Objectif. Calculer des produits scalaires

Exercice 1. Soit
$$\vec{u} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$$
 et $\vec{v} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$. Calculer $\vec{u} + \vec{v}$ $\vec{u} - \vec{v}$ $\vec{u} \cdot \vec{v}$

Exercice 2. Calculer:

$$A = \begin{pmatrix} 5 \\ -3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} \qquad B = \begin{pmatrix} -3 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ -4 \end{pmatrix}$$

$$C = \begin{pmatrix} 0 \\ 3,2 \end{pmatrix} \cdot \begin{pmatrix} 8 \\ -5 \end{pmatrix} \qquad D = \begin{pmatrix} -2,1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 10 \end{pmatrix}$$

Exercice 3. Soit
$$\vec{u} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$$
, $\vec{v} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$, $\vec{w} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$

- 1. Calculer $\vec{u} \cdot \vec{v}$ et $\vec{v} \cdot \vec{u}$. Que remarque-t-on ?
- 2. Calculer $\vec{u} \cdot \vec{w}$, $\vec{v} \cdot \vec{w}$ puis $\vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w}$
- 3. Calculer $\vec{u} + \vec{v}$, puis $(\vec{u} + \vec{v}) \cdot \vec{w}$

Exercice 4. Soit
$$\vec{u} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$$
 et $\vec{v} = \begin{pmatrix} -1 \\ -4 \end{pmatrix}$.

Calculer:

$$\vec{u} \cdot \vec{v} \qquad (-2\vec{u}) \cdot \vec{v}$$

$$(\vec{u} + \vec{v}) \cdot \vec{u} \qquad (5\vec{u}) \cdot (3\vec{v})$$

Exercice 5. Calculer:

$$A = \left\| \begin{pmatrix} 8 \\ 6 \end{pmatrix} \right\| \qquad B = \left\| \begin{pmatrix} 8 \\ 6 \end{pmatrix} \right\|^{2}$$

$$C = \begin{pmatrix} 8 \\ 6 \end{pmatrix} + \begin{pmatrix} 8 \\ 6 \end{pmatrix} \qquad D = \begin{pmatrix} 8 \\ 6 \end{pmatrix} \cdot \begin{pmatrix} 8 \\ 6 \end{pmatrix}$$

$$E = 6 \begin{pmatrix} 8 \\ 6 \end{pmatrix} \qquad F = \sqrt{\begin{pmatrix} 8 \\ 6 \end{pmatrix} \cdot \begin{pmatrix} 8 \\ 6 \end{pmatrix}}$$

Exercice 6.

On donne $\|\vec{u}\|=3$; $\|\vec{v}\|=8$ et $\vec{u}\cdot\vec{v}=-12$.

1. Calculer $A = (2\vec{u} - 3\vec{v}) \cdot (-5\vec{u} + 2\vec{v})$

Exercice 7. Soit $\vec{u} = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$.

- 1. Calculer $\vec{u} + \vec{v}$ puis $A = ||\vec{u} + \vec{v}||^2$
- 2. Calculer $\|\vec{u}\|^2$, $\|\vec{v}\|^2$, $\vec{u} \cdot \vec{v}$.
- 3. Calculer $B = \|\vec{u}\|^2 + \|\vec{v}\|^2 + 2\vec{u} \cdot \vec{v}$
- 4. Que remarque-t-on?

Exercice 8. Soit $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} x' \\ y' \end{pmatrix}$.

- 1. Calculer $A = \|\vec{u} + \vec{v}\|^2$ puis développer le plus possible.
- 2. Calculer $B = ||\vec{u}||^2 + ||\vec{v}||^2 + 2\vec{u} \cdot \vec{v}$
- 3. Conclure.

Objectif. Montrer l'orthogonalité de vecteurs.

Exercice 9. Montrer que les vecteurs $\vec{u} = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} -8 \\ -6 \end{pmatrix}$ sont orthogonaux.

Exercice 10. Soit A = (-2; 1), B = (-3; 2), C = (0; 3) dans un repère orthonormé.

- 1. Montrer que \overrightarrow{AB} et \overrightarrow{AC} sont orthogonaux.
- 2. Que peut-on dire des droites (AB) et (AC)?

Exercice 11. On donne les points A = (3; 1), B = (0; -2), C = (-1; 1) et D = (3; -3).

1. Montrer que les droites (AB) et (CD) sont perpendiculaires.

Exercice 12. Le triangle ABC où A = (0; -2), B = (-1; 1) et C = (2; 2) est-il un triangle rectangle? Si oui, en quel point?

Objectif. Décrire un lieu géométrique

Exercice 13. Soit deux points A et B tels que AB = 10. Déterminer l'ensemble des points M du plan tels que $\overrightarrow{MA} \cdot \overrightarrow{MB} = k$.

a. Pour k = 5 b. Pour k = -25 c. Pour k = -60

Exercice 14. Soit deux points A et B, on note I le milieu de [AB].

1. Compléter:

 $\overrightarrow{MA} = \overrightarrow{MI} + \dots$ (d'après la relation de) $\overrightarrow{MB} = \overrightarrow{MI} + \dots$ (d'après la relation de) $\overrightarrow{IA} = \dots \overrightarrow{IB}$ (car) $\overrightarrow{IA} \cdot \overrightarrow{IA} = \| \quad \|^2 = IA^2$

- $\overrightarrow{IA} \cdot \overrightarrow{IB} = \overrightarrow{IA} \cdot (\dots) = -\dots$
- 2. Montrer : $\overrightarrow{MA} \cdot \overrightarrow{MB} = MI^2 IA^2$
- 3. Que peut-on dire sur M si $\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$?

Objectif. Vecteur normal et projeté orthogonal

Exercice 15. Donner une équation de la droite d passant par A et de vecteur normal \vec{n} :

1.
$$A = (2; 1)$$
; $\vec{n} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ 2. $A = (-8; -4)$; $\vec{n} = \begin{pmatrix} -6 \\ 9 \end{pmatrix}$

Exercice 16. Déterminer une équation de la droite Δ perpendiculaire à d et passant par A : 1. (d): x+y-5=0 2. (d): x=5 et A=(2;4) et A=(1;1)

Exercice 17. Soit A = (-2; -1), B = (6; 3), et C = (2; 6).

1. Déterminer le projeté orthogonal H du point C sur la droite (AB).