Kevin Lopez

CIS341

Weekly Assignment 9

10/27/22

m: the number of address bits

C: the cache size (number of data bytes)

B: the block size in bytes

② E: the associativity

S: the number of cache sets

 $\ensuremath{\mathbb{Z}}$ t: the number of tag bits

② s: the number of set index bits

② b: the number of block offset bits

Cache	M	С	В	E	S	T	S	b
1	32	4096	8	2	512	20	9	3
2	48	8192	16	2	256	26	8	4
3	32	1024	32	1	32	22	5	5
4	32	2048	16	4	32	23	5	4

2)(50 points) Suppose we have a system with the following properties:
The memory is byte addressable, and the addresses are 12-bits wide.
The cache is two-way associative (E = 2), with 4-byte blocks (B = 4) and four sets (S = 4). The contents of the cache are as follows, with all addresses, tags, and values given in hexadecimal notations: Set index Tag Valid Byte 0 Byte 1 Byte 2 Byte 3 0 00 0 20 21 22 23 11 1 28 29 2A 2B 1 44 1 60 61 62 63 55 0 68 69 6A 6B 2 77 0 90 91 92 93 88 0 98 99 9A 9B 3 BB 1 D0 D1 D2 D3 CC 1 D8 D9 DA DB For each of the following memory accesses, indicate if it will be a cache hit or miss when carried out in sequence as listed. Also, give the values of a read if it can be inferred from the information in the cache. Operation Address Hit? Read value (or unknown)

Operation	Address	Hit?	Read
			Value(Unknown)?
Read	0x111	yes	29
Read	0x222	No	unknown
Read	0x444	yes	63
Read	0x888	No	unknown
Read	OxBBB	No	unknown