5. (a) Let X be a random variable. Use Chebyshev's inequality to show that

$$\Pr[X=0] \leq rac{\operatorname{Var}[X]}{E[X]^2}$$
.

Deduce that if X_n is a sequence of random variables and $Var[X_n] = o(E[X_n]^2)$, then $X_n = 0$ with high probability.

(b) Show that if $p \geq Cn^{-2/3}$ for some large constant C, then the random graph G(n,p) contains a clique of size 4 with high probability.

$$\begin{array}{c}
\text{At } X = \# \text{A-clique} \\
\text{At } Y = \text{At } Y$$

$$\left(\delta U \left(\chi_{c}, \chi_{c'} \right) = \rho^{9} - \rho^{12} = O\left(\rho^{9} \right) \right)$$

$$\Rightarrow (5)(5) = \Theta(n^5)$$

$$\Rightarrow \sum_{|C \cap C'|=3} (OO(\chi_{C_1} \chi_{C'}) = O(N^{\frac{7}{7}})^{\frac{4}{9}}$$

$$V_{\text{er}}[X_{c}] = E[X_{c}^{2}] - E[X_{c}]^{2}$$

$$= E[X_{c}] - E[X_{c}]^{2}$$

$$= P^{6} - P^{12} = O(P^{6})$$

$$P_{\text{f}}[X=0] \leq V_{\text{er}}[X] = 2U_{\text{e}}[X_{c}] + 2Z(\omega(X_{c},X_{c}))$$

$$= O(N^{4}P^{c}) + O(N^{2}P^{c}) + O(N^{3}P^{5})$$

$$\Rightarrow N^{4}P^{6} = \omega(N^{4}(N^{2}P^{2})^{3}) = \omega(N^{4}P^{5}) \rightarrow \infty$$

$$N^{3}P^{3} = \omega(N^{3}P^{2})^{3} = \omega(N^{4}P^{5}) \rightarrow \infty$$

$$N^{3}P^{3} = \omega(N^{3}P^{2})^{3} = \omega(N^{4}P^{5}) \rightarrow \infty$$

$$\Rightarrow Pr[\chi=0] \leq O\left(\frac{1}{N^{4}})^{4}O\left(\frac{1}{N^{2}})^{3}O\left(\frac{1}{N^{2}})^{3}O\left(\frac{1}{N^{2}})^{3}O\left(\frac{1}{N^{2}}\right)$$

- 4. Suppose that X is uniformly distributed on the set of n even numbers $\{2,4,6,8,\ldots,2n\}$.
 - (a) Calculate $M_X(t)$.
 - (b) Calculate $\mathbb{E}[X^3]$.
 - (c) Let X_1, \ldots, X_k be independent copies of X and let $S_k = X_1 + \ldots + X_k$. Calculate $M_{S_k}(t)$.

$$M_{X}(t) = \left[\begin{array}{c} t \\ e^{tX} \end{array} \right]$$

$$= \underbrace{\begin{array}{c} x \\ \exists \\ k=1 \end{array}}_{K=1}^{2} \left[\begin{array}{c} x \\ k=1 \end{array} \right]$$

$$= \underbrace{\begin{array}{c} x \\ \exists \\ k=1 \end{array}}_{K=1}^{2} \left[\begin{array}{c} x \\ k=1 \end{array} \right]$$

$$= \underbrace{\begin{array}{c} x \\ \exists \\ k=1 \end{array}}_{K=1}^{2} \left[\begin{array}{c} x \\ k=1 \end{array} \right]$$

$$= \underbrace{\begin{array}{c} x \\ \exists \\ k=1 \end{array}}_{K=1}^{2} \left[\begin{array}{c} x \\ k=1 \end{array} \right]$$

$$= \underbrace{\begin{array}{c} x \\ \exists \\ k=1 \end{array}}_{K=1}^{2} \left[\begin{array}{c} x \\ k=1 \end{array} \right]$$

$$= \underbrace{\begin{array}{c} x \\ \exists \\ k=1 \end{array}}_{K=1}^{2} \left[\begin{array}{c} x \\ k=1 \end{array} \right]$$

$$= \underbrace{\begin{array}{c} x \\ \exists \\ k=1 \end{array}}_{K=1}^{2} \left[\begin{array}{c} x \\ k=1 \end{array} \right]$$

$$= \underbrace{\begin{array}{c} x \\ \exists \\ k=1 \end{array}}_{K=1}^{2} \left[\begin{array}{c} x \\ k=1 \end{array} \right]$$

$$E[X^{3}] = \frac{d^{3}}{dt^{3}} \frac{M_{x}(t)}{M_{x}(t)} \Big|_{t=0}$$

$$= \frac{d^{3}}{dt^{3}} \left[\frac{1}{N} \frac{2}{k=1} e^{2kt} \right] \Big|_{t=0}$$

$$= \left[\frac{1}{N} \frac{2}{N} \frac{8k^{3}e^{kt}}{k=1} \right] = 0$$

$$= \frac{8}{N} \frac{2}{N} \frac{k^{3}}{k=1}$$

$$= \frac{8}{N} \frac{2}{N} \frac{k^{3}}{N} = 0$$

Matching ticket

A biased coin lands heads with probability 1/10. The coin is flipped 200 times. Use Markov's inequality to give an upper bound on the probability that the coin shows heads at least 120 times. Improve this bound using Chebyshev's inequality. Improve it even further with Chernoff's inequality.

Chernoff: let
$$X = \sum_{i=1}^{N} X_i$$
 X; u Bern (Pi)

incle pendant

 $M = E[X] = \sum_{i=1}^{N} P_i$

Then $\frac{5^{2}H}{2+5}$ q) (upper) $Pr(X7/(1+8)HJ \leq C^{2}/2+5)$

A biased coin lands heads with probability 1/10. The coin is flipped 200 times. Use Markov's inequality to give an upper bound on the probability that the coin shows heads at least 120 times. Improve this bound using Chebyshev's inequality. Improve it even further with Chernoff's inequality.

of
$$X = \# hoods$$
 $X = \frac{2}{2}X_1$ $X : N Bern(1/0)$

$$H = \frac{200}{10} = \frac{20}{20}$$

Went
$$Pr[X7/20] = Pr[X7, (1+8)20]$$

 $= exp(-25.20)$

1. The weak law of large numbers states that, if X_1, X_2, \ldots are iid random variables with mean μ and variance σ^2 , then for any $\epsilon > 0$ we hve

$$\Pr\left[\left|\frac{X_1 + X_2 + \dots + X_n}{n} - \mu\right| > \epsilon\right] \to 0.$$

That is, the sample mean $\frac{1}{n} \sum_{i=1}^{n} X_i$ converges to the mean μ in probability. Prove the weak law of large numbers.

We want Pr | Xn - M > 2 S Chebyshev says Pr [|Xn-1E[Xn]| ? 2] = Pr [|Xn-M| 72] < Ver [Xn]/22

$$\begin{aligned}
& = \frac{1}{N^2} \operatorname{Ver} \left(\frac{1}{N} \frac{2}{N} X_i \right) \\
& = \frac{1}{N^2} \operatorname{Ver} \left(\frac{1}{N} \frac{2}{N} X_i \right) \\
& = \frac{1}{N^2} \operatorname{Ver} \left(\frac{1}{N} \frac{2}{N} X_i \right) \\
& = \frac{1}{N^2} \operatorname{Ver} \left(\frac{1}{N} \frac{2}{N} X_i \right) \\
& = \frac{1}{N^2} \operatorname{Ver} \left(\frac{1}{N} \frac{2}{N} X_i \right) \\
& = \frac{1}{N^2} \operatorname{Ver} \left(\frac{1}{N} \frac{2}{N} X_i \right) \\
& = \frac{1}{N^2} \operatorname{Ver} \left(\frac{1}{N} \frac{2}{N} X_i \right) \\
& = \frac{1}{N^2} \operatorname{Ver} \left(\frac{1}{N} \frac{2}{N} X_i \right) \\
& = \frac{1}{N^2} \operatorname{Ver} \left(\frac{1}{N} \frac{2}{N} X_i \right) \\
& = \frac{1}{N^2} \operatorname{Ver} \left(\frac{1}{N} \frac{2}{N} X_i \right) \\
& = \frac{1}{N^2} \operatorname{Ver} \left(\frac{1}{N} \frac{2}{N} X_i \right) \\
& = \frac{1}{N^2} \operatorname{Ver} \left(\frac{1}{N} \frac{2}{N} X_i \right) \\
& = \frac{1}{N^2} \operatorname{Ver} \left(\frac{1}{N} \frac{2}{N} X_i \right) \\
& = \frac{1}{N^2} \operatorname{Ver} \left(\frac{1}{N} \frac{2}{N} X_i \right) \\
& = \frac{1}{N^2} \operatorname{Ver} \left(\frac{1}{N} \frac{2}{N} X_i \right) \\
& = \frac{1}{N^2} \operatorname{Ver} \left(\frac{1}{N} \frac{2}{N} X_i \right) \\
& = \frac{1}{N^2} \operatorname{Ver} \left(\frac{1}{N} \frac{2}{N} X_i \right) \\
& = \frac{1}{N^2} \operatorname{Ver} \left(\frac{1}{N} \frac{2}{N} X_i \right) \\
& = \frac{1}{N^2} \operatorname{Ver} \left(\frac{1}{N} \frac{2}{N} X_i \right) \\
& = \frac{1}{N^2} \operatorname{Ver} \left(\frac{1}{N} \frac{2}{N} X_i \right) \\
& = \frac{1}{N^2} \operatorname{Ver} \left(\frac{1}{N} \frac{2}{N} X_i \right) \\
& = \frac{1}{N^2} \operatorname{Ver} \left(\frac{1}{N} \frac{2}{N} X_i \right) \\
& = \frac{1}{N^2} \operatorname{Ver} \left(\frac{1}{N} \frac{2}{N} X_i \right) \\
& = \frac{1}{N^2} \operatorname{Ver} \left(\frac{1}{N} \frac{2}{N} X_i \right) \\
& = \frac{1}{N^2} \operatorname{Ver} \left(\frac{1}{N} X_i \right) \\
& = \frac{1}{N^2} \operatorname{Ver} \left(\frac{1}{N} \frac{2}{N} X_i \right) \\
& = \frac{1}{N^2} \operatorname{Ver} \left(\frac{1}{N} \frac{2}{N} X_i \right) \\
& = \frac{1}{N^2} \operatorname{Ver} \left(\frac{1}{N} \frac{2}{N} X_i \right) \\
& = \frac{1}{N^2} \operatorname{Ver} \left(\frac{1}{N} \frac{2}{N} X_i \right) \\
& = \frac{1}{N^2} \operatorname{Ver} \left(\frac{1}{N} \frac{2}{N} X_i \right) \\
& = \frac{1}{N^2} \operatorname{Ver} \left(\frac{1}{N} \frac{2}{N} X_i \right) \\
& = \frac{1}{N^2} \operatorname{Ver} \left(\frac{1}{N} X_i \right) \\
& = \frac{1}{N^2} \operatorname{Ver} \left(\frac{1}{N} X_i \right) \\
& = \frac{1}{N^2} \operatorname{Ver} \left(\frac{1}{N} X_i \right) \\
& = \frac{1}{N^2} \operatorname{Ver} \left(\frac{1}{N} X_i \right) \\
& = \frac{1}{N^2} \operatorname{Ver} \left(\frac{1}{N} X_i \right) \\
& = \frac{1}{N^2} \operatorname{Ver} \left(\frac{1}{N} X_i \right) \\
& = \frac{1}{N^2} \operatorname{Ver} \left(\frac{1}{N} X_i \right) \\
& = \frac{1}{N^2} \operatorname{Ver} \left(\frac{1}{N} X_i \right) \\
& = \frac{1}{N^2} \operatorname{Ver} \left(\frac{1}{N} X_i \right) \\
& = \frac{1}{N^2} \operatorname{Ver} \left(\frac{1}{N} X_i \right) \\
& = \frac{1}{N^2} \operatorname{Ver} \left(\frac{1}{N} X_i \right) \\
& = \frac{1}{N^2} \operatorname{Ver} \left(\frac{1}{N} X_i \right) \\
& = \frac{1}{N^2} \operatorname{Ver} \left(\frac{1}{N} X_i \right)$$