Introduction

In this case study I will be working for a fintech company that provides a subscription product to its users, which allows them to manage their bank accounts (saving accounts, credits cards etc.), provides them with personalized coupons, informs them of the latest low-APR loans available in the market and educates them on the best available methods to save money (like videos on saving money on taxes, free courses on financial health etc.).

I am in charge of identifying users who are likely to cancel their subscription so that the company can start building new features that the users may be interested in. These features can increase the engagement and interest of the users towards the product.

Importing Essential Libraries & Our Data

In [1]:	<pre>import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import random</pre>									
In [2]:	d	<pre>dataset = pd.read_csv('churn_data.csv')</pre>								
In [3]:	d	ataset	.head()							
Out[3]:	user churn age housing credit_score deposits withdrawal purchases_partners purchase									
			Ciidiii	age	ilousing	credit_score	aeposits	wittiurawai	purchases_partners	purchases
	0	55409		37.0	na	NaN	0	0	purchases_partners 0	purchases 0
			0	37.0						
	1	55409	0	37.0	na	NaN	0	0	0	0
	1	55409 23547	0 0 0	37.0 28.0	na R	NaN 486.0	0	0	0	0

5 rows × 31 columns

In [4]:	dataset.describe()								
out[4]:	user		churn	age	credit_score	deposits	withdrawal	purchas	
	count	27000.000000	27000.000000	26996.000000	18969.000000	27000.000000	27000.000000	27	
	mean	35422.702519	0.413852	32.219921	542.944225	3.341556	0.307000		
	std	20321.006678	0.492532	9.964838	61.059315	9.131406	1.055416		
	min	1.000000	0.000000	17.000000	2.000000	0.000000	0.000000		
	25%	17810.500000	0.000000	25.000000	507.000000	0.000000	0.000000		

	user	churn	age	credit_score	deposits	withdrawal	purchas
50%	35749.000000	0.000000	30.000000	542.000000	0.000000	0.000000	
75%	53244.250000	1.000000	37.000000	578.000000	1.000000	0.000000	
max	69658.000000	1.000000	91.000000	838.000000	65.000000	29.000000	,

8 rows × 28 columns

```
dataset.isnull().sum()
In [5]:
Out[5]: user
                                       0
                                       0
        churn
                                       4
        age
                                       0
        housing
                                    8031
        credit_score
                                       0
        deposits
                                       0
        withdrawal
                                       0
        purchases_partners
                                       0
        purchases
                                      0
        cc_taken
                                      0
        cc_recommended
                                      0
        cc_disliked
                                      0
        cc_liked
                                      0
        cc_application_begin
                                      0
        app_downloaded
                                      0
        web_user
                                      0
        app_web_user
                                      0
        ios_user
        android_user
                                      0
        registered_phones
                                      0
        payment_type
                                      0
        waiting_4_loan
                                      0
        cancelled_loan
                                      0
        received_loan
                                      0
        rejected_loan
                                      0
        zodiac_sign
                                      0
        left_for_two_month_plus
                                      0
        left_for_one_month
                                      0
        rewards_earned
                                    3227
        reward rate
                                       0
        is referred
        dtype: int64
In [6]: dataset.shape
```

Out[6]: (27000, 31)

Since the number of null columns in 'credit_score' and 'rewards_earned' is high, we will not use these columns for our model. Also only 4 rows are null in 'age' column so we can simply remove those rows and keep the age column for the model.

```
dataset = dataset[pd.notnull(dataset['age'])]
In [7]:
         dataset = dataset.drop(columns = ['credit_score', 'rewards_earned'])
In [8]:
         dataset.isnull().sum()
In [9]:
```

churn 0 0 age 0 housing 0 deposits withdrawal 0 purchases_partners 0 purchases cc_taken cc_recommended cc_disliked cc_liked cc_application_begin app_downloaded web_user app_web_user ios_user android_user registered_phones payment_type waiting_4_loan cancelled_loan received_loan rejected_loan zodiac_sign left_for_two_month_plus 0 left_for_one_month reward_rate is_referred dtype: int64

In [10]:	dataset.head()				
----------	----------------	--	--	--	--

ıt[10]:		user	churn	age	housing	deposits	withdrawal	purchases_partners	purchases	cc_taken	CC_I
	0	55409	0	37.0	na	0	0	0	0	0	
	1	23547	0	28.0	R	0	0	1	0	0	
	2	58313	0	35.0	R	47	2	86	47	0	
	3	8095	0	26.0	R	26	3	38	25	0	
	4	61353	1	27.0	na	0	0	2	0	0	

5 rows × 29 columns

Ou:

Visualization & Exploratory Data Analysis

```
In [11]: dataset.shape
Out[11]: (26996, 29)

In [12]: dataset2 = dataset.drop(columns = ['user', 'churn'])

In [13]: fig = plt.figure(figsize = (15, 12))
    plt.suptitle('Histogram of Numerical Columns', fontsize = 20)
    for i in range(1, dataset2.shape[1] + 1):
        plt.subplot(6, 5, i)
        f = plt.gca()
        f.axes.get_yaxis().set_visible(False)
        f.set_title(dataset2.columns.values[i - 1])
        vals = np.size(dataset2.iloc[:, i - 1].unique())
        plt.hist(dataset2.iloc[:, i - 1], bins = vals, color = '#3F5D7D')
```

```
plt.tight_layout(rect = [0, 0.03, 1, 0.95])
#plt.savefig('1. Histogram of Numerical Columns.png')
```

Histogram of Numerical Columns

plt.tight_layout(rect = [0, 0.03, 1, 0.95])
#plt.savefig('2. Pie Chart Distributions.png')


```
dataset[dataset2.waiting_4_loan == 1].churn.value_counts()
In [16]:
              27
Out[16]:
         Name: churn, dtype: int64
          dataset[dataset2.cancelled_loan == 1].churn.value_counts()
In [17]:
              274
Out[17]:
              234
         Name: churn, dtype: int64
          dataset[dataset2.rejected_loan == 1].churn.value_counts()
In [18]:
              107
Out[18]: 1
               25
         Name: churn, dtype: int64
          dataset[dataset2.received_loan == 1].churn.value_counts()
In [19]:
              292
         1
Out[19]:
              199
         Name: churn, dtype: int64
          dataset[dataset2.left_for_one_month == 1].churn.value_counts()
In [20]:
              266
         1
Out[20]:
              222
         Name: churn, dtype: int64
          dataset.drop(columns = ['churn', 'user', 'housing', 'payment_type', 'zodiac_sign']).
In [21]:
```

figsize = (20, 10), title = 'Correlation with the Dependant Variable', fontsize = 15

Out[21]: <AxesSubplot:title={'center':'Correlation with the Dependant Variable'}>

In [22]: plt.figure(figsize = (20, 15))
 sns.heatmap(dataset.corr(), annot = True, linewidths = 0.5, linecolor = 'black')
 #plt.savefig('4. Heatmap showing Correlation of all vriables with each other.png')

Out[22]: <AxesSubplot:>


```
In [23]: dataset = dataset.drop(columns = ['app_web_user'])
In [24]: dataset.to_csv('new_churn_data.csv', index = False)
```

Data Preparation

```
In [25]: dataset = pd.read_csv('new_churn_data.csv')
               user identifier = dataset['user']
In [26]:
                dataset = dataset.drop(columns = ['user'])
              dataset['housing'].value_counts()
In [27]:
Out[27]: na
                        13856
              R
                       10969
                         2171
              Name: housing, dtype: int64
              dataset = pd.get_dummies(dataset)
In [28]:
                dataset.columns
Out[28]: Index(['churn', 'age', 'deposits', 'withdrawal', 'purchases_partners',
                         'purchases', 'cc_taken', 'cc_recommended', 'cc_disliked', 'cc_liked', 'cc_application_begin', 'app_downloaded', 'web_user', 'ios_user',
                         'android_user', 'registered_phones', 'waiting_4_loan', 'cancelled_loan', 'received_loan', 'rejected_loan', 'left_for_two_month_plus',
                         'left_for_one_month', 'reward_rate', 'is_referred', 'housing_0',
                         'housing_R', 'housing_na', 'payment_type_Bi-Weekly',
                         'payment_type_Monthly', 'payment_type_Semi-Monthly',
'payment_type_Weekly', 'payment_type_na', 'zodiac_sign_Aquarius',
'zodiac_sign_Aries', 'zodiac_sign_Cancer', 'zodiac_sign_Capricorn',
'zodiac_sign_Gemini', 'zodiac_sign_Leo', 'zodiac_sign_Libra',
'zodiac_sign_Pisces', 'zodiac_sign_Sagittarius', 'zodiac_sign_Scorpio',
'zodiac_sign_Taurus', 'zodiac_sign_Virgo', 'zodiac_sign_na'],
                        dtype='object')
In [29]: dataset = dataset.drop(columns = ['housing_na', 'zodiac_sign_na', 'payment type na']
```

Splitting the dataset into the Training Set and Test Set

```
In [30]: X = dataset.drop(columns = 'churn')
y = dataset['churn']

In [31]: from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_st
```

Balancing the Training Set

```
In [32]: y_train.value_counts()
Out[32]: 0     12656
     1     8940
     Name: churn, dtype: int64

In [33]: pos_index = y_train[y_train.values == 1].index
     neg_index = y_train[y_train.values == 0].index
```

```
if len(pos_index) > len(neg_index):
              higher = pos_index
              lower = neg_index
          else:
              higher = neg_index
              lower = pos_index
          random.seed(0)
In [34]:
          higher = np.random.choice(higher, size = len(lower))
          lower = np.asarray(lower)
          new_indexes = np.concatenate((lower, higher))
          X_train = X_train.loc[new_indexes, ]
          y_train = y_train[new_indexes]
```

Feature Scaling

```
from sklearn.preprocessing import StandardScaler
In [35]:
          sc = StandardScaler()
          X_train2 = pd.DataFrame(sc.fit_transform(X_train))
          X_test2 = pd.DataFrame(sc.transform(X_test))
          X_train2.columns = X_train.columns.values
          X_test2.columns = X_test.columns.values
          X_train2.index = X_train.index.values
          X_test2.index = X_test.index.values
          X_train = X_train2
          X_{\text{test}} = X_{\text{test2}}
```

In [36]:	X_train		
----------	---------	--	--

Out[36]:		age	deposits	withdrawal	purchases_partners	purchases	cc_taken	cc_recommended
	11695	-0.619972	-0.354877	-0.281152	-0.582693	-0.354215	-0.170599	-0.910593
	19766	-0.418955	-0.354877	-0.281152	-0.630294	-0.354215	-0.170599	0.317446
	8354	0.284606	-0.354877	-0.281152	-0.630294	-0.354215	-0.170599	2.000313
	17883	0.586132	-0.354877	-0.281152	0.036120	-0.354215	-0.170599	-0.182866
	25149	-0.820989	-0.243187	-0.281152	-0.106683	-0.240408	-0.170599	-0.580842
	•••							
	7313	-1.022006	-0.354877	-0.281152	-0.630294	-0.354215	-0.170599	-0.956076
	25250	0.385114	0.091882	-0.281152	-0.439890	0.101013	-0.170599	1.420406
	1323	0.787149	-0.354877	-0.281152	-0.630294	-0.354215	-0.170599	-0.501247
	14218	-0.418955	-0.243187	-0.281152	1.511751	-0.240408	-0.170599	0.920094
	2565	0.284606	-0.354877	-0.281152	0.321726	-0.354215	-0.170599	-0.057788

17880 rows × 41 columns

Fitting Model to the Training Set

```
classifier = LogisticRegression(random_state = 0)
    classifier.fit(X_train, y_train)

Out[37]: LogisticRegression(random_state=0)
```

Predicting the Test Set

```
y_pred = classifier.predict(X_test)
In [38]:
In [39]:
          from sklearn.metrics import confusion_matrix, accuracy_score, f1_score, precision_sc
In [40]:
          cm = confusion_matrix(y_test, y_pred)
          sns.heatmap(cm, annot = True, fmt = 'g')
          print('Test Data Accuracy: %0.4f' %accuracy_score(y_test, y_pred))
          #plt.savefig('5. Confusion Matrix Before Feature Engineering.png')
          Test Data Accuracy: 0.6113
                                                        - 1600
                    1635
                                        1531
                                                        - 1400
          0 -
                                                        - 1200
                                                        - 1000
                     568
                                        1666
                                                         800
                                         1
          precision_score(y_test, y_pred)
In [41]:
         0.5211135439474507
Out[41]:
          f1_score(y_test, y_pred)
In [42]:
Out[42]: 0.6135150064444853
In [43]:
          recall_score(y_test, y_pred)
         0.7457475380483438
Out[43]:
In [44]:
          print((classification_report(y_test, y_pred)))
```

K-Fold Cross Validation

0

1

accuracy

macro avg

weighted avg

precision

0.74

0.52

0.63

0.65

```
In [45]: from sklearn.model_selection import cross_val_score
    accuracies = cross_val_score(estimator = classifier, X = X_train, y = y_train, cv =
```

recall f1-score

0.61

0.61

0.61

0.61

0.61

0.52

0.75

0.63

0.61

support

3166

2234

5400

5400

5400

Analyzing Coefficients

coef	features		Out[49]:
-0.166823	age	0	
0.146401	deposits	1	
0.054753	withdrawal	2	
-0.753717	purchases_partners	3	

purchases

cc_taken

cc disliked

cc_liked

web_user

ios_user

android_user

registered_phones

waiting_4_loan

cancelled_loan

received_loan

rejected_loan

reward_rate

is_referred

housing_O

left_for_two_month_plus

left_for_one_month

cc_recommended

cc_application_begin

app_downloaded

-0.275242

0.064549

0.041492

0.006630

0.000965

0.020635

-0.021762

0.140722

0.100021

0.021666

0.091305

-0.031049

0.063907

0.110983

0.086127

0.031455

0.036311

-0.187199

0.036385

-0.023197

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

	features	coef
24	housing_R	0.038735
25	payment_type_Bi-Weekly	-0.034023
26	payment_type_Monthly	-0.009352
27	payment_type_Semi-Monthly	-0.012682
28	payment_type_Weekly	0.047600
29	zodiac_sign_Aquarius	-0.070619
30	zodiac_sign_Aries	-0.026576
31	zodiac_sign_Cancer	-0.017988
32	zodiac_sign_Capricorn	0.012967
33	zodiac_sign_Gemini	-0.057546
34	zodiac_sign_Leo	-0.033866
35	zodiac_sign_Libra	-0.072067
36	zodiac_sign_Pisces	0.003923
37	zodiac_sign_Sagittarius	-0.023210
38	zodiac_sign_Scorpio	-0.071110
39	zodiac_sign_Taurus	-0.046317
40	zodiac_sign_Virgo	-0.026490

Feature Selection

```
In [50]:
          X_train.shape
Out[50]: (17880, 41)
In [51]:
          from sklearn.feature selection import RFE
          classifier = LogisticRegression()
In [52]:
          rfe = RFE(classifier, 20)
          rfe = rfe.fit(X train, y train)
         D:\Anaconda\lib\site-packages\sklearn\utils\validation.py:67: FutureWarning: Pass n_
         features_to_select=20 as keyword args. From version 0.25 passing these as positional
         arguments will result in an error
           warnings.warn("Pass {} as keyword args. From version 0.25 "
In [53]:
          print(rfe.support_)
         [ True True True True True True False False False True
           True False True False True True False False False False
           True False False False True True False False True False True
          False False True False False]
         X_train.columns[rfe.support_]
In [54]:
Out[54]: Index(['age', 'deposits', 'withdrawal', 'purchases_partners', 'purchases',
                'cc_taken', 'cc_recommended', 'web_user', 'ios_user',
                'registered_phones', 'cancelled_loan', 'received_loan', 'rejected_loan',
                'reward_rate', 'housing_R', 'payment_type_Weekly',
```

```
'zodiac_sign_Aquarius', 'zodiac_sign_Gemini', 'zodiac_sign_Libra',
                 'zodiac_sign_Scorpio'],
                dtype='object')
In [55]:
          rfe.ranking_
                                  1, 1, 1, 20, 22, 16, 15, 1, 1, 14, 1, 4,
Out[55]: array([ 1,
                     1,
                         1,
                              1,
                     1, 6, 2, 1, 3, 7, 1, 8, 19, 18, 1, 1, 10, 13, 17, 1, 1, 21, 12, 1, 5, 11])
                  1,
                 9,
In [56]:
          classifier = LogisticRegression(random_state = 0)
          classifier.fit(X_train[X_train.columns[rfe.support_]], y_train)
Out[56]: LogisticRegression(random_state=0)
         Predicting the Test Set on Feature Engineering
In [57]:
          y_pred = classifier.predict(X_test[X_test.columns[rfe.support_]])
         cm = confusion_matrix(y_test, y_pred)
In [58]:
          sns.heatmap(cm, annot = True, fmt = 'g')
          print('Test Data Accuracy: %0.4f' %accuracy_score(y_test, y_pred))
          #plt.savefig('6. Confusion Matrix Ater Feature Engineering.png')
          Test Data Accuracy: 0.6091
                                                       - 1600
                                                       - 1400
                    1627
                                       1539
          0 -
                                                       - 1200
                                                       - 1000
                    572
                                       1662
                                                        800
                                                        600
                     Ó
          precision_score(y_test, y_pred)
In [59]:
         0.5192127460168697
Out[59]:
In [60]:
          f1_score(y_test, y_pred)
         0.6115915363385465
Out[60]:
          recall_score(y_test, y_pred)
In [61]:
Out[61]: 0.7439570277529096
          print((classification_report(y_test, y_pred)))
In [62]:
                                     recall f1-score
                        precision
                                                         support
                     0
                             0.74
                                       0.51
                                                 0.61
                                                            3166
                             0.52
                     1
                                       0.74
                                                 0.61
                                                            2234
              accuracy
                                                 0.61
                                                            5400
```

macro avg 0.63 0.63 0.61 weighted avg 0.65 0.61 0.61 5400 5400

NOTE that our accuracy has slightly decreased but the purpose of doing this was to find the 20 best features.

This showed us the features which were not helping in predicting if a customer would churn or not.

This is useful in putting the model into production because with only so less features, our model is faster and will consume much less time and resources.

Analyzing The Coefficients

payment_type_Weekly

```
In [63]:
           pd.concat([pd.DataFrame(X_train.columns[rfe.support_], columns = ['features']), pd.D
Out[63]:
                           features
            0
                               age -0.163279
                           deposits
                                     0.168174
            2
                         withdrawal
                                     0.060534
                  purchases_partners -0.741646
            4
                          purchases -0.290678
                           cc_taken
                                    0.068732
            6
                   cc_recommended
                                     0.053228
            7
                          web_user
                                     0.146408
            8
                           ios_user
                                     0.079578
                  registered_phones
                                     0.096093
           10
                      cancelled_loan
                                     0.063865
           11
                      received_loan
                                     0.109439
           12
                       rejected_loan
                                     0.086455
           13
                        reward rate -0.195838
           14
                         housing_R
                                    0.051519
                                     0.069942
```

	features	coef
16	zodiac_sign_Aquarius	-0.051281
17	zodiac_sign_Gemini	-0.037897
18	zodiac_sign_Libra	-0.053178
19	zodiac_sign_Scorpio	-0.052292

FINAL RESULTS

```
final_results = pd.concat([y_test, user_identifier], axis = 1).dropna()
In [64]:
          final_results['churn_prediction'] = y_pred
          final_results = final_results[['user', 'churn', 'churn_prediction']].reset_index(dro
          final_results
In [65]:
Out[65]:
                 user churn churn_prediction
             0 61353
                         1.0
                                          1
             1 67679
                         0.0
                                          0
             2 21269
                                          0
                         0.0
             3 69531
                         0.0
                                          1
             4 25997
                                          0
                         0.0
          5395 22377
                         0.0
                                          1
          5396 24291
                         1.0
                                          1
          5397 23740
                                          1
                         0.0
          5398 47663
                         1.0
                                          0
```

1

5400 rows × 3 columns

1.0

5399 52752