ЛОКАЛЬНЫЕ ОСОБЕННОСТИ. Лекция 5.

Преподаватель: Сибирцева Елена elsibirtseva@gmail.com

Орг. вопросы

- ОКак встретили НГ?
- ОМожно ли перенести занятия на 12:00?
- У кого были проблемы с домашкой (или вы ее не делали), поговорим на семинаре
- ОУже нужно выбрать экзаменационный проект по курсу

В предыдущих сериях...

Идеальный процесс обработки, 5 шагов

- О Получение изображения как мы, в первую очередь, получаем изображение
- Предобработка любые преобразования, которые применяются до отображения (обрезка, маска, фильтр)
- Отображение (mapping) всеохватывающий этап с участием преобразования или композицию изображений
- Постобработка любые преобразования, которые применяются после отображения (e.g., текстуризация, изменение цветов)
- Вывод вывод на печать, экран и т.п.
- *Часто на практике некоторые стадии пропускают
- *Промежуточные шаги часто пересекаются

Градиентное изображение

- Градиент изображения направленное изменение интенсивности или цвета в изображении. Градиенты изображения могут быть использованы для извлечения информации из изображений.
- Хороши для распознавания границ...

Сравнение операторов поиска краев

Grayscale test image of brick wall and bike rack

operator

Image Scissors

Figure 2: Image demonstrating how the live-wire segment adapts and snaps to an object boundary as the free point moves (via cursor movement). The path of the free point is shown in white. Live-wire segments from previous free point positions $(t_0, t_1, and t_2)$ are shown in green.

Примеры

Kuan-chuan Peng

Le Zhang

СОПОСТАВЛЕНИЕ ИЗОБРАЖЕНИЙ

Задача сопоставления изображений

- Есть несколько изображений конкретных объектов
- Хотим найти эти объекты на тестовом изображении
- Попробуем «сопоставить» изображения объектов с тестовым изображением
- Задача «image matching»

Как работает сопоставление?

- Почему во втором случае было легче его найти?
- Были видны «характерные» фрагменты медведя

Особенности (features)

- «Хорошо различимые фрагменты» объекта
 - «особенности» (features)
 - «характеристические точки» (characteristic points)
 - «локальные особые точки» (local feature points)
- Характерные фрагменты позволяют справится с изменениями ракурса, масштаба и перекрытиями

Требования

- Какие можно сформулировать требования к «хорошо различимым фрагментам» объекта?
- Отличаются от большинства других фрагментов объекта
- Инвариантны к изменению освещения
- Инвариантны к изменению ракурса
 - Можно находить одну и ту же точку на измененных изображениях
 - Можем «идентифицировать» эту точку

Локальные особенности

Пример особой точки

Пример точки, не являющейся особой

- Какая из двух точек является характерной («особой»)?
- Локальная (особая) точка р изображения / должна обладать «характерной окрестностью» D, т.е. отличаться от всех точек в некоторой окрестности р
- Для определения, является ли точка «характерной», нам достаточно только её окрестности

Требования к особенностям

- Повторимость (Repeatability)
 - Особенность находится в том же месте объекта не смотря на изменения масштаба, положения, ракурса и освещения
- Локальность (Locality)
 - Особенность занимает маленькую область изображения, поэтому работа с ней нечувствительна к перекрытиям
- Значимость (Saliency)
 - Каждая особенность имеет уникальное (distinctive) описание
- Компактность и эффективность
 - Количество особенностей существенно меньше числа пикселей изображения

Повторимость

- Особенность должна находится в том же месте объекта не смотря на изменения масштаба, положения, ракурса и освещения изображения
- Как можно это проверить?
 - Применим к изображению геометрическое или цветовое преобразование
 - Выделим характерные особенности на изображении объекта
 - Выделим характерные особенности на изменённом изображении, они должны найтись в тех же местах объекта
- Метод выделения особенностей должен быть «инвариантным» к преобразованиям

Геометрические преобразования

• Параллельный перенос

 Подобие (перенос, масштаб, поворот)

• Аффинное

Аффинное преобразование даёт хорошее приближение искажений, претерпеваемых небольшим плоским фрагментом объекта при изменение ракурса

Геометрические преобразования

Параллельный перенос

$$\begin{bmatrix} x_i' \\ y_i' \end{bmatrix} = \begin{bmatrix} x_i \\ y_i \end{bmatrix} + \begin{bmatrix} t_1 \\ t_2 \end{bmatrix}$$

Евклидово преобразование

Евклидово преобразование (М – ортогональная матрица)
$$\begin{bmatrix} x_i' \\ y_i' \end{bmatrix} = \begin{bmatrix} m_1 & m_2 \\ m_3 & m_4 \end{bmatrix} \begin{bmatrix} x_i \\ y_i \end{bmatrix} + \begin{bmatrix} t_1 \\ t_2 \end{bmatrix}$$

Аффинное преобразование

$$\begin{bmatrix} x_i' \\ y_i' \end{bmatrix} = \begin{bmatrix} m_1 & m_2 \\ m_3 & m_4 \end{bmatrix} \begin{bmatrix} x_i \\ y_i \end{bmatrix} + \begin{bmatrix} t_1 \\ t_2 \end{bmatrix}$$

Фотометрическое преобразование

Аффинное изменение яркости $(I \rightarrow a \ I + b)$

Его вполне достаточно для моделирования устойчивости методы выделения особенностей к изменению условий освещения

Особенно, если будем работать с серыми изображениями!

Применение

Поиск и выделение объектов, распознавание изображений

Применение

Применение

Сопоставление изображений, построение панорам и трёхмерная реконструкция

Локальные особенности

Проведём эксперимент, будем рассматривать разные точки на изображении и проверять, являются ли они локальными особенностями

монотонный регион: в любом направлении изменений нет

«край»: вдоль края изменений нет

«уголок»: изменения при перемещении в любую сторону

ALEITEKTOP XAPPIACA

Детектор Харриса

- Наиболее популярный детектор локальных особенность точек – детектор Харриса (Harris)
- Ищет такие точки (x,y), окрестность которых меняется при любом сдвиге (x+u, y+v)
- Такие точки обычно оказываются углами, поэтому метод ещё называют «детектор углов»

Устройство метода

Изменение окрестности точки (x,y) при сдвиге [u,v]:

Устройство метода

Изменение окрестности точки при сдвиге [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

Разложение в ряд Тейлора 2го порядка *I*(*x*,*y*) вокруг (x,y) (билинейная интерполяция при маленьких сдвигах)

$$[I(x+u,y+v)-I(x,y)]^{2} \cong [I(x,y)+I_{x}u+I_{y}v-I(x,y)]^{2}$$

$$= [I_{x}u+I_{y}v]^{2} = I_{x}^{2}u^{2} + 2I_{x}I_{y}uv + I_{y}^{2}v^{2}$$

$$= (u,v) \begin{bmatrix} I_{x}^{2} & I_{x}I_{y} \\ I_{x}I_{y} & I_{y}^{2} \end{bmatrix} (u,v)^{T}$$

Устройство метода

Итого изменение окрестности можно свести к:

$$E(u,v) \approx [u \ v] M \begin{bmatrix} u \\ v \end{bmatrix}$$

где M – матрица 2×2 вычисленная по частным производным:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} = \sum \begin{bmatrix} I_x \\ I_y \end{bmatrix} [I_x I_y] = \sum \nabla I(\nabla I)^T$$

Интерпретация матрицы моментов

Рассмотрим случай, когда градиенты выровнены по осям (вертикальные или горизонтальные)

$$M = \sum \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Если одно из λ близко к 0, тогда это не угол, и нужно искать другие точки

Общий случай

М – симметричная, поэтому её можно привести к диагональному виду:

$$M = R^{-1}DR = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

R – ортогональная матрица из собственных векторов M, D – диагональная из собственных значений М

Матрицу M можно визуализировать в виде эллипса, у которого длины осей определены собственными значениями, а ориентация определена матрицей R

Уравнение эллипса:

$$\begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix} = \text{const}$$

Пример

Визуализация матриц вторых моментов (Гессианов)

Зависимость Е от λ

Классификация точек изображения по собственным значениям матрицы производных *М*

$$E(u,v) = (u,v)M(u,v)^{T}$$

$$M = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

 λ_1 и λ_2 малы; E не меняется по всем направлениям

Функция отклика углов

Функция отклика угла по Харрису:

$$R = \det M - k \left(\operatorname{trace} M \right)^{2}$$
$$\det M = \lambda_{1} \lambda_{2}$$
$$\operatorname{trace} M = \lambda_{1} + \lambda_{2}$$
$$(k = 0.04 - 0.06)$$

Функция по Фёрстнеру (Forstner):

$$R = \det M / \operatorname{trace} M$$

Алгоритм детектора Харриса

- 1. Вычислить градиент изображения в каждом пикселе
 - С использованием гауссова сглаживания
- 2. Вычислить матрицу вторых моментов М по окну вокруг каждого пикселя
- 3. Вычислить отклик угла *R*
- 4. Отсечение по порогу R
- Найти локальные максимумы функции отклика (nonmaximum suppression) по окрестности заданного радиуса
- 6. Выбор N самых сильных локальных максимумов

Найдём точки с большим откликом R>порог

- Как быть с тем, что функция отклика угла больше порога в некоторых областях?
- Как нам выбрать конкретные точки в областях?

Оставим только точки локальных максимумов R

Результат работы детектора

детектор Фёрстнера

детектор Харриса

Инвариантность

Что у детектора Харриса с инвариантностью?

• Поворот

• Масштаб

• Аффинное

• Аффинное изменение яркости $(I \rightarrow a I + b)$

Детекторы Харриса

- Частичная инвариантность к изменению освещенности
 - ✓Используются только производные
 - => инвариантность к сдвигу $I \rightarrow I + b$
 - ✓ Масштабирование: $I \rightarrow a I$

Детектор Харриса

Инвариантность к вращению изображения:

Эллипс вращается, но его форма (собственные значения) остаются неизменными

Отклик угла R инвариантен относительно вращению изображения

Масштабирование

 Угол или нет? - Зависит от масштаба изображения!

Характерный масштаб

- С какого момента фрагмент считается «углом»?
- Если наш детектор Харриса на нескольких соседних масштабах пометит точку как угол, то как нам быть?

Инвариантность к масштабированию

- Цель: определять размер окрестности особой точки в масштабированных версиях одного и того же изображения
- Требуется метод выбора размера характеристической окрестности

Блобы

50

В следующих сериях...

