

Tensor-Based Approaches to fMRI Classification

Vida John, Katherine Keegan, Tanvi Vishwanath, Yihua Xu; Advised by Elizabeth Newman

Emory University REU 2021: Computational Mathematics for Data Science

Abstract

To analyze the abundance of multidimensional data, tensor-based frameworks have been developed. Traditional matrix-based frameworks extract the most relevant features of vectorized data using the matrix-SVD. However, we may lose crucial high-dimensional relationships in this process. To facilitate efficient multidimensional feature extraction, we propose a projection-based classification algorithm using the t-SVDM, a tensor-based extension of the matrix-SVD. We apply our algorithm to the StarPlus fMRI dataset.

Motivation - Matrix vs. Tensor

Matrix Method

- Uses matrix Singular Value Decomposition (SVD)
- Widely used in image processing
- Cannot identify relationships in higher dimensions

Figure 1:Turning multidimensional data into a matrix

Tensor Method

- Better representation of high-dimensional structure
- ullet Flexibility in choosing a transformation $oldsymbol{M}$

Background

- The **mode-**k **product** [5] refers to the multiplication of a matrix M along the k^{th} dimension of the tensor.
- \star_{M} -product: [3] Given tensors $\mathbf{A} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$, $\mathbf{B} \in \mathbb{R}^{n_2 \times \ell \times n_3}$, and an invertible $\mathbf{M} \in \mathbb{R}^{n_3 \times n_3}$:

$$C = A \star_{\mathrm{M}} B = (\hat{A} \triangle \hat{B}) \times_{3} M^{-1}$$

where $\mathbf{C} \in \mathbb{R}^{n_1 \times \ell \times n_3}$.

• Figure 2 shows the t-SVDM of a tensor \mathcal{A} .

Figure 2:t-SVDM for third-order tensors [4]

Classification via Local t-SVDM

We extend the algorithm in [7] to higher-order tensors and the \star_{M} -product.

Preprocessing

 $lacktriang{1}{2}$ Split training data $oldsymbol{\mathcal{A}}$ into c distinct classes:

$$oldsymbol{\mathcal{A}}_1, oldsymbol{\mathcal{A}}_2, \dots, oldsymbol{\mathcal{A}}_c$$

• For each class i, compute t-SVDM and store first k basis elements:

$$oldsymbol{\mathcal{A}}_i = oldsymbol{\mathcal{U}}_i \star_{\mathrm{M}} oldsymbol{\mathcal{S}}_i \star_{\mathrm{M}} oldsymbol{\mathcal{V}}_i^ op \qquad oldsymbol{\mathcal{U}}_{i,k} = oldsymbol{\mathcal{U}}_i(:,1:k,:)$$

Classifying a Test Image \mathcal{T}

footnotemark Project $oldsymbol{\mathcal{T}}$ onto space spanned by each class basis:

$$\mathcal{P}_i = \mathcal{U}_{i,k} \star_{\mathrm{M}} \mathcal{U}_{i,k}^{\mathsf{T}} \star_{\mathrm{M}} \mathcal{T}, \text{ for } i = 1, \ldots, c$$

Categorize \mathcal{T} as the class whose projection was "closest" to the original image:

$$i^* = \underset{i=1,...,c}{\arg\min} \| \mathcal{T} - \mathcal{P}_i \|_F.$$

To measure the performance of our algorithm, $accuracy = \frac{\# correctly \ classified \ images}{\# images}$

Intuition - MNIST [6]

Figure 3:Illustration of classifying two digits of the MNIST Dataset using the local t-SVDM algorithm. Bases \mathcal{U}_0 and \mathcal{U}_1 are generated by digits from class 0 and class 1, respectively. We project \mathcal{T} onto the spaces spanned by \mathcal{U}_0 and \mathcal{U}_1 and obtain \mathcal{P}_0 and \mathcal{P}_1 , respectively.

- \mathcal{P}_0 has characteristics of both digit 0 and digit 1
- \mathcal{P}_1 retains the characteristics of digit 1 only
- $\|\mathcal{T} \mathcal{P}_0\|_F \approx 1.46 > \|\mathcal{T} \mathcal{P}_1\|_F \approx 0.61$
- \mathcal{T} classified as a 1

StarPlus fMRI Data [2]

Figure 4:(trials, x, y, z, time) = (480, 64, 64, 8, 16)

The StarPlus fMRI data consists of six human subjects completing 80 trials, each corresponding to the distinct cognitive tasks of viewing either a picture or a sentence. The data is marked with anatomically-defined Regions of Interest (ROI's).

Figure 5:Twenty-five labeled Regions of Interest (ROIs)

Power of Tensor Representations

Figure 6:Test accuracy with respect to number of basis elements for various choices of \star_{M} -product.

- Traditional matrix method overlooks the intrinsic characteristics of fMRI images as brain slices over time are very interconnected
- Tensor method outperforms matrix method in test accuracy with:
- ullet appropriate choice of transformation matrix $oldsymbol{M}$
- small number of basis elements

Impact of Brain Regions

We also experiment with an ROI-dependent \boldsymbol{M} calculated from the most prominent ROI's in each trial.

Figure 7:Results with ROI-dependent M for two subjects ¹

- Best ROI's vary depending on the subject
- No specific regions consistently improve performance in all subjects
- ullet Illustrates how humans complete these cognitive tasks differently, demonstrating the difficulty of creating a good universal basis $oldsymbol{\mathcal{U}}$

Conclusions and Future Work

- Local t-SVDM classification approach outperforms the equivalent matrix-based approach
- The most important brain regions for classification vary depending on the human subject
- Explore applications in disease prevention and diagnosis by utilizing other fMRI datasets
- Compare to other tensor-based frameworks such as Higher-Order SVD [5]

Reference

[1] Brain: Temporal lobe, vagal nerve, frontal lobe. https://my.clevelandclinic.org/health/diseases/ 16799-brain-temporal-lobe-vagal-nerve--frontal-lobe. Cleveland Clinic. [2] M. Just. Starplus fmri data. Center for Cognitive Brain Imaging at Carnegie Mellon University. [3] E. Kernfeld, M. Kilmer, and S. Aeron. Tensor-tensor products with invertible linear transforms. Linear Algebra and its Applications, 485:545–570, 11 2015. [4] M. E. Kilmer, L. Horesh, H. Avron, and E. Newman. Tensor-tensor algebra for optimal representation and compression of multiway data. Proceedings of the National Academy of Sciences, 118(28), 2021. [5] T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM Review, 51(3):455–500, September 2009. [6] Y. LeCun and C. Cortes. MNIST handwritten digit database. [7] E. Newman, M. Kilmer, and L. Horesh. Image classification using local tensor singular value decompositions.

Processing (CAMSAP), pages 1–5, 2017.

aRPPREC = right posterior precentral sulcus, ROPER = right opercularis,

LTRIA = left triangularis, LSGA = supramarginal gyrus, CALC = calcarine sulcus [1]

In 2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive