

PANDAS BASIC

PANEL DATA

prepared by:

Gyro A. Madrona

Electronics Engineer

.......

TOPIC OUTLINE

Pandas

Pandas DataFrame

Pandas Series

Common Operations in Pandas

PANDAS

PANDAS

pandas is an open-source Python library designed for efficient data manipulation and analysis. It provides data structures like <u>Series</u> and <u>DataFrames</u> to effectively clean, transform, and analyze large datasets and integrates seamlessly with other Python libraries, such as numpy and matplotlib.

PANDAS PACKAGE

loading pandas package

import pandas as pd

The community agreed alias for pandas is pd , so loading pandas as pd is assumed
standard practice for all of the pandas
documentation.

PANDAS DATAFRAME

DataFrame is a two-dimensional data structure that stores data in columns, where each column contains values of a single data type (e.g., int, str, float). However, different columns can have different data types.

Pandas data table representation

CREATING DATAFRAME

```
import pandas as pd

data = {
    "Name":['Henry', 'Owen', 'Ada'],
    "Age":[22,35,58],
    "Sex":['M','M','F']
    }

df = pd.DataFrame(data)
```

DataFrame

Name	Age	Sex
Henry	22	M
Owen	35	M
Ada	58	F

When using a Python dictionary of lists, the dictionary **keys** will be used as **column headers** and the values in each list as columns of the DataFrame.

PANDAS SERIES

pandas Series is a one-dimensional labeled
array that can hold data of a single type (e.g.,
int, float, str).

pandas data table representation

Each column in a DataFrame is a Series.

SELECTING A COLUMN

df["Age"] 0 22

1 35

2 58

Name: Age, dtype: int64

df["Name"]

0 Henry

1 Owen

2 Ada

Name: Name, dtype: object

df["Sex"]

9 M

1 /

2

Name: Sex, dtype: object

DataFrame

Name	Age	Sex
Henry	22	M
Owen	35	M
Ada	58	F

Each column in a DataFrame is a Series.

CREATING A SERIES

```
import pandas as pd
name = pd.Series(["Henry","Owen","Ada"])
age = pd.Series([22,35,58])
sex = pd.Series(['M','M','F'])
df = pd.DataFrame({
    "Name": name,
    "Age":age,
    "Sex":sex
})
```

DataFrame

Name	Age	Sex
Henry	22	M
Owen	35	M
Ada	58	F

You can create a DataFrame from multiple Series.

COMMON OPERATIONS IN PANDAS

COMMON OPERATIONS

1. Reading Data

df = pd.read_csv('data.csv') # Read a CSV file
2. Viewing Data

```
df.head() # Display the first 5 rows
df.tail() # Display the last 5 rows
df.info() # Summary of the DataFrame
df.describe() # Statistical summary
```

3. Selecting Data

```
df['column_name'] # Select a single column

df[['column1', 'column2']] # Select multiple columns

df.iloc[0] # Select row by index
```


COMMON OPERATIONS

4. Handling Missing Data

```
df.dropna() # Drop rows with missing values
   df.fillna(0) # Fill missing values with 0
5. Data Manipulation
   df.sort_values('column_name') # Sort by column
   df.groupby('column name').mean() # Group by column and calculate mean
6. Expoting Data
   df.to_csv('output.csv', index=False) # Export to CSV
```


LABORATORY

