SOLUTIONS

QUESTION I

$$ab = \frac{1}{x}dx$$

$$x = e, u = 1$$
$$x = e^2, u = 2$$

$$6) \frac{5}{(2-x)(x+2)} > 1$$

$$\frac{5}{(2-x)(x+2)} = 1 > 0$$

$$(2-x)(x+2)$$

$$\frac{5-(4-x^2)}{(2-x)(x+2)} > 0$$

$$\frac{x^2+1}{(2-x)(x+2)} > 0$$

i.e.
$$(2-x)(x+2) > 0$$

Fest
$$x = 0$$
, true

∴ Solution is -2 < x < 2</p>

(c) Line
$$PQ$$
 less equation $\frac{Y-Y_1}{X-X_1} = \frac{Y_2-Y_1}{X_2-X_1}$

$$\frac{2+3}{x+3} = \frac{5+3}{1+3}$$

$$y+3 = 2(x+3)$$

A lies on PQ since, when $x = \frac{1}{2}$, $y = 2(\frac{1}{2}) + 3$

$$x_{A} = \frac{mx_{Q} + nx_{p}}{m + n}$$

$$y_A = \frac{my_Q + my_p}{m + n}$$

$$\frac{1}{2} = \frac{m(1) + m(-3)}{m+n}$$

$$4 = \frac{m(5) + n(-3)}{m + n}$$

$$4m + 4n = 5m - 3n$$

m+n=2m-6n

W= 70

~ ■ E|≈

F = 7

i.e. A divides the line segment PQ in the ratio $\hat{I}: \mathbb{I}$

(d) Let tan-1 x= 0

$$\therefore \tan \alpha = x \qquad \text{for } -\frac{\pi}{2} < \alpha < \frac{\pi}{2}$$

and a can be represented as a first quadrant angle.

Then $\cos \alpha = \frac{1}{\sqrt{1+x^2}}$

so that
$$\cos^{-1} \frac{1}{\sqrt{1+x^2}} = \alpha$$

$$\therefore 1201^{-3}x = 0.08^{-4} \frac{1}{\sqrt{1+x^2}}$$

(a) 71×°C₂

(b) $(1-2x)^4 = \sum_{i=1}^6 {\binom{4}{i}} (-2x)^4$

 $\therefore (1-3x+2x^3)(1-2x)^6$

 $= (1-3x+2x^3)(1+\binom{5}{7}-2x)+\binom{6}{2}(-2x)^2+\binom{6}{5}(-2x)^3+\binom{6}{5}(-2x)^3+\binom{6}{5}(-2x)^5+\binom{6}{5}(-2x)^6]$

The x' terms arise from

 $1 \times (\frac{6}{5}(1-2x)^3 - 3x[(\frac{6}{5}(1-2x)^4] + 2x^3[(\frac{6}{5}(1-2x)^2)]$

 $=-192x^3-720x^5+120x^5$

.. Coefficient of x* tenn is -792

(c) $\cos 54^\circ \cos \alpha + \sin 54^\circ \sin \alpha = \sin 2\alpha$

 $\cos(54^{\circ} - \alpha) = \cos(90^{\circ} - 2\alpha)$

.: 54° - 42 = ±(90° - 243) + 360° n

54° - a = 90° - 2a + 360°n

 $a = 36^{\circ} + 360^{\circ}$

 $54^{\circ} - \alpha = -(90^{\circ} - 2\alpha) + 360^{\circ}n$ 54° - a = -90° + 2a + 360°n

3tt = 144° - 360°n

α = 48° - 120°n

 $\begin{cases} d & \frac{d}{ds} \text{ Lim}^2 x \\ & \frac{d}{ds} \end{cases}$

 $\frac{2x \ln x \sec^2 x - \tan^2 x}{2}$

(c) f(x)=2x2+x

 $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$

 $\lim_{h\to 0} \frac{2(a+h)^2 + a + h - (2a^2 + a)}{h\to 0}$

Mashematics Exercises 1 KSC 2004

11m 2a2 + 4ah + 2h2 + a + h - 2a2 - a

- lim 40+2+2++

= lim 40 + 2h + E

=4a+1

QUESTION 3

(a) y=x2-4x-1

y+1=x-4x

x2-4x+4=y+5 $(x-2)^2-y+5$ $(x-2)^2 = 4(\frac{1}{4})(y+5)$

.: Vertex is (2, -5)

Focal Fength - -

: Focus is $(2, -4\frac{3}{4})$

Directrix has equation y = -5.

(b) With one digit:

With two digits: \$P_2 = 30

With three digits:

Total = 95

- (c) (i) Let ZBAF = x
- .. ZFAC = x (AF bisects ZBAC)
- $\therefore \angle AOD = 2x (DA = DO)$
- AMP = X

(angle at centre = 2 × angle at circumference)

- : ZBAF = ZABE = x
- CA = GB

- (ii) $\angle AGE = 2x$ (Exterior \angle of $\triangle GAB$)
- :: ZAGE = ZAOD = 2x
- :: AOGE is a cyclic quadribateral (angles subtended by AE proved equal)
- (iii) ZBEC = ZBAC (angles subtended by BC)
- : ZBEC = ZAGE = 2x
- ∴ EC | FA (ellemete ∠s proved equal)

Medicopolicy Externs 1 HSC 2004

QUESTION 4

(a)
$$\sum_{n=1}^{p} \frac{r^2}{(2r-1)(2r+1)} = \frac{1^2}{1\times 3} + \frac{2^2}{3\times 5} + \dots + \frac{n^2}{(2n-1)(2n+1)}$$

If
$$n = 1$$
, L.HS = $\frac{1^2}{1 \times 3} = \frac{1}{3}$
R.HS = $\frac{(2)}{2(3)} = \frac{1}{3}$

 \therefore The statement is true for n=1

Assume that the statement is true for n = k, a positive integer.

i.e.
$$\frac{1^2}{1 \times 3} + \frac{2^3}{3 \times 5} + \dots + \frac{k^2}{(2k-1)(2k+1)} = \frac{k(k+1)}{2(2k+1)}$$

So, when n = k + 1

$$LHS = \frac{1^2}{1 \times 3} + \frac{2^3}{3 \times 5} + \dots + \frac{k^3}{(2k-1)(2k+1)} + \frac{(k+1)^2}{(2k+1)(2k+3)}$$

$$\frac{k(t+1)}{2(2t+1)} + \frac{(t+1)^2}{(2t+1)(2t+3)}$$

by assumption

$$\frac{k(k+1)(2k+3)+2(k+1)^2}{2(2k+1)(2k+3)}$$

(k+1)(21+34+2k+2)

$$= \frac{(k+1)(k+2)}{2(2k+3)} = RHS$$

.. If the statement is true for n=k, then it is true for n=k+1.

. But it is true for n = 1, and so true for n = 2, and hence by induction it is true for all positive integers.

(b) (i) Let O be the centre of the semi-circle and join OC. 20C8 - a. (OC - OB)

and
$$\angle COB = x - 2\alpha$$

.. Area of segment out off by CB

$$\frac{1}{2}(1)^{2}\left[\pi-2\alpha-\sin\left(\pi-2\alpha\right)\right]$$

$$=\frac{1}{2}(x-2\alpha-\sin2\alpha)$$

(ii) Area of segment $= \frac{1}{3}$ (area of semi-circle)

$$\frac{1}{2}\left(\pi-2\alpha-\sin2\alpha\right)=\frac{1}{2}\left(\frac{1}{2}\pi\right)$$

$$\pi - 2\alpha - \sin 2\alpha = \frac{\pi}{2}$$

$$2R - 4\alpha - 2\sin 2\alpha = \pi$$

(iii) Let
$$f(\alpha) = 2 \sin 2\alpha + 4\alpha - \pi$$

Change in sign proves that a root lies between $\alpha=0.4$ and $\alpha=0.5$

(iv) Taking $\alpha = 0.45$, f(0.45) = 0.225 > 0

Box A0.4) < 0

.. Root lies closer to 0.4 than 0.5

Mathematics Extension 1 NSC 2004

QUESTION 5

(a) (i) T=To+Ac*

$$\frac{dT}{dt} = -kMe^{-tb}$$

(ii) When r = 0, T = 100

When
$$t = 3$$
, $T = 70$
 $T = T_0 + Ae^{-4t}$

= 0.170

(iii)
$$T = 25 + 75e^{-0.150}$$

 $T = 50$

$$-0.170t = ln(\frac{1}{3})$$

t = 6.45 min

(b) (i) Applying cosine rule to

$$y^2 = x^3 + y^2 - 2xy \cos \alpha$$

$$2xy \cos \alpha = x^2$$

$$\cos \alpha = \frac{x^2}{2xy}$$

(ii)
$$\angle BAC = \alpha$$
 ($\triangle ABC$ isosceles)

.. ZACB • 180° – 2
$$\alpha$$
 (angles of $\triangle ABC$)

$$\angle ADC = 90^{\circ}$$
 (angle in a semi-circle)

In
$$\triangle ADC$$
: $\cos(180 - 2\alpha) = \frac{DC}{y}$

$$-\cos 2\alpha = \frac{\partial C}{y}$$

m
 -)(2 $\cos^{2}\alpha$ - 1)

$$=-y(\frac{2x^2}{4y^2}-1)$$

i.e.
$$DC = p - \frac{x^2}{2y}$$

QUESTION 6

Marhamothei Extensiv - 7 HSC 2004

(a) 11.00 a.m
$$\rightarrow$$
 5.20 p.m. = $6\frac{1}{2}$ h

: Period
$$T = 12\frac{2}{3} = \frac{38}{3}$$
 b

$$\therefore y = \frac{2x}{T} = \frac{2x}{3} = \frac{3x}{19}$$

Mean tide
$$-4 \text{ m}$$
 and amplitude -2 m

Let x = the number of metres by which the water depth differs from 4 m at time tавет 11.00 а.т.

$$50x = -2 \cos \frac{3\pi}{19}$$

The yacks may eater safely when $x \ge -0.5$

Consider x = -0.5

$$-2\cos\frac{3\pi}{19} = -0.5$$

$$\frac{3\pi}{19} = 1.318$$
 or $\frac{3\pi}{19} = 2\pi = 1$

1 * 10.00 h

.. The yacht may safely cross the lagoon between 1.40 p.m. and 9.00 p.m.

(b) (i) Number of ways of arranging n different objects in a circle is (n-1)!

. With no restrictions, number of arrangements = (9-1)!

$$= 40320$$

(ii) Suppose that host and hostess do sit next to each other.

Then they may be arranged in 2! ways while the guests may be arranged in ?!

 \therefore Number of ways $= 21 \times 71$

.. Number of ways if host and hostess are separated

(iii) Probability = $\frac{^{20}C_{13}}{^{12}C_{13}}$

= 2.23 × 10"

QUESTION 7

(a)
$$v = \sqrt{8x - x^2}$$

$$v = \sqrt{6x - x^2}$$

$$y^2 = 2y - x^2$$

$$\frac{1}{2}y^3 = 4x - \frac{x^2}{2}$$

$$a = \frac{d}{dx} \left(\frac{1}{2} v^2 \right) = 4 - x$$

(b) (i) Substituting $t = \frac{x}{V \cos \alpha}$ (bto $y = Vi \sin \alpha - \frac{1}{2}gt^2$

gives
$$y = x \tan \alpha - \frac{gx^2}{2V^2 \cos^2 \alpha}$$

i.e.
$$y = x \tan \alpha - \frac{gx^2 \sec^2 \alpha}{2y^2}$$

(ii)
$$y = Vt \sin \alpha - \frac{1}{2}gt^2$$

Substitution into $y = Vt \sin \alpha t - \frac{1}{2}gt^2$ yields

$$h = \frac{V^2 \sin^2 \alpha}{8} - \frac{1}{2} \frac{V^2 \sin^2 \alpha}{5}$$
i.e. $h = \frac{V^2 \sin^2 \alpha}{3}$

(iii) Substituting
$$\frac{g}{V^2} = \frac{\sin^2 \alpha}{2h}$$
 into

$$y = x \tan \alpha - \frac{g\alpha^2}{2y^2} \sec^2 \alpha \text{ yields}$$

$$x^2 = \sec^2 \alpha \sin^2 \alpha$$

$$y = x \operatorname{Ian} \alpha \cdot \frac{x^2}{2} \cdot \frac{\sec^2 \alpha \sin^2 \alpha}{2\hbar}$$

$$= x \tan \alpha - \frac{x^2 \sin^2 \alpha}{4h \cos^2 \alpha}$$

$$\pi \times 160 \text{ cc} - \frac{x^2 160^2 \text{ cc}}{4h}$$

" x tan
$$(t(1-\frac{x\tan\alpha}{4b}))$$

(iv)
$$l.6 = \frac{10}{\sqrt{3}} \left(1 - \frac{10}{4\sqrt{3}h}\right)$$

$$h = 1.99$$

(c)
$$(1+x)^{2n} = {}^{2n}C_0 + {}^{2n}C_{1x} + {}^{2n}C_{3x} + \dots + {}^{2n}C_{2n-3x}^{2n-1} + {}^{2n}C_{2n-3x}^{2n-1} + {}^{2n}C_{2n-3x}^{2n-1}$$

$$\begin{array}{l} ... \, 2^{3n} \, n^{2n} C_0 + ^{2n} C_1 + ^{2n} C_2 + ... \, ^{2n} C_4 + ... \, ^{2n} C_{2n-2} + ^{2n} C_{2n-2} + ^{2n} C_{2n} \\ \\ &= 2^{2n} C_0 + 2^{2n} C_1 + 2^{2n} C_2 + ... + 2^{2n} C_{n-2} + ^{2n} C_n \end{array}$$

since
$$^{*}C_{s} = ^{*}C_{n-r}$$

= $2^{2r}C_{0} + 2^{2r}C_{1} + 2^{2r}C_{2} + ... + 2^{2r}C_{n-r} + 2^{2r}C_{n} - ^{2r}C_{n}$

$$\therefore 2^{2n} + ^{2n}C_n = 2(^{2n}C_0 + ^{2n}C_1 + ^{2n}C_2 + \dots + ^{2n}C_n)$$

$$\frac{2^{2n}}{2} + \frac{^{2n}C_n}{2} = ^{2n}C_0 + ^{2n}C_1 + ^{2n}C_2 + \dots + ^{2n}C_n$$

$$\frac{2}{2^{m-1}} + \frac{(2m)!}{2\pi m!} = \sum_{r=0}^{m} 2^{r}C_{r}$$

$$2^{2^{n-1}} + \frac{(2n)!}{2(n!)^3} = \sum_{n=0}^{2n} {}^{2n}C_r$$

Mathematics Extension 1 Trial Examination Marking Guidelines

Change in sign Conclusion Habiton the intercel	Conclusion	Substitution	Value of A	Correct equation	Cosine rule	Solving for con a	Value of angles	Reasons	Cosine ratio in AADC	Control	Value of n	Water depth	Graphical representation or otherwise	Condition	Trigonometric equetion	Solution	Correct enswer	Restricted ways	Corrected ecitation	Permental Control of the Control of	f. 1.	The internal of x	Acceleration when x = 3	Substitution	Expression for /	Substitution	Estrafonating V end g	Substitution	Correct enswer	Expansion	Simplification using "Cr. # "C,	Adding and subtracting "Cr.	Algebraic manipulation			
£ 5	· - •	. 6	•	€.	€	;	€	-	- '	-	-	-	-	_	_	_	6	£	•		•	_	_	=	€		÷	•	- €	_	_		_			
	3	ì			€	-				3	ì						ê		;	9		Ξ		ê	;					E						
	4	•			•					q	,						ф		•	ø		~		۲.						~						
1 Exferentiation 1 Change of value of terminate 1 Contact interration	1 Various methods to obtain quadratic inequality	Equation of Inc	1 Reito formula and answer	i Pythagorae Theorem	1 Inverse trigonometric function	5		Unordered selection part	Shorwel expension	Cornect Applicat	1 Officience of angles formula	General solution for costne	1 Solutions	1 Quotient rule	1 Correct answer	1 Subskitution	Algebra		1 Coordinates of focus	i substitución de defendados	1 Numerical answer	1 Statement and reason	1 Statement and reason	Conclusion	Calement and reason	1 Condusion	Conferment and reason	Conclusion		1 Indicators n = A	Ageora	Conclusion	1 Construction and angles			B (OBO)
																						€		;	€	ļ	€						=	Ó	£	
<u>@</u>	ê	©		Ê		Ē	Ē	:	<u> </u>		ទ			Ē		€		•		. 2	2	<u> </u>						1	•				€			
•	-	-		-		+	7		N		8			N		~	•	•		ď	•	6						,	4				4			