ATOMIC LAYER EPITAXY APPARATUS

ATOMIC LAYER EPITAXY APPARATUS

Patent Number:

JP5234899

Publication date:

1993-09-10

Inventor(s):

YAMAMOTO TATSUHARU; others: 01

Applicant(s):

HITACHI LTD

Requested Patent:

JP5234899

Application

Number:

JP19910236105 19910917

Priority Number(s):

IPC Classification:

H01L21/205;

C23C14/32; C30B23/02; H01L21/203; H01L21/365;

H01L33/00

EC Classification:

EC Classification:

Equivalents:

Abstract

PURPOSE:To reduce a volume of a vacuum chamber, to extremely effectively conduct an atomic layer epitaxy and to improve reliability.

CONSTITUTION: Gas cells 20, 24, 26, 25 are disposed in a vacuum chamber 16. Shapes of discharge ports of the cells 20, 24, 26, 25 are formed in a rectangular shape in which its long side is at least longer than a diameter of a substrate 15. A gas diffusion plate is provided from gas introducing tubes of the cells 20, 24, 26, 25 to the ports. A plurality of the substrates 15 are rotatably moved perpendicularly to the diffusing directions of the cells 20, 24, 26, 25 to alternately irradiate the substrates 15 with a plurality of types of the gases from the cells 20, 24, 26, 25, thereby repeating an atomic layer epitaxy.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-234899

(43)公開日 平成5年(1993)9月10日

(51) Int.Cl. ⁵ H 0 1 L C 2 3 C C 3 0 B H 0 1 L	14/32 23/02 21/203	識別記号 M	庁内整理番号 7454-4M 7308-4K 9040-4G 8422-4M	FΙ	技術表示箇所
	21/365		7454—4M	審査請求 未請求	ママス
(21)出願番号		特顧平3-236105		(71)出願人	000005108 株式会社日立製作所
(22)出願日		平成3年(1991)9	月17日	(72)発明者	東京都千代田区神田駿河台四丁目6番地 山本 立春 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内
				(72)発明者	右田 雅人 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内
				(74)代理人	弁理士 中村 純之助 (外1名)

(54) 【発明の名称】 原子層エピタキシー装置

(57)【要約】

【目的】真空チャンパの容積を小さくし、原子層エピタ キシーを極めて効率良く行ない、かつ信頼性を向上す る。

【構成】ガスセル20、24、26、25を真空チャンパ16内に配置し、ガスセル20、24、26、25の吐出口の形状を長辺が少なくとも基板15の直径よりも長い長方形とし、ガスセル20、24、26、25のガス導入管7から吐出口までの間にガス拡散板8を設け、複数の基板15をガスセル20、24、26、25の拡散方向に対し直角方向に回転移動し、基板15上に複数種の原料ガスをガスセル20、24、26、25から交互に照射して、原子層エピタキシーを繰り返す。

15……基板 16・---真空チャンパ 20,24,25,26・--・ガスセル 1

【特許請求の範囲】

【請求項1】基板上に複数種の原料ガスをガスセルから 交互に照射して、原子層エピタキシーを繰り返す原子層 エピタキシー装置において、上記ガスセルを真空チャン パ内に複数配置し、上記ガスセルの吐出口の形状をほぼ 長方形とし、上記ガスセルのガス導入管から上記吐出口 までの間にガス拡散板を設け、複数の上記基板を上記ガ スセルの拡散方向に対し直角方向に回転移動することを 特徴とする原子層エピタキシー装置。

【請求項2】上記ガスセルから供給される上記原料ガス 10 を、成長中において一定流量に保持することを特徴とする請求項1記載の原子層エピタキシー装置。

【請求項3】ドーパントガスが供給されるガスセルを設置したことを特徴とする請求項1記載の原子層エピタキシー装置。

【請求項4】上記ガスセルにヒータを設けたことを特徴とする請求項1記載の原子層エピタキシー装置。

【請求項5】上記原料ガスが有機金属ガスであることを 特徴とする請求項1記載の原子層エピタキシー装置。

【請求項6】複数種の上記原料ガスを1つの上記ガスセ 20 ルから上記基板に照射することを特徴とする請求項1記 載の原子層エピタキシー装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は化合物半導体等の原子 層エピタキシーによる超格子構造の形成、周期的な異種 材料の積層、原子層ドーピングによる高濃度のドーピン グまたは薄膜を成長させるための原子層エピタキシー装 置に関するものである。

[0002]

【従来の技術】従来、セルフリミティング機構を利用し た原子層エピタキシーによる超格子構造の形成、周期的 な異種材料の積層に用いられる原子層エピタキシー装置 (たとえば、特開昭62-222628号公報、特開昭 63-136616号公報)は、図7に示すような基本 構成となっている。 すなわち、 真空チャンパ46 内は真 空排気装置49と液体窒素温度に冷却されたシュラウド 44とによって、超高真空に維持されている。真空チャ ンパ46にはヒータ43を備えたガスセル41a~41 c が設置されており、ヒータ43はガスセル41a~4 1 c内の原料ガスの熱分解を行ない、ガスセル41a~ **41cから供給される原料ガスの流量はマスフローコン** トローラおよびパルプ42によって制御される。ガスセ ル41a~41cに対向して基板47が配置されてい る。また、ガスセル41a~41cの吐出口近傍に分子 線を遮断するためのシャッタ45が備えられている。一 方、基板47は基板ヒータ48によって適当な結晶成長 温度に加熱され、面内の温度および膜厚の均一性を得る ため、基板ヒータ48は自転運動を行なう。

【0003】この原子層エピタキシー装置においては、

タ45の開閉を制御することによって原子層エピタキシーが行なわれる。すなわち、ガスセル41aのバルブ42、シャッタ45を開にし、第1種の原料ガスを基板47に照射して1原子層を成長させた後、ガスセル41aのバルブ42、シャッタ45を閉じる。つぎに、真空チャンパ46内に残留する原料ガスを排気したのち、ガス

各ガスセル41a~41cのパルプ42の開閉、シャッ

セル41bのパルプ42、シャッタ45を開き、第2種の原料ガスを基板47に照射する。このように、第1種、第2種の原料ガスを交互に照射しながら原子層エピタキシーを行ない、超格子構造を形成していく。また、ドーピングを行なう場合は、ドーパントガスを第1種の原料ガスと第2種の原料ガスとを照射する間に、ガスセル41cによって照射するか、第1種、第2種の原料ガ

[0004]

スのいずれかと同時に照射する。

【発明が解決しようとする課題】この原子層エピタキシ ー装置においては、基板47の全面にわたって分子線を できだけ均一な強度分布で照射するためには、基板47 とガスセル41a~41cの吐出口との距離を長く取る 必要があるから、真空チャンパ46の容積も大きくな る。また、基板47とガスセル41a~41cの吐出口 との距離が長くなると、基板47に直接照射される分子 線の比率は小さくなり、ガスセル41a~41cから射 出されたほとんどの原料ガスは実際に基板47上での成 長には寄与せず、余剰ガスとして排気しなければならな い。したがって、真空排気装置49には排気流量の大き いものが必要になるばかりでなく、原料ガスを切り換え る際に余剰ガスを排気するための排気時間が長くなる。 また、1回の成長で1枚の基板47しか処理できない。 このため、原子層エピタキシーの効率が低い。さらに、 原料ガスを切り換える度にパルプ42の開閉動作とシャ ッタ45の開閉動作とが必要なため、積層回数を多くし たり、また開閉動作の速度を早くすると、故障の原因と なり、またパルプ42、シャッタ45の開閉動作の際 に、ガス流量のオーパーシュート、アンダーシュートが 生ずるから、安定なガス流量制御が困難になるので、信

【0005】この発明は上述の課題を解決するためになされたもので、真空チャンパの容積を小さくすることができ、原子層エピタキシーを極めて効率良く行なうことができ、かつ信頼性の高い原子層エピタキシー装置を提供することを目的とする。

[0006]

類性が低い。

【課題を解決するための手段】この目的を達成するため、この発明においては、基板上に複数種の原料ガスをガスセルから交互に照射して、原子層エピタキシーを繰り返す原子層エピタキシー装置において、上記ガスセルを真空チャンパ内に複数配置し、上記ガスセルの吐出口の形状をほぼ長方形とし、上記ガスセルのガス導入管か

30

10

3

ら上記吐出口までの間にガス拡散板を設け、複数の上記 基板を上記ガスセルの拡散方向に対し直角方向に回転移 動する。

【0007】この場合、上記ガスセルから供給される上 記原料ガスを、成長中において一定流量に保持するして もよい。

【0008】また、ドーパントガスが供給されるガスセルを設置してもよい。

【0009】また、上記ガスセルにヒータを設けてもよい。

【0010】また、上記原料ガスを有機金属ガスとして もよい。

【0011】また、複数種の上記原料ガスを1つの上記ガスセルから上記基板に照射してもよい。

[0012]

【作用】この原子層エピタキシー装置においては、基板をガスセルの拡散方向に対し直角方向に移動させることにより、基板全面にわたり均一な強度の分子線を照射することができるから、ガスセルと基板との距離を短くすることができ、また基板の回転により原料ガスを切り換 20 えることができるから、バルブ、シャッタの開閉動作が必要なくなる。

[0013]

【実施例】以下、この発明を実施例により詳細に説明する。

【0014】図1はこの発明に係る原子層エピタキシー 装置を示す平断面図、図2は図1に示した原子層エピタ キシー装置の正断面図、図3は図1に示した原子層エピ タキシー装置の一部を示す平断面図、図4は図1に示し た原子層エピタキシー装置の一部を示す正断面図であ る。円筒状の真空チャンパ16の上部に基板回転機構2 9が設置され、基板回転機構29によって基板保持体1 3が回転される。基板保持体13に基板ホルダ22およ び基板ホルダ22の間に配置されたシールド板23が取 り付けられ、基板ホルダ22に複数の基板15がそれぞ れ保持されている。また、基板保持体13と円筒状のシ ュラウド18の内壁との間には干渉しない程度のわずか な隙間が設けられている。ガスセル20、24、26、 25はペローズ21を介して真空チャンパ16の側面に 取り付けられ、ガスセル20、24、26、25と基板 40 15との距離を選択できるようになっている。シュラウ ド18の側面にガスセル20、24、26、25を基板 15に直接対向させるためのガスセル導入口19が設け られている。また、シュラウド18には各ガスセル導入 口19の間に排気口17が設けられている。円筒状の加 熱面を持つ基板ヒータ27は真空チャンパ16の中央に 配置されたヒータ保持部材28によって保持され、基板 ヒータ27は回転する基板15を背面から輻射加熱す る。ここで、基板ヒータ27は基板15とともに回転さ せる必要がないので固定である。また、真空チャンパ1 50

6に放出された原料ガスおよび真空チャンパ16の内部 の構成部材からの放出ガスは、真空チャンパ16の下部 の排気口30に接続されたターポ分子ポンプ、ディフュ ージョンポンプ等の排気流量が大きくかつ到達圧力が低 い真空排気装置31によって真空チャンパ16の外部に 排気される。さらに、ガスセル20、24、26、25 の吐出口の形状は長辺が少なくとも基板 15 の直径より も長い長方形であり、原料ガスはパルプ14およびガス 導入管7を通過後、内部にガス拡散板8が配置され、ガ スシールド板3で囲まれたガス拡散ゾーンを通過して放 出される。ガス拡散ゾーンを通過した際の分子線9の強 度分布はガス拡散板8によって縦方向になだらかな分布 となり、基板15にほぼ均一に照射される。熱分解が必 要な原料ガスの場合は、このガス拡散ゾーンをヒータ5 によって所定の熱分解温度以上に加熱する。ヒータ5の 外側には熱シールド板4が設けられている。

【0015】この原子層エピタキシー装置によって第1 種~第4種の原料ガスを交互に照射しながら原子層エピ タキシーを行なうには、基板保持体13を図1の時計方 向に一定速度(原料原子の基板15の表面への付着とマ イグレーションのための時間が最も大きい原料種におい て、その時間を十分に取ることができる速度)で回転し た状態で、ガスセル20、24、26、25に供給する ガス流量を一定に保持し、ガスセル20、24、26、 25から基板15に第1種~第4種の原料ガスを照射す る。ここで、基板15はガス分子線の拡散方向と直角な 方向に移動するから、基板15の全面にわたって分子線 を均一な強度分布で照射することができ、シュラウド1 8の壁面と基板15およびシールド板23によって形成 される略閉空間の圧力は平衡状態となる。さらに、基板 15に直接照射されなかった余剰ガスと基板15の表面 から再放出されたガスはシュラウド18の壁面に付着す るか、ガスセル20、24、26、25とシュラウド1 8との隙間から放出され、真空排気装置31によって排 気される。また、シールド板23は真空チャンバ16の 中央部への原料ガスの周り込みを防ぐ。さらに、シュラ ウド18には各ガスセル導入口19の間に排気口17が 設けられているから、基板15がガスセル20、24、 26、25に対向しながら回転する過程で、基板15の 表面上に残留する原料ガスを排出することができるの で、各原料ガス間の相互汚染を防止することができる。

【0016】この原子層エピタキシー装置においては、図7に示す原子層エピタキシー装置のように、基板15に対するガス分子線の強度分布の均一性を確保するための適当な拡散空間を必要としないから、基板15とガスセル20、24、26、25の先端との距離を充分小さくすることができるので、真空チャンパ16の容積を小さくすることができるばかりでなく、基板15に直接照射されない余剰ガスが少なくなるため、ガスセル20、

0 24、26、25に供給された原料ガスの大半は薄膜の

5

成長に寄与することになる。したがって、原子層エピタキシー的な成長を行なう場合は、原理的には1原子層分程度という極めてわずかな原料ガス供給量で済む。このことは、シュラウド18の壁面と基板15およびシールド板23によって形成される略閉空間の圧力を低い状態に維持し、成長中の薄膜への不純物の混入を少なくするためには極めて重要である。また、成長に無関係なガスによって基板15の面上での原料原子の付着や結晶化が阻害されにくくなるため、低い成長温度でも結晶欠陥が少ない良質な薄膜を得ることにつながる。

【0017】また、この原子層エピタキシー装置におい ては、成長に寄与しない余剰ガスの比率を非常に小さく することができるので、原料ガスの切換時間を短くする ことができるとともに、複数の基板を同時に処理するこ とができるため、原子層エピタキシーを極めて効率良く 行なうことができる。ここで、図1等に示した原子層エ ピタキシー装置の成膜効率と図7に示した原子層エピタ キシー装置の成膜効率とを比較してみる。所定の膜厚に なるまでの原料ガスの切換回数をS、図7に示した原子 層エピタキシー装置における第1種の原料ガスの照射時 間をT1、第2種の原料ガスの照射時間をT2、また原料 ガスの切換の際に要する残留ガスの排気時間をT3と し、T₁>T₂とすると、図7に示した原子層エピタキシ 一装置の場合の成長はシリーズに行なわれるため、所定 の膜厚を得るに要する時間は基板1枚当たりS (T1+ T2+2T3)となる。一方、図1等に示した原子層エピ タキシー装置において、照射時間を長く取る必要のある 第1種の原料ガスの照射時間T1に合わせて基板15の 回転速度を設定し、基板15を次のガスセル20、2 4、26、25に対向させるまでの時間をT₄、原子層 エピタキシー装置内の基板15の設置枚数をKとする と、所定の膜厚を得るに要する時間は基板1枚当たりS $\{K(T_1+T_4)\}/K=S(T_1+T_4)$ となる。すな わち、S {T2+(2T3-T4)} の時間が削減でき る。たとえば、格子定数が5. 6 A程度の3-5族のG aAsや2-6族のZnSeの場合、原子層エピタキシ ーによって1μmの膜厚を得るには、1800回程度の 原料ガスの切り換えを行なう必要があるため、削減でき る時間は非常に大きい。すなわち、かりにS=1800 回、 $T_2 = 7 s$ 、 $T_3 = 1 0 s$ 、 $T_4 = 1 s$ とすると、基 板1枚当たり14.5hの時間が削減できる。また、図 1等に示した原子層エピタキシー装置では、基板保持体 13の回転速度は照射時間を最も長く取る必要のある原 料ガスの照射時間で律速されているため、原料ガスの種 類が増えても処理速度は増加しないという利点がある。

【0018】なお、この発明に係る原子層エピタキシー 装置は、異種原子の付着係数に比べ同一原子の付着係数 がはるかに小さく、原子層単位での交互の積層が可能な 原料種であれば、有機物、無機物にかかわらず効率的な 原子層エピタキシーが可能である。また、原子層ドーピ 50 5

ングについても同様であるため、ドーピング濃度の制御 性が向上するばかりでなく、高濃度のドーピングも可能 である。

【0019】つぎに、この発明に係る原子層エピタキシー装置による結晶成長方法について2-6族化合物半導体を例に説明する。

【0020】2族原素である2n、Cdと6族原素であ るSe、S、Teとの組合せからなるワイドバンドギャ プの化合物半導体は、直接遷移型のパンド構造を持ち、 電子線、レーザ光の照射によって比較的容易に0.4~ 0. 5 μmの短波長光を取り出すことができる。また、 構成元素の組成制御により、禁制帯幅を1.5~3.8 e Vの範囲で変えることができること等から、高効率の 短波長可視発光素子材料としての応用が期待されてい る。たとえば、発光ダイオードの場合は、図5に示すよ うな素子構造が考えられる。図5において、基板15に はn型GaAsを用い、n型層34にはZnSeに3族 元素のGaをドーピングしたものを用い、p型層33に は2nSeに5族元素のNをドーピングしたものを用 い、これらを順次成長させ、電極32を設ける。また、 半導体レーザの場合は、図6に示すような基本構造が考 えられる。一例として「光学、第20巻、第4号、21 6~217頁(1991)」に記載されている理論的発 振波長が $0.52\mu m$ の半導体レーザへの応用について 説明する。図6において、基板15にはn型GaAsを 用い、n型クラッド層39にはZnSSeの混晶に3族 元素のGaをドーピングしたものを用い、活性層38に はZnSTeの混晶を用い、p型クラッド層37にはZ nSSeの混晶に5族元素のNをドーピングしたものを 用い、これらを順次成長させて、ダブルヘテロ構造を形 成し、電極36を設ける。このような3元の混晶によっ て各層を形成するのは、GaAsの基板15との格子整 合性を得るためであり、n型クラッド層39のZnSS eにおいてSとSeとの組成比を6:94、活性層38 のZnSTeにおいてSとTeとの組成比を65:3 5、p型クラッド層37のZnSSeにおいてSとSe との組成比を6:94とすることが望ましい。ここで、 たとえば2族原素である2nの原料としてDM2、6族 原素であるSe、S、Teの原料としてはDMSe、D MS、DMTe等の有機金属ガスを用いて、各ガスセル で熱分解した上で基板15に照射する。n型のドーパン トであるGaの原料としてTMG等の有機金属ガスを用 い、p型のドーパントであるNの原料としてはNHiガ スを用い、各ガスセルで熱分解した上で基板15に照射 する。

【0021】以上説明したような発光ダイオードあるい は半導体レーザをこの発明に係る原子層エピタキシー装 置によって、どのように成長させるかについて以下に説 明する。

└ 【0022】上記の発光ダイオードの場合、n型層34

の成長時は、DMZはガスセル20から、DMSeはガ スセル26から、TMGはガスセル24から熱分解した 上で、基板15に照射する。ここで、DMZとDMSe との流量比は1:1程度に維持する。つぎに、p型層3 3の成長時は、DMZ、DMSeの供給はそのままで、 TMGのガスセル24のバルブ14を閉じて、ガスセル 25からNH3を熱分解した上で基板15に照射する。 一方、基板ヒータ27によって基板15の温度を250 ~400℃に保持し、基板保持体13の回転速度を原料 原子の基板15の表面への付着とマイグレーションのた 10 めの時間が最も大きい原料種において、その時間を十分 に取ることができる程度とする。

【0023】上記の半導体レーザの場合、n型クラッド 層39の成長時は、DMZはガスセル20から、DMS eはガスセル26から、DMSはガスセル24から、T MGはガスセル25から熱分解した上で基板15に照射 する。ここで、DMZ、DMS、DMSeの流量比は 1:0.06:0.94程度に維持する。つぎに、活性 層38の成長時は、ガスセル26の原料供給ラインをD MTeに切り換え、TMGのガスセル25のパルブ14 20 平断面図である。 を閉じる。ここで、DMZ、DMS、DMTeの流量比 は1:0.65:0.35程度に維持する。つぎに、p 型クラッド層37の成長時は、ガスセル26の原料供給 ラインをDMSeに切り換え、ガスセル25の原料供給 ラインをNH3に切り換える。ここで、DMZ、DM S、DMSeの流量比は1:0.06:0.94程度に 維持する。一方、基板ヒータ27によって基板15の温 度を250~400℃に保持し、基板保持体13の回転 速度を原料原子の基板15の表面への付着とマイグレー ションのための時間が最も大きい原料種において、その 30 ある。 時間を十分に取ることができる程度とする。

【0024】以上、この発明に係る原子層エピタキシー 装置による2-6族化合物半導体およびその混晶の結晶 成長方法を、発光ダイオード、半導体レーザを例に取っ て述べてきたが、3-5族化合物半導体およびその他の 混晶等の場合も同様であり、この発明は適応する原料種 およびその組合せは限定しない。

【0025】なお、上述実施例においては、ガスセル2 0、24、26、25に供給する原料ガスを1種類とし たが、複数種の原料ガスを所定の混合比で1つのガスセ ル20、24、26、25から供給してもよい。

[0026]

【発明の効果】以上説明したように、この発明に係る原 子層エピタキシー装置においては、ガスセルと基板との 距離を短くすることができるから、真空チャンパの容積 を小さくすることができるばかりでなく、成長に寄与し ない余剰ガスの比率を非常に小さくすることができるの で、原料ガスの切換時間を短くすることができるととも に、複数の基板を同時に処理することができるため、原 子層エピタキシーを極めて効率良く行なうことができ る。また、パルプの開閉動作が必要なくなるから、ガス 流量の変動がなくなり、原料ガスの安定な供給ができ、 また機構動作が単純化され、装置の信頼性が向上する。 このように、この発明の効果は顕著である。

【図面の簡単な説明】

【図1】この発明に係る原子層エピタキシー装置を示す

【図2】図1に示した原子層エピタキシー装置の正断面 図である。

【図3】図1に示した原子層エピタキシー装置の一部を 示す平断面図である。

【図4】図1に示した原子層エピタキシー装置の一部を 示す正断面図である。

【図5】発光ダイオードの基本構造図である。

【図6】半導体レーザの基本構造図である。

【図7】従来の原子層エピタキシー装置を示す断面図で

【符号の説明】

7…ガス導入管

8…ガス拡散板

15…基板

16…真空チャンパ

20、24、25、26…ガスセル

【図5】

【図6】

【図7】

2 7

フロントページの続き

(51) Int. Cl. 5 H01L 33/00

識別記号 庁内整理番号 FI D 8934-4M

技術表示箇所