HWI: MUSIC Algorithm

gives model Y = ae $= X A(0) + N_{\sigma}$ for one signal, and model $\dot{Y} = [A/0, \dots, A(\sigma_{A})] \dot{x} + \vec{n}_{\sigma} = A \dot{x} + \vec{n}_{\sigma}$

for d signals.

Wate: Y, n 60, AE Coxd, XE Carl

The autocorrelation matrix $R = \vec{y}^T \vec{y} = \vec{x}^T A^T A \vec{x} + I \sigma^2$ is full rank, and has signal subspace dim = $d' \le d$. Assume the vectors Rn corresponding to the n-d smallest eigenvalues

span the noise subspace (1).

The MUSIC algorith approximates the MLE of 0 (2)

The MUSIC algorith approximates
by solving argmax (A(0)+1 R, R, A(0))-1

Arbitrary antenna array (ZD) $c(\alpha_{1},\beta_{1})$ $c(\alpha_{1},\beta_{2})$ $c(\alpha_{1},\beta_{3})$ $c(\alpha_{1},$

Redefine $A(0) = [e^{i\beta E \kappa_n \cos \theta - \beta n \sin \theta}] n$ and leave the rest of the MUSIC aborithm unchanged. This works so long as antenny spacing $E \alpha D_n$ is chosen r.t. $A(0_1) = A(0_2) = 0$ (Nyquist warks)

Arbitrary antenna array (3D) (x_e, Y_e, z_e) (x_n, Y_n, z_n) (x_n, Y_n, z_n) (x_n, Y_n, z_n)

for this DOA problem, consider a projection of each axis onto zero (e.g y =0) then use the arbitrary ZD antenna array MUSIC alsorithm to approx the ratio of mon-zero dimensions (e.g. $\frac{x}{2} = \tan(0 \sqrt{60})$). Repenting for each axis gives a simple system of 3 eqs and 3 unknowns, and is easily solunble for $(\frac{x}{2}, \frac{x}{2}, \frac{x}{2})$.

Errata

noise subspace.

(1) Noise / Signal Subspaces and Eigendecomposition

\[\frac{1}{N} A(0.) \tau A(0.) \tau \frac{1}{N} \frac{1}{N}

Another way to slow this is that for any orthogonal basis, the noise component decomposes the same way, so that

E[$\|\vec{\xi}\|$ Aloge; + $\|\vec{\xi}\|$ N e_{i} e_{i} $\|\vec{\xi}\|$] = $\|\vec{\xi}\|$ HA(o_{s}) e_{i} $\|\vec{\xi}\|$ + σ^{2} \geq σ^{2} and in expectation signal components are largest. Since we have noise and are sumpling in a finite frame, however, the eigen decomposition will not be "perfect" and $|\{\xi_{\lambda}; \tau_{0}\}| \geq d$, and you will have to use a subspace of the noise subspace.

(2) MLG US. Subspace Methods.

A maximum likelihood estimate seems like the most straight forward, and is indeed the best, way of estimating the DOA. The problem is that this is a high dimensional, non-convex optimization problem.

Convexity: $L \in argmin \prod (||Y_{S_rN} - \sum A_{0A_rN} \times_A ||^2 - \sigma^2)$ consider an example with S = 1 sample, N = Z recievers. $CLE = los((Y_1 - X_1 - X_2)(Y_1 - X_1 - \sigma^2) + los((Y_2 - X_1 e^{i\theta} - X_2 e^{i\theta})(Y_2 - X_1 e^{i\theta} - X_2 e^{i\theta}) - \sigma^2)$ $= 2 cos O(Y_2^c(x_1^c + x_2^c) - Y_2^c(x_1^c + x_2^c))$ $= 2 cos O(Y_2^c(x_1^c + x_2^c) - Y_2^c(x_1^c + x_2^c))$

 $\frac{\partial UE}{\partial \theta} = \frac{2\cos\theta(Y_{\Sigma}^{2}(X_{i}^{2}+X_{\Sigma}^{2})-Y_{\varepsilon}^{2}(Y_{i}^{2}+X_{\varepsilon}^{2}))}{Y_{\varepsilon}Y_{\varepsilon}+2\cos\theta(Y_{\Sigma}^{2}(X_{i}^{2}+X_{\Sigma}^{2})-Y_{\varepsilon}^{2}(Y_{i}^{2}+X_{\varepsilon}^{2}))+(X_{i}+Y_{\varepsilon})(X_{i}+Y_{\varepsilon})} = \frac{\cos\theta \, d}{\cos\theta \, d^{2}}$ $\frac{\partial^{2}UE}{\partial \theta^{2}} = \frac{2\sin\theta(\cos\theta \, d^{2}-\sin\theta \, d^{2})}{(\cos\theta \, d^{2}-\sin\theta \, d^{2})} \qquad \text{(is not strictly positive } \forall$ $\frac{\partial^{3}UE}{\partial \theta^{2}} = \frac{\cos\theta}{(\cos\theta \, d^{2}-\sin\theta \, d^{2})} \qquad \text{(is not strictly positive } \forall$ $\frac{\partial^{3}UE}{\partial \theta^{2}} = \frac{\cos\theta}{(\cos\theta \, d^{2}-\sin\theta \, d^{2})} \qquad \text{(is not strictly positive } \forall$

Dinensionality: d + Zd + 1 o x (a-plitule + place)

Because the MUE problem is computationally hard to solve, we use heuristic subspace methods either instead of, or to give a good initial estimate for the MUE problem.

3 A(0) = & a;(0) e; + & ad;(0) ed; $\stackrel{N}{\leq} a_{1}(0)^{2} = 1$

11 Rs A(0) 1 = £ a(0) 7;

from this, you can conclude that signal subspace and noise subspace methods are equivalent when $\lambda_1 = ... = \lambda d$.

This can be an artificial condition (e.g. ignore eigenvals) or natural (e.g. if d=1),

When λ ; $\pm \hat{\eta}$ j, i,j \leq d why is noise subspace method Preferred?

My best idea is that it may be easier to cloose "good" noise eigenvectors than "good" signal ones, especially if N >> d'. In this case, while all signal eigenvectors will have some noise component in them, it should be possible to

identify a subset of the noise eigenvectors

with no signal component.