Context-free Grammars: In-class Exercise

(1) Consider the CFG G with S' as the start symbol:

$$S' \rightarrow S \mid \epsilon$$

$$S \rightarrow T \mid (N, C)$$

$$C \rightarrow C, S \mid S$$

$$T \rightarrow a \mid b \mid c$$

$$N \rightarrow x | y | z$$

a. List the set of terminal symbols and the set of non-terminal symbols in G.

Answer:

$$T = \{a, b, c, x, y, z, \setminus, ,(,)\}$$

$$N = \{S', S, C, T, N\}$$

- b. For each of the following strings, write down true if the string is in the language L(G) generated by G, false otherwise.
 - 1. y
 - 2. c
 - 3. (x)
 - 4. (x,y)
 - 5. (z,a,b,a,b,c)
 - 6. (x,a,(y,b),c)
 - 7. (x,(y,a),(z,b))
 - 8. (x,(x,(x,(x,a)))

Answer:

- 1. **y** : false
- 2. c: true
- 3. (x): false
- 4. (x,y): false
- 5. (z,a,b,a,b,c): true
- 6. (x,a,(y,b),c): true
- 7. (x,(y,a),(z,b)): true
- 8. (x,(x,(x,a)) : false

(2) One of the rules in the CFG below is redundant: any sentence that can be generated using this rule can already be generated by a combination of other rules. Write down the redundant rule.

John he Mary dog tree

squirrel the

S	\rightarrow	NP VP	IV	\rightarrow	runs	N	\rightarrow
NP	\rightarrow	N	IV	\rightarrow	sits	N	\rightarrow
NP	\rightarrow	DN	TV	\rightarrow	chases	N	\rightarrow
VP	\rightarrow	VP PP	TV	\rightarrow	eats	N	\rightarrow
VP	\rightarrow	VP CONJ VP	TV	\rightarrow	catches	N	\rightarrow
VP	\rightarrow	IV	TV	\rightarrow	tells	N	\rightarrow
VP	\rightarrow	IV PP	TV	\rightarrow	sees	D	\rightarrow
VP	\rightarrow	TV NP	CONJ	\rightarrow	and		
VP	\rightarrow	TV C S	C	\rightarrow	that		
NP	\rightarrow	NP CONJ NP	P	\rightarrow	in		
PP	\rightarrow	P	P	\rightarrow	away		
PP	\rightarrow	P NP					

Answer: $VP \rightarrow IV PP$ can be generated using $VP \rightarrow IV$ and $VP \rightarrow V PP$.

(3) Consider the family of CFGs G_k with S as the start symbol and k is some arbitrary non-zero positive integer such that G_1, G_2, G_3, \ldots are individual CFGs with the rules:

$$S \rightarrow A B$$

 $B \rightarrow C A A$
 $C \rightarrow c$
 $A \rightarrow a_i$ defines i rules, where $i \in [1, k]$

For example, in G_3 the rules with A as left-hand side are: $A \rightarrow a_1 \mid a_2 \mid a_3$ with three terminal symbols.

a. Provide the number of terminal symbols in a grammar G_k .

Answer: k+1

b. If the string $a_4ca_3a_2$ is accepted by grammar G_3 then provide a derivation for it.

Answer: a_4 does not exist as a terminal in G_3 .

c. If the string $a_4ca_3a_2$ is accepted by grammar G_4 then provide a derivation for it.

Answer: $S \Rightarrow A B \Rightarrow a_3 B \Rightarrow a_3 C A A \Rightarrow a_3 C A A \Rightarrow a_3 C a_1 A \Rightarrow a_3 C a_1 a_2$

d. Provide the total number of strings that can be generated for a grammar G_k .

Answer: k^3