Binary Heaps

Alberto Casagrande Email: acasagrande@units.it

a.a. 2018/2019

Heaps

Abstract Data Types to store values, totally ordered w.r.t. \leq

They (efficiently) support the following tasks:

- building a heap from a set of data
- finding the minimum w.r.t. ≤
- extracting the minimum w.r.t. ≤
- \bullet decreasing one of the values w.r.t. \preceq
- inserting a new value

Heaps

Abstract Data Types to store values, totally ordered w.r.t. \leq

They (efficiently) support the following tasks:

- building a heap from a set of data
- finding the minimum w.r.t. \preceq
- ullet extracting the minimum w.r.t. \preceq
- ullet decreasing the one of the values w.r.t. \preceq
- inserting a new value

A min-heap is a heap s.t. \leq is \leq

A max-heap is a heap s.t. \leq is \geq here the min is a max

Heaps

They can be used to implement priority queues

The next element to be extracted minimizes a priority criterion

E.g., In emergencies, more serious patients must be served first

Their conditions may change in time and become more and more serious

Binary Heaps

Are <u>nearly</u> complete binary trees (i.e., it is complete up to the second-last level and <u>all leaves</u> of the last level are on the <u>left</u>)

The relation $parent(p) \leq p$ holds for any node (heap property)

Use an array: the first position stores the root key

Use an array: the first position stores the root key

The *i*-th position of the array represents a node whose:

Use an array: the first position stores the root key

The *i*-th position of the array represents a node whose:

• left child has index 2 * i

Use an array: the first position stores the root key

The *i*-th position of the array represents a node whose:

- left child has index 2 * i
- right child has index 2 * i + 1

Use an array: the first position stores the root key

The *i*-th position of the array represents a node whose:

• left child has index 2 * i

0000

- right child has index 2 * i + 1
- parent has index |i/2|

drawback: tough to deal with node addiction

Array-based Representation: Few Useful Functions

H. size will denote the heap size

```
def LEFT(i):
                       def GET_ROOT():
  return 2*i
                        return 1
enddef
                       enddef
def RIGHT(i):
                       def IS_ROOT(i):
  return 2*i+1
                        return i == 1
enddef
                       enddef
def PARENT(i):
                       def IS_VALID_NODE(H, i ):
  return floor (i/2)
                         return H. size ≥ i
enddef
                       enddef
```


Finding the Minimum

The minimum w.r.t. \preceq is in the root of the heap

If this was not the case, the heap property did not hold

Finding the Minimum: Pseudo-Code

```
The minimum w.r.t. \leq is the root's key
def HEAP_MINIMUM(H):
  return H. root
enddef
For array-based representation, we can rephrase it as...
def HEAP_MINIMUM(H):
  return H[0]
enddef
```

In both the cases, the complexity is $\Theta(1)$

Removing the Minimum

We must preserve both:

heap topological structure

Removing the Minimum

We must preserve both:

- heap topological structure
- heap property

Removing the Minimum and Preserving Topology

Replace the root's key by that of the rightmost leaf of the last level

Removing the Minimum and Preserving Topology

Replace the root's key by that of the rightmost leaf of the last level

Removing the Minimum and Preserving Topology

Replace the root's key by that of the rightmost leaf of the last level

Delete the the rightmost leaf of the last-level

Max-heap

Decreasing a Key

Removing the Minimum and Preserving Topology

Replace the root's key by that of the rightmost leaf of the last level

Delete the the rightmost leaf of the last-level

The heap property may be lost (only in one point)!

• find the node n, among the root and its children, whose key is minimum w.r.t. \preceq

• find the node n, among the root and its children, whose key is minimum w.r.t. \prec

it'll be one of the first 2 children

Min-heap

Max-heap

Min-heap

• find the node n, among the root and its children, whose key is minimum w.r.t. \preceq

Max-heap

- find the node n, among the root and its children, whose key is minimum w.r.t. \leq
- if the root's key is minimum, done!

- find the node n, among the root and its children, whose key is minimum w.r.t. \prec
- if the root's key is minimum, done!
- otherwise, swap n's and root's keys

Min-heap

Max-heap

- find the node n, among the root and its children, whose key is minimum w.r.t. ≺
- if the root's key is minimum, done!
- otherwise, swap n's and root's keys
- repeat on the sub-tree rooted on n

- find the node n, among the root and its children, whose key is minimum w.r.t. \leq
- if the root's key is minimum, done!
- otherwise, swap n's and root's keys
- repeat on the sub-tree rooted on n

- find the node n, among the root and its children, whose key is minimum w.r.t. \prec
- if the root's key is minimum, done!
- otherwise, swap n's and root's keys
- repeat on the sub-tree rooted on n

Before the iteration: the heap property holds in T_1 and T_2

Before the iteration: the heap property holds in T_1 and T_2

Before the iteration: the heap property holds in T_1 and T_2

Before the iteration: the heap property holds in T_1 and T_2

After the iteration:

- ullet the heap property still holds in T_2 and between a and b
- T_1 has been messed up, but it is "shorter" than the original tree and all the keys in T_1 are greater than a

Removing the Minimum: Complexity

Replacing the root's key costs $\Theta(1)$

Replacing the root's key costs $\Theta(1)$

For each iteration of HEAPIFY:

- 2 comparisons to find the minimum
- 1 swap at most

Binary Heaps

The distance from a leaf is decreased by one at each iteration

The total cost of HEAPIFY is the height of the heap: $O(\log n)$

on a subroot

HEAPIFY: Array-Based Pseudo-Code

```
def HEAPIFY(H, i): i is the element in which heap property does not hold
  m \leftarrow i
   for j in [LEFT(i), RIGHT(i)]:
       if IS_VALID_NODE(H, j) and H[j] \leq H[m]:
          \mathsf{m} \leftarrow \mathsf{j}
                    m will be index of minimum between i and its childern
       endif
  endfor
   if i != j:
     swap(H, i, j)
     HEAPIFY(H, i)
   endif
enddef
```

Removing the Minimum: Array-Based Pseudo-Code

```
def REMOVE_MINIMUM(H, i):
    H[0] \leftarrow H[H.size]
    H.size \leftarrow H.size -1
    HEAPIFY(H, 0)
enddef
```


Building a tree satisfying heap topology is easy

What about heap property?

Building a tree satisfying heap topology is easy

Building a tree satisfying heap topology is easy

Building a tree satisfying heap topology is easy

Building a tree satisfying heap topology is easy

What about heap property? Fix it bottom-up by using HEAPIFY

Building a tree satisfying heap topology is easy

What about heap property? Fix it bottom-up by using HEAPIFY

Building a tree satisfying heap topology is easy

What about heap property? Fix it bottom-up by using HEAPIFY

Building a tree satisfying heap topology is easy

What about heap property? Fix it bottom-up by using HEAPIFY

Building a tree satisfying heap topology is easy

- fix the heaps rooted on the second-last level
- fix the heaps rooted on the third-last level

Building a tree satisfying heap topology is easy

- fix the heaps rooted on the second-last level
- fix the heaps rooted on the third-last level

Building a tree satisfying heap topology is easy

- fix the heaps rooted on the second-last level
- fix the heaps rooted on the third-last level

Building a tree satisfying heap topology is easy

- fix the heaps rooted on the second-last level
- fix the heaps rooted on the third-last level

Building a tree satisfying heap topology is easy

- fix the heaps rooted on the second-last level
- fix the heaps rooted on the third-last level

Building a tree satisfying heap topology is easy

- fix the heaps rooted on the second-last level
- fix the heaps rooted on the third-last level

Building a tree satisfying heap topology is easy

- fix the heaps rooted on the second-last level
- fix the heaps rooted on the third-last level

Building a tree satisfying heap topology is easy

What about heap property? Fix it bottom-up by using HEAPIFY

- fix the heaps rooted on the second-last level
- fix the heaps rooted on the third-last level

Max-heap

Heapify is O(height) and I call it for every h

HEAPIFY costs O(h) (i.e., $\leq c * h$) on a tree having height h

If the considered tree has *n* nodes:

- its height is [log₂ n]
- it contains at most $\lceil \frac{n}{2^{h+1}} \rceil$ at height h

heap has height log_2 n#nodes having height h is $l=(n/2^h)$.

The costs $T_{\rm bh}(n)$ of executing BUILD_HEAP on a *n*-sized tree is:

$$T_{\mathrm{bh}}(n) = \sum_{h=0}^{\lfloor \log_2 n \rfloor} \frac{n}{2^{h+1}} * (c*h)$$

$$= c*\frac{n}{2}*\sum_{h=0}^{\lfloor \log_2 n \rfloor} \frac{h}{2^h}$$

$$\leq c*\frac{n}{2}*\sum_{h=0}^{\infty} \frac{h}{2^h} = c*\frac{n}{2}*\frac{1/2}{(1-1/2)^2}$$

$$\leq c*n \in O(n)$$

```
def BUILD_HEAP_AUX(H, node):
  if IS_VALID_NODE(H, node):
    BUILD_HEAP_AUX(H, LEFT(node))
    BUILD_HEAP_AUX(H, RIGHT(node))
    HEAPIFY (H, node)
  endif
enddef
def BUILD_HEAP(A):
 H \leftarrow BUILD\_HEAP\_TREE(A)
  BUILD_HEAP_AUX(H, GET_ROOT(H))
enddef
```

The array-based representation helps in avoiding recursion

Finding the nodes of the *i*-th level is easy . . .

... they are represented by elements in positions $[2^i, 2^{i+1} - 1]$

```
def BUILD_HEAP(A):
  A.size = |A|
  for i \leftarrow floor(|A|/2) downto 1:
    HEAPIFY(A, i)
  endfor
enddef
```


Preserves the heap property on the sub-tree rooted on the node

Preserves the heap property on the sub-tree rooted on the node, but it may broke the property w.r.t. its parent

Preserves the heap property on the sub-tree rooted on the node, but it may broke the property w.r.t. its parent

Swapping the keys of the node and its parent solve the problem on the subtree rooted on the parent

Preserves the heap property on the sub-tree rooted on the node, but it may broke the property w.r.t. its parent

Swapping the keys of the node and its parent solve the problem on the subtree rooted on the parent

Preserves the heap property on the sub-tree rooted on the node, but it may broke the property w.r.t. its parent

Swapping the keys of the node and its parent solve the problem on the subtree rooted on the parent

Preserves the heap property on the sub-tree rooted on the node, but it may broke the property w.r.t. its parent

Swapping the keys of the node and its parent solve the problem on the subtree rooted on the parent

Repeat the process until the heap property is restored

Preserves the heap property on the sub-tree rooted on the node, but it may broke the property w.r.t. its parent

Swapping the keys of the node and its parent solve the problem on the subtree rooted on the parent

Repeat the process until the heap property is restored

Decreasing a Key w.r.t. ≤: Complexity

Each iteration either:

- ullet ends the computation in time $\Theta(1)$ or
- ullet pushes the problem one step closer to the root in time $\Theta(1)$

Since the heap height is $\lfloor \log_2 n \rfloor$, the complexity is $O(\log n)$

Decreasing a Key w.r.t. <u>≺</u>: Pseudo-Code

```
def HEAP_DECREASE_KEY(H, i, value):
  if H[i] \leq value:
     error(value+"_is_not_smaller_than_H["+i+"]")
  endif
  H[i] \leftarrow value
  while not IS_ROOT(i) and H[i] \leq H[PARENT(i)]:
    swap(H, i, PARENT(i))
    i \leftarrow PARENT(i)
  endwhile
enddef
```


• add a new node N preserving the heap topology

- add a new node N preserving the heap topology
- set the key of N to the maximum value w.r.t. \preceq , e.g. ∞ for \leq

- add a new node N preserving the heap topology
- set the key of N to the maximum value w.r.t. \leq , e.g. ∞ for \leq
- decrease the key of N to the desired value


```
def HEAP_INSERT(H, value):
  H. size \leftarrow H. size + 1
  H[H. size] \leftarrow \infty \prec
  HEAP_DECREASE_KEY(H, H. size, value)
enddef
```

Has the same complexity of HEAP_DECREASE_KEY: $O(\log n)$

Summarizing complexity

DS	Building	Extracting	Inserting	Decreasing
Binary Heap	$\Theta(n)$	$\Theta(\log n)$	$\Theta(\log n)$	$\Theta(\log n)$
Fibonacci	$\Theta(n)$	$O(\log n)$	$\Theta(1)$	$\Theta(1)$
Неар		7		
(Amortized)		-		