Кратчайшие пути между всеми парами вершин

All-Pairs Shortest Paths

Кратчайшие пути между всеми парами вершин

Дан граф G=(V,E), на котором задана весовая функция $w:E o \mathbb{R}$.

Предположим отсутствие отрицательных циклов. Для любой пары $v,u\in V$ требуется найти $ho(v,u)=\min_P\sum_{e\in P(v,u)}w(e)$, где P(v,u) - путь из v в u.

То есть в качестве ответа ожидается матрица d: d[v][u] =
ho(v,u).

Наивный подход

Уже знаем, как искать КП из одной вершины.

Запустим эти алгоритмы для каждой вершины (V раз).

	we R	M > 0
F~V	PETIKETPA:	$O(V^3)$ $O(V^2 \log V)$
	· · · · · · · · · · · · · · · · · · ·	(174)
F~V2	PPS: O(V4) Decikater: —	O(V4) O(V3)
	•	

Алгоритм Флойда-Уоршелла

Алгоритм Флойда-Уоршелла

Воспользуемся методом динамического программирования.

Пусть $d^{(k)}[x][y]$ - кратчайшее расстояние от x до y вдоль пути, в котором в качестве промежуточных используются лишь вершины с номерами < k (в 0-индексации).

Пусть $d^{(k)}[x][y]$ - кратчайшее расстояние от x до y вдоль пути, в котором в качестве промежуточных используются лишь вершины с номерами < k.

• Чему равен $d^{(0)}[x][y]$?

Пусть $d^{(k)}[x][y]$ - кратчайшее расстояние от x до y вдоль пути, в котором в качестве промежуточных используются лишь вершины с номерами < k.

$$ullet \ d^{(0)}[x][y] = w(x,y)$$

Чему равен $d^{(k+1)}[x][y]$, если известно, что этот КП НЕ идет через вершину k?

Пусть $d^{(k)}[x][y]$ - кратчайшее расстояние от x до y вдоль пути, в котором в качестве промежуточных используются лишь вершины с номерами < k.

- $ullet \ d^{(0)}[x][y]=w(x,y)$
- Если КП из x в y по вершинам < k+1 не проходит через k, то $d^{(k+1)}[x][y] = d^{(k)}[x][y]$

Чему равен $d^{(k+1)}[x][y]$, если известно, что этот КП ИДЕТ через вершину k?

Пусть $d^{(k)}[x][y]$ - кратчайшее расстояние от x до y вдоль пути, в котором в качестве промежуточных используются лишь вершины с номерами < k.

- $ullet d^{(0)}[x][y]=w(x,y)$
- Если КП из x в y по вершинам < k+1 не проходит через k, то $d^{(k+1)}[x][y] = d^{(k)}[x][y]$
- Если КП из x в y по вершинам < k+1 проходит через k, то $d^{(k+1)}[x][y] = d^{(k)}[x][k] + d^{(k)}[k][y]$

Чему равен $d^{(k+1)}[x][y]$ в общем случае?

Пусть $d^{(k)}[x][y]$ - кратчайшее расстояние от x до y вдоль пути, в котором в качестве промежуточных используются лишь вершины с номерами < k.

- $d^{(0)}[x][y] = w(x,y)$
- Если КП из x в y по вершинам < k+1 не проходит через k, то $d^{(k+1)}[x][y] = d^{(k)}[x][y]$
- Если КП из x в y по вершинам < k+1 проходит через k, то $d^{(k+1)}[x][y] = d^{(k)}[x][k] + d^{(k)}[k][y]$
- $ullet d^{(k+1)}[x][y] = \min(d^{(k)}[x][y], d^{(k)}[x][k] + d^{(k)}[k][y])$

Алгоритм Флойда-Уоршелла: реализация

```
def FloydWarshall(W): # W - матрица весов ребер
  d[0] = W
  for k from 0 to V - 1:
    for x from 0 to V - 1:
       for y from 0 to V - 1:
        d[k + 1][x][y] = min(d[k][x][y], d[k][x][k] + d[k][y])
  return d[V]
```

Сложность: $T(V,E)=\Theta(V^3)$, $M(V,E)=\Theta(V^3)$

Замечание: нельзя изменять положение цикла по k!

Алгоритм Флойда-Уоршелла: версия 2.0

Заметим, что в каждый момент времени достаточно хранить две матрицы.

```
def FloydWarshall(W): # W - матрица весов ребер
  d_old = d_new = W
  for k from 0 to V - 1:
    swap(d_old, d_new)
    for x from 0 to V - 1:
        for y from 0 to V - 1:
            d_new[x][y] = min(d_old[x][y], d_old[x][k] + d_old[k][y])
    return d_new
```

Сложность: $T(V,E)=\Theta(V^3)$, $M(V,E)=\Theta(V^2)$

Замечание: нельзя изменять положение цикла по k!

Алгоритм Флойда-Уоршелла: версия 3.0

На самом деле, можно реализовывать алгоритм in-place.

```
def FloydWarshall(d): # d - матрица весов ребер
  for k from 0 to V - 1:
    for x from 0 to V - 1:
        for y from 0 to V - 1:
        d[x][y] = min(d[x][y], d[x][k] + d[k][y])
    return d
```

Сложность: $T(V,E)=\Theta(V^3)$, $M(V,E)=\Theta(1)$

Замечание: нельзя изменять положение цикла по k!

Алгоритм Флойда-Уоршелла: версия 3.0

На самом деле, можно реализовывать алгоритм in-place.

```
def FloydWarshall(d): # d - матрица весов ребер
  for k from 0 to V - 1:
    for x from 0 to V - 1:
        for y from 0 to V - 1:
        d[x][y] = min(d[x][y], d[x][k] + d[k][y])
    return d
```

Почему так можно?

Потенциально, может быть проблема "заглядывания" в будущее, например:

$$d^{(k+1)}[x][y] = d^{(k+1)}[x][k] + d^{(k)}[k][y].$$

Но очевидно, что при отсутствии циклов отрицательного веса,

$$d^{(k+1)}[x][k] = d^{(k)}[x][k]$$
 и $d^{(k+1)}[k][y] = d^{(k)}[k][y]$.

Поэтому все ок.

Отрицательные циклы

А что там с отрицательными циклами? Возможно ли определить их наличие?

Отрицательные циклы

Отрицательный цикл = найден пут отрицательного веса из вершины в нее же.

Таким образом, если на диагонали появились отрицательные значения, значит есть цикл отрицательного веса.

```
def FloydWarshall(d): # d - матрица весов ребер
  for k from 0 to V - 1:
    for x from 0 to V - 1:
        for y from 0 to V - 1:
        d[x][y] = min(d[x][y], d[x][k] + d[k][y])

for i from 0 to V - 1:
    if d[i][i] < 0:
        NegativeCycle!</pre>
```

Промежуточный итог

	WEIR	M > 0
E~V	P6: 0(V3) Decircation:	$O(V^3)$ $O(V^2 \log V)$ $O(V^3)$
E~V2	PROUB: O(V4) PROUB: O(V3)	O(V4) O(V3) O(V5)

Метод потенциалов. Алгоритм Джонсона.

Задача

Хотим применить алгоритм Дейкстры, но в графе есть отрицательные ребра.

Попробуем изменить веса ребер так, что отрицательных ребер не останется, но при этом кратчайшие пути не изменятся.

Наивный подход со сдвигом весов не работает:

Пусть $\varphi:V o\mathbb{R}$ некоторая функция на вершинах (потенциал).

Определим новую весовую функцию на ребрах

$$w_{arphi}(x,y) = w(x,y) + arphi(x) - arphi(y)$$

• Как изменится длина **произвольного** пути из v в u?

Пусть $\varphi:V o\mathbb{R}$ некоторая функция на вершинах (потенциал).

Определим новую весовую функцию на ребрах

$$w_{arphi}(x,y) = w(x,y) + arphi(x) - arphi(y)$$

- $w_{arphi}(P(v,u)) = w(P(v,u)) + arphi(v) arphi(u)$
- Изменится ли кратчайший путь из v в u?

Пусть $\varphi:V o\mathbb{R}$ некоторая функция на вершинах (потенциал).

Определим новую весовую функцию на ребрах

$$w_{arphi}(x,y) = w(x,y) + arphi(x) - arphi(y)$$

- $ullet w_arphi(P(v,u))=w(P(v,u))+arphi(v)-arphi(u)$
- Кратчайший путь из v в u не изменится, только его вес (на $\varphi(v)-\varphi(u)$).
- Как изменится вес любого цикла?

Пусть $\varphi:V o\mathbb{R}$ некоторая функция на вершинах (потенциал).

Определим новую весовую функцию на ребрах

$$w_{arphi}(x,y) = w(x,y) + arphi(x) - arphi(y)$$

- $ullet w_arphi(P(v,u))=w(P(v,u))+arphi(v)-arphi(u)$
- Кратчайший путь из v в u не изменится, только его вес (на $\varphi(v)-\varphi(u)$).
- Веса циклов не меняются.

Пусть $\varphi:V o\mathbb{R}$ некоторая функция на вершинах (потенциал).

Определим новую весовую функцию на ребрах

$$w_{arphi}(x,y) = w(x,y) + arphi(x) - arphi(y)$$

- $w_{arphi}(P(v,u)) = w(P(v,u)) + arphi(v) arphi(u)$
- Кратчайший путь из v в u не изменится, только его вес (на $\varphi(v)-\varphi(u)$).
- Веса циклов не меняются.

Вывод: если в исходном графе нет отрицательных циклов, то и в измененном их нет. И все кратчайшие пути совпадают с кратчайшими путями в исходном графе.

Осталось придумать потенциал, который избавит нас от отрицательных весов.

Добавим в граф G фиктивную вершину s^* , из которой исходят ребра веса 0 во все остальные вершины.

Запустим алгоритм Форда-Беллмана и найдем кратчайшие расстояния от s^* до остальных вершин.

Teopeмa (D.B.Johnson, 1977).

Пусть в графе G отсутствуют циклы отрицательного веса, и $arphi(\cdot)=
ho(s^*,\cdot)$. Тогда $orall (v,u)\in E: w_{arphi}(v,u)\geq 0$

Добавим в граф G фиктивную вершину s^* , из которой исходят ребра веса 0 во все остальные вершины.

Запустим алгоритм Форда-Беллмана и найдем кратчайшие расстояния от s^{*} до остальных вершин.

Teopeмa (D.B.Johnson, 1977).

Пусть в графе G отсутствуют циклы отрицательного веса, и $arphi(\cdot)=
ho(s^*,\cdot)$. Тогда $orall (v,u)\in E: w_{arphi}(v,u)\geq 0$

Доказательство.

$$w_{\varphi}(v,u):=w(v,u)+\varphi(v)-\varphi(u)=w(v,u)+\rho(s^*,v)-\rho(s^*,u)\geq 0$$
 Последнее неравенство верно, так как $\rho(s^*,v)+w(v,u)\geq \rho(s^*,u)$ (путь из s^* в u , проходящий по ребру (v,u) , не короче кратчайшего пути).

Алгоритм Джонсона

- 1. Добавляем фиктивную вершину s^{*} с нулевыми ребрами во все вершины.
- 2. Ищем кратчайщие пути $\forall x:
 ho(s^*,x)$ с помощью алгоритма Форда-Беллмана.
- 3. $orall x: arphi(x):=
 ho(s^*,x)$, $orall (v,u)\in E: w_arphi(v,u):=w(v,u)+arphi(v)-arphi(u)$.
- 4. С помощью алгоритма Дейкстры ищем кратчайшие пути из каждой вершины.

Сложность алгоритма $O(VE + VE \log V)$ или $O(VE + V(E + V^2))$ в зависимости от реализации алгоритма Дейкстры.

То есть для разреженных графов - $O(V^2 \log V)$, для плотных графов - $O(V^3)$.

Итог

	WEIR	
E~V	96: 0(Vs)	$O(V^3)$
	DetikaTPA: -	O(V2logV)
	Proug: O(V3)	$O(V^3)$
	DMOKEOK: O(V2/08V)	
E~V2	495: O(√1)	O(V4)
	DecikeTPA: -	O(V3)
	Prous: O(V3)	O(Vs)
	DMOKCOH: O(V3)	

