Bihar Engineering University, Patna End Semester Examination - 2022

Course: B.Tech. Code: 100304

Semester: III

Subject: Data Structure & Algorithms

Time: 03 Hours Full Marks: 70

Inst	instructions:-					
<i>(i)</i>	The me	arks are indicated in the right-hand margin.				
(ii)		are NINE questions in this paper.				
(iii)	Attemp	ot FIVE questions in all.				
(iv)	Questi	on No. 1 is compulsory.				
01	Chọc	ose the correct answer of the following (An	y seven question only): $[2 \times 7 = 14]$			
7	(a)	In a stack, if a user tries to remove an elem	ent from empty stack it is called:			
	/	(i) underflow	(ii) empty collection			
		(iii) garbage collection	(iv) overflow			
	(6)		ed using an array. Which one of the following			
	/	array represents the heap:	and using an array: which one of the following			
		(i) 25, 12, 16, 13, 10, 8, 14	(ii) 25, 12, 16, 13, 10, 8, 14			
	1	(iii) 25, 14, 16, 13, 10, 8 , 12	(iv) 25, 14, 12, 13, 10, 8, 16			
	(8)	mod 7, with linear probing used to insert keys				
	,	44. 45, 79, 55, 91, 18, 63 into a table index key 18.	exed from 0 to 6. What will be the location of			
		(i) 3	(ii) 4			
		(iii) 5	(iv) 6			
	(d)		ady partially sorted, then sorting can			
		be efficient.				
		(i) merge	(ii) insertion			
		(iii) bubble	(iv) selection			
	(e')	The time complexity of merge sort is:				
		(i) O (n)	(ii) 0 (logn)			
		(iii) O (nlogn)	(iv) 0 (n2)			
	(f)	State true or false:				
		A: Binary search is used for searching in	a sorted array.			
		B: The time complexity of binary search is	s O (logn)			
		(i) True, False	(ii) False, True			
	,	(iii) False, False	(iv) True, True			
	(g)	In a circular linked list organization, insert	ion of a record involves modification of			
		(i) One pointer	(ii) Two pointers			
		(iii) More than two pointers	(iv) No pointer			
	(h)	Level order traversal of a rooted tree can be done by starting from the root and				
		performing				
		(i) pre-order traversal	(ii) in-order traversal			
	,	(iii) depth first search	(iv) breadth first search			
	(i)	An Abstract Data Type (ADT) is				
		(i) same as an abstract class	(ii) a data type that cannot be instantiated			
		(iii) a data type for which only the operation	ons defined on it can be used, but none else			
		(iv) all of the above	,			
	(j)	How many distinct BSTs can be constructed	ed with 3 district keys?			
		(i) 4	(ii) 5			
		(iii) 6	(iv) 9			

Q.2	(2)	Explain different asymptotic notations (Big-O, Ω , θ) used for comparing the time	[7]
•	M	complexity of an algorithm with neat figures. The run time of an algorithm is represented by the recurrence relation $T(n) = 2T(n/2) + n$; $n \ge 2$ and with boundary condition $T(1) = 0$. What is the time complexity (in terms of θ notation).	[7]
Q.3	(a)	Discuss pre-order, in-order and post-order traversal techniques of binary tree.	[7]
Q.3	ys)	Write a C function for non-recursive pre-order traversal. The pre-order traversal sequence of a Binary Search Tree (BST) is 30, 20, 10, 15, 25, 23, 39, 35, 42. Write step by step process to derive the BST and find post-order traversal also.	[7]
Q.4	(d)	Consider a circular queue of capacity <i>n</i> -elements implemented with an array.	[7]
	ON	Write C functions for <i>insertion</i> and <i>deletion</i> operations. Convert the given infix expression into postfix using stack: $A + B / C * (D + E) - F$. For each input symbol clearly mention the <i>action taken</i> and <i>status of the stack</i> during conversion.	[7]
Q.5	(g)	Write a C function to delete last node from a singly linked list. Create a max-heap by inserting following keys in the given order. Show each insertion step with clear illustration: 25, 35, 18, 9, 46, 70, 48.	[7] [7]
Q.6	(a) (b)	Write an algorithm for merge sort and discuss space and time complexity. Define collision in hashing. Explain briefly different methodologies to resolve collision.	[7] [7]
Q.7	(a)	Write algorithm to count leaf nodes in a binary tree. What is the complexity of your algorithm?	[7]
	(b)	Compare BFS and DFS traversal techniques for graph. Write an algorithm to perform BFS using queue.	[7]
Q.8	(a)	Differentiate between system defined data types and abstract data types with suitable examples.	[7]
	(b)	What is doubly linked list? What are its applications? Explain how a node can be added as last node using appropriate pseudo code	[7]
Q.9		e short notes on any two of the following:	[7x2=14]
	(a)	AVL Rotations	
	(b) (c)	Open Addressing & Chaining B-Tree	
,	(d)	Priority Queue	
	(~)	Anna	