

[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1 Subsampling (Pooling) layers were 2x2 applied at stride 2 i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]

More details in LeNet

BOAZ

First layer (CONV1): 96 11x11 filters applied at stride 4

Q: what is the output volume size?

BOAZ

Q) Difference btw convolution and pooling?

Second layer (POOL1): 3x3 filters applied at stride 2

Output volume: 27x27x96

Q: what is the number of parameters in this layer?

Case Study: AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

[55x55x48] x 2

Historical note: Trained on GTX 580 GPU with only 3 GB of memory. Network spread across 2 GPUs, half the neurons (feature maps) on each GPU.

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Case Study: VGGNet

[Simonyan and Zisserman, 2014]

Small filters, Deeper networks

8 layers (AlexNet)
-> 16 - 19 layers (VGG16Net)

Only 3x3 CONV stride 1, pad 1 and 2x2 MAX POOL stride 2

11.7% top 5 error in ILSVRC'13 (ZFNet)

-> 7.3% top 5 error in ILSVRC'14

Softmax
FC 1000
FC 4096
FC 4098
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96
Input
AlexNet

	Softmax
	FC 1000
Softmax	FC 4098
FC 1000	FC 4098
FC 4096	Pool
FC 4098	3x3 conv, 512
Pool	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	Pool
Pool	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
Pool	Pool
3x3 conv, 256	3x3 conv, 256
3x3 conv, 256	3x3 conv, 256
Pool	Pool
3x3 conv, 128	3x3 conv, 128
3x3 conv, 128	3x3 conv, 128
Pool	Pool
3x3 conv, 64	3x3 conv, 64
3x3 conv, 64	3x3 conv, 64
Input	Input
VGG16	VGG19

Case Study: VGGNet

[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers has same **effective receptive field** as one 7x7 conv layer

Q: What is the effective receptive field of three 3x3 conv (stride 1) layers?

Softmax	
FC 1000	
FC 4096	
FC 4096	
Pool	
3x3 conv, 256	
3x3 conv, 384	
Pool	
3x3 conv, 384	
Pool	
5x5 conv, 256	
11x11 conv, 96	
Input	
AlexNet	

	Softmax
	FC 1000
Softmax	FC 4096
FC 1000	FC 4098
FC 4098	Pool
FC 4098	3x3 conv, 512
Pool	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	Pool
Pool	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
Pool	Pool
3x3 conv, 256	3x3 conv, 256
3x3 conv, 258	3x3 conv, 258
Pool	Pool
3x3 conv, 128	3x3 conv, 128
3x3 conv, 128	3x3 conv, 128
Pool	Pool
3x3 conv, 64	3x3 conv, 64
3x3 conv, 64	3x3 conv, 64
Input	Input
VGG16	VGG19

Case Study: VGGNet

[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers has same **effective receptive field** as one 7x7 conv layer

Q: What is the effective receptive field of three 3x3 conv (stride 1) layers?

Softmax	
FC 1000	
FC 4096	
FC 4096	
Pool	
3x3 conv, 256	
3x3 conv, 384	
Pool	
3x3 conv, 384	
Pool	
5x5 conv, 256	
11x11 conv, 96	
Input	
AlexNet	

	Softmax
	FC 1000
Softmax	FC 4096
FC 1000	FC 4098
FC 4098	Pool
FC 4098	3x3 conv, 512
Pool	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	Pool
Pool	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
Pool	Pool
3x3 conv, 256	3x3 conv, 256
3x3 conv, 258	3x3 conv, 258
Pool	Pool
3x3 conv, 128	3x3 conv, 128
3x3 conv, 128	3x3 conv, 128
Pool	Pool
3x3 conv, 64	3x3 conv, 64
3x3 conv, 64	3x3 conv, 64
Input	Input
VGG16	VGG19


```
(not counting biases)
INPUT: [224x224x3] memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179.648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512=2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000
TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)
```

TOTAL params: 138M parameters

FC 1000 FC 4096 FC 4096 Pool Pool Input

VGG16

[Szegedy et al., 2014]

Deeper networks, with computational efficiency

- 22 layers
- Efficient "Inception" module
- No FC layers
- Only 5 million parameters!12x less than AlexNet
- ILSVRC'14 classification winner (6.7% top 5 error)

[Szegedy et al., 2014]

Naive Inception module

Apply parallel filter operations on the input from previous layer:

- Multiple receptive field sizes for convolution (1x1, 3x3, 5x5)
- Pooling operation (3x3)

Concatenate all filter outputs together depth-wise

Q: What is the problem with this? [Hint: Computational complexity]

[Szegedy et al., 2014]

Example:

Naive Inception module

Q: What is the problem with this? [Hint: Computational complexity]

Q1: What is the output size of the 1x1 conv, with 128 filters?

Q2: What are the output sizes of all different filter operations?

Q3:What is output size after filter concatenation?

GoogLeNet

Reminder: 1x1 convolutions

1x1 CONV with 32 filters

preserves spatial dimensions, reduces depth!

Projects depth to lower dimension (combination of feature maps)

[Szegedy et al., 2014]

Naive Inception module

1x1 conv "bottleneck" layers

Inception module with dimension reduction

[Szegedy et al., 2014]

[He et al., 2015]

Very deep networks using residual connections

- 152-layer model for ImageNet
- ILSVRC'15 classification winner (3.57% top 5 error)
- Swept all classification and detection competitions in ILSVRC'15 and COCO'15!

[He et al., 2015]

What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

56-layer model performs worse on both training and test error

-> The deeper model performs worse, but it's not caused by overfitting!

[He et al., 2015]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a desired underlying mapping

[He et al., 2015]

Full ResNet architecture:

- Stack residual blocks
- Every residual block has two 3x3 conv layers
- Periodically, double # of filters and downsample spatially using stride 2 (/2 in each dimension)
- Additional conv layer at the beginning
- No FC layers at the end (only FC 1000 to output classes)

No FC layers besides FC

BOAZ

[He et al., 2015]

For deeper networks (ResNet-50+), use "bottleneck" layer to improve efficiency (similar to GoogLeNet)

BOAZ

Improved ResNet

Improving ResNets...

Identity Mappings in Deep Residual Networks

[He et al. 2016]

- Improved ResNet block design from creators of ResNet
- Creates a more direct path for propagating information throughout network (moves activation to residual mapping pathway)
- Gives better performance

Improved ResNet - Channel

Improving ResNets...

Wide Residual Networks

[Zagoruyko et al. 2016]

- Argues that residuals are the important factor, not depth
- User wider residual blocks (F x k filters instead of F filters in each layer)
- 50-layer wide ResNet outperforms
 152-layer original ResNet
- Increasing width instead of depth more computationally efficient (parallelizable)

Basic residual block

Wide residual block

Improved ResNet - Channel

Improving ResNets...

Aggregated Residual Transformations for Deep Neural Networks (ResNeXt)

[Xie et al. 2016]

 Also from creators of ResNet

 Increases width of residual block through multiple parallel pathways ("cardinality")

 Parallel pathways similar in spirit to Inception module

Improved ResNet — Connection(Depth)

Improving ResNets...

Deep Networks with Stochastic Depth

[Huang et al. 2016]

- Motivation: reduce vanishing gradients and training time through short networks during training
- Randomly drop a subset of layers during each training pass
- Bypass with identity function
- Use full deep network at test time

Beyond ResNet - DenseNet

Beyond ResNets...

Densely Connected Convolutional Networks

[Huang et al. 2017]

- Dense blocks where each layer is connected to every other layer in feedforward fashion
- Alleviates vanishing gradient, strengthens feature propagation, encourages feature reuse

Beyond ResNet - DenseNet

Beyond ResNet - DenseNet

CS231n: http://cs231n.stanford.edu/syllabus.html

