1 Additive Actions and Hassett-Tschinkel Correspondence

1.1 Compactification of Affine Space

Let
$$A^n = \{(x_1, \dots, x_n) \mid x \in \mathbb{R} \lor x \in \mathbb{C}\}.$$

We would like to devise a good representation of the infinite plane with the compact set. One of the ways is to use a projective sphere.

Suppose that a plane is given. Choose a point on the plane, and construct a sphere touching the plane at the chosen point. Then we build a correspondence between the plane and the sphere by throwing linkes from the north pole at the points on the plane.

The other method is to construct a projective space, in which points of \mathbb{R}^2 correspond to the lines in the projective space passing through a selected point p without intersecting.

In this way, we obtain a projective space $\mathbb{P}^n = \{[z_0 : z_1 : \cdots : z_n]\}$ such that:

- $\{z_0,\ldots,z_n\} \neq (0,\ldots,0)$
- $(z_0, \ldots, z_n) \sim (\lambda z_0, \ldots, \lambda z_n)$ for all $\lambda \neq 0$

The third method involutes \mathbb{R}^2 in a torus.

There is a wealth of papers on the problem of describing fully the compactifications of \mathbb{A}^n . See, for example, Hirzebruch (1954).

1.2 Actions

Suppose that a group G acts on a set X, $G \times X \to X$, so that $(g,x) \mapsto gx$:

- 1. ex = x for all $x \in X$
- 2. $(g_1g_2)x = g_1(g_2x)$

Example 1.1

Let $X = \mathbb{A}^n$, $G = (A^n, +) = \mathbb{G}_q^n$. Suppose that the action is that of a translation:

$$(a_1,\ldots,a_n)(x_1,\ldots,x_n)=(x_1+a_1,\ldots,x_n+a_n).$$

Definition 1.2. An orbit of $x \in X$, denotes as Gx, is a set $\{gx \mid g \in G\}$.

The action of a group is called *transitive* if X = Gx.

Problem.

Describe all the equivariant completions of a space \mathbb{A}^n , i.e. open involutions $\mathbb{A}^n \hookrightarrow X$, such that the action of parallel translations $\mathbb{G}^n_a \times \mathbb{A}^n \to \mathbb{A}^n$ is completed to $\mathbb{G}^n_a \times X \to X$, which is defined by some polynomial.

Example 1.3

Suppose that we are given an action $\mathbb{G}_a^n \times \mathbb{P}^n \to \mathbb{P}^n$ such that

$$(a_1,\ldots,a_n)\circ[z_0:z_1:\cdots:z_n]=[z_0:z_1+a_1z_0:\cdots:z_n+a_nz_0].$$

If $z_0 = 1$, the action is that of a parallel translation.

If $z_0 = 0$, points are stationary.

Example 1.4

Suppose that we have an action $\mathbb{G}^2_a \times \mathbb{P}^2 \to \mathbb{P}^2$ such that

$$(a_1, a_2) \circ [z_0 : z_1 : z_2] = [z_0 : z_1 + a_1 z_0 : z_2 + a_2 z_0].$$

Exercise 1.5. Check that $(a_1, a_2)[z_0 : z_1 : z_2] = [z_0 : z_1 + a_1 z_0 : z_2 + a_1 z_1 + (\frac{a_1^2}{2} + a_2) z_0]$ is alo an action, but different from the action above.

1.3 Finite-Dimensional Algebras

Suppose that A is a finite-dimensional vector space over \mathbb{R} or \mathbb{C} and that bilinear multiplication $\mathbb{A} \times \mathbb{A} \to A$ is defined such that $(a,b) \mapsto ab$.

We require the multiplication to be associative, commutative, and have a unit element 1 in A such that $1 \cdot a = a \cdot 1 = a$.

Vector spaces \mathbb{R} , \mathbb{C} and $\mathbb{C} \oplus \cdots \oplus \mathbb{C}$ are several examples of such a vector space.

Suppose that $I \subseteq A$ is a subspace such that for all $a \in A$ and $b \in I$ we have $ab \in I$. I is an example of an ideal.

1.4 Quotient Algebra

We define a quotient space as $A \setminus I = \{a + I \mid a \in A\}$ with the operation of multiplication defined so that (a + I)(b + I) = ab + I.

For example, $\mathbb{C}[x,y] \setminus (x^3, xy, y^2) = \{\alpha_0 : 1 + \alpha_1 x + \alpha_2 y + \alpha_3 x^2\}.$

Problem.

Classify all finite-dimensional algebras over \mathbb{C} .

Example 1.6

All such algebras are in the form $\mathbb{C}[x_1,\ldots,x_n]\setminus I$.

Definition 1.7. An ideal $I \subset A$ is called maximal, if $I \subseteq J \subseteq A$ implies that I = J or J = A.

Definition 1.8. Algebra is defined as *local* if in A there exists a unique maximal ideal.

Example 1.9

 $\mathbb{C}[x,y]\setminus (x^3,xy,y^2)$ defined earlier is local.

Definition 1.10. $a \in A$ is called revertible, if there exists $b \in A$ such that ab = 1.

Definition 1.11. $a \in A$ is called nilpotent, if there exists m > 0 such that $a^m = 0$.

Problem.

For algebras over \mathbb{C} , prove that

• if a is nilpotent, then 1 + a is revertible

- if A is local, then it is representable in the form $\langle 1 \rangle \oplus \mathfrak{M}$, where \mathfrak{M} is a maximal ideal in A, all $a \in \mathfrak{M}$ is nilpotent and $a \in A \setminus \mathfrak{M}$ is revertible.
- Show that all finite-dimensional algebras can be uniquely decomposed into the direct sum of local algebras.

If we look at the number of algebras of particular dimension, we get the following picture:

- for dim A = 1, the only algebra is \mathbb{C} .
- for 2, the only algebra is $\mathbb{C}[x] \setminus (x^2)$
- for 3, there are two algebras: $\mathbb{C}[x] \setminus (x^3)$ and $\mathbb{C}[x,y] \setminus (x^2,xy,y^2)$
- for 4, there are 4 algebras
- for 5, we get 9 algebras
- for 6, there are 25 numbers
- for ≥ 7 , there is an infinite number of algebras

1.5 Hassett-Tschinkel Correspondence

Hassett and Tschinkel (1999) have shown that, over \mathbb{C} the set of equivariant completions $A^n \hookrightarrow \mathbb{P}^n$ is equivalent to the set of local associative commutative algebras with unity of dimension n+1.

Define $\exp(a)$ for $a \in A$ as

$$\exp(a) = 1 + \frac{a}{1!} + \frac{a^2}{2!} + \dots$$

If a is nilpotent, then we obtain a polynomial.

Exercise 1.12. $\exp(a) \exp(b) = \exp(a + b)$.

 $Proof (\Leftarrow).$

Suppose that A is a local algebra with an action $\mathbb{G}_a^n \times \mathbb{P}^n \to \mathbb{P}^n$ such that $\mathbb{P}^n = \mathbb{P}(A)$ and $\mathbb{G}_a^n = \exp(\mathfrak{M}) = 1 + \mathfrak{M}$.

Exercise 1.13. Continue the proof.

The proof in the other direction requires the notion of cyclic modules, representation theory and Lie algebras.