

A7680C R2 二次开发硬件设计手册

LTE 模块

芯讯通无线科技(上海)有限公司

上海市长宁区临虹路289号3号楼芯讯通总部大楼

电话: 86-21-31575100

技术支持邮箱: support@simcom.com

官网: www.simcom.com

文档名称:	A7680C R2 二次开发硬件设计手册		
版本:	V1.00		
日期:	2022-05-26		
状态:	已发布		

前言

此模块主要用于语音或者数据通讯,本公司不承担由于用户不正常操作造成的财产损失或者人身伤害责任。 请用户按照手册中的技术规格和参考设计开发相应的产品。同时注意使用移动产品应该关注的一般安全事项。 在未声明之前,本公司有权根据技术发展的需要对本手册内容进行修改。

版权声明

本手册包含芯讯通无线科技(上海)有限公司(简称:芯讯通)的技术信息。除非经芯讯通书面许可,任何单位和个人不得擅自摘抄、复制本手册内容的部分或全部,并不得以任何形式传播,违反者将被追究法律责任。对技术信息涉及的专利、实用新型或者外观设计等知识产权,芯讯通保留一切权利。芯讯通有权在不通知的情况下随时更新本手册的具体内容。

本手册版权属于芯讯通,任何人未经我公司书面同意进行复制、引用或者修改本手册都将承担法律责任。

芯讯通无线科技(上海)有限公司

上海市长宁区临虹路 289 号 3 号楼芯讯通总部大楼

电话: 86-21-31575100 邮箱: simcom@simcom.com 官网: www.simcom.com

了解更多资料,请点击以下链接:

http://cn.simcom.com/download/list-230-cn.html

技术支持,请点击以下链接:

http://cn.simcom.com/ask/index-cn.html 或发送邮件至 support@simcom.com

版权所有 © 芯讯通无线科技(上海)有限公司 2021, 保留一切权利。

www.simcom.com 2/60

版本历史

日期	版本	变更描述	作者
2022-05-26	1.00	初版	李文海

www.simcom.com 3/60

目录

1	绪论	9
	1.1 模块综述	9
	1.2 接口概述	9
	1.3 模块框图	10
	1.4 主要特性	11
2	封装信息	13
	2.1 引脚分布图	
	2.2 引脚描述	15
	2.3 机械尺寸	21
	2.4 推荐 PCB 封装尺寸	22
	2.5 推荐钢网尺寸	
3	应用接口	24
	3.1 供电输入	24
	3.1.1 供电参考设计	24
	3.1.2 推荐外部电源电路	
	3.1.3 电源监测	26
	3.2 开机/关机/复位	26
	3.2.1 模块开机	26
	3.2.2 模块关机	28
	3.2.3 模块复位	
	3.3 串口	30
	3.3.1 RI 和 DTR 描述	31
	3.4 SPI 接口	31
	3.5 I2C 接口	32
	3.6 USB 接口	33
	3.6.1 USB 参考设计	33
	3.6.2 GPIO_05(USB_BOOT)接口	33
	3.7 USIM 卡接口	34
	3.7.1 USIM 参考设计	35
	3.8 SD 卡接口	36
	3.9 模拟音频接口	38
	3.9.1 模拟音频参考设计	38
	3.10 GPIO 接口操作说明	39
	3.11 其他接口	40
	3.11.1 模数转换器(ADC)	40
	3.11.2 LDO	40
4	射频参数	42
	4.1 LTE 射频参数	42
	4.2 LTE 天线要求	43

	4.3	天线参考设计	43
	4.4	GNSS 射频参数	44
	4.5	PCB 走线设计	44
5	由气:	参数	45
	5.1	タス・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	5.2	正常工作条件	
	5.3	工作模式	
	5	5.3.2 休眠模式	
	_	5.3.3 功能模式	
	5.4	耗流	
	5.5	静电防护	
	mbil		
6		生产	
	6.1	模块的顶视图和底视图	
	6.2	标签信息	50
	6.3	典型焊接炉温曲线	51
	6.4	湿敏特性	51
7	石壮		5 2
-			
8	附录		55
	8.1	编码方式及最大数据速率	55
	8.2	参考文档	56
	8.3	术语和解释	58
	8.4	安全警告	60

表格索引

表1: A	A7680C R2 模块频段列表	9
表2:	莫块主要特性	11
表3:5	引脚定义列表	14
表4:5	引脚参数缩写	15
表5:1	.8V IO 引脚电气特性	15
表6:3	3.3V IO 引脚电气特性	16
表7:5	引脚描述	17
表8: \	/BAT 引脚电气参数	24
表9: 抄	惟荐的 TVS 管列表	25
表 10:	开机时序参数	27
表 11:	关机时序参数	28
表 12:	RESET 引脚电气参数	29
表 13:	SPI 引脚接口描述	32
表 14:	SPI 引脚接口描述	32
表 15:	USB_BOOT 描述	33
表 16:	1.8V 模式时 USIM 接口电气参数(USIM_VDD=1.8V)	34
表 17:	3.0V 模式时 USIM 接口电气参数(USIM_VDD=3 V)	35
	SD 卡接口电参数(MMC_DAT0-MMC_DAT3,MMC_CLK 和 MMC_CMD)	
表 19:	模拟音频输出(AVDD_AUD=1.8V,T=25°C)	38
表 20:	A7680C R2 二次开发版本复用功能列表	39
表 21:	ADC 电气特性	40
表 22:	VDD_EXT 电气特性	40
表 23:	VLDO_SDIO 电气特性	41
表 24 :	传导发射功率	42
表 25 :	4G 频段信息	42
表 26 :	参考灵敏度(QPSK)	42
表 27:	LTE 天线要求	43
表 28 :	TVS 推荐型号列表	44
表 29 :	极限参数	45
表 30:	模块推荐工作电压	45
表 31:	1.8V 数字接口特性	45
表 32:	模块工作温度	46
表 33:	工作模式定义	46
表 34 :	VBAT 耗流(VBAT=3.8V)	47
表 35:	ESD 性能参数(温度: 25℃, 湿度: 45%)	48
表 36:	模块信息描述	50
表 37:	模块湿敏特性	51
表 38:	托盘尺寸信息	53
表 39:	托盘小卡通箱尺寸信息	54
表 40:	托盘大卡通箱尺寸信息	54
	编码方式和最大数据速率	
表 42:	参考文档	56
表 43:	术语和解释	58

表 44 : 安全警告.......60

www.simcom.com 7/60

图片索引

图 1:模块框图	10
图 2:A7680C R2 二次开发模块引脚图(正面视图)	13
图 3:三维尺寸(单位:毫米)	21
图 4:推荐 PCB 封装尺寸(单位:毫米)	22
图 5:推荐钢网尺寸(单位:毫米)	23
图 6:VBAT 输入参考电路	25
图 7:线性电源推荐电路	26
图 8:开关电源推荐电路	26
图 9:开关机参考电路	27
图 10:PWRKEY 开机时序	27
图 11:PWRKEY 关机时序	28
图 12:复位推荐电路	29
图 13:串口连接图(全功能模式)	30
图 14:串口连接图(NULL 模式)	30
图 15:三极管电平转换电路	31
图 16:RI 上的电平变化(短信,URC,Incoming call)	31
图 17: I2C 接口参考电路	32
图 18:USB 连接图	33
图 19:GPIO_05(USB_BOOT)连接图	34
图 20:强制下载端口	34
图 21:USIM 接口推荐电路	35
图 22:USIM 接口推荐电路(8PIN)	35
图 23:模拟音频接口推荐电路	39
图 25:无源天线连接电路	43
图 26:PCB 走线参考	44
图 27:模块顶视图和底视图	49
图 28:标签信息	50
图 29:推荐焊接炉温曲线图(无铅工艺)	51
图 30:托盘包装示意图	53
图 31:托盘尺寸图	53
图 32:托盘小卡通箱尺寸图	54
图 33、托盘大卡通箱尺寸图	54

■1 绪论

本文档描述了模块的硬件接口,可以帮助用户快速的了解模块的接口定义、电气性能和结构尺寸的详细信息。结合本文档和其他的应用文档,用户可以快速的使用模块来设计移动通讯应用方案。SIMCom提供一套评估板,以方便A7680C R2模块测试和使用。所述评估板工具包括EVB板,USB线,天线和其他外设。

1.1 模块综述

A7680C R2模块可支持 LTE-TDD 和 LTE-FDD。用户可以灵活选用不同型号的模块以满足多样化的市场需求。

详细的频段描述请参考下表:

表 1: A7680C R2 模块频段列表

网络类型	频段	A7680C-LANS	A7680C-MANS	A7680C-LANV
	LTE-FDD B1	✓	✓	✓
LTE EDD	LTE-FDD B3	√	√	· ·
LTE-FDD	LTE-FDD B5	√	✓	√
	LTE-FDD B8	√		√
	LTE TDD B34			· ·
	LTE TDD B38	√		<
LTE-TDD	LTE TDD B39	√		<
	LTE TDD B40	√		√
	LTE TDD B41	√	\	\
GNSS			✓	
Category	CAT1			

模块的尺寸只有17.6*15.7*2.1mm,几乎可以满足所有M2M应用中的对空间尺寸的要求,例如车载,计量,安防,路由,无线POS,移动计算设备,PDA,平板电脑等。

A7680C R2共提供92个引脚,包括外圈42个LCC引脚和内圈50个LGA引脚,本文将针对所有的功能引脚展开介绍。

1.2 接口概述

A7680C R2 提供了如下的硬件接口:

- 一路电源输入
- 一路USB 2.0 接口
- A7680C-LANS/LANV可提供三路UART接口,一组全功能串口,一组两线串口,一组DEBUG串口
- A7680C-MANS有两路UART接口,一组全功能串口,一组DEBUG串口
- 两路USIM卡接口

www.simcom.com 9/60

- 多个可编程的通用输入输出接口(GPIO)
- 两路通用ADC接口
- 一路供电输出
- 一路模拟音频输入/输出接口
- 一路USB_BOOT下载引导接口
- 网络状态指示接口
- 模块运行状态指示接口
- 一路SD卡接口
- 一路I2C接口
- 一路SPI接口
- 两路天线接口(GNSS可选)

1.3 模块框图

下图列出了模块内部主要功能构架:

图 1: 模块框图

www.simcom.com 10/60

1.4 主要特性

表 2: 模块主要特性

特性	说明		
供电	电压范围: 3.4V ~4.2V,推荐值 3.8V		
省电	休眠模式下的耗流: <2mA		
频段	请参考表 1		
发射功率	LTE 功率等级 3 (23dBm±2.7dB)		
数据传输	TDD/FDD-LTE 类别 1: 10Mbps (下行),5 Mbps (上行)		
天线接口	LTE 天线接口、GNSS 天线接口(可选)		
短消息(SMS)	MT, MO, CB, Text 和 PDU 模式 短消息(SMS)存储设备: USIM 卡, CB 不支持保存在 SIM 支持 CS 域和 PS 域短信		
USIM 卡接口	支持的 1.8V/3V USIM 卡		
USIM 应用工具包	支持 SAT 等级 3 支持 USAT		
通讯录管理	SM/FD/ON/AP/SDN		
MMC 接口	支持 SD3.0 和 MMC/Emmc 4.5.1		
音频接口	支持一路模拟音频输入/输出接口		
串口	 ●主串口 UART 波特率支持从 300bps 到 3686400bps 可以通过串口发送 AT 命令和数据 支持 RTS/CTS 硬件流控 ●普通串口 UART3(可选) 可用于外接设备 ●串口 DBG_UART 可支持 Debug 用途 		
USB 接口	符合 USB 2.0 规范,支持从模式,不支持主模式可用于 AT 命令发送,数据传输,软件调试和升级		
软件升级	通过 USB 口升级软件		
物理尺寸	尺寸: 17.6*15.7*2.1mm 重量: 1.1g (Typical)		
工作温度: -30℃~+80℃ 温度范围 扩展工作温度: -40℃~+85℃* 存储温度: -45℃~+90℃			

www.simcom.com

※ 特别注意

在扩展工作温度范围内,模块可以正常工作,但不保证完全符合 3GPP 测试规范。

www.simcom.com 12/60

■ 2 封装信息

2.1 引脚分布图

模块共有92个引脚。

图 2: A7680C R2 二次开发模块引脚图(正面视图)

www.simcom.com 13/60

表 3: 引脚定义列表

引脚序号	引脚名称	引脚序号	引脚名称
1	UART4_TXD	2	UART4_RXD
3	GPIO_00/UART4_RTS ♦	4	GPIO_01/UART4_CTS♦
5	GPIO_02	6	DTR
7	RI	8	GND
9	MIC_P	10	MIC_N
11	SPK_P	12	SPK_N
13	GND	14	USIM_DET
15	USIM_DATA	16	USIM_CLK
17	USIM_RST	18	USIM_VDD
19	GND	20	GPIO_05●
21	GND	22	GPIO_06/UART3_TX/NC
23	GPIO_07/UART3_RX/NC	24	USB_VBUS
25	USB_DP	26	USB_DN
27	GND	28	NC
29	RESET	30	GND
31	GND	32	ANT_MAIN
33	GND	34	VBAT
35	VBAT	36	GND
37	GND	38	ADC1
39	PWRKEY	40	VDD_EXT
41	GPIO_08	42	GPIO_09/PWM3
43	GPIO_10	44	GPIO_11
45	GND	46	MMC_DAT3
47	MMC_DAT2	48	MMC_DAT1
49	MMC_DAT0	50	MMC_CLK
51	MMC_CMD	52	USIM2_DET
53	USIM2_DATA	54	USIM2_CLK
55	USIM2_RST	56	USIM2_VDD
57	GPIO_12	58	DBG_RXD/UART2_RXD
59	DBG_TXD/UART2_TXD	60	NC/1PPS
61	VDD_SDIO	62	GPIO_13/SPI0_CS
63	GPIO_14/SPI0_CLK	64	GPIO_15/SPI0_MISO
65	GPIO_16/SPI0_MOSI	66	ADC2
67	GND	68	GPIO_17/CI2C_SDA
69	GPIO_18/CI2C_SCL	70	GND
71	GND	72	NC/ANT_GNSS
73	NC	74	NC
75	NC	76	NC

www.simcom.com 14/60

77	NC	78	NC
79	NC	80	NC
81	NC	82	NC
83	NC	84	NC
85	NC	86	NC
87	GND	88	GND
89	GND	90	GND
91	GND	92	GND

※ 特别注意

- 1.●表示这些信号在开机前不可下拉,否则会影响模块正常开机。
- 2.绿色字体代表 A7680C-MANS PIN 脚定义,蓝色字体代表 A7680C-LANS /LANV PIN 脚定义.
- 3.◆表示的复用功能中的串口流控功能仅适用于主串口(UART4_TXD/UART4_RXD)。

2.2 引脚描述

表 4: 引脚参数缩写

缩写	描述
引脚属性	
PI	电源输入
РО	电源输出
Al	模拟输入
AO	模拟输出
I/O	输入或输出
DI	数字输入
DO	数字输出
DOH	默认输出高电平
DOL	默认输出低电平
PU	上拉
PD	下拉
OD	开漏

表 5: 1.8V IO 引脚电气特性

引脚电压域 属性	缩写	描述	最小值	典型值	最大值
1.8V	直流输入	、条件(VCC=1.8V)			

www.simcom.com 15/60

	VIH	输入有效高电平	VCC * 0.7	1.8V	VCC+0.2
	VIL	输入有效低电平	-0.3V	0V	VCC *0.3
	Rpu	模块内部上拉电阻	55K	79 K	121K
	Rpd	模块内部下拉电阻	51K	87 K	169K
	直流输入条件	牛(VCC = 1.8V Typical)			
	IIL	输入漏电流	-	-	10uA
	直流输出条件	牛(VCC = 1.8V Typical))		
	VOH	输出电平范围	VCC-0.2	-	-
	VOL	输出电平范围	-	-	0.2V
		低电平输出电流			
		Vpad=0.2V			
	lol	lol DCS[1:0]=			
		00	13 mA		
4.0)/		01	25 mA		
1.8V		10	37 mA		
		11	49 mA		
		高电平输出电流			
		Vpad=VCC-0.2V			
		loh DCS[1:0]=			
		00	11 mA		
	loh	01	21 mA		
		10	32 mA		
		11	42 mA		

引脚电压 域属性	缩写	描述	最小值	典型值	最大值
	VIH	输入有效高电平	2V	-	VCC+0.3
	VIL	输入有效低电平	-0.3V	0V	0.8V
3.3V	Rpu	模块内部上拉电阻	26K	47K	72K
	Rpd	模块内部下拉电阻	27K	54K	267K
	IIL	输入漏电流	-	i -	10uA
	VOH	输出电平范围	2.4V	-	-
	VOL	输出电平范围	-	-	0.4V
3.3V	lol	低电平输出电流 Vpad=0.4V Iol DS[2:0]= 000 001 010 011 100	7 mA 10 mA 14 mA 18 mA 21 mA		

16/60 www.simcom.com

	101 110 111	24 mA 28 mA 31 mA
loh	高电平输出电流 Vpad=VCC-0.5V Ioh DS[2:0]= 000 001 010 011 100 101	7 mA 10 mA 13 mA 16 mA 19 mA 23 mA 26 mA 29 mA

表 7: 引脚描述

司 毗 夕 秒	引脚序	引脚属性			│ 备注	
引脚名称	号	电压域	类型	一	金 注 	
供电						
VBAT	34,35	-	PI	模块供电输入,输入电压范围 从 3.4V~4.2V,供电电流要求 可达到 1A。		
VDD_EXT	40	-	PO	内部 1.8V 电源输出,输出电流最大 50mA,不能给大功率负载供电,可为电平转换电路等提供电源。		
GND	8,13,19, 21,27,30, 31,33,36, 37,45,67, 70,71,87, 88,89,90, 91,92	-	-	接地		
系统控制						
PWRKEY	39	-	DI,PU	开关机控制输入,低电平有效 开机键默认高电平 VIH: 0.7*VBAT VIL: 0.3*VBAT	PMU 内部 50K (Typical)上拉到 VBAT。	
RESET	29	-	DI,PU	硬件复位控制输入,低电平有效 VIH: 0.7*VBAT VIL: 0.3*VBAT	PMU 内部已通过 50K(Typical)上 拉到 VBAT。	

www.simcom.com 17/60

USIM 接口					
			1 1 1	USIM 总线数据,模块内部有	1
USIM_DATA	15	1.8/3.3V	I/O,PU	4.7KΩ电阻上拉到	
				USIM_VDD	
USIM_RST	17	1.8/3.3V	I/O,PU	USIM 总线复位输出	
USIM_CLK	16	1.8/3.3V	I/O,PU	USIM 总线时钟输出	
USIM_VDD	18	1.8/3.3V	PO	USIM 卡供电输出,输出电压可根据外接卡片类型动态改变,输出电流最大 50mA	
USIM_DET	14	1.8V	I/O	USIM 卡热插拔检测,可以 AT 指令设置为高/低有效,参考文档[25]	
USIM2_DATA	53	1.8/3.3V	I/O,PU	USIM2 总线数据,模块内部 有 4.7K Ω 电阻上拉到 USIM2_VDD	
USIM2_RST	55	1.8/3.3V	I/O,PU	USIM2 总线复位输出	
USIM2_CLK	54	1.8/3.3V	I/O,PU	USIM2 总线时钟输出	!
USIM2_VDD	56	1.8/3.3V	РО	USIM2 卡供电输出,输出电压可根据外接卡片类型动态改变,输出电流最大 50mA	
USIM2_DET	52	1.8V	I/O	USIM2 卡热插拔检测,可以 AT 指令设置为高/低有效,参 考文档[25]	
USB 接口					
USB_VBUS	24	-	Al	USB 在位检测输入,高电平有效,最高识别电压 5.2V,最低识别电压 3.0V	
USB_DN	26	-	I/O	USB 总线差分负极	
USB_DP	25	-	I/O	USB 总线差分正极	
主串口					
UART4_RXD	2	1.8V	DI	数据接收	
UART4 TXD	1	1.8V	DO	数据发送	
普通串口/NC				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
GPIO 06					
/UART3_TX/N	22	1.8V	DO	串口	
GPIO_07/UAR T3_RX/NC	23	1.8V	DI	串口	
调试串口					
DBG_RXD/UA RT2_RXD	58	1.8V	DO	Log 输入	默认作为调试端口,可复用为
DBG_TXD/UA RT2_TXD	59	1.8V	DI	Log 输出	口,可复用为 UART2

www.simcom.com 18/60

GPIO 接口					
GPIO_00	3	1.8V	IO	通用输入输出接口	
GPIO_01	4	1.8V	Ю	通用输入输出接口	
GPIO_02	5	1.8V	IO	通用输入输出接口	
GPIO_05●	20	1.8V	Ю	通用输入输出接口	
GPIO_06	22	1.8V	Ю	通用输入输出接口	
GPIO_07	23	1.8V	Ю	通用输入输出接口	
GPIO_08	41	1.8V	IO	通用输入输出接口	
GPIO_09	42	1.8V	IO	通用输入输出接口	如不使用,悬空即
GPIO_10	43	1.8V	Ю	通用输入输出接口	可,详细 GPIO 复
GPIO_11	44	1.8V	IO	通用输入输出接口	用功能可参考表
GPIO_12	57	1.8V	Ю	通用输入输出接口	20
GPIO_13	62	1.8V	Ю	通用输入输出接口	
GPIO_14	63	1.8V	Ю	通用输入输出接口	
GPIO_15	64	1.8V	Ю	通用输入输出接口	
GPIO_16	65	1.8V	IO	通用输入输出接口	
GPIO_17	68	1.8V	IO	通用输入输出接口	
GPIO_18	69	1.8V	IO	通用输入输出接口	
SD 卡接口					
MMC_DAT3	46	1.8/3.3V	IO	MMC 和 SD 数据	
MMC_DAT2	47	1.8/3.3V	IO	MMC 和 SD 数据	
MMC DAT1	48	1.8/3.3V	IO	MMC 和 SD 数据	
MMC_DAT0	49	1.8/3.3V	IO	MMC 和 SD 数据	
MMC_CLK	50	1.8/3.3V	DO	MMC 和 SD 时钟	
MMC_CMD	51	1.8/3.3V	IO	MMC 和 SD 命令	
VDD SDIO	61	1.8/3.3V	PO	DAT 线数字上拉电源	非 SD 卡供电电源
模拟音频接口	01	1.0/0.0 V	10	DATS级工工证电源	非 00 下灰电电弧
MIC P	9	_	Al	模拟音频输入	
-	10		Al	模拟音频输入	
MIC_N		-			模拟音频
SPK_P	11	-	AO	模拟音频输出	
SPK_N	12	-	AO	模拟音频输出	
天线接口		,	,	,	
ANT_MAIN	32	-	AIO	主天线接口	
NC/ANT_GNS S	72	-	AIO	GNSS 天线	
其他功能引脚					
ADC1	38	-	Al	通用模拟数字转换器接口,检测范围 0~1.2V	如不使用,悬空即 可。
ADC2	66	-	Al	通用模拟数字转换器接口, 检测范围 0~1.2V	如不使用,悬空即 可。
NC/1PPS	60	1.8V	D0	1PPS 脉冲信号输出	如不使用,悬空即 可。

www.simcom.com

NC	28,60,72, 73,74,75, 76,77,78, 79,80,81, 82,83,84, 85,86	悬空	60,72 仅在 LANS /LANV 型号下悬空,在 MANS 型号为 GNSS 功能 PIN 脚。
----	--	----	---

※ 特别注意

1.请为 GPIO_05(USB_BOOT), VDD_EXT 和 DBG_TXD 保留测试点;如果没有 USB 连接器,请同时为 USB_VBUS,USB_DP 和 USB_DM 保留测试点以进行固件升级。

2.●表示这些信号在开机前不可下拉,否则会影响模块正常开机。

www.simcom.com 20/60

2.3 机械尺寸

以下图片描述了A7680C的封装尺寸。

图 3: 三维尺寸(单位:毫米)

www.simcom.com 21/60

2.4 推荐 PCB 封装尺寸

图 4: 推荐 PCB 封装尺寸(单位:毫米)

www.simcom.com 22/60

2.5 推荐钢网尺寸

推荐钢网厚度≥0.15mm,小于0.18mm.

图 5: 推荐钢网尺寸(单位:毫米)

www.simcom.com 23/60

■ 3 应用接口

3.1 供电输入

A7680C R2使用单一电源供电,共有2个引脚(34,35引脚)作为VBAT电源输入。A7680C R2通过这2个引脚给内部的射频和基带电路供电。

当模块在LTE模式下以最大功率发射时,电流峰值瞬间最高可达到1A,从而导致在VBAT上有较大的电压跌落。为保证电压跌落小于300mV,必须保证外部电源供电能力不小于1A。

※ 特别注意

测试条件: VBAT供电3.8V,模块带TE板测试。

表 8: VBAT 引脚电气参数

符号	符号描述	最小	典型	最大	单位	
VBAT	模块供电输入电压	3.4	3.8	4.2	V	
I _{VBAT(peak)}	模块耗流峰值	-	1	-	Α	
I _{VBAT(average)}	模块平均耗流(正常模式)		法会类主 24			
I _{VBAT(sleep)}	模块平均耗流 (休眠模式)	用多与仪 3→				
IVBAT(power-off)	模块平均耗流 (关机状态)	-	35	-	uA	

※ 特别注意

- 1、测试条件: VBAT供电3.8V,使用模块配套TE板测试,并在VBAT供电端加200UF电容。
- 2、如上表格内的IvBAT数据为模块整体的耗流数据。

3.1.1 供电参考设计

在用户的设计中,必须特别注意电源部分的设计。如果电压跌落低于3.4V,模块射频性能将会受到影响,电压过低会导致模块关机。建议选择带使能脚的LDO或DC-DC芯片,使能脚由MCU控制。

※ 特别注意

当电源须能够提供 1A 的持续电流,外部供电电容总容值,建议不小于 200uF;以保证任何时候 VBAT 引脚上电压跌落不超过 300mV。

www.simcom.com 24/60

建议靠近VBAT放置33pf/10pf/0.1/1µF共四个陶瓷电容,以改善射频性能及系统稳定性。与此同时,建议PCB上供电电源到模块间的VBAT走线宽度至少2mm。参考设计推荐如下:

如果VBAT输入含有高频干扰,建议增加磁珠进行滤波,磁珠推荐型号为BLM21PG300SN1D和MPZ2012S221A。

图 6: VBAT 输入参考电路

此外,为防止浪涌及过压对A7680C R2的损坏,建议在模块VBAT引脚上并联一个TVS管。

表 9: 推荐的 TVS 管列表

编号	厂家	料号	工作电压	封装
1	长电	ESDBW5V0A1	5V	DFN1006-2L
2	长园维安	WS05DPF-B	5V	DFN1006-2L
3	韦尔	ESD5611N	5V	DFN1006-2L
4	韦尔	ESD56151W05	5V	SOD-323

※ 特别注意

客户自行选择 TVS 时,需要关注浪涌防护时的钳位电压,100V 浪涌输入时钳位电压不要高于 10V。

3.1.2 推荐外部电源电路

设计上 MCU 必须具备给模块断电的功能,但模块能正常关机或重启时禁止使用,只有模块出现异常导致无法正常关机或重启了,才可对模块断电,推荐选择带使能脚的 LDO 或者 DC-DC 芯片。当输入电源大于 9V 时,推荐使用 DCDC 芯片;当输入小于 9V 时,推荐使用 LDO 供电。如果使用模块的 OPEN LINUX 二次开发功能,由于没有 MCU,可以外加一个低成本单片机起到拉 POWERKEY 开机和能够断电的硬件看门狗作用。

线性电源推荐电路如下图所示,其中PWR CTRL为控制脚:

www.simcom.com 25/60

图 7: 线性电源推荐电路

开关电源推荐电路如下图所示:

图 8: 开关电源推荐电路

3.1.3 电源监测

AT命令 "AT+CBC"可以用来监测VBAT电源电压。

AT命令 "AT+CVALARM"可以设置高/低压报警电压,当实际电压超出预设值范围时,会通过AT口上报警告信息。

使用"AT+CPMVT"可以设置高/低压关机电压,当实际电压超出预设值范围时,模块将直接自动关闭。

※ 特别注意

电源电压监测功能调试中,过压报警及过压关机功能默认关闭。相关AT命令的详细信息,请参考文档【1】。

3.2 开机/关机/复位

3.2.1 模块开机

用户通过拉低PWRKEY引脚使模块开机。此引脚已在模块内部上拉到VBAT。 推荐客户在设计时,模块引脚处增加TVS管可以有效的增强模块的抗静电能力,推荐电路如下图:

www.simcom.com 26/60

图 9: 开关机参考电路

※ 特别注意

如客户不需要上电自动开机,请不要在PWRKEY和RESET上并联超过100NF电容,否则上电检测到低电平会导致模块自动开机。

因PWRKEY和RESET都有拉低开机功能,禁止开机流程中短时间内先后拉PWRKEY和RESET,否则有可能导致开机异常。

图 10: PWRKEY 开机时序

表 10: 开机时序参数

符号	描述	最小值	典型值	最大值	单位
Ton	开机低电平脉冲宽度	-	50	-	ms
Ton(uart)	开机时间(根据 UART 判断)	-	6	-	S
Ton(usb)	开机时间(根据 USB 判断)	ļ -	7	-	S
VIH	PWRKEY 引脚输入高电平电压	0.7*VBAT	 -	VBAT	V

www.simcom.com 27/60

VIL PWRKEY 引脚输入低电平电压 0 0.3*VBAT V

3.2.2 模块关机

A7680C R2模块有以下几种关机方法:

- 使用 PWRKEY 引脚关机
- 使用 "AT+CPOF"命令关机
- 高/低压过压关机,使用"AT+CPMVT"设置电压范围(调试中)。
- 高低温过温关机

强烈建议客户使用PWRKEY或者AT+CPOF进行关机,关机之后再对VBAT断电(特别是模块完全不需要工作的情况下),另外不能通过断开VBAT进行关机,这样可能会对FLASH造成损伤。

※ 特别注意

- 1.当温度超过-30~+80℃范围时,A7680C R2会通过AT口上报警告信息。当温度超过-40~+85℃范围时,A7680C R2自动关机。 "AT+CPOF"和 "AT+CPMVT"的详细描述,请参考文档【1】。
- 2. 为了避免损坏模块,请不要在模块正常工作时直接关闭电源,只有在通过PWRKEY或AT指令使模块关机后,才可以切断电源。
- 3. 强烈推荐设计为在异常状态下具有关闭模块供电的功能,然后再开启电源以便重新启动模块。
- 4. 强烈推荐将PWR CTRL (DC DC或LDO使能脚)信号连接到主控,并能进行控制。

用户可以通过把PWRKEY信号拉低来关机,关机时序图如下图所示:

图 11: PWRKEY 关机时序

表 11: 关机时序参数

符号	描述	最小值	典型值	最大值	単位
Toff	关机机低电平脉冲宽度	2.5	_	-	S
Toff(uart)	关机时间(根据UART判断)	-	2.5	-	S

www.simcom.com 28/60

Toff(usb)	关机时间(根据USB判断)	-	3	-	S
Toff-on	关机-开机缓冲时间	2	-	-	S

3.2.3 模块复位

A7680C R2 可以通过拉低模块的 RESET 引脚来重启模块。RESET 引脚也有拉低开机功能(无关机功能),但是推荐使用 PWRKEY 开关机,将 RESET 作为复位功能使用。

在模块内部已经有 50KΩ上拉电阻, 所以外部无需再加上拉电阻, 推荐电路如下:

图 12: 复位推荐电路

表 12: RESET 引脚电气参数

参数	描述	最小值	典型值	最大值	单位
T _{reset}	重启低电平脉冲宽度	2	2.5	-	S
V_{IH}	RESET 引脚输入高电平电压	0.7*VBAT	-	VBAT	V
V _{IL}	RESET 引脚输入低电平电压	0	0	0.3*VBAT	V

※ 特别注意

建议仅在紧急情况,比如模块无响应时,使用 RESET 引脚。RESET 复位时间推荐 2.5s。

www.simcom.com 29/60

3.3 串口

A7680C-LANS/LANV可提供三路UART接口,一组全功能串口,一组两线串口,一组DEBUG串口,模块是DCE (Data Communication Equipment)设备。

A7680C-MANS有两路UART接口,一组全功能串口,一组DEBUG串口。

当用户使用主通讯串口UART(复用功能可支持四线串口),可以参考下图连接方式:

图13: 串口连接图(全功能模式)

当用户使用串口时,可以参考下图连接方式:

图 14: 串口连接图 (NULL 模式)

下图展示了使用三极管进行电路转换,虚线部分的电路可以参考实线TXD和RXD的电路,需要注意信号的方向。

此处推荐三极管型号为MMBT3904。

www.simcom.com 30/60

图 15: 三极管电平转换电路

※ 特别注意

1.A7680C R2 主串口支持如下波特率: 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600, 1842000, 3686400。默认波特率为 115200bps。

2.由于三极管寄生电容的存在,会对高速数字信号的边沿产生影响,信号速度高于 115200bps 时不建议 使用该电路。

3.3.1 RI 和 DTR 描述

RI引脚可以作为一个中断唤醒主机。RI通常情况下保持高电平输出,当收到短消息或URC上报时,RI输出120ms(短消息)/60ms(URC)低电平,然后恢复高电平状态; RI会输出低电平。当作为被呼叫方收到电话呼叫时,RI输出低电平,RI在输出低电平后,会一直保持低电平,直到主机使用"ATA"命令接受呼叫,或者呼叫方停止呼叫RI才会恢复输出高电平。

图 16: RI 上的电平变化(短信, URC, Incoming call)

DTR 可以作为 A7680C R2 模块的休眠唤醒引脚。当 A7680C R2 模块进入休眠模式后,拉低 DTR 可以唤醒 A7680C 模块。

当用户设置 "AT+CSCLK=1"后,拉高 DTR 引脚,模块将自动进入休眠模式。此时串口功能不能正常通讯。当 A7680C R2 进入休眠模式后,拉低 DTR 可以唤醒 A7680C R2 模块。

在设置 "AT+CSCLK=0"的模式下,拉高DTR引脚,则不会有任何影响,串口功能正常通讯不受影响。

3.4 SPI接口

A7680C R2的二次开发复用功能可提供1路SPI接口,最高时钟速率可达52MHz。支持主模式和从模式,

www.simcom.com 31/60

接口电源域为1.8V。

表 13: SPI 引脚接口描述

模块 PIN 脚名称	复用功能	引脚	I/O	描述
GPIO_13	SPI_CS	62	DO	SPI 片选
GPIO_14	SPI_CLK	63	DO	SPI 时钟信号
GPIO_15	SPI_MISO	64	DI	SPI 数据线
GPIO_16	SPI_MOSI	65	D0	SPI 数据线

3.5 I2C 接口

A7680C R2 的二次开发复用功能可提供一组硬件 I2C 协议接口,时钟速率为 400KHZ,工作电压为 1.8V。 表 14: SPI 引脚接口描述

模块 PIN 脚名称	复用功能	引脚	I/O	描述
GPIO_17	I2C_SDA	68	I/O	I2C 总线数据输入\输出
GPIO_18	I2C_SCL	69	DO	I2C 总线时钟输出

I2C 参考电路如下图:

图 17: I2C 接口参考电路

※ 特别注意

注意: SCL 和 SDA 引脚内部无上拉电阻, 因此使用时必须外加上拉电阻到 1.8V。

www.simcom.com 32/60

3.6 USB接口

A7680C R2拥有一路USB2.0接口,不支持USB充电功能,不支持USB HOST模式。

USB是主要的调试口和软件升级接口,建议客户在设计时预留USB测试点,如果接到了主控芯片,设计时需要预留0R电阻用于切换外部测试点,如下图所示。

3.6.1 USB 参考设计

A7680C R2可以作为USB从设备,支持USB休眠及唤醒机制,连接电路图推荐如下:

图 18: USB 连接图

客户在使用时应该注意D3器件的选型,建议选择防静电和防浪涌二合一器件,可以放置一颗TVS管,推荐型号ESD5681N07。

※ 特别注意

1.USB 数据线必须严格按 90 Ω +/-10%差分形式走线,数据线上的 TVS 器件 D1 和 D2 必须选用等效电容值小于 1pF 的,TVS 器件靠近 USB 连接器或者测试点放置,推荐型号 ESD73011N 和 WS05DUCFM。 2.USB2.0 速率的检测确定,由 USB 协议自动完成,客户不需要外部上拉 DP,否则可能会影响设备 USB 枚举。

3.6.2 GPIO_05(USB_BOOT)接口

模块提供强制下载引导接口GPIO_05(USB_BOOT)。

表 15: USB_BOOT 描述

引脚编号	引脚名称	I/0	功能描述	电压域	默认状态	备注
20	USB_BOOT	DI	强制下载引导端口	1.8V	B-PU	

www.simcom.com 33/60

如果模块升级异常无法开机,可以通过USB_BOOT口强制升级。

在模块开机前,把USB_BOOT脚下拉到地,然后给模块加上VBAT电源,按下RESET,模块即进入下载模式。进入下载模式后需要释放掉USB_BOOT,去除下拉。

图 19: GPIO_05(USB_BOOT)连接图

客户可在Windows系统的设备管理器端口中查看到下载端口。

图 20: 强制下载端口

※ 特别注意

USB_BOOT 只在开机前具有强制下载引导功能(正常使用开机前不可下拉),开机后为其他功能。

3.7 USIM 卡接口

A7680C R2支持1.8V和3.0V 的USIM卡。USIM卡的接口电源由模块内部的电压稳压器提供,正常电压值为3V或者1.8V。

表 16: 1.8V 模式时 USIM 接口电气参数(USIM_VDD=1.8V)

符号	描述	最小值	典型值	最大值	单位
USIM_VDD	输出给 USIM 卡的电源电压	1.62	1.8	1.98	V
V _{IH}	输入高电平电压	0.7*USIM_VDD	-	USIM_VDD +0.4	V
V _{IL}	输入低电平电压	-0.4	0	0.25*USIM_VDD	V
V _{OH}	输出高电平电压	USIM_VDD -0.4	-	USIM_VDD	V
V _{OL}	输出低电平电压	0	0	0.2	V

www.simcom.com 34/60

符号	描述	最小值	典型值	最大值	单位
USIM_VDD	输出给 USIM 卡的电源电压	2.7	3	3.3	V
V _{IH}	输入高电平电压	0.7*USIM_VDD	-	USIM_VDD +0.4	V
V _{IL}	输入低电平电压	-0.4	0	0.25*USIM_VDD	V
V _{OH}	输出高电平电压	USIM_VDD -0.45	-	USIM_VDD	V
Vol	输出低电平电压	0	0	0.3	V

3.7.1 USIM 参考设计

下图是USIM卡推荐接口电路。为了保护USIM卡,建议使用ST(www.st.com)公司的ESDA6V15W器件或 者ON SEMI (www.onsemi.com)公司的SMF15C器件来做静电保护。SIM卡的外围电路器件应该靠近USIM卡 座放置。8引脚USIM卡座的推荐电路如下图。

参考电路如下图所示。

图 21: USIM 接口推荐电路

图 22: USIM 接口推荐电路(8PIN)

特别注意

35/60 www.simcom.com

USIM_DATA 已通过 4.7K Ω 电阻上拉到 USIM_VDD, 外部电路不需要上拉。USIM2 模块内未上拉,外部需要上拉到 USIM2_VDD。另外,在 USIM_VDD上的 100nF 去耦电容建议必须保留。如需更多关于 USIM 卡操作的 AT 命令,请参考文档【1】。

SIM卡电路比较容易受到干扰,引起不识卡或掉卡等情况,所以在设计时请遵循以下原则:

- 在 PCB 布局阶段一定要将 USIM 卡座远离主天线。
- USIM 卡走线要尽量远离 RF 线、VBAT 和高速信号线,同时 USIM 卡走线不要太长。
- USIM 卡座的 GND 要和模块的 GND 保持良好的联通性, 使二者 GND 等电位。
- 为防止 USIM CLK 对其他信号干扰,建议将 USIM CLK 做单独包地保护处理。
- 建议在 USIM VDD 信号线上靠近 USIM 卡座放置一个 220nF 电容。
- 在靠近 USIM 卡座的地方放置 TVS,该 TVS 的寄生电容不应大于 50pF 的,如 ESD9L5.0ST5G。
- 在 USIM 卡座和模块之间串联 22 Ω 电阻可以增强 ESD 防护性能。
- 为了使走线最为顺畅,建议使用单路 TVS,靠近卡座的各个引脚放置。
- USIM_CLK 信号非常重要,客户应保证 USIM_CLK 信号的上升沿和下降沿时间小于 40ns,否则可能会出现识卡异常的现象。

※ 特别注意

如果客户设计的是车载产品,请选择可靠性更好的push-push结构的SIM卡座。

3.8 SD卡接口

A7680C R2提供SD/MMC接口,只支持主模式,时钟频率可达208MHz SDR和50MHZ DDR,最高容量支持128GB,接口支持双电压域1.8V/3.3V。

支持的模式有: DS, HS, HS200,SDR12, SDR25,SDR50,SDR104,DDR50。符合规范:

SDIO Card Specification, version 3.0 eMMC Specification, version 4.5

表 18: SD 卡接口电参数(MMC_DAT0-MMC_DAT3,MMC_CLK 和 MMC_CMD)

www.simcom.com 36/60

参数	描述	最小值	典型值	最大值	单位
VDD_SD	SD 卡电源电压, 需要 自行外加供电	2.7	3.3	3.6	V
1.8V 电压域					
V _{IH}	输入高电平电压	VCC*0.7	1.8	VCC+0.2	V
V _{IL}	输入低电平电压	-0.3	0	0.3*VCC	V
V _{OH}	输出高电平电压	VCC-0.2V	1.8	-	V
V _{OL}	输出低电平电压	0	0	0.2V	V
3.3V 电压域					
V _{IH}	输入高电平电压	2	-	VCC+0.3	V
V _{IL}	输入低电平电压	-0.3	0	0.8	V
V_{OH}	输出高电平电压	2.4	-	-	V
V_{OL}	输出低电平电压	0	-	0.4	V

※ 特别注意

1.不同于MMC_DAT0-MMC_DAT3,MMC_CLK和MMC_CMD, SD_DET的电源域是1.8V. 2.VDD_SD需要客户外部提供,需要保证350mA的续流能力;

下图为SD卡参考电路图,SD卡为3V电源,需要外部提供VDD_SD供电。

图 1: SD 卡连接图

www.simcom.com 37/60

SD 卡走线注意事项:

- 注意保护其他敏感信号线,使其远离 SD 卡信号。
- 保护 SD 卡信号线,使其远离其他可能引起干扰的信号(如时钟信号,开关电源灯)。
- SD 卡的时钟频率高达 200MHZ, 走线需要做 50 欧姆阻抗控制。
- SD 卡的时钟 CLK 信号走线长度与 DATA/CMD 的信号长度差要控制在 1mm 以内。
- 在时钟信号上串入 15-24 欧姆的电阻,靠近模块端。
- 走线长度应控制在 50mm 以内。
- 各信号线的走线间距要求 2 倍线宽。
- 信号线的负载电容要求小于 15pf。

3.9模拟音频接口

A7680C R2提供一组模拟音频接口,集成了音频编解码器和音频前端,提供1路模拟音频MIC输入接口和1路模拟音频SPK输出接口,客户可以外接手柄进行语音通话。

ADC: 90dB SNR@20~20kHz DAC: 95dB SNR@20~20kHz (Class-AB): THD<-85dB@32-ohm

表 19: 模拟音频输出(AVDD AUD=1.8V,T=25°C)

参数	条件	DR(典型值)	THD+N(典型值)	最大功率
ADC	RL=10K	101dBA	-96dB(@vout -2dBv)	1.59Vp
Class-AB	Mono, 32Ω Difference	100dBA	-90dB(0.00316%) (@20mW output)	37mW

3.9.1 模拟音频参考设计

模拟音频推荐电路如下图所示:

www.simcom.com 38/60

图 23: 模拟音频接口推荐电路

3.10复用功能接口操作说明

A7680C R2模块二次开发版本为部分引脚提供了复用功能,详见下表。

表 20: A7680C R2 二次开发版本复用功能列表

引脚编号	电压域	开机状态	默认功能	复用功能 1	复用功能 2	中断
3	1.8V	PU	GPIO_00	UART_RTS		支持
4	1.8V	PU	GPIO_01	UART_CTS		支持
5	1.8V	PD	GPIO_02			支持
20	1.8V	PU	GPIO_05			支持
22	1.8V	PU	GPIO_06/NC	UART3_TX		支持
23	1.8V	PU	GPIO_07/NC	UART3_RX		支持
41	1.8V	PD	GPIO_08			支持
42	1.8V	PD	GPIO_09	PWM3		支持
43	1.8V	PD	GPIO_10			支持
44	1.8V	PD	GPIO_11			支持
57	1.8V	PD	GPIO_12			支持
58	1.8V	PU	DBG_RXD	UART2_RXD		支持
59	1.8V	PU	DBG_TXD	UART2_TXD		支持
62	1.8V	PD	GPIO_13	SPI0_CS		支持
63	1.8V	PD	GPIO_14	SPI0_CLK		支持
64	1.8V	PD	GPIO_15	SPI0_MISO		支持
65	1.8V	PD	GPIO_16	SPI0_MOSI		支持
68	1.8V	PU	GPIO_17	CI2C_SDA		支持
69	1.8V	PU	GPIO_18	CI2C_SCL		支持

www.simcom.com 39/60

3.11 其他接口

3.11.1 模数转换器(ADC)

A7680C R2模块提供了2路通用ADC接口,ADC的输入电压范围是0~1.2V,其电气特性如下表 21: ADC 电气特性

特性	最小值	典型值	最大值	单位
ADC 分辨率	_	12	-	bits
输入电压范围	0	-	1.2	V
输入阻抗		Hi-Z		

※ 特别注意

二次开发版本仅提供 API 接口,用于读取 ADC。

使用'sAPI_ReadAdc(1)'可以读取通用 ADC1 引脚上的电压值。

使用'sAPI_ReadAdc(2)'可以读取通用 ADC2 引脚上的电压值。

使用 'sAPI_ReadVbat()'可以读取 VBAT 的电压值。

3.11.2 LDO

A7680C R2提供一路电源输出VDD_EXT。

VDD EXT为模块的系统IO电源,仅可提供50mA的电流能力,不可用做大电流驱动源。

表 22: VDD_EXT 电气特性

符号	描述	最小值	典型值	最大值	单位
V _{VDD_1V8}	输出电压	-	1.8	-	V
Io	输出电流	-	-	50	mA

※ 特别注意

www.simcom.com 40/60

该电源为系统电源,如损伤会影响系统启动,建议客户外加 TVS 防护,推荐型号 ESD56051N。

A7680C R2提供一路电源输出VLDO7_SDIO。 VLDO7_SDIO仅可作为SD/MMC数据线的上拉电源使用,输出电压根据软件设定为1.8或3.3V。

表 23: VLDO_SDIO 电气特性

符号	描述	最小值	典型值	最大值	单位
V _{VDD_1V8}	输出电压	-	1.8/3.3	-	V
Io	输出电流	_	<u>-</u>	20	mA

www.simcom.com 41/60

■4 射频参数

4.1 LTE 射频参数

表 24: 传导发射功率

表 25: 4G 频段信息

E-UTRA 频段编号	上行操作频段	下行操作频段	双工模式
1	1920 ~1980 MHz	2110 ~2170 MHz	FDD
3	1710 ~1785 MHz	1805 ~1880 MHz	FDD
5	869∼894 MHz	$824{\sim}849~\mathrm{MHz}$	FDD
8	880 ~915 MHz	925 ~960 MHz	FDD
34	2010∼2025 MHz	2010∼2025 MHz	TDD
38	2570 ~2620 MHz	2570 ~2620 MHz	TDD
39	1880 ~1920 MHz	1880 ~1920 MHz	TDD
40	2300 ~2400 MHz	2300 ~2400 MHz	TDD
41	2535 ~2655 MHz	2535 ~2655 MHz	TDD

表 26: 参考灵敏度(QPSK)

E-UTRA	3GPP 标准						实测值	双工
频段编号	1.4 MHz	3MHz	5MHz	10MHz	15 MHz	20 MHz	10 MHz	模式
1	-	_	-100	-97	-95.2	-94	-98	FDD
3	-101.7	-98.7	-97	-94	-92.2	-91	-98.5	FDD
5	-103.2	-100.2	-98	-95	-	_	-99.5	FDD

www.simcom.com 42/60

8	-102.2	-99.2	-97	-94	-	-	-99	FDD
34	-	-	-100	-97	-95.2	-	-98	TDD
38	-	-	-100	-97	-95.2	-94	-97	TDD
39	-	-	-100	-97	-95.2	-94	-97	TDD
40	-	-	-100	-97	-95.2	-94	-97	TDD
41	-	<u>-</u>	-99	-96	-94.2	-93	-97	TDD

4.2 LTE 天线要求

为了更好的整机性能,推荐天线设计参考如下表指标要求。

表 27: LTE 天线要求

天线指标	指标要求
工作频段	参考表 25
方向性	Omni Directional
增益	> -3dBi (Avg)
阻抗	50 Ω
效率	>50 %
最大输入功率	50W
VSWR	< 2
隔离度	>20dB
PCB走线插损(<1GHz)	<0.5dB
PCB走线插损(1GHz~2.2GHz)	<1dB
PCB走线插损(2.3GHz~2.7GHz)	<1.5dB

4.3 天线参考设计

图 24: 无源天线连接电路

www.simcom.com 43/60

上图中匹配电路中的 R1, C1, C2 和 R2 的具体值,通常由天线厂提供,由天线优化而定。其中,R1 和 R2 默认贴 0Ω ,C1 和 C2 默认不贴。D1 为一双向 TVS 器件,建议选贴,电容值要求小于 0.2pF,以避免模块内部器件损坏。推荐的 TVS 型号如下表:

表 28: TVS 推荐型号列表

封装	型号	供应商
0201	CE0201S05G01R	硕凯
0402	PESD0402-03	PRISEMI

4.4 GNSS 射频参数

TBD

4.5 PCB 走线设计

用户在 PCB 走线时,应注意模块 ANT 端口到天线连接座 PCB 走线的阻抗设计,走线长度建议控制在 20mm 以内,并且远离电源时钟等干扰信号。建议预留射频测试座方便进行传导测试,射频测试座参考型号 ECT: 818011998。

图 25: PCB 走线参考

www.simcom.com 44/60

■ 5 电气参数

5.1 极限参数

下表显示了在非正常工作情况下绝对最大值的状态。超过这些极限值将可能会导致模块永久性损坏。

表 29: 极限参数

参数	最小值	典型值	最大值	单位
VBAT 引脚极限电压	-0.5	-	4.8	V
VBUS 引脚极限电压	-0.5	-	5.4	V
IO 口极限电压: GPIO,UART	-0.3	-	2.0	V
IO 口极限电压:	-0.3	-	2.0	V
USIM	-0.3	-	3.9	V
PWRKEY、RESET	-0.3	-	4.8	V
5.2 正常工作条件				
表 30: 模块推荐工作电压	Si			
参数	最小值	典型值	最大值	单位

5.2 正常工作条件

表 30: 模块推荐工作电压

参数	最小值	典型值	最大值	单位
VBAT 引脚工作电压	3.4	3.8	4.2	V
VBUS 引脚工作电压	3.0	5.0	5.2	V

表 31: 1.8V 数字接口特性

参数	描述	最小值	典型值	最大值	单位
VIH	输入高电平电压	VCC*0.7	1.8	VCC+0.2	V
V _{IL}	输入低电平电压	-0.3	0	VCC*0.3	V
V _{OH}	输出高电平电压	VCC-0.2	-	-	V
V _{OL}	输出低电平电压	0	-	0.2	V
I _{OH}	高电平输出电流(模块未配置下拉电阻时)	_	<u>-</u>	42	mA
I _{OL}	低电平输出电流(模块未配置上拉拉电阻时)	- -	-	49	mA
I _{IH}	高电平输入电流 (模块未配置下拉电阻时)	_	-	10	uA
I _{IL}	低电平输入电流(模块未配置上拉拉电阻时)	-10	_	_	uA

45/60 www.simcom.com

※ 特别注意

以上参数适用于: GPIO, UART 和 USB_BOOT.

表 32: 模块工作温度

参数	最小值	典型值	最大值	单位
普通工作温度	-30	+25	+80	°C
扩展工作温度	-40	+25	+85	°C
存储温度	-45	+25	+90	°C

※ 特别注意

在扩展工作温度下工作时,模块射频指标可能不能满足 3GPP 规范。

5.3 工作模式

5.3.1 工作模式定义

下表简要介绍了后续章节将要提到的多种工作模式。

表 33: 工作模式定义

模式功能		定义
	LTE 休眠	在这种状态下,模块的电流消耗会降到最低,模块仍能接收寻呼信息和 SMS。
正常工作模式	LTE 空闲	软件正常运行,模块已经注册到网络上,并可以随时发送和接收数据。
	LTE 通话	两个用户处于连接中,在这种情况下模块的功耗和网络及模块的配置有关。
	LTE 待机	模块随时准备着数据传输,但是当前没有发送或接收数据。这种情况下,功耗取决于网络状况和配置。
	LTE 数据传输	数据正在传输中。在这种情况下,功耗取决于网络状况(例如:功率控制等级),上下行数据链路的数据速率,以及网络配置(例如:使用多时隙配置)。
最小功能模式		在不断电的情况下,可以使用"AT+CFUN=0"命令把模块配置成最小功能模式。在这种情况下, RF 部分和 USIM 卡部分都不工作,但串口和 USB 仍可以使用,此时功耗比正常工作模式低。
飞行模式		在不断电的情况下,使用 "AT+CFUN=4" 命令可把模块配置成

www.simcom.com 46/60

	飞行模式。在这种情况下, RF 部分不工作, 但串口和 USB 仍
	可以使用,此时功耗比正常工作模式低。
	通过 "AT+CPOF"命令或拉低 PWRKEY 引脚可关闭 A7680C
关机模式	R2。此时,模块内部的各个电源均被关闭,软件也停止运行。串
	口和 USB 均不可用。

5.3.2 休眠模式

在休眠模式下,模块的电流消耗会降到最低,但模块仍能接收寻呼信息和SMS。 当模块满足以下软硬件条件时,A7680C R2可自动进入休眠模式:

- UART条件
- USB条件
- 软件设置条件

有关休眠模式的详细信息,请参考文档【24】。

5.3.3 功能模式

可以通过命令 "AT+CFUN=<fun>"把模块设置到该模式下,这条命令提供三种选择,用于以设置不同功能。

- AT+CFUN=0: 最小功能模式;
- AT+CFUN=1: 全功能模式(默认);
- AT+CFUN=4: 飞行模式。

设置"AT+CFUN=0"后,模块进入最小功能模式,关闭射频功能和USIM卡的功能。在这种情况下,串口和USB仍然可以继续使用,但是与射频和USIM卡相关的功能以及部分AT命令不能使用。

设置"AT+CFUN=4"后,模块进入飞行模式,关闭射频功能。在这种情况下,模块的串口和USB仍然可以使用,但是与射频相关的功能以及部分AT命令不可使用。

当模块进入最小功能模式或者进入飞行模式后,都可以通过命令"AT+CFUN=1"使之返回全功能模式。有关"AT+CFUN"命令详细信息,请参考文档【1】。

5.4 耗流

表 34: VBAT 耗流(VBAT=3.8V)

LTE 休眠/空闲	
LTE supply current (不带USB连接)	休眠模式@DRX=0.32S 典型值: 2mA 空闲模式@DRX=0.32S 典型值: 14mA
CUFN=0, CSCLK=1	
飞行模式休眠耗流 (不带USB连接)	飞行模式@AT+CUFN=0,CSCLK=1 典型值: 1mA
LTE 数据传输	

www.simcom.com

LTE-FDD B1	@10MHz 23.0dBm 典型值: 650mA
LTE-FDD B3	@10MHz 23.0dBm 典型值: 600mA
LTE-FDD B5	@10MHz 23.0dBm 典型值: 550mA
LTE-FDD B8	@10MHz 23.0dBm 典型值: 550mA
LTE-TDD B34	@5MHz 23.0dBm典型值:300mA
LTE-TDD B38	@5MHz 23.0dBm典型值:330mA
LTE-TDD B39	@5MHz 23.0dBm典型值:300mA
LTE-TDD B40	@5MHz 23.0dBm典型值:330mA
LTE-TDD B41	@5MHz 23.0dBm典型值:330mA

5.5 静电防护

A7680C R2是静电敏感器件,因此,用户在生产、装配和操作模块时必须注意静电防护。模块的静电性能参数如下表:

表 35: ESD 性能参数(温度: 25℃,湿度: 45%)

引脚	接触放电	空气放电	
VBAT, GND	+/-5K	+/-10K	
天线端口	+/-5K	+/-10K	
USB接口	+/-4K	+/-8K	
UART接口	+/-4K	+/-6K	
其它引脚	+/-1K	+/-2K	

※ 特别注意

测试条件:模块在芯讯通开发板上(开发板带必要的 ESD 保护器件)

www.simcom.com 48/60

■ 6 贴片生产

6.1 模块的顶视图和底视图

图 26: 模块顶视图和底视图

※ 特别注意

如上为模块设计效果图,提供参考,实际外观请以实物为准。

www.simcom.com 49/60

6.2 标签信息

图 27:标签信息

表 36: 模块信息描述

项次	描述
Α	项目名字
В	产品代码
С	模块 SN 号
D	模块 IMEI 号
Е	模块型号
F	二维码

www.simcom.com 50/60

6.3 典型焊接炉温曲线

图 28: 推荐焊接炉温曲线图(无铅工艺)

※ 特别注意

更多二次贴片介绍请参考文档【21】。

6.4 湿敏特性

A7680C R2模块的湿敏特性为3级。

如果满足如下二个条件的任何一条,A7680C R2模块在进行回流焊前应该进行充分的烘烤,否则模块可能在回流焊过程中造成永久性的损坏。

- 拆封或真空包装破损漏气后,在温度<30度和相对湿度<60%的环境条件下,A7680C R2模块需168小时内进行SMT贴片。如不满足上述条件需进行烘烤。
 - 真空包装未拆封,但超过保质期的,也需要进行烘烤。

烘烤条件: 在湿度小于5%, 温度40+5/-0°C条件下需要烘烤192小时; 在湿度小于5%, 温度85+5/-0°C条件下需要烘烤72小时(如果使用托盘,请注意托盘是否抗热变形)。

表 37: 模块湿敏特性

等级	车间寿命(工厂环境≦+30℃/60%RH)
1	无限期保质在环境≦+30℃/85% RH 条件下
2	1 年
2a	4 周
3	168 小时

www.simcom.com 51/60

4	72 小时
5	48 小时
5a	24 小时
6	强制烘烤后再使用。经过烘烤,模块必须在标签上规定的时限内贴片。

※ 特别注意

产品搬运、存储、加工过程必须遵循 IPC/JEDEC J-STD-033。

www.simcom.com 52/60

7 包装

A7680C R2包装是在自动流水线处理,模块支持托盘包装。

图 29: 托盘包装示意图

下面是A7680C R2托盘尺寸图:

图 30: 托盘尺寸图

表 38: 托盘尺寸信息

托盘长度(±3mm)	托盘宽度(±3mm)	标准包装数
242.0	161.0	50

53/60 www.simcom.com

下面是托盘小卡通箱(Small carton)尺寸图:

图 31: 托盘小卡通箱尺寸图

表 39: 托盘小卡通箱尺寸信息

盒长(±10mm)	盒宽(±10mm)	盒高 (±10mm)	标准包装数
270	180	120	50*20=1000

下面是托盘大卡通箱尺寸图:

图 32: 托盘大卡通箱尺寸图

表 40: 托盘大卡通箱尺寸信息

盒长(±10mm)	盒宽(±10mm)	盒高(±10mm)	标准包装数
380	280	280	1000*4=4000

www.simcom.com 54/60

8.1 编码方式及最大数据速率

表 41: 编码方式和最大数据速率

LTE-FDD device category(Downlink)	Max data rate (peak)	Modulation type
Category 1	10Mbps	QPSK/16QAM/64QAM
Category 2	50Mbps	QPSK/16QAM/64QAM
Category 3	100Mbps	QPSK/16QAM/64QAM
Category 4	150Mbps	QPSK/16QAM/64QAM
LTE-FDD device category(Uplink)	Max data rate (peak)	Modulation type
Category 1	5Mbps	QPSK/16QAM
Category 2	25Mbps	QPSK/16QAM
Category 3	50Mbps	QPSK/16QAM
Category 4	50Mbps	QPSK/16QAM
Category 4 50Mbps QPSK/16QAM		

www.simcom.com 55/60

8.2 参考文档

表 42:参考文档

序号	文档名称	注释
[1]	A7600 Series_AT Command Manual _V1.00.04	AT Command Manual
[2]	ITU-T Draft new recommendationV.25ter	Serial asynchronous automatic dialing and control
[10]	3GPP TS 51.010-1	Digital cellular telecommunications system (Release 5); Mobile Station (MS) conformance specification
[11]	3GPP TS 34.124	Electromagnetic Compatibility (EMC) for mobile terminals and ancillary equipment.
[12]	3GPP TS 34.121	Electromagnetic Compatibility (EMC) for mobile terminals and ancillary equipment.
[13]	3GPP TS 34.123-1	Technical Specification Group Radio Access Network; Terminal conformance specification; Radio transmission and reception (FDD)
[14]	3GPP TS 34.123-3	User Equipment (UE) conformance specification; Part 3: Abstract Test Suites.
[15]	EN 301 908-02 V2.2.1	Electromagnetic compatibility and Radio spectrum Matters (ERM); Base Stations (BS) and User Equipment (UE) for IMT-2000. Third Generation cellular networks; Part 2: Harmonized EN for IMT-2000, CDMA Direct Spread (UTRA FDD) (UE) covering essential requirements of article 3.2 of the R&TTE Directive
[16]	EN 301 489-24 V1.2.1	Electromagnetic compatibility and Radio Spectrum Matters (ERM); Electromagnetic Compatibility (EMC) standard for radio equipment and services; Part 24: Specific conditions for IMT-2000 CDMA Direct Spread (UTRA) for Mobile and portable (UE) radio and ancillary equipment
[17]	IEC/EN60950-1(2001)	Safety of information technology equipment (2000)
[18]	3GPP TS 51.010-1	Digital cellular telecommunications system (Release 5); Mobile Station (MS) conformance specification
[19]	GCF-CC V3.23.1	Global Certification Forum - Certification Criteria
[20]	2002/95/EC	Directive of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS)
[21]	Module secondary-SMT-UGD-V1.xx	Module secondary SMT Guidelines
[22]	A7600Series_UART_Applicati on Note_V1.xx	This document describes how to use UART interface of SIMCom modules.
[23]	Antenna design guidelines for	Antenna design guidelines for diversity receiver system

www.simcom.com 56/60

	diversity receiver system	
[24]	A7600 Series_Sleep Mode_Application Note_V1.xx	Sleep Mode Application Note
[25]	A7600 Series_UIM HOT SWA P_Application Note_V1.00	This document introduces UIM card detection and UIM hot awsp

www.simcom.com 57/60

8.3 术语和解释

表 43: 术语和解释

术语	·····································
ADC	Analog-to-Digital Converter
AMR	Adaptive Multi-Rate
CS	Coding Scheme
CSD	Circuit Switched Data
CTS	Clear to Send
DTE	Data Terminal Equipment (typically computer, terminal, printer)
DTR	Data Terminal Ready
DTX	Discontinuous Transmission
EFR	Enhanced Full Rate
ESD	Electrostatic Discharge
ETS	European Telecommunication Standard
FR	Full Rate
GPRS	General Packet Radio Service
GSM	Global Standard for Mobile Communications
HR	Half Rate
IMEI	International Mobile Equipment Identity
Li-ion	Lithium-lon
MO	Mobile Originated
MS	Mobile Station (GSM engine), also referred to as TE
MT	Mobile Terminated
PAP	Password Authentication Protocol
PBCCH	Packet Broadcast Control Channel
PCB	Printed Circuit Board
PCL	Power Control Level
PCS	Personal Communication System, also referred to as GSM 1900
PDU	Protocol Data Unit
PPP	Point-to-point protocol
RF	Radio Frequency
RMS	Root Mean Square (value)
RTC	Real Time Clock
RX	Receive Direction
SIM	Subscriber Identification Module
SMS	Short Message Service
TE	Terminal Equipment, also referred to as DTE
TX	Transmit Direction
UART	Universal Asynchronous Receiver & Transmitter

www.simcom.com 58/60

URC	Unsolicited Result Code
USSD	Unstructured Supplementary Service Data
电话本缩写	
FD	SIM fix dialing phonebook
LD	SIM last dialing phonebook (list of numbers most recently dialed)
MC	Mobile Equipment list of unanswered MT calls (missed calls)
ON	SIM (or ME) own numbers (MSISDNs) list
RC	Mobile Equipment list of received calls
SM	SIM phonebook
NC	Not connect

www.simcom.com 59/60

8.4 安全警告

在使用或者维修任何包含模块的终端或者手机的过程中要留心以下的安全防范。终端设备上应当告知用户以下的安全信息。否则SIMCom 将不承担任何因用户没有按这些警告操作而产生的后果。

表 44: 安全警告

标识 要求

当在医院或者医疗设备旁,观察使用手机的限制。如果需要请关闭终端或者手机,否则医疗设备可能会因为射频的干扰而导致误操作。

登机前关闭无线终端或者手机。为防止对通信系统的干扰,飞机上禁止使用无线通信设备。 忽略以上事项将违反当地法律并有可能导致飞行事故。

不要在易燃气体前使用移动终端或者手机。当靠近爆炸作业、化学工厂、燃料库或者加油站时要关掉手机终端。在任何潜在爆炸可能的电器设备旁操作移动终端都是很危险的。

手机终端在开机的状态时会接收或者发射射频能量。当靠近电视、收音机、电脑或者其它 电器设备时会对其产生干扰。

道路安全第一! 在驾驶交通工具时不要用手持终端或手机,请使用免提装置。在使用手持终端或手机前应先停车。

GSM 手机终端在射频信号和蜂窝网下操作,但不能保证在所用的情况下都能连接。例如,没有话费或者无效的 SIM 卡。当处于这种情况而需要紧急服务,记得使用紧急电话。为了能够呼叫和接收电话,手机终端必须开机而且要在移动信号足够强的服务区域。当一些确定的网络服务或者电话功能在使用时不允许使用紧急电话,例如功能锁定,键盘锁定。在使用紧急电话前,要解除这些功能。一些网络需要有效的 SIM 卡支持。

www.simcom.com 60/60