Correlation 1

Aims and Objectives

- Measuring relationships

 - Pearson's correlation coefficient
- Measuring relationships
 Scatterplots
 Covariance
 Pearson's correlation coeffic
 Nonparametric measures
 - Spearman's rho
 - Kendall's tau
 - Interpreting correlations
 - Causality
 - Partial correlations

2

What is a correlation?

- A way of measuring the extent to which two variables are related
- It measures the pattern of responses across variables

Measuring relationships

- We want to see whether as one variable increases, the other increases, decreases or stays the same
- This can be done by calculating the covariance
 - We look at how much each score deviates from the mean
 - If both variables deviate from the mean by the same amount, they are likely to be related

7

Revision of variance

- The variance tells us by how much scores deviate from the mean for a single variable
- It is closely linked to the Sum of Squares (SS)
- Covariance is similar:
 - Tells us by how much scores on two variables differ from their respective means

8

Revision of variance

- The variance tells us by how much scores deviate from the mean for a single variable
- It is closely linked to the Sum of Squares (SS)

variance =
$$\frac{\sum (x_i - \overline{x})^2}{N-1}$$
=
$$\frac{\sum (x_i - \overline{x})(x_i - \overline{x})}{N-1}$$

Covariance

- Calculate the error between the mean and each subject's score for the first variable (x)
- Calculate the error between the mean and each subject's score for the second variable (y)
- Multiply these error values
- Add to get the cross product deviation
- Covariance is the average cross-product deviation

$$cov(x,y) = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{N-1}$$

10

DISCOVERING STATISTICS	Measuring relationships							
	Participant:	1	2	3	4	5	Mean	S
걸	Adverts Watched	5	4	4	6	8	5.4	1.67
S	Packets Bought	8	9	10	13	15	11.0	2.92

11

Covariance

$$cov(x,y) = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{N - 1}$$

$$= \frac{(-0.4)(-3) + (-1.4)(-2) + (-1.4)(-1) + (0.6)(2) + (2.6)(4)}{4}$$

$$= \frac{1.2 + 2.8 + 1.4 + 1.2 + 10.4}{4}$$

$$= \frac{17}{4}$$

$$= 4.25$$

13

DISCOVERING STATISTICS

Problems with covariance

- It depends upon the units of measurement
 - E.g. the covariance of two variables measured in miles might be 4.25, but if the variable was expressed in kilometres, the covariance would be 11
- · Need to standardize it
 - $\,-\,$ Divide by the standard deviations of both variables
- The standardized version of covariance is known as the correlation coefficient
 - It is (relatively) unaffected by units of measurement

14

JISCOVERING STATISTICS

The correlation coefficient

$$r = \frac{\cot_{xy}}{s_x s_y}$$

$$= \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{(N-1)s_x s_y}$$

$$= \frac{4.25}{1.67 \times 2.92}$$

$$= .87$$

16

17

Example

- · Pearson correlations:

 - > rcorr(as.matrix(examData2), type= "pearson")
- If we predicted a negative correlation:

19

Example

Output 'cor()' function

 Exam
 Anxiety
 Revise

 Exam
 1.0000000 -0.4409934
 0.3967207

 Anxiety -0.4409934
 1.000000 -0.7092493

 Revise
 0.3967207 -0.7092493
 1.0000000

- Reporting results
 - Exam performance was significantly correlated with exam anxiety, r= -.44, and time spent revising, r= .40; the time spent revising was also correlated with exam anxiety, r= -.71 (all ps< .001).

20

Correlation and causality

- The third-variable problem
 - In any correlation, causality between two variables cannot be assumed because there may be other measured or unmeasured variables affecting the results
- Direction of causality
 - Correlation coefficients say nothing about which variable causes the other to change

22

Bootstrapping correlations Bootstrapping Useful resampling 'trick', especially when: The theoretical distribution of a statistic is unknown or complicated Sample size is too small to allow parametric inference Use 'boot()' function... object.B<- boot (data, function, replications) ... in combination with 'boot.ci()' function boot.ci (object.B)

23

Point-biserial and biserial correlations

- Point-biserial correlation, r_{pb}
 - Quantifies the relationship between a continuous variable and a variable that is a discrete dichotomy (e.g. dead or alive)
 - > cor.test(variable 1, variable 2)
- Biserial correlation, r_b
 - Quantifies the relationship between a continuous variable and a variable that is a continuous dichotomy (e.g. acidic or alkaline)
 - > polyserial(variable 1, variable 2)

25

Partial and semi-partial correlations

- Partial correlation
 - Measures the relationship between two variables, controlling for the effect that a third variable has on them both
- · Semi-partial correlation
 - Measures the relationship between two variables controlling for the effect that a third variable has on only one of the others

26

Partial correlation

- Partial correlation 'pcor()'
- We can look at the partial correlation coefficient and it's t and p-value:
 - > pc.Exam
 - > pcor.test(pc.Exam, 1, 103)

28

29

Rest of morning & afternoon

- Practical Chapter 6
 - Read § 6.1, 6.2, 6.3 (skip 6.3.3 & 6.3.4), "Cramming Sam's Tips", and "What have I discovered about statistics?
 - Also read \S 6.5.7 on bootstrapping and \S 6.6.1 & 6.6.3 on part and partial correlation
 - Skip \S 6.5.2 on R commander (Rcmdr) and \S 6.7
 - Solve Smart Alex's tasks 1-3