Quantum Computing CHEAT SHEET for circuit ungicinus

Measurement

Bits and Qubits

Instead of classical bits, quantum computers use quantum bits (or qubits for short).

Multiple qubits form a **register**. The number of computational states doubles with each new qubit. A state with multiple qubits involved is often denoted like $|00\rangle = |0\rangle \otimes |0\rangle$ (where \otimes is the tensor product)

# qubits	# basis states	example
1	2	$ \bigcirc\!$
2	4	$ _{\text{(i)}} _{\text{(i)}} _{\text{(i)}} _{\text{(i)}} _{\text{(i)}} _{\text{(i)}} \frac{1}{2} 00\rangle + \frac{1}{2} 01\rangle + \frac{1}{2} 10\rangle + \frac{1}{2} 11\rangle $
3	8	$ \underbrace{ \bigoplus_{[0]} \bigoplus_{[1]} \bigoplus_{[2]} \bigoplus_{[3]} \bigoplus_{[3]} \bigoplus_{[6]} \bigoplus_{[6]} \bigoplus_{[6]} \underbrace{ \bigoplus_{[7]} \frac{1}{2\sqrt{2}} [000] - \frac{1}{2\sqrt{2}} [001) - \frac{1}{2\sqrt{2}} [010] - \frac{1}{2\sqrt{2}} [011] }_{2\sqrt{2}} [011] $

Two or more qubits can be **entangled**, meaning that the state cannot be factorized as a product of states:

created, for example, with this circuit

One-Qubit Gates Gate

X	Pauli-X is a 180° rotation around the x-axis; also known as the quantum NOT gate

Pauli-Y is a 180°

rotation around the

Matrix

Hadamard maps |0>

to $|+\rangle$ and $|1\rangle$ to $|-\rangle$;

used to create an egual superposition

Binary and decimal: You will find both the use of the binary representation of qubit states as well as the decimal representation.

Decimal	Binary	Decimal	Binary
$ 0\rangle$	$ 000\rangle$ means that the first	$ 4\rangle$	$ 100\rangle$
$ 1\rangle$	$ 001\rangle$ and second qubit are $ 1\rangle$ and the third	$ 5\rangle$	$ 101\rangle$
$ 2\rangle$	$ 010\rangle$ qubit is $ 0\rangle$	$ 6\rangle$	$ 110\rangle$
$ 3\rangle$	$ 011\rangle^{r}$	$ 7\rangle$	$ 111\rangle$

Multi-Qubit Gates

Toffoli applies a Pauli-X gate to the target gubit if both control gubits are in state $|1\rangle$; can be used to construct a reversible version of the classical AND-gate

0 1 0 0 0 0 0 1

Matrix

Ket and circle notation $a|00\rangle + b|01\rangle + c|10\rangle + d|11\rangle$ = $a|00\rangle + b|01\rangle + d|10\rangle + c|11\rangle$

one or multiple qubits

and are called gates

Building Blocks for Quantum Algorithms

There are many clever ways to arrange quantum circuits. A couple of them

Increment & decrement are used to add or subtract one from a register and are an example of how to do arithmetic with quantum gates

Swap test allows for checking how similar the states in two registers are.

Amplitude Amplification converts phase differences into amplitude

appropriate circuit

Quantum Fourier Transform can reveal the signal frequency in a register. Among other algorithms, it is used in Shor's algorithm for factoring numbers and computing the discrete logarithm.

