1980

# Freedom of Information Collection

Research and Information Services

Ontario Ministry of Finance, Frost Bldg North, Main fl

Does not Circulate

STATISTICAL ANALYSIS
FOR
REGULATIONS AND CONTROL
OF
MUNICIPAL WASTEWATER EFFLUENTS

TD 745 .S72 1980

MINISTRY OF TREASURY AND ECONOMICS CENTRAL STATISTICAL SERVICES

OCTOBER 1980



# STATISTICAL ANALYSIS FOR REGULATIONS AND CONTROL OF MUNICIPAL WASTEWATER EFFLUENTS

REPORT PREPARED FOR THE MINISTRY OF THE ENVIRONMENT





# CONTENTS

| 1. | INTRODUCTION                        | 1  |
|----|-------------------------------------|----|
| 2. | PURPOSE                             | 1  |
| 3. | SUMMARY AND CONCLUSIONS             | 2  |
| 4. | MAJOR ASPECTS OF STUDY AND ANALYSIS | 5  |
| 5. | APPENDIX                            | 54 |
| 6. | REFERENCES                          | 57 |



# 1. INTRODUCTION

In early 1979, Central Statistical Services analyzed effluents from six waste water treatment plants to find the sample size needed to determine plant performance on an annual basis. (1) One year of daily composite data for six plants was used to estimate sampling size. It was found that effluent BOD and SS vary over a large range of values. Data collected for these plants does not follow any parametric distribution. In addition, time series analysis and analysis of variance, were performed on data to test variation between plants and between months. It was concluded that a non-parametric method would give us a reasonable estimate and the sampling size to monitor the program.

It was suggested in that study that more data and more detailed information about the plants must be analyzed to develop a program for monitoring purposes. This report contains all the steps taken (from December 1979 to March 1980) towards analyzing the Municipal Wastewater Treatment Plant data to develop regulations and control of wastewater effluents.

## 2. PURPOSE

There are two basic objectives of this study:

- i) To determine the minimum number of samples that need to be taken at the treatment plants, in order to be able to assess the effluent quality with respect to BOD<sub>5</sub> and SS with confidence limits of over 90%. Conversely, to determine the limits of confidence if the number of samples were to be restricted to one/month.
- ii) To specify effluent quality control standards for new plants, based on the analysis of the plants in individual "group" or "cell" (defined as follows).

(1) See page 57, Reference 6(A).

Digitized by the Internet Archive in 2018 with funding from Ontario Council of University Libraries

It was decided to analyze the data for the last five years and the data will be divided into groups (or cells) consisting of plants of specified capacities and type of treatment provided. For the initial analysis, the following water pollution control plants size ranges were chosen:

- i) **\leq 1** mgd
- ii) >1 mgd and ≤ 10 mgd
- iii) >10 mgd.

The treatment types were the same as per classification in Ministry of the Environment Operations Manual, e.g.,

- i) Primary Treatment Plants
- ii) Conventional Activated Sludge Plants
- iii) Extended Aeration Plants
  - iv) High Rate Activated Sludge Plants
  - v) Contact stabilization Plants
  - vi) Advanced Waste Treatment Plants

# 3. SUMMARY AND CONCLUSIONS

The BOD and SS data were obtained for the last five years from MOE. After performing detailed analysis, it can be seen in the table below that only nine cells could be constructed, out of which only seven cells could be used for sample size determination. Data from only 36 plants could be used for our analysis out of nearly 200 plants in Ontario, simply because complete data were not available for the remainder of the plants.

# Number of Plants in each Cell

| Type/Capacity            | <li>✓1 mgd</li> | 1 - 5 mgd | 6 - 10 mgd | >10 mgd |
|--------------------------|-----------------|-----------|------------|---------|
| Primary Treatment Plants | 2               | 4         | -          | 1       |
| Activated Sludge Plants  | 5               | 9         | 4          | 3       |
| Extended Aeration Plants | 7               | -         | -          |         |
| Contact Stabilization    |                 |           |            |         |
| Plants                   | 1               | -         | -          | -       |



Sample sizes were determined for each cell by using (i)
Plant data and using (ii) Mean values representative of plant data.

Detailed sample size tables are given in Tables VI and VII. A
summary of confidence level is provided below if the number of sample size is restricted to 12 samples per year.

Cell Confidence Level (with Sample Size 12 and Tolerance Error 10%)

|                                          | All Plant Data<br>(i) | Means Only<br>(ii) |
|------------------------------------------|-----------------------|--------------------|
| 1. Primary Treatment Plants ( < 1 mgd)   | 49%                   | 99%                |
| 2. Activated Sludge Plants ( < 1 mgd)    | 33%                   | 60%                |
| 3. Extended Aeration Plants ( $<$ 1 mgd) | 28%                   | 60%                |
| 4. Primary Treatment Plants (1 - 5 mgd)  | 34%                   | 99%                |
| 5. Activated Sludge Plants (1 - 5 mgd)   | 24%                   | 24%                |
| 6. Activated Sludge Plants (6 - 10 mgd)  | 35%                   | 82%                |
| 7. Activated Sludge Plants (> 10 mgd)    | 40%                   | 89%                |

SS

| Cell | Confidence Level (with Sampl   | e  |
|------|--------------------------------|----|
|      | Size 12 and Tolerance Error 10 | %) |

|                                         | All Plant Data<br>(i) | Means Only<br>(ii) |
|-----------------------------------------|-----------------------|--------------------|
| 1. Primary Treatment Plants ( < 1 mgd)  | 49%                   | 99%                |
| 2. Activated Sludge Plants ( < 1 mgd)   | 33%                   | 48%                |
| 3. Extended Aeration Plants ( < 1 mgd)  | 28%                   | 49%                |
| 4. Primary Treatment Plants (1 - 5 mgd) | 34%                   | 85%                |
| 5. Activated Sludge Plants (1 - 5 mgd)  | 22%                   | 53%                |
| 6. Activated Sludge Plants (6 - 10 mgd) | 35%                   | 70%                |
| 7. Activated Sludge Plants (> 10 mgd)   | 40%                   | 91%                |



The following summary Table provides sample size for 90% confidence level with tolerance error of 10% for various treatment type plants. It should be noted that these sample sizes were determined for each cell by using plant data. Detailed sample size tables are given in Tables VI.

BOD<sub>5</sub>

Sample Size (90% Confidence Cell Level with 10% Tolerance Error)

| 1. | Primary Treatment Plants | ( <1  | mgd) | 75  |
|----|--------------------------|-------|------|-----|
| 2. | Activated Sludge Plants  | ( <1  | mgd) | 178 |
| 3. | Extended Aeration Plants | ( <1  | mgd) | 248 |
| 4. | Primary Treatment Plants | (1-5  | mgd) | 159 |
| 5. | Activated Sludge Plants  | (1-5  | mgd) | 335 |
| 6. | Activated Sludge Plants  | (6-10 | mgd) | 157 |
| 7. | Activated Sludge Plants  | (>10  | mgd) | 120 |

SS

Sample Size (90% Confidence Cell Level with 10% Tolerance Error)

| 1. | Primary Treatment Plants | ( < 1 | mgd) | 75           |
|----|--------------------------|-------|------|--------------|
| 2. | Activated Sludge Plants  | ( < 1 | mgd) | 174          |
| 3. | Extended Aeration Plants | ( < 1 | mgd) | 2 <b>5</b> 8 |
| 4. | Primary Treatment Plants | (1-5  | mgd) | 158          |
| 5. | Activated Sludge Plants  | (1-5  | mgd) | 358          |
| 6. | Activated Sludge Plants  | (6-10 | mgd) | 159          |
| 7. | Activated Sludge Plants  | (>10  | mgd) | 120          |

It is highly recommended that, whatever sample size is selected for each cell or cells, some general quality control limits be developed to monitor performance of these plants, and that the plants than be monitored on regular basis. It should be noted that quality control limits can be established by computing averages and standard deviations or ranges after selcting the sample size required for each cell from Tables VI and VII.



# 4. MAJOR ASPECTS OF STUDY AND ANALYSIS

This study is divided into five major steps. In each step the problem is presented and a brief analysis is given. Explanation and definition of statistical techniques used to analyze data are provided in the Appendix.

### STEP I

Comparison of Data from Operating Summary (Green Books) and Raw Data (Black Books)

Since it was decided to analyze data for the last five years, it was found that raw data (Black Books) did not exist for all the latest years; and operating summary (Green Books) contained only monthly averages for the last five years. Before using Operating Summary data, it was decided to compare plant data to test if there was any significant difference between two sets of data from the Green Books and Black Books. Six plants from the year 1975 and eleven plants from 1976 were chosen, and BOD and SS effluents data were analyzed. Statistical tests were used to test the variances and averages. A summary of these results is given in Tables I and II.

As can be seen from the Tables, there is no significant difference between the two sets of data, hence it was concluded that data from the Green Books can be used for our purpose. The last five years Green Book data (from 1973 to 1977) were made available to Central Statistical Services in December 1979. Data were keypunched and a tape was created.



TABLE I(A) BOD - 1975

| HYPOTHESIS  L= .05 Ho: LBlack = LGreen |        | Significant difference |                           | No significant difference |        | n.s.d. |                      | n.s.d. |                     | n.s.d. |                      | n.s.d. |               | n.s.d. |
|----------------------------------------|--------|------------------------|---------------------------|---------------------------|--------|--------|----------------------|--------|---------------------|--------|----------------------|--------|---------------|--------|
| MEAN                                   | 75.000 | 102.916                | 14.791                    | 15.000                    | 12.554 | 25.272 | 28.450               | 24.416 | 7.291               | 7.818  | 3.620                | 3.750  | 19.523        | 30.242 |
| S. D.                                  | 14.577 | 21.869                 | 12.567                    | 12.454                    | 12.366 | 36.897 | 47.305               | 8.436  | 5.687               | 5.706  | 1.877                | 1.215  | 31.286        | 38.543 |
| NO. OF<br>CASES                        | 6      | 12                     | 12                        | 12                        | 11     | 11     | 20                   | 12     | 12                  | 11     | 25                   | 12     | 68            | 70     |
| SOURCE<br>OF DATA                      | BLACK  | GREEN                  | BLACK                     | GREEN                     | BLACK  | GREEN  | BLACK                | GREEN  | BLACK               | GREEN  | BLACK                | GREEN  | BLACK         | GREEN  |
| NAME OF PLANT                          |        | THUNDER BAY SOUTH      | BIIRL TNGTON DRIIRY I ANE | BURLINGTON DRURY LANE     |        |        | MISSISSAHGA LAKEVIEW |        | RITRI TNGTON SKYMAY |        | MTSSTSSAHGA CLABKSON |        | ALI, 6 PLANTS |        |



: 7 :

TABLE I(A) CONT'D BOD - 1975

| HYPOTHESIS  L= .05 · Ho: LBlack = Creen |        | No significant difference | •       | n.s.d. |         | .b.s.n |        | n.s.d.        |        | n.s.d.          |        | n.s.d.        |       |       |
|-----------------------------------------|--------|---------------------------|---------|--------|---------|--------|--------|---------------|--------|-----------------|--------|---------------|-------|-------|
| MEAN                                    | 28.750 | 27.166                    | 42.846  | 45.500 | 14.125  | 15.500 | 8.080  | 6.750         | 43.588 | 56.583          | 23.741 | 31.266        |       |       |
| s. D.                                   | 13.791 | 7.837                     | 15.518  | 10.104 | 7.989   | 8.003  | 14.852 | 8.631         | 17.147 | 12.993          | 27.554 | 31.872        |       |       |
| NO. OF<br>CASES                         | 12     | 12                        | 13      | 12     | 12      | 10     | 10     | 8             | 17     | 12              | 153    | 124           |       |       |
| SOURCE<br>OF DATA                       | BLACK  | GREEN                     | BLACK   | GREEN  | BLACK   | GREEN  | BLACK  | GREEN         | BLACK  | GREEN           | BLACK  | GREEN         | BLACK | GREEN |
| NAME OF PLANT                           |        | OWEN SOUND                | MIDIAND |        | WIARTON |        |        | PORT MCNICOLL |        | SAULT STE MARIE |        | ALL 11 PLANTS |       |       |



TABLE I(B)

| $ \lambda = .05 $ HYPOTHESIS HO: $ \mu$ Black = $ \mu$ Green | No significant difference |                                         | n.s.d. |                       | . n.s.d. |                         |         | n.s.d.               |        | n.s.d.            |        | n.s.d.               |        | n.s.d.       |
|--------------------------------------------------------------|---------------------------|-----------------------------------------|--------|-----------------------|----------|-------------------------|---------|----------------------|--------|-------------------|--------|----------------------|--------|--------------|
| MEAN                                                         | 75.555                    | 72.416                                  | 16.250 | 16.416                | 15.000   | 15.000                  | 73.750  | 38.000               | 15.416 | 16.118            | 17.000 | 15.083               | 34.606 | 29.218       |
| S. D.                                                        | 20.069                    | 18.545                                  | 4.827  | 6.112                 | 5.000    | 5.000                   | 117.741 | 16.901               | 2.575  | 5.603             | 9.242  | 3.872                | 61,419 | 24.035       |
| NO. OF<br>CASES                                              | 6                         | 12                                      | 12     | 12                    | 11       | 11                      | 20      | 12                   | 12     | 11                | 25     | 12                   | 89     | 7.0          |
| SOURCE<br>OF DATA                                            | BLACK                     | GREEN                                   | BLACK  | GREEN                 | BLACK    | GREEN                   | BLACK   | GREEN                | BLACK  | GREEN             | BLACK  | GREEN                | BLACK  | GREEN        |
| NAME OF PLANT                                                |                           | THUNDER BAY SOUTH BURLINGTON DRURY LANE |        | BURLINGTON DRURY LANE | 1        | BURLINGTON ELIZABETH G. |         | MISSISSAUGA LAKEVIEW |        | BURLINGTON SKYWAY |        | MISSISSAUGA CLARKSON |        | ALL 6 PLANTS |



TABLE 1(B) CONT'D SS - 1975

| HYPOTHESIS    A = .05 Ho:   Black =   Green |        | No significant difference |        | n.s.d.  |        | .b.s.n  |        | n.s.d.        |        | n.s.d.          |        | n.s.d.        |       |       |
|---------------------------------------------|--------|---------------------------|--------|---------|--------|---------|--------|---------------|--------|-----------------|--------|---------------|-------|-------|
| MEAN                                        | 32.500 | 28.250                    | 43.076 | 52.083  | 31.250 | 27.000  | 23.500 | 23.625        | 53.705 | 47.416          | 36.294 | 32.558        |       |       |
| S. D.                                       | 8.919  | 5.011                     | 22.871 | 28.770  | 17.726 | 15.129  | 10.288 | 10.225        | 13.147 | 5.632           | 48.287 | 22.371        |       |       |
| NO. OF<br>CASES                             | 12     | 12                        | 13     | 12      | 12     | 10      | 10     | 8             | 17     | 12              | 153    | 124           |       |       |
| SOURCE<br>OF DATA                           | BLACK  | GREEN                     | BLACK  | GREEN   | BLACK  | GREEN   | BLACK  | GREEN         | BLACK  | GREEN           | BLACK  | GREEN         | BLACK | GREEN |
| NAME OF PLANT                               |        | OWEN SOUND                |        | MIDLAND |        | WIARTON |        | PORT MCNICOLL |        | SAULT STE MARIE |        | ALL 11 PLANTS |       |       |



TABLE II(A) BOD - 1976

| HYPOTHESIS <b>λ</b> = .05 Ho: <b>μ</b> Black = <b>μ</b> Green |         |                     | No significant difference | n.s.d.                |       |                         | n.s.d. |        | · p·s                |                      | n.s.d.             |       | n.s.d.               |        | n.s.d.       |
|---------------------------------------------------------------|---------|---------------------|---------------------------|-----------------------|-------|-------------------------|--------|--------|----------------------|----------------------|--------------------|-------|----------------------|--------|--------------|
| MEAN                                                          |         | 70.000              | 83.916                    | 13.172                | 8.727 | 10.843                  | 12.090 | 11.500 | 23.500               | 11.392               | 13.500             | 4.710 | 4.916                | 16.171 | 24.842       |
| S. D.                                                         |         | 35.924              | 24.711                    | 11.402                | 6.150 | 5.971                   | 6.139  | 13.265 | 9.968                | 3.814                | 5.535              | 7.322 | 1.676                | 23.334 | 29.924       |
| NO. OF<br>CASES                                               |         | 9                   | 12                        | 11                    | 11    | 16                      | 11     | 15     | 12                   | 14                   | 12                 | 20    | 12                   | 85     | 70           |
| SOURCE<br>OF DATA                                             | A V I G | DLACA               | GREEN                     | BLACK                 | GREEN | BLACK                   | GREEN  | BLACK  | GREEN                | BLACK                | GREEN              | BLACK | GREEN                | BLACK  | GREEN        |
| NAME OF PLANT                                                 |         | THIINDER BAY SOITTH |                           | BURLINGTON DRURY LANE |       | BURLINGTON ELIZABETH G. |        |        | MISSISSAUGA LAKEVIEW | PHIDI TMCTON CVVIIAV | DONLLINGTON SNIWAI |       | MISSISSAUGA CLARKSON |        | ALL 6 PLANTS |



TABLE II(B) SS - 1976

| $\lambda$ = .05 Ho: $\mu$ Black = $\mu$ Green | No significant difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                       |        |                         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .p.s.u               |                   | n.s.d.            |                       | n.s.d.               |              | n.s.d. |  | n.s.d. |  | n.s.d. |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------|--------|-------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------|-------------------|-----------------------|----------------------|--------------|--------|--|--------|--|--------|
| MEAN                                          | 83.8889                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 75.166            | 15.909                | 16.727 | 8.531                   | 10.000 | 41.333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50.000               | 14.357            | 15.250            | 11.250                | 11.083               | 24.852       | 30.171 |  |        |  |        |
| s. D.                                         | 70.079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24.071            | 21.906                | 18.868 | 4.646                   | 4.712  | 59.354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 33.352               | 4.765             | 4.751             | 7.225                 | 4.295                | 40.948       | 30.778 |  |        |  |        |
| NO. OF<br>CASES                               | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12                | 11                    | 11     | 16                      | 11     | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12                   | 14                | 12                | 20                    | 12                   | 85           | 70     |  |        |  |        |
| SOURCE<br>OF DATA                             | BLACK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GREEN             | BLACK                 | GREEN  | BLACK                   | GREEN  | BLACK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GREEN                | BLACK             | GREEN             | ВІДСК                 | GREEN                | BLACK        | GREEN  |  |        |  |        |
| NAME OF PLANT                                 | THE PARTY OF THE P | IHUNDEK BAY SOUTH | BURLINGTON DRURY LANE |        | BURLINGTON ELIZABETH G. |        | MICHAEL A CONTROL OF THE PROPERTY OF THE PROPE | MISSISSAUGA LANEVIEW | WATHY WOMONT IGHT | BURLINGIUN SKIWAI | WOOTH TO ACTUAL TOTAL | MISSISSAUGA CLARKSUN | OTH & DIANTS |        |  |        |  |        |



### STEP II

Analysis of data for three specified capacity groups:

- i) < 1 mgd
- ii) Between 1 and 10 mgd
- iii) > 10 mgd

The BOD and SS data were keypunched for the years 1973, 1974, 1975, 1976 and 1977 from the Green Books. All the plants which had at least seven to nine months of data were included. Plants which were not truly representative, i.e., with data less than seven months and/or continuous data less than four or five months of the whole year were excluded.

Three basic hypothesis were tested to find homogeneity of data within specified capacity groups:

- (A) Are Plant Data (BOD and SS) homogeneous within each specified capacity group?
- (B) Are Plant Data (BOD and SS) homogeneous between the plants during the same year within the specified capacity group?
- (C) Are Plant Data (BOD and SS) homogeneous between the plants within the Specified Capacity Group?

As can be seen, the hypotheses (B) and (C) are contained in the hypothesis (A). After performing Analysis of Variance on data, it was found that there is significant difference between plants in the specified capacity groups. Summary of basic statistics is given in Table III.



TABLE III



| _             | ı |
|---------------|---|
| _             |   |
| $\vdash$      |   |
| -             |   |
| (CONT'D)      |   |
| 9             |   |
| $\Box$        |   |
| $\overline{}$ | , |
| III           |   |
| TABLE         |   |
| $\vdash$      |   |
| B             |   |
| 1             |   |
| -             |   |
| -             |   |
|               |   |

|                             |        |              | <i>*</i>                   |              |          |            |              |          |          |              |  |
|-----------------------------|--------|--------------|----------------------------|--------------|----------|------------|--------------|----------|----------|--------------|--|
|                             | LIMITS | to           | to                         | 14.4 to 20.4 | to       | to         | to           | to       | to       | 32.8 to 37.1 |  |
|                             | S.D.   | 9.3          | 5.1                        | 10.4         | 11.6     | 13.8       | 9.6          | 5.7      | 12.1     | 38.4         |  |
| SS                          | MEAN   | 10.9         | 7.5                        | 17.4         | 19.1     | 16.9       | 20.7         | 12.9     | 24.9     | 35.0         |  |
| S                           | COUNT  | Ú9           | 67                         | 48           | 09       | 59         | 09           | 59       | 41       | 1225         |  |
|                             | LIMITS | 4            | 2 4                        | 8.0 to 15.7  | to 1     | to 1       | to 1         | to 1     | (1       | 30.5 to 35.4 |  |
| $BOD_5$                     | S.D.   | 7 6          | 2.7                        | 13.1         | 9.6      | 10.2       | 10.6         | 5.4      | 10.3     | 43.1         |  |
| BC                          | MEAN   | 7. 3         | n o                        | 11.9         | 16.1     | 13.3       | 16.4         | 14.7     | 18.8     | 33.0         |  |
|                             | COUNT  | r,           | 55                         | 47           | 59       | 58         | 52           | 59       | 70       | 1194         |  |
| II. CAPACITY 1 TO 10 m.g.d. | PLANT  | Odifunostita | TTELSONDONG<br>TALTACEBIED | SIMCOE       | WATERLOO | BURLINGTON | HALTON HILLS | BELVILLE | CARLETON | TOTAL        |  |

III. CAPACITY MORE THAN 10 m.g.d.

| • |          | 7         | •         |              |              |  |
|---|----------|-----------|-----------|--------------|--------------|--|
|   | TO T     | to        | 10        | 13.2 to 17.6 | 26.0 to 31.1 |  |
|   | 10.1     | 8.2       | 16.9      | 8.6          | 19.7         |  |
|   | 56.0     | 20.5      | 22.5      | 15.5         | 28.6         |  |
|   | 09       | 09        | 09        | 09           | 240          |  |
|   |          |           |           | 13.2 to 17.5 | 28.5 to 36.0 |  |
| - | 22.7     | 9.1       | 24.9      | 8.3          | 29.8         |  |
|   | 73.0     | 15.5      | 25.3      | 15.4         | 32.3         |  |
|   | 09       | 09        | 09        | 09           | 240          |  |
|   | SS MARIE | SRANTFORD | CITCHENER | UDBURY       |              |  |



STEP III

A decision was made to divide the capacity group 1-10 mgd into 1-5 mgd and 6-10 mgd respectively, and divide further these four capacity groups into treatment types, i.e., cells. Summary is provided in Table IV. The homogeneity of plant data within each cell was tested. It was observed that data were not homogeneous within each cell. Analysis of variance and range tests were performed on each cell and further groups were formed within each cell.



|                  | LIMITS         |                  | 43.9 to 81.6 | 55.7 to 67.7 |                        | 4.6 to 6.3 | 21.9 to 31.8        | 10.2 to 33.4   | 13.8 to 38.9 |                    | 9.7 to 10.7         | 7.4 to 10.7 | 23.7 to 34.8 | 12.8 to 18.1     | 21.4 to 34.4 | 19.6 to 25.9 | -7.6 to 54.1 | 14.5 to 20.6 | 19.6 to 34.4 |  |
|------------------|----------------|------------------|--------------|--------------|------------------------|------------|---------------------|----------------|--------------|--------------------|---------------------|-------------|--------------|------------------|--------------|--------------|--------------|--------------|--------------|--|
|                  | S.D.           |                  | 68.4         | 23.2         |                        | 3.3        | 16.9                | 40.5           | 25.4         |                    | 1.9                 | 11.8        | 21.2         | 8.8              | 21.9         | 12.2         | 117.2        | 11.6         | 24.9         |  |
| SS               | MEAN           |                  | 62.8         | 61.7         |                        | 5.5        | 26.8                | 21.8           | 21.3         |                    | 10.2                | 10.5        | 29.3         | 15.5             | 27.9         | 22.7         | 23.3         | 17.6         | 27.0         |  |
|                  | COUNT          | ·                | 53           | 09           |                        | 09         | 47                  | 67             | 97           |                    | 09                  | 58          | 58           | 45               | 94           | 59           | 58           | 99           | 97           |  |
|                  | LIMITS         |                  | 54.5 to 74.5 | 54.5 to 2.9  |                        | 5.4 to 7.8 | 6.4 to 11.2         | 14.7 to 26.9   | 10.0 to i7.1 |                    | 7.6 to 9.2          | 5.8 to 10.8 | 17.0 to 29.9 | 3.9 to 5.9       | 12.1 to 19.1 | 7.1 to 12.3  | -1.9 to 39.9 | 6.4 to 14.5  | 13.9 to 22.7 |  |
| (First Stage)    | S.D.           |                  | 35.5         | 35.6         |                        | 4.8        | 8.2                 | 21.6           | 12.8         |                    | 3.2                 | 9.5         | 24.1         | 3.4              | 10.3         | 9.6          | 78.5         | 15,3         | 14.9         |  |
| First            | MEAN           |                  | 64.5         | 63.7         |                        | 9.9        | 8.8                 | 20.8           | 13.6         |                    | 8.4                 | 8.3         | 23.5         | 6.4              | 15.6         | 7.6          | 19.0         | 10.5         | 18.3         |  |
| BOD <sub>5</sub> | COUNT          |                  | 51           | 09           |                        | 09         | 87                  | 50             | 52           |                    | 09                  | 28          | 56           | 47               | 36           | . 55         | 57           | 58           | 95           |  |
| Ř                | CAPACITY       |                  | .57          | 99.          | Plant                  | .85        | 5.                  | .75            | .12          |                    | .32                 | .25         | .083         | .2               | •5           | 77.          | .3           | .17          | .14          |  |
| SS THAN 1        | NAME OF PLANTS | Treatment Plants | Point Edward | Espanola     | ional Activated Sludge | St. Marys  | Haldimand Caledonia | Burlington E G | Sidney Twp   | ed Aeration Plants | Moore Twp (Corunna) | Westminster | Elora        | Haldimand Cayuga | Paris        | Alliston     | Deseronto    | Eganville    | Ignace Twp   |  |
| CAPACITY LESS    | REGION         | A. Primary       | SW           | NE           | B. Conventional        | MS         | W Central           | Central        | SE           | C. Extended        | SW                  | MS          | W Central    | W Central        | W Central    | Central      | SE           | SE           | MN           |  |

TABLE IV



|                  |                  |                              |              | ·                                 |             |              | ٦                  |                          | :            | 17                         | :            |                |              |              |               |                                      |                    |              |              |                      |              |              |
|------------------|------------------|------------------------------|--------------|-----------------------------------|-------------|--------------|--------------------|--------------------------|--------------|----------------------------|--------------|----------------|--------------|--------------|---------------|--------------------------------------|--------------------|--------------|--------------|----------------------|--------------|--------------|
|                  | LIMITS           |                              | 12.6 to 37.0 |                                   | 8.6 to 13.2 | 18.5 to 75.8 |                    |                          | 29.4 to 36.3 | 45.9 to 77.5               | 46.4 to 61.3 | 100.3 со 137.1 | 44.9 to 56.5 | 53.1 to 60.8 | 57.0 to 96.8  |                                      | 16.2 to 25.3       | 48.6 to 79.3 | 26.4 to 37.7 | 26.2 to 39.8         | 11.0 to 18.7 | 10.9 to 18.4 |
|                  | S.D.             |                              | 39.7         |                                   | 0.6         | 6.66         |                    |                          | 13.5         | 58.0                       | 28.4         | 6.69           | 22.2         | 14.9         | 37.4          |                                      | 17.7               | 59.5         | 21.3         | 25.0                 | 15.0         | 14.0         |
| SS               | MEAN             |                              | 24.8         |                                   | 10.9        | 47.2         |                    |                          | 32.9         | 61.7                       | 53.9         | 118.7          | 50.7         | 57.0         | 6.97          |                                      | 20.8               | 63.9         | 32.0         | 33.0                 | 14.8         | 14.6         |
| S                | COUNT            |                              | 43           |                                   | 09          | 64           |                    |                          | 09           | 54                         | 58           | 58             | 59           | 09           | 16            |                                      | 09                 | 09           | 57           | 54                   | 09           | 26           |
|                  | LIMITS           |                              | 9.7 to 19.3  |                                   | 5.6 to 11.0 | 13.2 to 20.9 |                    |                          | 31.9 to 37.3 | 62.4 to 112.4              | 39.6 to 60.8 | 111.4 to 149.8 | 32.9 to 45.2 | 43.7 to 47.4 | 82.6 to 105.9 |                                      | 10.8 to 16.4       | 46.2 to 72.9 | 19.3 to 26.1 | 28.0 to 48.6         | 9.6 to 14.4  | 8.1 to 11.2  |
|                  | S.D.             |                              | 15.4         |                                   | 10.2        | 13.4         |                    |                          | 10.4         | 91.7                       | 40.8         | 9.69           | 23.7         | 7.2          | 21.9          |                                      | 10.9               | 51.7         | 12.7         | 37.5                 | 9.2          | 5.9          |
|                  | MEAN             |                              | 14.5         |                                   | 8.3         | 17.1         |                    |                          | 34.6         | 87.4                       | 50.2         | 130.6          | 39.1         | 45.6         | 94.2          |                                      | 13.6               | 59.6         | 22.7         | 38.3                 | 12.0         | 9.6          |
|                  | COUNT            |                              | 42           |                                   | 56          | 65           |                    |                          | 58           | 54                         | 59           | 53             | 59           | 58           | 160           |                                      | 09                 | 09           | 55           | 53                   | 09           | 55           |
| BOD <sub>5</sub> | CAPACITY         |                              | .25          | 1                                 | 98.         | .80          |                    |                          | 3.0          | 2.1                        | 1.25         | 8.25           | 1.0          | 2.0          | 4.0           | nts                                  | 8.5                | 2.42         | 8.0          | 3.7                  | 4.5          | 2.25         |
| FY LESS THAN 1   | N NAME OF PLANTS | Contact Stabilization Plants | Red Lake     | High Rate Activated Sludge Plants | Meaford     | 1 Bradford   | CAPACITY = 1 TO 10 | Primary Treatment Plants | Owen Sound   | ral Nanticoke (Port Dover) | l Midland    | Cornwall       | Prescott     | Fort Frances | Thunder Bay N | Conventional Activated Sludge Plants | cal Cambridge Galt | Kingston Twp | North Bay    | al Cambridge Preston | Chatham      | Ingersol1    |
| CAPACITY         | REGION           | D. Cor                       | MN           | E. Hig                            | SW          | Central      | II. CAF            | A. Prin                  | MS           | W Central                  | Central      | SE             | SE           | MN           | NW            | B. Con                               | W Central          | SE           | NE           | N Central            | SW           | SW           |



|  |  |   |          |   |   |   |   | : | 18 |
|--|--|---|----------|---|---|---|---|---|----|
|  |  |   |          |   |   |   |   |   | 7  |
|  |  | 5 | $\vdash$ | 2 | 2 | 4 | 1 | _ |    |

TABLE IV (Cont'd)

| ,                 | , ———          |                            |             |             |              |              |                |                      |              |                            | :            | 78 :          |                     |                  |                            |              |              |                              |              |
|-------------------|----------------|----------------------------|-------------|-------------|--------------|--------------|----------------|----------------------|--------------|----------------------------|--------------|---------------|---------------------|------------------|----------------------------|--------------|--------------|------------------------------|--------------|
|                   | LIMITS         |                            | 8.5 to 13.3 | 6.2 to 8.7  | 14.4 to 20.5 | 16.2 to 22.1 | 13.3 to 20.5   | 18.3 to 23.2         | 11.4 to 14.4 |                            | 21.1 to 28.7 |               |                     | 53.3 to 58.6     |                            | 18.4 to 22.6 | 18.1 to 26.8 |                              | 13.5 to 17.9 |
|                   | S.D.           |                            | 9.3         | 5.1         | 10.4         | 11.6         | 13.8           | 9.6                  | 5.7          |                            | 12.1         |               |                     | 10.1             |                            | 8.2          | 16.9         |                              | 12.1         |
| SS                | MEAN           |                            | 10.9        | 7.5         | 17.4         | 20.0         | 16.9           | 20.7                 | 12.9         |                            | 24.9         |               |                     | 56.0             |                            | 20.5         | 22.5         |                              | 19.5         |
| •                 | COUNT          |                            | 09          | 09          | 87           | 09           | 59             | 09                   | 59           |                            | 41           |               |                     | 09               |                            | 09           | 09           |                              | 59           |
| TABLE IV (Cont'd) | LIMITS         |                            | 3.7 to 5.0  | 5.9 to 7.9  | 13.7 to 18.6 | 13.7 to 18.6 | 10.6 to 15.9   | 13.4 to 19.3         | 13.3 to 16.1 |                            | 15.5 to 22.1 |               |                     | 67.1 to 78.8     |                            | 13.2 to 17.8 | 18.9 to 31.7 |                              | 13.8 to 17.9 |
| ABLE IV           | S.D.           |                            | 2.4         | 4.2         | 13,1         | 9.6          | 10.2           | 10.6                 | 5.4          |                            | 10.3         |               |                     | 22.7             |                            | 9.1          | 24.9         |                              | 7.9          |
| 터                 | MEAN           |                            | 4.3         | 6.9         | 11.9         | 16.1         | 13.3           | 16.4                 | 14.7         |                            | 18.8         |               |                     | 73.0             |                            | 15.5         | 25.3         |                              | 15.9         |
| BOD <sub>5</sub>  | COUNT          |                            | 55          | 99          | 47           | 59           | 58             | 52                   | 59           |                            | 40           |               |                     | 09               |                            | 09           | 09           |                              | 58           |
| 1                 | CAPACITY       | Sludge Plants              | 1.85        | 1.5         | 2.0          | 0.9          | 2.5            | ge town)1.5          | 8.6          | Sludge Plants              | 1.2          |               |                     | 12.0             | Sludge Plants              | 12.5         | 13.5         | e Plants                     | 11.25        |
| ITY = 1 T0 10     | NAME OF PLANTS | Conventional Activated Slu | Tillsonburg | Wallaceburg | Simcoe       | Waterloo     | Burlington D L | Halton Hills (George | Belleville   | High Rate Activated Sludge | Carleton     | CITY OVER 10  | ry Treatment Plants | Sault Ste. Marie | Conventional Activated Slu | Brantford    | Kitchener    | Rate Activated Sludge Plants | Sudbury      |
| II CAPACITY       | REGION         | B. Conver                  | SW          | SW          | W Central    | W Central    | Centra1        | Central              | SE           | E. High                    | SE           | III. CAPACITY | A. Primary          | NE               | B. Conver                  | W Central    | W Central    | E. High Rate                 |              |



STEP IV

During the analysis at this stage, a few plants were removed due to the non-representative nature of plant type, as well as deficiency of data. For example, the Alliston plant was removed because it was felt by MOE that it did not truly represent Extended Aeration Type; Elora plant was excluded because MOE found some data problems.

The final cells, given in Table V, were tested for homogeneity and it was found, in general, plant data in these cells were homogeneous.

Cells provided in Table V were used to estimate sample size requirements.



FINAL STAGE

CAPACITY LESS THAN 1 m.g.d.

75.8 43.9 to 81.6 to 67.7 6.3 38.9 13.2 20.6 34.4 34.4 54.1 12.6 to 37.0 9.7 to 10.7 to 10.7 LIMITS to to to to to to to 4.6 to 21.9 55.7 9.7-14.5 19.6 12.8 13.8 18.5 21.4 8.6 68.4 23.2 3,3 25.4 6.66 11.8 117.2 11.6 24.9 39.7 16.9 1.9 80.8 21.9 0.6 S.D. 62.8 24.8 MEAN 61.7 5.5 26.8 21.3 10.9 47.2 10.2 10.5 15.5 27.9 23.3 SS COUNT 53 9 9 47 94 09 49 09 58 45 94 58 99 94 43 11.0 2.9 20.9 to 10.8 54.5 to 74.5 5.9 6.4 to 11.2 10.0 to 17.1 to 19.1 to 39.9 to 14.5 to 19.3 LIMITS to to 7.6 to to to to to 54.5 -1.9 5.6 5.8 3.9 6.7 13.2 4.9 35.6 4.8 35.5 13.4 9.5 78.5 14.9 15.4 8.2 12.8 10.2 3.2 3.4 10.3 15.3 S.D. MEAN 64.5 9.9 8.8 13.6 18,3 14.5 63.7 8.3 8.4 8.3 15.6 19.0 10.5 17.1 BOD COUNT 51 09 09 48 52 99 09 58 36 57 49 47 42 CAPACITY 98. .80 .25 .3 .57 99. .85 . 12 .32 .17 .14 .25 Haldimand Caledonia Moore Twp. (Corunna) Contact Stabilization Plants Haldimand Cayuga Aeration Plants NAME OF PLANTS eatment Plants Point Edward Sludge Plant Westminster Sidney Twp. Ignace Twp St. Marys Deseronto Eganville Espanola Bradford Red Lake Meaford Paris Primary Tr Activated Extended W Central W Central Central Central REGION 口 口 3 3 3 H 1 3 D. 3 В. S Z S S S 3 S Z

20



BOD

SS

56.5 39.8 20.5 20.5 28.7 29.4 to 36.3 to 60.8 13.3 23.2 to 61.3 18.7 to 18.4 8.7 LIMITS to to to to to to to to 46.4 53.1 26.2 6.44 10.9 14.4 13.3 18.3 8.5 6.2 13.5 28.4 22.2 14.9 25.0 15.0 14.0 10.4 13.8 5.1 9.6 12.1 S.D. MEAN 14.8 32.9 53.9 57.0 33.0 14.6 50.7 10.9 7.5 17.4 16.9 20.7 24.9 COUNT 58 59 09 9 99 48 9 54 09. 9 59 09 41 31.9 to 37.3 45.2 14.4 5.0 19.3 22.1 to 60.8 7.9 to 47.4 to 48.6 to 18.6 to 15.9 LIMITS to to to to to t0 to 43.7 13.7 39.6 28.0 32.9 8.1 10.6 13.4 15.5 9.6 10.4 40.8 23.7 10.2 10.3 10.6 4.2 13.1 S.D. MEAN 45.6 38.3 18.8 34.6 50.2 9.6 6.9 11.9 13.3 16.4 39.1 COUNT 58 59 59 58 9 55 55 99 58 47 52 CAPACITY 1.25 2.25 1.85 3.0 1.0 2.0 1.5 2.0 2.5 1.5 Conventional Activated Sludge Plants Halton Hills (Georgetown) Cambridge Preston NAME OF PLANTS Burlington D L eatment Plants Fort Frances Wallaceburg Tillsonburg Owen Sound Ingersol1 Prescott Carleton Midland Chatham Simcoe Primary Tr W Central W Central Central Central Central REGION S W 口 3 团 В. S S S Z S လ S

21



III CAPACITY 6 TO 10 m.g.d.

| LIMITS         | 17.7   16.2 to 25.3 | 21.3 26.4 to 37.7 | 11.6   16.2 to 22.1 | 5.7   11.4 to 14.4 |  |
|----------------|---------------------|-------------------|---------------------|--------------------|--|
| s.D.           | 17.7                | 21.3              | 11.6                | 5.7                |  |
| MEAN           | 20.8                | 32.0              | 19.1                | 12.9               |  |
| COUNT          | 09                  | 57                | 09                  | 59                 |  |
| LIMITS         | 10.8 to 16.4        | 19.3 to 26.1      | 13.7 to 18.6        | 13.3 to 16.1       |  |
| S.D.           | 10.9                | 12.7              | 9.6                 | 5.4                |  |
| MEAN           | 13.6                | 22.7              | 16.1                | 14.7               |  |
| COUNT          | 09                  | 55                | 59                  | 59                 |  |
| CAPACITY       | 8.5                 | 8.0               | 0.9                 | 9.8                |  |
| NAME OF PLANTS | Cambridge Galt      | North Bay         | Waterloo            | Belleville         |  |
| REGION         | W Central           | N                 | W Central           | SE                 |  |

IV. CAPACITY OVER 10. m.g.d.

| A. Primary | Treatment Plants                        |        |    |      |      |              |    |      |      |                    |
|------------|-----------------------------------------|--------|----|------|------|--------------|----|------|------|--------------------|
| El<br>Z    | Sault Ste Marie                         | 12.0   | 09 | 73.0 | 22.7 | 67.1 to 78.8 | 09 | 26.0 | 10.1 | 10.1 53.3 to 58.6  |
| B. Convent | B. Conventional Activated Sludge Plants | Plants |    |      |      |              |    |      |      |                    |
| W Central  | Brantford                               | 12.5   | 09 | 15.5 | 9.1  | 13.2 to 17.8 | 09 | 20.5 | 8.2  | 8.2   18.4 to 22.6 |
| W Central  | Kitchener                               | 13.5   | 09 | 25.3 | 24.9 | 18.9 to 31.7 | 09 | 22.5 | 16.9 | 18.1 to 26.8       |
| FI         | Sudbury                                 | 11.25  | 58 | 15.9 | 7.9  | 13.8 to 17.9 | 59 | 19.5 | 12.1 | 12.1 13.5 to 17.9  |
|            |                                         |        |    |      |      |              |    |      |      |                    |
|            |                                         |        |    |      |      |              |    |      |      |                    |



#### STEP V

As can be seen from the final stage of cell development,

(Table V) only 9 cells could be constructed; out of 9 cells only 7

cells could be used for sample size determination, since two cells had only one plant in each.

Calculation of sample size for each cell was conducted in two stages. In the first stage, sample size was determined based on all the plant data. Tables were prepared for each cell for various confidence levels and tolerance errors. (Table VI). In addition, confidence level was found for the given tolerance if sample size was to be 12 for the cell.

In the second stage, mean value of each plant was used to represent the plant, in the cell, and sample size was determined from the representative mean values. Tables were constructed for various levels of confidence and tolerance errors. (Table VII). It should be noted that in the second stage, small sample sizes were obtained due to removal of all plant data variation by substituting mean values. Opinions were expressed by MOE personnel that these mean values could be used for monitoring purposes. For example, comparing Table VI(E) and Table VII(E), when the mean values were substituted to represent plant data, confidence level changed from 28% to 60% for a sample size of 12 with 10% of tolerance error.



#### TABLE VI

#### STAGE I

Sample size distribution is calculated by the following expression:

$$n = \frac{z^2 \sigma^2}{e^2}$$

where

n = sample size

e = tolerance error

(In this case percent of the mean value)

z = values from normal distribution table, related to confidence level

(In this case 95%, 90%, and 75% are considered)

C.L.= confidence level based on Z values

| C L | 95% | 90% | 75% | IF n = 12,<br>Confidence Limit<br>is listed below |
|-----|-----|-----|-----|---------------------------------------------------|
| 10% |     | n   |     |                                                   |
| 20% |     |     | 8   |                                                   |
| 40% |     |     |     |                                                   |



# TABLE VI(A)

# PRIMARY TREATMENT PLANTS

CAPACITY = LT 1 mgd

BOD

| Plants                    | Count    | Mean           | <u>s.D</u> .   | 95% C L for Mean               |
|---------------------------|----------|----------------|----------------|--------------------------------|
| Prince Edward<br>Espanola | 51<br>60 | 64.47<br>61.97 | 35.49<br>33.96 | 54.49 - 74.45<br>53.60 - 70.74 |
| TOTAL                     | 111      | 63.12          | 34.53          | 56.62 - 69.61                  |

| C L | 95% | 90% | 75% | <pre>IF n = 12, Confidence Limit is listed below</pre> |
|-----|-----|-----|-----|--------------------------------------------------------|
| 10% | 107 | 75  | 37  | 49%                                                    |
| 20% | 29  | 20  | 10  | 80%                                                    |
| 40% | 7   | 3   | 2   | 98%                                                    |



: 26 :

# TABLE VI(B)

# PRIMARY TREATMENT PLANTS

CAPACITY = LT 1 mgd

<u>SS</u>

| Plants       | Count | Mean  | S.D.  | 95% C L for Mean |
|--------------|-------|-------|-------|------------------|
| Point Edward | 52    | 55.08 | 40.06 | 43.93 - 66.23    |
| Espanola     | 60    | 61.68 | 23.17 | 55.70 - 67.67    |
| TOTAL        | 112   | 58.62 | 32.15 | 52.60 - 64.64    |

| C L | 95% | 90% | 75% | IF n = 12,<br>Confidence Limit<br>is listed below |
|-----|-----|-----|-----|---------------------------------------------------|
| 10% | 108 | 75  | 37  | 49%                                               |
| 20% | 29  | 20  | 10  | 80%                                               |
| 40% | 7   | 5   | 2   | 99.8%                                             |



: 27 :

TABLE VI(C)

| ACTIVATED SLUDO        | GE PLANTS |       |              | CAPACITY | = LT 1 mgd |
|------------------------|-----------|-------|--------------|----------|------------|
| BOD                    |           |       |              |          | •          |
| <u>Plants</u>          | Count     | Mean  | <u>s.D</u> . | 95% C L  | for Mean   |
| St Marys               | 60        | 6.55  | 4.76         | 5.32 -   | 7.78       |
| Haldimand<br>Caledonia | 48        | 8.73  | 8.19         | 6.35 -   | 11.11      |
| Sidney Twp             | 50        | 13.36 | 12.77        | 9.73 -   | 16.99      |
| Meaford                | 56        | 8.25  | 10.10        | 5.54 -   | 10.96      |
| Bradford               | 50        | 16.74 | 13.32        | 12.95 -  | 20.53      |
|                        |           |       |              |          |            |
| TOTAL                  | 264       | 10.53 | 10.77        | 9.22 -   | 11.83      |

| C L | 95% | 90% | 75% | <pre>IF n = 12, Confidence Limit is listed below</pre> |
|-----|-----|-----|-----|--------------------------------------------------------|
| 10% | 254 | 178 | 87  | 33%                                                    |
| 20% | 100 | 70  | 35  | 50%                                                    |
| 40% | 25  | 18  | 9   | 85%                                                    |



# TABLE VI(D)

# ACTIVATED SLUDGE PLANTS

CAPACITY = LT 1 mgd

SS:

| Plants              | Count | Mean  | $\underline{S.D}.$ | 95% C L for Mean |
|---------------------|-------|-------|--------------------|------------------|
| St Marys            | 60    | 5.40  | 3.25               | 4.56 - 6.24      |
| Haldimand Caledonia | 47    | 26.77 | 16.82              | 21.83 - 31.70    |
| Sidney Twp          | 43    | 17.63 | 7.14               | 15.43 - 19.83    |
| Meaford             | 60    | 10.88 | 8.94               | 8.57 - 13.19     |
| Bradford            | 49    | 32.92 | 30.25              | 24.23 - 41.61    |
|                     |       | •     |                    |                  |
| TOTAL               | 259   | 17.78 | 18.83              | 15.48 - 20.09    |

| C L | 95% | 90% | 75% | IF n = 12,<br>Confidence Limit<br>is listed below |
|-----|-----|-----|-----|---------------------------------------------------|
| 10% | 248 | 174 | 86  | 33%                                               |
| 20% | 108 | 75  | 37  | 48%                                               |
| 40% | 27  | 19  | 9   | 80%                                               |



: 29 : TABLE VI(E)

# EXTENDED AERATION PLANTS

CAPACITY = LT 1 mgd

BOD

| Plants            | Count | Mean  | S.D.  | 95% C L for Mean |
|-------------------|-------|-------|-------|------------------|
| Moore Twp Corunna | 60    | 8.32  | 3.14  | 7.51 - 9.13      |
| Westminster       | 59    | 8.32  | 9.41  | 5.87 - 10.77     |
| Haldimand Cayuga  | 47    | 4.83  | 3.33  | 3.84 - 5.81      |
| Paris             | 36    | 15.53 | 10.27 | 12.05 - 19.00    |
| Deseronto         | 57    | 8.51  | 4.72  | 7.26 - 9.76      |
| Eganville         | 58    | 10.41 | 15.29 | 6.39 - 14.43     |
| Ignace Twp        | 46    | 18.28 | 14.85 | 13.87 - 22.69    |
|                   |       |       |       |                  |
| TOTAL             | 363   | 10.21 | 10.56 | 9.12 - 11.30     |

| C L | 95% | 90% | 75% | IF n = 12,<br>Confidence Limit<br>is listed below |
|-----|-----|-----|-----|---------------------------------------------------|
| 10% | 354 | 248 | 122 | 28%                                               |
| 20% | 103 | 72  | 35  | 45%                                               |
| 40% | 24  | 17  | 8   | 99%                                               |



# TABLE VI(F)

# EXTENDED AERATION PLANTS

CAPACITY = LT 1 mgd

SS

| Plants            | Count | Mean  | <u>s.D</u> . | 95% C L for Mean |
|-------------------|-------|-------|--------------|------------------|
| Moore Twp Corunna | 60    | 10.17 | 1.86         | 9.69 - 10.65     |
| Westminster       | 59    | 10.46 | 11.61        | 7.43 - 13.48     |
| Haldimand Cayuga  | 45 ·  | 15.42 | 8.78         | 12.79 - 18.06    |
| Paris             | 46    | 27.85 | 21.83        | 21.36 - 34.33    |
| Deseronto         | 58    | 7.86  | 3.49         | 6.95 - 8.78      |
| Eganville         | 56    | 17.50 | 11.57        | 14.40 - 20.60    |
| Ignace Twp        | 46    | 26.98 | 24.85        | 19.60 - 34.36    |
|                   |       |       |              |                  |
| TOTAL             | 370   | 15.89 | 15.49        | 14.31 - 17.47    |

| C L | 95% | 90%  | 75% | IF n = 12,<br>Confidence Limit<br>is listed below |
|-----|-----|------|-----|---------------------------------------------------|
| 10% | 351 | 258  | 121 | 28%                                               |
| 20% | 91  | 64   | 31  | 53%                                               |
| 40% | 23  | . 16 | 8   | 84%                                               |



: 31 : TABLE VI(G)

#### PRIMARY TREATMENT PLANTS

 $\frac{\text{CAPACITY} = 1 - 5 \text{ mgd}}{}$ 

# BOD:

| Plants       | Count | Mean  | <u>S.D</u> . | 95% C L f | or Mean |
|--------------|-------|-------|--------------|-----------|---------|
| Owen Sound   | 58    | 34.54 | 10.33        | 31.82 -   | 37.25   |
| Midland      | 59    | 44.98 | 13.81        | 41.38 -   | 48.58   |
| Prescott     | 58    | 39.17 | 23.82        | 32.91 -   | 45.43   |
| Fort Frances | 58    | 45.50 | 7.10         | 43.63 -   | 47.37   |
|              | •     |       |              |           |         |
| TOTAL        | 233   | 41.06 | 15.69        | 39.04 -   | 43.09   |

| C L | 95% | 90% | 75% | IF n = 12,<br>Confidence Limit<br>is listed below |
|-----|-----|-----|-----|---------------------------------------------------|
| 10% | 227 | 159 | 67  | 34%                                               |
| 20% | 14  | 10  | 5   | 94%                                               |
| 40% | 4   | 2   | 1   | 99.9%                                             |



: 32 :

TABLE VI(H)

# PRIMARY TREATMENT PLANTS

CAPACITY = 1 - 5 mgd

<u>SS</u>

| Plants       | Count | Mean  | $\underline{S.D}.$ | 95% C L for Mean |
|--------------|-------|-------|--------------------|------------------|
| Owen Sound   | 60    | 32.82 | 13.41              | 29.35 - 36.28    |
| Midland      | 58    | 51.48 | 25.73              | 44.72 - 58.25    |
| Prescott     | 58    | 50.60 | 22.38              | 44.72 - 56.48    |
| Fort Frances | 60    | 56.92 | 14.81              | 53.09 - 60.74    |
|              |       |       |                    |                  |
| TOTAL        | 236   | 47.90 | 21.59              | 45.13 - 50.67    |

| C L | 95% | 90% | 75% | IF n = 12,<br>Confidence Limit<br>is listed below |
|-----|-----|-----|-----|---------------------------------------------------|
| 10% | 225 | 158 | 78  | 34%                                               |
| 20% | 19  | 14  | 7   | 85%                                               |
| 40% | 5   | 3   | 2   | 99%                                               |



: 33 : TABLE VI(I)

#### ACTIVATED SLUDGE PLANTS

CAPACITY = 1 - 5 mgd

#### BOD

| <u>Plants</u>     | Count | <u>Mean</u> . | S.D.  | 95% C L for Mean |
|-------------------|-------|---------------|-------|------------------|
| Chatham           | 60    | 11.97         | 9.18  | 9.60 - 14.34     |
| Ingersol1         | 56    | 9.55          | 5.77  | 8.01 - 11.10     |
| Tillsonburg       | 55    | 4.27          | 2.35  | 3.64 - 4.91      |
| Wallaceburg       | 59    | 6.64          | 4.18  | 5.55 - 7.73      |
| Simcoe            | 52    | 11.46         | 12.50 | 7.98 - 14.94     |
| Burlington D L    | 58    | 13.22         | 10.16 | 10.55 - 15.90    |
| Halton Hills      | 52    | 16.31         | 10.52 | 13.38 - 19.24    |
| Cambridge Hespler | 57    | 37.53         | 36.24 | 27.91 - 47.14    |
| Carleton Place    | 56    | 19.80         | 12.40 | 16.48 - 23.13    |
|                   |       |               |       |                  |
| TOTAL             | 505   | 14.53         | 17.44 | 13.01 - 16.06    |

| C L | 95% | 90% | 75% | <pre>IF n = 12, Confidence Limit is listed below</pre> |
|-----|-----|-----|-----|--------------------------------------------------------|
| 10% | 478 | 335 | 165 | 24%                                                    |
| 20% | 138 | 97  | 48  | 42%                                                    |
| 40% | 25  | 18  | 9   | 82%                                                    |



: 34 :

# TABLE VI(J)

#### ACTIVATED SLUDGE PLANTS

CAPACITY = 1 - 5 mgd

<u>SS</u>

| <u>Plants</u>     | Count | Mean  | S.D.  | 95% C L for Mean |
|-------------------|-------|-------|-------|------------------|
| Chatham           | 60    | 14.77 | 14.95 | 10.91 - 18.63    |
| Ingersoll         | 57    | 14.74 | 13.90 | 11.05 - 18.42    |
| Tillsonburg       | 60    | 10.88 | 9.26  | 8.49 - 13.28     |
| Wallaceburg       | 60    | 6.45  | 3.92  | 5.44 - 7.46      |
| Simcoe            | 53    | 17.38 | 9.97  | 14.63 - 20.13    |
| Burlington D L    | 59    | 16.83 | 13.76 | 13.24 - 20.42    |
| Halton Hills      | 60    | 20.68 | 9.59  | 18.21 - 23.16    |
| Cambridge Hespler | 59    | 33.76 | 25.01 | 27.24 - 40.28    |
| Carleton Place    | 57    | 25.88 | 13.39 | 22.32 - 29.43    |
|                   |       |       |       |                  |
| TOTAL             | 525   | 17.88 | 15.68 | 16.54 - 19.23    |

| C L | 95% | 90% | 75% | IF n = 12,<br>Confidence Limit<br>is listed below |
|-----|-----|-----|-----|---------------------------------------------------|
| 10% | 510 | 358 | 176 | 22%                                               |
| 20% | 74  | 52  | 25  | · 56%                                             |
| 40% | 18  | 13  | 6   | 88%                                               |



: 35 : TABLE VI(K)

 $\underline{\text{CAPACITY} = 6 - 10 mgd}$ 

 $\underline{\mathtt{BOD}}$ 

| Plants         | Count | Mean  | <u>s.D</u> . | 95% C L of Mean |
|----------------|-------|-------|--------------|-----------------|
| Waterloo       | 59    | 16.08 | 9.51         | 13.61 - 18.56   |
| Belleville     | 59    | 14.64 | 5.39         | 13.23 - 16.05   |
| North Bay      | 55    | 22.67 | 12.66        | 19.25 - 26.09   |
| Cambridge Galt | 60    | 13.58 | 10.86        | 10.78 - 16.39   |
|                |       |       |              |                 |
| TOTAL          | 233   | 16.63 | 10.45        | 15.28 - 17.98   |

| C L | 95%        | 90% | 75% | IF n = 12,<br>Confidence Limit<br>is listed below |
|-----|------------|-----|-----|---------------------------------------------------|
| 10% | 224        | 157 | 77  | 35%                                               |
| 20% | <b>3</b> 8 | 27  | 13  | 73%                                               |
| 40% | . 9        | 7   | 3   | 96%                                               |



# CAPACITY = 6 - 10 mgd

<u>ss</u>

| <u>Plants</u>  | Count | Mean  | $\underline{S.D}.$ | 95% C L of Mean |
|----------------|-------|-------|--------------------|-----------------|
| Waterloo       | 60    | 19.08 | 11.53              | 16.10 - 22.06   |
| Belleville     | 59    | 12.85 | 5.68               | 11.37 - 14.33   |
| North Bay      | 57    | 32.00 | 21.22              | 26.37 - 37.63   |
| Cambridge Galt | 60    | 20.73 | 17.65              | 16.17 - 25.30   |
|                |       |       |                    |                 |
| TOTAL          | 236   | 21.06 | 16.55              | 18.94 - 23.19   |

| C L | 95% | 90% | 75% | IF n = 12,<br>Confidence Limit<br>is listed below |
|-----|-----|-----|-----|---------------------------------------------------|
| 10% | 227 | 159 | 78  | 35%                                               |
| 20% | 59  | 42  | 20  | 62%                                               |
| 40% | 15  | 10  | 5   | 92%                                               |



: 37 : TABLE VI(M)

CAPACITY = OVER 10 mgd

# BOD

| Plants    | Count | Mean  | <u>S.D.</u> | 95% C L for Mean |
|-----------|-------|-------|-------------|------------------|
| Brantford | 60    | 15.45 | 9.04        | 13.11 - 17.79    |
| Kitchener | 60    | 21.93 | 9.38        | 19.51 - 23.36    |
| Sudbury   | 58    | 15.86 | 7.88        | 13.79 - 17.93    |
|           |       |       |             |                  |
| TOTAL     | 178   | 17.77 | 9.24        | 16.40 - 19.14    |

| C L | 95% | 90% | 75% | IF n = 12,<br>Confidence Limit<br>is listed below |
|-----|-----|-----|-----|---------------------------------------------------|
| 10% | 171 | 120 | 59  | 40%                                               |
| 20% | 26  | 18  | 9   | 82%                                               |
| 40% | 6   | 5   | 2   | 99.9%                                             |



: 38 :

# TABLE VI(N)

# ACTIVATED SLUDGE PLANTS

CAPACITY = OVER 10 mgd

SS

| Plants    | Count | Mean  | S.D.  | 95% C L for Mean |
|-----------|-------|-------|-------|------------------|
| Brantford | 60    | 20.48 | 8.13  | 18.38 - 22.58    |
| Kitchener | 60    | 22.42 | 16.89 | 18.05 - 26.78    |
| Sudbury   | 59    | 15.66 | 8.41  | 13.47 - 17.85    |
|           |       |       |       |                  |
| TOTAL     | 179   | 19.54 | 12.15 | 17.75 - 21.33    |

| C L | 95% | 90% | 75% | IF n = 12,<br>Confidence Limit<br>is listed below |
|-----|-----|-----|-----|---------------------------------------------------|
| 10% | 172 | 120 | 59  | 40%                                               |
| 20% | 37  | 26  | 13  | 73%                                               |
| 40% | 9   | . 6 | 3   | 96%                                               |



#### TABLE VII

#### STAGE II

Confidence levels are calculated from the following expression:

$$t = \frac{e \sqrt{n}}{s}$$

where

n = sample size

s = standard deviation

e = tolerance error

(In this case percent of the mean value)

t/= is percentage point from the t-distribution.
which is used to calculate confidence level.

C.L. = confidence level based on t values

| n<br>e | 6 | 12 | 26 | 52 |
|--------|---|----|----|----|
| 10%    |   | CL |    |    |
| 20%    |   |    |    |    |
| 40%    |   |    |    |    |



: 40 : TABLE VII(A)

| PRIMARY TREATMENT PLANTS |               |       | CAPACITY = | LT 1 mgd     |
|--------------------------|---------------|-------|------------|--------------|
| BOD                      |               |       |            |              |
|                          | <u>Plants</u> | Count | Mean       | <u>s.D</u> . |
|                          | Point Edward  |       | 64.47      | 35.49        |
|                          | Espanola      |       | 61.97      | 33.96        |
|                          |               |       |            |              |
|                          | TOTAL         | 2     | 63.22      | 1.77         |

# SAMPLE SIZE DISTRIBUTIONS:

| n<br>e | 6 | 12 | 26 | 52 |
|--------|---|----|----|----|
| 10%    |   |    |    |    |
| 20%    |   |    |    |    |
| 40%    |   |    |    |    |



: 41 : TABLE VII(B)

# PRIMARY TREATMENT PLANTS

CAPACITY = LT 1 mgd

SS

| Plants       | Count | Mean  | $\underline{S.D}.$ |
|--------------|-------|-------|--------------------|
| Point Edward |       | 55.08 | 40.06              |
| Espanola     |       | 61.68 | 23.17              |
|              |       |       |                    |
| TOTAL        | 2     | 58.38 | 4.66               |

# SAMPLE SIZE DISTRIBUTIONS:

| n   | 6     | 12    | 26 | 52 |
|-----|-------|-------|----|----|
| 10% | . 96% | 99.9% |    |    |
| 20% |       |       |    |    |
| 40% |       |       |    |    |



# TABLE VII(C)

#### ACTIVATED SLUDGE PLANTS

CAPACITY = LT 1 mgd

BOD

| <u>Plants</u>      | Count | Mean  | S.D   |
|--------------------|-------|-------|-------|
| St Marys           |       | 6.55  | 4.76  |
| Haldimand Caledoni | .a    | 8.73  | 8.19  |
| Sidney Twp         |       | 13.36 | 12.77 |
| Meaford            |       | 8.25  | 10.10 |
| Bradford           |       | 16.74 | 13.32 |
|                    |       |       |       |
| TOTAL              | 5     | 10.73 | 4.20  |

#### SAMPLE SIZE DISTRIBUTIONS:

| n<br>e | 6     | - 12  | 26    | 52    |
|--------|-------|-------|-------|-------|
| 10%    | 46%   | 60%   | 78%   | 99.9% |
| 20%    | 78%   | 89%   | 99.8% |       |
| 40%    | 99.5% | 99.9% |       |       |



: 43 :

# TABLE VII(C)

#### ACTIVATED SLUDGE PLANTS

CAPACITY = LT 1 mgd

SS

| Plants              | Count | Mean  | S.D.  |
|---------------------|-------|-------|-------|
| St Marys            |       | 5.40  | 3.25  |
| Haldimand Caledonia |       | 26.77 | 16.82 |
| Sidney Twp          |       | 17.63 | 7.14  |
| Meaford             |       | 10.88 | 8.94  |
| Bradford            |       | 32.92 | 30.25 |
|                     |       |       |       |
| TOTAL               | 5     | 18.72 | 11.25 |

# SAMPLE SIZE DISTRIBUTIONS:

| n<br>e | 6   | 12    | 26    | 52 -  |
|--------|-----|-------|-------|-------|
| 10%    | 40% | 48%   | 62%   | 78%   |
| 20%    | 52% | 85%   | 92%   | 99.9% |
| 40%    | 82% | 99.6% | 99.9% |       |



: 44 :

# TABLE VII(E)

# EXTENDED AERATION PLANTS

CAPACITY = LT 1 mgd

BOD

| <u>Plants</u>     | Count | Mean  | S.D.  |
|-------------------|-------|-------|-------|
| Moore Twp Corunna |       | 8.32  | 3.14  |
| Westminster       |       | 8.32  | 9.41  |
| Haldimand Cayuga  |       | 4.83  | 3.33  |
| Paris             |       | 15.53 | 10.27 |
| Deseronto         |       | 8.51  | 4.72  |
| Eganville         |       | 10.41 | 15.29 |
| Ignace Twp        |       | 18.28 | 14.85 |
|                   |       |       |       |
| TOTAL             | 7     | 10.60 | 4.68  |

#### SAMPLE SIZE DISTRIBUTIONS:

| n<br>e | 6     | 12    | 26  | 52    |
|--------|-------|-------|-----|-------|
| 10%    | 35%   | 60%   | 78% | 99.9% |
| 20%    | 66%   | 86%   | 99% | 99.9% |
| 40%    | 99.5% | 99.9% |     |       |



: 45 :

# TABLE VII(F)

#### EXTENDED AERATION PLANTS

CAPACITY = LT 1 mgd

<u>SS</u>

| <u>Plants</u>     | Count | Mean  | <u>S.D.</u> |
|-------------------|-------|-------|-------------|
| Moore Twp Corunna |       | 10.17 | 1.86        |
| Westminster       |       | 10.46 | 11.61       |
| Haldimand Cayuga  |       | 15.42 | 8.78        |
| Paris             |       | 27.85 | 21.83       |
| Deseronto         |       | 7.86  | 3.49        |
| Eganville         |       | 17.50 | 11.57       |
| Ignace Twp        |       | 26.98 | 24.85       |
|                   |       |       |             |
| TOTAL             | 7     | 16.61 | 8.08        |

# SAMPLE SIZE DISTRIBUTIONS:

| n e | 6   | 12    | 26  | 52    |
|-----|-----|-------|-----|-------|
| 10% | 47% | 49%   | 75% | 88%   |
| 20% | 60% | 82%   | 95% | 99.5% |
| 40% | 88% | 98.8% |     |       |



: 46 :

#### TABLE VII(G)

#### PRIMARY TREATMENT PLANTS

CAPACITY = 1 - 5 mgd

BOD

| Plants       | Count | Mean  | $\underline{S.D}.$ |
|--------------|-------|-------|--------------------|
|              |       |       |                    |
| Owen Sound   |       | 34.54 | 10.33              |
| Midland      |       | 44.98 | 13.81              |
| Prescott     |       | 39.17 | 23.82              |
| Fort Frances |       | 45.50 | 7.10               |
|              | 4     |       |                    |
| TOTAL        | 4     | 41.05 | 5.20               |

#### SAMPLE SIZE DISTRIBUTIONS:

| n<br>e | 6     | 12    | 26 | 52 |
|--------|-------|-------|----|----|
| 10%    | 88%   | 99.8% |    |    |
| 20%    | 98.8% |       |    |    |
| 40%    |       |       |    |    |



: 47 :

# TABLE VII(H)

#### PRIMARY TREATMENT PLANTS

CAPACITY = 1 - 5 mgd

 $\frac{SS}{\cdot}$ 

|   | Plants       | Count | Mean  | $\underline{S.D}.$ |
|---|--------------|-------|-------|--------------------|
| ( | Owen Sound   |       | 32.82 | 13.41              |
| 1 | Midland      |       | 51.48 | 25.73              |
| ] | Prescott     |       | 50.60 | 22.38              |
| : | Fort Frances |       | 56.92 | 14.81              |
|   |              |       |       |                    |
| , | TOTAL        | 4     | 47.96 | 10.47              |

# SAMPLE SIZE DISTRIBUTIONS:

| n<br>e | 6     | 12    | 26  | 52.   |
|--------|-------|-------|-----|-------|
| 10%    | 78%   | 85%   | 97% | 99.9% |
| 20%    | 92%   | 99.9% |     |       |
| 40%    | 99.9% |       |     |       |



: 48 : TABLE VII(I)

#### CAPACITY = 1 - 5 mgd

BOD

| Count | Mean  | $\underline{S.D}.$                                                         |
|-------|-------|----------------------------------------------------------------------------|
|       | 11.97 | 9.18                                                                       |
|       | 9.55  | 5.77                                                                       |
|       | 4.27  | 2.35                                                                       |
|       | 6.64  | 4.18                                                                       |
|       | 11.46 | 12.50                                                                      |
|       | 13.22 | 10.16                                                                      |
|       | 16.31 | 10.52                                                                      |
|       | 37.53 | 36.24                                                                      |
|       | 19.80 | 12.40                                                                      |
|       |       |                                                                            |
| 9     | 17.86 | 19.20                                                                      |
|       |       | 11.97<br>9.55<br>4.27<br>6.64<br>11.46<br>13.22<br>16.31<br>37.53<br>19.80 |

# SAMPLE SIZE DISTRIBUTIONS:

| n<br>e | 6   | 12  | 26    | 52    |
|--------|-----|-----|-------|-------|
| 10%    | 18% | 24% | 37%   | 47%   |
| 20%    | 35% | 47% | 63%   | 82%   |
| 40%    | 73% | 84% | 99.5% | 99.9% |



: 49 : TABLE VII(J)

CAPACITY = 1 - 5 mgd

<u>SS</u>

| <u>Plants</u>     | Count | Mean  | $\underline{S.D}.$ |
|-------------------|-------|-------|--------------------|
| Chatham           |       | 14.77 | 14.95              |
| Ingersoll         |       | 14.74 | 13.90              |
| Tillsonburg       |       | 10.88 | 9.26               |
| Wallaceburg       |       | 6.45  | 3.92               |
| Simcoe            |       | 17.38 | 9.97               |
| Burlington D L    | ·     | 16.83 | 13.76              |
| Halton Hills      |       | 20.68 | 9.59               |
| Cambridge Hespler |       | 33.76 | 25.01              |
| Carleton Place    |       | 25.88 | 13.39              |
|                   |       |       |                    |
| TOTAL             | 9     | 17.89 | 8.11               |

# SAMPLE SIZE DISTRIBUTIONS:

| n e | 6   | 12    | 26  | 52    |
|-----|-----|-------|-----|-------|
| 10% | 32% | 53%   | 67% | 90.5% |
| 20% | 66% | 84%   | 97% | 99.5% |
| 40% | 93% | 98.9% |     |       |



: 50 :

# TABLE VII(K)

# ACTIVATED SLUDGE PLANTS

CAPACITY = 6 - 10 mgd

BOD

| Plants         | Count | Mean           | <u>s.D</u> . |
|----------------|-------|----------------|--------------|
| Waterloo       |       | 16.08          | 9.51         |
| Belleville     |       | 14.64          | 5.39         |
| North Bay      |       | 22.67          | 12.66        |
| Cambridge Galt |       | 1 <b>3.</b> 58 | 10.86        |
|                |       |                |              |
| TOTAL          | . 4   | 16.74          | 4.08         |

# SAMPLE SIZE DISTRIBUTIONS:

| n<br>e | 6     | 12    | 26     | 52     |
|--------|-------|-------|--------|--------|
| 10%    | 62%   | 82%   | 95%    | 99.95% |
| 20%    | 89%   | 98.3% | 99.99% |        |
| 40%    | 99.2% |       |        |        |



: 51 :

# TABLE VII(L)

#### ACTIVATED SLUDGE PLANTS

CAPACITY = 6 - 10 mgd

<u>SS</u>

| <u>Plants</u>  | Count | <u>Mean</u> | <u>s.D.</u> |  |
|----------------|-------|-------------|-------------|--|
| Waterloo       |       | 19.08       | 11.53       |  |
| Belleville     |       | 12.85       | 5.68        |  |
| North Bay      |       | 32.00       | 21.22       |  |
| Cambridge Galt |       | 20.73       | 17.65       |  |
|                |       |             |             |  |
| TOTAL          | · 4   | 21.17       | 7.98        |  |

# SAMPLE SIZE DISTRIBUTIONS:

| n<br>e | 6   | 12    | 26    | 52  |
|--------|-----|-------|-------|-----|
| 10%    | 45% | 70%   | 78%   | 95% |
| 20%    | 75% | 91%   | 98.8% |     |
| 40%    | 96% | 99.8% |       |     |



: 52 :

# TABLE VII(M)

# ACTIVATED SLUDGE PLANTS

CAPACITY = OVER 10 mgd

BOD

| Plants    | Count | Mean  | S.D. |  |
|-----------|-------|-------|------|--|
| Brantford |       | 15.45 | 9.04 |  |
| Kitchener |       | 21.93 | 9.38 |  |
| Sudbury   |       | 15.86 | 7.88 |  |
|           |       |       |      |  |
| TOTAL     | . 3   | 17.78 | 3.60 |  |

# SAMPLE SIZE DISTRIBUTIONS:

| n<br>e |       | 12    | 26    | 52 |
|--------|-------|-------|-------|----|
| 10%    | 70%   | 89%   | 99.8% |    |
| 20%    | 94%   | 99.4% |       |    |
| 40%    | 99.5% |       |       | -  |

NOTE: Blank spaces mean values exceed 99.9%.



: 53 :

# TABLE VII(N)

# ACTIVATED SLUDGE PLANTS

CAPACITY = OVER 10 mgd

SS

| Plants    | Count | Mean  | $\underline{S.D}.$ |
|-----------|-------|-------|--------------------|
| Brantford |       | 20.48 | 8.13               |
| Kitchener |       | 22.42 | 16.89              |
| Sudbury   |       | 15.66 | 8.41               |
|           |       |       |                    |
| TOTAL     | , 3   | 19.52 | 3.48               |

## SAMPLE SIZE DISTRIBUTIONS:

| n<br>e | 6   | 12    | 26    | 52 |
|--------|-----|-------|-------|----|
| 10%    | 78% | 91%   | 99.9% |    |
| 20%    | 91% | 99.8% |       |    |
| 40%    |     |       |       | ,  |

NOTE: Blank spaces mean values exceed 99.9%.



### 5. APPENDIX

### Methodology

### 1. Comparison of Two Sample Means

When dealing with samples from populations with unknown variances, the normal test cannot be applied to compare two means. However, under the assumptions,

- a) both samples are drawn randomly
- b) both populations are normal
- c) both populations have the same variance

then the following t-statistics can be used to compare means

$$t_{n_{1} + n_{2} - \frac{1}{2}} = \frac{\bar{x}_{1} - \bar{x}_{2}}{\int \frac{1}{n_{1}} + \frac{1}{n_{2}} \int \frac{(n_{1} - 1)S_{1}^{2} + (n_{2} - 1)S_{2}^{2}}{n_{1} + n_{2} - 1}}$$

Where  $n_1$  and  $n_2$  are sample sizes for each sample respectively.

If the third assumption above i.e. both populations have the same variance cannot be met, then the appropriate statistics for testing the hypothesis is,

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\int_{n_1}^{S_1^2} + \frac{S_2^2}{n_2}}$$

Where the number of degrees of freedom can be obtained from the following approximation:

$$\frac{1}{n} = \frac{1}{n_1 - 1} \begin{bmatrix} \frac{S_1^2}{n_1} & 2 \\ \frac{S_1^2}{n_1} & \frac{S_2^2}{n_2} \\ \frac{S_1^2}{n_1} & \frac{S_2^2}{n_2} \end{bmatrix} + \frac{1}{n_2 - 1} \begin{bmatrix} \frac{S_1^2}{n_1} \\ \frac{S_1^2}{n_1} & \frac{S_2^2}{n_2} \\ \frac{S_1^2}{n_1} & \frac{S_2^2}{n_2} \end{bmatrix}$$



### 2. Comparison of More Than Two Sample Means

A technique called <u>Analysis of Variance</u> is used to compare three or more means. In addition to comparing means, this method also attempts to analyze the total variation of a response by decomposing it into independent and meaningful portions attributable to each of the independent variable and to chance variation.

The analysis of variance is developed under a set of rigid assumptions:

- (i) Treatment combinations are normally distributed with common variance
- (ii) the treatment effects are additive
- (iii) the experimental errors are independent and are normally distributed.

Whenever any of these assumptions are not met, the statistical test (F-test) cannot be employed to yield valid inferences. It is not uncommon, however, to encounter experimental work where departure from these assumptions exists. In such a situation, the analysis of variance can sometimes still be applied after a transformation of data.

Analysis of variance technique -'methodology'is given in most of the standardized text on "Statistical Methods" or "Statistical Analysis".

### 3. Multiple Comparison Analysis

Analysis of variance provides only the statistics necessary for significant testing of the Means. Multiple Comparison Analysis method helped to compare plants and group them according to Duncan, Scheffe or Tukey Methods. In this case most of the times Scheffe Method was used to compare and develop groups of various plants.



### 4. Sample Size

Sample size distribution is determined from the following expression:

$$n = \frac{z^2 6^2}{E^2}$$
 or  $\frac{t^2 S^2}{E^2}$ 

Where:

 $6^2$  is population variance, if it is unknown then the sample variance  $S^2$  can be used as an estimate of  $6^2$  in determining the sample size.

Z is a value depending upon confidence level required and can be determined from the normal distribution.

E is tolerance error and may be defined as:

$$E = \bar{X} - \mu$$
 i.e. difference

between the caluclated mean and an actual mean.

A question frequently asked of statistician is, "How large a sample is needed for this experiment?" The question is deceptively simple, but the answere is hard to find. Before the statistician can provide anything better than an "educated guess", he must retaliate with general question, the answers to which should help him to attack the problem. For example to determine the sample size some of the information needed is as follows:-

- (a) Statement of Hypothesis?
- (b) Confidence Level (i.e. to find Z-value in the expression).
- (c) What is variability in data (i.e.  $6^2$  or  $8^2$  values)
- (d) How large a difference, experiments can tolerate or what width confidence interval experiments can tolerate (i.e. E value).

When answer to these questions and other questions are provided by the researcher, the statistician can be of help in determining the needed sample size.



### 6. REFERENCES

- A. Central Statistical Services, "Analysis of Water Pollution Control Plant Data" Report prepared for the Ministry of Environment, Toronto, Ontario, 1979. Ontario, 1979.
- B. Ward R.C. and Loftis J.C. "Statistical Evaluation of Sampling Frequencies in Monitoring Networks", Journal WPCF, Vol.51, No.9.
- C. Roper R.E., Jr., Dickey R.O., Marman S., Kim S.W. and Yardt R.W. "Design Effluent Quality", Journal of the Environmental Engineering Division.
- D. Sparr T.M. and Hann R.W., "Variations Of The Municipal Waste Effluent Quality And The Implications For Monitoring".
- E. Dr. Fraser, T.M. and Menard J.P. "Statistical Analysis of Sewage Treatment Plant Effluent Data". A Work Report prepared by the Ministry of Environment.
- F. Ostle Bernard "Statistics In Research" The Iowa State University Press, 1964.
- G. Box G.E.P., Hunter W.G. and Hunter J.S. "Statistics For Experiments" Wiley Interscience, John Wiley and Sons, 1978.

TD/745/.S72/1980
Ontario. Ministry of Treas
Statistical analysis
for regulations and glaa
c.1 tor mai



