Post-quantum signatures

A mathematical quest for the holy grail

A mathematical quest for the holy grail

A quick look at the current state-of-the-art

Pre-quantum everything is tremendous

 $\begin{array}{c} \textbf{2} \\ \textbf{take any group } G \\ \textbf{where } \log_G \textbf{is hard} \end{array} \qquad \begin{array}{c} \textbf{draw the right} \\ \textbf{diagrams} \end{array}$

Pre-quantum everything is tremendous

Pre-quantum everything is tremendous

The quantum threat of Shor's algorithm

The quantum threat of Shor's algorithm

 $\begin{array}{c} \textbf{1} \\ \textbf{take any group } G \\ \textbf{where } \log_G \textbf{is hard} \end{array}$

---- Shor's algorithm

- Requires a large quantum computer
- Originally designed to solve integer factorisation in polylogarithmic time (thus breaks RSA)
- Also solves discrete logarithms in abelian groups in polynomial time (thus breaks DH and ECDH)

from groups to group actions

group actions, a saviour for key exchange

(in theory)

pre-quantum

$$G \xrightarrow{\mathbb{Z}} G$$

hardness

Given g and g^a , find a

Group
$$G = \mathbb{F}_q$$
 or $G = E(\mathbb{F}_q)$
with generator $g \in G$

$$g \xrightarrow{a} g^a$$

$$b \downarrow b$$

$$g \xrightarrow{b} a g^{ab}$$

group actions, a saviour for key exchange

(in theory)

pre-quantum

$$G \xrightarrow{\mathbb{Z}} G$$

hardness

Given g and g^a , find a

post-quantum

$$X \xrightarrow{G} X$$

hardness

Given x and $g \star x$, find g

group actions, a saviour for key exchange

(in theory)

pre-quantum

$$G \xrightarrow{\mathbb{Z}} G$$

hardness

Given g and g^a , find a

Group
$$G = \mathbb{F}_q$$
 or $G = E(\mathbb{F}_q)$ with generator $g \in G$

$$\begin{array}{c}
a \\
b \\
b \\
g^b \\
\end{array}
\qquad \begin{array}{c}
a \\
b \\
g^ab
\end{array}$$

post-quantum

$$X \xrightarrow{G} X$$

hardness

Given x and $g \star x$, find g

Usual examples come from isogenies and isometries
$$x \xrightarrow{g_1} g_2 \star x \xrightarrow{g_1} (g_1 \cdot g_2) \star x$$

What is a cryptographic group action?

What is a cryptographic group action?

group action

$$X \xrightarrow{g \in G} X$$

cryptographic group action

efficiency ----- hardness

- examples

What is a cryptographic group action?

group action

----- efficiency ------ hardness ------ examples -----

cryptographic group action

What is a cryptographic group action?

group action

cryptographic group action

hardness efficiency

examples

vectorisation

parallelisation

isogenies

 $X = \mathscr{E}\ell\ell_p(\mathcal{O}) / \sim$

isometries

X = k-dim codes / \mathbb{F}_q

Elliptic curve

$$E: y^2 = x^3 + x$$

Elliptic curve

$$E: y^2 = x^3 + x$$

Another curve

$$E': y^2 = x^3 - 3x + 3$$

Elliptic curve

$$E: y^2 = x^3 + x$$

Another curve

$$E': y^2 = x^3 - 3x + 3$$

Elliptic curve

$$E: y^2 = x^3 + x$$

$$P,Q \in E$$

φ

Isogeny

 $(x,y) \mapsto \left(\frac{x^3 - 4x^2 + 30x - 12}{(x-2)^2}, \frac{y \cdot (x^3 - 6x^2 - 14x + 35)}{(x-2)^2}\right)$

Another curve

$$E': y^2 = x^3 - 3x + 3$$

$$\varphi(P+Q) = \varphi(P) + \varphi(Q)$$

Elliptic curve

$$E: y^2 = x^3 + x$$

$$P, Q \in E$$

φ

Isogeny

Another curve

$$E': y^2 = x^3 - 3x + 3$$

$$(x,y) \mapsto \left(\frac{x^3 - 4x^2 + 30x - 12}{(x-2)^2}, \frac{y \cdot (x^3 - 6x^2 - 14x + 35)}{(x-2)^2}\right) \qquad \varphi(P+Q) = \varphi(P) + \varphi(Q)$$

Endomorphism

$$\varphi: E \to E$$

Elliptic curve

$$E: y^2 = x^3 + x$$

$$P, Q \in E$$

φ

Another curve

$$E': y^2 = x^3 - 3x + 3$$

Isogeny

$$(x,y) \mapsto \left(\frac{x^3 - 4x^2 + 30x - 12}{(x-2)^2}, \frac{y \cdot (x^3 - 6x^2 - 14x + 35)}{(x-2)^2}\right)$$

$$\varphi(P+Q) = \varphi(P) + \varphi(Q)$$

Endomorphism

$$\varphi: E \to E$$

•

$$[N]: E \to E, \quad P \mapsto \underbrace{P + \dots + P}_{N \text{ times}}$$

$$\pi: E \to E, \quad (x, y) \mapsto (x^q, y^q)$$

Elliptic curve

$$E: y^2 = x^3 + x$$

$$P, Q \in E$$

φ

Isogeny

$$(x,y) \mapsto \left(\frac{x^3 - 4x^2 + 30x - 12}{(x-2)^2}, \frac{y \cdot (x^3 - 6x^2 - 14x + 35)}{(x-2)^2}\right)$$

Another curve

$$E': y^2 = x^3 - 3x + 3$$

$$\varphi(P+Q) = \varphi(P) + \varphi(Q)$$

Endomorphism

$$\varphi: E \to E$$

$$[N]: E \to E, \quad P \mapsto \underbrace{P + \ldots + P}_{N \text{ times}}$$

$$\pi: E \to E, \quad (x, y) \mapsto (x^q, y^q)$$

Ordinary elliptic curve

$$\mathbb{Z}[\pi] \subseteq \operatorname{End}(E) \subseteq \mathcal{O}_K$$

Elliptic curve

$$E: y^2 = x^3 + x$$

$$P, Q \in E$$

$$\varphi$$

Another curve

$$E': y^2 = x^3 - 3x + 3$$

Isogeny

$$(x,y) \mapsto \left(\frac{x^3 - 4x^2 + 30x - 12}{(x-2)^2}, \frac{y \cdot (x^3 - 6x^2 - 14x + 35)}{(x-2)^2}\right)$$

$$\varphi(P+Q) = \varphi(P) + \varphi(Q)$$

Endomorphism

$$\varphi: E \to E$$

 $\mathbb{Z}[\pi] \subseteq \operatorname{End}(E) \subseteq \mathcal{O}_K$

Ordinary elliptic curve

$$[N]: E \to E, \quad P \mapsto \underbrace{P + \ldots + P}_{N \text{ times}}$$

$$\pi: E \to E, \quad (x, y) \mapsto (x^q, y^q)$$

"weird" endomorphisms?

$$\varphi: E \to E$$

Elliptic curve

$$E: y^2 = x^3 + x$$

$$P, Q \in E$$

φ

Isogeny

$$(x,y) \mapsto \left(\frac{x^3 - 4x^2 + 30x - 12}{(x-2)^2}, \frac{y \cdot (x^3 - 6x^2 - 14x + 35)}{(x-2)^2}\right)$$

Another curve

$$E': y^2 = x^3 - 3x + 3$$

$$\varphi(P+Q) = \varphi(P) + \varphi(Q)$$

Endomorphism

$$\varphi: E \to E$$

- **Ordinary elliptic curve**
- $\mathbb{Z}[\pi] \subseteq \operatorname{End}(E) \subseteq \mathcal{O}_K$

$$[N]: E \to E, \quad P \mapsto \underbrace{P + \ldots + P}_{N \text{ times}}$$

$$\pi: E \to E, \quad (x, y) \mapsto (x^q, y^q)$$

"weird" endomorphisms?

$$\varphi: E \to E$$

- Supersingular elliptic curve
 - non-commutative maximal order $\operatorname{End}(E) \subseteq \mathscr{B}_{p,\infty}$

Radboud University

Elliptic curve

$$E: y^2 = x^3 + x$$

$$P, Q \in E$$

φ

Isogeny

 $(x,y) \mapsto \left(\frac{x^3 - 4x^2 + 30x - 12}{(x-2)^2}, \frac{y \cdot (x^3 - 6x^2 - 14x + 35)}{(x-2)^2}\right)$

Another curve

$$E': y^2 = x^3 - 3x + 3$$

$$\varphi(P+Q) = \varphi(P) + \varphi(Q)$$

Endomorphism

 $\varphi: E \to E$

Ordinary elliptic curve

 $\mathbb{Z}[\pi] \subseteq \operatorname{End}(E) \subseteq \mathcal{O}_K$

Supersingular elliptic curve

non-commutative maximal order $\operatorname{End}(E)\subseteq \mathscr{B}_{p,\infty}$

 $\pi: E \to E, \quad (x, y) \mapsto (x^q, y^q)$

"weird" endomorphisms?

 $\varphi: E \to E$

Supersingular elliptic curve

non-commutative maximal order $\operatorname{End}(E)\subseteq \mathscr{B}_{p,\infty}$

cool fact

cool fact

Group action (slightly more general)

- 1. Take a quadratic order \mathcal{O} , such as $\mathcal{O} = \mathbb{Z}[\pi]$
- 2. Take all elliptic curves E with $\mathcal{O} \subset \operatorname{End}(E)$
- 3. Then $\mathscr{C}\!\ell(\mathscr{O})$ acts on $\mathscr{E}\!\ell\ell_p(\mathscr{O}) := \{ E \mid \mathscr{O} \subset \operatorname{End}(E) \}$

cool fact

Group action (slightly more general)

- 1. Take a quadratic order \mathscr{O} , such as $\mathscr{O} = \mathbb{Z}[\pi]$
- 2. Take all elliptic curves E with $\mathcal{O} \subset \operatorname{End}(E)$
- 3. Then $\mathscr{C}\!\ell(\mathscr{O})$ acts on $\mathscr{E}\!\ell\ell_p(\mathscr{O}) := \{ \ E \mid \mathscr{O} \subset \operatorname{End}(E) \}$

In theory:

take an ideal $[\mathfrak{a}] \in \mathscr{C}\!\ell(\mathcal{O})$

for all generators $\varphi \in \mathfrak{a}$, compute $I := \ker \mathfrak{a} = \cap_{\varphi} \ker \varphi$

then $\mathfrak{a} \star E$ is given by $\varphi_I := E \to E/I$

cool fact

the class group $\mathscr{C}(\mathbb{Z}[\pi])$ now acts on such curves E/\mathbb{F}_p

Group action (slightly more general)

- 1. Take a quadratic order \mathcal{O} , such as $\mathcal{O} = \mathbb{Z}[\pi]$
- 2. Take all elliptic curves E with $\mathcal{O} \subset \operatorname{End}(E)$
- 3. Then $\mathscr{C}\!\ell(\mathscr{O})$ acts on $\mathscr{E}\!\ell\ell_p(\mathscr{O}) := \{ \ E \mid \mathscr{O} \subset \operatorname{End}(E) \}$

cool fact

Group action (slightly more general)

- 1. Take a quadratic order \mathcal{O} , such as $\mathcal{O} = \mathbb{Z}[\pi]$
- 2. Take all elliptic curves E with $\mathcal{O} \subset \operatorname{End}(E)$
- 3. Then $\mathscr{C}\!\ell(\mathscr{O})$ acts on $\mathscr{E}\!\ell\ell_p(\mathscr{O}) := \{ \ E \mid \mathscr{O} \subset \operatorname{End}(E) \}$

We know one commutative cryptographic group action: CSIDH

cool fact

the class group $\mathscr{C}(\mathbb{Z}[\pi])$ now acts on such curves E/\mathbb{F}_p

Group action (slightly more general)

- 1. Take a quadratic order \mathscr{O} , such as $\mathscr{O} = \mathbb{Z}[\pi]$
- 2. Take all elliptic curves E with $\mathcal{O} \subset \operatorname{End}(E)$
- 3. Then $\mathscr{C}\!\ell(\mathscr{O})$ acts on $\mathscr{E}\!\ell\ell_p(\mathscr{O}) := \{ \ E \mid \mathscr{O} \subset \operatorname{End}(E) \}$

We know one commutative cryptographic group action: **CSIDH**

cool fact

the class group $\mathscr{C}\!\ell(\mathbb{Z}[\pi])$ now acts on such curves E/\mathbb{F}_p

Group action (slightly more general)

If E/\mathbb{F}_p then $\mathbb{Z}[\pi] \subset \operatorname{End}(E)$

- 1. Take a quadratic order \mathcal{O} , such as $\mathcal{O} = \mathbb{Z}[\pi]$
- 2. Take all elliptic curves E with $\mathcal{O} \subset \operatorname{End}(E)$
- 3. Then $\mathscr{C}\!\ell(\mathscr{O})$ acts on $\mathscr{E}\!\ell\ell_p(\mathscr{O}) := \{ E \mid \mathscr{O} \subset \operatorname{End}(E) \}$

In practice:

take an ideal $[\mathfrak{a}] \in \mathscr{C}\!\ell(\mathscr{O})$ by $\mathfrak{a} = \prod \mathfrak{l}_i^{e_i}$

for $l_i^{\pm 1}$, the kernel is generated by $P \in \ker[\ell_i] \cap \ker \pi \pm 1$

then $a \star E$ is given by decomposition into $\mathfrak{l}_i^{\pm 1} \star E$

the difficulty of signatures

Without the group structure, there is the problem of soundness

Without the group structure, there is the problem of soundness

Without the group structure, there is the problem of soundness

In theory

- 1. Take mathematical objects $X \in \mathrm{Obj}(C)$ with some structure
- 2. Take the natural maps $\mu \in \operatorname{Hom}(C)$ that preserve this structure
- 3. Fingers crossed that it is cryptographically hard to find the map μ given the objects X, Y, where $\mu: X \to Y$

pre-quantum

Without the group structure, there is the problem of soundness

In theory

- 1. Take mathematical objects $X \in \mathrm{Obj}(C)$ with some structure
- 2. Take the natural maps $\mu \in \text{Hom}(C)$ that preserve this structure
- 3. Fingers crossed that it is cryptographically hard to find the map μ given the objects X, Y, where $\mu: X \to Y$

In practice (MEDS)

- 1. Objects: k-dimensional matrix codes, e.g. Grasmannian $\operatorname{Gr}_k(\mathbb{F}_q^{n\times m})$
- 2. Maps: μ preserves the rank, isometry! Group that acts is $GL_n(\mathbb{F}_q) \times GL_m(\mathbb{F}_q)$
- 3. Finding $\mu : \mathscr{C} \to \mathscr{D}$ given \mathscr{C} , \mathscr{D} is hard (matrix code equivalence)

Cyclic group G of order q commitment **PROBLEM** challenge signature I public key

Without the group structure, there is the problem of soundness

In theory

- 1. Take mathematical objects $X \in \mathrm{Obj}(C)$ with some structure
- 2. Take the natural maps $\mu \in \operatorname{Hom}(C)$ that preserve this structure
- 3. Fingers crossed that it is cryptographically hard to find the map μ given the objects X, Y, where $\mu: X \to Y$

In practice (MEDS)

- 1. Objects: k-dimensional matrix codes, e.g. *Grasmannian* $\mathbf{Gr}_k(\mathbb{F}_q^{n\times m})$
- 2. Maps: μ preserves the rank, isometry! Group that acts is $\operatorname{GL}_n(\mathbb{F}_q) \times \operatorname{GL}_m(\mathbb{F}_q)$
- 3. Finding $\mu : \mathscr{C} \to \mathscr{D}$ given \mathscr{C} , \mathscr{D} is hard (matrix code equivalence)

Without the group structure, there is the problem of soundness

In theory

- 1. Take mathematical objects $X \in \mathrm{Obj}(C)$ with some structure
- 2. Take the natural maps $\mu \in \operatorname{Hom}(C)$ that preserve this structure
- 3. Fingers crossed that it is cryptographically hard to find the map μ given the objects X, Y, where $\mu: X \to Y$

In practice (MEDS)

- 1. Objects: k-dimensional matrix codes, e.g. *Grasmannian* $\mathbf{Gr}_k(\mathbb{F}_q^{n\times m})$
- 2. Maps: μ preserves the rank, isometry! Group that acts is $\operatorname{GL}_n(\mathbb{F}_q) \times \operatorname{GL}_m(\mathbb{F}_q)$
- 3. Finding $\mu : \mathscr{C} \to \mathscr{D}$ given \mathscr{C} , \mathscr{D} is hard (matrix code equivalence)

What is a natural object relating $X \in \text{Obj}(C)$ and Hom?

Q

What is a natural object relating $X \in \text{Obj}(C)$ and Hom?

A

End(X) = Hom(X, X), i.e., maps $\mu: X \to X$

End(X) = Hom(X, X), i.e., maps $\mu: X \to X$

End(X) = Hom(X, X), i.e., maps $\mu: X \to X$

Q

What is $\operatorname{End}(X)$ for $X \in \operatorname{Obj}(C)$ where we had group action?

A

 $g \in G$ such that $g \star X = X$ e.g. *stabilisers* of X

Matrix codes

Group actions

What stabilises a matrix code $\mathscr{C} \subseteq \mathbb{F}_q^{n \times m}$

A

 $A \in \mathrm{GL}_n(\mathbb{F}_q)$ and $B \in \mathrm{GL}_m(\mathbb{F}_q)$ such that $ACB \in \mathscr{C}$ for all $C \in \mathscr{C}$

- for random X, hard to compute End(X)
- for some X_0 we know/compute $\operatorname{End}(X_0)$
- knowledge of End is "contagious"

- can **only** compute μ_3 if I know $\operatorname{End}(X_a)$
- but μ_3 leaks **nothing** on μ_a or $End(X_a)$
- hence, μ_3 proves knowledge of μ_a

Quick check: matrix code equivalence

Objects

k-dimensional matrix codes $\mathscr{C} \subseteq \mathbb{F}_q^{n \times m}$

Morphisms

isometries (preserve rank) $\mu \in \operatorname{GL}_n(q) \times \operatorname{GL}_m(q)$

End(X)

 $A \in \operatorname{GL}_n(\mathbb{F}_q)$ and $B \in \operatorname{GL}_m(\mathbb{F}_q)$ such that $ACB \in \mathscr{C}$ for all $C \in \mathscr{C}$ (automorphisms)

- for random X, hard to compute End(X)
- for some X_0 we know/compute $\operatorname{End}(X_0)$
- knowledge of End is "contagious"

- can **only** compute μ_3 if I know $\operatorname{End}(X_a)$
- but μ_3 leaks **nothing** on μ_a or $End(X_a)$
- hence, μ_3 proves knowledge of μ_a

Quick check: matrix code equivalence

Objects

k-dimensional matrix codes $\mathscr{C} \subseteq \mathbb{F}_q^{n \times m}$

Morphisms

isometries (preserve rank) $\mu \in \operatorname{GL}_n(q) \times \operatorname{GL}_m(q)$

End(X)

 $A \in \operatorname{GL}_n(\mathbb{F}_q)$ and $B \in \operatorname{GL}_m(\mathbb{F}_q)$ such that $ACB \in \mathscr{C}$ for all $C \in \mathscr{C}$ (automorphisms)

- \checkmark for random X, hard to compute End(X)
- for some X_0 we know/compute $\operatorname{End}(X_0)$
- √ knowledge of End is "contagious"

- can **only** compute μ_3 if I know $\operatorname{End}(X_a)$
- but μ_3 leaks **nothing** on μ_a or $End(X_a)$
- hence, μ_3 proves knowledge of μ_a

Quick check: matrix code equivalence

Objects

k-dimensional matrix codes $\mathscr{C} \subseteq \mathbb{F}_q^{n \times m}$

Morphisms

isometries (preserve rank) $\mu \in \operatorname{GL}_n(q) \times \operatorname{GL}_m(q)$

End(X)

 $A \in \operatorname{GL}_n(\mathbb{F}_q)$ and $B \in \operatorname{GL}_m(\mathbb{F}_q)$ such that $ACB \in \mathscr{C}$ for all $C \in \mathscr{C}$ (automorphisms)

- \checkmark for random X, hard to compute End(X)
- for some X_0 we know/compute $\operatorname{End}(X_0)$
- √ knowledge of End is "contagious"

- X can **only** compute μ_3 if I know $\operatorname{End}(X_a)$
- but μ_3 leaks **nothing** on μ_a or $End(X_a)$
- hence, μ_3 proves knowledge of μ_a

Quick check:
matrix code
equivalence
would need
new ideas

Objects

k-dimensional matrix codes $\mathscr{C} \subseteq \mathbb{F}_q^{n \times m}$

Morphisms

isometries (preserve rank) $\mu \in \operatorname{GL}_n(q) \times \operatorname{GL}_m(q)$

End(X)

 $A \in \operatorname{GL}_n(\mathbb{F}_q)$ and $B \in \operatorname{GL}_m(\mathbb{F}_q)$ such that $ACB \in \mathscr{C}$ for all $C \in \mathscr{C}$ (automorphisms)

wishlist

- \checkmark for random X, hard to compute End(X)
- can **only** compute μ_3 if I know $\operatorname{End}(X_a)$
- for some X_0 we know/compute $\operatorname{End}(X_0)$
- ? but μ_3 leaks **nothing** on μ_a or $End(X_a)$

√ knowledge of End is "contagious"

? hence, μ_3 proves knowledge of μ_a

the miracle of SQISign

Objects

supersingular elliptic curves over \mathbb{F}_{p^2} (up to isomorphism)

Morphisms

isometries (preserve group) $\varphi: E \to E/G$

End(X)

isogenies $\varphi: E \to E$ are called endomorphisms, $\operatorname{End}(E)$ is *ring*

- for random X, hard to compute End(X)
- for some X_0 we know/compute $\operatorname{End}(X_0)$
- knowledge of End is "contagious"

- can **only** compute μ_3 if I know $\operatorname{End}(X_a)$
- but μ_3 leaks **nothing** on μ_a or $\operatorname{End}(X_a)$
- hence, μ_3 proves knowledge of μ_a

Objects

supersingular elliptic curves over \mathbb{F}_{p^2} (up to isomorphism)

Morphisms

isometries (preserve group) $\varphi: E \to E/G$

End(X)

isogenies $\varphi: E \to E$ are called endomorphisms, $\operatorname{End}(E)$ is *ring*

Endomorphism problem

Given: a supersingular elliptic curve E over a finite field \mathbb{F}_{p^2}

Goal: compute End(E)

assumed to be **hard** (equivalent to finding isogeny $\varphi: E \to E'$ given only E, E')

- for random X, hard to compute End(X)
- for some X_0 we know/compute $\operatorname{End}(X_0)$
- knowledge of End is "contagious"

- can **only** compute μ_3 if I know $\operatorname{End}(X_a)$
- but μ_3 leaks **nothing** on μ_a or $\operatorname{End}(X_a)$
- hence, μ_3 proves knowledge of μ_a

Objects

supersingular elliptic curves over \mathbb{F}_{p^2} (up to isomorphism)

Morphisms

isometries (preserve group) $\varphi: E \to E/G$

End(X)

isogenies $\varphi: E \to E$ are called endomorphisms, $\operatorname{End}(E)$ is *ring*

starting curve

$$E_0: y^2 = x^3 + x$$

$$\operatorname{End}(E_0) = \mathbb{Z} + i\mathbb{Z} + \frac{i + \pi}{2}\mathbb{Z} + \frac{1 + i \cdot \pi}{2}\mathbb{Z}$$

$$\iota: E \to E, \quad (x, y) \mapsto (-x, i \cdot y)$$

$$\pi: E \to E, \quad (x, y) \mapsto (x^p, y^p)$$

- \checkmark for random X, hard to compute End(X)
- for some X_0 we know/compute $\operatorname{End}(X_0)$
- knowledge of End is "contagious"

- can **only** compute μ_3 if I know $\operatorname{End}(X_a)$
- but μ_3 leaks **nothing** on μ_a or $\operatorname{End}(X_a)$
- hence, μ_3 proves knowledge of μ_a

Objects

supersingular elliptic curves over \mathbb{F}_{p^2} (up to isomorphism)

Morphisms

isometries (preserve group) $\varphi: E \to E/G$

End(X)

isogenies $\varphi: E \to E$ are called endomorphisms, $\operatorname{End}(E)$ is *ring*

contagious knowledge

Given two supersingular curves E, E' and an isogeny $\varphi: E \to E'$

Assume you know $\operatorname{End}(E)$, then you can compute $\operatorname{End}(E')$

$$\psi \in E \stackrel{\varphi}{\longleftarrow} E'$$

- for random X, hard to compute End(X)
- for some X_0 we know/compute $\operatorname{End}(X_0)$
- ✓ knowledge of End is "contagious"

- can **only** compute μ_3 if I know $\operatorname{End}(X_a)$
- but μ_3 leaks **nothing** on μ_a or End(X_a)
- hence, μ_3 proves knowledge of μ_a

Objects

supersingular elliptic curves over \mathbb{F}_{p^2} (up to isomorphism)

Morphisms

isometries (preserve group) $\varphi: E \to E/G$

End(X)

isogenies $\varphi: E \to E$ are called endomorphisms, $\operatorname{End}(E)$ is *ring*

computing the signature

Only if you know $\varphi_{a'}$ you can know $\operatorname{End}(E_a)$

Fact: Given $\operatorname{End}(E_a)$ and $\operatorname{End}(E_2)$ you can compute $\varphi_3: E_a \to E_2$

- \checkmark for random X, hard to compute $\operatorname{End}(X)$
- for some X_0 we know/compute $\operatorname{End}(X_0)$
- √ knowledge of End is "contagious"

- \checkmark can **only** compute μ_3 if I know $\operatorname{End}(X_a)$
- but μ_3 leaks **nothing** on μ_a or $\operatorname{End}(X_a)$
- hence, μ_3 proves knowledge of μ_a

Objects

supersingular elliptic curves over \mathbb{F}_{p^2} (up to isomorphism)

Morphisms

isometries (preserve group) $\varphi: E \to E/G$

End(X)

isogenies $\varphi: E \to E$ are called endomorphisms, End(E) is ring

computing the signature

Only if you know $\varphi_{a'}$ you can know $\operatorname{End}(E_a)$

Fact: Given $\operatorname{End}(E_a)$ and $\operatorname{End}(E_2)$ you can compute $\varphi_3:E_a\to E_2$

wishlist

- for random X, hard to compute End(X)
- for some X_0 we know/compute $\operatorname{End}(X_0)$
- ✓ knowledge of End is "contagious"

 \checkmark can **only** compute μ_3 if I know $\operatorname{End}(X_a)$

but μ_3 leaks **nothing** on μ_a or $\operatorname{End}(X_a)$

hence, μ_3 proves knowledge of μ_a

computing the signature

Only if you know $\varphi_{a'}$ you can know $\operatorname{End}(E_a)$

computing the signature

Only if you know $\varphi_{a'}$ you can know $\operatorname{End}(E_a)$

Fact: Given $\operatorname{End}(E_a)$ and $\operatorname{End}(E_2)$ you can compute $\varphi_3: E_a \to E_2$

Deuring correspondence

world of supersingular curves

computing the signature

Only if you know $\varphi_{a'}$ you can know $\operatorname{End}(E_a)$

Fact: Given $\operatorname{End}(E_a)$ and $\operatorname{End}(E_2)$ you can compute $\varphi_3: E_a \to E_2$

Deuring correspondence

world of supersingular curves

world of maximal orders

computing the signature

Only if you know $\varphi_{a'}$ you can know $\operatorname{End}(E_a)$

Fact: Given $\operatorname{End}(E_a)$ and $\operatorname{End}(E_2)$ you can compute $\varphi_3: E_a \to E_2$

computing the signature

Only if you know $\varphi_{a'}$ you can know $\operatorname{End}(E_a)$

Fact: Given $\operatorname{End}(E_a)$ and $\operatorname{End}(E_2)$ you can compute $\varphi_3: E_a \to E_2$

computing the signature φ_2 Only if you know $\varphi_{a'}$ you can know $\operatorname{End}(E_a)$ **Fact:** Given $\operatorname{End}(E_a)$ and $\operatorname{End}(E_2)$ you can compute $\varphi_3: E_a \to E_2$

Deuring correspondence

Equivalence

world of supersingular curves

world of maximal orders

curve-order dictionary

supersingular curves quaternion orders curve *E* (up to Galois conjugacy) maximal order @ (up to isomorphism) integral ideal I_{φ} that is isogeny $\varphi: E_1 \to E_2$

endomorphism $\psi: E \to E$

and this continues for the degree, the dual, equivalence, composition...

left \mathcal{O}_1 -ideal and right \mathcal{O}_2 -ideal

principal ideal $(\beta) \subset \mathcal{O}$

and this continues for the *norm*, the dual, equivalence, multiplication...

Wrapping up:
(where) can
we find the
holy grail?

Wrapping up: (where) can we find the holy grail?

isogenies

- Is the security of SQISign somehow related to the slowness of the functor?
- Are CSIDH and SQISign the only 'miracles' for post-quantum key exchange/signatures?
- Is it a coincidence that both structures come from isogenies?
- Is there something deeply mathematical about elliptic curves over finite fields that makes them perfect for cryptographic design and protocols?

Wrapping up: (where) can we find the holy grail?

isogenies

- Is the security of SQISign somehow related to the slowness of the functor?
- Are CSIDH and SQISign the only 'miracles' for post-quantum key exchange/signatures?
- Is it a coincidence that both structures come from isogenies?
- Is there something deeply mathematical about elliptic curves over finite fields that makes them perfect for cryptographic design and protocols?

holy grail

- Are there other mathematical objects or categories that imply a cryptographic group action, hence key exchange?
- Are there other 'perfect' categories that allow an easily designed digital signature with high soundness (hence small signatures)
- Can we deduce from `the wishlist' how such categories should behave? Can they be faster?
- Are they always functorially equivalent to orders in quaternion algebras perhaps?
- Can the holy grail even exist?

