Clase 6 Normalización

Prof. Ania Cravero Leal

Introducción

- La normalización es el proceso mediante el cual se transforman datos complejos a un conjunto de estructuras de datos más pequeñas, que además de ser más simples y más estables, son más fáciles de mantener.
- También se puede entender como una serie de reglas que sirven para ayudar a los diseñadores de bases de datos a desarrollar un esquema que minimice los problemas de lógica.
- Las bases de datos relacionales se normalizan para:
 - Evitar la redundancia de los datos.
 - Evitar problemas de actualización de los datos en las tablas.
 - Proteger la integridad de los datos.

Ejemplo Diseño Inadecuado

Ejemplo Diseño Inadecuado

Pedidos

<u>Artículo</u>	<u>cliente</u>	cantidad	precio	ciudad	distancia
A1	C1	12	100	Madrid	400
A1	C2	30	100	Valencia	200
A1	C3	15	100	Alicante	80
A2	C1	35	250	Madrid	400
A2	C2	20	250	Valencia	200
A2	C4	10	250	Madrid	400
A3	C3	25	175	Alicante	80

pedidos

art	<u>cli</u>	cant
A1	C1	12
A1	C2	30
A1	C3	15
A2	C1	35
A2	C2	20
A2	C4	10
А3	C3	25

artículos

art	precio
A1	100
A2	250
А3	175

clientes

<u>cli</u>	ciudad
C1	Madrid
C2	Valencia
C3	Alicante
C4	Madrid

ciudades

<u>ciudad</u>	dist
Madrid	400
Valencia	200
Alicante	80

Formas Normales

- Un esquema de relación está en una determinada forma normal si satisface un determinado conjunto específico de restricciones definidas sobre los atributos del esquema (dependencias).
 - 1^a FN (Codd, 1970)
 - Concepto de relación normalizada.
 - 2^a, 3^a FN (Codd, 1970), FNBC (Boyce/Codd, 1974)
 - Basadas en análisis de dependencias funcionales.
 - 4^a FN. Fagin, 1977
 - Basada en análisis de dependencias multivaluadas.
 - 5° FN. Fagin, 1979
 - Basada en análisis de dependencias de proyección / combinación.

Dependencias

- El proceso de normalización se basa en el análisis de las dependencias entre atributos. Para ello tendrá en cuenta los conceptos de:
 - Dependencia funcional,
 - Dependencia funcional completa y
 - Dependencia transitiva.

Tipos de Dependencia

- Dependencia Funcional: Dados los atributos A y B, se dice que B depende funcionalmente de A, sí, y solo sí, para cada valor de A sólo puede existir un valor de B. La dependencia funcional siempre se establece entre atributos de una misma tabla. El atributo A se denomina determinante, ya que A determina el valor de B. Para representar esta dependencia funcional utilizamos la siguiente notación:
 - A \rightarrow B. Hay que indicar que A y B podrían ser un solo atributo o un conjunto de ellos.
- Dependencia Funcional Completa: Dados los atributos A1, A2, ... Ak y B, se dice que B depende funcionalmente de forma completa de A1, A2, ... Ak, si y solo si B depende funcionalmente del conjunto de atributos A1, A2, ... Ak, pero no de ninguno de sus posibles subconjuntos.
- Dependencia Transitiva: Dados tres atributos A, B y C, se dice que existe una dependencia transitiva entre A y C, si B depende funcionalmente de A y C depende funcionalmente de B. A, B y C podrían ser un solo atributo o un conjunto de ellos.
- Dependencia Multivaluada: Una tabla con una dependencia multivaluada es una donde la existencia de dos o más relaciones independientes muchos a muchos causa redundancia. Se representa como sigue:
 - $A \rightarrow -> B$

Diagrama de dependencias funcionales

• Ejemplo: **R (A, DF).**

R: pedidos

cantidad

A: {artículo, cliente, cantidad, precio, ciudad, distancia}.

DF: ({artículo, cliente} → {cantidad, precio, ciudad, distancia},

artículo → precio,

cliente \rightarrow {ciudad, distancia},

ciudad → distancia)

Pedidos

<u>Artículo</u>	<u>cliente</u>	cantidad	precio	ciudad	distancia
A1	C1	12	100	Madrid	400
A1	C2	30	100	Valencia	200
A1	C3	15	100	Alicante	80
A2	C1	35	250	Madrid	400
A2	C2	20	250	Valencia	200
A2	C4	10	250	Madrid	400
A3	C3	25	175	Alicante	80

Diagrama de Dependencias Funcionales

Actividad 1

- Formar grupos de 3 personas
- Dadas las siguientes tablas:
 - **EMPLEADO**(<u>RUT</u>, Nombre, Dirección, Nombre_Departamento, Cod_Depto, Nombre_hijo, Edad_hijo)
 - LIBRO (<u>Título libro</u>, Num ejemplar, Autor, Editorial, Precio)
- Resolver las siguientes cuestiones:
 - 1. Indicar qué atributos presentan una dependencia funcional de la clave primaria de la tabla EMPLEADO.
 - 2. Indicar qué atributos presentan una dependencia funcional completa en la tabla LIBRO.
 - 3. Indicar qué atributos presentan una dependencia transitiva en la tabla EMPLEADO.
- Tiempo estimado: 20 minutos

Solución

- Los atributos Nombre, y Dirección dependen funcionalmente de RUT, ya que para un RUT específico sólo podrá haber un nombre y una dirección. Pero los atributos Nombre_hijo y Edad_hijo no presentan esa dependencia funcional de RUT, ya que para un RUT específico podríamos tener varios valores diferentes en esos atributos. (Consideraremos para este ejemplo que todos los empleados registrados en esta base de datos tienen nombres distintos). Expresemos estas dependencias funcionales mediante su notación:
 - RUT→ Nombre
 - RUT→ Dirección
- Los atributos Editorial y Precio dependen funcionalmente del conjunto de atributos que forman la clave primaria de la tabla, pero no dependen de Título_libro o de Num_ejemplar por separado, por lo que presentan una dependencia funcional completa de la clave. El atributo Autor depende funcionalmente sólo y exclusivamente de Titulo_libro, por lo que no presenta una dependencia funcional completa de los atributos que forman la clave.
- Los atributos Cod_Depto y Nombre_Departamento dependen funcionalmente de RUT, pero entre Cod_Depto y Nombre_Depto existe otra dependencia funcional. Por tanto, se establece que Nombre_Depto depende funcionalmente de Cod_Depto, y a su vez, Cod_Depto depende funcionalmente de RUT. Con lo que podemos afirmar que existe una dependencia transitiva entre Nombre_Depto y RUT. La misma situación ocurre con los atributos Nombre_hijo y Edad_hijo. Si lo representamos con la notación asociada a las dependencias funcionales, quedaría:
 - RUT → Cod_Depto → Nombre_Depto
 - RUT → Nombre_hijo → Edad_hijo

Solución

Diagrama de dependencias funcionales

Normalización de un esquema de BD Relacional

1era Forma Normal 1FN

• Una tabla está en Primera Forma Normal (1FN o FN1) sí, y sólo sí, todos los atributos de la misma contienen valores atómicos, es decir, no hay grupos repetitivos. ¿Cómo se normaliza a Primera Forma Normal?

1. Se agregan nuevos registros en la tabla original para separar los datos que no son atómico.

Ejemplos 1FN

DNI Empleado	Nombre	Puesto Laboral	Nombre- Hijos
14.234.234	Juan	Técnico	Luis, María

1FN[

1º Se muestra una tabla con los datos de los estudiantes de una universidad

ESTUDIANTE				
C_ESTUDIANTE	N_ESTUDIANTE #_TELEFONO			
	ALEJANDRA			
A2040	CASTILLO	925746315		
	JUAN			
A2041	MANCILLA	998547213		
		932478104		
A2042	SONIA CHAVEZ	982142575		
A2043	JAVIER ESPINO	954781276		

Se puede visualizar que cada estudiante puede tener mas de un numero de telefono al cual llamar, por lo que debemos crear una tabla nueva, ya que esta no cumple con los requisitos para la primera forma normal.

ESTUDIANTE			
C_ESTUDIANTE	N_ESTUDIANTE #_TELEFONO		
	ALEJANDRA		
A2040	CASTILLO	925746315	
	JUAN		
A2041	MANCILLA	998547213	
A2042	SONIA CHAVEZ	932478104	
A2042	SONIA CHAVEZ	982142575	
A2043	JAVIER ESPINO	954781276	

Ejemplos 1FN

3º Se muestra una tabla con los datos de los clientes de una aseguradora

	CLIENTE	
C_CLIENTE	N_CLIENTE	#_EDAD
	CASTILLO	
	SANDOVAL,	
2003	ALEJANDRA	26
	HINOJOSA	
2004	MANCILLA, JUAN	45
	BRAVO CHAVEZ,	
2005	SONIA	56
	SANCHEZ	
2006	ESPINO, JAVIER	48

Como se puede apreciar en la tabla mostrada, el nombre del cliente no está atomizado, ya que hay varios datos en un solo campo, por lo que debemos crear una tabla nueva que cumpla con los requisitos de la primera forma normal.

CLIENTE				
C_CLIENTE	N_PATERNO	N_MATERNO	N_CLIENTE	#_EDAD
2003	CASTILLO	SANDOVAL	ALEJANDRA	26
2004	HINOJOSA	MANCILLA	JUAN	45
2005	BRAVO	CHAVEZ	SONIA	56
2006	SANCHEZ	ESPINO	JAVIER	48
2006	SANCHEZ	ESPINO	JAVIER	4

	ESTUDIA	NTE	
C_ESTUDIANTE	N_ESTUDIANTE	T_CURSO	L AULA
20113	Alejandra	Matemática	A-16
20114	Juan	Historia	D-56
20115	Sonia	Lengua	8-22
20116	Javier	Fisica	F-12
Como se observ	ra, el campo aul	a no es un da	to atomizado

ESTUDIANTE						
C ESTUDIAN	N ESTUDIANTE	T_CURSO	T_PABELLON	# AULA		
20113	Alejandra	Matemática	A	16		
20114	Juan	Historia	D	56		
20115	Sonia	Lengua	8	22		
20116	javier	Fisica	F	12		

2da Forma Normal 2FN

- Una tabla está en Segunda Forma Normal (2FN o FN2) sí, y sólo sí, está en 1FN y, además, todos los atributos que no pertenecen a la clave dependen funcionalmente de forma completa de ella. ¿Cómo se normaliza a Segunda Forma Normal?
 - 1. Se crea, a partir de la tabla inicial, una nueva tabla con los atributos que dependen funcionalmente de forma completa de la clave. La clave de esta tabla será la misma clave primaria de la tabla inicial. Esta tabla ya estará en 2FN.
 - 2. Con los atributos restantes, se crea otra tabla que tendrá por clave el subconjunto de atributos de la clave inicial de los que dependen de forma completa. Se comprueba si esta tabla está en 2FN. Si es así, la tabla inicial ya está normalizada y el proceso termina. Si no está en 2FN, tomamos esta segunda tabla como tabla inicial y repetiremos el proceso.

Ejemplos 2FN

1° Se muestra una tabla con los datos de una biblioteca

BIBLIOTECA						
C_LIBRO	N_TITULO	N_AUTOR	C_LECTOR	N_LECTOR		
10002	FISICA 1	ALEXANDER VASQUEZ	2596	CARLOS		
10003	CALCULO 2	J. MILLER	4853	JUANA		
10004	CONTABILIDAD	JOAQUIN LINO	2253	PABLO		
10005	ECONOMIA	MARIA CASAS	5420	ANGELA		

Como se puede ver en la tabla mostrada, el nombre del lector no está en dependencia funcional con el código del libro, por lo que debemos separar la tabla para que este en 2FN.

BIBLIOTECA			LE	CTOR
C_LIBRO	N_TITULO	N_AUTOR	C_LECTOR	N_LECTOR
10002	FISICA 1	ALEXANDER VASQUEZ	2596	CARLOS
10003	CALCULO 2	J. MILLER	4853	JUANA
10004	CONTABILIDAD	JOAQUIN LINO	2253	PABLO
10005	ECONOMIA	MARIA CASAS	5420	ANGELA

3º La tabla muestra las notas de un alumno según el curso:

<u>C-Curso</u>	N-Curso	<u>C-Alumno</u>	N-Alumno	Q-Promedio
SI-235	Programación1	201013456	José Pérez	15.65
MA-345	Cálculo1	201011212	Juan Vico	12.49
HU-231	Lenguaje2	201015678	Adriana Lima	17.30
SI-892	Introducción a la Computación	201011212	Juan Vico	15.25

Sin embargo, el nombre del curso no depende completamente del código del alumno, por ello se aplica la segunda forma normal:

C-Curso	N-Curso
SI-235	Programación1
MA-345	Cálculo1
HU-231	Lenguaje2
SI-892	Introducción a la Computación

<u>C-Alumno</u>	N-Alumno
201013456	José Pérez
201011212	Juan Vico
201015678	Adriana Lima
201011212	Juan Vico

<u>C-Curso</u>	<u>C-Alumno</u>	Q-Promedio
SI-235	201013456	15.65
MA-345	201011212	12.49
HU-231	201015678	17.30
SI-892	201011212	15.25

3era Forma Normal 3FN

- Una tabla está en Tercera Forma Normal (3FN o FN3) sí, y sólo sí, está en 2FN y, además, cada atributo que no está en la clave primaria no depende transitivamente de la clave primaria. ¿Cómo se normaliza a Tercera Forma Normal?
 - 1. Se crea, a partir de la tabla inicial, una nueva tabla con los atributos que no poseen dependencias transitivas de la clave primaria. Esta tabla ya estará en 3FN.
 - 2. Con los atributos restantes, se crea otra tabla con los dos atributos no clave que intervienen en la dependencia transitiva, y se elije uno de ellos como clave primaria, si cumple los requisitos para ello. Se comprueba si esta tabla está en 3FN. Si es así, la tabla inicial ya está normalizada y el proceso termina. Si no está en 3FN, tomamos esta segunda tabla como tabla inicial y repetiremos el proceso.

Ejemplos 3FN

Ganadores del torneo

Torneo	Año	Ganador	Fecha de nacimiento del ganador
Indiana Invitational	1998	Al Fredrickson	21 de julio de 1975
Cleveland Open	1999	Bob Albertson	28 de septiembre de 1968
Des Moines Masters	1999	Al Fredrickson	21 de julio de 1975
Indiana Invitational	1999	Chip Masterson	14 de marzo de 1977

Ganadores del torneo

Torneo	Año	Ganador
Indiana Invitational	1998	Al Fredrickson
Cleveland Open	1999	Bob Albertson
Des Moines Masters	1999	Al Fredrickson
Indiana Invitational	1999	Chip Masterson

Fe	cha	de i	nacir	nient	to de	el iuc	ado	r

Jugador	Fecha de nacimiento
Chip Masterson	14 de marzo de 1977
Al Fredrickson	21 de julio de 1975
Bob Albertson	28 de septiembre de 1968

1º Se presenta la tabla de información sobre el inventario de computadoras de una oficina

<u>C-</u>	N-Marca	N-Modelo
<u>Computadora</u>		
098	Dell	Alienware
074	Toshiba	Satellite L645
049	НР	Pavilon

Se puede notar que hay una dependencia transitiva entre la marca y el modelo de la computadora, es por ello que se aplica la Tercera forma normal para evitar ello.

<u>C-</u>	N-Marca
Computadora	
098	Dell
074	Toshiba
049	HP

N-Marca	N-Modelo
Dell	Alienware
Toshiba	Satellite L645
HP	Pavilon

Ejemplo Completo

Pedidos

<u>Artículo</u>	<u>cliente</u>	cantidad	precio	ciudad	distancia
A1	C1	12	100	Madrid	400
A1	C2	30	100	Valencia	200
A1	C3	15	100	Alicante	80
A2	C1	35	250	Madrid	400
A2	C2	20	250	Valencia	200
A2	C4	10	250	Madrid	400
A3	C3	25	175	Alicante	80

Pedidos'

articulos	<u>clientes</u>	cantidad
A1	C1	12
A1	C2	30
A1	C3	15
A2	C1	35
A2	C2	20
A2	C4	10
A3	C3	25
	_	

artículos

<u>artículo</u>	precio
A1	100
A2	250
A3	175

clientes

<u>cliente</u>	ciudad	Distancia
C1	Madrid	400
C2	Valencia	200
C3	Alicante	80
C4	Madrid	400

Ciudades

5144440	
ciudad	distancia
Madrid	400
Valencia	200
Alicante	80

Clientes'

cliente	ciudad
C1	Madrid
C2	Valencia
C3	Alicante
C4	Madrid

Actividad 2. Lab 7

- Formar grupos de 3 personas
- Normalizar la siguiente relación hasta la 3FN

C-Libro	N-Titulo	N-Autor	N-Editorial	N-Lector	D- Devolución
1001	Variable compleja	Murray Spiegel	McGraw Hill	Pérez Gómez, Juan	15/04/2005
1004	Visual Basic 5	E. Petronic	Anaya	Ríos Terán, Ana	17/04/2005
1005	Estadística	Murray Spiegel	McGraw Hill	Roca, René	16/04/2005
1001	Variable compleja	Stewart James	McGraw Hill	Moreno Zorrilla, Katty	19/04/2005
1006	Oracle University	Nancy Greenbergy Priya Nathan	Oracle Corp.	García Roque, Luis	20/04/2005
1007	Clipper 5.01	Ramalho	McGraw Hill	Pérez Gómez, Juan	18/04/2005

- Escriba un documento explicando cómo aplica cada forma normal
- Tiempo estimado: 30 minutos

Forma Normal de Boyce-Codd FNBC

- Es una versión ligeramente más fuerte de la Tercera forma normal (3FN). La forma normal de Boyce-Codd requiere que no existan dependencias funcionales no triviales de los atributos que no sean un conjunto de la clave candidata.
- En una tabla en 3FN, todos los atributos dependen de una clave, de la clave completa y de ninguna otra cosa excepto de la clave. Se dice que una tabla está en FNBC si y solo si está en 3FN y cada dependencia funcional no trivial tiene una clave candidata como determinante.
- En términos menos formales, una tabla está en FNBC si está en 3FN y los únicos determinantes son claves.

Ejemplos FNBC

	TUTORIAS	
DNI	Asignatura	Tutor
12121219A	Lenguaje	Eva
12121219A	Matemáticas	Andrés
3457775G	Lenguaje	Eva
5674378J	Matemáticas	Guillermo
5674378J	Lenguaje	Julia
5634823H	Matemáticas	Guillermo

T	UTORÍAS
DNI	Tutor
12121219A	Eva
12121219A	Andrés
3457775G	Eva
5674378J	Guillermo
5674378J	Julia
5634823H	Guillermo

ASIGNAT	TURASTUTOR	
Asignatura	Asignatura <u>Tutor</u>	
Lenguaje	Eva	
Matemáticas	Andrés	
Matemáticas	Guillermo	
Lenguaje	Julia	

Esa tabla está en tercera forma normal (no hay dependencias transitivas), pero no en forma de Boyce - Codd, ya que (DNI, Asignatura)

→Tutor yTutor→Asignatura. En este caso la redundancia ocurre por mala selección de clave. La redundancia de la asignatura es completamente evitable. La solución sería:

- La definición de la 3FN no produce diseños satisfactorios cuando se dan las siguientes condiciones, o lo que es lo mismo, cuando una relación NO ESTE EN FNBC concurrirán las siguientes circunstancias:
 - Existen varias claves candidatas.
 - Las claves candidatas son compuestas.
 - Las claves candidatas se encubren, tienen al menos un atributo en común.

4ta Forma Normal 4FN

- Una tabla está en 4NF si y solo si esta en Tercera forma normal o en BCNF (Cualquiera de ambas) y no posee dependencias multivaluadas no triviales. La definición de la 4NF confía en la noción de una dependencia multivaluada.
- Una tabla con una dependencia multivaluada es una donde la existencia de dos o más relaciones independientes muchos a muchos causa redundancia; y es esta redundancia la que es suprimida por la cuarta forma normal.

Ejemplos 4FN

1º Se presenta la siguiente tabla de restaurantes de pizza, el tipo y el lugar de envío:

N- Restaurante	N-Tipo de pizza	N-Lugar de envío
Pizza Hut	Americana	Surco
Pizza Hut	Hawaiana	Miraflores
Papa Johns	Americana	San Borja
Papa Johns	Hawaiana	San Luis

Se puede observar que hay dependencia multivalor entre el nombre del restaurante y el número de pizza, por ello se aplica la cuarta forma normal que daría paso a dos tablas:

N- Restaurante	N-Tipo de pizza 1	N-Tipo de pizza 2
Pizza Hut	Americana	Hawaiana
Papa Johns	Americana	Hawaiana

<u>N-</u> <u>Restaurante</u>	N-Lugar de envío
Pizza Hut	Surco
Pizza Hut	Miraflores
Papa Johns	San Borja
Papa Johns	San Luis

Ejemplos 4FN

2° Se presenta una tabla de nombre de especialidades con su código y el nombre del curso extraacadémico que existen.

C-Clave Área	N- Especialidad	N-Curso
S01	Sistemas	Natación
B01	Bioquímica	Danza
B01	Bioquímica	Guitarra
C03	Civil	Natación

Como es claro, se puede observar una dependencia de datos entre la clave y la especialidad, siendo más específico con la especialidad de Bioquímica. Por ello, se procede a realizar la cuart forma normal.

C-Clave Área	N- Especialidad
S01	Sistemas
B01	Bioquímica
C03	Civil

C-Clave Área	N-Curso
S01	Natación
B01	Danza
B01	Guitarra
C03	Natación

3°En la tabla se observa al nombre del colegio, nombre de algunos cursos y el nombre del profesor que dicta el curso.

N-Colegio	N-Curso	N-Profesor
San Agustín	Matemática	Aldo Rojas
San Agustín	Lenguaje	José Landa
América	Física	Alberto Pérez
América	Química	Rodrigo Vivar

Sin embargo, se genera una dependencia multivalor entre el nombre del curso y el colegio donde éstos se dictan. Se procede a aplicar la cuarta forma normal para que no haya redundancia de datos, la forma que se aplica es una opción de resolver el problema.

N-Colegio	N-Curso1	N-Curso2
San Agustín	Matemática	Lenguaje
América	Física	Química

N-Colegio	N-Profesor
San Agustín	Aldo Rojas
San Agustín	José Landa
América	Alberto Pérez
América	Rodrigo Vivar

5ta Forma Normal 5FN

- La quinta forma normal (5FN), también conocida como forma normal de proyección-unión (PJ/NF), es un nivel de normalización de bases de datos diseñado para reducir redundancia en las bases de datos relacionales que guardan hechos multi-valores aislando semánticamente relaciones múltiples relacionadas.
- Una tabla se dice que está en 5NF si y sólo si está en 4NF y cada dependencia de unión (join) en ella es implicada por las claves candidatas.

- Pero en general se da en los siguientes casos:
 - Hay muchos atributos en las tablas después de la 4FN
 - La tabla contendrá demasiados datos después de la 4FN

Ejemplo

• El psiquiatra puede ofrecer tratamiento reembolsable a los pacientes que sufren de la condición dada y que son asegurados por el asegurador dado. En ausencia de cualquier regla que restrinja las combinaciones válidas posibles de psiquiatra, asegurador, y condición, la tabla de tres atributos *Psiquiatra-para-Asegurador-para-Condición* es necesaria para modelar la situación correctamente.

Psiquiatra-para-Asegurador-para-Condición

<u>Psiquiatra</u>	<u>Asegurador</u>	Condición
Dr. James	Healthco	Ansiedad
Dr. James	Healthco	Depresión
Dr. Kendrick	FriendlyCare	OCD
Dr. Kendrick	FriendlyCare	Ansiedad
Dr. Kendrick	FriendlyCare	Depresión
Dr. Lowenstein	FriendlyCare	Esquizofrenia
Dr. Lowenstein	Healthco	Ansiedad
Dr. Lowenstein	Healthco	Demencia
Dr. Lowenstein	Victorian Life	Trastorno de conversión

Sin embargo, suponga que la regla siguiente se aplica:

Cuando un psiquiatra es autorizado a ofrecer el tratamiento reembolsable a los pacientes asegurados por el asegurador P, y el psiquiatra puede tratar la condición C, entonces - en caso que el asegurador P cubra la condición C - debe ser cierto que el psiquiatra puede ofrecer el tratamiento reembolsable a los pacientes que sufren de la condición C y están asegurados por el asegurador P. Con estas restricciones es posible dividir la relación en tres partes.

Psiquiatra-para-Condición

<u>Psiquiatra</u>	<u>Condición</u>
Dr. James	Ansiedad
Dr. James	Depresión
Dr. Kendrick	OCD
Dr. Kendrick	Ansiedad
Dr. Kendrick	Depresión
Dr. Lowenstein	Esquizofrenia
Dr. Lowenstein	Ansiedad
Dr. Lowenstein	Demencia
Dr. Lowenstein	Trastorno de conversión

Psiquiatrapara-Asegurador

<u>Psiquiatra</u>	<u>Asegurador</u>
Dr. James	Healthco
Dr. Kendrick	FriendlyCare
Dr. Lowenstein	FriendlyCare
Dr. Lowenstein	Healthco
Dr. Lowenstein	Victorian Life

Asegurador-para-Condición

The Survey of the Contraction	
<u>Asegurador</u>	<u>Condición</u>
Healthco	Ansiedad
Healthco	Depresión
Healthco	Demencia
FriendlyCare	OCD
FriendlyCare	Ansiedad
FriendlyCare	Depresión
FriendlyCare	Trastorno emocional
FriendlyCare	Esquizofrenia
Victorian Life	Trastorno de conversión

• Note como esta disposición ayuda a quitar redundancia. Suponga que el Dr. James se convierte en un proveedor de tratamientos para FriendlyCare. En la disposición anterior tendríamos que agregar dos nuevas entradas puesto que el Dr. James puede tratar dos condiciones cubiertas por FriendlyCare: ansiedad y depresión. Con la nueva disposición necesitamos agregar una sola entrada (en la tabla Psiquiatra-para-Asegurador).