

Implementer's Guide

Copyright © 1997–2007, ITB CompuPhase; Eerste Industriestraat 19–21, 1401VL Bussum, The Netherlands (Pays Bas); telephone: (+31)-(0)35 6939 261 e-mail: info@compuphase.com, WWW: http://www.compuphase.com

The documentation is licensed under the Creative Commons Attribution-ShareAlike 2.5 License. A summary of this license is in appendix J. For more information on this licence, visit http://creativecommons.org/licenses/by-sa/2.5/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

The information in this manual and the associated software are provided "as is". There are no guarantees, explicit or implied, that the software and the manual are accurate. Requests for corrections and additions to the manual and the software can be directed to ITB CompuPhase at the above address.

Typeset with TFX in the "Computer Modern" and "Palatino" typefaces at a base size of 11 points.

[&]quot;Java" is a trademark of Sun Microsystems, Inc.

[&]quot;Microsoft" and "Microsoft Windows" are registered trademarks of Microsoft Corporation.

[&]quot;Linux" is a registered trademark of Linus Torvalds.

[&]quot;CompuPhase" is a registered trademark of ITB CompuPhase.

Table of contents

Introduction	
THE COMPILER	4
THE ABSTRACT MACHINE	6
Using the abstract machine	6
Calling "public" functions	
Function reference	23
Error codes	48
EXTENSION MODULES	50
Writing "wrappers"	53
Dynamically loadable extension modules	61
Error checking in native functions	62
Customizing the native function dispatcher	63
APPENDICES	67
A: Building the compiler	67
B: Building the Abstract Machine	72
C: Using CMake	87
D: Abstract Machine design and reference	89
E: Debugging support	108
F: Code generation notes	
G: Adding a garbage collector	
H: Running scripts from ROM	124
I: Running scripts with overlays	127
J: License	
Index	133

Introduction

"PAWN" is a simple, typeless, 32-bit extension language with a C-like syntax. The language and features are described in the companion booklet with the sub-title "The Language". This "Implementer's Guide" discusses how to embed the PAWN scripting language in a host application.

The PAWN toolkit consists of two major parts: the compiler takes a script and converts it to P-code (or "bytecode"), which is subsequently executed on an abstract machine (or "virtual machine"). PAWN itself is written mostly in the C programming language (there are a few files in assembler) and it has been ported to Microsoft Windows, Linux, PlayStation 2 and the XBox. When embedding PAWN in host applications that are not written in C or C⁺⁺, I suggest that you use the AMX DLLs under Microsoft Windows.

There is a short chapter on the compiler. Most applications execute the compiler as a standalone utility with the appropriate options. Even when you link the compiler into the host program, its API is still based on options as if they were specified on the command line.

The abstract machine is a function library. The chapter devoted to it contains several examples for embedding the abstract machine in a host application, in addition to a reference to all API functions.

Appendices, finally, give compiling instructions for various platforms and background information —amongst others the debugger interface and the instruction set.

i

The PAWN language and toolset was designed to be an extension language for applications—as opposed to many other scripting languages that primarily aim at the command shell of the operating system. Being an extension language, the tools an libraries of the PAWN toolset must be *integrated* with the product.

The two main parts of the PAWN toolset are the compiler and the abstract machine. The compiler may either be linked into the host application, or it may be a separate process that is launched from the host application. For performance reasons, the abstract machine is always embedded (linked-in) inside the host application.

The PAWN compiler takes a series of text files containing the code for the user script and definitions of the environment/the host application. One of the include files is implicit: the PAWN compiler will automatically include it in any user script, but it will fail silently if that file is not present. The default name for that implicit include file (or "prefix file") is "DEFAULT.INC". You can override this name with a command line option to the PAWN compiler.

For a host application, it is advised to create an implicit include file containing:

- all "application specific" constants;
- all native functions that the host application provides (or a core subset of these native functions);
- all overloaded operators (or a core subset of these);
- \diamond all stock functions (or a core subset of these);
- $\diamond\,$ forward declarations of all public functions;
- $\diamond\,$ declarations of public variables (if used).

You will have to refer to the PAWN booklet "The Language" for writing the declarations mentioned in the above list.

The rationale behind having these declarations in an implicitly included file is that the definitions are now always available. This avoids errors, especially in the case of overloaded operators and public functions. If the definition of an overloaded operator is missing, in many cases the PAWN compiler will use the default operator without warning. If a user makes a mistake in the declaration of a public function, the host application will not be able to call it, or it will pass the wrong parameters. A forward declaration of the public function catches this error, because the incorrect public function will not match the earlier declaration.

Apart from this implicit include file, the user can also write custom include files and explicitly include these. In addition, a host application may supply additional "system" include files that are not added to a project automatically and must be included explicitly.

The next two chapters are on the PAWN compiler and the abstract machine respectively. The most common set-up is the one where the compiler runs as a separate process that is spawned from the host application.

The compiler

The PAWN compiler is currently the only translator (or parser) that implements the PAWN language. The PAWN compiler translates a text file with source code to a binary file for an abstract machine. The output file format is in appendix D. The usage of the PAWN compiler is described in the PAWN booklet "The Language".

• Deployment / installation

In most operating systems, the compiler is a separate self-contained executable program. It can run as is, but it will look for a configuration file in the same directory as where the compiler is in itself, and it will locate (system) include files in a specific directory. For the retail packages, the actual compiler is in a dynamically loaded library. This library is called "libpawnc.so" or "libpawnc.dll" (for Linux/Unix and "pawncc.exe" for Microsoft Windows respectively).

Concretely, to set up the PAWN compiler on a system:

- Copy the program file for the compiler (typically "pawncc" for Linux/Unix and "pawncc.exe" for Microsoft Windows) in a directory of your choice, and also copy the library "libpawnc.so" or "libpawnc.dll" if it exists.
- Optionally copy or create a configuration file, called "pawn.cfg", in the same directory.

♦ Add a subdirectory called "include" and copy the include files into that directory —especially add the "DEFAULT.INC" prefix file into that directory, if applicable.* This "include" directory may either be below the directory in which the compiler and pawn.cfg reside, or it may be at the same level as the directory where the compile and pawn.cfg are. For example, if on a Windows system pawncc.exe and libpawnc are in C:\Pawn\bin, then the compiler will look for include files in either the directory C:\Pawn\bin\include or C:\Pawn\bin\include.

• The configuration file

On platforms that support it (currently Microsoft DOS, Microsoft Windows and Linux), the compiler reads the options in a "configuration file" on start-up. The

Prefix file: 1

^{*} For details on the prefix file, look up the compiler command line option $\neg p$ in the PAWN booklet "The Language".

configuration file must have the name "pawn.cfg" and it must reside in the same directory as the compiler executable program and/or the compiler dynamically loaded library.

In a sense, the configuration file is an implicit response file (see the PAWN booklet "The Language" for details on response files). Options specified on the command line may overrule those in the configuration file.

Errors

• Compiler errors

The error and warning messages produced by the compiler are described in the companion PAWN booklet "The Language".

• Run time errors

The function library that forms the abstract machine returns error codes. These error codes encompass both errors for loading and initializing a binary file and run-time errors due to programmer errors (bounds-checking).

Run-time errors: 48

The abstract machine

The abstract machine is a C function library. There are several versions: one that is written in ANSI C, and optimized versions that use GNU C extensions or assembler subroutines.

• Deployment / installation

The abstract machine is either linked into the host program, or it is implemented as a loadable library (a DLL in Microsoft Windows, or a "shared library" in Linux). No special considerations are required for redistributing the abstract machine.

Dynamically loadable extension modules: 61

If you allow extension modules to be loaded dynamically, you may need to set an environment variable in Linux/UNIX. These operating systems search for libraries in a specific path, unless an explicit path is given for the library. In Linux/UNIX, the abstract machine builds a specific path from the combination of the environment variable "AMXLIB" and the library name. For example, if AMXLIB is set to "/opt/Pawn/bin" and the module uses amxTime, the abstract machine will load "/opt/Pawn/bin/amxTime.so". The name of the environment variable is configurable, —see page 75.

Using the abstract machine

To use the abstract machine:

- 1 initialize the abstract machine and load the compiled pseudo-code;
- 2 register all native functions that the host program provides, directly with amx_Register or indirectly;
- 3 run the compiled script with amx_Exec;
- 4 and clean up the abstract machine and other resources.

The example (in C) below illustrates these steps:

```
int main(int argc, char *argv[])
{
   extern AMX_NATIVE_INFO console_Natives[];
   extern AMX_NATIVE_INFO core_Natives[];

AMX amx;
   cell ret = 0;
   int err;

if (argc != 2)
   PrintUsage(argv[0]);
```

```
err = aux_LoadProgram(&amx, argv[1], NULL);
if (err != AMX_ERR_NONE)
    ErrorExit(&amx, err);

amx_Register(&amx, console_Natives, -1);
err = amx_Register(&amx, core_Natives, -1);
if (err)
    ErrorExit(&amx, err);
err = amx_Exec(&amx, &ret, AMX_EXEC_MAIN);
if (err)
    ErrorExit(&amx, err);
printf("%s returns %ld\n", argv[1], (long)ret);
aux_FreeProgram(&amx);
return 0;
}
```

The cell data type is defined in AMX.H, it usually is a 32-bit integer.

The program checks first whether a command line argument is present; if so, the program assumes that it is the filename of a compiled PAWN script. The function PrintUsage is discussed later in this chapter.

Function aux_LoadProgram allocates memory for the abstract machine, loads the compiled pseudo-code and initializes the lot. This function is not part of the PAWN core, just because of what it does: memory allocation and file I/O. Therefore, the function aux_LoadProgram is implemented in a separate source file and prefixed with "aux_", rather than "amx_" ("aux" stands for auxiliary). We will look at an implementation of aux_LoadProgram below.

The program has declarations for two sets of native functions: console functions from AMXCONS.C and core functions from AMXCORE.C. Both these sets are registered with the abstract machine. Function amx_Register returns an error code if the compiled script contains unresolved calls to native functions. Hence, only the result of the *last* call to amx_Register needs to be checked.

The call to amx_Exec runs the compiled script and returns both an error code and a program result code. Errors that can occur during amx_Exec are division by zero, stack/heap collision and other common run-time errors, but a native function or an assert instruction in the source code of the PAWN program may also abort the PAWN script with an error code.

Once the script has finished running, aux_FreeProgram releases memory and resources that were allocated for it. This, too, is an auxiliary function—see page 10 for an example implementation.

The abstract machine API has no functions that read a compiled script from file into memory; the host program must implement these. An example implementation that comes with the PAWN toolkit is aux_LoadProgram. This is a fairly large function as it:

- 1 opens the file and checks/massages the header;
- 2 optionally allocates a memory block to hold the compiled pseudo-code (P-code);
- 3 reads in the complete P-code file;
- 4 initializes the abstract machine and prepares the P-code for execution;
- 5 cleans up resources that it allocated in case an error occurs.

```
int aux_LoadProgram(AMX *amx, char *filename, void *memblock)
{
 FILE *fp;
 AMX_HEADER hdr;
 int result, didalloc;
 /* step 1: open the file, read and check the header */
 if ((fp = fopen(filename, "rb")) == NULL)
   return AMX_ERR_NOTFOUND;
 fread(&hdr. sizeof hdr. 1. fp):
  amx_Align16(&hdr.magic);
  amx_Align32((uint32_t *)&hdr.size);
  amx_Align32((uint32_t *)&hdr.stp);
  if (hdr.magic != AMX_MAGIC) {
   fclose(fp);
   return AMX_ERR_FORMAT;
 } /* if */
  /* step 2: allocate the memblock if it is NULL */
 didalloc = 0;
  if (memblock == NULL) {
   if ((memblock = malloc(hdr.stp)) == NULL) {
     fclose(fp);
     return AMX_ERR_MEMORY;
   } /* if */
   didalloc = 1;
   /* after amx_Init(), amx->base points to the memory block */
 } /* if */
  /* step 3: read in the file */
 rewind(fp);
 fread(memblock, 1, (size_t)hdr.size, fp);
 fclose(fp);
  /* step 4: initialize the abstract machine */
 memset(amx, 0, sizeof *amx);
 result = amx_Init(amx, memblock);
```

Step 1: PAWN can run on both Little-Endian and Big-Endian architectures, but it uses a single file format for its pseudo-code. The multi-byte fields in the header of the file format are in Little Endian (or "Intel" format). When running on a Big Endian CPU, function amx_Init adjusts all fields in the AMX_HEADER structure from Little Endian to Big Endian. The function aux_LoadProgram, however, deals with a few header header fields before amx_Init has run, so it must perform the proper alignment explicitly on a Big Endian CPU, using the functions amx_Align16 and amx_Align32. Calling these functions on a Little Endian machine does no harm.

The header of the compiled script contains a special number. We check this "magic file" here immediately, because if we find a different value, all other fields in the header will likely be mangled as well.

Step 2: The size of the binary image of the compiled script is not equal to the total memory requirements—it lacks the memory requirements for the stack and the heap. The "stp" (Stack Top) field in the header of the file format gives the correct memory size.

With the above implementation of aux_LoadProgram, you can load the compiled script either into a block of memory that you allocated earlier, or you can let aux_LoadProgram allocate memory for you. The memblock argument must either point to a memory block with an adequate size, or it must be NULL, in which case the function allocates a block.

Step 3: The complete file must be read into the memory block, including the header that we read near the function. After reading the file into memory, it can be closed. As an aside, the the value of hdr.size is the same as the file length.

Step 4: It is important to clear the AMX structure before calling amx_Init, for example using memset.

Step 5: amx_Init does a few checks on the header and it runs quickly through the P-code to relocate jump and variable addresses and to check for invalid in-

structions. If this verification step fails, we will want to free the memory block that the function allocated, but *only* if the function allocated it.

Finally, for completeness, the functions aux_FreeProgram, ErrorExit and Print-Usage are below:

```
int aux_FreeProgram(AMX *amx)
  if (amx->base!=NULL) {
    amx_Cleanup(amx);
   free(amx->base);
   memset(amx,0,sizeof(AMX));
 } /* if */
 return AMX_ERR_NONE;
void ErrorExit(AMX *amx, int errorcode)
 printf("Run time error %d: \"%s\" on line %ld\n",
         errorcode, aux_StrError(errorcode),
         (amx != NULL) ? amx->curline : 0);
  exit(1);
}
void PrintUsage(char *program)
 printf("Usage: %s <filename>\n", program);
  exit(1);
```

• Controlling program execution

The code snippets presented above are enough to form an interpreter for PAWN programs. A drawback, however, is that the PAWN program runs uncontrolled once it is launched with amx_Exec. If the PAWN program enters an infinite loop, for example, the only way to break out of it is to kill the complete interpreter —or at least the thread that the interpreter runs in. Especially during development, it is convenient to be able to abort a PAWN program that is running awry.

The abstract machine has a mechanism to monitor the execution of the pseudo-code that goes under the name of a "debug hook". The abstract machine calls the debug hook, a function that the host application provides, at specific events, such as the creation and destruction of variables and executing a new statement. Obviously, the debug hook has an impact on the execution speed of the abstract machine. To minimize the performance loss, the host application can enable the debug hook "as needed" and keep it disabled when it is not needed.

To install a debug hook, call amx_SetDebugHook. A debug hook function can inspect the status of the abstract machine and browse through the symbolic information (and the source files) when it gets invoked. To set up a debug hook, you would add a call to amx_SetDebugHook somewhere between amx_Init and amx_Exec. In the PAWNRUN program laid out at page 6 (function main), you could add the following line below the call to aux_LoadProgram:

```
err = amx_SetDebugHook(&amx, prun_Monitor);
```

The function amx_Monitor becomes the "debug hook" function that is attached to the specified abstract machine. A minimal implementation of this function is below:

```
int AMXAPI prun_Monitor(AMX *amx)
{
   return abortflagged ? AMX_ERR_EXIT : AMX_ERR_NONE;
}
```

If the debug hook returns any code other than AMX_ERR_NONE, execution halts and amx_Exec returns the specific error code. The code AMX_ERR_SLEEP is a special case: it aborts execution in a way that it can be restarted by passing the special "index" AMX_EXEC_CONT to function amx_Exec. The abstract machine calls the debug hook just before executing a new statement (on a new line).

Exactly how the host program decides whether to continue running or to abort the abstract machine is implementation dependent. This example uses a global variable, abortflagged, that is set to a non-zero value —by some magical procedure—if the abstract machine(s) must be aborted.

There exists a more or less portable way to achieve the "magic" referred to in the previous paragraph. If you set up a signal function to set the abortflagged variable to 1 on a SIGINT signal, you have an "ANSI C"-approved way to abort an abstract machine. The snippet for the signal function appears below:

And somewhere, before calling amx_Exec, you add the line:

```
signal(SIGINT, sigabort);
```

Debug hook functions allow you to monitor stack usage, profile execution speed at the source line level and, well... write a debugger. Detailed information on the debug hook is found in appendix E of this manual.

Appendix D documents all opcodes One caveat is that the debug hook depends on the presence of BREAK opcodes. When a PAWN program is compiled *without* debug information, no BREAK opcodes are present in the P-code and the debug hook will never get called. That renders our monitor function ineffective. This is okay, though, because the user or the host application has explicitly compiled *without* debugging checks to improve run-time performance —by default the PAWN compiler has (minimal) debug information enabled.

In your host application, you may want to check for debug information and, in its absence, warn the user that some functionality may not be available. To verify whether debug information is present, use the following snippet:

```
uint16_t flags;
amx_Flags(&amx, &flags);
if ((flags & AMX_FLAG_NOCHECKS) != 0) {
   /* no BREAK opcodes are present, a debug hook will not run */
   Code to handle the case of missing debug support
} /* if */
```

• A smarter "break-out" hook

The debug hook described above has a major drawback: it makes the script run more slowly, because the abstract machine calls the hook function repetitively. In the normal situation (no "abort" is signalled), the hook function does nothing—except take time.

An improvement is to run *without* debug hook normally, and to set up a debug hook only *after* an abort signal break has already been detected. To this end, we change the signal function to:

```
void sigabort(int sig)
{
  /* install the debug hook procedure if this was not done already */
  amx_SetDebugHook(global_amx, prun_Monitor);
  signal(sig,sigabort);  /* re-install the signal handler */
}
```


If you use the debug hook only to check for a "break" or "abort" signal, there is no need for a global variable that flags this request: de debug hook will only ever be called when the user has already issued the break/abort request, so the debug hook can just always return with an error code to cause the script to abort.

```
int AMXAPI prun_Monitor(AMX *amx)
{
   return AMX_ERR_EXIT;
}
```

While the abortflagged global variable is was made redundant, I have introduced a new global variable: global_amx. The standard signal function from ANSI C does not provide for passing a "user value" via a parameter, so you have to invent another way to make the abstract machine that you wish to abort known to the signal function. In practice, your host application will likely have another implementation for the signal function, such as an event procedure in a GUI.

• Monitoring stack/heap usage

A useful function that the debug hook can implement is to monitor how much memory the compiled script uses at run-time —in other words, checking the maximum stack and heap usage. To this end, the example below extends the debug "monitor" function of the previous sections, and adds another refinement at the same time.

```
int AMXAPI amx_Monitor(AMX *amx)
  int err:
  unsigned short flags;
  STACKINFO *stackinfo;
  /* record the heap and stack usage */
  err = amx_GetUserData(amx, AMX_USERTAG('S', 't', 'c', 'k'),
                        (void**)&stackinfo);
  if (err == AMX_ERR_NONE) {
    if (amx->stp - amx->stk > stackinfo->maxstack)
      stackinfo->maxstack = amx->stp - amx->stk:
    if (amx->hea - amx->hlw > stackinfo->maxheap)
      stackinfo->maxstack = amx->stp - amx->stk;
  } /* if */
  /* check whether an "abort" was requested */
  return abortflagged ? AMX_ERR_EXIT : AMX_ERR_NONE;
}
```

Appendix D covers the memory layout

This extended version of amx_Monitor still checks the abortflagged variable (which is set on a Ctrl-C or Ctrl-Break signal), but at the same time it also calculates the current stack and heap usage and records these in a structure. The used stack space is the difference between the top-of-stack and the current stack point; similarly, the heap usage is the difference between the current heap pointer and the heap bottom. More interesting is that the function stores this maxima of the calculated values in the variable stackinfo, which is a structure with the following definition:

```
typedef struct tagSTACKINFO {
  long maxstack, maxheap;
} STACKINFO;
```

The abstract machine allows a host application to set one or more "user values". In the current implementation of the abstract machine, up to four user values may be used. To indicate which of the user values you want to access, it is convenient to use the macro AMX_USERTAG with a four-letter identification string. In this example, the identification characters are 'S', 't', 'c', 'k'.

The monitor function only retrieves a pointer to the stackinfo structure and updates its fields. Elsewhere in the program, before the call to amx_Exec, the following lines are present to initialize the variable and set its address as a user value:

```
STACKINFO stackinfo;
memset(&stackinfo, 0, sizeof stackinfo);
err = amx_SetUserData(&amx, AMX_USERTAG('S','t','c','k'), &stackinfo);
```

As you will probably want to monitor the stack usage from the start, the debug hook has also to be set up *before* calling amx_Exec. Setting up the debug hook is covered on page 10.

• Preparing for memory-hungry scripts

The core run-time files that build the abstract machine executor (AMX.C and AMXEXEC.ASM) are specifically designed *not* to use dynamic memory or to rely on a particular memory allocator.* The reasoning behind this design is that the abstract machine executor is made to be linked into host applications and, in practice, diverse host applications use dissimilar memory allocation schemes—from instrumented versions of malloc to garbage collection algorithms.

^{*} There are a few "violations" of this design: the "property" functions in AMXCORE.C call "malloc"; that said, native functions are considered *non-core* functions.

The drawback of this design, however, is that the address range that a compiled script runs in cannot easily grow: the executor itself cannot grow the memory block because it knows nothing about the memory allocator that the host program uses, and the host program will have to reach into the internals of the abstract machine executor after it resizes the memory block. Already determining when to grow the block is involved. Hence, the address range that a script can use should be seen as "fixed" or static.

The problem is that the host application cannot foresee what kind of scripts users will write and how much breathing room their scripts need. A user may set this value him/herself with #pragma dynamic, but this involves guesswork and it is not user friendly. When the host program also runs the compiler, it can set the heap/stack size to a value that is large enough for every imaginable script, but at the risk that expanding the memory footprint of the host program by this size impacts the general performance of the complete system (read "causes excessive swapping").

For "#pragma dynamic" and compiler options: see the Pawn booklet "The Language"

Modern operating systems allow for an efficient solution for this dilemma: allocate the memory address range without reserving the memory and subsequently reserve (or "commit") the memory on an as-needed basis. The code snippets in this section are for the "Win32" family of Microsoft Windows, but the concept applies to many operating systems that provide virtual memory.

```
int main(int argc,char *argv[])
 size_t memsize;
 void *program;
 AMX amx;
 cell ret = 0:
 int err;
 if (argc != 2 | (memsize = aux_ProgramSize(argv[1])) == 0)
   PrintUsage(argv[0]);
 program = VirtualAlloc(NULL, memsize, MEM_RESERVE, PAGE_READWRITE);
 if (program == NULL)
   ErrorExit(NULL, AMX ERR MEMORY):
  __try {
   err = aux_LoadProgram(&amx, argv[1], program);
   if (err)
     ErrorExit(&amx, err);
   amx_ConsoleInit(amx);
   err = amx_CoreInit(amx);
   if (err)
     ErrorExit(&amx, err);
```

```
err = amx_Exec(&amx, &ret, AMX_EXEC_MAIN);
if (err)
    ErrorExit(&amx, err);
if (ret != 0)
    printf("%s returns %ld\n", argv[1], (long)ret);
} __except (prun_CommitMemory(GetExceptionInformation(), program, memsize)){
    /* nothing */
} /* try */
amx_ConsoleCleanup(&amx);
amx_CoreCleanup(&amx);
amx_Cleanup(&amx);
VirtualFree(program, memsize, MEM_DECOMMIT);
VirtualFree(program, 0, MEM_RELEASE);
return 0;
}
```

The above main function is a variation of the one on page 6. Instead of using malloc and free (indirectly through aux_LoadProgram and aux_FreeProgram), it calls the Win32 functions VirtualAlloc and VirtualFree. The call to VirtualAlloc reserves an address range, but does not "commit" the memory, meaning that no memory is allocated at this point. Later, one may commit chunks of memory inside this address range, with the advantage that one can now specify the memory address that must be committed. At the end of the program, VirtualFree must be called twice, as the function can only release memory in one call if it has either been fully committed or fully decommitted. The first call to VirtualFree decommits all committed memory.

When a program tries to access memory that is not committed, an "access violation" exception occurs. Function main catches exceptions and handles them in the function below. Note that the function carefully checks whether it gets an exception that it can handle. PAWN typically accesses elements in cells, so that is the default size to commit (variable elemsize in the code snippet below), but this size is adjusted if it would exceed the allocate memory range.

```
elemsize = sizeof(cell);
if ((char*)virtaddr + elemsize > (char*)memaddr + memsize)
  elemsize = ((char*)memaddr + memsize) - (char*)virtaddr;
if (VirtualAlloc(virtaddr, elemsize, MEM_COMMIT, PAGE_READWRITE) == NULL)
  return EXCEPTION_CONTINUE_SEARCH;
return EXCEPTION_CONTINUE_EXECUTION;
}
```

With these modifications, a host program (or a user) can now specify a size for the stack and heap of a few megabytes when compiling a script file, and be assured that *only* the memory that the program *really* uses is ever allocated. Microsoft Windows commits memory blocks in "pages", which are 4 kiB in size. That is, although the above code commits only one cell (4 bytes), a range of 1024 cells get committed.

A host program may choose to periodically decommit all memory for a running script, in order to reduce the memory footprint of the script (this is not implemented in the above code snippet).

Another change in main in comparison with the first implementation at page 6 is that it calls the functions amx_ConsoleInit and amx_CoreInit rather than amx_Register directly. As is explained in the section on writing extension modules (an extension module is a native function library), it is proposed that an extension module provides initialization and clean-up functions; the initialization function registers the native functions.

Writing extension modules: 50 Init/Cleanup functions: 51

Calling "public" functions

The implementations presented so far would only call the function main in a compiled PAWN script. Many implementations require multiple entry points and need to be able to pass input parameters to that entry point. We need two steps to enable this:

- ♦ The script must provide one or more public functions.
- ♦ The host program must be adapted to locate the public function and pass its index (and parameters) to amx_Exec.

To start with the latter step, the host program is adapted so that it finds a particular public function by name. Function amx_Exec takes an index of a public function as a parameter; the previous examples used the special constant AMX_EXEC_MAIN to start with the "main" entry point. If you know the name of

the public function, amx_FindPublic returns its index. For this purpose, include the snippet below before the call to amx_Exec (it assumes that the name of the public function is in the variable argv[2]):

```
err = amx_FindPublic(&amx, argv[2], &index);
if (err)
   ErrorExit(&amx, err);
```

A public function may require input arguments. If so, these must be "pushed" onto the AMX stack prior to calling amx_Exec. For a numeric parameter that is passed by value, the sequence would be:

```
cell value = 123;

amx_Push(&amx, value);

amx_Exec(&amx, NULL, index);
```

Numeric ("passed-by-value") parameters are removed automatically from the stack when amx_Exec returns. When the parameter is a reference parameter or an array (or a string), the memory needs to be explicitly freed after amx_Exec returns —this gives the host application the ability to inspect the value(s) that the script stored in these parameters. For example, to pass a string from argv[3] in the host program to a public function in the abstract machine, use a snippet like the following:

```
cell amx_addr;
cell *phys_addr;

/* pass argv[3] as input */
amx_PushString(&amx, &amx_addr, &phys_addr, argv[3], 0, 0);
amx_Exec(&amx, NULL, index);

/* copy the (possibly changed) string out of the AMX (optional) */
char resultstring[128];
amx_StrLen(phys_addr, &length);
if (length < sizeof(resultstring))
   amx_GetString(resultstring, phys_addr, 0, UNLIMITED);

/* release the memory */
amx_Release(&amx, amx_addr);</pre>
```

The above snippet passes the string as an "unpacked" string, meaning that in the script, every cell holds one character. The PAWN API (and the PAWN language itself) support "wide characters" for Unicode applications. The above example assumes a non-Unicode environment —in an Unicode environment the next-to-last parameter to amx_SetString and amx_GetString should be non-zero.

In addition to storing the input argument on the stack, function amx_PushString returns two addresses; here stored in amx_addr and phys_addr. The amx_addr

1

variable contains the memory address relative to the abstract machine —this is the address that must be passed to amx_Release to free the allocated memory. The phys_addr variable is a pointer directly into the AMX stack that the host program uses to inspect or copy data out of the abstract machine after amx_Exec returns. In this example, the host program calls amx_GetString to store the string that the script modified into a local variable.

If a public function has a variable argument list, all parameters in this list must be passed by reference. That is, you have to follow the above procedure for any argument that falls in the variable argument list of the public function. For reference arguments, pass an array with a size of one cell.

See the Pawn booklet "The Language" for details on variable arguments

Below is the complete main function of a run-time that allows you to execute any public function and pass in a string. This program is, again, a modification of the example program on page 6. It includes the calls to amx_FindPublic and amx_PushString mentioned above, and it also shows how to pass one extra parameter through amx_Exec.

```
int main(int argc,char *argv[])
 size_t memsize;
 void *program;
 AMX amx;
 int index, err;
 cell amx_addr, *phys_addr;
 char output[128];
 if (argc != 4 | (memsize = prun_ProgramSize(argv[1])) == 0)
   PrintUsage(argv[0]);
 program = malloc(memsize);
 if (program == NULL)
   ErrorExit(NULL, AMX_ERR_MEMORY);
 err = prun_LoadProgram(&amx, argv[1], program);
 if (err)
   ErrorExit(&amx, err);
 amx_ConsoleInit(&amx);
 err = amx_CoreInit(&amx);
 if (err)
   ErrorExit(&amx, err);
 err = amx_FindPublic(&amx, argv[2], &index);
 if (err)
   ErrorExit(&amx, err);
 err = amx_PushString(&amx, &amx_addr, &phys_addr, argv[3], 0, 0);
 if (err)
   ErrorExit(&amx, err);
```

```
err = amx_Exec(&amx, NULL, index);
if (err)
    ErrorExit(&amx, err);
amx_GetString(output, phys_addr, 0, UNLIMITED);
amx_Release(&amx, amx_addr);
printf("%s returns \"%s\"\n", argv[1], output);
amx_ConsoleCleanup(&amx);
amx_CoreCleanup(&amx);
amx_Cleanup(&amx);
return 0;
}
```

When the program returns from amx_Exec, the host program can inspect the returned value(s) and free the allocated space. The program presented here uses amx_GetString to retrieve the string that the public function (possibly) modified. The function amx_Release frees the memory allocated by amx_PushString. When you pass in multiple string or array arguments to a public function, a single call to amx_Release can free all allocated memory, see the function description at page 42.

To demonstrate this program, we must also write a script that contains a public function and that accepts a string parameter. Below is a variation of the "ROT13" example script from the PAWN booklet "The Language". The essential modification is the keyword public that is prefixed to the function name "rot13"—and the removal of the main function which has now become redundant.

```
public rot13(string[])
  {
  for (new index = 0; string[index]; index++)
     if ('a' <= string[index] <= 'z')
        string[index] = (string[index] - 'a' + 13) % 26 + 'a'
     else if ('A' <= string[index] <= 'Z')
        string[index] = (string[index] - 'A' + 13) % 26 + 'A'
  }</pre>
```

With these modifications, and supposing that we have built the C program to an executable with the name "pawnrun", we can execute the script with:

```
pawnrun rot13.amx rot13 hello-world
```

Essentially the same procedure as outlined above applies to the passing of nonstring arrays to a public function:

- 1 pass the array to the abstract machine with amx_PushArray;
- 2 call the public function;

- 3 optionally copy the array back, out of the abstract machine—using the "physical address" pointer that amx_PushArray returned;
- 4 free the memory block in the abstract machine with amx_Release, passing it the "AMX address" pointer that amx_PushArray also returned.

The implementation of "pawnrun" that calls the ROT13 script (page 19) uses the functions $amx_SetString$ and $amx_GetString$ to copy strings into and out of the abstract machine. The reasons for using these functions has to do with the difference in memory layout of strings in C/C^{++} versus PAWN. When passing arrays of integers (cell-sized) or floating point values, you can just use the standard C functions memory and memory.

For an example, imagine a host application that does some statistical processing of lists of floating point numbers, and that allows users of the application to "customize" the operation by providing an alternative implementation of key routines in a PAWN script. In particular, the host application allows user to override the "mean" calculation with a script that contains the public function CalculateMean with the following signature:

```
public Float: CalculateMean(Float: values[], items)
```

This is what the host application does (I am showing only a snippet of code here, rather than a complete implementation of a C/C^{++} function; refer to page 19 for the context of this snippet):

```
/* the variable holding the result of the calculation */
float Mean;
float Values []: /* array with the numbers to get the mean of */
                 /* number of elements in "Values" */
int Number;
AMX amx;
                  /* the abstract machine, already initialized */
int index, err;
cell amx_addr;
err = amx FindPublic(&amx, "CalculateMean", &index);
if (err != AMX_ERR_NONE) {
  /* custom function not present, use a built-in function to
   * calculate the mean
  Mean = CalculateStdMean(Values, Number);
} else {
  /* 1. push the second argument to the public function first (arguments
        must be pushed in reverse order)
  amx Push(&amx, Number):
```



```
/* 2. allocate memory in the abstract machine; I pass NULL as
        the "physical address" pointer because the array is not
        copied back on return (see step 4) */
  err = amx_PushArray(&amx, &amx_addr, NULL, Values, Number);
  if (err == AMX_ERR_NONE) {
    /* 3. call the public function with the "AMX address" */
    err = amx_Exec(&amx, (cell*)&Mean, index);
    if (err != AMX ERR NONE)
      printf("Run time error %d on line %ld\n", err, amx.curline);
    /* 4. we could copy the array back here, but it is not very
          useful in this particular case */
    /* 5. release memory in the abstract machine */
    amx_Release(&amx, amx_addr);
  } else {
    printf("Failed to allocate %d cells\n", Number);
    Mean = 0.0;
  } /* if */
} /* if */
```

This example may appear to serve a bizarre purpose: "Why have the user customize the *mean* function? What kind of alternative *mean* function can a user invent that is not absurd or fraudulent?" —until you dive into the subject and discover a full and complex world behind a simple concept as "the mean". The most well known and most frequently used kind of average, which has become synonymous with *the mean*, is the "arithmetic average":* the sum of all elements divided by the number of elements. It is well known that the arithmetic average is sensitive to outliers, e.g. coming from noisy data, and in such cases the "median" is often proposed as a stable alternative to the (arithmetic) mean.

The median and the mean are the two extremities of the (arithmetic) "trimmed mean". The trimmed mean throws out the lowest and the highest few samples and calculates the arithmetic average over the remainder. The number of discarded samples is a parameter of the *trimmed mean* function: if you discard zero samples what you get is the standard mean and if you discard all but one sample, the remaining sample is the median.

The example implementation of a trimmed mean below discards only the top and bottom samples. This particular configuration of the trimmed mean has become

Other kinds are the geometric average, the harmonic average and the "root mean square".

known as the "Olympic mean", referring to a similar procedure that has in the past been used to establish the average performance of athletes.

```
#include <float>
public Float: CalculateMean(Float: values[], items)
    /* return a "trimmed mean" by throwing out the minimum and
     * the maximum value and calculating the mean over the remaining
     * items
     */
    assert items >= 3
                          /* should receive at least three elements */
    new Float: minimum = values[0]
    new Float: maximum = values[0]
    new Float: sum = 0.0
    for (new i = 0; i < items; i++)
        if (minimum > values[i])
            minimum = values[i]
        else if (maximum < values[i])</pre>
            maximum = values[i]
        sum += values[i]
        }
    return (sum - minimum - maximum) / (items - 2)
    }
```

This concludes handling array and string arguments to a public function by the host application; what is left are *reference arguments*. This does not need an in-depth discussion, however, because the host application can handle a reference argument as an array argument with the size of one (1) cell.

Function reference

With one exception, all functions return an error code if the function fails (the exception is amx_NativeInfo). A return code of zero means "no error".

See page 48 for the defined error codes.

amx_Align16/32/64 Conditionally swap bytes in a 16-bit, 32-bit or 64-bit word

Syntax: uint16_t *amx_Align16(uint16_t *v)

uint32_t *amx_Align32(uint32_t *v)

uint64_t *amx_Align64(uint64_t *v)

v A pointer to the 16-bit value, the 32-bit value or the 64-bit value whose bytes must be aligned.

Notes:

Multi-byte fields in the header in the compiled file are in Little Endian format. If run on a Big Endian architecture, these two functions function swap the bytes in a 16-bit/32-bit/64-bit Little Endian word. The value v remains unchanged if the code runs on a Little Endian CPU, so there is no harm in always calling this function.

The amx_Align64 is not available in all configurations. If the PAWN Abstract Machine was built with for a 16-bit architecture, it is likely absent.

See also: amx_AlignCell

amx_AlignCell

Conditionally swap bytes in a cell

Syntax: [cell] *amx_AlignCell([cell] *v)

v A pointer to the "cell" value whose bytes must be

aligned.

Notes: This macro maps to function amx_Align16 when a cell is 16-bit,

to function amx_Align32 when a cell is 32-bit, and to function

amx_Align64 when a cell is 64-bit.

See also: amx_Align16, amx_Align32, amx_Align64

amx_Allot

Reserve heap space in the abstract machine

Syntax:

amx The abstract machine.

cells The number of cells to reserve.

amx_addr The address of the allocated cell as the PAWN program

(that runs in the abstract machine) can access it.

phys_addr The address of the cell for C/C⁺⁺ programs to access.

Notes:

In earlier releases of PAWN, arrays and strings had to be passed to a script after explicitly allocating memory for it on the AMX stack. In the current release, this functionality has been largely replaced by the functions <code>amx_PushArray</code> and <code>amx_PushString</code>.

A PAWN function can only access memory inside its abstract machine. If a parameter is to be passed "by reference" to a PAWN function, one must pass the address of that parameter to amx_Exec. In addition, that address *itself* must be within the address range of the abstract machine too. An added complexity is that the abstract machine uses addresses that are relative to the data section of the abstract machine, and the host program uses address relative to the environment that the operating system gives it.

amx_Allot allocates memory cells inside the abstract machine and it returns two addresses. The amx_addr parameter is the address of the variable relative to the "data section" of the abstract machine; this is the value you should pass to amx_Exec (via amx_Push). Parameter phys_addr holds the address relative to the host program's address space. So a C/C^{++} program can use this address and write into the allocated memory.

After amx_Exec returns, you may inspect the memory block (the PAWN function called by amx_Exec may have written into it) and finally release it by calling amx_Release.

See also:

amx_Exec, amx_PushArray, amx_PushString, amx_Release

amx_Callback

The default callback

Syntax:

amx The abstract machine.

index Index into the native function table; it points to the

requested native function.

result The function result (of the native function) should be

returned through this parameter.

params The parameters for the native function, passed as a

list of long integers. The first number of the list is the number of bytes passed to the native functions (from which the number of arguments can be computed)

which the number of arguments can be computed).

Returns:

The callback should return an error code, or zero for no error. When

the callback returns a non-zero code, amx_Exec aborts execution.

Notes:

The abstract machine has a default callback function, which works in combination with amx_Register. You can override the default operation by setting a different callback function using function amx_SetCallback.

If you override the default callback function, you may also need to provide an alternative function for amx_Registers.

See also: amx_Exec, amx_RaiseError, amx_SetCallback

amx_Clone

Clone an abstract machine

Syntax:

int amx_Clone(AMX *amxClone, AMX *amxSource, void *data)

amxClone

The new abstract machine. This variable is initialized with the settings of the amxSource abstract machine. Before calling this function, all fields of the amxClone structure variable should be set to zero.

See page 48 for the defined error codes.

amxSource

The abstract machine whose code is to be shared with the cloned abstract machine and whose data must be copied. This abstract machine has to be initialized (with amx_Init).

data

The memory block for the cloned abstract machine. This block must hold the static (global) data, the stack and the heap.

Notes:

Use amx_MemInfo to query the size of the static data and the stack/heap of the source abstract machine. The memory block to allocate for the data parameter should have a size that is the sum of the global data and the stack/heap size.

The cloned abstract machine has a separate data section and a separate stack, but it shares the executable code with the source abstract machine. The source abstract machine should not be deleted while any cloned abstract machines might still be active.

The state of the data section (the global and static variables) are copied from the source abstract machine to the clone at the time that amx_Clone is called. If the source abstract machine has modified any global/static variables before it is cloned, the clone will have these values as its initial state. In practice, it may be advisable not to "run" the source abstract machine at all, but to use it only for cloning and run the clones.

See also: amx_Init, amx_MemInfo

amx_ctof

Cast "cell" to "float"

Syntax: [float] amx_ctof([cell] c)

c The value to cast from "cell" type to "float".

Returns: The same bit pattern, but now as a floating point type.

Notes:

This **macro** casts a "cell" type into a "float" type without changing the bit pattern. A normal type cast in C/C^{++} changes the memory representation of the expression so that its numeric value in IEEE 754 format comes closest to the original integer value. The PAWN parser and abstract machine store floating point values in a cell — when retrieving a floating point value from a cell, the bit pattern must *not* be changed.

See also: amx_ftoc

amx_Exec Run code

Syntax: int amx_Exec(AMX *amx, long *retval, int index)

amx The abstract machine from which to call a function.

retval Will hold the return value of the called function upon

return. This parameter may be NULL if you are not

interested in the return value.

index An index into the "public function table"; it indicates

the function to execute. See amx_FindPublic for more information. Use AMX_EXEC_MAIN to start executing at the main function, and AMX_EXEC_CONT to continue

execution from a "sleep state".

Notes: This function runs the script, starting at the indicated function. It

calls the callback function for any native function call that the code in the AMX makes. amx_Exec assumes that all native functions are

correctly initialized with amx_Register.

See also: amx_FindPublic, amx_Register

amx_FindNative

Return the index of a native function

Syntax: int amx_FindNative(AMX *amx, char *funcname, int *index)

amx The abstract machine.

function to find.

Ī

index Upon return, this parameter holds the index of the

requested native function.

Notes: The returned index is the same as what the abstract machine would

pass to amx_Callback.

See also: amx_Callback, amx_FindPublic, amx_GetNative,

amx_NumNatives

amx_FindPublic

Return the index of a public function

Syntax: int amx_FindPublic(AMX *amx, char *funcname, int *index)

amx The abstract machine.

function to find.

index Upon return, this parameter holds the index of the

requested public function.

See also: amx_Exec, amx_FindNative, amx_FindPubVar, amx_GetPublic,

amx_NumPublics

amx_FindPubVar

Return the address of a public variable

Syntax: int amx_FindPubVar(AMX *amx, char *varname,

cell *amx_addr)

amx The abstract machine.

varname The name of the public variable to find.

amx_addr Upon return, this parameter holds the variable ad-

dress relative to the abstract machine.

Notes: The returned address is the address relative to the "data section"

in the abstract machine. Use amx_GetAddr to acquire a pointer to

its "physical" address.

 $See \ also: \\ \hspace{0.5cm} \texttt{amx_FindPublic}, \\ \hspace{0.5cm} \texttt{amx_GetAddr}, \\ \hspace{0.5cm} \texttt{amx_GetPubVar}, \\ \hspace{0.5cm} \texttt{amx_NumPubVars} \\$

amx_Flags Return various flags

Syntax: int amx_Flags(AMX *amx,unsigned short *flags)

amx The abstract machine.

flags A set of bit flags is stored in this parameter. It is a

set of the following flags:

AMX_FLAG_DEBUG if the program carries symbolic in-

formation

AMX_FLAG_COMPACTif the program is stored in "com-

pact encoding"

AMX_FLAG_BYTEOPCopcodes have the size of one byte rather than of a cell

AMX_FLAG_NOCHECKS the compiled P-code does not include BREAK opcodes, line number information or run-time (bounds)

checks

Notes:

Notes:

A typical use for this function is to check whether the compiled program contains symbolic (debug) information. There is may not be much use in running a debugger without having symbolic information for the program to debug; if the program does not even have contain BREAK opcodes, installing a debugger callback may be skipped altogether.

amx_ftoc Cast "float" to "cell"

Syntax: [cell] amx_ftoc([float] f)

f The value to cast from "float" type to "cell".

Returns: The same bit pattern, but now as a "cell" type.

This **macro** casts a "float" type into a "cell" type without changing the bit pattern. A normal type cast in C/C^{++} changes the memory representation of the expression so that its numeric value in integer format is the integral (truncated) value of the original rational value. The PAWN parser and abstract machine store floating point values in a cell —when storing a floating point value in a cell, the bit pattern

must *not* be changed.

amx_ctof

amx

amx_GetAddr

Resolve an AMX address

Syntax: int amx_GetAddr(AMX *amx,cell amx_addr,cell **phys_addr)

amx_addr The address relative to the abstract machine.

The abstract machine.

phys_addr A pointer to the variable that will hold the memory

address of the indicated cell. If the amx_addr parameter is not a valid address inside the abstract machine,

phys_addr will be set to NULL.

Notes:

This function returns the memory address of an address in the abstract machine. One typically uses this function in an extension module, because it allows you to access variables inside the abstract machine.

amx_GetNative

Return a native function name

Syntax:

int amx_GetNative(AMX *amx, int index, char *funcname)

amx The abstract machine.

index The index of the requested function. Use zero to re-

trieve the name of the first native function.

functional function The string that will hold the name of the native func-

tion.

Notes:

The string should be large enough to hold longest function name plus the terminating zero byte. Use amx_NameLength to inquire this length.

See also:

amx_FindNative, amx_GetPublic, amx_NameLength,

amx_NumNatives

amx_GetPublic

Return a public function name

Syntax: int amx_GetPublic(AMX *amx, int index, char *funcname)

amx The abstract machine.

index The index of the requested function. Use zero to re-

trieve the name of the first public function.

function The string that will hold the name of the public func-

tion.

Notes: The string should be large enough to hold longest function name

plus the terminating zero byte. Use amx_NameLength to inquire

this length.

See also: amx_FindPublic, amx_GetPubVar, amx_NameLength,

amx_NumPublics

amx_GetPubVar

Return a public variable name and address

Syntax:

amx The abstract machine.

index The index of the requested variable. Use zero to re-

trieve the name and address of the first public variable.

varname The string that will hold the name of the public vari-

able.

amx_addr Upon return, this parameter holds the variable ad-

dress relative to the abstract machine.

Notes: The string should be large enough to hold longest variable name

plus the terminating zero byte. Use amx_NameLength to inquire

this length.

The returned address is the address relative to the "data section" in the abstract machine. Use amx_GetAddr to acquire a pointer to

its "physical" address.

See also: amx_FindPubVar, amx_GetAddr, amx_GetPublic,

amx_NameLength, amx_NumPubVars

amx_GetString

Retrieve a string from the abstract machine

Syntax:

dest A pointer to a character array of sufficient size to hold

the converted source string.

source A pointer to the source string. Use amx_GetAddr to

convert a string address in the AMX to the physical

address.

use_wchar A non-zero value interprets the dest argument as a

pointer to "wide characters" —i.e. wchar_t, regardless of its char type. This allows the function to store

Unicode strings.

size The maximum number of characters to store in dest,

including the terminating zero byte. If the string in the source is longer, the string in dest will be trun-

cated.

Notes: This function converts both packed strings and unpacked strings

from the "PAWN" format to the "C" format. When retrieving an unpacked string with parameter use_wchar set to zero, the function may truncate characters from wide characters to 8-bit ASCII/ANSI.

See also: amx_SetString

amx_GetUserData

Return general purpose user data

Syntax: int amx_GetUserData(AMX *amx, long tag, void **ptr)

amx The abstract machine.

tag The "tag" of the user data.

ptr Will hold a pointer to the requested user data upon

return.

Notes:

The AMX stores multiple "user data" fields. Each field must have a unique tag. The tag may be any value (as long as it is unique), but it is usually formed by a four-letter mnemonic through the macro AMX_USERTAG.

The AMX does not use "user data" in any way. The storage can be used for any purpose.

See also: amx_SetUserData

	-	• -
amx	ln	

Create an abstract machine, load the binary file

Syntax:

int amx_Init(AMX *amx, void *program)

amx

This variable is initialized with the specific settings of the abstract machine. Before calling this function, all fields of the amx structure variable should be set to zero, or be explicitly initialized to relevant values (see the notes).

program

A pointer to the P-code stream of the program. This memory block should remain valid while the abstract machine is in use.

Notes:

amx_Init initializes the abstract machine with the settings from the binary file. The binary file must be stored in parameter program.

See appendix H for ROM support

To have the abstract machine run with the default parameters, set the amx structure variable to all zeros before calling this function. When the program parameter refers to a block of non-modifiable memory (running from ROM), however, you should initialize the data field of the amx structure to a separate memory block that resides in RAM.

See also:

amx_Cleanup, amx_InitJIT

amx_InitJIT

Compile an abstract machine to native code

Syntax:

amx The abstract machine, that must already have been initialized with amx_Init.

reloc_table A pointer to a block that the JIT compiler can use to create the relocation table. This block is only used during JIT compilation and may be freed as soon as the amx_InitJIT function returns. The size of the block must be at least amx->reloc_size bytes.

native_code A pointer to a block that will hold the native code after this function returns. This pointer must be set as the new "base" pointer of the abstract machine (see the notes below).

Notes:

Function amx_Init fills in two fields in the AMX structure that are needed for JIT compilation: code_size and reloc_size. Both fields are sizes of buffers that must be allocated for amx_InitJIT. The abstract machine will be compiled into the block native_code, which must have the size code_size (or larger) and the JIT compiler needs an auxiliary block during compilation, which is reloc_table with the size reloc_size.

The host application is responsible for allocating and freeing the required blocks.

Function amx_Init gives a conservative minimal estimate of the required code size for the native instructions —meaning that this value is (or should be) always too large. Function amx_InitJIT adjusts the code_size field to the accurate value. After the amx_InitJIT function returns, the compiled code needs to be attached to the amx structure, and you may want to shrink the memory block to the accurate size before doing so. To attach the native code to the abstract machine, assign the native_code pointer to the "base" field of the amx structure.

On some architectures, the memory block for native_code must furthermore have the appropriate privileges to execute machine instructions. See page 80 for details. See also: amx_Init

amx_MemInfo

Return memory size information

Syntax: int AMXAPI amx_MemInfo(AMX *amx, long *codesize, long *datasize, long *stackheap)

amx The abstract machine.

codesize Will hold the size of the executable code plus the code

header upon return. See appendix D for a description

of the header.

datasize Will hold the size of the global/static data upon re-

turn.

stackheap Will hold the combined (maximum) size of the of the

stack and the heap upon return.

Notes: All sizes are in bytes.

The stack and the heap share a memory region; the stack grows

towards the heap and the heap grows towards the stack.

See also: amx_Clone

amx_NameLength

Return the maximum name length

Syntax: int amx_NameLength(AMX *amx, int *length)

amx The abstract machine.

length Will hold the maximum name length upon return.

The returned value includes the space needed for the

terminating zero byte.

See also: amx_GetPublic, amx_GetPubVar

amx_NativeInfo

Return a structure for amx_Register

Syntax:

AMX_NATIVE_INFO *amx_NativeInfo(char *name, AMX_NATIVE func)

name The name of the function (as known to the PAWN pro-

gram)

func A pointer to the native function.

Returns: A pointer to a static record (this record is overwritten on every call;

it is *not* thread-safe).

Notes: This function creates a list with a single record for amx_Register.

To register a single function, use the code snippet (where my_solve

is a native function):

err = amx_Register(amx, amx_NativeInfo("solve", my_solve), 1);

See also:

amx_Register

amx_NumNatives

Return the number of native functions

Syntax:

int amx_NumNatives(AMX *amx, int *number)

The abstract machine. amx

number

Will hold the number of native functions upon return.

Notes:

The function returns number of entries in the file's "native functions" table. This table holds only the native functions that the script refers to (i.e. the function that it calls). To retrieve the func-

tion names, use amx_GetNative.

See also:

amx_GetNative, amx_NumPublics

amx_NumPublics

Return the number of public functions

Syntax: int amx_NumPublics(AMX *amx, int *number)

amx The abstract machine.

number Will hold the number of public functions upon return.

Notes: The function returns number of entries in the file's "public func-

tions" table. To retrieve the function names, use amx_GetPublic.

See also: amx_GetPublic, amx_NumPubVars

amx_NumPubVars

Return the number of public variables

Syntax: int amx_NumPubVars(AMX *amx, int *number)

amx The abstract machine.

number Will hold the number of public variables upon return.

Notes: The function returns number of entries in the file's "public variables"

table. To retrieve the variable names, use amx_GetPubVar.

See also: amx_GetPubVar, amx_NumPublics

amx_Push

Pass a numeric argument "by-value"

Syntax: int amx_Push(AMX *amx, cell value)

amx The abstract machine.

value The value to pass to the public function.

Notes: Any parameters to a public function must be pushed to the func-

tion before calling amx_Exec. If a public function has multiple ar-

guments, the arguments must be pushed int reverse order.

See also: amx_Exec, amx_PushArray, amx_PushString

amx_PushArray

Pass an argument or array "by-reference"

Syntax:

amx The abstract machine.

amx_addr The address of the allocated cell as the PAWN pro-

gram (that runs in the abstract machine) can access it, needed to release the memory block. This param-

eter may be NULL.

phys_addr The address of the cell for C/C⁺⁺ programs to access.

This parameter may be NULL.

array The array of values to pass to the public function. A

single cell that must be passed $\it by\mbox{-}\it reference$ is regarded

as a single-cell array.

numcells The number of elements in the array.

Notes:

Any parameters to a public function must be pushed to the function before calling amx_Exec. If a public function has multiple arguments, the arguments must be pushed *int reverse order*.

The function allocates memory for the array inside the "heap" of the abstract machine. This memory must be freed with amx_Release. See function amx_Allot for details on the parameters amx_addr and

phys_addr.

See also:

 $\verb"amx_Exec", \verb"amx_Push", \verb"amx_Push" String", \verb"amx_Release"$

amx_PushString

Pass a string argument

Syntax:

amx The abstract machine.

The address of the allocated cell as the PAWN proamx_addr gram (that runs in the abstract machine) can access it, needed to release the memory block. This param-

eter may be NULL.

The address of the cell for C/C^{++} programs to access. phys_addr

This parameter may be NULL.

string The string to pass to the public function.

Non-zero to convert the source string to a packed pack

string in the abstract machine, zero to convert the

source string to a cell string.

A non-zero value interprets the string argument as use_wchar

> a pointer to "wide characters"—i.e. wchar_t, regardless of its char type. This allows the function to ac-

cept Unicode strings.

Any parameters to a public function must be pushed to the function before calling amx_Exec. If a public function has multiple arguments, the arguments must be pushed int reverse order.

> The function allocates memory for the array inside the "heap" of the abstract machine. This memory must be freed with amx_Release. See function amx_Allot for details on the parameters amx_addr and phys_addr.

> When you pass in an Unicode string and request a packed format in the abstract machine (i.e. both pack and use_wchar are true), the characters are truncated to 8-bits.

See also: amx_Exec, amx_Push, amx_PushArray, amx_Release, amx_SetString

Notes:

į

amx_RaiseError Flag an error

Syntax: int amx_RaiseError(AMX *amx, int error)

amx The abstract machine.

error The error code. This is the code that amx_Exec re-

turns.

Notes: This function should be called from a native function. It lets the

default callback routine return an error code.

amx_Register

Make native functions known

Syntax:

amx The abstract machine.

list An array with structures where each structure holds

a pointer to the name of a native function and a function pointer. The list is optionally terminated with a

structure holding two NULL pointers.

number The number of structures in the list array, or -1 if the

list ends with a structure holding two NULL pointers.

Notes:

On success, this function returns 0 (AMX_ERR_NONE). If this function returns the error code AMX_ERR_NOTFOUND, one or more native functions that are used by the PAWN program are not found in the provided list. You can call amx_Register again to register additional function lists.

To check whether all native functions used in the compiled script have been registered, call amx_Register with the parameter list set to NULL. This call will not register any new native functions, but still return AMX_ERR_NOTFOUND if any native function is unregistered.

See also: amx_NativeInfo

amx_Release

Free heap space in the abstract machine

Syntax: int amx_Release(AMX *amx,cell amx_addr)

> The abstract machine. amx

amx_addr The address of the allocated cell as the PAWN pro-

gram (that runs in the abstract machine) sees it. This value is returned by amx_Allot, amx_PushArray and

amx_PushString.

Notes: amx_Allot allocates memory on the heap in ascending order (the

heap grows upwards). amx_Release frees all memory above the value of the input parameter amx_addr. That is, a single call to amx_Release can free multiple calls to amx_Allot if you pass the

amx_addr value of the first allocation.

amx_PushArray and amx_PushString use amx_Allot internally, so

the same procedure applies to these functions as well.

See also: amx_Allot, amx_PushArray, amx_PushString

amx_SetCallback

Install a callback routine

Syntax: int amx_SetCallback(AMX *amx, AMX_CALLBACK callback)

> The abstract machine. amx

callback The address for a callback function. See function

amx_Callback for the prototype and calling conven-

tion of a callback routine.

Notes: If you change the callback function, you should not use functions

> amx_Register or amx_RaiseError. These functions work in combination with the default callback function. To set the default call-

back, set parameter callback to the function amx_Callback.

You may set the callback before or after calling amx_Init.

amx_SetDebu	gHook	(
-------------	-------	---

Install a debug routine

Syntax:

int amx_SetDebugHook(AMX *amx, AMX_DEBUG debug)

amx The abstract machine.

debug The address for a callback function for the debugger.

The prototype and calling convention of a debug hook

routine are:

int AMXAPI CallbackFunction(AMX *amx):

Notes:

To disable the debug hook, set the debug parameter to NULL.

amx_SetString

Store a string in the abstract machine

Syntax:

dest

A pointer to a character array in the AMX where the converted string is stored. Use amx_GetAddr to convert a string address in the AMX to the physical address.

dress.

source A pointer to the source string.

pack Non-zero to convert the source string to a packed

string in the abstract machine, zero to convert the

source string to a cell string.

use_wchar A non-zero value interprets the source argument as

a pointer to "wide characters" —i.e. wchar_t, regardless of its char type. This allows the function to ac-

cept Unicode strings.

size The maximum number of cells to store in dest, in-

cluding the terminating zero byte or cell. If the string in the <code>source</code> is longer than can fit in the number of

cells in dest, it will be truncated.

Notes:

When you pass in an Unicode string and request a packed format in the abstract machine (i.e. both pack and use_wchar are true), the characters are truncated to 8-bits. See also: amx_GetString

amx_SetUserData

Set general purpose user data

Syntax: int amx_SetUserData(AMX *amx, long tag, void *ptr)

amx The abstract machine.

tag The "tag" of the user data, which uniquely identifies

the user data. This value should not be zero.

ptr A pointer to the user data.

Notes:

The AMX stores multiple "user data" fields. Each field must have a unique tag. The tag may be any value (as long as it is unique) except zero, but it is usually formed by four characters through the macro AMX_USERTAG.

r = amx_SetUserData(amx, AMX_USERTAG('U', 'S', 'E', 'R'), "Fire");

The AMX does not use "user data" in any way. The storage can be used for any purpose.

See also:

amx_GetUserData

amx_StrLen

Get the string length in characters

Syntax:

int amx_StrLen(const cell *cstring, int *length)

cstring The string in the abstract machine.

length This parameter will hold the string length upon re-

turn.

Notes:

This function determines the length in *characters* of the string, not including the zero-terminating character (or cell). A packed string occupies less cells than its number if characters.

If the cstring parameter is NULL, the length parameter is set to zero (0) and the function returns with an error code.

For converting unpacked strings to UTF-8, function amx_UTF8Len may be more convenient.

See also:

amx_GetAddr, amx_GetString, amx_SetString, amx_StrParam,

amx_UTF8Len

amx_StrParam

Get a string parameter from an abstract machine

Syntax:

amx_StrParam([AMX*] amx, [int] param, [char*] result)

amx

The abstract machine.

param

The parameter number.

result

A variable that will hold the result on return.

Notes:

This macro allocates a block of memory (with alloca) and copies a string parameter (to a native function) in that block. See page 56 for an example of using this macro.

See also:

amx_GetAddr, amx_GetString, amx_StrLen

amx_UTF8Check

Check whether a string is valid UTF-8

Syntax:

int amx_UTF8Check(const char *string, int *length)

A zero-terminated string. string

length

If the string is a valid UTF-8 string, this parameter will hold the length of the string (in wide characters, and excluding the terminating zero character). This parameter may be NULL in case you do not need the length.

Notes:

The function runs through a zero-terminated string and checks the validity of the UTF-8 encoding. The function returns an error code, it is AMX_ERR_NONE if the string is valid UTF-8 (or valid ASCII for that matter).

If the string is valid UTF-8, you can use the value of parameter length to allocate enough memory to hold a string that you can convert with amx_UTF8Get.

See also:

amx_UTF8Get, amx_UTF8Put, amx_UTF8Len

amx_UTF8Get

Decode a character from UTF-8

string A pointer to the start of an UTF-8 encoded character.

endptr This pointer will point to the UTF-8 character behind

the one that is decoded after the function completes. As UTF-8 encoding is variable-length, this returned value is useful when decoding a full string character

by character. This parameter may be NULL.

value A pointer to the "wide" character that has the value

of the decoded UTF-8 character. This parameter may

be NULL.

Notes: The function returns an error code. On error, endptr points to the

start of the character (the same value as the input value for the

string parameter) and value is set to zero.

See also: amx_UTF8Check, amx_UTF8Put

amx_UTF8Len

Return the length of the string in UTF-8 encoding

Syntax: int amx_UTF8Len(const cell *string, int *length)

string A zero-terminated string. This should normally be an

unpacked string.

length Upon return of the function, this parameter holds the

number of bytes that are needed to store the string in UTF-8 encoding, excluding the zero terminator. If the input string is a packed string, the returned length is the same as the string length —packed strings should

not be UTF-8 encoded.

Notes: If the cstring parameter is NULL, the length parameter is set to

zero (0) and the function returns with an error code.

See also: amx_StrLen, amx_UTF8Check

amx_UTF8Put

Encode a character into UTF-8

Syntax:

string

A pointer to the string that will hold the UTF-8 encoded character. This parameter may *not* be NULL.

endptr

This pointer will point directly behind the encoded UTF-8 character after the function completes. As UTF-8 encoding is variable-length, this returned value is useful when encoding a sequence of Unicode/UCS-4 characters into an UTF-8 encoded string. This parameter may be NULL.

maxchars

The maximum number of characters that the function may use. An UTF-8 character is between 1 and 6 bytes long. If the character value in the parameter value is restricted to the Basic Multilingual Plane (16-bits Unicode), the encoded length is between 1 and 3 bytes.

value

The "wide" character with the value to be encoded as an UTF-8 character.

Notes:

The function returns an error code if the parameter maxchars is lower than the required number of bytes for the UTF-8 encoding; in this case nothing is stored in the string parameter.

The function does not zero-terminate the string.

Character values that are invalid in Unicode/UCS-4 cannot be encoded in UTF-8 with this routine.

See also:

amx_UTF8Check, amx_UTF8Get

AMX_ERR_CALLBACK

AMX_ERR_NATIVE

Error numbers:

48

aux StrError Get a text description of an error Syntax: char *aux_StrError(int errnum) errnum The error number. Notes: This function returns a pointer to a static string with a description of the error number errnum. A few "error" codes, like AMX_ERR_SLEEP, do not really denote an error situation. For those error codes and for invalid values of errnum, the function returns a description that is enclosed in parentheses. Error codes (0)AMX_ERR_NONE No error. AMX_ERR_EXIT (1)Program aborted execution. This is usually not an error. AMX_ERR_ASSERT (2)A run-time assertion failed. AMX_ERR_STACKERR (3)Stack or heap overflow; the stack collides with the heap. AMX_ERR_BOUNDS (4)Array index is out of bounds. AMX_ERR_MEMACCESS (5)Accessing memory that is not allocated for the program. AMX_ERR_INVINSTR (6)Invalid instruction. AMX_ERR_STACKLOW (7)Stack underflow; more items are popped off the stack than were pushed onto it. AMX_ERR_HEAPLOW (8)Heap underflow; more items are removed from the heap than were inserted into it.

There is no callback function, and the program called a native function.

Native function requested the abortion of the abstract machine.

(9)

(10)

AMX_ERR_PARAMS (25)

General purpose parameter error: one of the parameters to a function of the abstract machine was incorrect (e.g. out of range).

(26)AMX_ERR_DOMAIN

A "domain error": the expression result does not fit in the variable that must hold it. This error may occur in fixed point and floating point support libraries.

Extension modules

An extension module provides a PAWN program with application-specific ("native") functions. An native function is a function that is implemented in the host application (as opposed to being implemented in the PAWN script) and it is typically implemented in a different programming language.* Creating an extension module is a three-step process:

- 1 writing the native functions (in C);
- 2 making the functions known to the abstract machine;
- 3 writing an include file that declares the native functions for the PAWN programs.

• 1. Writing the native functions

Every native function must have the following prototype:

cell AMX_NATIVE_CALL func(AMX *amx, const cell *params);

The identifier "func" is a placeholder for a name of your choice. The AMX type is a structure that holds all information on the current state of the abstract machine (registers, stack, etc.); it is defined in the include file AMX.H. The symbol AMX_NATIVE_CALL holds the calling convention for the function. The file AMX.H defines it as an empty macro (so the default calling convention is used), but some operating systems or environments require a different calling convention. You can change the calling convention either by editing AMX.H or by defining the AMX_NATIVE_CALL macro before including AMX.H. Common calling conventions are _cdecl, _far _pascal and _stdcall.

The params argument points to an array that holds the parameter list of the function. The value of params [0] is the number of *bytes* passed to the function (divide by the size of a cell to get the number of parameters passed to the function); params [1] is the first argument, and so forth.

For arguments that are passed by reference, function <code>amx_GetAddr</code> converts the "abstract machine" address from the "<code>params</code>" array to a physical address. The pointer that <code>amx_GetAddr</code> returns lets you access variables inside the abstract machine directly. Function <code>amx_GetAddr</code> also verifies whether the input address is a valid address.

^{*} The native function interface is technically known as a "foreign function interface", but this manual uses the term "native function interface".

When a native function accepts a variable number of arguments, all arguments in the "variable argument list" are passed to the native function by reference. Even (literal) constants that are passed to the function are first stored on a temporary location on the stack and then the address of that location is passed to the function—the constant is thereby passed "by reference".

Strings, like other arrays, are always passed by reference. However, neither packed strings nor unpacked strings are universally compatible with C strings (on Big Endian computers, packed strings are compatible with C strings). Therefore, the abstract machine API provides two functions to convert C strings to and from PAWN strings: amx_GetString and amx_SetString.

See page 113 for the memory layout of arrays and page 57 for an example

A native function may abort a program by calling amx_RaiseError with a non-zero code. The non-zero code is what amx_Exec returns.

• 2. Linking the functions to the abstract machine

An application uses amx_Register to make any native functions known to the abstract machine. Function amx_Register expects a list of AMX_NATIVE_INFO structures. Each structure holds a pointer to the name of the native function and a function pointer.

Below is a full example of a file that implements two simple native functions: raising a value to a power and calculating the square root of a value. The list of AMX_NATIVE_INFO structures is near the bottom of the example —it is wrapped in an "initialization function" called amx PowerInit.

```
/* This file implements two the native functions: power(value, exponent)
  * and sqroot(value).
  */
#include "amx.h"

static cell n_power(AMX *amx, cell *params)
{
    /* power(value, exponent);
    *    params[1] = value
    *    params[2] = exponent
    */
    cell result = 1;
    while (params[2]-- > 0)
        result *= params[1];
    return result;
}
```

```
static cell n_sqroot(AMX *amx, cell *params)
  /* sqroot(value);
   * params[1] = value
  * This routine uses a simple successice approximation algorithm.
  cell div = params[1];
  cell result = 1;
  while (div > result) {
                                /* end when div == result, or just below */
   div = (div + result) / 2;
                               /* take mean value as new divisor */
   result = params[1] / div;
 } /* while */
 return div;
int amx_PowerInit(AMX *amx)
  static AMX_NATIVE_INFO power_Natives[] = {
    { "power", n_power },
    { "sqroot", n_sqroot },
                   /* terminator */
   {0,0}
 return amx_Register(amx, power_Natives, -1);
int amx_PowerCleanup(AMX *amx)
 return AMX_ERR_NONE;
}
```

In your application, you must add a call to amx_InitPower with the "amx" structure as a parameter, as shown below:

```
err = amx_InitPower(&amx);
```

Example program that calls amx_Register: 6

The first example of "host applications" for the PAWN abstract machine called amx_Register directly, referring to the external arrays core_Natives and console_Natives (being the native function tables). In many situations, the strategy taken here (calling a function provided by the extension module to handle the native function registration) is preferable:

- ⋄ Giving a function "external" scope is safer than doing so with a variable; as opposed to functions, variables can be (accidentally) tampered with. Observe, by the way, that only the functions amx_PowerInit and amx_PowerCleanup have external scope in the above example.
- An extension module may require additional "start-up" code. Doing this in the same routine that also registers the native functions makes sure that all initialization steps occur, and in the correct order.

♦ An extension module may also require clean-up code. When all extension modules provide "initialization" and "clean-up" functions, the rules for adding an extension module to the host application become universal. This is especially so if there is a naming convention for these initialization and clean-up functions. For this reason, even though the "power" extension module does not require any clean-up, an empty clean-up function amx_PowerCleanup was added.

• 3. writing an include file for the native functions

The first step implements the native functions and the second step makes the functions known to the abstract machine. Now the third step is to make the native functions known to the PAWN compiler. To that end, one writes an include file that contains the prototypes of the native functions and all constants that may be useful in relation to the native functions.

#pragma library Power
native power(value, exponent)
native sqroot(value)

The #pragma library line is useful when you create a dynamically loadable extension module, as described on page 61; it is not required for an extension module that is statically linked to the host application.

Writing "wrappers"

The preceding sections described the implementation of a few functions that were specially crafted as "native functions" for the PAWN abstract machine. It is common practice, however, that instead of writing new functions for PAWN, you will make a set of existing C/C^{++} functions available to PAWN. To "glue" the existing functions to PAWN, you need to embed each function in a tiny new function with the required "native function" signature. Such new functions are called wrapper functions.

Wrapper functions also illustrate the issues in passing parameters across C/C^{++} -PAWN boundaries, plus that they provide templates for writing any kind of native functions.

• Pass-by-value, the simplest case

The PAWN toolset was designed to make the interface to native functions quick and easy. To start with an example, I will make a wrapper for the function isalpha from the standard C library. The prototype for isalpha is:

```
int isalpha(int c);
```

Wrapping isalpha into a native function, results in the code:

```
static cell n_isalpha(AMX *amx, const cell *params)
{
  return isalpha( (int)params[1] );
}
```

In addition to writing the above wrapper function, you must also still add it to a table for amx_Register and add it to an include file for the PAWN compiler.

• Floating point

Wrapping functions like isalpha represent the simplest case: functions that take parameters with an "integer" type and that return "void" or an integer type. When either any of the parameters or the return type of the existing function are a floating point type, these parameters must be cast to/from the "cell" type that PAWN uses —but this cast must happen through a special macro. For example, consider the function sin with the prototype:

```
double sin(double angle);
```

Its wrapper function is:

```
static cell n_sin(AMX *amx, const cell *params)
{
  float r = sin( amx_ctof(params[1]) );
  return amx_ftoc(r);
}
```

The symbols amx_ctof and amx_ftoc are macros that cast a "cell" type into "float" and vice versa, but in contrast to the standard type casts of C/C⁺⁺ they do not change the bit representation of the value that is cast. A normal type cast, therefore, changes the value* and what is needed is a cast that leaves the value intact—which is what amx_ctof and amx_ftoc do.

^{*} This behaviour is quite apparent in the cast from floating point to integer, which truncates the value to its integral part.

• Strings

Wrapping functions that take string parameters is more involved, because the memory layout of a string in the PAWN abstract machine is probably different than that of C/C^{++} . This means that strings must be converted between the native (wrapper) function and the PAWN abstract machine. The standard C function access has the prototype:

```
int access(const char *filename, int flags);
```

Its wrapper function is:

```
static cell n_access(AMX *amx, const cell *params)
{
  int r = 0, length;
  cell *cstr;
  char *pname;

  amx_GetAddr(amx, params[1], &cstr);
  amx_StrLen(cstr, &length);
  if ((pname = malloc(length + 1)) != NULL) {
    amx_GetString(pname, cstr, 0, UNLIMITED);
    r = access( pname, (int)params[2] );
    free(pname);
  } /* if */
  return r;
}
```

When the PAWN abstract machine passes an array to a native function, it passes the base address of the array. This address, however, is relative to the data section of the abstract machine; it is not a pointer that the native function (in C/C^{++}) can use as is. The function $\mathtt{amx_GetAddr}$ translates an "abstract machine address" (in $\mathtt{params[1]}$ in the above example) to a physical pointer for the host application (i.e. \mathtt{cstr}).

The next step is to convert the string for the format as it is stored in the abstract machine to what C/C^{++} understands. Function $\mathtt{amx_GetString}$ does that, but before using it, you have to check the string length first —hence, $\mathtt{amx_StrLen}$. The last parameter of $\mathtt{amx_GetString}$ also allows you to limit the number of characters stored in the destination; if you know that your buffer is big enough, you can pass in the constant UNLIMITED for the size. Function $\mathtt{amx_GetString}$ recognizes both packed and unpacked strings, by the way.

[†] On a Big Endian CPU platform packed strings have the same memory layout in Pawn and in C/C++, unpacked strings and all strings on a Little Endian CPU have a different layout.

If you need to write a string back into the data section of the abstract machine, you can use the amx_SetString companion function.

When making wrappers by hand, the macro amx_StrParam may be convenient because it implements the "scaffolding code". The wrapper for the function access would become:

```
static cell n_access(AMX *amx, const cell *params)
{
  int r = 0;
  char *pname;

  amx_StrParam(amx, params[1], pname);
  if (pname != NULL)
    r = access( pname, (int)params[2] );
  return r;
}
```

The wrapper function uses the C function alloca to allocate memory, instead of malloc. The advantage of alloca is that memory does not need to be freed explicitly. Function alloca is not in the ANSI C standard, however, and it may not be available on your platform.

• Pass-by-reference

 C/C^{++} functions that return values through pointers need a similar wrapping as strings: PAWN does not understand pointers, but it supports call-by-reference. The example function for this wrapper is the C/C^{++} function time, with prototype:

```
time_t time(time_t* timer);
```

I am making the bold assumption that time_t is represented as a 32-bit integer (which as cell is as well). The wrapper function becomes:

```
static cell n_time(AMX *amx, const cell *params)
{
   time_t r;
   cell *cptr;

   assert(sizeof(cell) == sizeof(time_t));
   amx_GetAddr(amx, params[1], &cptr);
   r = time( (time_t*)cptr );
   return r;
}
```


In the above wrapper function, function time writes directly into a memory cell in the data section of the abstract machine. This is allowed only if the value that the function writes has the same size as a cell (32-bit). For good measure, the above wrapper verifies this with an assert statement. If the size that the C/C^{++} function returns differs from that of a cell, the wrapper function must convert it to a cell before writing it through the pointer obtained by amx_GetAddr.

Arrays

For the interface of the abstract machine to the host application, a "reference parameter" (see the preceding section) is identical to an array with one element. Writing wrappers for functions that take an array is therefore similar to writing a function that handles a reference argument. With single dimensional arrays, the main difference is that the pointer returned by <code>amx_GetAddr</code> now points to the first cell of potentially many cells.

Multi-dimensional arrays must be handled differently, though, as the memory lay-out differs between C/C^{++} and PAWN. In comparison with C/C^{++} , two-dimensional arrays in PAWN are *prefixed* with a single-dimensional array that holds memory offsets to the start of each "row" in the two-dimensional array. This extra list allows each row to have a different column length. In C/C^{++} , each column in a two-dimensional array must have the same size.

Memory lay-out of arrays: 113

If you are writing a wrapper function for an existing C function, as opposed to writing/adapting a native function specifically to exploit PAWN's features, you will not be concerned with variable column-length arrays $-C/C^{++}$ does not support them, so your native function will not allow them. All that needs to be done, then, is to skip the prefixed "column offsets" list after getting the address from amx_GetAddr.

For an example, I use the OpenGL function glMultMatrixf which multiplies a given 4×4 matrix with the *current* matrix. The prototype of the function is:

```
void glMultMatrixf(const GLfloat *m);
```

The wrapper function just has to get the address of its array parameter and add four cells to them.

```
static cell n_glMultMatrixf(AMX *amx, const cell *params)
{
   cell *cptr;
```

```
assert(sizeof(cell) == sizeof(time_t));
amx_GetAddr(amx, params[1], &cptr);
glMultMatrixf( (GLfloat*)(cptr + 4) );
return 0;
}
```

For this example, I selected the OpenGL matrix multiplication function that accepts a matrix of "float-type" floating point values, because the cell and the float types are both four bytes (in a common PAWN implementation). If you need to wrap a function that accepts an array of "double-type" values, this array has to be converted from float to double values —and possibly back to float after calling the wrapped function.

• Wrapping class methods (C⁺⁺ interface)

The interface between the abstract machine and C/C^{++} is based on plain functions. When trying to use a *class method* as a native function, there is a complexity: a (non-static) class method function must be called with an implicit "this" parameter, which the abstract machine is unaware of. Hence, the abstract machine cannot pass this parameter directly and some extra intermediate code is needed to call a class method.

Reasons why you wish to use class methods as native functions, rather than plain C/C^{++} functions are:

- 1. improved encapsulation,
- 2. or the ability to bind a different *instance* of the class to each abstract machine (when several abstract machines exists concurrently).

In the first case, declaring the class methods and member variables as "static" is a solution. Static methods do not receive a this parameter, but, in turn, they cannot access non-static member variables. So the member variables should be static too.

This section covers the second case: binding an abstract machine to a class instance that is created dynamically. For this binding, the interface needs "forwarding" functions that call the appropriate (non-static) class method and a look-up mechanism to match the required **this** to the abstract machine. The forwarding functions might be static methods in the same class. The example below, however, uses plain functions to wrap a C⁺⁺ class without modifying the class.

The wrapper is for an imaginary class that allows writing to "log files". With this procedure, each abstract machine will get its own log file. For purpose of showing the wrapper, the class is kept rather simplistic:

When a new abstract machine initializes its "log file" native functions, it must create a new instance of the class and bind the instance (the this pointer) to the abstract machine. Later, the wrapping/forwarding function must have a way to look up this binding —or a way to find the LogFile class instance attached to the abstract machine. The simplest way to implement this binding is to store a pointer to the class instance in the "user data" of the abstract machine. However, as the number of user values for an abstract machine is limited, this is not a general purpose solution: if every extension module (string functions, console functions, date/time functions, etc) needs a user value, you'll run out quickly. An alternative simple method that keeps the binding local to the extension module is the use of the map container class from the Standard Template Library (STL). The STL is now part of the C⁺⁺ standard library, so it is likely to be available on your system.

User data example: 13

```
static std::map<AMX*, LogFile*> LogFileLookup;
static cell n_write(AMX* amx, cell params[])
{
  int r = 0;
  char *pstr;
  amx_StrParam(amx, params[1], pstr);
  std::map<AMX*, LogFile*>::iterator p = LogFileLookup.find(amx);
  if (pstr != NULL && p != LogFileLookup.end())
    r = p->second->write(pstr);
```

```
return r:
}
extern "C"
int amx_LogFileInit(AMX* amx)
 LogFile* lf = new LogFile;
  if (lf) {
   LogFileLookup.insert(std::make_pair(amx, lf));
    static AMX_NATIVE_INFO nativelist[] = {
      { "write", n_write },
      { 0, 0 }
                     /* terminator */
   };
   return amx_Register(amx, nativelist, -1);
 } /* if */
  return AMX_ERR_MEMORY;
extern "C"
int amx_LogFileCleanup(AMX* amx)
  std::map<AMX*, LogFile*>::iterator p = LogFileLookup.find(amx);
  if (p != LogFileLookup.end()) {
    delete p->second:
   LogFileLookup.erase(p);
  } /* if */
 return AMX_ERR_NONE;
}
```

The wrapper function n_write contains the usual code to fetch a string parameter from the abstract machine (see page 56), and it also looks up the LogFile class instance for the abstract machine using the map container LogFileLookup. The function amx_LogFileInit creates the new instance and adds it to the map, in addition to registering native functions. The "clean up" function for the extension module does the reverse: it deletes the class instance and removes it from the map. Note that the amx_LogFileInit and amx_LogFileCleanup functions must be declared "extern "C"" (but the wrapper function n_write need not be).

The map container from the Standard Template Library is a general purpose implementation with a fair performance for very small to very large maps. From the description of the properties of the map, it appears that it uses an autobalancing binary tree data structure. If you do not know (or do not control) how many abstracts machines can run concurrently, the STL map may be a good choice. On the other hand, if you can make an estimate of the typical number and/or the maximum number of concurrent abstract machines, you can typically improve the performance of the look-up by using a data structure that is tailored to the task and environment. Especially, a hash table can give a nearly constant

look-up time —meaning that looking up a class instance is equally quick when there are many concurrent abstract machines as when there are only few. The performance of a hash table deteriorates quickly when the table fills up, however, and very large hash tables have a bad overall performance because they do not fit in processor or disk caches.

Dynamically loadable extension modules

Up to this point, the description for developing extension modules assumed static linking for the modules. This means that the object code for the modules is embedded in the same executable program/shared library as the rest of the host application. Static linking also means that if you wish to add more native functions, or correct a bug in one of the existing native functions, you need access to the source code of the host application.

The alternative is to build the extension module as a DLL (for Microsoft Windows) or in a shared library (for UNIX/Linux). When set up correctly, amx_Init will automatically load a dynamically loadable extension module and register its functions. When done, amx_Cleanup, cleans up the extension module and unloads it from the operating system.

Apart from freeing you from writing a few lines (you do not have to call the amx_ModuleNameInit and amx_ModuleNameCleanup functions), the prime advantage of dynamic loading is that it makes the scripting subsystem of the host application easily extensible with "plug-in" extension modules. All that an enduser has to do to extend the scripting environment is to create or download a new extension module as a DLL/shared library, and to copy it with the associated include file (for the PAWN compiler) to appropriate (system) directories.

To build extension modules for dynamic loading, adhere to the following rules:

- ♦ Add a #pragma library ... line to the include file for the PAWN compiler. The PAWN compiler uses this #pragma to record which extension modules are actually referred to from the script. The PAWN compiler is smart enough to avoid including an extension module if the script does not call any of the functions in that extension module.
- The name of the DLL or shared library must be the same name as the one mentioned in the #pragma library line, but prefixed with the letters "amx" and with the extension ".dll" or ".so", whichever is appropriate.

⋄ The extension module must at least provide the external/exported function amx_FilenameInit, where Filename is, again, the name cited at the #pragma library line. If the library requires clean-up code, it should also provide the function amx_FilenameCleanup.

For example, when creating the example extension module "Power" from page 51 as a Windows DLL:

- the filename must be "amxPower.dll";
- the initialization and clean-up functions are must be named amx_PowerInit and amx_PowerCleanup respectively (that said, a do-nothing routine like amx_PowerCleanup may also be omitted);
- and the include file has the line "#pragma library Power" near the top—see also page 53.
- ♦ Note that function names are case sensitive (and on Linux, filenames as well).

Please consult you compiler documentation for details for creating a DLL or a shared library; also look at B for details in building a dynamically loadable extension module, specifically to the section at page 85.

♦ For deployment under UNIX/Linux, see also page 6 for an environment variable that you may need to set.

The flexibility of dynamically loadable extension modules is also the main reason why you may want to disable this feature: in the interest of *security*. If all native functions for your host application are carefully and selectively implemented by you, you have a good grip on what parts of the host application and of the operating system the end users can access. With "plug-in" extension modules, the entire system is effectively open, just as with any plug-in system.

To disable support for dynamically loadable extension modules, compile the abstract machine with the macro AMX_NODYNALOAD defined, see appendix B.

Error checking in native functions

When comparing the wrapper functions for PAWN with those for other scripting languages, you may remark that the wrapper functions for PAWN are relatively small and easy. Notably, PAWN wrapper functions lack type and parameter checking that other scripting languages mandate. The wrapper function for isalpha, for example, does not check the number of parameters that the PAWN script passes in. The wrapper function *could have* check this number of arguments, because

isalpha() wrapper: 53

PAWN passes the number of bytes that the native function receives in params[0], but in most cases this extra checking is redundant.

The number of parameters that are passed to a native function, and their tags, should be checked at compile-time, rather than at run-time. Therefore, PAWN requires the definitions of the native functions (in PAWN syntax), in addition to the implementation—this was the third step in the list at the start of the chapter "Extension modules" (page 50).

It is important that the native function declarations (in an include file) are accurate, and as specific as possible. For example, the native function declaration for the function <code>glMultMatrixf</code> would be:

glMultMatrixf() wrapper: 57

native glMultMatrixf(const Float: m[4][4]);

The above declaration declares "m" as a 4×4 array, holding values that must have the "Float" tag. The PAWN compiler will now issue an error if a script passes a parameter to the function that is not a 4×4 array or that does not hold floating point values.

Parameters checks that you may want to do at run-time, for the sake of security, are the validity of addresses that you receive. For every reference parameter or array, your native function calls amx_GetAddr to convert an address relative to the abstract machine to a pointer usable by C/C⁺⁺. As PAWN does not allow the script programmer to freely manipulate pointers, the addresses that a native function receives are *under normal circumstances* always valid, but a modified version of the PAWN compiler (or perhaps bugs in the compiler and/or abstract machine) may possibly be exploited to pass invalid addresses to a native function.

If security is important for your product, you should check the return value of amx_GetAddr; the function returns AMX_ERR_MEMACCESS if the input pointer is invalid. When using the macro amx_StrParam, the pointer to the allocated memory is set to NULL if the address of the input pointer is invalid.

Customizing the native function dispatcher

The above three steps to link native functions to the abstract machine imply that you use the default native function dispatcher. The default dispatcher is flexible and it has low overhead, but for specific purposes, you may create a *custom* native function dispatcher.

First, a little background. The abstract machine is much like a CPU implemented in software: it has an accumulator and a few other "registers", including an "instruction pointer" that points to the instruction that is executed next. When a function in a PAWN program calls some other function, the abstract machine sees a "CALL" instruction, which adjust the instruction so that the next instruction to be executed is the first instruction of the called function. So far, all is well. However, a native function cannot be called using the same procedure, as the native function is compiled for a real CPU and the abstract machine can only handle its own instruction set. A native function is not invoked with a "CALL" instruction, but with a "SYSREQ.C" instruction. Instead of adjusting the abstract machine's instruction pointer, a "SYSREQ.C" fires the native function dispatcher. The "SYSREQ.C" instruction could be compared with a software-invoked interrupt or trap.

It is the task of the native function dispatcher to find the correct native function, to call the function, and to return the function result. The prototype for a native function dispatcher is:

int amx_Callback(AMX *amx, cell index, cell *result, const cell *params); where "index" is the unique identifier for the native function, "params" points to an array with parameters that the dispatcher should pass to the native function, and "result" is where the dispatcher should store the return value of the native function. Assuming that the native function dispatcher has a way of finding the appropriate native function from the index, the dispatcher can call the native function with:

```
*result = native_func(amx, params);
```

The default native function dispatcher works in combination with amx_Register, which looks up a function from the "native function table" in the header of the compiled program file and stores the physical function address directly in that table. With that done, the default dispatcher can simply use the index parameter as an index in the native function table and retrieve the physical address of the function. Several implementations of the default native function dispatcher go a step further: after looking up the address of the native function, the dispatcher changes the SYSREQ.C opcode into SYSREQ.D* and stores the function address as the parameter to SYSREQ.D. The result is that every next call to the native function will jump to the native function directly, without going through the native function dispatcher again.

^{*} Turn to appendix D for details on the opcodes.

This is a flexible scheme, as it allows you to inspect the compiled program and load only those packages with native functions that the program actually uses. It is also a scheme that imposes minimal overhead on calling native functions.

However, the standard operation of the tandem of amx_Register and the native function dispatcher assumes that the native function table can be adjusted at run-time. This is not the case when the script runs from ROM, for example. For those situations, you have the option of hard-coding the mapping of "SYSREQ" indices to native functions.

See appendix H for ROM support

The first step to make is to adjust the declarations of native functions in the header files. Taking the example of the "power" function module, the new declarations become:

```
native power(value, exponent) = -1;
native sqroot(value) = -2;
```

The difference with the declarations on page 53 is that the power function is now specifically set at "SYSREQ" -1 and sqroot is at "SYSREQ" -2. The use of negative numbers is mandatory: the PAWN compiler reserves positive numbers for its default auto-numbering scheme (both schemes can be mixed). When an explicit "SYSREQ" index is given for a native function, the PAWN compiler omits it from the native function table. That is, this scheme creates more compact binary files.

The default native function dispatcher needs help to map negative indices to function pointers; you need to create a table with the addresses of the native functions and then compile the abstract machine with the name of this table in a macro. In the table, the first entry is for index -1, the second for index -2, and so forth:

The second step is to compile the abstract machine with the following macro defined:

```
#define AMX_NATIVETABLE my_natives
```

You can usually define the macro on the compiler's command line, for example with a syntax like "-DAMX_NATIVETABLE=my_natives".

If you need special functionality in the callback, an alternative is to replace the native function dispatcher with a custom version. This consists of two steps:

creating the new native function dispatcher, and setting it. The latter is simply a matter of calling:

```
amx_SetCallback(&amx, my_callback);
```

An example of a native function dispatcher follows below —this version is equivalent to what you can do with the AMX_NATIVETABLE macro described above, by the way.

```
int my_callback(AMX *amx, cell index, cell *result, const cell *params)
{
   amx->error = AMX_ERR_NONE;
   switch (index) {
   case -1:
     *result = n_power(amx, params);
     break;
   case -2:
     *result = n_sqroot(amx, params);
     break;
   default:
     assert(0);
} /* switch */
   return amx->error;
}
```

Building the compiler

The C sources of the compiler conform mostly to ANSI C, as the toolset is intended to be widely portable. For purposes of distributing a multi-platform project file with the source code, I have settled on "CMake": a multi-platform tool for creating makefiles; see also appendix C. A CMake project file for the compiler is included in the "compiler" sub-directory where the PAWN source code is installed. There is another CMake project file that builds the abstract machine in the "amx" sub-directory.

If you cannot use CMake, you can create a "makefile" or a project for the sources with ease. To get started, type in a terminal or DOS box a command like:

```
cl sc1.c sc2.c sc3.c sc4.c sc5.c sc6.c sc7.c scexpand.c sci18n.c (...)
(...) sclist.c scmemfil.c scstate.c scvars.c lstring.c
```

The "(...)" indicate a line continuation, by the way, you should not type these. The command cl stands for the compile-&-link utility for your compiler. This is indeed "cl" for Microsoft Visual C/C^{++} , "bcc32" for Borland C^{++} and "gcc" for GNU GCC. The above command builds the PAWN compiler as a single executable, without a shared library/DLL. You can now customize the build by adding compiler options. on the command line.

The source code contains sections of code that are conditionally compiled. See your compiler manual how to specify options on the command line or in a "project" to set these options. The compiler source code also contains assertions to help me catch bugs while maintaining the code. To build the compiler without the assertions, compile the compiler with the NDEBUG definition set.

The CMake project file build the compiler as a shared library plus a tiny console-mode "driver" program that passes the command line options through to the library. You can also build the compiler as a static library, or as a stand-alone executable (as was explained in the preceding paragraphs). See page 70 for creating a static library.

When compiling the sources under Linux, you may need to first translate the CR/LF line endings to LF line endings —there are two source code archives for PAWN: the ZIP file has DOS/Windows-style line endings (CR/LF) and the TAR-GZIP file has Unix-style line endings (LF). Some tools (e.g. some versions of the GCC compiler) are sensitive to the way that lines are ended. The utility "dos2unix" is the most convenient way to translate source files.

Note that the compiler uses an include file from the "amx" subdirectory too, so its probably best to run dos2unix over all source files in all subdirectories.

• Compile-time options

The compiler is a stand-alone program. If you want to link it to an application, can compile the sources with the macro definition NO_MAIN. This will strip the "main" function and a set of I/O functions from the program. See the section "Embedding the compiler into an application" (below) for details.

If you want a PAWN compiler that outputs 16-bit P-code, add the definition "PAWN_CELL_SIZE=16" to the compiler options. Note that this is unrelated to whether the compiler itself is a 16-bit or a 32-bit executable program. The header file uses precise types for a compiler that conforms to the C99 standard, but for older (i.e. "most") compilers it boldly assumes that a "short int" is 16-bits and a "long int" is 32-bits. If this is not true for your compiler, you must change the definition of the cell type in SC.H, but you must also check the locations where sections that are conditionally compiled on the value of PAWN_CELL_SIZE appear.

N.B. The PAWN tools are not regularly tested with 16-bit cells.

The basic code generation is followed by a simple peephole optimizer. If you stumble on a code generation bug, one of the first things that you may want to find out is whether this bug is in the code generation or in the optimizer. To do so, use the option -d3 of the PAWN compiler (this replaces the NO_OPTIMIZE macro in previous releases to "conditionally compile" the peephole optimizer).

To save data space (which is important for the 16-bit version of the compiler, where data and stack must fit in one 64 kiB segment), two tables of strings are compressed; these tables are in SC5.SCP and SC7.SCP. If you change those strings (or add to them), the strings should be recompressed with the utility SCPACK. Before that, you have to build SCPACK itself—this is a simple ANSI C program with no dependencies on other files.

The PAWN compiler includes a preprocessor that does text substitutions (with or without parameters). The text matching capabilities of the PAWN preprocessor are even more flexible than that of the C/C⁺⁺ preprocessor, and, as a consequence, it is also at least as "dangerous" in obfuscating code. You may decide not to include the preprocessor (and the #define keyword) by setting the compile-time option NO_DEFINE.

The PAWN compiler reads source files in the ASCII character set and in the UTF-8 character set. Support for UTF-8 can be disabled by defining the macro

PAWN_NO_UTF8. The UTF-8 decoder in PAWN supports the full 31-bit UCS-4 character set.

A few functions of the PAWN compiler are non-essential gadgets. In cases where the size of the compiler counts, these can be removed by compiling with the PAWN_LIGHT macro defined. With this macro defined, the compiler will miss:

- ♦ the usage report (cross-reference); i.e. the "-r" option,
- \diamond The stack/heap usage estimate, with the "-d2" and "-d3" options,
- the ability to parse response files; the "@filename" command line option is ignored,
- ♦ support for a PAWN.CFG file, whose options are implicitly read.
- \diamond generation of macro instructions and packed opcodes (i.e. the "-02" option is disabled).

• Summary of definitions

AMX_COMPACTMARGIN The size of the buffer needed for the "compact encoded"

file format. See page 105 for details on compact encoding. The default value is 64 (cells). When this value is set to zero, support for compact encoding is removed altogether from the abstract machine. When support for compact encoding is desired, it is advised to set this value to at least 30.

AMX_NO_MACRO_INSTR Removes the ability to generate macro instructions from

the PAWN compiler. Macro instructions are incompatible

with a JIT.

AMX_NO_PACKED_OPC Removes the ability to generate packed opcodes from the

PAWN compiler. Packed opcodes are incompatible with a

JIT.

NDEBUG Compile without assertions.

NO_MAIN Remove main() and I/O functions from the program.

NO_DEFINE Remove the text preprocessor from the PAWN compiler (i.e.

the #define directive).

PAWN_CELL_SIZE The size of a cell in bits, either 16, 32 or 64.

PAWN_LIGHT Remove support for cross-reference output and response

files. Some optimizations are also disabled. This code implies ${\tt AMX_NO_MACRO_INSTR}$ and ${\tt AMX_NO_PACKED_OPC}.$

PAWN_NO_CODEPAGE Remove codepage support from the PAWN compiler.

PAWN_NO_UTF8 Remove the UTF-8 reading capability.

• Embedding the compiler into an application

When you want to link the PAWN compiler into an application, you will have to strip the "main" function from it (see the NO_MAIN option above). But that is just a first step. In addition, you should:

- ♦ Attend to the pollution of the global namespace by the many, many functions and global variables of the PAWN compiler.
- ♦ Overrule the functions that the PAWN compiler calls for input/output.

The archive contains the file libpawnc.c which illustrates how to perform these steps. Basically, you implement all file I/O functions that the PAWN compiler requires. These functions do not have to read from file or write to file, you can compile from memory into memory, provided that you implement the functions that do this.

Then, from your application, call pc_compile, passing in all arguments. The prototype of the function is:

```
int pc_compile(int argc,char **argv)
```

As you can see, this function looks like the standard function main; when calling pc_compile, you must fill in an array of arguments, including argv[0] (because the compiler constructs the path for the include files from the path/filename in argv[0]).

Other functions that you can call from the application (before calling pc_compile) are pc_addconstant and pc_addtag. Function pc_compile removes all symbols before returning, including all constants and tagnames that you added with pc_addconstant and pc_addtag.

The LIBPAWNC.C file can also serve as the basis for a DLL or a shared library. As is, it can be used as a DLL/shared library for console applications—the pc_error function displays the error messages onto the console. Alternatively, you may add the "-e" option to the argument list of pc_compile to redirect all output to a file and use the LIBPAWNC library without change in GUI applications.

Compiling LIBPAWNC to a "shared library" (Linux, UNIX) is not much different than the compiling to a DLL, but you will probably want to reduce the symbols in the resulting library after the link step. The compiler sources export many functions that are only for internal use. The "strip" command allows you to strip all symbols from a library (shared or static), excluding a selected few (pc_compile, etc.). For a DLL, this step is unnecessary, because a DLL exports only symbols that were explicitly exported via a .DEF file.

Note that the exported functions in LIBPAWNC assume the default calling convention for the compiler. With many compilers, this is <code>__cdecl</code>. For a DLL, it is common to use <code>__stdcall</code>. You may be able to change the compiler's default calling convention with a (command line) option. However, some of the functions in the PAWN compiler use variable length argument lists, and your compiler may not provide support for variable length argument lists in the <code>__stdcall</code> calling convention.*

The DLL version of LIBPAWNC can be driven from RUNDLL/RUNDLL32. The command line to use, for a 32-bit version, is:

rundl132 libpawnc.dll,Compile options hello.p

Among the recommended options are "-D" (set active directory for output and error files, "-i" (set the include path) and "-e" (send error messages to a file).

^{*} It is widely believed that the _stdcall calling convention does not allow variable length argument lists, but my reading of the specification suggests otherwise and I have successfully built _stdcall functions that use variable length argument lists.

Building the Abstract Machine

Project files to build the example "pawnrun" console run-time are available for Microsoft Visual C/C++ (in the "msvc" subdirectory) and for CMake. See the appendices A and C. for details. Mostly, though, you will want to embed the abstract machine in an application, instead of using a separate run-time. So the provided project and makefile are of limited use.

The library for the "Abstract Machine" (AMX) is fully implemented in a single C file: AMX.C. This file contains the source code of all functions, but without any native function. The key routine in the library, amx_Exec, is called the AMX core function, and it exists in various versions:

- ♦ ANSI C: the slowest but most portable core;
- ♦ GNU GCC optimized: still implemented in C, but using specific GNU GCC extensions that make it significantly faster than the ANSI C version;
- Intel Pentium assembler: this is a single design, but doubly implemented to support a wide range of assemblers;
- ARM assembler (for architecture version 4 and up): this, too, is a single design, but doubly implemented to support the two most popular ARM assemblers;
- ♦ Just-In-Time compilers: the fastest core (but the least portable, and currently only available for the Intel Pentium platform).

Next to the basic AMX library, the toolkit comes with various extension modules (native function libraries) that add console input/output, fixed point and floating point arithmetic, and helper routines to support the language. These extension modules are technically not part of the "Abstract Machine".

The C sources contain sections of code that are conditionally compiled. See your compiler manual how to specify options on the command line or in a "project" to set these options.

The source code of the AMX contains assertions to help me catch bugs while maintaining the code. In the retail version of the AMX, you will want to compile without assertions, because this code slows down its operation. To do so, compile the source files with the NDEBUG definition set.

The basic AMX library routines do not use or depend on dynamic memory allocation, file I/O or console I/O, but native functions may do so. For instance, the "property" functions in the AMXCORE.C extension module use malloc/free; you

can remove these property set/retrieval functions by compiling the AMXCORE.C file with the definition AMX_NOPROPLIST.

The console I/O functions in AMXCONS.C (another extension module) use standard C to a large extent. For a few extended functions, the file has explicit support for ANSI and VT100 terminal codes (ANSI.SYS under DOS, xterm and most shells under Linux), and for Win32 console programs. The AMXCONS.C file provides "hook" functions that your host application can implement to perform console output. By default, AMXCONS.C uses Win32 console functions when compiled for Microsoft Windows and ANSI/VT100 terminal codes when compiled for Linux or Unix. If, on a Windows system, you prefer to use ANSI/VT100 terminal codes, compile with the macro VT100; if you wish to use your own "console I/O" functions, define AMX_TERMINAL instead —see the section "Adding a terminal to the abstract machine" on page 83 for examples.

Depending on the capabilities of the host application and the operating system, you may want to enable Unicode or "wide character" support for the scripting subsystem. The PAWN compiler is flexible in its handling of codepages and translation of extended ASCII and UTF-8 to wide characters (i.e., Unicode). For the host application, there are essentially two approaches:

- Support Unicode or UCS-4 and interpret unpacked strings as strings holding "wide" characters. The PAWN compiler does *not* generate Unicode surrogate pairs. If characters outside the BMP ("Basic Multilingual Plane") are needed and the host application (or operating system) does not support the full UCS-4 encoding, the host application must split the 32-bit character cell provided by the PAWN compiler into a surrogate pair.
- 2 Support UTF-8 encoding and parse strings in the host application, or, if the operating system supports UTF-8 natively, pass the strings through to the higher level without further processing.

The core modules of the abstract machine are independent of whether the host application uses Unicode or UTF-8; the core modules of the abstract machine have wide character support built-in by default. Several auxiliary modules — for instance AMXCONS.C (console I/O support), need to be compiled with the UNICODE or _UNICODE macros defined to enable Unicode support. Both macros have the same effect. If you wish to remove Unicode/wide-character support, add the definition AMX_ANSIONLY to the compiler options. This option also removes UTF-8 support.

Calling conventions are always an important issue in porting software. The PAWN AMX specifies the calling convention it uses via three macros. These macros are

See also page 83 for terminals supporting Unicode or UTF-8 blank by default, in order to stay as close to ANSI C as possible. By (re-)defining either (or both) of these macros, you can adjust the calling conventions:

AMX_NATIVE_CALL The calling convention for the native functions. You may

want to set this to __stdcall when compiling for Win32.

AMXAPI The calling convention used for all interface functions of

the Abstract Machine (e.g. amx_Init), including the native function dispatcher and the debugger callback. You need to change this if you put the AMX in a Windows

DLL, for example.

AMXEXPORT When you create dynamically loadable extension modules,

the initialization and clean-up functions must be "visible" from the outside. For a Unix/Linux shared library, any non-static function is automatically accessible, but for Microsoft Windows, a function must be explicitly exported. In addition, it is advised that exported functions use the __stdcall calling convention (i.e., set AMXAPI to __stdcall). See page 85 for details. A typical setting for AMXEXPORT under Microsoft Windows is __de-

clspec(dllexport).

If you intend to use the assembler core of the AMX, there are two more calling conventions to address.

As you may observe, the "calling convention" issue is a distinctive complexity of Microsoft Windows. In Unix-like operating systems, you can usually ignore the issue of calling conventions.

The default threading method for the implementations for GNU C/C^{++} , Intel C/C^{++} and the assembler implementations is "token threading". If you disable the support for packed opcodes (option AMX_NO_PACKED_OPC), the default switches to "direct threading", because it is faster. You can force "token threading" with the option AMX_TOKENTHREADING. Token threading has more decoding overhead (one memory access per P-code instruction), but direct threading requires patching opcodes in the P-code stream and token threading does not. Token threading is therefore a requirement when the compiled script runs from ROM, or when "packed opcodes" are in effect. The ANSI C version only supports "switch threading".

• Summary of definitions

AMX_ANSIONLY	Remove Unicode and UTF-8 support from the abstract machine.
AMX_COMPACTMARGIN	The size of the buffer needed for the "compact encoded" file format. See page 105 for details on compact encoding. The default value is 64 (cells). When this value is set to zero, support for compact encoding is removed altogether from the abstract machine. When support for compact encoding is desired, it is advised to set this value to at least 30.
AMX_LIBPATH	The name of the environment variable to use for locating dynamically loaded extension modules (see page 61). This environment variable only applies to Linux and UNIX. Its default value is "AMXLIB" —see page 6.
AMX_NATIVE_CALL	Calling convention of native functions (applies to $\mathtt{AMX.C}$ and to extension modules).
AMX_NATIVETABLE	Add a native table with "fixed" functions, see page 65.
AMX_NODYNALOAD	Disable support for dynamically loadable extension modules, see the discussion at page 61 (AMX.C).
AMX_NO_MACRO_INSTR	Disable support for macro instructions —this flag is implied when the JIT flag is set, as macro instructions are not supported by the JIT compilers.
AMX_NO_PACKED_OPC	Disable support for packed opcodes.
AMX_NOPROPLIST	Remove the get/set property functions from AMXCORE.C.
AMX_NORANDOM	Remove the pseudo-random number generator from AMX-CORE.C —presumably for replacing it by a better pseudo-random number generator.
AMX_TERMINAL	For AMXCONS.C, do not use console functions (Win32 console, ANSI/VT100 or plain console).
AMX_TOKENTHREADING	- ,
AMXAPI	Calling convention of interface functions; this overrides any CDECL or STDECL macros (AMX.C).

AMXEXPORT	The "exported" attribute for initialization and clean-up functions of extension modules, when those extension modules are in a DLL.
ASM32	Compile the assembler version (AMX.C).
CDECL	Sets AMXAPI tocdecl, for compatibility with the assembler core (AMX.C).
FIXEDPOINT	For AMXCONS.C, add fixed point support, see also FLOAT-POINT option.
FLOATPOINT	For AMXCONS.C, add floating point support, see the separate section below.
JIT	Add support for the Just-In-Time compiler (AMX.C).
NDEBUG	Compile without assertions (all files).
STDECL	Sets AMXAPI tostdcall, for compatibility with the assembler core (AMX.C).
UNICODE, _UNICODE	
VT100	Enable Unicode in the console I/O module and possibly other auxiliary libraries. For AMXCONS.C, use ANSI/VT100 terminal codes (implicit
*1100	for Linux).

All compiling examples (listed below) have as few command line options as needed. Consult the compiler documentation to add debugging information or to enable optimizations. The program that each of the examples compile is SRUN, a simple P-code interpretor that is developed starting at page 6.

As an aside, "project" and "workspace" files for Microsoft Visual C/C^{++} , (for the compiler and the Abstract Machine library source files) can be found in the "msvc" subdirectory of where PAWN is installed.

• ANSI/GNU C

Borland C⁺⁺ version 3.1, 16-bit

bcc pawnrun.c amx.c amxcore.c amxcons.c

The 16-bit compiler in the Borland C^{++} 5.0 package appears to have a few code generator errors, so either use an earlier version of the Borland compiler, or compile in 32-bit.

LCC-Win32, 32-bit

lc pawnrun.c amx.c amxcons.c amxcore.c

Microsoft Visual C/C^{++} version 5.0 or 6.0, 32-bit

cl pawnrun.c amx.c amxcons.c amxcore.c

When running with warning level 4, option "-W4", Visual C/C^{++} issues a few warnings for unused function arguments.

Watcom C/C⁺⁺ version 11.0, 32-bit

wc1386 /1=nt pawnrun.c amx.c amxcore.c amxcons.c

GNU GCC for Linux, FreeBSD and OpenBSD

```
gcc -o pawnrun -I../linux pawnrun.c amx.c amxcore.c (...)
(...) amxcons.c ../linux/getch.c -ldl
```

The AMX.C file has special code for the GNU C compiler (GCC), which makes the Abstract Machine about twice as fast as the ANSI C version. You must add an extra file for building on Unix-like operating systems. The console I/O functionality in amxcons.c relies on a function that reads keys in raw mode without echo; this is standard on DOS and Windows platforms, but must be implemented explicitly in Linux—getch.c. The abstract machine also supports dynamically loaded extension modules by default (see page 85). Dynamic linking requires the inclusion of the library libdl.

GNU GCC plus ncurses (for Linux, FreeBSD and OpenBSD)

```
gcc -o pawnrun -I../linux -DUSE_CURSES pawnrun.c amx.c amxcore.c (...) (...) amxcons.c -ldl -lcurses
```

This second example uses the "ncurses" library for terminal support, instead of the standard (limited) vt100 terminal support. The ncurses library also replaces the special file "getch.c".

The above list is far from comprehensive. The PAWN Abstract Machine is portable across many compilers and many operating systems/architectures.

• Assembler core for the Abstract Machine

Marc Peter's assembler implementation of the Abstract Machine currently runs with all 32-bit C compilers for Microsoft Windows. It is (approximately) five times faster than the ANSI C version. As you can see on the command line, the C files need the ASM32 macro to be defined. The assembler kernels by Marc Peter are for the Intel Pentium platform. Recently, assembler kernels for the ARM processors (architecture version 4) have been added.

There are two "calling convention" issues in the assembler implementation (in addition to those mentioned at page 73):

- ♦ The convention with which amx_exec_asm itself is called. The default calling convention is Watcom's register calling convention. For other compilers, change this to __cdecl by setting the macro STACKARGS.
- ⋄ The convention for calling the "hook" functions (the native function dispatcher and the debugger callback). Again, the default is Watcom's register calling convention. Use the macros CDECL or STDECL for __cdecl and __stdcall respectively. (Since STDCALL is a reserved word on the assembler, I had to choose a different name for the macro, hence STDECL.)

In AMX.C, the calling convention for the hook functions is set with the AMXAPI macro. You may need to adjust the AMXAPI macro so that it does not conflict with the calling convention for the hook functions that the assembler core assumes.

Included in the archive are two pre-assembled object files, for those of you who do not have an assembler (note that Microsoft's MASM is now freely available from Microsoft's WEB site, and that the free "Netwide assembler" is now also supported). The two assembler files differ only in the calling convention used. Below are the filenames and the commands that I used to assemble them:

AMXEXECC.OBJ (_cdecl calling convention)

ml /c /DCDECL /DSTACKARGS /Cx /coff /Foamxexecc amxexec.asm AMXEXECS.OBJ (_stdcall calling convention)

ml /c /DSTDECL /DSTACKARGS /Cx /coff /Foamxexecs amxexec.asm

The two pre-compiled assembler files were both build from the file AMXEXEC.ASM (but with different options). This assembler file is compatible with Microsoft MASM, Borland TASM and Watcom WASM. The Netwide assembler (NASM) has a syntax that is similar to that of MASM/TASM/WASM, but is incompatible with it. The file "AMXEXECN.ASM" (note the "N" after "AMXEXEC") is the same implementation of the assembler core for the AMX, but using the "Netwide assembler" syntax. The Netwide assembler is a free assembler that runs on a variety of platforms.

The Netwide assembler version of the AMX code does not support Watcom's "register calling" convention—it always uses the __cdecl for the amx_exec_asm function itself. The calling convention for the "hook" functions is __cdecl by default, but this can be changed to __stdcall by setting the STDECL macro at the NASM command line.

There are two versions for the ARM processor, matching two common assemblers for the platform: the assembler from ARM Ltd. itself and the GNU assembler.

Both implementations are for architecture version 4 (ARM7) and implemented in "ARM" mode (kernels using "Thumb" mode are not yet availale).

I have had troubles with the incremental linker when mixing assembler with C/C⁺⁺, for both Borland and Microsoft compilers. When the program fails for mysterious reasons, or when the debugger shows assembler code or variable addresses that clearly do not match the associated source code, first do a full build (and especially a full "link").

Borland C⁺⁺ version 5.02 & TASM, 32-bit

```
bcc32 -DASM32 -TdCDECL -TdSTACKARGS pawnrun.c amx.c amxcore.c (...)
(...) amxcons.c amxexec.asm
```

You must assemble AMXEXEC.ASM with the "CDECL" and "STACKARGS" options. The "-T" compiler option passes what follows onto TASM32.

Borland C⁺⁺ version 5.02 & NASM, 32-bit

```
nasmw -01 -fobj -dBORLAND amxexecn.asm
bcc32 -DASM32 pawnrun.c amx.c amxcore.c amxcons.c amxexecn.obj
```

You must assemble AMXEXECN. ASM with the "BORLAND" option, because Borland C^{++} uses different segment declarations as other compilers.

GNU GCC for Linux, FreeBSD and OpenBSD

```
nasm -01 -f elf amxexecn.asm
gcc -o pawnrun -DASM32 -I../linux pawnrun.c amx.c amxcore.c (...)
(...) amxcons.c ../linux/getch.c amxexecn.o -ldl
```

Most Linux distributions use the "elf" file format. See page 77 for the extra file getch.c and page 85 for the option -ldl which causes the inclusion of the library libdl

LCC-Win32 & MASM, 32-bit

```
ml /c /DCDECL /DSTACKARGS /Cx /coff amxexec.asm
1c -DASM32 pawnrun.c amx.c amxcons.c amxcore.c amxexec.obj
```

LCC-Win32 does not come with an assembler. I have used MASM here. I have only done preliminary testing with LCC-Win32.

Microsoft Visual C/C⁺⁺ version 5.0 or 6.0, 32-bit, __cdecl

```
ml /c /DCDECL /DSTACKARGS /Cx /coff amxexec.asm
cl -Gd -DASM32 pawnrun.c amx.c amxcons.c amxcore.c amxexec.obj
```

Microsoft appears to use __cdecl calling convention by default, but I have forced the calling convention to be sure: option -Gd.

Microsoft Visual C/C⁺⁺ version 5.0 or 6.0, 32-bit, _stdcall

```
ml /c /DSTDECL /DSTACKARGS /Cx /coff amxexec.asm
cl -Gz -DASM32 -DAMXAPI=_stdcall pawnrun.c amx.c amxcons.c (...)
(...) amxcore.c amxexec.obj
```

Option -Gz forces __stdcall calling convention. The assembler file now uses STDECL (for __stdcall) too.

Watcom C/C^{++} version 11.0 & WASM, 32-bit

```
wcl386 /l=nt /dASM32 pawnrun.c amx.c amxcore.c amxcons.c amxexec.asm
```

Watcom C/C^{++} uses register calling convention, which is fastest in this case.

• Just-In-Time compiler

The third option is to add the Just-In-Time compiler, plus support routines. The JIT compiles the P-code of the AMX to native machine code at run-time. The resulting code is more than twice as fast as the assembler version of the Abstract Machine (which was pretty fast already). To add support for the JIT, you must define the macro "JIT" via a command line switch.

In addition to compiling with the JIT macro defined, the host application must:

- \$ set AMX_FLAG_JITC in the "flags" field of the AMX structure before calling
 function amx_Init;
- ♦ call amx_InitJIT function after amx_Init.

The function <code>amx_InitJIT</code>, in turn, needs two extra memory blocks: one for the native machine instructions that the compiler generates and the other for any relocations. After <code>amx_InitJIT</code> returns, the relocation table buffer may be freed. The memory block holding the original PAWN P-code instructions is no longer needed and may also be freed.

Special care must be taken for the block that will contain the native machine code instructions: the permission to execute machine code from the memory block *must* be set for the block. On Intel processors, any block of memory that has "read access" implicitly has "execution access". To block the treat of buffer overruns that allow the execution of arbitrary code, AMD has introduced the "no execute" (NX) bit in the descriptor of a memory page, and Intel has adopted this design — though calling it "execution denied" (XD). On an operating system that has the NX/XD bit set by default, you must then make sure that the memory block into which the JIT-compiler generates the instructions has the NX/XD bit *cleared*.

į

The JIT-compiler itself needs only read-write access to the memory block for the native machine instructions (this is the default for a memory block that you allocate). The execution of the JIT-compiled code, through amx_Exec, requires full access to the memory block: read, write and execute. The block needs write access, because the SYSREQ.C opcode is patched to SYSREQ.D after the first lookup (this is an optimization, look up the address of the native function only once). On Microsoft Windows, function VirtualAlloc can allocate a block of memory with full access; alternatively VirtualProtect may change the access rights on an existing memory block. On versions of Linux that support the NX/XD bits, you can use vmalloc_exec to get a block with full access, or adjust the access rights on an already allocated block with function mprotect. If your version of Linux does not provide vmalloc_exec, it will probably not support the NX/XD bit. For processors or operating systems that do not support the NX/XD bit, execution of code is implicitly allowed. You can use the standard malloc in place of VirtualAlloc and vmalloc_exec.

During compilation, the JIT compiler requires write-access to its own code segment: the JIT-compiler patches P-code parameters into its own code segment during compilation. To make these patches possible, amx_InitJIT temporarily enables "write-access" it is own code segment, for operating systems that require this.

amx_Init gives a conservative estimate of the size of the memory block that is needed to compile the native machine code into. Conservative estimate means here that the memory block is guaranteed to be big enough, and will likely be far bigger than what is really needed. When amx_InitJIT returns, it has calculated the real required memory size. To save memory, you may therefore want to shrink or re-allocate the memory block after amx_InitJIT returns.

The toolkit comes with the source code of prun_jit.c which is a modification of the "PAWNRUN" program (the example program for the embedding of the abstract machine, see page 6) for the JIT-compiler. This example program lays out the steps described above.

There are, in fact, three versions of the JIT, all of which are for the 80x86 processor architecture (Intel Pentium, AMD Athlon):

AMXJITR.ASM uses register based calling conventions and requires Watcom C/C^{++} ;

AMXJITS.ASM uses __cdecl or __stdcall calling conventions (both are stack based) and should work with other Win32 compilers.

AMXJITSN.ASM

is the same as AMXJITS.ASM, but implemented in "NASM" and thereby making the JIT-compiler available to Linux and Unix-like operating systems.

Apart from the calling conventions and the assembler syntax, the three JIT versions are identical.

The source files AMXJITR.ASM, AMXJITS.ASM and AMXJITSN.ASM contain several definitions with which you can trade performance for other options. See the source files for a description of these definitions.

Borland C⁺⁺ version 5.02, 32-bit

```
bcc32 -DJIT -Tm2 prun_jit.c amx.c amxcore.c amxcons.c amxjits.asm
```

You must force TASM to use at two passes, so that forward references are resolved. The -Tm2 option accomplishes this.

Watcom C/C⁺⁺ version 11.0, 32-bit

```
wcl386 /l=nt /dJIT prun_jit.c amx.c amxcore.c amxcons.c amxjitr.asm
```

Watcom C/C^{++} uses register calling convention, which is fastest in this case.

GNU GCC for Linux, FreeBSD and OpenBSD

```
nasm -01 -f elf amxjitsn.asm
gcc -o pawnrun -DJIT -I../linux prun_jit.c amx.c amxcore.c (...)
(...) amxcons.c ../linux/getch.c amxjitsn.o -ldl
```

Most Linux distributions use the "elf" file format. The -O1 option adjusts the correct jump sizes (short/near) automatically. See page 77 for the extra file getch.c and page 85 for the option -Id1 which causes the inclusion of the library libdl.

The JIT does not support the debugger hook. That is, the JIT compiles the P-code into native machine code for the processor, but it skips the BREAK opcode completely. When running the native machine code, the debugger hook function will therefore never be invoked. If you wish to have a solution where the script code can run at maximum speed, and at the same time be able to debug the script, one option is to include *both* the assembler core (see page 77) and the JIT in the abstract machine. In this case, the compiler command line would specify both the JIT and ASM32 macros, and both the assembler files for a JIT and an assembler core are added to the project.

With a combined JIT & assembler core, you can debug the script by running on the assembler core and run the retail code on the JIT. The host application can decide what "core" to run the script on before calling amx_Init.

• Adding a terminal to the abstract machine

A simple text terminal is often convenient for users of a product, as it lets them print out text strings and get input in a plain and simple way. The strings printed on the console can also serve as a debugging or tracing aid for the user.

Example console functions are in the file AMXCONS.C, these allow for printing formatted text and reading keyboard input. The default implementation of the console interface writes to the standard output console for a "text mode" application: this is a "DOS box" for Microsoft Windows and the active terminal for Linux/Unix. On Linux/Unix, the functions support the VT100 terminal, and on Microsoft Windows the equivalent functionality is emulated. There is a fall-back using only the functions of standard C—this imposes several limitations, of course, but it works everywhere.

For better embedding in an application, you may want to write a custom terminal. As an example how to write the support code, the PAWN toolkit comes with two alternative terminal implementations:

termwin A terminal for Microsoft Windows GUI ("windowed") applications. It may be compiled to use either ASCII/ANSI console I/O or Unicode. Although the number of columns and lines is fixed, the terminal window can be resized and scrolled, and the terminal allows the font to be scaled as well. This implementation supports multiple concurrent terminals.

term_ga A terminal implemented in the cross-platform "GraphApp" library; it runs on Microsoft Windows, Linux, FreeBSD and the Macintosh. This terminal supports UTF-8 natively, and it may be compiled with Unicode ("wide character") support as well.

To compile with a special terminal, the default implementation of terminal I/O functions in AMXCONS.C must be disabled, and a source file with the desired terminal must be added to the project. With Watcom C/C++ for the example, the command line for using termwin would be:

wcl386 /dAMX_TERMINAL /l=nt pawnrun.c amx.c amxcore.c amxcons.c termwin.c

If you compile the Microsoft Windows terminal for Unicode, you need to add the definition of the macro "UNICODE" on the command line. When you want the

Unicode terminal to run as well in Microsoft Windows 9x, you will need to link against the "unicows" library (the "Microsoft Layer for Unicode" on Windows 95/98/ME). See the Microsoft site for details on Unicode and unicows.

Using the "GraphApp" terminal involves only slightly more work: GraphApp requires a redefinition of the entry point of the program (function main). The easiest way to get it running is to include the file "grahpapp.h" in pawnrun.c. Of course, the GraphApp libraries must be compiled as well.

Support for floating point in the Abstract Machine

The definitions for user defined operators for the floating point routines are in the file "FLOAT.INC". You can use floating point arithmetic in your PAWN programs by including this file. The include file gives definitions for native functions that perform the basic floating point operations and user-defined operators to map those to the common add/subtract/multiply/divide operators. See the PAWN booklet "The Language" for more information on user-defined operators.

The abstract machine needs to support floating point operations as well. This requires two or three additions to the compilation of the abstract machine:

- 1. you must define the macro "FLOATPOINT" when compiling the source files;
- 2. you should add the file FLOAT.C to the list of files
- 3. depending on the C compiler/linker, you may need to add a compiler option or a library file for the linker.

These two/three steps apply to all "compiler command lines" given above. For example, the first command line (ANSI C, using the 16-bit Borland C⁺⁺ compiler) becomes:

```
bcc -DFLOATPOINT pawnrun.c amx.c amxcore.c amxcons.c float.c

The original line read: bcc pawnrun.c amx.c amxcore.c amxcore.c
```

The Borland C⁺⁺ compiler requires no extra option to compile floating point programs. The GNU GCC compiler, however, must be instructed to add the "math" library to the linking phase, with the option -lm. The command line for GCC for Linux becomes:

```
gcc -o pawnrun -DFLOATPOINT -I../linux pawnrun.c amx.c (\dots) (\dots) amxcore.c amxcons.c float.c -lm
```

Fixed point support, by the way, is added in nearly the same way: you add the macro FIXEDPOINT on the compiler command line and you include the file FIXED.C

on the file list. In your PAWN program, you must include the file FIXED.INC for the definitions and user defined operators.

• Compiling "dynamically loadable" modules

The above section on adding floating point to the abstract machine did so by compiling/linking the support statically into the run-time. An alternative is to compile the abstract machine with only a minimal set of extension modules and native functions, and to create additional libraries as dynamically loadable modules (or "plug-ins").

To create a dynamically loadable extension module, the C/C^{++} file that implements the module must be built as a DLL (Microsoft Windows) or a shared library (Unix/Linux).

In Microsoft Windows, the amx_FilenameInit and amx_FilenameCleanup functions must be marked as "exported". For that purpose, AMX.H defines the macro AMXEXPORT: it is suggested that the definitions of amx_FilenameInit and amx_FilenameCleanup are marked with this macro and that you set it to the appropriate (compiler-dependent) calling convention on the compiler command line. Exported functions in Microsoft Windows should also have the "__stdcall" calling convention, see below.

The exported function names should furthermore not be "mangled". In a C^{++} project the files should be declared extern "C" to avoid name mangling. Compilers for Microsoft Windows routinely mangle C functions as well (for example amx_PowerInit becomes amx_PowerInit@4), and this must then be explicitly disabled through a linker ".DEF" file or a compiler option. Watcom C/C^{++} uses an ".LBC" file instead of a .DEF file.

A complication in Microsoft Windows, next to name mangling, is the calling convention. It is common for Dynamic Link Libraries that the exported functions use the "__stdcall" calling convention. Technically, the *native* functions do not have to use the same calling convention as the exported functions (amx_FilenameInit and amx_FilenameCleanup), but for reasons of similarity and interoperability, I advise that you also set the calling convention of native functions and of the "hook" functions to __stdcall. This, in turn, means that the abstract machine code must also be built with the __stdcall calling convention for native functions and hook functions (set both macros AMX_NATIVE_CALL and AMXAPI to __stdcall). Refer to page 73 for details.

See also page 61 for the filename convention of dynamically loadable extension modules

An example command line to create the "floating point arithmetic" extension module as a DLL for Microsoft Windows, using Borland C^{++} 5.0 is:

```
bcc32 -tWD -eamxFloat -DAMXEXPORT="_export" (...)
(...) -DAMX_NATIVE_CALL=_stdcall -DAMXAPI=_stdcall float.c amx.c float.rc
```

Note that the host program should now also use the __stdcall calling convention for native functions and for the hook functions. The console I/O extension module (AMXCONS.C) also contains some support for fixed point and floating point values, which must be separately enabled—see the preceding section.

A native function library that is created as a DLL/shared library needs to link to a few functions in the file AMX.C —notably amx_Register. It is, however, a waste of space to include all the functions in AMX.C into the module: it is unlikely that the module will call amx_Init or amx_Exec, for example. To strip unneeded functionality from AMX.C, define macros on the compiler command line to specify the set of functions that you do want:

```
AMX_ALIGN
                  for amx_Align16, amx_Align32 and amx_Align64
```

AMX_ALLOT for amx_Allot and amx_Release

for amx_Cleanup AMX_CLEANUP for amx_Clone AMX_CLONE

for amx_Exec plus the $amx_PushXXX$ functions AMX_EXEC

AMX_FLAGS for amx_Flags AMX_GETADDR for amx_GetAddr

for amx_Init and amx_InitJIT AMX_INIT

AMX_MEMINFO for amx_MemInfo for amx_NameLength AMX_NAMELENGTH for amx_NativeInfo AMX_NATIVEINFO AMX_RAISEERROR for amx_RaiseError AMX_REGISTER for amx_Register for amx_SetCallback AMX_SETCALLBACK AMX_SETDEBUGHOOK for amx_SetDebugHook

AMX_UTF8XXX for amx_UTF8Get, amx_UTF8Put and amx_UTF8Check

AMX_XXXNATIVES for amx_NumNatives, amx_GetNative and amx_FindNative AMX_XXXPUBLICS for amx_NumPublics, amx_GetPublic and amx_FindPublic AMX_XXXPUBVARS for amx_NumPubVars, amx_GetPubVar and amx_FindPubVar for amx_StrLength, amx_GetString and amx_SetString AMX_XXXSTRING

AMX_XXXTAGS for amx_NumTags, amx_GetTag and amx_FindTagId

AMX_XXXUSERDATA for amx_GetUserData and amx_SetUserData

Using CMake

CMake is a cross-platform, open-source make system, which generates "make-file's" or project files for diverse compilers and platforms. It runs natively on Linux, various Unix variants and Windows (without requiring Cygwin) and supports various compilers. You can find more information on CMake plus a freely downloadable copy on http://www.cmake.org/.

The PAWN toolkit comes with two CMake project files. The first builds the compiler as a shared library and a console-mode "front end". The second builds a simple run-time program that embeds the abstract machine, a simple console debugger, and various extension modules as shared libraries. The CMake project files are in the "compiler" and "amx" subdirectories of where the PAWN toolkit source code is installed. When unpacking the PAWN source code from a .ZIP or .TGZ archive, the CMake project files are in these sub-directories below the directory where you unpacked the archive into.

Microsoft Windows

- 1. Launch CMakeSetup.
- 2. Select for the source code directory, the "compiler" or the "amx" sub-directory in the directory tree for the toolkit, depending of what you want to build.
 - For example, if you installed the toolkit in C:\Pawn, the source directory for the compiler is C:\Pawn\source\compiler.
 - You may also build both the compiler and the abstract machine in a single run by selecting the top-level source directory as the source directory of CMake.
- 3. Select as destination the "bin" sub-directory, or any other directory of your choice. The makefile (or project files) will be generated in the destination directory.
- 4. Select the compiler to use, as well. On Microsoft Windows, CMake supports Microsoft and Borland compilers, as well as GNU GCC.
- 5. Click on the "Configure" button. After an initial configuration, you may have items displayed in red. By this, CMake indicates that these items may need adjustment, but in the case of PAWN, this is rarely needed. Click "Configure" once more for the final configuration.

- 6. Click on the "OK" button. This exits the CMakeSetup program after creating a number of files in the destination subdirectory.
- 7. Build the program in the usual way. For Microsoft Visual C/C++, CMake has created a Visual Studio project and "Workspace" files; for other compilers CMake builds a makefile.

• Linux / Unix

- 1. Change to the directory where you want to generate the makefile (and build the executable). Typically, this will be the "bin" sub-directory in the directory tree for the toolkit. For example, if you installed the toolkit in /opt/Pawn, the bin sub-directory for the compiler is /opt/Pawn/bin.
 - If you installed PAWN as "root", then you also need to be root to recompile PAWN.
- 2. Launch "ccmake ../source/compiler" or "ccmake ../source/amx", depending on what you want to build (the compiler or the abstract machine). You can build both at the same time with "ccmake ../source".
- 3. Press the "c" key for "configure". After an initial configuration, you may have items in the list that have a "*" in front of their value. By this, CMake indicates that these items may need adjustment, but in the case of PAWN, this is rarely needed. Type "c" once more for the final configuration.
- 4. Press the "g" button for "generate and quit". Then build the program by typing "make".
- 5. Optionally, you can then also do a "make install" to copy the executable files to a path chosen with ccmake.

Abstract Machine design and reference

The first issue is: why an abstract machine at all? By compiling into the native machine language of the processor of your choice, the performance will be so much better.

There is only one real reason to use an abstract machine: cross-platform compatibility of the compiled binary code. At the time that PAWN was designed, both 16-bit and 32-bit platforms on the 80x86 processor series were important for me. By the time I can forget about 16-bit operating systems, alternate microprocessors (like PowerPC and DEC Alpha) may have become essential.

Other reasons (while not essential) are:

- ⋄ It is far easier to keep a program running in an abstract machine inside its "sand-box". For example, an unbounded recursion in an abstract machine crashes the abstract machine itself, but not much else. If you run native machine code, the recursive routine may damage the system stack and crash the application. Although modern operating systems support multi-threading, with a separate stack per thread, the default action for an overrun of any stack is still to shut down the entire application.
- It is easier to design a language where a data object (an array) can contain P-code which is later executed. Modern operating systems separate code and data sections: you cannot write into a code section and you cannot execute data; that is, not without serious effort.

The current PAWN language does not have the ability to execute P-code from an array, but the abstract machine is not too tightly coupled to the language. That is, future versions of the PAWN language may provide a means to execute a code stream from a variable without requiring me to redesign the abstract machine.

My first stab at designing an abstract machine was to look at current implementations. It appears that it is some kind of a tradition to implement abstract machines as stack machines, even though the design for microprocessors has moved towards register based implementations. All the abstract machines I encountered are stack based. These include:

```
    ♦ the B language (predecessor of C)
    ♦ Java VM (JVM)
    ♦ Bob
    ♦ Lua (before version 5)
```

 \diamond Euphoria \diamond Microsoft C/C⁺⁺ 7.0 (P-code option)

♦ the Amsterdam Compiler Kit ♦ QuakeC VM

Stack machines are surely compact, flexible and simple to implement, but they are also more difficult to optimize for speed. To see why, let's analyze a specific example.

```
a = b + 2; /* where "a" and "b" are simple variables */
```

Native code

In 32-bit assembler, this would be:

```
mov eax, [b] add eax, 2 mov [a], eax
```

Stack based abstract machine

Forth is the archetype for a stack machine, I will therefore use it as an example. The same routine in Forth would be:

```
b@2+a!
```

where each letter is an instruction (the "@" stands for "fetch" and "!" for store; note that stack machines run code in "reverse polish notation"). So these are six instructions in P-code, but the code expands to:

```
push
                 offset b
0
        pop
                 eax
                 [eax]
        push
2
        push
                 2
        pop
                 edx
        pop
        add
                      edx
                 eax.
        push
                 eax
        push
                 offset a
a
                 edx
        pop
        pop
                 eax
                 [edx], eax
```

Two observations: 1. the stack machine makes heavy use of memory (bad for performance) and 2. the expanded code is quite large when compared to the native code (12 instructions versus 3).

The expanded code is what a "just-in-time" compiler (JIT) might make from it (though one may expect an optimizing JIT to reduce the redundant "pushes" and "pops" somewhat). When running the code in an abstract machine, the abstract machine must also expand the code, but in addition, it has overhead for fetching and decoding instructions. This overhead is at least two native instructions per P-code instruction (more on this later). For six P-code instructions, one should

add another 12 native instructions to the 12 native instructions of the expanded code. And still, the example is greatly simplified, because the code runs on the systems stack and uses the systems address space.

In other words, a stack-based abstract machine runs a native 3-instruction code snippet in 6 P-code instructions, which turn out to take 24 native instructions, and more if you want to run the abstract machine on its own stack and in its own (protected) data space.

Register-based abstract machine

Microprocessors have used registers since their theoretical inception by Von Neumann. Extending this architecture to an abstract machine is only natural. There are two advantages: the abstract machine instructions map better to the native instructions (you may actually use the processor's registers to implement the abstract machine's registers) and the number of virtual instructions that is needed to executed a simple expression can be reduced.

As an example, here is the code for the PAWN "AMX", a two-register abstract machine (AMX stands for "Abstract Machine eXecutor"):

In expanded code, this would be:

```
        load.pri
        b
        mov
        eax, [b]

        const.alt
        2
        mov
        edx, 2

        add
        add
        eax, edx

        stor.pri
        a
        mov
        [a], eax
```

The four bytecode instructions map nicely to native instructions. Here again, we will have to add the overhead for fetching and decoding the P-code instructions (2 native instructions per P-code instruction). When compared to a stack-based abstract machine, the register-based abstract machine runs twice as fast; in 12 native instructions, versus 24 native instructions for a stack-based abstract machine.

There is more: in my experience, stack-based abstract machines are easier to optimize for size and register-based abstract machines are easier to optimize for speed. So a register-based abstract machine can indeed be twice as fast as a stack-based abstract machine.

To elaborate a little further on optimizing: I have intentionally chosen to add "2" to a variable. Incrementing or decrementing a value by one or two is such a common case that Forth has a special operator for them: the word "2+" adds 2

to a value. Assuming that a good (stack-based) abstract machine also has special opcodes for common operations, using this "2+" word instead of the general words "2" and "+" removes one P-code instruction and 3 native instructions. This would bring the native instruction count down to 21. However, the same optimization trick applies to the register-based abstract machine. The PAWN abstract machine has an "add.c" opcode that adds a constant value to the primary register. The optimized sequence would be:

```
load.pri b mov eax, [b] add.c 2 add eax, 2 stor.pri a mov [a], eax
```

which results to 3 native instructions plus 6 instructions of overhead for fetching and decoding the P-code instructions. The register-based abstract machine (which needs 9 native instructions) is still approximately twice as fast as the stack-based abstract machine (at 21 native instructions).

Threading

In a "token threaded" interpreter, each opcode is an index in a table that contains a "jump address" for every instruction. In a "direct threaded" interpreter, the opcode is the jump address itself. Direct threading often requires that all opcodes are relocated to jump addresses upon compilation or upon loading a pre-compiled file. The file format of the PAWN abstract machine is designed such that both token threading and direct threading are possible.

A threaded abstract machine is conventionally written in assembler, because most high level languages cannot store label addresses in an array. The GNU C compiler (GCC), however, extends the C language with an unary "&&" operator that returns the address of a label. This address can be stored in a "void *" variable type and it can be used later in a goto instruction. Basically, the following snippet does the same a "goto home":

```
void *ptr = &&home;
goto *ptr;
```

The ANSI C version of the abstract machine uses a large switch statement to choose the correct instructions for every opcode. Due to direct threading, the GNU C version of the abstract machine runs approximately twice as fast as the ANSI C version. Fortunately, GNU C runs on quite a few platforms. This means that the fast GNU C version is still fairly portable.

• Optimizing in assembler

The following discussion assumes an Intel 80386 or compatible processor. The same technique also applies to 16-bit processors and to processors of other brands, but the names (and number) of registers will be different.

It is beneficial to use the processor's registers to implement the registers of the abstract machine. The details of the abstract machine for the PAWN system follow later on in this appendix. Further assumptions are:

- ♦ PRI is an alias for the processor's register EAX and ALT is EDX
- ♦ ESI is the code instruction pointer (CIP)
- ⋄ EDI points to the start of the data segment, ECX is the stack pointer (STK), EBX is the frame pointer (FRM) and EBP is available as a general purpose intermediate register; the remaining registers in the AMX (STP and HEA) are local variables.

Every opcode has a set of machine instructions attached to it, plus a trailer that branches to the next instruction. The trailer is identical for every opcode. As an example, below is the implementation of the ADD.C opcode:

```
add eax, [esi] ; add constant
add esi, 4 ; skip constant
; the code below is the same for every instruction
add esi, 4 ; pre-adjust instruction pointer
jmp [esi-4] ; jump to address
```

Note that the "trailer" which chains to the next instruction via (direct) threading consists of two instructions; this trailer was the origin of the premise of a 2-instruction overhead for instruction fetching and decoding in the earlier analysis.

In the implementation of the abstract machine, one can hand-optimize the sequences further. In the above example, the two "add esi, 4" instructions can, of course, be folded into a single instruction that adds 8 to ESI.

Abstract Machine reference The abstract machine consists of a set of registers, a proposed (or imposed) memory layout and a set of instructions. Each is discussed in a separate section.

• Register layout

The abstract machine mimics a dual-register processor. In addition to the two "general purpose" registers, it has a few internal registers. Below is the list with the names and description of all registers:

PRI primary register (ALU, general purpose).

ALT alternate register (general purpose).

FRM stack frame pointer, stack-relative memory reads and writes are relative to the address in this register.

CIP code instruction pointer.

DAT offset to the start of the data.

COD offset to the start of the code.

STP stack top.

STK stack index, indicates the current position in the stack. The stack runs downwards from the STP register towards zero.

HEA heap pointer. Dynamically allocated memory comes from the heap and the HEA register indicates the top of the heap.

Notably missing from the register set is a "flags" register. The abstract machine keeps no separate set of flags; instead all conditional branches are taken depending on the contents of the PRI register.

Memory image

The heap and the stack share a memory block. The stack grows downwards from STP towards zero; the heap grows upwards. An exception occurs when the STK and the HEA registers collide. (An exception means that the abstract machine aborts with an error message. There is currently no exception trapping mechanism.)

Figure 1 is a proposed memory image layout, and one that the standard Abstract Machine assumes for a self-contained AMX "job". Alternative layouts are possible. For instance, when you "clone" an AMX job, the new job will share the Prefix and the Code sections with the original job, and have the Data/Heap/Stack sections in a different memory block. Specifically, an implementation may choose to keep the heap and the stack in a separate memory block next to the memory block for the code, the data and the prefix. The top of the figure represents the lowest address in memory.

The binary file (on disk) consists of the "prefix", and the code and data sections. The heap and stack sections are not stored in the binary file, the abstract machine can build them from information in the "prefix" section. The prefix also contains start-up information, and the definitions of native and public functions.

Symbolic (debug) information may follow the code and data sections in the file. This symbolic information is typically not read into memory (at least not by the abstract machine). See appendix E for details.

Prefix

Code

Data

Heap

Stack

Figure 1: Memory layout of the abstract machine

All multi-byte values in the prefix are stored with the low byte at the lower address (Little Endian, or "low byte first"). The byte order in the generated code and data sections is either in Little Endian or in compact encoding —see page 105 for details on compact encoding.

size	4 bytes	size of the memory image, excluding the stack/heap	
magic	2 bytes	indicates the format and cell size	
file_version	1 byte	file format version, currently 8	
amx_version	1 byte	required minimal version of the abstract machine	
flags	2 bytes	flags, see below	
defsize	2 bytes	size of a structure in the "native functions" and the	
		"public functions" tables	
cod	4 bytes	offset to the start of the code section	
dat	4 bytes	offset to the start of the data section	
hea	4 bytes	initial value of the heap, end of the data section	
stp	4 bytes	stack top value (the total memory requirements)	
cip	4 bytes	starting address (main() function), -1 if none	
publics	4 bytes	offset to the "public functions" table	
natives	4 bytes	offset to the "native functions" table	
libraries	4 bytes	offset to the table of libraries	
pubvars	4 bytes	offset to the "public variables" table	
tags	4 bytes	offset to the "public tags" table	
nametable	4 bytes	offset to the symbol name table (file version 7+)	

overlays	4 bytes	offset to the overlay table (file version 10+)	
publics table	variable	public functions table (see below)	
natives table	variable	native functions table (see below)	
library table	variable	library table (see below)	
pubvars table	variable	public variables table (see below)	
tags table	variable	public tags table (see below)	
overlay table	variable	the overlay table (file version 10+; see below)	
name table	variable	the symbol name table (file version 7+; see below)	

The magic value indicates the size of a cell in the P-code of the compiled program. This value is (in hexadecimal):

F1E0 for a 32-bit cell;

F1E1 for a 64-bit cell;

F1E2 for a 16-bit cell.

Each bit in the flags field contains one setting. Currently, the defined bits are (bits that are not mentioned are currently not defined):

- O AMX_FLAG_OVERLAY if set, the file is built with overlays
- 1 (AMX_FLAG_DEBUG) if set, the file contains symbolic (debug) information
- 2 (AMX_FLAG_COMPACT) if set, the file is compressed with "compact encoding" —see page 105
- 3 AMX_FLAG_SLEEP if set, the script uses the "sleep" instruction, which may cause the script to be re-entrant
- 4 (AMX_FLAG_NOCHECKS) if set, the code has no debug support at all (no array bounds-checking, no assertions, no line-tracing support)
- 11 reserved—this bit is used internally
- 12 reserved—this bit is used internally
- 13 reserved—this bit is used internally
- 14 reserved—this bit is used internally
- 15 reserved—this bit is used internally

The fixed part of the prefix followed by a series of tables. Each table contains zero or more records. The name table has a variable record size; the size of the records in the other tables is in the defsize field in the prefix. To find the number of records in a table, subtract the offset to the table from the offset to the successive table, and divide that by defsize. For example, the number of records in the natives table is:

$$records = \frac{\texttt{libraries} - \texttt{natives}}{\texttt{defsize}}$$

i

The P-code follows the prefix immediately, but note that the prefix may be padded in order to align the code and data sections (this is a compiler option). The cod field in the header is the file offset to the start of the P-code.

In versions 0 to 6 of the P-code files, the records in the public functions table have the format:

address	cell size	the address (relative to COD) of the function
name	defsize - cell size	the name of the public function

As is apparent, the name of the public function is present in the record. The maximum length of a name of a public function is limited to the size of the record (minus the number of bytes in a cell, for the bytes taken by the address field).

The format of the native functions table is very similar (see below —this is, again, the format for file versions 0–6). The order of the records in the table is important, because the parameter of the SYSREQ.C instruction is an index into the native functions table.

address	cell size	used internally, should be zero in the file
name	defsize - cell size	the name of the native function

The library table has the same format as the native functions table. The "address" field is used internally and should be zero in the file. The "name" field holds the library name.

The "public variables" table, again, has a similar record lay out as the public functions table. The address field of a public variable contains the variable's address relative to the DAT section.

The "tags" table uses the same format as well. This table only holds tags whose name or number might be useful to the host application or extension modules: tags that are used with the exit or sleep instructions or used with the tagof operator. The address field of a tag record contains the tag identifier.

As of file version 7, the compiled file includes a "name table". This table holds the symbol names for the symbols that the other tables refer to. Each name is in a variable sized record as a zero-terminated string. The advantage of this schema is that it allows for arbitrarily long symbol names while storing these names in a compact fashion.

As the symbol names no longer need to be stored in the tables for the public and native functions, the public variables, the tags and the libraries, the records for these tables have changed too. Instead of a name field, the records contain a 4-byte offset, relative to the start of the file "prefix", to the start of the symbol

name in the name table. The record size in the header, "defsize", is set to the size of one cell plus the 4-byte offset —i.e. 8 for a 32-bit cell implementation and 12 for a 64-bit cell implementation. Below is the definition for a native/public function/variable in file formats 7 and above.

address	cell size	see descriptions for native/public functions/var.'s	
nameofs	4 bytes	offset to the symbol name, relative to prefix	

The overlay table holds the file offset and the size of each overlay. In the current implementation, if overlays are active, every function is a separate overlay.

offset	4 bytes	offset of the start of the overlay	
size	4 bytes	size of the overlay, in bytes	

• Instruction reference

Every instruction consists of an opcode followed by zero or one parameters. Each opcode is one byte in size; an instruction parameter has the size of a cell (usually four bytes). A few "debugging" instructions (at the end of the list) form an exception to these rules: they have two or more parameters and those parameters are not always cell sized.

Many instructions have implied registers as operands. This reduces the number of operands that are needed to decode an instruction and, hence, it reduces the time needed to decode an instruction. In several cases, the implied register is part of the name of the opcode. For example, PUSH.pri is the name of the opcode that stores the PRI register on the stack. This instruction has no parameters: its parameter (PRI) is implied in the opcode name.

The instruction reference is ordered by opcode. The description of two opcodes is sometimes combined in one row in the table, because the opcodes differ only in a source or a destination register. In these cases, the opcodes and the variants of the registers are separated by a "/".

The "semantics" column gives a brief description of what the opcode does. It uses the C language syntax for operators, which are the same as those of the PAWN language. An item between square brackets indicates a memory access (relative to the DAT register, except for jump and call instructions). So, PRI = [address] means that the value read from memory at location DAT + address is stored in PRI.

opcode	e mnemonic	parameters	semantics
1/2	LOAD.pri/alt	address	PRI/ALT = [address]

-		
я		
4	•	
4	١.	
•	æ	

		1	
3/4	LOAD.S.pri/alt	offset	PRI/ALT = [FRM + offset]
5/6	LREF.pri/alt	address	PRI/ALT = [[address]]
7/8	LREF.S.pri/alt	offset	PRI/ALT = [FRM + offset]
9	LOAD.I		PRI = [PRI] (full cell)
10	LODB.I	number	PRI = "number" bytes from $[PRI]$ (read $1/2/4$ bytes)
11/12	CONST.pri/alt	value	PRI/ALT = value
13/14	${ m ADDR.pri/alt}$	offset	PRI/ALT = FRM + offset
15/16	STOR.pri/alt	address	[address] = PRI/ALT
17/18	STOR.S.pri/alt	offset	[FRM + offset] = PRI/ALT
19/20	SREF.pri/alt	address	[[address]] = PRI/ALT
21/22	SREF.S.pri/alt	offset	[[FRM + offset]] = PRI/ALT
23	STOR.I		[ALT] = PRI (full cell)
24	STRB.I	number	"number" bytes at $[ALT] = PRI$ (write $1/2/4$ bytes)
25	LIDX		$PRI = [ALT + (PRI \times cell \ size)]$
26	LIDX.B	shift	PRI = [ALT + (PRI << shift)]
27	IDXADDR		$PRI = ALT + (PRI \times cell \ size)$ (calculate indexed address)
28	IDXADDR.B	shift	$PRI = ALT + (PRI \le shift)$ (calculate indexed address)
29/30	ALIGN.pri/alt	number	Little Endian: PRI/ALT ^= cell size— number
31	LCTRL	index	PRI is set to the current value of any of the special registers.
			The index parameter must be: 0=COD, 1=DAT, 2=HEA,
			3=STP, 4=STK, 5=FRM, 6=CIP (of the next instruction)
32	SCTRL	index	set the indexed special registers to the value in PRI.
			The index parameter must be: 2=HEA, 4=STK, 5=FRM,
			6=CIP
33/34	MOVE.pri/alt		PRI=ALT / ALT=PRI
35	XCHG		Exchange PRI and ALT
36/37	PUSH.pri/alt		[STK] = PRI/ALT, STK = STK - cell size
38	PICK	offset	PRI = [STK + offset]
39	PUSH.C	value	[STK] = value, STK = STK - $cell size$
40	PUSH	address	[STK] = [address], STK = STK - cell size
41	PUSH.S	offset	[STK] = [FRM + offset], STK = STK - cell size
42/43	POP.pri/alt		$STK = STK + cell \ size, PRI/ALT = [STK]$
44	STACK	value	ALT = STK, STK = STK + value
45	HEAP	value	ALT = HEA, HEA = HEA + value
46	PROC		[STK] = FRM, STK = STK - cell size, FRM = STK
47	RET		$STK = STK + cell \ size, FRM = [STK],$
			$STK = STK + cell \ size, CIP = [STK],$
			The RET instruction cleans up the stack frame and returns
			from the function to the instruction after the call.

48 RETN STK = STK + $cell \ size$, FRM = [STK],		
$STK = STK + cell \ size, CIP = [STK],$		
STK = STK + [STK]		
The RETN instruction removes a specified	number of bytes	
from the stack. The value to adjust STK w	vith must be	
pushed prior to the call.		
49 CALL offset $[STK] = CIP + 5$, $STK = STK - cell size$	e	
CIP = CIP + offset		
The CALL instruction jumps to an address	s after storing the	
address of the next sequential instruction of	on the stack.	
The address jumped to is relative to the cu	irrent CIP,	
but the address on the stack is an absolute	address.	
50 CALL.pri $[STK] = CIP + 1, STK = STK - cell size$	2	
CIP = PRI		
jumps to the address in PRI after storing t	the address of the	
next sequential instruction on the stack.		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	elative from	
the current position)		
52 JREL offset obsolete	obsolete	
53 JZER offset if $PRI == 0$ then $CIP = CIP + offset$		
54 JNZ offset if PRI != 0 then CIP = CIP + offset		
55 JEQ offset if PRI == ALT then CIP = CIP + offset		
56 JNEQ offset if PRI != ALT then CIP = CIP + offset		
57 JLESS offset if $PRI < ALT$ then $CIP = CIP + offset$ (u	insigned)	
58 JLEQ offset if PRI <= ALT then CIP = CIP + offset	(unsigned)	
59 JGRTR offset if $PRI > ALT$ then $CIP = CIP + offset$ (u	insigned)	
60 JGEQ offset if $PRI \ge ALT$ then $CIP = CIP + offset$	(unsigned)	
61 JSLESS offset if $PRI < ALT$ then $CIP = CIP + offset$ (s	igned)	
62 JSLEQ offset if $PRI \le ALT$ then $CIP = CIP + offset$	(signed)	
63 JSGRTR offset if $PRI > ALT$ then $CIP = CIP + offset$ (s	igned)	
64 JSGEQ offset if $PRI \ge ALT$ then $CIP = CIP + offset$	(signed)	
65 SHL PRI = PRI << ALT		
66 SHR PRI = PRI >> ALT (without sign extens	ion)	
67 SSHR PRI = PRI >> ALT with sign extension		
68 SHL.C.pri value PRI = PRI << value		
69 SHL.C.alt value ALT = ALT << value		
70 SHR.C.pri value PRI = PRI >> value (without sign extens	sion)	

	4	١	
	7	ť	
i	4	1	ì

72 73 74	SMUL		
-	SDIV		PRI = PRI * ALT (signed multiply) PRI = PRI / ALT (signed divide), ALT = PRI mod ALT
			, , , , , , , , , , , , , , , , , , , ,
	SDIV.alt		PRI = ALT / PRI (signed divide), ALT = ALT mod PRI
75	UMUL		PRI = PRI * ALT (unsigned multiply)
76	UDIV		PRI = PRI / ALT (unsigned divide), ALT = PRI mod ALT
77	UDIV.alt		PRI = ALT / PRI (unsigned divide), ALT = ALT mod PRI
78	ADD		PRI = PRI + ALT
79	SUB		PRI = PRI - ALT
80	SUB.alt		PRI = ALT - PRI
81	AND		PRI = PRI & ALT
82	OR		PRI = PRI ALT
83	XOR		$PRI = PRI ^ALT$
84	NOT		PRI = !PRI
85	NEG		PRI = -PRI
86	INVERT		PRI = ~PRI
87	ADD.C	value	PRI = PRI + value
88	SMUL.C	value	PRI = PRI * value
89/90	ZERO.pri/alt		PRI/ALT = 0
91	ZERO	$\operatorname{address}$	[address] = 0
92	ZERO.S	offset	[FRM + offset] = 0
93/94	${ m SIGN.pri/alt}$		sign extent the byte in PRI or ALT to a cell
95	EQ		PRI = PRI == ALT ? 1 : 0
96	NEQ		PRI = PRI != ALT ? 1 : 0
97	LESS		PRI = PRI < ALT ? 1 : 0 (unsigned)
98	LEQ		$PRI = PRI \le ALT ? 1 : 0 \text{ (unsigned)}$
99	GRTR		PRI = PRI > ALT ? 1 : 0 (unsigned)
100	GEQ		PRI = PRI > = ALT ? 1 : 0 (unsigned)
101	SLESS		PRI = PRI < ALT ? 1 : 0 (signed)
102	SLEQ		$PRI = PRI \le ALT ? 1 : 0 \text{ (signed)}$
103	SGRTR		PRI = PRI > ALT ? 1 : 0 (signed)
104	SGEQ		PRI = PRI >= ALT ? 1 : 0 (signed)
105	EQ.C.pri	value	PRI = PRI == value ? 1 : 0
106	EQ.C.alt	value	PRI = ALT == value ? 1 : 0
107/108	8 INC.pri/alt		PRI = PRI + 1 / ALT = ALT + 1
109	INC	address	[address] = [address] + 1
110	INC.S	offset	[FRM + offset] = [FRM + offset] + 1
111	INC.I		[PRI] = [PRI] + 1

119/11	3 DEC.pri/alt		PRI = PRI - 1 / ALT = ALT - 1
114	DEC.pii/ait	address	
			[address] = [address] - 1
115	DEC.S	offset	[FRM + offset] = [FRM + offset] - 1
116	DEC.I	_	[PRI] = [PRI] - 1
117	MOVS	number	Copy memory from [PRI] to [ALT]. The parameter
			specifies the number of bytes. The blocks should not
			overlap.
118	CMPS	number	Compare memory blocks at [PRI] and [ALT]. The parameter
			specifies the number of bytes. The blocks should not
			overlap.
119	FILL	number	Fill memory at [ALT] with value in [PRI]. The parameter
			specifies the number of bytes, which must be a multiple
			of the cell size.
120	HALT	0	Abort execution (exit value in PRI), parameters other than 0
			have a special meaning.
121	BOUNDS	value	Abort execution if PRI $>$ value or if PRI < 0
122	SYSREQ.pri		call system service, service number in PRI
123	SYSREQ.C	value	call system service
124	FILE	size ord	obsolete
		name	
125	LINE	line ord	obsolete
126	SYMBOL	size offset	obsolete
		flag name	
127	SRANGE	level size	obsolete
128	JUMP.pri		CIP = PRI (indirect jump)
129	SWITCH	offset	Compare PRI to the values in the case table (whose address
			is passed as an offset from CIP) and jump to the associated
			the address in the matching record.
130	CASETBL		A variable number of case records follows this opcode, where
			each record takes two cells. See the notes below for details
			on the case table lay-out.
131/13	2 SWAP.pri/alt		[STK] = PRI/ALT and PRI/ALT = [STK]
133	PUSH.ADR	offset	[STK] = FRM + offset, STK = STK - cell size
134	NOP		no-operation, for code alignment
135	SYSREQ.N	addr n	macro: PUSH.C n; SYSREQ.C adr; STACK n+4
136	SYMTAG	value	obsolete
137	BREAK		conditional breakpoint —see appendix E
138	PUSH2.C	c1 c2	macro: replaces two PUSH.C opcodes

139	PUSH2	a1 a2	macro: replaces two PUSH opcodes
140	PUSH2.S	o1 o2	macro: replaces two PUSH.S opcodes
141	PUSH2.ADR	o1 o2	macro: replaces two PUSH.ADR opcodes
142	PUSH3.C	c1 - c3	macro: replaces three PUSH.C opcodes
143	PUSH3	a1 – a3	macro: replaces three PUSH opcodes
144	PUSH3.S	o1 - o3	macro: replaces three PUSH.S opcodes
145	PUSH3.ADR	o1 – o3	macro: replaces three PUSH.ADR opcodes
146	PUSH4.C	c1 - c4	macro: replaces four PUSH.C opcodes
147	PUSH4	a1 – a4	macro: replaces four PUSH opcodes
148	PUSH4.S	o1 – o4	macro: replaces four PUSH.S opcodes
149	PUSH4.ADR	o1 – o4	macro: replaces four PUSH.ADR opcodes
150	PUSH5.C	c1 - c5	macro: replaces five PUSH.C opcodes
151	PUSH5	a1 - a5	macro: replaces five PUSH opcodes
152	PUSH5.S	o1 – o5	macro: replaces five PUSH.S opcodes
153	PUSH5.ADR	o1 – o5	macro: replaces five PUSH.ADR opcodes
154	LOAD.both	a1 a2	PRI = [a1], ALT = [a2]
155	LOAD.S.both	o1 o2	PRI = [FRM + o1], ALT = [FRM + o2]
156	CONST	adr val	[adr] = val
157	CONST.S	off val	[FRM + off] = val

• Branching

With a few exceptions, branch instructions (CALL, JUMP, etc.) use relative target addresses. The parameters of these opcodes are offsets relative to the address of the opcode itself. The offset can be both positive and negative. Using relative branch addresses makes the binary code "position independent".

The exceptions are: the RET and RETN instructions that branch to an absolute address that was stored on the stack by an earlier CALL instruction, and the JUMP.pri and CALL.pri instructions that branch to a calculated address.

• Macro instructions

To improve speed and to reduce the memory footprint of the compiled programs, the abstract machine includes several macro instructions. These macro instructions are a sequence of "plain" instructions, in a single opcode. This reduces the memory size, of course, because now a single opcode replaces two or more plain opcodes; it also improves performance, by virtue of reducing the overhead of the P-code decoder inside the abstract machine.

104

Plain opcodes have zero parameters or one parameter, whereas a macro opcode has two or more opcodes. A few debugging opcodes in the above table also had more than one parameter, but these opcodes are now all obsolete.

Macro instructions are incompatible with the current JIT compilers—since a JIT compiler removes the instruction decoding overhead, macro instructions have no advantages over plain opcodes when using a JIT compiler. The PAWN compiler can optionally disable the generation of macro instructions.

Opcode packing

Recent versions of the PAWN compiler support "packed opcodes". These are instructions where the opcode and its parameter are packed in a single cell. All packed opcodes have a single parameter. The concept of packed opcodes is a "space optimization", to reduce the size that a running script takes in memory. Opcode packing requires token threading.

• Native call opcodes

There are two opcodes that are not in the opcode table. These are called SYSREQ.D and SYSREQ.ND. These opcodes are direct call variants of SYSREQ.C and SYSREQ.N respectively. The PAWN compiler never generates them, which is why they are not in the table. These opcodes are generated by the abstract machine itself.

When the script calls a native function, the current revision of the PAWN compiler generates a SYSREQ. N opcode, and older revisions generate a SYSREQ. C opcode. Both these opcodes cause a jump out of the abstract machine to a routine that handles the dispatching of native functions. You can set up such a routine with amx_SetCallback, but there also is a default routine —called amx_Callback. The callback/dispatcher function must look up the native function from the parameter of the originating SYSREQ.* opcode and then call that native function with the function parameters forwarded. There is a double call in this chain: the SYSREQ.* opcode causes a call to the callback* function, which then calls the requested native function.

The SYSREQ.D and SYSREQ.ND opcodes remove one call, and thereby improve the performance of the native call link. After the callback function has looked up

It is called a *callback* function because it "calls back" into the host application. The host application called the abstract machine and to execute a native function, the flow of control goes back from the abstract machine to the host application.

the address of the native function, it *patches* this address right into the code stream of the compiled script, and it changes the SYSREQ.N opcode to SYSREQ.ND—or SYSREQ.C opcode to SYSREQ.D for older systems. The next time this native function is called, there is a new opcode, which calls to the address of the native

This "trick" only works if you use the default callback, or if you implement a similar patching functionality in your custom callback. It also requires that the P-code stream is writeable. If you store the code section of the compiled script in (Flash) ROM, the callback function will be unable to patch the opcodes.

• Compact file format

function directly, bypassing the callback.

The PAWN compiler generates output P-code as either a straightforward dump of the opcodes, or in a variable-length encoding similar to that of the MIDI "SMF" files. The "plain" encoding uses Little Endian for all opcodes as data words, meaning that a Big Endian processor should swap all cells that it reads from the P-code file before executing them. The alternative, "compact binary files", not only have a reduced size, the file format is also universal for Big Endian and Little Endian computers.

The header of the module (see page 95) and all tables (public functions, native functions, libraries public variables) are not compressed —these are always in Little Endian. The data that follows these tables is encoded with variable length codes: every four-byte cell is encoded in one to five bytes.

The highest bit of each byte is a "continuation" bit. If it is set, another bytes with seven more significant bits follows. The most significant 7 bits are stored first (at the lower file offset/memory address). When a series of bytes have been decoded, bit 6 (the next to most signification bit) of the first byte is repeated to fill the complete 32-bits.

Decoding examples:

0x21	0x00000021
0x41	0xffffffc1
0x80 0x41	0x00000041
0x7f	Oxffffffff

Cross-platform support

There is some level of cross-platform support in the abstract machine. Both Big Endian and Little Endian memory addressing schemes are in common use today. Big Endian is the "network byte order", as it is used for various network protocols, notably the Internet protocol suite. The Intel 80x86 and Pentium CPU series use Little Endian addressing.

The abstract machine is optimized for manipulating "cells", 32-bit quantities. Bytes or 16-bit words can only be read or written indirectly, by first generating an address and then use the LODB.I or STRB.I instructions. The ALIGN.pri instruction helps in generating the address.

The abstract machine assumes that when multiple characters are packed in a cell, the first character occupies the highest bits in the cell and the last character is in the lowest bits of the cell. This is how the PAWN language stores packed strings. On a Big Endian computer, the order of the characters is "natural" in the sense that the first character of a pack is at the lowest address and the last character is at the highest address. On a Little Endian computer, the order of the characters is reversed. When accessing the second character of a pack, you should read/write from a lower address then when accessing the first character of the pack.

The PAWN compiler could easily generate the required extra code to adjust the address for each character in the pack. The draw-back would be that a module written for a Big Endian computer would not run on a Little Endian computer and vice versa. So instead, the PAWN compiler generates a special ALIGN instruction, whose semantics depend on whether the abstract machine runs on a Big Endian or a Little Endian computer. More specifically, the ALIGN instruction does nothing on a Big Endian computer and performs a simple bitwise "exclusive or" operation on a Little Endian computer.

• The "switch" instruction and case table lay-out

The SWITCH instruction compares the value of PRI with the case value in every record in the associated case table and if it finds a match, it jumps to the address in the matching record. The SWITCH opcode has one parameter, which is the address of the case table, relative to CIP (the instruction pointer). At this address, a CASETBL opcode should appear.

Every record in a case table, except the first, contains a case value and a jump address, in that order. The jump address is relative to the address of the record itself. The first record keeps the number of subsequent records in the case table in its first cell and the "none-matched" jump address in its second cell. If none of the case values of the subsequent records matches PRI, the SWITCH instruction jumps

to this "none-matched" address. Note again that the first record is excluded in the "number of records" field in the first record.

The records in the case table are sorted on their value. An abstract machine may take advantage of this lay-out to search through the table with a binary search.

Debugging support

See page 10 for an example implementation of the debug hook Debugging support comprises two components: the BREAK opcodes and the symbolic information format. The PAWN compiler inserts a BREAK opcode in front of any instruction sequence that starts a statement in the source code. Hence, when a debug hook is set up, the hook function is called before the abstract machine executes the P-code for the statement.

When the debug hook serves as a full (symbolic) debugger, it will then need to browse through the symbolic information for the source files. The compiler attaches the symbolic information to the binary P-code file. The symbolic information consists of a header and several variable sized tables.

size	4 bytes	size of the symbolic information chunk
magic	2 bytes	signature, must be 0xF1Ef
file_version	1 byte	file format version, currently 8
amx_version	1 byte	required minimal version of the abstract machine
flags	2 bytes	flags, see below
files	2 bytes	number of entries in the "file table"
lines	2 bytes	number of entries in the "line table"
symbols	2 bytes	number of entries in the "symbol table"
tags	2 bytes	number of entries in the "tag name table"
machines	2 bytes	number of entries in the "machine table"
states	2 bytes	number of entries in the "state table"

Following the header are, in this order:

- ♦ the file table
- ⋄ the line table
- \diamond the symbol table
- ♦ the tag name table
- ♦ the machine name table
- ♦ the state name table

When there are zero entries in any table, the table itself is completely absent from the file. Most tables have variable-length entries, meaning that you have to browse through the symbolic information to locate a specific record.

• The file table

The entries in the file have the following format:

address cell size starting address (relative to COD)
--

name	variable	zero-terminated string

The address field gives the address in the code segment at which the generated P-code for the file starts. The entire table is sorted on this address field. Given an address relative to the COD pseudo-register, you can look up the file from which the P-code at that address was generated.

P-code from a single file may land on several address ranges in the P-code — through file inclusions, for example. In such case, there are several entries in the file table for the same file.

• The line table

The line table holds line numbers; it is used in combination with the file table:

address	cell size	starting address (relative to COD)
line	4 bytes	line number

This table maps the addresses in the P-code to line numbers. The file names (relative to which the line numbers are) must be looked up from the file table. The line table is sorted on the address field. The address is the lowest address at which the generated P-code for the source code line starts. It is common that a BREAK instruction appears on this line.

The symbol table

Entries for a symbol (variable, function) are more complex:

address	cell size	address (relative to data or stack)
tag	2 bytes	tag for the symbol
codestar	t cell size	starting address (in COD) for scope
codeend	cell size	ending address (in COD) for scope
ident	1 byte	kind of symbol (function/variable)
vclass	1 byte	class of symbol (global/local)
dim	2 bytes	number of dimensions
name	variable	zero-terminated string
symdim	variable	optional symbol dimension records

The address is relative to either the code segment (COD), the data segment (DAT) or to the frame of the current function —whose address is in the FRM pseudo-register. The ident and vclass fields indicate to which pseudo-register the address relates, and enables you to locate the value of the symbol.

The possible values for the ident field are:

a variable

1

- a "reference", a variable that contains an address to another variable (in other words, a pointer).
- 3 an array
- 4 a reference to an array (a pointer to an array)
- 9 a function
- a reference to a function (a pointer to a function)

The values of the vclass field are:

- the symbol refers to a global variable (relative to DAT) or to a function (relative to COD)
- the symbol refers to a local variable with a stack relative address (relative to FRM; the address field may be positive or negative)
- the symbol refers to a "static" local variable; the address is not stack relative, but instead relative to DAT

The codestart and codeend addresses are relative to the COD pseudo-register. These addresses give the address range in which the symbol is "in scope". For local variables, this is the address range of the compound block in which the variable declaration occurs. Global variables have the ending address set to the last valid P-code address in the file. For functions, the starting and ending address are the address range that the P-code for the function takes. For a function, the fields address and codestart are equal.

The tag field is a numeric tag identifier. You can look up the tag name in the tag table.

When the symbol is an array, or a reference to an array, the dim field indicates the number of dimensions, and the number of "symbol dimension" (symdim) records that follow the symbol. When an array has two dimensions, dim is 2 and two symdim records follow the zero-terminated name field. Each symdim record has the format:

tag	2 bytes	tag for the array dimension (index)
size	cell size	size of the dimension (0 if unknown)

When the "size" field of a symdim record is zero, the array size (for that dimension) is indeterminate.

• The tag name table

The tag name table enables looking up a tag name from an identifier:

tag 2 bytes	tag id	
-------------	--------	--

name	variable	zero-terminated string

A debugger may use the tag name to select an appropriate display format. For example, when a debugger determines that the tag name of a symbol is "Float:", it may choose to automatically display the symbol's value as a floating point value, rather than (mis-)interpreting it as an integer.

The "tags" table in the "prefix" of the abstract machine (see figure 1 and page 95) also contains a map from tag identifiers to tag names. The table in the prefix area only contains "exported" tags (which may be needed by *any* host program). The table in the debugging information contains *all* tags that are used in the program.

• The automaton table

For scripts that define multiple automaton, the automaton table holds all automaton names. The PAWN compiler also generates a "state variable" per automaton. The address of this variable (relative to the DAT pseudo-register) is also in the automaton table.

automato	n 2 bytes	automaton id
address	4 bytes	address of the "state variable"
name	variable	zero-terminated string

• The state table

For each state defined in the script, there is an entry in the state table. Every state relates to an automaton. If no automaton is explicitly defined, the state uses automaton id 0 (zero).

state	2 bytes	state id
automato	n 2 bytes	automaton id
name	variable	zero-terminated string

Functions

In order to make browsing through debug information easier, the PAWN toolkit comes with support functions that perform the basic tasks of looking up functions, variables and source code line numbers from addresses. These functions are in the files AMXDBG.C and AMXDBG.H. These functions are provided as "example implementations" —you may want (or need) to adapt them to your environment.

Code generation notes

The code generation of the PAWN compiler is fairly straightforward (also due to the simplicity of the abstract machine). A few points are worth mentioning:

♦ The abstract machine has instructions that the PAWN compiler currently does not generate. For example, the LREF.pri instruction works like the dereference operator ("*") in C/C++. PAWN does not support pointers directly, but references are just pointers in disguise. PAWN only supports references in function arguments, however, which means that the "pointer operations" in PAWN are always stack-relative. In other words, the PAWN compiler does not generate the LREF.pri instruction, although if does generate the LREF.S.pri instruction.

The abstract machine is fairly independent from the PAWN language, even though they were developed for each other. The PAWN language can easily grow in the future, possibly with a "reference" variable type, thereby giving the LREF.pri instruction a reason of being. The abstract machine cannot easily grow, however, because new instructions immediately make the new abstract machine incompatible with previous versions. That is, programs compiled for the new abstract machine won't run on the earlier release.

♦ For a native function, the PAWN compiler generates a SYSREQ.C instruction instead of the normal function call. The parameter of the SYSREQ.C instruction is an index in the native function table. A function in PAWN cleans up its arguments that were pushed on the stack, because it returns with the RETN instruction. The SYSREQ.C instruction does not remove items from the stack, so the PAWN compiler does this explicitly with a STACK instruction behind the SYSREQ.C instruction.

The arguments of a native function are pushed on the stack in the same manner as for a normal function.

In the "PAWN" implementation of the abstract machine (see page 6), the "system request" instructions are linked to the user-installed callback function. Thus, a native function in a PAWN program issues a call to a user-defined callback function in the abstract machine.

At a function call, a PAWN program pushes the function arguments onto the stack in reverse order (that is, from right to left). It ends the list of function arguments on the stack by pushing the number of bytes that it pushed to the stack. Since the PAWN compiler only passes cell-sized function arguments to a function, the number of bytes is the number of arguments multiplied by the size of a cell.

A function in PAWN ends with a RETN instruction. This instruction removes the function arguments from the stack.

♦ When a function has a "reference" argument with a default value, the compiler allocates space for that default value on the heap.

For a function that has an array argument with a default value, the compiler allocates space for the default array value on the heap. However, if the array argument (with a default value) is also const, the PAWN compiler passes the default array directly (there is no need to make a copy on the heap here, as the function will not attempt to change the array argument and, thereby, overwrite the default value).

- ♦ The arguments of a function that has "variable arguments" (denoted with the ... operator, see the PAWN booklet "The Language") are always passed by reference. For constants and expressions that are not lvalues, the compiler copies the values to a cell that is allocated from the heap, and it passes the address of the cell to the function.
- ♦ For the "switch" instruction, the PAWN compiler generates a SWITCH opcode and a case table with the CASETBL opcode. The case table is generated in the COD segment; it is considered "read-only" data. The "none-matched" address in the case table jumps to the instruction of the default case, if any.

Case blocks in PAWN are not drop through. At the end of every instruction in a case list, the PAWN compiler generates a jump to an "exit" label just after the switch instruction. The PAWN compiler generates the case table between the code for the last case and the exit label. By doing this, every case, including the default case, jumps around the case table.

 Multi-dimensional arrays are implemented as vectors that hold the offsets to the sub-arrays. For example, a two-dimensional array with four "rows" and three "columns" consists of a single-dimensional array with four elements, where each element is the offset to a three-element single-dimensional array. The total memory footprint of array is $4+4\times3$ cells. Multi-dimensional arrays in PAWN are similar to pointer arrays in C/C^{++} .

As stated above, the "major dimension" of multi-dimensional arrays holds the offsets to the sub-arrays. This offset is in bytes (not in cells) and it is relative to the address of the cell from which the offset was read. Returning to the example of a two-dimensional array with four rows and three columns (and assuming a cell size of four bytes), the memory block that is allocated for the array starts with the four-cell array for the "rows", followed by four arrays with each three elements. The first "column" array starts at four cells behind the "rows" array and, therefore, the first element of the "rows" array holds the value $4 \times cellsize$ (16 for a 32-bit cell). The second column array starts at three cells behind the first column array, which is seven cells behind start of the rows array. The offset to the second column array is stored in the it second element of the rows array, and the offset of the second column relative to the second cell of the rows array is six cells. The second value in the rows array is therefore $6 \times cellsize$.

For a specific example, assume an array that is declared as:

The sequence of values in memory for this array, where a " $_c$ " suffix on a number means that the value should be scaled for the size of a cell in bytes, is:

```
4_C, 6_C, 8_C, 10_C, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4
```

For a three-dimensional array, the entries in the vector for the major dimension hold the offsets to vectors for each minor dimension. The vector tables for all dimensions come in front of the contents of the array.

- ♦ The destructor operator takes an array with a single dimension on input, and this array holds all elements of a variable that must be destructed:
 - For simple variables, the variable is passed by reference, which makes it appear as an array with one element.
 - For arrays with one dimension, the array is passed without modification
 - For arrays with two or more dimensions, the destructor operator receives the address behind the "indirection tables" for the major dimensions. As documented above, a multi-dimensional array starts with vectors for the major dimensions that each hold the offsets to the dimension below itself. The data for the array itself is packed behind these offset arrays. By passing the address where the array data starts, the destructor operator can access the array elements as if it were an array with a single dimension.
- ♦ As of version 2.0, the PAWN compiler puts a HALT opcode at the start of the code (so at code address 0). Before jumping to the entry point (a function), the abstract machine pushes a zero return address onto the stack. When the entry point returns, it returns to the zero address and sees the HALT instruction.

- ♦ The sleep instruction generates a HALT opcode with the error code 12 ("sleep"). When the abstract machine sees this special error code, it saves the state of the stack/heap (rather than resetting it), in order to be able to restart the abstract machine.
- ♦ The PAWN compiler adds special comments to the assembler file (with the forms "; \$exp" and "; \$par") to aid the peephole optimizer to make the correct decisions. These comments mark the end of an "expression statement" or the end of a function parameter. The code generated by the compiler does not carry the value of a register from one statement/expression to another, and the peephole optimizer uses this information to avoid saving registers whose values will not be used again anyway.
- ♦ For functions that have states, the compiler creates a jump table at the function address; each entry jumps to a specific implementation. Technically, the table is a "case table" similar to the one used for a "switch" statement and it indeed uses the SWITCH opcode to jump to the correct implementation. The "default" case points to the fall-back function, or to an error exit point if a fall-back function was absent.

As an aside, this schema is more efficient than a hand-coded switch on a state variable, because a hand-coded switch would need to reside inside a function of its own, using an extra function frame and using extra stack to store another return address and to forward and parameters.

Adding a garbage collector

PAWN uses only static allocation for all of its objects. The advantage of static allocation is that the memory requirements of a PAWN script are easy to determine (the PAWN compiler does this with the -d2 option), and that the memory footprint and run-time performance become fully deterministic.

That non-withstanding, for dealing with dynamically sized objects in PAWN, a garbage collector is very convenient. This appendix describes how a garbage collector can be added to a host application that uses the PAWN toolkit. It is implemented as a separate library.

• How to use

The purpose of the garbage collector is to notify your program of objects that are no longer in use and that can, hence, be released. To this end, the garbage collector needs a data structure to register objects that are *in use* and it needs a way to notify the host application (your program) of redundant objects. These two elements must be initialized before you start using the garbage collector.

The data structure that records objects that are "in-use" is a hash table. Its size must be a power of two —in fact, the parameter that you pass to function gc_settable is the "power". That is, passing 10 as the argument to gc_settable creates a hash table that holds 2^{10} , or 1024, items. There is a low bound on the size of 128 elements, meaning that the exponent parameter must be at least 7. The maximum size of the hash table is the maximum value of a signed integer: 32,767 for 16-bit platforms and 2,147,483,648 for 32-bit platforms (the maximum exponent is 15 or 31 for 16-bit and 32-bit platforms respectively). The second parameter to gc_settable is a collection of flags. The only flag defined at this writing is GC_AUTOGROW, which tells the garbage collector that it may automatically increase the size of the hash table when it becomes full.

For every object that is no longer referred to in any abstract machine that was scanned, the garbage collector calls a callback function to release it. But first, you have to register this callback function, of course. This, you do with function gc_setcallback.

By intent, the signature for the callback function has been made compatible with the standard C function free. If your host program allocates its objects with malloc, then you may be able to set the standard free function as the garbage collector callback. If you need additional clean-up code, or if you do not allocate the objects with malloc, you have to write an appropriate callback.

Once the hash table and the callback are set, your host program (or your native function library) can allocate objects and mark them as "used" with the function gc_mark. The value that you pass in must a non-zero value that uniquely identifies the object, and it must be a "cell" data type —the data type of the PAWN language. If the size of a pointer is the same as that of a cell (or smaller), you can mark a pointer to an object (by simply casting it as a cell). Other mechanisms are that you allocate the object from a list that you maintain internally, and "mark" the index to the object in this list. It is important that you mark exactly the same value as what the native function returns to the PAWN script.

Once every while, on a timer or at any other moment that is convenient, the host program should call gc_scan once or multiple times, followed by a single call to gc_clean. Before gc_clean finishes, it invokes the callback function for every object that is no longer referenced. The parameter to the callback function is the same value that you have passed to gc_mark for the function. Function gc_scan detects "live" objects, function gc_clean cleans up any object that is not alive.

A host application may run multiple scripts concurrently, and it may therefore have multiple abstract machines in existence at any time. The garbage collector collects the object references for all objects that were allocated for all abstract machines. When performing a garbage collection run, the program should scan all abstract machines (using gc_scan) and finish with a single call to gc_clean. When an abstract machine disappears, all objects allocated to that abstract machine (that are not referred to by other abstract machines) are cleaned up in the subsequent garbage collection run—simply because gc scan is not called on the abstract machine that is gone.

At the end of the program, call gc_settable with size zero. Earlier I wrote that there is a lower bound on the input value to gc_settable of 7, but the value zero is a special case. As an aside, gc_settable calls gc_clean internally when the table exponent is zero, to dispose any remaining object in the table.

Rescaling the garbage collector

The garbage collector is built on a hash table, which is allocated dynamically. A hash table is a data structure that allows quick look-up. It does this by calculating an index value from some arbitrary property of the object and it stores a reference to the object at that calculated index in the table. For the garbage collector, the

index is calculated from the "value" parameter that you pass into the function gc_mark.

A hash table should not be too small—because it can store no more objects than fit in the table, and it should not be too large, as that would waste memory and decrease performance. The garbage collector makes the table size adjustable: you can start running with a small table and grow it on an "as needed" basis. If desired, you may also shrink the hash table. Growing or shrinking the hash table preserves the objects currently in the table.

A problem with hash tables in general is that of "collisions": two different objects may get the same index in the hash table. There are various strategies of coping with this situation; the garbage collector uses the simplest one: "probing". If a collision occurs, the new object is not stored at its calculated index, but at a fixed offset from the calculated index. To avoid clusters in the table, the offset decreases from roughly a quarter of the table size (except for tables exceeding 64 kiB) down to 1; to avoid "blind spots" in the table, the probing offset is always a prime number.

When the hash table is full, gc mark may first attempt to grow the table (depending on whether the GC_AUTOGROW was set in the call to gc_settable). It returns with an error code if growing the table fails or if it is not permitted. The host program can then do a garbage collection run, in the hope that this frees up some slots in the hash table; the host program may also attempt to grow the hash table itself. As the hash table is allocated dynamically, the attempt to resize it may also fail. The end result is that gc_mark may fail and your host program has no way to recover from it.

Unrecoverable failure of gc_mark can be avoided, though: instead of waiting for a full table to happen, a host program can decide to grow the table well before it becomes full. If that fails, gc_mark still succeeds and the next few calls to gc_mark will also succeed. Hence, the host application has the opportunity to free up memory or inform the user of "low memory" —a message that is friendlier than one like "out of memory, cannot continue".

There is another reason why early growing of the hash table is a good strategy: performance. Linear probing is a simple method for coping with collisions, but it also leads to heavily degraded performance once the hash table fills up. It is probably best when the hash table usage does not exceed 50%. The function gc_tablestat returns the current "load" of the hash table, in a percentage of its size.

• An example implementation

To use the garbage collector in an example, we must first have a native function library that creates garbage. For this example, I have chosen the "Better String library" by Paul Hsieh, a library that enables working with dynamically allocated variable length strings in C/C^{++} .

The first step is to create wrapper functions for a subset of the library. For the purpose of demonstrating the garbage collector, I have chosen a *minimal* subset, just enough to run the example program below —in real applications you would add significantly more functions:

```
#include <bstring>
main()
    {
    new String: first = bstring("Hello")
    new String: second = bstring("World")

    new String: greeting = first + bstring(" ") + second

    new buffer[30]
    bstrtoarray .target = buffer, .source = greeting
    printf buffer
}
```

Two primary native functions implemented below perform a conversion to or from PAWN arrays: n_bstring and n_bstrtoarray. Conversion from an array to the "bstring" type (of the Better String library) is needed to handle literal strings; the conversion back to a PAWN array is needed because the native functions in the "console I/O" extension module do not support the bstring type. Again, in practice you would probably modify the printf and other native functions to work with bstring, so that converting back to PAWN arrays is never necessary.

```
static cell AMX_NATIVE_CALL n_bstrtoarray(AMX *amx,const cell *params)
       /* native bstrtoarray(target[], size = sizeof target,
                              String: source, bool: packed = false);
         */
  char *cstr = bstr2cstr((const bstring)params[3], '#');
 int length = strlen(cstr) + 1;
 cell *cellptr;
  if (params[4])
   length *= sizeof(cell);
  if (params[2] >= length) {
   amx_GetAddr(amx, params[1], &cellptr);
   amx_SetString(cellptr, cstr, params[4], 0);
 } /* if */
 free(cstr);
 return 0;
static cell AMX_NATIVE_CALL n_bstrdup(AMX *amx,const cell *params)
       /* native String: bstrdup(String: source); */
  cell hstr = (cell)bstrcpy((const bstring)params[1]);
 VERIFY( gc_mark(hstr) );
 return hstr:
static cell AMX NATIVE CALL n bstrcat(AMX *amx.const cell *params)
       /* native String: bstrcat(String: target, String: source); */
  cell hstr = params[1];
 bconcat((bstring)hstr, (const bstring)params[2]);
}
```

The wrapper functions that allocate new bstring instances are different from common wrapper functions in that they call gc_mark. Note that the wrapper functions that do not create *new* bstring instances do not need to mark an object to the garbage collector.

Error checking is primitive in this example. When the garbage collector's hash table is full and it cannot grow, the program simply aborts. As discussed in a preceding section, it is advised to grow the table well before it would become full.

Now we must modify the host application to set up the garbage collector. In my case, this is an adapta

Initializing the garbage collector is an easy step, because the memory de-allocator for the "Better String library" is compatible with the callback function of the

garbage collector. All one has to do is to insert the following lines somewhere before the call to <code>amx_Exec</code>:

```
gc_setcallback((GC_FREE)bdestroy);
gc_settable(7, GC_AUTOGROW);  /* start with a small table */
```

Cleaning up the garbage collector before exiting is easy too:

The harder part is running the garbage collector at appropriate times. On one hand, you will want to call the garbage collector regularly, so that the table does not contain too much "garbage"; on the other hand, calling the garbage collector too often decreases the overall performance. Actually, it would be best if the collector ran at times that CPU usage is low.

Even if we just wish to call the garbage collector on a regular interval, a minor problem is that there is no portable way of doing so. In Linux and Unix, you may use the signal and alarm functions and in Microsoft Windows the SetTimer function may be of use. Multi-threading is another option, but be aware that you have to implement "mutual exclusion" access yourself (e.g. with semaphores, or a critical section).

The function that performs a garbage collection run may be like the one below. The function expects the abstract machines to scan in an array. It grows the hash table when its usage exceeds 50%.

```
void garbagecollect(AMX amx[], int number)
{
  int exp, usage, n;

  /* see whether it may be a good time to increase the table size */
  gc_tablestat(&exp, &usage);
  if (usage > 50) {
    if (gc_settable(exp+1, GC_AUTOGROW) != GC_ERR_NONE)
      fprintf(stderr, "Warning, memory low\n");
  } /* if */

  /* scan all abstract machines */
  for (n = 0; n < number; n++)
    gc_scan(&amx[n]);

  /* clean up unused references */
  gc_clean();
}</pre>
```

With the goal of providing a complete example that compiles and runs on all platforms* that the PAWN toolkit currently supports, I have "hooked" function garbagecollect (implemented above) onto the debug hook. That is, the host application sets up a debug hook and the debug hook function calls garbagecollect on various events. Doing this in anything other than a demo program is *not* advised, for several reasons:

- ♦ The debug hook can only monitor a single abstract machine, whereas you are likely to have multiple concurrent abstract machines in real projects.
- ⋄ To call the garbage collector at a regular interval, monitoring the DBG_LINE opcode is the best option. However, this debug code will never be sent when the script was compiled without debug information.
- ♦ The debug hook does not consider system load, whereas you would want the garbage collection to take place especially when the system is not busy.
- ♦ The debug hook carries some overhead (though just a little).

That behind us, below is a debug hook that calls the garbage collector. It calls the garbage collector after executing every 100 lines and after each function return. Acting on the DBG_RETURN code circumvents problems for PAWN scripts that are compiled without debug information.

```
int AMXAPI prun_Monitor(AMX *amx)
{
   static int linecount;

   if (--linecount > 0)
      return AMX_ERR_NONE;
   linecount = 100;
   garbagecollect(amx, 1);

   return AMX_ERR_NONE;
}
```

Other notes

As discussed earlier, the gc_clean function invokes the callback function to free any object that is no longer in use in any abstract machine that was scanned. The function assumes that the callback indeed frees the object: it will not report it again.

^{*} The standard distribution comes with the source code for a minimal host application, in the subdirectory "amx/pawnrun/" of where the toolkit was installed.

Each object should only be in the hash table once. If you call gc_mark with a value that is already in the hash table, the function returns an error. It is a non-fatal error, but nevertheless it is better to avoid adding the same pointer/object twice to the garbage collection table.

The probing algorithm used by the garbage collector differs from both the well known linear and quadratic probing algorithms, but its properties (related to clustering or "clumping") are similar to those of quadratic probing.

The design of a good hash function/equation is another recurring theme in research. As the garbage collector discussed here is general purpose, nothing about the input key (the parameter to gc_mark) may be assumed. The hash generation algorithm used in the garbage collector "folds" the key value a few times, depending on the size of the "cell" and the size of the hash table. Folding means that the key value is split in half and the two halves are combined with an "exclusive or" operation. Concretely, if the hash table exponent (the first parameter to gc_settable) is less than, or equal to 16, a 32-bit key value is first split into two 16-bit values and then the upper half is "exclusive or'ed" to the first half, resulting in a single 16-bit value —the new key. When the table exponent is less than, or equal to 8, the folding occurs twice.

Frequently, the origin of the key value is a pointer. In typical memory managers, the lowest bits are fixed. For example, it is typical that memory is allocated at an address that is a multiple of 8 bytes, to ensure optimal alignment of data. The hash table function attempts to copy with this particular aspect by swapping all bits of the least-significant byte.

Running scripts from ROM

The default configuration of the PAWN Abstract Machine assumes that the P-code runs from RAM. Various functions modify (or *patch*) the P-code after it is loaded. To run a compiled script directly from ROM, you need to build the Abstract Machine with a few specific options and you also need to compile the PAWN source code in a particular way.

The "compact encoding" and the run-time patching of native function calls are incompatible with ROM execution, and these must both be disabled. See page 105 for details on compact encoding and the discussion at page 104 for the patching that occurs with native function calls. The compile-time flags to use are AMX_COMPACTMARGIN (set this to 0) and AMX_DONT_RELOCATE.

Threading concepts: 74

When compiling with GNU GCC or when using an assembler kernel for the abstract machine, it is advisable to force "token threading" by defining the macro AMX_TOKENTHREADING. Token threading is compatible with ROM execution, unlike the alternative "direct threading" threading implementation that PAWNcan use. If support for packed opcodes is left enabled, token threading is also the default of the abstract machine. When you disable the support for packed opcodes (option AMX_NO_PACKED_OPC), the abstract machine will use "direct threading" (which is incompatible with ROM execution) unless token threading is explicitly set.

In addition, the indirection table that matches native functions to a script cannot be altered (it is in ROM too). As explained on page 65, the solution is to use a native table with hardcoded unique (negative) numbers for the native functions. Since the numbers are hardcoded, function amx_Register is redundant.

In the callback function (for native functions), you will then need to map the unique negative numbers to function pointers. A simple way to do this is to use an array, where the unique number serves as the index —after taking its absolute value. This table-based lookup avoids any name comparison or (binary) table search. To use table-based lookup, the macro AMX_NATIVETABLE must be set to the name of a global variable that holds the function addresses. For details, see and further.

Function amx_Init, the first function to call on an abstract machine, receives a pointer to the start of the header and the P-code. Unless told otherwise, amx_Init considers that the data and stack areas follow the P-code immediately. In the case of running from ROM, the P-code and the combined data/stack sections

must reside in different blocks: the data/stack section must be in RAM and the P-code is in ROM. To configure the abstract machine as such, store the address of a RAM block of suitable size in the data field of the AMX structure prior to calling amx_Init, and pass a pointer to the P-code in ROM as the second parameter to amx_Init.

```
unsigned char amx_dataseg[DATASIZE];  /* data + stack */
extern const unsigned char amx_pcode[]; /* P-code in ROM */

AMX amx;
memset(&amx, 0, sizeof amx);
amx.data = (unsigned char*)amx_dataseg;
error = amx_Init(&amx, amx_pcode);
```

Function amx_Init will copy the contents of the data section of the script in ROM to the pointer in the data field. This is necessary because the data section of the script contains string literals and other initialized static and global data. Optionally, you can also skip this step: by adding the constant AMX_FLAG_DSEG_INIT to the flags field of the AMX structure prior to calling amx_Init, the data section will not be initialized —leaving that for you to do explicitly. For example:

```
memset(&amx, 0, sizeof amx);
amx.data = (unsigned char*)amx_dataseg;
amx.flags = AMX_FLAG_DSEG_INIT;
error = amx_Init(&amx, amx_pcode);
/* add code to initialize amx_dataseg */
```

The PAWN compiler must also be configured to generate P-code that is suitable for execution from ROM. Since the Abstract Machine is compiled without support for compact encoding and with hardcoded indices for native functions, the PAWN compiler should have the option -C:- on the command line and the include file(s) must declare all native functions with hardcoded indices. It is practical to add the -C:- option to the file pawn.cfg so that it is always taken into effect. See the "Language Guide" for details on pawn.cfg.

The PAWN compiler must also be able to generate "position-independent code". Recent versions of the PAWN compiler do this, but releases before version 3.3 generate *relocatable code*, which is incompatible with execution from ROM.

Other configurations for the compiler are best set in an include file. The PAWN compiler always tries to include the file default.inc implicitly and before any other include file. It has become common practice to let default.inc include any other "standard" include files and to add configuration options.

In order to get small compiled "smallcapsamx" files, we strip off as many unneeded tables as we can. Part of these are the names of the native functions; this was already explained above, in the discussion of the native function table implementation in the abstract machine. The table with library names can be removed completely. The library table is used for dynamically loading extension modules, on operating systems that support this (Microsoft Windows, Linux), but it is useless on embedded operating systems. To turn the library table generation off, put the following pragma in an include file (e.g. default.inc):

```
#pragma library -
```

It is a good idea to also tell the PAWN compiler how much memory a compiled script may take at run time. This is controlled by the pragmas amxlimit and amxram. For example:

Running scripts with overlays

If your system has a (read-only) backing store of sufficient size, overlays enable scripts with a large code footprint to run in little RAM memory. An overlay system is akin to virtual memory, but for code only (no data) and with compiler support. Advantages of overlays are that they require only read access to a mass storage medium (so this can be ROM) and that it does not impact run-time performance as much as true virtual memory systems. A disadvantage of overlays is that there is still a limit on the data and stack portions of the script.

To use overlays, the following steps should be taken:

- ⋄ The script must be compiled with overlay support. See below and see the "Language Guide" for details —briefly: you have to use the option "-V" on the compiler.
- ⋄ In the call to amx_Init, you have to initialize a few fields in the AMX structure. Unless told otherwise, amx_Init assumes that the AMX header, the code section and the data section are consecutively in a single memory block. The reason for using overlays, though, is that you cannot provide a single memory block with the required size.
- You have to implement a helper function that loads overlays from the backing store into memory. That function must also adjust two fields in the AMX structure.

Configuring the compiler

The -V option allows you to set the maximum allowable size of an overlay. As this value depends on the implementation, you may want to "fix" that value. One option is to add a conditional definition in the standard include file, as in:

The trick used here is that if overlays are enabled, the predefined constant overlaysize is always greater than zero. When the user adds the option "-V" to the command line (without setting a size), overlaysize is set to 1. The pragma overrules the standard value (i.e. "1") or any value that the user specified with the implementation-defined value.

Note that the value set for the pragma "overlaysize" must be the largest overlay that will fit in the available memory of the overlay manager. If the overlay manager has overhead for an allocation, this "overhead" value must subtracted from the overlaysize. Notably, the overlay manager included in the PAWN distribution has an overhead of 8 bytes for a typical 32-bit system. If you set aside a memory block of 2048 bytes for this overlay manager, the maximum value of the pragma overlaysize is 2040.

An alternative configuration is that the implementation has a maximum size for the total of the overlay pool, the data and the heap plus stack. In this case, set the pragma amxlimit to that total size and set overlaysize to 1 (if overlays are to be used). The maximum size for an overlay then depends on the size of the data and of the heap and stack.

• Initializing the abstract machine

The code snippet below is typical for initializing an abstract machine with overlays. Instead of reading the entire file in a single memory block, the snippets prepares three areas: one for the header, one for the combined data/heap/stack and a swap region for overlays. This may technically reside in a single memory block, but that is not required.

```
/* assume the file to a ".amx" file is already opened and that its
* handle is in fpAmx. Also assume that "header", "datablock" and
 * "overlaypool" are pointers to memory blocks of sufficient size.
/* read the AMX header */
rewind(fpAmx);
fread(header, 1, hdr.cod, fpAmx);
/* read the data section (the memory block should have sufficient
* size to also hold the heap and stack)
fseek(fpAmx, hdr.dat, SEEK_SET);
fread(datablock, 1, hdr.hea - hdr.dat, fpAmx);
/* initialize the overlay pool (size 2048 bytes) */
amx_poolinit(overlaypool, 2048);
/* initialize the abstract machine */
memset(amx, 0, sizeof *amx);
amx->data = datablock;
amx->overlay = prun_Overlay;
result = amx_Init(amx, header);
```

In the above snippet, the data field of the AMX structure is set to a specific value, and it was then read from file. The complete AMX header of the compiled script (including the function, name and overlay tables) is also read, in a separate memory block.

The PAWN toolkit comes with an implementation of a "memory pool" with a "least revently used" queue. The function <code>amx_poolinit</code> comes from this module. You may choose to use (or implement) a different overlay manager. The basic requirement is that it should never fail, provided that the total memory size is sufficiently big for the largest overlay. Memory fragmentation should never be a reason for the overlay manager to fail.

• The overlay callback function

The previous code snippet sets a callback function for loading and managing overlays, here called prun_Overlay (you may of course choose a different name). The callback controls the loading and the memory allocation. In a simple case, the function could look like the one below:

```
int AMXAPI prun_Overlay(AMX *amx, int index)
{
   AMX_HEADER *hdr;
   AMX_OVERLAYINFO *tbl;

   hdr = (AMX_HEADER*)amx->base;
   tbl = (AMX_OVERLAYINFO*)(amx->base + hdr->overlays) + index;
   amx->codesize = tbl->size;
   amx->code = amx_poolfind(index);
   if (amx->code == NULL) {
      amx->code = amx_poolalloc(tbl->size, index);
      fseek(fpAmx, (int)hdr->cod + tbl->offset, SEEK_SET);
      fread(amx->code, 1, tbl->size, fpAmx);
   } /* if */
   return AMX_ERR_NONE;
}
```

The function assumes that the file to the compiled script is (still) open and that its handle is in a global variable called "fpAmx". The function first checks whether the index for the overlay is valid. Then it checks whether the overlay is already in memory. The overlay manager can keep multiple overlays in memory concurrently; if an overlay is already in memory, there is no need to reload it. If the overlay is not in memory, the function allocates a block of a suitable size and loads the relevant portion of the compiled script into that block.

The overlay callback must also adjust two fields in the AMX structure: code and codesize. The field code must point to the start of the overlay. Since each

overlay is a separate (and complete) function, the code field points to the start of the function after loading the overlay into memory. The codesize field is the size, in bytes, of the overlay. The abstract machine uses this field for detecting stack overruns and other troubles. Note that the overlay callback must adjust these fields even if the overlay function is already in memory.

Alternatively, an implementation can browse through all overlays to check their size before calling amx_Init To better present the essence of the code, no error checking is present in the function presented above. On a well configured system, overlay loading should never fail. However, to guard against a script that was compiled with an incorrect value for the maximum overlay size, you may want to add a check whether amx_poolalloc returns NULL. For instance, replace the call to amx_poolalloc with:

```
if ((amx->code = amx_poolalloc(tbl->size, index)) == NULL)
  return AMX_ERR_OVERLAY;  /* failure allocating memory for the overlay */
```

Function amx_Init calls the overlay callback (called "prun_Overlay" in this appendix) for every overlay in the compiled script. Any overlay that is too big for the pool is thus detected before amx_Init returns.

• Loading scripts with and without overlays

In your system, you may want to give the end user the option of whether to run their scripts with overlays or without overlays. Scripts with overlays always run slower than scripts without overlays, because of the overhead in the overlay loading. So you could give the script writers the choice between performance and memory.

When loading the compiled script, you must then verify whether the script uses overlays, by checking the AMX_FLAG_OVERLAY bit in the flags field in the formatted part of the AMX header. If this bit is set, proceed with loading/initializing the script as described in this appendix; if cleared, use the procedure on page 8.

License

The **software toolkit** "PAWN" (the compiler, the abstract machine and the support routines) are copyright © 1997–2008 by ITB CompuPhase. The Intel assembler implementation of the abstract machine and the just-in-time compiler (specifically the files AMXEXEC.ASM, AMXJITR.ASM and AMXJITS.ASM) are © 1998-2003 Marc Peter. The file AMXJITSN.ASM is partially © 2004 G.W.M. Vissers. The file AMXEXECN.ASM is partially © 2004–2006 ITB CompuPhase.

PAWN is distributed under the "zLib/libpng" license, which is reproduced below:

This software is provided "as-is", without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions:

- 1 The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgement in the product documentation would be appreciated but is not required.
- 2 Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
- 3 This notice may not be removed or altered from any source distribution.

The zLib/libpng license has been approved by the "Open Source Initiative" organization.

The PAWN **documentation** is copyright ©1997–2008 by ITB CompuPhase, and licensed under the Creative Commons Attribution/ShareAlike 2.5 License. To view a copy of this licence, visit

http://creativecommons.org/licenses/by-sa/2.5/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA. Below is a "human-readable" summary of the Legal Code (the full licence).

You are free:

- ♦ to copy, distribute, display, and perform the work
- ♦ to make derivative works
- ⋄ to make commercial use of the work

Under the following conditions:

- ♦ **Attribution**. You must give the original author credit.
- ♦ Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under a licence identical to this one.
- $\diamond~$ For any reuse or distribution, you must make clear to others the licence terms of this work.
- $\diamond~$ Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

Index

- ♦ Names of persons (not products) are in *italics*.
- ⋄ Function names, constants and compiler reserved words are in typewriter font.

```
\#pragma, 61
                                              Basic Multilingual Plane, 73
                                               Better String library, 119
A Abstract Machine, 6–48
                                               Big Endian, 9, 24, 55, 105
      design, 91
                                               Binary tree, 60
      file format, 95
                                               BOB, 89
      opcodes, 98
                                               Borland C<sup>++</sup>, 76, 79, 82, 84, 86
      registers, 93
                                               Borland TASM, 78
      stack based, 89
                                               bstring, 119
    alarm, 121
                                               Byte order, 9, 24, 94, 105
    Alignment (memory), 123
                                               Bytecode, See P-code
    alloca, 45, 56
    amx_GetAddr, 55, 63
                                              C++, 58
    amx_GetString, 55
    amx_InitJIT, 80
                                               Cache, 60
    amx_Push, 18
                                               Calling conventions, 73, 77, 78, 81,
    amx_PushArray, 20
                                                 85
    amx_PushString, 18
                                               Calling public functions, 17
    amx_SetDebugHook, 10
                                               Class method, 58
    amx_SetString, 55
                                               CMake, 67, 72, 87
    amx_StrLen, 55
                                               Codepage, 73
    amx_StrParam, 56, 63
                                               Collisions
    ANSI terminal, 73
                                                 hash table, 118
    Argument passing, 18
                                               Compact encoding, 69, 75, 96, 105
      arrays, 20
                                               Compiler, 4
      numeric, 18
                                                 deployment, 4
      strings, 18
                                               Configuration file, 4
    ARM processor, 77, 78
                                               CR/LF, 67
      ARM7, 78
                                               Cross-reference, 69
    ASCII, 68
    Assembler, 92, 93
                                               curses, 77
```

IndexData section, 25, 27, 29, 32, 55, 57 Debug hook, 10, 12, 13, 82 Debugger interface, 82, 108 Default include file, 1 Deployment abstract machine, 6 compiler, 4 Dispatcher native functions ~, 63 DLL, 70, 74, 85 dos2unix, 67 Dynamic linking, 4, 6, 61, 85 $E \overline{Errors}$ run-time ~, 48 Exported functions, 74, 85

Extension modules, 50, 63, 112 External scope, 52

Fixed point support, 84 Floating point support, 84, 85 Foreign function interface, 50, see also Extension modules Forth, 90 free, 116 FreeBSD, 77, 79, 82 **Functions** native ~, 50 variable arguments, 19

Garbage collection, 116 gc_clean, 117 gc_mark, 117, 118, 123 gc_scan, 117 gc_setcallback, 116 gc_settable, 116, 123 GNU GCC, 67, 77, 79, 82, 84, 92 GraphApp, 83

Hash table, 60, 116, 123 hash function, 123 probing, 123 Hook functions, 78 Hsieh, Paul, 119

Implicit include file, 1 ISO/IEC 10646-1, 73

Java, 89 Just-In-Time compiler, 49, 80, 104

 $L \overline{LBF (Low Byte First)}, See Little$ Endian LCC-Win32, 76, 79 License, 131 Linker .DEF file, 62 Linux, 4, 6, 61, 67, 70, 74, 77, 79, 81, 82, 84, 85, 121 Little Endian, 9, 24, 55, 94, 105 Low Byte First, See Little Endian Lua, 89

M Macro instructions, 69, 103 Magic value (AMX version), 96 Makefile, 87 malloc, 56, 116 MASM, See Microsoft MASM Matrix multiplication, 57 Mean, 22 Median, 22 memcpy, 21 memmove, 21 Microsoft MASM, 78 Microsoft Visual C/C^{++} , 67, 76, 77, 79, 80

Microsoft Windows, 61, 62, 73, 74, Pre-processor, 68 85, 121 Prefix file, 1 mprotect, 81 Probing Multi-dimensional arrays, 57 hash table, 118, 123 Public functions Name mangling, 85 calling ~, 17 C++, 62NASM, See Netwide Assembler Native functions, 50 Quadratic probing ~ dispatcher, 63 hash table, 123 include file, 53, 62 passing arrays, 57 ncurses, 77 R Response file, 5 Netwide assembler, 78 NX (no execute), 80 ROM (running from ~), 34, 65, 74, 105, 124 Olympic mean, 22 rot13, 20 Opcode packing, 69, 74, 104 ROT13 encryption, 20 OpenBSD, 77, 79, 82 OpenGL, 57 Optimizer, 68, 115 Sections Overlays, 127 data ~, 25, 27, 29, 32, 55, 57 Security, 62, 63 P-code, 76, 97 SetTimer, 121 Packed Shared library, 70, 74, 85 ~ opcodes, 69, 74, 104 ~ strings, 106 SIGINT, 11 Parameter checking, 63 signal, 11, 121 Pass by reference, 56 Software CPU, 63 Passing arguments, 18 Static linking, 53, 61, 85 arrays, 20 numeric, 18 STL (Standard Template Library), strings, 18 59, 60 pc_compile, 70 Surrogate pair, 73 Peephole optimizer, 68, 115 Symbolic information, 108 Peter, Marc, 77, 80 SYSREQ.C, 64 Plug-in extensions, 6, 61, 85 Position Independent Code, 103 System request, 64

 $T \overline{TASM}, \overline{See} Borland TASM$ Variable arguments, 19 Virtual Machine, See Abstract ~ Thompson, Ken, 89 VirtualAlloc, 16, 81 Thread-safe, 37 vmalloc_exec, 81 Threading, 92 direct ~, 74, 92, 93 Von Neumann, 91 VT100 terminal, 73 switch ~, 74, 92 token ~, 74, 75, 92, 104 WASM, See Watcom WASM Trimmed mean, 22 Watcom C/C⁺⁺, 77, 80, 82, 83 Type cast, 28, 30, 54 Watcom WASM, 78 $U \overline{\text{UCS-4, 68, 73}}$ Wide character, 73 Win32 Console, 73 Unicode, 18, 33, 40, 43, 73, 76, 83 Wrapper functions, 53 Unicows, 83 UNIX, 6, 61, 70, 74, 85, 121 $X \overline{XD \text{ (execution denied)}}, 80$ Unix, 4 User value, 14 $Z \overline{\mathrm{ZLib}} \, (\mathrm{license}), \, 131$ UTF-8, 45–47, 68, 73, 83