DIALOG(R) File 351: Derwent WPI (c) 2003 Thomson Derwent. All rts. reserv.

Image available WPI Acc No: 1997-353433/199733

XRAM Acc No: C97-114258

Semiconductor device e.g. MOSFET using double resurf effect - has epitaxial monocrystalline silicon@ layer where more than twice the concentration of dopant and 75 per cent of the charge exists in the lowermost part of the layer.

Patent Assignee: INT RECTIFIER CORP (INRC)

Inventor: RANJAN N

Number of Countries: 009 Number of Patents: 012

Patent Family	:					
Patent No	Kind Date	Applicat No	Kind	Date	Week	
GB 2309589	A 19970730	GB 971069	A	19970120	199733	В
FR 2744836	A1 19970814	FR 97467	A	19970117	199740	
DE 19701189	A1 19971030	DE 1001189	A	19970115	199749	
JP 9307110	A 19971128	JP 976235	A	19970117	199807	
TW 328160	A 19980311	TW 97100360	A	19970115	199832	
KR 97060378	A 19970812	KR 971264	A	19970117	199838	
US 5801431	A -19980901	US 9610162	P	19960118	199842	
		US 97783667	A	19970115		
		US 97803071	A	19970220		
US 5861657	A 19990119	US 9610162	P	19960118	199911	
		US 97783667	A	19970115		
SG 55267	A1 19981221	SG 97115	A	19970117	199929	
GB 2309589	B 20010103	GB 971069	A	19970120	200102	
IT 1289920	B 19981019	IT 97MI94	A	19970117	200131	
KR 300674	B 20011130	KR 971264	A	19970117	200246	

Priority Applications (No Type Date): US 9610162 P 19960118; US 97783667 A 19970115: US 97803071 A 19970220

Pa	tent Deta	ails:			
Pa	tent No	Kind Lan	Ρg	Main IPC	Filing Notes
GB	2309589	A	22	H01L-021/20	
FR	2744836	A1	21	H01L-029/36	
DE	19701189	9 A1	12	H01L-029/78	
JP	9307110	A	8	H01L-029/78	
TW	328160	A		H01L-021/76	
KR	97060378	в А		H01L-021/208	
US	5801431	A		H01L-023/552	Provisional application US 9610162
					Div ex application US 97783667
US	5861657	A		H01L-023/58	Provisional application US 9610162
SG	55267	A1		H01L-021/20	
GE	2309589	В		H01L-021/20	
IT	1289920	В		H05K-000/00	
KR	300674	В		H01L-021/208	Previous Publ. patent KR 97060378

Abstract (Basic): GB 2309589 A

A semiconductor device comprises a flat silicon substrate with an epitaxial layer (10) of monocrystalline silicon deposited on it which has a given total charge concentration. The epitaxial layer has a uniform thickness and a graded concentration where at least about 75% of the total charge is in the bottom 25% of the layer thickness (40), the epitaxial layer having P-N junctions formed on its upper surfaces. One of the P-N junctions comprises a resurf junction (30) having a depth of less than about 75% of the epitaxial layer thickness. The epi pinch between the resurf junction is in a lower concentration region so that any slight variation in the depth of the resurf junction has a relatively small effect on the operation of the device. A method for

preparing the device is also claimed.

USE - For receiving junctions of high voltage devices using a double resurfing technique.

ADVANTAGE - The thickness of the epitaxial layer is reduced so that deep isolation diffusion is not required to isolate different circuit parts from each other which require long diffusion times at 1200 deg. C or more resulting in lower yields due to defects and lower throughput.

Dwg.2/6
Title Terms: SEMICONDUCTOR; DEVICE; MOSFET; DOUBLE; RESURF; EFFECT;
EPITAXIAL; MONOCRYSTAL; SILICON; LAYER; MORE; TWICE; CONCENTRATE; DOPE;
PER: CENT; CHARGE; EXIST; LOW; PART; LAYER

Derwent Class: L03

International Patent Class (Main): H01L-021/20; H01L-021/208; H01L-021/76; H01L-023/552; H01L-023/58; H01L-029/36; H01L-029/78; H05K-000/00

International Patent Class (Additional): H01L-021/336; H01L-021/8232; H01L-029/06; H01L-029/167; H01L-029/73; H01L-029/739; H01L-029/861; H01L-029/78

File Segment: CPI

Manual Codes (CPI/A-N): L04-A01; L04-C01; L04-C02; L04-E01B1

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開平9-307110

(43)公開日 平成9年(1997)11月28日

- (51) Int.Cl.*	識別配号	庁内整理番号	ΡI			技術表示箇所
H01L 29/78			H01L	29/78	301W	
29/06				29/06		

		審査請求 有 請求項の数6 OL (全8頁
(21) 出願番号	特顯平9-6235	(71)出版人 591074389 インターナショナル・レクチファイヤー・
(22)出顧日	平成9年(1997)1月17日	コーポレーション INTERNATIONAL RECTI
(31) 優先権主張番号	60/010162	FIER CORPORATION
(32) 優先日	1996年1月18日	アメリカ合衆国90245カリフォルニア州
(33) 優先権主張国	米国 (US)	エル・セグンド、カンザス・ストリート 233番
		(72)発明者 ニラジ・ランジャン
		アメリカ合衆国90246カリフォルニア州エ
		ル・セグンド、ロマ・ピスタ・ナンバー・
		ピー124番
		(74)代理人 弁理士 青山 葆 (外1名)

(54) 【発明の名称】 半導体装置及びシリコンウエハの鋼製方法

(57)【要約】

【課題】 エピタキシャル層を薄くすることができる半 導体装置を提供する。

【解決手段】 半導体装置のエピタキシャル層10は、 絶縁されたウエルの少なくとも1つにリサーフ拡散部5 1を有している。ここで、ウエルは接合拡散部23によ って仕切られている。エピタキシャル層10の下部にお ける電荷の配置割合を増やすことによって、該エピタキ シャル層10の厚さが低減される。

【特許請求の範囲】

【請求項1】 内部に任意の全電荷密度を伴った、堆積 された単結晶シリコンのエピタキシャル層を有する、平 坦なシリコン基板を含んでいる半端体装置であって、 上記エピタキシャル層が、概ね切一な厚さと次第に変化 する密度とを伴っていて、これにより上記エピタキシャ ル層中の全電荷の少なくとも約75%が、上記エピタキ シャル層の厚み方向の底部がに存在し、

上記エピタキシャル層が、その上面に形成された複数の P-N接合部を有しており、

上記接合部の1つが、上記エピタキシャル層の厚みの約 75%よりも実質的に小さい深さを伴ったリサーフ接合 部を含んでいて、これにより上記リサーフ接合部の下の エピタキシャルピンチ部が低密度領域内に存在し、上記 リサーフ接合の深さ方向のサレの変化が該装置の操作に 比較的小さい効果しか与えないことを特徴とする半導体 装置。

【請求項2】 上記装置が600ボルトを超える定格電 圧を有し、かつ上記エピタキシャル層の厚さが約10ミ クロンであることを特徴とする、請求項1にかかる半導 体装置、

【請求項3】 上記エピタキシャル層の全電荷の少なく とも上記75%が、上記エピタキシャル層の底部の約1 ~4ミクロンより小さい範囲内に存在することを特徴と する。請求項2にかかる半導体装置。

【請求項4】 上記エビタキシャル層の上記底部の1~ 4ミクロンが、平方あたり約3000オームより大きい 面積抵抗を有し、かつ上記エビタキシャル層の上部の8 ミクロンの面積抵抗が平方あたり約4000オームより 大きいことを特徴とする、請求項3にかかる半導体装 要

【請求項5】 該装置が600ボルトを超える定格電圧 を有し、かつ上記エピタキシャル層の厚さが約10ミク ロンであることを特徴とする、請求項1~4のいずれか 1つにかかる半速休装置。

【請求項6】 各々が少なくとも第1及び第2の接合分 離領域を有している高電圧装置用のチップである。横方 向に間隔をあけて配置された複数の半導体チップが内部 に践けられるシリコンウエハの調製方法であって、

任意の逆定格電圧に対して、選択された密度のシリコン ウエハ基板を選択する工程と、

任意のドープ原子の濃度が第1濃度であり、厚さが約2 ミクロンよりも小さい第1領域を形成する工程と、

上記第1 領域の頂部に、厚さが約7ミクロンよりも大きく、かつ上記第1 領域内の上記ドープ原子と同じ極性の 任意のドープ原子の濃度が、上記第1領域中の濃度より も実質的に低い第2濃度であるエピタキシャル層を形成 し、これにより上記章1領域及び上記エピタキシャル層 の中の全電荷の少なくとも約75%が上記第1領域中に 配置されるようになっている工程とを含んでいることを 特徴とするシリコンウエハの調製方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体装置及びシ リコンウエハの調製方法に関するものであり、より詳し くは2重リサーフ技術を利用する高電圧半導体装置の接 6を受け入れるための新規なエピタキシャル基板に関す るものである。

[0002]

【従来の技術】高電圧半導体装置は、普通、高電位差を 停った領域間に低温度領域であるリサーフ (resurf) 領 越を有している。リサーフ側線は、電圧差が増加するの に伴って減少し、最大の電圧差が印加される前に完全に 消滅してしまう。2重リサーフ技術においては、逆の極 性の2つのリサーフ積緩が存在し、これは両方とも、 印加される電位差が増加するのに伴って減少する。この ような装置及び2重リサーフ技術を用いる利点は、米国 特許4.8664,495号に記載されている。

【0003】2重リサーフ技術を用いる高電圧装置においては、ある極性のリサーフ領域が、適当なドーブ材の注入及び拡散により、逆の格性のエピタキシャル成長衛中につくられる。拡散されたリサーフ領域によってはさみつけられたエピタキシャル領域(pinched epitaxial resion)は、第2のリサーフ領域として役立つ。頂部の(拡散された)リサーフ層中の電荷がおよそ1×1012cm²に制御され、かっ尾がかりは5カイけられたエピタキシャル層)リサーフ領域中の電荷がおよそ1、5〜2×1012cm²に制御されかを振ります。

[0004]

【発明が解決しようとする課題】このような構造の1つの結果は、拡散されたリサーフ層の深さがわずかに変化するのに伴って、はさみつけられたエピタキシャル領域中の電荷が実質的に変化した放電電圧を超える状態での制御が損なわれることである。この効果は、より厚いエピタキシャル層を用いることにより補償されなければならない。しかしながら、厚いエピタキシャル層は、次のようないくつかの欠点を有している。

【0005】(1) 集積回路上の異なる回路部分を相互 に電気的に絶縁させるためにより深い絶縁拡散部が必要 とされ、1200° C 又はこれより高い温度でのより長 い拡散時間が必要となり、その結果スループット性能が 低下する。

(2)1200°C又はこれより高温での非常に長い拡 散時間は、生産性の低下を招くといった不具合を生じさ せる。

(3)1200° C又はこれより高温での非常に長い拡 散時間はまた、より大きい横方向の拡散に起因して、絶 縁拡散部の幅の増加を招き、チップ上の有効面積を減少 させる。

[0006]

【課題を解決するための手段】本発明によれば、エビタキシャル層の厚さが実質的に近域され、電荷分布が修正される。かくして、底部のリサーフ電荷(はさみつけられたエピタキシャル領域)の大部分(約75%より大きく、好ましくは80%より大きい)は、該エビタキシャル層の底部の1~4ミクロン内、又は該エビタキシャル層の底部のおよそ25%内もしくは好ましく20%内に含まれる。該エビタキシャル層の所部は非常に軽くドービングされ、底部リサーフ電荷のわずかな部分を含んでいる。

- 【0007】下部エピタキシャル領域中の増加する電荷は、次の2つの手段のいずれか1つにより、ウエハ製造工程の始めに導入されることができる。
- (1)軽くドーピングされた領域のエピタキシャル成長 に先立って、基板ウエハ中に適当なドープ材が注入され ている間に、拡散が伴われる。
- (2)薄い軽くドーピングされたエピタキシャル層が最 初に成長させられるエピタキシャル成長工程の間に、よ り厚い軽くドープされたエピタキシャル層の成長が伴わ れる。
- 【0008】結果として得られる構造においては、頂部の(拡散された)リサーラ領域の深さの変化は、その下のはさみつけられた領域がたきれる電荷に対して非常に小さい効果しか与えないであろう。これは、任意の放電電圧に対して、非常に薄いエピタキシャル層でもって放電電圧を超える状態でのより良好な制御を招く。より薄いエピタキシャル層は、対定に、傾電に)、絶縁拡散部を形成するのに必要な拡散処理時間を低減し、そして絶縁拡散部はより小さくする。
- [0009] 本発明のもう1つの特徴として、完成されたデバイスの高温遊バイアス特性が、該デバイス表面上の絶縁酸化物中の横方向に間隔をあけて配置されたポリシリコンリングを使用している間に、プラスチックのハウジングからの汚染イオンがチャンネル領域に流れ込むのを防止するために、デーな電を被覆している酸化物の上方で金属化を使用している間に実質的に改善され
- 【0010】完成されたデバイスのでこぼこは、Nチャンネルレベルのシフトデバイス中のNMOSデバイスを 部分的に短縮する間隔をあけて配置された短縮バーの使 用により改善される。
- [0011] 具体的には、本発明の1つの態様は、内部 に任意の全電荷密度を伴った、堆積された単結晶シリコ ンのエピタキシャル層を育る、平坦なシリコン基板を 含んでいる半導体装置において、上記エピタキシャル層 が、概ね均一な厚さと次第に変化する密度とを伴ってい て、これにより上記エピタキシャル層中の全電荷の少な くとも約75%が、上記エピタキシャル層の厚み方向の

残りの底部内に存在し、上記エピクキシャル層が、その 上面に形成された複数のP-N接合を有しており、上記 接合の1つが、上記エピクキシャル層の厚みの約75% よりも実質的に小さい深さを伴ったリサーフ接合を含ん でいて、これにより上記リサーフ接合の下のエピクキシ ャルピンチ部が低密度領域内に存在し、もって上記リサー フ接合の深さ方向の若干のばらつきが設装置の操作に 比較的小さい効果しか与えないことを特徴とするもので ある。

【0012】この半導体装置においては、上記装置が600ボルトを超える定格電圧を有し、かつ上記エピタキシャル層の厚さが約10ミクロンであるのが好ましい。ことをまた、上記半導体装置においては、上記エピタキシャル層の全電荷の少なくとも上記75%が、上記エピタキシャル層のの底部の約1~4ミクロンより外さい範囲内に存在するのが好ましい。さらに、上記半導体装置においては、上記エピタキシャル層の上記底部の1~4ミクロンが、上記エピタキシャル層の上部の8ミクロンの面積抵抗が平方あたり約400プームより大きいのが好ましい。ここで、上記半導体装置においては、該装置が600ボルトを超える定格電圧を有し、かつ上記エピタキシャル層の厚きが約10ミクロンであるのが一個好ましい。ここで、上記半導体装置においては、該装置が600ボルトを超える定格電圧を有し、かつ上記エピタキシャル層の厚きが約10ミクロンであるのが一個好ましい。

【0013】本発明の第2の態様は、各々が少なくとも 第1及び第2の接合分離領域を有している高電圧装置用 のチップである、横方向に間隔をあけて配置された複数 の半導体チップが内部に設けられるようになっているシ リコンウエハの調製方法において、任意の逆定格電圧に 対して、選択された密度のシリコンウエハ基板を選択す る工程と、任意のドープ原子の濃度が第1濃度であり、 厚さが約2ミクロンよりも小さい第1領域を形成する工 程と、上記第1領域の頂部に、厚さが約7ミクロンより も大きく、かつ上記第1領域内の上記ドープ原子と同じ 極性の任意のドープ原子の濃度が、上記第1領域中の濃 度よりも実質的に低い第2濃度であるエピタキシャル層 を形成し、これにより上記第1領域及び上記エピタキシ ャル層の中の全電荷の少なくとも約75%が上記第1領 城中に配置されるようになっている工程とを含んでいる ことを特徴とするものである。

[0014]

【発明の実施の形態】図1には、従来技術にかかる水平 伝導タイアのダイオードが示され、このダイオードの接 合部は、P型基板11の頂部に堆積された単結晶シリコ ンからなるNエピタキシャル層のNウエル10内に形成 されている、N・拡散部よ、端子Aを備えた陽電極12 の接触抵抗を低減する。リング形の電極13はデバイス の接触にだるある。

【0015】エピタキシャル層10は、幾何学的にはリング形であるがその他の任意の幾何学的形状とすること

ができる拡散部23のような1つ又はこれより多くのP型絶縁拡散部によって、複数の絶縁されたウエル20、21及び22に分割されている。降極側のコンタクト部3は、P・領域23の頂部に堆積されている。拡散部23は、絶縁領域又はウエル20、21及び22を絶縁するために、領域10台領域11との間のP/N界面を遮断しうる十分な深さをもっていなければならない。ウエル21及び22は、所望の分散形又は集積形の回路配置中に、ダイオード、MOSゲートデバイス及び/又はパイホーラデバイスを形成するための所望の接合パターンを含んでいてもよい。

【0016】図1に示すデバイスが、例えば600ポルトを超える高電圧デバイスである場合は、リング形のP・リサーフ領域30が設けられてもよく、これは1×1012原子/cmiの全電荷を有し、ダイオードの電荷12、13間に最大の逆電圧がかけられたときには完全に消失する傾向がある。並バイアス下におけるパンチスルー放電(突き抜け放電)を防止するために、例えば600ポルト又はこれを超える高電圧がかけられる従来技術にかかるエピタキシャル層10は、およそ20~25ミクロンの厚さにつくられ、その表面で測定される均一な、抵抗はおよそ3オーム・cmである。

【0017】エピタキシャル層10が比較的厚くなる結果、横方向の拡散に起因して、P型地縁拡散部23もまた比較的広くなる。これは、拡散部23が全チップ面積の比較的大きい部分を占め、種々の接合を含んでいるウエルの有効面積を減少させるといった結果を招く。さらに、厚いエピタキシャル層10は、これから個々のチップ(又は、ダイ)が形成されるウエハのストを上昇させ、処理工程時間を長引かせ、そして長時間の高温処理を必要とすることに起因する付加的な損害を生じさせる

【0018】領域30の深さは、典型的にはおよそ5ミクロンである。この深さは、製造のばらつきに起因して変化するので、電荷密度が領域30の下側に大容量のエピタキシャル層を設けることによって低減されなければ、領域30の下のはさみつけられたエピタキシャル層(エピ・ピンチ)はその下側に存在する電荷に大きな効果を与えるであろう。

【0019】図2は本発明にかかる半導体装置を示しており、図2において、図1中の要素と同一の番号が付されたものはたし同一の要素を示している。本発明によれば、図1の層10中のNキャリアと同一の全濃度が図2においても採用されるが、全電荷の大部分をエビタキシャル層10の底部における厚さが小さい部分40中に入れることにより再配分される。例えば、領域40は、層10の全厚みの10~40%とすることができるが、層10の2~4倍の濃度をもつであう。しかしながの、領域400厚さと濃度の組み合わせは、この領域400厚さと濃度が組み合わせは、この領域40の厚さと濃度が10㎡でm²となる結果となる

であろう。本発明の好ましい実施の形態においては、領域40は、その厚さが2ミクロンであり、およそ7×1 0¹⁵cm⁻³ののドーブ濃度を伴っている。

[0020] このように領域10中の全電荷を再配分することにより、エピタキシャル層又は領域100厚さが 実質的に低減され、例えば600ボルトの放電電圧に対 しては20ミクロンから10ミクロンに低減される。これはさらに、純緑拡散部23に必要とされる深さ、ひいてはその横方向の面積を実質的に低減する。その結果、活動的な回路又は部品のためのチップの上により広い面積が電保される。とに、拡散話23を駆動するのに必要な時間が保される。とらに、拡散器23を駆動するのに必要な時間が保される。とらに、拡散器23を駆動するのに必要な時間が保される。とい、拡散器24とのようといかでは24時間であるのが、10ミクロンの厚さのエピタキシャル層のものでは24時間であるのが、10ミクロンの厚さのエピタキシャル層のものになれば6時間に振ぬされる。

【0021】

長谷的には、リサーフ領域30の下のはさ みつけられたエピタキシャル領域中の全電荷の少しの部 分のみがエピタキシャル領域10の頂部からくるので、 領域30の深さのばらつきは、はさみつけられたエピタ キシャル領域内の電荷により小さい効果しか与えないで あろう。

【0022】基板11は、従来のどのようなP型基板で あってもよく、5~25ミリの厚さを備えていればよ い。基板の抵抗は、故電電圧の要求に基づいて選択される。例えば、600ボルトの放電電圧については基板1 1の抵抗はおよそ60オーム・cmであり、1200ボルトについてはその抵抗はおよそ150オーム・cmである。

【0024】比較的強くドープされた領域40(領域10に比べて)はまた、1~2ミクロンの深さにドープ材を入れるための拡散が後に続く、P型基板11中へのリンイオン又は上業イオンの直接注入によってもつくられることができる。注入量及び打ち込み拡散条件は、面積抵抗が平方あたり3000~4000オームとなるように選択される。エピタキシャル層10は、この後拡散部40の頂部で成長させられる。

【0025】頂部のエピタキシャル層(領域10)の厚さは、P・リサーフ領域30の深さと強くドープされた 領域40中のドープ村の種類とに応じて選択された 例えば、P・リサーフ領域30がおよそ5ミクロンの深さ でありかつ領域40に比紫系ドープ村が用いられる場 合、領域10については、およそ8ミクロンの厚さが選 択される。P・リサーフ領域30の厚さを低減すること により、頂部のエピタキシャル領域10の厚さをさらに 低減することが可能である。

【0026】領域10の抵抗は、集積回路のその他の部分によって課せられる要求に応じて2~4オーム・cmとされることができる。領域10の抵抗が低ければ低いほど、Pリサーフ領域30中の電荷を削削することが一層せがかしくなる。底部のエピタキシャル領域40を近頂部のエピタキシャル領域10の厚さ及び抵抗の選択は、1.5~2.0×101cm*のはさみつけられたエピタキシャル電荷(Pリナーフ領域30の下の)、又はすべての処理工程の終わりに平方あたり2800~3500オームのはさみつけられたエピタキシャルのはであり、アインの大力である。

【0027】領域10及びそのサブ領域40は、リン又は上来のいずれかでドーピングされることができる。より薄い領域が望まれる場合は、ヒ素が好ましい。なぜなら、ヒ素はリンよりもより低い拡散係数をもち、それゆえ強くドーピングされた領域40から弱くドーピングされた領域10への自動的なドーピングの発生が少なくなるからである。

【0028】図3は、横方向伝導のMOSFETが図2のウエル21内に形成される場合に、本発明がどのようにして用いられることができるかを示している。図3の番号と同一の番号は同一の部村を示している。図3において、接合パターンは、リング形のリサーブ拡散部50を含んでいる。ソースリング56を含んでいる。ソースリング56を含んでいる。ソースリング56を含んでいるリング形のP型ベース55は、領域10の頂部が中に拡放される。適当なゲート酸化物60がポリシリコンゲートリング61の下に形成され、カエル10の全美面がポッシベーション(不動態)数化物62に大変で、大変では、大変によった機関されている。リング

(不動態) 酸化物6 2によって 板覆されている。 リンク 形のソース電極6 5は、ソース56 及びベース55 に接 続され、そしてドレーン電極66 はドレーン領域5 0 に 接続されている。ゲート電極5 7 は、ポリシリコンゲー ト6 1 に接続されている。

【0029】操作時においては、図3の構造は、ソース 電極65とドレーン電極66との間の高い逆電圧、例え は600ボルトあもいはこれより高い電圧に耐えるであ ろう。デバイスを起動するために、ベース55内のチャ ン未ル領域の仮転を生じさせるゲート61に電圧がかけ られる。この後、電子流がソース電極65から、リサー フ拡散部51の下の板をされたチャンネルを通ってドレ ーン66に流れることができる。

【0030】図3中に示された接合パターンは、その他 のどのような所望の公知の接合パターンであってもよ く、区画式、相互接続式等であってもよいということが 注目されるべきである。

【0031】600ボルトの実施の形態においては、ゲートリング61の外側エッジから絶縁拡散部23のエッジまでの横方向の距離は、およそ25ミクロンである。

ゲートリング61は、およそ10ミクロンの幅を備えている。リング61の内側エッジと接合50の外側エッジ の間の横方向の距離は、600ボルトのデバイスについてはおよそ70ミクロンであり、1200ボルトのデバイスについてはおよそ140ミクロンである。

【0032】基板11は、5~25ミリの厚さを伴った、60オーム・cmのホウ素でドープされた物体である。エピタキシャル層10は、その厚さ(その上面から 領域40の頂部まで測定された場合)が8ミクロンであり、およそ3オーム・cmプラスマイナス約10%の抵抗を有している。領域40は、およそ2ミクロンの厚さを有し、平方あたり3000~400オームの面積低抗を有している。領域10及び40は、リン又は上柔のいずれかでドービングされることができる。P・リサーク領域51は、およそ5ミクロンの深さを有することができる。ラミクロンの深さにおける製造上のばらつきは、ビンチ領域内には全電荷の比較的小さい割合でしか存在しないので、領域51の下の「エピビンチ」に小さい効果しか与えないであろうということが注目されなければならない。

【0033】1200ポルトのデバイスの場合は、前記の寸法が維持されることができる。しかしながら、基板の抵抗は60オーム・cmから150オーム・cmに高められる

【0034】図4は、本発明を高電圧PMOSに適用し たものを示している。図4において、図2及び図3中の 部材と同一の部材には、同一の引用番号が付されてい る。ここでは、図2及び図3の構造が組み合わせられ、 ゲート61はP*領域100と中央P-領域101との間 で反転可能なチャンネルの上に配置されている。中央の P*コンタクト領域102は、ドレーンコンタクト66 に接続するように配設されている。N*コンタクト領域 103もまた、領域100のエッジと接続するように配 設されている。グランドコンタクト13は、P*領域2 3に接続されている。パッシベーション絶縁領域62a は、下敷きのシリコンの表面と交差する横方向の電場を 遮断するのを促進する、間隔をあけて配置されたポリシ リコンプレートを含んでいてもよい。図5は、ソース電 極65とドレーン電極66との間の高電圧を遮断するた めの手段として機能する 重複し容量的に結合されたボ リシリコンリングを付加特徴としてを伴った、図3の左 側半部を示している。

【0035】ここにおいて、図5に示すように、電気容 量的に結合されたポリシリコン(ポリ)リング200~ 206(所望の数のリングを用いることができる)を用 いるといった手法は従来より知られている。201、2 03及び205の番号がつけられた3つのリングは、第 1のポリレベルに配置され、200、202、204及 び206の番号がつけられたその他の4つのリング第2 のポリレベルに配置されている。両ポリ層は、導電性に

するためにドーピングされている。2つのボリ層間に は、これらを互いに電気的に絶縁するために、およそ5 00ナノメータの誘電体層62aが設けられている。第 2のポリレベルの連続した各リングは、図5に示されて いるようにリングを互いに容量的に結合させるために、 第1のポリレベルの最も近接したリングと2~5マイク ロメータだけ重複している。誘電体層62aは、第1の ポリ層の熱酸化によってつくられることができ、あるい は堆積された酸化ケイ素又は窒化ケイ素などといったそ の他の誘電体材料とされることができる。この誘電体 は、1つのギャップあたりおよそ100ボルトの電圧に 耐えることができなければならない。最終的には、全構 造がパッシベーション酸化物62によって被覆される。 【0036】最初のリング200は、ソース65又は該 デバイスと交差する最も低い電圧部に接続され、最後の リング206は、該デバイスの最も高い電圧部又はドレ ーン66に接続されている。容量的に結合された一連の ポリリングは、該デバイスと交差する電圧降下をより小 さい分散的な値に分割し、これにより高電圧デバイスの 表面付近の電場が濃密化する傾向が低減される。これは 該デバイスの放電電圧を改善する。さらに、提案された 構造は、高電圧デバイスの表面を、図5のデバイスの上 面と接触して配置されているプラスチックのハウジング (図示せず) 中にみられるイオン汚染物に起因する集積 回路中の共通の源遊静電気電荷から遮断する。 リング2 00~206は、とくに高温バイアス (HTB) 条件下 でテストされる場合には、高電圧デバイスの信頼性を劇 的に改善する。

[0037]多重リング構造は、ゲイオード、MOSF ET、IGBT、BJTなどといった横方向伝導又は鉛 直方向伝導の高電圧デバスに、あるいは伝統的な及び リサーフ型のデバイスに用いられることができる。ポリ シリコンリングは、金配又はケイ化物(シリサイド)な どといったその他のどのような導電体にでも置き換える ことができる。

【0038】本発明のさらなる特徴によれば、図5に示されているように、遊動リング端末構造が、図3及び図 4中に示されたタイプの2重リサーフのデバイスと組み合わせて用いられる。

【0039】図5はまた、チッア中に用いられることができる、より「でこぼこの/rugsed)」レベル切り換え回路をつくるための新規な構造を含んでいる。より詳しくは、P型のボディリング255が、P型のボディ55について同心円状に拡散され、これはF・リサーフ領域51と界を接する。これは、ゲート61の下にNMOSFETを形成する。かくして、図6に示すように、複数の間隔をあけて配置されたP型のボディ短絡部256は、Pボディ55及びPボディ255と周期的に短絡する。【0040】領域256は、その全チャンネル幅を低減するNチャンネルDMOSFETを短絡させる。これ

は、デバイスの飽和電流を低減し、デバイスのでこぼこ 性を実質的に増加させる。

【0041】図7は、プラスチックのハウジングキャッ プ300中のイオン汚染物に対して改善された遮蔽をも たらすための、本発明のさらなる特徴を示している。図 7は、図5の一部も示しているが、これに対して新規な ソース金属65を付加しており、これはゲート61の頂 部に存在する低温酸化物62の頂部と連続的に交差して 堆積される。より詳しくは、従来技術にかかる横方向の デバイスにおいては、ソース金属は、図5中に示されて いるように切断され又は分離され、ゲート61の上の低 温酸化物62の頂部の上方で伸びていない。Pボディ5 5とソース56との間のチャンネル領域は、イオン汚染 に対して非常に敏感である。本発明の特徴によれば ソ ース金属62は、敏感なチャンネル領域と交差して伸 び、とくに高温でプラスチックのハウジング300内に 形成されたイオン汚染物の泳動に対して、物理的な金属 (アルミニウム) 遮蔽を行う。かくして、図7に示す新 規な金属シールドは、実質的に、高温逆バイアス (HT B) 下におけるデバイス特性を改善する。

【0042】本発明は、前記のとおり特定の実施の形態 について説明されているが、このはか多くの変形及び修 正並びにその他の利用が当業者にとっては明らかとなる であろう。それゆえ、本発明は前記の特定の実施の形態 における開示に限定されるものではない。

【図面の簡単な説明】 【図1】 従来技術にかかる普通のエピタキシャル層中 の絶縁されたウエル中に高電圧ダイオードを含んでいる チップの一部の断面図である。

【図2】 本発明が、より薄いエピタキシャル層の使用 と放電電圧のより良い制御とを可能にしつつ、図1のエ ピタキシャル層中に電荷を再配分する手法を示す図であ る

【図3】 図2に示すチップのもう1つのウエル中に存在するであろうNチャンネルの横方向伝導MOSFETに対する本発明の適用を示す図である。

【図4】 本発明を高電圧PチャンネルMOSFET中 に適用する手法を示す例である。

【図5】 図3に示すデバイス高電圧領域を仕切るため の一部のリングが遊動しているポリシリコンリング構造 を示すとともに、NMOSFETの周期的な短絡を示す 図である。

【図6】 図5の平面図である。

【図7】 イオン汚染物がチャンネル領域に到達するの を防止するためのソースのコンタクトブリッジの断面図 である。

【符号の説明】

10…エピタキシャル層 (Nウエル)、11…基板、1 2…陽極、13…陰極、20…絶縁されたウエル、21 …絶縁されたウエル、22…絶縁されたウエル、23… 拡散部、30…P-領域、40…厚みの小さいサブ領域、50…ドレーン領域、51…リサーフ拡散領域、5 5…ベース、56…ソースリング、57…ゲート電極、 60…ゲート酸化物、61…ポリシリコンゲート、62 …パッシベーション酸化物、65 …一ス電極、66… ドレーン電極。

(図1)

[図2]

【図3】

【図4】

【図5】

[図6]

【図7】