Sep 3 - Class 1 - Random Experiment, Sample Space, Events, Probability

By Daniel Zhang

Definitions:

- <u>Random Experiments</u>: An activity, process, or expriemnt that has uncertain outcomes or results.
 - Examples: flip a coin, roll a dice, waiting time for a bus
- Sample Space: A set of all possible outcomes of the expriement:

$$\Omega = \{\omega_1, \omega_2, ...\}$$

- $\circ~$ In which " Ω " is the all possible outcome list, and " $\omega_1...$ " is each outcome.
- Example: The sameple space for flipping three coins is:

$$\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$$

 Remark: It is possible to have infinite sample spaces (stop tossing when getting a tail or the bus waiting time scenario):

$$\Omega = \{T, HT, HHT, HHHT, HHHHT, HHHHHT, ...\}$$

$$\Omega=\{t:t\geq 0\}=[0,\inf)$$

 This first sample space shows a set of discrete elements while the second is continuous.

- **Events**: Collection (subset) of outcomes contained in the sample space Ω .
 - **Simple Event**: Event consists exactly one outcome.
 - Compound Event: Event consists more than one outcomes.
 - Example 1: Tossing three coins...
 - Event 1: Getting all heads $A = \{HHH\}$ is a simple event
 - Event 2: Getting at least two tails

$$B = \{HHT, HTH, HTT, THH, THT, TTH, TTT\}$$

is a compound event

- Example 2: At least three coin flips to get a tail
 - lacksquare $C=\{HHT,HHHT,HHHHT...\}$ is a compound event
- Example 3: The bus arrives within the next 5 minutes
 - ullet $D=\{t\in\mathbb{R}:0\leq t\leq 5\}$ is a compound event
- <u>Randomness</u>: Individual outcomes are uncertain, but there is structure to how often outcomes occur in a very large number of repetitions.
- Probability: Refers to the study of randomness and uncertainty
 - From a mathematical point of view, a probability is a number between <u>0</u>
 and 1 that satisfies certain axioms.
 - From an empirical point of view, the probability of an event <u>describes the</u> <u>likelihood</u>, or chance, that it occurs.
 - \circ **Notation:** P(A)= "The probability of event A occurring"
 - $\circ \ P(A) = 0$: Event A never happens
 - $\circ \ P(A) = 1$: Event A is certain to happen