LR elemzések (az LR(0) elemzés)

Fordítóprogramok előadás (A,C,T szakirány)

Emlékeztető: elemzési irányok

Felülről lefelé

 $S \rightarrow^{(1)} AB \rightarrow^{(2)} aaB \rightarrow^{(3)} aab$

• Ez egy legbal levezetés!

Alulról felfelé

 $aab \leftarrow^{(1)} Ab \leftarrow^{(2)} AB \leftarrow^{(3)} S$

• Ez egy legjobb levezetés inverze!

programok előadás (A,C,T szakirány) LR elemzések (az LR(0) elem:

Emlékeztető: alulról felfelé elemzések

- Az elemzendő szöveg összetartozó részeit helyettesítjük nemterminális szimbólumokkal (redukció) és így alulról, a kezdőszimbólum felé építjük a fát.
- Fő kérdés: "Mit redukáljunk?"

Fordítóprogramok előadás (A,C,T szakirány) LR elemzések (az LR(0) elemzés

Emlékeztető: alulról felfelé elemzési stratégiák

- visszalépéses keresés (backtrack): ha nem sikerül eljutni a startszimbólumig, lépjünk vissza, és válasszunk másik redukciót \Rightarrow visszalépéses alulról felfelé elemzések (nem tananyag)

 - ha hibás a szöveg, az csak túl későn derül ki

Emlékeztető: alulról felfelé elemzési stratégiák

- visszalépéses keresés (backtrack): ha nem sikerül eljutni a startszimbólumig, lépjünk vissza, és válasszunk másik redukciót ⇒visszalépéses alulról felfelé elemzések (nem tananyag)
 - lassú
 - ha hibás a szöveg, az csak túl későn derül ki
- precedenciák használata: az egyes szimbólumok között adjunk meg precedenciarelációkat és ennek segítségével határozzuk meg a megfelelő redukciót

⇒precedencia elemzések (nem tananyag)

- ma már kevéssé használt
- operátorokkal felépített kifejezések esetén természetes a használata

Emlékeztető: alulról felfelé elemzési stratégiák

- visszalépéses keresés (backtrack): ha nem sikerül eljutni a startszimbólumig, lépjünk vissza, és válasszunk másik redukciót ⇒visszalépéses alulról felfelé elemzések (nem tananyag)
 - lassú
 - ha hibás a szöveg, az csak túl későn derül ki
- precedenciák használata: az egyes szimbólumok között adjunk meg precedenciarelációkat és ennek segítségével határozzuk meg a megfelelő redukciót

⇒precedencia elemzések (nem tananyag)

- ma már kevéssé használt
- o operátorokkal felépített kifejezések esetén természetes a használata
- előreolvasás: olvassunk előre a szövegben valahány szimbólumot, és az alapján döntsünk a redukcióról

⇒*LR* elemzések

- minden programozási nyelvhez lehet (LR) elemzőt készíteni
- majdnem mindegyikhez lehet gyors (LALR) elemzőt készíteni

Alapfogalmak	Alapfogalmak					
Mit kell redukálni?	Mit kell redukálni?					
• Egyszerű részmondat (emlékeztető): α a $\gamma \alpha \beta$ mondatforma egyszerű részmondata, ha $S \Rightarrow^* \gamma A \beta \Rightarrow \gamma \alpha \beta$.	• Egyszerű részmondat (emlékeztető): α a $\gamma\alpha\beta$ mondatforma egyszerű részmondata, ha $S\Rightarrow^*\gamma A\beta\Rightarrow\gamma\alpha\beta$. • Nyél: a mondatformában a legbaloldalibb egyszerű részmondat.					
9 Fordítóprogramok előadás (A,C,T szakirány) LR elemzések (az LR(0) elemzés)	9 Fordítóprogramok előadás (A,C,T szakirány) LR elemzések (az LR(0) elemzés)					

Alapfogalmak Mit kell redukálni?	Alapfogalmak A nyél meghatározása
 Egyszerű részmondat (emlékeztető): α a γαβ mondatforma egyszerű részmondata, ha S ⇒* γΑβ ⇒ γαβ. Nyél: a mondatformában a legbaloldalibb egyszerű részmondat. Épp a nyelet kell megtalálni a redukcióhoz. 	 Probléma: "Mi a nyél?" léptetni vagy redukálni kell? ha több lehetőség is van, melyik szabály szerint kell redukálni?
9 Fordítóorogramok előadás (A.C.T szakíránv) LR elemzések (az LR(0) elemzés)	10 Fordítóprogramok előadás (A.C.T szakírány) LR elemzések (az LR(0) elemzés)

Alapfogalmak	Alapfogalmak $LR(k)$ grammatikák				
A nyél meghatározása	Magyarázat az <i>LR(k)</i> definíciójához				
 Probléma: "Mi a nyél?" léptetni vagy redukálni kell? ha több lehetőség is van, melyik szabály szerint kell redukálni? LR(k) grammatika: k szimbólum előreolvasásával eldönthető, hogy mi legyen az elemzés következő lépése. 	• Tegyük fel, hogy léptetésekkel és redukálásokkal eljutottunk az $\alpha \beta w$ mondatformához, és itt β a nyél: $S \Rightarrow^* \alpha Aw \Rightarrow \alpha \beta w$.				
10 Fordítóprogramok előadás (A,C,T szakirány) LR elemzések (az LR(0) elemzés)	11 Fordítóprogramok előadás (A,C,T szakirány) LR elemzések (az LR(0) elemzés)				

Magyarázat az LR(k) definíciójához

• Tegyük fel, hogy léptetésekkel és redukálásokkal eljutottunk az

ullet Tegyük fel, hogy egy ugyanígy kezdődő mondatforma, az lphaeta yfelbontható $\alpha\beta y=\gamma\delta x$ módon, és ebben δ a nyél, azaz $S \Rightarrow^* \gamma Bx \Rightarrow \gamma \delta x$.

 $\alpha\beta w$ mondatformához, és itt β a nyél: $S \Rightarrow^* \alpha Aw \Rightarrow \alpha\beta w$.

Magyarázat az LR(k) definíciójához

• Tegyük fel, hogy léptetésekkel és redukálásokkal eljutottunk az $\alpha\beta w$ mondatformához, és itt β a nyél: $S \Rightarrow^* \alpha Aw \Rightarrow \alpha\beta w$.

felbontható $\alpha\beta y=\gamma\delta x$ módon, és ebben δ a nyél, azaz $S \Rightarrow^* \gamma Bx \Rightarrow \gamma \delta x$.

• Az LR(k) tulajdonság azt mondja, hogy w-ből és y-ból előreolvasva k szimbólumot, egyértelműen eldönthető az elemzés következő lépése.

rogramok előadás (A,C,T szakirány) LR elemzések (az LR(0) elemzés)

Fordítóprogramok előadás (A,C,T szakirány) LR elemzések (az LR(0) elemzés

Magyarázat az LR(k) definíciójához

• Tegyük fel, hogy léptetésekkel és redukálásokkal eljutottunk az $\alpha\beta w$ mondatformához, és itt β a nyél: $S \Rightarrow^* \alpha Aw \Rightarrow \alpha\beta w$.

ullet Tegyük fel, hogy egy ugyanígy kezdődő mondatforma, az lphaeta yfelbontható $\alpha\beta y=\gamma\delta x$ módon, és ebben δ a nyél, azaz $S \Rightarrow^* \gamma Bx \Rightarrow \gamma \delta x$.

előreolvasva k szimbólumot, egyértelműen eldönthető az elemzés következő lépése.

ullet Ezért ha $FIRST_k(w) = FIRST_k(y)$, akkor $\alpha \beta w$ és $\alpha \beta y$ esetén is ugyanazt kell csinálni:

• mivel $\alpha\beta w$ esetén az $A \rightarrow \beta$ szabály szerint redukáltunk,

ullet ugyanezt kellett csinálni lphaeta y estén is,

• vagyis $\alpha = \gamma$, $\beta = \delta$, A = B és y = x.

LR(k) definíciója

Definíció: LR(k) grammatika

Egy kiegészített grammatika LR(k) grammatika $(k \ge 0)$, ha

 $S \Rightarrow^* \alpha Aw \Rightarrow \alpha \beta w$

 $S \Rightarrow^* \gamma Bx \Rightarrow \gamma \delta x$

 $\alpha \beta y = \gamma \delta x$ és $FIRST_k(w) = FIRST_k(y)$ esetén

 $\alpha = \gamma$, $\beta = \delta$ és A = B.

Fordítóprogramok előadás (A.C.T szakirány) LR elemzések (az LR(0) el

LR(k) definíciója

Definíció: *LR(k)* grammatika

Egy kiegészített grammatika LR(k) grammatika $(k \geq 0)$, ha

 $S \Rightarrow^* \alpha Aw \Rightarrow \alpha \beta w$

 $S \Rightarrow^* \gamma Bx \Rightarrow \gamma \delta x$

 $\alpha \beta y = \gamma \delta x$ és $FIRST_k(w) = FIRST_k(y)$ esetén

 $\alpha = \gamma$, $\beta = \delta$ és A = B.

LR(0) grammatika: előreolvasás nélkül eldönthető az elemzés következő lépése.

Példa

Grammatika

 \circ $S \rightarrow aAd$ $A \rightarrow bA$

 $S' \Rightarrow S \Rightarrow aAd \Rightarrow abAd \Rightarrow abcd$

Léptetés vagy redukálás?

• LR(0) elemzés: előreolvasás nélkül kell döntenünk!

Az elemző automata felépítése LR(0) elemek • Hogyan építsük fel az automatát? • Az automata állapotai azt mutatják meg, hogy melyik szabály építésében hol tartunk. • Például: $[S \rightarrow a.Ad]$ jelentse azt, hogy • az a szimbólumot már elemeztük, • az Ad rész még hátra van. Definíció: LR(0) elem Ha $A \rightarrow \alpha$ a grammatika egy helyettesítési szabálya, akkor az $\alpha = \alpha_1 \alpha_2$ tetszőleges felbontás esetén $[A \rightarrow \alpha_1.\alpha_2]$ a grammatika egy LR(0) eleme.

Az elemző automata felépítése LR(0) elemek• Hogyan építsük fel az automatát? • Az automata állapotai azt mutatják meg, hogy melyik szabály építésében hol tartunk. • Például: $[S \rightarrow a.Ad]$ jelentse azt, hogy • az a szimbólumot már elemeztük, • az Ad rész még hátra van. Definíció: LR(0) elem Ha $A \rightarrow \alpha$ a grammatika egy helyettesítési szabálya, akkor az $\alpha = \alpha_1 \alpha_2$ tetszőleges felbontás esetén $[A \rightarrow \alpha_1.\alpha_2]$ a grammatika egy LR(0) eleme. • Ha a szabály jobboldala n szimbólumot tartalmaz, akkor n+1

A
ightarrow .aAd, A
ightarrow a.Ad, A
ightarrow aA.d, A
ightarrow aAd.

darab LR(0)-elem tartozik hozzá.

Az elemző automata felépítése

A *lezárás* művelet

- Az automata egy állapotához több LR(0)-elem is tartozhat.
 - Ezeket a halmazokat fogjuk kanonikus halmazoknak hívni.

Az elemzo automata fel

A lezárás művelet

- Az automata egy állapotához több LR(0)-elem is tartozhat.
 - Ezeket a halmazokat fogjuk kanonikus halmazoknak hívni.
- Milyen LR(0) elemek tartoznak egy halmazba?
 - Például: Ha $[A \to a.Ad]$ állapotban vagyunk, akkor az $A \to bA$ és $A \to c$ szabályokat kezdhetjük építeni, azaz $[A \to .bA]$ és $[A \to .c]$ is hozzátartozik a halmazhoz.

Fordítóprogramok előadás (A,C,T szakirány)

LR elemzések (az LR(0) elemzés

Fordítóprogramok előadás (A.C.T szakirán

LR elemzések (az LR(0) elemzés)

Az elemző automata felépítése

A *lezárás* művelet

- Az automata egy állapotához több *LR*(0)-elem is tartozhat.
 - Ezeket a halmazokat fogjuk kanonikus halmazoknak hívni.
- Milyen LR(0) elemek tartoznak egy halmazba?
 - Például: Ha $[A \to a.Ad]$ állapotban vagyunk, akkor az $A \to bA$ és $A \to c$ szabályokat kezdhetjük építeni, azaz $[A \to .bA]$ és $[A \to .c]$ is hozzátartozik a halmazhoz.

Definíció: lezárás (closure)

Ha $\mathcal I$ a grammatika egy LR(0) elemhalmaza, akkor $closure(\mathcal I)$ a legszűkebb olyan halmaz, amely az alábbi tulajdonságokkal rendelkezik:

- $\mathcal{I} \subseteq closure(\mathcal{I})$
- ha $[A \to \alpha.B\gamma] \in closure(\mathcal{I})$, és $B \to \beta$ a grammatika egy szabálya, akkor $[B \to .\beta] \in closure(\mathcal{I})$.

Fordítóprogramok előadás (A,C,T szakirány)

LR elemzések (az LR(0) elemzés)

Az elemző automata felépítés

Az *olvasás* művelet

• Hogyan lépünk át az automata egyik állapotából a másikba?

Fordítóprogramok előadás (A,C,T szakirány)

R elemzések (az LR(0) elemzés)

Az elemző automata felépítése

Az olvasás művelet

- Hogyan lépünk át az automata egyik állapotából a másikba?
- Ha $[A \to a.Ad]$ állapotban vagyunk, és A kerül a verem tetejére, akkor $[A \to aA.d]$ állapotba jutunk.

Az elemző automata felépítése

Az *olvasás* művelet

- Hogyan lépünk át az automata egyik állapotából a másikba?
- Ha $[A \to a.Ad]$ állapotban vagyunk, és A kerül a verem tetejére, akkor $[A \to aA.d]$ állapotba jutunk.

Definíció: olvasás (read)

Ha $\mathcal I$ a grammatika egy LR(0) elemhalmaza, X pedig terminális vagy nemterminális szimbóluma, akkor $read(\mathcal I,X)$ a legszűkebb olyan halmaz, amely az alábbi tulajdonsággal rendelkezik:

• ha $[A \to \alpha.X\beta] \in \mathcal{I}$, akkor $closure([A \to \alpha X.\beta]) \subseteq read(\mathcal{I}, X)$.

Fordítóprogramok előadás (A,C,T szakirány

LR elemzések (az LR(0) elemzé

Fordítóprogramok előadás (A,C,T szakirány)

I R elemzések (az I R(0) elemzés

LR(0) kanonikus halmazok

Definíció: *LR*(0) kanonikus halmazok

- $closure([S' \rightarrow .S])$ a grammatika egy kanonikus halmaza.
- $oldsymbol{\circ}$ Ha $\mathcal I$ a grammatika egy kanonikus elemhalmaza, X egy terminális vagy nemterminális szimbóluma, és $read(\mathcal{I},X)$ nem üres, akkor $read(\mathcal{I},X)$ is a grammatika egy kanonikus
- 3 Az első két szabállyal az összes kanonikus halmaz előáll.

LR(0) kanonikus halmazok

Definíció: LR(0) kanonikus halmazok

- $closure([S' \rightarrow .S])$ a grammatika egy kanonikus halmaza.
- $oldsymbol{2}$ Ha $\mathcal I$ a grammatika egy kanonikus elemhalmaza, X egy terminális vagy nemterminális szimbóluma, és $read(\mathcal{I},X)$ nem üres, akkor $read(\mathcal{I},X)$ is a grammatika egy kanonikus halmaza.
- 3 Az első két szabállyal az összes kanonikus halmaz előáll.

Az automata felépítése:

- A $closure([S' \rightarrow .S])$ legyen a kezdőállapot.
- ullet Ha $\mathcal{I}' = read(\mathcal{I}, X)$, akkor az automatában legyen

• A végállapotok azok a kanonikus halmazok, amelyekben olyan elemek vannak, ahol a pont a szabály végén van.

Fordítóprogramok előadás (A,C,T szakirány) LR elemzések (az LR(0) elemzés)

dítóprogramok előadás (A,C,T szakirány) LR elemzések (az LR(0) elem

Példa

Példa grammatika

- $A \rightarrow bA$

Példa

Példa grammatika

- $S' \to S$
- $\mathbf{Q} S \rightarrow aAd$
- $A \rightarrow bA$ $A \rightarrow c$

$$S' \rightarrow S$$
 S
 O

$$\begin{split} \mathcal{I}_0 &= \textit{closure}([S' \rightarrow .S]) = \{[S' \rightarrow .S], [S \rightarrow .aAd]\} \\ \mathcal{I}_1 &= \textit{read}(\mathcal{I}_0, S) = \textit{closure}([S' \rightarrow S.]) = \{[S' \rightarrow S.]\} \end{split}$$

Fordítóprogramok előadás (A,C,T szakirány) LR elemzések (az LR(0) ele

Példa

Példa grammatika

$$3 \rightarrow aAd$$

$$\mathcal{I}_0 = \textit{closure}([S' \rightarrow .S]) = \{[S' \rightarrow .S], [S \rightarrow .aAd]\}$$

$$\mathcal{I}_1 = read(\mathcal{I}_0, S) = \{ [S' \rightarrow S.] \}$$

$$\mathcal{I}_{2} = read(\mathcal{I}_{0}, a) = \{[S \rightarrow S.]\}$$

$$\mathcal{I}_{2} = read(\mathcal{I}_{0}, a) = closure([S \rightarrow a.Ad])$$

$$= \{[S \rightarrow a.Ad], [A \rightarrow .bA], [A \rightarrow .c]\}$$

Példa

Példa grammatika

$$A \rightarrow bA$$

$$\bigcirc$$
 $A \rightarrow c$

$$\mathcal{I}_0 = \textit{closure}([S' \rightarrow .S]) = \{[S' \rightarrow .S], [S \rightarrow .aAd]\}$$

$$\mathcal{I}_1 = read(\mathcal{I}_0, S) = \{[S' \rightarrow S.]\}$$

$$\mathcal{I}_2 = read(\mathcal{I}_0, a) = \{[S \rightarrow a.Ad], [A \rightarrow .bA], [A \rightarrow .c]\}$$

$$\mathcal{I}_3 = read(\mathcal{I}_2, A) = closure([S \rightarrow aA.d]) = \{[S \rightarrow aA.d]\}$$

Példa

Példa grammatika

$$\mathbf{S} \rightarrow aAd$$

$$A \rightarrow bA$$

$$S' \rightarrow S$$
 1 3 4 4 4

$$\mathcal{I}_0 = \textit{closure}([S' \rightarrow .S]) = \{[S' \rightarrow .S], [S \rightarrow .aAd]\}$$

$$\mathcal{I}_1 = read(\mathcal{I}_0, S) = \{[S' \rightarrow S.]\}$$

$$\mathcal{I}_2 = read(\mathcal{I}_0, a) = \{ [S \rightarrow a.Ad], [A \rightarrow .bA], [A \rightarrow .c] \}$$

$$\mathcal{I}_3 = \textit{read}(\mathcal{I}_2, \textit{A}) = \{[\textit{S} \rightarrow \textit{aA.d}]\}$$

$$\mathcal{I}_4 = read(\mathcal{I}_2, b) = closure([A \rightarrow b.A])$$

$$= \{ [A \rightarrow b.A], [A \rightarrow .bA], [A \rightarrow .c] \}$$

Példa grammatika

$$S \rightarrow aAd$$

$$A \rightarrow bA$$

$$\mathcal{I}_0 = closure([S' \rightarrow .S]) = \{[S' \rightarrow .S], [S \rightarrow .aAd]\}$$

$$\mathcal{I}_1 = read(\mathcal{I}_0, S) = \{[S' \rightarrow S.]\}$$

$$\mathcal{I}_2 = read(\mathcal{I}_0, a) = \{[S \rightarrow a.Ad], [A \rightarrow .bA], [A \rightarrow .c]\}$$

$$\mathcal{I}_3 = read(\mathcal{I}_2, A) = \{[S \rightarrow aA.d]\}$$

$$\mathcal{I}_4 = read(\mathcal{I}_2, b) = \{[A \rightarrow b.A], [A \rightarrow .bA], [A \rightarrow .c]\}$$

$$\mathcal{I}_5 = read(\mathcal{I}_2, c) = closure([A \rightarrow c.]) = \{[A \rightarrow c.]\}$$

Példa

Példa grammatika

$$A \rightarrow bA$$

 $A \rightarrow c$

$$\mathcal{I}_0 = \textit{closure}([S' \rightarrow .S]) = \{[S' \rightarrow .S], [S \rightarrow .aAd]\}$$

$$\mathcal{I}_1 = read(\mathcal{I}_0, S) = \{ [S' \rightarrow S.] \}$$

$$\mathcal{I}_2 = read(\mathcal{I}_0, a) = \{[S \rightarrow a.Ad], [A \rightarrow .bA], [A \rightarrow .c]\}$$

$$\mathcal{I}_3 = read(\mathcal{I}_2, A) = \{[S \rightarrow aA.d]\}$$

$$\mathcal{I}_4 = read(\mathcal{I}_2, b) = \{ [A \rightarrow b.A], [A \rightarrow .bA], [A \rightarrow .c] \}$$

$$\mathcal{I}_5 = read(\mathcal{I}_2, c) = \{[A \rightarrow c.]\}$$

$$\mathcal{I}_6 = read(\mathcal{I}_3, d) = closure([S \rightarrow aAd.]) = \{[S \rightarrow aAd.]\}$$
Forditioprogramok előadás (A.C.T szakirány)

LR elemzések (az LR(0) elemzés)

Példa

Példa grammatika

$$2 S \rightarrow aAd$$

$$A \rightarrow bA$$

$$\mathcal{I}_0 = closure([S' \rightarrow .S]) = \{[S' \rightarrow .S], [S \rightarrow .aAd]\}$$

$$\mathcal{I}_1 = read(\mathcal{I}_0, S) = \{[S' \rightarrow S.]\}$$

$$\mathcal{I}_2 = read(\mathcal{I}_0, a) = \{ [S \rightarrow a.Ad], [A \rightarrow .bA], [A \rightarrow .c] \}$$

$$\mathcal{I}_3 = read(\mathcal{I}_2, A) = \{[S \rightarrow aA.d]\}$$

$$\mathcal{I}_4 = \mathit{read}(\mathcal{I}_2, \mathit{b}) = \{[\mathit{A} \rightarrow \mathit{b.A}], [\mathit{A} \rightarrow .\mathit{bA}], [\mathit{A} \rightarrow .\mathit{c}]\}$$

$$\mathcal{I}_5 = read(\mathcal{I}_2, c) = \{[A \rightarrow c.]\}$$

$$\mathcal{I}_6 = read(\mathcal{I}_3, d) = \{[S \rightarrow aAd.]\}$$

$$\mathcal{I}_7 = \textit{read}(\mathcal{I}_4, \textit{A}) = \textit{closure}([\textit{A} \rightarrow \textit{bA}.]) = \{[\textit{A} \rightarrow \textit{bA}.]\}$$

gramok előadás (A.C.T szakirány) LR elemzések (az LR(0) elemz

Példa

Példa grammatika

$$2 S \rightarrow aAd$$

$$\mathcal{I}_4 = read(\mathcal{I}_2, b) = \{[A \rightarrow b.A], [A \rightarrow .bA], [A \rightarrow .c]\}$$

$$\mathcal{I}_5 = read(\mathcal{I}_2, c) = \{[A \rightarrow c.]\}$$

$$read(\mathcal{I}_4, b) = closure([A \rightarrow b.A])$$

$$=\{[A\rightarrow b.A],[A\rightarrow .bA],[A\rightarrow .c]\}=\mathcal{I}_4$$

Példa

Példa grammatika

$$A \to bA$$

$$\mathcal{I}_4 = \mathit{read}(\mathcal{I}_2, b) = \{ [A \rightarrow b.A], [A \rightarrow .bA], [A \rightarrow .c] \}$$

$$\mathcal{I}_5 = read(\mathcal{I}_2, c) = \{[A \rightarrow c.]\}$$

$$read(\mathcal{I}_4,b)=\mathcal{I}_4$$

$$read(\mathcal{I}_4, c) = closure([A \rightarrow c.]) = \{[A \rightarrow c.]\} = \mathcal{I}_5$$

Az elemző automata felépítése

LR(0) elemző táblázat

állapot	akció	S	Α	а	b	С	d
0	léptetés	1		2			
1	OK						
2	léptetés		3		4	5	
3	léptetés						6
4	léptetés		7		4	5	
5	redukálás $(A o c)$						
6	redukálás ($S o aAd$)						
7	redukálás $(A o bA)$						

Fordítóprogramok előadás (A,C,T szakirány

LR elemzések (az LR(0) elemzés)

Véges-e az elemző létrehozása?

- a grammatikának véges sok szabálya van
- véges sok LR(0) eleme van

Fordítóprogramok előadás (A.C.T szakirány)

LR elemzések (az LR(0) elemzés)

Az elemző helyessége

Véges-e az elemző létrehozása?

- a grammatikának véges sok szabálya van
- véges sok LR(0) eleme van
- a closure függvény kiszámítása véges sok lépésben befejeződik
- a read függvény kiszámítása véges sok lépésben befejeződik

Az elemző helyesség

Véges-e az elemző létrehozása?

- a grammatikának véges sok szabálya van
- véges sok LR(0) eleme van
- a closure függvény kiszámítása véges sok lépésben befejeződik
- a read függvény kiszámítása véges sok lépésben befejeződik
- a véges sok LR(0)-elem hatványhalmaza is véges
- a lehetséges kanonikus halmazok száma is véges

Fordítóprogramok előadás (A,C,T szakirány)

LR elemzések (az LR(0) elemzés)

ordítóprogramok előadás (

LR elemzések (az LR(0) elemzés)

Az elemző helyessége

Véges-e az elemző létrehozása?

- a grammatikának véges sok szabálya van
- ullet véges sok LR(0) eleme van
- a closure függvény kiszámítása véges sok lépésben befejeződik
- a read függvény kiszámítása véges sok lépésben befejeződik
- a véges sok LR(0)-elem hatványhalmaza is véges
- a lehetséges kanonikus halmazok száma is véges

Az elemző táblázat (az automata) létrehozása véges sok lépésben befejeződik.

Az elemző helyessé

Helyes-e az elemző?

- Az automata pontosan akkor jut-e végállapotba, ha redukálni kell?
- A megfelelő a redukciót írja-e elő?

Fordítóprogramok előadás (A C T szakirány

LR elemzések (az LR(0) elemzé

Fordítóprogramok előadás (A,C,T szakirány)

LR elemzések (az LR(0) elemzés)

Az elemző helyessége

Járható prefix

Definíció: járható prefix

Ha az $\alpha\beta x$ mondatforma nyele β , akkor az $\alpha\beta$ prefixeit az $\alpha\beta x$ járható prefixeinek nevezzük.

Definíció: járható prefix

Ha az $\alpha\beta x$ mondatforma nyele β , akkor az $\alpha\beta$ prefixeit az $\alpha\beta x$ járható prefixeinek nevezzük.

• A járható prefixeket olvassuk végig a nyél végének eléréséhez.
• Példa: $S' \Rightarrow S \Rightarrow aAd \Rightarrow abAd \Rightarrow abcd$ Az abAd mondatforma nyele a bA.
A járható prefixei: a, ab, abA

Fordítóprogramok előadás (A,C,T szakirány) LR elemzések (az LR(0) elem

rogramok előadás (A,C,T szakirány) LR elemzések (az LR(0) elemzés)

Járható prefix Járható prefixre érvényes LR(0) elemek Definíció: járható prefixre érvényes LR(0) elemek Definíció: járható prefix A grammatika egy $[A
ightarrow lpha.eta] \ LR(0)$ -eleme érvényes a $\gamma lpha$ járható Ha az $\alpha\beta x$ mondatforma nyele β , akkor az $\alpha\beta$ prefixeit az $\alpha\beta x$ prefixre nézve, ha járható prefixeinek nevezzük. $S' \Rightarrow^* \gamma Ax \Rightarrow \gamma \alpha \beta x$ • A járható prefixeket olvassuk végig a nyél végének eléréséhez. ullet Példa: $S' \Rightarrow S \Rightarrow aAd \Rightarrow abAd \Rightarrow abcd$ Az abAd mondatforma nyele a bA. A járható prefixei: a, ab, abA • Maximális járható prefix: olyan járható prefix, amihez nem lehet újabb szimbólumot hozzávenni, hogy járható prefixet kapjunk. • Egy járható prefix épp akkor maximális, ha a végén van a nyél.

Járható prefixre érvényes LR(0) elemek Az LR(0) elemzés helyessége Definíció: járható prefixre érvényes LR(0) elemek A grammatika egy [A ightarrow lpha.eta] LR(0)-eleme érvényes a $\gamma lpha$ járható Tétel: az LR(0) elemzés nagy tétele prefixre nézve, ha Egy γ járható prefix hatására az elemző automatája a $S' \Rightarrow^* \gamma Ax \Rightarrow \gamma \alpha \beta x$ kezdőállapotból olyan állapotba kerül, amelyhez tartozó kanonikus halmaz éppen a γ járható prefixre érvényes LR(0) elemeket • Az érvényes LR(0) elemek az adott járható prefix "lehetséges tartalmazza. folytatásait" adják meg. • Példa: az ab járható prefixre érvényes LR(0)-elemek: $[A \rightarrow b.A]$, $[A \rightarrow .bA]$, $[A \rightarrow .c]$. $S' \Rightarrow S \Rightarrow aAd \Rightarrow abAd$ $S' \Rightarrow S \Rightarrow aAd \Rightarrow abAd \Rightarrow ab\underline{bA}d$ $S' \Rightarrow S \Rightarrow aAd \Rightarrow ab\underline{c}d$ A maximális járható prefixekre érvényes LR(0) elemek azok, ahol a pont a szabály végén van.

Az LR(0) elemzés helyessége

Konfliktusok a táblázatban

Tétel: az LR(0) elemzés nagy tétele

Egy γ járható prefix hatására az elemző automatája a kezdőállapotból olyan állapotba kerül, amelyhez tartozó kanonikus halmaz éppen a γ járható prefixre érvényes LR(0) elemeket tartalmazza.

- Az elemző tehát addig fog léptetést előírni, amíg a veremben lévő járható prefix maximális nem lesz.
- Ha a járható prefix maximális, akkor az elemző redukálást ír elő.

• Hol használtuk ki, hogy LR(0) a grammatika?

Fordítóprogramok előadás (A,C,T szakirány) LR elemzések (az LR(0) elemzés)

Konfliktusok a táblázatban

- Hol használtuk ki, hogy LR(0) a grammatika?
- ullet Konfliktus: Ha egy \mathcal{I}_k kanonikus halmaz alapján nem lehet egyértelműen eldönteni, hogy az adott állapotban milyen akciót kell végrehajtani.
 - léptetés/redukálás konfliktus: az egyik elem léptetést, egy másik redukálást ír elő
 - redukálás/redukálás konfliktus: az egyik elem az egyik szabály szerinti, a másik egy másik szabály szerinti redukciót ír elő

Konfliktusok a táblázatban

- Hol használtuk ki, hogy LR(0) a grammatika?
- ullet Konfliktus: Ha egy \mathcal{I}_k kanonikus halmaz alapján nem lehet egyértelműen eldönteni, hogy az adott állapotban milyen akciót kell végrehajtani.
 - léptetés/redukálás konfliktus: az egyik elem léptetést, egy másik redukálást ír elő
 - redukálás/redukálás konfliktus: az egyik elem az egyik szabály szerinti, a másik egy másik szabály szerinti redukciót ír elő
- Az LR(0) tulajdonság biztosítja a táblázat konfliktusmentes kitöltését!

Fordítóprogramok előadás (A,C,T szakirány) LR elemzések (az LR(0) elemzés