Discrete Mathematics Lecture Notes (WS18/19)

Created by Liang Chun

Lecture 1 (10.10.2018)

Prelude: Motivation

What is the aim of the lecture?

Learn basic frameworks used in all areas of mathematics:

- Mathematicians deal with statements
- Usually the statements are about numbers
- The statements may be true or false
- To descide whether a statement is true or false requires a proof
- Use this framework to acquire some knowledge about principles of counting
- Graph theory has a direct application in real world problems
- The basic knowledge about algebraic methods will be used in coding theory

Example:

- 1. 15 is a multiple of 3
- 2. 20 is a multiple of 3

Theorem: 15 is a multiple of 3

Proof: 15 = 3 * 5

Chapter 1: Principles of Counting

Basic Counting Problems

- Permutation: $\frac{n!}{(n-r)!}$ Combinations: $\frac{n!}{(n-r)!r!}$

Definition 1.2.1

Remarks

Supose that X and Y are sets. We say that we have a function/map from X to Y if for each $x \in X$ we can specify a unique element in Y, which we denote by f(x).

- f(x) is defined $\forall x \in X$
- these are just one such object $\forall x \in X$

Inverse Image Example

Given the function

$$f: \{1, 2, 3\}' \mapsto \{a, b, c, d\}$$
 (1)

defined by

$$f(x) = \begin{cases} a, & \text{if } x = 1\\ a, & \text{if } x = 2\\ c, & \text{if } x = 3 \end{cases}$$
 (2)

The produced map is:

$$\begin{array}{cccc}
a & \rightarrow & 1 \\
a & \rightarrow & 2 \\
b & & & \\
c & \rightarrow & 3 \\
d
\end{array}$$
(3)

The image/inverse image of the following sets under f are:

- 1. set $\{2,3\}$; image: $\{a,c\}$
- 2. set $\{a\}$; inverse image: $\{1,2\}$
- 3. set $\{a, b\}$; inverse image: $\{1, 2\}$
- 4. set $\{b, d\}$; inverse image: \emptyset

Definition 1.2.2 Cardinality

A set A is finite if a bijective mapping $A \mapsto \{1, ..., n\}$ exists. (This means that there a exactly n number of elements inside set A).

In this case n is called the **cardinality** of A and A has |A| := n elements.

Two sets A, B are defined to have the same cardinality if a bijective mapping $A \mapsto B$ exists.

Not Disjoint Sets

1.
$$A = \{1, 2, 3, 4, 5\}, |A| = 5$$

2.
$$B = \{3, 4, 5, 6, 7\}, |B| = 5$$

$$|A \cup B| \tag{4}$$

$$= |1, 2, 3, 4, 5, 6, 7| \tag{5}$$

$$=7\tag{6}$$

$$\neq |A| + |B| \tag{7}$$

Counting Sets

1.
$$|X \cup Y| = |X| + |Y| - |X \cap Y|$$

2.
$$|X \cup Y \cup Z| = |X| + |Y| + |Z| + (|X \cap Y| + |X \cap Z| + |Y \cap Z|) + |X \cap Y \cap Z|$$

Double Counting Principle

- 1. N = 1, 2, 3, (nodes)
- 2. E = a, b (edges)
- 3. R = incidence

$$|R|$$
 (over the nodes) (8)

 $= |x \in E|$ 1 is incident to $x| + |x \in E|$ 2 is incident to $x| + |x \in E|$ 3 is incident to x|

$$= |a| + |a, b| + |b| \tag{10}$$

$$=4\tag{11}$$

$$|R|$$
 (over the edges) (12)

$$= |x \in N|x \text{ is incident to a}| + |x \in N|x \text{ is incident to b}|$$
 (13)

$$= |1,2| + |2,3| \tag{14}$$

$$=4\tag{15}$$

Lecture 2 (17.10.2018)

Slide 21

Examples

1) The first person may choose among 100 seats, the second among 99 etc. So we have 100*99*...

$$\frac{100!}{(100-95)!},(n)_k\tag{16}$$

2) Let the perls be enumerated by 1 to 1. Then we cut the necklace at the part with number 1. So each assignment of pearls is bijectively mapped to an n-list, where the first element of the list always is the pearl with numbers 1. So these exists (n-1)! possibilities

Slide 24

Example

A card game consists of 52 cards:

- Each car has a suit out of {I, II, III, IV}
- Each card has a value out of {2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A}
- 2 cards form a pair, if they have the same value

How many possibilities exists so that we have among 5 arbitrary cards one pair and 3 cards with each the same value (but other than the pair)?

Solution

- 1) Choose the value of the pairs (13 possibilities)
- 2) Choose the value of the three cards (12 possibilities)
- 3) Choose the suit of the pair (4C2 = 6 possibilities)
- 4) Choose the suit of the other three cards (4C3 = 4 possibilities)

Therefore, we need the product rule:

$$p = 13 * 12 * C(4,2) * C(4,3)$$
(17)

$$=3744$$
 (18)

Slide 28

$$C(n, m_1) * C(n - m_1, m_2) * \dots * C(m_k, m_k)$$
 (19)

$$= \frac{n!}{(n-m_1)!m_1!} * \frac{(n-m_1)!}{(n-m_1-m_2)!m_2!} * \dots * \frac{m_k!}{m_k!(m_k-m_k!)}$$
 (20)

$$= \frac{n!}{m_1! * \dots * m_k!} \tag{21}$$

Lecture 3 (24.10.2018)

Slide 35

The Stirling numbers n,k of first orders it the number of permutation of a n-set with exactly k cycles

Theorem 1.8.4

 $S(n,1)=1,\,S(n,n)=1$ denotes from set n, choosing 1 partition or n partitions results in only one element

Slide 39

Let f, g be the permutation

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 4 & 5 & 3 \end{pmatrix} \tag{22}$$

$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 4 & 5 & 1 \end{pmatrix}$$
 (23)

then

$$f \circ g = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 5 & 3 & 2 \end{array}\right) \tag{24}$$

$$g \circ f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 5 & 1 & 4 \end{pmatrix} \tag{25}$$

This example shows that in general the composition of permutation is not commutative since a permutation is bijective, also the inverse function is a permutation.

Let f be

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 4 & 5 & 3 \end{pmatrix} \tag{26}$$

First we invert, then we order the first row

$$f^{-1} = \begin{pmatrix} 2 & 1 & 4 & 5 & 3 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 5 & 3 & 4 \end{pmatrix}$$
 (27)

$$f\circ f^{-1}=id, f^{-1}\circ f=id \tag{28}$$

Slide 41

Example

Let f be

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 4 & 8 & 1 & 5 & 9 & 3 & 7 & 6 \end{pmatrix}$$
 (29)

We take the cycles without repitition:

i. 1:
$$1 \mapsto 2 \mapsto 4 \mapsto 1$$
. The cycle is $(1, 2, 4)$

ii. 3:
$$3 \mapsto 8 \mapsto 7 \mapsto 3$$
. The cycle is $(3, 8, 7)$

iii. 5: $5 \mapsto 5$. The cycle is (5)

iv. 6: $6 \mapsto 9 \mapsto 6$. The cycle is (6,9)

The cycle representation of f is:

$$f = (1, 2, 4) \circ (3, 8, 7) \circ (5) \circ (6, 9) \tag{30}$$

Slide 42

Let f be the permutation which describes the change of sorting:

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 1 & 5 & 9 & 2 & 6 & 10 & 3 & 7 & 11 & 4 & 8 & 12 \end{pmatrix}$$
 (31)

$$= (2, 5, 6, 10, 4) \circ (3, 9, 11, 8, 7)$$
 (starting the cycle at 2) (32)

Since the two cycles have length 5, the cards are back to its original position after 5 procedures.

Slide 42

Let f be a composition of transpositions:

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \tag{33}$$

$$= (1, 2, 3, 4) \tag{34}$$

$$= (1,4) \circ (1,3) \circ (1,2) \tag{35}$$

But also adding (3,4) and (4,3) doesn't change the identity:

$$f = (1,4) \circ (4,3) \circ (3,4) \circ (1,3) \circ (1,2) \tag{36}$$

Slide 43

Further Remarks

Generalization of polynomials, where the number of terms is allowed to be infinite. The solution of a combinatorial problem can often be expressed as a sequence u_n . In such cases it is often appropriate to use methods based on the representation of u_n as a power series:

$$U(x) = u_0 + u_1 x + u_2 x^2 + \dots (37)$$

where U(x) is called the generating function for the sequence u_n

Slide 47

Taylor Series

The n-th Taylor polynomial is defined as:

$$T_n f(x, a) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x - a)^k$$
 (38)

$$= f(a) + f'(a)(x - a) + \frac{f''(a)}{2}(x - a)^{2} + \dots$$
 (39)

In the special case where a=0, then the Taylor series is called Mclaurin series.

$$f(x) = (1+x)^n \tag{40}$$

$$\Rightarrow f^{(k)}(x) \tag{41}$$

$$= (n(1+x)^{n-1})^{(k-1)}$$
(42)

$$= (n(n-1)(1+x)^{n-2})^{(k-2)} * \dots$$
(43)

$$= n(n-1) * (n(1+x)^{n-1})^{(k-1)} * \dots$$
(44)

$$\Rightarrow f^{(k)}(0) = n(n-1)(n-2) * \dots * (n-(k-1))$$
(45)

This is to compute the sequence of coefficients from the generating function. The other way round, given a sequence and then compute the function is easy: sequence

$$\langle f_0, f_1, ... \rangle = F(x) = f_0 x^0 + f_1 x^1 + f_2 x^2 + ...$$
 (46)

$$F(x) = (1+x)^n = \binom{n}{0} + (n,1)x + (n,2)x^2 + \dots$$
 (47)

can be regarded as saying the the generating function for the sequence defined by $u_n = (n, k)$ for any given integer n is $F(x) = (1 + x)^n$

Slide 48

Convolution definition

$$c_k = a_0 b_k + a_1 b_{k-1} + \dots + a_k b_0 \tag{48}$$

\

Example

Given

$$f(x) = 2 + 3x - 4x^2 (49)$$

$$g(x) = 5 - x + x^3 \tag{50}$$

$$c_0 = a_0 b_0 = 2 * 5 = 10 (51)$$

$$c_1 = a_0 b_1 + a_1 b_0 = (2 * -1) + (3 * 5) = 13$$
(52)

$$c_2 = a_0b_2 + a_1b_1 + a_2b_0 = (2*0) + (3*-1) + (-4*5) = -23$$
 (53)

$$f(x) * g(x) = c_0 + c_1 x^1 + c_2 x^2 + \dots$$
 (54)

Slide 50

Example

Geometrical Series

$$(1-x)\sum_{k=0}^{\infty} x^k \tag{55}$$

$$= \sum_{k=0}^{\infty} x^k - \sum_{k=0}^{\infty} x^{k+1}$$
 (56)

$$=1+\sum_{k=1}^{\infty}x^{k}-\sum_{k=1}^{\infty}x^{k}=1$$
(57)

So (1-x) is inverse to the geometrical series and we get $\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$