Pseudo arc ontinuation method

Our goal is to continue numerically a curve $C \subset \mathbb{R}^{n+1}$, defined implicitely by the equation F(z) = 0, being $F: \mathbb{R}^{n+1} \longrightarrow \mathbb{R}^n$ a smooth function. Let us assume that $z^j \in \mathbb{R}^{n+1}$, is a regular point of C, so $F(z^j) = 0$, and Rank $DF(z^j) = n$. Moreover, let $v^j \in \mathbb{R}^{n+1}$ be an unitary vector tangent to the curve C at the point z^j , $v^j \in T_{z^j}C$, so $||v^j|| = 1$, and $DF(z^j)v^j = 0$.

Then, it is possible to find a new point on the curve, $z^{j+1} \in \mathcal{C}$, and a new unitary tangent vector, to \mathcal{C} at z^{j+1} , $v^{j+1} \in T_{z^{j+1}}\mathcal{C}$, $||v^{j+1}|| = 1$. If, on its turn, z^{j+1} is a regular point of \mathcal{C} , then one can look for yet another point on \mathcal{C} , $z^{j+2} \in \mathcal{C}$, and a new unitary tangent vector to \mathcal{C} at z^{j+2} , $v^{j+2} \in T_{z^{j+2}}\mathcal{C}$, $||v^{j+2}|| = 1$, and so on.

Of course, there are several numerical methods to do this step-by-step continuation of \mathcal{C} from an inital point on the curve, $z^j \in \mathcal{C}$, and a (normalized) tangent direction at that point, $v^j \in T_{z^j}\mathcal{C}$. The one we outline here is the so called *pseudo arc continuation method* (see [1], Chap. 10, Sect. 2, for a complete description). In a nutshell, it consists in the three stages discussed below.

The continuation algorithm

Stage 1: Prediction. Take $\hat{z}^{j+1} = z^j + h_j v^j \in z^j + \langle v^j \rangle$ as an approximation for another new point $z^{j+1} \in \mathcal{C}$. Here $h_j > 0$ is the pseudo arc length, and can be conveniently adapted at each step.

Stage 2: Correcton. Refine the approximation \hat{z}^{j+1} to find $z^{j+1} \in \mathbb{R}^{n+1}$ such that $F(z^{j+1}) = 0$. However, as the system F(z) = 0 has n equations and n+1 unknowns $z_1, z_2, \ldots, z_n, z_{n+1}$, we need to ask for an additional condition: in particular, we shall require that $z^{j+1} \in \hat{z}^{j+1} + \langle v^j \rangle^{\perp}$, i.e., that z^{j+1} belongs to the hyperplane orthogonal to the vector v^j that holds \hat{z}^{j+1} (see Figure 1). The corresponding equation con be formulated as

$$\langle v^{j}, z^{j+1} - \hat{z}^{j+1} \rangle = \langle v^{j}, z^{j+1} - z^{j} - h_{j} v^{j} \rangle$$

$$= \langle v^{j}, z^{j+1} \rangle - \langle v^{j}, z^{j} \rangle - h_{j} \langle v^{j}, v^{j} \rangle$$

$$= \langle v^{j}, z^{j+1} \rangle - \langle v^{j}, z^{j} \rangle - h_{j} = 0,$$

where $\langle \cdot, \cdot \rangle$ stands for the *inner* (or dot) product $\langle \xi, \eta \rangle := \xi_1 \eta_1 + \dots + \xi_m \eta_m$, $\xi, \eta \in \mathbb{R}^m$. Hence z^{j+1} will be given by the solution of the nonlinear system,

$$F(z) = 0,$$

$$\langle v^{j}, z \rangle = \langle v^{j}, z^{j} \rangle - h_{j}$$
(1)

that can be solved by some iterative method (for example, that Newton method) taking as initial approximation. $z^{(0)} = \hat{z}^{j+1}$.

Stage 3: Tangent vector. To find the tangent vector to the curve at the new point $z^{j+1} \in \mathcal{C}$ found at Stage 2, $v^{j+1} \in T_{z^{j+1}}\mathcal{C}$, first we solve the (n+1)-dimensional linear system

$$DF\left(z^{j+1}\right)v = 0,$$

$$\left\langle v^{j}, v \right\rangle = 1.$$
(2)

As it is pointed out in [1]:

- (i) If \mathcal{C} is a regular curve and z^j , z^{j+1} are close enough, the system (2) is nonsingular.
- (ii) The solution, $v^* \in \mathbb{R}^{n+1}$, of (2) satisfies $\langle v^j, v^* \rangle = 1$, so the direction along the curve is preserved.

Next, we normalize. If $v^* \in \mathbb{R}^{n+1}$ denotes the solution of (2), we divide by its norm, so $v^{j+1} = v^* / \|v^*\|$. This is the tangent vector we look for.

Now, the process can be iterated using the output of Stage 3, the tangent vector $v^{j+1} \in T_{z^{j+1}}\mathcal{C}$, to feed Stage 1 and find a another point close to the curve \mathcal{C} , and so on. If at Stage 2, Rank $DF\left(z^k\right) < n$, for the new computed point, $z^k \in \mathcal{C}$, then the curve \mathcal{C} is not regular at that point, so one has to stop the process and analyse for the possible appearing of branches (bifurcations).

Figure 1: We add an extra condition: $z^{j+1} \in \hat{z}^{j+1} + \langle v^j \rangle^{\perp}$. See [1], Figure 10.6(b).

Initial point and tangent vector

Nonetheless, to start the process described above, we need an initial point on he curve, $z^0 \in \mathcal{C}$, as well as its corresponding tangent vector, $z^0 \in \mathcal{C}$ and $v^0 \in T_{z^0}\mathcal{C}$ for, otherwise, we cannot write neither the nonlinear system (1) nor the linear system (2).

To find z^0 we can proceed as follows: let us assume that we have an approximation for the initial solution, $\hat{z}^0 = (\hat{z}^0_1, \dots, \hat{z}^0_n, \hat{z}^0_{n+1})$, then we fix one of its components, suppose that we take the last one, \hat{z}^0_{n+1} and solve the *n*-dimensional system,

by the Newton method, starting with $z_1 = \hat{z}_1^0, \dots, z_n = \hat{z}_n^0$. If the method converges, we have an initial point on the curve, $z^0 = (z_1^0, \dots, z_n^0, \hat{z}_{n+1}^0)$.

Next, we look for the tangent vector to $z^0 \in \mathcal{C}$, $v_0 \in T_{z^0}\mathcal{C}$. To this end, we select n linearly independent columns of $DF(z^0)$. If the curve is regular at z^0 , Rank $DF(z^0) = n$. Hence, for some $i, i \in \{1, 2, ..., n, n+1\}$, columns 1, ..., i-1, i+1, ..., n, n+1 are; so we fix $v_i = 1$, solve the system

$$\frac{\partial F_{1}}{\partial x_{1}}\left(z^{0}\right)v_{1} + \dots + \frac{\partial F_{1}}{\partial x_{i-1}}\left(z^{0}\right)v_{i-1} + \frac{\partial F_{1}}{\partial x_{i+1}}\left(z^{0}\right)v_{i+1} + \dots + \frac{\partial F_{1}}{\partial x_{n}}\left(z^{0}\right)v_{n} + \frac{\partial F_{1}}{\partial x_{n+1}}\left(z^{0}\right)v_{n+1} = -\frac{\partial F_{1}}{\partial x_{i}}\left(z^{0}\right),$$

$$\frac{\partial F_{2}}{\partial x_{1}}\left(z^{0}\right)v_{1} + \dots + \frac{\partial F_{2}}{\partial x_{i-1}}\left(z^{0}\right)v_{i-1} + \frac{\partial F_{2}}{\partial x_{i+1}}\left(z^{0}\right)v_{i+1} + \dots + \frac{\partial F_{2}}{\partial x_{n}}\left(z^{0}\right)v_{n} + \frac{\partial F_{2}}{\partial x_{n+1}}\left(z^{0}\right)v_{n+1} = -\frac{\partial F_{2}}{\partial x_{i}}\left(z^{0}\right),$$

$$\frac{\partial F_n}{\partial x_1}\left(z^0\right)v_1+\cdots+\frac{\partial F_n}{\partial x_{i-1}}\left(z^0\right)v_{i-1}+\frac{\partial F_n}{\partial x_{i+1}}\left(z^0\right)v_{i+1}+\cdots+\frac{\partial F_n}{\partial x_n}\left(z^0\right)v_n+\frac{\partial F_n}{\partial x_{n+1}}\left(z^0\right)v_{n+1}=\\ -\frac{\partial F_n}{\partial x_i}\left(z^0\right)v_n+\frac{\partial F_n}{\partial x_{i-1}}\left(z^0\right)v_{n+1}+\frac{\partial F_n}{\partial x_{i+1}}\left(z^0\right)v_{n+1}+\frac{\partial F_n}{\partial x_{i+1}}\left($$

and normaly se the solution, v^* , to get $v^0 = v^*/\|v^*\|$. Now, we use the pair $z^0 \in \mathcal{C}$, $v^0 \in T_{z^0}\mathcal{C}$ as input of Stage 1 to fire up the continuation algorithm.

1 References

[1] Yuri A. Kuznetsov. Elements of Applied Bifurcation Theory, volume 112 of Applied Mathematical Sciences. Springer-Verlag, New York, third edition, 2004. 1, 2