Compiladores Princípios, técnicas e ferramentas 2ª Edição

- Os analisadores descendentes são ajudados por duas funções First e Follow associadas à gramática.
- Elas permitem escolher qual produção aplicar com base no próximo símbolo de entrada
- permite ainda a recuperação de erro (follow).

FIGURA 4.15 O símbolo terminal c está em FIRST(A) e o símbolo terminal a está em FOLLOW(A).

First(X)

Conjunto de terminais que iniciam cadeias derivadas de X Regras:

- $1 \text{Se } X \text{ \'e terminal, } \text{First}(X) = \{X\}$
- 2 Se X é não-terminal e X \rightarrow Y1Y2... Yk é uma produção (k>=1), então acrescente a a First(X) se
- para algum i, a estiver em First(Yi) e ε estiver em todos os First(Y1...Yi-1) ... ou seja, os não-terminais anteriores levam a ε.
- Se ϵ está em First(Y_j) para todo j=1,2,...k então adicione ϵ em First(X).
 - Se Y1 não derivar ε, não acrescentar mais nada a First(X)
 - Se Y1 => ϵ , então adicionar First(Y2), e assim por diante.
- 3- Se $X \rightarrow ε$ é uma produção, então acrescente ε a First(X).

Follow(X)

Conjunto de terminais que *a* que podem aparecer imediatamente à direita de X em alguma forma sentencial.

Regras

- 1 Coloque \$ em Follow(S), onde S é o símbolo inicial da gramática e \$ é o marcador de final de entrada.
- 2 Se houver uma produção A \rightarrow αBβ, então tudo em First(β) exceto ε, está em follow(B).
- 3 Se houver uma produção A \rightarrow αB ou uma produção A \rightarrow αBβ, onde o First(β) com tem ε, então inclua o Follow(A) em Follow(B).

Princípios,técnicas e ferramentas

2ª Edição

Análise Sintática Descente (cont.)

Exemplo:

$$E \rightarrow T E'$$
 $E' \rightarrow +TE' \mid \epsilon$
 $T \rightarrow FT'$
 $T' \rightarrow *FT' \mid \epsilon$
 $F \rightarrow (E) \mid id$

Algoritmo para construção de uma tabela preditiva M[A,a] onde

M = matriz, A não-terminal e a é terminal ou \$ (final de cadeia)

Entrada = gramática G

Saída = tabela de análise M

Para cada produção A → a da gramática faça:

- 1. Para cada terminal a em First(A), inclua A-> α em M[A,a]
- 2. Se ϵ pertence a First(a), inclua $A \rightarrow a$ em M[A,b] para cada terminal b em Follow(A).

Se ϵ pertence a First(α) e \$ pertence a Follow(A), acrescente também A $\rightarrow \alpha$ em M[A,\$].

Após realizar os passos, as entradas vazias da matriz devem ser preenchidas com indicação de erro.

Gramáticas LL (1) – classe de gramáticas ao qual se pode implementar analisadores descendentes preditivos (recursivos) sem retrocesso.

LL(1) - L = cadeia de entrada lida da esquerda para a direita (Left-to-right)

L = derivação mais à esquerda (leftmost)

1 = uso de um símbolo a frente na entrada em cada passo para tomar decisões quanto à ação de análise.

Uma gramática é LL(1) se e somente se, sempre que $A \rightarrow a \mid \beta$ forem duas produções distintas de G, com as condições verdadeiras:

1 -First(α) e First(β) são conjuntos distintos

2 – Se ε está em First (β), então First(α) e Follow(A) são conjuntos distintos. Idem se acontecer o com First(α).

Princípios, técnicas e ferramentas 2º Edição

	\rightarrow	T E		
E'	\rightarrow	+TE	Ξ'	8
Т	\rightarrow	FT'		
T'	\rightarrow	*FT	٦ [3
		(E)		

Não	SÍMBOLO DE ENTRADA					
TERMINAL	id	+	*	()	\$
E	$E \rightarrow TE'$			$E \rightarrow TE'$		
E'		$E' \rightarrow +TE'$			$E' \rightarrow \epsilon$	$E' \rightarrow \epsilon$
T	$T \rightarrow FT'$			$T \rightarrow FT'$		
T'		$T' \rightarrow \epsilon$	$T' \rightarrow * FT'$		$T' \rightarrow \epsilon$	$T' \rightarrow \epsilon$
F	$F \rightarrow id$			$F \rightarrow (E)$		

FIGURA 4.17 Tabela M de análise para o Exemplo 4.32.

```
First(F) = First(T) = First(E) = \{ (, id) \}
First(E') = \{+, \epsilon\}
First(T') = \{*, \epsilon\}
```


Princípios, técnicas e ferramentas 2ª Edição

FIGURA 4.19 Modelo de um analisador sintático preditivo ditigido por tabela.

Princípios, técnicas e ferramentas 2ª Edição

```
define ip para que aponte para o primeiro símbolo de w; define X para ser o símbolo no topo da pilha; while ( X \neq \$ ){ /* pilha não está vazia */
        if ( X \notin a ) desempilha e avança ip;
        else if ( X \notin a ) desempilha e avança ip;
        else if ( X \notin a ) X \notin a imprime a produção X \notin a of X \notin a imprime a produção X \notin a of X \notin a imprime a produção X \notin a of X \notin a desempilha X \notin a imprime a produção X \notin a of X \notin a imprime a produção X \notin a of X \notin a of X \notin a desempilha X \notin a of X
```

FIGURA 4.20 Algoritmo do analisador preditivo.

 $E \rightarrow T E'$

 $T \rightarrow FT'$

 $E' \rightarrow +TE' \mid \epsilon$

T' → *FT' | ε

F → **(**E**)** | **id**

Não	SÍMBOLO DE ENTRADA					
TERMINAL	id	+	*	()	\$
E	$E \rightarrow TE'$			$E \rightarrow TE'$		
E'		$E' \rightarrow +TE'$			$E' \rightarrow \epsilon$	$E' \rightarrow \epsilon$
T	$T \rightarrow FT'$			$T \rightarrow FT'$		
T'		$T' \rightarrow \epsilon$	$T' \rightarrow * FT'$		$T' \rightarrow \epsilon$	$T' \rightarrow \epsilon$
F	$F \rightarrow id$			$F \rightarrow (E)$		

entas dição

FIGURA 4.17 Tabela M de análise para o Exemplo 4.32.

Ação	Entrada	Pilha	Casamento
	id + id * id\$	E\$	
imprime $E \to TE'$	id + id * id\$	TE'\$	
imprime $T \to FT$	id + id * id\$	FT'E'\$	
imprime $F \rightarrow id$	id + id * id\$	id $T'E'$ \$	
casa id	+ id * id\$	T'E'\$	id
imprime $T' \rightarrow \epsilon$	+ id * id\$	E'\$	id
imprime $E' \rightarrow + TE$	+ id * id\$	+ TE'\$	id
casa +	id * id\$	TE'\$	id +
imprime $T \to FT$	id * id\$	FT'E'\$	id +
imprime $F \rightarrow id$	id * id\$	id $T'E'$ \$	id +
casa id	* id\$	T'E'\$	id+id
imprime $T' \to *FT'$	* id\$	* <i>FT'E'</i> \$	id+id
casa ^s	id\$	FT'E'\$	id+id *
imprime $F \rightarrow id$	id\$	id $T'E'$ \$	id+id *
casa id	\$	T'E'\$	id+id * id
imprime $T' \to \epsilon$	\$	E'\$	id+id * id
imprime $E' \rightarrow \epsilon$	\$	\$	id+id* id

FIGURA 4.21 Movimentos efetuados por um analisador sintático preditivo para id + id * id.

Compiladores Princípios, técnicas e ferramentas

2ª Edição

Exercícios

- 1.Faça a análise seguindo a tabela do slide anterior para a cadeia (id + id) * id
- 2. Calcule as relações First e Follow para cada não terminal da gramáticas abaixo

G1:	G2:
S → abA E A → aSaa b	$S \rightarrow AS \mid BA$ $A \rightarrow aB \mid C$ $B \rightarrow ba \mid d$ $C \rightarrow c$

Princípios, técnicas e ferramentas 2º Edição

Exercícios

3. Calcule as relações First e Follow para cada não terminal da gramática e construa a tabela de análise preditiva para ela. Proponha uma cadeia e analise-a segundo o método descendente preditivo.

```
<Cmdos> ::= <Cmdo> ; <Cmdos> | <Cmdo> <Cmdo> ::= if exp then <Cmdo> <Pelse> | for id := exp to exp do <Cmdo> | while exp do <Cmdo> | id := exp | begin <Cmdos> end <Pelse> ::= else <Cmdo> | ε
```

