Correction du devoir surveillé 4.

Exercice 1

1°)

$$f(x) \underset{x \to 0}{=} \frac{1 - \frac{x^2}{2} + o(x^2)}{2\left(1 + x + \frac{x^2}{2}\right)} = \frac{1}{2}\left(1 - \frac{x^2}{2} + o(x^2)\right) \frac{1}{1 + x + \frac{x^2}{2}}$$

Or on sait que $\frac{1}{1+u} = 1 - u + u^2 + o(u^2)$.

Ici, en posant $u = x + \frac{x^2}{2}$, on a bien $u \xrightarrow[x \to 0]{} 0$, et un $o(u^2)$ est un $o(x^2)$. D'où:

$$f(x) = \frac{1}{x \to 0} \frac{1}{2} \left(1 - \frac{x^2}{2} + o(x^2) \right) \left(1 - \left(x + \frac{x^2}{2} \right) + \left(x + \frac{x^2}{2} \right)^2 + o(x^2) \right)$$

$$f(x) = \frac{1}{x \to 0} \frac{1}{2} \left(1 - \frac{x^2}{2} + o(x^2) \right) \left(1 - x + x^2 \left(-\frac{1}{2} + 1 \right) + o(x^2) \right)$$

$$= \frac{1}{x \to 0} \frac{1}{2} \left(1 - \frac{x^2}{2} + o(x^2) \right) \left(1 - x + \frac{x^2}{2} + o(x^2) \right)$$

$$= \frac{1}{x \to 0} \frac{1}{2} \left(1 - x + x^2 \left(\frac{1}{2} - \frac{1}{2} \right) + o(x^2) \right)$$

$$f(x) = \frac{1}{x \to 0} \frac{1}{2} - \frac{1}{2}x + o(x^2)$$

2°)

$$f(x) \underset{x \to 0}{=} \ln \left(1 + x + \frac{x^2}{2} + \frac{x^3}{6} + o(x^3) + x - \frac{x^3}{3} + o(x^3) \right)$$
$$\underset{x \to 0}{=} \ln \left(1 + 2x + \frac{x^2}{2} - \frac{x^3}{6} + o(x^3) \right)$$

On pose : $X = 2x + \frac{x^2}{2} - \frac{x^3}{6} + o(x^3)$.

 $X \xrightarrow[x \to 0]{} 0$ et un o(X) est un o(x) donc un $o(X^3)$ est un $o(x^3)$.

On développe $\ln(1+X)$ à l'ordre 3 en 0 : $\ln(1+X) = X - \frac{X^2}{2} + \frac{X^3}{3} + o(X^3)$ Ainsi,

$$f(x) = 2x + \frac{x^2}{2} - \frac{x^3}{6} + o(x^3) - \frac{1}{2} \left(2x + \frac{x^2}{2} - \frac{x^3}{6} + o(x^3) \right)^2 + \frac{1}{3} \left(2x + \frac{x^2}{2} - \frac{x^3}{6} + o(x^3) \right)^3 + o(x^3)$$

$$= 2x + x^2 \left(\frac{1}{2} - 2 \right) + x^3 \left(-\frac{1}{6} - 1 + \frac{8}{3} \right) + o(x^3)$$

$$f(x) = 2x - \frac{3}{2}x^2 + \frac{3}{2}x^3 + o(x^3)$$

3°)

$$\frac{\operatorname{ch}(x) - \cos(x)}{\ln(1+x) - x} \stackrel{=}{=} \frac{1 + \frac{x^2}{2} + o(x^2) - \left(1 - \frac{x^2}{2} + o(x^2)\right)}{x - \frac{x^2}{2} + o(x^2) - x} \stackrel{=}{=} \frac{x^2 + o(x^2)}{-\frac{x^2}{2} + o(x^2)}$$

$$\stackrel{=}{=} \frac{x^2 (1 + o(1))}{x^2 \left(-\frac{1}{2} + o(1)\right)} \stackrel{=}{=} \frac{1 + o(1)}{-\frac{1}{2} + o(1)}$$

$$\operatorname{donc} \left[\frac{\operatorname{ch}(x) - \cos(x)}{\ln(1+x) - x} \xrightarrow[x \to 0]{} \frac{1}{-\frac{1}{2}} = -2 \right]$$

Exercice 2

Partie 1 : Étude asymptotique de 3 suites

- 1°) Pour $n \in \mathbb{N}$, on pose $H_n : x_n \in \mathbb{N}^*, y_n \in \mathbb{N}, (x_n, y_n) \in \mathcal{C}$.
 - ★ $x_0 = 1$, $y_0 = 1$. $x_0^2 2y_0^2 = 1$. Donc H_0 est vraie.
 - ★ Soit $n \in \mathbb{N}$ fixé. On suppose que H_n est vraie. Montrons que H_{n+1} est vraie. x_n et y_n sont des entiers naturels donc, par somme et produit, $3x_n + 4y_n$ et $2x_n + 3y_n$ sont dans \mathbb{N} . De plus, $3x_n \geq 3$ et $4y_n \geq 0$ donc $x_{n+1} > 0$. Ainsi, $x_{n+1} \in \mathbb{N}^*$. De plus,

$$x_{n+1}^{2} - 2y_{n+1}^{2} = (3x_{n} + 4y_{n})^{2} - 2(2x_{n} + 3y_{n})^{2}$$

$$= 9x_{n}^{2} + 24x_{n}y_{n} + 16y_{n}^{2} - 2(4x_{n}^{2} + 12x_{n}y_{n} + 9y_{n}^{2})$$

$$= x_{n}^{2} - 2y_{n}^{2}$$

$$= 1 \quad \text{par } H_{n}$$

Ainsi, H_{n+1} est vraie.

- ★ On a montré par récurrence que pour tout $n \in \mathbb{N}, x_n \in \mathbb{N}^*, y_n \in \mathbb{N}, (x_n, y_n) \in \mathcal{C}$.
- **2°)** Soit $n \in \mathbb{N}$. $x_n > 0$ et $y_n \ge 0$ par la question précédente donc $x_{n+1} x_n = 2x_n + 4y_n > 0$ et $y_{n+1} y_n = 2x_n + y_n > 0$. Ainsi les suites (x_n) et (y_n) sont strictement croissantes.
- 3°) a) (x_n) est croissante donc, par le théorème de la limite monotone, (x_n) converge ou $x_n \underset{n \to +\infty}{\longrightarrow} +\infty$.

Par l'absurde, supposons que (x_n) converge vers un réel ℓ .

Comme pour tout $n \in \mathbb{N}^*, x_n \ge 1$, par passage à la limite $\ell \ge 1$.

$$\forall n \in \mathbb{N}^*, x_{n+1} = 3x_n + 4y_n \text{ donc } y_n = \frac{1}{4}(x_{n+1} - 3x_n).$$

Par opérations sur les limites, (y_n) converge vers $\frac{1}{4}(\ell - 3\ell) = -\frac{\ell}{2} < 0$.

Or, pour tout $n \in \mathbb{N}, y_n \geq 0$ donc, par passage à la limite, $-\frac{\ell}{2} \geq 0$: exclu.

On en déduit que $x_n \xrightarrow[n \to +\infty]{} + \infty$.

b) $\forall n \geq 1, y_n = 2x_{n-1} + 3y_{n-1}. \ y_{n-1} \geq 0 \text{ donc } y_n \geq 2x_{n-1}.$ Or $x_{n-1} \underset{n \to +\infty}{\longrightarrow} +\infty$, on en déduit donc que $y_n \underset{n \to +\infty}{\longrightarrow} +\infty$. $\mathbf{4}^{\circ}$) a) Soit $n \in \mathbb{N}$.

 $x_{n+1} - y_{n+1} = (4x_n + 4y_n) - (2x_n + 3y_n) = x_n + y_n > 0$. Donc $x_{n+1} > y_{n+1}$. De plus, $x_0 > y_0$ donc, pour tout $n \in \mathbb{N}$, $x_n > y_n$.

Pour $n \in \mathbb{N}$, on pose $H_n : y_n \ge n$.

★ $y_0 = 0 \ge 0$. Donc H_0 est vraie.

★ Soit $n \in \mathbb{N}$ fixé. On suppose que H_n est vraie. Montrons que H_{n+1} est vraie. Par $H_n, y_n \ge n$.

Or la suite y est strictement croissante donc $y_{n+1} > y_n$. Ainsi, $y_{n+1} > n$.

Les nombres y_{n+1} et n sont des entiers donc $y_{n+1} \ge n+1$.

Ainsi, H_{n+1} est vraie.

 \star On a montré par récurrence que pour tout $n \in \mathbb{N}, y_n \geq n$.

Finalement, pour tout $n \in \mathbb{N}, x_n > y_n \ge n$

- **b)** $n \xrightarrow[n \to +\infty]{} +\infty$ et, pour tout $n \in \mathbb{N}^*, y_n \ge n$. Donc $y_n \xrightarrow[n \to +\infty]{} +\infty$. De même, pour tout $n \in \mathbb{N}^*, x_n \ge y_n$ donc $x_n \xrightarrow[n \to +\infty]{} +\infty$.
- **5°) a)** Pour $n \in \mathbb{N}^*, y_n \ge n$. Ainsi, $y_n > 0$. Donc, la suite $(r_n)_{n \in \mathbb{N}^*}$ existe
 - **b)** Soit $n \in \mathbb{N}^*$. $r_n \sqrt{2} = \frac{x_n}{y_n} \sqrt{2} = \frac{x_n y_n \sqrt{2}}{y_n}$.

On sait, par 1, que $(x_n, y_n) \in \mathcal{C}$ donc $x_n^2 - 2y_n^2 = 1$.

$$r_n - \sqrt{2} = \frac{(x_n - y_n\sqrt{2})(x_n + y_n\sqrt{2})}{y_n(x_n + y_n\sqrt{2})} = \frac{x_n^2 - 2y_n^2}{y_n(x_n + y_n\sqrt{2})} = \frac{1}{y_n(x_n + y_n\sqrt{2})}$$

Ainsi, $r_n - \sqrt{2} \ge 0$ puisque $x_n > 0, y_n > 0$

 $x_n > y_n \ge n$ donc $x_n + y_n \sqrt{2} \ge n(1 + \sqrt{2})$ et $y_n \ge n$.

En multipliant les 2 inégalités précédentes, qui sont toutes à termes positifs, il vient : $y_n(x_n + y_n\sqrt{2}) \ge (1 + \sqrt{2})n^2$.

 $\sqrt{2} \ge 1 \text{ donc } (1 + \sqrt{2})n^2 \ge 2n^2. \text{ Ainsi, } y_n(x_n + y_n\sqrt{2}) \ge 2n^2.$

Les termes sont strictement positifs donc, en passant à l'inverse, $\frac{1}{y_n(x_n+y_n\sqrt{2})} \leq \frac{1}{2n^2}$

Finalement, pour tout $n \in \mathbb{N}^*, 0 \le r_n - \sqrt{2} \le \frac{1}{2n^2}$

Comme $\frac{1}{2n^2} \xrightarrow[n \to +\infty]{} 0$, on en déduit, par le théorème d'encadrement, que :

la suite (r_n) converge vers $\sqrt{2}$

c) Soit $n \in \mathbb{N}^*$. Comme $0 \le r_n - \sqrt{2} \le \frac{1}{2n^2}$, pour que r_n soit une valeur approchée de $\sqrt{2}$ à 10^{-2} près, <u>il suffit</u> que $\frac{1}{2n^2} \le 10^{-2}$.

$$\frac{1}{2n^2} \le 10^{-2} \iff 2n^2 \ge 100$$

$$\iff n^2 \ge 50$$

$$\iff n \ge 8 \qquad \text{car } 7^2 = 49 \text{ et } 8^2 = 64$$

Ainsi, $r_8 = \frac{x_8}{y_8}$ est une valeur approchée de $\sqrt{2}$ à 10^{-3} près.

Partie 2: Expression des suites (x_n) et (y_n)

- **6**°) *Méthode 1* :
 - a) Pour $n \in \mathbb{N}$, on pose $H_n : (3 + 2\sqrt{2})^n = x_n + y_n\sqrt{2}$.
 - ★ $x_0 + y_0\sqrt{2} = 1 = (3 + 2\sqrt{2})^0$. Donc H_0 est vraie.
 - \star Soit $n \in \mathbb{N}$ fixé. On suppose que H_n est vraie. Montrons que H_{n+1} est vraie.

$$(3 + 2\sqrt{2})^{n+1} = (3 + 2\sqrt{2})^n (3 + 2\sqrt{2})$$

$$= (x_n + y_n \sqrt{2})(3 + 2\sqrt{2}) \quad \text{par } H_n$$

$$= 3x_n + 2\sqrt{2}x_n + 3\sqrt{2}y_n + 4y_n$$

$$= 3x_n + 4y_n + \sqrt{2}(2x_n + 3y_n)$$

$$= x_{n+1} + \sqrt{2}y_{n+1} \quad \text{par définition des suites } x \text{ et } y$$

Ainsi, H_{n+1} est vraie.

- ***** On a montré par récurrence que pour tout $n \in \mathbb{N}, (3+2\sqrt{2})^n = x_n + y_n\sqrt{2}$
- **b)** $(3+2\sqrt{2})(3-2\sqrt{2})=9-4\times 2=1.$

Soit $n \in \mathbb{N}$. On en déduit que $(3 + 2\sqrt{2})^n (3 - 2\sqrt{2})^n = 1$.

Donc,
$$(3 - 2\sqrt{2})^n = \frac{1}{(3 + 2\sqrt{2})^n}$$
 puisque $3 + 2\sqrt{2} \neq 0$.

Ainsi, par 6a, $(3-2\sqrt{2})^n = \frac{1}{x_n + y_n\sqrt{2}}$ d'où $(3-2\sqrt{2})^n = \frac{x_n - y_n\sqrt{2}}{x_n^2 - 2y_n^2}$ par la méthode de la quantité conjuguée.

Or
$$(x_n, y_n) \in \mathcal{C}$$
 donc $x_n^2 - 2y_n^2 = 1$.

Finalement,
$$(3 - 2\sqrt{2})^n = x_n - y_n\sqrt{2}$$

c) Soit
$$n \in \mathbb{N}$$
. Par 6a et 6b,
$$\begin{cases} (3 + 2\sqrt{2})^n = x_n + y_n \sqrt{2} & L_1 \\ (3 - 2\sqrt{2})^n = x_n - y_n \sqrt{2} & L_2 \end{cases}$$

En effectuant $\frac{L_1 + L_2}{2}$, on obtient : $x_n = \frac{1}{2} \left((3 + 2\sqrt{2})^n + (3 - 2\sqrt{2})^n \right)$.

En effectuant
$$\frac{L_1 - L_2}{2\sqrt{2}}$$
, on obtient : $y_n = \frac{1}{2\sqrt{2}} \left((3 + 2\sqrt{2})^n - (3 - 2\sqrt{2})^n \right)$.

- **7**°) *Méthode 2* :
 - a) $\forall n \in \mathbb{N}, x_{n+2} = 3x_{n+1} + 4y_{n+1}$ en revenant à la définition de la suite x.

Or $y_{n+1} = 2x_n + 3y_n$ donc $x_{n+2} = 3x_{n+1} + 8x_n + 12y_n$.

Or
$$y_n = \frac{1}{4}(x_{n+1} - 3x_n)$$
 par définition.

Donc, $x_{n+2} = 3x_{n+1} + 8x_n + 3x_{n+1} - 9x_n$. Finalement, pour tout $n \in \mathbb{N}$, $x_{n+2} = 6x_{n+1} - x_n$

b) La suite (x_n) est donc une suite récurrente linéaire d'ordre 2, d'équation caractéristique $r^2 - 6r + 1 = 0$.

Le discriminant est $\Delta = 6^2 - 4 = 32 = 16 \times 2 = (4\sqrt{2})^2 > 0$.

Il y a deux solutions réelles : $\frac{6+4\sqrt{2}}{2} = 3+2\sqrt{2}$ et $3-2\sqrt{2}$.

Ainsi, $\exists ! (\lambda, \mu) \in \mathbb{R}^2, \forall n \in \mathbb{N}, x_n = \lambda r_1^n + \mu r_2^n$ en notant $\begin{cases} r_1 = 3 - 2\sqrt{2} \\ r_2 = 3 + 2\sqrt{2} \end{cases}$

Or $x_0 = 1$ et $y_0 = 0$. D'où $x_1 = 3x_0 + 4y_0 = 3$.

On en déduit que :
$$\begin{cases} \lambda + \mu = 1 & L_1 \\ \lambda r_1 + \mu r_2 = 3 & L_2 \end{cases} \text{ donc } \begin{cases} \lambda + \mu = 1 \\ \mu(r_2 - r_1) = 3 - r_1 & L_2 \leftarrow L_2 - r_1 L_1 \end{cases}.$$
 Or $r_2 - r_1 = 4\sqrt{2}$ et $3 - r_1 = 2\sqrt{2}$ donc
$$\begin{cases} \lambda = 1 - \mu = \frac{1}{2} \\ \mu = \frac{1}{2} \end{cases}.$$
 Finalement, pour tout $n \in \mathbb{N}, x_n = \frac{1}{2} \left((3 - 2\sqrt{2})^n + (3 + 2\sqrt{2})^n \right).$
$$\forall n \in \mathbb{N}, y_n = \frac{1}{4} (x_{n+1} - 3x_n).$$
 Donc, $y_n = \frac{1}{8} \left(r_1^{n+1} + r_2^{n+1} - 3r_1^n - 3r_2^n \right) = \frac{1}{8} \left(r_1^n (r_1 - 3) + r_2^n (r_2 - 3) \right).$ Ainsi, $y_n = \frac{1}{8} \left(-2\sqrt{2}r_1^n + 2\sqrt{2}r_2^n \right).$ Finalement, pour tout $n \in \mathbb{N}, y_n = \frac{\sqrt{2}}{4} \left((3 + 2\sqrt{2})^n - (3 - 2\sqrt{2})^n \right).$ Remarque : $\frac{\sqrt{2}}{4} = \frac{1}{2\sqrt{2}}$ donc on retrouve bien le même résultat que dans une question

Partie 3 : Un problème de carré parfait

précédente.

8°) Pour
$$n \in \mathbb{N}$$
 et $p \in \mathbb{N}$, $\sum_{k=0}^{n} k = p^2 \iff \frac{n(n+1)}{2} = p^2$.

Or,
$$(2n+1,2p) \in \mathcal{C} \iff (2n+1)^2 - 2(2p)^2 = 1$$

$$\iff 4n^2 + 4n + 1 - 8p^2 = 1$$

$$\iff 4n^2 + 4n = 8p^2$$

$$\iff \frac{n(n+1)}{2} = p^2$$

un couple (n,p) vérifie la condition (*) si et seulement si (2n+1,2p) appartient à la courbe $\mathcal C$

- 9°) a) Soit $N \in \mathbb{N}$. Pour montrer que N et N^2 ont même parité, il suffit de montrer que :
 - Si N est pair alors N^2 est pair
 - Si N est impair alors N^2 est impair

On suppose que N est pair. Alors, N s'écrit : N=2k où $k\in\mathbb{N}$. Ainsi, $N^2=4k^2=2\times 2k^2$ et $2k^2\in\mathbb{N}$ donc N^2 est pair.

On suppose que N est impair. Alors, N s'écrit : N=2k+1 où $k\in\mathbb{N}.$

Ainsi, $N^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$ et $2k^2 + 2k \in \mathbb{N}$ donc N^2 est impair.

N et N^2 ont même parité

b) Soit $(x, y) \in \mathbb{N}^2$. On suppose que $(x, y) \in \mathcal{C}$. Montrons que x est impair et y est pair. $(x, y) \in \mathcal{C}$ donc $x^2 - 2y^2 = 1$. Ainsi, $x^2 = 2y^2 + 1$. Comme $y^2 \in \mathbb{N}$, x^2 est impair.

Or x et x^2 ont même parité donc x est impair. On en déduit que x s'écrit x = 2n + 1 où $n \in \mathbb{N}$.

 $x^2 - 2y^2 = 1$ donc $(2n+1)^2 - 2y^2 = 1$ i.e. $4n^2 + 4n + 1 - 2y^2 = 1$. Ce qui s'écrit $y^2 = 2n^2 + 2n = 2(n^2 + n)$.

Or $n^2 + n \in \mathbb{N}$ donc y^2 est pair. Ainsi, y est pair.

Si un point de coordonnées $(x,y) \in \mathbb{N}^2$ est sur \mathcal{C} alors nécessairement x est impair et y est pair.

10°) On a montré dans 1 que, pour tout $n \in \mathbb{N}, x_n \in \mathbb{N}, y_n \in \mathbb{N}, (x_n, y_n) \in \mathcal{C}$.

Par la question précédente, on en déduit que x_n est impair et y_n est pair.

On en déduit par 8 que $\left(\frac{x_n-1}{2}, \frac{y_n}{2}\right)$ vérifie la condition (*).

Or, par 2, (x_n) est strictement croissante donc les entiers x_n sont tous distincts 2 à 2. Donc aussi les réels $\frac{x_n-1}{2}$. Ainsi, il y a une infinité de couples vérifiant la condition (*).

On a donc bien montré que :

il existe une infinité d'entiers naturels n tels que la somme $0+1+2+\cdots+n$ soit un carré parfait

Partie 4: Un calcul de partie entière

11°) Soit $X \in \mathbb{R}$ tel que $X \notin \mathbb{Z}$.

Alors, |X| < X < |X| + 1 donc -|X| - 1 < -X < -|X|.

 $\text{Comme} - \lfloor X \rfloor - 1 \text{ et} - \lfloor X \rfloor \text{ sont des entiers consécutifs, on en déduit que} \boxed{\lfloor -X \rfloor = - \lfloor X \rfloor - 1}$

12°) Soit $n \in \mathbb{N}^*$.

Si $y_n\sqrt{2}\in\mathbb{Z}$ alors, comme $y_n\in\mathbb{N}^*$, on en déduit que $\sqrt{2}\in\mathbb{Q}$. Ceci est exclu.

Donc $y_n\sqrt{2} \notin \mathbb{Z}$. Ainsi, par la question précédente, $\left[-y_n\sqrt{2}\right] = -\left[y_n\sqrt{2}\right] - 1$

13°) a) $8 < 9 \text{ donc } \sqrt{8} = 2\sqrt{2} < \sqrt{9} = 3 \text{ donc } 3 - 2\sqrt{2} > 0.$

De plus, $3 - 2\sqrt{2} < 1 \iff 2 < 2\sqrt{2} \iff 1 < \sqrt{2}$.

Or on a bien $1 < \sqrt{2}$ donc $3 - 2\sqrt{2} < 1$. On en déduit que $0 < 3 - 2\sqrt{2} < 1$.

D'où également, pour tout $n \in \mathbb{N}^*$, $0 < (3 - 2\sqrt{2})^n < 1$.

Ainsi, pour tout $n \in \mathbb{N}^*$, $\lfloor (3 - 2\sqrt{2})^n \rfloor = 0$

b) Soit $n \in \mathbb{N}^*$. Appliquons la fonction partie entière aux égalités des questions 6a et 6b, comme x_n est un entier, cela donne les deux relations suivantes :

$$\left| (3 + 2\sqrt{2})^n \right| = x_n + \left| y_n \sqrt{2} \right| \text{ et } \left| (3 - 2\sqrt{2})^n \right| = x_n + \left| -y_n \sqrt{2} \right|.$$

À l'aide de la question 13a puis de la question 12, la deuxième relation donne : $x_n = -|-y_n\sqrt{2}| = |y_n\sqrt{2}| + 1$.

D'où, en injectant dans la première relation, $|(3+2\sqrt{2})^n|=2|y_n\sqrt{2}|+1$.

Comme $\lfloor y_n \sqrt{2} \rfloor \in \mathbb{Z}$, on en déduit que $(3 + 2\sqrt{2})^n$ est un entier impair.

Exercice 3

1°) Soit $n \in \mathbb{N}$ tel que $n \geq 2$.

On a $0^n = 0$ donc $f_n(0) = -1 < 0$.

 $f_n(1) = \frac{3}{e} - 1$. Or on sait que 0 < e < 3 donc $\frac{3}{e} > 1$ donc $f_n(1) > 0$.

2°) • f_n est dérivable sur \mathbb{R}_+ par somme, produit et composition de fonctions dérivables, et pour tout $x \in \mathbb{R}_+$,

$$f'_n(x) = 3(nx^{n-1}e^{-x^2} - 2x^{n+1}e^{-x^2}) = 3x^{n-1}e^{-x^2}(n-2x^2)$$

exp est strictement positive et pour $x \in \mathbb{R}_+$, $x^{n-1} \ge 0$, $x^{n-1} = 0 \iff x = 0$.

$$n-2x^2 \ge 0 \iff x^2 \le \frac{n}{2}$$
 $n-2x^2 = 0 \iff x = \sqrt{\frac{n}{2}} \quad \text{car } x \ge 0$ $\iff x \le \sqrt{\frac{n}{2}} \quad \text{car } x \ge 0$

On en déduit le tableau de variations suivant (on a bien $1 \le \sqrt{\frac{n}{2}}$ car $n \ge 2$) :

x	0		1		$\sqrt{\frac{n}{2}}$		$+\infty$
$f'_n(x)$	0	+		+	0	_	
f_n	-1	$3e^{i}$	-1 - 1 >	> 0	→ \		- 1

• Justification de la limite en $+\infty$:

Pour tout
$$x \in \mathbb{R}_+$$
, $f_n(x) = 3\frac{x^n}{e^{x^2}} - 1$. Or $e^x = o(e^{x^2})$ donc $\frac{x^n}{e^{x^2}} = o\left(\frac{x^n}{e^x}\right)$. Comme $\frac{x^n}{e^x} \xrightarrow[x \to +\infty]{} 0$ par croissances comparées, on en déduit que : $\lim_{x \to +\infty} \frac{x^n}{e^{x^2}} = 0$. Donc $\lim_{x \to +\infty} f_n(x) = -1$.

- 3°) Appliquons le théorème de la bijection sur [0,1]:
 - \star [0, 1] est un intervalle
 - \star f_n est continue sur [0,1]
 - \star f_n est strictement croissante sur [0,1]

Donc, par le théorème de la bijection, f_n réalise une bijection de [0,1] dans $[f_n(0), f_n(1)]$ i.e. de [0,1] dans $[-1,3e^{-1}-1]$.

Comme $f_n(1) = 3e^{-1} - 1 > 0$ (c.f. question 1), on a $0 \in [-1, 3e^{-1} - 1]$. Ainsi, 0 admet un unique antécédent u_n dans [0, 1]. Donc, sur [0, 1], f_n s'annule en un unique réel u_n . Comme, de plus, $f_n(0) < 0$ et $f_n(1) > 0$, il vient $0 < u_n < 1$.

- $f_n(1) > 0$ et f_n est strictement croissante sur $\left[1, \sqrt{\frac{n}{2}}\right]$ donc f_n est strictement positive sur cet intervalle : elle ne s'y annule pas. On obtient au passage que $f_n\left(\sqrt{\frac{n}{2}}\right) > 0$.
- Par un raisonnement analogue au premier point, on démontre que f_n réalise une bijection de $\left[\sqrt{\frac{n}{2}}, +\infty\right[\text{dans } \right] 1, f_n\left(\sqrt{\frac{n}{2}}\right) \right]$. Comme $f_n\left(\sqrt{\frac{n}{2}}\right) > 0$, on a $0 \in \left] 1, f_n\left(\sqrt{\frac{n}{2}}\right) \right]$. Ainsi 0 admet un unique antécédent v_n dans $\left[\sqrt{\frac{n}{2}}, +\infty\right[\text{i.e. sur } \left[\sqrt{\frac{n}{2}}, +\infty\right[, f_n \text{ s'annule en un unique réel } v_n. \text{ De plus, } f_n\left(\sqrt{\frac{n}{2}}\right) > 0 \right]$ donc $v_n > \sqrt{\frac{n}{2}}$.

Il existe donc exactement deux réels positifs u_n et v_n tels que $f_n(u_n) = f_n(v_n) = 0$. De plus, $0 < u_n < 1 \le \sqrt{\frac{n}{2}} < v_n$.

4°)
$$\forall n \geq 2, \ v_n \geq \sqrt{\frac{n}{2}} \text{ et } \lim_{n \to +\infty} \sqrt{\frac{n}{2}} = +\infty \text{ donc } \lim_{n \to +\infty} v_n = +\infty.$$

- **5°) a)** Soit $n \ge 2$. Par définition de u_n , on a : $f_n(u_n) = 0$ i.e. $3u_n^n e^{-u_n^2} 1 = 0$. Puisque $u_n > 0$, on en tire : $e^{-u_n^2} = \frac{1}{3u_n^n}$.
 - **b)** Soit $n \ge 2$. $f_{n+1}(u_n) = 3u_n^{n+1}e^{-u_n^2} 1 = 3u_n^{n+1}\frac{1}{3u_n^n} 1 = u_n 1$ Comme $u_n < 1$, il vient : $f_{n+1}(u_n) < 0$.
 - c) Soit $n \geq 2$.

 $f_{n+1}(u_n) < 0 = f_{n+1}(u_{n+1})$. Comme f_{n+1} est croissante sur [0,1] et u_n et u_{n+1} sont des éléments de [0,1], on en déduit : $u_n < u_{n+1}$.

Ainsi, la suite $(u_n)_{n\geq 2}$ est strictement croissante

- d) La suite $(u_n)_{n\geq 2}$ est croissante et majorée (par la constante 1), donc $|(u_n)|$ converge | Notons ℓ sa limite; comme $(u_n)_{n\geq 2}$ est croissante, pour tout $n\geq 2, u_2\leq u_n<1$. Par passage à la limite : $u_2 \le \ell \le 1$. Comme $u_2 > 0$, on a bien $0 < \ell \le 1$
- **6°)** a) Soit n un entier tel que $n \geq 2$. On a :

$$3u_n^n e^{-u_n^2} = 1$$

$$\operatorname{donc} \ln \left(3u_n^n e^{-u_n^2}\right) = \ln(1)$$

$$\ln(3) + n \ln(u_n) - u_n^2 = 0 \quad \operatorname{car} u_n > 0$$

$$\ln(u_n) = u_n^2 - \ln(3)$$

b) *Méthode 1* :

$$\forall n \ge 2, \ln(u_n) = \frac{u_n^2 - \ln(3)}{n}.$$

$$u_n \underset{n \to +\infty}{\longrightarrow} \ell \text{ donc, par opérations, } \frac{u_n^2 - \ln(3)}{n} \underset{n \to +\infty}{\longrightarrow} \ell$$

 $u_n \xrightarrow[n \to +\infty]{} \ell$ donc, par opérations, $\frac{u_n^2 - \ln(3)}{n} \xrightarrow[n \to +\infty]{} 0$. Ainsi, $\ln(u_n) \xrightarrow[n \to +\infty]{} 0$. Or $e^x \xrightarrow[x \to 0]{} 1$ donc $u_n \xrightarrow[n \to +\infty]{} 1$.

Méthode 2 : On raisonne par l'absurde : on suppose $\ell \in]0,1[$.

Par continuité de ln en ℓ , $\lim_{n \to +\infty} \ln u_n = \ln \ell < 0$ car $\ell \in]0,1[$. Donc $\lim_{n \to +\infty} n \ln u_n = -\infty$. D'autre part, $\lim_{n \to +\infty} (u_n^2 - \ln 3) = \ell^2 - \ln 3 \in \mathbb{R}$.

Il y a donc contradiction de l'unicité de la limite.

On en déduit que $|\ell=1|$.

- c) Comme $u_n \xrightarrow[n \to +\infty]{} 1$, $u_n^2 \xrightarrow[n \to +\infty]{} 1$, donc $u_n^2 1 \xrightarrow[n \to +\infty]{} 0$ ce qui signifie : $u_n^2 1 = o(1)$. D'où $\frac{u_n^2 \ln 3}{n} = \frac{1 + o(1) \ln 3}{n}$ donc $\frac{u_n^2 \ln 3}{n} = \frac{1 \ln 3}{n} + o\left(\frac{1}{n}\right)$.
- **d)** Pour tout $n \ge 2$, l'égalité $n \ln u_n = u_n^2 \ln 3$ donne $\ln(u_n) = \frac{u_n^2 \ln 3}{n}$ d'où

$$u_n = \exp\left(\frac{u_n^2 - \ln 3}{n}\right)$$

$$= \exp\left(\frac{1 - \ln 3}{n} + o\left(\frac{1}{n}\right)\right)$$

Or $e^u = 1 + u + o(u)$ et, en posant $u = \frac{1 - \ln 3}{n} + o\left(\frac{1}{n}\right)$, on a bien $u \xrightarrow[n \to +\infty]{} 0$ et un o(u)est un $o\left(\frac{1}{n}\right)$.

Ainsi
$$u_n = 1 + \frac{1 - \ln 3}{n} + o\left(\frac{1}{n}\right); \boxed{\alpha = 1 - \ln 3}$$
 convient.