

Logistic Regression

강필성 고려대학교 산업경영공학부 Bflysoft & WIGO AI LAB

• 다중 선형 회귀분석

✓ 수치형 설명변수 X와 종속변수 Y간의 관계를 선형으로 가정하고 이를 가장 잘 표현할수 있는 회귀 계수를 추정

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 \cdots + \beta_d x_d + \epsilon$$

unexplained

$$\hat{y} = \hat{\beta_0} + \hat{\beta_1} x_1 + \hat{\beta_2} x_2 \cdots + \hat{\beta_d} x_d$$

coefficients

• 예시 I

✓ 33명의 성인 여성에 대한 나이와 혈압 사이의 관계

Age	SBP	Age	SBP	Ag	e SBP
22	131	41	139		2 128
23	128	41	171	5	4 105
24	116	46	137	50	5 145
27	106	47	111	5	7 141
28	114	48	115	58	3 153
29	123	49	133	59	9 157
30	117	49	128	63	3 155
32	122	50	183	6	7 176
33	99	51	130	7	1 172
35	121	51	133	7	7 178
40	147	51	144	8	1 217

• 예시 2

✔ 연속형 변수가 아닌 이진형(Binary) 변수인 Cancer Diagnosis를 사용한다면?

Age	CD	Age	CD	Age	CD
22	0	40	0	54	0
23	0	41	1	55	1
24	0	46	0	58	1
27	0	47	0	60	1
28	0	48	0	60	0
30	0	49	1	62	1
30	0	49	0	65	1
32	0	50	1	67	1
33	0	51	0	71	1
35	1	51	1	77	1
38	0	52	0	81	1
-					

- 0/1의 이진 값이 아닌 확률값을 종속 변수로 사용한다면?
 - ✓ 선형회귀분석의 우변의 범위에 대한 제한이 없기 때문에 종속변수(좌변) 역시 범위의 제한을 받지 않으므로 적절하지 않음

$$\hat{y} = \hat{\beta_0} + \hat{\beta_1} x_1 + \hat{\beta_2} x_2 + \dots + \hat{\beta_d} x_d$$

$$P(y = 1) = \hat{\beta_0} + \hat{\beta_1} x_1 + \hat{\beta_2} x_2 + \dots + \hat{\beta_d} x_d$$

- 0/1의 이진 값이 아닌 확률값을 종속 변수로 사용한다면?
 - ✓ 선형회귀분석의 우변의 범위에 대한 제한이 없기 때문에 종속변수(좌변) 역시 범위의 제한을 받지 않으므로 적절하지 않음

• 목적

✔ 이진형(0/I)의 형태를 갖는 종속변수(분류문제)에 대해 회귀식의 형태로 모형을 추정하는 것

• 속성

- ✓ 종속변수 Y 자체를 그대로 사용하는 것이 아니라 Y에 대한 로짓 함수(logit function)를 회귀식의 종속변수로 사용
- ✔ 로짓함수는 설명변수의 선형결합으로 표현될 수 있음
- ✓ 로짓함수의 값은 종속변수에 대한 성공 확률로 역산될 수 있으며, 이는 따라서 분류 문 제에 적용할 수 있음

2010 World Cup Betting Odds

- 승산 (Odds)
 - ✓ p: 성공 범주(class = I)에 속할 확률

$$Odds = \frac{p}{1-p}$$

- 이전 예시에 대해
 - ✓ 스페인의 우승 odds는 2/9이므로 스페인의 우승 확률은 2/11임
 - ✓ 대한민국의 우승 odds는 I/250 이므로 대한민국의 우승확률은 I/251 ≒ 0.00398 (0.398%)임
 - ✓ I,000년을 살면 대한민국이 월드컵에서 한 번 우승하는 모습을 목격할 수 있음

• 확률값이 0부터 I로 변화함에 따라 승산(Odds)은 0부터 무한대의 값을 가짐

- Odds의 한계
 - ✓ 여전히 범위에 대한 제약이 존재함: 0 < odds < ∞</p>
 - ✓ 비대칭성(Asymmetric)
- Odds에 로그를 취하자

$$log(Odds) = log\left(\frac{p}{1-p}\right)$$

- ✓ 드디어 범위에 대한 제약이 없어짐: ∞ < log(odds) < ∞</p>
- ✔ 대칭성 확보
- ✔ 성공확률 p가 작으면 음수값을 갖고, 성공확률 p가 크면 양수값을 가짐

확률값이 0부터 1까지 변화함에 따라 로그 승산은 -∞ ~ ∞의 값을 가지며 대칭임

로지스틱 회귀분석: Equation

• 로지스틱 회귀분석 식

✓ Log Odds를 이용한 회귀분석 식

$$log(Odds) = log\left(\frac{p}{1-p}\right) = \hat{\beta_0} + \hat{\beta_1}x_1 + \hat{\beta_2}x_2 + \dots + \hat{\beta_d}x_d$$

✓ 양변에 로그를 취하면

$$\frac{p}{1-p} = e^{\hat{\beta_0} + \hat{\beta_1}x_1 + \hat{\beta_2}x_2 + \dots + \hat{\beta_d}x_d}$$

✓ 성공확률에 대한 식으로 표현

$$p = \frac{1}{1 + e^{-(\hat{\beta_0} + \hat{\beta_1}x_1 + \hat{\beta_2}x_2 \cdots + \hat{\beta_d}x_d)}} = \sigma(\mathbf{x}|\beta)$$

로지스틱 회귀분석: Equation

• 로지스틱 회귀분석 식

Logistic Regression 선형식

로지스틱 회귀분석: 학습

• 로지스틱 회귀분석에서 회귀 계수의 추정

✔ 동일한 데이터셋에 대해 다음과 같이 두 가지의 로지스틱 회귀분석 모형이 존재한다고 하면 어떤 모형이 현재 데이터를 더 잘 설명하는 모형인가?

Model A

Glass	Label	P(Y=I)	P(Y=0)
I	I	0.908	0.092
2	0	0.201	0.799
3	I	0.708	0.292
4	0	0.214	0.786
5	I	0.955	0.045
6	0	0.017	0.983
7	I	0.807	0.193
8	0	0.126	0.874
9	I	0.937	0.063
1-11B1-1		0.068	0.932

Model B

	Glass	Label	P(Y=I)	P(Y=0)		Glass	Label	P(Y=I)	P(Y=0)
	I	I	0.908	0.092		I	I	0.557	0.443
	2	0	0.201	0.799		2	0	0.425	0.575
	3	1	0.708	0.292		3	l	0.604	0.396
	4	0	0.214	0.786		4	0	0.387	0.613
	5	1	0.955	0.045		5	l	0.615	0.385
	6	0	0.017	0.983		6	0	0.356	0.644
	7	I	0.807	0.193		7	I	0.406	0.594
	8	0	0.126	0.874		8	0	0.508	0.492
	9	I	0.937	0.063		9	Ī	0.704	0.296
√ \	J제 ^I 쉇단	OI 1@1 [[0.068	0.932	 확 률 이 높	고 씰제	정답이 0	0.325	0.675

확률이 높으므로 Model A가 더 우수한 모형임

로지스틱 회귀분석: 학습

• 로지스틱 회귀분석에서 회귀 계수의 추정

- ✓ 우도 함수(Likelihood function)
 - 개별 객체의 우도 함수는 해당 학습 데이터가 정답 범주에 속할 확률 (Glass I의 우도 함수 값은 0.908, Glass 2의 우도 함수 값은 0.799)
 - 데이터의 생성 과정이 독립임을 가정할 수 있을 때, 전체 데이터셋의 우도 함수는 개별 객체의 우도 함수를 모두 곱한 값임
 - 일반적으로 데이터셋의 우도 함수는 매우 작은 값을 가지므로(I보다 작은 소수가 계속 곱해지 므로) 로그 우도 함수를 주로 사용

Model A

Glass	Label	P(Y=I)	P(Y=0)
I	I	0.908	0.092
2	0	0.201	0.799
3	I	0.708	0.292
4	0	0.214	0.786
5	I	0.955	0.045
6	0	0.017	0.983
7	I	0.807	0.193
8	0	0.126	0.874
9	I	0.937	0.063
10	0	0.068	0.932

로지스틱 회귀분석: 학습

• 로지스틱 회귀분석에서 회귀 계수의 추정

✓ 우도 함수(Likelihood function)

Model A

Glass	Label	P(Y=1)	P(Y=0)	우	로그 우도
I	I	0.908	0.092	0.908	-0.0965
2	0	0.201	0.799	0.799	-0.2244
3	l	0.708	0.292	0.708	-0.3453
4	0	0.214	0.786	0.786	-0.2408
5	l	0.955	0.045	0.955	-0.0460
6	0	0.017	0.983	0.983	-0.0171
7	l	0.807	0.193	0.807	-0.2144
8	0	0.126	0.874	0.874	-0.1347
9	Ī	0.937	0.063	0.937	-0.0651

0.932

0.068

0

10

Model B

Glass	Label	P(Y=I)	P(Y=0)	우도	로그 우도
I	I	0.557	0.443	0.557	-0.5852
2	0	0.425	0.575	0.575	-0.5534
3	I	0.604	0.396	0.604	-0.5042
4	0	0.387	0.613	0.613	-0.4894
5	l	0.615	0.385	0.615	-0.4861
6	0	0.356	0.644	0.644	-0.4401
7		0.406	0.594	0.406	-0.9014
8	0	0.508	0.492	0.492	-0.7093
9	I	0.704	0.296	0.704	-0.3510
10	0	0.325	0.675	0.675	-0.3930
				0.004458	-0.5413

✓ Model A의 (로그) 우도 함수가 Model B의 (로그) 우도 함수보다 큼

-0.0704

-0.1455

✔ Model A가 Model B보다 데이터셋을 더 잘 설명하는 모델

0.932

0.233446

로지스틱 회귀분석: 학습 (Optional)

- 최대 우도 추정법: Maximum likelihood estimation (MLE)
 - ✔ 학습 데이터의 개별 객체들이 갖는 label에 대한 확률을 극대화 하자
 - ✓ i번째 객체에 대한 우도 함수

$$P(\mathbf{x}_i, y_i | \boldsymbol{\beta}) = \begin{cases} \sigma(\mathbf{x}_i | \boldsymbol{\beta}), & if \ y_i = 1\\ 1 - \sigma(\mathbf{x}_i | \boldsymbol{\beta}), & if \ y_i = 0 \end{cases}$$

✓ 출력변수가 I과 0임을 고려하여 다음과 같이 변형 가능

$$P(\mathbf{x}_i, y_i | \boldsymbol{\beta}) = \sigma(\mathbf{x}_i | \boldsymbol{\beta})^{y_i} (1 - \sigma(\mathbf{x}_i | \boldsymbol{\beta}))^{1 - y_i}$$

로지스틱 회귀분석: 학습 (Optional)

- 최대 우도 추정법: Maximum likelihood estimation (MLE)
 - ✓ 학습 데이터셋의 객체들이 독립적으로 발생됨을 가정할 경우 전체 데이터 셋에 대한 우도 함수는 다음과 같이 표현됨

$$L(\mathbf{X}, \mathbf{y}|\boldsymbol{\beta}) = \prod_{i=1}^{N} P(\mathbf{x}_i, y_i|\boldsymbol{\beta}) = \prod_{i=1}^{N} \sigma(\mathbf{x}_i|\boldsymbol{\beta})^{y_i} (1 - \sigma(\mathbf{x}_i|\boldsymbol{\beta}))^{1-y_i}$$

✔ 양변에 로그를 취하면

$$\log L(\mathbf{X}, \mathbf{y}|\boldsymbol{\beta}) = \sum_{i=1}^{N} \left(y_i \log \left(\sigma(\mathbf{x}_i|\boldsymbol{\beta}) \right) + (1 - y_i) \log (1 - \sigma(\mathbf{x}_i|\boldsymbol{\beta})) \right)$$

- ✔ 우도함수와 로그-우도함수는 회귀계수 β에 대해 비선형이므로 선형회귀분석과 같이 명시적인 해가 존재하지 않음
 - Conjugate gradient 등의 최적화 알고리즘을 차용하여 해를 구함

• 눈을 가린 채로 산에서 가장 낮은 곳을 찾아가기

- 기울기 하강: Gradient descent algorithm
 - ✓ 파란색 선: 가중치 w의 변화에 따른 목적함수 값의 변화
 - ✓ 검은색 점: 현재 해의 위치
 - ✓ 화살표: 목적함수를 최적화하기 위해 가중치 w가 이동해야 하는 방향

• 입력 변수가 두 개인 로지스틱 회귀분석

$$h = \sum_{i=0}^{2} w_i x_i$$

$$y = \frac{1}{1 + exp(-h)}$$

$$\checkmark$$
손실함수(최소화, 우도와 반대 개념): $L = \frac{1}{2}(t-y)^2$

✓ 미지수 w에 대한 gradient를 어떻게 구할 것인가?

• Use chain rule

$$\frac{\partial L}{\partial y} = y - t$$

$$\frac{\partial y}{\partial h} = \frac{exp(-h)}{(1 + exp(-h))^2} = \frac{1}{1 + exp(-h)} \cdot \frac{exp(-h)}{1 + exp(-h)} = y(1 - y)$$

$$\frac{\partial h}{\partial w_i} = x_i$$

Gradients for w

$$\frac{L}{\partial w_i} = \frac{L}{\partial y} \cdot \frac{\partial y}{\partial h} \cdot \frac{\partial h}{\partial w_i} = (y - t) \cdot y(1 - y) \cdot x_i$$

Update w

$$w_i^{new} = w_i^{old} - \alpha \times \frac{L}{\partial w_i^{old}} = w_i^{old} - \alpha \times (y - t) \cdot y(1 - y) \cdot x_i$$

• Gradient Descent 에서 weight가 업데이트 되는 원리

현재의 출력값(y)과 정답(t)이 차이가 많이 날 수록 가중치를 많이 업데이트 하라 대상 가중치와 연결된 입력 변수의 값이 클 수록 가중치를 많이 업데이트 하라

로지스틱 회귀분석: 성공 확률

• 성공 확률

✓ 회귀계수가 추정되고 나면 주어진 설명변수집합에 대한 성공확률을 다음과 같이 계산 할 수 있음

$$P(y=1) = \frac{1}{1 + e^{-(\hat{\beta_0} + \hat{\beta_1}x_1 + \hat{\beta_2}x_2 + \dots + \hat{\beta_d}x_d)}}$$

로지스틱 함수의 의미

• 실제 상황에서는

✓ 특정 변수에 대한 확률 값은 선형이 아닌 S-커브 형태를 따르는 경우가 많음

로지스틱 함수의 의미

• 이진분류를 위한 cut-off 설정

- ✓ 일반적으로 0.5가 주로 사용됨
- ✓ 사전확률을 고려한 cut-off나 검증데이터의 정확도를 최대화하는 cut-off 등이 사용될수도 있음

- 로지스틱 회귀분석 회귀계수의 의미
 - ✓ 선형 회귀분석 회귀식

$$\hat{y} = \hat{\beta_0} + \hat{\beta_1} x_1 + \hat{\beta_2} x_2 \cdots + \hat{\beta_d} x_d$$

- ✔ 선형 회귀분석에서의 회귀계수는 해당 변수가 1 증가함에 따른 종속변수의 변화량
- ✓ 로지스틱 회귀분석 회귀식

$$log(Odds) = log(\frac{p}{1-p}) = \hat{\beta_0} + \hat{\beta_1}x_1 + \hat{\beta_2}x_2 + \dots + \hat{\beta_d}x_d$$

$$p = \frac{1}{1 + e^{-(\hat{\beta_0} + \hat{\beta_1}x_1 + \hat{\beta_2}x_2 + \dots + \hat{\beta_d}x_d)}}$$

✓ 로지스틱 회귀분석에서의 회귀계수는 해당 변수가 1 증가함에 따른 로그 승산의 변화량

- 승산 비율: Odds Ratio
 - ✓ 로지스틱 회귀분석에서 나머지 변수는 모두 고정시킨 상태에서 한 변수를 I만큼 증가 시켰을 때 변화하는 Odds의 비율
 - ✓ Odds ratio:

$$\frac{odds(\mathbf{x_1} + 1, \cdots, x_d)}{odds(x_1, \cdots, x_d)} = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1(\mathbf{x_1} + 1) + \hat{\beta}_2 x_2 + \cdots + \hat{\beta}_d x_d}}{e^{\hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \cdots + \hat{\beta}_d x_d}} = e^{\hat{\beta}_1}$$

- \checkmark $\mathbf{x_l}$ 이 \mathbf{I} 증가하게 되면 성공에 대한 승산 비율이 e^{eta_l} 만큼 변화함
 - 회귀 계수가 양수 → 변수가 증가하면 성공 확률이 **증가 (성공범주와 양의 상관관계)**
 - 회귀 계수가 음수 → 변수가 증가하면 성공 확률이 <mark>감소 (성공범주와 음의 상관관계</mark>)

$$\frac{p}{1-p} = e^{\hat{\beta_0} + \hat{\beta_1} x_1 + \hat{\beta_2} x_2 \dots + \hat{\beta_d} x_d}$$

• 로지스틱 회귀분석 결과 및 해석

✓ 로지스틱 회귀분석을 수행하고 나면 선형 회귀분석과 유사하게 다음과 같은 표를 결과 로 얻을 수 있음

$$p = \frac{1}{1 + e^{-(\hat{\beta_0} + \hat{\beta_1}x_1 + \hat{\beta_2}x_2 \dots + \hat{\beta_d}x_d)}}$$

Input variables	Coefficient	Std. Error	p-value	Odds
Constant term	-13.20165825	2.46772742	0.00000009	*
Age	-0.04453737	0.09096102	0.62439483	0.95643985
Experience	0.05657264	0.09005365	0.5298661	1.05820346
Income	0.0657607	0.00422134	0	1.06797111
Family	0.57155931	0.10119002	0.00000002	1.77102649
CCAvg	0.18724874	0.06153848	0.00234395	1.20592725
Mortgage	0.00175308	0.00080375	0.02917421	1.00175464
Securities Account	-0.85484785	0.41863668	0.04115349	0.42534789
CD Account	3.46900773	0.44893095	0	32.10486984
Online	-0.84355801	0.22832377	0.00022026	0.43017724
CreditCard	-0.96406376	0.28254223	0.00064463	0.38134006
EducGrad	4.58909273	0.38708162	0	98.40509796
EducProf	4.52272701	0.38425466	0	92.08635712

• 로지스틱 회귀분석 결과 및 해석

- ✓ 회귀계수: Coefficient
 - 로지스틱 회귀분석에서 각 변수에 대응하는 베타값임
 - 선형회귀분석에서는 해당 변수가 I단위 증가할 때 종속변수의 변화량을 의미하나,로지스틱 회귀분석에서는 해당 변수가 I단위 증가할 때 로그승산비의 변화량을 의미
 - 양수이면 성공확률과 양의 상관관계, 음수이면 성공 확률과 음의 상관관계

Input variables	Coefficient	Std. Error	p-value	Odds
Constant term	-13.20165825	2.46772742	0.00000009	*
Age	-0.04453737	0.09096102	0.62439483	0.95643985
Experience	0.05657264	0.09005365	0.5298661	1.05820346
Income	0.0657607	0.00422134	0	1.06797111
Family	0.57155931	0.10119002	0.00000002	1.77102649
CCAvg	0.18724874	0.06153848	0.00234395	1.20592725
Mortgage	0.00175308	0.00080375	0.02917421	1.00175464
Securities Account	-0.85484785	0.41863668	0.04115349	0.42534789
CD Account	3.46900773	0.44893095	0	32.10486984
Online	-0.84355801	0.22832377	0.00022026	0.43017724
CreditCard	-0.96406376	0.28254223	0.00064463	0.38134006
EducGrad	4.58909273	0.38708162	0	98.40509796
EducProf	4.52272701	0.38425466	0	92.08635712

• 로지스틱 회귀분석 결과 및 해석

- ✔ 유의확률: p-value
 - 로지스틱 회귀분석에서 해당 변수가 통계적으로 유의미한지 여부를 알려주는 지표
 - 0에 가까울수록 모델링에 중요한 변수이며, I에 가까울수록 유의미하지 않은 변수임
 - 특정 유의수준(α)을 설정하여 해당 값 미만의 변수만을 사용하여 다시 로지스틱 회귀분석을 구축하는 것도 가능함 (주로 $\alpha=0.05$ 사용)

Input variables	Coefficient	Std. Error	p-value	Odds
Constant term	-13.20165825	2.46772742	0.00000009	*
Age	-0.04453737	0.09096102	0.62439483	0.95643985
Experience	0.05657264	0.09005365	0.5298661	1.05820346
Income	0.0657607	0.00422134	0	1.06797111
Family	0.57155931	0.10119002	0.00000002	1.77102649
CCAvg	0.18724874	0.06153848	0.00234395	1.20592725
Mortgage	0.00175308	0.00080375	0.02917421	1.00175464
Securities Account	-0.85484785	0.41863668	0.04115349	0.42534789
CD Account	3.46900773	0.44893095	0	32.10486984
Online	-0.84355801	0.22832377	0.00022026	0.43017724
CreditCard	-0.96406376	0.28254223	0.00064463	0.38134006
EducGrad	4.58909273	0.38708162	0	98.40509796
EducProf	4.52272701	0.38425466	0	92.08635712

• 로지스틱 회귀분석 결과 및 해석

- ✔ 승산 비율: Odds Ratio
 - 나머지 변수는 모두 고정시킨 상태에서 한 변수를 I만큼 증가시켰을 때 변화하는 Odds의 비율

Input variables	Coefficient	Std. Error	p-value	Odds
Constant term	-13.20165825	2.46772742	0.00000009	*
Age	-0.04453737	0.09096102	0.62439483	0.95643985
Experience	0.05657264	0.09005365	0.5298661	1.05820346
Income	0.0657607	0.00422134	0	1.06797111
Family	0.57155931	0.10119002	0.00000002	1.77102649
CCAvg	0.18724874	0.06153848	0.00234395	1.20592725
Mortgage	0.00175308	0.00080375	0.02917421	1.00175464
Securities Account	-0.85484785	0.41863668	0.04115349	0.42534789
CD Account	3.46900773	0.44893095	0	32.10486984
Online	-0.84355801	0.22832377	0.00022026	0.43017724
CreditCard	-0.96406376	0.28254223	0.00064463	0.38134006
EducGrad	4.58909273	0.38708162	0	98.40509796
EducProf	4.52272701	0.38425466	0	92.08635712

Geometric interpretation

✔ 로지스틱 회귀분석은 d차원의 데이터를 구분하는 (d-I)차원의 초평면을 찾는 것으로 이해할 수 있음

$$y = \frac{1}{\left(1 + \exp(-\beta^{T} x)\right)} \qquad \begin{pmatrix} y \to 1 & if & \beta^{T} x \to \infty \\ y = \frac{1}{2} & if & \beta^{T} x = 0 \\ y \to 0 & if & \beta^{T} x \to -\infty \end{pmatrix}$$

로지스틱 회귀분석: 예시

• 신용카드 연체 예측

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}.$$

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X.$$

로지스틱 회귀분석: 예시

• 신용카드 연체 예측: 단변량 로지스틱 회귀분석

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-10.6513	0.3612	-29.5	< 0.0001
balance	0.0055	0.0002	24.9	< 0.0001

What is our estimated probability of **default** for someone with a balance of \$1000?

$$\hat{p}(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 1000}}{1 + e^{-10.6513 + 0.0055 \times 1000}} = 0.006$$

With a balance of \$2000?

$$\hat{p}(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 2000}}{1 + e^{-10.6513 + 0.0055 \times 2000}} = 0.586$$

로지스틱 회귀분석: 예시

• 신용카드 연체 예측: 다변량 로지스틱 회귀분석

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$
$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-10.8690	0.4923	-22.08	< 0.0001
balance	0.0057	0.0002	24.74	< 0.0001
income	0.0030	0.0082	0.37	0.7115
student[Yes]	-0.6468	0.2362	-2.74	0.0062

- 지금까지의 로지스틱 회귀분석은 이범주 분류(Binary classification)를 풀기 위한 방식임
 - ✓ Q) 범주가 3개 이상인 다범주 분류에는 로지스틱 회귀분석을 어떻게 적용할 수 있을까?

• 다항 로지스틱 회귀분석

- ✓ 기준(Baseline)이 되는 범주를 설정하고 이 범주 대비 다른 범주가 발생할 로그 승산을 회귀식으로 추정
- ✔ 예시) 범주가 3개인 분류 문제의 경우 아래 두 개의 회귀식에 대한 회귀 계수를 추정
 - 범주 3대비 범주 I의 발생 확률에 대한 로지스틱 회귀분석

$$log\left(\frac{p(y=1)}{p(y=3)}\right) = \hat{\beta}_{10} + \hat{\beta}_{11}x_1 + \hat{\beta}_{12}x_2 + \dots + \hat{\beta}_{1d}x_d = \hat{\beta}_{1}^T \mathbf{x}$$

■ 범주 3 대비 범주 2의 발생 확률에 대한 로지스틱 회귀분석

$$log\left(\frac{p(y=2)}{p(y=3)}\right) = \hat{\beta}_{20} + \hat{\beta}_{21}x_1 + \hat{\beta}_{22}x_2 + \dots + \hat{\beta}_{2d}x_d = \hat{\beta}_{2}^T \mathbf{x}$$

• 다항 로지스틱 회귀분석

- ✓ 왜 범주는 3개인데 2개의 모형만 학습하는가? (일반화하면 K개의 범주가 있을 때, (K-I)개의 모형만 학습하는 이유는?
 - 각 범주에 속할 확률의 합은 항상 I이므로 나머지 K번째 범주에 대한 확률은 자동으로 산출됨

$$\frac{p(y=1)}{p(y=3)} = e^{\boldsymbol{\beta}_{1}^{T} \mathbf{x}} \qquad \frac{p(y=2)}{p(y=3)} = e^{\boldsymbol{\beta}_{2}^{T} \mathbf{x}}$$

$$p(y = 1) + p(y = 2) + p(y = 3) = 1$$

$$p(y=3) \times e^{\beta_{1}^{T} \mathbf{x}} + p(y=3) \times e^{\beta_{2}^{T} \mathbf{x}} + p(y=3) = 1$$

$$p(y=3) = \frac{1}{1 + e^{\boldsymbol{\beta}_{1.}^{T} \mathbf{x}} + e^{\boldsymbol{\beta}_{2.}^{T} \mathbf{x}}}$$

- 다항 로지스틱 회귀분석에서의 회귀계수 분석
 - ✔ 개별 모형에 대해서 회귀 계수와 이에 대한 유의확률을 산출할 수 있음
 - Total phenols, Flavanoids, Monflavanoid penols, Hue, OD280~ 변수는 I vs. 3, 2 vs. 3에서 모두 유의미한 변수로 나타남
 - Ash., Proanthocyanins 변수는 범주 I 과 3을 구분할 때는 유의미하지 않으나 2와 3을 구분할 때 매우 유의미함

	I vs 3		2 vs 3	
	Coefficient	p-value	Coefficient	p-value
(Intercept)	-223.7894	0.0000	340.9326	0.0000
Alcohol.2	19.6193	0.7880	-35.2596	0.6828
Malic.acid.	1.0581	0.9228	-0.3022	0.9899
Ash.	14.6800	0.3881	-204.7437	0.0000
Alcalinity.of.ash.	-20.3881	0.8815	-2.2832	0.9864
Magnesium.	2.0553	0.9975	2.1132	0.9974
Total.phenols.	-169.4205	0.0000	-40.3325	0.0000
Flavanoids.	193.7935	0.0000	16.2013	0.0188
Nonflavanoid.phenols	93.5409	0.0000	214.1837	0.0000
Proanthocyanins.	15.5178	0.1453	115.3184	0.0000
Color.intensity.	-16.6775	0.4212	-11.5066	0.7671
Hue	-50.0008	0.0000	352.7617	0.0000
OD280.OD3 I 5.of.diluted.wines.	75.2435	0.0000	84.2914	0.0000
Proline.	-0.0120	1.0000	-0.2899	0.9999

