Water-soluble inclusion complexes of biologically active organic compounds which are insoluble or have only limited solubility in water, and their aqueous solutions, as well as their preparation and pharmaceutical products containing these compounds

Publication number: DE3118218 **Publication date:** 1982-04-22

Inventor:

SZEJTLI JOZSEF DIPL ING CHEM D (HU); BOLLA

GEB PUSZTAI (HU); STADLER GEB SZABO (HU)

Applicant:

CHINOIN GYOGYSZER ES VEGYESZET (HU)

Classification:

- international:

A61K47/48; A61K47/48; (IPC1-7): C08B37/16;

A61K31/557; A61K31/56; A61K45/08; A61K47/00;

C07C103/50; C07C177/00; C07J1/00

- european:

A61K47/48W18B: Y01N2/00 Application number: DE19813118218 19810508

Priority number(s): HU19800001141 19800509

Also published as:

JP57004914 (A) FR2484252 (A1) CH661517 (A5) BE888736 (A) HU181703 (B)

Report a data error here

Abstract not available for DE3118218

Abstract of corresponding document: FR2484252

The invention relates to water-soluble inclusion complexes of biologically active organic compounds which are insoluble or have only limited solubility in water, particularly of fat-soluble vitamins, steroid hormones, prostanoids, local anaesthetics and the like, to their aqueous solutions and to their preparation, wherein the biologically active compounds are converted into an aqueous solution in the form of inclusion complexes which have been formed with dimethyl- beta -cyclodextrins having an average degree of substitution of 14, in particular with heptakis(2,6-di-O-methyl)- beta -cyclodextrin, by dissolving the organic compounds which are insoluble or have only limited solubility in water in an aqueous solution of 1 to 8 mol (calculated per 1 mol of the compound to be dissolved) of dimethyl- beta -cyclodextrin. The aqueous solutions, obtained according to the invention, of the biologically active organic compounds can be processed to give pharmaceutical products which can be administered orally or parenterally.

Data supplied from the esp@cenet database - Worldwide

(B) BUNDESREPUBLIK DEUTSCHLAND

[®] Offenlegungsschrift [®] DE 31 18218 A 1

DEUTSCHES

PATENTAMT

Aktenzeichen:Anmeldetag:

Offenlegungstag:

P 31 18 218.6 8. 5. 81 22. 4. 82

A 61 K 45/08 A 61 K 31/56 A 61 K 31/557

Durdeneigenium

(3) Unionsprioritāt: (3) (3) (3) (9).05.80, HU 1141-80

(1) Anmelder:

Chinoin Gyógyszer és Vegyészeti Termékek Gyára RT, 1045 Budapest, HU

(74) Vertreter:

Lotterhos, H., Dipl.-Ing. Dr.-Ing., Pat.-Anw., 6000 Frankfurt

② Erfinder:

Szejtli, Jozsef, Dipl.-Ing.-Chem. Dr., 1026 Budapest, HU; Bolla, geb. Pusztai, Eva, Dipl.-Ing.-Chem. Dr., 1023 Budapest, HU; Stadler, geb. Szabo, Agnes, Dipl.-Ing.-Chem. Dr., 1143 Budapest, HU

Wasserlösliche Einschluß-Komplexe von in Wasser nicht oder nur begrenzt löslichen biologisch aktiven organischen Verbindungen und deren wässrige Lösungen sowie deren Herstellung und diese Verbindungen enthaltende Arzneimittelpräparate

Die Erfindung betrifft wasserlösliche Einschluß-Komplexe von in Wasser unlöslichen oder nur begrenzt löslichen, biologisch aktiven organischen Verbindungen, besonders von fettlöslichen Vitaminen, Steroidhormonen, Prostanoiden, lokalanästhetischen Mitteln u.ä., deren wäßrige Lösungen und deren Herstellung, wobei die biologisch aktiven Verbindungen in Form von Einschluß-Komplexen, die mit Dimethyl-β-cyclodextrinen mit einem durchschnittlichen Substitutionsgrad von 14. insbesondere mit Heptakis-(2,6-di-O-methyl)-β-cyclodextrin, gebildet worden sind, in wäßrige Lösung gebracht werden. in dem man die in Wasser unlöslichen bzw. nur begrenzt löslichen organischen Verbindungen in einer wäßrigen Lösung von 1 bis 8 Mol (pro 1 Mol der zu lösenden Verbindung berechnet) Dimethyl-β-cyclodextrin löst. Die gemäß Erfindung erhaltenen wäßrigen Lösungen der biologisch aktiven organischen Verbindungen können zu oral oder parenteral verabreichbaren Arzneimittelpräparaten verarbeitet wer-(31 18 218)

PATENTANWALT DR.-ING. LOTTERHOS

6006 FRANKFURT (MAIN) 1 LICHTENSTEINSTRASSE 3 FERNSPRECHER: (0811) 655061 TELEGRAMME: LOMOSAPATENT LANDESZENTRALBANK 50007149 POSTSCHECK-KONTO FFM. 1857-609

Y/ho

FRANKFURT (MAIN), 5.Mai 1981

Chinoin Gyógyszer és Vegyészeti Termékek Gyára RT., H 1045 Budapest, Tó utca 1-5, Ungarn

Patentansprüche

- 1) Wasserlösliche Einschluß-Komplexe von in Wasser unlöslichen oder nur begrenzt löslichen, biologisch aktiven organischen Verbindungen mit Dimethyl-β-cyclodextrinen, deren durchschnitt-liche Substitutionszahl 14 beträgt, sowie deren wässrige Lösungen.
- 2) Einschluß-Komplexe nach Anspruch 1, dadurch gekennzeichnet, daß sie als Dimethyl- β -cyclodextrin mit einer durchschnittlichen Substitutionszahl 14 Heptakis-(2,6-di-0-methyl)- β -cyclodextrin enthalten.
- 3) Einschluß-Komplexe nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß sie in Wasser unlösliche oder nur begrenzt lösliche Vitamine, Steroidhormone, Prostanoide oder Lokalanästhetica als biologisch aktive organische Verbindungen enthalten.
- 4) Einschluß-Komplexe nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß sie als in Wasser unlösliche oder nur begrenzt lösliche Vitamine die fettlöslichen Vitamine A, B, D, E oder K enthalten.
- 5) Einschluß-Komplexe nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß sie als in Wasser unlösliche oder nur begrenzt lösliche Steroidhormone

 $(3\beta,4\beta)-3-[(0-2,6-Di-desoxy-\beta-D-ribo-hexopyranosyl-(1-)4)-2,6$ didesoxy- β -D-ribo-hexapyranosyl- $\langle 1 \rightarrow 4 \rangle$ -2,6-didesoxy- β -D-ribohexapyranosyl)-oxy/-14-hydroxy-card-20(22)-enolid, $(3\beta,5\beta,12\beta)-3-[(0-\beta-D-Glukopyranosyl-(1 \rightarrow 4)-0-3-0-acetyl-2,6$ didesoxy- β -D-ribo-hexopyranosyl- $\langle 1 \rightarrow 4 \rangle$ -0-2,6-didesoxy- β -D-ribohexopyranosyl-(1->4)-2,6-didesoxy-β-D-ribo-hexopyranosyl)-oxy/-.12,14-dihydro-card-20(22)-enolid, (17β)-17-Hydroxy-östr-4-en-3-on, 11,17,21-Trihydroxy-pregn-4-en-3,20-dion, Methylsecodin, Androst-4-en-3,17-dion, (17β)-Östra-1,3,5-(10)-trien-3,17-diol-3-benzoat, 17,21-Dihydroxy-pregn-4-en-3,20-dion-17-acetat, 17,21-Dihydroxy-pregn-4-en-3,20-dion, 17β-Hydroxy-17-methyl-androst-4-en-3-on, Pregn-4-en-3,20-dion, 3β,17α,21-Triacetoxy-pregn-5-en-20-on oder 36,17a,21-Trihydroxy-pregn-5-en-20-on-21-acetat enthalten.

- 6) Einschluß-Komplexe nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß sie als in Wasser unslösliche oder nur begrenzt lösliche Prostanoide PGI₂-äthylester enthalten.
- 7) Einschluß-Komplexe nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß sie als in Wasser unlösliche oder nur begrenzt lösliche Lokalanästhetica 2-(Diäthylamino)-N-(2,6-dimethylphenyl)-acetamid oder 1-Butyl-N-(2,6-dimethyl-phenyl)-2-piperidin-carboxamid enthalten.
- 8) Einschluß-Komplexe nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß sie als in Wasser unslösliche oder nur begrenzt lösliche biologisch aktive organische Verbindung 1-(p-Chlorbenzoyl)-2-methyl-5-methoxy-indol-3-yl-essigsäure enthalten.

- 9) Verfahren zur Herstellung von wasserlüslichen Einschluß-Komplexen von in Wasser unlöslichen oder nur begrenzt löslichen, biologisch aktiven organischen Verbindungen in Form ihrer wässrigen Lösungen, dadurch gekennzeichet, daß man 1 Mol der zu lösenden Verbindung in der wässrigen Lösung von 1 bis 8 Mol eines Dimethyl-β-cyclodextrins mit einem auf die Methylgruppen bezogenen durchschnittlichen Substitutionsgrad 14 löst.
- 10) Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß man Heptakis-(2,6-di-0-methyl)-p-cyclodextrin als Dimethyl-p-cyclodextrin mit Substitutionsgrad 14 verwendet.
- 11) Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß man als in Wasser unlösliche oder nur begrenzt lösliche biologische aktive Verbindungen Vitamine, Steroidhormone, Prostanoide oder Lokalanästhetica verwendet.
- 12) Verfahren nach Anspruch 9, 10 oder 11, dadurch gekennzeichnet, daß man als in Wasser unlösliche oder nur begrenzt lösliche Vitamine die fettlöslichen Vitamine A, B, D, E oder K verwendet.
- 13) Verfahren mach Anspruch 9, 10 oder 11, dadurch gekennzeichnet, daß man als in Wasser unlösliche oder nur begrenzt lösliche Steroidhormone

 $(3\beta,4\beta)-3-/(0-2,6-Di-desoxy-\beta-D-ribo-hexopyranosyl-(1-34)-2,6-didesoxy-\beta-D-ribo-hexapyranosyl-(1-34)-2,6-didesoxy-\beta-D-ribo-hexapyranosyl)-oxy/-14-hydroxy-card-20(22)-enolid,$

 $(3\beta, 5\beta, 12\beta)-3-/(0-\beta-D-Glukopyranosyl-(1 \rightarrow 4)-0-3-0-acetyl-2,6-didesoxy-\beta-D-ribo-hexopyranosyl-(1 \rightarrow 4)-0-2,6-didesoxy-\beta-D-ribo-hexopyranosyl-(1 \rightarrow 4)-2,6-didesoxy-\beta-D-ribo-hexopyranosyl)-oxy/-12,14-dihydro-card-20(22)-enolid,$

 $(17\beta)-17$ -Hydroxy-östr-4-en-5-on,

11,17,21-Trihydroxy-pregn-4-en-3,20-dion,

I ethylsecodin,

Androst-4-en-3, 17-dion,

(17β)-0stra-1, 3,5-(10)-trien-3,17-diol-3-benzoat,

17,21-Dihydroxy-pregn-4-en-3,20-dion-17-acetat,
17,21-Dihydroxy-pregn-4-en-3,20-dion,
17β-Hydroxy-17-methyl-androst-4-en-3-on,
Pregn-4-en-3,20-dion,
3β,17α,21-Triacetoxy-pregn-5-en-20-on oder
3β,17α,21-Trihydroxy-pregn-5-en-20-on-21-acetat
verwendet.

- 14) Verfahren nach Anspruch 9, 10 oder 11, dadurch gekennzeichnet, daß man als in Wasser unlösliche oder nur begrenzt lösliche Prostanoide PGI₂-äthylester verwendet.
- 15) Verfahren nach Anspruch 9, 10 oder 11, dadurch gekennzeichnet, daß man als in Wasser unlösliche oder nur begrenzt lösliche Lokalanästhetica
- 2-(Diäthylamino)-N-(2,6-dimethylphenyl)-acetamid oder 1-Butyl-N-(2,6-dimethyl-phenyl)-2-piperidin-carboxamid verwendet.
- 16) Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß man als in Wasser unlösliche oder nur begrenzt lösliche biologisch aktive Verbindung 1-(p-Chlorbenzoyl)-2-methyl-5-methoxyindol-3-yl-essigsäure verwendet.
- 17) Oral oder parenteral verabreichbare Arzneimittelpräparate, dadurch gekennzeichnet, daß sie als Wirkstoff einen Einschluß-Komplex der Ansprüche 1 bis 8 enthalten.

Wasserlösliche Einschluß-Komplexe von in Wasser nicht oder nur begrenzt löslichen biologisch aktiven organischen Jerbindungen und deren wässrige Lösungen sowie deren Herstellung und diese Verbindungen enthaltende Arzneimittelung und die

Die Erfindung betrifft ein verfahren zur Herstellung von in Wasser unlöslichen oder nur in begrenztem Mass löslichen, biologisch aktiven organischen Verbindungen und gegebenenfalls zur Beeinflussung der Wirkungsdauer von solchen Lösungen.

Ein grosser Teil von biologisch aktiven organischen Verbindungen ist in Wasser nicht oder nur in begrenztem Mass löslich. Durch diesen Umstand wird auch die Verwendung von solchen organischen Verbindungen in Injektionspräparaten unmöglich gemacht. In solchen Fällen, wenn die zu verwendenden biologisch aktiven organischen Verbindungen saure oder basische Gruppen, z.B. Carboxyl-, Sulfonsäure-, primäre, sekundiire oder tertiäre Aminogruppen besitzen, bietet die Möglichkeit von Salzbildungen eine mehr oder minder annehmbare Lösung dieses Problems. Oft treten aber dabei Schwierigkeiten infolge der nicht entsprechend hohen Azidität bzw. Basizität der zur Salzbildung eingesetzten Gruppen oder wegen der ungenügenden Stabilität des in ionische Form gebrachten Moleküls auf. Im ersten Falle zeigt die wässrige Lösung eine von der erwünschten Neutralität abweichende Reaktion, während im letzteren Falle die Lagerbestündigkeit der Lösung stark herabgesetzt wird. Oft wird durch die Salzbildung auch

die Transportgeschwindigkeit des Wirkstoffes in den Geweben nachteilig beeinflusst. Dieser Umstand führt z.B. im Falle von lokalanästhetischen Mitteln zum Ergebnis, dass die gewünschte Wirkung nur durch eine Überdosierung des Wirkstoffes erreicht werden kann, wodurch aber auch die Nebenwirkungen des Wirkstoffes in erhöhtem Mass auftreten können oder die unerwinschte Abwanderung des Wirkstoffes muß mit Hilfe von zusätzlichen Wirkstoffen, etwa von Vasokonstriktoren gehemmt werden, wodurch aber wieder neuere Nebenwirkungen auftreten könne. In vielen Fällen kommen aber solche Methoden überhaupt nicht in Frage, da viele biologisch aktive organische Verbindungen, wie z.B. die meisten Steroide keine zur Salzbildung geeigneten Gruppen besitzen. Bei solchen Verbindungen versucht man die Wasserlöslichkeit des Wirkstoffes dadurch zu erreichen, dass man die Verbindung mit zweibasischen organischen Carbonsäuren verestert und dann die freie Carboxylgruppe auf bekannte Weise in ein Salz überführt. Diese Methode ist aber nur begrenzt anwendbar und kann gegebenenfalls auch den Wirkstoff nachteilig beeinflussen. Wirkstoffe, bei welchen die obigen Methoden nicht anwendbar sind, wie z.B. die fettlöslichen Vitamine, können in der Form von öligen Lösungen parenteral verabreicht werden.

Es ist aber allgemein bekannt, dass durch ölige Injektionen schädliche Gewebeveränderungen an der Verabreichungsstelle verursacht werden können.

Auf Grund der obigen Ausführungen kann man mit Recht feststellen, dass zur Herstellung von wässrigen Lösungen von in Wasser unlöslichen oder nur begrenzt löslichen, biologisch aktiven organischen Verbindungen bisher keine allgemein anwendbare, befriedigende Methode bekannt ist.

Auf dem Gebiet der Therapie besteht seit langer Zeit die Bestrebung, fettlösliche Wirkstoffe in der Form von den Wirkstoff in wässriger Lösung enthaltenden Präparaten verabreichen zu können. Der Wirkstoff wird nämlich sich wässrigen Lösungen besser resorbiert, und es können auf diese Weise auch die durch den öligen Träger verursachten Nebenwirkungen vermieden werden.

Es wurde nun in überraschender Weise gefunden, dass therapeutisch vorteilhaft verwendbare,
stabile wässrige Lösungen von in Wasser unlöslichen
oder nur in begrenztem Mass löslichen, biologisch
aktiven organischen Verbindungen hergestellt werden
können, wenn man die erwühnten in Wasser unlöslichen
bzw. schwer löslichen organischen Verbindungen in

wässrigen Lösungen von 1 bis 8 Mol (auf 1 Mol der zu lösenden Verbindung berechnet) Dimethyl-ß-cyclodextrin mit einem durchschnittlichen Substitutionsgrad 14 löst.

Es ist allgemein bekannt, dass wenn man in einer wässrigen Cyclodextrinlösung eine weitere Substanz löst, deren Loleküle mindestens teilweise apolar sind und der Durchmesser dieser Moleküle oder einer ihrer Seitenketten nicht grösser als der Durchmesser der Hohlräume der Cyclodextrin-Moleküle ist, so zeigen diese schlecht hydratisierbaren apolaren Molekülteile die Bestrebung, sich in die ebenfalls apolaren Cyclodextrin-Hohlräure einzufügen.

Es ist eine charakteristische Eigenschaft der auf diese Weise entstandenen Einschluss-Komplexe, dass sie in Wasser wesentlich schlechter löslich sind, als das freie Cyclodextrin selbst [Chem. Berichte, 90, 2561-2573 (1957)]. Da aber auch das β-Cyclodextrin selbst bei Raumtemperatur eine Wasser-löslichkeit von nur 1,8 g/100 ml zeigt, scheiden sich die auf obige Weise gebildeten Einschluss-Komplexe aus den wüssrigen Lösungen von β-Cyclodextrin meistens in kristalliner Form aus. Somit können derartige, mit β-Cyclodextrin gebildete Einschluss-Komplexe plexe wegen ihrer schlechten Wasserlöslichkeit in

Injektionspräparaten nicht verwendet werden. Dabei verursachen zwar die Cyclodextrine bei oraler Anwendung keine toxischen Erscheinungen, doch können bei ihrer intraperitonealen, intravenösen, intramuscularen oder subcutanen Verabreichung in gewissen Fällen Nieren-Schädigungen auftreten [Amer. J. Pathol., 83, 367 (1976)].

Die vorliegende Erfindung basiert auf der Erkenntnis, dass die partiell methylierten ß-Cyclodextrine beinahe um zwei Grössenordnungen grössere Wasserlöslichkeit zeigen, als das unsubstituierte ß-Cyclodextrin, wobei diese partiell methylierten Derivate des ß-Cyclodextrins ebenfalls zur Eildung von kristallinen Einschluss-Komplexen fähig sind [vgl. Carbohydrate Research, 76, 59 (1979)], und zwar nach ähnlichen Prinzipien, wie dies bei dem unsubstituierten ß-Cyclodextrin erfolgt [Advances in Catalysis, 23, 209 (1973)].

Unter "partiell methylierten \$-Cyclodextrinen" sind solche methylierte Derivate des \$-Cyclodextrins zu verstehen, in welchen jedes Cyclodextrin-Molekül durch 1 bis 20 Methylgruppen substituiert ist. In der Reihe dieser partiell methylierten Derivate sind besonders das je Cyclodextrin-Molekül durchschnitt-lich 7 Methylgruppen enthaltende Monomethylderivat

und das durchschnittlich 14 Methylgruppen enthaltende Dimethylderivat hervorzuheben. Im allgemeinen
können diese partiell methylierten Derivate des 6-Cyclodextrins jeweils durch den auf die Methylgruppen bezogenen Substitutionsgrad gekennzeichnet werden.

Es wurden schon zahlreiche Verfahren zur Herstellung von methylierten Derivaten der Cyclodextrine beschrieben. Zur vollstündigen Methylierung des α-Cyclodextrins wurde die Muskat'sche Methylierungsmethode (in flüssigem Ammoniak, in Gegenwart von Kaliummetall) angewendet, wodurch in einem einzigen Schritt kristallines Hexakis-(2,3,6-tri-0-methyl)--α-cyclodextrin erhalten wurde [Berichte, 69, 2041 (1936)]. Im Falle von ß-Cyclodextrin konnte nach dem-selben Verfahren nur nach 18-facher Wiederholung das vollständig methylierte, 21 Methylgruppen enthaltende Derivat erhalten werden. Nach einer speziellen Form des Kuhn'schen Methylierungsverfahrens (mit Methyljodid in Dimethylformamid, in Gegenwart yon Bariumoxyd) konnten sowohl das α- als auch das B-Cyclodextrin vollstündig methyliert werden [Tetrahedron, 24, 803 (1968)]. In dem-selben Referat wurde auch eine andere Variante des Kuhn'schen Methylierungsverfahrens (mit Dimethylsulfat im 1:1 Gemisch

von Dimethylformamid und Dimethylsulfoxyd, in Gegenwart von Bariumoxyd und Bariumhydroxyd) beschrieben; nach dieser Methode wurden kristallines Hexakis-(2,6-di-0-methyl)-α-cyclodextrin und Heptakis-(2,6-di-0-methyl)-β-cyclodextrin hergestellt.

Zur Herstellung von den Monomethylderivaten der Cyclodextrine und zwar von Heptakis-(3-0-methyl)
-B-cyclodextrin und Heptakis-(2-0-methyl)-B-cyclodextrin wurden verschiedene mehrstufige komplette Synthesen beschrieben [Bioorg. Chem., 5, 121 (1976); Stärke, 28,226 (1976); Stärke, 26, 111 (1974)], deren gemeinsamer charakteristischer Zug darin liegt, dass die nicht zu methylierenden Kohlenstoffatome durch geeignete Substitutionen geschützt wurden, und/oder die Methylierungsreaktion in organischen Lösungsmitteln, in Gegenwart von Fariumsalzen, selektiv durchgeführt wurde. Nach der Methylierung konnten dann die gewünschten Fonomethylderivate erst nach der Freisetzung der während der Methylierung geschützten Kohlenstoffatomen gewonnen werden.

Die oben beschriebenen Verfahren dienten dem Zweck, die Substituierbarkeit und die Höglichkeiten der selektiven partiellen Substituierung von Cyclodextrinen als speziellen (cyclischen) Oligosacchariden zu untersuchen. Die Durchführung einer selektiven

Substitution bietet meistens (und auch im vorliegenden Fall) wesentlich schwierigere Probleme, als die Herstellung von persubstituierten Produkten.

Bei der Herstellung sämtlicher aus der Literatur bekannten partiell methylierten bzw. permethylierten Cyclodextrinderivate wurde die Methylierung in organischen Lösungsmitteln ausgeführt, wobei in sämtlichen Fällen, wo es beabsichtigt war, die Substitution der Hydroxylgruppe in der 3-Stellung zu vermeiden, wurden zur Gewährleistung der Selektivität der Substitution Bariumsalze in organischen Lösungsmitteln eingesetzt.

Die gezielte Herstellung von Trimethylderivaten oder von verschiedenen Monomethylderivaten ist zur Zeit nur von theoretischem Interesse, da bezüglich ihrer komplexbildenden Eigenschaften bisher nur das Heptakis-(2,6-di-0-methyl)-ß-cyclodextrin untersucht wurde [Carbohydrate Research, 76, 59 (1979)].

Zu den im erfindungsgemässen Verfahren zum Lösen der biologisch aktiven organischen Verbindungen verwendbaren Bimethyl-G-cyclodextrinen mit einem durchschnittlichen Substitutionsgrad 14 gehören sämtliche solche methylierte G-Cyclodextrine, die an den einzelnen Cyclodextrinringen durchschnittlich

14 Methylgruppen tragen. Dieses Produkt kann auch eine homogene, aus lauter gleichen Molekülen bestehende Substanz sein, welche durch die Fraktionierung des in der Methylierungsreaktion gewonnenen Produktgemisches erhalten werden kann, kann aber auch ein aus in verschiedenen Graden methylierten Cyclodextrinringen bestehendes Mischprodukt sein; es ist nur erforderlich, dass die durchschnittliche Substitutionszahl der Cyclodextrinringe 14 betragen soll. Die Methylgruppen können in gleichmässiger Verteilung stehen, so dass je zwei Methylgruppen an jeder Glukose-Einheit vorhanden sind, sie können aber auch . ungleichmässig verteilt sein, so dass die Cyclodextrinringe aus unsubstituierten und aus mit 1, 2 oder 3 Methylgruppen substituierten Glukose-Einheiten aufgebaut sind, wobei aber der durchschnittliche Methylierungsgrad der einzelnen, aus 7 Glukose-Einheiten aufgebauten Cyclodextrinringe 14 beträgt. In dieser Beschreibung bezieht sich die Bezeichnung "Dimethyl-cyclodextrin" (ohne nähere Angabe der chemischen Struktur) auf Dimethyl-ß-cyclodextrine mit einem durchschnittlichen Substitutionsgrad 14 und mit beliebiger, meistens ungleichmässiger Verteilung der Methylgruppen. Solche Dimethyl-ß-cyclodextrine können durch die direkte Methylierung von B-Cyclodextrin hergestellt werden.

Nach dem erfindungsgemässen Verfahren können die verschiedensten in Wasser unlöslichen oder nur begrenzt löslichen, biologisch aktiven organischen Verbindungen in wissrige Lösungen gebracht werden. So können wässrige Lösungen von verschiedenen fettlöslichen Vitaminen, z.B. von A-, D-, E- und K-Vitaminen, von verschiedenen Steroiden, z. B. von Hydrocortison oder 1,2-Dehydrocortison, von als Basen wasserunlöslichen lokalanästhetischen Wirkstoffen, z. B. von 2-(Dimethylamino-methyl)-1-äthyl-cyclohexanon-benzoat oder 2-(Diuthylamino)-N-(2,6-dimethylphenyl)-acetamid, von wasserunlöslichen Prostanoiden, z. B. von PGF20 oder von Prostacyclin, von verschiedenen anderen Pharmakonen, wie z. B. von Indomethacin [1-(p-Chlorbenzoyl)-2-methyl-5-methoxy-indol-_3_vl-essigsäure] oder von Acetylsalicylsäure hergestellt werden. Der Kreis der Wirkstoffe, welche nach dem erfindungsgemässen Verfahren in wiissrige Lösungen gebracht werden können, ist in chemischer Hinsicht nur insofern beschränkt, dass die zu diesem Zweck geeigneten organischen Verbindungen einen solchen apolaren Molekülteil besitzen müssen, dessen Ausmass den Einbau in den Hohlraum des Cyclodextrinringes ermöglicht.

Die in Wasser unlöslichen oder nur begrenzt löslichen, biologisch aktiven organischen Verbindungen werden nach dem erfindungsgemüssen Verfahren zweckmässig derart in wässrige Lösungen gebracht, dass man zuerst das Dimethyl-cyclodextrin in Wasser von geeigneter Qualität oder z. B. in physiologischer Kochsalz- oder Glukoselösung löst, die Lösung gewünschtenfalls (z. B. wenn der zu lösende organische Wirkstoff empfindlich gegen Oxydation ist) von Sauerstoff befreit und dann in dieser Lösung den zu lösenden Wirkstoff unter Rühren auflöst. Das Auflösen dieser Stoffe kann bei Raumtemperatur oder bei mässig erhöhter Temperatur, z. B. bei 35-50°C erfolgen. Höhere Temperaturen sind im allgemeinen nicht vorteilhaft, weil unter solchen Umständen die Löslichkeit nicht mehr befriedigend ist. Die Löslichkeit des Dimethyl-cyclodextrins und seiner Komplexe nimmt bei der Steigerung der Temperatur ab; diese Verminderung der Löslichkeit ist aber reversibel, so dass der aus der erwärmten Lösung sich ausscheidende kristalline Niederschlag bei dem Abküheln der Lösung wieder gelöst wird. Diese Erscheinung kann bei der Wärmesterilisierung der Präparate oft beobachtet werden, hat aber infolge der erwähnten Reversibilität keine schädlichen Wirkungen.

Die nach dem erfindungsgemässen Verfahren hergestellten wässrigen Lösungen der biologisch aktiven organischen Verbindungen können nach an sich bekannten Methoden zu enteral, parenteral oder lokal Anwendbaren Arzneimittelpräparaten formuliert werden. Zur oralen Verabreichung können z.B. Löffel-Arzneimittel oder Tropfen, zur parenteralen Verabreichung. Infusions- und Injektionslösungen, zur lokalen Anwendung Umschläge, Abwaschflüssigkeiten und Heilpackungen zubereitet werden. Bei der Herstellung von solchen Arzneimittelpräparaten können die üblichen Füllstoffe. Verdünnungsmittel, Stabilisatoren, gegebenenfalls auch geschmack- und geruchverbessernden Zusätze, sowie übliche Mittel zur Einstellung des pH-Wertes oder des osmotischen Druckes der Lösungen verwendet werden.

Es wurde fernerüberraschender Weise gefunden,
dass durch die Herstellung der erfindungsgemässen wässrigen Lösungen in gewissen Fällen auch die
Wirkungsdauer der gelösten Wirkstoffe verlängert
wird. Das ist besonders bei lokalanästhetischen Mitteln
von erheblicher Bedeutung, da infolge der auf diese
Weise verlängerten Wirkungsdauer des Wirkstoffes die
Anwendung des viele Nebenwirkungen hervorrufenden Adrenalins vermieden werden kann.

Die näheren Einzelheiten der Erfindung werden durch die nachstehenden Beispiele veranschaulicht; es ist aber zu bemerken, dass die Erfindung in keiner Weise auf den Inhalt dieser Beispiele beschränkt ist.

Beispiel 1:

10 g Heptakis-(2,6-di-0-methyl)-B-cyclodextrin werden in 100 ml Wasser bei 22 °C gelöst und dann wird bei der-selben Temperatur, unter Rühren, die zu lösende, in Wasser nicht oder nur beschränkt lösliche, biologisch aktive organische Verbindung allmählich, in kleinen Portionen zugegeben. Die allmähliche Zugabe der zu lösenden organischen Verbindung wird so lange fortgesetzt, bis die jeweils zugesetzten Portionen immer gelöst werden; nach der Zugabe der letzten, sich nicht mehr vollatändig auflösenden Portion wird das Rühren des Gemisches noch 2 Stunden fortgesetzt, dann wird die Lösung filtriert und die Menge der gelösten biologisch aktiven Verbindung wird spektrophotometrisch bestimmt. Zur Kontrolle wird dieser Lösungsversuch unter den selben Bedingungen, aber mit reinem Wasser, ohne Zugale von Cyclodextrin wiederholt. Die in den beiden Fällen gemessenen Löslichkeitswerte (in g/100 ml), sowie die für die Erhöhung der Löslichkeit charakteristischen Quotienten

 $\rm S_2/S_1$ für die verschiedenen biologisch aktiven Verbindungen sind in der nachstehenden Tabelle I zusammengefasst.

Tabelle I

•	Lösl	ichkeit	
Verbindung	in Wasser	in Dimethyl-	CD-
•		Lösung	s ₂ /s ₁
	g/100 ml	g/100 ml	
•	s ₁	s ₂	
Indomethacin	0,0078	0,159	20,4
Digoxin	0,0272	2,22	81,6
Lanatosid C	0,018	0,908	50,4
Nortestosteron	0,031	1,47	47,4
Hydrocortison	0,036	2,3	56,4
Methylsecodion	0,0057	0,45	79,0
Androst-4-en-		•	
-3,17-dion	0,0082	1,3	158,5
Östron	0,003	0,475	158,33
Reichstein-S-			
-17-acetat	0,0111	1,9	171,17
Methyltestosteron	0,0071	1,37	193
Reichstein-S	0,006	1,7	283
Progesteron	0,0016	1,30	812,5
Prolec	0,001	1,025	1025
Monac	0,0008	0,91	1137,5
l6α-Methyl-Reich stein-S	0,0011	1,37	1245,5

Prolac: 38,17a,21-Triacetoxy-5-pregnen-20-on

Monac: 38,17α,21-Trihydroxy-5-pregnen-20-on-21-acetat
Beispiel 2:

In 10 destilliertem Wasser, dessen Temperatur mit einem Thermostat bei 40 °C gehalten wird, werden in Stickstoffatmosphäre, vom Licht geschützt, 20 mg Dimethyl-cyclodextrin unter ständigem Rühren gelöst. Es wird in einigen Minuten eine klare Lösung erhalten. Dann wird 1,0 mg kristallines Vitamin-D₃ langsam, in zwei Portionen zugegeben; in 3,5 bis 4 Sturden wird das Vitamin vollständig aufgelöst.

Separat wird eine äthanolische Vitamin-D₃-Lösung von gleicher Konzentration hergestellt und beide Lösungen werden mit einem Lichtstrahl von 400 bis
600 nm Wellenlänge und 2900 Lux Lichtstärke 34 Tage
lang bestrahlt. Während dieser Lichtbehandlung
wird der Vitamin-D₃-Gehalt von beiden Lösungen in gewissen Zeitabständen spektrophotometrisch bestimmt. Die
erhaltenen Ergebnisse sind in der nachstehenden Tabelle II zusammengefasst:

Tabelle II

Zeit Vitamin-D3-Gehalt, (Tage) in 96%igem üthanol		% der Anfangskonzentration in 0,2%iger Dimethylcyclo- dextrinlösung	
0	100 %	100 %	
2	77,2 %	97,0 %	

6	65,3 %	85,3 %
9 .	45,8 %	83,5 %
11	33,2 %	80,2 %
15	10,0 %	75 , 0 %
20	0,0 %	48,8 %
34	0,0 %	48,3 %

Aus den Daten der obigen Tabelle ist es ersichtlich, dass die Lichtbeständigkeit von Vitamin
-D3 durch die Komplexbildung mit Dimethyl-cyclodextrin erheblich erhöht wird.

Beispiel 3:

In 10 ml destilliertem Wasser werden unter den im Beispiel 2 angegebenen Bedingungen 2,0 g Dimethyl-cyclodextrin gelöst, dann werden in dieser Lösung in fünf Portioner insgesamt 100 mg kristallines Vitamin-D3 gelöst, und zwar so, dass jede weitere Portion des Vitamins nur nach der vollständigen Auflösung der vorherigen Portion zugegeben wird.

Es wird auf diese Weise eine klare Lösung erhalten.

Die Lösung wird in diffusem Licht 6 Monate gelagert;

Eine spektrophotometrische Bestimmung des Vitamin-D3-Gehalts zeigt, dass nach der sechsmonatigen Lagerung noch immer 85 % des ursprünglichen Vitamin-D3-Gehalts in der Lösung anwesend ist.

Fine auf obige Weise hergestellte Vitamin-D3-

Lösung wird im Vakuum, bei 40 °C zur Trockne eingedampft. Es wird ein filmartiger Rückstand erhalten; dieser Rückstand wird gepulvert und auf diese
Weise wird ein stabiles pulverförmiges Vitamin-D₃-Präparat erhalten, welches in 5-500 ml Wasser zu
einer klaren Lösung gelöst werden kann.

Beispiel 4:

2,0 g Heptakis-(2,6-di-0-methyl)-ß-cyclodextrin gelöst und in dieser Lösung werden auf die im Beispiel 3 angegebenen Weise 100 mg kristallines Vitamin-D₃ aufgelöst. Diese Lösung wird dann auf 60 °C erwärmt und der in kristalliner Form ausgeschiedene Einschluss-Komplex von Vitamin-D₃ mit Dimethyl-cyclodextrin wird bei dieser Temperatur abfültriert und warm getrockne.

Mit einem Röntgen-Difiraktometer wurden die Diagramme des erhaltenen kristallinen Produkts, so-wie auch jene des Heptakis-(2,6-di-0-methyl)-ß-cyclodextrins aufgenommen; die erhaltenen charakteristischen Reflexionsbande sind in der nachstehenden Tabelle III angegeben, wo zum Vergleich auch die entsprechenden Reflexionsbande von Vitamin-D3 angegeben sind.

Tabelle III

Charakteristische Reflexionsbande $(2 \theta^0 \text{ Winkelwerte})$

Heptakis-(2,6-di-0- -methyl-ß-cyclodextrin	Einschluss- Komplex	Vitamin-D ₃
8,4	8,7	5,1
10,0	9,4	5,3
10,2	10,1	6,7
12,3	10,3	8,8
13,5	12,4	13,9
17,1	16,9	15,7
18,4	19,1	15,9
19,3	19,6	16,4
20,7	20,2	18,3
29,8	20,4 und 21,4	22,0

Beispiel 5:

253,2 mg (0,194 mNol) Heptakis-(2,6-di-0-me-thyl)-ß-cyclodextrin werden in 1,8 ml Wasser gelöst und dann wird bei 30 °C, unter Rühren, die Lösung von 28 mg (0,076 mNol) PGI₂-äthylester in 2 ml Diäthyläther zugesetzt. Die Lösung wurd auf Raumtemperatur abkühlen gelassen und dann auf übliche Weise lyophilisiert. Es werden 254 mg amorphes weisses Pulver erhalten, welches in Wasser fünfmal besser löslich ist, als der mit ß-Cyclodextrin hergestellte Einschluss-Komplex von PGI₂-äthylester. Dieses Pulver wird in

Ampullen abgefüllt und die zugeschmolzenen Ampullen werden an einem kühlen Ort gelagert. Nach zwei Monaten wurde der Wirkstoffgehalt des Prüparats bestimmt und es wurde gefunden, dass der Wirkstoffverlust nach 2 Monaten weniger als 5 % war. Die Bestimmung des Wirkstoffgehalts des Komplexes erfolgt auf die folgende Weise: das Prüparat wird in einer Tris-Pufferlösung gelöst, die Lösung wird mit Natriumchlorid gesättigt und anschliessend mit Diäthyläther extrahiert. Der sich im Extrakt befindliche PGI2-äthylexter wird silyliert und die Menge des Silylderivats geschromatographisch gemessen. Der PGI2-äthylestergehalt des Komplexes beträgt 10,0 %.

Die Aggregation von Thrombocyten hemmende Konzentration des Komplexes ist im Born'schen Test 300 ng/ml. Diese Aktivität wird nach der Auflösung des Komplexes 2 Stunden lang unverändert beibehalten, woraus folgt, dass der PGI₂-äthylester durch die Komplexbildung in erheblichem Mass stabilisert wird. Es ist auch ein bedeutsamer Vorteil dieses Produkts, dass die bei der parenteralen Anwendung festgestellte nierenschädigende Wirkung von B-Cyclodextrin bei dem hier zur Komplexbildung verwendeten Heptakis--/2,6-di-0-methyl/-B-cyclodextrin nicht vorhanden ist.

Beispiel 6:

0,3 g Dimethyl-cyclodextrin werden in 2 ml

physiologischer Kochsalzlösung gelöst, die Temperatur der Lösung wird mittels eines Thermostats auf 35 °C eingestellt 5,2 mg in Portionen zugesetztes Vitamin-K3 werden darin gelöst. Die auf diese Weise erhaltene Lösung wird durch Filtrieren sterilisiert und in Ampullen abgefüllt. Dieses Produkt kann als Injektionspräparat verwendet werden.

Beispiel 7:

0,05 g Heptakis-(2,6-di-O-methyl)-ß-cyclo-dextrin werden in 1 ml destilliertem Wasser gelöst und dann wird die Lösung in Stickstoffatmosphäre, vom Licht geschützt mit 1,72 mg Retinolacetat (Vita-min-A-acetat), 25 /ug Vitamin D₃ und 4,0 mg dl-α--Tokopherolacetat (Vitamin-E-acetat) versetzt. Es wird eine klare Lösung erhalten, welche als oral verabreichbare Tropfen verwendet werden kann.

Aus der obigen Lösung kann durch die Zugabe von 2 mg Aneurin-chlorid-hydrochlorid (Vitamin-B₁-salz), 0,8 mg Riboflavin-5'-phosphorsäureester-nat-riumsalz (Vitamin-B₂-salz), 30 mg Nikotinamid (Vitamin-B₃), 4 mg Pyridoxin-hydrochlorid (Vitamin-B₆-salz), 100 mg Vitamin-C und 10 mg Pantheol (reduzier-te, alkoholische Form von Vitamin B₅) ein oral verabreichbares Polyvitaminpräparat hergestellt werden. Die Tagesdose dieses Präparats ist 3-mal 5 bis 10 Tropfen.

Beispiel 6:

2 ml einer 10 Gew.%-igen wässrigen Lösung von Heptakis-(2,6-di-0-methyl)-ß-cyclodextrin werden in einem Stickstoffstrom, vom Licht geschützt, von Sauerstoff befreit und denn werden unter Rühren, in mehreren Portionen insgesamt 34,4 mg Retinolacetat darin gelöst. Das Auflösen des Retinolacetats nimmt bei Raumtemperatur etwa 3 Stunden in Anspruch. Die erhaltene Lösung wird dann in Stickstoffatmosphäre mit Wärme sterilisiert; der bei dem Aufwärmen sich ausscheidende Einschlusskomplex löst sich wieder bei dem Abkühlen. Die auf diese Weise erhaltene Lösung kann als Injektionspräparat oder als orale Tropfen verwendet werden; die Tagesdose beträgt 15 bis 30 Tropfen.

Beispiel 9:

In 2 ml einer 10 Gew.%-igen wüssrigen Lösung von Heptakis-(2,6-di-C-nethyl)-ß-cyclodextrin in der im Beispiel 8 beschriebenen Weise, bei 30 °C 3,44 g Retinolacetat und anschliessend 5,0 mg dl-a-Tokopherolacetat unter Rühren gelöst. Die erhaltene Lösung wird im Vakuum, bei 35 °C zur Trockne eingedampft, der filmartige Rückstand wird gepulvert und in Ampullen abgefüllt. Das auf diese Weise erhaltene trockene Prüparat kann in 10 ml von beliebigen

üblichen Infusionslösungen schnell und klar gelöst werden. Das Produkt kann für Infusionen verwendet werden.

Beispiel 10:

15 g Heptakis-(2,6-di-0-methyl)-ß-cyclo-dextrin werden in 100 destilliertem Wasser bei 25 °C gelöst und die Lösung wird mit 1,5 g gepulverten Lidocain-Base [2-(Diäthylamino)-N-(2,6-dimethyl-phenyl)-acetamid] versetzt. Es wird eine klare, stabile Lösung erhalten, welche unbeschränkt ohne Veränderung gelagert werden kann. Der gelöste Wirkstoff scheidet sich auch beim Verdünnen mit Wasser nicht aus.

Beispiel 11:

15 g Heptakis-(2,6-di-0-methyl)-6-cyclodext-rin werden in 95 ml physiologischer Kochsalzlösung gelöst. Die Temperatur der Lösung wird mittels eines Thermostats auf 30 °C eingestellt und es wird unter Rühren 1,0 g Lidocain-Base zugegeben. Nach dem Auflösen des Lidocains wird das Volumen der Lösung mit physiologischer Kochsalzlösung auf 100 ml ergänzt (Prüparat A).

Separat wird aus Lidocain-hydrochlorid mit physiologischer Kochsalzlösung eine in 100 ml 1,0 g Lidocain-Base in der Form von Hydrochloridsalz enthaltende Lösung hergestellt (Präparat B).

Aus beiden Prüparaten A und B werden dann durch Verdünnung mit physiologischer Kochsalzlösung 0,25, 0,50 und 0,75 Gew. 2-ige Testlösungen hergestellt.

Mit den auf obige Weise hergestellten Testlösungen wurden die folgenden Untersuchungen durchgeführt:

In das eine Auge von Hasen wurde die aus dem Präparat A und in das andere Auge des selben Tieres die aus dem Präparat B hergestellte Testlösung eingetropft. Beide Augen wurden dann mit einer Mildschweinborste gereizt und das Auftreten der Cornealreflexe wurde in Abhängigkeit von der Zeit registriert. Die bei 10 Tieren gemessenen Reflexzahlen wurden in Abhängigkeit von der Zeit in zweifacher logarithmischer Zusammenhang graphisch dargestellt; aus den sich auf diese Weise ergebenden geraden Linien wurden die zum Auslösen von 50 Seigen Reflexen gehörenden Zeitwerte als charakteristisch betrachtet. Diese "teff 50"-Werte wurden in der nachstehenden Tabelle IV zusammengefasst.

Tabelle IV

Konzentration	Prüparat B	Priiparat A	Aenderung
. %	teff 50-	Verte	von teff 50
	Min.(') Sek.	(**)	Ş

0,25	4*54**	6*36**	+ 34,69
0,50	11'45"	18'40''	+ 58,85
0,75	12'10''	24'40''	+102,73
	•		

Aus den Daten der obigen Tabelle ist es klar ersichtlich, dass die nach dem erfindungsgemässen Verfahren hergestellten Lösungen bei dem selben Wirkstoffgehalt eine wesentlich längere Wirkungsdauer zeigen.

Beispiel 12:

Die nach Beispiel 11 hergestellten Prüparate
A und B wurden auch an Meerscheinchen mit 350 bis 400 g
Einzelgewicht in intracutanem Haut-Test geprüft. Einen
Tag vor den Versuchen wurden die Tiere am Rücken depiliert. Am Rücken der einzelnen Tiere wurden rechts und
links von der Wirbelsäule, vorne und hinten je 0,1 ml
der nach Beispiel 11 hergestellten Verdümnungen der
Präparate A bzw. B intracutan injiziert und dann wurde die Haut der Tiere durch standarde Nadelstiche gereizt. Die normale Schmerzreaktion der Tiere (Kreischen)
wurde durch ausserhalb der sich an den Injektionstellen subcutan ausbildenden Lidocain-Depots gemachte Stiche
kontrolliert. Es wurden die Zeiten registriert, bei welchen die Tiere auf die in den Bereichen der Injektionen
gemachten Stiche keine Schmerzreaktion zeigten.

Die Ergebnisse wurden ebenfalls in zweifach logarithmischem Maßstab graphisch dargestellt und es wurden die zur 50 %-iger Reflexion gehörenden Zeitwerte ermittelt. Diese sind in der nachstehenden Tabelle V zusammengefasst.

Tabelle V

Konzent-	Präparat B	Präparat A.	. Aenderung von
ration %	^t eff 50	-Werte	teff 50
	Min. (*)	Sek.('')	%
0,50	19'55''	31,00,,	+55,64
0,75	28'10''	46*45**	+65,97
1,00	38,00,,	60,00,,	+57,89

Die Daten der obigen Tabelle zeigen klar di Verlängerung der Wirkungsdauer bei den erfindungsgemässen Präparaten.

Beispiel 13:

Die nach Beispiel 11 hergestellten Präparate

A und B wurden auch in Fällen von Leitungs-Anästhesie
an Ratten geprüft. Den Tieren wurden in 1 cm Entfernung von der Schwanzwurzel, neben den rechts- bzw.

linksseiteigen Nervenstümmen je 0,15 ml Lösung injiziert.

Die Tiere wurden mit elektrischem Strom (Spannung: 90 V,
Frequenz: 100 Hz) gereizt; sie haben den auftretenden

Schmerz durch ein energisches Wegreissen des Schwanzes und durch Kreischen angezeigt. Die gemessenen Anästhesie-Zeitdauer sind in der nachstehenden Tabelle VI zusemmengefasst.

<u>Tabelle VI</u>

Konzent- ration	Präparat B Zeitdauer d Minu	Präparat A er Anüsthesie ten	Verlängerung der Anästhesie %
0,50	. 76	146	+ 92,10
0,75	117	215	+ 83,76
1,00	222	464	+109,0

Die Daten der obigen Tabelle zeigen, dass die nach dem erfindungsgemässen Verfahren hergestellten Lösungen bei den selben Wirkstoffdosen um 90 bis 100 % längere Wirkung haben.

Beispiel 14:

9 g Dimethyl-cyclodextrin werden in 60 ml destilliertem Wasser gelöst und es werden 0,33 g Bupiva-cain-Base [l-Butyl-N-(2,6-dimethyl-phenyl)-2-piperidin-carboxamid] zugesetzt. Es wird eine stabile, klare Lösung erhalten, aus welcher Injektionslösungen hergestellt werden können.

Beispiel 15:

Es wird auf die im Beispiel 14 beschriebene

Weise eine 150 mg/ml Dimethyl-cyclodextrin und 4,5 mg/ml Bupivacain-Base enthaltene Injektionslösung hergestellt und sterilisiert (Prüparat C).

Freiwilligen Versuchspersonen wurden am Unterarm 0,2 ml der zu untersuchenden Lösung subcutan injiziert, wobei die Versuchspersonen in vier Gruppen eingeteilt wurden und eine Gruppe mit dem Präparat C, die zweite Gruppe mit einer handelsüblichen Bupivacain--hydrochlorid Injektionslösung, die dritte Gruppe mit einer 2 %-igen Lidocain-hydrochlorid Injektionslösung und die vierte Gruppe mit steriler physiologischer Kochsalzlösung behandelt wurde. Während 270 Minuten nach der Verabreichung der Injektion wurde in jeden 30 Minuten die Schmerzempfindung durch Nadelstiche untersucht. Während dieser Zeit wurde bei den mit dem Präparat C behandelten Personen in 66 % der Fälle keine Schmerzempfindung festgestellt; diese Zahl war bei den mit physiologischer Kochsalzlösung behandelten Personen 20 %, bei den mit Bupivacain-hydrochlorid bzw. Lidecain--hydrochlorid behandelten Personen gleichermassen 38 %.

Beispiel 16:

In 2 ml einer 10 Gew. 2-igen Lösung von Heptakis-(2,6-di-0-methyl)-ß-cyclodextrin werden 30 mg Hydrocortison gelöst. Die Lösung wird sterilisiert und kann als Injektionspräparat verwendet werden.

Beispiel 17:

dextrin werden in 1 ml destilliertem Wasser gelöst, dann werden zu der erhaltenen Lösung bei 30 °C, langsam, portionsweise 25 mg Prednisolon zugesetzt und darin aufgelöst. Die auf diese Weise erhaltene wässrige Lösung des Einschluss-Komplexes wird dann in inerter Gasatmosphäre durch Erwärmen sterilisiert. Die erhaltene stabile sterile Lösung kann als Injektionspräparat verwendet werden.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.