Multiple Random Variables

Multiple random variables

We essentially always consider multiple random variables at once.

The key concepts: Joint, conditional and marginal distributions, and independence of RVs.

Let *X* and *Y* be discrete random variables.

→ Joint distribution:

$$p_{XY}(x,y) = Pr(X = x \text{ and } Y = y)$$

--> Marginal distributions:

$$\begin{aligned} p_X(x) &= \text{Pr}(X = x) = \sum_y p_{XY}(x,y) \\ p_Y(y) &= \text{Pr}(Y = y) = \sum_x p_{XY}(x,y) \end{aligned}$$

--> Conditional distributions:

$$p_{X|Y=y}(x) = Pr(X = x \mid Y = y) = p_{XY}(x,y) / p_{Y}(y)$$

Example

Sample a couple who are both carriers of some disease gene.

X = number of children they have

Y = number of affected children they have

X								
$p_{XY}(x,y)$		0	1	2	3	4	5	p _Y (y)
	0	0.160	0.248	0.124	0.063	0.025	0.014	0.634
	1	0	0.082	0.082	0.063	0.034	0.024	0.285
У	2	0	0	0.014	0.021	0.017	0.016	0.068
	3	0	0	0	0.003	0.004	0.005	0.012
	4	0	0	0	0	0.000	0.001	0.001
	5	0	0	0	0	0	0.000	0.000
	p _X (x)	0.160	0.330	0.220	0.150	0.080	0.060	

$$Pr(Y = y | X = 2)$$

X								
$p_{XY}(x,y)$		0	1	2	3	4	5	p _Y (y)
	0	0.160	0.248	0.124	0.063	0.025	0.014	0.634
	1	0	0.082	0.082	0.063	0.034	0.024	0.285
У	2	0	0	0.014	0.021	0.017	0.016	0.068
	3	0	0	0	0.003	0.004	0.005	0.012
	4	0	0	0	0	0.000	0.001	0.001
	5	0	0	0	0	0	0.000	0.000
	p _X (x)	0.160	0.330	0.220	0.150	0.080	0.060	

$Pr(X = x \mid Y = 1)$

X								
$p_{XY}(x,y)$		0	1	2	3	4	5	$p_{Y}(y)$
	0	0.160	0.248	0.124	0.063	0.025	0.014	0.634
	1	0	0.082	0.082	0.063	0.034	0.024	0.285
У	2	0	0	0.014	0.021	0.017	0.016	0.068
	3	0	0	0	0.003	0.004	0.005	0.012
	4	0	0	0	0	0.000	0.001	0.001
	5	0	0	0	0	0	0.000	0.000
	$p_X(x)$	0.160	0.330	0.220	0.150	0.080	0.060	

Independence

Random variables X and Y are independent if

$$\longrightarrow$$
 $p_{XY}(x,y) = p_X(x) p_Y(y)$
for every pair x,y.

In other words/symbols:

$$\longrightarrow$$
 Pr(X = x and Y = y) = Pr(X = x) Pr(Y = y) for every pair x,y.

Equivalently,

$$\longrightarrow$$
 Pr(X = x | Y = y) = Pr(X = x) for all x,y.

Example

Sample a random rat from Baltimore.

X = 1 if the rat is infected with virus A, and = 0 otherwise

Y = 1 if the rat is infected with virus B, and = 0 otherwise

$$\begin{array}{c|ccccc} & & & & & & & & \\ p_{XY}(x,y) & 0 & 1 & p_Y(y) \\ y & 0 & 0.72 & 0.18 & 0.90 \\ & 1 & 0.08 & 0.02 & 0.10 \\ & p_X(x) & 0.80 & 0.20 & & \\ \end{array}$$

Continuous random variables

Continuous random variables have joint densities, $f_{XY}(x,y)$.

— The marginal densities are obtained by integration:

$$f_X(x) = \int f_{XY}(x,y) \, dy \quad \text{ and } \quad f_Y(y) = \int f_{XY}(x,y) \, dx$$

→ Conditional density:

$$f_{X\mid Y=y}(x)=f_{XY}(x,y)/f_Y(y)$$

 \longrightarrow X and Y are independent if:

$$f_{XY}(x,y) = f_X(x) f_Y(y)$$
 for all x,y.

The bivariate normal distribution

The bivariate normal distribution

iid

More jargon:

Random variables $X_1, X_2, X_3, \ldots, X_n$ are said to be independent and identically distributed (iid) if

- → they are independent,
- → they all have the same distribution.

Usually such RVs are generated by

- --> repeated independent measurements, or
- --> random sampling from a large population.

Means and SDs

→ Mean and SD of sums of random variables:

$$\mathsf{E}(\sum_i X_i) = \sum_i \mathsf{E}(X_i)$$
 no matter what
$$\mathsf{SD}(\sum_i X_i) = \sqrt{\sum_i \{\mathsf{SD}(X_i)\}^2}$$
 if the X_i are independent

→ Mean and SD of means of random variables:

$$E(\sum_{i} X_{i} / n) = \sum_{i} E(X_{i}) / n$$
 no matter what
$$SD(\sum_{i} X_{i} / n) = \sqrt{\sum_{i} \{SD(X_{i})\}^{2}} / n$$
 if the X_{i} are independent

 \longrightarrow If the X_i are iid with mean μ and SD σ :

$$E(\sum_{i} X_{i} / n) = \mu$$
 and $SD(\sum_{i} X_{i} / n) = \sigma / \sqrt{n}$

