Technische Universität Wien

Institut für Automatisierungs- und Regelungstechnik

SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 27.04.2012

Arbeitszeit: 120 min

Name:							
Vorname(n):							
Matrikelnumme	er:						Note
	Aufgabe	1	2	3	4	Σ	
	erreichbare Punkte	10	10	10	10	40	
	erreichte Punkte						
7.4							
${\bf Bitte}\;$							
tragen Sie	e Name, Vorname und	Matrik	ælnumr	ner auf	dem I	eckbla [†]	tt ein,
rechnen S	ie die Aufgaben auf se	parate	n Blätte	ern, ni o	c ht auf	dem A	ngabeblatt,
beginnen	Sie für eine neue Aufg	abe im	mer au	ch eine	neue S	leite,	
geben Sie	auf jedem Blatt den I	Namen	sowie d	lie Mat	rikelnu	mmer a	an,
bogründer	n Sie Ihre Antworten a	afiihr	lich und	1			
begrunder	i Sie ime Antworten a	iusiuiii.	nen une	ı			
	ie hier an, an welcher Intreten können:	n der f	olgende	n Term	nine Sie	nicht	zur mündlicher
	Fr., 04.05.2012	\square Mo.	, 07.05.	2012		Fr., 11	.05.2012

1. Im Folgenden wird ein Wellenenergiewandler betrachtet, welcher zur Stromerzeugung verwendet wird. Dabei wird kinetische Energie mithilfe einer hydraulischen Pumpe in elektrische Energie umgewandelt. Idealisiert wird diese im Folgenden als passives Dämpferelement modelliert.

Abbildung 1: Prinzipbild.

Der Wellenenergiewandler schwimmt im Wasser und besteht im Wesentlichen aus einem Schwimmgerüst und einem Tauchkörper. Es sei angenommen, dass das Schwimmgerüst dem Wellengang, beschrieben durch die Lagekoordinate s_G , der Geschwindigkeit $w_G = \dot{s}_G$ und der Beschleunigung $a_G = \dot{w}_G$, exakt folgt. Am Schwimmgerüst ist über ein lineares Feder-Dämpfer-System ein Tauchkörper mit der Masse m_T befestigt. Aufgrund des Feder-Dämpfer-Systems kann sich der Tauchkörper relativ zum Gerüst bewegen. Diese Bewegung wird durch den Abstand s_T zwischen Schwimmgerüst und Tauchkörper und der zugehörigen Geschwindigkeit $w_T = \dot{s}_T$ beschrieben. Auf den Tauchkörper wirkt somit eine Federkraft und eine Vorspannkraft $c_T l_o$ mit der Federsteifigkeit c_T bzw. eine viskose Dämpfungskraft mit dem Dämpfungskoeffizienten d_T . Zusätzlich wirkt auf den Tauchkörper die Gewichtskraft F_G (Erdbeschleunigung g) und die konstante Auftriebskraft F_A .

Eine bewegliche Membran trennt im Tauchkörper eine luftgefüllte Gaskammer von einer Wasserkammer. Dabei kann Luft mit der Dichte ρ_L mithilfe des Volumenstroms q in bzw. aus der Gaskammer gefüllt und dementsprechend Wasser mit der Dichte ρ_W aus der Wasserkammer aus- bzw. eingepumpt werden.

a) Stellen Sie den Impulserhaltungssatz für den Tauchkörper in z_0 -Richtung auf. 31 Hinweis: Sie müssen den Impulserhaltungssatz (Die Änderung des Impulses entspricht der Summe der äußeren Kräfte) bezüglich des Inertialsystems $(x_0y_0z_0)$ aufstellen.

- b) Stellen Sie ferner die Massenbilanz für den Tauchkörper auf.
- c) Geben Sie das mathematische Modell des Wellenenergiewandlers in der Form

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{x} = \mathbf{f}(\mathbf{x}, u, \mathbf{d}), \quad \mathbf{x}(0) = \mathbf{x}_0,$$
$$y = h(\mathbf{x}, u, \mathbf{d})$$

- an. Wählen Sie dazu die Zustandsgrößen $\mathbf{x} = \begin{bmatrix} s_T & w_T & m_T \end{bmatrix}^{\mathsf{T}}$, den Eingang u=q sowie den Vektor der Störgrößen $\mathbf{d} = \begin{bmatrix} w_G & a_G \end{bmatrix}^{\mathsf{T}}$ und den Ausgang $y=s_T$.
- d) Bestimmen Sie alle physikalisch sinnvollen Ruhelagen für $w_{G,R} = a_{G,R} = 0$, $m_{T,R} = m_0 = \text{konst.}$ und linearisieren Sie anschließend das System um eine allgemeine Ruhelage $(\mathbf{x}_R, u_R, \mathbf{d}_R)$.

2. Gegeben ist der folgende Regelkreis

Abbildung 2: Regelkreis.

mit der Übertragungsfunktion der zeitkontinuierlichen Strecke

$$G(s) = \frac{1}{s},\tag{1}$$

der zeitdiskreten Reglerübetragungsfunktion R(z), dem Halteglied H und dem Abtaster A. Für die Führungsgröße gilt im Folgenden $(r_k) = (0, 0, 0, \ldots)$.

- a) Wie lautet die zu (1) zugehörige z-Übertragungsfunktion G(z). 1 P.
- b) Es gilt vorerst R(z)=P=konst.. Berechnen Sie beiden Störübertragungsfunktionen $T_{y,v}(z)$ und $T_{y,d}(z)$ des Regelkreises nach Abbildung 2. 2 P.
- c) Existiert ein P derart, dass gilt: $\lim_{k\to\infty}(y_k) = 0$ für $(d_k) = (1, 1, 1, ...)$ und $(v_k) = (1, 1, 1, ...)$. Begründen Sie Ihre Antwort ausführlich.
- d) Nun gilt $R(z) = K_p \frac{z-b}{z-a}$ mit $K_p > 0$ und b = 0.5. Bestimmen Sie den Parameter a, sodass für ein geeignetes K_p gilt: $\lim_{k \to \infty} (y_k) = 0$ für $(d_k) = (0, 0, 0, \ldots)$ und $(v_k) = (1, 1, 1, \ldots)$.
- e) Ist der Regelkreis aus Aufgabe 2d) für die Regelverstärkung $K_p=1$ und eine Abtastzeit $T_a=1$ s intern stabil. Begründen Sie Ihre Antwort ausführlich. 1 P.
- f) Aus den Anforderungen an den geschlossenen Kreis resultiere eine notwendige Phasenanhebung von 45° und eine Betragsabsenkung von $40\,\mathrm{dB}$ bei $\Omega_c = 0.1\,\mathrm{s}^{-1}$ für den offenen Kreis. Legen Sie im Tustinbereich den Regler aus Aufgabe 1d) $R(z) = K_p \frac{z-b}{z-a}$ für a=1 und der Abastzeit $T_a=2\,\mathrm{s}$ aus. Bestimmen Sie die Parameter K_P und b so, dass die genannten Anforderungen erfüllt werden. 3 P.

3. Gegeben sei das vollständig erreichbare Abtastsystem

$$\mathbf{x}_{k+1} = \mathbf{\Phi} \mathbf{x}_k + \mathbf{\Gamma} u_k, \quad \mathbf{x}(0) = \mathbf{x}_0, \tag{2a}$$

$$y_k = \mathbf{c}^{\mathrm{T}} \mathbf{x}_k + du_k \tag{2b}$$

mit $\Phi \in \mathbb{R}^{n \times n}$, Γ , $\mathbf{c}^{\mathrm{T}} \in \mathbb{R}^{n}$ und $d \in \mathbb{R}$. Mithilfe der regulären Zustandstransformation $\mathbf{z}_{k} = \mathbf{V}\mathbf{x}_{k}$ soll dieses System auf Steuerbarkeitsnormalform (erste Standardform)

$$\mathbf{z}_{k+1} = \mathbf{\Phi}_S \mathbf{z}_k + \mathbf{\Gamma}_S u_k, \quad \mathbf{z}(0) = \mathbf{z}_0, \tag{3a}$$

$$y_k = \mathbf{c}_S^{\mathrm{T}} \mathbf{z}_k + d_S u_k \tag{3b}$$

transformiert werden.

- a) Geben Sie allgemein den Zusammenhang zwischen Φ , Γ , \mathbf{c}^{T} , \mathbf{x}_{0} , d und Φ_{S} , Γ_{S} , $\mathbf{c}_{S}^{\mathrm{T}}$, \mathbf{z}_{0} , d_{S} über die Transformationsmatrix V an.
- b) Die Transformationsmatrix lässt sich als Spaltenvektor von Zeilenvektoren $\mathbf{v}_i^{\mathrm{T}}$ mit $i=1,2,\ldots,n$ in der Form

$$\mathbf{V} = \begin{bmatrix} \mathbf{v}_1^{\mathrm{T}} \\ \mathbf{v}_2^{\mathrm{T}} \\ \vdots \\ \mathbf{v}_n^{\mathrm{T}} \end{bmatrix}$$
 (4)

2P.

4 P.

darstellen. Welche Bedingungen müssen die Zeilenvektoren $\mathbf{v}_i^{\mathrm{T}}, i=2,3,\ldots,n$ erfüllen, damit die Transformation auf Steuerbarkeitsnormalform durchführbar ist. Begründen Sie Ihre Antwort ausführlich.

c) Gegeben ist das vollständig erreichbare Abtastsystem

$$\mathbf{x}_{k+1} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \mathbf{x}_k + \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} u_k, \tag{5a}$$

$$y_k = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \mathbf{x}_k + 2u_k. \tag{5b}$$

Berechnen Sie die Steuerbarkeitsnormalform und die zugehörige Transformationsmatrix \mathbf{V} in Anlehnung an Aufgabe 3d), wobei der Vektor $\mathbf{v}_1^{\mathrm{T}}$ mit

$$\mathbf{v}_1^{\mathrm{T}} = \begin{bmatrix} -\frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \end{bmatrix} \tag{6}$$

gegeben ist. Beachten Sie, dass die Inverse der Matrix ${f V}$ dazu nicht benötigt wird.

Anmerkung: Sollten Sie bei dieser Aufgabe zu keiner Lösung gelangen, so wählen Sie für die nachfolgende Aufgabe ein System 3. Ordnung, welches bereits in Steuerbarkeitsnormalform vorliegt.

d) Zeichnen Sie das Strukturbild der Steuerbarkeitsnormalform für das System aus Aufgabe 3d).

4. Gegeben sei das lineare, zeitdiskrete System der Form

$$\mathbf{x}_{k+1} = \begin{bmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{bmatrix} \mathbf{x}_k + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u_k, \tag{7a}$$

$$y_k = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}_k. \tag{7b}$$

Lösen Sie folgende Teilaufgaben:

- a) Beurteilen Sie die Stabilität des Systems (7). Begründen Sie Ihre Antwort ausführlich.
- b) Entwerfen Sie für das zeitdiskrete System einen Zustandsregeler der Form

$$u_k = \mathbf{k}^{\mathrm{T}} \mathbf{x}_k + g r_k,$$

sodass die Eigenwerte des geschlossenen Kreises bei $z = \frac{1}{2}$ zu liegen kommen. 3 P.

c) Leiten Sie die allgemeine Bestimmungsgleichung für den Verstärkungsfaktor g her und bestimmen Sie diesen derart, dass für den geschlossenen Kreis für eine Eingangsfolge $(r_k) = r_0(1^k) = (r_0, r_0, r_0, \ldots)$

$$\lim_{k \to \infty} y_k = r_0$$

gilt. 2 P.|

- d) Überprüfen Sie das System (7) auf Beobachtbarkeit. Verwenden Sie dazu die die Beobachtbarkeitsmatrix \mathcal{O} . 0.5 P.|
- e) Entwerfen Sie zusätzlich zum Zustandsregler einen Dead-Beat Beobachter. 2 P.
- f) Zeichnen Sie ein Blockschaltbild der resultierenden Regelkreisstruktur bestehend aus der Strecke S, dem Zustandsregler R und dem Beobachter B. Kennzeichnen Sie die entsprechenden Signale anhand der System- und Führungsgrößen. $2\,\mathrm{P.l.}$