2020年全国统一高考化学试卷 (新课标 I)

一、选择题(共7小题,每小题6分,满分42分)

- 国家卫健委公布的新型冠状病毒肺炎诊疗方案指出,乙醚、75%乙醇、含氯消毒剂、过氧乙酸(CH₃COOOH)、 氯仿等均可有效灭活病毒。对于上述化学药品,下列说法错误的是
 - A. CH₃CH₂OH 能与水互溶
 - B. NaClO 通过氧化灭活病毒
 - C. 过氧乙酸相对分子质量为 76
 - D. 氯仿的化学名称是四氯化碳

合物,下列叙述错误的是

- A. 分子式为 C₁₄H₁₄O₄
- B. 不能使酸性重铬酸钾溶液变色
- C. 能够发生水解反应
- D. 能够发生消去反应生成双键
- 3. 下列气体去除杂质的方法中,不能实现目的的是

	气体 (杂质)	方法	
Α.	SO ₂ (H ₂ S)	通过酸性高锰酸钾溶液	
В.	Cl ₂ (HCl)	通过饱和的食盐水	
C.	N ₂ (O ₂)	通过灼热的铜丝网	
D.	NO(NO ₂) 通过氢氧化钠溶液		

4. 铑的配合物离子[Rh(CO)₂I₂]⁻可催化甲醇羰基化,反应过程如图所示。

下列叙述错误的是

- A. CH₃COI 是反应中间体
- B. 甲醇羰基化反应为 CH₃OH+CO=CH₃CO₂H
- C. 反应过程中 Rh 的成键数目保持不变
- D. 存在反应 CH₃OH+HI=CH₃I+H₂O
- 5. 1934 年约里奥 居里夫妇在核反应中用 α 粒子(即氦核 $_2^4$ He)轰击金属原子 $_Z^WX$,得到核素 $_{Z+2}^{30}Y$,开创了人造放射性核素的先河:

$$_{Z}^{W}X + _{2}^{4}He \rightarrow _{Z+2}^{30}Y + _{0}^{1}n$$

其中元素 X、Y的最外层电子数之和为 8。下列叙述正确的是

- A. $_{7}^{W}X$ 的相对原子质量为 26
- B. X、Y均可形成三氯化物
- C. X的原子半径小于 Y的
- D. Y 仅有一种含氧酸
- 6. 科学家近年发明了一种新型 Zn-CO₂ 水介质电池。电池示意图如下,电极为金属锌和选择性催化材料,放电时,温室气体 CO₂ 被转化为储氢物质甲酸等,为解决环境和能源问题提供了一种新途径。

下列说法错误的是

- A. 放电时,负极反应为 $Zn 2e^- + 4OH^- = Zn(OH)_4^{2-}$
- B. 放电时, 1 mol CO₂转化为 HCOOH, 转移的电子数为 2 mol
- C. 充电时, 电池总反应为 2Zn(OH)₄²⁻ = 2Zn + O, ↑ +4OH⁻ + 2H₂O
- D. 充电时,正极溶液中 OH⁻浓度升高
- 7. 以酚酞为指示剂,用 0.1000 mol·L $^{-1}$ 的 NaOH 溶液滴定 20.00 mL 未知浓度的二元酸 H_2A 溶液。溶液中,pH、分布系数 δ 随滴加 NaOH 溶液体积 $V_{\rm N_2OH}$ 的变化关系如下图所示。

[比如 A²⁻的分布系数:
$$\delta(A^{2-}) = \frac{c(A^{2-})}{c(H_2A) + c(HA^-) + c(A^{2-})}$$
]

下列叙述正确的是

A. 曲线①代表 $\delta(H_2A)$, 曲线②代表 $\delta(HA^-)$

- B. H₂A 溶液的浓度为 0.2000 mol·L⁻¹
- C. HA-的电离常数 K_a=1.0×10⁻²
- D. 滴定终点时,溶液中 $c(Na^+) < 2c(A^{2-}) + c(HA^-)$

二、解答题(共3小题,满分43分)

8. (14分)

钒具有广泛用途。黏土钒矿中,钒以+3、+4、+5 价的化合物存在,还包括钾、镁的铝硅酸盐,以及 SiO_2 、 Fe_3O_4 。采用以下工艺流程可由黏土钒矿制备 NH_4VO_3 。

该工艺条件下,溶液中金属离子开始沉淀和完全沉淀的 pH 如下表所示:

金属离子	Fe ³⁺	Fe ²⁺	Al ³⁺	Mn ²⁺
开始沉淀 pH	1.9	7.0	3.0	8.1
完全沉淀 pH	3.2	9.0	4.7	10.1

回答下列问题:

- (1)"酸浸氧化"需要加热,其原因是____。
- (2) "酸浸氧化"中, VO⁺和 VO²⁺被氧化成 VO⁺, 同时还有 离子被氧化。写出 VO⁺转化为

VO₂ 反应的离子方程式_____。

(3) "中和沉淀"中,钒水解并沉淀为 $V_2O_5 \cdot xH_2O$,随滤液②可除去金属离子 K^+ 、 Mg^{2+} 、 Na^+ 、

_____,以及部分的_____。

- (4) "沉淀转溶"中, V₂O₅·xH₂O 转化为钒酸盐溶解。滤渣③的主要成分是。
- (5) "调 pH"中有沉淀生产,生成沉淀反应的化学方程式是____。
- (6) "沉钒"中析出 NH₄VO₃ 晶体时,需要加入过量 NH₄CI,其原因是______
- 9. (15分)

为验证不同化合价铁的氧化还原能力,利用下列电池装置进行实验。

回答下列问题:

(1)由 FeSO₄·7H₂O 固体配制 0.110 mol·L⁻¹ FeSO₄溶液,需要的仪器有药匙、玻璃棒、_____(从下列图中选择,写出名称)。

(2)电池装置中,盐桥连接两电极电解质溶液。盐桥中阴、阳离子不与溶液中的物质发生化学反应,并且电迁移率(*u*[∞])应尽可能地相近。根据下表数据,盐桥中应选择 作为电解质。

阳离子	<i>u</i> ∞×10 ⁸ / (m ² ·s ⁻¹ ·V ⁻¹)	阴离子	<i>u</i> ∞×10 ⁸ / (m²·s⁻¹·V⁻¹)
Li ⁺	4.07	HCO ₃	4.61
Na ⁺	5.19	NO ₃	7.40
Ca ²⁺	6.59	Cl-	7.91
K ⁺	7.62	SO_4^{2-}	8.27

- (3) 电流表显示电子由铁电极流向石墨电极。可知, 盐桥中的阳离子进入_____电极溶液中。
- (4) 电池反应一段时间后,测得铁电极溶液中 $c(Fe^{2+})$ 增加了 0.02 mol·L^{-1} 。石墨电极上未见 Fe 析出。可知,石墨电极溶液中 $c(Fe^{2+})=$ ____。
- (5)根据(3)、(4)实验结果,可知石墨电极的电极反应式为______,铁电极的电极反应式为_____。因此,验证了 Fe²⁺氧化性小于_____,还原性小于_____。
- (6)实验前需要对铁电极表面活化。在 $FeSO_4$ 溶液中加入几滴 $Fe_2(SO_4)_3$ 溶液,将铁电极浸泡一段时间,铁电极表面被刻蚀活化。检验活化反应完成的方法是

10. (14分)

硫酸是一种重要的基本化工产品,接触法制硫酸生产中的关键工序是 SO2 的催化氧

化:
$$SO_2(g) + \frac{1}{2}O_2(g)$$
 $SO_3(g)$ $\Delta H = -98 \text{ kJ·mol}^{-1}$ 。回答下列问题:

(1) 钒催化剂参与反应的能量变化如图(a)所示,V₂O₅(s)与 SO₂(g)反应生成 VOSO₄(s)和 V₂O₄(s)的热化学方程式为: _____。

- (2)当 $SO_2(g)$ 、 $O_2(g)$ 和 $N_2(g)$ 起始的物质的量分数分别为 7.5%、10.5%和 82%时,在 0.5MPa、2.5MPa 和 5.0MPa 压强下, SO_2 平衡转化率 α 随温度的变化如图(b)所示。反应在 5.0MPa、550℃时的 α =______,判断的依据是_____。影响 α 的因素有______。
- (3)将组成(物质的量分数)为 2m% $SO_2(g)$ 、m% $O_2(g)$ 和 q% $N_2(g)$ 的气体通入反应器,在温度 t、压强 p 条件下进行反应。平衡时,若 SO_2 转化率为 α ,则 SO_3 压强为______,平衡常数 K_p =_____(以分压表示,分压=总压×物质的量分数)。
 - (4) 研究表明, SO₂催化氧化的反应速率方程为:

$$v=k(\frac{\alpha}{\alpha}-1)^{0.8}(1-n\alpha')$$

式中: k 为反应速率常数,随温度 t 升高而增大; α 为 SO_2 平衡转化率, α '为某时刻 SO_2 转化率,n 为常数。在 α '=0.90 时,将一系列温度下的 k、 α 值代入上述速率方程,得到 v~t 曲线,如图(c)所示。

曲线上v最大值所对应温度称为该 α '下反应的最适宜温度 t_m 。 $t< t_m$ 时,v逐渐提高; $t> t_m$ 后,v逐渐下降。原因是

11. [化学——选修 3: 物质结构与性质] (15 分)

Goodenough 等人因在锂离子电池及钴酸锂、磷酸铁锂等正极材料研究方面的卓越贡献而获得 2019 年诺贝尔化学奖。回答下列问题:

- (1) 基态 Fe²⁺与 Fe³⁺离子中未成对的电子数之比为。
- (2) Li 及其周期表中相邻元素的第一电离能(/₁)如表所示。/₁(Li)> /₁(Na),原因是_____。/₁(Be)> /₁(B)> /₁(Li),原因是_____。
 - (3)磷酸根离子的空间构型为 ,其中 P的价层电子对数为 、杂化轨道类型为 。
- (4) $LiFePO_4$ 的晶胞结构示意图如(a)所示。其中 O 围绕 Fe 和 P 分别形成正八面体和正四面体,它们通过共项点、共棱形成空间链结构。每个晶胞中含有 $LiFePO_4$ 的单元数有_____个。

电池充电时,LiFeO₄脱出部分Li⁺,形成Li_{1-x}FePO₄,结构示意图如(b)所示,则 x=_____,n(Fe²⁺):n(Fe³⁺)=____。

12. [化学——选修 5: 有机化学基础] (15 分)

有机碱,例如二甲基胺(NH)、苯胺(NH₂),吡啶(),等,在有机合成中应用很普遍,目前"有机超强碱"的研究越来越受到关注,以下为有机超强碱 F 的合成路线:

己知如下信息:

$$\begin{array}{c|c} R^1 & Cl & \text{NaOH} \\ \textcircled{2}R^2 & Cl_{\mathsf{+RNH_2}} & \xrightarrow{-2HCl} & R^1 \\ \end{array}$$

③苯胺与甲基吡啶互为芳香同分异构体

回答下列问题:

- (1) A 的化学名称为。
- (2) 由 B 生成 C 的化学方程式为____。
- (3) C 中所含官能团的名称为。
- (4) 由 C 生成 D 的反应类型为。
- (5) D 的结构简式为。
- (6) E的六元环芳香同分异构体中,能与金属钠反应,且核磁共振氢谱有四组峰,峰面积之比为 6:2:

2:1的有_____种,其中,芳香环上为二取代的结构简式为____。