Contrôle de physique N°4

Durée: 1 heure 45 minutes. Barème sur 15 points.

NOM:	
	Groupe
PRENOM ·	

Toutes les réponses doivent être justifiées

- 1. On considère le circuit ci-contre. La résistance de $25\,\Omega$ est traversée par un courant de $2\,\mathrm{A}$ dans le sens indiqué et le générateur du bas fournit une tension de $60\,\mathrm{V}$.
 - (a) Quelle est l'énergie dissipée dans la résistance de $25\,\Omega$ pendant 1 heure ?
 - (b) Déterminer le courant traversant le générateur supérieur ainsi que la tension aux bornes de ce dernier.
 - (c) Déterminer le courant dans toutes les autres branches en précisant son sens.

5 pts

2. On place un fil conducteur rectiligne infiniment long dans une région où règne un champ magnétique uniforme \vec{B}_0 horizontal et perpendiculaire au fil. Le fil, parcouru par un courant I, est maintenu à l'horizontale grâce à des câbles verticaux, non conducteurs, attachés au plafond et disposés tous les mètres de fil. Chaque mètre de fil a une masse m.

On considère quatre points A, B, C et D situés dans un plan perpendiculaire au fil, à une distance a de ce dernier. Au point A, la norme du champ magnétique produit par le fil est alors donnée par $||\vec{B}_A|| = \frac{1}{3}||\vec{B}_0||$.

Vue du plan perpendiculaire au fil contenant A, B, C et D.

- (a) Déterminer la tension (direction, sens et norme) dans chacun des câbles qui soutiennent le fil.
- (b) On considère le champ magnétique résultant \vec{B} dans la région autour du fil.
 - i) Esquisser avec soin ce champ magnétique \vec{B} aux points A, B, C et D.
 - ii) Déterminer le lieu des points de l'espace où le champ magnétique \vec{B} est
 - iii) Esquisser les lignes du champ magnétique \vec{B} .

3. Une particule de charge q < 0 entre avec une vitesse \vec{v}_0 dans une région D de largeur d où règne un champ magnétique uniforme, de norme B et normal à \vec{v}_0 (le champ est normal au plan du dessin). A sa sortie de la région D, la particule a une vitesse faisant un angle φ avec la vitesse initiale \vec{v}_0 .

- (a) Indiquer le sens du champ magnétique dans la région D.
- (b) Caractériser la trajectoire de la particule dans la région D.
- (c) Déterminer la vitesse de la particule à sa sortie de la région D.
- (d) Déterminer la masse de la particule.