AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

- 1-3. (Cancelled)
- (Previously Presented) A ferromagnetic perovskite oxide having the formula (Ba_{0.95}Fe_{0.05})TiO₃, wherein the oxide has a saturation magnetization of about 0.10 u_b/mol Fe at 300K, and a coercive field of about 16 Oe at 300K.
- (Previously Presented) A ferromagnetic perovskite oxide having the formula (Ca_{0.95}Fe_{0.05})TiO₃, wherein the oxide has a saturation magnetization of about 0.11 µ₀/mol Fe at 300K, and a coercive field of about 12 Oe at 300K.
- (Previously Presented) A ferromagnetic perovskite oxide having the formula (Ba_{0.95}Fe_{0.05})ZrO₃, wherein the oxide has a saturation magnetization of about 0.11 μ_B/mol Fe at 300K, and a coercive field of about 25 Oe at 300K.
- (Previously Presented) A ferromagnetic perovskite oxide having the formula (Ca_{0.95}Fe_{0.05})ZrO₃, wherein the oxide has a saturation magnetization of about 0.12 μ_B/mol Fe at 300K, and a coercive field of about 4.5 Oe at 300K.
- (Previously Presented) A ferromagnetic perovskite oxide having the formula (Ba_{0.99}Fe_{0.05})HfO₃, wherein the oxide has a saturation magnetization of about 0.125 u_R/mol Fe at 300K. and a coercive field of about 20 Oe at 300K.

9. (Currently Amended) The material composition of claim 2 having specific formula (Ca0.95Fe0.05)HfO3, wherein said saturation magnetization about 0.12:B/mol-Fe at 300K, and the coercive fields about 7Oe at 300K. A ferromagnetic perovskite oxide having the formula (Ca_{0.95}Fe_{0.05})HfO₃, wherein the oxide has a saturation magnetization of about 0.12 μ_B/mol Fe at 300K, and a coercive field of about 7 Oe at 300K.

10. (Cancelled)

11.-14. (Cancelled)

15. (Previously Presented) A ferromagnetic perovoskite oxide having the formula La(Mo_{0.28}Fe_{0.75})O₃, wherein the magnetic Curie temperature of the oxide is as high as 940 K, and wherein the oxide has a coercive field of about 238 Oe at 300K.

16.-18. (Cancelled Herein)

- 19. (Previously Presented) A ferromagnetic perovskite oxide having the formula $(Ba_{1:x}Fe_x)TiO_3$, where x ranges from 0 to 0.15, and wherein the oxide has a saturation magnetization of about 0.10 μ_B/mol Fe at 300K, and a coercive field of about 16 Oe at 300K.
- 20. (Previously Presented) A ferromagnetic perovskite oxide having the formula $(Ca_{1*x}Fe_x)TiO_3$, where x ranges from 0 to 0.15, and wherein the oxide has a saturation magnetization of about 0.11 μ_B/mol Fe at 300K, and a coercive field of about 12 Oe at 300K.
- (Previously Presented) A ferromagnetic perovskite oxide having the formula (Ba_{1-x}Fe_x)ZrO₃, where x ranges from 0 to 0.15, and wherein the oxide has a saturation magnetization of about 0.11 μ_B/mol Fe at 300K, and a coercive field of about 25 Oe at 300K.

- 22. (Previously Presented) A ferromagnetic perovskite oxide having the formula $(Ca_{1-x}Fe_x)ZrO_3$, where x ranges from 0 to 0.15, and wherein the oxide has a saturation magnetization of about 0.12 μ_B/mol Fe at 300K, and a coercive field of about 4.5 Oe at 300K.
- 23. (Previously Presented) A ferromagnetic perovskite oxide having the formula $(Ba_{1-x}Fe_x)HfO_3$, where x ranges from 0 to 0.15, and wherein the oxide has a saturation magnetization of about 0.125 μ_B/mol Fe at 300K, and a coercive field of about 20 Oe at 300K
- 24. (Previously Presented) A ferromagnetic perovskite oxide having the formula $(Ca_{1-x}Fe_x)HfO_3$, where x ranges from 0 to 0.15, and wherein the oxide has a saturation magnetization of about 0.12 μ_B/mol Fe at 300K, and a coercive field of about 7.0e at 300K