1.
$$A - \lambda I = \begin{pmatrix} -\lambda & 1 & 0 \\ 0 & -1 - \lambda & 0 \\ 1 & 0 & 1 - \lambda \end{pmatrix}$$

$$det(A - \lambda I) = (1 - \lambda) \begin{pmatrix} -\lambda & 1 \\ 0 & -1 - \lambda \end{pmatrix}$$

$$= (1 - \lambda) (-\lambda)(-1 - \lambda)$$

$$\vdots egger values are $\lambda = 1, \lambda = 0 \text{ and } \lambda = -1$

$$0 = 0 \quad 0 \quad b = 0$$

$$0 = 0 \quad 0 \quad b = 0$$

$$0 = 0 \quad 0 \quad b = 0$$

$$0 = 0 \quad 0 \quad b = 0$$

$$0 = 0 \quad 0 \quad b = 0$$

$$0 = 0 \quad 0 \quad b = 0$$

$$0 = 0 \quad 0 \quad b = 0$$

$$0 = 0 \quad 0 \quad b = 0$$

$$0 = 0 \quad 0 \quad b = 0$$

$$0 = 0 \quad 0 \quad 0 \quad b = 0$$

$$0 = 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$0 = 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$0 = 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$0 = 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$0 = 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$0 = 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$0 = 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$0 = 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$0 = 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$0 = 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$0 = 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$0 = 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$0 = 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$0 = 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$0 = 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$0 = 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$0 = 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$0 = 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$0 = 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$0 = 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$0 = 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$0 = 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$0 = 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$0 = 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$0 = 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$0 = 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$0 = 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$0 = 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$0 = 0 \quad 0 \quad 0 \quad 0$$

$$0 = 0 \quad 0 \quad 0 \quad 0$$

$$0 = 0 \quad 0 \quad 0 \quad 0$$

$$0 = 0 \quad 0 \quad 0 \quad 0$$

$$0 = 0 \quad 0 \quad 0 \quad 0$$

$$0 = 0 \quad 0 \quad 0$$

$$0 =$$$$

b)
$$\frac{d}{dt} \begin{vmatrix} i \\ v \end{vmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & v \end{vmatrix} = \begin{pmatrix} 2 & 1 & 0 \\ -2 & 0 & 0 \\ -2 & 0 & 0 \\ -1 & -1 & 1 \end{pmatrix}$$
 $\frac{d}{dt} \begin{vmatrix} 1 \\ 2 \\ 3 \end{vmatrix} = \begin{pmatrix} -1 \\ 2 \\ 4 \end{vmatrix} = \begin{pmatrix} -1 \\ 2 \\ 3 \end{vmatrix} = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -1 \\ 3 \\ 3$

Initial conditions: (1) i(0) = -1 v(0) = 2 q(0) = 1-1 = 2A + B 2 = -2A 1 = -A - B + C \Rightarrow A=-1 C=| 1=-2et+1 v=2et q=et-1+et 7: dominant behaviour is constant (uless B=0)

Position exhibits exponential decay to conti v: exponential decay to 3-ero. 9: dominant behaviour is exponential growth, unless (=0 (i) i(3) = -1 v(0) = 2 q(0) = 0. -1 = 2A + B A = -1 B = 1 C = 62 = -2A 0 = -A - B + C 2 = -2A1: -2e +1 v=2e q= e-1 If (=0 a exhibits exponential decay to castail Note if A= (=0 the all solutions are constant

(a)
$$\int_{0}^{\pi} x^{2} \cos(\alpha x) dx = \left(x^{2} \sin(\alpha x)\right) - \int_{0}^{\pi} 2x \sin(\alpha x) dx$$

$$= 0 - 0 - 2 \int_{0}^{\pi} 2 \sin(\alpha x) dx$$

$$= -\frac{2}{n} \left[x \left(-\frac{\cos(\alpha x)}{n}\right)^{\frac{n}{n}} - \int_{0}^{\pi} \left(-\frac{\cos(\alpha x)}{n}\right) dx\right]$$

$$= 2\pi \left(-1\right)^{\frac{n}{n}} + 0$$

$$= 2\pi \left(-1\right)^{\frac{n}{n}} + 0$$
(b) If $f(x) = x^{2} - \frac{n}{2}$ thun $f(-x) = f(x)$ so
$$f(x) = \cos(\alpha x) + \cos(\alpha x) + \cos(\alpha x)$$
Thus the $f(x) = \cos(\alpha x) + \cos(\alpha x) + \cos(\alpha x)$
terms.
$$a_{0} = \frac{2}{n} \int_{0}^{\pi} f(x) dx = \frac{2}{n} \int_{0}^{\pi} \left(x^{2} - \frac{1}{3}\right) dx$$

$$= \frac{2}{n} \left(x^{3} - \frac{1}{3}x\right)^{\frac{n}{n}} = 0 - 0 = 0$$

$$a_{1} = \frac{2}{n} \int_{0}^{\pi} f(x) G(\alpha x) dx = \frac{2}{n} \int_{0}^{\pi} \left(x^{2} - \frac{1}{3}\right) G(\alpha x) dx$$

$$= \frac{2}{n} \int_{0}^{\pi} f(x) G(\alpha x) dx = \frac{2}{n} \int_{0}^{\pi} \left(x^{2} - \frac{1}{3}\right) G(\alpha x) dx$$

$$= \frac{2}{n} \int_{0}^{\pi} f(x) G(\alpha x) dx = \frac{2}{n} \int_{0}^{\pi} \left(x^{2} - \frac{1}{3}\right) G(\alpha x) dx$$

$$= \frac{2}{n} \int_{0}^{\pi} f(x) G(\alpha x) dx = \frac{2}{n} \int_{0}^{\pi} \left(x^{2} - \frac{1}{n}\right) G(\alpha x) dx$$

$$= \frac{2}{n} \int_{0}^{\pi} f(x) G(\alpha x) dx = \frac{2}{n} \int_{0}^{\pi} \left(x^{2} - \frac{1}{n}\right) G(\alpha x) dx$$

$$= \frac{2}{n} \int_{0}^{\pi} f(x) G(\alpha x) dx = \frac{2}{n} \int_{0}^{\pi} \left(x^{2} - \frac{1}{n}\right) G(\alpha x) dx$$

$$= \frac{2}{n} \int_{0}^{\pi} f(x) G(\alpha x) dx = \frac{2}{n} \int_{0}^{\pi} \left(x^{2} - \frac{1}{n}\right) G(\alpha x) dx$$

$$= \frac{2}{n} \int_{0}^{\pi} f(x) G(\alpha x) dx = \frac{2}{n} \int_{0}^{\pi} \left(x^{2} - \frac{1}{n}\right) G(\alpha x) dx$$

$$= \frac{2}{n} \int_{0}^{\pi} f(x) G(\alpha x) dx = \frac{2}{n} \int_{0}^{\pi} \left(x^{2} - \frac{1}{n}\right) G(\alpha x) dx$$

$$= \frac{2}{n} \int_{0}^{\pi} f(x) G(\alpha x) dx = \frac{2}{n} \int_{0}^{\pi} \left(x^{2} - \frac{1}{n}\right) G(\alpha x) dx$$

$$= \frac{2}{n} \int_{0}^{\pi} f(x) G(\alpha x) dx = \frac{2}{n} \int_{0}^{\pi} \left(x^{2} - \frac{1}{n}\right) G(\alpha x) dx$$

$$= \frac{2}{n} \int_{0}^{\pi} f(x) G(\alpha x) dx = \frac{2}{n} \int_{0}^{\pi} f(x) G(\alpha x) dx$$

Thus the F.Sis () The first 3 terms are! -4 Cosx + Codx -4 Co3x At x =0 the sum is -4+1-4/9 = -3·444 as compared to the exact value for f(x): $f(0) = -\sqrt{1/3} = -3.2899$

1. 3 a)
$$f(t) = 3 \left(u(t+2) - u(t-2)\right)$$

1. 3 a) $f(t) = 3 \left(u(t+2) - u(t-2)\right)$

1. 5) $f(t)$ is even because graph has reflective symmetry in $t=0$.

2. $f(t) = 3$ of $f(t)$ cos (wt) at

1. $f(t) = 3$ of $f(t)$ cos (wt) at

2. $f(t) = 3$ cos (wt) at

3. a) $f(t) = 3$ of $f(t) = 3$ cos (wt) at

4. $f(t) = 3$ cos (wt) at

5. $f(t) = 3$ cos (wt) at

6. $f(t) = 3$ cos (wt) at

6. $f(t) = 3$ cos (wt) at

6. $f(t) = 3$ cos (wt) at

7. $f(t) = 3$ cos (wt) at

7. $f(t) = 3$ cos (wt) at

8. $f(t) = 3$ cos (wt) at

9. $f(t) = 3$ cos (wt) at

1. $f(t) = 3$ cos (wt)

$$(iii) \quad \text{ET} \left\{ e^{2jt} f(t) \right\} = F(\omega - 2)$$

$$= 6 \frac{\sin(2(\omega - 2))}{\omega - 2}$$

$$(iv) \quad \text{ET} \left\{ \frac{df}{dt} \right\} = j\omega F(\omega)$$

$$= 6j\omega \frac{\sin(2\omega)}{\omega} = 6j \sin(2\omega)$$

$$(iv) \quad \text{ET} \left\{ \frac{f(t)}{dt} \right\} = j\frac{dF}{d\omega}$$

$$= j 6 d \left\{ \frac{\sin^2(2\omega)}{\omega} \right\}$$

$$= 6j \left[-\omega^2 \sin(2\omega) + 2\omega^2 \cos(2\omega) \right]$$

$$= 6j \left[-\omega^2 \sin(2\omega) + 2\omega \sin(2\omega) \right]$$

$$= 6j \left[-\frac{\sin(2\omega)}{\omega^2} + 2\frac{\cos(2\omega)}{\omega} \right]$$

$$= 6j \left[-\frac{\sin(2\omega)}{\omega^2} + 2\frac{\cos(2\omega)}{\omega} \right]$$

$$= 6j \left[-\frac{\sin(2\omega)}{\omega^2} + 2\frac{\cos(2\omega)}{\omega} \right]$$

$$\int_0^\infty 2^3 S(x-4) dx = 4^3 = 64$$