1 Turan's Theorem Original Proof

Set

$$f(n,k) = \frac{1}{2} n^2 \left(1 - \frac{1}{k}\right).$$

Turan's theorem

Theorem 1.1 (Turan). If a graph G = (V, E) on n vertices satisfies |E| > f(n, k), then G contains a (k + 1)-clique.

Contrapositive. If G has no (k+1)-clique, then

$$|E| < f(n,k)$$
.

Proof Plan: If we can transform any graph G = (V, E) without a (k + 1)-clique into a graph $G^* = (V, E^*)$ where G^* has no (k + 1)-clique, and $|E| = |E^*| \le f(n, k)$, the contrapositive of Turan's theorem follows directly.

We consider such a set of graphs next: k-partite graphs.

Lemma 1.2 (k-partite bound). A k-partite graph on n vertices contains no (k+1)-clique and satisfies

$$|E| \le f(n,k).$$

(The proof of the k-partite bound lemma is in a later section.)

Lemma 1.3 (Transformation lemma). Let G be a graph on n vertices with no (k + 1)-clique. Then there exists a k-partite graph on the same vertex set with the same number of edges, in particular:

$$|E| \le \frac{1}{2}n^2\left(1 - \frac{1}{k}\right),$$

Additionally, G possesses a vertex of degree at most $n(1-\frac{1}{k})$.

Base case

For $n \leq k+1$ the claim is immediate: the complete graph K_{k+1} contains $\frac{1}{2}(k+1)k$ edges. If we have less than or equal to $\frac{1}{2}(k+1)k-1$ edges, we cannot form a k+1-clique. We show that this edge count is less than the bound.

- $\frac{1}{2}(k+1)k 1 \le \frac{1}{2}(k+1)^2 \frac{k-1}{k}$
- $\frac{1}{2}k^3 + \frac{1}{2}k^2 k \le \frac{1}{2}(k^2 + 2k + 1)(k 1)$
- $\bullet \ \ \tfrac{1}{2}k^3 + \tfrac{1}{2}k^2 k \le \tfrac{1}{2}k^3 + k^2 \tfrac{1}{2}k \tfrac{1}{2}$

$$\bullet \ -\frac{1}{2}k^2 - \frac{k}{2} + \frac{1}{2} \le 0$$

which is clear since k > 1.

Then, any graph avoiding a (k+1)-clique already satisfies the bound and is itself k-partite (some parts may be empty).

Average degree observation

Because $|E| \leq \frac{1}{2}n^2(1-\frac{1}{k})$, the average degree is at most $n(1-\frac{1}{k})$; hence some vertex has degree at most $\lfloor (n(1-\frac{1}{k})\rfloor$.

Inductive step

Assume n > k + 1 and that the lemma holds for all graph of node count n or fewer. Let G be a graph on n + 1 vertices with no (k + 1)-clique.

Every induced subgraph of size n also avoids (k+1)-cliques and so meets the edge bound f(n,k).

Goal: find a vertex v of degree

$$\deg(v) \le D := n - \left\lfloor \frac{n}{k} \right\rfloor.$$

With such a vertex we delete v, apply the induction hypothesis to G - v to obtain a k-partite graph, then assign v to a smallest partition (necessarily of size $\leq \lfloor \frac{n}{k} \rfloor$), rewiring its at most D edges across the remaining partitions. The resulting graph is k-partite with the same edge count as G.

Lemma 1.4 (Degree bound lemma). The degree bound $\lfloor n(1-\frac{1}{k}) \rfloor$ will be equal to the bound D if $k \mid n$ and equal to D-1 if $k \nmid n$.

If $k \mid n$ then

$$n - \left\lfloor \frac{n}{k} \right\rfloor = \left\lfloor n \left(1 - \frac{1}{k} \right) \right\rfloor,$$

the floor operation becomes the identity and equality follows.

If
$$n = qk + r$$
, $\lfloor n(1 - \frac{1}{k}) \rfloor = \lfloor (qk + r) - q - \frac{r}{k} \rfloor$, and $n - \lfloor \frac{n}{k} \rfloor = qk + r - \lfloor (q + \frac{r}{k}) \rfloor$.

Taking out the integer $qk+r, \lfloor -q-\frac{r}{k}\rfloor < -\lfloor q+r/k\rfloor$, and they lie on either side of integer -q, so $\lfloor n(1-\frac{1}{k})\rfloor = n-\lfloor \frac{n}{k}\rfloor -1$.

Existence of a small degree vertex

- If $k \nmid n$, choose any subset of n vertices of G, which has n+1 nodes. By induction the subset contains a vertex w of degree $\leq n(1-\frac{1}{k})$, which is $\leq D-1$ by the Degree Bound Lemma, so the whole graph has such a vertex. Even if $(v, w) \in E$, w satisfies the degree bound.
- Suppose now $k \mid n$ (no more floors!) and, toward contradiction, that every vertex satisfies $deg(v) \geq D + 1$.

Count edges in all $\binom{n+1}{n} = n+1$ induced *n*-vertex subgraphs. By induction each has at most

$$f(n,k) = \frac{1}{2}n^2\left(1 - \frac{1}{k}\right)$$

edges. Summing and dividing by the multiplicity n-1 with which each edge is counted (two subgraphs will contain its endpoints), we obtain an upper bound

$$T_{\text{upper}} = \frac{n+1}{n-1} f(n,k).$$

On the other hand, our degree assumption forces at least

$$T_{\text{lower}} = \frac{n+1}{2} \left(n - \frac{n}{k} + 1 \right)$$

edges in total. Compute

$$T_{\text{lower}} - T_{\text{upper}} = \frac{n+1}{2} \frac{n-k}{k(n-1)} > 0$$

because n > k. This contradiction establishes that a vertex of degree $\leq D$ exists.

Completion of the inductive step

Removing the low-degree vertex and applying the rewiring argument yields a k-partite graph on n+1 vertices with the same edge count as G. Hence every (n+1)-vertex graph without a (k+1)-clique satisfies

$$|E| \le \frac{1}{2}n^2\left(1 - \frac{1}{k}\right).$$

Corollary (Turan). If $|E| > \frac{1}{2}n^2(1-\frac{1}{k})$ then G must contain a (k+1)-clique.

2 Proof of k-partite lemma

A k-partite graph (perhaps a real term but I'll use it here) has k partitions of nodes, within which all are disconnected. The nodes from differing partitions may connect. A perfectly balanced graph has partitions all of equal size.

Proposition 2.1. The edge-count formula of a perfectly balanced k-partite graph is

$$E_p(n,k) = \frac{n^2}{2} \left(1 - \frac{1}{k} \right).$$

Each of n nodes connects to $n\frac{k-1}{k}$ nodes in other partitions. We divide by two to get the number of edges.

Proposition 2.2. The edge-count formula of a perfectly balanced graph of node total n is the upper bound to any partitioning of nodes among k partitions.

We are looking at maximizing $f(\vec{a}) = \frac{1}{2} \sum_{i \neq j; i,j < k}^{k} a_i a_j$, where a_i is the node count of partition i.

We can write this as $f(\vec{a}) = \frac{1}{2} \sum_{i \neq j; i,j < k} a_i a_j = (\sum_i^k a_i)^2 - \frac{1}{2} \sum_i^k a_i^2 = n^2 - \frac{1}{2} \sum_i^k a_i^2$. So we are looking at minimizing the final term to maximize $f(\vec{a})$

Consider the definition of statistical variance: $Var(a_1, a_2...a_k) = \sum_{i=1}^k (a_i - \bar{a})^2 = \sum_{i=1}^k (a_i^2 - 2\bar{a}a_i + \bar{a}^2)$.

So
$$Var(a_1, a_2...a_k) = \frac{1}{k} \left[\sum_{i=1}^k (a_i^2) - 2\bar{a}(\sum_{i=1}^k a_i) + k\bar{a}^2 \right]$$

Thus, ignoring constant terms, minimizing $Var(a_1, a_2...a_k)$ is the same as minimizing $\sum_{i=1}^k a_i^2$. But the variance reaches its minimum at zero when all values a_i are equal. This is therefore bounded by the edge count of the equal partition $E_p(n,k) = \frac{n^2}{2} \left(1 - \frac{1}{k}\right)$.

2.1 Conclusion

Therefore, any k-partite graph has less than or equal to $\frac{n^2}{2}\left(1-\frac{1}{k}\right)$ edges.