Simulation von Beweissystemen

Bachelor Kolloquium

Nils Wisiol

Lehrstuhl für Informatik IV Institut für Informatik Julius-Maximilians-Universität Würzburg

04. Juni 2012

Outline

Einführung

Definitionen und Voraussetzungen

Resultate

Hauptsatz

Folgerungen

Zusammenfassung

Literatur

Die P-NP-Frage

"If P = NP, then the world would be a profoundly different place than we usually assume it to be. There would be no special value in 'creative leaps', no fundamental gap between solving a problem and recognizing the solution once it's found. Everyone who could appreciate a symphony would be Mozart; everyone who could follow a step-by-step argument would be Gauss; everyone who could recognize a good investment strategy would be Warren Buffett."

Scott Aaronson scottaaronson.com

Konsequenzen aus der Theorie der Beweissysteme für die P-NP-Frage

Lemma

 $NP \neq co-NP \implies P \neq NP$.

Proposition

Es ist genau dann NP = co-NP, wenn ein polynomiell beschränktes Beweissystem für TAUT existiert.

[KMT03]

Konsequenzen aus der Theorie der Beweissysteme für die P-NP-Frage

Lemma

 $NP \neq co-NP \implies P \neq NP$.

Proposition

Es ist genau dann NP = co-NP, wenn ein polynomiell beschränktes Beweissystem für TAUT existiert.

[KMT03]

Eine \mathcal{FP} -Funktion h ist ein Beweissystem für eine Sprache L, wenn $f(\Sigma^*) = L$. Ist h(w) = x, so ist w ein h-Beweis für x. h ist polynomiell beschränkt, wenn es ein Polynom p gibt, so dass für jedes $x \in L$ ein h-Beweis w mit $|w| \le p(|x|)$ existiert.

Sind h und h' Beweissysteme für die Sprache L, und gibt es ein Polynom p und eine Funktion f so dass für alle h'-Beweise w

$$h(f(w)) = h'(w)$$

mit $|f(w)| \le p(|w|)$ gilt, dann *simuliert h* das Beweissystem h'.

Eine \mathcal{FP} -Funktion h ist ein Beweissystem für eine Sprache L, wenn $f(\Sigma^*) = L$. Ist h(w) = x, so ist w ein h-Beweis für x. h ist polynomiell beschränkt, wenn es ein Polynom p gibt, so dass für jedes $x \in L$ ein h-Beweis w mit $|w| \le p(|x|)$ existiert.

Sind h und h' Beweissysteme für die Sprache L, und gibt es ein Polynom p und eine Funktion f so dass für alle h'-Beweise w

$$h(f(w)) = h'(w)$$

mit $|f(w)| \le p(|w|)$ gilt, dann *simuliert h* das Beweissystem h'.

Eine \mathcal{FP} -Funktion h ist ein Beweissystem für eine Sprache L, wenn $f(\Sigma^*) = L$. Ist h(w) = x, so ist w ein h-Beweis für x. h ist $polynomiell\ beschränkt$, wenn es ein Polynom p gibt, so dass für jedes $x \in L$ ein h-Beweis w mit $|w| \le p(|x|)$ existiert.

Sind h und h' Beweissysteme für die Sprache L, und gibt es ein Polynom p und eine Funktion f so dass für alle h'-Beweise w

$$h(f(w)) = h'(w)$$

mit $|f(w)| \le p(|w|)$ gilt, dann *simuliert h* das Beweissystem h'.

Eine \mathcal{FP} -Funktion h ist ein Beweissystem für eine Sprache L, wenr $f(\Sigma^*) = L$. Ist h(w) = x, so ist w ein h-Beweis für x. h ist polynomiell beschränkt, wenn es ein Polynom p gibt, so dass für jedes $x \in L$ ein h-Beweis w mit $|w| \le p(|x|)$ existiert.

Sind h und h' Beweissysteme für die Sprache L, und gibt es ein Polynom p und eine Funktion f so dass für alle h'-Beweise w

$$h(f(w)) = h'(w)$$

mit $|f(w)| \le p(|w|)$ gilt, dann *simuliert h* das Beweissystem h'.

Eine \mathcal{FP} -Funktion h ist ein Beweissystem für eine Sprache L, wenr $f(\Sigma^*) = L$. Ist h(w) = x, so ist w ein h-Beweis für x. h ist polynomiell beschränkt, wenn es ein Polynom p gibt, so dass für jedes $x \in L$ ein h-Beweis w mit $|w| \le p(|x|)$ existiert.

Sind h und h' Beweissysteme für die Sprache L, und gibt es ein Polynom p und eine Funktion f so dass für alle h'-Beweise w

$$h(f(w)) = h'(w)$$

mit $|f(w)| \le p(|w|)$ gilt, dann *simuliert h* das Beweissystem h'.

Eine \mathcal{FP} -Funktion h ist ein Beweissystem für eine Sprache L, wenr $f(\Sigma^*) = L$. Ist h(w) = x, so ist w ein h-Beweis für x. h ist polynomiell beschränkt, wenn es ein Polynom p gibt, so dass für jedes $x \in L$ ein h-Beweis w mit $|w| \le p(|x|)$ existiert.

Sind h und h' Beweissysteme für die Sprache L, und gibt es ein Polynom p und eine Funktion f so dass für alle h'-Beweise w

$$h(f(w)) = h'(w)$$

mit $|f(w)| \leq p(|w|)$ gilt, dann *simuliert h* das Beweissystem h'.

Eine \mathcal{FP} -Funktion h ist ein Beweissystem für eine Sprache L, wenr $f(\Sigma^*) = L$. Ist h(w) = x, so ist w ein h-Beweis für x. h ist polynomiell beschränkt, wenn es ein Polynom p gibt, so dass für jedes $x \in L$ ein h-Beweis w mit $|w| \le p(|x|)$ existiert.

Sind h und h' Beweissysteme für die Sprache L, und gibt es ein Polynom p und eine Funktion f so dass für alle h'-Beweise w

$$h(f(w)) = h'(w)$$

mit $|f(w)| \le p(|w|)$ gilt, dann simuliert h das Beweissystem h'.

Eine \mathcal{FP} -Funktion h ist ein Beweissystem für eine Sprache L, wenr $f(\Sigma^*) = L$. Ist h(w) = x, so ist w ein h-Beweis für x. h ist polynomiell beschränkt, wenn es ein Polynom p gibt, so dass für jedes $x \in L$ ein h-Beweis w mit $|w| \le p(|x|)$ existiert.

Sind h und h' Beweissysteme für die Sprache L, und gibt es ein Polynom p und eine Funktion f so dass für alle h'-Beweise w

$$h(f(w)) = h'(w)$$

mit $|f(w)| \le p(|w|)$ gilt, dann simuliert h das Beweissystem h'.

Eine \mathcal{FP} -Funktion h ist ein Beweissystem für eine Sprache L, wenr $f(\Sigma^*) = L$. Ist h(w) = x, so ist w ein h-Beweis für x. h ist polynomiell beschränkt, wenn es ein Polynom p gibt, so dass für jedes $x \in L$ ein h-Beweis w mit $|w| \le p(|x|)$ existiert.

Sind h und h' Beweissysteme für die Sprache L, und gibt es ein Polynom p und eine Funktion f so dass für alle h'-Beweise w

$$h(f(w)) = h'(w)$$

mit $|f(w)| \le p(|w|)$ gilt, dann *simuliert h* das Beweissystem h'.

Eine \mathcal{FP} -Funktion h ist ein Beweissystem für eine Sprache L, wenr $f(\Sigma^*) = L$. Ist h(w) = x, so ist w ein h-Beweis für x. h ist polynomiell beschränkt, wenn es ein Polynom p gibt, so dass für jedes $x \in L$ ein h-Beweis w mit $|w| \leq p(|x|)$ existiert.

Sind h und h' Beweissysteme für die Sprache L, und gibt es ein Polynom p und eine Funktion f so dass für alle h'-Beweise w

$$h(f(w)) = h'(w)$$

mit $|f(w)| \leq p(|w|)$ gilt, dann *simuliert h* das Beweissystem h'.

$$P = NP \Rightarrow NP = co-NP \Leftrightarrow TAUT \in NP \Leftrightarrow TAUT \in OPT$$

- ▶ Denn P = co-P
- ► Lemma 6
- ▶ Jede Sprache in NP ist auch in OPT; ist TAUT ∈ OPT dann ist durch Raten von Beweisen TAUT ∈ NP.

$$P = NP \Rightarrow NP = co-NP \Leftrightarrow TAUT \in NP \Leftrightarrow TAUT \in OPT$$

- ▶ Denn P = co-P
- ► Lemma 6
- ▶ Jede Sprache in NP ist auch in OPT; ist TAUT ∈ OPT dann ist durch Raten von Beweisen TAUT ∈ NP.

$$P = NP \Rightarrow NP = co-NP \Leftrightarrow TAUT \in NP \Leftrightarrow TAUT \in OPT$$

- ▶ Denn P = co-P
- ► Lemma 6
- ▶ Jede Sprache in NP ist auch in OPT; ist TAUT ∈ OPT dann ist durch Raten von Beweisen TAUT ∈ NP.

$\mathsf{P} = \mathsf{NP} \Rightarrow \mathsf{NP} = \mathsf{co}\text{-}\mathsf{NP} \Leftrightarrow \mathsf{TAUT} \in \mathsf{NP} \Leftrightarrow \mathsf{TAUT} \in \mathsf{OPT}$

- ▶ Denn P = co-P
- ► Lemma 6
- ▶ Jede Sprache in NP ist auch in OPT; ist TAUT ∈ OPT dann ist durch Raten von Beweisen TAUT ∈ NP.

 $P = NP \Rightarrow NP = co-NP \Leftrightarrow TAUT \in NP \Leftrightarrow TAUT \in OPT$

- ▶ Denn P = co-P
- ► Lemma 6
- ▶ Jede Sprache in NP ist auch in OPT; ist TAUT ∈ OPT dann ist durch Raten von Beweisen TAUT ∈ NP.

Sprachen ohne optimales Beweissystem

Theorem

Es gibt eine Sprache $L \in co\text{-NTIME}(2^n)$, die kein optimales Beweissystem besitzt.

1. $f_1, f_2, ...$: Aufzählung aller \mathcal{FP} -Funktionen

- 2. $L_i = 0^i 10^*$
 - L'_i sind die Wörter aus L_i , für die keine kurzen f_i -Beweise existieren
 - $L = \bigcup_i L_i' \in \text{co-NTIME}(2^n)$
- L-Beweissystem f_i: L'_i = L_i, daher gibt es nur lange f_i-Beweise für L'_i ⊂ L
- 4. Daher führt die Anname, dass *f*_i ein optimales Beweissystem für *L* ist, zum Widerspruch

- 1. $f_1, f_2, ...$: Aufzählung aller \mathcal{FP} -Funktionen
- 2. $L_i = 0^i 10^*$

 L'_i sind die Wörter aus L_i , für die keine kurzen f_i -Beweise existieren

$$L = \bigcup_i L'_i \in \text{co-NTIME}(2^n)$$

- 3. L-Beweissystem f_i : $L'_i = L_i$, daher gibt es nur lange f_i -Beweise für $L'_i \subset L$
- 4. Daher führt die Anname, dass f; ein optimales Beweissystem für L ist, zum Widerspruch

- 1. $f_1, f_2, ...$: Aufzählung aller \mathcal{FP} -Funktionen
- 2. $L_i = 0^i 10^*$ L'_i sind die Wörter aus L_i , für die keine kurzen f_i -Beweise existieren

$$L = \bigcup_i L_i' \in \text{co-NTIME}(2^n)$$

- L-Beweissystem f_i: L'_i = L_i, daher gibt es nur lange f_i-Beweisse für L'_i ⊂ L
- 4. Daher führt die Anname, dass *f*_i ein optimales Beweissystem für *L* ist, zum Widerspruch

- 1. $f_1, f_2, ...$: Aufzählung aller \mathcal{FP} -Funktionen
- 2. $L_i = 0^i 10^*$ L_i' sind die Wörter aus L_i , für die keine kurzen f_i -Beweise existieren $L = \bigcup_i L_i' \in \text{co-NTIME}(2^n)$
- 3. L-Beweissystem f_i : $L_i' = L_i$, daher gibt es nur lange f_i -Beweise für $L_i' \subset L$
- 4. Daher führt die Anname, dass f_i ein optimales Beweissystem für L ist, zum Widerspruch

- 1. $f_1, f_2, ...$: Aufzählung aller \mathcal{FP} -Funktionen
- 2. $L_i=0^i10^*$ L_i' sind die Wörter aus L_i , für die keine kurzen f_i -Beweise existieren $L=\bigcup_i L_i'\in \text{co-NTIME}(2^n)$
- 3. L-Beweissystem f_i : $L_i' = L_i$, daher gibt es nur lange f_i -Beweise für $L_i' \subset L$
- 4. Daher führt die Anname, dass f_i ein optimales Beweissystem für L ist, zum Widerspruch

- 1. $f_1, f_2, ...$: Aufzählung aller \mathcal{FP} -Funktionen
- 2. $L_i = 0^i 10^*$ L_i' sind die Wörter aus L_i , für die keine kurzen f_i -Beweise existieren $L = \bigcup_i L_i' \in \text{co-NTIME}(2^n)$
- 3. L-Beweissystem f_i : $L_i' = L_i$, daher gibt es nur lange f_i -Beweise für $L_i' \subset L$
- 4. Daher führt die Anname, dass f_i ein optimales Beweissystem für L ist, zum Widerspruch

- ightharpoonup Gödel: $M_1, M_2, ...$
- ▶ $M'_1, M'_2, ...$: M_i mit Wecker-Modifikation, sodass time $(M_i) \le n^i + i$
- $ightharpoonup f_i$: die von M_i berechnete Funktion

Kurt Gödel 1906 – 1978

- ► Gödel: *M*₁, *M*₂, ...
- ▶ $M'_1, M'_2, ...$: M_i mit Wecker-Modifikation, sodass time $(M_i) \le n^i + i$
- $ightharpoonup f_i$: die von M_i berechnete Funktion

Kurt Gödel 1906 – 1978

- ► Gödel: *M*₁, *M*₂, ...
- ▶ $M'_1, M'_2, ...$: M_i mit Wecker-Modifikation, sodass time $(M_i) \le n^i + i$
- $ightharpoonup f_i$: die von M_i berechnete Funktion

Kurt Gödel 1906 – 1978

- ► Gödel: *M*₁, *M*₂, ...
- ▶ $M'_1, M'_2, ...$: M_i mit Wecker-Modifikation, sodass time $(M_i) \le n^i + i$
- f_i : die von M_i berechnete Funktion
- $n^i + i$ unbeschränkt, daher alle \mathcal{FP} -Funktionen

Kurt Gödel 1906 – 1978

- ► Gödel: *M*₁, *M*₂, ...
- ▶ $M'_1, M'_2, ...$: M_i mit Wecker-Modifikation, sodass time $(M_i) \le n^i + i$
- f_i : die von M_i berechnete Funktion

Kurt Gödel 1906 – 1978

Konstruktion der gesuchten Sprache L

Kurt Gödel 1906 – 1978

- $L_i = 0^i 10^*$
- ightharpoonup Wähle $x\in L_i'$, die keine kurzen f_i -Beweise haben

$$L'_i = \{x \in L_i : \forall_{y \in \Sigma^*} |y|^{2i} \le 2^{|x|} \implies f_i(y) \ne x$$

Vereinigung

$$L = \bigcup_{i>0} L_i^i$$

Konstruktion der gesuchten Sprache L

Kurt Gödel 1906 – 1978

- $L_i = 0^i 10^*$
- ▶ Wähle $x \in L'_i$, die keine kurzen f_i -Beweise haben

$$L'_{i} = \{x \in L_{i} : \forall_{y \in \Sigma^{*}} |y|^{2i} \le 2^{|x|} \implies f_{i}(y) \ne x\}$$

Vereinigung

$$L = \bigcup_{i>0} L_i^i$$

Konstruktion der gesuchten Sprache L

Kurt Gödel 1906 – 1978

- $L_i = 0^i 10^*$
- ▶ Wähle $x \in L'_i$, die keine kurzen f_i -Beweise haben

$$L'_i = \{x \in L_i : \forall_{y \in \Sigma^*} |y|^{2i} \le 2^{|x|} \implies f_i(y) \ne x\}$$

Vereinigung

$$L = \bigcup_{i>0} L'_i$$

L liegt in co-NTIME(2^n)

Betrachte Komplexität des Komplements

- ▶ $L \in \text{co-NTIME}(2^n) \Leftrightarrow \overline{L} \in \text{NTIME}(2^n)$
- $\blacktriangleright \ \overline{L} = \overline{\bigcup_{i>0} L'_i} = \bigcap_{i>0} \overline{L'_i}$
- ▶ zu zeigen: $\bigcap_{i>0} L'_i \in \mathsf{NTIME}(2^n)$

$$\overline{L_i'} = \{x \in \Sigma^* : x \notin L_i \lor (\exists_{y \in \Sigma^*} (|y|^{2i} \le 2^{|x|}) \land (f_i(y) = x))\}$$

Sei dazu x beliebiges Wort.

- ▶ Prüfe, ob x in irgendeinem L_i : falls nicht, dann $x \in \overline{L}$
- ▶ Wählte i^* so, dass $x \in L_{i^*}$
- ▶ für jedes y mit $|y|^{2i} \le 2^{|x|}$: berechne $f_{i^*}(y)$. Genau falls $f_{i^*}(y) = x$, dann $x \in \overline{L}$.

- ▶ $L \in \text{co-NTIME}(2^n) \Leftrightarrow \overline{L} \in \text{NTIME}(2^n)$
- $\overline{L} = \overline{\bigcup_{i>0} L'_i} = \bigcap_{i>0} \overline{L'_i}$
- ▶ zu zeigen: $\bigcap_{i>0} L'_i \in NTIME(2^n)$

$$\overline{L'_i} = \{x \in \Sigma^* : x \notin L_i \lor (\exists_{y \in \Sigma^*} (|y|^{2i} \le 2^{|x|}) \land (f_i(y) = x))\}$$

Sei dazu x beliebiges Wort.

- lacktriangle Prüfe, ob x in irgendeinem L_i : falls nicht, dann $x\in \overline{L}$
- ▶ Wählte i^* so, dass $x \in L_{i^*}$
- ▶ für jedes y mit $|y|^{2i} \le 2^{|x|}$: berechne $f_{i^*}(y)$. Genau falls $f_{i^*}(y) = x$, dann $x \in \overline{L}$.

Betrachte Komplexität des Komplements

- ▶ $L \in \text{co-NTIME}(2^n) \Leftrightarrow \overline{L} \in \text{NTIME}(2^n)$
- $\overline{L} = \overline{\bigcup_{i>0} L'_i} = \bigcap_{i>0} \overline{L'_i}$

▶ zu zeigen: $\bigcap_{i>0} L'_i \in \mathsf{NTIME}(2^n)$

$$\overline{L_i'} = \{x \in \Sigma^* : x \notin L_i \lor (\exists_{y \in \Sigma^*} (|y|^{2i} \le 2^{|x|}) \land (f_i(y) = x))\}$$

Sei dazu x beliebiges Wort.

- ▶ Prüfe, ob x in irgendeinem L_i : falls nicht, dann $x \in \overline{L}$
- ▶ Wählte i^* so, dass $x \in L_{i^*}$
- ▶ für jedes y mit $|y|^{2i} \le 2^{|x|}$: berechne $f_{i^*}(y)$. Genau falls $f_{i^*}(y) = x$, dann $x \in \overline{L}$.

Betrachte Komplexität des Komplements

- ▶ $L \in \text{co-NTIME}(2^n) \Leftrightarrow \overline{L} \in \text{NTIME}(2^n)$
- $\overline{L} = \overline{\bigcup_{i>0} L'_i} = \bigcap_{i>0} \overline{L'_i}$

ightharpoonup zu zeigen: $\bigcap_{i>0} L_i' \in \mathsf{NTIME}(2^n)$

$$\overline{L'_i} = \{x \in \Sigma^* : x \notin L_i \lor (\exists_{y \in \Sigma^*} (|y|^{2i} \le 2^{|x|}) \land (f_i(y) = x))\}$$

Sei dazu x beliebiges Wort.

- **>** Prüfe, ob x in irgendeinem L_i : falls nicht, dann $x \in \overline{L}$
- ▶ Wählte i^* so, dass $x \in L_{i^*}$
- für jedes y mit $|y|^{2i} \le 2^{|x|}$: berechne $f_{i^*}(y)$. Genau falls

- ▶ $L \in \text{co-NTIME}(2^n) \Leftrightarrow \overline{L} \in \text{NTIME}(2^n)$
- $\overline{L} = \overline{\bigcup_{i>0} L'_i} = \bigcap_{i>0} \overline{L'_i}$
- ▶ zu zeigen: $\bigcap_{i>0} \overline{L'_i} \in \mathsf{NTIME}(2^n)$

$$\overline{L_i'} = \{x \in \Sigma^* : x \notin L_i \lor (\exists_{y \in \Sigma^*} (|y|^{2i} \le 2^{|x|}) \land (f_i(y) = x))\}$$

Sei dazu x beliebiges Wort.

- lacktriangle Prüfe, ob x in irgendeinem L_i : falls nicht, dann $x\in \overline{L}$
- ▶ Wählte i^* so, dass $x \in L_{i^*}$
- ▶ für jedes y mit $|y|^{2i} \le 2^{|x|}$: berechne $f_{i^*}(y)$. Genau falls $f_{i^*}(y) = x$, dann $x \in \overline{L}$.

- ▶ $L \in \text{co-NTIME}(2^n) \Leftrightarrow \overline{L} \in \text{NTIME}(2^n)$
- $\overline{L} = \overline{\bigcup_{i>0} L'_i} = \bigcap_{i>0} \overline{L'_i}$
- ▶ zu zeigen: $\bigcap_{i>0} \overline{L'_i} \in \mathsf{NTIME}(2^n)$

$$\overline{L_i'} = \{ x \in \Sigma^* : x \notin L_i \lor (\exists_{y \in \Sigma^*} (|y|^{2i} \le 2^{|x|}) \land (f_i(y) = x)) \}$$

Sei dazu x beliebiges Wort.

- ▶ Prüfe, ob x in irgendeinem L_i : falls nicht, dann $x \in \overline{L}$
- ▶ Wählte i^* so, dass $x \in L_{i^*}$
- ▶ für jedes y mit $|y|^{2i} \le 2^{|x|}$: berechne $f_{i^*}(y)$. Genau falls $f_{i^*}(y) = x$, dann $x \in \overline{L}$.

- ▶ $L \in \text{co-NTIME}(2^n) \Leftrightarrow \overline{L} \in \text{NTIME}(2^n)$
- $\overline{L} = \overline{\bigcup_{i>0} L'_i} = \bigcap_{i>0} \overline{L'_i}$
- ▶ zu zeigen: $\bigcap_{i>0} \overline{L_i'} \in \mathsf{NTIME}(2^n)$

$$\overline{L_i'} = \{x \in \Sigma^* : x \notin L_i \lor (\exists_{y \in \Sigma^*} (|y|^{2i} \le 2^{|x|}) \land (f_i(y) = x))\}$$
 Sei dazu x beliebiges Wort.

- ▶ Prüfe, ob x in irgendeinem L_i : falls nicht, dann $x \in \overline{L}$
- ▶ Wählte i^* so, dass $x \in L_{i^*}$
- für jedes y mit $|y|^{2i} \le 2^{|x|}$; berechne $f_{i^*}(y)$. Genau falls $f_{i^*}(y) = x$ dann $x \in \overline{I}$

- ▶ $L \in \text{co-NTIME}(2^n) \Leftrightarrow \overline{L} \in \text{NTIME}(2^n)$
- $\overline{L} = \overline{\bigcup_{i>0} L'_i} = \bigcap_{i>0} \overline{L'_i}$
- ▶ zu zeigen: $\bigcap_{i>0} \overline{L_i'} \in \mathsf{NTIME}(2^n)$

$$\overline{L'_i} = \{ x \in \Sigma^* : x \notin L_i \lor (\exists_{y \in \Sigma^*} (|y|^{2i} \le 2^{|x|}) \land (f_i(y) = x)) \}$$
 Sei dazu x beliebiges Wort.

- ▶ Prüfe, ob x in irgendeinem L_i : falls nicht, dann $x \in \overline{L}$
- ▶ Wählte i^* so, dass $x \in L_{i^*}$
- ▶ für jedes y mit $|y|^{2i} \le 2^{|x|}$: berechne $f_{i^*}(y)$. Genau falls $f_{i^*}(y) = x$, dann $x \in \overline{L}$.

- ▶ $L \in \text{co-NTIME}(2^n) \Leftrightarrow \overline{L} \in \text{NTIME}(2^n)$
- $\overline{L} = \overline{\bigcup_{i>0} L'_i} = \bigcap_{i>0} \overline{L'_i}$
- ▶ zu zeigen: $\bigcap_{i>0} \overline{L'_i} \in NTIME(2^n)$

$$\overline{L'_i} = \{ x \in \Sigma^* : x \notin L_i \lor (\exists_{y \in \Sigma^*} (|y|^{2i} \le 2^{|x|}) \land (f_i(y) = x)) \}$$
 Sei dazu x beliebiges Wort.

- ▶ Prüfe, ob x in irgendeinem L_i : falls nicht, dann $x \in \overline{L}$
- ▶ Wählte i^* so, dass $x \in L_{i^*}$
- ▶ für jedes y mit $|y|^{2i} \le 2^{|x|}$: berechne $f_{i^*}(y)$. Genau falls $f_{i^*}(y) = x$, dann $x \in \overline{L}$.

- ▶ $L \in \text{co-NTIME}(2^n) \Leftrightarrow \overline{L} \in \text{NTIME}(2^n)$
- $\overline{L} = \overline{\bigcup_{i>0} L'_i} = \bigcap_{i>0} \overline{L'_i}$
- ▶ zu zeigen: $\bigcap_{i>0} \overline{L'_i} \in NTIME(2^n)$

$$\overline{L_i'} = \{ x \in \Sigma^* : x \notin L_i \lor (\exists_{y \in \Sigma^*} (|y|^{2i} \le 2^{|x|}) \land (f_i(y) = x)) \}$$
 Sei dazu x beliebiges Wort.

- ▶ Prüfe, ob x in irgendeinem L_i : falls nicht, dann $x \in \overline{L}$
- ▶ Wählte i^* so, dass $x \in L_{i^*}$
- ▶ für jedes y mit $|y|^{2i} \le 2^{|x|}$: berechne $f_{i^*}(y)$. Genau falls $f_{i^*}(y) = x$, dann $x \in \overline{L}$.

- ▶ $L \in \text{co-NTIME}(2^n) \Leftrightarrow \overline{L} \in \text{NTIME}(2^n)$
- $\overline{L} = \overline{\bigcup_{i>0} L'_i} = \bigcap_{i>0} \overline{L'_i}$
- ▶ zu zeigen: $\bigcap_{i>0} \overline{L_i'} \in \mathsf{NTIME}(2^n)$

$$\overline{L'_i} = \{ x \in \Sigma^* : x \notin L_i \lor (\exists_{y \in \Sigma^*} (|y|^{2i} \le 2^{|x|}) \land (f_i(y) = x)) \}$$

Sei dazu x beliebiges Wort.

- ▶ Prüfe, ob x in irgendeinem L_i : falls nicht, dann $x \in \overline{L}$
- ▶ Wählte i^* so, dass $x \in L_{i^*}$
- ▶ für jedes y mit $|y|^{2i} \le 2^{|x|}$: berechne $f_{i^*}(y)$. Genau falls $f_{i^*}(y) = x$, dann $x \in \overline{L}$.

- ▶ $L \in \text{co-NTIME}(2^n) \Leftrightarrow \overline{L} \in \text{NTIME}(2^n)$
- $\overline{L} = \overline{\bigcup_{i>0} L'_i} = \bigcap_{i>0} \overline{L'_i}$
- ▶ zu zeigen: $\bigcap_{i>0} \overline{L_i'} \in \mathsf{NTIME}(2^n)$

$$\overline{L_i'} = \{ x \in \Sigma^* : x \notin L_i \lor (\exists_{y \in \Sigma^*} (|y|^{2i} \le 2^{|x|}) \land (f_i(y) = x)) \}$$
 Sei dazu x beliebiges Wort.

- ▶ Prüfe, ob x in irgendeinem L_i : falls nicht, dann $x \in \overline{L}$
- ▶ Wählte i^* so, dass $x \in L_{i^*}$
- ▶ für jedes y mit $|y|^{2i} \le 2^{|x|}$: berechne $f_{i^*}(y)$. Genau falls $f_{i^*}(y) = x$, dann $x \in \overline{L}$.

- ▶ $L \in \text{co-NTIME}(2^n) \Leftrightarrow \overline{L} \in \text{NTIME}(2^n)$
- $\overline{L} = \overline{\bigcup_{i>0} L'_i} = \bigcap_{i>0} \overline{L'_i}$
- ▶ zu zeigen: $\bigcap_{i>0} \overline{L_i'} \in \mathsf{NTIME}(2^n)$

$$\overline{L'_i} = \{ x \in \Sigma^* : x \notin L_i \lor (\exists_{y \in \Sigma^*} (|y|^{2i} \le 2^{|x|}) \land (f_i(y) = x)) \}$$
 Sei dazu x beliebiges Wort.

- ▶ Prüfe, ob x in irgendeinem L_i : falls nicht, dann $x \in \overline{L}$
- ▶ Wählte i^* so, dass $x \in L_{i^*}$
- ▶ für jedes y mit $|y|^{2i} \le 2^{|x|}$: berechne $f_{i^*}(y)$. Genau falls $f_{i^*}(y) = x$, dann $x \in \overline{L}$.

- ▶ $L \in \text{co-NTIME}(2^n) \Leftrightarrow \overline{L} \in \text{NTIME}(2^n)$
- $\overline{L} = \overline{\bigcup_{i>0} L'_i} = \bigcap_{i>0} \overline{L'_i}$
- ▶ zu zeigen: $\bigcap_{i>0} \overline{L_i'} \in \mathsf{NTIME}(2^n)$

$$\overline{L_i'} = \{ x \in \Sigma^* : x \notin L_i \lor (\exists_{y \in \Sigma^*} (|y|^{2i} \le 2^{|x|}) \land (f_i(y) = x)) \}$$
 Sei dazu x beliebiges Wort.

- ▶ Prüfe, ob x in irgendeinem L_i : falls nicht, dann $x \in \overline{L}$
- ▶ Wählte i^* so, dass $x \in L_{i^*}$
- ▶ für jedes y mit $|y|^{2i} \le 2^{|x|}$: berechne $f_{i^*}(y)$. Genau falls $f_{i^*}(y) = x$, dann $x \in \overline{L}$.

Erinnerung:
$$L'_i = \{x \in L_i : \forall_{y \in \Sigma^*} |y|^{2i} \le 2^{|x|} \implies f_i(y) \ne x\}$$

- ▶ jedes Beweissystem für *L* ist ein *f*_i
- für dieses ist $L_i = L'_i$

- ▶ angenommen, es gibt ein $x = 0^i 1z \in L_i$ das nicht in L'_i liegt
- ▶ dann gibt es y mit $y^{2i} \le 2^{|x|}$ und $f_i(y) = x$
- ▶ folglich $x \in L'_i$ und daher $x \in L$

Erinnerung:
$$L'_i = \{x \in L_i : \forall_{y \in \Sigma^*} |y|^{2i} \le 2^{|x|} \implies f_i(y) \ne x\}$$

- ▶ jedes Beweissystem für *L* ist ein *f_i*
- für dieses ist $L_i = L'_i$

- ▶ angenommen, es gibt ein $x = 0^i 1z \in L_i$ das nicht in L'_i liegt
- ▶ dann gibt es y mit $y^{2i} \le 2^{|x|}$ und $f_i(y) = x$
- ▶ folglich $x \in L'_i$ und daher $x \in L$

Erinnerung:
$$L'_i = \{x \in L_i : \forall_{y \in \Sigma^*} |y|^{2i} \le 2^{|x|} \implies f_i(y) \ne x\}$$

- ▶ jedes Beweissystem für *L* ist ein *f_i*
- für dieses ist $L_i = L'_i$

- ▶ angenommen, es gibt ein $x = 0^i 1z \in L_i$ das nicht in L'_i liegt
- ▶ dann gibt es y mit $y^{2i} \le 2^{|x|}$ und $f_i(y) = x$
- ▶ folglich $x \in L'_i$ und daher $x \in L$

Erinnerung:
$$L'_i = \{x \in L_i : \forall_{y \in \Sigma^*} |y|^{2i} \le 2^{|x|} \implies f_i(y) \ne x\}$$

- ▶ jedes Beweissystem für *L* ist ein *f_i*
- für dieses ist $L_i = L'_i$

- ▶ angenommen, es gibt ein $x = 0^i 1z \in L_i$ das nicht in L'_i liegt
- ▶ dann gibt es y mit $y^{2i} \le 2^{|x|}$ und $f_i(y) = x$
- ▶ folglich $x \in L'_i$ und daher $x \in L$

Erinnerung:
$$L'_i = \{x \in L_i : \forall_{y \in \Sigma^*} |y|^{2i} \le 2^{|x|} \implies f_i(y) \ne x\}$$

- ▶ jedes Beweissystem für *L* ist ein *f_i*
- für dieses ist $L_i = L'_i$

- ▶ angenommen, es gibt ein $x = 0^i 1z \in L_i$ das nicht in L'_i liegt
- ▶ dann gibt es y mit $y^{2i} \le 2^{|x|}$ und $f_i(y) = x$
- ▶ folglich $x \in L'_i$ und daher $x \in L$

Erinnerung:
$$L'_i = \{x \in L_i : \forall_{y \in \Sigma^*} |y|^{2i} \le 2^{|x|} \implies f_i(y) \ne x\}$$

- ▶ jedes Beweissystem für *L* ist ein *f_i*
- für dieses ist $L_i = L'_i$

- ▶ angenommen, es gibt ein $x = 0^i 1z \in L_i$ das nicht in L'_i liegt
- ▶ dann gibt es y mit $y^{2i} \le 2^{|x|}$ und $f_i(y) = x$
- ▶ folglich $x \in L'_i$ und daher $x \in L$

► Sei
$$g(bx) = \begin{cases} f_i(x) & (b=0) \\ x & (b=1 \text{ and } x=0^i 10^* \in L_i = L_i') \end{cases}$$

- ▶ g ist Beweissystem für L
- ▶ f_i ist optimal, also ex. f^* , Überführen von Beweisen: $f_i(f^*(x)) = g(x)$, polynomiell beschränkt: $|f^*(x)| \le p(|x|)$
- ▶ in L_i gibt es ein x, so dass $|f^*(x)| \le p(|x|) \le p(|x|)^{2i} \le 2^{|x|}$.
- ▶ Definition von L'_i : $f_i(f^*(x)) \neq x$

Sei
$$g(bx) = \begin{cases} f_i(x) & (b=0) \\ x & (b=1 \text{ and } x=0^i 10^* \in L_i = L_i') \end{cases}$$

- ▶ g ist Beweissystem für *L*
- ▶ f_i ist optimal, also ex. f^* , Überführen von Beweisen: $f_i(f^*(x)) = g(x)$, polynomiell beschränkt: $|f^*(x)| \le p(|x|)$
- ▶ in L_i gibt es ein x, so dass $|f^*(x)| \le p(|x|) \le p(|x|)^{2i} \le 2^{|x|}$.
- ▶ Definition von L_i' : $f_i(f^*(x)) \neq x$

Sei
$$g(bx) = \begin{cases} f_i(x) & (b=0) \\ x & (b=1 \text{ and } x=0^i 10^* \in L_i = L_i') \end{cases}$$

- ▶ g ist Beweissystem für L
- ▶ f_i ist optimal, also ex. f^* , Überführen von Beweisen: $f_i(f^*(x)) = g(x)$, polynomiell beschränkt: $|f^*(x)| \le p(|x|)$
- ▶ in L_i gibt es ein x, so dass $|f^*(x)| \le p(|x|) \le p(|x|)^{2i} \le 2^{|x|}$.
- ▶ Definition von L_i' : $f_i(f^*(x)) \neq x$

Sei
$$g(bx) = \begin{cases} f_i(x) & (b=0) \\ x & (b=1 \text{ and } x=0^i 10^* \in L_i = L_i') \end{cases}$$

- ▶ g ist Beweissystem für L
- ▶ f_i ist optimal, also ex. f^* , Überführen von Beweisen: $f_i(f^*(x)) = g(x)$, polynomiell beschränkt: $|f^*(x)| \le p(|x|)$
- ▶ in L_i gibt es ein x, so dass $|f^*(x)| \le p(|x|) \le p(|x|)^{2i} \le 2^{|x|}$.
- ▶ Definition von L_i' : $f_i(f^*(x)) \neq x$

▶ Sei f_i optimales Beweissystem für L

► Sei
$$g(bx) = \begin{cases} f_i(x) & (b=0) \\ x & (b=1 \text{ and } x=0^i 10^* \in L_i=L_i') \end{cases}$$

- ▶ g ist Beweissystem für L
- ▶ f_i ist optimal, also ex. f^* , Überführen von Beweisen: $f_i(f^*(x)) = g(x)$, polynomiell beschränkt: $|f^*(x)| \le p(|x|)$
- ▶ in L_i gibt es ein x, so dass $|f^*(x)| \le p(|x|) \le p(|x|)^{2i} \le 2^{|x|}$.
- ▶ Definition von L_i' : $f_i(f^*(x)) \neq x$

▶ Sei f_i optimales Beweissystem für L

Sei
$$g(bx) = \begin{cases} f_i(x) & (b=0) \\ x & (b=1 \text{ and } x=0^i 10^* \in L_i=L_i') \end{cases}$$

- ▶ g ist Beweissystem für L
- ▶ f_i ist optimal, also ex. f^* , Überführen von Beweisen: $f_i(f^*(x)) = g(x)$, polynomiell beschränkt: $|f^*(x)| \le p(|x|)$
- ▶ in L_i gibt es ein x, so dass $|f^*(x)| \le p(|x|) \le p(|x|)^{2i} \le 2^{|x|}$.
- ▶ Definition von L'_i : $f_i(f^*(x)) \neq x$

Dünne Sprachen ohne Beweissystem

Zusammenfassung

Literatur I

- [AB09] Sanjeev Arora and Boaz Barak, Computational complexity: A modern approach, 1st ed., Cambridge University Press, New York, NY, USA, 2009.
- [Coo71] Stephen A. Cook, The complexity of theorem-proving procedures, Proceedings of the third annual ACM symposium on Theory of computing (New York, NY, USA), STOC '71, ACM, 1971, pp. 151–158.
- [CR79] Stephen A. Cook and Robert A. Reckhow, The relative efficiency of propositional proof systems, Journal of Symbolic Logic 44 (1979), 36–50.
- [For09] Lance Fortnow, *The status of the P versus NP problem*, Commun. ACM **52** (2009), no. 9, 78–86.

Literatur II

- [KM00] Johannes Köbler and Jochen Messner, Is the standard proof system for SAT p-optimal?, Proceedings of the 20th Conference on Foundations of Software Technology and Theoretical Computer Science (London, UK, UK), FST TCS 2000, Springer-Verlag, 2000, pp. 361–372.
- [KMT03] Johannes Köbler, Jochen Messner, and Jacobo Torán, Optimal proof systems imply complete sets for promise classes, Inf. Comput. 184 (2003), no. 1, 71–92.
- [KP89] Jan Krajícek and Pavel Pudlák, Propositional proof systems, the consistency of first order theories and the complexity of computations, J. Symb. Log. 54 (1989), no. 3, 1063–1079.

Literatur III

- [Mes99] Jochen Messner, On optimal algorithms and optimal proof systems, Proceedings of the 16th annual conference on Theoretical aspects of computer science (Berlin, Heidelberg), STACS'99, Springer-Verlag, 1999, pp. 541–550.
- [Pap94] Christos H. Papadimitriou, *Computational complexity*, Addison-Wesley, 1994.

Bildquellen I

► Kurt Gödel: Wikipedia, de.wikipedia.org