Westlake University Fundamental Algebra and Analysis I

Exercise sheet 6 - 1 : rings and modules

1. Let $r \in \mathbb{Z}^{\times}$. We equip the Abelian group \mathbb{Z}^2 with the multiplication * defined by, $\forall (x_1, x_2) \in \mathbb{Z}^2$ and $(y_1, y_2) \in \mathbb{Z}^2$ by

$$(x_1, x_2) * (y_1, y_2) = (x_1y_1 + rx_2y_2, x_1y_2 + x_2y_1).$$

Verify that $(\mathbb{Z}^2, +, *)$ is a commutative unitary ring.

- **2.** Let A be a unitary ring. For all $x, y \in A$, we put [x, y] = xy yx.
 - (1) The Abelian group of A, equipped with the "product" $(x, y) \mapsto [x, y]$, is it a ring?
 - (2) For all $x, y, z \in A$, verify

$$[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.$$

- **3.** For an $n \in \mathbb{N}_{\geq 1}$, find all the homomorphisms of rings from \mathbb{Z}^n to \mathbb{Z} .
- **4.** In a unitary ring A, we suppose that, $\forall x \in A$, we have $x^2 = x$. We call this kind of ring a **Boolean ring**.
 - (1) Prove that A is commutative.
 - (2) If A contains at least 3 distinct elements, prove that A has a zero divisor.
 - (3) Prove that A cannot have exactly 3 elements.
 - (4) Construct an example of Boolean ring which has exactly 4 elements.
- **5.** Prove that the only automorphism of \mathbb{Q} is $\mathrm{Id}_{\mathbb{Q}}$, and this is an isomorphism from \mathbb{Q} to \mathbb{Q} .
- **6.** Prove that the only sub-field \mathbb{Q} is \mathbb{Q} .
- 7. Let M be a subgroup of the additive group $(\mathbb{Z}, +)$. We assume that $M \neq \{0\}$.
 - (1) Show that $M \cap \mathbb{N}_{>0}$ is not empty.
 - (2) Let d be the least element of $M \cap \mathbb{N}_{>0}$. Show that any element of M is divisible by d.
 - (3) Deduce that $M = d\mathbb{Z}$, where $d\mathbb{Z}$ is defined as $\{dn \mid n \in \mathbb{Z}\}$.

8. Let $\mathbb{N}_{\geq 1}$ be the set of positive integers and R the set of functions defined on $\mathbb{N}_{\geq 1}$ with values in a commutative ring K. Define the sum in R to be the ordinary addition of functions, and define the **convolution product** by the formula

$$(f * g)(m) = \sum_{xy=m} f(x)g(y),$$

where the sum is taken over all pairs (x, y) of positive integers such that xy = m.

(1) Show that R is a commutative ring, whose unit element is the function δ such that

$$\delta(x) = \begin{cases} 1, & x = 1 \\ 0, & x \neq 1. \end{cases}$$

- (2) A function f is said to be **multiplicative** if f(mn) = f(m)f(n) whenever m, n are relatively prime. If f, g are multiplicative, show that f * g is multiplicative.
- (3) Let μ be the **Möbius function** such that

$$\mu(n) = \begin{cases} 1, & n = 1, \\ (-1)^r, & n = p_1 \cdots p_r, p_1, \dots, p_r \text{ are distinct primes,} \\ 0, & \text{others.} \end{cases}$$

Show that $\mu * \phi_1 = \delta$, where ϕ_1 denotes the constant function having value 1. [**Hint**: Show first that μ is multiplicative, and then prove the assertion for prime powers.] The Möbius inversion formula of elementary number theory is then nothing else but the relation $\mu * \phi_1 * f = f$.

- **9.** Let A be a commutative unitary ring.
 - (1) Show that the multiplicative law

$$A \times A \longrightarrow A$$
, $(a,b) \longmapsto ab$

defines a structure of A-module on the additive group (A, +).

(2) We call *ideal* of A any sub-A-module of A. Let I be a sub-A-module of A. Show that the mapping

$$(A/I)\times (A/I)\longrightarrow A/I,\quad ([a],[b])\longmapsto [ab]$$

is well defined and determines a structure of monoid on A/I.

- (3) Let I be an ideal of A. Show that the set A/I equipped with the additive law (from the quotient module structure on A/I) and the above multiplicative law forms a commutative unitary ring. Show that the projection mapping $A \to A/I$ is a morphism of unitary rings.
- (4) Let $f: A \to B$ be a morphism of unitary rings.
 - (a) Show that the kernel of f is an ideal of A.
 - (b) Show that the image of f is a unitary subring of B.
 - (c) Show that the mapping

$$\widetilde{f}: A/\operatorname{Ker}(f) \longrightarrow B, \quad [a] \longmapsto f(a)$$

is an isomorphism of unitary rings.

- (5) Show that there exists a unique morphism of unitary rings from \mathbb{Z} to A.
- 10. Let k be a commutative unitary ring. In this exercice, we write the set of sequences in k parametrized by \mathbb{N} (usually denoted as $k^{\mathbb{N}}$) in the form of k[T]. If $(a_n)_{n\in\mathbb{N}}$ is a sequence in k, viewed as an element of k[T], we express it as

$$a_0T^0 + a_1T + a_2T^2 + \dots + a_nT^n + \dots$$

or in the form of

$$\sum_{n\in\mathbb{N}}a_nT^n.$$

We call it a formal power series with coefficients in k. In the above formal sum, we often omit the summand with coefficient 0. Moreover, the summand a_0T^0 is often written as a_0 for simplicity. For example, if $a_0 = a_2 = 1$ and $a_n = 0$ for $n \in \mathbb{N} \setminus \{0, 2\}$, then the formal series

$$\sum_{n\in\mathbb{N}} a_n T^n$$

is written in the abbreviated form as

$$1 + T^2$$
.

(1) Show that the set k[T] equipped with the following composition law (written additively)

$$k[T] \times k[T] \longrightarrow k[T],$$

$$\left(\sum_{n \in \mathbb{N}} a_n T^n, \sum_{n \in \mathbb{N}} b_n T^n\right) \longmapsto \sum_{n \in \mathbb{N}} (a_n + b_n) T^n$$

forms a commutative group.

(2) Show that the set k[T] equipped with the following composition law (written multiplicatively)

$$k[T] \times k[T] \longrightarrow k[T],$$

$$\left(\sum_{n \in \mathbb{N}} a_n T^n, \sum_{n \in \mathbb{N}} b_n T^n\right) \longmapsto \sum_{n \in \mathbb{N}} \left(\sum_{i=0}^n a_i b_{n-i}\right) T^n$$

forms a commutative monoid.

(3) Show that, for any $(a,b) \in k \times k$ and any $(n,m) \in \mathbb{N} \times \mathbb{N}$, one has

$$(aT^n)(bT^m) = (ab)T^{n+m}.$$

- (4) Show that k[T] equipped with the above (additive and multiplicative) compositions laws forms a commutative unitary ring.
- (5) Show that an element

$$f = \sum_{n \in \mathbb{N}} a_n T^n$$

of k[T] is invertible if and only if a_0 is an invertible element of k. Write an algorithm to determine the inverse of f when it is invertible.

(6) Determine $(1 - aT)^{-1}$, where a is an element of k.

In the rest of the exercice, we suppose that the image of any $n \in \mathbb{N}_{\geq 1}$ by the unique morphism of unitary rings $\mathbb{Z} \to k$ is invertible.

- (7) Show that there exists an element $f \in k[T]$ such that $f^2 = 1 + T$. Determine this element.
- (8) Let $D: k[\![T]\!] \to k[\![T]\!]$ be the mapping sending

$$f = \sum_{n \in \mathbb{N}} a_n T^n \in k[\![T]\!]$$

to

$$f' := \sum_{n \in \mathbb{N}} (n+1)a_{n+1}T^n.$$

Show that D is a surjective k-linear mapping.

- (9) Determine the kernel of D.
- (10) Determine the set of all formal series $f \in k[\![T]\!]$ which satisfy the equation

$$f'=f$$
.

11. Let k be a commutative unitary ring. We denote by k[T] the subring of k[T] that is composed of formal power series

$$P = \sum_{n \in \mathbb{N}} a_n T^n$$

such that

$$\deg(P) := \sup\{n \in \mathbb{N} \mid a_n \neq 0\}$$

is not $+\infty$. The element $\deg(P) \in \mathbb{N} \cup \{-\infty\}$ is called the *degree* of P. We say that P is *monic* if its degree is ≥ 0 and if

$$a_{\deg(P)} = 1.$$

The formal power series that belong to k[T] are called *polynomials*.

- (1) Let F and G be polynomials. We assume that F is monic. Show that $\deg(FG) = \deg(F) + \deg(G)$.
- (2) Let P be a monic polynomial. Show that, for any $F \in k[T]$, there exists a unique pair $(Q, R) \in k[T] \times k[T]$ such that $\deg(R) < \deg(P)$ and F = PQ + R. We could reason by induction on the degree of F.
- (3) Let I be an ideal of k[T]. Suppose that there exists a monic polynomial $P \in I$ such that

$$\forall F \in I \setminus \{0\}, \quad \deg(P) \leqslant \deg(F).$$

Show that

$$I = Pk[T] = \{PQ \mid Q \in k[T]\}.$$

Prove that such monic polynomial of minimal degree P is unique.

(4) Suppose that k is a field. Show that any ideal I of k[T] which is different from $\{0\}$ contains a monic polynomial P such that

$$\forall F \in I \setminus \{0\}, \quad \deg(P) \leqslant \deg(F).$$

(5) For any $F = a_0 + a_1 T + \cdots + a_d T^d \in k[T]$ and any $x \in k$, let

$$F(x) = a_0 + a_1 x + \dots + a_d x^d \in k.$$

Show that, for any $x \in k$, the mapping

$$\operatorname{ev}_x: k[T] \longrightarrow k, \quad F \longmapsto F(x)$$

is a morphism of unitary rings.

12. Let k be a field, P be a non-zero element of k[T] and d be the degree of P. Suppose that P is of the form

$$a_0 + a_1 T + \dots + a_d T^d.$$

If x is an element of k such that P(x) = 0, then we say that x is a root of P.

- (1) Let $x \in k$. Show that, if P(x) = 0, then there exists a unique element $Q \in k[T]$ such that P = (T x)Q.
- (2) Show that P can be written in the form

$$P = (T - x_1)^{d_1} \cdots (T - x_n)^{d_n} \widetilde{P},$$

where x_1, \ldots, x_n are distinct roots of P in k and \widetilde{P} does not have any root in k. Show that $d_1 + \cdots + d_n \leq d$.

- (3) Deduce that the number of roots of P does not exceed d.
- **13.** In this exercice, we let P be the element $T^2 + 1 \in \mathbb{R}[T]$ and we denote by I the ideal

$$P\mathbb{R}[T] = \{PQ \mid Q \in \mathbb{R}[T]\}.$$

We denote by \mathbb{C} the quotient ring $\mathbb{R}[T]/I$ and denote by i the class of $T \in \mathbb{R}[T]$ in the quotient ring $\mathbb{C} = \mathbb{R}[T]/I$.

- (1) Show that $i^2 = -1$ in \mathbb{C} .
- (2) Show that any element of \mathbb{C} can be written as a+bi, where a and b are real numbers. We could use the fact that any polynomial $F \in \mathbb{R}[T]$ can be written as PQ + R where $\deg(R) \leq 1$.
- (3) Show that the mapping $\mathbb{R}^2 \to \mathbb{C}$ sending $(a, b) \in \mathbb{R}^2$ to a + bi is an \mathbb{R} -linear bijection.
- (4) Let a, b, x and y be real numbers. Express (a+bi)(x+yi) in terms of u+vi with $(u,v) \in \mathbb{R}^2$. Check that the mapping $\mathbb{R} \to \mathbb{C}$ sending $a \in \mathbb{R}$ to a+0i is an injective mapping and also a morphism of unitary rings. Thus we can consider \mathbb{R} as a unitary subring of \mathbb{C} .
- (5) For any

$$F = \sum_{n \in \mathbb{N}} a_n T^n \in k[T],$$

let

$$\iota(F) = \sum_{n \in \mathbb{N}} (-1)^n a_n T^n.$$

Show that $\iota : k[\![T]\!] \to k[\![T]\!]$ is an morphism of unitary rings and $\iota \circ \iota$ is the identity mapping. Deduce that ι is an isomorphism of unitary rings.

- (6) Check that $\iota(k[T]) = k[T]$ and $\iota(P) = P$.
- (7) For any $z = a + bi \in \mathbb{C}$, we define $\overline{z} = a bi$. Show that the mapping $\mathbb{C} \to \mathbb{C}$ sending z to \overline{z} is an isomorphism of unitary rings. We could use the result of the previous question.
- (8) For any $z \in \mathbb{C}$, let $N(z) = z\overline{z}$. Show that N(z) is a non-negative real number (in considering \mathbb{R} as a unitary subring of \mathbb{C}), and it is positive whenever $z \neq 0$.
- (9) Let z and w be elements of \mathbb{C} . Show that N(zw) = N(z)N(w).
- (10) Show that \mathbb{C} is a field.
- (11) Denote by $\mathbb{Z}[i]$ the subset of \mathbb{C} that is composed of elements a+bi with $(a,b) \in \mathbb{Z}^2$. Show that $\mathbb{Z}[i]$ is a unitary subring of \mathbb{C} .
- (12) Show that, for any $z \in \mathbb{Z}[i]$, N(z) is a natural number.
- (13) Let z be an element of $\mathbb{Z}[i]^{\times}$. Show that N(z) = 1.
- (14) Determine the set $\mathbb{Z}[i]^{\times}$.
- **14.** We consider the morphism of unitary rings from $\mathbb{Z}[T]$ to \mathbb{R} which sends $F \in \mathbb{Z}[T]$ to $F(\sqrt{2})$
 - (1) Show that

$$\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} \mid (a, b) \in \mathbb{Z}^2\}$$

is a unitary subring of \mathbb{R} .

- (2) Show that the mapping $N: \mathbb{Z}[\sqrt{2}] \to \mathbb{Z}$ which sends $a + b\sqrt{2}$ to $a^2 2b^2$ is a morphism of multiplicative monoid. We could inspire from the method of the previous exercice.
- (3) Show that the invertible elements of $\mathbb{Z}[\sqrt{2}]$ are precisely those of the form $a + b\sqrt{2}$ with $a^2 2b^2 = 1$ or $a^2 2b^2 = -1$.
- (4) Check that (3,2) is a solution of the equation $a^2 2b^2 = 1$ in $\mathbb{N}^2_{\geq 1}$.
- (5) Let $\alpha = 3 + 2\sqrt{2}$. For any $n \in \mathbb{N}_{\geq 1}$, let $(a_n, b_n) \in \mathbb{N}^2$ such that

$$a_n + b_n \sqrt{2} = (3 + 2\sqrt{2})^n$$
.

Show that the set of solutions of the equation $a^2 - 2b^2 = 1$ in $\mathbb{N}^2_{\geq 1}$ is precisely $\{(a_n, b_n) \mid n \in \mathbb{N}_{\geq 1}\}.$

15. For a fixed $n \in \mathbb{N}_{\geq 2}$, we denote by

$$\gamma_n: \ \mathbb{Z} \longrightarrow \ \mathbb{Z}/n\mathbb{Z}$$
$$x \mapsto \overline{x}$$

the canonical quotient homomorphism.

(1) Let $a \in \mathbb{Z}$. Prove that the following statements are equivalent.

- i. \overline{a} is an invertible element in $\mathbb{Z}/n\mathbb{Z}$.
- ii. \overline{a} is not a zero divisor in $\mathbb{Z}/n\mathbb{Z}$.
- iii. gcd(a, n) = 1.
- (2) Let $\phi(n) = \#(\mathbb{Z}/n\mathbb{Z})^{\times}$. Prove

$$\phi(n) = \#\{k \mid k \in [0, n-1], \gcd(n, k) = 1\}.$$

In convention, we define $\phi(1) = 1$.

- (3) Prove that the invertible elements of the ring $\mathbb{Z}/n\mathbb{Z}$ are those $\alpha \in \mathbb{Z}/n\mathbb{Z}$ which generate the additive group $\mathbb{Z}/n\mathbb{Z}$, which means $\mathbb{Z}/n\mathbb{Z} = \{k\alpha\}_{k\in\mathbb{Z}}$.
- (4) Let $m, n \in \mathbb{N}_{\geq 2}$, and gcd(m, n) = 1. Prove

$$\phi(mn) = \phi(m)\phi(n).$$

(5) Let $a \in \mathbb{Z}$, gcd(a, n) = 1. Prove

$$a^{\phi(n)} \equiv 1 \pmod{n}$$
.

(6) Let $n=p_1^{\alpha_1}\cdots p_k^{\alpha_k}$, where p_1,\ldots,p_k are distinct primes, and $\alpha_1,\ldots,\alpha_k\geqslant 1$. Prove

$$\phi(n) = n\left(1 - \frac{1}{p_1}\right)\cdots\left(1 - \frac{1}{p_k}\right).$$

(7) For a prime p, prove that $\mathbb{Z}/p\mathbb{Z}$ is a field, and $\phi(p) = p - 1$. In this case, $\mathbb{Z}/p\mathbb{Z}$ is called the **finite field** of order p, usually denoted by \mathbb{F}_p .