

数字逻辑

第一章 数制与编码

张磊

zhanglei_bit@sina.com

北京理工大学计算机学院

2017~2018学年第二学期

提纲

1.1 信息表示

- 1.2 数制与算数运算
- 1.3 信息二进制编码
- 1.4 格雷码
- 1.5 小结

1.1.1 数字系统

■数字系统(digital system)是一种离散信息处理系统,采用一组离散形式的信息作为输入,通过一组离散形式的内部信息操控系统状态,产生离散形式的信息作为输出。

1.1.2 数字系统的信息表示

■信息

- 对物质世界与人类社会中存在的各种各样现象 的表示
- ■信号是信息表示的物理载体
 - 模拟信号 (analog signal): 连续的物理量
 - 数字信号 (digital signal): 离散的物理量

1.1.2 数字系统的信息表示

- 数字系统的信号广泛采用两个离散值,称 为二进制(binary)
 - 数字 "0" 和 "1"
 - 文字 (符号) "真" (T) 和"假" (F)
 - 文字 (符号) "高" (H) 和"低" (L)
 - 文字 (符号) "开" (On) 和"关" (Off)

1.1.2 数字系统的信息表示

■二进制的实现

■ 通过特定物理量(电压)的取值范围进行设置

- 一个二进制数字称为一位(bit)
- 数字系统的信息是通过一组一组的位来表示

提纲

- 1.1 数字系统与信息表示
- 1.2 数制与算数运算
- 1.3 信息二进制编码
- 1.4 格雷码
- 1.5 小结

■数的表示规则称为数制

■ 基底 (r): 一个数制所包含的数字符号的个数

二进制	0, 1
八进制	0, 1, 2, 3, 4, 5, 6, 7
十进制	0, 1, 2, 3, 4, 5, 6, 7, 8, 9
十六进制	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

■ 权 (r i): 数字符号的位置所决定的值

数的表示规则称为数制

■ 任何一个数值,都是各位数字本身的值与其权 之积的总和

$$(number)_{\mathbf{r}} = \left(\sum_{i=0}^{i=n-1} A_i \cdot \mathbf{r}^i\right) + \left(\sum_{j=-m}^{j=-1} A_j \cdot \mathbf{r}^j\right)$$

■数的表示规则称为数制

■二进制

- 基底为2
- ■逢二进一

```
(110.11)_{2}
=1\times2^{2}+1\times2^{1}+0\times2^{0}+1\times2^{-1}+1\times2^{-2}
=6.75
```

2¹⁰ (1024) 千, 记为 "K" 2²⁰ (1,048,576) 兆, 记为 "M" 2³⁰ (1,073,741,824) 十亿, 记为 "G" 2⁴⁰ (1,099,511,627,776) 万亿, 记为 "T"

■八进制

- 基底为8
- ■逢八进一
- 1个八进制位相当于3个二进制位

$$(7802.41)$$
 8
= $7 \times 8^{3} + 8 \times 8^{2} + 0 \times 8^{1} + 2 \times 8^{0} + 4 \times 8^{-1} + 1 \times 8^{-2}$
= 4098.515625

- ■十六进制
 - 基底为16
 - ■逢十六进一
 - 1个十六进制位相当于4个二进制位

$$(70\text{F.4A})_{16}$$

= $7 \times 16^2 + 0 \times 16^1 + 15 \times 16^0 + 4 \times 16^{-1} + 10 \times 16^{-2}$

=1807.2890625

■思考题

(45.6)10 和(52.1)8两数谁大?

- ■四种进制关系
 - ■十进制
 - ■二进制
 - ■八进制
 - ■十六进制

十进制	二进制	八进制	十六进制
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F
16	10000	20	第一

■非十进制数转换为十进制

按权展开法

- □ 二进制 ➡ 十进制 (101.101)₂ = (5.625)₁0
- 八进制 ➡ 十进制 (304.6)₈ = (196.75)₁₀
- 十六进制 → 十进制 (5CA)₁₆ = (1482)₁₀

■十进制数转换为非十进制

十进制数分为两类:整数 小数

- 十进制整数 ⇒ 二进制(215)₁₀= (11010111)
- ■十进制小数 ➡ 二进制

 $(0.6875)_{10} = (0.1011)_{2}$

除二取余法

乘二取整法

- ■二-八-十六进制数间的转换
 - ■二进制数□→八进制数

$$2^3 = 8$$

$$(11101010011.10111)_{2} = (3523.56)_{8}$$

以小数点为界,分别向左、向右每三位一组进行分割,不足三位补0。写出每三位对应的八进制数。

■八进制数□>二进制数

$$(3740.562)_{8} = (111111100000.10111001)_{2}$$

- ■二-八-十六进制数间的转换
 - 二进制数 ➡ 十六进制数

```
(111101010011.10111)_{2} = (F53.B8)_{16}
```

■十六进制数□→二进制数

```
(2AF.C5)_{16} = (1010101111.11000101)_{2}
```

■数字范围

■数制表示所能包含的数字范围

位数	二进制	范围
8位无符号 整数	0000 0000 ~ 1111 1111	0~28-1
16位无符号 整数	0000 0000 0000 0000 ~ 1111 1111 1111 111	0~2 ¹⁶ -1

1.2.3 算数运算

- ■加法
 - X: 被加数; Y: 加数; Z: 进位

Z
$$00000$$
 101100 X 01100 10110 Y $+10001$ $+10111$ 和 11101 101101

和大于1时向高位产生进位

1.2.3 算数运算

■减法

■ X: 被减数; Y: 减数; Z: 借位

Z
$$00000$$
 00110 X 10110 10110 Y -10010 -10011 差 00100 00011

差小于0时向高位产生借位

1.2.3 算数运算

■乘法

```
0 \times 0 = 0, 1 \times 0 = 0, 0 \times 1 = 0, 1 \times 1 = 1
 被乘数: 1011
   乘数: × 101
               1011
             0000
            1011
     积: 110111
```

提纲

- 1.1 数字系统与信息表示
- 1.2 数制与算数运算
- 1.3 信息二进制编码
- 1.4 格雷码
- 1.5 小结

1.3.1 二进制编码

- 通过0、1排列的组合方式表示数据
- n位二进制编码可以表示2ⁿ个数据
- ■数据类型
 - 数值型: 能够进行算术运算的数据
 - 整数、小数、...
 - 非数值型: 一般不需要算术运算的数据
 - 字符、控制符、音频、图像、视频、...

1.3.1 二进制编码

- \mathbf{M} 个数据需要的二进制位数 $[\log_2 \mathbf{M}]$
 - 思考题: 七彩色需要几位二进制编码?

颜色	二进制
红	000
橙	001
黄	010
绿	011
蓝	101
靛	110
紫	111

1.3.1二进制编码

■符号数

- 符号-数值表示法
 - 最高位: 0表示正数; 1表示负数

十进制	符号-数值
+3	0011
+2	0010
+1	0001
+0	0000
-0	1000
-1	1001
-2	1010
-3	1011
-4	1100

1.3.3 十进制编码

■ 用4位二进制表示十进制的10个数字,产生6 个冗余的二进制数

Decimal	8,4,2,1	Excess3	8,4,-2,-1	Gray
0	0000	0011	0000	0000
1	0001	0100	0111	0100
2	0010	0101	0110	0101
3	0011	0110	0101	0111
4	0100	0111	0100	0110
5	0101	1000	1011	0010
6	0110	1001	1010	0011
7	0111	1010	1001	0001
8	1000	1011	1000	1001
9	1001	1100	1111	1000

BCD码

1.3.3 十进制编码

■ 二进制编码的十进制数(BCD码)

■ 用4位二进制表示十进制的10个数字

十进制符号	BCD码	十进制符号	BCD码
0	0000	5	0101
1	0001	6	0110
2	0010	7	0111
3	0011	8	1000
4	0100	9	1001

■BCD码是十进制数

$$(185)_{10} = (0001\ 1000\ 0101)_{BCD} = (10111001)_{2}$$

1.3.3 十进制编码

- 二进制编码的十进制数(BCD码)
 - BCD码是8421码
 - 加权码,权值8、4、2、1 1001 (9) = 1000 (8) + 0001 (1)
 - 1010到1111在BCD码中没有意义
 - 同一个8位二进制代码表示的数,作为二进制数和二进制编码的十进制数时,所代表的数值是不相同的

- ■用二进制编码表示数字、字母、字符等
- ASCII码
 - 美国信息交换标准编码
 - 7位二进制编码($B_6...B_0$)
 - 94个可打印字符+34个控制字符=128个

换行		OAH		10	
回车		ODH		13	
空格		20H		32	
'0'~	' 9'				
'A'~	' Z'		-	-	
'a'∼	۲,				

b6b5b4	000	001	010	011	100	101	110	111
	000	001	010	011	100	101	110	
b3b2b1b0								
0000	NUL	DLE	SP	0	@	Р	,	p
0001	SOH	DC1	!	1	A	Q	a	q
0010	STX	DC2	"	2	В	R	b	r
0011	EXT	DC3	#	3	С	S	С	S
0100	EOT	DC4	\$	4	D	Т	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	F	V	f	V
0111	BEL	ETB	,	7	G	W	g	W
1000	BS	CAN	(8	Н	X	h	x
1001	НТ	EM)	9	I	Y	i	у
1010	LF	SUB	*	:	J	Z	j	Z
1011	VT	ESC	+	;	K	[k	{
1100	FF	FS	,	<	L	\	1	
1101	CR	GS	_	=	M]	m	}
1110	SO	RS		>	N	<u> </u>	n	~
1111	SI	US	/	?	0	←	0	第 ^{DEI} 章 3

- Unico
 - 统-
 - 采月
 - ■涵島
- UCS
 - 国国国
 - 采月
 - ■与以

字符与文字

编码标准

■Unicode不同的编码方案

- UTF-8: 变长 1~4字节; 与ASCII码兼容。
- UTF-16: 变长2或者4字节;
- UTF-32: 定长4字节。

Code point range (hexadecimal)	UTF-8 encoding (binary, where bit positions with x are the bits of the code point value)
U+0000 0000 to U+0000 007F	0xxxxxxx
U+0000 0080 to U+0000 07FF	110xxxxx 10xxxxxx
U+0000 0800 to U+0000 FFFF	1110xxxx 10xxxxxx 10xxxxxx
U+0001 0000 to U+0010 FFFF	11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

1.3.5 校验位

- ■为了检测数据传输过程中可能存在的错误,通常在二进制编码中额外增加一个校验位(parity bit),用于表示编码中1的个数是奇数还是偶数。
 - 偶校验: 偶数个"1",校验位"0"
 - 奇校验: 奇数个"1", 校验位"0"

	偶校验	
1000001	01000001	1 1 0 0 0 0 0 1
1010100	1 1 0 1 0 1 0 0	01010100

1.3.5 校验位

■ 奇偶校验位是最简单的错误检测码,但无法确定哪一位出错

提纲

- 1.1 数字系统与信息表示
- 1.2 数制与算数运算
- 1.3 信息二进制编码

1.4 格雷码

1.5 小结

1.4.1 基本概念

■格雷码定义

■ 在一组数的编码中,若任意两个相邻的代码只有一位二进制数不同,则称这种编码为格雷码(Gray code)

■ 美国贝尔实验室
Frank Gray在1953年
获得格雷码的专利

十进制	8,4,2,1	Gray
0	0000	0000
1	0001	0100
2	0010	0101
3	0011	0111
4	0100	0110
5	0101	0010
6	0110	0011
7	0111	0001
8	1000	1001
9	1001	1000

1.4.1 基本概念

■格雷码作用1:

■ 在模-数转换过程中减少错误编码, 是一种可靠性编码,如光学轴角编码器

Light source

Photo detect

二进制码

格雷码

1.4.1 基本概念

■格雷码作用2:

■低功耗

Binary Code	Bit Changes	Gray Code	Bit Changes
000		000	
001	1	001	1
010	2	011	1
011	1	010	1
100	3	110	1
101	1	111	1
110	2	101	1
111	1	100	1
000	3	000	1

1.4.2 编码方式

■n(偶数)位二进制计数序列中的数值

- 前一半数值:左边最高位为0,往右各位由原二进制编码的每一位与它左边相邻位的偶校验构成
- 后一半数值:前一半逆序排列,并将左边最高位设为1 偶校验

1.4.2 编码方式

■例: 4位二进制的格雷码

十进制数	自然二进制数	格雷码	十进制数
0	0000	0000	8
1	0001	0001	9
2	0010	0011	10
3	0011	0010	11
4	0100	0110	12
5	0101	0111	13
6	0110	0101	14
7	0111	0100	15

提纲

- 1.1 数字系统与信息表示
- 1.2 数制与算数运算
- 1.3 信息二进制编码
- 1.4 Parity bit
- 1.5 格雷码
- 1.6 小结

小结

- ■数制的概念
- 不同数制的转换
 - ■二进制与十进制
 - 十进制与非十进制
- 符号数的编码方式
- ■十进制编码方式
- ASCII字符编码方式
- ■格雷码的概念

作业1(选作)

- 1-7. 将以下二进制数值转换为十进制:
 - (a) 1001101 (b) 1010011.101 (c) 10101110.1001
- 1-10. 将以下十进制数值转换为所要求的进制:

 - (a) 7562.45 -> 八进制 (b) 1938.257 -> 十六进制
 - (c) 175.175 -> 二进制
- 1-25. 请写出十进制数255的以下编码形式:
 - (a) 二进制

(b) BCD

(c) ASCII码

(d) 带奇校验的ASCII码