ITP 30002 Operating System

Complete Virtual Memory System

OSTEP Chapter 23

Shin Hong

VAX/VMS Virtual Memory

 VAX/VMS is OS for VAX-11, a minicomputer architecture invented in 1970's by Digital Equipment Corporation (DEC)

- MMU of VAX-11
 - 32-bit virtual address space per process with 512-byte pages
 - 23-bit VPN and 9-bit offset
 - -top two bits of VPN indicates whether an address is the first half or the second half of process space, or system space
 - two page tables per process
 - bounds register is used for holding the number of pages in the space
 - keep page tables in the kernel space
 - the kernel can swap pages of the page tables out to disk

Complete Virtual Memory System

VAX/VMS Address Space Layout

- Page 0 is not used and marked inaccessible
- kernel address space is a part of each user address space
 - -kernel is like a library with a protection

VAX/VAM Page Replacement

 Unfortunately, VAX architectures do not have reference bit in a page table entry

- Segmented FIFO replacement policy
 - -each process has a max number of pages to keep them in memory (resident set size; RSS) and keeps the pages in a FIFO
 - -clock replacement algorithm using modified bit

Complete Virtual Memory System

Operating System 2023-05-02

Lazy Optimization for Responsiveness

demand zeroing

- at a process creation, assign a page table entry and mark the page inaccessible
- -pursue zeroing when the process accesses the page for the first time (via trap)

• copy-on-write

- -after a fork, a page table entry of a child process points to the corresponding page of the parent process
- -duplicate a page from the parent process when a child process updates the page

Complete Virtual Memory System

Linux VM System for x86

- Address space is separated into user portion and kernel portion
 - for 32-bit x86, three quarters are for user portion and one quarter for kernel portion
- Kernel virtual address space comprises of
 - kernel logical addresses
 - normal virtual addresses for kernel space
 - directly mapped to the first portions of physical memory
 - continuous in physical memory addresses
 - cannot be swapped
 - kernel virtual addresses
 - may be swapped and non-continuous in physical addresses
 - much flexible to hold large data in kernel space

Complete Virtual Memory System

ITP 30002 Operating System

2023-05-02

Page Table

- x86 provides a hardware-managed, multi-level, per-process page tables
- 64-bit x86 uses a four-level page table that uses 36 bits for VPN

- Linux provides transparent large-size page supports
 - Benefit of having large-size pages (e.g., 2-MB page, 1-GB page)
 - less TLB miss
 - shorter path of TLB miss handling

Complete Virtual Memory System

Page Replacement Policy – 2Q

- based on LRU
- has two lists of pages, inactive list and active list
 - to resolve the limitation of LRU on treating large file accesses
- policies
 - a page is placed on inactive list first when it is first brough in
 - a page is promoted to active list when the page is re-referenced
 - a pages in inactive list is first selected as a victim for a page replacement

Complete Virtual Memory System

Operating System 2023-05-02

Security Support

- Memory errors (or other simple errors) may become targets for security attacks and cause malicious users to take control of the system
 - -ex. buffer overflow

```
int some_function(char *input) {
  char dest_buffer[100];
  strcpy(dest_buffer, input); // oops, unbounded copy!
}
```

- Defense mechanism
 - -No-execute bit (NX bit) of a page entry: prevent execution of any code found within certain pages
 - -Address space layout randomization (ASLR): randomize placement of code, stack and heap in order to make it impossible to inject code to fixed locations

Complete Virtual Memory System