43 中科蓝讯 bluetrum

蓝讯 ANC 开发工具 使用说明

版本号: 1.2

2024/10/29

目 录

1		工具	! 界面介绍	3
	1.1	LIC	CENSE 选择界面介绍	
	1.2	主	.界面介绍	3
	1.3	按钮	建功能说明	5
	1.4	EQ)工具界面	<u>5</u>
	1.5	AN	· NC 仿真界面	6
	1.6		口在线调试区	
_		A N.O	C 调试	
2	ı			
	2.1		·系列芯片滤波器个数以及支持的功能	
	2.2	调记]试环境搭建	8
	2.2	2.1	测试链路搭建	
	2.2	2.2	程序配置	8
	2.2		蓝牙串口连接	
	2.3	FF.	FANC 调试	11
	2.3	3.1	采集 FF 传递函数	
	2.3	3.2	FF ANC 仿真	14
	2.4	HY	YBRID ANC 调试	
	2.4	1.1	采集 FF 传递函数(FB off)	
	2.4	1.2	采集 FF opt 传递函数(FB on)	
		1.3	HYBRID ANC 仿真	
	2.5	MS	SC 音乐补偿调试	
	2.5	5.1	测试环境	
	2.5	5.2	测试程序配置	
	2.5	5.3	数据采集	
	2.5	5.4	MSC 音乐补偿仿真	22
	2.6	FB	3 ANC 仿真	
	2.6	5.1	数据采集	22
	2.6		FB 仿真	22
	2.7	通ì	透调试	
	2.7	7.1	采集通透传递函数	
	2.7		通透仿真	
	2.8	OV	WS 降噪调试	28
	2.8	3.1	采集 OWS ANC 传递函数	28
	2.8	3.2	OWS ANC 仿真	31
僧	多订历	5中.		33
芦	⋾明			34

1 工具界面介绍

1.1 LICENSE 选择界面介绍

启动 ANC TOOL 后,会进入如图 1 所示的 license 选择界面,勾选"记住 license 文件"后点击"选择 license 文件",选中当前电脑对应的 license。License 申请可发送申请邮件至蓝讯工程邮箱:

project@bluetrum.com

图 1 license 选择界面

1.2主界面介绍

启动 ANC TOOL 后,会进入如图 2 所示的 EQ 工具主界面;点击 ANC 仿真栏,会进入如图 3 所示的界面。表 1-1 中标明了主要区域的信息

图 2 ANC TOOL 主界面

图 3 ANC 仿真界面

表 1 主要区域信息

区域编号	区域功能	备注
1	功能按键	
2	界面选择栏	
3	滤波器操作按键	
4	系数目录及其导入	
5	串口在线调试区	
6	滤波器切换按键	
7	滤波器系数区	
8	幅度、相位显示区	
9	ANC 仿真模式按键	
10	ANC 仿真界面	

1.3 按键功能说明

表 2 按键功能说明

按键	子按键	功能说明	
	系数	点击此选项时可导入单个滤波器系数	
系数与工程	工程	点击此选项时可导入. eqproj 工程文件	
	工程属性	点击此选项可对导入的. eqproj 工程文件进行编辑	
功能	ANC 面板	打开 FF/FB 或 HYBRID 的 ANC 面板	
切能	UI 适配	窗口显示错误时修正UI	
	另存系数	将当前系数另存至其他区域	
	保存系数/保存工程	将工具中滤波器保存至当前路径	
	复位	使滤波器直通	
	撤销	撤销至修改前的滤波器	
EQ 工具	重复	重复至撤销前的滤波器	
	重载	重新载入当前路径保存的滤波器	
	清除	清除工具界面的滤波器	
	复制	将当前路径文件中储存的滤波器复制到另一只耳	
		的文件,如将 10_nos. eq 复制为 r0_nos. eq	

1.4EQ 工具界面

滤波器类型:选择各滤波器的种类

Gain: 设置各滤波器的增益

Q: 设置各滤波器的品质因数

Fc: 设置各滤波器的中心频点

增益: 设置滤波器的总增益

反相: 设置滤波器相位

1.5 ANC 仿真界面

耳机形态: 选择期望拟合的降噪模式

滤波器个数:选择期望用于拟合的滤波器个数,建议预留 1~2 个滤波器用于微调

选择自动拟合目标: Hybrid 用于拟合 Hybrid ANC 模式滤波器, FF 用于拟合 FF ANC 模式滤波器

频率拟合范围:选择期望拟合的频率范围

升噪惩罚系数:选择升噪抑制的程度,级别越大抑制程度越高

迭代次数:进行自动拟合的迭代次数,次数越多拟合效果越好,但用时越长,建议次数为100—200

FB Off 按键: 导入关闭 FB 时采集的耳机传递函数相关数据

FB On 按键: 导入开启 FB 时采集的耳机传递函数相关数据,仿真 FF ANC 时可不选择

升噪抑制:对中高频的升噪进行抑制,可能会牺牲一定的降噪效果

降噪增强: 自动微调滤波器, 略微增强降噪效果

1.6 串口在线调试区

串口读取:选择所需串口编号进行连接

发送数据:通过串口将当前滤波器临时发送至耳机(耳机复位后会恢复原有滤波器),显示"**发送成

功"时表明滤波器已发送至耳机(当左侧勾选时,发送模式改为自动,每次修改滤波器均会发送至耳机)

串口刷新: 更新电脑当前串口, 有新串口时需点此按钮后才能进行串口读取

2 ANC 调试

2.1 各系列芯片滤波器个数以及支持的功能

芯片系列	FF+FFMSC 滤波器个数	FB+FBMSC 滤波器个数	是否支持 ANC 仿真
892X	8	8	是
893X	10	10	是
895X	10	10	是
897X	10	10	是

注: 通透和降噪的可用滤波器个数一致

2.2调试环境搭建

2.2.1 测试链路搭建

音箱建议选用低频响应好的音箱。真人佩戴测试传递函数会更接近目标曲线。若真人佩戴测试,需要外接一个 Error MIC 在耳机出音的位置,连接到音频分析仪。若使用人工耳测试,则将人工耳的信号连接到音频分析仪,建议用仿真人头。与音频分析仪的连接情况如下图所示

2.2.2 程序配置

在调试 ANC 前,需要在程序中打开 ANC 使能。以 893X 系列芯片的 Hybrid ANC 模式为例,在 config.h 文件中将 ANC_EN 使能位置 1。

在程序配置中,选择 Hybrid ANC 模式,并打开对应的 MIC, 选择所需的 MIC 配置

2.2.3 蓝牙串口连接

耳机程序配置中打开串口调试以及串口功能, 下载程序

电脑连接耳机蓝牙,点击更多蓝牙选项--COM端口查看耳机对应传出串口,示例中串口号为COM30

在 ANC TOOL 串口在线调试区,先点击串口刷新,再从串口读取窗口选中耳机蓝牙对应的传出串口

点击功能--ANC 面板,根据所用 ANC 模式选择打开 FF/FB 或 HYD(Hybird)面板,HYD 面板为例,按照耳机程序配置中的增益值,预设好 FF 模拟增益和 FB 模拟增益。勾选 ANC 开关,面板下方显示发送成功则表明串口连接完成

2.3 FF ANC 调试

2.3.1 采集 FF 传递函数

1. 按需求设置并固定 FF MIC 的模拟增益; 音频分析仪连接好线材, 搭建好测试环境, 配置好输入输出

2. 在 Input 部分勾选 Acoustic 声学选项,并点击 Mic Cal/dBSPL

3. 校准人工耳/Error MIC 通路灵敏度,第一次测试可记录灵敏度数据供下次使用。

4. 音频分析仪中添加声学响应测试项

5. 配置输出信号大小、扫频时间等,一般情况下扫频时间设置按下图即可

- 6. 按顺序分别测试耳机被动响应(ANC 关闭)、被动+直通(点击复位并发送滤波器,使滤波器直通)
- 注:若被动+直通的扫频曲线与被动响应曲线在 3kHz 前的幅度差距小于 5dB,需抬高 FF 模拟增益,直至两者幅度差距大于 5dB。

7. 导出扫频幅度、相位的 500 点数据

2.3.2 FF ANC 仿真

- 1. 在 ANC 仿真--滤波器个数窗口预设拟合使用的滤波器个数;选中 FB off,选中在音频分析仪中导出的数据,自动拟合目标选为 FF,再点击自动拟合进行滤波器拟合。可在自动拟合处设置拟合次数,最终自动选择降噪效果最优的一次
- 注: 892X 芯片滤波器个数上限为 8,893x&895x&897x 滤波器个数上限为 10

2. 仿真完成后,点击 TWS 降噪可查看仿真的降噪深度和滤波器幅度相位,点击 EQ 工具可查看各滤波器对应的参数

3. 当滤波器调整完成,串口连接后,点击发送数据,可将当前页面所示滤波器临时发送至耳机;点击保存工程或保存系数,可将当前滤波器保存至对应路径;点击另存系数可另存至其他位置;若实际测试无降噪效果,需要先关闭自动判断相位,更改反相关按钮

4. 若需要手动调整频响和相位的大小,点击下方放大镜按钮,框选需要放大的部分; 点击移动按钮 可拖动绘图画面

注:一般而言,当前滤波器幅度与相位与目标曲线拟合越好,理论降噪效果越佳。若当前降噪效果不理想,可微调 EQ 工具中的滤波器参数,尽可能使滤波器幅度相位与目标曲线重合,完成后点击 ANC 仿真/刷新,寻找效果较好的滤波器;或可点击并拖动降噪图中各滤波器调整 Gain 值,点击滤波器时滚轮上下滑动调整 Q值,实时更新降噪深度仿真。其中,当前滤波器幅度与相位用红色线表示,目标曲线幅度和相位用深蓝色线表示,降噪深度用天蓝色线表示。

2.4 HYBRID ANC 调试

调试 Hybrid ANC 需要先调试好 FB ANC 效果,一般可在 100~200Hz 的中低频处,降噪深度调至 15~25dB,降噪带宽视需求以及样机声学特性而定,当 FB 啸叫时,可增加 peak 压制啸叫频点,或尝试更改'反相关'开关,可参考 2.6 中的 FB 仿真功能进行调试。固定好 FB ANC 滤波器后使用音频分析仪进行数 据采集。下图为入耳式耳机 FB 参考滤波器

2.4.1 采集 FF 传递函数 (FB off)

可参考 2.3.1 中 FF ANC 调试步骤 1-7 步

2.4.2 采集 FF opt 传递函数(FB on)

1. 耳机程序中固定 FF MIC 的模拟增益; 音频分析仪连接好线材, 搭建好测试环境, 配置好输入输出; 校准人工耳/Error MIC 通路灵敏度, 第一次测试可记录灵敏度数据供下次使用。

2. 音频分析仪中添加声学响应测试项

3. 配置输出信号大小、扫频时间等

- 4. 按顺序分别测试被动响应+FB ANC(FF ANC 关闭,FB ANC 开启)、被动+FB ANC+直通(FF ANC 滤波器复位直通,FB ANC 开启)滤波器的幅度和相位
- 注: 若被动+直通的扫频曲线与被动响应曲线在 3kHz 前的幅度差距小于 5dB, 需抬高 FF 模拟增益, 直至两者幅度 差距大于 5dB。

5. 导出扫频幅度、相位的 500 点数据

2.4.3 HYBRID ANC 仿真

1. 在 ANC 仿真--滤波器个数窗口预设拟合使用的滤波器个数;分别点击 FB off、FB on,选中 2.3.1 和 2.4.1 中在音频分析仪中对应导出的数据,将自动拟合目标选为 Hybrid,再点击 ANC 仿真进行滤波器拟合

注: 892X 芯片滤波器个数上限为 8,893x&895x&897x 滤波器个数上限为 10

2. 仿真完成后,可查看仿真的降噪深度和滤波器幅度相位,点击 EQ 工具可查看各滤波器的参数

3. 当滤波器调整完成,完成串口连接后,点击发送数据,可将当前页面所示滤波器临时发送至耳机;点击保存工程或保存系数,可将当前滤波器保存至对应路径;点击另存系数可另存至其他位置;实际测试无降噪效果,需要更改反相开关按钮

4. 若需要手动调整频响和相位的大小,点击下方放大镜按钮,框选需要放大的部分; 点击移动按钮可拖动绘图画面

注:一般而言,当前滤波器幅度与相位与目标曲线拟合越好,理论降噪效果越佳。若当前降噪效果不理想,可微调 EQ 工具中的滤波器参数,尽可能使滤波器幅度相位与目标曲线重合,完成后点击 ANC 仿真/刷新,寻找效果较好的滤波器;或可点击并拖动降噪图中各滤波器调整 Gain 值,点击滤波器时滚轮上下滑动调整 Q 值,实时更新降噪深度仿真。其中,当前滤波器幅度与相位用红色线表示,目标曲线幅度和相位用深蓝色线表示,降噪深度用天蓝色线表示。

2.5 MSC 音乐补偿调试

2.5.1 测试环境

提前调试好 FB ANC,并固定 MIC 模拟增益。在消音室或较为安静的环境中,准备有 log 线的样机,将样机佩戴在人工耳或真人耳上进行数据采集

2.5.2 测试程序配置

在采集耳机音乐补偿数据之前,需在程序中进行几处修改。

1. 在 config.h 文件中进行修改,如下图所示

2. 在程序配置中打开 HURAT 调试, 并选择 log 线对应接口, 下图所示 log 线接口为 PB3

3. 将 FF、FB 的滤波器的增益用 lowshelf 调至最低,降低整体增益,并保存至测试程序,可参考下图配置

2.5.3 数据采集

1. 将 log 线通过 x-link 连接至电脑,打开 Bluetrum_Voice_Record 工具,选中样机连接的串口,打开 串口并点击开始,如下图所示

2. 通过蓝牙连接耳机,将耳机佩戴好,在百分之五十左右音量下播放粉噪,并切换至 ANC 模式,此时 Bluetrum_Voice_Record 工具中会有数据输出,持续超过 15s 后点击停止,保存的数据和 Bluetrum_Voice_Record 工具在同一目录下

2.5.4 MSC 音乐补偿仿真

1. 进入 ANC 仿真中的 MSC 拟合,根据 FB 已使用的滤波器选择 MSC 滤波器个数,点击 MSC 按钮导入采集数据中的 dual_mic_data.wav 文件,确认数据正常后点击自动拟合

2. 仿真完成后可在 EQ 工具中查看当前 MSC 滤波器,点击保存工程可将 MSC 文件存至当前工程文件对应目录,将 FF、FB 滤波器恢复后可测试验证音乐补偿效果,可通过串口在线调整音乐补偿效果

注:一般而言,当前滤波器幅度与相位与目标曲线拟合越好,音乐补偿效果越佳。若音乐补偿效果略差,可微调 MSC 滤波器参数,尽可能使滤波器幅度相位与目标曲线重合;若音乐补偿效果极差,可将 MSC 滤波器反向后再次测试

2.6FB ANC 仿真

2.6.1 数据采集

可参考 2.5.1-2.5.3 中数据采集方法

2.6.2 FB 仿真

1. FB 仿真中部分功能模块定义如下:

滤波器个数: FB ANC 仿真使用的滤波器个数

FB 预设曲线: FB 期望的降噪深度曲线,有三档固定降噪曲线以及一组自定义降噪曲线 裕度: 仿真预设的 FB ANC 相位裕度, 裕度越小啸叫风险越大,需根据实际效果调整

2. 点击 MSC 按钮导入采集数据中的 dual_mic_data.wav 文件,设置好 FB ANC 期望使用的滤波器个数;点击 FB 预设曲线可查看 1—3 档位的 FB 预设降噪深度,可修改自定义的 FB 预设深度;设定好仿真选项后,点击自动拟合可得到匹配 FB 预设曲线的滤波器

3. 仿真完成后可在 EQ 工具中查看 FB 滤波器,点击保存工程可将 MSC 文件存至当前工程文件对应 目录,也可通过串口发送数据在线调试,测试实际效果

注:由于数据精度影响,FB ANC 仿真在中高频仿真与实际效果可能存在一定出入;若预设降噪深度及带宽设置不合理,可能会导致 FB ANC 底噪过大,需以实际测试为准

2.7 通透调试

2.7.1 采集通透传递函数

1. 按需求设置并固定 FF MIC 的模拟增益;音频分析仪连接好线材,搭建好测试环境,配置好输入输出

2. 在 Input 部分勾选 Acoustic 声学选项,并点击 Mic Cal/dBSPL

3. 校准人工耳/Error MIC 通路灵敏度,第一次测试可记录灵敏度数据供下次使用

4. 音频分析仪中添加声学响应测试项

5. 配置输出信号大小、扫频时间等,一般情况下扫频时间设置按下图即可

6. 按顺序分别测试 OPEN(人工耳空置)、耳机被动响应(滤波器关闭)、被动+FF 反相直通(点击复位,打开反相,发送 FF 滤波器)、被动+FF 正相直通(点击复位,关闭反相,发送 FF 滤波器)

7. 导出扫频幅度、相位的 500 点数据

2.7.2 通透仿真

1. 点击 ANC 仿真—TWS 通透—通透,选中并导入在音频分析仪中导出的数据,点击自动拟合进行滤波器拟合

2. 仿真完成后,点击 TWS 通透可查看仿真的通透效果(天蓝色曲线)和滤波器幅度相位(红色曲线),点击 EQ 工具可查看各滤波器对应的参数

3. 当滤波器调整完成,完成串口连接后,点击发送数据,可将当前页面所示滤波器临时发送至耳机;点击保存工程或保存系数,可将当前滤波器保存至对应路径;点击另存系数可另存至其他位置

4. 若需要手动调整频响和相位的大小,点击下方放大镜按钮,框选需要放大的部分;点击移动按钮可拖动绘图画面

2.8 OWS 降噪调试

2.8.1 采集 OWS ANC 传递函数

1. 按按需求设置并固定 OWS FF MIC 的模拟增益; 音频分析仪连接好线材, 搭建好测试环境, 配置 好输入输出

2. 在 Input 部分勾选 Acoustic 声学选项,并点击 Mic Cal/dBSPL

3. 校准人工耳/Error MIC 通路灵敏度,第一次测试可记录灵敏度数据供下次使用

4. 音频分析仪中添加声学响应测试项

5. 配置输出信号大小、扫频时间等,一般情况下扫频时间设置按下图即可

6. 按顺序分别测试耳机被动响应(ANC关闭)、被动+直通(点击复位并发送滤波器,使滤波器直通)

由于 OWS 耳机结构原因,被动+直通的扫频曲线可能与被动响应差异较小,可适当增加直通时的滤波器总增益,并用 highshelf 压制高频防止啸叫,如下图所示

7. 导出扫频幅度、相位的 500 点数据

2.8.2 OWS ANC 仿真

1. 点击 FBOFF 按钮导入采集的数据,设置好 FB ANC 期望使用的滤波器个数;点击 FB 预设曲线可查看 1—3 档位的 FB 预设降噪深度,可修改自定义的 FB 预设深度;设定好仿真选项后,点击自动拟合可得到匹配 FB 预设曲线的滤波器

2. 仿真完成后,点击 TWS 通透可查看仿真的通透效果(天蓝色曲线)和滤波器幅度相位(红色曲线),点击 EQ 工具可查看各滤波器对应的参数

3. 当滤波器调整完成,完成串口连接后,点击发送数据,可将当前页面所示滤波器临时发送至耳机;点击保存工程或保存系数,可将当前滤波器保存至对应路径;点击另存系数可另存至其他位置

4. 若需要手动调整频响和相位的大小,点击下方放大镜按钮,框选需要放大的部分;点击移动按钮可拖动绘图画面

修订历史

修订日期	版本号	修订记录	作者
2023-11-16	V1.0	创建初始版本	LYX
2024-7-19	V1.1	增加部分功能说明	LYX
2024-10-29	V1.2	增加部分功能说明	LYX

声明

本文档是中科蓝讯的原创作品和受版权保护的财产。全部或部分复制使用或传播必须事先获得中科蓝讯的书面批准,并经版权所有人明确确认。中科蓝讯有权随时根据法律、法规的变化以及公司经营策略的调整等修改本文档。修改后的文档将会通过适当的方式将进行公示。如您在本文档修订后仍继续使用本文档内容的,则视为您接受本文档的修订。

请您通过各种方式关注中科蓝讯发布的信息,包括中科蓝讯的官方网站、官方公众号等。中科蓝讯对不当使用本文档的后果不承担任何责任,中科蓝讯提供的信息仅作为参考或典型应用。中科蓝讯保留更改电路设计的权利和/或规格的权利,无需另行事先通知。

您不得因用途原因侵犯第三方的专利或其他权利,否则应自行承担相应责任。实施解决方案/产品可能需要 第三方许可证,您应全权负责获取所有适当要求的第三方许可证;中科蓝讯不负责任何所需第三方许可证 的任何许可费或版税。

如果您需要了解进一步的业务和技术支持,请发邮箱至: sales@bluetrum.com/project@bluetrum.com