# Instacart Market Basket Analysis



#### Table of Contents

01

Project Background & Objectives

03

Deployment

02

Automated ETL pipeline for big data

04

**Future Work** 

### 01 Project Background & Objectives

#### Background

Data comes from <u>Kaggle</u>

| aisles         | 134 × 2        | aisle_id(int), aisle(chr)                                                                                                          |
|----------------|----------------|------------------------------------------------------------------------------------------------------------------------------------|
| departments    | 21 × 2         | department_id(int), department(chr)                                                                                                |
| products       | 49,688 × 4     | product_id(int), product_name(chr), aisle_id, department_id                                                                        |
| orders         | 3,421,083 × 7  | order_id(int), user_id(int), eval_set(chr), order_number(int), order_dow(int), order_hour_of_day(int), days_since_prior_order(num) |
| order_products | 33,819,106 × 4 | order_id(int), product_id(int), add_to_cart_order(int), reorder(int)                                                               |



 To provide a delightful shopping experience by using customer orders over time to predict which previously purchased products will be in a user's next order

## 01 Project Background & Objectives

#### Objectives

- Build automated ETL pipeline to process big data
- Build model to do the prediction
- Deploy





#### Glue Crawler



#### **Step Function**

- Create a state machine with <u>script</u> in definition
- Give execution input as below figure showing
- Make sure it has Lambda permission





Configure the job properties



# 03 Deployment



#### Data Modelling

#### **Products Reordered Prediction**

- The goal is to predict if the purchased product will be ordered again
- The model was built using Xgboost
- The model achieved a test AUC of 0.832
- R Libraries used: ProjectTemplate, tidyverse, xgboost, pROC, precrec



#### 03 Deployment – Sage Maker

- Create a notebook instance
- make sure it has permission for S3 and Sage Maker



 After attaching trained estimator object, we can get endpoint via deploy method



## 03 Deployment – API Gateway

Setting up a new API



#### 04 Future Work

- Temp Zone: We can add temp zone before staging zone to do data validation
- Partition: When generating curated data, we can partition by a specific
  column to drastically cut the processing time and cost
- Streaming: We can set the interval to minute in Glue crawler