

<u>Course</u> > <u>Unit 3:</u> ... > <u>5 Solvi</u>... > 7. Fund...

7. Fundamental matrix Introducing the fundamental matrix for 2 by 2 systems

(Caption will be displayed when you start playing the video.)

Video

Download video file

Transcripts

Download SubRip (.srt) file

Download Text (.txt) file

Fundamental matrix for n by n systems

We build fundamental matrices for $n \times n$ systems in the same way that we build fundamental matrices for 2×2 systems.

We will now write the solutions to an $n \times n$ system in a more compact form using what is known as the fundamental matrix.

Consider an $n \times n$ homogeneous linear constant coefficient system

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$$
.

The set of solutions is an n-dimensional vector space. Let $\mathbf{x}_1(t), \ldots, \mathbf{x}_n(t)$ be a basis of solutions, that is, $\mathbf{x}_1(t), \ldots, \mathbf{x}_n(t)$ are linearly independent. Write $\mathbf{x}_1, \ldots, \mathbf{x}_n$ as column vectors side-by-side to form an $n \times n$ matrix

$$\mathbf{X}(t) := \left(egin{array}{cccc} \mid & & \mid & \mid \ \mathbf{x}_1(t) & \cdots & \mathbf{x}_n(t) \ \mid & & \mid \end{array}
ight).$$

Any such $\mathbf{X}(t)$ is called a **fundamental matrix** for $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$. (This is a matrix-valued **function**, since each \mathbf{x}_i is a vector-valued function of t.)

Example 7.1 The matrix
$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}$$
 has eigenvalues and eigenvectors

$$\lambda_2\,=\,3\,\,\,\,\,\,\,\,\,\,\,\,{f v}_2\,=\,egin{pmatrix}1\1\end{pmatrix}$$

Hence, the functions

$$e^{2t} \left(egin{array}{c} 2 \ 1 \end{array}
ight) = \left(egin{array}{c} 2e^{2t} \ e^{2t} \end{array}
ight) \quad ext{and} \quad e^{3t} \left(egin{array}{c} 1 \ 1 \end{array}
ight) = \left(egin{array}{c} e^{3t} \ e^{3t} \end{array}
ight)$$

are a basis of solutions. Therefore, one fundamental matrix of the system is

$$\mathbf{X}(t) = egin{pmatrix} 2e^{2t} & e^{3t} \ e^{2t} & e^{3t} \end{pmatrix}.$$

Criteria of a fundamental matrix

Theorem 7.2 A matrix-valued function $\mathbf{X}(t)$ is a fundamental matrix for $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$ if and only if

- $\dot{\mathbf{X}} = \mathbf{AX}$ and
- the matrix $\mathbf{X}(0)$ is nonsingular, namely, $\det(\mathbf{X}(0)) \neq 0$.

The first property above is equivalent to saying that each column of $\mathbf{X}(t)$ is a solution. This is because differentiation on the left-hand side of $\mathbf{\dot{X}} = \mathbf{AX}$ and the matrix multiplication on the right hand side can be done column-by-column.

The second property $\det \mathbf{X}(0) \neq 0$ says that the column vectors $\mathbf{x}_1(0), \ldots, \mathbf{x}_n(0)$ are linearly independent. Remarkably, once $\det \mathbf{X}(0) \neq 0$ we also have $\det \mathbf{X}(t) \neq 0$ for all t. In the example, $\det(\mathbf{X}(t)) = e^{5t} \neq 0$ for all t.

Proof using the Wronskian

Let $\mathbf{x}_1(t), \ldots, \mathbf{x}_n(t)$ be solutions to the system $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$, and define the matrix

$$\mathbf{X}(t) = egin{pmatrix} \mid & & \mid & & \mid \ \mathbf{x}_1(t) & \cdots & \mathbf{x}_n(t) \ \mid & & \mid \end{pmatrix}.$$

The following theorem implies that if $\det \mathbf{X}(0) \neq 0$, then the columns of $\mathbf{X}(t)$ are linearly independent, implying $\mathbf{X}(t)$ is a fundamental matrix.

Theorem 7.3 The set of vector functions $\mathbf{x}_1(t),\ldots,\mathbf{x}_n(t)$ solving the system above are linearly independent if and only if $\det(\mathbf{X}(t)) \neq 0$ for all t. The determinant $\det(\mathbf{X}(t))$ is called the **Wronskian**.

Proof:

(\Leftarrow) First, we prove the backwards direction by proving the contrapositive. If $\mathbf{x}_1(t),\ldots,\mathbf{x}_n(t)$ are linearly dependent, then there are constants c_1,c_2,\ldots,c_n , which are not all zeroes, such that $c_1\mathbf{x}_1(t)+c_2\mathbf{x}_2(t)+\ldots+c_n\mathbf{x}_n(t)=0$ for all t. Hence, $\det\left(\mathbf{X}(t)\right)=0$ for all t.

(\Rightarrow) Now we prove the forward direction. Suppose that $\mathbf{x}_1(t),\ldots,\mathbf{x}_n(t)$ are linearly independent, but suppose that there is a point t_0 where $\det\left(\mathbf{X}(t_0)\right)=0$. This means there are constants c_1,c_2,\ldots,c_n , not all zeroes, such that $c_1\mathbf{x}_1(t_0)+c_2\mathbf{x}_2(t_0)+\ldots+c_n\mathbf{x}_n(t_0)=0$. But this implies, for example, that both $c_1\mathbf{x}_1(t)$ and $-(c_2\mathbf{x}_2(t)+\ldots+c_n\mathbf{x}_n(t))$ satisfy the same initial conditions. By the existence and uniqueness theorem, these must be equal, implying $c_1\mathbf{x}_1(t)+c_2\mathbf{x}_2(t)+\ldots+c_n\mathbf{x}_n(t)=0$.

<u>Hide</u>

7. Fundamental matrix

Hide Discussion

Topic: Unit 3: Solving systems of first order ODEs using matrix methods / 7. Fundamental matrix

Add a Post

Learn About Verified Certificates

© All Rights Reserved