ISS numerical exercise 2 — Spectral analysis

František Grézl, October 2022

Mějme diskrétní signál o délce N=8 vzorků / Let us have a discrete signal with N=8 samples: x[n] = [1; 1; 1; 0; 0; 0.5; 0.5; 0].

1. Zkonstruujte bázové vektory odvozené z harmonické funkce $\cos(x)$ pro tento signál / For this signal, construct basis vectors derived from harmonic function cos(x):

 $\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$ will be $\int_{0}^{\infty} a[n] = \cos \left(2\pi \frac{k}{N}n\right)$

2. Provedte projekci vektoru x[n] do kosinových bázových vektorů / Perform the projection of x[n] into cosine bases:

$$c_k = \sum_{n=0}^{N-1} x[n]a[n]$$

x[n]	$\parallel 1 \parallel$	1	1	0	0	0.5	0.5	0	$ c_k $
$a_0[n]$	1	1	1	1	1	1	1	1	
$a_0[n]x[n]$	1	1	1			0,5	0,5		4
$a_1[n]$	1	9	0	-9	-1	-9	0	2	
$a_1[n]x[n]$	1	9	0	0		-ofa	0	1.	140,59
$a_2[n]$	1	10	-1	0	1	d	-1	0	
$a_2[n]x[n]$	1	0	-1			0	-0,5		-0,5
$a_3[n]$	1	~9	0	2	-1	9	0	-9	
$a_3[n]x[n]$	1	-09	0			0,59			1-0,59
$a_4[n]$	1	-91	1	-1	1	-10	1	-1	
$/ a_4[n]x[n]$	7	-1	1			-05	0.5		1

Zkonstruujte bázové vektory odvozené z harmonické funkce $\sin(x)$ pro tento signál / For this signal, construct basis vectors derived from harmonic function sin(x):

very 4th from an

$$b[n] = \sin\left(2\pi \frac{k}{N}n\right)$$

4. Provedte projekci vektoru x[n] do sinových bázových vektorů / Perform the projection of signal x[n]into sine bases:

 $d_k = \sum_{n=1}^{N-1} x[n]b[n]$

k	1 Ck	1 de
0	4	0
1	1,35	0,85
2	-0,5	1,5
3	0,64	- 0, est
-	1	

	x[n]	1		1	1	0	0	0.5	0.5	0	$ d_k $
	$b_0[n]$		0	0	0	0	0	0	0	0	
	$b_0[n]x[n]$										
	$b_1[n]$		0	9	1	9	0	-9	-1	-9	
	$b_1[n]x[n]$		0	9	1	0		-05g	-0,5		0,5+0,50
7	$b_2[n]$		0	01	0	-1	0	1	0	-1	
($b_2[n]x[n]$		0	1	0			0,5	0	- 1	1,5
1	$b_3[n]$		0	9	-1	9	0	-9	1	-9	
	$b_3[n]x[n]$		0	G	-1			-059	0,5		-0,500
1	$b_4[n]$		0	0	0	0	0	0	0	0	6
	$b_4[n]x[n]$										

Spočítejte amplitudu a fázi obecné funkce $B_k \cos(\frac{2\pi}{N}kn + \phi_k)$ pro všechna k. U úhlů ověřte správnost výsledků. / Compute the magnitude and phase of general function $B_k \cos(\frac{2\pi}{N}kn + \phi_k)$ for all k. Fro angles, check the correctness of results:

$$B_k = \sqrt{c_k^2 + d_k^2}$$

$$\phi_k = \tan^{-1} \frac{d_k}{c_k}$$

k	B_k	ϕ_k		
0	4	0		
1	1,59	W.70 11	sell and the sell	/
2	1,58	4,89	ad ferror rection needed	-
3	0,65	-0,21	radl	
4	1	0		

6. Zkonstruujte bázové vektory odvozené z komplexní exponenciály $e^{j\alpha}$ pro tento signál / For this signal, construct basis vectors derived from complex exponential $e^{j\alpha}$:

$$a[n] = e^{j2\pi \frac{k}{N}} n$$

7. Proveďte projekci vektoru x[n] do bázových vektorů daných komplexní exponenciálou / Perform the projection of signal x[n] into bases given by complex exponentials:

$$c_k = \sum_{n=0}^{N-1} x[n]a[n]$$

x[n]	1	1	1	0	0	0.5	0.5	0	c_k
$a_0[n]$	1	1	1	1	1	1	1	1	
$a_0[n]x[n]$	1	1	1			0,5	0,5		4
$a_1[n]$	0	C		0	0	0	0		
$a_1[n]x[n]$	1	9+19	(1		-	0,59-0,51	9 -0,51	1	10,59+
$a_2[n]$	0	3	0	0	0	0	10		j(0,570,
$a_2[n]x[n]$	1	J.	-1			0,50	-0,5	' -	0,5+1,51
$a_3[n]$		0	0	0	\bigcirc	0	0		1-0,50
$a_3[n]x[n]$	1-	15g+10	7 -1		0,	59-10,5	9 0,51	1	16-000
$a_4[n]$	1	-100	1	-1	1	-10	73	-1	J Coto
$a_4[n]x[n]$	1	-1	1			-05	0,5		1

8. Porovnejte výsledky rozkladu do sin a cos bází s rozkladem do komplexních exponenciál / Compare the results with the decomposition into cosines and sines.

10. Provedte projekci vektoru x[n] do bázových vektorů daných zápornou komplexní exponenciálou / Perform the projection of signal x[n] into bases given by these negative complex exponentials:

$$c_k = \sum_{n=0}^{N-1} x[n]a^*[n]$$

x[n]	1	1	1	0	0	0.5	0.5	0	c_k
$a_0^{\star}[n]$	1	1	1	1	1	1	1	1	#
$a_0^{\star}[n]x[n]$									9
$a_1^{\star}[n]$	0	- 0	0	0	0	0	0	O	4.00
$a_1^{\star}[n]x[n]$	1	9-19	-1		-	0,59+10	Sq 0,5,	,	10,59
$a_2^{\star}[n]$	0	-03	0	0	0	6		67	1(-05
$a_2^{\star}[n]x[n]$:
$a_3^{\star}[n]$	0		0	Q	0	0	0	0	
$a_3^{\star}[n]x[n]$			12000						~ . ~
$a_4^{\star}[n]$	1	-1	1	-1	1	-1	1	-1	
$a_4^{\star}[n]x[n]$									1

11. Porovnejte výsledky získané rozkladem do kladných exponenciál a do záporných exponenciál / Compare results obtained by projections to positive and negative complex exponentials.

complex conjugated.