Bolometer data reduction

Basic concepts and application with BoA

Frédéric Schuller — MPIfR / ESO / CEA Saclay

ESO Single Dish 2018 Workshop

2018/03/15

Introduction

- Bolometers = thermometers, sensitive to all incoming radiation
- ⇒bolometer signal = sky + astronomical source + noise

Introduction

- Bolometers = thermometers, sensitive to all incoming radiation
- ⇒bolometer signal = sky + astronomical source + noise
- Critical steps in bolometer data reduction:
- > extract astronomical signal from [NOISE + signal]
- flux calibration (= good estimate of sky opacity)

Skynoise and signal

Variations of sky emission = **skynoise**

Amplitude: typically 10s or 100s of Jy

Neptune: 23 Jy

Pointing source: ~1 Jy

Science target << 1 Jy

Skynoise and signal

Skynoise is **correlated** between bolometers

The source is seen by different bolometers at different times

Flux calibration

- Data recorded in some instrumental unit (counts)
- > Convert to astronomical unit: Jy, or Jy/beam
- Need to correct for absorption in atmosphere :
 - → Estimate zenithal opacity, tau_z
 - → Correct for line-of-sight opacity

$$tau_{LOS} = tau_{z} / sin(El)$$

$$F(real) = F(obs) * exp(tau_{LOS})$$

Flux calibration

Data recorded in some instrumental unit (counts) Convert to astronomical unit: Jy, or Jy/beam

- Need to correct for absorption in atmosphere :
 - → Estimate zenithal opacity, tau_z

Opacity estimate

- Skydips: measure sky emission versus elevation
- Radiometer : PWV + instrument bandpass → tau
- Primary and secondary calibrators:
 - primary = planets (Mars, Uranus, Neptune)
 - secondary = bright, stable sources
- Use skydips + calibrators observed with your project

(LABOCA: see also online interface)

Opacity estimate: bolotip

But... usually underestimated => $tau = tau_{SD} x 1.3$ (for LABOCA)

F. Schuller – Bolometer data reduction with Boa

Calibrators

• Primary calibrators, example: Neptune

```
> redcal(17718)
(...)
```

```
FLUX Neptune: 28.30 [expected: 23.09, 122.53 percent]
```

Calibrators

Secondary calibrators, example: N2071IR

```
> redcal(17752)
(...)
```

```
FLUX N2071IR: 9.82 [expected: 9.10, 107.86 percent]
```

Data reduction

Step by step...

Correlated noise removal

In BoA:
sky emission

=
median of
bolometer
signal

> medianNoiseRemoval(...)

F. Schuller – Bolometer data reduction with Boa

Correlated noise removal

LABOCA-specific

- > # Amplifier box: 80 bolometers connected
- > correlbox(data,factor=0.9,nbloop=2)
- > # Groups = 26 bolometers connected to same cable
- > correlgroup(data,factor=0.9,nbloop=2)

ArTéMiS

- Correlated signal per sub-array
- Rows and columns in each sub-array (caution with extended sources)

Correlated noise removal

correlbox

Scan: 17718 (1) -* Neptune *- 2014-04-26T16:28:51

correlgroup

Final steps

- flag noisy channels
- despiking (WARNING with bright sources)
- high-pass filter (WARNING with extended emission)
- computing weights $(1/\sigma^2)$
- compute map in EQ (or GAL, or HO, or...)

BoA-specific: the map limits have to be input by the user if several scans are going to be combined

Build a map

F. Schuller – Bolometer data reduction with Boa

Combine several scans

- Processing of individual scans (calibration, skynoise removal, despiking, weighting, ...)
- Compute a map for each scan
- Co-add maps with proper weighting
- · BoA: co-add individual maps with 'mapsumfast'
- > mtot = mapsumfast[mapList]
- Finally, display / save / export the results

Combined map

Iterative reduction

- Use combined map, or S/N map, to mask the data
- Process each scan individually
- Then combine all scans as before
- New result (combined map) = input for next iteration
- Can also subtract a map in the data
 - ⇒ all data considered in all steps

(masked data are **not** considered, but results of all operations also applied)

Combined map: 2nd iteration

- Plot bolometer signals
- > sig(74)
- > sig(range(50,100))
- Plot telescope pattern
- > azelo()
- > azel()

- Plot bolometer signals
- > sig(74)
- > sig(range(50,100))
- Plot telescope pattern
- > azelo()
- > azel()
- Plot bolometer array
- > plotArray(num=1)

• Plot bolometer array: > plotArray(num=1)

F. Schuller – Bolometer data reduction with Boa

Most useful feature

Each function is self-documented!

- What does flagSpeed do?
- > print flagSpeed.__doc__

```
> DES: Flag data according to telescope speed
> INP: (float) below = flag data below this value
> (float) above = flag data above this value
> (int) flag = flag to be set (default 3 'ELEVATION VELOCITY THRESHOLD')
```

Most useful feature

Each function is self-documented!

- What does writeFits do?
- > print data.Map.writeFits.__doc__

Conclusions

- Tricky step = flux calibration.
 What to trust? skydips? radiometer → tau?
 primary calibrators? secondary calibrators?
 Typical uncertainty 10% (LABOCA) to 20% (SABOCA)
- Parameters specific to kind of source:
 - nb loops for various correlated noise removal
 - despike: caution with bright sources!
 - FFT filtering / baseline : caution with extended emission!

Conclusions

• Importance of iterative processing, especially with bright or extended sources – e.g. Belloche et al. 2011, A&A 535

• BoA can reduce data from LABOCA, SABOCA, ArTéMiS, but also SHFI, CHAMP+...

Thank you!