Tóm tắt lý thuyết Multiple Linear Regression (MLR)

Mô hình:

$$\gamma = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_k X_k + \epsilon$$

trong đó

γ là biến phụ thuộc (response)

X₁, X₂, ..., X_k là biến đôc lập (predictors)

β₀ là hệ số chặn (intercept)

 $\beta_1, ..., \beta_k$ là hệ số góc (slope) thể hiện tác động cận biên của từng biến X_i lên γ khi các biến khác cố định.

 ε là sai số ngẫu nhiên (Gaussian, $E[\varepsilon]=0$, $Var(\varepsilon)=\sigma^2$).

Ước lượng OLS:

Tìm vecto $\beta = (\beta_0, \beta_1, ..., \beta_k)^T$ sao cho tổng bình phương phần dư $\sum_i (\gamma_i - \beta_0 - \sum_j \beta_j X_{ij})^2$ nhỏ nhất.

Công thức: $\beta = (X^TX)^{-1} X^Ty$

Giả định chính:

- Tính tuyến tính giữa X và γ
- Sai số độc lập, phương sai không đổi (homoscedasticity)
- Không đa cộng tuyến mạnh giữa các X_i
- Sai số tuân theo phân phối chuẩn

Đánh giá chất lượng:

- R²: tỉ lệ phương sai giải thích được
- Kiểm định t cho từng hệ số, kiểm định F cho toàn mô hình