

⑤ Int. Cl.7:

F 17 C 1/12

## (I) BUNDESREPUBLIK DEUTSCHLAND



DEUTSCHES
PATENT- UND
MARKENAMT

# ® Offenlegungsschrift

® DE 100 52 856 A 1

(7) Aktenzeichen:(7) Anmeldetag:

100 52 856.2 24. 10. 2000

(3) Offenlegungstag:

25. 4. 2002

(7) Anmelder:

Linde AG, 65189 Wiesbaden, DE

@ Erfinder:

Reese, Wilfried-Henning, Dipl.-Ing., 85716 Unterschleißheim, DE; Wolf, Joachim, Dipl.-Phys. Dr., 81241 München, DE

#### Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- Speicherbehälter für kryogene Medien
- Es wird ein Speicherbehälter (1) für kryogene Medien (2), insbesondere für flüssigen Wasserstoff, aufweisend einen Außenbehälter (3), einen Innenbehälter (4) und wenigstens eine Entnahme und Befüllleitung (6, 6') beschrieben.

Erfindungsgemäß ist in dem Speicherbehälter (1) wenigstens ein weiterer Speicherraum (5, 5') für ein Medium angeordnet und zumindest die Entnahmeleitung steht (6, 6') mit dem weiteren Speicherraum (5, 5') in Wirkverbindung.

Hierbei kann dem weiteren Speicherraum (5, 5') ein Schild (12), das den Innenbehälter (4) vorzugsweise zumindest teilweise umgibt, zugeordnet sein und mit diesem in Wärmekontakt stehen. Auch kann der weitere Speicherraum (5) in Form eines Hohlkammerprofils ausgebildet sein und den Innenbehälter (4) zumindest teilweise umgeben.

weise umgeben. Die Erfindung ermöglicht es, die Abdampfrate bei Speicherbehältern (1); die der Speicherung kryogener Medien (2) dienen, deutlich zu verringern.



### Beschreibung

[0001] Die Erfindung betrifft einen Speicherbehälter für kryogene Medien, insbesondere für flüssigen Wasserstoff, aufweisend einen Außenbehälter, einen Innenbehälter und wenigstens eine Entnahme- und Befüllleitung.

[0002] Im Folgenden werden bei den Bezeichnungen spezieller kryogener Medien entsprechend ihrem Aggregatzustand die Buchstaben "G" für "gasförmig" und "L" für "flüssig" bzw. "liquid" vorangestellt; also z. B. GH<sub>2</sub> bzw. LH<sub>2</sub> für 10 gasförmigen bzw. flüssigen Wasserstoff.

[0003] Insbesondere Wasserstoff gewinnt gegenwärtig durch den steigenden Energiebedarf und das gestiegene Umweltbewußtsein als Energieträger zunehmend an Bedeutung. So werden bereits Lastkraftwagen, Busse sowie Personenkraftwagen mittels mit Wasserstoff-betriebenen Motoren bzw. Brennstoffzellen angetrieben. Darüber hinaus sind erste Versuche im Gange, Flugzeuge mit den genannten Medien anzutreiben.

[0004] Die Speicherung des Wasserstoffs "an Bord" der 20 oben genannten Verkehrsmittel ist dabei in flüssiger Form am sinnvollsten. Zwar muss der Wasserstoff dazu auf etwa 21 K abgekühlt und auf dieser Temperatur gehalten werden – was nur durch entsprechende Isoliermaßnahmen an den Speicherbehältern bzw. -tanks realisiert werden kann –, 25 doch ist eine Speicherung in gasförmigem Zustand aufgrund der geringen Dichte von GH2 in der Regel in den obengenannten Verkehrsmitteln ungünstiger, da die Speicherung hierbei in großvolurmigen und schweren Speicherbehältern bei hohen Drücken erfolgen muss.

[0005] Gattungsgemäße Speicherbehälter für kryogene Medien, insbesondere für flüssigen Wasserstoff, sind seit langem bekannt. Wird aus ihnen über einen längeren Zeitraum kein Medium entnommen, so kommt es im Inneren des Innenbehälters aufgrund des nicht zu verhindernden 35 Wärmeeinfalles aus der Umgebung in dem Medium zu einem Temperatur- und Druckanstieg. Derartige Speicherbehälter weisen deshalb immer die Möglichkeit auf, dass bei Erreichen eines bestimmten Druckes ein Teil des darin gespeicherten Mediums aus dem Innenbehälter an die Atmosphäre abgegeben werden kann. Die so aus dem Innenbehälter entwichene Menge geht jedoch ungenutzt verloren.

[0006] Bekannte Speicherbehälter für fülssigen Wasserstoff ermöglichen Standzeiten von 2 bis 3 Tagen, bevor es zu einem Abdampfen von gasförmigem Wasserstoff kommt. 45 Die Akzeptanz von Wasserstoff als Energieträger – insbesondere bei Personenkraftwagen – wird u. a. auch von der möglichen Länge der Standzeit eines Personenkraftwagens abhängen. Ein Abblasen von Wasserstoff nach 2 bis 3 Tagen würde vom Kunden sicherlich nicht akzeptiert werden.

[0007] Aufgabe der vorliegenden Erfindung ist es, einen Speicherbehälter für kryogene Medien, insbesondere für Wasserstoff anzugeben, der eine längere Standzeit ermöglicht, also den Wärmeeinfall auf das in ihm gespeicherte Medium verringert, was zur Folge hat, dass der Temperaturum Druckanstieg im Inneren des Innenbehälters langsamer vonstatten geht.

[0008] Zur Lösung dieser Aufgabe wird ein Speicherbehälter vorgeschlagen, der dadurch gekennzeichnet ist, dass in dem Speicherbehälter wenigstens ein weiterer Speicher- 60 raum für ein Medium angeordnet ist und zumindest die Entnahmeleitung(en) des Speicherbehälters mit dem weiteren Speicherraum in Wirkverbindung steht bzw. steben.

[0009] Hierbei ist die Wirkverbindung zwischen der oder den Entnahmeleitungen des Speicherbehälters und dem wei-65 teren Speicherraum vorzugsweise in Fortn eines Wärtnetauschers ausgebildet.

[0010] Der erfindungsgemäß nunmehr im Inneren des

Speicherbehälters vorgesehene weitere Speicherraum kann beispielsweise mit einem Medium gefüllt werden, das über einen Phasenübergang Energie speichert, wie beispielsweise Sückstoff, Argon, etc. Derartige Medien werden auch als PCMs (Phase Change Material) bezeichnet.

[0011] Entsprechend vorteilhafter Ausgestaltungen des erfindungsgemäßen Speicherbehälters ist dem weiteren Speicherraum ein Schild, das den Innenbehälter vorzugsweise zumindest teilweise umgibt, zugeordnet und der weitere Speicherraum steht mit diesem Schild in Wärmekontakt.

[0012] Ergänzend oder alternativ dazu kann der weitere Speicherraum auch in Form eines Hohlkammerprofiles ausgebildet sein und den Innenbehälter des erfindungsgemäßen Speicherbehälters zumindest teilweise umgeben.

5 [0013] Der zwangsläufig auftretende Wärmeeinfall in den erfindungsgemäßen Speicherbehälter führt nun dazu, dass das in dem weiteren Speicherraum gespeicherte Medium bzw. das mit dem weiteren Speicherraum verbundene Schild – dies besteht vorzugsweise aus Kupfer – erwärmt werden. Dies hat zur Folge, dass die Temperaur und damit auch der Druck in dem Innenbehälter zunächst im Wesentlichen unverändert bleiben bzw. in einem wesentlich geringeren Maße ansteigen als dies bei bekannten Speicherbehältern der Fall ist. Somit wird das Abdampfen des Mediums aus dem Innenbehälter des Speicherbehälters verlangsamt, wodurch sich die Strandzeiten deutlich verlängern.

[0014] Den erfindungsgemäßen Speicherbehälter für kryogene Medien weiterbildend wird vorgeschlagen, dass dem weiteren Speicherraum wenigstens eine Befüllleitung 30 zugeordnet ist.

[0015] Diese Ausgestaltung ermöglicht es nun, ein sog. "offenes System" zu realisieren, bei dem beispielsweise Umgebungsluft über die Befüllleitung in den weiteren Speicherraum gelangt.

5 [0016] Wird nun der Innenbehälter des erfindungsgemäßen Speicherbehälters mit einem kryogenen Medium befüllt, so kommt es zu einer Verflüssigung der in dem weiteren Speicherraum befindlichen Luft. Im Falle einer längeren Standzeit wird die in dem weiteren Speicherraum befindlioe che Luft aufgrund des Wärmeeinfalles dann wieder erwärmt.

[0017] Die Verflüssigung der Luft kann jedoch nicht nur beim Befüllen des Speicherbehälters mit dem kryogenen Medium erfolgen, sondern auch – wie unten erläutert werden wird – bei der Entnahme des kryogenen Mediums aus dem Speicherbehälter. Die Verflüssigung bei der Entnahme hat zusätzlich den Vorteil, dass die Wärmeenergie des entnommenen kalten Mediums genutzt wird.

[0018] Der vorgenannten Befüllleitung sind vorzugsweise
Mittel zum Reinigen des in den weiteren Speicherraum geführten Mediums zugeordnet.

[0019] Hierbei sind diese Mittel zum Reinigen wiederum vorzugsweise als werigstens ein Wärmetauscher, in dem ein Wärmetausch zwischen dem dem weiteren Speicherraum zugeführten Medium und dem aus dem Speicherbehälter abgezogenen kryogenen Medium erfolgt, ausgebildet.

[0020] Gelangt nunmehr beispielsweise Luft aus der Umgebung über die Befüllleitung nur dann in den weiteren Speicherraum, wenn der vorgenannte Wärmetausch mit dem aus dem Speicherbehälter abgezogenen kryogenen Medium erfolgt, so wirkt dieser Wärmetausch als Kältefalle für die in der Umgebungsluft enthaltene Feuchtigkeit sowie das in ihr enthaltene Kohlendioxid. Diese Komponenten kondensieren bereits während des Wärmetausches und können somit von der dem weiteren Speicherraum zuzuführenden Luftmenge abgetrennt werden. Ein Ausfrieren dieser Komponenten innerhalb des Leitungssystems wird dadurch wirkungsvoll verhindert.

3

[0021] Der erfindungsgemäße Speicherbehälter sowie weitere Ausgestaltungen desselben seien anhand zweier, in den Fig. 1 und 2 dargestellter Ausführungsbeispiele näher erläutert.

[0022] Die Fig. 1 zeigt eine erste Ausführungsform des erfindungsgemäßen Speicherbehälters 1, der einen Außenbehälter 3 sowie einen Innenbehälter 4 aufweist. Zwischen diesen ist vorzugsweise eine Superisolation vorgesehen. Das im Innenbehälter 4 befindliche kryogene Medium 2 – im vorliegenden Falle handelt es sich um flüssigen Wassertostoff – kann sowohl in flüssiger Form – über die Entnahmeleitung 6- als auch in gasförmiger Form – über die Entnahmeleitung 6- aus dem Speicherbehälter 1 bzw. dessen Innenbehälter 4 entnommen werden.

[0023] Die beiden Entnahmeleitungen 6 und 6 werden 15 mittels eines Drei-Wege-Ventils a zu einer gemeinsamen Leitung 7 vereinigt. Der entnommene Wasserstoff wird nunmehr durch zwei Wärmetauscher WT 3 und WT 2 geführt und in diesen angewärmt.

[0024] Während auf die Anwärmung des Wasserstoffes in 20 dem Wärmetauscher WT 3 noch näher eingegangen wird, erfolgt in dem Wärmetauscher WT 2 eine weitere Anwärmung des Wasserstoffes gegen ein Kühlmedium, wie beispielsweise das Motorkühlwasser.

[0025] Über die Leitung 8, in der ein Regelventil b angeordnet ist, wird der Wasserstoff anschließend einem Antriebsaggregat und/oder einer Brennstoffzelle zugeführt.

[0026] Erfindungsgemäß ist im Inneren des Speicherbehälters 1 nunmehr ein weiterer Speicherraum 5 vorgesehen. Prinzipiell können jedoch auch zwei oder mehrere zusätzliche Speicherräume vorgesehen werden. Der weitere Speicherraum 5 umgibt bei dem in der Flg. 1 dargestellten Ausführungsbeispiel den Innenbehälter 4 des erfindungsgemäßen Speicherbehälters 1 im Wesentlichen vollständig. Dies kann beispielsweise dadurch realisiert werden, dass der weitere Speicherraum 5 in Form eines Hohlkammerprofiles ausgebildet ist.

[0027] Über Leitung 9, in der ein Ventil c vorgesehen ist, wird dem bereits erwähnten WT 3 Umgebungsluft zugeführt. Diese wird in dem Wärmetauscher WT 3 gegen den 40 anzuwärmenden Wasserstoffstrom in der Leitung 7 abgekühlt, wobei die unerwünschten Bestandteile wie Feuchtigkeit und Kohlendioxid auskondensieren und über Leitung 12, in der ebenfalls ein Ventil d angeordnet ist, abgezogen werden können. Der entfeuchtete und von Kohlendioxid ge- 45 reinigte Luftstrom wird anschließend über Leitung 10, in der ein Ventil e angeordnet ist, dem im Inneren des Speicherbehälters 1 angeordneten weiteren Speicherraum 5 zugeführt. [0028] Aus Sicherheitsgründen weist der weitere Speicherraum 5 eine Abführleitung 11 auf, in der ein Überdruck- 50 ventil f, das bei Erreichen eines voreingestellten Druckwertes eine Abgabe über die Abführleitung 11 ermöglicht, angeordnet ist.

[0029] Der weitere Speicherraum 5 steht bei dem in der Fig. 1 dargestellten Ausführungsbeispiel mit den beiden SS Entnahmeleitungen 6 und 6 derart in Wirkverbindung, dass ein Wärmeaustausch zwischen dem über die Entnahmeleitungen 6 und/oder 6 entnommenen Wasserstoff und der in dem weiteren Speicherraum 5 befindlichen verflüssigten Luft erfolgen kann – in der Fig. 1 dargestellt durch den Wärmetauscher WT 1.

[0030] Die in dem weiteren Speicherraum 5 befindliche verflüssigte Luft wird bei dem erfindungsgemäßen Speicherbehälter 1 nunmehr bei jeder Wasserstoffentnahme – sei es über Entnahmeleitung 6 oder 6' – zwangsläufig über den 65 Wärmeaustausch WT 1 abgekühlt.

[0031] Durch die Absenkung des Dampfdruckes der flüssigen luft in dem Speicherraum 5 wird neue im Wärmetau-

4

scher WT 3 vorgekühlte Luft angesaugt und im Wärmetauscher WT 1 bzw. im Speicherraum 5 selbst verflüssigt. Um die Einbringung von Wasser und Kohlendioxid in den Speicherraum 5 zu verhindern und um eine Vorkühlung der Luft zu erreichen, wird die angesaugte Luft im Wärmetauscher WT 3 auf eine Temperatur, die über der Verflüssigungstemperatur von Luft liegt, gekühlt. Wasser und Kohlendioxid schlagen sich als Eis an den kalten Flächen des Wärmetauschers WT 3 mieder. Die Regenerierung des Wärmetauschers WT 3 erfolgt bei jeder längeren Stillstandszeit des Fahrzeugs.

[0032] Die Ventile e und c werden geschlossen, wenn keine Wasserstoffentnahme aus dem Innenbehälter 4 erfolgt. Der Wärmetauscher WT 3 wird zu diesen Zeiten aufgrund von Wärmeeinfall aus der Umgebung oder durch einen eingebauten, in den Fig. 1 und 2 nicht dargestellten Heizer angewärmt. Wasser und Kohlendioxid werden wieder flüssig bzw. gasförmig und über das Ventil d an die Umgebung abgegeben. Es ist zu beachten, dass das Ventil e erst dann (wieder) geöffnet wird, wenn der Wärmetauscher WT 3 eine Temperatur erreicht hat, die das Ausfrieren von Wasser und Kohlendioxid erlaubt, um einen Eintrag dieser Stoffe in den weiteren Speicherraum 5 zu verhindern.

[0033] In der Fig. 2 ist eine zweite Ausführungsform des erfindungsgemäßen Speicherbehälters 1 dargestellt, wobei jedoch auf die Darstellung sämtlicher in der Fig. 1 gezeigter Bauteile verzichtet ist.

[0034] Während bei dem in der Fig. 1 dargestellten Ausführungsbeispiel der weitere Speicherraum 5 den Innenbehälter 4 des erfindungsgemäßen Speicherbehälters 1 im Wesentlichen vollständig umgibt, ist numehr im Inneren des erfindungsgemäßen Speicherbehälters 1 ein weiterer Speicherraum 5 angeordnet, dem ein Schild 12 zugeordnet ist und mit dem der weitere Speicherraum 5 in Wärmekontakt steht. Der Schild 12 umgibt dabei den Innenbehälter 4 vorzugsweise im Wesentlichen vollständig.

[0035] Durch eine entsprechende Wahl des Materials bzw. der Materialien für den Schild 12 erreicht diese Ausführungsform der Erfindung eine äquivalente Abschirmung des Innenbehälters 4 verglichen mit der Konstruktion gemäß dem in der Fig. 1 dargestellten Ausführungsbeispiel.

#### Patentansprüche

1. Speicherbehälter (1) für kryogene Medien (2), insbesondere für flüssigen Wasserstoff, aufweisend einen Außenbehälter (3), einen Innenbehälter (4) und wenigstens eine Entnahme- und Befüllleitung (6, 6), dadurch gekennzeichnet, dass in dem Speicherbehälter (1) wenigstens ein weiterer Speicherraum (5, 5) für ein Medium angeordnet ist und zumindest die Entnahmeleitung (6, 6) mit dem weiteren Speicherraum (5, 5) in Wirkverbindung steht.

2. Speicherbehälter (1) für kryogene Medien (2) nach Anspruch 1, dadurch gekennzeichnet, dass die Wirkverbindung zwischen zumindest der Entnahmeleitung (6, 6') und dem weiteren Speicherraum (5, 5') in Form eines Wärmetauschers (WT 1) ausgebildet ist.

3. Speicherbehälter (1) für kryogene Medien (2) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass dem weiteren Speicherraum (5, 5) ein Schild (12), das den Innenbehälter (4) vorzugsweise zumindest teilweise umgibt, zugeordnet ist und mit diesem in Wärmekontakt steht.

4. Speicherbehälter (1) für kryogene Medien (2) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der weitere Speicherraum (5) in Form eines Hohlkammerprofiles ausgebildet ist und

| den Innenbehälter (4) zumindest teilweise umgibt.       |
|---------------------------------------------------------|
| 5. Speicherbehälter (1) für kryogene Medien (2) nach    |
| einem der vorhergebenden Ansprüche, dadurch ge-         |
| kennzeichnet, dass dem weiteren Speicherraum (5, 5')    |
| wenigstens eine Befüllleitung (9, 10) zugeordnet ist.   |
| 6. Speicherbehälter (1) für kryogene Medien (2) nach    |
| Anspruch 5, dadurch gekennzeichnet, dass der Befüll-    |
| leitung (9, 10) Mittel zum Reinigen des in den weiteren |
| Speicherraum (5, 5) geführten Mediums zugeordnet        |
| sind,                                                   |
| 7 Speigharhah Stee (1) 60s Irrangene Medien (2) noch    |

7. Speicherbehälter (1) für kryogene Medien (2) nach Anspruch 6, dadurch gekennzeichnet, dass die Mittel zum Reinigen des in den weiteren Speicherraum (5, 5') geführten Mediums als wenigstens ein Wärmetauscher (WT 3), in dem ein Wärmetausch zwischen dem dem 15 weiteren Speicherraum (5, 5') zugeführten Medium und dem aus dem Speicherbehälter (1) abgezogenen kryogenen Medium erfolgt, ausgebildet sind.

8. Speicherbehälter (1) für kryogene Medien (2) nach einem der vorhergebenden Ansprüche, dadurch ge- 20 kennzeichnet, dass dem weiteren Speicherraum (5, 5') wenigstens eine Abführleitung (11) zugeordnet ist.

9. Speicherbehälter (1) für kryogene Medien (2) nach Anspruch 8, dadurch gekennzeichnet, dass in der Abführleitung (11) ein Überdruckventil (f) angeordnet ist. 25 10. Verwendung eines Speicherbehälters (1) für kryogene Medien (2) nach einem der vorhergehenden Ansprüche als Speicherbehälter für Kraftfahrzeuge, die mit flüssigem Wasserstoff betrieben werden.

Hierzu 2 Seite(n) Zeichnungen

Nummer: Int. Cl.<sup>7</sup>: Offenlegungstag: DE 100 52 858 A1 F 17 C 1/12 25. April 2002



Nummer: Int. Cl.<sup>7</sup>: Offenlegungstag:

DE 100 52 856 A1 F 17 C 1/12 25. April 2002

