

Cryptographie et sécurité

Cours 1: sélectionner les algorithmes adéquats

Mickaël Bettinelli (mickael.bettinelli@univ-smb.fr)

Prérequis et objectifs

Connaissances nécessaire pour R4.C.08:

- Connaître et comprendre le fonctionnement du chiffrement symétrique et asymétrique (RSA)
- Comprendre le fonctionnement des fonctions de hachage

Connaissances et compétences à acquérir:

- Savoir sélectionner le bon algorithme en fonction de votre besoin
- Orchestrer des algorithmes de cryptographie pour sécuriser des communications
- Concevoir et implémenter une application sécurisée de partage de fichiers

Evaluation

A réaliser: 1 projet sur 5 séances.

Un rapport à rendre qui sera noté sur 3 critères:

- Sécuriser des fichiers (chiffrement symétrique) / 6 pts
- Sécuriser les communications (chiffrement asymétrique) / 8 pts
- Sécuriser le transfert de fichier (fonctions de hachage) / 6 pts

Evaluation

Contenu du rapport:

- Maximum 3 pages, pas de page de garde, pas de sommaire.
- Description des tâches réalisées
- Justification des technologies/algorithmes choisis
- Diagramme de classes de votre projet
- Instructions pour l'exécuter (comprenant les éventuels packages à installer)

Envoyer le rapport + le code dans une archive: https://forms.gle/jz784Zjv6Ef4tbeNA

Sommaire de ce cours

- 1. Chiffrements symétriques vs chiffrements asymétriques
- Orchestration des méthodes de chiffrements pour une application communicante
- 3. Objectif et planning des prochaines séances

Symétrique vs asymétrique - fonctionnement

<u>Symétrique</u>

 La même clé est utilisée pour chiffrer et déchiffrer des données

Asymétrique

- Utilisation d'une clé publique et privée
- Chiffrer avec une clé publique permet la confidentialité du message
- Chiffrer avec une clé privée permet d'authentifier le message

Symétrique vs asymétrique - cas d'application

<u>Symétrique</u> **Asymétrique** Assurer la confidentialité de données Authentifier le propriétaire de la donnée

Orchestration des chiffrements

Quelles méthodes de sécurité ?

Comment les utiliser ensemble dans une application communicante ?

- Les méthodes asymétriques → partager des clés entre les interlocuteurs
- Les méthodes symétriques → partager des données contenant de la sémantique (et des motifs)
- Les fonctions de hachage →vérifier l'intégrité des données

Objectif de la ressource

- **Un serveur** détient un fichier à envoyer à un client
- Un client se connecte au serveur pour télécharger le fichier

Implémenter une application sécurisée de partage de fichiers

- Le client et le serveur **génèrent une clé publique et privée**

Implémenter une application sécurisée de partage de fichiers

- Le serveur et le client s'échangent leur clé publique

Implémenter une application sécurisée de partage de fichiers

- Le serveur **génère une clé** K_c pour chiffrer son fichier

Implémenter une application sécurisée de partage de fichiers

- Le serveur **envoie** K_c **au client avec RSA**

Implémenter une application sécurisée de partage de fichiers

Le serveur chiffre le fichier avec AES et la clé K

- **Un serveur** détient un fichier à envoyer à un client
- **Un client** se connecte au serveur pour télécharger le fichier
- Le client et le serveur génèrent une clé publique et privée
- Le serveur et le client s'échangent leur clé publique
- Le serveur **génère une clé** K_c pour chiffrer son fichier
- Le serveur envoie K_c au client avec RSA
- Le serveur chiffre le fichier avec AES et la clé K
- Le serveur calcule son empreinte et l'envoie au client
- Le serveur transmet le fichier chiffré
- Le client reçoit le fichier et compare son empreinte avec celle reçue
- Le client déchiffre le fichier avec K

Planning des séances

Tâches\Séances	06/03	06/03	13/03	20/03	27/03	03/04
Prise en main du code (architecture client/serveur)	(CM1)					
Implémentation de RSA						
Échange des clés publiques						
Génération de la clé AES et échange avec le client			(CM2)			
(Dé)Chiffrement du fichier						
Calcul de l'empreinte du fichier chiffré				(CM3)		
Échange et comparaison des empreintes						

Sealices	Implementation de RSA		
	Échange des clés publiques		
	Génération de la clé AES et échange avec le client		
	(Dé)Chiffrement du fichier		
	Calcul de l'empreinte du fichier chiffré avec SHA-3		
	Échange et comparaison des empreintes		
3/04, au choix: présentation des certi introduction à la block une séance de plus p			

Tâches\Séances

Prise en main du code

Implémentation de DCA

(architecture client/serveur)

	(CM2)		
		(CM3)	

06/03

(CM1)

06/03

13/03

21/03

27/03

- Le 03/04, au choix:
 - présentation des c

 - introduction à la bl

03/04

- Vous devez respecter le fonctionnement de l'application tel que présenté dans le slide 10.
- RSA et l'architecture client/serveur fournie sont imposées. Vous avez le choix sur tous les autres algorithmes de sécurité.
- Le code de l'architecture client/serveur peut être modifié
- Minimum attendu "pour avoir 10": échange de clés publique/privée et transmission d'un fichier chiffré
- Chaque fonctionnalité supplémentaire liée à la sécurité peut donner droit à des points bonus lors de la correction (si mentionné dans le rapport)