- $egin{array}{lll} 1 & A, & B, & C, & E は <math>2$ 行 2 列の 行列で, $A=egin{pmatrix} 1 & 1 \ 2 & 0 \end{pmatrix}$, $E=egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}$ と する A .
- (1) AB = BA ならば B = pA + qE となる実数 p, q が存在することを示せ.
- (2) AB = BA, AC = CA が成り立つならば、BC = CB が成り立つことを示せ.
- (3) AB = BA, $B^2 = E$ を満たす行列 B をすべて求めよ.
- 2 n は 0 または正の整数とする。 a_n を, $a_0=1$, $a_1=2$, $a_{n+2}=a_{n+1}+a_n$ によって定める。 a_n を 3 で割った余りを b_n とし, $c_n=b_0+\cdots+b_n$ とおく。
- (1) b_0, \dots, b_9 を求めよ.
- (2) $c_{n+8} = c_n + c_7$ であることを示せ.
- (3) $n+1 \le c_n \le \frac{3}{2}(n+1)$ が成り 立つことを示せ.
- $egin{aligned} egin{aligned} 3 & & \mathbb{E} 4 & \mathbb{E} 4 & \mathbb{E} 4 & \mathbb{E} 5 &$

線分 AB を s:1-s に内分する点を E,

線分 AC を t:1-t に内分する点を F,

線分 AD を t:1-t に内分する点を G

とおく、3 点 E, F, G を 通る 平面が,3 点 B, C, D を 通る 円と 共有点を持つために s, t の満たすべき 条件を求め,点 (s,t) の範囲を 平面上に 図示せよ.

- 4 xy 平面上で,3点 A(-1,0),B(1,0), $P(t,2t^2+1)$ を考え, $\angle APB$ の 2 等分線とx 軸との交点を Q とする.t がすべての実数値を動くとき, $\frac{QB}{AQ}$ の最大値,最小値を求めよ.
- 5 A, B, C の 3 人が色のついた札を 1 枚ずつ持っている. はじめに, A, B, C の持っている札の色はそれぞれ赤,白,青である. A がさいころを投げて,3 の倍数の目が出たら A は B と持っている札を交換し,その他の目が出たら A は C と札を交換する. この試行を n 回繰り返した後に,赤い札を A, B, C が持っている確率を,それぞれ a_n , b_n , c_n とする.
- (1) $n \ge 2$ のとき, a_n , b_n , c_n を a_{n-1} , b_{n-1} , c_{n-1} で表せ.
- (2) a_n を求めよ.
- 6 θ が 0 から 2π まで変化するとき,点 $P(\theta)=(2\cos\theta-\cos2\theta,2\sin\theta-\sin2\theta)$ の描く 曲線を考える.
- (1) この曲線の全長 Lを求めよ.
- (2) この曲線の $0 \le \theta \le \theta_n$ の部分の長さが $\frac{L}{n}$ となるように θ_n を定めるとき,極限値 $\lim_{n \to \infty} \sqrt{n} \theta_n$ を求めよ.