Examenul de bacalaureat național 2020 Proba E. c)

Matematică *M_şt-nat*BAREM DE EVALUARE ŞI DE NOTARE

Test 14

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$(\sqrt{11} - \sqrt{5})(\sqrt{11} + \sqrt{5}) = 11 - 5 =$	2p
	$=6=\left(\sqrt{6}\right)^2$, deci numerele date sunt termeni consecutivi ai unei progresii geometrice	3p
2.	$f(-x) = \ln \frac{1+(-x)}{1-(-x)} = \ln \frac{1-x}{1+x} = \ln \left(\frac{1+x}{1-x}\right)^{-1} =$	3 p
	$=-\ln\frac{1+x}{1-x}=-f(x)$, pentru orice $x \in (-1,1)$, deci funcția f este impară	2p
3.	$4 \cdot 2^{2x} + 4 \cdot 2^x - 3 = 0 \Leftrightarrow (2 \cdot 2^x - 1)(2 \cdot 2^x + 3) = 0$	3p
	Cum $2^x > 0$, pentru orice număr real, obținem $2^x = \frac{1}{2}$, deci $x = -1$	2p
4.	Numărul de submulțimi ordonate cu 3 elemente ale mulțimii $\{1,3,5,7\}$ este A_4^3 =	3p
	$=\frac{4!}{(4-3)!}=4!=24$	2p
5.	$m_{BC} = 1$ și, cum $AD \parallel BC$, obținem $m_{AD} = 1$	3 p
	Ecuația dreptei AD este $y+2=x+1$, deci $y=x-1$	2p
6.	$\frac{AB}{\sin C} = \frac{AC}{\sin B}$, deci $\frac{\sin B}{\sin C} = \frac{AC}{AB} = \frac{1}{2}$	3 p
	$\sin C \sin B \qquad \sin C AB 2$ $\sin C = 2\sin B$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det(A(a)) = \begin{vmatrix} 1 & 2 & -1 \\ -2 & -3 & 0 \\ 2 & 4 & a \end{vmatrix} = -3a + 8 + 0 - 6 - 0 + 4a =$	2p
	=-3a+4a+8-6=a+2 pentru orice număr real a	3p
b)	$\det(A(0)) = 2 \neq 0$	2p
	$A^{-1}(0) = \begin{pmatrix} 0 & -2 & -\frac{3}{2} \\ 0 & 1 & 1 \\ -1 & 0 & \frac{1}{2} \end{pmatrix}$	3р
c)	Pentru $a \neq -2$, obținem $\det(A(a)) \neq 0$, deci sistemul este Cramer	2 p
	Soluția sistemului de ecuații este $(1,-1,0)$	3p
2.a)	x*(-2) = 5(x+2)(-2+2) - 2 =	3p

	=0-2=-2, pentru orice număr real x	2p
b)	$f(x)*f(y) = 5(f(x)+2)(f(y)+2)-2 = 5\left(\frac{e^x-10}{5}+2\right)\left(\frac{e^y-10}{5}+2\right)-2 = 5\left(\frac{e^x-10}{5}+2\right)\left(\frac{e^y-10}{5}+2\right)$	3 p
	$= 5 \cdot \frac{e^x}{5} \cdot \frac{e^y}{5} - 2 = \frac{e^{x+y} - 10}{5} = f(x+y), \text{ pentru orice numere reale } x \text{ și } y$	2p
c)	$x*x=5(x+2)^2-2$, $x*x*x=25(x+2)^3-2$	2p
	$25(x+2)^3 - 2 = 23 \Leftrightarrow (x+2)^3 = 1$, deci $x = -1$	3 p

SUBIECTUL al III-lea

(30 de puncte)

_		
1.a)	$f'(x) = \frac{2x+4}{2\sqrt{x^2+4x+5}} - 1 =$	3 p
	$= \frac{2(x+2)}{2\sqrt{x^2+4x+5}} - 1 = \frac{x+2}{\sqrt{x^2+4x+5}} - 1, \ x \in \mathbb{R}$	2 p
b)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\sqrt{x^2 + 4x + 5} - x - 2 \right) = \lim_{x \to +\infty} \frac{x^2 + 4x + 5 - x^2 - 4x - 4}{\sqrt{x^2 + 4x + 5} + x + 2} =$	2 p
	$= \lim_{x \to +\infty} \frac{1}{\sqrt{x^2 + 4x + 5} + x + 2} = 0$, deci dreapta de ecuație $y = 0$, adică axa Ox , este asimptotă orizontală spre $+\infty$ la graficul funcției f	3 p
c)	$f'(x) = 0 \Rightarrow x + 2 = \sqrt{x^2 + 4x + 5} \Rightarrow x^2 + 4x + 4 = x^2 + 4x + 5 \Rightarrow 4 = 5$, fals, deci $f'(x) \neq 0$, pentru orice număr real x	2p
	f' are proprietatea lui Darboux, deci f' are semn constant și, cum $f'(0) = \frac{2}{\sqrt{5}} - 1 < 0$, obținem că $f'(x) < 0$, pentru orice număr real x , deci f este descrescătoare și, cum $\lim_{x \to -\infty} f(x) = +\infty$, $\lim_{x \to +\infty} f(x) = 0$ și f este continuă, obținem $\operatorname{Im} f = (0, +\infty)$	3 p
2.a)	$F'(x) = \frac{2x \cdot x - x^2 - 1}{x^2} - \frac{1}{x+1} = \frac{(x^2 - 1)(x+1) - x^2}{x^2(x+1)} =$	3p
	$=\frac{x^3-x-1}{x^2(x+1)}=f(x)$, $x \in (0,+\infty)$, deci funcția F este o primitivă a funcției f	2 p
b)	$\int_{1}^{2} (x+1)f(x) dx = \int_{1}^{2} \frac{x^{3} - x - 1}{x^{2}} dx = \int_{1}^{2} \left(x - \frac{1}{x} - \frac{1}{x^{2}} \right) dx = \left(\frac{x^{2}}{2} - \ln x + \frac{1}{x} \right) \Big _{1}^{2} =$	3p
	$= 2 - \ln 2 + \frac{1}{2} - \left(\frac{1}{2} - \ln 1 + 1\right) = 1 - \ln 2$	2 p
c)	$\int_{1}^{a} f(x) dx = F(x) \Big _{1}^{a} = F(a) - F(1) = \frac{a^{2} + 1}{a} - \ln(a + 1) - 2 + \ln 2 = \frac{a^{2} + 1}{a} - \ln\frac{a + 1}{2} - 2$	3 p
	$\frac{a^2+1}{a} - \ln \frac{a+1}{2} - 2 = \frac{1}{2} - \ln \frac{a+1}{2}, \text{ deci } \frac{a^2+1}{a} = \frac{5}{2} \text{ si, cum } a > 1, \text{ obținem } a = 2$	2 p