Alkalmazott fizikai módszerek laboratórium III.: Folyadékszcintillációs Spektroszkópia

Pál Balázs* Somogyfoki Réka*,^m, Tuhári Richárd*,^m

2019. október 12.

Abstract

Az Alkalmazott fizikai módszerek laboratórium harmadik alkalmán a radiokarbon ($^{14}\mathrm{C}$ izotóp) β -spektrumát mértük ki folyadékszcintillációs spektroszkópia segítségével. A mérőműszer és a mérési feladatok természetéből fakadóan a labor során elsődlegesen nem aktív mérési munkát végeztünk, hanem megismerkednünk a β -bomlás azon elméleti alapjaival, melyek az eredmények kiértékeléséhez elengedhetetlenül szükségesek. Levezettük a β -spektrum kialakulásának egy közelítő, nem-relativisztikus modelljét és meghatároztuk annak átlagos energiáját. A mérés kiértékelése során ellenőriztük a modell helyességét az adatokra történő illesztéssel, valamint hasonlóan vizsgáltuk ezen modell módosított változatát is a Fermi-függvény felhasználásával. Megállapítottuk, hogy a β -spektrum energiájának várható értéke $\langle E \rangle = Q/3$, valamint bebizonyítottuk, hogy $\sqrt{N} \approx \sigma$, ahol N a mérési értékek darabszáma, σ pedig azok szórása. Végül a méréshez használt minta megadott DPM, és a mérési adatainkból számolt CPM értékek segítségével kiszámítottuk a detektor η detektálási hatásfokának mértékét is.

- I. BEVEZETÉS
- II. ELMÉLETI ALAPOK
 - III. KIÉRTÉKELÉS
 - IV. DISZKUSSZIÓ

^{*}Eötvös Loránd Tudományegyetem

^mMérőtársak

APPENDIX A. - NEM-RELATIVISZTIKUS KÖZELÍTÉS

APPENDIX B. - ÁBRÁK

1. ábra. Az általunk vizsgált 14 C különböző, egymás utáni 2 perces mérésekből származó β -spektrumai. Az összes 49 sikeres mérés közül 24 darab van az ábrára véletlenszerűen kiválasztva.

2. ábra. Az általunk vizsgált $^{14}\mathrm{C}$ különböző, egymás utáni 2 perces mérésekből származó β -spektrumainak átlagolt értéke.

3. ábra. Az általunk vizsgált 14 C különböző, egymás utáni 2 perces mérésekből származó β -spektrumainak átlagolt értéke, fényhozam binek szerint vizualizálva.

4. ábra. Az általunk vizsgált 14 C kiátlagolt spektrumára illesztett nem-relativisztikus függvény, mely egy túl jó közelítésben, de láthatóan visszaadja a β -spektrum lecsengő mivoltát. Zérushelye a 14 C karakterisztikus 156.5 keV-es Q értéke körül van.

5. ábra. Az általunk vizsgált 14 C kiátlagolt spektrumára illesztett nem-relativisztikus függvény, mely a Fermi-függvény által nyújtott korrekciót felhasználva, az előzőnél sokkal jobban megközelíti a β -spektrum görbéjét. A zérushely itt is a 14 C karakterisztikus 156.5 keV-es Q érték körül van.

6. ábra. Az egyes $N\left(E\right)$ értékek hibáját (szórását) közelíthetjük az \sqrt{N} formulával. Ideális esetben a $\sqrt{N}-\sigma$ függvény a 45°-os egyenesre illeszkedik. Az ábrán ezen függvény ábrázoltam a meghatározott \sqrt{N} és σ értékek segítségével. Az illeszkedés hibáját a machine learning modelleknél bevett átlag négyzetes hiba gyökének kiszámításával vizsgáltam, mely értéke szintén az ábrán látható.