Conceitos Básicos de Transmissão sem fio

Bibliografia:

- Jochen Schiller: Mobile Communications, capítulos 2 e 3.
- Q.-A. Zeng, P. Agrawal: Handoff in Wireless Mobile Networks, Chapter1 in *Handbook of Wireless Networks and Mobile Computing*, Stojmenovic (Ed.), Wiley 2002

Modelo de Referência

Aplic.

Transp.

Rede

Enlace

Físico

Rede Rede

Enlace Enlace

Físico Físico

Aplic.

Transp.

Rede

Enlace

Físico

MAC

Server

Gateway

Modelo de Referência

Principais funções:

- Camada Física: Geração da frequência portadora, modulação, seleção de frequência, detecção de sinal, filtragem
- Camada de enlace: Acesso ao meio, multiplexação, correção de erros de transmissão, controle de fluxo, syncronização →enlace ponto-a-ponto confiável
- <u>Camada de Rede</u>: Encaminhamento de pacotes, estabelecimento de uma conexão através de elementos intermediários.
- Camada de Transporte: Estabelecimento/manutenção de uma conexão fim-a-fim confiável
- Camada de Aplicação: Localização de servços, QoS, caching, conversão de representações

Antenas

- O alcance é determinado por:
 - Potência de transmissão
 - Frequência de transmissão (determina taxa sinal/ruído)
 - Objetos na região de cobertura
- antenas direcionais têm maior eficiência de energia (concentram a potência de sinal irradiada em uma direção) e alcançam uma transmissão a distâncias maiores
- expoente de perda (de intensidade de sinal): e-ax
- Onde a =2 (ambiente aberto); a =2.7 a 3.5 (área edificada); a= 1.6 1.8 (indoor)

Perímetros de Propagação de sinal

- Perímetro de transmissão
 - Baixa taxa de erros
 - Recepção nítida da fonte
- Perímetro de detecção
 - Sinal pode ser detectado,
 - comunicação não é possível devido a alta taxa de erros
- Perímetro de interferência
 - Sinal não pode ser detectado
 - E contribui para ruído (do sinal de outras antenas)

Propagação: Problemas

- Reflexão, absorção e refração
 - depende do material, polarização, frequência, ângulo de incidência
 - em superfície terrestre, edificações, camadas atmosféricas, etc.
- Espalhamento/Difusão (scattering)
 - Ao incidir sobre um objeto em um determinado ângulo, uma onda eletromagnética é decomposta em várias ondas "difusas" de intensidade menor

Propagação: Problemas

- Atenuação de sinal (medido em dB)
 - decréscimo da intensidade média do sinal, principalmente devido à distância (perda de propagação).
 - Depende muito da frequência e das condições climáticas e do material entre fonte e receptor

Propagação: Problemas

- Propagação Multi-caminho ("multi-path")
 - Devido a reflexão, difração etc. em diferentes objetos, o destinatário pode receber ondas dispersas e defasadas

- Defasagem no tempo
- Interferência com sinais vizinhos (Inter-symbol Interference)
- Sinal chega diretamente a receptor, mas fora de fase
- Sinal distorcido devido às fases das diferentes componentes Fading (Desvanecimento de sinal)
 © Markus Endler

Relação Sinal-Ruído (Signal-to-Noise Ratio - SNR)

- Forma mais comum de medir a qualidade de uma recepção de RF; é expressa em db
- O quanto maior o SNR, melhor a recepção
- Seu valor depende da potência de transmissão
- Como o ruído "se espalha" por toda a banda, para bandas mais largas, maior será o ruído recebido

Formas canônicas de Múltiplo Acesso ao Meio

- Circuit mode methods
 - Alocação prévia de um circuito/canal (podem ter vazões diferenciadas)
- Packet mode methods (Acesso múltiplo por demanda)
 - Random Multiple Access
 - Com contenção exemplo: Carrier Sense Multiple Access with Collision Avoidance- CSMA/CA
 - ***Token-based**
 - * Polling
 - Resource Reservation (scheduled)
 - Slotted ALOHA e Reservation ALOHA

Multiplexação

Objetivos:

- uso compartilhado eficiente do meio (banda de frequência)
- Garantir a não interferência de canais
- Muliplexação em 4 dimensões
 - espaço (s_i)
 - tempo (t)
 - frequência (f)
 - código (c)

Técnicas de Múltiplo Acesso

Cria "canais de comunicação" independentes

Quatro possibilidades básicas:

- FDMA (Frequency Division Multiple Access)
- TDMA (Time Division Multiple Access)
- CDMA (Code Division Multiplex Access)
- SDMA (Space Division Multiple Access)

Existe a possibilidade de combinar os mecanismos acima, de forma a conseguir uma maior eficiência na utilização do espectro. Exemplo: TDMA/FDMA amplamente utilizado pelas operadoras de telefonia celular.

FDMA

FDMA – Frequency Division Multiple Access (AMPS)

Max_freq 4	
Min_freq	

- Cada canal carrega a informação de/para um único terminal
- Os canais são sub-utilizados quando não há transmissão
- Requer filtros para evitar interferência de canal adjacente.
- Não tem overhead para o sincronismo entre Fonte e Destino (como no TDMA).
- Exemplo: AMPS: 2 bandas com 833 canais de 30 kHz cada

TDMA

TDMA - Time Division Multiple Access

- O TDMA compartilha a banda disponível entre os terminais, dividindo-a em time-slots. → transmissão dos dados é descontínua
- Requer bits de sincronização e guarda para separar os canais
- Devido à característica de trasmissão em rajadas, existe um menor gasto de bateria (transmite só durante o tempo de um time-slot)

FDMA e TDMA

FDMA e TDMA combinados (Exemplos: IS-136, GSM)

- Esta técnica combina a divisão da banda em faixas menores (portadora) que por sua vez é subdivida no tempo (time-slots).
- consequentemente tem-se uma melhor utilização do espectro.
- No GSM as 2 bandas de 25 MHz (Up/ Down Link) são divididas em portadoras de 200 KHz cada, que por sua vez são subdivididas em 8 time slots de 4.615ms. (perfazendo ≈ 2*125*8 = 2000 canais)

CDMA

CDMA - Code Division Multiple Access

- Todos terminais transmitem na mesma banda (simultâneamente) sendo o dado codificado com uma chave; e somente os detentores da chave conseguem cifrar/decifrar o dado → garante maior segurança.
- Isto requer uma "boa autocorrelação" entre as chaves
- A capacidade da banda não é fixa, dependendo da relação S/N do meio. É eficiente quando utilizada para muitos terminais.

SDMA

SDMA – Space Division Multiple Access

Usado em redes celulares (células são áreas irregulares em torno de uma antena)

Atribuir faixas de frequência diferentes a regiões (células) adjacentes, de forma a evitar a interferência de sinal

Para células não-adjacentes, pode-se reutilizar a faixa de

frequência

Para isto, a potência de transmissão da antena deve ser bem ajustada, a fim de garantir o alcance desejado

Tipos de Interferência

Interferência ocorre quando dois (ou mais) canais estão usando frequências próximas

Dois Tipos:

- Interferência co-canal: uso da mesma frequência f em diferentes células, ocorre quando em certo ponto p na célula C1:
 - razão entre potência de transmissão de ERB_{C1} e soma das potências das células vizinhas de ERB_{C1} < limite
- Interferência Adjacente: devido à frequências próximas à f

Devido a banda de frequência limitada, faz-se necessário o © Markeuso de frequências em células não vizinhas

Espalhamento de Sinal

Técnicas de espalhamento de sinal (Spread Spectrum):

- Em vez de transmitir em faixa estreita de frequência (e com alta potência), transforma-se o sinal em faixa larga de frequência (e baixa potência). A energia final p/ a transmissão geralmente é igual.
- O receptor tem a capacidade de identificar o sinal apesar de interferências e transformar o sinal de faixa larga para faixa estreita

- Principal vantagem: robustez às interferências de faixa estreita
- Técnicas usadas: *Frequency Hopping* (FHSS) e *Direct Sequence* (DSSS)

Frequency Hopping (FHSS)

Frequency Hopping é uma das técnicas de modulação usada em IEEE 802.11 e em Bluetooth

- um hopping code (pseudo-randômico) determina a frequência portadora para cada time-slot
- quando é detectada uma colisão, retransmite-se o dado no proximo slot
- há um limite para o número de transmissões simultâneas
- Bluetooth: usa 79 portadoras com 1.600 hops/s
- Vantagem: evita interferência com transmissão em largura de banda estreita Endler

Direct Sequence (DSSS)

Direct Sequence Spread Spectrum: Princípio de funcionamento

Chipping Code [00010011100]

Dados: 101

11111111111, 0000000000, 111111111111

Code: 00010011100, 00010011100, 00010011100

Sequência transmitida:

00010011100, 11101100011, 00010011100

- a fonte replica cada bit dos dados *n* vezes
- fonte codifica cada bit de dados de acordo com um código (*chipping code*), que causa o espalhamento do sinal e
- destino faz o "encolhimento" usando o mesmo código
- espalhamento e encolhimento através de operação NOT XOR

Acesso Múltiplo

Acesso Múltiplo por demanda:

(ao contrário de FDMA, TDMA, CDMA, → alocação prévia de canal (p.ex. escalonamento/divisão do acesso do meio)

Categorias:

Sem conflito (ex. Token) VS. com contenção

Com contenção:

- vários transmissores acessam canal sem alocação prévia e se houver colisão, frame é retransmitido, portanto:
 - existe um potencial atraso (não previsível) na transmissão
 - Possui menor eficiência espectral
 - Pode acomodar um número arbitrário de pares emissor-receptor
- Existem 3 categorias de protocolos:
 - acesso randômico (Aloha, 802.11)
 - acesso escalonado (p.ex. Bluetooth)
 - acesso híbrido

Protocolos de Acesso Randômico

Idéia central:

- multiplexação no tempo, distribuído (sem árbitro) ALOHA puro (Univ. Hawaii)
 - canal é acessado assim que msg está pronta
 - ♦ ACK esperado em um canal separado
 - se houver colisão, transmissor não recebe ACK ou NACK, espera tempo aleatório e tenta retransmitir
 - → com aumento do # de dispositivos → aumenta prob. de colisão
 - Pode ter tamanho fixo de quadros
 - Período de vulnerabilidade = 2τ (τ tempo de transmissão de 1 frame)

Aloha/slotted aloha

Slotted ALOHA

- frames transmitidos em fatias de tempo de duração τ
- Período de vulnerabilidade = τ

Carrier Sense Multiple Access (CSMA)

Idéia Central: monitorar tráfego no canal e só transmitir se este estiver livre (e não se faz reservas)

Exemplo: CSMA/CD – usado em camada MAC de redes Ethernet (cabeadas)

Precisa considerar dois tipos de atrasos:

- ◆ Atraso de detecção: tempo para descobrir se canal está livre
- Atraso de propagação: tempo de transmissão de 1 frame (se o atraso for longo, outra fonte pode achar que canal está livre)
- Existem várias variantes p/ tratamento de colisão:
 - ◆ 1-persistente: espera até canal estar livre, e depois inicia retransmissão diretamente
 - não-persistente: espera tempo aleatório antes de tentar retransmitir
 - p-persistente (para canais com time-slots): se canal está livre, transmite com probabilidade p; senão espera o próximo time-slot

Problemas de Acesso Múltiplo com Contenção

- 1) Efeito do Terminal Exposto ("Exposed Terminal Problem"):
- sinal de outro transmissor próximo chega com grande intensidade (maior razão signal/ruído)
- o sinal do transmissor desejado, mais afastado, não é percebido pelo receptor
- 2) Efeito do Terminal Escondido ("Hidden Terminal Problem"):
- Quando dois (ou mais) transmissores estão muito afastados e não conseguem detectar a colisão
- O receptor comum recebe os sinais simultaneamente e não é capaz de filtrar apenas 1 sinal
- Solução: Receptor deve arbitrar sobre o direito de transmissão no canal

Exemplos

- Terminal exposto
 - B envia para A, e C quer enviar para terminal D
 - Devido ao sinal de B, C percebe meio em uso e tem que esperar
 - Como A está fora de alcance de C, espera é desnecessária
 - C está exposto a B
- Terminal escondido
 - ◆ A envia para B, C não ouve A
 - Ao enviar para B, C percebe meio livre e transmite
 - Ocorre colisão em B, e nem A nem C percebem esta colisão
 - A está escondido para C

IEEE 802.11 - Modo DCF

- O Distributed Coordination Function do 802.11 pode ser realizado de duas formas:
- Um esquema básico usando o CSMA/CA, de implementação obrigatória, onde o transmissor espera tempo aleatorio para retransmitir
- Esquema opcional, que adiciona ao esquema básico quadros de pedidos (Request to Send RTS) e permissões (Clear to Send CTS) para transmitir;

Esquema RTS-CTS

Protocolo:

- transmissor difunde RequestToSend (RTS), indicando a quantidade de dados que deseja transmitir (o tamanho do frame)
- Se receptor aceitar, este difunde um ClearToSend (CTS) com indicação da quantidade (=RTS)
- Ao receber CTS, transmissor inicia a transmissão
- ◆ Qualquer outra UM que ouvir o CTS saberá que não deve transmitir pelo menos pelo período que durar a transmissão (≈ quantidade de dados)
- Uma UM que ouve o RTS, mas não o CTS correspondente, sabe que está suficientemente afastado do receptor, e assim poderá transmitir no mesmo canal sem interferir na transmissão da outra UM
- → isto ameniza o Hidden/Exposed Terminal Problem

RTS-CTS

Hidden/Exposed Terminal Problem

Handover (ou Handoff)

- Handoff:: processo de troca de ponto de acesso em uma rede wireless infra-estruturada
- geralmente envolve também troca de canal (frequência, time-slot, chipping code, etc.)
- É iniciado quando é detectada uma degradação do SNR (razão sinal/ruído)
- Envolve um overhead de sinalização na rede cabeada (redirecionamento, transferência de estado da conexão, etc.)
- Categorias:
 - hard ("break before make") vs. soft handover
 - Horizontal vs. Vertical

Existem várias propostas: Mobile IPv6 (MIPv6), hierarchical MIPv6 (HMIPv6), and MIPv6 fast handovers (FMIPv6), Proxy Mobile IPv6 (PMIPv6)

Hard vs Soft Handover

Soft Handover

Na intersecção de células ("overlapping area"), um terminal móvel se comunica com a ERB com melhor razão sinal/ruído (SNR).

Enquanto o SNR estiver acima de um certo limite aceitável, terminal mantém canal com ERB original.

Handover: Quando SNR cai abaixo de certo limite, terminal solicita canal em outra ERB.

Esta "negociação" é feita através de Canais de Controle/Sinalização Assim que conexão com nova ERB é estabelecida, canal na antiga ERB é liberado.

Tarefas durante um Handover

- Alocação de um novo canal sem fio
- Redirecionamento de pacotes para a nova ERB
- Bufferização e retransmissão de pacotes
- Pre-alocação ou reserva de recursos na nova ERB
- Atualização da informação da localização da UM
- Liberação do canal na ERB antiga

Existem várias propostas:

- Fast Handover
- Hierarchical Handover
- Media Independent Handover (MIH)

Leitura Recomendada:

Tipos de Handover

- Iniciados pela rede (Central de Controle e Comutação)
 - usado nas primeiras redes celulares
 - controle centralizado dos recursos das ERBs (rede tem visão global)
 - dificuldade: saber quando sinal/ruído está abaixo do aceitável
 - depende de sinais de controle (beacons) da UM

Iniciados pela UM

- dificulta a pre-alocação de recursos nas ERBs
- dá mais flexibilidade de escolha à UM
- UM pode monitorar canais de controle de várias ERBs e escolher a melhor
- Hand-over só ocorre quando realmente necessário (economia de energia)

Iniciados em Colaboração

 UM escolhe as ERBs candidatas, e rede escolhe a ERB com menor carga (para provisão de QoS)

Tipos de Handover

Handover Horizontal

Migração entre APs (ERBs) de uma mesma rede/tecnologia

Handover Vertical

Na migração entre redes ou domínios distintos

Tarefas Adicionais de um Handover Vertical

- Obtenção das credenciais do usuário
- Autenticação do usuário
- Estabelecimento de uma chave de sessão entre a ERB e a UM
- Renegociação dos parametros de QoS (p.ex. solicitar ao transmissor uma taxa menor de transmissão)
- Transcodificação de protocolos em nivel de enlace (GPRS -> 802.11)

Principais Variáveis

Do ponto de vista das camadas de transporte, sessão e aplicação, o que interessa são:

- Vazão (Throughput)
- Taxa de Erro (Loss Rate) -Pacotes perdidos/corrompidos
- Latência: depende do protocolo de transporte

Technology	Data rate	Latency	Loss Rate
2G	100-400 Kbit/s	300–1000 ms	??
3G	0.5-5 Mbit/s	100–500 ms	0.14 – 0.27%
4G	100 Mbit/s – 1 Gbps	< 100 ms	< 0.2 %
802.11a/g	50 Mbps	depends	depends
802.11n	100 (th 300) Mbps	depends	depends

3G= EV.DO e HSPA

4G= LTE e WiMax