PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-233163

(43) Date of publication of application: 10.09.1996

(51)Int.CI.

F16L 15/00 C23C 22/07

(21)Application number: 07-043245

(71)Applicant: NIPPON STEEL CORP NIPPON PARKERIZING CO LTD

(22)Date of filing:

02.03.1995

(72)Inventor: TSURU EIJI

OKA MASAHARU HIGUCHI YUKINOBU INOUE RYUSUKE

(54) SCREW JOINT EXCELLENT IN SEIZURE RESISTANCE WITH NO LUBRICANT APPLIED (57)Abstract:

PURPOSE: To enhance seizure resistance under no lubricant by providing a phospholic acid system chemical conversion treatment coated layer or a nitriding treated layer and the phosphoric system chemical conversion treatment coated layer for the contact surface of a box or a pin, forming a resin coated layer over the aforesaid layer, and making the film thickness of the resin coated layer thicker than the surface roughness of the phosphoric acid system chemical conversion treatment coated laver.

CONSTITUTION: The surface condition of steel pipe joint is represented in RM as the surface roughness of a phosphoric acid system chemical conversion treatment coated layer 5 or a nitriding treated layer and the phosphoric acid system chemical conversion treatment coated layer. A resin coated film 6 in which molybdenum disulfide powder is dispersed in resin so as to be mixed therewith, is formed over these substrate treated layers. and the film thickness δc is so determined as to be RM <

δc. By this constitution, an excellent pipe screw joint can be obtained, which does not require any lubricant at all, and does not cause any galling even if it is repeatedly fastened and loosened.

LEGAL STATUS

[Date of request for examination]

02.11.1999

[Date of sending the examiner's decision of

14.05.2002

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

BEST AVAILABLE COPY

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平8-233163

(43)公開日 平成8年(1996)9月10日

(51) Int.Cl.6

觀別記号

庁内整理番号

FΙ F16L 15/00 技術表示箇所

F16L 15/00 C 2 3 C 22/07

C 2 3 C 22/07

審査請求 未請求 請求項の数5 OL (全 10 頁)

(21)出願番号

(22)出願日

特願平7-43245

平成7年(1995) 3月2日

(71)出願人 000006655

新日本製鐵株式会社

東京都千代田区大手町2丁目6番3号

(71)出願人 000229597

日本パーカライジング株式会社

東京都中央区日本橋1丁目15番1号

(72)発明者 津留 英司

福岡県北九州市戸畑区飛幡町1番1号 新

日本製鐵株式会社八幡製鐵所內

(72) 発明者 岡 正春

福岡県北九州市戸畑区飛幡町1番1号 新

日本製鐵株式会社八幡製鐵所内

(74)代理人 弁理士 椎名 彊 (外1名)

最終頁に続く

(54) 【発明の名称】 無潤滑下での耐焼付き性に優れたネジ継手

(57)【要約】

【目的】 グリスなどの液体潤滑剤を一切使用すること なく、繰り返しの締め、緩みに対してゴーリングを起こ すことなく、かつシール性等の使用性能も満足すること が出来る無潤滑下での耐焼付き性に優れたネジ継手を提 供すること。

【構成】 管のネジ継手において、ボックスまたはピン の接触表面に、燐酸系化成処理被膜層あるいは窒化処理 層と燐酸系化成処理被膜層を設けると共に、二硫化モリ ブデン粉末を樹脂に分散混合した樹脂被膜層を該燐酸系 化成処理被膜層上に形成し、前記樹脂被膜の膜厚を該燐 酸系化成処理被膜層の表面粗さ以上とするか、または、 それに加えて相対する摺動面の表面粗さを前記樹脂被膜 層の厚さより小さくし、ピン、ボックス螺合時にグリス 及び液体潤滑剤なしの無潤滑下での耐焼付き性に優れた ネジ継手。

【特許請求の範囲】

【請求項1】 雄ネジとネジなし金属接触部からなるピンと雌ネジとネジなし金属接触部からなるボックスから構成される管のネジ維手において、ボックスまたはピンの接触表面に、燐酸系化成処理被膜層あるいは窒化処理層と燐酸系化成処理被膜層を設けると共に、二硫化モリブデン粉末を樹脂に分散混合した樹脂被膜層を該燐酸系化成処理被膜層上に形成し、前記樹脂被膜の膜厚を該燐酸系化成処理被膜層の表面粗さ以上としたピン、ボックス螺合時にグリス及び液体潤滑剤なしの無潤滑下での耐焼付き性に優れたネジ維手。

【請求項2】 雄ネジとネジなし金属接触部からなるピンと雌ネジとネジなし金属接触部からなるボックスから構成される管のネジ継手において、ボックスまたはピンの接触表面に、燐酸系化成処理被膜層あるいは窒化処理層と燐酸系化成処理被膜層を設けると共に、二硫化モリブデン粉末を樹脂に分散混合した樹脂被膜層を該燐酸系化成処理被膜層上に形成し、前記樹脂被膜の膜厚を該燐酸系化成処理被膜層の表面粗さ以上とし、かつ相対する摺動面の表面粗さを前記樹脂被膜層の厚さより小さくし、ピン、ボックス螺合時にグリス及び液体潤滑剤なしの無潤滑下での耐焼付き性に優れたネジ継手。

【請求項4】 雄ネジとネジなし金属接触部からなるピンと雌ネジとネジなし金属接触部からなるボックスから構成される管のネジ継手において、ボックスまたはピンのいずれか一方の接触表面に、厚さ $5\sim30\mu$ mの燐酸系化成処理被膜層、あるいは厚さ $1\sim20\mu$ mの窒化処理層と厚さ $5\sim30\mu$ mの燐酸系化成処理被膜層を設けると共に、二硫化モリブデン粉末を樹脂に、 $0.2\leq\{($ 二硫化モリブデン粉末を樹脂に、 $0.2\leq\{($ 二硫化モリブデン粉末を樹脂を製度を設けると共に、二硫化モリブデン粉末を樹脂で、 $0.2\leq\{($ 二硫化モリブデン粉末を樹脂で、 $0.2\leq\{($ 二硫化甲リブデン粉末及間脂被膜層を該燐酸系化成処理被膜層を設構的表化成処理被膜層上に厚さ $10\sim45\mu$ mに形成し、制能を設けるとし、かつ相対する摺動面の表面粗さを前記樹脂を以上とし、かつ相対する摺動面の表面粗さを前記樹脂を以上とし、かつ相対する摺動面の表面粗さを前記樹脂を以上とし、かつ相対する摺動面の表面粗さを前記樹脂を以上とし、かつ相対する摺動面の表面粗さを前記樹脂を以上とし、かつ相対する潤動面の表面粗さを前記樹脂を以上とし、かつ相対する潤動面の表面粗さを前記樹脂を以上とし、かつ相対する潤動面の表面粗さを前記樹脂を以上とし、かつが大力な複響を表現である。

【請求項5】 請求項1~4記載の樹脂に腐食抑制剤を 分散混合したことを特徴とする無潤滑下での耐焼付き性 に優れたネジ継手。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、無潤滑下での耐焼付き性に優れたネジ継手に関し、更に詳しくは原油採掘に使用する油井管ネジ継手や採掘された原油を輸送するラインパイプ用ネジ継手において、グリスを塗布しない繰り返し締め付け、緩めに対しても継手が焼付くことなく、繰り返し使用できる管のネジ継手に関するものである。【0002】

【従来の技術】油井掘削時に使用するチュービングやケーシングには一般にネジ継手が用いられている。これらのネジ継手には使用環境下で内外圧、軸力、曲げ等を複合して被るため、これらの複合荷重下においても継手がリークしないこと、継手が破損しないことが要求される。一方、チュービングやケーシングの降下作業時には一度、締め込んだ継手を緩めることもあり、一般にチュービングで10回、ケーシングで3回の締め緩めに対しても継手が焼き付くことなく使用できることがAPI(米国石油協会)でも望まれている。上記の要求性能を満たすためには、API BUL5A2に述べられているコンパウンドグリスを塗布して継手を締め込むことが現在まで常識化している。ここでのコンパウンドグリスの役割は耐焼付き性の確保とシール性の向上にある。

【0003】その後、シール性をより向上させる発明と して金属対金属接接触部を有する特殊ネジ継手、すなわ ち、プレミアムジョイントの開発が盛んになされ、種々 な形状のシール部を有するプレミアムジョイント (特公 昭59-44552号公報、特公平5-41876号公 報)が発明されている。このような発明により、継手の ガスシール性は管体降伏強度と同等以上にまで向上させ るに至った。しかしながら、より優れたシール性を得る には金属接触部に母材の降伏点をも越えるような、より 高い面圧を付与しなければならないため、焼付きの中で も修復不可能なゴーリングが発生し易くなり、ゴーリン グを防止する研究が盛んに行われるようになってきた。 【0004】このゴーリング防止対策として、コンパウ ンドグリスに亜鉛、鉛、銅等の重金属粉、あるいは雲母 等の無機物を適切に含有させるグリスの開発やシール部 形状に工夫を凝らすことで局部面圧を軽減するもの(特 開昭62-209291号公報、特開平4-27739 2号公報)や、シール面の性状を制御したもの(実公平 6-713号公報)や表面処理によりゴーリング性を向 上させるもの(特公平3-78517号公報、特開平5 -117870号公報、特開昭62-258283号公 報、特開昭60-26695号公報、特開昭58-31 097号公報、特開昭58-17285号公報、特開昭 61-124792号公報、特開昭61-136087

号公報)等がある。係る各特許公報に示す技術もそれなりに効果があり、特に適切な表面処理とコンパウンドグリスを用いることで耐焼付き性も実用的に充分な範囲にまで向上してきた。

【0005】特に、特公平3-78517号公報には油井管ネジ継手に二硫化モリブデンを分散混合させた樹脂被膜を形成されるものが知られている。しかし、係る公報は樹脂被膜層を金属対金属接触部の表面粗さ以下に形成さている。これはコンパウンドグリス塗布を念頭に置いたもので、最終表面の凹凸にグリスが封入される効果を狙ったもので、無グリス潤滑下での締め緩めに対しては下地の表面粗さによる選択的接触により安定した耐焼付き性は得られない。また、経時劣化を最小限にするための下地処理の考えはなく、粗さのみについての言及では長期に亘る安定した耐焼付き性を得ることが出来ないという問題がある。

【0006】更に、特開平6-10154号公報には表面処理前の表面最大粗さと表面処理被膜厚さの関係を規定したものが知られている。しかし、係る公報は金属接触部の隙間を小さくすることでシール性の向上を狙ったものであり、尚かつ、コンパウンドグリスの効果について述べているものの、上記同様無潤滑下の耐焼付き性については全く述べられていない。さらに実施例として述べられている金属系の表面処理では無グリス潤滑下での耐焼付き性が期待できないことは前述したとおりである。

[0007]

【発明が解決しようとする課題】このような状況のもと に、近年の研究として塗布したグリスがメークアップ (締め付け) 中に高圧になり使用性能を劣化させること (特開昭63-210487号公報、特開平6-110 78号公報)やコンパウンドグリスに含有されている重 金属分に起因した環境汚染問題などが取り上げられ、重 金属分を含まないコンパウンドグリスの商品化などコン パウンドグリスに関わる問題が生じ始めた。1991年 に制定されたAIP RP5C5にも継手性能に及ぼす グリス量やグリス圧力の問題を評価するプログラムとな っている。それにも増して、コンパウンドグリスの塗布 作業は作業環境を悪化させると同時に作業効率をも低下 させている。従って、このようなコンパウンドグリスを 一切用いることなく、従来の性能、特にゴーリング性を 確保できれば上述した問題点を一掃できる画期的なネジ 継手となる。それにも拘らず、コンパウンドグリスを用 いざるを得ないのは完全無グリス潤滑下では従来の技術 ではゴーリング性が数段劣化することにあった。

【0008】上述しような問題を解消するべき、発明者らは鋭意研究を重ねた結果、従来において継手メークアップ前に塗布していたコンパウンドグリスなどの液体潤滑剤を一切使用することなく、繰り返しの締め、緩めに対してゴーリングを起こすことなく、かつシール性等の

使用性能も満足することが出来る管ネジ継手を提供する ことにある。その発明の要旨とするところは、

(1) 雄ネジとネジなし金属接触部からなるピンと雌ネジとネジなし金属接触部からなるボックスから構成される管のネジ継手において、ボックスまたはピンの接触表面に、燐酸系化成処理被膜層あるいは窒化処理層と燐酸系化成処理被膜層を設けると共に、二硫化モリブデン粉末を樹脂に分散混合した樹脂被膜層を該燐酸系化成処理被膜層上に形成し、前記樹脂被膜の膜厚を該燐酸系化成処理被膜層の表面粗さ以上としたピン、ボックス螺合時にグリス及び液体潤滑剤なしの無潤滑下での耐焼付き性に優れたネジ継手。

【0009】(2)雄ネジとネジなし金属接触部からなるピンと雌ネジとネジなし金属接触部からなるボックスから構成される管のネジ継手において、ボックスまたはピンの接触表面に、燐酸系化成処理被膜層あるいは窒化処理層と燐酸系化成処理被膜層を設けると共に、二硫化モリブデン粉末を樹脂に分散混合した樹脂被膜層を該燐酸系化成処理被膜層上に形成し、前記樹脂被膜の膜厚を該燐酸系化成処理被膜層の表面粗さ以上とし、かつ相対する摺動面の表面粗さを前記樹脂被膜層の厚さより小さくし、ピン、ボックス螺合時にグリス及び液体潤滑剤なしの無潤滑下での耐焼付き性に優れたネジ継手。

【0010】(3) 雄ネジとネジなし金属接触部からなるピンと雌ネジとネジなし金属接触部からなるボックスから構成される管のネジ継手において、ボックスまたはピンの接触表面に、厚さ5~30 μ mの燐酸系化成処理を厚を設けると共に、理被膜層あるいは厚さ1~20 μ mの窒化処理層と共に、二硫化モリブデン粉末を樹脂に、0.2 \leq {(二硫化モリブデン粉末を樹脂に、0.2 \leq {(二硫化モリブデン粉末)の含有量}/{(樹脂)の含有量} \leq 9の割合に分散混合した樹脂被膜層を該燐酸系化成処理被膜層上に厚さ10~45 μ mに形成し、前記樹脂被膜層を該燐酸系化成処理被膜厚を該燐酸系化成処理被膜厚を該燐酸系化成処理被膜層の表面粗さ以上としたピン、ボックス螺合時にグリス及び液体潤滑剤なしの無潤滑下での耐焼付き性に優れたネジ継手。

れたネジ継手。

(5)(1)~(4)記載の樹脂に腐食抑制剤を分散混合したことを特徴とする無潤滑下での耐焼付き性に優れたネジ継手にある。

[0012]

【作用】以下、本発明について図面に従って詳細に説明 する。図1に本発明を適用した継手構成部材の概略図を 示す。図1に示すように、継手部材であるボックス1と ピン(鋼管先端継手部)2について、それぞれの継手部 材を構成するネジ部3および金属-金属接触部4に対し て、ボックス1のみ、あるいはボックス1とピン2の接 触界面に燐酸マンガン系化成処理被膜層または下地窒化 処理と燐酸マンガン系化成処理被膜層および樹脂被膜層 を施し、継手螺合中には係る表面処理層と相対する母材 表面が摺動する。図2は各継手構成部材の組立構成を示 す図である。図2に示すようにボックス1とピン2を嵌 合させ、それぞれのネジ部3、金属-金属接触部4に高 面圧を付与しつつ摺動させる。このような構造におい て、一般に継手径が大きくなるほど耐焼付き性が厳しく なるものである。そこで、例えば10回の締め緩めに対 して、ゴーリングを起こさないことが要求されるチュー ビングサイズの最大径、φ178mmの金属対金属接触 部を有するプレミアムジョイントに対して耐焼付き性の 評価試験を行った。

【0013】図3は各種表面処理とゴーリング発生時の回数との関係を示す図である。図3に示すように、亜鉛メッキ、銅メッキ、錫メッキ、燐酸塩処理、サンドブラストを施したボックスと機械加工のままのピンに潤滑剤を塗布することなく、締め緩めを行った場合の各種類の焼付き発生回数を示しており、最も焼付き性に優れる銅メッキでさえも僅か3回目でゴーリング性を確保することがいかに難易度の高い技術であることが判る。何故ならば、通常プレミアムジョイントはガスシールを行うために金属対金属接触部に600MPaにも及ぶ母材自身の降伏点をも越えるような高面圧を発生し、継手のメークアップ、ブレークアウト中には係る高面圧下で金属同士が摺動するからである。

【0014】そこで、発明者らは高面圧下での潤滑機能に優れる二硫化モリブデンに着目し、油井管ネジ継手に関する固体潤滑被膜の研究に取り組んだ。一般に潤滑剤の潤滑効果は使用条件、すなわち、面圧、摺動速度、潤滑剤の種類及び有無、面性状及び温度等によって大きく異なることも知られている。二硫化モリブデンにおいても、その使用方法により極めて優れた耐焼付き性を発揮したり、通常のグリス潤滑よりも劣る場合があることが知られている。特に二硫化モリブデンの場合、その下地処理とバインダー(結合剤)が潤滑性の良否を左右すると言っても過言ではない。

【0015】以上の理由から耐焼付き性の評価に当たっ

ては実継手を用いることが最も望ましいわけであるが、 先ずは被膜潤滑性の相対比較を行う観点からピンーオン ーディスクタイプの焼付き評価試験機を開発し、小型サ ンプルによる評価を行った。ここでバウデン摩擦試験機 等の既存の焼付き評価試験機を用いず、独自の試験機で 評価に当たったことは、前述のように被膜の耐焼付き向 上効果は使用環境によって大きく異なるためである。プ レミアムジョイントの場合、接触面圧が前述のように非 常に大きいため、小型試験においても係る高面圧を付与 する必要があるからである。図4に本発明での試験の概 要を示す。以下にサンプル及び実験条件を示す。

[0016]

ビン 試験面の形状: R 2 4 mm ディスク 外径: ϕ 2 5 0 mm

表面組さ:0.007mm

試験条件 負荷意:230kg

褶勁速度: 5 m/m i n 回転直径: 1 7 8 mm

温度:20℃ 潤滑剤:なし

【0017】ここで言うピンに耐焼付き性のある被膜を 施し、例えば実継手のボックスを想定し、ディスクには 例えば実継手のピンを想定し、実継手同等の旋盤加工に よる表面粗さを付与した。一回転当たりの摺動距離は1 78mm外径のパイプに相当し、実継手で許される最大 の摺動速度で実継手同等の高面圧を付与した。更に特徴 的なことはグリスなどの潤滑剤を一切用いることなく、 耐焼付き性を評価したことにある。先ず、発明者らは既 存の金属メッキをマトリックスに二硫化モリブデンを分 散混合した表面処理、いわゆる分散メッキの評価を行っ た。その結果を図5に示す。すなわち、図5は分散メッ キによる表面被膜の種類と焼付きまでの摺動距離との関 係を示す図であり、この図より分散メッキの耐焼付き性 はマトリックス金属の耐焼付き性に大きく左右され、二 硫化モリブデンの分散効果は殆ど現れず、むしろ、金属 マトリックス単体の耐焼付き性の方が優れる場合が多い ことが判る。これは高面圧特有の現象であり、軽荷重下 では一般的に言われるように二硫化モリブデンの効果が 現れ、分散メッキの方が優れた耐焼付き性を呈したもの である。

【0018】次に、ポリアミドイミド、エポキシ、フラン等の樹脂をバインダーに二硫化モリブデン粉末を分散混合させたコーティングの評価結果を図6に示す。すなわち、図6は各種樹脂に二硫化モリブデン粉末を分散混合させた被膜と焼付きまでの摺動距離との関係を示す図であり、ここで下地処理としては燐酸マンガン系化成処理を施した。かかる被膜の耐焼付き性は従来最も優れていると言われていた銅メッキの10倍以上の耐焼付き性を呈し、一時的に設定していた最大試験摺動距離80mに達してもコーティングすることはなかった。バインダ

-の種類による耐焼付き性の有意差が明確に現れ、ポリアミドイミド、エポキシ、フランの順に優れていることが判った。これは樹脂自身の引張強度、衝撃値と関係するものである。

【0019】しかも、上述の有機樹脂が、0.2≦ {(二硫化モリブデン粉末)の含有量} / {(樹脂)の含有量} ≦9の割合に分散混合した樹脂被膜層を下地処理である燐酸系化成処理被膜層上に厚さ10~45μmに形成せしめる必要がある。二硫化モリブデン粉末と有機樹脂バインダーの組成比が0.2未満の場合には、形成される固体潤滑被膜層の目的とする潤滑機能の向上効果が得られ難く、また、組成比が9を越える場合には、形成された固体潤滑被膜層の密着性が劣化し、特に被膜層からの二硫化モリブデン粉末の剥離が著しい等の欠点を生じるので好ましくない。従って、固体潤滑被膜層を形成するために使用される処理剤の必須含有成分である二硫化モリブデン粉末と有機樹脂バインダーの含有組成比は0.2~9の範囲とする。

【0020】これらの樹脂被膜層を下地処理された燐酸系化成処理被膜層上に厚さ $10\sim45\mu$ m形成させるもので、この被膜厚さが 10μ m未満の場合には、本発明の目的とする潤滑性能向上の効果が少なく、特に鋼管継手のメークアップとブレークアウトの繰り返し使用回数が減少する等の問題を生ずるので好ましくない。一方、該被膜層の厚さが 45μ mを越える場合には、潤滑機能向上効果が飽和するとともに、経済的に不利である。むしろ、固体潤滑被膜層の密着性が劣化する傾向が増加し、該被膜層の剥離によるムシレの発生する原因になるので好ましくない。従って、樹脂被膜層の厚さは $10\sim45\mu$ mの範囲、好ましくは $15\sim40\mu$ mの範囲に規制した。

【0021】また、コーティングの下地処理は二硫化モ リブデンの特長を活かす最も重要な要素であるため、耐 焼付き性に及ぼす下地処理の影響を評価したものが図7 である。すなわち、図7は各種下地処理した場合の樹脂 に二硫化モリブデン粉末を分散混合させた表面被膜と焼 付きまでの摺動距離との関係を示す図であり、ここでは 下地処理として燐酸マンガン系化成処理、窒化処理、サ ンドブラスト、無処理について評価試験を行った。その 結果、耐焼付き性は燐酸マンガン系化成処理、窒化処 理、サンドブラスト、無処理の順に優れ、下地処理なし の場合は銅メッキ程度の耐焼付き性しかないことが判っ た。また、窒化後燐酸マンガン系処理をすることで耐焼 付き性は最も安定する。もう一つの注目すべきことは、 下地処理にサンドブラストを用いた場合、二硫化モリブ デンの効果に非常にばらつきがでることである。これは グリス潤滑剤を伴わない焼付き試験ではサンドブラスト による凹凸の凸部が選択的に相手金属と接触し、樹脂被 膜が部分的に損耗し、金属同士の凝着が起こりゴーリン グ性は発生し易くなるものと考えられる。

【0022】このメカニズムに着目し、燐酸マンガン系 化成処理について被膜厚さの効果を検討したところ、厚 さ5~30µmの燐酸系化成処理被膜層を設けることが 最適であることが判った。すなわち、燐酸系化成処理被 膜層の厚さが5μm未満では化成処理被膜層の均一被膜 性が十分でなく、固体潤滑被膜層に対する十分な密着性 向上効果、特に腐食環境に長時間曝された場合の密着 性、所謂経時後の密着性向上効果が得られにくく、ま た、固体潤滑被膜層が消耗後の潤滑性能が良くなく、本 発明の目的とする鋼管継手の耐ゴーリング性の向上効果 が不十分である。一方、燐酸系化成処理被膜層が厚さ3 0 µmを越えて生成される場合には、二次結晶が生成さ れる傾向が著しく、該被膜自体の密着性が劣化するとと もに、樹脂被膜層の密着性も劣化させるので好ましくな い。従って、本発明においては、燐酸系化成処理被膜層 が厚さは $5\sim30\mu$ mの範囲、好ましくは $10\sim25\mu$ mの範囲に限定した。

【0023】さらに、本発明においては、必要に応じて 燐酸系化成処理被膜層、特に燐酸マンガン系化成処理被 膜層のさらなる付着強度の向上、あるいは、この被膜層 の均一な生成が阻害される鋼成分の鋼管継手に対する燐 酸マンガン系化成処理被膜層の均一な生成促進および樹 脂被膜層の消耗後の潤滑効果の長時間に亘る確保を目的 として、拡散処理による窒化処理層が燐酸マンガン系化 成処理被膜層の下地処理層として設けられる。而して、 これらの作用、効果を得るためには下地窒化処理層の厚 さは 1μ m以上 20μ m以下の範囲に限定される。この 下地窒化処理層の厚さが1μm未満の場合には、窒化処 理層に欠陥部が多く生成されるため、上記の効果が得ら れにくく好ましくない。一方、下地窒化処理層の厚さが 20μmを越える場合には、上述した効果が飽和すると ともに、むしろ窒化層の硬度が高いために、その厚さ増 加による鋼管継手の材質変化をもたらすため好ましくな い。従って、本発明においては下地窒化処理層の厚さは $1\sim20\mu$ mの範囲、好ましくは $5\sim15\mu$ mの厚さに 限定される。

【0024】このように、下地処理を燐酸系化成処理層に特定した理由として、サンドブラストなどの下地処理 に比べ、燐酸系化成処理は樹脂被膜との密着性の点でも劣化を起こしにくいことと、施工性上の問題である。経時劣化について下地処理に燐酸マンガン系化成処理を形成し、水中に1ケ月浸漬後、密着状況を観察を制たところ、燐酸マンガン系化成処理をしたものには横の浮き上がりが観察されるものもあり、特に湿・核膜の浮き上がりが観察されるものもあり、特に湿・核膜の浮き上がりが観察されるものもあり、特に湿・核膜の浮き上がりが観察されるものもあり、特に湿・樹膜での保存及び使用に問題のあることが判った。場で、サンドブラストを下地処理として用いた場で、サンドブラストを下地処理として用いた。場で、サンドブラスト後望ましくは30分以内にコース構造

上、不可能な場合も多い。これに対して、燐酸マンガン 系化成処理の場合、処理後2週間放置後樹脂被膜を施し ても実使用上問題のないことが確認された。

【0025】グリス潤滑を用いない場合のもう一つの劣化性能として金属密封部のガスシール性がある。無潤滑下でのガスシール性を評価するために継手に10回の締め緩めを繰り返した後、API RP5C5の荷重条件に則って、ガスシール性の評価を試みた。その結果、従来グリス潤滑をしていた場合と同様の加工公差範囲内での評価試験でも継手はリークすることはなかった。これは耐焼付き性を確保するために形成した下地処理の膜以上の樹脂膜厚により、実質上のシールを行う金属接触部界面の凹凸が極めて滑らかになり、尚かつ相対する摺動面との隙間にも樹脂が密封されるため、グリスを用いなくても優れたシール機能が発揮できるものである。

【0026】図8は本発明に係る樹脂被膜の膜厚と燐酸 系化成処理被膜層の表面粗さとの関係を示す図である。 本発明の目的を達成する鋼管継手の表面状態としては、 図8に示すように、燐酸系化成処理被膜層5あるいは窒 化処理層と燐酸系化成処理被膜層の表面粗さ RM と、こ れら下地処理層上に形成した二硫化モリブデン粉末を樹 脂に分散混合した樹脂被膜層6の膜厚δcとすると、R $M < \delta_C$ の関係に成るように形成させることにある。す なわち、樹脂被膜層の膜厚δc を燐酸系化成処理被膜層 あるいは窒化処理層と燐酸系化成処理被膜層の表面粗さ RM より大きくする必要がある。これより小さい場合に は、本発明の目的である耐焼付き性を維持することがで きないばかりか、シール性を維持することができなくな る。また、この燐酸系化成処理被膜層の表面粗さRM は $3\sim30\mu$ mの範囲とする。 3μ m未満では樹脂被膜と の密着性が悪く、30μmを越える表面粗さになると燐 酸系化成処理被膜層の厚さが厚くなり、二次結晶が生成 される傾向が著しく、該被膜層自体がもろくなり、密着 性が逆に劣化させることになる。従って、本発明におい ては、燐酸系化成処理被膜層の表面粗さRM は3~30 μmの範囲に限定した。

【0027】次に、継手の金属接触部の耐焼付き性を向上させる方法に接触界面を意識的に機械加工により粗理を用いずに耐焼付き性を向上させることは一般に用いずに耐焼付き性を向上させることは一般に用いられている手段でコンパウンドグリスを塗布した環境中では一定の効果を上げてきた。しかし、この摺動相手材なく、ここにグリス無潤滑下で評価したもの母材に対してサンドブラストにより表面をRmax = 30μmに対したピンを締め緩めを繰り返した場合の結果を図りに示す。すなわち、図9は摺動相手材にサンドブラストを施した場合の各種表面処理とゴーリング発生時の回数との関係を示す図で、この図に示すように、摺動相材の表面にサンドブラストを施した方が耐焼付き性が劣化

することが判る。この理由として、表面を粗くすることの効果は表面を粗くすることにより接触界面に隙間を設け、その隙間にコンパウンドグリスを封入し、潤滑効果を向上させることにあるわけで、グリス無潤滑下ではこの効果がないばかりか、唯一の耐焼付き性の機能を有する表面処理をサンドブラストの凹凸により、損耗させてしまうからである。

【0028】図10は本発明に係る樹脂被膜の膜厚と燐 酸系化成処理被膜層の表面粗さ及び相対する摺動面の表 面粗さとの関係を示す図である。本発明の目的を達成す るための第2の発明であって、図10に示すように、燐 酸系化成処理被膜層5あるいた窒化処理層と燐酸系化成 処理被膜層の表面粗さ RM とこれら下地処理層上に形成 した二硫化モリブデン粉末を樹脂に分散混合した樹脂被 膜層 6 の膜厚 δ C との間に、R M $< \delta$ C の関係があり、 かつ、相対する摺動面7の表面粗さRmax とするとR \max $< \delta_{C}$ の関係が成り立つように R_{max} を決めること にある。すなわち、相対する摺動面の表面粗さ R max が 樹脂被膜層の膜厚 δ C より大きいと本発明においては、 グリス又は液体潤滑剤がないことからリークを起こし、 本発明の目的を達成することができない。また、この表 面粗さ R_{max} は $1\sim25\mu$ mの範囲とする。 1μ m未満 では継手の生産効率に影響を与えるためで、また、25 μπを越えると潤滑剤が無いために焼付けを起し、シー ル性を劣化させる。従って、相対する摺動面の表面粗さ R_{max} は $1 \sim 25 \mu$ m の範囲が望ましい。その作用、効 果を図11及び図12に示す。

【0029】図11は本発明に係る樹脂膜厚みと表面粗さにおける耐焼付き性との関係を示す図である。すなわち、燐酸マンガン系化成処理を下地処理に二硫化モリブデンをポリアミドイミド樹脂に分散混合した場合の初期の樹脂被膜厚と10回の締め緩の樹脂被膜厚を行ってある。相対する摺動面の表面粗さが粗いほど残存膜厚が小さくなり、耐焼付き性が劣化することが判る。図12は相対する摺動面粗さでのメーク・ブレーク回数と樹脂被膜厚みの減少過程を示す図で、締め緩らの図より、総損耗量が相対する摺動面の粗さと同ちには樹脂被膜の膜厚を相対するあたりから、損耗は減少する傾向にある。従って、耐焼付き性を安定的に得るには樹脂被膜の膜厚を相対するあたりから、損耗は減少する傾向にある。従って、耐焼付き性を安定的に得るには樹脂被膜の膜厚を相対する必要がある。

【0030】更に、二硫化モリブデンを唯一の分散粒子とした樹脂被膜を用いることはグリス潤滑無しの場合、必須条件であったが、係る分散粒子を用いた場合の弊害としてSが水分中などの水素と結び付き、硫化水素を生成し、特に母材が高強度の場合、硫化物応力腐食割れを誘発すると言うものである。このような問題に対処するために、樹脂中に2ーポリメリクリンセード、1ートリエチレントリアミノイミダゾリン(2ーpolymericlinseed、1ーtriethylenetr

iaminoimidazoline)などの腐食抑制 剤を分散させることで耐焼付き性を維持したまま硫化物 応力腐食割れを防止することができるものである。

[0031]

【実施例】鋼管の継手部分である図1に示す継手部材であるボックスとピンについて、それぞれの継手部材を構成するネジ部および金属一金属接触部に対して、下地処理としてボックスの接触界面に燐酸マンガン系化成処理被膜層または下地窒化処理層と燐酸マンガン系化成処理被膜層ないしはサンドブラスト処理を行い、樹脂被膜として二硫化モリブデンとポリアミドイミド樹脂、エポキシ系樹脂及びフラン系樹脂を所定の組成比で構成された固体潤滑剤を塗布し、樹脂被膜の膜厚を変えて設けた。

また、相対する摺動面の粗さを変えたときのゴーリング発生回数を表1に示す。その結果、表1に示すように、最高20回までのグリス潤滑を伴わない実継手の締め緩め試験で本発明の効果の高いことを明確に現している。このようにグリス無潤滑下では摺動面のやすり効果が顕著に現れるため、二硫化モリブデンを樹脂に分散混合させた樹脂被膜を用いる場合、樹脂被膜厚を下地処理の被膜粗度以上に形成すると同時に相対する摺動面の面粗さを前述したように樹脂被膜厚以下に形成させる必要がある。

【0032】 【表1】

_

丧

	下地処理 (被膜表面阻さ)	樹脂被膜 (膜厚)	相対指動面 の表面粗さ	ゴーリング 発生回数	備考
1	窒化 2 μ m 燐酸マンガン系化成 処理被膜表面粗さ 25 μ m	二硫化モリプデン/ ポリアミドイミド樹脂 28μm	7 μ m	2 0 回以上	本発明
2	窒化 2 μ m 燐酸マンガン系化成 処理被膜表面粗さ 20 μ m	二硫化モリプデン/ ポリアミドイミド樹脂 5μm	20 μm	5回	出較
3	窒化 2 μm 燐酸マンガン系化成 処理被膜表面粗さ 20μm	二硫化モリブデン/ ポリアミドイミド樹脂 7μm	7 μ m	8 🖾	#X #9j
-4	窒化 2 μm 燐酸マンガン系化成 処理被膜表面根さ 15μm	二硫化モリプデン/ ポリアミドイミド樹脂 20μm	7 μm	2 0 回以上	本
5	燐酸マンガン系化成 処理被膜表面粗さ 5μm	二硫化モリブデン/ ポリアミドイミド樹脂 25μm	7 μ m	20回以上	A- SA:
6	偽酸マンガン系化成 処理被膜表面粗さ 5μm	二硫化モリプデン/ ポリアミドイミド樹脂 15μm	3 µ m	20回以上	明
7	窒化 2 μm 燐酸亜鉛系化成 処理被膜表面粗さ 12μm	二硫化モリプデン/ ポリアミドイミド樹脂 28μm	7 μ m	20回以上	991
8	サンドブラスト 30μm	二硫化モリプデン/ ポリアミドイミド樹脂 20μm	7 μ m	7 🗇	比
9	サンドブラスト 20μm	二硫化モリブデン/ ポリアミドイミド樹脂 28μm	7 μ m	120	例
10	燐酸マンガン系化成 処理被膜表面粗さ 5μ	二硫化モリブデン/ エポキシ系樹脂 25μm	7 μ m	20回以上	本
11	燐酸マンガン系化成 処理被膜表面粗さ 5μ	二硫化モリブデン/ フラン系樹脂 25 μ m	7 μ m	20回以上	発明

[0033]

【発明の効果】以上述べたように、本発明によるネジ継手は、ボックスまたはピンの接触表面に燐酸系化成処理被膜層あるいは窒化処理層と燐酸系化成処理被膜層を設け、この燐酸系化成処理被膜層上に樹脂被膜層を形成し、この樹脂被膜の膜厚を燐酸系化成処理被膜の表面粗さ以上とするか、また、更に加えて、この樹脂被膜の膜厚を相対する摺動面の表面粗さ以上としたことにより、従来において継手メークアップ前に塗布していたコンパウンドグリスなどの液体潤滑剤を一切使用することなく、繰り返しの締め、緩めに対してゴーリングを起こすことなく、かつシール性等の使用性能も満足することが出来る極めて優れた管ネジ継手を得ることができる。

【図面の簡単な説明】

【図1】本発明を適用した継手構成部材の概略図、

【図2】各継手構成部材の組立構成を示す図、

【図3】各種表面処理とゴーリング発生時の回数との関係を示す図、

【図4】本発明での試験の概要を示す図、

【図5】分散メッキによる表面被膜の種類と焼付きまで の摺動距離との関係を示す図、

【図6】各種樹脂に二硫化モリブデン粉末を分散混合させた被膜と焼付きまでの摺動距離との関係を示す図、

【図7】各種下地処理した場合の樹脂に二硫化モリブデ

ン粉末を分散混合させた表面被膜と焼付きまでの摺動距 離との関係を示す図、

【図8】本発明に係る樹脂被膜の膜厚と燐酸系化成処理 被膜層の表面粗さとの関係を示す図、

【図9】摺動相手材にサンドブラストを施した場合の各種表面処理とゴーリング発生時の回数との関係を示す図、

【図10】本発明に係る樹脂被膜の膜厚と燐酸系化成処理被膜層の表面粗さ及び相対する摺動面の表面粗さとの関係を示す図、

【図11】本発明に係る樹脂被膜厚みと表面粗さにおける耐焼付き性との関係を示す図、

【図12】相対する摺動面粗さでのメーク・ブレーク回数と樹脂被膜厚みの減少過程を示す図である。

【符号の説明】

1 ボックス

2 ピン

3 ネジ部

4 金属接触部

5 燐酸系化成処理被膜層

6 樹脂被膜層

7 相対する摺動面

特許出願人 新日本製鐵株式会社 他1名代理人 弁理士 椎名 彊

【図1】

【図2】

【図3】

【図4】

フロントページの続き

(72)発明者 樋口 征順 福岡県北九州市戸畑区沢見一丁目7-5-208

(72)発明者 井上 隆介 福岡県北九州市小倉北区熊谷 2 - 28-12