intar	conn	acti	ion
mter	COM	iecti	OH

goal: derive time-ond frequency-domain models for interconnections between systems

ref. Hespanha Ch 1 - LTI DE [textbooks on "feedback systems"] - block diagram algebra

· we'll represent the interconnection between (sub) systems using block diagrams

- a single block 2 system > can stand in for

a time-or frequency-domain model for [system], e.g.

 $\frac{x}{x^{+}} = Ax + Bu \qquad y \qquad \text{or} \qquad y = Tyu \hat{u} \qquad y > 0$

- given multiple blocks (ie systems), they can be interconnected to create a new system through 3 basic constructions: $c \cdot \mathring{x} / x^{+} = A \times + R. u. \quad c : \mathring{x} / x^{+}_{*} = A. x_{*} + B. u.$

10 CICATE A NEW SUSTAN THINDAN - WORL (MISHIM IN)

$$S_1: \mathring{x}_1/X_1^{\dagger} = A_1X_1 + B_1U_1$$
 $S_2: \mathring{x}_2/X_2^{\dagger} = A_2X_2 + B_2U_2$ $U_1 = C_1X_1 + D_1U_1$ $U_2 = C_2X_2 + D_2U_2$ $U_3 = T_{y_1y_1}(S)$ $U_4 = T_{y_1y_2}(S)$

1°. cascade / series:
$$\frac{u}{S}$$
 $\frac{3}{S}$ $\frac{5}{S}$

S can be represented in time- and freg. - domain:
$$\hat{y}(s) = T(s) \hat{u}(s) = T_2(s) T_1(s) \hat{u}(s)$$

$$\begin{bmatrix} \dot{x}_1/x_1^{\dagger} \\ \dot{x}_2/x_2^{\dagger} \end{bmatrix} = \begin{bmatrix} A_1 & O \\ B_2C_1 & A_2 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} + \begin{bmatrix} B_1 \\ B_2D_1 \end{bmatrix} \mathcal{U}$$

$$y = \begin{bmatrix} D_2 C_1 & C_2 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} + D_2 D_1 \mathcal{U}$$

-> when is this interconnection possible?
(what must be true of dimensions of (A,B,C,D)'s /Tya's?)

2°. parallel:
$$u$$
 S_1 S_2 S_3 S_2 S_3 S_4 S_2 S_4 S_5 S_4 S_5 S_6 S_6

$$\begin{bmatrix} \dot{x}_1/x_1^{\dagger} \\ \dot{x}_2/x_2^{\dagger} \end{bmatrix} = \begin{bmatrix} A_1 & O \\ O & A_2 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} + \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} 2$$

$$y = \begin{bmatrix} C_1 & C_2 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} + (D_1 + D_2) \mathcal{U}$$

-> when is this interconnection possible?
(what must be true of dimensions of (A, B, C, D)'s / Tya's?)

$$y = S_1e = S_1(u-y) \Leftrightarrow y+S_1y = S_1u$$

"black diagram algebra" $\Leftrightarrow y = (I+S_1)^{-1}S_1u$
 $= S_1$

freg. domain: $\hat{y}(s) = (I + T_1(s))^T T_1(s) \hat{u}(s) = T(s) \cdot \hat{u}(s)$

time domain:
$$x^2/x^4 = (A_1 - B_1(I+D_1)^{-1}C_1)x_1 + B_1(I-(I+D_1)^{-1}D_1)u$$

 $y = (I+D_1)^{-1}C_1x_1 + (I+D_1)^{-1}D_1u$