EASY-TO-USE AI CALCULATOR PREDICTING 5Y WEIGHT TRAJECTORIES AFTER BARIATRIC SURGERY: A SOPHIA STUDY

Patrick Saux¹, Pierre Bauvin², Violeta Raverdy², Philippe Preux¹, François Pattou² et al.

¹Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189-CRIStAL, F-59000, Lille, France. ²Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1190 - EGID, F-59000, Lille, France.

Goal: predict the outcome of surgery

Machine learning model

An international study

Validation: 8 cohorts + 2 RCT studies, 10,000 patients, 3 continents. SOPHIA Stratification of Obese Phenotypes to Optimize

Results

- 7 (simple) attributes are predictive of post-surgery weight loss:
 - Weight (preop),
 - •Height,
 - •Age,
 - Type of intervention,
 - Type II diabetes (T2D),
 - Duration of T2D,
 - •Smoking.

- **A** Lower weight loss with

 - •SG (after 1y),
 - T2D,
 - Longer (more severe) T2D.

Impact of RYGB vs SG

Impact of T2D

A companion tool for patients and care providers

https://bwtp.univ-lille.fr

- Individualized trajectory (dotted line),
- "Green zone": where the majority of patients are (IQR),
- Preop: visualize expected weight loss,
- **Postop**: flag complications (patient out of green zone).

Validation

MAD: accuracy in BMI points for a standard patient.

Fundings: SOPHIA-IMI (grant 875534), Métropole Européenne de Lille (MEL), ANR, Inria, Université de Lille (through the AI chair Apprenf number R-PILOTE-19-004-APPRENF), ULNE I-SITE EXPAND (B4H project), ANR LABEX-EGID, STIMulE program.