İşaret İşleme

Z Dönüşümü ve Ayrık Zamanlı Sistemler-H9CD3

Dr. Meriç Çetin

versiyon231020

EEEN343 Sinyaller ve Sistemler Ders Notları

Prof. Dr. Serdar İplikçi

EEEN343 Sinyaller ve Sistemler Ders Notları

Prof. Dr. Serdar İplikçi

Z Dönüşümü

Giriş

- Önceki bölümde görüldüğü gibi darbe cevabı bilinen bir sistemin girişine belli bir sinyal uygulandığında çıkış sinyali, giriş sinyali ile sistemin darbe cevabının konvolüsyonu ile bulunabilir.
- Ancak, ayrık-zamanlı giriş sinyali ve/veya darbe cevabının analitik veya grafik ifade olarak edilmesi zorlaştıkça bu konvolüsyon hesabı da zorlaşmaktadır.
- Buna alternatif olarak zdönüşümü kullanılmaktadır.
- Buna göre, zaman domenindeki sinyaller önce Z-domenine dönüştürülmekte, ardından çıkış sinyalinin bu domendeki büyüklüğü bulunmakta ve son olarak bu büyüklük tekrar zaman domenine dönüştürülmektedir.
- Ayrıca, Z-dönüşümü sayesinde bir DZD sistemin pek çok özelliği de analiz edilebilmektedir.

Z Dönüşümünün Tanımı

Ayrık-zamanlı bir x[n] işaretinin z-dönüşümü $X(z) = \mathcal{Z}\{x[n]\}$ ile gösterilir ve şu şekilde tanımlanır:

$$x[n] \leftrightarrow X(z) = \mathcal{Z}\{x[n]\} = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

buradaki z değişkeni $z = re^{j\Omega}$ biçiminde karmaşık bir değişkendir. z-dönüşümünün bulunduğu ortama aşağıda görüldüğü gibi z-domeni adı verilmektedir. z-dönüşümü ile ayrık zaman değişkeni olan n-domenindeki bir x[n] sinyali z-domenindeki bir X(z) sinyaline dönüştürülmektedir.

Bir örnek

 $x[n] = a^n u[n]$ sinyalinin z-dönüşümü

$$x[n] = a^n u[n] \longleftrightarrow X(z) = \sum_{n = -\infty}^{\infty} x[n] z^{-n}$$

$$= \sum_{n = -\infty}^{\infty} a^n u[n] z^{-n}$$

$$= \sum_{n = 0}^{\infty} a^n z^{-n}$$

$$= \sum_{n = 0}^{\infty} (az^{-1})^n$$

$$= \frac{z}{z - a} \qquad |z| > |a|$$

Bir örnek

$$x[n] = a^n u[n]$$
 sinyalinin z-dönüşümü

Görüldüğü gibi bu toplamın yani z-dönüşümünün mevcut olabilmesi için |z| > |a| şartının sağlanması gerekir. z-domeninde bu şart aşağıdaki gibi bir bölgeye denk düşmektedir ki bu bölgeye yakınsama bölgesi denir.

Z Dönüşümü X[z]'in Sıfırları ve Kutupları

z-dönüşümü olan X(z) en genel halde aşağıdaki gibi iki polinomun oranı şeklindedir:

$$X(z) = \frac{a_0 z^m + a_1 z^{m-1} + \dots + a_{m-1} z + a_m}{b_0 z^n + b_1 z^{n-1} + \dots + b_{n-1} z + b_n} = \frac{a_0}{b_0} \frac{(z - z_1)(z - z_2) \dots (z - z_m)}{(z - p_1)(z - p_2) \dots (z - p_n)}$$

burada a_k ve b_k 'lar reel sabitler, m ve n ise pozitif tamsayılar olup rasyonel fonksiyonlar için her zaman $m \le n$ sağlanmaktadır. Pay polinomunun kökleri olan z_k 'lara X(z)'nin sıfırları denmektedir çünkü z'nin bu değerleri için X(z) = 0 olmaktadır. Benzer şekilde, payda polinomunun kökleri olan p_k 'lara da X(z)'nin kutupları denmektedir

$$X(z) = \frac{2z^2 + 4z + 4}{z^3 + 4z^2 + z - 26} = 2\frac{(z+1+j)(z+1-j)}{(z-2)(z+3+2j)(z+3-2j)}$$

X(z)'nin z = -1 + j ve z = -1 - j'de sıfırları, z = 2, z = -3 + 2j'de ve z = -3 - 2j'de kutupları vardır ve sıfır-kutup grafiği şu şekilde gösterilmiştir.

Tablo z-Dönüşümünün Özellikleri

			_
Özellik	x[n]	X(z)	
	x[n]	X(z)	
	$x_1[n]$	$X_1(z)$	
	x ₂ [n]	$X_2(z)$	
Doğrusallık	$a_1 x_1[n] + a_2 x_2[n]$	$a_1 X_1(z) + a_2 X_2(z)$	
Zamanda Öteleme	$x[n-n_0]$	$z^{-n_0}X(z)$	X
z_0^n ile Çarpma	$z_0^n x[n]$	$X\left(\frac{z}{z_0}\right)$	
Zamanda Genişletme	$x_{(m)}[n]$	$X(z^m)$	
Zamanda Geri Dönüş	x[-n]	$X\left(\frac{1}{z}\right)$	
Zamanda Fark	x[n] - x[n-1]	$(1-z^{-1})X(z)$	
n ile Çarpma	nx[n]	$-z\frac{d}{dz}X(z)$	
Konvolüsyon	$x_1(t) * x_2(t)$	$X_1(z)X_2(z)$	

Tablo Bazı z-Dönüşüm Çiftleri

rubio bum r pomujum circiem	
x[n]	X(z)
$\delta[n]$	1
u[n]	
-u[-n-1]	z-1 z $z-1$
$a^nu[n]$	$\frac{z-1}{z}$
$-a^nu[-n-1]$	$\frac{z}{z-a}$
nu[n]	$\frac{z}{(z-1)^2}$
-nu[-n-1]	$\frac{z}{(z-1)^2}$
$na^nu[n]$	$\frac{az}{(z-a)^2}$ az
$-na^nu[-n-1]$	$\frac{az}{(z-a)^2}$
$x[n] = \begin{cases} 1 & n \le N \\ 0 & n > N \end{cases}$	$\frac{z^{N+1} - z^{-N}}{z - 1}$
$e^{\mp j\Omega_0 n}u[n]$	$\frac{z}{z - e^{\mp j\Omega_0}}$
$\cos(\Omega_0 n)u[n]$	$\frac{z^2 - \cos(\Omega_0)z}{z^2 - 2\cos(\Omega_0)z + 1}$
$sin(\Omega_0 n)u[n]$	$\frac{\sin(\Omega_0)z}{z^2 - 2\cos(\Omega_0)z + 1}$
$r^n \cos(\Omega_0 n) u[n]$	$\frac{z^2 - r\cos(\Omega_0)z}{z^2 - 2r\cos(\Omega_0)z + r^2}$
$r^n \sin(\Omega_0 n) u[n]$	$\frac{r\sin(\Omega_0)z}{z^2 - 2r\cos(\Omega_0)z + r^2}$

Ters Z Dönüşümü

Ters Z Dönüşümü

X(z) sinyalinden x[n] sinyaline geçiş aşağıdaki gibi ters z dönüşümü ile sağlanır:

$$x[n] = \mathcal{Z}^{-1}\{X(z)\} = \frac{1}{2\pi i} \oint_C X(z) z^{n-1} dz$$

burada C eğrisi orjini saat yönünün tersinde çevreler. Ancak, bu derste ters z-dönüşümü almak için daha çok aşağıda anlatıldığı gibi kısmi kesirlere ayırma yöntemi kullanılacaktır.

Ters Z Dönüşümü

Kısmi Kesirlere Açılım

$$X(z) = \frac{a_0}{b_0} \frac{(z - z_1)(z - z_2) \dots (z - z_m)}{(z - p_1)(z - p_2) \dots (z - p_t)}$$

burada z_k 'lar X(z)'in sıfırları, p_k 'lar da X(z)'in kutuplarıdır ve hepsi tek katlıdır. Ters z-dönüşümünde kolaylık olması açısından X(z) yerine $\frac{X(z)}{z}$ kısmi kesirlere ayrılır:

$$\frac{X(z)}{z} = \frac{c_0}{z} + \frac{c_1}{z - p_1} + \frac{c_2}{z - p_2} + \dots + \frac{c_n}{z - p_t}$$

Tablo Bazı z-Dönüşüm Çiftleri

rubio bum r pomujum circiem	
x[n]	X(z)
$\delta[n]$	1
u[n]	
	z – 1 z
-u[-n - 1]	z – 1 z
$a^nu[n]$	$\frac{z}{z-a}$
$-a^nu[-n-1]$	$\frac{z}{z-a}$
nu[n]	$\frac{z}{(z-1)^2}$
-nu[-n-1]	$\frac{z}{(z-1)^2}$ $\frac{az}{az}$
$na^nu[n]$	$\frac{az}{(z-a)^2}$ az
$-na^nu[-n-1]$	$\frac{az}{(z-a)^2}$
$x[n] = \begin{cases} 1 & n \le N \\ 0 & n > N \end{cases}$	$\frac{z^{N+1} - z^{-N}}{z - 1}$
$e^{\mp j\Omega_0 n}u[n]$	$\frac{z}{z - e^{\mp j\Omega_0}}$
$\cos(\Omega_0 n)u[n]$	$\frac{z^2 - \cos(\Omega_0)z}{z^2 - 2\cos(\Omega_0)z + 1}$
$\sin(\Omega_0 n)u[n]$	$\frac{\sin(\Omega_0)z}{z^2 - 2\cos(\Omega_0)z + 1}$
$r^n \cos(\Omega_0 n) u[n]$	$\frac{z^2 - r\cos(\Omega_0)z}{z^2 - 2r\cos(\Omega_0)z + r^2}$
$r^n \sin(\Omega_0 n) u[n]$	$\frac{r\sin(\Omega_0)z}{z^2 - 2r\cos(\Omega_0)z + r^2}$

Bir Örnek
$$X(z) = \frac{z}{2z^2 - 3z + 1}$$
'in ters z-dönüşümünü için $\frac{X(z)}{z}$ 'i kısmi kesirlere ayıralım:

$$\begin{split} \frac{X(z)}{z} &= \frac{1}{2z^2 - 3z + 1} \\ &= \frac{1}{2(z - 1)\left(z - \frac{1}{2}\right)} \\ &= \frac{c_1}{(z - 1)} + \frac{c_2}{\left(z - \frac{1}{2}\right)} \quad c_1 = \left[(z - 1)\frac{X(z)}{z} \right]_{z \to 1} = 1 \quad c_2 = \left[\left(z - \frac{1}{2}\right)\frac{X(z)}{z} \right]_{z \to \frac{1}{2}} = -1 \\ &= \frac{1}{(z - 1)} + \frac{-1}{\left(z - \frac{1}{2}\right)} \end{split}$$

Buradan, $X(z) = \frac{z}{(z-1)} - \frac{z}{\left(z-\frac{1}{2}\right)}$ için ters dönüşümü bulalım:

Z Tablosundan
$$x[n] = u[n] - \left(\frac{1}{2}\right)^n u[n]$$

Örnek: $X(z) = \frac{z}{(z-1)(z-2)^2}$ 'in ters z-dönüşümünü bulalım. $\frac{X(z)}{z}$ 'i kısmi kesirlere ayıralım:

$$\frac{X(z)}{z} = \frac{1}{(z-1)(z-2)^2} \qquad c_1 = 1$$

$$= \frac{c_1}{(z-1)} + \frac{\lambda_1}{(z-2)} + \frac{\lambda_2}{(z-2)^2} \qquad \lambda_1 = -1$$

$$= \frac{1}{(z-1)} + \frac{-1}{(z-2)} + \frac{1}{(z-2)^2} \qquad \lambda_2 = 1 \qquad \text{Buradan,} \qquad X(z) = \frac{z}{z-1} + \frac{-z}{z-2} + \frac{z}{(z-2)^2}$$

Şimdi ters dönüşümü bulalım:

Z Tablosundan
$$x[n] = u[n] - 2^n u[n] + n2^{n-1} u[n]$$

Bu ders notu için faydalanılan kaynaklar

Lecture 15

Discrete-Time System Analysis using z-Transform
(Lathi 5.1)

Peter Cheung

Department of Electrical & Electronic Engineering
Imperial College London

MIT OpenCourseWare http://ocw.mit.edu

6.003 Signals and Systems Fall 2011

EEEN343 Sinyaller ve Sistemler Ders Notlan

Prof. Dr. Serdar İplikçi
Pamukkale Üniversitesi
Mühendislik Fakültesi
Elektrik-Elektronik Mühendisliği

