杭州电子科技大学学生考试卷期末(B)卷

考试课	程	概率论与数理统计			考试日	期	200 月	09 年	成 绩		
课程	号 <i> /</i>	A0702140	教	师号			任课教	师姓名			
考生姓	名	参考答案	学号	(8位)			年级	<u> </u>	专业		
_	$\dot{\equiv}$	三	四	五.	六	七	八	, 1	L L	+	

- 一、选择题,将正确答案填在括号内(每小题3分,共18分)
- 1. 对于任意两事件 A, B, P(A-B) 等于 (C)

A.
$$P(A) - P(B)$$

B.
$$P(A) - P(B) + P(AB)$$

C.
$$P(A) - P(AB)$$

C.
$$P(A) - P(AB)$$
 D. $P(A) + P(\overline{B}) - P(A\overline{B})$

2. 设随机事件 A , B 满足 P(B) = P(B|A) , 则下列结论中正确的是

A.
$$P(\overline{A}\overline{B}) = P(\overline{A})P(\overline{B})$$

A.
$$P(A = B) = P(A)P(B)$$
 B. $P(A \cup B) = P(A) + P(B)$

C.
$$A$$
, B 互不相容

$$D. P(A) = P(B|A)$$

3. 随机变量 X的概率密度为 $f(x) = \frac{1}{2\sqrt{\pi}} e^{-\frac{(x+3)^2}{4}}, x \in (-\infty, +\infty)$,则 $Y = (B) \sim N(0,1)$

A.
$$\frac{X+3}{2}$$

B.
$$\frac{X+3}{\sqrt{2}}$$

C.
$$\frac{X-3}{2}$$

$$D. \frac{X-3}{\sqrt{2}}$$

4. 设随机变量 X和 Y相互独立,其分布函数分别为 $F_{X}(x)$ 与 $F_{Y}(y)$,则随机变量

 $Z = \max(X, Y)$ 的分布函数 $F_Z(z)$ 等于

(C)

A.
$$\max\{F_{X}(z), F_{Y}(z)\}$$

A.
$$\max\{F_X(z), F_Y(z)\}$$
 B. $\frac{1}{2}[F_X(z) + F_Y(z)]$

C.
$$F_{\nu}(z) \cdot F_{\nu}(z)$$

D.
$$F_X(z) + F_Y(z) - F_X(z) \cdot F_Y(z)$$

5. 设 $X \sim N(0,16)$, $Y \sim N(0,9)$, X和 Y相互独立, X_1, X_2, \cdots, X_9 和 Y_1, Y_2, \cdots, Y_{16} 分

别为
$$X$$
与 Y 的一个简单随机样本,则 $\frac{{X_1}^2 + {X_2}^2 + \dots + {X_9}^2}{{Y_1}^2 + {Y_2}^2 + \dots + {Y_{16}}^2}$ 服从的分布为(D)

A. F(16,16);

B. F(16.9)

C. F(9.9):

D. F(9.16)

6. 设 $X \sim N(\mu, \sigma^2)$, 其中 σ^2 已知, X_1, X_2, \cdots, X_n 为来自总体X的一个样本,则 μ 的 置信度为95%的置信区间为(

A.
$$(\overline{X} - \frac{\sigma}{\sqrt{n}} Z_{0.025}, \overline{X} + \frac{\sigma}{\sqrt{n}} Z_{0.025});$$
 B. $(\overline{X} - \frac{\sigma}{\sqrt{n}} t_{0.025}, \overline{X} + \frac{\sigma}{\sqrt{n}} t_{0.025})$

B.
$$(\overline{X} - \frac{\sigma}{\sqrt{n}} t_{0.025}, \overline{X} + \frac{\sigma}{\sqrt{n}} t_{0.025})$$

C.
$$(\overline{X} - \frac{\sigma}{\sqrt{n}} Z_{0.05}, \overline{X} + \frac{\sigma}{\sqrt{n}} Z_{0.05})$$

C.
$$(\overline{X} - \frac{\sigma}{\sqrt{n}} Z_{0.05}, \overline{X} + \frac{\sigma}{\sqrt{n}} Z_{0.05})$$
 D. $(\overline{X} - \frac{\sigma}{\sqrt{n}} t_{0.05}, \overline{X} + \frac{\sigma}{\sqrt{n}} t_{0.05})$

- 二、填空题(每小题3分,共15分)
 - 1. 将 3 个相同的球放入 4 个盒子中, 假设每个盒子能容纳的球不限, 而且各种不同的放法 的出现是等可能的,则 3 个盒子各放一个球的概率是_____ $\frac{3}{8}$ ______.
 - 2. $\& P(A \cup B) = 0.8$, P(B) = 0.4, $\& P(A | \overline{B}) = \frac{2}{3}$.
 - 3. 某人投篮, 投中的概率为 0.8, 现投了 3次,则此人投中 2次的概率为___0.384__.
- 4. 设X与Y相互独立且都服从N(0,1),则D(2X-5Y)=____29_
- 5. 设随机变量 $X \sim U(-1,2)$,则由切比雪夫不等式 $P\{|X-\frac{1}{2}| \le 1\} \ge 1/4$
- 三、(本题 5 分) 将两信息分别编码为 A和 B传递出去,接收站收到时, A被误作 B的概 率为0.04,而B被误作A的概率为0.03,信息A与信息B传递的频繁程度为2:1,若 接收站收到的信息是A,求原发信息是A的概率.
 - 解:由题意和贝叶斯公式易知:

所求概率为
$$p = \frac{\frac{2}{3} \times (1 - 0.04)}{\frac{2}{3} \times (1 - 0.04) + \frac{1}{3} \times 0.03} = \frac{64}{65}$$
 (5分)

四. (本题 10 分) 设随机变量 X的密度函数为 $f(x) = \begin{cases} ax, 0 < x < 1 \\ 0 & else \end{cases}$,

- (1) 求常数 a;
- (2) 求X的分布函数F(x);
- (3) 方差 *D(X)*.

解: (1) 因为
$$\int_{-\infty}^{+\infty} f(x)dx = 1$$
 (1分)

所以
$$\int_0^1 axdx = 1$$

得
$$\frac{a}{2} = 1$$
,即 $a = 2$ (3分)

(2)
$$X$$
的分布函数 $F(x) = \int_{-\infty}^{x} f(t)dt$ (4分)

$$F(x) = \begin{cases} 0, & x \le 0 \\ x^2, & 0 < x < 1 \\ 1, & x \ge 1 \end{cases}$$
 (6 $\%$)

(3)
$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx = \frac{2}{3}$$
 (7 $\%$)

$$E(X^{2}) = \int_{-\infty}^{+\infty} x^{2} f(x) dx = \frac{1}{2}$$
 (8 \(\frac{\gamma}{2}\))

$$D(X) = E(X^2) - [E(X)]^2 = \frac{1}{18}$$
 (10 分)

五. (本题 18 分)设随机变量(X,Y)的概率分布律为:

X	0	1	2
-1	0.3	0.1	0.2
1	0.1	0.3	0

求: (1) 关于 X, Y的边缘分布律; 并问 X与 Y是否相互独立?

- (2) 相关系数 ρ_{XY} , 并问 X与 Y是否相关?
 - (3) 条件概率 $P\{X \ge 1 | Y = 1\}$.

解: (1) 关于 X 的边缘分布律为

X	0	1	2
Р	0.4	0.4	0.2

(2分)

关于 Y 的边缘分布律为

Y	-1	1
P	0.6	0.4

(4分)

因
$$P(\{X=0,Y=-1\} \neq P\{X=0\} \cdot P\{Y=-1\}$$
 所以 X 与 Y 不相互独立. (6分)

(2)
$$E(XY) = -2 \times 0.2 + (-1) \times 0.1 + 0 \times 0.4 + 1 \times 0.3 = -0.2$$

$$E(X) = 0 \times 0.4 + 1 \times 0.4 + 2 \times 0.2 = 0.8$$

$$E(Y) = -1 \times 0.6 + 1 \times 0.4 = -0.2$$

得
$$Cov(X, Y) = E(XY) - E(X)E(Y) = -0.04$$
 (10 分)

$$\mathbb{X} E(X^2) = 0^2 \times 0.4 + 1^2 \times 0.4 + 2^2 \times 0.2 = 1.2$$

$$E(Y^2) = (-1)^2 \times 0.6 + 1^2 \times 0.4 = 1$$

得
$$D(X) = E(X^2) - [E(X)]^2 = 0.56$$

$$D(Y) = E(Y^2) - [E(Y)]^2 = 0.96$$

$$\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{D(X)D(Y)}} = -\frac{\sqrt{10}}{4\sqrt{21}}$$
 (15 $\%$)

所以
$$X$$
与 Y 相关 (16分)

(3) 条件概率
$$P{X \ge 1 | Y = 1} = \frac{P{X \ge 1, Y = 1}}{P{Y = 1}}$$

$$= \frac{P\{X=1, Y=1\} + P\{X=2, Y=1\}}{P\{X=0\}} = \frac{0.3}{0.4} = \frac{3}{4}$$
 (18 %)

六. (本题 6 分) 某运输公司有 500 辆汽车参加保险,在一年里汽车出事故的概率为 0.006, 参加保险的汽车每年交 800 元的保险费,若出事故由保险公司最多赔偿 50000 元,利用

中心极限定理计算:保险公司一年中赚钱不小于200000元的概率.

解:记 X_i ($i=1,2,\cdots,500$)为第i辆车获赔偿,

由题意 $E(X_i) = 0.006$, $D(X_i) = 0.006 \times 0.994$

所求概率
$$P{50000 \cdot \sum_{i=1}^{500} X_i < (500 \times 800 - 200000)}$$
 (1分)

$$= P\{50000 \cdot \sum_{i=1}^{500} X_i < (500 \times 800 - 200000)\}$$

$$= P\{\left(\frac{\sum_{i=1}^{5000} X_i - 500 \cdot 0.006}{\sqrt{500 \times 0.006 \times 0.994}} < \frac{4 - 500 \times 0.006}{\sqrt{500 \times 0.006 \times 0.994}}\right\}$$
 (5 $\%$)

$$\approx \Phi(\frac{1}{\sqrt{2.982}})\tag{6\,\%}$$

七. (本题 12 分) 设总体 X 的密度函数为 $f(x) = \frac{1}{2a} e^{\frac{-|x|}{a}}, a > 0, -\infty < x < +\infty$,

 X_1, X_2, \dots, X_n 是取自总体 X的一个样本, x_1, x_2, \dots, x_n 为样本值. 试求 a的最大似然估计量: 并问所得的估计量是否为 a的无偏估计.

解: 似然函数
$$L(x_1,\dots,x_n) = \prod_{i=1}^n f(x_i)$$
 (2分)

$$=\frac{1}{2^{n}a^{n}}\prod_{i=1}^{n}e^{-\frac{|x_{i}|}{a}}\tag{4\%}$$

取对数 $\ln L(x_1, \dots, x_n) = -n \ln 2 - n \ln a - \frac{1}{a} \sum_{i=1}^{n} |x_i|$

$$\mathbb{P}\frac{d\ln L}{d\theta} = -\frac{n}{a} + \frac{1}{a^2} \sum_{i=1}^{n} |x_i| = 0$$
 (6 \(\frac{1}{2}\))

得
$$\hat{a} = \frac{\sum_{i=1}^{n} |x_i|}{n}$$

故
$$a$$
 的最大似然估计量 $\hat{a} = \frac{\sum_{i=1}^{n} |x_i|}{n}$ (8分)

因
$$E(a) = E(\frac{\sum_{i=1}^{n} |x_i|}{n}) = E(|x_1|) = E(X)$$
 (9分)

而
$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx = 2 \int_{0}^{+\infty} \frac{1}{2a} x e^{-\frac{x}{a}} dx$$
 (10 分)

$$= \frac{1}{a} [(-axe^{-\frac{x}{a}})_0^{+\infty} + a \int_0^{+\infty} e^{-\frac{x}{a}} dx] = a$$
 (11 \(\frac{\psi}{a}\))

所以
$$E(a) = a$$
, a 的估计量是 a 的无偏估计 (12 分)

八. (本题 6 分) 某产品的一项质量指标 $X \sim N(\mu, \sigma^2)$,现从一批产品中随机地抽取 5 件,测得样本方差 $s^2 = 0.0078$,求方差 σ^2 的置信水平为 95%的置信区间.

$$(\chi_{0.025}^2(4) = 11.143, \chi_{0.975}^2(5) = 0.831, \chi_{0.025}^2(5) = 12.833, \chi_{0.975}^2(4) = 0.484,$$

$$\chi_{0.95}^2(4) = 0.711)$$

解:这里 $\alpha = 0.05$, n = 5, 故 σ^2 的置信水平为95%的置信区间

为:
$$\left(\frac{(n-1)s^2}{\chi_{\alpha/2}^2(n-1)}, \frac{(n-1)s^2}{\chi_{1-\alpha/2}^2(n-1)}\right)$$

$$= \left(\frac{4 \times 0.0078}{11.143}, \frac{4 \times 0.0078}{0.484}\right)$$

$$= (0.0028, 0.0645) \tag{6分}$$

九. (本题 6 分) 从某种试验物中取来 25 个样品 X_1, X_2, \cdots, X_{25} , 测量其发热量. 若发热量服从正态分布,且测得样本均值与均方差为 $\overline{X}=1195$, S=323. 试在显著性

水平 0.05 下确定发热量的期望值是否为 1210.

$$(\,t_{0.025}(24)=2.0639\,,t_{0.025}(25)=2.0595\,)$$

解: 这里 $\alpha = 0.05$, n = 25

由题意需检验假设
$$H_0$$
: $\mu = 1210$, 备择假设 H_1 : $\mu \neq 1210$ (2分)

则拒绝域为
$$t = \left| \frac{\bar{x} - \mu_0}{s / \sqrt{n}} \right| \ge t_{\alpha/2}(n-1)$$
 (4分)

故不在拒绝域内 (即接受 H_0),可以认为发热量的期望值为 1210. (6分)

十. (本题 4 分) 设随机变量 (X,Y) 在矩形 $G = \{(x,y) | 0 < x < 2, 0 < y < 1\}$ 上服从均匀分

布,试证:随机变量
$$Z=X\cdot Y$$
的概率密度为 $f_Z(z)=\begin{cases} \frac{1}{2}(\ln 2-\ln z)\,,\,0< z<2\\ 0\,,$ 其它

证: 由题意:
$$(X,Y)$$
的概率密度为 $f(x,y) = \begin{cases} \frac{1}{2}, 0 < x < 2, 0 < y < 1, \\ 0, 其它 \end{cases}$

设Z的分布函数为 $F_z(z)$,

则
$$F_Z(z) = P\{XY \le z\} = \iint_{xy \le z} f(x, y) dx dy$$
 (2分)

易知: 当 $z \le 0$ 时 $F_z(z) = 0$; 当 $z \ge 2$ 时 $F_z(z) = 1$;

当
$$0 < z < 2$$
 时, $F_z(z) = P\{XY \le z\} = 1 - P\{XY > z\}$

$$=1-\int_{z}^{2}dx\int_{x}^{1}\frac{1}{2}dy=\frac{1}{2}(1+\ln 2-\ln z)z$$

求导: 得
$$Z$$
的概率密度为 $f_Z(z) = \begin{cases} \frac{1}{2} (\ln 2 - \ln z), 0 < z < 2 \\ 0, 其它 \end{cases}$ (4分)