CS/ECE/ME532 Period 11 Activity

Preambles

```
In [1]: %matplotlib notebook
    # to enable 3D plot interaction
    import numpy as np # numpy
    from pprint import pprint as pprint # pretty print
    from scipy.io import loadmat # load & save data
    from scipy.io import savemat
    import matplotlib.pyplot as plt # plot
    from mpl_toolkits import mplot3d
    np.set_printoptions(formatter={'float': lambda x: "{0:0.2f}".format(x)})
```

K-means has some 'random' components in it. You will get different results depending on your luck. Even when you run an identical code, you will see some different results from your peers. So... we need the following line of code to start with:

```
In [8]: np.random.seed(2)
```

Indeed, one may be tempted to try so many random seeds until you get a good performance!

Don't do that :-)... Some subfields in ML are suffering from "reproduction crisis" partially due to this: See these for more details https://arxiv.org/abs/1709.06560 https://www.nature.com/articles/d41586-019-03895-5 https://www.wired.com/story/artificial-intelligence-confronts-reproducibility-crisis/

And see the following figure from the attached paper:

Figure 5: TRPO on HalfCheetah-v1 using the same hyperparameter configurations averaged over two sets of 5 different random seeds each. The average 2-sample t-test across entire training distribution resulted in t = -9.0916, p = 0.0016.

1. K-means and SVD for rating prediction

We return to the movies rating problem considered previously. The movies and ratings from your friends on a scale of 1-10 are:

Movie	Jake	Jennifer	Jada	Theo	Ioan	Во	Juanita
Star Trek	4	7	2	8	7	4	2
Pride and Prejudice	9	3	5	6	10	5	5
The Martian	4	8	3	7	6	4	1
Sense and Sensibility	9	2	6	5	9	5	4
Star Wars: Empire Strikes	4	9	2	8	7	4	1

Run the following code block to create a numpy array $oldsymbol{X}$

```
In [9]: X = np.array([
        [4,7,2,8,7,4,2],
        [9,3,5,6,10,5,5],
        [4,8,3,7,6,4,1],
        [9,2,6,5,9,5,4],
        [4,9,2,8,7,4,1],
        ], float)
print(X)

[[4.00 7.00 2.00 8.00 7.00 4.00 2.00]
        [9.00 3.00 5.00 6.00 10.00 5.00 5.00]
        [4.00 8.00 3.00 7.00 6.00 4.00 1.00]
        [9.00 2.00 6.00 5.00 9.00 5.00 4.00]
        [9.00 2.00 6.00 5.00 9.00 5.00 4.00]
        [4.00 9.00 2.00 8.00 7.00 4.00 1.00]]
```

float is necessary as the array will only hold integers otherwise

Also, we load the K-mean algorithm we implemented in the last activity.

```
In [11]:
         def dist(x, y):
             return (x-y) \cdot Te(x-y)
         def kMeans(X, K, maxIters = 20):
             X transpose = X.transpose()
             centroids = X transpose[np.random.choice(X.shape[0], K)]
             for i in range(maxIters):
                  # Cluster Assignment step
                 C = np.array([np.argmin([dist(x i, y k) for y k in centroids]) for x i in X tran
                  # Update centroids step
                 for k in range(K):
                     if (C == k).any():
                          centroids[k] = X transpose[C == k].mean(axis = 0)
                      else: # if there are no data points assigned to this certain centroid
                          centroids[k] = X transpose[np.random.choice(len(X))]
             return centroids.transpose() , C
```

Note that $(x-y) \cdot T@(x-y)$ is the squared L^2 norm of x-y: since x and y are 1-d numpy arrays, the .T does not actually impact the code.

1 a) Use the K-means algorithm to represent the columns of $oldsymbol{X}$ with two clusters.

```
In [12]: centroids_2, C_2 = kMeans(X, 2) ## Fill in the blank: call the "kMeans" algorithm with p print('centroids = \n', centroids_2) print('centroid assignment = \n', C_2)
```

```
centroids =
  [[3.00 7.33]
  [6.00 6.33]
  [3.00 7.00]
  [6.00 5.33]
  [2.75 8.00]]
centroid assignment =
  [0 1 0 1 1 0 0]
```

1 b) Express the rank-2 approximation to \boldsymbol{X} based on this cluster as $\boldsymbol{T}\boldsymbol{W}^T$ where the columns of \boldsymbol{T} contains the cluster centers and \boldsymbol{W} is a vector of ones and zeros. Compare the rank-2 clustering approximation to the original matrix.

```
In [33]: # Construct rank-2 approximation using cluster
W_transpose_2 = np.vstack([1-C_2,C_2])
centroids_transposed_2 = centroids_2.transpose()
X_hat_2 = centroids_2 @ W_transpose_2 ## Fill in the blank

print('Rank-2 Approximation = \n', X_hat_2)
np.linalg.matrix_rank(X_hat_2)

Rank-2 Approximation =
    [[3.00 7.33 3.00 7.33 7.33 3.00 3.00]
    [6.00 6.33 6.00 6.33 6.33 6.00 6.00]
    [3.00 7.00 3.00 7.00 7.00 3.00 3.00]
    [6.00 5.33 6.00 5.33 5.33 6.00 6.00]
    [2.75 8.00 2.75 8.00 8.00 2.75 2.75]]
Out[33]: 2
```

1 c) Play with the following code! You can pick three dimensions to look at by modifying coordinates_to_plot. Just have fun with it.

```
In [34]: fig = plt.figure(figsize = (10, 7))
         ax = plt.axes(projection ="3d")
         coordinates to plot = [0,1,2]
         color_array = np.array(['red', 'blue'])
         ax.scatter3D(
                     X[coordinates to plot[0],:], # x
                     X[coordinates to plot[1],:], # y
                     X[coordinates to plot[2],:], # y
                     color=color array[C 2] # color depends on cluster idx
         for i in range(2):
             ax.scatter3D(
                     centroids 2[coordinates to plot[0],i], # x
                     centroids 2[coordinates to plot[1],i], # y
                     centroids 2[coordinates to plot[2],i], # y
                     marker='*', # star instead of circle
                     s=300, # size
                     color=color array[i] # color
         ax.set xlabel('Dim %d'%coordinates_to_plot[0])
         ax.set ylabel('Dim %d'%coordinates to plot[1])
         ax.set zlabel('Dim %d'%coordinates to plot[2])
```



```
Out[34]: Text(0.5, 0, 'Dim 2')
```

1 d) Repeat a)--c) with K=3.

```
In [38]: centroids 3, C 3 = kMeans(X,3) ## Fill in the blank
          print('centroids = \n', centroids 3)
          print('centroid assignment = \n', C 3)
          centroids =
           [[7.50 5.50 2.67]
           [4.50 9.50 5.00]
           [7.50 5.00 2.67]
           [3.50 9.00 5.00]
           [8.50 5.50 2.33]]
          centroid assignment =
           [1 0 2 0 1 2 2]
In [41]: # Construct rank-3 approximation using cluster
          centroids transposed 3 = centroids 3.transpose()
          W transpose 3 = \text{np.vstack}([\text{np.eye}(\text{max}(\text{C }3)+1)[:,i]} \text{ for } i \text{ in } \text{C }3]).T
          X_hat_3 = centroids_3 @ W_transpose_3 ## Fill in the blank
          print('Rank-3 Approximation = \n', X hat 3)
          np.linalg.matrix rank(X hat 3)
          Rank-3 Approximation =
           [[5.50 7.50 2.67 7.50 5.50 2.67 2.67]
           [9.50 4.50 5.00 4.50 9.50 5.00 5.00]
           [5.00 7.50 2.67 7.50 5.00 2.67 2.67]
           [9.00 3.50 5.00 3.50 9.00 5.00 5.00]
           [5.50 8.50 2.33 8.50 5.50 2.33 2.33]]
Out[41]:
In [42]: fig = plt.figure(figsize = (10, 7))
```

```
ax = plt.axes(projection ="3d")
coordinates to plot = [0,1,2]
color array = np.array(['red', 'blue', 'green'])
ax.scatter3D(
            X[coordinates to plot[0],:], # x
            X[coordinates to plot[1],:], # y
            X[coordinates to plot[2],:], # y
            color=color array[C 3] # color depends on cluster idx
for i in range(3):
    ax.scatter3D(
            centroids 3[coordinates to plot[0],i], # x
            centroids 3[coordinates to plot[1],i], # y
            centroids 3[coordinates_to_plot[2],i], # y
            marker='*', # star instead of circle
            s=300, # size
            color=color array[i] # color
ax.set xlabel('Dim %d'%coordinates to plot[0])
ax.set ylabel('Dim %d'%coordinates to plot[1])
ax.set zlabel('Dim %d'%coordinates_to_plot[2])
```



```
Out[42]: Text(0.5, 0, 'Dim 2')
```

1 e) SVD can be also used to find ${m T}$ and ${m W}$ such that ${m X} \approx {m T} {m W}$. Assume that you are given the SVD of ${m X}$, i.e., ${m X} = {m U} {m S} {m V}^T$. Find SVD-based ${m T}$ and ${m W}$ as a function of ${m U}, {m S}, {m V}$ (In an equation form, not numbers.) Recall that ${m T}$ is a 5-by-r matrix with orthonormal columns.

Your answer goes here:

1 f) Find T, W and the rank-r approximation to X for r = 2. What aspects of the ratings does the first taste vector capture? What about the second taste vector?

```
In [49]: U, Sigma, VT = np.linalg.svd(X, full matrices=True)
         Sigma matrix = np.zeros like(X)
         np.fill diagonal (Sigma matrix, Sigma)
In [70]: # Problem 1f solution #
         ## Fill in the blank using U, S matrix, and VT
         T = U @ np.sqrt(Sigma matrix)
         W = np.sqrt(Sigma matrix) @ VT
         for r in range (0,2):
             T r = T[:,0:r+1] ## Choose the first r columns of T
             W r = W[0:r+1,:] ## Choose the first r rows of W
             #print(T r)
             #print(W r)
         print(f"T 2: \n{T r}\n")
         print(f"W 2: \n{W} r\n{W})
         X 2 = T r @ W r
         print(f"Rank-2 approximation to X via SVD: \n{X 2}")
         np.linalg.matrix rank(X 2)
          # Comment: The first taste vector captures a
          # baseline taste profile. The corresponding affinity vector captures how
          # high or low that user's baseline ratings are (e.g. if they tend to rate movies
          # high or low, in general)
         # The second taste vector captures a preference for sci-fi versus RomCom
          # movies. The second corresponding affinity vector indicates how strong each user's
          # tastes adhere to that taste profile.
         T 2:
         [[2.40 1.02]
          [2.90 - 1.50]
          [2.31 1.19]
          [2.68 - 1.76]
          [2.50 1.55]]
         W 2:
         [[2.40 2.18 1.44 2.62 3.07 1.72 1.06]
          [-1.41 2.21 -0.92 1.08 -0.57 -0.13 -0.96]]
         Rank-2 approximation to X via SVD:
         [[4.34 7.49 2.51 7.39 6.81 4.01 1.57]
          [9.07 3.02 5.54 5.97 9.77 5.19 4.50]
          [3.87 7.66 2.22 7.32 6.42 3.82 1.30]
          [8.90 1.94 5.46 5.09 9.22 4.83 4.52]
          [3.83 8.88 2.17 8.23 6.82 4.12 1.16]]
Out[70]:
```

1 g) The following code visualizes the rank-r approximation for an increasing value of r . When does the approximation become exact? Why?

```
ax[0].text(i,j,np.round(label,1),ha='center',va='center', size=5)
im = ax[0].imshow(X, vmin=-10, vmax=10, interpolation='none', cmap='gray')
for (j,i),label in np.ndenumerate(X_rank_r_approx):
    ax[1].text(i,j,np.round(label,1),ha='center',va='center', size=5)
im = ax[1].imshow(X_rank_r_approx, vmin=-10, vmax=10, interpolation='none', cmap='gr
for (j,i),label in np.ndenumerate(X-X_rank_r_approx):
    ax[2].text(i,j,np.round(label,1),ha='center',va='center', size=5)
im = ax[2].imshow(X-X_rank_r_approx, vmin=-10, vmax=10, interpolation='none', cmap='
cbar_ax = fig.add_axes([1.05, 0.15, 0.05, 0.7])
fig.colorbar(im, cax=cbar_ax)
ax[1].set_title("rank %d approximation" % (r+1))

# Comment: The approxmation becomes exact at rank-5 because the original matrix and the
# appromxation are the same (also, 0 errors)
```

rank 1 approximation

rank 2 approximation

rank 3 approximation

rank 4 approximation

rank 5 approximation

1 g) Your friend Jon rates Star Trek 6 and Pride and Prejudice 4. Assume a two-column taste matrix T. Formulate a system of equations that can find Jon's weight vector. Write down the least square solution.

Your answer goes here:

```
In [ ]: # See submission pdf for handwritten answer
```

1 h) Using this weight vector, how can we predict Jon's ratings for all five movies, including the remaining three movies?

Your answer goes here:

```
In [ ]: # See submission pdf for handwritten answer
```

- 1 i) Predict Jon's ratings for all the five movies with different choices of the taste matrix.
 - ullet Choice 1: T is the two centroids of the K-means result with K=2
 - Choice 2: T is the first two centroids of the K-means result with K=3
 - ullet Choice 3: T is the first two SVD-based taste vectors

```
In [127... y = np.array([[6],[4]])
         ## Choice 1: K-means (K=2) based taste matrix T
         T kmeans 2, = kMeans(X, 2)
         T = T kmeans 2[:,0:2] # fill in the blank
         T 12 = T[0:2,:]
         print(T@np.linalg.inv(T 12.T@T 12)@T 12.T@y)
         [[6.00]
          [4.00]
          [5.98]
          [3.23]
          [6.74]]
In [186... ## Choice 2: K-means (K=3) based taste matrix T
         T kmeans 3, = kMeans(X,3)
         T = T kmeans 3[:,0:2] # fill in the blank
         T 12 = T[0:2,:]
         print(T@np.linalg.inv(T 12.T@T 12)@T 12.T@y)
         [[6.00]
          [4.00]
          [6.00]
          [3.24]
          [6.74]]
In [210... ## Choice 3: SVD based taste matrix T
         U, Sigma, = np.linalg.svd(X, full matrices=False)
```

```
Sigma_matrix = np.zeros_like(X)
np.fill_diagonal(Sigma_matrix, Sigma)
T = U[:,0:2] @ np.sqrt(Sigma_matrix[0:2]) # fill in the blank
T = T[:,0:2]
T_12 = T[0:2,0:2]
print(T@np.linalg.inv(T_12.T@T_12)@T_12.T@y)
```

```
[[6.00]
[4.00]
[6.01]
```

[3.23]

[6.83]]