Chap 8: Entiers naturels et ensembles finis

I. N

Existence d'un unique ensemble $\mathbb N$ tel que :

- (i) Toute partie non vide de $\mathbb N$ admet un plus petit élément
- (ii) Toute partie non vide et majorée de $\mathbb N$ admet un plus grand élément
- (iii) \mathbb{N} n'est pas majoré

Axiomes de Peano:

- 1) \mathbb{N} admet un plus petit élément 0
- 2) L'ordre est total
- 3) $\forall n \in \mathbb{N}, \exists ! p \in \mathbb{N} / p = \min\{k \in \mathbb{N}, k > n\}$
- 4) $\forall n \in \mathbb{N}^*, \exists ! p \in \mathbb{N} / n = s(p) \quad (p = a(n))$

5)
$$\forall E \subset \mathbb{N}, \begin{cases} 0 \in E \\ \forall n \in \mathbb{N}, n \in E \Rightarrow s(n) \in E \end{cases} E = \mathbb{N}$$

$$\forall (p,n) \in \mathbb{N}^2 \quad (p \le n) \Leftrightarrow (\exists k \in \mathbb{N}, n = p + k)$$

LCI + construite par récurrence, commutative, associative, élément neutre 0

LCI × construite par récurrence, commutative, associative, distributive / +, élément neutre 1

$$\mathbb{N}_n = [1, n] = \{k \in \mathbb{N}, 1 \le k \le n\}$$
 $[p, q] = \{k \in \mathbb{N}, p \le k \le q\}$

II. Ensembles finis

E fini si $E=\emptyset$ ou s'il existe $n\in\mathbb{N}^*$ et une bijection de $[\![1,n]\!]$ dans E

Si
$$\exists \varphi : \llbracket 1, n \rrbracket \rightarrow \llbracket 1, p \rrbracket$$
 inj, $n \le p$
Si $\exists \varphi : \llbracket 1, n \rrbracket \rightarrow \llbracket 1, p \rrbracket$ surj, $n \ge p$
Si $\exists \varphi : \llbracket 1, n \rrbracket \rightarrow \llbracket 1, p \rrbracket$ bij, $n = p$

Preuve: Récurrence, utiliser une bijection pour que f(p+1)=n, restreindre à [[1,p]] et se ramer au rang précédent. Se ramener à l'injectivité pour la surj grâce à l'inverse

E ens. fini. Si $E=\emptyset$, on pose card E=0 Sinon, $\exists ! n \in \mathbb{N}^* \text{ tq } \exists \varphi \in \mathfrak{F}(\mathbb{N}_n, E) \text{ bij : on définit } n = \operatorname{card}(E)$

$$card(E \cup \{a\}) = card(E) + 1 \quad (si \ a \notin E)$$

$$E, F \text{ finis, } f \in \mathcal{F}(E, F)$$
 $\operatorname{card}(E) = \operatorname{card}(F) \Rightarrow (f \operatorname{inj} \Leftrightarrow f \operatorname{surj} \Leftrightarrow f \operatorname{bij})$

Preuve: P. Abs.: g inj de \mathbb{N}_n dans \mathbb{N}_n , non surj \Rightarrow inj. dans un ens. réduit: contradiction (Util. Comp°)

$$F \in P(\mathbb{N}_n) \Rightarrow card(F) \leq n$$
 E ens. fini $\forall F \in P(E)$, F fini, et $card F \leq card E$, avec égalité $ssi F = E$

Une partie de $\mathbb N$ est finie ssi elle est majorée

 $E \subset \mathbb{N}$ fini non vide, card $E = n \in \mathbb{N}$ *. Il existe une unique bijection strictement croissante de \mathbb{N}_n dans E

III. Opérations sur les cardinaux

$$card(E \cup F) = card(E) + card(F) - card(E \cap F)$$

$$\text{Crible de Poincar\'e}: card \left(\bigcup_{j=1}^n E_j\right) = \sum_{k=1}^n (-1)^{k+1} \sum_{\{j_1,j_2...j_k\} \in P_k(\mathbb{N}_n)} card \left(\bigcap_{l=1}^k E_{j_l}\right)$$

$$card(E \times F) = card(E) \times card(F)$$

$$card(E_1 \times E_2 \times ... \times E_n) = \prod_{j=1}^n card(E_j)$$

Preuve: passer par les singletons qui composent F

 $card(\mathfrak{F}(E,F)) = card(F)^{card(E)}$

$$\chi_{A} \begin{cases} E \to \{0,1\} \\ x \mapsto \begin{cases} 0 \text{ si } x \notin A \\ 1 \text{ si } x \in A \end{cases} \qquad card(A) = \sum_{x \in E} \chi_{A}(x)$$

$$card(P(E)) = 2^{card(E)}$$

$$P_k(E) = \{A \in P(E), card(A) = k\}$$

$$card(P_k(E)) = {n \choose k} = \frac{n!}{(n-k)!k!}$$

$$\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k}$$

Preuves:
$$\binom{n}{k} = \binom{n}{n-k}$$
: Bijection $A \to E \setminus A$

Triangle Pascal: ensembles à k éléments avec (n+1) (ensembles sans (n+1) \cup {n+1}),

ensembles sans (n+1) ($P_{\iota}(\mathbb{N}_n)$), union disjointe

$$\binom{n}{k} = C_n^k$$
: récurrence, triangle Pascal

$$card(\{f \in \mathcal{F}(E,F)inj\}) = \frac{card(F)!}{(card(F)-card(E))!}$$

 $card(\{f \in \mathcal{F}(E, E)bij\}) = card(E)!$

Preuves: Récurrence sur n (card(F)) ou p (card(E))

Lemme des bergers : $\varphi \in \mathcal{F}(E,F)$. Si $\exists p \in \mathbb{N}$ tq $\forall y \in F$, card $(\varphi^{-1}(\{y\})) = p \Rightarrow \operatorname{card} E = p \operatorname{card} F$

IV. \mathbb{Z}

 $-\mathbb{N}^* = \{(-k), k \in \mathbb{N}^*\}$ $\mathbb{Z} = \mathbb{N} \cap (-\mathbb{N}^*)$: prolongement des lci et rel.d'ordres \Rightarrow mêmes propriétés inverse pour $+ \Rightarrow (\mathbb{Z}, +, \times)$ anneau commutatif

Valeur absolue $|k| = \max(k, -k)$

$$|n+p| \leq |n| + |p|$$

 $|n+p| \le |n|+|p|$ $|n| \le q \Leftrightarrow -q \le n \le q$

Toute partie non vide majorée de $\mathbb Z$ admet un plus grand élément

Preuve : se ramener à \mathbb{N}

Division euclidienne :
$$\forall (n,p) \in \mathbb{Z} \times \mathbb{Z}^*, \exists ! (q,r) \in \mathbb{Z} \times \mathbb{N}, \begin{cases} n = qp + r \\ 0 \le r \le |p| \end{cases}$$

Preuve : unicité : facile Existence : passer par l'ensemble des k tels que pk<=n, majoré (ou minoré). On prend le minimum/maximum (q), r = n-pq, et comme (q-1) (ou q+1) n'est pas dans A, r < |p|