First-Order Linear PDEs

E.g.
$$cost \frac{\partial u}{\partial t} + e^{x} \frac{\partial u}{\partial x} = sin t$$

Solution van Method-of-Characteristics

IDEA: Instead of a PDE, solve a collection of simpler ordinary differential eyn's (ODEs).

$$\frac{dx}{ds} = a(x,y) \qquad \frac{dy}{ds} = b(x,y) \qquad \frac{du}{ds} = c(x,y)$$

"Characteristic" Curves

$$\frac{du}{ds} = \frac{\partial u}{\partial x} \frac{dx}{ds} + \frac{\partial u}{\partial y} \frac{dy}{ds}$$

$$\frac{1}{2x} \frac{dx}{ds} + \frac{\partial u}{\partial y} \frac{dy}{ds}$$

$$C(x,y) = a(x,y) \frac{\partial u}{\partial x} + b(x,y) \frac{\partial u}{\partial y}$$

Along characteristic curves (x(s), y(s)), the solu

$$u(x(s), y(s))$$
 substies ODE $\frac{du}{ds} = c(x(s), y(s))$.

$$\frac{\partial u}{\partial x} - y \frac{\partial u}{\partial y} = 0$$

chan curves =>
$$\frac{dx}{ds}=1$$
, $\frac{dy}{ds}=-y$, $\frac{du}{ds}=0$

$$x(s) = s + x_0$$
, $y(s) = y_0 e^{-s}$, $u(s) = u_0$

$$u(s+x_0, y_0 e^s) = u(x_0, y_0)$$

for <u>unique</u> solution, specify data $u(x_0, y_0)$ for <u>one</u> pt on each characteristic curve. In general, we can't solve the ODEs analytically every time. Instead, we can solve them numerically.

Finite Differences

To solve ODEs/PDEs on the computer, we need to represent functions and their derivatives with a finite set of numbers.

Idea 1 "Sample" function values on a discrete gold with spacing h.

 $X_1, -1, X_n =$ $(X_1, X_1, ..., X_n = U(X_1), ..., U_n = U(X_1)$ Sample points fundament samples

Forward $u'(x_N) \approx \frac{u(x_{n+1}) - u(x_n)}{x_{n+1} - x_n} = \frac{u_{n+1} - u_n}{h}$ and $u'(x_n) \approx \frac{u(x_{n+1}) - u(x_n)}{x_n} = \frac{u_{n+1} - u_n}{h}$

Bookward Officered W(XK) = $\frac{U(XK) - U(XK-1)}{XK - XK-1} = \frac{UK - UK-1}{K}$ Forward diff. approximates Backward diff. approximates U'(XK) by slope of secont U'(XK) by slope of secont between XK and XK between XK-1 and XK

Both converge to $u'(x_k) = slope of tangent$ line at x_k , provided that u(x) has a well-defined tangent at x_k , i.e., is differentiable.