- 1. Advanced Encryption Standard, http://csrc.nist.gov/encryption/aes/
- 2. M. Agraval, N. Kayal, N. Saxena, Primes is in P, http://www.cse.iitk.ac.in/news/primality.html
- A. Aho, J. Hopcroft, J. Ullman, The Design and Analysis of Computer Algorithms (Addison-Wesley, Reading, Massachusetts, 1974)
- E. Bach, J. Shallit, Algorithmic Number Theory (MIT Press, Cambridge, Massachusetts and London, England, 1996)
- 5. F. Bauer, Entzifferte Geheimnisse (Springer, Berlin, 1995)
- 6. F. Bauer, Decrypted Secrets (Springer, Berlin, 2000)
- 7. M. Bellare, P. Rogaway, The exact security of digital signatures: How to sign with RSA and Rabin, in *Advances in Cryptology EUROCRYPT '96* (Springer, 1996), S. 399–416
- 8. M. Bellare, P. Rogaway, Optimal asymmetric encryption how to encrypt with RSA, in *Advances in Cryptology EUROCRYPT '94* (Springer, 1996), S. 92–111
- M. Bellare, R. Canetti, H. Krawczyk, Keying hash functions for message authentication, in Advances in Cryptology - CRYPTO '96, 16th Annual International Cryptology Conference, Santa Barbara, California, USA, August 18–22, 1996, S. 1–15
- 10. D.J. Bernstein, J. Buchmann, E. Dahmen (Hrsg.), Post-Quantum Cryptography (Springer, 2008)
- 11. D.J. Bernstein, D. Hopwood, A. Hülsing, T. Lange, R. Niederhagen, L. Papachristodoulou, M. Schneider, P. Schwabe, Z. Wilcox-O'Hearn, SPHINCS: practical stateless hash-based signatures, in *Advances in Cryptology EUROCRYPT 2015*, 34th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26–30, 2015, Proceedings, Part I, S. 368–397
- 12. A. Beutelspacher, J. Schwenk, K.-D. Wolfenstetter, *Moderne Verfahren der Kryptographie* (Vieweg, 1998)
- E. Biham, A. Shamir, Differential Cryptanalysis of the Data Encryption Standard (Springer, New York, 1993)
- 14. I.F. Blake, G. Seroussi, N.P. Smart, *Elliptic Curves in Cryptography* (Cambridge University Press, Cambridge, England, 1999)
- D. Bleichenbacher, Chosen ciphertext attacks against protocols based on the RSA encryption standard PKCS#1, in Advances in Cryptology – CRYPTO '98, 1998, S. 1–12
- D. Boneh, The decision Diffie-Hellman problem, in ANTS III, Lecture Notes in Computer Science, Bd. 1423, (Springer, Berlin, 1998), S. 48–63
- © Springer-Verlag Berlin Heidelberg 2016

17. D. Boneh, G. Durfee, Cryptanalysis of RSA with private keys d less than $N^{0.292}$, IEEE Transact. Inf. Theory **46**(4), 1339–1349 (2000)

- 18. J. Buchmann, Faktorisierung großer Zahlen. Spektrum Wiss. 9, 80–88 (1996)
- J. Buchmann, S. Paulus, A one way function based on ideal arithmetic in number fields, in Advances in Cryptology – CRYPTO '97, Lecture Notes in Computer Science, Bd. 1294, hrsg. von B. Kaliski (Springer, Berlin, 1997), S. 385–394
- J. Buchmann, H.C. Williams, Quadratic fields and cryptography, in *Number Theory and Cryptography, London Mathematical Society Lecture Note Series*, Bd. 154, hrsg. von J.H. Loxton (Cambridge University Press, Cambridge, England, 1990), S. 9–25
- 21. J.A. Buchmann, E.G. Karatsiolis, A. Wiesmaier, *Introduction to Public Key Infrastructures* (Springer, 2013)
- T.H. Cormen, C.E. Leiserson, R.L. Rivest, *Introduction to Algorithms* (MIT Press, Cambridge, Massachudetts, 1990)
- 23. R. Cramer, V. Shoup, Signature schemes based on the strong rsa assumption. ACM Transact. Inf. Syst. Theory **3**, 161–185 (2000)
- 24. N.G. de Bruijn, On the number of integers $\leq x$ and free of prime factors > y. Indag. Math. 38, 239–247 (1966)
- 25. W. Diffie, M.E. Hellman, New directions in cryptography. IEEE-IT IT-22, 644-654 (1976)
- Discrete Logarithm Records, https://en.wikipedia.org/wiki/Discrete_logarithm_records# Integers_modulo_p
- 27. Factoring records, http://www.crypto-world.com/FactorRecords.html
- 28. A. Fiat, M. Naor, Rigorous time/space trade offs for inverting functions, in 23rd ACM Symp. on Theory of Computing (STOC) (ACM Press, 1991), S. 534–541
- 29. A. Fiat, A. Shamir, How to prove yourself: practical solutions to identification and signature problems, in *Advances in Cryptology CRYPTO '86*, *Lecture Notes in Computer Science*, Bd. 263, hrsg. von A.M. Odlyzko (Springer, 1986), S. 186–194
- FIPS 186-4, Digital Signature Standard (DSS). Federal Information Processing Standards Publication 186-4, U.S. Department of Commerce/N.I.S.T., National Technical Information Service, Springfield, Virginia, 2013.
- O. Goldreich, Modern Cryptography, Probabilistic Proofs and Pseudorandomness (Springer, New York, 1999)
- 32. S. Goldwasser, S. Micali, Probabilistic encryption. J. Comput. Syst. Sci. 28, 270–299 (1984)
- 33. D.M. Gordon, A survey of fast exponentiation methods. J. Algorithms 27, 129–146 (1998)
- M. Hellman, A cryptanalytic time-memory trade-off. IEEE Transact. Inf. Theory 26(4), 401– 406 (1980)
- 35. P. Horster, Kryptologie (Bibliographisches Institut, 1987)
- ISO/IEC 9796, Information technology Security techniques Digital signature scheme giving message recovery (International Organization for Standardization, Geneva, Switzerland, 1991)
- 37. D. Kahn, *The codebreakers* (Macmillan Publishing Company, 1967)
- 38. L.R. Knudsen, Contemporary block ciphers, in *Lectures on Data Security*, *LNCS*, Bd. 1561, hrsg. von I. Damgard (Springer-Verlag, New York, 1999), S. 105–126

39. D.E. Knuth, *The art of computer programming. Volume 2: Seminumerical algorithms* (Addison-Wesley, Reading, Massachusetts, 1981)

- 40. N. Koblitz, A Course in Number Theory and Cryptography (Springer, 1994)
- 41. L. Lamport, Constructing digital signatures from a one way function. Technical Report SRI-CSL-98. SRI International Computer Science Laboratory, 1979
- 42. A.K. Lenstra, H.W. Lenstra, Jr., Algorithms in number theory, in *Handbook of Theoretical Computer Science, Volume A, Algorithms and Complexity*, Kap. 12, hrsg. von J. van Leeuwen (Elsevier, Amsterdam, 1990)
- 43. A.K. Lenstra, H.W. Lenstra Jr., Algorithms in number theory, in *Handbook of Theoretical Computer Science. Volume A. Algorithms and Complexity*, Kap. 12, hrsg. von J. van Leeuwen (Elsevier, 1990), S. 673–715
- 44. A.K. Lenstra, H.W. Lenstra Jr. (Hrsg.), The Development of the Number Field Sieve, in *Lecture Notes in Math* (Springer, Berlin, 1993)
- 45. H.W. Lenstra, Jr., C. Pomerance, A rigorous time bound for factoring integers. J. AMS 5, 483–516 (1992)
- 46. H.R. Lewis, C.H. Papadimitriou, *Elements of the Theory of Computation* (Prentice-Hall, Englewood Cliffs, NJ, 1981)
- 47. LiDIA, www.informatik.tu-darmstadt.de/TI/Welcome-Software.html
- 48. A. Menezes, *Elliptic Curve Public Key Cryptosystems* (Kluwer Academic Publishers, Dordrecht, 1993)
- A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook of Applied Cryptography (CRC Press, Boca Raton, Florida, 1997)
- 50. R.C. Merkle, A certified digital signature, in CRYPTO '89: Proceedings on Advances in Cryptology, Lecture Notes in Computer Science, Bd. 435 (Springer, 1989), S. 218–238
- 51. K. Meyberg, Algebra Teil 1 (Carl Hanser, 1980)
- 52. K. Meyberg, Algebra Teil 2 (Carl Hanser, 1980)
- B. Möller, Improved techniques for fast exponentiation, in *Proceedings of ICISC 2002* (Springer, 2003)
- 54. E. Oeljeklaus, R. Remmert, *Lineare Algebra I* (Springer, Berlin, 1974)
- 55. J. Overbey, W. Traves, J. Wojdylo, On the keyspace of the hill cipher. Cryptologia **29**, 59–72 (2005)
- 56. PKCS#1, www.rsasecurity.com/rsalabs/pkcs/pkcs-1/index.html
- 57. D. Pointcheval, J. Stern, Security arguments for digital signatures and blind signatures. J. Cryptol. 13, 361–396 (2000)
- 58. H. Riesel, Prime Numbers and Computer Methods for Factorization (Birkhäuser, Boston, 1994)
- R.L. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21, 120–126 (1978)
- 60. R. Rompel, One-way functions are necessary and sufficient for secure signatures, in 22nd ACM Symp. on Theory of Computing (STOC), 1990, S. 387–394
- 61. M. Rosing, *Implementing Elliptic Curve Cryptography* (Manning, 1999)
- J. Rosser, L. Schoenfeld, Approximate formulas for some functions of prime numbers. Illinois J. Math. 6, 64–94 (1962)

- 63. R.A. Rueppel, Analysis and Design of Stream Ciphers (Springer, Berlin, 1986)
- 64. O. Schirokauer, D. Weber, T. Denny, Discrete logarithms: the effectiveness of the index calculus method, in *ANTS II*, *Lecture Notes in Computer Science*, Bd. 1122, hrsg. von H. Cohen (Springer, Berlin, 1996)
- 65. B. Schneier, Applied Cryptography, 2. Aufl. (Wiley, New York, 1996)
- 66. C.P. Schnorr, Efficient signature generation by smart cards, in *Advances in Cryptology CRYP-TO '89*, Lecture Notes in Computer Science (Springer, 1991), S. 161–174
- 67. A. Shamir, How to share a secret. Commun. ACM 22, 612–613 (1979)
- 68. C.E. Shannon, Communication theory of secrecy systems. Bell Sys. Tech. J. 28, 656–715 (1949)
- 69. P.W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. **26**, 1484–1509 (1997)
- V. Shoup, OAEP reconsidered, in Advances in Cryptology CRYPTO 2001 (Springer, 2001), S. 239–259
- 71. D. Stinson, *Cryptography* (CRC Press, Boca Raton, Florida, 1995)
- 72. D. Stinson, *Cryptography, Theory and Practice*, 2. Aufl. (CRC Press, Boca Raton, Florida, 2002)
- 73. Yearly report on algorithms and keysizes, ICT-2007-216676 ECRYPT II, 2012

CE(P) (A	A
$GF(p^n)$, 64	Average-Case-Laufzeit, 22
Ω -Notation, 20	В
P, 10	Babysteps, 218
\mathbb{Z}_m , 83	Berechnungsproblem, 22
$\lfloor \alpha \rfloor, 2$	(t, ε) -schwer, 23
^{\$} , 74	asymptotisch schwer, 24
	unlösbar, 23
A	beschränkt
abelsch, 40	nach oben, 2
adaptiv, 129, 251	nach unten, 2
AddRoundKey, 146	Beweiser, 285
Adjunkte, 107	bijektiv, 49
affin linear, 108	binäre Länge, 7
affine Chiffre, 103	Binärentwicklung, 6
Algorithmus, 17	Bit-Komplexität, 20
deterministisch, 18	Bit-Operation, 20
polynomiell, 21	Bitpermutation, 84
probabilistisch, 18	Blockchiffre, 85
zustandsbehaftet, 18	affin linear, 109
Alphabet, 82	Blocklänge, 85
Angreifer	
aktiv, 80	C
passiv, 80	CA, 299
Angriff	Caesar-Chiffre, 75
Chosen-Ciphertext, 81	Carmichael-Zahl, 158
Chosen-Message, 251	CBC-Mode, 90
Chosen-Plaintext, 80	CCA-Sicherheit, 131
Known-Message, 251	CDH, 190
Known-Plaintext, 80	Certificate Revocation List, 302
Low-Exponent, 175	Certification Authority, 299
No-Message, 250	CFB-Mode, 94
anomale Kurve, 282	Challenge-Response-Verfahren, 287
Archivierung, 300	Charakteristik, 64
assoziativ, 40	Chiffre
Authentisierungspfad, 266	linear, 109
Authentizität, 233, 245	Chiffretext, 73

Chiffretextraum, 73, 167	Signatur, 257
Chinesischer Restsatz, 56	Verschlüsselung, 195
Chosen-Ciphertext-Angriff, 81	elliptische Kurve, 280
Chosen-Ciphertext-Sicherheit, 131, 186	anomale, 282
Chosen-Message-Angriff, 251, 273	supersinguläre, 282
Chosen-Plaintext-Angriff, 80	endlicher Körper, 279
Chosen-Plaintext-Sicherheit, 129, 184	Entschlüsselungsalgorithmus, 73, 168
Cipher, 146	Enumerationsverfahren, 218
Cipherblock-Chaining-Mode, 90	Ereignis, 13
Cipher-Feedback-Mode, 94	unabhängig, 14
Ciphertext-Only-Angriff, 79	Erfolgswahrscheinlichkeit, 19
Completeness, 288	Ergebnis, 12
Counter-Mode, 99	Ergebnismenge, 12
CPA-Sicherheit, 129, 184	Erwartungswert, 15
CRL, 302	Erzeuger, 48
CTR-Mode, 99	Eulersche φ -Funktion, 46
	Eulersches Kriterium, 68
D	existentielle Fälschung, 243
Darstellungsproblem, 298	exklusives Oder, 90
DDH, 190	Experiment, 128
Determinante, 106	r
differentielle Kryptoanalyse, 114	F
Diffie-Hellman-Problem, 190	Faktorbasis, 228
computational, 190	Fälschung
decisional, 190	existentielle, 250
Diffie-Hellman-Schlüsselaustausch, 188	selektive, 250
Diffie-Hellman-Tripel, 190	Feige-Fiat-Shamir-Protokoll, 290
Diffusion, 111	Feistel-Chiffre, 135
digitale Signatur, 246	Fermat-Test, 157
direktes Produkt, 57	Fermat-Zahlen, 12
diskreter Logarithmus, 188, 217	Fiat-Shamir-Identifikationsverfahren, 288
Diskriminante, 280	Funktion
Division mit Rest, 5, 61, 62	affin linear, 108
DL-Problem, 217	linear, 108
Dreifach-Verschlüsselung, 86	
DSA-Signatur, 261	G
_	g-adische Darstellung, 5
E	g-adische Entwicklung, 6
ECB-Mode, 87	ganze Zahlen, 1
Eingabelänge, 20	ganzzahlige Linearkombination, 8
Einheit, 42	gcd, 7
Einheitengruppe, 42	Geburtstagsangriff, 236
Einmalpaßwort, 287	gemeinsamer Teiler, 7
Einselement, 42	Giantsteps, 219
Einwegeigenschaft, 273	glatte Zahlen, 209, 228
Einwegfunktion, 234	Gleichverteilung, 13
Electronic-Codebook-Mode, 87	Grad, 60
elektronische Signatur, 246	größter gemeinsamer Teiler, 7
Elementarereignis, 12	Gruppe, 41
ElGamal	abelsch, 41

kommutativ, 41	symmetrisch, 73
zyklisch, 48	Kürzungsregeln, 41
Gruppenordnung, 42	
	\mathbf{L}
H	Lamport-Diffie-Einmal-Signaturverfahren, 247
Halbgruppe, 40	Las-Vegas-Algorithmus, 18
Hashfunktion, 234	Laufzeit, 20
Hexadezimalentwicklung, 6	exponentiell, 21
Hill-Chiffre, 110	linear, 21
HMAC, 242	quadratisch, 21
Homorphismus, 58	quasi-linear, 21
Hybridverfahren, 166	subexponentiell, 21
	LD-OTS, 247
I	leere Folge, 83
Identifikation, 285	Leitkoeffizient, 60
IND-CCA, 131, 186	lineare Rekursion, 102
IND-CPA, 184	Low-Exponent-Angriff, 175
Index einer Untergruppe, 50	
Induktionsschritt, 3	\mathbf{M}
Induktionsverankerung, 3	MAC, 241
initiale Permutation, 137	MAC-Erzeugungsalgorithmus, 242
Initialisierungsvektor, 91	MAC-Raum, 241
injektiv, 49	Man-In-The-Middle-Attacke, 194
Integrität, 75, 233, 235, 245	Matrix, 105
Inverses, 41	Mehrfachverschlüsselung, 86
invertierbar, 41, 42	Merkle-Hashbaum, 265
Isomorphismus, 58	Merkle-Signaturverfahren, 264
	Message-Authentication-Code, 241
K	Miller-Rabin-Test, 159
Key	MixColumns, 146
private, 166	Monoid, 41
public, 166	Monom, 60
Klartext, 73, 167	Monte-Carlo-Algorithmus, 18
Klartextraum, 73, 167	Münzwurf, 18
Known-Message-Angriff, 251	,
Known-Plaintext-Angriff, 80	N
Kollision, 235	Nachricht, 241, 246
kollisionsresistent, 235	Nachrichtenexpansion, 197
schwach, 235	Nachrichtenraum, 241, 246
stark, 235	natürliche Zahlen, 1
kommutativ, 40	Nenner, 2
Kompressionsfunktion, 234	neutrales Element, 41
Konfusion, 111	No-Message-Angriff, 250
Kongruenz, 37	No-Message-Modell, 276
Konkatenation, 83	Non-Malleability, 186
Körper, 43	Nullstelle, 60
Kryptosystem	Nullteiler, 42
linear, 109	· · · · · · · · · · · · · · · · · · ·
Private-Key, 77	0
Public-Key, 77 , 167	OAEP, 179

OFB-Mode, 96	reduziert, 5
O-Notation, 20	Registrierung, 299
Orakel, 126	Relation, 229
Ordnung	Rest, 5, 62
einer Gruppe, 42	absolut kleinster, 38
eines Gruppenelementes, 47	kleinster nicht negativer, 38
OTP, 123	kleinster positiver, 38
Output-Feedback-Mode, 96	$\mod m$, 38
•	Restklasse, 38
P	Restklassenring, 42
perfekt geheim, 121	Rijndael, 146
Permutation, 84	Ring, 42
Permutationschiffre, 86, 110	kommutativ, 42
persönliche Sicherheitsumgebung, 297	nullteilerfrei, 42
Phishing-Angriff, 233	RSA
PKCS# 1, 179	Signatur, 251
PKI, 297	Verschlüsselung, 168
Polynom, 59, 60	RSA-Annahme, 187, 272
irreduzibel, 64	stark, 273
reduzibel, 64	RSA-Modul, 169, 252
Potenz, 2	RSA-OAEP, 179
Potenzgesetze, 40	RSA-Problem, 187, 272
Potenzmenge, 13	RSA-PSS, 272
prime Restklasse, 44	rückgekoppeltes Schieberegister, 101
prime Restklassengruppe, 45	Rückkopplungsfunktion, 102
Primfaktorzerlegung, 11	
Primitivwurzel, 67	G
Primkörper, 64	S
Primteiler, 10	Satz von Lagrange, 49
Primzahl, 10	S-Box, 147
Probedivision, 156, 162	Schieberegister
Produkt, 1	linear rückgekoppelt, 102
PSE, 297	rückgekoppelt, 101
Software, 298	Schlüssel, 73
Pseudoprimzahl, 158	öffenlicher, 167, 246
Public Key Infrastruktur, 297	öffentlicher, 166
	privater, 166, 167, 246
Q	Schlüsselerzeugung, 299
quadratische Form, 283	Schlüsselerzeugungsalgorithmus, 73, 167, 246
quadratischer Nichtrest, 68	Schlüsselraum, 73, 167, 241, 246
quadratischer Rest, 68	Schlüsseltext, 73, 167
Quadratwurzeln mod p , 71	Schlüsseltextraum, 167
Quotient, 2, 5, 62	Schranke
D	obere, 2
R	untere, 2
Rabin	schwach kollisionsresistent, 235
Signatur, 256	schwacher DES-Schlüssel, 144
Verschlüsselung, 180	Secret Sharing, 293
Random-Oracle-Modell, 187, 272	semantische Sicherheit, 125, 186
Redundanzfunktion, 254	ShiftRows, 146

Sicherheit	\mathbf{U}
Chosen-Ciphertext, 131, 186	universelle Verifizierbarkeit, 245
Chosen-Plaintext, 129, 184	Untergruppe, 48
semantische, 124, 125, 184, 186	
Sicherheitslevel, 127	V
Sicherheitsreduktion, 187, 272	Vandermonde Matrix, 294
Sieb des Eratosthenes, 36	Verifikationsalgorithmus, 242, 246
Signatur, 245, 246	Verifikationsschlüssel, 246
aus Public-Key-Verfahren, 256	Verifizierer, 285
DSA, 261	Verknüpfung, 39
ElGamal, 257	vernachlässigbar, 23
gültig, 246	Vernam-One-Time-Pad, 123
mit Nachrichtengewinnung, 253	Verschiebungschiffre, 75
Rabin, 256	Verschlüsselung, 73
RSA, 251	asymmetrisch, 76
ungültig, 246	DES, 135
Signaturraum, 246	ElGamal, 195
Signieralgorithmus, 246	homomorphe, 201
Signierschlüssel, 246	hybrid, 76
simultane Kongruenz, 55	kontextabhängig, 90
Sondness, 288	Private-Key, 77
state, 146	Public-Key, 77
	Rabin, 180
String, 83	randomisiert, 198
Stromchiffre, 100	RSA, 168
asynchron, 101	symmetrisch, 73
binär additiv, 100	Triple DES, 135
selbstsynchronisierend, 101	Verschlüsselungsalgorithmus, 73, 167
synchron, 100	Verschlüsselungsfunktion, 74
subexponentiell, 211	Verschlüsselungsmodus, 87
Substitutionschiffre, 85	Verschlüsselungsverfahren
Summe, 1	linear, 109
supersinguläre Kurve, 282	Public-Key, 167
surjektiv, 49	Vertraulichkeit, 74
	Vertretersystem, 38
T	Verzeichnisdienst, 301
teilbar, 43	Vielfaches, 4, 43
Teilbarkeit, 4, 43	volles Restsystem, 38
Teiler, 4, 43	vollständige Induktion, 3
gemeinsamer, 7	
größter gemeinsamer, 7	vollständige Suche, 76, 79
time-memory trade-off, 112	Vorteil, 128, 130
TLS, 286	Vorwärtssicherheit, 269
Transkript, 289	W
Transport Layer Security, 286	Wahrscheinlichkeit, 13
Transposition, 117	Wahrscheinlichkeitsverteilung, 13
Trapdoor-Permutation, 180	Wahscheinlichkeit
Triple DES, 135	bedingte, 14
Triple Encryption, 86	Worst-Case-Laufzeit, 20
Turing-Maschine, 18	Wort, 83
i di ing-iviasciilic, i o	11011, 00

Wörterbuchangriff, 286	Zero-Knowledge-Protokoll perfekt, 290
Z	Zertifikat, 300
Zahl	Zertifikatskette, 303
ganze, 1	Zertifizierung, 300
natürlich, 1	Zertifizierungsstelle, 299
rationale, 1	Zeuge, 159
reelle, 1	Zirkluäre Shifts, 85
Zähler, 2	Zufallsvariable, 15
Zero-Knowledge-Beweise, 288	zusammengesetzt, 10
Zero-Knowledge-Property, 289	Zustand, 18