Theoretische Physik III (Quantenmechanik) - physik420

$\overline{Modul\text{-}Nr}.$	physik420		
Kategorie	Pflicht		
Le ist ung spunkte	9		
vorgesehenes Semester	4.		

Modul: Theoretische Physik III (Quantenmechanik)

Modulbe stand teile:

$\overline{\mathbf{Nr}}$	Lehrveranstaltung	LV-Nr.	LP	LV-Art	SWS	Semester
1	Theoretische Physik III (Quantenmechanik)	physik421	9	Vorl. + Üb.	4+3	SS

Teilnahmevoraussetzungen: keine

Prüfungsform: Klausur

Inhalt: Nichtrelativistische Quantenmechanik

Qualifikationsziel: Fähigkeit zur Lösung von Problemen der nichtrelativistischen Quantenmechanik

Studienleistung/Kriterien zur Vergabe von LP: Erfolgreiche Bearbeitung der Übungsaufgaben

Dauer: 1 Semester

Max. Teilnehmerzahl: ca. 200

Gewichtung: 9/163

Anmerkung:

PDF version of this page.

Theoretische Physik III (Quantenmechanik) - physik421

$\overline{Lehr veran staltung}$	Theoretische Physik III (Quantenmechanik)
LV-Nr.	physik421

Kategorie	LV-Art	Sprache	SWS	LP	Semester
Pflicht	Vorlesung mit Übungen	deutsch	4+3	9	SS

Teilnahmevoraussetzungen:

Empfohlene Vorkenntnisse:

Mathematik I - III für Physiker (math140, math240, math340)

Theoretische Physik I - II (physik220, physik320)

Physik I - III (physik110, physik210, physik310)

Studien- und Prüfungsmodalitäten: Zulassungsvoraussetzung zur Modulprüfung (Klausur): erfolgreiche Teilnahme an den Übungen

Dauer der Lehrveranstaltung: 1 Semester

Lernziele der LV: Fähigkeit zur Lösung von Problemen der nichtrelativistischen Quantenmechanik

Inhalte der LV:

Schrödinger-Gleichung, einfache Potentialprobleme, harmonischer Oszillator

Formale Grundlagen, Operatoren auf Hilberträumen, Unschärferelation

Theorie des Drehimpulses, sphärisch-symmetrische Potentiale, Wasserstoffatom

Theorie des Spins, Drehimpulskopplung

stationäre Störungstheorie

Mehrelektronensysteme, Pauliprinzip, Heliumatom, Periodensystem

zeitabhängige Störungstheorie: elektromagnetische Übergänge, Goldene Regel

Literaturhinweise:

- S. Gasiorowicz; Quantenphysik (R. Oldenbourg Vlg., München 9. erw. u. überarb. Aufl. 2005)
- L. Landau, E. Lifschitz; Lehrbuch der Theoretischen Physik Band : Quantenmechanik (Harri Deutsch, Frankfurt am Main 9. bearb. Aufl. 1992)
- W. Nolting; Grundkurs Theoretische Physik 5: Quantenmechanik Teil 1: Grundlagen (Springer, Heidelberg 4. verb. Aufl. 2000)
- W. Nolting; Grundkurs Theoretische Physik 5: Quantenmechanik Teil 2: Methoden und Anwendungen (Springer, Heidelberg 3. verb. Aufl. 2000)
- F. Schwabl; Quantenmechanik (QMI) (Springer, Heidelberg 6. korr. Nachdruck 2004)
- J.J. Sakurai; Modern Quantum Mechanics (Addison-Wesley, 1995)

R. Shankar; Principles of Quantum Mechanics (Kluwer 1994)

G. Münster; Quantentheorie (de Gruyter 2010)

PDF version of this page.