CAPSTONE - II

Development of AI Tool for the Detection of Mines using GPR

Group Members -

Jashan Sanger - 2017MEB1214 Lohit Subodh - 2017MEB1219 Mayank Keshari - 2017MEB1220 Neeraj Penumaka - 2017MEB1227

> Project Guide -Dr.Manish Agrawal Dr.Srikanth Padhee

GPR and Its Working

- GPR stands for Ground Penetrating Radar. It uses EM waves for detection of within various surfaces.
- The main components of GPR include: Transmitter, Receiver and Control Unit.

gprMax

- gprMax is open-source software that simulates electromagnetic wave propagation.
- It solves Maxwell's equations in 3D using the Finite-Difference
 Time-Domain (FDTD) method.
- It is command-line-driven software.
- It produces A-scan and B-scan plots as output.

```
#title: Water Puddles
#domain: 1.0 0.25 0.45
#dx dy dz: 0.001 0.001 0.001
#time window: 6e-9
#python:
from user libs.antennas.GSSI import antenna like GSSI 1500
antenna like GSSI 1500(0.1 + current model run * 0.006, 0.126,0.24,0.001)
#end python:
#soil peplinski: 0.5 0.5 2.0 2.66 0.001 0.25 my soil
#fractal box: 0 0 0 1.0 0.25 0.2 1.5 1 1 1 50 my soil my soil box
#add surface roughness: 0 0 0.2 1.0 0.25 0.2 1.5 1 1 0.195 0.205 my soil box
#add surface water: 0 0 0.2 1.0 0.25 0.2 0.203 my soil box
#material: 3.5 0.01 1.0 0 bakelite
#material: 6.0 0.01 1.0 0 rubber
#material: 2.86 0.00048 1.0 9.75 TNT
#material: 2.4 0 1 0 plastic
#cylinder: 0.3 0.126 0.15 0.3 0.126 0.147 0.056 rubber
#cylinder: 0.3 0.126 0.147 0.3 0.126 0.094 0.056 bakelite
#cylinder: 0.3 0.126 0.147 0.3 0.126 0.097 0.053 TNT
#cylinder: 0.3 0.126 0.147 0.3 0.126 0.097 0.002 pec
        PMA-1
#box: 0.65 0.09 0.12 0.79 0.16 0.15 plastic
#box: 0.67 0.10 0.13 0.77 0.15 0.14 TNT
#cylinder: 0.67 0.12 0.135 0.77 0.12 0.135 0.002 pec
```

Input File

A-scan and B-scan

Simulation Model Visualization using ParaView Software

B-scan result

Previous Model's Working

- Landmines are detected using GPR.
- GPR provides us with a B scan- which is a 2d image of the subsurface.
- To generate the data we used gprMax software.
- We trained a Convolutional Neural Network(CNN) on the B-scan to detect hyperbolas.
- This hyperbola denotes the presence and absence of mines.

Previous Results

- Confusion Matrix on Test data
- **Accuracy:** 96.21%

Accuracy And Loss vs No. of epochs

Drawbacks of the previous model

- Identifying rock with similar hyperbola as a mine (false positive)
- Abnormal results when using data augmentation techniques to improve training data
- Confidence score not good (around 50%)
- Position change affect the results

```
[[0.45771116 0.5422888 ]]
[[0.83512586 0.16487415]]
[[0.44958815 0.5504119 ]]
[[0.45326602 0.546734 ]]
<matplotlib.image.AxesImage at 0x7f6f9f944e10>
 200
 400
 600
 800
1000
1200
            10
                    20
                                           50
```

Autoencoders

Denoising Autoencoder

Input

Output

Anomaly Detection

- Identifying unexpected items or events in data sets, which differ from the norm
- To detect outliers

Existing Work with Autoencoders

- Autoencoders are trained on without mine data
- Mine is treated as an anomaly
- There are chances of false detection of clutter as mine
- Huge amount of training data is required to cover the various kinds of surfaces

Novelty in Our Approach

- Autoencoders are trained on mine data
- Surroundings is treated as an anomaly
- Gives better results
- Less amount of training data is required.

Model Architecture

- Input Size:1300*60
- Encoder Layer : 32 nodes, Relu activation
- Decoder Layer : 1300*60, Sigmoid activation
- Loss Function = Binary cross entropy
- Optimizer = Adam

Dataset for Training the Model

- Consists of 200 B-scan images which include mines
- Varied soil properties, vegetation, moisture content and surface roughness
- Depth of the mines from is also varied in some cases

Clay Fraction (Mean = 0.6)	Bulk Density (g/cc) (Mean = 2)	Sandparticle Density (g/cc) (Mean = 2.66)	Water Fraction (Range: 0.05-0.25)	Surface Roughness (lower limit)(Mean = 0.25)	Surface Roughness (higher limit)	Height of Vegetation (lower Limit)	Height of Vegetation (higher limit)	Depth of Mine (w.r.t surface at 0.25)
0.631	1.988	2.727	0.199	0.231	0.271	0.263	0.291	0.159
0.569	1.94	2.924	0.099	0.234	0.256	0.267	0.297	0.19
0.491	1.881	2.796	0.106	0.244	0.285	0.259	0.293	0.146
0.577	1.953	2.848	0.09	0.226	0.254	0.269	0.293	0.135
0.599	1.879	2.664	0.099	0.22	0.293	0.251	0.296	0.104
0.483	2.209	2.643	0.065	0.235	0.274	0.268	0.295	0.109
0.601	2.122	2.821	0.153	0.248	0.273	0.264	0.299	0.154
0.622	2.065	2.523	0.146	0.2	0.265	0.263	0.292	0.123
0.591	1.998	2.653	0.06	0.204	0.295	0.252	0.293	0.184
0.598	2.114	2.775	0.246	0.214	0.27	0.252	0.294	0.197
0.587	2.027	2.482	0.062	0.221	0.286	0.264	0.295	0.169
0.562	2.156	2.657	0.11	0.219	0.278	0.258	0.292	0.172
0.6	2.166	2.421	0.224	0.242	0.3	0.257	0.297	0.121
0.629	1.975	2.687	0.136	0.215	0.255	0.254	0.298	0.104
0.613	1.953	2.724	0.089	0.203	0.279	0.258	0.291	0.114

Dataset for Testing the Model

- Using Validation Set of the previous dataset
- With B-scans of rock and metallic cylinder of same size
- Varying the properties of the buried object from rock to mine using a linear relationship, $P = (1 \alpha)P(\text{rock}) + \alpha P(\text{mine})$
- Increasing the size of the mine like diameter or height by around 10 percent

Results: Decoded Images

Linear Variation in Properties

 $\alpha = 0.4$

 $\alpha = 0.8$

 $\alpha = 1$ (Mine)

Varying Mine Size

Normal Mine

Mine with 10 % increased diameter

Conclusion

- An anomaly detection technique based on denoising autoencoders for landmine detection in GPR data is proposed
- Understands the underlying patterns of a mine better than the previous model
- No large diverse training data involving various kinds of soil is required
- Detects the desirable object underground, just need to train the system accordingly
- The system is robust to a wide variety of environmental conditions

Thank You!!!