Отчёт по лабораторной работе №8

дисциплина: Математическое моделирование

Рыбалко Элина Павловна

Содержание

Цель работы	5
Объект исследования	5
Предмет исследования	5
Теоретическое введение	6
Задание	11
Выполнение лабораторной работы	12
1. Постановка задачи	12
2. Построение графиков	14
2.1. Листинги программ в OpenModelica	14
2.2. Полученный график	15
2.4. Поиск стационарного состояния:	17
2.5. Анализ результатов:	18
Вывод	19
Список литературы	20

Список иллюстраций

1	Уравнения					•	 7
2	Уравнения						 7
3	Уравнения			 .			 7
4	Уравнения			 .			 8
5	Уравнения			 .			 8
6	Уравнения			 .			 8
7	Уравнения			 .			 9
8	Уравнения			 .			 9
9	Уравнения						 9
1	Уравнения						 12
2	Уравнения						 13
3	Уравнения						 13
4	График изменения оборотны	х средс	тв фирм і	з случае 1			 15
5	График изменения оборотны	х средс	тв фирмь	ı M1 в слу	чае 2		 16
6	График изменения оборотны	х средс	тв фирм і	з случае 2			 16
7	Стационарное состояние фир	омы 1		 .			 17
8	Стационарное состояние фир	омы 2					 18

Список таблиц

Цель работы

Рассмотреть модель конкуренции двух фирм для двух случаев (без учёта и с учётом социально-психологического фактора) и их построение с помощью языка программирования Modelica.

Объект исследования

Модель конкуренции двух фирм.

Предмет исследования

Алгоритм построения графика конкуренции двух фирм.

Теоретическое введение

Для построения модели конкуренции хотя бы двух фирм необходимо рассмотреть модель одной фирмы. Вначале рассмотрим модель фирмы, производящей продукт долговременного пользования, когда цена его определяется балансом спроса и предложения. Примем, что этот продукт занимает определенную нишу рынка и конкуренты в ней отсутствуют. Обозначим: N – число потребителей производимого продукта. S – доходы потребителей данного продукта. Считаем, что доходы всех потребителей одинаковы. Это предположение справедливо, если речь идет об одной рыночной нише, т.е. производимый продукт ориентирован на определенный слой населения. М – оборотные средства предприятия au – длительность производственного цикла ho – рыночная цена товара $\tilde{
ho}$ – себестоимость продукта, то есть переменные издержки на производство единицы продукции. σ – доля оборотных средств, идущая на покрытие переменных издержек. k – постоянные издержки, которые не зависят от количества выпускаемой продукции. Q(S/p) – функция спроса, зависящая от отношения дохода S к цене p. Она равна количеству продукта, потребляемого одним потребителем в единицу времени. Функцию спроса товаров долговременного использования часто представляют в простейшей форме (см. рис. -@fig:004).

$$Q = q - k\frac{p}{S} = q\left(1 - \frac{p}{p_{cr}}\right)$$

Рис. 1: Уравнения

где q – максимальная потребность одного человека в продукте в единицу времени. Эта функция падает с ростом цены и при p = pcr (критическая стоимость продукта) потребители отказываются от приобретения товара. Величина pcr = Sq/k. Параметр k – мера эластичности функции спроса по цене. Таким образом, функция спроса в форме (1) является пороговой (то есть, Q(S/p) = 0 при p > pcr) и обладает свойствами насыщения. Уравнения динамики оборотных средств можно записать в виде (см. рис. -@fig:005).

$$\frac{dM}{dt} = -\frac{M\delta}{\tau} + NQp - k = -\frac{M\delta}{\tau} + Nq\left(1 - \frac{p}{p_{\rm cr}}\right)p - k$$

Рис. 2: Уравнения

Уравнение для рыночной цены р представим в виде (см. рис. -@fig:006).

$$\frac{dp}{dt} = \gamma \left(-\frac{M\delta}{\tau} + Nq\left(1 - \frac{p}{p_{cr}}\right)\right)$$

Рис. 3: Уравнения

Первый член соответствует количеству поставляемого на рынок товара (то есть, предложению), а второй член – спросу. Параметр γ зависит от скорости оборота товаров на рынке. Как правило, время торгового оборота существенно меньше

времени производственного цикла τ . При заданном М уравнение (3) описывает быстрое стремление цены к равновесному значению цены, которое устойчиво. В этом случае уравнение (3) можно заменить алгебраическим соотношением (см. рис. -@fig:007).

$$-\frac{M\delta}{\tau \tilde{p}} + Nq\left(1 - \frac{p}{p_{cr}}\right) = 0$$

Рис. 4: Уравнения

Из этого следует, что равновесное значение цены р равно (см. рис. -@fig:008).

$$p = pcr(1 - \frac{M\delta}{\tau \tilde{p}Nq})$$

Рис. 5: Уравнения

Уравнение с учетом приобретает вид (см. рис. -@fig:009).

$$\frac{dM}{dt} = -M\frac{\delta}{\tau} \left(\frac{pcr}{\widetilde{p}} - 1\right) - M^2 \left(\frac{\delta}{\tau \widetilde{p}}\right)^2 \frac{pcr}{Nq} - k$$

Рис. 6: Уравнения

Уравнение имеет два стационарных решения, соответствующих условию dM/dt = 0 (см. рис. -@fig:010, -@fig:011):

$$\widetilde{M_{1,2}} = \frac{1}{2}a + \sqrt{\frac{a^2}{4}} - b$$

Рис. 7: Уравнения

где

$$\mathbf{a} = \mathrm{Nq} \left(1 - \frac{\widetilde{p}}{pcr} \right) \widetilde{p} \frac{\tau}{\delta}, b = k N q \frac{(\widetilde{p}\tau)}{pcr\delta^2}$$

Рис. 8: Уравнения

Из (7) следует, что при больших постоянных издержках (в случае а 2 < 4b) стационарных состояний нет. Это означает, что в этих условиях фирма не может функционировать стабильно, то есть, терпит банкротство. Однако, как правило, постоянные затраты малы по сравнению с переменными (то есть, b « а 2) и играют роль, только в случае, когда оборотные средства малы. При b « а стационарные (см. рис. -@fig:012).

$$\widetilde{M_{+}} = Nq \frac{\tau}{\delta} \left(1 - \frac{p}{p_{cr}}\right) \widetilde{p}, \widetilde{M_{-}} = k\widetilde{p} \frac{\tau}{\delta(pcr - \widetilde{p})}$$

Рис. 9: Уравнения

Первое состояние M_{+} устойчиво и соответствует стабильному функциониро-

ванию предприятия. Второе состояние M_- неустойчиво, так, что при $M_+ < M_-$ оборотные средства падают (dM/dt < 0), то есть, фирма идет к банкротству. По смыслу M_- соответствует начальному капиталу, необходимому для входа в рынок. В обсуждаемой модели параметр σ всюду входит в сочетании с τ . Это значит, что уменьшение доли оборотных средств, вкладываемых в производство, эквивалентно удлинению производственного цикла. Поэтому мы в дальнейшем положим: σ = 1, а параметр τ будем считать временем цикла, с учётом сказанного. [1]

Задание

- 1. Придумайте свой пример двух конкурирующих фирм с идентичным товаром. Задайте начальные значения и известные составляющие. Постройте графики изменения объемов оборотных средств каждой фирмы. Рассмотрите два случая.
- 2. Проанализируйте полученные результаты.
- 3. Найдите стационарное состояние системы для первого случая.

Выполнение лабораторной работы

1. Постановка задачи

[Вариант 22]

Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Считаем, что в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом.) Будем считать, что постоянные издержки пренебрежимо малы, и в модели учитывать не будем. В этом случае динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений (см. рис. -@fig:001).

$$\begin{split} \frac{dM_1}{d\theta} &= M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ &\qquad \qquad \frac{dM_2}{d\theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{split},$$
 где
$$a_1 &= \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 N q}, \ a_2 = \frac{p_{cr}}{\tau_2^2 \tilde{p}_2^2 N q}, \ b = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 \tau_2^2 \tilde{p}_2^2 N q}, \ c_1 = \frac{p_{cr} - \tilde{p}_1}{\tau_1 \, \tilde{p}_1}, \ c_2 = \frac{p_{cr} - \tilde{p}_2}{\tau_2 \, \tilde{p}_2}. \end{split}$$

Рис. 1: Уравнения

Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.),

используются еще и социально-психологические факторы – формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед М М1 2 будет отличаться. Пусть в рамках рассматриваемой модели динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений (см. рис. -@fig:002).

$$\frac{dM_1}{d\theta} = M_1 - \left(\frac{b}{c_1} + 0,0013\right) M_1 M_2 - \frac{a_1}{c_1} M_1^2$$

$$\frac{dM_2}{d\theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2$$

Рис. 2: Уравнения

Для обоих случаев рассмотрим задачу со следующими начальными условиями и параметрами (см. рис. -@fig:003).

$$M_0^1 = 7.1, M_0^2 = 8.1,$$

 $p_{cr} = 44, N = 77, q = 1$
 $\tau_1 = 26, \tau_2 = 21,$
 $\tilde{p}_1 = 11, \tilde{p}_2 = 8.7$

Рис. 3: Уравнения

- 1. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 1.
- 2. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 2.

2. Построение графиков

2.1. Листинги программ в OpenModelica

1. Написала программу на Modelica:

Программа:

```
model lab08_1
parameter Real p_cr = 44;
parameter Real tau1 = 26;
parameter Real p1 = 11;
parameter Real tau2 = 21;
parameter Real p2 = 8.7;
parameter Real N = 77;
parameter Real q = 1;
parameter Real a1=p_cr/(tau1*tau1*p1*p1*N*q);
parameter Real a2=p_cr/(tau2*tau2*p2*p2*N*q);
parameter Real b=p_cr/(tau1*tau1*tau2*tau2*p1*p1*p2*p2*N*q);
parameter Real c1=(p_cr-p1)/(tau1*p1);
parameter Real c2=(p_cr-p2)/(tau2*p2);
parameter Real M0_1=7.1;
parameter Real M0_2=8.1;
Real M1(start=M0_1);
```

```
Real M2(start=M0_2);

equation
der(M1)=M1-(b/c1)*M1*M2-(a1/c1)*M1*M1;
der(M2)=(c2/c1)*M2-(b/c1)*M1*M2-(a2/c1)*M2*M2;
// der(M1) = M1-(b/c1+0.0013)*M1*M2-(a1/c1)*M1*M1;
//der(M2) = (c2/c1)*M2-(b/c1)*M1*M2-(a2/c1)*M2*M2;
end lab08_1;
```

2.2. Полученный график

После запуска кода программы получили следующие графики для первого и второго случая соответственно (см. рис. -@fig:013 и -@fig:014).

Рис. 4: График изменения оборотных средств фирм в случае 1

Рис. 5: График изменения оборотных средств фирмы М1 в случае 2

Рис. 6: График изменения оборотных средств фирм в случае 2

2.4. Поиск стационарного состояния:

Исходя из рис. -@fig:010 и -@fig:011 найдём стационарные состояния для 1 случая. Первая фирма:

a ≈ 16516,5 b ≈ 143143 >M1 ≈ 16507,8 M2 ≈ 8,67

Вторая фирма: а ≈ 11254,32 b ≈ 58413,76 >М1 ≈ 11249,13 М2 ≈ 5,2

Рис. 7: Стационарное состояние фирмы 1

Рис. 8: Стационарное состояние фирмы 2

Исходя из построенных графиков (см. рис. -@fig:016 и -@fig:017) убедимся в наших примерных вычислениях. Для первой фирмы стационарное значение ≈ 16516,2 млн.единиц. Для второй фирмы стационарное значение ≈ 11286,1 млн.единиц.

2.5. Анализ результатов:

Из рис. -@fig:013 видно, что рост оборотных средств предприятий идет независимо друг от друга. Каждая фирма достигает свое максимальное значение обёма продаж примерно в 16516,2 и 11286,1 млн единиц, соответственно, и остаётся на рынке с этим значением, то есть каждая фирма захватывает свою часть рынка потребителей, которая не изменяется.

Из рис. -@fig:014 и -@fig:015 видно, что первая фирма, несмотря на начальный рост, достигнув своего максимального объема продаж примерно в 60 млн.единиц, начитает нести убытки и, в итоге, терпит банкротство. Динамика роста объёмов оборотных средств второй фирмы остается без изменения: достигнув максимального значения порядка 11 млрд. единиц, остаётся на этом уровне.

Вывод

Рассмотрели модель конкуренцтт двух фирм для двух случаев (без учёта и с учётом социально-психологического фактора) и их построение с помощью языка программирования Modelica.

Список литературы

- 1. Конкуренция двух фирм
- 2. Руководство по формуле Cmd Markdown
- 3. Математическое моделирование при решении задач
- 4. С.В. Каштаева, Математическое моделирование / Учебное пособие
- 5. Руководство по оформлению Markdown файлов