notes on the Borodin-Kostochka conjecture

May 9, 2017

1 Introduction

Conjecture 1 (Borodin and Kostochka [2]). Every graph G with $\Delta(G) \geq 9$ satisfies $\chi(G) \leq \max \{\omega(G), \Delta(G) - 1\}$.

2 Excluded induced subgraphs by d_1 -choosability

A graph G is d_r -choosable if G can be L-colored from every list assingment L with $|L(v)| \ge d_G(v) - r$ for all $v \in V(G)$. Every graph is d_{-1} -choosable. The d_0 -choosable graphs were classified by Borodin [1] and independently by Erdős, Rubin, and Taylor [9] as those graphs whose every block is either complete or an odd cycle (a connected such graph is a Gallai tree). Classifying the d_r -choosable graphs for any $r \ge 1$ appears to be a hard problem. However, we can get useful sufficient conditions for a graph to be d_1 -choosable. For example, all of the graphs here are d_1 -choosable (the vertex color indicates components of the complement): https://landon.github.io/graphdata/borodinkostochka/offline/index.html

Cranston and Rabern [6] classified all d_1 -choosable graphs of the form $A \vee B$.

3 Decompositions

3.1 Reed's decomposition

In [14], Reed proved the Borodin-Kostochka conjecture for graphs G with $\Delta(G) \geq 10^{14}$. A piece of that proof was a decomposition of G into dense chunks and one sparse chunk that also works for smaller $\Delta(G)$. The following tight form of this decomposition is proved in [13]. Let $\mathcal{C}_t(G)$ be the maximal cliques in G having at least t vertices.

Reed's Decomposition. Suppose G is a graph with $\Delta(G) \geq 8$ that contains no $K_{\Delta(G)}$ and has no d_1 -choosable induced sugraph. If $\frac{\Delta(G)+5}{2} \leq t \leq \Delta(G)-1$, then $\bigcup C_t(G)$ can be partitioned into sets D_1, \ldots, D_r such that for each $i \in [r]$ at least one of the following holds:

- 1. $D_i = C_i \in \mathcal{C}_t(G)$,
- 2. $D_i = C_i \cup \{x_i\}$ where $C_i \in \mathcal{C}_t(G)$ and $|N(x_i) \cap C_i| \ge t 1$.

3.2 Fajtlowicz's decomposition

In [10], Fajtlowicz proved that every graph has $\alpha(G) \geq \frac{2|G|}{\omega(G) + \Delta(G) + 1}$. The proof of this result gives a decomposition which we state in the special case needed for the Borodin-Kostochka conjecture.

Fajtlowicz's Decomposition. Suppose G is a vertex-critical graph with $\chi(G) = \Delta(G)$. Then V(G) can be partitioned into sets M, T, and K such that

- 1. M contains a maximum independent set I of G; and
- 2. each $v \in T$ has $d_G(v) = \Delta(G)$, two neighbors in I and zero neighbors in $M \setminus I$; and
- 3. K can be covered by $\alpha(G)$ (or fewer) cliques; and
- 4. each $v \in K$ has exactly one neighbor in I and at most one neighbor in $M \setminus I$ (none if $d_G(v) < \Delta(G)$); and
- 5. the vertices in $M \setminus I$ can be ordered v_1, \ldots, v_r such that for $i \in [r]$, either v_i has at least three neighbors in $I \cup \{v_1, \ldots, v_{i-1}\}$ or $d_G(v_i) < \Delta(G)$ and v_i has at least two neighbors in $I \cup \{v_1, \ldots, v_{i-1}\}$.

Proof. Let I be a maximum independent set in G. Construct a maximal length sequence $I = M_0 \subseteq M_1 \subseteq \cdots \subseteq M_r$ such that for j > 0,

- every $v \in M_j$ with $d_G(v) = \Delta(G)$ either has at least three neighbors in M_{j-1} or at least two neighbors in $M_{j-1} \setminus I$; and
- every $v \in M_j$ with $d_G(v) = \Delta(G) 1$ either has at least two neighbors in M_{j-1} or at least one neighbor in $M_{j-1} \setminus I$.

Now let $M = M_r$, let T be the vertices in $V(G) \setminus M$ with exactly two neighbors in I and let K be the vertices in $V(G) \setminus M$ with exactly one neighbor in I. The decomposition has the properties 1,2,4 and 5 since the sequence $M_0 \subseteq M_1 \subseteq \cdots \subseteq M_r$ was chosen to be maximal length. Property 3 follows since for each $v \in I$, the set of $x \in K$ adjacent to v must be a clique for otherwise we could get an independent set larger than I.

4 Properties of minimum counterexamples

In [7] Cranston and R. used the d_1 -choosable graphs in Section 2 to prove properties of a minimum counterexample to the Borodin-Kostochka conjecture. Almost all of the proofs there (specifically, the proofs only involving edge addition and not vertex set contraction) work for minimum counterexamples within a given collection of graphs that is closed under taking induced subgraphs and adding edges. Call such a collection of graphs permissible. For example, the following improves a lemma Reed used in his proof [14].

Lemma 2. Let A be a permissible collection of graphs for which the Borodin-Kostochka conjecture does not hold. Let $G \in A$ be a counterexample with the minimum number of vertices (of graphs in A).

- 1. If X is a $K_{\Delta(G)-1}$ in G, then every $v \in V(G-X)$ has at most one neighbor in X; and
- 2. Let A and B be disjoint subgraphs of G with $|A| + |B| = \Delta(G)$ such that $|A|, |B| \ge 4$. If G contains all edges between A and B, then $A = K_1 + K_{|A|-1}$ and $B = K_1 + K_{|B|-1}$.

5 Counterexamples have some sparse neighborhoods

In [13], R. showed that any counterexample to the Borodin-Kostochka conjecture must have some sparse neighborhoods and large independence number (increasing with $\Delta(G)$). For example,

Lemma 3. If G is a counterexample to the Borodin-Kostochka conjecture, then

- 1. there exists $v \in V(G)$ such that v is not contained in any clique with at least $\frac{2}{3}\Delta(G) + 2$ vertices; and
- 2. there exists $v \in V(G)$ such that G[N(v)] has average degree at most $\frac{2}{3}\Delta(G) + 3$; and
- 3. $\alpha(G) \geq \frac{\Delta(G)}{4}$; and
- 4. $|G| \ge 16\Delta(G)^2 528\Delta(G) + 3527$.

6 Results from kernel methods

In [11], Kierstead and R. proved a general lemma that allows the user to get list colorings for free from large independent sets. Specialized to the Borodin-Kostochka conjecture, this becomes.

Kernel Magic. Suppose G is a vertex-critical graph with $\chi(G) = \Delta(G)$. For every induced subgraph H of G and independent set I in H, we have

$$\sum_{v \in V(I)} d_H(v) < \sum_{v \in V(H)} \Delta(G) + 2 - d_G(v).$$

Applied with H = G, this gives:

Corollary 4. If G is a vertex-critical graph with $\chi(G) = \Delta(G)$, then $\alpha(G) < \frac{2|G|}{\Delta(G)}$.

7 Mozhan partitions

Extending ideas of Mozhan [12], Cranston and R. [8] proved the following.

Theorem 5. If G is a vertex-critical graph with $\chi(G) = \Delta(G) \ge 13$, then $\omega(G) \ge \Delta(G) - 3$.

8 Vertex-transitive graphs

In [4] Cranston and R. used Reed's decomposition and the ideas in Sections 5 and 7 to prove the Borodin-Kostochka conjecture for vertex-transitive graphs with $\Delta(G) \geq 13$. It would be interesting to improve this to $\Delta(G) \geq 9$.

Theorem 6. Every vertex-transitive graph G with $\Delta(G) \geq 13$ satisfies $\chi(G) \leq \max \{\omega(G), \Delta(G) - 1\}$.

9 Claw-free graphs

In [5], Cranston and R. proved the Borodin-Kostochka conjecture for claw-free graphs using some of the d_1 -choosable graphs in Section 2 combined with the structure theorem for quasiline graphs of Chudnovsky and Seymour [3].

References

- [1] O.V. Borodin. Criterion of chromaticity of a degree prescription. In *Abstracts of IV All-Union Conf. on Th. Cybernetics*, pages 127–128, 1977. 1
- [2] O.V. Borodin and A.V. Kostochka. On an upper bound of a graph's chromatic number, depending on the graph's degree and density. *Journal of Combinatorial Theory, Series B*, 23(2-3):247–250, 1977. 1
- [3] M. Chudnovsky and P. Seymour. The structure of claw-free graphs. Surveys in combinatorics, 327:153–171, 2005. 4
- [4] Daniel W Cranston and Landon Rabern. A note on coloring vertex-transitive graphs. arXiv preprint arXiv:1404.6550, 2014. 4
- [5] D.W. Cranston and L. Rabern. Coloring claw-free graphs with $\Delta-1$ colors. Arxiv preprint arXiv:1206.1269, 2012. 4
- [6] D.W. Cranston and L. Rabern. Conjectures equivalent to the Borodin-Kostochka Conjecture that appear weaker. *Arxiv preprint arXiv:1203.5380*, 2012. 1
- [7] D.W. Cranston and L. Rabern. Conjectures equivalent to the Borodin-Kostochka conjecture that appear weaker. *Arxiv preprint arXiv:1203.5380*, 2012. 2
- [8] D.W. Cranston and L. Rabern. Graphs with $\chi = \Delta$ have big cliques. arXiv preprint http://arxiv.org/abs/1305.3526, 2013. 3
- [9] P. Erdős, A.L. Rubin, and H. Taylor. Choosability in graphs. In *Proc. West Coast Conf. on Combinatorics, Graph Theory and Computing, Congressus Numerantium*, volume 26, pages 125–157, 1979. 1
- [10] S. Fajtlowicz. Independence, clique size and maximum degree. Combinatorica, 4(1):35-38, 1984. 2

- [11] H.A. Kierstead and L. Rabern. Extracting list colorings from large independent sets. $arXiv:1512.08130,\ 2015.\ 3$
- [12] N.N. Mozhan. Chromatic number of graphs with a density that does not exceed two-thirds of the maximal degree. *Metody Diskretn. Anal.*, 39:52–65 (in Russian), 1983.
- [13] L. Rabern. Coloring graphs with dense neighborhoods. *Journal of Graph Theory*, 2013. 1, 3
- [14] B. Reed. A strengthening of Brooks' theorem. *Journal of Combinatorial Theory, Series* B, 76(2):136–149, 1999. 1, 2