## Homework for Chapter 7

Xiping Hu

https://hxp.plus/

April 21, 2020

7.2.3 电路如图 7.2.2 所示的源极耦合差分式放大电路中+ $V_{DD}$  = +5 V,  $-V_{SS}$  = -5 V,  $I_0$  = 0.2 mA, 电流源输出电阻  $r_a$  = 100 kΩ(图中未画出),  $R_{d1}$  =  $R_{d2}$  =  $R_d$  = 10 kΩ, FET 的  $K_n'\left(\frac{W}{L}\right)$  = 3 mA/V², 且  $r_a$  >>  $r_{da}$ , 计算时电路中  $r_{da}$  ( $r_{da}$  >>  $R_d$ ) 可忽略, 求单端输出时的  $A_{mil}$  、 $A_{mil}$  和  $K_{CMR}$  。



图 7.2.2 源极耦合差分式放大电路 (图中  $v_{i1} = v_{ic} + v_{id}/2, v_{i2} = v_{ic} - v_{id}/2$ )

$$I_{D1} = \frac{I_0}{2} = K_n \left( V_{GS2} - V_{TN2} \right)^2 \Rightarrow V_{GS2} - V_{TN2} = \sqrt{\frac{I_0/2}{K_n/2}} = 0.26 \text{ V}$$

$$g_m = 2K_n \left( V_{GS2} - V_{TN2} \right) = 0.78 \text{ mS}$$

$$\begin{cases} A_{vd2} = \frac{1}{2} g_m R_d = 3.9 \\ A_{vc2} = -\frac{R_d}{2r_o} = -0.05 \\ K_{CMR} = \left| \frac{A_{vd2}}{A_{vc2}} \right| = 78 \end{cases}$$