Práctica 2

1. Sea $(A_n)_{n\in\mathbb{N}}$ una sucesión de conjuntos y sea $A=\bigcup_{n\in\mathbb{N}}A_n$. Hallar una sucesión $(B_n)_{n\in\mathbb{N}}$ de conjuntos disjuntos dos a dos tales que $B_n\subseteq A_n$ para todo $n\in\mathbb{N}$ y $A=\bigcup_{n\in\mathbb{N}}B_n$.

Diagrama ((An) time inhinitor conjuntor, no 6)

Tomo esda An

Lo vuelvo disjunto con los elementos de (An) que ya recorri :

B1:= A1

Ahorz, Az prede ser AINAz & p

Cono qui ero que seen disjuntos

Podría terrel caso

 $= > B_3 := A_3 \setminus (A_1 \cup A_2)$

Entonces si

pera ceda Br tomo An y le quito todo elemento comparti do con los A: con i « n

$$\mathfrak{B}_{n} := A_{n} \setminus \bigcup_{n=1}^{\infty} A_{n}$$

Ceso Bere

Paro Indictivo

= A n

2. Dada una función $f: X \longrightarrow Y$ y subconjuntos A, B de X y C, D de Y, probar que

(a)
$$f(A \cup B) = f(A) \cup f(B)$$
.

(b) $f(A \cap B) \subseteq f(A) \cap f(B)$. ¿Vale la igualdad?

(c)
$$f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$$
.

(d)
$$f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$$
.

(e) $A \subseteq f^{-1}(f(A))$. Probar que si f es inyectiva, vale la igualdad.

(f) $f(f^{-1}(C)) \subseteq C$. Probar que si f es survectiva, vale la igualdad.

(g)
$$f^{-1}(D)^c = f^{-1}(D^c)$$
.

gra

Si
$$x \in (A \cup B) \Rightarrow x \in A \circ x \in B (o amber)$$

Justo ember

$$f(A) = \{f(\alpha) : \alpha \in A\}$$

$$f(B) = \{f(b) : b \in B\}$$

$$f(A \cup B) = \{f(o) : c \in A \cup B\}$$

3. Decimos que $A \sim B$ (A es coordinable con B) si existe $f: A \longrightarrow B$ biyectiva. Probar que \sim es una relación de equivalencia.

Basta probar que n es

· Reflexiva: Función identidad es biyestiva.

· 53 métrico: A~B = B~A

· Transitiva: Compo de fyg/

Probado en Teórica 3

4. Hallar el cardinal de los siguientes conjuntos

$$\mathbb{Z}_{\leq -3}$$
 $5\mathbb{Z}$ $\mathbb{Z} \times \mathbb{N}$ $(-1,1) \cap \mathbb{Q}$

$$\mathbb{Z}_{\xi-3} = (-\infty, -3] \cap \mathbb{Z}$$

$$\mathbb{Z}_{n}$$

$$\mathbb{Z}_{n}$$

$$\mathbb{Z}_{n}$$

$$\mathbb{Z}_{n}$$

Cono
$$\mathbb{N} \sim \mathbb{Z}$$

b $\mathbb{Z} \sim \times \qquad \forall \times \subseteq \mathbb{Z}$
 $\mathbb{N} \sim \mathbb{Z}_{\xi-3}$

b)
$$5\mathbb{Z} = \{5.9: 9 \in \mathbb{Z}\}$$

$$= \{\mathbb{Z} \text{ mult. } 5\} \subseteq \mathbb{Z} \sim \mathbb{N}$$

$$\# 5\mathbb{Z} = \%$$

c)
$$\mathbb{Z} \times \mathbb{N}$$

If biyective entre $\mathbb{Z} \times \mathbb{N} \rightarrow \mathbb{N}$

$$\int (q, m) = \begin{cases} 2^q \cdot 3^m & \text{si } q \neq 0 \\ 5^q \cdot 3^m & \text{si } q \neq 0 \end{cases}$$

$$d)$$
 $(-1,1)$ $\cap \mathbb{Q}$ $\subset \mathbb{Q}$

$$\begin{pmatrix} (-1,1) & 0 & 0 \end{pmatrix} \sim \mathbb{Q}$$

$$\#(-1,1) \cap \mathbb{Q} = \mathcal{H}_{o}$$

5. Probar que si A y B son conjuntos entonces:

- (a) $\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$.
- (b) $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.
- (c) $A \sim B \Longrightarrow \mathcal{P}(A) \sim \mathcal{P}(B)$.

- **6.** (a) Sean $A\subseteq B$ conjuntos tales que A es numerable y $B\setminus A$ es infinito. Probar que $B\setminus A\sim B$.
 - (b) Hallar el cardinal del conjunto de los números irracionales.

