

Automorphism Groups of Compact Complex Surfaces Recent Development in Algebraic Geometry

Jia Jia August 30, 2022

National University of Singapore

Table of Contents

1. T-Jordan Property

2. Tits Alternative

3. Virtual Derived Length

Definition

A group G is **Jordan** if it has "almost" abelian finite subgroups:

there is a constant J, such that every finite subgroup H of G has a (normal) abelian subgroup H_1 with the index $[H:H_1] \leq J$.

It is named after:

Theorem (C. Jordan, 1878)

The general linear group $GL_n(\mathbb{C})$ is Jordan.

Jordan's theorem has been generalised to

Theorem (Boothby-Wang, 1964)

Any connected Lie group is Jordan.

Definition

A group G is **Jordan** if it has "almost" abelian finite subgroups:

there is a constant J, such that every finite subgroup H of G has a (normal) abelian subgroup H_1 with the index $[H:H_1] \leq J$.

It is named after:

Theorem (C. Jordan, 1878)

The general linear group $GL_n(\mathbb{C})$ is Jordan.

Jordan's theorem has been generalised to

Theorem (Boothby-Wang, 1964)

Any connected Lie group is Jordan.

Definition

A group G is **Jordan** if it has "almost" abelian finite subgroups:

there is a constant J, such that every finite subgroup H of G has a (normal) abelian subgroup H_1 with the index $[H:H_1] \leq J$.

It is named after:

Theorem (C. Jordan, 1878)

The general linear group $GL_n(\mathbb{C})$ is Jordan.

Jordan's theorem has been generalised to

Theorem (Boothby-Wang, 1964)

Any connected Lie group is Jordan.

Question (Popov)

Is the (biholomorphic) automorphism group Aut(X) Jordan for

- · an algebraic manifold (variety)?
- · a compact complex manifold (space)?

Known results

Theorem

Aut(X) is Jordan for

(Meng-Zhang, 2018) projective manifold (variety) X, and

(J. Kim, 2018) compact Kähler manifold (variety) X.

Question (Popov)

Is the (biholomorphic) automorphism group Aut(X) Jordan for

- an algebraic manifold (variety)?
- a compact complex manifold (space)?

Known results:

Theorem

Aut(X) is Jordan for

- · (Meng-Zhang, 2018) projective manifold (variety) X, and
- · (J. Kim, 2018) compact Kähler manifold (variety) X

Question (Popov)

Is the (biholomorphic) automorphism group Aut(X) Jordan for

- · an algebraic manifold (variety)?
- a compact complex manifold (space)?

Known results:

Theorem

Aut(X) is Jordan for

- · (Meng-Zhang, 2018) projective manifold (variety) X, and
- · (J. Kim, 2018) compact Kähler manifold (variety) X.

Theorem (Prokhorov-Shramov, 2021)

Let X be a smooth compact complex surface. Then the automorphism group $\operatorname{Aut}(X)$ of X is Jordan.

A compact complex space is in Fujiki's class $\mathcal C$ if it is the meromorphic image of a compact Kähler manifold.

Theorem (Meng-Perroni-Zhang, 2022)

Let X be a compact complex space in Fujiki's class C. Then $\operatorname{Aut}(X)$ is Jordan.

Idea: $\operatorname{Aut}(X)^*|_{H^2(X,\mathbb{Q})}$ has bounded finite subgroups:

$$1 \longrightarrow \operatorname{Aut}_{\tau}(X) \longrightarrow \operatorname{Aut}(X) \longrightarrow \operatorname{Aut}(X)^{*}|_{H^{2}(X,\mathbb{Q})} \longrightarrow 1.$$

Lemma

Aut(X) is Jordan iff so is $Aut_{\tau}(X)$

Theorem (Prokhorov-Shramov, 2021)

Let X be a smooth compact complex surface. Then the automorphism group $\operatorname{Aut}(X)$ of X is Jordan.

A compact complex space is in Fujiki's class $\mathcal C$ if it is the meromorphic image of a compact Kähler manifold.

Theorem (Meng-Perroni-Zhang, 2022)

Let X be a compact complex space in Fujiki's class C. Then Aut(X) is Jordan.

Idea: $\operatorname{Aut}(X)^*|_{H^2(X,\mathbb{Q})}$ has bounded finite subgroups:

$$1 \longrightarrow \operatorname{Aut}_{\tau}(X) \longrightarrow \operatorname{Aut}(X) \longrightarrow \operatorname{Aut}(X)^{*}|_{H^{2}(X,\mathbb{Q})} \longrightarrow 1.$$

Lemma

Aut(X) is Jordan iff so is $Aut_{\tau}(X)$.

Theorem (Prokhorov-Shramov, 2021)

Let X be a smooth compact complex surface. Then the automorphism group $\operatorname{Aut}(X)$ of X is Jordan.

A compact complex space is in Fujiki's class $\mathcal C$ if it is the meromorphic image of a compact Kähler manifold.

Theorem (Meng-Perroni-Zhang, 2022)

Let X be a compact complex space in Fujiki's class C. Then Aut(X) is Jordan.

Idea: $\operatorname{Aut}(X)^*|_{H^2(X,\mathbb{Q})}$ has bounded finite subgroups:

$$1 \longrightarrow \operatorname{Aut}_{\tau}(X) \longrightarrow \operatorname{Aut}(X) \longrightarrow \operatorname{Aut}(X)^{*}|_{H^{2}(X,\mathbb{Q})} \longrightarrow 1.$$

Lemma

Aut(X) is Jordan iff so is $Aut_{\tau}(X)$

Theorem (Prokhorov-Shramov, 2021)

Let X be a smooth compact complex surface. Then the automorphism group $\operatorname{Aut}(X)$ of X is Jordan .

A compact complex space is in Fujiki's class $\mathcal C$ if it is the meromorphic image of a compact Kähler manifold.

Theorem (Meng-Perroni-Zhang, 2022)

Let X be a compact complex space in Fujiki's class C. Then $\operatorname{Aut}(X)$ is Jordan.

Idea: $\operatorname{Aut}(X)^*|_{H^2(X,\mathbb{Q})}$ has bounded finite subgroups:

$$1 \longrightarrow \operatorname{\mathsf{Aut}}_\tau(X) \longrightarrow \operatorname{\mathsf{Aut}}(X) \longrightarrow \operatorname{\mathsf{Aut}}(X)^*|_{H^2(X,\mathbb{Q})} \longrightarrow 1.$$

Lemma

Aut(X) is Jordan iff so is $Aut_{\tau}(X)$.

Let $Aut_0(X)$ be the neutral component of Aut(X). Then

$$\operatorname{Aut}_0(X) \leq \operatorname{Aut}_{\tau}(X).$$

Fix a big (1, 1)-class $[\alpha] \in H^{1,1}(X, \mathbb{R})$.

$$\operatorname{\mathsf{Aut}}_{[\alpha]}(X) \coloneqq \{g \in \operatorname{\mathsf{Aut}}(X) \mid g^*[\alpha] = [\alpha]\} \ge \operatorname{\mathsf{Aut}}_\tau(X).$$

Theorem (Meng-J, 2022)

$$[\operatorname{\mathsf{Aut}}_{[\alpha]}(X):\operatorname{\mathsf{Aut}}_0(X)]<\infty.$$

So $\operatorname{Aut}(X)/\operatorname{Aut}_0(X)$ has bounded finite subgroups and hence

Lemma

Aut(X) is Jordan iff so is $Aut_0(X)$.

Theorem (Lee, 1976)

Let G be a connected Lie group. Then there is a constant T = T(G) such that every torsion subgroup H of G contains a (normal) abelian subgroup H_1 of index $[H:H_1] \leq T$.

For any group G satisfies the theorem above, we say that G has the **T-Jordan** property. Using the equivariant Kähler model for Fujiki's class, we proved

Theorem (Meng-J, 2022)

Let X be a compact complex space in Fujiki's class C. Then Aut(X) is T-Jordan.

Theorem (Lee, 1976)

Let G be a connected Lie group. Then there is a constant T = T(G) such that every torsion subgroup H of G contains a (normal) abelian subgroup H_1 of index $[H:H_1] \leq T$.

For any group G satisfies the theorem above, we say that G has the **T-Jordan** property.

Using the equivariant Kähler model for Fujiki's class, we proved

Theorem (Meng-J, 2022)

Let X be a compact complex space in Fujiki's class C. Then Aut(X) is T-Jordan.

Theorem (Lee, 1976)

Let G be a connected Lie group. Then there is a constant T = T(G) such that every torsion subgroup H of G contains a (normal) abelian subgroup H_1 of index $[H:H_1] \leq T$.

For any group *G* satisfies the theorem above, we say that *G* has the **T-Jordan** property. Using the equivariant Kähler model for Fujiki's class, we proved

Theorem (Meng-J, 2022)

Let X be a compact complex space in Fujiki's class C. Then $\operatorname{Aut}(X)$ is T-Jordan.

Basic Properties

Lemma

Consider the exact sequence of groups:

$$1 \longrightarrow N \longrightarrow G \longrightarrow H$$
.

- If N is T-Jordan and H has bounded torsion subgroups, then G is T-Jordan.
- Assume that the exact sequence is also right exact. If N is a torsion group and G is T-Jordan, then H is T-Jordan.

A smooth compact complex surface is called **minimal**, if it does not contain any (-1)-curve.

Theorem

Every smooth compact complex surface has a minimal model

Proposition

Let X be a minimal surface. Suppose that X is neither rational nor ruled. Then X is the unique minimal model in its class of bimeromorphic equivalence, and Bim(X) = Aut(X).

Corollary

$$\operatorname{Aut}(X) \leq \operatorname{Bim}(X) = \operatorname{Bim}(X') = \operatorname{Aut}(X')$$

A smooth compact complex surface is called **minimal**, if it does not contain any (-1)-curve.

Theorem

Every smooth compact complex surface has a minimal model.

Proposition

Let X be a minimal surface. Suppose that X is neither rational nor ruled. Then X is the unique minimal model in its class of bimeromorphic equivalence, and Bim(X) = Aut(X).

Corollary

$$\operatorname{Aut}(X) \leq \operatorname{Bim}(X) = \operatorname{Bim}(X') = \operatorname{Aut}(X')$$

A smooth compact complex surface is called **minimal**, if it does not contain any (-1)-curve.

Theorem

Every smooth compact complex surface has a minimal model.

Proposition

Let X be a minimal surface. Suppose that X is neither rational nor ruled. Then X is the unique minimal model in its class of bimeromorphic equivalence, and Bim(X) = Aut(X).

Corollary

$$\operatorname{Aut}(X) \leq \operatorname{Bim}(X) = \operatorname{Bim}(X') = \operatorname{Aut}(X')$$

A smooth compact complex surface is called **minimal**, if it does not contain any (-1)-curve.

Theorem

Every smooth compact complex surface has a minimal model.

Proposition

Let X be a minimal surface. Suppose that X is neither rational nor ruled. Then X is the unique minimal model in its class of bimeromorphic equivalence, and Bim(X) = Aut(X).

Corollary

$$\operatorname{Aut}(X) \leq \operatorname{Bim}(X) = \operatorname{Bim}(X') = \operatorname{Aut}(X').$$

Table 1: Kähler minimal smooth compact complex surfaces

class of the surface X	$\kappa(X)$	a(X)	$b_1(X)$	e(X)
rational surfaces	$-\infty$	2	0	3,4
ruled surfaces of genus $g \ge 1$	$-\infty$	2	2 <i>g</i>	4(1-g)
complex tori	0	0, 1, 2	4	0
K3 surfaces	0	0, 1, 2	0	24
Enriques surfaces	0	2	0	12
bielliptic surfaces	0	2	2	0
properly elliptic surfaces	1	2	$\equiv 0 \bmod 2$	≥ 0
surfaces of general type	2	2	$\equiv 0 \bmod 2$	> 0

Non-Kähler Surfaces

Table 2: non-Kähler minimal smooth compact complex surfaces

class of the surface X	$\kappa(X)$	a(X)	b ₁ (X)	b ₂ (X)	e(X)
surfaces of class VII	$-\infty$	0,1	1	≥ 0	≥ 0
primary Kodaira surfaces	0	1	3	4	0
secondary Kodaira surfaces	0	1	1	0	0
properly elliptic surfaces	1	1	$\equiv 1 \bmod 2$		≥ 0

Let X be a compact complex surface of algebraic dimension a(X) = 1.

Lemma

Any compact complex surface of algebraic dimension 1 is elliptic.

This elliptic fibration $\pi: X \longrightarrow Y$ is called the **algebraic reduction** of X.

Lemma

The algebraic reduction $\pi: X \longrightarrow Y$ of X is Aut(X)-equivariant.

Proof.

Let X be a compact complex surface of algebraic dimension a(X) = 1.

Lemma

Any compact complex surface of algebraic dimension 1 is elliptic.

This elliptic fibration $\pi: X \longrightarrow Y$ is called the **algebraic reduction** of X.

Lemma

The algebraic reduction $\pi: X \longrightarrow Y$ of X is Aut(X)-equivariant.

Proof.

Let X be a compact complex surface of algebraic dimension a(X) = 1.

Lemma

Any compact complex surface of algebraic dimension 1 is elliptic.

This elliptic fibration $\pi: X \longrightarrow Y$ is called the **algebraic reduction** of X.

Lemma

The algebraic reduction $\pi: X \longrightarrow Y$ of X is Aut(X)-equivariant.

Proof

Let X be a compact complex surface of algebraic dimension a(X) = 1.

Lemma

Any compact complex surface of algebraic dimension 1 is elliptic.

This elliptic fibration $\pi: X \longrightarrow Y$ is called the **algebraic reduction** of X.

Lemma

The algebraic reduction $\pi: X \longrightarrow Y$ of X is Aut(X)-equivariant.

Proof.

Recall that surfaces of class VII are those smooth compact complex surfaces with the first Betti number $b_1 = 1$ and Kodaira dimension $\kappa = -\infty$.

Class VII surfaces with $b_2 = 0$ are classified:

Theorem (F. A. Bogomolov, 1970; A. Teleman, 1994)

Any class VII₀ surface with $b_2 = 0$ is biholomorphic to either a Hopf or an Inoue surface

A **Hopf** surface is a quotient of the form $\mathbb{C}^2 \setminus \{0\}/\Gamma$, where Γ acts properly and discontinuously on $\mathbb{C}^2 \setminus \{0\}$.

Recall that surfaces of class VII are those smooth compact complex surfaces with the first Betti number $b_1 = 1$ and Kodaira dimension $\kappa = -\infty$.

Class VII surfaces with $b_2 = 0$ are classified:

Theorem (F. A. Bogomolov, 1970; A. Teleman, 1994)

Any class VII_0 surface with $b_2=0$ is biholomorphic to either a Hopf or an Inoue surface.

A **Hopf** surface is a quotient of the form $\mathbb{C}^2 \setminus \{0\}/\Gamma$, where Γ acts properly and discontinuously on $\mathbb{C}^2 \setminus \{0\}$.

Recall that surfaces of class VII are those smooth compact complex surfaces with the first Betti number $b_1 = 1$ and Kodaira dimension $\kappa = -\infty$.

Class VII surfaces with $b_2 = 0$ are classified:

Theorem (F. A. Bogomolov, 1970; A. Teleman, 1994)

Any class VII_0 surface with $b_2=0$ is biholomorphic to either a Hopf or an Inoue surface.

A **Hopf** surface is a quotient of the form $\mathbb{C}^2 \setminus \{0\}/\Gamma$, where Γ acts properly and discontinuously on $\mathbb{C}^2 \setminus \{0\}$.

Recall that surfaces of class VII are those smooth compact complex surfaces with the first Betti number $b_1 = 1$ and Kodaira dimension $\kappa = -\infty$.

Class VII surfaces with $b_2 = 0$ are classified:

Theorem (F. A. Bogomolov, 1970; A. Teleman, 1994)

Any class VII_0 surface with $b_2=0$ is biholomorphic to either a Hopf or an Inoue surface.

A **Hopf** surface is a quotient of the form $\mathbb{C}^2 \setminus \{0\}/\Gamma$, where Γ acts properly and discontinuously on $\mathbb{C}^2 \setminus \{0\}$.

Some Notation

We use the following notation:

- Let Σ be the set of smooth compact complex surface X in class VII with the algebraic dimension a(X) = 0 and the second Betti number $b_2(X) > 0$.
- Let $\Sigma_0\subseteq \Sigma$ be those minimal surfaces which have no curve.

Main Results

Proposition 1

Let X be a smooth compact complex surface not in Σ_0 . Then $\operatorname{Aut}(X)$ is T-Jordan.

Proposition 2

Let X be a smooth compact complex surface in Σ_0 . Let $G \leq \operatorname{Aut}(X)$ be a torsion subgroup. Then G is virtually abelian.

Combine the two propositions above:

Theorem

Let X be a smooth compact complex surface. Then any torsion subgroup $G \leq \operatorname{Aut}(X)$ is virtually abelian.

Main Results

Proposition 1

Let X be a smooth compact complex surface not in Σ_0 . Then $\operatorname{Aut}(X)$ is T-Jordan.

Proposition 2

Let X be a smooth compact complex surface in Σ_0 . Let $G \leq \operatorname{Aut}(X)$ be a torsion subgroup. Then G is virtually abelian.

Combine the two propositions above:

Theorem

Let X be a smooth compact complex surface. Then any torsion subgroup $G \leq \operatorname{Aut}(X)$ is virtually abelian.

Main Results

Proposition 1

Let X be a smooth compact complex surface not in Σ_0 . Then Aut(X) is T-Jordan.

Proposition 2

Let X be a smooth compact complex surface in Σ_0 . Let $G \leq \operatorname{Aut}(X)$ be a torsion subgroup. Then G is virtually abelian.

Combine the two propositions above:

Theorem ¹

Let X be a smooth compact complex surface. Then any torsion subgroup $G \leq \operatorname{Aut}(X)$ is virtually abelian.

We only consider the case that *X* does not have any curves.

$$1 \longrightarrow \operatorname{\mathsf{Aut}}^*(X) \longrightarrow \operatorname{\mathsf{Aut}}(X) \longrightarrow \operatorname{\mathsf{Aut}}(X)|_{H^*(X,\mathbb{Q})} \longrightarrow 1$$

Let $G \leq \operatorname{Aut}(X)$ be an infinite torsion subgroup. The image of G in $\operatorname{GL}(H^*(X,\mathbb{Q}))$ is finite.

By passing to a finite index subgroup, may assume $G \leq \operatorname{Aut}^*(X)$.

Pick $id \neq g \in G$, and let G' be the centraliser of $\langle g \rangle$ in G.

Since g has finite order, [G:G'] is finite.

Replacing G by the finite-index subgroup G', may assume $g \in Z(G)$.

The fixed point set Fix(g) of g is finite with cardinality $|Fix(g)| = b_2(X)$.

Consider the action of G on the finite set Fix(g).

Replacing G by a subgroup of G' of index $\leq b_2(X)!$, may assume G fixes some point $x \in Fix(g)$.

We only consider the case that *X* does not have any curves.

$$1 \longrightarrow \operatorname{\mathsf{Aut}}^*(X) \longrightarrow \operatorname{\mathsf{Aut}}(X) \longrightarrow \operatorname{\mathsf{Aut}}(X)|_{H^*(X,\mathbb{Q})} \longrightarrow 1.$$

Let $G \leq \operatorname{Aut}(X)$ be an infinite torsion subgroup. The image of G in $\operatorname{GL}(H^*(X,\mathbb{Q}))$ is finite.

By passing to a finite index subgroup, may assume $G \leq \operatorname{Aut}^*(X)$.

Pick $id \neq g \in G$, and let G' be the centraliser of $\langle g \rangle$ in G.

Since g has finite order, [G:G'] is finite.

Replacing G by the finite-index subgroup G', may assume $g \in Z(G)$.

The fixed point set Fix(g) of g is finite with cardinality $|Fix(g)| = b_2(X)$.

Consider the action of G on the finite set Fix(g).

Replacing G by a subgroup of G' of index $\leq b_2(X)!$, may assume G fixes some point $x \in Fix(g)$.

We only consider the case that *X* does not have any curves.

$$1 \longrightarrow \operatorname{\mathsf{Aut}}^*(X) \longrightarrow \operatorname{\mathsf{Aut}}(X) \longrightarrow \operatorname{\mathsf{Aut}}(X)|_{H^*(X,\mathbb{Q})} \longrightarrow 1.$$

Let $G \leq \operatorname{Aut}(X)$ be an infinite torsion subgroup. The image of G in $\operatorname{GL}(H^*(X,\mathbb{Q}))$ is finite.

By passing to a finite index subgroup, may assume $G \leq \operatorname{Aut}^*(X)$.

Pick $id \neq g \in G$, and let G' be the centraliser of $\langle g \rangle$ in G.

Since g has finite order, [G:G'] is finite.

Replacing G by the finite-index subgroup G', may assume $g \in Z(G)$.

The fixed point set Fix(g) of g is finite with cardinality $|Fix(g)| = b_2(X)$.

Consider the action of G on the finite set Fix(g).

Replacing G by a subgroup of G' of index $\leq b_2(X)!$, may assume G fixes some point $x \in Fix(g)$.

We only consider the case that *X* does not have any curves.

$$1 \longrightarrow \operatorname{\mathsf{Aut}}^*(X) \longrightarrow \operatorname{\mathsf{Aut}}(X) \longrightarrow \operatorname{\mathsf{Aut}}(X)|_{H^*(X,\mathbb{Q})} \longrightarrow 1.$$

Let $G \leq \operatorname{Aut}(X)$ be an infinite torsion subgroup. The image of G in $\operatorname{GL}(H^*(X,\mathbb{Q}))$ is finite.

By passing to a finite index subgroup, may assume $G \leq \operatorname{Aut}^*(X)$.

Pick $id \neq g \in G$, and let G' be the centraliser of $\langle g \rangle$ in G.

Since g has finite order, [G:G'] is finite.

Replacing G by the finite-index subgroup G', may assume $g \in Z(G)$.

The fixed point set Fix(g) of g is finite with cardinality $|Fix(g)| = b_2(X)$.

Consider the action of G on the finite set Fix(g).

Replacing G by a subgroup of G' of index $\leq b_2(X)!$, may assume G fixes some point $x \in Fix(g)$.

We only consider the case that *X* does not have any curves.

$$1 \longrightarrow \operatorname{\mathsf{Aut}}^*(X) \longrightarrow \operatorname{\mathsf{Aut}}(X) \longrightarrow \operatorname{\mathsf{Aut}}(X)|_{H^*(X,\mathbb{Q})} \longrightarrow 1.$$

Let $G \leq \operatorname{Aut}(X)$ be an infinite torsion subgroup. The image of G in $\operatorname{GL}(H^*(X,\mathbb{Q}))$ is finite.

By passing to a finite index subgroup, may assume $G \leq Aut^*(X)$.

Pick $id \neq g \in G$, and let G' be the centraliser of $\langle g \rangle$ in G.

Since g has finite order, [G:G'] is finite.

Replacing G by the finite-index subgroup G', may assume $g \in Z(G)$.

The fixed point set Fix(g) of g is finite with cardinality $|Fix(g)| = b_2(X)$.

Consider the action of G on the finite set Fix(g).

Replacing G by a subgroup of G' of index $\leq b_2(X)!$, may assume G fixes some point $x \in Fix(g)$.

We only consider the case that *X* does not have any curves.

$$1 \longrightarrow \operatorname{\mathsf{Aut}}^*(X) \longrightarrow \operatorname{\mathsf{Aut}}(X) \longrightarrow \operatorname{\mathsf{Aut}}(X)|_{H^*(X,\mathbb{Q})} \longrightarrow 1.$$

Let $G \leq \operatorname{Aut}(X)$ be an infinite torsion subgroup. The image of G in $\operatorname{GL}(H^*(X,\mathbb{Q}))$ is finite.

By passing to a finite index subgroup, may assume $G \leq \operatorname{Aut}^*(X)$.

Pick $id \neq g \in G$, and let G' be the centraliser of $\langle g \rangle$ in G.

Since g has finite order, [G:G'] is finite.

Replacing G by the finite-index subgroup G', may assume $g \in Z(G)$.

The fixed point set Fix(g) of g is finite with cardinality $|Fix(g)| = b_2(X)$.

Consider the action of G on the finite set Fix(g).

Replacing G by a subgroup of G' of index $\leq b_2(X)!$, may assume G fixes some point $x \in Fix(g)$.

We only consider the case that *X* does not have any curves.

$$1 \longrightarrow \operatorname{\mathsf{Aut}}^*(X) \longrightarrow \operatorname{\mathsf{Aut}}(X) \longrightarrow \operatorname{\mathsf{Aut}}(X)|_{H^*(X,\mathbb{Q})} \longrightarrow 1.$$

Let $G \leq \operatorname{Aut}(X)$ be an infinite torsion subgroup. The image of G in $\operatorname{GL}(H^*(X,\mathbb{Q}))$ is finite.

By passing to a finite index subgroup, may assume $G \leq \operatorname{Aut}^*(X)$.

Pick $id \neq g \in G$, and let G' be the centraliser of $\langle g \rangle$ in G.

Since g has finite order, [G:G'] is finite.

Replacing G by the finite-index subgroup G', may assume $g \in Z(G)$.

The fixed point set Fix(g) of g is finite with cardinality $|Fix(g)| = b_2(X)$.

Consider the action of G on the finite set Fix(g).

Replacing G by a subgroup of G' of index $\leq b_2(X)!$, may assume G fixes some point $x \in Fix(g)$.

We only consider the case that *X* does not have any curves.

$$1 \longrightarrow \operatorname{\mathsf{Aut}}^*(X) \longrightarrow \operatorname{\mathsf{Aut}}(X) \longrightarrow \operatorname{\mathsf{Aut}}(X)|_{H^*(X,\mathbb{Q})} \longrightarrow 1.$$

Let $G \leq \operatorname{Aut}(X)$ be an infinite torsion subgroup. The image of G in $\operatorname{GL}(H^*(X,\mathbb{Q}))$ is finite.

By passing to a finite index subgroup, may assume $G \leq \operatorname{Aut}^*(X)$.

Pick $id \neq g \in G$, and let G' be the centraliser of $\langle g \rangle$ in G.

Since g has finite order, [G:G'] is finite.

Replacing G by the finite-index subgroup G', may assume $g \in Z(G)$.

The fixed point set Fix(g) of g is finite with cardinality $|Fix(g)| = b_2(X)$.

Consider the action of G on the finite set Fix(g).

Replacing G by a subgroup of G' of index $\leq b_2(X)!$, may assume G fixes some point $x \in Fix(g)$.

We only consider the case that *X* does not have any curves.

$$1 \longrightarrow \operatorname{\mathsf{Aut}}^*(X) \longrightarrow \operatorname{\mathsf{Aut}}(X) \longrightarrow \operatorname{\mathsf{Aut}}(X)|_{H^*(X,\mathbb{Q})} \longrightarrow 1.$$

Let $G \leq \operatorname{Aut}(X)$ be an infinite torsion subgroup. The image of G in $\operatorname{GL}(H^*(X,\mathbb{Q}))$ is finite.

By passing to a finite index subgroup, may assume $G \leq \operatorname{Aut}^*(X)$.

Pick $id \neq g \in G$, and let G' be the centraliser of $\langle g \rangle$ in G.

Since g has finite order, [G:G'] is finite.

Replacing G by the finite-index subgroup G', may assume $g \in Z(G)$.

The fixed point set Fix(g) of g is finite with cardinality $|Fix(g)| = b_2(X)$.

Consider the action of G on the finite set Fix(g).

Replacing G by a subgroup of G' of index $\leq b_2(X)!$, may assume G fixes some point $x \in Fix(g)$.

We only consider the case that *X* does not have any curves.

$$1 \longrightarrow \operatorname{\mathsf{Aut}}^*(X) \longrightarrow \operatorname{\mathsf{Aut}}(X) \longrightarrow \operatorname{\mathsf{Aut}}(X)|_{H^*(X,\mathbb{Q})} \longrightarrow 1.$$

Let $G \leq \operatorname{Aut}(X)$ be an infinite torsion subgroup. The image of G in $\operatorname{GL}(H^*(X,\mathbb{Q}))$ is finite.

By passing to a finite index subgroup, may assume $G \leq \operatorname{Aut}^*(X)$.

Pick $id \neq g \in G$, and let G' be the centraliser of $\langle g \rangle$ in G.

Since g has finite order, [G:G'] is finite.

Replacing G by the finite-index subgroup G', may assume $g \in Z(G)$.

The fixed point set Fix(g) of g is finite with cardinality $|Fix(g)| = b_2(X)$.

Consider the action of G on the finite set Fix(g).

Replacing G by a subgroup of G' of index $\leq b_2(X)!$, may assume G fixes some point $x \in Fix(g)$.

We only consider the case that *X* does not have any curves.

$$1 \longrightarrow \operatorname{\mathsf{Aut}}^*(X) \longrightarrow \operatorname{\mathsf{Aut}}(X) \longrightarrow \operatorname{\mathsf{Aut}}(X)|_{H^*(X,\mathbb{Q})} \longrightarrow 1.$$

Let $G \leq \operatorname{Aut}(X)$ be an infinite torsion subgroup. The image of G in $\operatorname{GL}(H^*(X,\mathbb{Q}))$ is finite.

By passing to a finite index subgroup, may assume $G \leq \operatorname{Aut}^*(X)$.

Pick $id \neq g \in G$, and let G' be the centraliser of $\langle g \rangle$ in G.

Since g has finite order, [G:G'] is finite.

Replacing G by the finite-index subgroup G', may assume $g \in Z(G)$.

The fixed point set Fix(g) of g is finite with cardinality $|Fix(g)| = b_2(X)$.

Consider the action of G on the finite set Fix(g).

Replacing G by a subgroup of G' of index $\leq b_2(X)!$, may assume G fixes some point $x \in Fix(g)$.

GSS Conjecture

Conjecture

For an arbitrary minimal class VII surface with b₂ positive the following are equivalent:

- 1. It has a cycle of rational curves;
- 2. It has at least b₂ rational curves;
- 3. It contains a global spherical shell.

Remarl

Assume the GSS conjecture. Let X be a smooth compact complex surface. Then $\operatorname{Aut}(X)$ is T-Jordan.

GSS Conjecture

Conjecture

For an arbitrary minimal class VII surface with b_2 positive the following are equivalent:

- 1. It has a cycle of rational curves;
- 2. It has at least b₂ rational curves;
- 3. It contains a global spherical shell.

Remark

Assume the GSS conjecture. Let X be a smooth compact complex surface. Then $\operatorname{Aut}(X)$ is T-Jordan.

Tits Alternative

Tits Alternative

Theorem (Tits)

For any subgroup $G \leq \operatorname{GL}_n(\mathbb{C})$, either

- · G contains a free non-abelian subgroup, or
- · G contains a solvable subgroup of finite index.

Known results

Theorem (Campana-Wang-Zhang, 2013)

Let X be a compact Kähler manifold and $G \leq Aut(X)$ a subgroup. Then either $G \geq \mathbb{Z} * \mathbb{Z}$ or G is virtually solvable.

Tits Alternative

Theorem (Tits)

For any subgroup $G \leq GL_n(\mathbb{C})$, either

- · G contains a free non-abelian subgroup, or
- · G contains a solvable subgroup of finite index.

Known results:

Theorem (Campana-Wang-Zhang, 2013)

Let X be a compact Kähler manifold and $G \leq \operatorname{Aut}(X)$ a subgroup. Then either $G \geq \mathbb{Z} * \mathbb{Z}$ or G is virtually solvable.

Theorem 2

Let X be a compact complex space in Fujiki's class C. Then Aut(X) satisfies the Tits alternative.

Sketch proof: $\operatorname{Aut}(X)^*|_{H^2(X,\mathbb{Q})} \leq \operatorname{GL}(H^2(X,\mathbb{Q}))$ satisfies the Tits alternative.

$$1 \longrightarrow \operatorname{\mathsf{Aut}}_{\scriptscriptstyle\mathcal{T}}(X) \longrightarrow \operatorname{\mathsf{Aut}}(X) \longrightarrow \operatorname{\mathsf{Aut}}(X)^*|_{H^2(X,\mathbb{Q})} \longrightarrow 1$$

Then Aut(X) satisfies the Tits alternative iff so does $Aut_{\tau}(X)$

There is a bimeromorphic holomorphic map $\widetilde{X} \longrightarrow X$ from a compact Kähler manifold \widetilde{X} such that $\mathsf{Aut}_{ au}(X)$ lifts to \widetilde{X} holomorphically.

View $\operatorname{Aut}_{\tau}(X) \leq \operatorname{Aut}(X')$ as a subgroup. Note that X' is kähler and $\operatorname{Aut}(X')$ satisfies the Tits alternative.

Theorem 2

Let X be a compact complex space in Fujiki's class C. Then Aut(X) satisfies the Tits alternative.

Sketch proof: $\operatorname{Aut}(X)^*|_{H^2(X,\mathbb{Q})} \leq \operatorname{GL}(H^2(X,\mathbb{Q}))$ satisfies the Tits alternative.

$$1 \longrightarrow \operatorname{\mathsf{Aut}}_\tau(X) \longrightarrow \operatorname{\mathsf{Aut}}(X) \longrightarrow \operatorname{\mathsf{Aut}}(X)^*|_{H^2(X,\mathbb{Q})} \longrightarrow 1$$

Then Aut(X) satisfies the Tits alternative iff so does $Aut_{\tau}(X)$.

There is a bimeromorphic holomorphic map $\widetilde{X} \longrightarrow X$ from a compact Kähler manifold \widetilde{X} such that $\operatorname{Aut}_{\tau}(X)$ lifts to \widetilde{X} holomorphically.

View $\operatorname{Aut}_{\tau}(X) \leq \operatorname{Aut}(X')$ as a subgroup. Note that X' is kähler and $\operatorname{Aut}(X')$ satisfies the Tits alternative.

Another point of view: By the result of [Meng-J, 2022],

$$[\operatorname{\mathsf{Aut}}_{\tau}(X):\operatorname{\mathsf{Aut}}_{0}(X)]<\infty.$$

Then Aut(X) satisfies the Tits alternative iff so does $Aut_0(X)$.

$$Ad: Aut_0(X) \longrightarrow GL(T_{Aut_0(X),e}), \quad \ker Ad = Z(Aut_0(X)).$$

$$1 \longrightarrow Z(\operatorname{Aut}_0(X)) \longrightarrow \operatorname{Aut}_0(X) \longrightarrow \operatorname{GL}(T_{\operatorname{Aut}_0(X),\varrho}) \longrightarrow 1$$

Another point of view: By the result of [Meng-J, 2022],

$$[\operatorname{\mathsf{Aut}}_{\tau}(X):\operatorname{\mathsf{Aut}}_{0}(X)]<\infty.$$

Then Aut(X) satisfies the Tits alternative iff so does $Aut_0(X)$.

$$\mathsf{Ad} \colon \operatorname{\mathsf{Aut}}_0(X) \longrightarrow \operatorname{\mathsf{GL}}(T_{\operatorname{\mathsf{Aut}}_0(X), e}), \quad \ker \operatorname{\mathsf{Ad}} = Z(\operatorname{\mathsf{Aut}}_0(X)).$$

$$1 \longrightarrow Z(\operatorname{\mathsf{Aut}}_0(X)) \longrightarrow \operatorname{\mathsf{Aut}}_0(X) \longrightarrow \operatorname{\mathsf{GL}}(T_{\operatorname{\mathsf{Aut}}_0(X),e}) \longrightarrow 1$$

Another point of view: By the result of [Meng-J, 2022],

$$[\operatorname{\mathsf{Aut}}_{\tau}(X):\operatorname{\mathsf{Aut}}_{0}(X)]<\infty.$$

Then Aut(X) satisfies the Tits alternative iff so does $Aut_0(X)$.

$$Ad: Aut_0(X) \longrightarrow GL(T_{Aut_0(X),e}), \quad \ker Ad = Z(Aut_0(X)).$$

$$1 \longrightarrow Z(\mathsf{Aut}_0(X)) \longrightarrow \mathsf{Aut}_0(X) \longrightarrow \mathsf{GL}(T_{\mathsf{Aut}_0(X),\varrho}) \longrightarrow 1.$$

Kato Surfaces

A **spherical** shell in a complex surface X is an open subset $U \subseteq X$ which is biholomorphic to a standard neighbourhood of S^3 in \mathbb{C}^2 . A spherical shell $U \subseteq X$ is called global if $X \setminus U$ is connected.

A **Kato** surface is a minimal class VII surface with $b_2 > 0$ which contains a global spherical shell. By a result of Dloussky, Oeljeklaus and Toma, the GSS conjecture implies that every minimal class VII surface with $b_2 > 0$ is a Kato surface.

Kato Surfaces

A **spherical** shell in a complex surface X is an open subset $U \subseteq X$ which is biholomorphic to a standard neighbourhood of S^3 in \mathbb{C}^2 . A spherical shell $U \subseteq X$ is called global if $X \setminus U$ is connected.

A **Kato** surface is a minimal class VII surface with $b_2 > 0$ which contains a global spherical shell.

By a result of Dloussky, Oeljeklaus and Toma, the GSS conjecture implies that every minimal class VII surface with $b_2 > 0$ is a Kato surface.

Kato Surfaces

A **spherical** shell in a complex surface X is an open subset $U \subseteq X$ which is biholomorphic to a standard neighbourhood of S^3 in \mathbb{C}^2 . A spherical shell $U \subseteq X$ is called global if $X \setminus U$ is connected.

A **Kato** surface is a minimal class VII surface with $b_2 > 0$ which contains a global spherical shell.

By a result of Dloussky, Oeljeklaus and Toma, the GSS conjecture implies that every minimal class VII surface with $b_2 > 0$ is a Kato surface.

Enoki Surfaces

Theorem (Enoki, 1980/81)

An Enoki surface is biholomorphic to a compactification of a holomorphic affine line bundle over an elliptic curve.

Let X be a \mathbb{P}^1 -bundle over an elliptic curve with an infinity section C_∞ (but possibly with no zero section) with $C_\infty^2 = -n$. Then the complement of C_∞ in X can be uniquely compactified into a class VII surface S with $b_2(S) = n$ by replacing C_∞ with a cycle of n-rational curves. This S is an **Enoki surface**.

If X also has the zero section, then S has an elliptic curve. In the second case we call the surface a parabolic Inoue surface.

Enoki Surfaces

Theorem (Enoki, 1980/81)

An Enoki surface is biholomorphic to a compactification of a holomorphic affine line bundle over an elliptic curve.

Let X be a \mathbb{P}^1 -bundle over an elliptic curve with an infinity section C_∞ (but possibly with no zero section) with $C_\infty^2 = -n$. Then the complement of C_∞ in X can be uniquely compactified into a class VII surface S with $b_2(S) = n$ by replacing C_∞ with a cycle of n-rational curves. This S is an **Enoki surface**.

If X also has the zero section, then S has an elliptic curve. In the second case we call the surface a parabolic Inoue surface.

Enoki Surfaces

Theorem (Enoki, 1980/81)

An Enoki surface is biholomorphic to a compactification of a holomorphic affine line bundle over an elliptic curve.

Let X be a \mathbb{P}^1 -bundle over an elliptic curve with an infinity section C_∞ (but possibly with no zero section) with $C_\infty^2 = -n$. Then the complement of C_∞ in X can be uniquely compactified into a class VII surface S with $b_2(S) = n$ by replacing C_∞ with a cycle of n-rational curves. This S is an **Enoki surface**.

If X also has the zero section, then S has an elliptic curve. In the second case we call the surface a **parabolic Inoue surface**.

Theorem 3

Let *X* be a smooth compact complex surface.

Assume that either $X \notin \Sigma$, or $X \in \Sigma$ but its minimal model is an Enoki surface or Inoue-Hirzebruch surface.

Then Aut(X) satisfies the Tits alternative.

Virtual Derived Length

Virtual Derived Length

Given a group G, its p-th derived subgroups are inductively defined by

$$G^{(0)} = G, G^{(1)} = [G, G], \cdots, G^{(i+1)} = [G^{(i)}, G^{(i)}].$$

By definition, $G^{(p)} = 1$ for some integer $p \ge 0$ if and only if G is **solvable**. We call the minimum of such p the **derived length** of G (when G is solvable) and denote it by $\ell(G)$. If G is not solvable, we set $\ell(G) = \infty$.

If G is virtually solvable, we then define the **virtual derived length** to be

$$\ell_{\mathrm{vir}}(G) = \min_{G'} \ell(G')$$

where G' run through all finite-index subgroups of G.

Virtual Derived Length

Given a group G, its p-th derived subgroups are inductively defined by

$$G^{(0)} = G, G^{(1)} = [G, G], \cdots, G^{(i+1)} = [G^{(i)}, G^{(i)}].$$

By definition, $G^{(p)} = 1$ for some integer $p \ge 0$ if and only if G is **solvable**. We call the minimum of such p the **derived length** of G (when G is solvable) and denote it by $\ell(G)$. If G is not solvable, we set $\ell(G) = \infty$.

If G is virtually solvable, we then define the **virtual derived length** to be

$$\ell_{\mathrm{vir}}(G) = \min_{G'} \ell(G')$$

where G' run through all finite-index subgroups of G.

Basis Properties

Lemma

Consider the short exact sequence of groups:

$$1 \longrightarrow N \longrightarrow G \longrightarrow H \longrightarrow 1.$$

- If N is solvable and H is virtually solvable, then G is virtually solvable with $\ell_{\rm vir}(G) \le \ell(N) + \ell_{\rm vir}(H)$.
- If N is finite and H is virtually solvable, then G is virtually solvable with $\ell_{\rm vir}(G) \leq \ell_{\rm vir}(H) + 1$.
- G is virtually solvable iff both N and H are virtually solvable.
- If both N and H satisfy the Tits alternative, then so does G.

Basis Properties

Lemma

Consider the short exact sequence of groups:

$$1 \longrightarrow N \longrightarrow G \longrightarrow H \longrightarrow 1.$$

- If N is solvable and H is virtually solvable, then G is virtually solvable with $\ell_{\rm vir}(G) \leq \ell(N) + \ell_{\rm vir}(H)$.
- If N is finite and H is virtually solvable, then G is virtually solvable with $\ell_{\rm vir}(G) \le \ell_{\rm vir}(H) + 1$.
- · G is virtually solvable iff both N and H are virtually solvable.
- If both N and H satisfy the Tits alternative, then so does G.

Known Results

Let X be a compact Kähler manifold. For a subgroup G of Aut(X), define $G^0 := G \cap Aut_0(X)$.

Theorem (Dinh-Lin-Oguiso-Zhang, 2022)

Let X be a compact Kähler manifold of dimension $n \ge 1$. Then every subgroup $G \le \operatorname{Aut}(X)$ of zero entropy has a finite index subgroup $G' \le G$ such that $\ell(G'/G'^0) \le n-1$.

The invariant $\ell(G'/G'')$ does not depend on the choice of G', and it is called the **essential** derived length of the subgroup $G \leq \operatorname{Aut}(X)$.

Known Results

Let X be a compact Kähler manifold. For a subgroup G of Aut(X), define $G^0 := G \cap Aut_0(X)$.

Theorem (Dinh-Lin-Oguiso-Zhang, 2022)

Let X be a compact Kähler manifold of dimension $n \ge 1$. Then every subgroup $G \le \operatorname{Aut}(X)$ of zero entropy has a finite index subgroup $G' \le G$ such that $\ell(G'/G'^0) \le n-1$.

The invariant $\ell(G'/G'')$ does not depend on the choice of G', and it is called the **essential** derived length of the subgroup $G \leq \operatorname{Aut}(X)$.

Known Results

Let X be a compact Kähler manifold. For a subgroup G of Aut(X), define $G^0 := G \cap Aut_0(X)$.

Theorem (Dinh-Lin-Oguiso-Zhang, 2022)

Let X be a compact Kähler manifold of dimension $n \ge 1$. Then every subgroup $G \le \operatorname{Aut}(X)$ of zero entropy has a finite index subgroup $G' \le G$ such that $\ell(G'/G'^0) \le n-1$.

The invariant $\ell(G'/G'^0)$ does not depend on the choice of G', and it is called the **essential** derived length of the subgroup $G \leq \operatorname{Aut}(X)$.

Theorem 4

Let *X* be a smooth compact complex surface.

Assume that either $X \notin \Sigma$, or $X \in \Sigma$ but its minimal model is an Enoki surface or Inoue-Hirzebruch surface.

Let $G \leq \operatorname{Aut}(X)$ be a virtually solvable subgroup. Then the virtually derived length $\ell_{\operatorname{vir}}(G) \leq 4$.

Remark

- 1. Currently, we are not able to prove Theorems 3 & 4 in full generality for $X \in \Sigma$.
- 2. Kato surfaces consist of four subclasses: Enoki surfaces (including parabolic Inoue surfaces), half Inoue surfaces, Inoue-Hirzebruch surfaces and intermediate surfaces.
- 3. Fix b > 0. The moduli space of framed Enoki surfaces with $b_2 = b$ is an open subset of the moduli space of framed Kato surfaces with $b_2 = b$.
- 4. When X is a parabolic Inoue surface, it has been proved that $\operatorname{Aut}(X)$ is virtually abelian.

Questions?

Thank you!