李宏毅 (Hung-yi Lee) · HYLEE | Machine Learning (2021)

HYLEE(2021)· 课程资料包 @ShowMeAl

课件 一键打包下载

毛 七 官方笔记翻译

代码 作业项目解析

视频·B站[扫码或点击链接]

https://www.bilibili.com/video/BV1fM4y137M4

课件 & 代码·博客[扫码或点击链接]

http://blog.showmeai.tech/ntu-hylee-ml

机器学习深度学习

批次标准化

Auto-encoder

生成式对抗网络

学习率

卷积神经网络

神经网络压缩

GAN 强化学习

元学习

白监督

Transformer

Awesome Al Courses Notes Cheatsheets 是 <u>ShowMeAl</u> 资料库的分支系列,覆盖最具知名度的 <u>TOP50+</u> 门 Al 课程,旨在为读者和学习者提供一整套高品质中文学习笔记和速查表。

点击课程名称, 跳转至课程**资料**何页面, 一键下载课程全部资料!

机器学习	深度学习	自然语言处理	计算机视觉
Stanford · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS231n

Awesome Al Courses Notes Cheatsheets· 持续更新中

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏 称为 AI 内容创作者?回复「添砖加页」

Machine Learning Homework 8 Anomaly Detection

ML TAs

ntu-ml-2021spring-ta@googlegroups.com

 Unsupervised anomaly detection in computer vision: Whether a machine learning model is able to tell a testing image is of the same class (distribution) as the training images

 Unsupervised anomaly detection in computer vision: Whether a machine learning model is able to tell a testing image is of the same class (distribution) as the training images

Training

 Unsupervised anomaly detection in computer vision: Whether a machine learning model is able to tell a testing image is of the same class (distribution) as the training images

 Unsupervised anomaly detection in computer vision: Whether a machine learning model is able to tell a testing image is of the same class (distribution) as the training images

Data

- Trainingset: About 140k human faces (size 64*64*3)
- Testingset: Another 10k data from the same distributions as the trainingset (normal data, of class label 0) along with 10k human face images from the other distributions (anomalies, of class label 1)
- Notice: Additional training data and pretrained models are prohibited
- Data format: tar zxvf data-bin.tar.gz
- data-bin/
 - trainingset.npy
 - testingset.npy

Method - Autoencoder

Autoencoder

- When to stop training? Training should stop when the mse loss converges
- During inference, we calculate the reconstruction error between the input image and the reconstructed one
- The reconstruction error will be referred to as **abnormality** (anomaly score)
- The abnormality of an image can be a metric of the possibility that it's distribution is unseen during training
- Therefore we use the **abnormality** as our predicted values

Accuracy score

- Usually we compute accuracy scores for classification tasks
- Here, our model functions as a sensor (or a detector) rather than a classifier
- Thus, we need a **threshold** with respect to **abnormality** (usually the reconstruction error) to determine whether a piece of data is an anomaly
- If we used accuracy score for this assignment, you would have to try every possible threshold for one single model to get a satisfactory score
- However, what we want is a **sensor** that gets the highest accuracy on the average of every possible threshold

Which sensor is better?

Metric - ROC_AUC score

- A good sensor should
 - Give high anomaly scores to the anomalies and low scores to the normal data
 - Exhibit a large gap between the scores of 2 groups
- An ROC is suitable for our task
- Each point on the ROC curve stands for true positive rate and false positive rate at certain threshold
- The Area Under the ROC curve is calculated to measure the general ability of the model

ROC_AUC score

https://en.wikipedia.org/wiki/Receiver operating characteristic

ROC_AUC score

https://en.wikipedia.org/wiki/Receiver operating characteristic

Kaggle

Metric: ROC_AUC score

Sample output:

```
Id, Predicted
0,10000.0
1,10000.0
2,10000.0
3,10000.0
4,10000.0
5,10000.0
6,10000.0
7,10000.0
8,10000.0
9,10000.0
10,10000.0
11,10000.0
12,10000.0
13,10000.0
14,10000.0
```

How ROC AUC is calculated

ID	Anomaly score	Label
0	11383	0
1	256676	1
2	862365	1
3	152435	0
4	848171	0

ID	Anomaly score	Label
2	862365	1
4	848171	0
1	256676	1
3	152435	0
0	11383	0

How ROC AUC is calculated

ID	Anomaly score	Label	fp before normalization	tp before normalization
2	862365	1	0	1
4	848171	0	1	1
1	256676	1	1	2
3	152435	0	2	2
0	11383	0	3	2

How ROC AUC is calculated

ID	Anomaly score	Label	fp	tp
0	11383	0	0	0.5
3	152435	0	0.333333	0.5
1	256676	1	0.333333	1
4	848171	0	0.666667	1
2	862365	1	1	1

Area Under Curve: $0.5*\frac{1}{3} + \frac{2}{3} = 0.8333$

Scoring

- Code submission: 4 pt
- Baselines 6 pt (3 pt for the public ones and the other 3 pt for the private ones)

```
Simple public: 1 pt (public score: 0.64046)
Medium public: 1 pt (public score: 0.75719)
Strong public: 0.5 pt (public score: 0.81304)
Boss public: 0.5 pt (public score: 0.86590)
Simple private: 1 pt
Medium private: 1 pt
Strong private: 0.5 pt
Boss private: 0.5 pt
```

Bonus for submitting report: 0.5 pt

Bonus

- If you succeed in beating both boss baselines, you can get extra 0.5 pt by submitting a brief report to explain your methods (in less than 100 English words), which will be made public to the whole class
- Report Template

Baseline guides

- Simple
 - FCN autoencoder
- Medium
 - CNN autoencoder
 - Try smaller models (less layers)
 - Smaller batch size
- Strong
 - Add BatchNorm
 - Train for longer
- Boss:
 - Add an extra classifier
 - Sample random noises as anomaly images
 - Or one-class-classification (OCC) with GANs: <u>OCGAN</u>, <u>End-to-end OCC</u>, <u>paper pool for Anomaly Detection</u>

Baseline training statistics

Simple

- Number of parameters: 3176419
- Training time on colab: ~ 30 min

Medium

- Number of parameters: 47355
- Training time on colab: ~ 30 min

Strong

- Number of parameters: 47595
- Training time on colab: 4 ~ 5 hrs

Boss:

- Number of parameters: 4364140
- Training time on colab: 1.5~3 hrs

Strong baseline training curve

Code Submission

- Zip your code and name the compressed file <student_id>_hw8.zip
- And it should contain
 - Your codes
 - report.pdf (only for those beating both boss baselines)
- Submit <student_id>_hw8.zip via NTU COOL

Code Submission

- DO
 - Specify the source of your code. (You may refer to <u>Academic Ethics Guidelines</u>)
 - Organize your code and make it easy to read (not necessary)

DO NOT

- Submit empty or garbage files
- Submit the dataset or model
- o Compress your codes into other formats like .rar or .7z and simply rename it to .zip

Note

- We can only see your last submission
- Do not submit your model or dataset
- If your code is not reasonable, your semester grade x 0.9

Regulations

- Plagiarism is not allowed
- Do not modify your prediction file
- Do not share your prediction file with anyone
- Do not submit your prediction file more than 5 times to Kaggle in any way
- Do NOT search or use additional data or pre-trained models.
- Violators are subject to **x 0.9** of their semester grades
- Prof. Lee & TAs preserve the rights to change the rules & grades

Important dates

- Kaggle deadline: 5/21 23:59 (GMT+8)
- Code & report deadline: 5/23 23:59 (GMT+8)
- Late submissions are NOT allowed

Links

Kaggle: https://www.kaggle.com/c/ml2021spring-hw8

Colab:

https://colab.research.google.com/drive/1D_8lkhzLfoVhA6bTekf-Yw82o6P4g1rQ?usp=sharing

Contact TAs

- NTU COOL (recommended)
 - https://cool.ntu.edu.tw/login/portal
- Email:
 - ntu-ml-2021spring-ta@googlegroups.com
 - The title should begin with **[hw8]**
- TA hour
 - o Each Monday 19:00 ~ 21:00 at Room 101, EE2 (電二 101)
 - Each Friday before (13:30 ~ 14:20) & during class at Lecture Hall

李宏毅 (Hung-yi Lee) · HYLEE | Machine Learning (2021)

HYLEE(2021)· 课程资料包 @ShowMeAl

课件 一键打包下载

半 12 官方笔记翻译

代码 作业项目解析

视频·B站[扫码或点击链接]

https://www.bilibili.com/video/BV1fM4y137M4

课件 & 代码·博客[扫码或点击链接]

http://blog.showmeai.tech/ntu-hylee-ml

机器学习深度学习

生成式对抗网络

学习率

批次标准化 袖经网络压缩

神经网络压缩 强何

强化学习

GAN

元学习

白监督

Transformer

Awesome Al Courses Notes Cheatsheets 是 <u>ShowMeAl</u> 资料库的分支系列,覆盖最具知名度的 <u>TOP50+</u> 门 Al 课程,旨在为读者和学习者提供一整套高品质中文学习笔记和速查表。

点击课程名称,跳转至课程**资料0**页面,**一键下载**课程全部资料!

机器学习	深度学习	自然语言处理	计算机视觉
Stanford · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS231n

Awesome Al Courses Notes Cheatsheets· 持续更新中

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏 称为 AI 内容创作者?回复「添砖加页」