EE 5324 – VLSI Design II

Part IX: CORDIC Algorithms

Kia Bazargan

University of Minnesota

Spring 2006

EE 5324 - VLSI Design II - © Kia Bazargan

260

References and Copyright

- Textbook referenced
 - [Par00] B. Parhami
 "Computer Arithmetic: Algorithms and Hardware Designs"
 Oxford University Press, 2000.
- Slides used(*Modified by Kia when necessary*)

 - [©Wilde] © Prof. Doran Wilde, Lecture notes on the Computer Arithmetic Course, ECE Dept., Brigham Young University

Spring 2006

 $\rm EE$ 5324 - VLSI Design II - © Kia Bazargan

369

What is CORDIC?

- How to evaluate trigonometric functions?
 - Table lookup
 - Polynomial approximations
 - CORDIC
- CORDIC (COordinate Rotation DIgital Computer)
 - Introduced in 1959 by Jack E. Volder
 - Rotate vector (1,0) by ϕ to get (cos ϕ , sin ϕ)
 - Can evaluate many functions
 - Rotation reduced to shift-add operations
 - Convergence method (iterative)
 - o N iterations for N-bit accuracy
 - Delay / hardware costs comparable to division or square rooting!

Spring 2006

EE 5324 - VLSI Design II - © Kia Bazargan

270

sin ϕ

Basic CORDIC Transformations

- Basic idea
 - Rotate (1,0) by φ degrees
 to get (x,y): x=cos(φ), y=sin(φ)
- Rotation of any (x,y) vector:

$$x' = x.\cos(\phi) - y.\sin(\phi)$$

$$y' = y.\cos(\phi) + x.\sin(\phi)$$

Rearrange as:

$$x' = \cos(\phi).[x - y.\tan(\phi)]$$

$$y' = \cos(\phi) \cdot [y + x \cdot \tan(\phi)]$$

Y (x',y') (x,y) X

Note: $\frac{\sin(\phi)}{\cos(\phi)} = \tan(\phi)$

Spring 2006

EE 5324 - VLSI Design II - © Kia Bazargan

371

Rotation and Magnitude Components

$$x' = \cos(\phi).[x - y.\tan(\phi)]$$

$$y' = \cos(\phi).[y + x.\tan(\phi)]$$

- Two components:
 - cos(∅)
 - o Reduces the magnitude of the vector
 - o If don't multiply → pseudo rotation
 - tan(φ)
 - O Rotates the vector
 - o Break ϕ into a series of successively shrinking angles α_i such that: $\tan (\alpha_i) = 2^{-i}$
 - o Should we use all α_i 's?

(x,y)

[© Oxford U Press

Spring 2006

EE 5324 - VLSI Design II - © Kia Bazargan

372

Pre-computation of $tan(\alpha_i)$

• Find α_i such that $tan(\alpha_i)=2^{-i}$: (or, $\alpha_i=tan^{-1}(2^{-i})$)

	-	12	•
i	α_{i}	$tan(\alpha_i)$	
0	45.0°	1	$= 2^{-0}$
1	26.6°	0.5	$= 2^{-1}$
2	14.0°	0.25	$= 2^{-2}$
3	7.1°	0.125	$= 2^{-3}$
4	3.6°	0.0625	$= 2^{-4}$
5	1.8°	0.03125	$= 2^{-5}$
6	0.9°	0.015625	$= 2^{-6}$
7	0.4°	0.0078125	$= 2^{-7}$
8	0.2°	0.00390625	$= 2^{-8}$
9	0.1°	0.001953125	$= 2^{-9}$

- Note: decreasing α_i .
 - Possible to write <u>any</u> angle $\phi = \pm \alpha_0 \pm \alpha_1 \pm ... \pm \alpha_9$ as long as -99.7° $\leq \phi \leq$ 99.7° (which covers -90..90)
 - Convergence possible: $\alpha_i \leq \Sigma_{j=i+1}^N \alpha_{i+1}$ (10⁻⁵ deg accuracy)

Spring 2006

EE 5324 - VLSI Design II - © Kia Bazargan

373

Example: Rewriting Angles in Terms of α_i

- Example: $\phi = 30.0^{\circ}$
 - Start with $\alpha_0 = 45.0 \ \ (> 30.0)$
 - -45.0 26.6 = 18.4 (< 30.0)
 - \blacksquare 18.4 + 14.0 = 32.4 (> 30.0)
 - 32.4 7.1 = 25.3 (< 30.0)
 - 25.3 + 3.6 = 28.9 (< 30.0)
 - 28.9 + 1.8 = 30.7 (> 30.0)
 - -

Spring 2006

EE5324 - VLSI Design II - $\ensuremath{\mathbb{C}}$ Kia Bazargan

37/

45°

Rotation Reduction

$$x' = \cos(\phi).[x - y.\tan(\phi)]$$

$$y' = \cos(\phi) \cdot [y + x \cdot \tan(\phi)]$$

• Rewrite in terms of α_i : $(0 \le i \le n)$

$$x_{i+1} = \cos(\alpha_i).[x_i - y_i.d_i.\tan(\alpha_i)] \rightarrow x_{i+1} = \cos(\alpha_i).[y_i + x_i.d_i.\tan(\alpha_i)] \rightarrow x_{i+1} = K_i.[x_i - y_i.d_i.2^{-i}]$$

$$y_{i+1} = K_i.[y_i + x_i.d_i.2^{-i}]$$

• Where:

$$K_i = \cos(\alpha_i) = \cos(\tan^{-1}(2^{-i}))$$
 Note:
 $d_i = \pm 1$
$$\cos(\alpha_i) = \cos(-\alpha_i)$$

• What about K_i's?

Spring 2006

 $\rm EE$ 5324 - VLSI Design II - © Kia Bazargan

375

Taking Care of the Magnitude

$$x_{i+1} = K_i . [x_i - y_i . d_i . 2^{-i}]$$

$$y_{i+1} = K_i . [y_i + x_i . d_i . 2^{-i}]$$

- Observations:
 - We choose to always use ALL α_i terms, with +/- signs
 - $K_i = cos(\alpha_i) = cos(-\alpha_i)$
 - At each step, we multiply by $cos(\alpha_i)$ [constant?]
- Let the multiplications aggregate to:

$$K = \prod_{i=0}^{n} K_i$$
 $n \to \infty, K = 0.607252935...$

Multiply this constant ONLY ONCE at the end

Spring 2006

EE 5324 - VLSI Design II - © Kia Bazargan

376

Hardware Realization: CORDIC Rotation Mode

- To simplify the hardware:
 - First rotate by φ, then rotate by -d_i.α_i to get 0
 (no subtraction to compare φ and current angle)
- Algorithm: (z is the current angle)
 - Mode: rotation: "at each step, try to make z zero"
 - Initialize x=0.607253,y=0,z=\$\phi\$
 - For i=0 →n
 - $d_i = 1$ when z>0, else -1
 - $x_{i+1} = x_i d_i \cdot 2^{-i} \cdot y_i$
 - $y_{i+1} = y_i + d_i \cdot 2^{-i} \cdot x_i$
 - $z_{i+1} = z_i d_i \cdot \alpha_i$
 - Result: $x_n = \cos(\phi)$, $y_n = \sin(\phi)$
 - Precision: n bits $(\tan^{-1}(2^{-i}) \approx 2^{-i})$

 x_{2}, y_{2} x_{10} x_{10} x_{10} x_{10}

[© Oxford U Press

Spring 2006

EE 5324 - VLSI Design II - © Kia Bazargan

377

```
// downloaded (and modified by Kia) from
// www.execpc.com/~geezer/embed/cordic.c
#include <stdio.h>
#include <stdio.h>
#include <stdio.h>
#define AG_CONST 0.6072529350
#define FXD(X) ((long int)(X) * 65536.0))

typedef long int fixed; /* 16.16 fixed-point */
static const fixed Alpha[]={ FXD(45.0), FXD(2.6.565), FXD(1.78991), FXD(2.12502), FXD(0.0447614), FXD(0.02381), FXD(0.111906), FXD(0.447614), FXD(0.02381), FXD(0.111906), FXD(0.055953), FXD(0.027977) };

int main(void){
fixed X, Y, CurrAngle;
unsigned i;

X=FXD(AG_CONST); /* AG_CONST * cos(0) */
Y=0;
CurrAngle=FXD(28.027);
for(i=0; i < 12; i++){
fixed NewX;
CurrAngle = Alpha[i]; }

NewX=X - (Y >> i);
Y+=(X >> i);
Y=(X >> i);
Y
```


VLSI Design II - © Kia Bazargan

CORDIC Vectoring Mode

- Difference with rotation mode?
 - When choosing d_i, instead of trying to make z converge to 0, try to make y_i zero
 - $d_i = -sign(x_i \cdot y_i)$
- Variables will converge to:
 - $x_n = 1/K (x^2 + y^2)^{1/2}$
 - $y_n = 0$
 - $Z_n = z + tan^{-1}(y/x)$
- Application?
 - If start with x=1, z=0, the final z is $tan^{-1}(y)$

Spring 2006

EE 5324 - VLSI Design II - © Kia Bazargan

380

Generalized CORDIC

- Generalized CORDIC iteration:
 - $x_{i+1} = x_i \mu \cdot d_i \cdot 2^{-i}$.
 - $y_{i+1} = y_i + d_i \cdot 2^{-i} \cdot x_i$
 - $z_{i+1} = z_i d_i \cdot e(i)$
- Variations:

_		У	μ=l •B	Α μ=	=0
	\times			F	μ=-1
		0		E	x
/			/w	V	Įu
	X				

	vai	iddoris:	· ·	
	μ	Function	e(i)	
	1	Circular rotation (basic CORDIC)	tan ⁻¹ (2 ⁻ⁱ)	
	0	Linear rotation	2 ⁻ⁱ	
	-1	Hyperbolic rotation	tanh ⁻¹ (2 ⁻ⁱ)	
			© Oxford U Pre	ss
Spring	g 2006	EE 5324 - VLSI Design II - © Kia Bazargan	38	1

http://www.ece.umn.edu/users/kia/Courses/EE5324

Hyperbolic functions

• Hyperblic sine

Hyperblic sine
$$\sinh x = \frac{e^x - e^{-x}}{2} = \frac{e^{2x} - 1}{2e^x} = \frac{1 - e^{-2x}}{2e^{-x}}$$

• Hyperbolic cosine

$$\cosh x = \frac{e^x + e^{-x}}{2} = \frac{e^{2x} + 1}{2e^x} = \frac{1 + e^{-2x}}{2e^{-x}}$$

Hyperbolic tangent

$$\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^{2x} - 1}{e^{2x} + 1} = \frac{1 - e^{-2x}}{1 + e^{-2x}}$$

• Hyperbolic cotangent

$$\coth x = \frac{\cosh x}{\sinh x} = \frac{e^x + e^{-x}}{e^x - e^{-x}} = \frac{e^{2x} + 1}{e^{2x} - 1} = \frac{1 + e^{-2x}}{1 - e^{-2x}}$$

Spring 2006

EE 5324 - VLSI Design II - © Kia Bazargan

Various CORDIC Applications

- Directly computes:
 - sin, cos, sinh, cosh
 - tan⁻¹, tanh⁻¹
 - Division, multiplication
- Also directly computes:
 - tan⁻¹(y/x)
 - y + x.z
 - $(x^2+y^2)^{1/2}$
 - $(x^2-y^2)^{1/2}$
 - $e^Z = \sinh(z) + \cosh(z)$

[© Wilde]

Spring 2006

EE 5324 - VLSI Design II - © Kia Bazargan

VLSI Design II - © Kia Bazargan

VLSI Design II - © Kia Bazargan

To Probe Further...

- Tutorials
 - http://cnmat.cnmat.berkeley.edu/~norbert/cordic/node3.html
 - http://www.execpc.com/~geezer/embed/cordic.htm (including C code)
- Papers
 - Survey paper on FPGA implementation of CORDIC algorithms: http://www.andraka.com/files/crdcsrvy.pdf
 - http://www.taygeta.com/cordic refs.html
- Hardware implementations
 - http://www.free-ip.com/cordic/
 - http://www.stanford.edu/~chet/cordic.html

Spring 2006 EE 5324 - VLSI Design II - © Kia Bazargan 387

Advantages and disadvantages

- Simple Shift-and-add Operation. (2 adders+2 shifters v.s. 4 mul.+2 adder)
- -It needs *n* iterations to obtain *n*-bit precision.
 -Slow carry-propagate addition.
 -Low throughput rate
 -Area consuming shifting operations.

388

How to improve CORDIC?

- · Use Pipelined Architecture
- Improve the Performance of the Adders (redundant arithmetic, CSA)
- Reduce Iteration Number
 - High radix CORDIC. (e.g., Radix-4, Radix-8)
 - Find a optimized shift sequence (e.g., AR-CORDIC)
- Improve the Scaling Operation

 $\frac{1}{K_{p}(n)} = \sum_{i=1}^{n} k_{p} 2^{-i}$

- Canonical multiplier recoding

 $k_n = \pm 1$

- Force Km to 2.

389

Application to DSP Algorithms

- Linear transformation:
 - DFT, Chirp-Z transform, DHT, and FFT.
- Digital filters:
 - Orthogonal digital filters, and adaptive lattice filters.
- Matrix based digital signal processing algorithms:
 - QR factorization, with applications to Kalman filtering
 - Linear system solvers, such as Toeplitz and covariance system solvers,.....,etc.

391

http://www.ece.umn.edu/users/kia/Courses/EE5324

VLSI Design II - © Kia Bazargan

Conclusions

- 1. In some cases, CORDIC evaluates rotational functions **more efficiently** than MAC units.
- 2. CORDIC saves more hardware cost.
- 3. By the <u>regularity</u>, the CORDIC based architecture is very suitable for implementation with pipelined VLSI array processors.
- 4. The utility of the CORDIC based architecture lies in its **generality** and **flexibility**.

394