An automorphism on product measures

Let $n \geq 2$ and consider an *n*-tuple of sample spaces $\{X_{\nu} = (\Omega_{\nu}, \mathcal{B}_{\nu})\}$. We get the product space

$$Y = \prod X_{\nu}$$

whose sample space is the set-theoretic product $\prod \Omega_{\nu}$ and Boolean σ -algebra \mathcal{B} generated by $\{\mathcal{B}_{\nu}\}.$

0.1 Product measures. Let $\{\gamma_{\nu}\}$ be an *n*-tuple of signed measures on X_1, \ldots, X_n where each γ_{ν} has a finite total variation. We get a unique measure γ^* on Y such that

$$\gamma^*(E_1 \times \ldots \times E_n) = \prod \gamma_{\nu}(E_{\nu})$$

hold for every n-tuple of $\{\mathcal{B}_{\nu}\}$ -measurable sets. We refer to γ^* as the product measure. It is uniquely determined because \mathcal{B} is generated by product sets $E_1 \times \ldots \times E_n$) with each $E_{\nu} \in \mathcal{B}_{\nu}$. When no confusion is possible we put

$$\gamma^* = \prod \, \gamma_{\nu}$$

0.2 Remark. The set of product measures is a proper non-linear subset of all measures on Y. This is already seen when n=2 with two discrete sample spaces, i.e. X_1 and X_2 consists of N points for some integer N. A Every $N \times n$ -matrix with non-negative elements $\{a_{jk}\}$ give a probability measure μ on $X_1 \times X_2$ when the double sum $\sum \sum a_{jk} = 1$ The condition that μ is a product measure is that there exist N-tuples $\{\alpha_j \text{ and } \{\beta_k\} \text{ such that } \sum \alpha_{\nu} = \sum \beta_k = 1 \text{ and } a_{jk} = \alpha_j \cdot \beta_k$.

The operator T_k . Consider a positive \mathcal{B} -measurable function k such that k and k^{-1} both are bounded functions. Let μ be a non-negative product measure on Y such that

$$\int_Y k \cdot d\mu = 1$$

Let $1 \le \nu \le n$ and g is some \mathcal{B}_{ν} -measurable function. Then we have the integral

(ii)
$$\int_{Y} g^* \cdot k \cdot d\mu$$

where g^* is the function on the product space defined by

$$q^*(x_1,\ldots,x_n)g(x_n)$$

This gives a measure denoted b $(k\mu)_{\nu}$ on X_{ν} such that (i) is equal to $\int g \cdot (k\mu)_{\nu}$ for all g as above. This gives the product measure

$$T_k(\mu) = \prod (k\mu)_{\nu}$$

It is clear that (i) entails that $T_k(\mu)$ is a probability measure on Y. denote by \mathcal{S}_k^* the family of non-negative product measures satisfying (i) above, and similarly \mathcal{S}_1^* is the set of product measures which at the same time are probability measures.

Theorem. T yields a homeomorphism between S_k^* and S_1^* .

Remark. Above we refer to the norm topology on the space of measure, i.e. if γ_1 and γ_2 are two measures on Y then the norm $||\gamma_1 - \gamma_2||$ is the total variation of the signed measure $\gamma_1 - \gamma_2$. Recall from XX that the space of measures on Y is complete under this norm. In particular, let $\{\mu_{\nu}\}$ be a Cauchy sequence with respect to the norm where each $\mu_{\nu} \in \mathcal{S}_1$. Then there exists a strong limit μ^* where μ^* again belongs to \mathcal{S}_1^* and

$$||\mu_{\nu} - \mu^*|| \to 0$$

0.4 A variational problem. The proof of Theorem 1 relies upon a variational problem which we begin to describe before Theorem 1 is proved in xx below. Denote by \mathcal{A} the linear space of functions on Y whose elements are of the form

$$a = g_1^* + \ldots + g_n^*$$

where each g_{ν}^* comes from a function g_{ν} on X_{ν} as in (0.3 The exponential function e^a becomes

$$e^a = \prod e^{g_{\nu}^*}$$

If γ^* is a product measure with factors $\{\gamma_{\nu}\}$, it follows that $e^a \cdot \gamma^*$ is a product measures with factors $\{e^{g^*_{\nu}} \cdot \gamma_{\nu}\}$. Next, for every pair $\gamma \in \mathcal{S}_1^*$ and $a \in \mathcal{A}$ we set

$$W(a,\gamma) = \int_{Y} (e^{a}k - a) \cdot d\gamma$$

Keeping γ fixed we set

$$W_*(\gamma) = \min_{a \in \mathcal{A}} W(a, \gamma)$$

The main step towards the proof of Theorem xx is the following:

Proposition.Let $\{a_{\nu}\}$ be a sequence in \mathcal{A} such that

$$\lim W(\gamma, a_{\nu}) = W_*(\gamma)$$

Then the sequence $\{e^{a_{\nu}}\cdot\gamma\}$ converges to a unique probability measure μ such that $T_k(\gamma)=\mu$.

The proof of Proposition xx is preceded by the following two results.

0. x. Lemma. Let $\epsilon > 0$ and $a \in \mathcal{A}$ be such that $W(a) \leq m_*(\gamma) + \epsilon$. Then it follows that

$$\int e^a \cdot k \cdot \gamma \le \frac{1+\epsilon}{1-e^{-1}}$$

Proof. For every real number s the function a-s again belongs to \mathcal{A} and by the hypothesis $W(a-s) \geq W(a) - \epsilon$. This entails that

$$\int e^{a}k \cdot d\gamma \le \int_{Y} e^{a-s} \cdot kd\gamma + s \int k \cdot d\gamma + \epsilon \implies$$
$$\int (1 - e^{-s}) \cdot e^{a} \cdot kd\gamma \le s + \epsilon$$

Lemma 1 follows if we take s=1.

0.X Lemma. Let γ_1 and γ_2 be a pair of probability measures on Y. Let $\epsilon > 0$ and suppose that

$$\left| \int_{V} G_{\nu} \cdot d\gamma_{1} - \int_{V} G_{\nu} \cdot d\gamma_{2} \right| \leq \epsilon$$

hold for every $1 \le \nu \le n$ and every function g_{ν} on X_{ν} with maximum norm ≤ 1 . Then the norm

$$||\gamma_1 - \gamma_2|| \le n \cdot \epsilon$$

The proof is left to the reader where the hint is to make repeated use of Fubini's theorem.

Proof of Proposition XX Let $\epsilon > 0$ and consider a pair a, b in \mathcal{A} such that W(a) and W(b) both are $\leq m_*(\gamma) + \epsilon$ where we also suppose that $\epsilon \leq 1$. Now $\frac{1}{2}(a+b)$ belongs to \mathcal{A} and we get

$$2 \cdot W(\frac{1}{2}(a+b)) \ge 2 \cdot m_*(\gamma) \ge W(a) + W(b) - 2\epsilon$$

Next, notice that

$$W(a) + W(b) - 2 \cdot W(\frac{1}{2}(a+b)) = \int_{V} \left[e^{a} + e^{b} - 2 \cdot e^{\frac{1}{2}(a+b)} \right] \cdot kd\gamma$$

Now we use the algebraic identity

$$e^{a} + e^{b} - 2 \cdot e^{\frac{1}{2}(a+b)} = (e^{a/2} - e^{b/2})^{2}$$

It follows from (x-x) that

(iv)
$$\int_{Y} (e^{a/2} - e^{b/2})^2 \cdot k \cdot d\gamma \le 2\epsilon$$

Next, we notice the identity

$$|e^a - e^b| = (e^{a/2} + e^{b/2}) \cdot |e^{a/2} - e^{b/2}|$$

Using the Cauchy-Schwarz inequality we get

$$\left[\int_{V} |e^{a} - e^{b}| \cdot k \cdot d\gamma\right]^{2} \le 2\epsilon \cdot \int_{V} (e^{a/2} + e^{b/2}) \cdot k \cdot d\gamma$$

By the remark in XX the last factor is bounded by a fixed constant and hence we have proved that

$$\int_{Y} |e^{a} - e^{b}| \cdot k \cdot d\gamma \le C \cdot \sqrt{\epsilon}$$

where C is a fixed constant. Replacing C by C/k_* where k_* is the minimum of k we get

$$\int_{V} |e^{a} - e^{b}| \cdot d\gamma \le C \cdot \sqrt{\epsilon}$$

Since the left hand side majorizes the total variation of the signed measures $e^a \cdot \gamma - e^b/cdot\gamma$ we get Cauchy sequences with respect to the strong norm and conclude that there exists a unique limit measure μ where $M(a_{\nu}) \to m_*(\gamma)$ implies that

$$||e^{a_{\nu}}\cdot\gamma-\mu||\to 0$$

The equality $T(\mu) = \gamma$. To show this we study a-functions in the minimizing sequence. If $\rho \in \mathcal{A}$ is arbitrary we have

$$W(a_{\nu}+\rho) > W(a_{\nu}) - \epsilon_{\nu}$$

where $\epsilon_{\nu} \to 0$. This gives

$$\int_{Y} \left[k e^{a_{\nu}} (1 - \rho) + \rho \right] \cdot d\gamma \le \epsilon_{\nu}$$

Assuming that the maximum norm $|\rho|_Y \leq 1$ we can write

$$e^{\rho} = 1 + \rho + \rho_1$$

where $0 \le \rho_1 \le \rho^2$. Then we see that (xx) gives

$$\int_{Y} \left[\rho - ke^{a_{\nu}} \cdot \rho \right] \cdot d\gamma \le \epsilon_{\nu} + \int \rho_{1} \cdot \gamma \le \epsilon + ||\rho||_{Y}^{2}$$

where the last inequality follows since γ is a probability measure. The same inequality holds with ρ replaced by $-\rho$ which entails that

$$\left| \int_{V} \left(k e^{a_{\nu}} - 1 \right) \cdot \rho \cdot d\gamma \right| \le \epsilon_{\nu} + ||\rho||_{Y}^{2}$$

At this stage we apply Lemma xx to the measure $(ke^{a_{\nu}}-1)\cdot d\gamma$ while we use ρ -functions in \mathcal{A} of norm $\leq \sqrt{\epsilon_{\nu}}$. This gives the following inequality for the total variation:

$$||ke^{a_{\nu}}-1)\cdot\gamma|| \leq n\cdot\frac{1}{\sqrt{\epsilon}}\cdot(\epsilon+\epsilon) = 2n\cdot\sqrt{\epsilon_{\nu}}$$

Remark. For every positive number q and every real number α one has the inequality

$$e^q \cdot \alpha - \alpha \ge 1 + \log q$$

Conclude that

$$W(a) \ge 1 + \log k_*$$

where k_* is the minium of the positive k-function.

Introduction. Abstract measure theory is often convenient to achieve general results. Here we expose material from Beurling's article An automorphism of product measures where Theorem 1 is the main result. In this theorem appears a continuous function k defined on a product $Y = X_1, \ldots, X_n$ where each X_{ν} is a locally compact metric space. Under the assumption that there are positive real numbers 0 < a < b such that the range of k is confined to [a, b] it will be proved that a certain operator K yields a homoeomorphism from the space of non-negative Riesz measures μ on Y normalized by the condition

$$\int k \cdot d\mu = 1$$

to the space of probability measures on Y. A much more involved case appears in the singular case, i.e. when k(x) for example can attain arbitrary small positive values. In section 2 we discuss the singular case for a product of two locally compact metric spaces.

Schrödinger equations. A motivation for the abstract results in Section 1 come from the article Théorie relativiste de l'electron et l'interprétation de la mécanique quantique published 1932. In the introduction to [Beurling] the author ponits out that Schrödinger's raised a new and unorthodox question concerning Brownian motions leading to new mathematical problems of considerable interest. More precisely, consider a Brownian motion which takes place in a bounded region Ω of some euclidian space \mathbb{R}^d for some $d \geq 2$. At time t = 0 the densities of particles under observation is given by some non-negative function $f_0(x)$ defined on Ω . The density at a later time t > 0 is then equal to a function $x \mapsto u(x,t)$ where u(x,t) solves the heat equation

$$\frac{\partial u}{\partial t} = \Delta(u)$$

with boundary conditions $u(x,0) = f_0(x)$ and

$$u(x,0) = f_0(x)$$
 and $\frac{\partial u}{\partial \mathbf{n}}(x,t) = 0$ on $\partial \Omega$

Schrödinger took into the account the reality of quantum physics which means that in an actual experiment the observed density of particles at a time $t_1 > 0$ does not coincide with $u(x,t_1)$. He posed the problem to find the most probable development during the time interval $[0,t_1)$ which leads to the state at time t_1 . His major conclusion was that the the requested density function which substitutes the heat-solution u(x,t) should belong to a non-linear class of functions formed by products

$$w(x,t) = u_0(x,t) \cdot u_1(x,t)$$

where u_0 is a solution to (*) above defined for t > 0 while $u_1(x,t)$ is a solution to an adjoint equation

$$\frac{\partial u_1}{\partial t} = -\delta(u)$$
 : $\frac{\partial u_1}{\partial \mathbf{n}}(x,t) = 0$ on $\partial \Omega$

defined when $t < t_1$. This leads to a new type of Cauchy problems where one asks if there exists a unique w-function as above satisfying

$$w(x,0) = f_0(x)$$
 : $w(x,t_1) = f_1(x)$

where f_0, f_1 are non-negative functions such that

$$\int_{\Omega} f_0 \cdot dx = \int_{\Omega} f_1 \cdot dx$$

The solvability of this non-linear boundary value problem was left open by Schrödinger and the search for solutions have been studied by many mathematicians. When Ω is a bounded set and has a smooth boundary one can use the Poisson-Greens function for the classical equation (*) and in this way rewrite Schrödinger's equation to a system of non-linear integral equations. We refer to page 190 in Beurling's article for details how one arrives at such integral equations and why this motivates the result in Theorem 1 below.

1. Product measures.

Let X be a locally compact metric space. Denote by $C^b(X)$ the linear space of bounded real valued functions on X which is a Banach a space equipped with the maximum norm. The linear space of real-valued Riesz measures on X with finite total variation is denoted by $\mathfrak{M}(X)$ and the subclass of non-negative measures of total mass one is denoted by $P^+(X)$. Next, consider an *n*-tuple X_1, \ldots, X_n of locally compact spaces and let $Y = X_1 \times \ldots \times X_n$. be the product space. If $1 \le \nu \le n$ and $\phi \in C^b(X_\nu)$ we get the function Φ_ν on Y defined by

$$\Phi_{\nu}(x_1,\ldots,x_n) = \phi_{\nu}(x_{\nu})$$

Then, if $\mu \in \mathfrak{M}(Y)$ we get the measure factors $\{\mu_{\nu}\}$ where

(2)
$$\mu(\Phi_{\nu}) = \mu_{\nu}(\phi)$$

hold for each $\phi \in C^b(X_\nu)$. Conversely, let $\{\mu_\nu\}$ be an *n*-tuple of measures on X_1, \ldots, X_n . Then we get their product measure μ_* where

$$\mu_*(E_1 \times \ldots \times E_n) = \prod \mu_{\nu}(E_{\nu})$$

hold when $\{E_{\nu}\}$ are Borel sets in X_1, \ldots, X_n .

Remark. Consider the special case when each μ_{ν} is non-negative Then the product measure μ_{*} is non-negative. Let $\{\gamma_{\nu}\}$ be another n-tuple of non-negative measures whose product measure $\gamma_* = \mu_*$. For each fixed $1 \leq \nu \leq n$ we take $\phi \in C^b(X_\nu)$ and get

$$\mu_*(\Phi_\nu) = \prod_{j \neq \nu} \mu_(X_j) \cdot \mu_\nu(\phi)$$

 $\mu_*(\Phi_\nu) = \prod_{j \neq \nu} \mu_(X_j) \cdot \mu_\nu(\phi)$ A similar formula holds for γ_* and we conclude that an equality $\mu_* = \gamma_*$ gives for each ν a constant c_{ν} such that

$$\gamma_{\nu} = c_{\nu} \cdot \mu_{\nu}$$

We obtain a unique n-tuple of components representing μ_* when we choose $\{\mu_{\nu}\}$ so that each has total mass given by the n:th root of $\mu_*(Y)$.

The operator \mathcal{K} . Consider some $k(x) \in C^b(Y)$ where $a \leq k(x) \leq b$ hold for some pair 0 < a < b. To each $\mu \in \mathfrak{M}(Y)$ we get the measure \mathcal{K}_{μ} on Y which satisfies

$$\mathcal{K}_{\mu}(\prod \phi_{\nu}(x_{\nu})) = \prod \mu(k(x) \cdot \Phi_{\nu}(x))$$

for every n-tuple $\{\phi_{\nu} \in C^b(X_{\nu})\}$. Consider in particular the case when $\mu \in P^+(Y)$ and

$$\int_{Y} k \cdot d\mu = 1$$

Then \mathcal{K}_{μ} has total mass one and if $\gamma_1, \ldots, \gamma_n$ are its normalised factors we have

$$\gamma_{\nu}(\phi) = \mu(\Phi_{\nu} \cdot k)$$

when $\phi \in C^b(X_{\nu})$.

Denote by $P_k^+(Y)$ the set of non-negative measures μ on Y for which (*) above holds. With these notations one has:

1. Theorem. For each function k as above the operator K yields a homeomorphism from from $P_k^+(Y)$ onto $P^+(Y)$ where each of these sets are equipped with the strong topology.

For the proof of Theorem 1 we refer to [Beurling]. At the end of the article a more involved case is studied.

A singular case. Here we restrict the attention to the case n=2 and let $k(x_1,x_2)$ be a bounded and strictly positive continuous function on $Y = X_1 \times X_2$. Let $\mu \in P^+(Y)$ be such that

$$(1) \qquad \int_{V} \log k \cdot d\mu > -\infty$$

Under this integrability condition one has

2. Theorem. There exists a unique non-negative measure γ on Y such that $\mathcal{K}(\gamma) = \mu$.

Remark. In contrast to Theorem 1 the measure γ need not have finite mass but the proof shows that k belongs to $L^1(\gamma)$. Concerning the integrability condition in Theorem 2 it can be relaxed a bit, i.e. it suffices to assume that

(2)
$$\min_{s>0} \int (ke^s - s) \cdot d\mu > -\infty$$

As pointed out by Beurling the result in Theorem 2 can be applied to the case $X_1 = X_2 = \mathbf{R}$ both are copies of the real line and

$$k(x_1, x_2) = g(x_1 - x_2)$$

where g is the density of a Gaussian distribution which after a normalisation of the variance is taken to be

$$\frac{1}{\sqrt{2\pi}} \cdot e^{-t^2/2}$$

So the integrability condition for μ in Theorem 2 becomes

$$\iint (x_1 - x_2)^2 \cdot d\mu(x_1, x_2) < \infty$$

The proof of Theorem 2 is given on page 218-220 in [loc.cit] and relies upon the method and various estimates from the proof of Theorem 1. For higher dimensional cases, i,e, with $n \geq 3$ Beurling gives the following comments

Theorem 1 relies heavily on the condition that $k \geq a$ for some a > 0. If this lower bound condition is dropped the individual equation $\mathcal{K}(\gamma) = \mu$ may still be meaningful, but serious complications will arise concerning the global uniqueness if $n \geq 3$ and the proof of Theorem 2 for the case $nn \geq 3$ cannot be duplicated.