

- L = $\{\Lambda, ab, aabb, aaabbb, aaaabbbb, ...\}$
- L = $\{a^nb^n \mid n=0,1,2,3,4,...\}$
- $L = \{a^n b^n\}$
- $L \subset langage(a*b*)$

Le lemme de l'étoile: (pumping lemma)

Soit L un langage régulier qui contient un nombre infini de mots, alors ils existent 3 mots x, y, z (y n'est pas le mot vide) tels que tout mot sous la forme:

 xy^nz pour n=1, 2, 3, 4,...

est dans le langage L.

premier état qu'on traverse plus qu'une fois

 $xz \in L$, $xyz \in L$, $xyyz \in L$, $xyyz \in L$, ..., $xy^nz \in L$.

- L = $\{a^nb^n \mid n=0,1,2,3,4,...\}$ n'est pas un langage régulier.
- EGALE = le langage de tous les mots qui contiennent le même nombre des a et des b.

EGALE = $\{\Lambda, ab, ba, aabb, abab, abba, baab, baba, bbaa, ...\}$.

Théorème: EGALE n'est pas un langage régulier.

Le lemme de l'étoile: (pumping lemma) (version 2)

Soit L un langage régulier qui contient un nombre infini de mots, et qui est reconnu par un automate fini AF avec N états. Alors tout mot w dans L et qui contient plus de N lettres peut être décomposé sous la forme w= xyz tel que:

- 1. y n'est pas le mot vide
- 2. $longueur(x) + longueur(y) \leq N$
- 3. pour tout $n \ge 1$, xy^nz est dans le langage L.

Exemple 1:

PALINDROME n'est pas un langage régulier.

Exemple 2:

```
PREMIERS = \{a^p \mid p \text{ est un nombre premier}\}
```

= {aa, aaa, aaaaaa, ...}

n'est pas un langage régulier.

Question?