

# ANALYST'S LABORATORY COMPANION

ALFRED E. JOHNSON

## REESE LIBRARY

OF THE

# UNIVERSITY OF CALIFORNIA.

, 189 9.

Received June,
Accession No. 76/01 Class No.





# ANALYST'S LABORATORY COMPANION





## THE ANALYST'S

# LABORATORY COMPANION:

A COLLECTION OF TABLES AND DATA FOR THE USE
OF PUBLIC AND GENERAL ANALYSTS, AGRICULTURAL, BREWERS' AND WORKS'
CHEMISTS, AND STUDENTS

BY

ALFRED E. JOHNSON, A.R.C.S.I., F.I.C.

SECOND EDITION, ENLARGED AND IMPROVED



LONDON

J. & A. CHURCHILL

7 GREAT MARLBOROUGH STREET
1897

QD75 



## PREFACE TO SECOND EDITION.

In this Edition numerous additions and improvements have

been made, of which the following are the chief:-

The list of multipliers required in gravimetric analysis has been largely extended and entirely re-cast. Five-figure logarithms have, after consideration, been adopted in place of the seven-figure logarithms given in the first edition, as they have been found to be quite sufficient for all practical purposes. As an improvement in detail it may be pointed out that, to facilitate reference, the factors have now been printed in sets of two or three, instead of en bloc. My thanks are due to Mr E. W. T. Jones, F.I.C., for kindly supplying several of the new factors given.

Instead of the table of seven-figure logarithms of numbers 1 to 1000 only, a table of five-figure logarithms is given, by means of which percentages can readily be obtained correctly to two decimal places. This will probably be considered one of the most important improvements in the book. The table given is taken, by kind permission of the authors, from Geipel & Kilgour's Pocket Book of Electrical Engineering Formulæ; the stereotype plates were supplied by the Electrician

Publishing Company.

The section devoted to weights and measures has been entirely re-written, the new values adopted being those given in H. J. Chaney's standard work on Our Weights and

Measures (1897).

The pages dealing with the specific rotatory and cupric reducing powers of the carbohydrates have also been entirely re-written and much extended. The papers by O'Sullivan & Stern (1896), and especially the valuable series by Brown, Morris, and Millar (1897), all published in the *Jour. Chem. Soc.*, have been freely drawn upon in the compilation of this part of the book.

The table for conversion of nitrogen into albuminoids has been re-calculated, using the modern factor 6.25 in place of the ancient 6.33.

The new table for the Kjeldahl process will be found a time-saver by all who use that beautiful method of determining nitrogen.

The Baumé's hydrometer table 'for liquids heavier than water' has been replaced by an abridged form of the very complete table given in Lunge & Hurter's Alkali Makers' Handbook.

At p. 80a will be found two simple and useful rules for obtaining the degree of dilution in the case of watered spirits; and at p. 80B an exceedingly useful table for correcting the sp. gr. of dilute alcohol for temperature,

This latter table—by J. F. Liverseege—has just appeared in the *Analyst* (June, 1897), and it has fortunately been found possible to insert it, with an additional column giving the correction for 1° C.

The sp. gr. tables, pp. 81-84, remain as in the first edition. If anything further than these is required, the exhaustive tables given in Lunge & Hurter's Alkali Makers' Handbook should be consulted.

The tables for butter analysis are new. The milk table on p. 93 is taken from Dr Muter's Manual of Analytical Chemistry.

The "table of reciprocals" (p. 94) will be found of great value in numerous calculations, as by it division becomes converted into simple multiplication.

The glycerine table is new.

The table on p. 96 will be of service in all exact volumetric work.

In addition to the above, the whole book has been very carefully revised throughout, and several other additions and improvements in detail have been made, which will, no doubt, be appreciated by those who use the book regularly.

I trust, therefore, that this Second Edition may be found distinctly more useful to chemical workers than its pre-

decessor.

A. E. JOHNSON.

155 LEA ROAD, WOLVERHAMPTON, August, 1897.

# CONTENTS.

|                                                                    | LAGE |
|--------------------------------------------------------------------|------|
| Atomic Weights,                                                    | 1    |
| Notes on Indicators,                                               | 2    |
| Precipitating Powers of Common Reagents,                           | 3    |
| Molecular Weights and Percentage Composition of commonly           |      |
| occurring Compounds,                                               | 4    |
| Weight of one Litre of various Gases,                              | 13   |
| Multipliers and their Logarithms required in Gravimetric Analysis, | 13   |
| Multipliers and their Logarithms required in Volumetric Analysis,  | 22   |
| Notes on Logarithms,                                               | 25   |
| Table of Logarithms,                                               | 28   |
| Useful Factors,                                                    | 33A  |
| Weights and Measures,                                              | 33   |
| Signs used in Medical Prescriptions,                               | 39   |
| Useful Data (areas and volumes of bodies),                         | 39   |
| Percentage into cwts., qrs., and lbs. per ton, &c.,                | 40   |
| Drams per lb. into Percentage, &c.,                                | 41   |
| Tables required in Water Analysis,                                 | 42   |
| Estimation of Nitrates in Water,                                   | 49   |
| Volume and Density of Water at various Temperatures,               | 53   |
| Barometric Tables,                                                 | 54   |
| Correction of Volumes of Gases for Temperature,                    | 55   |
| Tension of Mercury Vapour,                                         | 58   |
| Tables for Beer Analysis,                                          | 59   |
| Specific Rotatory Powers of the Carbohydrates,                     | 61   |
| Cupric Reducing Powers of the Carbohydrates,                       | 63   |
| Phosphate Table,                                                   | 64   |
| Ammonia and Albuminoids Table,                                     | 71   |
| Kjeldahl Process,                                                  | 72A  |
| Quinine,                                                           | 73   |
| Chicory in Coffee, estimation of,                                  | 73   |
|                                                                    |      |

#### CONTENTS.

|                   |       |       |        |       |        |       |    |  | <br>PAGE |
|-------------------|-------|-------|--------|-------|--------|-------|----|--|----------|
| Quinine Sulphate  | е,    |       |        |       | 4      |       |    |  | 73A      |
| Baumé's Hydron    | eter, |       |        |       |        |       |    |  | 75       |
| Alcohol Tables,   |       |       |        |       |        |       |    |  | 76       |
| Specific Gravity  | Tabl  | es (H | SO4,   | HCl,  | etc.), |       |    |  | 81       |
| Thermometric Sc   | ales, |       |        |       |        |       |    |  | 85       |
| Butter Analysis,  |       |       | ,      |       |        |       |    |  | 91       |
| Milk Analysis,    |       |       |        |       |        |       |    |  | 93       |
| Reciprocals,      |       |       |        |       |        |       |    |  | 94       |
| Glycerine,        |       |       |        |       |        |       |    |  | 95       |
| Correction of Sta | ndar  | d Sol | ations | for T | empe   | ratur | e, |  | 96       |
| INDEX, .          |       |       |        |       |        |       |    |  | 97       |







## ANALYST'S LABORATORY COMPANION.

Symbols and Atomic Weights of the Elements as used in this Work.

|                  |             |                    | 1                  | 1        |                    |
|------------------|-------------|--------------------|--------------------|----------|--------------------|
| Names of Element | ss. Symbols | Atomic<br>Weights. | Names of Elements. | Symbols. | Atomic<br>Weights. |
|                  |             |                    | ×                  |          |                    |
| Aluminium,       | . Al        | 27                 | Mercury,           | Hg       | 200                |
| Antimony,        | . Sb        | 120                | Molybdenum, .      | Mo       | 95.8               |
| Arsenic, .       | . As        | 75                 | Nickel,            | Ni       | 58.6               |
| Barium, .        | Ba          | 137                | Niobium, .         | Nb       | 94                 |
| Beryllium,       | Be          | 9.1                | Nitrogen, .        | N        | 14                 |
| Bismuth, .       | Bi          | 208                | Osmium,            | Os       | 193                |
| Boron, .         | . B         | 11                 | Oxygen,            | 0        | 16                 |
| Bromine, .       | Br          | 80                 | Palladium.         | Pd       | 106.2              |
| Cadmium,         | Cd          | 112                | Phosphorus, .      | P        | 31                 |
| Cæsium, .        | . Cs        | 132.7              | Platinum, .        | Pt       | 197.2*             |
| Calcium, .       | . Ca        | 40                 | Potassium.         | K        | 39                 |
| Carbon, .        | . 0         | 12                 | Rhodium,           | Rh       | 104                |
| Cerium,          | . Ce -      | 139.9              | Rubidium           | Rb       | 85.2               |
| Chlorine,        | . C1        | 35.5               | Ruthenium, .       | Ru       | 104.4              |
| Chromium,        | . Cr        | 52.5               | Selenium, .        | Se       | 78.8               |
| Cobalt, .        | . Co        | 59                 | Silicon,           | Si       | 28.3               |
| Copper, .        | . Cu        | 63.2               | Silver,            | Ag       | 107.7              |
| Didymium,        | . Di        | 144                | Sodium,            | Na       | 23                 |
| Erbium, .        | . E         | 166                | Strontium          | Sr       | 87.3               |
| Fluorine,        | F           | 19                 | Sulphur,           | S        | 32                 |
| Gallium, .       | . Ga        | 69                 | Tantalum           | Ta       | 182                |
| Gold,            | . Au        | 196.8              | Tellurium, .       | Te       | 125                |
| Hydrogen,        | . Н         | 1                  | Thallium, .        | T1       | 203.7              |
| Indium, .        | . In        | 113.4              | Thorium, .         | Th       | 231.9              |
| Iodine, .        | . I         | 126.5              | Tin,               | Sn       | 118                |
| Iridium, .       | . Ir        | 192.5              | Titanium, .        | Ti       | 48                 |
| Iron, .          | . Fe        | 56                 | Tungsten, .        | W        | 183.6              |
| Lanthanum,       | . La        | 138                | Uranium, .         | U        | 240                |
| Tand             | . Pb        | 206.5              | Vanadium, .        | V        | 51.2               |
| T 111 1          | . Li        | 7                  | Yttrium,           | Y        | 89.6               |
| 3.5              | . Mg        | 24                 | Zinc,              | Zn       | 65                 |
| 3.5              | . Mn        | 55                 | Zirconium, .       | Zr       | 90                 |
|                  |             |                    | NORTH ET WAR       |          |                    |

<sup>\*</sup> The true atomic weight of platinum appears to be 194.3. The value Pt=197.2 is, however, the one adopted by all the German potash makers, because it gives the most accurate results in analysis: hence it is used in this book. See note on p. 19.

#### NOTES ON INDICATORS.

I. Litmus solution.—A solution of a carbonate whilst being titrated should be boiled to expel the free CO<sub>2</sub>, otherwise it is easy to overstep the exact point of neutrality. The titration cannot be done by gas-light.

According to R. Reinitzer (see Abstract Analyst, 1894, p. 255) litmus is the most serviceable indicator when properly prepared. Good litmus should be taken, and the aqueous solution, which contains alkaline carbonate, boiled for seven or eight minutes and then neutralized with HCl, so that the wine-red colour remains even on further boiling. The solution is then cooled, and an equal volume of strong alcohol added. The stock solution should be kept in a bottle with a delivery pipette inserted through the cork. The final change of colour is sharpest when the liquid to be titrated is boiled for seven or eight minutes and then well cooled.

II. Methyl orange (para-dimethylaniline-azo-benzone-sulphonic acid).

Solution.—One gram in a litre of distilled water.

Unlike litmus, this indicator is unaffected by CO<sub>2</sub>, SH<sub>2</sub>, boric, arsenious, hydrocyanic, and carbolic acids, &c. It must not be used for organic acids; nor in the presence of nitrous acid or nitrites, which decompose it. It acts admirably with mineral acids and with ammonia and its salts. Ordinary temperatures should be observed.

Colour reaction.—Faint yellow if alkaline, pink if acid.

### III.—Phenol-phthalein ( $C_{20}H_{14}O_4$ ).

Solution.—Dissolve 4 grams\* in half a litre of strong alcohol, then add gradually with constant stirring an equal

volume of distilled water.

It is useless for the titration of free ammonia or its compounds, or for the fixed alkalies when salts of ammonia are present. Unlike methyl orange, it is specially useful in titrating all varieties of organic acids—viz., oxalic, acetic, citric, tartaric, &c. It may be used either in alcoholic solutions or in mixtures of alcohol and ether.

Colour reaction .- Colourless in neutral or acid liquids, but

rendered purple-red by faint excess of caustic alkali.

### IV.—Cochineal solution.

Solution.—Digest one part of powdered cochineal with 10

parts of 25 per cent. alcohol.

It is not very much modified in colour by CO<sub>2</sub>, and may be used by gas-light. Most useful in titrating solutions of the alkaline earths, such as lime and baryta-water. Inapplicable in the presence of even traces of Fe or Al compounds or acetates.

Colour reaction.—Turned violet by alkalies; the original yellowish-red colour being restored by mineral acids.

## V.-Phenacetolin.

Solution.—Two grams in a litre of alcohol.

\* F. Sntton (Volumetric Analysis) recommends a stronger solution, viz., 10 grams instead of 4.

This indicator may be used to estimate the amount of KHO or NaHO in the presence of K2CO3 or Na2CO3, or of CaO in the presence of CaCO<sub>3</sub>.

Colour reaction—

With NH3 and normal alkaline carbonates—dark pink. bicarbonates —intense pink. mineral acids -golden vellow.

VI.—Rosolic Acid (C<sub>20</sub>H<sub>16</sub>O<sub>3</sub>).

Solution.—Two grams in a litre of 50 per cent. alcohol. This indicator is excellent for all the mineral, but useless for the organic acids, except oxalic. It may be relied on for the neutralization of SO<sub>2</sub> with ammonia to normal sulphite.

Colour reaction.—The pale yellow colour is unaffected by

acids, but changed to violet-red by alkalies.

#### THE PRECIPITATING POWERS OF A FEW COMMON REAGENTS.

1. Ammonic oxalate. (NH<sub>4</sub>)<sub>2</sub>C<sub>2</sub>O<sub>4</sub>, OH<sub>2</sub>.

40 grams per litre.

For 1 gram taken

10 c.c. will precipitate 15.78 per cent. CaO. 28.17 CaCO<sub>3</sub>. "

38.31 CaSO4. 99 99 99 29.11Ca,PO.

2. Baric chloride. BaCl<sub>2</sub>, 2OH<sub>2</sub>.

100 grams per litre.

For 1 gram taken

10 c.c. will precipitate 13.11 per cent. S.

32.79 ,, 40.16 99 99 55.74 CaSO. 99 22

3. Hydric disodic phosphate. Na<sub>2</sub>HPO<sub>4</sub>, 12OH<sub>2</sub>. 100 grams per litre.

For 1 gram taken

10 c.c. will precipitate 11.17 per cent. MgO.

23.46 MgCO<sub>3</sub>. 33.51 MgSO<sub>4</sub>.

 Prepared magnesia solution.
 Dissolve 40 grams of "Magnesia" in HCl, and add a
 solution of 150 grams of NH4Cl in the least possible quantity of water. Add 0.960 NH4HO till a slight precipitate forms, and filter. Make the clear filtrate up to 1500 c.c. with distilled water, and add 750 c.c. 0.960 NH4HO. Allow the liquid to stand and filter for use.

The strength of this solution is usually such that for 1

gram taken

10 c.c. will precipitate 30 per cent. Ca<sub>3</sub>P<sub>2</sub>O<sub>8</sub>.

FORMULE, MOLECULAR WEIGHTS, AND PERCENTAGE COMPOSITIONS OF COMMONLY OCCURRING COMPOUNDS.

|                              | 1                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              | Percentage Composition. | Al 20·22; Cl 79·78  Al <sub>2</sub> 0, 65·38; H <sub>2</sub> O 34·62  Al <sub>2</sub> 0, 15·32; O <sub>4</sub> 7·06  Al <sub>2</sub> 0, 15·32; SO <sub>3</sub> 36·03; OH <sub>2</sub> 48·65  Al <sub>2</sub> 0, 11·26; NH <sub>3</sub> 3·75; SO <sub>3</sub> 35·32; OH <sub>2</sub> 45·67.  H <sub>2</sub> O <sub>3</sub> 10·76; K <sub>2</sub> O 9·91; SO <sub>3</sub> 33·76; OH <sub>2</sub> 45·77; OH <sub>2</sub> 61·43  NH <sub>3</sub> 48·57; OH <sub>2</sub> 61·43  NH <sub>3</sub> 21·25; HNO <sub>3</sub> 78·75  (anhydr.) NH <sub>3</sub> 27·42; H <sub>3</sub> Co <sub>4</sub> 72·58  NH <sub>3</sub> 21·25; HNO <sub>3</sub> 78·75  (anhydr.) NH <sub>3</sub> 27·42; H <sub>3</sub> Co <sub>4</sub> 72·58  NH <sub>3</sub> 22·37; H <sub>3</sub> 1·31; CN 34·21; S <sub>4</sub> 9·31;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MING COMPOUNDS.              | Molecular Weight,       | $ 267 $ $ 156 $ $ 342 + 324 = 666 $ $ 474 + 432 = 906 $ $ 566 + 432 = 948 $ $ 17 $ $ 35 $ $ 98 $ $ 96 + 18 $ $ 1232 \cdot 5 $ $ 96 + 18 $ $ 1232 \cdot 5 $ $ 124 + 18 = 142 $ $ 25 $ $ 1232 \cdot 5 $ $ 1232 \cdot 5 $ $ 124 + 18 = 142 $ $ 137 + 72 = 209 $ $ 137 + 72 = 209 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| or commont coordina conforms | Formula.                | Al <sub>2</sub> Cl <sub>6</sub> Al <sub>2</sub> H <sub>6</sub> O <sub>8</sub> Al <sub>2</sub> Cl <sub>3</sub> Al <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> , 180H <sub>3</sub> Al <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> , 180H <sub>3</sub> Al <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> , (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> , Al <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> , K <sub>2</sub> SO <sub>4</sub> , 240H <sub>2</sub> NH <sub>4</sub> Sr NH <sub>4</sub> Orl NH <sub>4</sub> Dr NH <sub>4</sub> Cl <sub>2</sub> O <sub>3</sub> , OH <sub>2</sub> (NH <sub>4</sub> ) <sub>2</sub> CO <sub>3</sub> , OH <sub>2</sub> (NH <sub>4</sub> ) <sub>2</sub> CO <sub>3</sub> , OH <sub>2</sub> (NH <sub>4</sub> ) <sub>2</sub> O <sub>3</sub> , OH <sub>2</sub> (NH <sub>4</sub> ) <sub>2</sub> O <sub>3</sub> , OH <sub>2</sub> (NH <sub>4</sub> ) <sub>2</sub> O <sub>3</sub> , OH <sub>2</sub> (NH <sub>4</sub> ) <sub>2</sub> O <sub>3</sub> SCO <sub>2</sub> (NH <sub>4</sub> ) <sub>2</sub> O <sub>3</sub> SCO <sub>2</sub> (NH <sub>4</sub> ) <sub>2</sub> O <sub>3</sub> SCO <sub>2</sub> (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> (NH <sub>4</sub> ) <sub>2</sub> SO <sub>3</sub> (NH <sub>4</sub> ) <sub>3</sub> SO <sub>4</sub> (NH <sub>4</sub> ) <sub>4</sub> SO <sub>4</sub> (NH <sub>4</sub> ) <sub>4</sub> SO <sub>4</sub> (NH <sub>4</sub> ) <sub>4</sub> SO <sub>3</sub> (NH <sub>4</sub> ) <sub>4</sub> SO <sub>4</sub> (NH <sub>4</sub> ) <sub>4</sub> SO <sub>4</sub> (NH <sub>4</sub> ) <sub>4</sub> SO <sub>4</sub> |
|                              | Name.                   | ALUMINIUM (All=27) Aluminic chloride,  "" oxide, "" sulphate, "" (potash), "" AMMONIUM (NH <sub>4</sub> =18) Ammonic hydrate, "" carbonate, "" carbonate, "" holoromate, "" nolybdate, "" oxalate, "" sesquicarbonate, "" sesquicarbonate, "" sesquicarbonate, "" sesquicarbonate, "" sesquicarbonate, "" sesquicarbonate, "" sulphate, "" shydric phosphate, "" shydric phosphate, "" hydric sulphide, "" shydric sulphide,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| Sb 52.98; Cl 47.02<br>Sb 83.33; O 16.67<br>Sb 78.95; O 21.05<br>Sb 71.43; S 28.57<br>Sb 60.00; S 40.00                                                                                                                                                                               | As 41·32; Cl 58·68<br>As 75·76; O 24·24<br>As 65·22; O 34·78<br>As 60·98; S 39·02<br>As 48·39; S 51·61                                                                                                             | BaO 77-67; CO <sub>2</sub> 22:33<br>(anhydrous) Ba 65:86; Cl 34:14<br>(cryst.) BaCl <sub>2</sub> 85:25; OH <sub>2</sub> 14.75<br>BaO 58:62; N <sub>3</sub> O <sub>5</sub> 41:38<br>Ba 89:54; O 10:46<br>BaO 65:66; SO <sub>3</sub> 34:34 | Bi 89-63; O 10-37    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 226.5<br>226.5<br>288<br>820<br>8304<br>836<br>400                                                                                                                                                                                                                                   | 181.5<br>198<br>230<br>246<br>310<br>289                                                                                                                                                                           | 197<br>208 + 36 = 244<br>261<br>153<br>169<br>233<br>169                                                                                                                                                                                 | 314<br>463           |
| SbCl <sub>3</sub><br>SbCl <sub>3</sub><br>Sb <sub>2</sub> O <sub>3</sub><br>Sb <sub>2</sub> O <sub>4</sub><br>Sb <sub>2</sub> O <sub>4</sub><br>Sb <sub>2</sub> S <sub>3</sub><br>Sb <sub>2</sub> S <sub>3</sub><br>Sb <sub>2</sub> S <sub>3</sub><br>Sb <sub>2</sub> S <sub>3</sub> | AsCl <sub>3</sub><br>As <sub>2</sub> O <sub>3</sub><br>As <sub>3</sub> O <sub>5</sub><br>As <sub>3</sub> S <sub>3</sub><br>As <sub>3</sub> S <sub>3</sub><br>NH <sub>4</sub> MgAsO <sub>4</sub> , 6OH <sub>2</sub> | BaCO <sub>3</sub> BaCl <sub>2</sub> , 2OH <sub>2</sub> Ba2NO <sub>3</sub> BaO BaO BaO <sub>4</sub> BaSO <sub>4</sub>                                                                                                                     | Bicl <sub>3</sub>    |
| Antimonious chloride, Antimonious chloride, Antimonious oxide, Antimonic anhydride, Diantimonic tetroxide, Antimonious sulphide, Antimonious potassic tartrate (Tartar-emetic),                                                                                                      | (As=75) de,                                                                                                                                                                                                        | Baric carbonate,  chloride,  nitrate,  peroxide,  sulphate,  sulphate,  RISMLTH (Ri = 907.5)                                                                                                                                             | Bismuthous chloride, |

FORMULE, MOLECULAR WEIGHTS, AND PERCENTAGE COMPOSITIONS OF COMMONIX OCCURRING COMPOUNDS—continued.

| Percentage Composition. |                                                      | B 31.43; O 68.57 B <sub>2</sub> O <sub>3</sub> 56.45; OH <sub>2</sub> 43.55 | Cd 87·50; O 12·50<br>Cd 77·78; S 22·22                                  | (anhydr.) Ca 36·03; Cl 63·97<br>Ca 51·28; F 48·72<br>Ca 71·43; O 28·57 | CaO 56; CO <sub>2</sub> 44<br>CaO 75·68; OH <sub>2</sub> 24·32<br>Ca 55·56; S 44·44<br>CaO 41·18; SO <sub>3</sub> 58·82<br>CaSO <sub>4</sub> 79·07; OH <sub>2</sub> 20·93 | CaO 54·19; P <sub>2</sub> O <sub>5</sub> 45·81<br>C 42·86; O 57·14 |
|-------------------------|------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Molecular Weight.       | 393.5+90=483.5<br>511                                | 70<br>62                                                                    | 183 + 36 = 219 $172$ $128$ $144$                                        | =219                                                                   | $   \begin{array}{c}     100 \\     74 \\     72 \\     72 \\     136 \\     172 \\     172 \\     172 \\     236   \end{array} $                                         | 310                                                                |
| Formula.                | Bi(NO <sub>3</sub> ) <sub>3</sub> , 50H <sub>2</sub> | B <sub>2</sub> O <sub>3</sub><br>H <sub>3</sub> BO <sub>3</sub>             | CdCl <sub>2</sub> , 20H <sub>2</sub><br>CdCO <sub>3</sub><br>CdO<br>CdS | CaCl <sub>2</sub> , 60H <sub>2</sub><br>CaF <sub>2</sub><br>CaO        | CaCUs<br>CaH <sub>2</sub> O <sub>2</sub><br>CaSO <sub>4</sub><br>CaSO <sub>4</sub><br>CaSO <sub>6</sub> , 2OH <sub>2</sub><br>Ca(NO <sub>6</sub> ), 4OH,                  | $Ca_3P_2O_8$                                                       |
| Name.                   |                                                      | Boric anhydride,                                                            | Cadmic chloride, ,, carbonate, ,, oxide, ,, sulphide,                   | Calcic chloride, ", fluoride, ", oxide,                                | " carbonate, " hydrate, " sulphide, " sulphide, " sulphate, " " (crystal), " nitrate, " nitrate, "                                                                        | Tricalcic phosphate, CARBON (C=12) Carbonic oxide,                 |

|                     | St les                        |                                                                                  |                                                                                                                                                                                  |                                                                                                                   |                                                                                                                                        |
|---------------------|-------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| C 27.27; O 72.73    | Cr 68·63; O 31·37             | Co 78·67; O 21·33                                                                | Cu 64-03; Cl 35-97<br>Cu 88-76; O 11-24<br>Cu 79-80; S 20-20<br>Cu 47-09; Cl 52-91<br>Cu 66-39; S 33-61<br>(crystals) CuO 31-84; SO <sub>3</sub> 32-07; OH <sub>2</sub><br>36-09 | CI 9<br>SO <sub>3</sub><br>SO <sub>3</sub>                                                                        | Fe 44.09; Cl 55.91<br>Fe 77.78; O 22.22<br>Fe 63.64; S 36.36<br>(crystalis) FeO 25.90; SO <sub>3</sub> 28.78; OH <sub>2</sub><br>45.32 |
| 44                  | 818<br>153<br>393             | $   \begin{array}{c}     130 \\     75 \\     183 + 108 = 291   \end{array} $    | 197.4 $142.4$ $158.4$ $134.2$ $79.2$ $95.2$ $95.2$ $159.2 + 90 = 249.2$                                                                                                          | 187·2+108=295·2<br>86·5<br>63<br>98                                                                               | $     \begin{array}{r}       127 \\       72 \\       88 \\       152 + 126 = 278   \end{array} $                                      |
| . 003               | 07.20.<br>07.20.<br>07.80.2)3 | CoCl <sub>2</sub><br>CoO<br>Co(NO <sub>3</sub> ) <sub>2</sub> , 6OH <sub>2</sub> | Cu <sub>2</sub> Cl <sub>2</sub><br>Cu <sub>2</sub> S<br>CuCl <sub>2</sub><br>CuCl <sub>2</sub><br>CuS<br>CuS<br>CuS<br>CuS                                                       | Cu(NO <sub>3</sub> ) <sub>2</sub> , 60H <sub>2</sub><br>HCl<br>HNO <sub>3</sub><br>H <sub>2</sub> SO <sub>4</sub> | FeCl <sub>2</sub><br>FeO<br>FeS<br>FeSO <sub>4</sub> , 70H <sub>2</sub>                                                                |
| Carbonic anhydride, | Chromic chloride, sulphate,   | COBALT (Co=59) Cobaltous chloride,                                               | Cuprous chloride,  " oxide,  " sulphide,  Cupric chloride,  " oxide,                                                                                                             | HYDROGEN (H=1)  Hydric chloride  """ """ """ """ """ """ """ """ """                                              | IRON (Fe=56)  IRON (Fe=56)  Salphite, sulphite,                                                                                        |

UNIVERSITY

FORMULE, MOLECULAR WEIGHTS, AND PERCENTAGE COMPOSITIONS OF COMMONLY OCCURRING COMPOUNDS—continued.

| Name.                     | Formula,                                                              | Molccular Weight. | Percentage Composition.                                         |
|---------------------------|-----------------------------------------------------------------------|-------------------|-----------------------------------------------------------------|
| Ferrous ammonic sulphate, | Fe(NH <sub>4</sub> ) <sub>2</sub> 2SO <sub>4</sub> , 6OH <sub>2</sub> | 284+108=392       | Contains th of its weight of iron, or                           |
| ", nitrate,               | Fe(NO <sub>3</sub> ),, 60H,                                           | 180 + 108 = 288   | 14.280 per cent.                                                |
| romic carbonate,          | FeCO <sub>3</sub>                                                     | 116               | Fe 48.27 or FeO 62.07; CO2 37.93                                |
| refric chioride,          | Fe <sub>2</sub> CI <sub>6</sub>                                       | 325               | Fe 34.46; CI 65.54<br>Fe 70. O 30                               |
| Triferric tetroxide,      | Fe <sub>8</sub> O <sub>4</sub>                                        | 232               | Fe 72.41: O 27.59                                               |
| Ferric disulphide,        | FeS                                                                   | 120               | Fe 46.67; S 53.33                                               |
| ", sulphate,              | $\mathrm{Fe_2(SO_4)_3}$                                               | 400               |                                                                 |
| Lead (Pb= $206.5$ )       |                                                                       |                   |                                                                 |
| Plumbic chloride,         | PbCl <sub>2</sub>                                                     |                   | Pb 74.46; Cl 25.54                                              |
| ", oxide,                 | Pbo                                                                   |                   | Pb 92.81; 0 7.19                                                |
| ", dioxide,               | Pb02                                                                  |                   | Pb 86.58; O 13.42                                               |
| " sulphide, "             | Pos                                                                   |                   | Pb 86.58; S 13.42                                               |
| " sulphate,               | PbSO4                                                                 | 302.5             | PbO 73.55; SO <sub>3</sub> 26.45                                |
| " nitrate,                | Pb(NO <sub>3</sub> ) <sub>2</sub>                                     | 330.2             | PbO 67.32; N2Ox 32.68                                           |
| ", acetate,               | Pb(C2H3O2)2                                                           | 324.5             |                                                                 |
| ", chromate,              | PbCrO4                                                                | 322.5             | PbO 68.99 (= Pb 64.03); CrO <sub>8</sub> 31.01                  |
| MAGNESIUM (Mg=24)         |                                                                       |                   |                                                                 |
| ٠                         | MgCl <sub>2</sub>                                                     | 95                | Mg 25·26; Cl 74·74                                              |
|                           | MgO                                                                   | 40                | Mg 60; O 40                                                     |
|                           | MgCO <sub>3</sub>                                                     | 84                | MgO 47.62; CO, 52.38                                            |
| " sulphate,               | MgSO4, 70H2                                                           | 120 + 126 = 246   | (cryst.) MgO16·26; SO <sub>3</sub> 32·52; OH <sub>2</sub> 51·22 |
|                           |                                                                       | ,                 | (anhydrous) Mg O 33.33; SO <sub>3</sub> 66.67                   |

| $ m MgO~36.04~;~P_2O_6~63.96$                  | (anhydr.) Mn 48·65; Cl 56·35<br>Mn 77·47; O 22·53<br>(anhydr.) Mn 47·02; SO <sub>3</sub> 52·98<br>Mn 68·22; O 36·78<br>Mn 69·62; O 30·38<br>Mn 72·05; O 27·95         | Hg 84-93; Cl 15-07<br>Hg 96-15; O 3-85<br>Hg 73-80; Cl 26-20<br>Hg 44-95; I 55-95<br>Hg 92-59; O 7-41<br>Hg 86-21; O 13-79                                                                                                     | Ni 78·67; O 21·33                                                                                                                            |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 274 + 216 = 490 $222$                          | 115 126 + 72 - 198 71 151 + 90 = 241 87 158 229                                                                                                                       | $471 416 524 + 36 = 560 271 453 \text{.2} 216 232 232 296 2 \times 32 + 18 = 666$                                                                                                                                              | $     \begin{array}{r}       130 \\       75 \\       75 \\       155 + 126 - 281 \\       \hline       82 \\       \hline     \end{array} $ |
| ${ m Mg_2(NH_4)_2(PO_4)_2,\ Mg_2P_2O_7}$       | MnCO <sub>3</sub><br>MnCl <sub>2</sub> , 40H <sub>2</sub><br>MnSO <sub>4</sub> , 50H <sub>2</sub><br>Mn <sub>2</sub> O <sub>3</sub><br>Mn <sub>3</sub> O <sub>4</sub> | Hg <sub>2</sub> Cl <sub>3</sub><br>Hg <sub>2</sub> O<br>Hg <sub>2</sub> (No <sub>3</sub> ) <sub>2</sub> , 2OH <sub>2</sub><br>HgU <sub>3</sub><br>HgU <sub>3</sub><br>HgO<br>HgS<br>HgSO<br>HgSO<br>HgSO<br>2HgSO <sub>4</sub> | NiCl <sub>2</sub><br>NiO<br>NiSO <sub>4</sub> , 7OH <sub>2</sub><br>HPH <sub>2</sub> O <sub>3</sub><br>H <sub>2</sub> PHO <sub>3</sub>       |
| Magnesic ammonic phosphate, . pyrophosphate, . | MANGANESE (Mn = 55) Manganous carbonate, ,,, chloride, ,,, sulphate, ,,, sulphate, ,,, sesquioxide, ,,, sesquioxide, ,,                                               | Mercurous chloride,  " oxide, " nitrate, " iodide, " sulphide, " sulphide, " sulphide, " nitrate, " nitrate, " iodide, " oxide, " nitrate, " nitrate,                                                                          | Nickelous chloride.  " oxide,  " sulphate,  PHOSPHORUS (P=31)  Hypophosphorous acid,                                                         |

FORMULE, MOLECULAR WEIGHTS, AND PERCENTAGE COMPOSITIONS OF COMMONLY OCCURRING COMPOUNDS-continued.

| Percentage Composition. | $\begin{array}{l} \text{P}_2\text{O}_3 \ 72.45 \ ; \ \text{OH}_2 \ 27.55 \\ \text{P}_2\text{O}_6 \ 88.75 \ ; \ \text{OH}_2 \ 11.25 \\ \text{P}_2\text{O}_5 \ 79.77 \ ; \ \text{OH}_2 \ 20.23 \\ \text{P}_4 \ 3.66 \ ; \ \text{O}_5 \ 6.34 \end{array}$ | Pt 58·12; Cl 41·88<br>Pt 44·18; NH $_3$ 7·62 (N 6·28)<br>Pt 40·39; Cl 43·63; Kl 15·98 (= $\rm K_2O$ )<br>19·25 or KGl 30·52) | $egin{array}{ll} K_2O \ 68.12\ ; \ CO_2 \ 31.88 \\ K_2O \ 47.00\ ; \ CO_2 \ 44.00\ ; \ OH_2 \ 9.00 \\ K_2O \ 38.42\ ; \ Cl_2O_6 \ 61.58 \\ K \ 52.38\ ; \ Cl \ 47.62 \\ \hline \end{array}$ | K <sub>2</sub> O 31·86; CrO <sub>8</sub> 68·14<br>K 37·03; Fe 13·25; CN 36·93; OH <sub>2</sub> | K 35.56; Fe 17.02; CN 47.42<br>K <sub>2</sub> O 88.93; OH <sub>2</sub> 16.07<br>K 23.51; I 76.49<br>K <sub>2</sub> O 46.53; N <sub>2</sub> O <sub>6</sub> 58.47                                                                                                                                     |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Molecular Weight.       | 98<br>80<br>178<br>142                                                                                                                                                                                                                                 | 339°2<br>446°2<br>488°2                                                                                                      | 138<br>122.5<br>742.5<br>194.5                                                                                                                                                              | $ \begin{array}{c} 195 \\ 295 \\ 65 \\ 368 + 54 = 422 \end{array} $                            | 658<br>56<br>165·6<br>432+108<br>101                                                                                                                                                                                                                                                                |
| Formula.                | $egin{array}{l} H_s P O_4 \\ H P O_3 \\ H_4 P_2 O_7 \\ P_2 O_5 \end{array}$                                                                                                                                                                            | PtCl4<br>PtCl4, 2NH4Cl<br>PtCl4, 2KCl                                                                                        | K,CO,<br>KHCO,<br>KCIO,<br>K-CrO                                                                                                                                                            | Korao,<br>Korao,<br>Korao,<br>Keecene, 30H,                                                    | K.F.P.S. N. 18<br>KHO<br>KI<br>K.H.S.S.S.O., 60H.<br>K.N.O.,                                                                                                                                                                                                                                        |
| Маше.                   | Phosphoric acid, Metaphosphoric acid, Pyrophosphoric, Phosphoric anydride,                                                                                                                                                                             | Platinic chloride, Ammonic platinic chloride, Potassic platinic chloride,                                                    | K = 39)  e,                                                                                                                                                                                 | ", curonate,                                                                                   | ,,, ferricyanide, KFPe <sub>2</sub> C <sub>12</sub> N <sub>12</sub> ,, hydrate, KI ,, iodide, K <sub>2</sub> H <sub>2</sub> Sb <sub>2</sub> O <sub>7</sub> , 6OH <sub>2</sub> ,, hydric metantimoniate, K <sub>2</sub> H <sub>3</sub> Sb <sub>2</sub> O <sub>7</sub> , 6OH <sub>2</sub> ,, nitrate, |

| K 82-98; O 17-02<br>$K_2O$ 29.75; $Mn_2O_7$ 70·25<br>$K_2O$ 54·03; $SO_3$ 45·97<br>$K_2O$ 34·56; $SO_3$ 58·83; $OH_2$ 6·62<br>K 32·80; Br 67·20     | Si 46.93; O 53.07         | Ag 75°21; Cl 24'79<br>Ag 57'38; Br 42'62<br>Ag <sub>2</sub> O 68'18 or Ag 63'47; N <sub>2</sub> O <sub>5</sub> 31'82<br>Ag <sub>2</sub> O 74'31; SO <sub>5</sub> 25'69 | Na <sub>2</sub> O 64:36; Al <sub>2</sub> O <sub>3</sub> 35·64<br>(anhydr.) Na <sub>2</sub> O 30·69; B <sub>2</sub> O <sub>3</sub> 69·31<br>(cryst.) Na <sub>2</sub> O 16·23; B <sub>2</sub> O <sub>3</sub> 36·65; |                 | $\begin{array}{c} Na_2O~36~90~;~CO_2~52~:38~;~OH_2~10~?1\\ Na~39~:22~;~Cl~60~:68\\ Na~74~:19~;~O~25~:81\\ Na_2O~77~:50~;~OH_2~22~:50 \end{array}$ | N 16·47<br>Na <sub>2</sub> O 17·32; $P_2O_5$ 19·84; $OH_2$ 62·84                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 85<br>94<br>316<br>174<br>136                                                                                                                       | 60.3                      | 143.2<br>187.7<br>169.7<br>311.4                                                                                                                                       | $289 \\ 202 + 180 = 382$                                                                                                                                                                                          | 106 + 180 = 286 | وا                                                                                                                                                | 85 $164 + 216$ $142 + 216$                                                              |
| KNO <sub>2</sub><br>K <sub>2</sub> O<br>K <sub>2</sub> Mn <sub>2</sub> O <sub>8</sub><br>K <sub>2</sub> SO <sub>4</sub><br>KHSO <sub>4</sub><br>KBr | SiO <sub>9</sub>          | Agu<br>Agu<br>Agnos<br>Ag <sub>s</sub> SO <sub>4</sub>                                                                                                                 | ${ m Na_6Al_2O_6} \ { m Na_2B_4O_7}, 100{ m H_2}$                                                                                                                                                                 | Na2CO3, 100H2   | NaHCO <sub>3</sub><br>NaCl<br>Na <sub>2</sub> O<br>NaHO                                                                                           | $_{{ m Na_{3}PO_{4}}}^{{ m Na_{1}NO_{3}}}$ $_{{ m Na_{2}HPO_{4}}}^{{ m Na_{2}HPO_{4}}}$ |
| Potassic nitrite, oxide, permanganate, sulphate, bisulphate, bromide,                                                                               | Silica, SILVER (Ag=107.7) | Silver chloride, ,, bromide, ,, nitrate, ,, sulphate,                                                                                                                  | Sodic aluminate, biborate,                                                                                                                                                                                        | " carbonate, .  | " bicarbonate, " chloride, " oxide, " hydrate, "                                                                                                  | ", nitrate, Trisodic phosphate,                                                         |

FORMULE, MOLECULAR WEIGHTS, AND PERCENTAGE COMPOSITIONS OF COMMONLY OCCURRING COMPOUNDS-continued.

| Percentage Composition. | (anhydr.) Na <sub>2</sub> O 43.67; SO <sub>3</sub> 56.33<br>(cryst.) Na <sub>2</sub> O 19.26; SO <sub>3</sub> 24.84; OH <sub>2</sub> | Na <sub>2</sub> O 25 83; SO <sub>3</sub> 66 67; OH <sub>2</sub> 7 50                 | Na2O 25:00; S12:90; SO25:80; OH2 36:30 |                                      | SrO 70.15; CO. 20.85  | SrO 56.41; SO <sub>3</sub> 43.59 | Sn 52'44; Cl 31'56; OH <sub>2</sub> 16'00 Sn 78'66; O 21'34 | Zn 47.79; Cl 52.21<br>Zn 80.25; O 19.75<br>(anhydr.) Zn O 50.31; SO <sub>3</sub> 49.69 | Zn U 64'80; CU <sub>2</sub> 35'20 or Zn 52; CU <sub>3</sub> 48. |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------|-----------------------|----------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Molecular Weight.       | 142+180=322                                                                                                                          | 120 $126+180$ $969+36$                                                               | 158 + 90 = 248                         | 1584+108                             | 147.4                 | 183.4                            | 225<br>150                                                  | 136<br>81<br>161+126                                                                   | CZ1                                                             |
| Formula.                | Na <sub>2</sub> SO <sub>4</sub> , 100H <sub>2</sub>                                                                                  | NaHSO,<br>Na <sub>2</sub> SO <sub>3</sub> , 100H <sub>2</sub><br>Na,(NO), FeCu, 20H. | Na2S203, 50H2                          | SrCl <sub>2</sub> , 60H <sub>2</sub> | STOS                  | SrSO4                            | SnCl <sub>2</sub> , 20H <sub>2</sub><br>SnO <sub>2</sub>    | $Z_{\rm nO}$ $Z_{\rm nO}$ $Z_{\rm nSO}$ $Z_{\rm nSO}$ $Z_{\rm nSO}$                    | ZHCO3                                                           |
| Name,                   | Sodie sulphate,                                                                                                                      | ", bisulphate, sulphite,                                                             |                                        | r=87.4)                              | " carbonate, nitrate. |                                  | TIN (Sn=118) Stannous chloride,                             | n=65)                                                                                  | y car bundady                                                   |





THE MOLECULAR WEIGHTS AND WEIGHTS OF ONE LITTE OF VARIOUS GASES.

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  |                                                                                                                                                                                                               |                                                                 |                                                                                                        |                                                                                                                                                                                  |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Name.                                                                                                                                                                                                         | Formula.                                                        |                                                                                                        | 1 litre at 0° C. and                                                                                                                                                             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | Carbon monoxide, ,, dioxide, Methane, Cyanogen, Chlorine, Hydrogen bromide, ,, chloride, ,, fluoride, ,, iodide, ,, sulphide, Nitrogen, Nitrogen, Nitrous oxide, Nitric ,, peroxide, Oxygen, Sulphur dioxide, | CO CO2 CH4 C2N2 CH2 H2 HBr HCl HF HI H2S N2 N2 NO NO NO SO2 SO2 | 28<br>44<br>16<br>52<br>71<br>2<br>81<br>36·5<br>20<br>127·6<br>34<br>28<br>44<br>30<br>46<br>32<br>64 | 0.7616<br>1.2544<br>1.9774<br>0.7168<br>2.3296<br>3.1808<br>0.0896<br>3.6288<br>1.6352<br>0.8960<br>5.7165<br>1.5475<br>1.2562<br>1.9774<br>1.3440<br>2.0608<br>1.4298<br>2.8672 |

# MULTIPLIERS AND THEIR LOGARITHMS REQUIRED IN GRAVIMETRIC ANALYSIS.

| Ele-<br>ment. | To convert                                                                                       | Frac-<br>tional<br>Multi-<br>plier.*                                     | Decimal<br>Multiplier. | Logarithm (to be added). |
|---------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------|--------------------------|
|               | ALUMINIUM (Al=27.0)                                                                              |                                                                          |                        |                          |
| Al ,,         | $Al_2O_3$ into $Al_2$ , ammonia-alum                                                             | $\begin{array}{r} 5.4 \\ \hline 10.2 \\ 90.6 \\ \hline 10.2 \end{array}$ | 0·5294<br>8·8824       | 1·72379<br>0·94853       |
| "             | Al <sub>2</sub> (PO <sub>4</sub> ) <sub>2</sub> ,, potash-alum<br>Al <sub>2</sub> O <sub>3</sub> | 943<br>102<br>102<br>244                                                 | 9·2941<br>0·4180       | 0.96821<br>1.62121       |
| "             | Milligrams of Al <sub>2</sub> P <sub>2</sub> O <sub>8</sub> per 100 grams                        | 906                                                                      | 3.7131                 | 0.56974                  |
| 29            | bread into grains of ammonia-<br>alum per 4 lb. loaf,                                            |                                                                          | 1.0397                 | 0.01690                  |

<sup>\*</sup> The figures given in this column are the molecular weights unreduced.

Multipliers and their Logarithms required in Gravimetric  $$\operatorname{\mathtt{Analysis}}{-}\mathit{continued}_{\bullet}$$ 

| Ele-<br>ment. |                                                                           | To convert                             |                                                                                                                                  | Frac-<br>tional<br>Multi-<br>plier.                                                                                                                 | Decimal<br>Multiplier.     | Logarithm (to be added).                                                 |
|---------------|---------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------|
| Sb            | ANTIM<br>Sb <sub>2</sub> O <sub>4</sub><br>Sb <sub>2</sub> S <sub>3</sub> | into                                   | 120)<br>Sb <sub>2</sub><br>Sb <sub>2</sub>                                                                                       | 2 4 0<br>3 0 4<br>2 4 0<br>3 3 6                                                                                                                    | 0.7895<br>0.7143           | 1·89734<br>1·85387                                                       |
| As ,,         | ARSE<br>2NH <sub>4</sub> MgAsO <sub>4</sub><br>,,                         | ENIC (As = 7<br>, OH <sub>2</sub> into | $\begin{array}{c} \text{As}_2\\ \text{As}_2\text{O}_3\\ \text{As}_2\text{O}_5 \end{array}$                                       | 150<br>380<br>198<br>380<br>230<br>380                                                                                                              | 0·3947<br>0·5211<br>0·6053 | 1·59631<br>1·71689<br>1·78194                                            |
| "             | Mg <sub>2</sub> As <sub>2</sub> O <sub>7</sub>                            | 33<br>33<br>33                         | $\begin{array}{c} \operatorname{As_2} \\ \operatorname{As_2O_3} \\ \operatorname{As_2O_5} \end{array}$                           | 150<br>310<br>198<br>310<br>230<br>310                                                                                                              | 0.4839<br>0.6387<br>0.7419 | 1.68473<br>1.80530<br>1.87037                                            |
| "             | $As_2O_3$ $As_2S_3$                                                       | "                                      | $As_2 As_2$                                                                                                                      | 150<br>198<br>150<br>246                                                                                                                            | 0.7576<br>0.6098           | 1·87942<br>1·78516                                                       |
| "             | "                                                                         | "                                      | $\begin{array}{c} \mathrm{As_2O_3} \\ \mathrm{As_2O_5} \end{array}$                                                              | $\begin{array}{c} \frac{198}{246} \\ 230 \\ 246 \end{array}$                                                                                        | 0.8049<br>0.9350           | 1·90573<br>1·97079                                                       |
| Ba            | BaSO <sub>4</sub>                                                         | UM (Ba=18 into                         | BaO<br>BaCO <sub>2</sub>                                                                                                         | 137<br>233<br>153<br>233<br>197<br>233                                                                                                              | 0.5880<br>0.6567<br>0.8455 | 1·76936<br>1·81734<br>1·92711                                            |
| "             | ,,<br>,,                                                                  | .,                                     | BaCl <sub>2</sub> aCl <sub>2</sub> , 2OH <sub>2</sub> S                                                                          | 208<br>238<br>244<br>238<br>32<br>32                                                                                                                | 0·8927<br>1·0472<br>0·1373 | 1.95071<br>0.02003<br>1.13779                                            |
| "             | 3)<br>22                                                                  | "                                      | $SO_3 SO_4 H_2SO_4$                                                                                                              | 80<br>233<br>96<br>233<br>98<br>233                                                                                                                 | 0·3434<br>0·4120<br>0·4206 | $     \begin{array}{r}             \hline             \hline           $ |
| ,,<br>,,      | " " " " "                                                                 | ,, Ca                                  | $\begin{bmatrix} \operatorname{CaSO_4} \\ \operatorname{SO_4}, \ \operatorname{2OH_2} \\ \operatorname{K_2SO_4} \end{bmatrix}$   | $\begin{array}{c} \frac{1}{2} \frac{3}{3} \frac{6}{3} \\ \frac{2}{3} \frac{3}{3} \\ \frac{1}{7} \frac{7}{4} \\ \frac{2}{3} \frac{3}{3} \end{array}$ | 0.5837<br>0.7382<br>0.7468 | 1.76618<br>1.86817<br>1.87319                                            |
| ,,<br>,,      | ;;<br>;;                                                                  | "                                      | $     \begin{array}{c}       \text{Na}_2 \text{SO}_4 \\       (\text{NH}_4)_2 \text{SO}_4 \\       2 \text{KHO}    \end{array} $ | $\begin{array}{c} 1 & 4 & 2 \\ 2 & 3 & 3 \\ 1 & 3 & 2 \\ 2 & 3 & 3 \\ 1 & 1 & 2 \\ 2 & 3 & 3 \end{array}$                                           | 0.6094<br>0.5665<br>0.4807 | 1·78493<br>1·75322<br>1·68186                                            |
| "             | 2BaSO <sub>4</sub><br>BaCO <sub>3</sub>                                   | "                                      | ${ m FeS_2 \atop Ba}$                                                                                                            | 120<br>466<br>137<br>197                                                                                                                            | 0.2575<br>0.6954           | 1·41080<br>1·84225                                                       |
| "             | "                                                                         | "                                      | BaO<br>CO <sub>3</sub>                                                                                                           | 153<br>197<br>60<br>197                                                                                                                             | 0.7767<br>0.3046           | 1·89023<br>1·48369                                                       |

15

## THE ANALYST'S LABORATORY COMPANION.

MULTIPLIERS AND THEIR LOGARITHMS REQUIRED IN GRAVIMETRIC ANALYSIS—continued.

| Ele-<br>ment. | To convert                            |                        |                                                                                                 | Frac-<br>tional<br>Multi-<br>plier.                              | Decimal<br>Multiplier.     | Logarithm (to be added).      |
|---------------|---------------------------------------|------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------|-------------------------------|
| Bi            | $\mathrm{Bi_2O_3}_{\mathrm{Bi_2S_3}}$ | BISMUTH (Bi=208) into  | $_{\mathrm{Bi_{2}}}^{\mathrm{Bi_{2}}}$                                                          | 416<br>464<br>416<br>512                                         | 0.8966<br>0.8125           | Ī·95258<br>Ī·90982            |
| B             | $B_2O_3$                              | Boron (B=11)<br>into   | $\mathbf{B_2}$                                                                                  | 22<br>70                                                         | 0.3143                     | ī·49732                       |
| Cd ,,         | CdO<br>CdS                            | CADMIUM (Cd=112) into  | Cd<br>Cd<br>CdO                                                                                 | 112<br>128<br>1144<br>128<br>144                                 | 0.8750<br>0.7778<br>0.8889 | 1·94201<br>1·89086<br>1·94885 |
| Ca .,,        | CaO                                   | CALCIUM (Ca = 40) into | ${\rm CaCO_3\atop CaSO_4}$                                                                      | 40<br>56<br>100<br>56<br>156<br>56                               | 0·7143<br>1·7857<br>2·4286 | T·85387<br>0·25181<br>0·38535 |
| "             | ,,<br>CaO                             | ,, CaSO                | $\begin{array}{c} \text{CaCl}_2\\ \text{CaCl}_2\\ \text{CaH}_2\text{O}_2 \end{array}$           | 172<br>56<br>111<br>56<br>74<br>56                               | 3.0714<br>1.9822<br>1.3214 | 0.48734<br>0.29714<br>0.12104 |
| "             | CaCl <sub>2</sub> CaCO <sub>3</sub>   | "<br>"                 | $\begin{array}{c} \operatorname{CaO} \\ \operatorname{Cl_2} \\ \operatorname{Ca} \end{array}$   | 56<br>111<br>71<br>111<br>40<br>100                              | 0.5045<br>0.6396<br>0.4    | 1·70287<br>1·80594<br>1·60206 |
| "             | "                                     | "<br>"                 | $\begin{array}{c} \operatorname{CaO} \\ \operatorname{CO}_2 \\ \operatorname{CO}_3 \end{array}$ | 100<br>44<br>100<br>60<br>100                                    | 0.56<br>0.44<br>0.6        | 1.74819<br>1.64345<br>1.77815 |
| "             | CaSO <sub>4</sub>                     | ,, CaSC                | CaSO <sub>4</sub><br>20H <sub>2</sub><br>Ca                                                     | 136<br>100<br>172<br>100<br>40<br>136                            | 1·36<br>1·72<br>0·2941     | 0·13354<br>0·23553<br>1·46852 |
| "             | "<br>"                                | ,, CaSO                | CaO<br>CaCO <sub>3</sub><br>4, 2OH <sub>2</sub>                                                 | 56<br>136<br>100<br>136<br>172<br>136                            | 0.4118<br>0.7353<br>1.2647 | 1.61465<br>1.86646<br>0.10199 |
| "             | Ca <sub>3</sub> P <sub>2</sub> C      | )8 ,,                  | ${\rm SO_3\atop CaP_2O_6}$                                                                      | 80<br>136<br>198<br>310                                          | 0.5882<br>0.6387           | 1·76955<br>1·80530            |
| "             | "                                     | "                      | $\begin{array}{c} P_2O_5 \\ P_2 \end{array}$                                                    | $\begin{array}{c} \frac{142}{310} \\ \frac{62}{310} \end{array}$ | 0.4581<br>0.2              | 1.66093<br>1.30103            |

MULTIPLIERS AND THEIR LOGARITHMS REQUIRED IN GRAVIMETRIC ANALYSIS—continued.

| Ele-<br>ment. | Т                                  | o convert        |                                     | Frac-<br>tional<br>Multi-<br>plier.                                                    | Decimal<br>Multiplier. | Logarithm (to be added).       |
|---------------|------------------------------------|------------------|-------------------------------------|----------------------------------------------------------------------------------------|------------------------|--------------------------------|
|               | CARBON (C=12)                      |                  |                                     |                                                                                        |                        |                                |
| C             | CO <sub>2</sub>                    | into             | 2) C                                | 12                                                                                     | 0.2727                 | T·43573                        |
| ,,            | ,,                                 | ,,               | $CaCO_3$                            | 100                                                                                    | 2.2727                 | 0.35655                        |
|               |                                    |                  | Na <sub>2</sub> CO <sub>2</sub>     | 106                                                                                    | 2.4091                 | 0:38185                        |
| "             | 2°CO <sub>2</sub>                  | "                | $\mathrm{MnO}_2$                    | 86<br>88                                                                               | 0.9773                 | 1.99002                        |
|               | a                                  | (01              |                                     |                                                                                        |                        |                                |
| Cl            | CHLORI                             | into (Cl=        | 35.2)<br>HCl                        | 36.5                                                                                   | 1.0282                 | 0.01206                        |
| ,,            | ,,                                 | ,,               | NaCl                                | 58.5                                                                                   | 1.6479                 | 0.21693                        |
|               | $Cl_2$                             |                  | $MgCl_2$                            | 95                                                                                     | 1.3380                 | 0.12647                        |
| "             | ,,                                 | "                | MgCl <sub>2</sub>                   | 71<br>16<br>71                                                                         | 0.2254                 | 1.35286                        |
| ,,            | ,,                                 | ,,               | $CaCl_2$                            | **                                                                                     | 1.5634                 | 0.19406                        |
|               | Cyroxy                             | um (Cr=          | 50.5\                               |                                                                                        |                        |                                |
| Cr            | Cr <sub>2</sub> O <sub>3</sub>     | into             | Cr <sub>2</sub>                     | 105                                                                                    | 0.6863                 | Ī·83650                        |
|               |                                    |                  |                                     |                                                                                        |                        |                                |
| Co            | CoD                                | LT (Co=5<br>into | 9)<br>Co                            | 59                                                                                     | 0.7867                 | 1.89579                        |
| 00            | 000                                | 11100            | 00                                  | 75                                                                                     | 0 1001                 | 1 00010                        |
|               | COPPE                              | R (Cu = 68)      | 3.2)                                |                                                                                        |                        |                                |
| Cu            | CuO<br>2CuO                        | into             | Cu<br>Cu <sub>2</sub> O             | $\begin{array}{r} 63 \cdot 2 \\ -79 \cdot 2 \\ 142 \cdot 4 \\ 158 \cdot 4 \end{array}$ | 0.7980<br>0.8990       | 1.90199<br>1.95375             |
| "             | 2000                               | **               |                                     | 100                                                                                    |                        |                                |
| ,,            | Cu <sub>2</sub> O                  | "                | 2CuO                                | 158.4<br>142.4<br>126.4                                                                | 1·1124<br>0·5215       | $0.04625 \ \overline{1.71721}$ |
| 17            | Cu <sub>2</sub> (CNS) <sub>2</sub> | "                | $Cu_2$                              | 126·4<br>242·4                                                                         | 0.9219                 | 171721                         |
|               |                                    | RINE (F-         |                                     |                                                                                        |                        |                                |
| F             | $CaF_2$                            | into             | $\mathbf{F_2}$                      | 38<br>78                                                                               | 0.4872                 | 1.68769                        |
|               | Hynn                               | ogen (H          | =1)                                 |                                                                                        |                        |                                |
| Н             | H <sub>2</sub> SO <sub>4</sub>     | into             | 2HCl                                | 73                                                                                     | 0.7449                 | 1.87210                        |
| ,,            | ,,                                 | ,,               | $(NH_4)_2SO_4$                      | 132                                                                                    | 1.3470                 | 0.12935                        |
| ,,            | HCl                                | ,,               | Cl                                  | 35·5<br>36·5                                                                           | 0.9726                 | I-98794                        |
| "             | HNO <sub>3</sub>                   | "                | N                                   | 14 63                                                                                  | 0.2222                 | Ī·34679                        |
| 110           | Ino                                | N (Fe=56         | 1                                   |                                                                                        |                        |                                |
| Fe            | Fe                                 | into             | FeO                                 | 72                                                                                     | 1.2857                 | 0.10914                        |
| ,,            | ,,                                 | ,, Fe            | eSO <sub>4</sub> , 70H <sub>2</sub> | 278                                                                                    | 4.9643                 | 0.69586                        |
| ) "           | 1)                                 | 12               | $FeS_2$                             | 120                                                                                    | 2.1429                 | 0.33099                        |

MULTIPLIERS AND THEIR LOGARITHMS REQUIRED IN GRAVIMETRIC ANALYSIS-continued.

|     | ATTACHE CONTROL |                                                                    |                     |                                                 |                                                                      |                        |                                                 |  |
|-----|-----------------|--------------------------------------------------------------------|---------------------|-------------------------------------------------|----------------------------------------------------------------------|------------------------|-------------------------------------------------|--|
| Eme | le-             |                                                                    | To convert          | 90                                              | Frac-<br>tional<br>Multi-<br>plier.                                  | Decimal<br>Multiplier. | Logarithm (to be added).                        |  |
|     |                 | IRON (F                                                            | e = 56)— $con$      | rtinued.                                        |                                                                      |                        |                                                 |  |
| F   | 'e              | Fe <sub>2</sub>                                                    | into                | $MnO_2$                                         | 87                                                                   | 0.7768                 | 1.89030                                         |  |
| ,   | ,               | ,,                                                                 | ,,                  | $\operatorname{Fe_2(PO_4)_2}$                   | 302<br>112                                                           | 2.6964                 | 0.43079                                         |  |
| ,   | ,               | ,,                                                                 | **                  | $\mathrm{Fe_2O_3}$                              | $\begin{array}{c} \hat{1}\hat{6}\hat{0} \\ 112 \end{array}$          | 1.4286*                | 0.15490                                         |  |
| ١,  |                 | $Fe_2O_3$                                                          | ,,                  | $\mathrm{Fe_2}$                                 | 112<br>160                                                           | 0.7                    | 1.84510                                         |  |
| ,   |                 |                                                                    | "                   | Fe <sub>2</sub> (PO <sub>4</sub> ) <sub>2</sub> | 302                                                                  | 1.8875                 | 0.27589                                         |  |
| ,   | ,               | $3 \dot{\text{Fe}}_2 O_3$                                          | "                   | $^{2}\mathrm{Fe_{3}O_{4}}$                      | 464                                                                  | 0.9667                 | 1.98528                                         |  |
|     |                 | FeS.                                                               |                     | $S_2$                                           | 64                                                                   | 0.5333                 | 1.72700                                         |  |
| ,   | - 1             | FeS                                                                | "                   | Fe                                              | 5 6<br>8 8                                                           | 0.6364                 | 1.80371                                         |  |
|     | ·               | OFF C                                                              |                     | П.О                                             |                                                                      | 0.0007                 | - orosa                                         |  |
| ,   |                 | $2 \mathrm{FeS}$<br>$2 \mathrm{Fe} (\mathrm{NH_4})_2 (\mathrm{S})$ | 0 ) "60H            | Fe <sub>2</sub> O <sub>3</sub>                  | 160<br>176<br>87<br>784                                              | 0.9091<br>0.1110       | $\frac{1.95861}{1.04520}$                       |  |
| ,   | ,               | 216(11114)2(5                                                      | $O_4)_2$ , $OO11_2$ | Into Mino <sub>2</sub>                          | 784                                                                  | 0 1110                 | 1 04520                                         |  |
|     |                 |                                                                    | D (Pb=206           |                                                 |                                                                      |                        | _= 0 =                                          |  |
| F   | b               | PbS                                                                | into                | Pb                                              | 206.5                                                                | 0.8658                 | 1.93743                                         |  |
| ,   | - 1             | PbSO <sub>4</sub>                                                  | ,,                  | PbO<br>Pb                                       | 222.5<br>238.5<br>206.5<br>302.5                                     | 0.9329<br>0.6826       | $\frac{\bar{1}\cdot 96984}{\bar{1}\cdot 83419}$ |  |
| ,   | ,               | 1 0004                                                             | "                   | 1.5                                             | 302.5                                                                | 0 0020                 | 1 00419                                         |  |
| ١,  | ,               | ,,                                                                 | ,,                  | PbO                                             | 222.5<br>302.5                                                       | 0.7355                 | <u>1</u> .86660                                 |  |
| ,   | ,               | PbCrO <sub>4</sub>                                                 | "                   | Pb                                              | 323                                                                  | 0.6393                 | Ī·80572                                         |  |
| ١.  |                 | NELL D                                                             | diament             | PbO                                             | 222.5                                                                | 0.6889                 | Ī·83813                                         |  |
| ,   | ,               | 2PbCrO4                                                            | "                   | K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub>   | 295<br>646                                                           | 0.4567                 | 1.65959                                         |  |
|     | 1               | De la lace                                                         |                     |                                                 |                                                                      |                        |                                                 |  |
| M   | [g              | MgCl <sub>2</sub>                                                  | ESIUM (Mg           | (=24)<br>MgO                                    | 4.0                                                                  | 0.4210                 | Ī·62434                                         |  |
| 9   | ~               |                                                                    |                     | Cla                                             | 40<br>95<br>71<br>95                                                 | 0.7474                 | 1.87353                                         |  |
| ,   |                 | MgO                                                                | "                   | $MgCO_3^2$                                      | 84<br>40                                                             | 2.1                    | 0.32222                                         |  |
|     |                 |                                                                    |                     |                                                 | 13.5                                                                 | 0.077                  | 0.05500                                         |  |
| ,   |                 | ,,                                                                 | **                  | $MgCl_2$ $MgSO_4$                               | $\frac{95}{40}$                                                      | 2.375                  | 0·37566<br>0·47712                              |  |
| ,   |                 | "                                                                  | "                   | $Mg(NO_3)_2$                                    | 120<br>40<br>148<br>40                                               | 3.7                    | 0.56820                                         |  |
| ,   | '               |                                                                    | ,,                  |                                                 |                                                                      |                        |                                                 |  |
| ,   | ,               | $Mg_2P_2O_7$                                                       | "                   | Mg <sub>2</sub>                                 | 222                                                                  | 0.2162                 | 1.33489                                         |  |
| ,   | _               | "                                                                  | 39                  | 2MgO                                            | $\begin{array}{r} 80 \\ \hline 222 \\ 168 \\ \hline 222 \end{array}$ | †0.3604                | 1.55674                                         |  |
| ,   | ,               | "                                                                  | 23                  | $2 \mathrm{MgCO_3}$                             | 222                                                                  | 0.7568                 | Ī·87896                                         |  |
| ,   | ,               | ,,                                                                 | ,,                  | 2MgSO <sub>4</sub>                              | 240                                                                  | 1.0811                 | 0.03386                                         |  |
| ,   |                 | "                                                                  | ,, 2(Mg             | SO <sub>4</sub> , 70H <sub>2</sub> )            | 492                                                                  | 2.2162                 | 0.34561                                         |  |
| ,   | ,               | "                                                                  | "                   | CaH <sub>4</sub> P <sub>2</sub> O <sub>8</sub>  | $\begin{array}{c} 2 & 3 & 4 \\ \hline 2 & 2 & 2 \end{array}$         | 1.0541                 | 0.02286                                         |  |
| _   |                 |                                                                    |                     | -                                               | 1                                                                    |                        |                                                 |  |

<sup>\*</sup> Or divide by 0.7. † Or use the Phosphate Table, pp. 64-71, subtracting from the Mg<sub>2</sub>  $P_2O_7$  found the  $P_2O_5$  in it.

MULTIPLIERS AND THEIR LOGARITHMS REQUIRED IN GRAVIMETRIC ANALYSIS—continued.

| Ele-<br>ment. | To convert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fractional Multiplier. Decimal Logarithm (to be added)                                                                    |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Mg<br>,,      | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{bmatrix} \frac{62}{2} & 0.2793 & \overline{1}.44604 \\ \frac{144}{2} & 0.6396 & \overline{1}.80594 \end{bmatrix}$ |
| "             | $MgSO_4$ ,, $Ca_3P_2O_6$ , $Mg$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                     |
| Mn ,,         | $\begin{array}{ccc} \text{Manganese} \left( \text{Mn} = 55 \right) \\ \text{Mn} & \text{into} & \text{MnO} \\ \text{MnO} & \text{,,} & \text{Mn} \\ \text{MnO}_2 & \text{,,} & \text{Mn} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $n \mid \frac{55}{71} \mid 0.7747 \mid \overline{1}.88910$                                                                |
| "             | Mn <sub>3</sub> O <sub>4</sub> ,, 3Mn<br>,, 3MnO<br>MnS ,, Mn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                    |
| "             | MnSO <sub>4</sub> ,, MnO<br>,, Mn MnO<br>MERCURY (Hg = 200)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{55}{151}$ 0.3642 $\overline{1}$ .56139                                                                             |
| Hg<br>"       | HgS into Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0 = \frac{216}{232} = 0.9310 = \overline{1.96897}$                                                                       |
| "             | $Hg_2Cl_2$ ,, $2Hg$ ,, $Hg_2C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                     |
| Mo            | MOLYBDENUM. Ammonic phosphomolybdate into P $_{1}^{0}$ , $_{1}^{0}$ , into $_{2}^{0}$ , $_{2}^{0}$ , $_{3}^{0}$ , $_{4}^{0}$ , $_{5}^{0}$ , $_{6}^{0}$ , $_{7}^{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.0373  \overline{2}.57208$                                                                                              |
| Ni            | NiO Nickel (Ni = 58.6) Nio Ni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.4.0                                                                                                                     |
| N ,,          | NITROGEN AND AMMONIUM (N=14 N into NH <sub>3</sub> $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{7}$ $_{1}$ $_{1}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{5}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{1}$ $_{5}$ $_{5}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{5}$ $_{1}$ $_{5}$ $_{5}$ $_{7}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{5}$ $_{5}$ $_{5}$ $_{7}$ $_{7}$ $_{7}$ $_{8}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{5}$ $_{7}$ $_{7}$ $_{7}$ $_{8}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{2}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{3}$ $_{4}$ $_{4}$ $_{4}$ $_{3}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_$ | $\begin{bmatrix} \frac{17}{14} & 1.2143 & 0.08432 \\ \frac{63}{14} & 4.5 & 0.65321 \end{bmatrix}$                         |
| "             | ,, KNO <sub>s</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 101 7·2142 0·85819 6·25 0·79588                                                                                         |

MULTIPLIERS AND THEIR LOGARITHMS REQUIRED IN GRAVIMETRIC ANALYSIS—continued.

|   | Ele-<br>nent. | To conver                                              | t                     | Frac-<br>tional<br>Multi-<br>plier.                    | Decimal<br>Multiplier. | Logarithm (to be added). |  |  |  |
|---|---------------|--------------------------------------------------------|-----------------------|--------------------------------------------------------|------------------------|--------------------------|--|--|--|
|   |               | NITROGEN AND AMMO                                      |                       | 74                                                     |                        |                          |  |  |  |
|   |               | -continu                                               |                       |                                                        |                        |                          |  |  |  |
|   | N             | N <sub>2</sub> into                                    | $N_2O_5$              | 108                                                    | 3.8572                 | 0.58627                  |  |  |  |
|   | ,,            | $N_2O_5$ ,,                                            | $N_2$                 | 108                                                    | 0.2593<br>1.8704       | 1·41373<br>0·27193       |  |  |  |
|   | ,,            | "                                                      | $2KNO_3$ $Ca(NO_3)_2$ | 108<br>164                                             | 1.5185                 | 0.18142                  |  |  |  |
|   | ,,            | 33                                                     | Ca(1103)2             | 164                                                    | 1 3103                 | 0 10142                  |  |  |  |
|   | ,,            | ,, ,,                                                  | $Mg(NO_3)_2$          | 148                                                    | 1.3704                 | 0.13684                  |  |  |  |
|   | "             | NH <sub>3</sub>                                        | N N                   | 14                                                     | 0.8235                 | 1.91568                  |  |  |  |
|   | ,,            | ,, ,,                                                  | NH₄Cl                 | 53.5                                                   | 3.1470                 | 0.49790                  |  |  |  |
|   |               |                                                        |                       |                                                        |                        |                          |  |  |  |
|   | 39            | 2NH <sub>3</sub> ,,                                    | $(NH_4)_2 SO_4$       | 132                                                    | 3.8824                 | 0.58910                  |  |  |  |
|   | ,             | NH <sub>4</sub> Cl ,,                                  | N                     | 53.5                                                   | 0.2617                 | 1.41777                  |  |  |  |
|   | ,,            | "                                                      | $\mathrm{NH_3}$       | 53.5                                                   | 0.3178                 | 1·50210                  |  |  |  |
|   |               | (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> ,,     | $H_{2}SO_{4}$         | 98                                                     | 0.7424                 | Ī·87065                  |  |  |  |
| H | "             |                                                        | $2NH_3$               | $\frac{132}{34}$                                       | 0.2576                 | 1.41091                  |  |  |  |
|   | "             | "                                                      | $N_2$                 | 28<br>132                                              | 0.2121                 | 1.32658                  |  |  |  |
|   | 22            | Ammonia-alum ,,                                        | Potash-alum           | 948                                                    | 1.0464                 | 0.01968                  |  |  |  |
|   |               |                                                        |                       |                                                        |                        |                          |  |  |  |
|   |               | PHOSPHORUS (                                           | P = 31)               |                                                        |                        |                          |  |  |  |
|   | P             | P <sub>2</sub> into                                    | $P_2O_5$              | 142<br>62                                              | 2.2903                 | 0.35990                  |  |  |  |
|   | "             | $P_2O_5$ ,,                                            | $P_2$                 | $\begin{array}{r} 62 \\ 143 \\ 310 \\ 142 \end{array}$ | 0.4366                 | 1.64010                  |  |  |  |
|   | "             | "                                                      | $Ca_3P_2O_8$          | 142                                                    | 2.1831                 | 0.33907                  |  |  |  |
| 1 |               | PLATINUM (Pt                                           | - 107.9)              |                                                        |                        |                          |  |  |  |
|   | Pt            | (NH <sub>4</sub> ) <sub>2</sub> PtC <sub>16</sub> into | N <sub>2</sub>        | 28                                                     | 0.0628                 | 2.79763                  |  |  |  |
|   | ,,            | ,, ,,                                                  | $2NH_3^2$             | 34                                                     | 0.0762                 | 2.88195                  |  |  |  |
|   | ,,            | " "                                                    | 2NH <sub>4</sub> Cl   | 107                                                    | 0.2398                 | 1.37985                  |  |  |  |
|   |               |                                                        | •                     |                                                        |                        |                          |  |  |  |
|   | ,,            | ,, ,,                                                  | $2\mathrm{NH_4}$      | 446.2                                                  | 0.0807                 | 2.90677                  |  |  |  |
|   | ,,            | T. D. C.                                               | $(NH_4)_2SO_4$        | $\frac{132}{446\cdot 2}$                               | 0.2958                 | 1.47104                  |  |  |  |
|   | 24            | K <sub>2</sub> PtCl <sub>6</sub> ,,                    | $K_2$                 | 488·2                                                  | 0.1600                 | Ī·20350                  |  |  |  |
|   |               |                                                        | 2KCl*                 | 149                                                    | 0.3052                 | Ī·48459                  |  |  |  |
| 1 | "             | "                                                      | K <sub>0</sub> O      | 488·2<br>488·2                                         | 0.1925                 | 1.28453                  |  |  |  |
|   | "             | "                                                      | $K_2SO_4$             | 174<br>488.2                                           | 0.3564                 | 1.55195                  |  |  |  |
|   | ,,            | ,, ,,                                                  | 22204                 | 488.2                                                  |                        |                          |  |  |  |
| 1 | ,,            | Pt ,,                                                  | 2NH <sub>4</sub> Cl   | 107                                                    | 0.5426                 | 1.73448                  |  |  |  |
| 1 | 3,            | ,,                                                     | $(NH_4)_2 SO_4$       | $\frac{132}{1972}$                                     | 0.6694                 | 1.82567                  |  |  |  |
|   |               |                                                        |                       |                                                        |                        |                          |  |  |  |

<sup>\*</sup> Using Tatlock's method of determining potash, the following empirical factors have

<sup>(</sup>i) Tatlock's own factor is platinochloride pp. ×0.3056=KCl.
(ii) Dr Dittmar (see Jour. Soc. Chem. Ind., 1887, p. 801) found platinochloride pp. ×3.3067=KCl. and pt. × 76016=KCl.
(iii) Dr Dyer, as the result of his own determinations, uses the factors:—

Platinochloride pp.  $\times$  '1955 =  $K_2O$ ,  $\times$  '3094 = KCl.

## MULTIPLIERS AND THEIR LOGARITHMS REQUIRED IN GRAVIMETRIC ANALYSIS—continued.

| Ele-<br>ment. |                                                    | To convert         |                                                                  | t<br>b                | Frac-<br>ional<br>Iulti-<br>olier.                                                                                                                                                                                         | Decimal<br>Multiplier.     | Logarithm (to be added).      |
|---------------|----------------------------------------------------|--------------------|------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------|
| K .,,         | K<br>K <sub>2</sub><br>2KCl                        | Potassium (K into  | K                                                                | 20                    | 74.5<br>39<br>94<br>78<br>94<br>149                                                                                                                                                                                        | 1.9103<br>1.2051<br>0.6309 | 0.28109<br>0.08103<br>1.79994 |
| "             | KCl<br>K <sub>2</sub> O                            | 31<br>23<br>23     |                                                                  | IT                    | 35.5<br>74.5<br>188<br>74.5<br>149<br>94                                                                                                                                                                                   | 0.4765<br>2.5235<br>1.5851 | 1.67807<br>0.40200<br>0.20006 |
| ,,            | "                                                  | ,,<br>,,           | $ m K_2S$ $ m 2KN$ $ m Rochelle~s$                               | O <sub>3</sub>        | 174<br>94<br>202<br>94<br>564<br>94                                                                                                                                                                                        | 1.8511<br>2.1490<br>6.0    | 0.26742<br>0.33222<br>0.77815 |
| "             | "<br>"                                             | 3+<br>33<br>31     | $K_2C$ $2KH$ $2KHC_4H$                                           | 10<br>10 <sub>6</sub> | 1 3 8<br>9 4<br>1 1 2<br>9 4<br>3 7 6<br>9 4                                                                                                                                                                               | 1:4681<br>1:1915<br>4:0    | 0.16675<br>0.07609<br>0.60206 |
| "             | K <sub>2</sub> SO <sub>4</sub><br>KNO <sub>3</sub> | ;;<br>Silicon (Si= |                                                                  | N                     | 94<br>174<br>14<br>101                                                                                                                                                                                                     | 0.5402<br>0.1386           | 1·73258<br>1·14181            |
| Si            | SiO <sub>2</sub>                                   | into SILVER (Ag=   | 107:7)                                                           | Si                    | 28·3<br>60·3                                                                                                                                                                                                               | 0.4693                     | Ī·67147                       |
| Ag            | AgBr<br>AgCl                                       | into               |                                                                  | Ag 1                  | $\begin{array}{c} \frac{80}{87} \cdot 7 \\ 07 \cdot 7 \\ 43 \cdot 2 \\ 35 \cdot 5 \\ 43 \cdot 2 \end{array}$                                                                                                               | 0.4262<br>0.7521<br>0.2479 | 1.62963<br>1.87627<br>1.39429 |
| "             | AgI                                                | "                  | E                                                                | ICl I                 | 8 6 · 5<br>4 3 · 2<br>2 6 · 5<br>3 4 · 2                                                                                                                                                                                   | 0.2549<br>0.5401           | 1·40635<br>1·73250            |
| Na ,,         | Na<br>Na <sub>2</sub><br>Na <sub>2</sub> O         | Sodium (Nainto     | Na                                                               | 1 <sub>2</sub> O      | 5 8 · 5<br>2 3<br>6 2<br>4 6<br>1 1 7<br>6 2                                                                                                                                                                               | 2·5435<br>1·3478<br>1·8871 | 0·40543<br>0·12963<br>0·27579 |
| "             | "                                                  | "<br>"             | $egin{array}{l} { m Na_2S} \ { m Na_2S} \ { m 2NaN} \end{array}$ | O <sub>3</sub>        | $     \begin{array}{r}             142 \\             \hline             62 \\             106 \\             \hline             62 \\             \hline             170 \\             \hline             62           $ | 2·2903<br>1·7097<br>2·7419 | 0.35990<br>0.23291<br>0.43806 |
| "             | NaCl                                               | "<br>"<br>"        | 2Nal<br>NaH(                                                     | Cl                    | 80<br>62<br>35.5<br>58.6<br>84<br>58.6                                                                                                                                                                                     | 1·2903<br>0·6068<br>1·4359 | 0·11070<br>1·78307<br>0·15712 |

MULTIPLIERS AND THEIR LOGARITHMS REQUIRED IN GRAVIMETRIC ANALYSIS—continued.

| Ele-<br>ment.  | To convert                                                      | L                                                                                                                           | Frac-<br>tional<br>Multi-<br>plier.                                 | Decimal<br>Multiplier.     | Logarithm (to be added).                                   |
|----------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------|------------------------------------------------------------|
| Na<br>,,       | Sodium (Na=23)-<br>2NaCl into<br>NaNO <sub>3</sub> ",           | $egin{array}{c} \operatorname{Continued.} & \operatorname{Na_2O} \\ \operatorname{Na_2CO_3} & \operatorname{N} \end{array}$ | 62<br>117<br>106<br>117<br>14<br>85                                 | 0.5299<br>0.9060<br>0.1647 | Ī·72421<br>Ī·95712<br>Ī·21671                              |
| ,,<br>,,       | Na <sub>2</sub> SO <sub>4</sub> ,,                              | a <sub>2</sub> CO <sub>3</sub> , 10OH <sub>2</sub><br>Na <sub>2</sub><br>Na <sub>2</sub> O                                  | $\begin{array}{c} 286 \\ 106 \\ 46 \\ 142 \\ 62 \\ 142 \end{array}$ | 2.6981<br>0.3239<br>0.4366 | 0.43106<br>1.51047<br>1.64010                              |
| Sr<br>,,       | STRONTIUM (Sr<br>SrCO <sub>3</sub> into<br>SrSO <sub>4</sub> ,, | Sr<br>Sr                                                                                                                    | 87·3<br>147·3<br>87·3<br>183·3                                      | 0.5927<br>0.4763           | 1·77281<br>1·67785                                         |
| S<br>,,        | SULPHUR (S. so, into                                            | CaSO <sub>4</sub>                                                                                                           | 32<br>80<br>136<br>80                                               | 0·4<br>1·7                 | 1.60206<br>0.23045                                         |
| "              | TIN (Sn=1                                                       |                                                                                                                             | 172<br>80<br>142<br>80                                              | 2·15<br>1·775              | 0·33244<br>0·24920<br>1·89579                              |
| Sn<br>,,<br>Zn | SnO <sub>2</sub> into<br>Sn ,,<br>ZINC (Zn = Zn into            | $\operatorname{Sn} \operatorname{SnO}_2$ 65) $\operatorname{ZnO}$                                                           | 118<br>150<br>150<br>118                                            | 0.7867<br>1.2712           | 0.10421                                                    |
| "              | ZnO ,, ZnS ,,                                                   | $egin{array}{c} Z_{ m n} C_{ m l_2} \\ Z_{ m n} \\ Z_{ m n} \end{array}$                                                    | 81<br>65<br>136<br>65<br>85<br>85<br>85<br>97                       | 0·8025<br>0·6701           | 0 09337<br>0 0 3 2 0 6 3<br>1 0 9 0 4 4 3<br>1 0 8 2 6 1 4 |

Example.—1:327 grams of a substance gave 0:8470 gram BaSO<sub>4</sub>: to find the percentages of SO<sub>3</sub> and S present respectively.

Since 1.327 grams give 0.847 gram BaSO<sub>4</sub> 100 grams will give

 $\frac{\cdot 847 \times 100}{1 \cdot 327} = \frac{84 \cdot 70}{1 \cdot 327}$ 

Taking logs.

Log. 84.70 = 1.92788,, 1.327 = 0.12287

Add log. (Ba  $SO_4$  into  $SO_3$ ) 1.805011.53573

1.34074 = 21.92 per cent. SO<sub>3</sub>.

Add log. (SO<sub>3</sub> into S.) 1.60206

0.94280 = 8.77 per cent. S.

Rule.-First find the weight of the pp. that 100 parts of substance would give, then add the log. of the multiplier to get percentage of substance sought.

#### MULTIPLIERS AND THEIR LOGARITHMS REQUIRED IN GRAVIMETRIC ANALYSIS—continued.

| Ele-<br>nent. | To convert | Frac-<br>tional<br>Multi-<br>plier. | Decimal<br>Multiplier. | Logarithm (to be added). |
|---------------|------------|-------------------------------------|------------------------|--------------------------|
|               |            |                                     |                        |                          |
|               |            |                                     |                        |                          |
|               |            |                                     |                        |                          |
|               |            |                                     |                        |                          |
|               |            |                                     |                        |                          |
|               |            |                                     |                        |                          |
|               | •          |                                     |                        |                          |
|               | ,          |                                     |                        |                          |
|               |            |                                     |                        |                          |
|               |            |                                     |                        |                          |
|               |            |                                     |                        |                          |
|               |            |                                     |                        |                          |
|               |            |                                     |                        |                          |
|               | *          |                                     |                        |                          |
|               |            |                                     |                        |                          |
|               |            |                                     |                        |                          |
|               |            |                                     | -                      |                          |
|               |            |                                     | -                      |                          |
|               |            | 473                                 |                        |                          |
|               |            |                                     |                        |                          |
|               | •          |                                     |                        |                          |
|               |            |                                     |                        |                          |
|               |            |                                     |                        |                          |
|               |            |                                     |                        |                          |
|               |            |                                     |                        |                          |
|               |            |                                     |                        |                          |

## MULTIPLIERS AND THEIR LOGARITHMS REQUIRED IN GRAVIMETRIC ANALYSIS -- continued.

| Ele-<br>ment | To convert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Frac-<br>tional<br>Multi-<br>plier. | Decimal<br>Multiplier. | Logarithm (to be added). |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------|--------------------------|
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                        |                          |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                        | 10.7                     |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                        |                          |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                        |                          |
|              | C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |                        |                          |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | 4.141.                 |                          |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                        |                          |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                        |                          |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                        |                          |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | and the                |                          |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | e Halisty<br>President |                          |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | 6-6-4-3<br>6-6-4-3     |                          |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sus                                 |                        |                          |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                        |                          |
|              | The state of the s |                                     | e en application       | ]                        |

## MULTIPLIERS REQUIRED IN VOLUMETRIC ANALYSIS.

| BIULITELL                                        | AI CANTUGAN CAS.                                                                                                                                                                                                                                                                                                | VOLUMEIRIO                                        | ANALIS.          | Lio.                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Normal H <sub>2</sub> SO <sub>4</sub>            | 1 c.c. = 0.049                                                                                                                                                                                                                                                                                                  | OP II com                                         | !                | Logarithms.                                                                                                                                                                                                                                                                                            |
| Normal H <sub>2</sub> SO <sub>4</sub>            | 1 c.c. = 0 049                                                                                                                                                                                                                                                                                                  | gram H <sub>2</sub> SO <sub>4</sub>               |                  | $\frac{2.690}{2.681}$ $\frac{1961}{2412}$                                                                                                                                                                                                                                                              |
|                                                  | 0.048, = $0.048$                                                                                                                                                                                                                                                                                                | ,, SU <sub>4</sub>                                |                  | $\frac{2}{2}$ ·602 0600                                                                                                                                                                                                                                                                                |
| Normal HCl                                       | 1  c.c. = 0.0365                                                                                                                                                                                                                                                                                                | ,, SU <sub>3</sub>                                |                  | $\frac{2}{2}.562$ 2929                                                                                                                                                                                                                                                                                 |
| Normal Hot                                       | = 0.0355                                                                                                                                                                                                                                                                                                        | ,, Cl.                                            |                  | $\frac{2}{2}.550$ 2284                                                                                                                                                                                                                                                                                 |
| Normal HNO3                                      | 1  c.c. = 0.063                                                                                                                                                                                                                                                                                                 | HNO                                               |                  | $\frac{2}{2} \cdot 799 3405$                                                                                                                                                                                                                                                                           |
| Troimar III.Og                                   | ,, = 0.062                                                                                                                                                                                                                                                                                                      | $NO_3$                                            |                  | $\frac{1}{2}$ .792 3917                                                                                                                                                                                                                                                                                |
|                                                  | ,, =0.054                                                                                                                                                                                                                                                                                                       | N O                                               | 1 1              | $\frac{1}{2}$ .732 3938                                                                                                                                                                                                                                                                                |
| Normal H2C2O4                                    | 1  c.c. = 0.063                                                                                                                                                                                                                                                                                                 | ", H <sub>2</sub> C <sub>2</sub> O <sub>4</sub> , | 20H <sub>2</sub> | $\overline{2}$ 799 3405                                                                                                                                                                                                                                                                                |
| 2-2-4                                            | ,, =0.045                                                                                                                                                                                                                                                                                                       | H () ()                                           |                  | $\overline{2}$ 653 2125                                                                                                                                                                                                                                                                                |
| Normal NaHO                                      | 1  c.c. = 0.040                                                                                                                                                                                                                                                                                                 | $n_2 \cup 2 \cup 4$                               |                  | $\overline{2}$ 602 0600                                                                                                                                                                                                                                                                                |
|                                                  | ,, = 0·031                                                                                                                                                                                                                                                                                                      | " Na <sub>2</sub> O                               |                  | $\overline{2}$ ·491 3617                                                                                                                                                                                                                                                                               |
| Normal KHO                                       | 1  c.c. = 0.056                                                                                                                                                                                                                                                                                                 | "KHO                                              |                  | $\overline{2}$ :748 1880                                                                                                                                                                                                                                                                               |
|                                                  | = 0.047                                                                                                                                                                                                                                                                                                         | ., K <sub>2</sub> O                               |                  | $\overline{2}$ ·672 0979                                                                                                                                                                                                                                                                               |
| Normal Na <sub>2</sub> CO <sub>3</sub>           | 1  c.c. = 0.053                                                                                                                                                                                                                                                                                                 | Na CO                                             |                  | $\overline{2}$ .724 2759                                                                                                                                                                                                                                                                               |
|                                                  | =0.030                                                                                                                                                                                                                                                                                                          | ,, CO <sub>3</sub>                                |                  | $\overline{2}$ ·477 1213                                                                                                                                                                                                                                                                               |
|                                                  | = 0.022                                                                                                                                                                                                                                                                                                         | ,, CO <sub>2</sub>                                |                  | $\overline{2} \cdot 342 \ 4227$                                                                                                                                                                                                                                                                        |
| Decinormal AgNO3                                 | 1  c.c. = 0.0108                                                                                                                                                                                                                                                                                                | ,, Ag .                                           |                  | $\overline{2} \cdot 033 \ 4238$                                                                                                                                                                                                                                                                        |
|                                                  | ,, =0.017                                                                                                                                                                                                                                                                                                       | " AgNO <sub>3</sub>                               |                  | $\bar{2}$ ·230 4489                                                                                                                                                                                                                                                                                    |
|                                                  | ,, = 0.00355                                                                                                                                                                                                                                                                                                    | ,, Cl .                                           |                  | 3.550 2284                                                                                                                                                                                                                                                                                             |
| Decinormal NaCl                                  | 1  c.c. = 0.00585                                                                                                                                                                                                                                                                                               | " NaCl                                            |                  | $\begin{array}{cccc} \overline{2} \cdot 672 & 0979 \\ \overline{2} \cdot 724 & 2759 \\ \overline{2} \cdot 477 & 1213 \\ \overline{2} \cdot 342 & 4227 \\ \overline{2} \cdot 033 & 4238 \\ \overline{2} \cdot 230 & 4489 \\ \overline{3} \cdot 550 & 2284 \\ \overline{3} \cdot 767 & 1559 \end{array}$ |
| CALCIUM (Ca = 40)                                |                                                                                                                                                                                                                                                                                                                 |                                                   |                  |                                                                                                                                                                                                                                                                                                        |
| 1 c.c. $\frac{N}{10}$ perman                     | ganate = 0.0028 gr                                                                                                                                                                                                                                                                                              | am CaO .                                          |                  | 3.447 1580                                                                                                                                                                                                                                                                                             |
| ,, ,,                                            | =0.0050 gr<br>=0.0086 gr<br>oxalic acid=0.028<br>dl × 0.444 = CaO<br>× 0.07143 = CaO                                                                                                                                                                                                                            | am CaCO                                           |                  | 3.698 9700                                                                                                                                                                                                                                                                                             |
| 1, ,,                                            | =0.0086 gr                                                                                                                                                                                                                                                                                                      | am CaSO <sub>4</sub> , 20                         | Н.               | 3.934 4985                                                                                                                                                                                                                                                                                             |
| ,, normal                                        | oxalic acid = 0.028                                                                                                                                                                                                                                                                                             | 0 gram CaO                                        | . 55             | $\overline{2} \cdot 447 1580$                                                                                                                                                                                                                                                                          |
| Cryst. oxalic acid                               | $1 \times 0.444 = CaO$                                                                                                                                                                                                                                                                                          |                                                   |                  | 1.647 3830                                                                                                                                                                                                                                                                                             |
| Double iron salt                                 | oxalic acid = $0.028$<br>$1 \times 0.444 = CaO$<br>$\times 0.07143 = CaO$                                                                                                                                                                                                                                       |                                                   |                  | $\overline{2}$ 853 8807                                                                                                                                                                                                                                                                                |
| CHLORINE (Cl=35                                  | ·37)                                                                                                                                                                                                                                                                                                            |                                                   |                  |                                                                                                                                                                                                                                                                                                        |
| 1 c.c. $\frac{N}{10}$ silver s                   | olution = 0.003537                                                                                                                                                                                                                                                                                              | gram Cl .                                         |                  | 3.548 6351                                                                                                                                                                                                                                                                                             |
| ., .,                                            | =0.005837<br>us or hyposulphit                                                                                                                                                                                                                                                                                  | gram NaCl                                         |                  | 3.766 1897                                                                                                                                                                                                                                                                                             |
| , N .                                            |                                                                                                                                                                                                                                                                                                                 |                                                   |                  |                                                                                                                                                                                                                                                                                                        |
| $1 \text{ c. c. } \overline{10} \text{ arsento}$ | us or hyposulphit                                                                                                                                                                                                                                                                                               | te solution = 0                                   | 0.003537         |                                                                                                                                                                                                                                                                                                        |
| gram                                             | Cl                                                                                                                                                                                                                                                                                                              |                                                   |                  | 3.548 6351                                                                                                                                                                                                                                                                                             |
| 1 litre of chlorin                               | cl<br>e at 0° C. and 760 i                                                                                                                                                                                                                                                                                      | mm. weighs 3.                                     | 17 grams         | 0.501 0593                                                                                                                                                                                                                                                                                             |
| CHROMIUM (Cr=5                                   |                                                                                                                                                                                                                                                                                                                 | 0                                                 | 0                |                                                                                                                                                                                                                                                                                                        |
| Motallia iron v 0                                | 1.2102 _ Cm                                                                                                                                                                                                                                                                                                     |                                                   |                  | T·494 5720                                                                                                                                                                                                                                                                                             |
| Metallic Iron x 0                                | 0.5020 = Cr                                                                                                                                                                                                                                                                                                     |                                                   |                  | 1.776 7738                                                                                                                                                                                                                                                                                             |
| ,, ×0                                            | $0.5981 = CrO_3$ .<br>$0.8784 = K_2Cr_2O_7$<br>0.926 = PhCrO                                                                                                                                                                                                                                                    |                                                   |                  | 1.943 6923                                                                                                                                                                                                                                                                                             |
| ,, x v 1                                         | $10704 = R_2 C r_2 C_7$                                                                                                                                                                                                                                                                                         |                                                   |                  | 0.284 6563                                                                                                                                                                                                                                                                                             |
| Double iron salt                                 | × 0.0446 - Cr                                                                                                                                                                                                                                                                                                   |                                                   |                  | 2.649 3349                                                                                                                                                                                                                                                                                             |
| Double Holl Sall                                 | $\times 0.0854 = CrO$                                                                                                                                                                                                                                                                                           |                                                   |                  | $\frac{2}{2} \cdot 931 \ 4579$                                                                                                                                                                                                                                                                         |
| "                                                | x 0.1255 = K-Cr.O                                                                                                                                                                                                                                                                                               |                                                   |                  | 1.098 6437                                                                                                                                                                                                                                                                                             |
| "                                                | $\times 0.275 = PbCrO$                                                                                                                                                                                                                                                                                          |                                                   |                  | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                 |
| 1 c.c. N solution                                | $\begin{array}{l} \text{0.125 = Cr} \\ \text{0.15981 = CrO}_3 \\ \text{0.8784} = \text{K}_2\text{Cr}_2\text{O}_7 \\ \text{0.926} = \text{PbCrO}_4 \\ \text{0.0146 = Cr} \\ \text{0.01255} = \text{K}_2\text{Cr}_2\text{O}_7 \\ \text{0.01255} = \text{PbCrO}_4 \\ \text{n} = 0.003349 \text{ gram} \end{array}$ | CrO.                                              | × .              | 3.524 9151                                                                                                                                                                                                                                                                                             |
| 10 solution                                      | = 0.003549 gram<br>= 0.00492 gram                                                                                                                                                                                                                                                                               | K.Cr.O                                            |                  | 3·691 9651                                                                                                                                                                                                                                                                                             |
| "                                                | - 0. 00492 gram                                                                                                                                                                                                                                                                                                 | 11201207 .                                        |                  | 0 001 5001                                                                                                                                                                                                                                                                                             |

MULTIPLIERS REQUIRED IN VOLUMETRIC ANALYSIS—continued.

| COPPER (Cu = 63)                                                                       | Logarithms.                                                        |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 1 c.c. $\frac{N}{10}$ solution=0.0063 gram Cu                                          | 3.799 3405                                                         |
| Iron v 1:125 — conner                                                                  |                                                                    |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                   | $\begin{array}{c} 0.051 & 1525 \\ \hline 1.206 & 0159 \end{array}$ |
| Cyanogen (CN = 26)                                                                     |                                                                    |
| 1 c.c. $\frac{N}{10}$ silver solution = 0.0052 gram CN                                 | 3.716 0033                                                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                   | (3·732 3938<br><b>2</b> ·114 6110                                  |
| $,, \frac{N}{10} \text{ iodine} \qquad = 0.003255 \text{ gram KCN}$                    | 3.512 5510                                                         |
| Potassic Ferrocyanide (K <sub>4</sub> FeCy <sub>6</sub> , 3OH <sub>2</sub> =422)       |                                                                    |
| Metallic iron ×7.541=cryst. potassic ferrocyanide<br>Double iron salt ×1.077= ,, ,, ,, | 0.877 4289<br>0.032 2157                                           |
| Potassic Ferricyanide (K <sub>6</sub> Fe <sub>2</sub> Cy <sub>12</sub> =658)           |                                                                    |
| Metallic iron $\times 5.88$ = potassic ferricyanide                                    |                                                                    |
| N                                                                                      | 0.225 3093                                                         |
| $\frac{1}{10}$ Hyposulphite × 0 0329 = ,,                                              | 2.517 1959                                                         |
| Gold (Au = 196.5)                                                                      |                                                                    |
| 1 c.c. normal oxalic acid=0.0655 gram gold                                             | 2.816 2413                                                         |
| IODINE (I=126.5)                                                                       |                                                                    |
| 1 e.c. $\frac{N}{10}$ hyposulphite=0.01265 gram iodine.                                | 2.102 0905                                                         |
| Iron (Fe=56)                                                                           |                                                                    |
| 1 c.c. $\frac{N}{10}$ permanganate, bichromate,                                        |                                                                    |
|                                                                                        | 5.740 1000                                                         |
| or hyposulphite = 0.0056 Fe = 0.0072 FeO                                               | $\frac{3}{3}$ .748 1880 $\frac{3}{8}$ .857 3325                    |
| $= 0.0080 \text{ Fe}_2\text{O}_3$ .                                                    | 3.903 0900                                                         |
| LEAD (Pb=206·4)                                                                        |                                                                    |
| 1 c.c. $\frac{1}{10}$ permanganate = 0.01032 gram lead                                 | 2.013 6797                                                         |
| 1 c.c. normal oxalic acid=0.1032 gram lead                                             | Ī·013 6797                                                         |
| Metallic iron $\times 1.842 =$ lead Double iron salt $\times 0.263 =$                  | 0.265 2896 $1.419$ 9557                                            |
|                                                                                        | 1 419 9007                                                         |
| Manganese (Mn=55)                                                                      |                                                                    |
| $MnO = 71$ , $MnO_2 = 87$ .<br>Metallic iron $\times 0.491 = Mn$ .                     | <u>Ī</u> ·691 0815                                                 |
| 0.00000000000000000000000000000000000                                                  | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$             |
| $,, \times 0.7768 = MnO_2$                                                             | 1.890 3092                                                         |

## MULTIPLIERS REQUIRED IN VOLUMETRIC ANALYSIS—continued.

|                                                                                                | Lagarithma                                              |
|------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Manganese (Mn = 55)—continued.                                                                 | Logarithms.                                             |
| Double iron salt $\times$ 0.0911 = MnO                                                         | 2.9595184                                               |
|                                                                                                | 1.045 3230                                              |
| Cryst. oxalic acid $\times$ 0 ·6916 = MnO <sub>2</sub>                                         | 1.839 8550                                              |
| 1 c.c. $\frac{N}{10}$ solution = 0.00355 gram MnO                                              | 3.550 2284                                              |
| ,, , = $0.00435 \text{ gram MnO}_2$                                                            | 3.638 4893                                              |
|                                                                                                |                                                         |
| MERCURY (Hg=200)                                                                               | T. 505 0105                                             |
| Double iron salt $\times$ 0·5104 = Hg                                                          | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ |
|                                                                                                |                                                         |
| 1 c.c. $\frac{1}{10}$ solution = 0.0200 gram Hg                                                | $\bar{2}$ ·301 0300                                     |
| ,, = $0.0208 \text{ gram Hg}_2\text{O}$                                                        | $\frac{2}{3}$ :318 0633                                 |
| ,, ,, = $0.0271 \text{ gram HgCl}_2$                                                           | 2.432 9693                                              |
|                                                                                                |                                                         |
| NITROGEN AS NITRATES AND NITRITES                                                              |                                                         |
| $N_2O_5 = 108$ . $N_2O_3 = 76$ .<br>Normal acid $\times 0.0540 = N_2O_5$ .                     | 2.732 3938                                              |
| $,, \times 0.1011 = KNO_3 \qquad . \qquad . \qquad .$                                          | 1.004 7512                                              |
| $0.1011 = KNO_3$                                                                               | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$   |
| $,, \qquad \times 0.6018 = \text{KNO}_3$                                                       | 1.7794522                                               |
| $\sim 0.3214 = N_2O_5$                                                                         | 1.507 0459                                              |
| Gramm (A. 107:00)                                                                              |                                                         |
| SILVER (Ag = $107.66$ )                                                                        |                                                         |
| 10                                                                                             | $\overline{2}$ · 032 0544                               |
| ,, =0.016966 ,, AgNO <sub>3</sub>                                                              | 2.229 5795                                              |
|                                                                                                |                                                         |
| SULPHURETTED HYDROGEN (H <sub>2</sub> S=34)                                                    |                                                         |
| 1 c.c. $\frac{N}{10}$ arsenious solution = 0.00255 gram H <sub>2</sub> S                       | 3.406 5402                                              |
| 10                                                                                             |                                                         |
| (Por (Co. 110)                                                                                 |                                                         |
| Tin (Sn=118) Metallic iron × 1.0536=tin                                                        | 0.022 6758                                              |
| Double iron salt $\times$ 0.1505 = tin                                                         | $0.022 6758$ $\overline{1.177} 5365$                    |
| Factor for $\frac{N}{10}$ iodine or permanganate solution 0.0059 .                             |                                                         |
| 10 location of permanganate solution of 0000 .                                                 | 0 110 0020                                              |
|                                                                                                |                                                         |
| ZINC (Zn = 65)                                                                                 | T. 504 1014                                             |
| Zinc (Zn = 65)  Metallic iron × 0 '5809 = Zn  , 0 '724 = ZnO  Double iron salt × 0 '08298 = Zn | $\frac{1.764}{1.859}$ 7386                              |
| Double iron salt $\times 0.08298 = \text{Zn}$                                                  | $\frac{1}{2}$ .918 9734                                 |
| " 0·1034 = ZnO                                                                                 | $\overline{1}.014$ 5205                                 |
| 37                                                                                             | 3·511 8834                                              |
| 10                                                                                             |                                                         |

#### Notes on Logarithms.

Definition.—The logarithm of a number N is the value of x which

satisfies the equation ax=N, where a is some given number.

Thus if a be 10 (which is the base of Briggs' or the ordinary logarithms), the logarithm of 100 is 2, that of 1000 is 3; and that of any number between 100 and 1000 will be greater than 2 and less than 3, so that it may be represented by 2 followed by places of decimals.

By means of a table of logarithms two numbers may be multiplied together by adding their logarithms and divided by subtracting their logarithms, the result in each case being the number corresponding to the logarithm thus obtained. Also Involution, or raising of powers, is performed by multiplication of the logarithm of the number by the index of the power; and Evolution, or extraction of roots, by division of the logarithm of the number by the index of the root.

The integral part of a logarithm is called the *characteristic*, the decimal part the *mantissa*. The characteristic may be either positive or negative (e.g., 2,  $\overline{2}$ ),\* but the mantissa is *always positive*. The mantissa *only* are registered in the tables, the characteristics always

being found by the following simple rules :-

(1) For numbers greater than unity, the characteristic is one less

than the number of digits, and is positive.

(2) For numbers less than unity, the characteristic is one greater than the number of ciphers which precede the first significant figure, and is negative.\*

Negative characteristics are calculated according to the ordinary rules of algebraic addition and subtraction. A few examples will show the methods employed.

### (1) Addition-

+5 added to  $\overline{3}$  gives +2.

+6 is increased to +7 by the 1 carried over from the mantissæ, and +7 added to 2 gives +5.

<sup>\*</sup>The negative sign is placed over the characteristic to indicate that it alone is negative. If placed in front, like an ordinary negative sign, both characteristic and mantissa would become negative.

#### Notes on Logarithms-continued.

#### (1) Addition-continued.

Add  $\frac{2}{3}$ :5632874  $\frac{2}{3}$ :2465281

5.8098155

 $\begin{array}{c} \text{Add} \ \ \overline{3} \cdot 3010300 \\ \overline{2} \cdot 9020029 \end{array}$ 

**4**·2030329

Here the +1 carried over from the mantissæ is added to  $\overline{3}$  giving  $\overline{2}$ , and  $\overline{2}$  added to  $\overline{2}$  gives  $\overline{4}$ .

#### (2) Subtraction-

Rule.—Change the sign of the characteristic in the lower line, and add as above.

From 2:6847658 Subtract 3:2468543

5.4379115

becomes, on changing its sign, +3, and this added to +2 gives +5.

From  $\overline{\underline{5}}$  ·6843252 Subtract  $\overline{\overline{3}}$  ·7856310

3.8986942

Here the 1 carried over subtracted from  $\overline{5}$  gives  $\overline{6}$ ; then changing  $\overline{3}$  into +3 and adding it to  $\overline{6}$ , we have  $\overline{3}$ .

From <u>2</u>·3468537 Subtract <u>5</u>·7654626

Here 1 is carried over from the mantisse, and has to be subtracted from 2, giving  $\overline{3}$ : the changing the  $\overline{5}$  into +5, and adding this to  $\overline{3}$ , we have +2.

2.5813911

Proportional Parts.—When the logarithm of a number consisting of five figures or less is required, it can be found immediately in the tables; but if the numbers consist of more than five figures, a little calculation is required in order to find its correct logarithm. This calculation is greatly facilitated by the use of a table of proportional parts. It will be seen, on reference to the tables, that the differences between the logarithms of numbers differing by 1 in the fifth figure remain remarkably constant for a great many successive numbers, except at the beginning of the tables, where the changes are rather rapid. Thus, from 66500 to 67500 the difference between any two consecutive logarithms is uniformly 65: e.g., log. 66511 (=4.8228935) subtracted from log. 66512 (=4.8229000) gives 65. Suppose, then, we require the logarithm of a number consisting of six or seven figures, as for instance 66511.37, how do we proceed to find it?

#### Notes on Logarithms-continued.

This is done as follows:—First write down the next lower logarithm.

then, since the difference of 1 in the fifth figure makes a difference of 65 in the logarithm, a difference of 37 will make a difference of  $65 \times 37 = 24$ .

$$\therefore$$
 Log.  $66511 \cdot 37 = 4 \cdot 8228935 + 24 = 4 \cdot 8228959$ .

In the table of proportional parts, however, the amount to be added for every tenth of a unit is recorded, and by this table the above result may be easily found thus:—

Conversely, the number to six, seven, or more figures corresponding to a given logarithm, is found by a method exactly the converse of that given above.

Example.—Find the number whose log. is 2.9324547.

In the above example the difference between the given log. and the next lower in the tables being 12, the required number will evidently lie between 855-962 and 855-963, since the proportional part for 2 is 10 and that for 3 is 15. Subtracting that for 2, namely 10, we have 2 left. Annex a cipher to the 2, since the figure to be found will occupy the next decimal place, and the number 20 thus obtained is the proportional part for the figure 4.

#### COMMON LOGARITHMS.

|                                                          | 0                                                                             | 1                                                                             | 2                                                                             | 3                                                                             | 4                                                                             | Б                                                                                      | 6                                                                             | 7                                                                             | 8                                                                             | 9                                                                             | 1                                            | 2                                            | 3                                            | 4                                      | 5                                             | 6                                                 | 7                                                           | 8                                                    | 9                                                    |
|----------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------|-----------------------------------------------|---------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
|                                                          | 04139<br>07918<br>11394<br>14613<br>17609<br>20412<br>23045<br>25527          | 04532<br>08279<br>11727<br>14922<br>17898<br>20683<br>23300<br>25768          | 04922<br>08636<br>12057<br>15229<br>18184<br>20952<br>23553<br>26007          | 05308<br>08991<br>12385<br>15534<br>18469<br>21219<br>23805<br>26245          | 05690<br>09342<br>12710<br>15836<br>18752<br>21484<br>24055<br>26482          |                                                                                        | 06446<br>10037<br>13354<br>16435<br>19312<br>22011<br>24551<br>26951          | 06819<br>10380<br>13672<br>16732<br>19590<br>22272<br>24797<br>27184          | 07188<br>10721<br>13988<br>17026<br>19866<br>22531<br>25042                   | 07555<br>11059<br>14301<br>17319<br>20140<br>22789<br>25285<br>27646          |                                              |                                              |                                              |                                        |                                               |                                                   |                                                             |                                                      |                                                      |
| 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29 | 30103<br>32222<br>34242<br>36173<br>38021<br>39794<br>41497<br>43136<br>44716 | 30320<br>32428<br>34439<br>36361<br>38202<br>39967<br>41664<br>43297<br>44871 | 30535<br>32634<br>34635<br>36549<br>38382<br>40140<br>41830<br>43457<br>45025 | 30750<br>32838<br>34830<br>36736<br>38561<br>40312<br>41996<br>43616<br>45179 | 30963<br>33041<br>35025<br>36922<br>38739<br>40483<br>42160<br>43775<br>45332 | 31175<br>33244<br>35218<br>37107<br>38917<br>40654<br>42325<br>43933<br>45484<br>46982 | 31387<br>33445<br>35411<br>37291<br>39094<br>40824<br>42488<br>44091<br>45637 | 31597<br>33646<br>35603<br>37475<br>39270<br>40993<br>42651<br>44248<br>45788 | 31806<br>33846<br>35793<br>37658<br>39445<br>41162<br>42813<br>44404<br>45939 | 32015<br>34044<br>35984<br>37840<br>39620<br>41330<br>4297;<br>44560<br>46090 | 20<br>19<br>18<br>18<br>17<br>16<br>16<br>15 | 40<br>39<br>37<br>35<br>34<br>33<br>32<br>30 | 61<br>58<br>55<br>53<br>51<br>49<br>47<br>46 | 81<br>77<br>74<br>71<br>68<br>66<br>63 | 101<br>97<br>92<br>89<br>85<br>82<br>79<br>76 | 121<br>116<br>111<br>106<br>102<br>98<br>95<br>91 | 148<br>141<br>135<br>129<br>124<br>119<br>115<br>111<br>107 | 162<br>154<br>148<br>142<br>136<br>131<br>126<br>122 | 182<br>174<br>166<br>160<br>153<br>148<br>142<br>137 |

|         |                      | 0                                | 1              | 2                     | 3              | 4                                 | 5              | 6              | 7              | 8              | 9                                | 1        | 2     | 3                    | 4        | 5               | 6        | 7        | 8                 | 9                       |
|---------|----------------------|----------------------------------|----------------|-----------------------|----------------|-----------------------------------|----------------|----------------|----------------|----------------|----------------------------------|----------|-------|----------------------|----------|-----------------|----------|----------|-------------------|-------------------------|
| 3       | 1                    | 47712<br>49136<br>50515          | 49276<br>50651 | $\frac{49415}{50786}$ | 50920          | 49693<br>51055                    | 49831 $51188$  | 49969<br>51322 | 50106<br>51455 | 50243<br>51587 |                                  | 14<br>13 | 28    | 41<br>40             | 55<br>53 | $\frac{69}{67}$ | 83<br>80 | 97<br>94 | $\frac{110}{107}$ | $\frac{124}{120}$       |
| 3       | 4                    | 51851<br>53148<br>54407          | 54531          | 53403<br>54654        | 53529<br>54777 | 52375<br>53656<br>54900           | 55023          | 53908<br>55145 | 54033<br>55267 | 54158<br>55388 |                                  | 13<br>12 | 25    | 38                   | 50<br>49 | 63<br>61        | 76<br>73 | 88<br>86 | 101<br>98         | 117<br>113<br>110       |
| 6.9 6.9 | 6<br>7<br>8          | 55630<br>56820<br>57978<br>59106 | 56937<br>58092 | 57054<br>58206        | 57171<br>58320 | 56110<br>57287<br>58433<br>59550  | 57403<br>58546 | 57519<br>58659 | 57634<br>58771 | 57749<br>58883 | 56703<br>57864<br>58995<br>60097 | 12<br>11 | 23    | 35<br>34             | 46       | 58<br>56        | 69<br>68 | 79       | 93<br>90          | 107<br>104<br>102<br>99 |
| . 4     | 10                   | 61278<br>62325                   | 61384<br>62428 | 61490<br>62531        | 61595<br>62634 | 60 <b>63</b> 8<br>61700<br>62737  | 61805<br>62839 | 61909<br>62941 | 62014<br>63043 | 62118<br>63144 | 62221<br>63246                   | 10<br>10 | 21 20 | 31                   | 42<br>41 | 52<br>51        | 63       | 73<br>72 | 84                | 94<br>92                |
| - 4     | 13<br>14<br>15       | 63347<br>64345<br>65321<br>66276 | 64444          | 64542<br>65514        | 64640          | 637 '9<br>64738<br>65706<br>66652 | 64836<br>65801 | 64933<br>65896 | 65031<br>65992 | 65128<br>66087 | 64246<br>65225<br>66181          | 10<br>10 | 20    |                      | 39       | 48              | 59<br>57 | 68<br>67 | 78<br>76          | 88                      |
| 1       | 46<br>47<br>48<br>49 | 67210<br>68124                   | 67302          | 67394<br>68305        | 67486          | 67578<br>68485<br>69373           | 67669<br>68574 | 67761<br>68664 | 67852<br>68753 | 67943<br>68842 | 68034<br>68931                   | 0        | 18    | 3 27<br>3 27<br>3 26 | 37       | 46              | 55<br>54 | 64<br>63 | 73<br>72          | 82<br>81                |

#### COMMON LOGARITHMS-(continued).

| 56 74819                                                 | 70842<br>71684<br>72509<br>73320<br>74115 | 71767<br>72591<br>73400<br>74194<br>74974 | 71012<br>71850<br>72673<br>73480<br>74273 | 73560                   | 71181<br>72016<br>72835<br>73640 | 71265<br>72099<br>72916 | $71349 \\ 72181$ | 71433<br>72263<br>73078 | 70672<br>71517<br>72346<br>73159<br>73957 | 817<br>817<br>816 | 25<br>25<br>24 | 34<br>33<br>32 | 42<br>41<br>41 | 51<br>50<br>49 | 59<br>58<br>57 | 69 7<br>67 7<br>66 7<br>65 7 | 6   |
|----------------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------|----------------------------------|-------------------------|------------------|-------------------------|-------------------------------------------|-------------------|----------------|----------------|----------------|----------------|----------------|------------------------------|-----|
| 52 71600<br>53 72428<br>54 73238<br>55 74036<br>56 74818 | 71684<br>72509<br>73320<br>74115<br>74896 | 71767<br>72591<br>73400<br>74194<br>74974 | 71850<br>72673<br>73480<br>74273          | 71933<br>72754<br>73560 | 72016<br>72835<br>73640          | 72099 $72916$           | $72181 \\ 72997$ | 72263 $73078$           | 72346<br>73159                            | 8 17<br>8 16      | 25<br>24       | 33<br>32       | 41<br>41       | 50<br>49       | 58<br>57       | 66 7<br>65 7                 | 4 5 |
| 53   72428<br>54   73238<br>55   74036<br>56   74818     | 72509<br>73320<br>74115<br>74896          | 72591<br>73400<br>74194<br>74974          | 72673<br>73480<br>74273                   | 72754<br>73560          | 72835<br>73640                   | 72916                   | 72997            | 73078                   | 73159                                     | 816               | 24             | 32             | 41             | 49             | 57             | 65 7                         |     |
| 54   73239<br>55   74036<br>56   74819                   | 73320<br>74115<br>74896                   | 73400<br>74194<br>74974                   | 73480<br>74273                            | 73560                   | 73640                            |                         |                  |                         |                                           |                   |                |                |                |                |                |                              |     |
| 56 74819                                                 | 74896                                     | 74974                                     |                                           | 74351                   | F1100                            |                         |                  |                         |                                           |                   | 42             | 04             | 40             | 48             | 56             | 64.7                         | 2   |
|                                                          |                                           |                                           | PEOFT                                     |                         |                                  |                         |                  |                         |                                           |                   |                | 31             | 39             | 47             | 55             | 63 7                         | 0   |
| 1 57 11 75587                                            | 75664                                     |                                           |                                           |                         |                                  |                         |                  |                         |                                           |                   |                |                |                | 46             |                | 61 6                         |     |
|                                                          | 76418                                     |                                           |                                           |                         |                                  |                         |                  |                         | 76268<br>77012                            |                   |                | 30             |                | 45             |                | 60 6<br>59 6                 |     |
| 59 7708                                                  |                                           | 77232                                     |                                           |                         |                                  |                         | 77597            |                         |                                           |                   |                |                |                | 44             |                | 586                          |     |
|                                                          | 77887                                     |                                           |                                           |                         |                                  | 78247                   | 78319            | 78390                   | 78462                                     | 7 14              | 22             | 29             | 36             | 43             | 50             | 57 6                         | 5   |
|                                                          | 78604                                     |                                           |                                           |                         |                                  |                         |                  |                         | 79169                                     |                   |                |                |                | 42             |                | 56 6                         |     |
| 62 7923                                                  |                                           | 79379<br>80072                            |                                           | 79518<br>80209          |                                  |                         |                  |                         | 79865                                     |                   |                |                |                | 42<br>41       |                | 566                          |     |
| 64 8061                                                  |                                           | 80754                                     |                                           |                         |                                  |                         |                  |                         | 81224                                     |                   |                |                |                | 40             |                | 55 6<br>54 6                 |     |
| 65 8129                                                  |                                           |                                           |                                           | 81558                   |                                  | 1                       |                  |                         |                                           |                   | 3 20           | 1              |                | 40             |                | 53 6                         |     |
| 66 8195                                                  | 82020                                     | 82086                                     | 82151                                     | 82217                   | 82282                            | 82347                   | 82413            | 82478                   | 82543                                     |                   |                |                |                | 39             |                | 52                           |     |
| 67   8260                                                |                                           | 82737                                     |                                           |                         | 82930                            |                         |                  | 83123                   |                                           |                   |                |                |                | 39             |                | 51 8                         |     |
| 68   8325                                                |                                           | 83378<br>84011                            |                                           |                         | 83569                            |                         |                  | 83759                   | 83822<br>84448                            |                   |                |                |                | 38<br>37       |                | 51 5                         |     |
| 1 09 8388                                                | 03948                                     | 04011                                     | 04019                                     | 04190                   | 04190                            | 09201                   | 04020            | 04000                   | 04448                                     | 0 12              | 19             | 20             | δL             | 57             | 44             | 50                           | 0   |

| 1 | -        | 0              | 1     | 2     | 8     | 4              | 5     | 6     | 7     | 8     | 9              | 1 | 2  | 3        | 4  | 5  | 6        | 7        | 8  | 9  |
|---|----------|----------------|-------|-------|-------|----------------|-------|-------|-------|-------|----------------|---|----|----------|----|----|----------|----------|----|----|
|   | 70       | 84510          |       |       |       | 84757          |       |       |       |       | 85065          |   |    | 18       | 25 |    |          | 43       |    |    |
|   | 71 72    | 85126<br>85733 |       |       |       | 85370<br>85974 |       |       |       |       |                |   |    | 18<br>18 | 24 |    |          | 43       |    |    |
|   | 73       | 86332          |       |       |       | 86570          |       |       | 86747 |       | 86864          |   |    | 18       | 24 |    | 36<br>35 | 42<br>41 |    |    |
|   | 74       | 86923          |       |       |       | 87157          |       |       |       |       |                |   |    | 17       |    |    | 35       | 41       |    |    |
|   | 75       |                |       |       |       |                |       |       |       |       | 88024          |   |    | 17       |    |    | 35       | 40       | 46 | 52 |
|   | 76<br>77 | 88081          |       |       |       | 88309          |       |       |       |       | 88593          |   |    | 17       |    |    | 34       | 40       |    |    |
| - | 78       | 88649          |       |       |       | 88874<br>89432 |       | 89542 |       |       | 89154<br>89708 |   |    | 17<br>17 | 22 |    | 34       | 39<br>39 |    |    |
| - | 79       | 89763          |       |       | 89927 |                |       | 90091 |       |       |                |   |    | 16       |    |    | 33       | 38       |    |    |
|   | 80       |                |       |       |       |                |       |       |       |       | 90795          | 5 | 11 | 16       | 22 | 27 | 32       | 38       | 43 | 49 |
| L | 81       |                |       |       |       | 91062          |       |       |       |       |                |   |    | 16       |    |    | 32       | 37       |    |    |
|   | 82 83    | 91908          |       |       |       | 91593<br>92117 |       |       |       |       |                |   |    | 16       | 21 |    | 32       | 37<br>36 |    |    |
| 1 | 84       | 92428          |       |       |       | 92634          |       |       |       | 92840 |                |   |    | 15       |    |    | 31       | 36       |    |    |
| 1 | 85       | 92942          | 92993 | 93044 | 93095 | 93146          | 93197 | 93247 | 93298 | 93349 | 93399          | 5 | 10 | 15       | 20 | 25 | 30       | 36       | 41 | 46 |
| 1 | 86       | 93450          |       |       |       | 93651          |       |       |       |       |                |   |    | 15       |    |    | 30       | 35       |    |    |
| 1 | 87<br>88 |                |       |       |       | 94151<br>94645 |       |       |       |       |                |   |    | 15<br>15 |    |    | 30       |          |    | 45 |
| 1 | 89       | 94939          | 94988 | 95036 | 95085 | 95134          | 95182 | 95231 | 95279 | 95328 | 95376          |   |    | 15       |    |    | 29       |          |    | 44 |
| 1 |          |                |       | 100   | 5     |                |       |       |       |       |                |   |    |          |    |    |          |          |    |    |

#### COMMON LOGARITHMS-(continued).

|     | 0     | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 1  | 2  | 3   | 4  | 5  | 6  | 7  | 8  | 9  |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----|----|-----|----|----|----|----|----|----|
| 90  | 95424 | 95472 | 95521 | 95569 | 95617 | 95665 | 95713 | 95761 | 95809 | 95856 | 5  | 10 | 14  | 19 | 24 | 29 | 34 | 38 | 43 |
| 91  | 95904 | 95952 | 95999 | 96047 | 96095 |       | 96190 |       |       |       | 5  |    | 14  |    |    | 28 |    |    | 43 |
| 92  | 96379 | 96426 | 96473 | 96520 | 96567 | 96614 | 96661 | 96708 | 96755 |       | 5  | 9  | 14  |    |    | 28 |    |    | 42 |
| 93  | 96848 | 96895 | 96942 | 96988 | 97035 |       |       |       | 97220 |       |    | 9  | 14  |    |    | 28 |    |    | 42 |
| 94  | 97313 | 97359 | 97405 | 97451 | 97497 |       | 97589 |       |       |       | 5  | 9  | 14  |    |    | 28 |    |    | 41 |
| 95  | 97772 | 07919 | 07984 | 07000 | 07055 | 00000 | 00048 | 00001 | 00197 | 98182 | 5  | 0  | 14  | 10 | ຄຄ | 27 |    |    | 41 |
| 96  | 98227 |       |       |       | 98408 |       |       |       |       |       | 5  |    | 14  |    |    | 27 |    |    | 41 |
| 97  | 98677 |       |       |       | 98856 |       |       |       |       |       | 4  |    | 13  |    |    | 27 |    |    |    |
| 98  | 99123 |       |       |       | 99300 |       |       |       |       |       | 4  |    | 13  |    |    | 26 |    |    | 40 |
| 99  | 99564 |       |       | 99695 |       | 99782 |       |       |       |       | 4  |    | 13  |    |    |    |    |    |    |
|     | 99904 |       |       |       |       |       |       |       |       | 99901 | 4  | g  | 19  | 11 | 22 | 26 | 31 | 30 | 39 |
| 100 | 0     |       |       |       | 00173 |       |       |       |       | 00389 | 4  | 9  | 13  | 17 | 22 | 26 | 30 | 35 | 39 |
| 101 | 00432 | 00475 | 00518 | 00561 | 00604 | 00647 | 00689 | 00732 | 00775 | 00817 | 4  | 9  | 13  | 17 | 21 | 26 | 30 | 34 | 39 |
| 102 | 00860 | 00903 | 00945 | 00988 | 01030 | 01072 | 01115 | 01157 | 01199 | 01242 | 4  | 8  | 13  | 17 | 21 | 25 | 30 | 34 | 38 |
| 103 | 01284 | 01326 | 01368 | 01410 | 01452 | 01494 | 01536 | 01578 | 01620 | 01662 | 4  | 8  | 13  | 17 | 21 | 25 | 29 | 34 | 38 |
| 104 | 01703 | 01745 | 01787 | 01828 | 01870 | 01912 | 01953 | 01995 | 02036 | 02078 | 4  | 8  | 12  | 17 | 21 | 25 | 29 | 33 | 37 |
| 105 | 02119 | 02160 | 02202 | 02243 | 02284 | 02225 | 02266 | 02407 | 09449 | 02490 | 4  | R  | 12  | 16 | 91 | 25 | 20 | 22 | 37 |
| 106 | 02531 |       |       |       | 02694 |       |       |       |       |       |    |    | 12  |    |    | 24 |    |    | 37 |
| 107 | 02938 |       |       |       | 03100 |       |       |       |       |       |    |    | 12  |    |    | 24 |    |    | 36 |
| 108 |       |       |       |       | 03503 |       |       |       |       |       |    |    | 12  |    |    | 24 |    |    | 36 |
| 109 |       |       |       |       | 03902 |       |       |       |       |       | 4  |    | 12  |    |    | 24 |    |    | 36 |
| 200 | 00110 | 00102 | 00022 | 00002 | 00002 | 00041 | 00001 | 01021 | 02000 | 07100 | 12 | 0  | 4.4 | 10 | 3  | 24 | 20 | 02 | 90 |
| -   |       |       |       | -     |       |       |       |       |       | ,     | -  |    |     | -  | _  |    | _  |    |    |

|      |          |         |       |       |       |       |       |       |       |       |     |      | ,  | _  |    |    | -  | _  |
|------|----------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-----|------|----|----|----|----|----|----|
|      | 0        | 1       | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 12  | 2 3  | 4  | 5  | 6  | 7  | 8  | 9  |
| 110  | 0413     | 04179   | 04218 | 04258 | 04297 | 04336 | 04376 | 04415 | 04454 | 04493 | 48  | 312  | 16 | 20 | 24 |    |    | 35 |
| 111  | 1 0453   | 2 04571 | 04610 | 04650 | 04689 | 04727 | 04766 | 04805 | 04844 | 04883 | 4 8 | 312  | 16 | 19 | 23 |    |    | 35 |
| 111  | 2   0492 | 2 04961 | 04999 | 05038 | 05077 | 05115 | 05154 | 05192 | 05231 | 05269 | 4 8 | 312  | 15 |    |    | 27 |    |    |
| 111  | 3   0530 | 05346   | 05385 | 05423 | 05461 | 05500 | 05538 | 05576 | 05614 | 05652 | 4 8 | 311  | 15 |    |    |    |    | 34 |
| 11   | 1 0569   | 05729   | 05767 | 05805 | 05843 | 05881 | 05918 | 05956 | 05994 | 06032 | 4 8 | 311  | 15 | 19 | 23 | 27 | 30 | 34 |
| 111  | 06070    | 06108   | 06145 | 06183 | 06221 | 06258 | 06296 | 06333 | 06371 | 06408 | 4 8 | 311  | 15 | 19 | 23 | 26 | 30 | 34 |
| 11   | 0644     | 06483   | 06521 | 06558 | 06595 | 06633 | 06670 | 06707 | 06744 | 06781 | 47  | 711  | 15 | 19 | 22 | 26 | 30 | 34 |
| 111  | 7   0681 | 06856   | 06893 | 06930 | 06967 | 07004 | 07041 | 07078 | 07115 | 07151 | 47  | 711  | 15 | 18 | 22 | 26 | 30 | 33 |
| 111  | 3   0718 | 07225   | 07262 | 07298 | 07335 | 07372 | 07408 | 07445 | 07482 | 07518 | 47  | 711  | 15 | 18 | 22 | 26 | 29 | 33 |
| 111  | 0755     | 07591   | 07628 | 07664 | 07700 | 07737 | 07773 | 07809 | 07846 | 07882 | 4 7 | 7 11 | 15 | 18 | 22 | 25 | 29 | 33 |
| 1 12 | 0791     | 07954   | 07990 | 08027 | 08063 | 08099 | 08135 | 08171 | 08207 | 08243 | 4 7 | 711  | 14 | 18 | 22 | 25 | 29 | 32 |
| 12   | 08279    | 08314   | 08350 | 08386 | 08422 | 08458 | 08493 | 08529 | 08565 | 08600 | 47  | 711  | 14 | 18 | 21 | 25 | 29 | 32 |
| 12   | 2 0863   | 08672   | 08707 | 08743 | 08778 | 08814 | 08849 | 08884 | 08920 | 08955 | 4   | 711  | 14 | 18 | 21 | 25 | 28 | 32 |
| 12   | 3   0899 | 1 09026 | 09061 | 09096 | 09132 | 09167 | 09202 | 09237 | 09272 | 09307 | 4   | 711  | 14 |    |    |    |    | 32 |
| 12   | 1 0934   | 09377   | 09412 | 09447 | 09482 | 09517 | 09552 | 09587 | 09621 | 09656 | 3   | 710  | 14 | 17 | 21 | 24 | 28 | 31 |
| 12   | 0969     | 09726   | 09760 | 09795 | 09830 | 09864 | 09899 | 09934 | 09968 | 10003 | 3   | 7 10 | 14 | 17 | 21 | 24 | 28 | 31 |
| 12   |          | 10072   |       |       |       |       |       |       |       |       |     | 7 10 |    | 17 | 21 |    |    | 31 |
| 12   | 7 1038   | 10415   | 10449 | 10483 | 10517 | 10551 | 10585 | 10619 | 10653 | 10687 | 37  | 7 10 | 14 | 17 | 20 |    |    | 31 |
| 12   | 3 1072   | 10755   | 10789 | 10823 | 10857 | 10890 | 10924 | 10958 | 10992 | 11025 | 37  | 7 10 | 14 | 17 | 20 |    |    | 30 |
| 12   | 1105     | 11093   | 11126 | 11160 | 11193 | 11227 | 11261 | 11294 | 11327 | 11361 | 3   | 710  | 12 | 17 | 20 | 23 | 27 | 30 |
| i    | ji .     |         |       |       |       |       |       |       | 1     | !     |     |      | 1  |    |    | 1  |    |    |

## COMMON LOGARITHMS-(continued).

|   |     | 0     | 1     | 2     | 3      | 4     | 5      | 6     | 7     | 8     | 9     | 1 : | 2 3 | 4   | 5  | 6  | 7  | 8  | 9  |
|---|-----|-------|-------|-------|--------|-------|--------|-------|-------|-------|-------|-----|-----|-----|----|----|----|----|----|
| 1 | 130 | 11394 |       |       |        |       |        |       |       |       | 11694 | 37  | 10  | 13  | 17 | 20 | 23 | 27 | 30 |
| 1 | 131 | 11727 |       |       |        | 11860 |        |       |       |       |       |     | 10  | 13  |    |    | 23 |    |    |
| 1 | 132 | 12057 |       |       |        |       |        |       |       |       | 12352 |     | 10  | 13  |    |    | 23 |    |    |
| 1 | 133 | 12385 |       |       |        |       |        |       |       |       | 12678 |     |     | 13  |    |    | 23 |    |    |
| ı | 134 | 12710 | 12743 | 12775 | 12808  | 12840 | 12872  | 12905 | 12937 | 12969 | 13001 | 3 € | 10  | 13  | 16 | 19 | 23 | 26 | 29 |
| 1 | 135 | 13033 | 13066 | 13098 | 13130  | 13162 | 13194  | 13226 | 13258 | 13290 | 13322 | 36  | 10  | 13  | 16 | 19 | 22 | 26 | 29 |
| 1 | 136 | 13354 | 13386 | 13418 | 13450  | 13481 | 13513  | 13545 | 13577 | 13609 | 13640 | 36  | 310 | 13  | 16 | 19 | 22 | 25 | 29 |
| 1 | 137 | 13672 | 13704 | 13735 | 13767  | 13799 | 13830  | 13862 | 13893 | 13925 | 13956 | 36  | 9   | 13  | 16 | 19 | 22 | 25 | 28 |
| 1 | 138 | 13988 | 14019 | 14051 | 14082  | 14114 | 14145  | 14176 | 14208 | 14239 | 14270 | 36  | 9   | 13  | 16 | 19 | 22 | 25 | 28 |
| 1 | 139 | 14301 | 14333 | 14364 | 14395  | 14426 | 14457  | 14489 | 14520 | 14551 | 14582 | 36  | 9   | 12  | 16 | 19 | 22 | 25 | 28 |
| 1 | 140 | 14613 | 14644 | 14675 | 14706  | 14737 | 14768  | 14799 | 14829 | 14860 | 14891 | 36  | 9   | 12  | 15 | 19 | 22 | 25 | 28 |
| 1 | 141 |       |       |       |        |       |        |       |       |       | 15198 |     |     | 12  | 15 | 18 | 21 |    |    |
| ı | 142 |       |       |       |        |       |        |       |       |       | 15503 |     |     | 12  |    |    | 21 |    |    |
| 1 | 143 | 15534 |       |       |        | 15655 |        |       |       |       | 15806 |     | 9   | 12  | 15 | 18 | 21 | 24 | 27 |
| 1 | 144 | 15836 |       | 15897 |        |       |        |       |       |       | 16107 |     | 9   | 12  | 15 | 18 | 21 |    |    |
|   | 145 | 16197 | 16167 | 16107 | 16997  | 16956 | 16986  | 16316 | 16346 | 16376 | 16406 | 36  | 9   | 12  | 15 | 18 | 21 | 94 | 27 |
| ı | 146 |       |       |       |        |       |        |       |       |       | 16702 |     |     | 12  |    |    | 21 |    |    |
| 1 | 147 |       |       |       |        | 16850 |        |       |       |       |       | 36  |     | 12  |    |    | 21 |    |    |
| 1 | 148 |       |       |       |        |       |        |       |       |       | 17289 |     |     | 12  |    |    | 20 |    |    |
| 1 | 149 |       |       |       |        |       |        |       |       |       | 17580 |     |     | 12  |    |    | 20 |    |    |
| 1 | 140 | 2 010 | 1,010 | 1.011 | 1, 100 | 11300 | 1. 202 | 11130 | 1.022 | 1,001 | 1.000 | 100 |     | 12. | -0 |    | 20 | 40 | -0 |

|   |     | 0     | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 1 | 23 | 4   | 5  | 6  | 7    | 8  | 9  |
|---|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---|----|-----|----|----|------|----|----|
| - | 150 | 17609 | 17638 | 17667 | 17696 | 17725 | 17754 | 17782 | 17811 | 17840 | 17869 | 3 | 69 | 12  | 14 | 17 | 20 9 | 23 | 26 |
| L | 151 | 17898 | 17926 | 17955 | 17984 | 18013 | 18041 | 18070 | 18099 | 18127 | 18156 | 3 | 69 | 11  | 14 | 17 | 20 9 | 23 | 26 |
| ı | 152 | 18184 | 18213 | 18241 | 18270 | 18298 | 18327 | 18355 | 18384 | 18412 | 18441 | 3 | 69 | 11  | 14 | 17 | 20 : | 23 | 26 |
| 1 | 153 |       |       |       |       | 18583 |       |       |       |       |       | 3 | 68 | 11  | 14 | 17 | 20 : | 23 | 25 |
| 1 | 154 |       |       | 18808 |       | 18865 |       |       |       | 18977 | 19005 | 3 | 68 | 11  | 14 | 17 | 20 : | 22 | 25 |
| 1 | 155 | 10099 | 10061 | 10000 | 10117 | 19145 | 10179 | 10901 | 10990 | 10057 | 10985 | 2 | 68 | 11  | 14 | 17 | 20   | 29 | 95 |
| 1 | 156 |       |       |       |       | 19424 |       |       |       |       |       |   | 68 |     |    | 17 | 19   |    |    |
|   |     | 19512 |       |       | 19673 |       |       | 19756 |       |       | 19838 |   | 68 |     |    | 17 | 19   |    |    |
| ŀ | 157 |       |       |       |       |       |       |       |       | 20085 |       |   | 58 |     |    | 16 | 19   |    |    |
| 1 | 158 | 19866 |       | 19921 |       |       | 20003 |       |       |       |       |   | 58 |     |    |    | 19   |    |    |
| 1 | 159 | 20140 | 20167 | 20194 | 20222 | 20249 | 20276 | 20303 | 20330 | 20358 | 20385 | 0 | 08 | 11  | 14 | 16 | 19   | 44 | 25 |
| 1 | 160 | 20412 | 20439 | 20466 | 20493 | 20520 | 20548 | 20575 | 20602 | 20629 | 20656 | 3 | 58 | 11  | 14 | 16 | 19   | 22 | 24 |
| 1 | 161 | 20683 | 20710 | 20737 | 20763 | 20790 | 20817 | 20844 | 20871 | 20898 | 20925 | 3 | 58 | 11  | 13 | 16 | 19   | 22 | 24 |
| ı | 162 | 20952 | 20978 | 21005 | 21032 | 21059 | 21085 | 21112 | 21139 | 21165 | 21192 | 3 | 58 | 111 | 13 | 16 | 19   | 21 | 24 |
| 1 | 163 | 21219 | 21245 | 21272 | 21299 | 21325 | 21352 | 21378 | 21405 | 21431 | 21458 | 3 | 58 | 11  | 13 | 16 | 19   | 21 | 24 |
| ł | 164 | 21484 |       | 21537 | 21564 |       | 21617 |       |       |       |       | 3 | 58 |     |    | 16 | 18   | 21 | 24 |
| L | -   |       |       |       |       |       | 100   |       |       |       |       |   |    | 1   |    |    |      |    |    |
| 1 | 165 |       |       | 21801 |       |       |       | 21906 |       | 21958 |       |   | 58 |     |    | 16 | 18   |    |    |
| 1 | 166 | 22011 |       | 22063 |       |       |       |       |       |       |       |   | 58 |     |    | 16 | 18   |    |    |
| 1 | 167 | 22272 |       | 22324 |       |       | 22401 |       |       |       |       |   | 58 |     |    | 16 | 18   |    |    |
| 1 | 168 | 22531 |       |       |       |       | 22660 |       |       |       | 22763 |   | 58 |     |    | 15 | 18   |    |    |
| 1 | 169 | 22789 | 22814 | 22840 | 22866 | 22891 | 22917 | 22943 | 22968 | 22994 | 23019 | 3 | 58 | 10  | 13 | 15 | 18   | 20 | 23 |
|   |     |       |       |       | 1     |       |       |       |       |       |       |   |    | i   | _  |    |      | _  |    |

#### COMMON LOGARITHMS .- (continued).

|     | 0     | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 1 : | 2 3 | 4   | 5  | 6  | 7  | 8  | 9  |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----|-----|-----|----|----|----|----|----|
| 170 | 23045 | 23070 | 23096 | 23121 | 23147 | 23172 | 23198 | 23223 | 23249 | 23274 | 3   | 58  | 10  | 13 | 15 | 18 | 20 | 23 |
| 171 | 23300 |       |       | 23376 | 23401 | 23426 |       |       |       |       |     | 58  | 10  |    |    | 18 |    |    |
| 172 | 23553 |       | 23603 |       | 23654 | 23679 | 23704 |       |       |       |     | 58  |     |    | 15 | 18 |    |    |
| 173 | 23805 |       |       |       | 23905 | 23930 |       |       |       |       |     | 58  |     |    | 15 | 18 |    |    |
| 174 | 24055 | 24080 | 24105 | 24130 | 24155 | 24180 | 24204 | 24229 | 24254 | 24279 | 2   | 57  | 10  | 12 | 15 | 17 | 20 | 22 |
| 175 | 24304 | 24329 | 24353 | 24378 | 24403 | 24428 | 24452 | 24477 | 24502 | 24527 | 2   | 57  | 10  | 12 | 15 | 17 | 20 | 22 |
| 176 | 24551 | 24576 | 24601 | 24625 | 24650 | 24674 | 24699 | 24724 | 24748 | 24773 | 2   | 57  | .10 | 12 | 15 | 17 | 20 | 22 |
| 177 | 24797 | 24822 | 24846 | 24871 | 24895 | 24920 | 24944 | 24969 | 24993 | 25018 |     | 57  |     |    | 15 | 17 | 20 | 22 |
| 178 | 25042 | 25066 | 25091 |       | 25139 | 25164 |       |       | 25237 |       |     | 57  |     |    | 15 | 17 |    |    |
| 179 | 25285 | 25310 | 25334 | 25358 | 25382 | 25406 | 25431 | 25455 | 25479 | 25503 | 2   | 57  | 10  | 12 | 15 | 17 | 19 | 22 |
| 180 | 25527 | 25551 | 25575 | 25600 | 25624 | 25648 | 25672 | 25696 | 25720 | 25744 | 2   | 5 7 | 10  | 12 | 14 | 17 | 19 | 22 |
| 181 |       | 25792 |       |       |       |       | 25912 |       |       | 25983 | 2   | 57  | 9   | 12 | 14 | 17 | 19 | 22 |
| 182 | 26007 |       | 26055 | 26079 | 26102 | 26126 |       | 26174 |       | 26221 | 2   | 57  | 9   | 12 | 14 | 17 | 19 | 21 |
| 183 | 26245 | 26269 | 26293 |       |       | 26364 |       | 26411 |       |       |     | 57  |     |    | 14 | 17 |    |    |
| 184 | 26482 | 26505 | 26529 | 26553 | 26576 | 26600 | 26623 | 26647 | 26670 | 26694 | 2   | 57  | 9   | 12 | 14 | 16 | 19 | 21 |
| 185 | 26717 | 26741 | 26764 | 26788 | 26811 | 26834 | 26858 | 26881 | 26905 | 26928 | 2   | 57  | 9   | 12 | 14 | 16 | 19 | 21 |
| 186 |       | 26975 |       | 27021 |       | 27068 |       |       |       | 27161 | 2   | 57  |     |    | 14 | 16 | 19 | 21 |
| 187 | 27184 | 27207 | 27231 |       | 27277 | 27300 | 27323 | 27346 | 27370 | 27393 | 2   | 57  | 9   | 12 | 14 | 16 | 19 | 21 |
| 188 | 27416 | 27439 | 27462 | 27485 | 27508 | 27531 |       |       |       |       |     | 57  |     |    | 14 | 16 | 18 | 21 |
| 189 | 27646 | 27669 | 27692 | 27715 | 27738 | 27761 | 27784 | 27807 | 27830 | 27852 | 2   | 57  | 9   | 11 | 14 | 16 | 18 | 2  |

| 3                     |                                                                             |       |                                    | 1     | 1                          |         |       |            |       |         |                 |     |     |       |     |    |    | 1 |
|-----------------------|-----------------------------------------------------------------------------|-------|------------------------------------|-------|----------------------------|---------|-------|------------|-------|---------|-----------------|-----|-----|-------|-----|----|----|---|
|                       |                                                                             | 0     | 1                                  | 2     | 3                          | 4       | 5     | 6          | 7-    | 8       | 9               | 123 | 4 5 | 6     | 7   | 8  | 9  | - |
| I                     | 190                                                                         | 27875 | 27898                              | 27921 | 27944                      | 27967   | 27989 | 28012      | 28035 | 28058   | 28081           | 257 | 911 | 14    | 16  | 18 | 21 | - |
| ì                     | 191                                                                         | 28103 | 28126                              | 28149 | 28171                      | 28194   | 28217 | 28240      | 28262 | 28285   | 28307           | 257 | 91  | 14    | 16  | 18 | 20 | 1 |
| ı                     | 192                                                                         | 28320 | 28353                              | 28375 | 28398                      | 28421   | 28443 | 28466      | 28488 | 28511   | 28533           | 257 | 911 | 14    | 16  | 18 | 20 | 1 |
| ı                     | 193                                                                         | 28556 |                                    |       |                            | 28646   |       |            | 28713 | 28735   | 28758           | 247 |     | 13    |     |    | 20 | 1 |
| ı                     | 194                                                                         | 28780 | 28803                              | 28825 | 28847                      | 28870   | 28892 | 28914      | 28937 | 28959   | 28981           | 247 | 911 | 113   | 16  | 18 | 20 | 1 |
| ı                     | 195                                                                         | 29003 | 29026                              | 29048 | 29070                      | 29092   | 29115 | 29137      | 29159 | 29181   | 29203           | 247 | 911 | 13    | 16  | 18 | 20 | - |
| ı                     | 196                                                                         | 29226 |                                    |       |                            |         |       |            |       | 29403   |                 | 247 | 91  | 113   | 15  | 18 | 20 | 1 |
| ł                     | 197                                                                         | 29447 |                                    |       |                            |         |       |            |       | 29623   |                 | 247 | 91  | 1 13  | 15  | 18 | 20 | 1 |
| 1                     | 198                                                                         | 29667 |                                    |       | 29732                      |         |       |            |       |         | 29863           | 247 | 91  | 113   | 15  | 18 | 20 | 1 |
| ł                     | 199                                                                         | 29885 | 29907                              |       | 29951                      |         |       |            | 30038 | 30060   | 30081           | 247 | 91  | 113   | 15  | 17 | 20 | 1 |
|                       | Base of Common Logarithms = 10.<br>Hyp. Log. $z = \frac{1}{M}$ Com. Log. z. |       |                                    |       |                            |         | В     |            |       |         | ogaritl<br>M Hy |     |     |       | 182 | 8. | -  |   |
|                       |                                                                             | Num   | ber.                               |       | Ce                         | om. Lo  | g.    |            | Nu    | mber.   |                 |     | Cor | n. L  | og. |    |    |   |
|                       |                                                                             | €=2.7 | 1828                               |       | 0.                         | 434 294 | 5     |            |       | 3.14159 |                 |     | 0.4 | 97 14 | 199 |    |    | 1 |
| -                     | $\frac{1}{M} = 2.30259 \qquad 0.362\ 2157$                                  |       |                                    |       | $\frac{\pi}{4} = 0.785398$ |         |       | T·895 0899 |       |         |                 |     |     |       |     |    |    |   |
| M=0·434294 T·637 7843 |                                                                             |       | $\frac{\pi}{6} = 0.52359$ T.718 99 |       |                            | 986     |       |            | -     |         |                 |     |     |       |     |    |    |   |
| ı                     |                                                                             |       |                                    |       |                            |         |       | 11         | 1/=-  | 1.7794  |                 |     | 0.9 | 48 5  | 740 |    |    | 1 |



## VARIOUS USEFUL FACTORS.

| To convert:— Grams per litre into grains per cubic foot ounces (av.) ,, ,, ,, grains per fluid oz. ,, ,, ,, grains per gallon | Multiplier.<br>437.00<br>0.99884<br>0.06243<br>0.43847<br>70.155 | Logarithm.<br>2:640 4762<br>1:999 4981<br>2:795 3781<br>1:641 9391<br>1:846 0591 |
|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Grains per gallon into cwts. per million gallons                                                                              | 1·2755<br>0·014254                                               | 0.105 6839<br>2.153 9409                                                         |
| Percentage into grains per fluid oz                                                                                           | 4.375                                                            | 0.640 9781                                                                       |
| Litres into cubic feet                                                                                                        | 0.035315                                                         | $\overline{2}.547.9562$                                                          |
| 1 kilogrammetre = 7 · 2331 foot-pounds<br>1 foot-pound = 0 · 13825 kilogrammetres                                             |                                                                  | 0.859 3196<br>1.140 6804                                                         |

#### WEIGHTS AND MEASURES.

#### I. IMPERIAL SYSTEM.

#### Avoirdupois Weight.

#### Troy Weight ..

| 24 grains* -1 pennyweight (dwt.)           |                             |
|--------------------------------------------|-----------------------------|
|                                            | $\log$ . $480 = 2.681 2412$ |
| 12 ounces = 1 pound (lb.) = 5760 ,,        | log. 5760 = 3.760 4225      |
|                                            | Multiplier. Logarithms.     |
| To convert lbs. avoirdupois into lbs. troy | 1.2153   0.084 6755         |
| ,, lbs. troy into lbs. avoirdupois         | 0.82286 1.915 3245          |

#### Apothecaries' Weight.

| 20 grains (gr.) =1              | scruple (3) |
|---------------------------------|-------------|
| 3 scruples or 60 grains =1      | drachm (3). |
| 8 drachms or 480 grains=1       |             |
| 12 ounces or $5760$ grains $=1$ | pound (lb.) |

#### Apothecaries' Measures.

```
60 minims (min.)=1 fluid drachm (fl. dr. or f 3).
8 fluid drachms = 1 fluid ounce (fl. oz. or f 3).
20 fluid ounces = 1 pint (O) +
8 pints = 1 gallon (C) ‡
```

## Relations of Apothecaries' Measures to Weights. (All liquids to be measured at 60° Fah.)

| (illi inquiab to be incubated at or 2 and)             |                         |
|--------------------------------------------------------|-------------------------|
|                                                        | Logarithms.             |
| 1 minim is the measure of 0.91 grain weight of water   | 1.959 0414              |
|                                                        |                         |
| 1 fluid drachm ,, 54.68 grains ,,                      | 1.737 8285              |
| 1 fluid ounce ,, 437.5 ,, ,,                           | 2.640 9781              |
|                                                        |                         |
| 1 pint ,, 1.25 pounds ,,                               | 0.096 9100              |
| 0750                                                   | 3.942 0081              |
|                                                        |                         |
| 1 gallon ,, 70,000 § ,, ,,                             | 4.845 0980              |
| 7 04.4000 1: 1                                         | 1.540 1149              |
|                                                        |                         |
| 1 gallon = 277.463 ,,                                  | 2.443 2049              |
| 7 11 0.7 0.7 0.7 1 . 6 - 4                             | 1.205 6612              |
|                                                        |                         |
| To convert cubic inches into pints multiply by 0.02883 | $\overline{2}$ 459 8851 |
| 11 0.000001                                            |                         |
| ,, ,, gallons ,, 0.003604                              | 3.556 7951              |
|                                                        | 0.794 3388              |
| ,, cubic feet into gallons ,, 6.228                    | 0 197 9999              |

\* The grain is common to both Avoirdupois and Troy Weights.

† 0=octarius, i.e., one-eighth. † C=(Roman) Congius. § According to H. J. Chaney

One gallon once distilled water weighs 70000.5 grains.

twice

twice

T0000.0

T0060.6

#### Long Measure.

12 lines = 1 inch 12 inches = 1 foot

3 feet = 1 yard6 feet = 1 fathom

 $5\frac{1}{2}$  yards = 1 rod, pole, or perch

4 poles = 1 chain 40 poles = 1 furlong

8 furlongs=1 mile=1760 yards

#### Square Measure.

144 square inches = 1 square foot

9 ,, feet=1 ,, yard  $30\frac{1}{4}$  ,, yards=1 ,, rod, pole, or perch

40 ,, poles = 1 rood 4 roods = 1 acre = 4840 square yards 640 acres = 1 mile

#### Cubic or Solid Measure.

Logarithms. 1 cubic inch of water\* at 62° Fahr. weighs 252.286 grains 2.401 8931 0.57665 ozs. (av.) 1.760 9150 ,, ,, ,, 0.036041 lbs. ,,  $\overline{2} \cdot 556 7951$ 22 22 1 cubic foot 996.458 ozs. 2.998 4587 ,, 22 21 62.2786 lbs. ,, 1.794 3388 ,, 23 28.2491 kilograms 1.451 0046 ,, ,, 1 cubic yard 0.75068 tons 1.875 4546 ,, ,,

#### Wine and Spirit Measure.

4 gills =1 pint 2 pints =1 quart

4 quarts =1 gallon 63 gallons =1 hogshead

84 gallons = 1 puncheon 2 hogsheads = 1 pipe or butt = 126 gallons4 hogsheads = 1 tun = 252 gallons

#### Ale, Beer, and Porter Measure.

4 gills = 1 pint

2 pints = 1 quart

4 quarts = 1 gallon 9 gallons = 1 firkin

2 firkins = 1 kilderkin = 18 gallons

2 kilderkins=1 barrel = 36 3 ,, =1 hogshead= 54

3 ,, =1 hogshead = 54 ,, 3 hogsheads = 1 butt = 108 ,,

<sup>\*</sup> i.e., distilled water freed from air.

#### Dry Measure.

4 gills =1 pint 2 pints =1 quart 4 quarts =1 gallon

2 gallons =1 peck

4 pecks =1 bushel 8 bushels =1 quarter

4 quarters=1 chaldron

5 ,, =1 weigh or horse-load

2 weighs = 1 last

#### II. WEIGHTS AND MEASURES OF THE METRIC SYSTEM,

#### Weights.

| 1 | milligram | = the thousandth part of one gram  | or 0 | 001 | gram |
|---|-----------|------------------------------------|------|-----|------|
|   | centigram | = the hundredth ,, ,,              | 0.   | 01  | ,,   |
| 1 | decigram  | = the tenth ,, ,,                  | 0.   | 1   | ,,   |
| 1 | gram      | = the weight of a cubic centimetre | of   |     |      |
|   |           | water at 4° C.                     | 1.   |     | ,,   |
|   | decagram  | =ten grams                         | 10   |     | 7.9  |
| 1 | hectogram | = one hundred grams                | 100  |     | ,,   |
| 1 | kilogram  | = one thousand ,,                  | 1000 | 0   | ,,   |
|   |           |                                    |      |     |      |

#### Measures of Capacity.

| 1  | millilitre | = | 1    | cubic | centimetre | or the | e measure | of <b>1</b> | gram of | water |
|----|------------|---|------|-------|------------|--------|-----------|-------------|---------|-------|
| 1  | centilitre | = | 10   |       | 11         |        | **        | 10          | granis  | 11    |
| .1 | decilitre  | = | 100  |       | 11         |        | 12        | 100         | 11      | 11    |
| 1  | litre      | = | 1000 |       | 11         |        |           | 1000        | 11      | 11    |

#### Measures of Length.

| 1 millimetre = the thousandth | part of one metre | or 0.001 metre |
|-------------------------------|-------------------|----------------|
| 1 centimetre = the hundredth  | ,,                | 0.01 ,,        |

0.1 1 decimetre = the tenth

1 metre = the ten-millionth part of a quarter of the meridian of the earth

#### TABLES FOR THE CONVERSION OF METRIC INTO IMPERIAL MEASURES AND vice versa.

#### A. Linear Measure.

| Metric into Imperial.                        | Logarithms.             |
|----------------------------------------------|-------------------------|
| 1 millimetre (mm.) = 0.0393701 inches        | $\overline{2}.595 1666$ |
| 1 centimetre (cm.) = 0.393701 ,,             | 1.595 1666              |
| 1 decimetre (dm.) = 3.937011 ,,              | 0.595 1666              |
|                                              | 1.595 1666              |
|                                              | 0.515 9855              |
| - 1:002614 vards                             | 0.038 8642              |
| 1 kilometre (km.) = 1093.61426 ,,            | 3.038 8642              |
| - 0:691379 mile                              | 1.793 3515              |
| * * 33 cm. = 13 inches, correct to 1 part in | 1630.                   |

Note. - A micron (denoted by \( \mu \)) is one-thousandth of a millimetre (or nearly 0.00004 inch).

| Imperial into Metric.          |       |   | Logarithms.                |
|--------------------------------|-------|---|----------------------------|
| 1 inch = 2.5399978 centimetres | <br>  |   | 0.404 8333                 |
| 1  foot = 30.47997             | <br>  |   | $\frac{1.484}{1.961}$ 0146 |
| 1 yard = 0.9143992 metre       | <br>  |   | 1.961 1359                 |
| 1 mile = 1.6093426 kilometres  | <br>  |   | 0.206 6484                 |
| * * 10 : 1 00 : 1              | . 1.1 | 4 | 1                          |

\*\* 13 inches = 33 centimetres, correct to 1 part in 1630.

| mm. Inches. | Metres. Feet. | Inches. mm.       | Feet. Metres. |
|-------------|---------------|-------------------|---------------|
| 1 = .03937  | 1 = 3.2808    | 1 = 25.4          | 1=0.3048      |
| 2 = .07874  | 2 = 6.5616    | 2 = 50.8          | 2 = 0.6096    |
| 3 = .11811  | 3 = 9.8424    | 3 = 76.2          | 3 = 0.9144    |
| 4 = .15748  | 4=13.1232     | 4 = 101.6         | 4 = 1.2192    |
| 5 = .19685  | 5 = 16.4040   | 5 = 127.0         | 5 = 1.5240    |
| 6 = .23622  | 6=19.6848     | 6 = 152.4         | 6 = 18288     |
| 7 = .27559  | 7 = 22.9656   | 7 = 177.8         | 7 = 2.1336    |
| 8 = .31496  | 8=26.2464     | $8 = 203 \cdot 2$ | 8=2.4384      |
| 9 = .35433  | 9 = 29.5272   | 9 = 228.6         | 9 = 2.7432    |
|             |               |                   |               |

#### B. Square Measure.

|                  | Metric into              |            |           |        |      | Logarit                  |      |
|------------------|--------------------------|------------|-----------|--------|------|--------------------------|------|
| 1 square decime  | etre (dm <sup>2</sup> .) | = 15.50    | )006 sqı  | are in | ches | 1.190                    | 3333 |
| 1 square metre   | (m².) or centia          |            |           |        |      | 1.031                    |      |
| ,,               | ,,                       | = 1.13     | 95992  sq | uare y | ards | 0.677                    | 7283 |
| 1 are (100 squar | re metres)               | =119.59    | 921       |        |      | 2.077                    |      |
| ,,               | "                        | = 0.05     | 247106 a  | cres   |      | $\overline{2} \cdot 392$ | 8833 |
|                  | Imperial int             |            |           |        |      |                          |      |
| 1 square inch =  | 6.451589 squa            | re centime | tres      |        |      | 0.809                    | 6667 |
| 1 square foot =  |                          |            | es        |        |      | 0.968                    |      |
| 1 square yard =  |                          | are metres |           |        |      | $\bar{1}.922$            |      |
| 1 acre =         | 0.40468 hecta            | re         |           |        | 1    | 1.607                    | 1117 |

## C. Cubic Measure and Measures of Capacity.

| Metri                    | c into Imperial, etc.     |                               |
|--------------------------|---------------------------|-------------------------------|
| 1 cubic centimetre* (c.c | .)= 0.061024 cubic inches | <br>$\overline{2}$ · 785 5000 |
| ,,                       | =16.891 minims            | <br>1.227 6564                |
| ,,                       | = 0.28152 fluid drachms   | <br>1.449 5051                |
| ,,                       | = 0.03519 fluid ounce     | <br>$\overline{2}.546$ 4151   |
| 1 litre                  | =61.0349 cubic inches     | <br>1.785 5782                |
| ,,                       | =35.1960 fluid ounces     | <br>1.546 4933                |
| ,,                       | = 1.75980 pints           | <br>0.245 4633                |
| 2.2                      | = 0.219975 gallons        | <br>1.342 3733                |
| 1 cubic metre (m3.)      | = 35.31476 cubic feet     | <br>1.547 9562                |
| ,,,                      | = 1.307954 cubic yards    | <br>0.116 5924                |

<sup>\*</sup> The standard litre is the volume of a kilogram of pure water at 4° C. It was origi ally intended to be a cuble decimetre, but is actually somewhat greater. Hence parts of a litre—decilitre, centilitre and millilitre (ml.)—are not strictly equivalent to 100, 10 and 1 c.c. respectively.

| c.c. Cubic Inches.   Litres. Fluid Ounces. P | Pints. Gallons. |
|----------------------------------------------|-----------------|
| 1 = 0.061024 $1 = 35.1960 = 1.3$             | 7598 = 0.22000  |
| 2 = 0.122048 $2 = 70.3920 = 3.3$             | 5196 = 0.43995  |
| 3=0.183072 3=105.5880= 5.5                   | 2794 = 0.65993  |
| 4 = 0.244096 $4 = 140.7840 = 7.0$            | 0392 = 0.87990  |
| 5 = 0.305120 $5 = 175.9800 = 8.3$            | 7990 = 1.09988  |
| 6=0.366144 6=211.1760=10.5                   | 5588 = 1.31985  |
| 7=0.427168 7=246.3720=12.3                   | 3186 = 1.53983  |
| 8=0.488192 8=281.5680=14.0                   | 0784 = 1.75980  |
| 9 = 0.549216 $9 = 316.7640 = 15.8$           | 8382 = 1.97978  |

|         | 1      | Imp | erial into Metric. |           | 1    | Logarit             | hms.  |
|---------|--------|-----|--------------------|-----------|------|---------------------|-------|
| 1 cubic | inch   | =   | 16:38702 cubic cer | ntimetres | <br> | 1.214               | 5000. |
| 1 cubic | foot   | =   | 28 31677 cubic de  | cimetres  | <br> | 1.452               | 0437  |
| 1 cubic | yard   | =   | 0.76455285 cubic   | metre     | <br> | 1.883               | 4075  |
| 1 mini  | m      | =   | 0.05919 cubic cer  | ntimetres | <br> | $\overline{2}$ .772 | 2483  |
| 1 fluid | drachm | =   | 3.55153 cubic ce:  | ntimetres | <br> | 0.550               | 4155  |
| 1 fluid | ounce  | =   | 28.4123 cubic cen  | timetres  |      | 1.453               |       |
| 1 pint  |        |     | 68.25 cubic centin |           |      | 2.754               |       |
| 1 quart |        |     | 1.13649 litres     |           |      | 0.055               |       |
| 1 gallo |        |     | 4.5459631 litres   |           |      | 0.657               |       |
| .,      |        |     |                    |           | <br> | 5 501               |       |

| Cubic Inches. Cubic Centimetres. | Fluid Ounces, Cubic Centimetres. |
|----------------------------------|----------------------------------|
| 1 = 16.387                       | 1 = 28.4123                      |
| 2 = 32.774                       | 2= 56-8246                       |
| 3 = 49.161                       | 3= 85.2369                       |
| 4 = 65.548                       | 4=113.6492                       |
| 5 = 81.935                       | 5=142.0615                       |
| 6 = 98.322                       | 6=170.4738                       |
| 7 = 114.709                      | 7=198.8861                       |
| 8=131.096                        | 8=227.2984                       |
| 9=147.483                        | 9=255.7107                       |
|                                  |                                  |

| Pints. Litres. | Gallons. Litres. |
|----------------|------------------|
| 1 = 0.56825    | 1 = 454596       |
| 2 = 1.13650    | 2 = 9.09192      |
| 3=1.70475      | 3=13.63788       |
| 4 = 2.27300    | 4=18.18384       |
| 5 = 2.84125    | 5=22.72980       |
| 6=3.40950      | 6=27.27576       |
| 7=3.97775      | 7=31.82172       |
| 8=4.54600      | 8=36.36768       |
| 9=5.11425      | 9=40.91364       |

```
Metric into Imperial.
                                                       Logarithms.
 1 milligram = 0.01543 grain
                                                       \overline{2} \cdot 188 \ 4324
                                                       1.188 4324
 1 centigram = 0.15432 grain
                                   ...
                                          ...
                                                 ...
 1 \text{ decigram} = 1.54324 \text{ grains}
                                                       0.188 4324
                                   ...
                                          ...
                                                 ...
 1 gram
             =15.43236 grains
                                                      1.188 4324
                                                 ...
             = 0.564383 dram avoirdupois
                                                      \overline{1} \cdot 751 5739
    ,,
             = 0.035274 ounce avoirdupois
                                                       \overline{2}.547 4547
                                                 ...
                                                      1.410 2878
             = 0.25721 drachm ...
                                                 ...
     ,,
             = 0.0321507 ounce troy
                                                      \overline{2} \cdot 507 1905
                                          ...
                                                 ...
 1 kilogram = 15432 35639 grains
                                                      4.188 4324
                                                 ...
             = 35.2740 ounces avoirdupois
                                                      1.547 4547
                                                 ...
     ,,
             = 2.2046223 lbs. avoirdupois
                                                      0.343 3341
                                                 ...
             = 32.15074 ounces troy ... = 2.67923 lbs. troy ... ...
                                                      1.507 1910
                                                 ...
     ,,
                                                 ... 0.428 0100
    9 9
  Grams. Grains.
                    Ozs. (Av.). Ozs. (Troy).
                                                 Kilograms, Pounds,
    1 = 15.43236 = 0.035274 = 0.0321507
                                                   1 = 2.20462
    2 = 30.86472 = 0.070548 = 0.0643014
                                                   2 = 4.40924
    3 = 46.29708 = 0.105822 = 0.0964521
                                                   3 = 6.61386
    4 = 61.72944 = 0.141096 = 0.1286028
                                                   4 = 8.81848
    5 = 77.16180 = 0.176370 = 0.1607535
                                                   5 = 11.02310
    6 = 92.59416 = 0.211644 = 0.1929042
                                                   6=13.22772
    7 = 108.02652 = 0.246918 = 0.2250549
                                                   7 = 15.43234
   8 = 123.45888 = 0.282192 = 0.2572056
                                                 8 = 17.63696
   9 = 138.89124 = 0.317466 = 0.2893563
                                                 9 = 19.84158
                Imperial into Metric.
                                                       Logarithms.
                          0.064799 gram ...
1 grain
                                                      2.811 5683
                    =
                    =
                          3.88794 grams ...
                                                      0.589
                                                             7196
1 drachm
                                                 ...
                                                      1.492 8090
1 ounce troy
                   = 31.10348 grams ...
                                                 ...
1 pound troy
                    = 373.24176 grams ...
                                                      2.571 9903
                                                 ...
1 dram avoirdupois =
                         1.77185 grams ...
                                                      0.248 4270
                                                 ...
1 ounce avoirdupois = 28.34953 grams ...
                                                      1.452 5459
1 pound avoirdupois = 453.59243 grams ...
                                                      2.656 6658
                                                 ...
1 stone (14 lbs.) =
                         6.35029 kilograms
                                                      0.802 7935
1 quarter (28 lbs.) =
                         12.70059 kilograms
                                                      1.103 8240
                                                 . . .
                         50.80235 kilograms
                                                      1.705 8838
1 cwt.
                    -
                                                 ...
I ton
                    =1016.04704 kilograms
                                                      3.006 9138
                                                 ...
  Grains, Grams,
                                       Ounces. (Av.) Grams.
      1 = 0.06480
                                           1 = 28.3495
                                           2 = 56.6990
      2 = 0.12960
                                           3 = 85.0485
      3 = 0.19440
      4 = 0.25920
                                           4 = 113.3980
      5 = 0.32399
                                           5=141.7475
                                           6 = 170.0970
      6 = 0.38879
      7 = 0.45359
                                           7 = 198.4465
      8 = 0.51839
                                           8 = 226.7960
      9 = 0.58319
                                           9 = 255.1455
```

| Pounds to Kilograms. | Hundredweights to Kilograms. |
|----------------------|------------------------------|
| 1 = 0.45359          | 1 = 50.8024                  |
| 2=0.90718            | 2=101.6048                   |
| 3 = 1.36077          | 3 = 152.4072                 |
| 4 = 1.81436          | 4=203.2096                   |
| 5 = 2.26795          | 5 = 254.0120                 |
| 6 = 2.72154          | 6=304.8144                   |
| 7 = 3.17513          | 7=355.6168                   |
| 8 = 3.62872          | 8 = 406.4192                 |
| 9 = 4.08231          | 9 = 457.2216                 |
|                      |                              |

## Table showing the Signs used in writing Medical Prescriptions.

| ½ grain                                            |                        | 1 drachm                                                         |     |     |                                                |
|----------------------------------------------------|------------------------|------------------------------------------------------------------|-----|-----|------------------------------------------------|
| 1 ,,                                               | gr. j, or gr. i.       | $\begin{bmatrix} 1\frac{1}{2} & ,, \\ 2 & drachms \end{bmatrix}$ |     | ••  | 3 iss.                                         |
| 拉,,                                                | gr. 188.               | 2 drachms                                                        |     | • • | 3 ii, or 3 ij.                                 |
| 2 grains                                           | gr. ii, or gr. ij.     | 3 ,,                                                             |     | • • | 3 iii, or 3 iij.                               |
| $2\frac{1}{2}$ ,,                                  | gr. iiss.              | 31/2 ,,                                                          |     | ••  | 3 iiiss.                                       |
| 4                                                  | gr. iv.                | 171                                                              |     |     | 7 viiss.                                       |
| 8 ,,                                               | gr. viii, or gr. viij. | unce 2                                                           | ••  |     | 3 ss.                                          |
| ½ scruple                                          | e ss.                  | 1 ,,                                                             | ••  |     | ž i, or ž j.                                   |
| 1 ,,                                               | Эi, or Эj.             | 1½ ,,<br>½ pint                                                  |     |     | \( \frac{3}{5} \) i, or \( \frac{3}{5} \) iss. |
| $1\frac{1}{2}$ ,,                                  | e iss.                 | 1 pint                                                           |     |     | Ōss.                                           |
| $\frac{1\frac{1}{2}}{2}$ ,, $\frac{1}{2}$ scruples | Э ii, or Э ij          | 1 ,,                                                             | *** | ••  | 0.                                             |

## USEFUL DATA.

| I. Areas and Volumes of Bodies.                                                            | 20guireinis.           |
|--------------------------------------------------------------------------------------------|------------------------|
| Area of a circle $=\pi r^2$ $r = \text{radius}$                                            |                        |
| $\pi = 3.1415926$                                                                          | 0.497 1499             |
| Volume of a sphere $=\frac{4}{3}\pi^{r^3}$ $\frac{4}{3}\pi = 4.1888$                       | 0.622 0886             |
| Volume of a cylinder $= \pi r^2 h$ $r = \text{radius of a base}$ $h = \text{height}$       |                        |
| Surface of sphere $=4\pi r^2$ $4\pi = 12.5664$                                             | 1.099 2099             |
| II. Specific Gravity.                                                                      |                        |
| To convert—                                                                                |                        |
| (1) Degrees of Twaddle's hydrometer into sp. gr. (water = 1000)—multiply by 5 and add 1000 |                        |
| (2) Sp. gr. (water=1000) into degrees of Twaddle's                                         |                        |
| hydrometer—subtract 1000 and divide by 5                                                   |                        |
| (3) Sp. gr. (air=1) to sp. gr. (H=1)—multiply by 14 438                                    | 1.159 5070             |
| (4) Sp. gr. (H=1) to sp. gr. (air=1)—multiply by                                           |                        |
| 0.06926                                                                                    | $\overline{2}.8404825$ |

#### USEFUL DATA-continued.

## III. Various useful Factors.

| 11. | v arious usejui Factors.                              |                          |
|-----|-------------------------------------------------------|--------------------------|
|     | To convert—                                           | Logarithms.              |
| (1) | Grams per litre into grains per gallon—multiply by 70 | 1.845 0980               |
| (2) | Grains per gallon into grams per litre-multiply by    | _                        |
|     | 0.014286                                              | $\overline{2}$ ·154 9020 |
| (3) | Parts per 100,000 into grains per gallon—multiply     |                          |
|     | by 0.7                                                | 1.845 0980               |
| (4) | Grains per gallon into parts per 100,000—divide by    |                          |
| ` ' | 0.7                                                   | Ī·845 0980               |
| (5) | Grams per fluid drachm into grains per fluid ounce-   |                          |
| . , | multiply by 123.46                                    | 2:091 5221               |

Table for the Conversion of Percentage into cwts., Qrs., and Lb. Per ton, and into Qrs. and Lb. Per cwt.

| Per<br>cent. | ]             | Per to | n.   | Pe   | r ewt. | Per cent. |      | Per to | n.   | Pe   | er cwt. | - |
|--------------|---------------|--------|------|------|--------|-----------|------|--------|------|------|---------|---|
| П.           | cwt.          | qrs.   | lb.  | qrs. | lb.    |           | cwt. | qrs.   | lb.  | qrs. | lb.     | 1 |
| 1            | • • •         |        | 22.4 |      | 1.12   | 26        | 5    |        | 22.4 | 1    | 1.12    | l |
| 2 3          | •••           | 1      | 16.8 |      | 2.24   | 27        | 5    | 1      | 16.8 | 1    | 2.24    | I |
|              | •••           | 2      | 11.2 |      | 3.36   | 28        | 5    | 2      | 11.2 | 1    | 3:36    | I |
| 5            | •••           | 3      | 5.6  |      | 4.48   | 29        | 5    | 3      | 5.6  | 1    | 4.48    | I |
|              | 1             |        |      |      | 5.60   | 30        | 6    |        |      | 1    | 5.60    | Î |
| 6            | 1             |        | 22.4 |      | 6.72   | 31        | 6    |        | 22.4 | 1    | 6.72    | l |
| 7 8          | 1             | 1      | 16.8 |      | 7.84   | 32        | 6    | 1      | 16.8 | 1    | 7.84    | l |
| 8            | 1             | 2      | 11.2 |      | 8.96   | 33        | 6    | 2      | 11.2 | 1    | 8.96    |   |
| 9            | 1             | 3      | 5.6  |      | 10.08  | 34        | 6    | 3      | 5.6  | 1    | 10.08   |   |
| 10           | $\frac{2}{2}$ |        |      |      | 11.20  | 35        | 7    |        |      | 1    | 11.20   | l |
| 11           | 2             |        | 22.4 |      | 12.32  | 36        | -7   |        | 22.4 | 1    | 12.32   |   |
| 12           | 2             | 1      | 16.8 |      | 13.44  | 37        | 7    | 1      | 16.8 | 1    | 13.44   | ı |
| 13           | $\frac{2}{2}$ | 2      | 11.2 |      | 14.56  | 38        | 7    | 2      | 11.2 | 1    | 14.56   | ŀ |
| 14           | 2             | 3      | 5.6  |      | 15.68  | 39        | 7    | 3      | 5.6  | 1    | 15.68   | l |
| 15           | 3             |        |      |      | 16.8   | 40        | 8    |        |      | 1    | 16.8    | l |
| 16           | 3             |        | 22.4 |      | 17.92  | 41        | 8    |        | 22.4 | 1    | 17.92   | l |
| 17           | 3             | 1      | 16.8 |      | 19.04  | 42        | 8    | 1      | 16.8 | 1    | 19.04   |   |
| 18           | 3             | 2      | 11.2 |      | 20.16  | 43        | - 8  | 2      | 11.2 | 1    | 20.16   | ı |
| 19           | 3 3 3 3 3     | 3      | 5.6  |      | 21.28  | 44        | 8    | 3      | 5.6  | 1    | 21.28   |   |
| 20           | 4             |        |      |      | 22.40  | 45        | 9    |        |      | 1    | 22.40   |   |
| 21           | 4             |        | 22.4 |      | 23.52  | 46        | 9    |        | 22.4 | 1    | 23.52   |   |
| 22           | 4             | 1      | 16.8 |      | 24.64  | 47        | 9    | 1      | 16.8 | 1    | 24.64   |   |
| 23           | 4             | 2      | 11.2 |      | 25.76  | 48        | 9    | 2      | 11.2 | 1    | 25.76   |   |
| 24           | 4             | -3     | 5.6  |      | 26.88  | 49        | 9    | 3      | 5.6  | 1    | 26.88   |   |
| 25           | 5             |        |      | 1    |        | 50        | 10   |        |      | 2    |         |   |
|              |               |        |      |      |        |           | 45   |        |      |      |         |   |

Table for the Conversion of Percentage into cwts., Qrs., and lb. per ton, and into Qrs. and lb. per cwt.—continued.

|   | Per cent. | I    | Per ton |      | Pe   | r ewt. | Per cent. | j    | Per to | 1.   | Pe   | r cwt. |
|---|-----------|------|---------|------|------|--------|-----------|------|--------|------|------|--------|
|   |           | cwt. | qrs.    | Ib.  | qrs. | lb.    |           | cwt. | qrs.   | lb.  | qrs. | lb.    |
|   | 51        | 10   | 415.    | 22.4 | 2    | 1.12   | 76        | 15   | 4151   | 22.4 | 3    | 1.12   |
|   | 52        | 10   | 1       | 16.8 | 2    | 2.24   | 77        | 15   | 1      | 16.8 | 3    | 2.24   |
| 1 | 53        | 10   | 2       | 11.2 | 2    | 3.36   | 78        | 15   | 2      | 11.2 | 3    | 3.36   |
|   | 54        | 10   | 3       | 5.6  | 2    | 4.48   | 79        | 15   | 3      | 5.6  | 3    | 4.48   |
| - | 55        | 11   |         |      | 2    | 5.60   | 80        | 16   |        |      | 3    | 5.60   |
|   | 56        | 11   |         | 22.4 | 2    | 6.72   | 81        | 16   |        | 22.4 | 3    | 6.72   |
|   | 57        | 11   | 1       | 16.8 | 2    | 7.84   | 82        | 16   | 1      | 16.8 | 3    | 7.84   |
|   | 58        | 11   | 2       | 11.2 | 2    | 8.96   | 83        | 16   | 2      | 11.2 | 3    | 8.96   |
|   | 59        | 11   | 3       | 5.6  | 2    | 10.08  | 84        | 16   | 3      | 5.6  | 3    | 10.08  |
|   | 60        | 12   |         |      | 2    | 11.20  | 85        | 17   |        |      | 3    | 11.20  |
|   | 61        | 12   |         | 22.4 | 2    | 12.32  | 86        | 17   |        | 22.4 | 3    | 12.32  |
|   | 62        | 12   | 1       | 16.8 | 2    | 13.44  | 87        | 17   | 1      | 16.8 | 3    | 13.44  |
|   | 63        | 12   | 2       | 11.2 | 2    | 14.56  | 88        | 17   | 2      | 11.2 | 3    | 14.56  |
|   | 64        | 12   | 3       | 5.6  | 2    | 15.68  | 89        | 17   | 3      | 5.6  | 3    | 15.68  |
|   | 65        | 13   |         |      | 2    | 16.8   | 90        | 18   |        |      | 3    | 16.8   |
| - | 66        | 13   |         | 22.4 | 2    | 17.92  | 91        | 18   |        | 22.4 | 3    | 17.92  |
|   | 67        | 13   | 1       | 16.8 | 2    | 19.04  | 92        | 18   | 1      | 16.8 | 3    | 19.04  |
|   | 68        | 13   | 2       | 11.2 | 2    | 20.16  | 93        | 18   | 2      | 11.2 | 3 3  | 20.16  |
|   | 69        | 13   | 3       | 5.6  | 2    | 21.28  | 94        | 18   | 3      | 5.6  | 3    | 21.28  |
|   | 70        | 14   |         |      | 2    | 22.40  | 95        | 19   |        |      |      | 22.40  |
| 1 | 71        | 14   |         | 22.4 | 2    | 23.52  | 96        | 19   |        | 22.4 | 3    | 23.52  |
|   | 72        | 14   | 1       | 16.8 | 2    | 24.64  | 97        | 19   | 1      | 16.8 | 3    | 24.64  |
| 1 | 73        | 14   | 2       | 11.2 | 2    | 25.76  | 98        | 19   | 2      | 11.5 | 3    | 25.76  |
| - | 74        | 14   | 3       | 5.6  | 2    | 26.88  | 99        | 19   | 3      | 5.6  | 3    | 26.88  |
|   | 75        | 15   |         |      | 3    |        | 100       | 20   |        |      | 4    | •••    |
|   |           | 10.0 |         |      |      |        | l         |      | 1      | 1    | 1    |        |
|   |           |      |         | 1    | -    | -,     |           | 1    |        |      |      | 1      |
|   | Per c     | ent. | 1       | .2   | .3   | •4     | .5        | .6   | 70     | .701 | .8   | 1.000  |

| Per cent. lb. per cwt. lb. per ton | ·1<br>·112<br>2·24 | ·2<br>·224<br>4·48 | ·3<br>·336<br>6·72 | ·4<br>·448<br>8·96 | ·5<br>·56<br>11·2 | ·6<br>·672<br>13·44 | .7<br>.784<br>15.68 |  | .9<br>1.008<br>20.16 |
|------------------------------------|--------------------|--------------------|--------------------|--------------------|-------------------|---------------------|---------------------|--|----------------------|
|------------------------------------|--------------------|--------------------|--------------------|--------------------|-------------------|---------------------|---------------------|--|----------------------|

Table for the Conversion of Drachms per lb. into Percentage and into lb. per ton.

| Drachms<br>per lb. (av.)              | Per cent.                                               | Lb. per ton (2240 lb.).           | Drachms<br>per lb. (av.)                                                                   | Per cent.                            | Lb. per ton (2240 lb.).                   |
|---------------------------------------|---------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------|
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 0.097656<br>(or 0.1 nearly)<br>.195<br>.293<br>.390625* | 2·187494<br>4·37<br>6·56<br>8·75+ | $egin{array}{c} 1rac{1}{4} \\ 1rac{1}{2} \\ 1rac{3}{4} \\ 2 \\ 2rac{1}{4} \end{array}$ | •488<br>•586<br>•683<br>•781<br>•879 | 10.94<br>13.12<br>15.31<br>17.50<br>19.68 |

<sup>\*</sup> Log. 1.5917600.

<sup>†</sup> Log. 0.9420000.

Table for the Conversion of Drachms per lb. into Percentage and into lb. per ton—continued.

| Prachms<br>per lb. (av.)                             | Per cent. | Lb. per ton (2240 lb.). | Drachms<br>per lb. (av.) | Per cent. | Lb. per ton<br>(2240 lb.). |
|------------------------------------------------------|-----------|-------------------------|--------------------------|-----------|----------------------------|
| 21/2                                                 | .976      | 21.87                   | 5                        | 1.953     | 43.75                      |
| $\frac{2\frac{1}{2}}{2\frac{3}{4}}$                  | 1.074     | 24.06                   | 10                       | 3.906     | 87.50                      |
| 3                                                    | 1.172     | 26.25                   | 15                       | 5.859     | 131.25                     |
| 31                                                   | 1.269     | 28.43                   | 20                       | 7.812     | 175.00                     |
| 31<br>31<br>32<br>33                                 | 1.367     | 30.62                   | 25                       | 9.765     | 218.75                     |
| 33                                                   | 1.465     | 32.81                   | 30                       | 11.719    | 262.50                     |
| 4                                                    | 1.562     | 35.00                   | 35                       | 13.672    | 306.25                     |
| 41                                                   | 1.660     | 37.19                   | 40                       | 15.625    | 350.00                     |
| 45                                                   | 1.758     | 39.38                   | 45                       | 17.578    | 393.75                     |
| 4 <u>4</u><br>4 <u>1</u><br>4 <u>3</u><br>4 <u>3</u> | 1.855     | 41.56                   | 50                       | 19:531    | 437.50                     |

#### TABLES REQUIRED IN WATER ANALYSIS.

## I. Tension of Aqueous Vapour in Millimetres of Mercury from 0° to 35° C.

|   | ° C. | mm.    |
|---|------|-------|------|-------|------|-------|------|-------|------|--------|
| ľ | 0.0  | 4.600 | 2.5  | 5.491 | 5.0  | 6.534 | 7.5  | 7.751 | 10.0 | 9.165  |
| ı | .1   | .633  | 6    | .530  | •1   | .580  | .6   | .804  | 1.1  | 227    |
|   | .2   | .667  | .7   | •569  | •2   | •625  | .7   | .857  | .2   | .288   |
| ١ | .3   | .700  | -8   | .608  | •3   | .671  | •8   | 910   | •3   | .350   |
|   | •4   | .733  | .9   | .647  | •4   | .717  | .9   | .964  | •4   | •412   |
| - | 0.5  | .767  | 3.0  | 5.687 | 5.5  | .763  | 8.0  | 8.017 | 10.5 | .474   |
| 1 | .6   | .801  | 1    | .727  | .6   | *810  | •1   | .072  | •6   | .537   |
|   | .7   | .836  | .2   | .767  | .7   | .857  | •2   | .126  | •7   | .601   |
|   | •8   | .871  | •3   | .807  | •8   | .904  | •3   | .181  | .8   | .665   |
|   | •9   | .905  | •4   | *848  | •9   | .951  | •4   | .236  | .9   | .728   |
|   | 1.0  | 4.940 | 3.5  | ·890  | 6.0  | 6.998 | 8.5  | •291  | 11.0 | 9.792  |
|   | •1   | .975  | .6   | •930  | •1   | 7.047 | .6   | *347  | .1   | .857   |
| - | .2   | 5.011 | .7   | .972  | .2   | .095  | .7   | •404  | •2   | .923   |
| - | •3   | .047  | -8   | 6.014 | .3   | .144  | .8   | .461  | •3   | .989   |
|   | •4   | .082  | .9   | .056  | •4   | .193  | .9   | .517  | •4   | 10.054 |
|   | 1.5  | •118  | 4.0  | 6.097 | 6.5  | .242  | 9.0  | 8.574 | 11.5 | .120   |
|   | .6   | 155   | •1   | ·140  | .6   | 292   | .1   | .632  | .6   | ·187   |
|   | .7   | •191  | •2   | .183  | .7   | *342  | •2   | .690  | .7   | .255   |
|   | .8   | •228  | •3   | •226  | .8   | .392  | .3   | .748  | .8   | *322   |
|   | .8   | .265  | •4   | .270  | .9   | .442  | •4   | .807  | .9   | .389   |
|   | 2.0  | 5.302 | 4.5  | ·313  | 7.0  | 7.492 | 9.5  | .865  | 12.0 | 10.457 |
|   | .1   | *340  | .6   | .357  | .1   | .544  | .6   | .925  | .1   | .526   |
| 1 | •2   | .378  | .7   | •401  | •2   | •595  | .7   | .985  | .2   | 596    |
|   | .3   | '416  | .8   | *445  | .3   | .647  | .8   | 9.045 | .3   | 665    |
|   | •4   | .454  | .9   | •490  | •4   | .699  | .9   | 105   | •4   | .734   |
|   |      |       |      |       |      |       |      |       | 4    |        |

TABLES REQUIRED IN WATER ANALYSIS. TABLE I.—continued.

| - |      |        |      |        |      |        |      |        |      |         |
|---|------|--------|------|--------|------|--------|------|--------|------|---------|
|   |      | 40     |      |        |      |        |      |        |      |         |
|   | ° C. | mm.     |
| 1 | 9    |        |      |        |      |        |      |        |      |         |
| - |      |        |      |        |      |        |      |        |      |         |
|   | 70.5 | 10.004 | 17.7 | 14.510 | 01.7 | 10.005 | 00.0 | 07.490 | 90.0 | 00.015  |
|   | 12.5 | 10.804 | 17.1 | 14.513 | 21.7 | 19:305 | 26.3 | 25.438 | 30.9 | 33.215  |
|   | .6   | .875   | •2   | .605   | .8   | '423   | .4   | .588   | 31.0 | 33.405  |
| 1 | .7   | .947   | •3   | •697   | .9   | .541   | 26.5 | .738   | .1   | •596    |
|   | .8   | 11.019 | •4   | .790   | 22.0 | 19:659 | .6   | . *891 | .2   | .787    |
|   | .9   | .090   | 17.5 | .882   | .1   | .780   | .7   | 26.045 | .3   | .980    |
| 1 | 13.0 | 11.162 | .6   | .977   | •2   | .901   | •8   | 198    | •4   | 34.174  |
| 1 | .1   | . 235  | .7   | 15.072 | •3   | 20.022 | .9   | .351   | 31.2 | .368    |
| 1 | •2   | .309   | .8   | .167   | •4   | .143   | 27.0 | 26.505 | .6   | .564    |
| 1 | *3   | .383   | .9   | .262   | 22.5 | .265   | .1   | .663   | .7   | .761    |
| 1 | •4   | *456   | 18.0 | 15.357 | .6   | .389   | •2   | *820   | *8   | .959    |
| 1 | 13.2 | •530   | .1   | .454   | .7   | .514   | .3   | .978   | .9   | 35.159  |
| 1 | .6   | .605   | .5   | .552   | .8   | .639   | •4   | 27.136 | 32.0 | 35.359  |
| 1 | .7   | ·681   | •3   | .650   | .9   | .763   | 27.5 | •294   | 1    | .559    |
| 1 | *8   | .757   | •4   | .747   | 23.0 | 20.888 | .6   | *455   | •2   | .760    |
| 1 | .9   | .832   | 18.5 | *845   | 1    | 21.016 | .7   | .617   | •3   | .962    |
| - | 14.0 | 11.908 | .6   | .945   | •2   | .144   | .8   | .778   | •4   | 36.165  |
| 1 | ·1   | .986   | .7   | 16.045 | .3   | •272   | .9   | •939   | 32.5 | .370    |
|   | •2   | 12.064 | •8   | 145    | *4   | •400   | 28.0 | 28.101 | .6   | .576    |
| 1 | •3   | .142   | •9   | .246   | 23.5 | .528   | •1   | .267   | .7   | .783    |
| 1 | •4   | .220   | 19.0 | 16.346 | .6   | 21.659 | •2   | ·433   | -8   | .991    |
| 1 | 14.5 | .298   | .1   | .449   | .7   | .790   | .3   | .599   | .9   | 37.200  |
| 1 | .6   | .378   | •2   | :552   | .8   | - 921  | •4   | .765   | 33.0 | 37.410  |
| 1 | .7   | *458   | .3   | .655   | .9   | 22.053 | 28.5 | .931   | ·1   | .621    |
|   | .8   | .538   | •4   | .758   | 24.0 | 22.184 | - 6  | 29.101 | .2   | *832    |
| 1 | .9   | .619   | 19.5 | .861   | ·1   | .319   | .7   | .271   | •3   | 38.045  |
|   | 15.0 | 12.699 | .6   | .967   | .2   | .453   | .8   | •441   | •4   | .258    |
| 1 | .1   | .781   | .7   | 17.073 | •3   | .588   | •9   | .612   | 33.5 | .473    |
| 1 | •2   | .864   | •8   | .179   | •4   | .723   | 29.0 | 29.782 | .6   | .689    |
| 1 | .3   | .947   | .9   | .285   | 24.5 | .858   | •1   | .956   | .7   | .906    |
|   | •4   | 13.029 | 20.0 | 17:391 | .6   | .996   | .2   | 30.131 | .8   | 39.124  |
|   | 15.5 | .112   | •1   | .500   | -7   | 23.135 | .3   | .305   | .9   | .344    |
| 1 | .6   | .197   | •2   | .608   | .8   | .273   | •4   | .479   | 34.0 | 39.565  |
| 1 | .7   | •281   | .3   | .717   | .9   | •411   | 29.5 | .654   | .1   | .786    |
|   | .8   | .366   | •4   | .826   | 25.0 | 23.550 | .6   | .833   | .2   | 40.007  |
|   | .9   | .451   | 20.5 | .935   | .1   | .692   | .7   | 31.011 | .3   | .230    |
| 1 | 16.0 | 13.536 | .6   | 18.047 | •2   | .834   | .8   | ·190   | •4   | .455    |
|   | .1   | .623   | .7   | 159    | .3   | .976   | .9   | .369   | 34.5 | .680    |
| 1 | .2   | .710   | .8   | .271   | •4   | 24.119 | 30.0 | 31.548 | .6   | .907    |
| 1 | .3   | .797   | .9   | .383   | 25.5 | .261   | •1   | .729   | .7   | 41.135  |
| 1 | •4   | *885   | 21.0 | 18.495 | .6   | .406   | .2   | .911   | .8   | .364    |
| - | 16.5 | .972   | .1   | .610   | .7   | .552   | .3   | 32.094 | .9   | •595    |
| - | .6   | 14.062 | •2   | .724   | .8   | .697   | •4   | .278   | 35.0 | .827    |
| 1 | .7   | 151    | .3   | .839   | .9   | .842   | 30.5 | •463   |      |         |
| 1 | .8   | •241   | •4   | 954    | 26.0 | 24.988 | .6   | .650   |      | 1       |
| 1 | .9   | *331   | 21.5 | 19.069 | •1   | 25.138 | .7   | .837   |      | 1 1 1 1 |
|   | 17.0 | 14.421 | .6   | .187   | •2   | •288   | •8   | 33.026 |      | 1       |
|   |      | E 3    | 1    |        |      | -      |      |        |      |         |
| - |      |        | 1    |        |      |        |      | 1      | * 1  | 1       |

TABLES REQUIRED IN WATER ANALYSIS-continued.

II. Reduction of Cubic Centimetres of Nitrogen to Grams.

 ${\rm Log.}\frac{0.0012562}{(1+.00367\;t)\,760}$  for each tenth of a degree from 0° to 30° C.

|      |         |      |      |      |      |      |      | -    |      |      |
|------|---------|------|------|------|------|------|------|------|------|------|
| t C. | 0.0     | 0.1  | 0.2  | 0.3  | 0.4  | 0.5  | 0.6  | 0.7  | 0.8  | 0.9  |
| 0    | 6:21824 | 808  | 793  | 777  | 761  | 745  | 729  | 713  | 697  | 681  |
| 1    | 665     | 649  | 633  | 617  | 601  | 586  | 570  | 554  | 538  | 522  |
| 2    | 507     | 491  | 475  | 459  | 443  | 427  | 412  | 396  | 380  | 364  |
| 3    | 349     | 333  | 318  | 302  | 286  | 270  | 255  | 239  | 223  | 208  |
| 4    | 192     | 177  | 161  | 145  | 130  | 114  | 098  | 083  | 067  | 051  |
| 5    | 035     | 020  | 004  | *989 | *973 | *957 | *942 | *926 | *911 | *895 |
| 6    | 6·20879 | 864  | 848  | 833  | 817  | 801  | 786  | 770  | 755  | 739  |
| 7    | 723     | 708  | 692  | 676  | 661  | 645  | 629  | 614  | 598  | 583  |
| 8    | 567     | 552  | 536  | 521  | 505  | 490  | 427  | 459  | 443  | 428  |
| 9    | 413     | 397  | 382  | 366  | 351  | 335  | 320  | 304  | 289  | 274  |
| 10   | 259     | 244  | 228  | 213  | 198  | 182  | 167  | 151  | 136  | 121  |
| 11   | 106     | 090  | 075  | 060  | 045  | 029  | 014  | *999 | *984 | *969 |
| 12   | 6·19953 | 938  | 923  | 907  | 892  | 877  | 862  | 846  | 831  | 816  |
| 13   | 800     | 785  | 770  | 755  | 740  | 724  | 709  | 694  | 679  | 664  |
| 14   | 648     | 633  | 618  | 603  | 588  | 573  | 558  | 543  | 528  | 513  |
| 15   | 497     | 482  | 467  | 452  | 437  | 422  | 407  | 392  | 377  | 362  |
| 16   | 346     | 331  | 316  | 301  | 286  | 271  | 256  | 241  | 226  | 211  |
| 17   | 196     | 181  | 166  | 157  | 136  | 121  | 106  | 091  | 076  | 061  |
| 18   | 046     | 031  | 016  | 001  | *986 | *971 | *956 | *941 | *926 | *911 |
| 19   | 6·18897 | 882  | 867  | 852  | 837  | 822  | 807  | 792  | 777  | 762  |
| 20   | 748     | 733  | 718  | 703  | 688  | 673  | 659  | 644  | 629  | 614  |
| 21   | 600     | 585  | 570  | 555  | 540  | 526  | 511  | 496  | 481  | 466  |
| 22   | 452     | 437  | 422  | 408  | 393  | 378  | 363  | 349  | 334  | 319  |
| 23   | 305     | 290  | 275  | 261  | 246  | 231  | 216  | 202  | 187  | 172  |
| 24   | 158     | 143  | 128  | 114  | 099  | 084  | 070  | 055  | 041  | 026  |
| 25   | 012     | *997 | *982 | *968 | *953 | *938 | *924 | *909 | *895 | *880 |
| 26   | 6·17866 | 851  | 837  | 822  | 808  | 793  | 779  | 764  | 750  | 735  |
| 27   | 721     | 706  | 692  | 677  | 663  | 648  | 634  | 619  | 605  | 590  |
| 28   | 576     | 561  | 547  | 532  | 518  | 503  | 489  | 475  | 460  | 446  |
| 29   | 432     | 417  | 403  | 388  | 374  | 360  | 345  | 331  | 316  | 302  |

#### TABLES REQUIRED IN WATER ANALYSIS-continued.

III. Loss of Nitrogen by Evaporation of  $NH_3$  with Sulphurous Acid. Parts per 100,000.

| NH <sub>3</sub>                                                    | Loss<br>of N                                                                  | NH <sub>3</sub>                                                    | Loss<br>of N                                                                           | NH <sub>3</sub>                                                    | Loss<br>of N                                                                 | NH <sub>3</sub>                                                    | Loss<br>of N                                                                 | NH <sub>3</sub>                                              | Loss<br>of N                                                                 | NH <sub>3</sub>                                                     | Loss<br>of N                                                                 |
|--------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------|
| 6·0<br>5·9<br>5·8<br>5·7<br>5·6<br>5·5<br>5·4<br>5·3<br>5·2<br>5·1 | 1.727<br>1.707<br>1.688<br>1.668<br>1.648<br>1.628<br>1.609<br>1.589<br>1.569 | 4.8<br>4.7<br>4.6<br>4.5<br>4.4<br>4.3<br>4.2<br>4.1<br>4.0<br>3.9 | 1·451<br>1·411<br>1·372<br>1·332<br>1·293<br>1·253<br>1·214<br>1·174<br>1·135<br>1·095 | 3.6<br>3.5<br>3.4<br>3.3<br>3.2<br>3.1<br>3.0<br>2.9<br>2.8<br>2.7 | ·977<br>·937<br>·898<br>·858<br>·819<br>·779<br>·740<br>·700<br>·661<br>·621 | 2·4<br>2·3<br>2·2<br>2·1<br>2·0<br>1·9<br>1·8<br>1·7<br>1·6<br>1·5 | ·503<br>·463<br>·424<br>·384<br>·345<br>·333<br>·321<br>·309<br>·297<br>·285 | 1·2<br>1·1<br>1·0<br>0·9<br>·8<br>·7<br>·6<br>·5<br>·4<br>·3 | ·250<br>·238<br>·226<br>·196<br>·166<br>·136<br>·106<br>·077<br>·062<br>·047 | ·09<br>·08<br>·07<br>·06<br>·05<br>·04<br>·03<br>·02<br>·01<br>·009 | *014<br>*013<br>*012<br>*010<br>*009<br>*007<br>*006<br>*004<br>*003<br>*001 |
| 5.0                                                                | 1.490<br>1.490                                                                | 3.8                                                                | 1.056                                                                                  | 2.6                                                                | •582<br>•542                                                                 | 1.3                                                                | ·274<br>·262                                                                 | ·2<br>·1                                                     | 0.17                                                                         |                                                                     |                                                                              |

IV. Loss of Nitrogen by Evaporation of NH<sub>3</sub> with Hydric Metaphosphate.
Parts per 100,000.

| Volume<br>evaporated. | NH <sub>3</sub>                                                                                                      | Loss<br>of N                                                                                                                         | Volume<br>evaporated. | NH <sub>3</sub>                                                                                       | Loss<br>of N                                                                                                                         | Volume<br>evaporated. | NH <sub>3</sub>                                                                                | Loss<br>of N                                                                                                                         |
|-----------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 100 c.c.              | 10·0<br>9·9<br>9·8<br>9·7<br>9·6<br>9·5<br>9·4<br>9·3<br>9·2<br>9·1<br>9·0<br>8·9<br>8·8<br>8·7<br>8·6<br>8·5<br>8·4 | ·483<br>·480<br>·476<br>·473<br>·469<br>·466<br>·462<br>·459<br>·455<br>·452<br>·448<br>·445<br>·441<br>·438<br>·434<br>·431<br>·428 | 100 c.c.              | 8·3<br>8·2<br>8·1<br>8·0<br>7·9<br>7·8<br>7·5<br>7·4<br>7·3<br>7·2<br>7·1<br>7·0<br>6·9<br>6·8<br>6·7 | ·424<br>·421<br>·417<br>·414<br>·410<br>·407<br>·403<br>·400<br>·396<br>·393<br>·389<br>·386<br>·382<br>·379<br>·375<br>·372<br>·368 | 100 c, c,             | 6.6<br>6.5<br>6.4<br>6.3<br>6.2<br>6.0<br>5.9<br>5.8<br>5.7<br>5.5<br>5.4<br>5.3<br>5.2<br>5.1 | *365<br>*361<br>*358<br>*354<br>*351<br>*348<br>*345<br>*341<br>*337<br>*333<br>*330<br>*326<br>*322<br>*318<br>*314<br>*310<br>*306 |

TABLES REQUIRED IN WATER ANALYSIS. TABLE IV .- continued.

| Volume evaporated. | NH <sub>3</sub>                                                                                                                                              | Loss<br>of N                                                                                                                                  | Volume evaporated. | $\mathrm{NH_3}$                                                                                              | Loss<br>of N                                                                    | Volume evaporated.                                                           | $\mathrm{NH_3}$                                        | Loss<br>of N                                                                                                                 |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| 100 c.c.           | 4.9<br>4.87<br>4.6<br>4.5<br>4.4<br>4.3<br>4.1<br>4.0<br>3.9<br>8.7<br>8.3<br>8.7<br>8.3<br>9.3<br>9.3<br>9.3<br>9.3<br>9.3<br>9.3<br>9.3<br>9.3<br>9.3<br>9 | *302<br>*298<br>*2994<br>*291<br>*287<br>*283<br>*279<br>*275<br>*271<br>*267<br>*252<br>*247<br>*242<br>*236<br>*231<br>*226<br>*221<br>*216 | 100 c.c.           | 2:9<br>2:8<br>2:7<br>2:6<br>2:5<br>2:4<br>2:2<br>2:1<br>2:0<br>1:9<br>1:7<br>1:6<br>1:5<br>1:4<br>1:3<br>1:1 | ·211 ·205 ·200 ·195 ·190 ·184 ·179 ·164 ·153 ·148 ·143 ·137 ·127 ·122 ·117 ·112 | 250 c.c.  ,, ,, 500 c.c. ,, 1000 c.c. ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, | ·9 ·8 ·7 ·6 ·5 ·4 ·3 ·2 ·1 ·09 ·06 ·05 ·04 ·03 ·02 ·01 | .096<br>.080<br>.070<br>.060<br>.050<br>.040<br>.030<br>.020<br>.010<br>.009<br>.006<br>.005<br>.005<br>.004<br>.003<br>.002 |

# V. Loss of Nitrogen by Evaporation of $NH_3$ with Sulphurous Acid. Parts per 100,000.

| N as<br>NH <sub>3</sub> | Loss<br>of N            | N as<br>NH <sub>3</sub> | Loss<br>of N            | N as<br>NH <sub>3</sub> | Loss<br>of N         | N as<br>NH <sub>3</sub> | Loss<br>of N         | N as<br>NH <sub>3</sub> | Loss<br>of N         | N as<br>NH <sub>3</sub> | Loss<br>of N         |
|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|----------------------|-------------------------|----------------------|-------------------------|----------------------|-------------------------|----------------------|
| 5.0<br>4.9<br>4.8       | 1.741<br>1.717<br>1.693 | 3·9<br>3·8<br>3·7       | 1·425<br>1·378<br>1·330 | 2·9<br>2·8<br>2·7       | *946<br>*898<br>*850 | 1.9<br>1.8              | ·466<br>·418<br>·370 | ·9<br>·8<br>·7          | ·237<br>·217<br>·181 | ·08<br>·07<br>·06       | ·017<br>·015<br>·013 |
| 4·7<br>4·6<br>4·5       | 1.669<br>1.645<br>1.621 | 3·6<br>3·5<br>3·4       | 1 282<br>1 234<br>1 186 | 2·6<br>2·5<br>2·4       | ·802<br>·754<br>·706 | 1.6<br>1.5              | ·338<br>·324<br>·309 | ·6<br>·5                | 145<br>109           | ·05<br>·04<br>·03       | ·011<br>·009<br>·007 |
| 4·4<br>4·3<br>4·2       | 1.598<br>1.574<br>1.550 | 3·3<br>3·2<br>3·1       | 1·138<br>1·090<br>1·042 | 2·3<br>2·2<br>2·1       | ·658<br>·610<br>·562 | 1·3<br>1·2<br>1·1       | ·295<br>·280<br>·266 | ·3<br>·2<br>·1          | .057<br>.038<br>.020 | ·02<br>·01<br>·008      | .005<br>.003         |
| 4.1                     | 1.521<br>1.473          | 3.0                     | .994                    | 2.0                     | .514                 | 1.0                     | *252                 | .09                     | .018                 | .007                    | .001                 |

### TABLES REQUIRED IN WATER ANALYSIS-continued.

VI. Loss of Nitrogen by Evaporation of NH<sub>3</sub> with Hydric Metaphosphate.

Parts per 100,000.

| Volume evaporated. | N as<br>NH <sub>3</sub> | Loss<br>of N | Volume evaporated. | N as<br>NH <sub>3</sub> | Loss<br>of N | Volume evaporated. | N as<br>NH <sub>3</sub> | Loss<br>of N |
|--------------------|-------------------------|--------------|--------------------|-------------------------|--------------|--------------------|-------------------------|--------------|
| 100 c.c.           | 8.2                     | •482         | 100 c.c.           | 5.1                     | .352         | 100 c.c.           | 2.1                     | 192          |
|                    | 8.1                     | •477         |                    | 5.0                     | *347         |                    | 2.0                     | .186         |
| "                  | 8.0                     | •473         | ,,                 | 4.9                     | *343         | "                  | 1.9                     | .180         |
| = 11               | 7.9                     | 469          | "                  | 4.8                     | *338         | "                  | 1.8                     | .173         |
| "                  | 7.8                     | •465         | "                  | 4.7                     | *334         | "                  | 1.7                     | 167          |
| ,,                 | 7.7                     | *461         | ,,                 | 4.6                     | •329         | "                  | 1.6                     | 161          |
| ,,                 | 7.6                     | .456         | ,,                 | 4.5                     | *324         | "                  | 1.5                     | .154         |
| ,,,                | 7.5                     | *452         | 22                 | 4.4                     | 319          | "                  | 1.4                     | 134          |
| 23                 | 7.4                     |              | 27                 |                         |              | "                  |                         |              |
| "                  |                         | *448         | "                  | 4.3                     | *315         | / 22               | 1.3                     | 142          |
| ,,                 | 7.3                     | *444         | "                  | 4.2                     | *310         | ,,                 | 1.2                     | 136          |
| >>                 | 7.2                     | *440         | "                  | 4.1                     | *305         | "                  | 1.1                     | 129          |
| "                  | 7.1                     | .435         | - "                | 4.0                     | *301         | 22                 | 1.0                     | 123          |
| ,,,                | 7.0                     | *431         | ,,                 | 3.9                     | .296         | "                  | •9                      | .117         |
| 93                 | 6.9                     | .427         | ,,                 | 3.8                     | •291         | ,,                 | *8                      | .111         |
| ,,                 | 6.8                     | •423         | ,,                 | 3.7                     | <b>.</b> 286 | 250 c.c.           | .7                      | .088         |
| ,,                 | 6.7                     | ·419         | ,,                 | 3.6                     | -281         | ,,                 | .6                      | ·073         |
| ,,                 | 6.6                     | •414         | ,,                 | 3.5                     | .277         |                    | •5                      | .081         |
| ,,                 | 6.5                     | ·410         | ,,                 | 3.4                     | .272         | 500 c.c.           | •4                      | .049         |
| ,,                 | 6.4                     | *406         | ,,                 | 3.3                     | .267         | .,                 | .3                      | .036         |
| . ,,               | 6.3                     | .402         | ,,                 | 3.2                     | •261         | 1000 c.c.          | •2                      | .024         |
| ,,                 | 6.2                     | .398         | ,,                 | 3.1                     | .255         | ,,                 | .1                      | .012         |
| ,,                 | 6.1                     | .394         | ,,                 | 3.0                     | .249         | ,,                 | .09                     | .011         |
| ,,                 | 6.0                     | *389         | ,,                 | 2.9                     | .242         | "                  | .08                     | .010         |
| ,,                 | 5.9                     | *385         | ,,                 | 2.8                     | 236          |                    | .07                     | .008         |
| ,,                 | 5.8                     | *381         |                    | 2.7                     | 230          | ,,                 | .06                     | .007         |
|                    | 5.7                     | *377         | "                  | 2.6                     | •223         | "                  | .05                     | .006         |
| ,,                 | 5.6                     | •373         | ,,                 | 2.5                     | .217         | "                  | .04                     | .005         |
| ,,                 | 5.5                     | *368         | "                  | 2.4                     | .211         | "                  | .03                     | .004         |
| ,,                 | 5.4                     | 364          | "                  | 2.3                     | 205          | 23                 | .02                     | .002         |
| "                  | 5.3                     | 360          | ,,,                | 2.2                     | 198          | ,,                 | .01                     | .001         |
| "                  | 5.2                     | *356         | "                  | 22                      | 130          | "                  | 01                      | 001          |
| ,,                 | 0 4                     | 000          |                    |                         |              |                    |                         |              |

VII. Table of Hardness. (50 c.c. of water used.)

| Volume<br>of Soap<br>solu-<br>tion.   |                                              | Degrees<br>of Hard-<br>ness.*                | Volume<br>of Soap<br>solu-<br>tion.       | CaCO <sub>3</sub><br>per<br>100,000          | Degrees<br>of Hard-<br>ness.                 | Volume<br>of Soap<br>solu-<br>tion. | CaCO <sub>3</sub><br>per<br>100,000          | Degrees<br>of Hard-<br>ness.                 |
|---------------------------------------|----------------------------------------------|----------------------------------------------|-------------------------------------------|----------------------------------------------|----------------------------------------------|-------------------------------------|----------------------------------------------|----------------------------------------------|
| 0.c.<br>0.7<br>0.8<br>0.9<br>1.0<br>1 | 0.00<br>0.16<br>0.32<br>0.48<br>0.63<br>0.79 | 0:00<br>0:11<br>0:22<br>0:34<br>0:44<br>0:55 | c.c.<br>1·3<br>·4<br>·5<br>·6<br>·7<br>·8 | 0.95<br>1.11<br>1.27<br>1.43<br>1.56<br>1.69 | 0.67<br>0.78<br>0.89<br>1.00<br>1.09<br>1.18 | c.c.<br>1 9<br>2 0<br>1<br>2<br>3   | 1.82<br>1.95<br>2.08<br>2.21<br>2.34<br>2.47 | 1·27<br>1·37<br>1·46<br>1·55<br>1·64<br>1·73 |

<sup>\*</sup> Each degree of hardness indicates one grain of CaCO3 per gallon.

TABLES REQUIRED IN WATER ANALYSIS. TABLE VII.—continued.

|                  |                   |          |                  |                   |          | 1.               |                   |          |
|------------------|-------------------|----------|------------------|-------------------|----------|------------------|-------------------|----------|
| Volume           | CaCO <sub>3</sub> | Degrees  | Volume           | CaCO <sub>3</sub> | Degrees  | Volume           | CaCO <sub>3</sub> | Degrees  |
| of Soap<br>solu- | per               | of Hard- | of Soap<br>solu- | per               | of Hard- | of Soap<br>solu- | per               | of Hard- |
| tion.            | 100,000           | ness.*   | tion.            | 100,000           | ness.    | tion.            | 100,000           | ness.    |
| Lion.            |                   |          |                  |                   |          | tion.            |                   |          |
| c.c.             |                   |          | c.c.             |                   |          | c.c.             |                   |          |
| 2.5              | 2.60              | 1.82     | 7.1              | 9.00              | 6.30     | 11.7             | 15.95             | 11.17    |
| -6               | 2.73              | 1.91     | 1.2              | 9.14              | 6.40     | *8               | 16.11             | 11.28    |
| .7               | 2.86              | 2.00     | .3               | 9.29              | 6.20     | .9               | 16.27             | 11.39    |
| -8               | 2.99              | 2.09     | .4               | 9.43              | 6.60     | 12.0             | 16.43             | 11.50    |
| .9               | 3.12              | 2.18     | .5               | 9 43              | 6.70     | 12.0             |                   | 11.61    |
| 3.0              | 3.25              | 2.28     | .6               | 9.71              | 6.80     | •2               | 16.59<br>16.75    | 11.73    |
| 1                | 3.38              | 2.37     | .7               | 9.86              | 6.90     | •3               | 16.90             |          |
| •2               |                   | 2.46     | .8               |                   |          | 1                |                   | 11.83    |
| •3               | 3.21              |          | .9               | 10.00             | 7.00     | .4               | 17:06             | 11.94    |
|                  | 3.64              | 2.55     | 8.0              | 10.15             | 7.11     | .5               | 17.22             | 12.05    |
| *4               | 3.77              | 2.64     |                  | 10.30             | 7:21     | •6               | 17:38             | 12.17    |
| .5               | 3.90              | 2.73     | '1               | 10.45             | 7:32     | •7               | 17.54             | 12.28    |
| 6                | 4.03              | 2.82     | •2               | 10.60             | 7.42     | .8               | 17.70             | 12.39    |
| .7               | 4.16              | 2.91     | .3               | 10.75             | 7.53     | .9               | 17.86             | 12.50    |
| .8               | 4.29              | 3.00     | .4               | 10.90             | 7.63     | 13.0             | 18.02             | 12.61    |
| .9               | 4.43              | 3.10     | *5               | 11.05             | 7.74     | '1               | 18.17             | 12.72    |
| 4.0              | 4.57              | 3.20     | .6               | 11.20             | 7.84     | •2               | 18.33             | 12.83    |
| 1                | 4.71              | 3.30     | .7               | 11.35             | 7.95     | .3               | 18.49             | 12.94    |
| 2                | 4.86              | 3.40     | .8               | 11.50             | 8.05     | .4               | 18.65             | 13.06    |
| 3                | 5.00              | 3.20     | .9               | 11.65             | 8.16     | .5               | 18.81             | 13.17    |
| .4               | 5.14              | 3.60     | 9.0              | 11.80             | 8.26     | •6               | 18.97             | 13.28    |
| .2               | 5.29              | 3.70     | '1               | 11.95             | 8.37     | .7               | 19.13             | 13.39    |
| •6               | 5.43              | 3.80     | 2                | 12.11             | 8.48     | •8               | 19.29             | 13.50    |
| .7               | 5.57              | 3.90     | .3               | 12.26             | 8.58     | .9               | 19.44             | 13.61    |
| .8               | 5.71              | 4.00     | •4               | 12.41             | 8.69     | 14.0             | 19.60             | 13.72    |
| .9               | 5.86              | 4.10     | .5               | 12.56             | 8.79     | .1               | 19.76             | 13.83    |
| 5.0              | 6.00              | 4.20     | .6               | 12.71             | 8.90     | .2               | 19.92             | 13.94    |
| 1 1              | 6.14              | 4.30     | .7               | 12.86             | 9.00     | .3               | 20.08             | 14.06    |
| •2               | 6.29              | 4.40     | .8               | 13.01             | 9.11     | •4               | 20.24             | 14.17    |
| .3               | 6.43              | 4.50     | .9               | 13.16             | 9.21     | .2               | 20.40             | 14.28    |
| •4               | 6.57              | 4.60     | 10.0             | 13.31             | 9.32     | .6               | 20.56             | 14.39    |
| .2               | 6.71              | 4.70     | 1                | 13.46             | 9.42     | .7               | 20.71             | 14.50    |
| .6               | 6.86              | 4.80     | .2               | 13.61             | 9.53     | .8               | 20.87             | 14.61    |
| .7               | 7.00              | 4.90     | .3               | 13.76             | 9.63     | .9               | 21.03             | 14.72    |
| .8               | 7.14              | 5.00     | '4               | 13.91             | 9.74     | 15.0             | 21.19             | 14.83    |
| .9               | 7.29              | 5.10     | .5               | 14.06             | 9.84     | 1                | 21.35             | 14.95    |
| 6.0              | 7.43              | 5.20     | .6               | 14.21             | 9.95     | .2               | 21.21             | 15.06    |
| 1                | 7.57              | 5.30     | .7               | 14.37             | 10.06    | •3               | 21.68             | 15.18    |
| •2               | 7.71              | 5.40     | .8               | 14.52             | 10.16    | •4               | 21.85             | 15.30    |
| .3               | 7.86              | 5.20     | .9               | 14.68             | 10.28    | •5               | 22.02             | 15.41    |
| •4               | 8.00              | 5.60     | 11.0             | 14.84             | 10.39    | .6               | 22.18             | 15.23    |
| •5               | 8.14              | 5.70     | 1                | 15.00             | 10.50    | .7               | 22.35             | 15.65    |
| .6               | 8.29              | 5.80     | - 2              | 15.16             | 10.61    | .8               | 22.52             | 15.76    |
| .7               | 8.43              | 5.90     | •3               | 15.32             | 10.72    | .9               | 22.69             | 15.88    |
| .8               | 8.57              | 6.00     | •4               | 15.48             | 10.84    | 16.0             | 22.86             | 16.00    |
| .9               | 8.71              | 6.10     | .2               | 15.63             | 10.94    |                  | 4                 | 111111   |
| 7.0              | 8.86              | 6.20     | .6               | 15.79             | 11.05    |                  |                   |          |

<sup>\*</sup> Each degree of hardness indicates one grain of CaCO3 per gallon.

## TABLES REQUIRED IN WATER ANALYSIS—continued.

VIII. Clark's Table of Hardness of Water.

| Degrees of<br>Hardness.           | Measures<br>of Soap<br>solution.                        | Differences<br>for the next 1°<br>of Hardness.              | Degrees of<br>Hardness.                          | Measures<br>of Soap<br>solution.                                     | Differences<br>for the next 1°<br>of Hardness.       |
|-----------------------------------|---------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|
| 0 (distilled water) 1 2 3 4 5 6 7 | 1·4<br>3·2<br>5·4<br>7·6<br>9·6<br>11·6<br>13·6<br>15·6 | 1·8<br>2·2<br>2·2<br>2·0<br>2·0<br>2·0<br>2·0<br>2·0<br>1·9 | 8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16 | 17.5<br>19.4<br>21.3<br>23.1<br>24.9<br>26.7<br>28.5<br>30.3<br>32.0 | 1.9<br>1.9<br>1.8<br>1.8<br>1.8<br>1.8<br>1.8<br>1.7 |

Each measure equals 10 grains, the quantity of water operated upon equals 1000 grains, and each "degree of hardness" indicates 1 grain of calcic carbonate per gallon.

### THE ESTIMATION OF NITRATES IN WATER BY SPRENGEL'S METHOD.

#### Solutions required.

(1) Phenol-Sulphonic Acid.—Mix together 2 parts by measure of phenol and 5 parts of pure concentrated sulphuric acid, and heat in a porcelain basin on the water-bath for about 8 hours. When cool, add  $1\frac{1}{2}$  volumes of water and  $\frac{1}{2}$  volume strong hydrochloric acid to each volume of the phenol-sulphonic acid.

Convenient quantities are 80 c.c. phenol, 200 c.c. H<sub>2</sub>SO<sub>4</sub>; 420 c.c. water and 140 c.c. HCl, producing 840 c.c. of a light brown

solution, which is ready for immediate use.

(2) Standard Potassium Nitrate.—0.0722 gram KNO<sub>3</sub> crystals are dissolved in a litre of water.\*

10 c.c. = 0.0001 gram N, or 1 part of N in 100,000 of water when 10 c.c. are evaporated.

The estimation is made as follows:—10 c.c. of the water under examination and 10 c.c. standard KNO<sub>3</sub> are pipetted into two small beakers and evaporated nearly to dryness on a hot iron plate, the operation being completed on the top of a water-oven. As this operation usually takes about an hour and a half, it is better, when time is an object, to evaporate to dryness in a platinum dish over steam. The residue in each case is treated with 1 c.c. of the phenol-sulphonic acid, which is brought into contact with the whole of the residue, and the beakers are placed on the top of the water-

<sup>\*</sup> The best plan is to dissolve 0.7220 gram KNO<sub>3</sub> in a litre of distilled water; then, keeping this as a stock strong solution, dilute 100 c.c. of it to 1 litre for use as required.

oven. When nitrates are present in quantity, the liquid speedily assumes a red colour, which, in the case of a good water, will not appear for about 10 minutes. After 15 minutes' standing, the beakers are removed, the contents of each washed out successively into a 100 c.c. graduated measure, a slight excess (about 20 c.c. of 0.96) of ammonia added, the 100 c.c. made up by the addition of water and the yellow liquid transferred to a Nessler glass (6 in. × 1½ in.). The more strongly coloured liquid is then partly transferred to the measure again and the tints compared a second time. In this way the tints are adjusted, the volume of the stronger liquid being, for final comparison, made up to 100 c.c.

In the case of very good waters, 20, 50, or more c.c. should be evaporated in a short, wide beaker to a small bulk, rinsed into a small beaker, and evaporated to dryness and treated as above—only 5 c.c. of the standard potassium nitrate (=0.5 N in 100,000 of water on the basis of 10 c.c. water taken) being used for comparison. In the case of very bad waters, 10 c.c. should be pipetted into a 100 c.c. measuring flask and made up to the mark with distilled water: then 10 c.c. of the well mixed liquid (=1 c.c. original

water) are withdrawn and treated as above.

According to A. H. Gill, this process does not estimate the nitrogen present as nitrite, as the action of nitrous acid results in the formation of nitrosophenol C<sub>6</sub>H<sub>4</sub> (NO)(OH), which is colourless in dilute solutions (see abstract in *Jour. Soc. Chem. Ind.*, 1895, p. 71).

#### TABLES REQUIRED IN WATER ANALYSIS-continued.

IX. Estimation of Nitrogen as Nitrates by Sprengel's Method (for waters containing more than one part of N in 100,000).

|                                           | No. of c.c. of<br>yellow solu-                                                                      | Nitrogen a                                                                                                                                   | s Nitrates.                                                                                                                                  | No. of c.c. of<br>yellow solu-                                                                                 | Nitrogen as Nitrates.                                                                                                                                |                                                                                                                                                      |  |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| tion equal to<br>the standard<br>100 c.c. |                                                                                                     | Parts per 100,000.                                                                                                                           | Grains per gallon.                                                                                                                           | tion equal to<br>the standard<br>100 c.c.                                                                      | Parts per 100,000.                                                                                                                                   | Grains per gallon.                                                                                                                                   |  |
|                                           | 100<br>95<br>90<br>85<br>88<br>76<br>75<br>74<br>72<br>70<br>68<br>66<br>65<br>64<br>62<br>60<br>58 | 1:00<br>1:05<br>1:11<br>1:18<br>1:25<br>1:28<br>1:32<br>1:33<br>1:35<br>1:39<br>1:43<br>1:47<br>1:51<br>1:54<br>1:55<br>1:61<br>1:67<br>1:72 | 0·70<br>0·74<br>0·78<br>0·83<br>0·83<br>0·90<br>0·92<br>0·93<br>0·97<br>1·00<br>1·03<br>1·06<br>1·08<br>1·09<br>1·13<br>1·17<br>1·20<br>1·25 | 50<br>48<br>46<br>45<br>44<br>42<br>40<br>38<br>36<br>35<br>34<br>32<br>30<br>28<br>26<br>25<br>24<br>22<br>20 | 2:00<br>2:08<br>2:17<br>2:22<br>2:23<br>2:33<br>2:50<br>2:63<br>2:78<br>2:86<br>2:94<br>3:13<br>3:33<br>3:57<br>3:85<br>4:00<br>4:17<br>4:55<br>5:00 | 1:40<br>1:46<br>1:52<br>1:55<br>1:56<br>1:67<br>1:75<br>1:84<br>1:95<br>2:00<br>2:06<br>2:19<br>2:33<br>2:50<br>2:70<br>2:80<br>2:92<br>3:19<br>3:50 |  |
|                                           | 55<br>54<br>52                                                                                      | 1.82<br>1.85<br>1.92                                                                                                                         | 1·27<br>1·30<br>1·34                                                                                                                         | 18<br>16<br>15                                                                                                 | 5·55<br>6·25<br>6·67                                                                                                                                 | 3·89<br>4·38<br>4·67                                                                                                                                 |  |

X. Table for the Conversion of Parts per 100,000 into Grains per Gallon.

| Parts per 100,000. | Grains per gallon. | Parts per 100,000. | Grains per<br>gallon. | Parts per 100,000. | Grains per<br>gallon. | Parts per 100,000. | Grains per<br>gallon. |
|--------------------|--------------------|--------------------|-----------------------|--------------------|-----------------------|--------------------|-----------------------|
| 1                  | 0·7                | 9                  | 6·3                   | 17                 | 11·9                  | 25                 | 17·5                  |
| 2                  | 1·4                | 10                 | 7·0                   | 18                 | 12·6                  | 26                 | 18·2                  |
| 3                  | 2·1                | 11                 | 7·7                   | 19                 | 13·3                  | 27                 | 18·9                  |
| 4                  | 2·8                | 12                 | 8·4                   | 20                 | 14·0                  | 28                 | 19·6                  |
| 5                  | 3·5                | 13                 | 9·1                   | 21                 | 14·7                  | 29                 | 20·3                  |
| 6                  | 4·2                | 14                 | 9·8                   | 22                 | 15·4                  | 30                 | 21·0                  |
| 7                  | 4·9                | 15                 | 10·5                  | 23                 | 16·1                  | 31                 | 21·7                  |
| 8                  | 5·6                | 16                 | 11·2                  | 24                 | 16·8                  | 32                 | 22·4                  |

TABLES REQUIRED IN WATER ANALYSIS. TABLE X .- continued.

|           |                |            | ,            | ,          |                |            |                |
|-----------|----------------|------------|--------------|------------|----------------|------------|----------------|
| Parts per | Grains per     | Parts per  | Grains per   | Parts per  | Grains per     | Parts per  | Grains per     |
| 100,000.  | gallon.        | 100,000.   | gallon.      | 100,000.   | gallon.        | 100,000.   | gallon.        |
|           |                |            |              |            |                |            |                |
| 33        | 23.1           | 78         | 54.6         | 123        | 86.1           | 168        | 117.6          |
| 34        | 23.8           | 79         | 55.3         | 124        | 86.8           | 169        | 118.3          |
| 35        | 24.5           | 80         | 56.0         | 125        | 87.5           | 170        | 119.0          |
| 36        | 25·2<br>25·9   | 81         | 56.7         | 126<br>127 | 88.2           | 171        | 119.7          |
| 37        | 26.6           | 82<br>83   | 57·4<br>58·1 | 127        | 88·9<br>89·6   | 172<br>173 | 120·4<br>121·1 |
| 39        | 27.3           | 84         | 58.8         | 129        | 90.3           | 174        | 121.8          |
| 40        | 28.0           | 85         | 59.5         | 130        | 91.0           | 175        | 122.5          |
| 41        | 28.7           | 86         | 60.2         | 131        | 91.7           | 176        | 123.2          |
| 42        | 29.4           | 87         | 60.9         | 132        | 92.4           | 177        | 123.9          |
| 43        | 30.1           | 88         | 61.6         | 133        | 93.1           | 178        | 124.6          |
| 44        | 30.8           | 89         | 62.3         | 134        | 93.8           | 179        | 125.3          |
| 45        | 31.2           | 90         | 63.0         | 135        | 94.5           | 180        | 126.0          |
| 46        | 32.2           | 91         | 63.7         | 136        | 95.2           | 181        | 126.7          |
| 47<br>48  | 32·9<br>33·6   | 92<br>93   | 64·4<br>65·1 | 137<br>138 | 95·9<br>96·6   | 182<br>183 | 127·4<br>128·1 |
| 48        | 34.3           | 95         | 65.8         | 139        | 97.3           | 184        | 128.8          |
| 50        | 35.0           | 95         | 66.5         | 140        | 98.0           | 185        | 129.5          |
| 51        | 35.7           | 96         | 67.2         | 141        | 98.7           | 186        | 130.2          |
| 52        | 36.4           | 97         | 67.9         | 142        | 99.4           | 187        | 130.9          |
| 53        | 37.1           | 98         | 68.6         | 143        | 100.1          | 188        | 131.6          |
| 54        | 37.8           | 99         | 69.3         | 144        | 100.8          | 189        | 132.3          |
| 55        | 38.5           | 100        | 70.0         | 145        | 101.5          | 190        | 133.0          |
| 56        | 39.2           | 101        | 70.7         | 146        | 102.2          | 191        | 133.7          |
| 57        | 39.9           | 102        | 71.4         | 147        | 102.9          | 192        | 134.4          |
| 58        | 40.6           | 103        | 72.1         | 148        | 103.6          | 193        | 135.1          |
| 59<br>60  | 41 ·3<br>42 ·0 | 104<br>105 | 72·8<br>73·5 | 149<br>150 | 104·3<br>105·0 | 194<br>195 | 135.8          |
| 61        | 42.7           | 105        | 74.2         | 151        | 105.7          | 196        | 137.2          |
| 62        | 43.4           | 107        | 74.9         | 151        | 106.4          | 197        | 137.9          |
| 63        | 44.1           | 108        | 75.6         | 153        | 107.1          | 198        | 138.6          |
| 64        | 44.8           | 109        | 76.3         | 154        | 107.8          | 199        | 139.3          |
| 65        | 45.5           | 110        | 77.0         | 155        | 108.5          | 200        | 140.0          |
| 66        | 46.2           | 111        | 77.7         | 156        | 109.2          | 201        | 140.7          |
| 67        | 46.9           | 112        | 78.4         | 157        | 109.9          | 202        | 141.4          |
| 68        | 47.6           | 113        | 79.1         | 158        | 110.6          | 203        | 142.1          |
| 69        | 48.3           | 114        | 79.8         | 159        | 111.3          | 204        | 142.8          |
| 70        | 49.0           | 115        | 80.5         | 160        | 112.0          | 205<br>206 | 143.5<br>144.2 |
| 71 72     | 49·7<br>50·4   | 116<br>117 | 81·2<br>81·9 | 161<br>162 | 112·7<br>113·4 | 205        | 144.2          |
| 73        | 51.1           | 118        | 81.9         | 163        | 113.4          | 207        | 144 9          |
| 74        | 51.8           | 119        | 83.3         | 164        | 114.8          | 209        | 146.3          |
| 75        | 52.5           | 120        | 84.0         | 165        | 115.5          | 210        | 147.0          |
| 76        | 53.2           | 121        | 84.7         | 166        | 116.2          | 211        | 117.7          |
| 77        | 53.9           | 122        | 85.4         | 167        | 116.9          | 212        | 148.4          |
| 1 "       | 99 9           | 122        | 00 4         | 107        | 110 9          | 212        | 140 4          |





### THE ANALYST'S LABORATORY COMPANIO



### TABLES REQUIRED IN WATER ANALYSIS. TABLE X .- continued.

| Parts per<br>100,000. | Grains per gallon. | Parts per 100,000. | Grains per gallon. | Parts per<br>100,000. | Grains per gallon. | Parts per<br>100,000. | Grains per<br>gallon. |
|-----------------------|--------------------|--------------------|--------------------|-----------------------|--------------------|-----------------------|-----------------------|
| 213                   | 149.1              | 223                | 156.1              | 233                   | 163.1              | 243                   | 170.1                 |
| 214                   | 149.8              | 224                | 156.8              | 234                   | 163.8              | 244                   | 170.8                 |
| 215                   | 150.5              | 225                | 157.5              | 235                   | 164.5              | 245                   | 171.5                 |
| 216                   | 151.2              | 226                | 158.2              | 236                   | 165.2              | 246                   | 172.2                 |
| 217                   | 151.9              | 227                | 158.9              | 237                   | 165.9              | 247                   | 172.9                 |
| 218                   | 152.6              | 228                | 159.6              | 238                   | 166.6              | 248                   | 173.6                 |
| 219                   | 153.3              | 229                | 160.3              | 239                   | 167.3              | 249                   | 174.3                 |
| 220                   | 154.0              | 230                | 161.0              | 240                   | 168.0              | 250                   | 175.0                 |
| 221                   | 154.7              | 231                | 161.7              | 241                   | 168.7              |                       |                       |
| 222                   | 155.4              | 232                | 162.4              | 242                   | 169.4              |                       |                       |

### CALCULATION OF THE RESULTS OF WATER ANALYSIS.

| Substance estimated.                                                                                            | Quantity of Water taken.                                                                                                                    | To get Grains per gallon.                                                                                                                                        | Logarithms.                                          |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| N as NHO <sub>3</sub> (Crum)<br>NH <sub>3</sub> (copper zinc)<br>,, (aluminium)<br>Free or alb. NH <sub>3</sub> | 100 c.c.                                                                                                                                    | *c.c. of NO $\times$ 0·175 = N grams of NH <sub>2</sub> $\times$ 576·45 = N $\times$ 1152·9 = N c.c. standard NH <sub>4</sub> Cl $\times$ 0014 = NH <sub>2</sub> | 1·243 0380<br>2·760 7616<br>3·061 7916<br>3·146 1280 |
| O absorbed                                                                                                      | $250 \text{ c.c.} + 10 \text{ c.e. } \text{K}_2\text{Mn}_2\text{O}_8$ $250 \text{ c.c.} + 15 \text{ c.c. } \text{K}_2\text{Mn}_2\text{O}_8$ | $0.28 \left(\frac{S-W}{S}\right)^{\dagger}$                                                                                                                      |                                                      |
| Total solids                                                                                                    | 250 c.c.                                                                                                                                    | grams×280                                                                                                                                                        | 2.447 1580                                           |

\* Or thus. Let v = vol. of NO obtained from 250 c.c. of the water. b = height of Bar.

w=tension of aqueous vapour at the observed temperature (see Table L.).

Then N in grains per gallon= $v \times \frac{\cdot 0012562}{760(1+\cdot 00367\ t)} \times (b-w) \times 140$ .

For logs, of  $\frac{.0012562}{760(1+.00367\ t)}$  for different values of t see Table II. Log. 140=2.146 1280.

† S=c.c. of  $Na_2S_2O_3$  corresponding to 10 c.c.  $K_2Mn_2O_8$ . W=0, required by the water under examination.

VOLUME AND DENSITY OF WATER AT DIFFERENT TEMPERATURES.

| 0° 1.000000 1.000000 999871 1.1 1.000057 0.999943 999928 1.1 2.1 1.000058 999902 999969 1.1 3.1 1.000120 999880 999991 1.1 4.1 1.000129 999871 1.000000 1.1 5.1 1.000119 999881 0.999990 1.1 6.1 1.000099 999901 9999070 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000129<br>000072<br>0000072<br>0000031<br>0000009<br>0000000<br>0000010<br>0000030 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| 1     1 .000057     0 .999943     .999928     1       2     1 .000098     .999902     .999969     1       3     1 .000120     .999880     .999991     1       4     1 .000129     .999871     1 .000000     1       5     1 .000119     .999881     0 .999990     1       6     1 .000062     .999901     .999938     .999933     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 000072<br>000031<br>000009<br>000000<br>000010                                     |
| 1     1 .000057     0 .999943     .999928     1       2     1 .000098     .999902     .999969     1       3     1 .000120     .999880     .999991     1       4     1 .000129     .999871     1 .000000     1       5     1 .000119     .999881     0 .999990     1       6     1 .000062     .999901     .999938     .999933     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 000031<br>000009<br>000000<br>000010<br>000030                                     |
| 3   1.000120   .999880   .999991   1.000129   .999871   1.000000   1.000119   .999881   0.999990   1.000099   .999901   .999970   1.000062   .999938   .999933   1.000062   .999938   .999933   1.000062   .999938   .999933   1.000062   .999938   .999933   .000062   .999938   .999933   .000062   .999938   .000062   .999938   .000062   .999938   .000062   .999938   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .000062   .0 | 000009<br>000000<br>000010<br>000030                                               |
| 4 1.000129 999871 1.000000 1.5 1.000129 999881 0.999990 1.6 1.000099 999901 999970 1.7 1.000062 999938 999933 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 000000<br>000010<br>000030                                                         |
| 5   1·000119   ·999881   0·999990   1·<br>6   1·000099   ·999901   ·999970   1·<br>7   1·000062   ·999938   ·999933   1·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 000010<br>000030                                                                   |
| 6 1.000099 999901 999970 1.<br>7 1.000062 999938 999933 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 000030                                                                             |
| 7   1.000062   .999938   .999933   1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                    |
| 7 1.000062 999938 999933 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000067                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000114                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000176                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000253                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000345                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000451                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000570                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000701                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000841                                                                             |
| 20 000202 2000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 000999                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 001160                                                                             |
| 10 000,02 2001220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 001348                                                                             |
| 10 000000   2 000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 001542                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 001744                                                                             |
| 21 0001/0 2 001000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 001957                                                                             |
| 44 00,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 002177                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 002405                                                                             |
| 21 00/100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 002641                                                                             |
| 20 00,220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 002888                                                                             |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 003144                                                                             |
| 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 003408                                                                             |
| 20 000200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 003682                                                                             |
| 20 0001,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $003965 \\ 004253$                                                                 |
| 00 00001 1001120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 004255                                                                             |
| 00 00101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00580                                                                              |
| 10 00210 20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 01195                                                                              |
| 201102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $01193 \\ 01691$                                                                   |
| 00 00001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $01091 \\ 02256$                                                                   |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 02230                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 03567                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04312                                                                              |
| 33070 1 04500 33003 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 01014                                                                              |





# THE BAROMETER.

# I. Inches into Millimetres.

| 27.5<br>.6<br>.7<br>.8<br>.9<br>28.0<br>.1<br>.2<br>.3 | Millimetres.  698:49 701:03 703:57 706:11 708:65 711:19 713:73 716:27 718:81 | 28·4 -5-6 -7 -8 -9 29·0 -1 -2 | Millimetres.  721 ·35 723 ·89 726 ·43 728 ·97 731 ·51 734 ·05 736 ·59 739 ·13 741 ·67 | 29 · 3 · 4 · 5 · 6 · 7 · 8 · 9 30 · 0 · 1 | Millimetres.  744·21 746·75 749·29 751·83 754·37 756·91 759·45 761·99 764·53 | 30·2<br>·3<br>·4<br>·5<br>·6<br>·7<br>·8<br>·9 | Millimetres.  767.07 769.61 772.15 774.69 777.23 779.77 782.31 784.85 |
|--------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------|
|                                                        | hes,<br>limetres,                                                            | 01                            | ·02   ·03<br>·51   ·76                                                                |                                           | 05 06<br>27 1.52                                                             |                                                | 08 09 2.29                                                            |

# II. Millimetres into Inches.

| Min.                                                                                                                       | Inches.                                                                      | Mm.                                                                 | Inches.                                                                                                        | Mm.                                                                                                          | Inches. | Mm.                                                                                                          | Inches.                                                                                                                 | Mm.                                                                                                                 | Inches.                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 700<br>701<br>702<br>703<br>704<br>705<br>706<br>707<br>708<br>709<br>710<br>711<br>712<br>713<br>714<br>715<br>716<br>717 | 27:56 -60 -64 -68 -72 -76 -80 -84 -88 -91 -95 -99 -28-03 -07 -11 -15 -19 -23 | 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 | 28·27<br>·31<br>·35<br>·39<br>·43<br>·47<br>·54<br>·58<br>·62<br>·66<br>·70<br>·74<br>·78<br>·82<br>·86<br>·90 | 735<br>736<br>737<br>738<br>739<br>740<br>741<br>742<br>743<br>744<br>745<br>746<br>747<br>748<br>750<br>751 | 28:94   | 752<br>753<br>754<br>755<br>756<br>757<br>758<br>759<br>760<br>761<br>762<br>763<br>764<br>765<br>766<br>767 | 29·61<br>·65<br>·69<br>·73<br>·76<br>·80<br>·84<br>·88<br>·92<br>·96<br>30·00<br>·04<br>·08<br>·12<br>·16<br>·20<br>·24 | 769<br>770<br>771<br>772<br>773<br>774<br>775<br>776<br>777<br>778<br>779<br>780<br>781<br>782<br>783<br>784<br>785 | 30·28<br>·32<br>·36<br>·39<br>·43<br>·47<br>·55<br>·59<br>·63<br>·67<br>·71<br>·75<br>·79<br>·83<br>·87<br>·91 |

TABLE FOR CORRECTION OF VOLUMES OF GASES FOR TEMPERATURE, GIVING THE DIVISOR FOR THE FORMULA.

$$V^1 = \frac{V \times B}{760 \times (1 + \delta t)} \delta = .003665$$

| 1 1  | $760 \times (1+\delta t)$ . | Log. $[760 \times (1+\delta t)]$ . | ŧ    | $760 \times (1+\delta t)$ . | Log. $[760 \times (1+\delta t)]$ . |
|------|-----------------------------|------------------------------------|------|-----------------------------|------------------------------------|
| ° C. |                             |                                    | ° C. |                             |                                    |
| 0.0  | 760.0000                    | 2.8808136                          | 4.0  | 771.1416                    | 2.8871341                          |
| 1 1  | 760 2785                    | 9727                               | •1   | 771.4201                    | 2909                               |
| .2   | 760.5571                    | 2.8811318                          | •2   | 771 6987                    | 4477                               |
| .3   | 760.8356                    | 2908                               | .3   | 771.9772                    | 6045                               |
| .4   | 761.1142                    | 4498                               | •4   | 772.2558                    | 7612                               |
| 0.5  | 761:3927                    | 6087                               | 4.5  | 772.5343                    | 9178                               |
| 6    | 761.6712                    | 7675                               | .6   | 772.8128                    | 2.8880743                          |
| .7   | 761.9498                    | 9263                               | •7   | 773.0914                    | 2308                               |
| -8   | 762.2283                    | 2.8820850                          | •8   | 773.3699                    | 3872                               |
| .9   | 762.5069                    | 2437                               | .9   | 773.6485                    | 5436                               |
| 1.0  | 762.7854                    | 2.8824024                          | 5.0  | 773.9270                    | 2.8887000                          |
| 1 1  | 763.0639                    | 5610                               | •1   | 774.2055                    | 8563                               |
| 1 .2 | 763:3425                    | 7195                               | .2   | 774.4841                    | 2.8890125                          |
| .3   | 763.6210                    | 8779                               | •3   | 774.7626                    | 1687                               |
| •4   | 763.8996                    | 2.8830363                          | •4   | 775.0412                    | 3248                               |
| 1.5  | 764.1781                    | 1946                               | 5.5  | 775:3197                    | 4808                               |
| 6    | 764.4566                    | 3528                               | •6   | 775.5982                    | 6368                               |
| .7   | 764.7352                    | 5111                               | •7   | 775.8768                    | 7927                               |
| 8    | 765.0137                    | 6692                               | *8   | 776.1553                    | 9486                               |
| 9    | 765.2923                    | 8273                               | .9   | 776.4339                    | 2.8901044                          |
| 2.0  | 765.5708                    | 2.8839854                          | 6.0  | 776.7124                    | 2.8902602                          |
| 1 1  | 765.8493                    | 2.8841434                          | •1   | 776.9909                    | 4159                               |
| .2   | 766.1279                    | 3013                               | •2   | 777.2695                    | 5716                               |
| -3   | 766.4064                    | 4591                               | .3   | 777.5480                    | 7272                               |
| •4   | 766.6850                    | 6169                               | •4   | 777.8266                    | 8828                               |
| 2.5  | 766.9635                    | 7747                               | 6.5  | 778.1051                    | 2.8910383                          |
| .6   | 767.2420                    | 2.8849324                          | •6   | -778:3836                   | 1938                               |
| .7   | 767.5206                    | 2.8850901                          | .7   | 778.6622                    | 3492                               |
| .8   | 767.7991                    | 2477                               | •8   | 778.9407                    | 5045                               |
| .9   | 768.0777                    | 4052                               | •9   | 779.2193                    | 6597                               |
| 3.0  | 768:3562                    | 2.8855626                          | 7.0  | 779.4978                    | 2.8918149                          |
| 1 1  | 768.6347                    | 7199                               | •1   | 779.7763                    | 9701                               |
| •2   | 768.9133                    | 8772                               | .2   | 780.0549                    | 2.8921252                          |
| •3   | 769.1918                    | 2.8860345                          | .3   | 780.3334                    | 2802                               |
| •4   | 769.4704                    | 1918                               | _ '4 | 780.6120                    | 4352                               |
| 3.5  | 769.7489                    | 3490                               | 7.5  | 780.8905                    | 5901                               |
| 6    | 770.0274                    | 5062                               | .6   | 781.1690                    | 7450                               |
| .7   | 770.3060                    | 6633                               | •7   | 781.4476                    | 8998<br>2·8930546                  |
| .8   | 770.5845                    | 8203                               | .8   | 781·7261<br>782·0047        | 2093                               |
| .9   | 770.8631                    | 9772                               | .9   | 182'0047                    | 2093                               |

TABLE FOR CORRECTION OF VOLUMES OF GASES—continued.

| ŧ    | 760 × (1+δt).        | Log. $[760 \times (1+\delta t)]$ . | t    | $760 \times (1+\delta t)$ . | Log. [760 × $(1+\delta t)$ ]. |
|------|----------------------|------------------------------------|------|-----------------------------|-------------------------------|
| ° C. | - 25                 |                                    | ° C. |                             |                               |
| 8.0  | 782.2832             | 2.8933640                          | 12.5 | 794.8175                    | 2.9002674                     |
| .1   | 782.5617             | 5186                               | .6   | 795.0960                    | 4196                          |
| .2   | 782.8403             | 6732                               | .7   | 795.3746                    | 5717                          |
| .3   | 783 1188             | 8277                               | .8   | 795.6531                    | 7238                          |
| •4   | 783.3974             | 9821                               | .9   | 795.9317                    | 8758                          |
| 8.5  | 783.6959             | 2.8941365                          | 13.0 | 796.2102                    | 2.9010277                     |
| .6   | 783.9544             | 2908                               | .1   | 796.4887                    | 1796                          |
| .7   | 784.2330             | 4451                               | .2   | 796.7673                    | 3315                          |
| •8   | 784.5115             | 5993                               | .3   | 797.0458                    | 4833                          |
| •9   | 784.7901             | 7535                               | •4   | 797.3244                    | 6350                          |
| 9.0  | 785 0686             | 2.8949076                          | 13.2 | 797.6029                    | 7867                          |
| .1   | 785.3471             | 2.8950617                          | 6    | 797.8814                    | 9384                          |
| .2   | 785.6257             | 2157                               | .7   | 798.1600                    | 2.9020900                     |
| •3   | 785.9042             | 3697                               | .8   | 798.4385                    | 2415                          |
| •4   | 786.1828             | 5236                               | 9    | 798.7171                    | 3930                          |
| 9.5  | 786.4613             | 6774                               | 14.0 | 798.9956                    | 2.9025444                     |
| •6   | 786.7398             | 8311                               | 1    | 799.2741                    | 6957                          |
| .7   | 787.0184             | 9848                               | •2   | 799.5527                    | 8470                          |
| ·8   | 787·2969<br>787·5755 | 2.8961385                          | .3   | 799.8312                    | 9983                          |
| 10.0 | 787 8540             | 2921                               | 14.5 | 800.1098                    | 2.9031495                     |
| 10.0 | 788.1325             | 2.8964457<br>5993                  | 14.5 | 800.3883                    | 2·9033007<br>4518             |
| .2   | 788.4111             | 7528                               | •7   | 800 9454                    | 6029                          |
| .3   | 788.6896             | 9062                               | .8   | 801.2239                    | 7539                          |
| •4   | 788.9682             | 2.8970595                          | .9   | 801 2239                    | 9049                          |
| 10.5 | 789.2467             | 2128                               | 15.0 | 801 3023                    | 2.9040558                     |
| .6   | 789.5252             | 3660                               | 13.0 | 802.0595                    | 2066                          |
| .7   | 789.8038             | 5192                               | .2   | 802 3381                    | 3574                          |
| .8   | 790.0823             | 6723                               | .3   | 802.6166                    | 5081                          |
| .9   | 790.3609             | 8254                               | .4   | 802.8952                    | 6588                          |
| 11.0 | 790.6394             | 2.8979784                          | 15.5 | 803.1737                    | 8095                          |
| ·1   | 790.9179             | 2.8981314                          | -6   | 803.4522                    | 9601                          |
| .2   | 791.1965             | 2843                               | •7   | 803.7308                    | 2.9051106                     |
| 3    | 791 4750             | 4372                               | .8   | 804.0093                    | 2611                          |
| •4   | 791.7536             | 2.8985900                          | .9   | 804.2879                    | 4115                          |
| 11.5 | 792.0321             | 7428                               | 16.0 | 804.5664                    | 2.9055619                     |
| .6   | 792.3106             | 8955                               | ·1   | 804.8449                    | 7122                          |
| .7   | 792.5892             | 2.8990482                          | •2   | 805.1235                    | 8625                          |
| .8   | 792.8677             | 2008                               | •3   | 805.4020                    | 2.9060127                     |
| .9   | 793.1463             | 3533                               | •4   | 805.6806                    | 1628                          |
| 12.0 | 793.4248             | 2.8995058                          | 16.5 | 805.9591                    | 2.9063129                     |
| .1   | 793.7033             | 6582                               | .6   | 806.2376                    | 4630                          |
| .2   | 793.9819             | 8106                               | .7   | 806.5162                    | 6130                          |
| .3   | 794.2604             | 9629                               | .8   | 806.7947                    | 7630                          |
| •4   | 794.5390             | 2.9001152                          | .9   | 807.0733                    | 9129                          |

TABLE FOR CORRECTION OF VOLUMES OF GASES-continued.

| t    | $760 \times (1+\delta t)$ . | $Log. [760 \times (1+\delta t)].$ | t    | $760 \times (1+\delta t)$ . | Log. [760 $\times$ (1+ $\delta t$ )]. |
|------|-----------------------------|-----------------------------------|------|-----------------------------|---------------------------------------|
| ° C. |                             |                                   | ° C. |                             |                                       |
| 17.0 | 807:3518                    | 2.9070628                         | 21.5 | 819.8861                    | 2.9137535                             |
| •1   | 807.6303                    | 2126                              | •6   | 820.1646                    | 9010                                  |
| .2   | 807.9089                    | 3624                              | .7   | 820.4432                    | 2.9140485                             |
| .3   | 808.1874                    | 5121                              | .8   | 820.7217                    | 1960                                  |
| •4   | 808.4660                    | 6618                              | :9   | 821.0003                    | 3434                                  |
| 17.5 | 808.7445                    | 8114                              | 22.0 | 821.2788                    | 2.9144907                             |
| •6   | 809.0230                    | 2.9079609                         | '1   | 821.5573                    | 6380                                  |
| .7   | 809.3016                    | 2.9081104                         | •2   | 821 8859                    | 7852                                  |
| •8   | 809.5801                    | 2598                              | •3   | 822.1144                    | 9323                                  |
| .9   | 809.8587                    | 4092                              | •4   | 822:3930                    | 2.9150794                             |
| 18.0 | 810.1372                    | 2.9085586                         | 22.5 | 822.6715                    | 2265                                  |
| •1   | 810.4175                    | 7079                              | .6   | 822.9500                    | 3735                                  |
| •2   | 810.6943                    | 8571                              | .7   | 823.2286                    | 5205                                  |
| .3   | 810.9728                    | 2.9090063                         | •8   | 823.5071                    | 6674                                  |
| •4   | 811 2514                    | 1554                              | .9   | 823.7857                    | 8143                                  |
| 18.5 | 811.5299                    | 3045                              | 23.0 | 824.0642                    | 2.9159611                             |
| .6   | 811.8084                    | 4535                              | 1    | 824.3427                    | 2.9161079                             |
| .7   | 812.0870                    | 6025                              | .2   | 824.6213                    | 2546                                  |
| •8   | 812.3655                    | 7515                              | .3   | 824.8998                    | 4013                                  |
| .9   | 812.6441                    | 9004                              | •4   | 825 1784                    | 5479                                  |
| 19.0 | 812.9226                    | 2.9100492                         | 23.5 | 825.4569                    | 6945                                  |
| •1   | 813.2011                    | 1980                              | .6   | 825.7354                    | 8410                                  |
| .2   | 813 4797                    | 3467                              | .7   | 826.0140                    | 9875                                  |
| .3   | 813.7582                    | 4954                              | *8   | 826.2925                    | 2.9171339                             |
| •4   | 814.0368                    | 6440                              | .9   | 826.5711                    | 2802                                  |
| 19.5 | 814.3153                    | 7926                              | 24.0 | 826.8496                    | 2.9174265                             |
| .6   | 814.5938                    | 9411                              | •1   | 827.1281                    | 5728                                  |
| .7   | 814.8724                    | 2.9110896                         | .2   | 827 4067                    | 7190                                  |
| .8   | 815.1500                    | 2380                              | .3   | 827.6852                    | 8652                                  |
| •9   | 815.4925                    | 3864                              | •4   | 827 9638                    | 2.9180114                             |
| 20.0 | 815.7080                    | 2.9115347                         | 24.5 | 828.2423                    | 1575                                  |
| .1   | 815.9865                    | 6830                              | .6   | 828.5208                    | 3035                                  |
| .2   | 816.2651                    | 8312                              | .7   | 828.7994                    | 4495                                  |
| •3   | 816.5436                    | 9794                              | •8   | 829.0779                    | 5954                                  |
| •4   | 816.8222                    | 2.9121275                         | •9   | 829.3565                    | 7412                                  |
| 20.5 | 817.1007                    | 2756                              | 25.0 | 829.6350                    | 2.9188870                             |
| .6   | 817:3792                    | 4236                              | .1   | 829.9135                    | 2.9190328                             |
| .7   | 817.6578                    | 2.9125716                         | 2    | 830.1921                    | 1785                                  |
| .8   | 817.9363                    | 7195                              | .3   | 830.4706                    | 3242                                  |
| .9   | 818-2149                    | 8674                              | •4   | 830.7492                    | 4699                                  |
| 21.0 | 818.4934                    | 2.9130152                         | 25.5 | 831.0277                    | 2.9196155                             |
| .1   | 818.7719                    | 1630                              | .6   | 831.3062                    | 7610                                  |
| •2   | 819.0505                    | 3107                              | .7   | 831.5848                    | 9065                                  |
| .3   | 819.3290                    | 4583                              | .8   | 831.8633                    | 2.9200520                             |
| •4   | 819.6076                    | 6059                              | .9   | 831.1419                    | 1974                                  |





TABLE FOR CORRECTION OF VOLUMES OF GASES-continued.

| t    | $760 \times (1+\delta t)$ . | Log. $[760 \times (1+\delta t)]$ . | ŧ    | $760 \times (1+\delta t)$ . | Log. $[760 \times (1+\delta t)]$ . |
|------|-----------------------------|------------------------------------|------|-----------------------------|------------------------------------|
| ° C. |                             |                                    | ° C. |                             |                                    |
| 26.0 | 832.4204                    | 2.9203427                          | 28.1 | 838-2697                    | 2.9233838                          |
| •1   | 832.6989                    | 4880                               | .2   | 838.5483                    | 5281                               |
| .2   | 832.9775                    | 6333                               | •3   | 838.8268                    | 6723                               |
| .3   | 833 2560                    | 7785                               | •4   | 839.1054                    | 8165                               |
| •4   | 833.5346                    | 9237                               | 28.5 | 839.3839                    | 2.9239606                          |
| 26.5 | 833.8131                    | 2.9210688                          | .6   | 839.6624                    | 2.9241047                          |
| .6   | 834.0916                    | 2139                               | •7   | 839.9410                    | 2488                               |
| .7   | 834.3702                    | 3589                               | .8   | 840.2195                    | 3928                               |
| .8   | 834.6487                    | 5038                               | .9   | 840.4981                    | 5368                               |
| .9   | 834.9273                    | 6487                               | 29.0 | 840.7766                    | 2.9246807                          |
| 27.0 | 835.2058                    | 2.9217936                          | ·1   | 841.0551                    | 8246                               |
| .1   | 835.4843                    | 9384                               | •2   | 841 3337                    | 9684                               |
| .2   | 835.7629                    | 2.9220832                          | •3   | 841.6122                    | 2.9251122                          |
| .3   | 836.0414                    | 2279                               | •4   | 841.8908                    | 2559                               |
| •4   | 836.3200                    | 3725                               | 29.5 | 842.1693                    | 3995                               |
| 27.5 | 836.5985                    | 5171                               | .6   | 842.4478                    | 5431                               |
| •6   | 836.8770                    | 6617                               | .7   | 842.7264                    | 6866                               |
| •7   | 837.1556                    | 8062                               | '8   | 843.0049                    | 8301                               |
| .8   | 837.4341                    | 9507                               | .9   | 843 2835                    | 9736                               |
| .9   | 837.7127                    | 2.9230951                          | 30.0 | 843.5620                    | 2.9261171                          |
| 28.0 | 837.9912                    | 2.9232395                          |      |                             |                                    |

# TABLE SHOWING THE TENSION OF MERCURY VAPOUR.

| ° C.       | Millim.        | °C. | Millim.        | °C. | Millim.          | ° C.       | Millim.         |
|------------|----------------|-----|----------------|-----|------------------|------------|-----------------|
| 100        | -746           | 210 | 26.35          | 320 | 368.73           | 430        | 2533            |
| 110        | 1.073          | 220 | 34.70          | 330 | 450.91           | 440        | 2934            |
| 120<br>130 | 1·534<br>2·175 | 230 | 45.35<br>58.82 | 340 | 548·35<br>663·18 | 450<br>460 | 3384·35<br>3888 |
| 140        | 3.059          | 250 | 75.75          | 360 | 797.74           | 470        | 4450            |
| 150        | 4.266          | 260 | 96.73          | 370 | 954.65           | 480        | 5062            |
| 160        | 5.900          | 270 | 123.01         | 380 | 1195.65          | 490        | 5761            |
| 170        | 8.091          | 280 | 155.17         | 390 | 1346.71          | 500        | 6520.25         |
| 180        | 11.000         | 290 | 194.46         | 400 | 1587.96          | 510        | 7354            |
| 190        | 14.84          | 300 | 242.15         | 410 | 1864             | 520        | 8265            |
| 200        | 19.90          | 310 | 299.69         | 420 | 2178             |            |                 |

TABLES REQUIRED IN THE ANALYSIS OF BEER.

Spirit Indication, with corresponding Degrees of Gravity lost in Malt Worts, by the "Distillation Process."

| Degrees of<br>Spirit Indi-<br>cation. | •0   | 1    | -2   | -3   | •4   | •5   | •6   | -7   | -8   | •9   |
|---------------------------------------|------|------|------|------|------|------|------|------|------|------|
| 0                                     | 0.0  | 0.3  | 0.6  | 0.9  | 1.2  | 1.5  | 1.8  | 2.1  | 2.4  | 2.7  |
| ì                                     | 3.0  | 3.3  | 3.7  | 4.1  | 4.4  | 4.8  | 5.1  | 5.5  | 5.9  | 6.2  |
| 2                                     | 6.6  | 7.0  | 7.4  | 7.8  | 8.2  | 8.6  | 9.0  | 9.4  | 9.8  | 10.2 |
| 2 3                                   | 10.7 | 11.1 | 11.5 | 12.0 | 12.4 | 12.9 | 13.3 | 13.8 | 14.2 | 14.7 |
|                                       | 15.1 | 15.5 | 16.0 | 16.4 | 16.8 | 17:3 | 17:7 | 18.2 | 18.6 | 19.1 |
| 5                                     | 19.5 | 19.9 | 20.4 | 20.9 | 21.3 | 21.8 | 22.2 | 22.7 | 23.1 | 23.6 |
| 6                                     | 24.1 | 24.6 | 25.0 | 25.5 | 26.0 | 26.4 | 26.9 | 27.4 | 27.8 | 28.3 |
| 7                                     | 28.8 | 29.2 | 29.7 | 30.5 | 30.7 | 31.2 | 31.7 | 32.2 | 32.7 | 33.2 |
| 8                                     | 33.7 | 34.3 | 34.8 | 35.4 | 35.9 | 36.5 | 37.0 | 37.5 | 38.0 | 38.6 |
| 9                                     | 39.1 | 39.7 | 40.2 | 40.7 | 41.2 | 41.7 | 42.2 | 42.7 | 43.2 | 43.7 |
| 10                                    | 44.2 | 44.7 | 45.1 | 45.6 | 46.0 | 46.5 | 47.0 | 47.5 | 48.0 | 48.5 |
| 11                                    | 49.0 | 49.6 | 50.1 | 50.6 | 51.2 | 51.7 | 52.2 | 52.7 | 53.3 | 53.8 |
| 12                                    | 54.3 | 54.9 | 55.4 | 55.9 | 56.4 | 56.9 | 57.4 | 57.9 | 58.4 | 59.9 |
| 13                                    | 59.4 | 60.0 | 60.5 | 61.1 | 61.6 | 62.2 | 62.7 | 63.3 | 63.8 | 64.3 |
| 14                                    | 64.8 | 65.4 | 65.9 | 66.5 | 67.1 | 67.6 | 68.2 | 68.7 | 69.3 | 69.9 |
| 15                                    | 70.5 | 71.1 | 71.7 | 72.3 | 72.9 | 73.5 | 74.1 | 74.7 | 75.3 | 75.9 |
|                                       |      |      |      |      |      |      |      |      |      |      |

Spirit Indication, with corresponding Degrees of Gravity lost in Malt Worts, by the "Evaporation Process."

| Degrees of<br>Spirit Indi-<br>cation.                                              | 0                                                                                                            | •1                                                                                                                 | •2                                                                                                               | •3                                                                                                                | •4                                                                                                                | •5                                                                                                                | •6                                                                                                | •7                                                                                                                 | *8                                                                                                                 | -9                                                                                                                 |
|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15 | 3:5<br>7:4<br>11:5:8<br>20:3<br>24:8<br>29:5<br>34:3<br>40:0<br>44:9<br>50:3<br>55:6<br>61:0<br>66:5<br>72:0 | 33.8<br>7.8<br>7.8<br>11.9<br>16.2<br>20.7<br>25.2<br>30.0<br>34.9<br>40.5<br>45.4<br>50.9<br>56.2<br>61.6<br>67.0 | ·7<br>4·2<br>8·2<br>12·4<br>16·6<br>21·2<br>25·6<br>30·4<br>35·5<br>41·0<br>46·0<br>51·4<br>56·7<br>62·1<br>67·6 | 1·0<br>4·6<br>8·7<br>12·8<br>17·0<br>21·6<br>26·1<br>30·9<br>36·0<br>41·5<br>46·5<br>51·9<br>57·3<br>62·7<br>68·1 | 1·4<br>5·0<br>9·1<br>13·2<br>17·4<br>22·1<br>26·6<br>31·3<br>36·6<br>42·0<br>47·1<br>52·5<br>57·8<br>63·2<br>68·7 | 1·7<br>5·4<br>9·5<br>13·6<br>17·9<br>22·5<br>27·0<br>31·8<br>37·1<br>42·5<br>47·6<br>53·0<br>58·3<br>63·8<br>69·2 | 2·1<br>5·8<br>9·9<br>14·0<br>18·4<br>23·0<br>27·5<br>32·3<br>37·7<br>43·0<br>48·2<br>53·5<br>69·8 | 2·4<br>6·2<br>10·3<br>14·4<br>18·8<br>23·4<br>28·0<br>32·8<br>38·3<br>43·5<br>48·7<br>54·0<br>59·4<br>64·9<br>70·4 | 2·8<br>6·6<br>10·7<br>14·8<br>19·3<br>23·9<br>28·5<br>33·3<br>38·8<br>44·0<br>49·3<br>54·5<br>59·9<br>65·4<br>70·9 | 3·1<br>7·0<br>11·1<br>15·3<br>19·8<br>24·3<br>29·0<br>53·8<br>39·4<br>44·4<br>49·8<br>55·0<br>60·5<br>66·0<br>71·4 |





Table for ascertaining the Value of the Acetic Acid.

Corresponding Degrees of "Spirit Indication."

| Excess per<br>cent, of<br>Acetic Acid<br>in the Beer. | •00                                        | .01                                           | •02                                           | .03                                    | •04                                           | •05                                           | •06                                           | •07                                           | •08                                           | •09                                           |
|-------------------------------------------------------|--------------------------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| ·0<br>·1<br>·2<br>·3<br>·4<br>·5<br>·6                | <br>•14<br>•27<br>•39<br>•52<br>•65<br>•77 | .02<br>.15<br>.28<br>.40<br>.53<br>.66<br>.78 | .04<br>.17<br>.29<br>.42<br>.55<br>.67<br>.80 | .06<br>.18<br>.31<br>.43<br>.56<br>.69 | ·07<br>·19<br>·32<br>·44<br>·57<br>·70<br>·82 | ·08<br>·21<br>·33<br>·46<br>·59<br>·71<br>·84 | ·09<br>·22<br>·34<br>·47<br>·60<br>·72<br>·85 | ·11<br>·23<br>·35<br>·48<br>·61<br>·73<br>·86 | ·12<br>·24<br>·37<br>·49<br>·62<br>·75<br>·87 | ·13<br>·26<br>·38<br>·51<br>·64<br>·76<br>·89 |
| .7<br>.8<br>.9<br>1.0                                 | 1.03<br>1.15<br>1.29                       | .91<br>1.04<br>1.16<br>1.31                   | .93<br>1.05<br>1.18<br>1.33                   | 1.07<br>1.19<br>1.35                   | .95<br>1.08<br>1.21<br>1.36                   | .97<br>1.09<br>1.22<br>1.37                   | .98<br>1.10<br>1.23<br>1.38                   | .99<br>1:11<br>1:25<br>1:40                   | 1·10<br>1·13<br>1·26<br>1·41                  | 1·02<br>1·14<br>1·28<br>1·42                  |

TABLE FOR SALT IN BEER.

Salt in Grains per Gallon, corresponding to c.c.'s of Decinormal  $AgNO_3$ . 25 c.c. of Beer to be employed.

|   | c.c. $\frac{N}{10}$ AgNO <sub>3</sub> | Grains NaCl<br>per gallon. | c.c. $\frac{N}{10}$ AgNO <sub>3</sub> | Grains NaCl<br>per gallon. | c.c. $\frac{N}{10}$ AgNO <sub>3</sub> | Grains NaCl<br>per gallon. |
|---|---------------------------------------|----------------------------|---------------------------------------|----------------------------|---------------------------------------|----------------------------|
| Ì | 0.1                                   | 1.64                       | 2.2                                   | 36.04                      | 4.2                                   | 68.80                      |
|   | 0.5                                   | 3.58                       | 2.3                                   | 37.67                      | 4.3                                   | 70.43                      |
|   | 0.3                                   | 4.91                       | 2.4                                   | 39.31                      | 4.4                                   | 72.07                      |
|   | 0.4                                   | 6.55                       | 2.5                                   | 40.95                      | 4.5                                   | 73.71                      |
|   | 0.5                                   | 8.19                       | 2.6                                   | 42.59                      | 4.6                                   | 75.35                      |
|   | 0.6                                   | 9.83                       | 2.7                                   | 42 39                      | 4.7                                   | 76.99                      |
|   | 0.7                                   | 11.47                      |                                       |                            |                                       |                            |
|   |                                       |                            | 2.8                                   | 45.86                      | 4.8                                   | 78.62                      |
|   | 0.8                                   | 13.10                      | 2.9                                   | 47.50                      | 4.9                                   | 80.26                      |
|   | 0.9                                   | 14.74                      | 3.0                                   | 49.14                      | 5.0                                   | 81.90                      |
|   | 1.0                                   | 16.38                      | 3.1                                   | 50.78                      | 5.1                                   | 83.24                      |
|   | 1.1                                   | 18.02                      | 3.2                                   | 52.42                      | 5.2                                   | 85.18                      |
|   | 1.2                                   | 19.66                      | 3.3                                   | 54.05                      | 5.3                                   | 86.81                      |
|   | 1.3                                   | 21.29                      | 3.4                                   | 55.69                      | 5.4                                   | 88.45                      |
|   | 1.4                                   | 22.93                      | 3.2                                   | 57.33                      | 5.2                                   | 90.09                      |
|   | 1.5                                   | 24.57                      | 3.6                                   | 58.97                      | 5.6                                   | 91.73                      |
|   | 1.6                                   | 26.21                      | 3.7                                   | 60.61                      | 5.7                                   | 93.37                      |
|   | 1.7                                   | 27.85                      | 3.8                                   | 62.24                      | 5.8                                   | 95.00                      |
|   | 1.8                                   | 29.48                      | 3.9                                   | 63.88                      | 5.9                                   | 96.64                      |
|   | 1.9                                   | 31.12                      | 4.0                                   | 65.52                      | 6.0                                   | 98.28                      |
|   | 2.0                                   | 32.76                      | 4.1                                   | 67.16                      | 6.1                                   | 99.92                      |
|   | 2.1                                   | 34.40                      |                                       | The same                   |                                       | 3                          |

## SPECIFIC ROTATORY POWERS OF THE CARBOHYDRATES.

Definition—The specific rotatory power of an optically active substance in solution may be defined as the angle through which a plane polarized ray of light of definite refrangibility is rotated by a column one decimetre in length of a solution containing one gram of the substance in 1 c.c.

If the rotation is observed through a tube l decimetres in length and the solution contains c grams of substances in 100 c.c., then, if  $\alpha$  be the angle of rotation, the "specific rotatory power" is given by the formula,

 $\left[\alpha\right] = \frac{\alpha.\ 100}{l.\ c.}$ 

Observations are usually made either with a polarimeter, such as that of Laurent, for which a sodium flame is used as the means of illumination; or with a Ventzke-Scheibler instrument, which is adapted for use with white light illumination from oil or gas lamps. Specific rotatory power as determined with reference to the ray D of the solar spectrum (sodium flame) is indicated by  $[a]_b$ ; whilst, as determined by the Ventzke-Scheibler instrument, it is indicated by  $[a]_j$ , where j is the transition tint (i.e. from the blue to the red) and is the ray complementary to the medium yellow or jaune moyen—hence the j. This jaune moyen ray is the true medium yellow of the solar spectrum: its wave-length is 0.0005608 millimetres (or  $\lambda 0.0005608$ ).

The Ventzke-Scheibler polarimeter is adjusted to the Ventzke scale, which is such that 100 divisions of the scale equal the amount of rotation caused by passing through a solution of pure cane-sugar 200 mm. in length, containing 26 048 grams of pure cane-sugar per 100 c.c. at 17.5° C. Such a solution has a sp. gr. of almost exactly 1100 (water at 17.5° C=1000). The readings for cane-sugar in this instrument consequently correspond to the sp.

gr. of the solution less 1000.

Relation of  $[\alpha]_j$  to  $[\alpha]_p$ .—The relation  $[\alpha]_p : [\alpha]_j :: 21.67^\circ : 24^\circ :: 1 : 1.107$ 

holds for substances whose rotatory dispersion does not differ sensibly from that of cane-sugar. Cane-sugar, however, appears to be slightly less dispersive than maltose, dextrose, etc.: hence it has been very carefully determined by experiment\* that 1:111 is the more correct factor for converting  $[\alpha]_p$  into  $[\alpha]_p$ . We have, therefore, the following rules:—

To convert  $[a]_b$  into  $[a]_j$  multiply by 1.111 (log. 0.04571), or simply add one-ninth. To convert  $[a]_j$  into  $[a]_b$  multiply by 0.900 (log.  $\overline{1}$ .95429), or simply deduct one-tenth. Thus, if  $[a]_b = 202.0$ , then  $[a]_j = 202.2 \cdot 22.4 = 224.4$   $[a]_j = 57$ , then  $[a]_b = 57 - 5.7 = 51.3$ .

<sup>\*</sup> See series of papers by Brown, Morris, and Millar in the Jour. Chem. Soc., 1897.





SPECIFIC ROTATORY POWERS OF THE CARBOHYDRATES—continued.

In the Ventzke-Scheibler polarimeter 100 divisions of the scale equal 38.43° of arc or

1 scale-division = 0.3843° α<sub>j</sub>. (log. 1.58467).

The values representing specific rotation vary directly as the sp. gr. divisor (D) used. Thus, if 150° be the specific rotation of maltose for  $[a]_{j\,3:86}$  (that is, on the basis of the 3:86 divisor) the specific rotation where the divisor 3:93 is used must be taken as  $150 \times 3.93 = 152.7^{\circ}$ .

3.86

The number of grams per 100 c.c. of a solution of a carbohydrate of which the sp. gr. (water=1000) is known is found by dividing the sp. gr. minus 1000 by a constant given in the subjoined table. This constant is usually denoted by D.

TABLE SHOWING THE SPECIFIC ROTATORY POWERS OF THE CARBOHYDRATES.

| Substance.                                        | Formula.                                                                                                   | Divisor<br>to get<br>grams<br>per<br>100 c.c.* |                                                                                       | rotatory<br>bsolute).                                              | power red                                                                                              | rotatory<br>uced to the<br>ivisor 3.86.                                 |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Sucrose Maltose Lactose (anhyd.) Lactose (cryst.) | $(C_{12}H_{20}C_{10})_n$ $C_{12}H_{22}O_{11}$ $C_{12}H_{22}O_{11}$ $C_{12}H_{22}O_{11}$                    | D 3.95 3.85 3.92 3.99 3.99                     | $ \begin{array}{r} [a]_{i} \\ +221 \\ +73.8 \\ +153.3 \\ +61.6 \\ +58.5 \end{array} $ | [a] <sub>p</sub><br>+198·9<br>+ 66·6<br>+138·0<br>+ 55·4<br>+ 52·6 | $ \begin{array}{r} [\alpha]_{j3\cdot86} \\ +216 \\ +74 \\ +151 \\ +59\cdot6 \\ +56\cdot6 \end{array} $ | [a] <sub>133.86</sub><br>+194.4<br>+ 66.8<br>+135.9<br>+ 53.6<br>+ 50.9 |
| Dextrose<br>Laevulose<br>Invert Sugar             | $\begin{array}{c} {\rm C_6H_{12}O_6} \\ {}_{,,} \\ {\rm C_6H_{12}O_6} + \\ {\rm C_6H_{12}O_6} \end{array}$ | 3.88                                           | + 57<br>-106<br>at 15·5°C.<br>- 24·5<br>at 15·5°C.                                    | + 51·3<br>- 95·4<br>- 22·0                                         | + 57·4<br>-104·1<br>at 15·5°C.<br>- 24·4<br>at 15·5°C.                                                 | + 51.7<br>- 93.7<br>- 21.9                                              |

Bi-rotation.—In some cases a freshly-prepared solution of a sugar turns the plane of polarization almost twice as much as one which has been kept for some hours or heated to boiling. This phenomenon is known as bi-rotation.

|                                                           | Multiplier.             | Logarithm. |
|-----------------------------------------------------------|-------------------------|------------|
| To convert $C_{12}H_{22}O_{11}$ into $C_{12}H_{24}O_{12}$ | $\frac{20}{19} = 1.053$ | 0.02228    |
| ,, $C_{12}H_{24}O_{12}$ ,, $C_{12}H_{22}O_{11}$           | $\frac{19}{20} = 0.95$  | Ī·97773    |
| ,, $C_{12}H_{20}O_{10}$ ,, $C_{12}H_{24}O_{12}$           | $\frac{9}{10} = 1.111$  | 0.04576    |
| ,, $C_{12}H_{24}O_{12}$ ,, $C_{12}H_{20}O_{10}$           | $\frac{9}{10} = 0.90$   | 1.95424    |

<sup>\*</sup> The figures given in this column are such as will be found most useful in actual work. For a complete series of absolutely correct divisors for various concentrations the valuable papers by Brown, Morris, and Millar in the Jour. Chem. Soc., 1897, must be consulted.

### Specific Rotatory Powers of the Carbohydrates—continued.

|                |          |        |       | Ventzke-Scheibler Saccharimeter.                                            |
|----------------|----------|--------|-------|-----------------------------------------------------------------------------|
| 1 gram in      | 100 c.c. | of abs | olute | Number of scale-divisions of deviation with 200 mm. tube (transition tint)* |
| Dextrin        |          |        |       | +11.55                                                                      |
| Sucrose .      | ;        |        |       | + 3.84+                                                                     |
| Maltose ,      |          |        |       | + 7.98                                                                      |
| Dextrose .     |          |        |       | + 2.97                                                                      |
| Laevulose .    |          |        |       | - 5.52                                                                      |
| Invert sugar   |          |        |       | - 1.28                                                                      |
| Lactose (cryst | .) .     |        |       | + 3.04                                                                      |

Formula for calculating the amount of cane-sugar present in a mixture of cane-sugar and dextrose when the specific rotatory power before and after inversion are known.

Let  $R_b$  be the specific rotatory power before inversion  $R_a$  be the specific rotatory power after inversion

x be the percentage of cane-sugar present.

Then  $100 \text{ R}_b = 73.8x + (100 - x)57$ , and  $100 \text{ R}_a = -24.5x + (100 - x)57$   $\therefore 100 (\text{R}_b - \text{R}_a) = 98.3x.$   $x = \frac{R_b - \text{R}_a}{.983}.$ 

Similarly to find the amount of cane-sugar present in a mixture of cane-sugar and dextrose from the scale degrees before and after inversion, the 200 mm, tube being used—

Grams of cane-sugar per 100 c.c. of solution =  $\frac{D_b - D_a}{5.12}$ .

+ When inversed this becomes - 1.35.

<sup>\*</sup> The figures given in this column are obtained by dividing the [a]j by  $19\cdot215$  (log.  $1\cdot28364$ ).





CUPRIC OXIDE REDUCING POWERS OF THE CARBOHYDRATES.

Definition.—" Dextrose being the type of reducing bodies and the substance for which the amount of cupric oxide reduced was first determined, I use it as the standard to which to refer all other reducing carbohydrates or mixtures of reducing with non-reducing ones. I take the cupric oxide reducing power (or 'cupric reducing power') of a body or mixture to be the amount of cupric oxide, calculated as dextrose, which 100 parts reduce: it is designated by the letter K."—(O'Sullivan).

Briefly, we may define "K" as the specific cupric reducing power of a substance referred to dextrose as standard (100). The divisor is often added: thus  $K_{3\cdot 86}=25$  means that the cupric reducing power of the substance is one-fourth that of dextrose when the solid

matter is determined by the 3.86 divisor.

Preparation of Fehling's Solution for Gravimetric Estimations.— Dissolve 34'6 grams of pure recrystallized copper sulphate in distilled water and make up the volume to 500 c.c. Then dissolve 173 grams Rochelle salt and 65 grams anhydrous sodium hydroxide separate beakers, mix the solutions, and make up the volume with distilled water to 500 c.c. These two solutions are kept in separate bottles and are mixed in equal volumes, to form Fehling's solution,

immediately before use.

Method of making an estimation of cupric reducing power.—Fifty c.c. of the freshly mixed Fehling's solution are placed in a beaker of about 250 c.c. capacity, and having a diameter of 7.5 cm. (=3 inches). This is placed in a boiling water bath, and when the solution has attained the temperature of the water, the accurately weighed or measured volume of the sugar solution is added, and the whole made up to 100 c.c. with boiling distilled water. The beaker, which is covered with a clock glass, is then returned to the water bath and the heating continued for exactly twelve minutes. The precipitated cuprous oxide is now rapidly filtered off through a Soxhlet tube, washed first with hot water, then with alcohol and ether, and finally dried. When dry, the cuprous oxide is reduced to metallic copper by gently heating in a stream of hydrogen, and weighed; or it may be oxidized in a stream of oxygen and weighed as CuO. Sometimes the Cu2O is weighed as such, after being dried in a water oven (see O'Sullivan and Stern, Jour. Chem. Soc., 1896, p. 1692).

As spontaneous reduction of Fehling's solution invariably takes place, the amount of this must be carefully determined for every fresh batch of the solution and allowed for in each determination of cupric reducing power. It usually amounts to 0.002 to 0.003

gram CuO per 50 c.c. of Fehling's solution used.

It is of great importance, in making the above estimation, that an amount of the reducing sugar is taken that will give a weight of CuO lying between 0.15 and 0.35 gram.

It must be carefully borne in mind that the values given in the following tables are correct only when the preparation of the



Fehling's solution, and the manner of carrying out the determination of cupric reducing power conform exactly with the directions given on p. 63. It has been shown that the amount and nature of the alkali in Fehling's solution exercises a great influence on the quantity of copper reduced by a given weight of maltose or of the starch-transformation products; but with dextrose and laevulose the influence is far less. Glendinning has proved that an equivalent amount of potassium hydroxide may be substituted for the sodium compound without causing any alteration in the reducing power. In the case of dextrose and laevulose the variant which has the greatest influence is the state of dilution of the Fehling's solution. When the dilution is greater than that prescribed in the standard method, the reducing power is appreciably lower, and the greater the dilution the greater the difference.

In the two following tables the values adopted are such as will be found to give correct results when the quantities of carbohydrates taken are those most commonly used in actual determinations.

# FACTORS FOR THE DETERMINATION OF THE CARBOHYDRATES FROM THE AMOUNTS OF CUO REDUCED BY THEM OR BY THEIR EQUIVALENTS ON HYDROLYSIS,

# Taran

|                           | Logarithms.         | 0.29013<br>0.2814<br>0.24189<br>0.09039<br>0.09079<br>0.13704<br>0.13704<br>0.13714<br>0.11344<br>0.11344<br>0.11344<br>0.11344<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230<br>0.28230 | 71210.0           |
|---------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                           | 1 Gram of Absolute. | (grams) = 1950 Cn = 2 444 Cu0 = 2 1487 Cu0 = 1094 Cu = 1094 Cu = 1378 Cu0 = 1786 Cu0 = 1787 Cu = 2 148 Cu0 = 2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
| VALUES."                  |                     | Suc<br>,<br>,<br>Mai,<br>Lac<br>Lac<br>Lac<br>Inv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | **                |
| BSOLUTE                   | Logarithms.         | 1-70987<br>1-61186<br>1-6811<br>1-6809<br>1-8629<br>1-8629<br>1-8629<br>1-8629<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-6809<br>1-68                                                                                                                                                                                                                                                                | _                 |
| TABLE I.—ABSOLUTE VALUES. |                     | Sucrose = Cu ×0.4327    Sucrose = Cu ×0.4931     Substitute   Cu ×0.4914     Substitute   Cu ×0.4914     Substitute   Cu ×0.4914     Substitute   Cu ×0.7294     Substitute   Cu ×0.7296     Substitut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11 = Cu20 AV 11/1 |
|                           | K<br>Absolute.      | 57-12<br>72-36<br>68-75<br>100<br>98-50<br>96-75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |

\* The numbers given in this table are the absolute values or the values based on the true divisor to get grams per 100 c.c. Thus 1.371 grams CuO=1 gram absolute malfose,—that is mailtose as defermined by the true divisor 3.92. For 1 gram of 3.86 mailtose we should have 3.66 I 371 grams CuO.

FACTORS FOR THE DETERMINATION OF THE CARBOHYDRATES FROM THE AMOUNTS OF CUO REDUCED BY THEM

OR BY THEIR EQUIVALENTS ON HYDROLYSIS.

TABLE II.—VALUES REDUCED TO THE COMMON DIVISOR (D) 3°86.

| K3-86             |                                   |                                 | Logarithms. | 1 Gra             | 1 Gram of 3.86.            |                                         | Logarithms. |
|-------------------|-----------------------------------|---------------------------------|-------------|-------------------|----------------------------|-----------------------------------------|-------------|
|                   | (Cu=63-2)                         | 53.2)                           | 1.70874     | S                 | (grams)                    |                                         | 20100.0     |
|                   | = Cn0                             | ×0.4081                         | 1.61073     | 2007              |                            |                                         | 0.38927     |
|                   | $=Cn_2O$                          | ×0.4539 ······                  | I-65698     | : :               | -                          | :                                       | 0.34302     |
| 56.25             | Maltose = $Cu \times 0$           | ×0.9283                         | I-96767     | Maltose           | Cu.                        | :                                       | 0.03233     |
|                   |                                   | =Cu <sub>2</sub> O × 0.740/     | 1.91591     |                   | =1.350 CuO ·               |                                         | 0.08409     |
| 10.01             | Lactose (anhydr.) = $Cu \times 0$ |                                 | 1.87267     | Lactose (anhydr.) | =1.341                     | :                                       | 0.12733     |
|                   |                                   | =CuO × 0.5952                   | 1.77466     |                   | =1.680 CnO ·               | :                                       | 0.22534     |
|                   |                                   | ).6621                          |             | : =               |                            |                                         | 0.17909     |
| 66-50             | Lactose (cryst.) = $Cu \times 0$  | 1851                            |             | Lactose (cryst.)  | Cu_                        |                                         | 0.10505     |
|                   | " = Cn0 × 0                       | ×0.6265                         | 1.79694     | 33                | CuO.                       |                                         | 0.50306     |
|                   |                                   | 6969.0                          | 1.84319     | 33                | Cu <sub>2</sub> O          |                                         | 0.15681     |
| 8.001             | Dextrose = Cu ×0                  | 1819.                           | 1.71441     |                   | =1.930 Cu                  | :                                       | 0.28559     |
|                   | ", =CuO ×0                        | 0.4134                          | 1.61640     |                   | onc.                       |                                         | 0.38360     |
| 00 00             | ", = Cu <sub>2</sub> 0×0          | = Cu <sub>2</sub> O × 0.4599    |             |                   | =2.174 Cu <sub>2</sub> O   | :                                       | 0.33735     |
| 88.16             | Laevulose = Cu × 0                | 9896.0                          |             | Laevulose         | , 11                       | : : : : : : : : : : : : : : : : : : : : | 0.24520     |
|                   | " = CnO × 0                       | =CuO ×0.4537                    |             |                   | =2.204 CuO                 | :                                       | 0.34321     |
|                   |                                   |                                 | 1.70304     | **                | $=1.981 \text{ Cu}_20$     |                                         | 96967-0     |
| 92.96             | Invert Sugar = Cu × 0             |                                 | 1.73439     | Invert Sugar      | =1.843 Cu                  | :                                       | 0.26561     |
|                   |                                   | .4329                           | I-63638     | 23                | =2.310 CuO .               |                                         | 0.86362     |
| The second second | =Cn20×0                           | =Cn <sub>2</sub> 0×0·4815 ····· | 1.68263     |                   | =2.077 Cu <sub>2</sub> 0 . |                                         | 0.31737     |
|                   | Starch or Deatrin = Cu ×0         | ×0.4809 ······                  | 1.68205     | Starch or Dextrin | =2.079 Cu                  | :                                       | 0.31795     |
|                   | ", =CuO ×0                        | =CuO × 0.3837                   | 1.58404     | "                 | =2.606 CuO                 | :                                       | 0.41596     |
|                   | " = Cu <sub>2</sub> 0×0           | =Cu <sub>2</sub> 0×0·4269 ····· | I-63029     | :                 | =2.343 Cu <sub>2</sub> 0   | ::                                      | 0.36971     |

To find K absolute from  $K_{3.66}$ .—Let the true divisor (D) to get grams per 100 c.c. be M, then  $K_{3.66}$ .—IK absolute. = K absolute.

Example.—Let  $K_{9.86} = 61.1$ , and let M be 3.92, then K absolute  $= \frac{61.1 \times 3.92}{3.86} = 62.05$ .





TABLE FOR PHOSPHATES.

| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                               |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------------------------------|-----------------------------------------------|---------------------------------|-------------------------------|----------------|-----------------------------------------------|-----------------------------------------------|---------------------------------|-------------------------------|-------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | Mg <sub>2</sub> P <sub>2</sub> O <sub>7</sub> | Ca <sub>3</sub> P <sub>2</sub> O <sub>8</sub> | CaP <sub>2</sub> O <sub>6</sub> | P <sub>2</sub> O <sub>5</sub> | P <sub>2</sub> | Mg <sub>2</sub> P <sub>2</sub> O <sub>7</sub> | Ca <sub>3</sub> P <sub>2</sub> O <sub>8</sub> | CaP <sub>2</sub> O <sub>6</sub> | P <sub>2</sub> O <sub>5</sub> | $P_2$ |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | 0.1                                           | 0.14                                          | 0.00                            | 0.00                          | 0.000          | 4.7                                           | F./70                                         | 0.00                            | 0.00                          | 7.745 |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |                                               |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| .4         0.56         0.36         0.26         0.112         .4         6.14         3.93         2.82         1.229           .5         0.70         0.45         0.32         0.140         .5         6.28         4.01         2.88         1.229           .6         0.84         0.54         0.38         0.168         .6         6.42         4.10         2.94         1.285           .7         0.98         0.62         0.45         0.196         .7         6.56         4.19         3.01         1.313           .8         1.12         0.71         0.51         0.223         .8         6.70         4.28         3.07         1.341           .9         1.26         0.80         0.58         0.251         .9         6.84         4.37         3.1         1.369           .1         1.54         0.98         0.64         0.279         5.0         6.98         4.46         3.20         1.396           .1         1.54         0.98         0.70         0.307         .1         7.12         4.55         3.26         1.432           .2         1.68         1.07         0.77         0.335         3.740 |   |                                               |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | .3                                            | 0.42                                          |                                 |                               |                |                                               |                                               |                                 |                               |       |
| Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |                                               | 0.56                                          |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |                                               | 0.70                                          | 0.45                            | 0.35                          | 0.140          |                                               | 6.28                                          | 4.01                            | 2.88                          | 1.257 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | .6                                            | 0.84                                          | 0.54                            | 0.38                          | 0.168          | .6                                            | 6.42                                          | 4.10                            | 2.94                          | 1.285 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | .7                                            | 0.98                                          | 0.62                            | 0.45                          | 0.196          | .7                                            | 6.56                                          | 4.19                            | 3.01                          | 1.313 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | i |                                               |                                               |                                 |                               |                | -8                                            |                                               |                                 |                               |       |
| 1·0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 |                                               |                                               |                                 |                               |                |                                               |                                               |                                 |                               | 1.369 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                               |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                               |                                               |                                 |                               | 0.307          |                                               |                                               |                                 |                               |       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |                                               |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |                                               |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | 0                                             |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                               |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | 6.                                            |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                               |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 |                                               |                                               |                                 |                               |                |                                               | 7.96                                          |                                 |                               |       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | -8                                            |                                               |                                 |                               | 0.203          | .8                                            | 8.10                                          | 5.17                            | 3.71                          | 1.620 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | .9                                            | 2.65                                          | 1.70                            | 1.22                          | 0.531          | .9                                            | 8.24                                          | 5.26                            | 3.77                          | 1.648 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 | 2.0                                           | 2.79                                          | 1.78                            | 1.28                          | 0.559          | 6.0                                           | 8:38                                          | 5.35                            | 3.84                          | 1.676 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 | ·1                                            | 2.93                                          | 1.87                            |                               |                | 1                                             |                                               |                                 |                               |       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                               |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |                                               |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 |                                               |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 |                                               |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |                                               |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                               |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 |                                               |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |                                               |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |                                               |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |                                               |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 |                                               |                                               |                                 |                               |                |                                               |                                               | 6.33                            | 4.54                          | 1.983 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |                                               |                                               |                                 |                               |                |                                               |                                               | 6.42                            | 4.61                          |       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |                                               |                                               |                                 |                               |                |                                               | 10.19                                         |                                 |                               | 2.039 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                               | 4.75                                          | 3.03                            |                               | 0.950          |                                               | 10.33                                         | 6.60                            | 4.73                          |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 | .5                                            | 4.89                                          | 3.12                            | 2.24                          |                | .5                                            |                                               |                                 |                               |       |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | .6                                            |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 | .7                                            |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                               |                                               |                                 |                               |                |                                               |                                               |                                 |                               | 2.178 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 |                                               |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 |                                               |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | 10                                            | 0 00                                          | 0 01                            | 2 30                          | 1 111          | 00                                            | 11 1/                                         | / 14                            | 3.12                          | 2 204 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | Mg Pc                                         | 10. 1 -01                                     | 1.09                            | 1 .09                         | 3 1.04         | .05                                           | 1 .06                                         | .07                             | 1 .08                         | 1 .00 |
| $\begin{bmatrix} \text{CaP}_2\text{O}_6 & \text{·01} & \text{·02} & \text{·03} & \text{·04} & \text{·05} & \text{·05} & \text{·06} & \text{·07} & \text{·08} \\ \text{P}_0\text{O}_z & \text{·01} & \text{·01} & \text{·02} & \text{·03} & \text{·03} & \text{·04} & \text{·05} & \text{·06} & \text{·06} \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 | Ca.P.O                                        | .01                                           |                                 | .04                           |                |                                               |                                               |                                 |                               |       |
| P <sub>0</sub> O <sub>x</sub>   ·01   ·01   ·02   ·03   ·04   ·05   ·05   ·06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 | CaP.O.                                        | 10.                                           |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 | PO                                            |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| 12 000 000 001 011 014 017 020 022 025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 | P                                             |                                               |                                 | -                             |                |                                               |                                               |                                 |                               |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I | 1 2                                           | 00                                            | 00                              | 00                            | 0 011          | 1 014                                         | .017                                          | 020                             | 022                           | .025  |

TABLE FOR PHOSPHATES—continued.

| $Mg_2P_2O_7$ | Ca <sub>3</sub> P <sub>2</sub> O <sub>8</sub> | CaP <sub>2</sub> O <sub>6</sub> | P <sub>2</sub> O <sub>5</sub> | $P_2$ | $Mg_2P_2O_7$ | Ca <sub>3</sub> P <sub>2</sub> O <sub>8</sub> | CaP <sub>2</sub> O <sub>6</sub> | P2O5  | $P_2$ |
|--------------|-----------------------------------------------|---------------------------------|-------------------------------|-------|--------------|-----------------------------------------------|---------------------------------|-------|-------|
| 8.1          | 11.31                                         | 7.22                            | 5.18                          | 2.262 | 12.7         | 17.73                                         | 11.33                           | 8.12  | 3.547 |
| .2           | 11.45                                         | 7:31                            | 5.25                          | 2.290 | •8           | 17.87                                         | 11.42                           | 8.19  | 3.575 |
| •3           | 11.59                                         | 7.40                            | 5.31                          | 2.318 | •9           | 18.01                                         | 11.51                           | 8.25  | 3.603 |
| ·4           | 11.73                                         | 7.49                            | 5.37                          | 2:346 | 13.0         | 18.15                                         | 11.60                           | 8.32  | 3.631 |
| .5           | 11.87                                         | 7.58                            | 5.44                          | 2:374 | .1           | 18.29                                         | 11.68                           | 8.38  | 3.659 |
| •6           | 12.01                                         | 7.67                            | 5.50                          | 2.402 | .2           | 18.43                                         | 11.77                           | 8.44  | 3.687 |
| .7           | 12.15                                         | 7.76                            | 5.57                          | 2.430 | •3           | 18.57                                         | 11.86                           | 8.51  | 3.714 |
| -8           | 12.29                                         | 7.85                            | 5.63                          | 2.458 | •4           | 18.71                                         | 11.95                           | 8.57  | 3.742 |
| .9           | 12.43                                         | 7.94                            | 5.69                          | 2.486 | •5           | 18.85                                         | 12.04                           | 8.64  | 3.770 |
| 9.0          | 12.57                                         | 8.03                            | 5.76                          | 2.514 | .6           | 18.99                                         | 12.13                           | 8.70  | 3.798 |
| •1           | 12.71                                         | 8.12                            | 5.82                          | 2.541 | .7           | 19.13                                         | 12.22                           | 8.76  | 3.826 |
| .2           | 12.85                                         | 8.21                            | 5.89                          | 2.569 | •8           | 19.27                                         | 12:31                           | 8.83  | 3.854 |
| .3           | 12.99                                         | 8.30                            | 5.95                          | 2:597 | .9           | 19.41                                         | 12.40                           | 8.89  | 3.882 |
| •4           | 13.13                                         | 8.38                            | 6.01                          | 2.625 | 14.0         | 19.55                                         | 12.49                           | 8.96  | 3.910 |
| •5           | 13.27                                         | 8.47                            | 6.08                          | 2.653 | 1            | 19.69                                         | 12.58                           | 9.02  | 3.938 |
| .6           | 13.41                                         | 8.56                            | 6.14                          | 2.681 | .2           | 19.83                                         | 12.67                           | 9.08  | 3.966 |
| .7           | 13.55                                         | 8.65                            | 6.21                          | 2.709 | -3           | 19.97                                         | 12.76                           | 9.15  | 3.994 |
| -8           | 13.69                                         | 8.74                            | 6.27                          | 2.737 | •4           | 20.11                                         | 12.84                           | 9.21  | 4.022 |
| .9           | 13.83                                         | 8.83                            | 6.33                          | 2.765 | .5           | 20.25                                         | 12.93                           | 9.28  | 4.050 |
| 10.0         | 13.96                                         | 8.92                            | 6.40                          | 2.793 | .6           | 20.39                                         | 13.02                           | 9.34  | 4.078 |
| •1           | 14.10                                         | 9.01                            | 6.46                          | 2.821 | .7           | 20.53                                         | 13.11                           | 9.40  | 4.105 |
| •2           | 14.24                                         | 9.10                            | 6.52                          | 2.849 | -8           | 20.67                                         | 13.20                           | 9.47  | 4.133 |
| -3           | 14.38                                         | 9.19                            | 6.59                          | 2.877 | .9           | 20.81                                         | 13.29                           | 9.53  | 4.161 |
| •4           | 14.52                                         | 9.28                            | 6.65                          | 2.905 | 15.0         | 20.95                                         | 13.38                           | 9.60  | 4.189 |
| •5           | 14.66                                         | 9.37                            | 6.72                          | 2.932 | 1            | 21.09                                         | 13.47                           | 9.66  | 4.217 |
| .6           | 14.80                                         | 9.45                            | 6.78                          | 2.960 | -2           | 21.23                                         | 13.56                           | 9.72  | 4.245 |
| .7           | 14.94                                         | 9.54                            | 6.84                          | 2.988 | .3           | 21.37                                         | 13.65                           | 9.79  | 4.273 |
| •8           | 15.08                                         | 9.63                            | 6.91                          | 3.016 | •4           | 21.50                                         | 13.74                           | 9.85  | 4.301 |
| .9           | 15.22                                         | 9.72                            | 6.97                          | 3.044 | •5           | 21.64                                         | 13.83                           | 9.92  | 4.329 |
| 11.0         | 15.36                                         | 9.81                            | 7.04                          | 3.072 | .6           | 21.78                                         | 13.91                           | 9.98  | 4.357 |
| •1           | 15.50                                         | 9.90                            | 7.10                          | 3.100 | •7           | 21.92                                         | 14.00                           | 10.04 | 4.385 |
| .2           | 15.64                                         | 9.99                            | 7.16                          | 3.128 | •8           | 22.06                                         | 14.09                           | 10.11 | 4.413 |
| .3           | 15.78                                         | 10.08                           | 7.23                          | 3.156 | .9           | 22.20                                         | 14.18                           | 10.17 | 4.441 |
| •4           | 15.92                                         | 10.17                           | 7.29                          | 3.184 | 16.0         | 22.34                                         | 14.27                           | 10.23 | 4.469 |
| .5           | 16.06                                         | 10.26                           | 7.36                          | 3.212 | .1           | 22.48                                         | 14.36                           | 10.30 | 4.496 |
| .6           | 16.20                                         | 10.35                           | 7.42                          | 3.240 | .2           | 22.62                                         | 14.45                           | 10.36 | 4.524 |
| .7           | 16:34                                         | 10.44                           | 7.48                          | 3.268 | .3           | 22.76                                         | 14.54                           | 10.43 | 4.552 |
| .8           | 16.48                                         | 10.53                           | 7.55                          | 3.296 | •4           | 22.90                                         | 14.63                           | 10.49 | 4.580 |
| .9           | 16.62                                         | 10.61                           | 7.61                          | 3.324 | •5           | 23.04                                         | 14.72                           | 10.55 | 4.608 |
| 12.0         | 16.76                                         | 10.70                           | 7.68                          | 3.351 | .6           | 23.18                                         | 14.81                           | 10.62 | 4.636 |
| 1            | 16.90                                         | 10.79                           | 7.74                          | 3.379 | .7           | 23.32                                         | 14.89                           | 10.68 | 4.664 |
| .2           | 17.04                                         | 10.88                           | 7.80                          | 3.407 | -8           | 23.46                                         | 14.98                           | 10.75 | 4.692 |
| •3           | 17.18                                         | 10.97                           | 7.87                          | 3.435 | .9           | 23.60                                         | 15.07                           | 10.81 | 4.720 |
| •4           | 17:32                                         | 11.06                           | 7.93                          | 3.463 | 17.0         | 23.74                                         | 15.16                           | 10.87 | 4.748 |
| .5           | 17.46                                         | 11.15                           | 8.00                          | 3.491 | ·1           | 23.88                                         | 15.25                           | 10.94 | 4.776 |
| •6           | 17.60                                         | 11.24                           | 8.06                          | 3.519 | .2           | 24.02                                         | 15.34                           | 11.00 | 4.804 |

TABLE FOR PHOSPHATES—continued.

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                       |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------|-----------------------------------------------|---------------------------------|-------------------------------|----------------|-----------------------------------------------|-----------------------------------------------|---------------------------------|-------------------------------|-------|
| 4         24 30         15 52         11 13         4 860         4         29 88         19 09         13 69         5 977           5         24 44         15 61         11 19         4 887         5         30 02         19 18         13 75         6 005           6         24 58         15 70         11 26         4 915         6         30 16         19 27         13 82         6 033           7         24 72         15 79         11 32         4 943         7         30 30         19 35         13 88         6 060           8         24 86         15 88         11 39         4 971         8         30 44         19 44         13 94         6 080           9         25 00         15 77         11 45         4 999         9 30 58         19 53         14 01         6 144         6 11         58         6 144         6 11 5         6 25 77         16 14         11 58         5 055         13 00 19 80         14 20         6 228           4         25 69         16 41         11 77         5 119         3 11 41         19 89         14 26         6 228           4         25 68         16 50         11 83         5 167         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | $\mathrm{Mg_2P_2O_7}$ | Ca <sub>3</sub> P <sub>2</sub> O <sub>8</sub> | CaP <sub>2</sub> O <sub>6</sub> | P <sub>2</sub> O <sub>5</sub> | P <sub>2</sub> | Mg <sub>2</sub> P <sub>2</sub> O <sub>7</sub> | Ca <sub>3</sub> P <sub>2</sub> O <sub>8</sub> | CaP <sub>2</sub> O <sub>6</sub> | P <sub>2</sub> O <sub>5</sub> | $P_2$ |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | 17:3                  | 24.16                                         | 15.43                           | 11.07                         | 4.832          | 21.3                                          | 29.74                                         | 19.00                           | 13.62                         | 5.949 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | •4                    | 24:30                                         | 15.52                           | 11.13                         | 4.860          | •4                                            | 29.88                                         | 19.09                           | 13.69                         | 5.977 |
| Cappa   Capp |   | •5                    | 24.44                                         | 15.61                           |                               | 4.887          | .5                                            | 30.02                                         | 19.18                           | 13.75                         | 6.005 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                       |                                               |                                 |                               |                |                                               |                                               | 19.27                           |                               |       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |                       |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |                       |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                       |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                       |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                       |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                       |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |                       |                                               |                                 |                               |                | _                                             |                                               |                                 |                               |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                       |                                               |                                 |                               |                | -                                             |                                               |                                 |                               |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                       |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                       |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                       |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                       |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                       |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                       |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                       |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ċ |                       |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                       |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                       |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                       |                                               |                                 |                               |                | _                                             |                                               |                                 |                               |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                       |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                       |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                       |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                       |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                       |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                       |                                               |                                 |                               |                | 1                                             |                                               |                                 |                               |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                       |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                       |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                       |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                       |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                       |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | 0                     |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |                       |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | F |                       |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |                       |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |                       |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |                       |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $ \begin{bmatrix} Ca_3P_2O_8 & \cdot 01 & \cdot 03 & \cdot 04 & \cdot 06 & \cdot 07 & \cdot 08 & \cdot 10 & \cdot 11 & \cdot 13 \\ CaP_2O_6 & \cdot 01 & \cdot 02 & \cdot 03 & \cdot 04 & \cdot 05 & \cdot 05 & \cdot 06 & \cdot 07 & \cdot 08 \\ P_2O_5 & \cdot 01 & \cdot 01 & \cdot 02 & \cdot 03 & \cdot 03 & \cdot 04 & \cdot 05 & \cdot 05 & \cdot 06 \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | .2                    | 29.60                                         | 18.91                           | 13.26                         | 5.921          | •2                                            | 35.19                                         | 22.48                           | 16.15                         | 7.038 |
| $ \begin{bmatrix} Ca_3P_2O_8 & \cdot 01 & \cdot 03 & \cdot 04 & \cdot 06 & \cdot 07 & \cdot 08 & \cdot 10 & \cdot 11 & \cdot 13 \\ CaP_2O_6 & \cdot 01 & \cdot 02 & \cdot 03 & \cdot 04 & \cdot 05 & \cdot 05 & \cdot 06 & \cdot 07 & \cdot 08 \\ P_2O_5 & \cdot 01 & \cdot 01 & \cdot 02 & \cdot 03 & \cdot 03 & \cdot 04 & \cdot 05 & \cdot 05 & \cdot 06 \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |                       |                                               |                                 |                               |                |                                               | 4                                             | 100                             |                               |       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | Mr.P.                 | ) .0.                                         | 1 1 .0                          | 2 1 .0                        | 3 .04          | .05                                           | .06                                           | .07                             | .08                           | •00   |
| P <sub>2</sub> O <sub>5</sub>   '01   '01   '02   '03   '03   '04   '05   '05   '06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   | Ca. P. O              | .0.                                           |                                 |                               |                |                                               |                                               |                                 |                               |       |
| P <sub>2</sub> O <sub>5</sub>   '01   '01   '02   '03   '03   '04   '05   '05   '06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   | CaP.O.                | 8 .0.                                         |                                 |                               |                |                                               |                                               |                                 |                               |       |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | P.O.                  | .0.                                           |                                 |                               |                |                                               |                                               |                                 |                               |       |
| 2 000 000 011 014 017 020 022 025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | P. 5                  |                                               |                                 |                               |                |                                               |                                               |                                 |                               |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - | ~ 2                   | 1 00                                          | 0                               | 00                            | 00 01          | 014                                           | 011                                           | 020                             | 022                           | 020   |

TABLE FOR PHOSPHATES—continued.

| .5         35.61         22.74         16.31         7.122         1         42.03         26.85         19.25         8.406           .6         35.75         22.83         16.38         7.150         2         42.17         26.94         19.32         8.436           .7         35.89         22.92         16.44         7.178         3         42.31         27.03         19.38         8.46           .8         36.03         23.01         16.57         7.233         5         42.59         27.20         19.51         8.518           26.0         36.31         23.19         16.63         7.269         6         42.73         27.29         19.57         8.548           2         36.59         23.87         16.63         7.317         8         43.01         27.47         19.70         8.603           3         36.73         23.46         16.82         7.345         9         43.15         27.65         19.83         8.656           5         37.00         23.64         16.95         7.401         1         43.43         27.74         19.89         8.686           5         37.00         23.63         17.65         7                                                                                                                                                                                                                                                                                                                                                              |                       |                                               |                                 |                               |                |              |                                               |                                 |       |       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------|---------------------------------|-------------------------------|----------------|--------------|-----------------------------------------------|---------------------------------|-------|-------|
| 4         35-47         22-66         16-25         7-094         30-0         41-89         26-76         19-19         8-376           6         35-75         22-83         16-38         7-150         -2         42-17         26-94         19-25         8-40           7         35-89         22-92         16-44         7-178         -3         42-31         27-03         19-38         8-46           8         36-03         23-01         16-57         7-205         -4         42-45         27-11         19-45         8-49           9         36-17         23-10         16-57         7-205         -4         42-59         27-20         19-51         8-46           26-0         36-31         23-19         16-63         7-261         -6         42-73         27-29         19-57         8-54           -2         36-59         23-37         16-76         7-389         -7         42-87         27-39         19-57         8-68           -3         36-73         23-46         16-82         7-345         -9         43-15         27-56         19-77         8-63           -5         37-00         23-64         16-95 <t< th=""><th><math>\mathrm{Mg_2P_2O_7}</math></th><th>Ca<sub>3</sub>P<sub>2</sub>O<sub>8</sub></th><th>CaP<sub>2</sub>O<sub>6</sub></th><th>P<sub>2</sub>O<sub>5</sub></th><th>P<sub>2</sub></th><th><math>Mg_2P_2O_7</math></th><th>Ca<sub>3</sub>P<sub>2</sub>O<sub>8</sub></th><th>CaP<sub>2</sub>O<sub>6</sub></th><th>P2O5</th><th><math>P_2</math></th></t<> | $\mathrm{Mg_2P_2O_7}$ | Ca <sub>3</sub> P <sub>2</sub> O <sub>8</sub> | CaP <sub>2</sub> O <sub>6</sub> | P <sub>2</sub> O <sub>5</sub> | P <sub>2</sub> | $Mg_2P_2O_7$ | Ca <sub>3</sub> P <sub>2</sub> O <sub>8</sub> | CaP <sub>2</sub> O <sub>6</sub> | P2O5  | $P_2$ |
| 4         35-47         22-66         16-25         7-094         30-0         41-89         26-76         19-19         8-376           6         35-75         22-83         16-38         7-150         -2         42-17         26-94         19-25         8-40           7         35-89         22-92         16-44         7-178         -3         42-31         27-03         19-38         8-46           8         36-03         23-01         16-57         7-205         -4         42-45         27-11         19-45         8-49           9         36-17         23-10         16-57         7-205         -4         42-59         27-20         19-51         8-46           26-0         36-31         23-19         16-63         7-261         -6         42-73         27-29         19-57         8-54           -2         36-59         23-37         16-76         7-389         -7         42-87         27-39         19-57         8-68           -3         36-73         23-46         16-82         7-345         -9         43-15         27-56         19-77         8-63           -5         37-00         23-64         16-95 <t< td=""><td>25:3</td><td>35.33</td><td>22:57</td><td>16.18</td><td>7.066</td><td>29.9</td><td>41.75</td><td>26:67</td><td>19:13</td><td>8:351</td></t<>                                                                                                                                                                                                           | 25:3                  | 35.33                                         | 22:57                           | 16.18                         | 7.066          | 29.9         | 41.75                                         | 26:67                           | 19:13 | 8:351 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                                               |                                 |                               |                |              |                                               |                                 |       | 8.378 |
| 66         35.75         22.83         16.38         7.150         2         42.17         26.94         19.32         8.43.6           7         35.89         22.92         16.44         7.178         3         42.31         27.03         19.88         8.46.6           9         36.17         23.10         16.57         7.233         .5         42.59         27.20         19.51         8.518           26.0         36.31         23.19         16.63         7.261         .6         42.73         27.29         19.57         8.546           1         36.45         23.28         16.70         7.389         .7         42.87         27.38         19.64         8.57.2           2         36.59         23.37         16.76         7.317         8         43.01         27.47         19.96         8.68           4         36.87         23.55         16.89         7.373         31.0         43.29         27.65         19.77         8.63           5         37.00         23.64         16.95         7.429         2         43.57         27.83         19.96         8.71           7         37.28         23.81         17.02         <                                                                                                                                                                                                                                                                                                                                                          |                       |                                               |                                 |                               |                |              |                                               |                                 |       | 8.406 |
| 7         35.89         22.92         16.44         7.178         3         42.31         27.03         19.38         8.462           9         36.17         23.10         16.57         7.203         4         42.45         27.11         19.45         8.462           26.0         36.31         23.19         16.63         7.261         6         42.73         27.20         19.57         8.546           1         36.45         23.28         16.70         7.289         7         42.87         27.38         19.64         8.57           2         36.59         23.37         16.76         7.317         8         43.01         27.47         19.70         8.63           3         36.73         23.46         16.82         7.373         31.0         43.29         27.65         19.77         8.63           4         36.87         23.55         16.89         7.401         1         43.43         27.74         19.89         8.656           5         37.00         23.64         16.95         7.401         1         43.43         27.74         19.89         8.656           7         37.28         23.81         17.02         7.42                                                                                                                                                                                                                                                                                                                                                              |                       |                                               |                                 |                               |                | •2           |                                               |                                 |       | 8.434 |
| 9 36-17 23-10 16-57 7-233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                               | 22.92                           | 16.44                         | 7.178          | •3           | 42.31                                         | 27.03                           | 19.38 | 8.462 |
| 26·0         36·31         23·19         16·63         7·261         ·6         42·73         27·29         19·57         8·546           ·1         36·45         23·28         16·70         7·289         ·7         42·87         27·38         19·64         8·57·2           ·2         36·59         23·37         16·76         7·317         8         43·01         27·47         19·70         8·60           ·3         36·73         23·55         16·89         7·373         31·0         43·29         27·65         19·77         8·63           ·4         36·87         23·55         16·89         7·373         31·0         43·29         27·65         19·83         8·65           ·5         37·00         23·64         16·95         7·401         ·1         43·43         27·74         19·89         8·65           ·6         37·14         23·72         17·02         7·429         ·2         43·53         27·74         19·89         8·68           ·6         37·14         23·99         17·21         7·429         ·2         43·35         28·01         20·02         8·76           ·8         37·26         23·99         17·21                                                                                                                                                                                                                                                                                                                                                             | •8                    | 36.03                                         | 23.01                           | 16.50                         | 7.205          | •4           | 42.45                                         | 27.11                           | 19.45 | 8.490 |
| 1         36 45         23 28         16 70         7 289         7         42 87         27 38         19 64         8 57 4           2         36 59         23 37         16 76         7 317         8         43 01         27 47         19 70         8 60           3         36 673         23 46         16 82         7 345         9         43 15         27 65         19 77         8 636           4         36 87         23 55         16 89         7 373         31 0         43 29         27 65         19 77         8 636           5         37 00         23 64         16 95         7 401         1         43 43         27 74         19 89         8 686           6         37 14         23 72         17 02         7 429         2         43 57         27 83         19 96         8 71           7         37 28         23 81         17 08         7 447         3         43 71         27 92         20 02         8 742           18         37 42         23 99         17 21         7 513         5         43 99         28 10         20 15         8 79           27 0         37 76         24 08         17 27         7                                                                                                                                                                                                                                                                                                                                                              | •9                    | 36.17                                         | 23.10                           | 16.57                         | 7.233          | •5           | 42.59                                         | 27.20                           | 19.51 | 8.518 |
| 2         36.59         23.37         16.76         7.317         8         43.01         27.47         19.70         8.60           3         36.73         23.46         16.82         7.345         9         43.15         27.56         19.77         8.63           4         36.87         23.55         16.89         7.373         31.0         43.29         27.65         19.83         8.658           5         37.00         23.64         16.95         7.401         1         43.43.27         27.783         19.96         8.71.2           7         37.28         23.81         17.08         7.457         3         43.71         27.92         20.02         8.74           8         37.42         23.90         17.14         7.485         4         43.85         28.01         20.09         8.76           23         37.56         23.99         17.21         7.513         5         43.99         28.10         20.15         8.79           27.0         37.70         24.08         17.27         7.541         6         44.13         28.13         20.15         8.93           23         38.81         24.26         17.40                                                                                                                                                                                                                                                                                                                                                                       | 26.0                  | 36.31                                         |                                 |                               |                |              |                                               | 27.29                           | 19.57 | 8.546 |
| 3         36·73         23·46         16·82         7·345         9         43·15         27·56         19·77         8·630           4         36·87         23·55         16·89         7·373         31·0         43·29         27·65         19·83         8·656           5         37·00         23·64         16·95         7·401         1         43·43         27·74         19·89         8·686           6         37·14         23·72         17·02         7·429         2         43·57         27·83         19·96         8·714           7         37·28         23·81         17·08         7·457         3         43·71         27·92         20·02         8·745           9         37·56         23·99         17·21         7·513         5         43·99         28·10         20·15         8·76           9         37·56         23·99         17·27         7·541         6         44·31         28·18         20·21         8·82           1         37·84         24·26         17·40         7·597         8         44·41         28·36         20·34         8·83           2         37·98         24·26         17·40         7·597 </td <td>•1</td> <td>36.45</td> <td>23.28</td> <td>16.70</td> <td>7.289</td> <td>.7</td> <td>42.87</td> <td>27.38</td> <td>19.64</td> <td>8.574</td>                                                                                                                                                                                                           | •1                    | 36.45                                         | 23.28                           | 16.70                         | 7.289          | .7           | 42.87                                         | 27.38                           | 19.64 | 8.574 |
| 4         36·87         23·55         16·89         7·373         31·0         43·29         27·65         19·83         8·65           5         37·00         23·64         16·95         7·401         1         43·43         27·74         19·89         8·66           6         37·14         23·72         17·02         7·429         2         43·57         27·83         19·96         8·71           7         37·28         23·81         17·08         7·457         3         43·71         27·92         20·02         8·74           8         37·42         23·99         17·14         7·485         4         43·85         28·01         20·09         8·765           9         37·56         23·99         17·21         7·513         ·6         44·13         28·18         20·21         8·765           1         37·84         24·17         17·33         7·569         7         44·27         28·27         20·28         8·82           2         37·98         24·26         17·40         7·597         8         44·41         28·36         20·34         8·82           2         37·98         24·26         17·65         7·680 <td></td> <td>36.59</td> <td>23.37</td> <td>16.76</td> <td>7.317</td> <td>•8</td> <td>43.01</td> <td>27.47</td> <td>19.70</td> <td>8.602</td>                                                                                                                                                                                                                    |                       | 36.59                                         | 23.37                           | 16.76                         | 7.317          | •8           | 43.01                                         | 27.47                           | 19.70 | 8.602 |
| 55         37 00         23 64         16 95         7 401         1         43 43         27 74         19 89         8 686           66         37 14         23 72         17 02         7 429         2         43 57         27 83         19 96         8 714           7         37 28         23 81         17 08         7 457         3         43 71         27 92         20 02         8 745           8         37 42         23 90         17 14         7 485         4         43 55         28 01         20 09         8 766           9         37 56         23 99         17 21         7 513         5         43 99         28 10         20 15         8 79           27 0         37 76         24 08         17 27         7 541         6         44 13         28 18         20 21         8 82           1         37 84         24 17         17 33         7 569         7         44 27         28 27         20 28         8 853           2         37 98         24 24 51         17 46         7 624         9         44 55         28 45         20 41         8 90           3         38 12         24 35         17 65         7                                                                                                                                                                                                                                                                                                                                                               | •3                    | 36.73                                         | 23.46                           | 16.82                         | 7:345          | •9           | 43.15                                         |                                 | 19.77 | 8.630 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | 36.87                                         |                                 |                               |                |              |                                               |                                 |       | 8.658 |
| 7         37.28         23.81         17.08         7.457         3         43.71         27.92         20.02         8.742           8         37.42         23.99         17.14         7.485         .4         43.85         28.01         20.02         8.766           9         37.56         23.99         17.21         7.513         .5         43.99         28.10         20.15         8.792           27.0         37.70         24.08         17.27         7.541         .6         44.33.99         28.10         20.15         8.792           1         37.84         24.17         17.33         7.569         .7         44.27         28.27         20.28         8.853           2         37.98         24.26         17.40         7.597         .8         44.41         28.36         20.34         8.88           2         37.98         24.25         17.46         7.622         32.0         44.65         28.45         20.41         8.903           4         38.26         24.44         17.53         7.652         32.0         44.65         28.72         20.60         8.993           5         38.46         24.53         17.75                                                                                                                                                                                                                                                                                                                                                              |                       |                                               |                                 |                               |                | _            |                                               |                                 |       |       |
| 8         37 42         23 90         17 14         7 485         4         43 85         28 01         20 09         8 766           29         37 56         23 99         17 21         7 513         5         43 99         28 10         20 15         8 79           27 0         37 70         24 08         17 27         7 541         6         44 13         28 18         20 21         8 82           1         37 84         24 17         17 33         7 569         7         44 27         28 27         20 28         8 85           2         37 98         24 26         17 40         7 597         8         44 41         28 36         20 34         8 88           3         38 12         24 35         17 46         7 624         9         44 55         28 45         20 41         8 90           4         38 38 40         24 53         17 59         7 680         1         44 82         28 63         20 47         8 93           6         38 54         24 62         17 65         7 708         2         24 96         28 72         20 60         8 93           7         38 68         24 71         17 72         7 736 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>8.714</td>                                                                                                                                                                                                                                                  |                       |                                               |                                 |                               |                |              |                                               |                                 |       | 8.714 |
| 9         37.56         23.99         17.21         7.513         *5         43.99         28.10         20.15         8.79%           27.0         37.70         24.08         17.27         7.541         *6         44.13         28.18         20.21         8.82           *1         37.84         24.17         17.33         7.569         *7         44.27         28.27         20.28         8.853           *2         37.98         24.26         17.40         7.597         *8         44.41         28.36         20.34         8.853           *3         38.12         24.35         17.46         7.624         *9         44.55         28.45         20.41         8.903           *4         38.26         24.44         17.53         7.652         32.0         44.69         28.54         20.41         8.903           *5         38.40         24.62         17.65         7.708         *2         44.92         28.63         20.53         8.963           *6         38.54         24.80         17.78         7.764         *4         45.24         28.90         20.72         9.043           *8         38.89         24.88         17.85                                                                                                                                                                                                                                                                                                                                                           |                       |                                               |                                 |                               |                |              |                                               |                                 |       | 8.742 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                                               |                                 |                               |                |              |                                               |                                 |       |       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                               |                                 |                               |                |              |                                               |                                 |       |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                                               |                                 |                               |                |              |                                               |                                 |       |       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                               |                                 |                               |                |              |                                               |                                 |       |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                                               |                                 |                               |                |              |                                               |                                 |       |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                                               |                                 |                               |                |              |                                               |                                 |       |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                                               |                                 |                               |                |              |                                               |                                 |       |       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                               |                                 |                               |                |              |                                               |                                 |       |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                                               |                                 |                               |                |              |                                               |                                 |       |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                                               |                                 |                               |                |              |                                               |                                 |       |       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                               |                                 |                               |                |              |                                               |                                 |       |       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                               |                                 |                               |                |              |                                               |                                 |       |       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                               |                                 |                               |                |              |                                               |                                 |       |       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                               |                                 |                               |                |              |                                               |                                 |       |       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                               |                                 |                               |                |              |                                               |                                 |       |       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                               |                                 |                               |                |              |                                               |                                 |       |       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                               |                                 |                               |                |              |                                               |                                 |       |       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                               |                                 |                               |                |              |                                               |                                 |       |       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                               |                                 |                               |                |              |                                               |                                 |       | 9.300 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                               |                                 |                               |                |              |                                               |                                 |       | 9.328 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                               |                                 |                               |                |              |                                               |                                 |       | 9.356 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                               |                                 |                               |                |              |                                               |                                 |       | 9.384 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | 1                                             |                                 |                               |                |              |                                               |                                 |       | 9.412 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                               |                                 |                               |                |              |                                               |                                 |       | 9.440 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                               |                                 |                               |                |              |                                               |                                 |       | 9.468 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                                               |                                 |                               |                |              |                                               |                                 |       | 9.496 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                                               |                                 |                               |                |              |                                               |                                 | 21.81 | 9.523 |
| 7 41.47 26.49 19.00 8.295 3 47.90 30.59 21.94 9.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                                               |                                 |                               |                |              |                                               | 30.50                           | 21.88 | 9.551 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                                               |                                 |                               |                | 11           |                                               |                                 | 21.94 | 9.579 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                                               |                                 |                               |                |              | 48.04                                         | 30.68                           | 22.00 | 9.607 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F 1 %                 |                                               |                                 |                               |                |              |                                               |                                 |       |       |

TABLE FOR PHOSPHATES—continued.

| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |              |                                               |                                 |        |     |     |              |                                               |                                 |                               |        |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------|-----------------------------------------------|---------------------------------|--------|-----|-----|--------------|-----------------------------------------------|---------------------------------|-------------------------------|--------|---|
| ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - | $Mg_2P_2O_7$ | Ca <sub>3</sub> P <sub>2</sub> O <sub>8</sub> | CaP <sub>2</sub> O <sub>6</sub> | P2O5   | I   | P2  | $Mg_2P_2O_7$ | Ca <sub>3</sub> P <sub>2</sub> O <sub>8</sub> | CaP <sub>2</sub> O <sub>6</sub> | P <sub>2</sub> O <sub>5</sub> | $P_2$  | 1 |
| ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | ~            | 40.40                                         | 00 55                           | 00.07  |     | 205 | 90.5         | 50.50                                         | 04.04                           | 04.00                         | 10.750 | 1 |
| 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |              |                                               |                                 |        |     |     |              |                                               |                                 |                               |        | ١ |
| ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 |              |                                               |                                 |        |     |     |              |                                               |                                 |                               |        | l |
| 9 48·74 31·13 22·32 9·747 9 54·32 34·70 24·88 10·864 35·0 48·87 31·22 22·39 9·765 39·0 54·46 34·78 24·95 10·892 14·901 31·31 22·45 9·803 ·1 54·60 34·87 25·01 10·920 22·49·15 31·40 22·52 9·831 ·2 54·60 34·87 25·01 10·920 34·91·5 31·40 22·52 9·831 ·2 54·74 34·96 25·07 10·948 34·92 31·49 22·58 9·859 ·3 54·88 35·05 25·14 10·976 44·943 31·57 22·64 9·887 ·4 55·02 35·14 25·20 11·004 55·49·57 31·66 22·71 9·914 ·5 55·16 35·23 25·27 11·032 66 49·71 31·75 22·77 9·942 ·6 55·30 35·32 25·33 11·060 7· 49·85 31·84 22·84 9·970 ·7 55·44 35·41 25·39 11·087 84·999 31·93 22·90 9·998 ·8 55·58 35·50 25·46 11·115 9· 50·13 32·02 22·96 10·026 ·9 55·72 35·59 25·52 11·143 36·0 50·27 32·11 23·03 10·054 40·0 55·86 35·68 25·59 11·71 1·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11·15 11· | ١ |              |                                               |                                 |        |     |     |              |                                               |                                 |                               |        | 1 |
| 35-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |              |                                               |                                 |        |     |     |              |                                               |                                 |                               |        | ١ |
| 1 49 01 31 31 1 22 45 9 803 1 1 54 60 34 87 25 01 10 920 2 49 15 31 40 22 52 9 831 2 54 74 34 96 25 07 10 948 3 49 29 31 49 22 58 9 859 3 54 88 35 05 25 14 10 976 4 49 43 31 57 22 64 9 887 4 55 02 35 14 25 20 11 004 55 49 57 31 66 22 71 9 914 5 55 16 35 23 25 27 11 032 6 49 71 31 75 22 77 9 942 6 55 30 35 32 25 33 11 060 77 49 85 31 84 22 84 9 970 7 55 44 35 41 25 30 11 087 8 49 99 31 93 22 90 9 998 8 55 58 35 50 25 46 11 115 9 50 13 32 02 22 96 10 026 9 55 72 35 59 25 52 11 143 360 50 27 32 11 23 03 10 054 40 0 55 86 35 68 25 59 11 171 1 50 41 32 20 23 09 10 082 1 56 00 35 77 25 65 11 199 22 50 55 32 29 23 16 10 110 2 56 14 35 85 25 71 11 227 3 50 69 32 38 23 22 10 138 3 56 28 35 94 25 78 11 225 4 50 83 32 47 23 28 10 166 4 56 42 36 03 25 84 11 285 5 50 97 32 55 23 35 10 194 5 66 55 36 35 62 25 91 11 311 6 51 11 32 64 23 41 10 22 6 56 69 36 21 25 97 11 311 6 51 11 32 64 23 41 10 22 7 56 69 36 21 25 97 11 311 6 51 11 32 64 23 41 10 22 7 6 56 69 36 21 25 97 11 311 6 51 11 32 64 23 41 10 22 7 6 56 69 36 21 25 97 11 311 6 6 51 11 32 64 23 41 10 22 7 6 56 69 36 21 25 97 11 311 6 6 51 11 32 64 23 41 10 22 7 6 56 69 36 21 25 97 11 311 6 6 51 11 32 64 23 41 10 22 7 6 56 69 36 21 25 97 11 311 6 6 51 11 32 64 23 41 10 22 7 6 56 69 36 21 25 97 11 311 6 6 51 11 32 64 23 41 10 250 7 56 83 36 30 26 03 11 367 7 51 25 32 73 23 48 10 250 7 56 83 36 30 26 03 11 367 7 51 25 32 73 23 48 10 250 7 56 83 36 30 26 01 11 395 9 51 53 32 91 23 60 10 306 9 57 11 36 48 26 10 11 395 9 51 53 32 91 23 60 10 306 9 57 11 36 48 26 10 11 478 22 51 95 33 18 23 80 10 389 22 57 53 36 75 26 23 11 451 15 40 37 30 26 60 30 32 73 10 361 1 57 39 36 66 26 29 11 478 22 51 95 33 18 23 80 10 389 22 57 53 36 70 26 63 11 506 35 506 33 89 24 31 10 613 42 0 58 65 37 46 26 29 11 478 31 10 57 8 23 37 10 361 1 57 39 36 66 26 29 11 478 31 10 53 20 33 98 24 31 10 613 42 0 58 65 37 46 26 69 11 70 2 2 33 80 24 24 10 10 58 9 58 55 37 37 32 26 67 11 648 4 4 53 62 34 25 24 12 10 529 7 58 23 37 10 26 61 11 618 42 25 33 34 34 60 24 24 10 585 9 58 53 74 26 69 31 1788 11 58  |   |              |                                               |                                 |        |     |     |              |                                               |                                 |                               |        | I |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - | 35.0         |                                               | 31.22                           | 22.39  |     |     |              |                                               |                                 |                               |        | 1 |
| 3         49-29         31-49         22-58         9·859         3         54·88         35·05         25·14         10·976           4         49·43         31·57         22·64         9·887         4         55·02         35·14         25·20         11·004           5         49·57         31·66         22·71         9·914         5         55·16         35·23         25·27         11·034           6         49·71         31·75         22·77         9·942         6         55·30         35·32         25·33         11·060           7         49·85         31·84         22·84         9·970         7         55·44         35·41         25·39         11·087           8         49·99         31·93         22·90         9·998         8         55·58         35·50         25·41         11·15           9         50·13         32·02         22·96         10·026         9         55·72         35·59         25·51         11·18           36·0         50·27         32·11         23·03         10·026         9         55·72         35·59         25·52         11·11           1         50·13         32·29         23·16         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |              | 49.01                                         | 31.31                           | 22.45  |     |     |              |                                               |                                 |                               |        | 1 |
| 4         49·43         31·57         22·64         9·887         4         55·02         35·14         25·20         11·004           :5         49·57         31·66         22·71         9·914         :5         55·16         35·23         25·27         11·032           :6         49·71         31·75         22·77         9·942         :6         55·30         35·32         25·33         11·060           :7         49·85         31·84         22·84         9·970         :7         55·44         35·41         25·39         11·087           :8         49·99         31·93         22·90         9·998         :8         55·58         35·50         25·46         11·171           :9         50·13         32·02         22·96         10·026         :9         55·72         35·59         25·52         11·171           :1         50·41         32·20         23·09         10·082         :1         56·00         35·77         25·52         11·143           36·0         50·55         32·29         23·16         10·110         :2         56·14         35·85         25·71         11·227           :3         50·69         32·38         23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |              | 49.15                                         | 31.40                           | 22.52  | 9   | 831 | •2           |                                               | 34.96                           | 25.07                         | 10.948 | ۱ |
| S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | .3           | 49.29                                         | 31.49                           | 22.58  | 9   | 859 | •3           | 54.88                                         | 35.05                           | 25.14                         | 10.976 | ı |
| 6         49·71         31·75         22·77         9·942         6         55·30         35·32         25·33         11·060           7         49·85         31·84         22·84         9·970         ·7         55·44         35·41         25·39         11·087           8         49·99         31·93         22·90         9·998         ·8         55·58         35·50         25·46         11·115           9         50·13         32·02         22·96         10·026         ·9         55·72         35·59         25·52         11·143           36·0         50·27         32·11         23·03         10·054         40·0         55·86         35·68         25·59         11·171           1         50·41         32·29         23·16         10·110         ·2         56·14         35·85         25·71         11·227           3         50·69         32·38         23·22         10·138         ·3         56·28         35·94         25·78         11·227           3         50·69         32·38         23·21         10·18         ·5         56·44         36·42         25·91         11·227           3         50·97         32·55         23·35<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | •4           | 49.43                                         | 31.57                           | 22.64  | 9   | 887 | •4           | 55.02                                         | 35.14                           | 25.20                         | 11.004 | 1 |
| 6         49·71         31·75         22·77         9·942         6         55·30         35·32         25·33         11·060           7         49·85         31·84         22·84         9·970         ·7         55·44         35·41         25·39         11·087           8         49·99         31·93         22·90         9·998         ·8         55·58         35·50         25·46         11·115           9         50·13         32·02         22·96         10·026         ·9         55·72         35·59         25·52         11·143           36·0         50·27         32·11         23·03         10·054         40·0         55·86         35·68         25·59         11·171           1         50·41         32·29         23·16         10·110         ·2         56·14         35·85         25·71         11·227           3         50·69         32·38         23·22         10·138         ·3         56·28         35·94         25·78         11·227           3         50·69         32·38         23·21         10·18         ·5         56·44         36·42         25·91         11·227           3         50·97         32·55         23·35<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - | •5           | 49.57                                         | 31.66                           | 22.71  | 9   | 914 | .5           | 55.16                                         | 35.23                           | 25.27                         | 11.032 | 1 |
| .7         49·85         31·84         22·84         9·970         .7         55·44         35·41         25·39         11·087           .8         49·99         31·93         22·90         9·998         .8         55·58         35·50         25·46         11·115           .9         50·13         32·02         22·96         10·026         .9         55·72         35·59         25·52         11·143           36·0         50·27         32·11         23·03         10·054         40·0         55·86         35·68         25·59         11·171           .1         50·41         32·20         23·09         10·082         .1         56·00         35·77         25·65         11·199           .2         50·55         32·29         23·16         10·110         .2         56·14         35·85         25·71         11·227           .3         50·69         32·38         23·22         10·138         .3         56·28         35·94         25·78         11·255           .4         50·83         32·47         23·28         10·166         .4         56·42         36·30         26·03         11·287           .5         50·97         32·53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |              |                                               |                                 |        | 9   | 942 | •6           | 55.30                                         | 35.32                           | 25.33                         |        |   |
| **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |              |                                               |                                 |        | 9   | 970 | •7           | 55.44                                         | 35.41                           | 25.39                         | 11.087 | 1 |
| Solid   Soli   |   |              |                                               |                                 |        |     |     |              |                                               |                                 |                               |        | 1 |
| 36.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |              |                                               |                                 |        |     |     |              |                                               |                                 |                               |        | 1 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 |              |                                               |                                 |        |     |     |              |                                               |                                 |                               |        | ١ |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 |              |                                               |                                 |        |     |     |              |                                               |                                 |                               |        | ı |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ١ |              |                                               |                                 |        |     |     |              |                                               |                                 |                               |        | l |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ١ |              | 1                                             |                                 |        |     | - 1 |              |                                               |                                 |                               |        | l |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |              |                                               |                                 |        |     |     |              |                                               |                                 |                               |        | I |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ı |              |                                               |                                 |        |     |     |              |                                               |                                 |                               |        | ı |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 |              |                                               |                                 |        |     |     |              |                                               |                                 |                               |        | l |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 | •7           |                                               |                                 |        |     |     |              |                                               |                                 |                               |        | 1 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |              |                                               |                                 |        |     |     |              |                                               |                                 |                               |        | I |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |              |                                               |                                 |        |     |     |              |                                               |                                 |                               |        | l |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 |              |                                               |                                 |        |     |     |              |                                               |                                 |                               |        | 1 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |              |                                               |                                 |        |     |     |              |                                               |                                 |                               |        | ł |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 |              |                                               |                                 |        |     |     |              |                                               |                                 |                               |        | ١ |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 |              |                                               |                                 |        |     |     |              |                                               |                                 |                               |        | 1 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 |              |                                               |                                 |        |     |     |              |                                               |                                 |                               |        | ١ |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 |              |                                               |                                 |        |     |     |              |                                               |                                 |                               |        | I |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | •5           |                                               |                                 |        |     |     |              |                                               |                                 |                               |        | ۱ |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - |              |                                               |                                 |        |     |     |              |                                               |                                 |                               |        | ١ |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 |              |                                               |                                 |        |     |     |              |                                               |                                 |                               |        | 1 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 |              |                                               |                                 |        |     |     |              |                                               |                                 |                               |        | 1 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - |              |                                               |                                 |        |     |     |              |                                               |                                 |                               |        | I |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - |              |                                               |                                 |        |     |     |              |                                               |                                 |                               |        |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |              |                                               | 33.98                           | 24.37  |     |     |              |                                               |                                 |                               |        | I |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |              |                                               | 34.07                           | 24.43  | 10  | 669 | •2           |                                               | 37.64                           | 26.99                         | 11.786 |   |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ı | .3           | 53.48                                         | 34.16                           | 24.50  | 10  | 696 | •3           | 59.07                                         | 37.73                           | 27.06                         | 11.814 | ı |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ١ | •4           | 53.62                                         | 34.25                           | 24.56  | 10  | 724 | •4           | 59.21                                         | 37.82                           | 27.12                         | 11.842 | ı |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |              | e e                                           |                                 |        |     |     |              |                                               |                                 |                               |        |   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | Mø.P.        | 0- 1-0                                        | 1 1.0                           | 2 1 .0 | 3   | •04 | 1 .05        | -06                                           | .07                             | 1 .08                         | 1 .00  |   |
| $\begin{bmatrix} \text{CaP}_2\text{O}_6 & \text{`01} & \text{`02} & \text{`03} & \text{`04} & \text{`05} & \text{`05} & \text{`06} & \text{`07} & \text{`08} \\ \text{P0O}_7 & \text{`01} & \text{`01} & \text{`02} & \text{`03} & \text{`03} & \text{`04} & \text{`05} & \text{`05} & \text{`06} \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | Ca.P.C       | 0.                                            |                                 | _      | - 1 |     |              |                                               |                                 |                               |        | - |
| P <sub>0</sub> O <sub>2</sub>   ·01   ·01   ·02   ·03   ·03   ·04   ·05   ·05   ·06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | CaP.O        | 8 0                                           |                                 |        |     |     | 1            |                                               | 1                               |                               |        | I |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 | P.O.         |                                               |                                 |        |     |     |              | 1                                             | 1                               |                               |        | I |
| 2 000 000 011 011 011 020 022 023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | Po           |                                               |                                 |        | - 1 |     |              | 1                                             |                                 |                               | 1      | - |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L | 2            | 1 0                                           | 0                               | 00   0 | 00  | 011 | V14          | 011                                           | 020                             | 022                           | 025    | J |

TABLE FOR PHOSPHATES—continued.

|   |                       |                                               |                                 |                                |                  |                                               |                                               |                                 | 7                             |                  |
|---|-----------------------|-----------------------------------------------|---------------------------------|--------------------------------|------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------|-------------------------------|------------------|
|   | $\mathrm{Mg_2P_2O_7}$ | Ca <sub>3</sub> P <sub>2</sub> O <sub>8</sub> | CaP <sub>2</sub> O <sub>6</sub> | {P <sub>2</sub> O <sub>5</sub> | $P_2$            | Mg <sub>2</sub> P <sub>2</sub> O <sub>7</sub> | Ca <sub>3</sub> P <sub>2</sub> O <sub>8</sub> | CaP <sub>2</sub> O <sub>6</sub> | P <sub>2</sub> O <sub>5</sub> | P <sub>2</sub>   |
|   | 42.5                  | 59:35                                         | 37.91                           | 27.19                          | 11.869           | 47.1                                          | 65.77                                         | 42.01                           | 30.13                         | 13.154           |
| 1 | .6                    | 59.49                                         | 38.00                           | 27.25                          | 11.897           | .2                                            | 65.91                                         | 42.10                           | 30.19                         | 13.182           |
|   | .7                    | 59.63                                         | 38.08                           | 27:31                          | 11.925           | •3                                            | 66.05                                         | 42.19                           | 30.26                         | 13.210           |
| 1 | •8                    | 59.77                                         | 38.17                           | 27:38                          | 11.953           | •4                                            | 66.19                                         | 42.28                           | 30.32                         | 13.238           |
| 1 | .9                    | 59.91                                         | 38.26                           | 27.44                          | 11.981           | •5                                            | 66.33                                         | 42.37                           | 30.38                         | 13.266           |
|   | 43.0                  | 60.05                                         | 38.35                           | 27.51                          | 12.009           | •6                                            | 66.47                                         | 42.45                           | 30.45                         | 13.294           |
|   | .1                    | 60.18                                         | 38.44                           | 27.57                          | 12.037           | .7                                            | 66.61                                         | 42.54                           | 30.51                         | 13.322           |
| 1 | •2                    | 60.32                                         | 38.53                           | 27.63                          | 12.065           | *8                                            | 66.75                                         | 42.63                           | 30.58                         | 13:350           |
|   | •3                    | 60.46                                         | 38.62                           | 27.70                          | 12.093           | .9                                            | 66.89                                         | 42.72                           | 30.64                         | 13.378           |
| 1 | •4                    | 60.60                                         | 38.71                           | 27.76                          | 12.121           | 48.0                                          | 67.03                                         | 42.81                           | 30.70                         | 13.405           |
| - | •5                    | 60.74                                         | 38.80                           | 27.83                          | 12.149           | ·1                                            | 67.17                                         | 42.90                           | 30.77                         | 13.433           |
| 1 | .6                    | 60.88                                         | 38.89                           | 27.89                          | 12.177           | •2                                            | 67:31                                         | 42.99                           | 30.83                         | 13.461           |
|   | .7                    | 61.02                                         | 38.98                           | 27.95                          | 12.205           | •3                                            | 67.45                                         | 43.08                           | 30.30                         | 13.489           |
|   | .8                    | 61.16                                         | 39.07                           | 28.02                          | 12.232           | •4                                            | 67.59                                         | 43.17                           | 30.96                         | 13.217           |
|   | •9                    | 61.30                                         | 39.16                           | 28.08                          | 12.260           | .5                                            | 67.73                                         | 43.26                           | 31.02                         | 13.545           |
| 1 | 44.0                  | 61.44                                         | 39·24<br>39·33                  | 28.14                          | 12.288           | .6                                            | 67.87                                         | 43.35                           | 31.09                         | 13.573           |
| ı | $\cdot \frac{1}{2}$   | 61·58<br>61·72                                | 39.33                           | 28·21<br>28·27                 | 12·316<br>12·344 | .7                                            | 68.00                                         | 43.44                           | 31.15                         | 13.601           |
| ı | •3                    | 61.86                                         | 39.42                           | 28:34                          | 12.344           | ·8<br>·9                                      | 68·14<br>68·28                                | 43.53                           | 31.22                         | 13.629           |
| ı | •4                    | 62.00                                         | 39.60                           | 28.40                          | 12.400           | 49.0                                          | 68.42                                         | 43.70                           | 31·28<br>31·34                | 13.657<br>13.685 |
| 1 | .5                    | 62.14                                         | 39.69                           | 28.46                          | 12.428           | •1                                            | 68.2                                          | 43.79                           | 31.41                         | 13.713           |
| 1 | .6                    | 62.28                                         | 39.78                           | 28.53                          | 12.456           | .2                                            | 68.70                                         | 43.88                           | 31.47                         | 13.741           |
| ١ | .7                    | 62.42                                         | 39.87                           | 28.59                          | 12.484           | .3                                            | 68.84                                         | 43.97                           | 31.53                         | 13.769           |
| ı | -8                    | 62.56                                         | 39.96                           | 28.66                          | 12.512           | .4                                            | 68.98                                         | 44.06                           | 31.60                         | 13.796           |
| 1 | .9                    | 62.70                                         | 40.05                           | 28.72                          | 12.540           | •5                                            | 69.12                                         | 44.15                           | 31.66                         | 13.824           |
|   | 45.0                  | 62.84                                         | 40.14                           | 28.78                          | 12.568           | .6                                            | 69.26                                         | 44.24                           | 31.73                         | 13.852           |
|   | ·1                    | 62.98                                         | 40.23                           | 28.85                          | 12.596           | .7                                            | 69.40                                         | 44.33                           | 31.79                         | 13.880           |
| 1 | •2                    | 63.12                                         | 40.31                           | 28.91                          | 12.624           | •8                                            | 69.54                                         | 44.42                           | 31.85                         | 13.908           |
| 1 | •3                    | 63.26                                         | 40.40                           | 28.98                          | 12.651           | .9                                            | 69.68                                         | 44.51                           | 31.92                         | 13.936           |
| 1 | •4                    | 63.40                                         | 40.49                           | 29.04                          | 12.679           | 50.0                                          | 69.82                                         | 44.60                           | 31.98                         | 13.964           |
| 1 | •5                    | 63.54                                         | 40.58                           | 29.10                          | 12.707           | .1                                            | 69.96                                         | 44.68                           | 32.05                         | 13.992           |
| 1 | .6                    | 63.68                                         | 40.67                           | 29.17                          | 12.735           | •2                                            | 70.10                                         | 44.77                           | 32.11                         | 14.020           |
| 1 | .7                    | 63.82                                         | 40.76                           | 29.23                          | 12.763           | .3                                            | 70.24                                         | 44.86                           | 32.17                         | 14.048           |
| 1 | .8                    | 63.96                                         | 40.85                           | 29:30                          | 12.791           | •4                                            | 70.38                                         | 44.95                           | 32.24                         | 14.076           |
| 1 | .9                    | 64.10                                         | 40.94                           | 29:36                          | 12.819           | .5                                            | 70.52                                         | 45.04                           | 32:30                         | 14.104           |
| ı | 46.0                  | 64.23                                         | 41.03                           | 29.42                          | 12.847           | ·6<br>·7                                      | 70.66                                         | 45.13                           | 32·37<br>32·43                | 14.132           |
| ı | 1 2                   | 64.37                                         | 41.12                           | 29·49<br>29·55                 | 12·875<br>12·903 | .8                                            | 70.80                                         | 45.31                           | 32.49                         | 14.187           |
| ı | •3                    | 64.65                                         | 41.30                           | 29.62                          | 12.931           | 9                                             | 71.08                                         | 45.40                           | 32.56                         | 14.215           |
|   | •4                    | 64.79                                         | 41.38                           | 29.68                          | 12.959           | 51.0                                          | 71.22                                         | 45.49                           | 32.62                         | 14.243           |
|   | .5                    | 64.93                                         | 41.47                           | 29.74                          | 12.987           | 1                                             | 71.36                                         | 45.58                           | 32.69                         | 14.271           |
|   | .6                    | 65.07                                         | 41.56                           | 29.81                          | 13.015           | .2                                            | 71.50                                         | 45.67                           | 32.75                         | 14.299           |
|   | .7                    | 65.21                                         | 41.65                           | 29.87                          | 13.042           | .3                                            | 71.64                                         | 45.76                           | 32.81                         | 14.327           |
|   | .8                    | 65.35                                         | 41.74                           | 29.94                          | 13.070           | •4                                            | 71.78                                         | 45.84                           | 32.88                         | 14.355           |
|   | .9                    | 65.49                                         | 41.83                           | 30.00                          | 13.098           | .5                                            | 71.91                                         | 45.93                           | 32.94                         | 14.383           |
|   | 47.0                  | 65.63                                         | 41.92                           | 30.06                          | 13.126           | .6                                            | 72.05                                         | 46.02                           | 33.01                         | 14.411           |
|   | -                     | 1                                             |                                 |                                |                  |                                               |                                               |                                 |                               | 1 21             |

TABLE FOR PHOSPHATES—continued.

|     | $\mathrm{Mg_2P_2O_7}$            | Ca <sub>3</sub> P <sub>2</sub> O <sub>8</sub> | CaP2O | P205  |      | P <sub>2</sub> | Mg <sub>2</sub> P <sub>2</sub> O <sub>7</sub> | Ca <sub>3</sub> P <sub>2</sub> O <sub>8</sub> | $CaP_2O_6$ | P2O5  | P <sub>2</sub>   |
|-----|----------------------------------|-----------------------------------------------|-------|-------|------|----------------|-----------------------------------------------|-----------------------------------------------|------------|-------|------------------|
|     | 51.7                             | 72.19                                         | 46.11 | 33.0  | 7 14 | 1.439          | 55.7                                          | 77.78                                         | 49.68      | 35.63 | 15:556           |
|     | •8                               | 72.33                                         | 46.20 | 33.1  | 3 14 | 4.467          | .8                                            | 77.92                                         | 49.77      | 35.69 | 15.584           |
|     | •9                               | 72.47                                         | 46.29 | 33.20 | 14   | 1.495          | .9                                            | 78.06                                         | 49.86      | 35.76 | 15.612           |
|     | 52.0                             | 72.61                                         | 46.38 | 33.20 | 14   | 1.523          | 56.0                                          | 78:20                                         | 49.95      | 35.82 | 15.640           |
|     | .1                               | 72.75                                         | 46.47 | 33.3  | 3 14 | 1.551          | •1                                            | 78.34                                         | 50.04      | 35.88 | 15.668           |
|     | •2                               | 72.89                                         | 46.56 | 33.3  |      | 1.579          | •2                                            | 78.48                                         | 50.12      | 35.95 | 15.696           |
|     | •3                               | 73:03                                         | 46.65 | 33.4  | 5 14 | 1.606          | •3                                            | 78.62                                         | 50.21      | 36.01 | 15.724           |
|     | •4                               | 73.17                                         | 46.74 | 33.5  |      | 1.634          | •4                                            | 78.76                                         | 50.30      | 36.08 | 15.751           |
|     | •5                               | 73.31                                         | 46.83 | 33.28 |      | 1.662          | •5                                            | 78.90                                         | 50.39      | 36.14 | 15.779           |
|     | •6                               | 73.45                                         | 46.91 | 33.6  |      | 1.690          | .6                                            | 79.04                                         | 50.48      | 36.20 | 15.807           |
|     | •7                               | 73.59                                         | 47.00 | 33.7  |      | 1.718          | •7                                            | 79.18                                         | 50.57      | 36.27 | 15.835           |
|     | .8                               | 73.73                                         | 47.09 | 33.7  |      | 1.746          | .8                                            | 79.32                                         | 50.66      | 36.33 | 15.863           |
|     | .9                               | 73.87                                         | 47.18 | 33.8  |      | 1.774          | .9                                            | 79.46                                         | 50.75      | 36.40 | 15.891           |
|     | 53.0                             | 74.01                                         | 47.27 | 33.90 |      | 1.802          | 57.0                                          | 79.60                                         | 50.84      | 36.46 | 15.919           |
| - 1 | •1                               | 74.15                                         | 47.36 | 33.97 |      | 1.830          | '1                                            | 79.74                                         | 50.93      | 36.52 | 15.947           |
|     | •2                               | 74.29                                         | 47.45 | 34.03 |      | 1.858          | .2                                            | 79.87                                         | 51.02      | 36.59 | 15.975           |
|     | •3                               | 74.43                                         | 47.54 | 34.0  |      | 1.886          | .3                                            | 80.01                                         | 51.11      | 36.65 | 16.003           |
|     | •5                               | 74·57<br>74·71                                | 47.63 | 34.16 |      | 1.914          | .4                                            | 80.15                                         | 51.20      | 36.72 | 16.031           |
|     | .6                               | 74.85                                         | 47.81 | 34.29 |      | 1.941<br>1.969 | .5                                            | 80.29                                         | 51.28      | 36.78 | 16:059           |
|     | .7                               | 74.99                                         | 47.90 | 34.3  |      | 909            | ·6<br>·7                                      | 80.43                                         | 51.37      | 36.84 | 16:087           |
|     | -8                               | 75.13                                         | 47.99 | 34.4  |      | 025            | .8                                            | 80.71                                         | 51.55      | 36.97 | 16·115<br>16·142 |
|     | .9                               | 75.27                                         | 48.07 | 34.48 |      | 5.053          | •9                                            | 80.85                                         | 51.64      | 37:04 | 16:170           |
|     | 54.0                             | 75.41                                         | 48.16 | 34.24 |      | 0.081          | 58.0                                          | 80.99                                         | 51.73      | 37.10 | 16.198           |
|     | .1                               | 75.55                                         | 48.25 | 34.6  |      | 5.109          | .1                                            | 81.13                                         | 51.82      | 37.16 | 16.226           |
|     | •2                               | 75.69                                         | 48.34 | 34.67 |      | 137            | .2                                            | 81.27                                         | 51.91      | 37.23 | 16.254           |
|     | •3                               | 75.83                                         | 48.43 | 34.78 |      | 165            | .3                                            | 81.41                                         | 52.00      | 37.29 | 16.282           |
|     | •4                               | 75.97                                         | 48.52 | 34.80 |      | 193            | •4                                            | 81.55                                         | 52.09      | 37.36 | 16.310           |
| -   | •5                               | 76.10                                         | 48.61 | 34.86 |      | 221            | .5                                            | 81.69                                         | 52.18      | 37.42 | 16.338           |
|     | .6                               | 76.24                                         | 48.70 | 34.98 |      | 249            | •6                                            | 81.83                                         | 52.27      | 37.48 | 16.366           |
|     | .7                               | 76.38                                         | 48.79 | 34.99 |      | 277            | •7                                            | 81.97                                         | 52.35      | 37.55 | 16.394           |
| -   | .8                               | 76.52                                         | 48.88 | 35.05 |      | 305            | •8                                            | 82.11                                         | 52.44      | 37.61 | 16.422           |
|     | .9                               | 76.66                                         | 48.97 | 35.12 | 15   | 333            | .9                                            | 82.25                                         | 52.53      | 37.68 | 16.450           |
|     | 55.0                             | 76.80                                         | 49.06 | 35.18 | 15   | 360            | 59.0                                          | 82.39                                         | 52.62      | 37.74 | 16.478           |
|     | .1                               | 76.94                                         | 49.14 | 35.24 |      | 388            | .1                                            | 82.53                                         | 52.71      | 37.80 | 16.505           |
|     | .2                               | 77.08                                         | 49.23 | 35.31 |      | 416            | .2                                            | 82.67                                         | 52.80      | 37.87 | 16.533           |
|     | .3                               | 77.22                                         | 49.32 | 35.37 |      | .444           | *3                                            | 82.81                                         | 52.89      | 37.93 | 16.561           |
|     | •4                               | 77.36                                         | 49.41 | 35.44 |      | 472            | .4                                            | 82.95                                         | 52.98      | 38.00 | 16.589           |
|     | 5                                | 77.50                                         | 49.50 | 35.20 |      | .500           | •5                                            | 83.09                                         | 53.07      | 38.06 | 16.617           |
|     | •6                               | 77.64                                         | 49.59 | 35.26 | 15   | .528           | .6                                            | 83.23                                         | 53.16      | 38.12 | 16.645           |
|     | Mg <sub>2</sub> P <sub>2</sub> C | 0, 0                                          |       |       | 03   | •04            | •05                                           | .06                                           | -07        | 1 .08 | 09               |
|     | Ca <sub>3</sub> P <sub>2</sub> O | 8 .0                                          |       | -     | 04   | .06            | .07                                           | .08                                           | .10        | 11    | .13              |
| 1   | CaP <sub>2</sub> O <sub>6</sub>  |                                               |       |       | 03   | .04            | .05                                           | .05                                           | .06        | .07   | .08              |
|     | $P_2O_5$                         | .0                                            |       |       | 02   | .03            | .03                                           | .04                                           | .05        | .05   | .06              |
|     | $P_2$                            | .0                                            | 03 .0 | 06 .  | 008  | .011           | 014                                           | .017                                          | .020       | .022  | .025             |
|     |                                  |                                               |       |       |      |                | 1                                             | 1                                             |            | 1     | 1                |

TABLE FOR PHOSPHATES—continued.

| Mg <sub>2</sub> P <sub>2</sub> O <sub>7</sub> | Ca <sub>3</sub> P <sub>2</sub> O <sub>8</sub> | CaP <sub>2</sub> O <sub>6</sub> | P2O5  | P <sub>2</sub> | Mg <sub>2</sub> P <sub>2</sub> O; | Ca <sub>3</sub> P <sub>2</sub> O <sub>8</sub> | CaP <sub>2</sub> O <sub>6</sub> | P2O5  | P <sub>2</sub> |
|-----------------------------------------------|-----------------------------------------------|---------------------------------|-------|----------------|-----------------------------------|-----------------------------------------------|---------------------------------|-------|----------------|
|                                               |                                               |                                 |       |                |                                   | 1.00                                          |                                 |       |                |
| 59.7                                          | 83.37                                         | 53.25                           | 38.19 | 16.673         | 61.0                              | 85.18                                         | 54.41                           | 39.02 | 17.036         |
| .8                                            | 83.21                                         | 53.34                           | 38.25 | 16.701         | 62                                | 86.58                                         | 55.30                           | 39.66 | 17:315         |
| .9                                            | 83.65                                         | 53.43                           | 38.32 | 16.729         | 63                                | 87.97                                         | 56.19                           | 40.30 | 17.595         |
| 60.0                                          | 83.78                                         | 53.51                           | 38.38 | 16.757         | 64                                | 89.37                                         | 57.08                           | 40.94 | 17.874         |
| ·1                                            | 83.92                                         | 53.60                           | 38.44 | 16.785         | 65                                | 90.77                                         | 57.97                           | 41.58 | 18.153         |
| •2                                            | 84.06                                         | 53.69                           | 38.51 | 16.813         | 66                                | 92.16                                         | 58.87                           | 42.22 | 18.433         |
| .3                                            | 84.20                                         | 53.78                           | 38.57 | 16.841         | 67                                | 93.56                                         | 59.76                           | 42.86 | 18.712         |
| •4                                            | 84.34                                         | 53.87                           | 38.63 | 16.869         | 68                                | 94.96                                         | 60.65                           | 43.50 | 18.991         |
| .5                                            | 84.48                                         | 53.96                           | 38.70 | 16.896         | 69                                | 96.35                                         | 61.54                           | 44.14 | 19.270         |
| ·6<br>·7                                      | 84.62                                         | 54.05                           | 38.76 | 16.924         | 70                                | 97.75                                         | 62.43                           | 44.78 | 19.550         |
| .7                                            | 84.76                                         | 54.14                           | 38.83 | 16.952         | 71                                | 99.14                                         | 63.33                           | 45.41 | 19.829         |
| .8                                            | 84.90                                         | 54.23                           | 38.89 | 16.980         |                                   | 100.00                                        | 63.87                           | 45.81 | 20.000         |
| .9                                            | 85.04                                         | 54.32                           | 38.95 | 17.008         |                                   |                                               |                                 |       |                |

Table for the Conversion of Nitrogen into Ammonia and Albuminoids (=N  $\times\,6\,^{\circ}25).$ 

|   | N.              | NH <sub>3</sub> . | Albumin-<br>oids<br>(N×6·25). | N.  | NH <sub>3</sub> . | Albumi<br>oids<br>(N×6·28 | N.    | NH3.    | Albumin-<br>oids<br>(N×6·25). |
|---|-----------------|-------------------|-------------------------------|-----|-------------------|---------------------------|-------|---------|-------------------------------|
|   | 0.1             | 0.12              | 0.63                          | 1.9 | 2.31              | 11.8                      | 8 3.7 | 4.49    | 23.13                         |
|   | •2              | •24               | 1.25                          | 2.0 | 2.43              | 12.5                      |       | 4.61    | 23.75                         |
|   | •3              | •36               | 1.88                          | ·i  | 2.55              | 13.1                      |       | 4.73    | 24.38                         |
|   | •4              | •49               | 2.50                          | •2  | 2.67              | 13.7                      |       | 4.86    | 25.00                         |
|   | •5              | •61               | 3.13                          | •3  | 2.79              | 14.3                      |       | 4.98    | 25.63                         |
|   | .6              | •73               | 3.75                          | •4  | 2.91              | 15.0                      |       | 5.10    | 26.25                         |
|   | •7              | .85               | 4.38                          | .5  | 3.04              | 15.6                      |       | 5.22    | 26.88                         |
|   | •8              | .97               | 5.00                          | •6  | 3.16              | 16.2                      |       | 5.34    | 27.50                         |
|   | .8              | 1.09              | 5.63                          | •7  | 3.28              | 16.8                      |       | 5.46    | 28.13                         |
| 1 | 1.0             | 1.21              | 6.25                          | •8  | 3.40              | 17.5                      | 0 6   | 5.58    | 28.75                         |
|   | •1              | 1.34              | 6.88                          | .9  | 3.52              | 18.1                      | 3 7   | 5.71    | 29.38                         |
|   | •2              | 1.46              | 7.50                          | 3.0 | 3.64              | 18.7                      | 5 8   | 5.83    | 30.00                         |
|   | •3              | 1.58              | 8.13                          | •1  | 3.76              | 19.3                      | 8 9   | 5.95    | 30.63                         |
|   | •4              | 1.70              | 8.75                          | •2  | 3.88              | 20.0                      | 0 5.0 | 6.07    | 31.25                         |
|   | •5              | 1.82              | 9.38                          | .3  | 4.01              | 20.6                      |       | 6.19    | 31.88                         |
|   | .6              | 1.94              | 10.00                         | •4  | 4.13              |                           |       | 6.31    | 32.50                         |
| 1 | •7              | 2.06              | 10.63                         | •5  | 4.25              |                           |       | 6.43    | 33.13                         |
|   | .8              | 2.19              | 11.25                         | .6  | 4.37              | 22.5                      | 0 4   | 6.56    | 33.75                         |
|   | -               |                   |                               |     | 1                 |                           |       | 1       |                               |
|   | N               |                   | 01                            | .02 | .03               | .04 0                     | 5 .06 | .07   . | 08   .09                      |
|   | NH <sub>8</sub> |                   | 01                            | .02 | .04               | .05 .0                    |       |         | 10 11                         |
|   |                 | scionin           | .06                           | .13 | 19                | 25 3                      |       |         | 50 56                         |
|   |                 | 11110133          | 00                            | 10  | 1."               | 20 0                      | . 30  | 7.7     | 50 50                         |





TABLE FOR THE CONVERSION OF NITROGEN INTO AMMONIA AND ALBUMINOIDS—continued.

|   | N.     | NH <sub>3</sub> . | Albumin-<br>oids<br>(N×6.25). | N.   | NI  | I2. | Albumin-<br>oids<br>N×6·25). | N.   | NH   | I <sub>3</sub> . | Albumin-<br>oids<br>(N×6.25). |
|---|--------|-------------------|-------------------------------|------|-----|-----|------------------------------|------|------|------------------|-------------------------------|
| - | 5.5    | 6.68              | 34.38                         | 9.1  | 111 | .05 | 56.88                        | 12.6 | 15.  | 30               | 78.75                         |
|   | .6     | 6.80              | 35.00                         |      |     |     | 57.50                        | 12.7 | 15.  |                  | 79.38                         |
|   | •7     | 6.92              | 35.63                         | .5   |     |     | 58.13                        | 1 .8 | 15.  |                  | 80.00                         |
|   | •8     | 7.04              | 36.25                         | .4   |     |     | 58.75                        | .9   | 15   |                  | 80.63                         |
| 1 | •9     | 7.16              | 36.88                         |      |     |     | 59.38                        | 13.0 | 15.  |                  | 81.25                         |
|   | 6.0    | 7.28              | 37.50                         |      |     |     | 60.00                        | 13.0 | 15.  |                  | 81.88                         |
|   | •1     | 7.41              | 38.13                         | .7   |     |     | 60.63                        | .2   | 16   |                  | 82.50                         |
|   | •2     | 7.53              | 38.75                         | .8   |     |     | 61.25                        | •3   | 16.  |                  | 83.13                         |
| Ì | •3     | 7.65              | 39.38                         |      |     |     | 61.88                        | •4   | 16   |                  | 83.75                         |
| 1 | •4     | 7.77              | 40.00                         | 10.0 |     |     | 62:50                        | .5   | 16:  |                  | 84.38                         |
| 1 | •5     | 7.89              | 40.63                         | 10.1 |     |     | 63.13                        | .6   | 16.  |                  | 85.00                         |
| - | .6     | 8.01              | 41.25                         | .9   |     |     | 63.75                        | •7   | 16.  |                  | 85.63                         |
| 1 | .7     | 8 13              | 41.88                         | •9   |     |     | 64.38                        | .8   | 16.  |                  | 86.25                         |
| 1 | •8     | 8.26              | 42.50                         | •4   |     |     | 65.00                        | •9   | 16.8 |                  | 86.88                         |
| 1 | .9     | 8.38              | 43 13                         | • 5  |     |     | 65.63                        | 14.0 | 17.0 |                  | 87.50                         |
| 1 | 7.0    | 8.50              | 43.75                         | •6   |     |     | 66.25                        | 11   | 17.  |                  | 88.13                         |
|   | •1     | 8.62              | 44.38                         | .7   |     |     | 66.88                        | •2   | 17 . |                  | 88.75                         |
| 1 | •2     | 8.74              | 45.00                         | - 8  |     |     | 67.50                        | •3   | 17:  |                  | 89.38                         |
|   | . •3   | 8.86              | 45.63                         | •9   |     |     | 68.13                        | .4   | 17.4 |                  | 90.00                         |
| 1 | •4     | 8.98              | 46.25                         | 11.0 |     |     | 68.75                        | •5   | 17.6 |                  | 90.63                         |
| - | .5     | 9.11              | 46.88                         | .1   |     |     | 69.38                        | .6   | 17.7 |                  | 91.25                         |
|   | •6     | 9.23              | 47 50                         | .2   |     |     | 70.00                        | .7   | 17.8 |                  | 91.88                         |
| 1 | .7     | 9.35              | 48 13                         | •3   |     |     | 70.63                        | •8   | 17:9 |                  | 92.50                         |
| 1 | •8     | 9.47              | 48 75                         | •4   |     |     | 71.25                        | •9   | 18.0 |                  | 93.13                         |
| 1 | •9     | 9.59              | 49 38                         | •5   |     |     | 71.88                        | 15.0 | 18.2 |                  | 93.75                         |
| 1 | 8.0    | 9.71              | 50.00                         | •6   | 14. | 08  | 72.50                        | •1   | 18.3 |                  | 94.38                         |
| 1 | •1     | 9.83              | 50.63                         | .7   | 14. | 20  | 73.13                        | •2   | 18.4 |                  | 95.00                         |
|   | •2     | 9.95              | 51.25                         | .8   |     |     | 73.75                        | •3   | 18:  |                  | 95.63                         |
| 1 | •3     | 10.08             | 51.88                         | .9   | 14. | 45  | 74.38                        | •4   | 18.7 |                  | 96.25                         |
|   | •4     | 10.20             | 52.50                         | 12.0 | 14. | 57  | 75.00                        | •5   | 18.8 |                  | 96.88                         |
|   | •5     | 10.32             | 53.13                         | •1   | 14. | 69  | 75.63                        | .6   | 18:9 |                  | 97.50                         |
| 1 | •6     | 10.44             | 53.75                         | •2   | 14. | 81  | 76.25                        | •7   | 19.0 |                  | 98.13                         |
| 1 | •7     | 10.56             | 54.38                         | •3   | 14. | 93  | 76.88                        | .8   | 19.1 |                  | 98.75                         |
| 1 | .8     | 10.68             | 55.00                         | •4   |     | 05  | 77:50                        | .9   | 19:3 |                  | 99.38                         |
|   | .9     | 10.80             | 55.63                         | •5   | 15. | 18  | 78.13                        | 16.0 | 19.4 |                  | 100.00                        |
|   | 9.0    | 10.93             | 56.25                         |      |     |     |                              |      |      |                  |                               |
| 1 |        |                   | 1                             | - 1  |     | 1   | 1                            | -    |      |                  |                               |
| 1 | N      |                   | •01                           | .02  | .03 | .04 | 1                            | .06  | .67  | .0               | 8 .09                         |
|   | $NH_3$ | ,                 | .01                           | .02  | .04 | .02 | .06                          | .07  | .09  | .1               | 0 .11                         |
|   | Albun  | ninoids           | .06                           | .13  | .19 | .25 | .31                          | .38  | .44  | .5               | 0 .56                         |
| 1 |        |                   |                               | -    |     | -   |                              |      |      |                  | 1                             |

# Table for Kjeldahl Process: 1 Gram of Substance being Used.

1 c.c.  $\frac{N}{5}$  acid = '0028 gram N = '0034 gram NH<sub>3</sub>.

| No. of c.c. $\frac{N}{5}$ acid used.               | % N.                                                                                                                                                 | % NH3.                                                                                                                                               | No. of c.c. No. of acid used.                                                                                  | %                                                        | N.             | °/, NH3.                                                                                                                                                                         | No. of c.c. $\frac{N}{5}$ acid used.                                                                           | %                                                                                                            | N.                                                                                                 | °/ <sub>°</sub> NH <sub>3</sub> .                                                                                                                                       |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | 0.28<br>0.56<br>0.84<br>1.12<br>1.40<br>1.68<br>1.96<br>2.24<br>2.52<br>2.80<br>3.08<br>3.36<br>3.64<br>3.92<br>4.20<br>4.48<br>4.76<br>5.32<br>5.60 | 0.34<br>0.68<br>1.02<br>1.36<br>1.70<br>2.04<br>2.38<br>2.72<br>3.06<br>3.74<br>4.08<br>4.42<br>4.76<br>5.10<br>5.44<br>5.78<br>6.12<br>6.46<br>6.80 | 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39 | 6:<br>6:<br>7:<br>7:<br>7:<br>8:<br>8:<br>8:<br>9:<br>9: | 36<br>64<br>92 | 7·14<br>7·48<br>7·82<br>8·16<br>8·50<br>8·84<br>9·18<br>9·52<br>9·86<br>10·20<br>10·54<br>10·54<br>10·88<br>11·22<br>11·56<br>11·90<br>12·24<br>12·58<br>12·92<br>13·26<br>13·60 | 41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>60 | 11:<br>11:<br>12:<br>12:<br>12:<br>13:<br>13:<br>14:<br>14:<br>14:<br>15:<br>15:<br>15:<br>16:<br>16:<br>16: | 76<br>04<br>32<br>60<br>88<br>16<br>44<br>72<br>00<br>28<br>56<br>84<br>12<br>40<br>68<br>96<br>24 | 13·94<br>14·28<br>14·62<br>14·96<br>15·36<br>15·36<br>15·38<br>16·32<br>16·66<br>17·00<br>17·34<br>17·68<br>18·02<br>18·36<br>18·70<br>19·04<br>19·38<br>19·72<br>20·06 |
|                                                    | $\frac{N}{5}$ acid                                                                                                                                   | 0.1                                                                                                                                                  | 0.2                                                                                                            | 0.3                                                      | 0.4            | 0.5                                                                                                                                                                              | 0.6                                                                                                            | 0.7                                                                                                          | 0.8                                                                                                | 0.9                                                                                                                                                                     |
| % N                                                |                                                                                                                                                      | •03                                                                                                                                                  | .06                                                                                                            | ·08                                                      | ·11            |                                                                                                                                                                                  | ·17                                                                                                            | *20<br>*24                                                                                                   | •22                                                                                                | ·25                                                                                                                                                                     |

 $log. \cdot 0028 = \overline{3} \cdot 44716.$  $log. \cdot 0034 = \overline{3} \cdot 53148.$ 







#### NOTE ON CRYSTALLIZED QUININE SULPHATE.

When crystallized quinine sulphate is freely exposed to air at the ordinary temperature, it rapidly effloresces until it attains the composition of a sulphate containing 2 (instead of  $7\frac{1}{2}$ ) molecules of water, or 4.6 per cent. This air-dried sulphate has the following composition:—

|                                  |   | Molecular<br>Weight. | Per<br>Cent. |
|----------------------------------|---|----------------------|--------------|
| $(C_{20}H_{24}N_2O_2)_2$         |   | 648                  | 82.87        |
| H <sub>2</sub> SO <sub>4</sub> . |   | 98                   | 12.53        |
| $2\mathrm{H}_2\mathrm{O}$ .      | • | 36                   | 4.60         |
|                                  |   | 782                  | 100.00       |

Freshly crystallized quinine sulphate contains  $7\frac{1}{2}$  molecules of water of crystallization, which are expelled at a temperature of  $100^{\circ}$  C. When the dehydrated sulphate is freely exposed to air at the ordinary temperature, it rapidly absorbs water until it has the composition of a sulphate with 2 molecules of water; but when access of air is retarded, the amount of water of crystallization in the salt is variable, and bears no constant relation to the dry sulphate until 2 molecules of water have been absorbed.—(A. J. Cownley in *Pharm. Jour.*, 19th Dec. 1896.)

#### QUININE.

| Hydrochlorate of Quinine,<br>$C_{20}H_{24}N_2O_2$ , HCl, 20H <sub>2</sub> .<br>= 324 + 36 · 5 + 36 = 396 · 5                                                                                             | Sulphate of Quinine,<br>$2[(C_{20}H_{24}N_2O_2)_2.H_2SO_4], 15OH_2.$<br>=1296+196+270=1762                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{ccccc} & \text{Percentage composition.} \\ \textbf{C}_{20}\textbf{H}_{24}\textbf{N}_{2}\textbf{O}_{2} & . & . & . & . & . & . & . \\ \textbf{HCl.} & . & . & . & . & . & . & . & . & . &$ | $\begin{array}{cccc} & \text{Percentage composition.} \\ & \text{$C_{20}$H}_{24}\text{$N_2$O}_2 & . & . & .73\cdot55 \\ & \text{$H_2$SO}_4 & . & . & .11\cdot12 \\ & \text{$OH_2$} & . & . & . & .15\cdot33 \\ \end{array}$ |
| 100.000                                                                                                                                                                                                  | 100.00                                                                                                                                                                                                                      |

| To convert                                                                        | Multiplier. | Log. to be a | dded. |
|-----------------------------------------------------------------------------------|-------------|--------------|-------|
| $C_{20}H_{24}N_2O_2$ into $C_{20}H_{24}N_2O_2$ , HCl, $2OH_2$                     |             | 0.087 6      |       |
| ,, $2[(\tilde{C}_{20}\tilde{H}_{24}\tilde{N}_2\tilde{O}_2)_2.H_2SO_4]$ , $15OH_2$ | 1.360       | 0.133 4      | .009  |
| Grams of Quinine per fluid drachm into grains of                                  |             |              |       |
| Hydrochlorate of Quinine per fluid ounce                                          | 151.09      | 2.179 2      | 203   |

Tincture of Quinine, B.P., contains 8 grains of hydrochlorate of quinine in the fluid ounce.

### E. W. T. JONES'S METHOD FOR THE ESTIMATION OF CHICORY IN MIXTURES OF COFFEE AND CHICORY.

The sample is dried in the water-oven, and 5 grams are weighed into a large porcelain dish. About 200 c.c. of water are added, and boiled for 15 minutes. After allowing a minute or two for settling, the liquid is strained through a piece of copper gauze placed in a funnel into a 250 c.c. measuring flask, care being taken to disturb the grounds as little as possible. The latter are now treated with about 50 c.c. of water, boiled for 5 minutes, and the liquid strained off as before. The flask is then cooled, made up to the mark, well agitated and filtered, the liquid being poured on a dry filter; 50 c.c. of the filtrate (=1 gram of the coffee mixture) are then pipetted into a weighed, flat-bottomed glass dish, evaporated to dryness over a steam-bath, and finally dried in the water-oven. The results are returned to the nearest percentage of chicory (see Table on p. 74).

Treated as above, chicory gives a mean percentage extract of 70;

while coffee gives a remarkably constant percentage extract of 24.

To determine the percentage of chicory from the weight of extract

obtained, we proceed as follows:—

Putting x=1, we find E=24.46, and the table on page 74 is in this way easily calculated.

TABLE SHOWING THE PERCENTAGE OF CHICORY WITH COFFEE FROM THE PERCENTAGE OF AQUEOUS EXTRACT.

| _  |                      |                   |                   |                   | ,                 |                   |
|----|----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|    | Extract per<br>cent. | Chicory per cent. | Extract per cent. | Chicory per cent. | Extract per cent. | Chicory per cent. |
| -  |                      |                   |                   |                   |                   |                   |
|    | 24.46                | 1                 | 40.10             | 35                | 55.28             | 68                |
|    | .92                  | 2                 | .56               | 36                | .74               | 69                |
|    | 25.38                | 3                 | 41.02             | 37                | 56.20             | 70                |
|    | .84                  | 4                 | •48               | 38                | .66               | 71                |
|    | 26:30                | 5                 | .94               | 39                | 57.12             | 72                |
| 1  | .76                  | 6                 | 42.40             | 40                | .58               | 73                |
| 1  | 27.22                | 7                 | .86               | 41                | 58.04             | 74                |
|    | .68                  | 8                 | 43.32             | 42                | •50               | 75                |
| 1  | 28.14                | 9                 | •78               | 43                | .96               | 76                |
|    | .60                  | 10                | 44.24             | 44                | 59.42             | 77                |
|    | 29.06                | 11                | .70               | 45                | .88               | 78                |
|    | .52                  | 12                | 45.16             | 46                | 60.34             | 79                |
|    | .98                  | 13                | .62               | 47                | .80               | 80                |
|    | 30.44                | 14                | 46.08             | 48                | 61.26             | 81                |
|    | •90                  | 15                | .54               | 49                | •72               | 82                |
|    | 31.36                | 16                | 47.00             | 50                | 62.18             | 83                |
|    | .82                  | 17                | .46               | 51                | .64               | 84                |
|    | 32.28                | 18                | .92               | 52                | 63.10             | 85                |
| 1  | .74                  | 19                | 48:38             | 53                | :56               | 86                |
| 1  | 33.20                | 20                | *84               | 54                | 64.02             | 87                |
|    | .66                  | 21                | 49:30             | 55                | •48               | 88                |
| ı  | 34.12                | 22                | .76               | 56                | .94               | 89                |
|    | .58                  | 23                | 50.22             | 57                | 65.40             | 90                |
| 1  | 35.04                | 24                | •68               | 58                | .86               | 91                |
|    | .50                  | 25                | 51.14             | 59                | 66.32             | 92                |
|    | .96                  | 26                | .60               | 60                | .78               | 93                |
|    | 36.42                | 27                | 52.06             | 61                | 67.24             | 94                |
| 1  | *88                  | 28                | .52               | 62                | •70               | 95                |
|    | 37:34                | 29                | .98               | 63                | 68.16             | 96                |
|    | .80                  | 30                | 53.44             | 64                | -62               | 97                |
|    | 38.26                | 31                | .90               | 65                | 69.08             | 98                |
|    | .72                  | 32                | 54.36             | 66                | .54               | 99                |
|    | 39.18                | 33                | .82               | 67                | 70.00             | 100               |
|    | .64                  | 34                |                   |                   |                   |                   |
|    |                      |                   |                   |                   |                   |                   |
| 1- |                      |                   |                   |                   |                   |                   |

BAUMÉ'S HYDROMETER. — Table for Liquids heavier than Water.\*

|   | ° B. | ° Tw. | Sp. gr. | °В. | ° Tw. | Sp. gr. | ° B. | ° Tw. | Sp. gr. |
|---|------|-------|---------|-----|-------|---------|------|-------|---------|
|   | 1    | 1.4   | 1.007   | 23  | 38    | 1.190   | 45   | 90.6  | 1.453   |
|   |      | 2.8   | 1.014   | 24  | 40    | 1.200   | 46   | 93.6  | 1.468   |
| ١ | 2 3  | 4.4   | 1.022   | 25  | 42    | 1.210   | 47   | 96.6  | 1.483   |
|   |      | 5.8   | 1.029   | 26  | 44    | 1.220   | 48   | 99.6  | 1.498   |
|   | 5    | 7.4   | 1.037   | 27  | 46.2  | 1.231   | 49   | 103   | 1.515   |
|   | 6    | 9     | 1.045   | 28  | 48.2  | 1.241   | 50   | 106   | 1:530   |
|   | 7    | 10.2  | 1:052   | 29  | 50.4  | 1.252   | 51   | 109.2 | 1.546   |
|   | 8    | 12    | 1.060   | 30  | 52.6  | 1.263   | 52   | 112.6 | 1.563   |
|   | 9    | 13.4  | 1.067   | 31  | 54.8  | 1.274   | 53   | 116   | 1.580   |
|   | 10   | 15    | 1.075   | 32  | 57    | 1.285   | 54   | 119.4 | 1.597   |
|   | 11   | 16.6  | 1.083   | 33  | 59.4  | 1.297   | 55   | 123   | 1.615   |
|   | 12   | 18.2  | 1.091   | 34  | 61.6  | 1.308   | 56   | 127   | 1.635   |
|   | 13   | 20    | 1.100   | 35  | 64    | 1.320   | 57   | 130.4 | 1.652   |
|   | 14   | 21.6  | 1.108   | 36  | 66.4  | 1.332   | 58   | 134.2 | 1.671   |
| 1 | 15   | 23.2  | 1.116   | 37  | 69    | 1.345   | 59   | 138.2 | 1.691   |
|   | 16   | 25    | 1.125   | 38  | 71.4  | 1.357   | 60   | 142   | 1.710   |
|   | 17   | 26.8  | 1.134   | 39  | 74    | 1.370   | 61   | 146.4 | 1.732   |
| 1 | 18   | 28.4  | 1.142   | 40  | 76.6  | 1.383   | 62   | 150.6 | 1.753   |
|   | 19   | 30.4  | 1.152   | 41  | 79.4  | 1.397   | 63   | 155   | 1.775   |
|   | 20   | 32.4  | 1.162   | 42  | 82    | 1.410   | 64   | 159   | 1.795   |
|   | 21   | 34.2  | 1.171   | 43  | 84.8  | 1.424   | 65   | 164   | 1.820   |
|   | 22   | 36    | 1.180   | 44  | 87.6  | 1.438   | 66   | 168.4 | 1.842   |
| - |      | 100   | ,       |     | 0, 0  |         |      |       |         |

<sup>\*</sup> This is the Baume's hydrometer mostly used on the Continent of Europe; but other scales are in use there as well, and quite another scale for Baume's hydrometer is used in America (Lunge & Hurter, Alkali Makers' Handbook).

Table for Liquids lighter than Water.

| ° B. | Sp. gr. | ° B. | Sp. gr. | ° В. | Sp. gr. |
|------|---------|------|---------|------|---------|
| 10   | 1.000   | 27   | 0.896   | 44   | 0.811   |
| 11   | 0.993   | 28   | 0.890   | 45   | 0.807   |
| 12   | 0.986   | 29   | 0.885   | 46   | 0.802   |
| 13   | 0.980   | 30   | 0.880   | 47   | 0.798   |
| 14   | 0.973   | 31   | 0.874   | 48   | 0.794   |
| 15   | 0.967   | 32   | 0.869   | 49   | 0.789   |
| 16   | 0.960   | 33   | 0.864   | 50   | 6.785   |
| 17   | 0.954   | 34   | 0.859   | 51   | 0.781   |
| 18   | 0.948   | 35   | 0.854   | 52   | 0.777   |
| 19   | 0.942   | 36   | 0.849   | 53   | 0.773   |
| 20   | 0.936   | 37   | 0.844   | 54   | 0.768   |
| 21   | 0.930   | 38   | 0.839   | 55   | 0.764   |
| 22   | 0.924   | 39   | 0.834   | 56   | 0.760   |
| 23   | 0.918   | 40   | 0.830   | 57   | 0.757   |
| 24   | 0.913   | 41   | 0.825   | 58   | 0.753   |
| 25   | 0.907   | 42   | 0.820   | 59   | 0.749   |
| 26   | 0.901   | 43   | 0.816   | 60   | 0.745   |

Twaddell's Hydrometer.—To convert degrees Twaddell into specific gravity (water=1000); multiply the number by 5, and add 1000 to the product.

To reduce specific gravity (water=1000) to Twaddell: deduct 1000, and divide the remainder by 5

ALCOHOL TABLE.

| Sp. gr. at     | Per cent.     | Per cent.                | Per cent.       | Sp. gr. at     | Per cent.      | Per cent.                | Per cent        |
|----------------|---------------|--------------------------|-----------------|----------------|----------------|--------------------------|-----------------|
| 60° F.         | of Alcohol    | of Alcohol<br>by volume. | under<br>Proof. | 60° F.         | of Alcohol     | of Alcohol<br>by volume. | under<br>Proof. |
|                | by weight.    | by volume.               | Froot.          |                | by weight.     | by volume.               | Frooi.          |
| 1.0000         | 0.00          | 0.00                     | 100.00          | .9775          | 15.25          | 18.78                    | 67:10           |
| 1.0000         |               |                          |                 | 9770           |                |                          |                 |
| 9995           | 0.26          | 0.33                     | 99.42           | 9765           | 15.67          | 19.28                    | 66.20           |
| .9990          | 0.53          | 0.66                     | 98.84           | 9760           | 16.08          | 19.78                    | 65.34           |
| •9985          | 0.79          | 0.99                     | 98.26           |                | 16.46          |                          | 64.53           |
| .9980          | 1.06          | 1.34                     | 97.66           | 9755           | 16.85          | 20.71                    | 63.72           |
| 9975           | 1.37          | 1.73                     | 96.97           | 9750<br>9745   | 17.25          | 21.19                    | 62.87           |
| 9970           | 1.69          | 2.12                     | 96.29           |                | 17.67          | 21.69                    | 62.00           |
| 9965           | 2.00          | 2.51                     | 95.60           | 9740           | 18.08          | 22.18                    | 61.13           |
| 9960           | 2.28          | 2.86                     | 95.00           | 9735           | 18:46          | 22.64                    | 60.32           |
| 9955           | 2.56          | 3.21                     | 94.40           | 9730           | 18.85          | 23.10                    | 59.52           |
| 9950           | 2.83          | 3.55                     | 93.78           | 9725           | 19.25          | 23.28                    | 58.67           |
| •9945          | 3.12          | 3.90                     | 93.16           | ·9720<br>·9715 | 19.67          | 24.08                    | 57.80           |
| •9940          | 3.41          | 4.27                     | 92.50           |                | 20.08          | 24.58                    | 56.93           |
| •9935          | 3.71          | 4.63                     | 91.87           | 9710           | 20.50          | 25.07                    | 56.06           |
| .9930          | 4.00          | 5.00                     | 91.23           | 9705           | 20.92          | 25.57                    | 55.20           |
| 9925           | 4.31          | 5.39                     | 90.55           | 9700           | 21.31          | 26.04                    | 54.37           |
| 9920           | 4.62          | 5.78                     | 89.87           | 9695           | 21.69          | 26:49                    | 53.57           |
| 9915           | 4.94          | 6.17                     | 89.20           | 9690           | 22.08          | 26.95                    | 52.77           |
| 9910           | 5.25          | 6.55                     | 88.50           | 9685           | 22:46          | 27.40                    | 51.98           |
| •9905          | 5.26          | 6.94                     | 87.84           | 9680           | 22.85          | 27.86                    | 51.18           |
| .9900          | 5.87          | 7.32                     | 87.16           | 9675           | 23.23          | 28:31                    | 50.38           |
| 9895           | 6.21          | 7.74                     | 86.43           | 9670           | 23.62          | 28.77                    | 49.60           |
| .9890          | 6.57          | 8.18                     | 85.65           | 9665           | 24.00          | 29.22                    | 48.80           |
| .9885          | 6.93          | 8.63                     | 84.88           | 9660           | 24.38          | 29.67                    | 48.00           |
| .9880          | 7.27          | 9.04                     | 84.15           | 9655           | 24.77          | 30.13                    | 47.20           |
| 9875           | 7.60          | 9.45                     | 83.43           | 9650           | 25.14          | 30.57                    | 46.44           |
| 9870           | 7.93          | 9.86                     | 82.70           | 9645           | 25.50          | 30.98                    | 45.70           |
| 9865           | 8 .29         | 10.30                    | 81.96           | 9640           | 25.86          | 31.40                    | 44.97           |
| 9860           | 8.64          | 10.73                    | 81.20           | 9635           | 26.20          | 31.80                    | 44.27           |
| 9855           | 9.00          | 11.17                    | 80.42           | *9630<br>*9625 | 26.53          | 32.19                    | 43.60           |
| 9850           | 9:36          | 11.61                    | 79.65           |                | 26·87<br>27·21 | 32.58                    | 42.90           |
| 9845           | 9.71<br>10.08 | 12.05<br>12.49           | 78·90<br>78·10  | .9620<br>.9615 | 27.21          | 32·98<br>33·39           | 42.20           |
| ·9840<br>·9835 | 10.46         | 12.49                    | 77:30           | 9610           | 27.93          | 33.81                    | 40.74           |
| 9830           | 10.46         | 13.43                    | 76.46           | 9605           | 28.25          | 34.18                    | 40.10           |
| 9825           | 11.23         | 13.49                    | 75.64           | 9600           | 28.56          | 34.54                    | 39.47           |
| 9825           | 11.62         | 14.37                    | 74.82           | 9595           | 28.87          | 34.90                    | 38.84           |
| 9820           | 12.00         | 14.84                    | 74.00           | 9595           | 29.20          | 35.28                    | 38.18           |
| 9810           | 12.38         | 15.30                    | 73.18           | 9585           | 29.53          | 35.66                    | 37.50           |
| 9805           | 12.77         | 15.77                    | 72.36           | 9580           | 29.87          | 36.04                    | 36.83           |
| 9800           | 13.15         | 16.24                    | 71.54           | 9575           | 30.17          | 36.39                    | 36.23           |
| 9795           | 13.54         | 16.70                    | 70.73           | 9570           | 30.44          | 36.70                    | 35.68           |
| 9790           | 13.92         | 17.17                    | 69.90           | 9565           | 30.72          | 37.02                    | 35.13           |
| 9785           | 14.36         | 17.70                    | 68.97           | 9560           | 31.00          | 37.34                    | 34.57           |
| 0100           |               |                          |                 |                | 31.31          |                          |                 |
| .9780          | 14.82         | 18.25                    | 68.00           | .9555          |                | 37.69                    | 33.95           |

ALCOHOL TABLE—continued.

|   | Sp. gr.              | Per cent.                | Per cent.                | Per cent. | Sp. gr.              | Per cent.                | Per cent.      | Per cent.       |
|---|----------------------|--------------------------|--------------------------|-----------|----------------------|--------------------------|----------------|-----------------|
|   | Sp. gr.<br>at 60° F. | of Alcohol<br>by weight. | of Alcohol<br>by volume. | Proof.    | Sp. gr.<br>at 60° F. | of Alcohol<br>by weight. |                | under<br>Proof. |
|   | .9550                | 31.62                    | 38.04                    | 33.32     | .9325                | 43.48                    | 51.07          | 10.50           |
|   | .9545                | 31.94                    | 38.40                    | 32.70     | .9320                | 43.71                    | 51.32          | 10.05           |
|   | .9540                | 32.25                    | 38.75                    | 32.08     | .9315                | 43.95                    | 51.58          | 9.60            |
|   | .9535                | 32.56                    | 39.11                    | 31.46     | 9310                 | 44.18                    | 51.82          | 9.20            |
|   | .9530                | 32.87                    | 39.47                    | 30.84     | .9305                | 44.41                    | 52.06          | 8.77            |
|   | .9525                | 33.18                    | 39.81                    | 30.24     | .9300                | 44.64                    | 52.29          | 8.36            |
|   | 9520                 | 33.47                    | 40.14                    | 29.66     | .9295                | 44.86                    | 52.53          | 7.94            |
|   | 9515                 | 33.76                    | 40.47                    | 29.08     | .9290                | 45.09                    | 52.77          | 7.52            |
|   | .9510                | 34.05                    | 40.79                    | 28.52     | 9285                 | 45.32                    | 53.01          | 7.10            |
|   | .9505                | 34.29                    | 41.05                    | 28.06     | 9280                 | 45.55                    | 53.24          | 6.70            |
|   | .9500                | 34.52                    | 41.32                    | 27.60     | 9275                 | 45.77                    | 53.48          | 6.27            |
|   | .9495                | 34.76                    | 41.58                    | 27.13     | .9270                | 46.00                    | 53.72          | 5.86            |
|   | .9490                | 35.00                    | 41.84                    | 26.67     | 9265                 | 46.23                    | 53.95          | 5.45            |
|   | .9485                | 35.25                    | 42.12                    | 26.20     | .9260                | 46.46                    | 54.19          | 5.03            |
|   | .9480                | 35.50                    | 42.40                    | 25.70     | 9255                 | 46.68                    | 54.43          | 4.62            |
|   | .9475                | 35.75                    | 42.67                    | 25.22     | 9250                 | 46.91                    | 54.66          | 4.20            |
|   | .9470                | 36.00                    | 42.95                    | 24.74     | .9245                | 47.14                    | 54.90          | 3.80            |
|   | .9465                | 36.28                    | 43.26                    | 24.20     | .9240                | 47.36                    | 55.13          | 3.38            |
| 1 | 9460                 | 36.56                    | 43.56                    | 23.66     | .9235                | 47.59                    | 55.37          | 2.97            |
|   | .9455                | 36.83                    | 43.87                    | 23.12     | .9230                | 47.82                    | 55.60          | 2.56            |
| 1 | .9450                | 37.11                    | 44.18                    | 22.58     | .9225                | 48.05                    | 55.83          | 2.15            |
|   | .9445                | 37.39                    | 44.49                    | 22.04     | •9220                | 48.27                    | 56.07          | 1.74            |
|   | .9440                | 37.67                    | 44.79                    | 21.50     | .9215                | 48.50                    | 56.30          | 1.33            |
| i | 9435                 | 37.94                    | 45.10                    | 20.96     | .9210                | 48.73                    | 56.54          | 0.92            |
|   | 9430                 | 38.22                    | 45.41                    | 20.43     | .9205                | 48.96                    | 56.77          | 0.20            |
|   | 9425                 | 38.50                    | 45.71                    | 19.89     | ·9200                | 49.16                    | 56.98          | 0.14            |
|   | .9420                | 38.78                    | 46.02                    | 19.36     | .9198                | 49.24                    | 57.06          | Proof           |
|   | 9415                 | 39.05                    | 46.32                    | 18.83     | •9195                | 49.39                    | 57.20          | 0.25            |
|   | .9410                | 39.30                    | 46.59                    | 18.36     | .9190                | 49.64                    | 57.45          | 0.68            |
|   | 9405                 | 39.55                    | 46:86                    | 17.88     | 9185                 | 49.86                    | 57.69          | 1.10            |
|   | .9400                | 39.80                    | 47.13                    | 17.40     | 9180                 | 50.09                    | 57.92          | 1.51            |
|   | 9395                 | 40.05                    | 47.40                    | 16.93     | 9175                 | 50.30                    | 58.14          | 1.89            |
|   | 9390                 | 40.30                    | 47.67                    | 16.46     | 9170                 | 50.52                    | 58.36          | 2.28            |
|   | 9385                 | 40.55                    | 47.94                    | 15.98     | 9165                 | 50.74                    | 58.58          | 2.66            |
|   | 9380                 | 40.80                    | 48.48                    | 15.50     | ·9160<br>·9155       | 50.96                    | 58.80          | 3.05            |
|   | 9375                 |                          |                          |           |                      | 51.17                    | 59.01          | 3.41            |
|   | 9365                 | 41.30<br>41.55           | 48.75                    | 14.57     | 9150                 | 51.38                    | 59.22          | 3.78            |
|   | 9360                 | 41.80                    | 49.02                    | 14.10     | •9145<br>•9140       | 51·58<br>51·79           | 59·43<br>59·63 | 4.14            |
|   | 9355                 | 42.05                    | 49.29                    | 13.16     | •9135                | 52.00                    | 59.84          | 4.87            |
|   | 9350                 | 42.29                    | 49.81                    | 12.70     | 9130                 | 52.23                    | 60.07          | 5.27            |
|   | 9345                 | 42.52                    | 50.06                    | 12.27     | 9130                 | 52.45                    | 60.30          | 5.67            |
|   | 9340                 | 42.76                    | 50.31                    | 11.82     | 9123                 | 52.68                    | 60.52          | 6.07            |
|   | 9335                 | 43.00                    | 50.57                    | 11.38     | 9120                 | 52.91                    | 60.74          | 6.47            |
|   | .9330                | 43.24                    | 50.82                    | 10.94     | 9110                 | 53.13                    | 60.97          | 6.86            |
|   | 2000                 | 10 21                    | 30 02                    | 10 94     | 3110                 | 99 19                    | 00 97          | 0 00            |
|   |                      |                          |                          |           |                      |                          |                |                 |

ALCOHOL TABLE -continued.

|   |                      | Per cent.  | Per cent.  | Per cent. | V. 10                | Per cent.  | Per cent.  | Per cent.  |
|---|----------------------|------------|------------|-----------|----------------------|------------|------------|------------|
|   | Sp. gr.<br>at 60° F. | of Alcohol | of Alcohol | over      | Sp. gr.<br>at 60° F. | of Alcohol |            | over       |
|   | at ou r.             | by weight. | by volume. | Proof.    | at ou r.             | by weight. | by volume. | Proof.     |
|   |                      |            |            |           |                      |            | - 100      | AS - 1 - 1 |
|   | .9105                | 53.35      | 61.19      | 7.23      | .8880                | 63.26      | 70.77      | 24.02      |
|   | .9100                | 53.57      | 61.40      | 7.61      | *8875                | 63.48      | 70.97      | 24.37      |
|   | .9095                | 53.78      | 61.62      | 7.99      | *8870                | 63.70      | 71.17      | 24.73      |
| 1 | .9090                | 54.00      | 61.84      | 8.36      | *8865                | 63.91      | 71.38      | 25.09      |
|   | .9085                | 54.24      | 62.07      | 8.78      | *8860                | 64.13      | 71.58      | 25.44      |
|   | .9080                | 54.48      | 62.31      | 9.20      | .8855                | 64.35      | 71.78      | 25.79      |
|   | 9075                 | 54.71      | 62.55      | 9.62      | *8850                | 64.57      | 71.98      | 26.15      |
|   | .9070                | 54.95      | 62.79      | 10.03     | .8845                | 64.78      | 72.18      | 26.50      |
|   | 9065                 | 55.18      | 63.02      | 10.44     | .8840                | 65.00      | 72.38      | 26.85      |
|   | .9060                | 55.41      | 63.24      | 10.84     | .8835                | 65.21      | 72.58      | 27.19      |
|   | .9055                | 55.64      | 63:46      | 11.24     | *8830                | 65.42      | 72.77      | 27.52      |
|   | 9050                 | 55.86      | 63.69      | 11.64     | .8825                | 65.63      | 72.96      | 27.85      |
|   | 9045                 | 56.09      | 63.91      | 12.03     | .8820                | 65.83      | 73.15      | 28.19      |
|   | 9040                 | 56.32      | 64.14      | 12.41     | .8815                | 66.04      | 73.34      | 28.52      |
|   | 9035                 | 56.55      | 64.36      | 12.80     | .8810                | 66.26      | 73.54      | 28.87      |
| ì | •9030                | 56.77      | 64.58      | 13.18     | .8805                | 66.48      | 73.73      | 29.22      |
|   | 9025                 | 57.00      | 64.80      | 13.57     | .8800                | 66.70      | 73.93      | 29.57      |
|   | .9020                | 57.22      | 65.01      | 13.92     | .8795                | 66.91      | 74.13      | 29.92      |
|   | .9015                | 57.42      | 65.21      | 14.27     | .8790                | 67.13      | 74.33      | 30.26      |
|   | 9010                 | 57.63      | 65.41      | 14.62     | 8785                 | 67:33      | 74.52      | 30.59      |
|   | .9005                | 57.83      | 65.61      | 14.97     | .8780                | 67.54      | 74.70      | 30.92      |
|   | .9000                | 58.05      | 65.81      | 15.33     | .8775                | 67.75      | 74.89      | 31.25      |
|   | .8995                | 58.27      | 66.03      | 15.72     | .8770                | 67.96      | 75.08      | 31.58      |
|   | 8990                 | 58.50      | 66.25      | 16.11     | .8765                | 68.17      | 75.27      | 31.90      |
|   | *8985                | 58.73      | 66.47      | 16.49     | .8760                | 68.38      | 75.45      | 32.23      |
|   | .8980                | 58.95      | 66.69      | 16.88     | *8755                | 68.58      | 75.64      | 32:56      |
|   | *8975                | 59.17      | 66.90      | 17.25     | .8750                | 68.79      | 75.83      | 32.89      |
|   | .8970                | 59.39      | 67.11      | 17.61     | .8745                | 69.00      | 76.01      | 33.21      |
|   | 8965                 | 59.61      | 67:32      | 17.98     | 8740                 | 69.21      | 76.20      | 33.54      |
|   | .8960                | 59.83      | 67.53      | 18:34     | .8735                | 69.42      | 76.39      | 33.86      |
|   | *8955                | 60.04      | 67.73      | 18.70     | .8730                | 69.63      | 76.57      | 34.19      |
|   | .8950                | 60.26      | 67.93      | 19.05     | *8725                | 69.83      | 76.76      | 34.21      |
|   | *8945                | 60.46      | 68.13      | 19.39     | .8720                | 70.04      | 76.94      | 34.84      |
|   | *8940                | 60.67      | 68.33      | 19.74     | .8715                | 70.24      | 77.12      | 35.14      |
|   | *8935                | 60.88      | 68.52      | 20.08     | .8710                | 70.44      | 77.29      | 35.45      |
|   | *8930                | 61.08      | 68.72      | 20.42     | .8705                | 70.64      | 77.46      | 35.76      |
|   | *8925                | 61.29      | 68.91      | 20.77     | .8700                | 70.84      | 77.64      | 36.07      |
|   | *8920                | 61:50      | 69.11      | 21.11     | 8695                 | 71.04      | 77.82      | 36.37      |
|   | .8915                | 61.71      | 69.30      | 21.45     | *8690                | 71.25      | 78.00      | 36.69      |
|   | .8910                | 61.92      | 69.50      | 21.79     | .8685                | 71.46      | 78.18      | 37.01      |
|   | *8905                | 62.14      | 69.71      | 22.16     | .8680                | 71.67      | 78.36      | 37.33      |
|   | .8900                | 62.36      | 69.92      | 22.53     | .8675                | 71.88      | 78.55      | 37.65      |
|   | .8895                | 62.59      | 70.14      | 22.91     | .8670                | 72.09      | 78.73      | 37.98      |
|   | *8890                | 62.82      | 70.35      | 23.29     | 8665                 | 72.30      | 78.93      | 38.32      |
|   | .8885                | 63.04      | 70.57      | 23.66     | *8660                | 72.52      | 79.12      | 38.65      |
|   |                      |            |            |           |                      |            |            | 1-075      |
|   | -                    |            |            |           |                      |            |            |            |

ALCOHOL TABLE—continued.

|   | Sp. gr.<br>at 60° F. | Per cent.<br>of Alcohol<br>by weight. | Per cent.<br>of Alcohol<br>by volume. | Per cent.<br>over<br>Proof. | Sp. gr.<br>at 60° F. | Per cent.<br>of Alcohol<br>by weight. | Per cent.<br>of Alcohol<br>by volume. | Per cent |
|---|----------------------|---------------------------------------|---------------------------------------|-----------------------------|----------------------|---------------------------------------|---------------------------------------|----------|
|   | ·8655                | 72.74                                 | 79:31                                 | 38.99                       | *8430                | 82.15                                 | 87:24                                 | 52.90    |
|   | .8650                | 72.96                                 | 79.50                                 | 39.32                       | .8425                | 82.35                                 | 87.40                                 | 53.16    |
| _ | 8645                 | 73.17                                 | 79.68                                 | 39.64                       | .8420                | 82.54                                 | 87.55                                 | 53.43    |
|   | 8640                 | 73.38                                 | 79.86                                 | 39.96                       | .8415                | 82.73                                 | 87.70                                 | 53.70    |
|   | 8635                 | 73.58                                 | 80.04                                 | 40.27                       | .8410                | 82.92                                 | 87.85                                 | 53.96    |
|   | .8630                | 73.79                                 | 80.22                                 | 40.60                       | .8405                | 83.12                                 | 88.00                                 | 54.23    |
|   | 8625                 | 74.00                                 | 80.40                                 | 40.91                       | .8400                | 83.31                                 | 88.16                                 | 54.50    |
|   | .8620                | 74.23                                 | 80.60                                 | 41.26                       | .8395                | 83.50                                 | 88.31                                 | 54.75    |
|   | ·8615                | 74.45                                 | 80.80                                 | 41.61                       | .8390                | 83.69                                 | 88.46                                 | 55.02    |
|   | .8610                | 74.68                                 | 81.00                                 | 41.96                       | .8385                | 83.88                                 | 88.61                                 | 55.28    |
|   | .8605                | 74.91                                 | 81.20                                 | 42.31                       | .8380                | 84.08                                 | 88.76                                 | 55.55    |
|   | .8600                | 75.14                                 | 81.40                                 | 42.66                       | .8375                | 84.28                                 | 88.92                                 | 55.83    |
|   | 8595                 | 75.36                                 | 81.60                                 | 43.00                       | .8370                | 84.48                                 | 89.08                                 | 56.10    |
|   | .8590                | 75.59                                 | 81.80                                 | 43.35                       | .8365                | 84.68                                 | 89.24                                 | 56.38    |
|   | .8585                | 75.82                                 | 82.00                                 | 43.70                       | .8360                | 84.88                                 | 89.39                                 | 56.66    |
|   | .8580                | 76.04                                 | 82.19                                 | 44.04                       | .8355                | 85.08                                 | 89.55                                 | 56.93    |
|   | .8575                | 76.25                                 | 82.37                                 | 44.35                       | .8350                | 85.27                                 | 89.70                                 | 57.20    |
|   | .8570                | 76.46                                 | 82.54                                 | 44.66                       | *8345                | 85.46                                 | 89.84                                 | 57.45    |
|   | .8565                | 76.67                                 | 82.72                                 | 44.97                       | .8340                | 85.65                                 | 89.99                                 | 57.71    |
|   | *8560                | 76.88                                 | 82.90                                 | 45.28                       | *8335                | 85.85                                 | 90.14                                 | 57.97    |
|   | 8555                 | 77.08                                 | 83.07                                 | 45.60                       | .8330                | 86.04                                 | 90.29                                 | 58.23    |
|   | .8550                | 77.29                                 | 83.25                                 | 45.90                       | *8325                | 86.23                                 | 90.43                                 | 58.48    |
|   | 8545                 | 77.50                                 | 83.43                                 | 46.20                       | *8320                | 86.42                                 | 90.58                                 | 58.74    |
|   | ·8540                | 77.71                                 | 83.60                                 | 46.51                       | *8315                | 86.62                                 | 90.73                                 | 59.00    |
|   | *8535                | 77.92                                 | 83.78                                 | 46.82                       | *8310                | 86.81                                 | 90.88                                 | 59.26    |
|   | .8530                | 78.12                                 | 83.94                                 | 47.11                       | *8305                | 87.00                                 | 91.02                                 | 59.51    |
|   | *8525                | 78.32                                 | 84.11                                 | 47.40                       | .8300                | 87.19                                 | 91.17                                 | 59.77    |
|   | *8520                | 78.52                                 | 84.27                                 | 47.70                       | ·8295<br>·8290       | 87·38<br>87·58                        | 91·31<br>91·46                        | 60.02    |
|   | *8515                | 78.72                                 | 84.44                                 | 47.98                       | 8290                 | 87.77                                 | 91.60                                 | 60.53    |
|   | ·8510<br>·8505       | 78·92<br>79·12                        | 84·60<br>84·77                        | 48.27                       | *8280                | 87.96                                 | 91.75                                 | 60.79    |
|   | *8500                | 79.12                                 | 84.93                                 | 48.84                       | 8275                 | 88.16                                 | 91.90                                 | 61.05    |
|   | *8495                | 79.52                                 | 85.10                                 | 49.13                       | 8270                 | 88.36                                 | 92.05                                 | 61.32    |
|   | .8490                | 79.72                                 | 85.26                                 | 49.38                       | 8265                 | 88.56                                 | 92.21                                 | 61.60    |
|   | *8485                | 79.92                                 | 85.42                                 | 49.67                       | .8260                | 88.76                                 | 92.36                                 | 61.86    |
|   | ·8480                | 80.13                                 | 85.59                                 | 50.00                       | 8255                 | 88.96                                 | 92.51                                 | 62.12    |
| ı | *8475                | 80.33                                 | 85.77                                 | 50.31                       | 8250                 | 89.16                                 | 92.66                                 | 62.38    |
|   | .8470                | 80.54                                 | 85.94                                 | 50.61                       | .8245                | 89.35                                 | 92.80                                 | 62.63    |
|   | *8465                | 80.75                                 | 86.11                                 | 50.91                       | .8240                | 89.54                                 | 92.94                                 | 62.88    |
|   | .8460                | 80.96                                 | 86.28                                 | 51.21                       | *8235                | 89.73                                 | 93.09                                 | 63.13    |
|   | *8455                | 81.16                                 | 86.45                                 | 51.50                       | .8230                | 89.92                                 | 93.23                                 | 63.38    |
|   | ·8450                | 81.36                                 | 86.61                                 | 51.78                       | *8225                | 90.11                                 | 93.36                                 | 63.62    |
|   | .8445                | 81.56                                 | 86.77                                 | 52.06                       | *8220                | 90.29                                 | 93.49                                 | 63.84    |
|   | ·8440                | 81.76                                 | 86.93                                 | 52.34                       | .8215                | 90.46                                 | 93.62                                 | 64.06    |
|   | *8435                | 81.96                                 | 87.09                                 | 52.62                       | .8210                | 90.64                                 | 93.75                                 | 64.30    |

ALCOHOL TABLE-continued.

|   |                      |                                       |       |                             | 1                    |                                       |                                       | ,                           |
|---|----------------------|---------------------------------------|-------|-----------------------------|----------------------|---------------------------------------|---------------------------------------|-----------------------------|
|   | Sp. gr.<br>at 60° F. | Per cent.<br>of Alcohol<br>by weight. |       | Per cent.<br>over<br>Proof. | Sp. gr.<br>at 60° F. | Per cent.<br>of Alcohol<br>by weight. | Per cent.<br>of Alcohol<br>by volume. | Per cent.<br>over<br>Proof. |
|   |                      |                                       |       |                             |                      |                                       |                                       |                             |
|   | *8205                | 90.82                                 | 93.87 | 64.51                       | .8065                | 95.86                                 | 97:39                                 | 70.67                       |
|   | ·8200                | 91.00                                 | 94.00 | 64.74                       | .8060                | 96.03                                 | 97.51                                 | 70.88                       |
| 1 | ·8195                | 91.18                                 | 94.13 | 64.96                       | *8055                | 96.20                                 | 97.62                                 | 71.07                       |
|   | ·8190                | 91.36                                 | 94.26 | 65.18                       | .8050                | 96.37                                 | 97.73                                 | 71.26                       |
| 1 | .8185                | 91.54                                 | 94.38 | 65.40                       | *8045                | 96.53                                 | 97.83                                 | 71.45                       |
|   | ·8180                | 91.71                                 | 94.51 | 65.62                       | *8040                | 96.70                                 | 97.94                                 | 71.64                       |
|   | ·8175                | 91.89                                 | 94.64 | 65.85                       | .8035                | 96.87                                 | 98.05                                 | 71.83                       |
|   | .8170                | 92.07                                 | 94.76 | 66.07                       | .8030                | 97.03                                 | 98.16                                 | 72.02                       |
| ı | .8165                | 92.26                                 | 94.90 | 66.30                       | *8025                | 97.20                                 | 98.27                                 | 72.20                       |
|   | ·8160                | 92.44                                 | 95.03 | 66.53                       | .8020                | 97:37                                 | 98.37                                 | 72.40                       |
| 1 | 8155                 | 92.63                                 | 95.16 | 66.76                       | .8015                | 97.53                                 | 98.48                                 | 72.58                       |
|   | ·8150                | 92.81                                 | 95.29 | 67.00                       | .8010                | 97.70                                 | 98.59                                 | 72.77                       |
|   | ·8145                | 93.00                                 | 95.42 | 67.23                       | .8005                | 97.87                                 | 98.69                                 | 72.95                       |
| 1 | ·8140                | 93.18                                 | 95.55 | 67.46                       | .8000                | 98.03                                 | 98.80                                 | 73.14                       |
|   | ·8135                | 93.37                                 | 95.69 | 67.70                       | .7995                | 98.19                                 | 98.89                                 | 73.30                       |
| ١ | ·8130                | 93.55                                 | 95.82 | 67.92                       | •7990                | 98:34                                 | 98.98                                 | 73.47                       |
| 1 | ·8125                | 93.74                                 | 95.95 | 68.15                       | .7985                | 98.50                                 | 99.07                                 | 73.64                       |
| ١ | ·8120                | 93.92                                 | 96.08 | 68.38                       | .7980                | 98.66                                 | 99.16                                 | 73.81                       |
| 1 | *8115                | 94.10                                 | 96.20 | 68.60                       | .7975                | 98.81                                 | 99.26                                 | 73.97                       |
| 1 | ·8110                | 94.28                                 | 96.32 | 68.80                       | .7970                | 98.97                                 | 99.35                                 | 74.14                       |
| 1 | ·8105                | 94.45                                 | 96.43 | 69.00                       | .7965                | 99.13                                 | 99.45                                 | 74.31                       |
|   | ·8100                | 94.62                                 | 96.55 | 69.20                       | ·7960                | 99.29                                 | 99.55                                 | 74.50                       |
|   | *8095                | 94.80                                 | 96.67 | 69.40                       | .7955                | 99.45                                 | 99.65                                 | 74.66                       |
| 1 | .8090                | 94.97                                 | 96.78 | 69.61                       | .7950                | 99.61                                 | 99.75                                 | 74.83                       |
|   | .8085                | 95.14                                 | 96.90 | 69.82                       | .7945                | 99.78                                 | 99.86                                 | 75.01                       |
| - | .8080                | 95.32                                 | 97.02 | 70.03                       | .7940                | 99.94                                 | 99.96                                 | 75.18                       |
|   | 8075                 | 95.50                                 | 97.15 | 70.25                       |                      | Absolute                              | Alcohol                               |                             |
|   | 8070                 | 95.68                                 | 97.27 | 70.46                       | .7938                | 100.00                                | 100.00                                | 75.25                       |
| 1 |                      |                                       |       |                             |                      |                                       |                                       |                             |

According to the provisions of "The Sale of Food and Drugs Act, 1875," Brandy, Whisky, and Rum may be 25° U.P. and Gin 35° U.P.

 $25^{\circ}$  U.P.=0.9473 sp. gr., 35.85 per cent. alcohol, by weight; 42.78 per cent. alcohol by volume.

35° U.P. -0.9564 sp. gr., 30.78 per cent. alcohol by weight; 37.08 per cent. alcohol by volume.

"Rectified spirit, B.P.," is alcohol with 16 per cent. water. sp. gr. 0.8380; 55°55 over Proof. It contains 84.08 per cent. by weight and 88.76 per cent. by volume of alcohol.

<sup>&</sup>quot;Proof spirit" has the sp. gr. 0.9198. It contains 49.24 per cent. by weight and 57.06 per. cent. by volume of alcohol.

Simple rules for finding the percentages of added water in the case of diluted spirits.

I. Brandy, Whisky, or Rum (25° U. P. allowed).

Let a sample be N° U. P.

Therefore in 100 volumes we have N volumes of water, and

(100 - N) volumes of proof-spirit.

Let x be the percentage of water by volume added to spirit of 25° U. P. to produce a sample N° U. P. Then equating amounts of water we have—

$$(100-x)\frac{25}{100} + x = N.$$

$$25 - \frac{x}{4} + x = N.$$

$$\frac{3}{4}x = N - 25.$$

$$x = \frac{4(N-25)}{3}.$$

Hence we have the following rule :-

To get percentage of added water by volume in the case of diluted brandy, whisky, or rum, increase the excess of degrees U. P. above 25 by one-third.

#### II. Gin (35° U. P. allowed).

Reasoning exactly as in I., we have-

$$(100 - x_1)\frac{35}{100} + x_1 = N_{1*}$$

$$35 - \frac{7}{20}x_1 + x_1 = N_{1*}$$

$$\frac{13}{20}x_1 = N_1 - 35.$$

$$x_1 = \frac{20}{13}(N_1 - 35).$$

$$x_2 = 1.54(N_1 - 35).$$

Hence the rule :-

To get percentage of added water by volume in diluted gin, multiply the excess of degrees U. P. above 35 by 1.54.

 $<sup>*</sup>_a*$  The above rules I owe to Mr E. W. T. Jones, who discovered them empirically and used them simply for checking results obtained by the usual method of calculation from the percentage of alcohol present. The proofs I have given above established the accuracy of Rule I., and gave the correct factor 1.54 in Rule II. in place of the  $1\frac{1}{2}$  previously used for checking.—4. E. J.

### CORRECTION OF SPECIFIC GRAVITY OF DILUTE ALCOHOL FOR TEMPERATURE.

| Specific Gravity. | -1° Fah. | 1° C.   | Specific Gravity. | 1° Fah. | 1° C.   |
|-------------------|----------|---------|-------------------|---------|---------|
| ·794-·864         | 0.00046  | 0.00083 | ·965- ·966        | 0.00026 | 0.00047 |
| *864-*889         | 45       | 81      | ·966- ·967        | 25      | 45      |
| *889902           | 44       | 79      | ·967- ·968        | 24      | 43      |
| 902-912           | 43       | 77      | ·968- ·969        | 23      | 41      |
| 912-921           | 42       | 76      | ·969- ·970        | 22      | 40      |
| •921928           | 41       | 74      | ·970- ·971        | 21      | 38      |
| •928935           | 40       | 72      | 971- 973          | 20      | 36      |
| ·935-·940         | 39       | 70      | 973- 974          | 19      | 34      |
| 940-943           | 38       | 68      | 974- 975          | 18      | 32      |
| 943-946           | 37       | 67      | ·975- ·976        | 17      | 31      |
| 945-949           | 36       | 65      | 976- 977          | 16      | 29      |
|                   |          |         |                   |         |         |
| •949951           | 35       | 63      | •977- •978        | 15      | 27      |
| .951953           | 34       | 61      | ·978- ·980        | 14      | 25      |
| ·953-·955         | 33       | 59      | .980981           | 13      | 23      |
| 955-957           | 32       | 58      | ·981- ·983        | 12      | 22      |
| •957959           | 31       | 56      | ·983- ·985        | 11      | 20      |
| ·959-·961         | 30       | 54      | ·985- ·987        | 10      | 18      |
| .961962           | 29       | 52      | ·987- ·990        | .00009  | 16      |
| .962963           | 28       | 50      | ·990- ·995        | 8       | 14      |
| ·963-·965         | 27       | 49      | ·995-1·000        | 7       | 13      |

Rule.—To obtain correct sp. gr. at 60° Fah. (=15.5° C.), multiply the factor given in the table opposite to the observed sp. gr. by the difference in temperature, and add if the recorded temperature is above 60° F., or substract if it is below 60°.

Ex. The sp. gr. at 60° Fah. of dilute alcohol of sp. gr. 0.952 at

64° Fah. is  $0.952 + (0.00034 \times 4) = 0.95336$ .

#### VARIOUS METHODS OF STATING ALCOHOLIC STRENGTHS.

Based on Squibb's absolute alcohol of sp. gr. 0.7935,

Proof spirit containing 49.2 % of this alcohol, and having a sp. gr. of 0.9198,

and using c.c. to indicate the volume of 1 gram of water at 60° F., we have the formulæ given below.

Let S=sp. gr. at 60°/60° F.

°/ = grams of absolute alcohol per 100 grams.

v/v = c.c. absolute alcohol per 100 c.c.

w/v = grams of absolute alcohol per 100 c.c.

P=c.c. proof spirit per 100 c.c.

then

$$\label{eq:second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-second-seco$$





Otto's Table showing the Percentages of  $\rm H_2SO_4$  corresponding to the Dilute Acid of various Specific Gravities at 15° C.

|   | Per<br>cent. of<br>H <sub>2</sub> SO <sub>4</sub> . | Specific<br>Gravity. | Per<br>cent. of<br>H <sub>2</sub> SO <sub>4</sub> . | Specific<br>Gravity. | Per<br>cent. of<br>H <sub>2</sub> SO <sub>4</sub> . | Specific<br>Gravity. | Per<br>cent. of<br>H <sub>2</sub> SO <sub>4</sub> . | Specific<br>Gravity. |
|---|-----------------------------------------------------|----------------------|-----------------------------------------------------|----------------------|-----------------------------------------------------|----------------------|-----------------------------------------------------|----------------------|
|   | 100                                                 | 1.8426               | 75                                                  | 1.6750               | 50                                                  | 1.3980               | 25                                                  | 1.1820               |
|   | 99                                                  | 1.8420               | 74                                                  | 1.6630               | 49                                                  | 1.3866               | 24                                                  | 1.1740               |
|   | 98                                                  | 1.8406               | 73                                                  | 1.6510               | 48                                                  | 1.3790               | 23                                                  | 1.1670               |
|   | 97                                                  | 1.8400               | 72                                                  | 1.6390               | 47                                                  | 1:3700               | 22                                                  | 1.1590               |
|   | 96                                                  | 1.8384               | 71                                                  | 1.6270               | 46                                                  | 1.3610               | 21                                                  | 1.1516               |
|   | 95                                                  | 1.8376               | 70                                                  | 1.6150               | 45                                                  | 1.3510               | 20                                                  | 1.1440               |
|   | 94                                                  | 1.8356               | 69                                                  | 1.6040               | 44                                                  | 1.3420               | 19                                                  | 1.1360               |
|   | 93                                                  | 1.8340               | 68                                                  | 1.5920               | 43                                                  | 1.3330               | 18                                                  | 1.1290               |
|   | 92                                                  | 1.8310               | 67                                                  | 1.5800               | 42                                                  | 1.3240               | 17                                                  | 1.1210               |
|   | 91                                                  | 1.8270               | 66                                                  | 1.5860               | 41                                                  | 1.3150               | 16                                                  | 1.1136               |
|   | 90                                                  | 1.8220               | 65                                                  | 1.5570               | 40                                                  | 1.3060               | 15                                                  | 1.1060               |
|   | 89                                                  | 1.8160               | 64                                                  | 1.5450               | 39                                                  | 1.2976               | 14                                                  | 1.0980               |
|   | 88                                                  | 1.8090               | 63                                                  | 1.5340               | 38                                                  | 1.2890               | 13                                                  | 1.0910               |
|   | 87                                                  | 1.8020               | 62                                                  | 1.5230               | 37                                                  | 1.2810               | 12                                                  | 1.0830               |
| İ | 86                                                  | 1.7940               | 61                                                  | 1.5120               | 36                                                  | 1.2720               | 11                                                  | 1.0756               |
|   | 85                                                  | 1.7860               | 60                                                  | 1.5010               | 35                                                  | 1.2640               | .10                                                 | 1.0680               |
|   | 84                                                  | 1.7770               | 59                                                  | 1.4900               | 34                                                  | 1.2560               | 9                                                   | 1.0610               |
| 1 | 83                                                  | 1.7670               | 58                                                  | 1.4800               | 33                                                  | 1.2476               | 8                                                   | 1.0536               |
|   | 82                                                  | 1.7560               | 57                                                  | 1.4690               | 32                                                  | 1.2390               | 7                                                   | 1.0464               |
|   | 81                                                  | 1.7450               | 56                                                  | 1.4586               | 31                                                  | 1.2310               | 6                                                   | 1.0390               |
|   | 80                                                  | 1.7340               | 55                                                  | 1.4480               | 30                                                  | 1.2230               | 5                                                   | 1.0320               |
|   | 79                                                  | 1.7220               | 54                                                  | 1.4380               | 29                                                  | 1.2150               | 3                                                   | 1.0256               |
|   | 78                                                  | 1.7100               | 53                                                  | 1.4280               | 28                                                  | 1.2066               | 3                                                   | 1.0190               |
|   | 77                                                  | 1.6980               | 52                                                  | 1.4180               | 27                                                  | 1.1980               | 2                                                   | 1.0130               |
|   | 76                                                  | 1.6860               | 51                                                  | 1.4080               | 26                                                  | 1.1900               | 1                                                   | 1.0064               |
|   |                                                     |                      |                                                     |                      |                                                     |                      |                                                     |                      |
| · |                                                     |                      |                                                     |                      |                                                     |                      |                                                     |                      |

Table showing the Strength of HCl of different Specific Gravities at 15° C. (Dr Ure.)

| Specific Gravity. | Per cent.<br>of HCl | Per<br>cent. of<br>Acid of<br>1.20<br>sp. gr. | Specific<br>Gravity. | Per cent.<br>of HCl | Per<br>cent. of<br>Acid of<br>1.20<br>sp. gr. | Specific<br>Gravity. | Per cent.<br>of HCl | Per<br>cent. of<br>Acid of<br>1.20<br>sp. gr. |
|-------------------|---------------------|-----------------------------------------------|----------------------|---------------------|-----------------------------------------------|----------------------|---------------------|-----------------------------------------------|
| 1·2000            | 40.777              | 100                                           | 1·1857               | 37.516              | 92                                            | 1·1701               | 34·252              | 84                                            |
| 1·1982            | 40.369              | 99                                            | 1·1846               | 37.108              | 91                                            | 1·1681               | 33·845              | 83                                            |
| 1·1964            | 39.961              | 98                                            | 1·1822               | 36.700              | 90                                            | 1·1661               | 33·437              | 82                                            |
| 1·1946            | 39.554              | 97                                            | 1·1802               | 36.292              | 89                                            | 1·1641               | 33·029              | 81                                            |
| 1·1928            | 39.146              | 96                                            | 1·1782               | 35.884              | 88                                            | 1·1620               | 32·621              | 80                                            |
| 1·1910            | 38.738              | 95                                            | 1·1762               | 35.476              | 87                                            | 1·1599               | 32·213              | 79                                            |
| 1·1893            | 38.330              | 94                                            | 1·1741               | 35.068              | 86                                            | 1·1578               | 31·805              | 78                                            |
| 1·1875            | 37.923              | 93                                            | 1·1721               | 34.660              | 85                                            | 1·1557               | 31·398              | 77                                            |

Table showing the Strength of HCl of imperent Specific Gravities at 15° C.—continued.

| Specific Gravity. | Per cent.<br>of HCl | Per<br>cent. of<br>Acid of<br>1.20<br>sp. gr. | Specific<br>Gravity. | Per cent.<br>of HCl | Per<br>cent. of<br>Acid of<br>1.20<br>sp. gr. | Specific<br>Gravity. | Per cent.<br>of HCi | Per<br>cent, of<br>Acid of<br>1.20<br>sp. gr. |
|-------------------|---------------------|-----------------------------------------------|----------------------|---------------------|-----------------------------------------------|----------------------|---------------------|-----------------------------------------------|
| 1.1536            | 30.990              | 76                                            | 1.1000               | 20.388              | 50                                            | 1.0477               | 9.786               | 24                                            |
| 1.1515            | 30.582              | 75                                            | 1.0980               | 19.980              | 49                                            | 1.0457               | 9.379               | 23                                            |
| 1.1494            | 30.174              | 74                                            | 1.0960               | 19.572              | 48                                            | 1.0437               | 8.971               | 22                                            |
| 1.1473            | 29.767              | 73                                            | 1.0939               | 19.165              | 47                                            | 1.0417               | 8.563               | 21                                            |
| 1.1452            | 29.359              | 72                                            | 1.0919               | 18.757              | 46                                            | 1.0397               | 8.155               | 20                                            |
| 1.1431            | 28.951              | 71                                            | 1.0899               | 18.349              | 45                                            | 1.0377               | 7.747               | 19                                            |
| 1.1410            | 28.544              | 70                                            | 1.0879               | 17.941              | 44                                            | 1.0357               | 7.340               | 18                                            |
| 1.1389            | 28.136              | 69                                            | 1.0859               | 17.534              | 43                                            | 1.0337               | 6.932               | 17                                            |
| 1.1369            | 27.728              | 68                                            | 1.0838               | 17.126              | 42                                            | 1.0318               | 6.524               | 16                                            |
| 1.1349            | 27.321              | 67                                            | 1.0818               | 16.718              | 41                                            | 1.0298               | 6.116               | 15                                            |
| 1.1328            | 26.913              | 66                                            | 1.0798               | 16.310              | 40                                            | 1.0279               | 5.709               | 14                                            |
| 1.1308            | 26.505              | 65                                            | 1.0778               | 15.902              | 39                                            | 1.0259               | 5.301               | 13                                            |
| 1.1287            | 26.098              | 64                                            | 1.0758               | 15.494              | 38                                            | 1.0239               | 4.893               | 12                                            |
| 1.1267            | 25.690              | 63                                            | 1.0738               | 15.087              | 37                                            | 1.0220               | 4.486               | 11                                            |
| 1.1247            | 25.282              | 62                                            | 1.0718               | 14.679              | 36                                            | 1.0200               | 4.078               | 10                                            |
| 1.1226            | 24.847              | 61                                            | 1.0697               | 14.271              | 35                                            | 1.0180               | 3.670               | 9                                             |
| 1.1206            | 24.466              | 60                                            | 1.0677               | 13.863              | 34                                            | 1.0160               | 3.262               | 8                                             |
| 1.1185            | 24.058              | 59                                            | 1.0657               | 13.456              | 33                                            | 1.0140               | 2.854               | 7                                             |
| 1.1164            | 23.650              | 58                                            | 1.0637               | 13.049              | 32                                            | 1.0120               | 2.447               | 6                                             |
| 1.1143            | 23.242              | 57                                            | 1.0617               | 12.641              | 31                                            | 1.0100               | 2.039               | 5                                             |
| 1.1123            | 22.834              | 56                                            | 1.0597               | 12.233              | 30                                            | 1.0080               | 1.631               | 4                                             |
| 1.1102            | 22.426              | 55                                            | 1.0577               | 11.825              | 29                                            | 1.0060               | 1.224               | 3                                             |
| 1.1082            | 22.019              | 54                                            | 1.0557               | 11.418              | 28                                            | 1.0040               | .816                | 2                                             |
| 1.1061            | 21.611              | 53                                            | 1.0537               | 11.010              | 27                                            | 1.0020               | •408                | 1                                             |
| 1.1041            | 21.203              | 52                                            | 1.0517               | 10.602              | 26                                            |                      |                     |                                               |
| 1.1020            | 20.796              | 51                                            | 1.0497               | 10.194              | 25                                            |                      |                     | 12                                            |
|                   |                     |                                               |                      |                     |                                               |                      |                     |                                               |

Table showing the Strength of  $\mathrm{HNO}_3$  of various Specific Gravities.

The numbers marked \* are the results of direct observations; the others are obtained by interpolation.

| HNO <sub>3</sub> | Specific | Gravity | HNO <sub>3</sub> Specific Gravity |        | HNO <sub>3</sub> |           | Gravity |        |
|------------------|----------|---------|-----------------------------------|--------|------------------|-----------|---------|--------|
| per cent.        | At 0°    | At 15°  | per cent.                         | At 0°  | At 15°           | per cent. | At 0°   | At 15° |
| 100.00           | 1.559    | 1·530   | 93·01*                            | 1·533* | 1·506*           | 84·00     | 1:499   | 1:474  |
| 99.84*           | 1.559*   | 1·530*  | 92·00                             | 1·529  | 1·503            | 83·00     | 1:495   | 1:470  |
| 99.72*           | 1.558*   | 1·530*  | 91·00                             | 1·526  | 1·499            | 82·00     | 1:492   | 1:467  |
| 99.52*           | 1.557*   | 1·529*  | 90·00                             | 1·522  | 1·495            | 80·96*    | 1:488*  | 1:463* |
| 97.89*           | 1.551*   | 1·523*  | 89·56*                            | 1·521* | 1·494*           | 80·00     | 1:484   | 1:460  |
| 97·00            | 1.548    | 1.520   | 88.00                             | 1·514  | 1·488            | 79.00     | 1 · 481 | 1:456  |
| 96·00            | 1.544    | 1.516   | 87.45*                            | 1·513* | 1·486*           | 77.66     | 1 · 476 | 1:451  |
| 95·27*           | 1.542*   | 1.514*  | 86.17*                            | 1·507* | 1·482*           | 76.00     | 1 · 469 | 1:445  |
| 94·00            | 1.537    | 1.509   | 85.00                             | 1·503  | 1·478            | 75.00     | 1 · 465 | 1:442  |

#### THE ANALYST'S LABORATORY COMPANION

### Table showing the Strength of HNO<sub>3</sub> of various Specific Gravities—continued.

| HNO <sub>3</sub> | Specific | Gravity | HNO <sub>3</sub> | Specific | Gravity | HNO <sub>3</sub> | Specific | Gravity |
|------------------|----------|---------|------------------|----------|---------|------------------|----------|---------|
| per cent.        | At 0°    | At 15°  | per cent.        | At 0°    | At 15°  | per cent.        | At 0°    | At 15°  |
| 74.01*           | 1.462*   | 1.438*  | 55.00            | 1.365    | 1.346   | 33.86*           | 1.226*   | 1.211*  |
| 73.00            | 1.457    | 1.435   | 54.00            | 1.359    | 1.341   | 32.00            | 1.214    | 1.198   |
| 72.39*           | 1.455*   | 1.432*  | 53.81            | 1.358    | 1.339   | 31.00            | 1.207    | 1.192   |
| 71.24*           | 1.450*   | 1.429*  | 53.00            | 1.353    | 1.335   | 30.00            | 1.200    | 1.185   |
| 69.96            | 1.444    | 1.423   | 52 33*           | 1.349*   | 1.331*  | 29.00            | 1.194    | 1.179   |
| 69.20*           | 1.441    | 1.419*  | 50.99*           | 1.341*   | 1.323*  | 28.00*           | 1.187*   | 1.172*  |
| 68.00            | 1.435    | 1.414   | 49.97            | 1.334    | 1.317   | 27.00            | 1.180    | 1.166   |
| 67.00            | 1.430    | 1.410   | 49.00            | 1.328    | 1.312   | 25.71*           | 1.171*   | 1.157*  |
| 66.00            | 1.425    | 1.405   | 48.00            | 1.321    | 1.304   | 23.00            | 1.153    | 1.138   |
| 65.07*           | 1.420*   | 1.400*  | 47.18*           | 1.315*   | 1.298*  | 20.00            | 1.132    | 1.120   |
| 64.00            | 1.415    | 1.395   | 46.64            | 1.312    | 1.295   | 17.47*           | 1.115*   | 1.105*  |
| 63.59            | 1.413    | 1.393   | 45.00            | 1.300    | 1.284   | 15.00            | 1.099    | 1.089   |
| 62.00            | 1.404    | 1.386   | 43.53*           | 1.291*   | 1.274*  | 13.00            | 1.085    | 1.077   |
| 61.21*           | 1.400*   | 1.381*  | 42.00            | 1.280    | 1.264   | 11.41*           | 1.075    | 1.067*  |
| 60.00            | 1.393    | 1.374   | 41.00            | 1.274    | 1.257   | 7.22*            | 1.050    | 1.045*  |
| 59.59*           | 1.391*   | 1.372*  | 40.00            | 1.267    | 1.251   | 4.00             | 1.026    | 1.022   |
| 58.88            | 1.387    | 1.368   | 39.00            | 1.260    | 1.244   | 2.00             | 1.013    | 1.010   |
| 58.00            | 1.382    | 1.363   | 37.95*           | 1.253*   | 1.237*  | 0.00             | 1.000    | 0.999   |
| 57.00            | 1.376    | 1.358   | 36.00            | 1.240    | 1.225   | 8 2 3            |          |         |
| 56.10*           | 1.371*   | 1.353*  | 35.00            | 1.234    | 1.218   |                  |          |         |

### Table showing the Percentage of K<sub>2</sub>O and KHO in Solutions of Caustic Potash of various Specific Gravities at 15° C.\*

| Per cent.<br>of K <sub>2</sub> O | Per cent.<br>of KHO | Specific<br>Gravity. | Per cent.<br>of K <sub>2</sub> O | Per cent.<br>of KHO | Specific<br>Gravity. |
|----------------------------------|---------------------|----------------------|----------------------------------|---------------------|----------------------|
| •5658                            | 0.674               | 1.0050               | 23.764                           | 28.303              | 1.2648               |
| 1.697                            | 2.021               | 1.0153               | 24.895                           | 29.650              | 1.2805               |
| 2.829                            | 3:369               | 1.0260               | 26.027                           | 30.998              | 1.2966               |
|                                  |                     |                      |                                  |                     | 4.0                  |
| 3.961                            | 4.717               | 1.0369               | 27.158                           | 32.345              | 1.3131               |
| 5.002                            | 5.957               | 1.0478               | 28.290                           | 33.693              | 1.3300               |
| 6.224                            | 7.412               | 1.0589               | 29.34                            | 34.94               | 1.30                 |
| 7.355                            | 8.760               | 1.0703               | 30.74                            | 36.61               | 1.32                 |
| 8.487                            | 10.108              | 1.0819               | 32.14                            | 38.28               | 1.34                 |
| 9.619                            | 11.456              | 1.0938               | 33.46                            | 39.85               | 1.36                 |
| 10.750                           | 12.803              | 1.1059               | 34.74                            | 41.37               | 1.38                 |
| 11.882                           | 14.151              | 1.1182               | 35.99                            | 42.86               | 1.40                 |
| 13.013                           | 15.498              | 1.1308               | 37.97                            | 45.22               | 1.42                 |
| 14.145                           | 16.846              | 1.1437               | 40.17                            | 47.84               | 1.44                 |
| 15.277                           | 18.195              | 1.1568               | 42.31                            | 50.39               | 1.46                 |
| 16.408                           | 19.542              | 1.1702               | 44.40                            | 52.88               | 1.48                 |
| 17.540                           | 20.890              | 1.1839               | 46.45                            | 55.32               | 1.50                 |
| 18.671                           | 22.237              | 1.1979               | 48.46                            | 57.71               | 1.52                 |
| 19.803                           | 23.585              | 1.2122               | 50.09                            | 59.65               | 1.54                 |
| 20.935                           | 24.933              | 1.2268               | 51.58                            | 61.43               | 1.56                 |
| 21.500                           | 25.606              | 1.2342               | 53.06                            | 63.19               | 1.58                 |
| 22.632                           | 26.954              | 1.2493               | 50 00                            | 00 13               | 1 30                 |

G

Table showing the Percentage of Na<sub>2</sub>O in Solutions of Caustic Soda of various Specific Gravities at 15° C.\*

| Per cent. of<br>Na <sub>2</sub> O | Specific Gravity. | Per cent. of<br>Na <sub>2</sub> O | Specific Gravity. | Per cent. of<br>Na <sub>2</sub> O | Specific<br>Gravity. |
|-----------------------------------|-------------------|-----------------------------------|-------------------|-----------------------------------|----------------------|
| 302                               | 1.0040            | 10.879                            | 1.1630            | 21.154                            | 1.3053               |
| .604                              | 1.0081            | 11.484                            | 1.1734            | 21.758                            | 1.3125               |
| 1.209                             | 1.0163            | 12.088                            | 1.1841            | 21.894                            | 1.3143               |
| 1.813                             | 1.0246            | 12.692                            | 1.1948            | 22.363                            | 1.3198               |
| 2.418                             | 1.0330            | 13.297                            | 1.2058            | 22.967                            | 1.3273               |
| 3.022                             | 1.0414            | 13.901                            | 1.2178            | 23.572                            | 1.3349               |
| 3.626                             | 1.0500            | 14.506                            | 1.2280            | 24.176                            | 1.3426               |
| 4.231                             | 1.0587            | 15.110                            | 1.2392            | 24.780                            | 1.3505               |
| 4.835                             | 1.0675            | 15.714                            | 1.2453            | 25.385                            | 1.3586               |
| 5.440                             | 1.0764            | 16:319                            | 1.2515            | 25.989                            | 1.3668               |
| 6.044                             | 1.0855            | 16.923                            | 1.2578            | 26.594                            | 1.3751               |
| 6.648                             | 1.0948            | 17.528                            | 1.2642            | 27.200                            | 1.3836               |
| 7.253                             | 1.1042            | 18.132                            | 1.2708            | 27.802                            | 1.3923               |
| 7.857                             | 1.1137            | 18.730                            | 1.2775            | 28.407                            | 1.4011               |
| 8.462                             | 1.1233            | 19.341                            | 1.2843            | 29.011                            | 1.4101               |
| 9.066                             | 1.1330            | 19.945                            | 1.2912            | 29.616                            | 1.4193               |
| 9.670                             | 1.1428            | 20.550                            | 1.2982            | 30.220                            | 1.4285               |
| 10.275                            | 1.1528            |                                   |                   |                                   |                      |

Table showing the Percentage of  $\rm NH_3$  in Aqueous Solutions of the Gas of various Specific Gravities at 14° C. (Carius.)

| Specific Gravity. | NH <sub>3</sub><br>per cent. | Specific Gravity. | NH <sub>3</sub><br>per cent. | Specific Gravity. | NH <sub>3</sub><br>per cent. |
|-------------------|------------------------------|-------------------|------------------------------|-------------------|------------------------------|
| 0.8844            | 36                           | 0.9133            | 24                           | 0.9520            | 12                           |
| 0.8864            | 35                           | 0.9162            | 23                           | 0.9556            | 11                           |
| 0.8885            | 34                           | 0.9191            | - 22                         | 0.9593            | 10                           |
| 0.8907            | 33                           | 0.9221            | 21                           | 0.9631            | 9                            |
| 0.8929            | 32                           | 0.9251            | 20                           | 0.9670            | 8                            |
| 0.8953            | 31                           | 0.9283            | 19                           | 0.9709            | 7                            |
| 0.8976            | 30                           | 0.9314            | 18                           | 0.9749            | 6                            |
| 0.9001            | 29                           | 0.9347            | 17                           | 0.9790            | 5                            |
| 0.9026            | 28                           | 0.9380            | 16                           | 0.9831            | 4                            |
| 0.9052            | 27                           | 0.9414            | 15                           | 0.9873            | 3                            |
| 0.9078            | 26                           | 0.9449            | 14                           | 0.9915            | 2                            |
| 0.9106            | 25                           | 0.9484            | 13                           | 0.9959            | 1                            |

RULES FOR THE CONVERSION OF THERMOMETRIC DEGREES FROM ONE SCALE INTO ANOTHER.

|                                                                                           | ONE SCALE INTO ANOTHER.                                                    |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|--|--|--|--|--|--|
| To Convert                                                                                | Rules.                                                                     |  |  |  |  |  |  |  |
| ° F. into ° C. ° F. into ° R. ° C. into ° F. ° C. into ° R. ° R. into ° F. ° R. into ° C. | Multiply by 9 and divide by 5, then add 32. Multiply by 4 and divide by 5. |  |  |  |  |  |  |  |

<sup>\*</sup> Tinnermann.

## CONVERSION OF THE DIFFERENT THERMOMETRIC SCALES, TABLE I.

|   | FAHR.      | Reaum. | Cent.          | FAHR. | Reaum.         | Cent.          | FAHR.      | Reaum.         | Cent.          | - |
|---|------------|--------|----------------|-------|----------------|----------------|------------|----------------|----------------|---|
|   | 500        | 208    | 260            | 452   | 186.7          | 233 3          | 404        | 165.3          | 206.7          |   |
|   | 499        | 207.6  | 259.4          | 451   | 186.2          | 232.8          | 403        | 164.9          | 206.1          |   |
| 1 | 498        | 207.1  | 258.9          | 450   | 185.8          | 232.2          | 402        | 164.4          | 205.6          |   |
|   | 497        | 206.7  | 258.3          | 449   | 185.3          | 231.7          | 401        | 164            | 205            |   |
|   | 496        | 206.2  | 257.8          | 448   | 184.9          | 231.1          | 400        | 163.6          | 204.4          | ı |
|   | 495        | 205.8  | 257.2          | 447   | 184.4          | 230.6          | 399        | 163.1          | 203.9          | ŀ |
| 1 | 494        | 205.3  | 256.7          | 446   | 184            | 230            | 398        | 162.7          | 203.3          | ı |
|   | 493        | 204.9  | 256.1          | 445   | 183.6          | 229.4          | 397        | 162.2          | 202.8          | 1 |
|   | 492        | 204.4  | 255.6          | 444   | 183.1          | 228.9          | 396        | 161.8          | 202.2          |   |
| 1 | 491        | 204    | 255            | 443   | 182.7          | 228.3          | 395        | 161.3          | 201.7          |   |
| 1 | 490        | 203.6  | 254.4          | 442   | 182.2          | 227.8          | 394        | 160.9          | 201.1          | l |
|   | 489        | 203.1  | 253.9          | 441   | 181.8          | 227.2          | 393        | 160.4          | 200.6          |   |
| 1 | 488        | 202.7  | 253.3          | 440   | 181.3          | 226.7          | 392        | 160            | 200            |   |
|   | 487        | 202.2  | 252.8          | 439   | 180.9          | 226.1          | 391        | 159.6          | 199.4          |   |
| - | 486        | 201.8  | 252.2          | 438   | 180.4          | 225.6          | 390        | 159.1          | 198.9          |   |
| 1 | 485        | 201.3  | 251.7          | 437   | 180            | 225            | 389        | 158.7          | 198.3          |   |
| 1 | 484        | 200.9  | 251.1          | 436   | 179.6          | 224.4          | § 388      | 158.2          | 197.8          |   |
|   | 483        | 200.4  | 250.6          | 435   | 179.1          | 223.9          | 387        | 157.8          | 197.2          |   |
| 1 | 482        | 200    | 250            | 434   | 178.7          | 223.3          | 386        | 157.3          | 196.7          |   |
| 1 | 481        | 199.6  | 249.4          | 433   | 178.2          | 222.8          | 385        | 156.9          | 196.1          |   |
|   | 480        | 199.1  | 248.9          | 432   | 177.8          | 222.2          | 384        | 156.4          | 195.6          | ı |
|   | 479        | 198.7  | 248.3          | 431   | 177.3          | 221.7          | 383        | 156            | 195            |   |
|   | 478        | 198.2  | 247.8          | 430   | 176.9          | 221.1          | 382        | 155.6          | 194.4          |   |
|   | 477        | 197.8  | 247.2          | 429   | 176.4          | 220.6          | 381        | 155.1          | 193.9          |   |
|   | 476<br>475 | 197.3  | 246·7<br>246·1 | 428   | 176<br>175·6   | 220<br>219·4   | 380        | 154.7          | 193.3          |   |
|   | 474        | 196.4  | 245.6          | 427   |                |                | 379        | 154.2          | 192.8          | ı |
|   | 474        | 196 4  | 245            | 425   | 175·1<br>174·7 | 218·9<br>218·3 | 378<br>377 | 153.8          | 192.2          |   |
|   | 472        | 195.6  | 244.4          | 424   | 174.7          | 217.8          | 376        | 153·3<br>152·9 | 191·7<br>191·1 |   |
|   | 471        | 195.1  | 243.9          | 423   | 173.8          | 217.2          | 375        | 152.4          | 190.6          | l |
|   | 470        | 194.7  | 243 3          | 422   | 173.3          | 216.7          | 374        | 152 4          | 190            |   |
| ı | 469        | 194.2  | 242.8          | 421   | 172.9          | 216.1          | 373        | 151.6          | 189.4          |   |
| 1 | 468        | 193.8  | 242.2          | 420   | 172.4          | 215.6          | 372        | 151.1          | 188.9          |   |
| 1 | 467        | 193.3  | 241.7          | 419   | 172            | 215            | 371        | 150.7          | 188.3          |   |
|   | 466        | 192.9  | 241.1          | 418   | 171.6          | 214.4          | 370        | 150.2          | 187.8          |   |
|   | 465        | 192.4  | 240.6          | 417   | 171.1          | 213.9          | 369        | 149.8          | 187.2          |   |
|   | 464        | 192    | 240            | 416   | 170.7          | 213.3          | 368        | 149.3          | 186.7          |   |
| 1 | 463        | 191.6  | 239.4          | 415   | 170.2          | 212.8          | 367        | 148.9          | 186.1          |   |
|   | 462        | 191.1  | 238.9          | 414   | 169.8          | 212.2          | 366        | 148.4          | 185.6          | l |
|   | 461        | 190.7  | 238.3          | 413   | 169.3          | 211.7          | 365        | 148            | 185            | l |
|   | 460        | 190.2  | 237.8          | 412   | 168.9          | 211.1          | 364        | 147.6          | 184.4          | ı |
| 1 | 459        | 189.8  | 237.2          | 411   | 168.4          | 210.6          | 363        | 147.1          | 183.9          | ı |
|   | 458        | 189.3  | 236.7          | 410   | 168            | 210            | 362        | 146.7          | 183.3          |   |
|   | 457        | 188.9  | 236.1          | 409   | 167.6          | 209.4          | 361        | 146.2          | 182.8          |   |
| 1 | 456        | 188.4  | 235.6          | 408   | 167.1          | 208.9          | 360        | 145.8          | 182.2          | - |
|   | 455        | 188    | 235            | 407   | 166.7          | 208.3          | 359        | 145.3          | 181.7          |   |
|   | 454        | 187.6  | 234.4          | 406   | 166.2          | 207.8          | 358        | 144.9          | 181.1          |   |
|   | 453        | 187.1  | 233.9          | 405   | 165.8          | 207.2          | 357        | 144.4          | 180.6          |   |
| Į |            |        |                | 1     |                |                |            |                |                | J |

Conversion of the different Thermometric Scales.

Table I,—continued.

| Ī  | FAHR.             | Reaum.         | Cent.          | FA H       | Reaum.         | Cent.          | FAHR.      | Reaum.       | Cent.          |
|----|-------------------|----------------|----------------|------------|----------------|----------------|------------|--------------|----------------|
| [- | 356               | 144            | 180            | 308        | 122.7          | 153.3          | 260        | 101.3        | 126.7          |
|    | 355               | 143.6          | 179 4          | 307        | 122.2          | 152.8          | 259        | 100.9        | 126.1          |
|    | 354               | 143.1          | 178.9          | 306        | 121.8          | 152.2          | 258        | 100.4        | 125.6          |
|    | 353               | 142.7          | 178.3          | 305        | 121.3          | 151.7          | 257        | 100          | 125            |
|    | 352               | 142.2          | 177.8          | 304        | 120.9          | 151.1          | 256        | 99.6         | 124.4          |
|    | 351               | 141.8          | 177.2          | 303        | 120.4          | 150.6          | 255        | 99.1         | 123.9          |
|    | 350               | 141.3          | 176.7          | 302        | 120            | 150            | 254        | 98.7         | 123.3          |
| 1  | 349               | 140.9          | 176.1          | 301        | 119.6          | 149.4          | 253        | 98.2         | 122.8          |
|    | 348               | 140.4          | 175.6          | 300        | 119.1          | 148.9          | 252        | 97.8         | 122.2          |
|    | 347               | 140            | 175            | 299        | 118.7          | 148.3          | 251        | 97.3         | 121.7          |
|    | 346               | 139.6          | 174.4          | 298        | 118.2          | 147.8          | 250        | 96.9         | 121.1          |
|    | 345               | 139.1          | 173.9          | 297        | 117.8          | 147.2          | 249        | 96.4         | 120.6          |
| 1  | 344               | 138.7          | 173.3          | 296        | 117.3          | 146.7          | 248        | 96           | 120            |
|    | 343               | 138.2          | 172.8          | 295        | 116.9          | 146.1          | 247        | 95.6         | 119.4          |
| 1  | 342               | 137.8          | 172.2          | 294        | 116.4          | 145.6          | 246        | 95.1         | 118.9          |
|    | 341               | 137.3          | 171.7          | 293        | 116            | 145            | 245        | 94.7         | 118.3          |
|    | 340               | 136.9          | 171.1          | 292        | 115.6          | 144.4          | 244        | 94.2         | 117.8          |
|    | 339               | 136.4          | 170.6          | 291        | 115.1          | 143.9          | 243        | 93.8         | 117.2          |
|    | 338               | 136            | 170            | 290        | 114.7          | 143.3          | 242        | 93.3         | 116.7          |
|    | 337               | 135.6          | 169.4          | 289        | 114.2          | 142.8          | 241        | 92.9         | 116.1          |
|    | 336               | 135.1          | 168.9          | 288        | 113.8          | 142.2          | 240        | 92.4         | 115.6          |
|    | 335               | 134.7          | 168.3          | 287        | 113.3          | 141.7          | 239        | 92           | 115            |
|    | 334               | 134.2          | 167.8          | 286        | 112.9          | 141.1          | 238        | 91.6         | 114.4          |
|    | 333               | 133.8          | 167.2          | 285        | 112.4          | 140.6          | 237        | 91.1         | 113.9          |
|    | 332               | 133.3          | 166.7          | 284        | 112            | 140            | 236        | 90.7         | 113.3          |
|    | 331               | 132.9          | 166.1          | 283        | 111.6          | 139.4          | 235        | 90.2         | 112.8          |
| 1  | 330               | 132.4          | 165.6          | 282        | 111.1          | 138.9          | 234        | 89.8         | 112.2          |
|    | 329               | 132            | 165            | 281        | 110.7          | 138.3          | 233        | 89.3         | 111.7          |
| 1  | 328               | 131.6          | 164.4          | 280        | 110.2          | 137.8          | 232        | 88.9         | 111.1          |
| 1  | 327               | 131.1          | 163.9          | 279        | 109.8          | 137.2          | 231        | 88.4         | 110.6          |
| ١  | 326               | 130.7          | 163.3          | 278        | 109.3          | 136·7<br>136·1 | 230        | 88           | 110            |
| 1  | 325               | 130.2          | 162.8          | 277        | 108·9<br>108·4 | 135.6          | 229<br>228 | 87·6<br>87·1 | 109.4          |
| 1  | 324               | 129.8          | 162.2          | 276<br>275 | 108 4          | 135            | 228        | 86.7         | 108.9          |
|    | $\frac{323}{322}$ | 129·3<br>128·9 | 161·7<br>161·1 | 275        | 107.6          | 134.4          | 226        | 86.2         | 108·3<br>107·8 |
|    | 321               | 128.4          | 160.6          | 273        | 107.1          | 133.9          | 225        | 85.8         | 107.8          |
|    | 320               | 128            | 160            | 272        | 106.7          | 133.3          | 224        | 85.3         | 106.7          |
|    | 319               | 127.6          | 159.4          | 271        | 106.2          | 132.8          | 223        | 84.9         | 106.1          |
| 1  | 318               | 127.1          | 158.9          | 270        | 105.8          | 132.2          | 222        | 84.4         | 105.6          |
|    | 317               | 126.7          | 158.3          | 269        | 105.3          | 131.7          | 221        | 84           | 105            |
| 1  | 316               | 126.2          | 157.8          | 268        | 104.9          | 131.1          | 220        | 83.6         | 104.4          |
|    | 315               | 125.8          | 157.2          | 267        | 104.4          | 130.6          | 219        | 83.1         | 103.9          |
|    | 314               | 125.3          | 156.7          | 266        | 104            | 130            | 218        | 82.7         | 103.3          |
|    | 313               | 124.9          | 156.1          | 265        | 103.6          | 129.4          | 217        | 82.2         | 102.8          |
|    | 312               | 124.4          | 155.6          | 264        | 103.1          | 128.9          | 216        | 81.8         | 102.2          |
| 1  | 311               | 124            | 155            | 263        | 102.7          | 128.3          | 215        | 81.3         | 101.7          |
|    | 310               | 123.6          | 154.4          | 262        | 102.2          | 127.8          | 214        | 80.9         | 101.1          |
|    | 309               | 123.1          | 153.9          | 261        | 101.8          | 127.2          | 213        | 80.4         | 100.6          |
| 1  |                   |                |                |            | 1              | 1              |            |              |                |

# Conversion of the different Thermometric Scales. Table I.—continued.

| FAHR.      | Reaum.       | Cent. | FAHR.      | Reaum.       | ent. | FAHR.    | Reaum.       | Cent. |
|------------|--------------|-------|------------|--------------|------|----------|--------------|-------|
| 212        | 80.0         | 100.0 | 164        | 58.7         | 73.3 | 116      | 37.3         | 46.7  |
| 211        | 79.6         | 99.4  | 163        | 58.2         | 72.8 | 115      | 36.9         | 46.1  |
| 210        | 79.1         | 98.9  | 162        | 57.8         | 72.2 | 114      | 36.4         | 45.6  |
| 209        | 78.7         | 98.3  | 161        | 57.3         | 71.7 | 113      | 36.0         | 45.0  |
| 209        | 78.2         | 97.8  | 160        | 56.9         | 71.1 | 112      | 35.6         | 44.4  |
| 207        | 77.8         | 97.2  | 159        | 56.4         | 70.6 | 111      | 35.1         | 43.9  |
| 206        | 77.3         | 96.7  | 158        | 56.0         | 70.0 | 110      | 34.7         | 43.3  |
| 205        | 76.9         | 96.1  | 157        | 55.6         | 69.4 | 109      | 34.2         | 42.8  |
| 203        | 76.4         | 95.6  | 156        | 55.1         | 68.9 | 108      | 33.8         | 42.2  |
| 204        | 76.0         | 95.0  | 155        | 54.7         | 68.3 | 107      | 33.3         | 41.7  |
|            |              | 94.4  | 154        | 54.2         | 67.8 | 106      | 32.9         | 41.1  |
| 202        | 75.6         | 93.9  | 153        | 53.8         | 67.2 | 105      | 32.4         | 40.6  |
| 201        | 75·1<br>74·7 | 93.3  | 152        | 53.3         | 66.7 | 103      | 32.0         | 40.0  |
| 200        | 74.2         | 92.8  | 151        | 52.9         | 66.1 | 103      | 31.6         | 39.4  |
| 199        |              | 92.2  | 150        | 52.4         | 65.6 | 103      | 31.1         | 38.9  |
| 198        | 73.8         | 91.7  | 149        | 52.0         | 65.0 | 101      | 30.7         | 38.3  |
| 197        | 73.3         | 91.1  | 148        | 51.6         | 64.4 | 100      | 30.2         | 37.8  |
| 196        | 72.9         | 90.6  | 147        |              | 63.9 | 99       | 29.8         |       |
| 195        | 72.4         |       | 146        | 51·1<br>50·7 | 63.3 | 98       | 29.3         | 37.2  |
| 194        | 72.0         | 90.0  |            | 50.2         | 62.8 | 97       | 28.9         | 36.7  |
| 193        | 71.6         | 89.4  | 145        |              |      |          | 28.4         | 36.1  |
| 192        | 71.1         | 88.3  | 144        | 49.8         | 62.2 | 96       | 28.0         | 35.6  |
| 191        | 70.7         |       | 143        |              | 61.1 | 95       | 27.6         | 35.0  |
| 190        | 70.2         | 87.8  | 142        | 48.9         |      | 94       |              | 34.4  |
| 189        | 69.8         | 87.2  | 141        | 48.4         | 60.6 | 93       | 27.1         | 33.9  |
| 188        | 69.3         | 86.7  | 140        | 48.0         | 60.0 | 92       | 26.7         | 33.3  |
| 187        | 68.9         | 86.1  | 139        | 47.6         | 59.4 | 91       | 26.2         | 32.8  |
| 186        | 68.4         | 85.6  | 138        | 47.1         | 58.9 | - 90     | 25.8         | 32.2  |
| 185        | 68.0         | 85.0  | 137        | 46.7         | 58.3 | 89       | 25.3         | 31.7  |
| 184        | 67.6         | 84.4  | 136        | 46.2         | 57.8 | 88       | 24.9         | 31.1  |
| 183        | 67.1         | 83.9  | 135        | 45.8         | 57.2 | 87       | 24.4         | 30.6  |
| 182        | 66.7         | 83.3  | 134        | 45.3         | 56.7 | 86       | 24.0         | 30.0  |
| 181        | 66.2         | 82.8  | 133        | 44.9         | 56.1 | 85       | 28 6         | 29.4  |
| 180        | 65.8         | 82.2  | 132        | 44.4         | 55.6 | 84       | 23.1         | 28.9  |
| 179        | 65.3         | 81.7  | 131        | 44.0         | 55.0 | 83       | 22.7         | 28.3  |
| 178        | 64.9         | 81.1  | 130<br>129 | 43.6         | 54.4 | 82       | 22.2         | 27.8  |
| 177        | 64.4         | 80.6  | 129        | 43.1         | 53.3 | 81 80    | 21.8         | 27.2  |
| 176        | 64.0         | 80.0  | 128        | 42.2         | 52.8 | 79       | 21.3         | 26.7  |
| 175<br>174 | 63.6         | 79.4  | 126        | 41.8         | 52.2 | 79       | 20.9         | 26.1  |
|            |              | 78.3  | 125        | 41.3         | 51.7 | 77       |              |       |
| 173<br>172 | 62.7         | 77.8  | 123        | 40.9         | 51.1 |          | 20.0         | 25.0  |
| 172        | 62.2         | 77.2  | 124        | 40.4         | 50.6 | 76<br>75 | 19.6         | 24.4  |
| 170        |              |       | 123        | 40.0         |      |          |              | 23.9  |
|            |              | 76.7  | 122        | 39.6         | 50.0 | 74       | 18.7         | 23.3  |
| 169        |              |       | 121        | 39.0         | 49.4 | 73<br>72 | 18·2<br>17·8 | 22.8  |
| 168        |              |       | 119        |              |      |          | 17.8         | 22.2  |
| 167        |              |       |            | 38.7         | 48.3 | 71       |              | 21.7  |
| 166<br>165 |              |       | 118        | 38.2         | 47.8 | 70       | 16.9         | 21.1  |
| 100        | 99.1         | 19.9  | 111        | 1 31.8       | 41.7 | 09       | 16.4         | 20.6  |
| -          |              |       | -          |              |      |          |              | -     |

## Conversion of the different Thermometric Scales. Table I.—continued.

| FAHR.                                                                                                                | Reaum.                                                                                                                                                        | Cent.                                                                                                                                                      | FAHR.                                                                                                                | Reaum.                                                                                                                                                                     | Cent.                                                                                                                                                                                                | FAHR.                                                                                        | Reaum.                                                                                                                                      | Cent.                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 68<br>67<br>66<br>65<br>64<br>63<br>62<br>61<br>60<br>59<br>58<br>57<br>56<br>55<br>54<br>53<br>52<br>51<br>50<br>49 | 16·0<br>15·6<br>15·1<br>14·7<br>14·2<br>13·8<br>13·3<br>12·9<br>12·4<br>12·0<br>11·0<br>11·1<br>10·7<br>10·2<br>9·8<br>9·3<br>8·9<br>8·4<br>8·0<br>7·6<br>7·1 | 20·0<br>19·4<br>18·9<br>18·3<br>17·8<br>17·8<br>16·1<br>15·6<br>15·6<br>14·4<br>13·9<br>13·3<br>12·8<br>12·8<br>11·7<br>11·1<br>10·6<br>10·0<br>9·4<br>8·9 | 34<br>33<br>32<br>31<br>30<br>29<br>28<br>27<br>26<br>25<br>24<br>32<br>22<br>21<br>20<br>19<br>18<br>17<br>16<br>15 | 0.9<br>0.9<br>0.0<br>- 0.4<br>- 0.9<br>- 1.3<br>- 1.8<br>- 2.2<br>- 2.7<br>- 3.1<br>- 3.6<br>- 4.0<br>- 4.4<br>- 4.9<br>- 5.3<br>- 6.2<br>- 6.7<br>- 7.1<br>- 7.6<br>- 8.0 | 1:1<br>0:6<br>0:0<br>0:0<br>- 0:6<br>- 1:1<br>- 1:7<br>- 2:2<br>- 2:8<br>- 3:3<br>- 3:9<br>- 4:4<br>- 5:0<br>- 5:6<br>- 6:1<br>- 6:1<br>- 6:7<br>- 7:2<br>- 7:8<br>- 8:3<br>- 8:9<br>- 9:5<br>- 10:0 | 0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 | Reaum.  -14·2 -14·7 -15·1 -15·6 -16·0 -16·4 -16·9 -17·3 -17·8 -18·2 -18·2 -18·7 -19·1 -19·6 -20·0 -20·4 -20·9 -21·3 -21·8 -22·2 -22·7 -23·1 | Cent.  -17.8 -18.3 -18.9 -19.4 -20.0 -20.6 -21.1 -21.7 -22.2 -22.8 -23.3 -23.9 -24.4 -25.0 -26.6 -26.1 -26.7 -27.2 -27.8 -28.8 -28.9 |
| 49                                                                                                                   | 7.6                                                                                                                                                           | 9.4                                                                                                                                                        | 15                                                                                                                   | - 7.6                                                                                                                                                                      | - 9.5                                                                                                                                                                                                | -19                                                                                          | - 22.7                                                                                                                                      | - 28.3                                                                                                                               |

# Conversion of the different Thermometric Scales. Table II.

| CENT. | Reaum. | Fahr. | CENT. | Reaum. | Fahr. | CENT. | Reaum. | Fahr. |
|-------|--------|-------|-------|--------|-------|-------|--------|-------|
| 260   | 208    | 500   | 252   | 201.6  | 485.6 | 244   | 195·2  | 471·2 |
| 259   | 207·2  | 498·2 | 251   | 200.8  | 483.8 | 243   | 194·4  | 469·4 |
| 258   | 206·4  | 496·4 | 250   | 200    | 482   | 242   | 193·6  | 467·6 |
| 257   | 205·6  | 494·6 | 249   | 199.2  | 480.2 | 241   | 192·8  | 465·8 |
| 256   | 204·8  | 492·8 | 248   | 198.4  | 478.4 | 240   | 192    | 464   |
| 255   | 204    | 491   | 247   | 197.6  | 476.6 | 239   | 191·2  | 462·2 |
| 254   | 203·2  | 489·2 | 246   | 196·8  | 474.8 | 238   | 190·4  | 460·4 |
| 253   | 202·4  | 487·4 | 245   | 196    | 473   | 237   | 189·6  | 458·6 |

## Conversion of the different Thermometric Scales. Table II.—continued.

| CENT. | Reaum. | Fahr. | CENT. | Reaum. | Fahr. | CENT. | Reaum. | Fahr. |
|-------|--------|-------|-------|--------|-------|-------|--------|-------|
| 236   | 188.8  | 456.8 | 188   | 150.4  | 370.4 | 140   | 112    | 284   |
| 235   | 188    | 455   | 187   | 149.6  | 368.6 | 139   | 111.2  | 282.2 |
| 234   | 187.2  | 453.2 | 186   | 148.8  | 366.8 | 138   | 110.4  | 280.4 |
| 233   | 186.4  | 451.4 | 185   | 148    | 365   | 137   | 109.6  | 278.6 |
| 232   | 185.6  | 449.6 | 184   | 147.2  | 363.2 | 136   | 108.8  | 276.8 |
| 231   | 184.8  | 447.8 | 183   | 146.4  | 361.4 | 135   | 108    | 275   |
| 230   | 184    | 446   | 182   | 145.6  | 359.6 | 134   | 107.2  | 273.2 |
| 229   | 183.2  | 444.2 | 181   | 144.8  | 357.8 | 133   | 106.4  | 271.4 |
| 228   | 182.4  | 442.4 | 180   | 144    | 356   | 132   | 105.6  | 269.6 |
| 227   | 181.6  | 440.6 | 179   | 143.2  | 354.2 | 131   | 104.8  | 267.8 |
| 226   | 180.8  | 438.8 | 178   | 142.4  | 352.4 | 130   | 104    | 266   |
| 225   | 180    | 437   | 177   | 141.6  | 350.6 | 129   | 103.2  | 264.2 |
| 224   | 179.2  | 435.2 | 176   | 140.8  | 348.8 | 128   | 102.4  | 262.4 |
| 223   | 178.4  | 433.4 | 175   | 140    | 347   | 127   | 101.6  | 266.6 |
| 222   | 177.6  | 431.6 | 174   | 139.2  | 345.2 | 126   | 100.8  | 258.8 |
| 221   | 176.8  | 429.8 | 173   | 138.4  | 343.4 | 125   | 100 3  | 257   |
| 220   | 176    | 428   | 172   | 137.6  | 341.6 | 124   | 99.2   | 255.2 |
| 219   | 175.2  | 426.2 | 171   | 136.8  | 339.8 | 123   | 98.4   | 253 4 |
| 218   | 174.4  | 424.4 | 170   | 136    | 338   | 122   | 97.6   | 251.6 |
| 217   | 173.6  | 422.6 | 169   | 135.2  | 336.2 | 121   | 96.8   | 249.8 |
| 216   | 172.8  | 420.8 | 168   | 134.4  | 334.4 | 120   | 96     | 248   |
| 215   | 172    | 419   | 167   | 133.6  | 332.6 | 119   | 95.2   | 246.2 |
| 214   | 171.2  | 417.2 | 166   | 132.8  | 330.8 | 118   | 94.4   | 244.4 |
| 213   | 170.4  | 415.4 | 165   | 132    | 329   | 117   | 93.6   | 242.6 |
| 212   | 169.6  | 413.6 | 164   | 131.2  | 327.2 | 116   | 92.8   | 240.8 |
| 211   | 168.8  | 411.8 | 163   | 130.4  | 325.4 | 115   | 92     | 239   |
| 210   | 168    | 410   | 162   | 129.6  | 323.6 | 114   | 91.2   | 237.2 |
| 209   | 167.2  | 408.2 | 161   | 128.8  | 321.8 | 113   | 90.4   | 235.4 |
| 208   | 166.4  | 406.4 | 160   | 128    | 320   | 112   | 89.6   | 233.6 |
| 207   | 165.6  | 404.6 | 159   | 127.2  | 318.2 | 111   | 88.8   | 231.8 |
| 206   | 164.8  | 402.8 | 158   | 126.4  | 316.4 | 110   | 88     | 230   |
| 205   | 164    | 401   | 157   | 125.6  | 314.6 | 109   | 87.2   | 228.2 |
| 204   | 163.2  | 399.2 | 156   | 124.8  | 312.8 | 108   | 86.4   | 226.4 |
| 203   | 162.4  | 397.4 | 155   | 124    | 311   | 107   | 85.6   | 224.6 |
| 202   | 161.6  | 395.6 | 154   | 123.2  | 309.2 | 106   | 84.8   | 222.8 |
| 201   | 160.8  | 393.8 | 153   | 122.4  | 307.4 | 105   | 84     | 221   |
| 200   | 160    | 392   | 152   | 121.6  | 305.6 | 104   | 83.2   | 219.2 |
| 199   | 159.2  | 390.2 | 151   | 120.8  | 303.8 | 103   | 82.4   | 217.4 |
| 198   | 158.4  | 388.4 | 150   | 120    | 302   | 102   | 81.6   | 215.6 |
| 197   | 157.6  | 386.6 | 149   | 119.2  | 300.2 | 101   | 80.8   | 213.8 |
| 196   | 156.8  | 384.8 | 148   | 118.4  | 298.4 | 100   | 80     | 212   |
| 195   | 156    | 383   | 147   | 117.6  | 296.6 | 99    | 79.2   | 210.2 |
| 194   | 155.2  | 381.2 | 146   | 116.8  | 294.8 | 98    | 78.4   | 208.4 |
| 193   | 154.4  | 379.4 | 145   | 116    | 293   | 97    | 77.6   | 206.6 |
| 192   | 153.6  | 377.6 | 144   | 115.2  | 291.2 | 96    | 76.8   | 204.8 |
| 191   | 152.8  | 375.8 | 143   | 114.4  | 289.4 | 95    | 76     | 203   |
| 190   | 152    | 374   | 142   | 113.6  | 287.6 | 94    | 75.2   | 201.2 |
| 189   | 151.2  | 372.2 | 141   | 112.8  | 285.8 | 93    | 74.4   | 199.4 |
|       |        |       |       |        |       |       |        | 1     |

Conversion of the different Thermometric Scales.

Table II.—continued.

| CENT.    | Reaum.     | - Fahr.      | CENT.    | Reaum.      | Fahr.      | CENT.        | Reaum.          | Fahr.          |
|----------|------------|--------------|----------|-------------|------------|--------------|-----------------|----------------|
| 92       | 73.6       | 197.6        | 49       | 39.2        | 120.2      | 6            | 4.8             | 42.8           |
| 91       | 72.8       | 195.8        | 48       | 38.4        | 118.4      | 5            | 4               | 41             |
| 90       | 72         | 194          | 47       | 37.6        | 116.6      | 4            | 3.2             | 39.2           |
| 89       | 71.2       | 192.2        | 46       | 36.8        | 114.8      | 3            | 2.4             | 37.4           |
| 88       | 70.4       | 190.4        | 45       | 36          | 113        | 2            | 1.6             | 35.6           |
| 87       | 69.6       | 188.6        | 44       | 35.2        | 111.2      | 1            | 0.8             | 33.8           |
| 86       | 68.8       | 186.8        | 43       | 34.4        | 109.4      | 0            | 0               | 32             |
| 85       | 68         | 185          | 42       | 33.6        | 107.6      | -1           | -0.8            | 30.2           |
| 84       | 67.2       | 183.2        | 41       | 32.8        | 105.8      | -2           | -1.6            | 28.4           |
| 83       | 66.4       | 181.4        | 40       | 32          | 104        | -3           | -2.4            | 26.6           |
| 82       | 65.6       | 179.6        | 39       | 31.2        | 102.2      | - 4          | -3.2            | 24.8           |
| 81       | 64.8       | 177.8        | 38       | 30.4        | 100.4      | - 5          | -4              | 23             |
| 80       | 64         | 176          | 37       | 29.6        | 98.6       | - 6          | -4.8            | 21.2           |
| 79       | 63.2       | 174.2        | 36       | 28.8        | 96.8       | -7           | -5.6            | 19.4           |
| 78       | 62.4       | 172.4        | 35       | 28          | 95         | -8           | -6.4            | 17.6           |
| 77       | 61.6       | 170.6        | 34       | 27.2        | 93.2       | - 9          | -7.2            | 15.8           |
| 76       | 60.8       | 168.8        | 33       | 26.4        | 91.4       | -10          | -8              | 14             |
| 75       | 60         | 167          | 32       | 25.6        | 89.6       | -11          | -8.8            | 12.2           |
| 74       | 59.2       | 165.2        | 31       | 24.8        | 87.8       | -12          | -9.6            | 10.4           |
| 73       | 58.4       | 163.4        | 30       | 24          | 86         | -13          | -10.4           | 8.6            |
| 72       | 57.6       | 161.6        | 29       | 23.2        | 84.2       | -14          | -11.2           | 6.8            |
| 71       | 56.8       | 159.8        | 28       | 22.4        | 82.4       | -15          | -12             | 5              |
| 70       | 56         | 158          | 27       | 21.6        | 80.6       | -16          | -12.8           | 3.2            |
| 69       | 55.2       | 156.2        | 26       | 20.8        | 78.8       | -17          | -13.6           | 1.4            |
| 68       | 54.4       | 154.4        | 25       | 20          | 77         | -18          | -14.4           | - 0.4          |
| 67       | 53.6       | 152.6        | 24       | 19.2        | 75.2       | -19          | -15.2           | - 2.2          |
| 66       | 52.8       | 150.8        | 23       | 18.4        | 73.4       | - 20         | -16             | -4             |
| 65       | 52         | 149          | 22       | 17.6        | 71.6       | - 21         | -16.8           | -5.8           |
| 64       | 51.2       | 147.2        | 21       | 16.8        | 69.8       | - 22         | -17.6           | -7.6           |
| 63       | 50.4       | 145.4        | 20       | 16          | 68         | - 23         | -18.4           | -9.4           |
| 62       | 49.6       | 143.6        | 19       | 15.2        | 66.2       | -24          | -19.2           | -11.2          |
| 61       | 48.8       | 141.8        | 18       | 14.4        | 64.4       | - 25         | - 20            | -13            |
| 60       | 48         | 140          | 17       | 13.6        | 62.6       | -26          | -20.8           | -14.8          |
| 59       | 47.2       | 138.2        | 16       | 12.8        | 60.8       | - 27         | - 21.6          | -16.6          |
| 58       | 46.4       | 136.4        | 15<br>14 | 12<br>11·2  | 59<br>57·2 | $-28 \\ -29$ | -22·4<br>-23·2  | -18.4 $-20.2$  |
| 57       | 45.6       | 134.6        |          |             | 55.4       | -29<br>-30   | - 24            | - 20 2<br>- 22 |
| 56<br>55 | 44·8<br>44 | 132·8<br>131 | 13<br>12 | 10·4<br>9·6 | 53.6       | -30          | -24             | -23·8          |
| 54       | 43.2       | 129.2        | 11       | 8.8         | 51.8       | - 32         | -24.8 $-25.6$   | -25.6<br>-25.6 |
| 53       | 42.4       | 129 2        | 10       | 8           | 50         | - 32         | -26.4           | -25.6 $-27.4$  |
| 52       | 41.6       | 125.6        | 9        | 7.2         | 48.2       | -34          | $-204 \\ -27.2$ | -29.2          |
| 51       | 40.8       | 123.8        | 8        | 6.4         | 46.4       | -35          | -21 2           | - 31           |
| 50       | 40 0       | 122          | 7        | 5.6         | 44.6       | -00          | - 20            | - 01           |
| 30       | 40         | 144          | •        | 0.0         | 110        |              | 40              |                |

BUTTER ANALYSIS. 5 Grams Butter Fat being taken for Saponification.

| c.c. $\frac{N}{2}$ acid used (1 c.c.= 028 gram KHO.). | Grams of KHO required for 1000 grams of Fat. | Saponification<br>Equivalent.* | % Margarine.                    |
|-------------------------------------------------------|----------------------------------------------|--------------------------------|---------------------------------|
|                                                       | + ·1 c.c. = + 0·6                            |                                | $+ \cdot 1 \text{ c.c.} = -1.8$ |
| 34.9                                                  | 195.4                                        | 286.5                          | 100.                            |
| 35.0                                                  | 196.0                                        | 285.7                          | 98.3                            |
| •2                                                    | 197.1                                        | 284.1                          | 94.8                            |
| •4                                                    | 198.2                                        | 282.5                          | 91.3                            |
| •6                                                    | 199.4                                        | 280 9                          | 87.5                            |
| •8                                                    | 200.5                                        | 279.3                          | 84.0                            |
| 36.0                                                  | 201.6                                        | 277.8                          | 80.5                            |
| •2                                                    | 202.7                                        | 276.2                          | 77.0                            |
| •4                                                    | 203.8                                        | 274.7                          | 73.5                            |
| •6                                                    | 205.0                                        | 273.2                          | 69.7                            |
| ·8                                                    | 206.1                                        | 271.7                          | 66.3                            |
| 37.0                                                  | 207.2                                        | 270.3                          | 62.8                            |
| .2                                                    | 208.3                                        | 268.8                          | 59.3                            |
| •4                                                    | 209.4                                        | 267.4                          | 55.8                            |
| •6                                                    | 210.6                                        | 265.9                          | 52.0                            |
| •8                                                    | 211.7                                        | 264.5                          | 48.5                            |
| 38.0                                                  | 212:8                                        | 263.2                          | 45.0                            |
| •2                                                    | 213.9                                        | 261'8                          | 41.5                            |
| •4                                                    | 215.0                                        | 260.5                          | 38.0                            |
| •6                                                    | 216.2                                        | 259.0                          | 34.2                            |
| •8                                                    | 217.3                                        | 257.7                          | 30.7                            |
| 39.0                                                  | 218.4                                        | 256.4                          | 27.3                            |
| •2                                                    | 219.5                                        | 255.1                          | 23.8                            |
| •4                                                    | 220.6                                        | 253.9                          | 20.3                            |
| •6                                                    | 221.8                                        | 252.5                          | 16.5                            |
| •8                                                    | 222.9                                        | 251.2                          | 13.0                            |
| 40.0                                                  | 224.0                                        | 250.0                          | 9.5                             |
| •2                                                    | 225.1                                        | 248.8                          | 6.0                             |
| •4                                                    | 226.2                                        | 247.6                          | 2.5                             |
| .6                                                    | 227.4                                        | 246.8                          |                                 |
| •8                                                    | 228.5                                        | 245.1                          |                                 |
| 41.0                                                  | 229.6                                        | 243.9                          |                                 |
| •2                                                    | 230.7                                        | 242.7                          |                                 |
| •4                                                    | 231.8                                        | 241.6                          |                                 |
| •6                                                    | 233.0                                        | 240.3                          |                                 |

<sup>\*</sup> That is, the number of grams of fat that would be saponified by 1 litre of a normal solution of any alkali. It is the quotient obtained by dividing 56000 by "grams of KHO required by 1000 grams of fat."

† The figures given in this column are useful approximate values, calculated from Koettstorfer's formula,  $x=3^{\circ}17$  (227-n), where x= percentage of margarine sought, and n= number of grams of KHO required for 1000 grams of fat. According to Koettstorfer n may lie between 2324 and 221.5 for butter, the mean being 227, whilst for margarine the value may be taken to be 195.5.

BUTTER ANALYSIS.
5 Grams Butter Fat being taken.

| c.c.<br>N Alkali.                                                                              | °/, Soluble<br>or Volatile<br>Acids.*                                                                                                        | c.c.<br>N Alkali.                                                                         | °/. Soluble<br>or Volatile<br>Acids.                                                      | c.c.<br>N Alkali.                                                                         | °/. Soluble or Volatile Acids.                                                                                                               |
|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0<br>1.5<br>2.5<br>3.0<br>3.5<br>4.0<br>4.5<br>5.0<br>6.5<br>7.0<br>7.5<br>8.0<br>8.5<br>9.0 | 0·18<br>0·26<br>0·35<br>0·44<br>0·53<br>0·62<br>0·70<br>0·79<br>0·88<br>0·97<br>1·06<br>1·14<br>1·23<br>1·32<br>1·41<br>1·50<br>1·58<br>1·67 | 18·5 14·0 14·5 15·0 15·5 16·0 16·5 17·0 17·5 18·0 18·5 19·0 19·5 20·0 20·5 21·0 21·5 22·0 | 2:38 2:46 2:55 2:64 2:73 2:82 2:90 2:99 3:08 3:17 3:26 3:34 3:43 3:52 3:61 3:70 3:78 3:87 | 26·0 26·5 27·0 27·5 28·0 28·5 29·0 29·5 30·0 30·5 31·0 31·5 32·0 33·5 33·0 33·5 34·0 34·5 | 4:58<br>4:66<br>4:75<br>4:84<br>4:93<br>5:02<br>5:10<br>5:19<br>5:28<br>5:37<br>5:46<br>5:54<br>5:63<br>5:72<br>5:81<br>5:90<br>5:98<br>6:07 |
| 10.0<br>10.5<br>11.0                                                                           | 1.76<br>1.85<br>1.94                                                                                                                         | 22.5<br>23.0<br>23.5                                                                      | 3·96<br>4-05<br>4·14                                                                      | 35.0                                                                                      | 0.02                                                                                                                                         |
| 11.5<br>12.0<br>12.5<br>13.0                                                                   | 2:02<br>2:11<br>2:20<br>2:29                                                                                                                 | 24.0<br>24.5<br>25.0<br>25.5                                                              | 4·22<br>4·31<br>4·40<br>4·49                                                              | 0.3<br>0.4                                                                                | 0.04<br>0.05<br>0.07                                                                                                                         |
|                                                                                                |                                                                                                                                              |                                                                                           |                                                                                           |                                                                                           |                                                                                                                                              |

<sup>\*</sup> Calculated as Butyric Acid,  $C_4H_8O_2=88$ .





36.1

MILK ANALYSIS.

1035 gr. at any Temperature between 50° and 70°. Fah. (water=1000). 33.6 32.7 33.0 1033 32.0 1032 1031 0000040 1030 1029 28.0 1028 its sp. 1026 gr. of Milk at 60° Fah. from 1025 1024 1023 1022 Table to find the sp. 021 1020 01 02 03 4 4 70 0 7 80 0 0 Fah. 

at the temperature The observed sp. gr. is given at the top of each column, and the number in the column opposite to which the sp. gr. v Ex. 1.

23.0

21

100004000000

E gr. is 1028.6 at 63° F. becomes 1000 + (28.4 + 0.6) = 1029 at 60° was determined added to 1000 gives the sp. gr. at 60° F. Milk of which the sp. gr. is 1032 at 54° F. is 1031·3 at 60° F. the sp. ! of which ci

TABLE OF RECIPROCALS.

| No.         | Reciprocal. | No. | Reciprocal. | No. | Reciprocal. | No. | Reciprocal |
|-------------|-------------|-----|-------------|-----|-------------|-----|------------|
| 1           | 1           | 31  | .03226      | 61  | •01639      | 91  | .01099     |
| 2           | •5          | 32  | .03125      | 62  | .01613      | 92  | •01087     |
| 2 3         | *33333      | 33  | .03030      | 63  | 01587       | 93  | .01075     |
|             | •25         | 34  | .02941      | 64  | .01563      | 94  | .01064     |
| 4<br>5<br>6 | .2          | 35  | .02857      | 65  | .01539      | 95  | .01053     |
| 6           | 16667       | 36  | 02778       | 66  | .01515      | 96  | .01042     |
| 7           | 14286       | 37  | .02703      | 67  | .01493      | 97  | .01031     |
| 8           | 125         | 38  | .02632      | 68  | *01471      | 98  | .01020     |
| 9           | •11111      | 39  | .02564      | 69  | .01449      | 99  | .01010     |
| 10          | •1          | 40  | .025        | 70  | .01429      | 100 | .01        |
| 11          | .09091      | 41  | 02439       | 71  | .01409      | 101 | .00990     |
| 12          | .08333      | 42  | .02381      | 72  | .01389      | 102 | .00980     |
| 13          | .07692      | 43  | .02326      | 73  | .01370      | 103 | .00971     |
| 14          | .07143      | 44  | .02273      | 74  | .01351      | 104 | .00962     |
| 15          | .06667      | 45  | *02222      | 75  | •01333      | 105 | .00952     |
| 16          | .0625       | 46  | .02174      | 76  | .01316      | 106 | .00943     |
| 17          | .05882      | 47  | .02128      | 77  | .01299      | 107 | .00935     |
| 18          | 05556       | 48  | .02083      | 78  | .01282      | 108 | .00926     |
| 19          | 05263       | 49  | .02041      | 79  | .01266      | 109 | .00917     |
| 20          | .05         | 50  | .02         | 80  | .0125       | 110 | .00909     |
| 21          | 04762       | 51  | 01961       | 81  | .01235      | 111 | .00901     |
| 22          | .04545      | 52  | *01923      | 82  | .01220      | 112 | .00893     |
| 23          | .04348      | 53  | .01887      | 83  | .01205      | 113 | .00885     |
| 24          | .04167      | 54  | .01852      | 84  | •01191      | 114 | .00877     |
| 25          | •04         | 55  | •01818      | 85  | .01177      | 115 | *00870     |
| 26          | .03846      | 56  | .01786      | 86  | .01163      | 116 | .00862     |
| 27          | .03704      | 57  | .01754      | 87  | .01149      | 117 | *00855     |
| 28          | .03571      | 58  | .01724      | 88  | .01136      | 118 | *00847     |
| 29          | .03448      | 59  | 01695       | 89  | .01124      | 119 | .00840     |
| 30          | .03333      | 60  | 01667       | 90  | •01111      | 120 | *00833     |

Ex. 1. 
$$\frac{100}{17} \times .01 = \frac{1}{17} = 0.05882$$
.

Ex. 2. 
$$\frac{100}{43} \times .02 = \frac{1}{43} \times 2 = .02326 \times 2 = 0.04652$$
.  
Ex. 3.  $\frac{100}{82} \times .005 = \frac{1}{82} \times \frac{1}{2} = \frac{0.0122}{2} = 0.0061$ .

Ex. 3. 
$$\frac{100}{82} \times .005 = \frac{1}{82} \times \frac{1}{2} = \frac{0.0122}{2} = 0.0061$$
.

GLYCERINE TABLE.

|   |                  |                          | H                        | 1                | 1                 | 1       |                   |
|---|------------------|--------------------------|--------------------------|------------------|-------------------|---------|-------------------|
|   | Per              | Sp. gr.<br>15° C. 59° F. | Sp. gr.<br>20° C. 68° F. | Per              | Sp. gr.<br>15° C. | Per     | Sp. gr.<br>15° C. |
|   | cent.<br>Glycer- |                          |                          | cent.<br>Glycer- |                   | Glycer- |                   |
|   | ine.             | 15° = 59°                | 20° = 68°                | ine.             | 15°.              | ine.    | 15°.              |
|   |                  | 1 1                      |                          |                  |                   |         |                   |
|   |                  |                          |                          |                  |                   |         |                   |
|   | 100              | 1.26596                  | 1.26348                  | 74               | 1.19583           | 40      | 1.10253           |
|   | 99               | 1.26335                  | 1.26085                  | 73               | 1.19309           | 35      | 1.08908           |
| - | 98               | 1.26072                  | 1.25822                  | 72               | 1.19035           | 30      | 1.07564           |
|   | 97               | 1.25809                  | 1.25560                  | 71               | 1.18761           | 25      | 1.06236           |
|   | 96               | 1.25547                  | 1.25297                  | 70               | 1.18487           | 20      | 1.04930           |
|   | 95               | 1.25285                  | 1.25034                  | 69               | 1.18212           | 15      | 1.03652           |
|   | 94               | 1.25021                  | 1.24771                  | 68               | 1.17937           | 10      | 1.02409           |
|   | 93               | 1.24756                  | 1.24508                  | 67               | 1 17662           | 5       | 1.01189           |
|   | 92               | 1.24487                  | 1.24246                  | 66               | 1.17387           |         |                   |
|   | 91               | 1.24217                  | 1.23983                  | 65               | 1.17113           |         |                   |
|   | 90               | 1.23945                  | 1.23720                  | 64               | 1.16837           |         |                   |
|   | 89               | 1.23673                  | 1.23449                  | 63               | 1.16561           |         | Sp. gr.           |
| i | 88               | 1.23400                  | 1.23178                  | 62               | 1.16286           |         | 20° C.            |
| 1 | 87               | 1.23128                  | 1.22907                  | 61               | 1.16011           |         | 20°               |
| 1 | 86               | 1.22855                  | 1.22636                  | 60               | 1.15737           |         |                   |
|   | 85               | 1.22583                  | 1.22365                  | 59               | 1.15462           |         |                   |
|   | 84               | 1.22310                  | 1.22094                  | 58               | 1.15187           |         |                   |
| 1 | 83               | 1.22038                  | 1.21823                  | 57               | 1.14912           | 70      | 1.18293           |
| 1 | 82               | 1.21766                  | 1.21552                  | 56               | 1.14637           | 60      | 1.15561           |
| 1 | 81               | 1.21493                  | 1.21281                  | 55               | 1.14362           | 50      | 1.12831           |
| 1 | 80               | 1.21221                  | 1.21010                  | 54               | 1.14088           | 40      | 1.10118           |
|   | 79               | 1.20949                  | 1.20737                  | 53               | 1.13814           | 30      | 1.07469           |
|   | 78               | 1.20677                  | 1.20464                  | 52               | 1.13539           | 20      | 1.04884           |
| 1 | 77               | 1.20404                  | 1.20190                  | 51               | 1.13265           | 10      | 1.02391           |
|   | 76               | 1.20131                  | 1.19917                  | 50               | 1.12990           |         |                   |
| 1 | 75               | 1.19857                  | 1.19644                  | 45               | 1.11618           |         | 61 23 7           |
| 1 |                  |                          | E I                      |                  |                   |         |                   |
| ' |                  |                          |                          |                  |                   |         |                   |

The above table is a combination of W. W. J. Nicol's excellent tables for the two temperatures above specified, as given in the *United States Dispensatory*, p. 653, and in Watts's *Dictionary of Chemistry* (most recent edition in each case). In the former work a complete table from 1-100°/<sub>2</sub> glycerine, at 15° C. is given.

The following formula is useful :-

sp. gr. of dilute glycerine—1.000 = % by weight of glycerine.

The divisor '00261 is more accurate, however, for mixtures containing between 30 and 60%, glycerine, and '0025 for those below 30%,

| Tempera-         | For use in<br>Instru           | Calibrating ments.            | For use with Standard Solutions.            |                                          |  |  |
|------------------|--------------------------------|-------------------------------|---------------------------------------------|------------------------------------------|--|--|
| ture ° C.        | Weight of 1<br>Litre of Water. | Volume of 1<br>Gram of Water. | Volume corresponding with 1 Litre at 15° C. | Volume of 1<br>c.c. reduced to<br>15° C. |  |  |
|                  | grams.                         | c.c.                          | c.c.                                        | c.c.                                     |  |  |
| 5                | 998.6                          | 1.0014                        | 998.3                                       | 1.0017                                   |  |  |
| 6                | "                              | "                             | •4                                          | 1.0016                                   |  |  |
| 6<br>7<br>8<br>9 | "                              | "                             | ·5<br>·7                                    | 1.0014                                   |  |  |
| 8                | "                              | "                             | .9                                          | 1.0013                                   |  |  |
| 10               | 998.5                          | 1.0015                        | 999.0                                       | 1.0011                                   |  |  |
| 11               | 998.9                          | 1.0019                        | 999.0                                       | 1.0010                                   |  |  |
| 12               | 998.4                          | 1.0016                        | •4                                          | 1.0008                                   |  |  |
| 13               | *3                             | 1.0017                        | .6                                          | 1.0004                                   |  |  |
| 14               | •2                             | 1.0018                        | *8                                          | 1.0004                                   |  |  |
| 15               | 1                              | 1.0019                        | 1000.0                                      | 1.0002                                   |  |  |
| 16               | 997.9                          | 1.0013                        | 1000 0                                      | 0.9998                                   |  |  |
| 17               | .8                             | 1.0022                        | •4                                          | 0.9996                                   |  |  |
| 18               | •7                             | 1.0023                        | .6                                          | 0.9994                                   |  |  |
| 19               | •5                             | 1.0025                        | •8                                          | 0.9992                                   |  |  |
| 20               | •3                             | 1.0027                        | 1001.1                                      | 0.9988                                   |  |  |
| 21               | •2                             | 1.0028                        | -3                                          | 0.9987                                   |  |  |
| 22               | 997.0                          | 1.0030                        | .6                                          | 0.9984                                   |  |  |
| 23               | 996.8                          | 1.0032                        | •8                                          | 0.9982                                   |  |  |
| 24               | .6                             | 1.0034                        | 1002.0                                      | 0.9980                                   |  |  |
| 25               | •3                             | 1.0037                        | •3                                          | 0.9977                                   |  |  |

## INDEX.

|                                               |   |     |     | P     | AGE  |
|-----------------------------------------------|---|-----|-----|-------|------|
| Acetic Acid in Beer, Value of,                |   |     |     |       | 60   |
| Albuminoids, Table for,                       |   |     | ."  |       | 71   |
| Alcohol Tables,                               |   |     | . 2 |       | 76   |
| Alcohol, Correction for Temperature,          |   |     |     | . = 3 | 80в  |
| Ammonia, sp. gr. Table,                       |   |     |     |       | 84   |
| Aqueous Vapour, Tension of,                   |   |     |     |       | 42   |
| Areas and Volumes of Bodies,                  | 7 |     |     |       | 39   |
| Atomic Weights,                               |   |     |     |       | 1    |
| Barometric Tables,                            |   |     |     |       | 54   |
| Baumé's Hydrometer                            |   |     |     |       | 75   |
| Bi-rotation,                                  |   |     |     |       | 62   |
| Butter Analysis Tables,                       |   | . = |     |       | 91   |
| Calibrating Instruments, Table for,           |   | . 1 |     |       | 96   |
| Chicory in Coffee,                            |   |     |     |       | 73   |
| Cupric reducing Power,                        |   |     |     |       | 63   |
| Data, Useful (Areas and Volumes of Bodies),   |   | 1.7 |     |       | 39   |
| Drams per lb. into Percentage, etc.,          |   |     |     |       | 41   |
| Factors, Various Useful,                      |   |     |     | 33A,  | 40   |
| Fehling's Solution,                           |   |     |     |       | 63   |
| Gases, Correction of Volumes for Temperature, |   |     |     |       | 55   |
| Gases, Weight of one Litre of Various, .      |   |     |     |       | 13   |
| Glycerine, sp. gr. Table,                     |   |     |     |       | 95   |
| Hardness of Water,                            |   |     |     |       | 47   |
| Hydrochloric Acid, sp. gr. Table,             |   |     |     |       | 81   |
| Indicators, Notes on,                         |   |     |     |       | 2    |
| Kjeldahl Table,                               |   |     |     |       | 72A  |
| Logarithms, Notes on,                         |   |     |     |       | 25   |
| Logarithms, Table of,                         |   |     |     |       | 28   |
| Mercury Vapour, Tension of,                   |   |     |     |       | 58   |
| Micron,                                       |   |     |     | 35 (n | ote) |
| Milk Analysis,                                |   |     |     |       | 93   |
| Multipliers required in Gravimetric Analysis, |   |     |     |       | 13   |
| Multipliers required in Volumetric Analysis,  |   |     |     |       | 22   |
|                                               |   |     |     |       |      |

## 98 (whole number 108) INDEX.

|                                        |           |      |             |      |    | PAGE   |
|----------------------------------------|-----------|------|-------------|------|----|--------|
| Nitrates in Water, Estimation of,      |           |      |             |      |    | 49     |
| Nitric Acid, sp. gr. Table,            | •         |      |             |      |    | 82     |
| Nitrogen into Ammonia                  |           |      |             |      |    | 71     |
| Nitrogen, Loss by Evaporation of I     | $NH_3$ wi | th S | $O_2$ , etc | ., - |    | 45-47  |
| Nitrogen, Reduction of c.c. to Gran    | ns, .     |      |             |      |    | 44     |
| Parts per 100,000 into Grains per C    | fallon,   |      |             |      |    | 50     |
| Percentage into Cwts. per Ton, etc.    | , .       |      |             |      |    | 40     |
| Percentage Composition of Compou       | nds,      |      |             |      |    | 4      |
| Phosphate Table,                       |           |      |             |      |    | 64     |
| Potash, sp. gr. Table,                 |           |      |             |      |    | 83     |
| Precipitating Powers of Reagents,      |           |      |             |      |    | 3      |
| Prescriptions, Signs used in,          |           |      |             |      |    | 38     |
| Proof Spirit,                          |           |      |             |      |    | 80     |
| Quinine,                               |           |      |             |      | 73 | , 73A  |
| Reciprocals,                           |           | 1    |             |      |    | 94     |
| Rectified Spirit,                      |           |      |             |      |    | 80     |
| Salt in Beer,                          |           |      |             |      |    | 60     |
| Soda, sp. gr. Table,                   |           |      |             |      | ٧. | 84     |
| Specific Gravity of Gases, Factors for | or,       |      |             |      |    | 39     |
| Specific Rotatory Power,               |           |      |             |      |    | 61     |
| Spirit Indication in Beer,             |           |      |             |      |    | 59     |
| Spirits, Rules for finding Dilution    | of,       |      |             |      |    | 80A    |
| Standard Solutions, Correction of V    |           | of.  | -           |      |    | 96     |
| Sulphuric Acid, sp. gr. Table, .       |           |      |             |      |    | 81     |
| Thermometric Tables,                   |           |      |             | H    |    | 84     |
| Twaddell's Hydrometer,                 |           |      |             |      |    | 39, 75 |
| Water Analysis, Calculation of Res     | ults of.  |      |             | Ċ    |    | 52     |
| Water, Volume and Density at diff      |           |      | eratur      | es.  |    | 53     |
| Water, Weight of 1 Cubic Inch, Fo      |           |      |             | ,    | •  | 34     |
| Weights and Massares                   | ,         |      | ,           |      |    | 22     |





















## 14 DAY USE

RETURN TO DESK FROM WHICH BORROWED

## LOAN DEPT.

This book is due on the last date stamped below, or on the date to which renewed.

Renewed books are subject to immediate recall.

| 7 Apr'60FK   |   |
|--------------|---|
|              |   |
| REC'D LD     |   |
| MAR 24 1960  |   |
| 2Jun'60VD    |   |
|              |   |
| REC'D L      |   |
| MAY 19 196   | 0 |
| 2Jun'61CK    |   |
| REC'D LD     |   |
| MAY 2 8 1961 |   |
|              |   |
|              |   |
|              |   |

LD 21A-50m-4,'59 (A1724s10)476B General Library University of California Berkeley 76101

