Probabilités - Statistiques TP 1

1. Lancé d'une pièce

On considère une pièce truquée qui renvoie pile avec probabilité $p \in [0, 1]$, et face avec probabilité 1 - p. On lance la pièce, et on gagne 1 point si l'on obtient pile, 0 point si l'on obtient face.

- (a) Écrire une fonction qui prend pour argument un réel $p \in [0,1]$, et qui simule ce lancé de pièce, c'est-à-dire qui renvoie 1 avec probabilité p ou 0 avec probabilité 1-p. La fonction devra tester si p est bien dans [0,1] et afficher un message d'erreur dans le cas contraire.
- (b) Simuler 10000 lancés de pièce en prenant $p = \frac{1}{4}$ et compter la proportion de cas pour lesquels on obtient 1. Vos résultats sont-ils cohérents?
- (c) Écrire une fonction qui prend pour arguments un entier naturel n non nul, et un réel $p \in [0, 1]$, et qui renvoie le nombre de points obtenus après n lancés.
- (d) On peut considérer le total de points après n lancés comme une variable aléatoire $X: \Omega \to \{0,1,\ldots,n\}$. Quelle loi suit alors X? Utiliser cette propriété pour écrire une autre fonction permettant de renvoyer le nombre de points obtenus après n lancés.
- (e) Vérifier que les deux fonctions précédentes permettent bien de modéliser la même variable aléatoire.

2. Lancé de dés

On lance trois dés distincts et équilibrés. On note A l'événement « les numéros sont égaux », B : « au moins un des numéros est égal à 3 » et C : « la somme des numéros est égale à 4 »

- (a) Écrire une fonction qui simule cette expérience et qui renvoie ${\tt True}$ si l'évènement A se produit, et ${\tt False}$ sinon.
- (b) Écrire une fonction qui simule cette expérience et qui renvoie True si l'évènement B se produit, et False sinon.
- (c) Écrire une fonction qui simule cette expérience et qui renvoie True si l'évènement C se produit, et False sinon.
- (d) En déduire une fonction qui renvoie True si un des trois évènements A, B ou C se produit, et False sinon.
- (e) Calculer (théoriquement) $P(A \cup B \cup C)$. En répétant un grand nombre de fois l'expérience numérique précédente, vérifier qu'on retrouve bien le résultat attendu.

3. Loi binômiale et loi de Poisson

Soient $p \in [0,1]$ et $n \in \mathbb{N}$. On considère une variable aléatoire X qui suit la loi binômiale B(n,p). On rappelle que dans ce cas :

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}.$$

- (a) Écrire une fonction qui prend pour arguments p et n, et qui modélise la variable aléatoire X.
- (b) Soit $\lambda > 0$. On considère maintenant une variable aléatoire Y qui suit la loi binômiale $B(n, p_n)$, avec $p_n := \frac{\lambda}{n}$. Écrire une fonction qui prend pour arguments λ et n, et qui modélise Y. Pour $\lambda = 2$ et n = 50, simuler 10000 réalisations de Y et représenter leurs proportions sur un histogramme. Même question pour n = 100, et n = 200.
- (c) Soit maintenant une variable aléatoire Z qui suit la loi de Poisson de paramètre λ . Écrire une fonction qui prend pour argument λ et qui modélise Z. Pour $\lambda=2$, simuler 10000 réalisations de Z et représenter leurs proportions sur un histogramme en ignorant les réalisations de l'évènement (Z>200).
- (d) Comparer les histogrammes obtenus aux questions (b) et (c). Que remarque-t-on? Montrer théoriquement que ce résultat était attendu (cf Exercice 5.5 du cours).