IR-Lumineszenzdiode (850 nm) mit hoher Ausgangsleistung High Power Infrared Emitter (850 nm) Lead (Pb) Free Product - RoHS Compliant SFH 4550

Wesentliche Merkmale

- Infrarot LED mit hoher Ausgangsleistung
- Enger Abstrahlwinkel ± 3°
- · Sehr hohe Strahlstärke
- Kurze Schaltzeiten

Anwendungen

- Infrarotbeleuchtung für CMOS Kameras
- Sensorik
- Datenübertragung

Sicherheitshinweise

Je nach Betriebsart emittieren diese Bauteile hochkonzentrierte, nicht sichtbare Infrarot-Strahlung, die gefährlich für das menschliche Auge sein kann. Produkte, die diese Bauteile enthalten, müssen gemäß den Sicherheitsrichtlinien der IEC-Normen 60825-1 und 62471 behandelt werden.

Features

- High Power Infrared LED
- Narrow emission angle ± 3°
- Very high radiant intensity
- Short switching times

Applications

- Infrared Illumination for CMOS cameras
- Sensor technology
- Data transmission

Safety Advices

Depending on the mode of operation, these devices emit highly concentrated non visible infrared light which can be hazardous to the human eye. Products which incorporate these devices have to follow the safety precautions given in IEC 60825-1 and IEC 62471.

Тур Туре		Strahlstärkegruppierung ¹⁾ ($I_{\rm F}$ = 100 mA, $t_{\rm p}$ = 20 ms) Radiant Intensity Grouping ¹⁾ $I_{\rm e}$ (mW/sr)
SFH 4550	Q65110A1772	≥ 400 (typ. 700)

¹⁾ gemessen bei einem Raumwinkel Ω = 0.001 sr / measured at a solid angle of Ω = 0.001 sr

OSRAM

2009-05-14

Grenzwerte ($T_A = 25 \, ^{\circ}\text{C}$) **Maximum Ratings**

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit
Betriebs- und Lagertemperatur Operating and storage temperature range	T_{op} , T_{stg}	- 40 + 100	°C
Sperrspannung Reverse voltage	V_{R}	5	V
Vorwärtsgleichstrom Forward current	I_{F}	100	mA
Stoßstrom, $t_p = 10 \mu s$, $D = 0$ Surge current	I_{FSM}	1.5	А
Verlustleistung Power dissipation	P_{tot}	180	mW
Wärmewiderstand Sperrschicht - Umgebung bei Montage auf FR4 Platine, Padgröße je 16 mm² Thermal resistance junction - ambient mounted on PC-board (FR4), padsize 16 mm² each	R_{thJA}	450	K/W

Kennwerte (T_A = 25 °C) Characteristics

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit
Wellenlänge der Strahlung Wavelength at peak emission $I_{\rm F}$ = 100 mA	λ_{peak}	860	nm
Centroid-Wellenlänge der Strahlung Centroid wavelength $I_{\rm F}$ = 100 mA	$\lambda_{centroid}$	850	nm
Spektrale Bandbreite bei 50% von $I_{\rm max}$ Spectral bandwidth at 50% of $I_{\rm max}$ $I_{\rm F}$ = 100 mA	Δλ	42	nm
Abstrahlwinkel Half angle	φ	± 3	Grad deg.
Aktive Chipfläche Active chip area	A	0.09	mm ²
Abmessungen der aktiven Chipfläche Dimension of the active chip area	$L \times B$ $L \times W$	0.3 × 0.3	mm²

Kennwerte ($T_A = 25$ °C) Characteristics (cont'd)

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit
Schaltzeiten, $\rm I_e$ von 10% auf 90% und von 90% auf 10%, bei $I_{\rm F}$ = 100 mA, $R_{\rm L}$ = 50 Ω Switching times, $\rm I_e$ from 10% to 90% and from 90% to 10%, $I_{\rm F}$ = 100 mA, $R_{\rm L}$ = 50 Ω	t_{r},t_{f}	12	ns
Durchlassspannung Forward voltage $I_{\rm F}$ = 100 mA, $t_{\rm p}$ = 20 ms $I_{\rm F}$ = 1 A, $t_{\rm p}$ = 100 μ s	$egin{array}{c} V_{F} \ V_{F} \end{array}$	1.5 (< 1.8) 2.4 (< 3.0)	V V
Sperrstrom Reverse current	I_{R}	not designed for reverse operation	μΑ
Gesamtstrahlungsfluss Total radiant flux $I_{\rm F}$ = 100 mA, $t_{\rm p}$ = 20 ms	$\Phi_{e\;typ}$	50	mW
Temperaturkoeffizient von $I_{\rm e}$ bzw. $\Phi_{\rm e}$, $I_{\rm F}$ = 100 mA Temperature coefficient of $I_{\rm e}$ or $\Phi_{\rm e}$, $I_{\rm F}$ = 100 mA	TC ₁	- 0.5	%/K
Temperaturkoeffizient von $V_{\rm F},I_{\rm F}$ = 100 mA Temperature coefficient of $V_{\rm F},I_{\rm F}$ = 100 mA	TC_{V}	- 0.7	mV/K
Temperaturkoeffizient von λ , $I_{\rm F}$ = 100 mA Temperature coefficient of λ , $I_{\rm F}$ = 100 mA	TC_{λ}	+ 0.3	nm/K

Strahlstärke I_e in Achsrichtung¹⁾

gemessen bei einem Raumwinkel Ω = 0.001 sr

Radiant Intensity I_e in Axial Direction

at a solid angle of $\Omega = 0.001$ sr

Bezeichnung Parameter	Symbol	Werte Values			Einheit Unit
		SFH 4550-DW	SFH 4550-EW	SFH 4550-FW	
Strahlstärke Radiant intensity $I_{\rm F}$ = 100 mA, $t_{\rm p}$ = 20 ms	$I_{\rm e \; min} \\ I_{\rm e \; max}$	400 800	630 1250	1000 2000	mW/sr mW/sr
Strahlstärke Radiant intensity $I_{\rm F}$ = 1 A, $t_{\rm p}$ = 100 μ s	I _{e typ}	5000	7000	9000	mW/sr

¹⁾ Nur eine Gruppe in einer Verpackungseinheit (Streuung kleiner 2:1) / Only one group in one packing unit (variation lower 2:1)

Abstrahlcharakteristik

Radiation Characteristics $I_{rel} = f(\varphi)$

Relative Spectral Emission $I_{\rm rel} = f(\lambda)$

Forward Current $I_{F} = f(V_{F})$ Single pulse, $t_{p} = 20 \mu s$

Radiant Intensity $\frac{I_{\rm e}}{I_{\rm e}\,$ 100 mA = f ($I_{\rm F}$)

Single pulse, $t_p = 20 \mu s$

Permissible Pulse Handling Capability $I_{\rm F} = f(\tau), T_{\rm A} = 25 \, ^{\circ}{\rm C},$ duty cycle D = parameter

Max. Permissible Forward Current $I_{\rm F} = f(T_{\rm A}), \, R_{\rm thJA} = 450 \, \rm K/W$

Maßzeichnung Package Outlines

Maße in mm (inch) / Dimensions in mm (inch).

Empfohlenes Lötpaddesign Recommended Solder Pad Design

Wellenlöten TTW TTW Soldering

Maße in mm (inch) / Dimensions in mm (inch).

Lötbedingungen Soldering Conditions Wellenlöten (TTW) TTW Soldering

(nach CECC 00802) (acc. to CECC 00802)

Published by OSRAM Opto Semiconductors GmbH Leibnizstraße 4, D-93055 Regensburg www.osram-os.com EU RoHS and China RoHS compliant product

此产品符合欧盟 RoHS 指令的要求;

按照中国的相关法规和标准,不含有毒有害物质或元素。

© All Rights Reserved.

The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances. For information on the types in question please contact our Sales Organization.

Packing

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Components used in life-support devices or systems must be expressly authorized for such purpose! Critical components ¹, may only be used in life-support devices or systems ² with the express written approval of OSRAM OS. ¹ A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system.

² Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health of the user may be endangered.

