```
In [2]: from sklearn.datasets import fetch_openml
        import warnings
        warnings.filterwarnings("ignore")
        mnist = fetch_openml('mnist_784')
        X, y = mnist.data, mnist.target
In [3]: from sklearn.model selection import train test split
        from sklearn.preprocessing import StandardScaler
        # Normalize pixel values
        X_normalized = StandardScaler().fit_transform(X)
        # Split data into training and testing sets
        X_train, X_test, y_train, y_test = train_test_split(X_normalized, y, test_size=0.2, random_
In [4]: from sklearn.neighbors import KNeighborsClassifier
        from sklearn.metrics import accuracy_score
        k_values = range(1, 21) # Try k values from 1 to 20
        accuracy_scores = []
        for k in k_values:
            knn = KNeighborsClassifier(n_neighbors=k)
            knn.fit(X_train, y_train)
            y_pred = knn.predict(X_test)
            accuracy = accuracy_score(y_test, y_pred)
            accuracy_scores.append(accuracy)
```

In [5]: import matplotlib.pyplot as plt plt.figure(figsize=(10, 6)) plt.plot(k_values, accuracy_scores, marker='o', linestyle='-') plt.title('K-NN Accuracy vs. Number of Neighbors (k)') plt.xlabel('Number of Neighbors (k)') plt.ylabel('Accuracy') plt.xticks(k_values) plt.grid(True) plt.show()

we can say that k=3 gives us a best result. afte incerisng the k-value accuracy also decrease.

```
In [6]: k = 5 # You can adjust the number of neighbors (k) as needed.
        knn_classifier = KNeighborsClassifier(n_neighbors=k)
        knn_classifier.fit(X_train, y_train)
        y_pred = knn_classifier.predict(X_test)
        accuracy = accuracy_score(y_test, y_pred)
        report = classification_report(y_test, y_pred)
        confusion = confusion_matrix(y_test, y_pred)
        print(f"Accuracy: {accuracy}")
        print("Classification Report:\n", report)
        print("Confusion Matrix:\n", confusion)
        # Plot the confusion matrix as a heatmap
        plt.figure(figsize=(10, 8))
        sns.heatmap(confusion, annot=True, fmt="d", cmap="Blues", xticklabels=df.label.unique(), yt
        plt.xlabel("Predicted")
        plt.ylabel("Actual")
        plt.title("Confusion Matrix")
        plt.show()
        Accuracy: 0.9461428571428572
        Classification Report:
```

Classification Report.										
			рі	recisi	ion	reca	all -	f1-sc	ore	support
		(9	0.9	97	0.9	98	0.9	97	1343
	1			0.95		0.9	0.99		97	1600
	2			0.95		0.93		0.9	94	1380
	3			0.9	93	0.95		0.9	94	1433
	4			0.9	94	0.93		0.9	94	1295
	5			0.9	94	0.94		0.9	94	1273
	6			0.9	97	0.97		0.9	97	1396
7			7	0.9	94	0.93		0.9	94	1503
8			3	0.97		0.89		0.9	93	1357
9			0.90		0.92		0.9	91	1420	
accuracy								0.9	95	14000
macro avg				0.9	95	0.95		0.9	95	14000
weighted avg				0.95			0.95		95	14000
	_									
Confusion Matrix:										
[[1319) () 4	4 2	2 (9 5	5 10	a 2	2 :	1 0]
[0	1588	7	1	2	0	1	1	0	0]
[9	18	1290	18	7	7	8	9	8	6]
[1	3	16	1363	3	13	1	14	8	11]
Ī	1	11	13	1	1206	1	3	4	3	52]
Ī	4	3	2	28	8	1198	14	2	7	7]
Ī	11	3	5	0	6	9	1360	0	2	0]
Ī	3	17	6	2	18	1	0	1398	1	57]
Ē	10	16	12	26	4	42	6	11	1214	16]
Ī	5	4	7	17	25	3	0	45	4	1310]]

Confusion Matrix - 1400 - 1200 - 1000 - 800 - 600 - 400 - 200 ∞ -- 0 ó í Predicted

In []: