SMT-COMP 2021 16th International Satisfiability Modulo Theory Competition

Haniel Barbosa Jochen Hoenicke Antti Hyvärinen

Universidade Federal de Minas Gerais, Brazil

Albert-Ludwigs-Universität Freiburg, Germany

Universita della Svizzera italiana, Switzerland

July 18, 2021

SMT-COMP

Annual competition for SMT solvers on (a selection of) benchmarks from SMT-LIB

History	
2005	first competition
2013	evaluation instead
	of competition
2014	since then hosted
	by StarExec
2021	16th competition

Goals:

- spur development of SMT solver implementations
- promote SMT solvers and their usage
- support the SMT-LIB project
 - to promote and develop the SMT-LIB format
 - to collect relevant benchmarks
- engage and include new members

SMT Solvers and SMT-LIB

SMT Solver

checks formulas in SMT-LIB format for satisfiability modulo theories

SMT-LIB is

- a language in which benchmarks are written
- 2 a community effort to collect benchmarks

Non-incremental

381 683 instances (+5082) with 1 query each in 79 logics (+9).

Incremental

43 284 instances (+19 073) with 33 998 794 queries (+554 499) in 35 logics (+2).

				ALIA	UFDTLIA
$QF_{I}DL$	QF_-ALIA	QF_ABVFP	LIA	AUFLIA	UFDTLIRA
$QF_{L}IA$	QF_AUFLIA	QF_ABVFPLRA	LRA	AUFLIRA	UFIDL
QF_LIRA	$QF_{L}UFIDL$	QF_AUFBVFP	NIA	AUFDTLIA	UFLIA
$QF_{L}RDL$	$QF_{L}UFLIA$	$QF_{ extsf{-}}BVFP$	NRA	AUFDTLIRA	UFLRA
$QF_{-}LRA$	QF_UFDTLIRA	QF_BVFPLRA		ANIA	UFDTNIA
$QF_{-}NIA$	$QF_{ extsf{L}}UFLRA$	$QF_{-}FP$	UF	AUFNIA	UFDTNIRA
QF_NIRA	$QF_{-}ANIA$	$QF_{-}FPLRA$	UFDT	AUFNIRA	UFNIA
$QF_{-}NRA$	QF_AUFNIA	$QF_{-}UFFP$		AUFDTNIRA	UFNRA
$QF_{-}AX$	$QF_{-}UFNIA$	QF_UFFPDTLIRA	BV	ABV	AUFFPDTLIRA
$QF_{ extsf{-}}DT$	$QF_{L}UFNRA$			ABVFP	AUFFPDTNIRA
$QF_{-}UF$	$QF_{-}ABV$	QF_AUFBVLIA	BVFP	ABVFPLRA	UFBV
$QF_{-}UFDT$	$QF_{A}UFBV$	QF_AUFBVNIA	BVFPLRA	AUFBV	UFBVFP
$QF_{-}BV$	$QF_{ extsf{-}}UFBV$	QF_UFBVLIA	FP	AUFBVFP	UFBVLIA
$QF_{-}S$	QF_SLIA	QF_SNIA	FPLRA	AUFBVDTLIA	UFFPDTLIRA
				AUFBVDTNIA	UFFPDTNIRA

Quantifier-free			Quantified		
QF_IDL QF_LIA QF_LIRA QF_RDL QF_LRA QF_NIA QF_NIRA QF_NRA	QF_ALIA QF_AUFLIA QF_UFIDL QF_UFLIA QF_UFDTLIRA QF_UFLRA QF_ANIA QF_AUFNIA	QF_ABVFP QF_ABVFPLRA QF_AUFBVFP QF_BVFP QF_BVFPLRA QF_FP QF_FPLRA QF_UFFP	LIA LRA NIA NRA UF UFDT	Quantified ALIA AUFLIRA AUFDTLIA AUFDTLIRA ANIA AUFNIA AUFNIRA AUFNIRA AUFDTNIRA	UFDTLIA UFDTLIRA UFIDL UFLIA UFLRA UFDTNIA UFDTNIRA UFNIA UFNIA
QF_AX QF_DT QF_UF QF_UFDT QF_BV QF_S	QF_UFNIA QF_UFNRA QF_ABV QF_AUFBV QF_UFBV QF_SLIA	QF_UFFPDTLIRA QF_AUFBVLIA QF_AUFBVNIA QF_UFBVLIA QF_SNIA	BV BVFP BVFPLRA FP FPLRA	ABV ABVFP ABVFPLRA AUFBVFP AUFBVDTLIA AUFBVDTNIA	AUFFPDTLIRA AUFFPDTNIRA UFBV UFBVFP UFBVLIA UFFPDTLIRA UFFPDTNIRA

Quantifier Free Array Uninterpreted Function BitVector FloatingPoint DataType Strings Nonlinear/Linear Integer Real Arithmetic Difference Logic

			0		
Quantifier-free			Quantified		
				ALIA	UFDTLIA
QF_IDL	QF_ALIA	QF_ABVFP	LIA	AUFLIA	UFDTLIRA
QF_LIA	QF_AUFLIA	QF_ABVFPLRA	LRA	AUFLIRA	UFIDL
QF_LIRA	QF_UFIDL	QF_AUFBVFP	NIA	AUFDTLIA	UFLIA
QF_RDL	QF_UFLIA	QF_BVFP	NRA	AUFDTLIRA	UFLRA
QF_LRA	QF_UFDTLIRA	QF_BVFPLRA		ANIA	UFDTNIA
QF_NIA	QF_UFLRA	$QF_{-}FP$	UF	AUFNIA	UFDTNIRA
QF_NIRA	QF_ANIA	QF₋FPLRA	UFDT	AUFNIRA	UFNIA
QF_NRA	QF_AUFNIA	QF_UFFP		AUFDTNIRA	UFNRA
QF_AX	QF_UFNIA	QF_UFFPDTLIRA	BV	ABV	AUFFPDTLIRA
$QF_{ extsf{-}}DT$	$QF_{-}UFNRA$			ABVFP	AUFFPDTNIRA
$QF_{ extsf{-}}UF$	QF_ABV	QF_AUFBVLIA	BVFP	ABVFPLRA	UFBV
QF_UFDT	QF_AUFBV	QF_AUFBVNIA	BVFPLRA	AUFBV	UFBVFP
QF_BV	QF_UFBV	QF_UFBVLIA	FP	AUFBVFP	UFBVLIA
QF_S	QF_SLIA	QF_SNIA	FPLRA	AUFBVDTLIA	UFFPDTLIRA
				AUFBVDTNIA	UFFPDTNIRA

Quantifier Free Array Uninterpreted Function BitVector FloatingPoint DataType Strings Nonlinear/Linear Integer Real Arithmetic Difference Logic

Quantifier-free			Quantified	
QF_{-}				
LinearInt	Equality+	FPArith	Arith	Equality+ LinearArith
LinearReal	LinearArith			
NonLinearInt	- F 15 .		Equality	Equality+ NonLinearArith
NonLinearReal	Equality+ NonLinearArith		Bitvec	
Equality Bitvec	Equality+ Bitvec	Equality+ Bitvec+Arith	FPArith	Equality+ MachineArith
String			-	

Competition Overview

SMT-COMP Tracks (traditional)

Single Query Track

- Determine satisfiability of one problem
- Solver answers sat/unsat/unknown

Unsat Core Track

- Find small unsatisfiable subset of input.
- Solver answers unsat + list of formulas.

Model Validation Track

- Find a model for a satisfiable problem.
- Solver answers sat + value for each non-logical symbol.

Incremental Track

- Solve many small problems interactively.
- Solver acks commands and answers sat/unsat for each check.

SMT-COMP Tracks (new)

SMT-COMP 2021 has two new experimental tracks (sponsored by AWS).

Parallel Track

- Solve a large problem on a big computer
 - 64 cores, 256 GB of memory
- Solver answers sat/unsat/unknown

Cloud Track

- Solve a large problem on a network of computers
 - 100 machines, 1600 cores, 6400 GB of memory
- Solver answers sat/unsat/unknown

Tracks, Solvers, Divisions, and Benchmarks

Teams: 18 (+2)

Track	Solvers	Divisions	Benchmarks
Single Query	19(-1)	18(-49)	101300/381683
Incremental	7(-2)	15(-11)	22233/43284
Unsat Core	7(+2)	17(-23)	55463/108188
Model Validation	7(=)	$3(+2) + 3 \exp$.	13301/21251
Parallel	3	14 exp.	413/20705
Cloud	5	14 exp.	405/20669

Number in parenthesis shows changes from 2020

Participants

SMT-COMP 2021 participants:

- classic CDCL(T)-based SMT solvers
- mcSAT-based solvers
- automated theorem provers
- finite domain solver
- local search techniques
- wrapper extending the scope of existing solvers

Four new solvers participated:

- iProver (Konstantin Korovin, Andre Duarte, Edvard K Holden)
- mc2 (Simon Cruanes, Guillaume Bury)
- YicesLS (Bohan Li, Shaowei Cai, Xindi Zhang)
- YicesQS (Stéphane Graham-Lengrand)

Solver Presentation

Bitwuzla at the SMT-COMP'21

Aina Niemetz, Mathias Preiner

Tracks/Divisions

Model Validation: QF_BV, QF_UFBV

News

- Code now available at https://github.com/bitwuzla/bitwuzla
- New API for C, Python, and OCaml¹
- Floating-points: Real to FP support (for FPLRA logics)
- Bit-vectors: CaDiCaL version sc2021 as default SAT backend for all logics
- Lots of improvements/refactoring going on behind the scenes

https://bitwuzla.github.io

¹Thanks to Frédéric Recoules for the OCaml bindings

COLIBRI(2021)

- lacktriangle Use dolmen for parsing (presented tomorrow): through a Prolog \leftrightarrow OCaml bridge
- We didn't secured enough time for preparing the competition, so we botched the submission
- CP solvers usually only handle finite domains, the extension to infinite domains for Int is too difficult to maintain so we are reimplementing the solver as Colibri2

cvc5 at the SMT Competition 2021

C. Barrett, H. Barbosa, M. Brain, G. Kremer, M. Mann, A. Mohamed, M. Mohamed, A. Niemetz, A. Nötzli, A. Ozdemir, M. Preiner, A. Reynolds, Y. Sheng, C. Tinelli, Y. Zohar

CVC4 cvc5

- Preview of upcoming release in fall 2021
- Support for all standardized SMT-LIB theories
- User-friendly API, significant refactoring of internals
- Complete rewrite of proof module

New Features/Improvements

- New subsolver for non-linear arithmetic based on cylindrical algebraic coverings using libpoly
- ullet New bit-vector solver, integrating efficient SAT solvers, e.g., CaDiCaL, with CDCL($\mathcal T$)
- Syntax-guided quantifier instantiation
- New decision heuristic with optional prioritization of assertions involved in conflicts

Configurations

CVC5 entered all divisions in all tracks.

- Single query track: Sequential portfolio
- Unsat-core track: Based on new proof module and assumptions in the SAT solver

gg-cvc5

Barrett, Noetzli, Ozdemir, Reynolds, Wilson, Wu

iProver v3.5 (Konstantin Korovin, André Duarte, Edvard K. Holden)

iProver supports all combinations of: quantifiers, uninterpreted functions, data types, linear and non-linear arithmetic.

- Quantified reasoning: model-guided Inst-Gen + superposition + resolution calculi.
 - Saturation algorithm: priority queues, discrimination trees, feature vector indexing.
 - Simplifications: forward/backward: demodulation, light normalisation, subsumption, global subsumption and subsumption resolution, AC ground joinability, AC normalisation.
 - Preprocessing: predicate elimination, splitting, semantic filtering, subtyping and definition elimination.
- Ground reasoning: MiniSAT, Z3
- Clausification and Theory Axioms: Vampire
- Heuristic optimisation and scheduling using machine learning: HOS-ML

iProver is implemented in OCaml. https://www.cs.man.ac.uk/~korovink/iprover

mc² — a mcSAT solver

- Implementation of mcSAT in OCaml (descendant of msat/alt-ergo zero)
- < 7kloc total</p>
- · Theories:
 - Uninterpreted functions
 - LRA (conflict-driven Fourier Motzkin)
 - Boolean formulas via Tseitin encoding
- https://github.com/c-cube/mc2 (Apache license)
- Basic calculus, not much in way of simplifications
 - Naturally good at diamond problems
 - Decent performance on QF_UFLRA (hyp: theory combination is cheap in mcSAT?)
- Currently not incremental

SMTInterpol and SMTInterpol-remus

Jürgen Christ, Leonard Fichtner, Jochen Hoenicke, Moritz Mohr, Tanja Schindler

Interpolating SMT solver

- based on CDCL(T)
- for Arrays, Uninterpreted Functions, Linear Integer and Real Arithmetic
 - plus div and mod with constants, and DataTypes
- supports quantifiers
- produces models, proofs, and unsat cores
- computes sequence and tree interpolants

SMTInterpol at SMT-COMP 2021

- with proof check mode enabled
- experimentally participated in some Nonlinear Arithmetic divisions
- variant SMTInterpol-remus with unsat core enumeration

https://github.com/ultimate-pa/smtinterpol https://ultimate.informatik.uni-freiburg.de/smtinterpol

SMT-RAT 21.05

SMT-RAT 21.05

- SMT-RAT strategy
 - ► SAT solver: minisat adapted for less-lazy SMT solving
 - non-linear arithmetic: subtropical satisfiability, interval constraint propagation, virtual substitution and cylindrical algebraic decomposition
 - ▶ non-linear integer arithmetic: bit-blasting and branch&bound
- SMT-RAT-MCSAT strategy
 - ► MCSAT module based on minisat
 - ► Fourier-Motzkin, interval constraint propagation, virtual substitution, one-cell construction, NLSAT-style model based projections
 - novel variant of the one-cell construction (not published yet)

SMT script with quantifiers

SMT solver without quantifier support

The wrapper that adds quantifier support to your SMT solver!

https://ultimate.informatik.uni-freiburg.de/eliminator/

2021 competition candidate:

ULTIMATEELIMINATOR+MATHSAT-5.6.6

Max Barth, Daniel Dietsch, Leonard Fichtner, Matthias Heizmann, Andreas Podelski

Vampire 4.6

Reger, Suda, Voronkov, Kotelnikov, Kovacs, Riener, Rawson, Gleiss, Rath, Bhayat, Schoisswohl, Hozzova and Hajdu

https://vprover.github.io

Single query since 2016. Trying unsat-core and parallel/cloud. SMT Logics: A, DT, LIA, LRA, NIA, NRA, UF (all with Q) Uses a portfolio of strategies and wraps Z3 for ground reasoning.

General Approach is proof search using the Superposition and Resolution Calculus (also using finite model finding in UF)

Theory Reasoning:

- Theory axioms and Evaluation
- ► AVATAR modulo theories (ground splitting via Z3)
- ► Theory instantiation (using Z3)
- Induction on Datatypes

www.veriT-solver.org

Haniel Barbosa^②, Pascal Fontaine[®], Hans-Jörg Schurr[△]

Department of Computer Science, Universidade Federal de Minas Gerais (UFMG)

△ CNRS, Inria, and the University of Lorraine, Nancy, France

† Université de Liège, Belgium

- Automatically generated hybrid schedule
 - 1. optimal 24 s schedule
 - 2. optimal 1176's schedule for the remaining problems
- ► Integration with Isabelle/HOL
 - Full proof reconstruction ships with Isabelle 2021
 - The proof format is coming of age as Alethe
- Unification-based preprocessing

Yices 2 in SMTCOMP 2021

Yices 2

- o Supports linear and non-linear arithmetic, arrays, UF, bitvectors
- Supports incremental solving and unsat cores
- Includes two types of solvers: classic CDCL(T) + MCSAT
- https://github.com/SRI-CSL/yices2
- https://yices.csl.sri.com

New in 2021

- Quantifier reasoning: model-based quantifier instantiation + E-graph matching (thanks to Aman Goel)
- MCSAT extensions
 - Solving modulo a model
 - Interpolant for MCSAT-supported theories

YicesQS, an extension of Yices2 for quantifiers (SMT-comp 2021)

Stéphane Graham-Lengrand

https://github.com/disteph/yicesQS

YicesQS implements a 2-player game (\forall player vs \exists player) playing on a quantified input formula F. Our generalization of counter-example-guided quantifier instantiation (CEGQI) produces a quantifier-free satisfiable under-approximation of F or a quantifier-free unsatisfiable over-approximation of F.

YicesQS entered logics NRA and BV (first entry of Yices in quantified logics), & generally targets complete theories with procedures for answering 3 types of quantifier-free queries:

- Satisfiability modulo assignment / modulo a model (here)
- (here relying on MCSAT)

Model generalization

(here using CAD projections for NRA, invertibility conditions for BV)

Model interpolation

(here again relying on MCSAT)

YicesQS is written in OCaml, using Yices2 as a library via its OCaml bindings.

https://github.com/SRI-CSL/yices2 https://github.com/SRI-CSL/vices2 ocam1 bindings

YicesLS

Bohan Li, Shaowei Cai, Xindi Zhang

A Local Search SMT solver designed for QF-IDL with Wrapped Solver: Yices-2.6.2

Feature:

breaking through DPLL(T) framework, first local search solvers for SMT on theories with non-Boolean variables

Main components:

a local search framework, novel operators, scoring functions, and the operation selection heuristics

Division: QF-IDL

Track: Single Query & Model Validation https://github.com/DouglasLee001/YicesLS

Non-Competitive Solvers

Submitted by Organisers

- z3-4.8.11
- MathSAT 5.6.6
- Par4 (for Parallel Track)
- Division winners from last year (32 Solvers)

Submitted by Participants

• Fixed solvers (Bitwuzla, COLIBRI, cvc5, iProver, OpenSMT, Vampire)

New in 2021

- model validation track extended
- manually checking and resolving disagreements
- multiple logics per division
- we will create an artifact

Model Validation Track

Solvers print model for each constant/uninterpreted function

```
sat
(model
  (define-fun x15 () Int 5)
  (define-fun x24 () x135 (as @1 x135))
  (define-fun x10 ((?X1 Int)) Int (ite (and (= ?X1 10)) 2 (ite...
```

- model validator based on pySMT
- all models of the competitors were accepted
- validator is still inefficient (> 15 minutes)

Many thanks to Andrea Micheli

Checking Disagreements

- 111285 instances of 381683 have no status
- we checked disagreements between solvers
- 209 non-incremental instances and 65 incremental instances
- only 28 had known sat/unsat status
- tactics to resolve status:
 - similar disagreements on instances with known status
 - confirmed with fixed version of participants
 - analyzed model from solver claiming sat
 - majority vote
 - in rare cases manually analyzed instances
- solvers found unsound: (Bitwuzla, COLIBRI, cvc5, iProver, MathSAT, OpenSMT, Par4, UltimateEliminator+MathSAT, Vampire, Z3str4)

Divisions

Tracks are split into divisions.

- before 2021: Division = SMT-LIB logic
- 2021: 19 Divisions subdivided in 84 logics

This implied more changes:

- solver authors select supported logics
 - ⇒ solvers may run on only a part of a division.
- fewer winners (1–5 winners per division)
- two solvers won a logic but not a division
 - YicesQS won NRA
 - YicesLS won QF_IDL

Statistics

Solver Size

- range from 930 kB to 196 MB (compressed)
- total 436 MB
- unsat core post-processor: 361 MB

Statistics

Solver Size

- range from 930 kB to 196 MB (compressed)
- total 436 MB
- unsat core post-processor: 361 MB

Job statistics

- Total Job Size: ∼ 85 GB
 - 35 GB YicesLS temporary files
 - 29 GB z3 models
- 1371593 pairs (+428000)
- 16.3 CPU years (+6.4), 9.22 computer years on StarExec
- excludes result processors, StarExec overhead, glitches

Scoring

Computing scores:

- Single Query/Parallel/Cloud: number of solved instances
- Incremental: number of solved queries
- Unsat Core: number of top-level assertions removed
- Model Validation: number of solved instances with correct models

Error scores:

- All Tracks: given for sat reply for unsat instance, or vice versa
- Unsat Core: given if returned core is satisfiable.
- Model Validation: given if given model evaluates formula to false

Error scores are draconian.

Score and Ranking

In each track we collect different scores:

- Sequential score (SQ, UC, MV): all time limits apply to cpu time
- Parallel score (all): all time limits apply to wallclock time
- SAT score (SQ): parallel score for satisfiable instances
- UNSAT score (SQ): parallel score for unsatisfiable instances
- 24s (SQ): parallel score with time limit of 24s

Division ranking (for each score)

For each division, one winner is declared

Two competition-wide rankings (for each score)

- Biggest lead: division winner with most score difference to second place
- Largest contribution: improvement each solver provided to a virtual best solver

Single Query

- Bitwuzla: QF_Bitvec, QF_Equality+Bitvec
- Arith, Bitvec, Equality, Equality+LinearArith, Equality+MachineArith, Equality+NonLinearArith, FPArith, QF_Equality,

 CVC5: QF_Equality+LinearArith, QF_Equality+NonLinearArith, QF_FPArith, QF_LinearIntArith, QF_LinearRealArith,
- QF_NonLinearIntArith, QF_NonLinearRealArith, QF_Strings
- iProver: Equality+NonLinearArith
- SMTInterpol: QF_Equality+LinearArith
- UltimateEliminator+MathSAT: Equality+NonLinearArith
- Vampire: Arith, Equality, Equality+NonLinearArith
- Yices2: QF_Bitvec, QF_Equality, QF_LinearIntArith, QF_LinearRealArith, QF_NonLinearIntArith

Single Query

- Bitwuzla: QF_Bitvec, QF_Equality+Bitvec
- Arith, Bitvec, Equality, Equality, HonearArith, Equality, MachineArith, Equality, HonLinearArith, FPArith, QF_Equality, QF
- iProver: Equality+NonLinearArith
- SMTInterpol: QF_Equality+LinearArith
- UltimateEliminator+MathSAT: Equality+NonLinearArith
- Vampire: Arith, Equality, Equality+NonLinearArith
- Yices2: QF_Bitvec, QF_Equality, QF_LinearIntArith, QF_LinearRealArith, QF_NonLinearIntArith

Unsat Core

- Bitwuzla: QF_Bitvec, QF_Equality+Bitvec, QF_FPArith
- CVC5: Arith, Bitvec, Equality, Equality+LinearArith, Equality+MachineArith, Equality+NonLinearArith, FPArith, QF_Equality, QF_Equality+NonLinearArith, QF_LinearIntrArith, QF_NonLinearRealArith
- Yices2: QF_Equality+LinearArith, QF_LinearRealArith

Incremental

- CVC5: Arith, Bitvec, Equality, Equality+LinearArith, Equality+NonLinearArith, FPArith, QF_Equality, QF_Equality+LinearArith, QF_FPArith
- OpenSMT: QF_LinearRealArith
- SMTInterpol: QF_Equality+NonLinearArith,QF_NonLinearIntArith
- STP: QF_Bitvec
- Yices2: QF_Equality+Bitvec,QF_LinearIntArith

Incremental

- CVC5: Arith, Bitvec, Equality, Equality+LinearArith, Equality+NonLinearArith, FPArith, QF_Equality, QF_Equality+LinearArith, QF_FPArith
- OpenSMT: QF_LinearRealArith
- SMTInterpol: QF_Equality+NonLinearArith,QF_NonLinearIntArith
- STP: QF_Bitvec
- Yices2: QF_Equality+Bitvec,QF_LinearIntArith

Model Validation (competitive only)

- Bitwuzla: QF_Bitvec
- cvc5: QF_LinearIntArith
- Yices2: QF_LinearRealArith

	1st Place	2nd Place	3rd Place		
Single Query					
seq	Vampire (Eq+NA)	cvc5 (Eq+LA)	Yices2 (QF_NIA)		
par	iProver (Eq+NA)	Vampire (Eq)	cvc5 (Eq+LA)		
sat	cvc5 (Eq+LA)	$UltimateElim_{(Eq+NA)}$	Vampire (Eq)		
unsat	cvc5 (Eq+NA)	Yices2 (QF_NIA)	Vampire (Eq)		
24	Vampire (Eq+NA)	cvc5 (Eq+LA)	Yices2 (QF_LIA)		

	1st Place	2nd Place	3rd Place		
Single Query					
seq	Vampire (Eq+NA)	cvc5 (Eq+LA)	Yices2 (QF_NIA)		
par	iProver (Eq+NA)	Vampire (Eq)	cvc5 (Eq+LA)		
sat	cvc5 (Eq+LA)	$UltimateElim_{(Eq+NA)}$	Vampire (Eq)		
unsat	cvc5 (Eq+NA)	Yices2 (QF_NIA)	Vampire (Eq)		
24	Vampire (Eq+NA)	cvc5 (Eq+LA)	Yices2 (QF_LIA)		
Incremental					
par	cvc5 (Eq)	$Yices 2 \qquad {\scriptstyle (QF_Eq+LA)}$	$SMTInterpol_{(QF_Eq+NA)}$		

	1st Place	2nd Place	3rd Place
Single Query			
seq	Vampire (Eq+NA)	cvc5 (Eq+LA)	Yices2 (QF_NIA)
par	iProver (Eq+NA)	Vampire (Eq)	cvc5 (Eq+LA)
sat	cvc5 (Eq+LA)	$UltimateElim_{(Eq+NA)}$	Vampire (Eq)
unsat	cvc5 (Eq+NA)	Yices2 (QF_NIA)	Vampire (Eq)
24	Vampire (Eq+NA)	cvc5 (Eq+LA)	Yices2 (QF_LIA)
Incremental			
par	cvc5 (Eq)	$Yices 2 \qquad {}_{(QF_Eq+LA)}$	$SMTInterpol_{(QF_Eq+NA)}$
Unsat Core			
seq	cvc5 (Eq+LA)	$Yices 2 \qquad {}_{(QF_Eq+LA)}$	
par	cvc5 (Eq+LA)	$Yices 2 \qquad {}_{(QF_Eq+LA)}$	

	1st Place	2nd Place	3rd Place	
Single Query				
seq	Vampire (Eq+N.	A) CVC5 (Eq+LA)	Yices2 (QF_NIA)	
par	iProver (Eq+N.	A) Vampire (Eq)	cvc5 (Eq+LA)	
sat	cvc5 (Eq+LA	$UltimateElim_{(Eq+NA)}$	Vampire (Eq)	
unsat	cvc5 (Eq+N	A) Yices2 (QF_NIA)	Vampire (Eq)	
24	Vampire (Eq+N.	A) CVC5 (Eq+LA)	Yices2 (QF_LIA)	
Incremental				
par	cvc5 (Eq)	$Yices 2 \qquad {}_{(QF_Eq+LA)}$	$SMTInterpol_{(QF_Eq+NA)}$	
Unsat Core				
seq	cvc5 (Eq+LA	A) Yices2 (QF_Eq+LA)		
par	cvc5 (Eq+LA	A) Yices2 (QF_Eq+LA)		
Model Validation				
seq	cvc5 (QF_LI/	A) Bitwuzla (QF_BV)	Yices2 (QF_LRA)	
par	cvc5 (QF_LI	A) Bitwuzla (QF_BV)	Yices2 (QF_LRA)	

	1st Place		2nd Place		3rd Place	
Single Query						
seq	cvc5	(Eq + MA)	Vampire	(Eq + NA)	Bitwuzla (QF_Eq+BV)	
par	cvc5	(Eq + MA)	iProver	(Eq + NA)	$Vampire_{(Eq)}$	
sat	cvc5	(Eq + MA)	UltimateElir	$\mathbf{n}_{(Eq+NA)}$	$Vampire_{(Eq)}$	
unsat	cvc5	(Eq + MA)	Yices2	(QF_NIA)	Vampire (Arith)	
24	cvc5	(Eq + MA)	Yices2	(QF_LIA)	Vampire (Eq+NA)	

00						
1st Place		2nd Place		3rd Place		
cvc5	(Eq + MA)	Vampire	(Eq + NA)	Bitwuzla (QF_Eq+BV)		
cvc5	(Eq + MA)	iProver	(Eq + NA)	Vampire (Eq)		
cvc5	(Eq + MA)	UltimateElir	$\mathbf{n}_{(Eq+NA)}$	Vampire (Eq)		
cvc5	(Eq+MA)	Yices2	(QF_NIA)	Vampire (Arith)		
cvc5	(Eq+MA)	Yices2	(QF_LIA)	Vampire (Eq+NA)		
cvc5	(BV)	SMTInterpo	l (QF_NIA)	Yices2 (QF_LIA)		
	cvc5 cvc5 cvc5 cvc5 cvc5	CVC5 (Eq+MA) CVC5 (Eq+MA) CVC5 (Eq+MA) CVC5 (Eq+MA) CVC5 (Eq+MA)	1st Place 2nd Place cvc5 (Eq+MA) Vampire cvc5 (Eq+MA) iProver cvc5 (Eq+MA) UltimateElin cvc5 (Eq+MA) Yices2 cvc5 (Eq+MA) Yices2	1st Place 2nd Place cvc5 (Eq+MA) Vampire (Eq+NA) cvc5 (Eq+MA) iProver (Eq+NA) cvc5 (Eq+MA) UltimateElim(Eq+NA) cvc5 (Eq+MA) Yices2 (QF-NIA) cvc5 (Eq+MA) Yices2 (QF-LIA)		

	1st Place		2nd Place		3rd Place
Single Query					
seq	cvc5	(Eq + MA)	Vampire	(Eq + NA)	Bitwuzla (QF_Eq+BV)
par	cvc5	(Eq + MA)	iProver	(Eq + NA)	Vampire (Eq)
sat	cvc5	(Eq + MA)	UltimateElii	$\mathbf{m}_{(Eq+NA)}$	Vampire (Eq)
unsat	cvc5	(Eq + MA)	Yices2	(QF_NIA)	Vampire (Arith)
24	cvc5	(Eq + MA)	Yices2	(QF_LIA)	Vampire $(Eq+NA)$
Incremental					
par	cvc5	(BV)	SMTInterpo	ol _(QF_NIA)	Yices2 (QF_LIA)
Unsat Core					
seq	cvc5	(QF_NRA)	Yices2	$(QF_{-}Eq + LA)$	Bitwuzla (QF_Eq+BV)
par	cvc5	(QF_NRA)	Yices2	(QF_Eq+LA)	Bitwuzla $(QFEq+BV)$

	1st Place 2nd Place		9	3rd Place	
Single Query					
seq	cvc5	(Eq + MA)	Vampire	(Eq + NA)	Bitwuzla (QF_Eq+BV)
par	cvc5	(Eq + MA)	iProver	(Eq + NA)	Vampire (Eq)
sat	cvc5	(Eq + MA)	UltimateElii	$\mathbf{m}_{(Eq+NA)}$	Vampire (Eq)
unsat	cvc5	(Eq + MA)	Yices2	(QF_NIA)	Vampire (Arith)
24	cvc5	(Eq + MA)	Yices2	(QF_LIA)	Vampire $(Eq+NA)$
Incremental					
par	cvc5	(BV)	SMTInterpo	ol _(QF_NIA)	Yices2 (QF_LIA)
Unsat Core					
seq	cvc5	(QF_NRA)	Yices2	(QF_Eq+LA)	Bitwuzla (QF_Eq+BV)
par	cvc5	(QF_NRA)	Yices2	(QFEq+LA)	Bitwuzla (QF_Eq+BV)
Model Validation					
seq	cvc5	(QF_LIA)	Yices2	(QF_LRA)	Bitwuzla (QF_BV)
par	cvc5	(QF_LIA)	Yices2	(QF_LRA)	Bitwuzla (QF_BV)

Plans for SMT-COMP 2022

- Extend Model Validator to new logics?
- Run Model Validator on unknown benchmarks?
- New Proof Validation Track

Proof Validation Track

We plan to introduce a proof validation track

- define solver independent proof format
 - probably resolution based
 - atoms are SMT-LIB formulas
 - fine-grain proofs
- implement proof validator
- run solvers on unsat and unknown benchmarks

Contact us, if you're interested in SMT-LIB proofs.

SMT-COMP organizing committee

Three people organize the SMT-COMP. In 2021:

- Haniel Barbosa
- Jochen Hoenicke
- Antti Hyvärinen

Antti's three-year term is ending now.

We need a successor for next year's competition. Contact us if you would like to volunteer!

Acknowledgements

- Andrea Micheli: Model Validator
- Clark Barrett, Pascal Fontaine, Aina Niemetz, Mathias Preiner, Hans-Jörg Schurr: SMT-LIB benchmarks
- Aaron Stump: StarExec support
- Mike Whalen, Jonathan Eidelman: Cloud/Parallel Track

Benchmark contributors

In 2021 new benchmarks were contributed by:

- Andrew V. Jones
- Nuno Lopes
- Pierre Bouvier
- Alexey Vishnyakov, Andrey Fedotov, Daniil Kuts, Alexander Novikov, Darya Parygina, Eli Kobrin, Vlada Logunova, Pavel Belecky, Shamil Kurmangaleev
- Hernán Ponce de León
- Anastasiia Izycheva, Eva Darulova
- Da Shen, Yuliya Lierler
- Maria A Schett, Julian Nagele
- Mathias Preiner, Aina Niemetz
- Clark Barrett
- Johannes Schoisswohl
- Jackson Melchert. Nestan Tsiskaridze
- Wei-Cheng Wu
- Matteo Favaro, Peter Garba
- Tjark Weber

Thanks

to all participants

Thanks

to all participants

and to you for listening