BME2322 – Logic Design

The Instructors:

Dr. Görkem SERBES (C317)

gserbes@yildiz.edu.tr

https://avesis.yildiz.edu.tr/gserbes/

Lab Assistants:

Nihat AKKAN

nakkan@yildiz.edu.tr

https://avesis.yildiz.edu.tr/nakkan

LECTURE 8

Multiplexers

- A 2ⁿ-to-1 multiplexer sends one of 2ⁿ input lines to a single output line
 - A multiplexer has two sets of inputs:
 - 2ⁿ data input lines
 - n select lines, to pick one of the 2n data inputs
 - The mux output is a single bit, which is one of the 2n data inputs
- The simplest example is a 2-to-1 mux:

$$Q = S' D0 + S D1$$

- The select bit S controls which of the data bits D0-D1 is chosen:
 - If S=0, then D0 is the output (Q=D0).
 - If S=1, then D1 is the output (Q=D1).

Truth table representation

Here is a full truth table for this 2-to-1 mux, based on the equation:

5	D1	DO	Q
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

- Here is another kind of abbreviated truth table
 - Input variables appear in the output column
 - This table implies that when S=0, the output Q=D0, and when S=1 the output Q=D1
 - This is a close match to the equation

5	Q	
0	DO	
1	D1	

2-to-1 Mux

4-to-1 Mux

Condensed Truth Table for 4-to-1-Line Multiplexer

4-to-1 Mux

4-to-1 Mux with Enable Input

EN	S1	50	Q
0	0	0	DO
0	0	1	D1
0	1	0	D2
0	1	1	D3
1	×	X	1

Q = EN'S1' S0' D0 + EN'S1' S0 D1 + EN'S1 S0' D2 + EN'S1 S0 D3 + EN

Implementing functions with multiplexers

- Muxes can be used to implement arbitrary functions
- One way to implement a function of n variables is to use an 2ⁿ-to-1 mux:
 - For each minterm mi of the function, connect 1 to mux data input Di.
 Each data input corresponds to one row of the truth table
 - Connect the function's input variables to the mux select inputs. These are used to indicate a particular input combination
- For example, let's look at $f(x,y,z) = \Sigma m(1,2,6,7)$.

×	У	Z	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

A more efficient way

- We can actually implement $f(x,y,z) = \Sigma m(1,2,6,7)$ with just a 4-to-1 mux, instead of an 8-to-1
- Step 1: Find the truth table for the function, and group the rows into pairs. Within each pair of rows, x and y are the same, so f is a function of z only.
 - When xy=00, f=z
 - When xy=01, f=z'
 - When xy=10, f=0
 - When xy=11, f=1
- Step 2: Connect the first two input variables of the truth table (here, x and y) to the select bits S1 S0 of the 4-to-1 mux.
- Step 3: Connect the equations above for f(z) to the data inputs D0-D3.

X	У	Z	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

• Implement a 4×1 mux by using 2×1 muxes

• Implement a 8×1 mux by using 2×1 muxes

Example 2 Cont.

• Implement a 8×1 mux by using 4×1 muxes

• Implement $F(A,B,C,D) = \sum m(1,4,5,7,9,12,13)$ using a 4×1 mux

Summary of Multiplexers

- A 2n-to-1 multiplexer routes one of 2n input lines to a single output line
- Just like decoders,
 - Muxes are common enough to be supplied as stand-alone devices for use in modular designs.
 - Muxes can implement arbitrary functions
- We saw some variations of the standard multiplexer:
 - Smaller muxes can be combined to produce larger ones
 - We can add active-low or active-high enable inputs
- As always, we use truth tables and Boolean algebra to analyze things