EXERCISE - I

SINGLE CORRECT (OBJECTIVE QUESTIONS)

1. The area of the triangle formed by the positive x-axis and the normal and the tangent to the circle

 $x^2 + y^2 = 4$ at $(1, \sqrt{3})$ is

- (A) $3\sqrt{3}$ sq. units (B) $2\sqrt{3}$ sq. units
- (C) $4\sqrt{3}$ sq. units (D) $\sqrt{3}$ sq. units
- **2.** Equation of the normal to the curve $y = -\sqrt{x} + 2$ at the point of its intersection with the curve y = tan(tan⁻¹ x) is
- (A) 2x y 1 = 0
- (B) 2x y + 1 = 0
- (C) 2x + y 3 = 0
- (D) None of these
- **3.** The abscissa of the point on the curve $ay^2 = x^3$, the normal at which cuts off equal intercepts from the coordinate axes is

- (A) $\frac{2a}{g}$ (B) $\frac{4a}{g}$ (C) $-\frac{4a}{g}$ (D) $-\frac{2a}{g}$
- **4.** If the tangent to the curve $x = a (\theta + \sin \theta)$,

with x-axis, then α equals

- (A) $\frac{\pi}{3}$ (B) $\frac{2\pi}{3}$ (C) $\frac{\pi}{6}$ (D) $\frac{5\pi}{6}$
- **5.** The x-intercept of the tangent at any arbitrary

point of the curve $\frac{a}{v^2} + \frac{b}{v^2} = 1$ is proportional to

- (A) square of the abscissa of the point of tangency
- (B) square root of the abscissa of the point of tangency
- (C) cube of the abscissa of the point of tangency
- (D) cube root of the abscissa of the point of tangency.
- **6.** If curve $y = 1 ax^2$ and $y = x^2$ intersect orthogonally then the value of a is
- (A) 1/2
- (B) 1/3
- (C)2
- (D) 3
- 7. The coordinates of the point of the parabola $y^2 = 8x$, which is at minimum distance from the circle $x^2+(y+6)^2=1$ are
- (A)(2, -4)
- (B)(18,-12)
- (C)(2,4)
- (D) None of these

8. The length of the subtangent to the curve

 $\sqrt{x} + \sqrt{y} = 3$ at the point (4, 1) is

- (A) 2 (B) 1/2
- (D) 4
- **9.** For a curve $\frac{(\text{length of normal})^2}{(\text{length of tangent})^2}$ is equal to
- (A) (subnormal) / (subtangent)
- (B) (subtangent) / (subnormal)
- (C) (subnormal) / (subtangent)²
- (D) None of these
- 10. Water is poured into an inverted conical vessel of which the radius of the base is 2m and height 4m, at the rate of 77 litre/minute. The rate at which the water level is rising at the instant when the depth is 70 cm is: (use $\pi = 22/7$)
- (A) 10 cm/min
- (B) 20 cm/min
- (C) 40 cm/min
- (D) None of these
- 11. If the tangent at each point of the curve

 $y = a (1 + \cos \theta)$ at $\theta = \frac{\pi}{3}$ makes an angle $\alpha (0 \le \alpha < \pi)$ $y = \frac{2}{3} x^3 - 2ax^2 + 2x + 5$ makes an acute angle with

the positive direction of x-axis, then

- (A) $a \ge 1$
- (B) $-1 \le a \le 1$
- (C) $a \le -1$
- (D) None of these
- **12.** The line $\frac{x}{a} + \frac{y}{b} = 1$ touches the curve $y = be^{-x/a}$ at the point
- (A) (-a, be) (B) $\left(-a, \frac{b}{e}\right)$ (C) $\left(a, \frac{b}{e}\right)$ (D) (0, b)
- **13.** All points on the curve $y^2 = 4a \left(x + a \sin \frac{x}{a} \right)$ at which the tangents are parallel to the axis of x, lie on a

(A) circle (B) parabola (C) line (D) None of these

- **14.** A curve is represented by the equations, $x = sec^2$ t and $y = \cot t$ where t is a parameter. If the tangent at the point P on the curve where $t = \pi/4$ meets the curve again at the point Q then |PQ| is equal to
- (A) $\frac{5\sqrt{3}}{2}$ (B) $\frac{5\sqrt{5}}{2}$ (C) $\frac{2\sqrt{5}}{3}$ (D) $\frac{3\sqrt{5}}{2}$

- **15.** If the subnormal at any point on $y = a^{1-n} x^n$ is of constant length, then the value of n is
- (A) 1
- (B) 1/2
- (C) 2
- (D) -2
- **16.** The curves $x^3 + p xy^2 = -2$ and $3x^2y y^3 = 2$ are orthogonal for
- (A) p = 3 (B) p = -3
- (C) no value of p (D) $p = \pm 3$
- **17.** If curves $\frac{x^2}{a^2} \frac{y^2}{h^2} = 1$ and $xy = c^2$ intersect

orthogonally, then

- (A) a + b = 0
- (B) $a^2 = b^2$
- (C) a + b = c
- (D) None of these
- **18.** The ordinate of y = $(a/2) (e^{x/a} + e^{-x/a})$ is the geometric mean of the length of the normal and the quantity
- (A) a/2
- (B) a
- (C) e
- (D) None of these
- 19. Angle between the tangents to the curve $y = x^2 - 5x + 6$ at the points (2, 0) and (3, 0) is
- (A) $\pi/2$
- (B) $\pi/6$
- (C) $\pi/4$
- (D) $\pi/3$
- **20.** If the tangent at P of the curve $y^2 = x^3$ intersects the curve again at Q and the straight lines OP, OQ make angles α , β with the x-axis, where 'O' is the origin, then tan α /tan β has the value equal to
- (A) -1
- (B) -2
- (C) 2
- (D) $\sqrt{2}$
- 21. Water is being poured on to a cylindrical vessel at the rate of 1 m³/min. If the vessel has a circular base of radius 3m, the rate at which the level of water is rising in the vessel is
- (A) $1/9 \pi$ m/min
- (B) $0 \pi \text{ m/min}$
- (C) $1/3 \pi$ m/min
- (D) 3π m/min
- **22.** Find the number of points on the curve $x^2 + y^2 - 2x - 3 = 0$ at which the tangents are parallel to the x-axis.
- (A) 1
- (B) 2
- (C) 3
- (D) None of these

- 23. If at any point on a curve the subtangent and subnormal are equal, then the tangent is equal to
- (A) ordinate
- (B) $\sqrt{2}$ ordinate
- (C) $\sqrt{2(\text{ordinate})}$
- (D) None of these
- **24.** The length of the normal to the curve $x = a(\theta + \sin \theta)$,

$$y = a (1 - \cos \theta)$$
, at $\theta = \frac{\pi}{2}$ is

- (A) 2a (B) $a\sqrt{2}$ (C) a/2 (D) $a/\sqrt{2}$
- 25. The number of values of c such that the straight

line 3x + 4y = c touches the curve $\frac{x^4}{2} = x + y$ is

- (A) 0
- (C) 2
- **26.** The beds of two rivers (within a certain region) are a parabola $y = x^2$ and a straight line y = x - 2. These rivers are to be connected by a straight canal. The co-ordinates of the ends of the shortest canal
- (A) $\left(\frac{1}{2}, \frac{1}{4}\right)$ and $\left(-\frac{11}{8}, \frac{5}{8}\right)$ (B) $\left(\frac{1}{2}, \frac{1}{4}\right)$ and $\left(\frac{11}{8}, -\frac{5}{8}\right)$

- **27.** The points(s) of intersection of the tangents drawn to the curve $x^2y = 1 - y$ at the points where it is intersected by the curve xy = 1 - y is/are given by
- (A)(0,-1)
- (B)(0,1)
- (C)(1,1)
- (D) None of these
- 28. If the area of the triangle included between the axes and any tangent to the curve $x^n y = a^n$ is constant, then n is equal to
- (A) 1
- (B) 2
- (C) $\frac{3}{2}$ (D) $\frac{1}{2}$
- **29.** At (0, 0), the curve $y^2 = x^3 + x^2$
- (A) touches X-axis
- (B) bisects the angle between the axes
- (C) makes an angle of 60° with OX
- (D) None of these
- **30.** For the curve $x = t^2 1$, $y = t^2 t$, the tangent line is perpendicular to x-axis where
- (A) t = 0 (B) $t = \infty$ (C) $t = \frac{1}{\sqrt{3}}$ (D) $t = -\frac{1}{\sqrt{3}}$