Handling Undefined Transitions

CSE309N

We can handle undefined transitions by defining one previously undefined transition to this death state. more state, a "death" state, and transitioning all

NFA- Regular Expressions & Compilation

Problems with NFAs for Regular Expressions:

- 1. Valid input might not be accepted
- 2. NFA may behave differently on the same input

Relationship of NFAs to Compilation:

- 1. Regular expression "recognized" by NFA
- 2. Regular expression is "pattern" for a "token"
- 3. Tokens are building blocks for lexical analysis
- 4. Lexical analyzer can be described by a collection of NFAs. Each NFA is for a language token.

Second NFA Example

Given the regular expression: $(a (b*c)) | (a (b | c^+)?)$

Find a transition diagram NFA that recognizes it.

Second NFA Example - Solution

CSE309N

Given the regular expression: $(a (b*c)) | (a (b | c^+)?)$ Find a transition diagram NFA that recognizes it

String abbc can be accepted.

Alternative Solution Strategy

CSE309N

Now that you have the individual diagrams, "or" them as follows:

a (b | c+)?

Using Null Transitions to "OR" NFAs

Other Concepts

Not all paths may result in acceptance.

aabb is accepted along path: $0 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow 3$

BUT... it is not accepted along the valid path:

$$0 \uparrow 0 \uparrow 0 \uparrow 0 \uparrow 0 \uparrow 0$$

Deterministic Finite Automata

CSE309N

A DFA is an NFA with the following restrictions:

- \in moves are not allowed
- For every state $s \in S$, there is one and only one path from s for every input symbol $a \in \Sigma$.

Since transition tables don't have any alternative options, DFAs are easily simulated via an algorithm.

```
c ← nextchar;
while c ≠ eof do
s ← move(s,c);
c ← nextchar;
end;
if s is in F then return "yes"
else return "no"
```

Example - DFA

Recall the original NFA:

Conversion: NFA \rightarrow DFA Algorithm

CSE309N

- Algorithm Constructs a Transition Table for DFA from NFA
- Each state in DFA corresponds to a SET of states of the NFA
- Why does this occur?
- e moves
- non-determinism

Both require us to characterize multiple situations that occur for accepting the same string.

(Recall: Same input can have multiple paths in NFA)

• Key Issue: Reconciling AMBIGUITY!

Converting NFA to DFA – 1st Look

CSE309N

From State 0, Where can we move without consuming any input?

This forms a new state: 0,1,2,6,8 What transitions are defined for this new state?

The Resulting DFA

CSE309N

How do we handle alphabet symbols not defined for A, B, C, D?

CH3.61

Algorithm Concepts

CSE309N

```
transition on input a from some t \in T
                                                                                                                                                         from s via ∈-moves of N that originate
                                                                                                                                                                                                                                                                                              : NFA states reachable from all t \in T
                                                                                                             : set of states in S that are reachable
                                                                                                                                                                                                                                                                                                                                                                                                                                     : Set of states to which there is a
NFA N = (S, \Sigma, S_0, F, MOVE)
                                                                                                                                                                                                                                                                                                                                              on e-moves only.
                                                                                                                                                                                                                                                                                                                                                                                       T \subseteq S, a \in \Sigma
                                                                                                                                                                                                       from s.
                                                                                                                                                                                                                                                 \in-Closure(T): T \subseteq S
                                                                \in-Closure(s) : s \in S
                                                                                                                                                        No input is
                                                                                                                                                                                         consumed
```

techniques to facilitate the conversion process. These 3 operations are utilized by algorithms /

Illustrating Conversion – An Example

CSE309N

Conversion Example – continued (1)

CSE309N

```
2^{nd}, we calculate: a : \in -closure(move(A,a))
                                             b : \in -closure(move(A,b))
```

```
adds \{3,8\} (since move (2,a)=3 and move (7,a)=8)
\in-closure(move(A,a)) = \in-closure(move(\{0,1,2,4,7\},a))
```

```
From this we have: \in-closure({3,8}) = {1,2,3,4,6,7,8} (since 3 \rightarrow 6 \rightarrow 1 \rightarrow 4, 6 \rightarrow 7, and 1 \rightarrow 2 all by \in-moves)
```

Let $B=\{1,2,3,4,6,7,8\}$ be a new state. Define Dtran[A,a]=B.

```
b : \in-closure(move(A,b)) = \in-closure(move(\{0,1,2,4,7\},b))
```

adds $\{5\}$ (since move(4,b)=5)

From this we have: \in -closure($\{5\}$) = $\{1,2,4,5,6,7\}$ (since $5\rightarrow 6\rightarrow 1\rightarrow 4$, $6\rightarrow 7$, and $1\rightarrow 2$ all by \in -moves)

Let $C=\{1,2,4,5,6,7\}$ be a new state. Define Dtran[A,b]=C.

Conversion Example – continued (2)

CSE309N

```
3rd, we calculate for state B on {a,b}
```

$$\underline{\mathbf{a}}$$
: \in -closure($move(\mathbf{B}, \mathbf{a})$) = \in -closure($move(\{1, 2, 3, 4, 6, 7, 8\}, \mathbf{a})$)} = $\{1, 2, 3, 4, 6, 7, 8\} = \mathbf{B}$

Define Dtran[B,a] = B.

$$\underline{\mathbf{b}} : \in -\text{closure}(move(\mathbf{B}, \mathbf{b})) = \in -\text{closure}(move(\{1, 2, 3, 4, 6, 7, 8\}, \mathbf{b}))\}$$
$$= \{1, 2, 4, 5, 6, 7, 9\} = \mathbf{D}$$

Define Dtran[B,b] = D.

4th, we calculate for state C on {a,b}

$$\underline{\mathbf{a}}$$
: \in -closure($move(C,a)$) = \in -closure($move(\{1,2,4,5,6,7\},a)$)} = $\{1,2,3,4,6,7,8\} = \mathbf{B}$

Define Dtran[C,a] = B.

$$\underline{b} : \in -closure(move(C,b)) = \in -closure(move(\{1,2,4,5,6,7\},b))\}$$
$$= \{1,2,4,5,6,7\} = C$$

Define Dtran[C,b] = C.

Conversion Example – continued (3)

CSE309N

```
\underline{\mathbf{a}} : \in -\text{closure}(move(D, \mathbf{a})) = \in -\text{closure}(move(\{1, 2, 4, 5, 6, 7, 9\}, \mathbf{a}))\}
= \{1, 2, 3, 4, 6, 7, 8\} = B
5th, we calculate for state D on {a,b}
                                                                                                                                                                                                                                          Define Dtran[D,a] = B.
```

$$\underline{b} : \in -closure(move(D,b)) = \in -closure(move(\{1,2,4,5,6,7,9\},b))\}$$

$$= \{1,2,4,5,6,7,10\} = E$$
Define Dtran[D,b] = E.

 $\underline{\mathbf{a}}$: \in -closure($move(\mathbf{E},\mathbf{a})$) = \in -closure($move(\{1,2,4,5,6,7,10\},\mathbf{a}))\}$ = $\{1,2,3,4,6,7,8\}$ = \mathbf{B} Finally, we calculate for state E on {a,b} Define Dtran[E,a] = B.

$$\underline{b} : \in -closure(move(E,b)) = \in -closure(move(\{1,2,4,5,6,7,10\},b))\}$$

$$= \{1,2,4,5,6,7\} = C$$
Define Dtran[E,b] = C.

CH3.66

Conversion Example – continued (4)

This gives the transition table Dtran for the DFA of:

Symbol	q	Ö	D	Ŋ	E	C
Input	a	B	В	В	В	В
Dstates						

Algorithm For Subset Construction

```
computing the
                                          e-closure
                                                                                                                                                                                      for each state u with edge from t to u labeled ∈
                                                                                                                                                                                                                                     if u is not in \in-closure(T) do begin
                                                                                           while stack is not empty do begin
                                                                                                                                          pop t, the top element, off the stack;
                                                                                                                                                                                                                                                                                      add u to \in-closure(T);
                                                                                                                                                                                                                                                                                                                                    push u onto stack
push all states in T onto stack;
                                             initialize \in-closure(T) to T;
                                                                                                                                                                                                                                                                                                                                                                                    end
                                                                                                                                                                                                                                                                                                                                                                                                                                  end
```

end

Algorithm For Subset Construction – (2)

CSE309N

```
initially, \in-closure(s_0) is only (unmarked) state in Dstates;
                                                         while there is unmarked state T in Dstates do begin
                                                                                                                                                                                                                                                                                                                                                                        add U as an unmarked state to Dstates;
                                                                                                                                                                                  for each input symbol a do begin
                                                                                                                                                                                                                                                                                                           if U is not in Dstates then
                                                                                                                                                                                                                                                U := \in \text{-closure}(move(T, \alpha));
                                                                                                                                                                                                                                                                                                                                                                                                                                        Dtran[T,a] := U
                                                                                                                          mark T;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     end
```

Regular Expression to NFA Construction

We now focus on transforming a Reg. Expr. to an NFA

This construction allows us to take:

- Regular Expressions (which describe tokens)
- To an NFA (to characterize language)
- To a DFA (which can be "computerized")

The construction process is component-wise

expression in a special order with particular **Builds NFA from components of the regular** techniques. NOTE: Construction is "syntax-directed" translation, i.e., syntax of regular expression is determining factor for NFA construction and

Motivation: Construct NFA For:

Ψ

<u>ಇ</u>

p:

ab:

e | ab :

**

 $(\in |ab|)^*$:

 $(\in |ab|)^*$:

*

Motivation: Construct NFA For:

CSE309N

Construction Algorithm: R.E. \rightarrow NFA

CSE309N

Construction Process:

1st: Identify subexpressions of the regular expression

Ψ

Σ symbols

S

* **-** 2nd: Characterize "pieces" of NFA for each subexpression

Piecing Together NFAs Algorithm: Thompson's Construction

CSE309N

1. For \in in the regular expression, construct NFA

 $\Gamma(\epsilon)$

2. For $a \in \Sigma$ in the regular expression, construct NFA

L(a)

Piecing Together NFAs – continued(1)

3.(a) If s, t are regular expressions, N(s), N(t) their NFAs s|t has NFA:

are introduced from i to the old start states of N(s) and where i and f are new start final states, and \in -moves N(t) as well as from all of their final states to f.

Piecing Together NFAs – continued(2)

3.(b) If s, t are regular expressions, N(s), N(t) their NFAs st (concatenation) has NFA:

L(s) L(t)

Alternative:

Piecing Together NFAs – continued(3)

CSE309N

3.(c) If s is a regular expressions, N(s) its NFA, s* (Kleene star) has NFA:

where : i is new start state and f is new final state e-move old final to old start (WHY?) \in -moves i to old start, old final(s) to f \in -move *i* to *f* (to accept null string)

Properties of Construction

Let r be a regular expression, with NFA N(r), then

- 1. N(r) has #of states $\leq 2^*$ (#symbols + #operators) of r
- 2. N(r) has exactly one start and one accepting state
- Each state of N(r) has at most one outgoing edge $a \in \Sigma$ or at most two outgoing \in 's
- 4. BE CAREFUL to assign unique names to all states

Detailed Example

Parse Tree for this regular expression: See example in textbook for (a | b)*abb 2^{nd} Example - (ab*c) | (a(b|c*))

What is the NFA? Let's construct it

Detailed Example – Construction(1)

Detailed Example – Construction(2)

Detailed Example - Final Step

Direct Simulation of an NFA

CSE309N

```
simulation
                                                                                      - DFA
                                                                                                                                                                   if s is in F then return "yes"
                                                                                                                                                                                              else return "no"
                                                                                   s \leftarrow move(s, c);
                                                       while c \neq eof do
                                                                                                              c \leftarrow nextchar;
                            c ← nextchar;
\mathbf{s} \leftarrow \mathbf{s}_0
                                                                                                                                          end;
```

NFA simulation

```
S ← e-closure({s<sub>0</sub>})
c ← nextchar;
while c ≠ eof do
  S ← e-closure(move(S,c));
c ← nextchar;
end;
if S∩F≠∅ then return "yes"
if S∩F≠∅ then return "no"
```

Final Notes: R.E. to NFA Construction

✓ So, an NFA may be simulated by algorithm, when NFA is constructed using Previous techniques \checkmark Algorithm run time is proportional to |N| * |x| where |N| is the number of states and |x| is the length of input

✓ Alternatively, we can construct DFA from NFA and use the resulting Dtran to recognize input:

Assignment

No marks will be awarded (Part of the Syllabus)

space

time to

simulate

required O(|r|)

NFA

 $O(|\mathbf{r}|^*|\mathbf{x}|)$

DFA

O(2|r|)

 $\frac{(|\mathbf{x}|)}{0}$

where |r| is the length of the regular expression.

Pulling Together Concepts

Designing Lexical Analyzer Generator

Reg. Expr. → NFA construction

NFA → DFA conversion

DFA simulation for lexical analyzer

Recall Lex Structure

Pattern Action Pattern Action

Recognizer!

- Each pattern recognizes lexemes
- Each pattern described by regular expression

Lex Specification → Lexical Analyzer

CSE309N

- (regular expressions for valid tokens in prog. lang.) • Let P₁, P₂, ..., P_n be Lex patterns
- Construct $N(P_1)$, $N(P_2)$, ... $N(P_n)$
- Note: accepting state of N(P_i) will be marked by P_i
- Construct NFA:

• Lex applies conversion algorithm to construct DFA that is equivalent?

Pictorially

Pattern Matching Based on NFA

Pattern Matching Based on NFA continued (2)

DFA for Lexical Analyzers

Alternatively Construct DFA:

keep track of correspondence between patterns and new accepting states

	Indut	Input Symbol		
STATE	ಡ	q	Pattern	
{0,1,3,7}	{2,4,7}	{8}	none	
{2,4,7}	{2}	{5,8}	P_1	
{8}	I	{8}	P_3	
{7}	{\(L\)	{8}	auou	
{5,8}	•	{8,9}	P_3	
$\{6,8\}$	ı	{8}	$\mathbf{P_2}$	·

break tie in favor of P₂

Example

CSE309N

Input: aaba

$$\{0,1,3,7\}$$
 \longrightarrow $\{2,4,7\}$ \longrightarrow $\{7\}$ \longrightarrow

\$

Input: aba

$$\{0,1,3,7\}$$
 \longrightarrow $\{2,4,7\}$ \longrightarrow $\{5,8\}$ \longrightarrow

\mathbf{P}_2	{8 }	ı	{6,8}
$\mathbf{P_3}$	{8'9 }	•	{2,8}
auou	{8 }	{1}	{2}
$\mathbf{P_3}$	{8 }	•	{8}
$\mathbf{P_1}$	{8'5}	{1}	{2,4,7}
əuou	{8 }	{2,4,7}	$\{0,1,3,7\}$
Pattern	q	В	STATE
	Input Symbol	Input	

Optimization of DFA based Pattern Matching

CSE309N

Our Target:

- 1. Construct DFA directly from Regular Expression
- Minimizes no of states of DFA તં
- Produce fast but more compact representations for transition table of DFA than a straightforward two dimensional table ж.

Important States of an NFA

Important States of NFA:

if it has a non-e out-transition

- The subset construction algorithm uses only the important states in a subset T when it determines e-closure(move(T,a))
- The resulting NFA has exactly one accepting state, but the accepting state is not important because it has no transition leaving it.
- We give the accepting state a transition on #, making it important state of NFA.
- By using augmented regular expression (r)#, we can forget about accepting states as the subset construction proceeds.
- When the construction is complete, any DFA state with a transition on # must be an accepting state.

Example: (a | b)*abb

CSE309N

Minimizing the Number of States of DFA

- Construct initial partition Π of S with two groups: accepting/ nonaccepting.
- (Construct Π_{new}) For each group G of Π do begin
- states s,t have transitions on a to states of the same group of II. of G are in the same subgroup iff for all symbols a Partition G into subgroups such that two states s,t
- 2. Replace G in Π_{new} by the set of all these subgroups.
- Compare Π_{new} and Π . If equal, $\Pi_{final} := \Pi$ then proceed to 4, else set $\Pi := \prod_{new}$ and goto 2.
- Aggregate states belonging in the groups of Π_{final}
- If M' has a dead state, that is, a state d that is not a accepting and that has transitions to itself on all input symbols, then remove d from M'. Also remove any states not reachable from the start state. Any transitions to d from other states become undefined.

G1	G2	G3
ABC	D	E
$a \rightarrow G1$ $b \rightarrow G1 G2$ (AC) (B)	No Change	No change

В
JV

ಡ