(19) World Intellectual Property **Organization**

International Bureau

(43) International Publication Date 18 March 2004 (18.03.2004)

PCT

(10) International Publication Number WO 2004/021978 A2

(51) International Patent Classification7:

A61K

(21) International Application Number:

PCT/US2003/025833

- (22) International Filing Date: 19 August 2003 (19.08.2003)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/404,495

19 August 2002 (19.08.2002)

- (71) Applicant (for all designated States except US): PHAR-MACIA CORPORATION [US/US]; Corporate Patent Department, P.O. Box 1027, St. Louis, MO 63006 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): WEINSTEIN, Edward, J. [US/US]; 15449 Highcroft Drive, Chesterfield, MO 63017 (US). GRIGGS, David, W. [US/US]; 1237 Oak Borough Drive, Ballwin, MO 63021 (US).
- (74) Agents: BAUER, Christopher, S. et al.; Pharmacia Corporation, Corporate Patent Department, P.O. Box 1027, St. Louis, MO 63006 (US).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

3/prts

WO 2004/021978

10/525104

PCT/US2003/025833

ANTISENSE MODULATION OF ENDOTHELIAL SPECIFIC 1 8 FEB 2005 MOLECULE 1 EXPRESSION

The present application claims priority under Title 35, United States Code, §119 to United States Provisional application Serial No. 60/404,495, filed August 19, 2002, which is incorporated by reference in its entirety as if written herein.

FIELD OF THE INVENTION

10

15

5

[001] The present invention provides compositions and methods for modulating the expression of Endothelial Specific Molecule-1 (ESM-1). In particular, this invention relates to antisense compounds, particularly oligonucleotides, specifically hybridizable with nucleic acids encoding Endothelial Specific Molecule-1. Such oligonucleotides have been shown to modulate the expression of Endothelial Specific Molecule-1.

BACKGROUND OF THE INVENTION

20

25

30

[002] Angiogenesis is the growth of new capillary blood vessels from preexisting vessels and capillaries and is crucial in a large number of processes, such as wound repair, embryonic development, and the growth of solid tumors. In neovascularization, endothelial cells will undergo migration, elongation, proliferation, and orientation leading to lumen formation, re-establishment of a basement membrane and eventual anastomosis with other vessels (Patan S. et al., (2000), *J. Neurooncol.* 50: 1-15).

[003] Endothelial cell-specific molecule1 (ESM-1) was originally isolated in an immunoscreening of a HUVEC cDNA library in order to identify the gene encoding a 55-kDa autoantigen that may have a role in asthma (Lassalle, P., et al.,). The full length ESM-1 cDNA was cloned in a library constructed in pCDM8 but was found to be inserted in the reverse orientation (Lassalle, P., et al.,).

[004] Northern blots have shown ESM-1 to probes to hybridize to RNA from HUVEC cells, SV40-transfected HUVECs, human lung, and human kidney. Little or none was detected in human heart, pancreas, placenta, muscle, brain or liver (Lassalle et al., 1996). Antibodies raised to ESM-1 show protein expression in human lung, colon, and kidney (Bechard, D., et al., (2000). *J. Vasc. Res.* 37, 417-425; WO9945028). In the lung, ESM-1 is expressed in venules, arterioles, and alveolar capillaries as well as by epithelial cells of the bronchi and submucosal glands. In the kidney, expression is predominantly in renal tubular epithelial cells. Capillaries and venules of the lamina propria of the colon also display ESM-1 expression. A splice variant of ESM-1 has been identified which lacks 150 base pairs but maintains the open reading frame (Aitkenhead, M., et al., (2002) *Microvasc. Res.* 63, 159-171).

5

10

- [005] ESM-1 expression appears to be both constitutive and under the control of a variety of cytokines. HUVEC cells treated with TNFα or IL-1βdisplay an up-regulation of the gene. No change in ESM-1 levels was seen upon treatment with IL-4 or IFNγ. While coadministration of TNFα and IFNγ lead to a synergistic induction of proinflammatory factors such as IL-6, IL-8,
 RANTES and ICAM-1, the combination of these two cytokines inhibit the TNFα induced ESM-1 up-regulation (Lassale et al., 1996).
- [006] ESM-1 has been found to be differentially expressed in endothelial cells forming tubes in a 3-dimensional collagen gel when compared to cells growing in two dimensions (Aitkenhead et al., 2002). Microarray analysis indicates a higher level of ESM-1 expression in HMVEC cells growing on collagen relative to those growing on osteopontin. We followed up on this observation by investigating the expression level of ESM-1 in colon tumor samples compared to a pool of normal colon tissue. Nine of ten tumors showed expression at levels of threefold or higher at the RNA level, as determined by real-time quantitative reverse transcription polymerase chain reaction experiments.

[007] We have amplified ESM-1 from HDMECs and cloned it into an expression vector. A pool of transfected NIH3T3 cells were then selected and assayed for ESM-1 expression. After confirming significant gene over-expression at the RNA level, cells were injected subcutaneously into a nu/nu female mouse. While vector transfected NIH3T3 fibroblasts failed to grow in these mice, those cells transfected with ESM-1 formed solid tumors within three weeks. This data shows that ESM-1 contains the potential to augment growth *in vivo* to a cell line that is usually not capable of forming tumors.

10

15

20

5

[008] Previous work on ESM-1 has found that levels of expression of this gene change in cells under varying conditions. We have extended those findings to show that ESM-1 is up regulated in colon carcinomas when compared to normal colon tissue. Additionally, we have shown that forced over-expression of ESM-1 leads to an escalation of growth of NIH3T3 fibroblasts *in vivo*.

[009] Antisense technology is emerging as an effective means for reducing the expression of specific gene products and may therefore prove to be uniquely useful in a number of therapeutic, diagnostic, and research applications for the modulation of ESM-1 expression.

SUMMARY OF THE INVENTION

[0010] The present invention is directed to antisense compounds,
25 particularly oligonucleotides, which are targeted to a nucleic acid
encoding ESM-1, and which modulate the expression of ESM-1.
Pharmaceutical and other compositions comprising the antisense
compounds of the invention are also provided. Further provided are
methods of modulating the expression of ESM-1 in cells or tissues
30 comprising contacting said cells or tissues with one or more of the
antisense compounds or compositions of the invention. Further provided
are methods of treating an animal, particularly a human, suspected of
having or being prone to a disease or condition associated with

expression of ESM-1 by administering a therapeutically or prophylactically effective amount of one or more of the antisense compounds or compositions of the invention.

BRIEF DESCRIPTION OF THE FIGURES

5

[0011] Figure 1 shows the cDNA sequence and the ESM-1 protein sequence encoded therefrom.

10 [0012] Figure 2 shows the ESM-1 expression levels in ten tumors as determined by Real-Time Quantitative PCR.

DETAILED DESCRIPTION OF THE INVENTION

[0013] The present invention employs oligomeric antisense 15 compounds, particularly oligonucleotides, for use in modulating the function of nucleic acid molecules encoding ESM-1, ultimately modulating the amount of ESM-1 produced. This is accomplished by providing antisense compounds, which specifically hybridize with one or more nucleic acids encoding ESM-1. As used herein, the terms "target 20 nucleic acid" and "nucleic acid encoding ESM-1" encompass DNA encoding ESM-1, RNA (including pre-mRNA and mRNA) transcribed from such DNA, and also cDNA derived from such RNA. The specific hybridization of an oligomeric compound with its target nucleic acid interferes with the normal function of the nucleic acid. This modulation 25 of function of a target nucleic acid by compounds, which specifically hybridize to it, is generally referred to as "antisense". The functions of DNA to be interfered with include replication and transcription. The functions of RNA to be interfered with include all vital functions such as, for example, translocation of the RNA to the site of protein 30 translation, translation of protein from the RNA, splicing of the RNA to yield one or more mRNA species, and catalytic activity which may be engaged in or facilitated by the RNA. The overall effect of such

interference with target nucleic acid function is modulation of the expression of ESM-1. In the context of the present invention, "modulation" means either an increase (stimulation) or a decrease (inhibition) in the expression of a gene. In the context of the present invention, inhibition is the preferred form of modulation, of gene expression and mRNA is a preferred target.

5

10

15

20

25

30

[0014] It is preferred to target specific nucleic acids for antisense. "Targeting" an antisense compound to a particular nucleic acid, in the context of this invention, is a multistep process. The process usually begins with the identification of a nucleic acid sequence whose function is to be modulated. This may be, for example, a cellular gene (or mRNA transcribed from the gene) whose expression is associated with a particular disorder or disease state, or a nucleic acid molecule from an infectious agent. In the present invention, the target is a nucleic acid molecule encoding ESM-1. The targeting process also includes determination of a site or sites within this gene for the antisense interaction to occur such that the desired effect, e.g., detection or modulation of expression of the protein, will result. Within the context of the present invention, a preferred intragenic site is the region encompassing the translation initiation or termination codon of the open reading frame (ORF) of the gene. Since, as is known in the art, the translation initiation codon is typically 5'-AUG (in transcribed mRNA molecules; 5'-ATG in the corresponding DNA molecule), the translation initiation codon is also referred to as the "AUG codon," the "start codon" or the "AUG start codon". A minority of genes have a translation initiation codon having the RNA sequence 5'-GUG, 5'-UUG or 5'-CUG, and 5'-AUA, 5'-ACG and 5'-CUG have been shown to function in vivo. Thus, the terms "translation initiation codon" and "start codon" can encompass many codon sequences, even though the initiator amino acid in each instance is typically methionine (in eukaryotes) or formylmethionine (in prokaryotes). It is also known in the art that eukaryotic and prokaryotic genes may have two or more alternative start codons, any one of which may be preferentially utilized for translation

initiation in a particular cell type or tissue, or under a particular set of conditions. In the context of the invention, "start codon" and "translation initiation codon" refer to the codon or codons that are used in vivo to initiate translation of an mRNA molecule transcribed from a gene encoding ESM-1, regardless of the sequence(s) of such codons.

5

10

15

20

25

30

[0015] It is also known in the art that a translation termination codon (or "stop codon") of a gene may have one of three sequences, i.e. 5'-UAA, 5'-UAG and 5'-UGA (the corresponding DNA sequences are 5'-TAA, 5'-TAG and 5'-TGA, respectively). The terms "start codon

region" and "translation initiation codon region "refer to a portion of such an mRNA or gene that encompasses from about 25 to about 50 contiguous nucleotides in either direction (i.e., 5' or 3') from a translation initiation codon. Similarly, the terms "stop codon region" and "translation termination codon region "refer to a portion of such an

mRNA or gene that encompasses from about 25 to about 50 contiguous nucleotides in either direction (i.e., 5' or 3') from a translation termination codon.

[0016] The open reading frame (ORF) or "coding region," which is known in the art to refer to the region between the translation initiation codon and the translation termination codon, is also a region which may be targeted effectively. Other target regions include the 5' untranslated region (5'UTR), known in the art to refer to the portion of an mRNA in the 5' direction from the translation initiation codon, and thus including nucleotides between the 5' cap site and the translation initiation codon of an mRNA or corresponding nucleotides on the gene, and the 3' untranslated region (3'UTR), known in the art to refer to the portion of an mRNA in the 3' direction from the translation termination codon, and thus including nucleotides between the translation termination codon

and 3' end of an mRNA or corresponding nucleotides on the gene. The 5' cap of an mRNA comprises an N7-methylated guanosine residue joined to the 5'-most residue of the mRNA via a 5'-5' triphosphate linkage. The 5' cap region of an mRNA is considered to include the 5'

cap structure itself as well as the first 50 nucleotides adjacent to the cap. The 5' cap region may also be a preferred target region.

translated, many contain one or more regions, known as "introns," which are excised from a transcript before it is translated. The remaining (and therefore translated) regions are known as "exons" and are spliced together to form a continuous mRNA sequence. mRNA splice sites, i.e., intron-exon junctions, may also be preferred target regions, and are particularly useful in situations where aberrant splicing is implicated in disease, or where an overproduction of a particular mRNA splice product is implicated in disease. Aberrant fusion junctions due to rearrangements or deletions are also preferred targets. It has also been found that introns can also be effective, and therefore preferred, target regions for antisense compounds targeted, for example, to DNA or premRNA.

5

10

15

[0018] Once one or more target sites have been identified, oligonucleotides are chosen which are sufficiently complementary to the target, i.e., hybridize sufficiently well and with sufficient specificity, to give the desired effect.

20 [0019] In the context of this invention, "hybridization" means hydrogen bonding, which may be Watson-Crick, Hoogsteen, or reversed Hoogsteen hydrogen bonding, between complementary nucleoside or nucleotide bases. For example, adenine and thymine are complementary nucleobases, which pair through the formation of hydrogen bonds.

"Complementary," as used herein, refers to the capacity for precise pairing between two nucleotides. For example, if a nucleotide at a certain position of an oligonucleotide is capable of hydrogen bonding with a nucleotide at the same position of a DNA or RNA molecule, then the oligonucleotide and the DNA or RNA are considered to be complementary to each other at that position. The oligonucleotide and the DNA or RNA are complementary to each other when a sufficient number of corresponding positions in each molecule are occupied by

nucleotides which can hydrogen bond with each other. Thus,

"specifically hybridizable" and "complementary" are terms which are used to indicate a sufficient degree of complementarity or precise pairing such that stable and specific binding occurs between the oligonucleotide and the DNA or RNA target. It is understood in the art that the sequence of an antisense compound need not be 100% complementary to that of its target nucleic acid to be specifically hybridizable. An antisense compound is specifically hybridizable when binding of the compound to the target DNA or RNA molecule interferes with the normal function of the target DNA or RNA to cause a loss of utility, and there is a sufficient degree of complementarity to avoid non-specific binding of the antisense compound to non-target sequences under conditions in which specific binding is desired, i.e., under physiological conditions in the case of in vivo assays or therapeutic treatment, and in the case of in vitro assays, under conditions in which the assays are performed.

[0020] Antisense compounds are commonly used as research reagents and diagnostics. For example, antisense oligonucleotides, which are able to inhibit gene expression with exquisite specificity, are often used by those of ordinary skill to elucidate the function of particular genes. Antisense compounds are also used, for example, to distinguish between functions of various members of a biological pathway. Antisense modulation has, therefore, been harnessed for research use.

by those of skill in the art for therapeutic uses. Antisense oligonucleotides have been employed as therapeutic moieties in the treatment of disease states in animals and man. Antisense oligonucleotides have been safely and effectively administered to humans and numerous clinical trials are presently underway. It is thus established that oligonucleotides can be useful therapeutic modalities that can be configured to be useful in treatment regimes for treatment of cells, tissues and animals, especially humans. In the context of this invention, the term "oligonucleotide" refers to an oligomer or polymer

of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA) or mimetics thereof. This term includes oligonucleotides composed of naturally occurring nucleobases, sugars and covalent internucleoside (backbone) linkages as well as oligonucleotides having non-naturally occurring portions which function similarly. Such modified or substituted oligonucleotides are often preferred over native forms because of desirable properties such as, for example, enhanced cellular uptake, enhanced affinity for nucleic acid target and increased stability in the presence of nucleases.

10 [0022] ESM-1 antisense oligonucleotides that have activity in the cardiovascular, angiogenic, and endothelial assays described herein, and/or whose gene product has been found to be localized to the cardiovascular system, is likely to have therapeutic uses in a variety of cardiovascular, endothelial, and angiogenic disorders, including systemic disorders that affect 15 vessels, such as diabetes mellitus. Its therapeutic utility could include diseases of the arteries, capillaries, veins, and/or lymphatics. Examples of treatments hereunder include treating muscle wasting disease, treating osteoporosis, aiding in implant fixation to stimulate the growth of cells around the implant and therefore facilitate its attachment to its intended site, increasing IGF stability in 20 tissues or in serum, if applicable, and increasing binding to the IGF receptor (since IGF has been shown in vitro to enhance human marrow erythroid and granulocytic progenitor cell growth).

[0023] ESM-1 antisense oligonucleotides can be used to inhibit the production of excess connective tissue during wound healing or pulmonary fibrosis if ESM-1 promotes such production. This would include treatment of acute myocardial infarction and heart failure.

25

[0024] Moreover, the present invention provides the treatment of cardiac hypertrophy, regardless of the underlying cause, by administering a therapeutically effective dose of ESM-1 antisense oligonucleotides.

30 [0025] The treatment for cardiac hypertrophy can be performed at any of its various stages, which may result from a variety of diverse pathologic conditions, including myocardial infarction, hypertension, hypertrophic cardiomyopathy, and valvular regurgitation. The treatment extends to all stages

of the progression of cardiac hypertrophy, with or without structural damage of the heart muscle, regardless of the underlying cardiac disorder.

[0026] ESM-1 antisense oligonucleotides would be useful for treatment of disorders where it is desired to limit or prevent angiogenesis. Examples of such disorders include vascular tumors such as hemangioma, tumor angiogenesis, neovascularization in the retina, choroid, or cornea, associated with diabetic retinopathy or premature infant retinopathy or macular degeneration and proliferative vitreoretinopathy, rheumatoid arthritis, Crohn's disease, atherosclerosis, ovarian hyperstimulation, psoriasis, endometriosis associated with neovascularization, restenosis subsequent to balloon angioplasty, sear tissue overproduction, for example, that seen in a keloid that forms after surgery, fibrosis after myocardial infarction, or fibrotic lesions associated with pulmonary fibrosis.

5

10

15

30

[0027] Specific types of diseases are described below, where ESM-1 antisense oligonucleotides may serve as useful for vascular- related drug targeting or as therapeutic targets for the treatment or prevention of the disorders.

[0028] Atherosclerosis is a disease characterized by accumulation of plaques of intimal thickening in arteries, due to accumulation of lipids,
proliferation of smooth muscle cells, and formation of fibrous tissue within the arterial wall. The disease can affect large, medium, and small arteries in any organ. Changes in endothelial and vascular smooth muscle cell function are known to play an important role in modulating the accumulation and regression of these plaques.

25 [0029] Hypertension is characterized by raised vascular pressure in the systemic arterial, pulmonary arterial, or portal venous systems. Elevated pressure may result from or result in impaired endothelial function and/or vascular disease.

[0030] Inflammatory vasculitides include giant cell arteritis, Takayasu's arteritis, polyarteritis nodosa (including the microangiopathic form), Kawasaki's disease, microscopic polyarightis, Wegener's granulomatosis, and a variety 101 of infectious-related vascular disorders (including Henoch-Schonlein Prupura). Altered endothelial cell function has been shown to be important in these

diseases. Reynaud's disease and Reynaud's phenomenon are characterized by intermittent abnormal impairment of the circulation through the extremities on exposure to cold. Altered endothelial cell function has been shown to be important in this disease.

5 [0031] Aneurysms are saccular or fusiform dilatations of the arterial or venous tree that are associated with altered endothelial cell and/or vascular smooth muscle cells.

10

30

- [0032] Arterial restenosis (restenosis of the arterial wall) may occur following angioplasty as a result of alteration in the function and proliferation of endothelial and vascular smooth muscle cells.
- [0033] Thrombophlebitis and lymphangitis are inflammatory disorders of veins and lymphatics, respectively, that may result from, and/or in, altered endothelial cell function. Similarly, lymphedema is a condition involving impaired lymphatic vessels resulting from endothelial cell function.
- 15 [0034] The family of benign and malignant vascular tumors is characterized by abnormal proliferation and growth of cellular elements of the vascular system. For example, lymphangiomas are benign tumors of the lymphatic system that are congenital, often cystic, malformations of the lymphatics that usually occur in newborns.
- 20 [0035] Cystic tumors tend to grow into the adjacent tissue. Cystic tumors usually occur in the cervical and axillary region. They can also occur in the soft tissue of the extremities. The main symptoms are dilated, sometimes reticular, structured lymphatics and lymphocysts surrounded by connective tissue.
- [0036] Lymphangiomas are assumed to be caused by improperly connected embryonic lymphatics or their deficiency. The result is impaired local lymph drainage.
 - [0037] Another use for ESM-1 antisense antagonists is in the prevention of tumor angiogenesis, which involves vascularization of a tumor to enable it to growth and/or metastasize. This process is dependent on the growth of new blood vessels. Examples of neoplasms and related conditions that involve tumor angiogenesis include breast carcinomas, lung carcinomas, gastric carcinomas, esophageal carcinomas, colorectal carcinomas, liver carcinomas, ovarian carcinomas, thecomas, arrhenoblastomas, cervical carcinomas, endometrial

carcinoma, endometrial hyperplasia, endometriosis, fibrosarcomas, choriocarcinoma, head and neck cancer, nasopharyngeal carcinoma, laryngeal carcinomas, hepatoblastoma, Kaposi's sarcoma, melanoma, skin carcinomas, hemangioma, cavernous hemangioma, hemangioblastoma, pancreas

5 carcinomas, retinoblastoma, astrocytoma, glioblastoma, Schwannoma, oligodendrogliorna, medulloblastoma, neuroblastomas, rhabdomyosarcoma, osteogenic sarcoma, leiomyosarcomas, urinary tract carcinomas, thyroid carcinomas, Wilm's tumor, renal cell carcinoma, prostate carcinoma, abnormal vascular proliferation associated with phakomatoses, edema (such as that associated with brain tumors), and Meigs' syndrome.

[0038] Healing of trauma such as wound healing and tissue repair is also a targeted use for ESM-1 antisense oligonucleotides. Formation and regression of new blood vessels is essential for tissue healing and repair. This category includes bone, cartilage, tendon, ligament, and/or nerve tissue growth or regeneration, as well as wound healing and tissue repair and replacement, and in the treatment of burns, incisions, and ulcers.

15

20

25

30

[0039] ESM-1 antisense oligonucleotides that induce cartilage and/or bone growth in circumstances where bone is not normally formed have application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Such a preparation employing ESM-1 antisense oligonucleotides may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic, resection-induced craniofacial defects, and also is useful in cosmetic plastic surgery.

[0040] It is expected that ESM-1 antisense oligonucleotides may also exhibit activity for generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, or endothelium), muscle (smooth, skeletal, or cardiac), and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring to allow normal tissue to regenerate.

[0041] ESM-1 antisense oligonucleotides may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage. Also, ESM-1 antisense oligonucleotides may be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells, or for inhibiting the growth of tissues described above.

5

10

15

20

25

30

[0042] ESM-1 antisense oligonucleotides may also be used in the treatment of periodontal diseases and in other tooth-repair processes. Such agents may provide an environment to attract bone-forming cells, stimulate growth of bone-forming cells, or induce differentiation of progenitors of bone-forming cells ESM-1 antisense oligonucleotides may also be useful in the treatment of osteoporosis or osteoarthritis, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes, since blood vessels play an important role in the regulation of bone turnover and growth.

[0043] Another category of tissue regeneration activity that may be attributable to ESM-1 antisense oligonucleotides is tendon/ligament formation. A protein that induces tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed has application in the healing of tendon or ligament tears, deformities, and other tendon or ligament defects in humans and other animals. Such a preparation may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament tissue. De novo tendon/ligament-like tissue formation induced by a composition of ESM-1 antisense oligonucleotides contributes to the repair of congenital, trauma-induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions herein may provide an environment to attract tendon- or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, induce differentiation of progenitors of tendon- or ligament forming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue

repair. The compositions herein may also be useful in the treatment of tendinitis, carpal tunnel syndrome, and other tendon or ligament defects. The compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

5 [0044] ESM-1 antisense oligonucleotides may also be administered prophylactically to patients with cardiac hypertrophy, to prevent the progression of the condition, and avoid sudden death, including death of asymptomatic patients. Such preventative therapy is particularly warranted in the case of patients diagnosed with massive left ventricular cardiac hypertrophy (a maximal wall thickness of 35 mm. or more in adults, or a comparable value in children), or in instances when the hemodynamic burden on the heart is particularly strong.

[0045] ESM-1 antisense oligonucleotides may also be useful in the management of atrial fibrillation, which develops in a substantial portion of patients diagnosed with hypertrophic cardiomyopathy. Further indications include angina, myocardial infarctions such as acute myocardial infarctions, and heart failure such as congestive heart failure. Additional non-neoplastic conditions include psoriasis, diabetic and other proliferative retinopathies including retinopathy of prematurity, retrolental fibroplasia, neovascular glaucoma, thyroid hyperplasias (including Grave's disease), corneal and other tissue transplantation, chronic inflammation, lung inflammation, nephrotic syndrome, preeclampsia, ascites, pericardial effusion (such as that associated with pericarditis), and pleural effusion.

[0046] In view of the above, ESM-1 antisense oligonucleotides,
which are shown to alter or impact endothelial cell function,
proliferation, and/or form, are likely to play an important role in the
etiology and pathogenesis of many or all of the disorders noted above,
and as such can serve as therapeutic targets to augment or inhibit these
processes or for vascular-related drug targeting in these disorders.

30

15

20

Combination Therapies

[0047] The effectiveness of ESM-1 antisense oligonucleotides in preventing or treating the disorder in question may be improved by administering the active agent serially or in combination with another agent that is effective for those purposes, either in the same composition or as separate compositions. For 5 example, for treatment of cardiac hypertrophy, ESM-1 antisense therapy can be combined with the administration of inhibitors of known cardiac myocyte hypertrophy factors, e.g., inhibitors of cc-adrenergic agonists such as phenylephrine; endothelin-1 inhibitors such as BOSENTAN™ and MOXONODINTM; inhibitors to CT- I (US Pat. No. 5,679,545); inhibitors to 10 LIF; ACE inhibitors; des- aspartate-angiotensin I inhibitors (U.S. Pat. No. 5,773,415), and angiotensin II inhibitors. For treatment of cardiac hypertrophy associated with hypertension, [0048]ESM-1 antisense oligonucleotides can be administered in combination with Padrenergic receptor blocking agents, e.g., propranolol, timolol, tertalolol, carteolol, nadolol, betaxolol, penbutolol, acetobutolol, atenolol, metoprolol, or 15 carvedilol; ACE inhibitors, e.g., quinapril, captopril, enalapril, ramipril, benazepril, fosinopril, or lisinopril; diuretics, e.g., chlorothiazide, hydrochlorothiazide, hydroflumethiazide, methylchlothiazide, benzthiazide, dichlorphenamide, acetazolamide, or indapamide; and/or calcium channel 20 blockers, e.g., diltiazem, nifedipine, verapamil, or nicardipine. Pharmaceutical compositions comprising the therapeutic agents identified herein by their generic names are commercially available, and are to be administered following the manufacturers' instructions for dosage, administration, adverse effects, contraindications, etc. 119 See, e.z., Physicians' Desk Reference (Medical 25 Economics Data Production Co.: Montvale, N.J., 1997), 51 st Edition. Preferred candidates for combination therapy in the treatment of hypertrophic cardiormyopathy are P-adrenergic-blocking drugs (e.g., propranolol, timolol, tertalolol, carteolol, nadolol, betaxolol, penbutolol, acetobutolol, atenolol, metoprolol, or carvedilol), verapamil, difedipine, or diltiazem. Treatment of hypertrophy associated with high blood pressure may require the use of 30

methylchlothiazide, benzthiazide, dichlorphenamide, acetazolamide, or indapamide; and/or ACE-inhibitors, e. g., quinapril, captopril, enalapril, ramipril, benazepril, fosinopril, or lisinopril.

[0049] For other indications, ESM-1 antisense oligonucleotides may be combined with other agents beneficial to the treatment of the bone and/or cartilage defect, wound, or tissue in question. These agents include various growth factors such as EGF, PDGF, TGF- or TGF-, IGF, FGF, and CTGF. [0050] In addition, ESM-1 antisense oligonucleotides used to treat cancer may be combined with cytotoxic, chemotherapeutic, or growth-inhibitory agents as identified above. Also, for cancer treatment, ESM-1 antisense oligonucleotides are suitably administered serially or in combination with radiological treatments, whether involving irradiation or administration of radioactive substances.

[0051]The effective amounts of the therapeutic agents administered in 15 combination with ESM-1 antisense oligonucleotides thereof will be at the physician's, or veterinarian's discretion. Dosage administration and adjustment is done to achieve maximal management of the conditions to be treated. For example, for treating hypertension, these amounts ideally take into account use of diuretics or digitalis, and conditions such as hyper- or hypotension, renal impairment, etc. The dose will additionally depend on such factors as the type 20 of the therapeutic agent to be used and the specific patient being treated. Typically, the amount employed will be the same dose as that used, if the given therapeutic agent is administered without ESM-1 antisense oligonucleotides. [0052] For treatment of breast carcinoma, ESM-1 antisense oligonucleotides can be administered in combination with, but not limited to, Trastuzumab 25 (Herceptin) with chemotherapy, paclitaxel, docetaxel, epirubicin, mitoxantrone, topotecan, capecitabine, vinorelbine, thiotepa, vincristine, vinblastine, carboplatin or cisplatin, plicamycin, anastrozole, letrozole, exemestane, toremifine, or progestins.

30 [0053] For treatment of acute lymphocytic leukemia, ESM-1 antisense oligonucleotides can be administered in combination with, but not limited to, doxorubicin, cytarabine, cyclophosphamide, etoposide, teniposide, allopurinol, or autologous bone marrow transplantation.

[0054] For treatment of acute myelocytic and myelomonocytic leukemia, ESM-1, antisense oligonucleotides can be administered in combination with, but not limited to, gemtuzumab ozogamicin (Mylotarg), mitoxantrone,

- idarubicin, etoposide, mercaptopurine, thioguanine, azacitidine, amsacrine, methotrexate, doxorubicin, tretinoin, allopurinol, leukapheresis, prednisone, or arsenic trioxide for acute promyelocytic leukemia.
 - [0055] For treatment of chronic myelocytic leukemia, ESM-1 antisense oligonucleotides can be administered in combination with, but not limited to, busulfan, mercaptopurine, thioguanine, cytarabine, plicamycin, melphalan, autologous bone marrow transplantation, or allopurinol.

10

20

- [0056] For treatment of chronic lymphocytic leukemia, ESM-1 antisense oligonucleotides can be administered in combination with, but not limited to, vincristine, cyclophosphamide, doxorubicin, cladribine (2-
- chlorodeoxyadenosine; CdA), allogeneic bone marrow transplant, androgens, or allopurinol.
 - [0057] For treatment of multiple myeloma, ESM-1 antisense oligonucleotides can be administered in combination with, but not limited to, etoposide, cytarabine, alpha interferon, dexamethasone, or autologous bone marrow transplantation.
 - [0058] For treatment of carcinoma of the lung (small cell and non-small cell), ESM-1 antisense oligonucleotides can be administered in combination with, but not limited to, cyclophosphamide, doxorubicin, vincristine, etoposide, mitomycin, ifosfamide, paclitaxel, irinotecan, or radiation therapy.
- 25 [0059] For treatment of carcinoma of the colon and rectum, ESM-1 antisense oligonucleotides can be administered in combination with, but not limited to, capecitabine, methotrexate, mitomycin, carmustine, cisplatin, irinotecan, or floxuridine.
- [0060] For treatment of carcinoma of the kidney, ESM-1 antisense oligonucleotides can be administered in combination with, but not limited to, alpha interferon, progestins, infusional FUDR, or fluorouracil.
 - [0061] For treatment of carcinoma of the prostate, ESM-1 antisense oligonucleotides can be administered in combination with, but not limited to,

ketoconazole, doxorubicin, aminoglutethimide, progestins, cyclophosphamide, cisplatin, vinblastine, etoposide, suramin, PC-SPES, or estramustine phosphate.

[0062] For treatment of melanoma, ESM-1 antisense oligonucleotides can be administered in combination with, but not limited to, carmustine, lomustine, melphalan, thiotepa, cisplatin, paclitaxel, tamoxifen, or vincristine.

5

[0063] For treatment of carcinoma of the ovary, ESM-1 antisense oligonucleotides can be administered in combination with, but not limited to, docetaxel, doxorubicin, topotecan, cyclophosphamide, doxorubicin, etoposide, or liposomal doxorubicin.

10 [0064]While antisense oligonucleotides are a preferred form of antisense compound, the present invention comprehends other oligomeric antisense compounds, including but not limited to oligonucleotide mimetics such as are described below. The antisense compounds in accordance with this invention preferably comprise from 15 about 8 to about 30 nucleobases (i.e. from about 8 to about 30 linked nucleo sides). Particularly preferred antisense compounds are antisense oligonucleotides, even more preferably those comprising from about 12 to about 25 nucleobases. As is known in the art, a nucleoside is a basesugar combination. The base portion of the nucleoside is normally a 20 heterocyclic base. The two most common classes of such heterocyclic bases are the purines and the pyrimidines. Nucleotides are nucleosides that further include a phosphate group covalently linked to the sugar portion of the nucleoside. For those nucleosides that include a pentofuranosyl sugar, the phosphate group can be linked to either the 2', 25 3' or 5' hydroxyl moiety of the sugar. In forming oligonucleotides, the phosphate groups covalently link adjacent nucleosides to one another to form a linear polymeric compound. In turn the respective ends of this linear polymeric structure can be further joined to form a circular structure, however, open linear structures are generally preferred. Within the oligonucleotide structure, the phosphate groups are commonly 30

the oligonucleotide structure, the phosphate groups are commonly referred to as forming the internucleoside backbone of the oligonucleotide. The normal I linkage or backbone of RNA and DNA is a 3' to 5' phosphodiester linkage.

[0065] Specific examples of preferred antisense compounds useful in this invention include oligonucleotides containing modified backbones or non-natural internucleoside linkages. As defined in this specification, oligonucleotides having modified backbones include those

- that retain a phosphorus atom in the backbone and those that do not have a phosphorus atom in the backbone. For the purposes of this specification, and as sometimes referenced in the art, modified oligonucleotides that do not have a phosphorus atom in their internucleoside backbone can also be considered to be oligonucleosides.
- 10 [0066] Preferred modified oligonucleotide backbones include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates including 3'alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3'-
- amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, and boranophosphates having normal 3'-5' linkages, 2'-5' linked analogs of these, and those having inverted polarity wherein the adjacent pairs of nucleoside units are linked 3'-5' to
- 5'-3' or 2'-5' to 5'-2'. Various salts, mixed salts and free acid forms are also included.
 - [0067] Representative United States patents that teach the preparation of the above phosphorus-containing linkages include, but are not limited to, U.S.: 3,687,808; 4,469,863; 4,476,301; 5,023,243;
- 5,177,196; 5,188,897; 5,264,423; 5,276,019; 5,278,302; 5,286,717; 5,321,131; 5,399,676; 5,405,939; 5,453,496; 5,455,233; 5,466,677; 5,476,925; 5,519,126; 5,536,821; 5,541,306; 5,550,111; 5,563,253; 5,571,799; 5,587,361; and 5,625,050, each of which is herein incorporated by reference.
- 30 [0068] Preferred modified oligonucleotide backbones that do not include a phosphorus atom therein have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside linkages, or one or

more short chain heteroatomic or heterocyclic internucleoside linkages. These include those having morpholino linkages (formed in part from the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones;

- 5 methylene formacetyl and thioformacetyl backbones; alkene containing backbones; sulfamate backbones; methyleneimino and methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S and CH₂ component parts.
- [0069] Representative United States patents that teach the preparation of the above oligonucleosides include, but are not limited to, U.S. 5,034,506; 5,166,315; 5,185,444; 5,214,134; 5,216,141; 5,235,033; 5,264,562; 5,264,564; 5,405,938; 5,434,257; 5,466,677; 5,470,967; 5,489,677; 5,541,307; 5,561,225; 5,596,086; 5,602,240; 5,610,289;
 5,602,240; 5,608,046; 5,610,289; 5,618,704; 5,623,070; 5,663,312; 5,633,360; 5,677,437; and 5,677,439, each of which is herein incorporated by reference.
 - [0070] In other preferred oligonucleotide mimetics, both the sugar and the internucleoside linkage, i.e., the backbone, of the nucleotide units are replaced with novel groups. The base units are maintained for hybridization with an appropriate nucleic acid target compound. One such oligomeric compound, an oligonucleotide mimetic that has been shown to have excellent hybridization properties, is referred to as a peptide nucleic acid (PNA). In PNA compounds, the sugar-backbone of an oligonucleotide is replaced with an amide containing backbone, in particular an aminoethylglycine backbone. The nucleobases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone. Representative United States patents that teach the preparation of PNA compounds include, but are not limited to, U.S. 5,539,082; 5,714,331; and 5,719,262, each of which is herein

20

25

5,539,082; 5,714,331; and 5,719,262, each of which is herein incorporated by reference. Further teaching of PNA compounds can be found in Nielsen et al., *Science*, 1991, 254, 1497-1500.

[0071] Most preferred embodiments of the invention are oligonucleotides with phosphorothioate backbones and oligonucleosides with heteroatom backbones, and in particular -CH₂-NH-O-CH₂-, -CH₂-N (CH₃) -O-CH₂- [known as a methylene (methylimino) or MMI

- backbone], CH₂-O-N (CH₃) -CH₂-, -CH₂N(CH₃)-N(CH₃)-CH₂- and -O-N(CH₃)-CH₂-CH₂- [wherein the native phosphodiester backbone is represented as -O-P-O-CH₂-] of the above referenced U.S. patent 5,489,677, and the amide backbones of the above referenced U.S. patent 5,602,240. Also preferred are oligonucleotides having morpholino
- backbone structures of the above-referenced U.S. patent 5,034,506.
 [0072] Modified oligonucleotides may also contain one or more substituted sugar moieties. Preferred oligonucleotides comprise one of the following at the 2' position: OH; F; O-, S-, or N-alkyl; O-, S-, or N-alkyl; O-, S- or N-alkynyl; or O-alkyl-O-alkyl, wherein the alkyl,
- alkenyl and alkynyl may be substituted or unsubstituted C₁ to C₁₀ alkyl or C₂ to C₁₀ alkenyl and alkynyl. Particularly preferred are O[(CH₂)_nO]_mCH₃, O(CH₂)_n,OCH₃, O(CH₂)_nNH₂, O(CH₂)_nCH₃, O(CH₂)_nONH₂, and O(CH₂_nON[(CH₂)_nCH₃)]₂ where n and m are from 1 to about 10. Other preferred oligonucleotides comprise one of the
- following at the 2' position: C₁ to C₁₀, (lower alkyl, substituted lower alkyl, alkaryl, aralkyl, O-alkaryl or O-aralkyl, SH, SCH₃, OCN, Cl, Br, CN, CF₃, OCF₃, SOCH₃, SO₂CH₃, ONO₂, NO₂, N₃, NH₂, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, an RNA cleaving group, a reporter
- group, an intercalator, a group for improving the pharmacokinetic properties of an oligonucleotide, or a group for improving the pharmacodynamic properties of an oligonucleotide, and other substituents having similar properties. A preferred modification includes 2'-methoxyethoxy (2'-O-CH₂CH₂OCH₃, also known as 2'-O-
- (2-methoxyethyl) or 2'-MOE) (Martin et al., Helv. Chim. Acta, 1995, 78, 486-504) i.e., an alkoxyalkoxy group. A further preferred modification includes 2'-dimethylaminooxyethoxy, i.e., a O(CH₂)₂ON(CH₃)₂ group, also known as 2'-DMAOE, as described in examples herein below, and

2'-dimethylaminoethoxyethoxy (also known in the art as 2'-O-dimethylaminoethoxyethyl or 2'-DMAEOE), i.e., 2'-O-CH₂-O-CH₂-N (CH₂)₂, also described in examples herein below.

[0073] Other preferred modifications include 2'-methoxy (2'-O

- 5 CH₃), 2'-aminopropoxy (2'-O CH₂ CH₂ CH₂ CH₂NH₂) and 2'-fluoro (2'-F). Similar modifications may also be made at other positions on the oligonucleotide, particularly the 3' position of the sugar on the 3' terminal nucleotide or in 2'-5' linked oligonucleotides and the 5' position of 5' terminal nucleotide. Oligonucleotides may also have
- sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar. Representative United States patents that teach the preparation of such modified sugar structures include, but are not limited to, U.S. 4,981,957; 5,118,800; 5,319,080; 5,359,044; 5,393,878; 5,446,137; 5,466,786; 5,514,785; 5,519,134; 5,567,811; 5,576,427;
- 5,591,722; 5,597,909; 5,610,300; 5,627,053; 5,639,873; 5,646,265; 5,658,873; 5,670,633; and 5,700,920, each of which is herein incorporated by reference in its entirety.
- [0074] Oligonucleotides may also include nucleobase (often referred to in the art simply as "base") modifications or substitutions. As used herein, "unmodified" or "natural" nucleobases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). Modified nucleobases include other synthetic and natural nucleobases such as 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and
 - other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-
- hydroxyl and other 8-substituted adenines and guanines, 5-halo particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylquanine and 7-methyladenine, 8-azaguanine and 8-azaguanine, 7-deazaguanine and 7-deazaguanine and 3-deazaguanine

and 3-deazaadenine. Further nucleobases include those disclosed in United States Patent No. 3,687,808, those disclosed in *The Concise Encyclopedia Of Polymer Science And Engineering*, pages 858-859, Kroschwitz, J.I., ed. John Wiley & Sons, 1990, those disclosed by

- Englisch et al., Angewandte Chemie, International Edition, 1991, 30, 613, and those disclosed by Sanghvi, Y.S., Chapter 15, Antisense Research and Applications, pages 289-302, Crooke, S.T. and Lebleu, B. ed., CRC Press, 1993. Certain of these nucleobases are particularly useful for increasing the binding affinity of the oligomeric compounds
- of the invention. These include 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and O-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine, 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2°C (Sanghvi, Y.S., Crooke, S.T. and Lebleu,
- B., eds, Antisense Research and Applications, CRC Press, Boca Raton, 1993, pp. 276-278) and are presently preferred base substitutions, even more particularly when combined with 2'-O-methoxyethyl sugar modifications.
- [0075] Representative United States patents that teach the
 20 preparation of certain of the above noted modified nucleobases as well
 as other modified nucleobases include, but are not limited to, the above
 noted U.S. 3,687,808, as well as U.S.: 4,845,205; 5,130,302; 5,134,066;
 5,175,273; 5,367,066; 5,432,272; 5,457,187; 5,459,255; 5,484,908;
 5,502,177; 5,525,711; 5,552,540; 5,587,469; 5,594,121, 5,596,091;
- 25 5,614,617; 5,750,692, and 5,681,941, each of which is herein incorporated by reference.

30

[0076] Another modification of the oligonucleotides of the invention involves chemically linking to the oligonucleotide one or more moieties or conjugates, which enhance the activity, cellular distribution, or cellular uptake of the oligonucleotide. Such moieties include but are not limited to lipid moieties such as a cholesterol moiety (Letsinger et al., *Proc. Natl. Acad. Sci. USA*, 1989, 86, 6553-6556), cholic acid (Manoharan et al., *Bioorg. Med. Chem. Let.*, 1994, 4, 1053-1060), a

thioether, e.g., hexyl-S-tritylthiol (Manoharan et al., Ann. N.Y. Acad. Sci., 1992, 660, 306-309; Manoharan et al., Bioorg. Med. Chem. Let., 1993, 3, 2765-2770), a thiocholesterol (Oberhauser et al., Nucl. Acids Res., 1992, 20, 533-538), an aliphatic chain, e.g., dodecandiol or

- 5 undecyl residues (Saison-Behmoaras et al., EMBO J., 1991, 10, 1111-1118; Kabanov et al., FEBS Lett., 1990, 259, 327-330; Svinarchuk et al., Biochimie, 1993, 75, 49-54), a phospholipid, e.g., di-hexadecyl-racglycerol or triethylammonium 1,2-di-O-hexadecyl-rac-glycero-3-Hphosphonate (Manoharan et al., Tetrahedron Lett., 1995, 36, 3651-3654;
- Shea et al., Nucl. Acids Res., 1990, 18, 3777-3783), a polyamine or a polyethylene glycol chain (Mancharan et al., Nucleosides & Nucleotides, 1995, 14, 969-973), or adamantane acetic acid (Manoharan et al., Tetrahedron Lett., 1995, 36, 365'-3654), a palmityl moiety (Mishra et al., Biochim. Biophys. Acta, 1995, 1264, 229-237), or an octadecylamine
- or hexylamino-carbonyl-oxycholesterol moiety (Crooke et al., *J. Pharmacol. Exp. Ther.*, 1996, 277, 923-937).
 - [0077] Representative United States patents that teach the preparation of such oligonucleotide conjugates include, but are not limited to, U.S. 4,828,979; 4,948,882; 5,218,105; 5,525,465; 5,541,313;
- 5,545,730; 5,552,538; 5,578,717, 5,580,731; 5,580,731; 5,591,584; 5,109,124; 5,118,802; 5,138,045; 5,414,077; 5,486,603; 5,512,439; 5,578,718; 5,608,046; 4,587,044; 4,605,735; 4,667,025; 4,762,779; 4,789,737; 4,824,941; 4,835,263; 4,876,335; 4,904,582; 4,958,013; 5,082,830; 5,112,963; 5,214,136; 5,082,830; 5,112,963; 5,214,136;
- 5,245,022; 5,254,469; 5,258,506; 5,262,536; 5,272,250; 5,292,873; 5,317,098; 5,371,241, 5,391,723; 5,416,203, 5,451,463; 5,510,475; 5,512,667; 5,514,785; 5,565,552; 5,567,810; 5,574,142; 5,585,481; 5,587,371; 5,595,726; 5,597,696; 5,599,923; 5,599,928 and 5,688,941, each of which is herein incorporated by reference.
- 30 [0078] It is not necessary for all positions in a given compound to be uniformly modified, and in fact more than one of the aforementioned modifications may be incorporated in a single compound or even at a single nucleoside within an oligonucleotide. The present invention also

includes antisense compounds, which are chimeric compounds.

"Chimeric" antisense compounds or "chimeras," in the context of this invention, are antisense compounds, particularly oligonucleotides, which contain two or more chemically distinct regions, each made up of at

least one monomer unit, i.e., a nucleotide in the case of an oligonucleotide compound. These oligonucleotides typically contain at least one region wherein the oligonucleotide is modified so as to confer upon the oligonucleotide increased resistance to nuclease degradation, increased cellular uptake, and/or increased binding affinity for the target nucleic acid. An additional region of the oligonucleotide may serve as a substrate for enzymes capable of cleaving RNA:DNA or RNA:RNA hybrids. By way of example, RNase H is a cellular endonuclease, which cleaves the RNA strand of RNA:DNA duplex. Activation of RNase H, therefore, results in cleavage of the RNA target, thereby greatly

5

10

- enhancing the efficiency of oligonucleotide inhibition of gene expression. Consequently, comparable results can often be obtained with shorter oligonucleotides when chimeric oligonucleotides are used, compared to phosphorothioate deoxy oligonucleotides hybridizing to the same target region. Cleavage of the RNA target can be routinely
- detected by gel electrophoresis and, if necessary, associated nucleic acid hybridization techniques known in the art.

[0079] Chimeric antisense compounds of the invention may be formed as composite structures of two or more oligonucleotides, modified oligonucleotides, oligonucleosides and/or oligonucleotide 25 mimetics as described above. Such compounds have also been referred to in the art as hybrids or gapmers. Representative United States patents that teach the preparation of such hybrid structures include, but are not limited to, U.S. 5,013,830; 5,149,797; 5,220,007; 5,256,775; 5,366,878; 5,403,711; 5,491,133; 5,565,350; 5,623,065; 5,652,355; 5,652,356; and 5,700,922, certain of which are commonly owned with the instant application, and each of which is herein incorporated by reference in its

application, and each of which is herein incorporated by reference in its entirety.

[0080] The antisense compounds used in accordance with this invention may be conveniently, and routinely made through the well-known technique of solid phase synthesis. Equipment for such synthesis is sold by several vendors including, for example, Applied Biosystems
5 (Foster City, CA). Any other means for such synthesis known in the art may additionally or alternatively be employed. It is well known to use similar techniques to prepare oligonucleotides such as the phosphorothioates and alkylated derivatives.

The antisense compounds of the invention are synthesized in 10 vitro and do not include antisense compositions of biological origin, or genetic vector constructs designed to direct the in vivo synthesis of antisense molecules. The compounds of the invention may also be admixed, encapsulated, conjugated or otherwise associated with other molecules, molecule structures or mixtures of compounds, as for 15 example, liposomes, receptor targeted molecules, oral, rectal, topical or other formulations, for assisting in uptake, distribution and/or absorption. Representative United States patents that teach the preparation of such uptake, distribution and/or absorption assisting formulations include, but are not limited to, U.S. 5,108,921; 5,354,844; 5,416,016; 5,459,127; 5,521,291; 5,543,158; 5,547,932; 5,583,020; 20 5,591,721; 4,426,330; 4,534,899; 5,013,556; 5,108,921; 5,213,804; 5,227,170; 5,264,221; 5,356,633; 5,395,619; 5,416,016; 5,417,978; 5,462,854; 5,469,854; 5,512,295; 5,527,528; 5,534,259; 5,543,152; 5,556,948; 5,580,575; and 5,595,756, each of which is herein incorporated by reference. 25

[0082] The antisense compounds of the invention encompass any pharmaceutically acceptable salts, esters, or salts of such esters, or any other compound which, upon administration to an animal including a human, is capable of providing (directly or indirectly) the biologically active metabolite or residue thereof. Accordingly, for example, the disclosure is also drawn to prodrugs and pharmaceutically acceptable salts of the compounds of the invention, pharmaceutically acceptable salts of such prodrugs, and other bioequivalents.

30

[0083] The term "prodrug" indicates a therapeutic agent that is prepared in an inactive form that is converted to an active form (i.e., drug) within the body or cells thereof by the action of endogenous enzymes or other chemicals and/or conditions. In particular, prodrug versions of the oligonucleotides of the invention are prepared as SATE [(S-acetyl-2-thioethyl) phosphate] derivatives according to the methods disclosed in WO 93/24510 to Gosselin et al., published December 9, 1993 or in WO 94/26764 to Imbach et al.

5

[0084] The term "pharmaceutically acceptable salts" refers to
physiologically and pharmaceutically acceptable salts of the compounds
of the invention: i.e., salts that retain the desired biological activity of
the parent compound and do not impart undesired toxicological effects
thereto.

[0085] Pharmaceutically acceptable base addition salts are formed 15 with metals or amines, such as alkali and alkaline earth metals or organic amines. Examples of metals used as cations are sodium, potassium, magnesium, calcium, and the like. Examples of suitable amines are N, N'-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, dicyclohexylamine, ethylenediamine, N-20 methylglucamine, and procaine (see, for example, Berge et al., "Pharmaceutical Salts," J. of Pharma Sci., 1977, 66, 119). The base addition salts of said acidic compounds are prepared by contacting the free acid form with a sufficient amount of the desired base to produce the salt in the conventional manner. The free acid form may be 25 regenerated by contacting the salt form with an acid and isolating the free acid in the conventional manner. The free acid forms differ from their respective salt forms somewhat in certain physical properties such as solubility in polar solvents, but otherwise the salts are equivalent to their respective free acid for purposes of the present invention. As used herein, a "pharmaceutical addition salt" includes a pharmaceutically 30 acceptable salt of an acid form of one of the components of the

compositions of the invention. These include organic or inorganic acid salts of the amines. Preferred acid salts are the hydrochlorides, acetates,

salicylates, nitrates, and phosphates. Other suitable pharmaceutically acceptable salts are well known to those skilled in the art and include basic salts of a variety of inorganic and organic acids, such as, for example, with inorganic acids, such as for example hydrochloric acid, hydrobromic acid, sulfuric acid or phosphoric acid; with organic carboxylic, sulfonic, sulfo or phospho acids or N-substituted sulfamic acids, for example acetic acid, propionic acid, glycolic acid, succinic acid, maleic acid, hydroxymaleic acid, methylmaleic acid, fumaric acid, malic acid, tartaric acid, lactic acid, oxalic acid, gluconic acid, glucaric acid, glucuronic acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, salicylic acid, 4-aminosalicylic acid, 2-phenoxybenzoic acid, 2acetoxybenzoic acid, embonic acid, nicotinic acid or isonicotinic acid; and with amino acids, such as the 20 alpha-amino acids involved in the synthesis of proteins in nature, for example glutamic acid or aspartic acid, and also with phenylacetic acid, methanesulfonic acid, ethanesulfonic acid, 2-hydroxyethanesulfonic acid, ethane-1,2-disulfonic acid, benzenesulfonic acid, 4-methylbenzenesulfoic acid, naphthalene-2sulfonic acid, naphthalene-1,5-disulfonic acid, 2- or 3-phosphoglycerate, glucose-6-phosphate, N-cyclohexylsulfamic acid (with the formation of cyclamates), or with other acid organic compounds, such as ascorbic acid. Pharmaceutically acceptable salts of compounds may also be prepared with a pharmaceutically acceptable cation. Suitable pharmaceutically acceptable cations are well known to those skilled in the art and include alkaline, alkaline earth, ammonium, and quaternary ammonium cations. Carbonates or hydrogen carbonates are also possible.

5

10

15

20

25

30

[0086] For oligonucleotides, preferred examples of pharmaceutically acceptable salts include but are not limited to (a) salts formed with cations such as sodium, potassium, ammonium, magnesium, calcium, polyamines such as spermine and spermidine, etc.; (b) acid addition salts formed with inorganic acids, for example hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, nitric acid and the like; (c) salts formed with organic acids such as, for example, acetic acid,

oxalic acid, tartaric acid, succinic acid, maleic acid, fumaric acid, gluconic acid, citric acid, malic acid, ascorbic acid, benzoic acid, tannic acid, palmitic acid, alginic acid, polyglutamic acid, naphthalenesulfonic acid, methanesulfonic acid, p-toluenesulfonic acid,

- 5 naphthalenedisulfonic acid, polygalacturonic acid, and the like; and (d) salts formed from elemental anions such as chlorine, bromine, and iodine.
- [0087] The antisense compounds of the present invention can be utilized for diagnostics, therapeutics, prophylaxis, as research reagents, and kits. For therapeutics, an animal, preferably a human, suspected of having a disease or disorder, which can be treated by modulating the expression of ESM-1, is treated by administering antisense compounds in accordance with this invention. The compounds of the invention can be utilized in pharmaceutical compositions by adding an effective amount of an antisense compound to a suitable pharmaceutically acceptable diluent or carrier. Use of the antisense compounds and methods of the invention may also be useful prophylactically, e.g., to prevent or delay infection, inflammation, or tumor formation, for example.
- 20 [0088] The antisense compounds of the invention are useful for research and diagnostics, because these compounds hybridize to nucleic acids encoding ESM-1, enabling sandwich and other assays to easily be constructed to exploit this fact. Hybridization of the antisense oligonucleotides of the invention with a nucleic acid encoding ESM-1 can be detected by means known in the art. Such means may include conjugation of an enzyme to the oligonucleotide, radiolabelling of the oligonucleotide or any other suitable detection means. Kits using such detection means for detecting the level of ESM-1 in a sample may also be prepared.
- 30 [0089] The present invention also includes pharmaceutical compositions and formulations, which include the antisense compounds of the invention. The pharmaceutical compositions of the present invention may be administered in a number of ways depending upon

whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including ophthalmic and to mucous membranes including vaginal and rectal delivery), pulmonary, e.g., by inhalation or insufflation of powders or aerosols, including by nebulizer; intratracheal, intranasal, epidermal and transdermal), oral or parenteral. Parenteral administration includes intravenous, intraarterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; or intracranial, e.g., intrathecal or intraventricular, administration.

Oligonucleotides with at least one 2'-O-methoxyethyl modification are believed to be particularly useful for oral administration.

5

10

15

20

25

30

[0090] Pharmaceutical compositions and formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids, and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable. Coated condoms, gloves, and the like may also be useful.

[0091] Compositions and formulations for oral administration include powders or granules, suspensions, or solutions in water or non-aqueous media, capsules, sachets, or tablets. Thickeners, flavoring agents, diluents, emulsifiers, dispersing aids, or binders may be desirable.

[0092] Compositions and formulations for parenteral, intrathecal or intraventricular administration may include sterile aqueous solutions, which may also contain buffers, diluents and other suitable additives such as, but not limited to, penetration enhancers, carrier compounds and other pharmaceutically acceptable carriers or excipients.

[0093] Pharmaceutical compositions of the present invention include, but are not limited to, solutions, emulsions, and liposome-containing formulations. These compositions may be generated from a variety of components that include, but are not limited to, preformed liquids, self-emulsifying solids and self-emulsifying semisolids.

[0094] The pharmaceutical formulations of the present invention, which may conveniently be presented in unit dosage form, may be

prepared according to conventional techniques well known in the pharmaceutical industry. Such techniques include the step of bringing into association the active ingredients with the pharmaceutical carrier(s) or excipient(s). In general the formulations are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.

5

30

[0095] The compositions of the present invention may be formulated into any of many possible dosage forms such as, but not limited to, 10 tablets, capsules, liquid syrups, soft gels, suppositories, and enemas. The compositions of the present invention may also be formulated as suspensions in aqueous, non-aqueous or mixed media. Aqueous suspensions may further contain substances, which increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol, and/or dextran. The suspension may

15 also contain stabilizers.

[0096] In one embodiment of the present invention the pharmaceutical compositions may be formulated and used as foams. Pharmaceutical foams include formulations such as, but not limited to, emulsions, microemulsions, creams, jellies, and liposomes. While 20 basically similar in nature these formulations vary in the components and the consistency of the final product. The preparation of such compositions and formulations is generally known to those skilled in the pharmaceutical and formulation arts and may be applied to the formulation of the compositions of the present invention. Emulsions 25 The compositions of the present invention may be prepared and formulated as emulsions. Emulsions are typically heterogenous systems of one liquid dispersed in another in the form of droplets usually

Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199; Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., Volume 1, p. 245; Block in

exceeding 0.1 µm in diameter. (Idson, in Pharmaceutical Dosage

Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 2, p. 335; Higuchi et al., in Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, PA, 1985, p. 301). Emulsions are often biphasic systems 5 comprising of two immiscible liquid phases intimately mixed and dispersed with each other. In general, emulsions may be either water-inoil (w/o) or of the oil-in-water (o/w) variety. When an aqueous phase is finely divided into and dispersed as minute droplets into a bulk oily phase the resulting composition is called a water-in-oil (w/o) emulsion. 10 Alternatively, when an oily phase is finely divided into and dispersed as minute droplets into a bulk aqueous phase the resulting composition is called an oil-in-water (o/w) emulsion. Emulsions may contain additional components in addition to the dispersed phases and the active drug, which may be present as a solution in either the aqueous phase, oily phase or itself as a separate phase. Pharmaceutical excipients such as 15 emulsifiers, stabilizers, dyes, and anti-oxidants may also be present in emulsions as needed. Pharmaceutical emulsions may also be multiple emulsions that are comprised of more than two phases such as, for example, in the case of oil-in-water-in-oil (o/w/o) and water-in-oil-inwater (w/o/w) emulsions. Such complex formulations often provide 20 certain advantages that simple binary emulsions do not. Multiple emulsions in which individual oil droplets of an o/w emulsion enclose small water droplets constitute a w/o/w emulsion. Likewise a system of oil droplets enclosed in globules of water stabilized in an oily 25 continuous provides an o/w/o emulsion. Emulsions are characterized by little or no thermodynamic [0098]

stability. Often, the dispersed or discontinuous phase of the emulsion is well dispersed into the external or continuous phase and maintained in this form through the means of emulsifiers or the viscosity of the formulation. Either of the phases of the emulsion may be a semisolid or a solid, as is the case of emulsion-style ointment bases and creams. Other means of stabilizing emulsions entail the use of emulsifiers that may be incorporated into either phase of the emulsion. Emulsifiers may

30

broadly be classified into four categories: synthetic surfactants, naturally occurring emulsifiers, absorption bases, and finely dispersed solids (Idson, in *Pharmaceutical Dosaqe Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199).

[0099] Synthetic surfactants, also known as surface active agents, have found wide applicability in the formulation of emulsions and have been reviewed in the literature (Rieger, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker,

5

25

30

Inc., New York, N.Y., volume 1, p. 285; Idson, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), Marcel Dekker, Inc., New York, N.Y., 1988, volume 1, p. 199). Surfactants are typically amphiphilic and comprise a hydrophilic and a hydrophobic portion. The ratio of the hydrophilic to the hydrophobic nature of the surfactant has

been termed the hydrophile/lipophile balance (HLB) and is a valuable tool in categorizing and selecting surfactants in the preparation of formulations. Surfactants may be classified into different classes based on the nature of the hydrophilic group: nonionic, anionic, cationic, and amphoteric (Rieger, in *Pharmaceutical Dosage Forms*, Lieberman,

20 Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 285).

[00100] Naturally occurring emulsifiers used in emulsion formulations include lanolin, beeswax, phosphatides, lecithin, and acacia. Absorption bases possess hydrophilic properties such that they can soak up water to form w/o emulsions yet retain their semisolid consistencies, such as anhydrous lanolin and hydrophilic petrolatum. Finely divided solids have also been used as good emulsifiers especially in combination with surfactants and in viscous preparations. These include polar inorganic solids, such as heavy metal hydroxides, non-swelling clays such as bentonite, attapulgite, hectorite, kaolin, montmorillonite, colloidal aluminum silicate and colloidal magnesium aluminum silicate, pigments and nonpolar solids such as carbon or glyceryl tristearate.

[00101] A large variety of non-emulsifying materials are also included in emulsion formulations and contribute to the properties of emulsions. These include fats, oils, waxes, fatty acids, fatty alcohols, fatty esters, humectants, hydrophilic colloids, preservatives, and
antioxidants (Block, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 335; Idson, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199).

- 10 [00102] Hydrophilic colloids or hydrocolloids include naturally occurring gums and synthetic polymers such as polysaccharides (for example, acacia, agar, alginic acid, carrageenan, guar gum, karaya gum, and tragacanth), cellulose derivatives (for example, carboxymethylcellulose and carboxypropylcellulose), and synthetic polymers (for example, carbomers, cellulose ethers, and carboxyvinyl polymers). These disperse or swell in water to form colloidal solutions that stabilize emulsions by forming strong interfacial films around the dispersed phase droplets and by increasing the viscosity of the external phase.
- 20 [00103] Since emulsions often contain a number of ingredients such as carbohydrates, proteins, sterols, and phosphatides that may readily support the growth of microbes, these formulations often incorporate preservatives. Commonly used preservatives included in emulsion formulations include methyl paraben, propyl paraben, quaternary 25 ammonium salts, benzalkonium chloride, esters of p-hydroxybenzoic acid, and boric acid. Antioxidants are also commonly added to emulsion formulations to prevent deterioration of the formulation. Antioxidants used may be free radical scavengers such as tocopherols, alkyl gallates, butylated hydroxyanisole, butylated hydroxytoluene, or reducing agents 30 such as ascorbic acid and sodium metabisulfite, and antioxidant synergists such as citric acid, tartaric acid, and lecithin. [00104]
 - [00104] The application of emulsion formulations via dermatological, oral, and parenteral routes and methods for their manufacture have been

reviewed in the literature (Idson, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199). Emulsion formulations for oral delivery have been very widely used because of reasons of ease of formulation,

- efficacy from an absorption and bioavailability standpoint. (Rosoff, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245; Idson, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199).
- Mineral-oil base laxatives, oil-soluble vitamins, and high fat nutritive preparations are among the materials that have commonly been administered orally as o/w emulsions.
- [00105] In one embodiment of the present invention, the compositions of oligonucleotides and nucleic acids are formulated as
 microemulsions. A microemulsion may be defined as a system of water, oil, and amphiphile, which is a single optically isotropic, and thermodynamically stable liquid solution (Rosoff, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245). Typically
- 20 microemulsions are systems that are prepared by first dispersing an oil in an aqueous surfactant solution and then adding a sufficient amount of a fourth component, generally an intermediate chain-length alcohol to form a transparent system. Therefore, microemulsions have also been described as thermodynamically stable, isotropically clear dispersions of
- two immiscible liquids that are stabilized by interfacial films of surface-active molecules (Leung and Shah, in: Controlled Release of Drugs:
 Polymers and Aggregate Systems, Rosoff, M., Ed., 1989, VCH
 Publishers, New York, pages 1852-5). Microemulsions commonly are prepared via a combination of three to five components that include oil,

 water, surfactant, cosurfactant, and electrolyte. Whether the
 - water, surfactant, cosurfactant, and electrolyte. Whether the microemulsion is of the water-in-oil (w/o) or an oil-in-water (o/w) type is dependent on the properties of the oil and surfactant used and on the structure and geometric packing of the polar heads and hydrocarbon tails

of the surfactant molecules (Schott, in *Remington's Pharmaceutical Sciences*, Mack Publishing Co., Easton, PA, 1985, p. 271).

5

[00106] The phenomenological approach utilizing phase diagrams has been extensively studied and has yielded a comprehensive knowledge, to one skilled in the art, of how to formulate microemulsions (Rosoff, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245; Block, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.)

Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 335).

10 Compared to conventional emulsions, microemulsions offer the advantage of solubilizing water-insoluble drugs in a formulation of thermodynamically stable droplets that are formed spontaneously.
[00107] Surfactants used in the preparation of microemulsions include, but are not limited to, ionic surfactants, non-ionic surfactants,

- Brij 96, polyoxyethylene oleyl ethers, polyglycerol fatty acid esters, tetraglycerol monolaurate (ML310), tetraglycerol monooleate (MO310), hexaglycerol monooleate (PO310), hexaglycerol pentaoleate (PO500), decaglycerol monocaprate (MCA750), decaglycerol monooleate (MO750), decaglycerol sequioleate (S0750), decaglycerol decaoleate
- 20 (DAO750), alone or in combination with cosurfactants. The cosurfactant, usually a short-chain alcohol such as ethanol, 1-propanol, and 1-butanol, serves to increase the interfacial fluidity by penetrating into the surfactant film and consequently creating a disordered film because of the void space generated among surfactant molecules.
- Microemulsions may, however, be prepared without the use of cosurfactants and alcohol-free self-emulsifying microemulsion systems are known in the art. The aqueous phase may typically be, but is not limited to, water, an aqueous solution of the drug, glycerol, PEG300, PEG400, polyglycerols, propylene glycols, and derivatives of ethylene glycol. The oil phase may include, but is not limited to, materials such as Captex 300, Captex 355, Capmul MCM, fatty acid esters, medium chain (C8-C12) mono, di, and triglycerides, polyoxyethylated glyceryl fatty

acid esters, fatty alcohols, polyglycolized glycerides, saturated polyglycolized C8-C10 glycerides, vegetable oils and silicone oil.

[00108] Microemulsions are particularly of interest from the standpoint of drug solubilization and the enhanced absorption of drugs.

- Lipid based microemulsions (both o/w and w/o) have been proposed to enhance the oral bioavailability of drugs, including peptides (Constantinides et al., *Pharmaceutical Research*, 1994, 11, 1385-1390; Ritschel, *Meth. Find. Exp. Clin. Pharmacol.*, 1993, 13, 205). Microemulsions afford advantages of improved drug solubilization,
- protection of drug from enzymatic hydrolysis, possible enhancement of drug absorption due to surfactant-induced alterations in membrane fluidity and permeability, ease of preparation, ease of oral administration over solid dosage forms, improved clinical potency, and decreased toxicity (Constantinides et al., *Pharmaceutical Research*, 1994, 11,
- 1385; Ho et al., *J. Pharm. Sci.*, 1996, 85, 138-143). Often microemulsions may form spontaneously when their components are brought together at ambient temperature. This may be particularly advantageous when formulating thermolabile drugs, peptides, or oligonucleotides. Microemulsions have also been effective in the
- transdermal delivery of active components in both cosmetic and pharmaceutical applications. It is expected that the microemulsion compositions and formulations of the present invention will facilitate the increased systemic absorption of oligonucleotides and nucleic acids from the gastrointestinal tract, as well as improve the local cellular
- uptake of oligonucleotides and nucleic acids within the gastrointestinal tract, vagina, buccal cavity and other areas of administration.

[00109]

30

additional components and additives such as sorbitan monostearate (Grill 3), Labrasol, and penetration enhancers to improve the properties of the formulation and to enhance the absorption of the oligonucleotides and nucleic acids of the present invention. Penetration enhancers used in the microemulsions of the present invention may be classified as belonging to one of five broad categories - surfactants, fatty acids, bile

Microemulsions of the present invention may also contain

salts, chelating agents, and non-chelating non-surfactants (Lee et al., *Critical Reviews in Therapeutic Drug Carrier Systems*, 1991, p. 92). Each of these classes has been discussed above.

[00110] Liposomes

15

20

5 [00111] There are many organized surfactant structures besides microemulsions that have been studied and used for the formulation of drugs. These include monolayers, micelles, bilayers, and vesicles. Vesicles, such as liposomes, have attracted great interest because of their specificity and the duration of action they offer from the standpoint of drug delivery. As used in the present invention, the term "liposome" means a vesicle composed of amphiphilic lipids arranged in a spherical bilayer or bilayers.

[00112] Liposomes are unilamellar or multilamellar vesicles which have a membrane formed from a lipophilic material and an aqueous interior. The aqueous portion contains the composition to be delivered. Cationic liposomes possess the advantage of being able to fuse to the cell wall. Noncationic liposomes, although not able to fuse as efficiently with the cell wall, are taken up by macrophages in vivo.

[00113] In order to cross intact mammalian skin, lipid vesicles must pass through a series of fine pores, each with a diameter less than 50 nm, under the influence of a suitable transdermal gradient. Therefore, it is desirable to use a liposome, which is highly deformable and able to pass through such fine pores.

[00114] Further advantages of liposomes include; liposomes obtained from natural phospholipids are biocompatible and biodegradable; liposomes can incorporate a wide range of water and lipid soluble drugs; liposomes can protect encapsulated drugs in their internal compartments from metabolism and degradation (Rosoff, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, P. 245). Important considerations in the preparation of liposome formulations are the lipid surface charge, vesicle size, and the aqueous volume of the liposomes.

[00115] Liposomes are useful for the transfer and delivery of active ingredients to the site of action. Because the liposomal membrane is structurally similar to biological membranes, when liposomes are applied to a tissue, the liposomes start to merge with the cellular membranes. As the merging of the liposome and cell progresses, the liposomal contents are emptied into the cell where the active agent may act.

5

10

15

20

25

30

[00116] Liposomal formulations have been the focus of extensive investigation as the mode of delivery for many drugs. There is growing evidence that for topical administration, liposomes present several advantages over other formulations. Such advantages include reduced side-effects related to high systemic absorption of the administered drug, increased accumulation of the administered drug at the desired target, and the ability to administer a wide variety of drugs, both hydrophilic and hydrophobic, into the skin.

[00117] Several reports have detailed the ability of liposomes to deliver agents including high-molecular weight DNA into the skin. Compounds including analgesics, antibodies, hormones, and high-molecular weight DNAs have been administered to the skin. The majority of applications resulted in the targeting of the upper epidermis.

[00118] Liposomes fall into two broad classes. Cationic liposomes are positively charged liposomes, which interact with the negatively charged DNA molecules to form a stable complex. The positively charged DNA/liposome complex binds to the negatively charged cell surface and is internalized in an endosome. Due to the acidic pH within the endosome, the liposomes are ruptured, releasing their contents into the cell cytoplasm (Wang et al., *Biochem. Biophys. Res. Commun.*, 1987, 147, 980 - 985)

[00119] Liposomes, which are pH-sensitive or negatively charged, entrap DNA rather than complex with it. Since both the DNA and the lipid are similarly charged, repulsion rather than complex formation occurs. Nevertheless, some DNA is entrapped within the aqueous interior of these liposomes. pH-sensitive liposomes have been used to

deliver DNA encoding the thymidine kinase gene to cell monolayers in culture. Expression of the exogenous gene was detected in the target cells (Zhou et al., *Journal of Controlled Release*, 1992, 19, 269-274).

[00120] One major type of liposomal composition includes

- phospholipids other than naturally derived phosphatidylcholine. Neutral liposome compositions, for example, can be formed from dimyristoyl phosphatidylcholine (DMPC) or dipalmitoyl phosphatidylcholine (DPPC). Anionic liposome compositions generally are formed from dimyristoyl phosphatidylglycerol, while anionic fusogenic liposomes are
- 10 formed primarily from dioleoyl phosphatidylethanolamine (DOPE).

 Another type of liposomal composition is formed from phosphatidylcholine (PC) such as, for example, soybean PC, and egg PC. Another type is formed from mixtures of phospholipid and/or phosphatidylcholine and/or cholesterol.
- 15 [00121] Several studies have assessed the topical delivery of liposomal drug formulations to the skin. Application of liposomes containing interferon to guinea pig skin resulted in a reduction of skin herpes sores while delivery of interferon via other means (e.g. as a solution or as an emulsion) was ineffective (Weiner et al., Journal of
- 20 Drug Targeting, 1992, 2, 405-410). Further, an additional study tested the efficacy of interferon administered as part of a liposomal formulation to the administration of interferon using an aqueous system, and concluded that the liposomal formulation was superior to aqueous administration (du Plessis et al., Antiviral Research, 1992, 18, 259-265).
- 25 [00122] Non-ionic liposomal systems have also been examined to determine their utility in the delivery of drugs to the skin, in particular systems comprising non-ionic surfactant and cholesterol. Non-ionic liposomal formulations comprising Novasome ™ I (glyceryl dilaurate/cholesterol/polyoxyethylene-10-stearyl ether) and Novasome™
- 30 II (glyceryl distearate/ cholesterol/polyoxyethylene-10-stearyl ether) were used to deliver cyclosporin-A into the dermis of mouse skin.
 Results indicated that such non-ionic liposomal systems were effective

in facilitating the deposition of cyclosporin-A into different layers of the skin (Hu et al. S.T.P.Pharma. Sci., 1994, 4, 6, 466).

[00123] Liposomes also include "sterically stabilized" liposomes, a term, which, as used herein, refers to liposomes comprising one or more specialized lipids that, when incorporated into liposomes, result in enhanced circulation lifetimes relative to liposomes lacking such, specialized lipids. Examples of sterically stabilized liposomes are those in which part of the vesicle-forming lipid portion of the liposome (A) comprises one or more glycolipids, such as monosialoganglioside G_{M1},

5

10

15

or (B) is derivatized with one or more hydrophilic polymers, such as a polyethylene glycol (PEG) moiety. While not wishing to be bound by any particular theory, it is thought in the art that, at least for sterically stabilized liposomes containing gangliosides, sphingomyelin, or PEG-derivatized lipids, the enhanced circulation half-life of these sterically stabilized liposomes derives from a reduced uptake into cells of the

stabilized liposomes derives from a reduced uptake into cells of the reticuloendothelial system (RES) (Allen et al., *FEBS Letters*, 1987, 223, 42; Wu et al., *Cancer Research*, 1993, 53, 3765).

[00124] Various liposomes comprising one or more glycolipids are known in the art. Papahadjopoulos et al. (Ann. N.Y. Acad. Sci., 1987,

507, 64) reported the ability of monosialoganglioside G_{MI}, galactocerebroside sulfate, and phosphatidylinositol to improve blood half-lives of liposomes. These findings were expounded upon by Gabizon et al. (*Proc. Natl. Acad. Sci. U.S.A.*, 1988, 85, 6949). U.S. Patent No. 4,837,028 and WO 88/04924, both to Allen et al., disclose

liposomes comprising (1) sphingomyelin and (2) the ganglioside Gjor a galactocerebroside sulfate ester. U.S. Patent No. 5,543,152 (Webb et al.) discloses liposomes comprising sphingomyelin. Liposomes comprising 1,2-sn-dimyristoylphosphatidylcholine are disclosed in WO 97/13499 (Lim et al.).

30 [00125] Many liposomes comprising lipids derivatized with one or more hydrophilic polymers, and methods of preparation thereof, are known in the art. Sunamoto et al. (*Bull. Chem. Soc. Jpn.*, 1980, 53, 2778) described liposomes comprising a nonionic detergent, 2C₁₂15G,

which contains a PEG moiety. Illum et al. (FEBS Lett., 1984, 167, 79) noted that hydrophilic coating of polystyrene particles with polymeric glycols results in significantly enhanced blood half-lives. Synthetic phospholipids modified by the attachment of carboxylic groups of 5 polyalkylene glycols (e.g., PEG) are described by Sears (U.S. Patent Nos. 4,426,330 and 4,534,899). Klibanov et al. (FEBS Lett., 1990, 268, 235) described experiments demonstrating that liposomes comprising phosphatidylethanolamine (PE) derivatized with PEG or PEG stearate have significant increases in blood circulation half-lives. Blume et al. 10 (Biochimica et Biophysica Acta, 1990, 1029, 91) extended such observations to other PEG derivatized phospholipids, e.g., DSPE-PEG, formed from the combination of distearoylphosphatidylethanolamine (DSPE) and PEG. Liposomes having covalently bound PEG moieties on their external surface are described in European Patent No. EP 0 445 15 131 B1 and WO 90/04384 to Fisher. Liposome compositions containing 1-20 mole percent of PE derivatized with PEG, and methods of use thereof, are described by Woodle et al. (U.S. Patent Nos. 5,013,556 and 5,356,633) and Martin et al. (U.S. Patent No. 5,213,804 and European Patent No. EP 0 496 813 Bl). Liposomes comprising a number of other 20 lipid-polymer conjugates are disclosed in WO 91/05545 and U.S. Patent No. 5,225,212 (both to Martin et al.) and in WO 94/20073 (Zalipsky et al.) Liposomes comprising PEG-modified ceramide lipids are described in WO 96/10391 (Choi et al.). U.S. Patent Nos. 5,540,935 (Miyazaki et al.) and 5,556,948 (Tagawa et al.) describe PEG-containing liposomes 25 that can be further derivatized with functional moieties on their surfaces. A limited number of liposomes comprising nucleic acids are known in the art. WO 96/40062 to Thierry et al. discloses methods for encapsulating high molecular weight nucleic acids in liposomes. U.S. Patent No. 5,264,221 to Tagawa et al. discloses protein-bonded 30 liposomes and asserts that the contents of such liposomes may include an antisense RNA. U.S. Patent No. 5,665,710 to Rahman et al. describes

certain methods of encapsulating oligodeoxynucleotides in liposomes.

WO 97/04787 to Love et al. discloses liposomes comprising antisense oligonucleotides targeted to the raf gene.

5

10

15

20

25

30

[00127] Transfersomes are yet another type of liposomes, and are highly deformable lipid aggregates which are attractive candidates for drug delivery vehicles. Transfersomes may be described as lipid droplets, which are so highly deformable that they are easily able to penetrate through pores that are smaller than the droplet. Transfersomes are adaptable to the environment in which they are used, e.g. they are self-optimizing (adaptive to the shape of pores in the skin), self-repairing, frequently reach their targets without fragmenting, and often self-loading. To make transfersomes it is possible to add surface edge-activators, usually surfactants, to a standard liposomal composition. Transfersomes have been used to deliver serum albumin to the skin. The transfersome-mediated delivery of serum albumin has been shown to be as effective as subcutaneous injection of a solution containing serum albumin.

[00128] Surfactants find wide application in formulations such as emulsions (including microemulsions) and liposomes. The most common way of classifying and ranking the properties of the many different types of surfactants, both natural and synthetic, is by the use of the hydrophile/lipophile balance (HLB). The nature of the hydrophilic group (also known as the "head") provides the most useful means for categorizing the different surfactants used in formulations (Rieger, in *Pharmaceutical Dosage Forms*, Marcel Dekker, Inc., New York, NY, 1988, p. 285)

[00129] If the surfactant molecule is not ionized, it is classified as a nonionic surfactant. Nonionic surfactants find wide application in pharmaceutical and cosmetic products and are usable over a wide range of pH values. In general their HLB values range from 2 to about 18 depending on their structure. Nonionic surfactants include nonionic esters such as ethylene glycol esters, propylene glycol esters, glyceryl esters, polyglyceryl esters, sorbitan esters, sucrose esters, and ethoxylated esters. Nonionic alkanolamides and ethers such as fatty

alcohol ethoxylates, propoxylated alcohols, and ethoxylated/propoxylated block polymers are also included in this class. The polyoxyethylene surfactants are the most popular members of the nonionic surfactant class.

[00130] If the surfactant molecule carries a negative charge when it is dissolved or dispersed in water, the surfactant is classified as anionic. Anionic surfactants include carboxylates such as soaps, acyl lactylates, acyl amides of amino acids, esters of sulfuric acid such as alkyl sulfates and ethoxylated alkyl sulfates, sulfonates such as alkyl benzene sulfonates, acyl isethionates, acyl taurates and sulfosuccinates, and phosphates. The most important members of the anionic surfactant class

are the alkyl sulfates and the soaps.

- [00131] If the surfactant molecule carries a positive charge when it is dissolved or dispersed in water, the surfactant is classified as cationic.
- 15 Cationic surfactants include quaternary ammonium salts and ethoxylated amines. The quaternary ammonium salts are the most used members of this class.
 - [00132] If the surfactant molecule has the ability to carry either a positive or negative charge, the surfactant is classified as amphoteric.
- Amphoteric surfactants include acrylic acid derivatives, substituted alkylamides, N-alkylbetaines, and phosphatides.
 - [00133] The use of surfactants in drug products, formulations and in emulsions has been reviewed (Rieger, in *Pharmaceutical Dosage Forms*, Marcel Dekker, Inc., New York, NY, 1988, p. 285). Penetration
- 25 Enhancers

30

- [00134] In one embodiment, the present invention employs various penetration enhancers to effect the efficient delivery of nucleic acids particularly oligonucleotides, to the skin of animals. Most drugs are present in solution in both ionized and nonionized forms. However, usually only lipid soluble or lipophilic drugs readily cross cell
- membranes. It has been discovered that even non-lipophilic drugs may cross cell membranes if the membrane to be crossed is treated with a penetration enhancer. In addition to aiding the diffusion of non-

lipophilic drugs across cell membranes, penetration enhancers also enhance the permeability of lipophilic drugs.

[00135] Penetration enhancers may be classified as belonging to one of five broad categories, i.e., surfactants, fatty acids, bile salts, chelating agents, and non-chelating nonsurfactants (Lee et al., *Critical Reviews in Therapeutic Drug Carrier Systems*, 1991, p.92). Each of the above mentioned classes of penetration enhancers are described below in greater detail.

5

[00136] Surfactants: In connection with the present invention,
surfactants (or "surface-active agents") are chemical entities which,
when dissolved in an aqueous solution, reduce the surface tension of the
solution or the interfacial tension between the aqueous solution and
another liquid, with the result that absorption of oligonucleotides
through the mucosa is enhanced. In addition to bile salts and fatty acids,
these penetration enhancers include, for example, sodium lauryl sulfate,
polyoxyethylene-9-lauryl ether and polyoxyethylene-20-cetyl ether)
(Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991,
p.92); and perfluorochemical emulsions, such as FC-43. Takahashi et al.,
J. Pharm. Pharmacol., 1988, 40, 252).

[00137] Fatty acids: Various fatty acids and their derivatives which act as penetration enhancers include, for example, oleic acid, lauric acid, capric acid (n-decanoic acid), myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein (1-monooleoyl-.rac-glycerol), dilaurin, caprylic acid, arachidonic acid, glycerol 1-monocaprate, 1-dodecylazacycloheptan-2-one, acylcarnitines, acylcholines, C₁₋₁₀ alkyl esters thereof (e.g., methyl, isopropyl and t-butyl), and mono- and di-glycerides thereof (i.e., oleate, laurate, caprate, myristate, palmitate, stearate, linoleate, etc.) (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p.92; Muranishi, Critical
Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33; El Hariri

[00138] Bile salts: The physiological role of bile includes the facilitation of dispersion and absorption of lipids and fat-soluble

et al., J. Pharm. Pharmacol., 1992, 44, 651-654).

vitamins (Brunton, Chapter 38 in: Goodman & Gilman's *The Pharmacological Basis of Therapeutics*, 9th Ed., Hardman et al. Eds. McGraw-Hill, New York, 1996, pp. 934-935). Various natural bile salts, and their synthetic derivatives, act as penetration enhancers. Thus the

- 5 term "bile salts" includes any of the naturally occurring components of bile as well as any of their synthetic derivatives. The bile salts of the invention include, for example, cholic acid (or its pharmaceutically acceptable sodium salt, sodium cholate), dehydrocholic acid (sodium dehydrocholate), deoxycholic acid (sodium deoxycholate), glucholic
- acid (sodium glucholate), glycholic acid (sodium glycocholate), glycodeoxycholic acid (sodium glycodeoxycholate), taurocholic acid (sodium taurocholate), taurodeoxycholic acid (sodium taurodeoxycholate), chenodeoxycholic acid (sodium chenodeoxycholate), ursodeoxycholic acid (UDCA), sodium tauro-
- 24,25-dihydro-fusidate (STDHF), sodium glycodihydrofusidate'and polyoxyethylene-9-lauryl ether (POE) (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, page 92; Swinyard, Chapter 39 In: Remington's Pharmaceutical Sciences, 18th Ed., Gennaro, ed., Mack Publishing Co., Easton, PA, 1990, pages 782-783; Muranishi,
- 20 Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33;
 Yamamoto et al., J. Pharm. Exp. Ther., 1992, 263, 25; Yamashita et al.,
 J. Pharm. Sci., 1990, 79, 579-583).
- [00139] Chelating Agents: Chelating agents, as used in connection with the present invention, can be defined as compounds that remove metallic ions from solution by forming complexes therewith, with the result that absorption of oligonucleotides through the mucosa is enhanced. With regards to their use as penetration enhancers in the present invention, chelating agents have the added advantage of also serving as DNase inhibitors, as most characterized DNA nucleases require a divalent metal ion for catalysis and are thus inhibited by chelating agents (Jarrett, *J. Chromatogr.*, 1993, 618, 315-339). Chelating agents of the invention include but are not limited to disodium. ethylenediaminetetraacetate (EDTA), citric acid, salicylates

(e.g., sodium salicylate, 5-methoxysalicylate and homovanilate), N-acyl derivatives of collagen, laureth-9, and N-amino acyl derivatives of beta-diketones (enamines)(Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, page 92; Muranishi, Critical Reviews in

- 5 Therapeutic Drug Carrier Systems, 1990, 7, 1-33; Buur et al., J. Control Rel., 1990, 14, 43-51).
 - [00140] Non-chelating non-surfactants: As used herein, nonchelating non-surfactant penetration enhancing compounds can be defined as compounds that demonstrate insignificant activity as chelating agents or
 - as surfactants but that nonetheless enhance absorption of oligonucleotides through the alimentary mucosa (Muranishi, *Critical Reviews in Therapeutic Drug Carrier Systems*, 1990, 7, 1-33). This class of penetration enhancers includes, for example, unsaturated cyclic ureas, 1-alkyl- and 1-alkenylazacyclo-alkanone derivatives (Lee et al., *Critical*
- 15 Reviews in Therapeutic Drug Carrier Systems, 1991, page 92); and nonsteroidal anti-inflammatory agents such as diclofenac sodium, indomethacin, and phenylbutazone (Yamashita et al., J. Pharm. Pharmacol., 1987, 39, 621-626).
- [00141] Agents that enhance uptake of oligonucleotides at the cellular level may also be added to the pharmaceutical and other compositions of the present invention. For example, cationic lipids, such as lipofectin (Junichi et al, U.S. Patent No. 5,705,188), cationic glycerol derivatives, and polycationic molecules, such as polylysine (Lollo et al., PCT Application WO 97/30731), are also known to enhance the cellular uptake of oligonucleotides.
 - [00142] Other agents may be utilized to enhance the penetration of the administered nucleic acids, including glycols such as ethylene glycol and propylene glycol, pyrrols such as 2-pyrrol, azones, and terpenes such as limonene and menthone.
- 30 Carriers

10

[00143] Certain compositions of the present invention also incorporate carrier compounds in the formulation. As used herein, "carrier compound" or "carrier" can refer to a nucleic acid, or analog

thereof, which is inert (i.e., does not possess biological activity per se) but is recognized as a nucleic acid by in vivo processes that reduce the bioavailability of a nucleic acid having biological activity by, for example, degrading the biologically active nucleic acid or promoting its removal from circulation. The coadministration of a nucleic acid and a carrier compound, typically with an excess of the latter substance, can result in a substantial reduction of the amount of nucleic acid recovered in the liver, kidney or other extracirculatory reservoirs, presumably due to competition between the carrier compound and the nucleic acid for a common receptor. For example, the recovery of a partially phosphorothioate oligonucleotide in hepatic tissue can be reduced when it is coadministered with polyinosinic acid, dextran sulfate, polycytidic acid or 4-acetamido-41sothiocyano-stilbene-2,2'disulfonic acid (Miyao et al., Antisense Res. Dev., 1995, 5, 115-121; Takakura et al., Antisense & Nucl. Acid Drug Dev., 1996, 6, 177-183). Excipients

5

10

15

20

25

30

In contrast to a carrier compound, a "pharmaceutical carrier" [00144] or "excipient" is a pharmaceutically acceptable solvent, suspending agent or any other pharmacologically inert vehicle for delivering one or more nucleic acids to an animal. The excipient may be liquid or solid and is selected, with the planned manner of administration in mind, so as to provide for the desired bulk, consistency, etc., when combined with a nucleic acid and the other components of a given pharmaceutical composition. Typical pharmaceutical carriers include, but are not limited to, binding agents (e.g., pregelatinized maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose, etc.); fillers (e.g., lactose and other sugars, microcrystalline cellulose, pectin, gelatin, calcium sulfate, ethyl cellulose, polyacrylates or calcium hydrogen phosphate, etc.); lubricants (e.g., magnesium stearate, talc, silica, colloidal silicon dioxide, stearic acid, metallic stearates, hydrogenated vegetable oils, corn starch, polyethylene glycols, sodium benzoate, sodium acetate, etc.); disintegrants (e.g., starch, sodium starch glycolate, etc.); and wetting agents (e.g., sodium lauryl sulphate, etc.).

[00145] Pharmaceutically acceptable organic or inorganic excipient suitable for non-parenteral administration, which does not deleteriously react with nucleic acids, can also be used to formulate the compositions of the present invention. Suitable pharmaceutically acceptable carriers include, but are not limited to, water, salt solutions, alcohols, polyethylene glycols, gelatin, lactose, amylose, magnesium stearate, talc, silicic acid, viscous paraffin, hydroxymethylcellulose, polyvinylpyrrolidone and the like.

5

10

15

20

25

30

[00146] Formulations for topical administration of nucleic acids may include sterile and non-sterile aqueous solutions, non-aqueous solutions in common solvents such as alcohols, or solutions of the nucleic acids in liquid or solid oil bases. The solutions may also contain buffers, diluents, and other suitable additives. Pharmaceutically acceptable organic or inorganic excipients suitable for non-parenteral administration, which do not deleteriously react with nucleic acids, can be used.

[00147] Suitable pharmaceutically acceptable excipients include, but are not limited to, water, salt solutions, alcohol, polyethylene glycols, gelatin, lactose, amylose, magnesium stearate, talc, silicic acid, viscous paraffin, hydroxymethylcellulose, polyvinylpyrrolidone and the like. Other Components

[00148] The compositions of the present invention may additionally contain other adjunct components conventionally found in pharmaceutical compositions, at their art-established usage levels. Thus, for example, the compositions may contain additional, compatible, pharmaceutically-active materials such as, for example, antipruritics, astringents, local anesthetics or anti-inflammatory agents, or may contain additional materials useful in physically formulating various dosage forms of the compositions of the present invention, such as dyes, flavoring agents, preservatives, antioxidants, opacifiers, thickening agents and stabilizers. However, such materials, when added, should not unduly interfere with the biological activities of the components of the compositions of the present invention. The formulations can be sterilized

and, if desired, mixed with auxiliary agents, e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, colorings, flavorings and/or aromatic substances and the like which do not deleteriously interact with the nucleic acid(s) of the formulation.

[00149] Aqueous suspensions may contain substances, which increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol, and/or dextran. The suspension may also contain stabilizers.

5

30

- Certain embodiments of the invention provide 10 [00150] pharmaceutical compositions containing (a) one or more antisense compounds and (b) one or more other chemotherapeutic agents which function by a non-antisense mechanism. Examples of such chemotherapeutic agents include, but are not limited to, anticancer drugs 15 such as daunorubicin, dactinomycin, doxorubicin, bleomycin, mitomycin, nitrogen mustard, chlorambucil, melphalan, cyclophosphamide, 6-mercaptopurine, 6-thioguanine, cytarabine (CA), 5-fluorouracil (5-FU), floxuridine (5-FUdR), methotrexate (MTX), colchicine, vincristine, vinblastine, etoposide, teniposide, cisplatin and 20 diethylstilbestrol (DES). See, generally, The Merck Manual of Diagnosis and Therapy, 15th Ed., Berkow et al., eds., 1987, Rahway, N.J., pages 1206-1228). Anti-inflammatory drugs, including but not limited to nonsteroidal anti-inflammatory drugs and corticosteroids, and antiviral drugs, including but not limited to ribivirin, vidarabine, acyclovir and 25 ganciclovir, may also be combined in compositions of the invention. See, generally, The Merck Manual of Diagnosis and Therapy, 15th Ed., Berkow et al., eds., 1987, Rahway, N.J., pages 2499-2506 and 46-49, respectively). other non-antisense chemotherapeutic agents are also within the scope of this invention. Two or more combined compounds
 - [00151] In another related embodiment, compositions of the invention may contain one or more antisense compounds, particularly oligonucleotides, targeted to a first nucleic acid and one or more

may be used together or sequentially.

additional antisense compounds targeted to a second nucleic acid target. Numerous examples of antisense compounds are known in the art. Two or more combined compounds may be used together or sequentially. [00152] The formulation of therapeutic compositions and their subsequent administration is believed to be within the skill of those in 5 the art. Dosing is dependent on severity and responsiveness of the disease state to be treated, with the course of treatment lasting from several days to several months, or until a cure is effected or a diminution of the disease state is achieved. Optimal dosing schedules can be calculated from measurements of drug accumulation in the body of the 10 patient. Persons of ordinary skill can easily determine optimum dosages, dosing methodologies and repetition rates. Optimum dosages may vary depending on the relative potency of individual oligonucleotides, and can generally be estimated based on EC₅₀s found to be effective in in 15 vitro and in vivo animal models. In general, dosage is from 0.01 µg to 100 g per kg of body weight, and may be given once or more daily, weekly, monthly or yearly, or even once every 2 to 20 years. Persons of ordinary skill in the art can easily estimate repetition rates for dosing based on measured residence times and concentrations of the drug in 20 bodily fluids or tissues. Following successful treatment, it may be desirable to have the patient undergo maintenance therapy to prevent the recurrence of the disease state, wherein the oligonucleotide is administered in maintenance doses, ranging from 0.01 µg to 100 g per kg of body weight, once or more daily, to once every 20 years. 25 While the present invention has been described with specificity in accordance with certain of its preferred embodiments, the following examples serve only to illustrate the invention and are not intended to limit the same.

EXAMPLES

30

Example 1

Nucleoside Phosphoramidites for Oligonucleotide Synthesis Deoxy and 2'-alkoxy amidites

[00154] 2'-Deoxy and 2'-methoxy beta-cyanoethyldiisopropyl phosphoramidites are available from commercial sources (e.g. Chemgenes, Needham MA or Glen Research, Inc. Sterling VA). Other 2'-O-alkoxy substituted nucleoside amidites are prepared as described in

- 5 U.S. Patent 5,506,351, herein incorporated by reference. For oligonucleotides synthesized using 2'-alkoxy amidites, the standard cycle for unmodified oligonucleotides is utilized, except the wait step after pulse delivery of tetrazole and base is increased to 360 seconds.
 [00155] Oligonucleotides containing 5-methyl-2'-deoxycytidine (5-
- 10 Me-C) nucleotides are synthesized according to published methods [Sanghvi, et. al., *Nucleic Acids Research*, 1993, 21, 3197-3203] using commercially available phosphoramidites (Glen Research, Sterling VA or ChemGenes, Needham MA).

2'-Fluoro amidites

15 2'-Fluorodeoxyadenosine amidites

- [00156] 2'-fluoro oligonucleotides are synthesized as described previously [Kawasaki, et. al., *J. Med. Chem.*, 1993, 36, 831-841] and United States patent 5,670,633, herein incorporated by reference. Briefly, the protected nucleoside N6-benzoyl-2'-deoxy-2'-
- 20 fluoroadenosine is synthesized utilizing commercially available 9-beta-D-arabinofuranosyladenine as starting material and by modifying literature procedures whereby the 2'-alpha-fluoro atom is introduced by a S_N2-displacement of a 2'-beta-trityl group. Thus N6-benzoyl-9-beta-D-arabinofuranosyladenine is selectively protected in moderate yield as
- the 3',5'-ditetrahydropyranyl (THP) intermediate. Deprotection of the THP and N6-benzoyl groups is accomplished using standard methodologies and standard methods are used to obtain the 5'-dimethoxytrityl-(DMT) and 5'-DMT-3'-phosphoramidite intermediates.

2'-Fluorodeoxyguanosine

30 [00157] The synthesis of 2'-deoxy-2'-fluoroguanosine is accomplished using tetraisopropyldisiloxanyl (TPDS) protected 9-beta-D-arabinofuranosylguanine as starting material, and conversion to the intermediate diisobutyrylarabinofuranosylguanosine. Deprotection of the

TPDS group is followed by protection of the hydroxyl group with THP to give diisobutyryl di-THP protected arabinofuranosylguanine.

Selective O-deacylation and triflation is followed by treatment of the crude product with fluoride, then deprotection of the THP groups.

5 Standard methodologies are used to obtain the 5'-DMT- and 5'-DMT- 3'-phosphoramidites.

2'-Fluorouridine

10

20

25

30

[00158] Synthesis of 2'-deoxy-2'-fluorouridine is accomplished by the modification of a literature procedure in which 2,2'anhydro-1-beta-

D-arabinofuranosyluracil is treated with 70% hydrogen fluoridepyridine. Standard procedures are used to obtain the 5'-DMT and 5'-DMT-3'-phosphoramidites.

2'-Fluorodeoxycytidine

[00159] 2'-deoxy-2'-fluorocytidine is synthesized via amination of 2'-deoxy-2'-fluorouridine, followed by selective protection to give N4-benzoyl-2'-deoxy-2'-fluorocytidine. Standard procedures are used to obtain the 5'-DMT and 5'-DMT-3'phosphoramidites.

2'-O-(2-Methoxyethyl) modified amidites

[00160] 2'-O-Methoxyethyl-substituted nucleoside amidites are prepared as follows, or alternatively, as per the methods of Martin, P., Helvetica Chimica Acta, 1995, 78, 486-504.

2,2'-Anhydro[l-(beta-D-arabinofuranosyl)-5-methyluridinel

[00161] 5-Methyluridine (ribosylthymine, commercially available through Yamasa, Choshi, Japan) (72.0 g, 0.279 M), diphenylcarbonate (90.0 g, 0.420 M) and sodium bicarbonate (2.0 g, 0.024 M) are added to DMF (300 mL). The mixture is heated to reflux, with stirring, allowing the evolved carbon dioxide gas to be released in a controlled manner. After 1 hour, the slightly darkened solution is concentrated under reduced pressure. The resulting syrup is poured into diethylether (2.5 L), with stirring. The product formed a gum. The ether is decanted and the residue is dissolved in a minimum amount of methanol (ca. 400 mL). The solution is poured into fresh ether (2.5 L) to yield a stiff gum. The

ether is decanted and the gum is dried in a vacuum oven (60°C at 1 mm

Hg for 24 h) to give a solid that is crushed to a light tan powder. The material is used as is for further reactions (or it can be purified further by column chromatography using a gradient of methanol in ethyl acetate (10-25%) to give a white solid.

5 2'-O-Methoxyethyl-5-methyluridine

10

15

25

30

[00162] 2,2'-Anhydro-5-methyluridine (195 g, 0.81 M), tris(2-methoxyethyl)borate (231 g, 0.98 M) and 2-methoxyethanol (1.2 L) are added to a 2 L stainless steel pressure vessel and placed in a pre-heated oil bath at 160°C. After heating for 48 hours at 155-160°C, the vessel is opened and the solution evaporated to dryness and triturated with MeOH (200 mL). The residue is suspended in hot acetone (1 L). The insoluble salts are filtered, washed with acetone (150 mL) and the filtrate evaporated. The residue (280 g) is dissolved in CH₃CN (600 mL) and evaporated. A silica gel column (3 kg) is packed in CH₂Cl₂ /acetone /MeOH (20:5:3) containing 0.5% Et₃NH. The residue is dissolved in

The CH₂Cl₂ (250 mL) and adsorbed onto silica (150 g) prior to loading onto the column. The product is eluted with the packing solvent to give the title product. Additional material can be obtained by reworking impure fractions.

20 2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methyluridine

[00163] 2'-O-Methoxyethyl-5-methyluridine (160 g, 0.506 M) is co-evaporated with pyridine (250 mL) and the dried residue dissolved in pyridine (1.3 L). A first aliquot of dimethoxytrityl chloride (94.3 g, 0.278 M) is added and the mixture stirred at room temperature for one hour. A second aliquot of dimethoxytrityl chloride (94.3 g, 0.278 M) is added and the reaction stirred for an additional one hour. Methanol (170 mL) is then added to stop the reaction. The solvent is evaporated and triturated with CH₃CN (200 mL) The residue is dissolved in CHCl (1.5 L) and extracted with 2x500 mL of saturated NaHCO₃ and 2x500 mL of saturated NaCl. The organic phase is dried over Na₂SO₄, filtered, and evaporated. The residue is purified on a 3.5 kg silica gel column, packed and eluted with EtOAc/hexane/ acetone (5:5:1) containing 0-5% Et₃NH. The pure fractions are evaporated to give the title product.

3'-O-Acetyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methyluridine

2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methyluridine [00164] (106 g, 0.167 M), DMF/pyridine (750 mL of a 3:1 mixture prepared from 562 mL of DMF and 188 mL of pyridine) and acetic anhydride 5 (24.38 mL, 0.258 M) are combined and stirred at room temperature for 24 hours. The reaction is monitored by TLC by first quenching the TLC sample with the addition of MeOH. Upon completion of the reaction, as judged by TLC, MeOH (50 mL) is added and the mixture evaporated at 35°C. The residue is dissolved in CHC1₃ (800 mL) and extracted with 10 2x200 mL of saturated sodium bicarbonate and 2x200 mL of saturated NaCl. The water layers are back extracted with 200 mL of CHCl₃. The combined organics are dried with sodium sulfate and evaporated to a residue. The residue is purified on a 3.5 kg silica gel column and eluted using EtOAc/hexane(4:1). Pure product fractions are evaporated to yield 15 the title compounds.

3'-O-Acetyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methyl-4-triazoleuridine

20

25

30

[00165] A first solution is prepared by dissolving 3'-O-acetyl-2'-Omethoxyethyl-5'-O-dimethoxytrityl-5-methyluridine (96 g, 0.144 M) in CH₃CN (700 mL) and set aside. Triethylamine (189 mL, 1.44 M) is added to a solution of triazole (90 g, 1.3 M) in CH₃CN (1 L), cooled to -5°C and stirred for 0.5 h using an overhead stirrer. POC1₃ is added dropwise, over a 30 minute period, to the stirred solution maintained at 0-10°C, and the resulting mixture stirred for an additional 2 hours. The first solution is added dropwise, over a 45 minute period, to the latter solution. The resulting reaction mixture is stored overnight in a cold room. Salts are filtered from the reaction mixture and the solution is evaporated. The residue is dissolved in EtOAc (1 L) and the insoluble solids are removed by filtration. The filtrate is washed with 1x300 mL of NaHCO₃ and 2x300 mL of saturated NaCl, dried over sodium sulfate and evaporated. The residue is triturated with EtOAc to give the title compound.

2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methylcytidine

[00166] A solution of 3'-O-acetyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methyl-4-triazoleuridine (103 g, 0.141 M) in dioxane (500 mL) and NH₄OH (30 mL) is stirred at room temperature for 2

bours. The dioxane solution is evaporated and the residue azeotroped with MeOH (2x200 mL). The residue is dissolved in MeOH (300 mL) and transferred to a 2-liter stainless steel pressure vessel. MeOH (400 mL) saturated with NH₃ gas is added and the vessel heated to 100°C for 2 hours (TLC showed complete conversion). The vessel contents are evaporated to dryness and the residue is dissolved in EtOAc (500 mL)

evaporated to dryness and the residue is dissolved in EtOAc (500 mL) and washed once with saturated NaCl (200 mL). The organics are dried over sodium sulfate and the solvent is evaporated to give the title compound.

N4-Benzoyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-

15 methylcytidine

20

30

[00167] 2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methylcytidine (85 g, 0.134 M) is dissolved in DMF (800 mL) and benzoic anhydride (37.2 g, 0.165 M) is added with stirring. After stirring for 3 hours, TLC showed the reaction to be approximately 95% complete. The solvent is evaporated and the residue azeotroped with MeOH (200 mL). The residue is dissolved in CHC1₃ (700 mL) and extracted with saturated NaHCO, (2x300 mL) and saturated NaCl (2x300 mL), dried over MgSO₄ and evaporated to give a residue. The residue is chromatographed on a 1.5 kg silica column using EtOAc/hexane (1:1)

containing 0-5% Et₃NH as the eluting solvent. The pure product fractions are evaporated to give the title compound.

N4-Benzoyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methylcytidine-3'-amidite

[00168] N4-Benzoyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methylcytidine (74 g, 0.10 M) is dissolved in CH₂Cl₂ (1 L) Tetrazole diisopropylamine (7.1 g) and 2-cyanoethoxy-tetra(isopropyl)phosphite (40.5 mL, 0.123 M) are added with stirring, under a nitrogen atmosphere. The resulting mixture is stirred for 20 hours at room

temperature (TLC showed the reaction to be 95% complete). The reaction mixture is extracted with saturated NaHCO₃ (1x300 mL) and saturated NaCl (3x300 mL). The aqueous washes are back-extracted with CH_2Cl_2 (300 mL), and the extracts are combined, dried over

- MgSO₄, and concentrated. The residue obtained is chromatographed on a 1.5 kg silica column using EtOAc/hexane (3:1) as the eluting solvent. The pure fractions were combined to give the title compound.
 - 2'-O-(Aminooxyethyl) nucleoside amidites and 2'-O-(dimethylaminooxyethyl) nucleoside amidites
- 10 2'-(Dimethylaminooxyethoxy) nucleoside amidites

15

- [00169] 2'-(Dimethylaminooxyethoxy) nucleoside amidites [also known in the art as 2'-O-(dimethylaminooxyethyl) nucleoside amidites] are prepared as described in the following paragraphs. Adenosine, cytidine and guanosine nucleoside amidites are prepared similarly to the thymidine (5-methyluridine) except the exocyclic amines are protected with a benzoyl moiety in the case of adenosine and cytidine and with isobutyryl in the case of guanosine.
- 5'-O-tert-Butyldiphenylsilyl -O² -2'-anhydro-5-methyluridine
 [00170] O² -2'-anhydro-5-methyluridine (Pro. Bio. Sint., Varese,
 Italy, 100.0g, 0.4'6 mmol), dimethylaminopyridine (0.66g, 0.013eq,
 0.0054mmol) are dissolved in dry pyridine (500 ml) at ambient temperature under an argon atmosphere and with mechanical stirring.
 tert-Butyldiphenylchlorosilane (125.8g, 119.0mL, 1.1eq, 0.458mmol) is
- temperature. TLC (Rf 0.22, ethyl acetate) indicated a complete reaction. The solution is concentrated under reduced pressure to a thick oil. This is partitioned between dichloromethane (1 L) and saturated sodium bicarbonate (2xl L) and brine (1 L). The organic layer is dried over sodium sulfate and concentrated under reduced pressure to a thick oil.

added in one portion. The reaction is stirred for 16 h at ambient

The oil is dissolved in a 1:1 mixture of ethyl acetate and ethyl ether (600mL) and the solution is cooled to -10°C. The resulting crystalline product is collected by filtration, washed with ethyl ether (3x200 mL), and dried (40°C, 1mm Hg, 24 h) to a white solid

5'-O-tert-Butyldiphenylsilyl-2'-O-(2-hydroxyethyl)-5-methyluridine [00171] In a 2 L stainless steel, unstirred pressure reactor is added borane in tetrahydrofuran (1.0 M, 2.0 eq, 622 mL). In the fume hood and with manual stirring, ethylene glycol (350 mL, excess) is added

- cautiously at first until the evolution of hydrogen gas subsides. 5'-O-tert-Butyldiphenylsilyl-O²-2'anhydro-5-methyluridine (149 g, 0.3'1 mol) and sodium bicarbonate (0.074 g, 0.003 eq) are added with manual stirring. The reactor is sealed and heated in an oil bath until an internal temperature of 160°C is reached and then maintained for 16 h (pressure
- < 100 psig). The reaction vessel is cooled to ambient and opened. TLC (Rf 0.67 for desired product and Rf 0.82 for ara-T side product, ethyl acetate) indicated about 70% conversion to the product. In order to avoid additional side product formation, the reaction is stopped, concentrated under reduced pressure (10 to 1mm, Hg) in a warm water bath (40-</p>
- 15 100°C) with the more extreme conditions used to remove the ethylene glycol. [Alternatively, once the low boiling solvent is gone, the remaining solution can be partitioned between ethyl acetate and water. The product will be in the organic phase.] The residue is purified by column chromatography (2kg silica gel, ethyl acetate-hexanes gradient
- 20 1:1 to 4:1). The appropriate fractions are combined, stripped, and dried to product as a white crisp foam, contaminated starting material, and pure reusable starting material.
 - 2'-O-([2-phthalimidoxy)ethyl]-5'-t-butyldiphenylsilyl-5-methyluridine
- [00172] 5'-O-tert-Butyldiphenylsilyl-2'-O-(2-hydroxyethyl)-5-methyluridine (20g, 36.98mmol) is mixed with triphenylphosphine (11.63g, 44.36mmol) and N-hydroxyphthalimide (7.24g, 44.36mmol). It is then dried over P₂O₅ under high vacuum for two days at 40°C. The reaction mixture is flushed with argon and dry THF (369.8mL, Aldrich, sure seal bottle) is added to get a clear solution. Diethylazodicarboxylate (6.98mL, 44.36mmol) is added dropwise to the reaction mixture. The rate of addition is maintained such that resulting deep red coloration is just discharged before adding the next drop. After

the addition is complete, the reaction is stirred for 4 hrs. By that time TLC showed the completion of the reaction (ethylacetate:hexane, 60:40). The solvent is evaporated in vacuum. Residue obtained is placed on a flash column and eluted with ethyl acetate:hexane (60:40), to get 2'-O-([2-phthalimidoxy)ethyl]-5'-t-butyldiphenylsilyl-5-methyluridine

5'-O-tert-butyldiphenylsilyl-2'-O-[(2-formadoximinooxy)ethyl]-5-methyluridine

5

as white foam.

- [00173] 2'-O-([2-phthalimidoxy)ethyl]-5'-t-butyldiphenylsilyl-5-methyluridine (3.1g, 4.5mmol) is dissolved in dry CH₂Cl₂ (4.5mL) and methylhydrazine (300mL, 4.64mmol) is added dropwise at -10°C to 0°C. After 1 h the mixture is filtered, the filtrate is washed with ice cold CH₂Cl₂ and the combined organic phase is washed with water, brine and dried over anhydrous Na₂SO₄. The solution is concentrated to get 2'-
- O(aminooxyethyl) thymidine, which is then dissolved in MeOH (67.5mL). To this formaldehyde (20% aqueous solution, w/w, 1.1 eq.) is added and the resulting mixture is stirred for 1 h. Solvent is removed under vacuum; residue chromatographed to get 5'-O-tert-butyldiphenylsilyl-2'-O-[(2-formadoximinooxy) ethyl]-5-methyluridine as white foam.
 - $\label{thm:converted} 5°-O-tert-Butyl diphenyl silyl-2°-O-[N,N-dimethylamino oxyethyl]-5-methyl uridine$
- [00174] 5'-O-tert-butyldiphenylsilyl-2'-O-[(2-formadoximinooxy)ethyl]-5-methyluridine (1.77g, 3.12mmol) is
 25 dissolved in a solution of 1M pyridinium p-toluenesulfonate (PPTS) in dry MeOH (30.6mL). Sodium cyanoborohydride (0.39g, 6.13mmol) is added to this solution at 10°C under inert atmosphere. The reaction mixture is stirred for 10 minutes at 10°C. After that the reaction vessel is removed from the ice bath and stirred at room temperature for 2 h, the
 30 reaction monitored by TLC (5% MeOH in CH₂Cl₂). Aqueous NaHCO₃ solution (5%, 10mL) is added and extracted with ethyl acetate (2x20mL). Ethyl acetate phase is dried over anhydrous Na₂SO₄, evaporated to dryness. Residue is dissolved in a solution of 1M PPTS in

MeOH (30.6mL). Formaldehyde (20% w/w, 30mL, 3.37mmol) is added and the reaction mixture is stirred at room temperature for 10 minutes. Reaction mixture cooled to 10°C in an ice bath, sodium cyanoborohydride (0.39g, 6.13mmol) is added, and reaction mixture 5 stirred at 10°C for 10 minutes. After 10 minutes, the reaction mixture is removed from the ice bath and stirred at room temperature for 2 hrs. To the reaction mixture 5% NaHCO₃ (25mL) solution is added and extracted with ethyl acetate (2x25mL). Ethyl acetate layer is dried over anhydrous Na₂SO₄ and evaporated to dryness. The residue obtained is purified by flash column chromatography and eluted with 5% MeOH in 10 CH₂Cl₂ to get 5'-O-tertbutyldiphenylsilyl-2'-O-[N,Ndimethylaminooxyethyll-5- methyluridine as a white foam. 2'-O-(dimethylaminooxyethyl)-5-methyluridine Triethylamine trihydrofluoride (3.91mL, 24.0mmol) is [00175] dissolved in dry THF and triethylamine (1.67mL, 12mmol, dry, kept 15 over KOH). This mixture of triethylamine-2HF is then added to 5'-Otert-butyldiphenylsilyl-2'-O-[N,N-dimethylaminooxyethyl]-5methyluridine (1.40g, 2.4mmol) and stirred at room temperature for 24 hrs. Reaction is monitored by TLC (5% MeOH in CH₂Cl₂). Solvent is 20 removed under vacuum and the residue placed on a flash column and eluted with 10% MeOH in CH2Cl2 to get 2'-O-(dimethylaminooxyethyl)-5-methyluridine. 5'-O-DMT-2'-O-(dimethylaminooxyethyl)-5-methyluridine 2'-O-(dimethylaminooxyethyl)-5-methyluridine (750mg, [00176] 25 2.17mmol) is dried over P₂O₅ under high vacuum overnight at 40°C. It is then co-evaporated with anhydrous pyridine (20mL). The residue obtained is dissolved in pyridine (11mL) under argon atmosphere. 4dimethylaminopyridine (26.5mg, 2.60mmol), 4,4'-dimethoxytrityl chloride (880mg, 2.60mmol) is added to the mixture and the reaction mixture is stirred at room temperature until all of the starting material 30 disappeared. Pyridine is removed under vacuum and the residue

chromatographed and eluted with 10% MeOH in CH₂Cl₂ (containing a

few drops of pyridine) to get 5'-O-DMT-2'-0(dimethylamino-oxyethyl)-5-methyluridine.

- 5'-O-DMT-2'-O-(2-N,N-dimethylaminooxyethyl)-5-methyluridine-3'-[(2-cyanoethyl)-N,N-diisopropylphosphoramidite]
- 5 [00177] 5'-O-DMT-2'-O-(dimethylaminooxyethyl)-5-methyluridine (1.08g, 1.67mmol) is co-evaporated with toluene (20mL). To the residue N,N-diisopropylamine tetrazonide (0.29g, 1.67mmol) is added and dried over P20, under high vacuum overnight at 40°C. Then the reaction mixture is dissolved in anhydrous acetonitrile (8.4mL) and 2-
- cyanoethyl-N,N,N¹,N¹-tetraisopropylphosphoramidite (2.12mL, 6.08mmol) is added. The reaction mixture is stirred at ambient temperature for 4 hrs under inert atmosphere. The progress of the reaction is monitored by TLC (hexane:ethyl acetate 1:1). The solvent is evaporated, then the residue is dissolved in ethyl acetate (70mL) and
- washed with 5% aqueous NaHCO₃ (40mL). Ethyl acetate layer is dried over anhydrous Na₂SO₄ and concentrated. Residue obtained is chromatographed (ethyl acetate as eluent) to get 5'-O-DMT-2'-O-(2-N,N-dimethylaminooxyethyl)-5-methyluridine-3'-[(2-cyanoethyl)-N,N-diisopropylphosphoramidite] as a foam.
- 20 2'-(Aminooxyethoxy) nucleoside amidites

30

- [00178] 2'-(Aminooxyethoxy) nucleoside amidites [also known in the art as 2'-O-(aminooxyethyl) nucleoside amidites] are prepared as described in the following paragraphs. Adenosine, cytidine and thymidine nucleoside amidites are prepared similarly.
- 25 N2-isobutyryl-6-O-diphenylcarbamoyl-2'-O-(2-ethylacetyl)-5'-O-(4,4'-dimethoxytrityl)guanosine-3'-[(2-cyanoethyl)-N,N-diisopropylphosphoramidite]
 - [00179] The 2'-O-aminooxyethyl guanosine analog may be obtained by selective 2'-O-alkylation of diaminopurine riboside. Multigram quantities of diaminopurine riboside may be purchased from Schering AG (Berlin) to provide 2'-O-(2-ethylacetyl) diaminopurine riboside along with a minor amount of the 3'-O-isomer. 2'-O-(2-ethylacetyl) diaminopurine riboside may be resolved and converted to 2'-O-

(2ethylacetyl)guanosine by treatment with adenosine deaminase. (McGee, D. P. C., Cook, P. D., Guinosso, C. J., WO 94/02501 Al 940203.) Standard protection procedures should afford 2'-O-(2-ethylacetyl)-5'-O-(4,4'-dimethoxytrityl)guanosine and 2-N-isobutyryl-6-

- O-diphenylcarbamoyl-2'-O-(2-ethylacetyl)-5'-O-(4,4'-dimethoxytrityl)guanosine which may be reduced to provide 2-N-isobutyryl-6-O-diphenylcarbamoyl-2'-O-(2-ethylacetyl)-5'-O-(4,4'-dimethoxytrityl)guanosine. As before the hydroxyl group may be displaced by N-hydroxyphthalimide via a Mitsunobu reaction, and the protected nucleoside may phosphitylated as usual to yield 2-N-isobutyryl-6-O-diphenylcarbamoyl-2'-O-(2-ethylacetyl)-5'-O-(4,4'-dimethoxytrityl)-5'-O-diphenylcarbamoyl-2'-O-(2-ethylacetyl)-5'-O-(4,4'-dimethoxytrityl)-5'-O-diphenylcarbamoyl-2'-O-(2-ethylacetyl)-5'-O-(4,4'-dimethoxytrityl)-5'-O-diphenylcarbamoyl-2'-O-(2-ethylacetyl)-5'-O-(4,4'-dimethoxytrityl)-5'-O-diphenylcarbamoyl-2'-O-(2-ethylacetyl)-5'-O-(4,4'-dimethoxytrityl)-5'-O-diphenylcarbamoyl-2'-O-(2-ethylacetyl)-5'-O-(4,4'-dimethoxytrityl)-5'-O-diphenylcarbamoyl-2'-O-(2-ethylacetyl)-5'-O-(4,4'-dimethoxytrityl)
 - isobutyryl-6-O-diphenylcarbamoyl-2'-O-(2-ethylacetyl)-5'-O-(4,4'-dimethoxytrityl)guanosine-3'-[(2-cyanoethyl)-N,N-diisopropylphosphoramiditel.
 - 2'-dimethylaminoethoxyethoxy (2'-DMAEOE) nucleoside amidites
- 15 [00180] 2'-dimethylaminoethoxyethoxy nucleoside amidites (also known in the art as 2'-O-dimethylaminoethoxyethyl, i.e., 2'O-CH₂-O-CH₂-N(CH₂)₂, or 2'-DMAEOE nucleoside amidites) are prepared as follows. Other nucleoside amidites are prepared similarly.
 - 2'-O-[2(2-N,N-dimethylaminoethoxy)ethyl]-5-methyl uridine
- 20 [00181] 2[2-(Dimethylamino)ethoxylethanol (Aldrich, 6.66 g, 50 mmol) is slowly added to a solution of borane in tetrahydrofuran (1 M, 10 mL, 10 mmol) with stirring in a 100 mL bomb. Hydrogen gas evolves as the solid dissolves. O²-, 2' anhydro-5-methyluridine (1.2 g, 5 mmol), and sodium bicarbonate (2.5 mg) are added and the bomb is
- sealed, placed in an oil bath, and heated to 155°C for 26 hours. The bomb is cooled to room temperature and opened. The crude solution is concentrated and the residue partitioned between water (200 mL) and hexanes (200 mL). The excess phenol is extracted into the hexane layer. The aqueous layer is extracted with ethyl acetate (3x200 mL) and the

30

combined organic layers are washed once with water, dried over anhydrous sodium sulfate, and concentrated. The residue is columned on silica gel using methanol/methylene chloride 1:20 (which has 2% triethylamine) as the eluent. As the column fractions are concentrated a

colorless solid forms which is collected to give the title compound as a white solid.

5'-O-dimethoxytrityl-2'-O-[2(2-N,N-dimethylaminoethoxy) ethyl)]-5-methyl uridine

- 5 [00182] To 0.5 g (1.3 mmol) of 2'-O-[2(2-N,N-dimethylaminoethoxy)ethyl)1-5-methyl uridine in anhydrous pyridine (8 mL), triethylamine (0.36 mL) and dimethoxytrityl chloride (DMT-Cl, 0.87 g, 2 eq.) are added and stirred for 1 hour. The reaction mixture is poured into water (200 mL) and extracted with CH₂Cl₂ (2x200 mL). The combined CH₂Cl₂ layers are washed with saturated NaHCO₃ solution, followed by saturated NaCl solution, and dried over anhydrous sodium sulfate. Evaporation of the solvent followed by silica gel chromatography using MeOH: CH₂Cl₂:Et₃N (20:1, v/v, with 1% triethylamine) gives the title compound.
- 5'-O-Dimethoxytrityl-2'-O-[2(2-N,N-dimethylaminoethoxy)ethyl)]5-methyl uridine-3'-O-(cyanoethyl-N,N-diisopropyl)phosphoramidite

[00183] Diisopropylaminotetrazolide (0.6 g) and 2-cyanoethoxyN,N-diisopropyl phosphoramidite (1.1 mL, 2 eq.) are added to a solution of 5'-O-dimethoxytrityl-2'-O-[2(2-N,N-dimethylaminoethoxy)ethyl)]-5-methyluridine (2.17 g, 3 mmol) dissolved in CH₂Cl₂ (20 mL) under an atmosphere of argon. The reaction mixture is stirred overnight and the solvent evaporated. The resulting residue is purified by silica gel flash column chromatography with ethyl acetate as the eluent to give the title compound.

Example 2

Oligonucleotide synthesis

[00184] Unsubstituted and substituted phosphodiester (P=O)

30 oligonucleotides are synthesized on an automated DNA synthesizer

(Applied Biosystems model 380B) using standard phosphoramidite
chemistry with oxidation by iodine.

[00185] Phosphorothioates (P=S) are synthesized as for the phosphodiester oligonucleotides except the standard oxidation bottle is replaced by 0.2 M solution of 3H-1,2-benzodithiole-3-one 1,1-dioxide in acetonitrile for the stepwise thiation of the phosphite linkages. The

- thiation wait step is increased to 68 sec and is followed by the capping step. After cleavage from the CPG column and deblocking in concentrated ammonium hydroxide at 55°C (18 h), the oligonucleotides are purified by precipitating twice with 2.5 volumes of ethanol from a 0.5 M NaCl solution. Phosphinate oligonucleotides are prepared as
- described in U.S. Patent 5,508,270, herein incorporated by reference.

[00186] Alkyl phosphonate oligonucleotides are prepared as described in U.S. Patent 4,469,863, herein incorporated by reference.

[00187] 3'-Deoxy-3'-methylene phosphonate oligonucleotides are prepared as described in U.S. Patents 5,610,289 or 5,625,050, herein incorporated by reference.

[00188] Phosphoramidite oligonucleotides are prepared as described in U.S. Patent, 5,256,775 or U.S. Patent 5,366,878, herein incorporated by reference.

[00189] Alkylphosphonothioate oligonucleotides are prepared as described in WO 94/17093 and WO 94/02499 herein incorporated by reference.

[00190] 3'-Deoxy-3'-amino phosphoramidate oligonucleotides are prepared as described in U.S. Patent 5,476,925, herein incorporated by reference.

25 [00191] Phosphotriester oligonucleotides are prepared as described in U.S. Patent 5,023,243, herein incorporated by reference.

[00192] Borano phosphate oligonucleotides are prepared as described in U.S. Patents 5,130,302 and 5,177,198, both herein incorporated by reference.

30

15

20

Example 3

Oligonucleoside Synthesis

[00193] Methylenemethylimino linked oligonucleosides, also identified as MMI linked oligonucleosides, methylenedimethylhydrazo linked oligonucleosides, also identified as MDH linked oligonucleosides, and methylenecarbonylamino linked oligonucleosides,

- also identified as amide-3 linked oligonucleosides, and methyleneaminocarbonyl linked oligonucleosides, also identified as amide-4 linked oligonucleosides, as well as mixed backbone compounds having, for instance, alternating MMI and P=O or P=S linkages are prepared as described in U.S. Patents 5,378,825; 5,386,023; 5,489,677;
- 5,602,240; and 5,610,289, all of which are herein incorporated by reference.
 - [00194] Formacetal and thioformacetal linked oligonucleosides are prepared as described in U.S. Patents 5,264,562 and 5,264,564, herein incorporated by reference.
- 15 [00195] Ethylene oxide linked oligonucleosides are prepared as described in U.S. Patent 5,223,618, herein incorporated by reference.

Example 4

PNA Synthesis

- 20 [00196] Peptide nucleic acids (PNAs) are prepared in accordance with any of the various procedures referred to in Peptide Nucleic Acids (PNA): Synthesis, Properties and Potential Applications, Bioorganic & Medicinal Chemistry, 1996, 4, 523. They may also be prepared in accordance with U.S. Patents 5,539,082; 5,700,922; and 5,719,262,
- 25 herein incorporated by reference.

Example 5

30

Synthesis of Chimeric Oligonucleotides

[00197] Chimeric oligonucleotides, oligonucleosides, or mixed oligonucleotides/oligonucleosides of the invention can be of several different types. These include a first type wherein the "gap" segment of linked nucleosides is positioned between 5' and 3' "wing" segments of linked nucleosides and a second "open end" type wherein the "gap"

segment is located at either the 3' or the 5' terminus of the oligomeric compound. Oligonucleotides of the first type are also known in the art as "gapmers" or gapped oligonucleotides. Oligonucleotides of the second type are also known in the art as "hemimers" or "wingmers".

5 2'-O-Me]-[2'-deoxy]-[2'-O-Me] Chimeric Phosphorothioate Oligonucleotides

10

15

20

25

[00198] Chimeric oligonucleotides having 2'-O-alkyl phosphorothioate and 2'-deoxy phosphorothioate oligonucleotide segments are synthesized using an Applied Biosystems automated DNA synthesizer Model 380B, as above. Oligonucleotides are synthesized using the automated synthesizer and 2'-deoxy-5'-dimethoxytrityl-3'-Ophosphoramidite for the DNA portion and 5'-dimethoxytrityl-2'-Omethyl-3'-O-phosphoramidite for 5' and 3' wings. The standard synthesis cycle is modified by increasing the wait step after the delivery of tetrazole and base to 600 s repeated four times for RNA and twice for 2'-O-methyl. The fully protected oligonucleotide is cleaved from the support and the phosphate group is deprotected in 3:1 ammonia/ethanol at room temperature overnight then lyophilized to dryness. Treatment in methanolic ammonia for 24 hrs at room temperature is then done to deprotect all bases and sample is again lyophilized to dryness. The pellet is resuspended in 1M TBAF in THF for 24 hrs at room temperature to deprotect the 2' positions. The reaction is then guenched with 1M TEAA and the sample is then reduced to 1/2 volume by rotovac before being desalted on a G25 size exclusion column. The oligo recovered is then analyzed spectrophotometrically for yield and for purity by capillary electrophoresis and by mass spectrometry.

[00199] [2'-O-(2-Methoxyethyl)]—[2'-deoxy]--[2'-O-(Methoxyethyl)] Chimeric Phosphorothioate Oligonucleotides [00200] [2'-O-(2-methoxyethyl)]--[2'-deoxy]---[-2'-O-

30 (methoxyethyl)] chimeric phosphorothioate oligonucleotides are prepared as per the procedure above for the 2'-O-methyl chimeric oligonucleotide, with the substitution of phorothioate oligonucleotides

are prepared as per the procedure above for 2'-O-(methoxyethyl) amidites for the 2'-O-methyl amidites.

[2'-O-(2-Methoxyethyl)Phosphodiester]--[2'-deoxy Phosphorothioate]--[2'-O-(2-Methoxyethyl)] Phosphodiester]

5 Chimeric Oligonucleotides

[00201] [2'-O-(2-methoxyethyl phosphodiester]--[2'-deoxy phosphorothioate]--[2'-O-(methcixyethyl) phosphodiester] chimeric oligonucleotides are prepared as per the above procedure for the 2'-O-methyl chimeric oligonucleotide with the substitution of 2'-O-

- (methoxyethyl) amidites for the 2'-O-methyl amidites, oxidization with iodine to generate the phosphodiester internucleotide linkages within the wing portions of the chimeric structures and sulfurization utilizing 3,H-1,2 benzodithiole-3-one 1,1 dioxide (Beaucage Reagent) to generate the phosphorothioate internucleotide linkages for the center gap.
- 15 [00202] Other chimeric oligonucleotides, chimeric oligonucleosides, and mixed chimeric oligonucleotides/oligonucleosides are synthesized according to United States patent 5,623,065, herein incorporated by reference.

20 Example 6

25

30

Oligonucleotide Isolation

[00203] After cleavage from the controlled pore glass column (Applied Biosystems) and deblocking in concentrated ammonium hydroxide at 55°C for 18 hours, the oligonucleotides or oligonucleosides are purified by precipitation twice out of 0.5 M NaCl with 2.5 volumes ethanol. Synthesized oligonucleotides are analyzed by polyacrylamide gel electrophoresis on denaturing gels and judged to be at least 85% full-length material. The relative amounts of phosphorothioate and phosphodiester linkages obtained in synthesis are periodically checked by "P nuclear magnetic resonance spectroscopy, and for some studies oligonucleotides are purified by HPLC, as described by Chiang et al., *J. Biol. Chem.* 1991, 266, 18162-18171.

Example 7

Oligonucleotide Synthesis - 96 Well Plate Format

[00204] Oligonucleotides are synthesized via solid phase P(III) phosphoramidite chemistry on an automated synthesizer capable of

5 assembling 96 sequences simultaneously in a standard 96 well format. Phosphodiester internucleotide linkages are afforded by oxidation with aqueous iodine. Phosphorothioate internucleotide linkages are generated by sulfurization utilizing 3,H-1,2 benzodithiole-3-one 1,1 dioxide (Beaucage Reagent) in anhydrous acetonitrile. Standard base-protected beta-cyanoethyldiisopropyl phosphoramidites can be purchased from commercial vendors (e.g. PE-Applied Biosystems, Foster City, CA, or Pharmacia, Piscataway, NJ). Non-standard nucleosides are synthesized as per known literature or patented methods. They are utilized as base protected betacyanoethyldiisopropyl phosphoramidites.

15 [00205] Oligonucleotides are cleaved from support and deprotected with concentrated NH₄OH at elevated temperature (55-60°C) for 12-16 hours and the released product then dried in vacuo. The dried product is then re-suspended in sterile water to afford a master plate from which all analytical and test plate samples are then diluted utilizing robotic pipettors.

Example 8

25

30

Oligonucleotide Analysis - 96 Well Plate Format

[00206] The concentration of oligonucleotide in each well is assessed by dilution of samples and UV absorption spectroscopy. The full-length integrity of the individual products is evaluated by capillary electrophoresis (CE) in either the 96 well format (Beckman P/ACETM MDQ) or, for individually prepared samples, on a commercial CE apparatus (e.g., Beckman P/ACETM 5000, ABI 270). Base and backbone composition is confirmed by mass analysis of the compounds utilizing electrospray-mass spectroscopy. All assay test plates are diluted from the master plate using single and multi-channel robotic pipettors. Plates

are judged to be acceptable if at least 85% of the compounds on the plate are at least 85% full length.

Example 9

5 Cell culture and oligonucleotide treatment

[00207] The effect of antisense compounds on target nucleic acid expression can be tested in any of a variety of cell types provided that the target nucleic acid is present at measurable levels. This can be routinely determined using, for example, PCR or Northern blot analysis.

The following 6 cell types are provided for illustrative purposes, but other cell types can be routinely used, provided that the target is expressed in the cell type chosen. This can be readily determined by methods routine in the art, for example Northern blot analysis, Ribonuclease protection assays, or RT-PCR.

15 T-24 cells:

[00208] The human transitional cell bladder carcinoma cell line T-24 is obtained from the American Type Culture Collection (ATCC) (Manassas, VA). T-24 cells are routinely cultured in complete McCoy's 5A basal media (Gibco/Life Technologies, Gaithersburg, MD)

- supplemented with 10% fetal calf serum (Gibco/Life Technologies, Gaithersburg, MD), penicillin 100 units per mL, and streptomycin 100 micrograms per mL (Gibco/Life Technologies, Gaithersburg, MD).
 Cells are routinely passaged by trypsinization and dilution when they reached 90% confluence. Cells are seeded into 96-well plates (Falcon-
- 25 Primaria #3872) at a density of 7000 cells/well for use in RT-PCR analysis.

[00209] For Northern blotting or other analysis, cells may be seeded onto 100 mm or other standard tissue culture plates and treated similarly, using appropriate volumes of medium and oligonucleotide.

30 A549 cells:

[00210] The human lung carcinoma cell line A549 can be obtained from the American Type Culture Collection (ATCC) (Manassas, VA). A549 cells are routinely cultured in DMEM basal media (Gibco/Life

PCT/US2003/025833 WO 2004/021978

Technologies, Gaithersburg, MD) supplemented with 10% fetal calf serum (Gibco/Life Technologies, Gaithersburg, MD), penicillin 100 units per mL, and streptomycin 100 micrograms per mL (Gibco/Life Technologies, Gaithersburg, MD). Cells are routinely passaged by trypsinization and dilution when they reached 90% confluence.

NHDF cells:

5

[00211] Human neonatal dermal fibroblast (NHDF) can be obtained from the Clonetics Corporation (Walkersville MD). NHDFs are routinely maintained in Fibroblast Growth Medium (Clonetics

10 Corporation, Walkersville MD) supplemented as recommended by the supplier. Cells are maintained for up to 10 passages as recommended by the supplier.

HEK cells:

[00212] Human embryonic keratinocytes (HEK) can be obtained from the Clonetics Corporation (Walkersville MD). HEKs are routinely 15 maintained in Keratinocyte Growth Medium (Clonetics Corporation, Walkersville MD) formulated as recommended by the supplier. Cells are routinely maintained for up to 10 passages as recommended by the supplier.

MCF-7 cells: 20

25

[00213] The human breast carcinoma cell line MCF-7 is obtained from the American Type Colure Collection (Manassas, VA). MCF-7 cells are routinely cultured in DMEM low glucose (Gibco/Life Technologies, Gaithersburg, MD) supplemented with 10% fetal calf serum (Gibco/Life Technologies, Gaithersburg, MD). Cells are routinely passaged by trypsinization and dilution when they reached 90% confluence. Cells are seeded into 96-well plates (Falcon-Primaria #3872) at a density of 7000 cells/well for use in RT-PCR analysis. [00214] For Northern blotting or other analyses, cells may be seeded onto 100 mm or other standard tissue culture plates and treated similarly,

30 using appropriate volumes of medium and oligonucleotide.

LA4 cells:

[00215] The mouse lung epithelial cell line LA4 is obtained from the American Type Colure Collection (Manassas, VA). LA4 cells are routinely cultured in F12K medium (Gibco/Life Technologies, Gaithersburg, MD) supplemented with 15% fetal calf serum (Gibco/Life Technologies, Gaithersburg, MD). Cells are routinely passaged by trypsinization and dilution when they reached 90% confluence. Cells are seeded into 96-well plates (Falcon-Primaria #3872) at a density of 3000-6000 cells/ well for use in RT-PCR analysis.

[00216] For Northern blotting or other analyses, cells may be seeded onto 100 mm or other standard tissue culture plates and treated similarly, using appropriate volumes of medium and oligonucleotide.

Treatment with antisense compounds:

[00217] When cells reached 80% confluence, they are treated with oligonucleotide. For cells grown in 96-well plates, wells are washed once with 200 μL OPTI-MEMTM-1 reduced-serum medium (Gibco BRL) and then treated with 130 μL of OPTI-MEMTM-1 containing 3.75 μg/mL LIPOFECTINTM (Gibco BRL) and the desired concentration of oligonucleotide. After 4-7 hours of treatment, the medium is replaced with fresh medium. Cells are harvested 16-24 hours after oligonucleotide treatment.

[00218] The concentration of oligonucleotide used varies from cell line to cell line. To determine the optimal oligonucleotide concentration

for a particular cell line, the cells are treated with a positive control oligonucleotide at a range of concentrations.

25

30

10

15

20

Example 10

Analysis of oligonucleotide inhibition of ESM-1 expression

[00219] Antisense modulation of ESM-1 expression can be assayed in a variety of ways known in the art. For example, ESM-1 mRNA levels can be quantitated by, e.g., Northern blot analysis, competitive polymerase chain reaction (PCR), or real-time PCR (RT-PCR). Real-time quantitative PCR is presently preferred. RNA analysis can be performed on total cellular RNA or poly(A)+ mRNA. Methods of RNA

isolation are taught in, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 1, pp. 4.1.1-4.2.9 and 4.5.1-4.5.3, John Wiley & Sons, Inc., 1993, Northern blot analysis is routine in the art and is taught in, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 1, pp. 4.2.1-4.2.9, John Wiley 5 & Sons, Inc., 1996. Real-time quantitative (PCR) can be conveniently accomplished using the commercially available ABI PRISMTM 7700 Sequence Detection System, available from PE-Applied Biosystems, Foster City, CA and used according to manufacturer's instructions. Prior to quantitative PCR analysis, primer-probe sets specific to the target 10 gene being measured are evaluated for their ability to be "multiplexed" with a GAPDH amplification reaction. In multiplexing, both the target gene and the internal standard gene GAPDH are amplified concurrently in a single sample. In this analysis, mRNA isolated from untreated cells is serially diluted. Each dilution is amplified in the presence of primer-15 probe sets specific for GAPDH only, target gene only ("single-plexing"), or both (multiplexing). Following PCR amplification, standard curves of GAPDH and target mRNA signal as a function of dilution are generated from both the single-plexed and multiplexed samples. If both the slope 20 and correlation coefficient of the GAPDH and target signals generated from the multiplexed samples fall within 10% of their corresponding values generated from the single-plexed samples, the primer-probe set specific for that target is deemed as multiplexable. Other methods of PCR are also known in the art. Protein levels of ESM-1 can be quantitated in a variety of 25 [00220]

ways well known in the art, such as immunoprecipitation, Western blot analysis (immunoblotting), ELISA or fluorescence-activated cell sorting (FACS). Antibodies directed to ESM-1 can be identified and obtained from a variety of sources, such as the MSRS catalog of antibodies (Aerie Corporation, Birmingham, MI), or can be prepared via conventional antibody generation methods. Methods for preparation of polyclonal antisera are taught in, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 11.12.1-11.12.9, John

Wiley & Sons, Inc., 1997. Preparation of monoclonal antibodies is taught in, for example, Ausubel, F.M. et al., *Current Protocols in Molecular Biology*, Volume 2, pp. 11.4.1-11.11.5, John Wiley Sons, Inc., 1997.

[00221] Immunoprecipitation methods are standard in the art and can be found at, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 10.16.110.16.11, John Wiley & Sons, Inc., 1998. Western blot (immunoblot) analysis is standard in the art and can be found at, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 10.8.1-10.8.21, John Wiley Sons, Inc., 1997. Enzyme-linked immunosorbent assays (ELISA) are standard in the art and can be found at, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 11.2.1-11.2.22, John Wiley & Sons, Inc., 1991.

15

Example 11

Poly(A)+ mRNA isolation

Poly(A)+ mRNA is isolated according to Miura et al., Clin. Chem., 1996, 42, 1758-1764. Other methods for poly(A)+ mRNA 20 isolation are taught in, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 1, pp. 4.5.1-4.5.3, John Wiley & Sons, Inc., 1993. Briefly, for cells grown on 96-well plates, growth medium is removed from the cells and each well is washed with 200 µL cold PBS. 60µL lysis buffer (10 mM Tris-HCl, pH 7.6, 1 mM EDTA, 25 0.5 M NaCl, 0.5% NP-40, 20 mM vanadyl-ribonucleoside complex) is added to each well, the plate is gently agitated and then incubated at room temperature for five minutes. 55 µL of lysate is transferred to Oligo d(T) coated 96-well plates (AGCT Inc., Irvine CA). Plates are incubated for 60 minutes at room temperature, washed 3 times with 200 30 μL of wash buffer (10 mM Tris-HC1 pH 7.6, 1 mM EDTA, 0.3 M NaCl). After the final wash, the plate is blotted on paper towels to remove excess wash buffer and then air-dried for 5 minutes. 60 pL of elution buffer (5 mM Tris-HCl pH 7.6), preheated to 70°C is added to

each well, the plate is incubated on a 90°C hot plate for 5 minutes, and the eluate is then transferred to a fresh 96-well plate.

[00223] Cells grown on 100 mm or other standard plates may be treated similarly, using appropriate volumes of all solutions.

5

10

15

20

25

30

Example 12

Total RNA Isolation

Total mRNA is isolated using an RNEASY 96[™] kit and buffers purchased from Qiagen Inc. (Valencia CA) following the manufacturer's recommended procedures. Briefly, for cells grown on 96well plates, growth medium is removed from the cells and each well is washed with 200 μL cold PBS. 100 μL Buffer RLT is added to each well and the plate vigorously agitated for 20 seconds. 100 μL of 70% ethanol is then added to each well and the contents mixed by pipetting three times up and down. The samples are then transferred to the RNEASY 96[™] well plate attached to a QIAVAC[™] manifold fitted with a waste collection tray and attached to a vacuum source. Vacuum is applied for 15 seconds. 1 mL of Buffer RW1 is added to each well of the RNEASY 96[™] plate and the vacuum again applied for 15 seconds, 1 mL of Buffer RPE is then added to each well of the RNEASY 96[™] plate and the vacuum applied for a period of 15 seconds. The Buffer RPE wash is then repeated and the vacuum is applied for an additional 10 minutes. The plate is then removed from the QIAVAC[™] manifold and blotted dry on paper towels. The plate is then re-attached to the QIAVAC™ manifold fitted with a collection tube rack containing 1.2 mL collection tubes. RNA is then eluted by pipetting 60 µL water into each well, incubating one minute, and then applying the vacuum for 30 seconds. The elution step is repeated with an additional 60µL water. [00225] The repetitive pipetting and elution steps may be automated using a QIAGEN Bio-Robot 9604 (Qiagen, Inc., Valencia CA). Essentially, after lysing of the cells on the culture plate, the plate is transferred to the robot deck where the pipetting, DNase treatment and elution steps are carried out.

Example 13

Real-time Quantitative PCR Analysis of ESM-1 mRNA Levels [00226] Real-time quantitative reverse transcription polymerase chain 5 reaction experiments show ESM-1 mRNA expression at levels of threefold or higher at the mRNA level in nine out of ten tumors when compared to the normal tissue (Figure 2). Quantitation of ESM-1 mRNA levels were determined by real-time quantitative PCR using the ABI PRISM[™] 7700 Sequence Detection System (PE-Applied Biosystems, 10 Foster City, CA) according to manufacturer's instructions. This is a closed-tube, non-gel-based, fluorescence detection system which allows high-throughput quantitation of polymerase chain reaction (PCR) products in real-time. As opposed to standard PCR, in which amplification products are quantitated after the PCR is completed. 15 products in real-time quantitative PCR are quantitated as they accumulate. This is accomplished by including in the PCR reaction an oligonucleotide probe that anneals specifically between the forward and reverse PCR primers, and contains two fluorescent dyes. A reporter dye (e.g., JOE, FAMTM, or VIC, obtained from either Operon Technologies 20 Inc., Alameda, CA or PE-Applied Biosystems, Foster City, CA) is attached to the 5' end of the probe and a quencher dye (e.g., TAMRA, obtained from either Operon Technologies Inc., Alameda, CA or PE-Applied Biosystems, Foster City, CA) is attached to the 3' end of the probe. When the probe and dyes are intact, reporter dye emission is 25 quenched by the proximity of the 3' quencher dye. During amplification, annealing of the probe to the target sequence creates a substrate that can be cleaved by the 5'-exonuclease activity of Tag polymerase. During the extension phase of the PCR amplification cycle, cleavage of the probe by Taq polymerase releases the reporter dye from the remainder of the probe (and hence from the quencher moiety) and a sequence-specific 30 fluorescent signal is generated. With each cycle, additional reporter dye molecules are cleaved from their respective probes, and the fluorescence

intensity is monitored at regular intervals by laser optics built into the

ABI PRISM[™] 7700 Sequence Detection System. In each assay, a series of parallel reactions containing serial dilutions of mRNA from untreated control samples generates a standard curve that is used to quantitate the percent inhibition after antisense oligonucleotide treatment of test samples.

5

10

15

20

30

[00227] PCR reagents were obtained from PE-Applied Biosystems. Foster City, CA. RT-PCR reactions were carried out by adding 25µL PCR cocktail (1x TAQMAN[™] buffer A, 5.5 MM MgCl₂, 300 µM each of dATP, dCTP and dGTP, 600 µM of dUTP, 100 nM each of forward primer, reverse primer, and probe, 20 Units RNAse inhibitor, 1.25 Units AMPLITAQ GOLD[™], and 12.5 Units MuLV reverse transcriptase) to 96 well plates containing 25 µL poly(A) mRNA solution. The RT reaction was carried out by incubation for 30 minutes at 48°C. Following a 10 minute incubation at 95°C to activate the AMPLITAQ GOLD[™], 40 cycles of a two-step PCR protocol were carried out: 95°C for 15 seconds (denaturation) followed by 60°C for 1.5 minutes (annealing/extension). Probes and primers to human ESM-1 were designed to hybridize to a human ESM-1 sequence, using published sequence, information (GenBank accession number NM 007036, incorporated herein as Figure 1. For human ESM-1 the PCR primers were: forward primer: CTGCTTCCCACCAGCAAAG SEQ ID NO:2001 reverse primer: GCAAGACGCTCTTCATGTTTCC SEQ ID NO: 2002 and the PCR probe is: FAMTM- CGACTGGAGAGCCGAGCCGGA SEQ ID NO;2003 -TAMRA where FAMTM (PE-Applied Biosystems, Foster

25 City, CA) is the fluorescent reporter dye) and TAMRA (PE-Applied Biosystems, Foster City, CA) is the quencher dye. For human cyclophilin the PCR primers were:
forward primer: CCCACCGTGTTCTTCGACAT SEQ ID NO: 2004

reverse primer: TTTCTGCTGTCTTTGGGACCTT SEQ ID NO: 2005 and the PCR probe is: 5' JOE- CGCGTCTCCTTTGAGCTGTTTGCA SEQ ID NO: 2006 - TAMRA 3' where JOE (PE-Applied Biosystems,

Foster City, CA) is the fluorescent reporter dye) and TAMRA (PE-Applied Biosystems, Foster City, CA) is the quencher dye.

Example 14

Antisense inhibition of human ESM-1 expression by chimeric phosphorothioate oligonucleotides having 2'-MOE wings and a deoxy gap

[00229] In accordance with the present invention, a series of oligonucleotides are designed to target different regions of the human 10 ESM-1 RNA, using published sequences (NM_007036, incorporated herein as Figure 1. The oligonucleotides are shown in Table 1. "Position" indicates the first (5'-most) nucleotide number on the particular target sequence to which the oligonucleotide binds. The indicated parameters for each oligo were predicted using RNAstructure 15 3.7 by David H. Mathews, Michael Zuker, and Douglas H. Turner. The parameters are described either as free energy (The energy that is released when a reaction occurs. The more negative the number, the more likely the reaction will occur. All free energy units are in kcal/mol.) or melting temperature (temperature at which two anneal 20 strands of polynucleic acid separate). The higher the temperature, the greater the affinity between the two strands. When designing an antisense oligonucleotide that will bind with high affinity, it is desirable to consider the structure of the target RNA strand and the antisense oligomer. Specifically, for an oligomer to bind tightly (in the table described as 'duplex formation'), it should be complementary to a 25 stretch of target RNA that has little self-structure (in the table the free energy of which is described as 'target structure'). Also, the oligomer should have little self-structure, either intramolecular (in the table the free energy of which is described as 'intramolecular oligo') or 30 bimolecular (in the table the free energy of which is described as 'intermolecular oligo'). Breaking up any self-structure amounts to a binding penalty. All compounds in Table 1 are chimeric oligonucleotides ("gapmers") 20 nucleotides in length, composed of a

central "gap" region consisting of ten 2'deoxynucleotides, which is flanked on both sides (5' and 3' directions) by four-nucleotide "wings". The wings are composed of 2'-methoxyethyl (2'-MOE) nucleotides. The internucleoside (backbone) linkages are phosphorothioate (P=S)

5 throughout the oligonucleotide. Cytidine residues in the 2'-MOE wings are 5-methylcytidines. All cytidine residues are 5-methylcytidines.

TABLE 1

		kcal/	lean I /		lean 1 /		
		· ·	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
31	GCTCGGCTCTCCAGTCGTGG SEQ ID NO;1	-25.9	-31	85.7	-3.4	-1.7	-7.1
32	GGCTCGGCTCTCCAGTCGTG SEQ ID NO; 2	-25.9	-31	85.7	-3.4	-1.7	-9.6
28	CGGCTCTCCAGTCGTGGTCT SEQ ID NO; 3	-25.7	-30.4	84.9	-3.4	-1.2	-6.1
30	CTCGGCTCTCCAGTCGTGGT SEQ ID NO; 4	-25.3	-30.4	84.9	-3.4	-1.7	-6.1
923	GCCTAGCTCCCTCTTTGGTT SEQ ID NO; 5	-25.3	-30.4	85.5	-5.1	0	-6.2
33	CGGCTCGGCTCTCCAGTCGT SEQ ID NO; 6	-25.1	-31.8	85.2	-4.7	-2	-9.6
27	GGCTCTCCAGTCGTGGTCTT SEQ ID NO;7	-25 .	-29.7	86.1	-3.4	-1.2	-6.1
928	GCTTTGCCTAGCTCCCTCTT SEQ ID NO; 8	-24.9	-30.7	85.6	-5.1	-0.4	-6.2
. 29	TCGGCTCTCCAGTCGTGGTC SEQ ID NO; 9	-24.8	-29.9	84.8	-3.4	-1.7	-6.1
924	TGCCTAGCTCCCTCTTTGGT SEQ ID NO;10	-24.6	-30.3	84.8	-5.1	-0.3	-4.6
26	GCTCTCCAGTCGTGGTCTTT SEQ ID NO;11	-24.4	-28.6	83.7	-3.4	-0.6	-5.2
929	AGCTTTGCCTAGCTCCCTCT SEQ ID NO;12	-24.2	-30.6	85.6	-5.1	-1.2	-7.7
930	CAGCTTTGCCTAGCTCCCTC SEQ ID NO;13	-23.9	-30.4	84.6	-5.1	-1.3	-7.8
931	TCAGCTTTGCCTAGCTCCCT SEQ ID NO;14	-23.9 '	-30.4	84.6	-5.1	-1.3	-7.8
1265	ACCGTCCTTCAGATACAGGT SEQ ID NO;15	-23.9	-26.3	74.5	-1.9	-0.1	-4.5
240	GTTTCTCCCCGCCCTGCAGC SEQ ID NO;16	-23.6	-34.9	90.4	-10.6	-0.4	-8.1

		kcal/	kcal/		kcal/		
		mo1	mo1	deg C	mo1	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
925	TTGCCTAGCTCCCTCTTTGG SEQ ID NO;17	-23.5	-29.2	81.5	-5.1	-0.3	-4.8
1264	CCGTCCTTCAGATACAGGTA SEQ ID NO;18	-23.4	-25.8	73.4	-1.9	-0.1	-3.9
927	CTTTGCCTAGCTCCCTCTTT SEQ ID NO;19	-23.3	-29	81.5	-5.1	-0.3	-4.8
932	TTCAGCTTTGCCTAGCTCCC SEQ ID NO; 20	-23.1	-29.6	83	-5.1	-1.3	-7.8
241	AGTTTCTCCCCGCCCTGCAG SEQ ID NO;21	-23	-33.1	86.5	-9.4	-0.4	-7.8
243	CAAGTTTCTCCCCGCCCTGC SEQ ID NO; 22	-23	-32.4	83.6	-9.4	0	-2.8
244	GCAAGTTTCTCCCCGCCTG SEQ ID NO;23	-23	-32.4	83.6	-9.4	0	-3.4
245	AGCAAGTTTCTCCCCGCCCT SEQ ID NO; 24	-23	-32.4	84.1	-9.4	0 .	-4.1
926	TTTGCCTAGCTCCCTCTTTG SEQ ID NO; 25	-22.4	-28.1	79.3	-5.1	-0.3	-4.8
242	AAGTTTCTCCCCGCCCTGCA SEQ ID NO; 26	-22.3	-32.4	83.6	-9.4	-0.4	-4.7
20	CAGTCGTGGTCTTTGCTGGT SEQ ID NO; 27	~22	-27.3	80	-5.3	0	-3.6
246	TAGCAAGTTTCTCCCCGCCC SEQ ID NO;28	-21.8	-31.2	81.8	-9.4	0	-4.1
21	CCAGTCGTGGTCTTTGCTGG SEQ ID NO; 29	-21.7	-28.1	80	-5.3	-1	-5.3
23	CTCCAGTCGTGGTCTTTGCT SEQ ID NO; 30	-21.6	-28.2	81.4	-5.3	-1.2	-6
34	CCGGCTCGGCTCTCCAGTCG SEQ ID NO;31	-21.5	-32.6	84.9	-8.9	-2.2	-8.5
19	AGTCGTGGTCTTTGCTGGTG SEQ ID NO; 32	-21.3	-26.6	78.7	-5.3	0	-3.6
199	GTCGTCGAGCACTGTCCTCT SEQ ID NO; 33	-21.2	-28.8	81.5	-7	-0.3	-4.9
24	TCTCCAGTCGTGGTCTTTGC SEQ ID NO; 34	-21.1	-27.7	81.3	-5.3	-1.2	-5
247	GTAGCAAGTTTCTCCCCGCC SEQ ID NO;35	-21	-30.4	81.9	-9.4	0	-4.1
1024	CCTCCCCATCTTCTCCTGCT SEQ ID NO; 36	-21	~32.7	87.6	-11.7	0	~3.6
200	AGTCGTCGAGCACTGTCCTC SEQ ID NO; 37	-20.9	-27.9	79.9	-7	0	-5.3
191	GCACTGTCCTCTTGCAGCGC SEQ ID NO;38	-20.8	-30.4	84.4	-8.7	-0.8	-8
22	TCCAGTCGTGGTCTTTGCTG SEQ ID NO; 39	-20.7	-27.3	79.1	-5.3	-1.2	-6
196	GTCGAGCACTGTCCTCTTGC SEQ ID NO; 40	-20.7	-28.3	81.2	-7	-0.3	-5.7
198	TCGTCGAGCACTGTCCTCTT SEQ ID NO; 41	-20.7	-27.7	78.3	-7	0.2	-4.9
922	CCTAGCTCCCTCTTTGGTTG SEQ ID NO; 42	-20.7	-28.6	80.6	-7.9	0	-6.2
1263	CGTCCTTCAGATACAGGTAA SEQ ID NO;43	-20.7	-23.1	67.4	-1.9	-0.1	-3.9
35	TCCGGCTCGGCTCTCCAGTC SEQ ID NO; 44	-20.6	-32.2	87.6	-10.1	-1.4	-8.5
1023	CTCCCCATCTTCTCCTGCTC SEQ ID NO; 45	-20.5	-31.1	86.1	-10.6	0	-3.6
201	CAGTCGTCGAGCACTGTCCT SEQ ID NO;46	-20.4	-28.2	79.1	-7	-0.5	-8.4

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
36	CTCCGGCTCGGCTCTCCAGT SEQ ID NO; 47	-20.1	-32.7	87.6	-11.1	-1.4	-8.5
327	CCAAAAGGATCCTCCCCATT SEQ ID NO;48	-20	-26.9	70.9	-5.8	-0.9	-9.4
328	ACCAAAAGGATCCTCCCCAT SEQ ID NO; 49	-20	-27	71	-5.8	-0.9	-9.9
190	CACTGTCCTCTTGCAGCGCG SEQ ID NO;50	-19.8	-29.4	79.5	-8.7	-0.6	-9
919	AGCTCCCTCTTTGGTTGACC SEQ ID NO;51	-19.8	-28.8	81.2	-9	0	-5.7
197	CGTCGAGCACTGTCCTCTTG SEQ ID NO;52	-19.7	-27.3	76.3	-7	-0.3	-4.9
1022	TCCCCATCTTCTCCTGCTCT SEQ ID NO;53	-19.6	-31.1	86.1	-11.5	0	-3.6
239	TTTCTCCCCGCCCTGCAGCG SEQ ID NO;54	-19.2	-34.5	86.2	-13.7	-1,5	-9.4
18	GTCGTGGTCTTTGCTGGTGG SEQ ID NO;55	-19.1	-27.8	81.1	-8.7	0	-3.6
248	GGTAGCAAGTTTCTCCCCGC SEQ ID NO;56	-19	-29.6	81	-10.6	0	-4.1
1266	AACCGTCCTTCAGATACAGG SEQ ID NO;57	-18.8	-24.4	68.9	-5.6	0	-4
1025	CCCTCCCATCTTCTCCTGC SEQ ID NO;58	-18.7	-33.8	88.9	-15.1	0	-2.6
202	ACAGTCGTCGAGCACTGTCC SEQ ID NO;59	-18.6	-27.5	77.7	-7	-1.8	-11
442	TTTCAGGCATTTTCCCGTCC SEQ ID NO; 60	-18.5	-28.1	78	-9.6	0.7	-4
1538	TTATCATGCCTCAGATGTTT SEQ ID NO;61	-18.5	-22.7	68	-4.2	0	-4.4
1539	TTTATCATGCCTCAGATGTT SEQ ID NO; 62	~18.5	-22.7	68	-4.2	0	-3.8
1021	CCCCATCTTCTCCTGCTCTT SEQ ID NO; 63	-18.4	-30.8	84.6	-12.4	0	-3.6
1531	GCCTCAGATGTTTGAAAACC SEQ ID NO;64	-18.4	-22.5	64.6	-3.6	-0.1	-5.7
1537	TATCATGCCTCAGATGTTTG SEQ ID NO; 65	-18.4	-22.6	67.5	-4.2	0	-4.4
192	AGCACTGTCCTCTTGCAGCG SEQ ID NO;66	-18.3	-28.6	80.3	-8.7	-1.6	-6.5
585	TTCCTCATTACGGGAGACCC SEQ ID NO; 67	-18.3	-27.1	74.2	-7.4	-1.3	-5.5
936	GGTCTTCAGCTTTGCCTAGC SEQ ID NO; 68	-18.3	-28	82.3	-9	0.4	-6.2
1352	AGTGGGTAAAATACTTCTTA SEQ ID NO;69	-18.2	-18.4	57.7	0	0.6	-3.7
37	CCTCCGGCTCGGCTCTCCAG SEQ ID NO; 70	-18.1	-33.5	87.2	-13.9	-1.4	-8.5
193	GAGCACTGTCCTCTTGCAGC SEQ ID NO;71	-18.1	-28.4	82.2	-8.7	-1.6	-5.5
915	CCCTCTTTGGTTGACCTGTC SEQ ID NO; 72	-18.1	-28.2	79.8	-10.1	0	-6.7
1351	GTGGGTAAAATACTTCTTAG SEQ ID NO;73	-17.9	-18.4	57.7	0	-0.2	-3.3
326	CAAAAGGATCCTCCCCATTA SEQ ID NO;74	÷17.8	-24.6	67.1	-5.8	-0.1	-9.9
437	GGCATTTTCCCGTCCCCTG SEQ ID NO;75	-17.7	-33.7	85.7	-16	0	-4
443	ATTTCAGGCATTTTCCCGTC SEQ ID NO;76	-17.7	-26.1	74.4	-7.9	-0.1	-4

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
533	CAATATTGCCATCTCCAGAT SEQ ID NO;77	-17.7	-23.3	66.8	-5.6	0	-6.8
921	CTAGCTCCCTCTTTGGTTGA SEQ ID NO;78	-17.7	-27.2	78.4	-9.5	0	-6.2
1597	GCTCATTTTTTGACATTTTT SEQ ID NO;79	-17.6	-20.2	62.5	-2.1	-0.1	-2.6
238	TTCTCCCCGCCCTGCAGCGC SEQ ID NO;80	-17.5	-36.2	89.8	-17	-1.7	-9.7
1027	CCCCCTCCCCATCTTCTCCT SEQ ID NO;81	-17.5	-36	91.2	-18.5	0	-0.5
1598	TGCTCATTTTTTGACATTTT SEQ ID NO;82	-17.5	-20.1	62.1	-2.1	-0.1	-3.3
329	CACCAAAAGGATCCTCCCCA SEQ ID NO;83	-17.4	-27.7	72.1	-9.1	-0.9	-9.9
1599	TTGCTCATTTTTTGACATTT SEQ ID NO;84	-17.4	-20.1	62.1	-2.1	-0.2	-3.3
534	ACAATATTGCCATCTCCAGA SEQ ID NO;85	-17.3	-23.5	67.4	-5.6	0	-8.5
1349	GGGTAAAATACTTCTTAGAT SEQ ID NO;86	-17.3	-17.8	56.1	0	-0.2	-4.3
1350	TGGGTAAAATACTTCTTAGA SEQ ID NO;87	-17.3	-17.8	56.1	0	-0.2	-4.3
438	AGGCATTTTCCCGTCCCCCT SEQ ID NO;88	-17.2	-33.7	86.3	-16	-0.1	-4
194	CGAGCACTGTCCTCTTGCAG SEQ ID NO;89	-17.1	-27.4	77.2	-8.7	-1.6	-6.5
469	GGTTACTGAATATTGGAAGA SEQ ID NO;90	-17.1	-18.7	57.9	-1.6	0	-4.6
678	AAAGTTCCTAAAATGTTGGC SEQ ID NO;91	-17.1	-19.1	57.8	-2	0	-3.1
937	CGGTCTTCAGCTTTGCCTAG SEQ ID NO;92	-17.1	-27	77.1	-9.9	0	-4.5
1032	TCCCACCCCTCCCATCTT SEQ ID NO;93	-17.1	-36.7	90.2	-19.6	0	-0.5
914	CCTCTTTGGTTGACCTGTCT SEQ ID NO;94	-17	-27.1	78.2	-10.1	0	-6.7
364	GCCGTAGGGACAGTCTTTGC SEQ ID NO;95	-16.8	-27.9	79.2	-9.5	-1.5	-8.4
586	TTTCCTCATTACGGGAGACC SEQ ID NO;96	-16.8	-25.2	71.1	-7.4	-0.9	-5.1
1028	ACCCCCTCCCCATCTTCTCC SEQ ID NO;97	-16.8	-35.3	90	-18.5	0	-0.5
25	CTCTCCAGTCGTGGTCTTTG SEQ ID NO:98	-16.7	-26.8	78.6	-8.8	-1.2	-5
235	TCCCCGCCCTGCAGCGCACA SEQ ID NO:99	-16.7	-36.4	88.2	-18	-1.7	-10
1421	ATGACTTGCACTAACACATT SEQ ID NO:100	-16.7	-20.3	60.8	-3.6	0	-5
444	AATTTCAGGCATTTTCCCGT SEQ ID NO:101	-16.6	-25	70.4	-7.9	-0.1	-4
237	TCTCCCCGCCCTGCAGCGCA SEQ ID NO:102	-16.5	-36.8	90.3	-18.6	-1.7	-10.5
441	TTCAGGCATTTTCCCGTCCC SEQ ID NO:103	-16.5	-30	81.1	-13	-0.1	-3.3
1354	CCAGTGGGTAAAATACTTCT SEQ ID NO:104	-16.5	-21.3	63	-4.3	-0.2	-6.7
1262	GTCCTTCAGATACAGGTAAC SEQ ID NO:105	-16.4	-22.5	67.8	-5.6	-0.1	-3.9
1708	CTGCTGAAAATTGATTCTTC SEQ ID NO:106	-16.4	-18.7	57.7	-2.3	0.4	-3.6

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
539	CTCTCACAATATTGCCATCT SEQ ID NO:107	-16.3	-23.1	67.5	-6.2	0	-8.5
778	GGATGTTATGGATTGTAAGT SEQ ID NO:108	-16.3	-20.1	62.2	-3.8	0	-2.2
938	GCGGTCTTCAGCTTTGCCTA SEQ ID NO:109	-16.3	-28.8	81.3	-12.5	0	-4.5
1419	GACTTGCACTAACACATTTA SEQ ID NO:110	-16.3	-20.1	60.7	-3.8	0	 5
1420	TGACTTGCACTAACACATTT SEQ ID NO:111	-16.3	-20.4	61.1	-4.1	0	-4.7
1272	CCCCAGAACCGTCCTTCAGA SEQ ID NO:112	-16.2	-29.9	77.8	-13.7	0.6	-2.7
1348	GGTAAAATACTTCTTAGATT SEQ ID NO:113	-16.2	-16.7	53.9	0	-0.2	-4.3
189	ACTGTCCTCTTGCAGCGCGG SEQ ID NO:114	-16.1	-29.9	81	-12.9	-0.6	-9
393	CAGGTCTCTCTGCAATCCAT SEQ ID NO:115	-16.1	-25.9	75.1	-9.8	0	-4.9
677	AAGTTCCTAAAATGTTGGCT SEQ ID NO:116	-16.1	-20.7	61.5	-4.6	0	-3.9
769	GGATTGTAAGTATCCTACTT SEQ ID NO:117	-16.1	-21.2	64.5	-3.8	-1.2	-5.5
774	GTTATGGATTGTAAGTATCC SEQ ID NO:118	-16.1	-20.4	63.1	-3.8	-0.1	-4.4
939	TGCGGTCTTCAGCTTTGCCT SEQ ID NO:119	-16.1	-29.1	81.7	-12.3	-0.5	-4.5
940	CTGCGGTCTTCAGCTTTGCC SEQ ID NO:120	-16.1	-29.1	81.7	-12.3	-0.5	-4.5
1353	CAGTGGGTAAAATACTTCTT SEQ ID NO:121	-16.1	-19.4	59.6	-2.8	-0.2	-4.8
934	TCTTCAGCTTTGCCTAGCTC SEQ ID NO:122	-16	-26.9	79.6	-9.7	-1.1	-7.6
1605	CCTCTGTTGCTCATTTTTTG SEQ ID NO:123	-16	-23.8	70.9	-7.8	0	-3.6
17	TCGTGGTCTTTGCTGGTGGG SEQ ID NO:124	-15.9	-27.8	80.1	-11.9	0	-3.6
436	GCATTTTCCCGTCCCCTGT SEQ ID NO:125	-15.9	-33.7	86.7	-17.8	0	-3.4
679	GAAAGTTCCTAAAATGTTGG SEQ ID NO:126	-15.9	-17.9	55.2	-2	0	-2.9
1267	GAACCGTCCTTCAGATACAG SEQ ID NO:127	-15.9	-23.8	67.7	-7.9	0	-3.1
1596	CTCATTTTTTGACATTTTTT SEQ ID NO:128	-15.9	-18.5	58.6	-2.1	0.1	-2.6
1706	GCTGAAAATTGATTCTTCTT SEQ ID NO:129	-15.9	-18.8	58.1	-2.3	-0.3	-4.9
1903	ATTCACAACTCTGTTGGCCA SEQ ID NO:130	-15.9	-24.8	71.3	-7.8	-0.9	-9.5
, 203	CACAGTCGTCGAGCACTGTC SEQ ID NO:131	-15.8	-26.2	75.2	-8.3	-2	-11.2
1280	TTCCTATGCCCCAGAACCGT SEQ ID NO:132	-15.8	-29.7	77	-13.9	0	-3
1707	TGCTGAAAATTGATTCTTCT SEQ ID NO:133	-15.8	-18.7	57.7	-2.3	-0.3	-4.9
1709	TCTGCTGAAAATTGATTCTT SEQ ID NO:134	-15.8	-18.7	57.7	-2.3	-0.3	-4.7
1710	TTCTGCTGAAAATTGATTCT SEQ ID NO:135	-15.8	-18.7	57.7	-2.3	-0.3	-6.6
770	TGGATTGTAAGTATCCTACT SEQ ID NO:136	-15.7	-21.1	64.1	-3.8	-1.6	-5.2

		kcal/	kcal/		kcal/		
		mo1	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
912	TCTTTGGTTGACCTGTCTCC SEQ ID NO:137	-15.7	-26.6	78	-10.9	0	-6
917	CTCCCTCTTTGGTTGACCTG SEQ ID NO:138	-15.7	-27.9	78.2	-12.2	0	-6.7
1030	CCACCCCTCCCCATCTTCT SEQ ID NO:139	-15.7	-35.6	89	-19.9	0	-0.5
1532	TGCCTCAGATGTTTGAAAAC SEQ ID NO:140	-15.7	-20.5	60.9	-4.8	0	-5.3
1026	CCCCTCCCCATCTTCTCCTG SEQ ID NO:141	-15.6	-34	87.8	-18.4	0	-1.4
1033	CTCCCACCCCTCCCCATCT SEQ ID NO:142	-15.6	-37.5	91.6	-21.9	0	-0.5
1606	CCCTCTGTTGCTCATTTTTT SEQ ID NO:143	-15.6	-25.8	74.8	-10.2	0	-3.6
16	CGTGGTCTTTGCTGGTGGGA SEQ ID NO:144	-15.5	-28	79.6	-12.5	0	-3.6
764	GTAAGTATCCTACTTTTTGT SEQ ID NO:145	-15.5	-20.8	64.5	-3.8	-1.4	-5.1
781	TATGGATGTTATGGATTGTA SEQ ID NO:146	-15.5	-19.3	60.2	-3.8	0	-1.3
1029	CACCCCCTCCCCATCTTCTC SEQ ID NO:147	-15.5	-34	87.7	-18.5	0	-0.5
1036	CCACTCCCACCCCTCCCCA SEQ ID NO:148	-15.5	-39.1	92.4	-23.6	0	0
1260	CCTTCAGATACAGGTAACCC SEQ ID NO:149	-15.5	-24.9	70.3	-9.4	0	-4
1781	ACAGTCCTGTTTGTGCTAAG SEQ ID NO:150	-15.5	-23.7	70.7	-8.2	0	-6.1
210	CAGCAGCCACAGTCGTCGAG SEQ ID NO:151	-15.4	-28	77.3	-12.6	0	-4.9
913	CTCTTTGGTTGACCTGTCTC SEQ ID NO:152	-15.4	-25.5	76.2	-10.1	0	-6.7
916	TCCCTCTTTGGTTGACCTGT SEQ ID NO:153	-15.4	-28.2	79.8	-12.8	0	-6.7
1530	CCTCAGATGTTTGAAAACCT SEQ ID NO:154	-15.4	-21.6	62.5	-5.7	-0.1	-5.7
918	GCTCCCTCTTTGGTTGACCT SEQ ID NO:155	-15.3	-29.7	82.9	-14.4	0	-6.7
330	TCACCAAAAGGATCCTCCCC SEQ ID NO:156	-15.2	-27.4	72.5	-11	-0.9	-9.9
538	TCTCACAATATTGCCATCTC SEQ ID NO:157	-15.2	-22.6	67.1	-6.9	0	-7.6
587	ATTTCCTCATTACGGGAGAC SEQ ID NO:158	-15.2	-23.2	67.5	-7.4	-0.3	-4.2
682	CTAGAAAGTTCCTAAAATGT SEQ ID NO:159	-15.2	-17.2	54	-2	0	-3.7
1347	GTAAAATACTTCTTAGATTT SEQ ID NO:160	-15.2	-15.6	51.7	0	0	-3.7
1600	GTTGCTCATTTTTTGACATT SEQ ID NO:161	-15.2	-21.2	65	-5.5	-0.2	-3.3
195	TCGAGCACTGTCCTCTTGCA SEQ ID NO:162	-15.1	-27.8	78.6	-11.1	-1.6	-6.3
319	ATCCTCCCCATTAGAAGGCT SEQ ID NO:163	-15.1	-28	76.5	-12.9	0	-3.7
394	GCAGGTCTCTCTGCAATCCA SEQ ID NO:164	-15.1	-27.7	79.7	-9.8 .	-2.8	-8.2
440	TCAGGCATTTTCCCGTCCCC SEQ ID NO:165	-15.1	-31.9	84	-16.3	-0.1	-4
779	TGGATGTTATGGATTGTAAG SEQ ID NO:166	-15.1	-18.9	58.9	-3.8	0	-2.2

		kcal/	kcal/		kcal/		
		mol	mo1	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
780	ATGGATGTTATGGATTGTAA SEQ ID NO:167	-15.1	-18.9	58.7	-3.8	0	-2.2
1037	CCCACTCCCACCCCTCCCC SEQ ID NO:168	-15.1	-40.4	94.4	-25.3	0	0
1780	CAGTCCTGTTTGTGCTAAGA SEQ ID NO:169	-15.1	-24.1	71.5	-9	0	-3.6
320	GATCCTCCCCATTAGAAGGC SEQ ID NO:170	-15	-27.7	75.9	-12.7	0	-3.5
365	TGCCGTAGGGACAGTCTTTG SEQ ID NO:171	-15	-26.1	74.5	-9.5	-1.5	-8.4
782	ATATGGATGTTATGGATTGT SEQ ID NO:172	-15	-19.6	60.8	-4.6	0	-1.8
249	CGGTAGCAAGTTTCTCCCCG SEQ ID NO:173	-14.9	-28.6	76.5	-13.7	0	-3.8
321	GGATCCTCCCCATTAGAAGG SEQ ID NO:174	-14.9	-27.1	74.2	-11.7	-0.1	-7.7
537	CTCACAATATTGCCATCTCC SEQ ID NO:175	-14.9	-24.2	69.2	-8.7	0	-8.5
1020	CCCATCTTCTCCTGCTCTTA SEQ ID NO:176	-14.9	-28.5	80.5	-13.6	0	-3.6
1261	TCCTTCAGATACAGGTAACC SEQ ID NO:177	-14.9	-23.3	68.2	-7.9	-0.1	-3.8
1279	TCCTATGCCCCAGAACCGTC SEQ ID NO:178	-14.9	-30	78.3	-15.1	0	-3
125	CCGCATAATTATTGCTCCAG SEQ ID NO:179	-14.8	-24	67	-7.9	-1.2	-8.4
768	GATTGTAAGTATCCTACTTT SEQ ID NO:180	-14.8	-20.1	62.2	-3.8	-1.4	-5.1
771	ATGGATTGTAAGTATCCTAC SEQ ID NO:181	-14.8	-20.2	62.1	-3.8	-1.6	-5.2
777	GATGTTATGGATTGTAAGTA SEQ ID NO:182	-14.8	-18.6	58.9	-3.8	0	-2.2
1649	TTGAAAATTCACCGAAGTCA SEQ ID NO:183	-14.8	-19	56.6	-4.2	0	-5.7
468	GTTACTGAATATTGGAAGAA SEQ ID NO:184	-14.7	-16.8	53.5	-2.1	0	-4.6
680	AGAAAGTTCCTAAAATGTTG SEQ ID NO:185	-14.7	-16.7	53	-2	0	-3.7
773	TTATGGATTGTAAGTATCCT SEQ ID NO:186	-14.7	-20.1	61.8	-3.8	-1.6	-5.2
920	TAGCTCCCTCTTTGGTTGAC SEQ ID NO:187	-14.7	-26.5	77	-11.8	0	-6.2
1271	CCCAGAACCGTCCTTCAGAT SEQ ID NO:188	-14.7	-27.9	74.6	-12.7	0.2	-3.4
1281	TTTCCTATGCCCCAGAACCG SEQ ID NO:189	-14.7	-28.6	74.3	-13.9	0	-3
1418	ACTTGCACTAACACATTTAT SEQ ID NO:190	-14.7	-19.5	59.4	-4.8	0	-5
1609	GGTCCCTCTGTTGCTCATTT SEQ ID NO:191	-14.7	-28.3	81.9	-13.6	0	-3.6
481	GTTGGAAGACTTGGTTACTG SEQ ID NO:192	-14.6	-21.5	65.1	-6.9	0	-3.1
767	ATTGTAAGTATCCTACTTTT SEQ ID NO:193	-14.6	-19.6	61.2	-3.8	-1.1	-4.8
775	TGTTATGGATTGTAAGTATC SEQ ID NO:194	-14.6	-18.4	58.9	-3.8	0	-2.5
997	CTTCATTCCATATCCCAACA SEQ ID NO:195	-14.6	-24.3	68.4	-9.7	0	-2
1604	CTCTGTTGCTCATTTTTTGA SEQ ID NO:196	-14.6	-22.4	68.4	-7.8	0	-3.2

		kcal/	kcal/		kcal/		
		mo1	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1610	AGGTCCCTCTGTTGCTCATT SEQ ID NO:197	-14.6	-28.2	81.8	-13.6	0	-4
1642	TTCACCGAAGTCACAGCACT SEQ ID NO:198	-14.6	-24.9	70.3	-10.3	0	-4.1
1904	CATTCACAACTCTGTTGGCC SEQ ID NO:199	-14.6	-24.8	71.3	-8.4	-1.8	-7
2000	GTATCTTGTTCTTTTTATT SEQ ID NO:200	-14.6	-19.2	62.2	-4.6	0	-0.9
933	CTTCAGCTTTGCCTAGCTCC SEQ ID NO:201	-14.5	-28.5	81.4	-12.6	-1.3	-7.8
1534	CATGCCTCAGATGTTTGAAA SEQ ID NO:202	-14.5	-21.7	63.6	-7.2	0	-3.3
1711	TTTCTGCTGAAAATTGATTC SEQ ID NO:203	-14.5	-17.9	56.2	-2.3	-1	-8.6
1791	ATCTAGTACAACAGTCCTGT SEQ ID NO: 204	-14.5	-22.7	68.6	-8.2	0	-6.7
681	TAGAAAGTTCCTAAAATGTT SEQ ID NO:205	-14.4	-16.4	52.5	-2	0	-3.7
683	TCTAGAAAGTTCCTAAAATG SEQ ID NO:206	-14.4	-16.4	52.4	-2	0	-5.2
684	ATCTAGAAAGTTCCTAAAAT SEQ ID NO:207	-14.4	-16.4	52.5	-2	0	-6.2
766	TTGTAAGTATCCTACTTTTT SEQ ID NO: 208	-14.4	-19.7	61.6	-3.8	-1.4	-5.1
911	CTTTGGTTGACCTGTCTCCA SEQ ID NO:209	-14.4	-26.9	77.2	-12	-0.2	-7.3
1034	ACTCCCACCCCTCCCCATC SEQ ID NO:210	-14.4	-36.8	90.4	-22.4	0	-0.5
1533	ATGCCTCAGATGTTTGAAAA SEQ ID NO:211	-14.4	-20.3	60.4	-5.9	0	-3.6
1535	TCATGCCTCAGATGTTTGAA SEQ ID NO:212	-14.4	-22.8	67.2	-8.4	0	-4.4
1699	ATTGATTCTTCTTTTACAAA SEQ ID NO:213	-14.4	-17	54.8	-2.6	0	-3.5
209	AGCAGCCACAGTCGTCGAGC SEQ ID NO:214	-14.3	-29.1	80.6	-14.8	0	-4.9
445	GAATTTCAGGCATTTTCCCG SEQ ID NO:215	-14.3	-24.4	68.5	-9.6	-0.1	-4.6
470	TGGTTACTGAATATTGGAAG SEQ ID NO:216	-14.3	-18.1	56.5	-3.8	0	-4.6
486	AATCTGTTGGAAGACTTGGT SEQ ID NO:217	-14.3	-21.2	64	-6.9	0	-3.6
529	ATTGCCATCTCCAGATGCCA SEQ ID NO:218	-14.3	-28.1	77.2	-12.9	-0.7	-7.5
532	AATATTGCCATCTCCAGATG SEQ ID NO:219	-14.3	-22.6	65.5	-7.4	-0.8	-7.5
540	TCTCTCACAATATTGCCATC SEQ ID NO: 220	-14.3	-22.6	67.1	-7.7	0	-8.5
765	TGTAAGTATCCTACTTTTTG SEQ ID NO: 221	-14.3	-19.6	61.1	-3.8	-1.4	-5.1
772	TATGGATTGTAAGTATCCTA SEQ ID NO:222	-14.3	-19.7	60.9	-3.8	-1.6	-5.2
941	ACTGCGGTCTTCAGCTTTGC SEQ ID NO: 223	-14.3	-27.3	78.7	-12.3	-0.5	-6
1031	CCCACCCCTCCCCATCTTC SEQ ID NO: 224	-14.3	-36.7	90.2	-22.4	0	~0.5
1422	GATGACTTGCACTAACACAT SEQ ID NO:225	-14.3	-20.8	61.7	-6.5	0	-5
1593	ATTTTTTGACATTTTTTGAA SEQ ID NO:226	-14.3	-16.4	53.3	-2.1	0	-2.4

		kcal/	kca1/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1607	TCCCTCTGTTGCTCATTTTT SEQ ID NO:227	-14.3	-26.1	76.2	-11.8	0	-3.6
211	GCAGCAGCCACAGTCGTCGA SEQ ID NO:228	-14.2	-29.8	81.3	-14.6	-0.9	-5.2
392	AGGTCTCTCTGCAATCCATC SEQ ID NO:229	-14.2	-25.6	75.8	-11.4	0	-4.9
485	ATCTGTTGGAAGACTTGGTT SEQ ID NO:230	-14.2	-22	66.6	-6.9	-0.7	-3.6
776	ATGTTATGGATTGTAAGTAT SEQ ID NO:231	-14.2	-18	57.5	-3.8	0	-1.8
1705	CTGAAAATTGATTCTTTT SEQ ID NO:232	-14.2	-17.1	54.5	-2.3	-0.3	-4.9
1785	TACAACAGTCCTGTTTGTGC SEQ ID NO:233	-14.2	-23.7	70.2	-8.4	-1	-8.7
113	TGCTCCAGGCGCCACCAGG SEQ ID NO:234	-14.1	-33.4	86.2	-17.7	-1.5	-10.2
234	CCCCGCCCTGCAGCGCACAC SEQ ID NO:235	-14.1	-36.2	87.1	-20.4	-1.7	-10.5
472	CTTGGTTACTGAATATTGGA SEQ ID NO:236	-14.1	-19.8	60.5	-5.7	0	-4.6
528	TTGCCATCTCCAGATGCCAT SEQ ID NO:237	-14.1	-28.1	77.2	-12.9	-1	-7.8
685	TATCTAGAAAGTTCCTAAAA SEQ ID NO:238	-14.1	-16.1	51.9	-2	0	-6.2
1650	ATTGAAAATTCACCGAAGTC SEQ ID NO:239	-14.1	-18.3	55.4	-4.2	. 0	-5.7
124	CGCATAATTATTGCTCCAGG SEQ ID NO:240	-14	-23.2	65.9	-7.9	-1.2	-8.4
480	TTGGAAGACTTGGTTACTGA SEQ ID NO:241	-14	-20.9	63.2	-6.9	0	-3.3
690	TGCTATATCTAGAAAGTTCC SEQ ID NO:242	-14	-20	61.5	-6	0	-6.2
871	ATTTTTAGTTCTTCAGTGTT SEQ ID NO:243	-14	-20.4	65.7	-6.4	0	-4.1
1641	TCACCGAAGTCACAGCACTT SEQ ID NO:244	-14	-24.9	70.3	-10.3	-0.3	-4.7
1648	TGAAAATTCACCGAAGTCAC SEQ ID NO:245	-14	-19.1	56.8	-5.1	0	-5.4
378	TCCATCCCGAAGGTGCCGTA SEQ ID NO:246	-13.9	-30.1	77.9	-14.9	-1.2	-6.2
484	TCTGTTGGAAGACTTGGTTA SEQ ID NO:247	-13.9	-21.7	66.1	-6.9	-0.7	-3.4
1268	AGAACCGTCCTTCAGATACA SEQ ID NO:248	-13.9	-23.8	67.7	-9.4	0.2	-3.6
1345	AAAATACTTCTTAGATTTAT SEQ ID NO:249	-13.9	-14.4	48.9	0	-0.2	-3.8
1640	CACCGAAGTCACAGCACTTA SEQ ID NO:250	-13.9	-24.2	68.3	-10.3	0.1	-4.6
1698	TTGATTCTTCTTTTACAAAC SEQ ID NO:251	-13.9	-17.2	55.3	-3.3	0	-3
1713	GTTTTCTGCTGAAAATTGAT SEQ ID NO:252	-13.9	-18.7	57.8	-2.3	-2.5	-11.4
1714	TGTTTTCTGCTGAAAATTGA SEQ ID NO:253	-13.9	-18.7	57.7	-2.3	-2.5	-11.4
1782	AACAGTCCTGTTTGTGCTAA SEQ ID NO:254	-13.9	-23	68.1	-8.2	-0.7	-8.1
676	AGTTCCTAAAATGTTGGCTG SEQ ID NO:255	-13.8	-21.4	63.5	-7.6	0	-3.9
789	TTCAGTCATATGGATGTTAT SEQ ID NO:256	-13.8	-20	62.7	-5.5	-0.4	-6.7

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex	- 5	target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1010	CCTGCTCTTAAGTCTTCATT SEQ ID NO:257	-13.8	-23.8	71	-10	0	-6
1273	GCCCCAGAACCGTCCTTCAG SEQ ID NO:258	-13.8	-31.1	80.6	-16.8	-0.2	-3.4
1355	ACCAGTGGGTAAAATACTTC SEQ ID NO:259	-13.8	-20.6	61.6	-5.8	-0.9	-8.2
1536	ATCATGCCTCAGATGTTTGA SEQ ID NO:260	-13.8	-23.5	69.5	-9.7	0	-4.4
1611	AAGGTCCCTCTGTTGCTCAT SEQ ID NO:261	-13.8	-27.4	78.6	-13.6	0	-5.3
154	ACTGCTGTCACAGTGTTGAG SEQ ID NO:262	-13.7	-24.1	72.7	-9.1	-1.2	-6.4
204	CCACAGTCGTCGAGCACTGT SEQ ID NO:263	-13.7	-27.8	77	-12.2	-1.8	-11
236	CTCCCCGCCCTGCAGCGCAC SEQ ID NO:264	-13.7	-36.6	89.1	-21.4	-1.2	-10.5
366	GTGCCGTAGGGACAGTCTTT SEQ ID NO:265	-13.7	-27.3	78.3	-12	-1.5	-8.4
395	TGCAGGTCTCTCTGCAATCC SEQ ID NO:266	-13.7	-27	78.4	-9.8	-3.5	-9.5
482	TGTTGGAAGACTTGGTTACT SEQ ID NO:267	-13.7	-21.5	65.1	-6.9	-0.7	-3.8
483	CTGTTGGAAGACTTGGTTAC SEQ ID NO:268	-13.7	-21.5	65.1	-6.9	-0.7	-3.3
876	ATTGCATTTTTAGTTCTTCA SEQ ID NO:269	-13.7	-20.5	64.3	-6.8	0	-5.1
995	TCATTCCATATCCCAACATT SEQ ID NO:270	-13.7	-23.4	66.6	-9.7	0	-2
996	TTCATTCCATATCCCAACAT SEQ ID NO:271	-13.7	-23.4	66.6	-9.7	0	-2
1417	CTTGCACTAACACATTTATT SEQ ID NO:272	-13.7	-19.4	59.2	-5.7	0	-5
1790	TCTAGTACAACAGTCCTGTT SEQ ID NO:273	-13.7	-22.8	69	-8.2	-0.7	-8.1
1913	TTCCACACACATTCACAACT SEQ ID NO:274	-13.7	-22.4	64.9	-8.7	0	-1
188	CTGTCCTCTTGCAGCGCGGG SEQ ID NO:275	-13.6	-30.9	82 [.] .9	-16.4	-0.6	-9
325	AAAAGGATCCTCCCCATTAG SEQ ID NO:276	-13.6	-23.9	66.3	-9.1	-0.9	-9.9
675	GTTCCTAAAATGTTGGCTGT SEQ ID NO:277	-13.6	-22.6	66.4	-9	0	-3.9
758	ATCCTACTTTTTGTTTTCTG SEQ ID NO:278	-13.6	-21.3	65.7	-7.7	0	-2.2
788	TCAGTCATATGGATGTTATG SEQ ID NO:279	-13.6	-19.9	62.2	-6.3	0.2	-6.7
1275	ATGCCCCAGAACCGTCCTTC SEQ ID NO:280	-13.6	-30.4	79.1	-16.8	0	-3
1346	TAAAATACTTCTTAGATTTA SEQ ID NO:281	-13.6	-14.1	48.4	0	-0.2	-3.8
1647	GAAAATTCACCGAAGTCACA SEQ ID NO:282	-13.6	-19.8	58	-6.2	0	-4.1
1786	GTACAACAGTCCTGTTTGTG SEQ ID NO:283	-13.6	-23.1	69.2	-8.4	-1	-8.7
123	GCATAATTATTGCTCCAGGC SEQ ID NO:284	-13.5	-24.2	69.9	-9.8 .	-0.7	-8.1
379	ATCCATCCCGAAGGTGCCGT SEQ ID NO:285	-13.5	-30.4	78.4	-15.6	-1.2	-6.2
783	CATATGGATGTTATGGATTG SEQ ID NO:286	-13.5	-19.1	58.9	-5.6	0	-5.2

Dosition	
Dosition	cal/mol
Desition	Inter-
1041 ATTTCCCACTCCCACCCCCT SEQ ID NO:287 1612 TAAGGTCCCACCTGTGTGCTCA SEQ ID NO:288 1978 ACAATAATAACATGTCCTT SEQ ID NO:289 471 TTGGTTACTGAATATTGGAA SEQ ID NO:290 1705 TAGGTCCACATGTTGCCA SEQ ID NO:290 1705 TTGTCTCACAATATTGCAA SEQ ID NO:291 1706 ATACTTAGAAAGTTCCTAA SEQ ID NO:291 1706 ATTTTTAGTTCTTCAGTG SEQ ID NO:292 1707 GGTGTGCCTCACTAGTA SEQ ID NO:294 1423 AGATGATCTCCATAGAA SEQ ID NO:294 1424 AGATGACTTGCACATA SEQ ID NO:295 1601 TGTTGCTCATTAGCACA SEQ ID NO:296 1601 TGTTGCTCATTTTTCAGTG SEQ ID NO:296 1601 TGTTGCTCATTGACACA SEQ ID NO:296 1704 TGAAAATTGATCTCTTAT SEQ ID NO:297 1704 TGAAAATTGATCTCTTTT SEQ ID NO:298 1784 ACAACACTCCTGTTGGCCAA SEQ ID NO:299 1706 TGTTCACAACTCTGTTGGCCAA SEQ ID NO:301 1707 CAATAATAACACACA SEQ ID NO:301 1707 TCACAACTCTGTTGGCCCAA SEQ ID NO:301 1707 TGATAAAACACACA SEQ ID NO:301 1707 TGTTCTCTTTTTGCTTTTT SEQ ID NO:301 1707 TGTTCTCATGTGTGCCAA SEQ ID NO:301 1707 TGATAAAACACACA SEQ ID NO:301 1707 TGTTCTCACTGTGTGCCAA SEQ ID NO:301 1707 TGTTCTCTCTTTTT SEQ ID NO:301 1707 TGTTCTCACTGTGTGCCAA SEQ ID NO:301 1707 TGTTCTCACTGTGTGCCAA SEQ ID NO:301 1707 TGTTCTCACTGTTTGCCT SEQ ID NO:303 1707 TGTTCTCCATGTGTTA SEQ ID NO:303 1707 TGTTCTCCATGTGTTT SEQ ID NO:304 1708 TCCCACTCCCACCCCCCCCCCCCCCCCCCCCCCCCCCC	olecular
1041 SEQ ID NO:287 -13.5 -34.6 86.4 -21.1 0 -0	oligo
1978 ACAATAATAACATGTCCTT SEQ ID No: 289 471 TIGGTTACTGAATATTGGAA SEQ ID No: 290 472 CTTCTCTCACAATATTGCCA SEQ ID No: 291 686 ATATCTAGAAGATCTCCTAAA SEQ ID No: 291 6873 GCATTTTAGTCTCATGAGA SEQ ID No: 292 907 GGTTCACCCATGTA SEQ ID No: 294 1423 AGAACATCTGCCATGTA SEQ ID No: 294 1424 AGATCACTGACCACATACACCA SEQ ID No: 295 1427 GGGAAGATGACTTGCACTAA SEQ ID No: 295 1427 GGGAAGATGACTTGCACTAA SEQ ID No: 296 1601 TGTTGCTCATTTTTGACAT SEQ ID No: 297 1704 TGAAAATGATCTTCTTTTT SEQ ID No: 298 1784 ACAACAGACTCTGTTTTTGCAT SEQ ID No: 298 1784 ACAACAGTCCTGTTTTTGTGCT SEQ ID No: 297 1704 TGAAAATGATCTCTTTTT SEQ ID No: 298 1784 ACAACACAGTCCTGTTTTTGGCA SEQ ID No: 300 1977 CAATAATAACATGTCCTTT SEQ ID No: 300 1977 CAATAATAACATGTCCTTT SEQ ID No: 301 1977 CAATAATAACATGTCCTTT SEQ ID No: 302 870 TTTTTAGTTCTCAGTGTTA SEQ ID No: 302 1712 TTTTTCTGCTGAAAATTGATT SEQ ID No: 303 1712 TTTTTCTGCTGAAAATTGATT SEQ ID No: 306 1715 ATGTTTCTGCTGAAAATTGATT SEQ ID No: 307 1718 GTCTTCCTGCTAAAATTGATT SEQ ID No: 306 1715 ATGTTTCTGCTGAAAATTGATT SEQ ID No: 307 1718 GTGTTCTCTGCGAAAATTGATT SEQ ID No: 307 1718 GTGTTCTCTCGAAAATTGATT SEQ ID No: 306 1715 ATGTTTCTGCTGAAAATTGATT SEQ ID No: 307 1718 GGAAGACTTGCTTACTGAAATTGATT SEQ ID No: 307 1718 GGAAGACTTGCTTACTGAAATTGATT SEQ ID No: 307 1718 GGAAGACTTGCTTACTGAAATTGATT SEQ ID No: 307 1719 CTAGTACAACAGGTCCTGTT SEQ ID No: 307 1710 CTAGTACAACAGGTCCTGTT SEQ ID No: 307 1711 SEQ ID No: 307 1712 CTAGTACAACAGGTCCTGTT SEQ ID No: 307 1713 CTAGTACAACAGGTCCTGTT SEQ ID No: 307 1714 CTAGTACAACAGGTCCTGTT SEQ ID No: 307	-0.3
### SEQ ID No:289	-4.7
SEQ ID NO:290 -13.4 -23.2 67.9 -9.2 0 -8 RATACTAGAARATTGCCA SEQ ID NO:291 -13.4 -16.8 53.7 -3.4 0 -6 RATACTAGAARATTCCTARA SEQ ID NO:293 ROSALTITIAGTCCTAGTG SEQ ID NO:293 ROSALTITIAGTCCTAGTG SEQ ID NO:294 -13.4 -21.6 67.7 -8.2 0 -3 ROSALTITIAGTCCTAGTG SEQ ID NO:295 -13.4 -26.7 77.4 -13.3 0 -5 ROSALTITIAGTCCATAGACA SEQ ID NO:295 -13.4 -20.8 62 -7.4 0 -5 ROSALTITIAGTCCATAGACACA SEQ ID NO:295 -13.4 -21.3 62.7 -7 -0.7 -5 ROSALTITIAGACTTGCACTARA SEQ ID NO:296 -13.4 -21.3 62.7 -7 -0.7 -5 ROSALTITIAGACAT SEQ ID NO:297 -13.4 -21.1 64.5 -7.2 -0.2 -3 ROSALTITIAGACAT SEQ ID NO:298 -13.4 -24.1 64.5 -7.2 -0.2 -3 ROSALTITIAGACTAGACACA SEQ ID NO:300 ROSALTITIAGACAT SEQ ID NO:301 ROSALTITIAGACAT SEQ ID NO:301 ROSALTITIAGACAT SEQ ID NO:301 ROSALTITIAGACATCCACTAT SEQ ID NO:301 ROSALTITIAGACATCCACTAT SEQ ID NO:301 ROSALTITIAGACATCCACTAGACACA SEQ ID NO:302 ROSALTITIAGACACACACTCCACTAGACACACACACACACACACACAC	-6.9
542 CTTCTCCACATATTGCCA SEQ ID NO:291 686 ATATCTAGAAAGTTCCTAAA SEQ ID NO:292 873 GCATTTTAGTTCTCAGTG SEQ ID NO:293 907 GGTTGACCTGTCCCATGTA SEQ ID NO:294 1423 AGATGACTTGCACTAA SEQ ID NO:295 1427 GGGAAGATGCATCACACA SEQ ID NO:296 1601 TGTTGCCATTTTTGACACT SEQ ID NO:296 1601 TGTTGCTCATTTTTTGACAT SEQ ID NO:297 1704 TGAAAATTGATTCTCTTT SEQ ID NO:299 1704 TGAAAATTGATTCTCTTT SEQ ID NO:299 1705 TTCACAACTCTGTTGGCCT SEQ ID NO:300 1707 CAATAATAAACATCTCCTTT SEQ ID NO:300 1707 CAATAATAAACATCTCCTTT SEQ ID NO:300 1707 CAATAATAAACATCTCCTTT SEQ ID NO:301 1708 TGTTCAGCTCATATGGATGT SEQ ID NO:301 1709 TTCACACACTCTGTTGGCCT SEQ ID NO:302 1700 TTTTTAGTCTTCAGTGTTA SEQ ID NO:303 1701 TTTTTAGTCTCAGTGTTA SEQ ID NO:304 1702 TTTTTAGTCTCAGTGTTA SEQ ID NO:305 1703 TTTTTAGTCTTCAGTGTTA SEQ ID NO:306 1704 TGTTCAGCCTTTGCCCTAGCT SEQ ID NO:306 1705 TTTTTCAGCTTTGGCCTA SEQ ID NO:307 1706 TTTTTCAGCTTTGGCCTAGCT SEQ ID NO:306 1707 CAATAATAAACATCTCCCTTT SEQ ID NO:306 1708 TCCCACTCCCACCCCCCCCC SEQ ID NO:306 1710 TTTTCTGCTGAAAATTGATT SEQ ID NO:307 1711 TTTCTCCTGAAAAATTGATT SEQ ID NO:307 1712 TTTCTCTCGAAAAATTGATT SEQ ID NO:307 1718 CTAGTTCTCTCTGTATTT SEQ ID NO:307 1718 CTAGTTCTCTCTAGAAATTG SEQ ID NO:307 1718 GGAAGACTTGGTTACTGAT 130 -22.5 67.8 -8.2 -0.9 -8 478 GGAAGACTTGGTTACTGAAT -13 -20.1 60.9 -6.9 0 -3 -3 -4 -4 -4 -4 -4 -4 -4 -4	-4.6
SEQ ID NO:292 -13.4 -16.8 53.7 -3.4 0 -6 873 GCATTTTACTTCTTCAGTG SEQ ID NO:293 -13.4 -21.6 67.7 -8.2 0 -3 907 GGTTGACCTGTCTCCATGTA SEQ ID NO:294 -13.4 -26.7 77.4 -13.3 0 -5 1423 AGATGACTTGCACTACACA SEQ ID NO:295 -13.4 -20.8 62 -7.4 0 -6 1427 GGGAAGATGACTTGCACTAA SEQ ID NO:295 -13.4 -21.3 62.7 -7 -0.7 -5 1601 TGTTGCTCATTTTTGACAT SEQ ID NO:297 -13.4 -21.1 64.5 -7.2 -0.2 -3 1704 TGAAAATTGATTCTTCTTTT SEQ ID NO:298 -13.4 -24.1 64.5 -7.2 -0.2 -3 1704 ACAACAGTCCTGTTTGTGCT SEQ ID NO:298 -13.4 -24.9 72.8 -10.5 -0.9 -8 1705 TTCACAACTCTGTTGGCCAA SEQ ID NO:300 -13.4 -24.1 69 -8.8 -1.8 -1.6 1977 CAATAATAACATGTCCTTT SEQ ID NO:301 -13.4 -16.9 52.9 -3.5 0 -6 870 TTTTTAGTTCTAGTGATG -13.3 -22.6 69.8 -8.6 -0.4 -6 870 TTTTTAGTTCTTCAGTGTA SEQ ID NO:303 -13.3 -22.6 69.8 -8.6 -0.4 -6 870 TTTTTAGTTCTTCAGTGTTA SEQ ID NO:304 -13.3 -27.7 81.6 -13.1 -1.2 -7 1038 TCCCACTCCCACCCCCTCC SEQ ID NO:306 -13.3 -27.7 81.6 -13.1 -1.2 -7 1038 TCCCACTCCCACCCCCTCCC SEQ ID NO:306 -13.3 -17.6 55.2 -2.3 -2.5 -11 1715 ATTTTCTGCTGAAAATTG -13.3 -18.1 56.5 -2.3 -2.5 -11 1716 CTAGTACAACAGTCCTGTTT SEQ ID NO:306 -13.3 -18.1 56.5 -2.3 -2.5 -11 1717 TTTCTGCTGAAAATTG -13.3 -22.5 67.8 -8.2 -0.9 -8 478 GGAAGACTTGGTTACTGAAT -13.2 -20.1 60.9 -6.9 0 -3	-8.5
SEQ ID NO:293 907 GGTTGACCTGTCTCCATGTA SEQ ID NO:294 -13.4 -26.7 77.4 -13.3 0 -5 1423 AGATGACTTGCACTAACACA SEQ ID NO:295 1427 GGGAAGATGACTTGCACTAA SEQ ID NO:296 -13.4 -20.8 62 -7.4 0 - 1427 GGGAAGATGACTTGCACTAA SEQ ID NO:296 -13.4 -21.3 62.7 -7 -0.7 -5 1601 TGTTGCTCATTTTTGACAT SEQ ID NO:297 -13.4 -21.1 64.5 -7.2 -0.2 -3 1704 TGAAAATTGATCTCTCTTTT SEQ ID NO:298 1704 ACAACAGTCCTGTTGGCCA SEQ ID NO:299 -13.4 -24.9 72.8 -10.5 -0.9 -8 1902 TTCACAACTCTGTTGGCCAA SEQ ID NO:300 -13.4 -24.1 69 -8.8 -1.8 -10 1977 CAATAATAAACATGCCTTT SEQ ID NO:301 -13.4 -16.9 52.9 -3.5 0 -6 192 GTGTTCAGCTATTGGATCT SEQ ID NO:302 -13.3 -22.6 69.8 -8.6 -0.4 -6 870 TTTTTAGTTCTCAGTTTA SEQ ID NO:303 -13.3 -20.1 65.1 -6.8 0 -4 1038 TCCCACTCCACCCCCTCC SEQ ID NO:304 -13.3 -27.7 81.6 -13.1 -1.2 -7 1038 TCCCACTCCACCCCCCCCC SEQ ID NO:306 -13.3 -38.8 93.4 -25.5 0 CC SEQ ID NO:306 -1712 TTTTCTGCTGAAAATTGATT SEQ ID NO:307 -13.3 -17.6 55.2 -2.3 -2.5 -11 789 CTAGTACAACAGTCCTGTTT SEQ ID NO:307 -13.3 -18.1 56.5 -2.3 -2.5 -11 789 CTAGTACAACAGTCCTGTTT SEQ ID NO:307 -13.3 -22.5 67.8 -8.2 -0.9 -8 478 GGAAGACCTTGGTTACTGAAT -13.2 -20.1 60.9 -6.9 0 -3	-6.2
SEQ ID NO:294 1423 AGATGACTTGCACTAACACA SEQ ID NO:295 1427 GGGAAGATGACTTGCACTAA SEQ ID NO:295 1601 TGTTGCTCATTTTTGACAT SEQ ID NO:297 1704 TGAAAATTGATCTTCTTTT SEQ ID NO:298 1784 ACAACAGTCCTGTTTTGTGCCT SEQ ID NO:298 1902 TTCACAACTCTGTTGGCCAA SEQ ID NO:300 1977 CAATAAAAACATGTCCTTT SEQ ID NO:301 792 GTGTCCAGTCATAGGATGT SEQ ID NO:302 1704 TTTTTAGTTCATGTTAGAAT SEQ ID NO:303 1704 1704 1704 1704 1704 1705 1707 1708 1708 1709 1700	-3.5
SEQ ID NO:295 -13.4 -20.8 62 -7.4 0 -14.27	-5.9
1427 SEQ ID NO:296 -13.4 -21.3 62.7 -7 -0.7 -5 1601 TGTTGCTCATTTTTGACAT SEQ ID NO:297 -13.4 -21.1 64.5 -7.2 -0.2 -3 1704 TGAAAATGATTCTTCTTTT SEQ ID NO:298 -13.4 -16.3 52.9 -2.3 -0.3 -4 1784 ACAACAGTCCTGTTGGCT SEQ ID NO:299 -13.4 -24.9 72.8 -10.5 -0.9 -8 1902 TTCACAACTCTGTTGGCCAA SEQ ID NO:300 -13.4 -24.1 69 -8.8 -1.8 -1.0 1977 CAATAATAAACATGTCCTTT SEQ ID NO:301 -13.4 -16.9 52.9 -3.5 0 -6 192 GTGTTCAGTCATATGGATGT SEQ ID NO:302 -13.3 -22.6 69.8 -8.6 -0.4 -6 1935 GTCTTCAGTGTTA SEQ ID NO:303 -13.3 -20.1 65.1 -6.8 0 -4 1935 GTCTTCAGCTTTGCCTAGCT SEQ ID NO:304 -13.3 -27.7 81.6 -13.1 -1.2 -7 1038 TCCCACTCCCACCCCTCCC SEQ ID NO:305 -13.3 -38.8 93.4 -25.5 0 C 1712 TTTTCTGCTGAAAATTGATT SEQ ID NO:306 -13.3 -17.6 55.2 -2.3 -2 -10 1715 ATGTTTTCTGCTGAAAATTG 1716 SEQ ID NO:308 -13.3 -18.1 56.5 -2.3 -2.5 -11 1789 CTAGTAACAAGTCCTGTTT SEQ ID NO:308 GGAAGACTTGGTTACTGAAT -13.2 -20.1 60.9 -6.9 0 -3	-5
1601 SEQ ID NO: 297 -13.4 -21.1 64.5 -7.2 -0.2 -3 1704 TGAAAATTGATTCTTCTTT SEQ ID NO: 298 -13.4 -16.3 52.9 -2.3 -0.3 -4 1784 ACAACAGTCCTGTTTGTGCT SEQ ID NO: 299 -13.4 -24.9 72.8 -10.5 -0.9 -8 1902 TTCACAACTCTGTTGGCCAA SEQ ID NO: 300 -13.4 -24.1 69 -8.8 -1.8 -1.6 1977 CAATAAAAACATGTCCTTT SEQ ID NO: 301 -13.4 -16.9 52.9 -3.5 0 -6 792 GTGTTCAGTCATATGGATGT SEQ ID NO: 302 -13.3 -22.6 69.8 -8.6 -0.4 -6 870 TTTTTAGTTCTTCAGTGTTA SEQ ID NO: 303 -13.3 -20.1 65.1 -6.8 0 -4 935 GTCTTCAGCTTTGCCTAGCT SEQ ID NO: 304 -13.3 -27.7 81.6 -13.1 -1.2 -7 1038 TCCCACTCCCACCCCCTCCC SEQ ID NO: 306 -13.3 -38.8 93.4 -25.5 0 0 1712 TTTTCTGCTGAAAATTGATT SEQ ID NO: 306 -13.3 -17.6 55.2 -2.3 -2 -10 1715 ATGTTTCTGCTGAAAATTG -13.3 -17.6 55.2 -2.3 -2.5 -11 1789 CTAGTACAACAGTCCTGTTT SEQ ID NO: 308 -13.3 -22.5 67.8 -8.2 -0.9 -8 478 GGAAGACTTGGTTACTGAAT -13.2 -20.1 60.9 -6.9 0 -3	-5.3
### SEQ ID NO:298 1784 ACAACAGTCCTGTTTGTGCT SEQ ID NO:299 -13.4 -24.9 72.8 -10.5 -0.9 -8 1902 TTCACAACTCTGTTGGCCAA SEQ ID NO:300 -13.4 -24.1 69 -8.8 -1.8 -1.0 1977 CAATAATAAACATGTCCTTT SEQ ID NO:301 -13.4 -16.9 52.9 -3.5 0 -6 792 GTGTTCAGTCATATGGATGT -13.3 -22.6 69.8 -8.6 -0.4 -6 870 TTTTTAGTCTCTCAGTGTTA SEQ ID NO:303 -13.3 -20.1 65.1 -6.8 0 -4 935 GTCTTCAGCTTTGCCTAGCT SEQ ID NO:304 -13.3 -27.7 81.6 -13.1 -1.2 -7 1038 TCCCACTCCCACCCCTCCC SEQ ID NO:305 -13.3 -38.8 93.4 -25.5 0 0 1712 TTTTCTGCTGAAAATTGATT SEQ ID NO:306 -13.3 -17.6 55.2 -2.3 -2 -10 1715 ATGTTTTCTGCTGAAAATTGATT SEQ ID NO:306 -13.3 -18.1 56.5 -2.3 -2.5 -11 1789 CTAGTACAACAGTCCTGTTT SEQ ID NO:308 -13.3 -22.5 67.8 -8.2 -0.9 -8 478 GGAAGACTTGGTTACTGAAT -13.2 -20.1 60.9 -6.9 0 -3	-3.6
1784 SEQ ID NO:299 -13.4 -24.9 72.8 -10.5 -0.9 -8 1902 TTCACAACTCTGTTGGCCAA SEQ ID NO:300 -13.4 -24.1 69 -8.8 -1.8 -10 1977 CAATAATAACATGTCCTTT SEQ ID NO:301 -13.4 -16.9 52.9 -3.5 0 -6 792 GTGTTCAGTCATATGGATGT -13.3 -22.6 69.8 -8.6 -0.4 -6 870 TTTTTAGTTCTCAGTGTTA SEQ ID NO:303 -13.3 -20.1 65.1 -6.8 0 -4 935 GTCTTCAGCTTAGCT SEQ ID NO:304 -13.3 -27.7 81.6 -13.1 -1.2 -7 1038 TCCCACTCCCACCCCTCC SEQ ID NO:305 -13.3 -38.8 93.4 -25.5 0 0 1712 TTTTCTGCTGAAAATTGATT SEQ ID NO:306 -13.3 -17.6 55.2 -2.3 -2 -10 1789 CTAGTACAACAGTCCTGTTT SEQ ID NO:308 -13.3 -18.1 56.5 -2.3 -2.5 -11 1789 CTAGTACAACAGTCCTGTTT SEQ ID NO:308 GGAAGACTTGGTTACTGAAT -13.2 -20.1 60.9 -6.9 0 -3	-4.9
SEQ ID NO:300 1977 CAATAATAAACATGTCCTTT SEQ ID NO:301 792 GTGTTCAGTCATATGGATGT 870 TTTTTAGGTTCAGTGTTA SEQ ID NO:302 13.3 -22.6 69.8 -8.6 -0.4 -6 870 TTTTTAGGTTCAGTGTTA SEQ ID NO:303 935 GTCTTCAGCTTTGCCTAGCT SEQ ID NO:304 -13.3 -20.1 65.1 -6.8 0 -4 935 GTCTTCAGCTTTGCCTAGCT SEQ ID NO:304 -13.3 -27.7 81.6 -13.1 -1.2 -7 1038 TCCCACTCCCACCCCCTCCC SEQ ID NO:305 1712 TTTTCTGCTGAAAATTGATT SEQ ID NO:306 1715 ATGTTTTCTGCTGAAAATTG SEQ ID NO:307 -13.3 -17.6 55.2 -2.3 -2 -10 1789 CTAGTACAACAGTCCTGTTT SEQ ID NO:308 GGAAGACTTGGTTACTGAAT -13.3 -22.5 67.8 -8.2 -0.9 -8 478 GGAAGACTTGGTTACTGAAT -13.2 -20.1 69 -8.8 -1.8	-8.4
Fig. 1D NO:301 THE SEQ ID NO:301 THE SEQ ID NO:301 THE TAGTECT AGT GAT GAT GAT GAT GAT GAT GAT GAT GA	-10.8
SEQ ID NO:302 -13.3 -22.6 69.8 -8.6 -0.4 -6 870 TTTTTAGTTCTCAGTGTTA SEQ ID NO:303 -13.3 -20.1 65.1 -6.8 0 -4 935 GTCTTCAGCTTTGCCTAGCT SEQ ID NO:304 -13.3 -27.7 81.6 -13.1 -1.2 -7 1038 TCCCACTCCCACCCCTCCC SEQ ID NO:305 -13.3 -38.8 93.4 -25.5 0 0 1712 TTTTCTGCTGAAAATTGATT SEQ ID NO:306 -13.3 -17.6 55.2 -2.3 -2 -10 1715 ATGTTTCTGCTGAAAATTG SEQ ID NO:307 -13.3 -18.1 56.5 -2.3 -2.5 -11 1789 CTAGTACAACAGTCCTGTTT SEQ ID NO:308 -13.3 -22.5 67.8 -8.2 -0.9 -8 478 GGAAGACTTGGTTACTGAAT -13.2 -20.1 60.9 -6.9 0 -3	-6.9
935 GTCTTCAGCTTTGCCTAGCT SEQ ID NO:304 -13.3 -27.7 81.6 -13.1 -1.2 -7 1038 TCCCACTCCCACCCCTCC SEQ ID NO:305 -13.3 -38.8 93.4 -25.5 0 0 1712 TTTTCTGCTGAAAATTGATT SEQ ID NO:306 -13.3 -17.6 55.2 -2.3 -2 -10 1715 ATGTTTCTGCTGAAAATTG -13.3 -18.1 56.5 -2.3 -2.5 -11 1789 CTAGTACAACAGTCCTGTTT SEQ ID NO:308 -13.3 -22.5 67.8 -8.2 -0.9 -8 478 GGAAGACTTGGTTACTGAAT -13.2 -20.1 60.9 -6.9 0 -3	-6.1
1038 TCCCACTCCCACCCCTCCC SEQ ID NO:305 -13.3 -38.8 93.4 -25.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-4.1
1038 SEQ ID NO:305 -13.3 -38.8 93.4 -25.5 0 C C C C C C C C C C C C C C C C C C	-7.7
1712 SEQ ID NO:306 -13.3 -17.6 55.2 -2.3 -2 -10 1715 ATGTTTTCTGCTGAAAATTG SEQ ID NO:307 -13.3 -18.1 56.5 -2.3 -2.5 -11 1789 CTAGTACAACAGTCCTGTTT SEQ ID NO:308 -13.3 -22.5 67.8 -8.2 -0.9 -8 478 GGAAGACTTGGTTACTGAAT -13.2 -20.1 60.9 -6.9 0 -3	0
1715 SEQ ID NO:307 -13.3 -18.1 56.5 -2.3 -2.5 -11 1789 CTAGTACAACAGTCCTGTTT -13.3 -22.5 67.8 -8.2 -0.9 -8 SEQ ID NO:308 -13.2 -20.1 60.9 -6.9 0 -3	-10.6
1789 CTAGTACAACAGTCCTGTTT -13.3 -22.5 67.8 -8.2 -0.9 -8 SEQ ID NO:308 -13.2 -20.1 60.9 -6.9 0 -3	-11.4
478 -13.2 -20.1 60.9 -6.9 0 -3	-8.4
	-3.1
479 TGGAAGACTTGGTTACTGAA -13.2 -20.1 60.8 -6.9 0 -3	-3.1
SEQ ID NO:311	-7.8
908 TGGTTGACCTGTCTCCATGT -13.2 -27 77.8 -13.3 -0.2 -7 SEQ ID NO:312	-7.2
SEQ ID NO:313	-5.3
SEQ ID NO:314	-8.4
687 TATATCTAGAAAGTTCCTAA -13.1 -17.2 54.9 -4.1 0 -6	-6.2
1497 GTTTTTATTCTAACCATTTT -13.1 -18.9 59.2 -5.8 0 -2	-2.3

		kcal/	kcal/		kcal/		
		mo1	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1542	AAATTTATCATGCCTCAGAT SEQ ID NO:317	-13.1	-20	60.2	-6.9	0	-4.6
1592	TTTTTTGACATTTTTTGAAA SEQ ID NO:318	-13.1	-15.7	51.6	-2.1	-0.1	-2.5
1779	AGTCCTGTTTGTGCTAAGAT SEQ ID NO:319	-13.1	-23.4	70.3	-10.3	0	-3.6
114	TTGCTCCAGGCGGCCACCAG SEQ ID NO:320	-13	-32.3	84.2	-17.7	-1.4	-10.2
115	ATTGCTCCAGGCGGCCACCA SEQ ID NO:321	-13	-32.3	83.8	-17.7	-1.4	-10.2
324	AAAGGATCCTCCCCATTAGA SEQ ID NO:322	-13	-25.2	69.6	-11	-0.9	-9.9
541	TTCTCTCACAATATTGCCAT SEQ ID NO:323	-13	-22.3	65.9	-8.7	0	-8.5
1019	CCATCTTCTCCTGCTCTTAA SEQ ID NO:324	-13	-25.8	74.3	-12.8	0	-3.6
1342	ATACTTCTTAGATTTATCTC SEQ ID NO:325	-13	-18.2	59.3	-4.3	-0.7	-5.1
1358	ACCACCAGTGGGTAAAATAC SEQ ID NO:326	-13	-22.1	63.4	-7.8	-1.2	-9
111	CTCCAGGCGGCCACCAGGTG SEQ ID NO:327	-12.9	-32.8	85.5	-19	-0.4	-9.4
155	CACTGCTGTCACAGTGTTGA SEQ ID NO:328	-12.9	-24.8	73.6	-9.1	-2.8	-8.5
391	GGTCTCTCTGCAATCCATCC SEQ ID NO:329	-12.9	-27.6	79.2	-14.7	0	-4.9
688	CTATATCTAGAAAGTTCCTA SEQ ID NO:330	-12.9	-18.8	58.8	-5.9	0	-5.7
872	CATTTTTAGTTCTTCAGTGT SEQ ID NO:331	-12.9	-21	66.6	-8.1	0	-4.1
1186	CTCAAATTTCCATAAGCTTC SEQ ID NO:332	-12.9	-20.1	60.7	-7.2	0	-6.8
1276	TATGCCCCAGAACCGTCCTT SEQ ID NO:333	-12.9	-29.7	77	-16.8	0	-3
1282	GTTTCCTATGCCCCAGAACC SEQ ID NO:334	-12.9	-29	77.7	-16.1	0	-3
1540	ATTTATCATGCCTCAGATGT SEQ ID NO:335	-12.9	-22.6	67.6	-9.7	0	-4.4
112	GCTCCAGGCGCCACCAGGT SEQ ID NO:336	~12.8	-34.6	90	-20.4	-1.1	-10.2
212	GGCAGCAGCCACAGTCGTCG SEQ ID NO:337	-12.8	-30.4	82.5	-14.9	-2.7	-9.6
439	CAGGCATTTTCCCGTCCCCC SEQ ID NO:338	-12.8	-33.5	85.4	-20.2	-0.1	-4
790	SEQ ID NO:339	-12.8	-21.2	66.1	-7.7	-0.4	-6.7
795	CAAGTGTTCAGTCATATGGA SEQ ID NO:340	-12.8	-21.4	65.6	-8.6	0	-6.2
994	CATTCCATATCCCAACATTA SEQ ID NO:341	-12.8	-22.7	64.6	-9.9	0	-2
1431	GGTAGGGAAGATGACTTGCA SEQ ID NO:342	-12.8	-23.3	68.4	-9.6	-0.7	-5.9
1543	TAAATTTATCATGCCTCAGA SEQ ID NO:343	-12.8	-19.7	59.7	-6.9	0	-5.5
1590	TTTTGACATTTTTTGAAATC SEQ ID NO:344	-12.8	-15.9	52.1	-2.1	-0.9	-3.8
1976	AATAATAAACATGTCCTTTT SEQ ID NO:345	-12.8	-16.3	52	-3.5	0	-6.9
322	AGGATCCTCCCCATTAGAAG SEQ ID NO:346	-12.7	-25.9	72	-12.1	-0.9	-9.2

					11/		
		kcal/ mol	kcal/ mol	deg C	kcal/ mol	kcal/mol	kcal/mol
		mor	duplex	aeg c	target	Intra-	Inter-
		total	form-	Tm of	struc-		molecular
position	-11	binding	ation	Duplex	ture	oligo	oligo
738	oligo GATCCACCATGCATCACAAT SEQ ID NO:347	-12.7	-24.4	68.2	-11.7	0	-6.6
785	GTCATATGGATGTTATGGAT SEQ ID NO:348	-12.7	-20.6	63.3	-7.2	-0.4	-6.2
942	CACTGCGGTCTTCAGCTTTG SEQ ID NO:349	-12.7	-26.2	75.3	-12.8	-0.5	-6.2
1187	ACTCAAATTTCCATAAGCTT SEQ ID NO:350	-12.7	-19.9	59.8	-7.2	0	-6.4
1278	CCTATGCCCCAGAACCGTCC SEQ ID NO:351	-12.7	-31.6	79.8	-18.9	0	-2.6
1428	AGGGAAGATGACTTGCACTA SEQ ID NO:352	-12.7	-22	65.1	-8.4	-0.7	-5.3
1979	AACAATAATAAACATGTCCT SEQ ID NO:353	-12.7	-16.2	51.2	-3.5	0	-6.9
735	CCACCATGCATCACAATTTG SEQ ID NO:354	-12.6	-23.6	66.1	-11	0	-6.4
761	AGTATCCTACTTTTTGTTTT SEQ ID NO:355	-12.6	-20.9	65.2	-7.8	-0.2	-2.9
992	TTCCATATCCCAACATTAAT SEQ ID NO:356	-12.6	-21.3	61.5	-8.7	0	-3.8
993	ATTCCATATCCCAACATTAA SEQ ID NO:357	-12.6	-21.3	61.5	-8.7	0	-2.6
1127	TTTTGACTTTTCCCAAAGCC SEQ ID NO:358	-12.6	-23.8	67.4	-9.8	-1.3	-6.3
1277	CTATGCCCCAGAACCGTCCT SEQ ID NO:359	-12.6	-30.5	78.4	-17.9	0	-3
1591	TTTTTGACATTTTTTGAAAT SEQ ID NO:360	-12.6	-15.6	51.3	-2.1	-0.7	-3.1
1594	CATTTTTTGACATTTTTTGA SEQ ID NO:361	-12.6	-17.8	56.5	-5.2	0	-2.4
1778	GTCCTGTTTGTGCTAAGATT SEQ ID NO:362	-12.6	-23.5	70.4	-10.9	0	-3.6
1975	ATAATAAACATGTCCTTTTA SEQ ID NO:363	-12.6	-16.7	53.2	-4.1	0	-6.9
15	GTGGTCTTTGCTGGTGGGAA SEQ ID NO:364	-12.5	-26.5	77.3	-14	0	3.6
331	TTCACCAAAAGGATCCTCCC SEQ ID NO:365	-12.5	-25.5	69.6	-11.8	-0.9	-9.9
473	ACTTGGTTACTGAATATTGG SEQ ID NO:366	-12.5	-19.4	59.8	-6.9	0	-4.6
536	TCACAATATTGCCATCTCCA SEQ ID NO:367	-12.5	-24	68.5	-10.9	0	-8.5
578	TTACGGGAGACCCGGCAGCA SEQ ID NO:368	#2.5	-29.6	77.1	-13.4	3.7	-12.1
1341	TACTTCTTAGATTTATCTCT SEQ ID NO:369	12.5	-19.1	61.4	-5.7	-0.7	-5.1
1528	TCAGATGTTTGAAAACCTTA SEQ ID NO:370	-12.5	-18.5	56.9	-5.5	-0.1	-5.7
1696	GATTCTTCTTTTACAAACCT SEQ ID NO:371	12.5	-20	60.8	-7.5	0	-1.9
1697	TGATTCTTCTTTTACAAACC SEQ ID NO:372	12.5	-19.1	58.8	-6.6	0	-2.6
377	CCATCCCGAAGGTGCCGTAG SEQ ID NO:373	20.2	-29.7	76.7	-16.4		-6.2
588	CATTTCCTCATTACGGGAGA SEQ ID NO:374		-23.7	68	-10.7		-4.2
796	ACAAGTGTTCAGTCATATGG SEQ ID NO:375	-2.1	-21	64.7	-8.6	0	-6.2
875	TTGCATTTTTAGTTCTTCAG SEQ ID NO:376	-12.4	-20.5	64.6	-8.1	0	-5.1

		kcal/	kcal/		kcal/		
		mo1	mol	deg C	mol '	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1426	GGAAGATGACTTGCACTAAC SEQ ID NO:377	-12.4	-20.3	60.8	-7	-0.7	-5.3
1595	TCATTTTTTGACATTTTTTG SEQ ID NO:378	-12.4	-17.6	56.5	-5.2	0	-2.5
1905	ACATTCACAACTCTGTTGGC SEQ ID NO:379	-12.4	-23	68.2	-8.8	-1.8	-7
1980	GAACAATAATAAACATGTCC SEQ ID NO:380	-12.4	-15.9	50.6	-3.5	0	-6.9
760	GTATCCTACTTTTTGTTTTC SEQ ID NO:381	-12.3	-21.3	66.6	-9	0	-2.2
763	TAAGTATCCTACTTTTTGTT SEQ ID NO:382	-12.3	-19.7	61.6	-5.9	-1.4	-5.1
793	AGTGTTCAGTCATATGGATG SEQ ID NO:383	-12.3	-21.4	66.5	-8.6	-0.1	-6.4
1011	TCCTGCTCTTAAGTCTTCAT SEQ ID NO:384	-12.3	-24.1	72,3	-11.8	0	-6
1042	TATTTCCCACTCCCACCCCC SEQ ID NO:385	-12.3	-33.4	84.2	-21.1	0	-0.7
1147	GGGGTTTTCTGGTTGTTTTA SEQ ID NO:386	-12.3	-24.1	73.6	-11.8	0	-1.9
1188	TACTCAAATTTCCATAAGCT SEQ ID NO:387	-12.3	-19.5	59	-7.2	0	-4.8
1269	CAGAACCGTCCTTCAGATAC SEQ ID NO:388	-12.3	-23.8	67.7	-11	-0.2	-3.4
1496	TTTTTATTCTAACCATTTTC SEQ ID NO:389	-12.3	-18.1	57.5	-5.8	0	-1.4
1783	CAACAGTCCTGTTTGTGCTA SEQ ID NO:390	-12.3	-24.4	71.6	-11.1	-0.9	-8.4
229	CCCTGCAGCGCACACTCGGC SEQ ID NO:391	-12.2	-32.7	83.8	-19.6	-0.7	-8.5
323	AAGGATCCTCCCCATTAGAA SEQ ID NO:392	-12.2	-25.2	69.6	-11.8	-0.9	-9.9
633	GAGCCTTCTCTCAGAAATCA SEQ ID NO:393	-12.2	-23.4	69	-10.3	-0.7	-5.1
801	CACATACAAGTGTTCAGTCA SEQ ID NO:394	-12.2	-21.4	65.3	-8.6	-0.3	-4.1
864	GTTCTTCAGTGTTACTATAC SEQ ID NO:395	-12.2	-20.7	66	-8.5	0	-4.1
869	TTTTAGTTCTTCAGTGTTAC SEQ ID NO:396	-12.2	-20.2	65.3	-8	0	-4.1
990	CCATATCCCAACATTAATGT SEQ ID NO:397	-12.2	-22	62.7	-8.7	0	-10.2
1009	CTGCTCTTAAGTCTTCATTC SEQ ID NO:398	-12.2	-22.2	68.8	-10	0	-5.4
1221	TTTTGAAATTGCTCTCAGTT SEQ ID NO:399	-12.2	-20	61.8	-7.8	0	-3.6
1544	ATAAATTTATCATGCCTCAG SEQ ID NO:400	-12.2	-19.1	58.4	-6.9	0	-7.3
1703	GAAAATTGATTCTTCTTTTA SEQ ID NO:401	-12.2	-16	52.4	-3.8	0	-4.1
1906	CACATTCACAACTCTGTTGG SEQ ID NO:402	-12.2	-21.9	65.1	-7.9	-1.8	-7
156	TCACTGCTGTCACAGTGTTG SEQ ID NO:403	-12.1	-24.6	74	-9.1	-3.4	-9.7
689	GCTATATCTAGAAAGTTCCT SEQ ID NO:404	-12.1	-20.9	63.6	-8.8 .	0	-6.2
794	AAGTGTTCAGTCATATGGAT SEQ ID NO:405	-12.1	-20.7	64.3	-8.6	0	-6.2
868	TTTAGTTCTTCAGTGTTACT SEQ ID NO:406	-12.1	-21	67.1	-8.9	0	-4.1

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
984	CCCAACATTAATGTACATCA SEQ ID NO:407	-12.1	-20.9	60.8	-7.5	-0.2	-10.5
985	TCCCAACATTAATGTACATC SEQ ID NO:408	-12.1	-20.6	61	-7.5	0.3	-10
1133	GTTTTATTTTGACTTTTCCC SEQ ID NO:409	-12.1	-21.9	66.2	-9.8	0	-2
1344	AAATACTTCTTAGATTTATC SEQ ID NO:410	-12.1	-15.5	51.8	-3.4	0	-3.1
1357	CCACCAGTGGGTAAAATACT SEQ ID NO:411	-12.1	-22.8	64.6	-9.5	-1.1	-8.2
1359	AACCACCAGTGGGTAAAATA SEQ ID NO:412	-12.1	-21.2	60.9	-7.8	-1.2	-9
1506	GAGTCATAGGTTTTTATTCT SEQ ID NO:413	-12.1	-20.5	65.2	-8.4	0	-4.1
1526	AGATGTTTGAAAACCTTATA SEQ ID NO:414	-12.1	-17.1	53.9	-4.5	-0.1	-5.7
1608	GTCCCTCTGTTGCTCATTTT SEQ ID NO:415	-12.1	-27.2	79.5	-15.1	0	-3.6
1651	AATTGAAAATTCACCGAAGT SEQ ID NO:416	-12.1	-17.2	52.7	-4.2	-0.7	-5.7
1793	ACATCTAGTACAACAGTCCT SEQ ID NO:417	-12.1	-22.4	67.2	-10.3	0	-5.3
116	TATTGCTCCAGGCGGCCACC SEQ ID NO:418	-12	-31.3	82.3	-17.7	-1.4	-10.2
301	CTGACACCTCAGCCCCGGGC SEQ ID NO:419	-12	-33.4	85.2	-18.8	-1.4	-13.3
535	CACAATATTGCCATCTCCAG SEQ ID NO:420	-12	-23.6	67.2	-11	0	-8.5
691	ATGCTATATCTAGAAAGTTC SEQ ID NO:421	-12	-18	57.6	-6	0	-6.2
762	AAGTATCCTACTTTTTGTTT SEQ ID NO: 422	-12	-20.1	62.5	-6.9	-1.1	-4.7
865	AGTTCTTCAGTGTTACTATA SEQ ID NO:423	-12	-20.5	65.6	-8.5	0	-4.1
866	TAGTTCTTCAGTGTTACTAT SEQ ID NO:424	-12	-20.5	65.6	-8.5	0	-4.1
991	TCCATATCCCAACATTAATG SEQ ID NO: 425	-12	-21.2	61.1	-8.7	0	-8.2
1035	CACTCCCACCCCTCCCCAT SEQ ID NO:426	-12	-37.1	89.5	-25.1	0	-0.3
1146	GGGTTTTCTGGTTGTTTAT SEQ ID NO:427	-12	-22.9	70.6	-10.9	0	-1.5
1218	TGAAATTGCTCTCAGTTCAA SEQ ID NO: 428	-12	-20.1	61.3	-7.4	-0.4	-4.9
1846	TCTTAAATAAGTTCTTCACT SEQ ID NO:429	-12	-17.6	56.4	-5.6	0	-4.9
153	CTGCTGTCACAGTGTTGAGG SEQ ID NO:430	-11.9	-25.1	74.9	-12.5	-0.4	-6
367	GGTGCCGTAGGGACAGTCTT SEQ ID NO:431	-11.9	-28.4	80.6	-14.9	-1.5	-8.4
475	AGACTTGGTTACTGAATATT SEQ ID NO:432	-11.9	-18.8	58.8	-6.9	0	-4.6
632	AGCCTTCTCTCAGAAATCAC SEQ ID NO:433	-11.9	-23	68.2	-10.3	~0.6	-5.1
909	TTGGTTGACCTGTCTCCATG SEQ ID NO:434	-11.9	-25.9	74.6	-13.3	-0.4	-7.6
1193	TTTGTTACTCAAATTTCCAT SEQ ID NO: 435	-11.9	-19.3	59.3	-6.2	-1.1	-4.5
1425	GAAGATGACTTGCACTAACA SEQ ID NO:436	-11.9	-19.8	59.5	-7	-0.7	-5.3

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mo1	kcal/mo1	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1541	AATTTATCATGCCTCAGATG SEQ ID NO:437	-11.9	-20.7	62.2	-8.8	0	-4.4
1912	TCCACACACATTCACAACTC SEQ ID NO:438	-11.9	-22.7	66	-10.8	0	-1
390	GTCTCTCTGCAATCCATCCC SEQ ID NO:439	-11.8	-28.4	80.1	-16.6	0	-4.9
467	TTACTGAATATTGGAAGAAG SEQ ID NO:440	-11.8	-15.6	50.9	-3.8	0	-4.6
579	ATTACGGGAGACCCGGCAGC SEQ ID NO:441	-11.8	-28.9	76.1	-13.4	-3.7	-11
784	TCATATGGATGTTATGGATT SEQ ID NO:442	-11.8	-19.5	60.4	-7	-0.4	-6.2
910	TTTGGTTGACCTGTCTCCAT SEQ ID NO:443	-11.8	-26	75.2	-13.5	-0.4	-7.6
1220	TTTGAAATTGCTCTCAGTTC SEQ ID NO:444	-11.8	-20.3	62.9	-8.5	0	-3.9
1430	GTAGGGAAGATGACTTGCAC SEQ ID NO:445	-11.8	-22.3	66.3	-9.6	-0.7	-5.3
1495	TTTTATTCTAACCATTTTCA SEQ ID NO:446	-11.8	-18.7	58.4	-6.9	0	-1.4
1501	ATAGGTTTTTATTCTAACCA SEQ ID NO:447	-11.8	-19.5	60.4	-5.5	-2.2	-5.9
302	GCTGACACCTCAGCCCCGGG SEQ ID NO:448	-11.7	-33.4	85.2	-16.7	-3.5	-18.2
398	AGTTGCAGGTCTCTCTGCAA SEQ ID NO:449	-11.7	-25.9	77.3	-9.5	-4.7	-12
435	CATTTTCCCGTCCCCCTGTC SEQ ID NO:450	-11.7	-32.3	84.3	-20.6	0	-2.6
477	GAAGACTTGGTTACTGAATA SEQ ID NO:451	-11.7	-18.6	57.8	-6.9	0	-3.1
527	TGCCATCTCCAGATGCCATG SEQ ID NO:452	-11.7	-28	76.7	-15.2	-1	-7.8
543	TCTTCTCTCACAATATTGCC SEQ ID NO:453	-11.7	-22.9	68.3	-10.6	0	-8.5
943	TCACTGCGGTCTTCAGCTTT SEQ ID NO:454	-11.7	-26.6	77.3	-14.2	-0.4	-6.2
1219	TTGAAATTGCTCTCAGTTCA SEQ ID NO:455	-11.7	-20.9	63.8	-8.5	-0.4	~5
1259	CTTCAGATACAGGTAACCCG SEQ ID NO:456	-11.7	-23.7	66.9	-11	-0.9	-4.5
1274	TGCCCCAGAACCGTCCTTCA SEQ ID NO:457	-11.7	-31.1	80.1	-18.9	-0.2	-3.4
1356	CACCAGTGGGTAAAATACTT SEQ ID NO:458	-11.7	-20.9	61.4	-8	-1.1	-8.2
1360	AAACCACCAGTGGGTAAAAT SEQ ID NO:459	-11.7	-20.8	59.6	-7.8	-1.2	-9
1639	ACCGAAGTCACAGCACTTAT SEQ ID NO:460	-11.7	-23.5	67.1	-11.1	-0.5	-4.6
1787	AGTACAACAGTCCTGTTTGT SEQ ID NO:461	-11.7	-23.1	69.6	-10.5	-0.8	-8.3
110	TCCAGGCGGCCACCAGGTGT SEQ ID NO:462	-11.6	-33.1	87.1	-19.9	-1.4	-10.2
160	GCACTCACTGCTGTCACAGT SEQ ID NO:463	-11.6	-26.9	78.8	-14	-1.2	-6.3
187	TGTCCTCTTGCAGCGCGGC SEQ ID NO:464	-11.6	-31.8	85.4	-19.3 .	-0.6	-9.1
250	GCGGTAGCAAGTTTCTCCCC SEQ ID NO:465	-11.6	-29.6	81	-17	-0.9	-4.5
799	CATACAAGTGTTCAGTCATA SEQ ID NO:466	-11.6	-20.2	62.8	-8.6	0	-3.7

		kcal/	kcal/		kcal/		
		mol	mo1	deg C	mo1	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
800	ACATACAAGTGTTCAGTCAT SEQ ID NO:467	-11.6	-20.7	64	-8.6	-0.1	-3.7
903	GACCTGTCTCCATGTAAGAT SEQ ID NO:468	-11.6	-24.1	70.1	-12.5	0	-5.5
904	TGACCTGTCTCCATGTAAGA SEQ ID NO:469	-11.6	-24.1	70	-12.5	0	-5.3
1012	CTCCTGCTCTTAAGTCTTCA SEQ ID NO:470	-11.6	-25	74.5	-13.4	0	-6
1132	TTTTATTTTGACTTTTCCCA SEQ ID NO:471	-11.6	-21.4	64.2	-9.8	0	-1.7
1204	GTTCAAAGCTGTTTGTTACT SEQ ID NO:472	-11.6	-21.2	65.1	-8.1	-1.4	-6
1500	TAGGTTTTTATTCTAACCAT SEQ ID NO:473	-11.6	-19.5	60.4	-5.7	-2.2	-5.9
1911	CCACACACATTCACAACTCT SEQ ID NO:474	-11.6	-23.2	66.4	-11.6	0	-1
127	CACCGCATAATTATTGCTCC SEQ ID NO:475	-11.5	-24.2	67.3	-11.4	-1.2	-8.4
205	GCCACAGTCGTCGAGCACTG SEQ ID NO:476	-11.5	-28.4	77.9	-15.6	-1.1	-9.6
352	GTCTTTGCAGATACCAAACT SEQ ID NO:477	-11.5	-22.1	64.9	-10	-0.3	-4.9
397	GTTGCAGGTCTCTCTGCAAT SEQ ID NO:478	-11.5	-25.9	76.9	-9.5	-4.9	-12.2
487	AAATCTGTTGGAAGACTTGG SEQ ID NO:479	-11.5	-19.3	58.9	-6.9	-0.7	-3.6
1145	GGTTTTCTGGTTGTTTTATT SEQ ID NO:480	-11.5	-21.8	68.2	-10.3	0	-1.5
1416	TTGCACTAACACATTTATTT SEQ ID NO:481	-11.5	-18.6	57.6	-7.1	0	-5
1429	TAGGGAAGATGACTTGCACT SEQ ID NO:482	-11.5	-22	65.1	-10	-0.1	-5
1529	CTCAGATGTTTGAAAACCTT SEQ ID NO:483	-11.5	-19.7	59.3	-7.7	-0.1	-5.7
228	CCTGCAGCGCACACTCGGCA SEQ ID NO:484	-11.4	-31.4	81.5	-19.1	-0.7	-8.8
233	CCCGCCTGCAGCGCACACT SEQ ID NO:485	-11.4	-35.1	85.8	-22	-1.7	-10.5
568	CCCGCAGCATTCTCTTCA SEQ ID NO:486	-11.4	-29	79.5	-17.6	0	-6.3
577	TACGGGAGACCCGGCAGCAT SEQ ID NO:487	-11.4	-29.5	76.7	-14.4	-3.7	-12.1
877	AATTGCATTTTTAGTTCTTC SEQ ID NO:488	-11.4	-19.1	60.7	-7.7	. 0	-5.1
1039	TTCCCACTCCACCCCCTCC SEQ ID NO:489	-11.4	-36.9	90.9	-25.5	0	0
1202	TCAAAGCTGTTTGTTACTCA SEQ ID NO:490	-11.4	-21	64.2	-8.1	-1.4	-6
1515	AACCTTATAGAGTCATAGGT SEQ ID NO:491	-11.4	-20.9	64	-8.6	-0.8	-6.3
1602	CTGTTGCTCATTTTTTGACA SEQ ID NO:492	-11.4	-22	66.5	-10.1	-0.1	-3.6
266	CCATGCCTGAGACTGTGCGG SEQ ID NO:493	-11.3	-28.7	77	-16.8	-0.3	-4.2
317	CCTCCCCATTAGAAGGCTGA SEQ ID NO:494	-11.3	-28.2	76	-16.9	0	-3.7
530	TATTGCCATCTCCAGATGCC SEQ ID NO:495	-11.3	-27.1	75.6	-14.7	-1	-7.8
692	TATGCTATATCTAGAAAGTT SEQ ID NO:496	-11.3	-17.3	55.6	-6	0	-6.2

		legal /	kcal/		kcal/		
		kcal/ mol	mol	đeg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	-7/	binding	ation	Duplex	ture	oligo	oligo
693	oligo TTATGCTATATCTAGAAAGT SEQ ID NO:497	-11.3	-17.3	55.6	-6	0	-6.2
759	TATCCTACTTTTTGTTTTCT SEQ ID NO:498	-11.3	-21	65.2	-9.7	0	-2.2
787	CAGTCATATGGATGTTATGG SEQ ID NO:499	-11.3	-20.7	63.4	-8.7	-0.4	-6.2
874	TGCATTTTTAGTTCTTCAGT SEQ ID NO:500	-11.3	-21.6	67.7	-10.3	0	-4.7
1413	CACTAACACATTTATTATA SEQ ID NO:501	-11.3	-16.1	52.3	-4.8	0	-1.7
1527	CAGATGTTTGAAAACCTTAT SEQ ID NO:502	-11.3	-18.1	55.6	-6.8	0.6	-5
1589	TTTGACATTTTTTGAAATCC SEQ ID NO:503	-11.3	-17.8	55.6	-5.5	-0.9	-3.8
1907	ACACATTCACAACTCTGTTG SEQ ID NO:504	-11.3	-20.9	63.1	-8.1	-1.4	-6.5
118	ATTATTGCTCCAGGCGGCCA SEQ ID NO:505	-11.2	-29.2	78.7	-16.4	-1.4	-10.2
332	CTTCACCAAAAGGATCCTCC SEQ ID NO:506	-11.2	-24.4	68	-12.1	-0.5	-9.9
489	ACAAATCTGTTGGAAGACTT SEQ ID NO:507	-11.2	-19	58.2	-6.9	-0.8	-4.4
631	GCCTTCTCTCAGAAATCACA SEQ ID NO:508	-11.2	-23.7	69.1	-11.7	-0.6	-4.6
1192	TTGTTACTCAAATTTCCATA SEQ ID NO:509	-11.2	-18.9	58.4	-7.2	-0.1	-4.5
1194	GTTTGTTACTCAAATTTCCA SEQ ID NO:510	-11.2	-20.5	62.4	-7.7	-1.6	-4.6
1343	AATACTTCTTAGATTTATCT SEQ ID NO:511	-11.2	-17.1	55.8	-5.2	-0.5	-4.7
1644	AATTCACCGAAGTCACAGCA SEQ ID NO:512	-11.2	-23.1	65.7	-11.9	0	-4.1
1847	TTCTTAAATAAGTTCTTCAC SEQ ID NO:513	-11.2	-16.8	54.8	-5.6	0	-4.9
1908	CACACATTCACAACTCTGTT SEQ ID NO:514	-11.2	-21.6	64.4	-9.9	-0.2	-3.1
267	TCCATGCCTGAGACTGTGCG SEQ ID NO:515	-11.1	-27.9	76.2	-16.8	0.4	-4.2
318	TCCTCCCCATTAGAAGGCTG SEQ ID NO:516	-11.1	-28	76.3	-16.9	0	-3.7
446	GGAATTTCAGGCATTTTCCC SEQ ID NO:517	-11.1	-24.8	71	-13	-0.4	-5
476	AAGACTTGGTTACTGAATAT SEQ ID NO:518	11.1	-18	56.5	-6.9	0	-3.1
589	CCATTTCCTCATTACGGGAG SEQ ID NO:519	-11.1	-25.1	70.3	-14	0	-4.2
906	GTTGACCTGTCTCCATGTAA SEQ ID NO:520		-24.8	72.1	-13.7	0	-5.1
1008	TGCTCTTAAGTCTTCATTCC SEQ ID NO:521	-11.1	-23.3	70.6	-12.2		-6
1237	AACTACATCAGCAGCCTTTT SEQ ID NO:522	-11.1	-23.6	68.7	-12.5		-4.5
1256	CAGATACAGGTAACCCGGGA SEQ ID NO:523	-11.1	-25.3		-12.7		-10.7
1257	TCAGATACAGGTAACCCGGG	-11.1					-10.2
1499	AGGTTTTTATTCTAACCATT SEQ ID NO:525	-11.1	-19.9	61.3	-6.6	-2.2	-5.9
1512	CTTATAGAGTCATAGGTTTT SEQ ID NO:526	-11.1	-19.7	62.7	-8.6	0	-4.8

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-		
position	. 7.7	binding	ation	Duplex	ture	oligo	oligo
_	oligo AATAAGTTCTTCACTTCAAA	-11.1	-17	54.4	-4.8	-1	-3.7
1841	SEQ ID NO:527	-11.1	-17	24.4			
488	CAAATCTGTTGGAAGACTTG SEQ ID NO:528	-11	-18.8	57.6	-6.9	-0.7	-3.6
694	CTTATGCTATATCTAGAAAG SEQ ID NO:529	-11	-17	54.6	-6	0	-6.2
1498	GGTTTTTATTCTAACCATTT SEQ ID NO:530	-11	-20	61.5	-7.5	-1.4	-5.2
1545	AATAAATTTATCATGCCTCA SEQ ID NO:531	-11	-18.4	56.4	-6.9	0	-8.1
1693	TCTTCTTTTACAAACCTCCT SEQ ID NO:532	-11	-22.6	66.2	-11.6	0	-1.9
1694	TTCTTCTTTTACAAACCTCC	-11	-21.8	64.7	-10.8	0	-1.9
1848	SEQ ID NO:533 ATTCTTAAATAAGTTCTTCA	-11	-16.6	54.2	-5.6	0	-4.9
232	SEQ ID NO:534 CCGCCTGCAGCGCACACTC	-10.9	-33.5	84.5	-20.9	-1.7	-10.5
399	SEQ ID NO:535 CAGTTGCAGGTCTCTCTGCA	-10.9	-27.3	81.3	-12.9	-3.5	-9.9
	SEQ ID NO:536 TTCACAACTTCTTCTCAC						
552	SEQ ID NO:537	-10.9	-21.9	67.2	-11	0	-0.6
734	CACCATGCATCACAATTTGG SEQ ID NO:538	-10.9	-22.8	65.1	-11	-0.7	-6.6
736	TCCACCATGCATCACAATTT SEQ ID NO:539	-10.9	-24	67.7	-13.1	0	-6.6
791	TGTTCAGTCATATGGATGTT SEQ ID NO:540	-10.9	-21.5	66.6	-9.9	-0.4	-6.7
797	TACAAGTGTTCAGTCATATG SEQ ID NO:541	-10.9	-19.5	61.4	-8.6	0	-5.6
798	ATACAAGTGTTCAGTCATAT SEQ ID NO:542	-10.9	-19.5	61.5	-8.6	0	-3.7
1000	AGTCTTCATTCCATATCCCA SEQ ID NO:543	-10.9	-25.7	74.2	-14.8	0	-2
1123	GACTTTTCCCAAAGCCAAAA SEQ ID NO:544	-10.9	-22.1	61.7	-9.8	-1.3	-4.1
1185	TCAAATTTCCATAAGCTTCA	-10.9	-19.9	60	-9	0	-6.8
	SEQ ID NO:545 CAAAGCTGTTTGTTACTCAA	-10.9	-19.9	60.6	-8.1	-0.8	-5.5
1201	SEQ ID NO:546 AAAATTCACCGAAGTCACAG	-10.9					
1646	SEQ ID NO:547	-10.9	-19.2	57	-8.3	0	-3.5
70	CAGCAGCAAGACGCTCTTCA SEQ ID NO:548	-10.8	-25.8	72.9	-13.7	1.2	-6
108	CAGGCGGCCACCAGGTGTGC SEQ ID NO:549	-10.8	-32.5	86.1	-19.9	-1.4	-11.3
380	AATCCATCCCGAAGGTGCCG SEO ID NO:550	-10.8	-28.5	73.2	-16.4	-1.2	-6.2
581	TCATTACGGGAGACCCGGCA SEQ ID NO:551	-10.8	-28.2	74.4	-13.7	-3.7	-11
746	GTTTTCTGGATCCACCATGC SEQ ID NO:552	-10.8	-26.4	75.4	-14.2	-1.2	-9.7
905	TTGACCTGTCTCCATGTAAG SEQ ID NO:553	-10.8	-23.6	69.1	-12.8	0	-5.1
1131	TTTATTTTGACTTTTCCCAA SEQ ID NO:554	-10.8	-20.6	61.7	-9.8	0	-2.7
1148	AGGGGTTTTCTGGTTGTTTT	-10.8	-24.4	74.5	-13.6	0	-2
1203	SEQ ID NO:555 TTCAAAGCTGTTTGTTACTC	-10.8	-20.4	63.3	-8.1	-1.4	-6
	SEQ ID NO:556						

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex	•	target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1270	CCAGAACCGTCCTTCAGATA SEQ ID NO:557	-10.8	-25.6	70.7	-14.3	-0.2	-3.4
1643	ATTCACCGAAGTCACAGCAC SEQ ID NO:558	-10.8	-24	68.4	-13.2	0	-4.1
1645	AAATTCACCGAAGTCACAGC SEO ID NO:559	-10.8	-21.7	62.6	-10.9	0	-3.5
1656	CCTTAAATTGAAAATTCACC SEQ ID NO:560	-10.8	-17.3	53	-5.6	-0.7	-5.7
1716	CATGTTTTCTGCTGAAAATT SEQ ID NO:561	-10.8	-18.8	57.8	-5.5	-2.5	-11.4
1915	CCTTCCACACACATTCACAA SEQ ID NO:562	-10.8	-24.2	67.9	-13.4	0	-0.9
71	TCAGCAGCAAGACGCTCTTC SEQ ID NO:563	-10.7	-25.5	73.5	-13.7	-1	-6
148	GTCACAGTGTTGAGGGCAGT SEQ ID NO:564	-10.7	-26.4	79.2	-15.7	0	-6
334	CTCTTCACCAAAAGGATCCT SEQ ID NO:565	-10.7	-23.3	66.3	-11.7	0	-9.7
526	GCCATCTCCAGATGCCATGT SEQ ID NO:566	-10.7	-29.2	80.3	-17.4	-1	-7.8
739	GGATCCACCATGCATCACAA SEQ ID NO:567	-10.7	-25.6	70.7	-14.2	-0.4	-8.3
1205	AGTTCAAAGCTGTTTGTTAC SEQ ID NO:568	-10.7	-20.3	63.2	-8.1	-1.4	-6
1513	CCTTATAGAGTCATAGGTTT SEQ ID NO:569	-10.7	-21.6	66.5	-10.9	0	-4.8
1836	GTTCTTCACTTCAAATAAAA SEQ ID NO:570	-10.7	-16.3	52.5	-5.6	0	-1.6
139	TTGAGGGCAGTCCACCGCAT SEQ ID NO:571	-10.6	-29.4	79.4	-17.7	-1	-5.6
353	AGTCTTTGCAGATACCAAAC SEQ ID NO:572	-10.6	-21.2	63.2	-10	-0.3	-5.2
989	CATATCCCAACATTAATGTA SEQ ID NO:573	-10.6	-19.7	58.6	-7.8	-0.2	-10.5
1001	AAGTCTTCATTCCATATCCC SEQ ID NO:574	-10.6	-24.3	70.6	-13.7	0	-2.4
1015	CTTCTCCTGCTCTTAAGTCT SEQ ID NO:575	-10.6	-25.2	75.4	-14.6	0	-6
1046	ATTTTATTTCCCACTCCAC SEQ ID NO:576	-10.6	-25.7	72.1	-15.1	0	-0.5
1128	ATTTTGACTTTTCCCAAAGC SEQ ID NO:577	-10.6	-21.8	63.8	-9.8	-1.3	-6.3
1914	CTTCCACACACATTCACAAC SEQ ID NO:578	-10.6	-22.4	64.9	-11.8	0	-1
186	GTCCTCTTGCAGCGCGGGCT SEQ ID NO:579	10.5	-32.7	87.5	-20.7	-1.3	-10
265	CATGCCTGAGACTGTGCGGT SEQ ID NO:580	-10.5	-27.9	76.9	-16.8	-0.3	-5.3
745	TTTTCTGGATCCACCATGCA SEQ ID NO:581	-10.5	-25.9	73.1	-14.2	-1	-9.5
863	TTCTTCAGTGTTACTATACA SEQ ID NO:582	10.5	-20.2	63.8	-9.7	0	-3.5
986	ATCCCAACATTAATGTACAT SEQ ID NO:583	40.5	-20.2	59.7	-8.4	-0.2	-10.5
1217	GAAATTGCTCTCAGTTCAAA SEQ ID NO:584	10.5	-19.4	59.4	-8.9	0	-4.2
1337	TCTTAGATTTATCTCTGAGG SEQ ID NO:585	10.5	-20	63.3	-8.6	-0.7	-6.2
1432	GGGTAGGGAAGATGACTTGC SEQ ID NO:586	-10.5	-23.8	69.8	-12.4	-0.7	-4

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mo1	kcal/mol	kcal/mol
			dup1ex		target	Intra-	Inter-
		total	form-	Tm of	struc-		molecular
position	oligo	binding	ation	Dup1ex	ture	oligo	oligo
1717	ACATGTTTTCTGCTGAAAAT SEQ ID NO:587	-10.5	-18.9	58	-6.4	-2	-10.9
1974	TAATAAACATGTCCTTTTAA SEQ ID NO:588	-10.5	-16	51.5	-5.5	0	-6.9
44	CCAGCTGCCTCCGGCTCGGC SEQ ID NO:589	-10.4	-35.4	89.9	-22.9	-2.1	-10.8
66	AGCAAGACGCTCTTCATGTT SEQ ID NO:590	-10.4	-23.9	69.6	-12.3	-1.1	-6.8
107	AGGCGGCCACCAGGTGTGCA SEQ ID NO:591	-10.4	-32.5	86.1	-19.9	-2	-11.8
128	CCACCGCATAATTATTGCTC SEQ ID NO:592	-10.4	-24.2	67.3	-12.9	-0.7	-7.9
335	ACTCTTCACCAAAAGGATCC SEQ ID NO:593	-10.4	-22.6	65	-11.7	0	-7.7
1043	TTATTTCCCACTCCCACCCC SEQ ID NO:594	-10.4	-31.5	81.4	-21.1	0	-0.7
1290	GTGTATGTGTTTCCTATGCC SEQ ID NO:595	-10.4	-25.5	75.4	-15.1	0	-3
1516	AAACCTTATAGAGTCATAGG SEQ ID NO:596	-10.4	-19	58.7	-8.6	0	-5
1652	AAATTGAAAATTCACCGAAG SEQ ID NO:597	-10.4	-15.3	48.8	-3.6	-1.2	~5.7
1695	ATTCTTCTTTTACAAACCTC SEQ ID NO:598	-10.4	-19.8	60.9	-9.4	0	-1.9
1981	TGAACAATAATAAACATGTC SEQ ID NO:599	-10.4	-13.9	47	-3.5	0	-6.9
122	CATAATTATTGCTCCAGGCG SEQ ID NO:600	-10.3	-23.2	65.9	-11.4	-1.4	-9.3
867	TTAGTTCTTCAGTGTTACTA SEQ ID NO:601	-10.3	-20.6	66.1	-10.3	0	-4.1
944	CTCACTGCGGTCTTCAGCTT SEQ ID NO:602	-10.3	-27.4	78.9	-16.4	-0.5	-6.2
1511	TTATAGAGTCATAGGTTTTT SEQ ID NO:603	-10.3	-18.9	61	-8.6	0	-4
1588	TTGACATTTTTTGAAATCCA SEQ ID NO:604	-10.3	-18.4	56.6	-7.2	-0.7	-5
1655	CTTAAATTGAAAATTCACCG SEQ ID NO:605	-10.3	-16.1	50.4	-4.5	-1.2	-5.7
138	TGAGGGCAGTCCACCGCATA SEQ ID NO:606	-10.2	-29	78.5	-17.7	-1	-5.6
368	AGGTGCCGTAGGGACAGTCT SEQ ID NO:607	-10.2	-28.3	80.5	-17	-1	-7.9
590	ACCATTTCCTCATTACGGGA SEQ ID NO:608	-10.2	-25.3	70.6	-14.6	0.1	-4
628	TTCTCTCAGAAATCACAGCC SEQ ID NO:609	-10.2	-22.8	67.4	-11.9	-0.4	-4
634	AGAGCCTTCTCTCAGAAATC SEQ ID NO:610	-10.2	-22.7	68.1	-10.9	-1.5	-5.1
635	TAGAGCCTTCTCTCAGAAAT SEQ ID NO:611	-10.2	-22	65.9	-10.1	-1.7	-6.4
744	TTTCTGGATCCACCATGCAT SEQ ID NO:612	-10.2	-25.8	72.7	-14.2	-1.2	-9.7
1195	TGTTTGTTACTCAAATTTCC SEQ ID NO:613	-10.2	-19.8	61	-8	-1.6	-4.6
1238	GAACTACATCAGCAGCCTTT SEQ ID NO:614	-10.2	-24.1	69.6	-13.9	0	-4.5
1253	ATACAGGTAACCCGGGAACT SEQ ID NO:615	-10.2	-24.4	67.1	-12.7	-0.2	-11
1361	CAAACCACCAGTGGGTAAAA SEQ ID NO:616	-10.2	-21.5	60.7	-10	-1.2	-9

		kcal/	kca1/		kcal/		
		mo1	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1492	TATTCTAACCATTTTCAACA SEQ ID NO:617	-10.2	-18.6	57.3	-8.4	0	-1.2
213	CGGCAGCAGCCACAGTCGTC SEQ ID NO:618	-10.1	-30.4	82.5	-17.1	-3.2	-9.8
363	CCGTAGGGACAGTCTTTGCA SEQ ID NO:619	-10.1	-26.8	75.8	-15.8	-0.8	-7.9
434	ATTTTCCCGTCCCCTGTCA SEQ ID NO:620	-10.1	-32.3	84.3	-22.2	0	-2.6
576	ACGGGAGACCCGGCAGCATT SEQ ID NO:621	-10.1	-29.9	77.6	-16.1	-3.7	-12.1
737	ATCCACCATGCATCACAATT SEQ ID NO:622	-10.1	-23.9	67.3	-13.8	0	-6.6
1016	TCTTCTCCTGCTCTTAAGTC SEQ ID NO:623	-10.1	-24.7	75.1	-14.6	0	-6
1134	TGTTTTATTTTGACTTTTCC SEQ ID NO:624	-10.1	-19.9	62.2	-9.8	0	-2.5
1154	TCCTTCAGGGGTTTTCTGGT SEQ ID NO:625	-10.1	-27.3	80.7	-16.7	-0.2	-5.7
1244	ACCCGGGAACTACATCAGCA SEQ ID NO:626	-10.1	-26.6	71.7	-15.2	0.3	-10.7
1653	TAAATTGAAAATTCACCGAA SEQ ID NO:627	-10.1	-15	48.2	-3.6	-1.2	-5.4
1901	TCACAACTCTGTTGGCCAAC SEQ ID NO:628	-10.1	-24.2	69.2	-11.1	-1.8	-14
1982	TTGAACAATAATAAACATGT SEQ ID NO:629	-10.1	-13.6	46.3	-3.5	0	-6.7
129	TCCACCGCATAATTATTGCT SEQ ID NO:630	-10	-24.2	67.3	-12.9	-1.2	-8.4
157	CTCACTGCTGTCACAGTGTT SEQ ID NO:631	-10	-25.5	76.3	-12.1	-3.4	-9.7
396	TTGCAGGTCTCTCTGCAATC SEQ ID NO:632	-10	-25.1	75	-10.7	-4.4	-11.4
643	CACGAAAATAGAGCCTTCTC SEQ ID NO:633	-10	-21	61.2	-10.1	-0.7	-4.9
1005	TCTTAAGTCTTCATTCCATA SEQ ID NO:634	-10	-21	64.8	-11	0	-6
1040	TTTCCCACTCCCACCCCTC SEQ ID NO:635	-10	-35	88.2	-25	0	0
1546	TAATAAATTTATCATGCCTC SEQ ID NO:636	-10	-17.4	54.6	-6.9	0	-8.1
1999	TATCTTGTTCTTTTTTTTTG SEQ ID NO:637	-10	-18	58.7	-8	0	-0.9
109	CCAGGCGGCCACCAGGTGTG SEQ ID NO:638	-9.9	-32.7	85.1	-21.6	-0.6	-10.2
119	AATTATTGCTCCAGGCGGCC SEQ ID NO:639	-9.9	-27.8	75.3	-16.4	-1.4	-8.9
162	TTGCACTCACTGCTGTCACA SEQ ID NO:640	-9.9	-25.8	75	-14	-1.9	-5.9
755	CTACTTTTTGTTTTCTGGAT SEQ ID NO:641	-9.9	-20.7	64.3	-10.8	0	-2.6
1245	AACCCGGGAACTACATCAGC SEQ ID NO:642	-9.9	-25.2	68.6	-13.9	-0.2	-10.7
1254	GATACAGGTAACCCGGGAAC SEQ ID NO:643	-9.9	-24.1	66.5	-12.7	-0.9	-10.7
1412	ACTAACACATTTATTATAA SEQ ID NO:644	-9.9	-14.7	49.3	-4.8	. 0	-3.7
1415	TGCACTAACACATTTATTTA SEQ ID NO:645	-9.9	-18.2	56.7	-8.3	0	-4.7
1794	AACATCTAGTACAACAGTCC SEQ ID NO:646	-9.9	-20.8	62.9	-10.9	0	-5.3

		kcal/	kcal/		kca1/		
		mol	mol	deg C	mol	kcal/mol	kca1/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	mo1ecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1896	ACTCTGTTGGCCAACTTCAA SEQ ID NO:647	-9.9	-24.3	69.8	-11.3	0.2	-14.3
38	GCCTCCGGCTCGGCTCTCCA SEQ ID NO:648	-9.8	-35.3	91.1	-23.4	-2.1	-9.2
161	TGCACTCACTGCTGTCACAG SEQ ID NO:649	-9.8	-25.7	74.9	-14	-1.9	-6.2
553	TTTCACAACTTCTTCTCA SEQ ID NO:650	-9.8	-21.8	67	-12	0	-0.7
627	TCTCTCAGAAATCACAGCCG SEQ ID NO:651	-9.8	-23.5	67.3	-13.7	0	-3.2
640	GAAAATAGAGCCTTCTCTCA SEQ ID NO:652	-9.8	-21.3	63.5	-9.8	-1.7	-5.1
644	TCACGAAAATAGAGCCTTCT SEQ ID NO:653	-9.8	-21	61.2	-11.2	0	-3.5
695	ACTTATGCTATATCTAGAAA SEQ ID NO:654	-9.8	-17.2	55	-7.4	0	-6.2
1047	TATTTATTTCCCACTCCCA SEQ ID NO:655	-9.8	-25.2	71	-15.4	0	-0.7
1491	ATTCTAACCATTTTCAACAA SEQ ID NO:656	-9.8	-18.2	56	-8.4	0	-1.2
1502	CATAGGTTTTTATTCTAACC SEO ID NO:657	-9.8	-19.5	60.4	-8.5	-1.1	-4.6
1840	ATAAGTTCTTCACTTCAAAT SEQ ID NO:658	-9.8	-17.7	56.3	-6.8	-1	-3.6
1916	GCCTTCCACACACATTCACA SEQ ID NO:659	-9.8	-26.7	74.2	-16.9	0	-2
333	TCTTCACCAAAAGGATCCTC SEQ ID NO:660	-9.7	-22.8	65.9	-12.1	0	-9.9
400	GCAGTTGCAGGTCTCTCTGC SEQ ID NO:661	-9.7	-28.4	85.2	-16.3	-2.4	-8.2
490	AACAAATCTGTTGGAAGACT SEQ ID NO:662	-9.7	-18.2	56	-6.9	-1.6	-5
641	CGAAAATAGAGCCTTCTCTC SEQ ID NO:663	-9.7	-21.4	62.7	-10	-1.7	-5.4
1255	AGATACAGGTAACCCGGGAA SEQ ID NO:664	-9.7	-23.9	66.2	-12.7	-0.9	-10.7
1424	AAGATGACTTGCACTAACAC SEQ ID NO:665	-9.7	-19.4	58.8	-9.2	-0.1	-5
1654	TTAAATTGAAAATTCACCGA SEQ ID NO:666	-9.7	-15.8	49.9	-4.8	-1.2	-5.7
1701	AAATTGATTCTTCTTTTACA SEO ID NO:667	-9.7	-17	54.8	-7.3	0	-3.2
164	TTTTGCACTCACTGCTGTCA SEQ ID NO:668	-9.6	-25.1	74	-13.6	· -1.9	-5
389	TCTCTCTGCAATCCATCCCG SEQ ID NO:669	-9.6	-28	76.3	-18.4	0	-4.9
466	TACTGAATATTGGAAGAAGG SEQ ID NO:670	-9.6	-16.7	53	-7.1	0	-4
1004	CTTAAGTCTTCATTCCATAT SEQ ID NO:671	-9.6	-20.6	63.2	-11	0	-4.8
1048	ATATTTTATTTCCCACTCCC SEQ ID NO:672	-9.6	-24.5	69.8	-14.9	0	-1.8
1122	ACTTTTCCCAAAGCCAAAAA SEQ ID NO:673	-9.6	~20.8	58.9	-9.8	-1.3	-4.2
1222	CTTTTGAAATTGCTCTCAGT SEQ ID NO:674	-9.6	-20.8	63.4	-11.2	0	-3.6
1340	ACTTCTTAGATTTATCTCTG SEQ ID NO:675	-9.6	-19.4	61.9	-8.9	-0.7	-5.1
1547	ATAATAAATTTATCATGCCT SEQ ID NO:676	-9.6	-17	53.4	-6.9	0	-8.1

		kcal/	kcal/		kca1/		
		mol	mol	deg C	mo1	kcal/mo1	kca1/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1998	ATCTTGTTCTTTTTTTTGA SEQ ID NO:677	-9.6	-18.9	60.7	-9.3	0	-2.3
137	GAGGGCAGTCCACCGCATAA SEQ ID NO:678	-9.5	-28.3	76.3	-17.7	-1	-5.6
149	TGTCACAGTGTTGAGGGCAG SEQ ID NO:679	-9.5	-25.2	75.2	-15.7	0	-6
310	ATTAGAAGGCTGACACCTCA SEQ ID NO:680	-9.5	-23.3	67.7	-13	-0.6	-4.3
316	CTCCCCATTAGAAGGCTGAC SEQ ID NO:681	-9.5	-26.4	73.1	-16.9	0	-3.7
474	GACTTGGTTACTGAATATTG SEQ ID NO:682	-9.5	-18.8	58.5	-9.3	0	-4.6
729	TGCATCACAATTTGGATCTT SEQ ID NO:683	-9.5	-21.2	63.5	-11.7	0	-5.4
740	TGGATCCACCATGCATCACA SEQ ID NO:684	-9.5	-26.3	72.8	-15.5	-1.1	-9.6
1236	ACTACATCAGCAGCCTTTTG SEQ ID NO:685	-9.5	-24.3	70.9	-14.8	0	-4.5
1494	TTTATTCTAACCATTTTCAA SEQ ID NO:686	-9.5	-17.9	56.2	-8.4	0	-1.4
1520	TTGAAAACCTTATAGAGTCA SEQ ID NO:687	-9.5	-18.1	56.2	-8.6	0	-4.8
1585	ACATTTTTTGAAATCCAGAG SEQ ID NO:688	-9.5	-18.3	56.6	-7.8	-0.9	-4.3
1788	TAGTACAACAGTCCTGTTTG SEQ ID NO:689	-9.5	-21.6	65.6	-11.1	-0.9	-8.4
151	GCTGTCACAGTGTTGAGGGC SEQ ID NO:690	-9.4	-27.2	80.6	-17.1	-0.4	-7.4
636	ATAGAGCCTTCTCTCAGAAA SEQ ID NO:691	-9.4	-22	65.9	-10.9	-1.7	-6.4
674	TTCCTAAAATGTTGGCTGTG SEQ ID NO:692	-9.4	-21.4	63.2	-12	0	-3.9
730	ATGCATCACAATTTGGATCT SEQ ID NO:693	-9.4	-21.1	63.1	-11.7	0	-6.4
1130	TTATTTTGACTTTTCCCAAA SEQ ID NO:694	-9.4	-19.8	59.5	-9.8	-0.3	-3.7
1153	CCTTCAGGGGTTTTCTGGTT SEQ ID NO:695	-9.4	-27	79.2	-16.7	-0.7	-4.2
1191	TGTTACTCAAATTTCCATAA SEQ ID NO:696	-9.4	-18.1	56.2	-8.7	0	-4.5
1519	TGAAAACCTTATAGAGTCAT SEQ ID NO:697	-9.4	-18	55.9	-8.6	0	-4.8
1603	TCTGTTGCTCATTTTTTGAC SEQ ID NO:698	-9.4	-21.7	66.9	-11.8	-0.1	-3.3
1775	CTGTTTGTGCTAAGATTCTT SEQ ID NO:699	-9.4	-21.3	65.5	-11.9	0	-5.4
1895	CTCTGTTGGCCAACTTCAAG SEQ ID NO:700	-9.4	-24.1	69.5	-11.3	-0.5	-15
41	GCTGCCTCCGGCTCGGCTCT SEQ ID NO:701	-9.3	-34.9	91.1	-23.5	-2.1	-10
121	ATAATTATTGCTCCAGGCGG SEQ ID NO:702	-9.3	-23.7	67.2	-12.9	-1.4	-9.3
163	TTTGCACTCACTGCTGTCAC SEQ ID NO:703	-9.3	-25.2	74.3	-14	-1.9	-5
572	GAGACCCGGCAGCATTCTCT SEQ ID NO:704	-9.3	-29.1	79.5	-19.1	0.5	-5.8
580	CATTACGGGAGACCCGGCAG SEQ ID NO:705	-9.3	-27.8	73.2	-15.7	-2.8	-10.1
956	GAACTAATTTGACTCACTGC SEQ ID NO:706	-9.3	-19.9	60.4	-10.6	0	-2.7

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
999	GTCTTCATTCCATATCCCAA SEQ ID NO:707	-9.3	-25	71.5	-15.7	0	-2
1045	TTTTATTTCCCACTCCCACC SEQ ID NO:708	-9.3	-27.7	75.6	-18.4	0	-0.7
1638	CCGAAGTCACAGCACTTATG SEQ ID NO:709	-9.3	-23.3	66.5	-13.3	-0.5	-4.6
117	TTATTGCTCCAGGCGGCCAC SEQ ID NO:710	-9.2	-29.4	79.4	-19	-0.7	-10.2
215	CTCGGCAGCAGCCACAGTCG SEQ ID NO:711	-9.2	-30.1	80.9	-17.7	-3.2	-9.8
303	GGCTGACACCTCAGCCCCGG SEQ ID NO:712	-9.2	-33.4	85.2	-18.8	-5.3	-18.2
630	CCTTCTCTCAGAAATCACAG SEQ ID NO:713	-9.2	-21.9	65.2	-11.9	-0.6	-4.3
731	CATGCATCACAATTTGGATC SEQ ID NO:714	-9.2	-20.9	62.4	-11.7	0	-6.6
754	TACTTTTTGTTTTCTGGATC SEQ ID NO:715	-9.2	-20.2	63.8	-11	0	-4.1
756	CCTACTTTTTTTTTTTCTGGA SEQ ID NO:716	-9.2	-22.7	68.2	-13.5	0	-2.7
1066	CTACCAAGGAAGGCTAAAT SEQ ID NO:717	-9.2	-21.3	61.3	-12.1	0	-3.8
1149	CAGGGGTTTTCTGGTTGTTT SEQ ID NO:718	-9.2	-25	75.3	-15.3	-0.1	-3.6
1365	CACACAAACCACCAGTGGGT SEQ ID NO:719	-9.2	-25.7	70.3	-15.2	-1.2	-9
1909	ACACACATTCACAACTCTGT SEQ ID NO:720	-9.2	-21.7	64.6	-12.5	0	-2.5
39	TGCCTCCGGCTCGGCTCTCC SEQ ID NO:721	-9.1	-34.6	90	-23.4	-2.1	-10
582	CTCATTACGGGAGACCCGGC SEQ ID NO:722	-9.1	-28.4	75.2	-15.6	-3.7	-11
584	TCCTCATTACGGGAGACCCG SEQ ID NO:723	-9.1	-27.8	73.7	-15.4	-3.3	-10.5
673	TCCTAAAATGTTGGCTGTGT SEQ ID NO:724	-9.1	-22.5	65.9	-13.4	0	-3.9
987	TATCCCAACATTAATGTACA SEQ ID NO:725	-9.1	-19.9	59.1	-9.5	-0.2	-10.5
1184	CAAATTTCCATAAGCTTCAA SEQ ID NO:726	-9.1	-18.8	56.8	-9.7	0	-6.8
1212	TGCTCTCAGTTCAAAGCTGT SEQ ID NO:727	-9.1	~24	71.8	-13.5	-1.3	-6.2
1490	TTCTAACCATTTTCAACAAA SEQ ID NO:728	-9.1	-17.5	54.2	-8.4	. 0	-1.9
1518	GAAAACCTTATAGAGTCATA SEQ ID NO:729	-9.1	-17.7	55.4	-8.6	0	-4.8
1584	CATTTTTTGAAATCCAGAGT SEQ ID NO:730	-9.1	-19.3	59	-9.2	-0.9	-4.3
1842	AAATAAGTTCTTCACTTCAA SEQ ID NO:731	-9.1	-17	54.4	-6.8	-1	-4.2
1894	TCTGTTGGCCAACTTCAAGA SEQ ID NO:732	-9.1	-23.8	68.9	-11.3	-0.5	-15
43	CAGCTGCCTCCGGCTCGGCT SEQ ID NO:733	-9	-34.3	88.6	-22.9	-2.4	-9.9
135	GGGCAGTCCACCGCATAATT SEQ ID NO:734	-9	-27.8	75	-17.7	-1	-4.9
140	GTTGAGGGCAGTCCACCGCA SEQ ID NO:735	-9	-30.6	83	-20.5	-1	-4.8
150	CTGTCACAGTGTTGAGGGCA SEQ ID NO:736	-9	-26.1	76.9	-17.1	0	6

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mo1	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
629	CTTCTCTCAGAAATCACAGC SEQ ID NO:737	-9	-21.7	65.6	-11.9	-0.6	-3.9
747	TGTTTTCTGGATCCACCATG SEQ ID NO:738	-9	-24.6	70.9	-14.2	-1.2	-9.7
757	TCCTACTTTTTGTTTTCTGG SEQ ID NO:739	-9	-22.5	68.5	-13.5	0	-2.9
949	TTTGACTCACTGCGGTCTTC SEQ ID NO:740	-9	-24.9	73.1	-14.9	-0.9	-6.2
1225	AGCCTTTTGAAATTGCTCTC SEQ ID NO:741	-9	-22.7	67	-13.7	0	-5.4
1252	TACAGGTAACCCGGGAACTA SEQ ID NO:742	-9	-24.1	66.6	-13.7	-1.1	-10.2
1366	ACACACAAACCACCAGTGGG SEQ ID NO:743	-9	-24.7	67.8	-14.4	-1.2	-9
1489	TCTAACCATTTTCAACAAAT SEQ ID NO:744	-9	-17.4	53.9	-8.4	0	-2.5
1507	AGAGTCATAGGTTTTTATTC SEO ID NO:745	-9	-19.6	63.2	-10.6	0	-4.8
1623	TTATGTTTAAATAAGGTCCC SEQ ID NO:746	-9	-19.3	58.8	-10.3	0	-4.3
136	AGGGCAGTCCACCGCATAAT SEQ ID NO:747	-8.9	-27.7	75	-17.7	-1	-5.6
347	TGCAGATACCAAACTCTTCA SEQ ID NO:748	-8.9	-21.9	64.1	-13	0	-4.7
983	CCAACATTAATGTACATCAA SEQ ID NO:749	-8.9	-18.2	55.4	-8	-0.2	-10.5
1017	ATCTTCTCCTGCTCTTAAGT SEQ ID NO:750	-8.9	-24.3	73.2	-15.4	0	-6
1213	TTGCTCTCAGTTCAAAGCTG SEQ ID NO:751	-8.9	-22.9	68.7	-12.8	-1.1	-5.6
1525	GATGTTTGAAAACCTTATAG SEQ ID NO:752	-8.9	-17.1	53.9	-7.7	-0.1	-5.7
1702	AAAATTGATTCTTCTTTTAC SEQ ID NO:753	-8.9	-15.6	51.6	-6.7	0	-3.2
1973	AATAAACATGTCCTTTTAAA SEQ ID NO:754	-8.9	-15.6	50.4	-6.7	0	-6.4
1983	ATTGAACAATAATAAACATG SEQ ID NO:755	-8.9	-12.4	43.9	-3.5	0	-5.3
106	GGCGGCCACCAGGTGTGCAG SEQ ID NO:756	-8.8	-32.5	86.1	-21.1	-2.5	-12.5
270	CCATCCATGCCTGAGACTGT SEQ ID NO:757	-8.8	-28	76.9	-19.2	0	-3.8
544	TTCTTCTCTCACAATATTGC SEQ ID NO:758	-8.8	-21	64.8	-11.6	0	-8.5
749	TTTGTTTTCTGGATCCACCA SEQ ID NO:759	-8.8	-24.8	71.8	-14.7	-1.1	-9.7
1013	TCTCCTGCTCTTAAGTCTTC SEQ ID NO:760	-8.8	-24.7	75.1	-15.9	0	-6
1018	CATCTTCTCCTGCTCTTAAG SEQ ID NO:761	-8.8	-23.8	70.9	-15	0	-5.4
1143	TTTTCTGGTTGTTTTTTTT SEQ ID NO:762	-8.8	-19.6	62.6	-10.8	0	-1.5
1211	GCTCTCAGTTCAAAGCTGTT SEQ ID NO:763	-8.8	-24.1	72.4	-14.4	-0.7	~5.4
1226	CAGCCTTTTGAAATTGCTCT SEQ ID NO:764	-8.8	-23	66.7	-13.7	0.1	-5.5
1243	CCCGGGAACTACATCAGCAG SEQ ID NO:765	-8.8	-26.4	71.5	-16.8	-0.2	-9.2
1283	TGTTTCCTATGCCCCAGAAC SEQ ID NO:766	-8.8	-27	74.1	-18.2	0	-3

		kcal/	kcal/		kcal/		
		mo1	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1755	TCAAATATACTCCTAATTCC SEQ ID NO:767	-8.8	-19	57.8	-10.2	0	-2.9
72	GTCAGCAGCAAGACGCTCTT SEQ ID NO:768	-8.7	-26.3	75.2	-16.3	-1.2	-7.9
666	ATGTTGGCTGTGTGTTGAAC SEQ ID NO:769	-8.7	-23	69.1	-14.3	0	-4
696	TACTTATGCTATATCTAGAA SEQ ID NO:770	-8.7	-17.6	56.3	-8.9	0	-6.2
886	GATTACCTAAATTGCATTTT SEQ ID NO:771	-8.7	-18.7	57.2	-10	0	-6
1129	TATTTTGACTTTTCCCAAAG SEQ ID NO:772	-8.7	-19.7	59.3	-9.8	-1.1	-5
1258	TTCAGATACAGGTAACCCGG SEQ ID NO:773	-8.7	-24	67.5	-14.3	-0.9	-5.8
1777	TCCTGTTTGTGCTAAGATTC SEQ ID NO:774	-8.7	-22.7	68.6	-14	0	-3.6
1965	TGTCCTTTTAAAACAAAACC SEQ ID NO:775	-8.7	-17.4	53.3	-8.2	-0.1	-6
158	ACTCACTGCTGTCACAGTGT SEQ ID NO:776	-8.6	-25.6	76.5	-13.6	-3.4	-9.7
750	TTTTGTTTTCTGGATCCACC SEQ ID NO:777	-8.6	-24.2	71	-14.7	0	-9.7
878	AAATTGCATTTTTAGTTCTT SEQ ID NO:778	-8.6	-18	57.2	-9.4	0	-5.8
887	AGATTACCTAAATTGCATTT SEQ ID NO:779	-8.6	-18.6	57.1	-10	0	-5.3
900	CTGTCTCCATGTAAGATTAC SEQ ID NO:780	-8.6	-21.3	64.8	-12.7	0	-5.5
950	ATTTGACTCACTGCGGTCTT SEQ ID NO:781	-8.6	-24.5	71.4	-14.9	-0.9	-6.2
1144	GTTTTCTGGTTGTTTTATTT SEQ ID NO:782	-8.6	-20.7	65.7	-12.1	0	-1.5
1289	TGTATGTGTTTCCTATGCCC SEQ ID NO:783	-8.6	-26.3	75.5	-17.7	0	-3
1414	GCACTAACACATTTATTAT SEQ ID NO:784	-8.6	-18.2	56.8	-9.6	0	-3.4
1774	TGTTTGTGCTAAGATTCTTT SEQ ID NO:785	-8.6	-20.5	63.8	-11.9	0	-5.6
1984	TATTGAACAATAATAAACAT SEQ ID NO:786	-8.6	-12.1	43.4	-3.5	0	-6.5
268	ATCCATGCCTGAGACTGTGC SEQ ID NO:787	-8.5	-27.1	76.4	-18.6	0	-4.2
492	GAAACAAATCTGTTGGAAGA SEQ ID NO:788	-8.5	-17	53.2	-6.9	-1.5	-5
494	GAGAAACAAATCTGTTGGAA SEQ ID NO:789	-8.5	-17	53.2	-6.9	-1.5	~5
571	AGACCCGGCAGCATTCTCTT SEQ ID NO:790	-8.5	-28.6	78.6	-20.1	0	-6.3
595	ATTTAACCATTTCCTCATTA SEQ ID NO:791	-8.5	-20.5	61.5	-12	0	-2.4
882	ACCTAAATTGCATTTTAGT SEQ ID NO:792	-8.5	-19.3	59	-9.6	-0.9	-9.6
1155	TTCCTTCAGGGGTTTTCTGG SEQ ID NO:793	-8.5	-26.2	77.3	-16.8	-0.7	-5.7
1196	CTGTTTGTTACTCAAATTTC SEQ ID NO:794	-8.5	-18.7	59.1	-8.6	~1.6	-4.6
1339	CTTCTTAGATTTATCTCTGA SEQ ID NO:795	-8.5	-19.8	62.8	-10.4	-0.7	-5.1
1517	AAAACCTTATAGAGTCATAG SEQ ID NO:796	-8.5	-17.1	54.3	-8.6	0	-4.8

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1615	AAATAAGGTCCCTCTGTTGC SEQ ID NO:797	-8.5	-23.7	68.4	-15.2	0	-4.2
1843	TAAATAAGTTCTTCACTTCA SEQ ID NO:798	-8.5	-17.4	55.8	-8	-0.7	-4.2
269	CATCCATGCCTGAGACTGTG SEQ ID NO:799	-8.4	-26	73.2	-17.6	0	-4.2
361	GTAGGGACAGTCTTTGCAGA SEQ ID NO:800	-8.4	-24.6	74	-16.2	0	-5.9
402	TGGCAGTTGCAGGTCTCTCT SEQ ID NO:801	-8.4	-27.8	83.1	-18.5	-0.7	-6.6
667	AATGTTGGCTGTGTGTGAA SEQ ID NO:802	-8.4	-22.1	66.1	-13.7	Ο,	-3.7
733	ACCATGCATCACAATTTGGA SEQ ID NO:803	-8.4	-22.7	65.2	-13.1	-1.1	-6.6
786	AGTCATATGGATGTTATGGA SEQ ID NO:804	-8.4	-20.6	63.5	-11.5	-0.4	-6.2
1064	ACCAAGGAAGGGCTAAATAT SEQ ID NO:805	-8.4	-20.4	59.5	-12	0	-3.8
1209	TCTCAGTTCAAAGCTGTTTG SEQ ID NO:806	-8.4	-21.5	66	-11.7	-1.3	-6.8
227	CTGCAGCGCACACTCGGCAG SEQ ID NO:807	-8.3	-29.4	78.6	-19.6	-1.4	-8.1
264	ATGCCTGAGACTGTGCGGTA SEQ ID NO:808	-8.3	-26.9	75.3	-18	-0.3	-5.4
348	TTGCAGATACCAAACTCTTC SEQ ID NO:809	-8.3	-21.3	63.3	-13	0	-5.2
575	CGGGAGACCCGGCAGCATTC SEQ ID NO:810	-8.3	-30.1	78.7	-19	-2.8	-11
884	TTACCTAAATTGCATTTTTA SEQ ID NO:811	-8.3	-17.9	55.7	-9.6	0	-6.2
951	AATTTGACTCACTGCGGTCT SEQ ID NO:812	-8.3	-23.7	68.7	-14.9	-0.2	-6.2
998	TCTTCATTCCATATCCCAAC SEQ ID NO:813	-8.3	-24	68.8	-15.7	0	-2
1063	CCAAGGAAGGGCTAAATATT SEQ ID NO:814	-8.3	-20.3	59.4	-12	0	-4.4
1206	CAGTTCAAAGCTGTTTGTTA SEQ ID NO:815	-8.3	-20.8	63.9	-11.6	-0.8	-6.2
1505	AGTCATAGGTTTTTATTCTA SEQ ID NO:816	-8.3	-19.6	63	-11.3	0	-2.4
1700	AATTGATTCTTCTTTTACAA SEQ ID NO:817	-8.3	-17	54.8	-8.7	0	-3.3
1839	TAAGTTCTTCACTTCAAATA SEQ ID NO:818	-8.3	-17.4	55.8	-8	-1	-3.6
272	TGCCATCCATGCCTGAGACT SEQ ID NO:819	-8.2	-28.6	77.7	-20.4	0	-4.2
295	CCTCAGCCCCGGGCCACACT SEQ ID NO:820	-8.2	-35.5	88.1	-25.9	-1	-10.4
433	TTTTCCCGTCCCCTGTCAC SEQ ID NO:821	-8.2	-32.5	85	-24.3	0	-2.6
732	CCATGCATCACAATTTGGAT SEQ ID NO:822	-8.2	-22.5	64.6	-13.8	-0.2	-6.6
741	CTGGATCCACCATGCATCAC SEQ ID NO:823	-8.2	-26.5	73.6	-16.9	-1.2	-9.7
945	ACTCACTGCGGTCTTCAGCT SEQ ID NO: 824	-8.2	-27.5	79.1	-18.6.	-0.5	-6.2
1126	TTTGACTTTTCCCAAAGCCA SEQ ID NO:825	-8.2	-24.4	68.1	-15.5	-0.4	-6
1135	TTGTTTTATTTTGACTTTTC SEQ ID NO:826	-8.2	-18	58.5	-9.8	o	-2.5

		kcal/	kcal/		kcal/		•
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1972	ATAAACATGTCCTTTTAAAA SEQ ID NO:827	-8.2	-15.6	50.4	-7.4	0	-6.9
51	ATGTTTCCCAGCTGCCTCCG SEQ ID NO:828	-8.1	-31.1	82.6	-22.5	0	-8.1
271	GCCATCCATGCCTGAGACTG SEQ ID NO:829	-8.1	-28.6	77.7	-20.5	0	-4.2
491	AAACAAATCTGTTGGAAGAC SEQ ID NO:830	-8.1	-16.6	52.5	-6.9	-1.5	-5
574	GGGAGACCCGGCAGCATTCT SEQ ID NO:831	-8.1	-30.2	80.9	-20.7	-1.3	-8.1
895	TCCATGTAAGATTACCTAAA SEQ ID NO:832	-8.1	-19.1	57.6	-11	0	-4.3
1065	TACCAAGGAAGGGCTAAATA SEQ ID NO:833	-8.1	-20.1	59	-12	0	-3.8
1411	CTAACACATTTATTATAAA SEQ ID NO:834	-8.1	-13.8	47.2	-4.8	-0.7	-6.1
1665	ATTTTCATACCTTAAATTGA SEQ ID NO:835	-8.1	-17.3	54.6	-9.2	0	-3.2
1900	CACAACTCTGTTGGCCAACT SEQ ID NO:836	-8.1	-24.7	69.6	-13.2	-1.8	-15
1989	TTTTTTATTGAACAATAATA SEQ ID NO:837	-8.1	-13.1	45.9	-4.1	-0.6	-9
1990	CTTTTTTATTGAACAATAAT SEQ ID NO:838	-8.1	-14.3	48.3	-5.5	-0.3	-8.7
1992	TTCTTTTTTTTTGAACAATA SEQ ID NO:839	-8.1	-15.5	51.4	-7.4	0	-6.7
52	CATGTTTCCCAGCTGCCTCC SEQ ID NO:840	-8	-31	84.2	-22.5	0	-8.1
315	TCCCCATTAGAAGGCTGACA SEQ ID NO:841	-8	-26.2	72.3	-18.2	0	-3.7
362	CGTAGGGACAGTCTTTGCAG SEQ ID NO:842	-8	-24.8	72.4	-16.3	-0.1	-6
546	ACTTCTTCTCTCACAATATT SEQ ID NO:843	-8	-20.3	63.1	-12.3	0	-3.8
591	AACCATTTCCTCATTACGGG SEQ ID NO:844	-8	-24	67.2	-16	0	-3.6
596	GATTTAACCATTTCCTCATT SEQ ID NO:845	-8	-21.4	63.4	-13.4	0	-2.4
1548	GATAATAAATTTATCATGCC SEQ ID NO:846	-8	-16.7	52.8	-6.9	-1.8	-8.1
1718	GACATGTTTTCTGCTGAAAA SEQ ID NO:847	-8	-19.5	59.2	-9.2	-2.3	-11.2
1985	TTATTGAACAATAATAAACA SEQ ID NO:848	-8	-12.2	43.7	-3.5	-0.3	-8.5
14	TGGTCTTTGCTGGTGGGAAG SEQ ID NO:849	-7.9	-25.3	74	-17.4	0	-3.6
58	GCTCTTCATGTTTCCCAGCT SEQ ID NO:850	-7.9	-28.4	81.7	-20.5	0	-4.7
61	GACGCTCTTCATGTTTCCCA SEQ ID NO:851	-7.9	-27.3	76.4	-19.4	0	-4.7
165	CTTTTGCACTCACTGCTGTC SEQ ID NO:852	-7.9	-25.3	74.9	-16.1	-1.2	-5
216	ACTCGGCAGCAGCCACAGTC SEQ ID NO:853	-7.9	-29.5	82	-18.4	-3.2	-9.8
351	TCTTTGCAGATACCAAACTC SEQ ID NO:854	-7.9	-21.3	63.3	-12.8	-0.3	-5.2
493	AGAAACAAATCTGTTGGAAG SEQ ID NO:855	-7.9	-16.4	52.1	-6.9	-1.5	-5
495	AGAGAAACAAATCTGTTGGA SEQ ID NO:856	-7.9	-17.7	55.1	-8.7	-1	-4.4

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-		molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
548	CAACTTCTTCTCTCACAATA SEQ ID NO:857	-7.9	-20.2	61.9	-12.3	0	-1.2
554	CTTTCACAACTTCTTCTCTC SEQ ID NO:858	-7.9	-22	67.8	-14.1	0	-0.7
1493	TTATTCTAACCATTTTCAAC SEQ ID NO:859	-7.9	-18	56.4	-10.1	0	-1.2
1514	ACCTTATAGAGTCATAGGTT SEQ ID NO:860	-7.9	-21.7	66.7	-13.1	-0.5	-5.7
1988	TTTTTATTGAACAATAATAA SEQ ID NO:861	-7.9	-12.3	44.2	-3.5	-0.6	-9
62	AGACGCTCTTCATGTTTCCC SEQ ID NO:862	-7.8	-26.6	75. 7	-18.8	0	-6
668	AAATGTTGGCTGTGTTGA SEQ ID NO:863	-7.8	-22.1	66.1	-14.3	0	-3.7
748	TTGTTTTCTGGATCCACCAT SEQ ID NO:864	-7.8	-24.7	71.4	-15.5	-1.2	-9.7
885	ATTACCTAAATTGCATTTTT SEQ ID NO:865	-7.8	-18.2	56.3	-10.4	0	-6.2
888	AAGATTACCTAAATTGCATT SEQ ID NO:866	-7.8	-17.8	54.9	-10	0	-5.3
1044	TTTATTTCCCACTCCCACCC SEQ ID NO:867	-7.8	-29.6	78.6	-21.8	0	-0.7
1246	TAACCCGGGAACTACATCAG SEQ ID NO:868	-7.8	-23.1	64.3	-13.9	-0.2	-10.7
1369	TACACACACAAACCACCAGT SEQ ID NO:869	-7.8	-22.9	64.3	-15.1	0	-2.6
1504	GTCATAGGTTTTTATTCTAA SEQ ID NO:870	-7.8	-18.9	60.5	-11.1	0	-2.6
1817	ATACTTCTGAGATATTTCCT SEQ ID NO:871	-7.8	-20.6	63.4	-12.8	0	-3.8
134	GGCAGTCCACCGCATAATTA SEQ ID NO:872	-7.7	-26.3	72.1	-17.7	-0.7	-5
465	ACTGAATATTGGAAGAAGGG SEQ ID NO:873	-7.7	-18.2	56	-10.5	0	-4.6
663	TTGGCTGTGTGTTGAACAAT SEQ ID NO:874	-7.7	-21.8	64.8	-13.2	-0.7	-7.8
879	TAAATTGCATTTTTAGTTCT SEQ ID NO:875	-7.7	-17.6	56.3	-9.9	0	-6.2
894	CCATGTAAGATTACCTAAAT SEQ ID NO:876	-7.7	-18.7	56.4	-11	0	-4.9
1125	TTGACTTTTCCCAAAGCCAA SEQ ID NO:877	-7.7	-23.6	65.8	-14.5	-1.3	-6.1
1227	GCAGCCTTTTGAAATTGCTC SEQ ID NO:878	-7.7	-23.9	68.9	-15.5	-0.4	-5.5
1229	CAGCAGCCTTTTGAAATTGC SEQ ID NO:879	-7.7	-23.3	66.9	-14.9	-0.4	-4.9
1630	ACAGCACTTATGTTTAAATA SEQ ID NO:880	-7.7	-17.7	55.8	-10	0	-5.4
1838	AAGTTCTTCACTTCAAATAA SEQ ID NO:881	-7.7	-17	54.4	-8.4	-0.7	-3.3
1943	ACAGCTTATGCAGCTTTACA SEQ ID NO:882	-7.7	-23.4	69.3	-13.7	-2	-6.9
120	TAATTATTGCTCCAGGCGGC SEQ ID NO:883	-7.6	-25.5	71.3	-16.4	-1.4	-7.2
152	TGCTGTCACAGTGTTGAGGG SEQ ID NO:884	-7.6	-25.4	75.6	-17.1	-0.4	-5.7
214	TCGGCAGCAGCCACAGTCGT SEQ ID NO:885	-7.6	-30.4	82.5	-19.6	-3.2	-9.8
344	AGATACCAAACTCTTCACCA SEQ ID NO:886	-7.6	-22.3	64.4	-14.7	0	-2.6

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
345	CAGATACCAAACTCTTCACC SEQ ID NO:887	-7.6	-22.3	64.4	-14.7	0	-2.6
645	ATCACGAAAATAGAGCCTTC SEQ ID NO:888	-7.6	-20.1	59.4	-12.5	0	-3.5
828	TCTACATGCATTCGAATATT SEQ ID NO:889	-7.6	-19.4	58.8	-11.2	0	-8.4
1754	CAAATATACTCCTAATTCCA SEQ ID NO:890	-7.6	-19.3	57.7	-11.7	0	-2.9
1849	AATTCTTAAATAAGTTCTTC SEQ ID NO:891	-7.6	-15.2	51.1	-7.6	0	-4.9
299	GACACCTCAGCCCCGGGCCA SEQ ID NO:892	-7.5	-35.2	87.6	-25.8	-1.8	-11.2
549	ACAACTTCTTCTCTCACAAT SEQ ID NO:893	-7.5	-20.7	63	-13.2	0	-0.9
665	TGTTGGCTGTGTGTGAACA SEQ ID NO:894	-7.5	-23.7	70.3	-15.5	-0.5	-5.8
703	TTACATGTACTTATGCTATA SEQ ID NO:895	-7.5	-18.6	58.7	-10.6	0	-7.7
829	ATCTACATGCATTCGAATAT SEQ ID NO:896	-7.5	-19.3	58.5	-11.2	0	-8.4
1284	GTGTTTCCTATGCCCCAGAA SEQ ID NO:897	-7.5	-28 :	76.8	-20.5	0	-3
1524	ATGTTTGAAAACCTTATAGA SEQ ID NO:898	-7.5	-17.1	53.9	-9.1	-0.1	5.7
1835	TTCTTCACTTCAAATAAAAT SEQ ID NO:899	-7.5	-15.1	49.8	-7.6	0	-1.2
1942	CAGCTTATGCAGCTTTACAT SEQ ID NO:900	-7.5	-23.2	68.6	-13.7	-2	-6.9
40	CTGCCTCCGGCTCGGCTCTC SEQ ID NO:901	-7.4	-33.5	88.7	-24	-2.1	-10
130	GTCCACCGCATAATTATTGC SEQ ID NO:902	-7.4	-24.5	68.5	-16.4	-0.4	-7.5
251	TGCGGTAGCAAGTTTCTCCC SEQ ID NO:903	-7.4	-27.6	77.3	-18.6	-1.6	-5.1
350	CTTTGCAGATACCAAACTCT SEQ ID NO:904	-7.4	-21.8	63.7	-13.8	-0.3	-5.2
388	CTCTCTGCAATCCATCCCGA SEQ ID NO:905	-7.4	-28.2	75.9	-20.8	0	-4.7
432	TTTCCCGTCCCCTGTCACA SEQ ID NO:906	-7.4	-33.1	85.5	-25.7	0	-2.5
642	ACGAAAATAGAGCCTTCTCT SEQ ID NO:907	-7.4	-21.2	61.9	-12.2	-1.5	-6.5
728	GCATCACAATTTGGATCTTC SEQ ID NO:908	-7.4	-21.6	65.1	-14.2	۰ 0	-5.4
752	CTTTTTGTTTTCTGGATCCA SEQ ID NO:909	-7.4	-23	69	-14.7	0	-9.6
881	CCTAAATTGCATTTTTAGTT SEQ ID NO:910	-7.4	-19.2	58.8	-10.6	-0.9	-9.6
889	TAAGATTACCTAAATTGCAT SEQ ID NO:911	-7.4	-17.4	54.1	-10	0	-5.3
899	TGTCTCCATGTAAGATTACC SEQ ID NO:912	-7.4	-22.4	66.6	-15	0	-5.5
1002	TAAGTCTTCATTCCATATCC SEQ ID NO:913	-7.4	-22	66.3	-14.6	0	-2.7
1121	CTTTTCCCAAAGCCAAAAAA SEQ ID NO:914	-7.4	-19.9	56.8	-11.8	-0.4	-3.4
1235	CTACATCAGCAGCCTTTTGA SEQ ID NO:915	-7.4	-24.7	71.6	-17.3	0	-4.5
1364	ACACAAACCACCAGTGGGTA SEQ ID NO:916	-7.4	-24.7	68.7	-16	-1.2	-9

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1367	CACACACAAACCACCAGTGG SEQ ID NO:917	-7.4	-24.2	66.6	-15.8	-0.9	-8.5
1614	AATAAGGTCCCTCTGTTGCT SEQ ID NO:918	-7.4	-25.3	72.6	-17.9	0	-4.7
1622	TATGTTTAAATAAGGTCCCT SEQ ID NO:919	-7.4	-20.1	60.3	-12.7	0	-5.1
1636	GAAGTCACAGCACTTATGTT SEQ ID NO:920	-7.4	-21.8	66.1	-13.7	-0.5	-4.6
1723	AAGTTGACATGTTTTCTGCT SEQ ID NO:921	-7.4	-21.6	65.9	-14.2	0	-7.1
1960	TTTTAAAACAAAACCTAACA SEQ ID NO:922	-7.4	-13.7	46.1	-5.8	-0.1	-6
42	AGCTGCCTCCGGCTCGGCTC SEQ ID NO:923	-7.3	-34	89.6	-24.3	-2.4	-10
358	GGGACAGTCTTTGCAGATAC SEQ ID NO:924	-7.3	-23.6	70.6	-15.8	-0.2	-6
550	CACAACTTCTTCTCACAA SEQ ID NO:925	-7.3	-21.4	64.3	-14.1	0	-0.6
570	GACCCGGCAGCATTCTCTTT SEQ ID NO:926	-7.3	-28.7	78.6	-21.4	0	-6.3
626	CTCTCAGAAATCACAGCCGG SEQ ID NO:927	-7.3	-24.3	68.2	-17	0	-6.2
883	TACCTAAATTGCATTTTTAG SEQ ID NO:928	-7.3	-17.8	55.6	-9.6	-0.6	-9.2
901	CCTGTCTCCATGTAAGATTA SEQ ID NO:929	-7.3	-23.1	68	-15.8	0	-5.5
1228	AGCAGCCTTTTGAAATTGCT SEQ ID NO:930	-7.3	-23.5	67.6	-14.9	-1.2	-6.2
1336	CTTAGATTTATCTCTGAGGT SEQ ID NO:931	-7.3	-20.8	65.2	-12.6	-0.7	-6.2
1503	TCATAGGTTTTTATTCTAAC SEQ ID NO:932	-7.3	-17.9	57.8	-10.6	0	-2.7
1761	ATTCTTTCAAATATACTCCT SEQ ID NO:933	-7.3	-19.1	59.1	-11.8	0	-2.7
1776	CCTGTTTGTGCTAAGATTCT SEQ ID NO:934	-7.3	-23.2	69	-15.9	0	-3.8
1816	TACTTCTGAGATATTTCCTA SEQ ID NO:935	-7.3	-20.3	62.8	-13	0	-3.8
1844	TTAAATAAGTTCTTCACTTC SEQ ID NO:936	-7.3	-16.8	54.8	-8.4	-1	-4.2
1910	CACACACATTCACAACTCTG SEQ ID NO:937	-7.3	-21.2	62.7	-13.9	0	-1.8
336	AACTCTTCACCAAAAGGATC SEQ ID NO:938	-7.2	-19.9	59.5	-12.7	0	-4.1
547	AACTTCTTCTCTCACAATAT SEQ ID NO:939	-7.2	-19.5	60.6	-12.3	0	-2.4
583	CCTCATTACGGGAGACCCGG SEQ ID NO:940	-7.2	-28.6	74.5	-17.7	-3.7	-11
742	TCTGGATCCACCATGCATCA SEQ ID NO:941	-7.2	-26.7	74.7	-18.1	-1.2	-9.7
880	CTAAATTGCATTTTTAGTTC SEQ ID NO:942	-7.2	-17.6	56.3	-9.6	-0.4	-8.8
902	ACCTGTCTCCATGTAAGATT SEQ ID NO:943	-7.2	-23.6	69.2	-16.4	0	-5
1080	TCTAGAGAAGCTACCTACCA SEQ ID NO:944	-1.2	-23.6	68.5	-16.4	. 0	-5.2
1326	TCTCTGAGGTGGCATACGTT SEQ ID NO:945	-7.2	-25.3	73.8	-17.5	-0.3	-6.5
1587	TGACATTTTTTGAAATCCAG SEQ ID NO:946	-7.2	-18.3	56.4	-10.1	-0.9	-4.9

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1991	TCTTTTTTTTTGAACAATAA SEQ ID NO:947	-7.2	-14.7	49.4	-6.7	-0.4	-8.7
283	GCCACACTTCATGCCATCCA SEQ ID NO:948	-7.1	-29.3	79.1	-22.2	0	-4.4
314	CCCCATTAGAAGGCTGACAC SEQ ID NO:949	-7.1	-26	71.3	-18.9	0	-3.7
359	AGGGACAGTCTTTGCAGATA SEQ ID NO:950	-7.1	-23.4	70.3	-15.8	-0.2	6
360	TAGGGACAGTCTTTGCAGAT SEQ ID NO:951	-7.1	-23.4	70.3	-15.8	-0.2	-6
369	AAGGTGCCGTAGGGACAGTC SEQ ID NO:952	-7.1	-26.7	75.9	-18	-1.5	-7.9
524	CATCTCCAGATGCCATGTCA SEQ ID NO:953	-7.1	-26.5	75.2	-18.7	-0.5	-6.9
753	ACTTTTTGTTTTCTGGATCC SEQ ID NO:954	-7.1	-22.5	68.4	-14.9	0	-7.5
862	TCTTCAGTGTTACTATACAC SEQ ID NO:955	-7.1	-20.3	64	-11.9	-1.2	-5.2
952	TAATTTGACTCACTGCGGTC SEQ ID NO:956	-7.1	-22.5	66.2	-14.9	-0.1	-6.2
1014	TTCTCCTGCTCTTAAGTCTT SEQ ID NO:957	-7.1	-24.4	73.7	-17.3	0	-6
1327	ATCTCTGAGGTGGCATACGT SEQ ID NO:958	-7.1	-25.2	73.4	-17.5	-0.3	-6.5
1721	GTTGACATGTTTTCTGCTGA SEQ ID NO:959	-7.1	-22.9	69.3	-15.8	0	-7.1
1837	AGTTCTTCACTTCAAATAAA SEQ ID NO:960	-7.1	-17	54.4	-9.9	0	-2.3
59	CGCTCTTCATGTTTCCCAGC SEQ ID NO:961	-7	-28.3	79.2	-21.3	0	-4.7
132	CAGTCCACCGCATAATTATT SEQ ID NO:962	-7	-23.4	66	-16.4	0	-5.6
231	CGCCCTGCAGCGCACACTCG SEQ ID NO:963	-7	-32.3	80.9	-23.9	-1.2	-10.1
702	TACATGTACTTATGCTATAT SEQ ID NO:964	-7	-18.5	58.3	-11.5	0	-7.3
810	TTTAACAAACACATACAAGT SEQ ID NO:965	-7	-15.6	50.4	-8.6	0	-2.8
1197	GCTGTTTGTTACTCAAATTT SEQ ID NO:966	-7	-20.1	61.9	-11.5	-1.6	-6.5
1223	CCTTTTGAAATTGCTCTCAG SEQ ID NO:967	-7	-21.6	64	-14.6	0	-3.6
1408	ACACATTTATTTATAAAAAT SEQ ID NO:968	•	-12.5	44.4	-4.8	0.4	-6.5
1508	TAGAGTCATAGGTTTTTATT SEQ ID NO:969	- '	-18.9	61	-11.9	0	-4.8
1613	ATAAGGTCCCTCTGTTGCTC SEQ ID NO:970	•	-26.4	76.9	-19.4	0	-4.7
1624	CTTATGTTTAAATAAGGTCC SEQ ID NO:971	•	-18.2	56.9	-10.4		-5.6
1762	GATTCTTTCAAATATACTCC SEQ ID NO:972	•	-18.8	58.4	-11.8		-2.7
1772	TTTGTGCTAAGATTCTTTCA SEQ ID NO:973	•	-20.4	63.4	-12.9		-5.6
1941	AGCTTATGCAGCTTTACATT SEQ ID NO:974	•	-22.6	67.8	-13.7		-6.9
273	ATGCCATCCATGCCTGAGAC SEQ ID NO:975	0.5	-27.7	75.8	-20.8	0	-4.2
354	CAGTCTTTGCAGATACCAAA SEQ ID NO:976	-6.9	-21.7	63.9	-14.3	-0.2	-5.2

		11 (11 /		kcal/		
		kcal/ mol	kcal/ mol	deg C	mol	kcal/mol	kcal/mol
		MOI	duplex	acy c	target	Intra-	Inter-
		total	form-	Tm of	struc-		molecular
position		binding		Duplex	ture	oligo	oligo
•	oligo ACAGTCTTTGCAGATACCAA	-6.9	-22.6	66.6	-15.2	-0.2	-5.2
355	SEQ ID NO:977 TCACAACTTCTCTCACA				-15.6	0	-0.6
551	SEQ ID NO:978 AAAATAGAGCCTTCTCAG	-6.9	-22.5	68.1			
639	SEQ ID NO:979	-6.9	-20.7	62.4	-12.3	-1.4	-5.1
662	TGGCTGTGTGTTGAACAATC SEQ ID NO:980	-6.9	-22.1	66	-14.3	-0.7	-7.8
704	ATTACATGTACTTATGCTAT SEQ ID NO:981	-6.9	-18.9	59.3	-11.5	0	-7.7
1616	TAAATAAGGTCCCTCTGTTG SEQ ID NO:982	-6.9	-21.6	63.7	-14.7	0	-4.7
1632	TCACAGCACTTATGTTTAAA SEQ ID NO:983	-6.9	-19.1	58.9	-12.2	0	-5.2
1664	TTTTCATACCTTAAATTGAA SEQ ID NO:984	-6.9	-16.6	52.8	-9.2	-0.1	-3.6
1800	CCTAAGAACATCTAGTACAA SEQ ID NO:985	-6.9	-18.8	57. 5	-11.9	0	-5.7
447	GGGAATTTCAGGCATTTTCC SEO ID NO:986	-6.8	-24	69.9	-16.3	-0.8	-5
449	AGGGGAATTTCAGGCATTTT SEQ ID NO:987	-6.8	-22.8	67.5	-16	0	-5
525	CCATCTCCAGATGCCATGTC SEQ ID NO:988	-6.8	-27.8	77. 7	-19.9	-1	-7.8
830	AATCTACATGCATTCGAATA SEQ ID NO:989	-6.8	-18.6	56.7	-11.2	0	-8.4
835	TAACAAATCTACATGCATTC SEQ ID NO:990	-6.8	-17.4	54.6	-10.6	0	-6.7
988	ATATCCCAACATTAATGTAC SEQ ID NO:991	-6.8	-19.2	57.9	-11.1	-0.2	-10.5
1629	CAGCACTTATGTTTAAATAA SEQ ID NO:992	-6.8	-16.8	53.5	-10	0	-5.4
1722	AGTTGACATGTTTTCTGCTG SEQ ID NO:993	-6.8	-22.3	68.1	-15.5	0	-6.5
263	TGCCTGAGACTGTGCGGTAG SEQ ID NO:994	-6.7	-26.9	75.7	-19.6	-0.3	-5.4
298	ACACCTCAGCCCCGGGCCAC SEO ID NO:995	-6.7	-34.8	87	-26.2	-1.8	-11.2
300	TGACACCTCAGCCCCGGGCC SEO ID NO:996	-6.7	-34.5	86.5	-25.9	-1.8	-11.3
401	GGCAGTTGCAGGTCTCTCTG SEQ ID NO:997	-6.7	-27.8	83.1	-20.2	-0.7	-6.6
751	TTTTTGTTTTCTGGATCCAC SEQ ID NO:998	-6.7	-22.3	67.6	-14.7	0	-9.7
817	TCGAATATTTAACAAACACA SEQ ID NO:999	-6.7	-15.3	49.3	-8.6	0	-4.8
1666	TATTTCATACCTTAAATTG SEQ ID NO:1000	-6.7	-16.4	52.8	-9.7	0	-3.2
1756	TTCAAATATACTCCTAATTC SEQ ID NO:1001	-6.7	-17.1	54.4	-10.4	0	-2.9
1986	TTTATTGAACAATAATAAAC SEQ ID NO:1002	-6.7	-11.6	42.7	-3.5	-1.3	-9
183	CTCTTGCAGCGCGGGCTGCT SEQ ID NO:1003	-6.6	-31.8	84.7	-19.7	-5.5	-15.6
294	CTCAGCCCCGGGCCACACTT	-6.6	-33.6	85.4	-25.1	1.8	-11.2
523	SEQ ID NO:1004 ATCTCCAGATGCCATGTCAT	-6.6	-25.8	74	-18.7	-0.1	-4.3
1150	SEQ ID NO:1005 TCAGGGGTTTTCTGGTTGTT SEQ ID NO:1006	-6.6	-25.3	76.8	-17.8	-0.7	-4.2

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1233	ACATCAGCAGCCTTTTGAAA SEQ ID NO:1007	-6.6	-22.7	65.7	-16.1	0	-4.5
1291	AGTGTATGTGTTTCCTATGC SEQ ID NO:1008	-6.6	-23.5	71.8	-16.9	0	-2.6
1318	GTGGCATACGTTAAAGCTAT SEQ ID NO:1009	-6.6	-21.6	63.4	-14.3	-0.4	-5.1
1370	ATACACACACAAACCACCAG SEQ ID NO:1010	-6.6	-21.7	61.5	-15.1	0	-0.9
1488	CTAACCATTTTCAACAAATA SEQ ID NO:1011	-6.6	-16.7	52.3	-9.6	-0.1	-2.7
1726	TTAAAGTTGACATGTTTTCT SEQ ID NO:1012	-6.6	-18	57.3	-11.4	0	-7.1
1966	ATGTCCTTTTAAAACAAAAC SEQ ID NO:1013	-6.6	-15.4	49.8	-8.2	-0.3	-6.2
217	CACTCGGCAGCAGCCACAGT SEQ ID NO:1014	-6.5	-29.8	81.2	-20.6	-2.7	-9.3
451	GAAGGGGAATTTCAGGCATT SEQ ID NO:1015	-6.5	-22.5	65.8	-16	0	-5
638	AAATAGAGCCTTCTCTCAGA SEQ ID NO:1016	-6.5	-22	65.9	-13.8	1.7	-5.1
827	CTACATGCATTCGAATATTT SEQ ID NO:1017	-6.5	-19.1	57.9	-12	0	-8.4
836	TTAACAAATCTACATGCATT SEQ ID NO:1018	-6.5	-17.1	53.7	-10.6	, О	-6.7
837	TTTAACAAATCTACATGCAT SEQ ID NO:1019	-6.5	-17.1	53.7	-10.6	0	-6.4
1216	AAATTGCTCTCAGTTCAAAG SEQ ID NO:1020	-6.5	-18.8	58.3	-12.3	0	-3.2
1325	CTCTGAGGTGGCATACGTTA SEQ ID NO:1021	-6.5	-24.6	71.5	-17.5	-0.3	-5.2
1363	CACAAACCACCAGTGGGTAA SEQ ID NO:1022	-6.5	-23.8	66.1	-16	-1.2	-9
1757	TTTCAAATATACTCCTAATT SEQ ID NO:1023	-6.5	-16.8	53.5	-10.3	0	-2.7
1845	CTTAAATAAGTTCTTCACTT SEQ ID NO:1024	-6.5	-17.3	55.4	-9.9	-0.8	-4.2
1899	ACAACTCTGTTGGCCAACTT SEQ ID NO:1025	-6.5	-24.1	68.8	-14.2	-1.8	-15
1987	TTTTATTGAACAATAATAAA SEQ ID NO:1026	-6.5	-11.5	42.5	-3.5	-1.4	-9
73	GGTCAGCAGCAAGACGCTCT SEQ ID NO:1027	-6.4	-27.4	77.5	-19.5	-1.4	-8.5
430	TCCCGTCCCCCTGTCACAGA SEQ ID NO:1028	-6.4	-33.5	86.4	-26.5	0.3	-5.2
459	TATTGGAAGAAGGGGAATTT SEQ ID NO:1029	-6.4	-18.5	56.7	-12.1	0	-3.3
808	TAACAAACACATACAAGTGT SEQ ID NO:1030	-6.4	-16.6	52.4	-8.6	-1.6	-6
890	GTAAGATTACCTAAATTGCA SEQ ID NO:1031	-6.4	-18.6	56.9	-12.2	0	-5.3
1056	AGGGCTAAATATTTTATTTC SEQ ID NO:1032	-6.4	-17.7	56.3	-10.5	-0.6	-8.2
1062	CAAGGAAGGCTAAATATTT SEQ ID NO:1033	-6.4	-18.4	56.1	-12	0	-6.4
1142	TTTCTGGTTGTTTTATTTTG SEQ ID NO:1034	0.4	-19.5	62.1	-13.1	0	-1.5
1410	TAACACATTTATTATAAAA SEQ ID NO:1035	-0.4	-12.2	43.9	-4.8	-0.9	-6.5
1549	GGATAATAAATTTATCATGC SEQ ID NO:1036	-6.4	-15.9	51.5	-6.9	-2.6	-7.6

		kcal/	kcal/		kcal/		
		mol	mol	đeg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1634	AGTCACAGCACTTATGTTTA SEQ ID NO:1037	-6.4	-21.7	66.8	-15.3	0	-4.1
1688	TTTTACAAACCTCCTAAAAA SEQ ID NO:1038	-6.4	-16.8	52	-10.4	0	-3.2
1917	GGCCTTCCACACACATTCAC SEQ ID NO:1039	-6.4	-27.2	75.7	-20.3	-0.2	-6.4
131	AGTCCACCGCATAATTATTG SEQ ID NO:1040	-6.3	-22.7	64.8	-16.4	0	-5.6
460	ATATTGGAAGAAGGGGAATT SEQ ID NO:1041	-6.3	-18.4	56.4	-12.1	0	-3.1
637	AATAGAGCCTTCTCTCAGAA SEQ ID NO:1042	-6.3	-22	65.9	-14	-1.7	-6.3
816	CGAATATTTAACAAACACAT SEQ ID NO:1043	-6.3	-14.9	48.3	-8.6	0	-4.8
1081	TTCTAGAGAAGCTACCTACC SEQ ID NO:1044	-6.3	-23	67.7	-16.7	0	-5.8
1198	AGCTGTTTGTTACTCAAATT SEQ ID NO:1045	-6.3	-20	61.8	-12.5	-1.1	-9.3
1379	TTTACCTTCATACACACACA SEQ ID NO:1046	-6.3	-21.5	63.6	-15.2	0	-0.9
1434	ATGGGTAGGGAAGATGACTT SEQ ID NO:1047	-6.3	-22	65.5	-15	-0.5	-3.2
1435	TATGGGTAGGGAAGATGACT SEQ ID NO:1048	-6.3	-21.6	64.6	-15.3	0	-2.1
1635	AAGTCACAGCACTTATGTTT SEQ ID NO:1049	-6.3	-21.3	65	-15	0	-4.3
1637	CGAAGTCACAGCACTTATGT SEQ ID NO:1050	-6.3	-22.5	66	-15.5	-0.5	-4.6
1689	CTTTTACAAACCTCCTAAAA SEQ ID NO:1051	-6.3	-18.4	55.3	-12.1	0	-3.2
1944	AACAGCTTATGCAGCTTTAC SEQ ID NO:1052	-6.3	-22	65.7	-13.7	-2	-6.9
60	ACGCTCTTCATGTTTCCCAG SEQ ID NO:1053	-6.2	-26.7	75.4	-20.5	0	-4.7
97	CAGGTGTGCAGGCACGAGGA SEQ ID NO:1054	-6.2	-27.9	77.9	-19.2	-2.5	-10
384	CTGCAATCCATCCCGAAGGT SEQ ID NO:1055	-6.2	-27.3	72.8	-19.8	-1.2	-7.1
566	CGGCAGCATTCTCTTTCACA SEQ ID NO:1056	-6.2	-25.9	74.1	-19.7	0	-5.3
813	ATATTTAACAAACACATACA SEQ ID NO:1057	-6.2	-14.8	48.8	-8.6	0	-2.4
1208	CTCAGTTCAAAGCTGTTTGT SEQ ID NO:1058	-6.2	-22.3	67.8	-14.6	-1.4	-6.8
1251	ACAGGTAACCCGGGAACTAC SEQ ID NO:1059	-6.2	-24.6	67.6	-16.8	-1.1	-11
45	CCCAGCTGCCTCCGGCTCGG SEQ ID NO:1060	-6.1	-35.6	88.8	-27.1	-2.4	-10.5
46	TCCCAGCTGCCTCCGGCTCG SEQ ID NO:1061	-6.1	-34.8	88.3	-26.6	-2.1	-8.2
69	AGCAGCAAGACGCTCTTCAT SEQ ID NO:1062	-6.1	-25.1	71.8	-17.7	-1.2	-6
133	GCAGTCCACCGCATAATTAT SEQ ID NO:1063	-6.1	-25.1	69.6	-19	0	-5.6
284	GGCCACACTTCATGCCATCC SEQ ID NO:1064	-6.1	-29.8	80.6	-22.2	-1.4	-7.6
403	CTGGCAGTTGCAGGTCTCTC SEQ ID NO:1065	-6.1	-27.8	83.1	-20.8	-0.7	-6.6
462	GAATATTGGAAGAGGGGAA SEQ ID NO:1066	-6.1	-18.2	55.6	-12.1	0	-4.6

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mo1
	•		duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
565	GGCAGCATTCTCTTTCACAA SEQ ID NO:1067	-6.1	-24.4	71.7	-18.3	0	-5.3
809	TTAACAAACACATACAAGTG SEQ ID NO:1068	-6.1	-15.5	50.1	-8.6	-0.6	-4.7
818	TTCGAATATTTAACAAACAC SEQ ID NO:1069	-6.1	-14.7	48.4	-8.6	0	-6.2
1055	GGGCTAAATATTTTATTTCC SEQ ID NO:1070	-6.1	-19.7	60	-12.9	-0.4	-8.2
1285	TGTGTTTCCTATGCCCCAGA SEQ ID NO:1071	-6.1	-28.7	79.2	-22.6	0	-3
1332	GATTTATCTCTGAGGTGGCA SEQ ID NO:1072	-6.1	-23.8	71.5	-17.7	0	-6.2
1362	ACAAACCACCAGTGGGTAAA SEQ ID NO:1073	-6.1	-22.4	63.1	-15.1	-1.1	-8.2
1407	CACATTTATTATAAAAATA SEQ ID NO:1074	-6.1	-12	43.5	-4.8	-1	-6.5
1586	GACATTTTTTGAAATCCAGA SEQ ID NO:1075	-6.1	-18.9	57.7	-11.8	-0.9	-4.3
1773	GTTTGTGCTAAGATTCTTTC SEQ ID NO: 1076	-6.1	-20.9	65.5	-14.8	0	-5.6
1922	TCAAAGGCCTTCCACACACA SEQ ID NO:1077	-6.1	-25.5	70.4	-18.1	-0.2	-10.6
13	GGTCTTTGCTGGTGGGAAGC SEQ ID NO:1078	-6	-27.1	78.8	-20.3	-0.6	-5.1
63	AAGACGCTCTTCATGTTTCC SEQ ID NO:1079	-6	-23.9	69.6	-17.2	-0.4	-6.8
429	CCCGTCCCCCTGTCACAGAT SEQ ID NO:1080	-6	-33.1	84.5	-26.5	-0.3	-5.2
450	AAGGGGAATTTCAGGCATTT SEQ ID NO:1081	-6	-22	64.9	-16	0	-4.2
569	ACCCGGCAGCATTCTCTTTC SEQ ID NO:1082	-6	-28.5	79.1	-22.5	0	-6.3
648	ACAATCACGAAAATAGAGCC SEQ ID NO:1083	-6	-18.9	56	-12.9	0	-3.5
1049	AATATTTTATTTCCCACTCC SEQ ID NO:1084	-6	-21.8	64	-15.8	0	-3.8
1190	GTTACTCAAATTTCCATAAG SEQ ID NO:1085	-6	-18.1	56.4	-12.1	0	-4.5
1249	AGGTAACCCGGGAACTACAT SEQ ID NO:1086	-6	-24.4	67.1	-16.8	-1.1	-11
1409	AACACATTTATTATAAAAA SEQ ID NO:1087	-6	-11.8	43	-4.8	-0.9	-6.5
1657	ACCTTAAATTGAAAATTCAC SEQ ID NO:1088	-6	-15.5	50	-8.2	· -1.2	-5.7
1758	CTTTCAAATATACTCCTAAT SEQ ID NO:1089	-6	-17.6	55	-11.6	0	-2.7
337	AAACTCTTCACCAAAAGGAT SEQ ID NO:1090	-5.9	-18.8	56.4	-12.9	0	-3.7
342	ATACCAAACTCTTCACCAAA SEQ ID NO:1091	-5.9	-20.3	59.1	-14.4	0	-0.9
545	CTTCTTCTCTCACAATATTG SEQ ID NO:1092	-5.9	-20.1	62.5	-13.7	0	-8.2
972	GTACATCAAAGTCAAAGAAC SEQ ID NO:1093	-5.9	-16.5	52.8	-10.6	0	-4.6
974	ATGTACATCAAAGTCAAAGA SEQ ID NO:1094	-5.9	-17	54	-10.6	0	-7.6
1120	TTTTCCCAAAGCCAAAAAA SEQ ID NO:1095	-5.9	-18.3	53.6	-12.4	0	-3.2
1124	TGACTTTTCCCAAAGCCAAA SEQ ID NO:1096	-5.9	-22.8	63.5	-15.5	-1.3	-5.3

		lean] /	kcal/		kcal/		
		kcal/ mol	mol	deg C	mol	kcal/mol	kcal/mol
		moz	duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position		binding	ation	Duplex	ture	oligo	oligo
1224	Oligo GCCTTTTGAAATTGCTCTCA	-5.9	-23.4	67.9	-17.5	0	-3.9
1371	SEQ ID NO:1097 CATACACACACAAACCACCA SEO ID NO:1098	-5.9	-22.4	62.4	-16.5	0	-0.9
1617	TTAATAAGTCCCTCTGTT SEQ ID NO:1099	-5.9	-21.7	64.2	-15.8	0	-4.7
1809	GAGATATTTCCTAAGAACAT SEQ ID NO:1100	-5.9	-18.2	56.5	-11.8	-0.2	-4
1810	TGAGATATTTCCTAAGAACA	-5.9	-18.2	56.5	-11.8	-0.2	-4.6
1889	SEQ ID NO:1101 TGGCCAACTTCAAGAATAAA SEQ ID NO:1102	-5.9	-18.8	56.1	-12.4	0	-8.3
293	TCAGCCCGGGCCACACTTC SEQ ID NO:1103	-5.8	-33.1	85.4	-25.4	-1.8	-11.2
297	CACCTCAGCCCCGGGCCACA SEQ ID NO:1104	-5.8	-35.3	87.2	-27.6	-1.8	-11.2
811	ATTTAACAAACACATACAAG SEQ ID NO:1105	-5.8	-14.4	47.9	-8.6	0	-2.4
893	CATGTAAGATTACCTAAATT SEQ ID NO:1106	-5.8	-16.8	53.1	-11	0	-4.9
1061	AAGGAAGGGCTAAATATTTT SEQ ID NO:1107	-5.8	-17.8	55.2	-12	0	-6.6
1207	TCAGTTCAAAGCTGTTTGTT SEQ ID NO:1108	-5.8	-21.5	66.1	-14.2	-1.4	-6.8
1230	TCAGCAGCCTTTTGAAATTG SEQ ID NO:1109	-5.8	-21.9	64.3	-16.1	0	-4.5
1463	AGATTTCTTTCCTCAAGAGG SEQ ID NO:1110	-5.8	-21.8	66.2	-15.2	-0.6	-7.9
1662	TTCATACCTTAAATTGAAAA SEQ ID NO:1111	-5.8	-15	49	-9.2	0	-3.5
1746	CTCCTAATTCCACCTATATT SEQ ID NO:1112	-5.8	-23	66.2	-17.2	0	-2.6
1829	ACTTCAAATAAAATACTTCT SEQ ID NO:1113	-5.8	-14.7	49	-8.9	0	-1.2
1945	TAACAGCTTATGCAGCTTTA SEQ ID NO:1114	-5.8	-21.5	64.6	-13.7	-2	-6.9
1962	CCTTTTAAAACAAAACCTAA SEQ ID NO:1115	-5.8	-15.7	49.5	-9.3	-0.3	-6.2
1963	TCCTTTTAAAACAAAACCTA SEQ ID NO:1116	-5.8	-16.8	52	-10.4	-0.3	-6.2
1	TGGGAAGCAGCCGTGACCCA SEQ ID NO:1117	-5.7	-30.1	78.4	-22.5	-1.9	-6.9
385	TCTGCAATCCATCCCGAAGG SEQ ID NO:1118	-5.7	-26.5	71.2	-19.8	-0.9	-6.7
452	AGAAGGGGAATTTCAGGCAT SEQ ID NO:1119	-5.7	-22.4	65.7	-16		-5
646	AATCACGAAAATAGAGCCTT SEQ ID NO:1120	-5.7	-19	56.4	-13.3	0	-3.2
664	GTTGGCTGTGTGTTGAACAA SEQ ID NO:1121	-5.7	-23	68.1	-16.4	-0.7	-7.8
743	TTCTGGATCCACCATGCATC SEQ ID NO:1122	-5.7	-26.1	73.9			-9.7
973	TGTACATCAAAGTCAAAGAA SEQ ID NO:1123	-5.7	-16.3		-10.6		-5.9
1136	GTTGTTTTATTTTGACTTTT SEQ ID NO:1124	-3./	-18.8				-2.5
1210	CTCTCAGTTCAAAGCTGTTT SEQ ID NO:1125	-3.,	-22.4				-5.1
1317	TGGCATACGTTAAAGCTATT SEQ ID NO:1126	-5.7	-20.5	60.8	-14.1	-0.4	-5.1

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1509	ATAGAGTCATAGGTTTTTAT SEO ID NO:1127	-5.7	-18.8	60.6	-13.1	0	-4.8
1621	ATGTTTAAATAAGGTCCCTC SEQ ID NO:1128	-5.7	-20.8	62.2	-15.1	0	-5.1
1633	GTCACAGCACTTATGTTTAA SEQ ID NO:1129	-5.7	-21	64.2	-15.3	0	-5.8
1661	TCATACCTTAAATTGAAAAT SEQ ID NO:1130	-5.7	-14.9	48.8	-9.2	0	-3.2
1663	TTTCATACCTTAAATTGAAA SEQ ID NO:1131	-5.7	-15.8	50.9	-9.2	-0.8	-4.3
1767	GCTAAGATTCTTTCAAATAT SEQ ID NO:1132	-5.7	-17.3	55	-11.6	0.6	-5.6
67	CAGCAAGACGCTCTTCATGT SEQ ID NO:1133	-5.6	-24.5	70.4	-17.6	-1.2	-6.9
206	AGCCACAGTCGTCGAGCACT SEQ ID NO:1134	-5.6	-28.4	78.4	-22.2	-0.3	-5.3
275	TCATGCCATCCATGCCTGAG SEQ ID NO:1135	-5.6	-28	76.7	-20.6	-1.8	-5
292	CAGCCCCGGGCCACACTTCA SEQ ID NO:1136	-5.6	-33.4	84.6	-25.9	-1.8	-11.2
669	AAAATGTTGGCTGTGTGTTG SEO ID NO:1137	-5.6	-20.8	62.6	-15.2	0	-3.7
970	ACATCAAAGTCAAAGAACTA SEO ID NO:1138	-5.6	-16.2	51.9	-10.6	0	-3
971	TACATCAAAGTCAAAGAACT SEQ ID NO:1139	-5.6	-16.2	51.9	-10.6	0	-2.9
1006	CTCTTAAGTCTTCATTCCAT SEQ ID NO:1140	-5.6	-22.2	67.5	-16.6	0	-6
1007	GCTCTTAAGTCTTCATTCCA SEQ ID NO:1141	-5.6	-24	72	-18.4	0	-6
1328	TATCTCTGAGGTGGCATACG SEQ ID NO:1142	-5.6	-23.7	69.4	-17.5	-0.3	-6.5
1690	TCTTTTACAAACCTCCTAAA SEQ ID NO:1143	-5.6	-19.5	58.2	-13.9	0	-2.3
1806	ATATTTCCTAAGAACATCTA SEQ ID NO:1144	-5.6	-18	56.4	-11.9	-0.2	-3.1
1830	CACTTCAAATAAAATACTTC SEQ ID NO:1145	-5.6	-14.5	48.4	-8.9	0	-1.2
1971	TAAACATGTCCTTTTAAAAC SEQ ID NO:1146	-5.6	-15.8	50.8	-10.2	0	-6.9
50	TGTTTCCCAGCTGCCTCCGG SEQ ID NO:1147	-5.5	-32.3	85.2	-26.3	0	-8.1
147	TCACAGTGTTGAGGGCAGTC SEQ ID NO:1148	-5.5	-25.6	77.3	-20.1	. 0	-6.5
458	ATTGGAAGAAGGGGAATTTC SEQ ID NO:1149	-5.5	-19.2	58.6	-13.7	0	-3.8
461	AATATTGGAAGAAGGGGAAT SEQ ID NO:1150	-5.5	-17.6	54.4	-12.1	0	-3.8
619	AAATCACAGCCGGGATCAGC SEQ ID NO:1151	-5.5	-25.1	69.5	-19.6	0	-6.9
812	TATTTAACAAACACATACAA SEQ ID NO:1152	-5.5	-14.1	47.3	-8.6	0	-2.4
1215	AATTGCTCTCAGTTCAAAGC SEQ ID NO:1153	-5.5	-21.3	64.5	-15.2	-0.3	-3.9
1329	TTATCTCTGAGGTGGCATAC SEQ ID NO:1154	-5.5	-23	69.7	-17.5		~6.2
1378	TTACCTTCATACACACACAA SEQ ID NO:1155	-5.5	-20.7	61.2	-15.2	0	-0.9
1406	ACATTTATTTATAAAAATAT SEQ ID NO:1156	-5.5	-11.3	42.2	-4.8	-0.9	-6.5

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1436	ATATGGGTAGGGAAGATGAC SEQ ID NO:1157	-5.5	-20.7	62.6	-15.2	0	-2
1744	CCTAATTCCACCTATATTTT SEQ ID NO:1158	-5.5	-21.9	63.6	-16.4	0	-2.9
1834	TCTTCACTTCAAATAAAATA SEQ ID NO:1159	-5.5	-14.7	49	-9.2	0	-1.2
1890	TTGGCCAACTTCAAGAATAA SEQ ID NO:1160	-5.5	-19.6	58.1	-13	0	-10.2
1921	CAAAGGCCTTCCACACACAT SEQ ID NO:1161	-5.5	-25.1	68.9	-18.1	-1	-10.6
47	TTCCCAGCTGCCTCCGGCTC SEO ID NO:1162	-5.4	-34.1	89.5	-26.6	-2.1	-8.3
226	TGCAGCGCACACTCGGCAGC SEQ ID NO:1163	-5.4	-30.3	80.9	-23.6	-1.2	-8.5
622	CAGAAATCACAGCCGGGATC SEQ ID NO:1164	-5.4	-23.9	66.8	-18.5	0	-6.9
954	ACTAATTTGACTCACTGCGG SEQ ID NO:1165	-5.4	-22	64.1	-16.6	0	-4.7
955	AACTAATTTGACTCACTGCG SEQ ID NO:1166	-5.4	-20.1	59.7	-14.7	0	-4
1141	TTCTGGTTGTTTTATTTTGA SEQ ID NO:1167	-5.4	-20	63.2	-14.6	0	-2.1
1181	ATTTCCATAAGCTTCAAACA SEQ ID NO:1168	-5.4	-19.7	59.2	-14.3	0	-6.8
1234	TACATCAGCAGCCTTTTGAA SEQ ID NO:1169	-5.4	-23.1	67.4	-17.7	0	-4.5
1330	TTTATCTCTGAGGTGGCATA SEQ ID NO:1170	-5.4	-22.9	69.5	-17.5	0	-5.6
1553	TTATGGATAATAAATTTATC SEQ ID NO:1171	-5.4	-13.2	46.2	-6.9	-0.7	-8.1
1554	ATTATGGATAATAAATTTAT SEQ ID NO:1172	-5.4	-12.8	45.2	-6.8	-0.3	-7.9
1795	GAACATCTAGTACAACAGTC SEQ ID NO:1173	-5.4	-19.4	60.4	-14	0	-5.3
1898	CAACTCTGTTGGCCAACTTC SEQ ID NO:1174	-5.4	-24.3	69.8	-15.5	-0.9	-15
254	CTGTGCGGTAGCAAGTTTCT SEQ ID NO:1175	-5.3	-25.3	73.6	-18	-2	-5.6
282	CCACACTTCATGCCATCCAT SEQ ID NO:1176	-5.3	-27.5	74.9	-22.2	0	-4.4
521	CTCCAGATGCCATGTCATGC SEQ ID NO:1177	-5.3	-27.2	76.6	-21.9	0.3	-4.5
597	GGATTTAACCATTTCCTCAT SEQ ID NO:1178	-5.3	-22.5	65.6	-17.2	0	-3.4
660	GCTGTGTGTTGAACAATCAC SEQ ID NO:1179	-5.3	-21.8	65.2	-15.6	-0.8	-6.6
705	AATTACATGTACTTATGCTA SEQ ID NO:1180	-5.3	-18.2	57.2	-12.4	0	-7.7
831	AAATCTACATGCATTCGAAT SEQ ID NO:1181	-5.3	-18.2	55.4	-12.4	0	-8
1433	TGGGTAGGGAAGATGACTTG SEQ ID NO:1182	-5.3	-22	65.4	-15.8	-0.7	-3.1
1582	TTTTTTGAAATCCAGAGTGA SEQ ID NO:1183	-5.3	-19.2	59	-13.9	0	-3.3
1583	ATTTTTTGAAATCCAGAGTG SEQ ID NO:1184	-5.3	-18.6	57.7	-12.4	0.7	-4.3
1667	TTATTTTCATACCTTAAATT SEQ ID NO:1185	-5.3	-16.5	53.1	-11.2	0	-2.9
1753	AAATATACTCCTAATTCCAC SEQ ID NO:1186	-5.3	-18.8	57.1	-13.5	0	-2.9

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1771	TTGTGCTAAGATTCTTTCAA SEQ ID NO:1187	-5.3	-19.6	60.8	-13.8	-0.1	-5.6
1804	ATTTCCTAAGAACATCTAGT SEQ ID NO:1188	-5.3	-19.5	60.2	-13.7	-0.2	-4.2
1850	TAATTCTTAAATAAGTTCTT SEQ ID NO:1189	-5.3	-14.5	49.3	-9.2	0	-4.3
1961	CTTTTAAAACAAAACCTAAC SEQ ID NO:1190	-5.3	-13.9	46.6	-8	-0.3	-6.2
1993	GTTCTTTTTTTTTGAACAAT SEQ ID NO:1191	-5.3	-17	54.8	-10.2	-1.4	-5.5
304	AGGCTGACACCTCAGCCCCG SEQ ID NO:1192	-5.2	-32.2	83.1	-20.9	-6.1	-14
381	CAATCCATCCCGAAGGTGCC SEQ ID NO:1193	-5.2	-28.4	74.3	-21.9	-1.2	-6
617	ATCACAGCCGGGATCAGCGT SEQ ID NO:1194	-5.2	-28.5	77.2	-22.4	-0.7	-6.9
815	GAATATTTAACAAACACATA SEQ ID NO:1195	-5.2	-13.8	46.8	-8.6	0	-4.8
838	ATTTAACAAATCTACATGCA SEQ ID NO:1196	-5.2	-17.1	53.7	-11.9	0	-5.2
1151	TTCAGGGGTTTTCTGGTTGT SEQ ID NO:1197	-5.2	-25.3	76.8	-19.2	-0.7	-4.2
1670	AACTTATTTTCATACCTTAA SEQ ID NO:1198	-5.2	-17.5	55.2	-12.3	0	-2
1797	AAGAACATCTAGTACAACAG SEQ ID NO:1199	-5.2	-17.1	54.3	-11.9	0	-5.7
1929	TTTACATTCAAAGGCCTTCC SEQ ID NO:1200	-5.2	-23	66.5	-16.5	0	-10.6
48	TTTCCCAGCTGCCTCCGGCT SEQ ID NO:1201	-5.1	-33.8	88	-26.6	-2.1	-8.3
182	TCTTGCAGCGCGGGCTGCTT SEQ ID NO:1202	-5.1	-31	83.2	-19.7	-6.2	-16.3
573	GGAGACCCGGCAGCATTCTC SEQ ID NO:1203	-5.1	-29.4	80.1	-23.6	-0.5	-6.3
661	GGCTGTGTGTTGAACAATCA SEQ ID NO:1204	-5.1	-22.8	67.3	-17	-0.4	-4.9
1214	ATTGCTCTCAGTTCAAAGCT SEQ ID NO:1205	-5.1	-22.9	68.8	-16.6	-1.1	-4.8
1335	TTAGATTTATCTCTGAGGTG SEQ ID NO:1206	-5.1	-19.9	62.9	-13.9	-0.7	-6.2
159	CACTCACTGCTGTCACAGTG SEQ ID NO:1207	-5	-25.1	74	-17	-3.1	-9.1
208	GCAGCCACAGTCGTCGAGCA SEQ ID NO:1208	-5	-29.8	81.3	-24.2	0.3	-4.9
230	GCCCTGCAGCGCACACTCGG SEQ ID NO:1209	-5	-32.7	83.8	-26.8	-0.7	-9.2
349	TTTGCAGATACCAAACTCTT SEQ ID NO:1210	-5	-21	62.2	-15.5	-0.1	-5.2
425	TCCCCCTGTCACAGATGCCT SEQ ID NO: 1211	-5	-31.8	84.3	-26.8	0.2	-4.7
453	AAGAAGGGGAATTTCAGGCA SEQ ID NO:1212	-5	-21.7	63.6	-16	-0.5	-5
727	CATCACAATTTGGATCTTCA SEQ ID NO:1213	-5	-20.5	62.1	-15.5	0	-5.4
958	AAGAACTAATTTGACTCACT SEQ ID NO:1214	-5	-17.4	54.8	-12.4	0	-2.7
1333	AGATTTATCTCTGAGGTGGC SEQ ID NO:1215	-5	-23.1	70.6	-17.4	-0.5	-6.2
1692	CTTCTTTTACAAACCTCCTA SEQ ID NO:1216	-5	-21.9	64.2	-16.9	0	-1.7

		kca1/	kcal/		kcal/		•
		mo1	mol	đeg C	mol	kca1/mo1	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	mo1ecu1ar	molecular
position	o1igo	binding	ation	Duplex	ture	oligo	o1igo
1818	AATACTTCTGAGATATTTCC SEQ ID NO:1217	-5	-19	59.3	-14	0	-3.8
54	TTCATGTTTCCCAGCTGCCT SEQ ID NO:1218	-4.9	-29.1	81.2	-23.7	0	-8.1
142	GTGTTGAGGGCAGTCCACCG SEQ ID NO:1219	-4.9	-29.3	80.9	-23.3	-1	-5.6
146	CACAGTGTTGAGGGCAGTCC SEQ ID NO:1220	-4.9	-27.2	79.2	-22.3	0	-5.8
370	GAAGGTGCCGTAGGGACAGT SEQ ID NO:1221	-4.9	-26.9	75.5	-20.4	-1.5	-6.7
454	GAAGAAGGGGAATTTCAGGC SEQ ID NO:1222	-4.9	-21.6	63.7	-16	-0.5	-5
647	CAATCACGAAAATAGAGCCT SEQ ID NO:1223	-4.9	-19.6	57.2	-14.7	0	-3.5
805	CAAACACATACAAGTGTTCA SEQ ID NO:1224	-4.9	-18.6	57	-10.9	-2.8	-8.2
959	AAAGAACTAATTTGACTCAC SEQ ID NO:1225	-4.9	-15.8	51.2	-10.9	0	-2.7
1631	CACAGCACTTATGTTTAAAT SEQ ID NO:1226	-4.9	-18.7	57.6	-13.8	0	-5.4
1798	TAAGAACATCTAGTACAACA SEQ ID NO:1227	-4.9	-16.8	53.6	-11.9	0	-5.7
1920	AAAGGCCTTCCACACACATT SEQ ID NO:1228	-4.9	-24.5	68.2	-18.1	-1	-10.6
1928	TTACATTCAAAGGCCTTCCA SEQ ID NO:1229	-4.9	-23.6	67.3	-17.2	-1	-10.6
1933	CAGCTTTACATTCAAAGGCC SEQ ID NO:1230	-4.9	-23	66.5	-17.3	-0.6	-6.4
55	CTTCATGTTTCCCAGCTGCC SEQ ID NO:1231	-4.8	-29.1	81.2	-23.8	0	-8.1
166	GCTTTTGCACTCACTGCTGT SEQ ID NO:1232	-4.8	-26.7	777	-20	-1.9	-7.4
181	CTTGCAGCGCGGGCTGCTTT SEQ ID NO:1233	-4.8	-30.7	81.8	-19.7	-6.2	-16.3
253	TGTGCGGTAGCAAGTTTCTC SEQ ID NO:1234	-4.8	-24.8	73.3	-18	-2	-5.6
464	CTGAATATTGGAAGAAGGGG SEQ ID NO:1235	-4.8	-19.2	57.9	-14.4	0	-4.6
522	TCTCCAGATGCCATGTCATG SEQ ID NO:1236	-4.8	-25.8	73.9	-20.5	-0.1	-4.3
802	ACACATACAAGTGTTCAGTC SEQ ID NO:1237	-4.8	-20.9	64.6	-14.7	-1.3	-5.4
814	AATATTTAACAAACACATAC SEQ ID NO:1238	-4.8	-13.4	46.1	-8.6	0	-3.8
960	CAAAGAACTAATTTGACTCA SEQ ID NO:1239	-4.8	-16.3	52	-10.9	-0.3	-3.6
1003	TTAAGTCTTCATTCCATATC SEQ ID NO:1240	-4.8	-20.1	62.7	-15.3	0	-2.7
1231	ATCAGCAGCCTTTTGAAATT SEQ ID NO:1241	-4.8	-21.9	64.4	-17.1	0	-4.5
1316	GGCATACGTTAAAGCTATTT SEQ ID NO:1242	-4.8	-20.6	61.2	-15.1	-0.4	-5.1
1319	GGTGGCATACGTTAAAGCTA SEQ ID NO:1243	-4.8	-22.8	66	-17.3	-0.4	-5.4
1720	TTGACATGTTTTCTGCTGAA SEQ ID NO:1244	-4.8	-21	63.6	-14.6	-0.1	-11.4
1727	TTTAAAGTTGACATGTTTTC SEQ ID NO:1245	-4.8	-17.2	55.6	-12.4	0	-7.1
1803	TTTCCTAAGAACATCTAGTA SEQ ID NO:1246	-4.8	-19.2	59.6	-13.9	-0.2	-4.2

		kca1/	kca1/		kca1/		
		mol	mol	deg C	mol	kcal/mo1	
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	oinding	ation	Duplex	ture	oligo	oligo
1888	GGCCAACTTCAAGAATAAAA SEQ ID NO:1247	-4.8	-18.1	54.5	-13.3	0	-7
96	AGGTGTGCAGGCACGAGGAG SEQ ID NO:1248	-4.7	-27.2	77.1	-20	-2.5	-10.7
309	TTAGAAGGCTGACACCTCAG SEQ ID NO:1249	-4.7	-23.3	67.9	-17	-1.6	-5.1
832	CAAATCTACATGCATTCGAA SEQ ID NO:1250	-4.7	-18.9	56.6	-14.2	0	-6.8
953	CTAATTTGACTCACTGCGGT SEQ ID NO:1251	-4.7	-23	66.6	-18.3	0	-6
982	CAACATTAATGTACATCAAA SEQ ID NO:1252	-4.7	-15.5	50.2	-9.5	-0.2	-10.5
1079	CTAGAGAAGCTACCTACCAA SEQ ID NO:1253	-4.7	-22.5	64.8	-17.8	0	-5.1
1380	ATTTACCTTCATACACACAC SEQ ID NO:1254	-4.7	-20.8	62.4	-16.1	0	-0.9
1462	GATTTCTTTCCTCAAGAGGA SEQ ID NO:1255	-4.7	-22.4	67.3	-16.2	-1.3	-9.9
1487	TAACCATTTTCAACAAATAA SEQ ID NO:1256	-4.7	-15.1	49	-10.4	0.1	-2.7
1573	ATCCAGAGTGACTCCTATAA SEQ ID NO:1257	-4.7	-22.6	66.7	-17.9	0.4	-4.7
1743	CTAATTCCACCTATATTTTA SEQ ID NO:1258	-4.7	-19.6	59.4	-14.9	0	-2.9
1970	AAACATGTCCTTTTAAAACA SEO ID NO:1259	-4.7	-16.8	52.6	-12.1	0	-6.9
285	GGGCCACACTTCATGCCATC SEO ID NO:1260	-4.6	-29	79.7	-22.2	-2.2	-7.6
376	CATCCCGAAGGTGCCGTAGG SEQ ID NO:1261	-4.6	-28.9	75.8	-22	-2.3	-6.7
496	GAGAGAAACAAATCTGTTGG SEQ ID NO:1262	-4.6	-17.7	55.1	-11.5	-1.5	-4.5
1250	CAGGTAACCCGGGAACTACA SEQ ID NO:1263	-4.6	-25.1	68.1	-18.9	-1.1	-11
1368	ACACACACAAACCACCAGTG SEQ ID NO:1264	-4.6	-23.2	64.7	-18	-0.3	-512
1437	AATATGGGTAGGGAAGATGA SEQ ID NO:1265		-19.8	60	-15.2	0	-2.7
1550	TGGATAATAAATTTATCATG SEQ ID NO:1266		-14.1	47.8	-6.9	-2.6	-8.1
1551	ATGGATAATAAATTTATCAT SEQ ID NO:1267		-14.1	47.8	-6.9	-2.6	-8.1
1565	TGACTCCTATAATTATGGAT SEQ ID NO:1268		-19.3	59	-14	0.1	-9 10 4
1719	TGACATGTTTTCTGCTGAAA SEQ ID NO:1269	2.0	-20.2	2 61.1			-10.4
1930	CTTTACATTCAAAGGCCTTC SEQ ID NO:1270	1.0	-21.9	9 64.7			-10.6
1964	GTCCTTTTAAAACAAAACCT SEQ ID NO:1271	, 4.0	-18.	•	-13.1		-6.2 -8.4
975	AATGTACATCAAAGTCAAAC SEQ ID NO:1272		-15.		-10.6	_	
1248	GGTAACCCGGGAACTACATC SEQ ID NO:1273	1.0					-11
1338	TTCTTAGATTTATCTCTGA						- -
1523	TGTTTGAAAACCTTATAGA SEQ ID NO:1275	±. 0					-5.7 -5.2
1620	TGTTTAAATAAGGTCCCTC SEQ ID NO:1276	T -4.5	, -21.	7 64.	2 –17.	2 0	-5.2

		kcal/	kcal/		kca1/	11 /m1	legal (mol
		mol	mol	deg C	mol		kcal/mol
		haha]	duplex form-	Tm of	target struc-	Intra-	Inter- molecular
		total binding	ation	Duplex	ture	oligo	oligo
position	oligo CTTATTTTCATACCTTAAAT						
1668	SEQ ID NO:1277	-4.5	-17.3	54.7	-12.8	0	-2.7
262	GCCTGAGACTGTGCGGTAGC SEQ ID NO:1278	-4.4	-28.7	80.3	-23.6	-0.5	-5.4
823	ATGCATTCGAATATTTAACA SEQ ID NO:1279	-4.4	-17.5	54.2	-12.5	0	-8.4
1247	GTAACCCGGGAACTACATCA SEQ ID NO:1280	-4.4	-24.3	67	-18.5	-0.2	-10.7
1464	TAGATTTCTTTCCTCAAGAG SEQ ID NO:1281	-4.4	-20.3	62.9	-14.9	-0.9	-6.8
1522	GTTTGAAAACCTTATAGAGT SEQ ID NO:1282	-4.4	-18.3	56.9	-13.9	0	-4.7
1566	GTGACTCCTATAATTATGGA SEQ ID NO:1283	-4.4	-20.5	62	-15.5	0	-8.5
1618	TTTAAATAAGGTCCCTCTGT SEO ID NO:1284	-4.4	-21.7	64.2	-17.3	0	-4.7
1658	TACCTTAAATTGAAAATTCA SEO ID NO:1285	-4.4	-15	49	-9.3	-1.2	-5.5
1684	ACAAACCTCCTAAAAACTTA SEQ ID NO:1286	-4.4	-17.7	53.6	-13.3	0	-1.2
1685	TACAAACCTCCTAAAAACTT SEO ID NO:1287	-4.4	-17.7	53.6	-13.3	0	-0.9
1724	AAAGTTGACATGTTTTCTGC SEQ ID NO:1288	-4.4	-20	61.6	-15.6	0	-7.1
1969	AACATGTCCTTTTAAAACAA SEQ ID NO:1289	-4.4	-16.8	52.6	-12.4	0	-6.9
95	GGTGTGCAGGCACGAGGAGC SEO ID NO:1290	-4.3	-29	81.3	-22.2	-2.5	-10.7
255	ACTGTGCGGTAGCAAGTTTC SEQ ID NO:1291	-4.3	-24.6	72.2	-18	-2.3	-6.4
274	CATGCCATCCATGCCTGAGA SEQ ID NO:1292	-4.3	-28.2	76.3	-22.6	-1.2	-5.7
343	GATACCAAACTCTTCACCAA SEQ ID NO:1293	-4.3	-21.6	62.2	-17.3	0	-1.9
387	TCTCTGCAATCCATCCCGAA SEQ ID NO:1294	-4.3	-26.6	71.9	-22.3	0	-4.9
426	GTCCCCCTGTCACAGATGCC SEQ ID NO:1295	-4.3	-32.1	86	-27.2	-0.3	-5.2
455	GGAAGAAGGGGAATTTCAGG SEQ ID NO:1296	-4.3	-21	62.2	-16	-0.5	-5
826	TACATGCATTCGAATATTTA SEQ ID NO:1297	-4.3	-17.9	55.5	-13	0	-8.4
1331	ATTTATCTCTGAGGTGGCAT SEQ ID NO:1298	-4.3	-23.2	70	-18.9	0	-6.2
1552	TATGGATAATAAATTTATCA SEQ ID NO:1299	-4.3	-13.8	47.3	-6.9	-2.6	-8.1
1660	CATACCTTAAATTGAAAATT SEQ ID NO:1300	-4.3	-14.6	48	-9.2	-1	-3.5
1671	AAACTTATTTTCATACCTTA SEQ ID NO:1301	-4.3	-17.5	55.2	-13.2	0	-1.9
1745	TCCTAATTCCACCTATATTT SEQ ID NO:1302	-4.3	-22.2	64.7	-17.9	0	-2.9
1801	TCCTAAGAACATCTAGTACA SEQ ID NO:1303	-4.3	-19.9	60.7	-15.6	0	-5.7
1897	AACTCTGTTGGCCAACTTCA SEQ ID NO:1304	-4.3	-24.3	69.8	-16.6	0.5	-15
431	TTCCCGTCCCCTGTCACAG SEQ ID NO:1305	-4.2	-33	85.5	-28.8	0	-4.6
615	CACAGCCGGGATCAGCGTGG SEQ ID NO:1306	-4.2	-29.3	77.8	-23.6	-1.4	-7.7

		kca1/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
804	AAACACATACAAGTGTTCAG SEQ ID NO:1307	-4.2	-17.9	55.9	-10.9	-2.8	-8.2
821	GCATTCGAATATTTAACAAA SEQ ID NO:1308	-4.2	-16.1	51	-11.2	0	-8.7
976	TAATGTACATCAAAGTCAAA SEQ ID NO:1309	-4.2	-15.4	50.3	-10.6	0	-8.4
1051	TAAATATTTTATTTCCCACT SEQ ID NO:1310	-4.2	-18.4	56.6	-13.4	-0.6	-6.2
1199	AAGCTGTTTGTTACTCAAAT SEQ ID NO:1311	-4.2	-19.2	59.3	-13.4	-1.6	-9.4
1807	GATATTTCCTAAGAACATCT SEQ ID NO:1312	-4.2	-18.9	58.3	-14	-0.5	-4
1858	TACTGAAATAATTCTTAAAT SEO ID NO:1313	-4.2	-12.8	45.1	-7.4	-1.1	-4.2
185	TCCTCTTGCAGCGCGGCTG SEO ID NO:1314	-4.1	-31.5	83.7	-24.2	-3.2	-10.9
567	CCGGCAGCATTCTCTTTCAC SEQ ID NO:1315	-4.1	-27.2	76.6	-23.1	0	-5.3
593	TTAACCATTTCCTCATTACG SEQ ID NO:1316	-4.1	-21.4	62.2	-17.3	0	-3
854	GTTACTATACACACACATTT SEQ ID NO:1317	-4.1	-19.3	59.7	-15.2	0	-2
1377	TACCTTCATACACACACAAA SEQ ID NO:1318	-4.1	-19.9	59	-15.8	0	-0.9
1389	TATATAAATATTTACCTTCA SEQ ID NO:1319	-4.1	-15.6	51.1	-11	0	-7.9
1578	TTGAAATCCAGAGTGACTCC SEQ ID NO:1320	-4.1	-22.3	65.2	-17.5	-0.4	-5.5
1833	CTTCACTTCAAATAAAATAC SEQ ID NO:1321	-4.1	-14.5	48.4	-10.4	0	-1.2
180	TTGCAGCGCGGGCTGCTTTT SEQ ID NO:1322	-4	-29.9	80.4	-19.7	-6.2	-16.3
312	CCATTAGAAGGCTGACACCT SEQ ID NO:1323	-4	-24.9	69.7	-20.2	-0.4	-4
457	TTGGAAGAAGGGGAATTTCA SEQ ID NO:1324	-4	-19.9	59.8	-15.2	-0.5	-5
621	AGAAATCACAGCCGGGATCA SEQ ID NO:1325	-4	-23.9	66.8	-19.9	0	-6.9
803	AACACATACAAGTGTTCAGT SEQ ID NO:1326	-4	-19.8	60.9	-13.5	-2.3	-7.4
1137	GGTTGTTTTATTTTGACTTT SEQ ID NO:1327	-4	-19.9	62.7	-15.9	0	-2.8
1510	TATAGAGTCATAGGTTTTTA SEQ ID NO:1328	-4	-18.5	60	-14.5	. 0	-4.8
1572	TCCAGAGTGACTCCTATAAT SEQ ID NO:1329	-4	-22.6	66.7	-17.9	-0.4	-5.5
1759	TCTTTCAAATATACTCCTAA SEQ ID NO:1330	-4	-18	56.3	-14	0	-2.7
1851	ATAATTCTTAAATAAGTTCT SEQ ID NO:1331	-4	-14.4	49	-10.4	0	-4.9
68	GCAGCAAGACGCTCTTCATG SEQ ID NO:1332	-3.3	-25.1	71.3	-19.9	-1.2	-6.4
74	TGGTCAGCAGCAAGACGCTC SEQ ID NO:1333	-3.5	-26.5	75.3	-21.1	-1.4	-8.5
341	TACCAAACTCTTCACCAAAA SEQ ID NO:1334	-3.9	-19.6	57.4	-15.7	0	-1
520	TCCAGATGCCATGTCATGCT SEQ ID NO:1335	-3.5	-27.2	76.6	-22.8	-0.2	-4.6
670	TAAAATGTTGGCTGTGTGTT SEQ ID NO:1336	-3.9	-20.5	62.2	-16.6	0	-3.9

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1054	GGCTAAATATTTTATTTCCC SEQ ID NO:1337	-3.9	-20.5	61.2	-15.8	-0.6	-8.2
1334	TAGATTTATCTCTGAGGTGG SEQ ID NO:1338	-3.9	-21	65.4	-16.2	-0.7	-6.2
1390	ATATATAAATATTTACCTTC SEQ ID NO:1339	-3.9	-14.9	49.8	-11	0	-7.4
1687	TTTACAAACCTCCTAAAAAC SEQ ID NO:1340	-3.9	-16.9	52.2	-13	0	-2.2
141	TGTTGAGGGCAGTCCACCGC SEQ ID NO:1341	-3.8	-29.9	81.8	-25	-1	-5.6
143	AGTGTTGAGGGCAGTCCACC SEQ ID NO:1342	-3.8	-28.5	81.8	-23.6	-1	-5.6
278	ACTTCATGCCATCCATGCCT SEQ ID NO:1343	-3.8	-28.6	78.1	-23	-1.8	-5
373	CCCGAAGGTGCCGTAGGGAC SEO ID NO:1344	-3.8	-29.8	77.4	-23.3	-2.7	-7.9
618	AATCACAGCCGGGATCAGCG SEQ ID NO:1345	-3.8	-26.6	71.7	-21.9	-0.7	-6.9
822	TGCATTCGAATATTTAACAA SEQ ID NO:1346	-3.8	-16.8	52.6	-12.4	0	-8.4
967	TCAAAGTCAAAGAACTAATT SEQ ID NO:1347	-3.8	-14.7	48.8	-10.9	0	-3
1180	TTTCCATAAGCTTCAAACAT SEQ ID NO:1348	-3.8	-19.7	59.2	-15.9	0	-6.8
1760	TTCTTTCAAATATACTCCTA SEQ ID NO:1349	-3.8	-18.8	58.5	-15	0	-2.7
1811	CTGAGATATTTCCTAAGAAC SEQ ID NO:1350	-3.8	-18.4	57.1	-14.1	-0.2	-4.6
1859	ATACTGAAATAATTCTTAAA SEQ ID NO:1351	-3.8	-12.8	45.1	-8.3	-0.4	-3.5
1891	GTTGGCCAACTTCAAGAATA SEQ ID NO:1352	-3.8	-21.5	62.9	-14.7	0	-14.2
82	GAGGAGCGTGGTCAGCAGCA SEQ ID NO:1353	-3.7	-28.7	81.5	-24.1	-0.7	-5.9
1119	TTTCCCAAAGCCAAAAAAA SEQ ID NO:1354	-3.7	-17.5	51.9	-13.8	0	-3.2
1189	TTACTCAAATTTCCATAAGC SEQ ID NO:1355	-3.7	-18.7	57.4	-15	0	-4.5
1314	CATACGTTAAAGCTATTTAT SEQ ID NO:1356	-3.7	-17.3	54.3	-13	-0.3	-5.7
1482	ATTTTCAACAAATAATACTA SEQ ID NO:1357	-3.7	-13.7	46.9	-10	0	-2.5
1571	CCAGAGTGACTCCTATAATT SEQ ID NO:1358	-3.7	-22.3	65.5	-17.9	-0.4	-5.5
1802	TTCCTAAGAACATCTAGTAC SEQ ID NO:1359	-3.7	-19.3	59.8	-15.6	0	-4
1927	TACATTCAAAGGCCTTCCAC SEQ ID NO:1360	-3.7	-23.7	67.5	-18.5	-1	-10.6
277	CTTCATGCCATCCATGCCTG SEQ ID NO:1361	-3.6	-28.4	77.3	-23	-1.8	-5
404	ACTGGCAGTTGCAGGTCTCT SEQ ID NO:1362	-3.6	-27.6	81.7	-23	-0.9	-6.6
961	TCAAAGAACTAATTTGACTC SEQ ID NO:1363	-3.6	-16	51.9	-10.9	-1.4	-5.4
1057	AAGGGCTAAATATTTTATTT SEQ ID NO:1364	-3.6	-16.6	53.2	-12.3	-0.4	-8.2
1472	AATAATACTAGATTTCTTTC SEQ ID NO:1365	-3.6	-15.5	51.8	-11.9	. 0	-4.5
1559	CTATAATTATGGATAATAAA SEQ ID NO:1366	-3.6	-12.5	44.5	-8.3	-0.3	-5.9

		kca1/	kcal/		kcal/		
		mol	mo1	deg C	mol	kcal/mol	kcal/mol
			dup1ex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecu1ar	molecular
position	oligo	binding	ation	Dup1ex	ture	oligo	oligo
1577	TGAAATCCAGAGTGACTCCT SEO ID NO:1367	-3.6	-23.1	66.8	-18.8	-0.4	-5.5
1728	TTTTAAAGTTGACATGTTTT SEQ ID NO:1368	-3.6	-16.9	54.6	-13.3	0	-7.1
1763	AGATTCTTTCAAATATACTC SEO ID NO:1369	-3.6	-16.8	54.7	-12.7	-0.1	-3.3
1832	TTCACTTCAAATAAAATACT SEQ ID NO:1370	-3.6	-14.5	48.4	-10.9	0	-1.2
1926	ACATTCAAAGGCCTTCCACA SEQ ID NO:1371	-3.6	-24.7	69.1	-19.6	-1	-10.6
1959	TTTAAAACAAAACCTAACAG SEQ ID NO:1372	-3.6	-13.6	45.9	-10	0	-4
105	GCGGCCACCAGGTGTGCAGG SEQ ID NO:1373	-3.5	-32.5	86.1	-26.4	-2.5	-12.5
286	CGGGCCACACTTCATGCCAT SEQ ID NO:1374	-3.5	-29.4	77,6	-23.7	-2.2	-7.6
291	AGCCCCGGGCCACACTTCAT SEO ID NO:1375	-3.5	-32.7	83.6	-27.3	-1.8	-11.2
346	GCAGATACCAAACTCTTCAC SEQ ID NO:1376	-3.5	-22.1	64.8	-18.6	0	-3.4
966	CAAAGTCAAAGAACTAATTT SEQ ID NO:1377	-3.5	-14.4	48.1	-10.9	0	-3
1918	AGGCCTTCCACACACATTCA SEQ ID NO:1378	-3.5	-27	75.4	-22.4	-1	-7.9
207	CAGCCACAGTCGTCGAGCAC SEQ ID NO:1379	-3.4	-28.2	77.5	-24.2	-0.3	-4.9
252	GTGCGGTAGCAAGTTTCTCC SEQ ID NO:1380	-3.4	-26.8	77.3	-21.4	-2	-5.5
356	GACAGTCTTTGCAGATACCA SEQ ID NO:1381	-3.4	-23.9	70.3	-20.5	0.3	-5.2
1082	ATTCTAGAGAAGCTACCTAC SEQ ID NO:1382	-3.4	-21	63.8	-17.6	0	-5.8
1182	AATTTCCATAAGCTTCAAAC SEQ ID NO:1383	-3.4	-18.3	56.1	-14.9	0	-6.8
1486	AACCATTTTCAACAAATAAT SEQ ID NO:1384	-3.4	-15.4	49.5	-11.5	-0.1	-2.7
1555	AATTATGGATAATAAATTTA SEQ ID NO:1385	-3.4	-12.1	43.7	-8.1	-0.3	-6.1
12	GTCTTTGCTGGTGGGAAGCA SEQ ID NO:1386	-3.3	-26.6	77.2	-21.8	-1.4	-5.7
175	GCGCGGGCTGCTTTTGCACT SEQ ID NO:1387	-3.3	-30.9	82.1	-25.1	-2.5	-11.8
290	GCCCCGGGCCACACTTCATG SEQ ID NO:1388	-3.3	-32.7	83.1	-28.1	1	-10
308	TAGAAGGCTGACACCTCAGC SEQ ID NO:1389	-3.3	-25	71.8	-17.8	-3.9	-9.4
383	TGCAATCCATCCCGAAGGTG SEQ ID NO:1390	-3.3	-26.4	70.9	-21.8	-1.2	-6.9
649	AACAATCACGAAAATAGAGC SEQ ID NO:1391	-3.3	-16.2	50.9	-12.9	0	-3.5
833	ACAAATCTACATGCATTCGA SEQ ID NO:1392	-3.3	-19.8	58.9	-16.5	0	-6.7
1160	CTTACTTCCTTCAGGGGTTT SEQ ID NO:1393	-3.3	-25.4	75	-21.6		-4.7
1183	AAATTTCCATAAGCTTCAAA SEQ ID NO:1394	-3.3	-17.4	53.9	-14.1		-6.8
1438	AAATATGGGTAGGGAAGATG SEQ ID NO:1395	-3.3	-18.5	56.8	-15.2		-2.7
1473	AAATAATACTAGATTTCTTT SEQ ID NO:1396	-3.3	-14.4	48.9	-11.1	0	-4.5

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1558	TATAATTATGGATAATAAAT SEQ ID NO:1397	-3.3	-11.6	42.7	-8.3	0.2	-5.9
1625	ACTTATGTTTAAATAAGGTC SEQ ID NO:1398	-3.3	-16.4	53.5	-11.5	-1.5	-7.1
1995	TTGTTCTTTTTTTTTGAACA SEQ ID NO:1399	-3.3	-17.8	57	-12.4	-2.1	-6.7
174	CGCGGGCTGCTTTTGCACTC SEQ ID NO:1400	-3.2	-29.5	79.6	-24.2	-2.1	-11.3
623	TCAGAAATCACAGCCGGGAT SEQ ID NO:1401	-3.2	-23.9	66.8	-20.7	0	-6.9
897	TCTCCATGTAAGATTACCTA SEQ ID NO:1402	-3.2	-21.8	64.9	-18.6	0	-4.9
1152	CTTCAGGGGTTTTCTGGTTG SEQ ID NO:1403	-3.2	-25	75.1	-20.9	-0.7	-4.2
1232	CATCAGCAGCCTTTTGAAAT SEQ ID NO:1404	-3.2	-22.5	65.2	-19.3	0	-4.1
1372	TCATACACACACAAACCACC SEQ ID NO:1405	-3.2	-22.1	62.6	-18.9	0	-0.9
1403	TTTATTTATAAAAATATATA SEQ ID NO:1406	-3.2	-9.8	39.4	-5.3	-1.2	-6.5
1560	CCTATAATTATGGATAATAA SEQ ID NO:1407	-3.2	-15.2	49.6	-11.5	-0.1	-6.5
463	TGAATATTGGAAGAAGGGGA SEQ ID NO:1408	-3.1	-18.9	57.3	-15.8	Ó	-4.6
856	GTGTTACTATACACACACAT SEQ ID NO:1409	-3.1	-20.3	62	-15.6	-1.5	-6.3
948	TTGACTCACTGCGGTCTTCA SEQ ID NO:1410	-3.1	-25.5	73.9	-21.4	-0.9	-6.2
1766	CTAAGATTCTTTCAAATATA SEQ ID NO:1411	-3.1	-15.2	50.6	-11.6	-0.1	-5.6
1796	AGAACATCTAGTACAACAGT SEQ ID NO:1412	-3.1	-19	59.2	-15.9	0	-5.7
56	TCTTCATGTTTCCCAGCTGC SEQ ID NO:1413	-3	-27.5	79.4	-24	0	-8.1
83	CGAGGAGCGTGGTCAGCAGC SEQ ID NO:1414	-3	-28.8	80	-24.8	-0.9	-5.9
225	GCAGCGCACACTCGGCAGCA SEQ ID NO:1415	-3	-31	82.1	-25.7	-2.3	-8.5
371	CGAAGGTGCCGTAGGGACAG SEQ ID NO:1416	-3	-26.5	72.1	-21.9	-1.5	-6.7
448	GGGGAATTTCAGGCATTTTC SEQ ID NO:1417	-3	-23.2	68.8	-20.2	0	-5
509	TGTCATGCTCCGTGAGAGAA SEQ ID NO:1418	-3	-24.5	70.3	-20.4	-1	-6.1
896	CTCCATGTAAGATTACCTAA SEQ ID NO:1419	-3	-20.7	61.4	-17.7	0	-4.9
1140	TCTGGTTGTTTTATTTTGAC SEQ ID NO:1420	-3	-20.1	63.4	-17.1	0	-2
1320	AGGTGGCATACGTTAAAGCT SEQ ID NO:1421	-3	-23.1	66.7	-19.5	-0.3	-5.1
1376	ACCTTCATACACACACAAAC SEQ ID NO:1422	-3	-20.4	60	-17.4	0	-0.9
1388	ATATAAATATTTACCTTCAT SEQ ID NO:1423	-3	-15.9	51.7	-12.4	0	-7.9
1831	TCACTTCAAATAAAATACTT SEQ ID NO:1424	-3	-14.5	48.4	-11.5	0	-1.2
1857	ACTGAAATAATTCTTAAATA SEQ ID NO:1425	-3	-12.8	45.1	-8.6	-1.1	-4.2
1925	CATTCAAAGGCCTTCCACAC SEQ ID NO:1426	-3	-24.7	69.1	-20.2	-1	-10.6

		kcal/	kcal/		kcal/		
	•	mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1957	TAAAACAAAACCTAACAGCT SEQ ID NO:1427	-3	-16.1	50.3	-13.1	0	-4.3
1958	TTAAAACAAAACCTAACAGC SEQ ID NO:1428	-3	-15.3	49	-12.3	0	-2.8
594	TTTAACCATTTCCTCATTAC SEQ ID NO:1429	-2.9	-20.7	62.1	-17.8	0	-2.4
957	AGAACTAATTTGACTCACTG SEQ ID NO:1430	-2.9	-18.1	56.6	-15.2	0	-2.7
1461	ATTTCTTTCCTCAAGAGGAT SEQ ID NO:1431	-2.9	-21.8	65.9	-17.3 .	-1.5	-10.2
1567	AGTGACTCCTATAATTATGG SEQ ID NO:1432	-2.9	-19.9	60.9	-17	0	-6.9
1579	TTTGAAATCCAGAGTGACTC SEQ ID NO:1433	-2.9	-20.4	61.9	-17.5	0	-5.1
1691	TTCTTTTACAAACCTCCTAA SEQ ID NO:1434	-2.9	-20.3	60.4	-17.4	0	-1.9
1808	AGATATTTCCTAAGAACATC SEQ ID NO:1435	-2.9	-18	56.5	-14.4	-0.5	-4
1968	ACATGTCCTTTTAAAACAAA SEQ ID NO:1436	-2.9	-16.8	52.6	-13.9	0	-6.2
57	CTCTTCATGTTTCCCAGCTG SEQ ID NO:1437	-2.8	-26.6	76.9	-23.3	0	-7.8
94	GTGTGCAGGCACGAGGAGCG SEQ ID NO:1438	-2.8	-28.6	78.3	-24	-1.7	-10.7
102	GCCACCAGGTGTGCAGGCAC SEQ ID NO:1439	-2.8	-31.4	85.9	-25.8	-2.1	-13.5
218	ACACTCGGCAGCAGCCACAG SEQ ID NO:1440	-2.8	-28.8	78.4	-22.8	-3.2	-9.8
222	GCGCACACTCGGCAGCAGCC SEQ ID NO:1441	-2.8	-32.3	84.4	-27.2	-2.1	-12
305	AAGGCTGACACCTCAGCCCC SEQ ID NO:1442	-2.8	-30.7	81.2	-21.8	-6.1	-13.4
372	CCGAAGGTGCCGTAGGGACA SEQ ID NO:1443	-2.8	-28.5	75.1	-23.5	-2.2	-8.6
624	CTCAGAAATCACAGCCGGGA SEQ ID NO:1444	-2.8	-24.8	68.6	-22	0	-6.9
898	GTCTCCATGTAAGATTACCT SEQ ID NO:1445	-2.8	-23.3	68.7	-20.5	0	-5.5
965	AAAGTCAAAGAACTAATTTG SEQ ID NO:1446	-2.8	-13.7	46.8	-10.9	0.1	-3.8
1091	CACAATTAAATTCTAGAGAA SEQ ID NO:1447	-2.8	-14.9	49.3	-12.1	0	-5.8
1239	GGAACTACATCAGCAGCCTT SEQ ID NO:1448	-2.8	-25.2	71.8	-22.4	. 0	-4.5
1381	TATTTACCTTCATACACACA SEQ ID NO:1449	-2.8	-20.3	61.3	-17.5	0	-1.1
1994	TGTTCTTTTTTTTTGAACAA SEQ ID NO:1450	-2.8	-17	54.8	-12.1	-2.1	-6.6
81	AGGAGCGTGGTCAGCAGCAA SEQ ID NO:1451	-2.7	-27.4	77.4	-23.1	-1.5	-5.9
84	ACGAGGAGCGTGGTCAGCAG SEQ ID NO:1452	-2.1	-27.2	76.2	-23.3	-1.1	-6.3
296	ACCTCAGCCCCGGGCCACAC SEQ ID NO:1453	-2.7	-34.8	87	-30.2	-1.8	-11.2
697	GTACTTATGCTATATCTAGA SEQ ID NO:1454	-2.7	-19.5	61.6	-16.8	0	-5.8
1561	TCCTATAATTATGGATAATA SEQ ID NO:1455	-2.7	-16.3	52.4	-12.9	0	-8.7
1619	GTTTAAATAAGGTCCCTCTG SEQ ID NO:1456	-2.7	-21.7	64.2	-19	0	-4.8

		kcal/	kcal/		kcal/		1 2 (2
		mol	mol	deg C	mol		kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-		molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1679	CCTCCTAAAAACTTATTTC SEQ ID NO:1457	-2.7	-18.7	56.8	-15	-0.9	-3.3
1815	ACTTCTGAGATATTTCCTAA SEQ ID NO:1458	-2.7	-19.9	61.2	-17.2	0	-3.8
98	CCAGGTGTGCAGGCACGAGG SEQ ID NO:1459	-2.6	-29.3	80.1	-24.2	-2.5	-10.7
172	CGGGCTGCTTTTGCACTCAC SEQ ID NO:1460	-2.6	-27.8	77.3	-23.2	-2	-8.4
338	CAAACTCTTCACCAAAAGGA SEQ ID NO:1461	-2.6	-19.5	57.6	-16.9	0	-3.7
671	CTAAAATGTTGGCTGTGTGT SEQ ID NO:1462	-2.6	-21.3	63.8	-18.7	0	-3.9
700	CATGTACTTATGCTATATCT SEQ ID NO:1463	-2.6	-19.9	61.8	-17.3	0	-4.8
946	GACTCACTGCGGTCTTCAGC SEQ ID NO:1464	-2.6	-27.2	78.5	-23.9	-0.4	-6
1581	TTTTTGAAATCCAGAGTGAC SEQ ID NO:1465	-2.6	-19.3	59.2	-16.7	0	-3
1659	ATACCTTAAATTGAAAATTC SEQ ID NO:1466	-2.6	-14.3	47.8	-10.4	-1.2	-3.7
1680	ACCTCCTAAAAACTTATTTT SEQ ID NO:1467	-2.6	-18.5	56.1	-15	-0.7	-3.2
1686	TTACAAACCTCCTAAAAACT SEQ ID NO:1468	-2.6	-17.7	53.6	-15.1	. 0	-1.2
1805	TATTTCCTAAGAACATCTAG SEQ ID NO:1469	-2.6	-18	56.6	-14.9	-0.2	-3.6
1854	GAAATAATTCTTAAATAAGT SEQ ID NO:1470	-2.6	-12.2	44	-8.9	-0.4	-4.9
1952	CAAAACCTAACAGCTTATGC SEQ ID NO:1471	-2.6	-19.9	58.5	-16.6	-0.5	-4.5
64	CAAGACGCTCTTCATGTTTC SEQ ID NO:1472	-2.5	-22.6	67	-19.3	-0.6	-6.1
276	TTCATGCCATCCATGCCTGA SEQ ID NO:1473	-2.5	-28.1	76.7	-23.8	-1.8	-5
406	TGACTGGCAGTTGCAGGTCT SEQ ID NO:1474	-2.5	-26.9	78.8	-24.4	1.7	-6.1
510	ATGTCATGCTCCGTGAGAGA SEQ ID NO:1475	-2.5	-25.2	72.7	-21.6	-1	-6.1
592	TAACCATTTCCTCATTACGG SEQ ID NO:1476	-2.5	-22.5	64.3	-20	0	-3.5
699	ATGTACTTATGCTATATCTA SEQ ID NO:1477	-2.5	-18.9	59.9	-16.4	0	-4.8
1200	AAAGCTGTTTGTTACTCAAA SEQ ID NO:1478	-2.5	-18.5	57.4	-14.5	-1.4	-7.8
1471	ATAATACTAGATTTCTTTCC SEQ ID NO:1479	-2.5	-18.2	57.8	-15.7	0	-4.5
1931	GCTTTACATTCAAAGGCCTT SEQ ID NO:1480	-2.5	-23.3	67.4	-19.5	-0.6	-10.4
173	GCGGGCTGCTTTTGCACTCA SEQ ID NO:1481	-2.4	-29.4	81.1	-24.9	-2.1	-8.4
279	CACTTCATGCCATCCATGCC SEQ ID NO:1482	-2.4	-28.4	77.2	-24.7	-1.2	-4.4
382	GCAATCCATCCGAAGGTGC SEQ ID NO:1483	-2.4	-28.2	74.9	-24.5	-1.2	-5.6
456	TGGAAGAAGGGGAATTTCAG SEQ ID NO:1484	-2.4	-19.8	59.6	-16.8	-0.3	-5
824	CATGCATTCGAATATTTAAC SEQ ID NO:1485	-2.4	-17.5	54.2	-14.6	0	-8.2
857	AGTGTTACTATACACACACA SEQ ID NO:1486	-2.4	-20.3	62.3	-15.6	-2.3	-7.1

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
964	AAGTCAAAGAACTAATTTGA SEQ ID NO:1487	-2.4	-15	49.6	-10.9	-1.7	-6
1052	CTAAATATTTTATTTCCCAC SEQ ID NO:1488	-2.4	-18.4	56.6	-15.2	-0.6	-6.2
1402	TTATTTATAAAAATATATAA SEQ ID NO:1489	-2.4	-9	37.9	-5.3	-1.2	-6.5
1439	TAAATATGGGTAGGGAAGAT SEQ ID NO:1490	-2.4	-18.2	56.3	-15.8	0	-2.7
1444	GATGATAAATATGGGTAGGG SEQ ID NO:1491	-2.4	-18.9	57.9	-16.5	0	-2.7
1887	GCCAACTTCAAGAATAAAAT SEQ ID NO:1492	-2.4	-16.9	52.2	-14.5	0	-3.5
53	TCATGTTTCCCAGCTGCCTC SEQ ID NO:1493	-2.3	-29.4	82.6	-26.6	0	-8.1
99	ACCAGGTGTGCAGGCACGAG SEQ ID NO:1494	-2.3	-28.3	78.1	-24.2	-1.7	-10.7
100	CACCAGGTGTGCAGGCACGA SEO ID NO:1495	-2.3	-29	78.8	-24.2	-2.5	-10.7
340	ACCAAACTCTTCACCAAAAG SEQ ID NO:1496	-2.3	-19.9	58	-17.6	0	-2.6
386	CTCTGCAATCCATCCCGAAG SEO ID NO:1497	-2.3	-26.2	70.7	-23.9	0	-4.9
508	GTCATGCTCCGTGAGAGAAA SEQ ID NO:1498	-2.3	-23.8	68.2	-20.4	-1	-6.1
598	TGGATTTAACCATTTCCTCA SEQ ID NO:1499	-2.3	-22.5	65.5	-19.4	-0.6	-4.3
820	CATTCGAATATTTAACAAAC SEQ ID NO:1500	-2.3	-14.5	47.9	-11.4	0	-9.3
853	TTACTATACACACACATTTA SEQ ID NO:1501	-2.3	-17.8	56.1	-15.5	0	-1.7
947	TGACTCACTGCGGTCTTCAG SEQ ID NO:1502	-2.3	-25.4	73.8	-22.1	-0.9	-6.2
1118	TTCCCAAAGCCAAAAAAAA SEQ ID NO:1503	-2.3	-16.7	50.3	-14.4	0	-3.2
1242	CCGGGAACTACATCAGCAGC SEQ ID NO:1504	-2.3	-26.2	72.1	-23.4	-0.2	-5.6
1398	TTATAAAAATATATAAATAT SEQ ID NO:1505	-2.3	-8.1	36.2	-5.3	-0.1	-4.2
1669	ACTTATTTTCATACCTTAAA SEQ ID NO:1506	-2.3	-17.5	55.2	-15.2	0	-2.3
1672	AAAACTTATTTTCATACCTT SEQ ID NO:1507	-2.3	-17.1	53.9	-14.1	-0.4	-2.9
1729	ATTTTAAAGTTGACATGTTT SEQ ID NO:1508	-2.3	-16.8	54.3	-14.5	. 0	-7.1
1860	AATACTGAAATAATTCTTAA SEQ ID NO:1509	-2.3	-12.8	45.1	-9.3	-1.1	-4.2
1939	CTTATGCAGCTTTACATTCA SEQ ID NO:1510	-2.3	-21.9	66	-19.6	0	-5.5
49	GTTTCCCAGCTGCCTCCGGC SEQ ID NO:1511	-2.2	-34.1	89.7	-30.5	-1.3	-8.1
287	CCGGGCCACACTTCATGCCA SEQ ID NO:1512	-2.2	-31.4	80.9	-27	-2.2	-7.6
501	TCCGTGAGAGAAACAAATCT SEQ ID NO:1513	-2.2	-19.6	58	-17.4	0	-2.9
599	GTGGATTTAACCATTTCCTC SEQ ID NO:1514	-2.2	-23	67.5	-19.9	-0.8	-4.8
726	ATCACAATTTGGATCTTCAA SEQ ID NO:1515	-2.2	-19.1	58.8	-16.9	0	-5.2
855	TGTTACTATACACACACATT SEQ ID NO:1516	-2.2	-19.2	59.3	-17	0	-2.6

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
968	ATCAAAGTCAAAGAACTAAT SEQ ID NO:1517	-2.2	-14.6	48.5	-12.4	0	-3
1309	GTTAAAGCTATTTATGGAAG SEQ ID NO:1518	-2.2	-17	54.3	-14.2	-0.3	-4.6
1315	GCATACGTTAAAGCTATTTA SEQ ID NO:1519	-2.2	-19.1	58.2	-16.4	-0.1	-5.7
1445	GGATGATAAATATGGGTAGG SEQ ID NO:1520	-2.2	-18.9	57.9	-16.7	0	-2.7
1556	TAATTATGGATAATAAATTT SEQ ID NO:1521	-2.2	-12.1	43.7	-9.3	-0.3	-5.2
1799	CTAAGAACATCTAGTACAAC SEQ ID NO:1522	-2.2	-17	54.2	-14.8	0	-5.7
80	GGAGCGTGGTCAGCAGCAAG SEQ ID NO:1523	-2.1	-27.4	77.4	-23.7	-1.5	-5.9
104	CGGCCACCAGGTGTGCAGGC SEQ ID NO:1524	-2.1	-32.5	86.1	-27.8	-2.5	-12.5
650	GAACAATCACGAAAATAGAG SEQ ID NO:1525	-2.1	-15	48.6	-12.9	0	-3.5
1078	TAGAGAAGCTACCTACCAAG SEO ID NO:1526	-2.1	-21.6	63.2	-19.5	0	-5.1
1924	ATTCAAAGGCCTTCCACACA SEQ ID NO:1527	-2.1	-24.7	69.1	-21.3	-1	-10.1
145	ACAGTGTTGAGGGCAGTCCA SEQ ID NO:1528	-2	-27.2	79.2	-24.1	-1	-6.6
171	GGGCTGCTTTTGCACTCACT SEQ ID NO:1529	-2	-27.9	79.7	-23.8	-2.1	-8.4
258	GAGACTGTGCGGTAGCAAGT SEQ ID NO:1530	-2	-25.2	72.8	-20.5	-2.7	-7
514	TGCCATGTCATGCTCCGTGA SEQ ID NO:1531	-2	-28.5	78.2	-25.6	-0.7	-5.7
625	TCTCAGAAATCACAGCCGGG SEQ ID NO:1532	-2	-24.6	68.8	-22.6	0	-6.9
1311	ACGTTAAAGCTATTTATGGA SEQ ID NO:1533	-2	-18.7	57.3	-16.1	-0.3	-5.7
1382	ATATTTACCTTCATACACAC SEQ ID NO:1534	-2	-19.6	60	-17.6	0	-1.8
1399	TTTATAAAAATATATAAATA SEQ ID NO:1535	-2	-8.2	36.4	-5.3	-0.8	-5.5
1404	ATTTATTTATAAAAATATAT SEQ ID NO:1536	-2	-10.1	39.9	-6.8	-1.2	-6
1480	TTTCAACAAATAATACTAGA SEQ ID NO:1537	-2	-14.2	47.9	-12.2	0	-4.5
1956	AAAACAAAACCTAACAGCTT SEQ ID NO:1538	-2	-16.5	51.1	-14.5	0	-4.5
497	TGAGAGAAACAAATCTGTTG SEQ ID NO:1539	-1.9	-16.5	52.6	-13	~1.5	-4.5
513	GCCATGTCATGCTCCGTGAG SEQ ID NO:1540	-1.9	-28.5	78. 7	-25.6	-0.9	-6.6
614	ACAGCCGGGATCAGCGTGGA SEQ ID NO:1541	-1.9	-29.2	78.1	-26.4	-0.7	-6.9
672	CCTAAAATGTTGGCTGTGTG SEQ ID NO:1542	-1.9	-22.1	64.3	-20.2	0	-3.9
981	AACATTAATGTACATCAAAG SEQ ID NO:1543	-1.9	-14.8	49	-11.6	-0.2	-10.5
1852	AATAATTCTTAAATAAGTTC SEQ ID NO:1544	-1.9	-12.8	45.5	-10.9.	0	-4.9
1893	CTGTTGGCCAACTTCAAGAA SEQ ID NO:1545	-1.9	-22.7	65.2	-17.4	-0.5	-15
1951	AAAACCTAACAGCTTATGCA SEQ ID NO:1546	-1.9	-19.9	58.5	-16.4	-1.6	-5.7

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex	•	target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
219	CACACTCGGCAGCAGCCACA SEQ ID NO:1547	-1.8	-29.5	79	-24.5	-3.2	-9.8
428	CCGTCCCCCTGTCACAGATG SEQ ID NO:1548	-1.8	-31.1	81.2	-28.7	-0.3	~5.2
616	TCACAGCCGGGATCAGCGTG SEQ ID NO:1549	-1.8	-28.5	77	~25.1	-1.6	-8.1
806	ACAAACACATACAAGTGTTC SEQ ID NO:1550	-1.8	-18.1	56.3	-13.5	-2.8	-8.2
819	ATTCGAATATTTAACAAACA SEQ ID NO:1551	-1.8	-14.5	47.9	-12	0	-9.1
1050	AAATATTTTATTTCCCACTC SEQ ID NO:1552	-1.8	-19.1	58.4	-16.7	-0.3	-5.8
1310	CGTTAAAGCTATTTATGGAA SEQ ID NO:1553	-1.8	-17.8	54.9	-15.4	-0.3	-5.1
1953	ACAAAACCTAACAGCTTATG SEQ ID NO:1554	-1.8	-18.3	55.4	-16.5	0	-4.5
85	CACGAGGAGCGTGGTCAGCA SEQ ID NO:1555	-1.7	-27.9	76.9	-23.4	-2.8	-9.7
101	CCACCAGGTGTGCAGGCACG SEQ ID NO:1556	-1.7	-30.4	80.9	-26.2	-2.5	-11.6
311	CATTAGAAGGCTGACACCTC SEQ ID NO:1557	-1.7	-23.3	67.7	-20.8	-0.6	-4.3
375	ATCCCGAAGGTGCCGTAGGG SEQ ID NO:1558	-1.7	-29.4	77.2	-25	-2.7	-7.9
1156	CTTCCTTCAGGGGTTTTCTG SEQ ID NO:1559	-1.7	-25.9	76.6	-23.6	-0.3	-5.7
1159	TTACTTCCTTCAGGGGTTTT SEQ ID NO:1560	-1.7	-24.6	73.3	-22.4	-0.2	-4.7
1287	TATGTGTTTCCTATGCCCCA SEQ ID NO:1561	-1.7	-27.8	76.9	-26.1	0	-3
1401	TATTTATAAAAATATATAAA SEQ ID NO:1562	-1.7	-8.2	36.4	-5.3	-1.1	-6.5
1474	CAAATAATACTAGATTTCTT SEQ ID NO:1563	-1.7	-15	49.9	-13.3	0	-4.5
1568	GAGTGACTCCTATAATTATG SEQ ID NO:1564	-1.7	-19.3	59.6	-17.6	0	-5.9
1874	ATAAAATACAGGTAAATACT SEQ ID NO:1565	-1.7	-13.7	46.7	-12	0	-3.8
427	CGTCCCCCTGTCACAGATGC SEQ ID NO:1566	-1.6	-30.9	82.1	-28.7	-0.3	-5.2
1072	AGCTACCTACCAAGGAAGGG SEQ ID NO:1567	-1.6	-24.9	69.6	-22.4	-0.7	-8.8
1083	AATTCTAGAGAAGCTACCTA SEQ ID NO:1568	-1.6	-20.1	61.2	-18.5	. 0	-5.8
1299	TTTATGGAAGTGTATGTGTT SEQ ID NO:1569	-1.6	-19.6	61.6	-18	0	-1.3
1383	AATATTTACCTTCATACACA SEQ ID NO:1570	-1.6	-18.7	57.5	-17.1	0	-3.8
1397	TATAAAAATATATAAATATT SEQ ID NO:1571	-1.6	-8.1	36.2	-5.3	-1.1	-4.4
1580	TTTTGAAATCCAGAGTGACT SEQ ID NO:1572	-1.6	-20.1	60.8	-18.5	0	-4.2
1742	TAATTCCACCTATATTTTAA SEQ ID NO:1573	-1.6	-18	55.7	-16.4	0	-2.9
256	GACTGTGCGGTAGCAAGTTT SEQ ID NO:1574	-1.5	-24.8	71.9	-20.4	-2.9	-7.2
259	TGAGACTGTGCGGTAGCAAG SEQ ID NO:1575	-1.5	-24	69.3	-20.5	-2	-7
407	CTGACTGGCAGTTGCAGGTC SEQ ID NO:1576	-1.5	-26.9	78.8	-24.4	-0.9	-7.6

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mo1
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
519	CCAGATGCCATGTCATGCTC SEQ ID NO:1577	-1.5	-27.2	76.6	-25.2	-0.2	-4.6
620	GAAATCACAGCCGGGATCAG SEQ ID NO:1578	-1.5	-23.9	66.8	-22.4	0	-6.9
659	CTGTGTGTTGAACAATCACG SEQ ID NO:1579	-1.5	-20.8	61.5	-17.4	-1.9	-8.7
1058	GAAGGGCTAAATATTTTATT SEQ ID NO:1580	-1.5	-17.1	54.2	-15.6	0	-6.2
1158	TACTTCCTTCAGGGGTTTTC SEQ ID NO:1581	-1.5	-24.9	74.8	-23.4	0.4	-4.1
1295	TGGAAGTGTATGTGTTTCCT SEO ID NO:1582	-1.5	-23.1	69.5	-19.9	-1.7	-5.4
1300	ATTTATGGAAGTGTATGTGT SEQ ID NO:1583	-1.5	-19.5	61.2	-18	0	-1.8
1313	ATACGTTAAAGCTATTTATG SEQ ID NO:1584	-1.5	-16.6	53	-14.5	-0.3	-5.7
1681	AACCTCCTAAAAACTTATTT SEQ ID NO:1585	-1.5	-17.7	54.1	-16.2	0	-2.2
1814	CTTCTGAGATATTTCCTAAG SEQ ID NO:1586	-1.5	-19.7	60.9	-18.2	0	-3.3
1947	CCTAACAGCTTATGCAGCTT SEO ID NO:1587	-1.5	-24.6	70.5	-21.1	-2	-6.9
1948	ACCTAACAGCTTATGCAGCT SEQ ID NO:1588	-1.5	-24.7	70.7	-21.3	-1.9	-6.9
698	TGTACTTATGCTATATCTAG SEQ ID NO:1589	-1.4	-18.9	60.1	-17.5	0	-4.8
978	ATTAATGTACATCAAAGTCA SEQ ID NO:1590	-1.4	-16.9	54.1	-14.9	0	-8.4
1073	AAGCTACCTACCAAGGAAGG SEQ ID NO:1591	-1.4	-23	65.1	-20	-1.6	-9.2
1288	GTATGTGTTTCCTATGCCCC SEQ ID NO:1592	-1.4	-28.3	79.3	-26.9	0	-3
1384	AAATATTTACCTTCATACAC SEQ ID NO:1593	-1.4	-17.3	54.5	-15.9	0	-5.8
1570	CAGAGTGACTCCTATAATTA SEQ ID NO:1594	-1.4	-20	61.2	-17.9	-0.4	-5.5
1749	ATACTCCTAATTCCACCTAT SEQ ID NO:1595	-1.4	-23.1	66.4	-21.7	0	-2.9
1751	ATATACTCCTAATTCCACCT SEQ ID NO:1596	-1.4	-23.1	66.4	-21.7	0	-2.9
1825	CAAATAAAATACTTCTGAGA SEQ ID NO:1597	-1.4	-14.3	47.9	-12.9	0	-2.8
1861	AAATACTGAAATAATTCTTA SEQ ID NO:1598	-1.4	-12.8	45.1	-10.2	-1.1	-4.2
1892	TGTTGGCCAACTTCAAGAAT SEQ ID NO:1599	-1.4	-21.8	63.4	-17	-0.5	-15
1938	TTATGCAGCTTTACATTCAA SEQ ID NO:1600	-1.4	-20.3	61.8	-18.9	0	-5.5
86	GCACGAGGAGCGTGGTCAGC SEQ ID NO:1601	-1.3	-29	80.2	-24.2	-3.5	-9.7
167	TGCTTTTGCACTCACTGCTG SEQ ID NO:1602	-1.3	-25.5	73.9	-22.2	-2	-7.5
1456	TTTCCTCAAGAGGATGATAA SEQ ID NO:1603	-1.3	-19.9	60.3	-17	-1.5	-10.2
1460	TTTCTTTCCTCAAGAGGATG SEQ ID NO:1604	-1.3	-21.8	65.8	-18.9	-1.5	-10.2
1470	TAATACTAGATTTCTTTCCT SEQ ID NO:1605	-1.3	-19.1	59.8	-17.8	0	-4
1725	TAAAGTTGACATGTTTTCTG SEQ ID NO:1606	-1.3	-17.9	56.9	-16.6	0	-7.1

Mol	
Dosition	
Position	
A99	ar
### SEQ ID NO:1607	
### ACANATCTACATGCATTCG SEQ ID NO:1608 1067 CCTACCAAGGAAGGGCTAAA SEQ ID NO:1609 1071 GCTACCTACCAAGGAAGGGC SEQ ID NO:1610 1085 TAAATTCTAGAGAGTACC SEQ ID NO:1611 1086 ACTTCCTCAGGGGTTTCT SEQ ID NO:1612 1161 TCTTACTTCCTTCAGGGGTT SEQ ID NO:1613 1179 TCCATAAGCTAACATC SEQ ID NO:1614 1179 TCCATAAGCTTCAACATC SEQ ID NO:1615 1180 TAAAGCTTCAAACATC SEQ ID NO:1615 1190 TTCATACTTCAGGAGT SEQ ID NO:16161 1191 TCCATAAGCTTCAAACATC SEQ ID NO:16161 1192 TCCATAAGCTTCAAACATC SEQ ID NO:16161 1193 TACATCTCAAGCATC SEQ ID NO:16161 1194 TCCATAAGCTTCAAACATC SEQ ID NO:16161 1195 TAAAGCTATTATGGAAGT SEQ ID NO:16161 1196 TAAAGCTATTATGGAAGT SEQ ID NO:16161 1197 TATAAATATTACCTTCATA SEQ ID NO:16161 1198 TAAAGCTATTATGGAAGT SEQ ID NO:1617 1199 TACATAAGCTTCAAACATC SEQ ID NO:16161 1190 GCTATAAGCTATTATGG SEQ ID NO:1617 1191 TATAAATATTACCTTCATA SEQ ID NO:1618 1192 TACATGAGCTTCAAACATC SEQ ID NO:1619 1194 GCTATAGCAGCTTTACATC SEQ ID NO:1620 11940 GCTATAGCAGCTTTACATC SEQ ID NO:1620 11940 GCTATAGAGAACAATCTGTT SEQ ID NO:1620 11940 GCTATAGAGAACAATCTGTT SEQ ID NO:1620 1195 TAGGAGGAAACAAATCTGTT SEQ ID NO:1620 1195 TAGGAGGAAACAAATCTGTT SEQ ID NO:1620 11964 TGTTGAACAATCAGGAAAAT SEQ ID NO:1622 11965 TGTTGAACAATCAGGAAAAT SEQ ID NO:1622 11964 TGTTGAACAATCAGGAAAAT SEQ ID NO:1622 1197 TGTTGAACAATCAGGAAAAT SEQ ID NO:1620 1107 TGTTGAACAATCAGGAAAAT SEQ ID NO:1620	
SEQ ID NO:1609	
1071 SEQ ID NO:1610 1085 TAAATTCTAGAGAAGCTACC SEQ ID NO:1611 1157 ACTCCTTCAGGGGTTTCT SEQ ID NO:1612 1161 TCTTACTCCTCAGGGGTT -1.2 -26.1 77.5 -24.4 -0.2 -5.7 1161 TCTTACTCCTCAGGGGTT -1.2 -25.7 76.5 -24 -0.2 -4.7 1178 TCCATAAGCTTCAAACATCT SEQ ID NO:1613 1179 TCCATAAGCTTCAAACATCT SEQ ID NO:1615 1179 TTCCATAGCTTCAAACATC -1.2 -20.8 61.7 -19.6 0 -6.5 1179 TTCCATAGCTTCAAACATC -1.2 -20 60.2 -18.8 0 -6.8 1308 TTAAAGCTATTATGGAAGT -1.2 -17 54.3 -15.2 -0.3 -5.1 1312 TACCTTAAAGCTATTATGG -1.2 -17.8 55.5 -16.6 0 -5.7 1387 TATAAATATTTACCTTCATA SEQ ID NO:1617 1387 TATAAATATTTACCTTCATA SEQ ID NO:1618 1520 ID NO:1618 -1.2 -15.6 51.1 -13.9 0 -7.9 1856 CTGAAATAATCTTAAATAA -1.2 -15.6 51.1 -13.9 0 -7.9 1856 CTGAAATAATCTTAAATAA -1.2 -15.6 51.1 -13.9 0 -7.9 1856 CTGAAATAATCTTAAATAA -1.2 -15.6 51.1 -13.9 -1.1 -4.2 1940 GCTTATGCAGCTTTACATTC SEQ ID NO:1620 -1.2 -23 69.2 -20.6 -1.1 -6.1 498 GTGAGGAAAACAAATCTGTT -1.1 -17.7 55.5 -15.2 -1.3 -4.3 5EQ ID NO:1621 -1.1 -17.7 55.5 -15.2 -1.3 -4.3 5EQ ID NO:1622 -1.1 -16 50.4 -14.1 -0.6 -4.4	
SEQ ID NO:1611 1157 ACTTCCTTCAGGGGTTTTCT SEQ ID NO:1612 1161 TCTTACTTCCTTCAGGGGTT -1.2 -26.1 77.5 -24.4 -0.2 -5.7 1161 TCCATAGCTTCAAACATCT SEQ ID NO:1613 1178 TCCATAAGCTTCAAACATCT SEQ ID NO:1614 1179 TTCCATAGCTTCAAACATC -1.2 -20.8 61.7 -19.6 0 -6.5 1179 SEQ ID NO:1615 1179 TTACAGCTACAACATC -1.2 -20 60.2 -18.8 0 -6.8 1308 TTAAAGCTATTTATGGAAGT SEQ ID NO:1615 1312 TACGTTAAAGCTATTTATGG SEQ ID NO:1616 1312 TACGTTAAAGCTATTTATGG SEQ ID NO:1617 1387 TATAAATATTTACCTTCATA -1.2 -17.8 55.5 -16.6 0 -5.7 1387 TATAAATATTACCTTCATA -1.2 -15.6 51.1 -13.9 0 -7.9 1856 CTGAAATAATCTTAAATAA SEQ ID NO:1619 1940 GCTTATGCAGCTACTTTACATTC SEQ ID NO:1620 1940 GTGAGGAAACAAATCTGTT SEQ ID NO:1620 498 GTGAGGAAACAAATCTGTT SEQ ID NO:1621 1950 TGTGAACAATCAGCACCC -1.1 -1.1 -1.2 -1.3 -4.3 1081 SEQ ID NO:1621 1094 GTGAGACAACAACACAGAAAAT SEQ ID NO:1621 1095 TGTGAACAATCAGGAACAT SEQ ID NO:1621 1096 TGTGAACAATCAGGAACAT SEQ ID NO:1621 1097 TGTGAACAATCAGGAACAT SEQ ID NO:1621 1098 TGTGAACAATCAGGAACAT SEQ ID NO:1621 1098 TGTGAACAATCAGGAACAT SEQ ID NO:1621	
SEQ ID NO:1612 1161 TCTTACTTCCTTCAGGGGTT	
1161 TCTTACTTCCTTCAGGGGTT SEQ ID NO:1613 1178 TCCATAAGCTTCAAACATCT SEQ ID NO:1614 1179 TTCCATAAGCTTCAAACATCT SEQ ID NO:1615 1179 TTCCATAAGCTTCAAACATC SEQ ID NO:1615 1308 TTAAAGCTATTTATGGAAGT SEQ ID NO:1616 1312 TACGTTAAAGCTATTTATGG SEQ ID NO:1617 1312 TACGTTAAAGCTATTTATGG SEQ ID NO:1617 1387 TATAAATATTTACCTTCATA SEQ ID NO:1618 1856 CTGAAATAATTTACCTTCATA SEQ ID NO:1619 1856 CTGAAATAATCTTAAATAA SEQ ID NO:1620 1940 GCTTATGCAGCTTTACATC SEQ ID NO:1620 498 GTGAGAGAAACAAATCTGTT SEQ ID NO:1621 498 GTGAGAGAAACAAATCTGTT SEQ ID NO:1621 TGTTGAACAATCAGGAAAAT SEQ ID NO:1622 CGGGAACTACCAGCAGCC SECONOMIC SEQ ID NO:1622 CGGGAACTACTACAGCAGCC SECONOMIC SEQ ID NO:1622 CGGGAACTACTACAGCAGCC SECONOMIC SEQ ID NO:1622 CGGGAACTACTACGCAGCC SECONOMIC SEQ ID NO:1622	
TCCATAAGCTTCAAACATCT	
TTCCATAAGCTTCAAACATC	
TTAAAGCTATTTATGGAAGT SEQ ID NO:1616	
TACGTTAAAGCTATTTATGG SEQ ID NO:1617 1387 TATAAATATTTACCTTCATA SEQ ID NO:1618 1856 CTGAAATAATTCTTAAATAA SEQ ID NO:1619 1940 GCTTATGCAGCTTTACATTC SEQ ID NO:1620 498 GTGAGAGAAACAAATCTGTT SEQ ID NO:1621 TGTTGAACAATCACGAAAAT SEQ ID NO:1622 CCGCAACTACACGCCC 100 101 101 102 103 103 104 105 105 105 105 105 105 105	
TATAAATATTTACCTTCATA SEQ ID NO:1618 1856 CTGAAATAATCTTAAATAA SEQ ID NO:1619 1940 GCTTATGCAGCTTTACATC SEQ ID NO:1620 498 GTGAGAGAAACAAATCTGTT SEQ ID NO:1621 TGTTGAACAATCAGAAAAT SEQ ID NO:1622 CGGGAACCAACCAGAAAAT SEQ ID NO:1622 CGGGAACCAACCAGAAAAAT SEQ ID NO:1622 CGGGAACCAACCACGAACAAT SEQ ID NO:1622 CGGGAACCAACCACGACCC CGGGAACCACCACGACCC CGGGAACCACCACCACCCC CGGGAACCACCACCCC CGGGAACCACCACCACCCC CGGGAACCACCACCCCC CCGGAACCACCACCACCCC CCGGAACCACCACCCCC CCGGAACCACCACCCCC CCGCAACCACCACCCCC CCGCAACCACCACCCCC CCCCCAACCACCACCCCC CCCCCAACCACC	
1856 CTGAAATAATTCTTAAATAA	
1940 GCTTATGCAGCTTTACATTC	
498 GTGAGAAACAAATCTGTT -1.1 -17.7 55.5 -15.2 -1.3 -4.3 SEQ ID NO:1621 -1.1 -16 50.4 -14.1 -0.6 -4.4 SEQ ID NO:1622 -1.1 -16 50.4 -14.1 -0.6 -4.4	
654 TGTTGAACAATCACGAAAAT -1.1 -16 50.4 -14.1 -0.6 -4.4 SEQ ID NO:1622	
CCCCAACTACATCAGCAGCC	
1241 CGGGAACTACATCAGCAGCC -1.1 -26.2 72.1 -24.6 -0.2 -4.7 SEQ ID NO:1623	
1396 ATAAAATATATAAATATTT -1.1 -8.5 36.9 -5.3 -2.1 -6 SEQ,ID NO:1624	
1674 TAAAACTTATTTCATACC -1.1 -15.1 49.6 -13 -0.9 -3.3 SEQ ID NO:1625	
1937 TATGCAGCTTTACATTCAAA -1.1 -19.5 59.4 -18.4 0 -5.5	
103 GGCCACGGTGTGCAGGCA -1 -32.4 87.9 -28.5 -2.9 -12.5	;
179 TGCAGCGCGGCTTTTG -1 -29.8 79.8 -22.6 · -6.2 -16.3	3 :
339 CCAAACTCTTCACCAAAAGG -1 -20.9 59.8 -19.9 0 -3.6 SEQ ID NO:1629	
511 CATGTCATGCTCCGTGAGAG -1 -25.3 72.4 -23.3 -0.9 -6.5 SEQ ID NO:1630	
711 TTCAAAATTACATGTACTT -1 -15.2 50 -13.7 0 -7.7 SEQ ID NO:1631	
852 TACTATACACACATTTAA -1 -17 53.9 -16 0 -2.2 852 SEO ID NO:1632	ı
1752 AATATACTCCTAATTCCACC -1 -21.5 62.5 -20.5 0 -2.5 seq ID NO:1633	,
313 CCCATTAGAAGGCTGACACC -0.9 -26 71.3 -25.1 0 -3.7	,
SEQ ID NO:1034 GTTGAACAATCACGAAAATA -0.9 -15.7 49.9 -14 -0.6 -4.4 SEQ ID NO:1635	ŀ
979 CATTAATGTACATCAAAGTC -0.9 -16.9 54.1 -15.5 0 -7.9	1

		kcal/	kcal/		kcal/		
		mol	mol	đeg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1096	AAAAGCACAATTAAATTCTA SEQ ID NO:1637	-0.9	-14.1	47.3	-13.2	0	-4.1
1286	ATGTGTTTCCTATGCCCCAG SEQ ID NO:1638	-0.9	-28.1	77.8	-27.2	0	-3
1293	GAAGTGTATGTGTTTCCTAT SEQ ID NO:1639	-0.9	-21.6	66.3	-20.7	0	-2.2
1748	TACTCCTAATTCCACCTATA SEQ ID NO:1640	-0.9	-22.8	65.9	-21.9	0	-2.9
1750	TATACTCCTAATTCCACCTA SEQ ID NO:1641	-0.9	-22.8	65.9	-21.9	0	-2.9
1919	AAGGCCTTCCACACACATTC SEQ ID NO:1642	-0.9	-25.6	71.9	-23.4	-1	-9.8
374	TCCCGAAGGTGCCGTAGGGA SEQ ID NO:1643	-0.8	-30	78.4	-26.5	-2.7	-9.3
405	GACTGGCAGTTGCAGGTCTC SEQ ID NO:1644	-0.8	-27.3	81	-25.5	-0.9	-7.7
1521	TTTGAAAACCTTATAGAGTC SEQ ID NO:1645	-0.8	-17.5	55.3	-16.7	0	-3.5
1997	TCTTGTTCTTTTTTTTTTATTGAA SEQ ID NO:1646	-0.8	-18.2	58.6	-17.4		-3.3
357	GGACAGTCTTTGCAGATACC SEQ ID NO:1647	-0.7	-24.4	71.8	-23.2	-0.2	-6
1294	GGAAGTGTATGTGTTTCCTA SEQ ID NO:1648	-0.7	-22.8	69.1	-21	-1	-4.6
1457	CTTTCCTCAAGAGGATGATA SEQ ID NO:1649	-0.7	-21.5	64.3	-19.2	-1.5	-10.2
1557	ATAATTATGGATAATAAATT SEQ ID NO:1650	-0.7	-12	43.5	-10.7	-0.3	-5.3
1569	AGAGTGACTCCTATAATTAT SEQ ID NO:1651	-0.7	-19.3	59.9	-17.9	-0.4	-5.9
288	CCCGGGCCACACTTCATGCC SEQ ID NO:1652	-0.6	-32.7	83.1	-30.9	-1.1	-9.2
559	ATTCTCTTTCACAACTTCTT SEQ ID NO:1653	-0.6	-20.8	64.5	-20.2	0	-1
710	TCAAAAATTACATGTACTTA SEQ ID NO:1654	-0.6	-14.8	49.2	-13.7	0	-7.7
1097	AAAAAGCACAATTAAATTCT SEQ ID NO:1655	-0.6	-13.7	46.4	-13.1	0	-3.3
1323	CTGAGGTGGCATACGTTAAA SEQ ID NO:1656	-0.6	-21.9	63.6	-21.3	0.5	-4.8 -7
1385	TAAATATTTACCTTCATACA SEQ ID NO:1657	-0.6	-16.8	53.4	-16.2	0	
1730	TATTTTAAAGTTGACATGTT SEQ ID NO:1658 ACTCCTAATTCCACCTATAT	-0.0	-16.4	53.4	-15.8	0	-7.1 -2.9
1747	SEQ ID NO:1659	-0.6	-23.1	66.4	-22.5	0	-2.9
1770	TGTGCTAAGATTCTTTCAAA SEQ ID NO:1660	-0.0	-18.8	58.4	-17.7	-0.1	
1819	AAATACTTCTGAGATATTTC SEQ ID NO:1661	-0.0	-16.3	53.4	-14.8	-0.7	-4.6
1826	TCAAATAAAATACTTCTGAG SEQ ID NO:1662	-0.0	-14.1	47.7	-13.5	0	-2.8
1828	CTTCAAATAAAATACTTCTG SEQ ID NO:1663	-0.0	-14.5		-13.9		-1.5
1936	ATGCAGCTTTACATTCAAAG SEQ ID NO:1664	-0.0	-19.8		-18.7		-5.8
168	CTGCTTTTGCACTCACTGCT SEQ ID NO:1665	-0.5	-26.4		-23.8		-7.6 15.3
184	CCTCTTGCAGCGCGGGCTGC SEQ ID NO:1666	-0.5	-32.9	86.1	-27	-5.4	-15.3

		kcal/	kcal/	a 0	kcal/ mol	kcal/mol	kcal/mol
		mol	mol	deg C	target	Intra-	Inter-
		total	duplex form-	Tm of	struc-		molecular
		binding	ation	Duplex	ture	oligo	oligo
position	oligo AGAAGGCTGACACCTCAGCC	_		_			-13
307	SEQ ID NO:1667	-0.5	-27.3	76	-21.1	-5.7	~13
408	CCTGACTGGCAGTTGCAGGT SEQ ID NO:1668	-0.5	-28.5	80.6	-26.1	-1.9	-9
613	CAGCCGGGATCAGCGTGGAT SEQ ID NO:1669	-0.5	-29	77.5	-27.6	-0.7	-6.9
980	ACATTAATGTACATCAAAGT SEQ ID NO:1670	-0.5	-16.7	53.4	-15.3	0	-9.6
1070	CTACCTACCAAGGAAGGCT SEQ ID NO:1671	-0.5	-25.8	71.2	-23.7	-1.6	-6.6
1090	ACAATTAAATTCTAGAGAAG SEQ ID NO:1672	-0.5	-14.2	48.1	-13.7	0	-5.8
1240	GGGAACTACATCAGCAGCCT SEQ ID NO:1673	-0.5	-26.3	74	-25.3	-0.2	-4.7
1296	ATGGAAGTGTATGTGTTTCC SEQ ID NO:1674	-0.5	-22.2	67.4	-20.7	-0.9	-4.4
1876	GAATAAAATACAGGTAAATA SEQ ID NO:1675	-0.5	-12.5	44.3	-12	0	-3.6
93	TGTGCAGGCACGAGGAGCGT SEQ ID NO:1676	-0.4	-28.6	78.3	-26.6	-1.3	-10.7
846	ACACACACATTTAACAAATC SEQ ID NO:1677	-0.4	-16.7	52.7	-16.3	0	-2.7
1768	TGCTAAGATTCTTTCAAATA SEQ ID NO:1678	-0.4	-17.3	55	-16.4	-0.1	-5.6
1932	AGCTTTACATTCAAAGGCCT SEQ ID NO:1679	-0.4	-23.2	67.3	-22	-0.6	-8.4
1946	CTAACAGCTTATGCAGCTTT SEQ ID NO:1680	-0.4	-22.7	67.1	-20.5	-1.8	-6.9
1949	AACCTAACAGCTTATGCAGC SEQ ID NO:1681	-0.4	-23.1	66.5	-21.1	-1.6	-5.7
65	GCAAGACGCTCTTCATGTTT SEQ ID NO:1682	-0.3	-24	69.7	-22.9	-0.6	-6.1
558	TTCTCTTTCACAACTTCTTC SEQ ID NO:1683	-0.3	-21.2	66.1	-20.9	0	-0.7
610	CCGGGATCAGCGTGGATTTA SEQ ID NO:1684	-0.3	-26.4	72.3	-26.1	0	-7
712	CTTCAAAAATTACATGTACT SEQ ID NO:1685	-0.3	-16	51.6	-15.2	0	-7.7
723	ACAATTTGGATCTTCAAAAA SEQ ID NO:1686	-0.3	-15.9	51	-14.2	-1.3	-6.3
506	CATGCTCCGTGAGAGAAACA	-0.2	-23.1	65.3	-21.8	-1	-6.1
	SEQ ID NO:1687 ACATGTACTTATGCTATATC	-0.2	-19.2	60.3	-19	. 0	-6.1
701 825	SEQ ID NO:1688 ACATGCATTCGAATATTTAA		-17.5	54.2	-16.7	0	-8.4
	SEQ ID NO:1689 CACACACATTTAACAAATCT					0	-2.7
845	SEQ ID NO:1690	-0.2	-17.4	54	-17.2		
1459	TTCTTTCCTCAAGAGGATGA SEQ ID NO:1691	-0.2	-22.3	66.8	-20.7	-1.2	-9.9
1467	TACTAGATTTCTTTCCTCAA SEQ ID NO:1692	-0.2	-20.5	63.1	-20.3	0	-4.5
1673	AAAAACTTATTTTCATACCT SEQ ID NO:1693	-0.2	-16.3	52	-15.1	-0.9	-3.3
1769	GTGCTAAGATTCTTTCAAAT SEQ ID NO:1694	-0.2	-18.8	58.5	-18.1	-0.1	-5.5
1853	AAATAATTCTTAAATAAGTT SEQ ID NO:1695	-0.2	-11.7	43.1	-11.5	0	-4.9
655	GTGTTGAACAATCACGAAAA SEQ ID NO:1696	-0.1	-17.2	52.9	-16.3	-0.6	-8.1

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
722	CAATTTGGATCTTCAAAAAT SEQ ID NO:1697	-0.1	-15.7	50.6	-14.2	-1.3	-6.3
962	GTCAAAGAACTAATTTGACT SEQ ID NO:1698	-0.1	-16.8	53.4	-13.3	-3.4	-9.4
969	CATCAAAGTCAAAGAACTAA SEQ ID NO:1699	-0.1	-15.3	49.8	-15.2	0	-3
1117	TCCCAAAGCCAAAAAAAAA SEQ ID NO:1700	-0.1	-15.9	48.7	-15.8	0	-3.2
1324	TCTGAGGTGGCATACGTTAA SEQ ID NO:1701	-0.1	-23	67.2	-22.3	-0.3	-4.8
1875	AATAAAATACAGGTAAATAC SEQ ID NO:1702	-0.1	-12.1	43.5	-12	0	~3.6
1935	TGCAGCTTTACATTCAAAGG SEQ ID NO:1703	-0.1	-21	62.7	-20.9	0.1	-7.6
1292	AAGTGTATGTGTTTCCTATG SEO ID NO:1704	0	-21	64.7	-21	0	-1.7
1682	AAACCTCCTAAAAACTTATT SEQ ID NO:1705	0	-16.9	52.2	-16.9	0	-1.3
1827	TTCAAATAAAATACTTCTGA SEQ ID NO:1706	0	-14.2	47.9	-14.2	0	-2.5
512	CCATGTCATGCTCCGTGAGA SEQ ID NO:1707	0.1	-27.3	75.7	-26.7	-0.4	-6.6
1094	AAGCACAATTAAATTCTAGA SEQ ID NO:1708	0.1	-16.1	51.8	-16.2	0	-5.4
1162	ATCTTACTTCCTTCAGGGGT SEQ ID NO:1709	0.1	-25.6	76	-25.2	-0.2	-4.7
1307	TAAAGCTATTTATGGAAGTG SEQ ID NO:1710	0.1	-16.9	54	-17	0	-5.1
1481	TTTTCAACAAATAATACTAG SEQ ID NO:1711	0.1	-13.7	47	-13.8	0	-4
1923	TTCAAAGGCCTTCCACACAC SEQ ID NO:1712	0.1	-24.9	69.7	-23.5	-1	-10.6
1967	CATGTCCTTTTAAAACAAAA SEQ ID NO:1713	0.1	-15.9	50.5	-15.5	-0.1	-6.2
89	CAGGCACGAGGAGCGTGGTC SEQ ID NO:1714	0.2	-28.4	78.4	-25.1	-3.5	-9
257	AGACTGTGCGGTAGCAAGTT SEQ ID NO:1715	0.2	-24.7	71.8	-22	-2.9	-7.2
652	TTGAACAATCACGAAAATAG SEQ ID NO:1716	0.2	-14.5	47.6	-13.9	-0.6	-4.4
1068	ACCTACCAAGGAAGGGCTAA SEQ ID NO:1717	0.2	-24.2	67.3	-22.8	-1.6	-6.6
1084	AAATTCTAGAGAAGCTACCT SEQ ID NO:1718	0.2	-19.7	59.7	-19.9	0	-5.8
1169	TTCAAACATCTTACTTCCTT SEQ ID NO:1719	0.2	-20.4	61.8	-20.6	0	-1
1177	CCATAAGCTTCAAACATCTT SEQ ID NO:1720	0.2	-20.5	60.7	-20.7	0	-6.8
1392	AAATATATAAATATTTACCT SEQ ID NO:1721	0.2	-13	45.4	-11.4	-1.8	-7.9
1476	AACAAATAATACTAGATTTC SEQ ID NO:1722	0.2	-13.5	46.7	-13.7	0	-4.5
1741	AATTCCACCTATATTTTAAA SEQ ID NO:1723	0.2	-17.6	54.5	-17.8	0	-4.2
1877	AGAATAAAATACAGGTAAAT SEQ ID NO:1724	0.2	-12.8	44.8	~13	. 0	-3.6
807	AACAAACACATACAAGTGTT SEQ ID NO:1725	0.3	~17	53.3	-14.7	-2.6	-8
1053	GCTAAATATTTTATTTCCCA SEQ ID NO:1726	0.3	-20	59.9	-19.5	-0.6	-6.2

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1059	GGAAGGGCTAAATATTTTAT SEQ ID NO:1727	0.3	-18.2	56.3	-18.5	0	-6.6
1074	GAAGCTACCTACCAAGGAAG SEQ ID NO:1728	0.3	-22.4	63.9	-21.1	-1.6	-9.2
1391	AATATATAAATATTTACCTT SEQ ID NO:1729	0.3	-13.8	47.1	-13.2	-0.8	-7.9
1455	TTCCTCAAGAGGATGATAAA SEQ ID NO:1730	0.3	-19.1	58.1	-17.8	-1.5	-10.2
1468	ATACTAGATTTCTTTCCTCA SEQ ID NO:1731	0.3	-21.2	65.3	-21.5	0	-4.5
88	AGGCACGAGGAGCGTGGTCA SEQ ID NO:1732	0.4	-28.4	78.4	-25.3	-3.5	-9.2
221	CGCACACTCGGCAGCAGCCA SEQ ID NO:1733	0.4	-31.2	81.2	-28.4	-3.2	-9.8
224	CAGCGCACACTCGGCAGCAG SEQ ID NO:1734	0.4	-29.2	78.2	-27.3	-2.3	-8.5
861	CTTCAGTGTTACTATACACA SEQ ID NO:1735	0.4	-20.6	63.8	-19.4	-1.5	-5.7
977	TTAATGTACATCAAAGTCAA SEQ ID NO:1736	0.4	-16.2	52.3	-16	0	-8.4
1069	TACCTACCAAGGAAGGCTA SEQ ID NO:1737	0.4	-24.6	68.8	-23.4	-1.6	-6.6
1173	AAGCTTCAAACATCTTACTT SEQ ID NO:1738	0.4	-19	58.5	-19.4	0	-6.2
1322	TGAGGTGGCATACGTTAAAG SEQ ID NO:1739	0.4	-21	62	-20.8	-0.3	-4.8
1475	ACAAATAATACTAGATTTCT SEQ ID NO:1740	0.4	-15.1	50.1	-15.5	0	-4.5
1813	TTCTGAGATATTTCCTAAGA SEQ ID NO:1741	0.4	-19.4	60.3	-19.8	0	-4.6
176	AGCGCGGGCTGCTTTTGCAC SEQ ID NO:1742	0.5	-30	80.6	-27.2	-3.3	-12.5
178	GCAGCGCGGGCTGCTTTTGC SEQ ID NO:1743	0.5	-31.6	84.2	-26.6	-5.5	-15.5
418	GTCACAGATGCCTGACTGGC SEQ ID NO:1744	0.5	-27.2	77.4	-25.6	-2.1	-8.7
505	ATGCTCCGTGAGAGAAACAA SEQ ID NO:1745	0.5	-21.7	62.2	-21.1	-1	-6.1
507	TCATGCTCCGTGAGAGAAAC SEQ ID NO:1746	0.5	-22.8	65.6	-22.6	-0.4	-5.9
891	TGTAAGATTACCTAAATTGC SEQ ID NO:1747	0.5	-17.9	55.6	-18.4	0	-4.9
892	ATGTAAGATTACCTAAATTG SEQ ID NO:1748	0.5	-16.1	51.8	-16.6	. 0	-4.9
1405	CATTTATTTATAAAAATATA SEQ ID NO:1749	0.5	-10.8	41.3	-10	-1.2	-6.5
1447	GAGGATGATAAATATGGGTA SEQ ID NO:1750	0.5	-18.3	56.7	-18.8	0	-2.7
1469	AATACTAGATTTCTTTCCTC SEQ ID NO:1751	0.5	-19.8	61.8	-20.3	0	-4.5
1824	AAATAAAATACTTCTGAGAT SEQ ID NO:1752	0.5	-13.6	46.6	-14.1	0	-2.8
7	TGCTGGTGGGAAGCAGCCGT SEQ ID NO:1753	0.6	-29.7	80.5	-27.4	-2.9	-8.4
220	GCACACTCGGCAGCAGCCAC SEQ ID NO:1754	0.6	-30.6	82.3	-28	-3.2	-9.8
281	CACACTTCATGCCATCCATG SEQ ID NO:1755	0.6	-25.5	71.3	-24.5	-1.6	-4.7
500	CCGTGAGAGAAACAAATCTG SEQ ID NO:1756	0.6	-19.2	56.7	-19.8	0	-3.1

Dosition			kcal/	kcal/		kcal/		
Dosition			mol	mol	deg C	mol	kcal/mol	kcal/mol
Desition Oligo binding ation Duplex ture Oligo Oligo CACAATTAAATTCTAGAGA SEQ ID NO:1757 1095 AAAGCACAATTAAATTCTAG O.6 -17.4 54.8 -18 O -5.3				duplex		target		Inter-
1092 GCACAATTAAATTCTAGAGA 0.6			total	form-	Tm of	struc-	molecular	molecular
1092 SEQ ID NO:1757 10.6	position	oligo	binding	ation	Duplex	ture	oligo	oligo
1095 ARGCACATTRAATCTMG SEQ ID NO:1758 SEQ ID NO:1758 SEQ ID NO:1758 SEQ ID NO:1759 SEQ ID NO:1750 SEQ ID NO:1761 SEQ ID NO:1761 SEQ ID NO:1761 SEQ ID NO:1761 SEQ ID NO:1762 SEQ ID NO:1763 SEQ ID NO:1763 SEQ ID NO:1763 SEQ ID NO:1764 SEQ ID NO:1765 SEQ ID NO:1766 SEQ ID NO:1766 SEQ ID NO:1766 SEQ ID NO:1766 SEQ ID NO:1767 SEQ ID NO:1766 SEQ ID NO:1766 SEQ ID NO:1766 SEQ ID NO:1766 SEQ ID NO:1765 SEQ ID NO:1776 SEQ ID NO:1770 SEQ ID NO:1770 SEQ ID NO:1771 SEQ ID NO:1773 SEQ ID NO:1774 SEQ ID NO:1775 SEQ ID NO:1775 SEQ ID NO:1775 SEQ ID NO:1775 SEQ ID NO:1776 SEQ ID NO:1776 SEQ ID NO:1776 SEQ ID NO:1777 SEQ ID NO:1776 SEQ ID NO:1777 SEQ ID NO:1776 SEQ ID NO:1777 SEQ ID NO:1777 SEQ ID NO:1778 SEQ ID NO:1778 SEQ ID NO:1778 SEQ ID NO:1778 SEQ ID NO:1779 SEQ ID NO:1780 SEQ ID NO:1	1092		0.6	-17.4	54.8	-18	0	-5.8
1301 SEQ ID NO:1759 0.6 -20.8 63.9 -21.4 0 -4	1095	AAAGCACAATTAAATTCTAG	0.6	-14.8	49	-15.4	0	-4.1
1466 ACTAGATTCTTCCTCAAG SEQ ID NO:1760 SEQ ID NO:1761 O.6	1301		0.6	-18	57.4	-18.6	0	-1.8
1764 SEQ ID NO:1761 0.0 17.5 1.0	1466	ACTAGATTTCTTTCCTCAAG	0.6	-20.8	63.9	-21.4	0	-4.5
CAATTAAATTCTAGAGAAGC SEQ ID NO:1762 SEQ ID NO:1763 SEQ ID NO:1763 SEQ ID NO:1764 SEQ ID NO:1764 SEQ ID NO:1764 SEQ ID NO:1764 SEQ ID NO:1765 SEQ ID NO:1766 SEQ ID NO:1766 SEQ ID NO:1766 SEQ ID NO:1766 SEQ ID NO:1767 SEQ ID NO:1767 SEQ ID NO:1767 SEQ ID NO:1767 SEQ ID NO:1768 SEQ ID NO:1768 SEQ ID NO:1768 SEQ ID NO:1769 SEQ ID NO:1769 SEQ ID NO:1769 SEQ ID NO:1770 SEQ ID NO:1770 SEQ ID NO:1770 SEQ ID NO:1771 SEQ ID NO:1771 SEQ ID NO:1771 SEQ ID NO:1771 SEQ ID NO:1772 SEQ ID NO:1772 SEQ ID NO:1773 SEQ ID NO:1774 SEQ ID NO:1775 SEQ ID NO:1775 SEQ ID NO:1775 SEQ ID NO:1776 SEQ ID NO:1777 SEQ ID NO:1777 SEQ ID NO:1776 SEQ ID NO:1776 SEQ ID NO:1776 SEQ ID NO:1776 SEQ ID NO:1777 SEQ ID NO:1776 SEQ ID NO:1776 SEQ ID NO:1777 SEQ ID NO:1776 SEQ ID NO:1777 SEQ ID NO:1776 SEQ ID NO:1776 SEQ ID NO:1777 SEQ ID NO:1777 SEQ ID NO:1777 SEQ ID NO:1777 SEQ ID NO:1778 SEQ ID NO:1778 SEQ ID NO:1778 SEQ ID NO:1777 SEQ ID NO:1778 SEQ ID NO:1779 SEQ ID NO:1780	1764		0.6	-15.7	51.6	-15.8	-0.1	-5.2
1934 GCAGCTTTACATTCANAGGC SEQ ID NO:1763 SEQ ID NO:1764 SEQ ID NO:1764 SEQ ID NO:1764 SEQ ID NO:1765 SEQ ID NO:1766 SEQ ID NO:1766 SEQ ID NO:1766 SEQ ID NO:1766 SEQ ID NO:1767 SEQ ID NO:1767 SEQ ID NO:1767 SEQ ID NO:1767 SEQ ID NO:1768 SEQ ID NO:1768 SEQ ID NO:1768 SEQ ID NO:1769 SEQ ID NO:1769 SEQ ID NO:1769 SEQ ID NO:1770 SEQ ID NO:1770 SEQ ID NO:1770 SEQ ID NO:1770 SEQ ID NO:1771 SEQ ID NO:1772 SEQ ID NO:1773 SEQ ID NO:1774 SEQ ID NO:1775 SEQ ID NO:1776 SEQ ID NO:1776 SEQ ID NO:1776 SEQ ID NO:1776 SEQ ID NO:1777 SEQ ID NO:1776 SEQ ID NO:1777 SEQ ID NO:1778 SEQ ID NO:1778 SEQ ID NO:1778 SEQ ID NO:1779 SEQ ID NO:1778 SEQ ID NO:1779 SEQ ID N	1089	CAATTAAATTCTAGAGAAGC	0.7	-15.8	51.4	-16.5	0	-5.8
### SEQ ID NO:1764 TGCTCCGTGAGAGAACAAA SEQ ID NO:1765 O.8 -21 GO.4 -20.7 -1 -6.	1934	GCAGCTTTACATTCAAAGGC	0.7	-22.8	67	-22.7	-0.6	-4.5
TGCTCGTGAGAGAAACAAA SEQ ID NO:1765 963 AGTCAAAGAACTAATTGAC SEQ ID NO:1766 1168 TCAAACATCTTACTTCCTTC SEQ ID NO:1767 1298 TTATGGAAGTGTAGTGTTT SEQ ID NO:1767 1306 AAGCCTATTATGGACGTGT SEQ ID NO:1768 79 GAGCGTGGTCAGCAGCAGAA SEQ ID NO:1770 90 GCAGGCACGAGGAGAGA SEQ ID NO:1771 651 TGAACATCTTCCTC SEQ ID NO:1771 752 TCACAATTGGAAGTGT SEQ ID NO:1773 847 TACACACACACTTTAACAAA SEQ ID NO:1774 1395 TACACACACACTTTAACAAAT SEQ ID NO:1775 409 GCCTGACTGGAGGAGA SEQ ID NO:1775 409 GCCTGACTGCAGGAGA SEQ ID NO:1775 70 GCCTGACTGCAGAGA SEQ ID NO:1775 847 TACACACCACATTAACAAAT SEQ ID NO:1775 848 TACACACCACATTTAACAAAT SEQ ID NO:1775 754 SEQ ID NO:1776 612 AGCCGGGATCAGCAGGAT SEQ ID NO:1778 769 CAAAAATTACATGAACTTA SEQ ID NO:1778 770 CAAAAATTACATGACTATA SEQ ID NO:1778 771 CAAAAATTACATGACTATA SEQ ID NO:1778 772 TACACACCACATTTACAAA SEQ ID NO:1776 848 TACACACCACATTTACAAAT SEQ ID NO:1776 849 GCCTGACTGCAGGT SEQ ID NO:1777 709 CAAAAAATTACATGACTATA SEQ ID NO:1778 1458 TCTTCCTCAAGAGGATGAT SEQ ID NO:1778 1458 TCTTTCCTCAAGAGGATGAT SEQ ID NO:1778 1458 TCTTTCCTCAAGAGGATGAT SEQ ID NO:1778 1465 CTACATTTTCTCTCAAGA SEQ ID NO:1778 1465 CTACATTTTTCTCTCAAGA SEQ ID NO:1778 1465 CTACATTTTTTCTCAAGA SEQ ID NO:1778 1465 CTACATTTTTTCTCAAGA SEQ ID NO:1778 1465 CTACATTTCTTCCTCAAGA SEQ ID NO:1778 1465 CTACATTTCTTTCCTCAAGA SEQ ID NO:1778 1465 CTACATTTCTTCCTCAAGA SEQ ID NO:1778 1465 CTACATTTCTTTCCTCAAGA SEQ ID NO:1778 1465 CTACATTTCTTTCCTCAAGA SEQ ID NO:1780	1950		0.7	-20.6	60.6	-19.7	-1.6	-5.7
963 AGTCAAAGAACTAATTTGAC SEQ ID NO:1766 1168 TCAAACATCTTACTTCCTTC SEQ ID NO:1767 1298 TTATGGAACGTGTATTT SEQ ID NO:1768 1306 AAACCTATTTATGGAAGTGT SEQ ID NO:1769 79 GAGCGTGGTCAGCAGAAAA SEQ ID NO:1770 651 TGAACAATCACACAAAATAGAA SEQ ID NO:1773 847 TACACACACATTTACAAA SEQ ID NO:1774 1395 TAAAAATAAAAATATTA SEQ ID NO:1775 409 GCCTGACTGCAGCAGAA O.9 -28.8 76.2 -26.1 -1.5 -5. 847 TACACACACATTACAAA SEQ ID NO:1772 1395 TAAAAATAAAAATATTA O.9 -15 48.5 -15.2 -0.4 -4. 1396 SEQ ID NO:1773 407 GCCTCACTGCAGAAAT O.9 -16 51 -16.9 O -2. 1397 TAAAAATATAAAATATTA O.9 -8.2 36.4 -6.8 -2.3 -7. 408 GCCTGACTGCAGGAT O.9 -8.2 36.4 -6.8 -2.3 -7. 409 GCCTGACTGCAGGAT O.9 -8.2 36.4 -6.8 -2.3 -7. 409 GCCTGACTGCAGGAT O.9 -8.2 36.4 -6.8 -2.5 -10. 409 GCCTGACTGCAGGAT O.9 -8.2 36.4 -6.8 -2.5 -10. 409 GCCTGACTGCAGGAT O.9 -8.2 36.4 -6.8 -2.5 -10. 409 GCCTGACTGCCAGTGAT O.9 -8.2 36.4 -6.8 -2.5 -10. 409 GCCTGACTGCAGGAT O.9 -8.2 36.4 -6.8 -2.5 -7. 409 GCCTGACTGCCAGGAT O.9 -8.2 36.4 -6.8 -2.5 -7. 409 GCCTGACTGCCAGTGAT O.9 -8.2 36.4 -6.8 -2.5 -7. 409 GCCTGACTGCCAGGAT O.9 -8.2 36.4 -6.8 -2.5 -7. 409 GCCTGACTGCCAGGAT O.9 -8.2 36.4 -6.8 -2.5 -7. 409 GCCTGACTGCAGG O.9 -8.2 36.4 -6.8 -2.5 -7. 409 GCCTGACTGCCAGGAT O.9 -8.2 36.4 -6.8 -2.3 -7. 409 GCCTGACTGCCAGGATGAT O.9 -8.2 36.4 -6.8 -2.3 -7. 400 GCCTGACTGCCAGGATGAT O.9 -8.2 36.4 -6.8 -7. 400 GCCTGACTGCAGGATGAT O.9 -7. 400 GCCTGACTGCAGGATGA	504	TGCTCCGTGAGAGAAACAAA	0.8	-21	60.4	-20.7	-1	-6.1
TCAAACATCTTACTTCCTTC SEQ ID NO:1767 1298 TTATGGAAGTGTATGTTTT SEQ ID NO:1768 1306 AAAGCTATTTATGGAAGTGT SEQ ID NO:1769 79 GAGCGTGGTCAGCAGCAGAGA SEQ ID NO:1770 90 GCAGGCACGAGGAGCAGTGAT SEQ ID NO:1770 651 TGAACAATCACGAAGATGAT SEQ ID NO:1771 725 TCACAATTTGGAATCTTCAAA SEQ ID NO:1772 847 TACACACACACTTTACAAA SEQ ID NO:1774 1395 TAAAAATATAAAAATATTAA SEQ ID NO:1775 409 GCCTGACTGGCAGGAGT SEQ ID NO:1776 612 AGCCGGGATCAGCGAGAT AGCCACAGTTCCAGA SEQ ID NO:1777 709 CAAAAATTACAACATT SEQ ID NO:1777 1458 TCTTCCCCAAAGGATGAT SEQ ID NO:1778 1 -28.4 76.8 -28.5 -0.7 -7 1458 TCTTCCCCAAAGGATGAT SEQ ID NO:1779 1465 CTAGATTTCTTCCCCAAAGA SEQ ID NO:1779 1465 CTAGATTTCTTCCCCAAAGA SEQ ID NO:1779 1465 TCAGATTTCTTCCCCAAAGA SEQ ID NO:1778 1 -22.2 66.4 -21.6 -1.5 -10 -11.5 -1.6 -1.6 -1.5 -1.6 -1.6 -1.5 -1.6 -1.6 -1.5 -1.6 -1.6 -1.6 -1.5 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6	963	AGTCAAAGAACTAATTTGAC	0.8	-15.9	51.7	-13.3	-3.4	-9.4
TTATGGAAGTGTATGTGTTT SEQ ID NO:1768 1306 AAAGCTATTTATGGAAGTGT SEQ ID NO:1769 79 GAGCGTGGTCAGCAGCAAGA SEQ ID NO:1770 90 GCAGGCACGAGGAGCGTGGT SEQ ID NO:1771 651 TGAACAATCACGAAAATAGA SEQ ID NO:1772 725 TCACAATTTGACAAAT SEQ ID NO:1773 847 TACACACACATTTAACAAAT SEQ ID NO:1774 1395 TAAAAAATATAAAATATTA SEQ ID NO:1775 409 GCCTGACTGCAGGAGG SEQ ID NO:1776 612 AGCCGGGGATCAGCGAGG SEQ ID NO:1777 709 CAAAAATTACATGAAT SEQ ID NO:1777 709 CAAAAATTACATGAATAT SEQ ID NO:1777 1458 TCTTTCCTCAAAGGATGAT SEQ ID NO:1779 1465 CTAGATTTCTTCACAAGA SEQ ID NO:1779 1465 CTAGATTTCTTCACAAGA 1 -22.2 66.4 -21.6 -1.5 -10 -10 -10 -10 -10 -11 -11 -1	1168	TCAAACATCTTACTTCCTTC	0.8	-20.7	62.9	-21.5	0	-1
1306 AAAGCTATTTATGGAAGTGT SEQ ID NO:1769 O.8 -18.4 57.4 -19.2 O -5.	1298	TTATGGAAGTGTATGTGTTT	0.8	-19.6	61.6	-20.4	0	-1.3
79 GAGCGTGGTCAGCAGCAAGA SEQ ID NO:1770 0.9 -26.8 76.2 -26.1 -1.5 -5. 90 GCAGGCACGAGGAGCGTGGT SEQ ID NO:1771 0.9 -29.8 81 -27.9 -2.8 -10 651 TGAACAATCACGAAAATAGA SEQ ID NO:1772 0.9 -15 48.5 -15.2 -0.4 -4. 725 TCACAATTTGGATCTTCAAA SEQ ID NO:1773 0.9 -18.4 56.9 -18.1 -1.1 -5. 847 TACACACACATTTAACAAAT SEQ ID NO:1774 0.9 -16 51 -16.9 0 -2. 1395 TAAAAATATATAAATATTTA SEQ ID NO:1775 0.9 -8.2 36.4 -6.8 -2.3 -7. 409 GCCTGACTGGCAGTTGCAGG SEQ ID NO:1776 1 -29.1 81.5 -27.6 -2.5 -10 612 AGCCGGGATCAGCGTGGATT SEQ ID NO:1777 1 -28.4 76.8 -28.5 -0.7 -7. 709 CAAAAATTACATGTACTTAT SEQ ID NO:1779 1 -14.4 48.2 -14.9 0 -7 1458	1306	AAAGCTATTTATGGAAGTGT	0.8	-18.4	57.4	-19.2	0	-5.1
90 GCAGGCACGAGGAGCGTGGT SEQ ID NO:1771 651 TGAACAATCACGAAAATAGA SEQ ID NO:1772 725 TCACAATTTGGATCTCCAAA SEQ ID NO:1773 847 TACACACACATTTAACAAAT SEQ ID NO:1774 1395 TAAAAATATATAAATATTTA SEQ ID NO:1776 409 GCCTGACTGCAGGTAGGAGT 1 -29.1 81.5 -27.6 -2.5 -10 612 AGCCGGGATCAGCGTGGATT 1 -28.4 76.8 -28.5 -0.7 -7. 614 TCACACACGTTACTATA 1 -14.4 48.2 -14.9 0 -7. 615 TAAAAATTATAACTATTA 1 -14.4 48.2 -14.9 0 -7. 616 TCACACGGATGACTGCAGG 1 -22.2 66.4 -21.6 -1.5 -10. 617 TCTTCCTCAAGAGGATGAT 1 -22.2 66.4 -21.6 -1.5 -10. 618 TCTTCCTCAAGAGGATGAT 1 -22.2 66.4 -21.6 -1.5 -10. 619 CTAGATTTCTTCCTCAAGA SEQ ID NO:1778 610 CTAGATTTCTTCCTCAAGA SEQ ID NO:1778 611 TCTTCCTCAAGAGGATGAT 1 -22.2 66.4 -21.6 -1.5 -10.	79	GAGCGTGGTCAGCAGCAAGA	0.9	-26.8	76.2	-26.1	-1.5	-5.4
SEQ ID NO:1772 725 TCACAATTTGGATCTTCAAA SEQ ID NO:1773 847 TACACACACATTTAACAAAT SEQ ID NO:1774 1395 TAAAAATATATAAATATTTA SEQ ID NO:1775 409 GCCTGACTGCAGGG 1 -29.1 81.5 -27.6 -2.5 -10 847 AGCCGGGATCAGCGTGGATT 1 -28.4 76.8 -28.5 -0.7 -7 709 CAAAAATTACATGTACTTAT 1 -14.4 48.2 -14.9 0 -7 848 TCTTCCTCAAGAGGATGAT 1 -22.2 66.4 -21.6 -1.5 -10 1458 TCTTCCTCAAGAGGATGAT 1 -22.2 66.4 -21.6 -1.5 -10 1465 CTAGATTTCTTCCTCAAGA SEQ ID NO:1780	90	GCAGGCACGAGGAGCGTGGT	0.9	-29.8	81	-27.9	-2.8	-10.3
TCACAATTTGGATCTTCAAA SEQ ID NO:1773 847 TACACACACATTTAACAAAT SEQ ID NO:1774 1395 TAAAAATTATAAAATATTA SEQ ID NO:1775 409 GCCTGACTGGCAGTGCAGG SEQ ID NO:1776 612 AGCCGGGATCAGCGTGGATT SEQ ID NO:1777 709 CAAAAATTACATGTACTAAT SEQ ID NO:1778 1458 TCTTCCCTCAAGAGGATGAT SEQ ID NO:1779 1465 CTAGATTTCTTCCCCAAGAG SEQ ID NO:1780 1 -21.2 64.7 -21.3 -0.7 -6	651		0.9	-15	48.5	-15.2	-0.4	-4.4
SEQ ID NO:1774 1395 TAAAAATATATAAATATTA	725	TCACAATTTGGATCTTCAAA	0.9	-18.4	56.9	-18.1	-1.1	-5.9
1395 SEQ ID NO:1775 409 GCCTGACTGCAGGG 1 -29.1 81.5 -27.6 -2.5 -10 812 AGCCGGATCAGCGTGGATT 1 -28.4 76.8 -28.5 -0.7 -7.6 812 CAAAAATTACATGTACTTAT 1 -14.4 48.2 -14.9 0 -7 81458 TCTTTCCTCAAGAGGATGAT 1 -22.2 66.4 -21.6 -1.5 -10 1465 CTAGATTTCTTCCTCAAGA 1 -21.2 64.7 -21.3 -0.7 -6	847		0.9	-16	51	-16.9	0	-2.5
409 GCCTGACTGCAGTTGCAGG 1 -29.1 81.5 -27.6 -2.5 -10 8EQ ID NO:1776 1 -29.1 81.5 -27.6 -2.5 -10 8GCCGGGATCAGCGTGGATT 1 -28.4 76.8 -28.5 -0.7 -7. 8EQ ID NO:1777 1 -28.4 76.8 -28.5 -0.7 -7. 1 -24.4 48.2 -14.9 0 -7. 1 -7.4 48.2 -14.9 0 -7. 2 -7.6 48.4 -7. 2 -7.6 48.4 -7. 2 -7.6 -7.6 -7. 2 -7.6 -7.6 -7. 2 -7.6 -7.6 -7. 2 -7.6 -7.6 -7. 2 -7.6 -7.6 -7. 2 -7.6 -7.6 -7. 2 -7.6 -7.6 -7. 2 -7.6 -7.6 -7. 2 -7.6 -7.6 -7. 2 -7.6 -7.6 -7. 2 -7.6 -7.6 -7. 2 -7.6 -7.6 -7. 2 -7.6 -7.6 -7. 2 -7.6 -7. 2 -7.6 -7.6 -7. 2 -7.	1395		0.9	-8.2	36.4	-6.8	-2.3	-7.6
SEQ ID NO:1777 CAAAAATTACATGTACTTAT	409	GCCTGACTGGCAGTTGCAGG	1	-29.1	81.5	-27.6	-2.5	-10.2
709 SEQ ID NO:1778 1 14.1 20.2 20.2 20.2 20.2 20.2 20.2 20.2 20	612		1	-28.4	76.8	-28.5	-0.7	-7.6
1458 TCTTTCCTCAAGAGGATGAT 1 -22.2 66.4 -21.6 -1.5 -10 SEQ ID NO:1779 CTAGATTTCTTCCTCAAGA 1 -21.2 64.7 -21.3 -0.7 -6 SEQ ID NO:1780	709		1	-14.4	48.2	-14.9	0	-7.7
1465 SEQ ID NO:1780	1458	TCTTTCCTCAAGAGGATGAT	1	-22.2	66.4	-21.6	-1.5	-10.2
	1465	-	1	-21.2	64.7	-21.3	-0.7	-6.8
1731 SEQ ID NO:1781 1 -16.3 53.1 -17.3 0 -6	1731	ATATTTTAAAGTTGACATGT	1	-16.3	53.1	-17.3	0	-6.9
555 TCTTTCACAACTTCTTCT 1.1 -22 67.8 -23.1 0 -0 SEQ ID NO:1782	555		1.1	-22	67.8	-23.1	0	-0.7
·-	851	ACTATACACACACATTTAAC	1.1	-17.5	55	-18.6	0	-2.4
1812 TCTGAGATATTTCCTAAGAA 1.1 -18.6 57.9 -19.7 0 -4	1812	TCTGAGATATTTCCTAAGAA SEQ ID NO:1784	1.1	-18.6	57.9	-19.7	0	-4.6
658 TGTGTGTTGAACAATCACGA 1.2 -20.5 60.9 -19.8 -1.9 -8	658	TGTGTGTTGAACAATCACGA SEQ ID NO:1785	1.2	-20.5	60.9	-19.8	-1.9	-8.7
1093 AGCACAATTAAATTCTAGAG 1.2 -16.8 53.7 -18 0 -5 SEQ ID NO:1786	1093	AGCACAATTAAATTCTAGAG SEQ ID NO:1786	1.2	-16.8	53.7	-18	0	-5.8

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1394	AAAAATATATAAATATTTAC SEQ ID NO:1787	1.2	-8.7	37.3	-7.6	-2.3	-7.9
1477	CAACAAATAATACTAGATTT SEQ ID NO:1788	1.2	-13.8	46.9	-15	0	-4.5
1478	TCAACAAATAATACTAGATT SEQ ID NO:1789	1.2	-14.1	47.7	-15.3	0	-4.5
1479	TTCAACAAATAATACTAGAT SEQ ID NO:1790	1.2	-14.1	47.7	-15.3	0	-4.5
1740	ATTCCACCTATATTTTAAAG SEQ ID NO:1791	1.2	-18.3	56.4	-19.5	0	-4.6
306	GAAGGCTGACACCTCAGCCC SEQ ID NO:1792	1.3	-29.3	79.1	-24.5	-6.1	-13.4
604	TCAGCGTGGATTTAACCATT SEQ ID NO:1793	1.3	-22.9	65.8	-23.3	-0.8	-5.5
605	ATCAGCGTGGATTTAACCAT SEQ ID NO:1794	1.3	-22.9	65.5	-23.2	-0.8	-5.5
1454	TCCTCAAGAGGATGATAAAT SEQ ID NO:1795	1.3	-19	57.7	-18.9	-1.2	-9.7
611	GCCGGGATCAGCGTGGATTT SEQ ID NO:1796	1.4	-28.5	76.9	-29.4	0	-7.6
1393	AAAATATATAAATATTTACC SEQ ID NO:1797	1.4	-11.4	42.2	-10.5	-2.3	-7.9
1823	AATAAAATACTTCTGAGATA SEQ ID NO:1798	1.4	-14	47.7	-15.4	0	-2.8
1873	TAAAATACAGGTAAATACTG SEQ ID NO:1799	1.4	-13.7	46.7	-14.4	-0.5	-4
170	GGCTGCTTTTGCACTCACTG SEQ ID NO:1800	1.5	-26.7	76.8	-26.1	-2.1	-8.4
177	CAGCGCGGGCTGCTTTTGCA SEQ ID NO:1801	1.5	-30.5	81	-28.7	-3.3	-12.4
1077	AGAGAAGCTACCTACCAAGG SEQ ID NO:1802	1.5	-23.1	66.2	-23.3	-1.2	-6.9
1765	TAAGATTCTTTCAAATATAC SEQ ID NO:1803	1.5	-14.5	49.2	-15.5	-0.1	-5.6
144	CAGTGTTGAGGGCAGTCCAC SEQ ID NO:1804	1.6	-27.2	79.2	-27.7	-1	-5.6
261	CCTGAGACTGTGCGGTAGCA SEQ ID NO:1805	1.6	-27.6	76.9	-27.4	-1.8	-6.3
560	CATTCTCTTTCACAACTTCT SEQ ID NO:1806	1.6	-21.4	65.4	-23	. 0	-1
603	CAGCGTGGATTTAACCATTT SEQ ID NO:1807	1.6	-22.6	64.7	-23.6	-0.3	-5.5
1060	AGGAAGGGCTAAATATTTTA SEQ ID NO:1808	1.6	-18.2	56.5	-19.8	. 0	-6.6
1088	AATTAAATTCTAGAGAAGCT SEQ ID NO:1809	1.6	-16	52	-17.6	0	-5.8
1098	AAAAAAGCACAATTAAATTC SEQ ID NO:1810	1.6	-12.1	43.3	-13.7	0	-4.1
1446	AGGATGATAAATATGGGTAG SEQ ID NO:1811	1.6	-17.7	55.6	-19.3	0	-2.7
2	GTGGGAAGCAGCCGTGACCC SEQ ID NO:1812	1.7	-30.6	80.7	-31.4	-0.8	-5.4
8	TTGCTGGTGGGAAGCAGCCG SEQ ID NO:1813	1.7	-28.6	77.5	-27.4	-2.9	-8.4
11	TCTTTGCTGGTGGGAAGCAG SEQ ID NO:1814	1.7	-25.4	73.9	-25.2	-1.9	-6.4
1386	ATAAATATTTACCTTCATAC SEQ ID NO:1815	1.7	-16.1	52.2	-17.3	0	-7.9
1485	ACCATTTTCAACAAATAATA SEQ ID NO:1816	1.7	-15.8	50.6	-17	-0.1	-2.7

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1628	AGCACTTATGTTTAAATAAG SEQ ID NO:1817	1.7	-16.1	52.3	-16.6	-1.1	-6.6
1683	CAAACCTCCTAAAAACTTAT SEQ ID NO:1818	1.7	-17.5	53.1	-19.2	0	-1.3
1820	AAAATACTTCTGAGATATTT SEQ ID NO:1819	1.7	-15.2	50.4	-15.8	-1	-4.6
1863	GTAAATACTGAAATAATTCT SEQ ID NO:1820	1.7	-13.9	47.4	-14.4	-1.1	-4.8
421	CCTGTCACAGATGCCTGACT SEQ ID NO:1821	1.8	-27.1	75.9	-27.2	-1.7	-6.3
1305	AAGCTATTTATGGAAGTGTA SEQ ID NO:1822	1.8	-18.8	58.8	-20.6	0	-5.1
1375	CCTTCATACACACACAAACC SEQ ID NO:1823	1.8	-22.2	63	-24	0	-0.9
1116	CCCAAAGCCAAAAAAAAAAA SEQ ID NO:1824	1.9	-14.8	46.6	-16.7	0	-3.2
1167	CAAACATCTTACTTCCTTCA SEQ ID NO:1825	1.9	-21	62.6	-22.9	. 0	-1
1170	CTTCAAACATCTTACTTCCT SEQ ID NO:1826	1.9	-21.2	63.4	-23.1	0	-1
1174	TAAGCTTCAAACATCTTACT SEQ ID NO:1827	1.9	-18.6	57.7	-20.5	0	-6.8
1626	CACTTATGTTTAAATAAGGT SEQ ID NO:1828	1.9	-16.7	53.6	-17	-1.5	-7.1
1822	ATAAAATACTTCTGAGATAT SEQ ID NO:1829	1.9	-14.7	49.3	-16.6	0	-2.8
1855	TGAAATAATTCTTAAATAAG SEQ ID NO:1830	1.9	-11	41.6	-11.7	-1.1	-4.3
1878	AAGAATAAAATACAGGTAAA SEQ ID NO:1831	1.9	-12.1	43.4	-14	0	-3.6
1996	CTTGTTCTTTTTTTTTGAAC SEQ ID NO:1832	1.9	-18	57.7	-18.8	-1	-4.9
503	GCTCCGTGAGAGAAACAAAT SEQ ID NO:1833	2	-21	60.4	-21.9	-1	-6.1
1172	AGCTTCAAACATCTTACTTC SEQ ID NO:1834	2	-20.1	62	-22.1	0	-4.3
1862	TAAATACTGAAATAATTCTT SEQ ID NO:1835	2	-12.8	45.1	-13.6	-1.1	-4.2
87	GGCACGAGGAGCGTGGTCAG SEQ ID NO:1836	2.1	-28.4	78.4	-27	-3.5	-9.3
169	GCTGCTTTTGCACTCACTGC SEQ ID NO:1837	2.1	-27.3	78.7	-27.3	-2.1	-7.4
424	CCCCCTGTCACAGATGCCTG SEQ ID NO:1838	2.1	-31.4	82.3	-32.4	-1	-5.3
844	ACACACATTTAACAAATCTA SEQ ID NO:1839	2.1	-16.4	52.2	-18.5	0	-2.7
1139	CTGGTTGTTTTATTTTGACT SEQ ID NO:1840	2.1	-20.6	63.9	-22.7	0	-2.8
420	CTGTCACAGATGCCTGACTG SEQ ID NO:1841	2.2	-25.1		-25.6		-7
1138	TGGTTGTTTTATTTTGACTT SEQ ID NO:1842	4.4	-19.8	62.2	-22	0	-2.8
1443	ATGATAAATATGGGTAGGGA SEQ ID NO:1843	2.2	-18.9	57.9	-21.1		-2.7
1739	TTCCACCTATATTTTAAAGT	4.4	-19.5		-21.7		-4.6
280	ACACTTCATGCCATCCATGC SEQ ID NO:1845	2.3	-26.6	74.3			-5
417	TCACAGATGCCTGACTGGCF SEQ ID NO:1846	2.3	-26.7	7 75	-25.6	-3.4	-9.2

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-		molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
848	ATACACACACATTTAACAAA SEQ ID NO:1847	2.3	-16	51	-18.3	0	-2.4
850	CTATACACACACATTTAACA SEQ ID NO:1848	2.3	-18	55.7	-20.3	0	-2.4
1163	CATCTTACTTCCTTCAGGGG SEQ ID NO:1849	2.3	-25.1	73.5	-26.9	-0.2	-4.7
1678	CTCCTAAAAACTTATTTCA SEQ ID NO:1850	2.3	-17.4	54.4	-18.7	-0.9	-3.3
1373	TTCATACACACACAAACCAC SEQ ID NO:1851	2.4	-20.2	59.4	-22.6	0	-0.9
1483	CATTTTCAACAAATAATACT SEQ ID NO:1852	2.4	-14.7	48.7	-16.6	-0.1	-2.7
1575	AAATCCAGAGTGACTCCTAT SEQ ID NO:1853	2.4	-22.2	65	-23.9	-0.4	-5.5
78	AGCGTGGTCAGCAGCAAGAC SEO ID NO:1854	2.5	-26.4	75.4	-27.3	-1.5	-7.3
260	CTGAGACTGTGCGGTAGCAA SEQ ID NO:1855	2.5	-24.9	70.9	-25.4	-2	-7
1171	GCTTCAAACATCTTACTTCC SEQ ID NO:1856	2.5	-22.1	65.6	-24.6	0	-2.8
1321	GAGGTGGCATACGTTAAAGC SEQ ID NO:1857	2.5	-22.8	66.1	-24.7	-0.3	-4.8
1453	CCTCAAGAGGATGATAAATA SEQ ID NO:1858	2.5	-18.3	56	-20.3	-0.1	-7.5
1562	CTCCTATAATTATGGATAAT SEQ ID NO:1859	2.5	-17.5	54.8	-19.3	-0.1	-9
1574	AATCCAGAGTGACTCCTATA SEQ ID NO:1860	2.5	-22.6	66.7	-24.4	-0.4	-5.5
422	CCCTGTCACAGATGCCTGAC SEQ ID NO:1861	2.6	-28.2	77.5	-29.3	-1.4	-5.9
561	GCATTCTCTTTCACAACTTC SEQ ID NO:1862	2.6	-22.3	67.8	-24.9	0	-3.4
721	AATTTGGATCTTCAAAAATT SEQ ID NO:1863	2.6	-15.1	49.6	-16.3	-1.3	-6.3
724	CACAATTTGGATCTTCAAAA SEQ ID NO:1864	2.6	-17.3	53.9	-19	-0.8	-5.8
706	AAATTACATGTACTTATGCT SEQ ID NO:1865	2.7	-17.8	55.9	-20	0	-7.7
713	TCTTCAAAAATTACATGTAC SEQ ID NO:1866	2.7	-15.5	50.9	-17.7	0	-7.7
1677	TCCTAAAAACTTATTTCAT SEQ ID NO:1867	2.7	-16.5	52.6	-18.3	-0.7	-3.2
1821	TAAAATACTTCTGAGATATT SEQ ID NO:1868	2.7	-14.8	49.6	-17.5	. 0	-3.9
223	AGCGCACACTCGGCAGCAGC SEQ ID NO:1869	2.8	-30.3	81.5	-30.8	-2.3	-9.7
1297	TATGGAAGTGTATGTGTTTC SEQ ID NO:1870	2.8	-19.9	62.8	-22.7	0	-2.6
1627	GCACTTATGTTTAAATAAGG SEQ ID NO:1871	2.8	-17.3	54.7	-18.5	~1.5	-7.1
92	GTGCAGGCACGAGGAGCGTG SEQ ID NO:1872	2.9	-28.6	78.3	-28.4	-3.1	-11.5
289	CCCCGGGCCACACTTCATGC SEQ ID NO:1873	2.9	-32.7	83.1	-34.7		-9.7
410	TGCCTGACTGCAGTTGCAG SEQ ID NO:1874	2.9	-27.9	78.6	-27.6	-3.2	-11.5
556	CTCTTTCACAACTTCTTCTC SEQ ID NO:1875	2.3	-22	67.8	-24.9	0	-0.7
839	CATTTAACAAATCTACATGC SEQ ID NO:1876	2.9	-17.1	53.7	-20	0	-5

Mol			kcal/	kcal/		kcal/		
DOSITION					deg C		kcal/mol	kcal/mol
Desition						target	Intra-	Inter-
1075 AGAAGCTACCTACGAAGAA SEQ ID NO:1877 1440 ATAAATATGGGTAGGAAGA SEQ ID NO:1877 1772 17			total	form-	Tm of	struc-	molecular	molecular
1075 AGAMACCTACCTACCAAGGAA SEQ ID NO:1877 SEQ ID NO:1878 SEQ ID NO:1880 SEQ ID NO:1881 SEQ ID NO:1881 SEQ ID NO:1882 SEQ ID NO:1892 SEQ ID	position	oligo	binding	ation	Duplex	ture	oligo	oligo
SEQ ID NO:1878 2.9	1075	AGAAGCTACCTACCAAGGAA	2.9	-22.4	63.9	-23.7	-1.6	-9.2
SEQ ID NO:1879 3	1440		2.9	-18.2	56.3	-21.1	0	-2.7
SEQ ID NO.1880 3.1 -16.4 53.2 -19.5 0 -5.8	720		3	-15.5	50.7	-17.1	-1.3	-6.3
1374 CTTCATACACCACAAACCA 3.1 -20.9 60.7 -24 0 -0.9	849		3	-16.4	52.2	-19.4	0	-2.4
1374 SEQ ID NO:1882 3.1 -20.9 60.7 -22.7 1448 AGAGGATGATAATATGGGT SEQ ID NO:1883 3.1 -19 58.5 -21.4 -0.1 -9 1576 GAATCCAGAGTGCTCTA 3.1 -22.8 66.4 -25.2 -0.4 -5.5 1576 GAATCCAGAGTGCTCTA 3.1 -22.8 66.4 -25.2 -0.4 -5.5 557 TCTCTTCACAACTCTTCT 3.2 -22 67.8 -25.2 0 -0.7 1484 CCATTTCACAACTCTCTCT 3.2 -15.8 50.6 -18.5 -0.1 -2.7 563 CAGCATTCTCTTCACAACT 3.3 -22.5 67.3 -25.8 0 -4.1 860 SEQ ID NO:1888 3.3 -22.5 67.3 -25.8 0 -4.1 860 TCACTGTTACTATACACA 3.2 -15.8 50.6 -18.5 -0.1 -2.7 1864 GGTAATACTCAACTA 3.3 -19.9 62.3 -20.9 -2.3 -6.5 1864 GGTAATACTCAAATAATA 3.3 -14.2 47.9 -16.9 -0.3 -7.3 1871 AAATACAGATAATACTGA 3.3 -14.6 48.4 -17.9 0 -4.1 1872 AAATACAGGTAAATACTGA 3.3 -14.6 48.4 -17.9 0 -4.1 1872 AAATACAGGTAAATACTGA 3.3 -14.6 48.4 -16.9 -0.9 -4.1 562 AGCATTCTTCCACACTT SEQ ID NO:1893 3.4 -28.5 78.3 -31.4 -0.2 -4.6 562 AGCATCTTCTCACACTT SEQ ID NO:1893 3.4 -28.5 78.3 -31.4 -0.2 -4.6 563 AGCATTCTTTCACAACTT SEQ ID NO:1896 3.4 -8.5 36.9 -10.3 -1.5 -6.5 1400 ATTATATAAAATATATAATA SEQ ID NO:1898 3.4 -8.5 36.9 -10.3 -1.5 -6.5 1420 TATATATAAAATATATAAATA SEQ ID NO:1898 3.5 -18.2 56.1 -21.7 0 -2.7 1732 TATATTAAAATATATAAATA 3.5 -18.2 56.1 -21.7 0 -2.7 1733 TATATTAAAATATATAAATA 3.5 -14.8 49.7 -18.3 0 -4.7 1734 TATATTAAAATATATAAATA 3.6 -25.4 72.8 -27.3 -1.7 -7.1 1735 TCACCAGATGCCGTGA 3.6 -25.4 72.8 -27.3 -1.7 -7.1 1736 TCACCATATATTTAAACTA 3.6 -25.5 77.6 -31.1 -1.1 -5.4 580 ID NO:1899 3.6 -25.4 72.8 -27.3 -1.7 -7.1 580 ID NO:1891 3.6 -19.5 59.3 -23.1 0 -4.6 580 ID NO:1901 3.6 -19.5 59.3 -23.1 0 -4.6 580 ID NO:1901 3.6 -19.5 59.3 -23.1 0 -4.6 580	1087	SEQ ID NO:1881	3.1	-16.4	53.2	-19.5	0	-5.8
SEQ ID NO:1883 3.1	1374		3.1	-20.9	60.7	-24	0	-0.9
1564 SEQ ID NO:1884 3.1	1448		3.1	-18.6	57.5	-21.7	0	-2.7
SEQ ID NO:1885 3.1	1564		3.1	-19	58.5	-21.4	-0.1	-9
SEQ ID NO:1886 S.2 CANTTCAACAAATAATAC SEQ ID NO:1887 SEQ ID NO:1888 S.2 CASCATTCTCTTTCACAACT SEQ ID NO:1888 SEQ ID NO:1889 SEQ ID NO:1889 SEQ ID NO:1889 SEQ ID NO:1890 SEQ ID NO:1890 SEQ ID NO:1891 SEQ ID NO:1891 SEQ ID NO:1892 SEQ ID NO:1892 SEQ ID NO:1892 SEQ ID NO:1893 SEQ ID NO:1893 SEQ ID NO:1894 SEQ ID NO:1895 SEQ ID NO:1895 SEQ ID NO:1895 SEQ ID NO:1895 SEQ ID NO:1896 SEQ ID NO:1898 SEQ ID NO:1899 SEQ ID NO:1899 SEQ ID NO:1899 SEQ ID NO:1990	1576		3.1	-22.8	66.4	-25.2	-0.4	-5.5
SEQ ID No:1887 S.2	557		3.2	-22	67.8	-25.2	0	-0.7
SEQ ID NO:1888 SEQ ID NO:1889 3.3	1484		3.2	-15.8	50.6	-18.5	-0.1	-2.7
SEQ ID NO:1889 3.3 -19.9 62.3 -20.9 -21.3 -0.3 -18.6 GGTAAATACTGAAATATTC SEQ ID NO:1890 3.3 -14.2 47.9 -16.9 -0.3 -7.3 SEQ ID NO:1891 3.3 -14.6 48.4 -17.9 0 -4.1 SEQ ID NO:1892 3.3 -14.6 48.4 -16.9 -0.9 -4.1 SEQ ID NO:1893 3.4 -28.5 78.3 -31.4 -0.2 -4.6 GATGCCATGTCATGCTCCGT SEQ ID NO:1893 3.4 -28.5 78.3 -31.4 -0.2 -4.6 SEQ ID NO:1893 3.4 -21.9 66.4 -25.3 0 -4.1 SEQ ID NO:1895 3.4 -16.2 51.7 -19.6 0 -2.7 SEQ ID NO:1895 3.4 -8.5 36.9 -10.3 -1.5 -6.5 ATTITATAAAATATATAAAAT SEQ ID NO:1896 3.4 -8.5 36.9 -10.3 -1.5 -6.5 TGATAATATGGGTAGGGAA SEQ ID NO:1897 3.5 -18.2 56.1 -21.7 0 -2.7 SEQ ID NO:1898 3.5 -14.8 49.7 -18.3 0 -4.7 SEQ ID NO:1899 3.6 -25.4 72.8 -27.3 -1.7 -7.1 SEQ ID NO:1899 3.6 -25.4 72.8 -27.3 -1.7 -7.1 SEQ ID NO:1900 3.6 -19.5 59.3 -23.1 0 -4.6 SEQ ID NO:1900 3.6 -19.5 59.3 -23.1 0 -4.6 SEQ ID NO:1900 3.8 -28.5 77.6 -31.1 -1.1 -5.4 SEQ ID NO:1904 3.8 -27.9 78.2 -28.8 -2.9 -7.8 TTGTCGTGGGGAAGCAGCC SEQ ID NO:1904 3.8 -27.9 78.2 -28.8 -2.9 -7.8 ATGCCATGTCAGGCCCGTGG 3.8 -27.9 78.8 -31.2 -0.2 -4.6 SEQ ID NO:1904 3.8 -27.9 78.8 -31.2 -0.2 -4.6 SEQ ID NO:1905 3.8 -27.9 78.8 -31.2 -0.2 -4.6 SEQ ID NO:1906 3.8 -27.9 78.8 -31.2 -0.2 -4.6 SEQ ID NO:1906 3.8 -27.9 78.8 -31.2 -0.2 -4.6 SEQ ID NO:1906 3.8 -27.9 78.8 -31.2 -0.2 -4.6 SEQ ID NO:1906 3.8 -27.9 78.8 -31.2 -0.2 -4.6 SEQ ID NO:1906 3.8 -27.9 78.8 -31.2 -0.2 -4.6 SEQ ID NO:1906 3.8 -27.9 78.8 -31.2 -0.2 -4.6 SEQ ID NO:1906 3.8 -27.9 78.8 -31.2 -0.2 -4.6 SEQ ID NO:1906 3.8 -27.9 78.8 -31.2 -0.2 -4.6 SEQ ID NO:1906 3.8 -27.9 78.8 -31.2 -0.2 -4.6 SEQ ID NO:1906 3.8 -27.9 78.8 -31.2 -0.2 -4.6 SEQ ID NO:1906 3.8 -27.9 78.8 -31.2 -0.2 -4.6 SEQ ID NO:1906 3.8 -27.9 78.8 -31.2 -0.2 -4.6 SEQ ID NO:1906 3.8 -27.9 78.8 -31.2 -0.2 -4.6 SEQ ID NO:1906 3.8 -27.9 78.8 -31.2 -0.2 -4.6 SEQ ID NO:1906 3.8 -27.9 78.8 -31.2 -0.2 -4.6 SEQ ID NO:1906 3.8 -27.9 78.8 -31.2 -0.2 -4.6 SEQ ID NO:1906 3.8 -27.9 78.8 -31.2 -0.2 -4.6 SEQ ID NO:1906 3.8 -27.9 78.8 -31.2 -0.2 -4.6 SEQ ID NO:1906 3.8 -27.9 78.8 -	563		3.3	-22.5	67.3	-25.8	0	-4.1
SEQ ID NO:1890 1871	860		3.3	-19.9	62.3	-20.9	-2.3	-6.5
SEQ ID NO:1891 3.3 -14.6	1864		3.3	-14.2	47.9	-16.9	-0.3	-7.3
SEQ ID NO:1892 516 GATGCCATGTCATGCTCCGT SEQ ID NO:1893 562 AGCATTCTCTTTCACAACTT SEQ ID NO:1894 841 CACATTTAACAAATCTACAT SEQ ID NO:1895 1400 ATTTATAAAAATATATAAAT SEQ ID NO:1896 1442 TGATAATATGGGTAGGGAA SEQ ID NO:1897 1732 TATATTTTAAAGTTGACATG SEQ ID NO:1898 419 TGTCACCAGATGCCTGACTGG SEQ ID NO:1898 520 ID NO:1898 530 TCAGTGTTACAAACACA SEQ ID NO:1898 5419 TCAGTGTTACAACACA SEQ ID NO:1898 552 TCAGTGTACAATACACACA SEQ ID NO:1990 553 CAGTGCCACAACACACA SEQ ID NO:1990 564 TCCACCATATATTTAAAGTT SEQ ID NO:1901 574 TCCACCATATATTTAAAGTT SEQ ID NO:1901 575 CTGCTGGGAAACAAACC SEQ ID NO:1901 576 CTCCGTGAGAAACAAACC SEQ ID NO:1902 577 CTGCTGGGGAAGCACCC SEQ ID NO:1904 577 TGTGCTGGGGAAGCACCC SEQ ID NO:1904 577 TGTGCTGGGGAAGCACCC SEQ ID NO:1904 578 TTGCTGGTGGGAAGCACCC SEQ ID NO:1904 579 TTTGCTGGTGGGAAGCACCC SEQ ID NO:1905 580 TTGCTGGTGGGAAGCACCC SEQ ID NO:1904 570 CTTTGCTGGTGGGAAGCACC SEQ ID NO:1905 580 TTTGCTGGTGGGAAGCACCC SEQ ID NO:1905 580 TTTGCTGGTGGGAAGCACC SEQ ID NO:1905	1871	SEQ ID NO:1891	3.3	-14.6	48.4	-17.9	0	-4.1
516 SEQ ID NO:1893 3.4 -28.5 78.3 -31.4 -0.2 -4.0 562 AGCATTCTCTTTCACAACTT SEQ ID NO:1894 3.4 -21.9 66.4 -25.3 0 -4.1 841 CACATTTAACAAATCTCACAT SEQ ID NO:1895 3.4 -16.2 51.7 -19.6 0 -2.7 1400 ATTATAAAATATATAAAT SEQ ID NO:1896 3.4 -8.5 36.9 -10.3 -1.5 -6.5 1442 TGATAAATATGGGTAGGAAA SEQ ID NO:1898 3.5 -18.2 56.1 -21.7 0 -2.7 1732 TATATTTAAAGTTGACATGG SEQ ID NO:1898 3.6 -25.4 72.8 -27.3 -1.7 -7.1 859 TCAGCAGATGCCTGACTGGG SEQ ID NO:1900 3.6 -25.4 72.8 -27.3 -1.7 -7.1 859 TCAGCTATATTTTAAAGTT SEQ ID NO:1901 3.6 -19.5 59.3 -23.1 0 -4.6 502 CTCGTGAGAGAACAAAATC SEQ ID NO:1901 3.7 -19.6 58 -22.7 -0.3 -5 5 CTGGTGGG	1872		3.3	-14.6	48.4	-16.9	-0.9	-4.1
SEQ ID NO:1894 841	516	SEQ ID NO:1893	3.4	-28.5	78.3	-31.4	-0.2	-4.6
SEQ ID NO:1895 3.4 -8.5 36.9 -10.3 -1.5 -6.5 1442 TGATAATAGGTAGGGAA SEQ ID NO:1897 1732 TATATTTAAAGTTGACATG SEQ ID NO:1898 419 TGTCACAGATGCCTGACTGG SEQ ID NO:1899 419 TCAGTGTTACTATACACACA SEQ ID NO:1900 1738 TCCACCTATATTTAAAGTT 3.6 -20.5 63.2 -21.8 -2.3 -6.5 1738 TCCACCTATATTTAAAGTT 3.6 -19.5 59.3 -23.1 0 -4.6 502 CTCCGTGAGAAACAAAAC SEQ ID NO:1901 502 CTCCGTGAGAACAAAACACA 3.6 -20.5 68 -22.7 -0.3 -5 5 CTGGTGGGAAGCACCCTGA 3.8 -28.5 77.6 -31.1 -1.1 -5.4 9 TTTGCTGGTGGGAAGCAGC 3.8 -27.9 78.2 -28.8 -2.9 -7.8 10 CTTTCCTGGTGGGAACCACC 3.8 -26.8 76.6 -28.1 -2.5 -7.4 515 ATGCCATGTCATGCTCCGTG 3.8 -27.9 76.8 -31.2 -0.2 -4.6	562	SEQ ID NO:1894	3.4	-21.9	66.4	-25.3	0	-4.1
SEQ ID NO:1896 1442 TGATAAATATGGGTAGGGAA SEQ ID NO:1897 1732 TATATTTTAAAGTTGACATG SEQ ID NO:1898 419 TGTCACAGATGCCTGACTGG SEQ ID NO:1899 859 TCAGTGTTACTATACACACA SEQ ID NO:1900 1738 TCCACCTATATTTTAAAGTT SEQ ID NO:1901 502 CTCCGTGAGAAACAAATC SEQ ID NO:1902 5 CTGGTGGGAAGCAGCCGTGA SEQ ID NO:1902 5 CTGGTGGGAAGCAGCCGTGA SEQ ID NO:1903 9 TTTGCTGGTGGGAAGCAGCC SEQ ID NO:1904 10 CTTTGCTGGTGGGAAGCAGCC SEQ ID NO:1905 ATGCCACTGTCAGGAAGCAGCC SEQ ID NO:1904 10 CTTTGCTGGTGGGAAGCAGCC SEQ ID NO:1905 ATGCCATGTCAGGAAGCAGCC SEQ ID NO:1905 ATGCCATGTCAGGAAGCAGCC SEQ ID NO:1904 10 CTTTGCTGGTGGGAAGCAGC SEQ ID NO:1905 ATGCCATGTCATGCTCCGTG 3.8 -26.8 76.6 -28.1 -2.5 -7.4	841		3.4	-16.2	51.7	-19.6	0	-2.7
1732 TATATTTTAAAGTTGACATG SEQ ID NO:1897 419 TGTCACAGATGCCTGACTGG SEQ ID NO:1899 859 TCAGTGTTACTATACACACA SEQ ID NO:1900 1738 TCCACCTATATTTTAAAGTT SEQ ID NO:1901 502 CTCCGTGAGAGAAACAAATC SEQ ID NO:1902 5 CTGGTGGGAAGCAGCCGTGA SEQ ID NO:1903 9 TTTGCTGGTGGGAAGCAGCC SEQ ID NO:1904 10 CTTTGCTGGTGGGAAGCAGC SEQ ID NO:1905 ATGCCATGTTAGTGAGCAGC SEQ ID NO:1905 3.6 -20.5 63.2 -21.8 -2.3 -6.5 63.2 -21.8 -2.3 -6.5 63.2 -21.8 -2.3 -6.5 63.2 -21.8 -2.3 -6.5 63.2 -21.8 -2.3 -6.5 63.2 -21.8 -2.3 -6.5 70 -4.6 70 -4.6 70 -4.6 71 -4.6 72 -4.6 73 -19.6 58 -22.7 -0.3 -5 74 -19.6 58 -22.7 -0.3 -5 75 -19.6 58 -22.7 -0.3 -5 76 -28.1 -1.1 -5.4 77 -19.6 -28.1 -1.1 -5.4 78 -28.8 -2.9 -7.8 78 -28.8 -2.9 -7.8 78 -28.8 -2.9 -7.8 78 -28.8 -2.9 -7.8 78 -28.8 -2.9 -7.8 78 -28.8 -2.9 -7.8 78 -28.8 -2.9 -7.4 78 -28.8 -2.9 -7.4	1400	SEQ ID NO:1896	3.4	-8.5	36.9	-10.3	-1.5	-6.5
TATATTTAAAGTTGACATG SEQ ID NO:1898 419 TGTCACAGATGCCTGACTGG SEQ ID NO:1899 859 TCAGTGTTACATACACACA SEQ ID NO:1900 1738 TCCACCTATATTTAAAGTT SEQ ID NO:1901 502 CTCCGTGAGAGAAACAAATC SEQ ID NO:1902 5 CTGGTGGGAAGCAGCCGTGA SEQ ID NO:1903 9 TTTGCTGGTGGGAAGCAGCC SEQ ID NO:1904 10 CTTTGCTGGTGGGAAGCAGC SEQ ID NO:1905 ATGCCATGTTAGTGAGCAGC SEQ ID NO:1905 3.6 -20.5 63.2 -21.8 -2.3 -6.5 63.2 -21.8 -2.3 -6.5 63.2 -21.8 -2.3 -6.5 63.2 -21.8 -2.3 -6.5 63.2 -21.8 -2.3 -6.5 63.2 -21.8 -2.3 -6.5 74.6 59.3 -23.1 0 -4.6 75.6 59.3 -23.1 0 -4.6 75.6 5822.7 -0.3 -5 75.6 5822.7 -0.3 -5 75.6 5822.7 -0.3 -5 75.6 5822.7 -0.3 -5 75.6 5822.7 -0.3 -5 75.6 5822.7 -0.3 -5 75.6 -31.1 -1.1 -5.4 75.6 5827.9 78.2 -28.8 -2.9 -7.8 75.6 5827.9 78.2 -28.8 -2.9 -7.8 75.7 5827.9 78.2 -28.8 -2.9 -7.4 75.8 5927.9 76.8 -31.2 -0.2 -4.6	1442		3.5	-18.2	56.1	-21.7	0	-2.7
### SEQ ID NO:1899 ### SEQ ID NO:1899 ### SEQ ID NO:1899 ### TCAGTGTTACTATACACACA SEQ ID NO:1900 ### TCCACCTATATTTTAAAGTT SEQ ID NO:1901 ### SEQ ID NO:1902 ### SEQ ID NO:1902 ### SEQ ID NO:1903 ### SEQ ID NO:1903 ### TTGCTGGTGGGAAGCAGCC SEQ ID NO:1904 ### TTGCTGGTGGGAAGCAGCC SEQ ID NO:1904 ### TTGCTGGTGGGAAGCAGCC SEQ ID NO:1904 ### TTGCTGGTGGGAAGCAGCC SEQ ID NO:1905 ### ATGCCATGTCATGCTCCGTG ### SEQ ID NO:1905 ### TGCTGGTGGGAAGCAGCC SEQ ID NO:1905 ### ATGCCATGTCATGCTCCGTG ### TGCTGGTGGGAAGCAGCC SEQ ID NO:1905 ### ATGCCATGTCATGCTCCGTG ### TGCTGTGGTGGGAAGCAGCC SEQ ID NO:1905 ### TGCCATGTCATGCTCCGTG ### TGCCATGTCATGC	1732	TATATTTTAAAGTTGACATG SEQ ID NO:1898	3.5	-14.8	49.7	-18.3	0	-4.7
SEQ ID NO:1900 1738	419		3.6	-25.4	72.8	-27.3	-1.7	-7.1
1738 SEQ ID NO:1901 3.6 -19.5 59.3 -23.1 0 -19.6 502 CTCCGTGAGAGAAACAAATC SEQ ID NO:1902 3.7 -19.6 58 -22.7 -0.3 -5 SEQ ID NO:1902 3.8 -28.5 77.6 -31.1 -1.1 -5.4 SEQ ID NO:1903 3.8 -27.9 78.2 -28.8 -2.9 -7.8 SEQ ID NO:1904 3.8 -27.9 78.2 -28.8 -2.9 -7.8 CTTGCTGGTGGGAAGCAGC SEQ ID NO:1905 3.8 -26.8 76.6 -28.1 -2.5 -7.4 SEQ ID NO:1905 3.8 -27.9 76.8 -31.2 -0.2 -4.6	859		3.6	-20.5	63.2	-21.8	-2.3	-6.5
502 SEQ ID NO:1902 5.7 -13.6 56 -22.7 -0.3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1738		3.6	-19.5	59.3	-23.1	0	-4.6
5 SEQ ID NO:1903 3.8 -26.8 77.6 -31.1 -1.1 -3.4 9 TTTGCTGGTGGGAAGCAGCC SEQ ID NO:1904 10 CTTTGCTGGTGGGAAGCAGC SEQ ID NO:1905 3.8 -26.8 76.6 -28.1 -2.5 -7.4 -7.4 ATGCCATGTCATGCTCCGTG 3.8 -27.9 76.8 -31.2 -0.2 -4.6	502		3.7	-19.6	58	-22.7	-0.3	-5
9 SEQ ID NO:1904 3.8 -27.9 78.2 -28.0 -27.9 78.2 10 CTTTGCTGGTGGGAAGCAGC 3.8 -26.8 76.6 -28.1 -2.5 -7.4 SEQ ID NO:1905 3.8 -27.9 76.8 -31.2 -0.2 -4.6	5	SEQ ID NO:1903	3.8	-28.5	77.6	-31.1	-1.1	-5.4
10 SEQ ID NO:1905 3.8 -27.9 76.8 -31.2 -0.2 -4.6	9	SEQ ID NO:1904	3.8	-27.9	78.2	-28.8	2.9	-7.8
515 ATGCCATGTCATGCTCCGTG 3.8 -27.9 76.8 -31.2 -0.2 -4.6	10		3.8	-26.8	76.6	-28.1	-2.5	-7.4
	515	ATGCCATGTCATGCTCCGTG	3.8	-27.9	76.8	-31.2	-0.2	-4.6

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
606	GATCAGCGTGGATTTAACCA SEQ ID NO:1907	3.9	-23.4	66.7	-26.5	-0.6	-5.9
1303	GCTATTTATGGAAGTGTATG SEQ ID NO:1908	3.9	-19.5	60.6	-23.4	0	-2.8
1563	ACTCCTATAATTATGGATAA SEQ ID NO:1909	3.9	-17.7	55.3	-20.9	-0.1	-9
714	ATCTTCAAAAATTACATGTA SEQ ID NO:1910	4	-15.3	50.4	-18.8	0	-7.5
1449	AAGAGGATGATAAATATGGG SEQ ID NO:1911	4	-16.7	52.8	-20.7	0	-2.7
1866	CAGGTAAATACTGAAATAAT SEQ ID NO:1912	4	-14.4	48	-18.4	0	-3.8
6	GCTGGTGGGAAGCAGCCGTG SEQ ID NO:1913	4.1	-29.7	80.5	-31.6	-2.2	-8.4
518	CAGATGCCATGTCATGCTCC SEQ TD NO:1914	4.1	-27.2	76.6	-30.8	-0.1	-4.4
1099	AAAAAAAGCACAATTAAATT SEQ ID NO:1915	4.1	-11	41.2	-15.1	0	-4.1
1865	AGGTAAATACTGAAATAATT SEQ ID NO:1916	4.1	-13.8	47	-17.9	0	-3.8
600	CGTGGATTTAACCATTTCCT SEQ ID NO:1917	4.2	-23.4	66.2	-26.7	-0.8	-4.8
609	CGGGATCAGCGTGGATTTAA SEQ ID NO:1918	4.2	-23.7	66.7	-27.9	0	-5.7
1733	CTATATTTTAAAGTTGACAT SEQ ID NO:1919	4.2	-15.7	51.6	-19.9	0	-4.6
719	TTTGGATCTTCAAAAATTAC SEQ ID NO:1920	4.3	-15.7	51.2	-19.1	-0.8	-5.6
1304	AGCTATTTATGGAAGTGTAT SEQ ID NO:1921	4.3	-19.5	60.9	-23.8	0	-4.3
1441	GATAAATATGGGTAGGGAAG SEQ ID NO:1922	4.3	-18.2	56.3	-22.5	0	-2.2
843	CACACATTTAACAAATCTAC SEQ ID NO:1923	4.4	-16.4	52.2	-20.8	0	-2.5
3	GGTGGGAAGCAGCCGTGACC SEQ ID NO:1924	4.5	-29.8	79.9	-33.6	-0.4	-5.4
517	AGATGCCATGTCATGCTCCG SEQ ID NO:1925	4.5	-27.3	75.3	-31.3	-0.2	-4.6
707	AAAATTACATGTACTTATGC SEQ ID NO:1926	4.6	-16.2	52.2	-20.3	0	-7.5
840	ACATTTAACAAATCTACATG SEQ ID NO:1927	4.6	-15.5	50.5	-20.1	0	-4.7
1103	AAAAAAAAAAGCACAATTA SEQ ID NO:1928	4.6	-9.5	38.6	-14.1	. 0	-4.1
1176	CATAAGCTTCAAACATCTTA SEQ ID NO:1929	4.6	-18.2	56.5	-22.8	0	-6.8
1302	CTATTTATGGAAGTGTATGT SEQ ID NO:1930	4.6	-18.9	59.5	-23.5	0	-1.8
1676	CCTAAAAACTTATTTCATA SEQ ID NO:1931	4.7	-15.8	51	-19.5	-0.9	-3.3
564	GCAGCATTCTCTTTCACAAC SEQ ID NO:1932	4.8	-23.4	69.6	-28.2	0	-4.7
842	ACACATTTAACAAATCTACA SEQ ID NO:1933	4.8	-16.4	52.2	-21.2	0	-2.7
718	TTGGATCTTCAAAAATTACA SEQ ID NO:1934	4.9	-16.3	52.1	-21.2	0	-5
1104	AAAAAAAAAAAAGCACAATT SEQ ID NO:1935	4.9	-9.1	38	-14	0	-4.1
1450	CAAGAGGATGATAAATATGG SEQ ID NO:1936	4.9	-16.2	51.7	-21.1	0	-2.7

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
75	GTGGTCAGCAGCAGACGCT SEQ ID NO:1937	5	-27.3	77.1	-30.8	-1.4	-8.5
91	TGCAGGCACGAGGAGCGTGG SEQ ID NO:1938	5	-28.6	77.4	-30.1	-3.5	-11.6
1954	AACAAAACCTAACAGCTTAT SEQ ID NO:1939	5	-17.6	53.7	-22.6	0	-4.5
1115	CCAAAGCCAAAAAAAAAAA SEQ ID NO:1940	5.2	-12.1	42.5	-17.3	0	-2.4
1870	AATACAGGTAAATACTGAAA SEQ ID NO:1941	5.2	-14.6	48.4	-18.8	-0.9	-4.1
77	GCGTGGTCAGCAGCAAGACG SEQ ID NO:1942	5.3	-27.2	74.9	-31.6	-0.7	-7.7
414	CAGATGCCTGACTGGCAGTT SEQ ID NO:1943	5.4	-26.7	75.7	-28.5	-3.6	-8.6
423	CCCCTGTCACAGATGCCTGA SEQ ID NO:1944	5.4	-30	80.3	-33.9	-1.4	-5.7
602	AGCGTGGATTTAACCATTTC SEQ ID NO:1945	5.5	-22.3	65	-26.9	-0.8	-5.5
708	AAAAATTACATGTACTTATG SEQ ID NO:1946	5.5	-13.7	46.9	-18.7	0	-7.7
1100	AAAAAAAAGCACAATTAAAT SEQ ID NO:1947	5.5	-10.2	39.8	-15.7	0	-4.1
1955	AAACAAAACCTAACAGCTTA SEQ ID NO:1948	5.5	-16.9	52.1	-22.4	0	-4.5
413	AGATGCCTGACTGGCAGTTG SEQ ID NO:1949	5.6	-26	74.4	-28	-3.6	-8.6
76	CGTGGTCAGCAGCAAGACGC SEQ ID NO:1950	5.7	-27.2	74.9	-31.4	-1.4	-8.5
858	CAGTGTTACTATACACACAC SEQ ID NO:1951	5.7	-20.3	62.3	-23.7	-2.3	-6.5
1105	AAAAAAAAAAAAAGCACAAT SEQ ID NO:1952	5.8	-8.3	36.7	-14.1	0	-4.1
601	GCGTGGATTTAACCATTTCC SEQ ID NO:1953	5.9	-24.3	68.3	-29.3	-0.8	-6.2
1867	ACAGGTAAATACTGAAATAA SEQ ID NO:1954	5.9	-14.6	48.4	-19.5	-0.9	-4.1
411	ATGCCTGACTGGCAGTTGCA SEQ ID NO:1955	6	-27.9	78.3	-30.3	-3.6	-11.9
607	GGATCAGCGTGGATTTAACC SEQ ID NO:1956	6	-23.9	68.1	-29.9	0	-5.7
415	ACAGATGCCTGACTGGCAGT SEQ ID NO:1957	6.1	-26.8	75.9	-29.8	-3.1	-9.8
1102	AAAAAAAAAAGCACAATTAA SEQ ID NO:1958	6.1	-9.5	38.6	-15.6	0	-4.1
1734	CCTATATTTTAAAGTTGACA SEQ ID NO:1959	6.1	-17.7	55.5	-23.8	0	-4.6
1086	TTAAATTCTAGAGAAGCTAC SEQ ID NO:1960	6.2	-16.6	53.8	-22.8	0	-5.8
1166	AAACATCTTACTTCCTTCAG SEQ ID NO:1961	6.3	-20.3	61.6	-26.6	0	-1.6
412	GATGCCTGACTGGCAGTTGC SEQ ID NO:1962	6.4	-27.8	78.6	-30.6	-3.6	-9.7
717	TGGATCTTCAAAAATTACAT SEQ ID NO:1963	6.6	-16.2	51.9	-22.8	0	-5
1675	CTAAAAACTTATTTCATAC SEQ ID NO:1964	6.7	-14	47.7	-19.7 .	-0.9	-3.3
1076	GAGAAGCTACCTACCAAGGA SEQ ID NO:1965	6.8	-23.7	67.2	-28.9	-1.6	-9.2
657	GTGTGTTGAACAATCACGAA SEQ ID NO:1966	6.9	-19.8	59.1	-25.3	-1.3	-8.7

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol		kcal/mol
			duplex	c	target	Intra-	Inter-
		total	form-	Tm of	struc-		molecular oligo
position	oligo GATCTTCAAAAATTACATGT	binding	ation	Duplex	ture	oligo	01190
715	SEQ ID NO:1967	6.9	-16.2	52.1	-23.1	0	-6.3
1868	TACAGGTAAATACTGAAATA SEQ ID NO:1968	6.9	-15	49.5	-20.9	-0.9	-4.1
1880	TCAAGAATAAAATACAGGTA SEQ ID NO:1969	7.1	-14.6	48.6	-21.7	0	-3.4
656	TGTGTTGAACAATCACGAAA SEQ ID NO:1970	7.3	-17.9	54.5	-23.8	-1.3	-8.7
1164	ACATCTTACTTCCTTCAGGG SEQ ID NO:1971	7.4	-24.1	71.4	-31.5	0	-4.7
1886	CCAACTTCAAGAATAAAATA SEQ ID NO:1972	7.4	-14.8	48.3	-22.2	0	-3.5
1106	AAAAAAAAAAAAAGCACAA SEQ ID NO:1973	7.5	-7.6	35.7	-15.1	. 0	-4.1
1101	AAAAAAAAAGCACAATTAAA SEQ ID NO:1974	7.6	-9.5	38.6	-17.1	Ō	-4 .1
1881	TTCAAGAATAAAATACAGGT SEQ ID NO:1975	7.6	-15	49.4	-22.6	0	-2.9
1884	AACTTCAAGAATAAAATACA SEQ ID NO:1976	7.6	-13	45.2	-20.6	0	-3.5
416	CACAGATGCCTGACTGGCAG SEQ ID NO:1977	7.7	-26.3	73.6	-30.4	-3.6	-9.8
608	GGGATCAGCGTGGATTTAAC SEQ ID NO:1978	8.2	-23.1	67	-31.3	0	-5.3
1107	AAAAAAAAAAAAAAGCACA SEQ ID NO:1979	8.3	-7.6	35.7	-15.9	0	-4.1
1885	CAACTTCAAGAATAAAATAC SEQ ID NO:1980	8.4	-13	45.2	-21.4	0	-3.5
716	GGATCTTCAAAAATTACATG SEQ ID NO:1981	8.5	-16.2	51.9	-24.7	0	-5
1451	TCAAGAGGATGATAAATATG SEQ ID NO:1982	8.6	-15.4	50.4	-24	0	-2.7
1879	CAAGAATAAAATACAGGTAA SEQ ID NO:1983	8.6	-13.5	46.1	-22.1	0	-3.6
1735	ACCTATATTTTAAAGTTGAC SEQ ID NO:1984	8.8	-17.2	54.7	-26	0	-4.6
1883	ACTTCAAGAATAAAATACAG SEQ ID NO:1985	8.8	-13.7	46.7	-22.5	0	-3.5
1452	CTCAAGAGGATGATAAATAT SEQ ID NO:1986	8.9	-16.3	52.3	-25.2	0	-3.9
4	TGGTGGGAAGCAGCCGTGAC SEQ ID NO:1987	9.2	-27.8	76.3	-35.8	-1.1	-4.6
1114	CAAAGCCAAAAAAAAAAAA SEQ ID NO:1988	9.3	-9.4	38.4	-18.7	. 0	-3.2
1165	AACATCTTACTTCCTTCAGG SEQ ID NO:1989	9.3	-22.2	66.4	-31.5	0	-4.1
1882	CTTCAAGAATAAAATACAGG SEQ ID NO:1990	9.8	-14.7	48.6	-24.5	0	-3.5
1109	CCAAAAAAAAAAAAAAGCA SEQ ID NO:1991	10.3	-9.4	38.4	-19.7	0	-4.1
1108	CAAAAAAAAAAAAAAGCAC SEQ ID NO:1992	10.5	-7.6	35.7	-18.1	0	-4.1
1869	ATACAGGTAAATACTGAAAT SEQ ID NO:1993	10.9	-15.3	50	-25.2	-0.9	-4.1
1113	AAAGCCAAAAAAAAAAAAA SEQ ID NO:1994	11.6	-8	36.3	-19.6	0	-3.2
1110	GCCAAAAAAAAAAAAAAGC SEQ ID NO:1995	11.7	-10.5	40.1	-22.2	0	-2.8
1175	ATAAGCTTCAAACATCTTAC SEQ ID NO:1996	12.4	-17.7	55.8	-30.1	0	-6.8

		kcal/	kcal/		kca1/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1737	CCACCTATATTTTAAAGTTG SEQ ID NO:1997	13	-19.1	57.9	-32.1	0	-4.6
1736	CACCTATATTTTAAAGTTGA SEQ ID NO:1998	14.9	-17.7	55.5	-32.6	0	-4.6
1112	AAGCCAAAAAAAAAAAAAA SEQ ID NO:1999	16.6	 8	36.3	-24.6	0	-3.2
1111	AGCCAAAAAAAAAAAAAG SEQ ID NO:2000	17.1	-8.7	37.4	-25.8	0	-3.2

Example 15

Western blot analysis of ESM-1 protein levels

[00230] Western blot analysis (immunoblot analysis) is carried out
5 using standard methods. Cells are harvested 16-20 h after
oligonucleotide treatment, washed once with PBS, suspended in
Laemmli buffer (100 ul/well), boiled for 5 minutes and loaded on a 16%
SDS-PAGE gel. Gels are run for 1.5 hours at 150 V, and transferred to
membrane for western blotting. Appropriate primary antibody directed
10 to ESM-1 is used, with a radiolabeled or fluorescently labeled secondary
antibody directed against the primary antibody species. Bands are
visualized using a PHOSPHORIMAGER™ (Molecular Dynamics,
Sunnyvale CA).

WHAT IS CLAIMED IS:

5

20

1. An antisense compound 8 to 30 nucleobases in length targeted to a nucleic acid molecule encoding ESM-1, wherein said antisense compound specifically hybridizes with and inhibits the expression of ESM-1.

- 2. The antisense compound of claim 1 which is an antisense oligonucleotide.
- 3. The antisense oligonucleotide of claim 2 comprising a nucleic acid sequence selected from the group consisting of at least eight contiguous bases of SEQ ID NO:1 SEQ ID NO:2000.
 - 4. The antisense oligonucleotide of claim 2 comprising a nucleic acid sequence selected from the group consisting of SEQ ID NO:1 SEQ ID NO:2000.
- 5. The antisense compound of claim 2, 3, or 4 wherein the antisense oligonucleotide comprises at least one modified internucleoside linkage.
 - 6. The antisense compound of claim 5 wherein the modified internucleoside linkage is a phosphorothioate linkage.
 - 7. The antisense compound of claim 2, 3, or 4 wherein the antisense oligonucleotide comprises at least one modified sugar moiety.
 - 8. The antisense compound of claim 7 wherein the modified sugar moiety is a 2'-O-methoxyethyl sugar moiety.
 - 9. The antisense compound of claim 2, 3, or 4 wherein the antisense oligonucleotide comprises at least one modified nucleobase.
- 25 10. The antisense compound of claim 9 wherein the modified nucleobase is a 5-methylcytosine.

11. The antisense compound of claim 2, 3, or 4 wherein the antisense oligonucleotide is a chimeric oligonucleotide.

- 12. A composition comprising the antisense compound of claim 1 and a pharmaceutically acceptable carrier or diluent.
- 5 13. The composition of claim 12 further comprising a colloidal dispersion system.
 - 14. The composition of claim 13 wherein the antisense compound is an antisense oligonucleotide.
- 15. A method of inhibiting the expression of ESM-1 in cells or tissues comprising contacting said cells or tissues with the antisense compound of claim 1 so that expression of ESM-1 is inhibited.

15

25

- 16. A method of treating a human having a disease or condition associated with ESM-1 comprising administering to said animal a therapeutically or prophylactically effective amount of the antisense compound of claim 1 so that expression of ESM-1 is inhibited.
- 17. The method of claim 16 wherein the disease or condition is diabetes.
- 20 18. The method of claim 16 wherein the disease or condition is an immunological disorder.
 - 19. The method of claim 16 wherein the disease or condition is a cardiovascular disorder.
 - 20. The method of claim 16 wherein the disease or condition is a neurologic disorder.
 - 21. The method of claim 16 wherein the disease or condition is ischemia/reperfusion injury.
 - 22. The method of claim 16 wherein the disease or condition is any form of cancer.
- 30 23. The method of claim 16 wherein the disease or condition is an angiogenic disorder.

Figure 1

3	99	tca	cgg	ctg	ctt	ccc	acc	agc.	aaa	gac	cac	gac	cgg.	aga	gcc	gag	ccg	gay	gcas	gerg	62
			M	ĸ	s	v	L	L	L	T	T	L	r	v	P	A	н	L	v	A	
63	99	aaa	cat	gaa	gag	cgt	ctt	gct	gct	gac	cac	gct	cct	cgt	gcc	tgc	aca	cct	ggt	ggcc	122
	A	W	s	N	N	Y	A	v	D	С	P	Q	H	С	D	s	s	E	С	K	
123	gc	ctg	gag	caa	taa	tta	tgc	ggt	gga	ctg	ccc	tca	aca	ctg	tga	cag	cag	tga	gtg	caaa	182
	s	s	P	R	С	ĸ	R	T	v	L	D	D	С	G	C	С	R	V	С	A	
183	ag	cag	ccc	gcg	ctg	caa	gag	gac	agt	gct	cga	cga	ctg	tgg	ctg	ctg	ccg	agt	gtg	cgct	242
	A	G	R	G	E	T	С	Y	R	T	v	s	G	M	D	G	M	K	С	G	
243	gc	agg	gcg	ggg	aga	aac	ttg	cta	ccg	cac	agt	ctc	agg	cat	gga	tgg	cat	gaa	gtg	tggc	302
	P	G	L	R	С	Q	P	s	N	G	E	D	P	F	G	E	E	F	G	I	
303	cc	9 99	gct	gag	gtg	tca	gcc	ttc	taa	tgg	gga	gga	tcc	ttt	tgg	tga	aga	gtt	tgg	tatc	362
	С	K	D	С	P	Y	G	T	F	G	M	D	С	R	E	T	С	N	С	Q	
363	tg	caa	aga	ctg	tcc	cta	cgg	cac	ctt	cgg	gat	gga	ttg	cag	aga	gac	ctg	caa	ctg	ccag	422
	s	G	I	С	D	R	G	T	G	K	С	L	K	F	P	F	F	Q	Y	S	
423	to	agg	cat	ctg	tga	cag	ggg	gac	ggg	aaa	atg	cct	gaa	att	ccc	ctt	ctt	cca	ata	ttca	482
	v	T	K	s	s	N	R	F	V	s	L	T	E	H	D	M	Α	S	G	D	
483	gt	aac	caa	gtc	ttc	caa	cag	att	tgt	ttc	tct	cac	gga	gca	tga	cat	ggc	atc	tgg	agat	542
	G	N	I	V	R	E	E	v	V	K	E	N	A	A	G	S	P	V	M	R	
543	gg	caa	tat	tgt	gag	aga	aga	agt	tgt	gaa	aga	gaa	tgc	tgc	cgg	gtc	tcc	cgt	aat	gagg	602
	K	W	L	N	P	R	*	SE	QΊ	D N	0:2	007									
603																				cgtg	662
663																				gtaa	722
723																				ctta	
783																				gcat	842
843																				ggta	902
903									1											igtga 	962
963	gt	caa	att	agt	tct	ttg	jact	tte	gate	jtac	att	aat	gtt	ggg	gata	itgg	jaat	gaa	gac	ttaa	1022

Figure 1 cont.

1023	gagcaggagaagatggggaggggggggggggagtgggaaataaaatatttagcccttcctt	1082
1083	taggtagcttctctagaatttaattgtgctttttttttt	1142
1143	aaaataaaacaaccagaaaacccctgaaggaagtaagatgtttgaagcttatggaaattt	1202
1203	gagtaacaaacagctttgaactgagagcaatttcaaaaggctgctgatgtagttcccggg	1262
1263	ttacctgtatctgaaggacggttctggggcataggaaacacatacacttccataaatagc	1322
1323	tttaacgtatgccacctcagagataaatctaagaagtattttacccactggtggtttgtg	1382
1383	tgtgtatgaaggtaaatatttatatattttataaataaa	1442
1443	tccctacccatatttatcatcctcttgaggaaagaaatctagtattatttgttgaaaatg	1502
1503	gttagaataaaaacctatgactctataaggttttcaaacatctgaggcatgataaattta	1562
1563	ttatccataattataggagtcactctggatttcaaaaaatgtcaaaaaatgagcaacaga	1622
1623	gggaccttatttaaacataagtgctgtgacttcggtgaattttcaatttaaggtatgaaa	1682
1683	ataagtttttaggaggtttgtaaaagaagaatcaattttcagcagaaaacatgtcaactt	1742
1743	taaaatataggtggaattaggagtatatttgaaagaatcttagcacaaacaggactgttg	1802
1803	tactagatgttcttaggaaatatctcagaagtattttatttgaagtgaagaacttattta	1862
1863	agaattatttcagtatttacctgtattttattcttgaagttggccaacagagttgtgaat	1922
1923	gtgtgtggaaggcctttgaatgtaaagctgcataagctgttaggttttgttttaaaagga	1982
1983	catgtttattattgttcaataaaaagaacaagatac SEQ ID NO:2008	2019

Figure 2

Relative Expression of ESM-1 in Colon Tumors

WO 2004/021978

PCT/US2003/025833

ETTI Rec'd PCT/PTC 1 8 FEB 2005

SEQUENCE LISTING

<110>	Pharmacia Corporation Weinstein, Edward J	
<120> EXPRES		
<130>	01189/1/PCT	
	60/404,495 2002-08-19	
<160>	2008	
<170>	PatentIn version 3.2	
<210><21.1><212><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> gctcgg	1 ctct ccagtcgtgg	20
<210><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400>		
ggctcg	gctc tccagtcgtg	20
<220> <223>	human ESM-1 antisense	
<400> cggctct	3 toca gtogtggtot	20
<210><211><212><212><213>	· ·	
<220> <223>	human ESM-1 antisense	

<400> ctcggct	4 ctc cagtcgtggt	20
<210>	5	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
.400-		
<400>	5	20
geetage	etcc ctctttggtt	
<210>	6	
<211>		
<212>		
	artificial	
(213)	arctrotar	
<220>		
<223>	human ESM-1 antisense	
<400>	6	20
eggete	gget etecagtegt	20
<210>	7	
<211>		
<211>		
	artificial	
<213>	artificiar	
<220>		
<223>	human ESM-1 antisense	
<400>	7	
ggctct	ccag tcgtggtctt	20
<210>	8	
<211>	20	
<212>	DNA .	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
gctttg	ccta gctccctctt	20
<210>	9	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

<400> teggete	9 etcc agtcgtggtc	20
<210>	10	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
400		
<400>	10	20
tgeetag	gete cetetttggt	2.0
010.		
<210>	11	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	11	
	eagt cgtggtcttt	20
J		
<210>	12	
<211>	20	
<212>		
<213>	artificial	
(213)	altilitat	
<220>		
<223>	human ESM-1 antisense	
<400>	12	
	gcct agctccctct	20
agecee	geee ageeeeee	
<210>	13	
<211>	20	
<212>	DNA	
<213>		
<213>	alciliciai	
<220>		
<223>	human ESM-1 antisense	
<400>	13	
	tgcc tagctccctc	20
cayett		
.0105	14	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2004/021978	PCT/US2003/025833

<400>	14		
	ttgc ctagctccct	2	٥
ccayec	tige etageteet		
	4.5		
<210>			
<211>			
<212>			
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	•		_
accgtc	cttc agatacaggt	. 2	U
<210>	16		
<211>	20		
<212>			
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	16		
gtttct	cccc gccctgcagc	2	0
		·	
<210>	17		
<211>	20		
<212>			
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>			0
ttgcct	aget ceetetttgg	4	· U
<210>			
<211>	20		
<212>	DNA		
<213>	artificial	•	
		•	
<220>			
<223>	human ESM-1 antisense		
<400>			
ccgtcc	ttca gatacaggta	•	20
<210>			
<211>			
<212>	DNA		
<213>	artificial		
<220>			
	human ESM-1 antigense		

WO 2004/021978	PCT/US2003/025833

<400> ctttgc	19 Ctag ctccctcttt	20
<210><211><212><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> ttcagct	20 tttg cctagctccc	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> agtttc	21 tccc cgccctgcag	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> caagtt	22 tete ecegecetge	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> gcaagt	23 ttct ccccgccctg	20
<210><211><211><212><213>	20	
<220>	human ESM-1 antisense	

WO 2004/021978 Po	CT/US2003/025833
<400> 24	
agcaagtttc tccccgccct	20
<210> 25	
<211> 20	
<212> DNA	
<213> artificial .	
<220>	
<223> human ESM-1 antisense	
<400> 25	
tttgcctagc tccctctttg	20
<210> 26	
<211> 20	
<212> DNA	
<213> artificial	
.220.	
<220> <223> human ESM-1 antisense	
· Caronalise	
<400> 26	
aagtttetee eegeeetgea	20
<210> 27	
<211> 20	
<212> DNA	
<213> artificial	
<220>	
<223> human ESM-1 antisense	
<400> 27	
cagtcgtggt ctttgctggt	20
<210> 28	
<211> 20	
<212> DNA	
<213> artificial	
<220>	
<223> human ESM-1 antisense	
<400> 28	
tagcaagttt ctccccgccc	20
<210> 29	
<211> 20	
<212> DNA	
<213> artificial	
<220>	
<pre><223> human ESM-1 antisense</pre>	

WO 2004/021978	PCT/US2003/025833
----------------	-------------------

<400> ccagtco	29 gtgg tetttgetgg	20
<210> <211>	30 20	
	DNA artificial	
<220>		
	human ESM-1 antisense	
<400>	30	
ctccagt	cegt ggtetttget	20
<210>	31	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	31	
ccggct	egge tetecagteg	20
<210>	32	
	20	
<212>		
	artificial	
<220>		
	human ESM-1 antisense	
<400>	32	
agtcgtg	ggtc tttgctggtg	20
<210>	33	
<211><212>	20 DNA	
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	33	t
gtcgtcg	gage actgtcctct	20
<210>	34	
<211>	20	
	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	34	
	gteg tggtetttge	20
	5005 055000055	20
<210>	35	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	35	
gtaqca	agtt teteceegee	20
J = J =		
<210>	36	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	36	
cctccc	catc ttctcctgct	20
<210>	37	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	- •	
agtcgto	gag cactgtcctc	20
<210>	38	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	38	
gcactgt	ccct cttgcagcgc	20
<210>		
<211s	20	

<211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense

WO 20	004/021978	PCT/US2003/025833
<400> tccagto	39 egtg gtetttgetg	20
<210>	40	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	40	
	eact gtcctcttgc	20
<210>	41	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	41	
tcgtcga	agca ctgtcctctt	20
<210>	42	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	42	
cctagct	ccc tctttggttg	20
<210>	43	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	43	
cgtcctt	cag atacaggtaa	20
-		
<210>	44	
<211>	20	
	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	44	
tccggct	cegg etetecagte	20
<210>	45	
<211>		
<211>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
	45	20
ctcccc	atct teteetgete	20
<210>	46	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	46	
	tcga gcactgtcct	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	47	20
ctccgg	ctcg gctctccagt	20
<210>	48	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>		
ccaaaa	ggat cctccccatt	20
.010:	40	
<210> <211>	49 20	
<211>		
<212> <213>		
<220>		
<223>	human ESM-1 antisense	

PCT/US2003/02583:

<400>	49	
accaaa	agga tootoocat	20
<210>	50	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	50	
	cctc ttgcagcgcg	20
-010-	ra .	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	51	
	ctct ttggttgacc	20
agecee		
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	52	
	gcac tgtcctcttg	20
ogcoga	3000 03000003	
.010		
	53	
	20	
	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	53	
	tett eteetgetet	20
cccca		20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	54	
	ccg ccctgcagcg	20
<210>	55	
<211>		
<212>		
	artificial	
<220>		
	human ESM-1 antisense	
		•
<400>	55 gtat ttgatggtgg	20
9009095	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
<210>	56	
<211>		
<212>		
	artificial	
.000-		
<220> <223>	human ESM-1 antisense	
<2237	Indicate Form-I directorise	
<400>	- -	20
ggtagca	aagt ttctccccgc	20
<210>	57	
<211>		
<212>		
	artificial	
<220> <223>	human ESM-1 antisense	
<2237	Indian Edw I americanse	
<400>	57	20
aaccgt	cctt cagatacagg	20
<210>	58	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	58	20
ccctcc	ccat cttctcctgc	20
<210>	59	
<211>	20	
<212>		
<213>	_	
-220-		
<220>		

WO 20	004/021978	PCT/US2003/025833
<400>	59	
acagto	gtcg agcactgtcc	20
<210>	60	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	60	
tttcag	gcat tttcccgtcc	20
<210>	61	
<211>		
<212>		
<213>	artificial	
<220>	human EGM 1 ambiguage	
<223>	human ESM-1 antisense	
<400>	61	
ttatcat	gcc tcagatgttt	20
<210>	62	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	62	
tttatca	itgc ctcagatgtt	20
<210>	63	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	63	
	ette teetgetett	20
<210>	64	
<210>		
<212>		
	artificial	
<220>	human RCM 1 antigange	

<400> gcctcag	64 gatg tttgaaaacc	20
<210>	65	
	20	
<211>		
	artificial	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	65	20
tatcate	geet cagatgtttg	20
-210-		
<210>	66	
<211><212>	20	
	artificial	
<213>	arciliciai	
<220>		
<223>	human ESM-1 antisense	
	66	
agcact	gtee tettgeageg	20
<210>	67	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	67	
	atta cgggagaccc	20
	2004 0999494000	
<210>	68	
<211>		
<212>		
<213>	artificial	
1220		
<220>		
<223>	human ESM-1 antisense	
<400>		
ggtctt	cage tttgeetage	20
<210>	69	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

	69 aaa atacttetta	20
3 333		
<210>	70	
<211>	20 .	
<212>		
	artificial	
(213/	alciliciai	
<220>		
<223>	human ESM-1 antisense	
<400>	70	
cctccg	gete ggeteteeag	20
<210>	71	
<211>	20	
<212>	DNA	
<213>	artificial	
<213>	altilitial	
<220>		
<223>	human ESM-1 antisense	
<400>	71	00
gagcact	tgtc ctcttgcagc	20
<210>	72	
<211>	20	
<212>	DNA	
<213>		
<220>		
<223>	human ESM-1 antisense	
<400>	72	
	ttgg ttgacctgtc	20
000000		
-0105	73	
<210> <211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	73	
	aaaa tacttcttag	20
9-999-		
<210>	74	
<210> <211>		
<212>	artificial	
<z13></z13>	grerrerat	
<220>		
<223>	human ESM-1 antisense	

WO 20	04/021978	PCT/US2003/025833
<400>	74 atc ctcccatta	20
cuuuugg		
<210>	75	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	75	20
ggcattt	tee egteeectg	20
<210>	76	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	76	
atttcag	gca ttttcccgtc	20
<210>	77	
<211>		•
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	77	20
caatati	gcc atctccagat	20
<210>	78	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	78	
ctagct	ccct ctttggttga	20
<210>	79	
<211>	20	
<212>	DNA	
<213>	artificial	

<220>

WO 20	04/021978	PCT/US2003/025833
<400> gctcatt	79 :ttt tgacattttt	20
<210><211><212><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400>	80	
ttctcc	ege cetgeagege	20
<210>	81	
<211>		
<212> <213>	artificial	
<220> <223>	human ESM-1 antisense	
<400>	81	
	ccc atcttctcct	20
<210>	82	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	82	
tgctcat	ttt ttgacatttt	20
<210>	83	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	83	
	aagg atcctcccca	20
<210>	84	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	

WO 20	04/021978	PCT/US2003/025833
<400> ttgctca	84 ttt tttgacattt	20
- 5		
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
-100-	85	
		20
acaatai	tgc catctccaga	
010		
<210> <211>		
<211>		
	artificial	
<213>	altilitial	
<220>		
<223>	human ESM-1 antisense	
<400>	86	
	aata cttcttagat	20
999000		
	87	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	87	20
tgggta	aaat acttcttaga	20
<210>	88	
<211>	20	
<212>	DNA	
<213>	artificial	•
000		
<220> <223>	human ESM-1 antisense	
<223>	Indinati ESM-1 difference	
<400>	88	
aggcat	tttc ccgtcccct	20
<210>	89	
<211>		
<212>		
<213>		
<220>		

WO 20	004/021978	PCT/US2003/025833
<400>	89 ctgt cctcttgcag	20
- 3- 3	3 3 3	
<210>		
<211>		
<212>	artificial	
<213>	arcificial	
<220>		
	human ESM-1 antisense	
<400>		
ggttac	tgaa tattggaaga	20
<210>	01	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
400.	0.1	
<400>	ccta aaatgttggc	20
aaugee	occa aaacgccggo	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
	92	
cggtct	tcag ctttgcctag	20
<210>	93	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	. Total a subdenance	•
<223>	human ESM-1 antisense	
<400>	93	
	cccc tccccatctt	20
<210>	94	
<211>	20	
<212>		
<213>	artificial	

WO 20	04/021978	PCT/US2003/025833
	94 ggt tgacctgtct	20
<210> <211>	95 20	
<212> <213>	DNA artificial	
<220>		
	human ESM-1 antisense	
<400>	95	
gccgtag	gga cagtctttgc	20
<210>	96	
<211>		
<212>	DNA artificial	
(213)	altilitial	
<220>		
<223>	human ESM-1 antisense	
<400>	96	
	att acgggagacc	20
<210>	97	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	97	20
accccct	ccc catcttetcc	20
<210>	98	
<211>	20	
<212> <213>	DNA artificial	
<213>	altilitial	•
<220>		
<223>	human ESM-1 antisense	
<400>	98	
ctctcc	agtc gtggtctttg	20
<210>	99	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400> tccccg	99 ecct gcagegeaca	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> atgacti	100 gca ctaacacatt	20
<210><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> aatttca	101 aggc attttcccgt	20
<210><211><212><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> tctccc	102 cgcc ctgcagcgca	20
<210> <211> <212> <213>	103 20 DNA artificial	
<220> <223>	human ESM-1 antisense	
<400> ttcagg	103 catt ttcccgtccc	20
<210> <211> * <212> <213>		

<220>

WO 2	004/021978	PCT/US2003/025833
<400>	104	
	ggta aaatacttct	20
<210>	105 20	
<211>		
	artificial	
<220>		
<223>	human ESM-1 antisense	•
400	405	
	105 Caga tacaggtaac	20
gccccc	caya tacayytaac	20
<210>	106	
<211>	20	
<212>		
<213>	artificial	
.000-		
<220>	human ESM-1 antisense	
\2257	Indinati BBM-1 affetbense	•
<400>	106	
ctgctg	aaaa ttgattcttc	20
.010.	105	
<210> <211>		
<212>		
	artificial	
	•	
<220>		
<223>	human ESM-1 antisense	
<400>	107	
	caat attgccatct	20
CCCCC		20
<210>	108	-
<211>		
<212>	DNA	
<213>	artificial	•
<220>		
	human ESM-1 antisense	
<400>	108	
ggatgt	catg gattgtaagt	20
<210>	109	
<211>	20	
<212>		
<213>	artificial	
<220>	human ECM 1 ambinance	
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400> gcggtc	109 ttca gctttgccta	20
<210> <211> <212> <213>	20	
<220> <223>	human ESM-1 antisense	
<400> gacttg	110 cact aacacattta	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> tgactt	111 gcac taacacattt	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> ccccag	112 gaacc gtccttcaga	20
<210> <211>		

<212> DNA
<213> artificial

<220>
<223> human ESM-1 antisense

<400> 113
ggtaaaatac ttcttagatt

<210> 114
<211> 20
<212> DNA
<213> artificial

<220>

<223> human ESM-1 antisense

20

WO 20	004/021978	PCT/US2003/025833
<400>	114	
actqtc	ctct tgcagcgcgg	20
<210>	115	
<211>		
<212>		
	artificial	1
1000		
<220>		
<223>	human ESM-1 antisense	
<400>	115	
caggtc	tctc tgcaatccat	20
<210>	116	
<211>		
<212>		
	artificial	
~225	4101110141	
<220>		
<223>	human ESM-1 antisense	
<400>	116	
aagttc	ctaa aatgttggct	20
3	5 55	
<210>	117	
<211>		
<212>		•
	artificial	
(213)	ar cirrorar	·
<220>		
<223>	human ESM-1 antisense	
<400>	117	
ggattg	taag tatcctactt	20
<210>	118	
<211>	20	
<212>	DNA	
<213>	artificial	
-220-		
<220>		
<223>	Human Bon-1 and todae	
<400>		
gttatg	gatt gtaagtatcc	20
<210>	119	
<211>		
<212>		
<213>	artificial	

<220>

<400> tgcggt	119 ette agetttgeet	20
<211> <212>		
<220> <223>	human ESM-1 antisense	
<400> ctgcggf	120 cett cagetttgee	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> cagtggg	121 gtaa aatacttott	20
<210><211><212><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> tcttca	122 gett tgeetagete	20
	123 20 DNA artificial	
<220> <223>	human ESM-1 antisense	
<400> cctctg	123 ttgc tcattttttg .	20
<210><211><212><212><213>	20	
<220> <223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	124	
	ctt tgctggtggg	20
5 00		
<210>	125	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	125	
gcatttt	ccc gtcccctgt	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	126	
gaaagtt	cct aaaatgttgg	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	127	
gaaccgt	cct tcagatacag	20
	128	
<211>		
<212>		
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	128	
ctcattt	ttt gacatttttt	20
<210>	129	
<211>	20	
<212>		
<213>	artificial	
<220>		

wo:	2004/021978	PCT/US2003/02583
<400>	129 aaatt gattottott	20
33		20
-210-	120	
<210> <211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	130	
attcac	aact ctgttggcca	20
<210>	131	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
10-07		
<400>	131	
cacagt	cgtc gagcactgtc	20
<210>	132	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	132	
LLCCLA	tgcc ccagaaccgt	20
<210>	133	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
.400-	122	
<400>	133 Aaat tgattettet	
-secyae		20
<210>	134	
(211>	20	
:212> :213>	artificial	•
/		
:220>		
2235	human ESM-1 anticence	

WO 20	04/021978	PCT/US2003/025833
<400> tctgctg	134 gaaa attgattett	20
<210>	135	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	135	
	gaa aattgattot	20
<210>	136	
<211>		
<212>		
<213>	artificial	,
<220>		
<223>	human ESM-1 antisense	
<400>	136	
	staa gtatcctact	20
	•	
<210>	137	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	137	
tctttgg	ttg acctgtctcc	20
<210>	138	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	138	
	ettt ggttgacctg	20
<210>	139	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

	139 ctc cccatcttct	20
ceaecec	CCC CCCACCCCCC	
<210>	140	
	20	
	DNA	
	artificial	
<220>	•	
<223>	human ESM-1 antisense	
<400>		20
tgcctca	gat gtttgaaaac	20
	141	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
(2237	Titulitas 200. 2 data a	
<400>	141	
	cca tetteteetg	20
<210>	142	
<211>		
<212>		
<213>	artificial	
<220>	human ESM-1 antisense	
<223>	Indian For-1 and being	
<400>	142	
	ccc ctccccatct	20
CCCCCC		
<210>	143	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	142	
	gttg ctcattttt	20
CCCCC	gety eteateree	
<210>	144	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2004/021978		PCT/US2003/025833
<400>	144 ttt gctggtggga	20
cgrggrc	cc gccgg-ggga	
<210>	145	
<211>		
<212>		
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	145	20
gtaagta	tcc tactttttgt	20
<210>	146	•
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	146	
tatggat	gtt atggattgta	20
<210>	147	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	147	20
cacccc	etcc ccatcttetc	20
-210-	148	
<210>		
<211><212>	DNA	
<213>	artificial	•
<220>	•	
<223>	human ESM-1 antisense	
<400>		20
ccactc	ccac cccctccca	20
	140	
<210>	149 20	
<211><212>		
<213>	artificial	

30

WO 2004/021978		PCT/US2003/025833	
<400>		20	
ccttcag	ata caggtaaccc		
<210>			
<211>			
<212>	DNA		
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
	150	20	
acageee	tgt ttgtgctaag		
<210>			
<211>			
<212>	DNA artificial		
<213>	artificiar		
<220>			
<223>	human ESM-1 antisense		
400	151		
<400>	cac agtegtegag	20	
cagcag			
<210>			
<211>			
<212>	artificial		
(213)	41011101		
<220>			
<223>	human ESM-1 antisense		
<400>	152		
	ggtt gacctgtctc	20	
	152		
<210> <211>	153 20		
<212>			
<213>			
<220>	human ESM-1 antisense		
<223>	numan ESM-1 antisense		
<400>			
tccctc	tttg gttgacctgt	20	
<210>	154		
<211>	20		
<212>	DNA		
<213>	artificial		

WO 2004/021978		PCT/US2003/025833
<400>	154	
	tgt ttgaaaacct	20
ccccaga	· · · · · · · · · · · · · · · · · · ·	20
<210>	155	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
	155	
gctccct	ctt tggttgacct	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	156	
tcaccaa	aag gatcctcccc	20
<210>	157	
<211>	20	
<212>	DNA	
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	157	
tctcaca	ata ttgccatctc	20
<210>	158	
<211>		
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	158	
atttcct	cat tacgggagac	20
-010-	159	
<210>		
<211>	20 DNA	
<212>		
<213>	artificial	
<220>		

WO 2004/021978		PCT/US2003/025833
400		
<400>	159	20
ctagaa	agtt cctaaaatgt	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	160	
gtaaaa	act tcttagattt	20
<210>	161	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	161	
gttgct	catt ttttgacatt	20
<210>	162	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
-400-	160	
<400>	162	20
ccgage	actg tcctcttgca	20
	4.60	
<210>	163	
<211> <212>	20 DNA	
<213>	artificial	
10201		
<220>		
<223>	human ESM-1 antisense	
<400>	163	
	cca ttagaaggct	20
<210>	164	
<211>		
<212>		
	artificial	
-220-		
<220> <223>	human ESM-1 antisense	

WO 2004/021978		PCT/US2003/025833
<400>	164	0.0
gcaggto	etct ctgcaatcca	20
<210>	165	
<211>		
<212>	DNA	
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	165	
tcaggca	attt teeegteeee	20
<210>	166	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	166	
tggatg	tat ggattgtaag	20
<210>	167	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	167	20
atggat	gtta tggattgtaa	
<210>	168	•
<211>	20	
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	168	20
CCCACE	ccca cccctcccc .	20
<210>	169	
<211>		
<212>		
<213>	artificial	
<220>		

WO 2004/021978		PCT/US2003/025833	
<400>	169 gtt tgtgctaaga	20	
<211>			
<212> <213>	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	170		
gatecto	ccc attagaaggc	20	
	171		
<211> <212>			
	artificial		
.000.			
<220> <223>	human ESM-1 antisense		
<400>	171 aggg acagtetttg	20	
tgeegta	aggg acagtettig	20	
	172		
<211><212>			
	artificial		
<220> <223>	human ESM-1 antisense		
1000			
<400>	172	20	
atatgga	atgt tatggattgt	20	
<210>	173		
<211><212>	DNA		
<213>	artificial		
-220-			
<220> <223>	human ESM-1 antisense		
<400>	173	20	
-gg-ag(caag tttctccccg	20	
.010:	174		
<210> <211>	174 20		
<212>			
	artificial		
<220>			
	human ESM-1 antisense		

WO 2004/021978		PCT/US2003/025833
<400>	174	
	ccc cattagaagg	20
<210>	175	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	175	
ctcacaa	atat tgccatctcc	20
<210>		
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	176	
	ttct cctgctctta	20
<210>	177	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	177	20
teette	agat acaggtaacc	20
<210>	178	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	178	20
tcctat	gece cagaacegte	20
<210>	179	
<211>		
<212>		
<213>	artificial	
<220>		

WO 2004/021978		PCT/US2003/025833
<400>	179	
	aatt attgctccag	20
oogous		
<210>	180	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	180	
gattgt	aagt atcctacttt	20
	181	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	181	
atggat	tgta agtatcctac	20
<210>	182	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	182	•
gatgtt	atgg attgtaagta	20
<210>	183	
	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	183	
	attc accgaagtca	20
_		
<210>		
<211>		
<212>	DNA	•
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

PCT/US2003/025833

WO 2004/021978 PCT/US2003/025833

<400>	184	~ ~
gttactg	aat attggaagaa	20
<210>	185	
<211>		
<212>		
	artificial	
<213>	artificial	
<220>	1	
<223>	human ESM-1 antisense	
<400>	185	20
agaaagt	tcc taaaatgttg	20
<210>	186	
<211>		
<212>		
	artificial	
(213)		
.000		
<220>	house TON 1 appliance	
<223>	human ESM-1 antisense	
<400>	186	20
ttatgg	attg taagtatoot	20
<210>	187	
<211>	20	
<212>	DNA	
	artificial	
12207		
<220>	•	
	human ESM-1 antisense	
<2237	Itulian BM I unclosing	
400	107	
<400>	187	20
tagete	cctc tttggttgac	
	·	
<210>	188	
<211>	20	
<212>	DNA	
<213>	artificial .	
<220>		
	human ESM-1 antisense	
\2237	1911011 250 2 210020	
<400>	188	
		20
cccaga	accg tccttcagat	
	·	
<210>		
<211>		
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	

WO 2004/021978	PCT/US2003/025833

WO 2004/021978		PCT/US2003/025833
<400>	194	••
tgttatg	gat tgtaagtatc	20
<210>	195	
<211>		
<212>		
	artificial	
.000		
<220>	human ESM-1 antisense	
(223)	Trainer 25. 2 Care Court	
	195	20
cttcatt	tcca tatcccaaca	20
<210>	196	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	196	20
ctctgt	tgct cattttttga	
<210>	197	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	197	20
aggtcc	ctct gttgctcatt	
<210>	198	
<211>	20	
<212><213>	DNA artificial	
(213)	altilitial	·
<220>		
<223>	human ESM-1 antisense	
<400>	198	
	egaag teacageact	20
0.7.0	100	
<210> <211>		
<211> <212>		
<213>		

WO 2004/021978 PCT/US2003/025833

<400>	199	
cattca	caac tetgttggce	20
<210>	200	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
gtatct	tgtt ctttttatt	20
-010-	0.01	
<210>		
<211>		
<212>	artificial	
(213)	arciliciai	
<220>		
<223>	human ESM-1 antisense	
\2257	Italian Edit I and Solid	
<400>	201	
	cttt gcctagctcc	20
	5 5	
<210>	202	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	202	20
catgcc	tcag atgtttgaaa	20
<210>	203	
<211>	20	
<212>	DNA	
	artificial	
~2137	WI CILLOTAL	
<220>		
	human ESM-1 antisense	
<400>	203	
	ctga aaattgattc	20
<210>	204	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
-223	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	204	
atctag	taca acagtcctgt	20
<210>	205	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	205 gttc ctaaaatgtt	20
cayaaa	geee ceaaacgee	
<210>	206	
<211>	20	
<212>		
<213>	artificial	
<220>	•	
<223>	human ESM-1 antisense	
<400>		20
tetaga	aagt tootaaaatg	
<210>	207	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	207	
atctag	aaag ttcctaaaat	20
<210>	208	
<211>		
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>		20
ttgtaa	gtat cctactttt	20
<210>	209	
<211>		
<212>		
<213>	artificial	

WO 20	004/021978	PCT/US2003/025833
	209 tga cctgtctcca	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
	210 ccc cctccccatc	20
<210><211><212><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> atgccto	211 aga tgtttgaaaa	20
<210><211><212><212><213>	20	
<220> <223>	human ESM-1 antisense	
	212 etca gatgtttgaa	20
<210><211><211><212><213>	213 20 DNA artificial	
<220> <223>	human ESM-1 antisense	
	213 cett ettttacaaa	20
<210><211><211><212><213>		

WO 20	004/021978	PCT/US2003/025833
<400>	214 aca gtcgtcgagc	20
33-		
<210>	215	
	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	215	
gaattt	agg cattttcccg	20
		•
<210>	216	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	216	
tggttad	etga atattggaag	20
<210>	217	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	217	
aatctg	tgg aagacttggt	20
<210>	218	
<211>	20	
<212>	DNA	•
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	218	
attgcc	atct ccagatgcca	20
<210>	219	
<211>	20	
<212>	DNA	
<213>	artificial	

WO 20	004/021978	 PCT/US2003/025833
<400>	219	
	gcca tctccagatg	20
	,	
	000	•
<210>		
<211> <212>		
	artificial	
(213)	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		1.
tctctc	acaa tattgccatc	20
<210>	221	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
400	001	
<400>		20
tytaay	tatc ctactttttg	20
<210>	222	
<211>	20	
<212>		
<213>	artificial	
.000		
<220>	human ESM-1 antisense	
<223>	numan ESM-1 ancisense	
<400>	222	
	ttgt aagtateeta	20
55		
<210>	223	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>		
actgcg	gtct tcagctttgc	20
-010:	224	
<210> <211>		
<211>		
	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	224	
	cct cccatcttc	20
<210>	225	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	225	
	tgc actaacacat	20
55		
<210>	226	
<211>		
<212>		,
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	226	
attttt	gac atttttgaa	20
<210>	227	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	227	
	gtt gctcattttt	20
<210>	228	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	228	
	gcca cagtcgtcga	20
<210>	229	
<211>		
<212>		
<213>	artificial	
<220>		

WO 20	004/021978	PCT/US2003/02583	
<400>	229		
	etet geaateeate	20	
	•		
<210>			
<211>			
<212>			
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
	230	0.0	
atctgtt	gga agacttggtt	20	
<210>	231		
<211>	20		
<212>			
<213>	artificial		
<220>	homes TON 2 and because		
<223>	human ESM-1 antisense		
<400>	231		
	gga ttgtaagtat	20	
_			
<210>			
<211>			
<212>	artificial	,	
~2137	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	232	20	
ctgaaaa	attg attcttcttt	20	
<210>	233		
<211>			
<212>	DNA		
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	233		
	agtc ctgtttgtgc	20	
<210>			
<211>			
<212>		•	
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		

WO 2	004/021978	PCT/US2003/02583
<400>	234	
	ggc ggccaccagg	20
<210>	235	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	235	
	ctg cagcgcacac	20
<210>	236	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	236	
cttggt	tact gaatattgga	20
<210>	237	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	237	
ttgcca	tctc cagatgccat	20
<210>	238	
<211>		
<212>		
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	•
<400>	238	20
tatcta	gaaa gttcctaaaa	20
<210>	239	
<211>	20	
<212>		
<213>	artificial	
<220>		

PCT/US2003/025833

WO 2	004/021978	PCT/US2003/025833
<400>	239	
	aatt caccgaagtc	20
u		20
<210>	- " -	
<211>		
<212>	artificial	
(213)	arcificial	
<220>		
<223>	human ESM-1 antisense	
<400>	240	
cgcata	atta ttgctccagg	20
<210>	241	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	241	
	gact tggttactga	20
ceggaa	gade eggeeadega	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	242	
tgctata	atct agaaagttcc	20
.0.7.0.	242	
<210><211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
400		
<400>		0.0
allttt	agtt cttcagtgtt	20
<210>	244	
<211>		
<212>		
<213>	artificial	
-220:		
<220>	human ESM-1 antisense	

WO 2004/021978	PCT/US2003/025833
WU 2004/0219/8	FC 1/US2003/023833

<400> tcaccga	244 agt cacagcactt	20
<210>	245	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	•	
<400>		
tgaaaat	tca ccgaagtcac	20
<210>	216	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	246	20
tccatco	ccga aggtgccgta	20
<210>	247	
<211>		
<212>		
	artificial	
(213)	alciliciai	
<220>		
<223>	human ESM-1 antisense	
<400>	247	
tctgtt	ggaa gacttggtta	20
<210>	248	
<211>		
<212>		
<213>	artificial	
72207	,	
<220>		
<223>	human ESM-1 antisense	
<400>		20
agaacc	gtcc ttcagataca	20
<210>	249	
	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2004/021978		PCT/US2003/025833	
<400>	249		
aaaatad	ttc ttagatttat	20	
010	0.50		
<210> <211>			
<212>			
	artificial		
<220>			
<223>	human ESM-1 antisense		
.400.	250		
<400>	agtc acagcactta	20	
caccgac	2900 404904004		
<210>			
<211>			
<212>	artificial		
<213>			
<220>	1		
	human ESM-1 antisense		
	251	20	
ttgatte	cttc ttttacaaac	20	
<210>	252		
<211>	20		
<212>			
<213>	artificial		
<220>			
	human ESM-1 antisense		
<400>	252	0.0	
gttttc	tgct gaaaattgat	20	
<210>	253		
<211>			
<212>			
<213>	artificial		
.200.			
<220>	human ESM-1 antisense		
\2257	Idildi Ibi. I diletbelle		
<400>			
tgtttt	ctgc tgaaaattga	20	
<210>	254		
<211>			
<212>	DNA	•	
<213>	artificial		

WO 20	04/021978	PCT/US2003/025833
<400> aacagto	254 ectg tttgtgctaa	. 20
<210><211><212><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> agttcc	255 caaa atgttggctg	20
<210> <211> <212> <213>	20	
<220> <223>	human ESM-1 antisense	
<400> ttcagt	256 cata tggatgttat	20
<210><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> cctgct	257 ctta agtcttcatt	20
<211> <212>		
<220> <223>	human ESM-1 antisense	
<400> gcccca	258 gaac cgtccttcag	20
<210> <211> <212> <213>	20 DNA	
<220> <223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400> accagto	259 ggt aaaatacttc	20
<210> <211> <212> <213>	20	
<220> <223>	human ESM-1 antisense	
<400> atcatgo	260 octo agatgtttga	20
<210><211><212><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> aaggtc	261 ectc tgttgctcat	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> actgct	262 gtca cagtgttgag	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> ccacag	263 tcgt cgagcactgt	20
<210><211><212><212><213>	20	

WO 2	004/021978	PCT/US2003/025833
<400> ctccccg	264 geec tgeagegeae	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
	265 Lagg gacagtettt	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> tgcagg	266 tete tetgeaatee	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
	267 aaga cttggttact	20
<210><211><211><212><213>	268 20 DNA artificial	
<220> <223>	human ESM-1 antisense	
<400> ctgttg	268 gaag acttggttac	20
<210><211><211><212><213>	DNA	

WO 2	004/021978	PCT/US2003/025833
<400>	269	
	tttt tagttcttca	20
	-	
<210>		
<211> <212>		
	artificial	
12107	ar criticiar	
<220>		
<223>	human ESM-1 antisense	
<400>		
tcattc	cata tcccaacatt	20
<210>	271	
<211>		
<212>		
<213>	artificial	
<220>	•	
<223>	human ESM-1 antisense	
44005	071	
<400>	ccat atcccaacat	20
cccacc	ceat ateceaacat	20
<210>	272	
<211>	20	
<212>		
<213>	artificial	
-220-		
<220>	human ESM-1 antisense	
(223)	numan ESM-1 andisense	
<400>	272	
	ctaa cacatttatt	20
_		
<210>		
<211>	_v	
<212> <213>	DNA artificial	
(213)	altilitial	
<220>		
<223>	human ESM-1 antisense	
<400>		
tctagt	acaa cagtcctgtt	20
<210>	274	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	274	
ttccaca	cac attcacaact	20
<210>	275	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
	0.05	
<400>		20
etgteet	cett geagegeggg	
<210>		
<211>		
<212>	artificial	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	276	20
aaaagga	atcc tccccattag	,
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	277	20
gttccta	aaaa tgttggctgt	20
<210>	278	
<211>	20	
<212>		
<213>	artificial	•
<220>		
	human ESM-1 antisense	
<400>		
atccta	cttt ttgttttctg	20
<210>	279	
<211>		
<212>	DNA	
	artificial	
-222		

WO 20	04/021978	PCT/US2003/025833
<400>	279	
	tat ggatgttatg	20
<210>	280	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
	280	20
atgcccc	aga accgtccttc	20
<210>	281	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	No. of Table 1 and 1 and 1	
<223>	human ESM-1 antisense	
<400>	281	
	actt cttagattta	20
•	••••••••••••••••••••••••••••••••••••••	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	282	0.0
gaaaatt	cac cgaagtcaca	20
<210>	283	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	283	
	cagt cctgtttgtg	20
	004	
<210>		
<211> <212>		
	artificial	
~ZIJ/	WE 022202U2	
<220>		
<223>	human ESM-1 antisense	

PCT/US2003/02583

<400> gcataat	284 tat tgctccaggc	20
<210>	285	
<211>	20	
<212>		
	artificial	
(2137	altilital	
<220>		
<223>	human ESM-1 antisense	
(223)	IIdiidii Ebri I diicibolise	
<400>	285	
	ccg aaggtgccgt	20
acceact	adgetgetget	
<210>	286	
<211>		
<212>		
	artificial	
\Z13/		
<220>		
<223>	human ESM-1 antisense	
(223)	Human Bow-1 anciocase	
<400>	286	
	gatg ttatggattg	20
cacacg		
<210>	287	
<211>		
<212>		
	artificial	
(213)		
<220>		
<223>	human ESM-1 antisense	
1000		
<400>	287	
	cact cccacccct	20
40000		
<210>	288	
<211>	20	
<212>	DNA	
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	288	
taagqt	ccct ctgttgctca	20
<210>	289	
<211>		
<212>		
	artificial	
<220>		

WO 2	004/021978	PCT/US2003/025833
<400>	289	
	ataa acatgteett	20
		24
<210>	200	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	290	
ttggtt	actg aatattggaa	20
<210>	291	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	291	
	tcac aatattgcca	20
<210>	292	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
400		
	292	•
atattt	agaa agttcctaaa	20
<210>		
<211> <212>	DNA	
<213>	artificial	
12207	<u> </u>	
<220>		
<223>	human ESM-1 antisense	
<400>	293	
gcattt	ttag ttcttcagtg	20
<210>	294	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	294	
ggttga	cctg tctccatgta	20
<210>		
<211>		
<212>	artificial	
<220> <223>	human ROW 1 ambiguous	
<223>	human ESM-1 antisense	
	295	
agatga	cttg cactaacaca	20
	296	
<211> <212>		
	artificial	
<220> <223>	human ESM-1 antisense	
12237	Italian DDA I and Delibe	
<400>	296	
gggaag	atga cttgcactaa	20
<210> <211>		
<211>		
	artificial	-
<220>		
	human ESM-1 antisense	
	297 tcat tttttgacat	20
cgccgc	teat teetigatat	20
.010		
<210> <211>	298 20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	298	
	ttga ttcttcttt	20
-	-	
<210>	299	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 20	04/021978	PCT/US2003/025833
<400>	299	
acaacag	tcc tgtttgtgct	20
<210>	300	
<211>		
<212>	DNA	
	artificial	
<220>		
	human ESM-1 antisense	
<400>	300	
	actc tgttggccaa	20
<210>		
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	301	
caataat	aaa catgtccttt	20
<210>	302	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	302	
gtgttca	ngtc atatggatgt	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
tttttag	gttc ttcagtgtta	20
<210>	· ·	
<211>		
<212>		
<213>	artificial	
<220>		

WO 2	004/021978	PCT/US2003/025833
	304 aget ttgeetaget	20
<210> <211> <212> <213>	20	
<220> <223>	human ESM-1 antisense	
	305 cece accectece	20
<210> <211> <212> <213>	20	
<220> <223>	human ESM-1 antisense	
<400> ttttct	306 gctg aaaattgatt	20
<210><211><212><213>	DNA	
<220> <223>	human ESM-1 antisense	
	307 tctg ctgaaaattg	20
<210> <211> <212> <213>	308 20 DNA artificial	•
<220> <223>	human ESM-1 antisense	
<400> ctagta	308 .caac agtcctgttt	20
<210><211><211><212><213>	309 20 DNA artificial	

<220>

WO 2004/021978		PCT/US2003/025833
<400>	309	
	cttg gttactgaat	20
-		
-210-	210	
<210> <211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	310	
	actt ggttactgaa	20
cggaag.	acco ggoodcogad	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>		
atattg	ccat ctccagatgc	20
<210>	312	
<211>		
<212>		
<213>	artificial	
<220>	Name Toy of antidance	
<223>	human ESM-1 antisense	
<400>	312	
	acct gtctccatgt	20
<210>	313	
<211>		
<212>	DNA artificial	
\Z13/	ar criticial	
<220>		
<223>	human ESM-1 antisense	
<400>	313	20
catcta	gtac aacagtoctg	20
<210>	314	
<211>	20	
<212>		•
<213>	artificial	
4200÷		
<220> <223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833	
<400>	314		
accgcat	taat tattgctcca	20	
<210>	315		
<211>			
<212>			
<213>	artificial		
<220>			
	human ESM-1 antisense		
<400>		20	
tatate	taga aagttootaa	20	
<210>	316		
<211>			
<212>			
<213>	artificial		
<220>			
	human ESM-1 antisense		
<400>			
gttttt	attc taaccatttt	20	
<210>	317		
<211>			
<212>			
<213>	artificial		
<220>			
	human ESM-1 antisense		
<400>	317		
aaattt	atca tgcctcagat	20	
<210>	318		
<211>			
<212>	DNA		
<213>	artificial		
200			
<220> <223>	human ESM-1 antisense		
\ <u></u>			
<400>	318		
ttttt	gaca ttttttgaaa	20	
<210>	319		
<211>	20		
<212>			
<213>	artificial		
00-			
<220> <223>	human ESM-1 antisense		
~~~~			

WO 20	004/021978	PCT/US2003/025833	
<400>	319		
agtcctg	gttt gtgctaagat	20	
<210>	320		
<211>			
<212>			
	artificial		
<220>			
<223>	human ESM-1 antisense		
	320	20	
ttgctco	cagg cggccaccag	20	
<210>	321		
<211>	20		
<212>	DNA	•	
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	321		
attgct	ccag gcggccacca	20	
<210>			
<211>			
<212>	artificial		
<213>	altilitial		
<220>			
<223>	human ESM-1 antisense		
	322	20	
aaagga	tcct ccccattaga	20	
<210>	323		
<211>			
<212>			
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>			
ttctct	caca atattgccat	20	
010	224		
<210>			
<211>			
<212> <213>	artificial		
<220>			
	human ESM-1 antisense		

WO 20	04/021978	PCT/US2003/025833
<400> ccatctt	324 ctc ctgctcttaa	20
<210>	325	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	325	
atactto	tta gatttatctc	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	326	
accacca	gtg ggtaaaatac	20
<210>	327	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	327	
ctccago	regg ceaceaggtg	20
		•
<210>	328	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	328	
	gtc acagtgttga	20
_		
<210>	329	
<211>	20 .	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
	329 totg caatocatoo	20
<210><211><212><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> ctatate	330 Ctag aaagtteeta	20
<210><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> catttti	331 cagt tottcagtgt	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
	332 Lttc cataagette	20
<210> <211> <212> <213>	333 20 DNA artificial	
<220> <223>	human ESM-1 antisense	
<400> tatgcco	333 ccag aaccgtcctt	20
<210> <211> <212> <213> <220>	20 DNA artificial	
<223>	human ESM-1 antisense	

WO 2	004/021978	PC1/US2003/02583
<400>	334	
gtttcc	tatg ccccagaacc	20
010		
<210>		
<211>	·	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>		
atttat	catg cctcagatgt	20
<210>	336	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
	336	
gctcca	ggcg gccaccaggt	20
<210>	337	
	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	337	
	igcc acagtogtog	
gouge	ages acageogeog	20
<210>	338	
<211>	20	
<212>		
:213>	artificial	
.000		
:220> :223>	human DOM 1 and 1 and	
.2237	human ESM-1 antisense	
:400>	338	
	ttt cccgtcccc	20
-	-	
	339	
211>		
212>		
213>	artificial	
:220>		
	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400> gttcagt	339 .cat atggatgtta	20
<210>		
<211>		
<212>	artificial	
(213)	arcificial	
<220>		
<223>	human ESM-1 antisense	
400	240	
	340 :tca gtcatatgga	20
caagege	· · · · · · · · · · · · · · · · · · ·	20
<210>		
<211>		
<212>	artificial	
<213>	archiciai	
<220>		
<223>	human ESM-1 antisense	
400	0.40	
	341 atat cccaacatta	20
Called	ical cecaacacca	20
		•
<210>		
<211>		
<212>	artificial	
(213)	artiritiai	
<220>		
<223>	human ESM-1 antisense	
.400.	240	
	342 yaag atgacttgca	20
9904995	aug auguetegea	20
<210>	343	
<211>		
<212> <213>	DNA artificial	
(213)	arciriciai	
<220>		
<223>	human ESM-1 antisense	
400.	2.42	
<400>	atc atgcctcaga	20
Lauacci	ace acgeocaga	20
<210>		
<211>		
<212> <213>		
<b>~</b> 4137	WT 02240201	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	344	
	catt ttttgaaatc	20
<210>	345	
<211>		
<212>		
	artificial	
\213/	arcificial	
<220>		
<223>	human ESM-1 antisense	
<400>	345	
	aaac atgtcctttt	20
		20
<210>	246	
<210>		
<211>		
	DNA artificial	
<213>	artificial	
<220>	·	,
<223>	human ESM-1 antisense	
.400	246	
	346	
aggate	ctcc ccattagaag	20
<210>	347	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	347	
gatccad	cat gcatcacaat	20
<210>	348	
<211>		
<212>	DNA	
<213>	artificial	
	,	
<220>		
<223>	human ESM-1 antisense	
-400-	340	
<400>	348	
jicatat	gga tgttatggat	20
<210>	349	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400> cactgo	349 ggtc ttcagctttg	20
.010-	250	
<210> <211>	350	
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
400	0.70	
	350	
actcaa	attt ccataagctt	20
<210>	351	•
<211>		
<212>		
<213>	artificial	
.000		
<220> <223>	human FOM 1 and large	
<223>	human ESM-1 antisense	
<400>	351	
	ccc agaaccgtcc	20
	3 3 3 4 4	20
	·	
<210>		
<211>		
<212>	artificial	
(213)	arcificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
agggaag	gatg acttgcacta	20
<210>	353	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	D	
<223>	human ESM-1 antisense	
<400>	353	
	aata aacatgtcct	20
		20
	354	
<211>	20	
	DNA	
<213>	artificial	
<220>		
	human PCM-1 antigence	

WO 2	004/021978	PCT/US2003/02583
<400> ccacca	354 tgca tcacaatttg	20
<210>	355	
<211>		•
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	355	
	ctac tttttgtttt	20
	-	
<210>	356	
<211>	- ·	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	356	
ttccat	atcc caacattaat	20
<210>	357	
<211>		
<212>	DNA	
<213>	artificial	
<220>	•	
<223>	human ESM-1 antisense	
<400>	357	
	atc ccaacattaa	20
<210>	358	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220>	•	
<223>	human ESM-1 antisense	
<400>	358	
	sso Ettt teecaaagee	
cecya	coccaaagee	20
<210>	359	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
	human PCM-1 anticonce	

wo:	2004/021978	PCT/US2003/025833
<400>	359	
	ccca gaaccgteet	20
<210>		
<211> <212>		
	artificial	
12207	WI 01110141	
<220>		
<223>	human ESM-1 antisense	
<400>		
tttttg	acat tttttgaaat	20
<210>	361	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	361	
	ttga cattttttga	20
		20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
	362	
gtcctg	tttg tgctaagatt	20
<210>	363	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	363	
	aca tgtcctttta	20
		20
<210>		
	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

wo	2004/021978	PCT/US2003/025833
<400>	364	
gtggt	tttg ctggtgggaa	20
<210>	365	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	265	
	aaaa ggatcctccc	20
	35	20
-010		
<210><211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
	,	
<400>		
acttgg	ttac tgaatattgg	20
<210>		
<211><212>		
	artificial	
<220>	N	
<223>	human ESM-1 antisense	
<400>	367	
tcacaa	tatt gccatctcca	20
<210>	368	
<211>	20	
<212>	DNA	
<213>	artificial .	
<220>		
<223>	human ESM-1 antisense	
<400>	368	
	Jaga cccggcagca	20
J J.		20
<b>-210</b> -	260	
<210> <211>		
<212>		
	artificial	
<220>		
<220> <223>	human ESM-1 antisense	

wo	2004/021978	PCT/US2003/025833
<400>	369	
tactto	ttag atttatctct	20
<210>		
<211> <212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	370	
tcagat	gttt gaaaacctta	20
<210>		
<211>		
<212>	DNA artificial	
(213)	altilitial	
<220>		
<223>	human ESM-1 antisense	
<400>	371	
gattct	tctt ttacaaacct	20
<210>		
<211>		
<212>	artificial	
12201		
<220>		
<223>	human ESM-1 antisense	
<400>		
tgattc	ttct tttacaaacc	20
<210>		
<211>		
<212> <213>	DNA artificial	
(213)	archiciar	
<220>		
<223>	human ESM-1 antisense	
<400>	373	
	gaa ggtgccgtag	20
<210>	374 .	
	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

wo:	2004/021978	PCT/US2003/025833
<400>	374	
cattt	ectca ttacgggaga	20
	•	
<210>	- · <del>-</del>	
<211> <212>		
	artificial	
12201	4201210141	
<220>		
<223>	human ESM-1 antisense	
<400>	375	
acaagt	gttc agtcatatgg	20
	•	
<210>	376	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	276	
	tttt agttetteag	20
		20
-210-	299	
<210> <211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>		
ggaaga	tgac ttgcactaac	20
<210>	378	
<211>		
<212> <213>	DNA artificial	
10107	urer restricted .	
<220>		
<223>	human ESM-1 antisense	
<400>	378	
	ttg acatttttg	20
	-	20
<210>	379	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	379	•
acatto	acaa ctctgttggc	20
		20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<b>\223</b> /	numan ESM-1 ancisense	
<400>	380	
	taat aaacatgtcc	00
_	3.00	20
<210>	381	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	201	
	tact ttttgttttc	
gcaccc	tace energetice	20
<210>	382	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	•	
<223>	human ESM-1 antisense	
<400>	382	
	cct acttttgtt	
caagca	activity.	20
<210>	383	
<211>	20 .	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	383	
ag cyc cc	agt catatggatg	20
<210>	384	
	20	
<212>	DNA	
<213>	artificial	
<220>		
·223	human ESM-1 antisense	

wo 2	2004/021978	PCT/US2003/025833
<400>	384	
teetge	etctt aagtcttcat	20
.010-	205	
<210> <211>		
<211>		
	artificial	
	4444444	
<220>		
<223>	human ESM-1 antisense	
<400>		
tatttc	ccac teccaceece	20
<210>	306	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
	386	
ggggtt	ttct ggttgtttta	20
<210>	387	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
400		
<400>	387	
tactca	aatt tocataagot	20
<210>	388	
<211>	20	
<212>		
	artificial	
	•	
<220>		
<223>	human ESM-1 antisense	
.400	200	
<400>	388	
-ayaacc	gtc cttcagatac	20
<210>	389	
	20	
:212>	DNA	
:213>	artificial	
220>	human PCM-1 antigones	
	nimon build. I ontrinone	

wo:	2004/021978	PCT/US2003/025833
<400> ttttt	389 attct aaccattttc	20
		20
<210>	300	
<211>		
<212>		
	artificial	
<220>	homes was a second	
<223>	human ESM-1 antisense	
['] <400>	390	
caacag	tcct gtttgtgcta	20
•		
<210>	391	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
\2237	numan ESM-1 and Isense	
<400>		
ccctgc	agcg cacactegge	20
<210>	392	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
	- I distribute	
<400>		
aaggat	cctc cccattagaa	20
<210>	393	
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>		
gagcct	cctc tcagaaatca	20
<210>	394	
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
	· · · · · · · · · · · · · · · · · · ·	

wo	2004/021978	PCT/US2003/02583
<400>	394	
cacat	acaag tgttcagtca	20
		20
	395 ·	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
gttct	ccagt gttactatac	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
-400		
<400>		
ttttag	rttct tcagtgttac	20
<210>		
<211>		
<212>		
	artificial	
<213>	artificial	
<220>		
	human ESM-1 antisense	
\2257	numan ESM-1 ancisense	
<400>	397	
	ccca acattaatgt	
	uouoouuoge	20
<210>	398	
<211>	20	
<212>	DNA	
<213>	artificial	
		•
<220>		
<223>	human ESM-1 antisense	
<400>		
ctgctc	ttaa gtcttcattc	20
		20
<210>		
<211>		
<212>		
<213>	artificial	
	•	
<220>		
<b>~2233</b>	human ESM-1 anticonce	

WO 2	004/021978	PCT/US2003/025833
<400>	399	
ttttga	aatt gctctcagtt	20
.010.	400	
<210><211>		
<211>		
	artificial	
<2137	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
ataaat	ttat catgootoag	20
<210>	401	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	401	•
gaaaati	cgat tcttcttta	20
<210>	402	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	402	
	aca actctgttgg	4.4
Jucucc	aca accergegy	20
<210>	403	
<211>	20	
<212>		
<213>	artificial	
<220> <223>	Annual Total	
(223>	human ESM-1 antisense	
<400>	403	
	tgt cacagtgttg	20
	5 5 5 5	20
:210>	404	
	20	
	DNA	
:213>	artificial	
:220>		
	human ESM-1 anticense	

wo:	2004/021978	PCT/US2003/025833
<400>	404	
	atcta gaaagttoot	20
		20
	405	
<211>		
<212>	DNA artificial	
(213)	artificial	
<220>		
	human ESM-1 antisense	
<400>	405	
aagtgt	tcag tcatatggat	20
		20
<210>		
<211>		
<212>	artificial	
22132	artificial	
<220>		
	human ESM-1 antisense	
<400>	406	
tttagt	tctt cagtgttact	20
<210>		
<211> <212>		
	artificial	
1	4101110141	
<220>		
<223>	human ESM-1 antisense	
<400>	407	
cccaac	atta atgtacatca	20
-210-	400	
<210> <211>	408 20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	408	
cccaac	att aatgtacatc	20
<210>	409	
<211>	20	
_	DNA	
	artificial	
:220>		
.223 -	human PCM-1 anticonce	

wo	2004/021978	PCT/US2003/025833
<400>	<del>-</del>	
gtttt	atttt gacttttccc	20
<210>	410	
<211>		
<212>		
(213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	410	
	ttct tagatttatc	
		20
.010-	411	•
<210> <211>		
<212>		
	artificial	
<220>	human ESM-1 antisense	
(225)	ndman ESM-1 antisense	
<400>		
ccacca	gtgg gtaaaatact	20
<210>		
<211>		
<212>	DNA artificial	
(213)	arciricial	
<220>		
<223>	human ESM-1 antisense	
<400>	412	
	cagt gggtaaaata	20
		20
<210>	412	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	413	
gagtca	cagg tttttattct	20
<210>	414	
<211>	20 .	
<212> <213>		
~~13>	artificial	
<220>		
<223>	human ESM-1 antisense	

wo:	2004/021978	PCT/US2003/02583
<400>	414	
agatgi	tttga aaaccttata	20
		50
<210>	•	
<211>		
<212>		
<213>	artificial	
<220>	1	
<223>	human ESM-1 antisense	
<400>	415	
	ctgt tgctcatttt	
gcccc	seege egeleatett	20
<210>	416	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	416	
aattga	aaat tcaccgaagt	20
<210>	417	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
acatct	agta caacagteet	20
-210-	410	
<210>	418 20	
<212>		
	artificial	
10202	ar orrivat	•
<220>		
	human ESM-1 antisense	
<400>	418	
tattgc	tcca ggcggccacc	20
		20
	419	
<211>		
<212>		
<213>	artificial	
-220-		
<220> <223>	human BCM 1 antigange	
~443>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	419	
	cetc ageceeggge	20
07.0	400	
<210>		
<211> <212>		
	artificial	
12107	arciriciar	
<220>		
<223>	human ESM-1 antisense	
	420	
cacaat	attg ccatctccag	20
<210>	421	
<211>		
<212>	-	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	401	
	#21 :atc tagaaagttc	20
acgeca	acc tagadageec	20
<210>	422	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
1000	Idina. Ibri I diferbelle	
<400>	422	
aagtato	cta cttttgttt	20
.0.7.0	402	
<210> <211>	423 20	
_	DNA	
	artificial	
<220>		
<223>	human ESM-1 antisense	
	423	
agttett	cag tgttactata	20
<210>	424	
<211>	20	
<212>	DNA .	
<213>	artificial	
<220>	human ECM-1 antigenco	

WO 2	004/021978	PCT/US2003/02583
<400>	424	
	ttca gtgttactat	20
•	3 3	20
<210>	425	
<211>		
<212>	DNA	
<213>	artificial	
	•	
<220>		
<223>	human ESM-1 antisense	
<400>		
tccata	tccc aacattaatg	20
<210>	426	
<211>		
<212>		
	artificial	
1000		
<220>		
<223>	human ESM-1 antisense	
<400>	426	
cactcc	cacc ccctccccat	20
010	405	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
1000	namen power ancibense	
<400>	427	
	ctg gttgttttat	20
		20
<210>	428	
<211>	20	
<212>		
<213>	artificial	•
<220>	Property Table 4 and 1	
<223>	human ESM-1 antisense	
<400>	428	
	gct ctcagttcaa	
-yuaatl	got occayoccaa	20
<210>	429	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/02583
<400>	429	
tcttaa	ataa gttcttcact	20
<210> <211>		
<211>		
	artificial	
(213)	altilitial	
<220>		
<223>	human ESM-1 antisense	
<400>		
ctgctg	tcac agtgttgagg	20
<210>	431	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
400		
	431	
ggtgcc	gtag ggacagtctt	20
<210>	432	
<211>	20	
<212>		
<213>	artificial	
.000		
<220>	human ESM-1 antisense	
<b>~</b> 2237	numan ESM-1 antisense	
<400>	432	
	ggtt actgaatatt	20
<210>		
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>		
agcctt	ctct cagaaatcac	20
<210>	434	
<211>		
<212>		
	artificial	
<220>		
-2235	human ESM-1 antisense	

	434 acc tgtctccatg	20
<211>		
<212> <213>	DNA artificial	
<220> <223>	human ESM-1 antisense	
<400>		20
tttgtta	actc aaatttccat	
<210> <211>	436	
<212>		
<213>	artificial	
<220> <223>	human ESM-1 antisense	
<400>	436	20
	gact tgcactaaca	20
<210>		
<211>		
<212>		
	artificial	
<220>	human ESM-1 antisense	
<223>	·	
<400>	437	20
aattta	tcat gcctcagatg	
<210>	438	
<211> <212>	20 DNA	
<212>		
<220>		
<223>		
<400>	438	20
.tccac	acaca ttcacaactc	
<210>		
<211>		
<212>	DNA	
	artificial	
<220>		
<223>	Human Bour a amorpound	

<400> gtctctc	439 rtgc aatccatccc	20
<210>	440	
<211>	20	
<211> <212>		
<212>	artificial	
<213>	altilional	
<220>		
<223>	human ESM-1 antisense	
<400>	440	20
ttactg	aata ttggaagaag	
	441	
<210> <211>		
<211> <212>		
<212>	artificial	
<213>	altilitat	
<220>		
<223>	human ESM-1 antisense	
<400>		20
attacg	ggag acccggcagc	
	110	
<210>	442	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
1		
<400>	442	20
tcata	tggat gttatggatt	
0.7.0	442	
<210>		
<211> <212>		
<212>	artificial	
(213)	UI CIII CIII	
<220>		
<223>	human ESM-1 antisense	
<400>	443	20
tttgg	ttgac ctgtctccat	
	• 444 • 20	
	DNA	
<2123	> artificial	
<213	WI 01110101	
<220		
<223	human ESM-1 antisense	

<400> tttgaaa	444 ttg ctctcagttc	20
<210>	445	
<211>	20	-
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	445	20
gtaggga	aaga tgacttgcac	
<210>	446	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	446	20
ttttat	tcta accattttca	20
<210>	447	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	447	20
ataggt	tttt attctaacca	20
<210>		
<211>		
<212>	DNA	
<213>	artificial ·	
<220>		
<223>	human ESM-1 antisense	
<400>	448	20
gctga	cacct cagccccggg	20
•		
	449	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

<400> 449 agttgcaggt ctctctgcaa	20
<210> 450 <211> 20 <212> DNA	
<213> artificial	
<220> <223> human ESM-1 antisense	
<223> human ESM-1 antisense	
<400> 450 cattttcccg tccccctgtc	20
<210> 451	
<211> 20	
<212> DNA	
<213> artificial	
<220>	
<223> human ESM-1 antisense	
<400> 451	20
gaagacttgg ttactgaata	
<210> 452	
<211> 20	
<212> DNA	
<213> artificial	
<220>	
<223> human ESM-1 antisense	
<400> 452	20
tgccatctcc agatgccatg	20
<210> 453	
<211> 20	
<212> DNA <213> artificial	
<213> artificial	
<220>	
<223> human ESM-1 antisense	
<400> 453	20
tcttctctca caatattgcc	
<210> 454	
<211> 20	
<212> DNA	
<213> artificial	
<220>	
<223> human ESM-1 antisense	

<b>WO 2</b> 004/021978	PCT/US2003/025833

	454 ggt cttcagcttt	20
<211> <212>		
<220> <223>	human ESM-1 antisense	
<400> ttgaaat	455 tgc tctcagttca	20
<211><212>	DNA	
<213> <220> <223>	human ESM-1 antisense	
<400> cttcag	456 atac aggtaacccg	20
<210><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> tgcccc	457 cagaa ccgtccttca	20
<210> <211> <212> <213>	20	
<220> <223>	human ESM-1 antisense	
<400> cacca	458 gtggg taaaatactt	20
<210><211><211><212><213>		

<212> DNA <213> artificial <220> <223> human ESM-1 antisense

	459 cag tgggtaaaat		20
<210><211><211><212><213>	460 20 DNA artificial		
<220> <223>	human ESM-1 antisense		
<400> accgaa	460 gtca cagcacttat		20
<210><211><212><212><213>	20		
<220> <223>	human ESM-1 antisense	,	
<400> agtaca	461 Lacag tootgtttgt		20
<210><211><212><213>			
<220> <223>	human ESM-1 antisense		
<400> tccag	462 gegge caccaggtgt		20
<210><211><211><212><213>	20		
<220> <223>	human ESM-1 antisense		
<400> gcact	463 cactg ctgtcacagt		20
<211:	DNA artificial		
<223	human ESM-1 antisense		

<400> tgtcctc	464 ttg cagcgcgggc	20
<210>	465	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	465	20
gcggta	gcaa gtttctcccc	
<210>	466	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	466	20
cataca	agtg ttcagtcata	
<210>		
<211>		
<212>	artificial	
<213>	a1011101u1	
<220>	ngu 1 autigango	
<223>	human ESM-1 antisense	
<400>	467	20
acata	caagt gttcagtcat	
<210>	468	
<211>	20	
<212>	,	
	artificial	
<220>		
<223>	human ESM-1 antisense	
	468	20
gacct	gtctc catgtaagat	
	469	
<211:		
	DNA	
<213	artificial	
<220:	• Idean and the same of the sa	
<223:	human ESM-1 antisense	

<400> tgacctg	469 tct ccatgtaaga	20
<210> <211>	20	
<212> <213>	DNA artificial	
<220>		
<223>	human ESM-1 antisense	
	470 ctct taagtettea	20
<210><211>	471 20	
<212>		
<213>	artificial	
<220>	human ESM-1 antisense	
<223>		
<400>		20
ttttat	tttg acttttccca	
<210>		
<211>		
<212>	DNA	
<213>	artificial	
<220>	and a contract of the same	
<223>	human ESM-1 antisense	
<400>	472	20
gttcaa	aagct gtttgttact	
<210>	473	
<211>	20	
<212>	DNA	
<213>	artificial .	
<220>		
<223>	human ESM-1 antisense	
<400>	473	20
taggt	tttta ttctaaccat	20
<210>	474	
<211>		
	DNA	
<213>		
<220>	DCM 1 antigenge	
<223>	human ESM-1 antisense	

<400> ccacaca	474 cat tcacaactct	20
<211> <212>		
<220>	human ESM-1 antisense	
<400>		20
caccyc		
<210><211><211><212><213>	20	
<220>		
<223>	human ESM-1 antisense	
<400> gccaca	476 gtcg tcgagcactg	20
<210>	477	
	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	477	20
	cgcag ataccaaact	20
<210>		
<211>		
<212>	DNA artificial	
1220		
<220>		
<223>	numan Esm-1 ancisense	
<400>	478	20
gttgc	aggtc tctctgcaat	
<210>		
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	•	
<223>		

<400>	479 ttg gaagacttgg	20
aaacccg		
<210>	480	
<211>	20	
	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	480	20
ggtttt	ctgg ttgttttatt	
<210>	481	
<211>	20 .	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	481	20
ttgcac	taac acatttattt	
<210>		
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	482	20
taggg	aagat gacttgcact	
	•	
<210> <211>		
<212>		
<213>		
<220>		
<223>	human ESM-1 antisense	
<400>	483	20
ctcas	atgtt tgaaaacctt	
	484	
	> 20	
<212:	DNA artificial	
<220:	human ESM-1 antisense	

<400> 484 cctgcagcgc acactcggca	20
<210> 485 <211> 20 <212> DNA <213> artificial	
<220> <223> human ESM-1 antisense	
<400> 485 cccgccctgc agcgcacact	20
<210> 486 <211> 20 <212> DNA <213> artificial	
<220> <223> human ESM-1 antisense	
<400> 486 cccggcagca ttctctttca .	20
<210> 487 <211> 20 <212> DNA <213> artificial	٩
<220> <223> human ESM-1 antisense	
<400> 487 tacgggagac ccggcagcat	20
<210> 488 <211> 20 <212> DNA <213> artificial	•
<220> <223> human ESM-1 antisense	
<400> 488 aattgcattt ttagttcttc	20
<210> 489 <211> 20 <212> DNA <213> artificial	
<220> <223> human ESM-1 antisense	

<400> ttcccac	489 etcc cacccctcc	20
<210>	490	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		20
tcaaag	ctgt ttgttactca	
<210>	491	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		20
aacctt	atag agtcataggt	
	•	
<210>		
<211>		
<212>	artificial	
<220>	Day 1 anticonse	
<223>	human ESM-1 antisense	
<400>	492	20
ctgtt	getea tttttgaea	
<210>	493	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	493	20
ccato	geetga gaetgtgegg	
	494	
<211:		
<212:	> DNA > artificial	
<213:	> arctriciar	
<220	1	
<223	human ESM-1 antisense	

<400> 494 cctcccatt agaaggctga	20
<210> 495 <211> 20 <212> DNA <213> artificial	
<220> <223> human ESM-1 antisense	
<400> 495 tattgccatc tccagatgcc	20
<210> 496 <211> 20 <212> DNA <213> artificial	
<220> <223> human ESM-1 antisense	
<400> 496 tatgctatat ctagaaagtt	20
<210> 497 <211> 20 <212> DNA <213> artificial	
<220> <223> human ESM-1 antisense	
<400> 497 ttatgctata tctagaaagt	20
<210> 498 <211> 20 <212> DNA <213> artificial	
<220> <223> human ESM-1 antisense	
<400> 498 tatcctactt tttgttttct	20
<210> 499 <211> 20 <212> DNA <213> artificial	
<220> <223> human ESM-1 antisense	

<400>	499 Latg gatgttatgg	20
,		
<210>	500	
<211>	20	
<212>		
	artificial	
12207	<u> </u>	
<220>		
	human ESM-1 antisense	
<223>	numan ESM-1 antisense	
<400>		20
tgcatt	ttta gttcttcagt	20
<210>	501	
<211>	20	
<212>		
	artificial	
<b>\Z13</b> /	arctificat	
.000		
<220>	1 and TOW 1 ambiguage	
<223>	human ESM-1 antisense	
<400>		~ ^
cactaa	caca tttatttata	20
<210>	502	
<211>		
<212>		
	artificial	
(213)	artificial	
.000-		
<220>	human ESM-1 antisense	
<223>	numan ESM-1 antisense	
<400>	502	20
cagatgtttg aaaaccttat 20		
<210>	503	
<211>	20	
<212>		
	artificial	
1020	<del></del>	
<220>		
	human ESM-1 antisense	
<2237	Human ESM-1 and School	
400	500	
<400>		20
tttgac	attt tttgaaatcc	20
<210>	504	
<211>	20	
<212>		
	artificial	
<220>		
-2207	human ESM-1 antisense	
~~~~	40 WILLIAM WITH A TOTAL	

<400>	504	
	cac aactctgttg	20
acacac	accesses accesses and accesses	
<210>	5.05	
<211>		
<212>		
	artificial	
~2137		
<220>		
	human ESM-1 antisense	
~2237		
<400>	505	
	gctc caggeggeca	20
	,	
<210>	506	
<211>		
<212>		
	artificial	
<220>		
	human ESM-1 antisense	
<400>	506	
	caaa aggateetee	20
	•	
<210>	507	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	507	
acaaat	ctgt tggaagactt	20
<210>	508	
<211>	20	
<212>	DNA	
<213>	artificial .	
<220>		
<223>	human ESM-1 antisense	
	T00	
<400>	508	20
gccttc	tctc agaaatcaca	20
	·	
010	500	
<210>	509	
<211>	20	
<212>	DNA artificial	
<213>	GI CITICIAT	
<220>		

PCT/US2003/025833

wo	2004/021978	PCT/US2003/025833
<400>	509	
ttgttad	ctca aatttccata	20
.010	510	
<210> <211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
-400-	F10	
<400>	tact caaatttcca	20
900090		
<210>		
<211>		
<212>	artificial	
<213>	arciriciai	
<220>		
<223>	human ESM-1 antisense	
<400>		20
aatact	tott agatttatot	20
<210>	512	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>		••
aattca	ccga agtcacagca	20
<210>	513	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
(220)		•
<400>	513	
ttctta	aata agttetteae	20
<210>	514	
<211>		
<212>		
<213>	artificial	

103

<223> human ESM-1 antisense

<220>

wo	2004/021978	PCT/US2003/025833
-	514	
cacacat	tca caactctgtt	20
<210>	515	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	515	
tccatgo	ctg agactgtgcg	20
<210>	516	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	516	20
tcctcc	ccat tagaaggctg	20
<210>	517	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		20
ggaatt	ccag gcattttccc	20
<210>	518	
<211>	20	
<212>	DNA	
<213>	artificial .	
<220>		
<223>	human ESM-1 antisense	
<400>	518	22
aagact	tggt tactgaatat	20
<210>	519	
<211>	20	
<212>	DNA	
<213>	artificial	

<220>

<400> ccattto	519 cetc attacgggag	20
<210>	520	
<211>		
<212>		
	artificial	
1		
<220>		
<223>	human ESM-1 antisense	
<400>	520	
gttgaco	ctgt ctccatgtaa	20
	521	
<211> <212>		
	artificial	
(213)	altilitial	
<220>		
<223>	human ESM-1 antisense	
	•	
<400>	521	
tgctcti	taag tetteattee	20
-010-	E22	
<210> <211>		
<211>		
	artificial	
1220	~2 02 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
<220>		
<223>	human ESM-1 antisense	
<400>	522	
aactaca	atca gcagcctttt	20
<210>	523	
<211>		
	DNA	
	artificial	
<220>		
<223>	human ESM-1 antisense	
400	500	
<400>		20
cagata	cagg taacccggga	20
<210>	524	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	human ECM_1 antigence	
	numan www.l anticance	

wo	2004/021978	PCT/US2003/02583
<400>	524	
	acag gtaacccggg	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	525	
aggttt	ttat tctaaccatt	20
<210>	526	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	526	
cttata	gagt cataggtttt	20
<210>	527	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
.400-		
<400>	ttct tcacttcaaa	20
aacaag	occo conocouna	
<210>	E28	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>		. 20
caaatc	tgtt ggaagacttg	20
<210> <211>		
<211> <212>		
	artificial	
<220>	human ESM-1 antisense	
<443>	Haman Pon-t ancreense	

PCT/US2003/025833

<400>	529	
cttatge	ctat atctagaaag	20
<210>	530	
<211>	20	
<212>		
	artificial	
(213/	artificial	
-000-		
<220>	Name Total Company	
<223>	human ESM-1 antisense	
<400>	530	
ggtttt	tatt ctaaccattt	20
<210>	531	
<211>	20	
<212>	DNA ·	
	artificial	
12207		
<220>		
	human ESM-1 antisense	
<223>	numan ESM-1 antisense	
	531	
aataaa	ttta tcatgcctca	20
<210>	532	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
\Z252		
<400>	532	
	ttta caaacctcct	20
tettet	ttta gaaagettet	20
	·	
<210>		
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	523	
	tttt acaaacctcc	20
	teet acadecees	
0.50	F04	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

<400>	534	
attctta	aaat aagttettea	20
	•	
<210>	535	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	535	
cegeect	gca gcgcacactc	20
_		
<210>	536	
<211>	20	
<212>		
	artificial	
<220>		
	human ESM-1 antisense	
40207		
<400>	536	
	cagg tetetetgea	20
cugceg	335 000000500	
<210>	537	
<211>		
<212>		
	artificial	
72207		
<220>		
	human ESM-1 antisense	
12257		
<400>	537	
		20
cccaca		
<210>	538	
<211>	20	
<211>	DNA	
	artificial	
(213)	altilitial ,	
<220>		
	human ESM-1 antisense	
<223>	numan ESM-1 antisense	
4400-	E20	
	538	20
caccat	gcat cacaatttgg	20
.010	T20	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		

PCT/US2003/025833

wo	2004/021978	PCT/US2003/025833
	539 Catgo atcacaattt	20
		20
	540	
<211>		
	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	540	
tgttc	agtca tatggatgtt	20
		20
<210>	541	
<211>		
	DNA ·	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	541	
tacaa	stgtt cagtcatatg	20
		20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	542	
atacaa	gtgt tcagtcatat	20
		20
<210>	543	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	543	
agtctt	catt ccatatccca	20
		20
<210>	544	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

<400>		
gactttt	ccc aaagccaaaa	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
tcaaatt	tcc ataagcttca	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	546	
caaagct	gtt tgttactcaa	20
<210>	547	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	547	
aaaatto	acc gaagtcacag	20
<210>	548	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	548	
cagcago	caag acgctcttca	20
<210>		
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

PCT/US2003/025833

WO 20	004/021978	PCT/US2003/025833
<400>	549	
caggcgg	cca ccaggtgtgc	20
<210>	550	
	20	
<212>		
	artificial	
12207		
<220>		
<223>	human ESM-1 antisense	
<400>	550	
	ccc gaaggtgccg	20
440004	34433-33	
	551	
<211>		
<212>	artificial	
<213>	alciliciai	
<220>		
<223>	human ESM-1 antisense	
<400>	551	
	ggg agacccggca	. 20
ccaccac	2999 4940009504	
	552	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		20
gtttte	tgga tccaccatgc	
<210>	553	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		20
ttgacc	tgtc tccatgtaag	
<210>	554	
<211>		
<212>	DNA	
<213>	artificial	
<220>		

WO 2	004/021978	PCT/US2003/025833
<400>		
tttatt	ttga cttttcccaa	20
<210>		
<211> <212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
aggggt	tttc tggttgtttt	20
<210>	556	
<211>	-	
<212>	_ ····	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
ttcaaa	gctg tttgttactc	20
<210>		
<211>		
<212> <213>	artificial	
<220> <223>	human ESM-1 antisense	
	557	
ccagaa	cogt cottoagata	20
<210>	558	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
attcac	cgaa gtcacagcac	20
<210>	559	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	

wo	2004/021978	PCT/US2003/025833
<400>	559	
	caccg aagtcacagc	20
		20
<210>	560	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	560 aattg aaaattcacc	
ccca	acty addaticace	20
<210>		
<211> <212>		
	artificial	
1220	arcificial	
<220>		
<223>	human ESM-1 antisense	
<400>	561	
	ttct gctgaaaatt	20
		20
<210>	562	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
	562	
CCLLCC	acac acattcacaa .	20
<210>	563	
<211> <212>		
<212>	DNA artificial	
72237	alciliciai	
<220>		
<223>	human ESM-1 antisense	
<400>	563	
	gcaa gacgctcttc	
		20
<210>	ECA	
<210> <211>		
<212>		
	artificial	
-222		
<220> <223>	human ECM_1 anticonce	
>	human ESM-1 antisense	

<400> gtcacag	564 gtgt tgagggcagt	20
010		
<210>	565	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	565	
ctcttca	acca aaaggatcct	20
<210>	566	
<211>	·	
<212>		
	artificial	
\Z137	altilitial	
<220>		
<223>	human ESM-1 antisense	
<400>	566	
	cca gatgccatgt	20
gccacci	seca gatgecatge	20
<210>	567	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
(223)	numan BBM-1 ancisense	
<400>	567	
ggatcca	acca tgcatcacaa	20
<210>	568	
<211>	20	
<212>	DNA	
	artificial	
(213)	arctificial ,	
<220>		
<223>	human ESM-1 antisense	
-400	500	
<400>	568	
agttcaa	aagc tgtttgttac	20
<210>	569	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400> ccttat	569 agag tcataggttt	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
	570 Cact tcaaataaaa '	20
<210> <211> <212> <213>	20	
<220> <223>	human ESM-1 antisense	
<400> ttgagg	571 gcag tccaccgcat	20
<210><211><212><212><213>	20	
<220> <223>	human ESM-1 antisense	
	572 cgca gataccaaac	20
<210> <211> <212> <213>	573 20 DNA artificial	
<220> <223>	human ESM-1 antisense	
<400> catate	573 ccaa cattaatgta	20
<210> <211> <212> <213>	574 20 DNA artificial	
<220>		

<400> aagtctt	574 cat tocatatoco	20
.010	FRE	
<210>		
<211> <212>		
	artificial .	
<213>	altilitat	
<220>		
	human ESM-1 antisense	
12237		
<400>	575	
cttctcc	ctgc tcttaagtct	20
	576	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	576	
attttat	ttc ccactcccac	20
<210>		
<211>	•	
<212>	artificial	
<213>	arciliciai	
<220>		•
	human ESM-1 antisense	
<400>	577	
attttg	actt ttcccaaagc	20
-2105	578	
<210> <211>	20	
<212>	DNA	
	artificial	
	, and the second	
<220>		
<223>	human ESM-1 antisense	
<400>		20
cttcca	caca cattcacaac	20
<210>	579	
<211>		
<212>		
	artificial	
<220>		
-222	human PCM-1 antigenge	

WO 2	2004/021978	PCT/US2003/025833
	579 ttgc agcgcgggct	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> catgcc	580 tgag actgtgcggt	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> ttttct	581 ggat ccaccatgca	20
<210><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
	582 agtg ttactataca	20
<211> <212>	583 20 DNA artificial	
<220> <223>	human ESM-1 antisense	
<400> atccca	583 acat taatgtacat	20
<210><211><211><212><213>	584 20 DNA artificial	
<220> <223>	human ESM-1 antisense	

WO 2004/021978 PCT/US2003/025833 <400> 584 gaaattgctc tcagttcaaa 20 <210> 585 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 585 tcttagattt atctctgagg 20 <210> 586 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 586 gggtagggaa gatgacttgc 20 <210> 587 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 587 acatgttttc tgctgaaaat 20 <210> 588 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 588 taataaacat gtccttttaa 20 <210> 589 <211> 20 <212> DNA <213> artificial <220>

wo	2004/021978		PCT/US2003/025833
<400> ccagcto	589 geet eeggetegge		20
<210><211><211><212><213>	20		
<220>	human ESM-1 antisense		
	590 acgc tcttcatgtt		20
<210><211><211><212><213>	20		
<220> <223>	human ESM-1 antisense		
<400> aggcgg	591 ccac caggtgtgca		20
<210><211><211><212><213>	20		
<220> <223>	human ESM-1 antisense		
<400> ccaccg	592 cata attattgctc		20
<210><211><211><212><213>	593 20 DNA artificial		
<220> <223>	human ESM-1 antisense		
<400> actctt	593 cacc aaaaggatcc		20
<210><211><211><212><213>	20	·	
<220>	human ESM-1 antisense		

<400> ttatttc	594 cca ctcccaccc	20
-010-	EOF	
<210>		
	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	595	
gtgtatg	ytgt ttcctatgcc	20
<210>	596	
<211>	20	
<212>		
	artificial	
\ 2 237		
<220>		
<223>	human ESM-1 antisense	
<400>	596	
aaacctt	ata gagtcatagg	20
<210>	597	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	597	20
aaactga	aaa ttcaccgaag	20
-210-	509	
	598	
<211>	20	
	DNA	
<213>	artificial .	
<220>		
<223>	human ESM-1 antisense	
<400>		
		20
attette	ettt tacaaacctc	20
-010:	FOO	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human FSM-1 anticance	

WO 2004/021978 PCT/US2003/025833 <400> 599 20 tgaacaataa taaacatgtc <210> 600 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 600 20 cataattatt gctccaggcg <210> 601 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 601

ttagttcttc agtgttacta 20

<210> 602
<211> 20
<212> DNA
<213> artificial

<220>
<223> human ESM-1 antisense

<400> 602 ctcactgcgg tcttcagctt 20

<210> 603
<211> 20
<212> DNA
<213> artificial
<220>
<223> human ESM-1 antisense

<400> 603
ttatagagtc ataggttttt 20

<210> 604 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense

<400>	604	
	ttt ttgaaatcca	20
-		
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>		20
cttaaai	tga aaattcaccg	20
<210>	606	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
400		
<400>	606 cagt ccaccgcata	20
cgaggg	cage ceacegeata	
<210>	607	
<211>	20	
<212>		
<213>	artificial	
<220>	home Box 1 embigongs	
<223>	human ESM-1 antisense	
<400>	607	
	cgta gggacagtct	20
<210>	608	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		20
accatt	tcct cattacggga	20
<210>	609	
<211>		
<212>		
	artificial	
-		
<220>		
<223>	human ESM-1 antisense	

PCT/US2003/025833

wo 2	2004/021978	PCT/US2003/025833
-400-	600	
	609 caga aatcacagcc	20
	caga aaccacagee	20
<210>		
<211> <212>		
	artificial	
12.57	arctiforar	
<220>		
<223>	human ESM-1 antisense	
-400		
<400>	ttct ctcagaaatc	20
agagee	coc cicagaaace	20
<210>		
<211>	- -	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>		
tagage	cttc tctcagaaat	20
<210>		
<211>		
<212>	DNA artificial	
(213)	arciliciai	
<220>		
<223>	human ESM-1 antisense	
<400>	- - -	0.0
tttttg	gatc caccatgcat	20
<210>	613	
<211>		
<212> <213>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		Ω
tgtttgt	ttac tcaaatttcc	20
<210>	614	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400> gaactad	614 catc agcagecttt	20
<210><211><212><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> atacag	615 gtaa cccgggaact	20
<211><212>		
<220> <223>	human ESM-1 antisense	

<210> 617
<211> 20
<212> DNA
<213> artificial
<220>
<223> human ESM-1 antisense
<400> 617
tattctaacc attttcaaca
20

20

<210> 618
<211> 20
<212> DNA
<213> artificial
<220>
<223> human ESM-1 antisense

<400> 618
cggcagcagc cacagtcgtc 20

<210> 619 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense

<400> 616

caaaccacca gtgggtaaaa

WO 2	004/021978	PCT/US2003/025833
	619	20
ccgtagg	gac agtetttgea	20
010	500	
<210>		
<211><212>		
	artificial	
42137	alciliciai	
<220>		
	human ESM-1 antisense	
<400>	620	
attttc	ccgt ccccctgtca	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
(223)	Iddital Bor I dicisoned	
<400>	621	
	gacc cggcagcatt	20
	3 3 5	
<210>	622	
<211>		
<212>		·
<213>	artificial	
-000-		
<220> <223>	human ESM-1 antisense	
<223>	Mulian ESM-1 and sense	
<400>	622	
	catg catcacaatt	20
400040		
<210>	623	
<211>	20	
<212>		
<213>	artificial	
<220>	human ESM-1 antisense	
<223>	numan ESM-1 antibense	
<400>	623	
	cctg ctcttaagtc	20
<210>	624	
<211>		
<212>		•
<213>	artificial	
<220>	human ESM-1 antisense	
<223>	Human Bon-I and Bened	

<400>	624	
tgtttta	ttt tgactttcc	20
<210>		
<211>	·	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
12207		
<400>	625	
tccttca	aggg gttttctggt	20
	•	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
12237	IIIIIIII IIII I WAA I CAA I CA	
<400>	626	
acccggg	yaac tacatcagca	20
<210>		
<211>		
<212>	artificial	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	627	
taaatto	gaaa attcaccgaa	20
<210>	628	
<211>	20	
<212> <213>		
<213>	altilitiai .	
<220>		
<223>	human ESM-1 antisense	
<400>	628	
tcacaac	tct gttggccaac	20
<210>	629	
<211>		
<212> <213>	artificial	
~~~~	WE 077707W	
<220>		

PCT/US2003/025833

<400>	· · · ·	
ttgaa	caata ataaacatgt	20
	<del>-</del>	
<210>	630	
<211>		
<212>		
	artificial	
\Z13/	arcificial	
4220-		
<220>	Name of the Control o	
<223>	human ESM-1 antisense	
<400>		
tccaco	gcat aattattgct	20
<210>		
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
12237	Manual EBN-1 difference	
<400>	621	
	gctg tcacagtgtt	
CCCacc	gety teacagiget	20
-010-	622	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	632	
ttgcag	gtct ctctgcaatc	20
	,	
	·	
<210>	633	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<b>\223</b> >	numan ESM-I antisense	
4400:	622	
<400>		
cacgaa	aata gagccttctc	20
<210>	634	
	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	· · · · · · · · · · · · · · · · · · ·	

WO 2	004/021978	PCT/US2003/025833
<400>		20
tcttaag	gtot toattocata	20
<210>	635	
<211>		
<212>		
	artificial	
<220>		
	human ESM-1 antisense	•
<400>	635	
tttccc	actc ccacccctc	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	636	
taataa	attt atcatgcctc	20
	ť	
<210>	637	
<211>		
<212>		
	artificial	
		•
<220>		
<223>	human ESM-1 antisense	
<400>		20
tatctt	gttc ttttttattg	20
<210>	638	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220>	•	
<223>	human ESM-1 antisense	
<400>		22
ccaggo	ggcc accaggtgtg	20
0.7.0	600	
<210>	639	
<211>		
<212>	DNA artificial	

<220>

WO 2	004/021978	PCT/US2003/025833
<400> aattat	639 tgct ccaggeggee	. 20
<210><211><212>	20	
	artificial	
<220> <223>	human ESM-1 antisense	
<400>		
ttgcac	tcac tgctgtcaca	20
<210> <211>	20	
<212> <213>	DNA artificial	
<220>		
<223>	human ESM-1 antisense	
<400> ctactt	641 tttg ttttctggat	20
<210>	642	
<211>	20	
<212> <213>	DNA artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	642 ggaa ctacatcagc	20
	ggaa ocacage	20
<210> <211>	643 20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	643	
gatacag	ggta accegggaac	20
<210>	644	
<211><212>	20 DNA	
<213>	artificial	
<220> <223>	human ESM-1 antisense	

WO 2004	4/021978	PCT/US2003/025833
<400> 64 actaacaca	4 t ttatttataa	20
<210> 64 <211> 20 <212> DN <213> ar	A.	

<223> human ESM-1 antisense

<400> 645
tgcactaaca catttattta 20

<210> 646
<211> 20
<212> DNA
<213> artificial
<220>
<223> human ESM-1 antisense

<400> 646
aacatctagt acaacagtcc 20

<210> 647
<211> 20
<212> DNA
<213> artificial
<220>

<400> 647
actctgttgg ccaacttcaa 20

<210> 648
<211> 20
<212> DNA
<213> artificial
<220>
<223> human ESM-1 antisense

<400> 648
gcctccggct cggctctcca 20

<210> 649 <211> 20 <212> DNA <213> artificial

<223> human ESM-1 antisense

<220>

WO 2	004/021978	PCT/US2003/025833
<400>	649	
	act gctgtcacag	20
<210>	650	
<211>		
<212>	•	
	artificial	
<220>		
	human ESM-1 antisense	
	650	20
tttcaca	act tcttctctca	20
010		
	651	
<211> <212>		
	artificial	
72137	arciriciar	
<220>		
<223>	human ESM-1 antisense	
<400>	651	
	gaa atcacageeg	20
	gaa accacageeg	
<210>	652	
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
12201		
<400>	652	
gaaaata	gag ccttctctca	20
<210>	653	
<211>	20	
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
-100-	· ·	
<400>		20
ccacya	aat agageettet	20
<210>		
<211>		
<212>		
<b>~</b> ∠13>	artificial	
<2205		

wo :	2004/021978	PCT/US2003/025833
<400> acttate	654 gcta tatctagaaa	. 20
<210><211><212>	20 DNA	
<213>	artificial	
	human ESM-1 antisense	
<400> tatttta	655 attt cccactccca	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> attctaa	656 acca ttttcaacaa	. 20
<210><211><212><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> cataggi	657 Ettt tattctaacc	20
<210><211><212><212><213>		
<220> <223>	human ESM-1 antisense	
<400> ataagt	658 cctt cacttcaaat	20
<210><211><211><212><213>	20	
<220×		

## WO 2004/021978 <400> 659 20 gccttccaca cacattcaca <210> 660 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 660 20 tcttcaccaa aaggatcctc <210> 661 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 661 20 gcagttgcag gtctctctgc <210> 662 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 662 20 aacaaatctg ttggaagact <210> 663 <211> 20 <212> DNA <213> artificial <223> human ESM-1 antisense <400> 663 20 cgaaaataga gccttctctc <210> 664 <211> 20 <212> DNA <213> artificial <220>

PCT/US2003/025833

<pre>&lt;210&gt; 665 &lt;2211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial </pre> <pre>&lt;220&gt; &lt;223&gt; human ESM-1 antisense </pre> <pre>&lt;400&gt; 665 aagatyactt gcactaacac</pre>	<400>		20
<pre>&lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 665 aagatgactt gcactaacac</pre>	agataca	aggt aacccgggaa	20
<pre>&lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 665 aagatgactt gcactaacac</pre>			
<pre>&lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 665 aagatgactt gcactaacac</pre>	Z2105	665	
<pre>&lt;212&gt; DNA &lt;213&gt; artificial </pre> <pre>&lt;220&gt; &lt;223&gt; human ESM-1 antisense </pre> <pre>&lt;400&gt; 665 aagatgactt gcactaacac</pre>			
<pre>&lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 665 aagatgactt gcactaacac</pre>			
<pre>&lt;220&gt; &lt;223&gt; human ESM-1 antisense &lt;400&gt; 665 aagatgactt gcactaacac</pre>			
<pre>&lt;223&gt; human ESM-1 antisense &lt;400&gt; 665 aagatgactt gcactaacac 20  &lt;210&gt; 666 &lt;221&gt; 20  &lt;212&gt; DNA</pre>	10-0-		
<pre>&lt;400&gt; 665 aagatgactt gcactaacac 20  &lt;210&gt; 666 &lt;211&gt; 20 -212&gt; DNN &lt;213&gt; artificial &lt;220&gt; &lt;223&gt; human ESM-1 antisense &lt;400&gt; 666 ttaaattgaa aattcaccga 20  &lt;211&gt; 20 -2212&gt; DNN -2213&gt; artificial &lt;220&gt; &lt;2212&gt; DNA -2213&gt; artificial &lt;220&gt; -2213&gt; human ESM-1 antisense &lt;400&gt; 667 -2213&gt; artificial &lt;220&gt; -2213&gt; human ESM-1 antisense &lt;400&gt; 667 aaattgatc ttcttttaca 20 &lt;210&gt; 668 -2211&gt; 20 -212&gt; DNA -213&gt; artificial &lt;220&gt; -2213&gt; defense artificial &lt;220&gt; -2213&gt; human ESM-1 antisense &lt;400&gt; 668 -2213&gt; artificial &lt;220&gt; -223&gt; human ESM-1 antisense &lt;400&gt; 668 ttttgcactc actgctgtca 20 &lt;221&gt; 669 -221&gt; 20 -221&gt; DNA -2213&gt; artificial -220&gt; -223&gt; human ESM-1 antisense &lt;400&gt; 668 tttttgcactc actgctgtca 20</pre>	<220>		
aagatgactt gcactaacac 20  <210> 666 <211> 20 <212> DNN <213> artificial <220> <223> human ESM-1 antisense <440> 666 ttaaattgaa aattcaccga 20  <210> 667 <211> 20 <212> DNA <213> artificial <222> <223> human ESM-1 antisense <400> 667 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 667 aaattgattc ttcttttaca 20  <210> 668 <211> 20 <212> DNA <213> artificial <220> <213> artificial <220> <213> human ESM-1 antisense <400> 668 ttttgcactc actgctgtca 20  <210> 668 ttttgcactc actgctgtca 20 <221> DNA <213> artificial <220> <221> DNA <213> artificial <221> DNA <221	<223>	human ESM-1 antisense	
aagatgactt gcactaacac 20  <210> 666 <211> 20 <212> DNN <213> artificial <220> <223> human ESM-1 antisense <440> 666 ttaaattgaa aattcaccga 20  <210> 667 <211> 20 <212> DNA <213> artificial <222> <223> human ESM-1 antisense <400> 667 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 667 aaattgattc ttcttttaca 20  <210> 668 <211> 20 <212> DNA <213> artificial <220> <213> artificial <220> <213> human ESM-1 antisense <400> 668 tzttgcactc actgctgtca 20  <210> 668 ttttgcactc actgctgtca 20 <221> DNA <213> artificial <220> <221> DNA <213> artificial <221> DNA <221			
<pre> &lt;210&gt; 666 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 666 ttaaattgaa aattcaccga  20  &lt;211&gt; 20 &lt;211&gt; 20 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;221&gt; def7 &lt;211&gt; 20 &lt;221&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 667 aaattgatt ttcttttaca  20  &lt;210&gt; 668 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;221&gt; def8 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;20 &lt;210&gt; 668 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;200 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;200 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;221&gt; def8 &lt;211&gt; 20 &lt;221&gt; cat defended and selected act artificial  &lt;220&gt; &lt;221&gt; def8 ttttgcactc actgctgtca  20 &lt;221&gt; 669 &lt;211&gt; 20 </pre>	<400>	665	
<pre>&lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial </pre> <pre>&lt;220&gt; &lt;223&gt; human ESM-1 antisense </pre> <pre>&lt;400&gt; 666 ttaaattgaa aattcaccga</pre>	aagatga	actt gcactaacac	20
<pre>&lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial </pre> <pre>&lt;220&gt; &lt;223&gt; human ESM-1 antisense </pre> <pre>&lt;400&gt; 666 ttaaattgaa aattcaccga</pre>			
<pre>&lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial </pre> <pre>&lt;220&gt; &lt;223&gt; human ESM-1 antisense </pre> <pre>&lt;400&gt; 666 ttaaattgaa aattcaccga</pre>			
<pre>&lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 666 ttaaattgaa aattcaccga</pre>			
<pre>&lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 666 ttaaattgaa aattcaccga</pre>			
<pre>&lt;220&gt; &lt;223&gt; human ESM-1 antisense &lt;400&gt; 666 ttaaattgaa aattcaccga 20 &lt;210&gt; 667 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial &lt;220&gt; &lt;223&gt; human ESM-1 antisense &lt;400&gt; 667 aaattgattc ttcttttaca 20 &lt;210&gt; 668 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213 artificial &lt;20 &lt;220&gt; &lt;223 human ESM-1 antisense &lt;400&gt; 668 ttitgaatta attificial &lt;220&gt; &lt;212&gt; DNA &lt;213 artificial &lt;220&gt; &lt;212&gt; DNA &lt;213 artificial &lt;220&gt; &lt;213 human ESM-1 antisense &lt;400&gt; 668 ttttgcactc actgctgtca 20 &lt;210&gt; 669 &lt;211&gt; 20</pre>			
<pre>&lt;223&gt; human ESM-1 antisense  &lt;400&gt; 666 ttaaaattgaa aattcaccga</pre>	<213>	artificial	
<pre>&lt;223&gt; human ESM-1 antisense  &lt;400&gt; 666 ttaaaattgaa aattcaccga</pre>	-220-		
<pre>&lt;400&gt; 666 ttaaattgaa aattcaccga 20 &lt;210&gt; 667 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial &lt;220&gt; &lt;223&gt; human ESM-1 antisense &lt;400&gt; 667 aaattgattc ttcttttaca 20 &lt;210&gt; DNA &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial &lt;20&gt; &lt;220&gt; aaattgattc ttcttttaca 20 &lt;210&gt; 668 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial &lt;220&gt; &lt;221&gt; DNA &lt;213&gt; artificial &lt;220&gt; &lt;223&gt; human ESM-1 antisense &lt;400&gt; 668 ttttgcactc actgctgtca 20 &lt;210&gt; 669 &lt;211&gt; 20</pre>		human FSM-1 antigenge	
ttaaattgaa aattcaccga 20  <210> 667 <211> 20 <212> DNA <213> artificial  <220> <223> human ESM-1 antisense  <400> 667 aaattgattc ttcttttaca 20  <210> 668 <211> 20 <212> DNA <213> artificial  <20> <220> <213> human ESM-1 antisense 20  <210 668 <211> 20 <212> DNA <213> artificial  <220> <223> human ESM-1 antisense 20  <210> 668 ttttgcactc actgctgtca 20  <210> 669 <211> 20	(223)	Indicate Bow-1 and before	
ttaaattgaa aattcaccga 20  <210> 667 <211> 20 <212> DNA <213> artificial  <220> <223> human ESM-1 antisense  <400> 667 aaattgattc ttcttttaca 20  <210> 668 <211> 20 <212> DNA <213> artificial  <20> <220> <213> human ESM-1 antisense 20  <210 668 <211> 20 <212> DNA <213> artificial  <220> <223> human ESM-1 antisense 20  <210> 668 ttttgcactc actgctgtca 20  <210> 669 <211> 20	<400>	666	
<pre> &lt;210&gt; 667 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 667 aaattgattc ttcttttaca  20  &lt;210&gt; 668 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 668 ttttgcactc actgctgtca  20 &lt;210&gt; 668 </pre>			20
<pre>&lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 667</pre>		-5un university	
<pre>&lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 667</pre>			
<pre>&lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 667 aaattgattc ttcttttaca 20  &lt;210&gt; 668 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 668 ttttgcactc actgctgtca 20</pre>	<210>	667	
<pre>&lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 667 aaattgattc ttcttttaca 20  &lt;210&gt; 668 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 668 ttttgcactc actgctgtca 20  &lt;210&gt; 669 &lt;211&gt; 20</pre>	<211>	20	
<pre> &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 667 aaattgattc ttcttttaca  20  &lt;210&gt; 668 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 668 ttttgcactc actgctgtca  20 &lt;210&gt; 669 &lt;211&gt; 20</pre>			
<pre>&lt;223&gt; human ESM-1 antisense  &lt;400&gt; 667 aaattgattc ttcttttaca 20  &lt;210&gt; 668 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 668 ttttgcactc actgctgtca 20  &lt;210&gt; 669 &lt;211&gt; 20</pre>	<213>	artificial	
<pre>&lt;223&gt; human ESM-1 antisense  &lt;400&gt; 667 aaattgattc ttcttttaca 20  &lt;210&gt; 668 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 668 ttttgcactc actgctgtca 20  &lt;210&gt; 669 &lt;211&gt; 20</pre>			
<pre>&lt;400&gt; 667 aaattgattc ttcttttaca  20  &lt;210&gt; 668 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 668 ttttgcactc actgctgtca  20 &lt;210&gt; 669 &lt;211&gt; 20</pre>			
<pre>aaattgattc ttcttttaca</pre>	<223>	human ESM-1 antisense	
<pre>aaattgattc ttcttttaca</pre>	400	cen	
<pre> &lt;210&gt; 668 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 668 tttgcactc actgctgtca  20 &lt;210&gt; 669 &lt;211&gt; 20</pre>			20
<211> 20 <212> DNA <213> artificial  <220> <223> human ESM-1 antisense  <400> 668 ttttgcactc actgctgtca  20  <210> 669 <211> 20	aaattg	atto ticittada	20
<211> 20 <212> DNA <213> artificial  <220> <223> human ESM-1 antisense  <400> 668 ttttgcactc actgctgtca  20  <210> 669 <211> 20			
<211> 20 <212> DNA <213> artificial  <220> <223> human ESM-1 antisense  <400> 668 ttttgcactc actgctgtca  20  <210> 669 <211> 20	~21As		
<212> DNA <213> artificial  <220> <223> human ESM-1 antisense  <400> 668 ttttgcactc actgctgtca  20  <210> 669 <211> 20			
<213> artificial			
<220> <223> human ESM-1 antisense  <400> 668 ttttgcactc actgctgtca 20  <210> 669 <211> 20		artificial	
<223> human ESM-1 antisense  <400> 668 ttttgcactc actgctgtca 20  <210> 669 <211> 20			
<400> 668 ttttgcactc actgctgtca 20 <210> 669 <211> 20			
<pre>ttttgcactc actgctgtca  &lt;210&gt; 669 &lt;211&gt; 20</pre>	<223>	human ESM-1 antisense	
<pre>ttttgcactc actgctgtca  &lt;210&gt; 669 &lt;211&gt; 20</pre>			
<210> 669 <211> 20			
<211> 20	ttttgc	actc actgctgtca	20
<211> 20			
<211> 20			
<212> DNA <213> artificial			
<213> arctrictar	<213>	at ctriorat	
	-220-		
~220>		human ESM-1 antisense	
	<220×		
<220>		human ESM-1 antisense	

WO 2004/021978	PCT/US2003/025833
<400> 669	
tctctctgca atccatcccg	20

<210> 670 <211> 20 <212> DNA <213> artificial

<220>
<223> human ESM-1 antisense

<400> 670 tactgaatat tggaagaagg 20

<210> 671 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense

<400> 671
cttaagtctt cattccatat 20

<210> 672 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense

<400> 672
atattttatt tcccactccc 20 -

<210> 673
<211> 20
<212> DNA
<213> artificial
<220>
<223> human ESM-1 antisense

<400> 673
acttttccca aagccaaaaa 20

<210> 674 <211> 20 <212> DNA <213> artificial

WO 2	004/021978	PCT/US2003/025833
<400>	674	
	aaat tgctctcagt	. 20
	•	
.010.	car	
<210><211>		
<211>		
	artificial	
(213)	alciliciai	
<220>		
<223>	human ESM-1 antisense	
<400>	675	•
acttct	aga tttatctctg	20
<210>	676	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	Name of the second second	
<223>	human ESM-1 antisense	
<400>	676	
	eatt tatcatgcct	20
	-	
<210>		
<211>		
<212>	artificial	
<b>\213</b> /	arciriciai	
<220>		
<223>	human ESM-1 antisense	
	677	
atcttg	tct tttttattga	20
<210>	678	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	670	
	gtc caccgcataa	20
2~222~		20
<210>		
<211>	•	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	

<400>	679	
tgtcaca	gtg ttgagggcag	20
<210>		
<211>		
<212>	artificial	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	680	
attagaa	aggc tgacacctca	20
<210>		
<211> <212>		
	artificial	
\Z1J/	at cirioral	
<220>		
	human ESM-1 antisense	
	681	20
ctcccc	atta gaaggctgac	20
.010.	C02	
<210> <211>		
<211>		
	artificial	
10.00		
<220>	·	
<223>	human ESM-1 antisense	
	682	20
gacttg	gtta ctgaatattg	20
<210>	683	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		20
tycato	acaa tttggatctt	
<210>	684	
<211>		
<212>		
<213>	artificial	
<220>	The state of the s	
<223>	human ESM-1 antisense	

PCT/US2003/025833

<400>	684	
	acc atgcatcaca	20
-994000		
<210>	685	
	20	
<212>		
10207		
<220>		
	human ESM-1 antisense	
<400>	685	
	cag cagccttttg	20
<210>	686	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	686	
tttatt	ctaa ccattttcaa	20
<210>	687	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	687	20
ttgaaa	acct tatagagtca	20
<210>	688	
<211>	20	
<212>	DNA	
<213>	artificial .	
<220>	Name of the second seco	
<223>	human ESM-1 antisense	
400.	600	
<400>	688	20
acattt	tttg aaatccagag	_,
<210>	689	
<210>	20	
<211>	DNA	
<212>	artificial	
<413>	arciticial	
<220>		
<223>	human ESM-1 antisense	

WO 2004/021978

WO 2	004/021978	PCT/US2003/025833
	689 laca gtcctgtttg	20
<210>	690	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	690	
	acag tgttgagggc	20
<210>	691	
<211>		
<212>		
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	691	
	ctt ctctcagaaa	20
<210>	692	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	692	
	aaat gttggctgtg	. 20
<210>	693	
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	693	
	caca atttggatct	20
	<b>J</b>	_ <del>-</del>
<210>	694	
<211>		
<212>		
<213>		
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	694	
	gac ttttcccaaa	20
<210>	695	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	695	
	ggg ttttctggtt	20
	555	
<210>	696	
<211>		
<212>		
	artificial	
•		
<220>		
<223>	human ESM-1 antisense	
<400>	696	
	caa atttccataa	20
<b>J</b>		
.010.	C07	
<210>		
<211> <212>		•
	artificial	
72257	WI 011101W1	
<220>		
<223>	human ESM-1 antisense	
	CO.	
<400>	697	20
Lyaaaat	ect atagagtcat	20
<210>	698	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		00
tctgttg	rctc atttttgac	20
		v
<210>		
<211>		
<212>		
<213>	artificial	
<220>		

<223> human ESM-1 antisense

WO 2004/021978 PCT/US2003/025833

	699	•
ctgtttg	rtgc taagattctt	20
<210>	700	
	20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	700	
•		20
etetgtt	ggc caacttcaag	20
<210>	701	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
10202		
<400>	701	
		20
getgeet	ceg geteggetet	20
<210>	702	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	702	
		20
acaacca	tera erecagacaa	
<210>	703	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	703	
		20
LLLGCAC	ctca ctgctgtcac	
	To 4	
	704	
	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	

<400>	704	00
gagacco	ggc agcattctct	20
	705	
	20	
<212>	DNA artificial	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	705	
cattac	gga gacccggcag	20
<210>	706	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	706	
	attt gactcactgc	20
<210>	707	
	20	
<212>		
<213>	artificial	
.000-	•	
<220> <223>	human ESM-1 antisense	
10007		
<400>	707	20
gtcttc	attc catatcccaa	20
<210>	708	
<211>	20	
<212>	DNA artificial .	
<213>	artificial	
<220>		
<223>		
<400>	708	
	ttcc cactcccacc	20
<210>	709	
<211>	20	
<212>		
<213>		
<b>-220</b> .		
<220> <223>	human ESM-1 antisense	
2-/	***************************************	

PCT/US2003/025833

WO 2004/021978

WO 2	2004/021978	PCT/US2003/025833
<400>	709	
	cac agcacttatg	20
.010.	710	
	710 20	
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	710	20
ctatty	etcc aggoggocac	20
<210>	711	
<211>	20	
<212>		
<213>	artificial	
	·	
<220> <223>	human ESM-1 antisense	
<b>4223</b>	numan ESM-1 ancisense	
<400>	711	
ctcggca	agca gccacagtcg	20
		•
	712	
<211> <212>		
	artificial	
12157	4101140141	
<220>		
<223>	human ESM-1 antisense	
	712	20
ggergae	cacc tcageceegg	20
<210>	713	
<211>	20	
<212>	DNA	
<213>	artificial	
000		
<220> <223>	human ESM-1 antisense	
\2237	naman BDM-1 ancibense	
<400>	713	
	ctca gaaatcacag	20
	R1.4	
<210>	714	
<211> <212>	20 DNA	
<212>		
<220>		•
<223>	human ESM-1 antisense	

WO 2004/021978 PCT/US2003/025833

<400>	714	
catgcat	ccac aatttggatc	20
	715	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	715	
	ttgt tttctggatc	20
, -	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
<210>	716	
	20	
<212>		
	artificial	
<413>	artirida	
	•	
<220>		
<223>	human ESM-1 antisense	
<400>	716	
cctactt	ettt gttttctgga	20
<210>	717	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
12207		
<400>	717	
	agga agggctaaat	20
CLUCCU	agga agggeedade	
-010-	71.0	
	718	
<211>	20	
	DNA	
<213>	artificial	
<220>	·	
<223>	human ESM-1 antisense	
<400>	718	
caggggt	tttt ctggttgttt	20
<210>	719	
<211>	20	
<212>	DNA	
	artificial	
<220>		
<223>	human ESM-1 antisense	
<b>~4437</b>	Haman Dov. T and ID-112-	

WO 20	004/021978	PCT/US2003/025833
<400>	719	
	acc accagtgggt	20
<210>	720	
<211>		
<212>		
	artificial	
<220>	Name Total Control of the Control	
<223>	human ESM-1 antisense	
<400>	720	
acacaca	ttc acaactctgt	20
<210>	721	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	Normal Mark of the Control of the Co	
<223>	human ESM-1 antisense	
<400>	721	
tgcctcc	ggc tcggctctcc	20
3		
<210>	700	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	722	
	rgg gagacccggc	20
CCCCCC		20
	723	
<211>		
<212>	artificial	
<213>	artificiar	
<220>		
<223>	human ESM-1 antisense	
<400>		
tcctcat	tac gggagacccg	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

<400>	724	
	natg ttggctgtgt	20
<210>	725	
<211>		
<212>		
	artificial	
1220	W_U_L_U_L_U_L_U_L_U_L_U_L_U_L_U_L_U_L_U_	
<220>		
	human ESM-1 antisense	
12007		
<400>	725	
	aaca ttaatgtaca	20
<210>	726	
<211>	20	
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	726	
caaatt	tcca taagcttcaa	20
<210>	727	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	727	
tgctct	cagt tcaaagctgt	20
<210>	728	
<211>	20	
<212>	DNA	
<213>	artificial ,	
<220>		
<223>	human ESM-1 antisense	
400	TOO.	
<400>	728	20
ctctaa	ccat tttcaacaaa	
-210-	720	
	729	
<211>	20	
<212>		
<213>	artificial	
-000-		
<220>	human ESM-1 antisense	
<223>	Uniiidii Poli-I diicipende	

WO 2004/021978

WO 2004/021978		PCT/US2003/025833	
<400>	729		
	ctta tagagtcata	20	
<210>	730		
<211>	20		
<212>			
	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	730		
	ttga aatccagagt	20	
oucce	cega aacceagage	20	
-010-	721		
<210>			
<211>			
<212>			
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	731		
	gttc ttcacttcaa	20	
	<b>300</b> 0 000000000000000000000000000000000		
<210>	72.2		
<211>			
<212>			
	artificial		
<b>\Z13</b> /	altilitial		
<220>			
<223>	human ESM-1 antisense		
<400>	732		
	ggcc aacttcaaga	20	
	33 uaa		
<210>	733		
<211>			
<212>	DNA		
<213>			
\ <del>\</del> 2137	archiciar		
<220>			
<223>	human ESM-1 antisense		
<400>	733		
	cctc cggctcggct	20	
	33	20	
<210>	734		
<211>			
<212>			
	artificial		
<220>			
<223>	human ESM-1 antisense		

wo	2004/021978	PCT/US2003/0258
<400>	734	
gggcag	tcca ccgcataatt	20
<210>	735	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	735	
gttgag	ggca gtccaccgca	20
<210>	736	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	736	
ctgtca	cagt gttgagggca	20
<210>	737	
<211>		
<212>		
	artificial	
<220>		
	human ESM-1 antisense	•
100	525	
	737 tcag aaatcacagc	20
CLLCCC	ccag adaccacage	20
.010-	72.0	
<210>	738	
<211><212>	20 DNA	
<213>	artificial	
12207		•
<220>		
<223>	human ESM-1 antisense	
<400>	738	
tgtttt	ctgg atccaccatg	20
<210>	739	•
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

wo	2004/021978	PCT/US2003/025833
<400	> 739	
	actttt tgttttctgg	
	3	20
	> 740	
~212·	> 20 > DNA	
	> artificial	
\Z13.	altificial	
<220:		
<223:	human ESM-1 antisense	
<400>	· - <del>-</del>	
tttga	etcac tgcggtcttc	20
		20
<210>	741	
<211>		•
	DNA	
	artific <u>ial</u>	
<220>		
<223>	human ESM-1 antisense	
-400	B44	
<400>	741 tttga aattgctctc	
ageee	ctiga datigetete	20
<210>		
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	742	
tacago	gtaac ccgggaacta	20
		20
421.05	E42	
<210> <211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
400		
<400>	743	
acacac	aaac caccagtggg	20
<210>	744	
	20	
<212>		
<213>	artificial	
-222		
<220> <223>	human ESM-1 antisense	
~4437	nomen Pom-1 guilsense	

WO 20	004/021978	PCT/US2003/025833
<400>	744	
tctaaco	catt ttcaacaaat	20
<210>	745	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
	745	
agagtca	atag gtttttattc	20
<210>	746	
<211>		•
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	746	
	taa ataaggtccc	20
-		
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	747	
agggcag	ytcc accgcataat	20
<210>	748	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	748	
rgcagat	acc aaactcttca	20
<210>	749	
<211>	20	
	DNA	
	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	749	
	ttaa tgtacatcaa	20
-010-	750	
	750 20	
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
	750	
atette	tect getettaagt	20
<210>	751	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	Name of the state	
<223>	human ESM-1 antisense	
<400>	751	
	cag ttcaaagctg	20
<b>J</b>		20
<210>		
<211>		
<212>	artificial	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	752	
gatgtt	cgaa aaccttatag	20
<210>	753	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	753	
	yatt cttctttac	20
	,	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

wo	2004/021978	PCT/US2003/025833
<400>	754	
aataaac	atg tccttttaaa	20
<210>		
<211>		
<212> <213>	artificial	
<220>	human ESM-1 antisense	
<223>	iluman Esm-1 ancisense	
<400>		20
attgaad	aat aataaacatg	20
	756	
<211> <212>		
	artificial	
<220>	human ESM-1 antisense	
<400>		20
ggegge	cacc aggtgtgcag	
<210> <211>		
<211>		
<213>	artificial	
<220>	·	
	human ESM-1 antisense	
400	858	
	757 atgc ctgagactgt	20
<210>	758	
<211>		
<212>	DNA	
<213>	artificial .	
<220>		
<223>	human ESM-1 antisense	
<400>	758	
	tctc acaatattgc	20
<210>	759	
<211>		
<212>	DNA artificial	

<220> <223> human ESM-1 antisense

wo a	2004/021978	PCT/US2003/025833
<400>	759	
	ttct ggatccacca	20
_		
010	7.00	
<210> <211>		
<211>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
	760	0.0
tctcct	gctc ttaagtcttc	20
<210>	761	
<211>		
<212>	DNA	
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	761	
	ctcc tgctcttaag	20
	<b>3</b>	
<210>		
<211>		
<212>	artificial	
<213>	arciliciai	
<220>	,	
<223>	human ESM-1 antisense	
<400>		0.
ttttct	ggtt gttttatttt	20
<210>	763	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	763	
	agtt caaagctgtt	20
30000		20
<210>	764	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	764	
	ttg aaattgctct	20
.010-	nor.	
<210> <211>		
<212>		•
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	765	
	aact acatcagcag	20
<210>		
<211> <212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	766	
	tat gcccagaac	20
050000	30000agaa0	
<210>		
<211> <212>		
	artificial	
12-07		
<220>		
<223>	human ESM-1 antisense	
<400>	767	
	itac tcctaattcc	20
<210>	768	
<211> <212>	20 DNA	
<213>	artificial	
12201		
<220>		
<223>	human ESM-1 antisense	
<400>	768	
	agca agacgctctt	20
5 coage	-J	20
<210>		
<211> <212>	20 DNA	
	artificial	
<220>		
<223>	human ESM-1 antisense	

wo :	2004/021978	PCT/US2003/025833
<400>	769	
	gctg tgtgttgaac	20
4010-	770	
<210> <211>	20	
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	770	
	tgct atatctagaa	20
<210>		
<211>		
<212>	artificial	
<213 <i>&gt;</i>	altilitial	
<220>		
<223>	human ESM-1 antisense	
	771	20
gattac	ctaa attgcatttt	20
<210>	772	
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
1000		
<400>	772	
tatttt	gact tttcccaaag	20
<210>	773	
<211>		
<212>	DNA	
<213>	artificial	,
<220>	home HCM 1 ontigongo	
<223>	human ESM-1 antisense	
<400>	773	
	taca ggtaacccgg	20
_		
	774	•
<211><212>	20 DNA	
<212>	artificial	
-2-47	· ·	
<220>	*	
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	774	
	tgt gctaagattc	20
coocgoo		
<210>	775	
<211>	20	
<212>		
<220>		
<223>	human ESM-1 antisense	
<400>	775	
tgtcctt	tta aaacaaacc	20
<210>		
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	776	0.0
actcact	tgct gtcacagtgt	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
	777	20
ttttgti	tttc tggatccacc	20
<210>	778	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	778	
	catt tttagttctt	20
<210>	779	
<211>	20	
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	

<400>	779	
	cta aattgcattt	20
agaccac		
<210>	780	
<211>		
<212>		
	artificial	
(213)	alciliciai	
<220>		
	human ESM-1 antisense	
(443)	Indicati EbM-1 difference	
<400>	780	
	ccat gtaagattac	20
cigicii	cat graagarrac	
<210>	781	
<211>		
<212>	artificial	
<213>	artificial	
.000		
<220>	Number DOM 1 ambigange	
<223>	human ESM-1 antisense	
	401	
<400>	781	20
atttgad	ctca ctgcggtctt	
.010.	700	
<210>	782	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	782	20
gttttc	tggt tgttttattt	20
.010	702	
<210>	783	
<211>	20	
<212>	DNA	
<213>	artificial . ,	
	•	
<220>		
<223>	human ESM-1 antisense	
<400>		20
tgtatg	tgtt tcctatgccc	20
	•	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2004/021978

WO 2	004/021978	PCT/US2003/025833
<400> gcactaa	784 cac atttattat	20
	785	
	20	
<212>	DNA artificial	
<213>	arciriciar	
<220>		
<223>	human ESM-1 antisense	
<400>	785	•
	gct aagattettt	20
- J · · · J	5 mg	
<210><211>		
<212>		
	artificial	
	·	
<220>		
<223>	human ESM-1 antisense	
<400>	786	
tattgaa	caa taataaacat	20
<210>	787	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	787	20
atecate	geet gagaetgtge	20
<210>	788	
<211>	20	
<212><213>	DNA artificial	
(213)	arcificiar	
<220>		
<223>	human ESM-1 antisense	
<400>	788	
	aatc tgttggaaga	20
<b>_</b>		
.010:	700	
<210> <211>	789 20	
<211>		
	artificial	
<220>	human EGM 1 and margin	
<223>	human ESM-1 antisense	

WO:	2004/021978	PCT/US2003/025833
<400>	789	0.0
gagaaa	aaa totgttggaa	20
<210>	790	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	790	
agaccc	gca gcattctctt	20
<210>	791	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	791	0.0
atttaad	ccat ttcctcatta	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
12201		
<400>	792	
acctaa	attg catttttagt	20
<210>	793	
<211>	20	
<212>	DNA	
<213>	artificial .	
<220>		
<223>	human ESM-1 antisense	
<400>	793	
	cagg ggttttctgg	20
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
<210>	794	
<211>	20	
<212>	DNA	
<213>	artificial	
~227		
<220>		
<223>	human ESM-1 antisense	

wo	2004/021978	PCT/US2003/025833
	→ 79 4	
ctgtt	tgtta ctcaaatttc	20
		20
~21 Os	795	
<211>		
	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	795	
	tagat ttatctctga	_0
		20
010		
<210> <211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	706	
	ttat agagtcatag	
	4545 45454649	20
<210>		
<211> <212>		
	DNA artificial	
12207	WI CITICIAI	
<220>		
<223>	human ESM-1 antisense	
<400>	707	
	ggtc cctctgttgc	
	3300 0000000000	20
<210>		
<211>	— ·	
<212> <213>	DNA artificial	
~#257	arciliciai	
<220>		
<223>	human ESM-1 antisense	
-400-	T00	
<400>	798 agtt cttcacttca	
cuaaca	aget celeaceea	20
	799	
	20	
<212> <213>		
<513>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	799	
catcca	tgcc tgagactgtg	20
.010.		
<210> <211>		
<211>		
	artificial	
	42 02 22 04 04	
<220>		
<223>	human ESM-1 antisense	
<400>	800	
gtaggg	acag tctttgcaga	20
<210>	801	
<211>		
<212>	DNA	
<213>	artificial	
<220>	A second	
<223>	human ESM-1 antisense	
<400>	801	
	ttgc aggtctctct	20
- 33 3	3	20
<210>		
<211>		
	DNA artificial	
<213>	arcificial	
<220>		
<223>	human ESM-1 antisense	
		•
	802	
aatgtt	ggct gtgtgttgaa	20
		,
<210>	803	
<211>	20	
<212>	DNA	
<213>	artificial	
	,	
<220>		
<223>	human ESM-1 antisense	
<400>	803	
	atc acaatttgga	20
		20
<210>	804	
<211>	20	
	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	

:

WO 2	2004/021978	PCT/US2003/025833
<400>	804	
	tgg atgttatgga	20
	•	
<210>	905	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	805	
	gaag ggctaaatat	20
uccuage	,	
<210>	806	
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
		•
<400>	806	
tctcagt	tca aagctgtttg	20
<210>	807	
<211>		
<212>		
<213>	artificial	
<220>	Norman TOV 1 and I make	
<223>	human ESM-1 antisense	
<400>	807	
	egca cacteggeag	20
<210>	808	
<211>		
<212> <213>	DNA artificial	
\210/	arciiio	
<220>		
<223>	human ESM-1 antisense	
<400>		20
atgect	gaga ctgtgcggta	20
<210>	809	
<211>		
<212>		
<213>	artificial	
-000		
<220> <223>	human ESM-1 antisense	
	Hamar Pou + amorpoure	

WO 2	004/021978	PCT/US2003/025833
<400>	809	0.0
ttgcaga	tac caaactette	20
<210>	810	
	20	
	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
-400>	810	•
<400> caaqaa	ccc ggcagcattc	20
~555~5*	333	
010		
<210> <211>		
<212>		
	artificial	
<220>	human ESM-1 antisense	
<223>	numan ESM-1 antisense	
<400>		20
ttacct	aaat tgcattttta	20
<210>	812	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	812	20
aatttg	actc actgcggtct	
<210>		
<211>		
<212>	DNA artificial	
(213/	AI CILICIAI	•
<220>		
<223>	human ESM-1 antisense	
<400>	812	
	ttcc atatcccaac	20
22220	······································	
010:	014	
<210> <211>		
<211>		
	artificial	
<220>	human ESM-1 antisense	
<443>	mulian bon - and bone	

WO 2	004/021978	PCT/US2003/025833
<400>	814	
	aagg gctaaatatt	20
<210>	815	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	815	
	aaag ctgtttgtta	20
<210>		
<211> <212>		
	artificial	
\Z 237	42022	
<220>		
<223>	human ESM-1 antisense	
400	01.6	
	816 aggt ttttattcta	20
agicac	agge ceceaceca	20
<210>	817	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	817	20
aattga	ttct tcttttacaa	20
<210>	818	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	818	
taagtt	cttc acttcaaata	20
<210>	819	
<211>	20	
<212>	DNA :	•
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 20	04/021978	PCT/US2003/025833
	819	20
tgccato	cat gcctgagact	20
<210>	820	
	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	820	
cctcago	eccc gggccacact	20
<210>		
<211>		
<212>	artificial	
<213>	attiticiai	
<220>		
<223>	human ESM-1 antisense	
<400>	821	0.0
ttttcc	egte cecetgteac	20
<210>		
<211>		
<212>	artificial	
<213>	arcificial	
<220>		
<223>	human ESM-1 antisense	
<400>	822	
ccatgc	atca caatttggat	20
<210>	823	
<211>	20	
<212>	DNA artificial	
<213>	arciliciai	,
<220>		
<223>	human ESM-1 antisense	
<400>	823	
ctggat	ccac catgcatcac	20
<210>	824	
<211>		
<212>		
<213>	artificial	
<220>		
-222-	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	824	
	tgcg gtcttcagct	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>		
tttgac	tttt cccaaagcca	20
<210>	826	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	826	
	tatt ttgacttttc	20
J		20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
ataaac	atgt ccttttaaaa	20
<210>	828	
<211>	20	
<212>	DNA	
<213>	artificial	
.000-		•
<220>	human ESM-1 antisense	`
(2237	numan ESM-1 dictsense	
<400>	828	
atgttt	ccca gctgcctccg	20
	-	
<210>	920	
<210> <211>		
<211> <212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	

wo a	004/021978	PCT/US2003/025833
<400> gccatc	829 catg cctgagactg	20
<210>	830	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	830	
	atct gttggaagac	20
aaacaa	acct geeggaagae	20
<210>	831	
<211>		
<212>	DNA	
	artificial	
<220>		
	human ESM-1 antisense	
<400>	831	
gggaga	cccg gcagcattct	20
<210>	832	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
10207		
	832	
tccatg	caag attacctaaa	20
<210>	833	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	833	
taccaa	ggaa gggctaaata	20
<210>	834	
<211>		
<212>		
<213>	artificial	
-220-		
<220> <223>	human ESM-1 antisense	
~~~ 3>	HAMINGT POLI-T OTICED FIRE	

WO 2	004/021978	PCT/US2003/025833
	834 att tatttataaa	20
<210>	835	
	20	
<212>		
	artificial	
<220>		
	human ESM-1 antisense	
<400>	835	
	tac cttaaattga	20
<210>	836	
	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	836	
cacaact	ctg ttggccaact	20
<210>	837	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	837	
	attg aacaataata	20
<210>	838	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	838	
cttttt	tatt gaacaataat	20
<210>	839	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	839	
	ttta ttgaacaata	20
	-	
<210>		
<211> <212>		
	artificial	
\21J/	ar of records	
<220>		
<223>	human ESM-1 antisense	
	840	
catgtti	tecc agetgeetee	20
<210>	841	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	841	
	tag aaggetgaea	20
	2005 005500	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	842	
cgtaggg	gaca gtctttgcag	20
-2105	843	
<210> <211>		
<212>	DNA	
<213>	artificial	
	·	
<220>		
<223>	human ESM-1 antisense	
400	0.40	
<400>	843	20
acttcct	cete teacaatatt	20
<210>	844	
<211>		
<212>		
<213>	artificial	
-000		
<220> <223>	human ESM-1 antisense	
~~~>	House Dat & CHOTOCHEC	

WO 2	004/021978	PCT/US2003/025833
<400>	844	
	tcc tcattacggg	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	845	
gatttaa	acca tttcctcatt	20
<210>	846	
<211>		
<212>		
	artificial	
~213/	arcaraca	
<220>		
<223>	human ESM-1 antisense	
<400>	846	
gataata	aat ttatcatgcc	20
<210>	9.47	
<211>		
<211>		
	artificial	
<213>	alciliciai	
<220>		
<223>	human ESM-1 antisense	
	847	
gacatgt	ttt ctgctgaaaa	20
-010-	848	
<210>		
<211><212>	DNA	
<213>	artificial	
(213)	altilitial	
<220>		
	human ESM-1 antisense	
<400>	848	
ttattg	aca ataataaaca	20
<210>	849	
<211>		
<211>		
	artificial	
~4137	are created	
<220>		
	human ESM-1 antisense	

wo	2004/021978	PCT/US2003/025833
<400>	849	
tggtctt	tgc tggtgggaag	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	850	
	eatg tttcccagct	20
<210>	851	
<211>		
<212>		
	artificial	
12207	<b></b>	
<220>		
<223>	human ESM-1 antisense	
<400>	851	
gacgete	ettc atgtttccca	20
<210>	852	
<211>		
<212>		
	artificial	
<220>		
	human ESM-1 antisense	
\2237	Indian Boy I distribute	
	852	20
cttttg	cact cactgctgtc	20
<210>	853	
<211>	20	
<212>	DNA	
<213>	artificial .	
<220>		
<223>	human ESM-1 antisense	
<400>	853	
	cagc agccacagtc	20
<210>	854	
<211>	20	
<212>		
	artificial	
-000		
<220>	human ECM-1 antigence	
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
· <400>	854	
	aga taccaaactc	20
-210-	055	
<210> <211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
	855	20
ayaaaca	aat ctgttggaag	20
<210>	856	
<211>	20	
<212>		
<213>	artificial	
<220>	human ESM-1 antisense	
<223>	numan ESM-1 ancisense	
<400>	856	
	caa atctgttgga	20
<210>		
<211>		
<212>	artificial	
\213/	arcificat	
<220>		
<223>	human ESM-1 antisense	
<400>	857	20
caactto	ettc tctcacaata	20
<210>	858	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	have not to subject to	
<223>	human ESM-1 antisense	
<400>	858	
	caac ttcttctctc	20
<210>		
<211>	20	
<212> <213>	DNA artificial	
<b>\</b> 213>	arctratar	
<220>		
	human ESM-1 antisense	

WO 2	2004/021978	PCT/US2003/025833
<400>	859	
	caac cattttcaac	20
<210>	960	
<211>		
<212>		
<213>	artificial	
<220>	human ESM-1 antisense	
<223>	numan ESM-1 and Isense	
<400>	860	
accttat	aga gtcataggtt	20
-210-	9.61	
<210> <211>		
<212>		
<213>	artificial	
<220>	human EGM 1 antigongo	
<223>	human ESM-1 antisense	
<400>	861	
tttttat	tga acaataataa	20
<210>	962	
<211>		
<212>		
<213>	artificial	
<220>	human ESM-1 antisense	
<b>\223</b> /	Indicati Bon-1 and sense	
<400>	862	
agacgct	cett catgtttece	20
<210>	863	
<211>	20	
<212>	DNA	
<213>	artificial ,	
.000.		
<220> <223>	human ESM-1 antisense	
(2237	Italian Edw I and Isense	
<400>	863	
aaatgti	egge tgtgtgttga	20
<210>	864	
<211>	20	
<212>	DNA	
<213>	artificial	
.000		
<220> <223>	human ESM-1 antisense	
~	CHICAL MO C CONTROL	

WO 2	004/021978	PCT/US2003/025833
<400>	864 totg gatocaccat	20
3		
<210>		
<211>		
<212>	artificial	•
(213)	arcificial	
<220>		
<223>	human ESM-1 antisense	
<400>	865	
attacc	taaa ttgcattttt	20
<210>	866	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	866	
	acct aaattgcatt	20
<210>	867	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	867	
	tocc actoccacco	20
<210>	868	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	868	
	ggga actacatcag	20
	333 · · · · · · · · · · · · · · · · · ·	_*
-01 n-	960	
<210> <211>	20	
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	

wo	2004/021978	PCT/US2003/025833
<400>	869	
	acaca aaccaccagt	20
		20
<210>		
<211>		
<212>	artificial	
\2137	alciliciai	
<220>		
	human ESM-1 antisense	
<400>	870	
gtcata	ggtt tttattctaa	20
<210>	071	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
atactt	ctga gatatttcct	20
<210>	872	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	human TOV 1 and because	
<223>	human ESM-1 antisense	
<400>	872	
	ccac cgcataatta	20
JJ . J -		20
	873	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	·	
<223>	human ESM-1 antisense	
1220		
<400>	873	
actgaa	tatt ggaagaaggg	20
.010-	074	
<210> <211>	874 20	
<211>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

<400>	874	
	tgt gttgaacaat	20
<210>	875	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	875	
taaatto	gcat ttttagttct	20
<210>	876	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	876	
ccatgta	aaga ttacctaaat	20
_		
<210>	877	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	877	
ttgacti	tttc ccaaagccaa	20
,		
<210>	878	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		~ ^
gcagcc	tttt gaaattgctc	20
<210>	879	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2004/021978

WO 2	004/021978	PCT/US2003/025833
<400>	879	
cagcago	cett ttgaaattge	20
-210-	880	
<210><211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	880	
	ctta tgtttaaata	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
	881	
aagttct	tca cttcaaataa	20
<210>	882	
<211>		
<212>		
<213>	artificial	
<220>	human ESM-1 antisense	
(2237	numan ESM-1 ancisense	
<400>	882	
acagett	catg cagctttaca	20
010	000	
<210> <211>	883 20	
<212>	DNA	
<213>	artificial	
	,	
<220>		
<223>	human ESM-1 antisense	
.400-	902	
<400>	883 :tgc tccaggcggc	20
tauttai		20
<210>	884	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 20	04/021978	PCT/US2003/025833
<400>	884	
tgctgt	caca gtgttgaggg	20
<210>	0.05	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	885	
ceggea	gcag ccacagtcgt	20
<210>	886	
<211>	20	
<212>	DNA	
<213>	artificial	
000		
<220>	human EGM 1 ambinance	•
<223>	human ESM-1 antisense	
<400>	886	
	caaa ctcttcacca	20
<210>		
<211>		
<212>	artificial	
~2137	arciilciai	
<220>		
<223>	human ESM-1 antisense	
	887	
cagata	ccaa actcttcacc	20
<210>	888	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	human EGM 1 and language	
<223>	human ESM-1 antisense	
<400>	888	
	aaa tagagccttc	20
-	-	
<210>	889	
<211> <212>	20 DNA	
	artificial	
~~~	~~ ~~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~	
<220>		
-223	human ESM-1 anticonce	

wo:	2004/021978	PCT/US2003/025833
<400> tctaca	889 tgca ttcgaatatt	20
<210><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
	890 tact cctaattcca	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> aattct	891 taaa taagttotto	20
<210><211><212><212><213>	20	
<220> <223>	human ESM-1 antisense	
	892 tcag ccccgggcca	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> acaact	893 tott ototoacaat	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	894	
	tgt gtgttgaaca	20
<210>	805	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
400	225	
<400>	895	20
ccacace	gtac ttatgctata	
<210>	896	
<211>	20	
<212>		
<213>	artificial	
	•	
<220>	human ESM-1 antisense	
<223>	numan Esm-1 ancisense	
<400>	896	
	atgc attcgaatat	20
	•	
<210>		
<211><212>		
	artificial	•
72137	42 0222 0242	
<220>		
<223>	human ESM-1 antisense	
<400>	897	20
gtgttt	ccta tgccccagaa	20
<210>	898	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	human ESM-1 antisense	
<223>	numan ESM-1 ancisense	
<400>	898	
	gaaa accttataga	20
- 3	-	
<210>	899	
<211>	20	
<212>	DNA artificial	
<213>	at CITICIAT	
<220>		
<223>	human ESM-1 antisense	

wo	2004/021978	PC1/US2003/02583
<400>	899	
ttcttc	cactt caaataaaat	20
		20
<210>		
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
cagctt	atgc agctttacat	20
<210>	001	
<211>		
<211>		
	artificial	
4213 2	ditilicial	
<220>		
	human ESM-1 antisense	
12257	Manan Bow-1 and Isense	
<400>	901	
	ccgg ctcggctctc	
-	3535	20
<210>	902	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
400		
<400>	902	
gtccaco	gca taattattgc	20
<210>	002	
<211>	903	
<212>	20	
	artificial	
.2.3.7	arcificial	
<220>		
	human ESM-1 antisense	
<400>	903	
geggta	gca agtttctccc	20
		20
:210>	904	
	20	
	AND	
213>	artificial	
220>		
ソソマー	human FCM-1 anticenco	

WO 2	004/021978	PCT/US2003/025833
<400>	904	
	agat accaaactct	20
<210>		
<211>		
<212>	artificial	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	905	
ctctct	gcaa tccatcccga	20
<210>		
<211>		
<212>	artificial	
~~~~	41 (111 (441	
<220>		
<223>	human ESM-1 antisense	
<400>	906	
tttccc	gtcc ccctgtcaca	20
<210>	0.07	
<210>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	907	
acyaaa	atag agcettetet	20
<210>	908	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	1	
<223>	human ESM-1 antisense	
<400>	908	
	caat ttggatcttc	20
		20
<210>	909	
<211>	20	
<212>	DNA	•
<213>	artificial	
-220-		
<220>	human FCM-1 anticance	

WO 2	004/021978	PCT/US2003/025833
<400>	909	20
ctttttg	yttt totggatoca	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>	•	
<223>	human ESM-1 antisense	
<400>	910	
cctaaat	ttgc atttttagtt	20
<210>	911	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	911	
taagat	tacc taaattgcat	20
<210>	912	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	912	
tgtctc	catg taagattacc	20
<210>	913	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	913	
taagto	ettca ttccatatcc	20
<210>	914	
<211>		
<212>	DNA artificial	
<213>	arcificat	
<220>		
~~~	human ECM_1 anticence	

<400>	914	
	caa agccaaaaaa	20
	caa agoodaaaa	
<210>	915	
	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	915	20
ctacato	agc agccttttga	20
<210>	916	
<211>		
<212>		
<213>	artificial	
12207		
<220>		
	human ESM-1 antisense	
<443>	Mulan Bon I amorpous	
.400.	016	
	916	20
acacaa	acca ccagtgggta	
<210>		
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	917	20
cacaca	caaa ccaccagtgg	20
<210>	918	
<211>	20	
<212>		
<213>	artificial	
\Z1J/	420220000	
<220>		
<223>	human ESM-1 antisense	
<2237	Idillati Libit I disciplinate	
-400-	918	
<400>	910	20
aacaag	gtcc ctctgttgct	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		

WO 2004/021978

<223> human ESM-1 antisense

WO 20	004/021978	PCT/US2003/025833
<400>	919	
tatgttt	caaa taaggteeet	20
<210>	920	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
400	000	
<400>	920 acag cacttatgtt	
gaageea	acay cacttatytt	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	921	
aagttga	cat gttttctgct	20
<210>	922	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	922	
ttttaaa	aca aaacctaaca	20
<210>	923	
<211>	20	
	DNA	١
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	923	
agctgcc	tcc ggctcggctc	20
<210>	924	
<211>	20	
	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	

wo 2	2004/021978	PCT/US2003/025833
	924 gtct ttgcagatac	20
<210>	925	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	925	
	ttct tctctcacaa	20
<210>		
<211>		
<212>		
<21J>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	926	
	gcag cattctcttt	20
gacccg	gaag caccacaca	20
<210>		
<211>		
<212>		
<213>	artificial .	
<220>		
	human ESM-1 antisense	
	927	
ctctca	gaaa tcacageegg	20
<210>	928	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
400		
<400>	928 aatt gcatttttag	
caccta	aact gedeeleed	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	

wo	2004/021978	PCT/US2003/025833
<400	> 929	
	tctcca tgtaagatta	
		20
	> 930	
	> 20	
<212	> DNA > artificial	
\213 .	artificial	
<220:	•	
	human ESM-1 antisense	
	- Control of the cont	
<400>	930	•
agcag	ccttt tgaaattgct	
	•	20
	931	
<211>		
	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
	Moment Ban-1 ancisense	
<400>	931	
cttag	attta tctctgaggt	
	3, 33 -	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	932	
tcatag	gttt ttattctaac	
		20
<210>		
<211> <212>		
<213>	DNA artificial	
\Z137	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	933	
attctt	tcaa atatactcct	2.0
		20
-010		
<210>	934	
<211><212>	20	
<212>	DNA	
~~13>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833	
<400>	934		
	tgtg ctaagattct	20	
<210>	925		
<211>			
<212>	•		
	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	935		
	gag atattteeta	20	
<210>			
<211> <212>			
	artificial .		
\D.J.	artificial		
<220>			
<223>	human ESM-1 antisense		
	936	20	
ccaaac	aagt tetteaette	20	
<210>	937		
<211>			
<212>			
<213>	artificial		
<220>			
	human ESM-1 antisense		
	937		
cacaca	catt cacaactctg	20	
<210>	938		
<211>	20		
<212>	DNA		
<213>	artificial		
<220> <223>	human ESM-1 antisense		
(2237	Indian Pou-1 Sucteense		
<400>	938		
aactct	cac caaaaggatc	20	
4010-	020		
<210> <211>			
<212>			
<213>	artificial		
<220>	learner TOW 1 and learner		
<223>	human ESM-1 antisense		

WO 2	004/021978	PCT/US2003/025833	
<400> aacttct	939 Etct etcacaatat	20	
<210>	940		
<211>			
<212>			
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	940		
	acg ggagacccgg	20	
<210>	941		
<211>			
<212>			
<213>	artificial		
<220>			
	human ESM-1 antisense		
100			
	941	20	
cecggai	cca ccatgcatca	20	
<210>			
<211>			
<212>	artificial	·	
<220>		•	
<223>	human ESM-1 antisense		
<400>	942		
ctaaatt	gca tttttagttc	20	
<210>	943		
<211>	20		
<212>	DNA		
<213>	artificial	•	
<220>			
<223>	human ESM-1 antisense		
<400>	943		
	etce atgtaagatt	20	
- 3 - 1	-		
<210>	944		
<211>			
<212>	DNA		
<213>	artificial		
<220>			
	human ESM-1 antisense		

WO 2	004/021978	PCT/US2003/025833	
<400>	944		
tctaga	gaag ctacctacca	20	
<210>	945		
<211>			
<212>			
	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>			
tetetg	aggt ggcatacgtt	20	
<210>	946		
<211>			
<212>			
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	046		
	tttt tgaaatccag	20	
cgacac	occo oguacocag	20	
<210>	947		
<211>	20		
<212>			
<213>	artificial		
.000			
<220>	human ESM-1 antisense		
<223>	numan ESM-1 and Isense		
<400>	947		
	tat tgaacaataa	20	
<210>			
<211>	20		
<212>			
<213>	artificial		
<220>			
	human ESM-1 antisense		
<400>	948		
gccaca	cttc atgccatcca	20	
-010:	0.40		
<210> <211>			
<211> <212>			
	artificial		
-243/	~= 0===0=(1=		
<220>			
	human ESM-1 antisense		

<400>	949	
	aga aggctgacac	20
CCCCacc	aga aggetgatae	
<210>	950	
<211>	20	
<212>		
	artificial	
<213>	artificial	
<220>	Town Providence	
<223>	human ESM-1 antisense	
<400>	950	20
agggaca	agtc tttgcagata	20
	951	
<211>	20	
	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	951	_
taggga	cagt ctttgcagat	20
323		
<210>	952	
<211>	20	
<212>		
	artificial	
\213/	arcaracture.	
<220>		
	human ESM-1 antisense	
(223)	Humar Barra dictable	
<400>	952	
	ccgt agggacagtc	20
aayycy	cegt agggaeagee	
-010	0.53	
<210>	953	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	· · · · · · · · · · · · · · · · · · ·	
<223>	human ESM-1 antisense	
<400>		20
catcto	caga tgccatgtca	20
<210>	954	
<211>	20 .	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2004/021978

WO 2	004/021978	PCT/US2003/025833
<400>	954	
	gtt ttctggatcc	20
	3	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		•
	human ESM-1 antisense	
<400>	955	
tcttcag	stgt tactatacac	20
010	0.54	
<210>		
<211>		
<212>	artificial	
<213>	artificial	
<220>		
_ •	human ESM-1 antisense	
<400>	956	•
taattt	gact cactgcggtc	20
010	057	
<210>		
<211>		
<212>	artificial	
(213)	arcificat	
<220>		
<223>	human ESM-1 antisense	
	957	
ttctcct	gct cttaagtctt	20
<210>	958	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	958	20
atctct	gagg tggcatacgt	20
<210>	959	
<211>	20	
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	2004/021978	PCT/US2003/025833
<400>	959	-
	itgt tttctgctga	20
<210>	960	
<211>		
<212>		
<213>	artificial	
<220> <223>	human ESM-1 antisense	
<223>	Indian ESM-I ancidende	
<400>	960	
	cac ttcaaataaa	20
	0.61	
<210> <211>		
<211>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	961	
	tcat gtttcccagc	20
J	•	
<210>		
<211> <212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	962	
	accg cataattatt	20
	•	
<210>	963	
<211> <212>	20 DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	963	
	:gcag_cgcacactcg	20
-30000		
<210>		
<211> <212>	20 DNA	
<212> <213>		
-240/	· · - - · · · ·	
<220>		
<223>	human ESM-1 antisense	

wo	2004/021978	PCT/US2003/025833
<400>	964	
	tact tatgctatat	20
<210>	965	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	965	
		20
CCCaac	aaac acatacaagt	20
<210>		
<211>		
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<423>	numan ESM-1 and Isense	
<400>	966	
gctgtt	tgtt actcaaattt	20
010	0.67	
<210>		
<211>		
<212>	DNA	·
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		20
cetttt	gaaa ttgctctcag	20
<210>		
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
(2257	numar bon i ancidense	
<400>		
acacat	ttat ttataaaaat	20
<210>	969	
<210> <211>		
<212>	artificial	·
<213>	altituat	
<220>		
	human ESM-1 antisense	

wo:	2004/021978	PCT/US2003/0258	
<400>	969	20	
tagagt	cata ggtttttatt	20	
<210>	970		
<211>	20		
<212>	DNA		
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	970		
ataagg	teee tetgttgete	20	
	971		
<211> <212>			
	artificial		
	altilitial		
<220>			
<223>	human ESM-1 antisense		
<400>	971		
cttatg	ttta aataaggtcc	20	
<210>	972		
<211>	20		
<212>			
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
	972		
gattct	ttca aatatactcc	20	
<210>	973		
<211>	20		
<212>	DNA		
<213>	artificial	•	
<220>			
<223>	human ESM-1 antisense		
<400>	973		
	ctaa gattetttea	20	
5-5	-		
<210>	974		
<211>			
<212>			
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		

WO 2	004/021978	PCT/US2003/025833
	974	22
agcttat	gca gctttacatt	20
<210>	975	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	975	
	cca tgcctgagac	20
<210>	976	
<211>		
<212>		
<213>	artificial	
10-01		
<220>		
<223>	human ESM-1 antisense	
<400>	976	
	ttgc agataccaaa	20
- u.j		
	088	
	977	
<211>		
<212>	artificial	
<213>	arcificial	
<220>		
<223>	human ESM-1 antisense	
<400>	977	
	tttg cagataccaa	20
acagee	congression in the congression of the congression o	
<210>	978	
<211>		
<212>		
<213>	artiliciai	
<220>		
<223>	human ESM-1 antisense	
<400>	978	
	ette tteteteaca	20
<210>	070	
<210>		
<211>	•	
	artificial	
~2107	WE 000 0000	
-220-		

<223> human ESM-1 antisense

WO 2004/021978		PCT/US2003/025833	
<400>	979		
	agc cttctctcag	20	
<210>	980		
<211>			
<212>			
<213>	artificial		
<220>	t.		
	human ESM-1 antisense	•	
<400>	980		
	tgtg ttgaacaatc	20	
-555			
<210>			
<211>			
<212>			
	artificial		
<220>			
	human ESM-1 antisense		
	981	20	
attaca	tgta cttatgctat		
<210>			
<211><212>			
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	982	20	
taaata	laggt ccctctgttg		
	983		
<211>			
<212>			
<213>	arciliciai	,	
<220>			
<223>	human ESM-1 antisense		
<400>	983	20	
	gcact tatgtttaaa	20	
<210>	984		
<211>			
<212>			
<213>	artificial		
<220>			
<223>			

WO 20	004/021978	PCT/US2003/025833
<400>	984	
ttttcat	acc ttaaattgaa	20
<210>	985	
<211>		
<212>		
<213>	artificial	
.000		
<220> <223>	human ESM-1 antisense	
~2257	Italian Doi: E allocolomb	
	•	
cctaaga	aca tctagtacaa	20
<210>	986	
<211>		
<212>	DNA	
<213>	artificial	
<220>	human ESM-1 antisense	
<223>	numan Bom-1 and sense	
<400>	986	
gggaatt	ttca ggcattttcc	20
<210>	987	
<211>		
<212>	DNA	
<213>	artificial	
-000-		
<220>	human ESM-1 antisense	
(2237	Italian Bor 2 wifesono	
<400>	987	22
agggga	attt caggcatttt	20
<210>	988	•
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
12201		
<400>	988	20
ccatct	ccag atgccatgtc	20
<210>	989	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	2004/021978	PCT/US2003/025833
<400>	989	
aatctac	atg cattcgaata	20
<210>	990	
<211>		
<212>	DNA artificial	
\213 /	ar cirrorat	
<220>		
<223>	human ESM-1 antisense	
<400>	990	
	atct acatgcattc	20
<210>	991	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
400.	001	
	991 caac attaatgtac	20
	•	
<210>	992	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	002	
	ttat gtttaaataa	20
<210>	993	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	993	
agttga	catg ttttctgctg	20
J27.05	994	
<210> <211>		
<212>	DNA	
<213>	artificial	
<220>	•	
<223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	994	
tgcctga	agac tgtgcggtag	20
.010-	005	
	995	
<211>		
<212>	artificial	
<213>	altilicial	
<220>		
	human ESM-1 antisense	
<400>	995	
acacct	cagc cccgggccac	20
	996	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	996	
tgacac	ctca gccccgggcc	20
<210>		
<211>		
<212>	artificial	
<213>	artificial	
<220>	•	
<223>	human ESM-1 antisense	
<400>	997	
ggcagt	tgca ggtctctctg	20
<210>	998	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
12201		
<400>	998	
tttttg	tttt ctggatccac	20
010	000	
<210>		
<211>		
<212>	artificial	
<213>	ar citiciai	
<220>		
	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400> tcgaata	999 ttt aacaaacaca	20
<210>	1000	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1000	
tattttc	ata ccttaaattg	20
<210>	1001	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1001	
ttcaaat	ata ctcctaattc	20
<210>	1002	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1002	
tttatt	gaac aataataaac	20
	·	
<210>	1003	
<211>	20	
<212>	DNA	
<213>	artificial .	
<22Ö>		
<223>	human ESM-1 antisense	
<400>	1003	
	zagc gcgggctgct	20
<210>	1004	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	2004/021978	PCT/US2003/025833
<400>	1004	
ctcago	cccg ggccacactt	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1005	
-	agat gccatgtcat	
40000	agat gecatgecat	20
<210>	1006	
<211>	20	
<212>	DNA	
<213>	artificial	
	·	
<220>		
<223>	human ESM-1 antisense	
<400>		
ccaggg	gttt tctggttgtt	20
<210>	1007	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
	1007	
acatca	gcag ccttttgaaa	20
<210>	1000	
<211>		
<212>		
<213>	artificial	
1000	ar or record	
<220>		
<223>	human ESM-1 antisense	•
<400>	1008	
agtgtat	tgtg tttcctatgc	20
010		
<210>	1009	
<211><212>	20	
<212><213>	DNA	•
\413>	artificial	
<220>		
<223>	human ESM-1 antisense	

wo	2004/021978	PCT/US2003/025833
<400>	1009	
gtggca	atacg ttaaagctat	20
-2105	1010	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
-1005	1010	
<400>	acac aaaccaccag	
acacac	acce acceptag	20
<210>	1011	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
,		
<400>		
ctaacc	attt tcaacaaata	20
<210>	1012	
<211>		
<212>	DNA	
<213>	artificial	
<220>	house Toy 4	
<423>	human ESM-1 antisense	
<400>	1012	
	ttga catgttttct	20
	-	20

<210> <211>	1013 20	
<212>		
<213>		
		•
<220>		
<223>	human ESM-1 antisense	
<400>	1012	
	tttt aaaacaaaac	
acgeee	adacadaac	20
<210>	1014	
<211>		
<212>		1
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

wo	2004/021978	PCT/US2003/025833
<400	- -	
cact	ceggeag cagecacagt	20
	0> 1015	
	.> 20	
	> DNA	
	> artificial	
<220		
<223	> human ESM-1 antisense	
<400	> 1015	
	gggaat ttcaggcatt	
		20
	> 1016	
	> 20	
	> DNA	
<213;	> artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1016	
aaata	gagcc ttctctcaga	20
-27.0	1015	
<210> <211>	1017	
	DNA	
	artificial	
<220>		
	human ESM-1 antisense	
	1017	
ctacai	tgcat tcgaatattt	20
-010-	1010	
<210> <211>		
<212>		
<213>	artificial	
<220>	•	
<223>	human ESM-1 antisense	
<400>	1018	
ttaaca	aatc tacatgcatt	
	•	20
<210>	1019	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	1019	
tttaa	caaat ctacatgcat	20
	-	20
	1020	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1020	
	gctct cagttcaaag	
addec	Jece Cagercaaag	20
	•	
<210>	1021	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
ctctga	iggtg gcatacgtta	20
.010.	1000	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
(2237	numan ESM-1 antisense	
<400>	1022	
	ccac cagtgggtaa	20
		20
<210>	1023	
<211>	20	
<212>	DNA	
<213>	artificial	
		·
<220>		
<223>	human ESM-1 antisense	
<400>	1023	
	atat actcctaatt	
cccaa	weat accordant	20
<210>	1024	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1024	
	aag ttcttcactt	20
<210>	1025	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1025	
	tgt tggccaactt	20
<210>		
<211> <212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
.400-	1006	
<400>	1026 gaa caataataaa	20
cccac	gaa caacaacaaa	20
<210>		
<211>		
<212>	artificial	
\Z137	ar crract	
<220>		
<223>	human ESM-1 antisense	
.400-	1007	
<400>	1027 eage aagaegetet	20
ggccag	age aagaegeee	20
<210>	1028	
<211>	20	
<212> <213>	DNA artificial	
(213/	altilitai	
<220>		
<223>	human ESM-1 antisense	
<400>	1028	20
Lecegu	ccc ctgtcacaga	20
<210>	1029	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	

wo	2004/021978	PCT/US2003/025833
<400>	1029	
	aga aggggaattt	20
-		
<210>	1020	
<211>		
<212>		
	artificial	
<220>		
	human ESM-1 antisense	
12207	Manager Total Control of the Control	
	1030	0.0
taacaaa	cac atacaagtgt	20
<210>	1031	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1031	
	tac ctaaattgca	20
gcaaga		
	1032	
<211> <212>		
	artificial	
10.00		
<220>		
<223>	human ESM-1 antisense	
<400>	1032	
	aaat attttatttc	20
<210>	1033	
<211>		
<212>		
<213>	artificial .	
<220>		
	human ESM-1 antisense	
12207		
<400>		20
caagga	aggg ctaaatattt	20
<210>	1034	
<211>	·	
<212>		
<213>	artificial	
<220>		

<223> human ESM-1 antisense

wo a	2004/021978	PCT/US2003/025833
<400>	1034	
	ttg ttttattttg	20
<210>	1035	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
400	1025	
<400>	1035 Ltt atttataaaa	20
caacaca	tett attiataaaa	20
<210>	1036	
<211>	20	
<212>		
<213>	artificial	
<220>	human ESM-1 antisense	
<223>	numan Bom-1 ancisense	
<400>	1036	
	aaa tttatcatgc	20
	_	
<210>		
<211> <212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	

<400>	1037	. 20
agccaca	gca cttatgttta	20
<210>	1038	
<211>	20	
<212>	DNA	
<213>	artificial	
-020-		
<220> <223>	human ESM-1 antisense	
\223 <i>></i>	numan nom-1 ancidense	
<400>	1038	
ttttaca	aaac ctcctaaaaa	20

<210>	1039	
<211> <212>	DNA	
<212>	artificial	
~210/		
<220>	·	
<223>	human ESM-1 antisense	

wo	2004/021978	PCT/US2003/02583
<400>	1039	
	ccac acacattcac	20
<210>	1040	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1040	
agtcca	ccgc ataattattg	. 20
<210>	1041	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1041	
	gaag aaggggaatt	20
acases	2442 443333440	
<210>	1042	
<211>		
<212>		
	artificial	
<220>		
	human ESM-1 antisense	
<400>		20
aataga	gcct teteteagaa	20
<210>	1043	
<211>	20	
<212> <213>	DNA artificial	
(213)	alcilicat	•
<220>		
<223>	human ESM-1 antisense	
<400>	1043	
	ttta acaaacacat	20
<210>	1044	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1044	
ttctag	agaa gctacctacc	20
<210>		
<211>		
<212> <213>	artificial	
-2205		
<220> <223>	human ESM-1 antisense	
<400>	1045 ttgt tactcaaatt	20
J J.		2.0
<210>	1046	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1046	
tttacc	ttca tacacacaca	20
<210>		
<211> <212>		
	artificial	
<220>	•	
	human ESM-1 antisense	
<400>	1047	
	aggg aagatgactt	20
<210>	1048	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1048	
tatggg	tagg gaagatgact	20
<210>		
<211> <212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/02583	
<400>	1049		
	eagc acttatgttt	20	
<210>	1050		
<211>		i	
<212>			
	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	1050		
	aca gcacttatgt	20	
	4.054		
<210>			
<211><212>			
	artificial		
12207	42 02220242		
<220>			
<223>	human ESM-1 antisense		
	1051		
<400>	1051 :aaa cctcctaaaa	20	
ccccac	daa cccccaaaa	20	
<210>	1052		
<211>			
<212>			
<213>	artificial		
<220>			
	human ESM-1 antisense		
<400>	1052	22	
aacagct	tat gcagctttac	20	
<210>	1053		
<211>	20		
<212>	DNA		
<213>	artificial .		
.000-			
<220> <223>	human ESM-1 antisense		
(223)	numan BSM-1 ancisense		
<400>	1053		
acgetet	tca tgtttcccag	20	
01.5	1054		
	1054		
<211><212>	20 DNA		
<213>	artificial		
	 		
<220>			
<223>	human ESM-1 antisense		

wo 2	2004/021978	PCT/US2003/025833
	1054 tgca ggcacgagga	20
<210> <211>		
<212> <213>	DNA artificial	
<220> <223>	human ESM-1 antisense	
<400> ctgcaa	1055 tcca tcccgaaggt	20
<210><211><211>	20	
<213>	artificial	
<220> <223>	human ESM-1 antisense	
<400> cggcag	1056 catt ctctttcaca	20
<210>		
<211>		
<213>	artificial	
<220> <223>	human ESM-1 antisense	
<400>		
atattt	aaca aacacataca	20
<210> <211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400> ctcagt	1058 tcaa agctgtttgt	20
<210>	1059	
<211>	20	
<212> <213>		
<220> <223>	human ESM-1 antisense	

WO 20	004/021978	. PCT/US2003/025833	
<400>	<400> 1059		
	lacc cgggaactac	20	
<210><211><211>	20		
	artificial		
<220> <223>	human ESM-1 antisense		
	1060 gcc teeggetegg	20	
_	3 33 33		
<210> <211>			
<212>	DNA artificial		
<220>	<u></u>		
·	human ESM-1 antisense		
<400> tcccago	1061 etgc eteeggeteg	20	
<210> <211>	20		
<212> <213>	DNA artificial		
<220>	human ESM-1 antisense		
<400>			
	aaga cgctcttcat	20	
<210> <211>	1063 20		
<212> <213>	DNA artificial .		
<220> <223>	human ESM-1 antisense		
<400>	1063	20	
gcagtee	acc gcataattat	20	
<210> <211>	1064 ,		
<212>	DNA		
<213>	artificial		
<220> <223>	human ESM-1 antisense		

WO 2	004/021978	PCT/US2003/025833
<400>	1064	
ggccaca	ctt catgccatcc	20
	`	
<210>	1065	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1065	
	rttg caggtetete	20
55	,3	
-210-	1000	
<210> <211>	1066 20	
<211>		
	artificial	
72137	42 02 23 02 44	
<220>	•	
<223>	human ESM-1 antisense	
<400>	1066	
gaatatt	gga agaaggggaa	20
<210>	1067	
<211>		
<212>		
	artificial	
<220>	human DCM 1 antigongs	
<223>	human ESM-1 antisense	
<400>	1067	
ggcagca	ttc tctttcacaa	20
<210>	1068	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	1000	
<400>	1068	20
LLABCA	aca catacaagtg	20
<210>	1069	
<211>	20	
<212> <213>	DNA artificial	•
~4137	GT 07770707	
<220>		
<223>	human ESM-1 antisense	

WO 20	PCT/US2003/025833	
<400>	1069	
ttcgaat	catt taacaaacac	20
<210>	1070	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1070	
	aata ttttatttcc	20
JJJ000.		
<210>	1071	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>		
tgtgtt	teet atgeeceaga	20
<210>	1072	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	•
<400>	1072	
	tctc tgaggtggca	20
J		
<210>	1073	
<211>	20	
<212> <213>	DNA artificial	
<213>	alciliciai	•
<220>		
<223>	human ESM-1 antisense	
<400>	1073	20
acaaac	cacc agtgggtaaa	20
<210>	1074	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	human ECM_1 anticonce	
<223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833		
<400>	1074 tatt tataaaaata	20		
00000				
.010-	1075			
	1075			
<211>				
<212>				
<213>	artificial			
<220>				
<223>	human ESM-1 antisense			
<400>	1075			
	tttt gaaatccaga	20		
J	3			
<210>	1076			
<211>				
<212>				
	artificial			
7213 2	at tilltai			
<220>				
<223>	human ESM-1 antisense			
<400>	1076			
gtttgt	gcta agattctttc	20		
<210>	1077			
<211>				
<212>				
	artificial			
12207	4-9-			
<220>				
<223>	human ESM-1 antisense			
<400>	1077			
tcaaaggcct tccacacaca 20				
<210>	1078			
<211>	20			
<212>	DNA			
<213>	artificial	•		
<220>				
	human ESM-1 antisense			
\ 2237	Human Bon-1 and Isonse			
<400>	1078			
ggtctt	tgct ggtgggaagc	20		
<210>	1079			
<211>				
<212>		•		
<213>	artificial			
-000				
<220>	human ESM-1 antisense			
<223>	ITHINGIT POINT T CITCLEGIESE			

WO 2004/021978		PCT/US2003/025833
<400>		
aagacg	ctct tcatgtttcc	20
<210>	1080	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
-400-	1000	
<400>	1080 cccc tgtcacagat	20
cccgcc	cccc cgccacagac	
<210>	1081	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
\ZZJ/	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	
<400>	1081	
aagggg	aatt tcaggcattt	20
<210>		
<211> <212>		
	artificial	
12207		
<220>		
<223>	human ESM-1 antisense	
	1082	20
acccgg	cage attetette	20
<210>	1083	
<211>	20	,
<212>	DNA	•
<213>	artificial	•
<220> <223>	human ESM-1 antisense	
<223>	numan ESM-1 and ESM-1	
<400>	1083	
	acga aaatagagcc	20
<210>	1084	
<211>	20	
<212> <213>	DNA artificial	
~ &±3>	at catactar	
<220>		
	human ESM-1 antisense	

wo	2004/021978	PCT/US2003/025833
<400	> 1084	
aata	ttttat ttcccactcc	
		20
	> 1085	
	> 20	
	> DNA	
<213:	artificial	
		,
<220>		
<223>	human ESM-1 antisense	
	1085	
gctac	tcaaa tttccataag	20
<210>	1086	
<211>		
	DNA	
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
aggta	acccg ggaactacat	20
	l	20
-010:	1087	,
<211>		
<212>		
	artificial	
1225/	arciriciai	
<220>		
<223>	human ESM-1 antisense	
<400>		
aacaca	attta tttataaaaa	20
		20
<210>		
<211>		
<212> <213>	DNA	
(213)	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1088	
acctta	aatt gaaaattcac	
		20
_		
<210>	1089	
<211>	20	
<212>	DNA	
<213>	artificial	
-220		
<220> <223>	harman Bost a	
\443>	human ESM-1 antisense	

WO 2	004/021978	** ****	PCT/US2003/025833
<400>	1089 ata tactcctaat		20
-210-	1000		
<210><211>			
<212>			
	artificial		
. ۵۵۵			
<220>	human ESM-1 antisense		
(2237	numan Bom-1 and sense		
<400>	1090		
aaactci	tca ccaaaaggat		20
<210>	1091		
<211>	20		
<212>			
<213>	artificial		
<220>			
	human ESM-1 antisense		
400	1001		
<400>	act cttcaccaaa		20
acacca	acc cccaccaa		20
<210>			
<211>			
<212>	artificial		
(213)	artificial		
<220>			
<223>	human ESM-1 antisense		•
<400>	1092		
	etct cacaatattg		20
	,		
	1000		
<210>	1093		
<211><212>	20 DNA		
<213>	artificial		
		•	
<220>			
<223>	human ESM-1 antisense		
<400>	1093		
	caaa gtcaaagaac		20
_			
<210>	1094		
<211>	20		
<212>			
<213>			
-220-			
<220> <223>	human ESM-1 antisense	•	

WO 2	2004/021978	PCT/US2003/025		
	1094 atca aagtcaaaga	20		
	-			
<210>				
<211> <212>				
	artificial			
<213>	arcificial			
<220>				
<223>	human ESM-1 antisense			
	1005			
<400>		20		
TELECC	caaa gccaaaaaaa	20		
<210>	1096			
<211>	20			
<212>	DNA			
<213>	artificial			
<220>	human ESM-1 antisense			
<223>	numan ESM-1 ancisense	·		
<400>	1096			
	ttcc caaagccaaa	20		
-				
<210>				
<211>				
<212>	artificial			
(213)	altititat			
<220>				
<223>	human ESM-1 antisense			
	1097	20		
gccttt	tgaa attgctctca	20		
<210>	1098			
<211>	20 .			
<212>	DNA			
<213>	artificial			
<220>	human ECM 1 anti-dense			
<223>	human ESM-1 antisense			
<400>	1098			
	caca caaaccacca	20		
	1000			
<210>				
<211> <212>				
	artificial			
<220>				
-222	human ESM-1 antigence			

WU 2	004/021978	PC1/U52003/025853
<400>	1099	
	aagg tccctctgtt	20
Claaac	aagg cooccogcc	
<210>	1100	
<211>		
<212>		
	artificial	
<213>	arcificial	
<220>	human ESM-1 antisens	10
<223>	numan ESM-1 andisens	
<400>		20
gagata	tttc ctaagaacat	20
<210>	1101	
<211>		
<212>		
	artificial	
<213>	arcitticiar	
<220>		
<223>	human ESM-1 antisens	3 e
<400>		
tgagat	attt cctaagaaca	20
<210>	1102	
<211>		
<212>		
	artificial	
<213>	artificial	
<220>		
<223>	human ESM-1 antisen	3e
<400>	1102	
tggcca	actt caagaataaa	20
<210>		
<211>		
<212>		
<213>	artificial	•
<220>		
<223>	human ESM-1 antisen	se
<400>		
tcagco	ccgg gccacacttc	20
<210>		
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisen	se

WO 2	004/021978	PCT/US2003/025833
<400>	1104	
	gcc ccgggccaca	20
<210>	1105	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1105	20
atttaad	caaa cacatacaag	20
<210>	1106	
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
	1106	20
catgta	agat tacctaaatt	
<210>		
<211>		
<212>	DNA artificial	
<213>	arctriciar	
<220>		
<223>	human ESM-1 antisense	
. 4 0 0 .	1107	
<400>	1107 gggc taaatatttt	20
aaggaa	9990	
		•
<210>	1108	
<211><212>	20 DNA	
<212>	artificial	
72207		
<220>		
<223>	human ESM-1 antisense	
<400>	1108	
	caaa gctgtttgtt	20
cage		
<210>	1109	
<211><212>		•
	artificial	
<220>	A series and a subdening	
<223>	human ESM-1 antisense	

WO 2		PCT/US2003/025833
<400>	1109	
tcagca	gcct tttgaaattg	20
_		
<211>		
<212>		
<213>	artificial	
222		
<220>		
<223>	human ESM-1 antisense	
<400>	1110	
	cttt cctcaagagg	0.0
agaccc	ceee eecaagagg	20
<210>	1111	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1111	
ttcata	cctt aaattgaaaa	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
\ZZJ/	naman bor-I ancisense	
<400>	1112	
	attc cacctatatt	20
<210>	1113	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1112	
	aata aaatacttct	22
accted	aata aadtattitt	20
<210>	1114	
<211>		
<212>		
<213>	artificial	
	•	
<220>		
-222	human FCM_1 anticonce	

wo	2004/021978	PCT/US2003/02583
<400>	1114	
taacag	getta tgeagettta	20
		·
<210>		
<211>	· ·	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>		•
cctttt	aaaa caaaacctaa	20
<210>	1116	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	1	
<223>	human ESM-1 antisense	
<400>	1116	
	taaa acaaaaccta	. 20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1117	
tgggaa	gcag ccgtgaccca	20
<210>	1118	
<211>	20	
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1110	
	atcc atcccgaagg	20
	acco accocyaayy	20
<210>	1119	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1119	
	ggaa tttcaggcat	20
	-	•
<210>		
<211><212>		
	artificial	
72137	arearread.	
<220>		
<223>	human ESM-1 antisense	
<400>	1120	
aatcac	gaaa atagagcctt	20
<210>	1121	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
400	1104	
	1121	20
grigge	cgtg tgttgaacaa	20
<210>	1122	
<211>	20	
<212>		
<213>	artificial	
-220-		
<220> <223>	human ESM-1 antisense	
72237	Italian Bor I and Bonge	•
<400>	1122	•
ttctgg	atcc accatgcatc	20
<210>	1123	
<211>	DNA	
<212><213>	artificial	
\Z13 /	ar citizotat	
<220>		
<223>	human ESM-1 antisense	
<400>	1123	
tgtaca	ccaa agtcaaagaa	20
<210>	1124	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PC1/US2003/025833
<400>	1124	
gttgtt	ttat tttgactttt	20
<210>		
<211>		
<212>		
<213>	artificial	
-22.0-		
<220>	human ECM 1 antigones	
<223>	human ESM-1 antisense	
<400>	1125	
	gttc aaagctgttt	20
00000		20
<210>	1126	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	1126	
tggcat	acgt taaagctatt	20
<210>	1127	
<211>		
<212>		•
	artificial	
<220>		
<223>	human ESM-1 antisense	
	1127	
atagag	tcat aggtttttat	20
<210>	1128	
<211>	20	
<212>		
	artificial	
12207		
<220>		
	human ESM-1 antisense	
<400>		
atgttt	aaat aaggtccctc	20
01.5	1100	
<210>	1129	
<211>	20 DNA	
<212> <213>		•
<413>	ar ctrictat	
<220>		
	human ESM-1 antisense	
-	· · · ·	

WO 20	004/021978	PCT/US2003/025833
<400>	1129	
gtcacag	gcac ttatgtttaa	20
<210>	1130	
<211>	·	
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1130	
tcataco	tta aattgaaaat	20
.010.	1101	
<210>	•	
<211> <212>		
	artificial	
2713>	arctiterar	
<220>		
	human ESM-1 antisense	
<400>	1131	
tttcata	acct taaattgaaa	20
<210>		
<211>		
<212>		
<213>	artificial	
-220-		
<220>	human ESM-1 antisense	
(2237	Illimati BBM-1 alicibetibe	
<400>	1132	
	attc tttcaaatat	20
5 5		
<210>	1133	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220> <223>	human ESM-1 antisense	
<223>	numan Esm-1 ancisense	
<400>	1133	
	gacg ctcttcatgt	20
Jugoua	, <u>.</u> 	
<210>	1134	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

wo 2	2004/021978	PCT/US2003/025833
<400>	1134	
	agtc gtcgagcact	20
3		
<210>	1135	
<211>	20	
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1135	
tcatgo	catc catgcctgag	20
<210>	1136	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		20
cagcco	eeggg ceacacttca	20
<210>	1127	
<211>		
<211>		
	artificial	
<213>	arciliciai	
<220>		
<223>	human ESM-1 antisense	
<400>		20
aaaatq	gttgg ctgtgtgttg	20
<210>	1128	
<211>		
<212>		
<213>		
<220>		
<223>		
<400>	1138	
acatc	aaagt caaagaacta	20
J2105	1139	
<210> <211>		
<211>		
<213>		
<220>		
<223>	human ESM-1 antisense	

WO 2004/021978		PCT/US2003/025833
<400>	1139	
tacato	aaag tcaaagaact	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		•
-	human ESM-1 antisense	
12207		
<400>	1140	
ctctta	agtc ttcattccat	20
		20
<210>		
<211>	= :	•
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1141	
	aagt cttcattcca	20
50000	aago oocoaccooa	20
<210>	1142	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1140	
	tgag gtggcatacg	
cacccc	cgag geggeaeaeg	20
<210>	1143	
<211>	20	
<212>	DNA	•
<213>	artificial	
	·	
<220>		
<223>	human ESM-1 antisense	
400-	1142	
<400>	1143	
	acaa acctcctaaa	20
<210>	1144	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400	1144	
	tccta agaacatcta	
		20
	1145	
<211>		
	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1145	
	caaat aaaatacttc	
Caccc	caaat aaaatacttc	20
<210>	1146	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
	1146	
taaac	tgtc cttttaaaac	20
<210>	1147	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
tgtttc	ccag ctgcctccgg	20
<210>	1140	
<211>	20	
<212>		
	artificial	
	42 C T T C T C T	
<220>		
<223>	human ESM-1 antisense	
<400>		
tcacag	gtt gagggcagtc	20
		20
-010	11.40	
<210> <211>		
<211> <212>		
	artificial	
-2237	arciricial	
<220>		
<223>	human ESM-1 antisense	

WO 2004/021978		PCT/US2003/025833
<400>	1149	
	agaa ggggaatttc	20
<210>	1150	
<211>		
<212>		
	artificial	
.000-		
<220> <223>	human ESM-1 antisense	
\223 /	Human Borr 2 and 200100	
<400>	1150	
aatatt	ggaa gaaggggaat	20
<210>	1151	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1151	
	cagc cgggatcagc	20
	1150	
<210>		
<211>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1152	
	acaa acacatacaa	20
<210>	1153	
<211><212>	20 DNA	
<213>	artificial	
\215/	· ·	·
<220>		
<223>	human ESM-1 antisense	
400.	1153	
<400>	1153 etctc agttcaaagc	20
aartgo	colo aguicadage	
<210>	1154	
<211>	20	•
<212>		
<213>	artificial	
<220>	•	
	human ESM-1 antisense	

WO 20	004/021978			PC1/US2003/025833
<400>	1154			
	tga ggtggcatac			20
	3 33 34			
<210>	1155			
<211>	20			
<212>	DNA			
	artificial			
<220>				
<223>	human ESM-1 ant	cisense		
<400>	1155			
ttaccti	cat acacacacaa			20
<210>	1156			
<211>	20			
<212>	DNA			
<213>	artificial			
<220>				
<223>	human ESM-1 ant	tisense		
<400>	1156			2.2
acattt	attt ataaaaatat			20
				•
<210>				
<211>				
<212>				
<213>	artificial			
<220>				
<223>	human ESM-1 and	tisense		
			•	
<400>	1157			20
atatgg	gtag ggaagatgac			20
<210>	1158			
<211>	20			
<212>				
<213>	artificial			
000				
<220>	1 701 1			
<223>	human ESM-1 an	cisense		
400	1150			
<400>		,		20
cctaat	tcca cctatatttt	•		
-21A-	1160			
<210>				
<211>				
<212>				
<213>	artificial			
-220-				
<220>	human EGM-1 an	tigenge		

WO 2	004/021978	PCT/US2003/025833
<400>	1159	
tcttcac	ettc aaataaaata	20
		·
<210>		
<211>		
<212>	artificial	
\Z13/	420202	
<220>		
<223>	human ESM-1 antisense	
<400>	1160	
	aact tcaagaataa	20
<210>	1161	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1161	
	cctt ccacacat	20
<210>	1162	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1162	
	gctg cctccggctc	20
<210>	1163	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	1163	
	gcac actcggcagc	20
<210>	1164	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>		

wo	2004/021978	PCT/US2003/02583
<400>	1164	
cagaaa	atcac ageoggate	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>	human ESM-1 antisense	
<223>	numan ESM-1 antisense	
<400>		
actaat	ttga ctcactgcgg	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
aactaa	tttg actcactgcg	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
ttctgg	ttgt tttattttga	20
<210>	1168	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
atttcc	ataa gcttcaaaca	20
<210>	1169	
<211>	20	
<212>		
<213>	artificial	
<220>		
1222-	human FSM-1 anticonco	

WO 2	004/021978	PCT/US2003/025833
<400> tacatca	1169 agca gccttttgaa	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
	1170 totg aggtggcata	20
<210><211><211><212><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> ttatgga	1171 ataa taaatttatc	20
<210> <211> <212> <213>	20	
<220> <223>	human ESM-1 antisense	
	1172 gata ataaatttat	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> gaacate	1173 ctag tacaacagtc	20
<212>	20	
<220> <223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1174	
	gtt ggccaacttc	20
<210>	1175	
	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
400-	1175	
<400>	1175 gta gcaagtttct	20
ccgcgcg	gea geaageeeee	
<210>		
<211>		
<212>	artificial	
~2132		•
<220>		
<223>	human ESM-1 antisense	
<400>	1176	
	tca tgccatccat	20
010	1177	
<210> <211>		
<211> <212>		
	artificial	
<220>	and a subjection	
<223>	human ESM-1 antisense	
<400>	1177	
ctccag	atgc catgtcatgc	20
<210>	1178	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<220>	human ESM-1 antisense	
\2237	3,4411023 =	
<400>	1178	20
ggattt	aacc atttcctcat	20
<210>	1179	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/0258	
<400>	1179		
	tgtt gaacaatcac	20	
<210>	1180		
<211>			
<212>			
	artificial		
<220>			
	human ESM-1 antisense		
<223>	numan bor-1 ancibense		
<400>	1180		
aattac	atgt acttatgcta	20	
<210>	1181		
<211>			
<212>			
	artificial		
12207			
<220>			
<223>	human ESM-1 antisense		
<400>	1181		
aaatct	acat gcattcgaat	20	
<210>	1182		
<211>			
<212>			
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	1182		
tgggta	ggga agatgacttg	20	
<210>	1183		
<211>	20		
<212>	DNA		
<213>	artificial	,	
<220>			
<223>	human ESM-1 antisense		
<400>	1183		
ttttt	gaaa tecagagtga	20	
<210>	1184		
<211>			
<212>			
<213>			
<220>	human ESM-1 antisense		
-222	numan KSWel ANTISENSE		

WO 20	04/021978	PCT/US2003/025833
<400>	1184	
atttt	tgaa atccagagtg .	20
		•
<210>	1185	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
	1185	
ttattt	tcat accttaaatt	20
<210>	1186	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1186	
	actc ctaattccac	
uuucuc	acce claaticeac	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>	•	
	human ESM-1 antisense	
12207	Italian Bon I and Belie	
<400>	1187	
ttgtgct	aag attctttcaa	20
.010	1100	
<210> <211>	1188 20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
400	****	
<400>	1188	
accidet	aag aacatctagt	20
<210>	1189	
<211>	20	
	DNA	
<213>	artificial	
-226		
<220> <223>	human ESM-1 antisense	
>	mandi pom t amerochoe	

WO 20	004/021978	PCT/US2003/025833
<400>	1189	
	ttaa ataagttott	20
<210>	1190	
<211>		
<212>		
	artificial	
-220-		
<220>	homes HOW 1 ambiguous	
<223>	human ESM-1 antisense	
	1190	•
ctttta	aaac aaaacctaac	20
<210>	1191	
<211>	20	
<212>	DNA	
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1191	
gttctt	tttt attgaacaat	20
<210>	1192	
<211>		
<212>		
	artificial	
1220		
<220>		
<223>	human ESM-1 antisense	
<400>	1192	
	acac ctcagccccg	20
-555		
<210>	1193	
<211>		
<212>	DNA	
<213>	artificial	
(213)	arcificat	•
<220>		
<223>	human ESM-1 antisense	
<400>	1193	
	atcc cgaaggtgcc	20
Caacco	2000 0344330300	
-210-	1104	
<210>	1194	
<211>	20	
<212>		
<213>	artificial	
<220>		
-223-	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/02583
<400>	1194	20
atcacaç	geeg ggateagegt	20
<210>	1195	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1195 ctaa caaacacata	20
gaacaci	ctaa caaacacaca	
<210>		
<211>		
<212>	artificial	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
.400-	1196	
	caaa tctacatgca	20
accoun		
<210>		
<211> <212>		
	artificial	
<220>	TOW 1 ambigange	
<223>	human ESM-1 antisense	
<400>	1197	
ttcagg	ggtt ttctggttgt	20
<210>	1198	
<211>	20	
<212>	DNA .	
<213>	artificial	
.000		
<220>	human ESM-1 antisense	
\2207	Tunida. Doi: 1 date-	
<400>		20
aactta	tttt cataccttaa	20
<210>	1199	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

PCT/US2003/025833

wo	2004/021978	PCT/US2003/025833
<400>	1199	
	catct agtacaacag	20
		20
	1200	
	20 ·	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1200	
	attca aaggeettee	20
		20
<210>	1201	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
tttccc	eaget geeteegget	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1202	
tcttgc	agcg cgggctgctt	20
<210>		
<211>		
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	1203	
	ccgg cagcattctc	20
-	-	23
<210>	1204	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	2004/021978	PCT/US2003/0258	
<400>	1204		
ggctgt	gtgt tgaacaatca	20	
<210>	1205		
<211>			
<212>			
<213>	artificial		
<220>			
	human ESM-1 antisense		
	1205	20	
accgec	ctca gttcaaagct		
<210>			
<211>			
<212>	DNA artificial		
<213>	ar citiciat		
<220>			
<223>	human ESM-1 antisense		
400	1006		
	1206 ttat ctctgaggtg	20	
ccagac			
	1207		
<211>			
<212>	artificial		
\D.J.			
<220>			
<223>	human ESM-1 antisense		
<400>	1207		
	etge tgtcacagtg	20	
<210>	1208 20		
<211><212>			
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	1208	•	
	acag tegtegagea	20	
-030:	1200		
<210> <211>			
<212>		-	
	artificial		
<220>	human ESM-1 antisense		
~~~>	HUMBIL BOLL-T BILTBOTTO		

WO 2	004/021978	PCT/US2003/025833
<400>	1209	
	cage geacactegg	20
<210>	1210	
<211>		
<212>	DNA artificial	
(213)	al Ciricial	
<220>		
<223>	human ESM-1 antisense	
<400>	1210	
	gata ccaaactctt	20
<210>	1211	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1211	
	tgtc acagatgcct	20
<210>	1212	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1212	
aagaag	ggga atttcaggca	20
<210>	1213	
<211>		
<212>	DNA	
<213>	artificial	1
<220>		
<223>	human ESM-1 antisense	
<400>	1213	
	caatt tggatcttca	20
	•	
<210>	1214	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
	1214 aat ttgactcact	20
aagaac	Laat tegactoact	24
<210>		
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1215	
agattt	atct ctgaggtggc	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1216	
cttctt	ttac aaacctccta	. 20
<210>	1217	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1217	
	totg agatatttoo	20
<210>	1218	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1218	
	tttc ccagctgcct	20
3		
<210>	1219	
<211>		
<212>		
<213>	artificial	
<220>	·	
<223>	human ESM-1 antisense	

PCT/US2003/025833

WO 2	004/021978	PCT/US2003/025833
<400>	1219	
	ggg cagtccaccg	20
		•
<210>	1220	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
12207		
<400>	1220	
cacagt	gttg agggcagtcc	20
<210>	1221	
<211>		
<212>		
	artificial	
<220>	_	
<223>	human ESM-1 antisense	
<400>	1221	
	gccg tagggacagt	20
gaagge	,ccg cagggacage	
<210>		
<211>		/
<212>	DNA artificial	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1222	20
gaagaa	gggg aatttcaggc	20
<210>	1223	
<211>	20	
<212>	DNA	
<213>	artificial	•
000.		
<220> <223>	human ESM-1 antisense	
<2237	numan Esm-1 ancisense	
<400>	1223	
caatca	cgaa aatagagcct	20
-210-	1224	
<210><211>	1224 20	
<211>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	1224	•
caaacac	cata caagtgttca	20
<210>	1225	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1225	
	ctaa tttgactcac	20
_		
<210>		
<211>	20	
<212>		,
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		•
cacago	actt atgtttaaat	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
taagaa	catc tagtacaaca	20
	1228	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	•
<400>	1228	
aaaggc	cttc cacacacatt	20
<210>	1229	
<211>	<del></del>	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PC1/US2003/025833
<400>	1229	
ttaca	ttcaa aggccttcca	
		20
<210>	1230	
<211>		
	DNA	
	artificial	
<220>		
	human ESM-1 antisense	
	diciselise	
<400>	1230	
	ttaca ttcaaaggcc	
500	oraca eccaaaggee	20
<210>	1231	
<211>		•
<212>		
	artificial	
	01 01110101	
<220>		
	human ESM-1 antisense	
	Trainers Don't discribense	
<400>	1231	
	gttt cccagctgcc	
	·	20
<210>	1232	
<211>		•
<212>		
	artificial	
<220>		•
<223>	human ESM-1 antisense	
<400>	1232	
gctttt	gcac tcactgctgt	•
	-	20
<210>	1233	
<211>	20	
<212>	DNA	
<213>	artificial	
		•
<220>		
<223>	human ESM-1 antisense	
400>	1233	
ttgcag	gege gggetgettt	20
		20
	1234	
211>	20	
213>	artificial	
220>		
223>	human FCM-1 anticonco	

WO 20	004/021978	PCT/US2003/025833
<400>	1234	
	gtag caagtttctc	20
	•	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	1235	
ctgaata	attg gaagaagggg	20
<210>	1226	
<211>		
<211>		
	artificial	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
tctccag	gatg ccatgtcatg	20
-210-	1027	
<210>		
<211><212>		
	artificial	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	1237	
acacata	caa gtgttcagtc	20
<210>	1238	
<211>	20	
<212>	DNA	
<213>	artificial	
	W-02220202	
<220>		
<223>	human ESM-1 antisense	
<400>	1238	
aatattt	aac aaacacatac	20
	·	
<210>	1239	
	20	
	DNA ·	
<213>	artificial	
	~~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1239	
	acta atttgactca	20
	_	
<210>		
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1240	
	cttc attccatatc	20
coaage		
<210>	1241	
<211>	20	
<212>	DNA	
<213>	artificial	
000	•	
<220>	house way I ambi same	
<223>	human ESM-1 antisense	
<400>	1241	
atcage	agcc ttttgaaatt	20
_	3	
<210>		
<211>		
<212>		
<213>	artificial	
.000.		
<220> <223>	human ESM-1 antisense	
<223>	numan ESM-1 ancisense	
<400>	1242	
ggcata	cgtt aaagctattt	20
	1243	
<211>	20	
<212>		
<213>	artificial	•
<220>		
	human ESM-1 antisense	
1		
<400>	1243	
ggtggc	atac gttaaagcta	20
<210>	1244	
<210>		
<211> <212>		
<b>~</b> 213>	artificial	
<220>		
	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	1244	
ttgaca	tgtt ttctgctgaa	20
0.7.0	1045	
<210>		
<211><212>		
	artificial	
<2137	arcificial	
<220>		
	human ESM-1 antisense	
<400>		
tttaaa	gttg acatgttttc	20
<210>	1246	
<211>		
<212>		
	artificial	
	·	
<220>		
<223>	human ESM-1 antisense	
	1246	
tttcct	aaga acatctagta	20
<210>	1247	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
	1247	20
ggccaa	cttc aagaataaaa	20
<210>	1248	
<211>	20	
<212>	DNA	
	artificial	
<220>		
<223>	human ESM-1 antisense	
.400.	1040	
<400>		20
aggigi	gcag gcacgaggag	20
<210>	1249	
<211>	20	
<212>	DNA .	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	1249	
ttagaa	ggct gacacctcag	20
.010-	1050	
<210>		
<211>		
<212>		·
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1250	
	taca tgcattcgaa	20
Caaacc	taca tycattegaa	20
	1051	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1251	
		20
Claall	tgac tcactgcggt	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
	1252	20
caacat	taat gtacatcaaa	20
<210>	1253	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220>		
	human ESM-1 antisense	
(223)	Hallar Zor E amount	
<400>		
ctagag	aagc tacctaccaa	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400	> 1254	
attt	accttc atacacacac	
	•	20
	> 1255	
	> 20	
	DNA	
<213:	artificial	•
<220>		
<2235	human ESM-1 antisense	
-100-	1255	
gatti	ctttc ctcaagagga	20
<210>	1256	
<211>		
	DNA	
	artificial	•
<220>		
<223>	human ESM-1 antisense	
	1256	
taacc	atttt caacaaataa	20
		20
	1257	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
\225/	numan ESM-1 antisense	
<400>	1257	
	ragtg actcctataa	
•		20
<210>	1258	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1050	
	1258	
CLABEE	ccac ctatatttta	20
<210>	1259	
<211>	20	
	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>		
aaaca	tgtcc ttttaaaaca	20
		20
	1260	
<211>		
	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1260	
	acact tcatgccatc	
99900	acace realgecate	20
<210>	1261	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
	1261	
catcc	gaag gtgccgtagg	20
		20
-270.	1000	
<210> <211>		
<211>		
	artificial	
\213 <i>/</i>	arcificial	
<220>		
	human ESM-1 antisense	
	nomen abril ancisense	
<400>	1262	
	aaca aatctgttgg	
	3 * 33	20
<210>		
<211>	20	
	DNA	
<213>	artificial	
		•
<220>	1	
<223>	human ESM-1 antisense	
<400>	1263	
	accc gggaactaca	
caggia	acce gggaactaca	20
<210>	1264	
<211>	20	
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 20	004/021978	PC1/US2003/025833
<400>	1264	
	acaa accaccagtg	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1265	
aatatg	ggta gggaagatga	20
-010-	1266	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1266	
tggata	ataa atttatcatg	20
	***************************************	
<210>		
<211>		
<212>		
<213>	artificial	
.000		
<220>	human ESM-1 antisense	•
(223)	numan ESM-1 ancisense	
<400>	1267	
atggat	aata aatttatcat	20
<210>		•
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	,
	1268	
tgactc	ctat aattatggat	20
-210-	1269	
<210> <211>		
<211><212>		•
<212>	artificial	
~2137	<u> </u>	
<220>		
<223>	human ESM-1 antisense	

WO 20	04/021978	PCT/US2003/025833
<400>	1269	20
tgacatg	yttt tetgetgaaa	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1270	
ctttaca	attc aaaggccttc	20
<210>	1271	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1271	
gtcctt	taa aacaaaacct	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1272	
aatgta	catc aaagtcaaag	20
<210>	1273	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	1273	
ggtaac	ccgg gaactacatc	20
<210>	1274	
<211>	20 .	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 anticense	

WO 20	04/021978	PCT/US2003/025833
<400>	1274	
	gatt tatctctgag	20
	•	
<210>	1275	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
	1275	20
tgtttga	aaaa ccttatagag	20
<210>	1276	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
	1276	
tgtttaa	aata aggtccctct	20
<210>	1277	
<211>		
<212>		
<213>	artificial	
<220>	human ESM-1 antisense	
\ZZ37	Italian Bon-I ancibense	
<400>	1277	
cttattt	ttca taccttaaat	20
<210>	1278	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	The second of the second	
<223>	human ESM-1 antisense	
<400>	1278	
	gact gtgcggtagc	. 20
J .		
<210>		
<211> <212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	1279	
atgcatt	cga atatttaaca	20
.010	1000	
<210> <211>	1280	
<211>		
	artificial	
12207		
<220>		
<223>	human ESM-1 antisense	
<400>	1280	
gtaacco	eggg aactacatca	20
.010	1001	
<210> <211>		
<211>		
	artificial .	
<220>		
<223>	human ESM-1 antisense	
	1281	
tagattt	cett teeteaagag	20
.210-	1202	
<210> <211>		
<212>		
	artificial	
1		
<220>		
<223>	human ESM-1 antisense	•
<400>		
gtttgaa	aaac cttatagagt	20
<210>	1283	•
<211>	20	
<212>	DNA	
<213>	artificial	
	·	
<220>		
<223>	human ESM-1 antisense	
<400>	1283	20
grgacto	ccta taattatgga	20
<210>	1284	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1284	
	aag gtccctctgt	20
010	1005	
<210>		
<211>		
<212>	artificial	
<213>	altilitial	
<220>		
<223>	human ESM-1 antisense	
<400>	1285	20
tacctta	aat tgaaaattca	
<210>	1286	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	1006	
	1286 ctcc taaaaactta	20
acaaac	CCC taaaaacca	
<210>	1287	
<211>	20	
<212>		
<213>	artificial	
<220>	human ESM-1 antisense	
<423>	numan ESM-1 and Escape	
<400>	1287	
	cctc ctaaaaactt	20
	1288	
<211><212>	20 DNA	
<213>	artificial	
72137	WT 022202W	
<220>		
<223>	human ESM-1 antisense	
<400>	1288	. 20
aaagti	gaca tgttttctgc	
<210>	1289	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1289	
aacatg	tcct tttaaaacaa	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<b>\223</b> /	numan ESM-1 ancisense	
<400>	1290	
	cagg cacgaggagc	20
33 3 3		
<210>	1291	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1201	
	cggt agcaagtttc	20
actyty	ogge ageaageeee	20
<210>	1292	
<211>		
<212>		
	artificial	
12207		
<220>		
<223>	human ESM-1 antisense	
<400>	1292	
catgcc	atcc atgcctgaga	20
	•	
<210>	1293	
<211>	20	
<212>		
	artificial	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
1-201		
<400>	1293	
gatacc	aaac tetteaceaa	20
<210>		
<211>		
<212>		
<213>	artificial	
-000		
<220>	have Total authorney	
< 443>	human ESM-1 antisense	

<400>	1294	
	eaat ccatcccgaa	20
ccccgc	ade ceaecogan	
010	3005	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1295	
	etgt cacagatgcc	20
geeee	cigo cacagacgee	
	1005	
<210>		
<211>,		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1296	
	aggg gaatttcagg	20
ggaaga	222 244000000	
.010.	1207	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1297	20
tacatg	catt cgaatattta	20
<210>	1298	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	·	
<400>		20
atttat	ctct gaggtggcat	20
<210>	1299	
<211>		
<212>		
	artificial	
<213>	GT CTTTCTGT	
<220>		
<223>	human ESM-1 antisense	

WO 2004/021978

PCT/US2003/025833

WO 2	2004/021978	PC1/US2003/025833
<400>	1299	
	ataat aaatttatca	20
55-		20
<210>	1300	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
cataco	ttaa attgaaaatt	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	•
<400>		
aaactt	attt tcatacctta	20
<210>		
<211>		
<212>		
<213>	artificial .	
<220>		
<223>	human ESM-1 antisense	
<400>		
tcctaa	ttcc acctatattt	20
.0	1222	
<210>		
<211>		
<212>		
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>		
tcctaa	gaac atctagtaca	20
-010:	1204	
<210>		
<211>		
<212>		
<213>	artificial	
-000		
<220>	house HOM 1 ambdosses	
<223>	human ESM-1 antisense	

WO 2	004/021978		PCT/US2003/02583	3
<400>	1304			
aactct	gttg gccaact	tca	20	O
<210>	1305			
<211>				
<212>				
<213>	artificial			
.000.				
<220>	human ESM-1	antidondo		
\2237	numan BBM-1	ancisense		
<400>	1305			
ttcccg	tccc cctgtca	cag	20	)
<210>	1206			
<211>				
<212>				
<213>	artificial			
<220>				
<223>	human ESM-1	antisense		
<400>	1306			
	cggg atcagcg	tgg	20	)
.010.	1207			
<210> <211>				
<212>				
	artificial			
<220>	1			
<223>	human ESM-1	antisense		
<400>	1307			
	atac aagtgtt	cag	20	)
		_		
010				
<210> <211>	1308 20			
<212>	DNA			
<213>	artificial			
<220>				
<223>	human ESM-1	antisense		
<400>	1308			
	gaat atttaaca	ıaa	20	i
-	-		20	
0.7.6				
<210>	1309			
<211> <212>	20 DNA			
<213>	artificial		·	
<220>	_			
-223	human ESM-1	anticonce		

wo a	2004/021978		PCT/US2003/025833
<400>	1309		
	cat caaagtcaaa		20
<210>	1310		
<211>			
<212>			
<213>	artificial		
<220>			
	human ESM-1 antisense		
<400>			20
taaatat	ttt atttcccact		
<210>	1311		•
<211>			
<212>	DNA		
<213>	artificial		
<220>			
	human ESM-1 antisense		
1220			
<400>			20
aagctg	tttg ttactcaaat		20
<210>	1312		
<211>			
<212>	DNA		
<213>	artificial		
<220>			
	human ESM-1 antisense		
1			
<400>			20
gatatt	tcct aagaacatct		20
<210>	1313		
<211>	20	ř	
<212>	DNA		
<213>	artificial		1
<220> <223>	human ESM-1 antisense		
<223>	IIdiiaii Ebii-1 aiic1beiibe		
<400>			22
tactga	aaata attottaaat		20
491 A.	1314		
<210>			
<212>	DNA		
<213>	artificial		
<220>			
<223>	Iliman Pou-I andreame		

<400>	1314 :gca gcgcgggctg		20
<210>			
<211>			
<212>			
<213>	artificíal		
<220>			
<223>	human ESM-1 antisense		
	1315		20
ccggcag	gcat tetettteae		20
010	1016		
<210>			
<211>			
<212>			
<213>	artificial		
<220>	house TOM 1 subdening		
<223>	human ESM-1 antisense		
.400-	1316		
<400>			20
CLaacca	attt cctcattacg		
<210>	1317		
<211>			
<212>			
	artificial		
<213>	dictificat		
<220>		ı	
<223>	human ESM-1 antisense		
(223)	Italian Ebri-1 ancibense		••
<400>	1317		
	atac acacacattt		20
J			
<210>	1318	_	
<211>	20		
<212>	DNA		
<213>	artificial	•	
<220>			
<223>	human ESM-1 antisense		
<400>	1318		
tacctt	cata cacacacaa	·	20
<210>			
<211>			
<212>			
<213>	artificial		
<220>		:	
<223>	human ESM-1 antisense		

WO 2004/021978

PCT/US2003/025833

wo	2004/021978	PCT/US2003/025833
<400>	1319	
	aata tttaccttca	20
<210>	1320	
<211>	20	
<212>	DNA	
	artificial	
-220-		
<220>	human EGM 1 anhianna	
<223>	human ESM-1 antisense	
<400>	1320	
ttgaaai	tcca gagtgactcc	20
<210>	1321	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1321	
cttcact	ttca aataaaatac	20
0.1.0	4000	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
12207	11411411 114111111111111111111111111111	
	1322	
ttgcag	egeg ggetgetttt	20
<210>	1323	
<211>	20	
<212>	DNA	
<213>	artificial	
12201	,	
<220>		
<223>	human ESM-1 antisense	
<400>	1323	
	gaag getgacacet	20
Journa	Jana 3003404000	20
-210-	1224	
<210>		
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
	1324 gaag gggaatttca	20
<210><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> agaaat	1325 Caca geegggatea	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
	1326 caca agtgttcagt	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
	1327 Etta ttttgacttt	20
<210><211><212><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> tatagag	1328 gtca taggttttta	20
<210><211><211><212><213>	1329 20 DNA artificial	
<220> <223>	human ESM-1 antisense	

wo	2004/021978	PCT/US2003/025833
<400>		
tccaga	agtga ctcctataat	20
<210> <211>		
<212>		
	artificial	
<220>		
	human ESM-1 antisense	
<400>	1330	
tettte	aaat atactcctaa	20
<210>	1331	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
ataatt	ctta aataagttct	20
<210>		
<211><212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
gcagca	agac gctcttcatg	20
<210>	1333	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
tggtca	gcag caagacgctc	20
<210>	1334	
<211>		
<212>	DNA	
<213>	artificial	
<220> <223>	human ESM-1 antisense	

wo	2004/021978	PCT/US2003/025833
	1334	
tacca	aactc ttcaccaaaa	20
<210> <211>	1335	
	DNA	
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
tccag	atgcc atgtcatgct	20
	1336	
<211> <212>		
	artificial	
<220>		
(223)	human ESM-1 antisense	
<400>		
taaaat	gttg gctgtgtgtt	20
<210>		
<211> <212>		
	artificial	
.220		
<220> <223>	human ESM-1 antisense	
<400>		
ggccaa	atat tttatttccc	20
-010	1000	
<210> <211>		
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1338	
	tatc tctgaggtgg	20
	,	20
<210>	1339	
<211>	20	
<212> <213>		•
~~13>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 20	04/021978	PCT/US2003/025833
	1339	22
atatata	aat atttaccttc	20
<210>		
<211>		•
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1340	
tttacaa	acc tcctaaaaac	20
<210>	1241	
<211>		
<211>		
	artificial	
	arctrotar	
<220>		
<223>	human ESM-1 antisense	
<400>	1341	
tgttgag	ggc agtccaccgc	20
<210>	1342	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1342 gagg gcagtccacc	20
aguguuş	lagg geageeeace	
<210>	1343	
<211>	20	
<212>		
<213>	artificial .	
<220>		
<223>	human ESM-1 antisense	
<400>	1343	20
acttcat	gcc atccatgcct	20
<210>	1344	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		

<223> human ESM-1 antisense

WO 20	004/021978	PCT/US2003/025833
<400>	1344	
cccgaag	ggtg ccgtagggac	20
<210>	1345	
<211>	20	
<212>	•	
	artificial	
~2137	artiritar	
<220>		
<223>	human ESM-1 antisense	
-400-	1245	
	1345	20
aatcac	agce gggateageg	20
<210>	1346	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1346	
	cgaa tatttaacaa	20
cgcacc	ogua cacceaacaa	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1347	
tcaaag	tcaa agaactaatt	20
<210>	1348	
<211>		
<212>	DNA	
<213>	artificial	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	1010	
	1348	20
tttcca	taag cttcaaacat	20
<210>	1349	
<211>	20	
<212>		-
<213>	artificial	
<220>	homes Toy 1 and leaves	~
<223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	1349	
ttcttt	caaa tatactccta	20
<210>	1350	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1350	
	catt tcctaagaac	20
<210>	1351	
<211>		
<212>	DNA	
<213>	artificial	
.000-		
<220>	human ESM-1 antisense	
\ZZJ/	Indian Bor I directorio	
	1351	
atactg	aaat aattottaaa	20
<210>	1352	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1352	20
gttggc	caac ttcaagaata	20
<210>	1353	
<211>		
<212>	DNA artificial	
<213>	artiliciai	•
<220>		
<223>	human ESM-1 antisense	
<400>	1353	20
aaaaa,	cgtg gtcagcagca	20
<210>		
<211><212>	20 DNA	
	artificial	
<220>		
<223>	human ESM-1 antisense	

	•	
<400>	1354	
LEECCC	aaag ccaaaaaaaa	
<210>	1355	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	1055	
<400>		
ttactc	aaat ttccataagc	
<210>	1356	
<210>		
<211><212>		
	artificial	
<b>~</b> ∠13>	arciticiar	
<220>		
. —	human ESM-1 antisense	
-2257		
<400>	1356	
	ttaa agctatttat	
	3	
<210>	1357	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
. 4.0.0	1255	
<400>	1357	
atttt	aaca aataatacta	
<210>	1358	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>		
	gtgac tcctataatt	
<210>		
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

PCT/US2003/025833

WO 2004/021978

<pre>&lt;400</pre>	WO 2	004/021978	PCT/US2003/025833.
Color	-400 <b>&gt;</b>	1350	
<pre>&lt;210&gt; 1360 &lt;211&gt; 20 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial &lt;220&gt; &lt;223&gt; human ESM-1 antisense </pre> <pre>&lt;400&gt; 1360 tacattcaaa ggccttccac</pre>			20
<pre>&lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial </pre> <pre>&lt;220&gt; &lt;223&gt; human ESM-1 antisense </pre> <pre>&lt;400</pre>	ccccac	gaa cacceageac	24
<pre>&lt;212&gt; DNA &lt;213&gt; artificial </pre> <pre>&lt;220&gt; &lt;223&gt; human ESM-1 antisense </pre> <pre>&lt;400&gt; 1360 tacattcaaa ggccttccac</pre>	<210>	1360	
<pre>&lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1360 tacattcaaa ggccttccac</pre>			
<pre>&lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1360 tacattcaaa ggccttccac</pre>			
<pre>&lt;223&gt; human ESM-1 antisense &lt;400&gt; 1360 tacattcaaa ggccttccac</pre>			
<pre>&lt;400&gt; 1360 tacattcaaa ggcttcac 20  &lt;210&gt; 1361 &lt;211&gt; 20  &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1361 cttcatgcca tccatgcctg 20  &lt;211&gt; 20  &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;221&gt; 20  &lt;211&gt; 20  &lt;212 DNA  &lt;213&gt; artificial  &lt;220&gt; &lt;221&gt; 20  &lt;212 DNA  &lt;213 artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1362 actggcagtt gcaggtctct 20  &lt;210&gt; 1363 &lt;211&gt; 20 &lt;212&gt; DNA &lt;2213 artificial  &lt;220&gt; &lt;221&gt; Author antisense  &lt;400&gt; 1362 actggcagtt gcaggtctct 20  &lt;210&gt; 1363 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;213&gt; human ESM-1 antisense  &lt;400 1362 actggcagtt gcaggtctct 20  &lt;210&gt; 1363 c211&gt; 20 &lt;221&gt; DNA &lt;2213 artificial  &lt;220&gt; &lt;2210</pre>	<220>		
tacattcaaa ggcttccac 20  <210> 1361 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 1361 cttcatgcca tccatgcctg 20  <210> 1362 <211> 20 <212> DNA <213> artificial <220> <221> tuman ESM-1 antisense <400\ 1362 call 20 <221> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 1362 actggcagtt gcaggtctct 20  <210> 1363 <211> 20 <212> DNA <213> artificial <220> <221> tuman ESM-1 antisense <400> 1362 actggcagtt gcaggtctct 20 <210> 1363 <211> 20 <212> DNA <213> artificial <220> <213> human ESM-1 antisense <400> 1363 tcaaagaact aatttgactc 20  <210> 1364 <211> 20 <212> DNA <213> DNA	<223>	human ESM-1 antisense	
<pre> &lt;210&gt; 1361 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1361 cttcatgcca tccatgcctg</pre>			
<pre> &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1361 cttcatgcca tccatgcctg</pre>	tacatto	aaa ggccttccac	20
<pre> &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1361 cttcatgcca tccatgcctg</pre>			
<pre>&lt;212&gt; DNA &lt;213&gt; artificial </pre> <pre>&lt;220&gt; &lt;223&gt; human ESM-1 antisense </pre> <pre>&lt;400&gt; 1361 cttcatgcca tccatgcctg</pre>			
<pre>&lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1361 cttcatgcca tccatgcctg</pre>			
<pre>&lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1361 cttcatgcca tccatgcctg</pre>			
<pre>&lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1361 cttcatgcca tccatgcctg</pre>	<213>	artificial	
<pre>&lt;400&gt; 1361 cttcatgcca tccatgcctg</pre>	<220>		
cttcatgcca tccatgcctg 20  <210> 1362 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 1362 actggcagtt gcaggtctct 20 <210> 1363 <211> 20 <212> DNA <213> artificial <20> <210> 1363 <211> 20 <212> DNA <213> artificial <220> <212> DNA <213> artificial <221> DNA <213> artificial <222> <223> human ESM-1 antisense <400> 1363 tcaaagaact aattgactc 20	<223>	human ESM-1 antisense	
cttcatgcca tccatgcctg 20  <210> 1362 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 1362 actggcagtt gcaggtctct 20 <210> 1363 <211> 20 <212> DNA <213> artificial <20> <210> 1363 <211> 20 <212> DNA <213> artificial <220> <212> DNA <213> artificial <221> DNA <213> artificial <222> <223> human ESM-1 antisense <400> 1363 tcaaagaact aattgactc 20	<400>	1361	
<pre>&lt;210&gt; 1362 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1362 actggcagtt gcaggtctct 20  &lt;210&gt; 1363 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;221&gt; description of the property of the pr</pre>			20
<pre>&lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1362 actggcagtt gcaggtctct 20  &lt;210&gt; 1363 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400 1363 tcaaagaact aattgactc 20  &lt;210&gt; 1363 tcaaagaact aattgactc 20</pre>		,	
<pre>&lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1362 actggcagtt gcaggtctct 20  &lt;210&gt; 1363 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1363 tcaaagaact aatttgactc 20  &lt;210&gt; 1363 tcaaagaact aatttgactc 20 &lt;211&gt; 20 &lt;212&gt; DNA</pre>			
<pre>&lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1362 actggcagtt gcaggtctct 20  &lt;210&gt; 1363 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1363 tcaaagaact aatttgactc 20  &lt;210&gt; 1364 &lt;211&gt; 20 &lt;212&gt; DNA</pre>			
<pre>&lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1362 actggcagtt gcaggtctct 20  &lt;210&gt; 1363 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1363 tcaaagaact aatttgactc 20  &lt;210&gt; 1364 &lt;211&gt; 20 &lt;212&gt; DNA</pre>			
<pre>&lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1362 actggcagtt gcaggtctct 20  &lt;210&gt; 1363 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1363 tcaaagaact aatttgactc 20  &lt;210&gt; 1364 &lt;211&gt; 20 &lt;212&gt; DNA</pre>	<213>	artificial	
<pre>&lt;400&gt; 1362 actggcagtt gcaggtctct 20  &lt;210&gt; 1363 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1363 tcaaagaact aatttgactc 20  &lt;210&gt; 1364 &lt;211&gt; 20 &lt;212&gt; DNA</pre>	<220>		
<pre>actggcagtt gcaggtctct 20  &lt;210&gt; 1363 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1363 tcaaagaact aatttgactc 20  &lt;210&gt; 1364 &lt;211&gt; 20 &lt;212&gt; DNA</pre>	<223>	human ESM-1 antisense	
<pre> &lt;210&gt; 1363 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1363 tcaaagaact aatttgactc  20 &lt;210&gt; 1364 &lt;211&gt; 20 &lt;212&gt; DNA </pre>			0.0
<pre>&lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1363 tcaaagaact aatttgactc 20  &lt;210&gt; 1364 &lt;211&gt; 20 &lt;212&gt; DNA</pre>	actggca	gtt gcaggtctct	20
<pre>&lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1363 tcaaagaact aatttgactc 20  &lt;210&gt; 1364 &lt;211&gt; 20 &lt;212&gt; DNA</pre>			
<pre>&lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1363 tcaaagaact aatttgactc 20  &lt;210&gt; 1364 &lt;211&gt; 20 &lt;212&gt; DNA</pre>			
<213> artificial			
<220> <223> human ESM-1 antisense  <400> 1363 tcaaagaact aatttgactc 20  <210> 1364 <211> 20 <212> DNA			
<223> human ESM-1 antisense  <400> 1363 tcaaagaact aatttgactc 20  <210> 1364 <211> 20 <212> DNA	<213>	artificial	
<400> 1363 tcaaagaact aatttgactc 20  <210> 1364 <211> 20 <212> DNA	<220>		
tcaaagaact aatttgactc 20 <210> 1364 <211> 20 <212> DNA	<223>	human ESM-1 antisense	
<210> 1364 <211> 20 <212> DNA			2.2
<211> 20 <212> DNA	tcaaaga	act aatttgactc	20
<211> 20 <212> DNA			
<212> DNA	<210>	1364	
	<211>	20	
<213> artificial	<212>	DNA	
	<213>	artificial	
<220>	<220>		

<223> human ESM-1 antisense

WO 20	004/021978	PCT/US2003/025833
<400>	1364	20
aagggct	caaa tattttattt	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1365	
aataata	acta gatttctttc	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1366	
ctataa	ttat ggataataaa	20
	·	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1367	
tgaaat	ccag agtgactcct	· 20
<210>	1368	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1368	
	agtt gacatgtttt	20
55555	<u> </u>	
<210>	1369	
<211>		
<212>	DNA	•
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1369	
	tttc aaatatactc	20
		•
<210>		
<211> <212>		
	artificial	
<220>	human ESM-1 antisense	
<b>\</b> 2237	Italian Bur I and Democ	
<400>		20
ttcacti	tcaa ataaaatact	20
<210>		
<211> <212>	•	
	artificial	
<220>	human ESM-1 antisense	
<b>&lt;2237</b>	Hullar Est I aretsense	
<400>		20
acattc	aaag gccttccaca	
<210>		
<211> <212>		
	artificial	
-220-		
<220> <223>	human ESM-1 antisense	
<400>	1372 acaa aacctaacag	20
LLLaaa	acaa aacccaacag	
	4073	
<210> <211>		
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	1373	
gegge	cacca ggtgtgcagg	20
•		
<210>	1374	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	1374	
	acac ttcatgccat	20
<210>	1375	
	20	
<212>	·	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
12207	2011 2011 2 0210200100	
<400>	1375	
agcccc	gggc cacacttcat	20
<210>	1376	
<211>		
<212>		
<213>	artificial	
<220>	1 DOM 1himmun	
<223>	human ESM-1 antisense	•
<400>	1376	
	acca aactcttcac	20
	1377	
<211><212>		
	artificial	
72207		
<220>		
<223>	human ESM-1 antisense	
400	1200	
<400>	1377 caaa gaactaattt	20
Caaagu	caaa gaactaacct	20
<210>	1378	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>		
aggcct	tcca cacacattca	20
<210>	1379	
<211>		
<212>		
<213>	artificial	
<220>	human ESM-1 antisense	
<223>	timilati DDM-I atteractive	

WO 20	04/021978	PCT/US2003/025833
<400>	1379	
	agt cgtcgagcac	20
<210>	1380	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
-400-	1200	,
<400>	1380 agc aagtttetee	20
3-3-33	age dagecooo	
<210>		
<211>		
<212>	artificial	
<b>\Z13</b> >	altilitat	
<220>		
<223>	human ESM-1 antisense	
-400-	1201	
	1381 Ettt gcagatacca	20
gacage	see gougueuseu	
<210>		
<211>		
<212>	artificial	
<b>\213</b> >	attittetat	
<220>		
<223>	human ESM-1 antisense	
-100-	1202	
<400>	1382 yaga agctacctac	20
accccas	aga agacaaaa	_ •
<210>	1383	
<211>		
<212> <213>	DNA artificial .	
(213)	altilitiai .	
<220>		
<223>	human ESM-1 antisense	
.400.	1202	
<400>	1383 ata agetteaaae	20
242000		
	1384	
<211>	20	
<212> <213>	DNA artificial	
~~~~	4101110141	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1384	
aacca	ttttc aacaaataat	20
		20
-210-	1205	
<211>	1385	
	DNA	
	artificial	
42207	arcificial	
<220>		
<223>	human ESM-1 antisense	
	1385	
aatta	eggat aataaattta	20
<210>	1386	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
400		
<400>		
gicti	gctg gtgggaagca	20
<210>	1387	
<211>	20	
<212>		
<213>	artificial	
000	•	
<220>	human Bay a	
<223>	human ESM-1 antisense	
<400>	1387	
	gctg cttttgcact	
5 5 55	5 15 11 10 5	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	- ancibense	
<400>	1388	
gccccg	ggcc acacttcatg	20
	-	20
.010-	1200	
<210>	1389	
<211> <212>	20 DNA	
<212>	•	
~~~~	wrottrordt	
<220>		
<223>	human ESM-1 antisense	

WO 2004/021978		PCT/US2003/025833	
<400>	1389		
tagaag	gctg acacctcagc	20	
<210>	1390		
<211>			
<212>			
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	1390		
	ccat cccgaaggtg	20	
<210>	1391		
<211>			
<212>			
<213>	artificial		
<220>			
	human ESM-1 antisense		
<400>	1391		
aacaat	cacg aaaatagagc	20	
<210>			
<211>			
<212>	DNA artificial		
<b>\Z13</b> >	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	1392		
acaaat	ctac atgcattcga	20	
<210>	1393		
<211>	20		
<212>	DNA		
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	1393		
	tcct tcaggggttt	20	
<210>	1394		
<211>			
<212>			
<213>	artificial		
<220>			
	human ESM-1 anticence		

WO 20	004/021978	PCT/US2003/025833
<400>	1394	
aaattt	ccat aagcttcaaa	20
<210>	1395	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
_	human ESM-1 antisense	
12237		
<400>	1395	
aaatat	gggt agggaagatg	20
<210>	1396	
<211>		
<212>		
<213>	artificial	
000		
<220> <223>	human ESM-1 antisense	
<b>\223</b>	numan Bbm-1 ancibense	
<400>	1396	
aaataa	tact agatttcttt	20
<210>	1397	
<211>		
<212>		
<213>	artificial	
<220>	•	
	human ESM-1 antisense	
72237		
<400>	1397	
tataat	tatg gataataaat	20
<210>	1398	
<211>	20	
<212>	DNA	
<213>	artificial	•
42205		
<220> <223>	human ESM-1 antisense	
12207		
<400>	1398	
acttat	gttt aaataaggtc	20
<210>	1399	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<220>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1399	20
etgete	tttt ttattgaaca	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	1400	
cgcggg	ctgc ttttgcactc	20
<210>	1401	
<211>		
<212>		
	artificial	
<220>	homen EGM 1 anti-games	
<223>	human ESM-1 antisense	
<400>	1401	
tcagaa	atca cagccgggat	20
<210>	1402	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	•
	1402	
tctcca	tgta agattaccta	20
<210>	1403	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220>		
	human ESM-1 antisense	
<400>	1403	
cttcag	gggt tttctggttg	20
<210>		
<211>		
<212>	DNA artificial	
<213>	arciliciai	
<220>		
<223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	1404 cago ottttgaaat	20
caccago	Jago occogadae	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1405	
tcataca	acac acaaaccacc	20
		•
<210>	1406	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1406	1
tttatti	tata aaaatatata	20
<210>	1407	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
12007		
<400>	1407	
cctata	atta tggataataa	20
<210>	1408	
<211>	20	
<212>	DNA	
<213>	artificial	
<220> <223>	human ESM-1 antisense	
<223>	numan ESM-1 antisense	
<400>	1408	
tgaata	ttgg aagaagggga	20
<210>	1409	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

<pre>&lt;210&gt; 1411 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial </pre> <pre>&lt;220&gt; &lt;223&gt; human ESM-1 antisense </pre> <pre>&lt;400&gt; 1411 ctaagattct ttcaaatata</pre>	WO 20	004/021978	PCT/US2003/025833
<pre> &lt;210&gt; 1410</pre>			20
<pre> &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1410     ttgactcact geggtcttca  &lt;210&gt; 1411 &lt;2211&gt; 20 &lt;2212&gt; DNA &lt;2213&gt; artificial  &lt;220- &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1411     ctaagattct ttcaaatata  &lt;210&gt; 1412 &lt;221&gt; 20 &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1411     ctaagattct ttcaaatata  &lt;210&gt; 1412 &lt;2211&gt; 20 &lt;2212&gt; DNA &lt;2213&gt; artificial  &lt;220&gt; &lt;222&gt; human ESM-1 antisense  &lt;400&gt; 1412     agaacatct agtacaacagt  &lt;210&gt; 1412     agaacatct agtacaacagt  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1412     agaacatct agtacaacagt  &lt;210&gt; 1413 &lt;211&gt; 20 &lt;221&gt; DNA &lt;211&gt; 20 &lt;222&gt; human ESM-1 antisense  &lt;400&gt; 1413     ctitcatgtt tcccagctgc  &lt;20&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1413     cttcatgtt tcccagctgc  &lt;20 &lt;210&gt; 1413     cttcatgtt tcccagctgc  &lt;210&gt; 1414 </pre>	3 3		20
<pre>&lt;212&gt; DNA &lt;213&gt; artificial &lt;220&gt; &lt;223&gt; human ESM-1 antisense &lt;400&gt; 1410     ttgactcact geggtcttca  &lt;210&gt;    1411 &lt;211&gt;    20 &lt;212&gt; DNA &lt;213&gt; artificial &lt;220&gt; &lt;223&gt; human ESM-1 antisense &lt;400    1411     ttaagattct ttcaaatata  20 &lt;210&gt; 1412 &lt;211&gt;    20 &lt;212&gt; DNA &lt;213&gt; artificial &lt;220&gt; &lt;223&gt; human ESM-1 antisense &lt;400    1412 &lt;211&gt;    20 &lt;212&gt; DNA &lt;213&gt; artificial &lt;220&gt; &lt;223&gt; human ESM-1 antisense &lt;400    1412 agaacatcta gtacaacagt  20 &lt;210&gt; 1413 &lt;211&gt;    20 &lt;221&gt; DNA &lt;213&gt; artificial &lt;220&gt; &lt;221&gt; DNA &lt;211&gt; 20 &lt;221&gt; DNA &lt;213&gt; artificial &lt;220&gt; &lt;210&gt; 1413 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial &lt;221&gt; Auman ESM-1 antisense &lt;400&gt; 1412 agaacatcta gtacaacagt &lt;20 &lt;210&gt; 1413 &lt;211&gt; 20 &lt;221&gt; DNA &lt;213&gt; artificial &lt;220&gt; &lt;223&gt; human ESM-1 antisense &lt;400&gt; 1413 cttcatgtt tcccagctgc &lt;20 </pre>			
<pre>&lt;213&gt; artificial &lt;220&gt; &lt;223&gt; human ESM-1 antisense &lt;400&gt; 1410     ttgactcact geggtcttca  &lt;210&gt; 1411 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial &lt;220&gt; &lt;223&gt; human ESM-1 antisense &lt;400&gt; 1411     ctaagattct ttcaaatata  &lt;210&gt; 1412 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial &lt;220&gt; &lt;221&gt; artificial &lt;221&gt; DNA &lt;213&gt; artificial &lt;221&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial &lt;220&gt; &lt;221&gt; DNA &lt;213&gt; artificial &lt;220&gt; &lt;223&gt; human ESM-1 antisense &lt;400&gt; 1412 agaacatcta gtacaacagt     20 &lt;212&gt; DNA &lt;213&gt; artificial &lt;220&gt; &lt;223&gt; human ESM-1 antisense &lt;400&gt; 1413 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial &lt;220&gt; &lt;223&gt; human ESM-1 antisense &lt;400&gt; 1413 &lt;211&gt; 20 &lt;221&gt; DNA &lt;213&gt; artificial &lt;220&gt; &lt;223&gt; human ESM-1 antisense &lt;400&gt; 1413 cttcatgtt tcccagctgc</pre>			
<pre>&lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1410 ttgactcact gcggtcttca  &lt;210&gt; 1411 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1411 ctaagattct ttcaaatata  &lt;210&gt; 1412 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1411 ctaagattct ttcaaatata  20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1412 agaacatcta gtacaacagt  20 &lt;211&gt; 20 &lt;222&gt; human ESM-1 antisense  &lt;400&gt; 1413 &lt;221&gt; agaacattca gtacaacagt  20 &lt;221&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;213&gt; human ESM-1 antisense  &lt;400&gt; 1413 czticagattct tcccagctgc  20 &lt;221&gt; DNA &lt;213&gt; human ESM-1 antisense  &lt;400&gt; 1413 cttcatgtt tcccagctgc  20 &lt;221&gt; 1414</pre>			•
<pre>&lt;223&gt; human ESM-1 antisense &lt;400&gt; 1410 ttgactcact geggtcttca  &lt;210&gt; 1411</pre>	<213>	artificial	
<pre>&lt;400&gt; 1410 ttgactcact gcggtcttca  &lt;210&gt; 1411 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1411 ctaagattct ttcaaatata  20 &lt;210&gt; 1412 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;221&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;210&gt; 1412 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1412 agaacatcta gtacaacagt  20 &lt;210&gt; 1413 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;221&gt; Auman ESM-1 antisense  &lt;400&gt; 1413 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial &lt;220&gt; &lt;221&gt; DNA &lt;213&gt; artificial &lt;220&gt; &lt;212&gt; DNA &lt;213&gt; artificial &lt;220&gt; &lt;213&gt; artificial &lt;220&gt; &lt;221&gt; DNA &lt;213+ artificial &lt;220&gt; &lt;221&gt; 1413 tcttcatgtt tcccagctgc &lt;20</pre>	<220>		
<pre>ttgactcact gcggtcttca  &lt;210&gt; 1411 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1411 ctaagattct ttcaaatata  20  &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;221&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;221&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;221&gt; DNA &lt;213 artificial  &lt;220&gt; &lt;221&gt; Auman ESM-1 antisense  &lt;400&gt; 1412 agaacatcta gtacaacagt  20  &lt;210&gt; 1413 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;221&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;210&gt; 1413 cttcatgtt tcccagctgc  20 &lt;&lt;210&gt; 1413 tcttcatgtt tcccagctgc</pre>	<223>	human ESM-1 antisense	
<pre>&lt;210&gt; 1411 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense &lt;400&gt; 1411 ctaagattct ttcaaatata  &lt;210&gt; 1412 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1412 agaacatcta gtacaacagt  &lt;200</pre>	<400>	1410	
<pre>&lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial </pre> <pre>&lt;220&gt; &lt;221&gt; human ESM-1 antisense </pre> <pre>&lt;400&gt; 1411 ctaagattct ttcaaatata</pre>	ttgact	cact gcggtcttca	20
<pre>&lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial </pre> <pre>&lt;220&gt; &lt;221&gt; human ESM-1 antisense </pre> <pre>&lt;400&gt; 1411 ctaagattct ttcaaatata</pre>			
<pre>&lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1411 ctaagattct ttcaaatata</pre>	<210>	1411	
<pre>&lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1411</pre>	<211>	20	
<pre>&lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1411 ctaagattct ttcaaatata</pre>	<212>	DNA	
<pre>&lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1411 ctaagattct ttcaaatata</pre>	<213>	artificial	
<pre>&lt;400&gt; 1411 ctaagattct ttcaaatata 20 &lt;210&gt; 1412 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial &lt;220&gt; &lt;223&gt; human ESM-1 antisense &lt;400&gt; 1412 agaacatcta gtacaacagt 20 &lt;210&gt; 1413 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial &lt;220&gt; &lt;221&gt; description of the property of the pr</pre>	<220>		
ctaagattct ttcaaatata 20  <210> 1412 <211> 20 <212> DNA <213> artificial  <220> <223> human ESM-1 antisense  <400> 1412 agaacatcta gtacaacagt 20  <210> 1413 <211> 20 <212> DNA <213> artificial  <220> <221> La company and the second	<223>	human ESM-1 antisense	
<pre> &lt;210&gt; 1412 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1412 agaacatcta gtacaacagt  20  &lt;210&gt; 1413 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;214</pre>	<400>	1411	
<pre>&lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1412 agaacatcta gtacaacagt  20  &lt;210&gt; 1413 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;213&gt; human ESM-1 antisense  &lt;400&gt; 1413 tcttcatgtt tcccagctgc</pre> <pre>&lt;210&gt; 1413</pre>	ctaaga	ttct ttcaaatata	20
<pre>&lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1412 agaacatcta gtacaacagt  20  &lt;210&gt; 1413 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;213&gt; human ESM-1 antisense  &lt;400&gt; 1413 tcttcatgtt tcccagctgc</pre> <pre>&lt;210&gt; 1413</pre>			
<pre>&lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1412 agaacatcta gtacaacagt 20  &lt;210&gt; 1413 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1413 tcttcatgtt tcccagctgc 20</pre>			
<pre>&lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1412 agaacatcta gtacaacagt 20  &lt;210&gt; 1413 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1413 tcttcatgtt tcccagctgc 20 &lt;&lt;210&gt; 1414</pre>	<211>	20	
<pre>&lt;220&gt; &lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1412 agaacatcta gtacaacagt</pre>			
<pre>&lt;223&gt; human ESM-1 antisense  &lt;400&gt; 1412 agaacatcta gtacaacagt</pre>	<213>	artificial	
<pre>&lt;400&gt; 1412 agaacatcta gtacaacagt  &lt;210&gt; 1413 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; artificial  &lt;220&gt; &lt;223&gt; human ESM-1 antisense &lt;400&gt; 1413 tcttcatgtt tcccagctgc &lt;210&gt; 1414</pre>	<220>		
agaacatcta gtacaacagt 20  <210> 1413 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense  <400> 1413 tcttcatgtt tcccagctgc 20  <210> 1414	<223>	human ESM-1 antisense	
<210> 1413 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 1413 tcttcatgtt tcccagctgc 20 <210> 1414	<400>	1412	
<211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 1413 tcttcatgtt tcccagctgc 20 <210> 1414	agaaca	cta gtacaacagt	20
<211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 1413 tcttcatgtt tcccagctgc 20 <210> 1414			
<211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 1413 tcttcatgtt tcccagctgc 20 <210> 1414	<210>	1413	
<213> artificial  <220> <223> human ESM-1 antisense  <400> 1413 tcttcatgtt tcccagctgc 20  <210> 1414	<211>	20	
<220> <223> human ESM-1 antisense  <400> 1413 tcttcatgtt tcccagctgc 20  <210> 1414	<212>	DNA	
<223> human ESM-1 antisense  <400> 1413 tcttcatgtt tcccagctgc 20  <210> 1414	<213>	artificial	,
<223> human ESM-1 antisense  <400> 1413 tcttcatgtt tcccagctgc 20  <210> 1414	<220>		
tcttcatgtt tcccagctgc 20 <210> 1414		human ESM-1 antisense	
tcttcatgtt tcccagctgc 20 <210> 1414	-400-	1412	
<210> 1414			
	LCLCCAT	Syct teeeagetge	20
	J210s	1414	
~~~~ ~~			
<212> DNA			
<213> artificial			
-220	-000-		
<220> <223> human ESM-1 antisense		human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1414	
cgaggag	gcgt ggtcagcagc	20
-210-	1415	•
<210> <211>		
<212>		
	artificial	
\Z1J/	4101110141	·
<220>		
<223>	human ESM-1 antisense	
	1415	. 20
gcagcg	caca ctcggcagca	20
<210>	1416	
<211>		
<212>	DNÀ	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1416	
	tgcc gtagggacag	20
094499	5500 5005550005	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1417	
ggggaa	tttc aggcattttc	20
<210>	1.41.8	
<211>		
<212>	DNA	
<213>	artificial	
<220>		•
<223>	human ESM-1 antisense	
<400>	1418	
	gete egtgagagaa	20
Lyccat	geee egegagaa	
	1419	
<211>	20	
<212>		•
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	·

WO 2	2004/021978	PCT/US2003/025833
<400>	1419	
ctccate	gtaa gattacctaa	20
<210>	1420	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1420	
tctggt	tgtt ttattttgac	20
<210>	1421	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1421	
	cata cgttaaagct	20
	1400	
<210>		
<211><212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1422	
	atac acacacaaac	20
40000		
<210>		
<211>		
<212>	artificial	
(213/	arcificial	,
<220>		
<223>	human ESM-1 antisense	
<400>		20
acataa	aatat ttaccttcat	
<210>		
<211>		
<212>	DNA artificial	
<213>	ar CITICIAI	
<220>		
	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	1424	
tcactto	caaa taaaatactt	20
<210>	1425	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1425	
	ataa ttcttaaata	20
.010.	1426	
<210>		•
<211> <212>		
	artificial	
4213 >	ar cirrorar	
<220>		
<223>	human ESM-1 antisense	
<400>	1426	
	aagg ccttccacac	20
	1405	
<210>		
<211>		
<212>	artificial	
(213)	attiticiai	
<220>		
<223>	human ESM-1 antisense	
<400>	1427	
	aaaa cctaacagct	20
	-	
<210>	1428	
<211>		
<212>	DNA	
<213>	artificial	
000		
<220> <223>	human ESM-1 antisense	
4223 2	numan ESM-1 and Isense	
<400>	1428	
ttaaaa	caaa acctaacagc	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	

WO 20	04/021978	PCT/US2003/025833
<400>	1429	
tttaaco	att tcctcattac	20
<210>	1430	
<211>		
<212>		
	artificial	
1220		
<220>		
<223>	human ESM-1 antisense	
<400>		
agaacta	att tgactcactg	20
<210>	1431	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	1431	0.0
atttctt	tcc tcaagaggat	20
<210>	1432	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
	1432	20
agtgact	cct ataattatgg	20
<210>	1433	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
400	1420	
<400>	1433	20
LLLYAR	atcc agagtgactc	20
<210>	1434	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	home Boy 1 anti-compo	
<223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	1434	•
ttctttt	aca aacctcctaa	20
<210>	1435	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1435	
agatatt	ttcc taagaacatc	20
<210>	1436	
<211>		
<212>		
	artificial	
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1436	
acatgto	cctt ttaaaacaaa	20
J		
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1437	
	atgt ttcccagctg	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1438	
	aggc acgaggagcg	20
3-2-20		
<210>		
<211>		
<212>		•
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

wo 2	2004/021978	PCT/US2003/025833
<400>	1439	
	caggt gtgcaggcac	20
<210>	1440	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
-400-	1440	
	1440	
acacci	eggca gcagccacag	20
<210> <211>	1441	
<211>		
	artificial .	
1	41 0111 0E42	
<220>		
<223>	human ESM-1 antisense	
<400>	1441	
	cactc ggcagcagcc	20
5.5	Jana Jana Jana Jana Jana Jana Jana Jana	20
<210> <211>		
<211>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1442	
aaggct	gaca cctcagcccc	20
<210>	1443	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1443	
ccgaag	gtgc cgtagggaca	20
	1444	
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
400		
<400>	aatc acagccggga	20
oocaga	auto ucugotgggu	20
<210>		
<211> <212>		
	artificial	
72137	arcricat	
<220>		
<223>	human ESM-1 antisense	•
400		
<400>	1445 atgt aagattacct	20
gueree	acyc aagaccacec	20
<210>	1446	
<211>		
<212>	-	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>		
aaagtc	aaag aactaatttg	20
<210>	1447	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
12-07		
<400>	1447	
cacaat	taaa ttctagagaa	20
<210>	1440	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1448	
	acat cagcagcett	20
J		
<210>		
<211>		
<212>	DNA artificial	
~2137	WI CITIOTAL	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1449	
	cctt catacacaca	20
<210>	1450	
<211>		1
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1450	
tgttct	tttt tattgaacaa	20
<210>	1451	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1451	
	gtgg tcagcagcaa	20
<210>	1452	
<211>		•
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1452	
	agcg tggtcagcag	20
<210>	1453	
<211>		
<212>	DNA	
<213>	artificial .	•
<220>		
<223>	human ESM-1 antisense	
<400>	1453	
	gccc cgggccacac	20
<210>	1454	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2004/021978 <400> 1454 20 gtacttatgc tatatctaga <210> 1455 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 1455 20 tcctataatt atggataata <210> 1456 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 1456 20 gtttaaataa ggtccctctg <210> 1457 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 1457 20 cctcctaaaa acttatttc <210> 1458 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 1458 20 acttctgaga tatttcctaa <210> 1459 <211> 20 <212> DNA <213> artificial

PCT/US2003/025833 .

<220>

WO 20	004/021978	PCT/US2003/025833
<400>	1459	
ccaggtg	tgc aggcacgagg	20
<210>		
<211>		
<212>	DNA artificial	
\Z13 /	alciliciat	
<220>		
<223>	human ESM-1 antisense	
<400>	1460	
	ctt ttgcactcac	20
<210>	1461	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1461	
	ettc accaaaagga	20
<210>	1462	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1462	
	tgtt ggctgtgtgt	20
<210>	1463	
<211>		
<212>		
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	1463	
catgta	ctta tgctatatct	20
_		
<210>	1464	
<211>		
<212>	DNA	
<213>	artificial	
-2205		

WO 2	004/021978	PCT/US2003/02583
<400>	1464	
	etge ggtetteage	20
_		
<210>	1465	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1465	
	aat ccagagtgac	20
<210>	1466	
<211>	20	
<212>		
<213>	artificial	
<220>		,
<223>	human ESM-1 antisense	
<400>	1466	
ataccti	taaa ttgaaaattc	20
<210>		
<211>		,
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1467	
acctcct	aaa aacttattt	20
	•	
	1468	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1468	
ttacaaa	acct cctaaaaact	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		

PCT/US2003/025833

<400>	1469	
tatttc	ctaa gaacatctag	20
	,	
<210>	1470	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1470	
		20
gaaata	attc ttaaataagt	20
<210>	1471	
<211>	20	
<212>		
	artificial	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1471	
	ctaa cagcttatgc	20
010	1450	
<210>	1472	
<211>	20	
<212>		
<213>	artificial	•
<220>		
	human ESM-1 antisense	
~2237	Hallar Box I directorize	
400	1470	
<400>	1472	20
caagac	gctc ttcatgtttc	20
<210>	1473	
<211>		
<212>	DNA ^	
<213>	artificial	
<213>	artificial .	
<220>		
<223>	human ESM-1 antisense	
<400>	1473	
	ccat ccatgcctga	20
9		
0.7.5		
<210>		
<211>		
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
~ ~ ~ ~ ~ ~	11411141 22: 4 VIIVE	

wo 2	2004/021978	PCT/US2003/025833
<400>	1474	
	gcag ttgcaggtct	20
<210>	1475	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
400.	1475	
<400>	1475	20
acyccai	cgct ccgtgagaga	
<210>	1476	
<211>	20	
<212>		
<213>	artificial	
.000.		
<220>	human ESM-1 antisense	
\223 7	Indian Bor-1 diciocabe	
<400>	1476	
taaccat	tttc ctcattacgg	20
	1455	
<210>		
<211><212>		
	artificial	
10107	454224	
<220>		
<223>	human ESM-1 antisense	
	1477	20
atgtac	ttat gctatatcta	20
<210>	1478	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	homes say a subjective	
<223>	human ESM-1 antisense	
<400>	1478	
	gttt gttactcaaa	20
<210>	1479	
<211>	20	
<212>	DNA artificial	
<213>	ar calactar	

<220>

<400>	1479	
ataatad	ctag atttcttcc	. 20
<210>	1480	
<211>	20	
<212>		
	artificial	
~2137	artificial	
.000		
<220>		
<223>	human ESM-1 antisense	
<400>	1480	
gctttac	catt caaaggcctt	20
<210>	1481	
<211>		
<212>		
	artificial	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	·	
<400>	1481	
acaaaci	tgct tttgcactca	20
3-333-		
<210>	1492	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1482	
	atgc catccatgcc	20
cacccc	acgo cacocacgoo	
	1483	
<211>		
<212>		
<213>	artificial .	
<220>		
	human ESM-1 antisense	
12237		
<400>	1483	
		20
geaate	catc ccgaaggtgc	
<210>		
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<4432	ardinar par a direction	

	•	•
<400>	1484	
	gaagg ggaatttcag	20
- 233	,	
<210>	1485	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		20
catgea	ttcg aatatttaac	20
<210>	1486	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
agtgtt	acta tacacacaca	20
-210-	1497	
<210> <211>		
<211>		
	artificial	
12237	42 0424 0242	
<220>		
<223>	human ESM-1 antisense	
<400>		
aagtca	aaga actaatttga	20
010	1400	
<210><211>	1488 20	
	DNA	
<212>	artificial	
\213/	arciricar	
<220>		
	human ESM-1 antisense	
<400>	1488	
ctaaat	attt tatttcccac	20
	•	
<210>		
<211>		
<212>	DNA artificial	
<213>	artificial	
<220>		
	human ESM-1 antisense	

PCT/US2003/025833

WO 2004/021978

WO 2	004/021978	PCT/US2003/025833
<400>	1489	
	ataa aaatatataa	20
010	1400	
<210> <211>		
<211> <212>		
<212>	artificial	
(213)	artificial	
<220>		
<223>	human ESM-1 antisense	
. 4 0 0	1400	
<400>	tggg tagggaagat	20
caaaca	2322 20232200200	
<210>		
<211> <212>		
	artificial	
(2137	(1 (11 1 0 1 d 1	
<220>		
<223>	human ESM-1 antisense	
<400>	1491	
	aaat atgggtaggg	20
gatgat	adat atgggtuggg	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1492	20
gccaac	ttca agaataaaat	20
<210>	1493	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
(223)		
<400>		20
tcatgt	ttcc cagctgcctc	20
<210>	1494	
<211>		•
<212>		
	artificial	
<220>		

<400>	1494 .gtg caggcacgag	20
accaggi	.gcg caggeacgag	
<210>	1495	
	20	
<212>		
	artificial	
<220>		
	human ESM-1 antisense	
1220		
<400>	1495	
	gtgt gcaggcacga	20
J.	3-5- 5 55	
<210>	1496	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1496	
accaaa	ctct tcaccaaaag	20
	-	
<210>	1497	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1497	
ctctgc	aatc catcccgaag	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		20
gtcatg	ctcc gtgagagaaa	20
-210-	1400	
<210>		
<211> <212>		
	DNA artificial	
<213>	qt ctttctat	
<220>		
	human ESM-1 antisense	
	THE PROPERTY OF THE PROPERTY O	

<400>	1499	
	aac catttcctca	20
cggaccc		
<210>	1500	
<211>		
<212>		
	artificial	
<213>	arctitetai	
-220-		
<220>	human ESM-1 antisense	
<223>	numan ESM-1 antisense	
.400.	1500	
<400>	1500	20
cattcga	ata tttaacaaac	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1501	
ttactat	caca cacacttta	20
<210>	1502	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1502	
tgactca	actg cggtcttcag	20
•		
<210>	1503	
<211>	20	
<212>	DNA	
<213>	artificial	
(213)	alciliciai ,	
<220>		
<223>	human ESM-1 antisense	
(223)	Italian BSM-1 ancisense	
<400>	1503	
	aagc caaaaaaaa	20
LLCCCA	augo omuuuaaaa	
-010-	1504	
<210>	1504	
<211>		
	DNA	
<213>	artificial	
-220s		

WO 2004/021978

PCT/US2003/025833

WO 2	004/021978	PCT/US2003/025833
<400>	1504 acta catcagcagc	20
009994	uosa sassags	20
<210>	1505	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1505	
ttataa	aaat atataaatat	20
<210>	1506	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1506	
acttat	tttc ataccttaaa	20
<210>	1507	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1507	
aaaact	catt ttcatacctt	20
<210>	1508	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1508	
	agt tgacatgttt	20
		20
<210>	1509	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1509	
	gaaa taattottaa	20
<210>	1510	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1510	
	cagc tttacattca	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>		22
gtttcc	cage tgeeteegge	20
<210>	1512	
<211>		
<212>		
<213>	artificial	
<220>	human ESM-1 antisense	
<223>	numan ESM-1 ancisense	
<400>	1512	
	caca cttcatgcca	20
	-	
	1513	
<211>		
<212>	DNA artificial	
(213)	arcificial	•
<220>		
<223>	human ESM-1 antisense	
<400>		20
tccgtg	agag aaacaaatct	20
<210>	1514	
<211>		
<212>		•
<213>	artificial	
.005		
<220> <223>	human ESM-1 antisense	
~~~>		

WO 2004/021978	PCT/US2003/025833

<400>	1514	20
gtggat	ttaa ccatttcctc	20
<210>	1515	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1515	
atcaca	attt ggatcttcaa	20
<210>		
<211>		
<212>		
<213>	artificial	
-220-		
<220>	human ESM-1 antisense	
<b>\</b> 2237	Indian Partisense	
<400>	1516	
	tata cacacacatt	20
-3		
<210>	1517	
<211>	20	
<212>	DNA	
<213>	artificial	
	1	
<220>		
<223>	human ESM-1 antisense	
400	1545	
	1517	20
atcaaa	gtca aagaactaat	20
<210>	1518	
<211>		
<212>	•	
	artificial	
	,	
<220>		
<223>	human ESM-1 antisense	
<400>	1518	
gttaaa	gcta tttatggaag	20
<210>	1519	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
	***************************************	

wo	2004/021978	PCT/US2003/025833
<400>	1519	
	cgtta aagctattta	20
		20
<210>	1520	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1520	
ggatg	ataaa tatgggtagg	20
<210>	1521	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
12232	naman BBN-1 ancibense	
<400>		
taatta	tgga taataaattt	20
<210>	1522	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>		
ctaaga	acat ctagtacaac	20
<210>	1523	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1523	
ggagcg,	eggt cagcagcaag	20
<210>		
<211>		
	DNA artificial	
<b>~</b> L13>	architClat	
<220>		
<223>	human ESM-1 antisense	

<400>	1524	
	cag gtgtgcaggc	20
-		
	1525	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
\ZZJ/		
<400>	1525	
	ccac gaaaatagag	20
_		
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
\2237	Italian Don a discussion	
<400>	1526	
	agct acctaccaag	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
\2257		
<400>	1527	
attcaa	aggc cttccacaca	20
<210>	1528	
<211>	20	
<212>	DNA	
<213>	artificial .	
<220>		
	human ESM-1 antisense	
12257		
<400>		
	ttga gggcagtcca	20
<210>		
<211>		
<212>	DNA	
<213>	artificial	
<220>		
~~~0>		

WO 2004/021978

PCT/US2003/025833

<400>	1529	
	ettt tgcactcact	20
gggerge	tigeacteact	
.010.	1530	
<210>		
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	1530	20
gagact	gtgc ggtagcaagt	
<210>		
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
_	1531	20
tgccat	gtca tgctccgtga	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	1532	20
tctcag	aaat cacagccggg	
	4.500	
<210>	1533	
	20	•
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1533	20
acgtta	aagc tatttatgga	
	1504	
<210>		
<211>		
<212>	DNA	
<213>	artificial	
<220>	TOW 1 ambinuous	
<223>	human ESM-1 antisense	

WO 2004/021978

· PCT/US2003/025833

wo	2004/021978	PCT/US2003/025833
<400>	1534	
	acct tcatacacac	20
		24
.010	1505	
<210>		
<211><212>		
	artificial	
12237	ulciliciai	
<220>		
<223>	human ESM-1 antisense	
	1535	
tttata	aaaa tatataaata	20
<210>	1536	
<211>	20	
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1536	
acccac	ttat aaaaatatat	20
<210>	1537	
	20	
<212>	DNA	
<213>	artificial	
<220>	In the second se	
<223>	human ESM-1 antisense	
<400>	1537	
	caaa taatactaga	20
		20
<210>	1538	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
.2237	Indian Borra and Sense	
<400>	1538	
	aac ctaacagctt	20
	1539	
	20	
	DNA artificial .	
·213>	aretretar ,	
:220>		

<400>	1539	20
tgagaga	aac aaatctgttg	
	1540	
	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1540	
accatai	cat gctccgtgag	20
5 5	• • • • • • • • • • • • • • • • • • • •	
<210>	1541	
<211>	20	
<212>		
<213>		
<213>	artificial	
000		
<220>	Total Transfer	
<223>	human ESM-1 antisense	
	1541	20
acagco	ggga tcagcgtgga	
<210>	1542	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1542	
cctaaa	atgt tggctgtgtg	20
-		
<210>	1543	
<211>	20	
<212>		
<213>	artificial	
<213>	altilitat	
000		
<220>	1 was DOM 1 ontigoned	
<223>	human ESM-1 antisense	
<400>		20
aacatt	aatg tacatcaaag	
<210>		
<211>		
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	

<400>	1544	
aataatt	ctt aaataagttc	20
<210>	1545	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1545	20
ctgttgg	gcca acttcaagaa	20
	1546	
<211>		
<212>		
<213>	artificial	
<220>	1 mare a sub-language	
<223>	human ESM-1 antisense	
	1546	
<400>	1546	20
aaaaccı	taac agcttatgca	20
<210>	1547	
<211>		
<211>		
	artificial	
(213)	arcificial	
<220>		
	human ESM-1 antisense	
-2237	as contract to the contract to	
<400>	1547	
	cggc agcagccaca	20
cacacc	0330 43043444	
<210>	1548	
<211>		
<212>	DNA	
	artificial ,	
<220>		
<223>	human ESM-1 antisense	
<400>	1548	
	ccct gtcacagatg	20
_		
<210>	1549	
<211>		
<212>		
<213>	artificial	
<220>		

PCT/US2003/025833

WO 2004/021978

<400> 1549 20 tcacagccgg gatcagcgtg <210> 1550 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 1550 20 acaaacacat acaagtgttc <210> 1551 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 1551 20 attcgaatat ttaacaaaca <210> 1552 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 1552 20 aaatatttta tttcccactc <210> 1553 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 1553 20 cgttaaagct atttatggaa <210> 1554 <211> 20 <212> DNA <213> artificial <220>

WO 2004/021978

PCT/US2003/025833

wo	2004/021978	PCT/US2003/025833
_	1554 octa acagettatg	20
<211> <212>		
<220> <223>	human ESM-1 antisense	
	1555 gago gtggtcagca	. 20
<211> <212>		
<220> <223>	human ESM-1 antisense	
<400> ccaccaç	1556 ggtg tgcaggcacg	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> cattag	1557 aagg ctgacacctc	20
<210><211><211><212><213>	1558 20 DNA artificial .	
<220> <223>	human ESM-1 antisense	c
<400> atcccg	1558 aagg tgccgtaggg	20
<210><211><211><212><213>		

<220>

WO 2	2004/021978	PCT/US2003/025833
<400>	1559	20
cttcctt	cag gggttttctg	20
<210>	1560	
<211>	20	
<212>		
<213>	artificial	
<220>	human DGM 1 antigonge	
	human ESM-1 antisense	
<400>		20
ttactto	cett caggggtttt	20
<210>	1561	
<211>		
<212>	DNA ·	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		20
tatgtg	tttc ctatgcccca	20
<210>		
<211>		
<212>	DNA artificial	
<213>	altilitat	
<220>		
<223>	human ESM-1 antisense	
<400>	1562	20
tattta	taaa aatatataaa	
<210>	1563	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1563	20
caaata	aatac tagatttctt	20
.010	1564	
<210> <211>	1564 20	
<211>		
	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1564	
	tcc tataattatg	20
3.3.3	•	
<210>	1565	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1565	
ataaaat	aca ggtaaatact	20
<210>	1566	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1566	20
cgtcccc	ctg tcacagatgc	20
<210>	1567	
<211>	20	
<212>		
<213>	artificial	
<220>	home Tar 1 and income	
<223>	human ESM-1 antisense	
<400>	1567	
agctaco	ctac caaggaaggg	20
<210>	1568	
<211>		
<212>	DNA	
<213>	artificial .	
<220>	have TON 1 and income	
<223>	human ESM-1 antisense	
<400>		
aattcta	agag aagctaccta	20
<210>	1569	
<211>		
<212>		
	artificial	
-220-		

wo	2004/021978	PCT/US2003/025833
<400>	1569	
cccacg	ggaag tgtatgtgtt	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
		•
	1570	
aatatt	tacc ttcatacaca	20
<210>	1571	
<211>		
<212>		
<213>	artificial	
-000		
<220>	human ESM-1 antisense	
(2237	numan BBM-1 ancibense	
<400>	1571	
tataaa	aata tataaatatt	20
.010	1580	
<210> <211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1572	
	aatc cagagtgact	20
J.		20
<210>	1573	
<211><212>		
<213>	DNA artificial	
(213)	arcificial	
<220>		
<223>	human ESM-1 antisense	
400		
<400>	1573	
Laalic	cacc tatattttaa	20
<210>	1574	
	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1574	
	gcgg tagcaagttt	20
54445	,-555	
<210>	1575	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1575	
	gtg cggtagcaag	20
	1576	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1576	
ctgacto	gca gttgcaggtc	20
<210>	1577 .	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1577	
ccagato	cca tgtcatgctc	20
<210>	1578	
<211>	20	•
<212>	DNA	
<213>	artificial .	
<220>		
<223>	human ESM-1 antisense	
<400>		
gaaatca	cag ccgggatcag	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		

WO 2	004/021978	PCT/US2003/025833
	1-00	
	1579	20
etgtgt	gttg aacaatcacg	20
<210>	1580	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1580	
	ctaa atattttatt	20
<210>	1581	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1581	
tacttc	cttc aggggttttc	20
<210>	1582	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1582	
tggaagi	gta tgtgtttcct	20
<210>	1583	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1583	
atttate	ggaa gtgtatgtgt	20
<210>	1584	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	1584	
	taaa gctatttatg	20
<210>	1585	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1585	
aacctc	ctaa aaacttattt	20
<210>		
<211>		
<212>		•
<213>	artificial	
000		
<220>	homes DOM 1 and days	
<223>	human ESM-1 antisense	
<400>	1506	
	agat atttcctaag	20
ccccg	agac accoccaag	20
<210>	1587	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
-400-	1507	
<400>	1587	20
CCCaaca	agct tatgcagctt	20
<210>	1588	
<211>	20	
<212>	DNA	
<213>	artificial	,
		·
<220>		
<223>	human ESM-1 antisense	
<400>	1588	
acctaac	cage ttatgeaget	20
<210>	1589	
<211>	20	
<212>	DNA	
<213>	artificial	
-		
<220>		
<223>	human ESM-1 antisense	

wo	2004/021978	PCT/US2003/025833
<400> tgtactt	1589 atg ctatatctag	20
<210><211><212><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> attaato	1590 gtac atcaaagtca	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
	1591 ccta ccaaggaagg	20
<210><211><212><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> gtatgt	1592 gttt cctatgcccc	20
<210><211><212><212><213>	1593 20 DNA artificial	
<220> <223>	human ESM-1 antisense	
<400> aaatat	1593 ttac cttcatacac	20
<210><211><211><212><213>	20 DNA	

<220>

WO 2004/021978 PCT/US2003/025833

<400>	1594 gact cctataatta	20
, ,		
<210>	1595	
<211>	•	
<212>		
	artificial	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1595	
	taa ttccacctat	20
	1596	
	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
4223 3	numan ESM-1 dictsense	
	1596	~ ~
atatact	cct aattccacct	20
<210>	1597	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1597	
	aaat acttctgaga	20
JaaaJa		
	4500	
	1598	
<211>	20	
<212>	DNA .	
<213>	artificial	
	·	
<220>		
	human ESM-1 antisense	
(223)	numan BbM-1 antibease	
400	1500	
<400>		~ ~
aaatac	tgaa ataattetta	20
<210>	1599	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

wo	2004/021978	PCT/US2003/025833
<400> tgttgg	1599 ccaa cttcaagaat	20
<210><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> ttatgc	1600 agct ttacattcaa	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> gcacga	1601 ggag cgtggtcagc	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> tgcttt	1602 tgca ctcactgctg	20
<210><211><211><212><213>	20	

<210> 1604 <211> 20 <212> DNA . <213> artificial <220> <223> human ESM-1 antisense

<223> human ESM-1 antisense

tttcctcaag aggatgataa

<220>

<400> 1603

20

WO 2	004/021978	PCT/US2003/025833
<400>	1604	
tttctt	teet caagaggatg	20
<210>	1605	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	1605	
taatac	taga tttctttcct	20
<210>	1606	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1606	
taaagt	tgac atgttttctg	20
	1607 ·	
<211>		
<212>	artificial	
	arctrictar	
<220>	human ESM-1 antisense	
<223>	numan ESM-I antisense	
<400>		
cgtgag	agaa acaaatctgt	20
<210>	1608	
<211>		
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	1608	
	tcta catgcattcg	20
<210>	1609	
<211>	20	
<212> <213>	DNA artificial	
~6137	arctrotar	
<220>	The state of the s	
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1609	•
	agg aagggctaaa	20
<210>	1610	
<211>	20	
	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1610	
gctacci	cacc aaggaagggć	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1611	
taaatt	ctag agaagctacc	20
<210>	1612	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1612	
	ttca ggggttttct	20
400000	5554	
<210>	1613	
<211>		
<212>		
	artificial	
<220>		
	human ESM-1 antisense	
.400.	1612	
<400>		20
tettae	ttcc ttcaggggtt	20
<210>	1614	
<210>		
<211>		-
	artificial	
<220>	houses FOM 1 ambigongo	
<223>	human ESM-1 antisense	

WO 2004/021978	PCT/US2003/025833
<400> 1614 tccataagct tcaaacatc	20

<210> 1615 <211> 20 <212> DNA <213> artificial

<400> 1615
ttccataagc ttcaaacatc 20

<210> 1616
<211> 20
<212> DNA
<213> artificial
<220>
<223> human ESM-1 antisense

<400> 1616
ttaaagctat ttatggaagt 20

<210> 1617
<211> 20
<212> DNA
<213> artificial

<220>
<223> human ESM-1 antisense

<400> 1617
taggettaggg ctatttatgg

tacgttaaag ctatttatgg 20
<210> 1618

<210> 1618
<211> 20
<212> DNA
<213> artificial
<220>
<223> human ESM-1 antisense

<400> 1618 tataaatatt taccttcata 20

<210> 1619 <211> 20 <212> DNA <213> artificial

<223> human ESM-1 antisense

WO 2	004/021978	PC1/US2003/025833
<400> ctgaa	1619 ataat tottaaataa	20
		20
<210>	1620	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1620	
	gcag ctttacattc	
		20
-010	1.00	
<210>		
<211> <212>		
	artificial	
	4202220141	
<220>		
<223>	human ESM-1 antisense	
-100-	1.601	
<400>	1621 gaaa caaatctgtt	
gegaga	gada cadatetget	20
<210>		
<211>		
<212>	artificial	
\Z13 >	arcificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1622	
Lgttgaa	caa tcacgaaaat	20
<210>	1623	
<211>	20	
<212>		
(213>	artificial	
:220>		
	human ESM-1 antisense	
	1623	
gggaac	tac atcagcagcc	20
		20
210>	1624	
211>		
212>		
213>	artificial	
20.0		
220>	numan ESM-1 antisense	
4633	HANGE PERMIT ROADS	

WO 2	004/021978	PCT/US2003/025833
<400>	1624	
	tat ataaatattt	20
acaaaaa	to a condition of the c	
<210>	1625	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1625	
taaaaac	tta ttttcatacc	20
<210>	1626	
<211>		
<212>		
	artificial	
<213>	artiriciai	
<220>		
<223>	human ESM-1 antisense	
<400>	1626	
tatqcac	gctt tacattcaaa	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1627	•
ggccaco	cagg tgtgcaggca	20
<210>		
~		
<212>		
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>		22
tgcagc	gegg getgettttg	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		

wo	2004/021978	PCT/US2003/02583
<400>	1629	
	ctt caccaaaagg	20
<210>	1630	
<211>		
<212>		
	artificial	
<220>		·
	human ESM-1 antisense	
<400>	1630	
	atgc tccgtgagag	20
<210>	1631	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1631	
	aatt acatgtactt	20
<210>	1632	
<211>		
<212>		
	artificial	
<220>		
	human ESM-1 antisense	
.400.	1632	
<400>	acac acacatttaa	20
tactat	acac ucacaccaa	
<210>	1633	
<211>		
<212>		
	artificial	
<220>		
	human ESM-1 antisense	
<400>		20
aacata	ctcc taattccacc	20
.010:	1624	
<210>		
<211>		`.
<212>	nna artificial	
<413>	01 C11 1 C 1 C 1	
4220-		

PCT/US2003/025833

WO 2	004/021978	PCT/US2003/025833
<400>	1634	
	agaa ggctgacacc	20
-210-	1625	
<210> <211>		
<211>		
	artificial	
12237	410141	
<220>		
<223>	human ESM-1 antisense	
<400>		20
gregaa	caat cacgaaaata	20
<210>	1636	
<211>	20	
<212>		
<213>	artificial	
<220>	human ESM-1 antisense	
<223>	numan ESM-I ancisense	
<400>	1636	
	tgta catcaaagtc	20
	1600	
<210>		
<211> <212>		
	artificial	
~2137	ar criticial	
<220>		
<223>	human ESM-1 antisense	
	1637	
aaaagc	acaa ttaaattcta	20
<210>	1638	•
<211>		
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	1638	
	ttcc tatgccccag	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	

wo	2004/021978	PCT/US2003/025833
<400> gaagtgt	1639 atg tgtttcctat	20
<210>	1640	
<211>	·	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
tactcct	aat tccacctata	20
<210>		
<211>		
<212>	artificial	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1641	
tatacto	cta attccaccta	20
<210>		
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1642	
aaggcc	tcc acacacttc	20
<210>	1643	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1643	
	aggt gccgtaggga	20
222594	-09- 33-mgggm	
<210>	1644	
<211>		
<212>		
<213>	artificial	

<220>

wo a	2004/021978	PCT/US2003/0258	33
<400> gactgg	1644 cagt tgcaggtctc	2	0
<210><211><212><213>	20		
<220> <223>	human ESM-1 antisense		
<400> tttgaa	1645 aacc ttatagagtc	2	0
<210> <211> <212> <213>	20		
<220> <223>	human ESM-1 antisense		
<400> tcttgt	1646 tott ttttattgaa	2	0
<210> <211> <212> <213>	20		
<220> <223>	human ESM-1 antisense	·	
<400> ggacag	1647 cett tgeagatace	2	0
<210><211><212><213>	20		
<220> <223>	human ESM-1 antisense		
<400> ggaagte	1648 gtat gtgtttccta	2	0
<210> <211> <212> <213>	20		
<220> <223>	human ESM-1 antisense		

WO 2004/021978 PCT/US2003/025833

<400> ctttcct	1649 tcaa gaggatgata	20
<211> <212>		
<220> <223>	human ESM-1 antisense	
	1650 atgg ataataaatt	20
<211> <212>		
<220> <223>	human ESM-1 antisense	
<400> agagtg	1651 actc ctataattat	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
	1652 ccac acttcatgcc	20
<212>	1653 20 DNA artificial	
<220> <223>	human ESM-1 antisense	
<400> attctc	1653 tttc acaacttctt	20
	20	
<220> <223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1654	
	atta catgtactta	20
		20
	1655	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1655	
aaaaag	caca attaaattct	20
<210>	1656	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
400	1484	
<400>		
ccgagg	egge atacgttaaa	20
	•	
<210>	1657	
<211>	20	
<212>		
<213>	artificial	
4220s		
<220>	human ESM-1 antisense	
~2237	numan bbm-1 antisense	
<400>	1657	•
taaatat	tta ccttcataca	20
<210>	1658	
<211> <212>	20 DNA	
<212>	artificial	
~213/	altilitial	•
<220>		
<223>	human ESM-1 antisense	
<400>	1658	
tatttta	aag ttgacatgtt	20
<210>	1659	
<211>	20	
<212>	DNA	
	artificial	
_		
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PC1/US2003/02583
<400>	1659 aatt ccacctatat	20
<210>	1660	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1660	
tgtgct	aaga ttctttcaaa	20
<210>		
<211>		
<212>	artificial	
\Z13 >	arcificiai	
<220>		
<223>	human ESM-1 antisense	
<400>	1661	
aaatac	ttct gagatatttc	20
<210>		
<211>		
<212>	artificial	
\Z13>	arctrictar	
<220>		
<223>	human ESM-1 antisense	
<400>	1662	
tcaaat	aaaa tacttctgag	20
	1663	
<211> <212>	20	
	artificial	
12207	4101110141	
<220>	•	
<223>	human ESM-1 antisense	
<400>	1663	
cttcaaa	taa aatacttctg	20
-21 N-	1664	
<210> <211>	1664 20	
	DNA	
	artificial	
<220>		
	human PCM-1 anticonco	

WO 20	004/021978	PCT/US2003/025833
<400>	1664	20
atgeage	ettt acattcaaag	20
<210>		
<211>		
<212>	artificial	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1665	
ctgcttt	tgc actcactgct	20
<210>		
<211>		
<212>	artificial	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
cctcttc	gcag cgcgggctgc	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1667	
agaaggo	etga caceteagee	20
	1660	
<210>		
<211>	20 DNA	
<212> <213>	artificial	
<213 <i>></i>	arcificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	1668	
	ggc agttgcaggt	20
J = 5		
<210>	1669	
	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	

wo	2004/021978	PCT/US2003/025833
<400>	1669	
	ggat cagcgtggat	20
<210>	1670	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1670	
	atgt acatcaaagt	20
	1671	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1671	20
ctacct	acca aggaagggct	20
<210>	1672	
<211>		
<212>	DNA	
<213>	artificial	
<220>	human ESM-1 antisense	
<223>	numan ESM-1 antisense	
<400>	1672	•
	aaat tctagagaag	20
-210 -	1673	
<210>	20	
<211><212>	DNA	
<213>	artificial	
		•
<220>		
<223>	human ESM-1 antisense	
<400>	1673	
	taca tcagcagcct	20
222440		
<210>	1674	
<211>		
<212>	DNA artificial	
<213>	arctro-ar	
<220>		

WO 2	004/021978	PCT/US2003/025833
<400>	1674	
atggaag	gtgt atgtgtttcc	20
<210>	1675	
<211>	.20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1675	
gaataa	aata caggtaaata	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1676	
tgtgcag	ggca cgaggagcgt	20
<210>	1677	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1677	
acacaca	acat ttaacaaatc	20
	1678	
<211>	— ·	
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	1678	
tgctaag	gatt ctttcaaata	20
.01.0	1670	
	1679	
<211>		
<212> <213>	artificial	
	4101110144	
<220>		

WO 2	004/021978	PCT/US2003/025833
<400>	1679 cat tcaaaggcct	20
<210>	1680	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1680	
ctaacag	gett atgeagettt	20
<210>	1601	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1681	
	cag cttatgcagc	20
		,
<210>		
<211> <212>		
	artificial	
12.00		
<220>		
<223>	human ESM-1 antisense	
<400>	1682	
	gct cttcatgttt	20
55		
<210>	1683	
<211><212>		
	artificial	
12237	arcitional	
<220>		
<223>	human ESM-1 antisense	
.400	1.00	
<400>	1683 tca caacttcttc	20
	tea caacticite	20
<210>		
<211>		
<212>	artificial	
~~~>	arciriotar	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1684	
	cag cgtggattta	20
		•
<210>	1685	
<211>		
<212>		
	artificial	
<220>		
	human ESM-1 antisense	
<400>	1685	
	aaat tacatgtact	20
<210>	1686	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1686	
	tgga tcttcaaaaa	20
<210>	1687	
<211>		
<212>		
<213>	artificial	
.<220>		
	human ESM-1 antisense	
<400>	1687	
	ccgt gagagaaaca	20
Cacjee		
<210>	1688	
<211>		
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
-400>	1688	
<400>	actt atgctatatc	20
acacge	2000 20000000	
<210>	1600	
<210> <211>	1689 20	
<211>		
<213>		
~22A>		

WO 2	004/021978	PCT/US2003/025833
<400>	1689	
acatgo	attc gaatatttaa	20
.010.	1.00	
<210> <211>		
<211>		
	artificial	
1000		
<220>		
<223>	human ESM-1 antisense	
400	1.00	
<400>	1690 catt taacaaatct	
Cacaca	Catt taadaaatdt	. 20
<210>	1691	
<211>		
<212>		
<213>	artificial	
-220-		
<220>	human ESM-1 antisense	
12207	Haman DDM-1 and Belief	
<400>	1691	
ttcttt	cctc aagaggatga	20
-010-	1600	
<210> <211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1602	
	attt ctttcctcaa	20
caccag		20
<210>	1693	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1693	
aaaaac	ttat tttcatacct	20
<210>	1694	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2004/021978 PCT/US2003/025833

<400>	1694	20
gtgctaa	gat tctttcaaat	20
	1695	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1695	
	tct taaataagtt	20
<210>	1696	
<211>		
<212>		
	artificial	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1696	
gtgttga	aca atcacgaaaa	20
<210>	1697	
<211>	20	
<212>	DNA	
	artificial	
<220>		
	human ESM-1 antisense	
~2237		
<400>	1697	
		20
Caattt	ggat cttcaaaaat	20
	1698	
<211>	20	
	DNA	
<213>	artificial .	
<220>		
<223>	human ESM-1 antisense	
<400>	1698	
gtcaaa	gaac taatttgact	20
	-	
<210>	1699	
<211>		
<211>		
<213>	GICTLICIGI	
.000		
<220>	have DGM 1 ontigense	
<223>	human ESM-1 antisense	

wo:	2004/021978	PCT/US2003/02583
<400>	1699	
catcaa	agtc aaagaactaa	20
	1.00	
<210>		
<211> <212>		
	artificial	
(213)	altiticiai	
<220>		
<223>	human ESM-1 antisense	
<400>	1700	
tcccaa	agcc aaaaaaaaaa	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1701	
tctgag	gtgg catacgttaa	20
<210>	1702	
<211>		
<212>		
	artificial	
<220>	North Total Company	
.<223>	human ESM-1 antisense	
<400>	1702	
aataaa	atac aggtaaatac	20
<210>	1703	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1702	
	ttta cattcaaagg	20
Joage		
.010	1704	
<210>		
<211> <212>		
	artificial	
-2205		

PCT/US2003/025833

WO 2	004/021978	PCT/US2003/025833
<400>	1704	20
aagtgta	tgt gtttcctatg	
<210>	1705	
<211>	20	
<212>		
<213>	artificial	
<220>	Town a subjective	
<223>	human ESM-1 antisense	
	1705	2.2
aaacct	ccta aaaacttatt	20
.01.0-	1706	
<210> <211>		
<211>		
	artificial	
\21J/	410111011	
<220>		
<223>	human ESM-1 antisense	
<400>	1706	
ttcaaa	taaa atacttctga	20
<210>	1707	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1707	20
ccatgt	catg ctccgtgaga	20
<210>	1708	
<211>	20	
<212>		
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	1708	
aagcad	aatt aaattctaga	20
<210>	1709	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	1709	
	ttc cttcaggggt	20
<210>	1710	
<211>		
<212>	DNA artificial	
~213/	420220242	
<220>		
<223>	human ESM-1 antisense	
	1710	
taaagct	att tatggaagtg	20
<210>	1711	
<211>		
<212>	DNA artificial	
<213>	altilitial	
<220>		
<223>	human ESM-1 antisense	
<400>	1711	
ttttcaa	acaa ataatactag	20
<210>	1712	
<211>		
<212>	DNA artificial	
<b>\Z13</b> 2	altilitat	
<220>		
<223>	human ESM-1 antisense	
<400>	1712	22
ttcaaa	ggcc ttccacacac	20
<210>		
<211>		
<212> <213>	DNA artificial	
<213>	altilitai	
<220>		
<223>	human ESM-1 antisense	
<400>	1713	
catgtc	cttt taaaacaaaa	20
<210>	1714	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1714	
	acgag gagcgtggtc	20
		20
010		
	1715	
<211> <212>		
	artificial	
	4262126141	
<220>		
<223>	human ESM-1 antisense	
<400>		
agacto	stgcg gtagcaagtt	20
<210>	1716	
<211>	20	
<212>		
<213>	artificial	
<220>	human ESM-1 antisense	
<223>	numan ESM-1 antisense	
<400>	1716	
	aatc acgaaaatag	20
		20
<210>		
<211><212>		
	artificial	
12237	4101110141	
<220>		
<223>	human ESM-1 antisense	
<400>		
acctac	caag gaagggctaa	20
<210>	1718	
<211>	20	
<212>	DNA	
<213>	artificial	
.000		
<220> <223>	human ESM-1 antisense	
<b>\223</b> >	numan ESM-1 antisense	
<400>	1718	
	taga gaagctacct	20
		20
	1719	
<211> <212>	20 DNA	
<212>	artificial	
~~~/	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
<220>		
<223>	human ESM-1 antisense	

WO 2	2004/021978	PCT/US2003/025833
<400>	1719	
	cate ttacttcctt	20
ccaaa		
<210>	1720	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1720	
ccataaç	gctt caaacatctt	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1721	
aaatata	ataa atatttacct	20
<210>		
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1722	
aacaaat	taat actagatttc	20
<210>	1723	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	1723	
aattcc	acct atattttaaa	20
<210>	1724	
<211>	20	
<212>	DNA	•
<213>	artificial	
-220s		

WO 2 0	04/021978	PCT/US2003/025833
<400>	1724	20
agaataa	aaat acaggtaaat	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1725	
	caca tacaagtgtt	20
<210>	1726	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>		••
gctaaat	catt ttatttccca	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	1727	00
ggaagg	gcta aatattttat	20
<210>		
<211>		
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	1728	
gaagcta	acct accaaggaag	20
<210>	1729	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	.	PCT/US2003/025833
<400> aatatat	1729 aaa tatttacctt		20
<210>	1730		
<211>			
<212>			
	artificial		
<220>			
	human ESM-1 antisense		
<400>	1730		
	aaga ggatgataaa		20
-010-	1 7 2 1		
<210> <211>			
<212>			
	artificial		
<220>	human ESM-1 antisense		
<223>	numan ESM-1 ancisense		
<400>	1731		
atacta	gatt tettteetea		20
<210>	1732		
<211>			
<212>			
<213>	artificial		
000.			
<220> <223>	human ESM-1 antisense		
\2237			
<400>	1732		20
aggcac	gagg agcgtggtca		20
<210>	1733		
<211>			
<212>			
<213>	artificial		
<220>			
	human ESM-1 antisense		
<400>			20
cgcaca	ctcg gcagcagcca		20
<210>			
<211>		•	
<212>	DNA artificial		
<213>	arciliciar		
<220>			
<223>	human ESM-1 antisense		

WO 2	2004/021978	40	PCT/US2003/02583
<400>	1734		20
cagcgca	cac toggcagcag		
<210>			
<211>			
<212>	DNA		
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	1735		
	gtt actatacaca		20
<210>	1736		
<211>	20		
<212>	DNA		
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		•
<400>			20
ttaatg	taca tcaaagtcaa		20
<210>	1737		
<211>			
<212>			
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	1737		20
taccta	ccaa ggaagggcta		20
<210>	1738		
<211>			·
<212>	DNA		
<213>	artificial		•
<220>			
<223>	human ESM-1 antisense		
	1 72 0		
<400>			20
aagctt	caaa catcttactt		
<210>	1739		•
<211>			
<212>			
<213>	artificial		
<220>			
<223>			

- PCT/US2003/025833

WO 2	2004/021978	PCT/US2003/025833
<400>	1739	
	ggca tacgttaaag	20
050550	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
<210>	1740	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	1740	2.
acaaat	aata ctagatttct	20
<210>	1741	
<211>		
<212>		
	artificial	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
_	1741	
ttctga	gata tttcctaaga	20
	•	
<210>	1742	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1742	
agcgcg	ggct gcttttgcac	. 20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		0.0
gcagcg	eggg ctgcttttgc	20
.010-	1744	
<210>		
<211>		
<212>	DNA	
<213>	artificial	
-2205		

WO 2	004/021978	PCT/US2003/025833
<400>	1744 gatg cctgactggc	20
300000	5405 0005400550	20
<210>	1745	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1745	
atgctc	cgtg agagaaacaa	20
<210>	1746	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1746	
tcatgo	tccg tgagagaaac	20
<210>	1747	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1747	
tgtaag	atta cctaaattgc	20
<210>	1748	
<211>		
<212>	DNA	
<213>	artificial	
	·	
<220>		
<223>	human ESM-1 antisense	
<400>	1748	
	gatt acctaaattg	20
	-	
<210>	1749	
<211>	20	
<212>	DNA	
<213>	artificial	
.000		
<220>	human ESM-1 antisense	
<223>	namen Poli-r encreense	

WO 2	004/021978	PCT/US2003/025833
<400>	1749	•
cattta	ttta taaaaatata	20
<210>	1750	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
12237	Tamar Dir I are I beribe	
<400>	1750	
gaggat	gata aatatgggta	20
<210>	1751	
<211>		
<212>		
<213>	artificial	
<220> <223>	human ESM-1 antisense	
4223	numan ESM-1 andigense	
<400>	1751	
aatact	agat ttctttcctc	20
<210>	1750	
<211>		
<212>		
<213>	artificial	
<220>	human ESM-1 antisense	
<443>	numan ESM-1 antisense	
<400>	1752	
aaataa	aata cttctgagat	20
<210>	1753	•
<211>	20	
<212>	DNA	
<213>	artificial	
<220> <223>	human EGM 1 antigange	
<223>	human ESM-1 antisense	
<400>	1753	
tgctgg	tggg aagcagccgt	20
<210>	1754	
<210>		
<212>		
	artificial	
<220>	human PCM-1 anticonce	

wo	2004/021978	PCT/US2003/025833
<400>	1754	
	cgg cagcagccac	20
		·
<210>		
<211>		
<212>	artificial	
<213>	altilitiai	
<220>		
	human ESM-1 antisense	
	1755	20
cacact	cat gccatccatg	20
•		
<210>	1756	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1756	
	gaga aacaaatctg	20
	J. J	
<210>		
<211>		
<212>	artificial	
<213 >	altilitial	
<220>		
<223>	human ESM-1 antisense	
<400>	1757	20
gcacaa	ttaa attctagaga	20
<210>	1758	
<211>	•	
<212>	DNA	
<213>	artificial .	
<220> <223>	human ESM-1 antisense	
<223>	numan ESM-1 ancisense	
<400>	1758	
	caat taaattctag	20
-		
<210>	1759	
<211><212>	20	
	DNA artificial	
	ME 4755-245	

<220>

wo a	2004/021978	PCT/US2003/025833
<400>	1759	
	gga agtgtatgtg	20
<210>	1760	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1760	20
actagat	ttc tttcctcaag	20
<210>	1761	
<211>		
<212>		
	artificial	
	4101110141	
<220>		
<223>	human ESM-1 antisense	
<400>	1761	
aagatto	ettt caaatatact	20
_		
	1762	
<211>		
<212>		
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	1762	
caattaa	aatt ctagagaagc	20
<210>	1763	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1763	
	tac attcaaaggc	20
5 5.2		
<210>	1764	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

<400>	1764	<u>.</u> .
	aca gcttatgcag	20
	1765	
<211>	20	
	DNA artificial	
<213>	artiliciai	
<220>		
	human ESM-1 antisense	
<400>	1765	20
tgctcc	gtga gagaaacaaa	
<210>	1766	
<211>		
<212>	DNA	
<213>	artificial	
<220>	human ESM-1 antisense	
<223>	numan ESM-1 andisense	
<400>	1766	
	agaa ctaatttgac	20
_		
<210>		
<211>		
<212><213>		
<213>	alciliciai	
<220>	,	
	human ESM-1 antisense	
<400>	1767	20
tcaaac	atct tacttccttc	
<210>	1768	
<211>	20	
<212>	DNA	
<213>	artificial	
.000		
<220>	human ESM-1 antisense	
<223>	numan aprila careaponde	
<400>	1768	_
	gaagt gtatgtgttt	20
J.		
	1769	
<211>		
<212>	DNA artificial	
<213>	qretrorer	
<220>	•	
<223>	human ESM-1 antisense	

WO 2004/021978

WO 2	004/021978	PCT/US2003/025833
<400>	1769	
aaagcta	attt atggaagtgt	20
<210>	1770	
	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
	1770	
gagcgt	ggtc agcagcaaga	20
<210>	1771	
<211>		
<212>	DNA	
<213>	artificial	
<220>	human EGM 1 antiganas	
<223>	human ESM-1 antisense	
<400>	1771	
gcaggca	acga ggagcgtggt	20
<210>	1870	
<211>		
<212>		
<213>	artificial	
<220>	Name of the state	
<223>	human ESM-1 antisense	
<400>	1772	
	atca cgaaaataga	20
<210>	1773	
<211><212>	20 DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
.400	1882	
<400>	1773 :ttg gatcttcaaa	20
ccacaat	ecg gacoccaaa	20
	1774	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/02583
<400> tacaca	1774 Caca tttaacaaat	20
<210>	1775	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1775	
	tata taaatattta	20
		20
010	1886	
<210><211>		1
<212>		
	artificial	
<220>	human EGM 1 anti-cause	
<223>	human ESM-1 antisense	
<400>	1776	
gcctga	ctgg cagttgcagg	20
<210>	1777	
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
	1777	••
agceggg	gatc agcgtggatt	20
<210>		
<211>	20	
<212> <213>	artificial	
~2137	, arctificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1778	
	tac atgtacttat	20
<210>	1770	
<210>	1779 20	
<212>		
<213>	artificial	
00-		
<220> <223>	human ECM 1 antigones	
\ 443>	human ESM-1 antisense	

WO 2	004/021978	- PCT/US2003/025833
<400>	1779	
	ctca agaggatgat	20
	• • • •	_,
<210>		
<211>		
<212>	artificial	
(213)	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
ctagat	ttct ttcctcaaga	20
<210>	1781	
<211>		
<212>		
<213>	artific <u>ial</u>	
<220>		
<223>	human ESM-1 antisense	
<400>	1701	
	taaa gttgacatgt	20
40400	-uuu googuouege	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1782	
tctttc	acaa cttcttctct	20
<210>	1783	
<211>	20	•
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1783	
	caca cacatttaac	20
. == ==		20
<210>		
<211>		
<212>		•
<213>	artificial	,
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1784	
tctgag	atat ttcctaagaa	20
<210>	1785	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1785	
tgtgtg	ttga acaatcacga	20
<210>	1786	
<211>		
<212>	DNA	
<213>	artificial	
.000		
<220>	human ESM-1 antisense	
<2237	numan ESM-1 antisense	
<400>	1786	
agcaca	atta aattctagag	20
<210>	1787	
<211>	20	
<212>	DNA	
<213>	artificial	
-2205		
<220>	human ESM-1 antisense	
~2232	itaman BBM-1 and isense	
<400>	1787	
aaaaat	atat aaatatttac	20
		·
<210>	1788	
<211>	20	
<212>	DNA	
<213>	artificial	
<220> <223>	human ECM 1 and accuse	
~~~>	human ESM-1 antisense	
<400>	1788	
caacaa	ataa tactagattt	20
<210>	1789	
<211>	20	
	DNA	
<213>	artificial	
-22A-		
<220>	human ECM 1 ambiguage	

WO 2	004/021978	PCT/US2003/025833
<400>	1789	
tcaaca	aata atactagatt	20
<210>	1790	
<211>		
<212>	DNA artificial	
\Z_Z_J/	arcifficial	
<220>		
<223>	human ESM-1 antisense	
<400>	1790	
ttcaac	aaat aatactagat	20
<210>	1791	
<211>		
<212>	DNA artificial	
<b>\Z13</b> >	arciliciai	
<220>		
<223>	human ESM-1 antisense	
<400>	1791	
attcca	ccta tattttaaag	20
<210>	1792	
<211>		
<212>	DNA artificial	
12207	4101141	
<220>	homes DOM 1 anti-same	
<223>	human ESM-1 antisense	
	1792	
gaaggc	tgac acctcagccc	20
<210>	1793	
<211>	20 DNA	
<212> <213>	artificial	
<220> <223>	human ESM-1 antisense	
<223>	numan bsm-1 ancisense	
<400>	1793	
tcagcg	tgga tttaaccatt	20
<210>		
<211><212>	20	
<212>	DNA artificial	
<220> <223>	human ESM-1 antisense	
<b>&lt;443&gt;</b>	HAMMON BOLL-T OTICEDENSE	

<400>	1794	
	tgg atttaaccat	20
<210>	1795	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1795	20
tcctcaa	agag gatgataaat	
<210>	1706	
<211>		
<212>		
	artificial	
<b>\21</b> J/	41022202	
<220>		
	human ESM-1 antisense	
<400>	1796	
gccggg	atca gcgtggattt	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>	human ESM-1 antisense	
<223>	numan ESM-1 and sense	
<400>	1797	
	tata aatatttacc	20
<210>	1798	
<211>	20	
<212>	AND	
<213>	artificial	
<220>	and a literature	
<223>	human ESM-1 antisense	
-4005	1798	
<400>		20
aacada	atac ttctgagata	
<210>	1799	
<211>	20	
<212>		
<213>		
<220>		
<223>	human ESM-1 antisense	

WO 2004/021978

<400>	1799	
	cag gtaaatactg	20
caaaac	Sound Jennine 15	
<210>	1800	
<211>		
<212>		
	artificial	
<213>	artiliciai	
<220>	and the second s	
<223>	human ESM-1 antisense	
<400>	1800	20
ggctgc	tttt gcactcactg	20
<210>	1801	
<211>	20	
<212>	DNA	
	artificial	
1220	:	
<220>		
<223>	human ESM-1 antisense	
<223>	Indiana Edward directions	
400	1001	
<400>	1801	20
cagcgc	gggc tgcttttgca	
<210>	1802	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1802	
	gcta cctaccaagg	20
ugug-0	3004 00040 33	
<210>	1803	
<211>	20	
<212>	DNA	
<213>	artificial	
	·	
<220>		
<223>	human ESM-1 antisense	
<400>		20
taagat	ttctt tcaaatatac	20
<210>	1804	
<211>		
<212>		
	artificial	
>		
<220>		
-202	human ESM-1 antisense	
<425>	Human Bou- T are to the to the total of the	

WO 2004/021978

WO 2	004/021978	PCT/US2003/025833
<400>	1804	
	gag ggcagtccac	20
•		
<210>	1805	
<211>		
<212>		
	artificial	
<220>		
	human ESM-1 antisense	
~2237	Indiana Bara a disease and a disease	
<400>	1805	0.0
cctgaga	actg tgcggtagca	20
<210>	1806	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	•
	1006	
	1806	20
cattet	cttt cacaacttct	
<210>	1807	
<211>	20	
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
.400.	1007	
<400>	1807 ggat ttaaccattt	20
cagege	ggat ttaaccattt	
<210>	1808	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	1808	
	ggct aaatatttta	20
ayyaay	3300 ~~~	
.010.	1809	
<210>		
<211>		
<212>		
<213>	attiticial	
<220>		
	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	1809	
	attc tagagaagct	20
<210>		
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
400	1010	•
	1810	20
aaaaaa	gcac aattaaattc	20
<210>	1811	
<211>		
<212>	DNA artificial	
<213>	artificial	
<220>		
	human ESM-1 antisense	
	1811	20
aggatg	ataa atatgggtag	20
<210>	1812	
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
	1812	
gtggga	agca geegtgaeee	20
<210>	1813	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		•
<223>	human ESM-1 antisense	
12207		
<400>	1813	
ttgctg	gtgg gaagcagccg	20
<210>	1814	
<211>	20	
<212>	DNA	
<213>	artificial	
-000:		
<220> <223>	human ESM-1 antisense	
	_ · · · · · · · · · · · · · · · · · · ·	

WO 2	004/021978	I	PCT/US2003/025833
<400>	1814		
	tgg tgggaagcag		20
<210>	1815		
<211>			
<212>			
<213>	artificial		
<220>	1 Bay 1		
<223>	human ESM-1 antisense		
<400>	1815		
	attt accttcatac		20
	1016		
<210>			
<211> <212>			
	artificial		
12137			
<220>			
<223>	human ESM-1 antisense		
400	1016		
	1816 ttca acaaataata		20
accacc	tod doddadada		
<210>			
<211>			
<212>	DNA artificial		
<213>	artificiai		
<220>			•
<223>	human ESM-1 antisense		
	1817		20
agcact	tatg tttaaataag		
<210>	1818		
<211>	20		
<212>	DNA		
<213>	artificial	•	
<220>			
	human ESM-1 antisense		
<400>			20
caaacc	tcct aaaaacttat		20
<210>	1819		
<211>			
<212>	DNA		
<213>	artificial		
.000			
<220>	human ESM-1 antisense		
~~~>	********		

WO 20	004/021978	PCT/US2003/025833
<400>	1819	
	ettc tgagatattt	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1820	
	actg aaataattct	20
<210>	1821	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>		20
cetgte	acag atgeetgaet	20
	1822	
<211><212>		
	artificial	
1220	4	
<220>		
<223>	human ESM-1 antisense	
<400>	1822	
	ttta tggaagtgta	20
<210>	1823	
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1823 taca cacacaaacc	20
CCLCCa	Caba Cacacaaaco	
<210>		
<211> <212>		•
	artificial	
<220>	human ESM-1 antisense	
<223>	HOWAL POM-T SHIFTSCHPE	

WO 2004/021978		PCT/US2003/025833
<400>	1824	
	cca aaaaaaaaa	20
<210>	1825	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1825	
	cett acttecttea	20
<210>	1026	
<210>		
<212>		
	artificial	
12201		
<220>		
<223>	human ESM-1 antisense	
<400>	1826	
	acat cttacttcct	20
<210>	1827	
<211>		
<212>	DNA	
	artificial	
-2205		
<220>	human ESM-1 antisense	
(223)		
	1827	20
taagct	tcaa acatcttact	20
<210>	1828	
<211>		
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>		20
cactta	tgtt taaataaggt	20
	1829	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1829	•
ataaaa	tact tctgagatat	20
<210>	1830	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
	1830	
tgaaat	aatt cttaaataag	20
<210>	1831	
<211>		
<212>	DNA	
<213>	artificial	
	,	
<220>		
<223>	human ESM-1 antisense	
<400>	1021	
	aaaa tacaggtaaa	20
aagaac.		20
<210>	1832	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1832	
cttgttc	ttt tttattgaac	20
-210-	1022	
<210><211>	1833	
<212>		
<213>		
<220>		
<223>	human ESM-1 antisense	
400		
<400>		
goroogt	gag agaaacaaat	20
<210>	1834	
<211>	20	
<212>		
<213>	artificial	
-200:		
<220>	human ECM 1 anti-dende	

wo a	2004/021978	PCT/US2003/025833
<400>	1834	
agctto	aaac atcttacttc	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	•
<400>	1835	
	ctga aataattctt	20
	•	
<210>		
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1836	
ggcacg	agga gcgtggtcag	20
-		
<210>	1837	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1837	
gctgct	tttg cactcactgc	20
<210>	1838	
<211>	20	
<212>		
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	1838	
ccccct	gtca cagatgcctg	20
<210>	1839	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1839	
acacaca	attt aacaaatcta	20
<210>		
<211>		
<212>	artificial	
(213)	arcificati	
<220>		
<223>	human ESM-1 antisense	
<400>	1840	
	gttt tattttgact	20
<210>	1841	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
400	T 0 4 T	
<400>	caga tgcctgactg	20
Cegeca		

<210>		
<211> <212>		
	artificial	
<220>	human ESM-1 antisense	
(2237		
<400>	1842	20
tggttg	tttt attttgactt	20
•		
<210>	1843	
<211>		
<212>	DNA artificial	
<213>	artificiai	
<220>		
<223>	human ESM-1 antisense	
<400>	1843	
	aata tgggtaggga	20
-	300	
<210>	1844	
<211>		
<212>	DNA	·
<213>	artificial	
<220>		
<223>		

WO 20	004/021978	PCT/US2003/025833
<400>	1844	20
ttccac	ctat attttaaagt	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1845	
	catg ccatccatgc	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1846	
	atgc ctgactggca	20
3		
<210> <211>		
<212>	artificial	
<213>	arcillerar	
<220>		
<223>	human ESM-1 antisense	
<400>	1847	
atacac	acac atttaacaaa	20
<210>	1848	
<211>		
<212>		
	artificial	
	4-0	•
<220>	3	
<223>	human ESM-1 antisense	
<400>	1848	
ctatac	acac acatttaaca	20
<210>		
<211>		
<212>		
<5T3>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	2004/021978	PCT/US2003/025833
<400>	1849	
catct	tactt ccttcagggg	0.0
	2333	20
/		
	1850	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	1850	
ctccta	aaaaa cttattttca	20
<210>	1851	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1851	
	Caca cacaaaccac	
00000	- Cacadaccac	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
1220	naman bbn-1 ancibense	
<400>	1852	
catttt	caac aaataatact	20
		20
.010.	1050	
<210>	1853	
<211> <212>	20	
	artificial	
2137	ai ciliciai	
:220>		
:223>	human ESM-1 antisense	
400>		
aatcca	agag tgactcctat	20
210>	1854	
211>		
:212>	DNA	
213>	artificial	
220>	human PSM 1 anti-	

WO 2	004/021978	PCT/US2003/025833
<400>	1854	
	ggtca gcagcaagac	20
		20
-210-	1855	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1855	
	actgt gcggtagcaa	20
5 5	5. 5.55.00	20
	1856	
<211> <212>		
	artificial	
1001		
<220>		
<223>	human ESM-1 antisense	
-400-	1056	
<400>	aaaca tettaettee	
90000	adda coccacico	20
<210>		
<211>		
<212>	DNA artificial	
~2137	architetar	
<220>		
<223>	human ESM-1 antisense	
-100-	1057	
<400>	gcat acgttaaagc	•
3~33~3	goat acgreaage	20
<210>	1858	
<211>		
<212>	DNA artificial	
/213/	arcificial	•
<220>		
<223>	human ESM-1 antisense	
.400.	1050	
<400>	1858 gagg atgataaata	
cccaa	gugg wogataaata	20
<210>	1859	
<211>	20	
<212> <213>	DNA artificial	
~413>	ar official	
<220>		
<223>	human ESM-1 antisense	

WO 2004/021978		PCT/US2003/025833
<400>	1859	
	tatggataat	20
<210>	1860	
<211>		
<212>	DNA	•
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1860	
aatccag	gagt gactcctata	20
<210>	1861	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1861	
	caca gatgcctgac	20
<210>	1862	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1862	20
gcacco	tett teacaactte	
	1000	
<210> <211>		
<211>		
	artificial	
<220>	and the state of t	
<223>	human ESM-1 antisense	
<400>	1863	
aatttg	gatc ttcaaaaatt	20
<210>	1864	
<211>		
<212>	DNA	·
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	1864	
	ttgg atcttcaaaa	20
<210>	1865	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1865	
aaatta	catg tacttatgct	20
<210>	1866	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	Total Control of the Control	
<223>	human ESM-1 antisense	
<400>	1866	
tcttca	aaaa ttacatgtac	20
<210>	1867	
<211>		
<212>		
<213>	artificial	
-000-		
<220>	human ESM-1 antisense	
\ZZ 37	Addition and a description	
<400>	1867	-2
tcctaa	aaac ttattttcat	20
<210>	1868	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220>		
	human ESM-1 antisense	
<400>	1868	20
taaaat	actt ctgagatatt	20
<210>	1869	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978		PCT/US2003/025833
<400> agcgca	1869 cact cggcagcag	gc	20
<210>			
<211>			
<212>	DNA artificial		
<213>	arciliciai		
<220>			
<223>	human ESM-1 a	antisense	
<400>	1870		
	agtg tatgtgtt	tc	20
<210>	1971		
<211>			
<212>			
<213>	artificial		
<220>			
<223>	human ESM-1 a	antisense	
<400>	1871		
gcactt	atgt ttaaataaq	3 9	20
			•
<210>			
<211>			
<212>	DNA artificial		
<213>	artificial		
<220>			
<223>	human ESM-1 a	antisense	
<400>	1872		
	gcac gaggagcgt	ta	20
5-5-5	3 4 4 3 3 3 3 3	J	
<210>	1873		
<211>	20		!
<212>	DNA		
<213>	artificial		
<220>			
<223>	human ESM-1 a	antisense	
<400>	1873		
ccccgg	gcca cacttcate	gc	20
<210>	1874		
<211>	20		
<212><213>	DNA artificial		·
	GI 01110101		
<220>	_		·
<223>	human ESM-1 a	antisense	

wo	2004/021978	PCT/US2003/025833
<400	> 1874	
	tgactg gcagttgcag	
_	-35 -555	20
<210	> 1875	
<211	> 20	
	> DNA	
<213	> artificial	
<220:		
<223	human ESM-1 antisense	
<400	> 1875	
	tcaca acttettete	
		20
<210:	1876	
<211>	20	
	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1876	
	aacaa atctacatgc	
	audua acceacatyc	20
	1877	
<211>	20	
<212>		
<213>	artificial	
-000		
<220>		
\Z237	human ESM-1 antisense	
<400>	1877	
agaago	tacc taccaaggaa	
_		20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		•
<223>	human ESM-1 antisense	
	Taman BBM-1 and 18ense	
<400>	1878	
ataaat	atgg gtagggaaga	
		20
<210>		
<211>		
<212>		
<413>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978		PCT/US2003/02583
<400>	1879		
	tct tcaaaaatta		20
		,	
<210>	1880		
<211>			
<212>	DNA		
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
- <400>	1880	•	•
tatacac	caca catttaacaa		20
<210>			
<211>			
<212>			
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	1881		20
attaaa	ttct agagaagcta		20
<210>	1882		
<211>	20		
<212>	DNA		
<213>	artificial		
<220>			
	human ESM-1 antisense		
-4005	1002		
<400>	1882 acac acacaaacca		20
CCCCac	acae acaeaaaooa		
<210>	1883		
<211>			
<212>	DNA		
<213>			
<220>			
<223>	human ESM-1 antisense		
<400>			20
agagga	tgat aaatatgggt		
•	1004		
<210>			
<211>			
<212>	DNA artificial		
<213>	## 011101##		
<220>			
<223>	human ESM-1 antisense		

WO 2	004/021978	PCT/US2003/025833
<400>	1884	
gactcc	tata attatggata	20
<210>		
<211>		
<212> <213>	artificial	
<220>	human ESM-1 antisense	
<223>	numan ESM-1 ancisense	
<400>		20
gaaatc	caga gtgactccta	20
<210>		
<211> <212>		
	artificial	
<220>	human ESM-1 antisense	
(2237	Indian Edital and Deliber	
<400>		20
tctctt	tcac aacttettet	20
<210>		
<211> <212>		
	artificial	
.000-		
<220> <223>	human ESM-1 antisense	
<400>	1887 tcaa caaataatac	20
CCattt	tcaa caaacaacac	
<210> <211>	1888	
<212>		
<213>	artificial	•
<220>		
	human ESM-1 antisense	
<400>	1888 Etctc tttcacaact	20
cageat		
<210>	1889	
<210>		
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	

WO 20	04/021978	PCT/US2003/025833
<400>	1889	
ttcagts	tta ctatacacac	20
<210>	1890	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1890	
ggtaaat	act gaaataattc	20
<210>	1891	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1891	
aaataca	ggt aaatactgaa	20
<210>	1892	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1892	
aaaatad	agg taaatactga	20
<210>	1893	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1893	
	utgt catgeteegt	20
J J - 30		
<210>	1894	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/02583
<400>	1894	
	tct ttcacaactt	20
<210>	1895	
	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
	1895	20
cacattt	aac aaatctacat	
<210>	1896	
	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
\2237	Iranar 201 2 days 2 days	
<400>	1896	0.0
atttata	aaa atatataaat	20
<210>	1007	
<210>		
<212>		
	artificial	
<220>	human EGM 1 antigenge	
<223>	human ESM-1 antisense	
<400>	1897	
	atat gggtagggaa	20
_		
	1898	
<211><212>	20 DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1898	
	ttaa agttgacatg	20
Julul		
<210>	1899	
<211>	20	
<212> <213>	DNA artificial	
~ 413>	ar CIII-CIA-	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	** *** ** *	PC1/US2003/025833
<400>	1899 agat geetgaetgg		20
<210>	1900		
<211>			
<212>			
	artificial		
<220>			
	human ESM-1 antisense		
<400>	1900		
	ttac tatacacaca		20
5-5			
<210>	1901		
<211>			
<212>			
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	1901		
	tata ttttaaagtt		20
<210>	1902		
<211>	20		
<212>			
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	1902	.*	
ctccgt	gaga gaaacaaatc		20
<210>	1903		
<211>	20		
<212>	DNA		
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	1903		••
ctggtg	ggaa gcagccgtga		20
<210̈>			
<211>	_		
<212>			
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		

WO 20	04/021978	PCT/US2003/025833
<400> tttgct	1904 :ggtg ggaagcagcc	20
•		20
<210>	1905	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1905	
ctttgc	tggt gggaagcagc	20
<210>	1906	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1906	
atgcca	tgtc atgctccgtg	20
		20
<210>	1907	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1907	
	gtg gatttaacca	0.0
		20
<210>	1908	
<211>	20	
<212>	DNA	
<213>	artificial	,
<220>		
	human ESM-1 antisense	
:400>	1908	
	atg gaagtgtatg	
, = = = = 0		20
:210> ,	1909	
	20	
:212>	DNA	
213>	artificial	
:220>		
	human FCM-1 onti-one	

WO 2	004/021978	PCT/US2003/025833
<400>	1909	
actccta	ataa ttatggataa	20
<210>	1910	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
-400-	1010	
<400>	1910	. 20
accete	aaaa attacatgta	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
	1911	
aagagg	atga taaatatggg	20
		•
<210>	1912	
<211>		
<212>		
	artificial	
<220>		·
<223>	human ESM-1 antisense	•
<400>	1912	
	aata ctgaaataat	20
.0105	1012	
<210>	1913	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	1913	22
gctggt	ggga agcagccgtg	20
<210>	1914	
<211>	20	
<212>	DNA	•
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
~~~~	WIII CAA MUII - VIII	

WO 20	004/021978	PCT/US2003/025833
<400>	1914	
cagatg	ccat gtcatgctcc	20
<210>	1915	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
12207		
	1915	
aaaaaa	agca caattaaatt	20
<210>	1916	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>		
aggtaaa	atac tgaaataatt	20
<210>	1917	
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	•
<400>		0.0
cgtggat	tta accatttcct	20
<210>	1918	
<211>	20	
<212>	DNA	
<213>	artificial	. •
<220> ·		
	human ESM-1 antisense	
<400>	1918	0.0
cgggato	cage gtggatttaa	20
<210>	1919	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400:	1919	
	tttta aagttgacat	
		20
	1920	
<211>		
	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
\2237	numan ESM-1 antisense	
<400>	1920	
	atctt caaaaattac	
		20
	1921	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
1227	numan ESM-1 ancisense	
<400>	1921	
	ttat ggaagtgtat	2.2
		20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1922	
gataaa	tatg ggtagggaag	20
		20
<210>		
<211>	20	
<212>	artificial	
(213)	artificial	
<220>		
	human ESM-1 antisense	
<400>	1923	
cacaca	ttta acaaatctac	20
		20
0.1 -		
<210>		
	20	
<212>	artificial .	
	arciticiat	
<220>		
	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	1924	
ggtggg	aagc agccgtgacc	20
<210>	1925	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1925	
agatge	catg teatgeteeg	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1926	·
aaaatt	acat gtacttatgc	20
		•
<210>	1927	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1927	
acattt	aaca aatctacatg	20
<210>	1928	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1928	
	aaaa agcacaatta	20
<210>	1929	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	1929	
cataag	cttc aaacatctta	20
<210>	1930	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1930	
ctattt	atgg aagtgtatgt	20
-2105	1021	
<210><211>		
	-	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
cctaaa	aact tattttcata	20
<210>		
<211> <212>		
	artificial	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		20
gcagca	ttct ctttcacaac	20
<210>	1933	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	•	
<223>	human ESM-1 antisense	
<400>	1933	
acacat	ttaa caaatctaca	20
.010	1004	
<210>	1934	
<211>	20	
<212>	DNA	•
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 20	04/021978	PCT/US2003/025833
<400>	1934	
	cttc aaaaattaca	20
<210>	1935	
<211>	20	
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1935	
aaaaaa	aaaa aagcacaatt	20
<210>	1936	
<211>	20	
<212>	DNA	
	artificial	
1220		
<220>		
<223>	human ESM-1 antisense	
<400>	1936	
caagag	gatg ataaatatgg	. 20
<210>	1937	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1937	
gtggtc	agca gcaagacgct	20
<210>	1938	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1938	20
tgcagg	cacg aggagcgtgg	20
<210>	1939	
<211>	20 .	
<212>	DNA	
<213>	artificial	·
<220>		
<223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	1939	
aacaa	aacct aacagettat	20
		20
<210>	1940	
<211>		
<212>		
<213>	artificial	
<220>	human TOV 1	
<b>\223</b> 7	human ESM-1 antisense	
<400>	1940	
ccaaa	Jccaa aaaaaaaaa	20
		20
<210>	1047	
<211>		
<212>		
<213>	artificial	
<220>	human EGW a	
<443>	human ESM-1 antisense	
<400>	1941	
	ggta aatactgaaa	20
		20
<210>	1040	
<210>		
<212>		
	artificial	
<220>	human EGM 1 and decrees	
(223)	human ESM-1 antisense	
<400>	1942	
gcgtgg	tcag cagcaagacg	20
		20
<210>	1042	
<211>		
<212>	DNA	
<213>	artificial	
000		
<220> <223>	human TOW 1 and 3	
\223 <i>&gt;</i>	human ESM-1 antisense	
<400>	1943	
cagatg	cctg actggcagtt	20
		20
<210>	1944	
<211>	1944 20	
<212>	DNA	
<213>	artificial	
.000		
<220> <223>	human BCM 1 antigones	
~~~ <i>&gt;</i>	human ESM-1 antisense	

WO 20	04/021978	PCT/US2003/025833
<400>	1944	
cccctgt	ccac agatgcctga	20
<210>		
<211> <212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1945	
agcgtg	gatt taaccatttc	20
<210>	1946	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	•
.400	1046	
	1946 taca tgtacttatg	20
uaaaac	taca eguacidad	24
<210>		
<211> <212>		
	artificial	
<220>	human ESM-1 antisense	
\223 /	IIIIIIII ADN-I UNCIDONOC	
<400>	1947	
aaaaaa	aagc acaattaaat	20
<210>	1948	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
.400-	1040	
<400>	1948 aacc taacagctta	20
01.5	1040	
<210>	1949 20 .	
<211>	DNA	
<213>		
.000		
<220>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	1949	
	ctga ctggcagttg	20
-		
<210>	1950	
<211>		
<212>		
	artificial ,	
<220>		
	human ESM-1 antisense	
	1950	22
cgtggt	cage agcaagaege	20
<210>	1951	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
cagtgt	tact atacacac	20
<210>	1952	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
(2237	Indinan Edit-I and Idense	
<400>	1952	
aaaaaa	aaaa aaagcacaat	20
<210>	1953	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
\ZZ57	Italian Ibr. I anotoboube	
<400>		
gcgtgg	attt aaccatttcc	20
<210>	1954	
<211>		
<212>	DNA	•
<213>	artificial	
-000-		
<220> <223>	human ESM-1 antisense	
\443	Hallatt Bolt. I amerbelise	

WO 2	004/021978	PCT/US2003/025833
<400>	1954	
acaggta	aat actgaaataa	20
55		
<210>	1955	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1955	20
	gact ggcagttgca	20
<210>	1956	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	gegt ggatttaace	20
ggatca	gegt ggatteaace	
<210>	1957	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
.400-	1057	
	1957 geet gaetggeagt	20
acagai	geer gaerggeage	
<210>	1958	
<211>		
<212>	DNA	
<213>	artificial	•
	·	
<220>	now 1 authorses	
<223>	human ESM-1 antisense	
-400>	1958	•
22222	aaaaa gcacaattaa	20
uaaaa	Audu generalis	
07.0	1050	
	1959	
<211>		
<212>	DNA tificial	
<213>	artificial	
<220>		
<223>		

WO 2	2004/021978	PCT/US2003/025833
<400>	1959	
	ttt aaagttgaca	20
<210>	1960	
<210>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1960	0.0
ttaaat	tcta gagaagctac	20
<210>	1061	
<210> <211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1961	
	ctta cttccttcag	20
aaaaa	3	
<210>		
<211>		
<212>	DNA artificial	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1962	20
gatgco	tgac tggcagttgc	
<210>	1963	
<211>	20	
<212>		•
<213>	artificial	
000.		
<220>	human ESM-1 antisense	
(2237		
<400>	1963	20
tggat	cttca aaaattacat	20
-010-	1964	
<210> <211>		
<212>	DNA	
<213>	artificial	
<220>	human ESM-1 antisense	
<223>	Umign com-t andresize	

WO 2	004/021978	PCT/US2003/025833
<400>	1964	
ctaaaaa	ctt attttcatac	20
<210>	1965	
<211>	20	
	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1965	
	ctac ctaccaagga	20
<210>	1966	
<211>	20	
<212>		
<213>	artificial	
	,	
<220>		
<223>	human ESM-1 antisense	
<400>		20
gtgtgt	tgaa caatcacgaa	20
<210>	1967	
<211>		
<212>		
	artificial	
<220>	human ESM-1 antisense	
<223>	numan Esm-1 and sense	
<400>	1967	20
gatctt	caaa aattacatgt	20
<210>	1968	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
	1000	
<400>	1968	20
tacago	gtaaa tactgaaata	
.07.0	1069	
<210>		
<211>		
<212>		
<213>	arciiiciai	
<220>		
<223>	human ESM-1 antisense	

WO 26	004/021978	PCT/US2003/025833
<400>	1969	20
tcaagaa	ataa aatacaggta	20
<210>		
<211>		
<212>		
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	1970	
	gaac aatcacgaaa	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1971	•
acatct	tact tccttcaggg	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1972	
ccaact	tcaa gaataaaata	20
<210>	1973	
<210 <i>></i>	20	
<212>	DNA	
<213>	artificial	
<213>	arciliciai	
<220>		
<223>	human ESM-1 antisense	
<400>	1973	
aaaaaa	aaaa aaaagcacaa	20
<210>	1974	
<211>	20	
<212>	DNA	•
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400> aaaaaa	1974 laaag cacaattaaa	20
	_	
<210>	1975	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1975	
ttcaag	aata aaatacaggt	20
<210>	1976	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1976	
aacttc	aaga ataaaataca	20
<210>	1977	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1977	
	tgcc tgactggcag	20
ouougu		20
<210>	1979	
<211>	20	
<212>		
<213>		•
<220>		
	human ESM-1 antisense	
<400>	1978	
	ageg tggatttaac	20
333400	~3~3 ~33~~~~~~ <u>`</u>	20
J2105	1070	
<210> <211>		
<212>		
	artificial	
-000		
<220> <223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1979	
aaaaaa	aaaa aaaaagcaca	20
<210>	1980	
<211>		
<212>		
	artificial	
<220>		
	human ESM-1 antisense	
<400>	1980	
caactt	caag aataaaatac	20
	•	
<210>	1981	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	•
<400>	1981	
ggatct	tcaa aaattacatg	20
<210>	1002	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
.400-	1000	
<400>	1982	20
ccaaga	ggat gataaatatg	20
<210>	1983	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense.	
400		
<400>	1983	
caagaat	taaa atacaggtaa	20
<210>	1984	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antigense	

WO 2	004/021978	PCT/US2003/025833
<400>	1984	
acctat	attt taaagttgac	20
		20
<210>		
<211>	20	
<212>		
<213>	artificial	
.000		
<220>	human ESM-1 antisense	
(223)	numan Esm-1 antisense	
<400>	1985	
	agaa taaaatacag	20
		20
<210>	1986	
<211>		
<212>		
<213>	artificial	
.000		
<220> <223>	human ECM 1 antigange	
44437	human ESM-1 antisense	
<400>	1986	
	agga tgataaatat	20
_		20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
12232	naman ESM-1 andisense	
<400>	1987	
tggtgg	gaag cagccgtgac	20
_		_•
	1988	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	Talled Doll I difference	
<400>	1988	
caaagc	caaa aaaaaaaaaa	20
		_•
0.7.5		
<210>		
<211>	·	
	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1989	
aacatc	ttac ttccttcagg	20
<210>	1990	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	1000	
	gaat aaaatacagg	20
CCCCaa	gaac aaaacacagg	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
	1991	
ccaaaa	aaaa aaaaaaagca	20
<210>	1992	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1992	
	aaaa aaaaaagcac	20
Cauaaa	adda dddaddgede	
<210>	1993	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1993	
atacag	gtaa atactgaaat	20
<210>	1994	
<211>		
<212>		•
	artificial	
<220>	human RCM 1 anticonce	
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833 -
<400>	1994 aaaa aaaaaaaaa	20
		20
<210>		
<211>		
<212>	artificial	
(213/	arcificial	
·<220>		
<223>	human ESM-1 antisense	
<400>		
gccaaa	aaaa aaaaaaagc	20
<210>	1996	
<211>	20	
<212>		
<213>	artificial	
<220>	human DOM 2 and days	
<223>	human ESM-1 antisense	
<400>	1996	
	ttca aacatcttac	20
<210>		
<211> <212>		
	artificial	
12207	W-011101WE	
<220>		
<223>	human ESM-1 antisense	
<400>		
CCaccc	atat tttaaagttg	. 20
<210>	1998	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220>		
	human ESM-1 antisense	
<400>	1998	
caccta	tatt ttaaagttga	20
<210>	1999	
<210>	20	
<212>		
<213>		
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/02583
<400>	1999	
	aaa aaaaaaaaa	20
<210>	2000	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	2000	•
agccaa	aaa aaaaaaaag	20
<210>	2001	
<211>		
<212>		
<213>	Artificial	
<220>		
<223>	human ESM-1 PCR fowrd primer	
<400>	2001	
ctgctt	cca ccagcaaag	19
<210>	2002	
<211>		
<212>	DNA	
<213>	Artificial	
<220>		
	human ESM PCR reverse primer	
<400>	2002	
	cgct cttcatgttt cc	22
godaga		
<210>	2003	
<211>		
<212>	DNA	
<213>		
<220>		
<223>	human ESM PCR probe	
<400>	2003	0.1
cgacto	gaga gccgagccgg a	21
<210>	2004	
<211>		
<212>		
	Artificial	
<220>	and and the DCD forward arises	
<223>	cyclophilin PCR forward primer	

PCT/US2003/025833

<400> 2004 20 cccaccgtgt tcttcgacat <210> 2005 <211> 22 <212> DNA <213> Artificial <220> <223> cyclophilin PCR reverse primer <400> 2005 22 tttctgctgt ctttgggacc tt <210> 2006 <211> 24 <212> DNA <213> Artificial <220> <223> cyclophilin PCR probe <400> 2006 24 cgcgtctcct ttgagctgtt tgca <210> 2007 <211> 184 <212> PRT <213> Homo sapiens <400> 2007 Met Lys Ser Val Leu Leu Leu Thr Thr Leu Leu Val Pro Ala His Leu 10 Val Ala Ala Trp Ser Asn Asn Tyr Ala Val Asp Cys Pro Gln His Cys 20 Asp Ser Ser Glu Cys Lys Ser Ser Pro Arg Cys Lys Arg Thr Val Leu Asp Asp Cys Gly Cys Cys Arg Val Cys Ala Ala Gly Arg Gly Glu Thr Cys Tyr Arg Thr Val Ser Gly Met Asp Gly Met Lys Cys Gly Pro Gly 65 Leu Arg Cys Gln Pro Ser Asn Gly Glu Asp Pro Phe Gly Glu Glu Phe 85 90 Gly Ile Cys Lys Asp Cys Pro Tyr Gly Thr Phe Gly Met Asp Cys Arg

PCT/US2003/025833

WO 2004/021978

100 105 110

Glu Thr Cys Asn Cys Gln Ser Gly Ile Cys Asp Arg Gly Thr Gly Lys 115 120 125

Cys Leu Lys Phe Pro Phe Phe Gln Tyr Ser Val Thr Lys Ser Ser Asn 130 135 140

Arg Phe Val Ser Leu Thr Glu His Asp Met Ala Ser Gly Asp Gly Asn 145 150 155 160

Ile Val Arg Glu Glu Val Val Lys Glu Asn Ala Ala Gly Ser Pro Val 165 170 175

Met Arg Lys Trp Leu Asn Pro Arg 180

<210> 2008

<211> 2017

<212> DNA

<213> Homo sapiens

<400> 2008

60 ggaaacatga agagcgtctt gctgctgacc acgctcctcg tgcctgcaca cctggtggcc 120 gcctggagca ataattatgc ggtggactgc cctcaacact gtgacagcag tgagtgcaaa 180 ageageeege getgeaagag gacagtgete gacgaetgtg getgetgeeg agtgtgeget 240 gcagggcggg gagaaacttg ctaccgcaca gtctcaggca tggatggcat gaagtgtggc 300 ccggggctga ggtgtcagcc ttctaatggg gaggatcctt ttggtgaaga gtttggtatc 360 tgcaaagact gtccctacgg caccttcggg atggattgca gagagacctg caactgccag 420 tcaggcatct gtgacagggg gacgggaaaa tgcctgaaat tccccttctt ccaatattca 480 gtaaccaagt ettecaacag atttgtttet etcaeggage atgacatgge atetggagat 540 ggcaatattg tgagagaaga agttgtgaaa gagaatgctg ccgggtctcc cgtaatgagg 600 aaatggttaa atccacgctg atcccggctg tgatttctga gagaaggctc tattttcgtg 660 attgttcaac acacagccaa cattttagga actttctaga tatagcataa gtacatgtaa 720 tttttgaaga tccaaattgt gatgcatggt ggatccagaa aacaaaaagt aggatactta 780 caatccataa catccatatg actgaacact tgtatgtgtt tgttaaatat tcgaatgcat 840 gtagatttgt taaatgtgtg tgtatagtaa cactgaagaa ctaaaaatgc aatttaggta 900 atcttacatg gagacaggtc aaccaaagag ggagctaggc aaagctgaag accgcagtga 960 WO 2004/021978 PCT/US2003/025833

1		•				
gtcaaattag	ttctttgact	ttgatgtaca	ttaatgttgg	gatatggaat	gaagacttaa	1020
gagcaggaga	, agatggggag	ggggtgggag	tgggaaataa	aatatttagc	ccttccttgg	1080
taggtagctt	ctctagaatt	taattgtgct	tttttttt	ttttggcttt	gggaaaagtc	1140
aaaataaaac	aaccagaaaa	cccctgaagg	aagtaagatg	tttgaagctt	atggaaattt	1200
gagtaacaaa	cagctttgaa	ctgagagcaa	tttcaaaagg	ctgctgatgt	agttcccggg	1260
ttacctgtat	ctgaaggacg	gttctggggc	ataggaaaca	catacacttc	cataaatagc	1320
tttaacgtat	gccacctcag	agataaatct	aagaagtatt	ttacccactg	gtggtttgtg	1380
tgtgtatgaa	ggtaaatatt	tatatatttt	tataaataaa	tgtgttagtg	caagtcatct	1440
tccctaccca	tatttatcat	cctcttgagg	aaagaaatct	agtattattt	gttgaaaatg	1500
gttagaataa	aaacctatga	ctctataagg	ttttcaaaca	tctgaggcat	gataaattta	1560
ttatccataa	ttataggagt	cactctggat	ttcaaaaaat	gtcaaaaaat	gagcaacaga	1620
gggaccttat	ttaaacataa	gtgctgtgac	ttcggtgaat	tttcaattta	aggtatgaaa	1680
ataagttttt	aggaggtttg	taaaagaaga	atcaattttc	agcagaaaac	atgtcaactt	1740
taaaatatag	gtggaattag	gagtatattt	gaaagaatct	tagcacaaac	aggactgttg	1800
tactagatgt	tcttaggaaa	tatctcagaa	gtattttatt	tgaagtgaag	aacttattta	1860
agaattattt	cagtatttac	ctgtatttta	ttcttgaagt	tggccaacag	agttgtgaat	1920
gtgtgtggaa	ggcctttgaa	tgtaaagctg	cataagctgt	taggttttgt	tttaaaagga	1980
catgtttatt	attgttcaat	aaaaaagaac	aagatac			2017