IAI83: Inteligencia Artificial (Semestre 2018-I)

Instituto Tecnológico Metropolitano

Instructor:

Profesor Pedro Atencio

pedroatencio@itm.edu.co

Material de clase:

El material de clase se encuentra disponible de forma pública en: https://github.com/psatencio/IA ITM/tree/2018 I

En las primeras sesiones de clase se abordará la configuración del repositorio y la configuración de las tecnologías necesarias para trabajar.

Horario:

Lunes de 20:00 a 22:00 en el salón K-406 Fraternidad

Miércoles de 20:00 a 22:00 en el salón N-404 Fraternidad

Descripción del curso:

En este curso se abordan los fundamentos teóricos y de técnicas del campo del conocimiento Inteligencia Artificial. En el curso serán tratadas técnicas clásicas y modernas y su aplicación en diversos problemas de interés general y de ingeniería. El material del curso será presentado en forma de sesiones magistrales y de laboratorio por parte del docente, así como a través del análisis de artículos científicos altamente influyentes.

Nota 1: Los artículos que serán analizados en el curso no serán siempre simples debido a que generalmente requieren abordar diferentes áreas de las ciencias de la computación. Los estudiantes deben esperar encontrar dificultad para entender algunos trabajos o incluso, la mayoría de estos. Sin embargo, el principal objetivo de este ejercicio no es dominar completamente el trabajo expuesto en dichos artículos, sino extraer de los mismos las partes más importantes. Por lo que la discusión en clase, posterior a la lectura de los mismos es importante y tendrá un valor evaluativo correspondiente a la participación y el nivel de profundidad del análisis hecho por el estudiante.

Nota 2: Los artículos que serán analizados estarán escritos en inglés. Por esta razón los estudiantes deberán estar preparados para afrontar este reto.

Nota 3: Es imposible para un curso de esta naturaleza, cubrir todos los trabajos más relevantes del campo de la Inteligencia Artificial, así como pretender cubrir todos los últimos adelantos al respecto. Por lo que el objetivo principal de este curso es generar motivación en los estudiantes para que los mismos sigan indagando y trabajando en este tema.

Plan de trabajo

Semana	Fecha	Temática	Tema	
1	05/02/2018 07/02/2018	Introducción	 Introducción a la inteligencia artificial. Tecnologías de trabajo en clase. Introducción a Python. 	
2	12/02/2018 14/02/2018		Problemas y su planteamiento.Búsqueda de soluciones.	
3	19/02/2018 21/02/2018	Búsqueda: Aproximación clásica	 Estrategias de búsqueda no- informada. Estrategias de búsqueda informada (1) 	
4	26/02/2018 28/02/2018		Estrategias de búsqueda informada (2)Búsqueda con adversarios.	
5	05/03/2018 07/03/2018	Búsqueda: Más allá de la aproximación clásica	 Búsqueda y problemas de optimización. Algoritmos bio-inspirados (introducción). Genetic Algorithms. 	
6	12/03/2018 14/03/2018		 Ant Colony Optimization 	
7	19/03/2018 21/03/2018	Conocimiento e incertidumbre	 Lógica borrosa 	
Semana Santa				
8	02/04/2018 04/04/2018	Introducción al aprendizaje de maquina	 Examen (lógica borrosa) Introducción al aprendizaje de maquina (I) 	
9	09/04/2018 11/04/2018		- Ejemplo de un proyecto de Aprendizaje de Maquina	
10	16/04/2018 18/04/2018	Aprendizaje Supervisado – Parte 1: Clasificación (técnicas básicas)	K-Vecinos CercanosNaive Bayes ContinuoNaive Bayes Multinomial	
11	23/04/2018 25/04/2018		 Medidas de rendimiento y Análisis del error. 	
12	30/04/2018 02/05/2018	Aprendizaje Supervisado – Parte 2: Redes Neuronales	 Examen (Aprendizaje Supervisado – Parte 1) Regresión lineal Descenso del gradiente (I) 	
13	07/05/2018 09/05/2018		Regresión LogísticaEl problema XOR	
14	14/05/2018 16/05/2018		Funciones de activaciónRed neuronal Feed Forward	

		- Retro-propagación del error (I)
15	21/05/2018 23/05/2018	- Retro-propagación del error (II) - Inicialización de parámetros - Regularización - Dropout

Lecturas (en construcción)

- Hart et. al. A Formal Basis for the Heuristic Determination of Minimum Cost Paths. 1968. http://ai.stanford.edu/~nilsson/OnlinePubs-Nils/PublishedPapers/astar.pdf
- Zhang et. al. Heuristic Search in Artificial Intelligence. 2001. (link)
- Shannon. Programming a Computer for Playing Chess. 1950.
 http://vision.unipv.it/IA1/aa2009-2010/ProgrammingaComputerforPlayingChess.pdf
- Holland. Genetic Algorithms. 1992. https://www.geos.ed.ac.uk/~mscgis/12-13/s1100074/Holland.pdf
- Dorigo et. al. Ant Algorithms for Discrete Optimization. 1999. http://people.idsia.ch/~luca/ij 23-alife99.pdf
- Zadeh. Fuzzy Logic and Approximate Reasoning. 1991.
 https://www.isical.ac.in/~sankar/paper/60.pdf
- Rumelhart et. al. Learning representations by back-propagating errors: https://www.iro.umontreal.ca/~vincentp/ift3395/lectures/backprop old.pdf
- Le Cun et. al. Gradient-Based Learning Applied to Document Recognition. 1998.
 http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf

Fuentes de consulta (en construcción)

- Revista Distill (openai.org) https://distill.pub/
- Curso de inteligencia artificial del profesor Patrick Winston: https://www.youtube.com/watch?v=TjZBTDzGeGg&list=PLUI4u3cNGP63gFHB6 xb-kVBiQHYe 4hSi
- Curso de Deep Learning de Andrew Ng: https://www.youtube.com/channel/UCcIXc5mJsHVYTZR1maL5l9w
- Revisión de artículos por Adrian Colyer (The Morning Paper):
 https://blog.acolyer.org/
- Russell & Norvig. Inteligencia Artificial: Un enfoque moderno (tercera edición). http://aima.cs.berkeley.edu/
- Curso de Deep Learning Aplicado. <u>www.fast.ai</u>