Exercice 1:

Remarque

Selon la littérature les notations des interfaces et passerelles sont variables. Pour chaque interface le routeur possède une adresse IP appartenant au réseau auquel il est connecté.

- 1. 18.13.0.0/16
 - -192.168.0.0/16
 - -19.20.1.0/24
- 2. Table de R1

Destination	Passerelle	Interface	Distance
192.168.0.0/16		192.168.0.1	1
18.13.0.0/16	192.168.0.254 (R2)	192.168.0.1	2
19.20.1.0/24	192.168.0.254 (R2)	192.168.0.1	2

Exercice 2:

Remarque

Dans cet exercice, la destination à atteindre n'est pas un réseau mais un routeur.

- 1. Pour atteindre G on lit les tables de routage :
 - table A: Vecteur (C,3),
 - table C: Vecteur (F,2),
 - table F : Vecteur (G,1)

Soit une distance de 6 pour un trajet : $A \to C \to F \to G$.

2. Table de G:

Destination	Routeur suivant (Passerelle)	Distance
A	E	3
В	E	3
С	E	2
D	E	2
Е	E	1
F	F	1

Remarque

Pour atteindre A et C il est possible de passer par F.

Exercice 3:

1. Phase d'initialisation

Destination	Passerelle	Interface	Distance
С		eth1	1
В		eth0	1

2. Extrait de table pour atteindre G

Extrait de la table	Destination	Passerelle	Interface	Distance
A	G	В	eth0	3
В	G	F	eth0	2
С	G	В	eth2	3
D	G	E	eth1	3
E	G	F	eth1	2
F	G		eth1	1

- 3. B envoie une route infinie soit le vecteur (G,16). Le maximum de sauts est 15 avec le protocole RIP.
- 4. Les routeurs A et C reçoivent une route existante plus longue; cela signifie qu'un problème est apparu. Ils mettent leur table à jour : pour G ils enregistrent la route (B, 16).
 - Le routeur D reçoit une nouvelle route plus longue vers G : il l'ignore.
 - Le routeur C possède la route (B, 16) vers G. Il la remplace par (D, 4).
- 5. Le routeur C envoie le vecteur (G, 4) à A (et à B). Ces routeurs mettent leur route vers G à jour avec le vecteur (C, 5).

