Теоретические домашние задания

Теория типов, ИТМО, М3235-М3239, осень 2022 года

Домашнее задание №1: «вводная лекция»

1. Напомним определения с лекций:

Обозначение	лямбда-терм	название
T	$\lambda a.\lambda b.a$	истина
F	$\lambda a. \lambda b. b$	ЛОЖЬ
Not	$\lambda x.x F T$	отрицание
And	$\lambda x.\lambda y.x\ y\ F$	конъюнкция

Постройте лямбда-выражения для следующих булевских выражений:

- (а) Штрих Шеффера («и-не»)
- (b) Стрелка Пирса («или-не»)
- (c) Мажоритарный элемент от трёх аргументов (результат «истина», если истинны не менее двух аргументов)
- 2. Напомним определения с лекций:

$$f^{(n)} X ::= \begin{cases} X, & n = 0 \\ f^{(n-1)} (f X), & n > 0 \end{cases}$$

Обозначение	лямбда-терм	название
\overline{n}	$\lambda f.\lambda x.f^{(n)}$ x	чёрчевский нумерал
(+1)	$\lambda n.\lambda f.\lambda x.n \ f \ (f \ x)$	прибавление 1
IsZero	$\lambda n.n \; (\lambda x.F) \; T$	проверка на 0

Обозначение	лямбда-терм	название
\overline{MkPair}	$\lambda a.\lambda b.(\lambda x.x \ a \ b)$	создание пары
PrL	$\lambda p.p T$	левая проекция
PrR	$\lambda p.p F$	правая проекция
Case	$\lambda l.\lambda r.\lambda c.c\ l\ r$	case для алгебраического типа
InL	$\lambda l.(\lambda x.\lambda y.x\ l)$	левая инъекция
InR	$\lambda r.(\lambda x.\lambda y.y \ r)$	правая инъекция

Используя данные определения, постройте выражения для следующих операций над числами:

- (а) Вычитание 1
- (b) Вычитание
- (с) Деление
- (d) Сравнение двух чисел (IsLess) истина, если первый аргумент меньше второго (могут потребоваться пары и/или вычитания)
- (е) Делимость
- 3. Проредуцируйте выражение и найдите его нормальную форму:
 - (a) $\overline{2}$ $\overline{2}$
 - (b) $\overline{2} \overline{2} \overline{2}$
 - (c) $\overline{2} \overline{2} \overline{2} \overline{2} \overline{2} \overline{2} \overline{2} \overline{2}$
- 4. Напомним определение Y-комбинатора: $\lambda f.(\lambda x.f(x x))(\lambda x.f(x x)).$
 - (a) Покажите, что выражение Y f не имеет нормальной формы;
 - (b) Покажите, что выражение $Y(\lambda f.\overline{0})$ имеет нормальную форму.
 - (c) Покажите, что выражение Y ($\lambda f.\lambda x.(IsZero~x)~\overline{0}~(f~Minus1~x)$) 2 имеет нормальную форму.
 - (d) Какова нормальная форма выражения $Y(\lambda f.\lambda x.(IsZero\ x)\ \overline{0}\ ((+1)\ (f\ Minus1\ x)))\ \overline{n}?$

- (e) Какова нормальная форма выражения Y ($\lambda f.\lambda x.(IsZero\ x)\ \overline{1}\ (Mul2\ (f\ Minus1\ x))) <math>\overline{n}$?
- (f) Определите с помощью Y-комбинатора функцию для вычисления n-го числа Фибоначчи.
- 5. Определим на языке Хаскель следующую функцию: show_church n = show (n + 1) 0) Убедитесь, что show_church (f x t) вернёт 2. Пользуясь данным определением и его идеей, реализуйте следующие функции:
 - (a) int_to_church возвращает чёрчевский нумерал (т.е. функцию от двух аргументов) по целому числу. Каков точный тип результата этой функции?
 - (b) сложение двух чёрчевских нумералов.
 - (с) умножение двух чёрчевских нумералов.
 - (d) можно ли определить вычитание 1 и вычитание? Что получается, а что нет?
- 6. На лекции было использовано понятие свободы для подстановки.
 - (а) Найдите лямбда-выражение, которое при однократной редукции требует переименования связанных переменных (редукция невозможна без переименования).
 - (b) Заметим, что даже если мы запретим использовать одни и те же переменные в разных лямбдаабстракциях, это не будет решением проблемы переименований. Предложите лямбда-выражение, в котором (a) все лямбда-абстракции указаны по разным переменным; но (б) через некоторое количество редукций потребуется переименование связанных переменных.
- 7. Дадим определение: комбинатор лямбда-выражение без свободных переменных.

Также напомним определение:

$$S := \lambda x.\lambda y.\lambda z.x \ z \ (y \ z)$$

$$K := \lambda x.\lambda y.x$$

$$I := \lambda x.x$$

Известна теорема о том, что для любого комбинатора X можно найти выражение P (состоящее только из скобок, пробелов и комбинаторов S и K), что $X =_{\beta} P$. Будем говорить, что комбинатор P выражает комбинатор X в базисе SK.

Выразите в базисе SK:

- (a) $F = \lambda x.\lambda y.y$
- (b) $\overline{1}$
- (c) Not
- (d) Xor
- (e) InL
- 8. Чёрчевские нумералы соответствуют натуральным числам в аксиоматике Пеано.
 - (a) Предложите «двоичные нумералы» способ кодирования чисел, аналогичный двоичной системе (такой, при котором длина записи числа соответствует логарифму числового значения).
 - (b) Предложите реализацию функции (+1) в данном представлении.
 - (c) Предложите реализацию лямбда-выражения преобразования числа из двоичного нумерала в чёрчевский.
 - (d) Предложите реализацию функции сложения в данном представлении.
 - (е) Предложите реализацию функции вычитания в данном представлении.
 - (f) Какова вычислительная сложность арифметопераций с двоичными нумералами?