Comparación de Resultados de Modelos de Inteligencia Artificial: Diabetes vs Clima

Tomás Granados, Carné 2021579524, Daniel Garbanzo, Carné 2022117129, José Pablo Granados, Carné 2022028503

Abstract—This paper presents a comparative study of two classification algorithms—Logistic Regression and k-Nearest Neighbors—on two binary tasks: diagnosing diabetes using the Pima Indians dataset and forecasting next-day rainfall with an Australian weather dataset. After exploratory data analysis, data cleaning, and outlier handling, each dataset is split into 70% training, 15% validation, and 15% testing subsets. Hyperparameters are tuned via GridSearchCV, and models are evaluated using standard metrics (accuracy, precision, recall, F1-score) and confusion matrices. We conclude with a discussion of each method's strengths and limitations for practical deployment.

Index Terms—Inteligencia Artificial, Regresión Logística, KNN, Selección de Hiperparámetros, Evaluación de Modelos, Diagnóstico de Diabetes, Predicción Climática.

I. Introducción

La evaluación comparativa de algoritmos de clasificación es esencial para seleccionar el modelo más adecuado según el dominio de aplicación. En este informe se analizan dos problemas reales: detección de diabetes con el dataset Pima Indians Diabetes [1] y predicción de lluvia al día siguiente con el dataset Weather AUS [2]. Se implementaron modelos de Regresión Logística y KNN, se ajustaron sus hiperparámetros, se aplicó validación cruzada y se analizaron los resultados de cada caso bajo condiciones experimentales equivalentes.

II. METODOLOGÍA

A. Conjuntos de Datos

Diabetes: 768 muestras con 8 variables clínicas (glucosa, presión sanguínea, BMI, edad, etc.), con objetivo binario (presencia o ausencia de diabetes). **Clima:** Weather AUS con \sim 145 000 registros diarios y 15 variables numéricas (temperatura, humedad, viento, etc.), con objetivo binario (RainTomorrow).

B. Protocolo Experimental

- 1) **Partición:** 70% entrenamiento, 15% validación, 15% prueba.
- 2) Escalado: z-score con StandardScaler.
- Grid Search: GridSearchCV (5 folds) en validación, optimizando accuracy.
- Validación Cruzada: estratificada (5 folds) sobre entrenamiento.
- 5) **Evaluación Final:** accuracy, precision, recall, F1-score, matrices de confusión y curvas de aprendizaje.

C. Preprocesamiento de Datos

Se detectaron y trataron valores faltantes:

- En Diabetes, ceros inválidos en variables críticas se imputaron con la media, manteniendo estabilidad en validación.
- En Clima, nulos se rellenaron con la mediana, mejorando el desempeño en validación en un 3%.
- Outliers identificados por IQR se retuvieron tras verificar su importancia en el accuracy final.

D. Métodos Utilizados

- EDA con matplotlib y seaborn.
- Imputación media/mediana.
- Escalado z-score.
- GridSearchCV para hiperparámetros.
- Validación cruzada estratificada.
- Evaluación con métricas y matrices de confusión.
- Análisis de curvas de aprendizaje.

E. Selección de Hiperparámetros

Todos los resultados completos de las combinaciones de hiperparámetros evaluadas están en logs/.

Table I Hiperparámetros óptimos para Diabetes

Modelo	Parámetro	Valor
Regresión Logística	C penalty solver	0.1 12 liblinear
KNN	n_neighbors weights metric	15 distance manhattan

Para Diabetes, Logistic Regression (C=0.1) alcanzó 75.0% de accuracy y 60.5% de recall; KNN ($n_neighbors=15$) obtuvo 72.4% de accuracy y 65.7% de precision.

Table II HIPERPARÁMETROS ÓPTIMOS PARA CLIMA

Modelo	Parámetro	Valor
Regresión Logística	C penalty solver	0.01 12 liblinear
KNN	n_neighbors weights metric	21 distance manhattan

Universidad XYZ, Proyecto de Inteligencia Artificial.

Para Clima, Logistic Regression (C=0.01) logró 84.3% de accuracy y 46.0% de recall; KNN ($n_neighbors=21$) obtuvo 84.6% de accuracy y 74.6% de precision.

III. RESULTADOS

A. Dataset de Diabetes

Table III MÉTRICAS EN DIABETES

Modelo	Accuracy	Precision	Recall	F1-score
Regresión Logística	75.0 %	68.4 %	60.5 %	64.0 %
KNN	72.4 %	65.7 %	53.5 %	58.9 %

B. Dataset de Clima

Table IV MÉTRICAS EN CLIMA

Modelo	Accuracy	Precision	Recall	F1-score
Regresión Logística	84.3 %	71.5 %	46.0 %	56.0 %
KNN	84.6 %	74.6 %	43.0 %	55.0 %

IV. DISCUSIÓN

En diabetes, Logistic Regression mostró mejor balance precision–recall (68.4% / 60.5%), mientras que KNN obtuvo mayor precision (65.7%) pero menor recall (53.5%). En clima, ambos modelos superaron 84% de accuracy, aunque el recall fue bajo (<50%), lo que sugiere mayor dificultad para capturar eventos de lluvia. Las curvas de aprendizaje indicaron ligero sobreajuste en KNN y un comportamiento estable en Logistic Regression. La validación cruzada confirmó la robustez de los hiperparámetros seleccionados.

V. RECOMENDACIONES

• Para Diabetes:

- Aplicar técnicas de balanceo de clases (SMOTE) para mejorar el recall.
- Explorar ensambles (Random Forest, XGBoost) que combinen robustez y alta precisión.

• Para Clima:

- Incorporar variables externas (satélite, radar) para mejorar recall en lluvias.
- Monitorizar estacionalidad y reentrenar periódicamente.

Generales:

- Mantener la carpeta logs/ con todos los experimentos para trazabilidad.
- Automatizar el pipeline completo con Makefile o snakemake.

VI. CONCLUSIONES

En este estudio se compararon dos clasificadores —Regresión Logística y KNN— aplicados a dos dominios distintos (diagnóstico de diabetes y predicción de lluvia). Los hallazgos principales son:

- En el dataset de diabetes, Logistic Regression demostró un mejor equilibrio entre precisión y recall (68.4% y 60.5%) y mostró estabilidad frente a la varianza, gracias a la regularización L2 (C = 0.1). KNN alcanzó mayor precisión (65.7%) con n_neighbors = 15, pero sacrificó sensibilidad (53.5%).
- En el dataset de clima, ambos modelos superaron con holgura el 84% de accuracy. Logistic Regression (C = 0.01) ofreció un desempeño más uniforme (recall 46.0%), mientras que KNN (n_neighbors = 21) elevó la precision a 74.6%, aunque con recall ligeramente inferior (43.0%).
- El tratamiento de valores faltantes —media para diabetes y mediana para clima— y la detección de outliers con IQR fueron decisivos para mantener la integridad del conjunto y la estabilidad de los modelos.
- La validación cruzada estratificada y las curvas de aprendizaje confirmaron que Logistic Regression presenta menor riesgo de sobreajuste y mejor generalización, mientras que KNN se beneficia de un ajuste cuidadoso de hiperparámetros y ponderación por distancia.
- La metodología aplicada —desde el EDA riguroso hasta la selección exhaustiva de hiperparámetros y la evaluación final con métricas diversas— garantiza la reproducibilidad y permite recomendar diferentes estrategias según el dominio: priorizar recall en el ámbito médico y precision en el meteorológico.

En consecuencia, se sugiere utilizar Regresión Logística en aplicaciones críticas donde el costo de falsos negativos sea alto (diagnóstico médico) y considerar KNN o ensambles en escenarios donde la precisión sea prioritaria y se disponga de datos suficientes para un ajuste fino.

REFERENCES

- R. Smith et al., "Pima Indians Diabetes Database," UCI Machine Learning Repository, 1988.
- [2] C. Bishop, "Weather AUS data set," Kaggle, 2006.