Francis X. Giraldo

An Introduction to Elementbased Galerkin Methods on Tensor-Product Bases: Analysis, Algorithms, and Applications

- Monograph -

May 30, 2020

Springer Nature

Preface

The focus of this book is on applying element-based Galerkin (EBG) methods to solve hyperbolic and elliptic equations with an emphasis on the resulting matrix-vector problems. Part I introduces the main topics of the book, followed by Part II which discusses one-dimensional problems. Part III treats multi-dimensional problems. In Part III, the ideas are primarily discussed for two dimensions but some concepts, such as the construction of the tensor-product basis functions, numerical integration, and metric terms, are extended to three dimensions. Part IV discusses advanced topics such as stabilization methods, adaptive mesh refinement, time-integration, and the hybridized discontinuous Galerkin (HDG) method. The contents of each part are described in more detail below and at the very end of this *preface* we include a discussion on how to use this book for teaching a course on this topic.

Because the basic building-blocks of EBG methods rely on interpolation and integration, Chs. 3 and 4 (Part II) cover these two topics in one dimension and Chs. 10 and 11 in multiple dimensions (Part III). These chapters rely on the theory of Jacobi polynomials which is covered in Appendix B.

The EBG methods discussed in this book include the continuous (CG) and discontinuous Galerkin (DG) methods. These methods are introduced for one-dimensional hyperbolic equations in Chs. 5 and 6 for explicit time-integration (Part II). We need to wait until Ch. 21 (Part IV) to discuss the hybridized discontinuous Galerkin (HDG) method because HDG only makes sense in the context of implicit time-integration, which is not introduced until Ch. 20. Chapter 7 is the heart of the manuscript where the idea of unified CG/DG methods is introduced; this chapter also presents the dissipation-dispersion analysis of both methods, and applications of unified CG/DG methods for systems of nonlinear partial differential equations including the shallow water and Euler equations. The application of CG and DG methods for one-dimensional problems is completed in Chs. 8 and 9 with a discussion on the application of these methods for elliptic equations.

Chapters 12, 13, and 14 (Part III) introduce CG, DG, and unified CG/DG methods in two dimensions for elliptic equations. Elliptic equations are handled first in order to focus on spatial discretization which, in multiple dimensions, requires a detailed discussion on the construction of metric terms (Ch. 12). After the basics of EBG

viii Preface

methods in multiple dimensions are covered, we then move to a discussion of these methods for hyperbolic equations in Chs. 15, 16, and 17 for CG, DG, and unified CG/DG. These chapters discuss the efficient construction of CG and DG methods through complexity analysis and show how tensor-product bases allow such efficiencies. Furthermore, Ch. 17 extends further the heart of the book whereby the unified CG/DG approach presented in Ch. 7 for one-dimensional hyperbolic equations is extended to two (and multiple) dimensions.

Part IV covers advanced topics that, while important for the construction of industrial-type codes, is not strictly necessary for understanding the basics of EBG methods. Chapter 18 describes stabilization methods including filters, artificial dissipation (i.e., hyper-diffusion), Riemann solvers, limiters, and entropy-stable methods. Chapter 19 describes the three types of mesh refinement which are h-, p-, and r-refinement. Chapter 20 discusses explicit, implicit, implicit-explicit, semi-Lagrangian, and multirate time-integration methods. Part IV ends with a discussion of the hybridized discontinuous Galerkin method in one dimension in Ch. 21.

Let us now briefly discuss how one might use this book to teach a course on element-based Galerkin methods. Each of the chapters can be treated as lectures that build upon each other and so can be used to construct lectures that can be delivered sequentially. The author's book website contains a sample syllabus for a 10-week quarter-based course that can be easily extended to a 14-week semester-based course (more projects can be assigned and the advanced topics can be discussed in more detail); sample project assignments are also available on the book website. For a 10-week quarter-based course, I recommend assigning 4 projects. Project 1 treats interpolation and integration in one-dimension (Chs. 3 and 4). This then allows the students to tackle Project 2 which deals with solving a one-dimensional scalar hyperbolic equation (Chs. 5 and 6). I recommend having the students first write two different codes that treat CG and DG separately. Then they can write a unified code following the concepts presented in Ch. 7. Project 3 can then focus on solving a two-dimensional elliptic equation with CG and DG as presented in Chs. 12, 13, and 14. Project 4 would then consist of building a unified CG/DG code for solving a two-dimensional hyperbolic equation as presented in Chs. 15, 16, and 17. Assigning such a project is critical for the student to learn how to write efficient code with EBG methods since many of the optimization strategies described in the book can only be fully exploited for time-dependent problems in multi-dimensions (such as sum factorization and constructing the right-hand side vector without storing full matrices).

For a 14-week semester-based course, I recommend adding two more projects. The new Project 3 would consist of solving systems of equations as discussed in Ch. 7; this project is challenging and extremely helpful in preparing the student to tackle more interesting research problems. The new Project 4 consists of solving one-dimensional elliptic equations as described in Chs. 8 and 9; this project should be relatively simple for the student. Project 5 consists of solving two-dimensional elliptic equations and Project 6 focuses on solving two-dimensional hyperbolic equations. For ambitious students, I recommend a project on solving systems of two-dimensional equations

Preface ix

(extension of Ch. 7); this project can be combined with evolving the equations forward in time using implicit methods as presented in Ch. 20.

Contents

Part I Introduction

1	Mot	ivation	and Background	3
	1.1		uction	3
	1.2	Contir	nuous Governing Equations	5
	1.3		tic Tools for Deriving Solutions to the Continuous Problem	7
	1.4		Mathematical Concepts	7
		1.4.1	Taylor Series	7
		1.4.2	Product Rule of Differentiation	8
		1.4.3	Fundamental Theorem of Calculus	8
		1.4.4	Integration by Parts	9
		1.4.5	Green's First Identity	9
	1.5	Comp	utational Tools for Obtaining Solutions to the Discrete Problem	10
		1.5.1	From Continuous to Discrete Formulations	10
		1.5.2	Validity of the Numerical Solution and the Lax	
			Equivalence Theorem	11
		1.5.3	Consistency of a Numerical Method	11
		1.5.4	Stability of a Numerical Method: Von Neumann Stability	
			Analysis	16
		1.5.5	Convergence	20
	1.6	Efficie	ency of Galerkin Methods on Distributed-Memory Computers	21
2	Ove	rview o	f Galerkin Methods	27
	2.1		uction	27
	2.2		ential Form: Finite Differences	27
	2.3		al Form: Galerkin Methods	28
		2.3.1		30
		2.3.2	Discontinuous Galerkin Method	31
	2.4	A For	mal Introduction to Galerkin Methods	35
		2.4.1	Problem Statement	35
		2.4.2	Function Spaces	36

xvi	Contents
AVI	Contents

	2.5 2.6	2.4.3 Sturm-Liouville Operator 2.4.4 Basis Functions Global Galerkin Methods Element-based Galerkin Methods	39 40
Par	t II(One-Dimensional Problems	
3	Inte	rpolation in One Dimension	47
	3.1	Introduction	47
	3.2	Modal Interpolation	47
		3.2.1 Monomial Expansion	48
		3.2.2 Sturm-Liouville Operator	48
		3.2.3 Fourier Functions	48
		3.2.4 Jacobi Polynomials	49
		3.2.5 Legendre Polynomials	50
		3.2.6 Chebyshev Polynomials	51
		3.2.7 More on Legendre Polynomials	51
		3.2.8 Vandermonde Matrix	52
	3.3	Nodal Interpolation	54
		3.3.1 Lebesgue Function and Lebesgue Constant	55
		3.3.2 Lagrange Polynomials	
		3.3.3 Quality of Lagrange Polynomial Interpolation	58
	3.4	Example of Interpolation Quality	
		3.4.1 Equi-Spaced Points	64
		3.4.2 Chebyshev Points	65
		3.4.3 Legendre Points	65
		3.4.4 Lobatto Points	66
	3.5	Summary of Interpolation Points	67
4		nerical Integration in One Dimension	69
	4.1	Introduction	69
	4.2	Divided Differences	69
	4.3	Numerical Integration	72
		4.3.1 Introduction	72
		4.3.2 Quadrature Roots	72
		4.3.3 Quadrature Weights	73
	4.4	Example of Integration Quality	
	4.5	Summary of Integration Points	77
5		Continuous Galerkin Method for Hyperbolic Equations	79
	5.1	Introduction	79
	5.2	Continuous Galerkin Representation of the 1D Wave Equation	80
	5.3	Basis Functions and the Reference Element	81
	5.4	Mass Matrix	82
		5.4.1 General Form of the Mass Matrix	84
	5.5	Differentiation Matrix	84

Contents xvii

		5.5.1	General Form of the Differentiation Matrix \hdots	
	5.6		ng Element Equations	
	5.7	Eleme	nt Contribution to Gridpoint I	
		5.7.1	Left Element	
		5.7.2	Right Element	
		5.7.3	Total Contribution	
		5.7.4	High-Order Approximation	
	5.8		Stiffness Summation	
	5.9	-	is of the Matrix Properties of the Spatial Operators	
		5.9.1	Sparsity Pattern of the Mass Matrix	
		5.9.2	Sparsity Pattern of the Differentiation Matrix	
		5.9.3	Eigenvalue Analysis of the Spatial Operator	
	5.10	-	le of 1D Wave Equation Problem	
			Initial Condition	
			Boundary Condition	
			Error Norm	
			Time-Integrator	
			Construction of the CG Solution	
			Solution Accuracy for a Smooth Problem	
		5.10.7	Solution Accuracy for a Non-Smooth Problem	105
,	1 D. F		Calada Malada for Horada R. Evrada	105
6	6.1		nuous Galerkin Methods for Hyperbolic Equations tinuous Galerkin Representation of the 1D Wave Equation	
	6.2		Matrix	
	6.3		entiation Matrix	
	0.5	6.3.1	General Form of the Weak Differentiation Matrix	
	6.4		Iatrix	
	0.4	6.4.1		
	6.5			
	0.3	6.5.1	ng Element Equations	
		6.5.2	Center Element	
		6.5.3	Right Element	
		6.5.4	Total Contribution	
		6.5.5	centered Numerical Flux	
	6.6	6.5.6	Rusanov Numerical Flux	
	6.6		Order Approximation	
	6.7		is of the Matrix Properties of the Spatial Operators	
		6.7.1	Sparsity Pattern of the Mass Matrix	
		6.7.2	Sparsity Pattern of the Differentiation Matrix	
	<i>(</i> 0	6.7.3	Eigenvalue Analysis of Spatial Operator	
	6.8		vation Property of DG	
		6.8.1	Exact Integration	
		6.8.2	Inexact Integration	
	<i>(</i> 0	6.8.3	Conservation Property of CG	
	6.9	Examp	le of 1D Wave Equation Problem	132

xviii Contents

		6.9.1	Initial Condition	133
		6.9.2	Boundary Condition	
		6.9.3	Error Norm	
		6.9.4	Time-Integrator	
		6.9.5	Construction of the DG Solution	
		6.9.6	Solution Accuracy for a Smooth Problem	
		6.9.7	Solution Accuracy for a Non-Smooth Problem	
7	1D I	Unified	Continuous and Discontinuous Galerkin Methods for	
•			Hyperbolic Equations	141
	7.1		uction	
	7.2		nd DG Storage of Data	
		7.2.1	From DG to CG Storage	
		7.2.2	From CG to DG Storage	
	7.3	1D W	ave Equation	
		7.3.1	Communicator	
		7.3.2	Construction of the Unified CG/DG Solution	
		7.3.3	Face Data Structure	
	7.4		allow Water Equations	
		7.4.1	Example of Linearized 1D Shallow Water Equations	
		7.4.2	Analytic Solution and Initial Condition	
		7.4.3	Boundary Condition	
		7.4.4	Error Norm	
		7.4.5	Time-Integrator	156
		7.4.6	CG Solution Accuracy	
		7.4.7	DG Solution Accuracy	
	7.5	1D Eu	ıler Equations	
	7.6		pation and Dispersion Analysis	
		7.6.1	Continuous Galerkin Method	
		7.6.2	Discontinuous Galerkin Method	165
	7.7	Disper	rsion and High-Frequency Waves	168
		7.7.1	Multi-scale Test Problem	
		7.7.2	CG and DG Solutions	169
8	1D (Continu	ous Galerkin Methods for Elliptic Equations	172
o	8.1		uction	
	8.2		c Equations	
			Difference Method	
	8.4		nuous Galerkin Method	
	8.5		Derivatives in their Strong and Weak Forms	
	0.5	8.5.1	Strong Form	
		8.5.2	Weak Form	
	8.6		d Derivatives in their Weak Form	
	0.0	8.6.1	Laplacian Matrix	
		8.6.2	Resulting Element Equations	
		0.0.2	Troporting Environt Equations	102

Contents xix

		8.6.3	Element Contribution to Gridpoint I	
		8.6.4	1D Elliptic Equation	
	8.7		is of the Matrix Properties of the Spatial Operators	
		8.7.1	Sparsity Pattern of the Mass Matrix	
		8.7.2	Sparsity Pattern of the Laplacian Matrix	
		8.7.3	Eigenvalue Analysis of the Laplacian Operator	
	8.8	_	le of 1D Poisson Equation Problem	
		8.8.1	Error Norm	
		8.8.2	Solution Accuracy	194
9			nuous Galerkin Methods for Elliptic Equations	
	9.1		ection	
	9.2		Equations	
	9.3		tinuous Galerkin Method	
	9.4	First D	erivatives in Weak Form	
		9.4.1	Resulting Element Equations	
		9.4.2	Element Derivative at the Gridpoint I	
	9.5	Second	Derivatives	
		9.5.1	First Derivative: Auxiliary Variable	205
		9.5.2	Resulting Element Equations	206
		9.5.3	Element Derivative at the Gridpoint I	206
		9.5.4	Possible Choices for the Numerical Flux	207
		9.5.5	Resulting Auxiliary Variable at the Gridpoint I	208
		9.5.6	Second Derivative	209
		9.5.7	Resulting Element Equations	210
		9.5.8	Element Second Derivative at the Gridpoint I	210
		9.5.9	Resulting Second Derivative at the Gridpoint I	211
		9.5.10	1D Elliptic Equation	212
	9.6	Analys	is of the Matrix Properties of the Spatial Operators	216
		9.6.1	Sparsity Pattern of the Mass Matrix	216
		9.6.2	Sparsity Pattern of the Laplacian Matrix	216
		9.6.3	Eigenvalue Analysis of the Laplacian Operator	217
	9.7	Examp	le of 1D Poisson Equation Problem	
		9.7.1	Error Norm	218
		9.7.2	Solution Accuracy	218
Par	t III	Multi-E	Dimensional Problems	
10	Inte	rpolatio	on in Multiple Dimensions	223
			action	
	10.2	Interpo	olation on the Quadrilateral	224
		-	Modal Interpolation	
			Nodal Interpolation	
			Popularity of Quadrilateral Elements	
			Example of Quadrilateral Basis Functions	

xx Contents

	10.3 Interpolation on the Hexahedron	
	10.3.1 Modal Interpolation	
	10.3.2 Nodal Interpolation	. 230
	10.3.3 Indexing of the Basis Functions	. 231
11	Numerical Integration in Multiple Dimensions	233
11	11.1 Introduction	
	11.2 Numerical Integration on the Quadrilateral	
	11.3 Numerical Integration on the Hexahedron	
	11.4 Types of Integrals Required	
	11.4 Types of Integrals Required	. 230
12	2D Continuous Galerkin Methods for Elliptic Equations	
	12.1 Introduction	
	12.2 Problem Statement for the Elliptic Equation	
	12.3 Integral Form	. 238
	12.4 Basis Functions and the Reference Element	
	12.5 Basis Functions in Two Dimensions	
	12.6 Basis Functions in Three Dimensions	
	12.7 Metric Terms of the Mapping	
	12.7.1 Metric Terms in Two Dimensions	
	12.7.2 Metric Terms in Three Dimensions	
	12.7.3 Normal Vectors	
	12.7.4 Algorithm for the Metric Terms	
	12.8 Element Equations on a Single Element	
	12.8.1 Integration by Parts for the Diffusion Operator	
	12.8.2 Matrix-Vector Problem Resulting from Exact Integration	
	12.8.3 Matrix-Vector Problem Resulting from Inexact Integration .	
	12.8.4 Algorithms for the Element Matrices	
	12.9 Global Matrix-Vector Problem	
	12.9.1 Direct Stiffness Summation	
	12.9.2 Boundary Condition	
	12.10Second Order Operators without Integration by Parts	
	12.11Example of 2D CG for Linear Elements	
	12.11.12D Basis Functions on Quadrilaterals	
	12.11.2Metric Terms	
	12.11.3Derivatives in Physical Space	
	12.11.4Laplacian Matrix	
	12.11.5Mass Matrix	
	12.11.6Matrix Equations on the Reference Element	
	12.11.7Difference Equation for the Laplacian Operator	
	12.122D Elliptic Equation	
	12.12.1Algorithm for the 2D Elliptic Equation	
	12.13Analysis of the Matrix Properties of the Spatial Operators	
	12.13.1Sparsity Pattern of the Mass Matrix	
	12.13.2Sparsity Pattern of the Laplacian Matrix	. 217

Contents xxi

	12.13.3Eigenvalue Analysis of Spatial Operator	278
	12.14Example of 2D Poisson Equation	
	12.14.1Error Norm	
	12.14.2Solution Accuracy	280
	12.15Computational Cost of High-Order	281
	12.15.1Solution Accuracy	281
13	2D Discontinuous Galerkin Methods for Elliptic Equations	205
13	13.1 Introduction	
	13.2 2D Elliptic Equation	
	13.3 Weak Integral Form	
	13.4 Basis Functions and the Reference Element	
	13.5 Element Equations on a Single Element	
	13.5.1 First Step: Evaluating the Auxiliary Variable	
	13.5.2 Second Step: Evaluate the Poisson Problem	
	13.6 Solution Strategy	
	13.6.1 Approach I	
	13.6.2 Approach II	
	13.7 Algorithm for LDG	
	13.7.1 Element Differentiation Matrix	293
	13.7.2 Global Flux Matrix	295
	13.8 Analysis of the Matrix Properties of the Spatial Operators	295
	13.8.1 Sparsity Pattern of the Mass Matrix	
	13.8.2 Sparsity Pattern of the Laplacian Matrix	
	13.8.3 Eigenvalue Analysis of Spatial Operator	
	13.9 Example of 2D Poisson Equation	
	13.9.1 Solution Accuracy	298
14	2D Unified Continuous and Discontinuous Galerkin Methods for	
	Elliptic Equations	301
	14.1 Introduction	
	14.2 Elliptic Equation	
	14.3 Flux Formulation	
	14.4 Primal Formulation	303
	14.5 Symmetric Interior Penalty Galerkin (SIPG) Method	304
	14.6 Algorithm for the SIPG Method	
	14.7 Analysis of the Matrix Properties of the Spatial Operators	
	14.7.1 Sparsity Pattern of the Laplacian Matrix	
	14.7.2 Eigenvalue Analysis of Spatial Operator	
	14.8 Example of 2D Poisson Equation	
	14.8.1 Solution Accuracy	308

xxii Contents

15	2D (Continuous Galerkin Methods for Hyperbolic Equations	311
		Introduction	
	15.2	2D Advection-Diffusion Equation	311
	15.3	Integral Form	312
	15.4	Element Equations on the Reference Element	312
		15.4.1 Integration by Parts for the Diffusion Operator	313
		15.4.2 Matrix-Vector Problem Resulting from Exact Integration	314
		15.4.3 Matrix-Vector Problem Resulting from Inexact Integration	315
	15.5	Global Matrix-Vector Problem	316
	15.6	Example of 2D CG for Linear Elements	318
		15.6.1 2D Basis Functions	318
		15.6.2 Metric Terms	319
		15.6.3 Derivatives in Physical Space	319
		15.6.4 Mass and Laplacian Matrices	320
		15.6.5 Advection Matrix	320
		15.6.6 Matrix Equations on the Reference Element	322
	15.7	Algorithms for the CG Global Matrix-Vector Problem	323
		15.7.1 Non-Tensor-Product Approach	323
		15.7.2 Tensor-Product Approach	326
	15.8	Example of 2D Hyperbolic Equation Problem	329
		15.8.1 Solution Accuracy	330
		15.8.2 Computational Cost of High-Order	330
16	2D F	Discontinuous Galerkin Methods for Hyperbolic Equations	333
16		Discontinuous Galerkin Methods for Hyperbolic Equations Introduction	
16	16.1	Introduction	333
16	16.1 16.2	Introduction	333 333
16	16.1 16.2 16.3	Introduction	333 333 334
16	16.1 16.2 16.3 16.4	Introduction	333 333 334 335
16	16.1 16.2 16.3 16.4	Introduction	333 333 334 335
16	16.1 16.2 16.3 16.4	Introduction	333 333 334 335 336
16	16.1 16.2 16.3 16.4	Introduction	333 333 334 335 336
16	16.1 16.2 16.3 16.4	Introduction	333 333 334 335 336 336
16	16.1 16.2 16.3 16.4 16.5	Introduction	333 333 334 335 336 336 337 338
16	16.1 16.2 16.3 16.4 16.5	Introduction	333 334 335 336 336 337 338 339
16	16.1 16.2 16.3 16.4 16.5	Introduction	333 334 335 336 336 337 338 339 340
16	16.1 16.2 16.3 16.4 16.5	Introduction 2D Advection-Diffusion Equation Integral Form Basis Functions and the Reference Element Element Equations on a Single Element: Weak Form 16.5.1 Local Discontinuous Galerkin Method for the Diffusion Operator 16.5.2 Matrix-Vector Problem Resulting from Exact Integration 16.5.3 Matrix-Vector Problem Resulting from Inexact Integration Element Equations on a Single Element: Strong Form 16.6.1 Matrix-Vector Problem Resulting from Exact Integration 16.6.2 Matrix-Vector Problem Resulting from Inexact Integration 16.6.2 Matrix-Vector Problem Resulting from Inexact Integration	333 334 335 336 336 337 338 339 340 341
16	16.1 16.2 16.3 16.4 16.5	Introduction 2D Advection-Diffusion Equation Integral Form Basis Functions and the Reference Element Element Equations on a Single Element: Weak Form 16.5.1 Local Discontinuous Galerkin Method for the Diffusion Operator 16.5.2 Matrix-Vector Problem Resulting from Exact Integration 16.5.3 Matrix-Vector Problem Resulting from Inexact Integration Element Equations on a Single Element: Strong Form 16.6.1 Matrix-Vector Problem Resulting from Exact Integration 16.6.2 Matrix-Vector Problem Resulting from Inexact Integration Example of 2D DG for Linear Elements	333 334 335 336 336 337 338 339 340 341 342
16	16.1 16.2 16.3 16.4 16.5	Introduction	333 334 335 336 337 338 339 340 341 342 342
16	16.1 16.2 16.3 16.4 16.5	Introduction	333 334 335 336 336 337 338 339 340 341 342 342
116	16.1 16.2 16.3 16.4 16.5	Introduction 2D Advection-Diffusion Equation Integral Form Basis Functions and the Reference Element Element Equations on a Single Element: Weak Form 16.5.1 Local Discontinuous Galerkin Method for the Diffusion Operator 16.5.2 Matrix-Vector Problem Resulting from Exact Integration 16.5.3 Matrix-Vector Problem Resulting from Inexact Integration Element Equations on a Single Element: Strong Form 16.6.1 Matrix-Vector Problem Resulting from Exact Integration 16.6.2 Matrix-Vector Problem Resulting from Inexact Integration Example of 2D DG for Linear Elements 16.7.1 2D Basis Functions 16.7.2 Metric Terms 16.7.3 Derivatives in Physical Space	333 334 335 336 336 337 338 340 341 342 342 342 343
116	16.1 16.2 16.3 16.4 16.5	Introduction 2D Advection-Diffusion Equation Integral Form Basis Functions and the Reference Element Element Equations on a Single Element: Weak Form 16.5.1 Local Discontinuous Galerkin Method for the Diffusion Operator 16.5.2 Matrix-Vector Problem Resulting from Exact Integration 16.5.3 Matrix-Vector Problem Resulting from Inexact Integration Element Equations on a Single Element: Strong Form 16.6.1 Matrix-Vector Problem Resulting from Exact Integration 16.6.2 Matrix-Vector Problem Resulting from Inexact Integration 16.7.1 2D Basis Functions 16.7.2 Metric Terms 16.7.3 Derivatives in Physical Space 16.7.4 Mass Matrix	333 334 335 336 336 337 338 340 341 342 342 343 343
116	16.1 16.2 16.3 16.4 16.5	Introduction 2D Advection-Diffusion Equation Integral Form Basis Functions and the Reference Element Element Equations on a Single Element: Weak Form 16.5.1 Local Discontinuous Galerkin Method for the Diffusion Operator 16.5.2 Matrix-Vector Problem Resulting from Exact Integration 16.5.3 Matrix-Vector Problem Resulting from Inexact Integration Element Equations on a Single Element: Strong Form 16.6.1 Matrix-Vector Problem Resulting from Exact Integration 16.6.2 Matrix-Vector Problem Resulting from Inexact Integration 16.7.1 2D Basis Functions 16.7.1 Derivatives in Physical Space 16.7.3 Derivatives in Physical Space 16.7.4 Mass Matrix 16.7.5 Differentiation Matrix	333 334 335 336 337 338 339 340 341 342 342 343 343 343
116	16.1 16.2 16.3 16.4 16.5	Introduction 2D Advection-Diffusion Equation Integral Form Basis Functions and the Reference Element Element Equations on a Single Element: Weak Form 16.5.1 Local Discontinuous Galerkin Method for the Diffusion Operator 16.5.2 Matrix-Vector Problem Resulting from Exact Integration 16.5.3 Matrix-Vector Problem Resulting from Inexact Integration Element Equations on a Single Element: Strong Form 16.6.1 Matrix-Vector Problem Resulting from Exact Integration 16.6.2 Matrix-Vector Problem Resulting from Inexact Integration 16.7.1 2D Basis Functions 16.7.2 Metric Terms 16.7.3 Derivatives in Physical Space 16.7.4 Mass Matrix	333 334 335 336 337 338 339 340 341 342 342 343 343 343 343

Contents	xxiii

		16.8.1 Non-Tensor-Product Approach
		16.8.2 Tensor-Product Approach
	16.9	Example of 2D Hyperbolic Equation Problem
	10.,	16.9.1 Error Norm
		16.9.2 Lobatto Points
		16.9.3 Legendre Points
		•
17		Continuous/Discontinuous Galerkin Methods for Hyperbolic
	_	ations
		Introduction
		2D Advection-Diffusion Equation
		Weak Integral Form
		2D Basis Functions and the Reference Element
	17.5	Element Equations on a Single Element: Weak Form
		17.5.1 Matrix-Vector Problem Resulting from Exact Integration 365
		$17.5.2\;\;Matrix\text{-Vector Problem Resulting from Inexact Integration}\ldots 367$
	17.6	Element Equations on a Single Element: Strong Form $\dots 368$
		17.6.1 Matrix-Vector Problem Resulting from Exact Integration 368
		17.6.2 Matrix-Vector Problem Resulting from Inexact Integration 369
	17.7	Algorithms for a Unified CG/DG Matrix-Vector Problem $\ldots\ldots370$
		17.7.1 First Order Operator
		17.7.2 Second Order Operator
		17.7.3 Construction of the Global Matrix Problem
	17.8	Example of 2D Hyperbolic Equation Problem
Par	t IV	Advanced Topics
18	Stab	ilization of High-Order Methods
10		Introduction
		Aliasing Error
		Spectral Filters
		Riemann Solvers and Upwinding
		Limiters
	10.5	18.5.1 Stabilization Limiters
		18.5.2 Positivity-Preserving Limiters
	18.6	Local Adaptive Viscosity Methods
	10.0	18.6.1 Diffusion Operators
		18.6.2 Streamline Upwind Petrov-Galerkin
		18.6.3 Variational Multi-Scale Method
		18.6.4 Dynamic Sub-Grid Scales
	18.7	Provably Stable Methods
		18.7.1 Classical DG Solution of the 1D Burgers Equation
		18.7.2 Energy Stable Solution of the 1D Burgers Equation
		18.7.3 Entropy Stable Methods
		

xxiv Contents

19			sh Refinement	
			ction	
			ming vs non-conforming mesh	
	19.3		ement Method	
			Data Structures	
			H-Refinement Algorithm	
			Gather and Scatter Matrices	
			H-Refinement Example	
	19.4		ement Method	
			P-Refinement for Modal DG	
			P-Refinement for Nodal CG and DG	
		19.4.3	Additional Matrices for Nodal P-Refinement	433
	19.5	R-Refin	ement Method	435
	19.6	H-Refin	ement Example in 2D	436
		19.6.1	Quadtree Data Structure	437
		19.6.2	Space filling curve and data storage	437
		19.6.3	2:1 balance	438
		19.6.4	Handling of non-conforming faces for DG	439
		19.6.5	Handling of non-conforming faces for CG	442
		19.6.6	2D Test Problem	447
20			ntion	
			ction	
	20.2		Methods	
			Single-step Multi-stage Methods	
			Multi-step Methods	
	20.3		nplicit Methods	
			Single-step Multi-stage Methods	
			Multi-step Methods	
	20.4		-Explicit (IMEX) Methods	
			Single-step Multi-stage Methods	
			Multi-step Methods	
			Stability of IMEX Methods	
	20.5		agrangian Methods	
			Non-Conservative Semi-Lagrangian Method	
			Conservative Semi-Lagrangian Method	
			Semi-Lagrangian Example	
		20.5.4	Semi-Lagrangian Method for Balance Laws	467
	20.6	Multirat	te Methods	468
		20.6.1	Multirate Infinitesimal Step	468
		20.6.2	Convergence Rate	470
		20.6.3	Speedup	471

Contents	XXV

21	1D Hybridizable Discontinuous Galerkin Method 475
41	21.1 Introduction
	21.2 Implicit Time-Integration for CG/DG
	21.2.1 Continuous and Discontinuous Galerkin Discretizations 477
	21.2.2 Backward Euler
	21.2.3 Runge-Kutta Method
	21.3 Implicit Time-Integration for HDG
	21.3.1 Spatial Discretization with HDG
	21.3.2 HDG Solution Procedure
	21.4 HDG Example
	21.5 Complexity Analysis of HDG
	21.5.1 HDG versus CGc
	21.5.2 HDG versus DG
	21.5.3 Degrees of Freedom as a Function of N and N_e
	21.5.4 Operation Count as a Function of N and N_e
A	Classification of Partial Differential Equations
	A.1 Scalar Second Order Equation
В	Jacobi Polynomials
D	B.1 Chebyshev Polynomials
	B.2 Legendre Polynomials
	B.3 Lobatto Polynomials
	D.5 Lobatto Folyholinais
C	Boundary Conditions
	C.1 Transmissive Boundary Condition
	C.2 Inflow/Outflow Boundary Condition
	C.3 Impermeable Wall Boundary Condition
	C.4 Gradient Boundary Condition
	C.5 Summary
D	Contravariant Form
	D.1 Summary
	References
Ind	lex541