HW5

jn2294@nyu.edu

April 2022

Problem Background

This assignment asks us to figure out several ways to interpolate a given function with a fixed number of given points(not necessarily in the domain).

$$f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \frac{e^{-\frac{1}{2}\left(\frac{\ln x - \mu}{\sigma}\right)^2}}{x}$$

 $f(x;\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} \frac{e^{-\frac{1}{2}\left(\frac{\ln x - \mu}{\sigma}\right)^2}}{x}$ where μ,σ are parameters and x is independent variable. At $\mu=0,\sigma=1$, the function becomes

$$f(x; 0,1) = \frac{1}{\sqrt{2\pi}} \frac{e^{-\frac{1}{2}(\ln x)^2}}{x}$$

and it looks like

Figure 1: Description for problem 3.1

Problem 5.1

Description

Select 6 points between $x \in [0, 5]$ evenly and interpolate these points in a polynomial of the appropriate order. Estimate the upper bound of the interpolation errors.

Figure 2: Description for problem 5.1

Algorithm

Assume that P(x) is the (degree n-1 or less) interpolating polynomial fitting the npoints $(x_1, y_1), \ldots, (x_n, y_n)$. The interpolation error is

$$f(x) - P(x) = \frac{(x - x_1)(x - x_2)\cdots(x - x_n)}{n!} f^{(n)}(c), \tag{3.6}$$

where c lies between the smallest and largest of the numbers x, x_1, \dots, x_n .

Figure 3: Algorithm for problem 5.1

Code

The source code are previded here at the github repo(hw5.py:189).

Results

• The polynomial interpolation function and its error plot

Figure 4: Result plots for problem 5.1

• The upper boundaries at the interpolation points

X	0	1	2	3	4	5
upper bound	15822357.724	-157.172	0.053	0.1154	0.009	-0.001

• The coefficients for interpolation function

			I			
coeff	c0	c1	c2	c3	c4	c5
value	0	1.409	-1.546	0.647	-0.120	0.008

Performance

Problem 5.2

Description

Problem 5.2 Same as Problem 5.1, select 6 points between $x \in [0, 5]$ as required by Chebyshev interpolation and interpolate these points by Chebyshev polynomials. Estimate the upper bound of the interpolation errors.

Figure 5: Description for problem 5.2

Algorithm

Chebyshev interpolation nodes

On the interval [a,b],

$$x_i = \frac{b+a}{2} + \frac{b-a}{2} \cos \frac{(2i-1)\pi}{2n}$$

for i = 1, ..., n. The inequality

$$|(x-x_1)\cdots(x-x_n)| \le \frac{\left(\frac{b-a}{2}\right)^n}{2^{n-1}}$$

holds on [a, b].

Figure 6: Algorithm for problem 5.2

Code

- Main Program:(hw5.py:270).
- Chebshev Interpolation:(hw5.py:82).

Results

• The polynomial interpolation function and its error plot

Figure 7: Result plots for problem 5.2

• The upper boundaries at the interpolation points

The apper soundaries at the interpetation points						
X	0.085	0.732	1.853	3.147	4.268	4.915
upper bound	20409201.458	-1040.988	-0.371	0.075	0.003	0.003

 $\bullet\,$ The coefficients for interpolation function

coeff	c0	c1	c2	c3	c4	c5	
value	0.109	1.520	-1.806	0.779	-0.146	0.010	

Performance

Problem 5.3

Description

Problem 5.3 Using data from Problem 5.1, select 6 points between $x \in [0, 5]$ evenly and fit these points in the following form

$$y = c_0 + c_1 x + c_2 x^2 + c_3 x^3$$

Also, compute the RMSE for this fit.

Figure 8: Description for problem 5.3

Algorithm

Interpolation polynomial is in the form

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

p interpolates the data points means that

$$p(x_i) = y_i$$
 for all $i \in \{0, 1, \dots, n\}$.

If we substitute the above data into the polynomial, we get a system of linear equation for the coefficients a_k :

$$\begin{bmatrix} x_0^n & x_0^{n-1} & x_0^{n-2} & \dots & x_0 & 1 \\ x_1^n & x_1^{n-1} & x_1^{n-2} & \dots & x_1 & 1 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ x_n^n & x_n^{n-1} & x_n^{n-2} & \dots & x_n & 1 \end{bmatrix} \begin{bmatrix} a_n \\ a_{n-1} \\ \vdots \\ a_0 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{bmatrix}.$$

Solving this system for a_k , we construct the interpolant p(x).

Figure 9: Algorithm for problem 5.3

Code

- Main Program:(hw5.py:282).
- Normal Equation Solution :(hw5.py:168).

Results

• Curve Fitting:

Figure 10: Result plot for problem 5.3

• **RSME:** 0.06887457675451285

Performance

Problem 5.4

Description

Problem 5.4 Using data from Problem 5.1, select 6 points between $x \in [0, 5]$ evenly and fit these points in the following form

$$y = c_1 x e^{c_2 x}$$

Also, compute the RMSE for this fit.

Figure 11: Description for problem 5.4

Algorithm

$$\ln y = \ln c_1 + \ln t + c_2 t$$

$$k + c_2 t = \ln y - \ln t,$$

Now, we can construct

$$A = \begin{bmatrix} 1 & t_1 \\ \vdots & \vdots \\ 1 & t_m \end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix} \ln y_1 - \ln t_1 \\ \vdots \\ \ln y_m - \ln t_m \end{bmatrix}$$

Figure 12: Algorithm for problem 5.4

Code

Main Program: (hw5.py:307).

Results

• Curve Fitting:

Figure 13: Result plot for problem 5.3

• Coefficients:

coeff	c_1	c_2		
value	0.9474407258985583	-1.1296988632916292		

• **RSME:** 0.2169227011386179

Performance