CSE 675.02: Introduction to Computer Architecture

## Arithmetic / Logic Unit – ALU Design

Presentation F

Reading Assignment: B5, 3.4

Slides by Gojko Babić

## 32-bit ALU



- Our ALU should be able to perform functions:
  - logical and function
  - logical or function
  - arithmetic add function
  - arithmetic subtract function
  - arithmetic slt (set-less-then) function
  - logical nor function
- ALU control lines define a function to be performed on A and B.

g. babic Presentation F 2

## **Functioning of 32-bit ALU**

|          | ALU Control lines |         |           |
|----------|-------------------|---------|-----------|
| Function | Ainvert           | Binvert | Operation |
| and      | 0                 | 0       | 00        |
| or       | 0                 | 0       | 01        |
| add      | 0                 | 0       | 10        |
| subtract | 0                 | 1       | 10        |
| slt      | 0                 | 1       | 11        |
| nor      | 1                 | 1       | 00        |



3

- Result lines provide result of the chosen function applied to values of A and B
- Since this ALU operates on 32-bit operands, it is called 32-bit ALU
- Zero output indicates if all Result lines have value 0
- Overflow indicates integer overflow of add and subtract functions; for unsigned integers, this overflow indicator does not provide any useful information
- Carry out indicates carry out and unsigned integer overflow g. babic Presentation F

**Designing 32-bit ALU: Beginning** 1. Let us start with and function **Operation** = 1 <del>→</del> or 2. Let us now add or function Result0 b0 a1 Result1 b1 a2 Result2 a31 b31 g. babic 4

















