GATE 2023 BM 33

EE23BTECH11213 - MUTHYALA NIKHITHA SRI

Question: A continuous time, band-limited signal x(t) has its Fourier transform described by:

$$X(f) = \begin{cases} 1 - \frac{|f|}{200} & \text{if } |f| \le 200\\ 0 & \text{if } |f| > 200 \end{cases}$$

The signal is uniformly sampled at a sampling rate of 600 Hz. The Fourier transform of the signal is $X_s(f)$. What is the value of $\frac{X_s(600)}{X_s(500)}$?

Solution:

Parameter	Description	Value
X(f)	Fourier transform of $x(t)$	$\begin{cases} 1 - \frac{ f }{200} & \text{if } f \le 200 \\ 0 & \text{if } f > 200 \end{cases}$
$X_s(f)$	Fourier transform of sampled signal	X(f) + X(f - 600)
TABLE I		

INPUT PARAMETERS

$$X_s(600) = 1 (1)$$

$$X_s(500) = 1 - \frac{|100|}{200} \tag{2}$$

$$X_s(500) = 1 - \frac{|100|}{200}$$
 (2)
 $\implies X_s(500) = \frac{1}{2}$ (3)

$$\frac{X_s 600}{X_s 500} = 2 \tag{4}$$

Fig. 2. Plot of $X_s(f)$

Fig. 1. Plot of X(f)