WebAssign CH20-HW02-FALL2010 (Homework)

Yinglai Wang PHYS 272-FALL 2012, Fall 2012 Instructor: Virendra Saxena

Current Score : 20 / 20 **Due :** Friday, October 26 2012 11:59 PM EDT

1. 2/2 points | Previous Answers MI3 20.1.X.049

(a) Suppose you charge a 2.5 F capacitor with two 1.5 volt batteries. How much charge was on each plate?

7.5 🕜 C

(b) How many excess electrons were on the negative plate?

4.69e19 🕜 electrons

- Read the eBook
- <u>Section 20.1</u>

2. 2/2 points | Previous Answers

MI3 20.2.X.064

(a) In zinc at room temperature, the mobility of mobile electrons is about 1.6×10^{-3} (m/s)/(V/m), and there are about 6.6×10^{28} mobile electrons per m³. Calculate the conductivity σ . In actual practice, it is usually easier to measure the conductivity σ and deduce the mobility u from this measurement.

(b) What are the correct units for σ ?

- Read the eBook
- Section 20.2

3. 1/1 points | Previous Answers

MI3 20.2.X.065

Consider a tungsten wire ($\sigma = 1.8 \times 10^7 \ \Omega^{-1} \cdot m^{-1}$) with a cross-sectional area of 1 mm² (similar to your connecting wires) and carrying 0.3 amperes of current, which is about what you get in a circuit with a round bulb and two batteries in series. Calculate the strength of the very small electric field required to drive this current through the wire.

0.0167 V/m

- Read the eBook
- Section 20.2

4. 2/2 points | Previous Answers

MI3 20.2.X.008

A carbon resistor is 2 mm long and has a constant cross section of 0.3 mm^2 . The conductivity of carbon at room temperature is $\sigma = 3 \times 10^4 \text{ per ohm} \cdot \text{m}$. In a circuit its potential at one end of the resistor is 14 volts relative to ground, and at the other end the potential is 16 volts. Calculate the resistance R and the current I.

$$R = \boxed{0.222}$$
 \checkmark Ω
 $I = \boxed{9}$ \checkmark amperes

- Read the eBook
- Section 20.2

5. 4/4 points | Previous Answers

MI3 20.2.X.010

(a) The current through a particular high-resistance (long) bulb when connected to two batteries in series (2.7 volts) is about 105 milliampere (mA); connected to one battery (1.35 volts) the current is about 75 mA; and connected to a small voltage of only 50 millivolts the current is about 6 mA. (Different high-resistance (long) bulbs may differ from these values somewhat.) Using the formula $I = |\Delta V|/R$, what is R for each of these cases?

$$R_{2.7 \text{ V}} = \boxed{25.7}$$
 Ω

$$R_{1.35 \text{ V}} = \boxed{18}$$
 Ω

$$R_{50 \text{ mV}} = \boxed{8.33}$$
 Ω

(b) Is a high-resistance (long) bulb an ohmic resistor over this whole range of currents?

- The bulb is not ohmic, because its resistance changes if the current through the bulb changes.
- \bigcirc The bulb is ohmic because one can use the formula $R = |\Delta V|/I$.
- The bulb is ohmic, because light bulbs are ohmic.
- The bulb is ohmic, because it is not possible for the resistance of any resistor to change.

- Read the eBook
- Section 20.2

6. 2/2 points | Previous Answers

MI3 20.2.X.068

In the circuit shown below, the emf of the battery is 7.3 volts. Resistor R_1 has a resistance of 26 ohms, and resistor R_2 has a resistance of 44 ohms. A steady current flows through the circuit.

(a) What is the absolute value of the potential difference across R_1 ?

$$|\Delta V_1| = 2.71$$

(b) What is the conventional current through R_2 ?

- Read the eBook
- Section 20.2

7. 7/7 points | Previous Answers

MI3 20.3.P.082

Two resistors

In circuit 1 (see the figure), ohmic resistor R_1 dissipates 4 watts; in circuit 2, ohmic resistor R_2 dissipates 19 watts. The wires and batteries have negligible resistance. The circuits contain 10V batteries.

(a) What is the resistance of R_1 and of R_2 ?

$$R_1 = 25$$
 \checkmark Ω
 $R_2 = 5.26$ \checkmark Ω

(b) Resistor R_1 is made of a very thin metal wire that is 4 mm long, with a diameter of 0.1 mm. What is the electric field inside this metal resistor?

2500 V/m

(c) The same resistors are used to construct circuit 3, using the same 10V battery as before.

Which of the following graphs best represents the potential as a function of position around circuit 3?

(d) In circuit 3, calculate the number of electrons entering R_1 every second, and the number of electrons entering R_2 every second.

2.07e18 electrons/s (R_1) 2.07e18 electrons/s (R_2) (e) What is the power output of the battery in circuit 3?

3.3 W

- Read the eBook
- <u>Section 20.3</u>