Precision and Recall for Time Series

VJAI – Tho Phan – 06/2019

https://arxiv.org/pdf/1803.03639.pdf

Contents

- Introduction
- Contribution
- Precision and recall for ranges
- Experimental study
- Discussion

Scope

Algorithm type: anomaly detection

• Data: Time Series

Figure 1: Anomaly detection in time series data

- Problem
 - Precision
 - Recall

- Problem
 - Precision
 - Recall

(a) Precision = 0.6, Recall = 0.5

Point-based data

Range-based data

Problem

Point-based data	Range-based data	
Independent points	Ordered collection of point	
-	Position of the overlaps	
-	Size of the partial overlaps	

Design goals

Expressive

Flexible

Extensible

Contribution

Redefine *Precision* and *Recall* to encompass range-based anomalies by introducing a customizable mathematical model.

Note:

- It is not a new idea, it extends other classical counterparts (Numeta,...)
- It subsumes the classical one

Notations

Notation	Description	
R, R _i	R, P → real anomaly set, predicted set	
P, P _j	Subscript i, j \rightarrow the i th , j th element in set	
N, N_r, N_p	$N \rightarrow \text{number of points, r and p} \rightarrow R, P$	
α	Relative weight of existence reward	
Υ(), ω(), δ()	Just 3 functions of overlap cardinality, overlap size and positional bias	

Range-based recall

$$Recall_{T}(R, P) = \frac{\sum_{i=1}^{N_{r}} Recall_{T}(R_{i}, P)}{N_{r}}$$

$$Recall_T(R_i, P) = \alpha \times ExistenceReward(R_i, P) + (1 - \alpha) \times OverlapReward(R_i, P)$$

$$Existence Reward(R_i, P) = \begin{cases} 1, & if \sum_{j=1}^{N_p} |R_i \cap P_j| \ge 1 \\ 0, & otherwise \end{cases}$$

Range-based recall

$$Recall_T(R, P) = \frac{\sum_{i=1}^{N_r} Recall_T(R_i, P)}{N_r}$$

 $Recall_T(R_i, P) = \alpha \times ExistenceReward(R_i, P) + (1 - \alpha) \times OverlapReward(R_i, P)$

$$ExistenceReward(R_i, P) = \begin{cases} 1, & if \sum_{j=1}^{N_p} |R_i \cap P_j| \ge 1 \\ 0, & otherwise \end{cases}$$

$$OverlapReward(R_i, P) = CardinalityFactor(R_i, P) \times \sum_{j=1}^{N_p} \omega(R_i, R_i \cap P_j, \delta)$$

$$CardinalityFactor(R_i, P) = \begin{cases} 1, if R_i \text{ overlaps with at most one } P_j \in P \\ \gamma(R_i, P), & \text{otherwise} \end{cases}$$

Range-based recall

```
function \delta(i, AnomalyLength) ▷ Flat bias return 1

function \delta(i, AnomalyLength) ▷ Front-end bias return AnomalyLength - i + 1

function \delta(i, AnomalyLength) ▷ Back-end bias return i

function \delta(i, AnomalyLength) ▷ Middle bias if i ≤ AnomalyLength/2 then return i else return AnomalyLength - i + 1

(b) Positional bias
```

```
\begin{array}{l} \textbf{function} \ \omega(\texttt{AnomalyRange}, \texttt{OverlapSet}, \delta) \\ \text{MyValue} \leftarrow 0 \\ \text{MaxValue} \leftarrow 0 \\ \text{AnomalyLength} \leftarrow \texttt{length}(\texttt{AnomalyRange}) \\ \textbf{for} \ i \leftarrow 1, \texttt{AnomalyLength} \ \textbf{do} \\ \text{Bias} \leftarrow \delta(\texttt{i}, \texttt{AnomalyLength}) \\ \text{MaxValue} \leftarrow \texttt{MaxValue} + \texttt{Bias} \\ \textbf{if} \ \texttt{AnomalyRange}[\texttt{i}] \ \text{in} \ \texttt{OverlapSet} \ \textbf{then} \\ \text{MyValue} \leftarrow \texttt{MyValue} + \texttt{Bias} \\ \textbf{return} \ \texttt{MyValue}/\texttt{MaxValue} \\ & (\texttt{a}) \ \texttt{Overlap size} \\ \end{array}
```

```
Recall_T(R, P) = \frac{\sum_{i=1}^{N_r} Recall_T(R_i, P)}{N_r}
```

 $Recall_T(R_i, P) = \alpha \times ExistenceReward(R_i, P) + (1 - \alpha) \times OverlapReward(R_i, P)$

$$ExistenceReward(R_i, P) = \begin{cases} 1, & if \sum_{j=1}^{N_p} |R_i \cap P_j| \ge 1 \\ 0, & otherwise \end{cases}$$

 $OverlapReward(R_i, P) = CardinalityFactor(R_i, P) \times \sum_{j=1}^{N_p} \omega(R_i, R_i \cap P_j, \delta)$

 $CardinalityFactor(R_i, P) = \begin{cases} 1, if R_i \ overlaps \ with \ at \ most \ one P_j \in P \\ \gamma(R_i, P), & otherwise \end{cases}$

Range-based precision

$$Precision_{T}(R, P) = \frac{\sum_{i=1}^{N_{p}} Precision_{T}(R, P_{i})}{N_{p}}$$

$$Recall_T(R, P) = \frac{\sum_{i=1}^{N_r} Recall_T(R_i, P)}{N_r}$$

 $Recall_T(R_i, P) = \alpha \times ExistenceReward(R_i, P) + (1 - \alpha) \times OverlapReward(R_i, P)$

$$ExistenceReward(R_i, P) = \begin{cases} 1, & if \sum_{j=1}^{N_p} |R_i \cap P_j| \ge 1 \\ 0, & otherwise \end{cases}$$

$$Precision_{T}(R, P_{i}) = CardinalityFactor(P_{i}, R) \times \sum_{j=1}^{N_{T}} \omega(P_{i}, P_{i} \cap R_{j}, \delta)$$

$$CardinalityFactor(P_i, R) = \begin{cases} 1, if P_i \text{ overlaps with at most one } R_j \in R \\ \gamma(P_i, R), & \text{otherwise} \end{cases}$$

Note

$$0 \le \alpha \le 1$$

 $0 \le \gamma() \le 1$ $\gamma() \to 1/f(x)$ i.e. $1/x$ (typical)
 $\alpha, \gamma(), \omega(), \delta()$ are tunable

One more thing, if

 $R_i \in R$ and $P_j \in P$ are unit-size range $\alpha = 0$, $\Upsilon() = 1$, $\delta()$ is flat, $\omega()$ is the same as above

$$Recall_T \equiv Recall = \frac{TP}{TP + FN}$$
 $Precision_T \equiv Precision = \frac{TP}{TP + FP}$

 $Recall_T(R_i, P) = \underset{\alpha}{\alpha} \times ExistenceReward(R_i, P) + \\ (1 - \underset{\alpha}{\alpha}) \times OverlapReward(R_i, P)$ $CardinalityFactor(R_i, P) = \begin{cases} 1, if R_i \ overlaps \ with \ at \ most \ one P_j \in P \\ \underset{\gamma}{\gamma}(R_i, P), & otherwise \end{cases}$

Comparison to the classical point-based model

6/23/2019 Tho Phan - VJAI 14

Comparison to the Numenta Anomaly Benchmark (NAB) scoring model

Comparison to the Numenta Anomaly Benchmark (NAB) scoring model

Sensitivity to positional bias

	Numenta_standard	F1_T_Front_Flat	F1_T_Back_Flat
Front-Predicted	0.67	0.42	0.11
Back-Predicted	0.63	0.11	0.42

(a) Numenta Standard

(b) Numenta Reward-Low-FP

(c) Numenta Reward-Low-FN

Evaluating multiple anomaly detectors

(a) Sine dataset

(c) NYC-Taxi dataset

Scoring Model

(b) ECG dataset

Experimental study Cost analysis

Naïve Optimized

Discussion

Redefine *Precision* and *Recall* to encompass range-based anomalies by introducing a customizable mathematical model.

- 1. How do we extend above idea?
 - 1. other data types
 - 2. other domains
- 2. Is possible to improve the performance of cost analysis?
 - 1. What kind of optimizations do you want to add?
- 3. How do we apply above idea to our project?
- 4. Can we start doing research and writing more papers from above idea?
- 5. Can we combine with other ideas to make somethings new?

Thank you!