## 面向增强现实的 单目视觉惯性SLAM算法评测

章国锋

浙江大学CAD&CG国家重点实验室



### **Augmented Reality**

- Integrates digital information or virtual objects with the real environment in real time.
- Presents information more efficiently and intuitively than traditional text, images, and videos
- Wide Applications
  - Education
  - Game
  - Advertising
  - E-commerce
  - Intelligent manufacture
  - Repair assembly
  - Medical









. . .

## **Major Challenges**

- Unexpected Situations in Applications
  - A home user may not carefully move the AR device.
  - Real environment may have moving objects, large textureless/repeated regions, and strong occlusions.
- Good User Experiences
  - Accurate and consistent 3D registration.
  - Low frequency of camera lost.
  - Quick recovery from failure status.













#### **Visual-Inertial Dataset**

- Typical VIO Dataset (e.g. EuRoC, TUM VI)
  - Synchronized sensors.
  - Global shutter cameras with high quality IMU.
- Mobile Phone Data
  - Sensor synchronization is not so reliable.
  - Rolling shutter camera with low-cost IMU.
- Not for evaluating real AR applications.







EuRoC TUM VI

Real AR Application

### **Visual-Inertial Dataset**

#### Comparison of commonly used VISLAM datasets

| Dataset        | KITTI               | EuRoC              | TUM VI               | ADVIO               |
|----------------|---------------------|--------------------|----------------------|---------------------|
| Hardware       | Car                 | MAV                | Custom Handheld      | iPhone 6s           |
| Camera         | 2×1392×512<br>10FPS | 2×768×480<br>20FPS | 2×1024×1024<br>20FPS | 1×1280×720<br>60FPS |
|                | Global Shutter      | Global Shutter     | Global Shutter       | RollingShutter      |
| IMU            | OXTS RT 3003        | ADIS 16488         | BMI160               | The IMU of          |
|                | 10Hz                | 200Hz              | 200Hz                | iPhone 6s           |
|                |                     |                    |                      | 100Hz               |
| Ground- truth  | OXTS RT 3003        | VICON/Leica        | OptiTrack            | Sensor Fusion       |
|                | 10Hz                | 200Hz              | 120Hz                | 100Hz               |
|                |                     |                    | (Partially)          |                     |
| Environment    | Outdoors            | Indoors            | In-/outdoors         | In-/outdoors        |
| Total Distance | 39.2 km             | 0.9 km             | 20 km                | 4.5 km              |
| Accuracy       | ~10 cm              | ∼1 mm              | ~1 mm                | ~few dm             |
| Sync           | Software            | Hardware           | Hardware             | Software            |

We need a more appropriate dataset for evaluating SLAM performance in AR applications, along with high accuracy ground-truth.

### **Visual-Inertial Dataset**

### Comparison of commonly used VISLAM datasets

| Dataset        | KITTI                                  | EuRoC                                 | TUM VI                            | ADVIO                               | Ours                                                      |
|----------------|----------------------------------------|---------------------------------------|-----------------------------------|-------------------------------------|-----------------------------------------------------------|
| Hardware       | Car                                    | MAV                                   | Custom Handheld                   | iPhone 6s                           | iPhone X/ Xiaomi Mi 8                                     |
| Camera         | 2×1392×512<br>10FPS                    | 2×768×480<br>20FPS                    | 2×1024×1024<br>20FPS              | 1×1280×720<br>60FPS                 | 1×640×480<br>30FPS                                        |
| IMU            | Global Shutter<br>OXTS RT 3003<br>10Hz | Global Shutter<br>ADIS 16488<br>200Hz | Global Shutter<br>BMI160<br>200Hz | RollingShutter The IMU of iPhone 6s | RollingShutter The IMU of iPhoneX/ The IMU of Xiaomi Mi 8 |
| Ground- truth  | OXTS RT 3003<br>10Hz                   | VICON/Leica<br>200Hz                  | OptiTrack<br>120Hz<br>(Partially) | 100Hz<br>Sensor Fusion<br>100Hz     | 100Hz/400Hz<br>VICON<br>400Hz                             |
| Environment    | Outdoors                               | Indoors                               | In-/outdoors                      | In-/outdoors                        | Indoors                                                   |
| Total Distance | 39.2 km                                | 0.9 km                                | 20 km                             | 4.5 km                              | 377 m                                                     |
| Accuracy       | ~10 cm                                 | ~1 mm                                 | ~1 mm                             | ~few dm                             | ~1 mm                                                     |
| Sync           | Software                               | Hardware                              | Hardware                          | Software                            | Software                                                  |

### **Hardware Setup & Data Process**

- Two different mobile phones
  - iPhone X (Camera 640x480 30fps, IMU 100Hz)
  - Xiaomi Mi 8 (Camera 640x480 30fps, IMU 400Hz)
- Ground-truth obtained by VICON system at 400Hz



The phone is rigidly attached to a marker object for VICON localization



### **Device Synchronization and Calibration**

- Camera-IMU Synchronization and Calibration
  - MATLAB Toolbox & Kalibr.
- VICON-IMU Synchronization
  - Maximizes the cross-correlation between VICON and IMU angle of rotations.

$$\arg\max_{\frac{B}{V}t} \frac{\sum \|\boldsymbol{\theta}_{V}(\boldsymbol{v}t)\| \|\boldsymbol{\theta}_{B}(\boldsymbol{v}t + \boldsymbol{\theta}t)\|}{\sqrt{\sum \|\boldsymbol{\theta}_{V}(\boldsymbol{v}t)\|^{2}} \sqrt{\sum \|\boldsymbol{\theta}_{B}(\boldsymbol{v}t + \boldsymbol{\theta}t)\|^{2}}}$$



- VICON-Camera Calibration
  - Aligning the VICON measurements with the camera measurements by Apriltags.

$$\underset{v \in \mathbf{R}, v \in \mathbf{P}, \{\mathbf{X}_i\}}{\operatorname{arg \, min}} \sum_{i} \sum_{i} \left\| \pi \left( v \mathbf{R}_{V}^{W} \mathbf{R}^{\top} \left( \mathbf{X}_{i} - v \mathbf{p} \right) + v \mathbf{p} \right) - \mathbf{x}_{ij} \right\|^{2}$$

### **Dataset Motion and Scene Type**

- 5 motion types : hold, wave, aiming, inspect, petrol
- 5 scene types : mess, clean, desktop, floor
- 3 segments : static, initialization, main
- B0~B7 are captured for evaluating dedicated criteria

| Sequence |    | Motion            | Scene           | Description                                  |
|----------|----|-------------------|-----------------|----------------------------------------------|
| Xiaomi   | A0 | inspect+patrol    | floor           | Walking and looking around the glossy floor. |
|          | A1 | inspect+patrol    | clean           | Walking around some texture-less areas.      |
|          | A2 | inspect+patrol    | mess            | Walking around some random objects.          |
|          | A3 | aiming+inspect    | mess+floor      | Random objects first, and then glossy floor. |
|          | A4 | aiming+inspect    | desktop+clean   | From a small scene to a texture-less area.   |
|          | A5 | wave+inspect      | desktop+mess    | From a small scene to a texture-rich area.   |
|          | A6 | hold+inspect      | desktop         | Looking at a small desktop scene.            |
|          | A7 | inspect+aiming    | desktop         | Looking at a small desktop scene.            |
| iPhone   | B0 | rapid-rotation    | desktop         | Rotating the phone rapidly at some time.     |
|          | B1 | rapid-translation | desktop         | Moving the phone rapidly at some time.       |
|          | B2 | rapid-shaking     | desktop         | Shaking the phone violently at some time.    |
|          | В3 | inspect           | moving people   | A person walks in and out.                   |
|          | B4 | inspect           | covering camera | An object occasionally occluding the camera. |
|          | B5 | inspect           | desktop         | Similar to A6 but with black frames.         |
|          | В6 | inspect           | desktop         | Similar to A6 but with black frames.         |
|          | В7 | inspect           | desktop         | Similar to A6 but with black frames.         |

### **Dataset Preview**



### **Evaluation Criteria**

- Tracking Accuracy
- Initialization Quality
- Tracking Robustness
- Relocalization Time

## **Tracking Accuracy**

- 4 commonly used criteria:
  - Absolute Positional Error (APE) Relative Positional Error (RPE)

$$\epsilon_{\text{APE}} = \sqrt{\frac{1}{m} \sum_{i=1}^{m} \| \mathbf{p}_{\text{SLAM}}[i] - \mathbf{p}_{\text{GT}}[i] \|^2}$$

$$\epsilon_{\text{ARE}} = \sqrt{\frac{1}{m} \sum_{i=1}^{m} \| \log(\mathbf{R}_{\text{SLAM}}^{-1}[i] \cdot \mathbf{R}_{\text{GT}}[i]) \|^2}$$

- Absolute Rotational Error (ARE) Relative Rotational Error (RRE)
- Completeness
  - the ratio between the number of valid poses and the total number of all poses
  - The poses before the first initialization are not included.



A SLAM Trajectory APE Visualization in Seq. A0

### **Initialization Quality**

- The time  $t_{\text{init}}$  for scale to converge.
  - Accurate scale is quite important in some AR applications.
  - At the beginning, scale usually fluctuates.
  - We generally insert AR objects after scale converges.
- The quality  $\epsilon_{\rm scale}$  of converged scale.
  - Key to some applications like AR ruler.
- For VSLAM, true scale is not available.
  - Estimate the global scale by aligning the results with ground-truth.



$$\epsilon_{\text{scale}} = \frac{1}{2} \left( \left| \frac{s_{\text{cmw}}(t_{\text{init}})}{s_{\text{g}}} - 1 \right| + \left| \frac{s_{\text{g}}}{s_{\text{cmw}}(t_{\text{init}})} - 1 \right| \right) \times 100\%$$

$$\epsilon_{\text{init}} = t_{\text{init}} (\epsilon_{\text{scale}} + \beta)^{\alpha}$$

### **Tracking Robustness**

- Relocalization Error
  - The tracking result should be consistent after recovering from lost status.

$$\epsilon_{\text{RL}} = \sum_{i=1}^{n-1} || \log_{\text{Sim}(3)}(\xi_i^{-1} \xi_{i+1}) ||$$



- Lost time: the smaller, the better.
- Smaller tracking error is better.

$$\epsilon_{\rm R} = (\alpha_{\rm lost} + \eta_{\rm lost})(\epsilon_{\rm RL} + \eta_{\rm APE}\epsilon_{\rm APE})$$

$$\uparrow$$
Ratio of lost time APE

#### **Relocalization Time**

- Force to enter lost state
  - Manually add black frames.
- Relocalization time measurement
  - VISLAM tends to continue IMU propagation even without sufficient feature matches.
  - Detect relocalization by the jump in trajectory.

$$t_{\text{SLAM}[i]} = \min \left\{ t_k > t_{\text{K}[i]} \mid \left\| \mathbf{p}_{\text{SLAM}}[k+1] - \mathbf{p}_{\text{SLAM}}[k] \right\| > \delta \right\}$$



### Representative SLAM Systems

- Filtering-based SLAM
  - MonoSLAM: solve camera pose via extended Kalman filter.
  - MSCKF: keep a sliding window of M frames.
  - MSCKF 2.0 : use FEJ to avoid leaking errors.
- Optimization-based SLAM
  - PTAM: use keyframe-based optimization, local tracking and global mapping in two parallel threads.
  - ORB-SLAM2: use ORB features to improve the system robustness.
  - OKVIS: use sliding-window optimization with both reprojection errors and IMU motion errors.
  - VINS-Mono: use local sliding-window optimization and global pose graph optimization.
- SLAM with Direct Tracking
  - LSD-SLAM, DSO: directly use intensity as measurements and minimize photometric error.

### 8 Selected VSLAM/VSLAM Systems

#### VSLAM

- PTAM: http://wiki.ros.org/ethzasl\_ptam
- ORB-SLAM2: https://github.com/raulmur/ORB SLAM2
- LSD-SLAM: https://github.com/tum-vision/lsd slam
- DSO: https://github.com/JakobEngel/dso

#### VISLAM

- MSCKF: https://github.com/daniilidis-group/msckf\_mono
- OKVIS: https://github.com/ethz-asl/okvis
- VINS-Mono : https://github.com/HKUST-Aerial-Robotics/VINS-Mono
- SenseSLAM: http://www.zjucvg.net/senseslam

#### Part of VSLAM Tracking accuracy

APE/RPE (mm)

| Sequence | PTA     | M      | ORB-S  | LAM2   | LSD-S   | LAM    | DS      | О      |
|----------|---------|--------|--------|--------|---------|--------|---------|--------|
| A0       | 75.442  | 6.696  | 96.777 | 5.965  | 105.963 | 11.761 | 231.860 | 10.456 |
| A1       | 113.406 | 16.344 | 95.379 | 10.285 | 221.643 | 23.833 | 431.929 | 12.555 |
| A2       | 67.099  | 6.833  | 69.486 | 5.706  | 310.963 | 8.156  | 216.893 | 5.337  |
| A3       | 10.913  | 4.627  | 15.310 | 7.386  | 199.445 | 10.872 | 188.989 | 4.294  |
| A4       | 21.007  | 4.773  | 10.061 | 2.995  | 155.692 | 10.756 | 115.477 | 4.595  |
| A5       | 40.403  | 8.926  | 29.653 | 11.717 | 249.644 | 12.302 | 323.482 | 7.978  |
| A6       | 19.483  | 3.051  | 12.145 | 6.741  | 49.805  | 3.018  | 14.864  | 2.561  |
| A7       | 13.503  | 2.462  | 5.832  | 1.557  | 38.673  | 2.662  | 27.142  | 2.213  |

### Part of VSLAM Tracking accuracy

#### Completeness (%)

| Sequence | PTAM    | ORB-SLAM2 | LSD-SLAM | DSO     |
|----------|---------|-----------|----------|---------|
| A0       | 79.386  | 65.175    | 49.513   | 14.476  |
| A1       | 60.893  | 68.303    | 11.511   | 0.869   |
| A2       | 85.348  | 79.263    | 21.804   | 22.878  |
| A3       | 71.635  | 98.497    | 27.112   | 43.493  |
| A4       | 95.418  | 100.000   | 64.283   | 80.371  |
| A5       | 87.399  | 97.785    | 25.033   | 2.059   |
| A6       | 97.399  | 99.786    | 94.883   | 100.000 |
| A7       | 100.000 | 100.000   | 98.663   | 100.000 |

#### Part of VISLAM Tracking accuracy

APE/RPE (mm)

| Sequence | MSCKF   |        | OKVIS  |       | VINS-Mono |       | SenseSLAM |       |
|----------|---------|--------|--------|-------|-----------|-------|-----------|-------|
| A0       | 156.018 | 7.436  | 71.677 | 7.064 | 160.334   | 2.798 | 58.995    | 2.525 |
| A1       | 294.091 | 14.580 | 87.73  | 4.283 | 253.554   | 2.723 | 55.097    | 2.876 |
| A2       | 102.657 | 10.151 | 68.381 | 5.412 | 102.263   | 1.976 | 36.370    | 1.560 |
| A3       | 44.493  | 3.780  | 22.949 | 8.739 | 29.587    | 1.278 | 17.792    | 0.779 |
| A4       | 114.845 | 8.338  | 146.89 | 12.46 | 37.580    | 1.042 | 15.558    | 0.930 |
| A5       | 82.885  | 8.388  | 77.924 | 7.588 | 40.423    | 1.660 | 34.810    | 1.954 |
| A6       | 66.001  | 6.761  | 63.895 | 6.86  | 80.062    | 1.404 | 20.467    | 0.569 |
| A7       | 105.492 | 4.576  | 47.465 | 6.352 | 25.082    | 1.138 | 10.777    | 0.831 |

### Part of VISLAM Tracking accuracy

Completeness (%)

| Sequence | MSCKF  | OKVIS  | VINS-Mono | SenseSLAM |
|----------|--------|--------|-----------|-----------|
| A0       | 40.186 | 94.255 | 35.256    | 97.317    |
| A1       | 1.646  | 98.235 | 17.902    | 95.072    |
| A2       | 61.423 | 94.959 | 63.449    | 99.707    |
| A3       | 97.814 | 95.972 | 100.000   | 100.000   |
| A4       | 76.629 | 97.429 | 100.000   | 100.000   |
| A5       | 76.738 | 98.162 | 99.866    | 99.143    |
| A6       | 94.128 | 97.805 | 81.763    | 100.000   |
| A7       | 68.341 | 96.69  | 100.000   | 100.000   |

#### Initialization Time





#### Initialization Scale





• Initialization Quality  $\epsilon_{\text{init}} = t_{\text{init}} (\epsilon_{\text{scale}} + \beta)^{\alpha}$ 

| G        | Samana PTAM | ORB    | LSD    | DSO    | MCCKE  | OKANG  | VINS  | Sense |
|----------|-------------|--------|--------|--------|--------|--------|-------|-------|
| Sequence | PTAM        | SLAM2  | SLAM   | DSO    | MSCKF  | OKVIS  | Mono  | SLAM  |
| A0       | 41.387      | 19.172 | 8.423  | 7.460  | 0.211  | 5.913  | 0.783 | 0.449 |
| A1       | 22.265      | 28.141 | 14.877 | 35.062 | 49.660 | 11.487 | 6.265 | 2.324 |
| A2       | 12.828      | 8.913  | 4.311  | 6.837  | 0.331  | 7.506  | 1.300 | 0.804 |
| A3       | 1.193       | 5.009  | 6.960  | 2.920  | 0.035  | 4.607  | 0.441 | 0.340 |
| A4       | 16.725      | 15.324 | 16.478 | 10.450 | 1.497  | 20.964 | 2.584 | 1.456 |
| A5       | 14.223      | 9.512  | 41.941 | 28.801 | 0.463  | 7.732  | 0.763 | 0.652 |
| A6       | 3.322       | 9.275  | 9.158  | 6.550  | 0.991  | 7.613  | 2.857 | 1.553 |
| A7       | 1.027       | 1.458  | 6.176  | 6.766  | 1.159  | 6.265  | 1.026 | 0.650 |
| Average  | 14.121      | 12.101 | 13.541 | 13.106 | 6.793  | 9.011  | 2.002 | 1.029 |
| Max      | 41.387      | 28.141 | 41.941 | 35.062 | 49.660 | 20.964 | 6.265 | 2.324 |

### Tracking Robustness

| S                   | DTAM   | ORB    | LSD    | DSO    | MCCVE | OVVIS  | VINS   | Sense |
|---------------------|--------|--------|--------|--------|-------|--------|--------|-------|
| Sequence            | PTAM   | SLAM2  | SLAM   | DSO    | MSCKF | OKVIS  | Mono   | SLAM  |
| В0                  | 16.088 | 3.396  | 2.068  | 1.848  |       | 5.328  | 16.774 | 0.511 |
| (Rapid Rotation)    | 10.088 | 3.390  | 2.008  | 1.040  |       | 3.328  | 10.774 | 0.311 |
| B1                  | 26.887 | 7.128  | 12.739 | 16.127 |       | 5.448  | 9.024  | 7.199 |
| (Rapid Translation) | 20.887 | 7.120  | 12.739 | 10.127 |       | 3.440  | 9.024  | 7.133 |
| B2                  | 36.140 | 3.875  | 12.476 |        |       | 24.024 | 18.062 | 9.743 |
| (Rapid Shaking)     | 30.140 | 3.673  | 12.470 |        |       | 24.024 | 18.002 | 9.743 |
| В3                  | 12.779 | 16.670 | 22.882 | 41.294 |       | 1.636  | 16.741 | 1.089 |
| (Moving People)     | 12.779 | 10.070 | 22.882 | 41.294 |       | 1.030  | 10.741 | 1.009 |
| B4                  | 20.062 | 8.265  | 17 368 |        | 3.119 | 13.051 | 18.619 | 1.192 |
| (Covering Camera)   | 20.002 | 0.203  | 17.368 |        | 3.119 | 13.031 | 10.019 | 1.174 |

#### Relocalization Time

| Common         | DTAM  | ORB   | LSD   | VINS- | CanaaCI AM |  |
|----------------|-------|-------|-------|-------|------------|--|
| Sequence       | PTAM  | SLAM2 | SLAM  | Mono  | SenseSLAM  |  |
| B5             | 1.032 | 0.077 | 1.082 | 1.452 | 0.592      |  |
| (1s black-out) | 1.032 | 0.077 | 1.062 | 1.432 | 0.392      |  |
| В6             | 0.366 | 0.465 | 5.413 | 1.833 | 1.567      |  |
| (2s black-out) | 0.300 | 0.403 | 3.413 | 1.655 | 1.307      |  |
| В7             | 0.651 | 0.110 | 1 024 | 0.041 | 0.222      |  |
| (3s black-out) | 0.651 | 0.118 | 1.834 | 0.841 | 0.332      |  |
| Average        | 0.683 | 0.220 | 2.776 | 1.375 | 0.830      |  |

### **Disscusion & Conclusion**

#### Contributions

- The first public VISLAM benchmark for AR
  - Visual-inertial dataset
  - Evaluation criteria & toolkit

http://www.zjucvg.net/eval-vislam/dataset/ https://github.com/zju3dv/eval-vislam

- Quantitative evaluation for 8 representative systems.
- Future Work
  - Better evaluation on mobile phones.
  - Capture more diverse sequences in a larger outdoor environment.

Jinyu Li, Bangbang Yang, Danpeng Chen, Nan Wang, Guofeng Zhang\*, Hujun Bao\*. Survey and Evaluation of Monocular Visual-Inertial SLAM Algorithms for Augmented Reality. Journal of Virtual Reality & Intelligent Hardware, published online: http://www.vr-ih.com/vrih/html/EN/10.3724/SP.J.2096-5796.2018.0011/article.html





## 虚拟现实与智能硬件 (VRIH)

### Virtual Reality & Intelligent Hardware

顾 问 赵沁平 李伯虎

戴琼海 戴国忠

主 编 王涌天

副主编 鲍虎军 陈熙霖 郝爱民

胡事民 宋爱国 孙晓颖

田 丰 陶建华 汪国平

编 委 70位专家学者

(国际编委和顾问委员会增补中)





主管单位:中国科学院

主办单位:中国科技出版传媒股份有限公司(科学出版社)

北京航空航天大学

出版单位:北京中科期刊出版有限公司

协办单位: 歌尔集团有限公司

海外出版: ScienceDirect (Elsevier)

#### 主要报道学科方向

- ▶ 虚拟现实/增强现实
- > 低功耗轻量级底层软硬件
- > 高性能智能感知
- > 高精度运动与姿态控制
- > 低功耗广域智能物联
- > 端云一体化协同



- ✓ 综述
- ✓ 研究论文
- ✓ 研究快报
- ✓ 案例报道
- ✓ 评述
- ✓ 稿酬从优





● 创刊号(2019年2月已出版)

知名专家撰稿

● 2019年第2—5期

分支学科专刊

● 论文 (HTML+PDF)

网刊, SciEngine, ScienceDirect



编辑: 祁媛、陈睿超

电话: 010-64010640

E-mail: vrih@vip.163.com

网刊: http://www.vr-ih.com

# Thank you!