0. Allgemeines

- Anfangswertsatz: $x(t = +0) = \lim_{s \to \infty} [s \cdot X(s)]$

(nur wenn x(t) bei t=0 keine δ -Anteile)

 $x(t \to \infty) = \lim[s \cdot X(s)]$ - Endwertsatz:

(nur wenn endl. Grenzwert $\lim_{t\to\infty} (x(t))$)

x = Pole, o = Nullstellen

Pole-Nullstellen-Diagramm

System realisierbar, wenn Nennergrad ≥ Zählergrad

G(s) in Linearfaktoren: $\frac{G(s) = \frac{b_m}{a_n} \cdot \frac{(s-s_{01}) \cdot (s-s_{02}) \cdot \dots \cdot (s-s_{0m})}{(s-s_{001}) \cdot (s-s_{002}) \cdot \dots \cdot (s-s_{00n})}$ $(s_{0\mu} = \text{Nullstellen}, s_{\infty\nu} = \text{Pole})$

Stabilität

(asympt.) stabil: alle Pole haben Re < 0 (alle Pole links)

min. 1 Einzelpol mit Re = 0 grenzstabil:

instabil: min. 1 Einzelpol mit Re > 0 (min. 1 Pol rechts)

instabil: min. 1 Mehrfachpol mit Re = 0

Allpass

reiner Allpass: alle Pole symmetrisch zu Nullstellen (an Im-Achse)

alle Pole symmetrisch zu Nullstellen (an Im-Achse) und Pole mit Re < 0 reiner stabiler Allpass:

nur bei stabilen Systemen! Erweiterung mit $\frac{s+s_{01}}{s+s_{01}}$ (s_{01} symm. zu NS mit Re > 0) Allpassanteil:

Minimalphasigkeit

alle Nullstellen mit Re <= 0 rein minimalphasig:

Minimalphasiges Teilsys.: nur bei stabilen Systemen! Erweiterung siehe Allpass

0,5	1	2	4	5	10	20
-6 dB	0 dB	6 dB	12 dB	14 dB	20 dB	26 dB

Multiplikation von Faktoren --> Addition von dB

--> Subtraktion von dB Division von Faktoren

--> Multiplikation von dB Potenzierung

Logarithmische Skala auf Kästchenpapier:

3 Kästchen → x2

4 Kästchen → x2.5

= 7 Kästchen \rightarrow x5

mathematisch (bei 10 Kästchen/dek.):

 $10 \cdot \log(Wert) = \text{Anzahl Kästchen, zB } 10 \cdot \log(5) \approx 7 \text{ Kästchen}$

Steigung PT_1 -Glied:

eine Dekade: -20dB Verdopplung: -6dB

$$-b\pm\sqrt{b^2-4ac}$$

1. Einführung

Führungsgröße = Sollwert (w)

Stellgröße = Stellwert (y)

Regelgröße = Istwert (v)

Regelabweichung (e)

Störgröße (z)

Reglerübertragungsfkt: $G_{\mathcal{D}}(s)$

Streckenübertragungsfkt: $G_s(s)$

Störübertragungsfkt: $G_Z(s) = \frac{V(s)}{Z(s)} f \ddot{u} r W(s) = 0$ $\Rightarrow G_Z(s) = \frac{G_S(s)}{1 + G_S(s) G_R(s)}$

Führungsübertragungsfkt: $G_W(s) = \frac{V(s)}{W(s)} f \ddot{u} r Z(s) = 0 \implies G_W(s) = \frac{G_S(s) \cdot G_R(s)}{1 + G_S(s) \cdot G_R(s)}$

 $G_Z(s)$ stationär genau, wenn $G_Z(0) = 0$

vollständige Störunterdrückung = Zähler von $G_7(s) = 0$

 $G_W(s)$ stationär genau, wenn $G_W(0) = 1$ (da Regelabweichung dann $e_\infty = w_\infty - v_\infty = 1 - G_W(0) = 0$)

2. Regelkreisglieder

Allgemeines System:

$$a_n \frac{d^n y(t)}{dt^n} + a_{n-1} \frac{d^{n-1} y(t)}{dt^{n-1}} + \ldots + a_1 \frac{dy(t)}{dt} + a_0 y(t) = b_{-1} \int\limits_{-\infty}^t u(\tau) d\tau \ + \ b_0 u(t) \ + \ b_1 \frac{du(t)}{dt}.$$

Bestimmung aus $G(s) = \frac{as^2 + bs + c}{ds^3 + es^2 + fs}$:

→ Umformen sodass Nenner Konstante u. positive Potenzen von s enthält: $G(s) = \frac{as + b + \frac{c}{s}}{ds^2 + os + f}$

→ System-Grundtyp aus Zähler: s = D, b = P, $\frac{1}{s} = I$

→ Verzögerung aus Nenner: höchste Potenz = n

PT_1 – System

V = Endwert
$$T = t bei 0.63 \cdot V$$

$$\Rightarrow G(s) = \frac{V}{1+sT} \qquad \Rightarrow s_{\infty} = -\frac{1}{T}$$

$$\Rightarrow s_{\infty} = -\frac{1}{T}$$

→ wenn Pol weiter links, System schneller

PT_2 – System

$$a_2 \cdot \ddot{y}(t) + a_1 \cdot \dot{y}(t) + a_0 \cdot y(t) = b_0 \cdot u(t)$$

$$a_{2} \cdot \ddot{y}(t) + a_{1} \cdot \dot{y}(t) + a_{0} \cdot y(t) = b_{0} \cdot u(t)$$

$$\Rightarrow G(s) = \frac{V}{1 + \frac{2D}{\omega_{0}} \cdot s + \frac{1}{\omega_{0}^{2}} \cdot s^{2}} \Rightarrow s_{\infty 1/2} = -D\omega_{0} \pm \omega_{0} \sqrt{D^{2} - 1}$$

$$\boldsymbol{\omega_0} = \frac{1}{\sqrt{a_2}}, \, \boldsymbol{D} = \frac{1}{2} \cdot \omega_0 \cdot a_1$$

D > 1	2 reelle Pole	aperiodische Dämpfung
D = 1	2 reelle Pole (Doppelpol)	aperiodischer Grenzfall
0 < D < 1	konj. kompl. Polpaar in linker s-Halbebene	gedämpfte harmonische Schwingung
D = 0	konj. kompl. Polpaar auf Im-Achse	ungedämpfte harmonische Schwingung
D < 0	min. 1 Pol in rechter s-Halbebene	aufklingende Systemreaktion → instabil

PT_2 - System für D < 1: $V=b_0$ T_{ρ} = Periodendauer T_{an} = Anschwingdauer (1. mal Endwert) $b_0 = y(t \rightarrow \infty)$ $\omega_e = \omega_0 \sqrt{1 - D^2} = \frac{2\pi}{\pi}$ (Eigen-Kreisfr.) (Bogenmaß!) für PT_2 !)

 T_{ah} = Abklingkonstante = Abstand Tangente v. Einhüllende zu SP dieser Tangente mit V

$$\frac{\text{für D = 0:}}{G(s) = \frac{V}{1 + s^2 \cdot \frac{1}{\omega_s^2}}}$$

$$V = \frac{1}{2} \cdot j$$

$$\omega_0 = \frac{2\tau}{T_0}$$

für D \geq 1: \rightarrow Kapitel 4

Zusammenhang Übertragungsfunktion - Sprungantwort

Integrierende Systeme

$$y(t) = \frac{1}{A} \cdot \int u(t) dt$$
 $\rightarrow Y(s) = \frac{1}{As} \cdot U(s)$

$$\rightarrow Y(s) = \frac{1}{As} \cdot U(s)$$

Sprungantwort:

Differenzierende Systeme

$$y(t) = T \cdot \frac{du(t)}{dt}$$

 $\rightarrow Y(s) = sT \cdot U(s)$ (nicht realisierbar!)

$$\rightarrow T\dot{y}(t) + y(t) = T_d \frac{du(t)}{dt}$$

(T = Verzögerungszeit, T_d = Differenzierzeit;

bei RC-Glied: $T = T_d$)

Totzeit-/Laufzeitsysteme

$$y(t) = u(t - T_L)$$

$$\frac{1}{y(t) = u(t - T_L)} \rightarrow Y(s) = U(s) \cdot e^{-sT_L}$$

Anfangswert:

$$G(0) = G(\infty) = \frac{b_n}{a_n}$$

 $a(0) = G(\infty) = \frac{b_n}{a}$ (Herleitung Anfangswertsatz)

 $a(\infty) = G(0) = \frac{b_0}{a_0}$ (wenn kein I-Anteil) **Endwert:**

Anfangssteigung:

$$\dot{a}(t \to 0_+) = \frac{b_{n-1} - b_n \cdot \frac{a_{n-1}}{a_n}}{a_n}$$

r = Nennergrad - Zählergrad

Nenner in Linearfaktordarstellung:

Summe der kleinen Zeitkonstanten $\rightarrow T_{\sigma}$ \rightarrow Näherung für Reglerentwicklung

 $\rightarrow T_{\Sigma}$ \rightarrow Abschätzung Einschwingdauer = $T_{\Sigma} \cdot (3 \sim 5)$ Summe aller Zeitkonstanten

bleibende Regelabweichung

bei Führungssprüngen: $e_{\infty} = w_{\infty} - v_{\infty} = 1 - G_{W}(0)$

 $e_{\infty} = w_{\infty} - v_{\infty} = 0 - G_Z(0)$ bei Störsprüngen:

Einstellung V_R eines P-Reglers für bestimmte Regelabweichung (hier zB < 5%):

 $e_{\infty} = w_{\infty} - v_{\infty} = 1 - G_W(0) < 0.05$

Totzeit

verlangsamt Wirkungen

Wirkung der Totzeit verschwindet für $t \to \infty$ \Rightarrow kein Einfluss auf bleibende Regelabweichung

3. Frequenzgangfunktionen, Ortskurven, Bode-Diagramme

Basis-System	G(jω)	Konstruktion d.Frequenzgang für ω⇒0 für ω⇒∞	Charakteris- tischer Punkt	Einheits- Sprungantwort	Ortskurve	Bode-Betragsgang	Bode-Phasengang
1	$\frac{1}{j\omega T_I}$	$^{1}/j_{\omega}T_{I}$ -20 dB/dek -90°	$\omega = 1/T_I$ 0 dB -90°	1 t=T, t	0 	0 dB	-90°
PT ₁	$\frac{1}{1+j\omega T}$	$ \begin{array}{c c} 1 & 1/j\omega T \\ 0 \text{ dB/dek} & -20 \text{ dB/dek} \\ 0^{\circ} & -90^{\circ} \\ 1. \text{ Asymptote} & 2. \text{ Asymptote} \end{array} $	$\omega = 1/T$ -3 dB -45°	v t=T t	0 ⊕⇒∞ 1 ⊕=-45° ∞=0	0 dB/dek	∞=1/T ∞ -90°
D	jωT _D	jωT _D +20 dB/dek +90°	$\omega = 1/T_D$ 0 dB +90°	$T_D \cdot \delta(t)$	+1 • ω=1/T ω=0	+20dB/dek 0 dB	+90°
PD	$1 + j\omega T_V$		$\omega = 1/T_V$ +3 dB +45°	$1 \frac{\int_{T_V \cdot \delta(t)}^{T_V \cdot \delta(t)}}{t}$	+1 φ=+45° ω=1/T _V ω=0	+3dB +20dB/dek 0 1/T _v	ω=1/T _ν ω
PD nichtmini- malphasig	$1 - j\omega T_V$			$\begin{array}{c c} & & \\ \hline \\ -T_{V} \cdot \delta(t) & \\ \end{array}$	-1	+3dB +20dB/dek +20dB/dek (wie PD minimalphasig)	ω=1/T _ν ω -45° (wie PT ₁)
T _L	$e^{-j\omega T_L}$	Betrag = 1 = konstant Phase = $-\omega T_L$	$\omega = \frac{1}{T_L}:$ $\varphi = -57^{\circ}$ $\omega = \frac{\pi}{T_L}:$ $\varphi = -180^{\circ}$	1 t=T _L t	0=7/T ₁ 00=0 0=-180 00=0 0=T ₁ 0=-57°	0 dB ⊗	□ =1/T _L □ =π/T _L □ = π/T _L □ = π/T _L □ □ = π/T _L □ □ = π/T _L □ □ □ = π/T _L □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
PT ₂	$\frac{1}{1 + j\omega \frac{2D}{\omega_0} + \frac{(j\omega)^2}{{\omega_0}^2}}$	$ \begin{array}{c c} 1 = 0 dB & -\frac{\omega_0^2}{\omega^2} \\ 0 dB/dek & -40 dB/dek \\ 0^{\circ} & -180^{\circ} \\ 1. Asymptote & 2. Asymptote \end{array} $	$\omega = \omega_0$ Betrag= $\frac{1}{2D}$ Phase=-90°	1 1 t	ω= ω φ=-90	0 dB 0 0 0	-90°

Frequenzgang eines Systems bestimmen:

- $G(j\omega)$ nach Betrag u. Phase aufteilen
- charakteristische Punkte bestimmen

Besonderheiten PT_2 :

wenn $D \ge 1$ (also nur reelle Pole) \rightarrow Aufteilung in 2 x PT_1 wenn D < 1:

bei $\omega = \omega_0$ gilt: Betrag = $\frac{1}{2D}$ → aber nicht Maximum!

Resonanzüberhöhung nur bei $D < \frac{1}{\sqrt{2}}$

Maximalwert bei Resonanzfrequ. $\omega_{res} = \omega_0 \sqrt{1-2D^2}$ dort: Resonanzüberhöhung $\ddot{\mathbf{U}} = \frac{1}{2D\sqrt{1-D^2}}$ (bei $\mathbf{V} \neq \mathbf{1}$ ab \mathbf{V} !)

Achtung!

$$\omega_0$$

$$\omega_E = \omega_0 \sqrt{1 - D^2}$$

$$\omega_{res} = \omega_0 \sqrt{1 - 2D^2}$$

Kennkreisfrequenz Schwingkreisfrequenz Resonanzkreisfrequenz

- \rightarrow schwingfähig für D < 1
- \rightarrow rel. Überschwingweite $\ddot{u} > 0$ (sichtbar in Sprungantwort)
- \rightarrow Resonanzüberhöhung für $D < \frac{1}{\sqrt{2}}$
- \rightarrow Resonanzüberhöhung Ü > 0 (sichtbar an Betragsgang)

Konstruktion zusammengesetzter Frequenzgänge

- 1. Pole und Nullstellen bestimmen um daraus Ordnung zu bestimmen
- 2. reelle Pole u. Nullstellen
- \rightarrow Faktoren 1. Ordnung \rightarrow auf Form " $\frac{1+j\omega T}{}$ " bringen
- 3. konjugiert komplexe Pole u. Nullstellen \rightarrow Faktoren 2. Ordnung \rightarrow auf Form $\sqrt{1 + \frac{2D}{\omega_0} \cdot s + \frac{1}{\omega_0^2} \cdot s^2}$ "bringen
- 4. Knickstellen bestimmen + Konstruktion von Grenzfrequenz zu Grenzfrequenz

Erkennen des Systemtyps:

	PT ₁	PT ₂	PT_3	mit <i>I</i> -Anteil	D ohne P od. I
Ortskurve:	nur im 4.	im 4. + 3.	im 4., 3. + 2.	kommt aus -∞	Anfangsbetrag 0
	Quadranten	Quadranten	Quadranten		Anfangsphase +90°
Bodediagramm:	-20dB/dek, -90°	-40dB/dek, -180°	-60dB/dek, -270°	Anfangssteigung -20dB/dek.	Anfangssteigung +20dB/dek.
				Anfangsphase -90°	Anfangsphase +90°

aus Bodediagramm: 1. einpendeln auf festen dB-Wert: r=0 (sprungfähig) 2. -20dB/dek.: r=1 3. -40dB/dek. od. mehr: $r \ge 2$

Syste	em Steigung	Betragsgang	asympt. Phase		1	$\frac{1}{J\omega T_{I}}$	-20 dB/dei -90*
Р	0dB/dek		0°	\	PT ₁	$\frac{1}{1+j\omega T}$	1 0 d8/dek -20 0° 1. Asymptote 2. A:
PT1	0dB/dek =	-> -20 dB/dek	0° => -90°)	D	juT _B	<i>joiT_D</i> +20 dB/del +90°
- 1	-20 dB/de	k	-90°	mini- — mal-	PD	$1 + j\omega T_V$	1 = 0d8 0 d8/dek +20 0* 1. Asymptote 2. At
D	+20 dB/de	ek	+90°	phasig	PD nichtmini-	$1 - j\omega T_V$	1 = 0d8 0 dB/dek +21 0'
PD	0dB/dek =	> +20 dB/dek	0° => +90°		malphasig		1. Asymptote 2. A Betrag = 1 = kor
PT2	0dB/dek =	:> -40 dB/dek	0° => -180°		T _L	$e^{-j\omega T_L}$	Phase = -se
					PT ₂	$\frac{1}{1 + jw \frac{2D}{\alpha_0} + \frac{(jw)^2}{\alpha_0^2}}$	1 = 0dB - 0 dB/dek -4C 0*
Ausn	ahmen:					1	1. Asymptote 2. A
PD n minir	icht- nalphasig	0dB/dek => +20 d	IB/dek -90°		nich	ıt minima	alphasig
Totze	eitglied	0dB/dek	-ωT _t				

4. Modellbildung von Regelstrecken

experimentelle Modellbildung

Zusammenfassen kleiner Zeitkonstanten (\sim Faktor 5): T_{σ} (ggf. inkl. Totzeit) Zusammenfassen aller Zeitkonstanten: $T_{\Sigma} \rightarrow \text{Einschwingdauer} = T_{\Sigma} \cdot 3...5 = T_{\Sigma} \cdot 4$

Alternative: $T_{\Sigma} = \frac{a_1}{a_2}$

Welche Testsignale eigenen sich für eine Identifikation?

Sprung	Vorteil:	+ sehr einfach zu erzeugen + bei vielen Strecken zulässig	Nachteil:	- nur geringe Anregung bei hohen Freq. - nicht im laufenden Betrieb
Impuls	Vorteil:	+ Anregung bei allen Frequenzen	Nachteil:	 benötigte Stellamplitude zu hoch hohe mechanische Belastung nicht im laufenden Betrieb
Sinus	Vorteil:	+ einfach zu erzeugen + bei vielen Strecken zulässign	Nachteil:	Anregung bei nur einer Frequenz pro Mess. viele Messpunkte nötig => lange Dauer! nicht im laufenden Betrieb
Rauschen	Vorteil:	 + Anregung bei kleiner Amplitude + Identifikation im laufenden Betrieb + sehr breitbandige Anregung 	Nachteil:	- Auswertung mathematisch anspruchsvoll (Korrelationsverfahren)

Ermittlung Übertragungsfunktion aus Betragsgang:

Approximation der Frequenzgangpunkte durch Asymptoten

$$G_{S}(s) \approx \frac{V_{S}}{\left(1 + sT_{1}\right)\left(1 + sT_{2}\right)}$$

$$\frac{PT_2\text{-System mit Totzeit}}{G(s) = \frac{V}{1 + \frac{2D}{\omega_0} \cdot s + \frac{1}{\omega_0^2} \cdot s^2} \cdot e^{-sTU}}$$

- 1. D aus ü ermitteln: $D = \frac{-\ln (\ddot{u})}{\sqrt{\pi^2 + (\ln(\ddot{u}))^2}}$
- 2. $T_U = \frac{T_{maxmess} \cdot \arccos(-D) T_{anmess} \cdot \pi}{\arccos(-D) \pi}$
- 3. $T_{an} = T_{anmess} T_{II}$

Identifikation aperiodischer PT_n -Strecken (Sprungantworten ohne Überschwinger)

 \rightarrow als Reihenschaltung von n PT_1 -Strecken darstellbar, da nur reelle Pole (je höher n. desto langsamer anfängliche Systemreaktion)

$$\begin{array}{ll} PT_1T_t & \Rightarrow \frac{V}{1+sT_G} \cdot e^{-sT_U} \\ PT_2 & \Rightarrow \frac{V}{(1+sT_1) \cdot (1+sT_2)} \\ PT_n & \Rightarrow \frac{V}{(1+sT)^n} \text{ oder } \frac{V}{(1+sT)^n \cdot (1+sT_n)} \end{array}$$

1. Methode: Näherung durch Wendetangente

Tangente mit maximaler Steigung in Sprungantwort finden

 $T_{II} \rightarrow 0$ bis SP Tangente mit x-Achse

 $T_G \rightarrow T_U$ bis SP Tangente mit Endwert

 $\rightarrow PT_1T_t$ – Näherung

Vorteil: einfach + in allen Fällen möglich Nachteil: sehr grobe Näherung

2. Methode: Semigrafische Näherung für
$$\frac{T_U}{T_G}$$
 < 0,104 1. $\frac{T_U}{T_G}$ berechnen u. auf positiver x-Achse eintragen

- 2. y-Wert ablesen = $\frac{T_2}{T_1}$
- 3. Wert an neg. x-Achse ablesen = $\frac{T_G}{T_1}$

$$\Rightarrow \frac{T_2}{T_2} = T_1 \cdot y - Wert$$

$$\Rightarrow T_2 = T_1 \cdot y - Wert \qquad \Rightarrow G(s) = \frac{v}{(1+sT_1)\cdot (1+sT_2)}$$

2. Methode: Semigrafische Näherung für $\frac{T_U}{T_C} > 0.104$

1. $\frac{T_U}{T_G}$ berechnen u. auf positiver x-Achse eintragen

2. y-Wert ablesen = n oder n^*

wenn n = ganzzahlig:

3. Wert an neg. x-Achse ablesen = $\frac{T_G}{T}$ $\Rightarrow T = \frac{T_G}{Wert \ neg. \ x-Achse} \Rightarrow G(s) = \frac{V}{(1+sT)^n}$

$$\Rightarrow T = \frac{T_G}{Wert \ neg. \ x-Achse}$$

$$\Rightarrow G(s) = \frac{V}{(1+sT)^n}$$

wenn $n \neq \text{ganzzahlig}$:

3a. Aufrunden $\Rightarrow G(s) = \frac{V}{(1+sT)^n} \Rightarrow$ sehr ungenau!

3b. In Diagramm rechts n^* eintragen u. x-Wert ablesen = $\frac{v(T^*)}{v(t\to\infty)}$

4b. Aus Sprungantwort T^* ablesen, bei dem " $x-Wert \cdot Endwert$ " erreicht wird

$$\rightarrow T = \frac{T^*}{n^*}$$

$$\rightarrow \frac{T_n = T^* - n \cdot T}{\text{(mit } n = n^* \text{ abgerundet!)}}$$

$$\Rightarrow G(s) = \frac{V}{(1+sT)^n \cdot (1+sT_n)}$$

3. Methode: Zeitprozentkennwert

(Methode von Strejc)

Aus Sprungantwort T_3 bei $0.3 \cdot v(t \rightarrow \infty)$ und T_7 bei $0.7 \cdot v(t \to \infty)$ ablesen

$$\rightarrow T = \frac{T_7 - T_3}{0.84}$$

$$\rightarrow T_U = \frac{T_3 - 0.3 \cdot 7}{0.7}$$

2. Näherung durch PT_2 :

$$\Rightarrow T_{1/2} = \frac{T_7}{2,4} \pm \frac{T_3 + T_7}{1,2} \cdot \sqrt{0,45 - \frac{T_3}{T_7}}$$

$$\Rightarrow G(s) \approx \frac{V}{(1+sT_1)\cdot(1+sT_2)}$$

$$rightarrow T = \frac{T_7 - T_3}{1,32}$$

$$rac{T_U}{T_U} = \frac{T_3 - 0.45 \cdot T_7}{0.55}$$

3. Näherung durch PT_2T_t : $\Rightarrow T = \frac{T_7 - T_3}{1,32} \Rightarrow T_U = \frac{T_3 - 0,45 \cdot T_7}{0,55}$ (nur für Zähler > $0 \triangleq \frac{T_3}{T_7} > 0,45 \Rightarrow$ sonst nicht kausal) $\Rightarrow G(s) \approx \frac{V}{(1+sT)^2} \cdot e^{-sT}U$

$$\rightarrow G(s) \approx \frac{V}{(1+sT)^2} \cdot e^{-sT}$$

Identifikation von IT_n – Strecken

IT_t-Näherung:
$$G_S(s) \approx \frac{1}{sT_I} e^{-sT_U}$$

IT₁-Näherung:
$$G_S(s) \approx \frac{1}{sT_I(1+sT_I)}$$

5. Regler und Regelkreise

		P-Regler $(G_R(s) = V_R)$		I-Regler $(G_R(s) = \frac{V_R}{s})$
	<u>PT₁-Strecke</u>	PT2-Strecke	$\underline{PT_n}$ -Strecke	<u>PT₁-Strecke</u>
Strecken- übertragungs- funktion	$G_S(s) = \frac{V_S}{1 + s \cdot T_S}$	$G_{S}(s) = \frac{V_{S}}{1 + \frac{2D_{S}}{\omega_{0S}} \cdot s + \frac{1}{\omega_{0S}^{2}} \cdot s^{2}}$	$G_S(s) = \frac{V_S}{1+s \cdot a_1 + s^2 \cdot a_2 + \cdots}$	$G_S(s) = \frac{V_S}{1 + s \cdot T_S}$
Führungs/Stör- übertragungs- funktion	$G_W(s) = \frac{\frac{V_R \cdot V_S}{1 + V_R \cdot V_S}}{1 + s \cdot \frac{T_S}{1 + V_R \cdot V_S}} = \frac{V_W}{1 + s \cdot T_W}$	$G_W(s) = \frac{\frac{V_R \cdot V_S}{1 + V_R \cdot V_S}}{1 + \frac{2D_S}{\omega_{0S}(1 + V_S V_R)} \cdot s + \frac{1}{\omega_{0S}^2(1 + V_S V_R)} \cdot s^2} = \frac{V_{RK}}{1 + \frac{2D_{RK}}{\omega_{0RK}} \cdot s + \frac{1}{\omega_{0RK}^2} \cdot s^2}$	$G_W(s) = \frac{\frac{V_R V_S}{1 + V_R V_S}}{1 + S \cdot \frac{a_1}{1 + V_R V_S} + S^2 \cdot \frac{a_2}{1 + V_R V_S} + \cdots}$	$G_W(s) = \frac{1}{1+s \cdot \frac{1}{V_R V_S} + s^2 \cdot \frac{T_S}{V_R V_S}}$ $G_Z(s) = \frac{s \cdot V_S}{1+s \cdot \frac{1}{V_R V_S} + s^2 \cdot \frac{T_S}{V_R V_S}}$
Koeffizienten	$\begin{split} V_W &= \frac{V_R \cdot V_S}{1 + V_R \cdot V_S} \\ &\Rightarrow \text{immer} < 1 \\ T_W &= \frac{T_S}{1 + V_R \cdot V_S} \\ &\Rightarrow \text{immer} < T_S, \\ \text{wenn } V_R \uparrow \rightarrow T_W \downarrow \end{split}$	$\begin{aligned} V_{RK} &= \frac{v_R \cdot v_S}{1 + V_R \cdot V_S} \\ \omega_{0RK} &= \omega_{0S} \cdot \sqrt{1 + V_S V_R} \\ D_{RK} &= D_S \cdot \frac{1}{\sqrt{1 + V_S V_R}} \\ &\Rightarrow \text{schwächer gedämpft als ungeregelte Strecke!} \end{aligned}$		
Stabilität	immer stabil	immer stabil	ab n=3 von V_R abhängig	von V_R abhängig
Endwert $G_W(s)$	$a(t \to \infty) = G_W(0) = V_W \to \text{immer} < 1$	$v(t \to \infty) = G_W(0) = V_{RK} \to \text{immer} < 1$	$v(t \to \infty) = G_W(0) = \frac{V_R \cdot V_S}{1 + V_R \cdot V_S}$	$a_W(t \to \infty) = G_W(0) = 1 \rightarrow \text{unabh. v. } V_R!$ $a_Z(t \to \infty) = G_Z(0) = 0 \rightarrow \text{unabh. v. } V_R!$
Endwert $G_Z(s)$		$v(t \to \infty) = G_Z(0) = \frac{V_S}{1 + V_R \cdot V_S}$	$v(t \to \infty) = G_Z(0) = \frac{V_S}{1 + V_R \cdot V_S}$	
steigendes V_R	sinkende Regelabweichung Regelkreis wird schneller	 sinkende Regelabweichung sinkende D_{RK} steigende Schwingneigung 		
Fazit	"Der P-Regler braucht eine Regelabweichung \emph{e} multipliziert wird)	"Der Integrator integriert so lange, bis sein Eingangssignal $e(t) = w(t) - v(t) = 0$ ist!" \rightarrow keine bleibende Regelabweichung ($e(t \rightarrow \infty) = 0$) im Führungs- UND Störverhalten (gut)		

PD-Regler $(G_R(s) = V_R(1 + sT_V))$

→ höhere Überschwinger, höhere Ausregelzeiten

schnelle Reaktion auf Regelabweichung; T_V = Vorhaltezeit \Rightarrow nicht realisierbar, da r < 0! $PDT_1\text{-Regler} \left(\frac{G_R(s)}{G_R(s)} = \frac{V_R(1+sT_V)}{(1+sT_R)} \right) \qquad T_R \cong (0,01..0,2) \cdot T_V \Rightarrow \text{klein gewählt}$ Sprungantwort: Frequenzgang: $V_R \frac{T_V}{T_R}$ $V_R \frac{T_V}{T_R}$

Pol-Nullstellen-Kompensation (Ziel: Kompensation eines langsamen Streckenpols)

zB PD-Regler mit PT2-Strecke: $T_V = T_2$

→ günstiges Führungsverhalten (Störverh. ggf Kriechen)

PIDT₁-Regler

→ schnelle Reaktion + stationäre Genauigkeit

⇒ Parallelstruktur (PID)

Bild 5-22: PID-Regler in Parallelstruktur

Sprungantwort (additive Form):

PIDT₁ additive Form

Bild 5-23: PIDT₁-Regler in Parallelstruktur (additive Form)

hier auch Kompensation von komplexen

Polen möglich

ch Kompensation von komplexen

Bild 5-24: Sprungantwort des PIDT₁-Reglers

$$V_R^* = V_R \left(1 + \frac{T_V}{T_N} \right)$$

$$= T_N \left(1 + \frac{T_V}{T_N} \right)$$

$$\frac{T_V}{+\frac{T_V}{T}}$$

--> Umrechnung von additiver in

PIDT₁ multiplikative Form

$$S_{RM}(s) = V_R \cdot \frac{(1 + sT_N)(1 + sT_V)}{sT_N(1 + sT_R)}$$
 2 reelle No

Frequenzgang (multiplikative Form):

Bild 5-25: Bode-Diagramm (Asymptoten) des PID- und PIDT₁-Regle

$$T_N = 0.5 \cdot T_N^* \left[1 + \sqrt{1 - 4 \frac{T_V^*}{T_N^*}} \right]$$
 $T_V =$

$$T_V = 0.5 \cdot T_N^* \left[1 - \sqrt{1 - 4 \frac{T_V^*}{T_N^*}} \right]$$

--> Umrechnung von additiver in multiplikative Form

P-Regler: V_R + einfach in der Implementierung

+ rasche Reaktion

- bleibende Regelabweichung bei PT_n-Strecken (G_w(s) und G₇(s))

- bei größeren Verstärkungen Schwingneigung (bei n>1)

I-Regler: VR bzw. TIR + stationär genaue Regelung (G_W(s) und G_z(s)) durch Integration

- in den meisten Anwendungen zu langsamer / zu schwach gedämpfter Regelkreis

PI-Regler: VR, TN + rasche Reaktion durch P-Anteil

+ stationär genaue Regelung (Gw(s) und Gz(s)) durch I-Anteil

+ DER Standard-Regler überhaupt (!!!)

- Für manche Anwendungen zu langsamer / zu schwach gedämpfter Regelkreis

PDT₁-Regler: VR, TV, TR + sehr rasche Reaktion durch D-Anteil => sehr schnelle Regelung

+ Reduktion der Schwingneigung

- bleibende Regelabweichung

- in manchen Anwendungen (bei Messrauschen) unruhige Regelung

PIDT,-Regler: V_R, T_N, T_V, T_R + sehr rasche Reaktion durch P-und D-Anteil => sehr schnelle Regelung

+ Reduktion der Schwingneigung durch D-Anteil

+ stationär genau durch I-Anteil

aufwändigster Standard-Regler

- in manchen Anwendungen (bei Messrauschen) unruhige Regelung

PI-Regler mit Begrenzungsbeobachter → I-Anteil jedes Reglers muss überwacht werden

(K nicht zwingend nötig)

Kompensationsregler \rightarrow Idee: G_W vorgeben und passenden Regler berechnen

$$G_R(s) = \frac{G_{W,soll}(s)}{G_S(s) \cdot \left(1 - G_{W,soll}(s)\right)} = \frac{Z_W(s) \cdot N_S(s)}{Z_S(s) \cdot \left(N_W(s) - Z_W(s)\right)}$$

(wenn bleibende Regelabweichung kein I-Anteil mgl.)

→ gesamtes dynamisches Verhalten wird kompensiert,

da $N_S(s)$ und $Z_S(s)$ Pole und Nullstellen der Strecke $G_S(s) = \frac{Z_S(s)}{N_S(s)}$ kompensieren

 \rightarrow durch $N_W(s)$ und $Z_W(s)$ wird gewünschtes Führungsverhalten eingestellt

→ ABER: schlechtes Störverhalten ("Kriechen"),

da kompensierte Streckenpole $N_S(s)$ auftreten: $G_Z(s) = \frac{Z_S(s) \cdot (N_W(s) - Z_W(s))}{N_S(s) \cdot N_W(s)}$

→ Außerdem: nicht bei minimalphasigen Strecken einsetzen,

da $G_{WY}(s)$ instabil: $G_{WY}(s) = \frac{Y(s)}{W(s)} = \frac{G_R(s)}{1 + G_R(s) \cdot G_S(s)} = \frac{\overline{Z_S \cdot ...}}{1 + \frac{...}{Z_S \cdot ...} \frac{Z_S}{N_S}} = \frac{...}{Z_S \cdot ...} \Rightarrow$ strebt gegen $-\infty$

→ Kompensationsregler nicht für instabile oder minimalphasige Strecken anwenden!

für $G_{W soll}(s)$ muss gelten: $n_W - m_W \ge n_S - m_S$ (n = Pole, m = NS, W = G_W , S = Strecke)

6. Stabilitätskriterien

(geschlossener) Regelkreis am Stabilitätsrand

Dauerschwingungsbedingung: $G_0(j\omega_r) = G_R(j\omega_r) \cdot G_S(j\omega_r) = -1 \rightarrow 0 \ dB_1 - 180^\circ$

Ortskurve von $G_0(s)$ läuft durch $-1 + j \cdot 0$ (kritischer Punkt) \rightarrow zugehörige Kreisfrequenz: ω_{krit}

Bodediagramm: es gibt ein ω_{krit} , bei dem Betrag = 0 dB und Phase = -180° sind

(geschlossener) Regelkreis stabil

Ortskurve

kritischer Punkt $-1+j\cdot 0$ liegt auf der linken Seite der Ortskurve von $G_O(s)$ (wenn diese in ω -Laufrichtung durchlaufen wird), wobei der Teil der Ortskurve entscheidend ist, der am nächsten am kritischen Punkt liegt

Bode-Diagramm

bei allen Kreisfrequenzen, bei denen $\varphi = -180^{\circ}$, ist Betrag < 0dB (\triangleq positive a_B)

Wurzelortskurven

Parameter: Reglerverstärkung V_R aus WOK keine Aussage über bleibende Regelabweichung (stationäres Verhalten)

Amplituden-/Phasenreserve (wenn positiv: geschlossener Regelkreis stabil)

$$A_R = 1 - |G_O(\omega_A)|$$

 $\varphi_R = 180^\circ + \varphi_O(\omega_p)$

(mit ω_A = Kreisfrequenz bei -180°)

(mit ω_n = Kreisfrequenz bei Betrag = 1 (\triangleq 0 dB), SP Einheitskreis)

Bode-Diagramm

$$a_R = 0dB - G_0(\omega_A)$$

$$\varphi_R = 180^\circ + \varphi_0(\omega_n)$$

(mit ω_A = Kreisfrequenz bei -180°) \rightarrow wenn φ nie -180° keine Angabe mgl.

(mit ω_n = Kreisfrequenz bei Betrag = 1 (\triangleq 0 dB))

kritische Verstärkung ermitteln

Ortskurve:
$$V_{krit} = \frac{1}{SP_{reelle\ Achse}}$$
 (Bode: $V_{krit} = \frac{V_{R,bisher}}{\left(\frac{G_O(\omega_A)}{20\ dB}\right)}$) \rightarrow hier wirklich nachdenken!

V_R für bestimmtes φ_R einstellen

(Bode-Diagramm: $V_{R,neu} = 10^{\frac{V_{R,bisher,indB} - |G(\omega_{\varphi_R})|}{20}}$) \rightarrow TIMO, hier wirklich nachdenken!

V_I für bestimmtes φ_R einstellen (I-Regler $G_R(j\omega) = \frac{V_I}{i\omega}$)

 ω_x ablesen, an dem gewünschte φ_R erreicht (Verschiebung Phasengang um -90° beachten!)

 $-|G_O(\omega_\chi)| = \frac{V_I}{i\omega_\chi}$ \rightarrow Nenner normieren \rightarrow Bsp.: $-|G_O(0,1)| = -6dB = 0.5 = \frac{V_I}{i\cdot 0.1} \rightarrow V_I = 0.05$

praktische Richtlinien:

 $\varphi_R \approx 90^\circ \rightarrow$ kein Überschwinger $\varphi_R \approx 60^\circ \rightarrow$ 1 Überschwinger $\varphi_R \approx 30^\circ \rightarrow$ ein paar Überschwinger, dafür bessere Störunterdrückung

$$\widetilde{N}_O(s) + V_R \cdot \widetilde{Z}_O(s) = 0$$
 (Herleitung: $1 + V_R \cdot \widetilde{G}_O(s) = 1 + rac{Z_S(s)}{N_S(s)} \cdot rac{\widetilde{Z}_R(s)}{\widetilde{N}_R(s)} \cdot V_R$ mit $rac{\widetilde{Z}_R(s)}{\widetilde{N}_R(s)}$ als unverstärkter Regler)

(wenn nicht V_R sondern zB α Parameter ist, muss Gleichung so aufgestellt werden, dass α anstelle von V_R steht)

WOK-Konstruktionsregeln

Regel 1: Startpunkte sind Pole des offenen Kreises

Regel 2: Endpunkte sind NS des offenen Kreises

(da bei $V_R=0$ $\rightarrow \widetilde{N}_O(s)=0$) (da bei $V_R\to\infty$ $\rightarrow \widetilde{Z}_O(s)=0$)

Regel 3: Anzahl Äste gegen Unendlich = n - m = Pole – NS

Regel 4: falls alle Pole u. NS in linker s-Halbebene (inkl. 0): jeder Ort auf reeller Achse, auf dessen rechter Seite Pole + NS = ungerade, ist Wurzelort

Regel 5: für reale physikalische Systeme (reelle und/oder konjugiert komplexe Pole u. NS) ist WOK symmetrisch zu reeller Achse

Fortsetzung WOK

Einstellung / Analyse Dynamik: dominanten Pol/Polpaar betrachten = Pol(paar) am nächsten an Null

- reeller Einfachpol: nichtschwingend, Einschwingdauer ca. = $4 \cdot \frac{1}{-s_{\text{co}}}$
- reeller Doppelpol: nichtschwingend (aperiodischer Grenzfall), Einschwingdauer ca. = $4 \cdot \frac{1}{-s_{\infty}} \cdot 2$
- konj. komplexes Polpaar mit Realteil: schwingend, $D = \cos\left(\arctan\left(\frac{Im(s_{\infty})}{Re(s_{\infty})}\right)\right)$, $\omega_0 = |s_{\infty}|^{-1}$
- konj. komplexes Polpaar ohne Realteil: Dauerschwingung, Periodendauer $T_e=rac{2\pi}{Im(s_\infty)}$
- positiver Realteil: instabil

wenn gefragt, wie V_R für ein bestimmtes ü zu wählen ist:

- 1. $D = \frac{-\ln{(\ddot{u})}}{\sqrt{\pi^2 + (\ln{(\ddot{u})})^2}}$ (nur PT2!)
- 2. $\varphi = \arccos(D)$
- 3. Winkel einzeichnen und SP mit WOK ablesen

Wahl von T_N bei PI-Regler

Bsp: $G_S(s) = \frac{1}{(1+s)(1+5s)}$

1. Kompensation der langsamen Zeitkonstante ($T_N = 5$) \rightarrow beste Option! gutes Führungsverhalten schlechtes Störverhalten, da Kriechen

2. Kompensation der schnellen Zeitkonstante ($T_N = 1$)

Führungs- u. Störverhalten noch schlechter als bei 1., da Pole näher an 0 (und somit langsamer)

3. Keine Kompensation $(T_N = 2)$

etwas besser als 2., da V_R etwas größer, da Äste der WOK aufgrund von NS leicht nach links gezogen werden deutlicher Überschwinger in Führungssprungantwort, da nun PDT_3 (45° für ü = 4% gilt nicht mehr) \rightarrow PT1-Vorfilter im Sollwertkanal dämpft Überschwinger

7. Optimierung von Regelkreisen

Spezifikationen einer guten Regelung

gutes Führungsverhalten: v(t) nicht zu langsam, nicht zu schwach gedämpft

→ Kompensation langsamer Streckenzeitkonstanten durch Reglernullstellen

gutes Störverhalten: v(t) kein Kriechen

- → Vermeidung der Kompensation langsamer Streckenzeitkonstanten
- → höhere Verstärkung

Methode von Chien, Hrones & Reswick

 $T_U - T_G$ – Approximation der Streckensprungantwort durch Methode "Näherung durch Wendetangente"

Regler	aperiodischer kürzeste	0 0	20% Überschwingung kleinster Schwingungsdauer (D ≈ 0,45)		
	Führungsverhalten	Störverhalten	Führungsverhalten	Störverhalten	
P-Regler	$V_{R} = \frac{0.3 \cdot T_{G}}{V_{s} \cdot T_{u}}$	$V_{R} = \frac{0.3 \cdot T_{G}}{V_{s} \cdot T_{u}}$	$V_R = \frac{0.7 \cdot T_G}{V_s \cdot T_u}$	$V_{R} = \frac{0.7 \cdot T_{G}}{V_{s} \cdot T_{u}}$	
PI-Regler	$V_R = \frac{0.35 \cdot T_G}{V_s \cdot T_u}$	$V_{R} = \frac{0.6 \cdot T_{G}}{V_{s} \cdot T_{u}}$	$V_{R} = \frac{0.6 \cdot T_{G}}{V_{s} \cdot T_{u}}$	$V_{R} = \frac{0.7 \cdot T_{G}}{V_{s} \cdot T_{u}}$	
Kompensatio	on: $T_n = 1.2 \cdot T_G$	$T_n = 4 \cdot T_u$ keine Komp.	$T_n = T_G$	$T_n = 2.3 \cdot T_u$	
	$V_R = \frac{0.6 \cdot T_G}{V_s \cdot T_u}$	$V_R = \frac{0.95 \cdot T_G}{V_s \cdot T_u}$	$V_{R} = \frac{0.95 \cdot T_{G}}{V_{s} \cdot T_{u}}$	$V_R = \frac{1.2 \cdot T_G}{V_s \cdot T_u}$	
PID-Regler	$T_n = T_G$	$T_n = 2.4 \cdot T_u$	$T_n = 1.35 \cdot T_G$	$T_n = 2 \cdot T_u$	
	$T_v = 0.5 \cdot T_u$	$T_v = 0.42 \cdot T_u$	$T_v = 0.47 \cdot T_u$	$T_v = 0.42 \cdot T_u$	

 \rightarrow für Führungsverhalten kleineres V_R und Kompensation

Vorteile: einfache Anwendung; keine aufwendige Modellbildung; praxiserprobt

Nachteile: bei extremen $T_{II} - T_{G}$ – Verhältnissen nicht sinnvoll; keine Regeln für schwingfähige

Systeme: Spezifikation wird oft nicht wirklich eingehalten

Einstellwerte nach Ziegler u. Nichols

- 1. Regelkreis mit P-Regler schließen
- 2. V_R erhöhen, bis Regelkreis schwingt (Dauerschw.)
- 3. Kenndaten Regelkreis am Stabilitätsrand entnehmen: $V_{R,krit}$ und $T_{krit} = \frac{2\pi}{\omega_{krit}}$
- 4. Einstellwerte für günstiges Führungsverhalten:

P-Regler	PI-Regler	PID-Regler		
$V_R = 0.5 \cdot V_{R-Krit}$	$V_R = 0.45 \cdot V_{R-Krit}$ $T_n = 0.85 \cdot T_{Krit}$	$V_R = 0.6 \cdot V_{R-Krit}$ $T_n = 0.5 \cdot T_{Krit}$ $T_v = 0.12 \cdot T_{Krit}$		

Vorteil: einfach

Nachteile: schwach gedämpfte Regelung; erst ab ... T₃-Strecken; Schwingversuch muss zulässig

Optimierung im Frequenzbereich

Führungsverhalten

Durchtrittsfrequenz <-> Bandbreite Führungsverh. \rightarrow größeres V_R

$$|G_{o}(\omega)| \ll 1 \qquad \boldsymbol{\rightarrow} \; G_{W}(j\omega) \approx G_{o}(j\omega)$$

$$|G_O(\omega)| \gg 1$$
 $\rightarrow G_W(j\omega) \approx 1$

Störverhalten

- → bessere Störunterdrückung

$$|G_O(\omega)| \ll 1$$
 $\rightarrow G_Z(j\omega) \approx G_S(j\omega)$

$$|G_0(\omega)| \gg 1$$
 $\rightarrow G_Z(j\omega) \approx \frac{3}{G_R(j\omega)}$

Betragsoptimum und symmetrisches Optimum

betragsoptimale Dämpfung $(D = \frac{1}{I_0})$, damit $|G_W(\omega)|$

- 1. Regler mit I-Anteil wählen (wg. stationärer Genauigkeit)
- 2. Große Streckenzeitkonstante(n) mit Regler-NS kompensieren (1xT: PI oder 2xT: PIDT1)
- 3. Kleine Zeitkonstanten v. Strecke u. Regler zu T_{σ} zusammenfassen
- 4. V_R so wählen, dass $D = \frac{1}{\sqrt{2}}$ erfüllt (45°-Winkel in WOK)
- \rightarrow Führungssprungantwort immer $\ddot{u} = 4.3\%$ und $T_{an} = 4.7 \cdot T_{a}$ und $T_{ans} = 8.4 \cdot T_{a}$

y ramangsspranganewore minici				1,5 /0 an	an -	1,	, I o and I at
Gegebene Regelstrecke			Reglerstruktur und Optimierung				wertkanal
				V _R	T_N bzw. T_I	T_V	T _G
$G_s(s) = \frac{V_s}{1 + sT_\sigma}$ (PT ₁ , keine große Zeitkonstante)		во	ı		$T_l = 2T_\sigma V_S$		
(1 11), None group Loudin Lanto,	T ₁ <4 <i>T</i> _σ	во	PI	T ₁ / (2T _σ V _S)	$T_N = T_1$		
$G_{S}(s) = \frac{V_{s}}{(1+sT_{s})(1+sT_{s})}$	T > 4T	BO ¹⁾	PI	T ₁ / (2T ₅ V _S)	$T_N = T_1$		
(PT ₂ , eine große Zeitkonstante)	T ₁ >4T _c	SO ²⁾	PI	T ₁ / (2T _σ V _S)	$T_N = 4T_G$		$4T_{\sigma}(1-e^{-(T_{1}/4T_{\sigma}-1)})$
(1 12, eine große Zeitkonstante)	$T_1 >> 4T_{\sigma}$	ВО	Р	T ₁ / (2T _o V _S)			
	T₁<4T _□	во	PID	T ₁ / (2T _o V _S)	$T_N = T_1$	<i>T</i> ₂	
$G_{S}(s) = \frac{V_{s}}{(1 + sT_{1})(1 + sT_{2})(1 + sT_{\sigma})}$	TNAT	BO ¹⁾	PID	$T_1 / (2T_{\sigma} V_{S})$	$T_N = T_1$	<i>T</i> ₂	
	11>41 ₆	SO ²⁾	PID	T ₁ / (2T _o V _S)	$T_N = 4T_{\sigma}$	<i>T</i> ₂	$4T_{\sigma}(1-e^{-(T_{1}/4T_{\sigma}-1)})$
(PT ₃ , zwei große Zeitkonstanten)	T ₁ >>4T _o	ВО	PD	T ₁ / (2T _o V _S)		<i>T</i> ₂	
$G_{s}(s) = \frac{1}{sT_{0}(1 + sT_{\sigma})}$	T_0 <4 T_c oder T_0 >4 T_c	so	PI	T ₀ / 2T _o	$T_N = 4T_\sigma$		4 <i>T</i> _σ
(IT ₁ , keine große Zeitkonstante)	$T_0 >> 4T_{\odot}$	во	Р	T ₀ / 2T _σ			
$G_{S}(s) = \frac{1}{sT_{0}(1 + sT_{1})(1 + sT_{\sigma})}$	T_0 <4 T_{\odot} oder T_0 >4 T_{\odot}	so	PID	T ₀ / 2T _e	$T_N = 4T_\sigma$	T ₁	4 <i>T</i> _c
(IT ₂ , eine große Zeitkonstante)	To>>4Ta	во	PD	To / 2To		T 1	

Achtung! Zähler muss 1 sein

BO gutes Führungsverhalten; SO besseres Störverhalten \rightarrow daher aber PT_1 -Vorfilter notwendig

8. Erweiterung des einfachen Regelkreises: Störgrößenaufschaltung, Vorfilter, Kaskadenregelung

Störgrößenaufschaltung (Ziel: Verbesserung Störunterdrückung)

→ wenn Störung kommt, kann gleich Stellsignal erhöht werden

$G_Z(s) = \frac{G_{S1}(s)(1 - G_{ZA}(s) \cdot G_{S2}(s))}{1 + G_R(s) \cdot G_{S2}(s) \cdot G_{S1}(s)}$

(d.h. Voraussetzung ist, dass Störung gemessen werden kann)

- → für Störunterdrückung muss Zähler = 0 werden
- ightarrow ideale Störunterdrückung: $G_{ZA}(s)=rac{1}{G_{S2}(s)}$ ightarrow meist nicht realisierbar

bzw.
$$G_{ZA}(s) = \frac{1}{G_{SZ}(s)} \cdot \frac{1}{1+sT_X}$$
 (mit $T_X < T_{Strecke}$) (zB $G_{ZA}(s) = \frac{1+0.2s}{4\cdot(1+0.02s)}$ mit $T_X = 0.02 < T_S = 0.2$)

ightarrow asymptotische Störunterdrückung: $G_{ZA}(s)=rac{1}{G_{S2}(0)}$ (in diesem Fall ist $G_{ZA}(s)$ ein P-Glied!)

Kaskadenregelung

(nur möglich wenn zusätzliche Messgröße $X_2(s)$ vorliegt/ermittelbar ist)

Dimensionierung unterlagerter Regelkreis: $G_{W2} = \frac{X_2}{Y_1} = \frac{G_{R2} \cdot G_{S2}}{1 + G_{R2} \cdot G_{S2}}$

Dimensionierung äußerer Regelkreis: Strecke = $G_{S1} \cdot G_{W2}$ (T_{S1} = groß, T_{W2} = klein)

- \rightarrow Ausgangssignal G_{R1} ist Sollwert des inneren Regelkreises \rightarrow somit Grenzwerte für X_2 einhaltbar
- \rightarrow gutes Resultat wenn G_{S2} schneller als G_{S1} (innerer Kreis liefert kleine Zeitkonstante)
- ightarrow Störung Z_2 wird in innerer Schleife unterdrückt und wirkt sich dadurch weniger auf V(s) aus

Führungsgrößenumformung / Vorfilter (*Ziel: Verbesserung Führungsverhalten*) wenn Regler auf gutes Störverhalten eingestellt wurde, zB mit SO

1. Möglichkeit: Zwei-Freiheitsgrade-Struktur mit Vorfilter

ton G (c)

Ergänzung Vorfilter außerhalb Regelkreis-Schleife

Führungsübertragungsfunktion: $G_W = G_V \cdot \frac{G_S \cdot G_R}{1 + G_S \cdot G_R}$

- $\rightarrow G_V = G_{W,soll} \cdot \frac{1 + G_S \cdot G_R}{G_S \cdot G_R}$ (G_W so vorgeben, dass G_V realisierbar (genug Pole!))
- \rightarrow damit $G_Z(s)$ und $G_W(s)$ unabhängig voneinander einstellbar Nachteil: Bei Änderung von Regler $G_R(s)$, muss auch $G_V(s)$ neu dimensioniert werden

2. Möglichkeit: Zwei-Freiheitsgrade-Struktur mit Vorfilter und Streckenmodell

Ergänzung Vorfilter außerhalb Regelkreis-Schleife und Ergänzung Streckenmodell

 \rightarrow am besten $G_M = G_S$ (kann dann in G_W gekürzt werden)

Führungsübertragungsfunktion: $G_W = G_{Vi} \cdot \frac{(1 + G_M \cdot G_R) \cdot G_S}{1 + G_S \cdot G_R}$

$$\Rightarrow G_{Vi} = \frac{G_{W,soll}}{G_S} \text{ (da } G_M = G_S) \qquad (G_W \text{ so vorgeben, dass } G_V \text{ realisierbar (genug Pole!))}$$

9. Zeitdiskrete Regelung

statt Integratoren $\left(\frac{1}{s}\right)$ nun Verzögerungsglieder $\left(\frac{1}{z}\right)$ \rightarrow Verzögerung um einen Abtasttakt stabil wenn alle Pole im Einheitskreis liegen

quasikontinuierliche Regelung für Abtastzeit $T_a \leq \frac{0.1}{r}$

(mit r = Radius Kreis in s-Ebene um Nullpunkt, der alle Pole und NS von G_R und G_S (nicht G_W !) einschließt; alternativ rechnerisch: maximaler Betrag aller Pole und NS)

ightarrow da in Praxis häufige Verletzung der Faustformel Stabilitäts-/Dynamik-Kontrolle erforderlich

Bilineare Transformation (Standard für Digitalfilter-Entwurf; in Praxis keine Vorteile)

$$S \approx \frac{2 \cdot (z-1)}{T_a \cdot (z+1)}$$

Sprunginvariante Transformation (aufwendige Rechnung, dafür "echt" zeitdiskreter Entwurf)

Vorgehen:
$$A(s) \to a(t) \to (t = kT_a) \to A(z) \to G(z)$$
 mit $G(z) = \frac{z-1}{z} \cdot A(z)$ (bei $\sigma(t)$ nur $t = k!!$)

Diskretisierungsmethoden

Vorwärtsdifferenz (einfach und in Praxis beliebt)

Bsp. PT1:
$$G(s) = \frac{1}{1+sT}$$
 $\rightarrow \dot{y}(t) = \frac{1}{T} \cdot \left(-y(t) + u(t)\right)$

Näherung:
$$\frac{y((k+1)\cdot T_a)-y(kT_a)}{T_a} = \frac{1}{T} \cdot \left(-y(kT_a)\right) + \frac{1}{T} \cdot u(kT_a)$$

→ z-Übertragungfunktion:
$$G(z) = \frac{\frac{T_a}{T} \frac{1}{z}}{1 - \frac{T - T_a}{T}} = \frac{\frac{T_a}{T}}{z - \frac{T - T_a}{T}}$$
 (alt.: $s = \frac{z - 1}{T_a}$

Rückwärtsdifferenz (unempfindlicher gegen größere T_a)

$$\frac{\dot{y}(t)}{\sqrt{(k \cdot T_a)} + y((k \cdot 1) \cdot T_a)} = \frac{1}{T} \cdot \lambda (k \cdot T_a) - \frac{1}{T} \cdot y(k \cdot T_a) \qquad \text{--> implizite Gleichung!}$$

$$\frac{\dot{y}(t)}{\sqrt{(k \cdot T_a)} + y((k \cdot 1) \cdot T_a)} = \frac{1}{T} \cdot \lambda (k \cdot T_a) - \frac{1}{T} \cdot y(k \cdot T_a)$$

Integrator im Kontinuierlichen und Diskreten

Vorwärtsdifferenz:

Merkmal eines integrierenden Systems im Zeitdiskreten:

immer Rückführung mit Faktor +1

Rückwärtsdifferenz:

Bilineare Transformation:

$$\frac{(z+1)\cdot T_a}{(z-1)\cdot 2}$$

Merkmal eines Systems mit I-Anteil:

- im Zeitkontinuierlichen: Pol bei s = 0
- im Zeitdiskreten: Pol bei z = 1 und damit Summe der Nenner-Koeffizienten = 0

Differenzierer im Kontinuierlichen und Diskreten

$$G(s) = s$$

Vorwärtsdifferenz:

--> nicht realisierbar

G(z) = (z-1) / T_a --> nicht kausal --> nicht realisierbar!

Rückwärtsdifferenz:

 $G(z) = (z-1) / z^*T_a$

--> realisierbar, da Zählergrad = Nennergrad

in der Praxis trotzdem DT1, um Rauschen zu unterdrücken

Bilineare Transformation:

$$\frac{(z-1)\cdot 2}{(z+1)\cdot T_a}$$

--> realisierbar, aber idR nicht verwendet

Der PID-Regler im Zeitdiskreten → realisierbar mit Rückwärtsdifferenz Strukturbild: Sprungantwort:

