

Aproximação de soluções de EDPs via Redes Neurais Fisicamente Guiadas (PINNs)

Samuel Kutz Paranhos

Visão Geral

- 1. O que é uma rede neural?
- 2. O Problema
- 3. Physics Informed Neural Network (PINN)
- 4. Resultados

Motivação: Aproximação de Soluções

No contexto de Equações Diferenciais

• Série de Taylor: Aproxima funções por polinômios.

UFPR 3/27

Motivação: Aproximação de Soluções

No contexto de Equações Diferenciais

- Série de Taylor: Aproxima funções por polinômios.
- Série de Fourier: Aproxima funções por combinações lineares de senos e cossenos.

UFPR 3/27

Motivação: Aproximação de Soluções

No contexto de Equações Diferenciais

- Série de Taylor: Aproxima funções por polinômios.
- Série de Fourier: Aproxima funções por combinações lineares de senos e cossenos.
- Redes Neurais: Aproximam funções através de combinações lineares de função de ativação.

UFPR 3/27

Definição Formal

• Dada uma função $f: \mathbb{R}^n \to \mathbb{R}$, uma rede neural pode ser entendida como uma aproximação F de f definida da seguinte forma:

$$F(\mathbf{x}) \equiv \sum_{j=1}^{N} \alpha_{j} \sigma(\mathbf{w}_{j}^{\mathsf{T}} \mathbf{x} + b_{j}),$$

onde

Definição Formal

• Dada uma função $f: \mathbb{R}^n \to \mathbb{R}$, uma rede neural pode ser entendida como uma aproximação F de f definida da seguinte forma:

$$F(\mathbf{x}) \equiv \sum_{j=1}^{N} \alpha_j \sigma(\mathbf{w}_j^\mathsf{T} \mathbf{x} + \mathbf{b}_j),$$

onde

• $\sigma: \mathbb{R} \to \mathbb{R}$ é uma função não linear a qual chamamos de função de ativação.

Definição Formal

• Dada uma função $f: \mathbb{R}^n \to \mathbb{R}$, uma rede neural pode ser entendida como uma aproximação F de f definida da seguinte forma:

$$F(\mathbf{x}) \equiv \sum_{j=1}^{N} \alpha_j \sigma(\mathbf{w}_j^T \mathbf{x} + \mathbf{b}_j),$$

onde

- $\sigma: \mathbb{R} \to \mathbb{R}$ é uma função não linear a qual chamamos de função de ativação.
- $\mathbf{b} = (b_1, \cdots, b_N)$ é chamado de vetor de vieses. b_j é o viés do j-ésimo neurônio.

Definição Formal

• Dada uma função $f: \mathbb{R}^n \to \mathbb{R}$, uma rede neural pode ser entendida como uma aproximação F de f definida da seguinte forma:

$$F(\mathbf{x}) \equiv \sum_{j=1}^{N} \alpha_j \sigma(\mathbf{w}_j^T \mathbf{x} + \mathbf{b}_j),$$

onde

- $\sigma: \mathbb{R} \to \mathbb{R}$ é uma função não linear a qual chamamos de função de ativação.
- $\mathbf{b} = (b_1, \dots, b_N)$ é chamado de vetor de vieses. b_i é o viés do j-ésimo neurônio.
- $\mathbf{w}_{i} = (w_{1,j}, \cdots, w_{n,j})$ é vetor de pesos do *j*-ésimo neurônio.

Representação Gráfica

Estrutura de uma Rede Neural de 1 camada

Figura: Representação gráfica de uma rede neural.

UFPR 5/27

Teorema da Aproximação Universal

Seja $\sigma: \mathbb{R} \to \mathbb{R}$ uma função contínua discriminatória (uma sigmóide), então dada qualquer $f: \Omega \subset \mathbb{R}^n$ contínua, e $\varepsilon > 0$, existem vetores $\mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_N, \mathbf{w}_s, \mathbf{b}$ e uma função $F: \Omega \subset \mathbb{R}^n$ tais que

$$|F(x) - f(x)| < \varepsilon, \quad \forall x \in \Omega$$

onde

$$F(\mathbf{x}) = \sum_{j=1}^{N} \alpha_j \sigma(\mathbf{w}_j^\mathsf{T} \mathbf{x} + \mathbf{b}_j),$$

$$\mathbf{w}_s = (\alpha_1, \alpha_2, \cdots, \alpha_N) e b = (b_1, b_2, \cdots, b_N)$$

Prova: Veja [Hassoun, 1995] p.48

Camadas de uma Rede Neural

Forma Geral

• De maneira geral, a rede neural pode ser escrita na forma matricial como:

$$F(\mathbf{x}) = \mathbf{w}_{s}^{\mathsf{T}} \sigma(\mathbf{W}\mathbf{x} + \mathbf{b}),$$

onde **W** é uma matriz $N \times n$, com j-ésima linha sendo o vetor \mathbf{w}_{i}^{T} .

Camadas de uma Rede Neural

Forma Geral

• De maneira geral, a rede neural pode ser escrita na forma matricial como:

$$F(\mathbf{x}) = \mathbf{w}_{\mathbf{s}}^{\mathsf{T}} \sigma(\mathbf{W}\mathbf{x} + \mathbf{b}),$$

onde **W** é uma matriz $N \times n$, com j-ésima linha sendo o vetor \mathbf{w}_{i}^{T} .

 Para redes neurais multicamadas, fazemos uma série de composições de funções afim com funções de ativação:

$$F(\mathbf{x}) = \mathbf{W}^{L} \sigma^{L} (\mathbf{W}^{L-1} \sigma^{L-1} (\cdots \sigma^{1} (\mathbf{W}^{0} \mathbf{x} + \mathbf{b}^{0}) \cdots) + \mathbf{b}^{L-1}) + \mathbf{b}^{L},$$

onde \mathbf{W}^l e \mathbf{b}^l são matrizes de pesos e vetores de vieses. A função de ativação σ é uma função de uma variável real, aplicada a cada entrada do vetor.

Funções de Ativação

Importância das Funções de Ativação

- Introduzem não-linearidade, permitindo à rede neural aprender relações complexas.
- Exemplos comuns incluem a função sigmoid, ReLU (Rectified Linear Unit), e a função tangente hiperbólica.

UFPR 8/27

Processo de Treinamento

Como Treinar uma Rede Neural

- Utilizamos um conjunto de dados de treinamento para ajustar os pesos w e os vieses b.
- O objetivo é minimizar a função de perda, que mede o erro entre a saída prevista pela rede e a saída desejada.
- Algoritmos comuns de treinamento incluem Gradient Descent e o otimizador ADAM.

UFPR 9/27

Em resumo, uma rede neural consiste em

• Um aproximador universal de funções não-lineares

Em resumo, uma rede neural consiste em

• Um aproximador universal de funções não-lineares

• Camadas e neurônios, que são *hiper-parâmetros*

Em resumo, uma rede neural consiste em

• Um aproximador universal de funções não-lineares

• Camadas e neurônios, que são hiper-parâmetros

• A função ativação, que também deve ser escolhida

Em resumo, uma rede neural consiste em

• Um aproximador universal de funções não-lineares

- Camadas e neurônios, que são *hiper-parâmetros*
- A função ativação, que também deve ser escolhida
- Para encontrar \mathbf{w} e \mathbf{b} devemos resolver o problema de otimzação dado pela função de perda, também chamada **loss function**

O Problema

A Equação Diferencial Parcial que trataremos consiste em:

$$u_t + u_x + u u_x - u_{xxt} = 0,$$
 $(x, t) \in (-10, 20) \times (0, 4)$
 $u(x, 0) = u_0(x),$ $x \in (-10, 20),$
 $u(-10, t) = g_1(t)$
 $u(20, t) = g_2(t)$ $t \in (0, 4),$

Onde

A Equação Diferencial Parcial que trataremos consiste em:

$$u_t + u_x + u u_x - u_{xxt} = 0,$$
 $(x, t) \in (-10, 20) \times (0, 4)$
 $u(x, 0) = u_0(x),$ $x \in (-10, 20),$
 $u(-10, t) = g_1(t)$
 $u(20, t) = g_2(t)$ $t \in (0, 4),$

Onde

• u = u(x, t) é a função que queremos aproximar

A Equação Diferencial Parcial que trataremos consiste em:

$$u_t + u_x + u u_x - u_{xxt} = 0,$$
 $(x, t) \in (-10, 20) \times (0, 4)$
 $u(x, 0) = u_0(x),$ $x \in (-10, 20),$
 $u(-10, t) = g_1(t)$
 $u(20, t) = g_2(t)$ $t \in (0, 4),$

Onde

• u = u(x, t) é a função que queremos aproximar

• $u_0(x)$ é a condição inicial em t=0

A Equação Diferencial Parcial que trataremos consiste em:

$$u_t + u_x + u u_x - u_{xxt} = 0,$$
 $(x, t) \in (-10, 20) \times (0, 4)$
 $u(x, 0) = u_0(x),$ $x \in (-10, 20),$
 $u(-10, t) = g_1(t)$
 $u(20, t) = g_2(t)$ $t \in (0, 4),$

Onde

- u = u(x, t) é a função que queremos aproximar
- $u_0(x)$ é a condição inicial em t=0
- g_1, g_2 são **condições de contorno** que nos dizem como u se comporta nas bordas do domínio de x.

Para um u_0 específico, a BBM tem solução exata

• Se $u_0(x) = Asech^2(kx)$, então

$$u(x,t) = Asech^2(k(x-ct))$$

Onde

Para um u_0 específico, a BBM tem solução exata

• Se $u_0(x) = Asech^2(kx)$, então

$$u(x,t) = Asech^2(k(x-ct))$$

Onde

• A é dado e chamado de **amplitude**

Para um u_0 específico, a BBM tem solução exata

• Se $u_0(x) = Asech^2(kx)$, então

$$u(x,t) = Asech^2(k(x-ct))$$

Onde

• A é dado e chamado de **amplitude**

• $k = \sqrt{\frac{A}{12 + 4A}}$ e chamado de **frequência**

Para um u_0 específico, a BBM tem solução exata

• Se $u_0(x) = Asech^2(kx)$, então

$$u(x,t) = Asech^2(k(x-ct))$$

Onde

• A é dado e chamado de **amplitude**

• $k = \sqrt{\frac{A}{12 + 4A}}$ e chamado de **frequência**

• $c = 1 + \frac{A}{3}$ e chamado de **velocidade**

Gráfico da u_0

UFPR

• Escolhendo A=5, vamos determinar o domínio (bastante arbitrário) como $x\in (-10,20)$ e $t\in (0,4)$.

UFPR 14/27

• Escolhendo A=5, vamos determinar o domínio (bastante arbitrário) como $x \in (-10,20)$ e $t \in (0,4)$.

• As condições de contorno g_1 e g_2 serão a própria solução exata $\mathbf{u}(\mathbf{x},\mathbf{t})$ em $\mathbf{x}=-10$ e $\mathbf{x}=20$, respecitivamente

• Escolhendo A = 5, vamos determinar o domínio (bastante arbitrário) como $x \in (-10, 20)$ e $t \in (0, 4)$.

• As condições de contorno g_1 e g_2 serão a própria solução exata u(x,t) em x=-10 e x=20, respecitivamente

 Isso nos dá um bom problema teste, pois temos como comparar a solução da rede neural com a solução exata.

Physics Informed Neural Network (PINN)

Modelagem Computacional

$$u_t + u_x + u u_x - u_{xxt} = 0,$$
 $(x, t) \in (-10, 20) \times (0, 4)$
 $u(x, 0) = u_0(x),$ $x \in (-10, 20),$
 $u(-10, t) = g_1(t)$
 $u(20, t) = g_2(t)$ $t \in (0, 4),$

Vamos determinar uma função u(x,t) que resolve simultaneamente os seguintes problemas de otimização:

1.

$$\min |f(x,t)|$$
 s.a. $(x,t) \in (-10,20) \times (0,4)$,

onde

$$f := u_t + u_x + u u_x - u_{xxt}$$

Modelagem Computacional

$$u_t + u_x + u u_x - u_{xxt} = 0,$$
 $(x, t) \in (-10, 20) \times (0, 4)$
 $u(x, 0) = u_0(x),$ $x \in (-10, 20),$
 $u(-10, t) = g_1(t)$
 $u(20, t) = g_2(t)$ $t \in (0, 4),$

Vamos determinar uma função u(x,t) que resolve simultaneamente os seguintes problemas de otimização:

2.

$$\min |u(x,0) - u_0(x)|$$
 s.a. $x \in (-10,20)$.

$$u_t + u_x + u u_x - u_{xxt} = 0,$$
 $(x, t) \in (-10, 20) \times (0, 4)$
 $u(x, 0) = u_0(x),$ $x \in (-10, 20),$
 $u(-10, t) = g_1(t)$
 $u(20, t) = g_2(t)$ $t \in (0, 4),$

Vamos determinar uma função u(x,t) que resolve simultaneamente os seguintes problemas de otimização:

3.

$$\min |u(-10,t) - g_1(t)| + |u(20,t) - g_2(t)|$$
 s.a. $t \in (0,4)$.

A função u(x,t) será aproximada via Redes Neurais por meio da **minimização** do **Erro Médio Quadrático (EMQ)** da função de perda que é dada por

$$\mathsf{EMQ} = \mathsf{EMQ}_f + \mathsf{EMQ}_0 + \mathsf{EMQ}_b$$

Resíduo da EDP

$$\mathsf{EMQ}_f = \frac{1}{N_f} \sum_{i=1}^{N_f} |f(x_i, t_i)|^2,$$

• (x_i,t_i) , $i=1,\cdots,N_f$, representa N_f pontos de colocação escolhidos aleatoriamente em $(-10,20)\times(0,4)$

Resíduo da Condição Inicial

$$\mathsf{EMQ}_0 = \frac{1}{N_0} \sum_{i=1}^{N_0} |u(x_i, 0) - u_0(x_i)|^2,$$

• x_i , $i=1,\cdots,N_0$ representa N_0 pontos de colocação no intervalo (-10,20)

Resíduo da Condição de Contorno

$$\mathsf{EMQ}_b = \frac{1}{N_b} \sum_{i=1}^{N_b} \left| u(x_i, t_i) \right|^2,$$

• (x_i,t_i) , $i=1,\cdots,N_b$ corresponde à N_b pontos de colocação ao longo do conjunto cartesiano $\{-10,20\}\times(0,4)$

O "Dataset"

Seguindo esses valores:

Parâmetro	Valor
Amplitude inicial (A)	5
Domínio espacial (x)	[-10, 20]
Domínio temporal (t)	[0, 4]
Pontos de colocação no domínio (N_f)	15 000
Pontos de colocação na fronteira (N_b)	100
Pontos de colocação no valor inicial (N_0)	100
Neurônios por camada	50
Camadas intermediárias	3
Iterações do otimizador	15 000

UFPR 23/27

exactVSmodel.gif

Utilizando a biblioteca de Python chamada **DeepXDE** [Lu et al., 2021], que tem como objetivo exatamente a implementação de Redes Neurais em Equações Diferenciais, conseguimos obter resultados convincentes do pontencial das PINNs.

UFPR 24/27

exactVSmodel.gif

Obtivemos um erro relativo global de 5.3e-03

Utilizando a biblioteca de Python chamada **DeepXDE** [Lu et al., 2021], que tem como objetivo exatamente a implementação de Redes Neurais em Equações Diferenciais, conseguimos obter resultados convincentes do pontencial das PINNs.

UFPR 24/27

UFPR 25/27

Referências I

Hassoun, M. (1995).
Fundamentals of artificial neural networks.

MIT Press.

Lu, L., Meng, X., Mao, Z., and Karniadakis, G. E. (2021).

DeepXDE: A deep learning library for solving differential equations.

SIAM Review, 63(1):208–228.

UFPR 26/27

Obrigado pela atenção!

Samuel Kutz Paranhos

Universidade Federal do Paraná, CiDAMO