

NOME: GABRIEL MOUSQUER E JOÃO SEGER

NOTA:

DISCIPLINA Computação Simbólica e Numérica

Trabalho 3 - Resolver computacionalmente integrais numéricas e equações diferenciais do tipo y'=f(x,y); $y(x_1)=y_1$, pelos métodos de Taylor e de Runge-Kutta.

1. Calcule numericamente a integral $\int_0^{1.8} x^2 e^{x^2} dx$, pela regra dos Trapézios e Simpson, variando o número de intervalos $n_i = 1, 2, 3, 6, 12, 24 e 48$.

n_i	Trapézio	Simpson		
1	74.656333	49.637555		
2	38.866891	27.003744		
3	28.775058	19.389771		
6	21.367535	18.898361		
12	19.276789	18.579874		
24	18.735392	18.554926		
48	18.598795	18.553263		

2. Calcule $\int_{2,71}^{3,8} \frac{sen^2(x) + cos^2(x) + e^{2x}}{\sqrt{x} + \ln(x)}$, tabelando apenas 8 pontos da função com h constante.

Simpson = 288.502137

3. Calcule $\int_0^4 (1+x^2)^{-\frac{1}{2}} dx$, tabelando 16 pontos da função com h constante, use o Método de Simpson e Trapézios, após compare os resultados.

Trapézios = 2.0944154

Simpson = 2.0947114

4. Resolva a equação diferencial $y' = \frac{2y}{1+x^2}$ com valor inicial y(1) = 3, em x = 5,1. Use o método de Runge-Kutta de 4ª. ordem com h = 0,7. Apresente a solução gráfica.

x	y		
1	3		
1.7	4.9807933		
2.4	6.5499739		
3.1	7.7289151		
3.8	8.6227956		
4.5	9.315881		

5. Para a equação diferencial $\begin{cases} y' = \frac{2y}{x+1} + (x+1) \\ y(2) = 3,8 \end{cases}$, obtenha y(4) e y(7). Use o método de Runge-Kutta de 2^a e 4^a ordem com h=0,125 e 0,2. Compare as respostas.

Runge-Kutta de 2º ordem				Runge-Kutta de 4º ordem			
h = 0.125		h = 0.2		h = 0.125		h = 0.2	
y(4)	y(7)	y(4)	y(7)	y(4)	y(7)	y(4)	y(7)