

1. Determine  $S_e'$  either from test data or

$$S'_{e} = \begin{cases} 0.5S_{ut} & S_{ut} \leq 200 \text{ kpsi } (1400 \text{ MPa}) \\ 100 \text{ kpsi} & S_{ut} > 200 \text{ kpsi} \\ 700 \text{ MPa} & S_{ut} > 1400 \text{ MPa} \end{cases}$$
(6–10)

2. Modify  $S'_e$  to determine  $S_e$ .

$$S_e = k_a k_b k_c k_d k_e S_e' \tag{6-17}$$

a. Surface factor,  $k_a$ 

$$k_a = aS_{ut}^b (6-18)$$

Table 6-2 Curve Fit Parameters for Surface Factor, Equation (6-18)

|                        | Fac             | Exponent       |        |  |
|------------------------|-----------------|----------------|--------|--|
| Surface Finish         | $S_{ut}$ , kpsi | $S_{ut}$ , MPa | b      |  |
| Ground                 | 1.21            | 1.38           | -0.067 |  |
| Machined or cold-drawn | 2.00            | 3.04           | -0.217 |  |
| Hot-rolled             | 11.0            | 38.6           | -0.650 |  |
| As-forged              | 12.7            | 54.9           | -0.758 |  |

b. Size factor,  $k_b$ 

Rotating shaft. For bending or torsion,

$$k_b = \begin{cases} (d/0.3)^{-0.107} = 0.879d^{-0.107} & 0.3 \le d \le 2 \text{ in} \\ 0.91d^{-0.157} & 2 < d \le 10 \text{ in} \\ (d/7.62)^{-0.107} = 1.24d^{-0.107} & 7.62 \le d \le 51 \text{ mm} \\ 1.51d^{-0.157} & 51 < 254 \text{ mm} \end{cases}$$
(6–19)

For axial,

$$k_b = 1 \tag{6-20}$$

**Nonrotating member.** For bending, use Table 6–3 for  $d_e$  and substitute into Equation (6–19) for d.

c. Load factor,  $k_c$ 

$$k_c = \begin{cases} 1 & \text{bending} \\ 0.85 & \text{axial} \\ 0.59 & \text{torsion} \end{cases}$$
 (6–25)

## b. Temperature factor, $k_d$

$$S_T/S_{RT} = 0.98 + 3.5(10^{-4})T_F - 6.3(10^{-7})T_F^2$$
  
 $S_T/S_{RT} = 0.99 + 5.9(10^{-4})T_C - 2.1(10^{-6})T_C^2$  (6-26)

Either use the ultimate strength from Equation (6–26) to estimate  $S_e$  at the operating temperature, with  $k_d = 1$ , or use the known  $S_e$  at room temperature with  $k_d = S_T/S_{RT}$  from Equation (6–26).

## c. Reliability factor, $k_e$

Table 6-4 Reliability Factor  $k_e$  Corresponding to 8 Percent Standard Deviation of the Endurance Limit

| Reliability, % | Transformation Variate z <sub>a</sub> | Reliability Factor k <sub>e</sub> |  |  |
|----------------|---------------------------------------|-----------------------------------|--|--|
| 50             | 0                                     |                                   |  |  |
| 90             | 1.288                                 | 0.897                             |  |  |
| 95             | 1.645                                 | 0.868                             |  |  |
| 99             | 2.326                                 | 0.814                             |  |  |
| 99.9           | 3.091                                 | 0.753                             |  |  |
| 99.99          | 3.719                                 | 0.702                             |  |  |

3. Determine fatigue stress-concentration factor,  $K_f$  or  $K_{fs}$ .

## [TO BE COVERED NEXT TIME]

4. Apply  $K_f$  to the nominal completely reversed stress,  $\sigma_a = K_f \sigma_{a0}$ .

### [TO BE COVERED NEXT TIME]

5. Determine f from Figure 6-23 or Equation (6-11). For  $S_{ut}$  lower than the range, use f=0.9.

$$f = 1.06 - 2.8(10^{-3})S_{ut} + 6.9(10^{-6})S_{ut}^2$$
 70 <  $S_{ut}$  < 200 kpsi  
 $f = 1.06 - 4.1(10^{-4})S_{ut} + 1.5(10^{-7})S_{ut}^2$  500 <  $S_{ut}$  < 1400 MPa  
 $a = (fS_{ut})^2/S_e$  (6–13)  
 $b = -[\log(fS_{ut}/S_e)]/3$  (6–14)

6. Determine fatigue strength  $S_f$  at N cycles, or, N cycles to failure at a reversing stress  $\sigma_{ar}$ .

(*Note:* This only applies to purely reversing stresses where  $\sigma_m=0$ .)

$$S_f = aN^b$$
 (6–12)  
 $N = (\sigma_{ar}/a)^{1/b}$  (6–15)

# **EXAMPLE PROBLEM**

1080 HR steel bar

 $S_{ut} = 770 \text{ MPa} @ T_c = 20^{\circ}\text{C}$ 

#### Table A-20

Deterministic ASTM Minimum Tensile and Yield Strengths for Some Hot-Rolled (HR) and Cold-Drawn (CD) Steels [The strengths listed are estimated ASTM minimum values in the size range 18 to 32 mm ( $\frac{3}{4}$  to  $1\frac{1}{4}$  in). These strengths are suitable for use with the design factor defined in Sec. 1–10, provided the materials conform to ASTM A6 or A568 requirements or are required in the purchase specifications. Remember that a numbering system is not a specification.] Source: 1986 SAE Handbook, p. 2.15.

| l<br>UNS No. | 2<br>SAE and/or<br>AISI No. | Process- S | 4<br>Tensile            | 5<br>Yield<br>Strength,<br>MPa (kpsi) | 6 Elongation in 2 in, % | 7 Reduction in Area, % | 8<br>Brinell<br>Hardness |
|--------------|-----------------------------|------------|-------------------------|---------------------------------------|-------------------------|------------------------|--------------------------|
|              |                             |            | Strength,<br>MPa (kpsi) |                                       |                         |                        |                          |
| G10060 1006  | 1006                        | HR         | 300 (43)                | 170 (24)                              | 30                      | 55                     | 86                       |
|              | CD                          | 330 (48)   | 280 (41)                | 20                                    | 45                      | 95                     |                          |
| G10100 1010  | HR                          | 320 (47)   | 180 (26)                | 28                                    | 50                      | 95                     |                          |
|              | CD                          | 370 (53)   | 300 (44)                | 20                                    | 40                      | 105                    |                          |
| G10150 1015  | HR                          | 340 (50)   | 190 (27.5)              | 28                                    | 50                      | 101                    |                          |
|              | CD                          | 390 (56)   | 320 (47)                | 18                                    | 40                      | 111                    |                          |
| G10180 1018  | 1018                        | HR         | 400 (58)                | 220 (32)                              | 25                      | 50                     | 116                      |
|              |                             | CD         | 440 (64)                | 370 (54)                              | 15                      | 40                     | 126                      |
| G10200 1020  | 1020                        | HR         | 380 (55)                | 210 (30)                              | 25                      | 50                     | 111                      |
|              |                             | CD         | 470 (68)                | 390 (57)                              | 15                      | 40                     | 131                      |
| G10300 1030  | HR                          | 470 (68)   | 260 (37.5)              | 20                                    | 42                      | 137                    |                          |
|              |                             | CD         | 520 (76)                | 440 (64)                              | 12                      | 35                     | 149                      |
| G10350 1035  | 1035                        | HR         | 500 (72)                | 270 (39.5)                            | 18                      | 40                     | 143                      |
|              |                             | CD         | 550 (80)                | 460 (67)                              | 12                      | 35                     | 163                      |
| G10400 1040  | 1040                        | HR         | 520 (76)                | 290 (42)                              | 18                      | 40                     | 149                      |
|              |                             | CD         | 590 (85)                | 490 (71)                              | 12                      | 35                     | 170                      |
| G10450 1045  | 1045                        | HR         | 570 (82)                | 310 (45)                              | 16                      | 40                     | 163                      |
|              |                             | CD         | 630 (91)                | 530 (77)                              | 12                      | 35                     | 179                      |
| G10500 1050  | 1050                        | HR         | 620 (90)                | 340 (49.5)                            | 15                      | 35                     | 179                      |
|              |                             | CD         | 690 (100)               | 580 (84)                              | 10                      | 30                     | 197                      |
| G10600       | 1060                        | HR         | 680 (98)                | 370 (54)                              | 12                      | 30                     | 201                      |
| G10800       | 1080                        | HR         | 770 (112)               | 420 (61.5)                            | 10                      | 25                     | 229                      |
| G10950       | 1095                        | HR         | 830 (120)               | 460 (66)                              | 10                      | 25                     | 248                      |