Dynamic Nested Sampling with *dynesty*

Josh Speagle

jspeagle@cfa.harvard.edu

Background

$$Pr(\mathbf{\Theta}|\mathbf{D}, \mathbf{M}) = \frac{Pr(\mathbf{D}|\mathbf{\Theta}, \mathbf{M}) Pr(\mathbf{\Theta}|\mathbf{M})}{Pr(\mathbf{D}|\mathbf{M})}$$

$$Pr(\mathbf{D}|\mathbf{M})$$

$$Evidence$$
Bayes' Theorem

MCMC: Solving a Hard Problem once.

(Markov Chain Monte Carlo)

MCMC: Solving a Hard Problem once.

(Markov Chain Monte Carlo)

MCMC: Solving a Hard Problem once.

(Markov Chain Monte Carlo)

MCMC: Solving a Hard Problem once.

VS

Nested Sampling: Solving an Easier

Problem many times.

Sampling uniformly within bound $\mathcal{L}(\mathbf{O}) > \lambda$ is **easier**.

MCMC: Solving a Hard Problem once.

VS

Nested Sampling: Solving an Easier

Problem many times.

Sampling uniformly within bound $\mathcal{L}(\mathbf{O}) > \lambda$ is **easier**.

MCMC: Solving a Hard Problem once.

VS

Nested Sampling: Solving an Easier

Problem many times.

Sampling uniformly within bound $\mathcal{L}(\mathbf{\Theta}) > \lambda$ is **easier**.

 X_{i-1}

MCMC: Solving a Hard Problem once.

VS

Nested Sampling: Solving an Easier

Problem many times.

Sampling uniformly within bound $\mathcal{L}(\mathbf{\Theta}) > \lambda$ is **easier**.

MCMC: Solving a Hard Problem once.

VS

Nested Sampling: Solving an Easier

Problem many times.

Sampling uniformly within bound $\mathcal{L}(\mathbf{\Theta}) > \lambda$ is **easier**.

$$X_{i+1}$$

MCMC: Solving a Hard Problem once.

VS

Nested Sampling: Solving an Easier

Problem many times.

Sampling uniformly within bound $\mathcal{L}(\mathbf{\Theta}) > \lambda$ is **easier**.

 X_{i+1}

MCMC: Solving a Hard Problem once.

VS

Nested Sampling: Solving an Easier

Problem many times.

Sampling uniformly within bound $\mathcal{L}(\mathbf{\Theta}) > \lambda$ is **easier**.

If you have a **prior transform** that converts your priors to look uniform, then this case is equivalent.

 X_{i+1}

Nested Sampling In Practice

Sampling from the Constrained Prior

Proposal:

Try to bound the iso-likelihood contours in real time.

Feroz et al. (2009)

Examples of Bounding Strategies

"Live points" (i.e. "chains")

Unit Cube (no bound)

Single Ellipsoid

Multiple Ellipsoids

Overlapping Balls

Overlapping Cubes

Bounding Method	Relevant Papers
Single ellipsoid (§4.1.2) Multiple ellipsoids (§4.1.3)	Mukherjee et al. (2006) Shaw et al. (2007), Feroz & Hobson (2008), Feroz et al. (2009, 2013), Handley et al. (2015)
Overlapping balls/cubes (§4.1.4, §4.1.5)	Buchner (2016, 2017)

Examples of Sampling Strategies

Uniform

Multivariate Slice

Principal Axes

Random

Random Walk

Fixed Scale

Variable Scale

Hamiltonian Slice

Sampling Method

Uniform Sampling $(\S4.2.1)$

Random walks ($\S4.2.2$)

Slice sampling $(\S4.2.3)$

Hamiltonian slicing (§4.2.4)

Mukherjee et al. (2006), Feroz & Hobson (2008), Feroz et al. (2009), Buchner (2016)

Skilling (2004), Skilling (2006)

Neal (2003), Handley et al. (2015)

Neal (2003), Skilling (2012), Feroz & Skilling (2013), this work

Examples of Sampling Strategies

Uniform

Multivariate Slice

Principal Axes

Random

Random Walk

Fixed Scale

Variable Scale

Uses "simple" MCMC to propose at each step

Hamiltonian Slice

Sampling Method

Uniform Sampling (§4.2.1)

Random walks ($\S4.2.2$)

Slice sampling ($\S4.2.3$)

Hamiltonian slicing (§4.2.4)

Mukherjee et al. (2006), Feroz & Hobson (2008), Feroz et al. (2009), Buchner (2016)

Skilling (2004), Skilling (2006)

Neal (2003), Handley et al. (2015)

Neal (2003), Skilling (2012), Feroz & Skilling (2013), this work

Inspired by *emcee* (Foreman-Mackey et al. 2013)

- Public, open source Python package designed to make (Dynamic)
 Nested Sampling easy to use but also easy to customize.
- Designed to be highly modular and can mix-and-match methods.
- Includes built-in plotting utilities and post-processing tools.


```
import dynesty
# "Static" nested sampling.
sampler = dynesty.NestedSampler(loglike, ptform, ndim)
sampler.run_nested()
sresults = sampler.results
# "Dynamic" nested sampling.
dsampler = dynesty.DynamicNestedSampler(loglike, ptform, ndim)
dsampler.run_nested()
dresults = dsampler.results
```

```
from dynesty import plotting as dyplot

# Plot a summary of the run.
rfig, raxes = dyplot.runplot(results)

# Plot traces and 1-D marginalized posteriors.
tfig, taxes = dyplot.traceplot(results)

# Plot the 2-D marginalized posteriors.
cfig, caxes = dyplot.cornerplot(results)
```



```
from dynesty import plotting as dyplot

# Plot a summary of the run.
rfig, raxes = dyplot.runplot(results)

# Plot traces and 1-D marginalized posteriors.
tfig, taxes = dyplot.traceplot(results)

# Plot the 2-D marginalized posteriors.
cfig, caxes = dyplot.cornerplot(results)
```



```
from dynesty import plotting as dyplot

# Plot a summary of the run.
rfig, raxes = dyplot.runplot(results)

# Plot traces and 1-D marginalized posteriors.
tfig, taxes = dyplot.traceplot(results)

# Plot the 2-D marginalized posteriors.
cfig, caxes = dyplot.cornerplot(results)
```


from dynesty import plotting as dyplot

rfig, raxes = dyplot.runplot(results)

tfig, taxes = dyplot.traceplot(results)

Plot the 2-D marginalized posteriors. cfig, caxes = dyplot.cornerplot(results)

Plot a summary of the run.


```
from dynesty import plotting as dyplot

# Plot a summary of the run.
rfig, raxes = dyplot.runplot(results)

# Plot traces and 1-D marginalized posteriors.
tfig, taxes = dyplot.traceplot(results)

# Plot the 2-D marginalized posteriors.
cfig, caxes = dyplot.cornerplot(results)
```


Comparisons

- Same 2-D Gaussian example as before with fixed number of samples.
- Only change is in overall Dynamic Nested Sampling strategy.

Comparisons

Comparisons with emcee

 Simple 3-parameter linear regression problem with reasonable prior constraints.

Applications

 Galaxy SED modeling with *Prospector* (Leja et al. 2019, Johnson et al. in prep.).

Applications

3-D dust mapping (Zucker
 & Speagle et al. 2019)

Advantages and Disadvantages

Advantages to Nested Sampling:

- 1. Can characterize complex uncertainties in real-time.
- 2. Can allocate samples much more efficiently in some cases.
- 3. Possesses well-motivated stopping criteria (Skilling 2006; Speagle 2020).

Advantages and Disadvantages

Advantages to Nested Sampling:

- 1. Can characterize complex uncertainties in real-time.
- 2. Can allocate samples much more efficiently in some cases.
- 3. Possesses well-motivated stopping criteria (Skilling 2006; Speagle 2020).

Disadvantages to Nested Sampling:

- 1. Implementations require a prior transform.
- 2. Runtime sensitive to size of prior.
- 3. Overall approach can sometimes miss certain types of solutions.
- 4. Sampling is more involved.

Inspired by *emcee* (Foreman-Mackey et al. 2013)

- Public, open source Python package designed to make (Dynamic)
 Nested Sampling easy to use but also easy to customize.
- Designed to be highly modular and can mix-and-match methods.
- Includes built-in plotting utilities and post-processing tools.

