6) (a) ytPyz ytATAy = (Ay) (Ay) A > (mxn) readix y ⇒ (nxi) vector So, Ay > (80x1) vector

Toguese of the

The 1-2 room of a vector is objined as xTz Here Z= Ay > yTPy= L-2 norm of (Ay) From the property of 12-norms, 12-norm 20 (A) / WALL > (AyT(Ay) ≥0. Similarly, xtQX = Ztag ZTAATZ $= (A^T Z)^T (A^T Z)$ = L2-norm of (ATZ) Now, consider the eigen values - 9 of P Pv = 9v > VTPV = 9 VTV => 11AVII2= 2 11VII2 as 11 Av 1/2 20 & 11/2/1/2 20, 920 : eigen values are non regettive

Similarly, consider an eigen value-9 of Q, Qu= Av => VTQV= A(VTV) => ||ATV||2= 9 ||V||3 By the same argument, eigen values of a ar non-negative (b) Au= Au ATAU = Qu => A (ATAW)= A(Au) Using associative property, (AAT) (Au) = 9 (Au) @ Q(Au) = 9 (Au) So, Au es an eigen vector of Q with eigen value 2. Now, Qv = MV VU =VTAA VTALL = (VTAA) TA o using associative property, (ATA) (ATV) = M(ATV) P(ATV) = M(ATV)

So, A'V is an eigenvector of P with eigenvalue u
Nas, coming to the no-of elements,
A => (raxn) roctin
U=> (yx1) voitor
for Au to be defined, you as required
So, u > (nx1) vector - It has 'n' elements
Similarly A => (nxm) moting
V => (XXI) vector
X= on for ATV to be defined
So, V > (mx) vector - It has 'm' elemin
e) Qui = Avi
=) AATVi= Aivi
A (AVi) = Ai Vi
A (ATVi) = (Ai) Vi 11ATVilla (11ATVilla)
$\Rightarrow A u_i = \left(\frac{2i}{\ A^T v_e\ _2} v_i\right)$
Tolliens of Ti = Ai , we show there there indeed
Taking Ti = Ai , we show then there indeed exists Vi such that
Aui = givi

(d) Propagation of the state Aui = Vi Vi =) AV= A[u, u, -- lum] Block modin multiplication is ralid as sizes of ASU; match I is applied = [Au] Aus | Aus | -- | Aum = [-1, 1, 12, 2] --- | 2m/m] = [v₁|v₂|--1v_m] [x₁ 0---0 0 x₂---0 AV = UT => A(VVT) = UFVT VVT = [a/luz/ - - lum] [ust = In (from lectur slides) => A In = UTVT · A= UTVT