CSCI 311

Algorithms and Data Structures

CSU Chico

Week 11.01

Today

- Graphs
 - Notation
 - · Types of graphs
 - Representations
- Breadth-first search (BFS)
- Depth-first search (DFS)
- Edge classification

Graphs

Notation

- G = (V, E)
 - V a set of nodes or vertices, often labelled $1, \ldots, n$
 - E a set of edges
- Edges can be undirected, $\{u, v\}$, or directed, (u, v)
- Vertices and edges can have attributes
 - *v.id*, *v.cost*, *v.dist* where $v \in V$
 - (u, v).weight, {u, v}.dist where (u, v) $\in E$ or {u, v} $\in E$
- $lue{}$ Run time often measured as a function of |V| and |E|

Graphs

Types

■ Gis a **simple** graph if

- Edges are undirected and unweighted
- There are no multi-edges (no same edge)
- There are no self loops (no edge starts and ends at the same vertex)

Graphs Types

Gis a **tree** if

For every pair $u, v \in V$ is connected by exactly one path

Graphs Types

Gis a directed acyclic graph (DAG) if directed but with no cycles

Graphs Types

Gis a bipartite graph if

Two disjoint sets of vertices U and V For all edges $\{u,v\} \in E$, u and v are in different vertex sets

Graphs

Representations

- Two sets V and E
- Adjacency matrix

A is an $n \times n$ matrix

A[i][j] = 1 if $(i, j) \in E$ and 0 otherwise

Adjacency	Matrix	

	0	1	2	3	4		
0	0	1	1	0	0		
1	0	0	1	0	1		
2	0	0	0	1	0		
3	0	0	0	0	1		
4	0	0	0	0	0		

Graphs

Representations

- Two sets V and E
- Adjacency list

A is a list of n lists $j \in A[i]$ if and only if $(i,j) \in E$

A	B, C, D
В	Е
С	В
D	C, E
Е	С

Intuition

Given a graph G = (V, E) and a source node $s \in V$

- Add s to the (initially empty) work queue
- Mark s as visited
- While this queue is not empty
 - Remove the first node
 - Mark this node as visited
 - Add all of its unvisited neighbors to the queue

Example

Pseudocode (also calculating the distances)

```
function BFS(G, s)
  for u in V
    u.dist = \infty
    u.visited = false
    u. predecessor = null
  s. dist = 0
  s. visited = true
  Q = queue()
  Q. push(s)
  while length(Q) > 0
    u = Q. pop()
    for vin neighbors (G, u)
       if v. visited == false
         v. dist = u. dist + 1
         v. visited = true v.
         predecessor = u Q.
         push(v)
```

Example

Keep Track of Distance

Node{
 dist
 visited
 predecessor
}

```
function BFS(G, s)
  for u in V
    u. dist = ∞
    u. visited = false
    u. predecessor = null
  s. dist = 0
  s. visited = true
  Q = queue()
  Q. push(s)
  while length(Q) > 0
    u = Q.pop()
    for vin neighbors (G, u)
      if v. visited == false
        v. dist = u. dist + 1
         v. visited = true v.
         predecessor = u
        O.push(v)
```

BFS-Undirected-Keep-Distance

BFS-Directed-Keep-Distance

Exercise (directed)

BFS on Disconnected Graph


```
function BFS(G, s)
  for u in V
    u. dist = \infty
    u. visited = false
    u.predecessor = null
  s. dist = 0
  s. visited = true
  Q = queue()
  Q. push(s)
  while length(Q) > 0
    u = Q.pop()
    for vin neighbors (G, u)
      if v. visited == false
         v. dist = u. dist + 1
         v. visited = true v.
         predecessor = u Q.
         push(v)
```

BFSN on Disconnected Graph

```
Function BFSN(G)
  for u in V
    u. dist = \infty
    u. visited = false
    u. predecessor = null
  While any s in V is not visited
   s. dist = 0
   s.visited = true
   Q = queue()
   O. push(s)
   while length(Q) > 0
    u = Q. pop()
    for vin neighbors (G, u)
       if v. visited == false
         v. dist = u. dist + 1
         v. visited = true
         v. predecessor = u Q. push(v)
```

Depth-First Search (DFSVisit)

Intuition

Given a graph G = (V, E)

- Pick a source node s
- Mark s as visited
- for all neighbors u of s
 - If u has not been visited, run depth first search on G with u as the source
- Repeat until all vertices have been visited

Lab 7 Challenge DFS Discover & Finish Times

DFS-Undirected

Example (Discovery & Finish Time)

DFS-Directed

Example (Discovery & Finish Time)


```
function DFS(G)
  for u in V
    u.visited = false
    u.predecessor = null
    u.discovered = -1
    u.finished = -1
    time = 0
  for u in V
    if u.visited == false
        time = DFSVisit(G, u, time)
```

```
function DFSVisit(G, u, time)
  time = time + 1
  u.discovered = time
  u.visited = true
  for v in neighbors(G, u)
   if v.visited = false
      v.predecessor = u
      time = DFSVisit(G, v, time)
  time = time + 1
  u.finished = time
  return time
```

Classification of Edges (Directed)

- Let G = (V, E), $s \in V$, and T_s be a D(B)FS tree
- Tree edge
 - $(u, v) \in E$ is a tree edge if $\{u, v\}$ is in T_s
 - v was visited following $(u, v) \in E$
- Back edge
 - $(u, v) \in E$ is a back edge if it is not a tree edge and v is an ancestor of u in T_s
 - u is visited as a result of the call DFS(G, v)
- Forward edge
 - $(u, v) \in E$ is a forward edge if it is not a tree edge and v is a descendent of u in T_s
 - v is visited as a result of the call DFS(G, u)
- Cross edge
 - All other edges

DFS Tree & Edges

Classification of Edges (Undirected)

- Let G = (V, E), $s \in V$, and T_s be a B(D)FS
- tree Tree edge
 - $(u, v) \in E$ is a tree edge if $\{u, v\}$ is in T_s
 - v was visited following $(u, v) \in E$
- Cross edge
 -) All other edges

BFS Tree & Edges

Example (Tree & Cross Edges)

Depth-First Search (DFSVisit)

Example (Undirected) - Classification of Edges

Depth-First Search (DFSVisit)

Example (Directed) - Classification of Edges

