Project 2: Krylov Space Methods

1. Programming:

We compare the different Krylov space methods.

- a) Implement the steepest descent method (Algorithm 7.1), CG (Algorithm 8.1) and GMRES (Algorithm 10.1).
- b) Compare the convergence rates for the 2D Poisson model problem by plotting the residual in the 2-norm over number of iterations. Which method performs best? For moderate N, we can compute the exact solution x_* via $x_* = A \setminus b$. Compare the true error in the energy norm for CG and GMRES for a fixed number of iterations. Which method is better in this metric? Why?
- c) Matlab provides efficient implementations of the CG and GMRES method (see *help pcg* and *help gmres*). Compare the run times of your implementations with the run-times of the Matlab functions.
- d) We look at the condition number / speed of convergence for the 1D Poisson model problem.
 - What do you expect for the condition number of A? Derive a bound of the form $\kappa(A) \leq Cn^{\alpha}$ for some parameter $\alpha \in \mathbb{R}$ and constant C > 0 independent of n. (Hint: For small x, one can approximate $\cos(x) \approx 1 + \frac{x^2}{2}$)
 - Apply the CG method to this matrix with the right-hand side $b := (1, ..., 1)^T$. How fast does the method converge? Does it match the prediction of Theorem 8.2?
 - Plot the convergence of the relative residuals $||b Ax_m||/||b||$ for different choices of n, e.g. $n = 2^{10}, 2^{11}, 2^{12}, 2^{13}$. How does the number of iterations needed to reach a certain accuracy change (for example to get a relative error of 10%) as you increase n?
- e) For n = 1000, we look at the $n \times n$ matrix given by

$$A := \begin{pmatrix} 1 & 1 & & & \\ & 1 & 1 & & \\ & & \ddots & \ddots & \\ & & & 1 & 1 \\ & & & & 1 \end{pmatrix}, \qquad b := \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}. \tag{1}$$

- Apply the GMRES method to solve Ax = b and plot the convergence of the residual. What do you observe?
- How does the computational cost for reaching good accuracy (say $||Ax-b||_2 < 10^{-5}$) compare to a direct solver?

2. Theory:

- a) Let $A \in \mathbb{R}^{n \times n}$ be SPD, set $\phi(x) := \frac{1}{2}(Ax, x) (b, x)$, and let x_* be the exact solution of $Ax_* = b$.
 - Show that

$$\phi(x) - \phi(x_*) = \frac{1}{2} ||x - x_*||_A^2.$$

• Fix $x_0 \in \mathbb{R}^n$ and let (x_0, x_1, \dots, x_k) be the sequence of CG approximations. Let $\widehat{x}_k \in \mathbb{R}^n$ be the result of a steepest-descent iteration step with search direction $0 \neq d = r_{k-1} = b - Ax_{k-1}$, starting from the CG-vector x_{k-1} . Show

$$||x_k - x_*||_A \le ||\widehat{x}_k - x_*||_A$$

i.e. the CG-step is at least as good as the SD-step. Conclude the local contraction property

$$||x_k - x_*||_A \le q||x_{k-1} - x_*||_A$$
 with $q := \frac{\kappa_2(A) - 1}{\kappa_2(A) + 1} < 1$.

b) • Let $A \in \mathbb{R}^{n \times n}$ be an invertible matrix, and $x_0 \in \mathbb{R}^n$ an arbitrary starting value. Show that the approximation x_n obtained by the GMRES minimization criterion

$$||b - A x_n||_2 = \min_{x \in x_0 + \mathcal{K}_n} ||b - A x||_2$$

is the exact solution x_* of Ax = b.

• Assume additionally that for some $m \leq n$ there holds $\mathcal{K}_m = \mathcal{K}_n$. Show that then already

$$x_m = x_{m+1} = \dots = x_*$$

Hint: Show that $\mathcal{K}_k = \mathcal{K}_m = \mathcal{K}_n$ also for all k > m.

c) Let A be of the form

$$A = \begin{pmatrix} I_{d \times d} & Y_1 & & & & \\ & I_{d \times d} & Y_2 & & & & \\ & & \ddots & \ddots & & & \\ & & & I_{d \times d} & Y_{k-1} & & \\ & & & & & I_{d \times d} & Y_k \\ & & & & & & I_{d \times d} \end{pmatrix}$$

with sub-matrices $Y_1, \ldots Y_k \in \mathbb{R}^{d \times d}$, $d \in \mathbb{N}$ and $I_{d \times d}$ is the $d \times d$ identity matrix. Show that $(I - A)^k = 0$. How many iterations does the GMRES method take (at most) to converge?