Systems of Inequalities

Graphing an Inequality

An inequality will contain a ≥ 'greater than or equal to'

< !less than or equal to'

The points that's satisfy the meanably $52-3y \le 15$ will satisfy either

5x-3y=15 or 5x-3y < 15

already know how to graph

Shading the half plane that does not contain solutions

 $\chi = 3$

(0,0)

(1) plug in point and sec if mequality scatisfied

1 find point not

on the line

Is 5.0-3.0 < 15?

Reminder: We will leave the solution area unshaded

yes; so shade side that does not contain (0,0)

Systems of Inequalities

The set of solutions of a system of inequalities is called the solution set or feasible region and will resemble a region of the plane.

3x-2y≤6 2+y ≥-5 y ≤ 4

The above feasible region is an example of a bounded feasible region.

In an <u>unbounded</u>
feasible segren we can infinitely extend the
fegren in some direction.

To the cight is an unbounded $2y + x \ge -3$

feasible region. X 2-1

Corner points & finding Them

The edges of the feasible region meet at what we call corner points.

Here coch corner point is the intersection of two inequalities.

Corner 1 is where
$$x+y=-5$$

 $y=4$
 $x+y=-5$
 $y=4$
 $x=-9$
 $y=-1$
 $y=-1$

* Not all intersections are corner points

 $2y-x\leq 2$ $2y+x\geq -3$ $x\geq -1$

The yellow point is where 2y-x=2 2y+x=-3

which can be found
to be (-14/4, -1/4)which does not satisfy $X \ge -1$ So (-14/4, -1/4) is not
a corner