

Introduction to Queue Management Algorithms

Mohit P. Tahiliani

Assistant Professor

Department of Computer Science and Engineering National Institute of Technology Karnataka, Surathkal, India tahiliani@nitk.edu.in

Overview

Router architecture

Fig. 1: Packet processing in router

Fig. 2: Processing at the Input port

Overview (contd ...)

When does congestion occur?

Overview

- Queue management algorithms
 - a.k.a queue disciplines (qdiscs)
 - Can be classified into
 - Passive Queue Management (e.g., FIFO)
 - Active Queue Management (e.g., Random Early Detection)
 - Passive Queue Management algorithms
 - reactive in nature i.e., they operate 'after' the queue is full
 - easy to deploy
 - difficult to provide queue control with PQMs
 - Active Queue Management algorithms
 - proactive in nature i.e., they operate 'before' the queue is full
 - easy to moderate difficulty in deployment
 - provide good queue control

Passive Queue Management

DropTail

- o drops the packets from the 'tail' of the queue
- o acts like a simple FIFO queue

DropHead

- o drops the packets from the 'head' of the queue
- o a.k.a. 'DropFront' (this name is used in ns-2)
- Question: What is the advantage of using DropHead?

Random Drop

- o drops the packets from a random 'position' in the queue
- Question: What is the advantage of using Random Drop?

Limitations of PQM algorithms

Global Synchronization

- Multiple TCP flows start at different times
- Congestion window of all TCP connections increase
- DropTail causes many packets of all the flows to be dropped at the same time
- TCP flows reduce their congestion window at the same time (synchronized)
- Subsequently, all TCP flows increase their congestion window at the same time (synchronized)
- Frequent periods of link 'overutilization' and 'underutilization'. This adds jitter (variation in delay).

Flow B

Flow C

Flow A

Limitations of PQM algorithms (contd ...)

Lock Out

- DropTail allows a few flows to monopolize the queue space
 - These flows are typically long lasting flows (a.k.a 'elephant' flows)
- Short flows do not get sufficient space in the queue due to large occupancy of elephant flows
 - Packets of short flows get dropped. This phenomenon is called 'Lock Out'

Bufferbloat

- Memory prices have fallen sharply.
 - Hence, buffering capacity has increased.
- Excessive buffering leads to 'high queuing delays'.
 - It was reported that queuing delays sometimes rise so much that TCP RTO expires!
- Time sensitive applications are the worst affected ones due to bufferbloat.

Interesting things to check in Linux kernel!

- Queue disciplines are implemented in net/sched directory
 - Link: https://github.com/torvalds/linux/tree/master/net/sched
- Example: FIFO queue discipline in implemented in the following file:
 - Link: https://github.com/torvalds/linux/blob/master/net/sched/sch_fifo.c
- Explore in Linux's sch_fifo.c file:
 - o bfifo queue disc (Man page: https://www.man7.org/linux/man-pages/man8/tc-bfifo.8.html)
 - pfifo queue disc (Man page: https://linux.die.net/man/8/tc-pfifo)
- What is traffic control sub-system in Linux?

Recommended Reading

What's inside a router?

Link: https://www2.ic.uff.br/~michael/kr1999/4-network/4_06-inside.htm

Bufferbloat website

Link: https://www.bufferbloat.net/projects/