

Module 3: Multi-layer Perceptron

Sayan D. Pathak, Ph.D., Principal ML Scientist, Microsoft Roland Fernandez, Senior Researcher, Microsoft

Module outline

Application:

OCR using MNIST data

Model:

Recap Logistic Regression Multi-Layer Perceptron

Concepts:

Activation functions

Train-Test-Predict Workflow

Logistic regression

Error rate in detection of MNIST digits with Logistic Regression = 7-8%

Towards deep networks

- Activation functions (a.k.a. non-linearity):
 - ✓ Take a single number and maps it to a different numerical value
 - ✓ E.g. Sigmoid maps values any numerical value to a (0,1) range

Popular functions:

- Sígmoid
- · Tanh
- · ReLu (Rectified Linear unit)
- · Leaky / Parametric Relu

$$\sigma(x) = 1/(1 + e^{-x})$$

- Maps real value number into range 0 − 1
- Historically popular, bears semblance to neurons firing pattern
- Recently its popularity is dipping
 - ✓ Saturation / Vanishing Gradient
 - At either end of the tails, gradients go to zero
 - Cautíon needed when initializing weights to prevent saturation

- ✓ Non-zero centered output
 - During optimization, causes zig-zagging dynamics
 - More of inconvenience, less severe than saturation

$$\tanh(x) = (e^x - e^{-x})/(e^x + e^{-x})$$

- Maps real value number into range -1 to 1
- Like Sigmoid, its activation also saturates but output is zero centered
- Tanh is usually preferred over Sigmoid
- Tanh is a scaled Sigmoid function

$$tanh(x) = 2\sigma(2x) - 1$$

f(x) = max(0, x)

- Relu = Rectified Linear Unit
- Very popular and simply thresholds values below 0
- Pros:
 - ✓ Fast convergence
 - SGD converges much faster compared to sigmoid / tanh
 - Arguably due to its linear (non saturating form)
 - ✓ Simple implementation
 - Involves thresholding of activation matrix at zero
- Cons:
 - ✓ Fragile
 - Irreversibly die when large gradient flows
 - As much as 40% of network can die if learning rate set is too high

Activation functions (Advanced)

$$f(x) = 1(x < 0)(\alpha x) + 1(x \ge 0)(x)$$

- Aimed to fix "dying Relu" problem
- For a negative input, instead of zero have a small negative slope (α)
 - \checkmark Leaky Relu has a small fixed slope ($\alpha=0.1$)
 - ✓ Parametric Relu (Param Relu or PRelu)
 - The slope is prameterized and can be learnt
 - ✓ Maxout
 - Is applied on the dot product between the weights and the data.

$$f(x) = \max(a_1^T x + c_1, a_2^T x + c_2)$$

- Relu, Leakyrelu and Param Relu are special case of Maxout
- Enjoys benefit of all, except number of parameters double

Our first deep network

Multi-layer perceptron

Loss function

Train workflow

Validation workflow

Train workflow

Test workflow


```
Weights 400
   bías
              400
                                          10
                   Model Parameters
        z = model(X):
                h1 = Dense(400, act = relu)(X)
Model
                h2 = Dense(200, act = relu)(h1)
                   = Dense(10, act = None)(h2)
                return r
```

Trainer.test_minibatch({X, Y})

Prediction workflow

[numpy.argmax(predicted_label) for predicted_label in predicted_labels]

Prediction workflow

[numpy.argmax(predicted_label) for predicted_label in predicted_labels]

[9, 5, 8, ..., 2]