MBA em Ciência de Dados

Técnicas Avançadas de Captura e Tratamento de Dados

Módulo I - Dados Estruturados e Não Estruturados

Problemas típicos em bases de dados: Outliers e informações errôneas

Material Produzido por Moacir Antonelli Ponti

CeMEAI - ICMC/USP São Carlos

Conteúdo:

- 1. Dados Não-estruturados
- 2. Dados Estruturados
- 3. Problemas típicos em bases de dados
 - A. Informações faltantes
 - B. Pontos "fora da curva" (outliers)
 - C. Informações errôneas
 - D. Dados redundantes
 - E. Dados desbalanceados

Referências:

- Salvador García, Julián Luengo, Francisco Herrera. Data Processing in Data Mining, 2015.
- Hadley Wickham, Tidy Data. Journal of Statistical Software, v.59, n.10, 2014.
- Katti Faceli; Ana Carolina Lorena; João Gama; André C.P.L.F. Carvalho. Inteligência Artificial: uma abordagem de aprendizado de máquina, 2011.

Referência complementar:

• CHANDOLA, Varun; BANERJEE, Arindam; KUMAR, Vipin. Outlier detection: a survey. ACM Computing Surveys, v. 14, p. 15, 2007.

Vamos estudar os problemas: **Outliers e informacoes errôneas** utilizando um conjunto de dados de natalidade em uma maternidade, e que contém os seguintes atributos relativos aos nascidos:

- sexo,
- peso do nascimento (em gramas),
- idade gestacional (em semanas),
- mês do nascimento,
- ano do nascimento.

```
In [1]: import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

data = pd.read_csv("./dados/TACTD_01-BCE_Outliers_Err_Desbal.csv")

print("Número de observacoes na base de dados: ", data.shape[0])
data.head()
```

Número de observacoes na base de dados: 72

Out[1]:

	Sex	Weight	Gestational age	Month	Year
0	F	3490	38	11	2016
1	М	3650	39	11	2016
2	М	2740	34	11	2016
3	F	3380	39	12	2016
4	F	3820	38	12	2016

In [2]: # vamos explorar a estatística descritiva dos dados!
data.describe()

Out[2]:

	Weight	Gestational age	Month	Year
count	72.000000	72.000000	72.000000	72.000000
mean	3347.569444	37.666667	4.347222	2294.611111
std	625.807643	2.264235	3.600312	2357.042552
min	320.000000	32.000000	1.000000	2016.000000
25%	3100.000000	36.000000	2.000000	2017.000000
50%	3460.000000	38.000000	3.000000	2017.000000
75%	3682.500000	39.000000	5.000000	2017.000000
max	4810.000000	43.000000	12.000000	22017.000000

B+C. Outliers e dados errôneos

Tipos de outliers

Também chamados de pontos "fora-da-curva" ou aberrantes. Os pontos não-outliers são às vezes chamados de inliers pois recaem "dentro" do esperado.

- 1. Globais ou anomalias de ponto
- 2. Contextuais ou condicionais
- 3. Coletivos

 Globais ou anomalias de ponto: são ocorrências de valores individuais muito diferentes da maior parte dos dados disponíveis.

Uma forma simples de identificar é gerar gráficos de caixa (ou *boxplots*) dos atributos/colunas da base de dados. Esse gráfico dá uma distribuição global dos dados e permite identificar aqueles cujo valor recaem fora da caixa que representa 50% dos dados, ou mesmo dos dados como um todo.

Idealmente, grafamos cada variável individualmente, pois elas tem intervalos de valores distintos!

 por exemplo, enquanto o peso está definido ao redor de milhares de gramas, a idade gestacional é em dezenas de semanas

Notamos que a maior parte do peso está ao redor de 2500 e 4500, mas temos pontos bem distantes. Vamos tentar encontrá-los:

	Sex	Weight	Gestational age	Month	Year
6	М	320	38	12	2016
19	F	2200	33	1	2017
38	М	4750	43	2	2017
41	F	4810	37	3	2017
45	F	1825	32	3	2017

Nessa primeira verificação, nota-se que a linha 6 possui um valor muito baixo (320 gramas) o qual é certamente um **outlier global** mas provavelmente é também um **dado errôneo**!

O motivo pode ser um erro de digitação ou inputação nesse caso. Se não quisermos prejudicar a análise, é preciso confirmar esse dado: se estiver disponível em outro base de dados ou meio físico, ou então descartá-lo.

```
In [5]: # vamos definir como valor Not-a-number
data.loc[6,'Weight'] = np.NaN
```

Quanto as demais linhas, notamos valores altos (próximos a 4800) e baixos (1950). Nesses casos, parecem ser valores inputados corretamente e verdadeiros.

Porém por desviar grandemente da maior parte dos dados são considerados também outliers globais.

No entanto, não iremos removê-lo a princípio pois não se tratam de dados errôneos.

Mostrando novamente o boxplot temos a distribuição dos dados sem o valor errôneo, e os 4 outliers globais indicados por círculos.

Dados errôneos podem aparecer não apenas na forma de outliers, mas também fora do padrão determinado. Por exemplo, vamos explorar a coluna relativa ao sexo do bebê, utilizando histograma e valores únicos.

Notamos um valor **P** que não pertence ao que é esperado. Esse dado foi corrompido de alguma forma e representa um dado **errôneo**. Devemos desconsiderá-lo, tornando-o um dado faltante.

```
In [9]:
          data[data['Sex'] == 'P']
Out[91:
              Sex Weight Gestational age Month
                                            Year
                  3600.0
                                            2017
          data.loc[16,'Sex'] = np.NaN
In [10]:
          data['Sex'].hist()
Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0x7f8bc7aac430>
           50
           40
           30
           20
           10
```

- Contextuais: são valores que, observados isoladamente podem não ser anômalos, mas que ao observar o contexto, sim!
 - Em dados **independentes e identicamente distribuídos**, na qual um exemplo (nascimento de um bebê) não afeta os próximos exemplos observados, como é o caso desse exemplo, temos que identificar o componente contextual.
 - Em dados **sequenciais** (como séries temporais, texto), em que uma observação influencia a próxima, o contexto é quase sempre o aspecto temporal/sequencial.

No nosso exemplo, podemos observar se há uma anomalia de peso com relação à idade gestacional!

Vamos considerar por exemplo que:

• bebês nascidos entre 38 e 42 semanas possuem tamanho normal se estiverem aproximadamente entre 2500 e 4000 gramas.

Assim, podemos buscar por **outliers contextuais**, em que o peso saia fora desse intervalo dentro do período gestacional indicado.

Podemos usar busca por fatiamento da base, e também boxplots

É interessante notar que o *boxplot* mostrou um outlier em 2500 gramas, enquanto nossa busca específica retornou apenas 4240 gramas em 41 semanas!

Vamos inspecionar esse caso:

Aqui, temos um caso limítrofe e precisamos da ajuda de especialistas para decidir o que significa esse outlier

1. Coletivos: um conjunto de observacões cujos valores, quando analisados em grupo, indicam um evento não usual.

Em geral:

- não são *outliers globais* pois seus valores recaem dentro da maior parte dos dados globalmente
- não são outliers contextuais pois individualmente podem ser considerados normais quando observados num determinado contexto

No nosso exemplo, vamos analisar os dados relativos ao nascimento de bebês do sexo masculino e feminino, mês a mês.

Month				
1	14	2	F	9
2	12	2	F	7
3	11	2	F	9
4	10	2	F	8
5	12	1	F	12
11	3	2	М	2
12	9	2	F	7

Observando a estatística descritiva acima, veja que no mês 5 há 12 ocorrências, mas apenas um único valor, F

Vamos visualizar:

In [15]: data[data['Month'] == 5]
Out[15]:

	Sex	Weight	Gestational age	Month	Year
60	F	2450.0	34	5	2017
61	F	3380.0	37	5	2017
62	F	4240.0	41	5	2017
63	F	3220.0	42	5	2017
64	F	3100.0	37	5	2017
65	F	3280.0	40	5	2017
66	F	4000.0	38	5	2017
67	F	4100.0	37	5	2017
68	F	3900.0	40	5	2017
69	F	3450.0	37	5	2017
70	F	3100.0	33	5	2017

De fato, observar apenas nascimento de bebês do sexo feminino em um determinado mês é um outlier coletivo.

35

Note que os valores de sexo e mês individualmente não indicam **outlier global**, e que, quando analisamos observacoes uma a uma, é normal que um bebê do sexo feminino nasca no mês 5, então também a análise individual não mostra **outlier contextual**.

5 2017

Assim, apenas pela análise conjunta identificamos um comportamento de outlier.

Resumo

Reconhecer outliers pode ser muito útil para entender os dados, e isso pode levar a diferentes aplicacoes:

- detectar dados errôneos
- detectar anomalias que possam ser reportadas

F 2800.0

No entanto, é preciso ter conhecimento do domínio para ir além dos outliers globais, capturando também os contextuais e coletivos.