@ NIPS 2017

Jungtaek Kim¹, Saehoon Kim^{1, 2}, Seungjin Choi¹

¹ Department of Computer Science and Engineering, POSTECH

² Altrics

Introduction and Motivation

- Suffer from a cold-start problem for finding the best configuration of hyperparameters.
- Learn to mimic human experts' behavior on selecting initial hyperparameters.
- Learn to transfer initializations for hyperparameter optimization.
- Transfer initializations via learned meta-features over datasets [1, 2] using convolutional bi-directional LSTMs.

Background

- Hyperparameter Optimization
- ✓ Determine the best hyperparameter configuration by minimizing a validation error, given training and validation datasets.
- Sequential Model-Based Optimization (SMBO)
- ✓ Referred to as Bayesian hyperparameter optimization (BHO).
- ✓ Search minimum of validation error via BHO, gradually accumulating a pair of hyperparameters and validation error.
- ✓ Use GP regression as surrogate function, and expected improvement (EI) [3] and GP upper confidence bound (GP-UCB) [4] as acquisition functions.
- ✓ Enable BHO to use non-zero mean function for GP, in addition to zero mean function.

arXiv version is available.

https://arxiv.org/abs/1710.06219

Selected References

- [1] D. Michie, D. J. Spiegelhalter, and C. C. Taylor. Machine learning, neural and statistical classification. Ellis Horwood, 1994.
- [2] M. Feurer, J. T. Springerberg, and F. Hutter. Initializing Bayesian hyperparameter optimization via meta-learning. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), Austin, TX, USA, 2015.
- [3] J. Mockus, V. Tiesis, and A. Zilinskas. The application of Bayesian methods for seeking the extremum. Towards Global Optimization, 2:117–129, 1978.
- [4] N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian process optimization in the bandit setting: No regret and experimental design. In Proceedings of the International Conference on Machine Learning (ICML), Haifa, Israel, 2010.

Proposed Method: Meta-Feature Learning with Siamese Architecture

- Extract a meta-feature from datasets via convolutional bidirectional LSTM, a wing of Siamese architecture.
- Minimize loss function of our network

$$\mathcal{L}(\mathcal{D}^{(i)}, \mathcal{D}^{(j)}) = \left[d_{\text{target}}(\mathcal{D}^{(i)}, \mathcal{D}^{(j)}) - \|\mathbf{m}_i - \mathbf{m}_j\|_2 \right]^2$$
.

- Select k-nearest datasets, after measuring the distance between new test dataset and known training datasets.
- Obtain the best previous configuration from each one of the nearest datasets and GP prior mean function from the average of the nearest datasets.

Algorithm 1 Meta-feature Learning over Datasets

Input: A set of n datasets $\{\mathcal{D}_1, \ldots, \mathcal{D}_n\}$, target distance function $d_{\text{target}}(\cdot, \cdot)$, batch size $\beta \in \mathbb{N}$, step size $\tau \in \mathbb{N}$, number of iterations $T \in \mathbb{N}$

Output: Siamese LSTM model \mathcal{M}_{S-LSTM} trained over $\{\mathcal{D}_1, \ldots, \mathcal{D}_n\}$

1: Initialize \mathcal{M}_{S-LSTM} .

2: **for** t = 1, 2, ..., T **do**

Sample β different pairs of datasets, i.e., $\{(\mathcal{D}_i, \mathcal{D}_j)\}$ for $|i \neq j| = \beta, i, j = 1, \ldots, n$.

Sample τ data points from each dataset in the pair $\{(\mathcal{D}_i, \mathcal{D}_j)\}$ selected above, to make $|\mathcal{D}_i| = |\mathcal{D}_j| = \tau$. Update parameters in $\mathcal{M}_{S\text{-LSTM}}$ using $d_{\text{target}}(\cdot,\cdot)$ and $\{(\mathcal{D}_i,\mathcal{D}_j)\}$ via backpropagation.

6: end for

7: return \mathcal{M}_{S-LSTM}

Algorithm 2 Bayesian Hyperparameter Optimization with Transferred Initial Points and GP Prior

Input: Learned Siamese LSTM model $\mathcal{M}_{S\text{-LSTM}}$, target function $\mathcal{J}(\cdot)$, limit $T \in \mathbb{N} > k$ **Output:** Best configuration of hyperparameters θ^*

1: Find k-nearest neighbors using the learned Siamese bi-directional LSTM, \mathcal{M}_{S-LSTM} .

2: Obtain k classification accuracy histograms over hyperparameters $\{\mathcal{H}_1, \dots, \mathcal{H}_k\}$.

3: **for** $i = 1, 2, \dots, k$ **do**

Find the best configuration θ_i on grid of the *i*-th histogram \mathcal{H}_i .

Evaluate $\mathcal{J}_i = \mathcal{J}(\boldsymbol{\theta}_i)$. 6: end for

7: **for** $j = k + 1, k + 2, \dots, T$ **do**

 $\mathcal{M} \leftarrow \text{GP regression with the prior mean function } \frac{1}{k} \sum_{h=1}^{k} \mathcal{H}_h \text{ on } \{(\boldsymbol{\theta}_i, \mathcal{J}_i)\}_{i=1}^{j-1}.$

Find $\boldsymbol{\theta}_j = \arg \max_{\boldsymbol{\theta}} a(\boldsymbol{\theta}|\mathcal{M})$.

Evaluate $\mathcal{J}_j = \mathcal{J}(\boldsymbol{\theta}_j)$. 11: end for

12: **return** $\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta}_i \in \{\boldsymbol{\theta}_1, ..., \boldsymbol{\theta}_T\}} \mathcal{J}_j$

Experimental Results

- We trained our network using a pair of subsampled datasets (5 classes, 10,000 images) from MNIST, CIFAR-10, ImageNet 200, and Places 205.
- The target distance was measured by L₁ distance between all configurations in previously observed mappings of subsampled datasets.

Conclusions

 We showed that the Siamese network can learn a distance function between two datasets.

CIFAR-10