ECONOMETRIA I TESTE DE HIPÓTESES

Victor Oliveira

Núcleo de Economia Internacional e Desenvolvimento Econômico

PPGDE-2024

Sumário I

- O Modelo Estatístico Clássico
- 2 Hipóteses
- 3 Erro Tipo I
- Teste t
- 6 Erro Tipo II
- P-Valor

Victor Oliveira PPGDE - 20242/38

O Modelo Estatístico Clássico

• O modelo estatístico clássico é definido pela trinca

$$(\Omega, \mathcal{F}, \mathcal{P}) \tag{1}$$

em que

- \bullet Ω é o espaço de resultados do experimento
- \mathcal{F} é uma σ -álgebra de Ω
- ullet $\mathcal P$ é uma família de medidas de probabilidade

Quantidades de interesse

$$g(P) = \mathbb{E}_P(Z)$$

$$g(P) = \mathbb{E}_P(Z_1 \in B | Z_2 \in A)$$

$$g(P) = \text{var}_P(Z)$$

Hipóteses

- Em mínimos quadrados restrito descrevemos a estimação sujeita a restrições. Aprendemos como representar as restrições lineares. Agora, vamos aprender como testar essas restrições através dos testes de hipóteses.
- O teste de hipótese busca avaliar se há evidências contrária a uma restrição proposta.
- Seja $\theta = r(\beta)$ um parâmetro de interesse de dimensão $q \times 1$ em que $r \times \mathbb{R}^k \to \Theta \subset \mathbb{R}^q$ é alguma transformação. Por exemplo, θ pode ser um único coeficiente, $\theta = \beta_i$, ou a diferença entre dois coeficientes, $\theta = \beta_j - \beta_\ell$, ou a razão entre dois coeficientes, $\theta = \frac{\beta_j}{\beta_\ell}$.

 \bullet Uma hipótese pontual relativa a θ pode ser uma restrição proposta, como

$$\theta = \theta_0 \tag{2}$$

em que θ_0 é um valor hipotético conhecido.

Definição

Seja $\beta \in \mathcal{B} \subset \mathbb{R}^k$ um espaço de parâmetros. Uma hipótese é uma restrição $\beta \in \mathcal{B}$ onde \mathcal{B}_0 é um subconjunto próprio de \mathcal{B} . Isto se verifica em (1) deixando $\mathcal{B}_0 = \{\beta \in \mathcal{B} \colon r(\beta) = \theta_0\}$.

6/38 6/38

Definição

A hipótese nula H_0 é a restrição $\theta = \theta_0$ ou $\beta \in \mathcal{B}_0$.

Escrevemos a hipótese nula como: $H_0: \theta = \theta_0$ ou $H_0: r(\beta) = \theta_0$.

 O complemento da hipótese nula é chamado de hipótese alternativa.

Definição

A hipótese alternativa H_1 é o subconjunto $\{\theta \in \Theta : \theta \neq \theta_0\}$ ou $\{\beta \in \mathcal{B} : \beta \ni \mathcal{B}_0\}.$

• A Figura abaixo ilustra a divisão do espaço de parâmetros entre a hipóteses nula e alternativa.

Figura 1: Hipóteses nula (H_0) e alternativa (H_1)

- O objetivo da hipótese nula é verificar se podemos
 - **1** reduzir \mathcal{P} a uma subfamília $\mathcal{P}_0 \subset \mathcal{P}$
 - 2 reduzir o espaço paramétrico Φ a um subconjunto $\Phi_0 \subset \Phi$
- Nessa roupagem, teríamos: " H_0 : pelo menos uma medida em \mathcal{P}_0 descreve probabilisticamente os dados experimentais", isto é, $H_0: P \in \mathcal{P}_0$.
- Em termos de vetor de parâmetros, $H_0: \theta \in \Phi_0$, em que $\Phi_0 \in \Phi$ e $\mathcal{P}_0 = \{P_\theta: \theta \in \Phi_0\}$.

Aceitação e Rejeição da H_0

- No teste de hipótese, assumimos que há um verdadeiro valor de θ, mas desconhecido e este valor satisfaz H₀ ou não satisfaz H₀.
- O objetivo do teste de hipótese é avaliar se ou não H_0 é verdadeira, perguntando se H_0 é consistente com os dados observados.
- Um teste de hipótese aceita a H_0 ou rejeita a H_0 em favor da H_1 . Podemos escrever estas duas decisões como "Aceita H_0 " e "Rejeita H_0 ".
- A decisão é baseada nos dados e, portanto, há um mapeamento do espaço amostral para o conjunto de decisão. Com isso, o espaço amostral é dividido em duas regiões: S_0 e S_1 .

- Se a amostra observada está contida em S_0 , aceitamos H_0 . Mas, se a amostra está contida em S_1 , rejeitamos H_0 .
 - O conjunto S_0 é chamado de **região de aceitação de** H_0 ;
 - O conjunto S_1 é chamado de região de rejeição de H_0 ou região crítica.
- É conveniente expressar este mapeamento como uma função avaliada nos reais chamada de **estatística de teste**

$$T = T((y_1, \boldsymbol{x}_1), \cdots, (y_n, \boldsymbol{x}_n))$$
(3)

relativa ao valor crítico.

- O teste de hipótese consiste da **regra de decisão**:
 - Aceita H_0 se $T \leq c$.
 - Rejeita H_0 se T > c.

Figura 2: Hipóteses nula (H_0) e alternativa (H_1)

- A estatística de teste T deveria ser pensada de tal forma que pequenos valores são prováveis quando H_0 é verdadeira e, grandes valores, são prováveis quando H_1 é verdadeira.
- A estatística de teste mais usada é o valor absoluto da estatística-t:

$$T = |T(\theta_0)| \tag{4}$$

em que

$$T(\theta) = \frac{\widehat{\theta} - \theta}{s\left(\widehat{\theta}\right)} \tag{5}$$

13/38

sendo $\widehat{\theta}$ uma estimativa pontual de θ e $s\left(\widehat{\theta}\right)$ o seu desvio-padrão.

- A estatística-t é apropriada para quando estamos testando hipótese sobre coeficientes individuais ou o valor real de um parâmetro θ = h(β) e θ₀ é o valor hipotético. Por exemplo:
 - **1** $\theta = 0$ se desejarmos temos $H_0: \theta = 0$.
 - 2 $\theta_0 = 1$ se desejarmos testar H_0 : $\theta = 1$.

Erro Tipo I

 O erro tipo I é a falsa rejeição da H₀, isto é, rejeita H₀ quando H₀ é verdadeira. A probabilidade do erro tipo I é chamada de tamanho do teste:

$$P[\text{Rejeitar } H_0|H_0 \text{ verdadeira}] = P[T > c|H_0 \text{ verdadeira}]$$
 (6)

- O objetivo principal da construção do teste é limitar a incidência de erro tipo I limitando o tamanho do teste.
- A exata distribuição dos estimadores e estatísticas de teste são desconhecidas. Por isso, não podemos calcular explicitamente a probabilidade em (6). Mas podemos fazer uso de aproximações assintóticas.

• Assim, quando H_0 é verdadeira temos que

$$T \stackrel{d}{\to} \xi$$
 (7)

quando $n \to \infty$ para alguma variável aleatória ξ com distribuição contínua. Considere $G(u) = P[\xi \le u]$ a distribuição de ξ . Chamaremos ξ (ou G) a **distribuição nula assintótica**.

- É desejável construir estatísticas de teste T cuja distribuição nula assintótica G seja conhecida e não dependa de parâmetros desconhecidos. Neste caso dizemos que T é assintoticamente pivotal.
- Definimos o tamanho assintótico do teste como a probabilidade assintótica do erro tipo I:

$$\lim_{n \to \infty} \mathbf{P}[T > c | H_0 \text{ verdadeira}] = \mathbf{P}[\xi > c] = 1 - G(c) \quad (8)$$

Victor Oliveira PPGDE -2024 16/38

- Assim, o tamanho assintótico do teste é uma função da distribuição nula assintótica *G* e do valor crítico *c*.
- Por exemplo, o tamanho assintótico de um teste com base na estatística-t com valor critico $c \in 2(1 \Phi(c))$.
- nível de significância $\alpha \in (0,1)$ e então selecionamos c para que o tamanho assintótico não seja maior que α . Quando a distribuição nula assintótica G é pivotal, fazemos isso definindo c igual ao quantil 1α da distribuição G.
- Vamos chamar c de valor crítico assintótico porque ele vem de uma distribuição nula assintótica.
- Por exemplo, uma vez que $2(1 \Phi(1, 96)) = 0,05$ temos que o valor crítico assintótico de 5% para a estatística-t é c = 1,96.

- A estatística-t é o teste de hipótese unidimensional mais comum com $H_0: \theta = \theta_0 \in \mathbb{R}$ contra $H_1: \theta \neq \theta_0$.
- Estabelecemos formalmente sua distribuição nula assintótica com base no seguinte teorema.

Teorema.

Sob o conjunto de pressupostos:

- as variáveis (y_i, \mathbf{x}_i) , $i = 1, \ldots, n$ são i.i.d.
- $\mathbf{8} \ \mathbb{E} [x_i]^4 < \infty$
- Q_{rr} é positiva definida
- **5** $r(\beta): \mathbb{R}^k \to \mathbb{R}^q$ é continuamente diferenciável no verdadeiro valor de β e $\mathbf{R} = \frac{\partial}{\partial \beta} r(\beta)'$ tem rank q

Seja

$$H_0: \theta = \theta_0 \in \mathbb{R} \tag{9}$$

então, $T(\theta_0) \stackrel{d}{\to} Z \sim N(0,1)$. Para c que satisfaz $\alpha = 2(1 - \Phi(c))$, $P[|T(\theta_0)| > c|H_0] \rightarrow \alpha$, e o teste "rejeita H_0 se $|T(\theta_0)| > c$ " tem tamanho assintótico α .

Teste t

- Pelo Teorema acima, os valores críticos assintóticos podem ser considerados de uma distribuição normal.
- Uma vez que os valores críticos da distribuição t de student são (ligeiramente) maiores do que aqueles da distribuição normal, os valores críticos de t de student diminuem ligeiramente a probabilidade de rejeição do teste.
- A hipótese alternativa $\theta \neq \theta_0$ é chamada de bi-caudal. As vezes estamos interessados em fazer testes para hipótese alternativa unicaudal tais como: $H_1: \theta > \theta_0$ ou $H_1: \theta < \theta_0$.
- Testes de $\theta = \theta_0$ contra $\theta > \theta_0$ ou $\theta < \theta_0$ são baseados numa estatística-t $T = (\theta_0)$.
- A hipótese $\theta = \theta_0$ é rejeitada em favor de $\theta > \theta_0$ se T > c satisfaz $\alpha = 1 \Phi(c)$.

Figura 3: Teste de Hipótese Bicaudal: $H_0: \beta_2 \neq 0$

 $\frac{21}{38}$ $\frac{21}{38}$

Figura 4: Teste de Hipótese Unicaudal: $H_0: \beta_2 > 0$

Região de rejeição

Figura 5: Teste de Hipótese Unicaudal: H_0 : $\beta_2 < 0$

23/38 23/38

Victor Oliveira PPGDE – 2024

Erro Tipo II

• O Erro tipo II é a falsa aceitação da H_0 , isto é, aceitar H_0 quando H_1 é verdadeira. A probabilidade de rejeição sob a hipótese alternativa é chamada de **poder do teste** e é igual 1 menos a probabilidade do erro tipo II:

$$\pi(\theta) = \mathbf{P}[\text{Rejeitar } H_0|H_1 \text{ verdadeira}] = \mathbf{P}[T > c|H_1 \text{ verdadeira}]$$
(10)

em que $\pi(\theta)$ é a **função poder** e é escrita como uma função de θ para indicar sua dependência sobre o verdadeiro valor do parâmetro θ .

• O poder de um teste depende do valor verdadeiro do parâmetro θ e, para um teste bem comportado, o poder aumenta tanto à medida que θ se afasta da hipótese nula θ_0 quanto à medida que o tamanho da amostra n aumenta.

Victor Oliveira PPGDE – 2024

Considerando as H₀ e H₁ e as duas decisões possíveis (Aceitar H₀
ou Rejeitar H₀), existem quatro pares possíveis de situações e
decisões.

Tabela 1: Decisões do teste de hipótese

	Decisão	
Situação	Aceitar H_0	Rejeitar H_0
H_0 verdadeira H_1 verdadeira	Decisão correta Erro Tipo II	Erro Tipo I Decisão correta

• Dada uma estatística de teste T, aumentar o valor crítico c aumenta a região de aceitação S_0 enquanto diminui a região de rejeição S_1 . Isso diminui a probabilidade de um erro tipo I (diminui o tamanho), mas aumenta a probabilidade de um erro tipo II (diminui a potência).

- A escolha de c envolve um trade-off entre tamanho e poder do teste.
- É por isso que o nível de significância α do teste não pode ser definido arbitrariamente pequeno. Caso contrário, o teste não terá poder significativo.
- É importante considerar o poder de um teste ao interpretar os testes de hipótese, pois um foco excessivamente estreito no tamanho pode levar a decisões ruins.
- Nível de significância: o teste de hipótese requer uma escolha pré-selecionada do nível de significância α , embora não haja base científica objetiva para a escolha de α . No entanto, a prática comum é definir $\alpha = 0,05(5\%)$.
- Observação: ao definir a hipótese, o erro mais importante de ser evitado deve ser o erro tipo I.

P-valor

- Seja T_{H_0} uma estatística tal que quanto maior for a discrepância entre H_0 e x maior é seu valor observado.
- O valor-p (para $\Phi_0 \neq \emptyset$) é

$$p_x(\Phi_0) = \sup_{\theta \in \Phi_0} P_{\theta}(T_{H_0}(X) \ge T_{H_0}(x))$$
 (11)

em que $T_{H_0}(X) \geq T_{H_0}(x) \in \mathcal{F}$.

- $p_x(\Phi_0) \approx 0$ indica que mesmo sob o melhor caso em H_0 , os eventos tão ou mais extremos quanto o observado são raros.
- Se o evento ocorreu ou a hipótese nula deve ser falsa ou um evento raro ocorreu (*Modus Tollens* Fisheriano).

Exemplo

- Seja $X=(X_1,\ldots,X_n)$ uma amostra aleatória de uma normal bivariada com média $\boldsymbol{\mu}=(\mu_1,\mu_2)'$ e matriz de variância-covariância identidade.
- Considere $H_0: \mu = 0$ e $H'_0: \mu_1 = \mu_2$.
- Observe que $H_0 \Longrightarrow H_0'$, pois se $\mu = 0$, então $\mu_1 = \mu_2$.
- A distribuição de estatística de razão de verossimilhanças
 - sob H_0 : $\boldsymbol{\mu} = 0$ é

$$T_{H_0}(X) = n\bar{X}'\bar{X} \sim \chi_2^2 \tag{12}$$

em que $\bar{X} = (\bar{X}_1, \bar{X}_2)'$ é o EMV de μ .

• sob H'_0 : $\mu_1 = \mu_2$ é

$$T_{H_0'}(X) = \frac{n}{2} \left(\bar{X}_1 - \bar{X}_2 \right)^2 \sim \chi_2^1$$
 (13)

Exemplo

- Seja $X = (X_1, ..., X_n)$ uma amostra aleatória em que $X \sim \mathcal{N}(\mu, \sigma^2)$, em que $\theta = (\mu, \sigma^2) \in \mathbb{R} \times \mathbb{R}_+$.
- Suponha que a hipótese de interesse seja H_0 : $\mu = \mu_0$ contra H_1 : $\mu \neq \mu_0$.
- Encontre o p-valor usando $T_{H_0}(X) = n(\bar{X} \mu_0)^2$.
- Observe que $\Phi_0 = \{(\mu, \sigma^2) \in \mathbb{R} \times \mathbb{R}_+ : \mu = \mu_0\}.$
- Assim,

$$p-valor(H_0, x_n) = \sup_{\theta \in \Phi_0} P_{\theta} \left(T_{H_0}(\bar{X}_n) \ge T_{H_0}(x_n) \right)$$
$$= \sup_{\theta \in \Phi_0} P_{\theta} \left(n(\bar{X} - \mu_0)^2 \ge n(\bar{x} - \mu_0)^2 \right) \quad (14)$$

• Note que $\frac{n(\bar{X} - \mu_0)^2}{\sigma^2} \sim \chi_1^2, \forall \theta \in \Phi_0.$

• Isso implica que

$$p-valor(H_0, \chi_n) = \sup_{\theta \in \Phi_0} P_{\theta} \left(\frac{n(\bar{X} - \mu_0)^2}{\sigma^2} \ge \frac{n(\bar{x} - \mu_0)^2}{\sigma^2} \right)$$
$$= \sup_{\theta \in \Phi_0} P\left(\chi_1^2 \ge \frac{n(\bar{x} - \mu_0)^2}{\sigma^2} \right)$$
(15)

- Observe que σ^2 é desconhecido. À medida que a variância aumenta, a quantidade $\frac{n(\bar{x}-\mu_0)^2}{\sigma^2}$ decresce. De tal modo, que a probabilidade de uma χ_1^2 ser maior que zero é 1.
- Logo,

$$p-valor(H_0, x_n) = \sup_{\theta \in \Phi_0} P\left(\chi_1^2 \ge \frac{n(\bar{x} - \mu_0)^2}{\sigma^2}\right) = 1$$
 (16)

• Assim, esse p-valor é irrelevante e nunca será possível rejeitar a hipótese.

- Ou seja, a estatística proposta não é boa para se testar a hipótese H_0 : $\mu = \mu_0$.
- Então, vamos propor outra estatística. Se definirmos $T_{H_0}(X_n) = \frac{n(\bar{X} \mu_0)^2}{s_{n-1}^2} \sim F_{1,n-1}$, em que $s_{n-1}^2 = \frac{1}{n-1} \sum_{i=1}^N \left(X_i \bar{X}\right)^2$.
- Assim,

$$p-valor(H_0, x_n) = \sup_{\theta \in \Phi_0} P_{\theta} \left(T_{H_0}(X_n) \ge T_{H_0}(x_n) \right)$$

$$= \sup_{\theta \in \Phi_0} P_{\theta} \left(F_{1,n-1} \ge \frac{n(\bar{x} - \mu_0)^2}{s_{n-1}^2} \right)$$

$$= P \left(F_{1,n-1} \ge \frac{n(\bar{x} - \mu_0)^2}{s_{n-1}^2} \right)$$
(17)

• Podemos reescrever usando a distribuição t. Assim,

$$p(H_{0}, x_{n}) = P\left(\frac{n(\bar{X} - \mu_{0})^{2}}{S_{n-1}^{2}} \ge \frac{n(\bar{x} - \mu_{0})^{2}}{s_{n-1}^{2}}\right)$$

$$= P\left(F_{1,n-1} \ge \frac{n(\bar{x} - \mu_{0})^{2}}{s_{n-1}^{2}}\right)$$

$$= P\left(\frac{\sqrt{n}|\bar{X} - \mu_{0}|}{\sqrt{S_{n-1}^{2}}} \ge \frac{\sqrt{n}|\bar{x} - \mu_{0}|}{\sqrt{s_{n-1}^{2}}}\right)$$

$$= 1 - P\left(-\frac{\sqrt{n}|\bar{X} - \mu_{0}|}{\sqrt{S_{n-1}^{2}}} < \frac{\sqrt{n}(\bar{x} - \mu_{0})}{\sqrt{s_{n-1}^{2}}} < \frac{\sqrt{n}|\bar{X} - \mu_{0}|}{\sqrt{S_{n-1}^{2}}}\right)$$

$$= 1 - P\left(-\frac{\sqrt{n}|\bar{X} - \mu_{0}|}{\sqrt{S_{n-1}^{2}}} < t_{n-1} < \frac{\sqrt{n}|\bar{X} - \mu_{0}|}{\sqrt{S_{n-1}^{2}}}\right)$$

$$= 1 - P\left(\frac{\sqrt{n}|\bar{X} - \mu_{0}|}{\sqrt{S_{n-1}^{2}}} < t_{n-1} < \frac{\sqrt{n}|\bar{X} - \mu_{0}|}{\sqrt{S_{n-1}^{2}}}\right)$$

$$(18)$$

 $\frac{32}{38}$ $\frac{32}{38}$

Exemplo

- Seja $X \sim \text{Bernoulli}(\theta)$ uma amostra aleatória em que $\theta \in (0, 1)$.
- Suponha que a hipótese de interesse seja H_0 : $\theta = \theta_0$ contra H_1 : $\theta \neq \theta_0$.
- Encontre o p-valor usando $T_{H_0}(X_n) = |\bar{X} \theta_0|$.

• Assim,

$$p(H_{0}, x_{n}) = \sup_{\theta \in \Phi_{0}} P_{\theta} \left(T_{H_{0}}(X_{n}) \geq T_{H_{0}}(x_{n}) \right)$$

$$= P_{\theta_{0}} \left(|\bar{X} - \theta_{0}| \geq |\bar{x} - \theta_{0}| \right)$$

$$= 1 - P_{\theta_{0}} \left(|\bar{X} - \theta_{0}| < |\bar{x} - \theta_{0}| \right)$$

$$= 1 - P_{\theta_{0}} \left(-|\bar{x} - \theta_{0}| < \bar{X} - \theta_{0} < |\bar{x} - \theta_{0}| \right)$$

$$= 1 - P_{\theta_{0}} \left(\theta_{0} - |\bar{x} - \theta_{0}| < \bar{X} \leq \theta_{0} + |\bar{x} - \theta_{0}| \right)$$

$$= 1 - P_{\theta_{0}} \left(n\theta_{0} - n|\bar{x} - \theta_{0}| < \sum_{i=1}^{n} X_{i} < n\theta_{0} + n|\bar{x} - \theta_{0}| \right)$$

$$(19)$$

• Note que $\sum_{i=1}^{n} X_i \sim B(n, \theta)$ para qualquer $\theta \in (0, 1)$.

• Isso implica que

$$p(H_0, x_n) = 1 - P_{\theta_0} \left(n\theta_0 - n|\bar{x} - \theta_0| < B(n, \theta_0) \le n\theta_0 + n|\bar{x} - \theta_0| \right)$$
(20)

Exemplo

- Seja $X \sim \text{Bernoulli}(\theta)$ uma amostra aleatória em que $\theta \in (0,1)$.
- Suponha que a hipótese de interesse seja H_0 : $\theta < \theta_0$ contra $H_1: \theta > \theta_0.$
- Encontre o p-valor usando $T_{H_0}(X_n) = \bar{X} \theta_0$.
- Assim,

$$p(H_{0}, x_{n}) = \sup_{\theta \leq \theta_{0}} P_{\theta} \left(T_{H_{0}}(X_{n}) \geq T_{H_{0}}(x_{n}) \right)$$

$$= \sup_{\theta \leq \theta_{0}} P_{\theta_{0}} \left(\bar{X} - \theta_{0} \geq \bar{x} - \theta_{0} \right)$$

$$= \sup_{\theta \leq \theta_{0}} P_{\theta_{0}} \left(\bar{X} \geq \bar{x} \right)$$

$$= \sup_{\theta \leq \theta_{0}} P_{\theta_{0}} \left(n\bar{X} \geq n\bar{x} \right)$$
(21)

- Note que $\sum_{i=1}^{n} X_i \sim B(n, \theta)$ para qualquer $\theta \in (0, 1)$.
- Logo,

$$p(H_0, \underline{x}_n) = \sup_{\theta < \theta_0} P_{\theta_0} \left(B(n, \theta_0) \ge n\bar{x} \right)$$
 (22)

ECONOMETRIA I TESTE DE HIPÓTESES

Victor Oliveira

Núcleo de Economia Internacional e Desenvolvimento Econômico

PPGDE-2024