Definitions:

Let S be a nonempty subset of \mathbb{R} , i.e. $\phi \neq S \subseteq \mathbb{R}$

- (1) If $x_0 \in S$ and $x \leq x_0$ for all $x \in S$, then x_0 is called the maximum of S. $(x_0 = \max S)$
- (2) If $x_0 \in S$ and $x_0 \le x$ for all $x \in S$, then x_0 is called the minimum of S. $(x_0 = \min S)$
- (3) If $\exists M \in \mathbb{R}$ such that $x \leq M$ for all $x \in S$, then M is called an **upper bound** of S and the set S is **bounded above**.
- (4) If $\exists m \in \mathbb{R}$ such that $m \leq x$ for all $x \in S$, then m is called a **lower bound** of S and the set S is **bounded below**.
- (5) If $\exists m, M \in \mathbb{R}$ such that $m \leq x \leq M \ \forall x \in S$, then S is **bounded**.
- (6) If S is bounded above and S has a least upper bound M_0 , then M_0 is called the supremum of S and denoted by $\sup S$.
- (7) If S is bounded below and S has a greatest lower bound m_0 , then m_0 is called the infimum of S and denoted by $\inf S$.

The Completeness Axiom

A fundamental property of the set \mathbb{R} of real numbers :

Completeness Axiom : \mathbb{R} has "no gaps".

 $\forall S \subseteq \mathbb{R} \text{ and } S \neq \emptyset,$

If S is bounded above, then $\sup S$ exists and $\sup S \in \mathbb{R}$.

(that is, the set S has a least upper bound which is a real number).

Note: "The Completeness Axiom" distinguishes the set of real numbers $\mathbb R$ from other sets such as the set $\mathbb Q$ of rational numbers.

Example: Let $A := \{r \in \mathbb{Q} | 0 \le r \le \sqrt{2}\} \subseteq \mathbb{Q}$.

- (1) Is the set A bounded above?
- (2) Does it has a least upper bound in A?

Examples: Find the inf and sup of the following sets, if possible. State whether or not these numbers are in S.

1.
$$S = \{x \mid 0 < x \le 3\}$$

2.
$$S = \{x \mid x^2 - 2x - 3 < 0\}$$

3.
$$S = \{x \mid 0 < x < 5, \cos(x) = 0\}$$

4.
$$S = \{x \mid x = \frac{1}{n}, n \in \mathbb{N}\}$$

Some properties of sup and inf Theorem. If x_1 and x_2 are least upper bounds for the set A, then $x_1 = x_2$.

Theorem. If the sets A and B are bounded above and $A \subseteq B$, then $\sup(A) \le \sup(B)$.