GEOESTADÍSTICA

TAREA 3

CONTENIDO

- ANALISIS EXPLORATORIO DE DATOS
- ANALISIS ESTRUCTURAL
- KRIGING ORDINARIO PUNTUAL
- COKRIGING ORDINARIO PUNTUAL

GEOESTADÍSTICA

PARTE I

ANALISIS EXPLORATORIO DE DATOS

CONTENIDO

- Introducción
- Datos
- Estadística Univariada
- Estadística Bivariada

El conocimiento de las características y propiedades del subsuelo es un aspecto importante a considerar en el diseño y construcción de obras de ingeniería. En muchos casos, la caracterización del subsuelo no resulta sencilla, dada la complejidad y la variabilidad espacial que presenta en la naturaleza.

En Geotecnia, la práctica usual para caracterizar el subsuelo en un sitio particular consiste en extraer muestras, analizarlas y determinar sus propiedades. Recientemente, la obtención directa de las propiedades del suelo en el lugar mediante pruebas de campo ha tomado también mucha importancia. En ambos casos, la caracterización está basada en la familiaridad con la geología, la interpretación de los datos cuantitativos, la experiencia y la intuición.

Entre este tipo de propiedades, la que más destaca es el *contenido de agua*, *w*, (especialmente para materiales cohesivos), debido a las correlaciones que presenta con las propiedades mecánicas; además, es la propiedad que se determina en mayor número y a menor costo en un estudio geotécnico.

La *resistencia al esfuerzo cortante* (q_u) es uno de los parámetros más representativos de las propiedades mecánicas. Las pruebas de campo son las que más datos aportan, por ejemplo la prueba de *veleta* que puede ser aplicada en diferentes profundidades, a diferencia de una prueba de *compresión triaxial* en laboratorio que usualmente únicamente es determinada en especimenes de suelo obtenidos en algunas profundidades de interés.

Desde el punto de vista de la Mecánica de Suelos, la secuencia estratigráfica superficial típica del subsuelo de la zona lacustre en la Ciudad de México incluye una costra seca delgada, un estrato de arcilla de espesor fuerte y el primer estrato o capa resistente, **Figura 1**.

Figura 1. Estratigrafía del subsuelo de la Ciudad de México

Figura 2. Mapa de ubicación de los datos, Ciudad de México

Distribución espacial de 20,624.4 m x 15,822 m en X e Y resp.

DATOS

		Formación Arcillosa Superior (FAS)			
Coordenada	Coordenada	Profundidad		W	q u
X 4 9 5 6 5 3 .0 0 0 4 8 8 6 0 3 .0 0 0 4 8 8 6 3 7 .0 0 0 4 8 8 6 6 5 3 .0 0 0 4 8 9 9 0 1 .7 8 3 4 8 8 6 1 7 .0 0 0 4 9 1 7 9 6 .0 0 0 4 9 1 7 9 6 .0 0 0 4 9 7 8 1 9 .0 0 0 4 9 7 8 1 9 .0 0 0 4 9 7 9 1 4 .0 0 0 4 9 7 9 1 1 3 .2 0 7 4 8 5 9 9 7 .3 8 8 4 9 7 9 1 1 2 .0 0 0 4 9 8 6 1 2 .0 0 0 4 9 8 8 8 8 1 0 0 0 4 9 8 8 8 1 0 0 0 4 9 8 8 8 1 0 0 0 4 9 8 8 8 1 0 0 0 4 9 8 8 1 9 0 0 0 4 9 8 8 1 8 1 0 0 0 4 9 8 8 1 9 0 0 0 4 9 8 8 1 9 0 0 0 4 9 8 8 1 9 0 0 0 4 9 8 8 1 9 0 0 0 4 9 8 8 1 9 0 0 0 4 9 8 8 1 9 0 0 0 4 9 8 8 1 9 0 0 0 4 9 8 8 1 9 0 0 0 4 9 8 1 6 0 0 0 0 4 8 1 8 10 0 0 0 4 8 1 8 10 0 0 0 4 8 1 9 5 5 0 0 0 4 8 1 9 0 0 0 0 4 9 2 5 7 5 5 0 0 4 9 2 5 7 5 5 5 0 0 4 9 2 5 7 5 5 5 0 0 4 9 8 6 0 2 5 0 0 0 0 4 9 8 6 0 2 5 0 0 0 0 4 9 8 7 8 8 9 9 4 9 6 1 0 1 .7 5 0 4 9 7 2 8 1 0 0 0 4 9 8 3 7 3 6 0 0 7 4 9 8 2 1 2 0 0 0 4 9 8 2 1 2 0 0 0 4 9 8 3 7 3 6 0 7 8 4 9 5 6 8 9 0 0 0 4 8 8 6 8 1 3 8 9 9 4 9 8 6 8 9 1 0 0 0 4 8 8 9 3 3 4 4 5 8 4 9 8 6 1 2 0 0 0 4 8 8 9 3 3 4 5 8 4 9 8 6 1 2 0 0 0 4 8 8 9 9 3 4 5 8 4 9 8 6 1 2 0 0 0 4 8 8 9 9 3 4 5 8 4 9 8 9 9 4 0 0 0 0 4 8 8 9 9 3 4 5 8 4 9 8 9 9 4 0 0 0 0 4 8 8 9 9 9 4 0 0 0 0 4 8 8 9 9 9 4 0 0 0 0 4 8 8 9 9 9 0 0 0	Y 2 1 6 5 5 6 1 . 0 0 0 2 1 6 9 2 1 7 . 0 0 0 2 1 7 1 5 4 9 . 0 0 0 2 1 7 7 5 4 1 1 . 0 0 0 2 1 7 7 5 4 1 1 . 0 0 0 2 1 7 3 7 3 1 . 0 0 0 2 1 7 3 7 3 1 . 0 0 0 2 1 7 4 5 8 5 . 0 0 0 2 1 7 3 7 3 1 . 0 0 0 2 1 6 8 8 3 1 . 0 0 0 2 1 6 8 8 3 1 . 0 0 0 2 1 6 8 8 3 1 . 0 0 0 2 1 6 9 6 7 3 . 0 0 0 2 1 6 9 6 7 3 . 0 0 0 2 1 6 9 1 8 4 . 0 0 0 2 1 6 9 1 8 4 . 0 0 0 2 1 6 9 1 8 4 . 0 0 0 2 1 6 9 6 7 7 . 0 0 0 2 1 6 9 6 7 9 . 0 0 0 2 1 6 9 6 7 9 . 0 0 0 2 1 6 9 6 7 9 . 0 0 0 2 1 6 9 6 7 9 . 0 0 0 2 1 6 9 6 7 9 . 0 0 0 2 1 6 9 6 7 9 . 0 0 0 2 1 6 9 6 7 9 . 0 0 0 2 1 6 9 6 7 9 . 0 0 0 2 1 6 9 6 7 9 . 0 0 0 2 1 6 9 6 7 9 . 0 0 0 0 2 1 6 9 6 7 9 . 0 0 0 0 2 1 6 9 6 7 9 . 0 0 0 0 2 1 6 9 6 7 9 . 0 0 0 0 2 1 6 9 6 7 9 . 0 0 0 0 2 1 6 9 6 7 9 . 0 0 0 0 2 1 6 9 6 7 9 . 0 0 0 0 2 1 6 9 6 7 9 . 0 0 0 0	S u p . 3 .0 0 1 .9 0 3 .8 0 2 .4 0 2 .8 0 2 .1 0 1 .0 0 0 .9 0 1 .2 0 0 .6 0 1 .7 0 1 .7 0 2 .0 0 8 0 1 .8 0 0 .8 0 1 .8 0 0 .6 0 1 .6 0 1 .6 0 1 .7 0 1 .7 0 2 .0 0 0 .6 0 1 .8 0 0 .8 0 1 .4 0 2 .3 0 0 .6 0 1 .6 0 1 .6 0 1 .6 0 1 .6 0 1 .6 0 1 .6 0 1 .6 0 1 .6 0 1 .6 0 1 .6 0 1 .6 0 1 .6 0 1 .6 0 1 .6 0 1 .6 0 1 .6 0 1 .7 5 0 .8 0 0 .7 5 0 .8 0 1 .4 0 2 .9 0 1 .6 0 1 .6 0 1 .6 0 1 .6 0 1 .6 0 1 .8 0 0 .7 5 0 .8 0 1 .4 0 2 .9 0 1 .6 0 1 .8 0 0 .6 0 1 .8 0 0 .6 0 1 .8 0 0 .6 0 0 .7 0 0 .8 0 0 .2 0 0 .6 0 0 .7 0 0 .8 0 0 .2 0 0 .6 0 0 .7 0 0 .8 0 0 .9	In f. 7.30 7.90 8.00 8.50 9.00 9.35 9.40 9.50 9.60 9.60 9.70 9.80 9.90 10.10 10.20 10.60 10.60 10.60 10.60 11.10 1	(%) 90.00 100.00 38.00 75.00 50.00 90.00 110.00 35.00 60.00 75.00 110.00 45.00 110.00 45.00 110.00 140.00 125.00 140.00 140.00 140.00 140.00 140.00 125.00 125.00 220.00 70.00 120.00	(k g / c m ²) 1 . 2 5 1 . 1 1 . 5 1 . 1 1 . 4 1 . 0 5 1 . 1 5 1 . 4 5 1 . 0 5 1 . 3 5 1 . 2 5 0 . 9 5 1 . 6 1 . 6 5 0 . 9 1 . 1 5 0 . 8 0 . 8 5 0 . 7 0 . 7 0 . 8 0 . 8 5 1 . 2 0 . 7 6 1 . 1 1 . 2 0 . 7 5 0 . 8 0 . 8 5 1 . 2 1 . 1 5 1 . 2 0 . 7 6 1 . 3 5 1 . 2 0 . 7 6 1 . 3 5 1 . 2 1 . 1 5 1 . 2 1 . 3 5 1 . 3 6 1 . 3 2 0 . 7 8 1 . 4 5 1 . 2 6 1 . 3 5 1 . 2 6 1 . 3 5 1 . 3 6 1 . 3 5 1 . 3 6 1 . 3 5 1 . 3 6 1 . 3 5 1 . 3 6 1 . 3 5 1 . 3 6 1 . 3 5 1 . 3 6 1 . 3 5 1 . 3 6 1 . 3 5 1 . 3 6 1 . 3 5 1 . 3 6 1 . 3 5 1 . 3 6 1 . 3 5 1 . 3 6 1 . 3 5 1 . 3 6 1 . 3 5 1 . 3 6 1 . 3 5 1 . 3 6 1 . 3 5 1 . 3 5 1 . 3 5 1 . 3 6 1 . 3 5 1 . 3 6 1 . 3 5 1 . 3 5 1 . 3 5 1 . 3 6 1 . 3 5 1 . 3 6 1 . 3 5 1 . 3 6 1 . 3 5 1 . 3 6 1 . 3 5 1 . 3 6 1 . 3 5 1 . 3 6 1 . 3 5 1 . 3 6 1 . 3 5 1 . 3 6 1 . 3 5 1 . 3 6 1 . 3 5 1 . 3 6 1 . 3 5 1 . 3 6 1 . 3 6 1 . 3 7 1 . 3

ESTADISTICA UNIVARIADA

Variable w

Variable qu

Variable w Contenido de Agua

W	
	54
Mean	126.8148
Median	122.5000
Grouped Median	121.2500
Sum	6848.00
Minimum	34.00
Maximum	275.00
Range	241.00
First	90.00
Last	180.00
Std. Deviation	62.8202
Variance	3946.380
Kurtosis	873
Skewness	.396
Harmonic Mean	94.8086
Geometric Mean	110.6672

Gráficos de la variable w

No se aprecian valores atípicos en los datos

Gráficos de la variable w

La distribución se aleja de una distribución normal.

Esta gráfica se muestra la eliminación de los componentes armónicos (senos y cósenos) y deja los componentes no periódicos.

Variable qu Resistencia al Esfuerzo Cortante

qu		
Mean	1.0863	
Median	1.1000	
Grouped Median	1.0917	
Sum	58.66	
Minimum	.70	
Maximum	1.65	
Range	.95	
First	1.25	
Last	.80	
Std. Deviation	.2637	
Variance	6.956E-02	
Kurtosis	983	
Skewness	.255	
Harmonic Mean	1.0241	
Geometric Mean	1.0549	

Gráficos de la variable qu

No se aprecian valores atípicos en los datos

Gráficos de la variable qu

La distribución se aleja de una distribución normal.

Detrended Normal Q-Q Plot of VAR00002

Esta gráfica se muestra la eliminación de los componentes armónicos (senos y cósenos) y deja los componentes no periódicos.

ESTADISTICA BIVARIADA

Variable w

Variable qu

Variable w & Variable qu

Correlación -.806

Covarianza -13.349

Gráfico de dispersión (scatterplot)

Regresión Lineal

w & qu

R	. 806
\mathbb{R}^2	.649
Adjusted Square	.642
Std. Error of the Estimate	37.5673

Coeficientes	В	Std. Error	Intervalo de Confianza		
Constante	335.275	21.860	291.410	291.410	
qu	-191.900	19.565	379.139	379.139	

Estadística de Residuos

w & qu

	Minimum	Maximu	Mean	Std. Deviation	N
		m			
Predicte d Value	18.6403	200.9449	126.8148	50.6133	54
Residual	-62.9700	112.1698	-5.7896E-15	37.2112	54
Std.	-2.137	1.465	.000	1.000	54
Predicte					
d Value					
Std. Residual	-1.676	2.986	.000	.991	54

Graficas de Residuos w & qu

Histogram

Dependent Variable: VAR00001

Regression Standardized Residual

Normal P-P Plot of Regression Stand

Dependent Variable: VAR00001

Observed Cum Prob

GEOESTADÍSTICA

PARTE II

ANALISIS ESTRUCTURAL

CONTENIDO

- Análisis Exploratorio de Datos
- **◆ Estimación del Variograma Adireccional (0, +-90)**
- Análisis de Anisotropia
- Ajuste del Modelo al Variograma Estimado y Criterio de Bondad Ajuste
- Validación Cruzada del Modelo de Variograma y Análisis de las Diferencias (Z-Z*) en Términos del Valor Medio y de la Varianza

ANALISIS ESTRUCTURAL

Variable qu

Análisis Exploratorio de Datos

Análisis de la Distribución Espacial

La gráfica de dispersión muestra que la variable *qu* es estacionaria en dirección del eje X.

Análisis Exploratorio de Datos

Análisis de la Distribución Espacial

La gráfica de dispersión muestra que la variable *qu* es estacionaria en dirección del eje Y.

Análisis Exploratorio de Datos

Análisis de la Distribución Espacial

Distribución dispersa y existencia de cúmulos con alta concentración de datos en ciertas zonas.

Estimación del Variograma Adireccional (0, +-90)

El variograma está acotado con respecto a la varianza, y además, se observa que se cumple la hipótesis intrínseca, por tanto, puede decirse que la variable *qu* es estacionaria.

Estimación del Variograma Adireccional (0, +-90)

ESTIMACION EN UNA SOLA DIRECCIÓN Direccion = **0** grados, Tolerancia = **90.0** grados

 $Longitud\ del\ intervalo =\ 1.200000000E+00 \quad km$

Nlag Intervalos (Lags) Npares Semivarianzas

```
1 9.9164971430E-01 63 2.6176984127E-02
```

2 2.5152973270E+00 63 5.4152380952E-02

3 3.4837754804E+00 44 7.5396590909E-02

4 4.7719903252E+00 63 6.8505555556E-02

5 6.0629268898E+00 97 5.9273195876E-02

6 7.0308736660E+00 151 6.4885099338E-02

7 8.3547838402E+00 93 6.6064516129E-02

8 9.4405942205E+00 70 7.8937857143E-02

9 1.0759216162E+01 109 7.3646330275E-02

10 1.1919936479E+01 95 8.6570000000E-02

Estimación del Variograma Adireccional (0, +-90)

En el variograma en las dirección de 0° y 135° presenta un comportamiento cualitativamente distinto del mostrado en las direcciones 45° y 90°.

Dirección = 0 Grados

Dirección = 0 Grados

acuerdo De los con resultados, algunos valores función la. semivarianza se estiman con pocos pares de datos. Por tanto, debe tomarse en cuenta que los valores correspondientes a esos intervalos de separación (NLag) pueden ser no representativos la variabilidad espacial de la variable que está analizando.

```
Direccion = 0 grados, Tolerancia = 22.5 grados
Longitud del intervalo = 1.200000000E+00 km
 Nlag Intervalos (Lags) Npares Semivarianzas
 1 8.7171453897E-01
                      14 2.5110714286E-02
                      20 4.6185000000E-02
 2 2.7401256755E+00
 3 3.5472535943E+00
                       9\5.5333333333E-02
4 4.6065878744E+00
                      13 3.3323076923E-02
                      \(\frac{12}{2.8683333333E-02}\)
5 6.1213446679E+00
6 6.9299634879E+00
                       20 5.0580000000E-02
7 8.4771795999E+00
                       35 4.1467142857E-02
8 9.4504819758E+00
                      24 1.0253541667E-01
9 1.0638033785E+01
                      28 7.8107142857E-02
10 1.2030079788E+01
                       29 1.0545517241E-01
```

Dirección = 45 Grados

Dirección = 45 Grados

acuerdo De los con resultados, algunos valores función 1a semivarianza se estiman con pocos pares de datos. Por tanto, debe tomarse en cuenta que los valores correspondientes a intervalos de separación (NLag) pueden ser no representativos 1a variabilidad espacial de la variable aue está analizando.

```
Direccion = 45 grados, Tolerancia = 22.5 grados
Longitud del intervalo = 1.200000000E+00 km
Nlag Intervalos (Lags) Npares Semivarianzas
1 8.4964100732E-01
                     15 1.3756666667E-02
2 2.3939250256E+00
                         5.710000000E-02
3 3.5477135512E+00
                      16 / 6.7656250000E-02
4 4.8810791417E+00
                      30 6.3016666667E-02
5 6.1272088083E+00
                      31 6.5053225806E-02
6 6.8155676932E+00
                      21 8.7947619048E-02
7 8.2717016675E+00
                      12\1.4940833333E-01
                      12 /8.8325000000E-02
8 9.6032574647E+00
9 1.0433344731E+01
                      19 8.8042105263E-02
  1.1828489043E+01
                       22 5.2313636364E-02
```

Dirección = 90 Grados

Dirección = 90 Grados

acuerdo De los con resultados, algunos valores función la. semivarianza se estiman con pocos pares de datos. Por tanto, debe tomarse en cuenta que los valores correspondientes a esos intervalos de separación (NLag) pueden ser no representativos la variabilidad espacial de la variable que está analizando.

```
Direccion = 90 grados, Tolerancia = 22.5 grados
Longitud del intervalo = 1.200000000E+00 km
Nlag Intervalos (Lags) Npares Semivarianzas
1.1551232378E+00
                      15 2.3666666667E-02
2 2.2741972956E+00
                     21 6.1045238095E-02
3 3.1670840594E+00
                      9 \1.131777778E-01
4 4.8607758405E+00
                      11 /1.1710454545E-01
5 5.9852199399E+00
                      49 6.4084693878E-02
6 6.9814375305E+00
                      65 7.7381538461E-02
7 8.2674661070E+00
                      12 \\ \)1.0440833333E-01
8 9.4088480539E+00
                      16 6.6165625000E-02
9 1.0957870614E+01
                      34 6.4388235294E-02
10 1.1923697817E+01 20 6.5677500000E-02
```

Dirección = 135 Grados

Dirección = 135 Grados

acuerdo De los con resultados, algunos valores función la. semivarianza se estiman con pocos pares de datos. Por tanto, debe tomarse en cuenta que los valores correspondientes a esos intervalos de separación (NLag) pueden ser no representativos 1a variabilidad espacial de la variable que está analizando.

```
Direccion = 135 grados, Tolerancia = 22.5 grados
Longitud del intervalo = 1.200000000E+00 km
Nlag Intervalos (Lags) Npares Semivarianzas
1 1.0630770936E+00
                      19 3.8750000000E-02
2 2.6097066469E+00
                      15 5.3750000000E-02
3 3.6093665434E+00
                      10\7.1835000000E-02
4 4.5387599584E+00
                       9 7.82222222E-02
5 6.2857044364E+00
                       5 /4.970000000E-02
6 7.2476065060E+00
                      45 4.243000000E-02
7 8.2889293484E+00
                      34 4.8436764706E-02
8 9.3471871985E+00
                      18 5.2569444445E-02
9 1.0860302319E+01
                      28 7.0658928572E-02
10 1.1867539016E+01
                       24 1.1256250000E-01
```

Ajuste del Modelo al Variograma Estimado y Criterio de Bondad Ajuste

AJUSTE DE LOS MODELOS POR MINIMOS CUADRADOS PONDERADOS

Modelo	Nugget	Sill-Nugget	Alcance	A.I.C.			
Gaussiano	0.00797			-330.08318			
Exponencial	0.00797	0.06159	3.48378	-333.74618			
Esferico	0.00508	0.06493	3.54129	-389.66445			
Lineal	0.02493	0.04167	4.61043	-254.16480			
Modelo optimo segun el Criterio de Informacion de Akaike (A.I.C.)							
Esferico		0.06493					

Ajuste del Modelo al Variograma Estimado y Criterio de Bondad Ajuste

Validación Cruzada del Modelo del Variograma y Análisis de las Diferencias(Z-Z*) en Términos del Valor Medio y de la Varianza

Radio de busqueda = 3.541E+00

Variograma:

Modelo= Esferico

Nugget= 5.100E-03

Sill-Nugget = 6.490E-02

Alcance= <u>3.5413</u>

Valor Medio de $Z-Z^* = -1.364E-02$

Varianza de $Z-Z^* = 8.017E-02$

Valor Medio de Zscore = -8.559E-02

Varianza de Zscore = 1.339E+01

Porciento de puntos estimados = 70.37%

Empleando un radio de búsqueda igual al alcance, no es posible estimar en todos los puntos de datos

ANALISIS ESTRUCTURAL

Variable w

Análisis Exploratorio de Datos

Análisis de la Distribución Espacial

La gráfica de dispersión muestra que la variable w es estacionaria en dirección del eje X.

Análisis Exploratorio de Datos

Análisis de la Distribución Espacial

La gráfica de dispersión muestra que la variable *w* posiblemente no es estacionaria en dirección del eje Y.

Análisis Exploratorio de Datos

Análisis de la Distribución Espacial

Distribución dispersa y existencia de cúmulos con alta concentración de datos en ciertas zonas.

Estimación del Variograma Adireccional (0, +-90)

El variograma está acotado con respecto a la varianza, y además, se observa que se cumple la hipótesis intrínseca, por tanto, puede decirse que la variable *w* es estacionaria.

Estimación del Variograma Adireccional (0, +-90)

ESTIMACION EN UNA SOLA DIRECCION

Direccion = 0 grados, Tolerancia = 90.0 grados

Longitud del intervalo = 1.200000000E+00 km

Nlag Intervalos (Lags) Npares Semivarianzas

- 1 9.9164971430E-01 63 8.5238095238E+02
- 2 2.5152973270E+00 63 2.8502063492E+03
- 3 3.4837754804E+00 44 4.8022272727E+03
- 4 4.7719903252E+00 63 3.8193253968E+03
- 5 6.0629268898E+00 97 3.7133350515E+03
- 6 7.0308736660E+00 151 3.7641622517E+03
- 7 8.3547838402E+00 93 3.6691989247E+03
- 8 9.4405942205E+00 70 4.1375714286E+03
- 9 1.0759216162E+01 109 4.0927614679E+03
- 10 1.1919936479E+01 95 3.9675210526E+03

Estimación del Variograma Adireccional (0, +-90)

En el variograma en las dirección de 0° y 135 ° presenta un comportamiento cualitativamente distinto del mostrado en las direcciones 45 ° y 90 °.

Dirección = 0 Grados

Dirección = 0 Grados

acuerdo De los con resultados, algunos valores función 1a semivarianza se estiman con pocos pares de datos. Por tanto, debe tomarse en cuenta que los valores correspondientes a esos intervalos de separación (NLag) pueden ser no representativos la variabilidad espacial de la variable que está analizando.

```
Direccion = 0 grados, Tolerancia = 22.5 grados
Longitud del intervalo = 1.200000000E+00 km
Nlag Intervalos (Lags) Npares Semivarianzas
                     14 5.9642857143E+02
1 8.7171453897E-01
2 2.7401256755E+00
                      20 2.4427000000E+03
3 3.5472535943E+00
                     9 \1.507944444E+03
4 4.6065878744E+00
                     13 1.8248461538E+03
5 6.1213446679E+00
                      12/1.4846250000E+03
6 6.9299634879E+00
                      20 1.1582750000E+03
7 8.4771795999E+00
                      35 2.5763857143E+03
8 9.4504819758E+00
                      24 5.1305625000E+03
9 1.0638033785E+01
                      28 3.8881250000E+03
10 1.2030079788E+01 29 3.4607068966E+03
```

Direccion = 45 Grados

Direccion = 45 Grados

acuerdo De los con resultados, algunos valores función 1a semivarianza se estiman con pocos pares de datos. Por tanto, debe tomarse en cuenta que los valores correspondientes a esos intervalos de separación (NLag) pueden ser no representativos 1a variabilidad espacial de la variable aue está analizando.

```
Direccion = 45 grados, Tolerancia = 22.5 grados
Longitud del intervalo = 1.200000000E+00 km
Nlag Intervalos (Lags) Npares Semivarianzas
1 8.4964100732E-01 15 1.3491666667E+03
2 2.3939250256E+00
                      7 4.8058571429E+03
3 3.5477135512E+00
                      16 /7.0785625000E+03
4 4.8810791417E+00
                      30 3.6396666667E+03
5 6.1272088083E+00
                      31 3.8774193548E+03
6 6.8155676932E+00
                      21 4.6944047619E+03
7 8.2717016675E+00
                      12 \7.0229583333E+03
8 9.6032574647E+00
                      12 /4.4530833333E+03
9 1.0433344731E+01
                      19 5.9896578947E+03
10 1.1828489043E+01
                      22 3.1873181818E+03
```

Dirección = 90 Grados

Dirección = 90 Grados

acuerdo De los con resultados, algunos valores función la. semivarianza se estiman con pocos pares de datos. Por tanto, debe tomarse en cuenta que los valores correspondientes a esos intervalos de separación (NLag) pueden ser no representativos la variabilidad espacial de la variable que está analizando.

```
Direccion = 90 grados, Tolerancia = 22.5 grados
Longitud del intervalo = 1.200000000E+00 km
Nlag Intervalos (Lags) Npares Semivarianzas
1.1551232378E+00
                     15 7.200000000E+02
2 2.2741972956E+00
                    21 3.7523809524E+03
3 3.1670840594E+00
                     4 4.8607758405E+00
                    11 /5.6990909091E+03
5 5.9852199399E+00
                     49 4.4179183673E+03
6 6.9814375305E+00
                     65 5.4837769231E+03
7 8.2674661070E+00
                     12 7.263333333E+03
8 9.4088480539E+00
                     16 3.1325625000E+03
9 1.0957870614E+01
                     34 2.6676470588E+03
10 1.1923697817E+01
                     20 3.3231750000E+03
```

Dirección = 135 Grados

Dirección = 135 Grados

acuerdo De los con resultados, algunos valores función la. semivarianza se estiman con pocos pares de datos. Por tanto, debe tomarse en cuenta que los valores correspondientes a esos intervalos de separación (NLag) pueden ser no representativos la variabilidad espacial de la variable que está analizando.

```
Direccion = 135 grados, Tolerancia = 22.5 grados
Longitud del intervalo = 1.200000000E+00 km
Nlag Intervalos (Lags) Npares Semivarianzas
1 1.0630770936E+00
                      19 7.5328947368E+02
2 2.6097066469E+00
                      15 1.2178666667E+03
3 3.6093665434E+00
                      10\4.7619500000E+03
4 4.5387599584E+00
                      9 5.0016111111E+03
5 6.2857044364E+00
                      5 /1.140000000E+03
6 7.2476065060E+00
                      45 2.004333333E+03
7 8.2889293484E+00
                      34 2.3419558824E+03
8 9.3471871985E+00
                      18 3.4965833333E+03
                      28 4.7407142857E+03
9 1.0860302319E+01
10 1.1867539016E+01
                      24 5.8320625000E+03
```

Ajuste del Modelo al Variograma Estimado y Criterio de Bondad Ajuste.

AJUSTE DE LOS MODELOS POR MINIMOS CUADRADOS PONDERADOS

Modelo	Nugget Sil	l-Nugget Ald	cance A.	I.C.
Gaussiano	0.00000	3946.38015	3.48378	861.20062
Exponencial	0.00000	3946.38015	3.48378	860.49393
Esferico	0.00000	3946.38015	3.48378	790.92731
Lineal	643.79155	2795.61060	4.49965	956.49486

Modelo optimo segun el Criterio de Informacion de Akaike (A.I.C.)

Esferico 0.00000 3946.38015 3.48378 790.92731

Ajuste del Modelo al Variograma Estimado y Criterio de Bondad Ajuste

Validación Cruzada del Modelo de Variograma y Análisis de las Diferencias(Z-Z*) en Términos del Valor Medio y de la Varianza

Radio de busqueda = 3.483E+00

Variograma:

Modelo = Esferico

Nugget= 0.000E+00

Sill-Nugget = 3.946E+03

Alcance = 3.4838

Valor Medio de $Z-Z^* = 3.373E+00$

Varianza de $Z-Z^* = 2.290E+03$

Valor Medio de Zscore = 5.842E-02

Varianza de Zscore = 2.420E+00

Porciento de puntos estimados = 70.37%

Empleando un radio de búsqueda igual al alcance, no es posible estimar en todos los puntos de datos

GEOESTADÍSTICA

PARTE III

KRIGING ORDINARIO PUNTUAL

ANALISIS ESTRUCTURAL

Variable qu

Kriging

Radio de búsqueda = 3.541E+00

Variograma:

Modelo= Esférico

Nugget= 5.100E-03

Sill-Nugget = 6.490E-02

Alcance= <u>3.5413</u>

A.I.C. 389.6645

Varianza = 6.956 E-2

Kriging Puntual

Intervalos: X = 300.3 pts 68 Y = 293.6 pts 54

Vecinos = 5

Rango de Valores 35-270

Cálculo = 3620 Omitió = 52

KrigingValor Estimado

KrigingDesviación Estandar

ANALISIS ESTRUCTURAL

Variable w

Kriging

Radio de búsqueda = 3.483E+00

Variograma:

Modelo = Esférico

Nugget= 0.000E+00

Sill-Nugget = 3.946E+03

Alcance = 3.4838

A.I.C. 790.9273

Varianza = 3.946 E+3

Kriging Puntual

Intervalos: X = 300.3 pts 68 Y = 293.6 pts 54

Vecinos = 5

Rango de Valores 0-7892

Cálculo = 3615 Omitió = 57

Kriging Valor Estimado

KrigingDesviación Estandar

GEOESTADÍSTICA

PARTE IV

COKRIGING ORDINARIO PUNTUAL

Modelo de Corregionalización Lineal

Variable Primaria w

Radio de búsqueda = 3.541E+00

Variograma:

Modelo= Esférico

Nugget= 5.100E-03

Sill-Nugget = 6.490E-02

Alcance= 3.4838

A.I.C = 805.45

Variable Secundaria qu

Radio de búsqueda = 3.483E+00

Variograma:

Modelo = Esférico

Nugget= 0.000E+00

Sill-Nugget = 3.946E+03

Alcance = 3.4838

A.I.C. = -389.66

Variograma Cruzado w-qu

Radio de búsqueda =

3.483E+00

Variograma:

Modelo = Esférico

Nugget= 1.0E+1

Sill-Nugget = 4.251E+03

Alcance = 3.4838

A.I.C. = 810.47

Los Determinantes de los menores de orden 2 son No Negativos

Modelo de Corregionalización Lineal

Isotropic Cross Variogram

Spherical model (Co = 10.0000; Co + C = 4251.0000; Ao = 3483.00; r2 = 0.833; RSS = 1.632E+08)

Modelo de Corregionalización Lineal

Regression coefficient = 0.817 (SE = 0.110, r2 = 0.524, y intercept = 24.530, SE Prediction = 43.325)

Cokriging Valor Estimado

W

Cokriging Desviación Estandar

Kriging v.s. Cokriging

Kriging v.s. Cokriging

En este caso el Kriging y el Cokriging muestran esencialmente los mismos resultados, y la falta de mejoría se atribuye al pobre número de puntos muestrales para una adecuada estimación de los variogramas cruzados y a la diferencia de la varianza que es de varios ordenes de magnitud.

CONCLUSIONES Análisis Unívariado

• Primeramente se realizo el análisis unívariado para las variables w y qu, conjuntamente con sus transformaciones logarítmica, en ellas se vio que pese a la transformación existe un mejor ajuste a una normal en coordenadas naturales, también se observo que no hay valores atípicos apreciables en nuestros datos.

CONCLUSIONES

Análisis Bivariado

- En éste se analizó primeramente a las variables w y qu, observándose un coeficiente de correlación de -.806, ajustándose a una recta un poco peor que en la transformación de las variables a coordenadas logarítmicas que obtuvo un coeficiente de correlación de -.827, pero creemos que no es necesario la transformación a coordenadas logarítmicas ya que la ganancia es mínima.
- ◆ También se realizo la regresión lineal obteniéndose un valor para R cuadrada de .649, y una recta de ajuste w = -191.900qu + 335.275, con una desviación estándar de 50.6133 y un error residual de 112.1698, en la transformación a coordenadas logarítmicas se obtiene un valor para R cuadrada de .684, y una recta de ajuste w = -1.849qu + 2.087, con una desviación estándar de .1974 y un error residual de .4411, aquí al igual que en el caso unívariado, pese a que existe una mejor regresión lineal en coordenadas logarítmicas, no es muy marcada la mejoría, por ello creemos que no es necesario la transformación a coordenadas logarítmicas ya que la ganancia es mínima.

CONCLUSIONES

Análisis Estructural

- Primeramente hay que hacer notar hay pocos datos (54) y tienen una amplia distribución espacial heterogénea, pero aún así, es posible observar dos cúmulos de datos a diversas escalas, unos muy agrupados (casi la mitad de los datos) y el resto dispersos en el dominio, por ello se recomendaría hacer un variograma anidado.
- ◆ Para la variable qu no hay tendencia aparente y su variograma adireccional se ajusta a un modelo esférico con criterio de A.I.C de -309.6645 y cuya validación cruzada es de Valor Medio de Z-Z* de -1.3642E-02, Varianza de Z-Z* de 8.017E-02, Valor Medio de Zscore de -8.559E-02, Varianza de Zscore de 1.339E+01, Porciento de puntos estimados de 70.37%, pero hay que notar que hay varios puntos del variograma mal estimados y hay pocos datos.

CONCLUSIONES

Análisis Estructural

- Para la variable w no hay tendencia significativa y su variograma adireccional se ajusta a un modelo esférico con criterio de A.I.C de 790.92 y cuya validación cruzada es de Valor Medio de Z-Z* de 3.373, Varianza de Z-Z* de 2.29E-02, Valor Medio de Zscore de 5.842E-02, Varianza de Zscore de 2.42, Porciento de puntos estimados de 70.37%, pero hay que notar que hay varios puntos del variograma mal estimados y hay pocos datos.
- La distribución dispersa y existencia de cúmulos con alta concentración de datos en ciertas zonas influye en el variograma y por tanto en el kriging y cokriging.