k-Permutation: arrangement of k elements from a set of n elements

$$P(n,k) = \frac{n!}{(n-k)!}$$

Permutation With Repetition: Can permute each object type a_i ! times

$$\binom{n}{a_1, a_2, \dots, a_k} = \frac{n!}{a_1! \cdots a_k!}$$

Combination: Total number of ways to create a k-element subset of [n]

$$\binom{n}{k} = \frac{P(n,k)}{k!}$$

• This comes from being able to permute the k-subset k! ways

Binomial Theorem:
$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

Multinomial Theorem:
$$(x_1 + \dots + x_k)^n = \sum_{\substack{a_1 + \dots + a_k = n \\ a_1, \dots, a_k > 0}} \binom{n}{a_1, a_2, \dots, a_k} x_1^{a_1} \cdots x_k^{a_k}$$

Pigeon Hole Principle: If n pigeons are placed into k holes, then at least one hole has at least $\lceil \frac{n}{k} \rceil$ (round up)

Weak Composition: Ordered k-tuple
$$(a_1, \ldots, a_k)$$
 such that $a_i \ge 0$ and $\sum_{i=1}^k a_i = n$ $\binom{n+k-1}{k-1}$

Compositions: Ordered k-tuple
$$(a_1, \ldots, a_k)$$
 such that $a_i \ge 1$ and $\sum_{i=1}^k a_i = n$ $\binom{n-1}{k-1}$

Partition of [n]:
$$\{A_1, \ldots, A_k\}$$
 such that blocks are pairwise disjoint and $\bigcup_{i=1}^k A_i = X$ $S(n,k) = S(n-1,k-1) + kS(n-1,k)$

Bell's Number: Total number of partitions of
$$[n]$$
 into any sized blocks $B(n) = \sum_{k=1}^{n} S(n,k) = \sum_{k=1}^{n} \binom{n-1}{i-1} B(n-i)$

Partition of n:
$$(a_1, \ldots, a_k)$$
 such that $a_1 \ge \cdots \ge a_k$ and $\sum_{i=1}^k a_i = n$ total: $p(n)$ k-parts: $p_k(n) = p_{k-1}(n-1) + p_k(n-k)$

• Represented using Ferrers Diagram: partial rectangular grid with k rows, each with a_i squares (conjugate is also valid) Twelvefold Way Counting

- n labeled balls into k labeled bins: k^n k!S(n,k) P(n,k)
- n unlabeled balls into k labeled bins: $\binom{n+k-1}{k-1}$ $\binom{n-1}{k-1}$ $\binom{k}{n}$
- n labeled balls into k unlabeled bins: $\sum_{i=1}^{k} S(n,i)$ S(n,k)
- n unlabeled balls into k unlabeled bins: $\sum_{i=1}^{k} p_i(n)$ $p_k(n)$ 1

Inclusion-Exclusion Principle:
$$\left|\bigcup_{i=1}^n A_i\right| = |X| - \sum_{I \subseteq [n]} (-1)^{|I|} |A_I| = \left|\bigcap_{i=1}^n \bar{A}_i\right| = |X| - \sum_{I \subseteq [n]} (-1)^{|I|} |A_I|$$

OGF:
$$F(x) = \sum_{n=0}^{\infty} a_n x^n$$
 $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$ $\sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x$

$$\textbf{Power Series Formulas:} \ \sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \qquad \sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x \qquad (1+x)^a = \sum_{n=0}^{\infty} \binom{a}{n} x^n \qquad \sum_{n=1}^{\infty} n x^{n-1} = \Big(\sum_{n=0}^{\infty} x^n\Big)^{'} = \frac{1}{(1-x)^2}$$

$$\mathbf{OGF} \colon \sum_{n=0}^{\infty} a_n x^n \qquad (AB)(x) = \sum_{n=0}^{\infty} \Big(\sum_{i=0}^n a_i b_{n-i}\Big) x^n \qquad \mathbf{EGF} \colon \sum_{n=0}^{\infty} a_n \frac{x^n}{n!} \qquad (AB)(x) = \sum_{n=0}^{\infty} \Big(\sum_{i=0}^n \binom{n}{i} a_i b_{n-i}\Big) \frac{x^n}{n!}$$

• Even Permutation EGF:
$$\frac{e^x+e^{-x}}{2}=\sum_{n=0}^{\infty}\frac{x^{(2n)}}{(2n)!} \qquad \text{Odd Permutation EGF: } \frac{e^x-e^{-x}}{2}=\sum_{n=0}^{\infty}\frac{x^{(2n+1)}}{(2n+1)!}$$

Weak Compositions OGF:
$$\frac{1}{(1-x)^k} = (1+x+\cdots)(1+x+\cdots)\cdots = \sum_{n=0}^{\infty} \binom{n+k-1}{k-1} x^n$$

Stirling Number OGF:
$$\frac{x^k}{(1-x)(1-2x)\cdots(1-kx)} = \sum_{n=0}^{\infty} S(n,k)x^n$$

$$\textbf{Partitions OGF:} \ \frac{1}{(1-x)(1-x^2)\cdots} = \sum_{n=0}^{\infty} p(n)x^n \qquad \frac{x^k}{(1-x)(1-x^2)\cdots} = \sum_{n=0}^{\infty} p_k(n)x^n$$

Permutations EGF:
$$(1+x)^m = \sum_{n=0}^{\infty} P(m,n) \frac{x^n}{n!}$$

$$\textbf{Stirling Number EGF: } \frac{(e^x-1)^k}{k!} = \sum_{n=0}^{\infty} S(n,k) \frac{x^n}{n!} \qquad \textbf{Bell Number EGF: } e^{(e^x-1)} = \sum_{n=0}^{\infty} B(n) \frac{x^n}{n!}$$

Catalan Numbers:
$$C_n = \sum_{i=0}^{n-1} C_i C_{n-i-1}$$
 OGF Catalan Numbers: $C_n = \frac{\binom{2n}{n}}{n+1}$ $C_0 = 0$

Theorem: G is bipartite if and only if G has no odd cycles

Theorem: G with size m has $\sum_{v \in V(G)} \deg(v) = 2m$ Corollary: G must have an even number of odd degree vertices

Theorem: There exists a d-regular graph on n vertices if and only if at least one of d, n is even

Theorem: For any graph G, there exists a d-regular graph G such that G is an induced subgraph of H

Theorem: G with degrees $d=d_1,\ldots,d_n$ exists if and only if $s_1=d_2-1,d_3-1,\ldots,d_{d_1+1}-1,d_{d_1+2},\ldots,d_n$ is graphical

Theorem: Every tree on 2 or more vertices has at least 2 leaves

Theorem: G is a tree \iff G is connected, acyclic with n-1 edges \iff there is a unique path for $u,v\in V(G)$

Theorem: A connected graph of order n has at least n-1 edges

Theorem: An edge e is a bridge if and only if e isn't in any cycles

Spanning Tree to Code: Delete lowest index leaf and write down vertex adjacent to it. Repeat until only an edge remains

Code to Spanning Tree: Find smallest index b_1 not used and create $a_1 \sim b_1$. Delete a_1 and append b_1 . Repeat until b_1, \ldots, b_{n-2} then connect missing 2 indices

Theorem: Each Prufer code corresponds to a unique spanning tree. Thus number of spanning trees of K_n is n^{n-2}

Corollary: Total spanning trees such that vertex i has degree d_i is $\binom{n-2}{d_1-1,d_2-1,\ldots}$

Rooted Plane Tree: Tree with a root vertex, left/right ordering, but vertices are NOT labeled

• Clockwise walk around border of the tree reveals that the number of rooted plane trees on n+1 vertices is $C_n = \frac{\binom{2n}{n}}{n+1}$

Rooted Forest: Forest where each tree component has a distinguishable root vertex

Theorem: Number of labeled rooted forests on n vertices is $(n+1)^{n-1}$

Parking Function:
$$P(n) = (n+1)^{n-1}$$
 $P(n+1) = \sum_{i=1}^{n} \binom{n}{i} (i+1) P(i) P(n-i)$

Matching: Set of edges with no shared endpoints

Hall's Theorem: A bipartite graph G has a matching that saturates A if and only if for all $S \subseteq A$, $|N(S)| \ge |S|$

k-factor: Spanning k-regular subgraph **k-factorable:** Exists factors F_1, \ldots, F_k that decompose E(G) into disjoint sets

- Note: G is 1-factorable if and only if G has a perfect matching 2-factor is just a union of cycles
- Note: Any k-regular bipartite graph has a perfect matching

SDR: Given sets A_1, \ldots, A_n (not necessarily distinct), it is an **SDR** if there are n distinct elements such that $a_i \in A_i$

Eulerian Circuit: Circuit that traverses all edges exactly once with the same start and end vertices

Theorem: Let G be a connected graph. Then G is Eulerian if and only if every vertex has an even degree

Corollary: Graph G has a Eulerian Trail \iff 2 vertices have odd degree, which are the start and end of the trail

Hamiltonian Cycle: A cycle (vertices are used only once except the start/end) that contains all vertices of G

• Note: Hamiltonian Cycle \implies Hamiltonian Path (remove an edge) but HP \implies HC (consider P_n)

t-tough: A graph is t-tough if $t \leq \frac{|S|}{c(G \setminus S)}$ where S runs through all subsets of vertices that disconnect G

Theorem: If G is Hamiltonian, then $t(G) = \frac{|S|}{c(G \setminus S)} \ge 1$, i.e. \forall disconnecting set $S, |S| \ge c(G \setminus S)$

• Corollary: If there exists a subset of vertices where $|S| < c(G \setminus S)$, then the graph is not Hamiltonian

Theorem (Ore): Let G have order $n \ge 3$. If $\deg(u) + \deg(v) \ge n$ for any 2 non-adjacent vertices, then G is Hamiltonian

• Note: This is a sufficient but NOT necessary condition. Consider C_n , non-adjacent vertices have degree $\deg(u) + \deg(v) < n$

Planar Graph: Graph can be drawn without edges crossing

Euler's Identity: If G is a connected, planar graph on n vertices, m edges, and f faces, then n-m+f=2

Theorem: For a connected planar graph of order ≥ 3 , we have $m \leq 3n - 6$

• Corollary: If G is planar, then there is a vertex of degree ≤ 5

Keratowski Theorem: G is planar if and only if G doesn't contain K_5 or $K_{3,3}$, or a subdivision of either

Chromatic Number: Smallest number of colors in any coloring of G, denoted $\chi(X)$

• **k-colorable**: Can color vertices of G using k colors **k-chromatic**: G such that $\chi(G) = k$

Independent Set: Set S of vertices where no two vertices of S are adjacent

Independence Number: Size of largest independent set, denoted $\alpha(G)$

• Note: k-chromatic $\implies V(G)$ can be partitioned into k independent sets (color classes)

Theorem: $\chi(G) = 2$ if and only if G is non-empty bipartite graph **Corollary:** If G has an odd cycle, then $\chi(G) \geq 3$

Clique: Complete subgraph of G Clique Number: Size of the largest clique of G, denoted $\omega(G)$

Theorem: $\chi(G) \geq \omega(G)$ $\chi(G) \geq \frac{n}{\alpha(G)}$

Theorem: $\chi(G) \leq \Delta(G) + 1$ **Brooks' Theorem**: For a connected graph not equal to odd C_n or K_n , $\chi(G) \leq \Delta(G)$

Mycielski Construction: Maintain $\omega(G) = 2$ while arbitrarily grow $\chi(G)$ by adding n+1 vertices (w, u_1, \dots, u_n)

• Join w to all u_i such that u_i 's are not adjacent to each other. Join u_i with v_j where $v_j \sim v_i$