Teorema: Si A≠Ø es ce entonces A es el rango de una Función p.r. Es decir, existe una función F: N > N p.r. tal que: $A = \{f(0), f(1), f(z), \dots \}$ Demo: Por el Teo de la enumeración, como A es ce entonces existe un e tal que $A = We = \{x : \varphi_e(x) \}$. Sea $P: \mathbb{N}^2 \to \mathbb{N}$ el predicado: $P(x,t) = STP^{(1)}(x,e,t)$. Pes p.r. pues STP es p.r. Entonces, podemos definir a A en función de P. $\{(4,X) \mid (4E) : X \leq A$ Como A≠o, existe a ∈ A. Luego definimos f: IN → IN p.r. $F(u) = \begin{cases} l(u) & \text{si } P(l(u), r(u)) \\ a. & \text{si } no \end{cases}$ Equivalentemente: $F(\langle x, \xi \rangle) = \begin{cases} x & \text{si } P(x, \xi) \\ a & \text{si } no \end{cases}$

Veo	Mos	gve	Α =	{ ‡	(0)	, F (4	1), ‡	(z)	, 3	.							
•	Si	x e A	ento	nce) ی	[3£)	P(>	(, t) po	r s	er	A d	ce.				
•	Tom	lamos	и=	: <×	(,t	> '	lueq	O	F(u	,) =	× .						
•		X = £(١ ١	9									کومی	: کیه
		o bien o bien															
															đ		