

Chemistry

Essential Pre-Uni Chemistry B6.3

Essential Pre-Uni Chemistry B6.3

Consider the equation for each reaction and hence calculate the amount of acid required for complete reaction in each of the following cases.

Part F (f)

 $10\,\mathrm{g}$ of magnesium oxide reacting with nitric acid. Give your answer to 2 significant figures.

All materials on this site are licensed under the $\underline{\textbf{Creative Commons license}}$, unless stated otherwise.

Chemistry

Essential Pre-Uni Chemistry B6.2

Essential Pre-Uni Chemistry B6.2

By considering a balanced equation each time, calculate the amount of water produced by complete combustion of the following in oxygen.

Chemistry

Essential Pre-Uni Chemistry B4.3

Essential Pre-Uni Chemistry B4.3

Calculate the amount of:
Part A (a)
$1.001\mathrm{g}$ of $\mathrm{CaCO_3}\left(s\right)$, to 3 significant figures
Part B (b)
$197\mathrm{kg}$ of $\mathrm{Au}(\mathrm{s})$, to 3 significant figures
Part C (c)
$1.4\mathrm{g}$ of $\mathrm{CO}\left(\mathrm{g}\right)$, to 2 significant figures
Part D (d)
$2.006\mathrm{kg}$ of $\mathrm{Hg}\mathrm{(l)},$ to 4 significant figures
Part E (e)
$11.1\mathrm{g}$ of lithium carbonate, to 3 significant figures

Part F (f)

 $10.0\,\mathrm{mg}$ of lead(II) iodide, to 3 significant figures

All materials on this site are licensed under the $\underline{\textbf{Creative Commons license}}$, unless stated otherwise.

Chemistry

Essential Pre-Uni Chemistry B6.1

Essential Pre-Uni Chemistry B6.1

Calculate the amount of oxygen needed, and amount of carbon dioxide produced, in each of the cases below.

Part A
$$C_3H_8 + 5O_2 \longrightarrow 3CO_2 + 4H_2O$$

$$C_3H_8+5\,O_2 \longrightarrow 3\,CO_2+4\,H_2O,$$
 using $1.0\,mol$ of C_3H_8

Calculate the amount of oxygen needed.

Calculate the amount of carbon dioxide produced.

Part B
$$C_2H_6O + 3O_2 \longrightarrow 2CO_2 + 3H_2O$$

$$C_2H_6O+3\,O_2 \longrightarrow 2\,CO_2+3\,H_2O$$
, using $0.2\,mol$ of of C_2H_6O

Calculate the amount of oxygen needed.

Calculate the amount of carbon dioxide produced.

Part C $2 CO + O_2 \longrightarrow 2 CO_2$

 $2\,CO + O_2 \longrightarrow 2\,CO_2$, using $4.0\,moles$ of CO

Calculate the amount of oxygen needed:

Calculate the amount of carbon dioxide produced:

Part D $C_6H_{12}O_6 + 6O_2 \longrightarrow 6CO_2 + 6H_2O$

 $C_6H_{12}O_6+6\,O_2 \longrightarrow 6\,CO_2+6\,H_2O$, using $0.040\,moles$ of $C_6H_{12}O_6$

Calculate the amount of oxygen needed:

Calculate the amount of carbon dioxide produced:

Part E $C_2H_4O_2 + 2O_2 \longrightarrow 2CO_2 + 2H_2O$

 $C_2H_4O_2 + 2\,O_2 \longrightarrow 2\,CO_2 + 2\,H_2O,$ using $0.10\,moles$ of $C_2H_4O_2$

Calculate the amount of oxygen needed:

Calculate the amount of carbon dioxide produced:

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.

Chemistry

Essential Pre-Uni Chemistry B5.2

Essential Pre-Uni Chemistry B5.2

Calculate the mass of solute in grams of each of the following:
Part A (a)
$500\mathrm{ml}$ of $0.010\mathrm{mol}\mathrm{dm}^{-3}$ NaOH
Part B (b)
$150\mathrm{ml}$ of $4.0\mathrm{mol}\mathrm{dm}^{-3}$ HCl
Part C (c)
$1.00\mathrm{ml}$ of $10.0\mathrm{mol}\mathrm{dm}^{-3}\;\mathrm{H_2SO_4}$
Part D (d)
$25.0\mathrm{ml}$ of $0.50\mathrm{mol}\mathrm{dm}^{-3}~\mathrm{FeSO}_4$
Part E (e)
$21.8\mathrm{ml}$ of $0.0050\mathrm{moldm^{-3}}\;\mathrm{KMnO_4}$

 $100\,\mathrm{ml}$ of limewater with a concentration of $0.00020\,\mathrm{mol}\,\mathrm{dm}^{-3}$

All materials on this site are licensed under the $\underline{\textbf{Creative Commons license}}$, unless stated otherwise.

TNT

TNT

TNT is used as an explosive. It can decompose according to the following equation:

$$2C_{7}H_{5}N_{3}O_{6}\left(s\right) \longrightarrow 7\,CO\left(g\right) +7\,C\left(s\right) +5\,H_{2}O\left(g\right) +3\,N_{2}\left(g\right)$$

Part A RMM

Calculate the relative molecular mass of TNT.

Part B Moles of gas

The volume of gas produced at $400\,^{\circ}C,$ when $10\,\mathrm{g}$ of TNT explode, is to be calculated.

How many moles of gas are produced from $1\,\mathrm{mol}$ of TNT?

Part C Volume of gas

At $400\,^{\circ}\mathrm{C}$ and $1\,\mathrm{atm}$, $1\,\mathrm{mol}$ of gas occupies $55\,\mathrm{dm}^3$.

Calculate the volume of gas produced under these conditions from $10\,\mathrm{g}$ of TNT?

Adapted with permission from UCLES, A Level Chemistry, November 1992, Paper 3, Question 1

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.

Balancing Equations

Balancing Equations

Part A Be and O

Balance the following equation, reducing coefficients to the smallest possible integers:

$$\mathrm{Be} + \mathrm{O}_2 \longrightarrow \mathrm{BeO}$$

Part B Ce and O

Balance the following equation, reducing coefficients to the smallest possible integers:

$$Ce + O_2 \longrightarrow CeO_2$$

Part C Cr and Cl

Balance the following equation, reducing coefficients to the smallest possible integers:

$$Cr + Cl_2 \longrightarrow CrCl_3$$

Part D C and CO_2

Balance the following equation, , reducing coefficients to the smallest possible integers:

$$\mathrm{C} + \mathrm{CO}_2 \to \mathrm{CO}$$

Part E NaCl and $CaCO_3$

Balance the following equation, reducing coefficients to the smallest possible integers:

$$NaCl + CaCO_3 \longrightarrow Na_2CO_3 + CaCl_2$$

Part F Fe_2O_3 and CO

Balance the following equation, reducing coefficients to the smallest possible integers:

$$Fe_2O_3 + CO \longrightarrow Fe + CO_2$$

Created for isaacphysics.org by Andrea Chlebikova

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.