

Continuité

$oldsymbol{\mathbb{L}}$ Continuité et continuité à droite et à gauche d'une fonction en un point $oldsymbol{\mathrm{x}}_{\scriptscriptstyle{0}}$:

- $\underline{\mathbf{A}}$ Continuité d'une fonction en un point \mathbf{x}_0 :
 - a. Définition :
 - **f** est une fonction définition sur D_f , I_{X_0} est un intervalle ouvert et contient x_0 et inclus dans D_f f est continue au point $x_0 \Leftrightarrow \lim_{x\to x_0} f(x) = f(x_0)$.

b. Exemple:

Soit la fonction
$$f$$
 définie par :
$$\begin{cases} f\left(x\right) = \frac{x^2 - |x|}{|x| - 1} \; ; \; x \in \mathbb{R} \setminus \left\{-1, 1\right\} \\ f\left(1\right) = 1 \end{cases} .$$

1. Etudier la continuité de f au point $x_0 = 1$.

On a:
$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{|x|(|x|-1)}{|x|-1}$$
$$= \lim_{x \to 1} |x|$$
$$= 1$$
$$= f(1)$$

Conclusion: la fonction f est continue au point $x_0 = 1$.

2. La figure ci-contre représente la courbe représentative d'une fonction f

B. Continuité à droite et à gauche d'une fonction en un point x_0 :

a. Définition :

f est une fonction définition sur D_f , $I_d = [x_0, x_0 + r[; (r > 0) est un intervalle inclus dans <math>D_f$.

• f est continue à droite du point $x_0 \Leftrightarrow \lim_{\substack{x \to x_0 \\ x > 0}} f(x) = \lim_{\substack{x \to x_0 \\ x < 0}} f(x) = f(x_0)$ •

f est une fonction définition sur D_f , $I_g = x_0 - r, x_0$; (r > 0) est un intervalle inclus dans D_f

• f est continue à gauche du point $x_0 \Leftrightarrow \lim_{x \to x_0} f(x) = f(x_0)$ •

Continuité

<u>b.</u> propriété :

f est continue au point X_0 si et seulement si f continue à droite et à gauche de X_0

Ou encore: (f est continue au point
$$X_0$$
) $\Leftrightarrow \lim_{\substack{x \to x_0 \\ x > 0}} f(x) = \lim_{\substack{x \to x_0 \\ x < 0}} f(x) = f(x_0)$

<u>c.</u> Exemple :

Exemple 1:

Soit la fonction f définie par :
$$\begin{cases} f(x) = x + a\sqrt{x^2 + x + 1} & ; \ x \le 0 \\ f(x) = x^2 - x & ; \ 0 < x \le 1 \text{ avec a et b de } \mathbb{R} \end{cases}$$
$$f(x) = bx - \frac{x - 1}{\sqrt{x^2 + 3} - 2} \quad ; x > 1$$

1. Déterminer a et b pour que la fonction f soit la continue au point $x_0 = 0$ et $x_1 = 1$.

✓ Pour la continuité en $x_0 = 0$.

On a f est continue en $x_0 = 0$ donc f est continue à droite et à gauche en $x_0 = 0$.

D'abord:
$$f(0) = 0 + a\sqrt{0^2 + 0 + 1} = a$$

Puisque f sera continue à droite de $x_0 = 0$ alors $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} x^2 - x = 0 = f(0) = a$

D'où:
$$a = 0$$
.

Puisque f sera continue à gauche de $x_0 = 0$ alors $\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} x + a\sqrt{x^2 + x + 1} = a = f(0)$ et f(0) = a.

Donc: f est continue à gauche de $x_0 = 0$

Conséquence 1 : pour que f soit continue au point $x_0 = 0$ il faut que a = 0.

✓ Pour la continuité en $x_1 = 1$.

On a f est continue en $x_1 = 1$ donc f est continue à droite et à gauche en $x_1 = 1$.

D'abord:
$$f(1) = 1^2 - 1 = 0$$
.

• Puisque f sera continue à droite de $x_1 = 1$ alors :

$$\lim_{x \to 1^{+}} bx - \frac{x-1}{\sqrt{x^{2}+3}-2} = \lim_{x \to 1^{+}} bx - \frac{(x-1)(\sqrt{x^{2}+3}+2)}{(\sqrt{x^{2}+3}-2)(\sqrt{x^{2}+3}+2)}$$

$$= \lim_{x \to 1^{+}} bx - \frac{(x-1)(\sqrt{x^{2}+3}+2)}{x^{2}-1}$$

$$= \lim_{x \to 1^{+}} bx - \frac{(x-1)(\sqrt{x^{2}+3}+2)}{(x-1)(x+1)}$$

Continuité

page 💸

$$=\mathbf{b}-\mathbf{2}$$

D'où: $b-2=f(1) \Leftrightarrow b-2=0$, par suite b=2.

Puisque f sera continue à gauche de $x_1 = 1$ alors $\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} x^2 - x = 0 = f(1)$

Donc: f est continue à gauche de $x_1 = 1$

Conséquence 2 : pour que f soit continue au point $x_1 = 1$ il faut que b = 2.

Conclusion: les valeurs de a et b pour que la fonction f soit continue en $x_0 = 0$ et $x_1 = 1$ sont a = 0 et b = 2

Conclusion: la fonction f est continue au point $x_0 = 1$.

- 2. La figure ci-contre représente la courbe représentative d'une fonction f.
 - Etudier graphiquement la continuité à droite et à gauche au point $x_0 = 1$
 - F est-elle continue au point $x_0 = 1$?

Continuité sur un intervalle :

a. Définitions :

- f est continue sur un intervalle ouvert $(I =]a,b[) \Leftrightarrow$ pour tout x de I; f est continue en x.
- f est continue sur $[a,b] \Leftrightarrow$ f est continue sur [a,b] et f est continue à droite de a.
- f est continue sur $]a,b]\Leftrightarrow$ f est continue sur]a,b[et f est continue à gauche de b .
- f est continue sur $[a,b] \Leftrightarrow f$ est continue sur [a,b] et f est continue à droite de a et à gauche de b .

<u>b.</u> Exemple :

On considère la fonction f définie par $f(x) = x^2 + 3x$.

1. Montrer que f est continue sur l'intervalle I =]1;5[.

Soit $x_0 \in I = [1;5]$; montrons que f est continue en x_0 .

Pour cela il faut démontrer que : $\lim_{x\to x_0} f(x) = f(x_0)$.

On a: $f(x_0) = x_0^2 + 3x_0$ et $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} x^2 + 3x = x_0^2 + 3x_0 = f(x_0)$ (car f est une fonction polynomiale).

Donc f est continue en $x_0 \in]1;5[$

Conclusion: f est continue sur I = [1;5].

Continuité

þage

Operations sur les fonctions continues sur un intervalle $I \subset \mathbb{R}$:

a. Propriétés :

f est continue sur I et g est continue sur I.

- Les fonctions f + g et $f \times g$ et αf , $(\alpha \in \mathbb{R})$ sont continues sur I.
- Les fonctions $\frac{1}{g}$ et $\frac{f}{g}$ sont continues sur I (pour $x \in I$ tel que $g(x) \neq 0$).

a. Propriété:

- Toute fonction polynômiale est continue sur $D_{\rm f}$ = $\mathbb R$.
- ullet Toute fonction rationnelle est continue sur son domaine de définition $D_{
 m f}$.
- Les fonctions $f(x) = \sin x$ et $g(x) = \cos x$ sont continues sur \mathbb{R} .
- La fonction $x \mapsto \tan x$ est continue sur $\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}$.
- La fonction $f(x) = \sqrt{x}$ est continue sur $[0, +\infty]$.

<u>b.</u> Exemple :

Soient les fonctions 1) $f(x) = (x^2 + 3x - 2) \times \sqrt{x}$. 2) $g(x) = \frac{2x+1}{x-1} + \cos(x)$.

- 1. Déterminer ensemble de définition et ensemble de la continuité de chaque fonction précédente .
- V Pour la fonction: 1) $f(x) = (x^2 + 3x 2) \times \sqrt{x}$:
- La fonction $x \mapsto x^2 + 3x 2$ définie et continue sur $\mathbb R$ (fonction polynomiale).
- La fonction $x \mapsto \sqrt{x}$ définie et continue sur $[0,+\infty[$. Conclusion : f est définie et continue sur $[0,+\infty[$
- V Pour la fonction: 2) $g(x) = \frac{2x+1}{x-1} + \cos(x)$:
- La fonction $x \mapsto \frac{2x+1}{x-1}$ définie et continue sur $\mathbb{R} \setminus \{1\}$ (fonction polynomiale).
- La fonction $x\mapsto\cos x$ définie et continue sur \mathbb{R} . Conclusion : g est définie et continue sur $\mathbb{R}\setminus\{1\}$.

V. Image d'un intervalle par une fonction continue :

a. Propriété:

Image du segment [a,b] par une fonction continue est un segment J = [m,M] (m = la plus petite image

M= la plus grande image par f des éléments de [a,b]) f([a,b])=[m,M]

• Image d'un intervalle I par une fonction continue est un intervalle J. On note J = f(I).

Continuité

<u>b.</u> Exemple: Exemple 1: f([1,2[)=[1,3[

Exemple 2: f([a,b])=[m,M]

VI. Image d'un intervalle par une fonction continue et strictement monotone :

Si la fonction est continue et strictement croissante					
f([a,b]) = [f(a),f(b)]	$f([a,b]) = [f(a), \lim_{x \to b^{-}} f(x)]$	$f(]a,b]) = \lim_{x \to a^{+}} f(x), f(b)$			
$f(]a,b[) = \lim_{x \to a^{+}} f(x), \lim_{x \to b^{-}} f(x)$	$f([a,+\infty[)=[f(a),\lim_{x\to+\infty}f(x)]$	$f(]a,+\infty[) = \lim_{x\to a^+} f(x), \lim_{x\to +\infty} f(x)$			
$f(\mathbb{R}) = \lim_{x \to -\infty} f(x), \lim_{x \to +\infty} f(x)$	$f(]-\infty,a]$ = $\lim_{x\to\infty} f(x),f(a)$	$f(]-\infty,a[)=\lim_{x\to-\infty}f(x),\lim_{x\to a^{-}}f(x)$			
Si la fonction est continue et strictement décroissante					

f([a,b])=[f(b),f(a)]	$f([a,b[)=]\lim_{x\to b^-}f(x),f(a)$	$f(]a,b]$ = $[f(b), \lim_{x\to a^+} f(x)]$
$f(]a,b[) = \lim_{x \to b^{-}} f(x), \lim_{x \to a^{+}} f(x)$	$f([a,+\infty[)=]\lim_{x\to+\infty}f(x),f(a)$	$f(]a,+\infty[) = \lim_{x\to+\infty} f(x), \lim_{x\to a^+} f(x)$
$f(\mathbb{R}) = \lim_{x \to +\infty} f(x), \lim_{x \to -\infty} f(x)$	$f(]-\infty,a]$ = $[f(a), \lim_{x\to\infty}f(x)]$	$f(]-\infty,a[)=$ $\lim_{x\to a^-}f(x),\lim_{x\to -\infty}f(x)$

VII. Continuité de la composée de deux fonctions continues :

Théorème:

- f est contine en x₀ alors la fonction gof est continue en x₀ • \mathbf{g} est contine en $\mathbf{f}(\mathbf{x}_0)$
- •f est contine sur I alors la fonction gof est continue sur I . • g est contine en f(I)

- $f(x) = \sin(ax+b)$ et $g(x) = \cos(ax+b)$ sont continues sur \mathbb{R} .
- h(x) = tan(ax+b) est continue pour tout x tel que $ax+b \neq \frac{\pi}{2} + k\pi$.
- * si f est positive et continue sur I alors $h(x) = \sqrt{f(x)}$ est continue sur I.

Continuité

VIII. Théorème des valeurs intermédiaires :

a. Activité:

La figure ci-contre représente la fonction f, on prend a = -2 et b = 1.

- 1. En déduit graphiquement f(a) et f(b).
- 2. On choisit un nombre k compris entre f(a) et f(b), graphiquement, est-ce qu'il existe un nombre c de [a,b]=[-2,1] tel que : f(c)=k.
- **<u>b.</u>** Propriété (théorème des valeurs intermédiaires):

f est une fonction continue sur [a,b].

Pout tout nombre k compris entre f(a) et f(b), il existe au moins un élément c de [a,b] tel que f(c) = k

- **<u>c.</u>** Conséquences :
 - **Puisque** la fonction f est continue on a : f([a,b]) = [m,M] (l'image d'un segment est un segment).
 - * si f(a) et f(b) de signe contraire (cad : f(a)f(b) < 0) donc $k = 0 \in f([a,b]) = [m;M]$ alors il existe au moins un $c \in [a,b]$ / f(c) = 0 (sans oublier que f est continue sur [a,b])
 - * si f est continue sur [a,b] et f(a)f(b) < 0 alors l'équation $x \in]a,b[/f(x) = 0$ admet au moins une solution c dans]a,b[.
- d. remarque:
 - ✓ f est une fonction continue et strictement monotone sur [a,b] alors c est unique
 - ✓ pour montrer il existe au moins un c de [a,b] ou bien l'équation admet au moins une solution alors il faut que la fonction est continue.
- ✓ pour montrer il existe un et un seul c de [a,b] ou bien l'équation admet une et une seule solution alors il faut que la fonction est continue et strictement monotone.
- Fonction réciproque d'une fonction continue et strictement monotone sur un intervalle I :
 - a. Théorème:

La fonction réciproque d'une fonction continue et strictement monotone sur un intervalle I.

- $f: I \mapsto J$ est une fonction si tout $x \in I$ a une et seule image y dans J et de même si tout $y \in J$ a un et seul antécédent y dans I
- on définie une autre fonction sera notée f⁻¹ et appelée fonction réciproque de f avec :

f:
$$I \rightarrow J = f(I)$$

 $x \mapsto f(x) = y$ et f^{-1} : $J = f(I) \rightarrow I$
 $y \mapsto f^{-1}(y) = x$

Continuité

page 🦻

b. Exemple:

On considère la fonction f de la variable x définie sur l'intervalle [0,3] par $f(x) = x^2$.

 $\ensuremath{\underline{1}}_{\! -}$ Montrons que f admet une fonction réciproque f^{-1} définie sur J à déterminer .

Il faut montrer que f est continue et strictement monotone sur [0,3].

 \div Continuité de f sur [0,3].

La fonction $x\mapsto x^2$ est continue sur $\mathbb R$, donc sa restriction sur $\left[0,3\right]$ est continue sur $\left[0,3\right]$.

❖ La monotonie (strictement) de f sur [0,3].

La fonction $x \mapsto x^2$ sa dérivée est $x \mapsto 2x$ don sa fonction dérivée est positive sur $\left[0,+\infty\right[$ donc La fonction $x \mapsto x^2$ est strictement croissante sur $\left[0,+\infty\right[$ par suite sa restriction sur $\left[0,3\right]$ est strictement croissante sur $\left[0,3\right]$.

D'où : f est continue et strictement monotone sur [0,3]

- \diamond Conclusion 1: la fonction f admet une fonction réciproque f^{-1} définie sur J.
- **❖** On détermine **J** :

On a: J = f([0,3])= [f(0),f(3)] car f est continue et strictement croissante sur [0,3]. = [0;9] . Donc: J = [0;9].

Conclusion: la fonction f admet une fonction réciproque f^{-1} définie sur J = [0;9].

c. Relation entre f et sa réciproque f^{-1} :

$$\begin{cases} \mathbf{f}(\mathbf{x}) = \mathbf{y} \\ \mathbf{x} \in \mathbf{I} \end{cases} \Leftrightarrow \begin{cases} \mathbf{f}^{-1}(\mathbf{y}) = \mathbf{x} \\ \mathbf{y} \in \mathbf{J} \end{cases} \quad \forall \mathbf{x} \in \mathbf{I} \ : \ \mathbf{f}^{-1} \circ \mathbf{f}(\mathbf{x}) = \mathbf{x} \quad \text{et} \quad \begin{cases} \forall \mathbf{y} \in \mathbf{J} \ : \ \mathbf{f} \circ \mathbf{f}^{-1}(\mathbf{y}) = \mathbf{y} \\ \forall \mathbf{x} \in \mathbf{J} \ : \ \mathbf{f} \circ \mathbf{f}^{-1}(\mathbf{x}) = \mathbf{x} \end{cases}$$

d. Remarque:

Pour déterminer la fonction f⁻¹

On rédige de la façon suivante :

1ère méthode:

2ième méthode:

Soit $x \in I$ et $y \in J$ cherchons x tel que f(x) = y. Soit $y \in I$ et $x \in J$ cherchons y tel que f(y) = x.

e. Exemple:

On considère la fonction f de la variable x définie sur l'intervalle [0,3] par $f(x) = x^2$ qui admet fonction réciproque $f^{-1}: J=[0;9] \mapsto I=[0;3]$ (exemple précédent)

1. Déterminer f^{-1} :

On utilise la 1^{ère} méthode :

On a:
$$\begin{cases} f(x) = y \\ x \in I \end{cases} \Leftrightarrow \begin{cases} f^{-1}(y) = x \\ y \in J \end{cases}$$

Soit $y \in [0,9]$ et $x \in [0,3]$ cherehons x tel que f(x) = y

Continuité

On résoudra l'équation f(x) = y.

$$f(x) = y \Leftrightarrow x^2 = y$$

 $\Leftrightarrow x = \sqrt{y} \in [0;3] \text{ ou } x = -\sqrt{y} \notin [0;3]$

$$Donc: \text{la solution est } x = \sqrt{y} \text{ or } \begin{cases} f^{-1}(y) = x \\ y \in J \end{cases} \text{ d'où } \begin{cases} f^{-1}(y) = x = \sqrt{y} \\ y \in J \end{cases} \text{ c.à.d. } \begin{cases} f^{-1}(y) = \sqrt{y} \\ y \in J \end{cases}$$

Donc:
$$f^{-1}: J = f(I) \rightarrow I$$
 ou encore
$$f^{-1}: [0;9] \rightarrow [0;3]$$

$$y \mapsto f^{-1}(y) = \sqrt{y}$$

$$y \mapsto f^{-1}(y) = \sqrt{y}$$

Au lieu de notée la variable par \boldsymbol{y} , on note la variable par \boldsymbol{x} .

Conclusion : l a fonction réciproque f^{-1} est définie par f^{-1} : $\left[0;9\right] \rightarrow \left[0;3\right]$ $x \mapsto f^{-1}(x) = \sqrt{x}$

On utilise la 2ième méthode :

Soit $x \in [0,9]$ et $y \in [0,3]$ cherehous y tel que f(y) = x

On résoudra l'équation f(y) = x.

$$f(y) = x \Leftrightarrow y^{2} = x$$

$$\Leftrightarrow y = \sqrt{x} \in [0;3] \text{ ou } y = -\sqrt{x} \notin [0;3]$$

$$f^{-1}: J = f(I) \to I$$

$$x \mapsto f^{-1}(x) = \sqrt{x}$$

Conclusion: l a fonction réciproque f^{-1} est définie par f^{-1} : $[0;9] \rightarrow [0;3]$ $x \mapsto f^{-1}(x) = \sqrt{x}$

$\underline{\mathbf{f}}$ Propriété de la fonction réciproque \mathbf{f}^{-1} :

- 1. La fonction réciproque f^{-1} est continue sur J = f(I).
- **2.** La fonction réciproque f^{-1} et f varient dans le même sens .
- 3. $(C_{f^{-1}})$ et (C_f) sont symétriques par rapport à la 1^{er} bissectrice ((D): y = x).

La fonction racine d'ordre n (ou racine n^{ième}):

a. Définition et théorème :

- La fonction $f(x) = x^n$ (avec $n \in \mathbb{N}^*$) est continue et strictement croissante sur $[0,+\infty[$.
- Sa fonction réciproque f^{-1} sera noté $f^{-1}(x) = \sqrt[n]{x} = x^{\frac{1}{n}}$ et appelée La fonction racine d'ordre n (ou la fonction racine $n^{i\`{e}me}$) .

•
$$\mathbf{f}^{-1} = \sqrt[n]{} : [0, +\infty[\rightarrow [0, +\infty[$$

$$x \mapsto f^{-1}(x) = \sqrt[n]{x} = x^{\frac{1}{n}}$$

 $\sqrt[n]{x}$ on l'appelle racine d'ordre n du réel positif x

Continuité

þage

b. Cas particuliers :

- Cas n = 1 on a $f^{-1}(x) = \sqrt[1]{x} = x$ (pas d'importance). donc on prend $n \in \mathbb{N} \setminus \{0,1\}$.
- Cas n=2 on a $f^{-1}(x) = \sqrt[2]{x} = \sqrt{x}$ (racine carrée).
- Cas n = 3 on a $f^{-1}(x) = \sqrt[3]{x}$ (racine cubique ou racine d'ordre 3).

c. Propriétés:

Soient a et b de \mathbb{R}^+ et $n \in \mathbb{N} \setminus \{0,1\}$

$\sqrt[n]{1} = 1$; $\sqrt[n]{0} = 0$	$\left(\sqrt[n]{a}\right)^n = a$	$\sqrt[n]{a^n} = a$	$\lim_{x\to +\infty} \sqrt[n]{x} = +\infty$
$\sqrt[n]{a} = \sqrt[n]{b} \Leftrightarrow a = b$	$\sqrt[n]{a} \le \sqrt[n]{b} \iff a \le b$	$\sqrt[n]{a} \times \sqrt[n]{b} = \sqrt[n]{a \times b}$	$ \sqrt[n \times m]{a^m} = \sqrt[n]{a} $
$\sqrt[n]{\sqrt[n]{a}} = \sqrt[a \times m]{a}$	$(b > 0)$; $\sqrt[n]{\frac{1}{b}} = \frac{1}{\sqrt[n]{b}}$	$(\mathbf{b} > 0) \; ; \; \sqrt[n]{\frac{\mathbf{a}}{\mathbf{b}}} = \frac{\sqrt[n]{\mathbf{a}}}{\sqrt[n]{\mathbf{b}}}$	

<u>d.</u> Exemple :

Simplifier:
$$\sqrt[5]{\sqrt[3]{81}} \times \sqrt[15]{3^{11}}$$
.

On a:
$$\sqrt[5]{\sqrt[3]{81}} \times \sqrt[15]{3^{11}} = \sqrt[3x]{81} \times \sqrt[15]{3^{11}} = \sqrt[15]{3^4 \times 3^{11}} = \sqrt[15]{3^{15}} = 3$$

Conclusion:
$$\sqrt[5]{\sqrt[3]{81}} \times \sqrt[15]{3^{11}} = 3$$

<u>e.</u> Limites de la fonction $g(x) = \sqrt[n]{f(x)}$:

Propriété:

$$\lim_{x \to +\infty} \sqrt[n]{x} = +\infty \text{ et } \lim_{x \to x_0} \sqrt[n]{x} = \sqrt[n]{x_0} \text{ ; } \left(\text{ avec} x_0 \ge 0 \right).$$

*
$$2^{\text{ième}}$$
 cas le cas général : $g(x) = \sqrt[n]{f(x)}$

$$\lim_{x \to x_0} f(x) = +\infty \Rightarrow \lim_{x \to x_0} \sqrt[n]{f(x)} = +\infty \text{ et } \lim_{x \to x_0} f(x) = \ell \Rightarrow \lim_{x \to x_0} \sqrt[n]{f(x)} = \sqrt[n]{\ell}.$$

• Les deux propriétés restent vraies si on remplace
$$X \to X_0$$
 par $X \to X_0^-$; $X \to X_0^+$; $X \to \pm \infty$.

$\underline{\mathbf{f}}$ Exemple:

Calculons les limites:

•
$$\lim_{x \to +\infty} \sqrt[5]{2x+3} = +\infty$$
 car $\lim_{x \to +\infty} 2x+3 = +\infty$.

•
$$\lim_{x \to -\infty} \sqrt[5]{5x^2 + 1} = +\infty$$
 car $\lim_{x \to -\infty} 5x^2 + 1 = +\infty$.

•
$$\lim_{x \to -\infty} \sqrt[3]{\frac{8x+8}{x+5}} = \sqrt[3]{8} = \sqrt[3]{2^3} = 2 \operatorname{car} \lim_{x \to -\infty} \frac{8x+8}{x+5} = 8.$$

•
$$\lim_{x \to -\infty} \sqrt[3]{\frac{8x+8}{x-5}} = \sqrt[3]{8} = \sqrt[3]{2^3} = 2 \operatorname{car} \lim_{x \to -\infty} \frac{8x+8}{x-5} = 8.$$

Continuité

• $\lim_{x \to 5^+} \sqrt[3]{\frac{8x+8}{x-5}} = +\infty$ car $\lim_{x \to 5^+} \frac{8x+8}{x-5} = +\infty$ (puisque $\lim_{x \to 5^+} 8x+8 = 48$ et $\lim_{x \to 5^+} x - 5 = 0^+$).

•
$$\lim_{x \to -1^-} \sqrt[3]{\frac{8x+8}{x-5}} = \sqrt[3]{0} = 0 \text{ car } \lim_{x \to -1} \frac{8x+1}{x-5} = 0^+ \text{ (puisque } \lim_{x \to -1^-} 8x+8 = 0^- \text{ et } \lim_{x \to -1^-} x-5 = -6 \text{)}.$$

Puissance rationnelle d'un nombre réel positif :

a. Définition:

 $\mathbf{x} \in \mathbb{R}^{+*}$ et $\mathbf{n} \in \mathbb{N}^{*}$ et $\mathbf{m} \in \mathbb{Z}$ on pose $\mathbf{r} = \frac{\mathbf{m}}{\mathbf{n}} \in \mathbb{Q}$.

Le nombre $\sqrt[n]{x^m}$ son écriture sera de la façon suivante $\sqrt[n]{x^m} = x^{\frac{m}{n}}$ ou encore par $\sqrt[n]{x^m} = x^r$; x^r est appelé puissance rationnelle du nombre réel positif x d'exposant r.

$$(0^r = 0 \text{ avec } r \neq 0$$

b. Remarque:

La définition de l'exposant dans $\mathbb Q$ c'est un prolongement de l'exposant dans $\mathbb Z$.

c. Exemple:

• Ecrire les nombres suivants $\left(\sqrt[9]{7}\right)^{11}$ et $\sqrt[8]{3^{-5}}$ et $\left(\sqrt[9]{21}\right)^{-11}$ et $\sqrt[13]{2^{-15}}$ et $\left(\sqrt[5]{3}\right)^{-32}$ sous la forme x^r :

On a:
$$(\sqrt[9]{7})^{11} = 7^{\frac{9}{11}}$$
 et $\sqrt[8]{3^{-5}} = 3^{\frac{-8}{5}}$ et $(\sqrt[9]{21})^{-11} = 21^{\frac{-9}{11}}$ et $\sqrt[13]{2^{-15}} = 2^{\frac{-15}{13}}$ et $(\sqrt[5]{3})^{-32} = 3^{\frac{-5}{32}}$

• $\sqrt[3]{8}$ et $\sqrt[5]{11}$ et $\sqrt{7^3}$

On a:
$$\sqrt[3]{8} = 8^{\frac{1}{3}} = (2^3)^{\frac{1}{3}} = 2^{3 \times \frac{1}{3}} = 2$$
 et $\sqrt[5]{11} = 11^{\frac{1}{5}}$ et $\sqrt{7^3} = 7^{\frac{3}{2}}$

d. Propriété:

 $\forall a \in \mathbb{R}^{+^*} \text{ et } \forall b \in \mathbb{R}^{+^*}$

$$a^r > 0$$
 avec $r, r' \in \mathbb{Q}$

$$a^r = b^{r'} \Leftrightarrow r = r'$$

$$\mathbf{a}^{\mathbf{r}} \times \mathbf{a}^{\mathbf{r}'} = \mathbf{a}^{\mathbf{r} + \mathbf{r}'}$$

$$\mathbf{a}^{\mathbf{r}} = \mathbf{b}^{\mathbf{r}'} \Leftrightarrow \mathbf{r} = \mathbf{r}'$$
 $\mathbf{a}^{\mathbf{r}} \times \mathbf{a}^{\mathbf{r}'} = \mathbf{a}^{\mathbf{r} + \mathbf{r}'}$ $\mathbf{a}^{\mathbf{r}} \times \mathbf{b}^{\mathbf{r}} = (\mathbf{a} \times \mathbf{b})^{\mathbf{r}}$

$$(a^r)^{r'} = a^{r \times r'}$$

$$\left(\frac{\mathbf{a}}{\mathbf{b}}\right)^{\mathbf{r}} = \frac{\mathbf{a}^{\mathbf{r}}}{\mathbf{b}^{\mathbf{r}}}$$

$$a^{-r} = \frac{1}{a^r}$$

$$\mathbf{a}^{-\mathbf{r}} = \frac{1}{\mathbf{a}^{\mathbf{r}}} \qquad \qquad \frac{\mathbf{a}^{\mathbf{r}}}{\mathbf{a}^{\mathbf{r}'}} = \mathbf{a}^{\mathbf{r}} - \mathbf{r}'$$

e. Exemple:

Simplifier: $A = \left(2^{-\frac{1}{3}}\right)^3 \times \left(4^{-\frac{1}{2}}\right) \times \left(8^{\frac{2}{3}}\right)$.

On a: $A = \left(2^{-\frac{1}{3}}\right)^{5} \times \left(4^{-\frac{1}{2}}\right) \times \left(8^{\frac{2}{3}}\right) = 2^{\frac{-5}{3}} \times \left(2^{2}\right)^{\frac{2}{3}} \times \left(2^{3}\right)^{\frac{2}{3}} = 2^{\frac{-5}{3}} \times 2^{2 \times \frac{2}{3}} \times 2^{3 \times \frac{2}{3}} = 2^{\frac{-5+4+6}{3}} = 2^{\frac{5}{3}} = \sqrt[3]{2^{5}}.$

•
$$\mathbf{B} = \frac{\sqrt[3]{7} \times 7^{\frac{2}{3}}}{7^{-\frac{1}{4}}}$$
. On $\mathbf{a} : \mathbf{B} = \frac{\sqrt[3]{7} \times 7^{\frac{2}{3}}}{7^{-\frac{1}{4}}} = \frac{7^{\frac{1}{3}} \times 7^{\frac{2}{3}}}{7^{\frac{-1}{4}}} = \frac{7^{\frac{1}{3} + \frac{2}{3}}}{7^{\frac{-1}{4}}} = 7^{\frac{1+\frac{1}{4}}{4}} = 7^{\frac{5}{4}}$.