

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Prof^a. Karla Lima

Análise I

26 de Abril de 2018

Exercícios marcados com * podem ser entregues na primeira aula da semana. Eles poderão acrescentar pontuação à nota das provas correspondentes dos seus conteúdos. Não é obrigatória a entrega.

- (1) Encontre a fórmula para o termo geral a_n das sequências abaixo, assumindo que o padrão dos primeiros termos continua.
 - (a) $\{1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{9}, \dots\}$
 - (b) * $\{1, -\frac{1}{3}, \frac{1}{9}, -\frac{1}{27}, \frac{1}{81}, \dots\}$
 - (c) $\{5, 8, 1, 14, 17, \dots\}$
- (2) *Seja $(a_n) = (\frac{n}{2n+3})$.
 - (a) Encontre um índice $n_0 \in \mathbb{N}$ tal que $\forall n > n_0$ tem-se $\left| \frac{n}{2n+3} \frac{1}{2} \right| < 1$;
 - (b) Encontre um índice $n_0 \in \mathbb{N}$ tal que $\forall n > n_0$ tem-se $\left| \frac{n}{2n+3} \frac{1}{2} \right| < \frac{1}{4}$;
 - (c) Encontre um índice $n_0 \in \mathbb{N}$ tal que $\forall n > n_0$ tem-se $\left| \frac{n}{2n+3} \frac{1}{2} \right| < \frac{1}{100};$
 - (d) Mostre, usando a definição de limite de sequência, que $\lim_{n\to\infty} a_n = \frac{1}{2}$.
- (3) Seja $(a_n) = \left(\frac{3n}{1+6n}\right)$.
 - (a) Mostre, usando a função auxiliar $f(x)=\frac{3x}{1+6x}$ definida em $\mathbb{R}-\{-\frac{1}{6}\}$, que $\lim_{n\to\infty}a_n=\frac{1}{2}$.
 - (b) Mostre que $\lim_{n\to\infty} a_n = \frac{1}{2}$, usando a definição de limite de uma sequência.
- (4) Seja $(a_n) = (\frac{9^n}{10^n})$.
 - (a) Encontre um índice $n_0 \in \mathbb{N}$ tal que $\forall n > n_0$ tem-se $\left| \frac{9^n}{10^n} 0 \right| < 1$;
 - (b) Encontre um índice $n_0 \in \mathbb{N}$ tal que $\forall n > n_0$ tem-se $\left| \frac{9^n}{10^n} 0 \right| < \frac{1}{2}$;
 - (c) Mostre, usando a definição de limite de sequência, que $\lim_{n\to\infty} a_n = 0$.
 - (d) Generalize para as sequências $(a_n) = \frac{b^n}{c^n}$, com 0 < b < c. **Dica:** Lembre-se que a função $\ln x$ está definida para x > 0, é crescente e assume valores negativos no intervalo (0,1).