# TK1104 - Digital Technology DNS

Ismail Hassan



# The challenge

■ How does the computer know that www.kristiania.no is at the IP address 104.40.215.219?



## The hosts file

 Most operating systems (Unix / Linux and Windows) have a configuration file where you can manually configure mapping between a machines Fully Qualified Domain Name and an IP address



# Challenges with the hosts file

- The problem:
  - As the network grows beyond more than a handful of machines, synchronization of the hosts file becomes difficult
  - If the machine you want to communicate with is not listed in hosts file, then the information must be retrieved from another location

# Challenges with the hosts file

- The problem:
  - As the network grows beyond more than a handful of machines, synchronization of the hosts file becomes difficult
  - If the machine you want to communicate with is not listed in hosts file, then the information must be retrieved from another location
- The solution:
  - The Domain Name System (DNS) server
    - DNS is i a kind of "Gulesider/1881" for IP addresses.
    - Quite simply, it provides a mechanism for turning readable machine names and mapping it to IP addresses

#### Resolver and the DNS server

- If the machine I want to communicate with is not listed in the hosts file, then the request must be sent to a DNS server
- A DNS client often called resolver takes care of communication with the DNS server
  - The DNS server the client needs to contact is either configures manually or automatically configured by DHCP
  - The DNS server returns the IP address to the resolver which then forwards it to the application

# **DNS** Hierarchy



## Hierarchical Name



## Hierarchical Name



## **DNS**: Architecture

- DNS servers are responsible for one or more domains
- Root servers are responsible for the Top Level Domains (TLD)
  - When you register a domain, an entry for that domain is added to the current root server (http://www.root-servers.org/)
- Owners of domain (s) or subdomain (s) maintain (or outsource) their own DNS servers that contain the correct information

- Servers handle requests for their domain directly
- If a server is asked to provide the IP address of a machine outside its domain and the address is not in the server's cache, then:

- Servers handle requests for their domain directly
- If a server is asked to provide the IP address of a machine outside its domain and the address is not in the server's cache, then:
  - The server finds a domain name server (DNS server) for that domain by asking the correct root server

- Servers handle requests for their domain directly
- If a server is asked to provide the IP address of a machine outside its domain and the address is not in the server's cache, then:
  - The server finds a domain name server (DNS server) for that domain by asking the correct root server
  - the root server will tell it which name server it should contact

- Servers handle requests for their domain directly
- If a server is asked to provide the IP address of a machine outside its domain and the address is not in the server's cache, then:
  - The server finds a domain name server (DNS server) for that domain by asking the correct root server
  - the root server will tell it which name server it should contact
  - The server then asks the name server for that domain for the IP address of the machine
- A request may be forwarded a few times

## Recursive and Iterative queries

- There are 2 types of queries
  - Recursive queries
    - In a recursive query, the resolver expects the response from its local name server
  - Iterative (non-recursive) queries
    - In an iterative query, the name server sends the closest known authoritative name server then a reference to the root server.

## Recursive Queries



# Iterative Queries



## DNS server

- The organization that owns a domain is responsible for running a DNS server that can provide mappings between machine names within its domain to IP addresses. This mapping is listed in zone files
- The organization must have a primary server for the domain, and one or more secondary servers containing a copy of the zone files
- The most commonly used DNS server program is called BIND

## ISC DNS server

- ISC BIND is open-source software that implements Domain Name Server
  - It is the default DNS package on most Linux distributions
  - Server components:
    - Application: named
    - Configuration file: named.conf or /etc/named.conf.local in Ubuntu

# Example of a named.conf file

```
zone "tk1104.com" {
    type master;
    file "tk1104.com-forward";
};
zone "100.168.192.in-addr<u>.arpa" {</u>
    type master;
    file "tk1104.com-reverse";
};|
```

# Example of a forward lookup zone file

```
$TTL
         86400
         \mathbf{I}\mathbf{N}
                  SOA
                           server.tk1104.com. localhost. (
a
                                       : Serial
                           604800
                                             : Refresh
                           86400
                                            ; Retry
                           2419200
                                              ; Expire
                           86400 )
                                            : Cache TTL
         IN
                  NS
                           server.tk1104.com.
a
                  MΧ
                           10 smtp.tk1104.com.
smtp
                  CNAME
                           server
server
                           192.168.100.1
matrix
                  А
                           192.168.100.2
                           192.168.100.3
WWW
```

# Example of a reverse-lookup zone file

| \$TTL | 86400 |    |    |                                 |             |  |
|-------|-------|----|----|---------------------------------|-------------|--|
| e e   | IN    | 50 | DA | server.tkl104.com. localhost. ( |             |  |
|       |       |    |    | 1                               | ; Serial    |  |
|       |       |    |    | 604800                          | ; Refresh   |  |
|       |       |    |    | 86400                           | ; Retry     |  |
|       |       |    |    | 2419200                         | ; Expire    |  |
|       |       |    |    | 86400 )                         | ; Cache TTL |  |
|       |       |    | NE |                                 |             |  |
|       | IN    |    | NS | server.tk1104.com.              |             |  |
| 1     | PT    | R  |    | server.tk1104.com.              |             |  |
| 2     | PT    |    |    | matrix.tk1104.com.              |             |  |
| 3     | PT    | R  |    | www.tk1104.com.                 |             |  |

## **DNS** Resource Records

- A DNS zone file consists of a collection of resource records
- Every resource record specifies information about a particular object
- The server uses these records to respond to requests for the machines in its zone

#### Examples of DNS Resource Records

- NS (An authoritative name server)
- CNAME (The canonical name for an alias)
- SOA (Marks the start of a authority)
- MX (Inform SMTP of the Mail exchange for the domain)
- A list of all the DNS Resource Records:
  - http://www.iana.org/assignments/dns-parameters/dns-parameters.xhtml



# Demo DNS server!

# Hostname lookup using DNS client tools

- We can use the following DNS Linux client tools to query the DNS server
  - nslookup (Unix/Linux, Mac and Windows)
  - host (Unix and Linux)
  - dig (Unix and Linux)

Demo of nslookup!

?