Model Documentation of the Pendubot

1 Nomenclature

1.1 Nomenclature for Model Equations

- s_i distance from the joint to the center of gravity of link i, where i = 1, 2
- m_i mass of the link i, where i = 1, 2
- J_i moment of inertia of the link i, where i = 1, 2
- l_1 length of link 1
- au torque
- q_1 angle between basis and link 1
- p_1 angle between link 1 and link 2

1.2 Graphic of the Structure

Figure 1: Structure of the Pendubot.
Source: Knoll, Carsten/ Betrachtetes System: unteraktuierten
Zweigelenkmanipulator.

2 Model Equations

State Vector and Input Vector:

$$\underline{x} = (p_1 \ q_1 \ \dot{p}_1 \ \dot{q}_1)^T$$

$$= (x_1 \ x_2 \ x_3 \ x_4)^T$$

$$u = \tau$$

Kinetic Energy:

$$T_{trans} = \frac{1}{2} m_1 s_1^2 x_3^2 \sin^2 x_1 + \frac{1}{2} m_1 s_1^2 x_3^2 \cos^2 x_1$$

$$+ \frac{m_2}{2} (-l_1 x_3 \sin x_1 - s_2 (x_3 + x_4) \sin(x_1 + x_2))^2$$

$$+ \frac{m_2}{2} (l_1 x_3 \cos x_1 + s_2 (x_3 + x_4) \cos(x_1 + x_2))^2$$

$$T_{rot} = \frac{1}{2} J_1 x_3^2 + \frac{1}{2} J_2 (x_3 + x_4)^2$$

Potential Energy:

$$V = 0$$

Parameters: $s_1,\,s_2,\,m_1,\,m_2,\,J_1,\,J_2,\,l_1$ Outputs: $\underline{\mathbf{x}}$

2.1 Assumptions

1. Friction is not taken into account.

2.2 Exemplary parameter values

Parameter Name	Symbol	Value	Unit
distance from the joint to the center of gravity of link 1	s_1	0.1	m
distance from the joint to the center of gravity of link 2	s_2	0.25	\mathbf{m}
mass of link 1	m_1	0.5	$_{ m kg}$
mass of link 2	m_2	0.6	$_{ m kg}$
moment of inertia of link 1	J_1	0.002	$kg \cdot m^2$
moment of inertia of link 2	J_2	0.001	$kg \cdot m^2$
length of link 1	l_1	0.2	m

3 Derivation and Explanation

The Lagrangian mechanics was used for the solution.

4 Simulation

Figure 2: Simulation of the pendubot.

References

- [1] Knoll, Carsten: Betrachtetes System: unteraktuierten Zweigelenkmanipulator., Jupyter Notebook published 2016.
 https://github.com/cknoll/beispiele/blob/master/zweigelenk_manipulator.ipynb
- [2] Wang, Yang: Erstellung eines regelungstheoretischen Katalogs unteraktuierter mechanischer Systeme, master thesis at the Institut of Control Theory TU Dresden, published 2016. (not publicly accessible)