

- Constituent College of JSS Science and Technology University

- Identified as lead institution for World Bank Assistance under TEQIP Scheme

Course Title: Theory of Computation	Course Code: 20CS450
Credits: 3	Total Contact Hours: 39:0:0
Type of Course: Theory	Category: Professional Core Course
CIE Marks: 50	SEE Marks: 100

Pre-requisite: Discrete Mathematical Structure.

Course Objectives: The course should enable the students to:

Sl. No.	Course Objectives
1	Introduce core concepts in Automata and Theory of Computation.
2	Identify different Formal Language Classes and their Relationships.
3	Design finite state machine, Grammars and Recognize for different formal Languages.
4	Prove or disprove theorems in automata theory using their properties.
5	Determine the decidability and intractability of Computational problems.

Unit No.	Course Content	No. of Hours
1	Introduction to Finite Automata: The central concepts of Automata theory;	8
	Deterministic finite automata; Nondeterministic finite automata; An application	
	of finite automata; Finite automata with Epsilon-transitions; Equivalence and	
	minimization of automata.	
2	Regular Expressions and Properties of Regular Languages: Regular	8
	expressions; Converting DFA's to regular expression by eliminating states,	
	Converting Regular Expressions to Finite Automata; Applications of Regular	
	Expressions; Proving languages not to be regular languages; Closure properties	
	of regular Languages.	
3	Context-Free Grammars and Languages: Context-Free Grammars; Parse	8
	trees; Applications of Context-Free Grammars; Ambiguity in Grammars and	
	Languages; Normal forms for CFGs.	
4	Pushdown Automata Definition of the Pushdown Automata; The languages of	7
	a PDA; Equivalence of PDA's and CFG's; Deterministic Pushdown Automata.	
5	Introduction to Turing Machine: The Turing machine; Programming	8
	techniques for Turing Machines, Extension to the basic Turing machine,	
	restricted Turing machine. Undecidability: A language that is not recursively	
	Enumerable, Undecidable problem that is RE, Undecidable Problems about	
	turing Machines, post's correspondence problems, Other Undecidable	
	Problems.	

- Constituent College of JSS Science and Technology University
- Approved by A.I.C.T.E
- AND Governed by the Grant-in-Aid Rules of Government of Karnataka
 - Identified as lead institution for World Bank Assistance under TEQIP Scheme

Text Books:

Sl. No.	Author/s	Title	Publisher Details			
1	John E. Hopcroft, Rajeev Motwani,	Introduction to Automata	3 rd Edition, Pearson			
	Jeffrey D. Ullman	Theory, Languages and	education, 2007			
		Computation				
2	Peter Linz	Finite Automata & Formal	4 th Edition, Narosa			
		Languages	Publication, 2010.			
3	John C Martin	Introduction to Languages	3 rd Edition, Tata			
		and Automata Theory	McGraw- Hill, 2007.			
4	Daniel I.A. Cohen	Introduction to Computer	2nd Edition, John			
		Theory	Wiley & Sons, 2004			
5	Thomas A. Sudkamp	An Introduction to the	3rd Edition, Pearson			
		Theory of Computer	Education, 2006			
		Science, Languages and				
		Machines				

Web Resources:

Sl. No.	Web Link
1	https://nptel.ac.in/courses/106104148/
2	https://nptel.ac.in/courses/106/104/106104028/

Course Outcomes: After completion of the course, students are able to:

Course	outcomes. The completion of the course, statemes are acte to:
CO1	Design automata for given regular languages.
CO2	Define Regular expression, and check its equivalence among automata.
CO3	Write grammars for context free languages and parse the given input.
CO4	Design pushdown Automata and show the equivalence of CFG and PDA
CO5	Apply the techniques of Turing machine, decidability and intractability of Computational
	problems.

Mapping Course Outcomes with Program outcomes & Program Specific outcomes:

	Prog	ram	Outc	omes	;								PSO's	1		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO-1	3	3	3	-	-	-	-	-	-	-	-	-	3	-	2	-
CO-2	3	3	3	-	-	-	-	-	-	-	-	-	3	-	2	-
CO-3	3	3	3	-	-	-	-	-	-	-	-	-	3	-	2	-
CO-4	3	3	3	-	-	-	-	-	-	-	-	-	3	-	2	-
CO-5	3	3	3	-	-	-	-	-	-	-	-	-	3	-	2	-

1-Low association, 2- Moderate association, 3-High association

- **Constituent College of JSS Science and Technology University**

- Identified as lead institution for World Bank Assistance under TEQIP Scheme

Course Title: Operating Systems Lab	Course Code: 20CS46L
Credits: 1.5	Contact Hours (L: T: P): 0: 0: 39
Type of Course: Practical	Category: Professional Core Course
CIE Marks: 50	SEE Marks: 50

Pre-requisite: Computer Organization and Architecture, Data Structures, C Programming.

Course Objectives: The course should enable the students to:

Sl. No.	Course Objectives
1	Familiarize students with LINUX/UNIX OP and provide necessary skills for developing and
	debugging programs in these environments.
2	Learn shell script, creation and management of processes, IPC using shared memory and
	multithreads programing.
3	Analyze and develop process scheduling algorithms and process synchronization.

Weeks	List of Programs	No. of Hours
1	a. Exposure to Linux Operating System and Environment	3
	b. Write Shell Scripts for the following:	
	i. Concatenation of two strings	
	ii. Comparison of two strings	
	iii. Maximum of three numbers	
2	Write Shell Scripts for the following:	3
	a. Fibonacci series	
	b. Arithmetic operation using case	
	c. Check whether a given number is palindrome or not	
3	Write Shell Scripts for the following:	3
	a. Finding largest of N numbers (storing numbers in an array)	
	b. Generating prime numbers.	
	c. Reading two matrices and finding sum	
4	Simulation of ls, rm, cat and grep commands using system calls.	3
5	a. Write a program to perform the following tasks using system calls:	3
	i. Parent process should create a child process	
	ii. Both parent child processes should display their pid and parent's pid; parent	
	process should also display its child's pid	
	iii. Load a new program into child process	
	iv. The parent process should terminate after the child process terminates	
	b. Program to demonstrate the creation of Zombie and Orphan processes.	
	c. Program to perform the following task using I/O system calls for file I/O	
	i. Reading first 10 characters from file	
	ii. Skipping 5 characters from current position in the file	
	iii. Going to 5 th last character in the file	
	iv. Going to the 3 rd character in the file	
	d. Program to read from file and write into a new file using I/O system calls for	
	file I/O	

- Constituent College of JSS Science and Technology University
- Approved by A.I.C.T.E
- SCIENCE AND COVERNED BY the Grant-in-Aid Rules of Government of Karnataka

 TECHNOLOGY UNIVERSITY

 UNIVERSITY

 MYSURU

 MYSURU

6	 a. Program to implement Producer-consumer problem using the following shared memory methods: using shm_open and mmap shmget and shmat b. Write a program to generate first N ODD numbers with the following requirements: - Parent program should create a child and distribute the task of generating odd numbers to its child. The code for generating odd numbers should reside in different program. Child should write the odd numbers to a shared memory. Parent process has to print the odd numbers by retrieving from the shared memory. Implement the above using shmget and shmat Note: Shared object should be removed at the end in the program 	3
7	a. Write a program to generate and print Fibonacci series with the following requirements: Parent program should create a child and distribute the task of generating Fibonacci series to its child. The code for generating Fibonacci series should reside in different program. Child should write the generated Fibonacci series to a shared memory. Parent process has to print by retrieving the Fibonacci series from the shared memory. Implement the above using shmget and shmat II. Implement the above using shm_open and mmap Note: Shared object should be removed at the end in the program. Write a program to generate and print Prime numbers between a given range (between M & N) with the following requirements Me N should be passed as command line arguments Error checking should be done to verify the required number of arguments at the command line Parent program should create a child and distribute the task of generating Prime numbers to its child. The code for generating Prime numbers should reside in different program. Child should write the generated Prime numbers to a shared memory. Parent process has to print by retrieving the Prime numbers from the shared memory. Implement the above using shm_open and mmap Note: Shared object should be removed at the end in the program.	3
8	 a. Write a program with two threads and a main thread. Schedule the task of calculating the natural sum upto 'n' terms and factorial of 'n' on these threads. Note: The main thread should read 'n' from command line and pass it as parameter to remaining threads. Terminate the threads using system calls. b. Implement FCFS scheduling algorithm by defining the process structure. 	3
9	Implement the following CPU scheduling algorithms by defining the process structure:	3

- Constituent College of JSS Science and Technology University
- Approved by A.I.C.T.E
- AND Governed by the Grant-in-Aid Rules of Government of Karnataka
 - Identified as lead institution for World Bank Assistance under TEQIP Scheme

	a. SJF	
	b. SJF (Preemptive)	
10	Implement the following CPU scheduling algorithms by defining the process	3
	structure:	
	a. Priority	
	b. Priority (Preemptive)	
11	Implement Round Robin CPU scheduling algorithm with arrival time by defining	3
	the process structure.	
12	Implement the following using mutex and semaphores:	3
	a. Producer – Consumer problem	
	b. Reader's writers' problem	
13	Lab Test/Event	3

Reference Books:

Sl. No.	Author/s	Title	Publisher Details						
1	Abraham Silberschatz,	Operating System Concepts	9 th Edition, Wiley India, 2013						
	Peter Baer Galvin,								
	Greg Gagne								
2	William Stallings	Operating Systems: Internals	7 th Edition, Prentice Hall of						
		and Design Principles	India,2017						
3	D.M Dhamdhere	Operating systems - A concept-	4 th Edition, Tata McGraw- Hill,						
		based Approach	2013						
4	P.C.P. Bhatt	Introduction to Operating	Concepts and Practice, 4 th Edition,						
		Systems	PHI, 2014						

Web Resources:

Sl. No.	Web Link
1	https://youtu.be/783KAB-tuE4 - NPTEL IIT, Madras
2	https://nptel.ac.in/courses/106108101/

Course Outcomes:

CO1	Implement shell programs and design process management and file system management
	with system calls.
CO2	Design and implement Inter Process Communication and multiple threads application.
CO3	Analyze and implement CPU scheduling algorithms and process synchronization.

Mapping Course Outcomes with Program outcomes & Program Specific outcomes:

Course					Pr	PSO's										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	-	-	-	-	-	3	3	-	-	3	-	3	-
CO2	3	3	3	3	-	-	-	-	3	3	-	-	3	-	3	1
CO3	3	3	3	3	-	-	-	-	3	3	-	-	3	-	3	-

- Constituent College of JSS Science and Technology University
- Approved by A.I.C.T.E
- CIENCE AND Governed by the Grant-in-Aid Rules of Government of Karnataka
 - Identified as lead institution for World Bank Assistance under TEQIP Scheme

Course Title: Design and Analysis of	Course Code: 20CS47L
Algorithms Lab	
Credits: 1.5	Contact Hours (L: T: P): 0: 0: 39
Type of Course: Practical	Category: Professional Core Course
CIE Marks: 50	SEE Marks: 50

Pre-requisite: Data Structures.

Course Objectives: The course should enable the students to:

Sl. No.	Course Objectives													
1	Analyze the problem domain; Choose the appropriate data structures and design													
	technique based on the problem domain.													
2	Implement algorithms and perform analysis with empirical method.													
3	Evaluate the performance of different algorithms using different design techniques for													
	solving the same problem.													

Weeks	List of Programs	No. of Hours
1	Implement Euclid's, consecutive integer checking and modified Euclid's algorithms to find GCD of two nonnegative integers and perform comparative analysis.	3
2	Implement the following searching algorithms and perform their analysis for worst case, best-case and average inputs.	3
	a) Sequential Searchb) Binary Search (Recursive)	
3	Implement the following elementary sorting algorithms and perform their analysis for worst case, best-case and average inputs	3
	a) Selection Sort b) Bubble Sort c) Insertion Sort	
4	Implement Brute force string matching algorithm to search for a pattern of length 'M' in a text of length 'N' (M<=N) and perform its analysis for worst case, best-case and average inputs.	3
5	Implement Merge Sort algorithm and perform its analysis for worst case, best-case and average inputs.	3
6	Implement Quick Sort algorithm and perform its analysis for worst case, best-case and average inputs.	3
7	 a) Implement DFS algorithm to check for connectivity and acyclicity of a graph. If not connected, display the connected components. Perform its analysis for different inputs b) Implement BFS algorithm to check for connectivity and acyclicity of a graph. If not connected, display the connected components. Perform its analysis for different inputs 	3

- Constituent College of JSS Science and Technology University
- Approved by A.I.C.T.E
- SCIENCE AND TECHNOLOGY UNIVERSITY Identified as lead institution for World Bank Assistance under TEQIP Scheme

8	a) Implement DFS based algorithm to list the vertices of a directed graph in	3
	Topological ordering. Perform its analysis for different inputs	
	b) Implement source removal algorithm to list the vertices of a directed graph in	
	Topological ordering. Perform its analysis for different inputs (Note: use efficient	
	method to identify the source vertex).	
9	Implement heap sort algorithm with bottom-up heap construction. Analyze its	3
	efficiency for worst case, best-case and average case inputs.	
10	a) Implement Warshall's Algorithm to find the transitive closure of a directed	3
	graph and perform its analysis for different inputs.	
	b) Implement Floyd's Algorithm to find All-pair shortest paths for a graph and	
	perform its analysis for different inputs	
11	a) Implement an algorithm to solve Knapsack problem with Dynamic	3
	Programming approach and perform its analysis for different inputs.	
	b) Implement Prim's algorithm to find Minimum Spanning Tree of a graph and	
	perform its analysis for different inputs	
12	Implement Dijkstra's algorithm to find shortest paths to other vertices in a graph	3
	and perform its analysis for different inputs.	
13	Lab Test/Event	3

Reference Books:

IXCIC	Cience Books.												
Sl. No.	Author/s	Title	Publisher Details										
1	Anany Levitin	Introduction to The Design &	3 rd Edition, Pearson										
		Analysis of Algorithms	Education, 2012.										
2	Ellis Horowitz, SartajSahni,	Fundamentals of Computer	2 nd Edition, Universities										
	Sanguthevar Rajasekaran	Algorithms	Press, 2013.										
3	Thomas H. Cormen, Charles E.	Introduction to Algorithms	3rd Edition, PHI ,2010										
	Leiserson, Ronal L. Rivest,												
	Clifford Stein												
4	R.C.T. Lee, S.S. Tseng, R.C.	Introduction to the Design	Tata McGraw Hill, 2012.										
	Chang & Y.T. Tsai	and Analysis of Algorithms											
		A Strategic Approach											

Web Resources:

Sl. No.	Web Link
1	https://nptel.ac.in/courses/106101060/
2	https://nptel.ac.in/courses/106106131/

Course Outcomes:

CO1	Implement searching and sorting algorithms.												
CO2	Implement graph based searching and sorting algorithms using Divide and Conquer and												
	Decrease and Conquer techniques.												
CO3	Implement spanning tree and shortest path algorithms using Greedy and Dynamic												
	techniques.												

- Constituent College of JSS Science and Technology University
- Approved by A.I.C.T.E
- CIENCE AND Governed by the Grant-in-Aid Rules of Government of Karnataka
- UNIVERSITY Identified as lead institution for World Bank Assistance under TEQIP Scheme

Mapping Course Outcomes with Program outcomes & Program Specific outcomes:

	Trupping course currently with 11081 and currently of 11081 and chromits																		
Course		Program Outcomes													PSO's				
Outcomes	PO1	O1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9								PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4			
CO1	3	3	3	-	-	-	-	-	3	3	-	-	3	-	3	-			
CO2	3	3	3	3	-	-	-	-	3	3	-	-	3	-	3	-			
CO3	3	3	3	3	-	-	-	-	3	3	-	-	3	-	3	-			

1-Low association, 2- Moderate association, 3-High association