Professor. Duen Horng Chau

GT Energy Consumption

Team 31: Kil-A-Watt

Soowon Chang, Mrunal Dehankar, Ananth Devadas, Rohini Mopuri, Aditi Paranjpe, Rochelle Scott, Shahaboddin (Sean) H Toroghi

Energy Consumption in Georgia Tech: Past Trends and Future Directions

Introduction

Motivation & Problem statement

Motivation

- Georgia Tech is on track to meet the Governor's Consumption Target to Reduce BTUs per square foot by 15% by 2020.
- No available application to develop a prediction model for electrical consumption based on historical data from Georgia Tech.
- Aims to facilitate the optimization of electric power consumption in the Georgia Tech.

Problem Statement

Community level energy analysis systems require an intelligent operation and continuous adjustments to provide necessary power with minimal waste for technical and financial perspectives [1, 2]. In this respect, management of the energy system at the campus level is important and challenging beyond a single building.

Research Approach

Summary of the survey

Energy consumption visualization has been studied for energy feedback

Clustering is a popular method to find out the similarity of electricity usage pattern in buildings

Neural networks (NN) is promising than regression analysis (More reliable)

Research framework

Comprehensive literature review

- Energy consumption visualization
- Current algorithms and tools
- Other models for predicting energy consumption

Interview with a facility manager in Georgia Tech

Data collection & cleaning

 Electrical consumption data for 99 buildings on campus from facility management office

Machine learning for clustering

 K-Means clustering algorithm to classify buildings into groups and detect abnormal data

Neural Networks for Prediction

 Developing NARX model (Nonlinear autoregressive network with exogeneous inputs) to predict usage for each cluster

Visualization

- Specific building for tracking consumption pattern
- Building type for planning the future energy allocation
- Summary view for the comprehensive control

Experiments & results

Data collection & cleaning

*EUI = total energy consumption / total gross square footage of building

• All the above steps are carried out using Perl Programming Language

Prediction with NARX

NARX Model for Bobby Dodd Stadium (2016), performance = 0.0259

Performance testing, overall performance = 0.0331

Actual vs Predicted values, RMSE = 0.1611

Visualization

Specific Building View

The Specific Building application will show a comparison of particular buildings' energy use as compared to the trend of its building type by gross usage or EUI (Available to select the building using drop down menu).

Demo – energy consumption view of a specific building compared to associated cluster

References

- [1] K. Powell, A. Sriprasad, W. Cole, and T. Edgar, "Heating, cooling, and electrical load forecasting for a large-scale district energy system," Energy, 2014.
- [2] M. Hashmi, V. Arora, and J. Priolkar, "Hourly electric load forecasting using Nonlinear AutoRegressive with eXogenous (NARX) based neural network for the state of Goa, India," Instrum. Control ..., 2015.