ML FOR ECONOMETRICIANS GAUSSIAN PROCESS CLASSIFICATION AND OPTIMIZATION

Mattias Villani

Division of Statistics and Machine Learning
Department of Computer and Information Science
Linköping University

LECTURE OVERVIEW

- ► Large scale GPs
- ► Gaussian Process Classification
- **▶** Gaussian Process Optimization

LARGE SCALE GPS

- ▶ GPs are computationally challenging. Need to invert $n \times n$ matrices such as $\left[K(\mathbf{x}, \mathbf{x}) + \sigma^2 I\right]^{-1}$. Scales as $O(n^3)$.
- Banded covariance functions.
 - ▶ Special covariance functions that makes $K(\mathbf{x}, \mathbf{x})$ sparse.
 - ▶ Observations more than a certain distance apart are uncorrelated.
 - Sparse matrix algebra.
 - ▶ Still $O(n^3)$, but faster for a given n.
- Inducing variables
 - Introduce m latent inducing variables $\mathbf{u} = \{u_1, ..., u_m\}$ with corresponding inducing inputs $\mathbf{X}_u = \{\mathbf{x}_{u_1}, \mathbf{x}_{u_2}, ..., \mathbf{x}_{u_m}\}$. Pseudo inputs.
 - ► The Fully Independent Conditional (FIC) method assumes

$$p(\mathbf{f}|\mathbf{X},\mathbf{X}_u,\mathbf{u},\theta) = \prod_{i=1}^n p_i(f_i|\mathbf{X},\mathbf{X}_u,\mathbf{u},\theta)$$

- ▶ Computations are now $O(m^2n)$. If $m \ll n$, much faster computations.
- Partially Independent Conditional (PIC).

CLASSIFICATION WITH LOGISTIC REGRESSION

- ▶ Classification: binary response $y \in \{-1, 1\}$ predicted by features x.
- Example: linear logistic regression

$$Pr(y = 1|\mathbf{x}) = \lambda(\mathbf{x}^T\mathbf{w})$$

where $\lambda(z)$ is the logistic **link function**

$$\lambda(z) = \frac{1}{1 + \exp(-z)}$$

- $\lambda(z)$ 'squashes' the linear prediction $\mathbf{x}^T\mathbf{w} \in \mathbb{R}$ into $\lambda(\mathbf{x}^T\mathbf{w}) \in [0,1]$.
- Logistic regression has linear decision boundaries.

GP CLASSIFICATION

▶ **GP**: replace $\mathbf{x}^T \mathbf{w}$ by $f(\mathbf{x})$ where

$$f(\mathbf{x}) \sim GP(0, k(\mathbf{x}, \mathbf{x}')).$$

► Squash f through logistic function

$$Pr(y = 1|\mathbf{x}) = \lambda(f(\mathbf{x}))$$

- Decision boundaries are now non-parametric (GP). Flexible.
- ▶ GP Probit: use normal CDF, $\Phi(z)$, as squashing function.

SQUASHING A LINEAR FUNCTION

SQUASHING A GP FUNCTION

GP CLASSIFICATION - INFERENCE

Prediction for a test case x.

$$Pr(y_* = 1 | \mathbf{x}_*, \mathbf{X}, \mathbf{y}) = \int \sigma(f_*) \rho(f_* | \mathbf{x}_*, \mathbf{X}, \mathbf{y}) df_*$$

where $\sigma(f_*)$ is some sigmoidal function and f_* is f at x_* .

▶ The posterior distribution of f_* is

$$p(f_*|\mathbf{x}_*,\mathbf{X},\mathbf{y}) = \int p(f_*|\mathbf{x}_*,\mathbf{X},\mathbf{f})p(\mathbf{f}|\mathbf{X},\mathbf{y})d\mathbf{f}$$

with the posterior of f from the training data.

$$p(f|X, y) \propto p(y|X, f)p(f|X).$$

- ▶ Posterior $p(\mathbf{f}|\mathbf{X},\mathbf{y})$ is no longer analytically tractable. Alternatives:
 - Laplace approximation
 - Expectation propagation
 - MCMC/HMC

MARKOV CHAIN MONTE CARLO

 Metropolis-Hastings (or Hamiltonian MC) to sample from training posterior

$$f|x, y, \theta$$

Produces $\mathbf{f}^{(1)}, ..., \mathbf{f}^{(N)}$ draws.

▶ For each $f^{(i)}$, sample the test posterior f_* from

$$\mathbf{f}_*|\mathbf{f}^{(i)},\mathbf{x},\mathbf{x}_* \sim \mathcal{N}\left(\mathcal{K}(\mathbf{x}_*,\mathbf{x})\mathcal{K}(\mathbf{x},\mathbf{x})^{-1}\mathbf{f}^{(i)},\mathcal{K}(\mathbf{x}_*,\mathbf{x}_*) - \mathcal{K}(\mathbf{x}_*,\mathbf{x})\mathcal{K}(\mathbf{x},\mathbf{x})^{-1}\mathbf{f}^{(i)}\right)$$

Note that this does not depend on y since we condition on f.

Noise-free GP fit. Produces $\mathbf{f}_*^{(1)}, ..., \mathbf{f}_*^{(N)}$ draws.

For each $f_*^{(i)}$, sample a prediction from

$$p(\mathbf{y}_*|\mathbf{f}_*^{(i)},\theta).$$

Produces a draws from the predictive distribution $p(y_*|x_*, x, y, \theta)$.

Straightforward (at least in principle) to also sample the hyperparameters θ. Elliptical slice sampling.

IRIS DATA - SEPAL - SE KERNEL WITH ARD

Laplace: $\hat{\ell}_1 = 1.7214, \hat{\ell}_2 = 185.5040, \sigma_f = 1.4361$

EP: $\hat{\ell}_1 = 1.7189$, $\hat{\ell}_2 = 55.5003$, $\sigma_f = 1.4343$

IRIS DATA - PETAL - SE KERNEL WITH ARD

Laplace: $\hat{\ell}_1 = 1.7606$, $\hat{\ell}_2 = 0.8804$, $\sigma_f = 4.9129$

EP: $\hat{\ell}_1 = 2.1139$, $\hat{\ell}_2 = 1.0720$, $\sigma_f = 5.3369$

IRIS DATA - PETAL - ALL THREE CLASSES

IRIS DATA - PETAL - ALL THREE CLASSES

IRIS DATA - PETAL - ALL THREE CLASSES

IRIS DATA - PETAL - DECISION BOUNDARIES

TOY DATA - SE KERNEL WITH ARD

Laplace: $\hat{\ell}_1 = 0.7726$, $\hat{\ell}_2 = 0.6974$, $\sigma_f = 11.7854$ EP: $\hat{\ell}_1 = 1.2685$, $\hat{\ell}_2 = 1.0941$, $\sigma_f = 17.2774$

GAUSSIAN PROCESS OPTIMIZATION (GPO)

► Aim: minimization of function

$$\operatorname{argmin}_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})$$

► Typical applications: expensive function evaluation in < 20 dimensions. Hyperparameter estimation.

► GPO idea:

- ▶ Assign GP prior to the unknown function *f*.
- ▶ Evaluate the function at some values $x_1, x_2, ..., x_n$.
- ▶ Update to posterior $f|x_1,...,x_n \sim GP(\mu,K)$. Noise-free model.
- Use the GP posterior of f to find a new evaluation point x_{n+1} . Explore vs Exploit.
- ▶ Iterate until the change in optimum is lower that some tolerance.
- ▶ Bayesian Optimization. Bayesian Numerics. Probabilistic numerics.

EXPLORE-EXPLOIT ILLUSTRATION

ACQUISITION FUNCTIONS

► Probability of Improvement (PI)

$$\mathbf{a}_{PI}\left(\mathbf{x}; \{\mathbf{x}_{\mathit{n}}, y_{\mathit{n}}\}, \theta\right) \equiv \Pr\left(f(\mathbf{x}) < f(\mathbf{x}_{\mathit{best}})\right) = \Phi(\gamma(\mathbf{x}))$$

where

$$\gamma(\mathbf{x}) = \frac{f(\mathbf{x}_{best}) - \mu(\mathbf{x}; \{\mathbf{x}_n, y_n\}, \theta)}{\sigma(\mathbf{x}; \{\mathbf{x}_n, y_n\}, \theta)}$$

Expected Improvement (EI)

$$a_{EI}\left(\mathbf{x};\{\mathbf{x}_{\mathit{n}},y_{\mathit{n}}\},\theta\right) = \sigma\left(\mathbf{x};\{\mathbf{x}_{\mathit{n}},y_{\mathit{n}}\},\theta\right)\left[\gamma(\mathbf{x})\Phi(\gamma(\mathbf{x})) + \mathcal{N}\left(\gamma(\mathbf{x});\mathbf{0},\mathbf{1}\right)\right]$$

► Lower Confidence Bound (LCB)

$$\mathbf{a}_{EI}\left(\mathbf{x};\{\mathbf{x}_{\mathit{n}},y_{\mathit{n}}\},\theta\right) = \mu\left(\mathbf{x};\{\mathbf{x}_{\mathit{n}},y_{\mathit{n}}\},\theta\right) - \kappa \cdot \sigma\left(\mathbf{x};\{\mathbf{x}_{\mathit{n}},y_{\mathit{n}}\},\theta\right)$$

Note: need to maximize the acquisition function to choose x_{next}. Non-convex, but cheaper and simpler than original problem.

ACQUISITION FUNCTIONS FROM BROCHU ET AL

CONVNETS - SNOEK ET AL (NIPS, 2012)

GPO IN ACTION: INTRACTABLE STATE-SPACE [1]

State-space model with α -stable noise

$$y_t \sim \text{AlphaStable}(y_t; \alpha, \exp(x_t))$$

 $x_t = \mu + \phi(x_{t-1} - \mu) + \sigma_v \varepsilon_t$

- ► Standard approach for parameter inference in SS models is PMMH.
- ▶ PDF does not exist in closed from for α -stable. Approximate Bayesian Computation (SMC-ABC).
- ▶ Posterior evaluations $\log \hat{p}(\theta_k|y_{1:T})$ are costly and noisy.
- ▶ GPO attractive as it uses few evaluations of the posterior.
- ▶ GPO for normal (Laplace) approximation of the posterior.
- ▶ GPO is 60-100 times faster than state-of-the-art PMMH.
- ▶ Application to 30-dim Gaussian copula with α -stable margins.

SMC-ABC-GPO

- ► SMC-ABC-GPO [1]:
 - 1. Compute an **estimate of the log posterior** at a parameter value θ_k , $z_k = \log \hat{p}(\theta_k|y_{1:T})$ using **SMC-ABC**.
 - 2. Update the **GP** surrogate for the log posterior using the available (noisy) evaluations $\{\theta_i, z_i\}_{i=1}^k$.
 - 3. Use the acquisition rule to determine the next evaluation point θ_{k+1} .
- ► End result from 1-3: smooth GP surrogate to the log posterior.
- ► Approximate **posterior covariance matrix** is obtained from finite differences of the GP posterior mean function.

SANITY CHECK: LINEAR GAUSSIAN STATE SPACE

SANITY CHECK: LINEAR GAUSSIAN STATE SPACE

ANALYSIS OF RETURNS FROM COFFEE FUTURES

GPS CAN BE USED ANYWHERE

► Heteroscedastic GP regression

$$y = f(x) + \exp\left[g(x)\right] \epsilon$$
 so where $f \sim GP\left[m_f(x), k_f(x, x')\right]$ independently of $g \sim GP\left[m_g(x), k_g(x, x')\right]$.

► GP for density estimation

$$p(x) = \frac{\exp[f(x)]}{\int_{\mathbb{R}} \exp[f(t)] dt}$$

where $f \sim GP\left[m(x), k(x, x')\right]$. Appealing mean function: $m(x) = -\frac{1}{2\theta_2}(x - \theta_1)^2$ [i.e. best guess is a normal density].

Shared latent GP for dependent multivariate data $(k \ll p)$

$$\begin{pmatrix} y_1(\mathbf{x}) \\ \vdots \\ y_p(\mathbf{x}) \end{pmatrix} = \underset{p \times k}{\mathsf{L}} \begin{pmatrix} f_1(\mathbf{x}) \\ \vdots \\ f_k(\mathbf{x}) \end{pmatrix} + \begin{pmatrix} g_1(\mathbf{x}) \\ \vdots \\ g_p(\mathbf{x}) \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \vdots \\ g_p(\mathbf{x}) \end{pmatrix}$$

GPS CAN BE USED ANYWHERE

► VARs with nonparametric steady state

$$\begin{pmatrix} y_{1t} \\ \vdots \\ y_{pt} \end{pmatrix} = \begin{pmatrix} \mu_1(t) \\ \vdots \\ \mu_p(t) \end{pmatrix} + \Pi \begin{pmatrix} \begin{pmatrix} y_{1t} \\ \vdots \\ y_{pt} \end{pmatrix} - \begin{pmatrix} \mu_1(t) \\ \vdots \\ \mu_p(t) \end{pmatrix} + \begin{pmatrix} \varepsilon_{1t} \\ \vdots \\ \varepsilon_{pt} \end{pmatrix}$$

where $\mu_j(t)$ is the steady state of $\{y_{jt}\}_{t=1}^T$, and $\mu_j(t) \sim \textit{GP}$ a priori.

Nonparametric system identification in state-space models

$$y_t = h(x_t) + v_t$$
$$x_t = \rho x_{t-1} + w_t$$

and $h \sim GP$.

▶ Hemodynamics in functional MRI (brain imaging). $h \sim GP(\mu_{Physio}, K)$, where μ_{Physio} is a simplified physiological model for blood flows.

GPO IN ACTION: INTRACTABLE STATE-SPACE [1]

▶ State-space model with α -stable noise

$$y_t \sim \text{AlphaStable}(y_t; \alpha, \exp(x_t))$$

 $x_{t+1} = \mu + \phi(x_t - \mu) + \sigma_v \varepsilon_{t+1}$

- Standard approach for parameter inference in SS models is PMMH.
- ▶ PDF does not exist in closed from for α -stable. Approximate Bayesian Computation (SMC-ABC).
- ▶ Posterior evaluations $\log \hat{p}(\theta_k|y_{1:T})$ are costly and noisy.
- ▶ GPO attractive as it uses few evaluations of the posterior.
- ▶ GPO for normal (Laplace) approximation of the posterior.
- ▶ GPO is 60-100 times faster than state-of-the-art PMMH.
- ▶ Application to 30-dim Gaussian copula with α -stable margins.

SMC-ABC-GPO

- ► SMC-ABC-GPO [1]:
 - 1. Compute an **estimate of the log posterior** at a parameter value θ_k , $z_k = \log \hat{p}(\theta_k|y_{1:T})$ using **SMC-ABC**.
 - 2. Update the **GP** surrogate for the log posterior using the available (noisy) evaluations $\{\theta_i, z_i\}_{i=1}^k$.
 - 3. Use the acquisition rule to determine the next evaluation point θ_{k+1} .
- ► End result from 1-3: smooth GP surrogate to the log posterior.
- ► Approximate **posterior covariance matrix** is obtained from finite differences of the GP posterior mean function.

SANITY CHECK: LINEAR GAUSSIAN STATE SPACE

SANITY CHECK: LINEAR GAUSSIAN STATE SPACE

ANALYSIS OF RETURNS FROM COFFEE FUTURES

J. Dahlin, M. Villani, and T. B. Schön, "Bayesian optimisation for approximate inference in state-space models with intractable likelihoods," *arXiv preprint arXiv:1506.06975*, 2015.

