Logistic Regression

Professor Song YaoOlin Business School

Customer Analytics

1

Why do we have for predictive models so far?

RFM has some major shortcomings

RFM DISADVANTAGES

- Not very 'sophisticated,' i.e. built as rule of thumb
- Does not "scale" well to include other variables
- Predicts average "response rate" for a customer on the basis of membership in a specific RFM cell
- Does not predict individual "response probability" based on individual customer characteristics

Need a more flexible, powerful model to predict response / purchase probability

3

Many firms monitor the activities of potential customers to determine whether they might be good leads

EXAMPLE: SMARTSTORAGE

- A top cloud storage provider (huge capacity, speed less important)
- Serve many clients with large cloud storage needs (e.g. major photo sharing websites)
- Have limited number of potential clients
- Can identify most potential decision makers on their site without requiring them to log in
- Identified 14,000 visitors to their website who are potential buyers of their service

Smartstorage keeps track of behaviors and demographics of potential decision makers

BEHAVIORS

Website

- Visited webpage/blog
- Viewed introductory content
- Viewed mid-stage content
- Viewed late-stage content
- Visited pricing page
- Visited career page
- Watched demos

Other

- Visited at trade-show
- Contacted company
- Provided e-mail
- ...

DEMOGRAPHICS

- High-relevance employer
- High-relevance job title
- Relevant past experience
- Small potential client
- Large potential client
- · ...

5

How would we implement predictive analytics for lead scoring at Smartstorage? (simplified example)

BEHAVIORS

Website

- Visited webpage/blog
- Viewed introductory content
- Viewed mid-stage content
- Viewed late-stage content

- Visited pricing page

- Visited career page
- Watched demos

Other

- Visited at trade-show
- Contacted company
- Provided e-mail

- ...

DEMOGRAPHICS

- High-relevance firm

- High-relevance job title
- Relevant past experience
- Small potential client
- Large potential client
- ...

Sale (Purchase)?

We use information on 180 leads, including whether they converted to a sale within 150 days of first ID

id	webpageviews	viewedpricing	edpricing highrelevancefirm	
639	15	0	0 1	
272	35	0	1	1
491	7	0	1	0
226	18	1	1	0
7195	13	0	0	0
9080	23	0	0	0
548	14	0	1	0
9605	36	0	0	0
5352	28	0	0	0
4343	35	0	0	0
14971	3	0	0	0
11298	34	0	0	1
317	10	0	1	0

7

How would we determine the relationship between demographics and behaviors and sales success?

id	webpageviews	viewedpricing highrelevancefirm		sale
639	15	0 1		0
272	35	0	1	1
491	7	0	1	0
226	18	1	1	0
7195	13	0	0	0
9080	23	0	0	0
548	14	0 1		0
9605	36	0 0		0
5352	28	0	0	0
4343	35	0	0	0
14971	3	0	0	0
11298	34	0	0	1
317	10	0	1	0
	•••			

id	webpageviews	viewedpricing	highrelevancefirm	sale
7236	27	0	0	
687	25	1	1	7
453	16	0	0	•
563	6	0	1	

How do data scientists create a prediction other than RFM?

EXAMPLE: YEARLY FUEL COST AND VEHICLE WEIGHT

Inputs to calculate yearly fuel cost (YFC):

- Weight of vehicle
- 12,000 miles per year
- \$ 3 / gallon

9

How do data scientists create a prediction using a regression?

EXAMPLE: YEARLY FUEL COST AND VEHICLE WEIGHT

weight	$total_gas_expense$	predicted_value
3000	NA	?
4500	NA	?
2350	NA	?

YFC = 220.08 + 0.54*Weight

How do data scientists create a prediction using a regression?

EXAMPLE: YEARLY FUEL COST AND VEHICLE WEIGHT

weight	total_gas_expense	predicted_value
3000	NA	1835.353
4500	NA	?
2350	NA	?

$$YFC = 220.08 + 0.54*Weight$$

11

How do data scientists create a prediction using a regression?

EXAMPLE: YEARLY FUEL COST AND VEHICLE WEIGHT

weight	total_gas_expense	predicted_value
3000	NA	1835.353
4500	NA	2641.988
2350	NA	1485.811

Why do we need an alternative predictive model?

13

Can we use this approach for predicting qualified leads?

PREDICTION APPROACHES

Yearly fuel costs and weight

- After running regression we found that this formula describes the data

- Can now predict YFC for any weight

Sales and lead characteristics

Sale = A + B * (# webpages/blogs visited)

- What kind of variable is "sale"?
- How do we interpret "predicted sale"?

Let's consider the 1999 Clinton Senate impeachment vote as an example

PREDICTING THE SENATE IMPEACHMENT VOTE

- **Dependent** variable: **vote1** -- "guilty" (1) or "not guilty" (0)
- **Predictor** variable: degree of ideological conservatism ("conservatism")
 - 0-100 scale, 100 is most conservative
 - Issued by the "American Conservative Union" (http://conservative.org/)
 - Based on Senator voting records

vote1	Frequency	Average conservatism
not guilty	55	18
guilty	45	83

15

How would we use a regression to predict?

REGRESSION FOR IMPEACHMENT VOTE

vote = $A + B \cdot conservatism$

Interpretation?

The regression approach has several problems

REGRESSION FOR IMPEACHMENT VOTE

Problems:

- 1. "out-of-range" predictions
- 2. What else?

17

The regression approach has several problems

REGRESSION FOR IMPEACHMENT VOTE

We would like a method that corrects the shortcomings of regression

"IDEAL" PROBABILITY PREDICTION

19

Logistic Model

Logit is a flexible way to predict binary choices

PROPERTIES OF LOGISTIC REGRESSION

- Also known as "Logistic regression"
 (Daniel McFadden, Berkeley Econ Nobel Laureate 2000)
- Used when the dependent variable is binary
 - Buy / do not buy (purchase choice models)
 - Left / stayed (attrition, churn models)
 - Failed / did not fail (predictive maintenance)
- From data scientists view, works similar to regular regression
 - Can include many different variables
 - Fast
 - One of the most popular approaches used in data science

21

The logit model allows us to easily estimate probabilities

COMPARISON OF REGRESSION APPROACHES

OLS Regression

Logistic Regression

The "a" coefficient shifts the probability curve

EFFECT OF "a" COEFFICIENT

23

The "b" coefficient controls the steepness of the probability curve

EFFECT OF "b" COEFFICIENT

Interpretation?

A comparison of OLS and logistic regression shows that each has advantages and disadvantages

OLS REGRESSION MODEL

Y = a + b X

- Depending on the values of the independent variables, the predicted values for Y may fall outside of [0,1] (-)
- Changes in X have a linear effect on estimated "probabilities" (-)
- Coefficients are easy to interpret:
 Measure the amount the
 dependent variable will increase
 when the independent variable is
 increased by one (+)

LOGIT MODEL

Prob(Y = 1) =
$$\frac{e^{a+bX}}{1+e^{a+bX}}$$

- The predicted values always fall in [0,1] (+)
- Changes in X can have different effect on probabilities for different levels of X (+)
- How do we interpret the coefficients? (–)

25

Logit coefficients are harder to interpret than "normal" regression coefficients

OLS REGRESSION

LOGISTIC REGRESSION

- An increase of 1 in the degree of conservatism does not have a constant effect on the dependent variable (predicted probability of voting guilty)
- How do we measure the degree of association between the independent and dependent variable?

In R we use the "glm" command to run a logistic regression

PREDICTING THE SENATE IMPEACHMENT VOTE

- Dependent variable: "vote" (guilty (1) or not guilty (0))
- Independent variable: "conservatism" (0-100 scale, 100 is most conservative)

```
import pandas as pd
            import numpy as np
            import matplotlib.pyplot as plt
            import seaborn as sns
            import statsmodels.api as sm
            import statsmodels.formula.api as smf
            # Load the data from url
            data = pd.read_csv("https://songyao21.github.io/course_data/impeach.csv")
            logit_model = smf.logit(formula='vote1 ~ conserv', data=data).fit()
Prob(Y = 1) =
              1 + e^{\overline{a} + \overline{bX}}
                             coef
                                      std err
                                                              P>|z|
                                                                          [0.025
                                                                                      0.975]
            const
                          -6.2067
                                        1.567
                                                  -3.962
                                                              0.000
                                                                          -9.277
                                                                                       -3.136
            conserv
                           0.1083
                                        0.024
                                                   4.543
                                                              0.000
                                                                           0.062
                                                                                       0.155
```

27

Interpreting the impact of "conservatism" is tricky

Impact of "conservatism" on voting probability is not stable

- The size of the impact depends on the specific value of conservatism

We can make a more general statement about the "Average Marginal Effect" of the predictors

```
# Compute the average marginal effect
 marginal_effects = logit_model.get_margeff(at='overall', method='dydx')
 # Print the summary of marginal effects
 print(marginal_effects.summary())
      Logit Marginal Effects
Dep. Variable:
Method:
                            dydx
At:
                        overall
            dy/dx std err
                                                  [0.025
                                                             0.975]
                                        P>|z|
conserv 0.0059 0.001 8.828 0.000
                                                    0.005 0.007
```

29

Applying Logistic Model

We can look at the predicted probabilities at different levels of the predictor in the data, the conservatism score

```
# Generate 5 random conservatism scores
 np.random.seed(42) # for reproducibility
 random_conserv = np.round(np.random.uniform(low=0, high=100, size=5))
 # Create a DataFrame with these scores
 random_df = pd.DataFrame({'conserv': random_conserv})
 # Add a constant term to the random conservatism scores
 random_X = sm.add_constant(random_df['conserv'])
 # Predict probabilities for these random scores
 predicted_probs = logit_model.predict(random_X)
 # Combine the results into a DataFrame
 random_results = pd.DataFrame({
     'Hypothetical Conservatism Score': random_conserv,
     'Predicted Probability': predicted_probs
 # Display the results
 print("Predictions for 5 random conservatism scores:")
 print(random_results.to_string(index=False, float_format='\{:.4f\}'.format))
Predictions for 5 random conservatism scores:
Hypothetical Conservatism Score Predicted Probability
                         37.0000
                                                 0.0997
                         95.0000
                                                 0.9833
                         73.0000
                                                 0.8451
                         60.0000
                                                 0.5717
                                                                                          31
                         16.0000
                                                 0.0113
```

The prediction can easily be made in Excel

Back to predictive lead scoring ...

id	webpageviews	viewedpricing	highrelevancefirm	sale
639	15	0	0 1	
272	35	0	1	1
491	7	0	1	0
226	18	1	1	0
7195	13	0	0	0
9080	23	0	0	0
548	14	0	1	0
9605	36	0	0	0
5352	28	0	0	0
4343	35	0	0	0
14971	3	0	0	0
11298	34	0	0	1
317	10	0	1	0

id	webpageviews	viewedpricing	highrelevancefirm	sale
7236	27	0	0	
687	25	1	1	7
453	16	0	0	•
563	6	0	1	

33

Estimation

LEAD SCORING EXAMPLE

	coef	std err	Z	P> z	[0.025	0.975]
const	-10.8631	2.268	-4.790	0.000	-15.308	-6.418
webpageviews	0.2423	0.064	3.801	0.000	0.117	0.367
viewedpricing	2.3606	0.941	2.510	0.012	0.517	4.204
highrelevancefirm	2.8682	0.873	3.285	0.001	1.157	4.579
	dy/dx	std err	Z	P> z	[0.025	0.975]
webpageviews	0.0121	0.003	4.574	0.000	0.007	0.017
viewedpricing	0.1179	0.043	2.736	0.006	0.033	0.202
highrelevancefirm	0.1433	0.039	3.705	0.000	0.067	0.219

34

Prediction

We can then predict purchase prob (often called "score" in practice).

```
# Predict sale probabilities for all observations
lead['predicted_sale_prob'] = logit_model_lead.predict(lead)

# Create a sample of 10 observations with observed sale and 10 with missing sale
sample_observed = lead[lead['sale'].notnull()].sample(5, random_state=42)
sample_missing = lead[lead['sale'].isnull()].sample(5, random_state=42)
```

webpageviews	viewedpricing	highrelevancefirm	sale	<pre>predicted_sale_prob</pre>
22	0	0	0.0	0.003941
31	0	0	0.0	0.033847
2	0	1	0.0	0.000547
18	0	1	0.0	0.025748
23	1	0	0.0	0.050720
27	0	0	NaN	0.013116
26	0	1	NaN	0.155138
33	0	0	NaN	0.053817
25	0	1	NaN	0.125959
6	0	1	NaN	0.001441

35

Interpreting the impacts of variables: Scaling

LEAD SCORING EXAMPLE

	dy/dx	std err	z	P> z	[0.025	0.975]
webpageviews	0.0121	0.003	4.574	0.000	0.007	0.017
viewedpricing	0.1179	0.043	2.736	0.006	0.033	0.202
highrelevancefirm	0.1433	0.039	3.705	0.000	0.067	0.219

```
# Calculate the standard deviation of webpageviews
print("Standard deviation of vebpageviews:")
print(lead.webpageviews.std()
```

Standard deviation of webpageviews: 9.001820028144058

=0.01211 * 9.00182 =0.109

Interpreting the impacts of variables: Scaling

We can also scale the data in advance before the regression

```
# Prepare the data for logistic regression
lead['webpageviews_scaled'] = lead['webpageviews'] / lead.webpageviews.std()
# Fit the logistic regression model
logit_model_lead_prescaled = \
   smf.logit(formula='sale ~ webpageviews_scaled + viewedpricing + highrelevancefirm',
           data=lead).fit()
# Calculate the average marginal effect for 'webpageviews'
marginal_effects_prescaled = logit_model_lead_prescaled.get_margeff(at='overall', method='dydx')
______
                                                P>|z| [0.025
                    dy/dx std err
                                                                      0.9751
webpageviews
viewedpricing
                  0.1090 0.024 4.574
                                                  0.000
                                                                       0.156
                                                            0.062
highrelevancefirm 0.1433
                            0.043
                                        2.736
                                                  0.006
                                                            0.033
                                                                       0.202
                                        3.705
                              0.039
                                                  0.000
                                                            0.067
                                                                       0.219
```

37