16F - NET2000 - Intermediate Networking

Case Study

I. Functional Requirements (FR)

By: Owen Yuen & Sinclair Dacombe
Lab Section: A2

Carleton University / Algonquin College November 25th, 2016

1. Addressing requirements

1.1 Addressing for networks

Addressing for OTT_A

- 300 users with growth of 25% for a total of 375 users
 - o IPv4 block 192.168.0.0 /23
 - o IPv6 block 2001:FACE:BE50:1920::1/64

Addressing for OTT B

- 120 users with growth of 25% for a total of 150 users
 - o IPv4 block 192.168.2.0 /24
 - o IPv6 block 2001:FACE:BE50:1922::1/64

1.2 Addressing for VLANs

- VLAN 5 (DMZ) requires 10 users with growth of 25% for a total of 13 users
 - DLS_A IPv4 address and block: 150.50.5.251 /28
 - DLS B IPv4 address and block: 150.50.5.252 /28
 - ALS_1 IPv4 address and block: 150.50.5.253 /28
 - O DLS_A IPv6 address and block: 2001:FACE:BE50:5::A1 /64
 - DLS_B IPv6 address and block: 2001:FACE:BE50:5::B1 /64
 - o ALS_1 IPv6 address and block: 2001:FACE:BE50:5::C1 /64
- VLAN 10 (ADMIN) requires 20 users with growth of 25% for a total of 25 users
 - DLS A IPv4 address and block: 150.50.10.251 /27
 - DLS_B IPv4 address and block: 150.50.10.252 /27
 - ALS_1 IPv4 address and block: 150.50.10.253 /27
 - O DLS A IPv6 address and block: 2001:FACE:BE50:10::A1/64
 - O DLS B IPv6 address and block: 2001:FACE:BE50:10::B1 /64
 - ALS_1 IPv6 address and block: 2001:FACE:BE50:10::C1 /64
- VLAN 20 (SALES) requires 80 users with growth of 25% for a total of 100 users
 - DLS_A IPv4 address and block: 150.50.20.251 /25
 - DLS_B IPv4 address and block: 150.50.20.252 /25
 - ALS 1 IPv4 address and block: 150.50.20.253 /25
 - DLS A IPv6 address and block: 2001:FACE:BE50:20::A1 /64
 - O DLS B IPv6 address and block: 2001:FACE:BE50:20::B1 /64
 - o ALS_1 IPv6 address and block: 2001:FACE:BE50:20::C1 /64
- VLAN 30 (ACCT) requires 15 users with growth of 25% for a total of 19 users

- o DLS A IPv4 address and block: 150.50.30.251/27
- DLS B IPv4 address and block: 150.50.30.252 /27
- ALS_1 IPv4 address and block: 150.50.30.253 /27
- O DLS A IPv6 address and block: 2001:FACE:BE50:30::A1 /64
- O DLS_B IPv6 address and block: 2001:FACE:BE50:30::B1 /64
- ALS_1 IPv6 address and block: 2001:FACE:BE50:30::C1 /64

1.3 Addressing for point-to-point links

- Between ISP and OTT A
 - ISP S0/0/0
 - IPv4 address and block: 205.5.5.254 /24
 - IPv6 address and block: 2001:FACE:BECA:205::254/64
 - OTT_A S0/0/0
 - IPv4 address and block: 205.5.5.50 /24
 - IPv6 address and block: 2001:FACE:BECA:205::50/64
- Between OTT_A and DLS_A
 - OTT_A G0/0
 - IPv4 address and block: 150.50.2.2 /30
 - IPv6 address and block: 2001:FACE:BE50:2::2/64
 - DLS_A F0/1
 - IPv4 address and block: 150.50.2.1 /30
 - IPv6 address and block: 2001:FACE:BE50:2::1/64
- Between DLS_A, DLS_B, and ALS_1
 - o DLS_A PO10
 - Bundle interfaces F0/3-6
 - o DLS_B PO10
 - Bundle interfaces F0/3-6
 - DLS_A PO1
 - Bundle interfaces F0/7-10
 - o ALS_1 PO1
 - Bundle interfaces F0/7-10
 - o DLS_B PO2

- Bundle interfaces F0/11-14
- o ALS_1 PO2
 - Bundle interfaces F0/11-14
- Between DLS_B and OTT_B
 - o DLS B F0/1
 - IPv4 address and block: 150.50.7.1 /30
 - IPv6 address and block: 2001:FACE:BE50:7::1/64
 - OTT B G0/0
 - IPv4 address and block: 150.50.7.2 /30
 - IPv6 address and block: 2001:FACE:BE50:7::2/64

1.4 Addressing for loopbacks and end-device links

- For ISP
 - o Loopback0
 - IPv4 address and block: 2.2.2.2/32
 - IPv6 address and block: 2001:FACE:BECA:2::2/128
- For DLS_A
 - o Loopback0
 - IPv4 address and block: 22.2.2.2/32
 - IPv6 address and block: 2001:FACE:BECA:22::2/ 128
 - F0/2 to INTRA_WEB SERVER (in VLAN 5)
- For DLS_B
 - o Loopback0
 - IPv4 address and block: 11.1.1.1/32
 - IPv6 address and block: 2001:FACE:BECA:11::1/128
- For OTT_B
 - Loopback0
 - IPv4 address and block: 1.1.1.1/32
 - IPv6 address and block: 2001:FACE:BECA:1::1/128

2. Routing

2.1 OSPFv3 in area 0

- OSPFv3 for IPv6 is used to route dynamically between OTT_A. OTT_B, DLS A and DLS B in area 0
 - Routing updates must be disabled from being sent across unnecessary interfaces

- Routes must be summarized in order to reduce routing table sizes
- Hello timers modified to ensure fast network convergence, bandwidth modified for correct metric calculation
- Implement MD5 on all interfaces in area 0
- Place DR in appropriate place

2.2 OSPFv3 in area 10

- OSPFv3 for IPv6 is used to route dynamically between DLS A, DLS B, ALS 1 and the Intra Web Server in area 10
 - o Routing updates must be disabled from being sent across unnecessary interfaces
 - Routes must be summarized in order to reduce routing table sizes
 - Hello timers modified to ensure fast network convergence, bandwidth modified for correct metric calculation
 - o Implement MD5 on all interfaces in area 10
 - Place DR in appropriate place

2.3 EIGRP for IPv4

- EIGRP for IPv4 is used to route dynamically through all internal LANs
 - Routing updates must be disabled from being sent across unnecessary interfaces
 - Routes must be summarized in order to reduce routing table sizes
 - Hello timers modified to ensure fast network convergence, bandwidth modified for correct metric calculation
 - Implement MD5 on all EIGRP interfaces

2.4 Static and Default Routes

- Entire system must be able to access the internet, verify reachability by pinging loopback in ISP
 - Static routes needed to ISP
 - Default route needed back into internal network
 - Routes redistributed from OTT_A to rest of network.
- F0/1 on DLS A and DLS B are to be routed ports

2.5 DHCP

- Configured on both layer 3 switches, DLS A and DLS B
- First 10% of all ip addresses in LAN reserved for DHCP usage
 - o Includes 150.50.0.0 and 192.168.0.00 ranges
- Addresses to be split evenly between DLS A and DLS B
 - First half of addresses provided by DLS A and last half provided by DLS B
- DLS B to be DHCP server for OTTAWA B

- This includes addresses in 192.168.0.0 range
- DHCP security measures implemented
 - o DHCP snooping enabled
 - Mac address verification
- Prevent against IP address spoofing
 - Using ACLs, permitting IPv4 addresses 150.50.2.0-150.50.99.255 and 192.168.0.0-192.168.1.255
 - o For IPv6 permit 2001:FACE:BE::/40

2.6 FHRP

- Configure redundant gateway for every VLAN in IPv4
 - DLS_A will be configured as standby with priority 110
 - o DLS_B will be configured as standby with priority 100
 - Virtual gateway for...
 - VLAN 5: 150.50.5.200
 - VLAN 10: 150.50.10.200
 - VLAN 20: 150.50.20.200
 - VLAN 30: 150.50.30.200
 - VLAN 99: 150.50.99.200
 - Configure standby preempt on DLS_A and DLS_B
 - o Configure standby track on DLS_A and DLS_B's PO10 interface

3. Network Switching

3.1 Etherchannels

- DLS A and DLS B connected to each other via Etherchannel Po10 using native vlan 666
- DLS A and ALS 1 connected to each other via Etherchannel Po1 using native vlan 666
- DLS B and ALS 1 connected to each other via Etherchannel Po2 using native vlan 666
- All switches connected together by Etherchannel will be trunking on vlan 666 with only vlans 5, 10, 20, 30 and 99 allowed on trunk

3.2 Configuring Switchports

- DLS_A's F0/2 to INTRA_WEB SERVER will be a switchport with access to vlan 5 (DMZ)
- Unused ports shutdown and accessing vlan 999 NUSE
 - o On DLS_A: F0/11-24, G0/1-2

- o On DLS_B: F0/2, F0/7-10, F0/15-24, G0/1-2
- o On ALS_1: F0/3-6, F0/15-24, G0/1-2

3.3 Configuring STP Security

- Configure spanning tree for all VLANs in all switches
 - Configure BPDU guard and portfast on interfaces connecting to end devices
 - \blacksquare F0/2 on DLS_A

3.4 Configuring Default Gateways for ALS 1's VLANs

- VLANs need to send traffic in the most balanced manner possible. Use Virtual Gateways for load balancing
 - Every VLAN in ALS_1 will have their own respective virtual gateways configured in HSRP