基于 SVM 算法的循环程序的终止性证明

硕士生:孙学超

导 师:张立军 研究员

中国科学院软件研究所 中国科学院大学

Verification

```
1 assume(True);
2 int x = 1;
3 while(x>0)
4 {
5    x++;
6 }
7 assertion(x<=0);</pre>
```

- Step 1: Can the program reach the assertion?
- Step 2: Does the assertion hold?

Verification

```
1 assume(True);
2 int x = 1;
3 while(x>0)
4 {
5    x++;
6 }
7 assertion(x<=0);</pre>
```

• It is very important to check whether the program is TERMINATING in the verification problem.

Bad news & Good news

- In theory, the termination problem of programs has been proven to be undecidable.
- In practice, just return "UNKNOWN" when we can not prove whether it is terminating.

Bad news & Good news

- In theory, the termination problem of programs has been proven to be undecidable.
- In practice, just return "UNKNOWN" when we can not prove whether it is terminating.

Goal:

For a given program, we try to avoid "UNKNOWN" result as much as possible.

Background

- It attracts many researchers to work on the termination of programs.
- Ultimate Automizer, one of the leading tools in program analysis according to the outcomes of the SV-COMP competitions.
- The termination of loops is at the core of the termination analysis techniques used in Ultimate Automizer.

Concern

the termination of simple loop programs, i.e., no nested loops.

Ranking function (RF)

• Informal definition

$$f: S \to \mathbb{R}$$

where S is the set of program states, \mathbb{R} is a well-founded ordered set.

Decrease condition

$$\forall x, x' : f(x) - f(x') \ge \delta > 0$$

where $\delta \in \mathbb{R}$, x is current program state, \mathbf{x}' is the program state after updating.

Bounded condition

$$\forall x : f(x) \ge C$$

where $C \in \mathbb{R}$.

Ranking function (RF)

Thm.

A loop program P is terminating, if P has a ranking function f(x).

Synthesis of ranking functions

- Termination of programs is undecidable.
- Synthesis of ranking function is, however, decidable, given certain classes of ranking functions.

Related works

- Linear program & Single phase linear ranking function
 - In 2002, Colón and Sipma synthesized linear ranking functions for linear-constraint loops.
 - In 2004, a complete and efficient solution was proposed by Podelski and Rybalchenko.
 - ...
- Linear program & K phases ranking function
 - In 2005, Bradley et al. showed how to synthesize lexicographic linear ranking functions (LLRFs).
 - In 2014, Ben-Amram and Genaim provided a complete polynomial-time solution for MΦRFs with bounded depth.
 - ...
- Polynomial program & Single phase ranking function
 - In 2005, Cousot made use of parametric abstraction and SDP to compute ranking functions of loops.
 - \bullet In 2019, Yuan et al. proposed a ranking function detection method exploiting SVM .
 - ...

Our contributions

- Linear program & Single phase linear ranking function
- Linear program & K phases ranking function
- Polynomial program & Single phase ranking function
- Polynomial program & K phases ranking function
 - Based on SVM to synthesize nested ranking functions.
 - Provide the comprehensive empirical evaluation.

Preliminaries

Def. (Loop Program)

A loop program $\Omega(x, x')$ is a binary relation with free variables x and x', where x is the current state, and x' is the next state.

$$\Omega(\mathbf{x}, \mathbf{x}') \triangleq \mathbf{x} > 0 \land \mathbf{x}' = \mathbf{x} + 1$$

Preliminaries

Def. (k-Nested Ranking Function)

Given a loop program Ω , let $k \in \mathbb{N}_{>0}$ and, for each $i \in \{1,\ldots,k\}$, $f_i(x)$ be a polynomial or an algebraic fraction over the program variables x. We call the k-tuple $\langle f_1, f_2, \ldots, f_k \rangle$ a k-nested ranking function of Ω if the following condition holds for a set of parameters $\{\,C_i \in \mathbb{R}_{>0} \mid 1 \leq i \leq k+1\,\}$:

$$\forall (x,x') \in \Omega : \left\{ \begin{array}{l} f_1(x) - f_1(x') \geq C_1 \\ f_2(x) - f_2(x') + f_1(x) \geq C_2 \\ & \vdots \\ f_k(x) - f_k(x') + f_{k-1}(x) \geq C_k \\ f_k(x) \geq C_{k+1} \end{array} \right.$$

Example

```
1 int q,y;
2 while (q>0)
3 {
4     q = q-y;
5     y = y+1;
6 }
```

- Single phase linear ranking function does not work.
- However, it has a 2-nested ranking function.

$$f_1(q,y)=1-y, f_2(q,y)=q+1, C_1=C_2=C_3=1;\\$$

Example

Intuition

- We allow that the ranking function can increase in the previous phases.
- It will finally decrease in their own phase and the following phases.

Overview of the Algorithm

Problems

- How to check the fixed point?
- How to verify the correctness of learned ranking function?
- How to construct the data set?

How to check the fixed point?

Def. (Fixed point)

Given a loop program specified by Ω , we say that $\mathbf{x} \in \mathbb{R}^n$ is a fixed point of the loop if $(\mathbf{x}, \mathbf{x}) \in \Omega$.

Example

```
while (x>0 && y>0)
{
    x = x+y;
    x = x-y;
}
}
```

$$\begin{split} X' &= (x', y') = ((x + y) - y, y) = (x, y) = X \\ \Longrightarrow &\forall X \in \mathbb{R}^2_{>0}, (X, X) \in \Omega \\ \Longrightarrow &\forall X \in \mathbb{R}^2_{>0}, X \text{ is a fixed point.} \end{split}$$

How to verify the correctness of learned ranking functions?

- Decreased condition & Bounded condition
- SMT tools, like Z3, etc.

Check for single phase ranking function

$$\forall (x, x') \in \Omega : f(x) \ge C \land f(x) - f(x') \ge \delta$$

How to verify the correctness of learned ranking functions?

Check for nested ranking functions

$$\forall (x,x') \in \Omega : \left\{ \begin{array}{l} f_1(x) - f_1(x') \geq C_1 \\ f_2(x) - f_2(x') + f_1(x) \geq C_2 \\ & \vdots \\ f_k(x) - f_k(x') + f_{k-1}(x) \geq C_k \\ f_k(x) \geq C_{k+1} \end{array} \right.$$

How to construct the data set?

- Relation between the SVM & the sampled data set.
- Relation between the SVM & the ranking function.

Ranking function

Let $\langle f_1, \dots, f_k \rangle$ be a k-tuple representing a k-nested ranking functions;

$$f_j(x) = a_j^T \cdot U_j(x)$$

where $a_j=(a_{j,1},\ldots,a_{j,s_j})$ is a real vector of coefficients and $U_j(x)=(U_{j,1}(x),\ldots,U_{j,s_j}(x))^T \text{ is an } s_j\text{-tuple with } U_{j,i}(x)=\frac{q_{j,i}(x)}{p_{j,i}(x)},$ where $q_{j,i}(x),p_{j,i}(x)\in\mathbb{R}[x],$ for $i\in\{1,\ldots,s_j\}.$

Ranking function

Exp.

$$f_j(x) = 3x^2 - 4xy + \frac{5y^3}{3x^3 + 2y + 1} + 7$$

$$f_j(x) = a_i^T \cdot U_j(x)$$

where $a_j^T = (3, -4, 5, 7)$ and $U_j(x) = (x^2, xy, \frac{y^3}{3x^3 + 2y + 1}, 1)^T$

Nested ranking function

$$\forall (x, x') \in \Omega : \left\{ \begin{array}{l} f_1(x) - f_1(x') \geq C_1 \\ f_2(x) - f_2(x') + f_1(x) \geq C_2 \\ & \vdots \\ f_k(x) - f_k(x') + f_{k-1}(x) \geq C_k \\ f_k(x) \geq C_{k+1} \end{array} \right.$$

 \Longrightarrow

$$\forall (x,x') \in \Omega : \left\{ \begin{array}{l} a_1^T \cdot (U_1(x) - U_1(x')) \geq C_1 \\ a_2^T \cdot (U_2(x) - U_2(x')) + a_1^T \cdot U_1(x) \geq C_2 \\ & \vdots \\ a_k^T \cdot (U_k(x) - U_k(x')) + a_{k-1}^T \cdot U_{k-1}(x) \geq C_k \\ a_k^T \cdot U_k(x) \geq C_{k+1} \end{array} \right.$$

Substitute

$$\begin{split} G_{1}(x,x') \mapsto \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 0 \\ U_{1}(x) - U_{1}(x') \end{pmatrix}, \ G_{2}(x,x') \mapsto \begin{pmatrix} 0 \\ \vdots \\ 0 \\ U_{2}(x) - U_{2}(x') \\ U_{1}(x) \end{pmatrix}, \ \cdots \\ U_{1}(x) \end{pmatrix} \\ \cdots, \ G_{k}(x,x') \mapsto \begin{pmatrix} U_{k}(x) - U_{k}(x') \\ U_{k-1}(x) \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \ G_{k+1}(x,x') \mapsto \begin{pmatrix} U_{k}(x) \\ 0 \\ \vdots \\ 0 \end{pmatrix} \end{split}$$

Constraint

$$\forall (x, x') \in \Omega : \begin{cases} (a_k^T, \cdots, a_1^T) \cdot G_1(x, x') \ge C_1 \\ (a_k^T, \cdots, a_1^T) \cdot G_2(x, x') \ge C_2 \end{cases} \\ \vdots \\ (a_k^T, \cdots, a_1^T) \cdot G_k(x, x') \ge C_k \\ (a_k^T, \cdots, a_1^T) \cdot G_{k+1}(x, x') \ge C_{k+1} \end{cases}$$
 (1)

where $C_i > 0, i \in 1..k + 1$.

SVM

• Positive examples:

$$f(x) = wx + b > 0$$

• Negative examples:

$$f(x) = wx + b < 0$$

Positive examples

$$\forall (x,x') \in \Omega : \left\{ \begin{array}{l} w \cdot G_1(x,x') + b > 0 \\ w \cdot G_2(x,x') + b > 0 \\ \vdots \\ w \cdot G_k(x,x') + b > 0 \\ w \cdot G_{k+1}(x,x') + b > 0 \end{array} \right.$$

where $\mathbf{w} = (\mathbf{a}_{\mathbf{k}}^{\mathrm{T}}, \cdots, \mathbf{a}_{1}^{\mathrm{T}}), \mathbf{b} = 0.$

Thm.

Given a loop specified by Ω , it have nested polynomial ranking functions as defined in Eq. 1 if and only if there exists a hyperplane L(v) strictly separating the origin $O \in \mathbb{R}^m$ from $G(\Omega) \subseteq \mathbb{R}^m$.

Example

```
int q,y;
while (q>0)
{
    q = q-y;
    y = y+1;
}
```

$$f_1(q,y)=1-y, f_2(q,y)=q+1, C_1=C_2=C_3=1;\\$$

Example

Template

$$\begin{split} f_1(q,y) &= a_1^T \cdot U_1(q,y) = (a_{11},a_{12},a_{13}) \cdot (q,y,1) \\ f_2(q,y) &= a_2^T \cdot U_2(q,y) = (a_{21},a_{22},a_{23}) \cdot (q,y,1) \end{split}$$

Constraint

$$\forall ((q,y),(q,y)') \in \Omega : \left\{ \begin{array}{l} a_1^T \cdot (U_1(q,y) - U_1(q',y')) \geq C_1 \\ a_2^T \cdot (U_2(q,y) - U_2(q',y')) + a_1^T \cdot U_1(q,y) \geq C_2 \\ a_2^T \cdot U_2(q,y) \geq C_3 \end{array} \right.$$

Substitute

$$G_{1}(q, y, q', y') \mapsto \begin{pmatrix} 0 \\ U_{1}(q, y) - U_{1}(q', y') \end{pmatrix},$$

$$G_{2}(q, y, q', y') \mapsto \begin{pmatrix} U_{2}(q, y) - U_{2}(q', y') \\ U_{1}(q, y) \end{pmatrix},$$

$$G_{3}(q, y, q', y') \mapsto \begin{pmatrix} U_{2}(q, y) \\ 0 \end{pmatrix}$$

Constraint

$$\forall (q,y,q',y') \in \Omega: \left\{ \begin{array}{l} (a_2^T,a_1^T) \cdot G_1(q,y,q',y') \geq C_1 \\ (a_2^T,a_1^T) \cdot G_2(q,y,q',y') \geq C_2 \\ (a_2^T,a_1^T) \cdot G_3(q,y,q',y') \geq C_3 \end{array} \right.$$

where $C_i > 0, i \in 1..3$.

SVM

$$\forall (q,y,q',y') \in \Omega : \left\{ \begin{array}{l} w \cdot G_1(q,y,q',y') + b \geq C_1 > 0 \\ w \cdot G_2(q,y,q',y') + b \geq C_2 > 0 \\ w \cdot G_3(q,y,q',y') + b \geq C_3 > 0 \end{array} \right.$$

where $\mathbf{w} = (\mathbf{a}_2^{\mathrm{T}}, \mathbf{a}_1^{\mathrm{T}}), \mathbf{b} = 0.$

Data set

Algorithm

Algorithm

Algorithm 1: The SVM-based algorithm for synthesizing k-nested ranking functions

Input: Program Ω , initial sample size n, functions template $U = \langle U_1, \dots, U_k \rangle$ Output: The k-nested ranking coefficients $(\mathbf{a}_k^T, \dots, \mathbf{a}_1^T)$ if Ω is well-founded; "nonterminating" if Ω contains fixed points; "unknown" otherwise begin

```
if HasFixedPoint(\Omega) then
 2
            return (nonterminating, GetFixedPoint(\Omega)):
 3
        D := \{(\mathbf{O}, -1)\}:
 4
        for i := 1 to n do
 5
            Sample (\mathbf{x}, \mathbf{x}') randomly from \Omega;
 6
            D := D \cup \text{GETDATAPOINT}(U, (\mathbf{x}, \mathbf{x}'));
 7
        while true do
 8
            svm := SVM(D);
 9
            if svm = (\mathbf{a}_k^T, \dots, \mathbf{a}_1^T) then
10
                 check := Verify(svm, U, \Omega);
11
                 if check = true then
12
                     return (terminating, svm);
13
                 else // check is a counterexample of the form (\mathbf{x}, \mathbf{x}')
14
                     D := D \cup \text{GetDataPoint}(U, check);
15
            else // SVM failed to separate {\bf O} from the points from G(\Omega)
16
                 return unknown
17
```

Experiment

- Implement algorithm in a prototype tool named SVMRanker.
- Compare with LassoRanker, which is the main part of the Ultimate Automizer for proving termination of loop programs.
- Linear program
 - All program cases are adapted from the programs in the official website of LassoRanker.
- Non-linear program
 - All cases are adapted from the programs in related papers which focus on the termination of non-linear programs.

Result

	Terminating	Non-terminating	Unknown	Timeout
Dataset	65	69	-	-
SVMRanker	40	34	0	60
LassoRanker	24	37	73	0
Common cases	19	34	0	0

Tab.: Summary of the experiments

Conclusion & Future Work

Conclusion

- Based on SVM to synthesize nested ranking functions.
 - Able to deal with the polynomial programs with nested ranking functions.
 - Show the relation between the nested ranking functions and the SVM algorithm.
- Provide the comprehensive empirical evaluation.
 - Implement algorithm in a prototype tool named SVMRanker.
 - Solve many cases with the non-linear ranking function.

• Future Work

- Try to apply the learning algorithm to prove the non-termination of programs.
- Find more efficient SMT tools to verify the ranking function.

Experience of Master Student

- Yi Li, Xuechao Sun, Yong Li, Andrea Turrini, Lijun Zhang:
 Synthesizing Nested Ranking Functions for Loop Programs via
 SVM. ICFEM 2019: 438-454.(CCF- C 类会议, 大会报告作者)
- Yong Li, Xuechao Sun, Andrea Turrini, Yu-Fang Chen, Junnan Xu: ROLL 1.0: -Regular Language Learning Library. TACAS (1) 2019: 365-371.(CCF-B 类会议, 工具短文, 大会报告作者)

Thanks! & Questions?