвертого порядку точно-

сті:

$$y_{n+1} = y_n + \frac{k_0 + 2k_1 + 2k_2 + k_3}{6},$$
 (2.12)

де

$$k_{0} = hf(x_{n}, y_{n});$$

$$k_{1} = hf(x_{n} + \frac{h}{2}, y_{n} + \frac{k_{0}}{2});$$

$$k_{2} = hf(x_{n} + \frac{h}{2}, y_{n} + \frac{k_{1}}{2});$$

$$k_{3} = hf(x_{n} + h, y_{n} + k_{2}).$$

$$(2.13)$$

Метод Ейлера і його модифікації ще називають методами Рунге-Кутта першого і другого порядку. Метод Рунге-Кутта має значно більш високу точність, що дозволяє збільшити крок розв'язання. Його максимальну величину визначає припустима похибка. Такий вибір часто здійснюється автоматично і включається як складова частина в алгоритм, побудований за методом Рунга-Кутта.

2.3 Розв'язання диференціальних рівнянь вищих порядків

Будь-яку з формул Рунге-Кутта можна використовувати для розв'язання диференціальних рівнянь вищих порядків і систем диференціальних рівнянь. Рівняння порядку n можна звести до n диференціальних рівнянь першого порядку.

Як приклад розглянемо розв'язання звичайного диференціального рівняння другого порядку:

$$\frac{d^2y}{dx^2} = g\left(x, y, \frac{dy}{dx}\right). (2.14)$$

Введемо заміну $z=\frac{dy}{dx}$, тоді $\frac{dz}{dx}=\frac{d^2y}{dx^2}$, а рівняння (2.14) прийме вигляд системи:

$$\begin{cases} \frac{dz}{dx} = g(x, y, z); \\ \frac{dy}{dx} = f(x, y, z), \end{cases}$$
 (2.15)

де f(x, y, z) = z.

Задача Коші в цьому випадку містить дві початкових умови:

$$\begin{cases} y(x_0) = y_0; \\ z(x_0) = y'(x_0) = z_0. \end{cases}$$
 (2.16)

Розв'язавши систему рівнянь (2.15) отримаємо розв'язок диференціального рівняння (2.14), що задовольнятиме задані початкові умови (2.16).

2.4 Обчислення похибок

В розділі 2.2.1 було зазначено, що помилка зрізання при використанні методів Рунге-Кутта n-го порядку визначається за формулою (2.7). Обчислення верхніх границь для коефіцієнта с являє собою складну задачу, пов'язану з необхідністю оцінки ряду додаткових параметрів. Існує декілька способів для оперативного обчислення . Найбільшого поширення набув екстраполяційний метод Річардсона (ще його називають методом Рунге), коли послідовно знаходять значення y_n з кроком h і з кроком $\frac{h}{2}$, а після цього прирівнюють отримані величини та визначають c з рівняння:

$$y = y_n^{(h)} + ch^{p+1} = y_n^{\left(\frac{h}{2}\right)} + c\left(\frac{h}{2}\right)^{p+1}$$
 (2.17)

де y — точне значення на даному кроці.

Отримаємо оціночне співвідношення:

$$c = \frac{y_n^{(h)} - y_n^{(\frac{h}{2})}}{h^{p+1} - \left(\frac{h}{2}\right)^{p+1}}$$
(2.18)

ПЕРЕЛІК ПОСИЛАНЬ

- [1] Michel Goossens, Frank Mittelbach, and Alexander Samarin. *The LaTeX Companion*. Reading, Mass.: Addison-Wesley, 1994.
- [2] ЫыіїЇ. *іІыЪъї*. ВНТУыі, 2009.
- [3] Author2. All about TeX. M, 1993.
- [4] Author3. sfsfg. Asfaf, 1990.
- [5] Author4. Agadgad. DSfsgsa, 1990.
- [6] Author5. Veri long book title, realy verey very long. M, 1990.

А Технічне завдання

Рисунок А.1 — Приклад рисунка у дадатку

Додаток Б Розміри елементів сторінки

- 1 one inch + \hoffset
- 3 \oddsidemargin = -15pt
- 5 \headheight = 14pt
- $7 \setminus \text{textheight} = 731\text{pt}$
- 9 \marginparsep = 0pt
- 11 \footskip = 0pt
 \hoffset = 0pt
 \paperwidth = 597pt
- 2 one inch + \voffset
- 4 \setminus topmargin = -54pt
- 6 $\headsep = 25pt$
- 8 \textwidth = 483pt
- 10 \marginparwidth = 0pt

\marginparpush = 7pt (not shown)

\voffset = 0pt

 $\parbox{paperheight} = 845pt$