

SoK: Programmable Privacy

Daniel Benarroch, Inversed Tech Ying Tong Lai, Geometry Research

Additional collaborators: Bryan Gillespie, Inversed Tech Andrew Miller, UIUC

The programmability stack

The programmability stack

e.g. Penumbra Consensus-level aggregation + batch decryption Protocol Circuit access frequent batch auctions Crypto homomorphic threshold Scheme encryption

The programmability stack

e.g. renegade.fi e.g. Penumbra Consensus-level proof verification aggregation + batch decryption + update balances Protocol order-matching + Circuit access frequent batch auctions collaborative proving Crypto homomorphic threshold two-party computation Scheme encryption

Crypto Schemes

programmable disclosure / verification

programmable computation over private data

Consensus-level Protocol

Simple applications

- individual private state
- sequential updates
- commutative updates

(e.g. Zcash, voting, identity)

Interactive applications

- shared private state
- atomic state updates
- non-commutative updates

(e.g. limit order auctions, multilateral trade credit set-off)

Consensus-level Protocol

Simple applications

- individual private state
- sequential updates
- commutative updates

(e.g. Zcash, voting, identity)

Interactive applications

- shared private state
- atomic state updates
- non-commutative updates

(e.g. limit order auctions, multilateral trade credit set-off)

For many interesting applications, ZKP is not enough to provide privacy!

Motivating App: Multilateral trade credit set-off

(order book)

in: (id₁, \$amt₁)
out: (id₂, \$amt₂)

(order book)

in: (id₁, \$amt₁)
out: (id₂, \$amt₂)

in: (id₂, \$amt₂)
out: (id₁, \$amt₁)

(order book)

(order book)

(CFMM)

(CFMM)

(CFMM)

price change reveals order; best we can do is anonymity

Three-Phase Computation Model

Independent Computation

Single Private Inputs & Preprocessing

Mediated Computation

Multi-Party Private Inputs & Computation Execution

Global Computation

Public Consensus Verification & global state update

Phase 1: Independent computation

On input (Intent, Metadata) from party \mathcal{P} : add (Intent, Metadata) to IntentSet Leak $\mathcal{L}_{\mathsf{Submit}}$ (Intent, Metadata, CorruptionState) to \mathcal{A} On input (Intent, Metadata) from \mathcal{A} : add (Intent, Metadata) to IntentSet

Phase 2: Mediated computation

On input (Advice) from A:

Result, NewTxs := MediatedComputation assert ComputationAdviceIsValid(Resulted add elements of NewTxs to PendingTxs

If SatisfiesSecurityAssumptions(Correlated Lexpected (Result, IntentSet, AppSelse:

Leak $\mathcal{L}_{Med}^{Broken}(Result, IntentSet, AppSta$

Phase 3: Global computation

On input (Advice) from A:

Result, Txs := SequenceTransactions(PendingTxs, AppState, Advice) assert SequencingAdviceIsValid(Result, CorruptionState)

For Tx in Txs:

AppState = UpdateState(AppState, Tx)

 ${\rm remove}\ \mathsf{Tx}\ \mathrm{from}\ \mathsf{PendingTxs}$

append Tx to ExecutedTxs

 ${\it Output} \ {\sf GlobalView(AppState)} \ {\sf to} \ {\sf global} \ {\sf communication} \ {\sf channel}$

For each party \mathcal{P} :

 Output PrivatePartyView(AppState, \mathcal{P}) to \mathcal{P}

Leak PrivateAdversaryView(AppState) to A

Mediated Computation in Privacy Protocols

Programmability Privacy type	General-purpose applications	Specialized functionality
k-of-N security	Sunscreen, Zama	Renegade, Penumbra
Hardware security	Secret Network, Obscuro/Ten, Oasis Sapphire, Phala Network, Automata	SUAVE
Extra-protocol	Aztec, Mina, Anoma, AlphaSwap (Aleo), Polygon Miden	ZSA Swap

Example Protocols

in: (id₁, \$amt₁)

in: (id₂, \$amt₂)

independent computation

mediated computation

global computation

mediated computation

mediated computation

in: (id₁, \$amt₁)

in: (id₂, \$amt₂)

independent computation

mediated computation

global computation

mediated computation

mediated computation

in: (id₁, \$amt₁)

out: (id₂)

independent computation

mediated computation

global computation

mediated computation

mediated computation

global computation

independent computation

mediated computation

global computation

mediated computation

global computation

global computation

Tradeoff: Security vs. Expressivity

- In-protocol mediated computation ⇒ resource-constrained
 - e.g. Penumbra, threshold homomorphic encryption
 - o e.g. Renegade.fi, 2PC's between relayers
- **Extra-protocol** mediated computation ⇒ **cheaper**, but
 - extra-protocol privacy guarantees fall on application designers
 - potentially fragments state / liquidity across different applications
- Decisions on trade-offs must be informed by application
 - e.g. how much order information to reveal is a tradeoff between price efficiency vs.
 frontrunning prevention
 - tension between enabling general applications vs. optimising for a single one

Future work / research questions

TODO: UC proofs for privacy properties

- [done] ideal functionality for three-phase epoch model
- [done] ideal functionality and protocol descriptions for ZSA Swap, renegade.fi,
 SecretSwap, Penumbra

• TODO: Fair metrics

- efficiency: for a fixed program (e.g. order matching), how much work does a consensus node need to do?
- security: economic cost of attack?

TODO: Best practices

- defense-in-depth: collaborative proofs; proof of encryption; "remote attestation" zk proof, using TEEs to store key shares in MPC / FHE
- o DSL/compiler safeguards: e.g. prevent writing disclosive MPC circuits

Future work / research questions

TODO: design optimal programmable privacy protocol that fits

- 1. Fits the three-phase computation model
- 2. Enables expressiveness for user defined programs while ensuring security of application
- 3. Provides cryptographic-level privacy

POTENTIAL DIRECTION

- → Include different cryptographic schemes as the "engines" for each phase (e.g.: ZK for phase 1 + FHE or MPC for phase 2)
- \rightarrow Build a combined DSL that knows to speak to both engines with a fixed separation as soon as inputs need to be aggregated
- → Define privacy **invariants** at the language level to prevent unintentional leakage
- → Provide high-level primitive implementations for users to use off-the-shelf, increasing security

THANK YOU QUESTIONS?

@inversed_tech

@__geometrydev__