PostgreSQL

Déploiement de l'opérateur PostgreSQL

Simon ELBAZ (selbaz@linagora.com)

27 février 2023

Installation

Architecture

Versions utilisées

- OS de déploiement : Debian 11 Bullseye
- Versions de Kubernetes : 1.26.x

Déploiement du nœud control plane

- Kubernetes s'appuie sur un élément essentiel qui est le container runtime.
- La méthode de déploiement du container runtime s'appuie la méthode décrite dans le lien : https://docs.docker.com/engine/install/debian/

Installation du runtine container containerd

Mise à jour de l'index du paquet *apt* et installation des paquets nécessaires à l'utilisation des dépôts avec le protocole HTTPS :

```
sudo apt-get update
sudo apt-get install \
    ca-certificates \
    curl \
    gnupg
```

Ajout de la clef GPG officielle de Docker

```
  \  \, \text{sudo install -m 0755 -d /etc/apt/keyrings} \\  \  \, \text{curl -fsSL https://download.docker.com/linux/debian/gpg | sudo gpg --dearmor -o /etc/apt/keyrings/docker.gpg} \\  \  \, \text{sudo chmod a+r /etc/apt/keyrings/docker.gpg} \\  \  \, \text{constall -m 0755 -d /etc/apt/keyrings/docker.gpg} \\  \  \, \text{curl -fsSL https://download.docker.com/linux/debian/gpg | sudo gpg --dearmor -o /etc/apt/keyrings/docker.gpg} \\  \  \, \text{sudo gpg --dearmor -o /etc/apt/keyrings/docker.gpg} \\  \  \, \text{curl -fsSL https://download.docker.com/linux/debian/gpg | sudo gpg --dearmor -o /etc/apt/keyrings/docker.gpg} \\  \  \, \text{sudo gpg --dearmor
```

Ajout du dépôt de Docker

```
echo \
"deb [arch="$(dpkg --print-architecture)" signed-by=/etc/apt/keyrings/docker.gpg] https://download.docker.com/linux/debian \
"$(. /etc/os-release & echo "$VERSION_CODENAME")" stable" | \
sudo tee /etc/apt/sources.list.d/docker.list > /dev/null
```

Installation de Docker Engine

```
sudo apt-get update sudo apt-get install docker-ce docker-ce-cli containerd.io docker-buildx-plugin docker-compose-plugin
```

Installation de kubectl, kubeadm et kubelet

```
sudo apt-get update
sudo apt-get install -y kubectl
sudo apt-get install -y kubeadm
sudo apt-get install -y kubelet
```

Activation des modules kernel *overlay* et *br_netfilter*

```
linagora@debian-cp:/etc/modules-load.d$ cat k8s.conf
overlay
br_netfilter
linagora@debian-cp:/etc/modules-load.d$ pwd
/etc/modules-load.d
```

Activation des fonctions bridge/iptables et forward du kernel

```
linagora@debian-cp:/etc/sysctl.d$ cat k8s.conf
inet.bridge.bridge-nf-call-iptables = 1
net.bridge.bridge-nf-call-ip6tables = 1
net.ipv4.ip_forward = 1
linagora@debian-cp:/etc/sysctl.d$ pwd
/etc/sysctl.d
```

Paramétrage de containerd

Génération du paramétrage par défaut de containerd :

```
\verb|root@debian-cp:"| containerd config | \textbf{default}| | dump > /etc/containerd/config.toml.dmp| \\
```

Modifier la valeur à **true** pour le paramètre **SystemdCgroup** :

```
[plugins."io.containerd.grpc.vl.cri".containerd.runtimes.runc.options]
BinaryName = ""
CriuImagePath = ""
CriuPath = ""
CriuWorkPath = ""
IoGid = 0
IoUid = 0
NoNewKeyring = false
NoPivotRoot = false
Root = ""
ShimCgroup = ""
SystemdCgroup = true
```

Paramétrage de containerd

Remplacer le paramétrage actuel par le paramétrage modifié :

```
\label{lem:contined} $$\operatorname{rootdebian-cp:^\# cp /etc/containerd/config.toml /etc/containerd/config.toml.bak rootdebian-cp:^\# cat /etc/containerd/config.toml.dmp > /etc/containerd/config.toml rootdebian-cp:^\# systemctl restart containerd
```

Initialisation du cluster Kubernetes

En tant que root, lancer la commande suivante :

```
# kubeadm init --control-plane-endpoint 10.10.10.30 \
   --skip-phases=addon/coredns,addon/kube-proxy \
   --v=5 \
   --pod-network-cidr="10.244.0.0/16"
```

Si les phases addon/coredns et addon/kube-proxy ne sont pas évitées au 1^{er} lancement de kubeadm, l'erreur suivante est générée :

[kubelet-finalize] Updating "/etc/kubernetes/kubelet.conf" to point to a rotatable kubelet client certificate and key error execution phase addon/coredns: unable to fetch CoreDNS current installed version and ConfigMap.: rpc error: code = Unknown desc = malformed header: missing HTTP content-type To see the stack trace of this error execute with -v=5 or higher

Initialisation du cluster Kubernetes

Le résultat de la commande d'init est le suivant :

```
10315-01:06:38.342010-34405 kubeletfinalize go:1341 [kubelet-finalize] Restarting the kubelet to enable client certificate rotation
Your Kubernetes control-plane has initialized successfully!
To start using your cluster, you need to run the following as a regular user :
  mkdir -p $HOME/.kube
  sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
  sudo chown $(id -u):$(id -a) $HOME/.kube/config
Alternatively, if you are the root user, you can run :
  export KUBECONFIG=/etc/kubernetes/admin.conf
You should now deploy a pod network to the cluster.
Run "kubectl apply -f [podnetwork].vaml" with one of the options listed at :
https://kubernetes.jo/docs/concepts/cluster-administration/addons/
You can now join any number of control-plane nodes by copying certificate authorities and service account keys on each node and then running the
following as root:
  kubeadm join 10.10.10.30:6443 --token 6pia7c.n6u8pbm7vi16nnr8 \
         --discovery-token-ca-cert-hash sha256:f6d45602ea75c7659dc91f661d19e97e6817e2847e4e5d0047880b871317a145 \
         --control-plane
Then you can join any number of worker nodes by running the following on each as root:
kubeadm join 10.10.10.30:6443 --token 6pia7c.n6u8pbm7vj16nnr8 \
         --discovery-token-ca-cert-hash sha256:f6d45602ea75c7659dc91f661d19e97e6817e2847e4e5d0047880b871317a145
```

Paramétrage de kubectl

L'utilisation de kubectl nécessite l'action suivante :

```
\label{local_model} $$ \mbox{mkdir -p $HOME/.kube} $$ \mbox{sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config} $$ \mbox{sudo chown $(id -u):$(id -g) $HOME/.kube/config} $$
```

Déploiement de l'addon CoreDNS

Comme indiqué précédemment, les addons CoreDNS et Kube-Proxy n'ont pas été déployés au 1^{er} lancement de kubeadm.

CoreDNS peut maintenant être déployé sans erreur :

linagora@debian-cp:~\$ sudo kubeadm init phase addon coredns [addons] Applied essential addon: CoreDNS

Déploiement de l'addon Kube-Proxy

linagora@debian-cp:~\$ sudo kubeadm init phase addon kube-proxy [addons] Applied essential addon: kube-proxy

Choix de la couche réseau - Container Network Interface

Il existe différentes addons Kubernetes implémentant l'interface CNI.

Ces addons sont listés dans l'URL suivante :

https://kubernetes.io/docs/concepts/cluster-administration/addons/ Pour le POC, l'addon sélectionné est Flannel car il semble être le plus simple et le plus

basique des addons CNI.

Déploiement de l'addon Flannel

L'addon Flannel s'installe de plusieurs manières

(https://github.com/flannel-io/flannel#deploying-flannel-manually). La méthode utilisée pour le POC est kubectl :

kubectl apply -f https://github.com/flannel-io/flannel/releases/latest/download/kube-flannel.yml

Installation de k9s

Un outil pratique de visualisation d'un cluster kubernetes est : k9s (https://k9scli.io/)

Le lien suivant permet de télécharger l'archive incluant le binaire :

Liste des namespaces

```
linagora@debian-cp:~$ kubectl get namespaces
NAME
                 STATUS
                          AGE
default
                 Active
                          40d
kube-flannel
                 Active
                         39d
kube-node-lease
                Active
                         40d
kube-public
                 Active
                          40d
kube-system
                 Active
                         40d
minio-operator
                 Active
                         32d
rook-ceph
                 Active
                          32d
```


Pods du namespace default

```
linagora@debian-cp:~$ kubectl get pods
NAME
                                        READY
                                                STATUS
                                                          RESTARTS
                                                                     AGE
acid-test-cluster-0
                                        1/1
                                                Running
                                                                     27d
acid-test-cluster-1
                                        1/1
                                                Running
                                                                      27d
postgres-operator-fcbd7cc96-ndpj8
                                        1/1
                                                Running
                                                                     40d
postgres-operator-ui-5579cc7779-86rgk
                                        1/1
                                                Running
                                                                      40d
```


Pods du namespace kube-system

linagora@debian-cp:~\$ kubectl get	pods -n	kube-system		
NAME	READY	STATUS	RESTARTS	AGE
coredns-787d4945fb-8ph9v	1/1	Running	0	40d
coredns-787d4945fb-9jrzs	1/1	Running	0	40d
etcd-debian-cp	1/1	Running	158	41d
kube-apiserver-debian-cp	0/1	Running	4968 (13m ago)	41d
kube-controller-manager-debian-cp	1/1	Running	4161 (8m26s ago)	41d
kube-proxy-4mfn8	1/1	Running	0	33d
kube-proxy-9h4c6	1/1	Running	0	27d
kube-proxy-9j47t	1/1	Running	0	33d
kube-proxy-s78vx	1/1	Running	0	33d
kube-proxy-wpwt4	1/1	Running	0	40d
kube-proxy-xjs5q	1/1	Running	1 (33d ago)	41d
kube-scheduler-debian-cp	1/1	Running	2848 (6m20s ago)	41d

Pods du namespace kube-flannel

```
linagora@debian-cp:~$ kubectl get pods -n kube-flannel
NAME
                        READY
                                STATUS
                                          RESTARTS
                                                         AGE
kube-flannel-ds-5nw2j
                        1/1
                                Running
                                          0
kube-flannel-ds-5xwsm
                        1/1
                                Running
                                                         40d
kube-flannel-ds-8vkg9
                        1/1
                                Running
                                          1 (33d ago)
                                                         40d
kube-flannel-ds-pv6ss
                        1/1
                                Running
                                                         27d
kube-flannel-ds-trbz9
                        1/1
                                Running
kube-flannel-ds-wmzz2
                        1/1
                                Running
```


Pods du namespace rook-ceph

linagora@debian-cp:-\$ kubectl get pods -n rook-ceph				
NAME	READY	STATUS	RESTARTS	AGE
csi-cephfsplugin-9nbts	2/2	Running	1 (27d ago)	27d
csi-cephfsplugin-bpxlw	2/2	Running	0	33d
csi-cephfsplugin-jd5x8	2/2	Running	0	33d
csi-cephfsplugin-mddkf	2/2	Running	0	33d
csi-cephfsplugin-nrmfz	2/2	Running	0	33d
csi-cephfsplugin-provisioner-84cc595b78-9mm14	5/5	Running	6008 (2m44s ago)	33d
csi-cephfsplugin-provisioner-84cc595b78-9twnq	5/5	Running	2171	33d
csi-rbdplugin-92zlq	2/2	Running	0	33d
csi-rbdplugin-c95w7	2/2	Running	0	33d
csi-rbdplugin-pk57s	2/2	Running	1 (27d ago)	27d
csi-rbdplugin-provisioner-6f6b6b8cd6-4c8jd	1/5	CreateContainerError	1344	33d
csi-rbdplugin-provisioner-6f6b6b8cd6-gw6bm	1/5	CreateContainerError	4465	33d
csi-rbdplugin-srtfz	2/2	Running	0	33d
csi-rbdplugin-v6gqm	2/2	Running	0	33d
rook-ceph-crashcollector-dnumcephworker1-7845bb8ff-vs9fx	1/1	Running	0	32d
rook-ceph-crashcollector-dnumcephworker2-75cdf95dcd-n5xsz	1/1	Running	0	33d
rook-ceph-crashcollector-dnumcephworker3-6fddb6cd9-x45w5	1/1	Running	1 (8d ago)	32d
rook-ceph-mgr-a-c5db58dff-hvsp9	3/3	Running	1487 (6d6h ago)	33d
rook-ceph-mgr-b-7bbfd88c8b-wh4ww	2/3	CreateContainerError	944	22d
rook-ceph-mon-a-75cf9ccddc-b2jgc	2/2	Running	1163	33d
rook-ceph-mon-b-78d6586d5-qss4z	1/2	CreateContainerError	701 (19d ago)	19d
rook-ceph-mon-c-64dcb4c86c-wz8sq	2/2	Running	1755	33d
rook-ceph-operator-cf4f7dfd4-6tm6p	1/1	Running	0	32d
rook-ceph-osd-0-57d9b8db4d-d6dhr	1/2	CreateContainerError	484	32d
rook-ceph-osd-1-74698f77fd-6n2mh	1/2	Running	529	32d
rook-ceph-osd-2-5cc486467c-1hm47	1/2	Running	1116 (49m ago)	32d
rook-ceph-osd-prepare-dnumcephworker1-rnk78	0/1	Completed	0	21d
rook-ceph-osd-prepare-dnumcephworker3-42rxv	0/1	Completed	0	21d
rook-ceph-tools-7c4b8bb9b5-pxk67	1/1	Running	0	33d

Déploiement du nœud worker

Sur chacun des 2 workers, il est nécessaire de déployer :

- le runtime containerd de Docker
- les commandes kubectl, kubeadm et kubelet
- l'activation des modules kernel overlay et br_netfilter
- l'activation des fonctions bridge/iptables et forward du kernel
- le paramétrage de containerd

Ajout du nœud worker dans le cluster k8s - join

L'opération qui permet au nœud worker de rejoindre le cluster s'appelle le join. La syntaxe de cette commande est obtenue en lançant la commande suivante sur le control plane avec l'utilisateur root :

```
# kubeadm token create --print-join-command
kubeadm join 10.10.10.30:6443 \
--token ilfbgc.8xco4svm5pnxkfbj \
--discovery-token-ca-cert-hash sha256:73bf45619ae0051d4ff810328d1dadc18e6a5966c95d3c4ec76275b89a934595
```

Lancement du join sur chacun des workers

Sur chacun des workers, le lancement de la commande join produit le résultat suivant :

```
# kubeadm join 10.10.10.30:6443 \
--token 6pia7c.n6u8pbm7yjl6nnr8 \
--discovery-token-ca-cert-hash sha256:f6d45602ea75c7659dc91f661d19e97e6817e2847e4e5d0047880b871317a145
[preflight] Running pre-flight checks
[preflight] Reading configuration from the cluster...
[preflight] FYI: You can look at this config file with 'kubectl -n kube-system get cm kubeadm-config -o yaml'
W0315 16:31:41.445771 6266 configset.go:78] Warning: No kubeproxy.config.k8s.io/vlalphal config is loaded. Continuin
[kubelet-start] Writing kubelet configuration to file "/var/lib/kubelet/config.yaml"
[kubelet-start] Writing kubelet environment file with flags to file "/var/lib/kubelet/kubeadm-flags.env"
[kubelet-start] Starting the kubelet
[kubelet-start] Waiting for the kubelet to perform the TLS Bootstrap...
```

This node has joined the cluster:

- * Certificate signing request was sent to apiserver and a response was received.
- $\ensuremath{^{\star}}$ The Kubelet was informed of the new secure connection details.

Run 'kubectl get nodes' on the control-plane to see this node join the cluster.

La commande suivante permet de vérifier le résultat du join :

```
$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
debian-cp NotReady control-plane 15h v1.26.2
dnumworker1 NotReady <none> 53s v1.26.2
```

Terminologie du stockage dans k8s

- Le stockage permanent des données s'appuie les volumes persistants (PV)
 (https://kubernetes.io/docs/concepts/storage/persistent-volumes/)
- Un PV est un espace de stockage mis à disposition par k8s.
- Il peut être alloué manuellement ou dynamiquement par l'intermédiaire des storage class (https://kubernetes.io/docs/concepts/storage/storage-classes/)
- Les PV sont l'équivalent d'un node dans un cluster.
- Les persistentVolumeClaim (PVC) sont l'équivalent d'un pod.

Déploiement du stockage - Rook Ceph

- Le storage class sur lequel s'appuie l'opérateur PostgreSQL est Ceph
- L'opérateur k8s Rook Ceph facilite le déploiement de Ceph
- Le déploiement s'appuie sur le lien https://rook.io/docs/rook/v1.9/quickstart.html
- La version de l'opérateur utilisée est la v1.9
- Elle supporte les versions k8s v1.17+

Prérequis au déploiement de l'opérateur - Rook Ceph

- Le déploiement de l'opérateur scanne l'ensemble des noeuds de stockage pour vérifier la présence de :
 - des devices bruts (sans partitions ou filesystems formattés)
 - des partitions brutes (sans filesystems formattés)
 - les volumes physiques initialisés par LVM

L'exemple ci-dessous indique comment vérifier la disponibilité d'espace pour l'opérateur Rook Ceph :

```
lsblk -f
    NAME
                          ESTYPE
                                       LABEL UUITD
                                                                                     MOUNTPOINT
    vda
    I-vda1
                          LVM2 member
                                             >eSO50t-GkUV-YKTH-WsGg-hNJY-eKNf-3i07IB
    |-ubuntu--vg-root
                         ext 4
                                            c2366f76-6e21-4f10-a8f3-6776212e2fe4
                                            9492a3dc-ad75-47cd-9596-678e8cf17ff9
    I-ubuntu--vg-swap 1 swap
                                                                                    [SWAP]
    vdb
```

Prérequis au déploiement de l'opérateur - Rook Ceph

- Dans l'exemple précédent, si la colonne FSTYPE est renseignée, cela indique la présence d'un filesystem
- La partition vdb n'est pas formatée avec un filesystem : elle est donc utilisable par l'opérateur Rook Ceph
- Le paquet lvm2 est une dépendance importante de Rook Ceph

Déploiement de l'opérateur Rook Ceph

```
$ git clone --single-branch --branch v1.9.2 https://github.com/rook/rook.git
cd rook/deploy/examples
kubectl create -f crds.yaml -f common.yaml -f operator.yaml
kubectl create -f cluster.yaml
```

- Une fois le cluster est opérationnel, il devient possible de créer :
 - stockage bloc
 - stockage objet
 - stockage fichier

Le contrôleur d'admission (Admission Controller) - Rook Ceph

- Il est recommandé de déployer le contrôleur d'admission : il permet de vérifier que Rook est correctement paramétré grâce aux réglages des Customer Resources (CR)
- L'Admission Controller intercepte les requêtes à destination de l'API k8s avant l'objet persistant après les phases d'authentification et d'autorisation
- Pour installer l'Admission Controller, lancer les requêtes suivantes : kubectl apply -f https://github.com/jetstack/cert-manager/releases/download/v1.7.1/cert-manager.yaml

Affichage des storage class déployés

1:	inagora@debian-cp	o:~\$ kubectl get storageclass				
N2	AME	PROVISIONER	RECLAIMPOLICY	VOLUMEBINDINGMODE	ALLOWVOLUMEEXPANSION	AGE
10	ocal-storage	kubernetes.io/no-provisioner	Delete	WaitForFirstConsumer	false	12d
ro	ook-ceph-block	rook-ceph.rbd.csi.ceph.com	Delete	Immediate	true	5d23h

Déploiement de l'opérateur PostgreSQL de Zalando

TODO

Répartitions des pods PostgreSQL sur les nœuds worker

TODO

Bibliographie

Webographie

Sommaire

Sommaire

Installation

Conclusion