OSTROWSKI AND DRAGOMIR'S INEQUALITIES IN A-2-INNER PRODUCT SPACES

BEHROOZ MOHEBBI NAJMABADI AND TAYEBE LAL SHATERI

Abstract. In this paper we show that a type of Ostrowski's and Drogomir's inequality are valid in \mathcal{A} -2-inner product spaces. We also introduce a class of operators analogous to the finite-rank operators on an \mathcal{A} -2-inner product space.

1. Introduction and preliminaries

In 1951 A.M. Ostrowski proved the following interesting theorem [7].

Theorem 1.1. If x,y,z are real n-tuples such that $x \neq 0$ and

$$\sum_{i=1}^{n} x_i z_i = 0, \sum_{i=1}^{n} y_i z_i = 1, \tag{1.1}$$

then

$$\sum_{i=1}^{n} z_i^2 \ge \frac{\sum_{i=1}^{n} x_i^2}{\sum_{i=1}^{n} x_i^2 \sum_{i=1}^{n} y_i^2 - (\sum_{i=1}^{n} x_i y_i)^2}.$$
 (1.2)

The equality holds in (1.2) if and only if

$$z_k = \frac{y_k \sum_{i=1}^n x_i^2 - x_k \sum_{i=1}^n x_i y_i}{\sum_{i=1}^n x_i^2 \sum_{i=1}^n y_i^2 - (\sum_{i=1}^n x_i y_i)^2},$$
(1.3)

for $k \in \{1, 2, ..., n\}$.

When the elements are in the form of L^2 -functions, this result was proved by Pearce, Pečarić and Varošanec [8]. H. Šikić and T. Šikić [9] by using of argument based on orthogonal projection in inner product spaces have observed that Ostrowski's inequality as follows:

Theorem 1.2. Let $(E, \langle ., . \rangle)$ be a real or complex inner product space and $x, y \in E$ two linearly independent vectors. If $z \in E$ is so that

$$\langle z, x \rangle = 0, \langle z, y \rangle = 1,$$
 (1.4)

²⁰¹⁰ Mathematics Subject Classification. 46C50, 26D07.

Key words and phrases. A-2-inner product space, Ostrowski's inequality, Dragomir's inequality.

then

$$||z||^2 \ge \frac{||x||^2}{||x||^2 ||y||^2 - |\langle x, y \rangle|^2}.$$
 (1.5)

The equality holds if and only if

$$z = \frac{\|x\|^2 y - \langle y, x \rangle x}{\|x\|^2 \|y\|^2 - |\langle x, y \rangle|^2}.$$
 (1.6)

In 2003, S.S. Drogomir by using the elementary topic and the Cauchy-Schwarz inequality in inner product spaces, proved the following form of Ostrowski's Inequality [2].

Theorem 1.3. Let $(H, \langle ., . \rangle)$ be a real or complex inner product space and $x, y \in H$ two linearly independent vectors. If $z \in H$ is such that $\langle x, z \rangle = 0$. then

$$|\langle z, y \rangle|^2 \le \frac{\|z\|^2}{\|x\|^2} (\|x\|^2 \|y\|^2 - |\langle x, y \rangle|^2).$$
 (1.7)

The equality in (1.7) holds if and only if

$$z = \mu(y - \frac{\langle y, x \rangle}{\|x\|^2} x), \tag{1.8}$$

where $\mu \in \mathbb{C}$ is such that $|\mu| = \frac{\|x\| \|z\|}{\|x\|^2} (\|x\|^2 \|y\|^2 - |\langle x, y \rangle|^2).$

L.Arambašić and R. Rajić [4] extended Theorem 1.3 to elements of a pre-Hilbert C^* -module as follows.

Theorem 1.4. Let A be a C^* -algebra and E be a pre-Hilbert C^* -module over A. Let $x, y \in E$ be two nonzero elements that $\langle x, z \rangle = 0$. Then

$$|\langle z, y \rangle|^2 \le \frac{\|z\|^2}{\|x\|^2} (\|x\|^2 \langle y, y \rangle - |\langle x, y \rangle|^2).$$
 (1.9)

The equality in (1.9) holds if and only if

$$y - \frac{x\langle x, y \rangle}{\|x\|^2} = \frac{z\langle z, y \rangle}{\|z\|^2}.$$
 (1.10)

In [3], S.S. Dragomir established the following refinement of Buzano's inequality in complex Hilbert space E,

$$\left| \frac{\langle x, z \rangle \langle z, y \rangle}{\|z\|^2} - \frac{\langle x, y \rangle}{\alpha} \right| \le \frac{\|y\|}{|\alpha| \|z\|} \left(|\alpha - 1|^2 |\langle x, z \rangle|^2 + \|z\|^2 \|x\|^2 - |\langle x, z \rangle|^2 \right), \quad (1.11)$$

where $x, y, z \in E$ and $\alpha, x \neq 0$ and $\alpha \in \mathbb{C}$. The case of equality holds in (1.11) if and only if there exist $\beta \in \mathbb{C}$ such that $\alpha \frac{\langle x, z \rangle z}{\|z\|^2} = x + \beta b$.

In this paper we state and prove a type of Östrowski's and Dragomir's inequality in 2- inner product spaces by allowing the 2-inner product to take values in a C^* -algebra. The concepts of 2-inner products and 2-inner product spaces have been more carefully investigated by many authors in the last four decades. A wide list of references related to this topic can be founed in the book [1]. T. Mahdiabad and A. Nazari [5] and the authors [6] introduced 2-inner product that takes values

in a C^* -algebra. Now, we recall some definitions and basis properties of 2-inner product space over a C^* -algebra from [5, 6].

From now, \mathcal{A} denotes a C^* -algebra.

Definition 1.1. A pre-Hilbert A-module is a complex vector space E which is also a right A-module, compatible with the complex algebra structure, equipped with an A-valued inner product $\langle ... \rangle : E \times E \to A$ which satisfies the following relations

- $(I_1) \langle x, x \rangle \geq 0$ for every $x \in E$,
- $(I_2) \langle x, y \rangle = \langle y, x \rangle^*$ for every $x, y \in E$,
- $(I_3) \langle x, x \rangle = 0$ if and only if x = 0,
- $(I_4) \langle xa, yb \rangle = a^* \langle x, y \rangle b$ for every $x, y \in E$ and $a, b \in A$,
- (I_5) $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$ for every $x, y, z \in E$ and $\alpha, \beta \in \mathbb{C}$.

Example 1.1. Let $l^2(\mathcal{A})$ be the set of all sequences $\{a_n\}_{n\in\mathbb{N}}$ of elements of a C^* -algebra \mathcal{A} such that the series $\sum_{n\in\mathbb{N}} a_n a_n^*$ is convergent in \mathcal{A} . Then $l^2(\mathcal{A})$ is a Hilbert A-module with respect to the pointwise operations and inner product defined by

$$\langle \{a_n\}_{n\in\mathbb{N}}, \{b_n\}_{n\in\mathbb{N}} \rangle = \sum_{n\in\mathbb{N}} a_n b_n^*.$$

Definition 1.2. Let E be a right A-modulea, an A-combination of $x_1, x_2, ..., x_n$ in E is written as follows

$$\sum_{i=1}^{n} x_i a_i = x_1 a_1 + x_2 a_2 + \dots + x_n a_n \quad (a_i \in \mathcal{A}).$$

 $x_1, x_2, ..., x_n$ are called \mathcal{A} -independent if the equation $x_1a_1 + x_2a_2 + ... + x_na_n = 0$ has exactly one solution, namely $a_1 = a_2 = ... = a_n = 0$, otherwise, we say that $x_1, x_2, ..., x_n$ are \mathcal{A} -dependent.

The maximum number of elements in E that are A-independent, is called A-rank of E.

Definition 1.3. Let \mathcal{A} be a C*-algebra and E be a linear space by \mathcal{A} -rank greater than 1, which is also a right A-module. We define a function $\langle ., .|. \rangle : E \times E \times E \to$ \mathcal{A} satisfies the following properties

- (T_1) $\langle x, x | y \rangle = 0$, If and only if x = ya for $a \in \mathcal{A}$,
- $(T_2)\ \langle x, x|y\rangle \geq 0 \text{ for all } x, y \in E,$
- $(T_3) \langle x, x | y \rangle = \langle y, y | x \rangle$ for all $x, y \in E$,
- $(T_4)\ \langle x,y|z\rangle = \langle y,x|z\rangle^* \text{ for all } x,y,z\in E,$
- (T_5) $\langle xa, yb|z\rangle = a^*\langle x, y|z\rangle b$ for all $x, y, z \in E$ and $a, b \in \mathcal{A}$,
- $(T_6)\ \langle \alpha x, y|z\rangle = \overline{\alpha}\langle x, y|z\rangle \text{ for all } x, y \in E \text{ and } \alpha \in \mathbb{C},$
- (T_7) $\langle x+y,z|w\rangle = \langle x,z|w\rangle + \langle y,z|w\rangle$ for all $x,y,z,w\in E$.

Then the function $\langle ., .|. \rangle$ is called an \mathcal{A} -2- inner product and $(E, \langle ., .|. \rangle)$ is called an A-2-inner product space.

Definition 1.4. [5] Let E be a real vector space that A-rank is greater than 1

 $p: E \times E \to \mathbb{R}$ be a function such that

- (1) p(x,y) = 0 if and only if $x,y \in E$ are linearly A dependent,
- (2) p(x,y) = p(y,x) for every $x,y \in E$,

- (3) $p(\alpha x, y) = |\alpha| p(x, y)$, for every $x, y \in E$ and for every $\alpha \in \mathbb{C}$,
- (4) $p(x+y,z) \le p(x,z) + p(y,z)$, for every $x,y,z \in E$.
- (5) $P(xa, y) \leq ||a||p(x, y)$, for every $x, y \in E$ and $a \in A$.

The function p is called an A-2-norm.

Definition 1.5. Let $(E, \langle ., .|. \rangle)$ be an \mathcal{A} -2- inner product space, we define |.,.|: $E \times E \to \mathcal{A}$ by $(x,y) \mapsto \langle x,x|y\rangle^{1/2}$, then [.,.] is called a 2- \mathcal{A} -valued norm and $||x,y|| = ||\langle x, x|y\rangle||^{1/2}$ is A-2-norm.

We say that two elements x, y of an A-2-inner product space E are w-orthogonal for $w \in E$, if $\langle x, y | w \rangle = 0$.

2. Ostrowski's Inequality in A-2-inner product space

In this section we give a type of Ostrowski's inequality in 2- \mathcal{A} -inner product spaces. In the following proposition, we have two version of the Cauchy-Schwarz inequality.

Proposition 2.1. [5]. Let $(E, \langle ., .|. \rangle)$ be an A-2-inner product space on a C^* algebra A. Then for $x, y, z \in E$ the following inequalities hold

- $\begin{array}{ll} (1) \ |\langle x,y|z\rangle|^2 = \langle x,y|z\rangle^*\langle x,y|z\rangle \leq \|\langle x,x|z\rangle\|\langle y,y|z\rangle. \\ (2) \ \|\langle x,y|z\rangle\|^2 \leq \|\langle x,x|z\rangle\|\|\langle y,y|z\rangle\|. \end{array}$

In the following lemma, we present the necessary and sufficient condition for the equality of Cauchy Schwarz in the previous proposition.

Lemma 2.1. Let \mathcal{A} be a C^* -algebra and $(X, \langle ., .|. \rangle)$ be an \mathcal{A} -2-inner product space. Then for $x, y, z \in X$ $|\langle x, y|z \rangle|^2 = ||x, z||^2 |y, z|^2$ if and only if there exists $a \in \mathcal{A}$ such that $y = \frac{1}{||x,z||^2} x \langle x, y | z \rangle + za$.

Proof. We may assume that ||x,z|| = 1. First let us $y = x\langle x,y \mid z \rangle + za$. Then we have $\langle y, x \mid z \rangle \langle x, y \mid z \rangle = \langle y, x \mid z \rangle \langle x, x \langle x, y \mid z \rangle + za \mid z \rangle = \langle y, x \mid z \rangle \langle x, x \mid z \rangle \langle x, y \mid z \rangle$ $z\rangle$, which implies that

$$\begin{split} 0 &= \langle x \langle x, y \mid z \rangle + za - y, x \langle x, y \mid z \rangle + za - y \mid z \rangle \\ &= \langle y, x \mid z \rangle \langle x, x \mid z \rangle \langle x, y \mid z \rangle - \langle y, x \mid z \rangle \langle x, y \mid z \rangle + \langle y, y \mid z \rangle. \end{split}$$

Hence

$$\langle y, x \mid z \rangle \langle x, y \mid z \rangle = \langle y, y \mid z \rangle.$$

Conversely suppose that $\langle y, x \mid z \rangle \langle x, y \mid z \rangle = \langle y, y \mid z \rangle$. Since

$$\langle y, x \mid z \rangle \langle x, x \mid z \rangle \langle x, y \mid z \rangle \leq \|\langle x, x \mid z \rangle \|\langle y, x \mid z \rangle \langle x, y \mid z \rangle$$

we have

$$\begin{split} 0 & \leq \langle x \langle x,y \mid z \rangle - y, x \langle x,y \mid z \rangle - y \mid z \rangle \\ & = \langle y,x \mid z \rangle \langle x,x \mid z \rangle \langle x,y \mid z \rangle - \langle y,x \mid z \rangle \langle x,y \mid z \rangle - \langle y,x \mid z \rangle \langle x,y \mid z \rangle + \langle y,y \mid z \rangle \\ & \leq \langle y,x \mid z \rangle \langle x,y \mid z \rangle - \langle y,x \mid z \rangle \langle x,y \mid z \rangle = 0. \end{split}$$

Thus, there exists $a \in \mathcal{A}$ such that $y = x\langle x, y \mid z \rangle + za$.

Now we state and prove a type of Ostrowski's inequality, in an A-2-inner product space.

Theorem 2.1. Let A be a C^* -algebra and E be an A-2-inner product space. Let $x, y, z, w \in E, x \neq 0, z \neq 0$ be such that $\langle x, z | w \rangle = 0$, then

$$|\langle z, y | w \rangle|^2 \le \frac{\|z, w\|^2}{\|x, w\|^2} (\|x, w\|^2 |y, w|^2 - |\langle x, y | w \rangle|^2).$$
 (2.1)

The equality holds if and only if there exists $a \in A$ such that

$$y - \frac{x\langle y, x|w\rangle}{\|x, w\|^2} = \frac{z\langle y, z|w\rangle}{\|z, w\|^2} + wa.$$

Proof. Without loss of generality, we can assume that ||z,w|| = ||x,w|| = 1. Put $\mu = y - x \langle x, y | w \rangle$, then

$$\langle \mu, z | w \rangle = \langle y - x \langle x, y | w \rangle, z | w \rangle = \langle y, z | w \rangle - \langle y, x | w \rangle \langle x, z | w \rangle = \langle y, z | w \rangle. \tag{2.2}$$

By using part (i) of Proposition 2.1, we get

$$\langle y, z | w \rangle \langle z, y | w \rangle = \langle \mu, z | w \rangle \langle z, \mu | w \rangle \le ||z, w||^2 \langle \mu, \mu | w \rangle. \tag{2.3}$$

Since

$$\langle y, x | w \rangle \langle x, x | w \rangle \langle x, y | w \rangle \le \|\langle x, x | w \rangle \|\langle y, x | w \rangle \langle x, y | w \rangle = \langle y, x | w \rangle \langle x, y | w \rangle,$$

we obtain

$$\langle \mu, \mu | w \rangle = \langle y - x \langle x, y | w \rangle, y - x \langle x, y | w \rangle \mid w \rangle$$

$$= \langle y, y | w \rangle - \langle y, x | w \rangle \langle x, y | w \rangle$$

$$- \langle y, x | w \rangle \langle x, y | w \rangle + \langle y, x | w \rangle \langle x, x | w \rangle \langle x, y | w \rangle$$

$$\leq \langle y, y | w \rangle - \langle y, x | w \rangle \langle x, y | w \rangle. \tag{2.4}$$

From (2.3) and (2.4), we deduce that

$$|\langle z, y | w \rangle|^2 \le \langle \mu, \mu | w \rangle \le \langle y, y | w \rangle - |\langle x, y | w \rangle|^2,$$

which proves (2.1). The equality holds if and only if the following conditions hold:

 $(i)\langle \mu, z \mid w \rangle \langle z, \mu m i dw \rangle = \langle \mu, \mu \mid w \rangle.$

$$(ii)\langle y, x \mid w \rangle \langle x, x \mid w \rangle \langle x, y \mid w \rangle = \langle y, x \mid w \rangle \langle x, y \mid w \rangle.$$

By Lemma 2.1 and (2.2), for some $a \in \mathcal{A}$ the condition (i) is equivalent to

$$\mu = \frac{z\langle z, \mu \mid w \rangle}{\|z, w\|^2} + wa = z\langle z, \mu \mid w \rangle + wa = z\langle z, y \mid w \rangle + wa, \text{ that is }$$

$$y - x\langle x, y \mid w \rangle = z\langle z, y \mid w \rangle + wa.$$

Since $\langle x, z \mid w \rangle = 0$, we have

$$\langle y, x \mid w \rangle \langle x, y \mid w \rangle = \langle y, x \mid w \rangle \langle x, x \langle x, y \mid w \rangle + z \langle z, y \mid w \rangle + wa \mid w \rangle$$
$$= \langle y, x \mid w \rangle \langle x, x \mid w \rangle \langle x, y \mid w \rangle.$$

This completes the proof.

Corollary 2.1. Let A be a C^* -algebra and E be an A-2-inner product space. Let $x, z, w \in E$ be such that ||x, w|| = ||z, w|| = 1 and $\langle z, z \mid w \rangle$ or $\langle x, x \mid w \rangle$ is a projection, Then $\langle x, z \mid w \rangle = 0$.

Proof. If $\langle x, x \mid w \rangle$ is a projection, from Theorem 2.1 by putting y = x, we have

$$|\langle z, x | w \rangle|^2 \le |x, w|^2 - |\langle x, x | w \rangle|^2 = \langle x, x | w \rangle - \langle x, x | w \rangle^2 = 0,$$

so $\langle x, z \mid w \rangle = 0$. Similarly if $\langle z, z \mid w \rangle$ is a projection, it is enough to put y = z in (2.1) to conclude $\langle x, z \mid w \rangle = 0$.

In the following, we introduce a class of operators on an \mathcal{A} -2-inner product space.

Definition 2.1. Let \mathcal{A} be a C^* -algebra and E be an \mathcal{A} -2-inner product space. Recall that a map $T: E \to E$ is \mathcal{A} - linear if T(xa) = T(x)a, for all $x \in E, a \in \mathcal{A}$. A bounded linear map T, for $w \in E$ is called w-positive, if $\langle Tx, x \mid w \rangle \geq 0$ for all $x \in E, T \geq S$ if and only if $T - S \geq 0$ be w-positive for any $w \in E$ and define $||T|| = \sup \{||\langle Tx, x \mid w \rangle|| : ||x, w|| \leq 1, x, w \in E\}$.

We get the following lemma, trivially.

Lemma 2.2. If T is an A- linear map on an A-2-inner product space E, then

$$\langle Tx, y \mid w \rangle = \frac{1}{4} \left(\langle T(x+y), x+y \mid w \rangle - \langle T(x-y), x-y \mid w \rangle \right)$$
$$-\frac{i}{4} \left(\langle T(x+iy), x+iy \mid w \rangle - \langle T(x-iy), x-iy \mid w \rangle \right), \qquad (2.5)$$

holds for any $x, y \in E$ and the following conditions are equivalent:

- (i) ||T|| = 0,
- $(ii) \langle Tx, x \mid w \rangle = 0,$
- (iii) $\langle Tx, y \mid w \rangle = 0$.

Proposition 2.2. For $x, y, w \in E$, we define A-linear operator $\Theta_{x,y,w} : E \to E$ by $\Theta_{x,y,w}(z) = x\langle y, z \mid w \rangle$. Then

- (i) $\Theta_{x,y,w}$ is an A-linear map,
- (ii) $\|\Theta_{x,y,w}\| \le \|x,w\| \|y,w\|$ for all $x,y,w \in E$,
- (iii) $\Theta_{x,y,w}$ is w-positive,
- $(iv) \Theta_{x,y,w} \Theta_{x_1,y_1,w_1} = \Theta_{x\langle y,x_1|w\rangle,y_1,w_1},$
- (v) $\Theta_{x,x,w}\Theta_{z,z,w} = 0$ if and only if $\langle x,z \mid w \rangle = 0$.

Proof. (i), (ii), (iv) are trivial. For (iii) we have

$$\langle \Theta_{x,y,w}(y), y, | w \rangle = \langle x \langle x, y | w \rangle, y | w \rangle$$
$$= \langle y, x | w \rangle \langle x, y | w \rangle$$
$$= |\langle x, y | w \rangle|^2 > 0.$$

(v) If $\langle x, z \mid w \rangle = 0$ then, for all $y \in E$,

$$\Theta_{x,x,w}\Theta_{z,z,w}(y) = \Theta_{x,x,w}(z\langle z,y\mid w\rangle) = x\langle x,z\mid w\rangle\langle z,y\mid w\rangle = 0.$$

Conversely if $\Theta_{x,x,w}\Theta_{z,z,w}=0$, then

$$\langle z, \Theta_{x,x,w} \Theta_{z,z,w}(x) \mid w \rangle = \langle z, x \mid w \rangle \langle x, z \mid w \rangle \langle z, x \mid w \rangle = 0$$

and hence we get

$$\|\langle x, z \mid w \rangle\|^4 = \|\langle z, x \mid w \rangle \langle x, z \mid w \rangle\|^2$$
$$= \|\langle z, x \mid w \rangle \langle x, z \mid w \rangle \langle z, x \mid w \rangle \langle x, z \mid w \rangle\| = 0,$$

therefore $\langle x, z \mid w \rangle = 0$.

From Theorem 2.1 we get the following corollary.

Corollary 2.2. Let A be a C^* -algebra and E be an A-2-inner product space. Let $x, z, w \in E$ be such that ||x, w|| = ||z, w|| = 1 and $\langle x, z \mid w \rangle = 0$. Then

$$\Theta_{x,x,w} + \Theta_{z,z,w} \leq I$$

where $I: E \to E$ is the identity operator.

Proof. Since ||x, w|| = ||z, w|| = 1, (2.1) implies that

$$|\langle z, y|w\rangle|^2 \le |y, w|^2 - |\langle x, y|w\rangle|^2.$$

so

$$|\langle z, y|w\rangle|^2 + \langle x, y|w\rangle|^2 \le |y, w|^2,$$

and this is equal to

$$\langle x\langle x,y|w\rangle,y\mid w\rangle + \langle z\langle z,y|w\rangle,y\mid w\rangle \leq \langle y,y\mid w\rangle.$$

Therefore,
$$\langle \Theta_{x,x,w}(y), y \mid w \rangle + \langle \Theta_{z,z,w}(y), y \mid w \rangle \leq \langle y, y \mid w \rangle$$
.

3. Dragomir's inequality in an A-2-inner product space

Let \mathcal{A} be a C^* -algebra with unit e and E be an \mathcal{A} -2-inner product space. The following results may be stated, which are generalizations of Drogomir's results [3].

Theorem 3.1. Let A be a C^* -algebra and E be an A-2-inner product space. For $x, y, z, w \in E$ so that $\langle x, x \mid w \rangle$ is invertible in \mathcal{A} and for each invertible $a \in \mathcal{A}$, we have

$$\|\langle y, x \mid w \rangle \langle x, x \mid w \rangle^{-1} \langle x, z \mid w \rangle - a^{-1} \langle y, z \mid w \rangle \|$$

$$\leq \frac{\|z, w\|}{\|a\|} \|(a - e) \langle y, x \mid w \rangle \langle x, x \mid w \rangle^{-1} \langle x, y \mid w \rangle (a^* - e)$$

$$+ \langle y, y \mid w \rangle - \langle y, x \mid w \rangle \langle x, x \mid w \rangle^{-1} \langle x, y \mid w \rangle \|^{\frac{1}{2}}$$

$$(3.1)$$

and equality holds if there exists $a, b \in A$, such that

$$x\langle x, x \mid w \rangle^{-1} \langle x, y \mid w \rangle a^* = y + zc + wba^*.$$

Proof.

$$\langle x\langle x, x \mid w \rangle^{-1} \langle x, y \mid w \rangle - y(a^{-1})^*, z \mid w \rangle$$

$$\times \langle z, x\langle x, x \mid w \rangle^{-1} \langle x, y \mid w \rangle - y(a^{-1})^* \mid w \rangle$$

$$\leq \|z, w\|^2$$

$$\times \langle x\langle x, x \mid w \rangle^{-1} \langle x, y \mid w \rangle - y(a^{-1})^*, x\langle x, x \mid w \rangle^{-1} \langle x, y \mid w \rangle - y(a^{-1})^* \mid w \rangle.$$
(3.2)

Since

$$\langle x\langle x,x\mid w\rangle^{-1}\langle x,y\mid w\rangle - y(a^{-1})^*, x\langle x,x\mid w\rangle^{-1}\langle x,y\mid w\rangle - y(a^{-1})^*\mid w\rangle$$

$$= \langle y,x\mid w\rangle\langle x,x\mid w\rangle^{-1}\langle x,x\mid w\rangle\langle x,x\mid w\rangle^{-1}\langle x,y\mid w\rangle - \langle y,x\mid w\rangle\langle x,x\mid w\rangle^{-1}$$

$$\times \langle x,y\mid w\rangle(a^{-1})^* - a^{-1}\langle y,x\mid w\rangle\langle x,x\mid w\rangle^{-1}\langle x,y\mid w - a^{-1}\langle y,y\mid w\rangle(a^{-1})^*$$

$$= a^{-1}(a\langle y,x\mid w\rangle\langle x,x\mid w\rangle^{-1}\langle x,y\mid w\rangle(a^*) - a\langle y,x\mid w\rangle\langle x,x\mid w\rangle^{-1}\langle x,y\mid w\rangle$$

$$- \langle y,x\mid w\rangle\langle x,x\mid w\rangle^{-1}\langle x,y\mid w\rangle(a^*) + \langle y,y\mid w\rangle)(a^{-1})^*$$

$$= a^{-1}((a-e)\langle y,x\mid w\rangle\langle x,x\mid w\rangle^{-1}\langle x,y\mid w\rangle + \langle y,y\mid w\rangle)(a^{-1})^*$$

$$- \langle y,x\mid w\rangle\langle x,x\mid w\rangle^{-1}\langle x,y\mid w\rangle + \langle y,y\mid w\rangle)(a^{-1})^*$$

and since

$$\begin{split} & \left\langle x\langle x,x\mid w\right\rangle^{-1}\langle x,y\mid w\rangle - y(a^{-1})^*,z\mid w\right\rangle \left\langle z,x\langle x,x\mid w\right\rangle^{-1}\langle x,y\mid w\rangle - y(a^{-1})^*\mid w\right\rangle \\ &= \left[\langle y,x\mid w\rangle\langle x,x\mid w\rangle^{-1}\langle x,z\mid w\rangle - a^{-1}\langle y,z\mid w\rangle\right] \\ &\times \left[\langle z,x\mid w\rangle\langle x,x\mid w\rangle^{-1}\langle x,y\mid w\rangle - \langle z,y\mid w\rangle(a^{-1})^*\right] \\ &= \left[\langle y,x\mid w\rangle\langle x,x\mid w\rangle^{-1}\langle x,z\mid w\rangle - a^{-1}\langle y,z\mid w\rangle\right] \\ &\times \left[\langle y,x\mid w\rangle\langle x,x\mid w\rangle^{-1}\langle x,z\mid w\rangle - a^{-1}\langle y,z\mid w\rangle\right]^* \end{split}$$

thus

$$\begin{split} &\|\langle y,x\mid w\rangle\langle x,x\mid w\rangle^{-1}\langle x,z\mid w\rangle - a^{-1}\langle y,z\mid w\rangle\|^2 \\ &= \|\langle x\langle x,x\mid w\rangle^{-1}\langle x,y\mid w\rangle - y(a^{-1})^*,z\mid w\rangle \\ &\times \langle z,x\langle x,x\mid w\rangle^{-1}\langle x,y\mid w\rangle - y(a^{-1})^*\mid w\rangle\| \\ &\leq \frac{\|z,w\|^2}{\|a\|^2} \|(a-e)\langle y,x\mid w\rangle\langle x,x\mid w\rangle^{-1}\langle x,y\mid w\rangle(a^*-e) \\ &+ \langle y,y\mid w\rangle - \langle y,x\mid w\rangle\langle x,x\mid w\rangle^{-1}\langle x,y\mid w\rangle\| \end{split}$$

From Lemma 2.1, the equality holds in (3.1), if there exists $b \in \mathcal{A}$ such that

$$\begin{split} & x \langle x, x \mid w \rangle^{-1} \langle x, y \mid w \rangle - y(a^{-1})^* \\ & = \frac{z}{\|z, w\|^2} \langle z, x \langle x, x \mid w \rangle^{-1} \langle x, y \mid w \rangle - y(a^{-1})^* \mid w \rangle + wb. \end{split}$$

Take $c = \frac{1}{\|z,w\|^2} \langle y,x \mid w \rangle \langle x,x \mid w \rangle^{-1} \langle z,x \mid w \rangle a^*$, then we have

$$x\langle x, x \mid w \rangle^{-1}\langle x, y \mid w \rangle a^* = y + zc + wba^*.$$

Putting a = 2e in Theorem 2.1, we get the following result.

Corollary 3.1. Let \mathcal{A} be a C^* -algebra and E be an \mathcal{A} -2-inner product space. For $x, y, z, w \in E$ so that $\langle x, x \mid w \rangle$ is invertible in \mathcal{A} , then we have

$$\|\langle y, x \mid w \rangle \langle x, x \mid w \rangle^{-1} \langle x, z \mid w \rangle \| \le \frac{1}{2} (\|y, w\| \|z, w\| + \|\langle y, z \mid w \rangle \|).$$

Theorem 3.2. Let A be a C^* -algebra and E be an A-2-inner product space. If $x, y, z, v, w \in E$ are so that $\langle x, x \mid w \rangle$ is invertible in \mathcal{A} and $\langle x, v \mid w \rangle = 0$ and $\|\langle v, v \mid w \rangle\| = 1$, then

$$\begin{split} &\|\langle y,x\mid w\rangle\langle x,x\mid w\rangle^{-1}\langle x,z\mid w\rangle\| \\ &\leq \frac{1}{2}(\|\langle y,y\mid w\rangle - \langle y,v\mid w\rangle\langle v,y\mid w\rangle\|^{1/2}\|\langle z,z\mid w\rangle \\ &- \langle z,v\mid w\rangle\langle v,z\mid w\rangle\|^{1/2} + \|\langle y,z\mid w\rangle - \langle y,v\mid w\rangle\langle v,z\mid w\rangle\|). \end{split}$$

Proof. Take $v_1 = y - v\langle v, y \mid w \rangle$ and $v_2 = z - v\langle v, z \mid w \rangle$, then

$$\langle v_1, x \mid w \rangle \langle x, x \mid w \rangle^{-1} \langle x, v_2 \mid w \rangle$$

$$= \langle y - v \langle v, y \mid w \rangle, x \mid w \rangle \langle x, x \mid w \rangle^{-1} \langle x, z - v \langle v, z \mid w \rangle \mid w \rangle$$

$$= \langle y, x \mid w \rangle \langle x, x \mid w \rangle^{-1} \langle x, z \mid w \rangle$$
(3.3)

and

$$\langle v_{1}, v_{2} \mid w \rangle = \langle y - v \langle v, y \mid w \rangle, z - v \langle v, z \mid w \rangle \mid w \rangle$$

$$= \langle y, z \mid w \rangle - \langle y, v \mid w \rangle \langle v, z \mid w \rangle - \langle y, v \mid w \rangle \langle v, z \mid w \rangle$$

$$+ \langle y, v \mid w \rangle \langle v, v \mid w \rangle \langle v, z \mid w \rangle$$

$$\leq \langle y, z \mid w \rangle - \langle y, v \mid w \rangle \langle v, z \mid w \rangle$$
(3.4)

and

$$\langle v_{1}, v_{1} \mid w \rangle = \langle y - v \langle v, y \mid w \rangle, y - v \langle v, y \mid w \rangle \mid w \rangle$$

$$= \langle y, y \mid w \rangle - \langle y, v \mid w \rangle \langle v, y \mid w \rangle - \langle y, v \mid w \rangle \langle v, y \mid w \rangle$$

$$+ \langle y, v \mid w \rangle \langle v, v \mid w \rangle \langle v, y \mid w \rangle$$

$$\leq \langle y, y \mid w \rangle - \langle y, v \mid w \rangle \langle v, y \mid w \rangle$$

$$(3.5)$$

and

$$\langle v_{2}, v_{2} \mid w \rangle = \langle z - v \langle v, z \mid w \rangle, z - v \langle v, z \mid w \rangle \mid w \rangle$$

$$= \langle z, z \mid w \rangle - \langle z, v \mid w \rangle \langle v, z \mid w \rangle - \langle z, v \mid w \rangle \langle v, z \mid w \rangle$$

$$+ \langle z, v \mid w \rangle \langle v, v \mid w \rangle \langle v, z \mid w \rangle$$

$$\leq \langle z, z \mid w \rangle - \langle z, v \mid w \rangle \langle v, z \mid w \rangle$$
(3.6)

From Corollary 3.1, the relations (3.3), (3.4), (3.5) and (3.6), we get

$$\begin{split} & \| \langle y, x \mid w \rangle \langle x, x \mid w \rangle^{-1} \langle x, z \mid w \rangle \| \\ & = \| \langle v_1, x \mid w \rangle \langle x, x \mid w \rangle^{-1} \langle x, v_2 \mid w \rangle \| \\ & \leq \frac{1}{2} (\| v_1, w \| \| v_2, w \| + \| \langle v_1, v_2 \mid w \rangle \|) \\ & \leq \frac{1}{2} (\| \langle y, y \mid w \rangle - \langle y, v \mid w \rangle \langle v, y \mid w \rangle \|^{1/2} \| \langle z, z \mid w \rangle \\ & - \langle z, v \mid w \rangle \langle v, z \mid w \rangle \|^{1/2} + \| \langle y, z \mid w \rangle - \langle y, v \mid w \rangle \langle v, z \mid w \rangle \|). \end{split}$$

4. Applications

Let (Ω, Σ, μ) be a measure space consisting of a set Ω , a σ -algebra Σ of subsets of Ω and a positive measure μ on Σ with values in $\mathbb{R} \cup \{\infty\}$. Denote by $L^2_v(\Omega)$ the Hilbert space of all real-valued functions α defined on Ω that are 2-v-integrable on Ω , i.e.

$$\int_{\Omega} v(s) |\alpha(s)|^2 \mathrm{d}\mu(s) < \infty,$$

where $v:\Omega\to[0,\infty)$ is a measurable fuction on Ω . In the following, we define a 2-inner product and a 2-norm on $L_v^2(\Omega)$ by

$$\langle \alpha, \beta \mid \gamma \rangle_{v} := 1/2 \int_{\Omega} \int_{\Omega} v(s)v(t) \begin{vmatrix} \beta(s) & \beta(t) \\ \gamma(s) & \gamma(t) \end{vmatrix} \begin{vmatrix} \alpha(s) & \alpha(t) \\ \gamma(s) & \gamma(t) \end{vmatrix} d\mu(s)d\mu(t),$$

and

$$\|\alpha,\gamma\|_{\upsilon} := \left(1/2 \int_{\Omega} \int_{\Omega} \upsilon(s) \upsilon(t) \begin{vmatrix} \alpha(s) & \alpha(t) \\ \gamma(s) & \gamma(t) \end{vmatrix}^2 \mathrm{d}\mu(s) \mathrm{d}\mu(t) \right)^{1/2}.$$

A simple calculation with integrals reveals that

$$\langle \alpha, \beta \mid \gamma \rangle_{\upsilon} := \begin{vmatrix} \int_{\Omega} \upsilon \alpha \beta d\mu & \int_{\Omega} \upsilon \alpha \gamma d\mu \\ \int_{\Omega} \upsilon \beta \gamma d\mu & \int_{\Omega} \upsilon \gamma^{2} d\mu \end{vmatrix}$$
(4.1)

and

$$\|\alpha, \gamma\|_{v} := \begin{vmatrix} \int_{\Omega} v\alpha^{2} d\mu & \int_{\Omega} v\alpha\gamma d\mu \\ \int_{\Omega} v\alpha\gamma d\mu & \int_{\Omega} v\gamma^{2} d\mu \end{vmatrix}^{1/2}$$

$$(4.2)$$

where, for simplicity, instead of $\int_{\Omega} v(s)\alpha(s)\beta(s)\mathrm{d}\mu(s)$, we have written $\int_{\Omega} v\alpha\beta\mathrm{d}\mu$. From Theorem 2.1, we have the following interesting determinantal integral inequality.

Proposition 4.1. Let $A = \mathbb{C}$ and $L_v^2(\Omega)$ be an A-2-inner product space and let $\alpha, \beta, \eta, \gamma \in L_v^2(\Omega)$, $\alpha \neq 0, \beta \neq 0$ be such that $\langle \alpha, \eta \mid \gamma \rangle = 0$, then

$$\left(\begin{vmatrix} \int_{\Omega} v \eta \beta d\mu & \int_{\Omega} v \eta \gamma d\mu \\ \int_{\Omega} v \beta \gamma d\mu & \int_{\Omega} v \gamma^{2} d\mu \end{vmatrix} \right)^{2} \leq \frac{\begin{vmatrix} \int_{\Omega} v \eta^{2} d\mu & \int_{\Omega} v \eta \gamma d\mu \\ \int_{\Omega} v \eta \gamma d\mu & \int_{\Omega} v \gamma^{2} d\mu \end{vmatrix}}{\begin{vmatrix} \int_{\Omega} v \alpha^{2} d\mu & \int_{\Omega} v \alpha \gamma d\mu \\ \int_{\Omega} v \alpha \gamma d\mu & \int_{\Omega} v \gamma^{2} d\mu \end{vmatrix}} \times$$

$$\left(\begin{vmatrix} \int_{\Omega} v\alpha^{2} d\mu & \int_{\Omega} v\alpha\gamma d\mu \\ \int_{\Omega} v\alpha\gamma d\mu & \int_{\Omega} v\gamma^{2} d\mu \end{vmatrix} \begin{vmatrix} \int_{\Omega} v\beta^{2} d\mu & \int_{\Omega} v\beta\gamma d\mu \\ \int_{\Omega} v\alpha\gamma d\mu & \int_{\Omega} v\gamma^{2} d\mu \end{vmatrix} \begin{vmatrix} \int_{\Omega} v\beta\gamma d\mu & \int_{\Omega} v\beta\gamma d\mu \\ \int_{\Omega} v\beta\gamma d\mu & \int_{\Omega} v\beta\gamma d\mu \end{vmatrix}^{2} \right).$$

The equality holds if and only if

$$\beta - \frac{\alpha \left| \int_{\Omega} v \alpha \beta d\mu \int_{\Omega} v \alpha \gamma d\mu \right|}{\left| \int_{\Omega} v \beta \gamma d\mu \int_{\Omega} v \alpha \gamma d\mu \right|} = \frac{\eta \left| \int_{\Omega} v \beta \beta d\mu \int_{\Omega} v \gamma \gamma d\mu \right|}{\left| \int_{\Omega} v \alpha \beta d\mu \int_{\Omega} v \alpha \gamma d\mu \right|} + \gamma a \quad (a \in \mathbb{C}).$$

References

- [1] Y.J. Cho, P.C.S. Lin, S.S. Kim and A. Misiak, Theory of 2-Inner Product Spaces, Nova Science Publishers, New York, 2001.
- [2] S.S. Dragomir, A.C. Gosa, A generalisation of an Ostrowski inequality in inner product spaces, Inequality theory and applications. Vol. 4, 61–64, Nova Science Publishers, New York, 2007.
- [3] S.S. Dragomir, Refinement of Buzano's and Kurepa's inequalities in inner product spaces, Facta universitatis (NIS). Ser. Math. Inform. 20 (2005), 65–73.
- [4] L. Arambašić and R. Rajić, Ostrowski's inequality in pre-Hilbert C*-modules, Math. Inequal. Appl. 12 (2009), no. 1, 217–226.
- [5] T. Mehdiabad Mahchari and A. Nazari, 2-Hilbert C*-modules and some Gruss type inequalities in A-2-inner product space, Math. Inequal. Appl. 18 (2015), no. 2, 721-754.
- [6] B. Mohebbi Najmabadi and T.L. Shateri, 2-inner product which takes values on a locally C^* -algebra, Indian J. Math. Soc. 85 (2018), no. 1-2, 218-226.
- [7] A.M. Ostrowski, Vorlesungen über Differential und Integralrechnung II, Birkhaüser, Basel, 1951.
- [8] C.E.M. Pearce, J. Pečarić and S. Varošanec, An integral analogue of the Ostrowski inequality, J. Inequal. Appl. 2 (1998), no. 3, 275–283.
- [9] H. Šikić and T. Šikić, A note on Ostrowski's inequality, Math. Ineq. Appl. 4 (2001), no.2, 297-299.

Behrooz Mohebbi Najmabadi

Department of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, P.O. Box 397, Iran.

E-mail address: behrozmohebbi1351@gmail.com

Tayebe Lal Shateri

Department of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, P.O. Box 397, Iran.

E-mail address: t.shateri@hsu.ac.ir

Received: July 23, 2018; Revised: January 20, 2019; Accepted: February 7, 2019