E1 213 Pattern Recognition and Neural Networks

Practice Problems: Set 4

- 1. Given two sets of points in \Re^d , show that they are linearly separable if and only if their convex hulls do not intersect.
- 2. Consider the following 'guess-the-number' game. The teacher picks some number, c^* , from [0, 1]. The learner is given a set of examples of the form $\{(x_i, y_i), i = 1, \dots, n\}$ where $x_i \in [0, 1]$ and $y_i = 1$ if $x_i \leq c^*$ and $y_i = 0$ if $x_i > c^*$. Suggest a PAC learning algorithm for this problem. First formulate the problem in the PAC framework by specifying what are \mathcal{X}, \mathcal{Y} and \mathcal{C} here. Then specify an algorithm which, for any n, takes n examples as input and outputs a number in [0, 1]. Then show that this is a PAC learning algorithm.
- 3. Let $\mathcal{X} = \Re^2$, $\mathcal{Y} = \{0, 1\}$. Let c^r denote the circular disc of radius r with center at origin. That is, $c^r = \{(x, y) \in \Re^2 : x^2 + y^2 \le r^2\}$. Let \mathcal{C} be family of all such concentric circles with centre at origin. Show that this concept class is PAC learnable.
- 4. A monomial over Boolean variables is a conjunction of literals. A literal is a variable or its compliment. For example, x_1 , x_2x_3 , $\bar{x}_1x_2x_3$ are all monomials over three Boolean variables. Here, \bar{x}_1 denotes the literal which is complement of x_1 . Consider a 2-class problem with n Boolean features. Suppose we know that all patterns can be correctly classified by some monomial. (That is, the correct monomial would have value 1 on all feature vectors of C_0 and would have value 0 on all feature vectors from C_1). We want to learn the monomial given some examples. Consider a learning algorithm for this as given below. We start with the monomial $x_1\bar{x}_1x_2\bar{x}_2\cdots x_n\bar{x}_n$. (Note that this monomial classifies all patterns as C_1). The algorithm is an incremental algorithm processing one example in each iteration. At each iteration we modify the current monomial as follows. If the next example is from C_1 we do nothing. If the next example is from C_0 , then, for each $i, 1 \le i \le n$, if the example has value 1 for i^{th} feature, then we delete the literal \bar{x}_i (if present) from the current monomial; if the example has value 0 for i^{th} feature, then we delete the literal x_i (if present) from the current monomial. For n = 3, take some example target monomial and show how the algorithm works if you take each of the 8 possible feature vectors one

by one. Next, show that this is a PAC-learning algorithm. That is, show that given any ϵ and δ , we can find n such that after n random examples, the probability that the error of the classifier learnt by the algorithm is greater than ϵ is less than δ .