MARKETING CAMPAIGN ANALYSIS

Final Project
Rakamin Data Science Bootcamp
Batch 28

BY THE TEN GENERALIST

Data Scientist Team at Ten Eleven, Inc (Retail Company)

Dhiaz Raflianza (Mentor)

Aminudin

M. Nafiul Ahkam

M. Afif Hibban

M. Malik

Suci Share Putri

Ramadhani Yovita H

Suci Rahmadiani

OUTLINE

CHAPTER 1 BUSINESS UNDERSTANDING

Apa permasalahan yang sedang dialami perusahaan Ten Eleven?

1
PROBLEM STATEMENT

GOALS, OBJECTIVE, AND METRICS

PROBLEM STATEMENT

Lack of Accuracy

Marketing campaign yang dilaksanakan hanya mendapat respon sebesar 14,91%

Unefficient Budget

Budget marketing belum digunakan secara efisien.

Loss Profit

Profit yang didapatkan dari campaign belum optimal.

GOALS, OBJECTIVE, AND METRICS

GOALS

Mengoptimalkan profit dengan membuat campaign yang lebih tepat sasaran

OBJECTIVE

Membuat model machine learning untuk memprediksi customer yang kemungkinan besar akan menerima promosi tertentu sehingga menjadikan campaign lebih tepat sasaran dan mendapatkan profit yang optimal.

BUSINESS METRICS

PROFIT PERCENTAGE

(Revenue - cost) x 100%

CHAPTER 2 EXPLORATORY DATA ANALYSIS

Bagaimana persebaran data marketing campaign pada perusahaan Ten Eleven dan insight apa yang bisa disimpulkan?

Descriptive Statistic

2 Univariate Analysis

3 Multivariate Analysis 4
Business Insight

DESCRIPTIVE STATISTIC

FEATURES

25 Numerik

- ID
- Year_Birth
- Income
- Complain
- Kidhome
- Teenhome

- MntWines
- MntFruits
- MntMeatProducts
- MntFishProducts
- MntSweetProducts
- MntGoldProducts

- NumDealsPurchases
- NumWebPurchases
- NumCatalogPurchases
- NumStorePurchases
- NumWebVisitMonth
- Z_CostContact
- Z_Revenue

- RecencyAcceptedCmp1
- AcceptedCmp2
- AcceptedCmp3
- AcceptedCmp4
- AcceptedCmp5

3 Kategorikal

- Education
- Marital Status
- Dt_Customer

LABEL

1 Numerik

RESPONSE

Reaksi terhadap campaign terakhir

0: ignore 1: accept

UNIVARIATE ANALYSIS

Distribusi Kolom Numerik

19 Kolom Numerik Lainnya memiliki Outlier namun tidak terlalu ekstrem

UNIVARIATE ANALYSIS

Distribusi Kolom Categorical

→ PhD

PhD

Mayoritas customer berlangganan mulai tahun 2013, merupakan lulusan S1, dan sudah menikah

UNIVARIATE ANALYSIS

Persentase Response

Pelanggan yang meresponse campaign hanya 14,9%

MODERATE IMBALANCE

MULTIVARIATE ANALYSIS

Response - Income & Spending

Nilai Spending =

MntWines + MntFruits + MntMeatProducts +
MntFishProducts + MntSweetProducts + MntGoldProducts

Semakin besar income dan spending, semakin besar kemungkinan customer merespons campaign

MULTIVARIATE ANALYSIS

Response - Tingkat Pendidikan & Response - Tahun Awal Berbelanja

* Notes:

Percentage Response = presentase customer yang nilai response nya 1 dibagi total customer

MULTIVARIATE ANALYSIS

Response - Pembelian Melalui Website & Response - Pembelian Melalui Katalog

semakin sering customer belanja melalui catalog dan web, maka semakin besar potensi customer merespon campaign

MULTIVARIATE ANALYSIS

Response - Pembelian Dengan Diskon

- Semakin sering customer belanja dengan diskon, maka semakin besar peluang mereka merespon campaign
- **Terdapat pengecualian** pada customer yang tidak menerima diskon (Jumlah pembelian dengan diskon = 0).
- Customer yang tidak pernah menerima diskon namun tetap melakukan pembelian dapat diasumsikan sebagai customer loyal
- Customer yang menerima diskon 10 kali dan 11 kali memiliki kemungkinan lebih dari 50% untuk membeli

BUSINESS INSIGHT

Berdasarkan Multivariate Analysis antara response dengan beberapa fitur,

Peningkatan presentase customer yang meresponse campaign berbanding lurus dengan peningkatan:

Spending

Lama berlangganan

Tingkat Pendidikan

Pembelian melalui website

Pembelian melalui katalog

Pembelian dengan diskon

CHAPTER 3 DATA PREPROCESSING

Proses persiapan dataset sebelum modelling

DATA PRE-PROCESSING (CONT'D)

Baris kosong kolom`Income` dihilangkan karena hanya mencakup 1.07% dari jumlah data (lebih kecil dari 10%)

Dt_Customer di convert dari **object type** ke **datetime type**

Menambahkan Feature
'kidsorteen','Spending','Year_customer
'campaign_result'

Label Encoding:

Year_customer', 'marital_status'

One Hot Encoding:

'Generation', 'Education'

5

Feature Selection

Melakukan drop kolom:

- 'ID',
- 'MntWines,'MntMeatProducts','MntFish-Products','MntSweetProducts','MntGoldProds'
- Kidhome, Teenhome
- AcceptedCmp1,AcceptedCmp2, AcceptedCmp3, AcceptedCmp4, AcceptedCmp5
- Z_CostContact, Z_Revenue

DATA PRE-PROCESSING

6 Data Spliting

Train: 80% (1732)

Test: 20% (444)

7 Drop Outliers

Menghapus 3% data Outliers menggunakan **Z-Score**

dari **1772 baris data** menjadi **1732 baris data**

Feature 8 Transformation

Melakukan **Logistic Transformation** pada data yang terindikasi *'skewed ekstrim'* dan menormalisasi menggunakan **MinMaxScaler**

9 Handle Imbalance Class

Melakukan **oversampling** menggunakan **RandomOversampling**

CHAPTER 4
MODELING

Model Result

2

Evaluation

3

Feature Importance

STAGE 3 MODELING

Algoritma

- Logistic Regression
- K-Nearest Neighbor
- Random Forest
- Decision Tree
- AdaBoost
- XGBoost

Metode Score Evaluasi

- Accuracy
- Precission
- Recall
- F-1 Score

Result

Test Set Model

Test Set Model	1	2	3	4
	Accuracy	Precission	Recall	F-1 Score
Logistic Regression	0.88	0.59	0.35	0.44
K-Nearest Neighbor	0.87	0.59	0.21	0.31
Random Forest	0.89	0.69	0.40	0.51
Decision Tree	0.84	0.44	0.40	0.42
AdaBoost	0.88	0.57	0.52	0.54
XGBoost	0.89	0.68	0.45	0.54

F-1 Score	
0.44	
0.31	
0.51	
0.42	
0.54	

Result

Test Set Model Hyperparameter

	1	2	3	4
	Accuracy	Precission	Recall	F-1 Score
Logistic Regression	0.80	0.39	0.84	0.54
K-Nearest Neighbor	0.77	0.32	0.58	0.41
Random Forest	0.86	0.49	0.68	0.57
Decision Tree	0.82	0.37	0.42	0.39
AdaBoost	0.81	0.40	0.74	0.52
XGBoost	0.84	0.47	0.79	0.59

EVALUATION (CONFUSION MATRIX)

Precission

False Positive: Model memprediksi customer response, aktual tidak

Impact: Cost campaign meningkat

Recall

False Negative : Model memprediksi customer tidak response, aktual response

Impact: Loss Potential Revenue

LOGISTIC REGRESSION FEATURE IMPORTANCE

Feature Importance:

- NumCatalogPurchases
- Recency
- Year Customer

BUSINESS RECOMMENDATION & SIMULATION

1

Business Recommendation 2

Business Simulation

BUSINESS RECOMMENDATION

Loyalty Program

<u>CAC</u> is more expensive than keeping the current customer

Memberikan voucher dan rekomendasi produk untuk customer lama yang tidak berbelanja pada rentang tertentu agar kembali berbelanja

Customer Experience via Catalog and Website shopping

Most customer response in line with: Catalog & website shopping

Optimalisasi rekomendasi produk berdasarkan *most buy* dan menawarkan **upselling dan cross selling**

Voucher for minimum spent

Most **recent** customer have bigger probability on accepting campaign

Voucher / diskon yang dapat digunakan dalam periode terbatas agar customer kembali berbelanja, setelah serangkaian pembelanjaan

BUSINESS SIMULATION

Based

- Campaign cost per customer 3 USD / customer
- Revenue dari campaign yang berhasil 11 USD / customer

132

Customers

52 customer

(39.39%)

44.44 %

Margin Profit 92.4%

PROFIT CALCULATION

	Blind Marketing	Model Based	Difference	
Target	444	132	- 312	
Cost	1332 USD	396 USD	- 936 USD	
Potential Revenue	682 USD	572 USD	- 110 USD	
Profit	-650 USD	176 USD	826 USD	
Profit percentage	-48.80	44.44%	Decition	

THANK YOU!

Appendix

Heatmap

Tidak ada korelasi linear yang kuat antara masing-masing feature dan target, karena nilai korelasi dibawah 0.5,sehingga feature-feature yang akan dipertahankan baru dapat diketahui pada stage pemilihan feature importance

- Customer yang memiliki anak cenderung memilih berbelanja menggunakan diskon. Pada heatmap fitur ini memiliki koefisien korelasi lebih tinggi dibanding dengan belanja melalui channel lain.
- Semakin besar income semakin banyak spending di tiap kategori.
 Pada heatmap, fitur-fitur ini memiliki koefisien korelasi berkisar di antara 0.33 - 0.58.

-1.0

Hyperparameter

Precision Test 0.39 VS

Result of Hyperparameter

```
Confusion Matrix:
[[302 80]
[ 10 52]]
Accuracy (Test Set): 0.80
Accuracy (Train Set): 0.82
Precision (Test Set): 0.39
Precision (Train Set: 0.45
Recall (Test Set): 0.84
Recall (Train Set): 0.83
F1-Score (Test Set): 0.54
F1-Score (Train Set): 0.58
roc auc (test-proba): 0.88
roc auc (train-proba): 0.91
recall (crossval train): 0.7575061248627185
recall (crossval test): 0.7750791497060153
     Ruda Black
```

Korelasi Presisi - Recall

Tidak terdapat nilai Recall - Precision yang optimal

Sebelum Hyperparameter Tuning

	Accuracy (Test)	Accuracy (Train)	Precission (Test)	Precission (Train)	Recall (Test)	Recall (Train)	F-1 Score (Test)	F1-Score (Train)
Logistic Regression	0.88	0.9	0.59	0.79	0.35	0.45	0.44	0.58
Decision Tree	0.84	0.99	0.44	1	0.4	0.95	0.42	0.97
Random Forest	0.89	0.99	0.69	0.98	0.4	0.97	0.51	0.98
K-Nearest Neighbors	0.87	0.89	0.59	0.85	0.21	0.37	0.31	0.52
AdaBoost	0.88	0.9	0.57	0.74	0.52	0.53	0.54	0.62
XGBoost	0.89	0.94	0.68	0.93	0.45	0.62	0.54	0.75

Setelah Hyperparameter Tuning

	Accuracy (Test)	Accuracy (Train)	Precission (Test)	Precission (Train)	Recall (Test)	Recall (Train)	F-1 Score (Test)	F1-Score (Train)
Logistic Regression	0.8	0.82	0.39	0.45	0.84	0.83	0.54	0.58
Decision Tree	0.82	0.99	0.37	1	0.42	0.95	0.39	0.97
Random Forest	0.86	0.96	0.49	0.81	0.68	0.97	0.57	0.88
K-Nearest Neighbors	0.77	0.89	0.32	0.57	0.58	0.98	0.41	0.72
AdaBoost	0.81	0.85	0.4	0.51	0.74	0.83	0.52	0.63
XGBoost	0.84	0.89	0.47	0.59	0.79	0.91	0.59	0.72