

CS261 Data Structures

Binary Search Trees

Concepts

Goals

- Introduce the Binary Search Tree (BST)
- Conceptual implementation of Bag interface with the BST
- Performance of BST Bag operations

Binary Search Tree

- Binary search trees are binary trees where every node's value is:
 - Greater than all its descendents in the left subtree
 - Less than or equal to all its descendents in the right subtree
- If tree is reasonably full (well balanced), searching for an element is $O(\log n)$. Why?

Intuition

Binary Search Tree: Example

BST Bag: Contains

- Start at root
- At each node, compare value to node value:
 - Return true if match
 - If value is less than node value, go to left child (and repeat)
 - If value is greater than node value, go to right child (and repeat)
 - If node is null, return false
- Dividing in half each step as you traverse path from root to leaf (assuming reasonably full!!!)

BST Bag: Contains/Find Example

BST Bag: Add

- Do the same type of traversal from root to leaf
- When you find a null value, create a new node

BST Bag: Add Example

BST Bag: Add Example

BST Bag: Remove

How would you remove Abigail? Audrey? Angela?

Who fills the hole?

- Answer: the leftmost child of the right subtree (smallest element in right subtree)
- Try this on a few values
- Alternatively: The rightmost child of the left subtree

BST Bag: Remove Example

Before call to remove

BST Bag: Remove Example

After call to remove

Special Case

- What if you don't have a right child?
- Try removing "Audrey"

- Simply return left child

Complexity Analysis (contains)

- If reasonably full, you're dividing in half at each step: O(log n)
- Alternatively, we are running down a path from root to leaf
 - We can prove by induction that in a complete tree (which is reasonably full), the path from root to leaf is bounded by floor(log n), so O(log n)

Binary Search Tree: Useful Collection?

- We've shown all Bag operations to be proportional to the length of a path, rather than the number of elements in the tree
- We've also said that in a reasonably full tree, this path is bounded by : floor((log₂ n))
- This Bag is faster than our previous implementations!

Comparison

Average Case Execution Times

Operation	DynArrBag	LLBag	Ordered ArrBag	BST Bag
Add	O(1)	O(1)	O(n)	O(logn)
Contains	O(n)	O(n)	O(logn)	O(logn)
Remove	O(n)	O(n)	O(n)	O(logn)