Index of notation

Future references are subject to change.

Notation	Meaning	Reference	Page
$x \in A$	x is an element of A	5.1.1	1
$x \not\in A$	x is not an element of A	5.1.1	1
N	set of all natural numbers (including 0)	5.1	1
$\mathbb Z$	set of all integers	5.1	1
\mathbb{Q}	set of all rational numbers	5.1	1
\mathbb{R}	set of all real numbers	5.1	1
\mathbb{Z}^+	set of all positive integers	5.1	1
\mathbb{Z}^-	set of all negative integers	5.1	1
$\mathbb{Z}_{\geqslant 0}$	set of all non-negative integers	5.1	1
$\{x_1, x_2, \ldots, x_n\}$	set whose only elements are x_1, x_2, \ldots, x_n	5.1.3	1
$\{x_1,x_2,x_3,\dots\}$	set whose only elements are x_1, x_2, x_3, \ldots	5.1.3	1
$\{x \in U : P(x)\}$	set of all $x \in U$ such that $P(x)$ is true	5.1.5	2
$\{x \in U \mid P(x)\}$	set of all $x \in U$ such that $P(x)$ is true	5.1.6	2
Ø	empty set	5.1.15	3
$A \subseteq B$	A is a subset of B	5.1.16	3
$A \subsetneq B$	A is a proper subset of B	5.1.19	3
$\mathcal{P}(A)$	power set of A	5.2.1	4
A	cardinality of A	5.2.3	4
(x,y)	ordered pair consisting of x, y	5.2.6	4
$A \times B$	Cartesian product of A and B	5.2.8	4
(x_1,x_2,\ldots,x_n)	ordered <i>n</i> -tuple consisting of x_1, x_2, \ldots, x_n	5.2.11	4
$A_1 \times A_2 \times \cdots \times A_n$	Cartesian product of A_1, A_2, \ldots, A_n	5.2.13	4
A^n	$A \times A \times \cdots \times A$ with <i>n</i> -many A's	5.2.13	4
$A \cup B$	union of A and B	5.3.1	5
$A \cap B$	intersection of A and B	5.3.1	5
$A \setminus B$	complement of B in A	5.3.1	5
\overline{B}	complement of B	5.3.3	5
$f \colon A \to B$	f is a function from A to B	6.1.1	8
f(x)	the element that f assigns x to	6.1.1	8
$f \colon x \mapsto y$	f maps x to y	6.1.1	8
id_A	identity function on A	6.1.4	8
x	absolute value of x	6.1.6	9
$\lfloor x \rfloor$	floor of x	6.1.9	9
$\lceil x \rceil$	ceiling of x	6.1.9	9
$g\circ f$	g composed with f	6.1.22	10
f(X)	(setwise) image of X under f	6.2.1	12
$f^{-1}(Y)$	(setwise) preimage of Y under f	6.2.1	12
f^{-1}	inverse of f	6.2.17	14

Notation	Meaning	Reference	Page
$\overline{\mathrm{WFF}(\Sigma)}$	set of all well-formed formulas over Σ (non-standard notation)	7.3.12	25
$\mathrm{WFF}^+(\Sigma)$	set of all positive well-formed formulas over Σ (non-standard notation)	7.3.16	26
$d \mid n$	d divides n	8.1.1	27
$d \operatorname{\underline{div}} n$	quotient when n is divided by d	8.1.17	28
$d \bmod n$	remainder when n is divided by d	8.1.17	28
$(a_{\ell}a_{\ell-1}\ldots a_0)_b$	base-b representation of a positive integer	8.3.1	31
$\gcd(m,n)$	greatest common divisor of m and n	8.4.1	33
$a \equiv b \pmod{n}$	a is congruent to b modulo n	8.6.1	37
$\overline{x R y}$	x is R related to y	9.1.1	42
$y R^{-1} x$	x R y	9.1.4	42
$[x]_R$	equivalence class of x with respect to R	9.2.10	43
A/R	$\{[x]_R : x \in A\}$	9.2.10	43

Index of named propositions

Future references are subject to change.

Named proposition	Reference	Page
Identity Laws	Theorem 5.3.5	5
Universal Bound Laws	Theorem $5.3.5$	5
Idempotent Laws	Theorem $5.3.5$	5
Double Complement Law	Theorem $5.3.5$	5
Commutative Laws	Theorem $5.3.5$	5
Associative Laws	Theorem 5.3.5	5
Distributive Laws	Theorem $5.3.5$	5
De Morgan's Laws	Theorem $5.3.5$	5
Absorption Laws	Theorem $5.3.5$	5
Complement Laws	Theorem $5.3.5$	5
Set Difference Law	Theorem $5.3.5$	5
Inclusion–Exclusion Principle	Theorem 5.3.12	7
Associativity of function composition	Theorem 6.1.26	11
Mathematical Induction (MI)	Principle 7.1.1	18
Strong Mathematical Induction (Strong MI)	Principle 7.2.1	20
Strong MI, alternative formulation	Theorem 7.2.7	21
Well-Ordering Principle	Theorem 7.2.9	22
Structural induction over $2\mathbb{Z}_{\geqslant 1}$	Theorem $7.3.10$	25
Structural induction over $WFF(\Sigma)$	Theorem $7.3.15$	25
Structural induction over WFF ⁺ (Σ)	Theorem 7.3.18	26
Transitivity of divisibility	Proposition 8.1.12	28
Closure Lemma (non-standard name)	Lemma 8.1.14	28
Division Theorem	Theorem 8.1.16	28
Prime Divisor Lemma (non-standard name)	Lemma 8.2.6	30
Euclidean Algorithm	Algorithm 8.4.8	34
Bézout's Lemma	Theorem 8.5.2	35
Euclid's Lemma	Theorem 8.5.5	35
Fundamental Theorem of Arithmetic	Theorem 8.5.9	36
Alternative definitions of congruence	Lemma 8.6.2	37