DLD ASSESSMENT 3

NAME: ANSHIL SETH

REG. NUMBER: 18BCI0173

SLOT: L25 + L26

FACULTY: PROF. LIJO VP

QUESTION 1

a. **AIM:** Design a combinational circuit with three inputs x,y and z and three outputs A,B nd C using full adders and an inverter. When the binary input is 0,1,2 or 3 the binary output is one greater than the input. When the binary input is 4,5,6 or 7 the binary output is one less than the input.

CIRCUIT DIAGRAM:

TRUTH TABLE:

Х	Υ	z	Α	В	С
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	0	1	1
1	0	1	1	0	0
1	1	0	1	0	1
1	1	1	1	1	0

EXPRESSIONS:

A = YZ + XZ + XY

B= X xor Y xor Z

C= Z'

AIM: implement the four Boolean functions listed using three half adders.

CIRCUIT DIAGRAM:

TRUTH TABLE:

А	В	С	D	E	F	G
0	0	0	0	0	0	0
0	0	1	1	0	0	0
0	1	0	1	0	0	0
0	1	1	0	1	1	0
1	0	0	1	0	1	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	1	0	1	1

EXPRESSIONS:

D= A XOR B XOR C

E= A'BC + AB'C

F = ABC' + (A' + B)C

G= G=ABC

c. AIM: design 2-bit parallel adder/subtractor circuit.

CIRCUIT DIAGRAM:

m=0 for addition of numbers a1 a2 and b1 b2

A2	A1	B2	B1	С	S1	S2
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	1	0	0	1	0
0	0	1	1	0	1	1
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	0	1	1
0	1	1	1	1	0	0
1	0	0	0	0	1	0
1	0	0	1	0	1	1
1	0	1	0	1	0	0
1	0	1	1	1	0	1
1	1	0	0	0	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	1
1	1	1	1	1	1	0

ADDER FINAL RESULT:

M=1 for subtraction of numbers a1 a2 and b1 b2.

A2	A1	B2	B1	С	S1	S2
0	0	0	0	0	0	0
0	0	0	1	1	1	0
0	0	1	0	1	0	1
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	0	0	0
0	1	1	0	1	1	0
0	1	1	1	1	0	1
1	0	0	0	0	1	0
1	0	0	1	0	0	1
1	0	1	0	0	0	0
1	0	1	1	1	1	0
1	1	0	0	0	1	1
1	1	0	1	0	1	0
1	1	1	0	0	0	1
1	1	1	1	0	0	0

SUBTRACTOR FINAL RESULT:

AIM: design a BCD adder using binary parallel adder.

k	8	4	2	1	С	S4	S3	S2	S1	decimal
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	2
0	0	0	1	1	0	0	0	1	1	3
0	0	1	0	0	0	0	1	0	0	4
0	0	1	0	1	0	0	1	0	1	5
0	0	1	1	0	0	0	1	1	0	6
0	0	1	1	1	0	0	1	1	1	7
0	1	0	0	0	0	1	0	0	0	8
0	1	0	0	1	0	1	0	0	1	9
0	1	0	1	0	1	0	0	0	0	10
0	1	0	1	1	1	0	0	0	1	11
0	1	1	0	0	1	0	0	1	0	12
0	1	1	0	1	1	0	0	1	1	13
0	1	1	1	0	1	0	1	0	0	14
0	1	1	1	1	1	0	1	0	1	15
1	0	0	0	0	1	0	1	1	0	16
1	0	0	0	1	1	0	1	1	1	17
1	0	0	1	0	1	1	0	0	0	18
1	0	0	1	1	1	1	0	0	1	19

QUESTION 2

AIM: design a circuit to convert 2421 to 84-2-1.

TRUTH TABLE:

W	Х	Y	Z	А	В	С	D	Decimal digit
0	0	0	0	0	0	0	0	0
0	0	0	1	0	1	1	1	1
0	0	1	0	0	1	1	0	2
0	0	1	1	0	1	0	1	3
0	1	0	0	0	1	0	0	4
1	0	1	1	1	0	1	1	5
1	1	0	0	1	0	1	0	6
1	1	0	1	1	0	0	1	7
1	1	1	0	1	0	0	0	8
1	1	1	1	1	1	1	1	9

EXPRESSIONS:

A= WX'YZ + WXY'Z' + WXY'Z + WXYZ' + WXYZ

B = W'X'Y'Z + W'X'YZ' + W'X'YZ + W'XY'Z' + WXYZ

C = W'X'Y'Z + W'X'YZ' + WX'YZ + WXY'Z' + WXYZ

D = W'X'Y'Z + W'X'YZ + WXY'Z + WXY'Z + WXYZ

AIM: Design a circuit to compare two 4 bit numbers using IC 7485.

TRUTH TABLE:

Α	В	A <b< th=""><th>A=B</th><th>A>B</th></b<>	A=B	A>B
0	0	0	1	0
0	1	1	0	0
1	0	0	0	1
1	1	0	1	0

EXPERESSION:

A EQUAL TO B: (A0 XNOR B0)(A1 XNOR B1)(A2 XNOR B2)(A3 XNOR B3).

A GREATER THAN B: A3B3' + (A3 XNOR B3)A2B2' +(A3 XNOR B3)(A2 XNOR B2)A1B1' + (A3 XNOR B3)(A2 XNOR B2)(A1 XNOR B1)A0B0'

A LESS THAN B: A3'B3 + (A3 XNOR B3)A2'B2 +(A3 XNOR B3)(A2 XNOR B2)A1'B1 +(A3 XNOR B3)(A2 XNOR B2)(A1 XNOR B1)A0'B0

AIM: To design BCD to seven segment display

CIRCUIT DIAGRAM:

TRUTH TABLE:

А	В	С	D	OA	ОВ	ОС	OD	OE	OF	OG
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1

AIM: Design a circuit to display thrice of a number on seven segment display (consider maximum input number to be 2 bit)

CIRCUIT DIAGRAM:

TRUTH TABLE:

А	В	С	D	OA	ОВ	OC	OD	OE	OF	OG
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	1	1	1	1	0	0	1
0	0	1	0	1	0	1	1	1	1	1
0	0	1	1	1	1	1	1	0	1	1

EXPRESSIONS:

OA= A'B'

OB=A'B'C'+A'B'D

OC= A'B'

OD= A'B'

OE = A'B'D'

OF = A'B'D' + A'B'C

OG = A'B'D + A'B'C

Thrice of 1

Thrice of 3

QUESTION 3

a. AIM: To design a 2 to 4 line decoder.

CIRCUIT DIAGRAM:

TRUTH TABLE:

А	В	D0	D1	D2	D3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

EXPERESSIONS:

- 1. D0= A'B'
- 2. D1=A'B
- 3. D2=AB'
- 4. D3=AB

b. **AIM:** Design a logic circuit to control the traffic light as per the given details. Using the sensor outputs A,B,C and D as inputs, N-S and E-W be two outputs that go high.

CIRCUIT DIAGRAM:

Α	В	С	D	EW	NS
0	0	0	0	1	0
0	0	0	1	1	0
0	0	1	0	1	0
0	0	1	1	1	0
0	1	0	0	0	1
0	1	0	1	1	0
0	1	1	0	1	0
0	1	1	1	1	0
1	0	0	0	0	1
1	0	0	1	1	0
1	0	1	0	1	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	0	1	0	1
1	1	1	0	0	1
1	1	1	1	1	0

EXPRESSIONS:

NS= A'BC'D' + AB'C'D' + ABC'D' + ABC'D + ABCD'

ES= NS'

c. **AIM**: Design a decimal to BCD encoder.

CIRCUIT DIAGRAM:

TRUTH TABLE:

DECIMAL	A3	A2	A1	A0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1

EXPRESSIONS:

A3=D8+D9

A2=D4+D5+D6+D7

A1=D2+D3+D6+D7

A0=A1+A3+A5+A7+A9

d. AIM: To design a 8 to 3 line priority encoder

CIRCUIT DIAGRAM:

TRUTH TABLE:

00	01	02	О3	04	05	06	07	Р	Q	R
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

EXPRESSIONS:

P=04+05+06+07

Q=02+03+06+07

R=O1+O3+O5+O7

QUESTION 4

a. **AIM:** 8 to 1 mux using two 4 to 1 mux and one 2 to 1 mux.

S2	S1	S0	OUT
0	0	0	D0
0	0	1	D1
0	1	0	D2
0	1	1	D3
1	0	0	D4
1	0	1	D5
1	1	0	D6
1	1	1	D7

AIM: Design a circuit which perform X-Y if A=1 and Y-X if A=0.

Α	Х	Υ	В	D
0	0	0	0	0
0	0	1	0	1
0	1	0	1	1
0	1	1	0	0
1	0	0	0	0
1	0	1	1	1
1	1	0	0	1
1	1	1	0	0

AIM: Design 2 to 4 line demux using NOR gates.

Α	В	w	х	Υ	Z
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

AIM: Design a 4 bit even parity checker

Х3	X2	X1	X0	А	
0	0	0	0	0	X0
0	0	0	1	1	X0
0	0	1	0	1	X0'
0	0	1	1	0	X0'
0	1	0	0	1	X0'
0	1	0	1	0	X0'
0	1	1	0	0	X0
0	1	1	1	1	X0
1	0	0	0	1	X0'
1	0	0	1	0	X0'
1	0	1	0	0	X0
1	0	1	1	1	X0
1	1	0	0	0	X0
1	1	0	1	1	X0
1	1	1	0	1	X0'
1	1	1	1	0	X0'

