ANÁLISE Cap. 4 – Cálculo integral em \mathbb{R}^n

Dep. Matemática UMinho

Abril 2020

1/48

4.1 Integrais duplos e volumes

Definição de integral duplo

Funções integráveis

Integração em regiões gerais

Volume e área

Motivação

Seja R o retângulo $[a,b] \times [c,d]$ e $f:R \longrightarrow \mathbb{R}$ tal que $f(x,y) \ge 0 \qquad \text{em} \quad R.$

Motivação

Seja R o retângulo $[a, b] \times [c, d]$ e $f : R \longrightarrow \mathbb{R}$ tal que

$$f(x,y) \ge 0$$
 em R .

em
$$R$$
.

A superfície definida por z = f(x, y) e os planos

$$x = a$$
, $x = b$, $y = c$, $y = d$

formam a fronteira de uma região de \mathbb{R}^3 ,

MIEInf-2019/20 3/48

Motivação

Seja R o retângulo $[a, b] \times [c, d]$ e $f : R \longrightarrow \mathbb{R}$ tal que

$$f(x,y) \ge 0$$
 em R .

A superfície definida por z = f(x, y) e os planos

$$x = a$$
, $x = b$, $y = c$, $y = d$

formam a fronteira de uma região de \mathbb{R}^3 ,

[Problema] Determinar o volume da região do espaço compreendida entre o retângulo R e o gráfico da função f.

> MIEInf-2019/20 3/48

Definição de integral duplo

Seja $R = [a, b] \times [c, d]$ e $f : R \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$.

Definição de integral duplo

Seja
$$R = [a, b] \times [c, d]$$
 e $f : R \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$.

Considere-se uma subdivisão de [a, b] em n subintervalos

$$a = x_0 < x_1 < \cdots < x_{n-1} < x_n = b$$
;

Considere-se uma subdivisão [c, d] em k subintervalos

$$c = y_0 < y_1 < \cdots < y_{k-1} < y_k = d;$$

Às divisões anteriores corresponde uma subdivisão do retângulo $R \in n \times k$ retângulos $R_{ij} = [x_i, x_{i+1}] \times [y_j, y_{j+1}];$

Definição de integral duplo

Seja
$$R = [a, b] \times [c, d]$$
 e $f : R \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$.

Considere-se uma subdivisão de [a, b] em n subintervalos

$$a = x_0 < x_1 < \cdots < x_{n-1} < x_n = b;$$

 Considere-se uma subdivisão [c, d] em k subintervalos

$$c = y_0 < y_1 < \cdots < y_{k-1} < y_k = d;$$

Às divisões anteriores corresponde uma subdivisão do retângulo $R \in n \times k$ retângulos $R_{ij} = [x_i, x_{i+1}] \times [y_i, y_{i+1}];$

- ▶ Denote-se $\Delta x_i = x_{i+1} x_i$ e $\Delta y_i = y_{i+1} y_i$;
- A área do retângulo R_{ij} é então $\Delta A_{ij} = \Delta x_i \Delta y_j$.
- Para cada retângulo R_{ij} escolha-se um ponto $(\widetilde{x}_i, \widetilde{y}_j)$;

O volume do paralelipípedo de base R_{ij} e altura $f(\widetilde{x_i}, \widetilde{y_j})$ é

$$f(\widetilde{x}_i,\widetilde{y}_j)\Delta A_{ij}$$

O volume do sólido limitado por R e pelo gráfico de f pode ser aproximado por

$$\sum_{i=0}^{n-1} \sum_{i=0}^{k-1} f(\widetilde{x}_i, \widetilde{y}_j) \, \Delta A_{ij}$$

5/48

O volume do paralelipípedo de base R_{ij} e altura $f(\widetilde{x_i}, \widetilde{y_j})$ é

$$f(\widetilde{x}_i,\widetilde{y}_j)\Delta A_{ij}$$

O volume do sólido limitado por R e pelo gráfico de f pode ser aproximado por

$$\sum_{i=0}^{n-1} \sum_{i=0}^{k-1} f(\widetilde{x}_i, \widetilde{y}_j) \, \Delta A_{ij}$$

5/48

► A soma de Riemann de f relativa à subdivisão anterior de R é o número

$$\sum_{i=0}^{n-1} \sum_{j=0}^{k-1} f(\widetilde{x}_i, \widetilde{y}_j) \, \Delta A_{ij}$$

A soma de Riemann de f relativa à subdivisão anterior de R é o número

$$\sum_{i=0}^{n-1} \sum_{j=0}^{k-1} f(\widetilde{x}_i, \widetilde{y}_j) \, \Delta A_{ij}$$

▶ [Definição] Quando $n, k \longrightarrow \infty$ o valor da soma de Riemann de f designa-se por integral duplo de f em R e denota-se

$$\iint_{R} f(x, y) dA \quad \text{ou} \quad \iint_{R} f(x, y) dx dy \quad \text{ou} \quad \iint_{R} f(x, y) d(x, y).$$

A soma de Riemann de f relativa à subdivisão anterior de R é o número

$$\sum_{i=0}^{n-1} \sum_{j=0}^{k-1} f(\widetilde{x}_i, \widetilde{y}_j) \, \Delta A_{ij}$$

▶ [Definição] Quando $n, k \longrightarrow \infty$ o valor da soma de Riemann de f designa-se por integral duplo de f em R e denota-se

$$\iint_{R} f(x, y) dA \quad \text{ou} \quad \iint_{R} f(x, y) dx dy \quad \text{ou} \quad \iint_{R} f(x, y) d(x, y).$$

• Se existir o integral duplo de f em R, diz-se que f é integrável em R.

Sejam $f, g: R \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$ duas funções integráveis em R. Então:

1.
$$\iint_R [f(x,y) + g(x,y)] dA = \iint_R f(x,y) dA + \iint_R g(x,y) dA;$$

Sejam $f, g: R \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$ duas funções integráveis em R. Então:

1.
$$\iint_{R} [f(x,y) + g(x,y)] dA = \iint_{R} f(x,y) dA + \iint_{R} g(x,y) dA;$$

2.
$$\iint_{R} \lambda \ f(x,y) \, dA = \lambda \ \iint_{R} f(x,y) \, dA, \qquad \lambda \in \mathbb{R};$$

Sejam $f, g: R \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$ duas funções integráveis em R. Então:

1.
$$\iint_R [f(x,y) + g(x,y)] dA = \iint_R f(x,y) dA + \iint_R g(x,y) dA;$$

2.
$$\iint_{R} \lambda \ f(x,y) \, dA = \lambda \ \iint_{R} f(x,y) \, dA, \qquad \lambda \in \mathbb{R};$$

3.
$$\iint_{R} f(x,y)dA = \iint_{R_{1}} f(x,y)dA + \iint_{R_{2}} f(x,y)dA$$
$$R = R_{1} \cup R_{2} \in R_{1} \cap R_{2} = \emptyset;$$

Sejam $f, g: R \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$ duas funções integráveis em R. Então:

1.
$$\iint_R [f(x,y) + g(x,y)] dA = \iint_R f(x,y) dA + \iint_R g(x,y) dA;$$

2.
$$\iint_{R} \lambda \ f(x,y) \, dA = \lambda \ \iint_{R} f(x,y) \, dA, \qquad \lambda \in \mathbb{R};$$

3.
$$\iint_{R} f(x,y)dA = \iint_{R_{1}} f(x,y)dA + \iint_{R_{2}} f(x,y)dA$$
$$R = R_{1} \cup R_{2} e R_{1} \cap R_{2} = \emptyset;$$

4.
$$f \ge g \Longrightarrow \iint_{R} f(x, y) dA \ge \iint_{R} g(x, y) dA$$
;

Sejam $f, g: R \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$ duas funções integráveis em R. Então:

1.
$$\iint_R [f(x,y) + g(x,y)] dA = \iint_R f(x,y) dA + \iint_R g(x,y) dA;$$

2.
$$\iint_R \lambda \ f(x,y) \, dA = \lambda \ \iint_R f(x,y) \, dA, \qquad \lambda \in \mathbb{R};$$

3.
$$\iint_{R} f(x,y)dA = \iint_{R_{1}} f(x,y)dA + \iint_{R_{2}} f(x,y)dA$$
$$R = R_{1} \cup R_{2} e R_{1} \cap R_{2} = \emptyset;$$

4.
$$f \ge g \Longrightarrow \iint_{R} f(x, y) dA \ge \iint_{R} g(x, y) dA$$
;

•
$$f \ge 0 \Longrightarrow \iint_{B} f(x,y) dA \ge 0$$
;

Sejam $f, g: R \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$ duas funções integráveis em R. Então:

1.
$$\iint_R [f(x,y) + g(x,y)] dA = \iint_R f(x,y) dA + \iint_R g(x,y) dA;$$

2.
$$\iint_R \lambda \ f(x,y) \, dA = \lambda \ \iint_R f(x,y) \, dA, \qquad \lambda \in \mathbb{R};$$

3.
$$\iint_{R} f(x,y)dA = \iint_{R_{1}} f(x,y)dA + \iint_{R_{2}} f(x,y)dA$$
$$R = R_{1} \cup R_{2} eR_{1} \cap R_{2} = \emptyset;$$

4.
$$f \ge g \Longrightarrow \iint_{R} f(x, y) dA \ge \iint_{R} g(x, y) dA$$
;

•
$$f \ge 0 \Longrightarrow \iint_{B} f(x, y) dA \ge 0$$
;

5.
$$\left| \iint_R f(x,y) \, dA \right| \le \iint_R |f(x,y)| \, dA.$$

Como calcular um integral duplo?

► [Teorema] Toda a função contínua definida num retângulo fechado é integrável.

Como calcular um integral duplo?

- ► [Teorema] Toda a função contínua definida num retângulo fechado é integrável.
- ► [Teorema de Fubini]

Seja f uma função contínua no retângulo $R = [a, b] \times [c, d]$. Então, o integral duplo de f em R é dado por

$$\iint_{R} f(x, y) dA =$$

$$= \int_{a}^{b} \left[\int_{c}^{d} f(x, y) dy \right] dx = \int_{c}^{d} \left[\int_{a}^{b} f(x, y) dx \right] dy.$$

Exemplo

► Calcular o integral, onde R é o retângulo $[0, 1] \times [1, 2]$,

$$\iint_{R} (x^3 + y^2) \, dA.$$

Integração em regiões elementares de \mathbb{R}^2

Região do tipo I

$$a \le x \le b$$

 $\varphi_1(x) \le y \le \varphi_2(x)$

Integração em regiões elementares de \mathbb{R}^2

Região do tipo I

$$a \le x \le b$$

 $\varphi_1(x) \le y \le \varphi_2(x)$

Região do tipo II

$$c \le y \le d$$

 $\mu_1(y) \le x \le \mu_2(y)$

10/48

Regiões elementares de \mathbb{R}^2

► [Região do tipo I]

$$a \le x \le b$$

 $\varphi_1(x) \le y \le \varphi_2(x)$

MIEInf-2019/20 11/48

Regiões elementares de \mathbb{R}^2

[Região do tipo I]

$$a \le x \le b$$

 $\varphi_1(x) \le y \le \varphi_2(x)$

• $\mathcal{D} \subset \mathbb{R}^2$ diz-se uma região do tipo I de \mathbb{R}^2 , ou verticalmente simples, se existe um intervalo [a, b] e duas funções

$$\varphi_1: [a,b] \longrightarrow \mathbb{R}$$
 e $\varphi_2: [a,b] \longrightarrow \mathbb{R}$,

$$\varphi_2:[a,b]\longrightarrow \mathbb{R}$$

 $\varphi_1, \varphi_2 \in C^1(]a, b[)$ tais que

$$\mathcal{D} = \{(x, y) \in \mathbb{R}^2 : a \le x \le b, \ \varphi_1(x) \le y \le \varphi_2(x)\}$$

MIEInf-2019/20 11/48

Regiões elementares de \mathbb{R}^2

[Região do tipo I]

$$a \le x \le b$$

 $\varphi_1(x) \le y \le \varphi_2(x)$

• $\mathcal{D} \subset \mathbb{R}^2$ diz-se uma região do tipo I de \mathbb{R}^2 , ou verticalmente simples, se existe um intervalo [a, b] e duas funções

$$arphi_1:[a,b]\longrightarrow\mathbb{R}$$
 e $arphi_2:[a,b]\longrightarrow\mathbb{R},$ $arphi_1,arphi_2\in C^1(]a,b[)$ tais que $\mathcal{D}=\{(x,y)\in\mathbb{R}^2:a\leq x\leq b,\ arphi_1(x)\leq y\leq arphi_2(x)\}$

Neste caso.

$$\iint_{\mathcal{D}} f(x, y) \, dx \, dy = \int_{a}^{b} \left[\int_{\varphi_{1}(x)}^{\varphi_{2}(x)} f(x, y) \, dy \right] \, dx.$$

11/48

► [Região do tipo II]

$$c \le y \le d$$

 $\mu_1(y) \le x \le \mu_2(y)$

► [Região do tipo II]

$$c \le y \le d$$

$$\mu_1(y) \le x \le \mu_2(y)$$

• $\mathcal{D} \subset \mathbb{R}^2$ diz-se uma região do tipo II de \mathbb{R}^2 , ou horizontalmente simples, se existe um intervalo [c, d] e duas funções

$$\mu_1:[c,d]\longrightarrow \mathbb{R}$$
 e $\mu_2:[c,d]\longrightarrow \mathbb{R}$

 $\mu_1, \mu_2 \in C^1(]c, d[)$ tais que

$$\mathcal{D} = \{(x, y) \in \mathbb{R}^2 : c \le y \le d, \ \mu_1(y) \le x \le \mu_2(y)\}$$

Neste caso,

$$\iint_{\mathcal{D}} f(x,y) dx dy = \int_{c}^{d} \left[\int_{\mu_{1}(y)}^{\mu_{2}(y)} f(x,y) dx \right] dy.$$

► [Região do tipo II]

$$c \le y \le d$$

 $\mu_1(y) \le x \le \mu_2(y)$

• $\mathcal{D} \subset \mathbb{R}^2$ diz-se uma região do tipo II de \mathbb{R}^2 , ou horizontalmente simples, se existe um intervalo [c,d] e duas funções

$$\mu_1:[c,d]\longrightarrow \mathbb{R}$$
 e $\mu_2:[c,d]\longrightarrow \mathbb{R}$ $\mu_1,\mu_2\in C^1(]c,d[)$ tais que
$$\mathcal{D}=\{(x,y)\in \mathbb{R}^2:c\leq y\leq d,\ \mu_1(y)\leq x\leq \mu_2(y)\}$$

Neste caso,

$$\iint_{\mathcal{D}} f(x,y) \, dx \, dy = \int_{c}^{d} \left[\int_{\mu_{1}(y)}^{\mu_{2}(y)} f(x,y) \, dx \right] \, dy.$$

▶ [Região do tipo III] $\mathcal{D} \subset \mathbb{R}^2$ diz-se uma região do tipo III de \mathbb{R}^2 se for, simultaneamente, uma região do tipo I e do tipo III.

Exemplo

Para cada uma das seguintes regiões D escreva $\iint_D f \, dA$ na forma de dois integrais iterados

Exemplo

Calcular

$$\iint_{\mathcal{D}} xy \, dx \, dy$$

quando

$$\mathcal{D} = \{ (x, y) \in \mathbb{R}^2 : 0 \le x \le 2, \ 0 \le y \le x^2 \}.$$

- a) Usando uma região verticalmente simples.
- b) Usando uma região horizontalmente simples.

Observação

Antes de calcular um integral duplo é aconselhável fazer um esboço da região de integração.

Observação

Antes de calcular um integral duplo é aconselhável fazer um esboço da região de integração.

A ordem de integração dy dx corresponde a uma subdivisão "vertical"da região de integração, enquanto que a ordem dx dy corresponde a uma subdivisão "horizontal".

Observação

 Antes de calcular um integral duplo é aconselhável fazer um esboço da região de integração.

A ordem de integração dy dx corresponde a uma subdivisão "vertical"da região de integração, enquanto que a ordem dx dy corresponde a uma subdivisão "horizontal".

Para regiões do tipo III, a alteração da ordem de integração pode permitir calcular um integral que de outra forma não seria possível.

Exemplo

Volume e área

Se $f: B \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$ é não negativa e integrável em B e S é a região do espaço definida por

$$S = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \in B, \ 0 \le z \le f(x, y)\}$$

define-se o volume de S por

$$vol(S) = \iint_B f(x, y) \, dA.$$

Volume e área

Se $f: B \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$ é não negativa e integrável em B e S é a região do espaço definida por

$$S = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \in B, \ 0 \le z \le f(x, y)\}$$

define-se o volume de S por

$$vol(S) = \iint_B f(x, y) \, dA.$$

► Se $f: B \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$ é a função constante f(x, y) = 1 e f é integrável em B, a área de B é dada por

$$\operatorname{área}(B) = \iint_B 1 \, dA$$