

Introduction to Bioinformatics online course: IBT

Bioinformatics resources and databases: Lecture 3: DNA sequence analysis Nicola Mulder

Learning Objectives

- Objective: Basic DNA sequence analysis finding sequence features
- Sub objectives:
 - Understand how to extract a DNA sequence from the database
 - Use online or local tools for simple DNA sequence analysis -finding features on the sequence and their applications

Learning Outcomes

- Understand how to find a DNA sequence and save it in the correct format
- Identify features on the sequence such as coding regions, restriction enzyme sites, etc.
- Design primers for amplification of a DNA sequence
- Interpret sequence analysis results and understand the biological impact of functional regions

Fundamental biology you need to know

- DNA is made up of 4 nucleotides/bases: ACGT
- DNA is usually double stranded through base pairing:
 A-T and C-G
- G-C bond is a bit stronger than A-T bond
- Double strand has top strand (sense strand) running 5' to 3'
- Bottom strand is complementary

```
5'
ACCTTGCGTTAAGCAATTGGCT
FGGAACGCAATTCGTTAACCGA
G 5'
```

Reverse complement: bottom strand read 5' to 3'

Genes can be encoded by either strand, + or – and are transcribed into RNA

How do you get the sequence?

- Sequencing technologies to determine the sequence of bases
- Not in the scope of this module

Two major components to sequence analysis

- Storing and retrieving data:
 - Biological databases
 - Querying these to retrieve data
- Manipulating the data –tools e.g.
 - Finding features on sequences
 - Sequence similarity searches
 - Protein families and function prediction
 - Comparing sequences –phylogenetics
 - Etc.

Aspects of sequence analysis

design for PCR

Sequence formats: Fasta

> [title] [sequence]

>seq1
GGAAAATTAGATGCATGGGAAAAAATTA
GGAAAATTAGACAAATGGGAAAAAATTA
>seq2
AAGTCCCTGGATTTACCCAATGCAGTCG
A
CATCGCATTT

Sequence formats: GenBank

LOCUS 525-42 1588 bp DEFINITION 525-42 1588 bp

TITLE 525-42

FEATURES Location/Qualifiers

exon 39..70

/note="exon1 is believed to have an alternative splice donor site"

ORIGIN

1	ATGTT	AAGAG	GGGGA	AAATT	AGATG	CATGG	GAAAA	AATTA	GGTTA	AGGCC
51	AGGGG	GAAAG	AAATG	CTATA	NGATA	AAACA	CCTAG	TATGG	GCAAG	CAGGG
101	AGCTG	GAAAG	ATTTG	CACTT	AACCC	TGGCC	TTTTA	GAGAC	ATCAG	ANGGC
151	TGTAA	ACAAA	TAATG	NAACA	GATAC	AACCA	GCTCT	TCAGA	CAGGA	ACAGA

Converting between sequence formats (save options)

DNA sequence composition

- Nucleotide composition (% GC vs AT content)
- GC bonds are stronger than AT bonds
- Applications:
 - Horizontal gene transfer analysis
 - Gene prediction
 - Primer design

Accession numbers

- GenBank/EMBL/DDBJ: 1 letter & digits, e.g.: U12345 or 2 letters & 6 digits, e.g.: AY123456
- GenPept Sequence Records -3 letters & 5 digits, e.g.: AAA12345
- UniProt -All 6 characters: [A,B,O,P,Q] [0-9]
 [A-Z,0-9] [A-Z,0-9] [A-Z,0-9] [0-9], e.g.:
 P12345 and Q9JJS7

Cross-referencing identifiers

- So many different IDs for same thing, e.g. Ensembl, EMBL, HGNC, UniGene, UniProt, Affy ID, etc.
- Need mapping files to move between them to avoid having to parse every entry
- UniProt website mapper (www.uniprot.org)
- PICR (http://www.ebi.ac.uk/Tools/picr/) enables mapping between IDs

Example conversion

PICR Protein Identifier Cross-Reference

Home User Guide Implementation Webservice RESTful Contact Us

Input Accession	ENSEMBL	REFSEQ	UNIPROT_BEST_GUESS
060260	ENSP00000343589 ENSP00000355860 ENSP00000355863 ENSP00000355865 ENSP00000355865 ENSP00000185345 ENSP00000343589 ENSP00000355860 ENSP00000355862 ENSP00000355863 ENSP00000355863 ENSP00000366894 ENST00000366894 ENST00000366897 ENST00000366898 ENST00000366898	NP 004553.2 NP 054642.2 NP 054643.2 XP 014201025.1 NM 004562.2 NM 013987.2 NM 013988.2	<u>060260.2</u>
P01130	ENSP00000397829 ENSP00000437639 ENSP00000440520 ENSP00000453346	NP 000518.1 NP 001182727.1 NP 001182728.1 NP 001182729.1	<u>P01130.1</u>

Mulder

DNA sequence analysis

- Restriction analysis e.g. for cloning –looks for recognition sites
- Primer design
- Finding features on a sequence
- Gene prediction:
 - Translation
 - Promoter prediction

Bioinformatics and cloning

- Retrieving sequence of interest
- Identifying restriction enzyme sites
- Matching these to RE sites in cloning vector

Restriction enzyme analysis

 Restriction enzymes recognize specific or defined 4 to 8 base pair sequences on DNA and cut

Microorganism	Enzyme	Sequences	Notes
Haemophilus aegitius	HaeIII	5'GG CC3' 3'CC GG5'	Blunt end
Haemophilus haemolytica	HhaI	5'GC G C3' 3'GG C G5'	3' single strand
Escherichia coli	<i>Eco</i> RI	5'G AATT C3' 3'C TTAA G5'	5' single strand

5'	GG
	CC
	GGGG
	C GCG AATTC

......GCG C....

.....C

an African Bioinformatics Network for H3Africa

Introduction to Bioinformatics online Bieাপানিক Resources & Databases: N

.GCG<mark>C...G....</mark>

.....CGCG......

Restriction map

Restriction Enzyme Map:

1	TACATGCATGTTCATGGTAGCATTATTCACAAAGCCAAAAGATGCAAACAGCCCCAATGTCCATAGATGAATAAACTGTG ATGTACGTACAAGTACCATCGTAATAAGTGTTTCGGTTTTCTACGTTTTGTCGGGGTTACAGGTATCTACTTATTTGACAC NspI SfaNI BfrBI	80 80
	NsiI NspI MslI	
81 81	GCATACATGATACACACACACACACGCACACACATATACATATACACACAC	160 160
161 161	AGTCTGTTACATGCTACCTGAGGATGAACCTCGAAAACATGCTAAGTGAAAGGACACAAAAGTCCACACACTGTGATTCCG TCAGACAATGTACGATGGACTCCTACTTGGAGCTTTTGTACGATTCACTTTCTGTGTTTTCAGGTGTGTGACACTAAGGC BseMII Bsu36I BstF5I TspDTI DrdI TspGWI	240 240
	BspCNI FokI NspI Hpy8I DraIII NspI MnlI TspRI MnlI	
241	TTTATATGAAGTATCTAAAGTAAGTAAATATAGAGACAGAAGTAGACTGGTAATTGCCAGGGGCTGGGGGGAAGAGGGC	320
241	AAATATACTTCATAGATTTCATTCATTTATATCTCTGTCTTCATCTGACCATTAACGGTCCCCGACCCCCCTTCTCCCCG TspDTI AccI BsrI BsaJI EarI	320
	BsmAI Hpy8I BslI PflMI AlwNI BseYI	

MnlI

PCR and primer design

- Primers should be similar length and Tm
- Should amplify only required piece from genome

Example with Primer BLAST

imer-BLAST: Finding primers sp	ecific to your PCR t	emplate (using Pr	imer3 and B	LAST).			
PCR Template Re	set page Save s	earch parameters	Retrieve	recent results	Publication	Tips for finding spe	cific primers
Enter accession, gi, or FASTA s	equence /A refee	n record is preferre	ad) (D)	lear	D:	ange	
Enter decession, gi, or ras ia	equence (/11000	q record is preferre	.0/ 🐷 💆	icui.		77	
				Forwa	rd primer	om To	(6)
					se primer		<u> </u>
				al		*	_
Or, upload FASTA file	Browse N	o file selected.					
Primer Parameters							
Use my own forward primer	_			(C) Clo			
(5'->3' on plus strand)				€ Cle	<u>ar</u>		
Use my own reverse primer (5'->3' on minus strand)				⊕ <u>Cle</u>	<u>ar</u>		
,	Min	Max					
PCR product size	70	1000					
# of primers to return	10						
	I La Caración de la C					•	
Primer melting temperatures	Min	Opt	Max		difference		
(Tm)	57.0	60.0	63.0	3	Θ		
An le							
Exon/intron selection	A refseq mRNA s	equence as PCR	template inp	ut is required for	options in the	section 😥	
Exon junction span	No preference			▼ ②			
Exon junction match	Exon at 5' side	Exon at 3' side					
	7	4					
	Minimal number	of bases that mus	t anneal to ex	cons at the 5' or	3' side of the ju	nction 🕢	
Intron inclusion	Primer pair m	ust be separated t	by at least on	e intron on the c	orresponding	genomic DNA 🚱	
Intron length range	Min	Max					
		320000					

Enter
accession
number of DNA
entry or paste
in sequence
Select where
on sequence
primers should
be

Select size range of product and Tm

Primer Pair Specificity Checking Parameters

Pan African Bioinformatics Network for H3Africa

Primer BLAST output

Detailed primer reports

Primer pair 1

Forward primer

Reverse primer

Sequence (5'->3')

ATGAGGCCAAGGACCCAAGAC

21

62.08

57.14

4.00

GATGAGGGGCTGACAGGAGTGG

22

64.35

63.64

5.00

Products on target templates

>NC_000020.11 Homo sapiens chromosome 20, GRCh38.p7 Primary Assembly

Other places in the genome primers may bind

>NC_018931.2 Homo sapiens chromosome 20, alternate assembly CHM1_1.1, whole genome shotgun sequence

```
product length = 690
Features associated with this product:
    glutathione synthetase
    glutathione synthetase
```


Gene Prediction

Wikipedia: A gene is a locatable region of genomic sequence, corresponding to a unit of inheritance, which is associated with regulatory regions, transcribed regions and/or other functional sequence regions

- Look for gene structures
- Move along sequence looking for coding regions and intergenic regions
- Check reading frame -translate
- Look for promoters and poly-adenylation signals
- In eukaryotes look for introns and exons
- Use EST or BLAST support (reduce pseudogenes)

Translation

- Can choose frame if you know it
- Otherwise 6-frame translation:
 - Choose start codon ATG
 - Otherwise lists all codons between stop codons
- Results –for bacteria, usually the longest ORF starting with Met and ending in stop,
 & no stop codons inside
- Can confirm this with promoter prediction
- Should use appropriate codon usage

Open reading frame

- String of in-frame combinations/triplets of bases that specify an amino acid
- Starts with ATG (Meth) or Val
- Ends with stop codon
- One base insertion or deletion –out of frame/frameshift

Genetic code

- Each amino acid is specified by a triplet of 3 bases
- 4 bases:
 A,C,G,T = 64
 possible
 codons.
 Actually 61
 codons + 3
 stop codons

	T		С		Α		G		
	TTT	nho	TCT		TAT	t. (10	TGT	0.40	T
_	TTC	phe	TCC		TAC	tyr	TGC	cys	С
T	TTA	lou	TCA	ser	TAA	cton	TGA	stop	Α
	TTG	leu	TCG	2 2	TAG	stop	TGG	try	G
	CTT		CCT	1	CAT	his	CGT		Т
С	CTC	lou	CCC		CAC	1115	CGC	ara	C
	CTA	A leu CCA	CCA	pro	CAA	aln	CGA	arg	Α
	CTG		CCG		CAG	gln	CGG		G
	ATT	ilo	ACT	+6.5	AAT	acn	AGT	ser arg	Т
_	ATC	ile	ACC		AAC	asp	AGC		C
Α	ATA	ile	ACA	thr	AAA	lvc	AGA		Α
	ATG	met	ACG		AAG	lys	AGG		G
	GTT		GCT	0	GAT	acn	GGT		Т
G	GTC	val	GCC	ala	GAC	asp	GGC	alv	C
٦	GTA	STA Val GCA	ala	GAA	alu	GGA	gly	Α	
	GTG		GCG		GAG	glu	GGG		G

 6 possible reading frames, 3 in each direction

5'-AGTCGGCTGACTGCGTTTACGAATGCGATTACTCCCTT-3' +strand 3-'TCAGCCGACTGACGCAAATGCTTACGCTAATGAGGGAA-5' -strand

Reverse complement

5'-AAGGGAGTAATCGCATTCGTAAACGCAGTCAGCCGACT-3'

• 6 possible reading frames, 3 in each

direction

AGTCGGCTGACTGCGTTTACGAATGCGATTACT

+1

Reverse complement

AAGGGAGTAATCGCATTCGTAAACGCAGTCAG

l		Т		С		Α		G		
I		TT	nho	TCT		TAT	tur	TGT	cys	T
	_	TTC	phe	TCC	cor	TAC	tyr	TGC		С
ı	Т	TTA	leu	TCA	ser	TAA	cton	TGA	stop	Α
l		TTG	ieu	TCG		TAG	stop	TGG	try	G
Ą		CTT		CCT CCC		CAT	his	CGT		Т
	_	CTC	lou		CCC	nro	CAC	1115	CGC	240
ı	С	CTA	CTA leu Co	CCA	pro	CAA	gln	CGA	arg	Α
ı		CTG		CCG		CAG		CGG		G
I		ATT	ilo	ACT		AAT	200	AGT	ser	Т
ı		ATC ile ACC] +6-	AAC	asp	AGC	301	С		
ı	Α	ATA	ile	ACA	thr	AAA	lys	AGA	arg	Α
l		ATG	met	ACG		AAG		AGG		G
I		GTT	val	GCT		GAT	200	GGT	gly	Т
	G	GTC		GCC	ala	GAC	asp	GGC		С
Ί	G	GTA	val	GCA	ala	GAA	alu	GGA		Α
		GTG		GCG		GAG	glu	GGG		G

 6 possible reading frames, 3 in each direction

Ser Arg Leu

AGTCGGCTGACTGCGTTTACGAATGCGATTACTCCCTT

+1

Reverse complement

AAGGGAGTAATCGCATTCGTAAACGCAGTCAGCCGACT

 6 possible reading frames, 3 in each direction

Val Gly
Stop
AGTCGGCTGACTGCGTTTACGAATGCGATTACTCCCTT
+2

AAGGGAGTAATCGCATTCGTAAACGCAGTCAGCCGACT

 6 possible reading frames, 3 in each direction

Ser Ala Asp

AGTCGCTGACTGCGTTTACGAATGCGATTACTCCCTT

+3

AAGGGAGTAATCGCATTCGTAAACGCAGTCAGCCGACT

 6 possible reading frames, 3 in each direction

Arg Leu Thr

AGTCGGCTGACTGCGTTTACGAATGCGATTACTCCCTT

+1

Reverse complement

AAGGGAGTAATCGCATTCGTAAACGCAGTCAGCCGACT

Getting the final protein

- Six-frame translation
- Find longest ORF with initiation site, start codon and ending with stop codon

Gene Prediction -bacteria

1 GAATTCGATAAATCTCTGGTTTATTGTGCAGTTTATGGTT

841 TCTCCAATATCACCGTTCCGTTGCTGGGACTGGTCGATAC 881 GGCGGTAATTGGTCATCTTGATAGCCCGGTTTATTTGGGC

921 GGCGTGGCGGTTGGCGCAACGGCGGACCAGCT

		TT
Promoter	41	CCAAAATCGCCTTTTGCTG TATATACTCACAGCATAACTG
FIOITIOLEI	0.7	CCAA -35 -10 TATACT >
	81	TATATACACCCAGGGGGGGGGAATGAAAGCGTTAACGGCCA +10 GGGGG Ribosomal binding site
	121	GGCAACAAGAGGTGTTTGATCTCATCCGTGATCACATCAG
Start	161	CCAGACAGGTATGCCGCCGACGCGTGCGGAAATCGCGCAG
Otart	201	CGTTTGGGGTTCCGTTCCCCAAACGCGGCTGAAGAACATC
	241	TGAAGGCGCTGGCACGCAAAGGCGTTATTGAAATTGTTTC
codon	281	CGGCGCATCACGCGGGATTCGTCTGTTGCAGGAAGAGGGAA
	321	GAAGGGTTGCCGCTGGTAGGTCGTGTGGCTGCCGGTGAAC
	361	CACTTCTGGCGCAACAGCATATTGAAGGTCATTATCAGGT
	401	CGATCCTTCCTTATTCAAGCCGAATGCTGATTTCCTGCTG
CDC	441	CGCGTCAGCGGGATGTCGATGAAAGATATCGGCATTATGG
CDS	481	ATGGTGACTTGCTGGCAGTGCATAAAACTCAGGATGTACG
	521	TAACGGTCAGGTCGTTGTCGCACGTATTGATGACGAAGTT
	561	ACCGTTAAGCGCCTGAAAAAACAGGGCAATAAAGTCGAAC
	601	TGTTGCCAGAAAATAGCGAGTTTAAACCAATTGTCGTTGA
01	641	CCTTCGTCAGCAGAGCTTCACCATTGAAGGGCTGGCGGTT
Stop	681	GGGGTTATTCGCAACGGCGACTGGCTGTAACATATCTCTG
	721	AGACCGCGATGCCGCCTGGCGTCGCGGTTTGTTTTCATC
Stop codon	761	TCTCTTCATCAGGCTTGTCTGCATGGCATTCCTCACTTCA
COUOTI	801	TCTGATAAAGCACTCTGGCATCTCGCCTTACCCATGATTT

Complex Eukaryotic systems

95% of gene

Human introns and exons

CBIO O UCT

Gene prediction in eukaryotes

- Identifying features (sometimes by PSSMs):
 - splice sites
 - start and stop sites
- Predict exons based on these signals
- Score exons based on signals and exon characteristics (coding sequences may have compositional biases)
- Use composition and homology information
- Assemble components into predicted gene structure
- Some methods use HMMs -features are states
- Use EST (expressed sequence tag –sequenced RNA) info

Using EST data: mRNA against genomic sequence

Gene Prediction software

- GeneMark –gene prediction for prokaryotes, eukaryotes and viruses: http://opal.biology.gatech.edu/GeneMark/
- GENSCAN –for vertebrate, maize and Arabidopsis sequences: http://genes.mit.edu/GENSCAN.html
- Microbial Gene Prediction System <u>http://compbio.ornl.gov/generation/</u>
- Glimmer –bacteria, archae and viruses http://www.tigr.org/software/glimmer/
- GRAIL –for eukaryotes, includes splice info, homology, etc. http://compbio.ornl.gov/grailexp/

Other translators and promoter prediction

- NCBI ORF Finder: (http://www.ncbi.nlm.nih.gov/gorf/gorf.htm)
- Promoter 2.0 Prediction Server (http://www.cbs.dtu.dk/services/Promoter/)
- MCPromoter MM:II (http://genes.mit.edu/McPromoter.html)
- BPROM -prediction of bacterial promoters, etc.

RNA sequence analysis

- Many different types of RNA e.g. tRNA, rRNA, mRNA etc.
- Some have activities e.g. ribozymes
- Many new programs for identification of non-coding RNA, miRNAs etc and their targets
- Secondary structure of RNA is NB for stability and often function
- RNA levels are NB for final protein levels, they measure gene expression –ESTs, microarrays

Summary and conclusions

- Basic sequence analysis is finding features on a sequence
- This could be small features
 - Restriction sites -> cloning
 - Primer sites -> PCR
- Or combinations of features:
 - Gene signals -> gene prediction
- Features found by nature of their "conservation" or pattern matching
- **Practical assignment** –retrieve a DNA sequence, H3ABIONET analysis programs

