Pandoc Markdown Paper Shell*

Apoorva Lal

Date

Abstract

This paper does amazing things

^{*}PhD Candidate, Stanford University. Acknowledgements go here

1 Overview

Introduce paper

2 Pandoc incantations

configure sublime build systems for these so that ctrl+b builds the file

2.1 Markdown to pdf

```
pandoc -o $file_base_name.pdf -s $paper.md --filter=pandoc-citeproc
```

2.2 Markdown to tex (to fiddle with tex settings / packages)

```
pandoc -o $file_base_name.tex -s $paper.md --filter=pandoc-citeproc
```

3 Pandoc Markdown incantations

3.1 Citations

cite a paper (Manning et al. (1987)) by using (@citekey) syntax.

3.2 Footnotes

Here is a footnote reference,¹ and² another.³. Inline footnotes are easier to handle⁴. This paragraph won't be part of the note, because it isn't indented.

3.3 Images

to import images: ![image](luminosity_grid.png "Figure caption")

¹Footnotes are the mind killer. Footnotes are the little-death that brings total obliteration. I will face my footnotes.

²Here is the 2nd footnote.

³Here's one with multiple blocks.

Subsequent paragraphs are indented to show that they belong to the previous footnote.

[{] some.code }

The whole paragraph can be indented, or just the first line. In this way, multi-paragraph footnotes work like multi-paragraph list items.

⁴like so

Figure 1: image

4 Empirics

4.1 Estimation output embedding

latex input command for estimation output \input{texfile.tex}

	(1)	(2)	(3)	(4)
	Linear b/se	Quadratic b/se	Spline b/se	Interaction b/se
Population Growth	0.054*	0.180*		0.085*
Population Growth Squared	(0.0017)	(0.0043) -0.053*		(0.0053)
•		(0.0017)		
pop_growth: below median			0.097* (0.0023)	
pop_growth: above median			-0.071*	
above_median=1 \times Population Growth			(0.0049)	-0.025* (0.0042)
Constant	-0.045* (0.0016)	-0.096* (0.0023)	-0.072* (0.0019)	-0.054* (0.0023)
Observations R^2	1182563 0.001	1182563 0.002	1182563 0.002	1182563 0.001

blah blah blah

5 Conclusion

blah blah

Bibliography

MANNING, W. G., J. P. NEWHOUSE, N. DUAN, E. B. KEELER, AND A. LEIBOWITZ. (1987): "Health insurance and the demand for medical care: Evidence from a randomized experiment," *The American economic review*,, 251–77.