1 The Tautological Bundle

Consider the fibre bundle, $\pi: S^{2n+1} \to \mathbb{P}^n_{\mathbb{C}}$ given by consider ing $S^{2n+1} \subset \mathbb{C}^{n+1}$ and restricting the projection $\mathbb{C}^{n+1} \to \mathbb{P}^n_{\mathbb{C}}$. Then π is a principal S^1 -bundle. Consider the tautological representation $\rho: U(1) \to \mathrm{GL}_1(\mathbb{C})$ which is the inclusion $U(1) \to \mathbb{C}^\times$, which gives an associated line bundle $S^{2n+1} \times_{\rho} \mathbb{C}$. We call this the tautological bundle since its fibre above a point is the line in \mathbb{C}^{n+1} which that point on $\mathbb{P}^n_{\mathbb{C}}$ corresponds to.

To see this explicitly, consider the following bundle,

$$T = \{(L, v) \mid L \in \mathbb{P}^n_{\mathbb{C}} \text{ and } v \in L \subset \mathbb{C}^{n+1}\} \subset \mathbb{P}^n_{\mathbb{C}} \times \mathbb{C}^{n+1}$$

with the projection $\pi:T\to\mathbb{P}^n_{\mathbb{C}}$ via $(L,v)\mapsto L$. I claim that this bundle is isomorphic to the tautological bundle constructed above.

Consider the map $f: S^{2n+1} \times_{\rho} \mathbb{C} \to T$ via $f: [x,\lambda] \mapsto (\operatorname{Span}(x),\lambda x)$. This is clearly a bundle map since $\pi([x,\lambda]) = \pi(x) = \operatorname{Span}(()x) = \pi(\operatorname{Span}(x),\lambda x)$. Furthermore it is well-defined because $f([x,\mu\lambda]) = (\operatorname{Span}(x),\mu\lambda x) = (\operatorname{Span}(\mu x),\lambda\mu x) = f([\mu x,\lambda])$. We need to check that this map is injective and surjective. First, if $f([x,\lambda]) = f([y,\mu])$ then $\operatorname{Span}(x) = \operatorname{Span}(y)$ so $y = \gamma x$ for $\gamma \in \mathbb{C}^{\times}$ and $\lambda x = \mu y$ so $\lambda = \mu \gamma$ (since these vectors are nonzero) and thus,

$$[x,\lambda] = [x,\gamma\mu] = [\gamma x,\mu] = [y,\mu]$$

For surjectivity note that given (L, v) with $v \in L$ then $L = \operatorname{Span}(x)$ for $x \in S^{2n+1}$ and $v = \lambda x$ with $\lambda \in \mathbb{C}$ since L is a line. Thus $f([x, \lambda]) = (L, v)$.

The tautological bundle has no nonzero (holomorphic) global sections. However, there are n+1 independent global sections of its dual. To see this consder the global $\operatorname{Hom}(T,\mathcal{O}_{\mathbb{P}})$. There exist n+1 idependent functions defined by the n+1 projections $p_k:\mathbb{C}^{n+1}\to\mathbb{C}$ via the construction,

$$T \hookrightarrow \mathcal{O}^{n+1}_{\mathbb{P}} = \mathbb{P}^n_{\mathbb{C}} \times \mathbb{C}^{n+1} \xrightarrow{p_k} \mathbb{P}^n_{\mathbb{C}} \times \mathbb{C} = \mathcal{O}_{\mathbb{P}}$$

These sections are referred to as X_k , the k^{th} coordinate function on $\mathbb{P}^n_{\mathbb{C}}$.

Producing the coordinate functions X_k as sections of the dual X^{\vee} identifies the tautological bundle T with the algebraic twist $\mathcal{O}_{\mathbb{P}}(-1)$ and thus its dual is the Serre twisting sheaf $T^{\vee} = \mathcal{O}_{\mathbb{P}}(1)$.

2 MATH 275A 2021 Lecture 2

Using the Stern-Gerlach boxes we define spin operators \hat{S}_i on our Hilbert space $H = \mathbb{C}^2$. These have eigenstate ker \pm along each axis. Furthermore, we have a Hamiltonian \hat{H} . For a constant magnetic field, up to a constant,

$$\hat{H} = \hat{S} \cdot \vec{B}$$

For B along the z-direction,

$$\hat{H} = \hat{S}_z B$$

Then the evolution follows the Schrodinger equation,

$$i\partial_t |\psi\rangle = \hat{H} |\psi\rangle$$

For any observable (i.e. operator \hat{A}) we can define the expected value,

$$\left\langle \hat{A} \right\rangle_{\psi} = \left\langle \psi \right| \hat{A} \left| \psi \right\rangle$$

Then,

$$i\partial_t \left\langle \hat{A} \right\rangle_{\psi} = \left\langle [\hat{A}, \hat{H}] \right\rangle_{\psi}$$

Now for example, we choose $|\psi(0)\rangle = |+_x\rangle$. Then we expand,

$$|\psi(0)\rangle = \frac{1}{\sqrt{2}} \left(|+_z\rangle + |-_z\rangle \right)$$

Then applying the evolution operator,

$$|\psi(t)\rangle = e^{-iHt} \frac{1}{\sqrt{2}} \left(|+_z\rangle + |-_z\rangle \right) = \frac{1}{\sqrt{2}} \left(e^{-i\frac{B}{2}t} \left| +_z \right\rangle + e^{i\frac{B}{2}t} \left| -_z \right\rangle \right)$$

Now we consider,

$$i\partial_{t}\left\langle \hat{S}_{x}\right\rangle =\left\langle \psi\right|\hat{S}_{x}\left|\psi\right\rangle =\left\langle \left[\hat{S}_{x},\hat{H}\right]\right\rangle =B\left\langle \left[\hat{S}_{x},\hat{S}_{z}\right]\right\rangle =-iB\hat{S}_{y}$$

and therefore,

$$\partial_t \left\langle \hat{S}_x \right\rangle = -B \left\langle \hat{S}_y \right\rangle$$

Likewise,

$$\partial_{t} \left\langle \hat{S}_{y} \right\rangle = B \left\langle \hat{S}_{x} \right\rangle$$

This coupled system has solution,

$$\left\langle \hat{S}_{x}\right\rangle =\cos\left(Bt\right)$$
 and $\left\langle \hat{S}_{y}\right\rangle =\sin\left(Bt\right)$

2.0.1 Operators

Infinite dimensional space $H = L^2(\mathbb{R}) = \{f : \mathbb{R} \to \mathbb{C} \mid \int |f|^2 < \infty\}$. We take observables to be "self-adjoint" operators on $H = L^2(\mathbb{R})$. For example, $\hat{x} = x$ and $\hat{p} = -\partial_x$. However, the eigenfunctions of these operators are not L^2 they are tempered distributions. We say,

$$\left\langle \frac{1}{\sqrt{2\pi}} e^{ipx} \middle| \frac{1}{\sqrt{2\pi}} e^{iqx} \right\rangle = \delta(p-q)$$

2.0.2 Uncertainty Principle

Define,

$$\Delta \hat{A} = \hat{A} = -\langle \hat{x} \rangle I$$

and likewise for B two self-adjoint operators A, B. Then,

$$\left\langle (\Delta \hat{x})^2 \right\rangle_{\psi} \left\langle (\Delta \hat{p})^2 \right\rangle_{\psi} \geq \frac{1}{4} \left| \left\langle \psi \right| [\hat{A}, \hat{B}] \left| \psi \right\rangle \right|^2$$

For example,

$$[\hat{x}, \hat{p}] = \hat{x}\hat{p} - \hat{p}\hat{x} = iI$$

because,

$$(\hat{x}\hat{p} - \hat{p}\hat{x})\psi = x(-i\partial_x\psi) + i\partial_x(x\psi) = -i\partial_x\psi + i\psi + x\partial_x\psi = i\psi$$

Therefore,

$$\sigma_x^2 \sigma_p^2 \ge \frac{1}{4}$$

2.0.3 Angular Momentum

Classical angular momentum $\vec{L} = \vec{x} \times \vec{p}$. We upgrade these to quantum self-adjoint operators. Thus we get, for example,

$$\hat{L}_z = -i(x\partial_y - y\partial_x)$$

Then $L^2 = L_x^2 + L_y^2 + L_z^2$.