want to invert.	10	o R1+R3	
0 0 1	0 (O	-1(-2) + 1 =2
2 1 0	0 0	1	
2 2 1	0 ($R_i \div 2$	
2 (6	0 0	1 R3-R1	
1 1 1/2	V2 0	1/2 0	R2-R3
0 0 1	0 1	0	AL MS
1 1 1/2	1/2 0	1/2	
0 1 2	1	0	
0 -1 -1	-1 0	0	
1 1/2	1/2 0	1/2	
0 1 2	1	0 R ₂ -2R ₃	
0 0 1	0 1	0	
1 1 1/2	1/2 0	1/2 R, -P3	
0 / 0	1 -1	0	
0 0 1	0 1	O	
() 0	量一堂	E R1-R2	
0 1 0	+1 -1	0 17 1/2	•
0 0 1	0 (
1 0 .0	1-6 2	2	
0 10	1 -1	0	
0 0 1	0 1	0	
inverse 1			

Invert

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & f \\ 2 & 1 & 0 \end{pmatrix}$$

$$det A = \begin{vmatrix} 0 & 1 \\ 2 & 1 \end{vmatrix} = +2i$$

$$C = \begin{pmatrix} +0 & -0 & +0 \\ -0 & +0 & -0 \\ +0 & -0 & +0 \end{pmatrix} = \begin{pmatrix} -1 & 2 & 0 \\ +-2 & 2 \\ 0 & 0 \end{pmatrix}$$

$$0 = \det \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{vmatrix} = -2$$

$$0 = \begin{vmatrix} 0 & 1 \\ 2 & 0 \end{vmatrix} = -1$$

$$0 = \begin{vmatrix} 0 & 1 \\ 2 & 0 \end{vmatrix} = -1$$

$$0 = \begin{vmatrix} 0 & 1 \\ 2 & 0 \end{vmatrix} = -2$$

$$0 = \begin{vmatrix} 0 & 1 \\ 2 & 0 \end{vmatrix} = -2$$

$$0 = \begin{vmatrix} 0 & 1 \\ 2 & 0 \end{vmatrix} = -2$$

$$0 = \begin{vmatrix} 0 & 1 \\ 2 & 0 \end{vmatrix} = -2$$

$$0 = \begin{vmatrix} 0 & 1 \\ 2 & 0 \end{vmatrix} = -2$$

$$0 = \begin{vmatrix} 0 & 1 \\ 2 & 0 \end{vmatrix} = -2$$

$$0 = \begin{vmatrix} 0 & 1 \\ 2 & 0 \end{vmatrix} = -2$$

$$0 = \begin{vmatrix} 0 & 1 \\ 2 & 0 \end{vmatrix} = -2$$

$$0 = \begin{vmatrix} 0 & 1 \\ 2 & 0 \end{vmatrix} = -2$$

$$0 = \begin{vmatrix} 0 & 1 \\ 2 & 0 \end{vmatrix} = -2$$

$$0 = \begin{vmatrix} 0 & 1 \\ 2 & 0 \end{vmatrix} = -2$$

$$0 = \begin{vmatrix} 0 & 1 \\ 2 & 0 \end{vmatrix} = -2$$

$$0 = \begin{vmatrix} 0 & 1 \\ 0 & 1 \end{vmatrix} = 0$$

9 = 10 1/= 0

$$A^{-1} = \frac{1}{4} + A = \frac{1}{2} = \frac$$