Contrôle d'algèbre linéaire N°3

Durée : 1 heure 45 minutes Barème sur 15 points

NOM:	
	Groupe
PRENOM:	

1. On note P_2 l'espace vectoriel des polynômes de degré plus petit ou égal à deux; P_2 est muni de la base canonique $(x^2, x, 1)$.

 \mathbb{R}^3 est muni de la base canonique $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

On considère l'application linéaire f de \mathbb{R}^3 dans P_2 définie par

$$\begin{cases} f(\vec{e}_1) - 3x - 2 = 0 \\ f(\vec{e}_3) = 3f(\vec{e}_2) + 6x + \alpha, \quad \alpha \in \mathbb{R} \\ f(\vec{e}_2 - \vec{e}_1) = x^2 - 5x - 2. \end{cases}$$

- a) Calculer la matrice de f relativement aux bases données. Déterminer le paramètre α pour que Im f soit égal à P_2 .
- b) On pose $\alpha = 4$. Déterminer une base et la dimension de $\operatorname{Im} f$ et de $\operatorname{Ker} f$.

 $2.5 \, \mathrm{pts}$

2. Le plan est muni d'une origine O et de la base canonique orthonormée $B=(\vec{e_1},\,\vec{e_2})$.

On note g l'application linéaire désignant une affinité de rapport k=3 telle que $\overrightarrow{OP}=-\vec{e_1}+2\vec{e_2}$ a pour image $\overrightarrow{OP'}=3\vec{e_1}$.

a) Déterminer une base B' par rapport à laquelle la matrice de g est diagonale. Puis à l'aide d'un changement de base, calculer la matrice M_g de g relativement à la base B.

Pour la suite du problème, on pose $M_g = \begin{pmatrix} 5 & 4 \\ -2 & -1 \end{pmatrix}$ pour la matrice de cette affinité relativement à la base B.

On considère les deux endomorphismes suivants :

- ullet p est une projection orthogonale dont le noyau est l'axe de l'affinité g,
- s est une symétrie orthogonale d'axe (O, \vec{a}) telle que $\angle(\vec{e}_1, \vec{a}) = -\frac{\pi}{8}$.
- b) Calculer la matrice de l'application $f = p \circ g \circ s^{(2k+1)}$, $k \in \mathbb{N}$, relativement à la base B.
- c) Déterminer la nature géométrique de f.

5.5 pts

3.5 pts

3.5 pts

3. L'espace est muni d'une origine O et de la base canonique orthonormée $B = (\vec{e_1}, \vec{e_2}, \vec{e_3})$.

On définit l'application

$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$

$$\vec{x} \longmapsto f(\vec{x}) = (\vec{x} \cdot \vec{u}) \ \vec{e}_1 + (\vec{x} \cdot \vec{v}) \ \vec{e}_2 + (\vec{x} \cdot \vec{r}) \ \vec{e}_3$$

$$\text{avec} \quad \vec{u} = \begin{pmatrix} 3 \\ 0 \\ 6 \end{pmatrix}, \quad \vec{v} = \begin{pmatrix} 0 \\ -9 \\ 6 \end{pmatrix}, \quad \vec{r} = \begin{pmatrix} 0 \\ 0 \\ 9 \end{pmatrix},$$

(6) (6)

ainsi que les deux endomorphismes suivants :

- s est une symétrie oblique d'axe le plan $\alpha(O, \vec{e_1}, \vec{e_2})$ et de direction parallèle au vecteur $\vec{w} = \vec{e_1} + \vec{e_2} + \vec{e_3}$,
- h est une homothétie de centre O et de rapport 3.

Relativement à la base B, déterminer la matrice de l'application $g = s + (h^{-1} \circ f)$ et en déduire directement sa nature géométrique.

4. On munit \mathbb{R}^2 de la base $B_u = (\vec{u}_1, \vec{u}_2)$ et de la base $B_v = (\vec{v}_1, \vec{v}_2)$ vérifiant les relations vectorielles suivantes

$$\begin{cases} 3\vec{v}_1 = -\vec{u}_1 + 2\vec{u}_2 \\ 2\vec{u}_1 = -3\vec{v}_2 + \vec{u}_2 . \end{cases}$$

On munit \mathbb{R}^3 de la base $B_e = (\vec{e_1}, \vec{e_2}, \vec{e_3})$ et de la base $B_f = (\vec{f_1}, \vec{f_2}, \vec{f_3})$ définie par

$$\begin{cases} \vec{f_1} = \vec{e_1} + 2\vec{e_2} + \vec{e_3} \\ \vec{f_2} = 2\vec{e_1} - \vec{e_2} + \vec{e_3} \\ \vec{f_3} = 3\vec{e_1} - 2\vec{e_2} + 2\vec{e_3} \end{cases}$$

Soit g l'application linéaire de \mathbb{R}^2 dans \mathbb{R}^3 telle que

$$\begin{cases} g(\vec{v}_1) = \vec{f}_1 + \vec{f}_2 - \vec{f}_3 \\ g(\vec{v}_2) = 2 \vec{f}_2. \end{cases}$$

- a) Déterminer la matrice de g relativement aux bases B_u et B_e .
- b) Soit H la droite dont l'équation matricielle dans la base B_f est la suivante

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 4 \\ 0 \end{pmatrix} + k \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix}, \quad k \in \mathbb{R}.$$

Déterminer l'équation paramétrique de $g^{-1}(H)$ dans la base B_u .