

Corrigé du devoir maison n°15

1. On calcule $I = \int_0^1 t \arctan t dt$ à l'aide d'une intégration par parties : on pose

$$u'(t) = t$$
 $v(t) = \arctan t$
 $u(t) = \frac{1}{2}t^2$ $v'(t) = \frac{1}{1+t^2}$.

Chacune des fonctions u et v est de classe \mathscr{C}^1 sur [0,1], donc :

$$I = \int_0^1 \frac{t}{u'(t)} \times \arctan t \, dt = \left[\frac{1}{2} t^2 \times \arctan t \right]_0^1 - \int_0^1 \frac{1}{2} t^2 \times \frac{1}{1+t^2} \, dt = \frac{1}{2} \arctan 1 - \frac{1}{2} \int_0^1 \frac{t^2}{1+t^2} \, dt.$$

Or $\frac{1}{2}$ arctan $1 = \frac{1}{2} \times \frac{\pi}{4} = \frac{\pi}{8}$, et

$$\begin{split} \int_0^1 \frac{t^2}{1+t^2} \mathrm{d}t &= \int_0^1 \frac{1+t^2-1}{1+t^2} \mathrm{d}t = \int_0^1 \frac{1+t^2}{1+t^2} \mathrm{d}t - \int_0^1 \frac{1}{1+t^2} \mathrm{d}t \\ &= \int_0^1 1 \mathrm{d}t - [\arctan t]_0^1 = 1 - (\arctan 1 - \arctan 0) = 1 - \frac{\pi}{4}. \end{split}$$

Finalement

$$I = \frac{\pi}{8} - \frac{1}{2} \left(1 - \frac{\pi}{4} \right) = \frac{\pi}{8} - \frac{1}{2} + \frac{\pi}{8} = \frac{\pi}{4} - \frac{1}{2}.$$

2. On calcule $I=\int_1^{e^2} \frac{\ln x}{\sqrt{x}} \mathrm{d}x$ à l'aide du changement de variable de classe \mathscr{C}^1 :

$$x = t^2 dx = 2tdt.$$

On complète le tableau de valeurs :

$x = t^2$	1	e^2
t	1	e

Le théorème de changement de variable donne

$$I = \int_{1}^{e^{2}} \frac{\ln x}{\sqrt{x}} dx = \int_{1}^{e} \frac{\ln (t^{2})}{\sqrt{t^{2}}} 2t dt = \int_{1}^{e} \frac{2 \ln t}{t} 2t dt = \int_{1}^{e} 4 \ln t dt.$$

On sait ¹ qu'une primitive de $t \mapsto \ln t$ est $t \mapsto t \ln t - t$, donc

$$I = [4(t \ln t - t)]_1^e = 4\left(e \underbrace{\ln e}_{=1} - e\right) - 4\left(1\underbrace{\ln 1}_{=0} - 1\right) = 4.$$

Remarque : il est tout aussi naturel de faire le changement de variable $x = e^t$, qui conduit à $I = \int_0^2 t e^{t/2} dt$. Cependant, vous ne connaissez pas de primitive de $t \mapsto t e^{t/2}$, et il faut faire une IPP pour pouvoir terminer le calcul.

^{1.} Si vous ne connaissez pas de primitive de $t \mapsto \ln t$, il faut faire une intégration par parties pour pouvoir conclure.

3. Pour tout $n \in \mathbb{N}^*$, on pose $S_n = \sum_{k=n}^{2n-1} \frac{1}{k}$.

On effectue d'abord un changement d'indice :

$$S_n = \sum_{k=n}^{2n-1} \frac{1}{k} = \sum_{j=k-n}^{n-1} \frac{1}{n+j}.$$

Ensuite on met $\frac{1}{n}$ en facteur pour faire apparaître une somme de Riemann :

$$S_n = \sum_{j=0}^{n-1} \frac{1}{n\left(1 + \frac{j}{n}\right)} = \frac{1}{n} \sum_{j=0}^{n-1} \frac{1}{1 + \frac{j}{n}}.$$

Il s'agit d'une somme de Riemann, pour la fonction $f: x \mapsto \frac{1}{1+x}$, sur l'intervalle [0,1] .

La fonction f est de classe \mathscr{C}^1 sur [0,1] , donc

$$S_n \xrightarrow[n \to +\infty]{} \int_0^1 \frac{1}{1+x} dx = [\ln(1+x)]_0^1 = \ln 2 - \ln 1 = \ln 2.$$

- 4. Pour tout entier naturel n, on pose $I_n = \int_0^1 \frac{x}{1+x^n} dx$.
 - (a) Soient un entier naturel n, un réel $x \in [0, 1]$.

D'une part $1 + x^n \ge 1$, donc $\frac{1}{1 + x^n} \le 1$. D'autre part, $(1 - x^n)(1 + x^n) = 1 - x^{2n} \le 1$, donc $1 - x^n \le \frac{1}{1 + x^n}$. On a donc

$$1 - x^n \le \frac{1}{1 + x^n} \le 1,$$

puis en multipliant par x (qui est positif):

$$x(1-x^n) \le \frac{x}{1+x^n} \le x.$$

(b) On intègre la double inégalité précédente sur l'intervalle [0,1]:

$$\int_0^1 x (1 - x^n) dx \le \int_0^1 \frac{x}{1 + x^n} dx \le \int_0^1 x dx.$$

Autrement dit:

$$\int_{0}^{1} (x - x^{n+1}) dx \le I_{n} \le \int_{0}^{1} x dx$$
$$\int_{0}^{1} x dx - \int_{0}^{1} x^{n+1} dx \le I_{n} \le \int_{0}^{1} x dx.$$

Or $\int_0^1 x dx = \left[\frac{1}{2}x^2\right]_0^1 = \frac{1}{2} \times 1^2 - \frac{1}{2} \times 0^2 = \frac{1}{2} \text{ et } \int_0^1 x^{n+1} dx = \left[\frac{1}{n+2}x^{n+2}\right]_0^1 = \frac{1}{n+2} \times 1^{n+2} - \frac{1}{n+2} \times 0^{n+2} = \frac{1}{n+2}, \text{ donc finalement}$

$$\frac{1}{2} - \frac{1}{n+2} \le I_n \le \frac{1}{2}.$$

On peut conclure : $\lim \frac{1}{n+2} = 0$, donc d'après le théorème des gendarmes :

$$\lim I_n = \frac{1}{2}.$$