Exercice (examen Janvier 2018)

Soit A la matrice donnée par $A = \begin{pmatrix} 3 & 2 & -1 \\ 1 & -1 & 1 \\ 2 & -6 & 4 \end{pmatrix}$

- 1. Calculer le polynôme caractéristique de A.
- 2. A est-elle diagonalisable ? (Justifier votre réponse)
- 3. Calculer A^2 .
- 4. Montrer que la matrice A est inversible
- 5. En utilisant le théorème de Cayley-Hamilton, montrer qu'il existe un polynôme Q de degré au plus 2 tel que $A^{-1} = Q(A)$. Expliciter A^{-1} .
- 6. Quel est le spectre de A^{-1} .
- 7. En utilisant la division euclidienne calculer A^n pour $n \in \mathbb{N}$.
- 1. On a par définition $P_A(X) := \det(A XI)$. On calcule alors

$$P_A(X) = \begin{vmatrix} 3 - X & 2 & -1 \\ 1 & -1 - X & 1 \\ 2 & -6 & 4 - X \end{vmatrix} = \begin{vmatrix} 3 - X & 0 & -1 \\ 1 & 1 - X & 1 \\ 2 & 2 - 2X & 4 - X \end{vmatrix}$$
$$= \begin{vmatrix} 3 - X & 0 & -1 \\ 1 & 1 - X & 1 \\ 0 & 0 & 2 - X \end{vmatrix} = (1 - X)(2 - X)(3 - X).$$

- 2. La matrice A admet trois valeurs propres distinctes et $3=\dim(\mathbb{R}^3)$, on déduit que A est diagonalisable.
- 3. On a $det(A) = P_f(0) = 6 \neq 0$ et donc A est inversible.
- 4. Théorème de Cayley-Hamilton : Si f est un endomorphisme d'un \mathbb{K} -espace vectoriel de dimension finie et si $P_f(X)$ est son polynôme caractéristique alors $P_f(f) = 0$.

On en déduit que $A^3 - 6A^2 + 11A = 6I$, c'est à dire que

$$A \cdot \frac{1}{6} (A^2 - 6A + 11I) = \frac{1}{6} (A^2 - 6A + 11I) A = I.$$

Ainsi, A est inversible et

$$A^{-1} = \frac{1}{6} \left(A^2 - 6A + 11I \right)$$

Il suffit de prendre $Q(X) = \frac{1}{6}(X^2 - 6X + 11)$. Plus explicitement, comme

$$A^2 = \begin{pmatrix} 9 & 10 & -5 \\ 4 & -3 & 2 \\ 8 & -14 & 8 \end{pmatrix},$$

on en déduit que

$$A^{-1} = \frac{1}{6} \begin{pmatrix} 2 & -2 & 1 \\ -1 & 14 & -4 \\ -4 & 22 & -5 \end{pmatrix}$$

1

5. On sait

$$A^{-1} = Q(A) = \frac{1}{6} \left(A^2 - 6A + 11I \right)$$

Donc Q(1) = 1, Q(2) = 1/2 et Q(3) = 1/3 sont des valeurs propres de A^{-1} et donc A^{-1} est diagonalisable.

6. Soit $n \in \mathbb{N}$. On remarque que si $n \leq 2$ alors on a les solutions triviales : $\alpha_0 = 1, \beta_0 = \gamma_0 = 0,$ $\alpha_1 = \gamma_1 = 0, \beta_1 = 1$ et $\alpha_2 = \beta_2 = 0, \gamma_2 = 1$. De plus, d'après le théorème da Cayley-Hamilton on a

$$A^3 = 6A^2 - 11A + 6I.$$

Plus généralement, en effectuant la division euclidienne du polynôme X^n par le polynôme $P_A(X)$ on obtient qu'il existe un polynôme R(X) de degré au plus 2 tel que

$$X^n = Q(X)P_A(X) + R(X).$$

Autrement dit, il existe des constantes $\alpha_n, \beta_n, \gamma_n$ tels que

$$X^{n} = Q(X)P_{A}(X) + R(X) = Q(X)P_{A}(X) + \alpha_{n}X^{2} + \beta_{n}X + \gamma_{n}$$

Or 1,2 et 3 sont des racines de $P_A(X)$. Ainsi

$$R(1) = 1$$
, $R(2) = 2^n$, $R(3) = 3^n$.

Autrement dit, les constantes $\alpha_n, \beta_n, \gamma_n$ vérifient le système

$$\begin{cases} \alpha_n + \beta_n + \gamma_n = 1 \\ 4\alpha_n + 2\beta_n + \gamma_n = 2^n \\ 9\alpha_n + 3\beta_n + \gamma_n = 3^n \end{cases} \Leftrightarrow \begin{cases} \alpha_n = \frac{1 - 2^{n+1} + 3^n}{2} \\ \beta_n = \frac{-5 + 2^{n+3} - 3^{n+1}}{2} \\ \gamma_n = 3(1 - 2^n + 3^{n-1}) \end{cases}$$

On obtient donc

$$A^{n} = \left(\frac{1 - 2^{n+1} + 3^{n}}{2}\right) A^{2} + \left(\frac{-5 + 2^{n+3} - 3^{n+1}}{2}\right) A + \left(3(1 - 2^{n} + 3^{n-1})\right) I$$

Exercice: examen juin 2019

Soit $E = \mathcal{M}_2(\mathbb{R})$ l'espace vectoriel des matrices carrées réelles 2×2 . On considère l'endomorphisme de E défini par $u(A) = \frac{{}^t A + A}{2}$ où ${}^t A$ est la matrice transposée de A dont les colonnes sont les lignes de A.

- 1. Montrer que u est un endomorphisme de E.
- 2. Montrer que 0 et 1 sont des valeurs propres de u.
- 3. Montrer que $u^2 = u$.
- 4. En déduire que u est diagonalisable.
- 5. Trouver une base de E qui diagonalise u.
- 1. Il est clair que,
 - pour tout $A \in \mathcal{M}_n(\mathbb{R})$, ${}^tA \in \mathcal{M}_n(\mathbb{R})$ et donc $u(A) = \frac{{}^tA + A}{2} \in \mathcal{M}_n(\mathbb{R})$.

• Pour tout $A, B \in \mathcal{M}_n(\mathbb{R})$ et tout $\lambda \in \mathbb{R}$, ${}^t(A + \lambda B) = {}^tA + \lambda^tB$ et donc

$$u(A + \lambda B) = u(A) + \lambda u(B).$$

- pour tout $A \in \mathcal{M}_n(\mathbb{R})$, $u^2(A) = u(A)$. Donc u est un endomorphisme de E et $u^2 = u$.
- 2. Comme $u(I_n) = I_n$ on déduit que 1 est une valeur propre de u. De même, si J est la matrice dont tous les coefficients sont nuls sauf $a_{n1} = -a_{1n} = 1$ alors u(J) = 0 et donc 0 est une valeur propre de u
- 3. D'après la question précédente, le polynôme $P(X) = X^2 X = X(X 1)$ est un polynôme annulateur de u. Comme P est scindé à racine simple on déduit que u est diagonalisable.
- 4. Supposons désormais que n=2.
 - (a) Soit $A = \begin{pmatrix} x & y \\ z & t \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$. Il est clair que

$$A \in \ker(u - \mathrm{id}_E) \iff u(A) = \frac{{}^t A + A}{2} = A$$

ce qui équivaut à $u(A) = {}^{t}A$. Autrement dit, A est une matrice symétrique, ce qui signifie aussi

$$\begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} x & z \\ y & t \end{pmatrix}.$$

Il vient que y = z. D'où $E_1 = \ker(u - \mathrm{id}_E)$ est le sous espace vectoriel de $\mathcal{M}_2(\mathbb{R})$ formé des matrices symétriques, c-à-d les matrices de la forme

$$\begin{pmatrix} x & y \\ y & t \end{pmatrix} = x \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + y \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + t \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

Ainsi E_1 est engendré par

$$M_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad M_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \quad \text{et} \quad M_3 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

De même,

$$A = \begin{pmatrix} x & y \\ z & t \end{pmatrix} \in \ker(u + \mathrm{id}_E) \iff u(A) = \frac{{}^{t}A + A}{2} = 0,$$

ou encore ${}^t\!A=-A.$ Dans ce cas, on dit que A est une matrice anti-symétrique. Plus explicitement, ${}^t\!A=-A$ signifie que

$$\begin{pmatrix} -x & -y \\ -z & -t \end{pmatrix} = \begin{pmatrix} x & z \\ y & t \end{pmatrix},$$

ou encore x = t = 0 et y = -z. Finalement, $E_{-1} = \ker(u + \mathrm{id}_E)$ la droite vectorielle engendrée par $M_4 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

(b) Il est clair que (M_1, M_2, M_3, M_4) est une base de E et que la matrice de u dans cette base est

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

Exercice (examen Janvier 2018)

Soit u_m l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est $A_m = \begin{pmatrix} 2 & m-4 & 1 \\ 3 & m-4 & 0 \\ 2 & m-4 & 1 \end{pmatrix}$

- 1. Calculer le polynôme caractéristique de u_m .
- 2. Supposons que m = 0.
 - (a) Déterminer les sous espaces propres de u_0 .
 - (b) L'endomorphisme u_0 est-il diagonalisable? trigonalisable?
 - (c) Déterminer les sous espaces caractéristiques de u_0 .
 - (d) Déterminer une base dans laquelle la matrice de u_0 est $\begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$
- 3. Supposons que m = 1.
 - (a) Déterminer les sous espaces propres de u_1 .
 - (b) Déterminer le noyau $\ker u_1^2$.
 - (c) Déterminer une base dans laquelle la matrice de u_1 est $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$
- 1. Le polynôme caractéristique de u_m est par définition $P_{u_m}(X) = \det(A_m XI)$. On a alors

$$P_{u_m}(X) = \begin{vmatrix} 2 - X & m - 4 & 1 \\ 3 & m - 4 - X & 0 \\ 2 & m - 4 & 1 - X \end{vmatrix} = \begin{vmatrix} m - 1 - X & m - 4 & 1 \\ m - 1 - X & m - 4 - X & 0 \\ m - 1 - X & m - 4 & 1 - X \end{vmatrix}$$
$$= (m - 1 - X) \begin{vmatrix} 1 & m - 4 & 1 \\ 1 & m - 4 - X & 0 \\ 1 & m - 4 & 1 - X \end{vmatrix} = (m - 1 - X) \begin{vmatrix} 1 & m - 4 & 1 \\ 0 & -X & -1 \\ 0 & 0 & -X \end{vmatrix} = X^2(m - 1 - X).$$

- 2. Les valeurs propres de u_m sont les racines de son polynôme caractéristique. Ainsi
 - si $m \neq 1$ alors $\sigma(u_m) = \{m-1, 0\}$ avec $\lambda_1 = m-1$ est une valeur propre simple et $\lambda_2 = 0$ une valeur propre double de u_m .
 - Si m=1 alors $\sigma(u_1)=\{0\}$ et u_m admet une seule valeur propre $\lambda=0$ qui est de multiplicité 3
- 3. Supposons que m = 0. Alors $\sigma(u_0) = \{-1, 0\}$.
 - (a) Le sous espace propre associé à la valeur propre 0 est $E_0 = \ker(u_0)$. Un vecteur (x, y, z) appartient à E_0 si, et seulement si,

$$A_0 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 & -4 & 1 \\ 3 & -4 & 0 \\ 2 & -4 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},$$

ce qui équivaut aussi à x = z et 3x = 4y. Ainsi E_0 est la droite vectorielle engendrée par le vecteur le vecteur (4,3,4).

Le sous espace propre associé à la valeur propre -1 est $E_{-1} = \ker(u_0 + \mathrm{id}_{\mathbb{R}^3})$. Un vecteur (x, y, z) appartient à E_{-1} si, et seulement si,

$$(A_0 + I) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 & -4 & 1 \\ 3 & -3 & 0 \\ 2 & -4 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

ce qui équivaut aussi à x = y = z. Il vient que E_{-1} est la droite vectorielle engendrée par (1,1,1).

- (b) L'endomorphisme u_0 n'est pas diagonalisable car la dimension du sous espace propre E_0 est 1 alors que 0 est une valeur propre 0 double. Néanmoins u_0 est trigonalisable car son polynôme caractéristique est scindé.
- (c) La valeur propre -1 est simple et donc le sous espace caractéristique associé coïncide avec le sous espace propre E_{-1} , autrement dit $\mathcal{N}_{-1} = E_{-1}$ est la droite vectorielle engendrée par le vecteur (1, 1, 1).

Le sous espace caractéristique associé à la valeur propre double 0 est donné par $\mathcal{N}_0 = \ker(u_0^2)$. Un vecteur (x, y, z) appartient à \mathcal{N}_0 si, et seulement si,

$$A_0^2 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -6 & 4 & 3 \\ -6 & 4 & 3 \\ -6 & 4 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Ainsi \mathcal{N}_0 est le plan vectoriel d'équation 6x-4y-3Z=0, ou encore $\mathcal{N}_0=\mathrm{Vect}\,((4,3,4),(1,0,2))$.

(d) D'abord on pose $v_1 := (1, 1, 1)$. Ensuite, on choisit un vecteur de \mathcal{N}_0 qui n'appartient pas à E_0 par exemple $v_3 = (1, 0, 2)$ et puis on pose $v_2 = u_0(1, 0, 2) = (4, 3, 4)$ (on observe que $v_2 \in E_0$). On vérifie que la famille (v_1, v_2, v_3) est une base de \mathbb{R}^3 dans la quelle la matrice de

$$u_0$$
 est de la forme $\begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

- 4. Supposons que m=1. Alors $\sigma(u_1)=\{0\}$ et 0 est une valeur propre de multiplicité 3.
 - (a) Le sous espace propre associé à la valeur propre 0 est $E_0 = \ker(u_1)$. Un vecteur (x, y, z) appartient à E_0 si, et seulement si,

$$A_1 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 & -3 & 1 \\ 3 & -3 & 0 \\ 2 & -3 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

On trouve que E_0 est la droite vectorielle engendrée par (1, 1, 1). En particulier, u_1 n'est pas diagonalisable.

(b) Un vecteur (x, y, z) appartient à $ker(u_1^2)$ si, et seulement si,

$$A_1^2 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -3 & 0 & 3 \\ -3 & 0 & 3 \\ -3 & 0 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Il s'agit du plan vectoriel d'équation x = z ou encore Vect ((1,0,1),(0,1,0)).

- (c) D'abord on remarque d'après les question précédente que u_1 est un endomorphisme nilpotent d'indice 3. Pour répondre à cette question on procède de la façon suivante :
 - i. on choisit un vecteur v_3 qui n'appartient pas à $\ker(u_1^2)$, par exemple $v_3 = (1,0,0)$.
 - ii. Ensuite on pose $v_2 = u_2(v_3) = (2, 3, 2)$ (qui lui appartient à $\ker(u_1^2)$ mais n'appartient pas à $\ker(u_1)$).
 - iii. Puis on prend $v_1 = u_1^2(v_3) = u_1(v_2) = (-3, -3, -3)$ qui appartient à $\ker(u_1)$.

On vérifie rapidement que (v_1, v_2, v_3) est une base qui répond à la question.

Exercice (examen Janvier 2019)

Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est

$$A = \begin{pmatrix} 2 & 2 & -1 \\ -3 & -3 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$

- 1. Calculer le polynôme caractéristique de u.
- 2. En déduire l'ensemble des valeurs propres de u. L'endomorphisme u est-il bijectif?
- 3. Déterminer les sous espaces propres de u.
- 4. L'endomorphisme u est-il diagonalisable? trigonalisable? (justifier vos réponses)
- 5. Déterminer les sous espaces caractéristiques de u.
- 6. Trouver une base dans laquelle la matrice de u est une matrice triangulaire T que l'on déterminera.

Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est

$$A = \begin{pmatrix} 2 & 2 & -1 \\ -3 & -3 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$

1. Le polynôme caractéristique de u est donné par :

$$P_{u}(X) = \begin{vmatrix} 2 - X & 2 & -1 \\ -3 & -3 - X & 1 \\ 1 & 1 & -1 - X \end{vmatrix} = \begin{vmatrix} -1 - X & -1 - X & 0 \\ -3 & -3 - X & 1 \\ 1 & 1 & -1 - X \end{vmatrix} \quad (L_{1} \curvearrowright L_{1} + L_{2})$$

$$= -(1 + X) \begin{vmatrix} 1 & 1 & 0 \\ -3 & -3 - X & 1 \\ 1 & 1 & -1 - X \end{vmatrix} = -(1 + X) \begin{vmatrix} 1 & 0 & 0 \\ -3 & -X & 1 \\ 1 & 0 & -1 - X \end{vmatrix} \quad (C_{2} \curvearrowright C_{2} - C_{1})$$

$$= -X(1 + X)^{2}$$

- 2. Les valeurs propres de u sont les racines de son polynôme caractéristique. Ainsi les valeurs propres de u sont : $\lambda_1 = 0$ valeur propre simple et $\lambda_2 = -1$ valeur propre double de u. L'endomorphisme u n'est pas bijectif car 0 est une valeur propre de u et donc le noyau ker u est non réduit au vecteur nul.
- 3. Calcul des sous espaces propres de u.
 - Calcul de $E_0 = \ker(u)$. On a $(x, y, z) \in E_0$ si et seulement si

$$A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 & 2 & -1 \\ -3 & -3 & 1 \\ 1 & 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

ce qui équivaut aussi à

$$\begin{cases} x+y = 0 \\ z = 0 \end{cases}$$

Ainsi $E_0 = \ker(u)$ est la droite vectorielle engendrée par $v_1 = (1, -1, 0)$.

• Calcul de $E_{-1} = \ker(u + \mathrm{id})$. On a $(x, y, z) \in E_{-1}$ si et seulement si

$$(A+I_3) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 & 2 & -1 \\ -3 & -2 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

ce qui équivaut aussi à

$$\begin{cases} x+y &= 0 \\ x-z &= 0 \end{cases}$$

Ainsi E_{-1} est la droite vectorielle engendrée par $v_2 = (1, -1, 1)$.

- 4. Comme -1 est une valeur propre double dont le sous espace propre est de dimension 1 on déduit que u n'est pas diagonalisable. Cependant, u est trigonalisable car son polynôme caractéristique est scindé.
- 5. Calcul des sous espaces caractéristiques de u.
 - Comme 0 est une valeur propre simple, le sous espace caractéristique associé \mathcal{N}_0 n'est rien d'autre que le sous espace propre E_0 . Ainsi \mathcal{N}_0 est la droite vectorielle engendrée par $v_1 = (1, -1, 0)$.
 - Calcul de $\mathcal{N}_{-1} = \ker(u + \mathrm{id})^2$. On a $(x, y, z) \in \mathcal{N}_{-1}$ si et seulement si

$$(A+I_3)^2 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 & 1 & -1 \\ -2 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

ce qui équivaut aussi à

$$2x + y - z = 0$$

Ainsi \mathcal{N}_{-1} est le plan vectoriel engendré par $v_2 = (1, -1, 1)$ et $v_3 = (-1, 2, 0)$.

6. D'après le lemme des noyaux $E = \mathcal{N}_0 \oplus \mathcal{N}_{-1}$, et donc (v_1, v_2, v_3) est une base de E. De plus, $u(v_1) = 0, u(v_2) = -v_2$ et $u(v_3) \in \mathcal{N}_{-1}$ car \mathcal{N}_{-1} est stable par u. Un calcul simple montre que

$$u(v_3) = v_3 + v_2.$$

Finalement la matrice de u dans la base (v_1, v_2, v_3) est la matrice triangulaire

$$T = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix}.$$

Exercice (examen Juin 2019)

Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est $A = \begin{pmatrix} 4 & -1 & -1 \\ 4 & 1 & -4 \\ -1 & 0 & 4 \end{pmatrix}$

- 1. Calculer le polynôme caractéristique de u.
- 2. L'endomorphisme u est-il bijectif? Si oui donner son inverse comme polynôme de u.
- 3. Déterminer les sous espaces propres de u.
- 4. L'endomorphisme u est-il diagonalisable? trigonalisable?
- 5. Dans toute la suite on désigne par id₃ l'application identité de \mathbb{R}^3 . Calculer le noyau $\ker(u-3id_3)^2$.
- 6. Soit e un vecteur non nul qui n'appartient pas à $ker(u-3id_3)^2$. Posons

$$v_1 = (u - 3 id_3)^2 e$$
, $v_2 = (u - 3 id_3)e$ et $v_3 = e$.

Montrer que (v_1, v_2, v_3) est une une base de \mathbb{R}^3 . Donner la matrice de u dans cette base.

7. Donner une matrice inversible P et une matrice triangulaire T telles que $P^{-1}AP = T$ (on ne demande pas de calculer P^{-1}).

7

Exercice (examen Juin 2018)

Soit φ un endomorphisme de \mathbb{R}^3 ayant une seule valeur propre $\lambda = 2$ et supposons que le sous espace propre E_2 associé à cette valeur propre est de dimension 2.

- 1. Soit u un vecteur quelconque de E_2 . Que vaut $\varphi(u)$?
- 2. Soit (u_1, u_2) une base de E_2 et u_3 un vecteur de \mathbb{R}^3 n'appartenant pas à E_2 .
 - (a) Montrer que (u_1, u_2, u_3) est une base de \mathbb{R}^3 .
 - (b) Montrer que la matrice de φ dans la base (u_1, u_2, u_3) est de la forme

$$\begin{pmatrix} 2 & 0 & a \\ 0 & 2 & b \\ 0 & 0 & c \end{pmatrix}, \quad où \ a, \ b, \ c \ sont \ des \ nombres \ r\'eels.$$

- (c) En déduire le polynôme caractéristique de φ en fonction de c. En déduire que c=2.
- 3. Montrer que l'endomorphisme φ n'est pas diagonalisable.
- 4. Soit ε_3 un vecteur n'appartenant pas à E_2 . On pose $\varepsilon_2 = \varphi(\varepsilon_3) 2\varepsilon_3$.
 - (a) Montrer que le vecteur ε_2 est non nul et appartient à E_2 .
 - (b) Montrer qu'il existe un vecteur $\varepsilon_1 \in E_2$ tel que $(\varepsilon_1, \varepsilon_2, \varepsilon_3)$ soit une base de \mathbb{R}^3 .
 - (c) Quelle est la matrice de φ dans la base $(\varepsilon_1, \varepsilon_2, \varepsilon_3)$?
- 5. Soit ψ l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est donnée par

$$A = \begin{pmatrix} 3 & -3 & -4 \\ -1 & 5 & 4 \\ 1 & -3 & -2 \end{pmatrix}.$$

- (a) Calculer le polynôme caractéristique de ψ .
- (b) Calculer les sous espaces propres de ψ .
- (c) Trouver une base dans laquelle la matrice de ψ est de la forme

$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}.$$

Exercice (examen Janvier 2019)

Soit a, b deux nombres réels. Posons

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 , $J = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$ et $\Lambda = \begin{pmatrix} a+b & b \\ -b & a-b \end{pmatrix} = aI + bJ$.

- 1. Montrer que J est une matrice nilpotente d'indice 2.
- 2. Montrer que pour tout $n \ge 1$ on $a : \Lambda^n = a^n I + na^{n-1} b J$.
- 3. Pour tout $N \ge 1$ déterminer des réels α_N, β_N tels que

$$I + \Lambda + \dots + \Lambda^N = \alpha_N I + \beta_N J.$$

- 4. Supposons |a| < 1.
 - (a) Expliquer pourquoi la série $\sum_{n\geq 0} a^n$ est absolument convergente et trouver sa somme.
 - (b) Montrer que la série $\sum_{n\geq 1} na^{n-1}$ est convergente et trouver sa somme. Indication : on pourra utiliser le produit de Cauchy de la série $\sum_{n\geq 0} a^n$ avec elle même.
 - (c) En déduire les limites $\alpha := \lim_{N \to +\infty} \alpha_N$ et $\beta := \lim_{N \to +\infty} \beta_N$.
 - (d) Montrer que $\alpha I + \beta J$ est la matrice inverse de $I \Lambda$. (Autrement dit, nous avons montré que $I + \Lambda + \cdots + \Lambda^N \underset{N \to +\infty}{\longrightarrow} (I \Lambda)^{-1}$.)
- 1. Comme $J \neq 0$ et un calcul direct montre que $J^2 = 0$ on déduit que la matrice J est nilpotente d'indice 2.
- 2. Soit $n \ge 1$. Comme I et J commutent on peut appliquer la formule du binôme :

$$\Lambda^{n} = (aI + bJ)^{n} = \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} a^{n-k} b^{k} J^{k} = a^{n} I + n a^{n-1} bJ.$$

La dernière égalité vient du fait que $J^k = 0$ pour tout $k \ge 2$.

3. Soit $N \ge 1$. D'après la question précédente,

$$I + \Lambda + \dots + \Lambda^{N} = (\sum_{n=0}^{N} a^{n})I + (b\sum_{n=1}^{N} na^{n-1})J$$

Il suffit de prendre

$$\alpha_N = \sum_{n=0}^{N} a^n$$
 et $\beta_N = b \sum_{n=1}^{N} n a^{n-1}$.

- 4. Supposons |a| < 1.
 - (a) La série $\sum_{n\geq 0}a^n$ est une série géométrique de raison a. Comme |a|<1, on déduit que cette série est absolument convergente et

$$\sum_{n=0}^{+\infty} a^n = \frac{1}{1-a}$$

(b) Calculons d'abord le terme général produit de Cauchy de la série $\sum_{n\geq 0}a^n$ avec elle même. Il est donné par

$$w_n = \sum_{k=0}^{n} a^k a^{n-k} = (n+1)a^n.$$

Comme $\sum_{n\geq 0} a^n$ est absolument convergente la série $\sum_{n\geq 0} w_n$ est convergente et

$$\sum_{n=0}^{+\infty} w_n = \left(\sum_{n=0}^{+\infty} a^n\right)^2 = \frac{1}{(1-a)^2}.$$

Maintenant il suffit de remarquer que pour tout $n \ge 1$, $w_{n-1} = na^{n-1}$. La série $\sum_{n \ge 1} na^{n-1}$ est donc convergente de somme $\frac{1}{(1-a)^2}$.

(c) On a

$$\alpha := \lim_{N \to +\infty} \alpha_n = \lim_{N \to +\infty} \sum_{n=0}^{N} a^n = \sum_{n=0}^{+\infty} a^n = \frac{1}{1-a}.$$

De même,

$$\beta := \lim_{n \to +\infty} \beta_n = \frac{1}{(1-a)^2}.$$

(d) Un calcule direct montre que $(\alpha I + \beta J)(I - \Lambda) = (I - \Lambda)(\alpha I + \beta J) = I$. Ainsi la matrice $I - \Lambda$ est inversible et $(I - \Lambda)^{-1} = \alpha I + \beta J$. Autrement dit, nous avons montré que $I + \Lambda + \cdots + \Lambda^N \underset{N \to +\infty}{\longrightarrow} (I - \Lambda)^{-1}$.