Last Name:	First Name:	Email:
CS 6505, Fall	2017, Homework 3, 9-20-17 Due 9-25-17 by	6pm Klaus 2138 Page 1/4

Problem 1: Subset Sum, Dynamic Programming (25 points)

You are given n items $\{1, 2, ... n\}$, where each item has a given positive weight w_i , $1 \le i \le n$. You are also given an upper bound W. You would line to select a subset S of the items so that $\sum_{i \in S} w_i \le W$, and, subject to this restriction, $\sum_{i \in S} w_i \le W$ is as large as possible. Give an O(nW) algorithm, justify correctness and running time.

Last Name:	First Name:	Email:	
CS 6505, Fall 2017, Home	work 3, 9-20-17 Due 9-25-17	7 by 6pm Klaus 2138 I	Page 2/4
	ree, Dynamic Programn		
Let $T(V, E)$ be a directed a	acyclic graph with $V = \{v_1, v_2\}$	$,\ldots v_n\}.$	
Suppose that T is given in	topologically sorted order,	that is, if v_i is an ancest	tor of v_i then $i < j$.
Suppose further that each	vertex $v_i \in V$ has a given γ	positive cost $c(v_i) > 0$.	Define the weight of a vertex
$v_i \in V$ as the sum of the co	osts of all vertices that can b	be reached from v_i (equi-	valently belong to the subtree
rooted at v_i): $weight(v_i) =$	$=\sum v_j \in V:$	$c(v_j)$	
	v_j is reachable from v_i	i	
Say that T is balanced if a	nd only if, for every vertex	$v_i \in V$, if v_i has children	n u_1, \ldots, u_k , then

$$weight(u_1) = weight(u_2) = \ldots = weight(u_k)$$

Give a polynomial time algorithm that decides if a directed tree with costs on its vertices is balanced. Justify your answer and argue running time.

Last Name:	First	Name:		Email:	
CS 6505, Fall	l 2017, Homework 3, 9-20)-17 Due 9	9-25-17 by 6pm Kla	us 2138	Page $3/4$

Problem 3: Max Independent Set, Dynamic Programming (25 points)

- (a) Consider a line graph on vertices $\{1, \ldots, n\}$ and edges $\{1, 2\}$, $\{2, 3\}$, ..., $\{(n-1), n\}$. Each vertex has a positive weight w_i , $1 \le i \le n$. Give an O(n) algorithm that outputs the weight of a maximum weight independent set of the line graph. You may give a simple description of the algorithm, and/or pseudocode. You should include a short argument of correctness and running time.
- (b) Consider a cycle graph on vertices $\{1, \ldots, n\}$ and edges $\{1, 2\}$, $\{2, 3\}$, ..., $\{(n-1), n\}$, $\{n, 1\}$. Each vertex has a positive weight w_i , $1 \le i \le n$. Give an O(n) algorithm that outputs the weight of a maximum weight independent set of the cycle graph. You may give a simple description of the algorithm, and/or pseudocode. You should include a short argument of correctness and running time.

Last Name:	First Nam	ne: Email:	
CS 6505, Fall	2017, Homework 3, 9-20-17 Di	ue 9-25-17 by 6pm Klaus 2138	Page 4/4

Problem 4: Longest Path, Dynamic Programming (25 points)

Let G(V, E) be a directed acyclic graph, where $V = \{v_1, \ldots, v_n\}$. The graph is presented in adjacency list representation, and with the property that $v_i \to v_j \in E$ only if i < j. Give an O(|V| + |E|) algorithm that finds the length of the longest path (maximum number of edges) from v_1 to v_n . If there is no path from v_1 to v_2 then your algorithm should output ∞ .

Give a short justification of correctness and running time.