

Second-Life Battery Energy Storage for Sustainable Power Grids

Amir Farakhor and Huazhen Fang

Introduction

Lithium-ion batteries are the main driver of the new era of electrified transportation.

2020: 5.8% 1 million units

Electric vehicle sales percentage in US market

When EV batteries retire, how to make them live a second life?

Sustainable Kansas

Environmental benefits

benefits

DE SOTO **Panasonic Economic**

Battery supply chains

ENERGY

Grid-scale lithium-ion battery demand and secondlife EV battery supply in U.S., gigawatt-hours/year

- Second-life EV batteries supply (base case)
- Second-life EV batteries supply (breakthrough case)
- Utility-scale lithium-ion battery storage demand

Why Is It Difficult to Use Second-Life Batteries?

Disassembling and repackaging of EV battery packs are tedious and expensive.

Retired EV batteries are different in size, aging condition, and electrochemistry.

Plug-and-Play Second-Life Battery Systems

Design Functions

Experimentation

Research Products

Pending Patent: A Modular, Reconfigurable Battery **Energy Storage System**

A. Farakhor, H. Fang

PCT/US2022/077918, Filed in October 2022

A Novel Modular, Reconfigurable Battery Energy Storage System: Design, Control, and Experimentation A. Farakhor, D. Wu, Y. Wang and H. Fang IEEE Tran. on Transportation Electrification, 2023

Sponsors and Collaborators

KU is an EO/AA institution.