

Today

- tidy data
- subsetting and slicing
- merging and aggregating
- joining datasets

Tidy data

Tidy Data - A foundation for wrangling in pandas

In a tidy data set:

Each **observation** is saved in its own **row**

Tidy data complements pandas's **vectorized operations**. pandas will automatically preserve observations as you manipulate variables. No other format works as intuitively with pandas.

See the article by Wickham:

in its own column

https://www.jstatsoft.org/article/view/v059i10

👸 Universiteit van Amsterdam

Subsetting (slicing)

Why do we need this?

- We are seldom interested in a table as a whole.
- Rather, we may want to investigate specific columns ("variables")
- Or, we may want to zoom into a specific interesting row
- Or we need to clean up messy data

Some general subsetting (slicing)

- [0:5] to get elements 0, 1, 2, 3, 4 (works with lists, dataframes ...)
- mydict['keyicareabout'] to get value (content) associated with the key
- df[['col1', 'col2']] to get only these two columns of a dataset
- df[df['col1']=='whatever'] to get only the rows in which col1 is identical to the string 'whatever'
- df[df['col2']>0] to get only the rows in which col2 is a number bigger than o

More subsetting and slicing

- To get a specific row and/or column, you can use .iloc[] and loc[]
 - iloc[] takes an int (the row/column numbers, loc[] the names)
 - df.iloc[0,5] to get row 0, column 5
 - df.loc[o,'what'] to get row o, column 'what'

Check out the <u>pandas cheat sheet</u>

More subsetting and slicing

- Advanced example: Get the whole row where the column 'terrorrefs' has the highest value in the whole dataset:
 - df.iloc[df['terrorrefs'].idxmax()]
- That works because df.iloc[] expects an integer to identify the row number, and df['terrorrefs'].idxmax() returns an integer (687 in our case)
- We could also do it in two steps:

df.iloc[df['terrorrefs'].idxmax()] is the same as:

```
df['terrorrefs'].idxmax()
687
df.iloc[687]
                Permanent Link to Press conference in Islamabad
what
when
                                                       14-12-2008
                                                    Great Britain
country
who
                                                         G. Brown
number
                                                             2954
text
              Transcript of a press conference given by t...
              transcript press confer given prime minist mr ...
text clean
language
                                                               en
terrorrefs
                                                               44
Name: 687, dtype: object
```

Universiteit van Amsterdam

DO try this at home!

- Try to get specific columns and rows from your dataset.
- Try to select parts of your data that match some condition!

Merging two datasets

Why do we need this?

- 1+1=3
 - A dataset on poverty in different neighbourhoods may be modestly interesting, as well as a dataset on schools in different neighbourhoods. But combining them may make an interesting story.
- But: Consider the possibility of an ecological fallacy!
 - correlation ≠ causation

```
economie = pd.read_csv('82800ENG_UntypedDataSet_15112018_205454.csv', delimiter=';')
economie.head()
```

	ID	EconomicSectorsSIC2008	Regions	Periods	GDPVolumeChanges_1
0	132	T001081	PV20	1996JJ00	9.3
1	133	T001081	PV20	1997JJ00	-2.0
2	134	T001081	PV20	1998JJ00	-0.9
3	135	T001081	PV20	1999JJ00	-0.7
4	136	T001081	PV20	2000JJ00	1.5

```
population = pd.read_csv('37259eng_UntypedDataSet_15112018_204553.csv', delimiter=';')
population.head()
```

	ID	Sex	Regions	Periods	LiveBornChildrenRatio_3
0	290	T001038	PV20	1960JJ00	18.6
1	291	T001038	PV20	1961JJ00	18.9
2	292	T001038	PV20	1962JJ00	18.9
3	293	T001038	PV20	1963JJ00	19.5
4	294	T001038	PV20	1964JJ00	19.6

What do you think: How could/should a joined table look like?

```
# remove unnecessary columns
economie.drop('ID',axis=1,inplace=True)
population.drop('ID',axis=1,inplace=True)
# remove differentiation by sex
population = population[population['Sex']=='T001038']
population.drop('Sex',axis=1,inplace = True)
# keep only rows of economic dataframe that contain the total economic activity
economic = economic[economic['EconomicSectorsSIC2008']=='T001081 ']
economic.drop('EconomicSectorsSIC2008', axis=1, inplace=True)
```

```
# remove those evil spaces at the end of the names of the provinces
population['Regions'] = population['Regions'].map(lambda x: x.strip())
economie['Regions'] = economie['Regions'].map(lambda x: x.strip())
```

```
population.merge(economie, on=['Periods', 'Regions'], how='inner')
```

	Regions	Periods	LiveBornChildrenRatio_3	GDPVolumeChanges_1
0	PV20	1996JJ00	11.0	9.3
1	PV20	1997JJ00	11.4	-2.0
2	PV20	1998JJ00	11.6	-0.9
3	PV20	1999JJ00	11.6	-0.7
4	PV20	2000JJ00	11.5	1.5
5	PV20	2001JJ00	11.7	3.9
6	PV20	2002JJ00	11.4	2.1

Then merge

On what do you want to merge/join?

- Standard behavior of.join(): on the row *index* (i.e., the row number, unless you changed it to sth else like a date)
- df3 = df1.join(df2)
- But that's only meaningful if the indices of df1 and df2 *mean* the same. Therefore you can also join on a column if both dfs have it:
- df3 = df1.merge(df2, on='Regions')
- .merge() is the more powerful tool, .join() is a bit easier when joining on indices.

Inner, Outer, Left, and Right

- Main question: What do you want to do with keys (columns) that exist only in one of the dataframes?
- df3 = df1.join(df2, how='xxx')

INNER JOIN: Returns only matched rows

LEFT JOIN: Return all rows from the left table, and the **matched** rows from the right table

RIGHT JOIN: Return all rows from the right table, and the matched rows from the left table

FULL JOIN: Return all rows from both the tables

Depending on the join, you will end up with dataframes of *different* lengths.

Why is that?

Think back of your assignment!

- Is there a shared key/column on which you can merge? Which one?
 - Important: the column needs to be *exactly* the same, if there is some different formatting, use preprocessing.
- Does it need to be a left, right, inner, or outer join?

Aggregating a dataset

Why do we need this?

- Another way of describing/summarizing your dataset
- But more flexible: Instead of getting the overall mean of media consumption, get the mean by gender instead
- More in general: every time when you want to combine multiple rows into one (e.g., by summing, averaging, ...), you aggregate

An example

- Suppose you have two dataframes, both containing information on something per region per year.
- You want to merge (join) the two, however, in one of them, the information is also split up by age groups. You don't want that.
- How do you bring these rows back to one row? With .agg()!

.agg()

- Very useful after a .groupby()
- Takes a function as argument
- df2 = df.groupby('region').agg(sum)
- Or multiple functions:
- df2 = df.groupby('region').agg([sum, np.mean])
 - → yes, you could do .describe(), but .agg() is more flexible

Reshaping a dataset

Why do we need this?

- We already turned columns into rows by transposing a dataframe using .T
- But there may be more complex transformations we need to do.
- Many analyses and visualisations require that each variable equals a column (think of your SPSS classes....)
 - Unfortunately, many datasets you encounter in the wild aren't as nicely formatted.
 - Look at the example on the next slide. There is no column called "year" –
 hence, we cannot .groupby("year"), for instance

wijken

How do housing prices (WOZ-waarde) develop over time in different neighborhoods?

	wijk	2014	2015	2016	2017	2018	code	stadsdeel
0	Burgwallen-Oude Zijde	263417.0	273525.0	289984.0	339548.0	400010.0	A00	Centrum
1	Burgwallen-Nieuwe Zijde	267895.0	281193.0	296762.0	351214.0	391011.0	A01	Centrum
2	Grachtengordel-West	490251.0	502230.0	560841.0	674610.0	755091.0	A02	Centrum
3	Grachtengordel-Zuid	469946.0	478371.0	531225.0	627625.0	697576.0	A03	Centrum
ut; doubl	e click to hide arkt/Lastage	295239.0	303500.0	340364.0	386716.0	438942.0	A04	Centrum
5	Haarlemmerbuurt	304924.0	311743.0	345189.0	403267.0	458522.0	A05	Centrum
6	Jordaan	270390.0	285877.0	307344.0	347740.0	402186.0	A06	Centrum
7	De Weteringschans	344649.0	359119.0	399942.0	458010.0	515192.0	A07	Centrum
8	Weesperbuurt/Plantage	307440.0	322276.0	353628.0	413388.0	473643.0	A08	Centrum
9	Oostelijke Eilanden/Kadijken	253990.0	256421.0	276481.0	316261.0	381774.0	A09	Centrum
11	Westelijk Havengebied	NaN	189402.0	224491.0	NaN	NaN	B10	Westpoort
13	Houthavens	164263.0	167242.0	188360.0	349525.0	483318.0	E12	West
14	Spaarndammer- en Zeeheldenbuurt	207439.0	209713.0	222371.0	256300.0	322981.0	E13	West
15	Staatsliedenbuurt	209792.0	222070.0	241366.0	277214.0	325787.0	E14	West

At least one person's assignment contains data that look **exactly** like the WOZ-example!

Steps

- Get it into a tidy format (1 row = 1 observation) ("long" format)
- Optionally, but more neat (also for automatically get correct plot labels): index rows by year
- use .groupby() and .agg() to aggregate the data


```
wijken long = wijken.melt(id vars=['wijk', 'stadsdeel'],
                          value_vars=['2014', '2015', '2016', '2017', '2018'],
                          value name='woz-waarde',
                          var_name = 'year')
```

.melt() transforms a df from wide to long wijken_long

	wijk		dsdeel	year	woz-waarde				
0	Burgwallen-Oude Zijde	Cen	Centrum		263417.0				
1	Burgwallen-Nieuwe Zijde	Cen	Cen		id_vars: what are the cas				
2	Grachtengordel-West	Cen	Cen Cen		_ vars. writat are the car				
3	Grachtengordel-Zuid	Cen							
4	Nieuwmarkt/Lastage	_{Cen} val		value_vars: which vars					
5	Haarlemmerbuurt	Cen CON		contain the values?					
6	Jordaan	Cen							
7	De Weteringschans	Cen	ıtrum	2014	344649.0				
8	Weesperbuurt/Plantage	Centrum		2014	307440.0				
9	Oostelijke Eilanden/Kadijken	Cen	Centrum		253990.0				
10	Westelijk Havengebied	Westpoort		2014	NaN				

And now?

- Let's think about a strategy for .groupby().agg(): What should we group by and how do we need to aggregate?
- Group by:
 - (1) Group only by year
 - (2) Group by year and 'stadsdeel'
- Aggregation function
 - mean
 - Possibly also min, max, or even lambda x: max(x)-min(x)

wijken_long.groupby('year').agg(np.mean).plot(xticks=[0,1,2,3,4])

<matplotlib.axes._subplots.AxesSubplot at 0x1191a4128>


```
wijken_long.groupby(['year','stadsdeel']).agg(np.mean).unstack().plot(
    figsize=[10|,7], xticks=range(5))
```


What's unstacking?

wijken_long.groupby(['year','stadsdeel']).agg(np.mean)

		woz-waarde		
year	stadsdeel			
2014	Centrum	326814.100000		
	Nieuw-West	200453.500000		
	Noord	215879.500000		

☐ Turn nested indices into non-nested structure

wijken_long.groupby(['year','stadsdeel']).agg(np.mean).unstack()

stadsdeel	woz-waarde									
	Centrum	Nieuw-West	Noord	Oost	West	Westpoort	Zuid	Zuidoost		
year										
2014	326814.1	200453.500000	215879.500000	221828.142857	235801.0	NaN	338256.8000	158662.833333		
2015	337425.5	200028.000000	222417.200000	228636.000000	238568.8	189402.0	346524.6250	155835.000000		
2016	370176.0	208002.428571	229650.466667	244608.428571	260979.4	224491.0	355919.6250	158611.000000		

Noord	222417.200000	
Oost	228636.000000	

Let's summarize: Tools you can use for data wrangling

- .loc() and .iloc()
- •.join() and .merge()
- •.melt() and .unstack()
- .groupby() and .agg()

Thursday

- •On Thursday, will will walk through the notebooks
 - Python Data Wrangling I
 - Data Aggregation
- All datafiles are in the online book.
- There is Python Data Wrangling II that explains how we made the dataset behind the first notebook
- Have a first look at the notebooks already and try to understand what's going on!
- Make sure you have the notebooks open and the datafiles downloaded before the session!