

Università degli Studi di Bergamo

SCUOLA DI INGEGNERIA Corso di Laurea Magistrale in Ingegneria Informatica

Laboratorio di Elettronica

Relazione esperienza di laboratorio 3

Prof. **Luigi Gaioni**

Candidati **Giulia Allievi**Matricola 1058231

Martina Fanton Matricola 1059640

Relazione attività di laboratorio 3

3.1 Circuito 1: raddrizzatore a doppia semionda di precisione

3.1.1 Schema del circuito e Funzione di Trasferimento

Questo circuito, come si può notare dalla figura ??, presenta due amplificatori operazionali, di cui quello in alto è retroazionato negativamente, e un diodo.

Figura 3.1: Schema del raddrizzatore a doppia semionda di precisione.

La funzione di trasferimento di questo raddrizzatore è:

$$\begin{cases} V_{in} < 0 \,\mathrm{V} & \to \mathrm{D} \,\mathrm{ON} & \Rightarrow V_{out} = -V_{in} \\ V_{in} \ge 0 \,\mathrm{V} & \to \mathrm{D} \,\mathrm{OFF} & \Rightarrow V_{out} = V_{in} \end{cases}$$
(3.1)

Da questa funzione di trasferimento si può notare che l'uscita non risulta shiftata rispetto all'ingresso, come invece succedeva nel raddrizzatore a doppia semionda analizzato durante lo scorso laboratorio. Dunque questo circuito permette di risolvere il problema della differenza di tensione presente tra uscita e ingresso. Di conseguenza, in uscita si ottiene un segnale analogo a quello in ingresso, ma in cui le semionde risultano raddrizzate.

3.1.2 Analisi e dati sperimentali

Per la realizzazione del circuito sulla breadboard (visibile nella figura $\ref{eq:continuous}$) abbiamo deciso di utilizzare due amplificatori operazionali di tipo μ A741, che sono amplificatori operazionali general purpose, e un diodo di tipo 1N4148. Invece per quanto riguarda i valori delle resistenze abbiamo utilizzato resistenze da $12 \,\mathrm{k}\Omega$, le cui misure sono state riportate nella tabella $\ref{eq:continuous}$?

	Valore nominale	Valore misurato
$\mathbf{R_1}$	$12\mathrm{k}\Omega$	$11.802\mathrm{k}\Omega$
$\mathbf{R_2}$	$12\mathrm{k}\Omega$	$11.947\mathrm{k}\Omega$
R_3	$12\mathrm{k}\Omega$	$11.885\mathrm{k}\Omega$

Tabella 3.1: Misure delle resistenze utilizzate per il circuito.

Figura 3.2: Fotografia del raddrizzatore a doppia semionda di precisione realizzato in laboratorio.

Dopo aver realizzato il circuito sulla breadboard, sono state collegate sia le alimentazioni (con un valore di $10 \,\mathrm{V}$ per l'alimentazione positiva e di $-10 \,\mathrm{V}$ per quella negativa) sia il segnale d'ingresso, con un'ampiezza picco-picco di $2 \,\mathrm{V}$ e frequenza prima di $100 \,\mathrm{Hz}$, e poi pari a $1 \,\mathrm{kHz}$.

Il segnale in uscita prodotto dall'oscilloscopio lo si può vedere nella figura ??. Per queste due frequenze sono state analizzate anche le rappresentazioni XY, ovvero la caratteristica tra tensione di ingresso e tensione di uscita del circuito (in figura ??).

In tutti questi grafici il segnale presenta un andamento quasi ideale, ma nella parte iniziale delle semionde negative raddrizzate si possono notare dei tratti anomali vicino all'asse delle ascisse. Nel grafico XY, lo vediamo perché il segnale non si trova solo nel primo e nel secondo quadrante, ma c'è un tratto (seppur molto breve) anche nel terzo quadrante. Queste anomalie sono dovute al fatto che l'OPAMP in basso può avere una retroazione aperta per la presenza del diodo e quindi la sua uscita deve svolgere uno swing abbastanza ampio (visualizzato nella figura ??) per far arrivare la sua uscita

quando il segnale in ingresso è positivo, il diodo è spento, quindi il secondo

OPA MP

Figura 3.3: Risposta del circuito con $f = 100\,\mathrm{Hz}$ (sinistra) e con $f = 1\,\mathrm{kHz}$ (destra).

Figura 3.4: Rappresentazione XY della risposta del circuito con $f = 100\,\mathrm{Hz}$ (sinistra) e con $f = 1\,\mathrm{kHz}$ (destra).

al valore dell'alimentazione. Questo poi incide anche sulla velocità del sistema nel raddrizzare il primo tratto delle semionde negative.

Figura 3.5: Risposta dell'OPAMP in basso con $f = 100 \,\mathrm{Hz}$ (sinistra) e con $f = 1 \,\mathrm{kHz}$ (destra).

Analizzando invece frequenze maggiori (ad esempio 10 kHz), il segnale presenta delle anomalie di maggiore rilevanza rispetto alle precedenti, come si può notare nella figura ??. Le semionde positive sono poco distorte, infatti vengono solo leggermente ritardate, invece sulle semionde negative si vede

chiaramente l'escursione di tensione provocata dall'operazionale che si trova in anello aperto. Queste anomalie derivano dal fatto che l'OPAMP non è adatto a operare in alta frequenza quando presenta un anello che può risultare aperto.

Figura 3.6: Risposta del circuito con $f = 10 \, \text{kHz}$.

3.2 Circuito 2: trigger di Schmitt

3.2.1 Schema del circuito e Funzione di Trasferimento

In questo circuito è presente un amplificatore operazionale non retroazionato negativamente, ma con una retroazione positiva, quindi il circuito opera come un comparatore.

La rete di reazione positiva è formata da un partitore resistivo, in cui inizialmente utilizzeremo due resistenze dello stesso valore per analizzare la risposta del circuito in maniera più semplice, come si può vedere dallo schema di figura ??.

La particolarità del trigger di Schmitt è che, a differenza dei normali comparatori, la caratteristica ingresso-uscita presenta un'isteresi, di conseguenza questo circuito è immune a eventuali disturbi presenti in ingresso. In un comparatore semplice infatti, se il segnale in ingresso è rumoroso su valori prossimi alla soglia V^+ , si possono avere delle transizioni involontarie dell'uscita da V_{DD} a V_{SS} , perciò il rumore in ingresso rende anche l'uscita rumorosa. Questo problema viene risolto nel trigger di Schmitt, perché una volta attraversata una soglia (per esempio V_H^+) quest'ultima varierà il suo valore e si sposterà sul secondo valore (V_L^+), quindi l'uscita non cambia finché non si attraversa la seconda soglia, rendendo il circuito robusto rispetto ai rumori presenti sulle linee d'ingresso.

Figura 3.7: Schema del trigger di Schmitt.

La funzione di trasferimento di questo comparatore è:

$$\begin{cases} V_{out} = V_{DD} & \text{per } V_L^+ < V_{in} < V_H^+, \text{ con } V_H^+ = \frac{R_1}{R_1 + R_2} \cdot V_{DD} = \frac{V_{DD}}{2} & \text{se } R_1 = R_2 \\ V_{out} = V_{SS} & \text{per } V_H^+ < V_{in} < V_L^+, \text{ con } V_H^+ = \frac{R_1}{R_1 + R_2} \cdot |V_{SS}| = \frac{|V_{SS}|}{2} & \text{se } R_1 = R_2 \end{cases}$$

$$(3.2)$$

3.2.2 Analisi e dati sperimentali

Per la realizzazione del circuito sulla breadboard (visibile nella figura $\ref{eq:condition}$) è stato utilizzato un amplificatore operazionale di tipo $\mu A741$. Invece per quanto riguarda i valori delle resistenze abbiamo utilizzato due resistenze da $12\,\mathrm{k}\Omega$, le cui misure sono state riportate nella tabella $\ref{eq:condition}$?

	Valore nominale	Valore misurato
$\mathbf{R_1}$	$12\mathrm{k}\Omega$	$11.802\mathrm{k}\Omega$
$\mathbf{R_2}$	$12\mathrm{k}\Omega$	$11.947\mathrm{k}\Omega$

Tabella 3.2: Misure delle resistenze utilizzate per il circuito.

Figura 3.8: Fotografia del trigger di Schmitt realizzato in laboratorio.

Dopo aver realizzato il circuito sulla breadboard, scegliamo di applicare in ingresso un'onda triangolare con ampiezza picco-picco di 15 V. Questo valore deve essere scelto in modo tale da poter vedere le transizioni da una soglia all'altra.

Per prima cosa abbiamo analizzato l'uscita del circuito con un segnale in ingresso con frequenza di $100\,\mathrm{Hz}$ (figura ??), dai grafici si può notare che il comportamento dei segnali risulta corretto. Abbiamo quindi misurate le due soglie, i cui valori sono risultati pari a $4.88\,\mathrm{V}$ per V_H^+ (soglia positiva) e $-4.16\,\mathrm{V}$ per V_L^+ (soglia negativa). Anche questi valori sono corretti, infatti corrispondono a circa metà della tensione che l'OPAMP eroga in uscita quando satura al valore positivo o negativo.

Successivamente è stato analizzato anche il grafico della caratteristica ingresso-uscita per la stessa frequenza. Come si può notare dalla figura ??, è presente un ciclo di isteresi, come ci si aspettava per questo trigger.

Quando f
aumenta

- > visibile slew rate

OPAMP =>
isteresi non
più rettangolare ma

Figura 3.9: Risposta del circuito con $f = 100\,\mathrm{Hz}$.

Figura 3.10: Rappresentazione XY della risposta del circuito con $f=100\,\mathrm{Hz}.$

3.3 Circuito 3: oscillatore con duty cicle pari a 50%

3.3.1 Schema del circuito e Funzione di Trasferimento

Il trigger di Schmitt può essere utilizzato per realizzare un oscillatore. Un oscillatore è un circuito autoalimentato ...

Figura 3.11: Schema dell'oscillatore con duty cicle di 50%.

3.3.2 Analisi e dati sperimentali

Figura 3.12: Fotografia dell'oscillatore con duty cicle pari a 50% realizzato in laboratorio.

3.4 Circuito 4: oscillatore con duty cicle $\neq 50\%$

3.4.1 Schema del circuito e Funzione di Trasferimento

Figura 3.13: Schema dell'oscillatore con duty cicle \neq 50%.

3.4.2 Analisi e dati sperimentali

Figura 3.14: Fotografia dell'oscillatore con duty cicle \neq 50% realizzato in laboratorio.