TCS/TIT-405

B. TECH. (CS & IT) (FOURTH SEMESTER) MID SEMESTER EXAMINATION, 2018

THEORY OF COMPUTATION

Time: 1:30 Hours

Maximum Marks: 50

- Note:(i) This question paper contains two Sections.
 - (ii) Both Sections are compulsory.

Section—A

- 1. Fill in the blanks: $(1\times5=5 \text{ Marks})$
 - (a) The transition function maps in Deterministic Finite Automata.
 - (b) The transition function maps in Non-Deterministic Finite Automata.
 - (c) Consider the regular expression (0 + 1) (0 + 1)n times. The minimum state finite automation that recognizes the language represented by this regular expression contains states.
 - (d) Given an arbitrary non-deterministic finite automation (NFA) with N states, the maximum number of states in an equivalent minimized DFA is

P. T. O.

(2) TCS/TIT-405

- (e) The symbol "Δ" in FA with output denotes
- 2. Attempt any five parts: (3×5=15 Marks)
 - (a) What do you understand by Finite Automata? Define its types with examples.
 - (b) How many substrings (of all lengths inclusive) can be formed from a character string of length n? Assume all characters to be distinct. Prove your answer with an example.
 - (c) Define Finite Automata with output (Moore and Mealy machines).
 - (d) Define Set, Power Set and Subset with the help of examples.
 - (e) Write Pumping Lemma for regular language.
 - (f) Give the regular expression over {0, 1} to denote the set of proper non-null substrings of the string "0010".

Section—B

- 3. Attempt any two parts of choice from (a), (b) and (c). (5×2=10 Marks)
 - (a) Explain the theory of automata, computability and complexity.

(3) TCS/TIT-405

(b) Covert the following NFA into equivalent DFA:

(c) Design the DFA for the following regular expression:

$$(0+11(1+0)*1+00+101)$$

- 4. Attempt any two parts of choice from (a), (b) and (c). (5×2=10 Marks)
 - (a) Give minimal DFA that performs as a Mod-3 1's counter, i. e., outputs a 1 each time the number of 1's in the input sequence is a multiple of 3.
 - (b) Draw a minimum state deterministic finite automation accepting the language
 L = {w|w belongs to {0, 1}*, number of 0's and 1's in w are divisible by 3 and 5}.

P. T. O.

F. No. : a-21

F. No.: a-21

(c) Derive the regular expression of the following Finite Automata:

- 5. Attempt any *two* parts of choice from (a), (b) and (c). (5×2=10 Marks)
 - (a) Design a Finite Automata to recognize the strings containing odd number of 0's and odd number of 1's over $\Sigma = \{0,1\}$.
 - (b) Design a DFA for the language over $\Sigma = \{0,1\}$ such that the Decimal equivalent of the Binary string is divisible by 3.
 - (c) Prove that the language $L = \{a^nb^n / n >= 1\}$ is not regular.

TCS/TIT-405