

多元非线性回归

目录 CONTENTS

- 1/多元非线性回归
- 2/逐步回归
- 3/标准化回归

多元非线性回归

建立多元非线性回归方程在科学研究中应用 广泛,其重要方法是将非线性回归方程转化为线性回 归方程。转化时应首先选择适合的非线性回归形式, 并将其线性化。再确定线性化回归方程的系数,最后 确定非线性回归方程中未知的系数或参数。

实例: 湖北省油菜投入与产出的统计分析

- 1.投入指标
- (1)土地(S)。土地用播种面积来表示。农作物播种面积是指 当年从事农业
- (2) 劳动(L)。劳动用劳动用工数(成年劳动力一人劳动一 天为一个工)来表示。劳动用工中包含着直接和间接生产用工。
- (3)资本(K)。资本用物质费用来表示。物质费用包含直接费用和间接费用。主要有种子秧苗费、农家肥费、化肥费、农药费、畜力、固定资产折旧费和管理及其他费用等。
- 2.产出指标 产出指标用湖北省历年油菜生产的总产量(Y)来表示。

年 份	产量 (万吨) Y	物质费用 (万元) K	播种面积 (万亩) S	劳动用工 (万个) L	年份序号 t
1990	70.8972	40076.5884	825.1305	15347.4273	1
1991	83.7506	48008.7690	915.1500	15832.0950	2

$$Y = A_0 e^{\lambda t} K^{\alpha} L^{\beta} S^{\gamma}$$

$$\ln Y = \ln A_0 + \lambda t + \alpha \ln K + \beta \ln L + \gamma \ln S + \mu$$

```
data ex; input y k s l t @@;
x1 = log(k); x2 = log(s); x3 = log(l); y1 = (y);
```

cards:

```
70.8972 40076.5884
                         825.1305
                                          15347.4273
83.7506
                48008.7690
                                 915.1500
                                                  15832.0950
70.8627
               44593.8425
                                 801.6150
                                                  13306.8090
78.3451
               43460.3229
                                 783.2100
                                                  13314.5700
98.0749
                72657.2633
                                 923.8050
                                                  14596.1190
134.8767146108.3421
                         1282.8900
                                           20911.1070
147.5315162433.3500
                         1244.7000
                                           18670.5000
                                                           8
154.7607166979.6325
                                                           9
                         1330.5150
                                           18627.2100
159.9743190395.5262
                         1505.4600
                                                           10
                                           20775.3480
198.4942205914.6645
                         1738.4100
                                           22599.3300
                                                           11
194.7943189762.7335
                         1677.0900
                                                           12
                                           20963.6250
                                                           14
187.1013193461.5610
                         1761.9450
                                           21936.2153
                                                           15
235.1184 183768.4035
                         1779.1500
                                           19606.2330
proc reg;model y1=x1 x2 x3 t; /*/selection=stepwise*/
run;
```


Analysis of Variance								
Source		DF	Sum Squar		Mean Square		alue	Pr > F
Model Error Corrected Total		4 8 12	2.152 0.028 2.181	90	0.53808 0.00361		8.95	<.0001
		P	Parameter	Estimates				
Variable	DF		meter :imate	Standar Erro		Value	Pr >	· Itl
Intercept ×1 ×2 ×3 t	1 1 1 1	0. 1. -0.	93016 24781 28223 82102 00168	1.9192 0.0961 0.5712 0.5559 0.0243	0 2 1	0.48 2.58 2.24 -1.48 -0.07	0. 0. 0.	6409 0327 0550 1780 9466

变量t 的显著性概率为0.9466, 远大于0.05, 因此将 model y1=x1 x2 x3 t;去掉他, 即改为model y1=x1 x2 x3

•

Analysis of Variance								
Source		DF	Sum of Squares	S	Mean quare	F Va	lue	Pr > F
Model Error Corrected Total		3 9 12	2.15229 0.02892 2.18121		71743 00321	223	.29	<.0001
	Parameter Estimates							
Variable	DF		umeter :imate	Standard Error	ŧν	alue	Pr >	· Itl
Intercept ×1 ×2 ×3	1 1 1	0. 1.	87950 24554 24568 78798	1.67253 0.08518 0.20239 0.26689		0.53 2.88 6.15 2.95	0. 0.	6117 0181 0002 0162

截距项Intercept 的显著性概率为0.6117,大于0.05,因此将model y1=x1 x2 x3; 改为model y1=x1 x2 x3 /noint;

Analysis of Variance						
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F	
Model Error Uncorrected Total	3 10 13	309.07415 0.02981 309.10395	103.02472 0.00298	34565.8	<.0001	
Root M Depend Coeff	ent Mean	0.05459 4.85895 1.12358	R-Square Adj R-Sq	0.9999 0.9999		

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > [t]
×1	1	0.22851	0.07588	3.01	0.0131
×2	1	1.21016	0.18376	6.59	<.0001
×3	1	-0.65225	0.06539	-9.98	<.0001

$$\ln \hat{Y} = 0.244189 \ln K + 1.172185 \ln S - 0.643284 \ln \overline{L}$$

$$F=34565.8 R^2=0.9999$$

$$\hat{Y} = K^{0.22851}S^{1.21016}L^{-0.65225}$$

要善于解释经济含义、本模型虽然满足数学规则,但不能通过经济检验。助于如何继续修正模型,需要学习数学与经济的交叉学科《计量经济学》。

(美国数学建模竞赛) 完整课程请长按下方二维码

1.5 逐步回归

逐步回归的基本思想是,从当前在圈外的全部变量中,挑选其偏回归平方和贡献最大的变量,用方差比进行显著性检验的办法,判别是否选入;而当前在圈内的全部变量中,寻找偏回归平方和贡献最小的变量,用方差比进行显著性检验的办法,判别是否从回归方程中剔除。选入和剔除循环反复进行,直至圈外无符合条件的选入项,圈内无符合条件的剔除项为止。

逐步回归选择变量快捷,但对于存在多重共线的自变量选择,有时并不准确,使用时注意分辨。 还是用上面的例子,将model y1=x1 x2 x3 t;改为model

y1=x1 x2 x3 t /selection=stepwise;

1.5 逐步回归

注意,为了筛选变量宽容,程序中默认显著度为0.15,而不是0.05,以避免条件过于严格只用筛选无法进行。

All variables left in the model are significant at the 0.1500 level.

No other variable met the 0.1500 significance level for entry into the model.

			Summary of	f Stepwise S	election			
Step	Variable Entered	Variable Removed	Number Vars In	Partial R-Square	Model R-Square	C(p)	F Value	Pr > F
1 2 3	x2 t x1		1 2 3	0.9668 0.0086 0.0077	0.9668 0.9754 0.9831	11.0349 7.8417 5.1812	320.51 3.50 4.12	<.0001 0.0909 0.0730

从程序结果中不难看出, x2、x1、t进入模型。 因此model y1=x1 x2 x3 t /selection=stepwise; 改为model y1=x1 x2 t /noint;再运行一遍即可。

1.5 逐步回归

Analysis of Variance								
Source		DF	Sum of Squares	Me: Squa		alue	Pr > F	
Model Error Uncorrected Tot	al	10	09.06293 0.04103 09.10395	103.0209 0.004		11.1	<.0001	
De	ot MSE pendent Mo peff Var	ean	0.06405 4.85895 1.31822	R-Square Adj R-Sq	0.999 0.999			
		Param	eter Esti	mates				
Variable	DF	Paramete Estimat		tandard Error t	Value	Pr >	tl	
×1 ×2 t	1 1 1	0.2108 0.2943 0.0417	3 1	0.09041 0.14500 0.00501	2.33 2.03 8.34	0.04 0.06 <.00	98	

思考: 为什么这个结果与前面计算的结果不一样?

完整课程请长按下方二维码

标准化回归

1.6 标准化回归

由于单位量纲不一样,偏回归系数的大小不能完全反映自变量对因变量影响的大小。要想真实反映自变量的贡献,标准化回归是个好的选择。

标准化回归系数(Beta值)在多元回归中被用来比较变量间的重要性。 但注意这种重要性是相对的,请同学们百度一下,看看相关资料。

1.6 标准化回归

还是用上面的例子,将model y1=x1 x2 t/noint;改为 model y1=x1 x2 t/noint stb;运行即可。

Parameter Estimates									
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > [t]	Standardized Estimate			
x1 x2 t	1 1 1	0.21081 0.29433 0.04175	0.09041 0.14500 0.00501	2.33 2.03 8.34	0.0419 0.0698 <.0001	0.50200 0.42920 0.07640			

从最后一列(标准化回归系数)可看出,x1重要性超过x2和t。与原先的参数大小比有变化。