Class 11 Lab Session

Yvonne Yu A16333006

Section 4 of the PDF: Population Scale Analysis

Q13. Read this file into R and determine the sample size for each genotype and their corresponding median expression levels for each of these genotypes.

```
expr <- read.table("rs8067378_ENSG00000172057.6.txt")
head(expr)</pre>
```

```
sample geno exp

1 HG00367 A/G 28.96038

2 NA20768 A/G 20.24449

3 HG00361 A/A 31.32628

4 HG00135 A/A 34.11169

5 NA18870 G/G 18.25141

6 NA11993 A/A 32.89721
```

The following shows a breakdown of the sample size for each genotype.

table(expr\$geno)

A/A A/G G/G 108 233 121

Pulls the package that would be used.

library(dplyr)

Attaching package: 'dplyr'

```
The following objects are masked from 'package:stats':

filter, lag

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union
```

The following code gives the summary information for each of the genotypes, which can be used to identify the median.

```
# The function takes the target input genotype and prints out the genotype
# and the associated summary
geno_info <- function(gen) {

    # prints out the genotype inputted
    print(gen)

    # filters out the dataframe to only the sample size with that genotype
    new_expr <- expr %>% filter(geno == gen)

    # prints out the summary of the dataframe
    print(summary(new_expr))
}

# the list of the genotypes in the dataframe
geno_list <- unique(expr$geno)

# test run
for(i in geno_list) {
    geno_info(i)
}</pre>
```

\mathtt{sample}		geno		exp	
Length:108		Length:108		Min.	:11.40
Class	:character	Class	:character	1st Qu.	:27.02
Mode	:character	Mode	:character	Median	:31.25
				Mean	:31.82
				3rd Qu.:35.92	
				Max.	:51.52
[1] "G/G"					
sample		geno		exp	
Length:121		Length:121		Min.	: 6.675
Class	:character	Class	:character	1st Qu.	:16.903
Mode	:character	Mode	:character	Median	:20.074
				Mean	:20.594
				3rd Qu.	:24.457
				Max.	:33.956

Q14. Generate a boxplot with a box per genotype, what could you infer from the relative expression value between A/A and G/G displayed in this plot? Does the SNP effect the expression of ORMDL3?

Pulls the package that would be utilized for this question.

```
library(ggplot2)
```

The following code is used to generate a boxplot that shows the distribution of expression for each of the genotypes.

```
ggplot(expr, aes(geno, exp, fill = geno)) + geom_boxplot(notch = TRUE)
```


Based on the boxplot, it can be inferred that the A/A genotype is expressed more, followed by the A/G genotype, and the G/G genotype being the least expressed of the three. Therefore, this would mean that the SNP genotype can affect the ORMDL3 expression levels.