Paper Number(s): E4.04

SC6

ISE4.9

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE UNIVERSITY OF LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING **EXAMINATIONS 2002**

MSc and EEE/ISE PART IV: M.Eng. and ACGI

ADVANCED DATA COMMUNICATIONS

Tuesday, 7 May 10:00 am

There are FOUR questions on this paper.

Answer THREE questions.

Corrected Copy

Time allowed: 3:00 hours

Examiners responsible:

First Marker(s):

Gurcan, M.K.

Second Marker(s): Constantinides, A.G.

Special Instructions for Invigilators: None

Information for candidates:

Useful equations

Suppose g(t) and G(f) are Fourier transform pairs such that

$$g(t) \Leftrightarrow G(f)$$

where

$$G(f) = \int_{-\infty}^{\infty} g(t) \exp(-j2 \pi f t) dt \text{ and}$$

$$g(t) = \int_{-\infty}^{\infty} G(f) \exp(j2 \pi f t) df.$$

Then the following Fourier transform relationships might be useful

$$g(t) = rect\left(\frac{t}{T}\right) \iff G(f) = T\operatorname{sinc}(fT)$$

$$g(t) = \frac{1}{2} \left[\delta(t - t_0) + \delta(t + t_0) \right] \iff G(f) = \cos(2 \pi f t_0)$$

$$g(t) = \sin(2\pi f_c t) \Leftrightarrow G(f) = \frac{1}{2j} [\delta(f - f_c) - \delta(f + f_c)]$$

$$g(t) = \delta(t) \Leftrightarrow G(f) = 1$$

$$x(t) = \operatorname{sinc}\left(\frac{t}{T}\right) \frac{\cos\left(\frac{\pi \alpha t}{T}\right)}{1 - \frac{4\alpha^{2} t^{2}}{T^{2}}} \quad \Leftrightarrow \quad X_{RC}(f) = \begin{cases} T, & 0 \le |f| \le \frac{1-\alpha}{2T} \\ \frac{T}{2} \left\{1 + \cos\left(\frac{\pi T}{\alpha}\left(|f| - \frac{1-\alpha}{2T}\right)\right)\right\}, & \frac{1-\alpha}{2T} < |f| \le \frac{1+\alpha}{2T}. \\ 0, & |f| > \frac{1+\alpha}{2T} \end{cases}$$

1. a) A Hadamard matrix is defined as a matrix whose elements are ± 1 and has row vectors which are pairwise orthogonal. In the case when n is a power of 2, an $n \times n$ Hadamard matrix is constructed by means of the recursion

$$H_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \quad \text{and} \quad H_{2n} = \begin{bmatrix} H_n & H_n \\ H_n & -H_n \end{bmatrix}.$$

i) Let c_i denote the i^{th} row of an $n \times n$ Hadamard matrix as defined above. [3] Show that the waveforms constructed as

$$s_i(t) = \sum_{k=1}^{n} c_{ik} p(t - k T_c), \qquad i = 1, 2, \dots, n$$

are orthogonal, where p(t) is an arbitrary pulse confined to the time interval $0 \le t \le T_c$.

- ii) Show that the n matched filters (or cross correlators) for the n waveforms $\{s_i(t)\}$ can be realised by a single filter (or correlator) matched to the pulse p(t) followed by n correlators using the code words $\{c_i\}$.
- b) The discrete sequence

$$r_k = \sqrt{\varepsilon_b} c_k + n_k$$
, $k = 1, 2, \dots, n$

represents the output sequence of samples from a demodulator, where $c_k = \pm 1$ are elements of one of two possible codewords $c_1 = \begin{bmatrix} 1,1,1,\ldots 1 \end{bmatrix}$ and $c_2 = \begin{bmatrix} 1,1,1,\ldots -1,-1-1,-1\ldots -1 \end{bmatrix}$. The codeword c_2 has w elements which are +1 and n-w elements which are -1, where w is some positive integer. The noise sequence $\{n_k\}$ is white Gaussian with variance σ^2 . The term ε_b is the bit energy.

- i) What is the optimum maximum-likelihood sequence detector for the two possible transmitted signals?
- ii) Determine the probability of error as a function of parameter $(\sigma^2, \varepsilon_b, w)$. [2]
- iii) What is the value of w that minimises the error probability? [2]
- Consider the four-phase and eight-phase signal constellations shown in Figure 1.1.

 Determine the radii r_1 and r_2 of the circles such that the distance between two adjacent points in the two constellations is d. From this result, determine the additional transmitted energy required in the 8-PSK signal to achieve the same error probability as the four-phase signal at high SNR where the probability of error is determined by errors in selecting adjacent points.

Ouestion continued over

Figure 1.1

In a MSK signal, the initial state for the phase is either 0 or π radians. Determine the terminal phase state for the following four input pairs of input data (a) 00, (b)
 [3]
 01, (c) 10, (d) 11.

2. a) Consider a four phase PSK signal that is represented by the equivalent lowpass signal.

$$v(t) = \sum_{n} a_n \ g(t - nT)$$

where a_n takes on one of the four possible values $\frac{\pm 1 \pm j}{\sqrt{2}}$ with equal probability.

The sequence of information symbols $\{a_n\}$ is statistically independent.

i) Determine and sketch the power-spectral density of v(t) when

$$g(t) = \begin{cases} A, & 0 \le t \le T \\ 0, & \text{otherwise} \end{cases}$$

ii) Repeat part i) when

$$g(t) = \begin{cases} A \sin \frac{\pi t}{2}, & 0 \le t \le T \\ 0, & \text{otherwise} \end{cases}.$$

b) The frequency-response characteristics of a low-pass channel can be approximated by

$$H(f) = \begin{cases} 1 + \alpha \cos 2\pi & f \ t_0, & |\alpha| < 1, & |f| \le W \\ 0, & \text{otherwise} \end{cases}$$

where W is the channel bandwidth. An input signal s(t) whose spectrum is band limited to W Hz is passed through the channel.

- i) Show that the filtered signal is given by $y(t) = s(t) + \frac{\alpha}{2} [s(t t_0) + s(t + t_0)].$ [2]
- Suppose the received signal y(t) is passed through a filter matched to s(t).

 Determine the output of the matched filter at t = kT, $k = 0, \pm 1, \pm 2, \ldots$ where T is the symbol duration.
- iii) What is the ISI pattern resulting from the channel if $t_0 = T$? [2]

[3]

[3]

c) Show that a pulse having the raised cosine spectrum given by

$$X_{RC}(f) = \begin{cases} T, & 0 \le |f| \le \frac{1-\alpha}{2T} \\ \frac{T}{2} \left\{ 1 + \cos\left(\frac{\pi T}{\alpha} \left(|f| - \frac{1-\alpha}{2T}\right)\right) \right\}, & \frac{1-\alpha}{2T} \le |f| \le \frac{1+\alpha}{2T} \end{cases}$$

$$0 \le |f| \le \frac{1-\alpha}{2T}$$

$$0 \le |f| \le \frac{1-\alpha}{2T}$$

$$|f| > \frac{1+\alpha}{2T}$$

satisfies the Nyquist criterion given by equation

$$x(nT) = \begin{cases} 1, & n = 0 \\ 0, & n \neq 0 \end{cases}$$

for any value of the roll-off factor α . Here n is an integer.

d) An M-ary Pulse Amplitude Modulation communication system transmits data at a rate of 4800 symbols/s over a channel with frequency (magnitude) response

$$|C(f)| = \frac{1}{\sqrt{1 + \left(\frac{f}{W}\right)^2}}$$
 for $|f| \le W$

where W=4800 Hz. The additive noise is zero-mean, white, Gaussian with power spectral density $N_0/2 = 10^{-15}$ W/Hz.

- Suppose that we select the filter at the transmitter to have the frequency response $G_T(f) = \frac{\sqrt{X_{RC}(f)}}{C(f)} \exp(-j2\pi f t_0)$. Here t_0 is a suitable delay to ensure casuality. Determine the magnitude of the transmitting and receiving filter characteristics.
- ii) Assume that the transmitting and receiving filters satisfy $|G_T(f)||G_R(f)| = X_{RC}(f).$ [2]

If the channel, C(f), is equalised by a zero forcing equaliser, determine the value of the noise variance at the sampling instants and the probability of error.

3 a) The convolution encoder shown in Figure 3.1 is used to send the data sequence

over a binary symmetric channel.

Figure 3.1

11011

Assume that the encoder is initialised with data 0 0 0.

- i) Draw the trellis diagram for the encoder. [3]
- ii) Produce the transmitted codeword. [3]
- iii) If the received sequence is [5]

11 01 01 10 01

using the Viterbi algorithm identify the surviving paths over a five symbol period and hence show how the Viterbi algorithm corrects the received sequence.

b) The truncated encoder given in part a is used in a soft decision system. The binary input discrete multi channel for this system is shown in Figure 3.2 together with the channel transition probabilities along with log-likelihood metrics for all the transitions.

$$ln[Pr(0 \mid 0)] = ln[Pr(3 \mid 1)] = ln[0.80] = -0.22$$

$$ln[Pr(1 \mid 0)] = ln[Pr(2 \mid 1)] = ln[0.15] = -1.90$$

$$ln[Pr(2 \mid 0)] = ln[Pr(1 \mid 1)] = ln[0.04] = -3.22$$

 $ln[Pr(3 \mid 0)] = ln[Pr(0 \mid 1)] = ln[0.01] = -4.61$

Figure 3.2
Use the trellis description of the encoder and the soft decision received sequence
32 21 33 32 02 32 03 to

- i) Produce the branch metrices and surviving paths over six symbol periods.
- ii) Decode the soft decision received sequence. [5]

[4]

- 4 a) A trellis-coded modulation system uses an 8-ary PAM signal set given by $\{\pm 1, \pm 3, \pm 5, \pm 7\}$ and the 4-state trellis encoder shown in Figure 4.1
 - i) Using the set partitioning rules, partition the signal set into four subsets.

[3] e [5]

ii) If the channel is additive white Gaussian noise, and at the output of the [5] matched filter the sequence (-0.2, 1.1, 6, 4, -3, -4.8, 3.3) is observed, what is the most likely transmitted sequence?

Figure 4.1

b) Design an OFDM system with the following requirements

[5]

- Bit rate 30Mbps.
- Tolerable delay spread 400 ns.
- Bandwidth less than 13 MHz.
- c) Suppose that a turbo encoder is described by the trellis shown in Figure 4.2 where we assume that the depth of the trellis for the received sequence is N stages and we are considering stage i.
 - i) Describe how the BJCR algorithm is used recursively to calculate the loglikelihood ratios.

[5] [2]

ii) Describe how the decoder bit error rate performance improves as the number of iterations increases.

Figure 4.2

First Examiner Dr. M.K. Gurean	Urcan Paper Code
.	Question 1a Page 2 out of
Question labels in left margin	Marks allocations in right margin
that is a sequence .	that is a sequence of impulses starting at tack
and wenghted by the	and weighted by the milior image scorping of
{ci}. Space	
S(4)= & Ck P(4-	54)= & Ck P(t-Kt)= P(t) * SC, (t-kt)
Fr. 1	K
ine tourier transform of the signal selt) is	f the signal sittle is
SCf)= P(f) & Ch	exp(-j2nfkz)
and therefore, the Fourier fransform of the	uries frans form of the
watered to st.	51 (3
11 (f) = S'(f) ex	> (- j211fT)= 5tg + xp(-j211ff
) \\ \(\(\frac{1}{2} \) \\ \(\frac{1}{2} \) \\\\(\frac{1}{2} \) \\\\\(\frac{1}{2} \) \\\\\(\frac{1}{2} \) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	= r(f) & ck exp (j 2nfkr) exp(-jinfnr)
\$(t) }d =	= p*(+) & Cn-i+1 exp(-j2nf((-i)1-c)
13) A (3) A =	
Thus the madeleast	(Jut)
as twe coscade of a	as the coscade of a clina in
response plt), matel	tile, with inpure
materies to the sier	matched to the cross rasponse g(t),
1) S 3 S = (1) R	1 K - 1

|--|

Advanced Data Communications 2002 MODEL ANSWER and MARKING SCHEME	Advanced Data Communications 2002 MODEL ANSWER and MARKING SCHEME	MODEL ANSWER and MARKING SCHEME
Prof. A.G. Constainides	First Examiner Dr. M.K. Gurcan Second Evening Port A.G. Constatinides	Paper Code
	Question labels in left margin	- R
The output of the matched filter at E=0.7 to 15 [ine optimal marsiman likelihood selects the sequence C_1 that minimizes the quantity $\lambda_1 = \frac{2}{8} (R_1 - R_2 C_1 k)^2$ The metrics of the two possible transmitted sequences are $\lambda_1 = \frac{2}{8} (R_1 - R_2 C_1 k)^2 + \frac{2}{8} (R_1 + R_2 C_2 k)^2$ $\lambda_2 = \frac{2}{8} (R_1 - R_2 C_2 k)^2 + \frac{2}{8} (R_1 + R_2 C_2 k)^2$ Since the first terms of the right side of the tright side of the proposed set to provide the optimal marsiman likelihood detector can base its Jecisions only on the last now received elements of Γ_1 that Γ_2 is Γ_3 in Γ_4 in Γ_4 in Γ_4 in Γ_5 in Γ_6 in	kelihood selects the mixes the quantity

	Advanced Data Cor	Advanced Data Communications 2002 Confidential MODEL ANSWER and MARKING SCHEME
First	First Examiner Dr. M.K. Gurcan	Paper Code
Secon	Second Examiner Prof. A.G. Constatinides	Question, 1b Page 5 out of
Quest	Question labels in left margin	Marks allocations in right margin
=	Since FR= (E, Cur+nk	[K=1/E Cik+1K, the probability of
-	error P.(e) C1) 15	o .
	P(e c,)= P(VE, (n-w)+ & AK <0)	-w)+ & a _K < 0)
	a <\	K=N+I
	1 (N) (1) (1) (1) (1) (1) (1) (1	
	The random variable	The random variable 1x = \$ 11 is zero-
	Mean Gaussian with	Mean Gaussian With Vorionce of
	Herce	(1) = 0 (1) = 0
	Re(5) =	P(c 2) = (2) (2) (2) (3)
	128 (n-14) O.	المرابع المرابع
	(m-w) = 1	(3-1)
	Similarly we find	1
-	P(e/4)= P(e/c1) and since two	and since two
	sequences are equiprobable	obable
	P(e) = 1 P(e/c2).	P(e) = 1 P(e/c2)+1 P(e/c1)=0 [(E6(n-w)]
<u> </u>	The probability of estra	The probability of error P(e) is minimised when
	implies that Sizers and	implies that Siz-Cz and thus the distance between
	THE SEGULACES IS ALL M	aximum porsible.

2000	The state of the s	Quantition 10 Dans to and 26
3600	Gecome Extendings 7.0. A.G. Constantinges	
Ones	Question labels in left margin	Marks allocations in right margin
	Heing the pythagorean theorem for the	in theorem for the
	four-phase constellation, we find	we find
	= 1, (=,p=1,1+1)	- PI-2
	The radius of the	The radius of the 8-Psk constellation is found
	using the cosine fole.	as the cosine rule into
	Thus the attitude of	2,-2/
	by the 8-PSK signal is	mitted power necoled
	P= 10 log10 2 d2 = 5.332948	= 5.33294B
	We obtain the some results if we use the	results st we use the
	ما معرود من	طر ع ا
	[W = 20 [] 2 SINE	
	whose is the sup	where (s is the ANR per symbol. In this case,
	schenes implies that	for the two signalling
	(4,5 51 1 T = P,5 510 1 T => 10 10 1, (4,5	1 Tr = > 10 10 1 6,5
	= 20 log Str	4 = 5.3329 4B.
	(4,5) 4 = (5,5) (4,5) 5 = 1 = 20 log Str	= 20 log Str 4 = 5.3329 dB.

Advanced Data Communications 2002
MODEL ANSWER and MARKING SCHEME

Auris all	to the symbols -1 and 4 respectively. The terminal phase of an MSK signal at time instant 1 is given by given by $\theta(n;a) = \prod_{i=1}^{k} \sum_{i=1}^{k} a_i + \theta_0$ Where θ_0 is the initial and q_k is II depending to the input bit at the time instant k. The following table shows $\theta(n;a)$ for two different values of $\theta_0(0,\pi)$, and four input pairs of data $\{00,01,10,11\}$	0 -1 -1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0
Second Examiner Prof. A.G. Constatinides Question labels in left margin We assume that the	phase of an MSK signal given by O (n;a) = IF & a ware by Whare O is the initial on the input bit at the following table shows different values of O(0,1).	3 0000 2 2 2 2

irst	First Examiner Dr. M.K. Gurcan	urcan Paper Code
, 96001	Second Examiner Prof. A.G. Constatinides	Question 2a Page 8 out of
⊘ ∎es	Question labels in left margin	Marks allocations in right margin
<u>(</u>	The owto worrelation for	The owto correlation function of the Information
	Symbols { a, } is	•
	Ra (K) = E (Q# A)	Ra (k) = E (Q# g, + n+1) = 1 x Q) 2 ((k) = 5(b)
	Thus, the power spectral lessity of u(t) is	ral lessity of v(t) is
	5v(f)= 1 5a(f)	>\(\(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{
	Where 6(f) = F (9(4))	What 6(f): F(9(1) 7: 111
	We obtain 16(4)12	we obtain 16(f) 12 - 12-16: 2/0-1
	$S_{\mathbf{v}}(f) = \mathbf{H}^{\mathbf{r}} \mathbf{r} S_{\mathbf{v}}(c^{\mathbf{r}}(f, T))$	(fT)
	\in	•
	-4 -3 -2 -1	5 %
	3¢ 9(4) = A. sin (nt	9(4) = A. str (nt) rect (t-1/2) tuen.
	9(f)= A [1/2 5 (f-1/4) - 1/2]	9(4)= A [23 S (f-4) - 13 S (++4)] * T sine (fT) exp(-3 2 M/2)
<u></u>	[7+3)5-(7-3)5] ==	114 11 10x 3(1) 20 15 \$ \(\left(\frac{7}{2}+\frac{1}{2}\) 5 - \(\frac{7}{1}-\frac{1}{2}\) \\ \frac{2}{4} =
	= = = = = = = = = = = = = = = = = = =	= = = = = = = = = = = = = = = = = = =
	٠.	1 Sing 1 () 1 ()
	14. 17 - 1	(1(2-1)) (1(2)-1) (1/2)

Advanced Data Communications 2002 MODEL ANSWER and MARKING SCHEME		Confidential
First Examiner Dr. M.K. Gurcan Second Examiner Prof. A.G. Constatinides	Paper Code Question 2b Page 9 out of	
Question labels in left margin	Marks allocations in right margin	argin
and the power spectral dossity of the	sity of the	
$\leq (f) = \frac{\hbar^2 T}{2} \left[Sinc^2 \left((f + \frac{1}{4}) T \right) + Sinc^2 \left((f - \frac{1}{4}) T \right) \right]$	1 (1 1-4)+>:4 (1 1)	
- 25inc ((f+1/T)	- 25inc ((f+4)T) sinc ((f-4)T) cos #7	
the plot of 50 (f) for two special values of the time interval T. The amplitude of	two special values the amplitude of	
the signal A was set to 1 for both causes.	o I for both cases.	
ر ار ار ار ار	ه د	
\leftarrow	1=1.	
	1 - 1 - 2 -	
10 12 frequery.	المعاصلة	হ)

Advanced Data Communications 2002 MODEL ANSWER AND MARKING SCHEME

) ues		
	Question Isbels in left margin	Marks allocations in right margin
©	taking the Invoce four	taking the invere fourier transform of Hit), we obstain
	h(t)= 5 [H(t)]=	hit1= 5 [4(f)] = 541+ \$ \$(4-4)+ \$ 5(6+4)
	Herce	ı
	9 (4) * (4) \$ ~ (4) R	8(t)= s(t) #h(t)= s(t) + \$ s(t-ty+\$ s(t+to)
	-111-	
<u> </u>	If the signal sit) is use	If the signal sit) is used to modulate the converse
	{ an}, then the transmitted signal	d signal
	441= & an s(k- AT)	
	The second	
	hit), Heace	hit). Herce
	3(t)= 4(t) # (t)= (50	8(t)= 4 (t)\$ h(t) = (≥ on s(t-nT) *(3(11+ x(11-6)
		+ & S(t+to))
	7 2 N	3 / S
	Name of the All	N=-8 N=-1 2 N=-8 N=-17 + 2 2 N=-17 N
	itus, the output of the	itus, the output of the matched filter set) at
	The time instant ty Fs	. I
	with, 2 an [s(7-17)s(2-t,) et	nt) 5 (2-4,) dt
	+ MIK A A S A A S A A S A A A A A A A A A A	+ 15 S an / S (?. to -nT) > (?-t, NT)
-	8	8

Second Examiner Dr. M.K.G. Second Examiner Prof. A.G. Question labels in left marking three thre	Examiner Dr. M.K. Gurcan Examiner Prof. A.G. Constatinides The second	Examiner Dr. M.K. Gurcan Examiner Prof. A.G. Constatinides Question 2b Page 11 out of marks in left margin Marks allocations in right margin If we denote the signal 5 (t) \$ s(t) by x(t), then the output of the marked filter at
iii) Evi	in left markin Ne denote the stan the output of the KT is (KT): San X(KT) 1 R San X(KT)	Question 2b Page 11 out of Marks allocations in right marg a\ 5(t)\phs(t)\bights(t)\bights(t), \alpha mathed filter at
The tree to the state of the st	in let maryin Ne denote the sign the output of the KT 15 (KT): San X (KT) 1 2 2 an X (KT)	Marks allocations in right marg a s (t) & s(t) by x(t), c mathed pilter at
	the denote the sten the sten the ET is an X(kT) = \int an X(kT	al s(t)*s(t) by x(t), a mathed filter at
	the output of the kT Is (KT): \sqrt{x} an x (KT) + \sqrt{x} an x (KT) + \sqrt{x} an x (KT)	e makined pilter at
	(kT) = \int an x (kT) =	
· · · · · · · · · · · · · · · · · · ·	1(K1) = 2 an X (KT 1 = 2 an X (KT	
V	+ 18 % 0, x(kT.	-NT)
	2 Mars	() + X 8 × (; e ,)
		12 N. 15 14 TO - 11
,	with ter T and Kr. Courton, we obtain	with ter T and Kr n in the premises
	WE - GILBOT & On XIC-N	X K-1
	12 ar xr-1 + x2	12 ak 12-1 + 25 an xkn-1+2 ak
	+ X X 20 X + 2 X 20 X K-1+1	+k
	z 9k (x, +k x, +	= 9k (Ko+ 12 x + 2 x) + 5 an [x + 12 k-11
J	The term inder the summation	The term inder the summation is the

	The pulse x(t) howing the ralsed cosine speckrum is $x(t) = \sin c(t/\tau) \frac{\cos(x \cot)}{1 + 4x^2t^2/\tau^2}$	The function sinc(t) is I when t= 0 and 0 when t= 10 the other hand	$g(t) = \frac{605 (RNt)}{1 - 40^{1}t^{3}} = \begin{cases} 1 & t=0 \\ bounted & t\neq 0 \end{cases}$	The function get) needs to be checked only for twise values of touch that taket	E F C C C C C C C C C	1-48-6-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	' سفا
--	---	---	---	---	---	---	-------

Advanced Data Communications 2002 MODEL ANSWER and MARKING SCHEME

in 2c Page 12 out of
Marks allocations in right margin

Paper Code Question 2c

First Examiner Dr. M.K. Gurcan Second Examiner Prof. A.G. Constathildes

Question labels in left margin

First Examiner Dr. M.K. Gurcan Paper Code Second Examiner Prof. A.G. Constatinides Question 2d Page 13 out of	Question labels in left margin Marks allocations in right margin	Since W=1=4800, we use a signal pulle with a raised cosine spechum and m=1.	XAC (f) = I [1 + COS (AT [f])= T.COS (AH)	(GT(f))= 1 [1+(f)] 605 11 1f), (f) 54800A2	TA (f) = T. Cos NIFI, 1915 4800 Hz.	3	the noise at the output of zero forcing equaliser is given to 8 x	to [c(f)] = 1 (c(f)) (c(f)) (f) (f)	~ No (1+42) 605 1 XX 2X	1 /2 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =
First Examiner Second Examin	Question labe	· · · · · · · · · · · · · · · · · · ·				€				

Second Examiner Dr. M.K. Gurean Second Examiner Prof. A.S. Constaintibles The average transmithen power 1s	T 7 3	
T constantible to power that $\frac{1}{4}$ described by $\frac{1}{4}$ described by $\frac{1}{4}$ described by the channel is $\frac{1}{4}$ described by $\frac{1}{4}$ described by $\frac{1}{4}$ described $\frac{1}{$	Fusi Examiner Dr. M.K. Gurcan	
2 transmitted pow $\frac{1}{1}d^2$ $\int_{-1}^{2} G_{17}(f) ^2$ $\frac{1}{2}d$ $\int_{-1}^{2} X_{KC}(f) ^2$ $\frac{1}{2}d$ $\int_{-1}^{2} X_{KC}(f) ^2$ And expression for is given at $\frac{1}{2}$ siven at $\frac{1}{2}$ siven at $\frac{1}{2}$ siven at $\frac{1}{2}$ siven would be $\frac{1}{2}$ six in performs as $\frac{1}{2}$ $\frac{1}$	Necond Examiner Prof. A.G. Constatinides	Page 14
The average transmitted power 1s $P_{av} = \frac{(M_{-1})d^2}{3T} \int_{-\infty}^{\infty} G_{17}(f) ^2 df.$ $= \frac{(M_{-1})d^2}{3T} \int_{-\infty}^{\infty} X_{RL}(f) ^2 df.$ $= \frac{(M_{-1})d^2}{3T}$ The general expression for the probability of cror is given at $P_{m-2} = \frac{2(m-1)}{3} \otimes \left(\left \frac{3P_{av}T}{(M_{-1})(\frac{2}{3}-1/R^2)N_b} \right \right)$ If the channel is fixed, the argument of the governor of the loss in performance are to the non-iteal channel is given by the factor $2(\frac{2}{3}-\frac{1}{R^2}) = (1113 \text{ or } 0.944\text{c}.$	Question labels in left margin	Marks allocations in right margin
$P_{av} = \frac{(M^2-4) d^2}{3T} \int_{-\infty}^{\infty} G_{i_T}(f) ^2 df.$ $= \frac{(M^2-4) d^2}{3T}$ $= \frac{(M^2-4) d^2}{3T}$ The general expression for the probability of error is given at $P_{m-2} = \frac{2(m-1)}{2(m-1)} G_{ij} \left(\frac{3P_{av}T}{M^2-1} \right) \left(\frac{3P_{av}T}{M^2-1} \right) \int_{-\infty}^{\infty} f_{ij} \int_{-\infty}^$	The overage transmitte	A power 1s
$= \frac{(M^2-i)d}{3T} \int_{-\infty}^{\infty} x_{c}(f) ^{2}f.$ $= \frac{(M^2-i)d^{2}}{3T}$ fine general expression for the probability of crost is given at $P_{m,c} = \frac{2(m-1)}{2(m-1)} O_{m} \left(\left \frac{3P_{av}T}{M^{2}-1/R^{2}} \right \right)$ If the channel is fiseal, the argument of the Offence the loss in performance are to the mon-iseal channel is siven by the force $2(\frac{2}{3}-\frac{1}{R^{2}}) = [-1] \le 0$. Siven by the force $2(\frac{2}{3}-\frac{1}{R^{2}}) = [-1] \le 0$.	Par = (M2-1) d2 W	(A) 12 d F.
$= \frac{(M_{-1}) d^2}{3T}$ The general expression for the probability of error is given at $P_{m,2} = \frac{2(m-1)}{M} \cdot O \cdot \left(\sqrt{\frac{3 P_{m} T}{M^2 + 1}} \right)$ If the channel is fideal, the argument of the Granton would be $O = \frac{1}{M^2 + 1} \cdot O = \frac{1}{M^$	= (M2.1) d (1 x,	Le(fN)f.
The general expression for the probability of error is given as $P_{m-2} = \frac{2(m-1)}{M} \cdot O\left(\sqrt{\frac{3P_{w}T}{(M^2-1)N_{w}}}\right)$ If the channel is ideal, the argument of the Author would be $O(M^2-1)N_{w}$. Hence the loss in performance are to the non-ideal channel is given by the force $O(\frac{2}{3} - \frac{1}{R^2}) = [-1] \cdot O(\frac{2}{3} - \frac{1}{R^2}) = [-1] $	= (M2-1) d2	
$P_{m,2} = \frac{2(m-1)}{m} O\left(\left(\frac{3 P_{av} T}{(M_{s}^{2}-1)}\left(\frac{2}{3}-1/R^{2}\right)N_{b}\right)\right)$ If the channel is fideal, the argument of the Q function would be O O O O O O the O	The general expression	n for the probability
If the channel is facal, the argument of the a function would be 6 Paul (M²-1) No flence the loss in performance are to the non-iteal channel is given by the factor 2 ($\frac{2}{3} - \frac{1}{12}$) = [1113 or 0.544K.	Pm = 2(m-1) Q (3 Pay T
Hence the loss in performance are to the non-ideal channel is given by the factor $2\left(\frac{2}{3} - \frac{1}{12}\right) = 1.113$ or 0.54dg.	If the channel 75 fi the 9 function would	seal, the argument of
factor 2 (2 - 1) = (113 or 0.54dg.	the most iseal change	ectormente due to
	factor 2 (2 - 12)	= (113 or 0.54dK

Advanced Data Communications 2002 MODEL ANSWER and MARKING SCHEME

-1).43

4.5

Confidential

First Examiner Dr. M.K. Gurcan

Question labels in left margin

Considential		rgin Light	4.38
Confa	out of	Marks allocations in right margin	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2	e 21	tions in	8333) All 200 EE COL The Bucked with -4.8 3.3 -4.8 3
NS 20(HEME	Page	ks alloca	gration of conding of the all 28 3 3 4 he all 28 3 3 4 he all 28 4 houre been nonheers a nonheer are marked ar
Advanced Data Communications 2002 MODEL ANSWER and MARKING SCHEME	Paper Code Ouestion 4a	Mar	
mun' Mark	Pape Oue		April gives the oper porfilm for the de (-0.2) 1.1, 6, 4, -3 (+0.2) 1.1, 6, 4, -3 (+0.4) 1.4 A that a sequence I the exceder, The 1 indicate the minit and the broasmitted I the trousmitted I the formalited I the formality I
a Corr ER and			The transfer of the transfer o
d Dat L ANSW	atinides		that as that a that a that a that a the trans I the tran
vance Model	Dr. M.K. Gurcan Prof. A.G. Constatinides	틙	April Sives Loot 1.1 Ahat we had we the cood the coo
Ad	Dr. M.K. Gurcan Prof. A.G. Cons	left man	The next Revie si Where all gorithm Sequence (-0.2) We assume that stare and that the minates the indica to clear the en- the nodes indica of 1stance, and the marked with the parties that have noticed with the parties that have of 1stance and the marked with the parties dual have noticed with the parties dual have 1.1 6 1.44 144 1.45 1.1 6 1.44 144 1.45 1.1 6 1.22 1.33
		bels in	The next Whe bid Sequence We assum Stare to clear the node of istance marked of stance of istance for in a the form in a the for
	First Examiner	Question labels in left margin	
	£ 3	5	

	Advanced Data Co MODEL ANSWER	Advanced Data Communications 2002 Confidential MODEL ANSWER and MARKING SCHEME
First F	First Examiner Dr. M.K. Gurcan Second Examiner Prof. A.G. Constatinides	Paper Code Question 4b Page 22 out of
Quest	Question labels in left margin	Marks allocations in right margin
	Delay spead = 400 ns	٠٠ کې ٥٠
	Guard time = 4x	Guard time = 4x delay spread = 1.6 Ms.
	Symbol durations	Symbol durations 6 x 1.6 = 9.6 Ms.
	Sub carter Spaching	Sub carter spacing = 1 (5.6-1.6)100 = 125 kHz
	Number of bits per sambol	lodnes
	X. 1 = 30.10	30.10
	x= 288 bits.	
	USE 96 carriers Set the required Symbol	96 carriers and lande 3/4 to the required number of bits per
	3 36. n=288	288
	مر ۱۱ ۲	n= 4 bits per corrier
	24 = 16 agm is required Required transmission bundmidth 96x125 = 12 MHz < 13	4 = 16 aAM is required. red transmission bandwidth q6x125 = 12 MHz < 13 MHz
		The same of the sa

	Adv	anced Data Communications 20 MODEL ANSWER and MARKING SCHEME	.002 E	Confu	Confidential
Secon	Furst Examiner Dr. M.K. Gurcan Second Examiner Prof. A.G. Constatinides	Paper Code Question 4c	Page 23	fo mo	
Ones	Question labels in left margin	Marks all	Marks allocations in right margin	right ma	rgin.
. =	locks algerithm.				
	1.) initialize the algorithm with	algarithm w	<u>1</u>		
	K(0) = B(N) = 0 for all states. except start and finish states.	for all str h states.	ntes. e	xcept	
	2.) given prior probabilities of with, the	abilithes of u	۸(ڏ), ۱ بهو مو	Ve.	
	sequence calculate Sequence (3,5) = f(3, v4) P(4k,i)	na calculate 8, (3,5) = f(3, v4) P(4,1)	P (4	(J.	
	14 LLR (44) 15 gives	12 628	-		
-	P (44 = +1)	$P(u_{11} = \pm 1) = exp(-\frac{L(u_{11})/2}{1}) exp(u_{11} = \frac{L(u_{11})}{2})$	(1)/2) (4) (4)	1 3 C	(Z
	diso we have	77	È		
	("n)"B) t	f (34, 14,) = 1 1 (Sto (-1, (1, -4, 3))) ~~) &	ا ا براجهه	({}
	3.) Calculate ox (51) and B (5) wing	1 5 m (15)	k-1(5)	25	
	$\langle \Sigma \rangle^{-1} = \sum_{\alpha \in S} \langle \Sigma \rangle^{2} \rangle \wedge \langle \Sigma \rangle^{-1} \langle \Sigma \rangle$	لا (۶′۶) هاد-۱ ((7		
	(5) A (5,5) B (5)	(2,3) Pg (2)			
		7.1	İ		

		MODEL ANSWER at	MODEL ANSWER and MARKING SCHEME
First Examiner	mine	First Examiner Dr. M.K. Gurcan	Paper Code Onestion dr Page 24 and of
Question	la be	Question labels in left margin	allocations in r
	(3)	calculate the LLR for	7 Lev.
		L (41. 13) = Br (5/2)	[(41, 13) = le (5/3)=24,=+1 = (5') & (5') B(1)
	€ \	(s) From (f) calc	$ \leq \alpha_{k+1}(s^1) $
		16R = 6 (4K)	22R = Le (uk)= L(uk) 9) -L(uk)-Le 2
		71mm)= 4-61	a -prieri information about Uk.
	@) i	S A - Priori LCR
	1	and the sequence	^
			Jac Jack
		TAX TO SEE	34 Josepho
		2 o S	2 21 M