Classification

Daniel Mao

Copyright \bigodot 2021 Daniel Mao All Rights Reserved.

Contents

1	The First Chapter					
	1.1	Classification	1			
	1.2	Linear Discriminant Analysis (LDA)	2			
	1.3	Fisher's Linear Discriminant Analysis (FDA)	3			

ii CONTENTS

Chapter 1

The First Chapter

1.1 Classification

Definition (Classification). We define classification to be the problem of predicting a <u>discrete</u> random variable y from another random variable x.

Definition (Error Rate). Let h be a classifier. We define the **error rate** of h, denoted by L(h), to be a probability given by

$$L(h) := Pr(h(\boldsymbol{x}) \neq \boldsymbol{y}).$$

Definition (Empirical Error Rate). Let h be a classifier. We define the **empirical error** rate of h, denoted by $\hat{L}_n(h)$, to be an average given by

$$\hat{L}_n(h) := \frac{1}{n} \sum_{i=1}^n I(h(\boldsymbol{x}_i) \neq \boldsymbol{y}_i).$$

Definition (Bayes Classifier). Let $\mathcal{X} = \mathbb{R}^d$ for some $d \in \mathbb{N}$. Let $\mathcal{Y} = \{1..K\}$. We define the **Bayes classifier**, denoted by h^* , to be a function from \mathcal{X} to \mathcal{Y} given by

$$h^*(\boldsymbol{x}) := \operatorname{argmax}_{k \in \mathcal{Y}} \{ \mathbb{P}(Y = k \mid \boldsymbol{X} = \boldsymbol{x}) \}.$$

Definition (Decision Boudnary). Let h be a classifier. We define the **decision boundary** of h, denoted by D(h), to be a set given by

$$D(h) := \{ x : Pr(y = 1 \mid x = x_0) = Pr(y = 0 \mid x = x_0) \}.$$

Theorem 1. The Bayes rule is optimal. i.e., if h^* is the Bayes rule and h is any other classification rule, then $L(h^*) \leq L(h)$.

1.2 Linear Discriminant Analysis (LDA)

Theorem 2. Define for each $k \in \mathcal{Y}$ the class conditional f_k by $f_k(x) := \mathbb{P}(\boldsymbol{X} = \boldsymbol{x} \mid Y = k)$. Define for each $k \in \mathcal{Y}$ the prior π_k by $\pi_k := \mathbb{P}(\boldsymbol{Y} = k)$. Assume that the random variables $\boldsymbol{X} \mid Y = k$ follows a Gaussian distribution. i.e.,

$$\forall k \in \mathcal{Y}, \quad f_k(\boldsymbol{x}) = \frac{1}{(2\pi)^{d/2} |\Sigma_k|^{1/2}} \exp\left(-\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu}_k)^{\top} \Sigma_k^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_k)\right).$$

Then the Bayes classifier h^* is

$$h^*(\boldsymbol{x}) = \operatorname{argmax}_{k \in \mathcal{V}} \delta_k(\boldsymbol{x})$$

where

$$\delta_k(x) := -\frac{1}{2}\log(|\Sigma_k|) - \frac{1}{2}(x - \mu_k)^{\top}\Sigma_k^{-1}(x - \mu_k) + \log(\pi_k).$$

Proof.

So

 $h^*(\boldsymbol{x}) = \operatorname{argmax}_{k \in \mathcal{Y}} \mathbb{P}(Y = k \mid \boldsymbol{X} = \boldsymbol{x})$ $= \operatorname{argmax}_{k \in \mathcal{Y}} \left(-\frac{1}{2} \log(|\Sigma_k|) - \frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu}_k)^{\top} \Sigma_k^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_k) + \log(\pi_k) \right)$ $= \operatorname{argmax}_{k \in \mathcal{Y}} \delta_k(\boldsymbol{x}).$

Remark (Euclidian Distance). Suppose $\forall k \in \mathcal{Y}, \Sigma_k = I$. Then

$$\delta_k(\boldsymbol{x}) = -\frac{1}{2}\log(|\Sigma_k|) - \frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_k)^{\top} \Sigma_k^{-1}(\boldsymbol{x} - \boldsymbol{\mu}_k) + \log(\pi_k)$$
$$= -\frac{1}{2}\log(|I|) - \frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_k)^{\top} I(\boldsymbol{x} - \boldsymbol{\mu}_k) + \log(\pi_k)$$
$$= -\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_k)^{\top} (\boldsymbol{x} - \boldsymbol{\mu}_k) + \log(\pi_k).$$

So a new point can be classified by its distance from the center of a class, adjusted by some prior. In a two-class problem with equal prior, the discriminating function would be the perpendicular bisector of the two classes' means.

Remark (Mahalanobis Distance). Say the singular value decomposition of Σ_k is $\Sigma_k = U_k S_k V_k^{\top}$. Since covariance matrices are symmetric, U = V. So $\Sigma_k = U_k S_k U_k^{\top}$. Now

$$\begin{split} (\boldsymbol{x} - \boldsymbol{\mu}_k)^\top \Sigma_k^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_k) &= (\boldsymbol{x} - \boldsymbol{\mu}_k)^\top U_k S_k^{-1} U_K^\top (\boldsymbol{x} - \boldsymbol{\mu}_k) \\ &= (U_k^\top \boldsymbol{x} - U_k^\top \boldsymbol{\mu}_k)^\top S_k^{-1} (U_k^\top \boldsymbol{x} - U_k^\top \boldsymbol{\mu}_k) \\ &= (U_k^\top \boldsymbol{x} - U_k^\top \boldsymbol{\mu}_k)^\top S_k^{-1/2} S_k^{-1/2} (U_k^\top \boldsymbol{x} - U_k^\top \boldsymbol{\mu}_k) \\ &= (S_k^{-1/2} U_k^\top \boldsymbol{x} - S_k^{-1/2} U_k^\top \boldsymbol{\mu}_k)^\top I (S_k^{-1/2} U_k^\top \boldsymbol{x} - S_k^{-1/2} U_k^\top \boldsymbol{\mu}_k) \\ &= (A \boldsymbol{x} - A \boldsymbol{\mu}_k)^\top I (A \boldsymbol{x} - A \boldsymbol{\mu}_k), \ \ where \ A := S_k^{-1/2} U_k^\top. \end{split}$$

That is,

$$(\boldsymbol{x} - \boldsymbol{\mu}_k)^{\top} \Sigma_k^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_k) = (A\boldsymbol{x} - A\boldsymbol{\mu}_k)^{\top} I(A\boldsymbol{x} - A\boldsymbol{\mu}_k)$$

where $A = S_k^{-1/2} U_k^{\top}$.

1.3 Fisher's Linear Discriminant Analysis (FDA)

FDA is a method of dimensionality reduction. Projects the data on the direction of maximum separation.

Goal:

- Minimize the variance of each class.
- Maximize the distance between projected means.

$$\begin{aligned} \max(\boldsymbol{w}^{\top}\boldsymbol{\mu}_0 - \boldsymbol{w}^{\top}\boldsymbol{\mu}_1)^2. \\ (\boldsymbol{w}^{\top}\boldsymbol{\mu}_0 - \boldsymbol{w}^{\top}\boldsymbol{\mu}_1)^2 &= (\boldsymbol{w}^{\top}\boldsymbol{\mu}_0 - \boldsymbol{w}^{\top}\boldsymbol{\mu}_1)^{\top}(\boldsymbol{w}^{\top}\boldsymbol{\mu}_0 - \boldsymbol{w}^{\top}\boldsymbol{\mu}_1) \\ &= (\boldsymbol{\mu}_0 - \boldsymbol{\mu}_1^{\top})\boldsymbol{w}\boldsymbol{w}^{\top}(\boldsymbol{\mu}_0 - \boldsymbol{\mu}_1) \\ &= \boldsymbol{w}^{\top}(\boldsymbol{\mu}_0 - \boldsymbol{\mu}_1)(\boldsymbol{\mu}_0 - \boldsymbol{\mu}_1)^{\top}\boldsymbol{w} \end{aligned}$$

The variance of projected points in each class are

$$\boldsymbol{w}^{\top} \Sigma_0 \boldsymbol{w}$$
, and $\boldsymbol{w}^{\top} \Sigma_1 \boldsymbol{w}$.

To minimize them,

$$\min \quad \boldsymbol{w}^{\top} \Sigma_0 \boldsymbol{w} + \boldsymbol{w}^{\top} \Sigma_1 \boldsymbol{w}.$$

$$\iff \min \quad \boldsymbol{w}^{\top}(\Sigma_0 + \Sigma_1)\boldsymbol{w}.$$

So we can do

$$\max \quad w^T S_B w$$

subject to $w^T S_w w = 1$.

$$L(w,\lambda) = w^T S_B w - \lambda (w^T S_w w - 1).$$
$$\frac{\partial}{\partial w} L = 2S_B w - 2\lambda S_w w$$

Setting this to zero we get

$$S_B w = \lambda S_w w.$$

$$\iff S_w^{-1} S_B w = \lambda w.$$

Note that $rank(S_B) = 1$. So $rank(S_w^{-1}S_B) = 1$. So $S_w^{-1}S_B$ has only one eigenvector.