[1]: #IMPORT REQUIRED LIBRARIES import pandas as pd

import pandas as pd import numpy as np import matplotlib_pyplot as plt import seaborn as sns

[3]: #import dataset and load in dataframe df=pd. read_csv('chronickidneydisease.csv') df. head()

[3]: id age bp a1 su rbc рсс ba sg рс 0 80.0 1.020 1.0 0.0 48.0 NaN normal notpresent notpresent 1 1 7.0 50.0 1.020 4.0 0.0 NaN normal notpresent notpresent 2 62.0 80.0 1.010 2.0 3.0 normal normal notpresent notpresent 3 48.0 70.0 1.005 0.0 normal 4.0 abnorma1 notpresent present 51.0 2.0 4 80.0 1.010 0.0 normal norma1 notpresent notpresent ane classification pcv wc rchtn dmcad appet pe 7800 5. 2 44 yes yes no good no no ckd 38 6000 NaN good ckd no no no no no 2 ••• 31 7500 NaN ckd no yes no poor yes no 3 ••• 32 6700 3.9 yes no no poor yes yes ckd 35 7300 4.6 ckd no no good no no no

[5 rows x 26 columns]

[4]: #checking the description and gathering the information about the dataset df. describe(). T

[4]:		count	mean	std	min	25%	50%	75%	max
	id	400.0	199.500000	115.614301	0.000	99.75	199.50	299.25	399.000
	age	391.0	51.483376	17. 169714	2.000	42.00	55.00	64.50	90.000
	bp	388.0	76.469072	13.683637	50.000	70.00	80.00	80.00	180.000
	sg	353.0	1.017408	0.005717	1.005	1.01	1.02	1.02	1.025
	a1	354.0	1.016949	1, 352679	0,000	0.00	0.00	2,00	5,000

su	351.0	0.450142	1.099191	0.000	0.00	0.00	0.00	5.000
bgr	356.0	148. 036517	79. 281714	22.000	99.00	121.00	163.00	490.000
bu	381.0	57. 425722	50. 503006	1.500	27.00	42.00	66.00	391.000
sc	383.0	3. 072454	5. 741126	0.400	0.90	1.30	2.80	76.000
sod	313.0	137. 528754	10.408752	4.500	135.00	138.00	142.00	163.000
pot	312.0	4.627244	3. 193904	2.500	3.80	4.40	4.90	47.000
hemo	348.0	12. 526437	2.912587	3.100	10.30	12.65	15.00	17.800

[5]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 400 entries, 0 to 399
Data columns (total 26 columns):

#	Column	Dtype		
0	id	400	non-null	int64
1	age	391	non-null	float64
2	bp	388	non-null	float64
3	sg	353	non-null	float64
4	al	354	non-null	float64
5	su	351	non-null	float64
6	rbc	248	non-null	object
7	pc	335	non-null	object
8	pcc	396	non-null	object
9	ba	396	non-null	object
10	bgr	356	non-null	float64
11	bu	381	non-null	float64
12	SC	383	non-null	float64
13	sod	313	non-null	float64
14	pot	312	non-null	float64
15	hemo	348	non-null	float64
16	pcv	330	non-null	object
17	WC	295	non-null	object
18	rc	270	non-null	object
19	htn	398	non-null	object
20	dm	398	non-null	object
21	cad	398	non-null	object
22	appet	399	non-null	object
23	pe	399	non-null	object
24	ane	399	non-null	object
25	classification	400	non-nu11	object
dt.vn	es: float64(11).	int6	34(1), object	et (14)

dtypes: float64(11), int64(1), object(14)

memory usage: 81.4+ KB

#counting for the null values

[6]: df. isna(). sum()

```
[6]: id
                             0
                             9
      age
                            12
      bp
                            47
      sg
      al
                            46
                            49
      su
                           152
      rbc
                            65
      рс
                             4
      рсс
                             4
      ba
      bgr
                            44
                            19
      bu
                            17
      sc
                            87
      sod
                            88
      pot
                            52
      hemo
                            70
      pcv
      wc
                           105
                           130
      rc
                             2
      htn
                             2
      dm
                             2
      cad
      appet
                             1
                             1
      ре
                             1
      ane
                             ()
      classification
      dtype: int64
[11]: #replacing the null values with median and mode
      oc=[]#object data type columns
      ic=[]#int type columns
      for i in df. columns:
           if(df[i]. dtype=='object'):
               oc. append(i)
           else:
               ic.append(i)
      print("ic\t", ic, "\noc\t", oc)
               ['id', 'age', 'bp', 'sg', 'al', 'su', 'bgr', 'bu', 'sc', 'sod', 'pot',
      ic
      'hemo']
     oc ['rbc', 'pc', 'pcc', 'ba', 'pcv', 'wc', 'rc', 'htn', 'dm', 'cad', 'appet', 'pe', 'ane', 'classification']
[40]: #replacing the null with median
      for i in ic:
           if(df[i]. isna().any()==True):
```

```
df[i]=df[i].fillna(df[i].median())
          #checking
          print("Attribute "+i+"\t", df[i]. isna(). sum())
     Attribute: id
                       0
     Attribute: age
                       0
     Attribute: bp
     Attribute: sg
     Attribute: al
                       0
     Attribute: su
                       0
     Attribute: bgr
                       0
     Attribute: bu
     Attribute: sc
                       0
     Attribute: sod
                       0
     Attribute: pot
                       0
     Attribute: hemo 0
[46]: #replacing the null with mode
      for i in oc:
          if(df[i]. isna(). any() == True):
              df[i]=df[i].fillna(df[i].mode()[0])
          #checking
          print("Attribute: "+i+"\t\t", df[i].isna().sum())
     Attribute: rbc
                                        0
     Attribute: pc
                                        0
     Attribute: pcc
                                        0
     Attribute: ba
                                        0
     Attribute: pcv
     Attribute: wc
                                        0
     Attribute: rc
                                        ()
     Attribute: htn
                                        0
     Attribute: dm
                                        0
     Attribute: cad
                                        0
                                                 0
     Attribute: appet
     Attribute: pe
                                        0
     Attribute: ane
                                        0
     Attribute: classification
                                                         0
[47]: df. isna(). sum()
[47]: id
                         0
                         0
      age
      bp
                         0
                         0
      sg
                         0
      a1
      su
```

```
rbc
                      0
                      0
рс
                      0
pcc
ba
                      0
                      0
bgr
bu
                      0
sc
                      0
\operatorname{sod}
                      0
                      0
pot
                      0
hemo
                      0
pcv
                      0
wc
                      0
rc
                      0
htn
                      0
dm
cad
                      0
appet
                      0
                      0
pe
                      0
ane
{\it classification}
                      0
dtype: int64
```

[50]: #visualizing the datasets

sns. pairplot(df)

[50]: <seaborn.axisgrid.PairGrid at 0x7fbb94b144c0>

[1]: %matplotlib inline

[2]: #IMPORT REQUIRED LIBRARIES

import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import warnings

```
warnings.filterwarnings('ignore')
```

```
[3]: #import dataset and load in dataframe
     df=pd. read_csv('chronickidneydisease.csv')
     df. head()
[3]:
        id
                     bp
                                    a1
                                                rbc
              age
                              sg
                                         su
                                                                         рсс
                                                                                       ba
                                                            рс
                                   1.0
                                        0.0
      0
         0
             48.0
                   80.0
                           1.020
                                                NaN
                                                        normal
                                                                  notpresent notpresent
                   50.0
      1
         1
              7.0
                           1.020
                                   4.0
                                        0.0
                                                NaN
                                                        norma1
                                                                  notpresent notpresent
      2
         2
             62.0
                   80.0
                           1.010
                                   2.0
                                        3.0 normal
                                                        normal
                                                                 notpresent notpresent
      3
         3
             48.0
                   70.0
                           1.005
                                   4.0
                                        0.0 normal
                                                     abnormal
                                                                     present notpresent
             51.0
                   80.0
                           1.010
                                   2.0
      4
         4
                                        0.0 normal
                                                        normal
                                                                  notpresent notpresent
                                                          ane classification
                             htn
                                    dm
                                        cad appet
            pcv
                   WC
                         rc
                                                      ре
     0
       •••
             44
                 7800
                        5. 2
                             yes
                                   yes
                                         no
                                               good
                                                       no
                                                            no
       •••
             38
                 6000
                        NaN
                                                                           ckd
                              no
                                    no
                                         no
                                               good
                                                       no
                                                            no
     2
       •••
             31
                 7500
                        NaN
                              no
                                   yes
                                         no
                                               poor
                                                       no
                                                           yes
                                                                           ckd
     3
             32
                 6700
                        3.9
                                                                           ckd
                             yes
                                    no
                                               poor
                                         no
                                                      yes
                                                           yes
             35
                 7300
                        4.6
       •••
                              no
                                               good
                                                                           ckd
                                    no
                                         no
                                                       no
                                                            no
     [5 rows x 26 columns]
```

- [4]: #dataset adjustment
 df['classification']=df['classification'].replace(['ckd\t'], ['notckd'])
- [5]: df['classification'].value_counts()

[5]: ckd 248 notckd 152

Name: classification, dtype: int64

[6]: #checking the description and gathering the information about the dataset df. describe(). T

[6]:	count	mean	std	min	25%	50%	75%	max
id	400.0	199.500000	115.614301	0.000	99.75	199.50	299.25	399.000
age	391.0	51. 483376	17. 169714	2.000	42.00	55.00	64.50	90.000
bp	388.0	76. 469072	13.683637	50.000	70.00	80.00	80.00	180.000
sg	353.0	1.017408	0.005717	1.005	1.01	1.02	1.02	1.025
al	354.0	1.016949	1.352679	0.000	0.00	0.00	2.00	5.000
su	351.0	0.450142	1.099191	0.000	0.00	0.00	0.00	5.000
bgr	356.0	148. 036517	79. 281714	22.000	99.00	121.00	163.00	490.000
bu	381.0	57. 425722	50.503006	1.500	27.00	42.00	66.00	391.000
sc	383.0	3.072454	5. 741126	0.400	0.90	1.30	2.80	76.000
sod	313.0	137. 528754	10.408752	4.500	135.00	138.00	142.00	163.000
pot	312.0	4.627244	3. 193904	2.500	3.80	4.40	4.90	47.000
hemo	348.0	12. 526437	2.912587	3.100	10.30	12.65	15.00	17.800

[7]: df. info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 400 entries, 0 to 399
Data columns (total 26 columns):

#	Column	Non-Null Coun	t Dtype
0	id	400 non-null	int64
1	age	391 non-null	float64
2	bp	388 non-null	float64
3	sg	353 non-null	float64
4	al	354 non-null	float64
5	su	351 non-null	float64
6	rbc	248 non-null	object
7	pc	335 non-null	object
8	pcc	396 non-null	object
9	ba	396 non-null	object
10	bgr	356 non-null	float64
11	bu	381 non-null	float64
12	SC	383 non-null	float64
13	sod	313 non-null	float64
14	pot	312 non-null	float64
15	hemo	348 non-null	float64
16	pcv	330 non-null	object
17	WC	295 non-null	object
18	rc	270 non-null	object

```
19
         htn
                           398 non-nu11
                                            object
     20
         dm
                           398 non-nu11
                                            object
     21
                           398 non-nu11
         cad
                                            object
     22
                           399 non-nu11
                                            object
         appet
     23
                           399 non-nu11
                                            object
         рe
                           399 non-nu11
     24
         ane
                                            object
     25
         classification 400 non-null
                                            object
    dtypes: float64(11), int64(1), object(14)
    memory usage: 81.4+ KB
[8]: #counting for the null values
     df. isna().sum()
[8]: id
                           0
                           9
      age
                          12
      bp
                          47
      sg
                          46
      al
                          49
      su
      rbc
                         152
                          65
      рс
                           4
      рсс
                           4
      ba
                          44
      bgr
      bu
                          19
                          17
      sc
      sod
                          87
                          88
      pot
                          52
      hemo
                          70
      pcv
                         105
      WC
                         130
      rc
                           2
      htn
                           2
      dm
                           2
      cad
      appet
                           1
                           1
      ре
      ane
                           1
     classification
                          0
     dtype: int64
[9]: #replacing the null values with median and mode
     oc=[]#object data type columns
     ic=[]#int type columns
     for i in df. columns:
```

if(df[i]. dtype=='object'):

```
oc. append(i)
          else:
                ic. append(i)
       print("ic\t", ic, "\noc\t", oc)
               ['id', 'age', 'bp', 'sg', 'al', 'su', 'bgr', 'bu', 'sc', 'sod', 'pot',
     ic
     'hemo']
     oc ['rbc', 'pc', 'pcc', 'ba', 'pcv', 'wc', 'rc', 'htn', 'dm', 'cad', 'appet', 'pe', 'ane', 'classification']
[10]: #replacing the null with median
      for i in ic:
          if (df[i]. isna(). any() == True):
               df[i]=df[i]. fillna(df[i]. median())
           #checking
          print("Attribute "+i+"\t", df[i]. isna(). sum())
     Attribute id
                        0
     Attribute age
                        0
     Attribute bp
                        0
     Attribute sg
     Attribute al
     Attribute su
                        0
     Attribute bgr
                        0
     Attribute bu
                        0
     Attribute sc
                        0
     Attribute sod
                        0
      Attribute pot
                        ()
     Attribute hemo
[11]: #replacing the null with mode
      for i in oc:
          if(df[i]. isna(). any() == True):
               df[i]=df[i].fillna(df[i].mode()[0])
          #checking
          print("Attribute: "+i+"\t\t", df[i].isna().sum())
     Attribute: rbc
                                          0
      Attribute: pc
                                          ()
     Attribute: pcc
                                          ()
      Attribute: ba
     Attribute: pcv
                                          ()
     Attribute: wc
                                          ()
     Attribute: rc
                                          ()
      Attribute: htn
                                          0
      Attribute: dm
                                          0
     Attribute: cad
                                          0
                                                  0
     Attribute: appet
```

```
0
     Attribute: pe
     Attribute: ane
                                       0
                                                        0
     Attribute: classification
[12]: df. isna(). sum(). sum()
[12]: 0
[13]: #encoding labels
      from sklearn.preprocessing import LabelEncoder
      le=LabelEncoder()#label encoder object
          df[i]=le. fit_transform(df[i]) #label encoding all the object dtypes
      df. head (3)
[13]:
          id
              age
                      bp
                                 al
                                         rbc
                             sg
                                      su
                                               рс
                                                  рсс
                                                                     wc rc
                                                                             htn
           0 48.0
                    80.0 1.02 1.0 0.0
                                                          0
                                                                 32
                                                                     72
                                                                         34
                                                1
               7.0
                    50.0 1.02 4.0 0.0
                                               1
                                                          0
                                                                  26 56 34
                                                                               0
                                             1
                                                      0
           2 62.0
                    80.0 1.01 2.0 3.0
                                             1
                                                1
                                                      0
                                                          0
                                                                  19 70 34
                                                                               0
            cad appet pe ane classification
                       0 0
                               0
       1 3
               1
                       0 0
                               0
                                                 0
       2
               1
                                                 ()
                                1
      [3 rows x 26 columns]
[14] : df.corr()
      fig=plt.figure(figsize=(20,20))
      sns. heatmap(data=df. corr(), annot=True)
[14]: <AxesSubplot: >
```


[16]: #seeing outliers
sns. boxplot(df['id'])

[16]: <AxesSubplot: xlabel='id'>

[17] : sns.boxplot(df['age'])

[17] : <AxesSubplot: xlabel='age'>


```
[18] : #replacing the outliers
    median=df['age']. median()
    print (median)
    df['age']=df['age']. mask(df['age']<19, median)
    sns. boxplot(df['age'])</pre>
```

[18] : <AxesSubplot: xlabel='age'>

55.0

[19] : sns.boxplot(df['bp'])

[19] : <AxesSubplot: xlabel='bp'>

80.0

[20] : <AxesSubplot: xlabel='bp'>

[21] : sns.boxplot(df['sg'])

[21] : <AxesSubplot: xlabel='sg'>

[22] : #replacing outliers median=df['sg'].median() print(median)

```
df['sg']=df['sg']. mask(df['sg']<1.0100, median)
sns. boxplot(df['sg'])</pre>
```

1.02

[22] : <AxesSubplot: xlabel='sg'>

[23] : sns.boxplot(df['al'])

[23] : <AxesSubplot: xlabel='al'>

[24] : sns.boxplot(df['su'])

[24] : <AxesSubplot: xlabel='su'>

[25] : #replacing outliers
 median=df['su'].median()
 print(median)

```
df['su']=df['su']. mask(df['su']>0, median)
sns. boxplot(df['su'])
```

0.0

[25] : <AxesSubplot: xlabel='su'>


```
[26] : idv=df.iloc[:,:-1]#independent variables
dv=df.iloc[:,-1]#dependent variables
idv
```

[26]:		id	ag	ge	bp	sg	al	su	rbc	рс	рсс	ba		hemo	pcv	wc	\
	0	0	48.		80.0	1.020	1.0	0.0	1	1	0	0		15.4	32	72	
	1	1	55.	0	80.0	1.020	4.0	0.0	1	1	0	0	•••	11.3	26	56	
	2	2	62.	0	80.0	1.010	2.0	0.0	1	1	O	0	•••	9.6	19	70	
	3	3	48.	0	70.0	1.020	4.0	0.0	1	0	1	0	•••	11.2	20	62	
	4	4	51.	0	80.0	1.010	2.0	0.0	1	1	0	0	•••	11.6	23	68	
		•••	•••	•••	•••		٠	···			···						
	395	395	55.	0	80.0	1.020	0.0	0.0	1	1	0	0	•••	15.7	35	62	
	396	396	42.	0	70.0	1.025	0.0	0.0	1	1	O	0	•••	16.5	42	72	
	397	397	55.	0	80.0	1.020	0.0	0.0	1	1	0	0	•••	15.8	37	61	
	398	398	55.	0	60.0	1.025	0.0	0.0	1	1	0	0	•••	14.2	39	67	
	399	399	58.	0	80.0	1.025	0.0	0.0	1	1	0	0	•••	15.8	41	63	
		rc	htn	dm	cad	appet	pe	ane									
	0	34	1	4	1	0	0	0									
	1	34	0	3	1	0	0	0									
	2	34	0	4	1	1	0	1									
	3	19	1	3	1	1	1	1									
	4	27	0	3	1	0	0	0									
	• •	• •	··· ·	•	•••	••• •• •	••										
	395	30	0	3	1	0	0	0									
	396	44	0	3	1	0	0	0									
	397	36	0	3	1	0	0	0									

1 1 0

0

0

0 3

3

398 41

399 43

```
[400 rows x 25 columns]
```

```
[27]: #splitting datasets
      from sklearn.model_selection import train test split
      x_train, x_test, y_train, y_test=train_test_split(idv, dv, test_size=0.
        42, shuff1e=True)
[28] : x_train.shape
[28]: (320, 25)
[29]: #creating models
      from sklearn.linear_model import LogisticRegression
      model=LogisticRegression()
[30]: model.fit(x_train,y_train)
[30]: LogisticRegression()
[31] : #acccuracy
      pred=model.predict(x test)
      pred
  [31]: array([0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1,
               1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1,
               0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1,
             0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0])
[32] : #for checking......
      from sklearn.svm import SVC
      svmmode1=SVC()
[33] : svmmodel.fit(x_train,y_train)
[33]: SVC()
[34] : #acccuracy
      svc pred=model.predict(x test)
      svc pred
  [34]: array([0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1,
               1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1,
               0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1,
              0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0
[35] : from sklearn.metrics import accuracy_score,confusion_matrix
      accuracy_score(y_test,pred)
```

```
[35]: 0.9875
[36] : confusion_matrix(y_test,pred)
                                                                                                 [36]: array([[
              [ 0, 33]])
[37] : y_train.value_counts()
                                                                                                 [37]: 0
       1
            119
      Name: classification, dtype: int64
[38]: #svm accuracy & confusion matrix
       accuracy_score(y_test, svc_pred)
[38]: 0.9875
[39] : confusion_matrix(y_test,svc_pred)
[39]: array([[46, 1],
               [ 0, 33]])
[40]: #creating model
       import pickle
[41] : pickle.dump(model,open('ckd model.pkl','wb'))
       print("model saved successfully")
      model saved successfully
 []:
```