Катеты $a,\ b$ треугольника связаны с его гипотенузой c формулой $c^2=\ a^2+b^2$ (теорема Пифагора). Из теоремы Ферма следует, что уравнение

$$x^{4357} + y^{4357} = z^{4357}$$

не имеет решений в натуральных числах. Обозначение R^i_{jkl} для тензора кривизны было введено еще Эйнштейном. (Если у одной буквы есть как верхние, так и нижние индексы, то можно указать их в произвольном порядке) Можно также написать $R_j{}^i{}_{kl}$, хотя не всем это нравится. Неравенство $x+1/x\geq 2$ выполнено для всех x>0. $\pi\approx 3{,}14$

$$\frac{(a+b)^2}{4} - \frac{(a-b)^2}{4} = ab$$
$$\frac{1}{2} + \frac{x}{2} = \frac{1+x}{2}$$
$$1 + \left(\frac{1}{1-x^2}\right)^3$$

По общепринятому соглашению, $\sqrt[3]{x^3} = x$, но $\sqrt{x^2} = |x|$.

$$1 + \left(\frac{1}{1 - x^2}\right)^3$$

 $M=\{x\in A|x>0\}$ $e=\lim_{n o\infty}\left(1+\frac{1}{n}\right)^n$ f:X o Y Легко видеть, что $23^{1993}\equiv 1\pmod{11}.$ $a^{p-1}\equiv 1\pmod{p}$ $a^{p-1}\equiv 1\pmod{p}$ $f_*(x)=f(x)\mod{G}$

$$\sum_{i=1}^{n} n^2 = \frac{n(n+1)(2n+1)}{6}$$

Тот факт, что $\sum_{i=1}^{n}(2n-1)=n^2$, следует из формулы арифметической прогрессии. $\overline{\lim}_{n\to\infty}a_n=\inf_n\sup_{m\geq n}a_m$ $\mathcal{F}_x=\lim_{m\to\infty}\mathcal{F}(U)$

$$\int_0^1 x^2 dx = 1/3$$

$$\int\limits_{0}^{1} x^2 dx = 1/3$$

$$\prod_{i=1}^{n} i = n!$$

В школьных учебниках геометрии встречаются такие формулы, как $AB\|CD$. В университетских учебниках анализа часто пишут, что $\|A\|=\sup(|Ax|/|x|)$.