RICERCA OPERATIVA – 5 crediti

Tema d'esame del 2 settembre 2009

COGNOME:		Questo foglio deve
NOME:		essere consegnato
MATRICOLA:		con l'elaborato
	NOME:	NOME:

1. Un'azienda di taglio di tondini di ferro per l'edilizia deve soddisfare le richieste di 15000 tondini a staffa e 24000 tondini a elle. I tondini sono ricavati a partire da tondini grezzi acquistabili presso quattro fornitori. I tondini dei quattro fornitori sono forniti in confezioni e hanno caratteristiche di costo e resa diverse, come riassunto nella seguente tabella:

Fornitore	Costo per tondino	Tondini per confezione	Costo per tra- sporto confezione	Staffe per tondino	Elle per tondino
A	6	50	4	5	7
В	5	40	5	8	3
C	5	60	7	4	9
D	3	70	6	6	4

Per il trasporto, i tondini vengono confezionati in confezioni contenenti il numero di tondini indicati in tabella, tranne l'ultima confezione, che può contenerne di meno. Ad esempio, se dal fornitore A sono acquistati 570 tondini, saranno spedite 12 confezioni (11 da 50 e una da 20) per un costo di trasporto pari a $12 \times 7 = 84$ euro. Scrivere un modello di programmazione lineare per determinare un piano di acquisti che minimizzi il costo complessivo per l'acquisto dei tondini grezzi (inclusi i costi fissi di trasporto), tenendo conto che almeno tre fornitori devono essere attivi.

2. Si risolva il seguente problema di programmazione lineare con il metodo del simplesso:

CONTINUA SUL RETRO	

3. Si consideri il seguente grafo:

- a) scegliere l'algoritmo più efficiente (tra quelli presentati nel corso) che possa essere applicato per il calcolo dei cammini minimi: GIUSTIFICARE LA RISPOSTA!
- **b)** calcolare i cammini minimi dal nodo 1 a tutti gli altri nodi applicando l'algoritmo scelto e RIPORTANDO IN UNA TABELLA E GIUSTIFICANDO I VARI PASSI.
- **4.** Enunciare le condizioni di complementarietà primale-duale e applicarle per dimostrare che $(x_1,x_2,x_3) = (3,0,2)$ è soluzione ottima del seguente problema:

max
$$x_1 + 2x_2 + 3x_3$$

s.t. $2x_1 - x_2 - 2x_3 = 2$
 $x_1 - 2x_2 + x_3 \le 5$
 $2x_1 \ge 0$
 $x_1 \ge 0$ $x_2 \le 0$ x_3 libera

- 5. Enunciare e giustificare le condizioni di ottimalità nel metodo del simplesso.
- **6.** Si consideri il seguente albero di sviluppo del Branch and Bound per un problema di ottimizzazione combinatoria con funzione obiettivo di massimo:

Rispondere sul foglio alle seguenti domande, GIUSTIFICANDO SEMPRE LE RISPOSTE.

2

- a) Quali nodi è possibile chiudere?
- b) Tra quali valori è sicuramente compreso il valore ottimo della funzione obiettivo?
- c) Quale nodo sarà visitato per primo secondo una strategia di visita Best-First?