	Page No.
HIMANSHI	CHOUDHARY (200020059)
	CL249: ASSIGNMENT 8
	PROBLEM VILLE (WILLIAM & VILLE)
	TRUNK - YOURD - YOULD WIN
	We have to some a set of differential equations using
	RK4 and RK5 technique, which unpulsent one of the
	simple models to describe spreading sey covia 19.
	dy cy, y dy - cy, y - dy dy - dy.
	dy = -cy, y = dy = cy, y = dy, dy, dy, = dy, dn
	y, = thathy people
-	72 = Inflicted people
	yz = People under gravartine
	- 1 Then a de to be particular of the
	$y_1(n=0) = 95$ $y_2(n=0) = 5$ $y_3(n=0) = 0$
<u></u>	Alad I I I D
<u> </u>	And plat the graphs
	Description of Method
,	RK4 Mithodo William Warner
Á	me have dy - f(n,y)
	dn
	and an define he represents stepsize
×	$K_{t} = f(n_{i}, y_{i})$
^	K2= f(2i+jn, y; + j K1h)
	K3 = f (ni+ In, y; +1 ksh).
2	Ky = f(nth, y+ K3h)

git = g; + [K, +2K, +2K, + Ku)h

where y is the acquired function

RK5 Method

We have dy = f(n, y)

defin

K= f(xi, yi)

K2 = f(xi+hh, yi+hkh)

K3 = f(nith, y; + kih + K2h)

Ku = f (2i + 1/2) gi - Kih + Kah)

Kr = f (9i + 8h , y; + 3kih + 9kuh)

K6 = f (2ith, 4: - 3kh + 2kh + 12kh - 12kh + 8kh + 8kh

and

Jitl = J; + 1 (7K, + 30Kg + 10Ku + 30Kg + 7Kg) h

where y is the required of

1	S	E	U.	D	0	C	0	Di	Ė
		-	•	_	_			_	_

RK4.m to calculate using RK4 method.

and Cz=1 d=5 be given cost.

Tritial values

41(1)=95) 42(1)=5;

Iterate through 1 to N-1

Diff hith

(Kigi, Keyn Kogs) = demination (yg(i), yeli)) | Keyn Keyn Keys) = dem (yi) + Kigib.)

(Koy, 7Koy, Koy) = der (Yis+ Koyih)

(Kny, kny, kny) = du (y;+ Kzyh)

update valus 4, 4, 4, 4, 000

Siti = 4, + fr(K1+2K2+2K3+K4)

notwen 4, 42, 43;

devivation. m

get y, and ye and c,d

42 = Cy,42 - dy2

43' = dy2

ruturn all halnes.

RK5-m

get all the always and constants. assign initial values to y, y, y,

I terate therony 1 to N-)

Inchan Niti as nith

Calculate for y, y, 43

Kiy, Kzy, Kzy) = devinatio (20, yi)

 $K_2 = duivalin(y; + K_1h)$ $K_3 = duivalin(y; + K_1h + K_2h)$

Ky = derivater (y, - K2h + K3h)

K5 = duivalu (g; + k.3kih + 9kuh)

Ko = devivulue (yi - 3kih. + 2kih + 12ksh.

- 12 Kuh + 8 Koh)

update buch you your girt 4 Ji+1 = yi+ in (7k1+ 32k3 + 12k4 + 32k+7k6)

Main . m

get all y, ye has prom RK4 and RKT plot 3 4 42 43 Vs n

end