Plan du cours

I.	Le théorême de Pythagore						
	1. Reconnaître l'hypoténuse dans un triangle rectangle						
	2. Enoncé du théorème de Pythagore						
	3. Applications du théorème de Pythagore						
11.	La réciproque du théorème de Pythagore						
	1. Qu'est-ce qu'une réciproque?						
	2. La réciproque du théorème de Pythagore						

Chapitre . . . : Le théorème de Pythagore et sa réciproque

Remarque : Ces théorèmes ne s'appliquent qu'aux triangles rectangles	'appliquent qu'aux triangles rectangles!
--	--

Mes objectifs:

- → Je dois savoir utiliser le théorème de Pythagore pour calculer une longueur dans un triangle rectangle,
- → Je dois savoir utiliser la réciproque du théorème de Pythagore pour prouver qu'un triangle est rectangle.

Introduction : Conjecture du théorème de Pythagore

- 1. Tracer un triangle ABC rectangle en B, veillez à prendre des mesures entières.
- 2. Compléter le tableau suivant :

Triangle n	АВ	ВС	AC	AB ²	BC ²	AC ²	$AB^2 + BC^2$
1 (le vôtre)							
2							
3							

I. Le théorême de Pythagore

1. Reconnaître l'hypoténuse dans un triangle rectangle

Dfinition

Dans un triangle rectangle, le côté opposé à l'angle droit est appelé l'hypoténuse.

Remarque : Dans un triangle rectangle l'hypoténuse est le plus grand des 3 côtés.

Exercice d'application 1 -

Repasser en rouge les hypoténuses des triangles rectangles suivants :

2. Enoncé du théorème de Pythagore

Thorme

Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés.

En pratique :

Si ABC est un triangle rectangle en A alors $BC^2 = AC^2 + AB^2$.

Exercice d'application 2 -

Pour chaque triangle rectangle , repasser l'hypoténuse en rouge et écrire l'égalité du théorème de Pythagore appliqué à ce triangle :

3. Applications du théorème de Pythagore

• Objectif 1 : Calculer la longueur de l'hypoténuse dans un triangle rectangle.

Exemple 1: Soit ERL un triangle rectangle en R tel que ER = 9 cm et RL = 12 cm. (Faites un schéma) Calculer la longueur LE.

On sait que le triangle ERL est rectangle en R. L'hypoténuse est le côté [LE].

Donc d'après le théorème de Pythagore, on a :

$$LE^{2} = LR^{2} + RE^{2}$$

$$LE^{2} = 12^{2} + 9^{2}$$

$$LE^{2} = 144 + 81$$

$$LE^{2} = 225$$

$$LE = \sqrt{225}$$

Or, **EF est une longueur donc LE** \geq **0** . On utilise alors la touche racine carrée de la calculatrice.

Ainsi, la longueur LE = 15 cm.

• Objectif 2 : Calculer la longueur d'un des côtés de l'angle droit dans un triangle rectangle.

Exemple 2: Soit DFE un triangle rectangle en E.(Faites un schéma)

Calculer la longueur EF (donner l'arrondi au dixième) sachant que ED = 5 cm et DF = 13 cm.

On sait que le triangle DFE est rectangle en E. L'hypoténuse est le côté [DF].

Donc d'après le théorème de Pythagore, on a :

$$DF^{2} = DE^{2} + EF^{2}$$

$$13^{2} = 5^{2} + EF^{2}$$

$$169 = 25 + EF^{2}$$

$$EF^{2} = 169 - 25$$

$$EF^{2} = 144$$

$$EF = \sqrt{144}$$

Or, **EF est une longueur donc EF** ≥ 0 . On utilise alors la touche racine carré de la calculatrice.

Ainsi, la longueur EF = 12 cm.

II. La réciproque du théorème de Pythagore

1. Qu'est-ce qu'une réciproque?

Considérons la propriété suivante : " Si je suis un Homme, j'ai des yeux ".

La propriété réciproque est à "Si j'ai des yeux, je suis un Homme."

→ La propriété est vraie, par contre, sa réciproque est fausse.

Considérons maintenant le théorème de Pythagore .

Le théorème de Pythagore pour un triangle ABC rectangle en A dit :

On démontrera en accompagnement personnalisé que cette réciproque est vraie.

2. La réciproque du théorème de Pythagore

Réciproque

Dans un triangle, si le carré de la longueur du plus grand côté est égal à la somme des carrés des deux autres côtés alors ce triangle est rectangle et admet ce plus grand côté pour hypoténuse.

Exemple 1:

On considère le triangle ZEN tel que NE = 16 cm, ZE = 12 cm et ZN = 20 cm.(Faites un schéma) Montrons que le triangle ZEN est rectangle.

Dans le triangle ZEN, [ZN] est le plus grand côté.

D'une part, $ZN^2 = 20^2 = 400$

D'autre part,
$$ZE^2 + NE^2 = 12^2 + 16^2$$

$$ZE^2 + NE^2 = 144 + 256$$

$$ZE^2 + NE^2 = 400$$

On constate que $ZN^2 = ZE^2 + NE^2$.

D'après la réciproque du théorème de Pythagore, on peut affirmer que le triangle ZEN est rectangle en E.

Le théorème de Pythagore et sa réciproque

Exemple 2:

On considère un triangle IJK tel que IJ = 5.4 cm; JK = 3.5 cm et KI = 4.1 cm. (Faites un schéma) Montrons que le triangle IJK n'est pas rectangle?

Dans le triangle IJK, [IJ] est le plus grand côté.

D'une part,
$$IJ^2 = 5, 4^2$$

 $IJ^2 = 29, 16$

D'autre part,
$$JK^2 + KI^2 = 3,5^2 + 4,1^2$$

 $JK^2 + KI^2 = 12,25 + 16,81$
 $JK^2 + KI^2 = 29,06$

On constate que $IJ^2 \neq JK^2 + KI^2$.

D'après la contraposée du théorème de Pythagore, on peut donc affirmer que le triangle IJK n'est pas un triangle rectangle.