CURS #4

CONTINUTUL CURSULUI #4:

- II. Metode numerice de rezolvare a sistemelor liniare.
 - II.1. Metode directe de rezolvare a sistemelor de ecuații liniare.
 - II.1.5. Sisteme liniare inferior triunghiulare.
- II.1.6. Inversarea unei matrice aplicand metodele Gauss cu pivotare. Determinantul unei matrice
- II.1.7. Calculul rangului unei matrice cu aiutorul metodei Gauss cu pivotare partială.

II.1.5. Sisteme liniare inferior triunghiulare

Definiția (II.2.)

- a) Matricea $A=(a_{ij})_{i,i=\overline{1,n}}\in\mathcal{M}_n(\mathbb{R})$ se numește inferior triunghiulară dacă și numai dacă elementele sub diagonala principală sunt nule, i.e. $a_{ii} = 0, \forall i > j$;
- b) Un sistem liniar a cărui matrice asociată este inferior triunghiulară se numeste sistem inferior triunghiular.

Fie sistemul liniar Ax = b, unde $A \in \mathcal{M}_n(\mathbb{R})$ este inferior triunghiulară cu $a_{kk} \neq 0, k = \overline{1, n}$ si $b \in \mathbb{R}^n$. Sistemul inferior triunghiular Ax = b se scrie sub forma

$$\begin{cases} a_{11} \times_1 &= b_1 & (E_1) \\ a_{21} \times_1 + a_{22} \times_2 &= b_2 & (E_2) \\ & & & & \\ \vdots & & & & \\ a_{k1} \times_1 + a_{k2} \times_2 + \dots + a_{kk} \times_k &= b_k & (E_k) \\ & & & & \\ \vdots & & & & \\ a_{n1} \times_1 + a_{n2} \times_2 + \dots + a_{nk} \times_k + \dots + a_{nn} \times_n = b_n & (E_n) \end{cases}$$

$$a_{n1} x_1 + a_{n2} x_2 + \ldots + a_{nk} x_k + \ldots + a_{nn} x_n = b_n$$
 (E_n)

Din (E_1) rezultă

$$x_1 = \frac{b_1}{a_{11}}. (2)$$

Fie ecuația (E_k) : $a_{kk}x_k + \sum_{i=1}^{k-1} a_{kj}x_j = b_k$. Dacă din primele k-1 ecuații

sunt calculate componentele $x_i, j = \overline{1, k-1}$, atunci din (E_k) rezultă

$$x_k = \frac{1}{a_{kk}} \left(b_k - \sum_{j=1}^{k-1} a_{kj} x_j \right)$$
 (3)

ALGORITM (Metoda substituției ascendente)

Date de intrare: $A = (a_{ij})_{i,i-\overline{1},n}$; $b = (b_i)_{i=\overline{1},n}$; Date de iesire: $x = (x_i)_{i=1.0}^{1.0}$

1.
$$x_1 = \frac{1}{a_{11}} b_1$$
;

$$x_k = \frac{1}{a_{kk}} \left(b_k - \sum_{j=1}^{k-1} a_{kj} x_j \right);$$

endfor

Definim în continuare conform Algoritmului (Metoda substituției ascendente) procedura SubsAsc având sintaxa x = SubsAsc(A, b). procedură care returnează solutia x a sistemului Ax = b.

II.1.6. Inversarea unei matrice aplicând metodele Gauss cu pivotare. Determinantul unei matrice.

Fie $A=(a_{ij})_{i,i=\overline{1,n}}\in\mathcal{M}_n(\mathbb{R})$ inversabilă și A^{-1} invesa matricei. Inversa A^{−1} verifică relatia

$$AA^{-1} = A^{-1}A = I_n.$$

Fie $x^{(k)} \in \mathbb{R}^n$, $k = \overline{1, n}$ coloana k a matricei A^{-1} , i.e.,

$$A^{-1} = cols(x^{(1)},...,x^{(k)},...,x^{(n)}).$$

Deasemenea, fie $e^{(k)} = (0, ..., 1, ..., 0)^T$, cu 1 pe poziția k, coloana k din matricea In. Atunci

$$AA^{-1} = I_n \iff Ax^{(k)} = e^{(k)}, k = \overline{1, n}$$
 (4)

Am obtinut n sisteme liniare în care vectorii necunoscutelor sunt pe rând coloanele inversei și vor fi calculați conform unei metode de pivotare, fie de exemplu, metoda Gauss cu pivotare totală.

II.1.7. Calculul rangului unei matrice cu ajutorul metodei Gauss cu pivotare partială.

Definitia (II.3.)

Fie $A \in \mathcal{M}_{m,n}(\mathbb{R})$ o matrice nenulă. Spunem că matricea A are rangul r și notăm rangA = r. dacă A are un minor nenul de ordin r, iar toți minorii lui A de ordin mai mare decăt r sunt nuli

Fiind dat sistemul

$$Ax = b$$
.

- cu $A \in \mathcal{M}_n(\mathbb{R})$ și $b, x \in \mathbb{R}^n$ se disting următoarele cazuri:
- Sisemul Ax = b este compatibil determinat, i.e. admite o solutie unică dacă și numai dacă $rangA = rang\bar{A} = n$:
 - Sistemul Ax = b este compatibil nedeterminat, i.e. admite o infinitate de solutii dacă și numai dacă $rangA = rang \bar{A} < n$:

March 20, 2023

 Sistemul Ax = b este incompatibil, i.e. nu admite solutii, dacă si numai dacă $rangA \neq rang\bar{A}$. Curs #4

Sistemele (4) se pot rezolva si simultan dacă se consideră drept matrice extinsă, matricea formată din matricea A la care se adaugă cele n coloane ale matricei I_n .

Fie $a_{11}^{(1)}, a_{22}^{(2)}, ..., a_{n-1,n-1}^{(n-1)}, a_{nn}^{(n-1)}$ pivoții la fiecare etapă din algoritmii Gauss, atunci $|A| = (-1)^s a_{11}^{(1)} a_{11}^{(2)} a_{n-1}^{(n-1)} a_{n}^{(n-1)}$

$$A| = (-1)^s a_{11}^{(1)} a_{11}^{(2)} a_{n-1,n-1}^{(n-1)} a_{nn}^{(n-1)}$$
 (5)

unde s este numărul de interschimbări de linii si coloane, în funcție de metodă. Matricea A se modifică pe parcursul iteratiilor, din acest motiv s-a folosit notatia cu indici sus pentru a face distinctie între elementele matricei A la fiecare pas.

ALGORITM (Rangul unei matrice folosind metoda de eliminare Gauss cu pivotare partială)

 $A \in \mathcal{M}_{m,n}(\mathbb{R})$, tol; Date de intrare:

Date de iesire: rang

- 1. Se inițializează linia, coloana și rangul: h = 1, k = 1, rang = 0:
- 2. while $h \le m$ and $k \le n$ do
 - Se caută pivotul ant:

$$|a_{pk}| = \max_{i=\overline{h},\overline{m}} |a_{jk}|;$$

- if (maximul este mai mic egal decat to/) then Se trece la următoarea coloană: k = k + 1:
 - Se trece la următorul pas al buclei while;

Curs #4

endif

March 20, 2023

endif
• Se elimină elementele sub pivot:
for
$$l = h + 1 : m$$
 $m_{lk} = \frac{2a_k}{2bk};$
 $L_l \leftarrow L_l - m_{lk}L_h$
endfor
• Se avansează pe linie
 $h = h + 1$:

· Se creste rangul rang = rang + 1;

endwhile

• if $p \neq h$ then

 $L_p \leftrightarrow L_h$ (Se intershimbă liniile);

• Se avansează pe linie
$$h = h + 1;$$
 • Se avansează pe coloană
$$k = k + 1;$$

Curs #4

March 20, 2023

rangului.
$$A \sim \begin{pmatrix} 4 & -1 & 5 & 0 \\ 0 & \frac{1}{4} & -\frac{17}{4} & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

de ordinul 4, |A|, este zero. Concludem că rang = 3.

Răspuns: Indicatie: Se transformă matricea A conform algoritmului de mai

sus și se calculează rangul fie numărând liniile nenule, fie conform definiției

Am găsit un minor $\begin{bmatrix} 1 & 1 & 0 \\ 0 & \frac{1}{d} & 0 \end{bmatrix}$, de ordinul 3 nenul, iar unicul minor

March 20, 2023

Să se afle rangul matricei A folosind metoda GPP

Exemplul # 1