EXPERIMENT-5

Measurement of Self Inductance by Maxwell Bridge

Objective

• To determine the self-inductance of an unknown coil.

Introduction

To determine the self-inductance of an unknown coil.

Theory

This bridge circuit measures an inductance by comparison with variable standard self inductance. The connections for balance condition is shown in Fig. 1.

Fig 1: Circuit Diagram for Measurement of Self Inductance by Maxwell Bridge

Let, L_1 = Unknown self Inductance of resistance R_1 ,

 L_2 = variable inductance of fixed resistance r_2 ,

 R_2 = variable resistance connected in series with inductor L_2 ,

 R_3 , R_4 = known non inductive resistances,

At balance condition,

$$(R_1 + j\omega L_1) * R_4 = (R_2 + r_2 + j\omega L_2) * R_3...(1)$$

Equating both the real and imaginary parts in eq.(1) and seperating them,

$$L_1=(rac{R_3}{R_4})L_2. \ldots (2)$$

$$R_1 = (rac{R_3}{R_4}) * (R_2 + r_2) \ldots (3)$$

Resistors R_3 and R_4 are normally a selection of values from 10, 100, 1000 and 10,000 Ω . r_2 is a decade resistance box.

Fig 1: Circuit Diagram for Measurement of Self Inductance by Maxwell Bridge

- 1. Apply Supply voltage from the signal generator with arbitrary frequency. (V = 3v). Also set the unknown Inductance value from 'Set Inductor Value' tab.
- 2. Then switch on the supply to get millivoltmeter deflection.

- 3. Choose the values of L_2 , r_2 , R_2 , R_3 and R_4 from the inductance and resistance box. Varry the values to some particular values to achieve "NULL".
- 4. Observe the millivoltmeter pointer to achieve "NULL".
- 5. If "NULL" is achieved, switch to 'Measure Inductor Value' tab and click on 'Simulate'. Observe the calculated values of unknown inductance (L₁) and it's internal resistance (R₁) of the inductor.
- 6. Also observe the Dissipation factor of the unknwown inductor which is defined as

$$rac{\omega L}{R} \ Where, \omega = 2\pi f$$

Simulation:

For air core

The current voltmeter reading is: 0.82180 my	<i>v</i> .
Now click on simulate to get:	
Inductor value (in mH): 0.01	Simulate
Resistance value (in Ohm): 1.01	
Quality Factor: 0.0031089	

For Iron core

Result:

Thus the measurement of self inductance by Maxwell Bridge is simulated and validated.