Упражнение 2

Двумерна задача на линейното оптимиране. Геометричен метод за решаване

Задачата на линейното оптимиране има просто геометрично тълкуване в двумерното пространство. При n=2 тя има вида

(1)
$$z = c_1 x_1 + c_2 x_2 \rightarrow \max(\min),$$

(2)
$$a_{i1}x_1 + a_{i2}x_2 \le b_i, \quad i = 1, \dots, m.$$

Ако има условия за неотрицателност на x_1 и x_2 , те са включени в (2).

Нека в равнината е фиксирана координатна система x_1Ox_2 . Допустимото множество P на задачата е сечението на полуравнините (2). То е изпъкнало, затворено многоъгълно множество и може да бъде празно (системата (2) е несъвместима, фиг. 1a), ограничено (изпъкнал многоъгълник, фиг. 16) и неограничено (фиг. 1a, ϵ , фиг. 2). Когато P е ограничено, контурът му се състои само от отсечки (ограничени ръбове), а когато е неограничено, той съдържа още и лъчи или прави (неограничени ръбове на P).

Ако $\mathbf{x} = (x_1, x_2)^{\mathrm{T}}$, $\mathbf{c} = (c_1, c_2)^{\mathrm{T}}$ и Oc е директрисата на вектора \mathbf{c} , разглеждана като числова ос с нула в точката O, положителна посока посоката на вектора \mathbf{c} и единична отсечка за измерване, равна на тази в координатната система x_1Ox_2 , то $z = \mathbf{c}\mathbf{x} = \|\mathbf{c}\|\|\mathbf{x}\|\cos \langle (\mathbf{c},\mathbf{x}) = \|\mathbf{c}\|\lambda_{\mathbf{x}'}$, където \mathbf{x}' е ортогоналната проекция на \mathbf{x} върху оста Oc, а $\lambda_{\mathbf{x}'}$ е алгебричната мярка на тази проекция, т. е. $\lambda_{\mathbf{x}'}$ е реалното число, което съответства на точката \mathbf{x}' , разглеждана като точка от оста Oc. Тук и навсякъде по-нататък дадена точка и

Фиг. 1. Примери на двумерни допустими множества: а) празно допустимо множество, б) ограничено допустимо множество, в) и г) неограничени допустими множества без върхове

1

нейният радиус-вектор се означават по един и същи начин. Освен това всички вектори се разглеждат като вектор-стълбове. В повечето случаи векторите ще бъдат писани като вектор-редове, последвани от знак за транспониране (за икономия на място).

Задача (1)–(2) може да се изкаже геометрично така: търси се точка $\mathbf{x} \in P$, чиято проекция \mathbf{x}' върху оста Oc има най-голяма (най-малка) алгебрична мярка $\lambda_{\mathbf{x}'}$. Задачата може да се реши така:

- 1. Построява се допустимото множество P на задачата. Ако $P=\emptyset,$ задачата няма решение.
- 2. Построяват се векторът $\mathbf{c} = (c_1, c_2)^{\mathrm{T}}$ и директрисата му Oc. Проектира се множеството P върху оста Oc. Проекцията P' на P е отсечка (ако P е ограничено), лъч или права.
- 3. Определят се точките, чиито проекции имат максимална (минимална) алгебрична мярка. Те са решение на задачата.
 - Ако P' е отсечка, това са точките, чиито проекции съвпадат с втория (първия) край на отсечката. Тогава задачата има решение при търсене както на максимум, така и на минимум.
 - Ако P' е лъч, еднопосочен (противоположен) на вектора \mathbf{c} , алгебричните мерки на проекциите растат (намаляват) неограничено в P и задачата за търсене на максимум (минимум) няма решение (фиг. 2). Точките, чиито проекции съвпадат с началната точка на лъча, имат най-малка (най-голяма) алгебрична мярка на проекцията си и са решение на задачата за минимум (максимум).
 - Ако P' е права, алгебричните мерки на проекциите растат и намаляват неограничено отгоре и отдолу в P' и задачата няма решение при търсене и на максимум, и на минимум.

В общия случай задачата на линейното оптимиране има вида

$$z = \sum_{j=1}^{n} c_j x_j \to \min(\max)$$

при ограничения

$$\sum_{j=1}^{n} a_{ij} x_j \leq b_i, \quad i = 1, \dots, m,$$

$$x_j \geq 0, \quad j = 1, \dots, p \ (p \leq n).$$

2 15 юни 2010 г.

Тук знакът \leq означава някой от знаците \leq , \geq или =. Тази задача може да бъде сведена до двумерната задача (1)–(2) и да бъде решена геометрично, ако сред ограниченията ѝ има r линейно независими уравнения и $n-r \leq 2$ (вж. пример 1).

Пример 1. Да се реши геометрично задачата

(3)
$$z = x_2 - x_3 + x_4 \to \max(\min),$$

$$-x_1 - 2x_2 + x_3 + x_4 \le 4,$$

$$3x_2 - x_3 - x_4 = -3,$$

$$-x_1 - x_2 + x_3 = 1,$$

$$x_3 \ge 0, x_4 \ge 0.$$

Решение. Тук n = 4 и r = 2, което позволява да изразим две от променливите чрез другите две и така да сведем задачата до двумерния случай:

(5)
$$x_4 = -x_1 + 2x_2 + 2, x_3 = x_1 + x_2 + 1.$$

Заместваме x_3 , x_4 в (3), (4) и получаваме двумерната задача

$$\bar{z} = -2x_1 + 2x_2 + 1 \to \max(\min),$$

$$P: \begin{vmatrix} -x_1 + x_2 \le 1 \\ x_1 + x_2 \ge -1 \\ -x_1 + 2x_2 \ge -2. \end{vmatrix}$$

Допустимото множество на задачата е дадено на фиг. 2. То има два върха $\mathbf{a} = (0,-1)^{\mathrm{T}}$ и $\mathbf{b} = (-1,0)^{\mathrm{T}}$. Константата в целевата функция е без значение при търсенето на точките, в които функцията достига максимум или минимум. Тя се взема предвид само при пресмятане на стойността на функцията след намирането на тези точки.

Построяваме вектора $\mathbf{c}=(-2,2)^{\mathrm{T}}$ и оста Oc и проектираме множеството P върху нея (фиг. 2). Множеството от проекциите на точките от P е лъч с начало точката \mathbf{b}' . На фиг. 2 той е начертан по-плътно. Точката \mathbf{b}' е проекция на върха \mathbf{b} и на всички точки от неограничения ръб, излизащ от \mathbf{b} . Тъй като \mathbf{b}' има най-голяма алгебрична мярка (Oc е числова ос), то точките от този неограничен ръб са оптимални решения на задачата при търсене на максимум. В частност оптимално решение е върхът $\mathbf{b}=(-1,0)^{\mathrm{T}}$. Общият вид на решенията е $\overline{\mathbf{x}}_{\lambda}=\mathbf{b}+\lambda\mathbf{p}=(\lambda-1,\lambda)^{\mathrm{T}}$, където $\mathbf{p}=(1,1)^{\mathrm{T}}$ е направляващ вектор на ръба и $\lambda\geq0$, т. е. двумерната задача има безбройно много решения

 $\overline{\mathbf{x}}_{\lambda}$ и $\overline{z}^*=3$. Изходната задача има също безбройно много решения $\mathbf{x}_{\lambda}=(\lambda-1,\lambda,2\lambda,3+\lambda)^{\mathrm{T}},\,\lambda\geq0$, където последните две координати са пресметнати от (5).

При търсене на минимум задачата няма решение: алгебричните мерки намаляват неограничено, следователно целевата функция е неограничена отдолу в $P(\bar{z}^* = -\infty)$.

Пример 2. Да се изследва при какви стойности на ъгъла между оста Ox_1 и вектора $\mathbf{c}=(c_1,c_2)^{\mathrm{T}}$ задачата за намиране на максимум (минимум) на функцията $z=c_1x_1+c_2x_2$ в множеството

$$P: \begin{vmatrix} x_1 + x_2 \ge -1 \\ x_1 - x_2 \le 3 \\ x_2 \ge -1 \end{vmatrix}$$

има оптимално решение.

Решение. Множеството P (фиг. 3) е неограничено с върхове $\mathbf{a}=(0,-1)^{\mathrm{T}}$ и $\mathbf{b}=(2,-1)^{\mathrm{T}}$. Неограничени ръбове на P са лъчите съответно с начало точките \mathbf{a} и \mathbf{b} . Ако векторът $\mathbf{c}=(c_1,c_2)^{\mathrm{T}}$ сключва остър ъгъл с някой от неограничените ръбове, алгебричните мерки на проекциите ще растат неограничено, т. е. z ще бъде неограничена отгоре в множеството P. На фиг. 3 са дадени двете гранични положения за вектора \mathbf{c} , при които задачата има решение: при $\mathbf{c}\equiv\mathbf{c}'$ имаме $<(Ox_1,\mathbf{c}')=\frac{5}{4}\pi$, а при $\mathbf{c}\equiv\mathbf{c}''$ съответно $<(Ox_1,\mathbf{c}'')=\frac{7}{4}\pi$. Векторите \mathbf{c}' и \mathbf{c}'' са перпендикулярни съответно на правите L_1 , L_2 и сочат навън от множеството P.

Задачата за максимум има оптимално решение за $\langle (Ox_1, \mathbf{c}') \in \left[\frac{5}{4}\pi, \frac{7}{4}\pi\right]$. При $\mathbf{c} = \mathbf{c}'$ ($c_1 = c_2 < 0$) оптимални решения са всички точки $\mathbf{x}_{\lambda} = (-\lambda, \lambda - 1)^T$, $\lambda \geq 0$, от лъча с начало точката \mathbf{a} и направляващ вектор $(-1, 1)^T$ и

Фиг. 3

 $z^* = -c_2$. При $\mathbf{c} \equiv \mathbf{c}''$ ($c_1 = -c_2 > 0$) оптимални решения са всички точки $\mathbf{x}_{\lambda} = (2 + \lambda, \lambda - 1)^{\mathrm{T}}, \ \lambda \geq 0$, от льча с начало точката \mathbf{b} и направляващ вектор $(1,1)^{\mathrm{T}}$ и $z^*=3c_1$. При $\mathbf{c}\equiv\mathbf{c}'''$ ($c_1=0,\ c_2<0$) решения са всички точки $\mathbf{x}_{\lambda}=\lambda\mathbf{a}+(1-\lambda)\mathbf{b}=(2-2\lambda,-1)^{\mathrm{T}}$ на отсечката $\mathbf{a}\mathbf{b}$ и $z^*=-c_2$. Когато $<\!(Ox_1,\mathbf{c})\in$ $\left(\frac{5}{4}\pi, \frac{3}{2}\pi\right)$, оптимално решение е само върхът **a**. Когато $\langle (Ox_1, \mathbf{c}) \in \left(\frac{3}{2}\pi, \frac{7}{4}\pi\right)$ решение е само върхът **b**.

Аналогични разсъждения показват, че при търсене на минимум трябва да се вземат вектори, перпендикулярни на неограничените ръбове, но сочещи навътре в множеството P – в нашия случай това са векторите – \mathbf{c}' и – \mathbf{c}'' , начертани на фиг. 3 с пунктир. Задачата за минимум има оптимално решение при $\langle (Ox_1, c) \in \left| \frac{1}{4}\pi, \frac{3}{4}\pi \right|$.

Пример 3. За кои стойности на параметъра λ задачата

$$z = \lambda x_1 + 2x_2 \to \max$$
$$P: \begin{vmatrix} x_1 + x_2 \le 2 \\ x_1 - x_2 \ge -3. \end{vmatrix}$$

има оптимално решение?

Решение. Множеството P е дадено на фиг. 4. Построяваме векторите ${\bf c}'$ и ${\bf c}''$, съответно перпендикулярни на неограничените ръбове и сочещи навън от множеството Р. Задачата има оптимално решение, когато векторът $\mathbf{c}=(\lambda,2)^{\mathrm{T}}$ се мени от \mathbf{c}' до \mathbf{c}'' в ъгъла φ . Векторът \mathbf{c}' е еднопосочен с нормалния вектор $\mathbf{n}_1 = (1, 1)^{\mathrm{T}}$ на правата L_1 и при $\mathbf{c} \equiv \mathbf{c}'$ ще имаме $\mathbf{c}' = k\mathbf{n}_1$, k>0. Векторът \mathbf{c}'' е противоположен на нормалния вектор $\mathbf{n}_2=(1,-1)^{\mathrm{T}}$ на правата L_2 и при $\mathbf{c} \equiv \mathbf{c}''$ получаваме $\mathbf{c}'' = -k\mathbf{n}_2, k > 0$, откъдето $\mathbf{c}'' = (-2, 2)^{\mathrm{T}}$. Следователно задачата има оптимално решение за $-2 \le \lambda \le 2$.

15 юни 2010 г.

5

Фиг. 4

Задачи

1. Да се решат геометрично следващите задачи за намиране на максимум и минимум на функцията *z*. Да се намерят всички оптимални решения.

1.1.
$$z = 2x_1 + x_2$$
,
 $-x_1 + 3x_2 \le 3$,
 $2x_1 + 3x_2 \le 12$,
 $2x_1 - x_2 \le 6$,
 $x_1 \ge 0$, $x_2 \ge 0$;

1.3.
$$z = 3(x_2 - x_1),$$

 $x_1 - 2x_2 \le 0,$
 $x_1 - x_2 \ge -1,$
 $x_1 + x_2 \ge 1;$

1.5.
$$z = x_1 - x_2 + x_3$$
,
 $2x_1 - x_2 \ge 4$,
 $x_1 - x_4 = 4$,
 $x_2 + x_3 = 1$,
 $x_1 + x_4 \le 2$,
 $x_1 \ge 0$, $x_2 \ge 0$;

1.2.
$$z = x_2$$
,
 $x_1 + x_2 \ge 1$,
 $3x_1 \ge -6$,
 $2x_1 - x_2 \le 4$,
 $x_2 \ge 0$;

1.4.
$$z = x_1,$$

 $x_1 - 2x_2 \le 0,$
 $-x_1 + x_2 \le 1,$
 $x_1 + x_2 \ge 1;$

1.6.
$$z = x_1 + 2x_2 - x_3$$
,
 $x_1 + x_2 + x_3 = 5$,
 $x_1 + 3x_3 \ge 3$,
 $-4x_1 + x_3 \le 4$,
 $x_1 \ge 0$, $x_2 \ge 0$;

6 15 юни 2010 г.

1.7.
$$z = 2x_1 - 2x_2$$
,
 $-x_1 + x_2 \le 1$,
 $x_1 - x_2 \le 1$;

1.8.
$$z = x_1 - x_2 + x_3,$$

 $x_1 + 2x_2 - x_3 + x_4 = 3,$
 $x_1 - 4x_2 + x_3 = -2,$
 $x_j \ge 0, j = 1, \dots, 4;$

2. Да се определят границите на изменение на ъгъла α , който трябва да сключва векторът $\mathbf{c}=(c_1,c_2)^{\mathrm{T}}$ с абсцисната ос Ox_1 , за да има функцията $z=c_1x_1+c_2x_2$ максимум (минимум) в дадените по-долу множества. Да се определи общият вид на всички оптимални решения при търсене на максимум в зависимост от α .

2.1.
$$\begin{vmatrix} x_1 + x_2 \le 0 \\ x_1 & \le 0 \\ x_2 \le 1; \end{vmatrix}$$
 2.2. $\begin{vmatrix} x_1 - x_2 \le 1 \\ x_1 & \le 1 \\ x_2 \ge -1; \end{vmatrix}$ **2.3.** $\begin{vmatrix} x_1 + x_2 \le 1 \\ 0 \le x_2 \le 1; \\ x_2 \ge -1; \end{vmatrix}$ **2.4.** $\begin{vmatrix} x_1 + x_2 \ge 0 \\ x_1 - x_2 \ge 0; \end{vmatrix}$ **2.5.** $\begin{vmatrix} x_1 - x_2 \ge 0 \\ x_1 + x_2 \ge 1 \end{vmatrix}$ **2.6.** $\begin{vmatrix} x_1 + x_2 \le 1 \\ x_2 \ge 1. \end{vmatrix}$

- **3.** За дадените множества P и функцията $z = c_1x_1 + c_2x_2$ да се определят:
- а) границите на изменение на ъгъла α между абсцисната ос Ox_1 и вектора $\mathbf{c} = (c_1, c_2)^{\mathrm{T}}$, за който z е неограничена едновременно отгоре и отдолу в P;
- б) c_1 и c_2 така, че z да достига максимума си в два върха на P; да се намери общия вид на оптималните решения.

3.1.
$$P: x_1 + x_2 \ge 4$$
 $x_1 - x_2 \le -2$ $-x_1 + x_2 \le 5$ $x_2 \ge 0;$ $x_1 - 2x_2 \le -4.$

4. Да се намерят стойностите на параметъра a, за които следващите задачи имат оптимално решение. В задачи 4.4 и 4.6 да се определи при кои

стойности на а множеството, определено от ограниченията, е празно.

4.1.
$$z = ax_1 - 2x_2 \rightarrow \max$$
, $x_1 - x_2 \le 3$, $x_1 + x_2 \le 2$, $x_1 - x_2 \le 1$; $x_2 \ge -1$;
4.3. $z = 2x_1 + x_2 \rightarrow \max$, $x_1 - 2x_2 \le 4$, $x_1 - x_2 \le 6$, $x_1 - x_2 \le 6$, $x_1 - x_2 \le 6$, $x_1 - x_2 \le 3$, $x_1 \ge 0$, $x_2 \ge 0$;
4.5. $z = x_1 + 2x_2 - 3x_3 \rightarrow \min$, $x_1 + x_2 - x_3 = 1$, $x_1 + x_2 = x_3 = 2$, $x_1 \ge 0$, $x_2 \ge 0$.
4.6. $z = x_1 - 2x_2 \rightarrow \max$, $x_1 - x_2 \le -2$, $x_1 \ge 0$, $x_2 \ge 0$;
4.6. $z = x_1 - x_2 \rightarrow \min$, $x_1 + x_2 \le a$, $x_1 \ge 0$, $x_2 \ge 0$.

5. Да се определи за кои стойности на параметъра a функцията $z = x_1 + ax_2$ има максимална стойност нула в множеството

$$P: \{\mathbf{x} = (x_1, x_2)^{\mathrm{T}} : x_1 + x_2 \le 0, x_1 \le 0, x_2 \le 1\}.$$

Да се намерят всички оптимални решения.

6. Да се реши задачата за посочените стойности на параметъра a:

6.1.
$$z = ax_1 - x_2 \to \min$$
, $x_1 - 3x_2 \ge -7$, $x_1 + x_2 \le 5$, $x_1 - x_2 \ge -1$, $x_1 - 2x_2 \le 6$, $x_2 - 2x_2 \le 6$, $x_2 - 2x_2 \le 6$, $x_3 - 2x_2 \le 6$, $x_4 - 2x_2 \le 6$, $x_5 - 2x_2 \le 6$,

- **7.** За кои стойности на параметъра a:
- а) оптималното решение остава в един и същ връх на Р;
- б) задачата няма оптимално решение;
- в) задачата има безбройно много оптимални решения?

Упражнение 2

7.1.
$$z = 2x_1 + ax_2 \to \max$$
, 7.2. $z = -x_1 + ax_2 \to \max$, $-x_1 + x_2 \le 3$ $3x_1 - x_2 \le 15$ $x_1 + 2x_2 \le 12$ $x_1 \ge 0, x_2 \ge 0$; 7.2. $z = -x_1 + ax_2 \to \max$, $-x_1 + x_2 \le 2$ $x_1 - 2x_2 \le 3$ $x_1 \ge 0, x_2 \ge 0$.

- **8.** Да се съставят задачи на ЛО, които да имат едно от следните свойства (с P и z са отбелязани съответно допустимото множество и целевата функция):
 - а) задачата има единствено оптимално решение;
 - б) задачата има безбройно много оптимални решения;
 - в) $z \to +\infty$ в P, но задачата за минимум на z в P има единствено оптимално решение;
 - Γ) $z \to -\infty$ и $z \to +\infty$ в P;
 - д) $P = \emptyset$;
 - е) $z \to -\infty$ в P, но задачата за максимум на z в P има безбройно много оптимални решения.

Отговори и решения

- **1.1.** max: $\left(\frac{15}{4}, \frac{3}{2}\right)^{\text{T}}$, $z^* = 9$; min: $(0, 0)^{\text{T}}$, $z^* = 0$.
- **1.2.** max: $z \to +\infty$ в допустимото множество; min: $\mathbf{x}_{\lambda} = (2 \lambda, 0)^{\mathrm{T}}$ за $0 \le \lambda \le 1, z^* = 0$.
- **1.3.** max: $\mathbf{x}_{\lambda} = (\lambda, 1 + \lambda)^{\mathrm{T}}$ за $\lambda \geq 0, z^* = 3$; min: $z \to -\infty$ в допустимото множество.
 - **1.4.** max: $z \to +\infty$ в допустимото множество; min: $(0, 1)^{T}$, $z^{*} = 0$.
 - **1.5.** max: $(3,0,1,-1)^T$, $z^* = 4$; min: $(3,2,-1,-1)^T$, $z^* = 0$.
 - **1.6.** max: $\mathbf{x}_{\lambda} = (6 6\lambda, 4\lambda, 2\lambda 1)^{\mathrm{T}}, \ 0 \le \lambda \le 1$; min: $\left(\frac{1}{5}, 0, \frac{24}{5}\right), z^* = -\frac{23}{5}$.
- **1.7.** тах: оптимални решения са всички точки от правата $x_1 x_2 = 1$, в частност $\overline{\mathbf{x}} = (1,0)^T$; при направляващ вектор $\mathbf{p} = (1,1)^T$ на тази права оптималните решения са $\mathbf{x}_{\lambda} = \overline{\mathbf{x}} + \lambda \mathbf{p} = (1+\lambda,\lambda)^T$, $\lambda \in (-\infty,\infty)$, $z^* = 2$; min: оптимални решения са всички точки от правата $-x_1 + x_2 = 1$, в частност $\overline{\mathbf{y}} = (0,1)^T$; общият вид на оптималните решенията е $\mathbf{x}_{\lambda} = \overline{\mathbf{y}} + \lambda \mathbf{p} = (\lambda,1+\lambda)^T$, $\lambda \in (-\infty,\infty)$, $z^* = -2$.
 - **1.8.** max: $z \to +\infty$ B P; min: $\left(0, \frac{1}{2}, 0, 2\right)^{\mathrm{T}}$, $z^* = -\frac{1}{2}$.
- **1.9.** От системата уравнения имаме $x_{n-2} = 3 (x_{n-1} + x_n)$ и $x_k = 1$ за $k = 1, \ldots, n-3$; двумерната задача е

$$\max \left\{ \overline{z} = \frac{1}{2}(n^2 + n - 6) + x_{n-1} + 2x_n : x_{n-1} + x_n \le 3, \ x_{n-1} \ge 0, \ x_n \ge 0 \right\},\,$$

откъдето получаваме оптимално решение за максимум $(1,1,\ldots,1,0,0,3)^{\mathrm{T}},$ $z^*=\frac{1}{2}(n^2+n+6)$ и за минимум — $(1,1,\ldots,1,3,0,0)^{\mathrm{T}},$ $z^*=\frac{1}{2}(n^2+n-6).$

2.1. max: $\alpha \in \left[0, \frac{\pi}{2}\right]$; при $\alpha = 0$ ($c_2 = 0$, $c_1 > 0$): $\mathbf{x}_{\lambda} = (0, -\lambda)^{\mathrm{T}}$, $\lambda \geq 0$, $z^* = 0$; при $\alpha \in \left(0, \frac{\pi}{4}\right)$: $(0, 0)^{\mathrm{T}}$; при $\alpha = \frac{\pi}{4}$ ($c_1 = c_2 > 0$): $\mathbf{x}_{\lambda} = (-\lambda, \lambda)^{\mathrm{T}}$, $\lambda \in [0, 1]$, $z^* = 0$; при $\alpha \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$: $(-1, 1)^{\mathrm{T}}$, $z^* = -c_1 + c_2$; при $\alpha = \frac{\pi}{2}$ ($c_1 = 0$, $c_2 > 0$): $\mathbf{x}_{\lambda} = (-1 - \lambda, 1)^{\mathrm{T}}$, $\lambda \geq 0$, $z^* = c_2$; min: $\alpha \in \left[\pi, \frac{3\pi}{2}\right]$.

Упражнение 2

- **2.2.** max: $\alpha \in \left[-\frac{\pi}{2}, 0\right]$; при $\alpha = 0$ ($c_2 = 0$, $c_1 > 0$): $\mathbf{x}_{\lambda} = (1, \lambda)^{\mathrm{T}}$, $\lambda \geq 0$, $z^* = c_1$; при $\alpha \in \left(0, \frac{\pi}{4}\right)$: $(1, 0)^{\mathrm{T}}$, $z^* = c_1$; при $\alpha = -\frac{\pi}{4}$ ($c_1 = -c_2 > 0$): $\mathbf{x}_{\lambda} = (\lambda, \lambda 1)^{\mathrm{T}}$, $0 \leq \lambda \leq 1$, $z^* = c_1$; при $\alpha \in \left[-\frac{\pi}{4}, -\frac{\pi}{2}\right]$: $(0, 1)^{\mathrm{T}}$, $z^* = -c_2$; при $\alpha = -\frac{\pi}{2}$ ($c_1 = 0$, $c_2 < 0$): $\mathbf{x}_{\lambda} = (-\lambda, -1)^{\mathrm{T}}$, $\lambda \geq 0$, $z^* = -c_2$; min: $\alpha \in \left[\frac{\pi}{2}, \pi\right]$.
- **2.3.** max: $\alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$; при $\alpha = -\frac{\pi}{2}$ ($c_1 = 0$, $c_2 < 0$): $\mathbf{x}_{\lambda} = (1 \lambda, 0)^{\mathrm{T}}$, $\lambda \geq 0$, $z^* = 0$; при $\alpha \in \left(-\frac{\pi}{2}, \frac{\pi}{4}\right)$: $(1, 0)^{\mathrm{T}}$, $z^* = c_1$; при $\alpha = \frac{\pi}{4}$ ($c_1 = c_2 > 0$): $\mathbf{x}_{\lambda} = (\lambda, 1 \lambda)^{\mathrm{T}}$, $0 \leq \lambda \leq 1$, $z^* = c_1$; при $\alpha \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$: $(0, 1)^{\mathrm{T}}$, $z^* = c_2$; при $\alpha = \frac{\pi}{2}$ ($c_1 = 0$, $c_2 > 0$) $\mathbf{x}_{\lambda} = (-\lambda, 1)^{\mathrm{T}}$, $\lambda \geq 0$, $z^* = c_2$; min: $\alpha \in \left[\frac{\pi}{2}, \pi\right]$.
- **2.4.** max: $\alpha \in \left[\frac{3\pi}{4}, \frac{5\pi}{4}\right]$; при $\alpha = \frac{3\pi}{4}$: $\mathbf{x}_{\lambda} = (\lambda, \lambda)^{\mathrm{T}}, \ \lambda \geq 0$; при $\alpha \in \left[\frac{3\pi}{4}, \frac{5\pi}{4}\right]$: $(0,0)^{\mathrm{T}}$; при $\alpha = \frac{5\pi}{4}$: $\mathbf{x}_{\lambda} = (\lambda, -\lambda)^{\mathrm{T}}$ за $\lambda \geq 0$; във всички случаи $z^* = 0$; min: $\alpha \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$.
- **2.5.** max: $\alpha \in \left[\frac{3\pi}{4}, \frac{3\pi}{2}\right]$; при $\alpha = \frac{3\pi}{4}$ $(c_1 = -c_2 < 0)$: $\mathbf{x}_{\lambda} = \left(\frac{1}{2} + \lambda, \frac{1}{2} + \lambda\right)$, $\lambda \geq 0$; $z^* = 0$; при $\alpha \in \left(\frac{3\pi}{4}, \frac{5\pi}{4}\right)$: $\left(\frac{1}{2}, \frac{1}{2}\right)$, $z^* = \frac{1}{2}(c_1 + c_2)$; при $\alpha = \frac{5\pi}{4}$ $(c_1 = c_2 < 0)$: $\mathbf{x}_{\lambda} = \left(1 \frac{1}{2}\lambda, \frac{1}{2}\lambda\right)^{\mathrm{T}}$, $\lambda \in [0, 1]$, $z^* = c_1$; при $\alpha \in \left(\frac{5\pi}{4}, \frac{3\pi}{2}\right)$: $(1, 0)^{\mathrm{T}}$, $z^* = c_1$; при $\alpha = \frac{3\pi}{2}$ $(c_1 = 0, c_2 < 0)$: $\mathbf{x}_{\lambda} = (1 + \lambda, 0)^{\mathrm{T}}$, $\lambda \geq 0$, $z^* = 0$; min: $\alpha \in \left[-\frac{\pi}{4}, \frac{\pi}{2}\right]$.
- **2.6.** max: $\alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{4}\right]$; при $\alpha = -\frac{\pi}{2}$ ($c_1 = 0, c_2 < 0$): $\mathbf{x}_{\lambda} = (-\lambda, 1)^{\mathrm{T}}, \ \lambda \geq 0$, $z^* = c_2$; при $\alpha \in \left(-\frac{\pi}{2}, \frac{\pi}{4}\right)$: $(1, 0)^{\mathrm{T}}, \ z^* = c_1$; при $\alpha = \frac{\pi}{4}$ ($c_1 = c_2 > 0$): $\mathbf{x}_{\lambda} = (1 \lambda, \lambda)^{\mathrm{T}}, \ \lambda \geq 0, \ z^* = c_2$; min: $\alpha \in \left[\frac{\pi}{2}, \frac{5\pi}{4}\right]$.
- **3.1.** а) $\alpha \in \left[\frac{\pi}{2}, \frac{3\pi}{4}\right] \cup \left[\frac{3\pi}{2}, \frac{7\pi}{4}\right]$; б) при $c_1 = c_2 = k < 0$, т.е. $\mathbf{c} = (k, k)^T$: $\mathbf{x}_{\lambda} = \left(4 \frac{9}{2}\lambda, \frac{9}{2}\lambda\right)^T$, $\lambda \in [0, 1]$.
- **3.2.** а) $\alpha \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right] \cup \left[\frac{3\pi}{4}, \frac{5\pi}{4}\right]$; б) при $c_1 = -\frac{c_2}{2} = k > 0$, т. е. $\mathbf{c} = (k, -2k)^\mathrm{T}$ за k > 0: $\mathbf{x}_{\lambda} = (-4\lambda, 2 2\lambda)^\mathrm{T}$, $\lambda \in [0, 1]$.
 - **4.1.** $-\frac{4}{3} \le a \le 2$.
 - **4.2.** $a \ge 2$.
 - **4.3.** a > -1.
 - **4.4.** $-\frac{1}{4} \le a < \frac{1}{3}$; $P = \emptyset$ 3a $-\infty < a < \frac{1}{4}$.

4.5.
$$\frac{1}{2} \le a < 2$$
.

4.6.
$$a = 0$$
; $P = \emptyset$ 3a $a < 0$.

- **5.** $0 \le a \le 1$; при a=0; $\mathbf{x}_{\lambda}=(0,-\lambda)^{\mathrm{T}},\ \lambda \ge 0$; при a=1: $\mathbf{x}_{\lambda}=(\lambda-1,1-\lambda)^{\mathrm{T}},$ за $\lambda \in [0,1]$; при $a \in (0,1)$: $(0,0)^{\mathrm{T}}.$
 - **6.1.** $a \in \left[\frac{1}{3}, 1\right]$: $z^* = 2a 3$, $\mathbf{x}^* = (2, 3)^{\mathrm{T}}$; $a \in (1, \infty)$: $z^* = -\infty$.
 - **6.2.** $a \in (-\infty, -1)$: $z^* = +\infty$; $a \in \left[-1, -\frac{1}{3}\right]$: $z^* = 2a + 1$, $\mathbf{x}^* = (2, -1)^{\mathrm{T}}$.
- **7.1.** а) върховете: $(5,0)^{\mathrm{T}}$ за $a\in\left(-\infty,-\frac{2}{3}\right)$, $(6,3)^{\mathrm{T}}$ за $a\in\left[-\frac{2}{3},4\right]$, $(2,5)^{\mathrm{T}}$ за $a\in\left[4,+\infty\right)$; б) няма такива a; в) $a=-\frac{2}{3},\ a=4$.
- **7.2.** а) върховете: $(0,0)^{\mathrm{T}}$ за $a \in (-\infty,0)$, $(0,2)^{\mathrm{T}}$ за $a \in [0,1]$; б) $a \in (1,+\infty)$; в) a = 0, a = 1.
- **8.** а) например зад. 1.1; б) например зад. 1.6 за максимум; в) например зад. 1.4; г) например зад. 1.7, но с $c_1 \neq -c_2$ в z: например $z = 2x_1 + 3x_2$; д) например $P = \{\mathbf{x} = (x_1, x_2)^T : -x_1 + x_2 \ge 1, x_1 x_2 \ge 1\}$; е) например зад. 1.3.

12 15 юни 2010 г.