Image Sharpening Using Knowledge Distillation

Training Organization:

Intel Industrial Training 2025

Team Members:

Patel Palak (Leader)

Soni Kanishka

Valand Diya

Problem Statement:

Enhance the visual quality of blurred low-resolution images using a lightweight neural network trained through knowledge distillation. The objective is to achieve high-quality, sharp images comparable to outputs from larger models like ResNet18, while maintaining fast and resource-efficient performance.

Objective:

To build a compact student CNN model that can:

- Restore image sharpness
- Mimic a high-capacity teacher model (ResNet18)
- Generalize to real-world blurred image scenarios

Data Sources:

- Training & Inference Dataset: DIV2K High Resolution Dataset (800 images)
- Preprocessing: Generated Gaussian-blurred versions of HR images using OpenCV

Model Architecture:

- Student Model: Lightweight CNN with 4 convolutional layers:
- Conv2d(3, 64) \rightarrow ReLU \rightarrow Conv2d(64, 64) \rightarrow ReLU
- Conv2d(64, 32) \rightarrow ReLU \rightarrow Conv2d(32, 3)
- Teacher Model: Pretrained ResNet18 (ImageNet) with final FC layer removed
- Distillation Setup:
 - Pixel-level loss: MSE
 - Feature-level distillation: ResNet features with MSE

Training Details:

- Input Image Size: 384x384
- Epochs: 200
- Optimizer: Adam (lr=1e-4)
- Hardware: NVIDIA RTX 2050
- All checkpoints saved every 10 epochs (crash-proof)
- Final model: student_model_384x384_e200.pth

Model Outcomes:

- Inference completed on 800 blurry inputs
- Outputs saved in results/ folder
- Final visual results: moderately sharpened outputs
- Metric Evaluation:
- Average SSIM: ~0.66 (Structural Similarity Index)

Subjective Study:

- Participants: 5 individuals including students and general viewers
- Setup: Each participant was shown 10 randomly selected triplets: (Blurry Input | Sharpened Output | Ground Truth)
- Evaluation Method: Each participant rated the perceived quality of the sharpened output on a scale of 1 to 5, based on visual clarity, edge sharpness, and overall naturalness
- Result Summary:

- Average MOS (Mean Opinion Score): 3.4 / 5
- Comments indicated improved clarity and contrast in most outputs, though some images lacked fine detail
- Overall consensus: noticeable improvement, suitable for moderate enhancement tasks

Working Code:

- Project Folder includes:
 - main_train.py (training script)
 - inference.py (final prediction script)
 - models/student_model.py
 - utils/dataset.py
 - Checkpoints & outputs in /checkpoints and /results

Conclusion:

A custom CNN model was trained using knowledge distillation from ResNet18 to sharpen blurred images. Though the visual improvements were moderate, the model achieved stable performance and SSIM \sim 0.66. Further sharpness could be achieved via deeper models and perceptual loss, planned for future work.