Redes LSTM para el reconocimiento de voz aplicado a un conjunto de dígitos

Victor Jesus Sotelo Chico1

¹Universidad Nacional de Ingeniería

Seminario de Tesis II

Contenido

- Introducción
- Objetivos
- Marco Teórico
 - Redes Neuronales
 - Redes LSTM
- Métodos de Optimización
- Conclusiones y Trabajos Futuros

Introducción

Las señales de voz proveen una gran cantidad de información a través del tiempo, el estudio de estas ha permitido el desarrollo de sistemas de reconocimiento de voz.

Objetivos

- Conocer el proceso involucrado en el habla humana.
- Estudiar procesamiento de las señales de voz.
- Diseñar una red neuronal capaz de reconocer un conjunto de audios de números.
- Mostrar los resultados obtenidos y explicarlos basándonos en la teoría estudiada.

Redes Neuronales Artificiales

Estas redes toman como inspiración la arquitectura del cerebro para la construcción de sistemas inteligente. Actualmente son la base para el desarrollo de la inteligencia artificial.

Comparación neuronas biológicas y artificiales

Figura: Redes neuronales biológicas y artificiales

Redes neuronales Prealimentadas

Es un tipo de red neuronal más simple que existe. Esta red puede clasificarse en:

- Perceptron simple
- Perceptron Multicapas
- Redes neuronales convolucionales

Esquema Redes neuronales Prealimentadas

Back Propagation

Figura: Propagación hacia atrás

Redes Neuronales Convolucionales(CNN)

Las CNN son un tipo de redes neuronales especiales para procesar datos como imágenes. La primera CNN fue creada por Yann LeCun.

Capas de una red neuronal convolucional

- Input Layer
- Convolutional Layer
- Pooling Layer
- Fully Conected Layer
- Output Layer

Las Redes LSTM o Long Short Term Memory son un tipo de

Gradiente de Descenso

La gradiente de descenso es una forma de minimizar la función de costo $J(\theta)$ parametrizada por los parámetros $\theta \in \Re^d$.

Figura: Gradiente de descenso

Variantes de la Gradiente de Descenso

Existen 3 variantes de la gradiente de descenso:

- Batch gradient descent
- Stochastic gradient descent
- Mini-batch gradient descent

Conclusiones

- Los métodos de optimización Adam y RMSprop obtuvieron los mejores resultados de precisión en ambas pruebas.
- A pesar de que el método de optimización Adam fue propuesto a partir del RMSprop. Adam fue superado en algunas de pruebas realizadas.
- Adam es el método que tiene un decaimiento más acelerado al calcular el error en la función de costo cross-entropy.

Conclusiones

- Entre los métodos adaptativos Adam, RMSprop y Adagrad
 . Solo este último obtuvo los peores resultados, esto se
 debió a su dificultad de trabajar con la suma de las
 gradientes al cuadrado lo cual poco a poco redujo su tasa
 de aprendizaje.
- El RMSprop como una mejora del Adagrad, obtuvó mejores resultados que este último. Esto debido a que RMSprop trabaja con el promedio de la raíz de la gradiente anterior y tasas de decaimiento para controlar el problema de la disminución de la tasa de aprendizaje del método Adagrad.

Trabajos Futuro

- Correcto diseño de una red neuronal convolucional.
- Obtener resultados con distintos hardwares.
- Realizar una implementación más interactiva.

