

SagPhrase: Phrase Mining with Tiny Training Sets

A small set of training data may enhance the quality of phrase mining

J. Liu et al., Mining Quality Phrases from Massive Text Corpora. In SIGMOD'15

data streamfrequent itemset knowledge based system time series knowledge base real world association rule web page knowledge discovery query processing clustering algorithm clustering algorithm decision tree high dimensional data

Segmented Corpus

Document 1

Citation recommendation is an interesting but challenging research problem in data mining area.

Document 2

In this study, we investigate the problem in the context of heterogeneous information networks using data mining technique.

Document 3

Principal Component Analysis is a linear dimensionality reduction technique commonly used in machine learning applications.

Input Raw Corpus

human or a general KB

Quality Phrases

Segmented Corpus

Phrase Mining

Phrasal Segmentation

Integrating phrase mining with phrasal segmentation and classification

SegPhrase+: The Overall Framework

- ClassPhrase: Frequent pattern mining, feature extraction, classification
- SegPhrase: Phrasal segmentation and phrase quality estimation
- □ SegPhrase+: One more round to enhance mined phrase quality

SegPhrase (a classifier is used)

Small labeled dataset provided by experts or a distant supervised KB (e.g., Wikipedia / DBPedia)

SegPhrase: Pattern Mining and Feature Extraction

- Pattern Mining for Candidate Set
 - Build a candidate phrases set by frequent pattern mining
 - \square Mining frequent k-grams (k is typically small, e.g., 6 in the experiments)
 - Popularity measured by raw frequent words and phrases mined from the corpus
- **□** Feature Extraction: Concordance
 - Partition a phrase into two parts to check whether the co-occurrence is significantly higher than pure random
- Feature Extraction: Informativeness
 - Quality phrases typically start and end with a non-stopword
 - "machine learning is" vs. "machine learning"
 - Use average IDF over words in the phrase to measure the semantics
 - Usually, the probabilities of a quality phrase in quotes, brackets, or connected by hyphen should be higher (punctuations information)
 - e.g., "state-of-the-art"

SegPhrase: Classification Using Tiny Training Sets

- Use tiny training sets (300 labels for 1GB corpus; can also use phrases extracted from KBs)
 - Label: indicating whether a phrase is a high quality one
 - E.g., "support vector machine": 1; "the experiment shows": 0
- Classification: Construct models to distinguish quality phrases from poor ones
 - Use Random Forest algorithm to bootstrap different datasets with limited labels
- Phrasal segmentation can tell which phrase is more appropriate
 - Ex: "A standard [feature vector] [machine learning] setup is used to describe"

Not counted towards the rectified frequency

- Partition a sequence of words by maximizing the likelihood
- Consider length penalty and filter out phrases with low rectified frequency
- □ Process: Classification → Phrasal segmentation // SegPhrase
 - → Classification → Phrasal segmentation // SegPhrase+

Performance: Precision Recall Curves on DBLP

Datasets:

- Evaluation
 - Wiki Phrases (based on internal links, ~7K high quality phrases)
 - Sampled 500*7 Wikiuncovered phrases: Results evaluated by 3 reviewers
- Compared with other phrasemining methods
 - □ TF-IDF, C-Value, ConExtr, KEA, and ToPMine
- Also, Segphrase+ is efficient, linearly scalable

Dataset	#docs	#words	#labels
DBLP	2.77M	91.6M	300
Yelp	4.75M	145.1M	300

Use only 300 human labeled phrases for training

Precision-Recall Curves on DBLP Data (Wiki Phrases)

Precision-Recall Curves on DBLP Data (Non Wiki-phrases)

Experimental Results: Interesting Phrases Generated (From Titles & Abstracts of SIGKDD)

Query	SIGKDD		
Method	SegPhrase+	Chunking (TF-IDF & C-Value)	
1	data mining	data mining	
2	data set	association rule	
3	association rule	knowledge discovery	
4	knowledge discovery	frequent itemset	
5	time series	decision tree	
		Only in Chunking	
51	association rule mining	search space	
52	rule set Only in SegPhrase+	domain knowledge	
53	concept drift	important problem	
54	knowledge acquisition	concurrency control	
55	gene expression data	conceptual graph	
201	web content	optimal solution	
202	frequent subgraph	semantic relationship	
203	intrusion detection	effective way	
204	categorical attribute	space complexity	
205	user preference	small set	

Mining Quality Phrases in Multiple Languages

- Both ToPMine and SegPhrase+ are extensible to mining quality phrases in multiple languages
- SegPhrase+ on Chinese (From Chinese Wikipedia)

- ToPMine on Arabic (From Quran (Fus7a Arabic)(no preprocessing)
 - Experimental results of Arabic phrases:

Those who disbelieve کفروا

الرحيم الله الرحمن الرحيم In the name of God the Gracious and Merciful

Rank	Phrase	In English
62	首席_执行官	CEO
63	中间_偏右	Middle-right
84	百度_百科	Baidu Pedia
85	热带_气旋	Tropical cyclone
86	中国科学院_院士	Fellow of Chinese Academy of Sciences
	•••	•••
1001	十大_中文_金曲	Top-10 Chinese Songs
1002	全球_资讯网	Global News Website
1003	天一阁_藏_明代_科举_录_选刊	A Chinese book name
9934	国家_戏剧_院	National Theater
9935	谢谢_你	Thank you
	•••	

Summary: Pattern Mining Applications: Mining Quality Phrases from Text Data

- From Frequent Pattern Mining to Phrase Mining
- Previous Phrase Mining Methods
- New Methods that Integrate Pattern Mining with Phrase Mining
 - ToPMine: Phrase Mining without Training Data
 - SegPhrase: Phrase Mining with Tiny Training Sets

Recommended Readings

- □ S. Bergsma, E. Pitler, D. Lin, Creating robust supervised classifiers via web-scale n-gram data, ACL'2010
- D. M. Blei and J. D. Lafferty. Visualizing Topics with Multi-Word Expressions. arXiv:0907.1013, 2009
- D.M. Blei, A. Y. Ng, M. I. Jordan, J. D. Lafferty, Latent Dirichlet allocation. JMLR 2003
- K. Church, W. Gale, P. Hanks, D. Hindle. Using Statistics in Lexical Analysis. In U. Zernik (ed.), Lexical Acquisition: Exploiting On-Line Resources to Build a Lexicon. Lawrence Erlbaum, 1991
- M. Danilevsky, C. Wang, N. Desai, X. Ren, J. Guo, J. Han. Automatic Construction and Ranking of Topical Keyphrases on Collections of Short Documents. SDM'14
- A. El-Kishky, Y. Song, C. Wang, C. R. Voss, and J. Han. Scalable Topical Phrase Mining from Text Corpora. VLDB'15
- R. V. Lindsey, W. P. Headden, III, M. J. Stipicevic. A Phrase-Discovering Topic Model Using Hierarchical Pitman-Yor Processes. EMNLP-CoNLL'12.
- □ J. Liu, J. Shang, C. Wang, X. Ren, J. Han, Mining Quality Phrases from Massive Text Corpora. SIGMOD'15
- □ A. Parameswaran, H. Garcia-Molina, and A. Rajaraman. Towards the Web of Concepts: Extracting Concepts from Large Datasets. VLDB'10
- X. Wang, A. McCallum, X. Wei. Topical n-grams: Phrase and topic discovery, with an application to information retrieval. ICDM'07