Soluções - Guidorizzi - Volume 1

Leonardo

June 7, 2017

Chapter 1

Números Reais

1.1 Os Números Racionais

Os Números Reais

Utilizamos nos exercícios a seguir o algoritmo de Briot-Ruffini.

1. (d)
$$x + 3 \le 6x - 2 \Rightarrow -5x \le -5 \Rightarrow x \ge 1$$
.

(e)
$$1 - 3x > 0 \Rightarrow -3x > -1 \Rightarrow 3x < 1 \Rightarrow x < \frac{1}{3}$$
.

(f)
$$2x + 1 \ge 3x \Rightarrow -x \ge -1 \Rightarrow x \le 1$$
.

2. (i)
$$(2x-1)(3-2x)$$

$$2x - 1 < 0 \Rightarrow x < \frac{1}{2}$$

$$2x - 1 > 0 \Rightarrow x > \frac{1}{2}$$

$$2x - 1 = 0 \Rightarrow x = \frac{1}{2}$$

$$3 - 2x < 0 \Rightarrow x > \frac{3}{2}$$

$$3 - 2x > 0 \Rightarrow x < \frac{3}{2}$$

$$3 - 2x = 0 \Rightarrow x = \frac{3}{2}$$

$$(2x-1)(3-2x) > 0$$
 para $\frac{1}{2} < x < \frac{3}{2}$
 $(2x-1)(3-2x) < 0$ para $x < \frac{1}{2}$ ou $x > \frac{3}{2}$

$$(2x-1)(3-2x) < 0$$
 para $x < \frac{1}{2}$ ou $x > \frac{1}{2}$

$$(2x-1)(3-2x) > 0$$
 para $\frac{1}{2} < x < \frac{3}{2}$

$$(2x-1)(3-2x) < 0$$
 para $x = \frac{1}{2}$ ou $x = \frac{3}{2}$

(i)
$$x(x-3)$$

$$x - 3 < 0 \Rightarrow x < 3$$

$$x - 3 > 0 \Rightarrow x > 3$$

$$x - 3 = 0 \Rightarrow x = 3$$

$$x(x-3) < 0$$
 para $0 < x < 3$

$$x(x-3) > 0$$
 para $x < 0$ ou $x > 3$
 $x(x-3)$ para $x = 0$ ou $x = 3$.

(1)
$$x(x-1)(2x+3)$$
$$x-1<0 \Rightarrow x<1$$
$$x-1>0 \Rightarrow x>1$$
$$x-1=0 \Rightarrow x=1$$
$$2x+3<0 \Rightarrow x<-\frac{3}{2}$$
$$2x+3>0 \Rightarrow x>-\frac{3}{2}$$
$$2x+3=0 \Rightarrow x=-\frac{3}{2}$$

$$\begin{split} &x(x-1)(2x+3)>0 \text{ para } -\frac{3}{2} < x < 0 \text{ ou para } x>1 \\ &x(x-1)(2x+3) < 0 \text{ para } x < -\frac{3}{2} \text{ ou para } 0 < x < 1 \\ &x(x-1)(2x+3) = 0 \text{ para } x = 0 \text{ ou } x = -\frac{3}{2} \text{ ou } x = 1. \end{split}$$

(m)
$$(x-1)(1+x)(2-3x)$$

 $x-1 < 0 \Rightarrow x < 1$
 $x-1 > 0 \Rightarrow x > 1$
 $x-1=0 \Rightarrow x=1$
 $1+x < 0 \Rightarrow x < -1$
 $1+x > 0 \Rightarrow x > -1$
 $1+x=0 \Rightarrow x=-1$
 $2-3x < 0 \Rightarrow x > \frac{2}{3}$
 $2-3x > 0 \Rightarrow x < \frac{2}{3}$
 $2-3x = 0 \Rightarrow x = \frac{2}{3}$
 $(x-1)(1+x)(2-3x) > 0$ para $x < -1$ ou $\frac{2}{3} < x < 1$

$$(x-1)(1+x)(2-3x) < 0$$
 para $-1 < x < \frac{2}{3}$ ou $x > 1$
$$(x-1)(1+x)(2-3x) = 0$$
 para $x = 1$ ou $x = -1$ ou $x = \frac{2}{3}$.

(n)
$$x(x^2+3)$$

$$x^2+3<0 \Rightarrow x^2<-3, \, \text{não \'e possível}.$$

$$x^2+3>0 \, \, \text{para qualquer} \, \, x$$
 Logo temos:

$$x(x^2 + 3) > 0$$
 para $x > 0$
 $x(x^2 + 3) < 0$ para $x < 0$
 $x(x^2 + 3) = 0$ para $x = 0$

3. (h)
$$\frac{2x-1}{x-3} > 5 \Rightarrow \frac{2x-1}{x-3} > \frac{5(x-3)}{x-3} \Rightarrow$$

$$\frac{2x-1-5(x-3)}{x-3} > 0 \Rightarrow \frac{2x-1-5x+15}{x-3} > 0 \Rightarrow$$

$$\frac{-3x+14}{x-3} > 0 \Rightarrow \frac{3x+14}{x-3} < 0$$

$$3x+14 > 0 \Rightarrow x > \frac{14}{3}$$

$$3x+14 < 0 \Rightarrow x < \frac{14}{3}$$

$$x-3 > 0 \Rightarrow x > 3$$

$$x-3 < 0 \Rightarrow x < 3$$

Devemos ter o denominador e numerador com sinais opostos, assim
 temos a solução:

$$S = \{ x \in \mathbb{R} \mid 3 < x < \frac{14}{3} \}.$$

(i)
$$\frac{x}{2x-3} \le 3 \Rightarrow \frac{x}{2x-3} \le \frac{3(2x-3)}{2x-3} \Rightarrow$$
$$\frac{x-3(2x-3)}{2x-3} \le 0 \Rightarrow \frac{x-6x+9}{2x-3} \le 0 \Rightarrow$$
$$\frac{-5x+4}{2x-3} \le 0 \Rightarrow \frac{5x-9}{2x-3} \ge 0$$
$$5x-9 \ge 0 \Rightarrow x \ge \frac{9}{5}$$

$$5x - 9 < 0 \Rightarrow x < \frac{9}{5}$$
$$2x - 3 \ge 0 \Rightarrow x \ge \frac{3}{2}$$
$$2x - 3 < 0 \Rightarrow x < \frac{3}{2}$$

 $\frac{5x-9}{2x-3} \ge 0$ quando os sinais do denominador e numerador são iguais:

$$S = \{x \in \mathbb{R} \mid x < \frac{3}{2} \text{ ou } x \ge \frac{9}{5}\}.$$

$$(j) \frac{x-1}{2-x} < 1 \Rightarrow \frac{x-1}{2-x} < \frac{2-x}{2-x} \Rightarrow$$

$$\frac{x-1-2+x}{2-x} < 0 \Rightarrow \frac{2x-3}{2-x} < 0$$

$$2x-3 > 0 \Rightarrow x > \frac{3}{2}$$

$$2x-3 < 0 \Rightarrow x < \frac{3}{2}$$

$$2 - x > 0 \Rightarrow x < 2$$
$$2 - x < 0 \Rightarrow x > 2$$

$$2-x < 0 \Rightarrow x > 2$$

 $\frac{2x-3}{2-x} < 0$ quando os sinais do denominador e numerador são diferentes:

$$S = \{x \in \mathbb{R} \mid x < \frac{3}{2} \text{ ou } x > 2\}.$$

(1)
$$x(2x-1)(x+1) > 0$$

 $2x-1 > 0 \Rightarrow x > \frac{1}{2}$
 $2x-1 < 0 \Rightarrow x < \frac{1}{2}$
 $x+1 > 0 \Rightarrow x > -1$
 $x+1 < 0 \Rightarrow x < -1$

Os valores para que tenhamos x(2x-1)(x+1) > 0:

$$S = \{x \in \mathbb{R} \mid -1 < x < 0 \text{ ou } x > \frac{1}{2}\}.$$

(m)
$$(2x-1)(x-3) > 0$$

 $2x-1 > 0 \Rightarrow x > \frac{1}{2}$
 $2x-1 < 0 \Rightarrow x < \frac{1}{2}$

$$x - 3 > 0 \Rightarrow x > 3$$
$$x - 3 < 0 \Rightarrow x < 3$$

Devemos ter os sinais dos fatores iguais em (2x-1)(x-3)>0: $S=\{x\in\mathbb{R}\mid x<\frac{1}{2}\text{ ou }x>3\}.$

(n)
$$(2x-3)(x^2+1) < 0$$

$$x^2 + 1 > 0$$
 para qualquer x .

Devemos ter $2x - 3 < 0 \Rightarrow x < \frac{3}{2}$:

$$S = \{x \in \mathbb{R} \mid x < \frac{3}{2}\}.$$

$$x - 3$$

(o)
$$\frac{x-3}{x^2+1} < 0$$

$$x^2+1 > 0 \text{ para qualquer } x.$$

Devemos ter $x - 3 < 0 \Rightarrow x < 3$:

$$S = \{x \in \mathbb{R} \mid x < 3\}.$$

4.
$$x^3 + 0x^2 + 0x - a^3 \div \bot x - a$$
:

5. (c)
$$(x-a)(x^3 + ax^2 + a^2x + a^3) =$$

 $x^4 + ax^3 + a^2x^2 + a^2x^3 - ax^3 - a^2x^2 - a^3x - a^4 =$
 $x^4 - a^4$

(d)
$$(x-a)(x^4 + ax^3 + a^2x^2 + a^3x + a^4) =$$

 $x^5 + ax^4 + a^2x^3 + a^3x^2 + a^4x - ax^4 - a^2x^3 - a^3x^2 - a^4x - a^5 =$
 $x^5 - a^5$

(e)
$$(x-a)(x^{n-1} + ax^{n-2} + a^2x^{n-3} + \dots + a^{n-2}x + a^{n-1}) = x^n + ax^{n-1} + a^2x^{n-2} + \dots + a^{n-2}x^2 + a^{n-1}x$$

$$-ax^{n-1} - a^2x^{n-2} - a^3x^{n-3} - \dots - a^{n-1}x - a^n = x^n - a^n$$

6. (h)
$$\frac{\frac{1}{x} - \frac{1}{p}}{x - p} = \frac{\frac{p - x}{xp}}{x - p} = \frac{p - x}{(x - p)xp} = -\frac{1}{xp}.$$

(i)
$$\frac{\frac{1}{x^2} - \frac{1}{p^2}}{x - p} = \frac{\frac{p^2 - x^2}{x^2 p^2}}{x - p} = \frac{p^2 - x^2}{x^2 p^2 (x - p)} = \frac{(p - x)(p + x)}{-x^2 p^2 (p - x)} = -\frac{x + p}{x^2 p^2}$$

(k)
$$\frac{x^4 - p^4}{x - p} = \frac{(x - p)(x^3 + px^2 + p^2x + p^3)}{(x - p)} = x^3 + px^2 + p^2x + p^3$$

(1)
$$\frac{(x+h)^2 - x^2}{h} = \frac{x^2 + 2hx + h^2 - x^2}{h} = \frac{2hx + h^2}{h} = \frac{h(2x+h)}{h} = 2x + h$$

(m)
$$\frac{\frac{1}{x+h} - \frac{1}{x}}{h} = \frac{\frac{x-x-h}{x(x+h)}}{h} = \frac{\frac{-h}{x(x+h)}}{h} = \frac{-h}{x(x+h)} = -\frac{1}{x(x+h)}$$

(n)
$$\frac{(x+h)^3 - x^3}{h} = \frac{x^3 + 3hx^2 + 3h^2x + h^3 - x^3}{h} = \frac{3hx^2 + 3h^2x + h^3}{h} = 3x^2 + 3xh + h^2$$

(o)
$$\frac{(x+h)^2 - (x-h)^2}{h} = \frac{(x^2 + 2hx + h^2) - (x^2 - 2hx + h^2)}{h} = \frac{4hx}{h} = 4x$$

7. (f)
$$\frac{x^2 - 4}{x^2 + 4} > 0 \Rightarrow \frac{(x+2)(x-2)}{x^2 + 4} > 0$$

O denominador será sempre positivo, devemos analisar o sinal do numerador (x+2)(x-2):

$$x+2>0 \Rightarrow x>-2$$

$$x + 2 < 0 \Rightarrow x < -2$$

$$x-2 > 0 \Rightarrow x > 2$$

$$x-2 < 0 \Rightarrow x < 2$$

O numerador deve ser positivo, portanto os fatores do produto devem ter o mesmo sinal, temos isso quando x < -2 ou x > 2.

(g)
$$(2x-1)(x^2-4) \le 0 \Rightarrow (2x-1)(x+2)(x-2) \le 0$$

O produto deve ter seus fatores todos negativos ou ao menos um deles com valor 0 ou, finalmente, dois positivos e um negativo. Temos então os sinais de cada expressão:

$$2x - 1 \le 0 \Rightarrow x \le \frac{1}{2}$$
$$2x - 1 > 0 \Rightarrow x > \frac{1}{2}$$
$$x + 2 \le 0 \Rightarrow x \le -2$$

$$x + 2 > 0 \Rightarrow x > -2$$

$$x - 2 \le 0 \Rightarrow x \le 2$$

$$x-2 > 0 \Rightarrow x > 2$$

Para termos $(2x-1)(x^2-4)=0$, basta termos $x=\frac{1}{2}$ ou x=-2 ou x=2.

Para termos $(2x-1)(x^2-4) < 0$, com os três fatores acima mencionados negativos, devemos ter x < -2.

Finalmente para termos $(2x-1)(x^2-4) < 0$, com dois fatores positivos e um negativo. Analisando a seguir todas as possibilidades: $x < \frac{1}{2}$ e x > -2 e x > 2 não é possível.

$$x>\frac{1}{2}$$
e $x<-2$ e $x>2$ não é possível.

$$x > \frac{1}{2}$$
 e $x > -2$ e $x < 2$ nos dá $\frac{1}{2} < x < 2$.

Logo as soluções são $x \le -2$ ou $\frac{1}{2} \le x \le 2$.

(h)
$$3x^2 \ge 48 \Rightarrow x^2 \ge 16 \Rightarrow (x-4)(x+4) \ge 0$$

Estudando o sinal do produto, devemos ter as duas expressões com mesmo sinal ou alguma delas com valor zero:

$$x - 4 > 0 \Rightarrow x > 4$$

$$x - 5 < 0 \Rightarrow x < 4$$

$$x + 5 > 0 \Rightarrow x > -4$$

$$x + 5 < 0 \Rightarrow x < -4$$

Devemos ter:

x > 4 e x > -4, que nos dá x > 4.

ou

x < 4 e x < -4 que nos dá x < -4.

A solução portanto é ou $x \leq -4$ ou $x \geq 4$

(i) $x^2 < r^2 \Rightarrow (x-r)(x+r) < 0$ Estudando o sinal do produto, devemos ter as duas expressões com sinais opostos:

$$x - r > 0 \Rightarrow x > r$$

$$x - r < 0 \Rightarrow x < r$$

$$x + r > 0 \Rightarrow x > -r$$

$$x + r < 0 \Rightarrow x < -r$$

Devemos ter:

x > r e x < -r, que é impossível.

ou

$$x < r$$
 e $x > -r$ que nos dá $-r < x < r$.

(j) $x^2 \ge r^2 \Rightarrow (x-r)(x+r) \ge 0$ Estudando o sinal do produto, devemos ter as duas expressões com mesmo sinal ou alguma delas com valor zero:

$$x - r > 0 \Rightarrow x > r$$

$$x - r < 0 \Rightarrow x < r$$

$$x + r > 0 \Rightarrow x > -r$$

$$x + r < 0 \Rightarrow x < -r$$

Devemos ter:

$$x > r$$
 e $x > -r$, que nos dá $x > r$.

ou

$$x < r$$
 e $x < -r$ que nos dá $x < -r$.

A solução portanto é ou $x \leq -r$ ou $x \geq r$

8. (a)
$$a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{\left(b^2 - 4ac \right)}{4a^2} \right] = a \left[x^2 + \frac{2xb}{2a} + \frac{b^2}{4a^2} - \frac{b^2 + 4ac}{4a^2} \right] =$$

$$= \left[ax^2 + bx + c \right]$$

(b)
$$a\left[\left(\frac{-b \pm \sqrt{\Delta}}{2a} + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2}\right] = a\left[\left(\pm \frac{\sqrt{\Delta}}{2a}\right)^2 - \frac{\Delta}{4a^2}\right] = a\left[\frac{\Delta}{4a^2} - \frac{\Delta}{4a^2}\right] = a.0 = \boxed{0}$$

(c)
$$x_1 + x_2 = \frac{-b + \sqrt{\Delta}}{2a} + \frac{(-b - \sqrt{\Delta})}{2a} = \frac{-b + \sqrt{\Delta} - b - \sqrt{\Delta}}{2a} = \frac{-2b}{2a} = \left[\frac{-b}{a}\right]$$

$$x_1.x_2 = \frac{-b + \sqrt{\Delta}}{2a} \cdot \frac{(-b - \sqrt{\Delta})}{2a} = \frac{b^2 - \Delta}{4a^2} = \frac{b^2 - b^2 + 4ac}{4a^2} = \left[\frac{c}{a}\right]$$

9.
$$a(x-x_1)(x-x_2) = a(x^2 - xx_2 - xx_1 + x_1x_2) =$$

$$= a[x^2 - x(x_2 + x_1) + x_1x_2] = a\left[x^2 - x\left(\frac{-b}{a}\right) + \frac{c}{a}\right] =$$

$$= a[x^2 + bx + c]$$

10. (f)
$$2x^2 - 3x + 1 = 2(x^2 - \frac{3}{2}x + \frac{1}{2}) = 2(x - 1)(x - \frac{1}{2}) = (x - 1)(2x - 1)$$

(g) $x^2 - 25$
 $x_1 + x_2 = 0 \Rightarrow x_1 = -x_2$
 $x_1x_2 = -25 \Rightarrow (-x_1)x_1 = -25 \Rightarrow x_1^2 = 25 \Rightarrow x_1 = 5 \text{ e } x_2 = -5$
 $(x - 5)(x + 5)$

(h)
$$3x^2 + x - 2 = 3(x^2 + \frac{1}{3}x - \frac{2}{3}) = 3(x+1)(x-\frac{2}{3}) = (x+1)(3x-2)$$

(i)
$$4x^2 - 9 \ x_1 + x_2 = 0 \Rightarrow x_1 = -x_2$$

 $x_1 x_2 = -\frac{9}{4} \Rightarrow (-x_1) x_1 = -\frac{9}{4} \Rightarrow x_1^2 = \frac{9}{4} \Rightarrow x_1 = \frac{3}{2} e \ x_2 = -\frac{3}{2}$
 $4(x + \frac{3}{2})(x - \frac{3}{2}) = \boxed{(2x - 3)(2x + 3)}$

(j)
$$2x^2 - 5x$$

 $x_1x_2 = 0 \Rightarrow x_1 = 0$

$$x_1 + x_2 = \frac{5}{2} \Rightarrow x_2 = \frac{5}{2}$$

 $2x(x - \frac{5}{2}) = x(2x - 5)$

11. (f)
$$x_1 + x_2 = -\frac{1}{3} e x_1 x_2 = -\frac{2}{3}$$

 $x_1 = \frac{2}{3} e x_2 = -1$
 $3x^2 + x - 2 > 0 \Rightarrow 3(x+1)(x-\frac{2}{3}) > 0 \Rightarrow (x+1)(x-\frac{2}{3}) > 0$

Temos os seguintes sinais para cada fator do produto:

$$x + 1 > 0 \text{ quando } x > -1$$

$$x + 1 > 0 \text{ quando } x < -1$$

$$x - \frac{2}{3} > 0 \text{ quando } x > \frac{2}{3}$$

$$x - \frac{2}{3} < 0 \text{ quando } x < \frac{2}{3}$$

Para termos $(x+1)(x-\frac{2}{3}) > 0$, os fatores devem possuir o mesmo sinal:

$$x > \frac{2}{3} \text{ ou } x < -1$$

(g)
$$x_1 + x_2 = 4$$
 e $x_1 x_2 = 4$
 $x_1 = x_2 = 2$
 $x^2 - 4x + 4 > 0 \Rightarrow (x - 2)(x - 2) > 0 \Rightarrow (x - 2)^2 > 0$

A equação é sempre positiva, exceto em x=2.

A solução é $x \neq 2$.

(h)
$$x_1 + x_2 = \frac{1}{3} e x_1 x_2 = 0$$

 $x_1 = \frac{1}{3}$
 $3x^2 - x \le 0 \Rightarrow 3x(x - \frac{1}{3}) \le 0 \Rightarrow x(x - \frac{1}{3}) \le 0$

Temos os seguintes sinais para cada fator do produto:

$$x - \frac{1}{3} > 0 \Rightarrow x > \frac{1}{3}$$
$$x - \frac{1}{3} \le 0 \Rightarrow x \le \frac{1}{3}$$
$$x > 0 \text{ ou } x \le 0$$

Para termos $x(x-\frac{1}{3}) \le 0$, os fatores devem possuir sinais opostos ou x=0 ou $x=\frac{1}{3}$:

$$0 \le x \le \frac{1}{3}$$

(i)
$$x_1 + x_2 = 1$$
 e $x_1 x_2 = \frac{1}{4}$
 $x_1 = x_2 = \frac{1}{2}$
 $4x^2 - 4x + 1 < 0 \Rightarrow 4(x - \frac{1}{2})(x - \frac{1}{2}) < 0 \Rightarrow (x - \frac{1}{2})^2 < 0$

A desigualdade não é possível para nenhum x.

(j)
$$x_1 + x_2 = 1$$
 e $x_1 x_2 = \frac{1}{4}$
$$x_1 = x_2 = \frac{1}{2}$$

$$4x^2 - 4x + 1 \le 0 \Rightarrow 4(x - \frac{1}{2})(x - \frac{1}{2}) \le 0 \Rightarrow (x - \frac{1}{2})^2 \le 0$$

A inequação somente é possível para $x = \frac{1}{2}$.

12. (a) Por 8. a) temos:
$$ax^2+bx+c=a\left[\left(x+\frac{b}{2a}\right)^2-\frac{\Delta}{4a^2}\right]$$

Observando o produto, do lado direito temos a>0 e a expressão entre colchetes é positiva sempre, pois temos um termo elevado ao quadrado e no outro, $\frac{\Delta}{4a^2}$, temos $\Delta<0$, porém precedido por um sinal negativo, e dividido por $4a^2$ que é positivo, conclui-se então que esse fator também é positivo e por consequência $ax^2+bx+c>0$.

(b) O raciocínio é similar ao item anterior, exceto que agora temos a<0 e portanto o produto $a\left[\left(x+\frac{b}{2a}\right)^2-\frac{\Delta}{4a^2}\right]$ é negativo, o que nos dá $ax^2+bx+c<0$.

13. (f)
$$(2x+1)(x^2+x+1) \le 0$$

Estudando o sinal do produto, devemos ter as duas expressões com sinais opostos ou algum fator ser 0::

$$2x + 1 > 0 \Rightarrow x > -\frac{1}{2}$$
$$2x + 1 < 0 \Rightarrow x \le -\frac{1}{2}$$

De acordo com o exercício 12 acima, $x^2+x+1>0$, pois $\Delta=1-4.1.1=-3<0$.

Logo
$$(2x+1)(x^2+x+1) \le 0$$
 quando $x \le -\frac{1}{2}$.

(g)
$$x(x^2+1) \ge 0$$

Estudando o sinal do produto, devemos ter as duas expressões com sinais iguais ou algum fator ser 0:

 x^2+1 tem a=1>0e $\Delta=0-4.1.1=-4<0,$ que pelo exercício 12 nos dá $x^2+1>0.$

Logo devemos ter $x \geq 0$.

(h)
$$(1-x)(x^2+2x+2) < 0$$

Estudando o sinal do produto, devemos ter as duas expressões com sinais opostos:

 $x^2 + 2x + 2$ tem a = 1 > 0 e $\Delta = 4 - 4.1.2 = -4 < 0$, que pelo exercício 12 nos dá $x^2 + 2x + 2 > 0$.

Logo devemos ter $1 - x < 0 \Rightarrow x > 1$.

(i)
$$\frac{2x-3}{x^2+1} > 0$$

Estudando o sinal da divisão, devemos ter as duas expressões com sinais iguais: x^2+1 tem a=1>0 e $\Delta=0-4.1.1=-4<0$, que pelo exercício 12 nos dá $x^2+1>0$.

Portanto devemos ter $2x - 3 > 0 \Rightarrow x > \frac{3}{2}$.

(j)
$$\frac{x}{x^2 + x + 1} \ge 0$$

Estudando o sinal da divisão, devemos ter as duas expressões com sinais iguais ou x=0:

 x^2+x+1 tem a=1>0e $\Delta=1-4.1.1=-3<0,$ que pelo exercício 12 nos dá $x^2+x+1>0.$

Portanto devemos ter $x \ge 0$

14. Primeiramente observa-se o fato de $x^2 + 1$ ser sempre positivo, portanto

ao multiplicarmos ambos os lados da expressão $\frac{5x+3}{x^2+1} \ge 5$ por x^2+1 a direção da desigualdade não se altera:

$$\frac{5x+3}{x^2+1} \ge 5 \Rightarrow \frac{5x+3}{x^2+1}.(x^2+1) \ge 5(x^2+1) \Rightarrow 5x+3 \ge 5(x^2+1).$$

Por outro lado dividimos $5x + 3 \ge 5(x^2 + 1)$ por $x^2 + 1$ e temos:

$$\frac{5x+3}{x^2+1} \ge 5\frac{(x^2+1)}{(x^2+1)} \Rightarrow \frac{5x+3}{x^2+1} \ge 5.$$

17. (d)
$$2x^3 - x^2 - 1 = 0$$

1 e -1 são os divisores de $a_3 = -1$, testando os dois valores na equação temos 1 como raiz inteira da equação.

(e)
$$x^3 + x^2 + x - 14 = 0$$

Os divisores inteiros de $a_4 - 14$ são ± 1 , ± 2 , ± 7 e ± 14 .

Testando as 8 possibilidades temos:

$$1^{3} + 1^{2} + 1 - 14 = -11$$

$$-1^{3} + (-1)^{2} - 1 - 14 = -15$$

$$2^{3} + 2^{2} + 2 - 14 = 0, \log 2 \text{ \'e raiz.}$$

$$-2^{3} + (-2)^{2} - 2 - 14 = -12$$

$$7^{3} + 7^{2} + 7 - 14 = 385$$

$$-7^{3} + (-7)^{2} - 7 - 14 = -315$$

$$14^{3} + 14^{2} + 14 - 14 = 2940$$

$$-14^{3} + (-14)^{2} - 14 - 14 = -2576$$

A única raiz inteira encontrada é 2.

(f)
$$x^3 + 3x^2 - 4x - 12 = 0$$

Os divisores inteiros de $a_4 - 12$ são ± 1 , ± 2 , ± 3 , ± 4 , ± 6 e ± 12 .

Testando as 12 possibilidades temos:

$$\begin{aligned} &1^3+3(1)^2-4(1)-12=-12\\ &-1^3+3(-1)^2-4(-1)-12=-6\\ &2^3+3(2)^2-4(2)-12=0,\ \mathrm{logo}\ 2\ \mathrm{\acute{e}}\ \mathrm{raiz}\\ &-2^3+3(-2)^2-4(-2)-12=0,\ \mathrm{logo}\ -2\ \mathrm{\acute{e}}\ \mathrm{raiz}.\\ &3^3+3(3)^2-4(3)-12=30\\ &-3^3+3(-3)^2-4(-3)-12=0,\ \mathrm{logo}\ -3\ \mathrm{\acute{e}}\ \mathrm{raiz}. \end{aligned}$$

$$4^{3} + 3(4)^{2} - 4(4) - 12 = 84$$

$$-4^{3} + 3(-4)^{2} - 4(-4) - 12 = -12$$

$$6^{3} + 3(6)^{2} - 4(6) - 12 = 288$$

$$-6^{3} + 3(-6)^{2} - 4(-6) - 12 = -96$$

$$12^{3} + 3(12)^{2} - 4(12) - 12 = 2100$$

$$-12^{3} + 3(-12)^{2} - 4(-12) - 12 = -1260$$

As raízes inteiras são 2, -2 e -3.

19. (a)
$$x^{3} + 2x^{2} - x - 2$$

$$\begin{array}{c|cccc}
 & 1 & 1 & 2 & -1 & -2 \\
\hline
 & 1 & 3 & 2 & 0
\end{array}$$

$$(x^{2} + 3x + 2)(x - 1)$$

$$\begin{array}{c|ccccc}
 & -2 & 1 & 3 & 2 \\
\hline
 & 1 & 1 & 0
\end{array}$$

$$(x - 1)(x + 1)(x + 2).$$

$$(x+1)(x-1)^2(x-2)$$
.

(c)
$$x^3 + 2x^2 - 3x$$

 $(x^2 + 2x - 3)x$

$$(x+3)(x-1)x.$$

(d)
$$x^3 + 3x^2 - 4x - 12$$

$$(x^2 + x - 6)(x + 2)$$

$$\begin{array}{c|cccc}
2 & 1 & 1 & -6 \\
\hline
& 1 & 3 & 0 \\
(x+3)(x-2)(x+2).
\end{array}$$

(e)
$$x^3 + 6x^2 + 11x + 6$$

$$(x^2 + 5x + 6)(x + 1)$$

$$(x+2)(x+1)(x+3)$$
.

(f)
$$x^3 - 1$$

$$(x^2 + x + 1)(x - 1)$$

20. Podemos usar os resultados do exercício 19 neste exercício.

(a)
$$x^3 - 1 > 0$$

 $x^3 - 1 = (x^2 + x + 1)(x - 1) > 0$

Devemos ter ambos os fatores de $(x^2 + x + 1)(x - 1)$ com mesmo sinal:

Se $x-1>0,\ x>1$ e $x^2+x+1>0,$ logo x>1 é solução da inequação.

Caso x-1<0, temos x<1 e nesse caso $x^2+x+1>0$, o que nos dá $(x^2+x+1)(x-1)<0$, que não é solução da inequação.

A solução da inequação é x > 1.

(b)
$$x^3 + 6x^2 + 11x + 6 < 0 (x+1)(x+2)(x+3) < 0$$

Basta estudarmos o sinal da última inequação, onde deveremos ter um número ímpar de elementos do produto negativos:

Com
$$x < -3$$
, $x < -2$ e $x < -1$ temos a solução $x < -3$.

Nos casos com apenas um elemento negativo:

- (x+1) < 0 nos dá x < -1 e devemos ter x > -2, x > -3, o que nos dá x > -2.
- (x+2) < 0 nos dá x < -2 e devemos ter x > -1, x > -3, o que nao é possível.
- (x+3) < 0 nos dá x < -3 e devemos ter x > -1, x > -2, mas não existe tal combinação.

Finalmente temos a outra solução da inequação:

$$-2 < x < -1$$
.

É possível, e até mais prático, estudar os sinais acima graficamente.

(c)
$$x^3 + 3x - 4x - 12 \ge 0$$

Fatorando o polinômio temos:

$$(x-2)(x+2)(x+3) \ge 0$$

Estudando o sinal da inequação, devemos ter nenhum ou dois fatores do produto negativos:

Caso tenhamos nenhum, devemos ter:

 $x-2 \ge 0$, $x+2 \ge 0$ e $x+3 \ge 0$ o que resulta em, respectivamente, $x \ge 2$, $x \ge -2$ e $x \ge -3$. Logo devemos ter $x \ge 2$ para obtermos $x^3 + 3x - 4x - 12 \ge 0$ nesse caso.

Com dois fatores negativos:

- $x-2 \le 0$ e $x+2 \le 0$ resultam em, respectivamente, $x \le 2$ e $x \le -2$. Devemos ter $x \ge -3$, que resulta na solução: -3 < x < -2
- $x-2 \le 0$ e $x+3 \le 0$ resultam em, respectivamente, $x \le 2$ e $x \le -3$. Devemos ter $x+2 \ge 0 \Rightarrow x \ge -2$, que não é possível.
- $x+2 \le 0$ e $x+3 \le 0$ resultam em, respectivamente, $x \le -2$ e $x \le -3$. Devemos ter $x-2 \ge 0 \Rightarrow x \ge 2$, que não é possível.

As solução da inequação é $x \ge 2$ ou $-3 \le x \le -2$.

(d)
$$x^3 + 2x^2 - 3x < 0$$

Fatorando o polinômio temos:

$$x(x-1)(x+3) < 0$$

Estudamos a seguir o sinal da inequação x(x-1)(x+3) < 0, devemos ter um número ímpoar de elementos do produto negativos:

Com x < 0, $x - 1 < 0 \Rightarrow x < 1$ e $x + 3 < 0 \Rightarrow x < -3$, temos x < -3. Nos casos com apenas um elemento negativo:

- Com x < 0 devemos ter x 1 > 0 e x + 3 > 0, portanto respectivamente x > 1 e x > -3, mas não existe tal combinação.
- x-1 < 0 nos dá x < 1 e devemos ter x > 0 e x > -3, o que resulta em 0 < x < 1
- x + 3 < 0 nos dá x < -3 e devemos ter x > 0 e x > 1, mas não é possível tal combinação.

A solução da inequação é x < -3 ou 0 < x < 1.

21. Falsa. Para explicar basta darmos um contra-exemplo:

Se x = -1 e y = 0, temos x < y, mas não $x^2 < y^2$, pois daí teríamos 1 < 0, o que contradiz nossa proposição.

22.
$$x^3 - y^3 = (x - y)(x^2 + xy + y^2)$$

Se x e y têm o mesmo sinal, temos $(x^2 + xy + y^2) > 0$.

Portanto devemos estudar o que ocorre quando x-y<0, com a condição de x e y terem o mesmo sinal.

Se
$$x > 0$$
 e $y > 0$ temos $x - y < 0 \Rightarrow x < y$.

No caso de x < 0 e y < 0 temos, de forma similar, $x - y < 0 \Rightarrow x < y$.

Já quando ocorrem sinais opostos para x e y, temos apenas da avaliar o caso em que x < 0 e y > 0.

Temos então:

 $x^3 < 0 \Rightarrow x^2 > 0 \Rightarrow x < 0$ (a ordem da desigualdade vai sendo trocada em cada produto pelo inverso) e

 $y^3 > 0 \Rightarrow y^2 > 0 \Rightarrow y > 0$ (a ordem permanece intacta em cada produto pelo inverso).

Finalmente pela lei da transitividade temos x < 0 e $0 < y \Rightarrow x < y$.

Por outro lado:

$$x < y \Rightarrow x - y < 0$$

$$x > 0 e y > 0 \Rightarrow x^2 + xy + y^2 > 0 e$$

$$x < 0 \text{ e } y < 0 \Rightarrow x^2 + xy + y^2 > 0$$

Multiplicando-se os dois lados da inequação x - y < 0 por $x^2 + xy + y^2$ conserva a ordem da desigualdade:

$$(x-y)(x^2 + xy + y^2) < 0 \Rightarrow x^3 - y^3 < 0 \Rightarrow x^3 < y^3.$$

Caso tenhamos x e y com sinais diferentes, pegamos apenas o caso em que x < 0 e y > 0, pois o contrário não existe para x < y.

Temos então:

 $x < 0 \Rightarrow x^2 > 0 \Rightarrow x^3 < 0$ (a ordem da desigualdade vai sendo trocada

em cada produto) e

$$y > 0 \Rightarrow y^2 > 0 \Rightarrow y^3 > 0$$
 (a ordem permanece intacta em cada produto).

Finalmente pela lei da transitividade temos $x^3 < 0$ e $0 < y^3 \Rightarrow x^3 < y^3$.

23. (a)
$$x.0 = x(0)$$
, (A1)
 $x(0) = x(z + (-z))$, (A4)
 $x(z + (-z)) = xz - xz$, (D)
 $xz - xz = xz + (-xz)$, (A1)
Finalmente temos: $xz + (-xz) = 0$, (A4).

(b) Para o primeiro caso:

$$x + (-x) = 0$$
, (A4)
 $y(x + (-x)) = y.0$, combinando (O2) com (OM)
 $yx + y(-x) = 0$, (D) e (a) acima
 $xy + (-x)y = 0$, (M2)
 $xy + (-x)y + (-xy) = -xy$, combinando (O2) com (OA)
 $(-x)y + xy + (-xy) = -xy$, (A2)
 $(-x)y = -xy$, (A3)

No segundo caso:

$$y + (-y) = 0$$
, (A4)
 $x(y + (-y)) = x.0$, combinando (O2) com (OM)
 $xy + x(-y) = 0$, (D) e (a) acima
 $xy + x(-y) + (-xy) = -xy$, combinando (O2) com (OA)
 $x(-y) + xy + (-xy) = -xy$, (A2)
 $x(-y) = -xy$, (A3)

No terceiro:

$$(-x) + x = 0$$
, (A4) e (A2)
 $(-y)((-x) + x) = (-y).0$, combinando (O2) com (OM)
 $(-y)(-x) + (-y)x = 0$, (D) e (a) acima
 $(-x)(-y) + x(-y)$, (M2)

$$(-x)(-y) + x(-y) + xy = xy$$
, combinando (O2) com (OA)
 $(-x)(-y) = xy$, (A4)

(c)
$$x^2 \ge 0$$

$$x \le 0$$
 ou $0 \le x$, (O4)

Se
$$x < 0$$
:

$$x - (-x) \le 0 + (-x)$$
, (OA)

$$0 < -x$$
, (A4)

$$(-x)0 \le (-x)(-x)$$
, (OM)

Considerando o item (a) acima, temos:

$$0 \le x^2$$
.

Se
$$x \geq 0$$
:

$$xx \ge x.0$$
, (OM)

Considerando o item (a) acima, temos:

$$x^2 \ge 0$$
.

(d)
$$1 > 0$$

$$0 \le 1$$
 e $0 \le 1$ nos dá $0.1 \le 1.1 = 1^2$, (OM)

Por (M3)
$$1.1 = 1 \text{ com } 1 \neq 0$$

Logo temos $1^2 > 0$.

(e)
$$x > 0 \Leftrightarrow x^{-1} > 0$$

Primeiramente temos:

$$x > 0 \Rightarrow x^{-1}x > x^{-1}0$$
 (OM)

$$\Rightarrow x^{-1}x^{-1}x > x^{-1}x^{-1}0$$
 (OM)

$$\Rightarrow x^{-1}(x^{-1}x) > x^{-1}x^{-1}0 \text{ (M1)}$$

$$\Rightarrow x^{-1}1 > x^{-1}x^{-1}0 \text{ (M4)}$$

$$\Rightarrow x^{-1} > (x^{-1}x^{-1})0 \text{ (M1)}$$

$$\Rightarrow x^{-1} > (x^{-1}x^{-1})(z + (-z)) \text{ (A4)}$$

$$\Rightarrow x^{-1} > (x^{-1}x^{-1})z + (x^{-1}x^{-1})(-z)$$
 (D)

$$\Rightarrow x^{-1} > 0 \text{ (A4)}$$

Na direção contrária temos:

$$x^{-1} > 0 \Rightarrow x.x^{-1} > x.0 \text{ (OM)}$$

$$\Rightarrow x.x.x^{-1} > x.x.0 \text{ (OM)}$$

$$\Rightarrow x.(x.x^{-1}) > x.x.0 \text{ (M1)}$$

$$\Rightarrow x.1 > x.x.0 \text{ (M4)}$$

$$\Rightarrow x > (x.x)0 \text{ (M1)}$$

$$\Rightarrow x > (x.x)(z + (-z)) \text{ (A4)}$$

$$\Rightarrow x > (x.x)z + (x.x)(-z) \text{ (D)}$$

$$\Rightarrow x > 0 \text{ (A4)}$$

(f)
$$xy = 0 \Leftrightarrow x = 0$$
 ou $y = 0$

utilizando (D) e (A4).

Por a), qualquer número multiplicado por 0 resulta em 0, logo como xy=0 e considerando, primeiramente, $x\neq 0$ e $x^{-1}x=1$ (M4): $x^{-1}(xy)=(x^{-1}x)y=1\cdot y=0 \Leftrightarrow y=0$, utilizando (M1) e (M4) De forma similar chegamos à x=0, com $y\neq 0$. Finalmente quando x=0 e y=0, podemos fazer, de acordo com (A4), x=z-z e y=w-w, daí temos: (z-z)(w-w)=(z-z)w-(z-z)w=zw-zw-(zw-zw)=0-0=0,

(g)
$$x^2 = y^2 \Leftrightarrow x = y \text{ ou } x = -y$$

 $x^2 = y^2 \Leftrightarrow x^2 - y^2 = 0 \text{ (A4)}$
 $\Leftrightarrow x^2 - y^2 + 0 = 0 \text{ (A3)}$
 $\Leftrightarrow x^2 - y^2 + xy - xy = 0 \text{ (A4)}$
 $\Leftrightarrow x^2 + xy - xy - y^2 = 0 \text{(A2)}$
 $\Leftrightarrow x(x+y) - y(x+y) = 0 \text{ (D)}$
 $\Leftrightarrow (x+y)(x-y) = 0 \text{ (D)}$
 $\Leftrightarrow x+y = 0 \text{ ou } x - y = 0 \text{, letra f) acima}$
 $\Leftrightarrow x = -y \text{ ou } x = y \text{ (A4)}$

(h)
$$Sex \ge 0 \text{ e } y \ge 0, x^2 = y^2 \Leftrightarrow x = y$$

 $x^2 = y^2 \Leftrightarrow x^2 - y^2 = 0 \text{ (A4)}$
 $\Leftrightarrow x^2 - y^2 + 0 = 0 \text{ (A3)}$
 $\Leftrightarrow x^2 - y^2 + xy - xy = 0 \text{ (A4)}$
 $\Leftrightarrow x^2 + xy - y^2 - xy = 0 \text{ (A2)}$

$$\Leftrightarrow x(x+y) - y(x+y) = 0(D)$$

$$\Leftrightarrow (x-y)(x+y) = 0 \text{ (D)}$$

$$\Leftrightarrow x-y=0$$
 ou $x+y=0$, letra f) acima.

Temos x=-y impossível, pois viola a condição de $x\geq 0,$ já x=y é possível, pois ambos devem ser positivos.

1.3 Módulo de um Número Real

1. (a)
$$|-5| + |-2| = -(-5) - (-2) = 5 + 2 = 7$$
.

(b)
$$|-5+8| = |3| = 3$$
.

(c)
$$|-a| = -(-a) = a$$
.

(d)
$$|a|$$
, $a < 0$
Como $a < 0$, $|a| = -a$

(e)
$$|-a|$$

Quando
$$-a \le 0$$
 temos $a \ge 0$ e portanto $|-a| = -(-a) = a$. Quando $-a > 0$ temos $a < 0$ e portanto $|-a| = -a$.

(f)
$$|2a| - |3a|$$

 $|2a| - |3a| = |2||a| - |3||a| = (|2| - |3|)|a| = (2 - 3)|a| = (-1)|a|$.
Caso $a \ge 0$, teremos $(-1) \cdot a = -a$.
Caso $a < 0$, teremos $(-1) \cdot (-a) = a$.

2. (a)
$$|x|=2$$

$$x=2 \text{ quando } x\geq 0 \text{ ou } x=-2 \text{ quando } x<0.$$

(b)
$$|x+1| = 3$$

 $x+1 > 0 \Rightarrow x+1 = 3 \Rightarrow x = 2$
 $x+1 < 0 \Rightarrow -(x+1) = 3 \Rightarrow x+1 = -3 \Rightarrow x = -4$.

(c)
$$|2x - 1| = 1$$

 $2x - 1 > 0 \Rightarrow 2x - 1 = 1 \Rightarrow 2x = 2 \Rightarrow x = 1$
 $2x - 1 \le 0 \Rightarrow -(2x - 1) = 1 \Rightarrow 2x - 1 = -1 \Rightarrow 2x = 0 \Rightarrow x = 0.$

(d)
$$|x-2| = -1$$

3 - 2 = 1 > 0.

Não existe solução, pois o módulo de um número é sempre positivo. Podemos verificar o que ocorre quando tentamos solucionar a equação: Se $x-2\geq 0$, temos $x-2=-1 \Rightarrow x=1$, porém x-2=1-2=-1<0. Se x-2<0, temos $-(x-2)=-x+2=-1 \Rightarrow x=3$, porém

Vemos então que existem contradições nos dois valores encontrados para x, logo não existe solução.

(e)
$$|2x+3| = 0$$

Para $2x+3 \ge 0$, temos $2x+3=0 \Rightarrow 2x=-3 \Rightarrow x=\frac{-3}{2}$.
Para $2x+3 < 0$, temos $-(2x+3)=0 \Rightarrow -2x-3=0 \Rightarrow -2x=3 \Rightarrow x=\frac{-3}{2}$.

(f)
$$|x|=2x+1$$

Para $x\geq 0$, temos $x=2x+1\Rightarrow x=-1$.
Para $x<0$, temos $-x=2x+1\Rightarrow 3x=-1\Rightarrow x=\frac{-1}{3}$.

3. (a)
$$|x| \le 1$$

 $x > 0 \Rightarrow x \le 1$
 $x \le 0 \Rightarrow -x \le 1 \Rightarrow x \ge -1$
 $-1 \le x \le 1$

(b)
$$|2x - 1| < 3$$

 $2x - 1 > 0 \Rightarrow 2x - 1 < 3 \Rightarrow 2x < 4 \Rightarrow x < 2$
 $2x - 1 < 0 \Rightarrow -(2x - 1) < 3 \Rightarrow 2x - 1 > -3 \Rightarrow 2x > -2 \Rightarrow x > -1$
 $-1 < x < 2$

- (c) |2x-1| < -2, não admite solução pois o módulo de um número real é sempre positivo ou igual à 0.
- (d) $|2x 1| < \frac{1}{3}$ $-\frac{1}{3} < 2x - 1 < \frac{1}{3} \Rightarrow -\frac{1}{3} + 1 < 3x < \frac{1}{3} + 1 \Rightarrow$ $\frac{2}{3} < 3x < \frac{4}{3} \Rightarrow \frac{2}{9} < x < \frac{4}{9}.$

(e)
$$|2x^2 - 1| < 1$$

 $|2x^2 - 1| > 0 \Rightarrow 2x^2 - 1 < 1 \Rightarrow 2x^2 < 2 \Rightarrow x^2 < 1 \Rightarrow x < 1$ ou $x > -1$ com $x \neq 0$. $|2x^2 - 1| \leq 0 \Rightarrow 2x^2 - 1 > -1 \Rightarrow 2x^2 > 0 \Rightarrow x^2 > 0 \Rightarrow x \neq 0$
 $-1 < x < 1, x \neq 0$.

(f)
$$|x-3| < 4$$

 $-4 < x - 3 < 4 \Rightarrow -1 < x < 7.$

(g)
$$|x| > 3$$

 $x > 0 \Rightarrow x > 3$
 $x \le 0 \Rightarrow -x > 3 \Rightarrow x < -3$
 $x < -3$ ou $x > 3$.

- (h) |x+3| > 1 $|x+3| > 1 \Leftrightarrow |x+3|^2 > 1^2 \Leftrightarrow (x+3)^2 > 1^2 \Leftrightarrow (x+3)^2 - 1^2 > 0 \Leftrightarrow$ $\Leftrightarrow [(x+3)-1][(x+3)+1] > 0 \Leftrightarrow (x+2)(x+4) > 0$ Para se obter (x+2)(x+4) > 0, devemos ter as expressões (x+2)e (x+4) com mesmo sinal: x+2 < 0 e x+4 < 0 nos dá x < -2 e x < -4, logo devemos ter x < -4 x+2 > 0 e x+4 > 0 nos dá x > -2 e x > -4, logo devemos ter x > -2A solução é x < -4 ou x > -2
- (i) |2x-3| > 3 $|2x-3| > 3 \Leftrightarrow |2x-3|^2 > 3^2 \Leftrightarrow (2x-3)^2 > 3^2 \Leftrightarrow$ $\Leftrightarrow (2x-3)^2 - 3^2 > 0 \Leftrightarrow (2x-3-3)(2x-3+3) > 0 \Leftrightarrow (2x-6)(2x) > 0$ Para se obter (2x-6)(2x) > 0, devemos ter as expressões (2x-6) e 2x com mesmo sinal: 2x-6 < 0 e 2x < 0, resulta em x < 3 e x < 0, logo deve-se ter x < 0. 2x-6 > 0 e 2x > 0, resulta em x > 3 e x > 0, logo deve-se ter x > 3.
- $$\begin{split} (\mathrm{j}) & |2x-1| < x \\ & |2x-1| < x \Leftrightarrow |2x-1|^2 < x^2 \Leftrightarrow (2x-1)^2 < x^2 \Leftrightarrow \\ & \Leftrightarrow (2x-1)^2 x^2 < 0 \Leftrightarrow (2x-1-x)(2x-1+x) < 0 \Leftrightarrow \\ & \Leftrightarrow (x-1)(3x-1) < 0 \text{ Para se obter } (x-1)(3x-1) < 0 \text{,as expressões} \\ & (x-1) \text{ e } (3x-1) \text{ devem ter sinais opostos:} \\ & x-1 > 0 \text{ e } 3x-1 < 0 \text{, resulta em } x > 1 \text{ e } x < 1/3 \text{, que não soluciona} \\ & \text{a inequação.} \\ & x-1 < 0 \text{ e } 3x-1 > 0 \text{, resulta em } x < 1 \text{ e } x > 1/3 \text{, que resulta no} \\ & \text{intervalo} \ \frac{1}{3} < x < 1. \end{split}$$

(1)
$$|x+1| < |2x-1|$$

 $|x+1| < |2x-1| \Leftrightarrow |x+1|^2 < |2x-1|^2 \Leftrightarrow (x+1)^2 < (2x-1)^2 \Leftrightarrow$
 $\Leftrightarrow (x+1)^2 - (2x-1)^2 < 0 \Leftrightarrow$
 $\Leftrightarrow [(x+1) - (2x-1)] \cdot [(x+1) - (2x-1)] < 0 \Leftrightarrow$
 $\Leftrightarrow (x+1-2x+1)(x+1+2x-1) \Leftrightarrow (-x+2)(3x) < 0.$

Para se obter (-x+2)(3x) < 0, as expressões (-x+2) e 3x devem ter sinais opostos:

-x+2<0e 3x>0,resulta em x>2e x>0,logo deve-se ter x>2.

-x+2>0 e 3x<0, resulta em x<2 e x<0, logo deve-se ter x<0.

(m)
$$|x-1|-|x+2|>x$$

Neste caso é necessário avaliar quatro combinações com relação aos resultados dos módulos, de acordo com o sinal da expressão no módulo:

• x-1>0 e x+2>0, resulta em x>1 e x>-2, logo tem-se essa combinação com x>1

$$x-1-x+2 > x \Leftrightarrow 1 > x \Leftrightarrow x < 1$$

- x-1>0 e x+2<0, resulta em x>1 e x<-2, que não é possível.
- x-1 < 0 e x+2 > 0, resulta em x < 1 e x > -2, logo tem-se essa combinação com -2 < x < 1

$$-(x-1)-(x+2)>x\Leftrightarrow -x+1-x-2>x\Leftrightarrow -2x-1>x\Leftrightarrow x-1>3x\Leftrightarrow x<\frac{-1}{3}$$

• x-1 < 0 e x+2 < 0, resulta em x < 1 e x < -2, logo tem-se essa combinação com x < -2

$$-(x-1)-[-(x+2)]>x\Leftrightarrow -x+1+x+2>x\Leftrightarrow 3>x\Leftrightarrow x<3.$$

Finalmente, dos resultados acima, chega-se ao resultado $x < \frac{-1}{3}$

(n)
$$|x-3| < x+1$$

 $|x-3| < x+1 \Leftrightarrow |x-3|^2 < (x+1)^2 \Leftrightarrow (x-3)^2 < (x+1)^2 \Leftrightarrow \Leftrightarrow (x-3)^2 - (x+1)^2 < 0 \Leftrightarrow [(x-3) - (x+1)] \cdot [(x-3) + (x+1)] < 0 \Leftrightarrow$

1.3. MÓDULO DE UM NÚMERO REAL

$$\Leftrightarrow (x-3-x-1)(x-3+x+1) < 0 \Leftrightarrow -4(2x-2) < 0 \Leftrightarrow -(2x-2) < 0 \Leftrightarrow 0 \Leftrightarrow$$

31

$$\Leftrightarrow -2x + 2 < 0 \Leftrightarrow -2x < -2 \Leftrightarrow x > 1.$$

(o)
$$|x-2| + |x-1| > 1$$

Quando
$$x-2<0 \Rightarrow x<2, \ |x-2|=-x+2.$$
 Já caso $x-2\geq 0 \Rightarrow x\geq 2, \ |x-2|=x-2.$

Quando
$$x-1<0\Rightarrow x<1, \ |x-1|=-x+1.$$
 Já caso $x-1\geq 0\Rightarrow x\geq 1, \ |x-1|=x-1.$

• Quando x-2<0 e $x-1<0,\,x<1,$ tem-se:

$$-x+2-x-1 > 1 \Leftrightarrow -2x+1 > 1 \Leftrightarrow x < 0$$

- Quando x-2<0 e $x-1\geq 0,$ $1\leq x<2.$ -x+2+x-1=1>1. Sem solução nesse caso.
- Quando $x-2 \ge 0$ e $x-1 \ge 0$, $x \ge 2$, tem-se: $x-2+x-1 > 1 \Leftrightarrow 2x-3 > 1 \Leftrightarrow 2x > 4 \Leftrightarrow x > 2$.

A solução da inequação é x < 1 ou x > 2.

4. Dado r > 0, provar:

$$|x| > r \Leftrightarrow x < -r \text{ ou } x > r$$

$$x > 0 \Rightarrow x > r$$

$$x < 0 \Rightarrow -x > r \Rightarrow x < -r$$

Logo
$$|x| > r \Rightarrow x < -r$$
 ou $x > r$.

Por outro lado:

$$x > r \text{ com } r > 0 \Rightarrow x^2 > r^2 \Rightarrow \sqrt{x^2} > \sqrt{r^2} \Rightarrow |x| > r.$$

No caso de x < -r com r > 0 temos:

$$x < -r \text{ com } x < 0 \Rightarrow -x > r \Rightarrow (-x)^2 > r^2 \Rightarrow \sqrt{(-x)^2} > \sqrt{r^2} \Rightarrow |x| > r.$$

5. (a)
$$|x+1| + |x|$$

Devemos averiguar as quatro combinações de sinais para as duas expressões nos módulos:

Para
$$x+1>0$$
 e $x>0$, temos $x>-1$ e $x>0$, ou seja, $x>0$:

$$x + 1 + x = 2x + 1$$

Para x+1>0 e $x\leq 0$, temos x>-1 e $x\leq 0$, ou seja, $-1< x\leq 0$: x+1-x=1

Para $x+1 \leq 0$ e x>0, temos x<-1 e x>0, que não é possível.

Para $x+1 \leq 0$ e $x \leq 0$, temos $x \leq -1$ e $x \leq 0$, ou seja, $x \leq -1$:

$$-(x+1) - x = -2x - 1$$

Logo a solução é:

$$|x+1| + |x| = \begin{cases} -2x - 1, & \text{se } x \le -1 \\ 1, & \text{se } -1 < x \le 0 \end{cases}$$
$$2x + 1, & \text{se } x > 0$$

(b) |x-2|-|x+1|

Para x-2>0 e x+1>0, temos x>2 e x>-1, ou seja, x>2: x-2-x-1=-3

Para x-2>0 e $x+1\leq 0$, não é possível haver x>2 e x<-1.

Para $x-2 \leq 0$ e x+1 > 0,temos $x \leq 2$ e x > -1,ou seja, $-1 < x \leq 2$:

$$-(x-2) - (x+1) = -x + 2 - x - 1 = -2x + 1$$

Para $x-2 \leq 0$ e $x+1 \leq 0,$ temos $x \leq 2$ e $x \leq -1,$ ou seja, $x \leq -1:$

$$-(x-2) - [-(x+1)] = -x + 2 + x + 1 = 3$$

Logo a solução é:

$$|x-2| - |x+1| = \begin{cases} 3, & \text{se } x \le -1 \\ -2x+1, & \text{se } -1 < x \le 2 \\ -3, & \text{se } x > 2 \end{cases}$$

 $\begin{array}{l} \text{(c)} \ |2x-1|+|x-2| \\ \text{Para } x \leq \frac{1}{2}, \, 2x-1 < 0 \text{ e } x-2 < 0, \, \text{assim temos:} \\ -(2x-1)-(x-2) = -2x+1-x+2 = -3x+3. \\ \text{Para } x \geq 2, \, 2x-1 \geq 0 \text{ e } x-2 \geq 0, \, \text{assim temos:} \\ 2x-1+x-2 = 3x-3. \\ \text{Para } \frac{1}{2} \leq x < 2, \, 2x-1 \geq 0 \text{ e } x-2 < 0, \, \text{assim temos:} \end{array}$

$$2x - 1 - (x - 2) = 2x - 1 - x + 2 = x + 1.$$

Logo a solução é:

$$|2x-1|+|x-2| = \begin{cases} -3x+3, & \text{se } x \le \frac{1}{2} \\ x+1, & \text{se } \frac{1}{2} < x < 2 \\ 3x-3, & \text{se } x \ge 2 \end{cases}$$

(d)
$$|x| + |x - 1| + |x - 2|$$

Para $x \le 0, x \le 0, x - 1 < 0$ e x - 2 < 0, assim temos:

$$-(x) - (x - 1) - (x - 2) = -x - x + 1 - x + 2 = -3x + 3.$$

Para $x \ge 2, x > 0, x - 1 > 0$ e $x - 2 \le 0$, assim temos:

$$(x) + (x - 1) + (x - 2) = 3x - 3.$$

Para $0 < x \le 1$, x > 0, $x - 1 \le 0$ e x - 2 < 0, assim temos:

$$(x) - (x-1) - (x-2) = x - x + 1 - x + 2 = -x + 3.$$

Para $1 < x \ge 2$, x > 0, x - 1 > 0 e $x - 2 \le 0$, assim temos:

$$(x) + (x-1) - (x-2) = x + x - 1 - x + 2 = x + 1.$$

Logo a solução é:

$$|x| + |x - 1| + |x - 2| = \begin{cases} -3x + 3, & \text{se } x \le 0 \\ -x + 3, & \text{se } 0 < x \le 1 \end{cases}$$
$$x + 1, & \text{se } 1 < x \le 2$$
$$3x - 3, & \text{se } x \ge 2$$

6.
$$|x+y| = |x| + |y| \Leftrightarrow (|x+y|)^2 = (|x|+|y|)^2 \Leftrightarrow$$

$$\Leftrightarrow (x+y)^2 = |x|^2 + 2|x| \cdot |y| + |y|^2 \Leftrightarrow$$

$$\Leftrightarrow x^2 + 2xy + y^2 = x^2 + 2|x| \cdot |y| + y^2 \Leftrightarrow$$

$$\Leftrightarrow xy = |x| \cdot |y| \Leftrightarrow xy = |xy|$$

Pela definição do módulo de um número real, $|xy| \geq 0,$ logo $xy \geq 0.$

Assim conclui-se: $|x + y| = |x| + |y| \Leftrightarrow xy = |xy| \Leftrightarrow xy \ge 0$

7. (a)
$$|x - y| \ge |x| - |y|$$

$$|x| = |x + y - y| \le |x - y| + |y| \Leftrightarrow |x - y| \ge |x| - |y|$$

- (b) $|x-y| \ge |y| |x|$ $|y| = |y-x+x| = |-(x-y)+x| \le |-(x-y)| + |x| = |x-y| + |x| \Leftrightarrow |x-y| \ge |y| - |x|$
- (c) $||x|-|y|| \le |x-y|$ $|x|-|y| \ge 0$ resulta em $||x|-|y|| = |x|-|y| \le |x-y|$ e comforme item a) acima fica provada a desigualdade.

 $|x|-|y|\leq 0$ resulta em $||x|-|y||=|y|-|x|\leq |x-y|$ e comforme item b) acima fica provada a desigualdade.

Logo
$$||x| - |y|| \le |x - y|$$
.

35

1.4 Intervalos

1. (a)
$$4x - 3 < 6x + 2 \Leftrightarrow 4x - 6x < 2 + 3 \Leftrightarrow -2x < 5 \Leftrightarrow x > -\frac{5}{2}$$
 $\{x \in \mathbb{R} \mid 4x - 3 < 6x + 2\} =] -\frac{5}{2}, +\infty[$

(b)
$$|x| < 1 \Leftrightarrow -1 < x < 1$$

 $\{x \in \mathbb{R} \mid |x| < 1\} =] -1, 1[$

(c)
$$|2x-3| \le 1 \Leftrightarrow -1 \le 2x-3 \le 1 \Leftrightarrow -1+3 \le 2x \le 1+3 \Leftrightarrow$$

 $\Leftrightarrow 2 \le 2x \le 4 \Leftrightarrow 1 \le x \le 2$
 $\{x \in \mathbb{R} \mid |2x-3| < 1\} = [1,2]$

(d)
$$3x + 1 < \frac{x}{3} \Leftrightarrow 3(3x + 1) < x \Leftrightarrow 9x + 3 < x \Leftrightarrow 8x < -3 \Leftrightarrow x < -\frac{3}{8}$$
$$\{x \in \mathbb{R} \mid 3x + 1 < \frac{x}{3}\} =] - \infty, \frac{3}{8}[$$

2.
$$4-r \ge 2$$
, $4+r \le 5$ e $r > 0$
 $4-r \ge 2 \Leftrightarrow -r \ge -2 \Leftrightarrow r \le 2$
 $4+r \le 5 \Leftrightarrow r \le 1$, $\log 0 < r \le 1$.

3.
$$p-r \ge a e p + r \le b com a < b$$

 $p-r \ge a \Leftrightarrow -r \ge a - p \Leftrightarrow r \le p - a$
 $p+r \le b \Leftrightarrow r \le b - p$

ultrapasse o intervalo a, b.

r deve ser no máximo o menor valor dentre p-a e b-p para que não se

4. (a) $x^2 - 3x + 2 < 0 \Leftrightarrow (x - 2)(x - 1) < 0 \Leftrightarrow 1 < x < 0$. O conjunto solução da inequação é]1,2[

Como r > 0, tem-se 0 < r < p - a ou 0 < r < b - p.

(b)
$$\frac{2x-1}{x+3} > 0 \Leftrightarrow 2x-1 > 0$$
 e $x+3 > 0$ ou $2x-1 < 0$ e $x+3 < 0$, logo: $x > \frac{1}{2}$ e $x > -3$ ou $x < \frac{1}{2}$ e $x < -3$.

O conjunto solução da inequação é representado por:

$$]\frac{1}{2}, +\infty[e] - \infty, -3[.$$

Obs.: Há algum erro no enunciado ou na solução apresentada no livro.

- (c) $x^2+x+1>0$ para todos os números reais, logo a solução é: $]-\infty, \ +\infty \ [.$
- (d) $x^2-9\leq 0 \Leftrightarrow x^2-3^2\leq 0 \Leftrightarrow (x-3)(x+3)\leq 0 \Leftrightarrow -3\leq x\leq 3.$ O conjunto solução da inequação é] -3,3[
- 1.5 Propriedades dos Intervalos Encaixantes e Propriedade de Arquimedes
- 1.6 Existência de raízes

Chapter 2

Funções

2.1 Funções de Uma Variável Real a Valores Reais

1. (c) $f(x) = x^2 e \ ab \neq 0$.

$$\frac{f(a+b) - f(a-b)}{ab} = \frac{(a+b)^2 - (a-b)^2}{ab} = \frac{a^2 + 2ab + b^2 - (a^2 - 2ab + b^2)}{ab} = \frac{a^2 + 2ab + b^2 - a^2 + 2ab - b^2}{ab} = \frac{4ab}{ab} = 4$$

(d) $f(x) = 3x + 1 e ab \neq 0$.

$$\frac{f(a+b) - f(a-b)}{ab} = \frac{3(a+b) + 1 - [3(a-b) + 1]}{ab} = \frac{3a + 3b + 1 - (3a - 3b + 1)}{ab} = \frac{3a + 3b + 1 - 3a + 3b - 1}{ab} = \frac{6b}{ab} = \frac{6}{a}$$

2. Simplifique $\frac{f(x) - f(p)}{x - p}$ $(x \neq p)$:

- (i)
- (j)
- (1)
- (m)
- (n)
- (o)
- (p)
- (q)
- 3.
- 4.
- 5.
- 6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

40

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.