ÖVEGES JÓZSEF Fizikaverseny Kolozsvár, JZsUK, 2024. április 13. *Országos döntő*

JAVÍTÓKULCS

VIII. osztály

1. feladat (3.3 pont) (Kovács Zoltán)

v r. V to A E m	Mérjük meg a vonalzóval az úszó fagolyó, majd a víz alá teljesen bemerülő fagolyó általi vízszintnövekedéseket! A mérés menete: (lásd a rajzot!)	Pont
v rs	a víz alá teljesen bemerülő fagolyó általi vízszintnövekedéseket! A mérés menete: (lásd a raizot!)	
to V A F M Q B F B F B F B F B F B B		
A B B B B B B B B B	$V_1 = S \cdot \Delta h_1 = S \cdot (h_2 - h_1)$ a vízen úszó golyó térfogata, S a pohár belső keresztmetszetének területe;	0,2
b) <i>F</i>	$V = S \cdot \Delta h_2 = S \cdot (h_3 - h_1)$ a golyó térfogata, amit teljesen a víz alá merítve határozunk meg;	0,2
b) <i>H</i>	Az arkhimédészi erő az úszó fagolyóra: $F_A = G$;	0,2
b) <i>F</i>	Behelyettesítve az összefüggéseket: $m_{\text{víz}} \cdot g = m_{\text{fa}} \cdot g$, azaz $m_{\text{víz}} = m_{\text{fa}}$; $\varrho_{\text{víz}} \cdot V_1 = \varrho_{\text{fa}} \cdot V$; $\varrho_{\text{víz}} \cdot S \cdot \Delta h_1 = \varrho_{\text{fa}} \cdot S \cdot \Delta h_2$; $\varrho_{\text{víz}} \cdot \Delta h_1 = \varrho_{\text{fa}} \cdot \Delta h_2$; $\varrho_{\text{fa}} = \varrho_{\text{víz}} \cdot \Delta h_1 / \Delta h_2$; $\varrho_{\text{fa}} = \varrho_{\text{víz}} \cdot (h_2 - h_1) / (h_3 - h_1) = 1000 \cdot 3/5 = 600 \text{ kg/m}^3$.	0,5
c)	$F + G_{fa} = F_A$, innen $F = F_A - G_{fa} = \varrho_{viz} \cdot S \cdot \Delta h_2 \cdot g - \varrho_{fa} \cdot S \cdot \Delta h_2 \cdot g = (\varrho_{viz} - \varrho_{fa}) \cdot g \cdot S \cdot \Delta h_2$	0,3
	A rajz arányos erővektorokkal $V_{\rm fa}^{\rm levego}$ $V_{\rm fa}^{\rm levego}$ $V_{\rm fa}^{\rm levego}$ $V_{\rm fa}^{\rm latsz}$	0,5
	Az összekapcsolt golyók lebegési feltétele: $G^{fa} + G^{mű} = F_A^{fa} + F_A^{mű}$	0,4
$ \begin{array}{c c} \rho \\ \rho \\ \varrho \\ \rho \end{array} $	$\begin{split} & \rho_{\text{fa}} V_{\text{fa}} \cdot \mathbf{g} + \rho_{\text{mű}} V_{\text{mű}} \cdot \mathbf{g} = \rho_{\text{víz}} V_{\text{fa}} \cdot \mathbf{g} + \rho_{\text{víz}} V_{\text{mű}} \cdot \mathbf{g}; \text{ majd} \\ & \rho_{\text{fa}} (h_3 - h_1) + \rho_{\text{mű}} (h_4 - h_3) = \rho_{\text{víz}} (h_4 - h_1); \\ & \varrho_{\text{víz}} \cdot (h_2 - h_1) + \rho_{\text{mű}} (h_4 - h_3) = \rho_{\text{víz}} (h_4 - h_1); \text{ végül} \\ & \rho_{\text{mű}} = \rho_{\text{víz}} (h_4 - h_2) / (h_4 - h_3) = 1000 \cdot 4 / 2 = 2000 \text{ kg/m}^3. \end{split}$	0,5
	A műanyaggolyó látszólagos súlya: $G^{\text{mű}}_{\text{látsz}} = G^{\text{mű}} - F_{\text{A}}^{\text{mű}} = \rho_{\text{mű}}(h_4 - h_3) \cdot \mathbf{g} \cdot S - \rho_{\text{víz}}(h_4 - h_3) \cdot \mathbf{g} \cdot S =$	0,5

Összesen 3,3 pont

2. feladat (2,7 pont) (Kovács Zoltán)

	feladat (2,7 pont) (Kovács Zoltán)	Pont
	A rajzok a bejelölt áramerősségekkel. A I _{AB} C 2I D 3I B 11II	0,2
a	Az AD szakasz ellenállása a $2R$ és R párhuzamosan kapcsolt ellenállások eredője: $R_{\rm AD} = 2R \cdot R/(2R + R) = 2R/3$.	0,3
	Ezzel sorba van kapcsolva egy újabb R ellenállás. Így a bal oldali ág négy ellenállásának eredője $R_{\text{bal}} = 2R/3 + R = 5R/3$. Ugyanekkora a jobb oldali ág négy ellenállásának eredője is: $R_{\text{jobb}} = 5R/3$.	0,2
	I. A párhuzamosan kapcsolt két szélső ág eredője: $R_{\text{jobb-bal}} = 5R/6$, a CD pontoknak azonos a potenciálja, ezért az azokat összekötő ellenálláson nem folyik áram, tehát kiiktatható (lást a fenti rajzon!).	0,3
	II. Itt még be van kapcsolva párhuzamosan a középső, az AB pontokat összekötő R ellenállású ág is. Így a kapcsolás eredő ellenállása: $R_{\rm AB} = (5R/6) \cdot R/(5R/6 + R) = (5R^2/6)/(11R/6) = 5R/11 \Omega$	0,2
b	Tegyük fel, hogy az AB pontokra U_{AB} feszültséget kapcsolunk. A hatszög A csúcsából öt irányba indulnak el áramok. Jelöljük I -vel az egyik szélső ágban, az AC ellenálláson folyó áram erősségét, ami tovább folyik a CD ágban is.	0,2
	Mivel az AD szakaszon, amely két párhuzamos ágból áll, ugyanakkora a feszültségesés, felírható: $U_{ACD} = U_{AD}$, azaz $I \cdot 2R = 2I \cdot R$. Tehát, az AD szakaszon $2I$ erősségű áram folyik.	0,2
	Az ACDB szakaszon a feszültségeségek összege ugyanakkora, mint az AB-n: $U_{AB} = U_{ACDB} = U_{AC} + U_{CD} + U_{DB} = I \cdot R + I \cdot R + 3I \cdot R = 5I \cdot R$	0,3
	II. Az AB középső ágon folyó áram erőssége: $U_{AB}/R = 5I \cdot R/R = 5I$.	0,2
	A B csomópontba befolyó áramok erőssége az I. és a II. kapcsolás esetében: I. $I_{AB} = 3I + 3I = 6 I$ II. $I_{AB} = 3I + 5I + 3I = 11I$.	0,2
	I. $R_{AB} = U_{AB}/I_{AB} = 5I \cdot R/6 \cdot I = 5R/6 = 55/6 = 9,1(6) \Omega$ II. $R_{AB} = U_{AB}/I_{AB} = 5I \cdot R/11 \cdot I = 5R/11 = 5 \Omega$	0,2
c	$I = U_{AB}/R_{AB}$. Az áramerősségek: I. $I = 55/(55/6) = 6$ A, és II. $I = 55/5 = 11$ A.	0,2

Összesen 2,7 pont

3. feladat (3 pont) (*Fizikapéldatár* 2.4/4. Darvay–Kovács–Lázár–Tellmann)

J. 10	teladat (5 pont) (Fizikapetadiai 2.4/4. Daivay–Kovacs–Lazai–Tenniann)		
		Pont	
	A rajz $U = \begin{bmatrix} A & I \\ R & I \end{bmatrix}$ $U = \begin{bmatrix} A & I \\ R & I \end{bmatrix}$ R_{V}	0,3	
a)	Alkalmazzuk Kirchhoff törvényeit a rajzon megadott körüljárási iránnyal jelölt két hurokra, valamint a C csomópontra: $U = R \cdot I/2 + I_1 \cdot R/2$ és $0 = R \cdot I_1/2 - I_v \cdot R_v$ illetve $I = I_1 + I_v$	0,4	
	Számértékekkel: $110 = 2000 \cdot I + 2000 \cdot I_1$ és $2000 \cdot I_1 = 10000 \cdot I_v$ valamint $I = I_1 + I_v$	0,3	
	$110 = 2000 \cdot I_1 + 2000 \cdot I_v + 2000 \cdot I_1$ és $I_1 = 5 \cdot I_v$ $110 = 22000 \cdot I_v$, ahonnan $I_v = 110/22000 = 0,005$ A = 5 mA	0,4	
	$I_1 = 5 \cdot I_v = 25 \text{ mA és } I = 30 \text{ mA}$	0,2	
b)	$R_{\rm BC} = (R \cdot R_{\rm v})/2(R/2 + R_{\rm v}) = (R \cdot R_{\rm v})/(R + 2 \cdot R_{\rm v}) = 4000 \cdot 10000/24000 = 4 \cdot 10000/24 = 5000/3 \ \Omega$	0,4	
	$R_{\rm AB} = R/2 + R_{\rm BC} = 2000 + 5000/3 = 11000/3 \ \Omega$	0,2	
	$I = U/R_{AB} = 3.110/11000 = 0.03 \text{ A}$	0,2	
	$U_{\rm V} = I \cdot R_{\rm BC} = 0.03 \cdot 5000/3 = 50 \text{ V}$	0,2	
	$I_1 = U_v/(R/2) = 50/2000 = 0,025 \text{ A}$	0,2	
	$I_{\rm v} = U_{\rm v}/(R_{\rm v}) = 50/10000 = 0{,}005 \text{ A}$	0,2	

Összesen: 3 pont