```
This document shows the Julia programming language code for the following medical data
        Tinnitus data classification prediction accuracy results comparison on the testing dat
In [ ]:
        import Pkg; Pkg.add("DataFrames")
In [1]:
         import Pkg; Pkg.add("CSV")
         using CSV, DataFrames, Plots
            Updating registry at `C:\Users\zizhe\.julia\registries\General.toml`
           Resolving package versions...
           Installed OpenJpeg_jll --- v2.4.0+0
           Installed ImageMagick_jll - v6.9.12+4
           Installed LittleCMS_jll --- v2.12.0+0
          No Changes to `C:\Users\zizhe\.julia\environments\v1.7\Project.toml`
            Updating `C:\Users\zizhe\.julia\environments\v1.7\Manifest.toml`
           [c73af94c] \uparrow ImageMagick jll v6.9.12+3 \Rightarrow v6.9.12+4
           [d3a379c0] + LittleCMS_jll v2.12.0+0
           [643b3616] + OpenJpeg jll v2.4.0+0
        Precompiling project...

√ LittleCMS jll

          ✓ OpenJpeg jll
          ✓ ImageMagick_jll
          ✓ ImageMagick
          ✓ Images
          5 dependencies successfully precompiled in 27 seconds (370 already precompiled)
           Resolving package versions...
          No Changes to `C:\Users\zizhe\.julia\environments\v1.7\Project.toml`
          No Changes to `C:\Users\zizhe\.julia\environments\v1.7\Manifest.toml`
```

In [2]: # Load the PCA training data result
trPCA = CSV.read("C:/Users/Leo/Downloads/Training data PCA result in csv.csv", header=

Out[2]: 6 rows × 7 columns

	Connectivity Features	Number of Features	LR	KNN	DT	SVM	RF
	String	Int64	Int64	Float64	Float64	Float64	Float64
1	Full features	325	1	0.68	0.75	1.0	0.875
2	PCA feature extraction	200	1	0.68	0.6	1.0	0.83
3	PCA feature extraction	150	1	0.68	0.59	1.0	0.81
4	PCA feature extraction	100	1	0.68	0.62	1.0	0.83
5	PCA feature extraction	50	1	0.68	0.68	1.0	0.85
6	PCA feature extraction	20	1	0.66	0.67	0.9	0.78

Out[3]: Training data PCA features vs. Full features

In [4]: # Load the extra tree training data result
trET = CSV.read("C:/Users/Leo/Downloads/Training data extra tree result in csv.csv", h

Out[4]: 6 rows × 7 columns

	Connectivity Features	Number of Features	LR	KNN	DT	SVM	RF
	String	Int64	Int64	Float64	Float64	Int64	Float64
1	Full features	325	1	0.68	0.75	1	0.875
2	Extra tree top features	200	1	0.73	0.74	1	0.86
3	Extra tree top features	150	1	0.73	0.76	1	0.89
4	Extra tree top features	100	1	0.74	0.77	1	0.93
5	Extra tree top features	50	1	0.75	0.85	1	0.86
6	Extra tree top features	20	1	0.72	0.71	1	0.85

In [5]: plot(trET[:,2],Matrix(trET[:,3:7]),xlabel="No.of features",ylabel="Accuracy rate",mark

out[5]: Training data Extra tree features vs. Full features

In [6]: # Load the PCA testing data result
tePCA = CSV.read("C:/Users/Leo/Downloads/Testing data PCA result in csv.csv", header=

Out[6]: 6 rows × 7 columns (omitted printing of 1 columns)

	Connectivity Features	Number of Features	LR	KNN	DT	SVM
	String	Int64	Float64	Float64	Float64	Float64
1	Full features	325	0.875	0.75	0.625	0.875
2	PCA feature extraction	200	0.625	0.75	0.625	0.875
3	PCA feature extraction	150	0.625	0.75	0.625	0.875
4	PCA feature extraction	100	0.625	0.75	0.625	0.875
5	PCA feature extraction	50	0.875	0.875	0.625	0.875
6	PCA feature extraction	20	0.625	0.875	0.875	0.875

In [7]: plot(tePCA[:,2],Matrix(tePCA[:,3:7]),xlabel="No.of features",ylabel="Accuracy rate",matrix

out[7]: Testing data PCA features vs. Full features

In [8]: # Load the extra tree training data result
teET = CSV.read("C:/Users/Leo/Downloads/Testing data extra tree result in csv.csv", he

Out[8]: 6 rows × 7 columns (omitted printing of 1 columns)

	Connectivity Features	Number of Features	LR	KNN	DT	SVM
	String	Int64	Float64	Float64	Float64	Float64
1	Full features	325	0.875	0.75	0.625	0.875
2	Extra tree top features	200	0.875	0.875	0.625	1.0
3	Extra tree top features	150	1.0	0.875	0.75	1.0
4	Extra tree top features	100	0.875	0.75	0.625	0.875
5	Extra tree top features	50	0.875	0.875	0.625	1.0
6	Extra tree top features	20	0.75	0.875	0.875	1.0

In [9]: plot(teET[:,2],Matrix(teET[:,3:7]),xlabel="No.of features",ylabel="Accuracy rate",mark

<code>out[9]: Testing data Extra tree features vs. Full features</code>


```
In []:
In []:
In [10]: # Load the full testing data result
te = CSV.read("C:/Users/Leo/Downloads/Testing data result in csv.csv", header=true,Dat
```

Out[10]: 11 rows × 7 columns (omitted printing of 1 columns)

	Connectivity Features	Number of Features	LR	KNN	DT	SVM
	String	Int64	Float64	Float64	Float64	Float64
1	Full features	325	0.875	0.75	0.625	0.875
2	PCA feature extraction	200	0.625	0.75	0.625	0.875
3	PCA feature extraction	150	0.625	0.75	0.625	0.875
4	PCA feature extraction	100	0.625	0.75	0.625	0.875
5	PCA feature extraction	50	0.875	0.875	0.625	0.875
6	PCA feature extraction	20	0.625	0.875	0.875	0.875
7	Extra tree top features	200	0.875	0.875	0.625	1.0
8	Extra tree top features	150	1.0	0.875	0.75	1.0
9	Extra tree top features	100	0.875	0.75	0.625	0.875
10	Extra tree top features	50	0.875	0.875	0.625	1.0
11	Extra tree top features	20	0.75	0.875	0.875	1.0

```
Pkg.add("StatsPlots"); using StatsPlots
In [11]:
          violin(["LR"], te[:,3], label=nothing, ylabel="Accuracy rate")
          violin!(["KNN"], te[:,4], label=nothing)
          violin!(["DT"], te[:,5], label=nothing)
          violin!(["SVM"], te[:,6], label=nothing)
          violin!(["RF"], te[:,7], label=nothing)
             Resolving package versions...
            No Changes to `C:\Users\zizhe\.julia\environments\v1.7\Project.toml`
            No Changes to `C:\Users\zizhe\.julia\environments\v1.7\Manifest.toml`
Out[11]:
             1.0
             0.8
         Accuracy rate
             0.6
             0.4
             0.2
                      LR
                                      KNN
                                                      DT
                                                                      SVM
                                                                                       RF
          using Statistics
In [12]:
          mean(te[:,3]),std(te[:,3])
          (0.7840909090909091, 0.13796409282523808)
Out[12]:
          mean(te[:,4]),std(te[:,4])
In [13]:
          (0.8181818181818182, 0.06527912098338667)
Out[13]:
          mean(te[:,5]),std(te[:,5])
In [14]:
          (0.6818181818181818, 0.10252494153309054)
Out[14]:
          mean(te[:,6]),std(te[:,6])
In [15]:
          (0.9204545454545454, 0.06306562238868912)
Out[15]:
          mean(te[:,7]),std(te[:,7])
In [16]:
          (0.6931818181818182, 0.239554510782752)
Out[16]:
```

```
In [17]: # as their variance are different, so use UnequalVarianceTTest
         import Pkg; Pkg.add("HypothesisTests")
         using HypothesisTests
         UnequalVarianceTTest(te[:,3], te[:,4])
            Resolving package versions...
           No Changes to `C:\Users\zizhe\.julia\environments\v1.7\Project.toml`
           No Changes to `C:\Users\zizhe\.julia\environments\v1.7\Manifest.toml`
         Two sample t-test (unequal variance)
Out[17]:
         -----
         Population details:
             parameter of interest: Mean difference
             value under h 0: 0
             point estimate: -0.0340909
             95% confidence interval: (-0.1326, 0.06444)
         Test summary:
             outcome with 95% confidence: fail to reject h_0
             two-sided p-value: 0.4708
         Details:
             number of observations: [11,11]
             t-statistic: -0.740797197487194 degrees of freedom: 14.263894781501907
             empirical standard error: 0.04601921984390133
In [18]: # statistical test between LR and KNN
         MannWhitneyUTest(te[:,3], te[:,4])
        Approximate Mann-Whitney U test
Out[18]:
          Population details:
             parameter of interest: Location parameter (pseudomedian)
             value under h_0:
             point estimate:
                                    0.0
         Test summary:
             outcome with 95% confidence: fail to reject h_0
             two-sided p-value:
                                        0.6435
         Details:
             number of observations in each group: [11, 11]
             Mann-Whitney-U statistic:
                                                 53.5
             rank sums:
                                                [119.5, 133.5]
             adjustment for ties:
                                                1590.0
                                                (-7.0, 14.0433)
             normal approximation (\mu, \sigma):
In [19]: #above test all got "fail to reject h_0", since the null hyposis is the means of the t
         #the result fail to reject h_0" means there is at least 95% confidence that accuracy r
         #logistic regression classifier and KNN are statistically identical! Both classifier o
```

In [20]: # statistical test between decision tree and KNN
UnequalVarianceTTest(te[:,4], te[:,5])

```
Two sample t-test (unequal variance)
         Population details:
             parameter of interest: Mean difference
             value under h 0:
                                      0.136364
             point estimate:
             95% confidence interval: (0.05903, 0.2137)
         Test summary:
             outcome with 95% confidence: reject h 0
             two-sided p-value:
                                          0.0017
         Details:
             number of observations: [11,11]
             t-statistic:
                                       3.721042037676257
             degrees of freedom: 16.963613550815555
             empirical standard error: 0.03664662612862977
In [21]:
         MannWhitneyUTest(te[:,4], te[:,5])
         Approximate Mann-Whitney U test
Out[21]:
         Population details:
             parameter of interest:
                                      Location parameter (pseudomedian)
             value under h_0:
             point estimate:
                                      0.25
         Test summary:
             outcome with 95% confidence: reject h_0
             two-sided p-value:
                                          0.0038
         Details:
             number of observations in each group: [11, 11]
             Mann-Whitney-U statistic:
                                                   102.5
             rank sums:
                                                   [168.5, 84.5]
             adjustment for ties:
                                                   1218.0
             normal approximation (\mu, \sigma):
                                                 (42.0, 14.3295)
In [22]: # above test all got "reject h_0", since the null hyposis is the means of the two grou
         # the result reject h_0" means there is at least 95% confidence that accuracy rates of
         # from the plot, we can see the accuracy rate of KNN is better
         # statistical test between SVM and KNN
In [23]:
```

UnequalVarianceTTest(te[:,4], te[:,6])

```
Two sample t-test (unequal variance)
         Population details:
             parameter of interest: Mean difference
             value under h 0:
             point estimate:
                                      -0.102273
             95% confidence interval: (-0.1594, -0.04518)
         Test summary:
             outcome with 95% confidence: reject h 0
             two-sided p-value:
                                          0.0013
         Details:
             number of observations: [11,11]
             t-statistic:
                                       -3.7370465934182957
             degrees of freedom: 19.976247030878863
             empirical standard error: 0.027367260406346124
In [24]:
         MannWhitneyUTest(te[:,4], te[:,6])
         Approximate Mann-Whitney U test
Out[24]:
         Population details:
             parameter of interest:
                                      Location parameter (pseudomedian)
             value under h_0:
             point estimate:
                                      0.0
         Test summary:
             outcome with 95% confidence: reject h_0
             two-sided p-value:
                                          0.0037
         Details:
             number of observations in each group: [11, 11]
             Mann-Whitney-U statistic:
                                                   21.0
             rank sums:
                                                   [87.0, 166.0]
             adjustment for ties:
                                                   2364.0
             normal approximation (\mu, \sigma):
                                                 (-39.5, 13.4284)
In [25]: # above test all got "reject h_0", since the null hyposis is the means of the two grou
         # the result reject h_0" means there is at least 95% confidence that accuracy rates of
         # from the plot, we can see the accuracy rate of SVM is better
         # statistical test between SVM and random forest
In [26]:
```

UnequalVarianceTTest(te[:,6], te[:,7])

```
Two sample t-test (unequal variance)
Out[26]:
         Population details:
             parameter of interest: Mean difference
             value under h 0:
             point estimate:
                                      0.227273
             95% confidence interval: (0.06355, 0.391)
         Test summary:
             outcome with 95% confidence: reject h 0
             two-sided p-value:
                                          0.0108
         Details:
             number of observations: [11,11]
             t-statistic:
                                       3.042903097250921
             degrees of freedom: 11.379512195121952
             empirical standard error: 0.0746894396597954
         MannWhitneyUTest(te[:,6], te[:,7])
In [27]:
         Approximate Mann-Whitney U test
Out[27]:
         Population details:
                                      Location parameter (pseudomedian)
             parameter of interest:
             value under h_0:
             point estimate:
                                      0.125
         Test summary:
             outcome with 95% confidence: reject h_0
             two-sided p-value:
                                          0.0049
         Details:
             number of observations in each group: [11, 11]
             Mann-Whitney-U statistic:
                                                   101.5
             rank sums:
                                                   [167.5, 85.5]
             adjustment for ties:
                                                   1140.0
             normal approximation (\mu, \sigma):
                                                 (41.0, 14.3887)
In [28]: # above test all got "reject h_0", since the null hyposis is the means of the two grou
         # the result reject h_0" means there is at least 95% confidence that accuracy rates of
         # classifier and random forest are statistically different!
         # from the plot, we can see the accuracy rate of SVM is better
 In [ ]: # After a few T test and MannWhitneyUTest, we can see the accuracy rate of SVM classif
         # statistically different from the other classifiers
         # from the plot, we can see SVM is the classifier that has the highest prediction accu
```