Experiment-3

BJT Common Emitter Amplifier Characteristics

Simulation Exercise

1. Design a common-emitter amplifier as shown in Figure 1 (obtain the values of R_1 , R_E and R_C) for $I_C = 1$ mA, $V_{CE} = 5$ V, $V_E = 2$ V, $V_{CC} = 12$ V (let $R_2 = 10$ k) using BJT model. (You need not connect the capacitors and load resistor at this stage).

Figure 1

- 2. Write the netlist for the circuit you designed. Use the model for BJT 2N2222A
 - .MODEL Q2N2222A NPN(IS=8.11E-14 BF=205 VAF=113 IKF=0.5 ISE=1.06E-11
 - + NE=2 BR=4 VAR=24 IKR=0.225 RB=1.37 RE=0.343 RC=0.137 CJE=2.95E-11
 - + TF=3.97E-10 CJC=1.52E-11 TR=8.5E-8 XTB=1.5)
- 3. Run the simulation. Note down the values of V_{CE}, I_C, I_E, I_B, V_E and verify them with their calculated values.
- 4. Choose the appropriate values of C_B, C_C, C_E for the signal frequency of 2 kHz to be in the mid-band region. Use R_L=1k.
- 5. Observe the output voltage waveform and input voltage waveform for V_{in} = 100 mVp-p at 2 kHz.
- 6. Measure the frequency response of the amplifier by varying the frequency from 10 Hz to 1.5 MHz.

Hardware Exercise Objectives:

- 1. To study the effect of proper biasing on the performance of BJT amplifier
- 2. To study the frequency response of the CE amplifier

Equipment/Components Required:

- 1. BJT- 2N2222
- 2. Resistors of suitable values
- 3. Capacitors of suitable values
- 4. Regulated power supply 12V
- 5. Arbitrary Function Generator
- 6. Digital Storage Oscilloscope

Steps:

- 1. Wire up the circuit as shown in Figure 1 with suitable values of the resistors. Make sure that the BJT is operating in active region and also the values of C_B, C_C, C_E are sufficiently large for the signal frequency of 2 kHz to be in the mid-band region.
- 2. Bias the circuit using regulated power supply and take the input, $V_{\rm in}$ from AFG. Check your calculations against measurements made with a sinusoidal signal having frequency of 2 kHz (use oscilloscope, not multi-meter). Keep the input voltage sufficiently small so as to give an undistorted output.
- 3. Fix the amplitude of the sinusoidal input to 200 mV $_{p\text{-}p}$ and vary the frequency from 100 Hz to 1.5 MHz.
- 4. Observe the input and output waveforms on DSO. Observe and calculate the voltage gains.
- 5. Increase the input amplitude to 500 mV_{p-p} and $1V_{p-p}$ and study the frequency characteristics of the amplifier circuit. Is the output signal distorted?
- 6. Plot the frequency responses of the amplifier (log-log plot) and comment on the salient features you observe.