1. (20H) A figura abaixo mostra uma seção de um tubo longo de metal, de parede fina, com um raio R cm e uma carga por unidade de comprimento  $\lambda$  C/m. Determine o módulo E do campo elétrico a uma distância radial (a) r = R/2; (b) r = 2R. (







2. A figura a seguir é uma seção de uma raio barra condutora de  $R_1$ comprimento L no interior de uma casca coaxial, de paredes finas, de raio  $R_2$ = 10  $R_1$  e mesmo comprimento L. A carga da barra é  $Q_1$ ; a carga da casca é  $Q_2 = -2$  $Q_l$ . Determine (a) o módulo E e (b) a direção (para dentro ou para fora) do campo elétrico a uma distância radial r =  $2R_2$ . Determine (c) E e (d) a direção do campo elétrico para  $r = 5R_1$ . Determine a carga (e) na superfície interna e (f) na superfície externa da casca.







3. (35 H) Na figura abaixo duas placas finas, de grande extensão, são mantidas paralelas e uma pequena distância uma da outra. Nas faces internas, as placas possuem densidades superficiais de cargas de sinais opostos e valor