CPI Année 2021-2022

Algèbre linéaire

Chapitre 2 - Applications linéaires

M. Varvenne

Dans tout ce chapitre:

 \mathbb{K} désignera indifféremment \mathbb{R} ou \mathbb{C} , $(E, +, \cdot)$ et $(F, +, \cdot)$ désigneront deux \mathbb{K} -ev.

1 Généralités

1.1 Définitions et premières propriétés

Définition 1.1. Une application $f: E \to F$ est appelée **application linéaire** ou **morphisme** d'espace vectoriel lorsqu'elle vérifie :

- $\forall (u, v) \in E^2$, f(u + v) = f(u) + f(v).
- $\forall \lambda \in \mathbb{K}, \forall u \in E, \quad f(\lambda u) = \lambda f(u).$

L'ensemble de toutes les applications linéaires de E vers F se note $\mathcal{L}(E,F)$.

Proposition 1.2. Soit $f: E \to F$ une application linéaire. Alors

- $f(0_E) = 0_F$,
- $\forall u \in E, f(-u) = -f(u)$ où -u désigne le symétrique de u dans le groupe (E, +),
- $\forall (u_1, \ldots, u_n) \in E^n, \ \forall (\lambda_1, \ldots, \lambda_n) \in \mathbb{K}^n, \text{ on a}$

$$f(\lambda_1 u_1 + \dots + \lambda_n u_n) = \lambda_1 f(u_1) + \dots + \lambda_n f(u_n).$$

Proposition 1.3 (Caractérisation des applications linéaires). Soit $f: E \to F$ une application. Alors f est linéaire si, et seulement si,

$$\forall \lambda \in \mathbb{K}, \forall (u, v) \in E^2, \quad f(\lambda u + v) = \lambda f(u) + f(v).$$

Définition 1.4.

- Une application linéaire de E vers E est appelée un **endomorphisme** de E. L'ensemble des endomorphismes de E se note $\mathcal{L}(E)$.
- Une application linéaire bijective de E vers F est appelée un **isomorphisme**. Si une telle application existe, on dit que E et F sont **isomorphes**.
- Une application linéaire bijective de E vers E est appelée un **automorphisme**. L'ensemble des automorphismes de E se note GL(E).
- Une application linéaire de E vers \mathbb{K} est appelée une forme linéaire.

Exemple 1.

$$f: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2} , g: \mathbb{R}_{1}[X] \longrightarrow \mathbb{R}^{2} , (x,y,z) \longmapsto (2x+z,y) , P \longmapsto (P(0),P(1))$$

$$\varphi: \mathcal{C}([0;1],\mathbb{R}) \longrightarrow \mathbb{R} , \psi: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$$

$$f \longmapsto \int_{0}^{1} f(t) dt , (x,y,z) \longmapsto (2x+y+z,y+z,x-z).$$

 f, g, φ et ψ sont des applications linéaires. En particulier, g est un isomorphisme, φ est une forme linéaire et ψ est un endomorphisme de \mathbb{R}^3 (c'est même un automorphisme).

Proposition 1.5. Soient E, F et G trois \mathbb{K} -espaces vectoriels. Soient $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$. Alors

$$g \circ f \in \mathcal{L}(E,G)$$
.

1.2 Noyau, image

Définition 1.6. Soit $f \in \mathcal{L}(E, F)$.

• Le **noyau** de f noté Ker(f) est l'ensemble

$$Ker(f) = \{ u \in E \mid f(u) = 0_F \}.$$

• L'image de f noté Im(f) est l'ensemble

$$\operatorname{Im}(f) = \{ v \in F \mid \exists u \in E, v = f(u) \}.$$

Proposition 1.7. Soit $f \in \mathcal{L}(E, F)$. Alors Ker(f) est un sev de E et Im(f) est un sev de F.

Exemple 2. Soit
$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
 $(x, y, z) \longmapsto (x + y, y + z, x - z).$

On a
$$Ker(f) = Vect((1, -1, 1))$$
 et $Im(f) = Vect((1, 1, 0), (0, 1, -1))$.

Proposition 1.8. Soit f une application linéaire de E vers F.

- 1. f est injective si, et seulement si, $Ker(f) = \{0_E\}$.
- 2. f est surjective si, et seulement si, Im(f) = F.
- 3. f est bijective donc est un isomorphisme si, et seulement si, $Ker(f) = \{0_E\}$ et Im(f) = F.

1.3 Inverse

Notation 1.9. On note
$$\operatorname{Id}_E \colon E \longrightarrow E$$
 l'application identité de E . $x \longmapsto x$

En particulier, $\mathrm{Id}_E \in \mathcal{L}(E)$.

Proposition 1.10. Soit $f \in \mathcal{L}(E, F)$. Si f est bijective, alors l'unique application $g: F \to E$ telle que $g \circ f = \mathrm{Id}_E$ et $f \circ g = \mathrm{Id}_F$ est linéaire. On note $g = f^{-1}$ et on a $f^{-1} \in \mathcal{L}(F, E)$.

2 Applications linéaires en dimension finie

2.1 Rang d'une application linéaire

Définition-Théorème 2.1. Soit $f \in \mathcal{L}(E, F)$. On suppose que E est de dimension finie. Alors Im(f) est de dimension finie et on appelle **rang de** f, noté rg(f), sa dimension. Autrement dit,

$$rg(f) = dim(Im(f)).$$

En particulier, si (e_1, \ldots, e_n) est une base de E, alors $\operatorname{Im}(f) = \operatorname{Vect}(f(e_1), \ldots, f(e_n))$ et

$$rg(f) = \dim \left(Vect(f(e_1), \dots, f(e_n)) \right) = rg(f(e_1), \dots, f(e_n)).$$

Théorème 2.2 (Théorème du rang). Soit $f \in \mathcal{L}(E, F)$. On suppose que E est de dimension finie. Alors

$$\dim(E) = \dim(\operatorname{Ker}(f)) + \operatorname{rg}(f).$$

Remarque 2.3. Dans les deux résultats précédents, il n'y a aucune hypothèse sur la dimension de F, celui-ci n'est pas nécessairement de dimension finie.

Corollaire 2.4. Soit $f \in \mathcal{L}(E, F)$. On suppose que E et F sont de <u>même dimension finie</u>. Alors

f est bijective \Leftrightarrow f est injective \Leftrightarrow f est surjective.

Remarque 2.5. Si $f \in \mathcal{L}(E, F)$ est bijective et si E et F sont de dimension finie, alors

$$\dim(E) = \dim(F).$$

2.2 Matrice d'une application linéaire

Dans cette section, on suppose que E et F sont de dimension finie. On pose

$$n = \dim(E)$$
 et $p = \dim(F)$.

Soient $\mathcal{B} = (e_1, \dots, e_n)$ une base de E, $\mathcal{B}' = (e'_1, \dots, e'_p)$ une base de F et $f \in \mathcal{L}(E, F)$. Pour tout $j \in \{1, 2, \dots, n\}$, on a $f(e_j) \in F$ donc il existe $(a_{1j}, a_{2j}, \dots, a_{pj}) \in \mathbb{K}^p$ tels que

$$f(e_j) = a_{1j}e'_1 + a_{2j}e'_2 + \dots + a_{pj}e'_p = \sum_{i=1}^p a_{ij}e'_i.$$

Définition 2.6. La **matrice** de f dans les bases \mathcal{B} et \mathcal{B}' est la famille des coefficients $(a_{ij})_{\substack{1 \leq i \leq p \\ 1 \leq j \leq n}}$ tels que pour tout $j \in \{1, 2, \dots, n\}$,

$$f(e_j) = \sum_{i=1}^p a_{ij} e_i'.$$

On note alors

$$A = (a_{ij})_{\substack{1 \le i \le p \\ 1 \le j \le n}} = \operatorname{Mat}_{\mathcal{B}, \mathcal{B}'}(f).$$

Dans la pratique la matrice $A=(a_{ij})_{\substack{1\leqslant i\leqslant p\\1\leqslant j\leqslant n}}=\mathrm{Mat}_{\mathcal{B},\mathcal{B}'}(f)$ se présente sous la forme d'un tableau de nombres, comme suit :

Écriture matricielle de $f \in \mathcal{L}(E, F)$

Soit $x \in E$, alors il existe $(x_1, x_2, \dots, x_n) \in \mathbb{K}^n$ tels que

$$x = x_1e_1 + x_2e_2 + \dots + x_ne_n.$$

Comme f est linéaire, on a

$$f(x) = x_1 f(e_1) + x_2 f(e_2) + \dots + x_n f(e_n)$$

$$= x_1 (a_{11}e'_1 + a_{21}e'_2 + \dots + a_{p1}e'_p) + x_2 (a_{12}e'_1 + a_{22}e'_2 + \dots + a_{p2}e'_p)$$

$$+ \dots + x_n (a_{1n}e'_1 + a_{2n}e'_2 + \dots + a_{pn}e'_p)$$

$$= (x_1 a_{11} + x_2 a_{12} + \dots + x_n a_{1n})e'_1 + (x_1 a_{21} + x_2 a_{22} + \dots + x_n a_{2n})e'_2$$

$$+ \dots + (x_1 a_{p1} + x_2 a_{p2} + \dots + x_n a_{pn})e'_p.$$

Soient
$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 le vecteur colonne des coordonnées de x dans la base \mathcal{B} et $Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_p \end{pmatrix}$ le vecteur

colonne des coordonnées de y = f(x) dans la base \mathcal{B}' . Alors

$$Y = \underbrace{\begin{pmatrix} x_1 a_{11} + x_2 a_{12} + \dots + x_n a_{1n} \\ x_1 a_{21} + x_2 a_{22} + \dots + x_n a_{2n} \\ \vdots \\ x_1 a_{p1} + x_2 a_{p2} + \dots + x_n a_{pn} \end{pmatrix}}_{\text{def } AX} = \begin{pmatrix} \sum_{j=1}^n a_{1j} x_j \\ \sum_{j=1}^n a_{2j} x_j \\ \vdots \\ \sum_{j=1}^n a_{pj} x_j \end{pmatrix}$$

On note finalement

$$Y = AX$$

où les matrices A, X et Y sont celles définies ci-dessus.

2.3 Application linéaire associée à une matrice

Inversement à la section précédente, à toute matrice à p lignes et n colonnes $A = (a_{ij})_{\substack{1 \le i \le p \\ 1 \le j \le n}}$ avec $a_{ij} \in \mathbb{K}$ on peut associer une application linéaire comme suit :

Proposition 2.7. Si E et F sont deux K-ev de dimension finie de bases $\mathcal{B} = (e_1, \ldots, e_n)$ et $\mathcal{B}' = (e_1, \dots, e_p)$ respectivement, alors A définit une unique application linéaire $f \in \mathcal{L}(E, F)$ telle

$$A = \operatorname{Mat}_{\mathcal{B},\mathcal{B}'}(f)$$

Si
$$x$$
 a pour coordonnées $X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$ dans la base \mathcal{B}

Si
$$x$$
 a pour coordonnées $X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$ dans la base \mathcal{B} ,
alors $f(x)$ a pour coordonnées $AX = \begin{pmatrix} x_1a_{11} + x_2a_{12} + \dots + x_na_{1n} \\ x_1a_{21} + x_2a_{22} + \dots + x_na_{2n} \\ \vdots \\ x_1a_{p1} + x_2a_{p2} + \dots + x_na_{pn} \end{pmatrix}$ dans la base \mathcal{B}' .

Notation 2.8. L'ensemble des matrices à p lignes et n colonnes, dont les coefficients sont dans \mathbb{K} , est noté $\mathcal{M}_{p,n}(\mathbb{K})$.

Lorsque le nombre de lignes et le nombre de colonnes sont tous deux égaux à n, $\mathcal{M}_{n,n}(\mathbb{K})$ est noté plus simplement $\mathcal{M}_n(\mathbb{K})$.

3 Opérations sur les appli. lin. et sur les matrices

Somme et produit par un scalaire 3.1

Définition 3.1. Soient $A, B \in \mathcal{M}_{p,n}(\mathbb{K})$. Leur somme S = A + B est la matrice de $\mathcal{M}_{p,n}(\mathbb{K})$ dont les coefficients sont définis par

$$\forall i \in [[1, p]], \forall j \in [[1, n]], \quad s_{ij} = a_{ij} + b_{ij}.$$

De plus, pour $\lambda \in \mathbb{K}$, le **produit de** A par le scalaire λ est la matrice $C = \lambda A$ de $\mathcal{M}_{p,n}(\mathbb{K})$ dont les coefficients sont définis par

$$\forall i \in [[1, p]], \forall j \in [[1, n]], \quad c_{ij} = \lambda a_{ij}.$$

Remarque 3.2. L'ensemble $\mathcal{M}_{p,n}(\mathbb{K})$ muni de l'addition et de la multiplication par un scalaire vues ci-dessus, a une structure de K-espace vectoriel.

Proposition 3.3 (Somme).

- Soient $f, g \in \mathcal{L}(E, F)$. L'application $f + g \colon E \longrightarrow F$ appartient à $\mathcal{L}(E, F)$. $x \longmapsto f(x) + g(x)$
- De plus, si E et F sont de dimension finie de bases $\mathcal{B}=(e_1,\ldots,e_n)$ et $\mathcal{B}'=(e_1,\ldots,e_p)$ respectivement, on définit $A = \operatorname{Mat}_{\mathcal{B},\mathcal{B}'}(f)$, $B = \operatorname{Mat}_{\mathcal{B},\mathcal{B}'}(g)$ et $S = \operatorname{Mat}_{\mathcal{B},\mathcal{B}'}(f+g)$. Alors

$$S = A + B$$
.

Proposition 3.4 (Produit par un scalaire).

- Soient $f \in \mathcal{L}(E, F)$ et $\lambda \in \mathbb{K}$. L'application $\lambda f : E \longrightarrow F$ appartient à $\mathcal{L}(E, F)$. $x \longmapsto \lambda f(x)$
- De plus, si E et F sont de dimension finie de bases $\mathcal{B} = (e_1, \ldots, e_n)$ et $\mathcal{B}' = (e_1, \ldots, e_p)$ respectivement, on définit $A = \operatorname{Mat}_{\mathcal{B},\mathcal{B}'}(f)$ et $C = \operatorname{Mat}_{\mathcal{B},\mathcal{B}'}(\lambda f)$.
 Alors

$$C = \lambda A$$
.

3.2 Composition de morphismes en dimension finie

Dans cette section, E, F et G sont trois \mathbb{K} -ev de dimension finie avec

$$n = \dim(E)$$
, $p = \dim(F)$ et $q = \dim(G)$.

On note $\mathcal{B} = (e_1, \ldots, e_n)$, $\mathcal{B}' = (e'_1, \ldots, e'_p)$ et $\mathcal{B}'' = (e''_1, \ldots, e''_q)$ respectivement une base de E, de F et de G.

Définition 3.5. Soient $A \in \mathcal{M}_{p,n}(\mathbb{K})$ et $B \in \mathcal{M}_{q,p}(\mathbb{K})$. Alors le **produit matriciel** C = BA est une matrice de $\mathcal{M}_{q,n}(\mathbb{K})$ dont les coefficients sont définis par

$$\forall i \in [[1, q]], \forall j \in [[1, n]], \quad c_{ij} = \sum_{k=1}^{p} b_{ik} a_{kj}.$$

Remarque 3.6. Attention, le produit BA n'est défini que si le nombre de colonnes de B est égal au nombre de lignes de A!

De plus, le produit matriciel **n'est pas commutatif**, c'est-à-dire que pour deux matrices A et B, en général on a $AB \neq BA$ (lorsque les deux produits AB et BA sont bien définis).

Proposition 3.7 (Composition de morphismes). Soient $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$. On a vu précédemment que $g \circ f \in \mathcal{L}(E, G)$. Soient $A = \operatorname{Mat}_{\mathcal{B},\mathcal{B}'}(f) \in \mathcal{M}_{p,n}(\mathbb{K})$, $B = \operatorname{Mat}_{\mathcal{B}',\mathcal{B}''}(g) \in \mathcal{M}_{q,p}(\mathbb{K})$ et $C = \operatorname{Mat}_{\mathcal{B},\mathcal{B}''}(g \circ f) \in \mathcal{M}_{q,n}(\mathbb{K})$.

$$C = BA$$
.

4 Matrices inversibles et changement de base

4.1 Inversibilité

Alors

Définition 4.1. Soit $n \in \mathbb{N}^*$. On appelle matrice identité d'ordre n et on note I_n la matrice carrée à n lignes et n colonnes suivante :

$$I_n = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

Ses coefficients diagonaux sont égaux à 1 et tous les autres coefficients sont égaux à 0.

Proposition 4.2. Soient $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{K})$. Alors

$$AI_n = I_n A = A.$$

Définition 4.3. Une matrice carrée $A \in \mathcal{M}_n(\mathbb{K})$ est dite **inversible** si il existe une matrice $B \in \mathcal{M}_n(\mathbb{K})$ telle que

$$AB = BA = I_n$$
.

On note alors $B = A^{-1}$ la **matrice inverse** de A.

Proposition 4.4. Si $A \in \mathcal{M}_n(\mathbb{K})$ est inversible, alors sa matrice inverse est unique.

Proposition 4.5. Soient E et F deux \mathbb{K} -ev de <u>même dimension</u> finie $n \in \mathbb{N}^*$, de bases \mathcal{B} et \mathcal{B}' respectivement et $f \in \mathcal{L}(E, F)$.

Alors f est bijective si, et seulement si, $\operatorname{Mat}_{\mathcal{B},\mathcal{B}'}(f)$ est <u>inversible</u>. Dans ce cas, on a

$$(\operatorname{Mat}_{\mathcal{B},\mathcal{B}'}(f))^{-1} = \operatorname{Mat}_{\mathcal{B}',\mathcal{B}}(f^{-1}).$$

On a donc

$$\operatorname{Mat}_{\mathcal{B},\mathcal{B}'}(f) \times \operatorname{Mat}_{\mathcal{B}',\mathcal{B}}(f^{-1}) = \operatorname{Mat}_{\mathcal{B}',\mathcal{B}}(f^{-1}) \times \operatorname{Mat}_{\mathcal{B},\mathcal{B}'}(f) = I_n.$$

4.2 Changement de base

Dans cette section, on considère E un \mathbb{K} -ev de dimension finie $n \in \mathbb{N}^*$, ainsi que $\mathcal{B} = (e_1, \dots, e_n)$ et $\mathcal{B}' = (e'_1, \dots, e'_n)$ deux bases de E.

Définition 4.6. La matrice de passage de \mathcal{B} à \mathcal{B}' est la matrice $P \in \mathcal{M}_n(\mathbb{K})$ dont les vecteurs colonnes sont les coordonnées de e'_1, e'_2, \ldots, e'_n dans la base \mathcal{B} . On note

$$P = \mathscr{P}_{\mathcal{B} \to \mathcal{B}'}.$$

Proposition 4.7. Soit $x \in E$ associé au vecteur colonne X dans la base \mathcal{B} et au vecteur colonne X' dans la base \mathcal{B}' . Si $P = \mathscr{P}_{\mathcal{B} \to \mathcal{B}'}$, alors on a la relation

$$X = PX'$$
.

Théorème 4.8. La matrice de passage $\mathscr{P}_{\mathcal{B}\to\mathcal{B}'}$ correspond à la matrice de l'application identité $\mathrm{Id}_E\colon E \longrightarrow E$ de la base \mathcal{B}' vers la base \mathcal{B} . Autrement dit, $\mathscr{P}_{\mathcal{B}\to\mathcal{B}'}=\mathrm{Mat}_{\mathcal{B}',\mathcal{B}}(\mathrm{Id}_E)$. $x \longmapsto x$

Cette matrice est inversible et son inverse est la matrice de passage de \mathcal{B}' à \mathcal{B} , c'est-à-dire

$$\left(\mathscr{P}_{\mathcal{B}\to\mathcal{B}'}\right)^{-1}=\mathscr{P}_{\mathcal{B}'\to\mathcal{B}}$$

4.3 Matrice d'une application linéaire et changement de base

Soient E et F deux \mathbb{K} -ev de dimension finie avec $n = \dim(E)$ et $p = \dim(F)$. On considère $\mathcal{B} = (e_1, \ldots, e_n)$ et $\mathcal{B}' = (e'_1, \ldots, e'_n)$ deux bases de E, ainsi que $\mathcal{F} = (f_1, \ldots, f_p)$ et $\mathcal{F}' = (f'_1, \ldots, f'_p)$ deux bases de F. **Théorème 4.9** (Formule de changement de base). Soit $g \in \mathcal{L}(E, F)$. On pose

$$P = \mathscr{P}_{\mathcal{B} \to \mathcal{B}'}, \quad Q = \mathscr{P}_{\mathcal{F} \to \mathcal{F}'}, \quad A = \operatorname{Mat}_{\mathcal{B}, \mathcal{F}}(g) \quad \text{et} \quad B = \operatorname{Mat}_{\mathcal{B}', \mathcal{F}'}(g).$$

Alors on a

$$B = Q^{-1}AP.$$

Ce théorème peut se résumer à l'aide du diagramme suivant :

$$(E, \mathcal{B}') \xrightarrow{g} (F, \mathcal{F}')$$

$$\operatorname{Id}_{E} \mid P \qquad Q \mid \operatorname{Id}_{F}$$

$$(E, \mathcal{B}) \xrightarrow{g} (F, \mathcal{F})$$

Théorème 4.10 (Cas d'un endomorphisme). Soit $g \in \mathcal{L}(E)$. On pose

$$P = \mathscr{P}_{\mathcal{B} \to \mathcal{B}'}, \quad A = \operatorname{Mat}_{\mathcal{B}, \mathcal{B}}(g) \quad \text{et} \quad B = \operatorname{Mat}_{\mathcal{B}', \mathcal{B}'}(g).$$

Alors on a

$$B = P^{-1}AP.$$

Dans ce cas, on dit que A et B sont deux matrices semblables.

Le diagramme correspondant est :

$$(E, \mathcal{B}') \xrightarrow{g} (E, \mathcal{B}')$$

$$Id_{E} \downarrow P \qquad P \downarrow Id_{E}$$

$$(E, \mathcal{B}) \xrightarrow{q} (E, \mathcal{B})$$

5 Déterminant en dimension 2 et 3

Définition 5.1. Soit $A \in \mathcal{M}_n(\mathbb{K})$. Le **déterminant** de A correspond au déterminant des vecteurs colonnes de A, on le note $\det(A)$.

Remarque 5.2. Ici, on se limitera au cas n=2 ou n=3 mais la notion de déterminant peut se généraliser à $n \in \mathbb{N}^*$ quelconque.

Proposition 5.3.

• Soit
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{K})$$
. Alors

$$\det(A) = ad - bc.$$

• Soit
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \in \mathcal{M}_3(\mathbb{K})$$
. Alors

$$\det(A) = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}.$$

Il s'agit de la **règle de Sarrus**.

Proposition 5.4. Soient $A, B \in \mathcal{M}_n(\mathbb{K})$. Alors $\det(A \times B) = \det(A) \times \det(B)$.

Théorème 5.5 (Caractérisation de l'inversibilité). Soit $A \in \mathcal{M}_n(\mathbb{K})$. La matrice A est inversible si, et seulement si, $\det(A) \neq 0$.

Théorème 5.6 (Déterminant d'un endomorphisme). Soit $f \in \mathcal{L}(E)$ où E est un \mathbb{K} -ev de dimension finie $n \in \mathbb{N}^*$. Soit \mathcal{B} une base de E et $A = \operatorname{Mat}_{\mathcal{B},\mathcal{B}}(f)$ la matrice de f dans la base \mathcal{B} . Alors la valeur de $\det(A)$ ne dépend pas de la base \mathcal{B} choisie. On pose alors $\det(f) = \det(A)$.

Remarque 5.7. Si E est de dimension finie alors

$$f \in \mathcal{L}(E)$$
 est bijective $\iff \det(f) \neq 0$.