Calculus 5.2 Key Points

Product Rule:

If
$$h(x) = f(x) \cdot g(x)$$
, then $h'(x) = [f'(x) \cdot g(x)] + [f(x) \cdot g'(x)]$

Quotient Rule:

If
$$h(x) = \frac{f(x)}{g(x)}$$
, then $h'(x) = \frac{[f'(x) \cdot g(x)] - [f(x) \cdot g'(x)]}{[g(x)]^2}$

Chain Rule:

If
$$h(x) = f(g(x))$$
, then $h'(x) = f'(g(x)) \cdot g'(x)$

Derivatives of Trigonometric Functions:

f(x) = sin(x), f'(x) = cos(x)	f(x) = cos(x), f'(x) = -sin(x)
$f(x) = tan(x), f'(x) = sec^{2}(x)$	$f(x) = cot(x), f'(x) = -cot^{2}(x)$
f(x) = sec(x),	f(x) = csc(x),
$f'(x) = sec(x) \bullet tan(x)$	$f'(x) = - \csc(x) \cdot \cot(x)$