ECON613 HW4

Yuanhang Zhao April 2022

1 Exercise 1

1.1 Visualization

Figure 1: Distribution group by age

Figure 2: Distribution group by gender

Figure 3: Distribution group by number of child

 Table 1: group by age

 age
 income_zero

 1
 35.00
 0.40

 2
 36.00
 0.39

2	36.00	0.39
3	37.00	0.40
4	38.00	0.41
5	39.00	0.41

Table 2: group by gender

10	DIC 2. SIC	rap by gender
	gender	$income_zero$
1	male	0.40
2	female	0.41

	$marital_status$	child _num	income_zero
1	never	0	0.43
2	never	1	0.20
3	never	2	0.2'
4	never	3	0.32
5	never	4	0.44
6	never	5	0.3'
7	never	6	0.60
8	never	7	1.00
9	never	9	0.0
10	never		0.23
11	married	0	0.2
12	married	1	0.14
13	married	2	0.1'
14	married	3	0.20
15	married	4	0.20
16	married	5	0.30
17	married	6	0.2
18	married	7	0.2
19	married	8	0.50
20	married		0.1
21	seperated	0	0.4'
22	seperated	1	0.3
23	seperated	2	0.2
24	seperated	3	0.3
25	seperated	4	0.3
26	seperated	5	0.5
27	seperated	6	0.0
28	seperated		0.2
29	divorced	0	0.2°
30	divorced	1	0.1
31	divorced	2	0.2
32	divorced	3	0.1
33	divorced	4	0.2
34	divorced	5	0.3
35	divorced		0.2
36	widowed	0	0.0
37	widowed	1	0.2°
38	widowed	2	0.2
39	widowed	5	0.0
40	widowed		0.2°
41		0	0.50
42		1	0.5
43		2	0.50
44		3	0.7
45		4	1.0
46		6	1.0
47			1.00

Table 4: group by marstat

	.,
$marital_status$	$income_zero$
never	0.28
married	0.17
seperated	0.34
divorced	0.22
widowed	0.24
	0.99
	never married seperated divorced

Table 5: group by number of child

2 1 0.	ero
2 1 0.	
	36
0 0	19
3 2 0.	20
4 3 0 .	23
5 4 0.	31
6 5 0.	36
7 6 0.	42
8 7 0.	40
9 8 0.	50
10 9 0.	00
11 0.	62

1.2 Interpretation

- 1. Elder people have a little higher wage in average(not significant).
- 2. Men have higher income than women.
- 3. The distribution on number of child is an anti-smile curve, which means people who have around 2 or 3 kids will have higher wage.
- 4. Zero values cannot be ignored (zeros have large share of the income data).

2 Exercise 2

2.1 OLS Model

Table 6: OLS result					
	Estimate	Std. Error	t value	$\Pr(> t)$	
(Intercept)	5273.3452	14284.7723	0.37	0.7120	
age	126.2670	382.5048	0.33	0.7414	
genderfemale	-19926.5023	1083.3399	-18.39	0.0000	
marriedTRUE	4170.5914	1200.8733	3.47	0.0005	
$\operatorname{child_num}$	434.6118	508.2162	0.86	0.3926	
edu	2165.1072	157.7276	13.73	0.0000	
res_edu	492.8864	98.9243	4.98	0.0000	
$work_{-}exp$	1082.4174	98.6077	10.98	0.0000	

Interpretation

- 1. When controlling other variables, women have lower wage than men.
- 2. When controlling other variables, people have longer education year earn more.
- 3. When controlling other variables, people whose parent have higher education level have higher wage, but this effect is smaller than their own education level.
- 4. When controlling other variables, married people generally have higher wage.
- 5. When controlling other variables, people who have more work experience have higher wage.
- 6. The effects of age and number of kid are not significant.

Selection Problem in OLS

There are a "cannot be ignored" share of zero and missing value in income variable, which is potentially represent the potential income of those individuals. If we just use OLS to estimate, selection problem occurred and the results may be biased.

2.2 Heckman Selection - First stage

Table 7: First stage result and comparison

		0	1	
	heckit : est	heckit :se	without package : est	without package :se
(Intercept)	1.36	2.45	1.36	2.41
age	0.03	0.06	0.03	0.06
genderfemale	-0.32	0.19	-0.32	0.19
marriedTRUE	-0.47	0.23	-0.47	0.23
$\operatorname{child_num}$	0.08	0.09	0.08	0.09
edu	0.03	0.02	0.03	0.02
res_edu	-0.02	0.02	-0.02	0.02
$work_exp$	0.03	0.02	0.03	0.02

2.3 Heckman Selection - Second stage

Table 8: Second stage comparison

	heckit : est	heckit :se	without package : est	without package :se	
(Intercept)	23987.01	31306.85	23988.26	31050.89	
age	-255.25	834.71	-255.27	833.22	
genderfemale	-16123.76	2311.09	-16123.37	2234.40	
marriedTRUE	9315.48	2494.68	9315.96	2392.62	
$\operatorname{child_num}$	-499.64	1124.01	-499.72	1106.37	
edu	1734.98	335.55	1734.96	333.66	
res_edu	687.08	215.25	687.09	215.04	
$work_exp$	791.34	203.48	791.31	208.19	

Interpretation

Compared with OLS model, the sign are similar in Heckman result, so the interpretation are similar. However, the scale of the coefficients changes, which is caused by considering the selection problem.

3 Exercise 3

3.1 Censored value

With the figure shows the distribution of the income value, we can find that the censored value is supposed to be 100,000.

Figure 4: Distribution of income

3.2 Censored Problem

We can solve the censored model with a tobit model, which is consider the censored value as zero. In this data, the equation is as followed:

$$income = \begin{cases} 0, & income = 100,000, \\ income, & income < 100,000. \end{cases}$$
 (1)

With the result from tobit model, we can find that the sign of coefficient are similar to the results from exercise 2. The changes in scale of estimates results from the change in censored value.

Table 9: Results from tobit model					
	Estimate	Std. Error	z value	$\Pr(> z)$	
(Intercept)	-2472.60	16198.64	-0.15	0.88	
age	234.95	435.95	0.54	0.59	
genderfemale	-22424.83	1236.83	-18.13	0.00	
marriedTRUE	4694.43	1350.23	3.48	0.00	
$\operatorname{child_num}$	587.50	586.15	1.00	0.32	
edu	2385.20	187.06	12.75	0.00	
res_edu	595.53	112.92	5.27	0.00	
$work_exp$	1181.21	122.90	9.61	0.00	
Log(scale)	10.23	0.02	569.63	0.00	

4 Exercise 4

Individuals have their own abilities, which cannot be observed but correlated with the income. When regress their wage with the determinants, the estimation is biased. Moreover, the panel data is the data over time, in every period, the unobserved error are not independent, which is also the bias.

4.1 Within

Table 10: Within Group Effect

	Estimate	Std. Error	t-value	$\Pr(> t)$
age	2058.17	21.79	94.44	0.00
marriedothers	-5908.93	247.56	-23.87	0.00
$work_exp$	916.00	32.86	27.88	0.00
edu	3517.28	70.27	50.05	0.00

4.2 Between

Table 11: Between Group Effect

_	10010 11. Boomoon Group Encou				
	Estimate	Std. Error	t-value	$\Pr(> t)$	
(Intercept)	-57300.94	2390.11	-23.97	0.00	
age	936.00	63.44	14.75	0.00	
gendermale	9217.06	362.39	25.43	0.00	
marriedothers	-7976.42	574.19	-13.89	0.00	
$work_{exp}$	1574.16	76.61	20.55	0.00	
edu	4159.41	124.96	33.29	0.00	

4.3 First Difference

Table 12: First difference strategy

	0,0				
	Estimate	Std. Error	t-value	$\Pr(> t)$	
(Intercept)	1214.59	113.65	10.69	0.00	
age	1829.99	54.06	33.85	0.00	
marriedothers	-1567.38	246.40	-6.36	0.00	
$work_{exp}$	677.71	33.03	20.52	0.00	
edu	872.54	87.34	9.99	0.00	

Interpretation

The interpretation for the results above are similar, because they have same signs in coefficients. The difference comes from the difference in groups. Within group result shows the effects of the determinants on individual level. Between group shows the effects between different individuals. First different can control the individual heterogeneity.