# University of Southern California Ming Hsieh Department of Electrical Engineering EE 348L - Electronic Circuits Spring 2016

### **Homework 3 Solutions**

At the end of the chapter complete the following 12 problems: 4.4, <del>4.9</del>, <del>4.10</del>, <del>4.17</del>, <del>4.20</del>, 4.26, <del>4.27</del>, <del>4.28</del>, <del>4.59</del>, <del>4.87</del>, and <del>4.90</del>.

4.4

(a)



$$V_{p^+} = 5 \text{ V}$$
  $V_{p^-} = 0 \text{ V}$   $f = 1 \text{ kHz}$ 

(b)



$$V_{p^+} = 0 \text{ V}$$
  $V_{p^-} = -5 \text{ V}$   $f = 1 \text{ kHz}$ 

(c)



$$v_0 = 0 \text{ V}$$

Neither  $D_1$  nor  $D_2$  conducts, so there is no output.

(d)



$$V_{p^+} = 5 \text{ V}, \quad V_{p^-} = 0 \text{ V}, \quad f = 1 \text{ kHz}$$

Both  $D_1$  and  $D_2$  conduct when  $v_I > 0$ 





$$V_{p^+} = 5 \text{ V}, \quad V_{p^-} = -5 \text{ V}, \quad f = 1 \text{ kHz}$$

 $D_1$  conducts when  $v_I > 0$  and  $D_2$  conducts when  $v_I < 0$ . Thus the output follows the input.

(f)



$$V_{p+} = 5 \text{ V}, \quad V_{p-} = 0 \text{ V}, \quad f = 1 \text{ kHz}$$

 $D_1$  is cut off when  $v_I < 0$ 

#### (g)



$$V_{p+} = 0 \text{ V}, \quad V_{p-} = -5 \text{ V}, \quad f = 1 \text{ kHz}$$

 $D_1$  shorts to ground when  $v_I > 0$  and is cut off when  $v_I < 0$  whereby the output follows  $v_I$ .

## (h)



 $v_0 = 0 \text{ V} \sim \text{The output is always shorted to}$ ground as  $D_1$  conducts when  $v_I > 0$  and  $D_2$ conducts when  $v_I < 0$ .

(i)



$$V_{p+} = 5 \text{ V}, \quad V_{p-} = -2.5 \text{ V}, \quad f = 1 \text{ kHz}$$

When  $v_I > 0$ ,  $D_1$  is cut off and  $v_O$  follows  $v_I$ .

When  $v_I < 0$ ,  $D_1$  is conducting and the circuit becomes a voltage divider where the negative peak is

$$\frac{1 \, k\Omega}{1 \, k\Omega + 1 \, k\Omega} \times -5 \, V = -2.5 \, V$$

(j)



$$V_{p^+} = 5 \text{ V}, \quad V_{p^-} = -2.5 \text{ V}, \quad f = 1 \text{ kHz}$$

When  $v_I > 0$ , the output follows the input as  $D_1$  is conducting.

When  $v_I < 0$ ,  $D_1$  is cut off and the circuit becomes a voltage divider. (k)



$$V_{p^+} = 1 \text{ V}, \quad V_{p^-} = -4 \text{ V}, \quad f = 1 \text{ kH}_3$$

When  $v_1 > 0$ ,  $D_1$  is cut off and  $D_2$  is conducting. The output becomes 1 V.

When  $v_1 < 0$ ,  $D_1$  is conducting and  $D_2$  is cut off. The output becomes:

$$v_0 = v_I + 1 \text{ V}$$

4.9



(a) If we assume that both  $D_1$  and  $D_2$  are conducting, then V=0 V and the current in  $D_2$  will be [0-(-3)]/6=0.5 mA. The current in the  $12 \text{ k}\Omega$  will be (3-0)/12=0.25 mA. A node equation at the common anodes node yields a negative current in  $D_1$ . It follows that our assumption is wrong and  $D_1$  must be off. Now making the assumption that  $D_1$  is off and  $D_2$  is on, we obtain the results shown in Fig. (a):

$$I = 0$$

$$V = -1 \text{ V}$$



(b) In (b), the two resistors are interchanged. With some reasoning, we can see that the current supplied through the  $6-k\Omega$  resistor will exceed that drawn through the  $12-k\Omega$  resistor, leaving sufficient current to keep  $D_1$  conducting. Assuming that  $D_1$  and  $D_2$  are both conducting gives the results shown in Fig. (b):

$$I = 0.25 \text{ mA}$$
  
 $V = 0 \text{ V}$ 

# 4.10 The analysis is shown on the circuit diagrams below.



Thus

$$V_T = 8.62 \times 10^{-5} \times (273 \times x^{\circ}\text{C}), \text{ V}$$

$$4.17 V_T = \frac{kT}{q}$$

where

$$k = 1.38 \times 10^{-23} \text{ J/K} = 8.62 \times 10^{-5} \text{eV/K}$$

$$T = 273 + x^{\circ}C$$

$$q = 1.60 \times 10^{-19}$$
C

$$x$$
[°C]  $V_T$  [mV]  
 $-55$  18.8  
0 23.5  
 $+55$  28.3  
 $+125$  34.3

for 
$$V_T = 25 \text{ mV}$$
 at  $17^{\circ}\text{C}$ 

4.20 
$$I = I_S e^{V_D/V_T}$$

$$10^{-3} = I_S e^{0.7/V_T} (1)$$

For 
$$V_D = 0.71 \text{ V}$$
,

$$I = I_S e^{0.71/V_T} (2)$$

Combining (1) and (2) gives

$$I = 10^{-3}e^{(0.71 - 0.7)/0.025}$$

$$= 1.49 \text{ mA}$$

For 
$$V_D = 0.8 \text{ V}$$
,

$$I = I_S e^{0.8/V_T} \tag{3}$$

Combining (1) and (3) gives

$$I = 10^{-3} \times e^{(0.8 - 0.7)/0.025}$$

$$= 54.6 \text{ mA}$$

Similarly, for  $V_D = 0.69 \text{ V}$  we obtain

$$I = 10^{-3} \times e^{(0.69 - 0.7)/0.025}$$

$$= 0.67 \text{ mA}$$

and for  $V_D = 0.6 \text{ V}$  we have

$$I = 10^{-3} e^{(0.6 - 0.7)/0.025}$$

$$= 18.3 \, \mu A$$

To increase the current by a factor of 10,  $V_D$  must be increased by  $\triangle V_D$ ,

$$10 = e^{\Delta V_D/0.025}$$

$$\Rightarrow \Delta V_D = 0.025 \text{ ln}10 = 57.6 \text{ mV}$$



The junction areas of the four diodes must be related by the same ratios as their currents, thus

$$A_4 = 2A_3 = 4A_2 = 8 A_1$$

With  $I_1 = 0.1 \text{ mA}$ ,

$$I = 0.1 + 0.2 + 0.4 + 0.8 = 1.5 \text{ mA}$$

4.27 We can write a node equation at the anodes:

$$I_{D2} = I_1 - I_2 = 7 \text{ mA}$$

$$I_{D1} = I_2 = 3 \text{ mA}$$

We can write the following equation for the diode voltages:

$$V = V_{D2} - V_{D1}$$

If  $D_2$  has saturation current  $I_S$ , then  $D_1$ , which is 10 times larger, has saturation current  $10I_S$ . Thus we can write

$$I_{D2} = I_S e^{V_{D2}/V_T}$$

$$I_{D1}=10I_Se^{V_{D1}/V_T}$$

Taking the ratio of the two equations above, we have

$$\frac{I_{D2}}{I_{D1}} = \frac{7}{3} = \frac{1}{10}e^{(V_{D2} - V_{D1})/V_T} = \frac{1}{10}e^{V/V_T}$$

$$\Rightarrow V = 0.025 \ln \left(\frac{70}{3}\right) = 78.7 \text{ mV}$$

To instead achieve V = 60 mV, we need

$$\frac{I_{D2}}{I_{D1}} = \frac{I_1 - I_2}{I_2} = \frac{1}{10}e^{0.06/0.025} = 1.1$$

Solving the above equation with  $I_1$  still at 10 mA, we find  $I_2 = 4.76$  mA.

4.28 We can write the following node equation at the diode anodes:

$$I_{D2} = 10 \text{ mA} - V/R$$

$$I_{D1} = V/R$$

We can write the following equation for the diode voltages:

$$V = V_{D2} - V_{D1}$$

We can write the following diode equations:

$$I_{D2} = I_S e^{V_{D2}/V_T}$$

$$I_{D1} = I_S e^{V_{D1}/V_T}$$

Taking the ratio of the two equations above, we have

$$\frac{I_{D2}}{I_{D1}} = \frac{10 \text{ mA} - V/R}{V/R} = e^{(V_{D2} - V_{D1})/V_T} = e^{V/V_T}$$

To achieve V = 50 mV, we need

$$\frac{I_{D2}}{I_{D1}} = \frac{10 \text{ mA} - 0.05/R}{0.05/R} = e^{0.05/0.025} = 7.39$$

Solving the above equation, we have

$$R = 42 \Omega$$

4.59 
$$V_Z = V_{Z0} + I_{ZT} r_z$$

(a) 
$$10 = 9.6 + 0.05 \times r_z$$

$$\Rightarrow r_z = 8 \Omega$$

For 
$$I_Z = 2I_{ZT} = 100 \text{ mA}$$
,

$$V_Z = 9.6 + 0.1 \times 8 = 10.4 \text{ V}$$

$$P = 10.4 \times 0.1 = 1.04 \text{ W}$$

(b) 
$$9.1 = V_{Z0} + 0.01 \times 30$$

$$\Rightarrow V_{Z0} = 8.8 \text{ V}$$

At 
$$I_Z = 2I_{ZT} = 20$$
 mA,

$$V_Z = 8.8 + 0.02 \times 30 = 9.4 \text{ V}$$

$$P = 9.4 \times 20 = 188 \text{ mW}$$

(c) 
$$6.8 = 6.6 + I_{ZT} \times 2$$

$$\Rightarrow I_{ZT} = 0.1 \text{ A}$$

At 
$$I_Z = 2I_{ZT} = 0.2 \text{ A}$$
,

$$V_Z = 6.6 + 0.2 \times 2 = 7 \text{ V}$$

$$P = 7 \times 0.2 = 1.4 \text{ W}$$

(d) 
$$18 = 17.6 + 0.005 \times r_z$$

$$\Rightarrow r_z = 80 \Omega$$

At 
$$I_Z = 2I_{ZT} = 0.01$$
 A,

$$V_Z = 17.6 + 0.01 \times 80 = 18.4 \text{ V}$$

$$P = 18.4 \times 0.01 = 0.184 \text{ W} = 184 \text{ mW}$$

(e) 
$$7.5 = V_{Z0} + 0.2 \times 1.5$$

$$\Rightarrow V_{Z0} = 7.2 \text{ V}$$

At 
$$I_Z = 2I_{ZT} = 0.4 \text{ A}$$
,

$$V_Z = 7.2 + 0.4 \times 1.5 = 7.8 \text{ V}$$

$$P = 7.8 \times 0.4 = 3.12 \text{ W}$$

4.86  $v_I > 0$ :  $D_1$  conducts and  $D_2$  cutoff

$$v_I < 0$$
:  $D_1$  cutoff,

$$D_2$$
 conducts  $\sim \frac{v_O}{v_I} = -1$ 



(a) 
$$v_I = +1 \text{ V}$$

$$v_0 = 0 \, V$$

$$v_A = -0.7 \text{ V}$$

Keeps  $D_2$  off so no current flows through R

$$\Rightarrow v_{-} = 0 \text{ V}$$

Virtual ground as feedback loop is closed through  $D_1$ 

(b) 
$$v_I = +3 \text{ V}$$

$$v_0 = 0 \text{ V}$$

$$v_A = -0.7 \text{ V}$$

$$v_{-} = 0 \text{ V}$$

(c) 
$$v_I = -1 \text{ V}$$

$$v_0 = +1 \text{ V}$$

$$v_A = 1.7 \text{ V}$$

$$v_{-} = 0 \text{ V}$$

 $\sim$  Virtual ground as negative feedback loop is closed through  $D_2$  and R.

(d) 
$$v_I = -3 \text{ V} \Rightarrow v_O = +3 \text{ V}$$

$$v_A = +3.7 \text{ V}$$

$$v_{-} = 0 \text{ V}$$

**4.87** (a) See figure (a) on next page. For  $v_I \le 3.5 \text{ V}$ , i = 0 and  $v_O = v_I$ . At  $v_I = 3.5 \text{ V}$ , the diode begins to conduct. At  $v_O = 3.7 \text{ V}$ , the diode is conducting i = 1 mA and thus

$$v_I = v_O + i \times 1 \text{ k}\Omega = 4.7 \text{ V}$$

For  $v_I > 4.7$  V the diode current increases but the diode voltage remains constant at 0.7 V, thus  $v_O$  flattens and  $v_O$  vs.  $v_I$  becomes a horizontal line.

In practice, the diode voltage increases slowly and the line will have a small nonzero slope.

(b) See figure (b) on next page. Here  $v_O = v_I$  for  $v_I \ge 2.5$  V. At  $v_I = 2.5$  V,  $v_O = 2.5$  V and the diode begins to conduct. The diode will be conducting 1 mA and exhibiting a drop of 0.7 at  $v_O = 2.3$  V. The corresponding value of  $v_I$ 

$$v_1 = v_0 - iR = 2.3 - 1 \times 1 = +1.3 \text{ V}$$

As  $v_I$  decreases below 1.3 V, the diode current increases, but the diode voltage remains constant at 0.7 V. Thus  $v_O$  flattens at about 2.3 V.

- (c) See figure (c) on next page. For  $v_I \le -2.5$  V, the diode is off, and  $v_O = v_I$ . At  $v_I = -2.5$  V the diode begins to conduct and its current reaches 1 mA at  $v_I = -1.3$  V (corresponding to  $v_O = -2.3$  V). As  $v_I$  further increases, the diode current increases but its voltage remains constant at 0.7 V. Thus  $v_O$  flattens, as shown.
- (d) See figure (d) on next page.

These figures belong to Problem 4.87.









The limiter thresholds and the output saturation levels are found as  $2 \times 0.7 + 6.8 = 8.2$  V. The transfer characteristic is given in Fig. (b). See figure on next page.

This figure belong to Problem 4.90, part b.

