Laws of Equivalence

Given any statement variables p, q and r, a tautology \mathbf{t} and a contradiction \mathbf{c} , the following logical equivalences hold.

Law	Logical Equivalences
Commutative	$p \wedge q \equiv q \wedge p$
	$p \vee q \equiv q \vee p$
Associative	$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$
	$(p \lor q) \lor r \equiv p \lor (q \lor r)$
Distributive	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$
	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
Identity	$p \wedge \mathbf{t} \equiv p$
	$p \lor \mathbf{c} \equiv p$
Negation	$p \lor \sim p \equiv \mathbf{t}$
	$p \wedge \sim p \equiv \mathbf{c}$
Double negation	$\sim (\sim p) \equiv p$
Idempotence	$p \wedge p \equiv p$
	$\begin{array}{ccc} p \lor p & \equiv & p \\ p \lor \mathbf{t} & \equiv & \mathbf{t} \end{array}$
Universal bound	$p \lor \mathbf{t} \equiv \mathbf{t}$
	$p \wedge \mathbf{c} \equiv \mathbf{c}$
DeMorgan's Laws	$\sim (p \land q) \equiv \sim p \lor \sim q$
	$\sim (p \lor q) \equiv \sim p \land \sim q$
Absorption	$p \lor (p \land q) \equiv p$
	$p \wedge (p \vee q) \equiv p$
Negations of t and c	$\sim {f t} \equiv {f c}$
	\sim c \equiv t
Implication	$p \to q \equiv \sim p \lor q$
Negation of a conditional	
Contrapositive	$p \to q \equiv \sim q \to \sim p$
If and only if	$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$
	$p \leftrightarrow q \equiv (p \land q) \lor (\sim p \land \sim q)$