Exam Date & Time: 26-Sep-2024 (10:45 AM - 12:15 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

III Semester B.Tech. Mathematics and Computing

Mid Term Examination								
COMPUTATIONAL LINEAR ALGEBRA [MAT 2135]								
Marks: 30	Duration: 90	mins.						
MCQs								
Answer all t	he questions. Section Duration: 20) mins						
1)	Let $T: V \to W$ be a one-one linear transformation. Then $T^{-1}(0)$ is							
	1) 0 2) 1 3) V 4) W	(***)						
2)	Let S denote the unit square with vertices $(0,0)$, $(1,0)$, $(0,1)$ and $(1,1)$ and let $T(x, y) = (3x+y, x+3y)$. Then the area of the parallelogram $T(S)$ is							
	1) 4 2) 6 3) 8 4) 9							
3)	Let Q be a 2 × 2 orthogonal matrix. Which of the following is always true?							
	Q is the 1) identity matrix. The 2) determinant of Q is zero. Q is either a rotation 3) matrix or a reflection matrix. A probability determinant of Q is 1.	(0.5)						
4)	If T: $\mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation such that $T(1, 0) = 7$ and $T(0, 1) = 8$, then $T(7, 8) = \dots$							
	1) 49 2) 64 3) 78 4) 113							
5)	If Q is an orthogonal matrix, then Q ⁻¹ is							
	1) Q 2) Q^T 3) $(Q^T)^{-1}$ 4) the identity matrix.	(0.5)						
6)	The sum of the eigenvalues of the 2×2 identity matrix is							
	1) 0 2) 1 3) 2 4) 4	(0.5)						
7)	If P is a projection matrix, then which of the following is always true?							
		(0.5)						
8)	Let $T:V \to W$ be a linear transformation. Which of the following is NOT true?	(0.5)						
	1) If T is one- one and onto, then dim (V) = 2) If dim (V) = dim (W), then T is one-one 3) If dim (V) = dim (W) and T is one-one, 4) If dim (V) = dim (W) and T is onto, then T							

1 of 3 9/20/2024, 5:30 PM

(4)

dim (W). and onto.	then T is onto.	is one-one.
--------------------	-----------------	-------------

9) If A is a 3×4 matrix with right inverse as B, then the order of the matrix AB is

$\begin{vmatrix} 1 & 3 & 3 \end{vmatrix} \qquad \begin{vmatrix} 2 & 3 & 4 \end{vmatrix} \qquad \begin{vmatrix} 3 & 4 & 3 \end{vmatrix} \qquad \begin{vmatrix} 4 & 4 & 4 \end{vmatrix} \qquad \begin{vmatrix} 4 & 4 & 4 \end{vmatrix}$

10) Consider a system Ax = b such that b is in the column space of A. Then

1)	the system has an exact solution.		2)	the system has no solution.		131	the system is inconsistent.		4)	the system has a solution with error greater than zero.		(0.5)
----	--	--	----	-----------------------------	--	-----	-----------------------------	--	----	---	--	-------

DES

Answer all the questions.

- 11) Let $T: V \to W$ be a linear transformation.
 - (i) Show that Ker T is a subspace of V.
 - (ii) Show that T is one-one if and only if Ker $T = \{0\}$.
- If T(x, y) = (7x + 2y, 2x + 7y), then find the matrix of the linear transformation T and hence compute $T^{25}(x, y)$. (3)
- 13) Fit a curve $y(x) = ab^x$ given the data

2 to J (ii) we given one dusti						
X	0	1	2			
Y	3	6	12	(3)		

Hence find y(3).

Orthonormalize $\{1, x, x^2\}$ using the Gram-Schmidt process by taking the inner product as

$$\langle f(x), g(x) \rangle = \int_{-1}^{1} f(x)g(x)dx$$
 (3)

Find the left inverse of the matrix
$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \\ -1 & 1 \end{bmatrix}$$
 (3)

Validate your answer.

Find the least squares solution for the inconsistent system Ax = b where (3)

2 of 3 9/20/2024, 5:30 PM

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix} \quad and \ b = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}$$

17) Verify the Rank-Nullity theorem for
$$T(x, y) = (x + y, x - y)$$
. (2)

18) Test whether the following matrices are orthogonal matrices.

(i)
$$\begin{bmatrix} \cos \theta - \sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

$$(ii) \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
 (2)

Let P be a projection matrix corresponding to the orthogonal projection on the subspace W of V. Find the eigenvalues and the corresponding eigenvectors of P. (2)

----End-----