Capítulo 7 Qualidade de Serviço (QoS)

Roberto Willrich

INE - CTC-UFSC

E-Mail: willrich@inf.ufsc.br

Qualidade de Serviço (QoS)

Conteúdo

- Redes oferecendo o Melhor Esforço
- Princípios da QoS
- Definição de QoS
- Disciplinas de escalonamento e de descarte de pacotes
- Serviços Integrados/RSVP
- Serviços Diferenciados

- Situação atual
 - Internet de hoje fornece um serviço do tipo melhor esforço
 - · Tráfego é tratado tão rápido quanto possível
 - Não há garantias de taxa, atraso, variação de atraso e taxa de perda de pacotes
- Clientes exigem mais
 - Internet é hoje uma infra-estrutura comercial
 - Fornecimento de qualidade de serviço está sendo considerada cada vez mais um requisito essencial
 - Qualidade + Serviço = capacidade para diferenciar entre tráfegos de forma que o sistema possa tratar uma ou mais classes de tráfego diferenciadamente de outras

- Duas funções chaves do roteador:
 - Executar algoritmos/protocolos de roteamento (RIP, OSPF, BGP)
 - Comutar datagramas de enlaces de entrada para enlaces de saída

- Funções da fila de entrada
 - Consulta tabela de roteamento e encaminha pacote para porta de saída
 - Escolha da porta de saída é feita usando a tabela de roteamento
 - Uma vez determinada a porta de saída apropriada
 - O pacote pode ser encaminhado via o elemento de comutação
 - · Mas pacote pode ter a entrada temporariamente bloqueada
 - Se o elemento de comutação estiver ocupada enviando outro pacote
 - Pacotes bloqueado são colocados em uma fila na porta de entrada

- Porta de Saída do Roteador
 - Bufferização é necessária quando datagramas chegam do elemento de comutação mais rápido que a taxa de transmissão
 - Enfileiramento (atraso) e perda devido ao overflow de buffers de saída
 - Disciplinas de escalonamento escolhem entre datagramas na fila para transmissão

- Recursos podem não ser suficientes
 - Quantidade de recursos solicitados pode ultrapassar o montante disponível
 - · Congestionamento: fila de pacotes (espera por enlaces em uso), descarte
 - Armazenar-e-transmitir:
 - Transmitido sobre um enlace
 - · Espera sua vez no próximo enlace

- Número de pacotes nas filas dependem da carga da rede
 - A fila mais crítica é a da porta de saída
 - Em redes congestionadas o espaço nas filas do roteador pode não ser suficiente
 - Ocorrendo a sobrecarga (buffer overflow) e com isto a perda de pacotes ocorre (descarte de pacotes).
 - Taxa de perda de pacotes dependerá da carga de tráfego, da velocidade do elemento de comutação, da taxa do enlace e da capacidade de processamento do roteador
 - Estes fatores determinam o atraso e a variação de atraso do encaminhamento dos pacotes

- Em roteadores dotados de elementos de comutação de alto desempenho
 - Um escalonamento de pacotes deve ser adotado para determinar o próximo pacote a ser transmitido
 - Escalonamento usual é o FIFO (First-In-First-Out), também chamado de FCFS (First-Come-First-Served)
 - Quando se quer gerenciar a qualidade de serviço pode-se adotar outras disciplinas de escalonamentos mais sofisticadas nas filas de saída, tais como Weighted Fair Queuing (WFQ)

Princípios da QoS

- Cenário simples de rede
 - H1 transmite um fluxo de pacotes para H3 e ao mesmo tempo H2 transmite outro fluxo de pacotes para H4
 - Roteadores nas duas LANs são conectados por um enlace a 1,5
 Mbps
 - Duas LANs são de 10 ou 100 Mbps
 - Podem ocorrer perdas de pacotes e atrasos grandes se a taxa agregada de H1 e H2 exceder a 1,5 Mbps

Princípios da QoS: Cenário 1

- Considere uma aplicação de telefonia a 1Mbps e uma aplicação FTP compartilhando um enlace de 1.5 Mbps
 - rajadas de tráfego FTP podem congestionar o roteador e fazer com que pacotes de áudio sejam perdidos
 - deseja-se dar prioridade ao áudio sobre o FTP
 - Campo DS do cabeçalho IP pode servir para marcar os pacotes
- PRINCÍPIO 1: Marcação de pacotes permite a um roteador diferenciar entre pacotes pertencentes a diferentes classes de tráfego

Princípios da QoS: Cenário 2

- Considere agora que o fluxo FTP é mais prioritário
 - Usuário FTP contratou um serviço de melhor qualidade da sua ISP
 - Seria mais razoável que o roteador R1 distinga os pacotes baseados no endereço IP da fonte
 - Generalizando: é necessário que o roteador classifique os pacotes de acordo com algum critério
- Princípio 1 (modificado): a classificação de pacotes permite que o roteador faça a distinção de pacotes pertencentes a diferentes classes de tráfego
 - A marcação é apenas um dos critérios para classificar pacotes
 - Uma das maneiras de classificar os pacotes
 - Os critérios para classificar os pacotes é uma decisão de política

Princípios da QoS: Cenário 3

- Aplicações mal-comportadas (áudio envia pacotes numa taxa superior a 1Mbps anteriormente assumida)
- PRINCÍPIO 2: fornecer proteção (isolamento) para uma classe em relação às demais
 - Exige mecanismos de policiamento para assegurar que as fontes aderem aos seus requisitos de banda passante.
 Marcação e policiamento precisam ser feitos nas bordas da rede:

Princípios para Garantia de QOS (mais)

- Alocar largura de banda fixa (não compartilhável) ao fluxo
 - uso ineficaz da largura de banda se os fluxos não usarem sua alocação
- PRINCÍPIO 3: Deve-se fornecer isolamento e ao mesmo tempo usar os recursos da forma mais eficiente possível

Princípios para Garantia de QOS (mais)

- Não deve ser aceito tráfego além da capacidade do enlace
- PRINCÍPIO 4: Necessita de um Processo de Admissão de Chamada; a aplicação declara a necessidade do seu fluxo, a rede pode bloquear a chamada se a necessidade não pode ser satisfeita

Resumo

Definição de QoS

QoS é uma especificação qualitativa ou quantitativa dos requisitos de uma aplicação ou de um Cliente, que um sistema deveria satisfazer afim de obter uma qualidade desejada

Dois aspectos:

Aplicações ou Clientes
 especificam os requisitos de
 QoS e o sistema fornece as
 garantias de QoS

· Especificação da QoS

- QoS é especificada de diferentes formas
 - Por um conjunto de parâmetros de QoS
 - taxa de bits, taxa de erros, limites de atraso e de variação de atraso
 - Pela escolha de uma classe de serviço
 - Que oferecem certas garantias em termos de parâmetros de QoS

Definição de QoS: Classe de Serviço

- Seleção da Classe de Serviço (CoS)
 - Provedor de Serviços Internet (ISP) fornecendo aos clientes diversas possibilidades em termos de QoS para encaminhar seu tráfego
 - Cliente de um ISP optará por uma das várias CoS para cada um de seus tráfegos
 - Se Voz sobre IP e videoconferência é importante, ele pode escolher uma classe de serviço que garanta pequeno atraso e baixa variação de atraso
 - Se tráfego Web é importante, ele pode escolher uma classe de serviço fornecendo serviços Internet "previsíveis"
 - classe de serviço poderia conter um serviço único ou poderia conter serviços
 Ouro, Prata e Bronze, que reduz em qualidade
 - Serviço melhor esforço permanece para clientes que requerem apenas conectividade
 - Cliente optando por um serviço de qualidade pagaria um custo maior do que aquele pago por um tipo de serviço melhor esforço

Disciplinas de escalonamento e regulação

- · Escalonamento: finalidade
 - Uso compartilhado de recursos. Recursos escalonados:
 - · Banda passante do enlace de saída, buffers
 - Disciplina de escalonamento oferece a diferentes tráfegos diferentes QoS
 - · Diferentes atrasos médios
 - Diferentes bandas passantes
 - Diferentes taxas de perda
- Roteador deve implementar diferentes políticas
 - Políticas de escalonamento
 - · Decidem qual pacote deve ser enviado primeiro
 - Políticas de gerenciamento de buffers
 - Decidem quando um pacote deve ser descartado
 - Políticas de descarte
 - · Decidem qual pacote deve ser descartado

FIFO

- Pacotes são enfileirados em uma fila comum
- Primeiro pacote que chega é o primeiro a sair

- FIFO: Descarte de Pacotes
 - Pacotes que chegam em um buffer cheio são descartados ou uma política de descarte é usada para determinar qual pacote descartar entre aquele que chega e aqueles que já estão na fila

- FIFO: Deficiências
 - Quando a rede opera com suficiente nível de capacidade de transmissão e comutação
 - As filas são necessárias somente para assegurar que tráfegos em rajada de curta duração não causem descarte de pacotes
 - Enfileiramento FIFO é altamente eficiente caso o tamanho da fila permanece pequeno
 - Atraso médio de pacotes na fila é uma fração insignificante do tempo de transmissão fim-a-fim
 - Quando a carga da rede aumenta
 - tráfego em rajada causa significativo atraso de enfileiramento em relação ao tempo de transmissão total
 - quando a fila está totalmente cheia
 - todos os pacotes subseqüentes são descartados
 - Quando a fila opera deste modo por longos períodos o serviço degenera

- FIFO: Deficiências
 - Não compartilha a banda de maneira justa
 - ordem de chegada determina a largura de banda que será obtida, a prioridade e a alocação de buffers
 - Sem prioridade e garantias de QoS
 - · não toma nenhuma decisão sobre prioridade do pacote
 - Não provê proteção contra fontes de tráfego com comportamento prejudicial

- Outras disciplinas de escalonamento
 - Permitem criar classes de tráfego com diferentes prioridades
 - Importante para a QoS

- Filas com Prioridade (PQ)
 - Classes tem diferentes prioridades
 - Classificação depende de marcação explícita ou de outras informações no cabeçalho (endereço de origem ou de destino, número de portas, etc.)
 - Múltiplas filas com diferentes prioridades (0 a n-1)
 - Prioridade 0 é servida primeiro
 - · Prioridade i é servida apenas se as filas 0 a i-1 estão vazias
 - Escolha entre pacotes da mesma classe de prioridade é feita, tipicamente, pelo método FIFO
 - Deficiência: Se o volume de tráfego de alta prioridade for alto
 - Tráfego normal esperando na fila pode ser descartado por causa de insuficiência de espaço de armazenamento (buffer)
 - · Pode produzir uma latência alta no tráfego normal

- Round Robin (Varredura cíclica)
 - Percorre as classes presentes na fila, servindo um pacote de cada classe que tem pelo menos um representante na fila
 - Usada para servir todas as filas de maneira justa (Fair Queue)

- Round Robin (Varredura cíclica)
 - Prós:
 - · Previne que qualquer fonte sobrecarregue a rede
 - Contras:
 - Pacotes são de tamanhos variados e um pacote por vez é liberado em cada fila
 - Algumas filas podem ser mais cheias que outras
 - Não define realmente um esquema de prioridade

- WFQ Weighted Fair Queuing (Fila justa e ponderada)
 - É uma forma generalizada de Round Robin na qual se tenta prover a cada classe um volume diferenciado de serviço num dado período de tempo
 - A cada classe i é atribuído um peso w_i
 - será garantido que a classe *i* receberá uma fração do serviço igual a $w_i/(\sum w_j)$ onde a soma no denominador é feita sobre todas as classes que também tem pacotes enfileirado para transmissão
 - Para um enlace com uma taxa de transmissão R, a classe i sempre obterá uma taxa de pelo menos R $w_i/(\sum w_j)$
 - No pior caso (se todas as classes tenham pacotes enfileirados) será garantido que a classe i a fração $w_i/(\sum w_j)$ da largura de banda

WFQ

- Descrição apresentada é teórica
 - Não foi considerado o fato que os pacotes são unidades discretas de dados e a transmissão de um pacote não será interrompida para se começar a transmissão de outro pacote
- Vantagens
 - Provê proteção
 - Fornece limites quanto ao atraso fim-a-fim
- Deficiências
 - Tem falta de granularidade no mecanismo usado para favorecer alguns fluxos sobre outros (pacotes e não bits)

- CBQ (Class-Based Queuing) ou CQ (Custom Queuing)
 - permite especificar uma percentagem da banda para cada tipo de tráfego (alocação absoluta da banda)
 - Banda é compartilhada proporcionalmente, no percentual pré-definido, entre as aplicações e os usuários
 - Se uma fila não está em uso, a banda é disponibilizada para outras filas

CBQ (Class-Based Queuing)

- CBQ (Class-Based Queuing)
 - Princípio
 - As filas são ordenadas ciclicamente num esquema roundrobin
 - para cada fila é enviado a quantidade de pacotes referente à parte da banda alocada antes de passar para a fila seguinte
 - Há um contador configurável associado a cada fila que estabelece quantos bytes devem ser enviados antes da passar para a próxima fila
 - Pode-se também definir a preferência em que cada fila será servida

- CBQ: Deficiências
 - Apresenta falha na questão de escalabilidade
 - apropriado somente para canais de baixa velocidade
 - o que limita sua utilização
 - Não oferece garantias determinísticas/estatísticas no desempenho (atraso, vazão)
 - Vários parâmetros configurável tem efeitos desconhecidos

Isolamento de Classes de Tráfego

- Duas abordagens gerais para isolamento entre fluxos:
 - Regulação dos fluxos de tráfego;
 - Alocação de banda via mecanismos de escalonamento

Isolamento de Classes de Tráfego

- Alocação de banda via mecanismo de escalonamento de pacotes
 - Mecanismo de escalonamento de pacotes no nível de enlace aloca explicitamente uma porção fixa da largura de banda do enlace para cada fluxo de aplicação
 - Exemplo:
 - poderia ser alocado em R1 1 Mbps ao fluxo de áudio e 0,5 Mbps ao fluxo FTP
 - os fluxos de áudio e FTP perceberiam um enlace lógico com capacidade de 1 Mbps e 0,5 Mbps

Isolamento de Classes de Tráfego

- Regulação dos fluxos de tráfego
 - Um mecanismo de regulação pode ser usado para regular o tráfego de maneira que ele atenda a certos critérios (por exemplo, taxa de pico de 1 Mbps)
 - Leaky Bucket (Balde Furado) e Token Bucket (Balde de Fichas) são mecanismo de regulação mais usados
 - Se a aplicação regulada se comportar mal
 - mecanismo de regulação tomará alguma ação (por exemplo, descartará ou atrasará pacotes que estão violando o critério).

Regulação dos fluxos de tráfego

- Três critérios de policiamento:
 - Taxa Média (Longo prazo)
 - Aspecto crucial é o tamanho do intervalo
 - 100 pacotes por segundo ou 6000 pacotes por minuto??
 - Taxa de Pico
 - ex. 6000 pacotes por minuto na média e 1500 pacotes por segundo de pico
 - (Max.) Tamanho da Rajada
 - · Número máximo de pacotes enviado consecutivamente
 - num curto período de tempo

- Mecanismo Leaky Bucket (balde furado)
 - Oferece um meio de limitar a taxa média dos pacotes que entram na rede
 - Balde tem uma capacidade em termos de bytes C
 - Balde oferece uma vazão constante r
 - Se o balde enche, os pacotes excedentes são considerados não-conformantes, e então:
 - Podem ser descartados (dropped)
 - Podem ser enfileirados para transmissão posterior quando "houver espaço no balde" (\mathcal{C})
 - Podem ser transmitidos, mas marcados como sendo nãoconformantes - marcados com uma alta prioridade de descarte (descartados quando a rede está congestionada)

Mecanismo Leaky Bucket

- Mecanismo Token Bucket (balde de permissões)
 - Oferece um meio de limitar a entrada dentro de um tamanho de rajada e uma taxa média especificados
 - Balde pode armazenar b tokens
 - Tokens são gerados numa taxa de r token/seg exceto se o balde estiver cheio

- Mecanismo Token Bucket (balde de permissões)
 - Um token é adicionado no balde a cada 1/r segundos
 - Balde pode manter no máximo b tokens
 - · Todo token que chega após o enchimento do balde é descartado
 - Quando um pacote de n bytes chega, n tokens são removidos do balde, e o pacote é envido par a rede
 - Configuração determina quantos bytes representa um token, ou um pacote de certo tamanho
 - Quando não houver n tokens, o pacote é considerado não-conformante.

- Mecanismo Token Bucket (balde de permissões)
 - Pacotes não-conformante
 - Podem ser descartados (dropped)
 - Podem ser enfileirados para transmissão posterior quando chegarem tokens suficientes
 - Podem ser transmitidos, mas marcados como sendo nãoconformante - marcados com uma alta prioridade de descarte (descartados quando a rede está congestionada)

Mecanismo Token Bucket

- Mecanismo Token Bucket (balde de permissões)
 - Tamanho máximo da rajada
 - Como pode haver até b fichas no balde, é b pacotes (ou b*número de bytes representado por token).
 - Taxa média a longo prazo
 - Como a taxa de geração de fichas é r, o número máximo de pacotes que podem entrar na rede em qualquer intervalo de tempo de tamanho té rt+b
 - r serve para limitar a taxa média a longo prazo
 - Taxa de pico
 - · Usando dois token buckets em série

- Token Bucket e WFQ
 - Token bucket e WFQ podem ser combinados para prover um limite superior ao atraso.

Token Bucket e WFQ

- Porta de saída do roteador multiplexa n fluxos (n classes de tráfego), cada um policiado por um token bucket com parâmetros b_i e r_i , i = 1, . . . , n

- Políticas de descarte de pacotes
 - Ocorre quando são violadas as regras previstas para o perfil de uma classe
 - Podem determinar o descarte sumário de pacotes,
 - E/ou o rebaixamento de um determinado pacote para uma classe de serviço inferior
 - A seguir serão analisadas algumas políticas de descarte

- Política de Descarte pela Cauda
 - Mecanismo default para descarte de pacotes
 - · utilizado por disciplinas de fila do tipo FIFO
 - Modo de operação
 - · Primeiro pacote a ser servido é o primeiro a chegar no sistema
 - · Quando não houver mais espaço na fila
 - pacotes que chegarem a partir de então assumem a última posição da fila
 - provocando o descarte do pacote que nesta posição se encontrava
 - Este mecanismo não exibe uma ação de descarte imparcial (não é justa)
 - fontes de tráfego em rajada penalizam fontes de tráfego que apresentam comportamentos adequados

- Descarte Randômico
 - Decisão de descarte pode recair sobre qualquer pacote presente no buffer até o momento
 - de maneira a liberar espa
 ço para o pacote que chega.
 - Método justo e imparcial
 - parte do princípio de que uma fonte de tráfego que esteja contribuindo para a exaustão de recursos também possui uma alta probabilidade em sofrer a ação de descarte.

- Detecção RED (Random Early Detection)
 - A detecção RED Detecção Aleatória Antecipada é um mecanismo para prevenção e inibição de congestionamento
 - Algoritmo monitora o tráfego utilizando as funções de controle de congestionamento TCP
 - descartando pacotes aleatoriamente e indicando para a fonte reduzir a taxa de transmissão
 - evitando assim situações de congestionamento antes que ocorra picos de tráfego
 - Quando habilitado numa interface, o RED começa a descartar pacotes a uma taxa que pode ser previamente configurada

- WRED (Weighted RED)
 - Uma implementação da Cisco que combina as funcionalidades do RED com a classificação de pacotes por precedência IP
 - Descarta pacotes seletivamente
 - · descartando inicialmente os pacotes de menor prioridade
 - com diferentes pesos para cada classe
 - Útil em qualquer interface na qual a possibilidade de congestionamento seja eminente
 - Mas geralmente utilizado em roteadores centrais de backbone (core routers) com a precedência IP habilitada

Qualidade de Serviço na Internet

- Trabalhos da IETF relacionados com garantias de QoS
 - IETF tem proposto alguns modelos de serviço e mecanismos para satisfazer a necessidade de QoS na Internet
 - proporcionando um melhor controle sobre o tráfego na Internet
 - Entre estes trabalhos estão:
 - modelo Serviços Integrados/RSVP
 - · modelo Serviços Diferenciados

Qualidade de Serviço na Internet

- Serviços Integrados/RSVP (IntServ)
 - IntServ é baseada na reserva de recursos
 - Aplicações/roteadores devem primeiro configurar caminhos e reservar recursos antes dos dados serem transmitidos
 - RSVP (Resource Reservation Protocol) é um protocolo de sinalização para configurar os caminhos e reservar recursos
 - Roteadores devem ser capazes de reservar recursos afim de fornecerem QoS para fluxos de pacotes específicos do usuário
 - estado específico dos fluxos devem ser mantidos pelos roteadores

ReSource ReserVation Protocol(RSVP)

· Conexão entre um emissor e um receptor

- 1. Uma aplicação em Host A cria uma sessão pela comunicação com o daemon RSVP no Host A.
- 2. O RSVP daemon do Host A gera uma mensagem PATH que é enviada para o roteador RSVP próximo (R1) na direção do endereço do destino 128.32.32.69. Mensagem PATH contem a especificação do fluxo
- 3. A mensagem PATH segue adiante através de R5 e R4 até chegar ao Host B. Cada roteador no caminho cria um estado com os parâmetros de reserva

ReSource ReserVation Protocol(RSVP)

· Conexão entre um emissor e um receptor

- 4. Host B usa informações da msg *Path* e informações locais (recursos computacionais, requisitos da aplicação, etc.) para determinar QoS
- 5. O daemon RSVP em Host B gera uma mensagem RESV que é enviada para o próximo roteador RSVP na direção do endereço fonte. RESV especificando a QoS requerida

6. A mensagem RESV continua seu caminho por R5 e R1 até chegar em Host A. Cada roteador no caminho realiza a reserva de recursos.

ReSource ReserVation Protocol(RSVP)

- Características
 - É definido um caminho com recursos reservados
 - Qualidade de serviço é especificada para a rede pelo receptor
 - Considera que receptor está melhor colocado que o emissor para saber que qualidade de serviço é necessária
 - Não é responsável pela transmissão de dados
 - · IP pode ser usado para transferência de dados

Serviços Integrados/RSVP (IntServ)

- Problemas da Arquitetura Serviços Integrados
 - Montante de informações de estado aumenta proporcionalmente ao número de fluxos
 - causa uma sobrecarga de armazenamento e processamento nos roteadores (arquitetura não é escalável)
 - Requisitos nos roteadores são altos
 - todos os roteadores devem implementar RSVP, controle de admissão, classificação e escalonamento de pacotes
 - Não são muito aplicáveis a aplicações do tipo navegadores
 WWW
 - duração de um fluxo típico é apenas de poucos pacotes
 - sobrecarga causada pela sinalização RSVP poderia facilmente deteriorar o desempenho da rede percebida pela aplicação

Origem

 Surgiu devido as dificuldades de implementar e utilizar Serviços Integrados/RSVP

Princípio

- Pacotes são marcados diferentemente para criar várias classes de serviço (de pacotes)
 - pacotes de diferentes classes recebem diferentes serviços
- Marcação dos pacotes
 - campo TOS (Type Of Service) do cabeçalho do pacote IPv4 ou campo Class do cabeçalho do pacote IPv6
 - setado pelas aplicações para indicar a classe
 - agora TOS é chamado de DS (Differentiated Services)

- D5 é um esquema de prioridades
 - Meta do DiffServ é definir métodos relativamente simples para prover classes de serviço diferenciadas para o tráfego na Internet
 - campo DS é usado para marcar um pacote para que ele receba um tratamento de encaminhamento particular, ou PHBs (Per-Hop Behaviors), em cada nó da rede
 - PHB é o comportamento observável externamente de um pacote em um roteador suportando DS

DiffServ: Marcação

- Pacotes são marcados usando o campo DS no cabeçalho do IPv4 (antigo campo ToS) ou IPv6 (campo Traffic Class)
 - Seis bits são usado como codepoint DSCP (Differentiated Service CodePoint)
 - · para selecionar o PHB que o pacote terá em cada nó
 - é tratado como um índice de uma tabela que é usada para selecionar um mecanismo de manipulação de pacotes implementado em cada dispositivo
 - é definido como um campo não estruturado para facilitar a definição de futuros PHBs
 - Dois bits são reservados
 - são ignorados por nós DS-conformantes

- Acordo de Nível de Serviço (SLA)
 - Parte do contrato entre o cliente e o Provedores de Serviço Internet (ISP)
 - Define os termos e condições do serviço
 - SLA define:
 - Define o nível de desempenho e confiabilidade do serviço de rede
 - Custos e penalidades do serviço
 - Um SLA contém uma lista de Especificação do Nível de Serviço (SLS)
 - Define o nível determinado para um determinado tráfego

SLS

Escopo: ...

Identificador do fluxo:...

Atributos de desempenho

Atraso :...

Variação de atraso:...

Taxa de perdas de pacote:...

Vazão:...

Conformidade do tráfego:...

Tratamento do excesso:...

Periodo de validade:...

Confiabilidade:...

DiffServ: Classificação

- Funções de Borda (Edge)
 - Classificação e marcação de pacotes
 - Regras de classificação são obtidas a partir do SLA/SLS
 - Pacotes que chegam são marcados de acordo com regras/diretivas
 - No roteador de borda ou no host de origem do tráfego
 - Exemplo: pacotes enviados de H1 até H3 poderiam ser marcados no roteador
 R1
 - Campo Differentiated Service (DS) do cabeçalho do pacote IP é marcado com algum valor
 - identifica a classe de tráfego que ele pertence

DiffServ: Classificação e Marcação

- Visão lógica da função de classificação e marcação dentro do roteador de borda
 - Pacotes chegam no roteador de borda são primeiro classificados
 - com base nos valores de um ou mais campos do cabeçalho do pacote
 - por exemplo, endereço fonte, endereço destino, porta fonte, porta destino, ID do protocolo
 - Em seguida o pacote é levado à função de marcação apropriada
 - O valor do campo DS é setado com um valor apropriado no marcador
 - Uma vez que o pacote é marcado
 - · ele é encaminhado segundo sua rota para o destino

- Funções de Borda (Edge)
 - Condicionamento de tráfego
 - Diferentes classes de tráfego receberão diferentes serviços dentro do núcleo (core) da rede.

- Policiamento do tráfego
 - Na medida que o usuário envia pacotes na rede em conformidade com o perfil de tráfego negociado
 - pacotes recebem suas prioridades marcadas
 - Se o perfil de tráfego é violado
 - pacotes fora do perfil podem ser marcados diferentemente
 - podem ser condicionados (atrasados de modo que o perfil seja observado) ou até mesmo descartados.

- Policiamento do tráfego
 - No contrato com a ISP o usuário final declara um perfil de tráfego
 - Exemplo:
 - medir o fluxo de pacotes do endereço IP a.b.c.d
 - se sua taxa fica abaixo de 200 kbps, sete o byte-DS para o valor X,
 - » senão sete o byte-DS para o valor Y.
 - Se a taxa excede 600 kbps
 - » corte os bytes excedentes

- Funções de Núcleo (Core): Encaminhamento
 - Arquitetura Diffserv não requer que os roteadores mantenham estados para cada par fonte-destino de tráfego
 - uma consideração importante para satisfazer o requisito de escalabilidade

- Funções de Núcleo (Core): Encaminhamento
 - Quando um pacote com DS marcado chega em um roteador com DiffServ
 - pacote é tratado de acordo com o valor do campo DS e dado o PHB - per-hop behavior (comportamento por hop) associado com a classe a que pertence o pacote.
 - · Não há classificação e policiamento

PHBs

- De 26 possíveis significados (dados pelo campo DSCP) o grupo de trabalho DiffServ
 - especifica (padroniza) alguns PHBs globalmente aplicáveis
 - e deixará o resto para uso experimental
 - Se os experimentos indicarem que um certo PHB não padronizado é claramente útil, ele pode ser padronizado posteriormente.

- Exemplos de PHB

- Um exemplo de um PHB simples é um que garanta que uma dada classe de pacotes marcados recebam ao menos x% da largura de banda do enlace de saída
- Outro PHB poderia especificar que uma classe de tráfego sempre será prioritária em relação as outras classes de tráfego
 - disciplina PQ é a escolha natural de implementação deste PHB
 - » mas qualquer disciplina de fila que implemente o comportamento observável requerido é aceitável

- PHBs padronizados
 - Serviço Premium, Serviço Agregado e Serviço Olympic
- Serviço Premium (PHB EF)
 - Especifica que a taxa de partida do roteador de uma classe de tráfego deve ser igual ou exceder a uma taxa configurada
 - Implica no uso de alguma forma de isolamento entre classes de tráfego
 - mesmo se as outras classes de tráfego estejam saturando os recursos do roteador e do enlace, uma quantidade destes recursos deverá estar disponível para a classe para assegurar que ela receba a taxa mínima garantida.
 - EF oferece uma classe com uma abstração simples de um enlace com uma largura de banda de enlace garantida.

- Serviço Premium (PHB EF)
 - Para aplicações requerendo serviço de pequeno atraso e pequena variação de atraso
 - Usuário negocia com seu ISP a máxima largura de banda para enviar pacotes através da rede
 - alocações são feitas em termos de taxa de pico
 - Desvantagem:
 - fraco suporte a tráfegos em rajada
 - usuário paga mesmo quando não usa completamente a largura de banda

- Serviço Assegurado (PHP AF)
 - PHB AF é mais complexo
 - Classes AF são referenciadas como AFnm:
 - "n"é o número da classe (1 a 4)
 - "m"é o valor de precedência de descarte (1 a 3)
 - Divide o tráfego em quatro classes
 - Cada classe AF tem garantias em termos de um montante mínimo de largura de banda e bufferização
 - Variando o montante de recursos alocados para cada classe, uma ISP pode prover diferentes níveis de desempenho para diferentes classes de tráfego AF.
 - Pacotes são classificados em uma de três categorias de precedência de descarte
 - · quando da ocorrência de congestionamento dentro de uma classe AF
 - roteador pode então descartar pacotes baseado nos valores de precedência de descarte

- Serviço Assegurado (PHP AF)
 - Para aplicações requerendo melhor confiabilidade que Serviço Melhor Esforço
 - Não garante a largura de banda como o Serviço Premium
 - fornece uma alta probabilidade de que o ISP transfere os pacotes marcados com alta prioridade confiavelmente
- Serviço Default (PHP BE)
 - Não garante efetivamente uma qualidade
 - Muitas vezes é garantido apenas uma taxa mínima

- Características básicas
 - Serviços DS são todos para tráfego unidirecional apenas
 - Serviços DS são para tráfegos agregados
 - não fluxos individuais

DiffServ x IntServ

- Serviços Diferenciados é mais escalável do que Serviços Integrados
 - No DiffServ há apenas um número limitado de classes de serviço indicados no campo DS
 - Conjunto de informações de estado é proporcional apenas ao número de classes e não proporcional ao número de fluxos
- Serviços Diferenciados é mais fácil de implementar e usar
 - Operações de classificação, marcação, policiamento e retardo são apenas necessárias nas fronteiras das redes
 - Roteadores ISP internos (core) necessitam apenas implementar o Comportamento Agregado e classificação baseado no campo DS