Статистика 5

Фонин А.Ю.

April 30, 2021

Exercise 1

а) Мы хотим выбрать H_1 так, чтобы $P(H_1|H_0)$ имело полезный смысл.

Если мы возьмём в качестве $H_1: \mu < 600$ Тогда мы ограничим вероятность ошибки первого рода и будем знать с какой вероятностью заявление менеджера мы принимаем, при условии, что он не прав твет H_0 : μ = 600, H_1 : μ < 600

б) в) Выполняется H_1 . средний чек $\leqslant 600$

Exercise 2

Пусть акция пошла вверх с вероятностью
$$p$$
 Тогда $X_1 \dots X_3 0 = \overbrace{1 \dots 1}^9, \overbrace{0 \dots 0}^{21} \sim B_1(p)$

a)
$$H_0: p = 0.3$$

$$H_1: p \neq 0.3$$

б) $\hat{p} = \frac{24}{50}$ - и есть точечная оценка

$$\mathbf{B})\,\bar{X}=\tfrac{9}{30}$$

$$H_0: p = \frac{3}{10} H_1: p \neq \frac{3}{10} \text{Ha} (?)$$

$$\sqrt{n} \frac{\bar{X} - p}{\sqrt{p(1-p)}} \to N(0.1)$$

$$\sqrt{30} \frac{\frac{9}{30} - \frac{10}{30}}{\sqrt{\frac{3}{10} \cdot \frac{7}{10}}} \approx -0.4$$

Если $\alpha=0.01$, то доверительная область будет шире [–1.96 : 1.96], поэтому мы не отвергаем нулевую гипотезу

Exercise 3

 $H_0: \mu = 120$

 $H_1 = \mu \neq 120$

 σ = 5, α = 0.05

Для какого п выполняется $P(H_1|\mu=117)=0.98$

$$t = \sqrt{n} \frac{\bar{X} - 120}{5} \sim N(0, 1)$$

в случае Но

$$\phi(t) = \begin{bmatrix} 0 & t \in [-z_{\frac{\alpha}{2}}; z_{\frac{\alpha}{2}}] \\ 1 & \text{иначе} \end{bmatrix}$$
 1 иначе
$$P(\sqrt{n}\frac{\bar{X}-120}{5} \not\in [-1, 96, 1, 96]|\mu-117) = 0.98$$

$$P(-1, 96 \leqslant \sqrt{n}\frac{\bar{X}-120}{5} \leqslant 1, 96|\mu=117) = 0.02$$

$$P(-1.96 + \frac{3}{5}\sqrt{n} \leqslant \sqrt{n}\frac{\bar{X}-117}{5} \leqslant 1.96 + \frac{3\sqrt{n}}{5}) = \Phi\left(1, 96 + \frac{3}{5}\sqrt{n}\right) - \Phi\left(-1, 96 + \frac{3}{5}\sqrt{n}\right) = 0.02$$

при n = 45

Exercise 4

 $\sigma = 180$

n = 200

 $\bar{X} = 935$

$$\sqrt{n} rac{ar{X} - \mu}{\sigma} pprox N(0.1)$$
 в пределе $Pigg(z_1 < \sqrt{n} rac{ar{X} - \mu}{\sigma} < z_2igg) = 0.95$

$$P\left(\frac{\sigma z_1}{\sqrt{n}} < \bar{X} - \mu < \frac{\sigma z_2}{\sqrt{n}}\right) = 0.95$$

$$P(\bar{X} - \frac{\sigma z_{+\frac{1+\gamma}{2}}}{\sqrt{n}} < \mu < \frac{\sigma z_{\frac{1+\gamma}{2}}}{\sqrt{n}} + \bar{X}) = 0.95$$

где $z^{\frac{1+\gamma}{2}}$ - квантиль нормального распределения

Находим доверительный интервал $\mu \in (910, 960)$ с вероятностью 95%

С помощью которого будем тестировать наши гипотезы. $H_0: \mu = 900$

 $H_1: \mu \neq 900$

$$\varphi(x_1 \dots x_n) = [0 \text{ if доверительный интервал содержит 900}$$
 1 иначе

Тогда $P(H_1|H_0) = \alpha_0 = 0.05$

 $P(H_1|H_0)$ - вероятность того, что доверительный интервал не содержит 900, а это по построению = 0.05

Exercise 5

 $H_0: \mu = 15000$

 $H_1: \mu < 15000$

 α = 0.02, σ = 4000 Если μ = 14000, то $P(H_1)$

 $P(H_0|\mu = 14000) =$

По построению критерия, мы не отвергаем H_0 когда

$$\sqrt{n}\frac{\bar{X} - 15000}{4000} \in \left[-z_{1-\frac{\alpha}{2}}; z_{1-\frac{\alpha}{2}}\right]$$

$$P(-2, 32 < \sqrt{n} \frac{\bar{X} - 15000}{4000} < 2.32 | \mu = 14000) = P(-2.32 - \sqrt{n} \frac{1}{4} < \sqrt{n} \frac{\bar{X}}{4000} < 2.32 - \sqrt{n} \frac{1}{4}) = \Phi\left(2.32 - \sqrt{n} \frac{1}{4}\right) - \Phi(-2.32 - \frac{\sqrt{n}}{4}) = 0.05$$

При n = 252 левая часть меньше 0.05, при n=251 больше

Ответ: n = 252