Global Navigation Satellite System (GNSS) Radio Occultation Sounder Data Independent Exchange Format Version 1.00

National Space Science Center, CAS

E-mail: xgmeng@nssc.ac.cn

Table of contents

0	FORWARD	1
1	SCOPE	1
2	DEFINITIONS, AND ABBREVIATIONS	1
	2.1 Time	1
	2.1.1 GPS time	1
	2.1.2 BeiDou time	2
	2.1.3 GLONASS time	2
	2.1.3 Galileo System Time	2
	2.1.4 QZSS Time	2
	2.1.5 NavIC/IRNSS System Time	2
	2.1.5 Time System Conversions	2
	2.2 GNSS Radio Occultation	3
	2.3 Carrier Phase Observation	3
	2.4 Signal-to-Noise Ratio	3
	2.5 Close-loop	3
	2.6 Open-loop	3
	2.7 Open-loop Model Phase	3
	2.8 Abbreviations	4
3	GENERAL CONCEPT	4
	3.1 GNSS Occultation Sounder Data Independent Exchange Format File	4
	3.1.1 Document type	4
	3.1.2 Document naming	5
	3.1.3 Document structure	6
	3.1.4 Format description method	6
	3.2 Document Header Section	6
	3.2.1 Basic format	6
	3.2.2 Arrangement order of header records	7
	3.2.3 Handling of unknown items of header record information	7
	3.2.4 Time system identification	7
	3.3 Data Section	7
	3.3.1 Recording rules of observation data	7
4 F(GNSS ATMOSPHERIC OCCULTATION OBSERVATION DATA INDEPENDENT EXCHANGE ORMAT FILE	8
	4.1 Overview	8
	4.2 Document Header Section	8

	4.2.1 Components	8
	4.2.2 Observation Code	9
	4.2.3 Format of the Header Section	13
	4.3 Data Section	15
	4.3.1 Components	15
	4.3.2 Observation time	16
	4.3.3 Type of observations	16
	4.3.4 Order of observations	17
	4.3.5 Definition of the data section format	17
	4.3.6 Epoch symbols of the data section	18
	GNSS IONOSPHERIC OCCULTATION OBSERVATION DATA INDEPENDENT EXCHANGE ORMAT FILE	18
	5.1 Overview	19
	5.2 Document Header Section	19
	5.2.1 Components	19
	5.2.2 Observation Code	19
	5.2.3 Format of the Header Section	19
	5.3 Data Section	21
	5.3.1 Components	21
	5.3.2 Observation time of the data section	21
	5.3.3 Type of observations	22
	5.3.4 Order of Observations	22
	5.3.5 Format of the data section	22
6	GNSS POSITIONING OBSERVATION DATA INDEPENDENT EXCHANGE FORMAT FILE	23
7	APPENDIX(INFORMATIV)	23
	A.1 Example of BDS atmospheric occultation observation data file	23
	A.2 Example of GPS atmospheric occultation observation data file	23
	A.3 Example of BDS/GPS hybrid atmospheric occultation observation data file	23
	A.4 Example of BDS ionospheric occultation observation data file	23
	A.5 Example of GPS ionospheric occultation observation data file	23

0 FORWARD

This document is based on the actual needs of GNSS radio occultation detection applications. It refers to the organizational structure and data record formats of standard data formats, such as the Receiver Independent Exchange Format (RINEX) V4.00, developed jointly by the International GNSS Service (IGS), the Radio Technical Commission for Maritime Service (RTCM), and the International Association of Geodesy (IAG). This document modifies and extends these standards to accommodate the unique characteristics of GNSS occultation observation data, and designs the GNSS Radio Occultation Data Independent Exchange Format (ROEX). Additionally, it prepares and establishes standard files of GNSS radio occultation data independent exchange format, supporting the independent exchange and unified processing of GNSS radio occultation sounder data.

1 SCOPE

This document specifies the type of Global Satellite Navigation System (GNSS) radio occultation sounder data independent exchange format file, composition structure, observation, and format of data records.

This document applies to the independent exchange of space-based global satellite navigation system radio occultation sounder (GNSS occultation sounder) data but also applies to the independent exchange of space-based regional satellite navigation system radio occultation sounder data. Mountain-based and air-based can be used for reference.

2 DEFINITIONS, AND ABBREVIATIONS

Before providing a detailed introduction to the ROEX format, we need to explain some basic definitions and abbreviations

2.1 Time

The time of the measurement is the receiver time of the received signals. In the observation data file of a multi-GNSS system combination, the header record must include a time system identifier to specify the time system used for all time-related tags (or time parameters) in the file.

2.1.1 GPS time

GPS Time (GPST) is a continuous time scale (no leap seconds) defined by the GPS Control segment on the basis of a set of atomic clocks at the Monitor Stations and onboard the satellites. It starts at 0^h UTC (midnight) of January 5th to 6th 1980 (6.^d0). At that epoch, the difference TAI–UTC was 19 seconds, thence GPS–UTC=n – 19^s . GPS time is synchronized with the UTC(USNO) at 1 microsecond level (modulo one second), but actually is kept within 25 ns.

2.1.2 BeiDou time

BeiDou Time (BDT) is a continuous time scale starting at 0^h UTC on January 1st, 2006. In order to be as consistent as possible with UTC, BDT may steer to an interposed frequency adjustment after a period of time (more than 30 days) according to the situation, but the quantity of adjustment is not to allowed more than 5×10^{-15} .

2.1.3 GLONASS time

GLONASS Time (GLO) is basically running on UTC (or, more precisely, GLONASS system time linked to UTC(SU)), i.e. the time tags are given in UTC and not GPS time. It is not a continuous time, i.e. it introduces the same leap seconds as UTC.

2.1.3 Galileo System Time

Galileo System Time (GAL) is a continuous time scale maintained by the Galileo Central Segment and synchronized with TAI with a nominal offset below 50 ns.

The GST start epoch is 00:00 UT on Sunday 22nd August 1999 (midnight between 21st and 22nd August). At the start epoch, GST was ahead of UTC by 13 leap seconds. Since then, 3 additional leap seconds have been introduced (31 Dec. 2005 and 2008, and 30 Jun. 2012). Therefore, currently GST is ahead of UTC by 16 seconds.

2.1.4 QZSS Time

QZSS runs on QZSS time, which conforms to UTC Japan Standard Time Group (JSTG) time and the offset with respect to GPS time is controlled. The following properties apply to the QZSS time definition: the length of one second is defined with respect to TAI; QZSS time is aligned with GPS time (offset from TAI by integer seconds).

2.1.5 NavIC/IRNSS System Time

NavIC/IRNSS runs on Indian Regional Navigation Satellite System Time (IRNSST). The IRNSST start epoch is 00:00:00 on Sunday August 22nd, 1999, which corresponds to August 21st, 1999, 23:59:47 UTC.

2.1.5 Time System Conversions

If the small deviation between time systems is ignored, GLO can take the same value as UTC in the data file, and the relationship between UTC and GPS, GAL, BDT, QZS, and IRN can be expressed by equations (1) to (5):

$$UTC = GPS - \Delta t_{LS_{CPS}}$$
 (1)

$$UTC = GAL - \Delta t_{LS_{GAL}}$$
 (2)

$$UTC = BDT - \Delta t_{LS_{BDT}}$$
 (3)

$$UTC = QZS - \Delta t_{LS_{QZS}}$$
 (4)

$$UTC = IRN - \Delta t_{LS_{IRN}}$$
 (5)

where:

Δt_{LS_GPS} —Leap second correction between GPS time and UTC given in the GPS navigation message;
Δt_{LS_GAL} —Leap second correction between GAL time and UTC given in Galileo navigation messages;
Δt_{LS_BDT} —Leap second correction between BDT time and UTC given in BDS navigation messages;
Δt_{LS_QZS} —Leap second correction between QZS time and UTC given in QZSS navigation messages;
$\Delta t_{LS\ IRN}$ —Leap second correction between IRN time and UTC given in IRNSS navigation messages.

2.2 GNSS Radio Occultation

Limb detection of GNSS satellites by the GNSS Occultation Sounder. GNSS radio occultation events occur when the GNSS occultation sounder tracks GNSS satellites as the signal path rises or falls through the Earth's atmosphere and ionosphere.

- **Note 1**: By analyzing the phase and amplitude of the occultation signal of the tracked GNSS satellite recorded by the GNSS occultation sounder, the refractive index, density, air pressure, temperature, humidity of the atmosphere, and the refractive index and electron density of the ionosphere and other elements can be obtained.
- **Note 2**: GNSS occultation detectors can be placed on platforms such as satellite platforms, mountaintops, aircraft, or floatplanes.

2.3 Carrier Phase Observation

The cumulative phase of the GNSS signal carrier is measured by the GNSS occultation sounder tracking the carrier signal.

Note: Locked signal during positioning observation, occultation closed-loop observation, unlocked signal during occultation open-loop observation (ground reconstruction of carrier phase observation).

2.4 Signal-to-Noise Ratio

The ratio of the average power of the signal observed by the GNSS occultation sounder to the average power of the noise.

2.5 Close-loop

Tracking loop with feedback system, the feedback system uses the local signal and the real received signal carrier phase and pseudorange difference to calculate the signal frequency and phase, feedback control of the local pseudo-code, and carrier CNC oscillator to generate the local pseudo-codes and carriers.

2.6 Open-loop

Calculate local carrier and pseudo-code phases using dynamics and atmospheric models, and control local pseudo-code and carrier CNC oscillators to generate local pseudo-codes and carriers.

2.7 Open-loop Model Phase

Predicted carrier phase (and pseudo-code phase) for GNSS occultation open-loop tracking using dynamical and atmospheric models, combined with GNSS satellite and GNSS occultation sounder position velocities.

2.8 Abbreviations

The following abbreviations are applicable to this document.

ASCII: American Standard Code for Information Interchange

BDS: BeiDou Navigation Satellite System
Galileo: Galileo Navigation Satellite System
GLONASS: Global Navigation Satellite System
GNSS: Global Navigation Satellite System

GPS: Global Positioning System **IQ**: In-phase and Quadrature

IRNSS: Indian Regional Navigation Satellite System ITRF: International Terrestrial Reference Frame

LEO: Low Earth Orbit Satellite
PRN: Pseudo Random Noise

QZSS: Quasi-Zenith Satellite System

RINEX: Receiver Independent Exchange Format

ROEX: GNSS Radio Occultation Data Independent Exchange Format

SBAS: Satellite-Based Augmentation System

SNR: Signal-to-Noise Ratio

UTC: Coordinated Universal TimeTAI: International Atomic Time

3 GENERAL CONCEPT

3.1 GNSS Occultation Sounder Data Independent Exchange Format File

3.1.1 Document type

The GNSS occultation sounder data includes GNSS radio occultation observation data and positioning observation data. This document has developed a special ROEX format for GNSS radio occultation observation data for independent exchange of occultation observation data.

The GNSS occultation sounder data independent exchange format file is a pure ASCII text file, and the three file types included are as follows:

- a) GNSS atmospheric occultation observation¹⁾ data files (including single-system and multi-system hybrid observation data files), which follow the ROEX atmospheric observation data file format;
- b) GNSS ionospheric occultation observation data files, which follow the ROEX ionospheric observation data file format;
- c) GNSS positioning observation data files (including single-system and multi-system hybrid observation data files), which follow the RINEX observation data file format

¹⁾Atmospheric occultation observations in this document refer specifically to neutral atmospheric occultation observations.

3.1.2 Document naming

GNSS radio occultation detector data independent exchange format file naming is recommended by the carrier name, sounder name, data start time, data duration, data type, and file suffix, etc., the format is as follows:

Mission_Payload_StartTime_Duration _DataType.Format.Compression

The character length of each field is fixed, separated by "_", and the last two fields "Format" and "Compression" are separated by "." between "Format" and "Compression". If the data length is insufficient, it is filled with 0. The description of each subparagraph in the file name is shown in Table 1.

Note: File naming is not strictly part of the GNSS occultation sounder data exchange format definition, users can follow only the ROEX and RINEX data format definitions according to business needs.

Tab. 1 Description of each sub-item in the file naming

Description items	Name	Necessary	Format
Mission	Name of the mission (or spacecraft)	Yes	4-character marker e.g.: FY3D means Fengyun-3D satellite
Payload	GNSS occultation sounder name	Yes	4-character marker e.g.: GNOS denotes the name of the GNSS occultation sounder on the FY3D satellite
StartTime	Data start time	Yes	Marked with 14 characters in the format YYYYMMDDHHMMSS, where YYYY means 4-digit year, MM means 2-digit month, DD means 2-digit day, and HHMMSS means the measurement start time (hour, minute, second). e.g.: 20210408121121 means the data start time is 12:11:21 on April 8, 2021. Time system using the file header identification of the time system
Duration	Data duration	Yes	5-characters marker, unit in seconds Padding with zeros on the left side of the insufficient part e.g.: 00090 means the data duration is 90 seconds
DataType	Data Type	Yes	Mark with 2 characters in the format SF S: Satellite System Identifier F: Data types (A: atmospheric occultation observations; I: ionospheric occultation observations; P: positioning observations) details: CA=BDS Atm. Obs. GA=GPS Atm. Obs. RA=GLONASS Atm. Obs. EA=Galileo Atm. Obs. JA=QZSS Atm. Obs. SA=SBAS Atm. Obs. IA=IRNSS Atm. Obs. IA=IRNSS Atm. Obs. GI=GPS Ion. Obs. GI=GPS Ion. Obs. RI=GLONASS Ion. Obs. EI=Galileo Ion. Obs. JI=QZSS Ion. Obs.

			SI=SBAS Ion. Obs.
			II=IRNSS Ion, Obs.
			CP=BDS Pos. Obs.
			GP=GPS Pos. Obs.
			RP=GLONASS Pos. Obs.
			EP=Galileo Pos. Obs.
			JP=QZSS Pos. Obs.
			SP=SBAS Pos. Obs.
			IP=IRNSS Pos. Obs.
			MP=Mixed Pos. Obs.
			Where, Atm. Obs.: Atmospheric Observation; Ion. Obs.:
			Ionospheric Observation; Pos. Obs.: Positioning Observation.
Format	Data file format	Yes	3-character marker, ROX (or rox) if in ROEX format, RNX (or
Format	Data me format	ies	rnx) if in RINEX format.
Compression	Compression method	No	2-3-character markers
Compression	for data files	INO	e.g.: gz: gzip compression method; zip: bzip2 compression method.

3.1.3 Document structure

Each type of GNSS occultation sounder data independent exchange format file consists of a "header" section, which is a description of the file and data record, and a "data" section, which is used to record the observation data.

3.1.4 Format description method

GNSS occultation sounder data independent exchange format file, the format of each line is expressed as oZa.b. When the data type is X, A, I, the data has only oZa part, and when the data type is F, only a.b part. Where:

- a) o: the total amount of data of the same type and format, if default it means only 1 data; if "m" means there are m data;
- b) Z: the data type:
 - 1) X: Any placeholder character (space or non-valid character for additional description);
 - 2) A: Valid characters;
 - 3) F: Floating type numbers;
 - 4) I: Integer type number.
- c) a.b: The length of the data, where:
 - 1) a: Total length of data bits (all valid digits including decimal points);
 - 2) b: Decimal part length (number of valid digits after the decimal point).

Example:

- **2F8.3:** two consecutive floating-point numbers, each occupying a total of 8 digits, with the decimal part being 3 digits.

3.2 Document Header Section

3.2.1 Basic format

Each line of the header section of the GNSS occultation sounder data independent exchange format file is a

header record. The length of each header record is no more than 80 ASCII characters (columns), of which, 1~60 columns are the information part of the header record, and 61~80 columns are the header record identification. The header record identifier has a uniformly specified format and is a description of the content of the information portion of columns 1~60 of the row.

The ROEX file header section contains a description of the global attributes in the mask data file and a list of observation codes.

3.2.2 Arrangement order of header records

The order of the header records in the ROEX format file can be freely arranged except for the following requirements, see Appendix A for an example. The two fixed header records are:

- a) "ROEX VERSION/TYPE" should be the first header record in the document;
- b) "END OF HEADER" is the last header record.

3.2.3 Handling of unknown items of header record information

When the GNSS occultation sounder data independent exchange format file is generated, unknown items in the header record information section may be zeroed or left blank, or the entire header record may be left blank. Until the value of the header record or item is obtained, the program that reads the OBS data SNF file may set the default header record or missing item to zero or blank.

3.2.4 Time system identification

The GNSS occultation sounder data independent exchange format file uses a three-character valid time system identifier to indicate the time system used in the file.

In the observation data file of a single satellite navigation system (BDS, GPS, GLONASS, Galileo, QZSS or IRNSS), the time system identifier is by default the time of that satellite navigation system, and the headers record "TIME OF FIRST OBS" (or "TIME OF FIRST CLO" or "TIME OF FIRST OPE") and "TIME OF LAST OBS" (or "TIME OF LAST CLO" or "TIME OF LAST OPE") may optionally contain the time system identifier; and in the case of BDS/GPS/GLONASS/Galileo/QZSS/ IRNSS multi-satellite navigation system combination observation data files, these two header records must contain the time system identifier, which identifies the time system used for all marked times (or time parameters) in the file.

The time system markers are defined as follows:

- a) BDT: BDS Time;
- b) GPS: GPS Time;
- c) GLO: GLONASS Time;
- d) GAL: Galileo Time;
- e) QZS: QZSS Time;
- f) IRN: IRNSS Time.

3.3 Data Section

3.3.1 Recording rules of observation data

The rules for recording the observation data are as follows:

- a) The first line of each ephemeris record includes the observation time, the number of satellites, the receiver clock bias, and other information, starting with the symbol ">";
- b) Each (row) of observation data records below the epoch line starts with the satellite system and number *snn*, the specific identifier and number are defined in Table 2. the next row starts with the observation type and observation information of the same observation data record;
- c) For atmospheric occultation observation data files, the signs "START OF OBS CLO" and "END OF OBS CLO" should be used to indicate the beginning and end of closed-loop observation records, and the signs "START OF OBS OPE" and "END OF OBS OPE" should be used to indicate the beginning and end of open-loop observation records, respectively;
- d) For ionospheric occultation observation data files, the end-of-file marker "END OF HEADER" is immediately followed by the observation data record.

Satellite Systems	System identifier (s)	Satellite number (nn)					
BDS	С						
GPS	G						
Galileo	Е	PRN code of the system's observed satellite					
IRNSS	I						
GLONASS	R	The slot number of the frequency segment of the satellite system					
SBAS	S	Its PRN code minus 100 (e.g., SBAS satellite PRN 120 is represented as S20					
QZSS	J	PRN code minus two digits of a fixed value					

Tab.2 Satellite system identifier and number definition

Note: For LEX/L6D of QZSS system with centimeter-level enhancement service, the fixed value is 192; for L1-SAIF/L1S with sub-meter-level enhancement service, the fixed value is 182; for L6E with centimeter-level enhancement experiment, the fixed value is 202; for L5S used for positioning technology verification, the snn and PRN codes correspond to: J02 (PRN196), J03 (PRN200), and J07 (PRN197).

4 GNSS ATMOSPHERIC OCCULTATION OBSERVATION DATA INDEPENDENT EXCHANGE FORMAT FILE

4.1 Overview

Each GNSS atmospheric occultation observation data file contains data for a single occultation event observation period only. The header section of the data file describes the global properties of that atmospheric occultation event, and the data section is the observation data record of that atmospheric occultation event.

4.2 Document Header Section

4.2.1 Components

The file header of GNSS atmospheric occultation observation data file consists of several header records from "REX VERSION/TYPE" to "END OF HEADER", and a typical file header composition is shown in Fig. 1.

The observation code in the header record is used to identify the type of observation in the data record in the data section, as defined in 4.2.2, and the correspondence with the observation is defined in 4.3.4. The specific format of the header record is defined in 4.3.5.

1 1.00 A C ROEX VERSION / TYPE 2 PROD 1.00 NSSC 20220320 080355 UTC PGM / RUN BY / DATE 3 ####################################	
8 GPS/BD XXXX 3.0 REC # / TYPE / VERS Atmospheric 9 -128.260 -35.474 OCC APPROX POS L/B	
occultation 10 1 OCC SETTING	
file header 11 C07 C22 OCC / REF SAT #	
record 12 C 6 L2I L6I S2I S6I C2I C6I SYS/#/OCC CLO TYPES	5
13 C 4 L21 L61 C21 C61 SYS/#/REF CLO TYPES	5
14 C 9 L2I L6I S2I S6I 02I I2I Q2I C2I C6I SYS/#/OCC OPE TYPES	5
15 C 4 L2I L6I C2I C6I SYS/#/REF OPE TYPES	5
16 2022 1 2 1 16 13.9400000 BDT TIME OF FIRST CLO	
17 2022 1 2 1 17 55.9800000 BDT TIME OF LAST CLO	
18 2022 1 2 1 16 48.0000000 BDT TIME OF FIRST OPE	
19 2022 1 2 1 17 55.9900000 BDT TIME OF LAST OPE	
20 0.020 INTERVAL OF OBS CLO	(F:1-11)
21 0.010 INTERVAL OF OBS OPE	
22 END OF HEADER	end marker

Fig.1 The composition of the header section of a typical atmospheric occultation observation data file

4.2.2 Observation Code

The header section of the GNSS atmospheric occultation data file uses observation codes to identify the different observations and their attributes, the list of observation codes is shown in Table 3.:

- a) t: the observation type:
 - 1) L: Carrier phase;
 - 2) S: Signal-to-noise ratio;
 - 3) C: pseudo-range;
 - 4) O: Open-loop model phase;
 - 5) I: Open-loop I circuit;
 - 6) Q: Open-loop Q circuit.
- b) n: band/frequency with the value of 1, 2, ..., 8;
- c) a: Properties, the tracking mode or channel (e.g., I, Q, etc.). Observation code for a combined code (e.g. M+L) or combined channel (e.g. I+Q) tracking mode with the attribute identifier "X".

Note: I and Q in the observation type denote the isotropic and quadrature correlation results of the local signal in open-loop tracking, while I and Q in the attribute denote the isotropic and quadrature modulated components of the GNSS transmit signal.

						Observati	on code		
System	Freque ncy Band	Frequenc y MHz	Channel/Rangin g Code	Carrie r Phase	Signal- to- noise ratio	pseudo -range	Open -loop model phase	Open- loop I circuit	Open- loop Q circui t

Tab. 3 Observation code

	B1		I (B1I Signal)	L2I	S2I	C2I	O2I	I2I	Q2I
	(BDS-	1561.098	Q	L2Q	S2Q	C2Q	O2Q	I2Q	Q2Q
	2/3 Signal)		I+Q	L2X	S2X	C2X	O2X	I2X	Q2X
	B1C		Data	L1D	S1D	C1D	O1D	I1D	Q1D
	(BDS-3	1575.42	Pilot	L1P	S1P	C1P	O1P	I1P	Q1P
	Signal)		Data+Pilot	L1X	S1X	C1X	O1X	I1X	Q1X
	B1A		Data	L1S	S1S	C1S	O1S	I1S	Q1S
	(BDS-3	1575.42	Pilot	L1L	S1L	C1L	O1L	I1L	Q1L
	Signal)		Data+Pilot	L1Z	S1Z	C1Z	O1Z	I1Z	Q1Z
	B2a		Data	L5D	S5D	C5D	O5D	I5D	Q5D
	(BDS-3	1176.45	Pilot	L5P	S5P	C5P	O5P	I5P	Q5P
	Signal)		Data+Pilot	L5X	S5X	C5X	O5X	I5X	Q5X
	B2	1207.140	I (B2I Signal)	L7I	S7I	C7I	O7I	I7I	Q7I
BDS	(BDS-2 Signal)	1207.140	Q	L7Q	S7Q	C7Q	O7Q	I7Q	Q7Q
	Signai)		I+Q	L7X	S7X	C7X	O7X	I7X	Q7X
	B2b		Data	L7D	S7D	C7D	O7D	I7D	Q7D
	(BDS-3	1207.140	Pilot	L7P	S7P	C7P	O7P	I7P	Q7P
	Signal)		Data+Pilot	L7Z	S7Z	C7Z	O7Z	I7Z	Q7Z
	B2(B2a	1191.795	Data	L8D	S8D	C8D	O8D	I8D	Q8D
	+B2b)		Pilot	L8P	S8P	C8P	O8P	I8P	Q8P
	(BDS-3 Signal)		Data+Pilot	L8X	S8X	C8X	O8X	I8X	Q8X
	В3	1268.52	I	L6I	S6I	C6I	O6I	I6I	Q6I
	(BDS-		Q	L6Q	S6Q	C6Q	O6Q	I6Q	Q6Q
	2/3 Signal)		I+Q	L6X	S6X	C6X	O6X	I6X	Q6X
	ВЗА		Data	L6D	S6D	C6D	O6D	I6D	Q6D
	(BDS-3	1268.52	Pilot	L6P	S6P	C6P	O6P	I6P	Q6P
	Signal)		Data+Pilot	L6Z	S6Z	C6Z	O6Z	I6Z	Q6Z
			C/A	L1C	S1C	C1C	O1C	I1C	Q1C
			L1C(D)	L1S	S1S	C1S	O1S	I1S	Q1S
			L1C(P)	L1L	S1L	C1L	O1L	I1L	Q1L
			L1C(D+P)	L1X	S1X	C1X	O1X	I1X	Q1X
GPS	L1	1575.42	P (AS invalid)	L1P	S1P	C1P	_	_	
			Z- Tracking and Similar Computing (AS valid)	L1W	S1W	C1W	_	_	_
			Y	L1Y	S1Y	C1Y	O1Y	I1Y	Q1Y

			M	L1M	S1M	C1M	O1M	I1M	Q1M
			Uncoded	L1N	S1N	_	_	_	_
			C/A	L2C	S2C	C2C	O2C	I2C	Q2C
			L1(C/A) +(P2- P1) (Semi-Uncoded)	L2D	S2D	C2D	O2D	I2D	Q2D
			L2C(M)	L2S	S2S	C2S	O2S	I2S	Q2S
			L2C(L)	L2L	S2L	C2L	O2L	I2L	Q2L
			L2C(M+L)	L2X	S2X	C2X	O2X	I2X	Q2X
	L2	1227.60	P (AS invalid)	L2P	S2P	C2P	_	_	_
			Z- Tracking and Similar Computing (AS valid)	L2W	S2W	C2W	_	_	_
			Y	L2Y	S2Y	C2Y	O2Y	I2Y	Q2Y
			M	L2M	S2M	C2M	O2M	I2M	Q2M
			Uncoded	L2N	S2N	_	_	_	_
			I	L5I	S5I	C5I	O5I	I5I	Q5I
	L5	1176.45	Q	L5Q	S5Q	C5Q	O5Q	I5Q	Q5Q
			I+Q	L5X	S5X	C5X	O5X	I5X	Q5X
	G1	1602+k×9 /16(k= -	C/A	L1C	S1C	C1C	O1C	I1C	Q1C
		$7^{-10(K-2)}$	P	L1P	S1P	C1P	O1P	I1P	Q1P
		1600.995	L1OCd	L4A	S4A	C4A	O4A	I4A	Q4A
	Gla		L10Cp	L4B	S4B	C4B	O4B	I4B	Q4B
		1246+k×	L1OCd+L1OCp C/A	L4X L2C	S4X S2C	C4X C2C	O4X O2C	I4X I2C	Q4X Q2C
GLONASS	G2	7/16	P	L2P	S2P	C2P	O2P	I2P	Q2P
GLOTASS		1248.06	L2CSI	L6A	S6A	C6A	O6A	I6A	Q6A
	G2a		L2OCp	L6B	S6B	C6B	O6B	I6B	Q6B
			L2CSI+L2OCp	L6X	S6X	C6X	O6X	I6X	Q6X
			I	L3I	S3I	C3I	O3I	I3I	Q3I
	G3	1202.025	Q	L3Q	S3Q	C3Q	O3Q	I3Q	Q3Q
			I+Q	L3X	S3X	C3X	O3X	I3X	Q3X
			A PRS	L1A	S1A	C1A	O1A	I1A	Q1A
			B OS data	L1B	S1B	C1B	O1B	I1B	Q1B
	E1	1575.42	C OS pilot	L1C	S1C	C1C	O1C	I1C	Q1C
Galileo			В+С	L1X	S1X	C1X	O1X	I1X	Q1X
Gameo			A+B+C	L1Z	S1Z	C1Z	O1Z	I1Z	Q1Z
			I F/NAV OS	L5I	S5I	C5I	O5I	I5I	Q5I
	E5a	1176.45	Q No Data	L5Q	S5Q	C5Q	O5Q	I5Q	Q5Q
			I+Q	L5X	S5X	C5X	O5X	I5X	Q5X

			I I/NAV	L7I	S7I	C7I	O7I	I7I	Q7I
	E5b	1207.140	OS/CS/SoL	L/I	5/1	C/I	0/1	1/1	Q/I
	LSO		Q No Data	L7Q	S7Q	C7Q	O7Q	I7Q	Q7Q
			I+Q	L7X	S7X	C7X	O7X	I7X	Q7X
	E5(E5a		I	L8I	S8I	C8I	O8I	I8I	Q8I
	+E5b)	1191.795	Q	L8Q	S8Q	C8Q	O8Q	I8Q	Q8Q
			I+Q	L8X	S8X	C8X	O8X	I8X	Q8X
			A PRS	L6A	S6A	C6A	O6A	I6A	Q6A
			B C/NAV CS	L6B	S6B	C6B	O6B	I6B	Q6B
	E6	1278.75	C No Data	L6C	S6C	C6C	O6C	I6C	Q6C
			B+C	L6X	S6X	C6X	O6X	I6X	Q6X
			A+B+C	L6Z	S6Z	C6Z	O6Z	I6Z	Q6Z
	L1	1575.42	C/A	L1C	S1C	C1C	O1C	I1C	Q1C
SBAS			I	L5I	S5I	C5I	O5I	I5I	Q5I
52115	L5	1176.45	Q	L5Q	S5Q	C5Q	O5Q	I5Q	Q5Q
			I+Q	L5X	S5X	C5X	O5X	I5X	Q5X
	L1		C/A	L1C	S1C	C1C	O1C	I1C	Q1C
			C/B	L1E	S1E	C1E	O1E	I1E	Q1E
		1575.42	L1C(D)	L1S	S1S	C1S	O1S	I1S	Q1S
			L1C(P)	L1L	S1L	C1L	O1L	I1L	Q1L
			L1C(D+P)	L1X	S1X	C1X	O1X	I1X	Q1X
			L1S/L1-SAIF	L1Z	S1Z	C1Z	O1Z	I1Z	Q1Z
			L1Sb	L1B	S1B	C1B	O1B	I1B	Q1B
	L2	1227.60	L2C(M)	L2S	S2S	C2S	O2S	I2S	Q2S
			L2C(L)	L2L	S2L	C2L	O2L	I2L	Q2L
			L2C(M+L)	L2X	S2X	C2X	O2X	I2X	Q2X
QZSS		1176.45	I	L5I	S5I	C5I	O5I	I5I	Q5I
			Q	L5Q	S5Q	C5Q	O5Q	I5Q	Q5Q
	L5		I+Q	L5X	S5X	C5X	O5X	I5X	Q5X
	L3	1170.43	L5S(I)	L5D	S5D	C5D	O5D	I5D	Q5D
			L5S(Q)	L5P	S5P	C5P	O5P	I5P	Q5P
			L5S(I+Q)	L5Z	S5Z	C5Z	O5Z	I5Z	Q5Z
			L6D	L6S	S6S	C6S	O6S	I6S	Q6S
			L6P	L6L	S6L	C6L	O6L	I6L	Q6L
	L6	1278.75	L6(D+P)	L6X	S6X	C6X	O6X	I6X	Q6X
			L6E	L6E	S6E	C6E	O6E	I6E	Q6E
			L6(D+E)	L6Z	S6Z	C6Z	O6Z	I6Z	Q6Z
			A SPS	L5A	S5A	C5A	O5A	I5A	Q5A
IRNSS	L5	1176.45	B RS(D)	L5B	S5B	C5B	O5B	I5B	Q5B
			C RS(P)	L5C	S5C	C5C	OL5C	I5C	Q5C

			B+C	L5X	S5X	C5X	O5X	I5X	Q5X
			A SPS	L9A	S9A	C9A	O9A	I9A	Q9A
	S	S 2492.028	B RS(D)	L9B	S9B	C9B	O9B	I9B	Q9B
	5		C RS(P)	L9C	S9C	C9C	O9C	I9C	Q9C
			B+C	L9X	S9X	C9X	O9X	I9X	Q9X

4.2.3 Format of the Header Section

The format of the header part of the GNSS atmospheric occultation observation data file is shown in Table 4.

Tab. 4 GNSS atmospheric occultation observation data file header format

Header record identification	NSS atmospheric occultation observation data file header form	
(columns 61-80)	Descriptions	Format
	- Format Version: 1.00	F9.2,11X,
	- File Type ("A": Atmospheric occultation observation file)	A1,19X,
	- Satellite System Code:	A1,19X
	"C": BDS	
	"G": GPS	
ROEX VERSION / TYPE	"R": GLONASS	
	"E": Galileo	
	"J": QZSS	
	"S": SBAS	
	"I": IRNSS	
	"M": Multi-system (the occultation and reference stars are different	
	satellite navigation systems)	
	- Generate the program name of the current file	A20,
	- Generate the institution name of the current file	A20,
	- Time of file generation	A20
	The file generation time format is defined as follows:	
PGM / RUN BY / DATE	yyyymmdd hhmmss zone	
	where yyyy is 4-digit year, mm is 2-digit month, dd is 2-digit day,	
	hh is 2-digit hour, mm is 2-digit minute, ss is 2-digit second. zone is	
	time zone (3–4-character code, UTC is recommended, if local time	
	is unknown, then mark zone as LCL).	
* COMMENT	Comment line	A60
MARKER NAME	Name of measurement marker point (carrier)	A60
OBSERVER / AGENCY	Name of observer/institution	A20, A40
REC # / TYPE / VERS	Receiver number, model, and version	3A20
REC#/IIIE/VERS	(Version: such as the version of the receiver's built-in software)	
	- Approximate position of the occultation event, expressed in	2(1X, F8.3),42X
* OCC APPROX POS L/B	longitude/latitude	
· OCC AFFROX FOS L/B	Unit: degree	
	Coordinate frames are recommended for ITRF	
* OCC ATIM DANCE	- The azimuth range of the occultation observation, in order, is the	2(1X, F8.3),42X
* OCC AZIM RANGE	starting azimuth, the ending azimuth	

	Unit: degree	
	- The altitude angle range of the occultation observation, in order, is	2(1X, F8.3),42X
* OCC ELEV RANGE	the starting altitude angle, the ending altitude angle	
	Unit: degree	
OCC SETTING	Up or down masking star marker (0: up; 1: down)	I2,58X
	- Occultation satellite system(C/G/E/R/J/S/I)	A1,
OCC / REF SAT #	- Occultation Satellite Number	I2,2X,
OCC / REF SAT II	- Reference Star Satellite System(C/G/E/R/J/S/I)	A1,
	- Reference Star Satellite Number	I2,52X
	- Satellite System (C/G/E/R/J/S/I)	A1,
	- Number of distinct observations of closed-loop occultation in the	2X, I3,
	atmosphere	13(1X, A3)
SYS/#/OCC CLO TYPES	- Atmospheric Closed Loop Occultation Observation Quantity	
	Indicator:	6X,13(1X, A3)
	Observation type, frequency band, attribute	
	If more than 13 observations: use continuation line to solve	
	- Satellite System (C/G/E/R/J/S/I)	A1,
	- Number of distinct observations of closed-loop occultation in the	2X, I3,
SYS/#/REF CLO TYPES	atmosphere	13(1X, A3)
S1S/#/REF CLU TIPES	- Atmospheric Closed Loop Occultation Observation Quantity	(W 12/1W A2)
	Indicator:	6X,13(1X, A3)
	Observation type, frequency band, attribute If more than 13 observations: use continuation line to solve	
	- Satellite System (C/G/E/R/J/S/I)	A1,
	- Number of distinct observations of open-loop occultation sat.	2X, I3,
	- Atmospheric Open-loop Occultation Observation Quantity	13(1X, A3)
SYS/#/OCC OPE TYPES	Indicator:	13(1A, A3)
	Observation type, frequency band, attribute	6X,13(1X, A3)
	If more than 13 observations: use continuation line to solve	011,12(111,112)
	- Satellite System (C/G/E/R/J/S/I)	A1,
	- Number of distinct observations of open-loop reference sat.	2X, I3,
GYGUUDEE ODE EVDEG	- Atmospheric Open-loop Occultation Observation Quantity	13(1X, A3)
SYS/#/REF OPE TYPES	Indicator:	
	Observation type, frequency band, attribute	6X,13(1X, A3)
	If more than 13 observations: use continuation line to solve	
*INTERVAL OF OBS CLO	- Atmospheric occultation closed-loop observation interval (s)	F10.3
*INTERVAL OF OBS OPE	- Atmospheric occultation open-loop observation interval (s)	F10.3
	- The time of the first atmospheric closed-loop occultation	
	observation record:	I6,
	Year (4 digits)	4I6,
	month, day, hour, minute (2 digits each)	F13.7,
	seconds	5X, A3
	- time system:	
TIME OF FIRST CLO	BDT (=BDS time system)	
	GLO (=UTC time system)	
	GAL (=Galileo time system) CDS (=GDS time system)	
	GPS (=GPS time system)	
	QZS (=QZSS time system) IRN (=IRNSS time system)	
	The time system should be given in the combined GNSS document	
	Default value:	
	Default value.	

	Separate BDS file, with BDT time system	
	Separate GPS file, time system for GPS	
	Separate Galileo file, with GAL time system	
	Separate GLONASS file, with GLO time system	
	Separate QZSS file, with QZS time system	
	Separate IRNSS file, with IRN time system	
	- Time of the last closed-loop occultation observation of the	
	atmosphere:	I6,
	Year (4 digits)	4I6,
*TIME OF LAST CLO	month, day, hour, minute (2 digits each)	F13.7,
TIME OF EAST CEO	seconds	5X, A3
		JA, AJ
	- time system: Same as "TIME OF FIRST CLO"	
	- Time of the last closed-loop occultation observation of the	IC
	atmosphere:	I6,
TIME OF FIRST OPE	Year (4 digits)	4I6,
TIME OF FIRST OPE	month, day, hour, minute (2 digits each)	F13.7,
	seconds	5X, A3
	- time system:	
	Same as "TIME OF FIRST CLO"	
	- Time of the last closed-loop occultation observation of the	
	atmosphere:	I6,
**************************************	Year (4 digits)	4I6,
*TIME OF LAST OPE	month, day, hour, minute (2 digits each)	F13.7,
	seconds	5X, A3
	- time system:	
	Same as "TIME OF FIRST CLO"	
*RCV CLOCK OFFS APPL	- Whether real-time receiver clock bias is performed	I6
	1: Yes; 0: No; Default: no modification required	
	-leap second Δt_LS (Corresponding system ephemeris broadcast)	I6,
	-Leap seconds before and after the new leap seconds take effect	I6,
	(instantaneously) Δt_LSF	I6,
*LEAP SECONDS	- Week count for new leap seconds to take effect WN_LSF	I6
	(Continuous weekly count)	
	- Number of days in the week when the new leap second is in effect	
	DN 0 if unknown or leave blank Mix file for leap second	
	information for UTC versus BDT	
END OF HEADER	information for UTC versus BDT the last record in the header	60X

4.3 Data Section

4.3.1 Components

The data part of the GNSS atmospheric occultation observation data file consists of the observation start and end marks and the observation data record. The typical data part is shown in Figure 2. The observation data record consists of the observation time and the corresponding observation amount.

Fig. 2 Example of the data component of an atmospheric occultation observation data file

4.3.2 Observation time

The observation time is the time scale information of the observation in the GNSS atmospheric occultation observation data file. In the data logging section of the GNSS atmospheric occultation observation data file, the observation time should be recorded before each set of observation data.

4.3.3 Type of observations

The GNSS atmospheric occultation observation includes the following types,

- a) Carrier phase: one of the basic observation quantities in the GNSS atmospheric occultation observation data file, which is used to calculate the additional phase of the GNSS occultation. The carrier phase observations recorded in the GNSS occultation observation data file should be recorded in full weeks (the recorded value may contain fractional parts). The carrier phase half-periods observed by square receivers (for GPS only) should also be converted to full-period records and identified with the corresponding observation code (see 5.2.2).
- b) Signal-to-noise ratio: one of the basic observation quantities in the GNSS atmospheric occultation observation data file, reflecting the amplitude information of GNSS occultation observation. The signal-to-noise observations recorded in the GNSS occultation data file should be recorded in units of V/V.
- Pseudorange: It is recorded in the GNSS atmospheric occultation observation data file as an additional observation quantity. The pseudo-range observations are derived from the time difference between the receiver reception time and the GNSS satellite signal emission time and are mainly used in the occultation processing to calculate the GNSS satellite position at that time by calculating the GNSS satellite signal emission time. The pseudo-range observations recorded in the GNSS occultation observation data file are in meters.

- d) Open-loop model phase: one of the basic observation quantities in the GNSS atmospheric occultation data file, used to reconstruct the open-loop carrier phase observations on the ground together with the open-loop IQ. The open-loop model phase observations recorded in the GNSS occultation data file are in units of weeks.
- e) Open-loop I-way and open-loop Q-way: one of the basic observation quantities in the GNSS atmospheric occultation observation data file, used to reconstruct the open-loop carrier phase observation quantities on the ground together with the open-loop model phase. The open-loop I-way and open-loop Q-way observations recorded in the GNSS occultation data file are dimensionless.

4.3.4 Order of observations

The header record "SYS/#/OCC CLO TYPES" (or "SYS/#/REF CLO TYPES" or "SYS/#/REF OPE TYPES") in the file header section of the GNSS atmospheric occultation observation data file SYS/#/OCC OPE TYPES" or "SYS/#/REF OPE TYPES") is a description of the type of observation in the observation data record of this file. In the data section of the file, all observations for each GNSS satellite for each epoch shall be recorded in the order of the observation code in the corresponding header record.

4.3.5 Definition of the data section format

The data section format definitions of the GNSS atmospheric occultation observation data files are shown in Table 5.

Tab. 5 GNSS atmospheric occultation observation data file - data part format

Record identification	Descriptions	Format
(61-80 columns)		
START OF OBS CLO	The next line begins with a record of closed-loop observations of atmospheric	A60
START OF OBS CEO	occultations	
END OF OBS CLO	Closed-loop observation of atmospheric occultation ends	A60
START OF OBS OPE	The next line starts to record open-loop observations for atmospheric	A60
START OF OBS OFE	occultations	
END OF OBS OPE	Atmospheric occultation open-loop observation ends	A60
* COMMENT	Comment line	A60
	Epoch records	
	- Record identifier: >	A1,
	epoch:	
	-year (4 digits)	1X, I4,
	-month, day, hour, minute (2-digits each)	4(1X, I2),
	-second	F11.7,
	- Epoch symbols:	2X, I1,
	0: Normal	
	1: Power outage or power failure between the current epoch and the	
	previous epoch	
	>1: Incident (The incident situation is shown in Table 6)	I3,
	- Number of satellites observed in the current year	6X,
	- (reservation)	F15.12,
	- receiver clock bias (unit: s, optional)	F12.3
	- Altitude of occultation tangent point (unit: m, optional)	

	The epoch flag is 0 or 1 to start recording observations as follows:						
	- Satellite number	A1, I2					
	- Observations	m(F14.3,2X)					
	Example:						
	C08 328960404.711 -238484692.530 356.471 237.651						
	For each observation type, the observation will be repeated in the record:						
	The order of the closed-loop occultation observations is the same as the order						
	of the observation types given in the header record "SYS/#/OCC CLO						
	TYPES";						
	The order of the closed-loop reference star observations is the same as the						
	order of the observation types given in the header record "SYS/#/REF CLO						
	TYPES";						
	The order of the open-loop occultation observations is the same as the order of						
	the observation types given in the header record "SYS/#/OCC OPE TYPES";						
	The order of the open-loop reference star observations is the same as the order						
	of the observation types given in the header record "SYS/#/REF OPE						
	TYPES".						
	The record is repeated for GNSS satellites where occultations (or as reference						
	satellites) were observed in the current epoch. The length of this record is						
	based on the number of observation types for that type of GNSS satellite.						
	Missing observations are indicated by 0.0 or a space.						
	The phase value of the overflow fixed format F14.3 should be adjusted to						
	match the record format (e.g. by adding or subtracting 109).						
Note: Data records m	narked with "*" are optional.						

4.3.6 Epoch symbols of the data section

The description of ephemeris flag events in the data section of the GNSS atmospheric occultation observation data file is shown in Table 6.

A flag greater than 1 indicates an event. The events with flag 4~5 indicate that header records can be inserted for description, and the value originally used to record the "number of satellites" represents the number of header records to be inserted below, which is 0 when no header records are inserted, and the maximum number of header records that can be inserted is 999. If the event does not contain a calendar record, the area of the calendar record is left blank.

Tab. 6 Epoch flag incident in the data section

Epoch flag	Incident Description
2	Reservation
3	Reservation
4	The header record will be inserted later
5	Other incidents (e.g., temporary insertion of an epoch moment record, which is under the same time system
	as the observation time)

5 GNSS IONOSPHERIC OBSERVATION DATA

OCCULTATION INDEPENDENT

EXCHANGE FORMAT FILE

5.1 Overview

Each GNSS ionospheric occultation observation data file contains data for a single occultation event observation period only. The header section of the data file describes the global properties of the ionospheric occultation event, and the data section is the observation data record of the ionospheric occultation event.

5.2 Document Header Section

5.2.1 Components

The header of GNSS ionospheric occultation observation data file consists of several header records from "REX VERSION/TYPE" to "END OF HEADER", and a typical file header composition is shown in Fig. 3.

The observation code in the header record is used to identify the type of observation in the data record in the data section, as defined in 5.2.2, and the correspondence with the observation is defined in 6.3.3.2. The specific format of the header record is defined in 6.2.3.

Fig. 3 Example of the composition of the header section of an ionospheric occultation observation data file

5.2.2 Observation Code

The header of the GNSS ionospheric occultation observation data file uses observation codes to identify the different observation quantities and their attributes. The only three types of observations in the GNSS ionospheric occultation observation data file are carrier phase, signal-to-noise ratio, and pseudorange, and their observation codes are the same as defined in 4.2.2.

5.2.3 Format of the Header Section

The format of the header section of the GNSS ionospheric occultation observation data file is shown in Table 7.

Tab. 7 GNSS ionospheric occultation observation data file header format

Header record identification	NSS ionospheric occultation observation data file header for	
	Descriptions	Format
(61-80 columns)		
	- Format Version:1.00	F9.2,11X,
	- File Type ("I": Ionospheric occultation observation data file)	A1,19X,
	- Satellite System Code:	A1,19X
	"C": BDS	
ROEX VERSION / TYPE	"G": GPS	
	"R": GLONASS	
	"E": Galileo	
	"J": QZSS "I": IRNSS	
	"S": SBAS	
* COMMENT	Comment line	A60
MARKER NAME	Measurement marker point (carrier) name	A60
	Name of observer/institution	A20, A40
OBSERVER / AGENCY		· ·
REC # / TYPE / VERS	Receiver number, model, and version	3A20
	(Version: e.g. version of the receiver's built-in software)	
	- Approximate position of ionospheric occultation events,	2(1X, F8.3),42X
* OCC A PROOF POCK I	expressed in longitude/latitude	
* OCC APPROX POS L/B	Unit: degree	
	Coordinate frame suggested for ITRF	
	Ascending or descending occultation flags (0: Ascending;1:	I2,58X
OCC SETTING	descending.)	12,3011
	2	A 1
OCC SAT#	Ionospheric occultation satellite system(C/G/E/R/J/S/I) Ionospheric occultation satellite number	A1, I2,57X
	-	
	- Satellite Systems(C/G/E/R/J/S/I) For the different number of absorptions of this satellite system	A1,
	- For the different number of observations of this satellite system- Observed quantity descriptors:	2X, I3, 13(1X, A3)
SYS / # / OBS TYPES	Observation type, frequency band, attributes	13(1A, A3)
	If there are more than 13 observations: use the continuation	6X,13(1X, A3)
	solution.	(,(,)
*INTERINAL		E10.2
*INTERVAL	- Observation interval(s)	F10.3
	- Time of the first observation record:	To
	Year (4 digits)	I6,
	Month, day, hour, minute (2 digits each) Seconds	4I6, F13.7,
	- Time System:	5X, A3
	BDT (=BDS Time System)	JA, AJ
	GLO (=UTC Time System)	
TIME OF FIRST ORG	GAL (=Galileo Time System)	
TIME OF FIRST OBS	GPS (=GPS Time System)	
	QZS (=QZSS Time System)	
	IRN (=IRNSS Time System)	
	Default:	
	BDS File, Time System BDT	
	GPS File, Time System GPS	
	Galileo File, Time System GAL	
	GLONASS File, Time System GLO	

	QZSS File, Time System QZS							
	IRNSS File, Time System 为 IRN							
	- Time of final observation record:							
	Year (4 digits)	I6,						
*TIME OF LAST OBS	Month, day, hour, minute (2 digits each)	4I6,						
TIME OF EAST OBS	Seconds	F13.7,						
	- Time System:	5X, A3						
	Same as the "TIME OF FIRST OBS" record							
*RCV CLOCK OFFS	- Whether real-time receiver clock bias correction is performed	I6						
APPL	1: Yes;0: No; Default: No correction required							
	-leap second Δt_{LS} (Corresponding system ephemeris broadcast)	I6,						
	-Leap seconds before and after the new leap seconds take effect	I6,						
	(instantaneously) Δt_{LSF}	I6,						
	- Week count for new leap seconds to take effect WN_LSF	I6						
*LEAP SECONDS	(Continuous weekly count)							
	- Number of days in the week when the new leap second is in							
	effect DN							
	0 if unknown or leave blank							
	Mix file for leap second information for UTC versus BDT							
END OF HEADER	The last record in the header section	60X						
Note: Data records marked	Note: Data records marked with "*" are optional.							

5.3 Data Section

5.3.1 Components

The data section of the GNSS ionospheric occultation data file consists of ionospheric occultation observation data records, see Figure 4. ionospheric occultation data records include observation times and corresponding observation quantities.

Fig.4 Example of the data component of the ionospheric occultation observation data file

5.3.2 Observation time of the data section

The observation time is the time scale information of the mesoscopic measurements in the data section of the GNSS ionospheric occultation observation data file. In the data logging section of the GNSS ionospheric occultation observation data file, the observation moment should be recorded before each set of observation

5.3.3 Type of observations

The only three observation quantities in the GNSS ionospheric occultation observation data file are carrier phase, signal-to-noise ratio, and pseudorange, and the meaning of their observation quantities is the same as 5.3.3.

5.3.4 Order of Observations

The header record "SYS / # / OBS TYPES" in the header section of the GNSS ionospheric occultation observation data file is a description of the observation data record of the file. The header record should first be labeled with the satellite system identifier, followed by the number of observations observed by that type of satellite and the corresponding list of observation codes. In the data section of the file, all observations for each satellite under each calendar element should be recorded in the order of the list of observation codes in the corresponding header record.

5.3.5 Format of the data section

The data section format definitions of the GNSS ionospheric occultation observation data files are shown in Table 8.

Tab. 8 GNSS ionospheric occultation observation file - data part format

Record identification	Descriptions	Format
(61-80 columns)		
* COMMENT	Comment line	A60
	Epoch records	
	- Record identifier: >	A1,
	epoch:	
	-year (4 digits)	1X, I4,
	-month, day, hour, minute (2-digits each)	4(1X, I2),
	-second	F11.7,
	- Epoch symbols:	2X, I1,
	0: normal	
	1: Power outage or power failure between the current epoch and the	
	previous epoch	
	>1: Incident (The incident situation is shown in Table 6)	I3,
	- Number of satellites observed in the current year	6X,
	-(reservation)	F15.12
	- receiver clock bias (unit: s, optional)	
	The epoch flag is 0 or 1 to start recording observations as follows:	
	- Satellite number	A1, I2
	- Observations	m (F14.3, 2X)
	Example:	
	C14 -280917.930 281675.672 260.114 374.822	
	For each observation type, the observations will be repeated in the record	
	(in the same order as given in the header record "SYS / # / OBS TYPES").	
	Only one GNSS satellite with ionospheric occultation is observed and	
	recorded in the current ephemeris. The length of this record depends on the	
	number of ionospheric occultation observation types.	

	Missing observations are indicated by 0.0 or a space.					
	The phase value of the overflow fixed format F14.3 should be adjusted to					
	match the record format (e.g. by adding or subtracting 109).					
Note: Data records marked with "*" are optional.						

6 GNSS POSITIONING OBSERVATION DATA INDEPENDENT EXCHANGE FORMAT FILE

For the GNSS positioning observation data independent exchange format file, please refer to the RINEX file description document.

7 APPENDIX(INFORMATIV)

Example of GNSS radio occultation sounder data independent exchange format file

A.1 Example of BDS atmospheric occultation observation data file

An example of the BDS atmospheric occultation observation data file is shown in Figure A.1.

A.2 Example of GPS atmospheric occultation observation data file

An example of the GPS atmospheric occultation observation data file is shown in Figure A.2.

A.3 Example of BDS/GPS hybrid atmospheric occultation observation data file

An example of the BDS/GPS hybrid atmospheric occultation observation data file is shown in Figure A.3.

A.4 Example of BDS ionospheric occultation observation data file

An example of the BDS ionospheric occultation observation data file is shown in Figure A.4.

A.5 Example of GPS ionospheric occultation observation data file

An example of the GPS ionospheric occultation observation data file is shown in Figure A.5

7	<u></u> δ	20 .	3,0, , , ,	40	50 . 6	Λ .	70 . 90	. 90 .	100,,,,,,,110,,,,,,	120 . 130	. 140 .
1	1.00	Δ	11 3,01111	C			RSION / TYPE	11111 301111111	L V V 1 1 1 1 1 1 1 1 1	144111111134111	111114411111
	PROD 1.00	NSSC					UN BY / DATE				
	###################					COMMENT	ON DI / DAIL				
	Example data made					COMMENT					
	######################################		-								
	XX3X					MARKER	NAME				
	NSSC	NSSC					R / AGENCY				
	GPS/BD	XXXX		3.0			TYPE / VERS				
9	-128.260 -35.474			3.0			ROX POS L/B				
10	1					OCC SET	•				
	C07 C22						EF SAT #				
	C 6 L2I L6I S2I	S6T C2T	C6T				CC CLO TYPES				
	C 4 L2I L6I C2I		-				EF CLO TYPES				
	C 9 L2I L6I S2I		I2I 02I	C2I C6I			CC OPE TYPES				
	C 4 L2I L6I C2I						EF OPE TYPES				
16	2022 1 2		16 13	.9400000			FIRST CLO				
17	2022 1 2						LAST CLO				
18	2022 1 2	1	16 48	.0000000	BDT	TIME OF	FIRST OPE				
19	2022 1 2	1	17 55	.9900000	BDT	TIME OF	LAST OPE				
20	0.020					INTERVA	L OF OBS CLO				
21	0.010					INTERVA	L OF OBS OPE				
22						END OF	HEADER				
23						START O	F OBS CLO				
24	> 2022 1 2 1 16	13.9400	000 0 2	0.0000	00000000						
25	C07 10495452.800	-15103	005.396	41.89		4.461	44897092.436	44897103.879			
	C22 5081641.782		312.819	0.00		0.000					
	> 2022 1 2 1 16				00000000						
	C07 10495945.456		601.525	44.10		7.843	44897187.434	44897198.968			
29	C22 5082083.869	4220	672.051	0.00	0	0.000					
	:										
	•										
15333	> 2022 1 2 1 17	EE 0900	000 0 2	0 0000	00000000						
		-169424		0.00		0.000	299753725.528	299753712.198			
	C22 7540807.647		586.336	0.00		0.000	299/33/23.328	299/33/12.198			
15336	7340807:047	0218	380.330	0.00		END OF	ORS CLO				
15337							F OBS OPE				
	> 2022 1 2 1 16	48.0000	000 0 2	0.0000	0000000	217111 0	. 353 01 E				
	C07 61380.000	40.0000	0.000	0.00		0.000	61380.000	0.000	0.000	0.000	0.000
	C22 5857409.095	4850	687.261	23293373.08			013001000	0.000	3,333	0.000	0.000
	> 2022 1 2 1 16				00000000						
	C07 122760.000		0.000	0.00		0.000	122760.000	0.000	0.000	0.000	0.000
	C22 5857643.865	4850	878.031	0.00		0.000		2.200			1.130
	•			2.00							
	:										
	•										
35738	> 2022 1 2 1 17	55.9900	000 0 2	0.0000	00000000						
35739	C07 7532884.419		0.000	0.00	0	0.000	7532884.725	-361.000	988.000	0.000	0.000
	C22 7541068.121	6218	797.993	0.00	0	0.000					
35741						END OF	OBS OPE				

Fig.A.1 Example of BDS atmospheric occultation

	011.01.	2.0 3.0	4,0, , , , , , 5,0, , , , , ,	6.0	7.0 8.0	9.0	100,,,,,,,,110,,,	112013	011401.	150160	170180	111111190
1	1.00	Α	G		RSION / TYPE							
2	PROD 1.00	NSSC	20220320 080353 (
3												
4	######################################											
5	EXAMPLE GATA MAGE by Xgmeng											
6	XX3X			MARKER								
7	NSSC	NSSC			R / AGENCY							
8	GPS/BD	XX3X	3.0									
9			3.0		TYPE / VERS							
	-99.486 -11.78	99			PROX POS L/B							
10	1			OCC SET								
11	G04 G06		60V 60V		REF SAT #							
12		W S1C S2X S2W C1C	C2X C2W		OCC CLO TYPES							
13		W C1C C2X C2W			REF CLO TYPES							
14 15	G 12 L1C L2X S1 G 4 L1C L2X C1		02X I2X Q2X C1C C2X		OCC OPE TYPES REF OPE TYPES							
16			.0000000 GPS		FIRST CLO							
17	2022 1		.9800000 GPS		LAST CLO							
18			.0000000 GPS		FIRST OPE							
19			.9900000 GPS		LAST OPE							
20	0.020				AL OF OBS CLO							
21	0.010				L OF OBS OPE							
22				END OF								
23					OF OBS CLO							
	> 2022 1 2 1 2	2 2.0000000 0 2	0.000000000000									
25	G04 -2650761.979		-833828.435	665.648	0.000	0.000	28932019.538	29079868.426	29079868.426			
26	G06 8143335.081			99565.000	20799576.079	20799576.375	20002201000	250750001.20	250750001120			
27		2 2.0200000 0 2										
28	G04 -2650083.462		-833493.464	667.229	0.000	0.000	28932148.989	29079868.426	29079868.426			
29	G06 8143829.757		6251533.135	0.000	0.000	0.000	20332140.303	23073000.420	23073000.420			
23	. 000 0143029.737	0324330.331	0231333.133	0.000	0.000	0.000						
	•											
14721	> 2022 1 2 1 2	3 39.9600000 0 2	0.00000000000									
14722	G04 -97284889.604		-26554364.189	0.000	21.663	0.000	299609717.352	299609855.879	299609737.189			
14723	G06 10699552.761		8243005.533	0.000	0.000	0.000	2330037271332	2330030331073	2550057571205			
14724		3 39.9800000 0 2		0.000	0.000	0.000						
14725	G04 -97399977.604		-26587612.189	0.000	19.762	8.526	299609717.352	299609855.879	299609737.189			
14726	G06 10700101.192		8243432.881	0.000	0.000	0.000	233003717.332	233003033.073	255005757.105			
14727	000 10700101.132	. 0510050.152	0243432.001		OBS CLO	0.000						
14728					OF OBS OPE							
14729	> 2022 1 2 1 2	2 47.0000000 0 2	0.000000000000	START C	555 OI L							
14730	G04 -57544.000		0.000	0.000	-57544.000	0.000	0.000	-16624.000	0.000	0.000	0.000	0.000
14731	G06 9284815.409			16792.386	3/344.000	0.000	0.000	10024.000	0.000	0.000	0.000	0.000
14731		2 47.0100000 0 2		10/32.300								
14732	G04 -115088.006		0.000	0.000	-115088.000	0.000	0.000	-33248.000	0.000	0.000	0.000	0.000
14733 14734	G06 9285075.622		0.000	0.000	-112600.666	0.000	0.000	-33240.000	0.000	0.000	0.000	0.000
14734	000 72000/0.622	. /2142/0.036	0.000	0.000								
	:											
	•											
20626		2 20 0000000 0 2	0.000000000000									
80626		23 39.9800000 0 2		14 071	4112200 627	220 622	72 000	4000011 335	222 622	4452 000	0.000	0.000
30627	G04 -4112388.161		0.000	14.871	-4112388.627	-339.000	-73.000	-4060011.336	-233.000	1153.000	0.000	0.000
30628	G06 10700101.192		0.000	0.000								
30629		3 39.9900000 0 2										
80630	G04 -4112061.642		0.000	12.468	-4112061.398	65.000	1714.000	-4059756.352	637.000	-873.000	0.000	0.000
30631	G06 10700375.411	8317109.811	0.000	0.000								
30632				END OF	OBS OPE							

Fig.A.2 Example of GPS atmospheric occultation observation

	0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3,0, , , , , , , 4,0, , , , , , , 5,0, , , , , , ,	6,0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	9,0,,,,,,,1	00,,,,,,,,110,,,,,,,,,,	120,,,,,,,130,,,	1,,,149,,,,				
1	1.00 A	М	ROEX VERSION / TYPE								
2	PROD 1.00 NSSC		TC PGM / RUN BY / DATE								
3	#######################################	:############################	## COMMENT								
4	Example data made by xgmeng		COMMENT								
5	#######################################	:############################	## COMMENT								
6	SIMU		MARKER NAME	MARKER NAME							
7	NSSC NSSC		OBSERVER / AGENCY								
8	GPS/BD SIMU	1.0	REC # / TYPE / VERS								
9	-123.274 -41.922		OCC APPROX POS L/B								
10	1		OCC SETTING								
11	C10 G06		OCC / REF SAT #								
12	C 6 L2I L6I S2I S6I C2I C6I	<u> </u>	SYS/#/OCC CLO TYPES								
13	G 4 L1C L2X C1C C2X		SYS/#/REF CLO TYPES								
14	C 9 L2I L6I S2I S6I O2I I2I	[Q21 C21 C61	SYS/#/OCC OPE TYPES								
15	G 4 L1C L2X C1C C2X	. 50 1000000 PDT	SYS/#/REF OPE TYPES								
16	2022 1 2 1 14		TIME OF FIRST CLO								
17	2022 1 2 1 16		TIME OF LAST CLO								
18	2022 1 2 1 15		TIME OF FIRST OPE								
19	2022 1 2 1 16	5 29.9900000 BDT	TIME OF LAST OPE								
20	0.020		INTERVAL OF OBS CLO								
21 22	0.010		INTERVAL OF OBS OPE								
23			END OF HEADER								
24	> 2022 1 2 1 14 E0 1000000	0 2 0.000000000000	START OF OBS CLO								
25	> 2022 1 2 1 14 59.1000000 C10 11683651.857 -26015104.		133.653 44698704.515	44845270.328							
26	C10 11683651.857 -26015104. G06 3546981.253 2973275.		0.000	448452/0.528							
27	> 2022 1 2 1 14 59.1200000		0.000								
28	C10 11684231.056 -26017039.		302.437 44698815.682	44698801.690							
29	G06 3547359.341 2973582.		0.000	44030001.030							
25		0.000	0.000								
	•										
	•										
13659	> 2022 1 2 1 16 29.9800000	0 2 0.000000000000									
13660	C10 197734976.379 -168208947.	.882 2.686	7.399 299628706.144	299715838.521							
13661	G06 5441153.517 4512445.		0.000								
13662			END OF OBS CLO								
13663			START OF OBS OPE								
L3664	> 2022 1 2 1 15 32.0000000	0 2 0.000000000000									
13665	C10 61380.000 0.	.000 0.000	0.000 61380.000	0.000	0.000	0.000	0.000				
L3666	G06 4192070.008 3497462.	.925 22973562.099 22973	3562.465								
L3667	> 2022 1 2 1 15 32.0100000	0 2 0.000000000000									
L3668	C10 122760.000 0.	.000 0.000	0.000 122760.000	0.000	0.000	0.000	0.000				
L3669	G06 4192273.414 3497628.	.209 0.000	0.000								
	•						l				
	•						l				
	•						l				
31064	> 2022 1 2 1 16 29.9900000										
31065		.000 14.230	0.000 7542726.212	1546.000	-2239.000	0.000	0.000				
31066	G06 5441381.092 4512630.	.453 0.000	0.000								
31067			END OF OBS OPE								

Fig.A.3 Example of BDS/GPS hybrid atmospheric occultation

	0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2,0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		6,0, , , , , , , , , , , , , , , , , 8,0, , ,	9,0,,,,,,	
1	1.00	I	C	ROEX VERSION / TYPE		
2	PROD 1.00	NSSC	20220320 080353 UTC	PGM / RUN BY / DATE		
3	#################	********	+########################	‡ COMMENT		
4	Example data made	by xgmeng		COMMENT		
5	##################	*******	COMMENT			
6	XX3X		MARKER NAME			
7	NSSC	NSSC		OBSERVER / AGENCY		
8	GPS/BD	XXXX	3.0	REC # / TYPE / VERS		
9	-111.077 0.08	37		OCC APPROX POS L/B		
10	1			OCC SETTING		
11	C12			OCC SAT #		
12		I S6I C2I C6I		SYS / # / OBS TYPES		
13			.0000000 BDT	TIME OF FIRST OBS		
14		2 1 34 36	.0000000 BDT	TIME OF LAST OBS		
15	1.000			INTERVAL		
16 17	. 2022 1 2 1 1	0.50.0000000 0.1	0.00000000000	END OF HEADER		
18		8 58.0000000 0 1	0.000000000000	114 671 26472866 448	26472975 157	
19	C12 104381.266 > 2022 1 2 1 1	431902.972 8 59.0000000 0 1	227.957 0.000000000000	114.671 26473866.440	26473875.157	
20	C12 126544.789			131.841 26478123.299	26478129.205	
21	> 2022 1 2 1 1		0.000000000000	20478123.299	204/8129.203	
22	C12 148737.697			132.885 26482385.305	26482389.572	
23	> 2022 1 2 1 1		0.00000000000	20402303.303	204023031372	
24	C12 170915.080			131.621 26486644.074	26486647.827	
	•					
	•					
	•					
1886	> 2022 1 2 1 3	4 36.0000000 0 1	0.00000000000			
1887	C12 21542279.626	18337844.498	157.656	64.275 30609773.802	30609788.483	

Fig.A.4 Example of BDS ionospheric occultation observation data file

	0,,,,,,,,,,1,0,,,,,,,,,,,,,,,,,,,,,,,,,	20 30	4,0, 5,0,	. 60 70	80	90 1	.00	1120130)
1	1.00	I	G	ROEX VERSION					
2	PROD 1.00	NSSC	20220320 080352 U	TC PGM / RUN BY	/ DATE				
3	*******	*******		## COMMENT					
4	Example data made	by xgmeng		COMMENT					
5	#######################################	*******		## COMMENT					
6	XX3X			MARKER NAME					
7	NSSC	NSSC		OBSERVER / A	GENCY				
8	GPS/BD	XXXX	3.0	REC # / TYPE	/ VERS				
9	60.104 16.089			OCC APPROX PO	OS L/B				
10	1			OCC SETTING					
11	G01			OCC SAT #					
12	G 9 L1C L2X L2W	S1C S2X S2W C1C C2	2X C2W	SYS / # / OBS	S TYPES				
13	2022 1 2	2 5 2.6	0000000 GPS	TIME OF FIRS					
14	2022 1 2	2 10 14.6	0000000 GPS	TIME OF LAST	OBS				
15	1.000			INTERVAL					
16				END OF HEADE	R				
17		2.0000000 0 1	0.000000000000						
18	G01 184648.824	-152331.483	42793.249	105.619	137.777	47.483	24573976.039	24573985.201	24573983.785
19	> 2022 1 2 2 5		0.000000000000						
20	G01 206170.813	-135561.126	59563.631	104.905	148.568	51.365	24578070.071	24578081.420	24578080.593
21	> 2022 1 2 2 5		0.0000000000000						
22	G01 227703.156	-118782.668	76342.086	107.180	148.979	53.031	24582167.204	24582179.273	24582179.250
23	> 2022 1 2 2 5		0.000000000000	404 772	450.000	55 700	04505055 744	04506070 600	0.4505070 400
24	G01 249245.865	-101996.158	93128.611	104.773	159.969	55.798	24586266.714	24586278.698	24586279.488
	:								
	•								
544	> 2022 1 2 2 10	14 0000000 0 1	0.000000000000						
545	G01 7312631.186	5401940.140	5597064.888	228.070	406.801	209.720	25930385.218	25930396.410	25930397.303
J+5	UUI /312031.100	3401340.140	1004.000	220.0/0	400.001	209.720	03،210د تارور د	2333330.410	233337.303

Fig.A.5 Example of GPS ionospheric occultation observation data file

1