Incertidumbre

Incertidumbre

- Hasta ahora hemos descrito técnicas de representación del conocimiento y razonamiento para un modelo del mundo:
- Completo: se conoce todo el conocimiento y los datos
- Consistente: el conocimiento no da lugar a conclusiones contradictorias)
- Inalterable: el conocimiento siempre es válido y no cambia
- Sin embargo, en la mayoría de los dominios de interés no es posible crear tales modelos debido a la presencia de incertidumbre:
 - "Falta de conocimiento seguro y claro de algo". (DiccionarioRAE)
- En este tema se revisarán diversas aproximaciones para tratar con la incertidumbre que como indicamos es habitual en la mayoría de los problemas de interés que se aborden

Fuentes de incertidumbre

- Con respecto a los hechos
 - 1) Ignorancia o desconocimiento
 - Puede que en un campo el conocimiento sea incompleto
 - Aunque el conocimiento pueda llegar a ser completo, a veces conviene tomar decisiones con conocimiento incompleto: Por ejemplo, a veces conviene tratar a un paciente aunque todavía no se disponga de los resultados de todas las pruebas
 - A veces la falta de conocimiento es irreducible o inevitable:
 - ¿Cual será el resultado del sorteo?
 - ¿Es sincera esa persona?
- 2) Vaguedad e imprecisión: algunos conceptos son vagos e imprecisos: persona alta, deuda pequeña, asignatura difícil,

Fuentes de Incertidumbre: Reglas

Con respecto a las reglas:

- Muchas veces las reglas que usan los expertos en determinadas situaciones son heurísticas.
- El ser humano razona y utiliza reglas que son:
 - Inexactas o incompletas
 - "Si es un ave entonces vuela", ¿y los pingüinos
 - "Si está en España habla español", ¿y algunos turistas?

Imprecisas

- Cuando haga mucho calor, suba el aire aconidicionado
- Inconsistentes
 - Al que madruga dios le ayuda
 - No por mucho madrugar amanece más temprano

Hace el razonamiento humano especialmente potente

Fuentes de Incertidumbre: Reglas

Con respecto a las reglas:

- Muchas veces las reglas que usan los expertos en determinadas situaciones son heurísticas.
- El ser humano razona y utiliza reglas que son:
 - Inexactas o incomp
 - Imprecisas
 - Inconsistentes

Permite con pocas reglas describir conocimiento muy complejo, en el sentido que si solo utilizáramos conocimiento preciso haría falta una cantidad inmanejable de reglas

Razonamiento con Incertidumbre

Objetivo:

 Razonar con conocimiento incompleto, impreciso e incluso parcialmente inconsistente.

Implementación:

- Es difícil cumplir estos requerimientos utilizando los modelos de razonamiento clásico (la lógica de primer orden)
- Deben introducirse modelos para manejar información vaga, incierta, incompleta y contradictoria.
- Crucial para un sistema que funcione en el mundo real

Cuestiones a Resolver por las Aproximaciones a la Incertidumbre

- ¿Cómo evaluar si se da una condición imprecisa?
 - Si tiene fiebre alta beber mas agua ¿Se puede aplicar con 37,8 grados?¿Cuanta agua le damos entonces?
- ¿Cómo combinar hechos imprecisos?
 - Se con un grado de certidumbre que X es alto, y otro grado de certidumbre que X está delgado
 ¿Con que certidumbre puedo afirmar X es alto y esta delgado?
- ¿Qué confianza se puede tener en las conclusiones?
 - Si X estudia bastante aprobará; Juan estudia mucho ¿Con que certidumbre puedo afirmar que Juan aprobará?

Cuestiones a Resolver por las Aproximaciones a la Incertidumbre

- ¿Cómo combinar la incertidumbre de un mismo hecho deducidos por distintas deducciones?
 - Si duele la cabeza y la garganta, será amigdalitis con una certeza
 - Si hay puntos blancos en las amígdalas, será amigdalitis con otra certeza

¿Si duele la cabeza y la garganta y hay puntos blancos en las amígdalas, con que certeza podemos afirmar que será amigdalitis?

Algo de Historia

- Inicialmente la mayoría de los investigadores en IA usaban razonamiento simbólico y evitaban la utilización de números
 - Los sistemas expertos no deben usar números puesto que los expertos humanos no lo hacen
 - Los expertos no pueden suministrar los números requeridos
- Al desarrollar aplicaciones concretas se dieron cuenta de la necesidad de representar y manejar la incertidumbre:
 - MYCIN (años 70), SE para el tratamiento de infecciones bacterianas fue el primer éxito en este campo
- Los métodos numéricos (midiendo la incertidumbre mediante números) son actualmente la herramienta mas utilizada en IA para manejar la incertidumbre
 - Debido a los éxitos prácticos

Principales Modelos de Representación de la Incertidumbre

 La lógica de primer orden (LPO) no es adecuada para modelar la incertidumbre por lo que son necesarios nuevos modelos, entre ellos destacan:

Modelos Simbólicos

- Lógicas por Defecto
- Lógicas basadas en Modelos Mínimos
 - La asunción del mundo cerrado

Modelos Numéricos

- Probabilidad
- Teoría de Dempster-Shaffer
- Lógica difusa

Representación Simbólica de la Incertidumbre

La LPO asume que el conocimiento:

- Es exacto.
 - Los hechos son ciertos o falsos
- Es completo.
 - Se conoce todo acerca del campo de trabajo.
- Es consistente.
 - No tiene contradicciones.

Por tanto, con la LPO :

- No se puede expresar incertidumbre.
- No puede hacer deducciones lógicamente incorrectas pero probables
- No se puede trabajar con información contradictoria

El Razonamiento no Monótono

- Como la LPO asume que el conocimiento es completo y consistente, una vez que un hecho se asume/es cierto permanece así (Monotonía)
 - Si de una Base de Conocimiento (BC) se deduce una expresión s, y se tiene otra Base de conocimiento BC' de forma que BC ⊂ BC', entonces de BC' también se deduce s.
 - Por tanto el añadir nuevo conocimiento siempre incrementa el tamaño de la Base de Conocimiento.
- La presencia de conocimiento incompleto nos lleva a modelos no monótonos:
 - El conocimiento de nuevos hechos puede hacer que nos retractemos de algunas de nuestras creencias.

Representación Simbólica de la Incertidumbre

Lógica por defecto

- Propuesta por Reiter para solucionar el problema del conocimiento incompleto (1980).
- Para ello se introducen una serie de reglas por defecto.
- Intuitivamente:
 - "Las reglas por defecto expresan características comunes a un conjunto de elementos que se asumen ciertas salvo que se indique lo contrario".

Asunción del mundo cerrado

- Sirve para manejar conocimiento incompleto.
- Intuitivamente:
 - "Lo que no se puede probar a partir de mi Base de Conocimiento es falso"
- Utilizado en las B.D. y Prolog.

Inconvenientes

Teorías complejas y a veces inconsistentes.

Representación Numérica de la Incertidumbre: Factores de Certeza

Los Factores de certeza aparecieron en el sistema experto MYCIN:

desarrollado en la Universidad de Stanford (década de los 70)
 para el diagnóstico y consulta de enfermedades infecciosas.

Factores de certeza

- La Base de Conocimiento de MYCIN consistía en reglas de la forma:
 - Evidencia → Hipótesis FC(H|E)
- El factor de certeza FC representa la certidumbre en la Hipótesis cuando se observa la Evidencia.
- Los FC varían entre –1 (creencia nula) y 1 (creencia total)

Reglas de la lógica por defecto

- Si se dan estas CONDICIONES_POSITIVAS y NO se sabe CONDICIONES_NEGATIVAS, entonces asumir CONSECUENTE
 - Si X es un ave y no se sabe que X no vuela, entonces deducir que X vuela
- Necesitan poder retractarse: Si CONSECUENTE y CONDICIONES_POSITIVAS y CONDICIONES_NEGATIVAS, entonces retractar CONSECUENTE
 - Si X vuela y X es un AVE y X no vuela, entonces retractar X vuela

Ejemplo lógica por defecto

R1 (por defecto) Si X es un ave y no se sabe que X no vuela, entonces que X vuela

R2 Si X es un pingüino, X no vuela

Base de hechos

- El usuario nos indica que Tweety es un ave
- F1. Tweety es un ave
- Aplicando R1 el razonador añade que Tweety vuela
- F1. Tweety es un ave F2. Tweety vuela
- Nuevo hecho conocido (nos informa el usuario que Tweety es un pingüino)
- F1. Tweety es un ave F2. Tweety vuela F3. Tweety es un pingüino
- Aplicando R2 el razonador añade que Tweety no vuela
- F1. Tweety es un ave F2. Tweety vuela F3. Tweety es un pingüino F4. Tweety no vuela
- Aplicando la retractación de R1, el razonador elimina F2
- F1. Tweety es un ave F3. Tweety es un pingüino F4. Tweety no vuela

Problemas de la lógica por defecto

Los hechos deducidos a partir de hechos asumidos por defecto, no se retractan si posteriormente los hechos por defecto son retractados.

Por ejemplo, si a partir de "Tweety vuela" hubiéramos deducido que "Tweety circula por el aire", cuando retractemos "Tweety vuela" se mantendrá "Tweety circula por el aire".

Representación Numérica de la Incertidumbre: Factores de Certeza

Grados de creencia

- Los FC se calculan a partir de los grados de creencia GC y no creencia en la hipótesis
- Los GC varían entre 0 (creencia nula) y 1 (creencia total)
- La relación entre FC y GC es: FC(H|E)=GC(H|E)- GC(¬H|E)

Propiedades

A diferencia de los grados de creencia probabilísticos
 GC(H|E)+GC(¬H|E) ≠ 1

Las Reglas en Mycin

Ejemplo:

(\$AND (SAME CNTXT GRAM GRAMNEG)

(SAME CNTXT MORPH ROD)

(SAME CNTXT AIR ANAEROBIC))

(CONCLUDE CNTXT IDENTITY BACTEROIDES TALLY .6)

Lo que significa:

SI el organismo es gram-negativo

Y tiene forma de bastón

Y es anaerobio

ENTONCES el organismo es bacteriode (con certeza 0.6)

Los factores de certidumbre se introducían a mano por el diseñador

Combinación de Factores de Certeza

Combinación de Reglas Convergentes

```
Si E_1 entonces H con FC(H|E_1)
Si E_2 entonces H con FC(H|E_2)
Si E_1 \lor E_2 entonces H con FC(H|E_1 \lor E_2)
```

$$\begin{aligned} &\text{Con: FC(H| E}_1 \lor E_2) = f_{\text{comb}}(\text{FC(H|E}_1), \text{ FC(H|E}_2)) \text{ definida como}} \\ & f_{\text{comb}}(x,y) = \begin{cases} x+y-xy & x,y>0 \\ (x+y)/(1-\text{min}(|x|,|y|)) & xy \leq 0 \\ x+y+xy & x,y<0 \end{cases} \end{aligned}$$

Encadenado de Reglas

Si A entonces B con FC(B|A)

Si B entonces C con FC(C|B)

Si A entonces C con FC(C|A)

Con:
$$FC(C|A) = \begin{cases} FC(C|B) FC(B|A) & FC(B|A) \ge 0 \\ 0 & FC(B|A) < 0 \end{cases}$$

Ejemplo de Combinación de Factores de Certeza

 Dadas siguientes reglas calcular el factor de certeza de la proposición A ∨ B ∨ E→F

 Por tanto, si observamos A,B y E podemos concluir F con certidumbre 0.38

¿Cómo era el rendimiento de Mycin?

- El sistema experto Mycin proporcionaba diagnósticos y recomendaciones terapéuticas que eran al menos tan buenas como los mejores expertos en la especialidad
- Sin embargo los factores de certeza pueden producir incoherencias, por ejemplo:
 - De Sarampión→Ronchas (0.8) y Ronchas→Alergia (0.5) obtenemos (encadenado) Sarampión→Alergia (0.4)!