Chapter 4 part 3

Discrete Random Variables

Jingchen (Monika) Hu

Vassar College

MATH 241

Outline

- Poisson distribution
- Quantum Geometric distribution and Negative Binomial distribution

Count the number of ...

In beer brewing, cultures of yeast are kept alive in jars of fluid before being put into the mash.

- It's critical to control the amount of yeast used.
- Number of yeast cells in a fluid sample can be seen under a microscopes.
- Yeast cells are constantly multiplying and dividing.
- A famous statistician, Wiliam Sealy Gosset (aka "Student"), who worked for the Guinness Brewing Compnay in early 1900's, modeled the counts of yeast cells using the *Poisson distribution*.

Count the number of ...

In beer brewing, cultures of yeast are kept alive in jars of fluid before being put into the mash.

- It's critical to control the amount of yeast used.
- Number of yeast cells in a fluid sample can be seen under a microscopes.
- Yeast cells are constantly multiplying and dividing.
- A famous statistician, Wiliam Sealy Gosset (aka "Student"), who worked for the Guinness Brewing Compnay in early 1900's, modeled the counts of yeast cells using the *Poisson distribution*.

The Poisson distribution was used in 1898 to count the number of soldiers in the Prussian Army who died accidentally from horse kicks

Definition

$$X \sim P(\lambda) \iff p(k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k = 0, 1, 2, \dots$$

Definition

Denote random variable X that takes value in $\{0,1,2,\ldots\}$ as having a Poisson distribution with parameter λ if its pmf is

$$X \sim P(\lambda) \iff p(k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k = 0, 1, 2, \dots$$

 Formulated by French mathematician Siméon Denis Poisson

Definition

$$X \sim P(\lambda) \iff p(k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k = 0, 1, 2, \dots$$

- Formulated by French mathematician
 Siméon Denis Poisson
- Usually is used to model "the number of xxx occur". Hence lower bound is 0, no upper bound.

Definition

$$X \sim P(\lambda) \iff p(k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k = 0, 1, 2, \dots$$

- Formulated by French mathematician
 Siméon Denis Poisson
- Usually is used to model "the number of xxx occur". Hence lower bound is 0, no upper bound.
- Examples
 - ► Number of rainy days this year

Definition

$$X \sim P(\lambda) \iff p(k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k = 0, 1, 2, \dots$$

- Formulated by French mathematician
 Siméon Denis Poisson
- Usually is used to model "the number of xxx occur". Hence lower bound is 0, no upper bound.
- Examples
 - Number of rainy days this year
 - ▶ Number of mis-placed books in the Main library

Definition

$$X \sim P(\lambda) \iff p(k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k = 0, 1, 2, \dots$$

- Formulated by French mathematician
 Siméon Denis Poisson
- Usually is used to model "the number of xxx occur". Hence lower bound is 0, no upper bound.
- Examples
 - Number of rainy days this year
 - ▶ Number of mis-placed books in the Main library
 - Number of roses you will receive on the next Valentines Day

Definition

$$X \sim P(\lambda) \iff p(k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k = 0, 1, 2, \dots$$

- Formulated by French mathematician Siméon Denis Poisson
- Usually is used to model "the number of xxx occur". Hence lower bound is 0, no upper bound.
- Examples
 - Number of rainy days this year
 - Number of mis-placed books in the Main library
 - ► Number of roses you will receive on the next Valentines Day

Pmf of Poisson distribution

Properties of Poisson distribution $p(k) = e^{-\lambda} \frac{\lambda^k}{k!}$

• Well-defined (validness of pmf): non-negative, and

$$\sum_{k=0}^{\infty} p(k) = 1$$

Taylor Series

$$f(x) = f(x_0) + \frac{x - x_0}{1!} f'(x_0) + \frac{(x - x_0)^2}{2!} f''(x_0) + \cdots$$

 Use Taylor series to verify that the Poisson distribution is well-defined (required)

$$e^{\lambda} = 1 + \lambda + \frac{\lambda^2}{2!} + \dots + \frac{\lambda^k}{k!} + \dots$$

Properties of Poisson distribution $p(k) = e^{-\lambda} \frac{\lambda^k}{k!}$

• Mean (required) textbook page 137

$$E[X] = \lambda$$

Properties of Poisson distribution $p(k) = e^{-\lambda} \frac{\lambda^k}{k!}$

• Mean (required) textbook page 137

$$E[X] = \lambda$$

Variance (required) textbook page 138

$$Var[X] = \lambda$$

Suppose Vassar students have 1.73 siblings on average. What's the probability that a randomly selected student has at most one sibling?

Suppose Vassar students have 1.73 siblings on average. What's the probability that a randomly selected student has at most one sibling?

$$X \sim P(\lambda), E[X] = 1.73 \Longrightarrow \lambda = 1.73$$

$$P(X \le 1) = p(0) + p(1)$$

$$= e^{-\lambda} \frac{\lambda^0}{0!} + e^{-\lambda} \frac{\lambda^1}{1!}$$
$$= 0.1773 + 0.3067 = 0.4840$$

Use Poisson to approximate Binomial distribution

Let $X \sim \text{Bin}(n, p)$. If

- p: small
- n: large
- $\lambda = np$: of moderate size

then the distribution of X can be approximated by $P(\lambda)$.

Use Poisson to approximate Binomial distribution

Let $X \sim \text{Bin}(n, p)$. If

- p: small
- n: large
- $\lambda = np$: of moderate size

then the distribution of X can be approximated by $P(\lambda)$.

Recap

Poisson distribution $X \sim P(\lambda)$

$$p(k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

- $\bullet \ \operatorname{mean} \ \mu = \lambda$
- variance $\sigma^2 = \lambda$
- ullet Approximate Binomial distribution with small p, large n, moderate np

$$P(np) \approx Bin(n, p)$$

Outline

- Poisson distribution
- Geometric distribution and Negative Binomial distribution

A gambler plays at a roulette table and alway bet on red until he wins... In each round, his chance of winning is 18/38 = 0.47. Let X denote the number of rounds he plays.

A gambler plays at a roulette table and alway bet on red until he wins... In each round, his chance of winning is 18/38 = 0.47. Let X denote the number of rounds he plays.

Definition

Denote random variable X that takes value in $\{1,2,\ldots\}$ as having a Geometric distribution with parameter $p\in(0,1)$ if its pmf is

$$X \sim Geometric(p) \iff p(k) = (1-p)^{k-1}p, \quad k = 1, 2, \dots$$

A gambler plays at a roulette table and alway bet on red until he wins... In each round, his chance of winning is 18/38 = 0.47. Let X denote the number of rounds he plays.

Definition

Denote random variable X that takes value in $\{1, 2, ...\}$ as having a Geometric distribution with parameter $p \in (0, 1)$ if its pmf is

$$X \sim \text{Geometric}(p) \iff p(k) = (1-p)^{k-1}p, \quad k = 1, 2, \dots$$

ullet X represents the number of trials performed until we get a success, where p is the probability of success on each trial.

A gambler plays at a roulette table and alway bet on red until he wins... In each round, his chance of winning is 18/38 = 0.47. Let X denote the number of rounds he plays.

Definition

Denote random variable X that takes value in $\{1, 2, ...\}$ as having a Geometric distribution with parameter $p \in (0, 1)$ if its pmf is

$$X \sim \text{Geometric}(p) \iff p(k) = (1-p)^{k-1}p, \quad k = 1, 2, \dots$$

- X represents the number of trials performed until we get a success, where p is the probability of success on each trial.
- Note the difference between Geometric distribution and Binomial distribution!

A gambler plays at a roulette table and alway bet on red until he wins... In each round, his chance of winning is 18/38 = 0.47. Let X denote the number of rounds he plays.

Definition

Denote random variable X that takes value in $\{1, 2, ...\}$ as having a Geometric distribution with parameter $p \in (0, 1)$ if its pmf is

$$X \sim \text{Geometric}(p) \iff p(k) = (1-p)^{k-1}p, \quad k = 1, 2, \dots$$

- X represents the number of trials performed until we get a success, where p is the probability of success on each trial.
- Note the difference between Geometric distribution and Binomial distribution! Eg: whether the total number of trials is fixed.

• Well-defined (validness of pmf): non-negative, $\sum_{k=1}^{\infty} p(k) = 1$ (required)

• Well-defined (validness of pmf): non-negative, $\sum_{k=1}^{\infty} p(k) = 1$ (required)

$$\sum_{k=1}^{\infty} (1-p)^{k-1}p = p[1+(1-p)+(1-p)^2+\cdots] = \frac{p}{1-(1-p)} = 1$$

• Well-defined (validness of pmf): non-negative, $\sum_{k=1}^{\infty} p(k) = 1$ (required)

$$\sum_{k=1}^{\infty} (1-p)^{k-1}p = p[1+(1-p)+(1-p)^2+\cdots] = \frac{p}{1-(1-p)} = 1$$

• Cdf: $P(X \le k) = 1 - (1 - p)^k$ (required)

• Well-defined (validness of pmf): non-negative, $\sum_{k=1}^{\infty} p(k) = 1$ (required)

$$\sum_{k=1}^{\infty} (1-p)^{k-1}p = p[1+(1-p)+(1-p)^2+\cdots] = \frac{p}{1-(1-p)} = 1$$

• Cdf: $P(X \le k) = 1 - (1-p)^k$ (required) $P(X \ge k+1) = P(\text{The first } k \text{ trials all fail})$

• Well-defined (validness of pmf): non-negative, $\sum_{k=1}^{\infty} p(k) = 1$ (required)

$$\sum_{k=1}^{\infty} (1-p)^{k-1}p = p[1+(1-p)+(1-p)^2+\cdots] = \frac{p}{1-(1-p)} = 1$$

- Cdf: $P(X \le k) = 1 (1-p)^k$ (required) $P(X \ge k+1) = P(\text{The first } k \text{ trials all fail})$
- Mean (not required) Textbook page 148 for derivation

$$E[X] = \frac{1}{p}$$

• Well-defined (validness of pmf): non-negative, $\sum_{k=1}^{\infty} p(k) = 1$ (required)

$$\sum_{k=1}^{\infty} (1-p)^{k-1}p = p[1+(1-p)+(1-p)^2+\cdots] = \frac{p}{1-(1-p)} = 1$$

• Cdf: $P(X \le k) = 1 - (1 - p)^k$ (required) $P(X \ge k + 1) = P(\text{The first } k \text{ trials all fail})$

• Mean (not required) Textbook page 148 for derivation

$$E[X] = \frac{1}{p}$$

• Variance (not required) Textbook page 148 for derivation

$$Var[X] = \frac{1-p}{p^2}$$

If the gambler loses 5 times in a row, will he more likely to win in the 6th round?

If the gambler loses 5 times in a row, will he more likely to win in the 6th round?

$$P(X > 6 \mid X > 5) \stackrel{?}{<} P(X > 1)$$

If the gambler loses 5 times in a row, will he more likely to win in the 6th round?

$$P(X > 6 \mid X > 5) \stackrel{?}{<} P(X > 1)$$

Unfortunately, not.

If the gambler loses 5 times in a row, will he more likely to win in the 6th round?

$$P(X > 6 \mid X > 5) \stackrel{?}{<} P(X > 1)$$

Unfortunately, not.

Definition

We say a distribution is memoryless, if

$$P(X > n + k \mid X > n) = P(X > k)$$

Gambler's fallacy

If the gambler loses 5 times in a row, will he more likely to win in the 6th round?

$$P(X > 6 \mid X > 5) \stackrel{?}{<} P(X > 1)$$

Unfortunately, not.

Definition

We say a distribution is memoryless, if

$$P(X > n + k \mid X > n) = P(X > k)$$

• Geometric random variable is memoryless.

Gambler's fallacy

If the gambler loses 5 times in a row, will he more likely to win in the 6th round?

$$P(X > 6 \mid X > 5) \stackrel{?}{<} P(X > 1)$$

Unfortunately, not.

Definition

We say a distribution is memoryless, if

$$P(X > n + k \mid X > n) = P(X > k)$$

• Geometric random variable is memoryless.

$$P(X > n + k \mid X > n) = \frac{P(X > n + k)}{P(X > n)}$$
$$= \frac{(1 - p)^{n+k}}{(1 - p)^n} = (1 - p)^k = P(X > k)$$

Pmf of Geometric distribution

Negative Binomial distribution

Definition

Denote random variable X that takes value in $\{1, 2, \ldots\}$ as having a Negative Binomial distribution with parameter $p \in (0, 1)$ if its pmf is

$$X \sim NB(r,p) \iff p(k) = \binom{k-1}{r-1} (1-p)^{k-r} p^r, \quad k = r, r+1, \dots$$

ullet X represents the number of trials performed until we get r success, where p is the probability of success on each trial.

Negative Binomial distribution

Definition

Denote random variable X that takes value in $\{1, 2, \ldots\}$ as having a Negative Binomial distribution with parameter $p \in (0, 1)$ if its pmf is

$$X \sim NB(r,p) \iff p(k) = \binom{k-1}{r-1} (1-p)^{k-r} p^r, \quad k = r, r+1, \dots$$

- X represents the number of trials performed until we get r success, where p is the probability of success on each trial.
- Well-defined (validness of pmf). (not required)

Negative Binomial distribution

Definition

Denote random variable X that takes value in $\{1,2,\ldots\}$ as having a Negative Binomial distribution with parameter $p\in(0,1)$ if its pmf is

$$X \sim NB(r,p) \iff p(k) = \binom{k-1}{r-1} (1-p)^{k-r} p^r, \quad k = r, r+1, \dots$$

- X represents the number of trials performed until we get r success, where p is the probability of success on each trial.
- Well-defined (validness of pmf). (not required)
- Connection between Negative Binomial and Geometric distributions

$$X \sim \mathsf{Geometric}(p) \Longleftrightarrow X \sim \mathsf{NB}(1,p)$$

Note: Proof of $\sum_{k=r}^{\infty} p(k) = 1$ for Negative Binomial distribution is not required.

Properties of Neg Binom $p(k) = \binom{k-1}{r-1}(1-p)^{k-r}p^r$

Mean (not required)

$$E[X] = \frac{r}{p}$$

Textbook page 150 for derivation

Properties of Neg Binom $p(k) = \binom{k-1}{r-1}(1-p)^{k-r}p^r$

Mean (not required)

$$E[X] = \frac{r}{p}$$

Textbook page 150 for derivation

Variance (not required)

$$Var[X] = \frac{r(1-p)}{p^2}$$

Textbook page 151 for derivation

Properties of Neg Binom $p(k) = \binom{k-1}{r-1}(1-p)^{k-r}p^r$

Mean (not required)

$$E[X] = \frac{r}{p}$$

Textbook page 150 for derivation

Variance (not required)

$$Var[X] = \frac{r(1-p)}{p^2}$$

Textbook page 151 for derivation

Recall that for Geometric(p),

$$\mu = \frac{1}{p}, \sigma^2 = \frac{1-p}{p^2}$$

Pmf of Negative Binomial distribution

Recap

X: the number of trials performed until we get r success, where p is the probability of success on each trial.

$$p(k) = {k-1 \choose r-1} (1-p)^{k-r} p^r, \quad k = r, r+1, \dots$$

- Negative Binomial distribution $X \sim \mathsf{NB}(r,p)$
- Mean $\mu = \frac{r}{p}$, variance $\sigma^2 = \frac{r(1-p)}{p^2}$.
- If r = 1, Geometric distribution $X \sim \mathsf{NB}(1, p) = \mathsf{Geometric}(p)$
- Geometric distribution is memoryless.

Name	Range	$pmf\; p(x)$	mean	variance
Ber(p)	$\{0, 1\}$	$p^x(1-p)^{1-x}$	p	p(1-p)

Name	Range	$pmf\; p(x)$	mean	variance
Ber(p)	$\{0, 1\}$	$p^x(1-p)^{1-x}$	p	p(1-p)
Bin(n,p)	$\{0,1,\ldots,n\}$	$\binom{n}{x}p^x(1-p)^{n-x}$	np	np(1-p)

Name	Range	pmf $p(x)$	mean	variance
Ber(p)	$\{0,1\}$	$p^x(1-p)^{1-x}$	p	p(1-p)
Bin(n,p)	$\{0,1,\ldots,n\}$	$\binom{n}{x}p^x(1-p)^{n-x}$	np	np(1-p)
$Pois(\lambda)$	$\{0,1,2,\ldots\}$	$e^{-\lambda} \frac{\lambda^x}{x!}$	λ	λ

Name	Range	$pmf\; p(x)$	mean	variance
Ber(p)	$\{0,1\}$	$p^x(1-p)^{1-x}$	p	p(1-p)
Bin(n,p)	$\{0,1,\ldots,n\}$	$\binom{n}{x}p^x(1-p)^{n-x}$	np	np(1-p)
$Pois(\lambda)$	$\{0,1,2,\ldots\}$	$e^{-\lambda} \frac{\lambda^x}{x!}$	λ	λ
Geometric(p)	$\{1,2,\ldots\}$	$(1-p)^{x-1}p$	$\frac{1}{p}$	$\frac{1-p}{p^2}$

Name	Range	$pmf\; p(x)$	mean	variance
Ber(p)	{0,1}	$p^x(1-p)^{1-x}$	p	p(1-p)
Bin(n,p)	$\{0,1,\ldots,n\}$	$\binom{n}{x}p^x(1-p)^{n-x}$	np	np(1-p)
$Pois(\lambda)$	$\{0,1,2,\ldots\}$	$e^{-\lambda} \frac{\lambda^x}{x!}$	λ	λ
Geometric(p)	$\{1,2,\ldots\}$	$(1-p)^{x-1}p$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
NegBin(r,p)	$\{r,r+1,\ldots\}$	$\binom{x-1}{r-1}(1-p)^{x-r}p^r$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$