Training/Testing and Regularization

Il-Chul Moon Dept. of Industrial and Systems Engineering KAIST

icmoon@kaist.ac.kr

Weekly Objectives

- Understand the concept of bias and variance
 - Know the concept of over-fitting and under-fitting
 - Able to segment two sources, bias and variance, of error
- Understand the bias and variance trade-off
 - Understand the concept of Occam's razor
 - Able to perform cross-validation
 - Know various performance metrics for supervised machine learning
- Understand the concept of regularization
 - Know how to apply regularization to
 - Linear regression
 - Logistic regression
 - Support vector machine

CONCEPT OF BIAS AND VARIANCE

Up To This Point...

- Now, you are supposed to have some knowledge in classifications
 - Naïve Bayes
 - Logistic Regression
 - Support Vector Machine
- SVM is still a commonly used machine learning algorithm for classifications
- Functioning is kind of done
- Efficiency and accuracy now becomes a problem

Better Machine Learning Approach?

- Accurate prediction result
 - Ex) with this NB classifier, I can filter spams with 95% accuracy!
- Is this a right claim?
 - The validity of accuracy
 - No clear definition
 - Why not use other performance metrics? Such as Precision/Recall, F-Measure
 - The validity of dataset
 - Spams??
 - How many spams?
 - Where did you gathered?
 - Big variance in the spams?
 - Is the spam mail evolving?
 - From Nigerian prince scheme to something else?

Training and Testing

Training

- Parameter inference procedure
- Prior knowledge, past experience
- There is no guarantee that this will work in the future
 - ML's Achilles gun is the stable/static distribution of learning targets.
- Why ML does not work in the future?
 - The domain changes, or the current domain does not show enough variance
 - The ML algorithms inherently have problems

Testing

- Testing the learned ML algorithms/the inferred parameters
- New dataset that is unrelated to the training process
- Imitating the future instances
 - By setting aside a subset of observations

Over-Fitting and Under-Fitting

- Imaging this scenario
 - You are given N points to train a ML algorithm
 - You are going to learn a simple polynomial regression function
 - Y=F(x)
 - The degree of F is undetermined. Can be linear or non-linear
- Considering the three Fs in the below, which looks better?

Tuning Model Complexity

- One degree, two degree, and N degree trained functions
 - As the degree increases, the model becomes complex
 - Is complex model better?
- Then, where do we stop in developing a complex model?
 - Is there any measure to calculate the complexity and the generality?
- There is a trade-off between the complexity of a model and the generality of a dataset.

Sources of Error in ML

- Source of error is in two-folds
 - Approximation and generalization
- $E_{out} \leq E_{in} + \Omega$
 - E_{out} is the estimation error, considering a regression case, of a trained ML algorithm
 - E_{in} is the error from approximation by the learning algorithms
 - Ω is the error caused by the variance of the observations
- Here, we define a few more symbols
 - f: the target function to learn
 - g: the learning function of ML
 - g^(D): the learned function by using a dataset, D, or an instance of hypothesis
 - D: an available dataset drawn from the real world
 - \bar{g} : the average hypothesis of a given infinite number of Ds
 - Formally, $\bar{g}(x) = E_D[g^{(D)}(x)]$

Bias and Variance

- $E_{out} \leq E_{in} + \Omega$
- Error of a single instance of a dataset D
 - $E_{out}(g^{(D)}(x)) = E_X[(g^{(D)}(x) f(x))^2]$
- Then, the expected error of the infinite number of datasets, D

•
$$E_D[E_{out}(g^{(D)}(x))] = E_D[E_X[(g^{(D)}(x) - f(x))^2]] = E_X[E_D[(g^{(D)}(x) - f(x))^2]]$$

- Let's simplify the inside term, $E_D[(g^{(D)}(x) f(x))^2]$
 - $E_D\left[\left(g^{(D)}(x) f(x)\right)^2\right] = E_D\left[\left(g^{(D)}(x) \bar{g}(x) + \bar{g}(x) f(x)\right)^2\right]$
 - = $E_D \left[(g^{(D)}(x) \bar{g}(x))^2 + (\bar{g}(x) f(x))^2 + 2(g^{(D)}(x) \bar{g}(x))(\bar{g}(x) f(x)) \right]$
 - = $E_D[(g^{(D)}(x) \bar{g}(x))^2] + (\bar{g}(x) f(x))^2 + E_D[2(g^{(D)}(x) \bar{g}(x))(\bar{g}(x) f(x))]$
- $E_D[2(g^{(D)}(x) \bar{g}(x))(\bar{g}(x) f(x))] = 0$
 - Because of the definition of $\bar{g}(x)$
- Then, eventually the error becomes

• $E_D[E_{out}(g^{(D)}(x))] = E_X[E_D[g^{(D)}(x) - \bar{g}(x)]^2] + (\bar{g}(x) - f(x))^2]$ Copyright © 2010 by Il-Chul Moon, Dept. of Industrial and Systems Engineering, KAIST

Bias and Variance Dilemma

•
$$E_D[E_{out}(g^{(D)}(x))] = E_X[E_D[(g^{(D)}(x) - \bar{g}(x))^2] + (\bar{g}(x) - f(x))^2]$$

- Let's define
 - Variance(x)= $E_D\left[\left(g^{(D)}(x)-\bar{g}(x)\right)^2\right]$
 - Bias²(X)= $(\bar{g}(x)-f(x))^2$
- Semantically, what do they mean?
 - Variance is an inability to train a model to the average hypothesis because of the dataset limitation
 - Bias is an inability to train an average hypothesis to match the real world
- How to reduce the bias and the variance?
 - Reducing the variance
 - Collecting more data
 - Reducing the bias
 - More complex model
- However, if we reduce the bias, we increase the variance, and vice versa
 - Bias and Variance Dilemma
 - We will see why this is in the next slide by empirical evaluations....

PERFORMANCE MEASUREMENT

Empirical Bias and Variance Trade-off

- Consider
 - $f(x)=\sin(2*pi*x)$
 - D={two points|point=(x,sin(2*pi*x)), 0<=x<=1)
 - Two g(x)
 - Zero degree: dark grey line
 - One degree: light grey line
 - Two $\bar{g}(x)$
 - Zero degree: red line
 - One degree: green line
- Which has a greater bias and a greater variance between one degree and zero degree?

Bias and Variance of Two Hypotheses

- A complex model has a higher variance and a lower bias.
- A simple model has a lower variance and a higher bias.
- Need a balance in the complexity of a ML algorithm

Occam's Razor

- Occam's Razor
 - Among competing hypotheses, the one which makes the fewest assumption should be selected
- Competing?
 - Relevantly similar error in the prediction
- Fewest assumption
 - Less complex model
- Given the approximately same error, a simple model should be selected
- Reflection of Bias and Variance tradeoff!
 - By the way, is it possible to calculate the bias and the variance in the real world setting?

Cross Validation

- We don't have the infinite number of samples observed from the target function
- We have to mimic the infinite number of sampling
 - Where is the number of sampling used in the bias and the variance tradeoff?
 - \bar{g} : the average hypothesis of a given infinite number of Ds
 - Formally, $\bar{g}(x) = E_D[g^{(D)}(x)]$
- We need to have many datasets from a fixed number of datasets
- N-fold cross validation
 - We divide a given set of instances into N exclusive subsets.
 - We use (N-1) subsets for training
 - We use 1 subset for testing
- Special case: LOOCV
 - Leave One Out Cross Validation
 - Extreme case of N-fold cross validation

Performance Measure of ML

- Is it possible to calculate the bias and the variance?
 - We don't know the target function, f(X)!
 - We can't compute the average hypothesis, $\bar{g}(x)$!
- Therefore, we can't use the bias and the variance as the performance measures.
- Then, what measures to use?
 - Accuracy= (TP+TN) / (TP+FP+FN+TN)
 - Precision and Recall
 - F-Measure
 - ROC curve

Precision and Recall

- Consider the two cases
 - Building a classifier
 - Spam filter
 - CRM

		Actual Value		
			True	False
Estimated Value	Positive		True Positive	False Positive
	Negative		False Negative	True Negative

- Goals are slightly different
 - Spam filter: classifying spam
 - Safety is first. You don't want to throw out valid emails estimated as spams
 - Reducing the FP is the priority
 - CRM: classifying VIP customer
 - Reaching out is first. You don't want to miss any VIP customers as ordinary ones
 - Reducing the FN is the priority
- Precision = TP / (TP+FP)
- Recall = TP / (TP+FN)
- Then, which metrics to use in each case?

F-Measure

- Precision and recall are popular metrics, but it has problems in the applications
 - The most safest spam filter == always say 'no spam'
 - The most reaching-out customer filter == always say 'VIP'
- We need a measure that balances the precision and the recall performance
- F-Measure is the derived metric from the precision and the recall
 - F_b -Measure = $(1+b^2)$ * (Precision * Recall) / $(b^2$ *Precision + Recall)
 - F₁-Measure= 2 * (Precision * Recall) / (Precision + Recall)
 - $F_{0.5}$ and F_2 are also used.
 - F₂ emphasizes recall
 - F_{0.5} emphasizes precision

MODEL REGULARIZATION

Concept of Regularization

- Disaster in terms of variance
- With regularization
 - We sacrifice the perfect fit
 - Reducing the training accuracy
 - We increase the potential fit in the test
 - Because of the increased model complexity, the bias tends to increase a little bit
 - Eventually, regularization is another constraint for models
 - Existing constraint?
 - Minimizing error from training set
- We add a new term to the MSE

Formal Definition of Regularization

- Regularization is another constraint for the regression
 - The below J(B) is the regularization function to minimize
 - B is the weight of the regression model except the constant term
- There are diverse regularization
 - L1 Regularization == Lasso regularization
 - The first order
 - L2 Regularization == Ridge regularization
 - The second order
 - Depends on the order of the regularization term
 - The order determines the shape of the loss function

$$E(w) = \frac{1}{2} \sum_{n=0}^{N} (train_n - g(x_n, w))^2 + \frac{\lambda}{2} ||w||^2$$

$$E(w) = \frac{1}{2} \sum_{n=0}^{N} (train_n - g(x_n, w))^2 + \lambda |w|$$

Regularization of Linear Regression

Let's apply the regularization idea to the linear regression

$$E(w) = \frac{1}{2} \sum_{n=0}^{N} (train_n - g(x_n, w))^2 + \frac{\lambda}{2} ||w||^2$$

• We can calculate *w* in the closed form.

$$\frac{d}{dw}E(w) = 0$$

$$\frac{d}{dw}E(w) = \frac{d}{dw}\left(\frac{1}{2}\|train - Xw\|^{2} + \frac{\lambda}{2}\|w\|^{2}\right)$$

$$= \frac{d}{dw}\left(\frac{1}{2}\|train - Xw\|^{T}\|train - Xw\| + \frac{\lambda}{2}w^{T}w\right) -X^{T} \cdot train -X^{T} \cdot train$$

$$-X^{T} \cdot train + X^{T}Xw + \lambda Iw = 0$$

$$-X^{T} \cdot train + (X^{T}X + \lambda I)w = 0$$

$$(X^{T}X + \lambda I)w = X^{T} \cdot train$$

$$w = (X^{T}X + \lambda I)^{-1}X^{T} \cdot train$$

Effect of Regularization

Var. = 0.1167

- When $\lambda = 1$
 - The bias increases a little bit
 - The variance reduces significantly

Optimizing the Regularization

- We need to optimize λ
 - Too low λ : Too high variance
 - Works like an unregularized model
 - Too high λ : Too low variance
 - Works like a less complex model
 - Converting the first-order model into the constant model
- How to optimize λ ?

Regularization of Logistic Regression

- Regularization is applicable to other models
 - Such as logistic regression
- You can search for the closed form and the approximate form of finding $\boldsymbol{\theta}$

$$\operatorname{arg\,max}_{\theta} \sum_{i=1}^{m} \log p(y_i | x_i, \theta) - \alpha R(\theta)$$

L1:
$$R(\theta) = \|\theta\|_1 = \sum_{i=1}^n |\theta_i|$$

L2:
$$R(\theta) = \|\theta\|_2^2 = \sum_{i=1}^n \theta_i^2$$

Regularization and SVM

$$f = \arg\min_{f \in \mathcal{H}} \left\{ \frac{1}{n} \sum_{i=1}^{n} V(y_i, f(x_i)) + \lambda ||f||_{\mathcal{H}}^2 \right\}$$

$$V(y_{i}, f(x_{i})) = (1 - yf(x))_{+}$$

$$(s)_{+} = \max(s, 0)$$

$$f = \arg\min_{f \in \mathcal{H}} \left\{ \frac{1}{n} \sum_{i=1}^{n} (1 - yf(x))_{+} + \lambda ||f||_{\mathcal{H}}^{2} \right\}$$

$$f = \arg\min_{f \in \mathcal{H}} \left\{ C \sum_{i=1}^{n} (1 - yf(x))_{+} + \frac{1}{2} ||f||_{\mathcal{H}}^{2} \right\}$$

$$C = \frac{1}{2\lambda n}$$

Support vector is a special case of regularization with the hinge loss

Acknowledgement

- This slideset is greatly influenced
 - By Prof. Eric Xing at CMU