I lost my Faster R-CNN's report and YOLO's report when I reinstalled the Ubuntu,so this is a short vision I rewrote. Sorry for that.

INTRODUCTION

Faster R-CNN, is composed of two modules. The first module is a deep fully convolutional network that proposes regions, and the second module is the Fast R-CNN detector that uses the proposed regions. Using the recently popular terminology of neural networks with 'attention' mechanisms, the RPN module tells the Fast R-CNN module where to look.

Implementing Details

Region Proposal Networks

A Region Proposal Network (RPN) takes an image (of any size) as input and outputs a set of rectangular object proposals, each with an objectness score. This small network takes as input an $n \times n$ spatial window of the input convolutional feature map. Each sliding window is mapped to a lower-dimensional feature. This feature is fed into two sibling fullyconnected layers—a box-regression layer (reg) and a box-classification layer (cls). We use n = 3 in this paper.

Anchors

They choose some anchors by combining 3 scales and 3 aspect ratios. The sacles and aspect ratios are picked up manually. YOLO have provided a more stable way to picked. Their design of anchors provided a more cost-efficient way .

Loss Function

$$L(\{p_i\}, \{t_i\}) = \frac{1}{N_{cls}} \sum_{i} L_{cls}(p_i, p_i^*) + \lambda \frac{1}{N_{reg}} \sum_{i} p_i^* L_{reg}(t_i, t_i^*).$$

$$t_{\rm x} = (x - x_{\rm a})/w_{\rm a}, \quad t_{\rm y} = (y - y_{\rm a})/h_{\rm a},$$
 $t_{\rm w} = \log(w/w_{\rm a}), \quad t_{\rm h} = \log(h/h_{\rm a}),$
 $t_{\rm x}^* = (x^* - x_{\rm a})/w_{\rm a}, \quad t_{\rm y}^* = (y^* - y_{\rm a})/h_{\rm a},$
 $t_{\rm w}^* = \log(w^*/w_{\rm a}), \quad t_{\rm h}^* = \log(h^*/h_{\rm a}),$

4-Step Alternating Training

The RPN can be trained end-to-end by backpropagation and stochastic gradient descent (SGD).

- 1. Train the RPN.
- 2. Train a separate detection network by Fast R-CNN
- 3. Use the detector network to initialize RPN training, but fix the shared convolutional layers and only fine-tune the layers unique to RPN.
- 4. Keeping the shared convolutional layers fixed, fine-tune the unique layers of Fast R-CNN.

Experiments

train-time region p	roposals	test-time region	proposals	
method	# boxes	method	# proposals	mAP (%)
SS	2000	SS	2000	58.7
EB	2000	EB	2000	58.6
RPN+ZF, shared	2000	RPN+ZF, shared	300	59.9
ablation experiments fo	ollow below			
RPN+ZF, unshared	2000	RPN+ZF, unshared	300	58.7
SS	2000	RPN+ZF	100	55.1
SS	2000	RPN+ZF	300	56.8
SS	2000	RPN+ZF	1000	56.3
SS	2000	RPN+ZF (no NMS)	6000	55.2
SS	2000	RPN+ZF (no cls)	100	44.6
SS	2000	RPN+ZF (no cls)	300	51.4
SS	2000	RPN+ZF (no cls)	1000	55.8
SS	2000	RPN+ZF (no reg)	300	52.1
SS	2000	RPN+ZF (no reg)	1000	51.3
SS	2000	RPN+VGG	300	59.2

method	# proposals	data	mAP (%)
SS	2000	07	66.9 [†]
SS	2000	07+12	70.0
RPN+VGG, unshared	300	07	68.5
RPN+VGG, shared	300	07	69.9
RPN+VGG, shared	300	07+12	73.2
RPN+VGG, shared	300	COCO+07+12	78.8

This display the effect of sharing convulition layers.

method	# box	data	mAP	areo	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	person	plant	sheep	sofa	train	tv
SS	2000	07	66.9	74.5	78.3	69.2	53.2	36.6	77.3	78.2	82.0	40.7	72.7	67.9	79.6	79.2	73.0	69.0	30.1	65.4	70.2	75.8	65.8
SS	2000	07+12	70.0	77.0	78.1	69.3	59.4	38.3	81.6	78.6	86.7	42.8	78.8	68.9	84.7	82.0	76.6	69.9	31.8	70.1	74.8	80.4	70.4
RPN*	300	07	68.5	74.1	77.2	67.7	53.9	51.0	75.1	79.2	78.9	50.7	78.0	61.1	79.1	81.9	72.2	75.9	37.2	71.4	62.5	77.4	66.4
RPN	300	07	69.9	70.0	80.6	70.1	57.3	49.9	78.2	80.4	82.0	52.2	75.3	67.2	80.3	79.8	75.0	76.3	39.1	68.3	67.3	81.1	67.6
RPN	300	07+12	73.2	76.5	79.0	70.9	65.5	52.1	83.1	84.7	86.4	52.0	81.9	65.7	84.8	84.6	77.5	76.7	38.8	73.6	73.9	83.0	72.6
RPN	300	COCO+07+12	<u>78.8</u>	84.3	82.0	77.7	68.9	65.7	88.1	88.4	88.9	63.6	86.3	70.8	<u>85.9</u>	87.6	80.1	82.3	53.6	80.4	75.8	86.6	78.9

 ing continue	cool, aller boltmine lay c		ar rerember e	one for the pro	9	Tenning tim
model	system	conv	proposal	region-wise	total	rate
VGG	SS + Fast R-CNN	146	1510	174	1830	0.5 fps
VGG	RPN + Fast R-CNN	141	10	47	198	5 fps
ZF	RPN + Fast R-CNN	31	3	25	59	17 fps

...

settings	anchor scales	aspect ratios	mAP (%)
1 scale 1 matic	128^{2}	1:1	65.8
1 scale, 1 ratio	256^{2}	1:1	66.7
1 scale, 3 ratios	128^{2}	{2:1, 1:1, 1:2}	68.8
	256^{2}	{2:1, 1:1, 1:2} {2:1, 1:1, 1:2}	67.9
3 scales, 1 ratio	$\{128^2, 256^2, 512^2\}$	1:1	69.8
3 scales, 3 ratios	$\{128^2, 256^2, 512^2\}$	{2:1, 1:1, 1:2}	69.9

λ	0.1	1	10	100
mAP (%)	67.2	68.9	69.9	69.1

proposals			detector	mAP (%)
Two-Stage	RPN + ZF, unshared	300	Fast R-CNN + ZF, 1 scale	58.7
One-Stage	dense, 3 scales, 3 aspect ratios	20000	Fast R-CNN + ZF, 1 scale	53.8
One-Stage	dense, 3 scales, 3 aspect ratios	20000	Fast R-CNN + ZF, 5 scales	53.9