10.2 Résolutions graphiques d'(in)équations

R

La résolution graphique n'offre que des valeurs approchées. C'est un outil de vérification ou de conjecture.

Exemple 10.4 On souhaite conjecturer les solutions de l'équation $x^2 + 2x - 7 = 3$.

On introduit la fonction f:

$$\mathbb{R} \to \mathbb{R}$$
.

$$x \mapsto x^2 + 2x - 7$$

x	-5	-4	-3	-2	-1	0	1	2	3	4	5
f(x)											

- 1) Compléter le tableau et placer les points correspondant sur le repère.
- 2) Relier les points harmonieusement pour tracer \mathscr{C}_f .
- 3) Pour résoudre l'équation

$$x^2 + 2x - 7 = 3$$

- a) Dessinez l'ordonnée 3.
- b) Identifier les points d'intersection.
- c) Lire les abscisses correspondantes.

$$S = \dots$$

$$x^2 + 2x - 7 \leqslant 3$$

- a) Dessinez l'ordonnée 3.
- b) Identifier les points d'ordonnées inférieure à 3
- c) Lire les abscisses correspondantes.

$$S = \dots$$

Définition 10.3 Résoudre graphiquement l'équation f(x) = k d'inconnue x » c'est trouver les abscisses des points de \mathcal{C}_f dont l'ordonnée est égale à k

Définition 10.4 Résoudre graphiquement l'équation $f(x) \leq k$ d'inconnue x » c'est trouver les abscisses des points de \mathcal{C}_f dont l'ordonnée est inférieure à k