Introduction

Alex Shaffer

What is Cryptography?

- A collection of methods used to secure information.
 - Has a long history of being used to secure military information in wartime.
 - Helps protect transaction information online.
 - Can be used to secure stored data on a phone.

Important Terms

- Text that has not been encrypted or has been decrypted is called plaintext.
- Text that has been encrypted is called ciphertext.
- An algorithm is a set of instructions.
 - Encryption is an algorithm that takes plaintext and produces ciphertext.
 - Decryption is an algorithm that takes ciphertext and produces plaintext.

Sets

- Sets are just collections of elements. We will be most interested in sets of numbers and letters.
- A set of numbers will be denoted with curly brackets {}
 - \mathbb{N} is the set of natural numbers. $\mathbb{N} = \{0, 1, 2, 3, 4, ...\}$
 - Some people don't include 0, we will.
 - \mathbb{Z} is the set of integers. $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, 3, ...\}$
 - $\mathbb R$ is the set of real numbers and include all integers and decimal values, and special numbers like $\pi.$

Functions

- A function is like a mathematical machine that takes in an input and produces an output.
 - It maps elements from one set to elements of another
- If A is some set and B is another set, we denote a function f mapping elements from A to elements of B as $f: A \to B$
- Example: $f: \mathbb{N} \to \mathbb{N}$, where f(x) = x + 2

\boldsymbol{x}	0	1	2	3	4	5	6
f(x)	2	3	4	5	6	7	8

Functions

• $f: A \rightarrow B$

Representing Information

• Standard English alphabet may be represented as the integers 0 through 25 inclusive.

•
$$a \to 0, b \to 1, c \to 2, ..., z \to 25$$

• "Hello world" → 8 5 12 12 15 23 15 18 12 4

Α	В	С	D	E	F	G	Н	I	J	K	L	М	N	0	Р	Q	R	S	T
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
U	V	W	X	Υ	Z														
20	21	22	23	24	25														

Binary

- Binary representation useful in computer implementation of cryptography.
 - Each 0 or 1 is called a "bit".
 - Right most bit is called least significant, left is most significant.

0	1	2	3	4	5	6	7	8	9
0	1	10	11	100	101	110	111	1000	1001

ASCII TABLE

Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	`
1	1	[START OF HEADING]	33	21	1	65	41	Α	97	61	а
2	2	[START OF TEXT]	34	22	"	66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	C	99	63	C
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	1	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	Н	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i
10	Α	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	С	[FORM FEED]	44	2C	,	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
14	E	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	V
23	17	[END OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	X
25	19	[END OF MEDIUM]	57	39	9	89	59	Υ	121	79	у
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	Z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	\	124	7C	Ĺ
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D]	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F	_	127	7F	[DEL]

Modular Arithmetic

- Sometimes it is useful to constrain numbers to a certain set.
- $a \equiv b \pmod{n}$ is said "a is congruent to b modulo n"
 - Two numbers are equivalent modulo n if they have the same remainder when divided by n.
- Examples:
 - $1 \equiv 3 \pmod{2}$
 - $15 \equiv 20 \ (mod \ 5)$
 - $26 \equiv 0 \pmod{26}$
 - $5 \equiv 31 \pmod{26}$

Modular Arithmetic

• For any number a where a>n there is some number b< n where

$$a \equiv b \pmod{n}$$

- $2 \equiv 7 \equiv 12 \equiv 17 \pmod{5}$
 - 2 is the is the number less that 5 here that all of the others are equivalent to
- The set of numbers $\{0,1,2,\dots,n-1\}$ is called the **canonical complete** residue system modulo n

Caeser Cipher

- Sometimes called a shift cipher.
- Encryption key k is some number 0 through 25.
 - For a plaintext letter p written as a number, the ciphertext letter $c = p + k \pmod{26}$
 - Example: k = 1,

Α	В	С	D	E	F	G	Н	I	J	K	L	М	N	0	Р	Q	R	S	T
В	С	D	Ε	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	S	Т	U
U	V	W	X	Y	Z														
V	W	Χ	Υ	Ζ	Α														

"Hello world" → "jgnnq yqtnf"