Multi-armed bandit problem

Шабалин Александр

17 февраля 2020 г.

Постановка задачи

- У нас есть K машин с распределениями наград $\{Y_1, \ldots, Y_K\}$.
- На каждом шаге t мы выбираем действие $a \in A$ и получаем награду r.
- regret(T) = $\sum_{\tau=1}^{T} \Delta_{a_{\tau}}$
- ullet Задача: максимизировать $\sum_{t=1}^{T} r_t$ (минимизировать regret).

Greedy

$$\hat{Q}_t(a) = \frac{1}{N_t(a)} \sum_{t=1}^{I} r_t[a_t = a]$$

greedy

$$a_t = \underset{a \in A}{\operatorname{argmax}} \hat{Q}_t(a)$$

ϵ -greedy

С вероятностью $1-\epsilon$ выбирает $a_t = \mathop{argmax}\limits_{a \in A} \hat{Q}_t(a)$

С вероятностью ϵ выбирает случайное действие

Томпсовское семплирование [reward_i \sim Bernoulli(μ_i)]

Beta

$$\rho_X(x) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{\mathsf{B}(\alpha,\beta)}$$

$$\mathsf{B}(\alpha,\beta) = \int_0^1 x^{\alpha-1} (1-x)^{\beta-1} dx$$

$$X \sim \mathsf{Beta}(\alpha,\beta) \quad \mathbb{E}[X] = \frac{\alpha}{\alpha+\beta}$$

Algorithm 1 Thompson Sampling for Bernoulli bandits

For each arm $i = 1, \ldots, N$ set $S_i = 0, F_i = 0$.

foreach
$$t = 1, 2, \ldots, do$$

For each arm i = 1, ..., N, sample $\theta_i(t)$ from the Beta $(S_i + 1, F_i + 1)$ distribution.

Play arm $i(t) := \arg \max_i \theta_i(t)$ and observe reward r_t .

If r = 1, then $S_{i(t)} = S_{i(t)} + 1$, else $F_{i(t)} = F_{i(t)} + 1$.

end

Томпсовское семплирование [reward $_i \in [0,1]$]

Algorithm 2 Thompson Sampling for general stochastic bandits

For each arm i = 1, ..., N set $S_i(1) = 0, F_i(1) = 0$.

foreach $t = 1, 2, \ldots, do$

For each arm i = 1, ..., N, sample $\theta_i(t)$ from the Beta $(S_i + 1, F_i + 1)$ distribution.

Play arm $i(t) := \arg \max_i \theta_i(t)$ and observe reward \tilde{r}_t .

Perform a Bernoulli trial with success probability \tilde{r}_t and observe output r_t .

If
$$r_t = 1$$
, then $S_{i(t)} = S_{i(t)} + 1$, else $F_{i(t)} = F_{i(t)} + 1$.

end

$$\operatorname{regret}^{TS}(T) = O\left(\left(\sum_{a \neq a^*} \frac{1}{\Delta_a^2}\right)^2 \ln T\right)$$

Upper Confidence Bounds

- ullet $Q(a)=\mathbb{E}[r|a]$ ожидаемая награда за действие a
- ullet $\hat{Q}_t(a)$ средняя награда за действие a за t-1 шаг
- ullet $U_t(a): \mathbb{P}[Q(a) > \hat{Q}_t(a) + U_t(a)]$ маленькая
- $a_t^{UCB} = \underset{a \in A}{\operatorname{argmax}} (\hat{Q}_t(a) + U_t(a))$

UCB1

- X_1, \ldots, X_n независимые случайные величины.
- $X_i \sim \text{Bernulli}(p)$.
- $\bullet \ \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

Тогда для u>0 из неравенства Чернова следует:

$$\mathbb{P}[\mathbb{E}[X] > \overline{X} + u] \le e^{-2nu^2}$$

UCB1

$$\mathbb{P}[Q(a) > \hat{Q}_t(a) + U_t(a)] \le e^{-2N_t(a)U_t(a)^2}$$

ullet Мы хотим, чтобы $e^{-2N_t(a)U_t(a)^2}$ было как можно меньше.

•
$$e^{-2N_t(a)U_t(a)^2} = p \implies U_t(a) = \sqrt{\frac{-\ln p}{2N_t(a)}}$$

•
$$p = t^{-4} \Rightarrow U_t(a) = \sqrt{\frac{2 \ln t}{N_t(a)}}$$

•
$$a_t^{UCB1} = \underset{a \in A}{\operatorname{argmax}} (\hat{Q}_t(a) + \sqrt{\frac{2 \ln t}{N_t(a)}})$$

$$regret^{UCB1}(T) = O(\sqrt{KT \ln T})$$

Результаты

Вопросы

- Постановка задачи multi-armed bandit problem
- В чем заключается адаптация томпсоновского семплирования для распределения в общем случае?
- Формула для выбора автомата в алгоритме UCB1 с объяснениями обозначений

Список литературы

- Analysis of Thompson Sampling for the Multi-armed Bandit Problem.
 Shipra Agrawal, Navin Goyal (2012)
- Optimism in the Face of Uncertainty: the UCB1 Algorithm (2013)