ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Московский институт электроники и математики им. А.Н. Тихонова Департамент электронной инженерии

Ефремов Виткор Васильевич, БИТ-203

ОТЧЁТ по лабораторной работе № 1

по дисциплине «Теория электрических цепей» Тема: «Активный двухполюсник на постоянном токе»

Номер бригады: 1

No	Сопротивлене, Ом				Э.Д.С., В
вар.	R_1	R_3	R_4	R_5	E_1
1	200	100	200	390	5

Эксперементальные значения:

 $U_x = 1.65 B$ (напряжение холостого хода, нагрузки нет, $R_2 = \inf$)

 $I_{\kappa} = 12.25 \text{ мA}$ (ток короткого замыкания, $R_{\kappa} = 2 = 0$)

$$R_{\rightarrow K} = U_{x} / I_{K} = 1.65 / (12.25 * 0.001) = 134.69 \text{ Om}$$

Теоретические значения:

Напряжение холостого хода — это напряжение между точками C и D на рисунке выше. Т.к. R_5 и R_2 подключены параллельно, то напряжения на них равны. Посчитаем напряжение на R_5 .

 R_5 и R_3 соединены последовательно, R_4 параллельно им, и R_1 последовательно со всем предыдущим. Поэтому $R=R_1+R_4*(R_3+R_5)/(R_4+(R_3+R_5))$

Подставим:
$$R = 200 + 200 * (100 + 390) / (200 + 100 + 390) = 342.03 \text{ Ом}$$

$$I_1 = E_1 / R$$

Падение напряжения на R_1 будет $I_1 * R_1 = E_1 * R_1 / R$

Т.к. R_4 и $R_3 + R_5$ параллельны, то напряжения на них одинаковы между собой и равны $E_1 - E_1 * R_1 / R$

Подставим: 5 - 5 * 200 / 342.03 = 2.08 B

Ток через R_3 равен I_3 = 2.08 / (100 + 390) = 4.24 мА

Ток через R_5 такой же, поэтому падение напряжения на R_5 равно U_5 = 4.24 * 0.001 * 390 = 1.65 B

Посчитаем ток короткого замыкания. В этом случае $R_2 = 0$ и ток через R_5 не течет. Аналогично расчетам напряжения холостого хода:

$$R = R_1 + R_3 * R_4 / (R_3 + R_4) = 200 + 100 * 200 / (100 + 200) = 266.67 \text{ Om}$$

$$U_3 = E_1 - E_1 * R_1 / R = 5 - 5 * 200 / 266.67 = 1.25 \text{ B}$$

$$I_3 = 1.25 / 100 = \textbf{12.50 mA}$$

$$R_{3\kappa} = U_x / I_{\kappa} = 1.65 / (12.50 * 0.001) = 132.00 \text{ Om}$$

Исследуемая	Расчет	Опыт	Абсолютная	Относительная	
величина			погрешность	погрешность	
U_x, B	1.65	1.65	0	0	
I_к, мА	12.50	12.25	0.25	0.02	
R_эк, Ом	132	134.69	2.69	0.02	

Абсолютная погрешность – модуль разности между теорией и опытом. Измеряется в том же в чем и исходные величины.

Относительная погрешность – абсолютная погрешность деленная на теорию. Измеряется в долях, можно умножить на 100% и получить значение в процентах.

Мощность двухполюсника суть произведение тока на напряжение. Известно, что максимум мощности достигается, когда $R_2 = R_3$ к. Таблица ниже содержит экспериментальные данные. Максимум действительно довольно близко к R_3 к

R	I_1, мА	I_2, мА	I_3, мA	U_н, В	Р, мВт	
0	18.36	12.23	12.25	0.00	0.0000	
100	16.63	7.01	8.85	0.70	4.9070	
110	16.53	6.72	8.66	0.74	4.9728	
120	16.44	6.45	8.47	0.78	5.0310	
130	16.36	6.21	8.32	0.81	5.0301	
140	16.28	5.98	8.17	0.84	5.0232	
150	16.20	5.74	8.00	0.86	4.9364	
160	16.15	5.58	7.90	0.89	4.9662	
200	15.93	4.91	7.47	0.98	4.8118	
300	15.56	3.78	6.73	1.14	4.3092	
400	15.33	3.08	6.27	1.23	3.7884	
490	15.18	2.63	5.98	1.29	3.3927	
inf	14.30	0.01	4.25	1.65	0.0165	

$R_{\mathfrak{S}K} = (U^- U^-) / (I^- I^-)$

Значение	Измерено		Получено по					
$R_{H}(OM)$	$I_2=I_{\scriptscriptstyle H}$,	U _н , В	Измеренным данным			Параметрам системы		
	мА		$U_x(B)$	$I_{\kappa}(MA)$	$R_{3K}(OM)$	$U_x(B)$	$I_{\kappa}(MA)$	$R_{3K}(O_M)$
$R_{H}' = 100$	7.01	0.70	1.65	12.25	136.22	1.65	12.50	132
$R_{\rm H} = 300$	3.78	1.14						
Абсолютная погрешность:		0	0.25	4.22	-			
Относительная погрешность:		0	0.02	0.03				

Рисуночки. Сетка – 1х1

I_3 (I_2)

Коэффициенты линейной регрессии для $U(I_2)$ и $I_1(I_2)$ ниже. а подозрительно похоже на напряжение холостого хода, а b на эквивалентное сопротивление (0.135 вместо 135, т.к. ток в миллиамперах, это и дает сдвиг на 3 разряда). Но вообще это имеет смысл если вспомнить формулу $U=a+b*I_2$

a = 1.65

b = -0.135

c = 14.3

d = 0.33