0. 写在前面

1本课程总体结构

置	芦	教学内容
第一章 引言 (刘均, 2)		概念与研究背景;主要任务;挑战与研究方向;相关资源
	自然语言的 生 (刘均, 1)	Zipf定律、Heaps定律、Benford 定律。
	词袋模型 (刘均, 3)	语言模型;词袋模型(BoW);TF-IDF。 NLU任务:情感分析、文本聚类。
第三章:	概率语言模型 (李辰, 6)	概率语言模型; n-gram 模型; 最大似然估计; 平滑技术。 NLU任务: 分词、语义关系抽取。
语言模型	主题模型 (刘均, 6)	生成模型; 主题模型的图表示; LSA、PLSA、LDA; NMF等。 NLU任务: 话题检测、推荐。
	神经网络语言模型 (李辰, 6)	分布式表示; C&W、CBOW、Skip-Gram、Glove等。 NLU任务: 对话、实体消歧。
	概述 (李辰, 1)	面临的挑战;发展历程;方法类别及特点;MT评估。
第四章: 机器翻译	统计机器翻译 (李辰, 3)	蜂 统计MT; Noisy Channel模型; IBM模型。
	神经网络机器 译 与大语言模 (刘均, 4)	RNN与LSTM简介: Encoder-Decoder框架: Attention模型:

- 这门课由于由两门老师授课,个人感觉结构比较混乱
- 由于时间紧任务重经费无,所以笔记还是按PPT内容和以上结构展开,即使有很多不合理的 地方

2 考试有关事项

1. 词表示&NN语言模型

1.1. 离散式表示

1 One-Hot编码

- 1. 构建方法:
 - 。 构建词汇表:包含所有要处理的独立词,表大小(词数量)决定了向量维度

○ 向量分配:每个词分配一个唯一的向量,即每词对应一个维度并设为1(其余设为0)

- 2. 缺点:高维且稀疏,无法体现语义关系(例如 $\cos\langle \mathrm{apple}, \mathrm{banana} \rangle = 0$ 即使这二者关系很大)
- 2 WordNet
 - 1. 语义关系

关系	含义	实例
上位词↔下位词	更一般的概念↔更具体的概念	$\mathrm{animal} \leftrightarrow \mathrm{dog}$
部分类⇔整体类	某物组成部分⇔某物整体组合	$\text{wheel} \leftrightarrow \text{car}$
反义词	意义相反的词	$\operatorname{small} \leftrightarrow \operatorname{big}$
多义词	一个词具有多重含义	bank表示河岸和银行

2. WordNet概述:

· 概念: 一大型英语词汇库, 将名词/动词/形容词/副词组织为一系列同义词集(如下)

1 car, automobile, machine, motorcar

。 层次: 语义网络, 即结点(同义词集)+边(同义词集间的语义关系)

3. 缺点: 更新困难/设计时具有主观性/多义词的存在......

1.2. 分布式表示

1基本概念

1.目的:将词/句子——稠密低维向量

2. 核心:通过词的上下文(**词固定窗口范围内的内容**)提取词的含义,并将其含义编码在自身向量中

2 相似性度量: 余弦相似度 $cosine(A, B) = \frac{A \times B}{\|A\| \|B\|}$

3 分布式模型:基于神经网络的语言模型

	原理	实例
	基于预测	Word2Vec(CBOW, Skip-gram)/GloVe
基	于上下文表示	BiLSTM/BERT

1.3. 神经网络语言模型的结构

步骤	描述
词向量	通过分布式表示等,得到 $\{x^{(1)},x^{(2)},,x^{(t)}\}$
词嵌入	$\{x^{(1)}, x^{(2)},, x^{(t)}\} \xrightarrow{ ext{embedding}} \{e^{(1)}, e^{(2)}, e^{(3)},\}$
隐藏层	获得 $h = f(We + b_1)$
输出层	获得 \hat{y} = $\operatorname{Softmax}\left(Uh{+}b_{2} ight)\in\mathbb{R}^{ V }$

2. Word2vec模型

2.1. 模型概述

1 基本思想:通过词的上下文来学习其语义,而每个单一词向量无具体含义

1. 构建词汇表: 大小固定, 其中每个词用词向量表示

2. 文本的表示:每个词的位置t被视为中心词c,词t所在窗口内其它词视为上下文o

3. 优化的途径:不断计算c/o之间的相似度P(o|c)或P(c|o),调整c/o词向量使概率最大化

2目标函数:给定待优化参数集 θ 和上下文窗口[-m,m]

1. 最大似然:
$$L(heta) = \prod_{t=1}^T \prod_{-m \leq j \leq m} P\left(w_{t+j}|w_t; heta
ight)$$

公式	含义
$\prod_{-m \leq j \leq m} P\left(w_{t+j} \mid w_t; heta ight)$	以 t 为中心位置,生成 $[-m,m]$ 范围内所有上下 文的概率
$\prod_{t=1}^{T}\prod_{-m\leq j\leq m}P\left(w_{t+j}\mid w_{t}; heta ight)$	在句子中滑动 t ,将每个 t 位置的上下文生成概率 累乘

2. 目标函数:
$$J(\theta) = -\frac{1}{T} \log L(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \leq j \leq m} \log P\left(w_{t+j} | w_t; \theta\right)$$

。 含义: 对模型预测错误的惩罚, 需要使其最小之

3. 预测函数:即Softmax函数
$$P\left(w_{t+j}|w_{t}\right) = \frac{\exp\left(u_{w_{t+j}}^{T}v_{w_{t}}\right)}{\displaystyle\sum_{w \in V} \exp\left(u_{w}^{T}v_{w_{t}}\right)}$$

。 含义: 计算词 w_{t+j}/w_t 间的相似度,并将除以 w_t **在整个词汇表上计算概率分布**以归一化

3 模型训练:

1. 目标:最小化目标函数 $J(\theta)$,其中参数向量 θ 包括所有词的中心向量+上下词向量

2. 优化: 依 $\theta_j^{
m new}=\theta_j^{
m old}\,-lpharac{\partial J(heta)}{\partial heta_j}$ 梯度下降,或者随机梯度下降

2.2. 两种训练方法

1 CBOW: 根据上下文预测中心词

1. 模型流程: 得到中心词的概率分布 \hat{y} \rightarrow 优化损失函数最大化p(c|o)

流程	描述	形式化
输入	上下文共2m个词的 One-Hot向量	$\{x^{c-m},\!,\!x^{c-1},x^{c+1},\!,\!x^{c+m}\}$ \in $\mathbb{R}^{\ V\ }$
词嵌 入	使用嵌入矩阵W将高维编码 转为低维嵌入	$v_i{=}(x_i{ imes}W){\in}\mathbb{R}^N$
池化	计算所有上下文嵌入向量平 均(综合向量)	$\hat{v} = \frac{v_{c-m} + \dots + v_{c+m}}{2m} \in \mathbb{R}^N$
打分	将综合向量 \hat{v} 映射为得分向量 z	$z = (\hat{v} \times W^T) \in \mathbb{R}^{\ V\ }$
概率化	用 $Softmax$ 将打分 z 映射为概率分布 \hat{y}	$\hat{y} = \text{Softmax}(z)$

2. 损失函数

- 目标/似然函数: 最小化 $P(x_c|x_{c-m},...,x_{c+m})$
- 。 损失函数:

$$J = -\log P\left(x_c | x_{c-m}, ..., x_{c+m}
ight) rac{\operatorname{展开/池化}}{\operatorname{Softmax}} - x_c^T imes \hat{v} + \log \sum_{j=1}^{|V|} \exp\left(x_j^T imes \hat{v}
ight)$$

2 Skip-gram(SG): 根据中心词预测上下文

1. 模型流程:得到上下文的概率分布 \hat{y} \rightarrow 优化损失函数最大化p(o|c)

流程	描述	形式化
输入	中心词的One-Hot向量	$x^c{\in}\mathbb{R}^{\ V\ }$
词嵌入	使用嵌入矩阵 W 将高维编码转为低维嵌入	$v_c {=} (x_c { imes} W) {\in} \mathbb{R}^N$
打分	将综合向量û映射为得分向量z	$z{=}(v_c{ imes}W^T){\in}\mathbb{R}^{\ V\ }$
概率化	用 $Softmax$ 将打分 z 映射为概率分布 \hat{y}	$\hat{y} = \text{Softmax}(z)$

2. 损失函数

• 目标/似然函数: 最小化 $P(x_{c-m},...,x_{c+m}|x_c)$

。 损失函数:

$$J = -\log P \xrightarrow{\mathbb{R} au} - \left(\sum_{j=0, j
eq m}^{2m} v_{c-m+j}^T imes v_c + 2m \log \sum_{k=1}^{|V|} \exp \left(v_k^T imes v_c
ight)
ight)$$

2.3. 两种训练优化

1 层次Softmax

1. 二叉树构造:根节点表示整个词汇表V,不断二分(例如用 $\operatorname{Huffman}$ 树)到叶节点表示单个词汇 w_i

2. 概率计算:
$$P\left(w{=}w_o\right) = \prod_{j=1}^{L(w)-1} \sigma\left(\left[\left[n(w,j{+}1){=}\mathrm{ch}(n(w,j))\right]\right] { imes} v_{n(w,j)}^T h
ight)$$

。 参数含义:

参数	含义
L(w)	从根节点到目标单词 w ,所经过的节点数
n(w,j)	到 w 的路径中的第 j 个结点,其子节点为 $n(w,j+1)$
σ	Sigmoid激活函数

。 随机游走:

路径中第 $j+1$ 个结点为第 j 个结点的	$[[n(w,j{+}1){=}\mathrm{ch}(n(w,j))]]{ imes}v_{n(w,j)}^T$ 烙含
左子节点	乘以 $\sigma\left(v_{n(w,j)}^Th ight)$
右子节点	乘以 $\sigma\left(-v_{n(w,j)}^Th ight)$

3. 示例:

。 游走路径: $P(n(w_2, 1), \text{left}) \times P(n(w_2, 2), \text{left}) \times P(n(w_2, 3), \text{right})$

2 负采样

- 1. 核心思想:
 - \circ 不遍历整个词汇表V
 - 。 只遍历一个与词汇频率顺序匹配的噪声概率分布 $p_n(w)$ 中采样的几个 $\operatorname{Negative}$ 例子

2. 模型定义:

实例	含义	优化目标
正例	实际出现词对 (w_c,w_o)	最大化 (w_c,w_o) 出现概率 $J_{ m pos} = \log { m P}({ m D} {=} 1 w,c)$
负例	随机采样词对 (w_c,w_j)	最小化 (w_c,w_o) 不出现概率 $J_{ m pos} = \log { m P}({ m D} {=} 0 w,c)$

3. 损失函数:

训练方式	损失函数
CBOW	$J = -\log\sigma\left(v_c^T { imes} \hat{v} ight) - \sum_{k=1}^K \log\sigma\left(- ilde{v}_k^T { imes} \hat{v} ight)$
Skip-Gram	$J = -\log\sigma\left(v_{c-m+j}^T{ imes}v_c ight) - \sum_{k=1}^K\log\sigma\left(- ilde{v}_k^T{ imes}v_c ight)$

3. 其它模型

3.1. C&W模型

- 1模型目标: 抛弃传统语言模型对条件概率的计算, 转而通过打分函数衡量一段词序的合理性
- 2 层次结构:

结构	描述
输入层	是一个大小为 n 的连续窗口,输入序列包含 n 个词向量
查找表层	对每个词进行查找→获得每个词的稠密词向量
卷积层	对输入序列的每个窗口应用卷积操作,提取局部特征
最大池化层	从卷积层提取最显著的特征,输出固定维度向量
分类层	对生成的向量进行打分, 高分者视为语言上自然的

3 模型训练:

1. 输入:对于一个窗口内的连续词 $[w_{i-n},...,w_i,...,w_{i+n}]$

序列类 型	操作	性质
正序列	保留 $[w_{i-n},,w_i,,w_{i+n}]$	在语言上自然
负序列	将窗口中心处词 w_i 换成 w_j ,即 $[w_{i-n},,w_j,,w_{i+n}]$	在语言上不自然

- 2. 目标:最大化正序列 $[w_{i-n},...,w_i,...,w_{i+n}]$ 得分+最小化负序列 $[w_{i-n},...,w_j,...,w_{i+n}]$ 得分
- 3. 损失: $\mathcal{L}=\max\left(0,1-s\left(w_{\mathrm{true}}\right)+s\left(w_{\mathrm{false}}\right)\right)$, 正列得分 \gg 负序列 $\overset{\$\%\top}{\longleftrightarrow}$ $\mathcal{L}\to 0$

3.2. GloVe模型

1核心思想

- 1. 目标: 学习词的一种分布式表示, 使词向量可以捕捉词语的语义关系
- 2. 假设: 语义可从其共现信息中推断,例如ice/cold共现比ice/steam频率高 $\xrightarrow{\text{认为}}$ 反映了语义关系

2 模型要点

- 1. 共现矩阵**X**:
 - \circ 无权值情况: \mathbf{X}_{ij} 表示词i与词j在某滑动窗口共现的和,每共现一次增加1
 - 1 | the cat sat on the mat (窗口大小=3)
 - 2 [the cat sat] -> X_the_sat=1
 - 3 [cat sat on] -> X_the_sat=1+0
 - 4 [sat on the] -> X_the_sat=1+0+1
 - 5 [on the mat] -> X_the_sat=1+0+1+0
 - 。 有权值情况: 在原有基础上,每共现一次增加一权值 $decay = \frac{1}{d}$ (其中d为词ij在窗口中的距离)

- 1 | the cat sat on the mat (窗口大小=3)
- 2 [the cat sat] -> X_the_sat=1/2
- 3 [cat sat on] -> X_the_sat=1/2+0
- 4 [sat on the] -> X_the_sat=1/2+0+1/2
- 5 [on the mat] -> X_the_sat=1/2+0+1/2+0
- 2. 近似关系: $\mathbf{X}_{ij} \xrightarrow{\overset{\mathfrak{G}\mathfrak{h}+\beta\mathfrak{M}}{\longrightarrow}} \log{(X_{ij})} = w_i^T \tilde{w}_j + b_i + \tilde{b}_j \rightarrow \mathbb{H} w_i^T \tilde{w}_j$ 表示词ij的近似关系+偏置修正

3. 损失函数:
$$J = \sum_{i,j=1}^V f\left(X_{ij}\right) \left(w_i^T \tilde{w}_j + b_i + \tilde{b}_j - \log\left(X_{ij}\right)\right)^2$$

项	含义
$w_i^T \tilde{w}_j {+} b_i {+} \tilde{b}_j$	所预测的词 ij 共现次数
$\log(X_{ij})$	实际的词 ij 共现次数
$f(X_{ij})$	加权函数(较少共现词对模型的影像)

。 对于共现次数阈值
$$x_{\max}$$
有 $f(X_{ij})$ =
$$\begin{cases} \left(\frac{X_{ij}}{x_{\max}}\right)^{\alpha}, X_{ij} < x_{\max} \\ 1, \text{ otherwise} \end{cases}$$