TECHNIQUES DE SÉRIES CHRONOLOGIQUES EXERCICES PROCESSUS ARIMA

1. Déterminez lesquels parmi les processus suivants sont stationnaires (causaux) et/ou inversibles. On suppose

$$(u_t: t \in \mathbb{Z}) \sim BB(0, \sigma^2)$$
.

- (a) $X_t + 0.2 X_{t-1} 0.48 X_{t-2} = u_t$
- (b) $X_t + 1.9 X_{t-1} + 0.88 X_{t-2} = u_t + 0.2 u_{t-1} + 0.7 u_{t-2}$
- (c) $X_t + 0.6 X_{t-2} = u_t + 1.2 u_{t-1}$
- (d) $X_t + 1.8 X_{t-1} + 0.81 X_{t-2} = u_t$
- (e) $X_t + 1.6 X_{t-1} = u_t 0.4 u_{t-1} + 0.04 u_{t-2}$.
- 2. Soit le processus

$$(1 - B + 0.25 B^2)X_t = (1 + B)u_t$$

où
$$(u_t: t \in \mathbb{Z}) \sim BB(0, \sigma^2)$$
.

- (a) Ce processus est-il stationnaire causal?
- (b) Si oui, trouvez
 - i. les coefficients de la représentation moyenne mobile de X_t ;
 - ii. la fonction d'autocovariance de X_t .

[Voir Brockwell and Davis (1991, Section 3.3).]

3. Soit le processus MA(1)

$$X_t = u_t - \theta u_{t-1}$$
, $|\theta| < 1$, $t \in \mathbb{Z}$

où $(u_t:t\in\mathbf{Z})\sim BB(0,\sigma^2)$. Dérivez la fonction d'autocorrélation partielle de X_t .

4. Soit le processus MA(1)

$$X_t = u_t - u_{t-1}, \ t \in \mathbb{Z}$$

où $(u_t: t \in \mathbb{Z}) \sim BB(0, \sigma^2)$. Dérivez la fonction d'autocorrélation partielle de X_t .

5. Soit $(X_t : t \in \mathbb{Z})$ un processus stationnaire (non causal) qui satisfait l'équation

$$X_t = \varphi X_{t-1} + u_t , |\varphi| > 1 , (u_t : t \in \mathbb{Z}) \sim BB(0, \sigma^2) .$$

Montrez que $X_t = (1/\varphi)X_{t-1} + \widetilde{u}_t$, $(u_t : t \in \mathbb{Z}) \sim BB(0, \widetilde{\sigma}^2)$ pour un bruit blanc choisi de façon appropriée. Déterminez $\widetilde{\sigma}^2$.

6. Montrez que l'équation de récurrence

$$X_t = \varphi X_{t-1} + u_t, \ t \ge 1, \ (u_t : t \in \mathbb{Z}) \sim BB(0, \ \sigma^2)$$

ne possède pas de solution stationnaire lorsque $|\varphi|=1$.

7. Soit $(Y_t:t\in\mathbb{Z})$ un processus stationnaire du second ordre. Montrez que l'équation de récurrence

$$X_t - \varphi_1 X_{t-1} - \dots - \varphi_p X_{t-p} = Y_t - \theta_1 Y_{t-1} - \dots - \theta_q Y_{t-q}$$

possède une solution stationnaire si $\varphi(z) \equiv 1 - \varphi_1 z - \dots - \varphi_p z^p \neq 0$ pour |z| = 1. De plus, si $\varphi(z) \neq 0$ pour $|z| \leq 1$, montrez que X_t est une fonction causale de Y_t .

8. Soit $(X_t : t \in \mathbb{Z})$ un processus ARMA stationnaire satisfaisant l'équation

$$\phi(B) X_t = \theta(B) u_t, (u_t : t \in \mathbb{Z}) \sim BB(0, \sigma^2)$$

où $\phi(z)$ et $\theta(z)$ sont des polynômes de degré fini sans racine commune, et $\phi(z) \neq 0$ pour |z|=1. Si $\xi(z)$ est un polynôme, tel que $\xi(z) \neq 0$ pour |z|=1, montrez que l'équation

$$\xi(B) \phi(B) Y_t = \xi(B) \theta(B) u_t$$

possède une solution stationnaire unique $Y_t = X_t$.

9. Soit $(X_t : t \in \mathbb{Z})$ le processus

$$X_t = \sum_{j=-\infty}^{\infty} \psi_j u_{t-j} , (u_t : t \in \mathbb{Z}) \sim BB(0, \sigma^2)$$

où $\sum\limits_{j=-\infty}^{\infty}|\psi_j|<\infty$. Montrez que $\sum\limits_{j=-\infty}^{\infty}|\gamma(k)|<\infty$ où $\gamma(k)$ est la fonction d'autocovariance de X_t .

10. Soit $(X_t : t \in \mathbb{Z})$ un processus stationnaire du second ordre et soit

$$Y_t = (1 - 0.4B)X_t = X_t - 0.4 X_{t-1}$$

$$Z_t = (1 - 2.5B)X_t = X_t - 2.5 X_{t-1}$$
.

Montrez que Y_t et Z_t ont la même fonction d'autocorrélation.

- 11. Soit $(X_t : t \in \mathbb{Z})$ un processus ARMA stationnaire du second ordre, tel que $\phi(z) \neq 0$ pour $|z| \neq 1$, et dont la fonction d'autocovariance est $\gamma(k)$.
 - (a) Montrez qu'il existe des constantes c>0 et s, où 0< s<1, telles que $|\gamma(k)|\leq C\,s^{|k|}$, $k\in\mathbb{Z}$.
 - (b) Déduisez que $\sum\limits_{k=-\infty}^{\infty} \lvert \gamma(k) \rvert < \infty$.
- 12. Trouvez les coefficients ψ_i , j=0, 1, 2, ... de la représentation

$$X_t = \sum_{j=0}^{\infty} \psi_j \ u_{t-j}$$

du processus ARMA(2, 1)

$$(1 - 0.5B - 0.4B^2)X_t = (1 + 0.25B)u_t, u_t \sim BB(0, \sigma^2).$$

13. Trouvez et graphez les dix premières autocovariances $\gamma(k), k=1, \ldots, 10$, du processus

$$(1 - 0.5B)(1 - 0.4B)(1 - 0.1B) X_t = u_t , u_t \sim BB(0, \sigma^2) , t \in \mathbb{Z} .$$

14. Trouvez la moyenne et la fonction d'autocovariance du processus

$$X_t = 2 + 1.3 X_{t-1} - 0.4 X_{t-2} + u_t - u_{t-1}, \ u_t \sim BB(0, \ \sigma^2), \ t \in \mathbb{Z}$$
.

Ce processus est-il causal? Inversible?

15. Soit $(X_t : t \in \mathbb{Z})$ un processus ARMA(1,1) satisfaisant l'équation

$$X_t - \varphi X_{t-1} = u_t + \theta u_{t-1}, \ u_t \sim BB(0, \ \sigma^2),$$

où $|\varphi| < 1$ et $|\theta| < 1$.

- (a) Déterminez les coefficients ψ_i de la représentation $MA(\infty)$ de X_t .
- (b) Montrez que la fonction d'autocorrélation de X_t est :

$$\rho(1) = (1 + \varphi \theta)(\varphi + \theta) / (1 + \theta^2 + 2\varphi \theta),$$

$$\rho(k) = \varphi^{k-1}\rho(1), k \ge 1.$$

Références

BROCKWELL, P. J., AND R. A. DAVIS (1991): *Time Series: Theory and Methods*. Springer-Verlag, New York, second edn.