2021年12月1日

近世代数

吴天阳 2204210460

习题 1.10

- 2. 求下列 Abel 群的初等因子:
 - (1). $(\mathbb{Z}_{10}, +) \oplus (\mathbb{Z}_{15}, +) \oplus (\mathbb{Z}_{20}, +);$
 - $(2). (\mathbb{Z}_{28}, +) \oplus (\mathbb{Z}_{42}, +);$
 - (3). $(\mathbb{Z}_9, +) \oplus (\mathbb{Z}_{14}, +) \oplus (\mathbb{Z}_6, +) \oplus (\mathbb{Z}_{16}, +)$.

解答. (1). 由于 $10 = 2 \cdot 5$, $15 = 3 \cdot 5$, $20 = 2^2 \cdot 5$, 则其初等因子为:

$$\{2, 2^2, 3, 5, 5, 5\}$$

(2). 由于 $28 = 2^2 \cdot 7, 42 = 2 \cdot 3 \cdot 7$,则其初等因子为:

$$\{2, 2^2, 3, 7, 7\}$$

(3). 由于 $9 = 3^2$, $14 = 2 \cdot 7$, $6 = 2 \cdot 3$, $16 = 2^4$,则其初等因子为:

$$\{2, 2, 2^4, 3, 3^2, 7\}$$

- **3.** 设 *G* 为 100 阶 Abel 群。
 - (1). 证明 G 必含有 10 阶元;
 - (2). G 的初等因子应当怎样才能使 G 不含阶大于 10 的元素?

解答. (1). 由于 $100 = 2^2 \cdot 5$,且 2 的分拆为 2 = 1 + 1,则 G 的初等因子当且仅有两种:

$$\{4,5\},\{2,2,5\}$$

- I. 若 $G \cong \mathbb{Z}_4 \oplus \mathbb{Z}_5 \cong \mathbb{Z}_{20}$,则 $\overline{2} \in \mathbb{Z}_{20}$,且 $|\overline{2}| = 10$,故存在 10 阶元。
- II. 若 $G \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_5 \cong \mathbb{Z}_2 \oplus \mathbb{Z}_{10}$,则 $(\overline{0}, \tilde{1}) \in \mathbb{Z}_2 \oplus \mathbb{Z}_{10}$,且 $|(\overline{0}, \tilde{1})| = 10$,故存在 10 阶元。

综上, G 必含有 10 阶元。

(2). 当 G 的初等因子为 $\{4,5\}$ 时, $G \cong \mathbb{Z}_{20}$ 为循环群,存在 20 阶元素,舍去。 当 G 的初等因子为 $\{2,2,5\}$ 时, $G \cong \mathbb{Z}_2 \oplus \mathbb{Z}_{10}$, $\forall (a,b) \in \mathbb{Z}_2 \oplus \mathbb{Z}_{10}$,且

$$(a,b)^{10} = (a^{10},b^{10}) = ((a^2)^5,b^{10}) = (\overline{0},\tilde{0})$$

所以,|(a,b)| $10 \Rightarrow |(a,b)| \leq 10$,满足题意。 综上,G 的初等因子应当为 $\{2,2,5\}$ 才能使 G 不含大于 10 的元素。

5. 证明: 如果一个 Abel p-群 恰好含有 p-1 个 p 阶元,那么它一定是循环群。证明. 设 G 为 Abel p-群, $|G|=p^l$,它的初等因子为:

$$\{p^{k_1}, p^{k_2}, \cdots, p^{k_r}\}$$

其中, $k_1 \geqslant k_2 \geqslant \cdots \geqslant k_r \geqslant 1$ 且 $k_1 + k_2 + \cdots + k_r = l$,则

$$G \cong \mathbb{Z}_{p^{k_1}} \oplus \mathbb{Z}_{p^{k_2}} \oplus \cdots \oplus \mathbb{Z}_{p^{k_r}}$$

设 $a_1=(\overline{p},\overline{0},\cdots,\overline{0}),\cdots,a_i=(\overline{0},\cdots,\overline{p},\cdots,\overline{0}),\cdots,a_r=(\overline{0},\cdots,\overline{0},\overline{p}),$ 则 $|a_i|=p,i=1,2\cdots,r,$ 且每个 a_i 都可以确定 p-1 个 p 阶元,所以一共有 r(p-1) 个 p 阶元,且它们两两不同,又由于 G 中恰好有 p-1 个 p 阶元,所以 $r\equiv 1$,故 $G\cong \mathbb{Z}_{p^{k_1}}=\mathbb{Z}_{p^l}$ 。 综上,G 为循环群。

6. 设 p 是素数, V 是域 \mathbb{Z}_p 上的 n 维线性空间, V 的加法群 (V,+) 是不是初等 Abel p-群?

解答. 是的,因为 V 有 n 个正交的单位向量 $\vec{e_i}, i = 1, 2, \dots, n$,且由 $\vec{e_i}$ 生成的子空间 W_i 同构于 \mathbb{Z}_p ,又由于 $V \cong W_1 \oplus W_2 \oplus \dots \oplus W_n$,于是

$$V \cong \mathbb{Z}_p \oplus \mathbb{Z}_p \oplus \cdots \oplus \mathbb{Z}_p$$

所以, V 的初等因子为 $\{p, p, \dots, p\}$, 故 (V, +) 是初等 Abel p-群。

习题 2.1

4. 设 R 是一个有单位元 $1(\neq 0)$ 的交换环,证明:如果 R 没有非平凡的理想,那么 R 是一个域。

证明. 反设,R 不是一个域,则存在 $a \in R$,使得 a 在 R 中无逆元,令 $Ra := \{ra : r \in R\}$,则

$$r_1 a - r_2 a = (r_1 - r_2)a \in Ra$$
$$r \cdot r_1 a = r_1 a \cdot r = r_1 ra \in Ra$$

所以,Ra 为 R 的一个理想,由于 a 无逆元,则 $1 \notin Ra$,故 Ra 为非平凡理想,与 R 无非平凡理想矛盾,则 R 中每个元素都有逆元,所以 (R,\cdot) 为 Abel 群,则 R 为域。

6. 若 R 是有单位元 $1(\neq 0)$ 的交换环,且 R 没有非零的零因子,则 R 称为整环。证明:有限整环一定是域。

证明. 要证有限整环 R 一定是域,只需证明 R 中每一个元素都有逆元,由于 R 有限,令

$$R = \{a_1, a_2, \cdots, a_n\}$$

 $\forall a_i \in R \setminus \{0\}, i = 1, 2, \cdots, n, \diamondsuit$

$$J_i = \{a_i a_1, a_i a_2, \cdots, a_i a_n\}$$

假设 $a_i a_j = a_i a_k$, $j \neq k$, 则 $a_i a_j - a_i a_k = 0 \Rightarrow a_i (a_j - a_k) = 0$, 由于 R 中无非零的零因子,且 $a_i \neq 0$,所以 $a_j - a_k = 0 \Rightarrow j = k$ 与 $j \neq k$ 矛盾,所以 J_i 的基数为 n。

又由于 $J_i \subset R$,则 $J_i = R$,所以 J_i 为 R 的一个轮换,则 $\exists j \in [1, n]$,使得 $a_i a_j = 1$,则 a_i 为 a_i 的逆元。

8. 若 R 是一个有单位元 $1(\neq 0)$ 的环,且 R 的每一个非零元都可逆,则 R 称为一个除环或体,令

$$\mathcal{H} = \left\{ \begin{pmatrix} \alpha & \beta \\ -\bar{\beta} & \bar{\alpha} \end{pmatrix} : \alpha, \beta \in \mathbb{C} \right\}$$

证明: \mathcal{H} 是一个除环, 且 \mathcal{H} 与四元数体 \mathbf{H} 环同构。

证明. 减法封闭:

$$\begin{pmatrix} \alpha_1 & \beta_1 \\ -\overline{\beta_1} & \overline{\alpha_1} \end{pmatrix} - \begin{pmatrix} \alpha_2 & \beta_2 \\ -\overline{\beta_2} & \overline{\alpha_2} \end{pmatrix} = \begin{pmatrix} \alpha_1 - \alpha_2 & \beta_1 - \beta_2 \\ -\overline{\beta_1} + \overline{\beta_2} & \overline{\alpha_1} - \overline{\alpha_2} \end{pmatrix} = \begin{pmatrix} \alpha_1 - \alpha_2 & \beta_1 - \beta_2 \\ -\overline{\beta_1} - \overline{\beta_2} & \overline{\alpha_1} - \overline{\alpha} \end{pmatrix} \in \mathcal{H}$$

乘法封闭:

$$\begin{pmatrix} \alpha_1 & \beta_1 \\ -\overline{\beta_1} & \overline{\alpha_1} \end{pmatrix} \begin{pmatrix} \alpha_2 & \beta_2 \\ -\overline{\beta_2} & \overline{\alpha_2} \end{pmatrix} = \begin{pmatrix} \alpha_1 \alpha_2 - \beta_1 \overline{\beta_2} & \alpha_1 \beta_2 + \overline{\alpha_2} \beta_1 \\ -\overline{\alpha_1 \beta_2 + \overline{\alpha_2} \beta_1} & \overline{\alpha_1 \alpha_2 - \beta_1 \overline{\beta_2}} \end{pmatrix} \in \mathcal{H}$$

则 \mathcal{H} 为 $(M_2(\mathbb{C}), +, \cdot)$ 的一个含幺子环。

逆元 (\mathcal{H} 中非零元 $\iff \alpha \neq 0$ 且 $\beta \neq 0 \iff \alpha \bar{\alpha} + \beta \bar{\beta} \neq 0$):

$$\begin{pmatrix} \alpha & \beta \\ -\bar{\beta} & \bar{\alpha} \end{pmatrix} \cdot \frac{1}{\alpha \bar{\alpha} + \beta \bar{\beta}} \begin{pmatrix} \bar{\alpha} & -\beta \\ \bar{\beta} & \alpha \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

综上, H 为除环。

$$\begin{pmatrix} a+bi & c+di \\ -c+di & a-bi \end{pmatrix} = \begin{pmatrix} a & c \\ -c & a \end{pmatrix} + \begin{pmatrix} b & d \\ d & -b \end{pmatrix} i$$
$$= a \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + b \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} + c \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

构造映射:

$$\psi: \mathbf{H} \to \mathcal{H}$$

$$a+bi+cj+dk \mapsto a \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + b \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} + c \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

下面验证 ψ 保乘法运算(只需要验证生成元之间的关系即可):

$$\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}^2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}^2 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}^2 = -\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\Rightarrow \psi(i)^2 = \psi(j)^2 = \psi(k)^2 = -\psi(1) = \psi(-1) = \psi(i^2) = \psi(j^2) = \psi(k^2)$$

$$\Rightarrow \psi(i)^2 = \psi(i^2), \ \psi(j)^2 = \psi(j^2), \ \psi(k)^2 = \psi(k^2)$$

$$\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} = -\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$$

$$\Rightarrow \psi(i)\psi(j) = \psi(k) = -\psi(j)\psi(i)$$

$$\Rightarrow \psi(i)\psi(j) = \psi(ij), \ -\psi(j)\psi(i) = \psi(-ji)$$

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} = -\begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

$$\Rightarrow \psi(j)\psi(k) = \psi(i) = -\psi(k)\psi(j)$$

$$\Rightarrow \psi(j)\psi(k) = \psi(jk), \ -\psi(k)\psi(j) = \psi(-kj)$$

$$\begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = -\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

$$\Rightarrow \psi(k)\psi(i) = \psi(j) = -\psi(i)\psi(k)$$

$$\Rightarrow \psi(k)\psi(i) = \psi(ki), \ -\psi(i)\psi(k) = \psi(-ik)$$

综上, ψ 保持乘法运算,不难看出, ψ 保持加法运算,根据 ψ 的定义,知 ψ 为满射,所以 ψ 为环同态,故 $\mathbf{H}\cong\mathcal{H}$ 。