Part III - Elliptic Curves Lectured by Tom Fisher

Artur Avameri

${\bf Contents}$

0	Introduction	2
1	Fermat's Method of Infinite Descent	2
2	Some remarks on algebraic curves	3

0 Introduction

19 Jan 2024,

The best books for the course include *The arithmetic of elliptic curves* by Silverman, Springer 1996, and *Lectures on elliptic curves* by Cassels, CUP 1991.

Lecture 1

1 Fermat's Method of Infinite Descent

A right–angled triangle Δ has $a^2+b^2=c^2$ and area $(\Delta)=\frac{1}{2}ab$.

Definition 1.1. Δ is **rational** if $a,b,c\in\mathbb{Q}$. Δ is **primitive** if $a,b,c\in\mathbb{Z}$ are coprime.

Note that a primitive triangle has pairwise coprime side lengths because $a^2 + b^2 = c^2$.

Lemma 1.1. Every primitive triangle is of the form $(u^2 - v^2, 2uv, u^2 + v^2)$ for some integers u > v > 0.

Proof. WLOG let a,b,c be odd, even, odd. Then $\left(\frac{b}{2}\right)^2 = \frac{c+a}{2} \frac{c-a}{2}$, where we note that the RHS is a product of positive coprime integers. By unique factorization, $\frac{c+a}{2} = u^2, \frac{c-a}{2} = v^2$ for $u,v \in \mathbb{Z}$. This gives the desired result.

Definition 1.2. $D \in \mathbb{Q}_{>0}$ is a **congruent** number if there exists a rational triangle Δ with area $(\Delta) = D$.

Note that it suffices to consider $D \in \mathbb{Z}_{>0}$ squarefree.

Example 1.1. D = 5,6 are congruent.

Lemma 1.2. $D \in \mathbb{Q}_{>0}$ is congruent $\iff Dy^2 = x^3 - x$ for some $x, y \in \mathbb{Q}, y \neq 0$.

Proof. Lemma 1.1 shows that D congruent $\Longrightarrow Dw^2 = uv(u^2 - v^2)$ for some $u, v, w \in \mathbb{Q}, w \neq 0$. This implication also obviously goes the other way. To finish, divide through by w^4 and take $x = \frac{u}{v}, y = \frac{w}{v^2}$.

Fermat showed that 1 is not a congruent number.

Theorem 1.3. There is no solution to $w^2 = uv(u+v)(u-v)$ for $u,v,w \in \mathbb{Z}, w \neq 0$.

Proof. WLOG assume u, v are coprime and that u, w > 0. If v < 0, then replace (u, v, w) by (-v, u, w). If u, v are both odd, then replace (u, v, w) by $\left(\frac{u+v}{2}, \frac{u-v}{2}, \frac{w}{2}\right)$. Then u, v, u+v, u-v are pairwise coprime positive integers with their product a square, so by unique factorization in \mathbb{Z} , $u = a^2, v = b^2, u + v = c^2, u - v = d^2$ for $a, b, c, d \in \mathbb{Z}$.

Since $u \not\equiv v \pmod{2}$, both c and d are odd. Then $\left(\frac{c+d}{2}\right)^2 + \left(\frac{c-d}{2}\right)^2 = \frac{c^2+d^2}{2} = u = a^2$. This gives a primitive triangle with area $\frac{c^2-d^2}{8} = \frac{v}{4} = \left(\frac{b^2}{2}\right)$.

Let $w_1 = \frac{b}{2}$, then by Lemma 1.1, $w_1^2 = u_1 v_1 (u_1 + v_1) (u_1 - v_1)$ for some $u_1, v_1 \in \mathbb{Z}$. Hence we have a new solution to our original question, with $4w_1^2 = b^2 = v \mid w^2 \implies w_1 \leq \frac{w}{2}$, so we're done by infinite descent.

A variant for polynomials. In the above, K is a field with char $K \neq 2$. Let \overline{K} be the algebraic closure of K and consider for this whole section K with char $K \neq 2$.

Lemma 1.4. Let $u, v \in K[t]$ be coprime. If $\alpha u + \beta v$ is a square for 4 distinct $(\alpha : \beta) \in \mathbb{P}^1$, then $u, v \in K$.

Proof. WLOG let $K = \overline{K}$ by extending if necessary. Changing coordinates on \mathbb{P}^1 (i.e. multiplying by a 2×2 invertible matrix), we may assume that the points $(\alpha : \beta)$ are (1 : 0), (0 : 1), (1 : -1), $(1 : -\lambda)$ for $\lambda \in K \setminus \{0, 1\}$. Since our field is algebraically closed, let $\mu = \sqrt{\lambda}$. Then $u = a^2, v = b^2, u - v = (a + b)(a - b), u - \lambda v = (a + \mu b)(a - \mu b)$.

Unique factorization in K[t] implies that $a+b, a-b, a+\mu b, a-\mu b$ are squares (since the necessary terms are coprime up to units, i.e. constants). But $\max(\deg(a), \deg(b)) \leq \frac{1}{2} \max(\deg(u), \deg(v))$, so by Fermat's method of infinite descent, $u, v \in K$.

- **Definition 1.3.** (i) An elliptic curve E/K is the projective closure of the plane affine curve $y^2 = f(x)$ (this is called a Weierstrass equation) where $f \in K[x]$ is a monic cubic polynomial with distinct roots in \overline{K} .
 - (ii) For L/K any field extension, $E(L) = \{(x,y) \in L^2 \mid y^2 = f(x)\} \cup \{0\}$ (the point at infinity in the projective closure), it turns out that E(L) is naturally an abelian group.

In this course, we study E(K) for K a finite field, local field, number field. Lemma 1.2 and Theorem 1.3 show that if $E: y^2 = x^3 - x$, then $E(\mathbb{Q}) = \{0, (0, 0), (\pm 1, 0)\}.$

Corollary 1.5. Let E/K be an elliptic curve. Then E(K(t)) = E(K).

Proof. WLOG $K = \overline{K}$. By a change of coordinates, we may assume $y^2 = x(x-1)(x-\lambda)$ for some $\lambda \in K \setminus \{0,1\}$. Suppose $(x,y) \in E(K(t))$. Write $x = \frac{u}{v}$ for $u,v \in K(t)$ coprime. Then $w^2 = uv(u-v)(u-\lambda v)$ for some $w \in K[t]$. Unique factorization in K[t] shows that $u,v,u-v,u-\lambda v$ are all squares, so by Lemma 1.4, $u,v \in K$, so $x,y \in K$.

2 Some remarks on algebraic curves

In this section, work over an algebraically closed field $K = \overline{K}$.

22 Jan 2024, Lecture 2 **Definition 2.1.** A plane curve $C = \{f(x,y) = 0\} \subset \mathbb{A}^2$ (for $f \in K[x,y]$ irreducible) is **rational** if it has a rational parametrization, i.e. $\exists \phi, \psi \in K(t)$ such that

- (i) The map $\mathbb{A}^1 \to \mathbb{A}^2$ by $t \mapsto (\phi(t), \psi(t))$ is injective on $\mathbb{A}^1 \setminus \{\text{finite set}\}.$
- (ii) $f(\phi(t), \psi(t)) = 0$ in K(t).
- **Example 2.1.** (a) Any nonsingular conic is rational. For example, for $x^2 + y^2 = 1$, take a line with slope t through (-1,0) (the anchor) and solve to get the rational parametrization $(x,y) = \left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right)$.
- (b) Any singular plane cubic is rational, for example $y^2 = x^3$ giving $(x, y) = (t^2, t^3)$ with the anchor at the singularity (0, 0) and $y^2 = x^2(x+1)$ with the parametrization to be computed on Ex. Sheet 1 (anchor still at (0, 0)).
- (c) Corollary 1.5 shows that elliptic curves are not rational.

Remark. The genus $g(C) \in \mathbb{Z}_{\geq 0}$ is an invariant of a smooth projective curve C. If $K = \mathbb{C}$, then g(C) is the genus of the Riemann surface. A smooth plane curve $C \subset \mathbb{P}^2$ of degree d has genus $g(C) = \frac{(d-1)(d-2)}{2}$.

Proposition 2.1. (Here we still assume $K = \overline{K}$). Let C be a smooth projective curve.

- C is rational (see Definition 2.1) \iff g(C) = 0.
- C is an elliptic curve $\iff g(C) = 1$.

Proof. (i) Omitted.

(ii) (\Longrightarrow): Check C is a smooth plane curve in \mathbb{P}^2 (see Ex. Sheet 1) and use the above remark.

 (\Leftarrow) : We will see this later.

Order of vanishing. Let C be an algebraic curve with function field K(C) and let $P \in C$ be a smooth point. Write $\operatorname{ord}_P(f)$ for the order of vanishing of $f \in K(C)$ at P (which is negative if f has a pole at P).

Fact. ord_P: $K(C)^{\times} \to \mathbb{Z}$ is a discrete valuation, i.e. ord_P(f_1f_2) = ord_P(f_1) + ord_P(f_2) and ord_P($f_1 + f_2$) $\geq \min(\operatorname{ord}_P(f_1), \operatorname{ord}_P(f_2))$.

Definition 2.2. We say $t \in K(C)^{\times}$ is a **uniformizer** at P if $\operatorname{ord}_{P}(t) = 1$.

Example 2.2. $C = \{g = 0\} \subset \mathbb{A}^2 \text{ for } g \in K[x,y].$ Then $K(C) = \operatorname{Frac}\left(\frac{K[x,y]}{(g)}\right)$. Write $g = g_0 + g_1(x,y) + g_2(x,y) + \ldots$ for g_i homogeneous of degree i. Suppose P = (0,0) is a smooth point, e.g. $g_0 = 0$ and let $g_1(x,y) = \alpha x + \beta y$ with α, β not both zero $(\alpha x + \beta y = 0$ gives a tangent to the curve at P). Let $\gamma, \delta \in K$ and consider also the line $\gamma x + \delta y$ through P. Then it is a fact that $\gamma x + \delta y \in K(C)$ is a uniformizer at P if and only if $\alpha \delta - \beta \gamma \neq 0$.

Example 2.3. Consider $\{y^2 = x(x-1)(x-\lambda)\} \subset \mathbb{A}^2$ for $\lambda \neq 0, 1$ and consider its projective closure by taking $x = \frac{X}{Z}, y = \frac{Y}{Z}$ to get $\{Y^2Z = X(X-Z)(X-\lambda Z)\} \subset \mathbb{P}^2$. This has only one point at infinity, P = (0:1:0). Our aim is to compute $\operatorname{ord}_P(x)$ and $\operatorname{ord}_P(y)$.

For this, put $t = \frac{X}{Y}$, $w = \frac{Z}{Y}$, so $w \stackrel{(\dagger)}{=} t(t-w)(t-\lambda w)$. Now P is the point (t,w) = (0,0), which is a smooth point with $\operatorname{ord}_P(t) = \operatorname{ord}_P(t-w) = \operatorname{ord}_P(t-\lambda w) = 1$, so (\dagger) gives $\operatorname{ord}_P(w) = 3$. We now find

$$\operatorname{ord}_{P}(x) = \operatorname{ord}_{P}\left(\frac{X}{Z}\right) = \operatorname{ord}_{P}\left(\frac{t}{w}\right) = 1 - 3 = -2$$

$$\operatorname{ord}_{P}(y) = \operatorname{ord}_{P}\left(\frac{Y}{Z}\right) = \operatorname{ord}_{P}\left(\frac{1}{w}\right) = -3.$$

Riemann–Roch space. Let C be a smooth projective curve.

Definition 2.3. A divisor is a formal sum of points on C, say $D = \sum_{P \in C} n_P P$ where $n_P \in \mathbb{Z}$ and $n_P = 0$ for all but finitely many $P \in C$. We say deg $D = \sum_{P \in C} n_P$.

D is **effective** (written $D \ge 0$) if $n_P \ge 0 \ \forall P \in C$. If $f \in K(C)^{\times}$, then $\operatorname{div}(f) = \sum_{P \in C} \operatorname{ord}_P(f)P$. The Riemann–Roch space of $D \in \operatorname{Div}(C)$ is

$$\mathcal{L}(D) = \{ f \in K(C)^{\times} \mid \text{div}(f) + D \ge 0 \} \cup \{ 0 \},\$$

i.e. the K-vector space of rational functions on C with "poles no worse than specified by D".

We quote Riemann–Roch for surfaces of genus 1: We have

$$\dim \mathcal{L}(D) = \begin{cases} \deg D & \text{if deg } D > 0 \\ 0 \text{ or } 1 & \text{if deg } D = 0 \\ 0 & \text{if deg } D < 0. \end{cases}$$

Example 2.4. We revisit Example 2.3. We have $\mathcal{L}(2P) = \langle 1, x \rangle$ and $\mathcal{L}(3P) = \langle 1, x, y \rangle$.