Followd & 2.6 79.2.40 a) HANDOUT M624: Continuity of mn. Lebesque measure on let m' denote the completion of mx mx...x m on 8,83,8.83 (Equir. Ale completion of mx. xm on Lo -- & Z =: R Domain of mi = L = measurable sets in Ri LEMMA: Jupose F & Z m=m" (NOTATION Then: m(E) = inf 1 m(U): UDE, U = sup { m(K): KCE, K cumpact } First we will refer by an n-dimensional rectangle to a set TcR" 11 T (2) Where are called he sides of

=> E compact and there is nothing to prove.
Suppose then E is not necessarily closed. Then given
E) 0 chrose an open set U/UDE E and
Such that $m(U) \leq m(E-E) + \epsilon$.
Let K = F \ U . Then K is ampact, KCE
and $m(K) = m(E) - m(E \cap U)$
= m(E) - [m(U)-m(U-E)]
$\geq m(E) - m(U) + m(E \cdot E)$
> m(E) - E as defined,
If E is runbounded, let E. = En A.
Where A; is the annulus in R defined
$ y_{j-1} \leq x \leq j, (j \geq 1)$
Note that A: n A: = \$ j#j!
Now E. is bounded so by the preceeding
argument, given any E>O J K; compact

$< \frac{5}{2} + \frac{1}{2} + \frac{5}{2}$
where Hy is the one that exists by the
above procedure when $E = 8/2$.
Hence Fa compact HN CE/
m(E) < m(H) + 8 = 0
m(E) = sup 2 m(K): KCE, Kumpact
as defined.
COROLLARY: Let E E 2 m such that
m(E) < 00. Then for any E>0 Ia
finite collection of R. J. of disjoint
n-dim rectangles whose sides are intervals
such flut m (E D U R.) < E.
Proof: If m(E) < 00 then by (*) page 3
of the Proof of Previous lemma, we have

