CPSC 8420 Advanced Machine Learning Week 3: Linear Regression

Dr. Kai Liu

September 3, 2020

Subset Selecting

Subset Selecting

 The most direct approach is called all subsets or best subsets regression: we compute the least squares fit for all possible subsets and then choose between them based on some criterion that balances training error with model size.

Subset Selecting

Algorithm 6.1 Best subset selection

- 1. Let \mathcal{M}_0 denote the *null model*, which contains no predictors. This model simply predicts the sample mean for each observation.
- 2. For $k = 1, 2, \dots p$:
 - (a) Fit all $\binom{p}{k}$ models that contain exactly k predictors.
 - (b) Pick the best among these $\binom{p}{k}$ models, and call it \mathcal{M}_k . Here best is defined as having the smallest RSS, or equivalently largest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \dots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

However, there are 2^p possible models. For example, when p=40 there are over a billion models!

Forward Selection

- Begin with the <u>null model</u> a model that contains an intercept but no predictors.
- Fit *p* simple linear regressions and add to the null model the predictor that results in the lowest RSS.
- Add to that model the predictor that results in the lowest RSS amongst all two-predictor models.
- Continue until some stopping rule is satisfied, for example when all remaining variables have a *p*-value above some threshold.

Forward Stepwise Selection

Algorithm 6.2 Forward stepwise selection

- 1. Let \mathcal{M}_0 denote the *null* model, which contains no predictors.
- 2. For $k = 0, \dots, p 1$:
 - (a) Consider all p-k models that augment the predictors in \mathcal{M}_k with one additional predictor.
 - (b) Choose the *best* among these p k models, and call it \mathcal{M}_{k+1} . Here *best* is defined as having smallest RSS or highest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \dots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

There will be around p(p+1)/2 models!

Forward Stepwise Selection

# Variables	Best subset	Forward stepwise		
One	rating	rating		
Two	rating, income	rating, income		
Three	rating, income, student	rating, income, student		
Four	cards, income,	rating, income,		
	student, limit	student, limit		

TABLE 6.1. The first four selected models for best subset selection and forward stepwise selection on the Credit data set. The first three models are identical but the fourth models differ.

Backward Selection

- Start with all predictors in the model.
- Remove the predictor with the largest p-value that is, the predictor that is the least statistically significant.
- The new (p-1)-predictor model is fit, and the predictor with the largest p-value is removed.
- Continue until a stopping rule is reached. For instance, we may stop when all remaining predictors have a significant p-value defined by some significance threshold.

Backward Stepwise Selection

Algorithm 6.3 Backward stepwise selection

- 1. Let \mathcal{M}_p denote the full model, which contains all p predictors.
- 2. For $k = p, p 1, \dots, 1$:
 - (a) Consider all k models that contain all but one of the predictors in \mathcal{M}_k , for a total of k-1 predictors.
 - (b) Choose the *best* among these k models, and call it \mathcal{M}_{k-1} . Here *best* is defined as having smallest RSS or highest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \dots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

There will be around p(p+1)/2 models!

Shrinkage Methods

Ridge Regression

RSS =
$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$
.

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2,$$

Ridge Regression

FIGURE 6.4. The standardized ridge regression coefficients are displayed for the Credit data set, as a function of λ and $\|\hat{\beta}_{\lambda}^{R}\|_{2}/\|\hat{\beta}\|_{2}$.

Ridge Regression

FIGURE 6.5. Squared bias (black), variance (green), and test mean squared error (purple) for the ridge regression predictions on a simulated data set, as a function of λ and $\|\hat{\beta}_{\lambda}^{R}\|_{2}/\|\hat{\beta}\|_{2}$. The horizontal dashed lines indicate the minimum possible MSE. The purple crosses indicate the ridge regression models for which the MSE is smallest.

The Lasso

RSS =
$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$
.

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|.$$

The Lasso

FIGURE 6.6. The standardized lasso coefficients on the Credit data set are shown as a function of λ and $\|\hat{\beta}_{\lambda}^{L}\|_{1}/\|\hat{\beta}\|_{1}$.

Ridge Regression & The Lasso VS. Subset Selection

Sparsity

FIGURE 6.7. Contours of the error and constraint functions for the lasso (left) and ridge regression (right). The solid blue areas are the constraint regions, $|\beta_1| + |\beta_2| \le s$ and $\beta_1^2 + \beta_2^2 \le s$, while the red ellipses are the contours of the RSS.

Sparsity

Sparsity

3-Dimension

Lasso VS. Ridge Regression

FIGURE 6.8. Left: Plots of squared bias (black), variance (green), and test MSE (purple) for the lasso on a simulated data set. Right: Comparison of squared bias, variance and test MSE between lasso (solid) and ridge (dotted). Both are plotted against their \mathbb{R}^2 on the training data, as a common form of indexing. The crosses in both plots indicate the lasso model for which the MSE is smallest.

Comparison

TABLE 3.4. Estimators of β_j in the case of orthonormal columns of **X**. M and λ are constants chosen by the corresponding techniques; sign denotes the sign of its argument (± 1) , and x_+ denotes "positive part" of x. Below the table, estimators are shown by broken red lines. The 45° line in gray shows the unrestricted estimate for reference.

Estimator	Formula			
Best subset (size M)	$\hat{\beta}_j \cdot I(\hat{\beta}_j \ge \hat{\beta}_{(M)})$			
Ridge	$\hat{\beta}_j/(1+\lambda)$			
Lasso	$\operatorname{sign}(\hat{\beta}_j)(\hat{\beta}_j - \lambda)_+$			

Comparison

TABLE 3.3. Estimated coefficients and test error results, for different subset and shrinkage methods applied to the prostate data. The blank entries correspond to variables omitted.

Term	LS	Best Subset	Ridge	Lasso	PCR	PLS
Intercept	2.465	2.477	2.452	2.468	2.497	2.452
lcavol	0.680	0.740	0.420	0.533	0.543	0.419
lweight	0.263	0.316	0.238	0.169	0.289	0.344
age	-0.141		-0.046		-0.152	-0.026
lbph	0.210		0.162	0.002	0.214	0.220
svi	0.305		0.227	0.094	0.315	0.243
lcp	-0.288		0.000		-0.051	0.079
gleason	-0.021		0.040		0.232	0.011
pgg45	0.267		0.133		-0.056	0.084
Test Error	0.521	0.492	0.492	0.479	0.449	0.528
Std Error	0.179	0.143	0.165	0.164	0.105	0.152
		· · · · · · · · · · · · · · · · · · ·				

Generalization

$$\tilde{\beta} = \underset{\beta}{\operatorname{argmin}} \left\{ \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|^q \right\}$$

FIGURE 3.12. Contours of constant value of $\sum_{j} |\beta_{j}|^{q}$ for given values of q.

Elastic-Net

$$\lambda \sum_{j=1}^{p} \left(\alpha \beta_j^2 + (1-\alpha)|\beta_j|\right)$$

$$\downarrow^{q=1.2} \qquad \qquad \alpha = 0.2$$

$$\downarrow^{q=1.2} \qquad \qquad \downarrow^{q=0.2}$$
Elastic Net

FIGURE 3.13. Contours of constant value of $\sum_j |\beta_j|^q$ for q=1.2 (left plot), and the elastic-net penalty $\sum_j (\alpha \beta_j^2 + (1-\alpha)|\beta_j|)$ for $\alpha=0.2$ (right plot). Although visually very similar, the elastic-net has sharp (non-differentiable) corners, while the q=1.2 penalty does not.