

6. Find last two digits of the number  $36^{233}$ 

7. Find the remainder when  $3^{1288}$  is divided by 642.

# DEPARTMENT OF MATHEMATICS

Academic year 2023-2024 (Even Sem)

# NUMBER THEORY VECTOR CALCULUS AND COMPUTATIONAL METHODS MA221TC

# **QUESTION BANK UNIT-I NUMBER THEORY**

|     | PART - A                                                                                            |
|-----|-----------------------------------------------------------------------------------------------------|
| 1.  | Check whether the linear congruence $2x + 3y = 3$ has solutions. If yes, then the solution is       |
| 2.  | Multiplicative inverse of 5 in congruence modulo 3 is                                               |
| 3.  | The solution of the linear congruence $7x \equiv 3 \pmod{5}$ is                                     |
| 4.  | The last digit of the number 3 <sup>403</sup> is,                                                   |
| 5.  | The remainder obtained when 4 <sup>362</sup> is divided by 7 is                                     |
| 6.  | Multiplicative inverse of 10 in congruence modulo 11 is                                             |
| 7.  | The number of divisors of the integer 3424 is                                                       |
| 8.  | The sum of divisors of the integer 1008 is                                                          |
| 9.  | The prime factorisation of the integer 45682 is                                                     |
| 10. | The number of multiplicative inverses in $\mathbb{Z}_{148}$ is                                      |
| 11. | The value of the Euler – totient function at 120 is                                                 |
| 12. | Suppose $(n, e) = (77, 7)$ is the public key, then the cipher text for the plain text $M = 12$ is   |
|     | ·                                                                                                   |
|     | Let $(n, e) = (91, 5)$ be the public key. Then the private key is                                   |
| 14. | Suppose $(n, e) = (33, 3)$ is the public key and $d = 7$ is the private key, then the plain text of |
|     | the cipher text 31 is                                                                               |
|     | PART – B                                                                                            |
| 1.  | Show that 8 divides $n^2 - 1$ for any odd number $n$ .                                              |
| 2.  | Find the gcd of the integers 252 and 198 and express gcd(252, 198) as a linear combination          |
|     | of 252 and 198.                                                                                     |
| 3.  | Use Euclidean algorithm to find gcd(12345, 54321), hence find integer solution for the              |
|     | linear equation $12345x + 54321y = \gcd(12345, 54321)$ .                                            |
| 4.  | Obtain all solutions of the linear congruence $144x \equiv 4 \pmod{35}$ .                           |
| 5.  | Solve the congruence $89x \equiv 2 \pmod{232}$ .                                                    |



Academic year 2023-2024 (Even Sem)

- 8. Obtain the remainder when  $20^{245}$  is divided by 21.
- 9. Determine all solutions of the linear congruence  $15x \equiv 35 \pmod{760}$ .
- 10. Given the public key (n, e) = (85, 7), encrypt plain text HCM, where the alphabet A, B, C, ... X, Y, Z are assigned the numbers 3, 4, 5, ... 27, 28. Give the cipher text. Find the private key.
- 11. In a RSA cryptosystem, a participant A uses two prime numbers p = 5 and q = 11 to generate the public and private keys. If the public key of A is (n, e) = (55, 7), then determine
  - i) The private key of A.
  - ii) Cipher text for the plain text M = 15.



Academic year 2023-2024 (Even Sem)

# UNIT-II VECTOR DIFFERNTIATION Part A

- 1. Find  $grad\phi$ , if  $\phi = \log(x^2 + y^2 + z^2)$
- 2. If  $f(x, y, z) = 3x^2y y^3z^2$ , find  $\nabla f$  and  $|\nabla f|$  at (1, -2, -1).
- 3. If  $f = x^2y$  z and  $g = xy 3z^2$ , calculate  $\nabla(\nabla f \cdot \nabla g)$
- 4. Find the unit vector normal to the surface  $x^3 + y^3 + 3xyz = 3$  at the point (1, 2, -1).
- 5. Find the maximum directional derivative of  $\phi(x, y, z) = x^3 y^2 z$  at (1, -2, 3).
- 6. If  $\phi(x, y, z) = c_1$ ,  $\psi(x, y, z) = c_2$  are two surfaces, then the orthogonality condition in terms of normals to the surfaces is
- 7. If  $\vec{F} = (bx^2y yz)\hat{i} + (xy^2 + xz^2)\hat{j} + (2xyz 2x^2y^2)\hat{k}$  is solenoidal then b =
- 8. A particle is moving along the curve  $x = a \cos t$ ,  $y = a \sin t$ ,  $z = at \tan \alpha$ . Then the magnitude of velocity at t = 0 is \_\_\_\_\_\_.
- 9. If the vector field  $\vec{F} = (x + 2y + az)\mathbf{i} + (2x 3y z)\mathbf{j} + (4x y + 2z)\mathbf{k}$  is irrotational then the value of a is \_\_\_\_\_.
- 10. If the vector field  $\vec{A} = (x + 3y)\mathbf{i} + (y 2z)\mathbf{j} + (x + mz)\mathbf{k}$  is solenoidal, then the value of m is \_\_\_\_\_.
- 11. Given the curve  $x = t^2 + 2$ , y = 4t 5,  $z = 2t^2 6t$  find the unit tangent vector at the point t = 2.
- 12. If  $\phi = 2x^2yz^3$ , then find  $\nabla^2 \phi$  at (1, 1, 1).
- 13. The experiments show that the heat flows in the direction of maximum decrease of temperature. Find this direction when the temperature  $T = x^2 + y^2 + 4z^2$  at the point (2, -1, 2).
- 14. If  $\phi = x^3 + y^3 + z^3 3xyz$ , then  $div(grad \phi)$  is \_\_\_\_\_.
- 15. Find  $div\vec{F}$  and  $curl\vec{F}$ , where  $\vec{F} = grad(x^3 + y^3 + z^3 3xyz)$ .

### Part B

- 1. Determine the angle between the tangents to the curve  $\vec{r} = t^2\hat{\imath} + 2t\hat{\jmath} t^3\hat{k}$  at the points  $t = \pm 1$ .
- 2. A particle moves along the curve  $\vec{r} = 2t^2\hat{\imath} + (t^2 4t)\hat{\jmath} (3t 5)\hat{k}$ . Find the components of velocity and acceleration in the direction of vector  $\vec{c} = \hat{\imath} 3\hat{\jmath} + 2\hat{k}$  at t = 1.
- 3. Obtain the directional derivative of  $\phi(x, y, z) = \frac{1}{x^2 + y^2 + z^2}$  at the point (1, 2, -3) in the direction of  $2\hat{\imath} 3\hat{\jmath} + \hat{k}$ .
- 4. Determine the angle between the normals to the surface  $2x^2 + 3y^2 = 5z$  at the points (2, -2, 4) and (-1, -1, 1).
- 5. Determine the angle between the surfaces  $x^2 + y^2 + z^2 = 16$  and  $x^2 + y^2 z = 4$  at the point
  - (2,-1,2) common to them.



# Academic year 2023-2024 (Even Sem)

- 6. Determine the constants a and b so that the surface  $3x^2 2y^2 3z^2 + 8 = 0$  is orthogonal to the surface  $ax^2 + y^2 = bz$  at the point (-1, 2, 1).
- 7. If  $\vec{r} = x \hat{\imath} + y \hat{\jmath} + z \hat{k}$  and  $r = |\vec{r}|$  then show that div  $(r^n \vec{r}) = (n+3)r^n$
- 8. If  $\vec{r} = x \hat{\imath} + y \hat{\jmath} + z \hat{k}$  and  $r = |\vec{r}|$  then show that  $\frac{\vec{r}}{r^3}$  is solenoidal.
- 9. If  $\vec{r} = x \hat{\imath} + y\hat{\jmath} + z\hat{k}$  and  $r = |\vec{r}|$  then show that  $\nabla^2 f(r) = f''(r) + \frac{2}{r}f'(r)$ .
- 10. If  $\vec{r} = x \hat{i} + y\hat{j} + z\hat{k}$  and  $r = |\vec{r}|$  then show that  $\nabla^2(r^{n+1}) = (n+1)(n+2)r^{n-1}$ .
- 11. Obtain the directional derivative of  $\phi(x,y) = x^3 3xy + 4y^2$  along the vector  $u = \cos\frac{\pi}{6}i + \sin\frac{\pi}{6}j$  and also find  $D_u\phi(1,2)$ .
- 12. Determine the value of the constant 'a' such that:  $\vec{F} = (axy z^3)\hat{\imath} + (a-2)x^2\hat{\jmath} + (1-a)xz^2\hat{k}$  is irrotational and hence find a scalar function  $\phi$  such that  $\vec{F} = \nabla \phi$ .
- 13. Show that  $\overrightarrow{F} = (2xy^2 + yz)\hat{\imath} + (2x^2y + xz + 2yz^2)\hat{\jmath} + (2y^2z + xy)\hat{k}$  is a conservative force field. Find its scalar potential.
- 14. Obtain the curl and divergence of the vector field  $\vec{F} = xyz \, i + x^2y^2z \, j + yz^3k$  and hence find scalar potential  $\phi$  if  $curl \, \vec{F} = 0$ .
- 15. Show that the vector field

$$\vec{\mathbf{F}} = (x^2 - yz)\mathbf{i} + (y^2 - xz)\mathbf{j} + (z^2 - xy)\mathbf{k}$$

is irrotational. Obtain the scalar potential  $\phi$  such that  $\vec{\mathbf{F}} = \nabla \phi$ .

16. Suppose that the temperature at a point (x, y, z) in space is given by  $T(x, y, z) = \frac{80}{1+x^2+2y^2+3z^2}$ , where T is measured in degree Celsius and x, y, z meters. In which direction does the temperature increases fastest at the point (1,1,-2)? What is the maximum rate of increase?



# Academic year 2023-2024 (Even Sem) Unit-III

#### **VECTOR INTEGRATION**

#### **PART A**

- 1. If  $\operatorname{curl} \vec{F} = 0$ , then for any closed curve  $C \int_C \vec{F} \cdot d\vec{r} =$ \_\_\_\_\_\_.
- 2. If R is the projection of the surface x = 4 on to the yz-plane, then ds =\_\_\_\_\_
- 3. If *R* is the projection of the surface  $x = \sqrt{4 z^2 y^2}$  on to the *yz*-plane, then ds =
- 4. If *R* is the projection of the surface  $y = \sqrt{16 z^2 x^2}$  on to the *xz*-plane, then  $ds = \frac{1}{2} \int ds \, ds \, ds = \frac{1}{2} \int ds \, ds \, ds$
- 5. If C is the curve y = 2 from x = 0 to x = 2 in the XY-plane, then =\_\_\_\_\_.
- 6. If S is the surface of the sphere  $x^2 + y^2 + z^2 = 16$ , then for  $\vec{F} = x\hat{\imath} + y\hat{\jmath} z\hat{k}$   $\iint_S \vec{F} \cdot \hat{n} \, ds = \underline{\qquad}.$
- 7. If S is the surface of the parallelepiped bounded by the planes x = 0, x = 2, y = 0, y = 3, z = 0 and z = 4, then for  $\vec{F} = x\hat{\imath} + y\hat{\jmath} z\hat{k}$   $\iint_S \vec{F} \cdot \hat{n} \, ds = \underline{\hspace{1cm}}$ .
- 8. If S is the surface of the sphere  $x^2 + y^2 + z^2 = 4$ , then for  $\vec{F} = x^2\hat{\imath} + y\hat{\jmath} z\hat{k}$   $\iint_S \vec{F} \cdot \hat{n} \, ds = \underline{\qquad}.$
- 9. If S is the surface of the parallelepiped bounded by the planes x = 0, x = 1, y = 0, y = 2, z = 0 and z = 3, then for  $\vec{F} = x\hat{\imath} + y^2\hat{\jmath} z\hat{k}$   $\iint_S \vec{F} \cdot \hat{n} \, ds = \underline{\hspace{1cm}}$ .
- 10. If C is the boundary of the rectangle bounded by x = 1, y = 1, x = 3, y = 4, then  $\oint_C (xdy ydx) =$ \_\_\_\_\_.
- 11. If C is the circle bounded by  $x^2 + y^2 = 8$ , then  $\oint_C (xdy ydx) = \underline{\hspace{1cm}}$
- 12. If C is the boundary of the triangle bounded by y = 0, x y = 0 and x + y = 2, then  $\oint_C (xdy ydx) =$ \_\_\_\_\_.
- 13. If C is the boundary of the triangle bounded by y = 0, x = 0 and x + y = 2, then  $\oint_C (xdy ydx) = \underline{\hspace{1cm}}$ .
- 14. If C is the boundary of the triangle with vertices (0,0), (2,0) and (1,1), then  $\oint_C (xdy ydx) = \underline{\hspace{1cm}}$ .
- 15. If *C* is the boundary of the triangle with vertices (0,0), (2,0) and (0,2), then  $\oint_C (xdy ydx) = \underline{\hspace{1cm}}$ .

#### **PART B**

- 1. If  $\vec{F} = (2x + y^2)\hat{\imath} + (3y 4x)\hat{\jmath}$  evaluate  $\oint_C \vec{F} \cdot d\vec{r}$  around the triangle in the *xy*-plane with vertices (0,0), (2,0), (2,1) (a) in counterclockwise direction (b) in clockwise direction.
- 2. If  $\vec{A} = (y 2x)\hat{\imath} + (3x + 2y)\hat{\jmath}$ , compute the circulation of  $\vec{A}$  about a circle c in the xy-plane with centre at the origin and radius 2, if c is traversed in the positive direction.
- 3. Find the total work done in moving a particle in a force field  $\vec{A} = 3xy\hat{\imath} 5z\hat{\jmath} + 10x\hat{k}$  along the curve  $x = t^2 + 1$ ,  $y = 2t^2$ ,  $z = t^3$  from t = 1 to t = 2.
- 4. Calculate the flux of water through the parabolic cylinder  $y = x^2$ , between the planes x = 0, z = 0, x = 3, z = 2 if the velocity vector is  $\vec{A} = y\hat{\imath} + 2\hat{\jmath} + xz\hat{k}$  m/sec.



# Academic year 2023-2024 (Even Sem)

- 5. Find the flux across the surface of the parabolic cylinder  $y^2 = 8x$  in the first octant bounded by the planes y = 4 and z = 6 when the velocity vector  $\vec{V} = 2y\hat{\imath} z\hat{\jmath} + x^2\hat{k}$ .
- 6. Use Green's theorem to evaluate the line integral  $\oint_C (-y^3 dx + x^3 dy)$ , where C is boundary of the cicle  $x^2 + y^2 = 4$ .
- 7. Use Green's theorem to evaluate the line integral  $\oint_C \left(\frac{e^y}{x} dx + (e^y \ln y + 2x) dy\right)$ , where C is the boundary of the region bounded by y = 2,  $y = x^4 + 1$ .
- 8. Verify Stokes' theorem for  $\vec{A} = xz\hat{\imath} y\hat{\jmath} + x^2y\hat{k}$  where S is the surface of the region bounded by x = 0, y = 0, z = 0, 2x + y + 2z = 8 which is not included in the xz-plane.
- 9. Verify Stokes' theorem for  $\vec{A} = y^2\hat{\imath} + xy\hat{\jmath} xz\hat{k}$  where S is the hemisphere  $x^2 + y^2 + z^2 = a^2, z \ge 0$ .
- 10. Evaluate  $\oint_C (\sin z \ dx \cos x \ dy + \sin y \ dz)$  where C is the rectangle  $0 \le x \le \pi$ ,  $0 \le y \le 1$ , z = 3.
- 11. Evaluate the surface integral  $\iint_S \vec{F} \cdot \hat{n} \, ds$  for  $\vec{F} = ax\hat{\imath} + by \hat{\jmath} + cz\hat{k}$  and S is unit sphere centered at origin.
- 12. Verify the divergence theorem for  $\vec{A} = 2x^2y\hat{\imath} y^2\hat{\jmath} + 4xz^2\hat{k}$  taken over the region in the first octant bounded by the cylinder  $y^2 + z^2 = 9$  and the plane x = 2.
- 13. Verify the divergence theorem for  $\vec{A} = 4x\hat{\imath} 2y\hat{\jmath} + z^2\hat{k}$  taken over the region bounded by  $x^2 + y^2 = 4$ , z = 4, z = 0 and z = 3.
- 14. Verify the divergence theorem for  $\vec{A} = 2xy\hat{\imath} + yz^2\hat{\jmath} + xz\hat{k}$  and S is the total surface of the rectangular parallelopiped bounded by the coordinate planes, x = 1, y = 2 and z = 3.
- 15. Verify the divergence theorem for  $\vec{A} = x^2\hat{\imath} + y^2\hat{\jmath} + z^2\hat{k}$  and S is surface of the ellipsoid  $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ .



Academic year 2023-2024 (Even Sem)
UNIT-IV

# LINEAR ORDINARY DIFFERENTIAL EQUATIONS OF HIGHER ORDER

#### **PART A**

- 1. If  $y = e^{-t}$  is the solution of the equation  $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + py = 0$  then the value of p
- 2. If  $y = e^{-3t}$  is the solution of the equation  $\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + py = 0$  then the value of p is\_\_\_\_\_
- 3. The solution of the differential equation  $\frac{d^2y}{dt^2} + \omega^2 y = 0$  is\_\_\_\_\_
- 4. If the general solution of the differential equation is  $y = e^{2x}(A\cos 5x + B\sin 5x)$ , the value of A and B are \_\_\_\_\_ given that y(0) = 0 and y'(0) = 15
- 5. Find the P.I of  $\frac{d^2y}{dx^2} + \frac{dy}{dx} 2y = 3e^{-2x}$ .
- 6. Find the P.I of  $\frac{d^2y}{dx^2} 3\frac{dy}{dx} + 2y = 4$ .
- 7. The solution of the differential equation  $(D^2 4)y = e^x$
- 8. Solve  $(D^3 1)y = 0$
- 9. The complimentary function of  $x^2 \frac{d^2y}{dx^2} x \frac{dy}{dx} + y = logx$  is \_\_\_\_\_.
- 10. What is the constant coefficient differential equation corresponding to  $x \frac{d^2y}{dx^2} + \frac{dy}{dx} = \frac{1}{x}$ .
- 11. The homogeneous linear differential equations whose auxiliary equation roots are 0,-1,-1
- 12. The solution of  $x^2y'' + xy' = 0$  is\_\_\_\_\_
- 13. The solution of y'' + y = 0 with y(0) = 0,  $y(\frac{\pi}{2}) = 2$  is \_\_\_\_\_.
- 14. The periodic time of the motion described by the differential equation  $\frac{d^2x}{dt^2} + 4x = 0$  is \_\_\_\_\_.
- 15. The complimentary function of  $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + y = xe^x \sin x$  is \_\_\_\_\_.



# Academic year 2023-2024 (Even Sem) PART B

- 1. Solve the initial value problem y'' 4y' + 5y = 0 subject to the conditions y(0) = 1, y'(0) = 2.
- 2. Solve $(D^4 2D^3 + 2D^2 2D + 1)y = 0$ .
- 3. Solve  $x^2y'' + xy' + 9y = 3x^2 + \sin(3\log x)$ .
- 4. Solve  $x^4y''' + 2x^3y'' x^2y' + xy = \sin(\log x)$ .
- 5. Solve  $(D^2 3D + 2)y = \cos(e^{-x})$  by the method of variation parameters.
- 6. A particle undergoes forced vibrations according to the law  $x'''(t) + 25x(t) = 21\cos(2t)$ . If the particle starts from rest at t = 0, find the displacement at any time t > 0.
- 7. The differential equation of simple pendulum is  $x''(t) + \omega^2 x(t) = F\sin(\omega t)$ , where  $\omega$  and F are constants. If x = 0, x' = 0 at t = 0, determine the motion x (t).
- 8. Solve  $(D^2 + 1)y = \frac{1}{1 + \sin x}$  by the method of variation parameters.
- 9. Solve $(D^2 1)y = sinx (1 + x^2)e^x$ .
- $10. \operatorname{Solve}(D^2 + 1)y = \sin^2 x.$
- 11. Solve $(D^2 + 2D + 1)y = xe^{-x}cosx$ .
- $12. \operatorname{Solve}(D^2 1)y = x^2 \cos x.$
- 13. Solve  $(D^6 D^4)y = x^2$ .
- 14. Solve $(D^2 4D + 1)y = cosxcos2x + sin^2x.$
- 15. Solve the boundary value problem y'' 2y' 3y = 0, y(0) = 0,  $y(1) = e^3 \frac{1}{e^3}$



Academic year 2023-2024 (Even Sem)
UNIT-V
NUMERICAL METHODS
PART A

1. For the following data, find  $\Delta^2 y_0 =$ \_\_\_\_\_\_

| и | ļ.    | 1    | 1.4  | 1.8  | 2.2 |
|---|-------|------|------|------|-----|
| у | =f(u) | 3.49 | 4.82 | 5.96 | 6.5 |

- 2. In terms of second order forward difference  $\nabla y_5 \nabla y_4$  is \_\_\_\_\_.
- 3. In terms of first order backward difference  $\Delta^2 y_4$  is \_\_\_\_\_\_.
- 4. From a difference table it is found that second differences are 3,5,9,-7. If  $\Delta^2 y_1 = 5$ , then  $\nabla^2 y_3 =$ \_\_\_\_\_\_.
- 5. Construct forward difference table for the following data:

| v    | -2 | 0  | 2  | 4  |
|------|----|----|----|----|
| f(v) | 20 | 24 | 29 | 36 |

6. Given

| х    | 0 | 2  | 4  | 6   |
|------|---|----|----|-----|
| f(x) | 7 | 13 | 43 | 145 |

The value of  $f'(2) = \underline{\hspace{1cm}}$ .

7. Given

| х    | 0 | 2  | 4  | 6   |
|------|---|----|----|-----|
| f(x) | 7 | 13 | 43 | 145 |

The value of  $f'(6) = \underline{\phantom{a}}$ .

- 8. The  $n^{th}$  differences of a polynomial of degree n is \_\_\_\_\_.
- 9. The value of  $\Delta^3[(1+3x)(1-7x)(1-5x)]$  taking the interval of differencing h=1 is
- 10. Given

| x | 4 | 6 | 8 | 10 |
|---|---|---|---|----|
| ν | 1 | 3 | 8 | 16 |

Find  $\frac{d^2y}{dx^2}$  at x = 4.

11. Given

| х | 4 | 6 | 8 | 10 |
|---|---|---|---|----|
| ν | 1 | 3 | 8 | 16 |

Find  $\frac{d^2y}{dx^2}$  at x = 10.

12. The Lagrange polynomial that passes through three data points

$$y(1) = 3$$
,  $y(2) = 4$ ,  $y(5) = 5$  is given by  $p(x) = L_0(x) \cdot 3 + L_1(x) \cdot 4 + L_2(x) \cdot 5$ . The value of  $L_0(x)$  at 3 is \_\_\_\_\_.

13. Roots of the equation f(x) = 0 is \_\_\_\_\_, if given

| x    | -1 | 0 | 2 |
|------|----|---|---|
| f(x) | 0  | 1 | 2 |

Academic year 2023-2024 (Even Sem)

14. The coefficient of  $y_2$  in the Lagrange's interpolation formula to fit a polynomial for the following data is\_\_\_\_\_\_.

| х | -1    | 0     | 2     | 3     |
|---|-------|-------|-------|-------|
| y | $y_0$ | $y_1$ | $y_2$ | $y_3$ |

15. Find the interpolating polynomial for the following data

| x | 0 | 1 | 2 |
|---|---|---|---|
| y | 0 | 5 | 2 |

#### **PART B**

1. Find the number of men getting wage of ₹ 10,000 from the following table:

| Wages (in ₹, in thousands) | 5 | 15 | 25 | 35 |
|----------------------------|---|----|----|----|
| No of Men                  | 9 | 30 | 35 | 42 |

2. From the following table find the value of  $\theta$  at x = 43.

|          | 40  |     |     |     |     |     |
|----------|-----|-----|-----|-----|-----|-----|
| $\theta$ | 184 | 204 | 226 | 250 | 276 | 304 |

3. Estimate from the following table f(3.8)

| x    | 0 | 1   | 2   | 3   | 4   |
|------|---|-----|-----|-----|-----|
| f(x) | 1 | 1.5 | 2.2 | 3.1 | 4.6 |

4. The following table gives the population of a town during the last six censuses. Estimate the increase in population during the period from 1956 to 1982:

| Year                     | 1941 | 1951 | 1961 | 1971 | 1981 | 1991 |
|--------------------------|------|------|------|------|------|------|
| Population(in thousands) | 12   | 15   | 20   | 27   | 39   | 52   |

5. The following table gives the viscosity of a liquid at different temperatures. Calculate its viscosity at T = 170.

| Temperature(degree) | 110  | 130 | 160 | 190 |
|---------------------|------|-----|-----|-----|
| $Viscosity(\gamma)$ | 10.8 | 8.1 | 5.5 | 4.8 |

6. From the following table, estimate the number of students who obtained marks between 45 and 65:

| Marks (x):          | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 |
|---------------------|-------|-------|-------|-------|-------|
| No. of students(y): | 33    | 44    | 53    | 37    | 32    |



# Academic year 2023-2024 (Even Sem)

- 7. Use Lagrange's interpolation to find the cubic polynomial that interpolates the following data points:  $\{(-2, -3), (-1, 1), (0, -1), (1, -3)\}$
- 8. The following are the measurements T made on a curve recorded by oscillograph representing a change of current I due to changes in the conditions of an electric current. Find I at T=1.6

| T | 1.2  | 2.0  | 2.5  | 3.0  |
|---|------|------|------|------|
| Ι | 1.36 | 0.58 | 0.34 | 0.20 |

- 9. If f(1) = -3, f(3) = 9, f(4) = 30, f(6) = 132, then find the real root of the equation f(x) = 0.
- 10. If y(1) = 4, y(3) = 12, y(4) = 19 and y(x) = 7, find x using Lagrange's interpolation formula.
- 11. The distance covered by an athlete for 50 meters is given in the following table.

| Time (sec)       | 0 | 1   | 2   | 3    | 4    | 5    | 6  |
|------------------|---|-----|-----|------|------|------|----|
| Distance (meter) | 0 | 2.5 | 8.5 | 15.5 | 24.5 | 36.5 | 50 |

Determine the speed of the athlete at t = 5sec.

12. A rod is rotating in a plane. The following table gives the angle  $\theta$ (radians) through which the rod has turned for various values of the time t second.

| t        | 0 | 0.2  | 0.4  | 0.6  | 0.8  | 1.0  | 1.2  |
|----------|---|------|------|------|------|------|------|
| $\theta$ | 0 | 0.12 | 0.49 | 1.12 | 2.02 | 3.20 | 4.67 |

Calculate the angular velocity and the angular acceleration of the rod, when t=0.4 second.

13. The table below reveals the velocity v of a body during the specific time t, find its acceleration at t=1.1

|   | t | 1.0  | 1.1  | 1.2  | 1.3  | 1.4  |
|---|---|------|------|------|------|------|
| Ī | v | 43.1 | 47.7 | 52.1 | 56.4 | 60.8 |

14. Find y'(0) and y''(5) from the following table:

| х | 0 | 1 | 2  | 3 | 4 | 5 |
|---|---|---|----|---|---|---|
| у | 4 | 8 | 15 | 7 | 6 | 2 |

15. The following data gives corresponding values of pressure and specific volume of a superheated stream.

| v | 2   | 4    | 6    | 8    | 10 |
|---|-----|------|------|------|----|
| p | 105 | 42.7 | 25.3 | 16.7 | 13 |

Find the rate of change of pressure with respect to volume when v = 2.