Programming Assignment 2:

Optimizing Strassen Cut-Off

Justin Gonzalez

April 1, 2020

1 Analytically Solving for n_0

We will begin by solving the recurrence relation for the traditional matrix multiplication algorithm. We know from lecture that when multiplying two $n \times n$ matrices, we need to perform $8 \frac{n}{2} \times \frac{n}{2}$ matrix multiplications and $4 \frac{n}{2} \times \frac{n}{2}$ matrix additions for a total $4(\frac{n}{2})^2$ scalar additions. Therefore our recurrence relation is as follows:

$$T(n) = 8 \cdot T(n/2) + 4 \cdot (n/2)^{2}$$

$$= 8 \cdot T(n/2) + n^{2}$$

$$= 8 \cdot (8 \cdot T(n/4) + (n/2)^{2}) + n^{2}$$

$$= 8 \cdot (8 \cdot (8 \cdot T(n/8) + \frac{1}{16}n^{2}) + \frac{1}{4}n^{2}) + n^{2}$$

$$\vdots$$

$$= 8^{\log n - 1} \cdot T(2) + n^{2} \sum_{i=0}^{\log n - 2} \frac{8^{i}}{4^{i}}$$

In our base case of n=2, we know that our traditional matrix multiplication algorithm requires 8 scalar multiplications and 4 scalar additions, therefore T(2)=12.

$$T(n) = \frac{12}{8}n^{\log 8} + n^2 \sum_{i=0}^{\log n - 2} 2^i$$

The sum on the right is a geometric series, therefore we can simplify as follows:

$$T(n) = \frac{3}{2}n^3 + n^2 \frac{1 - 2^{\log n - 1}}{1 - 2}$$
$$= \frac{3}{2}n^3 + n^2 \frac{1 - \frac{1}{2}n}{-1}$$
$$= \frac{3}{2}n^3 - n^2 + \frac{1}{2}n^3$$
$$= 2n^3 - n^2$$

Next we will solve the the recurrence relation for Strassen's algorithm. We know from lecture that when multiplying two $n \times n$ matrices, we need to perform 7 $\frac{n}{2} \times \frac{n}{2}$ matrix multiplications and 18 $\frac{n}{2} \times \frac{n}{2}$ matrix additions and subtractions for a total $18(\frac{n}{2})^2$ scalar additions and subtractions. Therefore our recurrence relation is as follows:

$$T(n) = 7 \cdot T(n/2) + 18 \cdot (n/2)^{2}$$

$$= 7 \cdot T(n/2) + \frac{9}{2} \cdot n^{2}$$

$$= 7 \cdot (7 \cdot T(n/4) + \frac{9}{2} \cdot (n/2)^{2}) + \frac{9}{2} \cdot n^{2}$$

$$= 7 \cdot (7 \cdot (7 \cdot T(n/8) + \frac{9}{32} \cdot n^{2}) + \frac{9}{8} \cdot n^{2}) + \frac{9}{2} \cdot n^{2}$$

$$\vdots$$

$$= 7^{\log n - 1} \cdot T(2) + \frac{9}{2}n^{2} \sum_{i=0}^{\log n - 2} (\frac{7}{4})^{i}$$

In our base case of n = 2, we know that our Strassen's algorithm requires 7 scalar multiplications and 18 scalar additions and subtractions, therefore T(2) = 25.

$$T(n) = \frac{25}{7}7^{\log n} + \frac{9}{2}n^2 \sum_{i=0}^{\log n-2} (\frac{7}{4})^i$$

The sum on the right is a geometric series, therefore we can simplify as follows:

$$\begin{split} T(n) &= \frac{25}{7} n^{\log 7} + \frac{9}{2} n^2 \frac{1 - (\frac{7}{4})^{\log n - 1}}{1 - \frac{7}{4}} \\ &= \frac{25}{7} n^{\log 7} + \frac{9}{2} n^2 \frac{1 - \frac{4}{7} (n^{\log \frac{7}{4}})}{-\frac{3}{4}} \\ &= \frac{25}{7} n^{\log 7} - \frac{36}{6} n^2 (1 - \frac{4}{7} n^{\log 7 - 2}) \\ &= \frac{25}{7} n^{\log 7} - 6 n^2 + \frac{24}{7} n^{\log 7} \\ &= 7 \cdot n^{\log 7} - 6 n^2 \end{split}$$

Now we will solve for when the two recurrences are equal. This should give us our rough estimate for n_0 .

$$2n^{3} - n^{2} = 7 \cdot n^{\log 7} - 6n^{2}$$
$$0 = 2n^{3} + 5n^{2} - 7 \cdot n^{\log 7}$$

If we graph the above equation, we see that there is a root near n=654.031. Therefore, our analytic estimate for n_0 is 655. Since our analytic estimate does not account for memory management and treats each operation with uniform cost, we would expect our n_0 to be potentially larger than this estimate.

Figure 1: Roots for n_0

2 Empirically Solving for n_0

For my experiment, I set $n=2n_0$ and incremented n_0 until I found an n_0 such that running Strassen's algorithm on two random $n \times n$ matrices was faster than the traditional algorithm for matrix multiplication. Using this method, I found that Strassen's algorithm became consistently faster than the traditional algorithm at $n_0 = 46$. The following table displays the running time in seconds for the traditional algorithm and Strassen's algorithm for various n_0 .

n_0	Traditional	Strassen
35	0.000891	0.000924
36	0.000980	0.001026
37	0.001102	0.001111
38	0.001192	0.001256
39	0.001285	0.001264
40	0.001489	0.001542
41	0.001486	0.001448
42	0.001582	0.001627
43	0.001685	0.001656
44	0.001723	0.001751
45	0.001854	0.001855
46	0.001987	0.001971
47	0.002169	0.002091
48	0.002315	0.002211
49	0.002567	0.002465
50	0.002748	0.002626

As we can see, this estimate for n_0 is nowhere near our analytic estimate. There are many factors that could be causing these results including my algorithm for traditional matrix multiplication not being fully optimized for memory management. We would expect n_0 to be significantly larger than this.

3 Triangles in Random Graphs

Figure 2: Average number of triangles in 10 random graphs for various p-values

For this experiment, I generated 10 random undirected graphs and used Strassen's algorithm to find the average number of triangles present for each value of p. As we can see from the chart above, my findings appear to be consistent with the expected number of triangles in a graph of size 1024 vertices. Below is a table containing the numerical values of my results.

p	Average across 10 trials	Expected
0.01	238.933333	178.433024
0.02	1365.333333	1427.464192
0.03	3925.333333	4817.691648
0.04	13414.4	11419.71354
0.05	21879.46667	22304.128