4a. Esercizi sul livello di Rete - Indirizzamento

4a-1 Esercizio

A una rete IP è assegnato l'insieme di indirizzi definiti da indirizzo: 208.57.0.0, *netmask*: 255.255.0.0.

Occorre partizionare la rete in modo da servire una vecchia rete locale con circa 4000 *host*; quale *netmask* serve per definire la sotto-rete per i circa 4000 *host*? Quale indirizzo di rete gli si può associare (risposta non univoca)? Quante altre reti delle stesse dimensioni si possono definire? Quante reti con circa 60 *host* si possono ulteriormente definire e con quale nuova *netmask*?

Soluzione

La *netmask* così definita è più lunga di 4 *bit* rispetto alla *netmask* iniziale; i possibili indirizzi che si possono assegnare alla rete con 4000 *host* sono dati da tutte le combinazioni possibili dei primi 4 *bit* del terzo *byte* dell'indirizzo. Ad esempio, possiamo scegliere la combinazione con tutti "0" nei primi 4 *bit* del terzo *byte* che corrisponde ad un indirizzo di sottorete: 208.57.0.0/20

I 4 *bit* liberi (primi 4 *bit* del terzo *byte*) possono assumere fino a 16 diverse combinazioni e quindi possono essere definire altre 15 reti con 4000 *host*.

Per un campo *host* con almeno 60 possibili indirizzi servono 6 *bit* (2^6 =64). Ognuna delle 15 reti ancora disponibili, avendo 12 *bit* del campo *host*, può essere suddivisa ulteriormente usando 6 *bit* (12-6=6) quindi in 64 reti piccole (per 62 *host*). In totale dunque, possono essere definite altre 64 x 15=960 sottoreti ciascuna in grado di supportare 62 *host*.

4a-2 Esercizio

Per una Intranet si ha a disposizione la rete in classe B 129.174.0.0. Nella Intranet occorre installare almeno 15 reti locali collegate mediante dei *router*; descrivere come possono essere ricavati gli indirizzi per le sotto-reti e dire quanti *host* al massimo possono contenere le sotto-reti. Infine, dire a quali sottoreti appartengono i seguenti indirizzi specificando se si tratta di indirizzi di *host* o di indirizzi speciali.

129.174.28.66 129.174.99.122 129.174.130.255 129.174.191.255

Soluzione

La rete 129.174.0.0 ha un campo "network" di 16 *bit* ed un campo "*host*" di 16 *bit*. Se mi serve creare "spazio" per 15 sottoreti, allora devo "allungare" la *netmask* di 4 *bit* (2⁴=16). La nuova *netmask* (*netmask* originale+*netmask* di sottorete) sarà quindi lunga 20 *bit* (20 "1" consecutivi nelle prime 20 posizioni e 12 "0" finali).

La maschera sarà dunque:

binario: 1111111111111111111110000.00000000, decimale: 255.255.240.0

La figura di seguito mostra tutti gli indirizzi delle 16 sottoreti create.

129.174.

_									
-	0	0	0	0	0	0	0	0	0
	0	0	0	1	0	0	0	0	16
	0	0	1	0	0	0	0	0	32
	0	0	1	1	0	0	0	0	48
	0	1	0	0	0	0	0	0	64
	0	1	0	1	0	0	0	0	80
	0	1	1	0	0	0	0	0	96
	0	1	1	1	0	0	0	0	112
	1	0	0	0	0	0	0	0	128
	1	0	0	1	0	0	0	0	144
	1	0	1	0	0	0	0	0	160
	1	0	1	1	0	0	0	0	176
	1	1	0	0	0	0	0	0	192
	1	1	0	1	0	0	0	0	208
	1	1	1	0	0	0	0	0	224
	1	1	1	1	0	0	0	0	240

.0/20

Essendo la nuova *netmask* di 20 *bit*, rimangono 12 *bit* per il campo *host*, quindi il numero massimo di indirizzi di *host* disponibile per ciascuna delle 16 sottoreti sarà: 2^{12} -2 =4094

Per capire a quale sottorete appartengono gli indirizzi proposti, si può fare riferimento alla figura sopra. Si deve poi verificare se gli indirizzi proposti siano o meno indirizzi speciali (indirizzi di rete o indirizzi di *broadcast* diretto). La soluzione segue:

 129.174.28.66
 129.174.16.0/20 (host)

 129.174.99.122
 129.174.96.0/20 (host)

 129.174.130.255
 129.174.128.0/20 (host)

 129.174.191.255
 129.174.176.0/20 (broadcast)

4a-3 Esercizio

Ad un'organizzazione viene assegnato lo spazio di indirizzamento 131.175.0.0/21. Tale organizzazione ha la necessità di definire le seguenti sottoreti: 1 sottorete con almeno 1000 host, 3 sottoreti con almeno 220 host ciascuna, 3 sottoreti con almeno 56 host ciascuna, 4 sottoreti con esattamente 2 host

Definire un piano di partizionamento dello spazio di indirizzamento congruente con le specifiche sopra indicando per ogni sottorete l'indirizzo IP di rete e l'indirizzo di *broadcast* diretto.

Soluzione

Lo spazio di indirizzamento originale comprende 11 bit nella parte di *host*. La sottorete più grande che deve essere definita è quella con 1000 *host*. Per supportare 1000 *host* servono 10 bit nel campo di *host* (2^{10} =1024). Si può quindi allungare la *netmask* originale di 1 bit (/22) definendo così spazio per due sottoreti ciascuna in grado di supportare 1022 *host* (1024 meno i due indirizzi speciali).

Uno dei due spazi di indirizzamento così definiti può essere assegnato alla sottorete con 1000 host:

131.175.0.0/22 rete con almeno 1000 host, broadcast 131.175.3.255

L'altro spazio di indirizzamento 131.175.4.0/22 può essere ulteriormente suddiviso.

Le sottoreti più grandi a questo punto sono quelle con 220 host. Per supportare 220 host servono 8 bit nel campo di host $(2^8=256)$. Si può quindi allungare la netmask originale di 2 bit (/24) definendo così spazio per quattro sottoreti ciascuna in grado di supportare 254 host (256 meno i due indirizzi speciali).

Tre dei quattro spazi di indirizzamento così definiti possono essere assegnati alle sottoreti con 220 *host*:

131.175.4.0/24 rete con almeno 220 host, broadcast 131.175.4.255

131.175.5.0/24 rete con almeno 220 host, broadcast 131.175.5.255

131.175.6.0/24 rete con almeno 220 host, broadcast 131.175.6.255

L'altro spazio di indirizzamento 131.175.7.0/24 può essere ulteriormente suddiviso.

Le sottoreti più grandi a questo punto sono quelle con 56 host. Per supportare 56 host servono 8 bit nel campo di host $(2^6=64)$. Si può quindi allungare la netmask originale di 2 bit (/26) definendo così spazio per quattro sottoreti ciascuna in grado di supportare 62 host (64 meno i due indirizzi speciali).

Tre dei quattro spazi di indirizzamento così definiti possono essere assegnati alle sottoreti con 56 *host*:

131.175.7.0/26 rete con almeno 56 host, broadcast 131.175.7.63

131.175.7.64/26 rete con almeno 56 host, broadcast 131.175.7.127

131.175.7.128/26 rete con almeno 56 host, broadcast 131.175.7.191

L'altro spazio di indirizzamento 131.175.7.192/26 può essere ulteriormente suddiviso.

Rimangono a questo punto solo le sottoreti con 2 host. Per supportare 2 host servono 2 bit nel campo di host $(2^2=4)$. Si può quindi allungare la netmask originale di 4 bit (/30) definendo così spazio per sedici sottoreti ciascuna in grado di supportare 2 host (4 meno i due indirizzi speciali).

Quattro dei sedici spazi di indirizzamento così definiti possono essere assegnati alle sottoreti con 2 *host*:

- 131.175.7.192/30 rete con esattamente 2 host, broadcast 131.175.7.195
- 131.175.7.196/30 rete con esattamente 2 host, broadcast 131.175.7.199
- 131.175.7.200/30 rete con esattamente 2 host, broadcast 131.175.7.203
- 131.175.7.208/30 rete con esattamente 2 host, broadcast 131.175.7.211

4a-4 Esercizio

Ad un'organizzazione è assegnato lo spazio d'indirizzamento 195.123.224.0/21. Da questo gruppo d'indirizzi occorre ricavare le seguenti sottoreti:

- 1 sottorete con almeno 500 indirizzi di *host* disponibili
- 1 sottorete con almeno 210 indirizzi di *host* disponibili
- 3 sottoreti con almeno 30 indirizzi di *host* disponibili
- 4 sottoreti con almeno due indirizzi di *host* disponibili.

Pianificare il partizionamento dello spazio d'indirizzamento dato specificando per ciascuna delle sottoreti sopra elencate:

- indirizzo in formato decimale e *netmask*
- numero di utenti indirizzabili
- indirizzo di *broadcast* diretto

Soluzione

Lo spazio di indirizzamento originale comprende 11 bit nella parte di *host*. La sottorete più grande che deve essere definita è quella con 500 *host*. Per supportare 500 *host* servono 9 bit nel campo di *host* (2^9 =512). Si può quindi allungare la *netmask* originale di 2 bit (/23) definendo così spazio per quattro sottoreti ciascuna in grado di supportare 510 *host* (510 meno i due indirizzi speciali).

Uno degli spazi di indirizzamento così definiti può essere assegnato alla sottorete con 500 host:

195.123.224.0/23, rete con 510 *Host* massimo, BD: 195.123.225.255

Gli altri tre spazi di indirizzamento 195.123.226.0/23, 195.123.228.0/23, 195.123.230.0/23 possono essere ulteriormente suddivisi.

La sottorete più grande a questo punto è quella con 210 host. Per supportare 210 host servono 8 bit nel campo di host $(2^8=256)$. Si può quindi allungare la netmask originale di 1 bit (/24) definendo così spazio per due sottoreti ciascuna in grado di supportare 254 host (256 meno i due indirizzi speciali).

Uno dei due spazi di indirizzamento così definiti può essere assegnato alla sottorete con 210 host

195.123.226.0/24, rete con 254 host massimo, BD: 195.123.226.255

L'altro spazio di indirizzamento 195.123.227.0/24 può essere ulteriormente suddiviso.

Le sottoreti più grandi a questo punto sono quelle con 30 host. Per supportare 30 host servono 5 bit nel campo di host $(2^5=32)$. Si può quindi allungare la netmask originale di 3 bit (/27) definendo così spazio per otto sottoreti ciascuna in grado di supportare 30 host (32 meno i due indirizzi speciali).

Tre degli otto spazi di indirizzamento così definiti possono essere assegnati alle sottoreti con 30 *host*:

195.123.227.0/27, rete con 30 host, BD: 195.123.227.31

195.123.227.32/27, rete con 30 host, BD: 195.123.227.63

195.123.227.64/27, rete con 30 host, BD: 195.123.227.95

Gli altri cinque spazi di indirizzamento 195.123.227.128/27, 195.123.227.96/27, 195.123.227.192/27, 195.123.227.160/27, 195.123.227.224/27 possono essere ulteriormente suddivisi.

Rimangono a questo punto solo le sottoreti con 2 *host*. Per supportare 2 *host* servono 2 bit nel campo di *host* $(2^2=4)$. Si può quindi considerare uno degli spazi di indirizzamento sopra definiti ed allungare la *netmask* originale di 3 bit (/30) definendo così spazio per otto sottoreti ciascuna in grado di supportare 2 *host* (4 meno i due indirizzi speciali).

Quattro degli otto spazi di indirizzamento così definiti possono essere assegnati alle sottoreti con 2 *host*:

```
195.123.227.128/30, rete con 2 host, BD: 195.123.227.131 195.123.227.132/30, rete con 2 host, BD: 195.123.227.135 195.123.227.136/30, rete con 2 host, BD: 195.123.227.139 195.123.227.140/30, rete con 2 host, BD: 195.123.227.143
```

La soluzione proposta non è l'unica, essendo il numero di indirizzi disponibile molto maggiore rispetto alle dimensioni delle sottoreti IP da definire.

4a-5 Esercizio

Alla rete in figura è assegnato l'indirizzo di rete 195.56.78.0/23

Le reti devono contenere almeno un numero di *host* pari a eth0: 150, eth1: 60, eth2: 55, eth3:57, eth4: 61.

I collegamenti "pp" sono collegamenti punto-punto (ottenuti ad esempio con giga-ethernet full duplex) e necessitano di due indirizzi IP. Suddividere la rete in sottoreti indicando per ognuna indirizzo e *netmask* (sia per le LAN *ethernet* che per i collegamenti punto-punto). Assegnare alle interfacce dei *router* degli indirizzi compatibili con quelli delle reti a cui sono collegate. Scrivere tabelle di *routing* consistenti per tutti i *router*.

Soluzione

Innanzitutto, dobbiamo capire quali siano le reti IP. Il criterio generale è il seguente: gli *host* che sono separati da dispositivi di livello di rete (*router*) o di livello superiore (*proxy*) appartengono a due reti/sottoreti IP diverse, mentre gli *host* che sono separati dispositivi di livello più basso (*bridge*, *switch*, *repeater*) appartengono alla stessa sottorete IP. Le reti IP "vere" sono quindi quelle indicate in figura.

Per la rete A serve un campo *host*ID di 8 *bit* Per le reti B, C e D serve un campo *host*ID di 6 *bit* Per le reti E, F, G e H serve un campo *host*ID di 2 *bit*

Possiamo ora procedere al partizionamento partendo dalle reti IP più "grandi". Di seguito viene riportato l'albero di partizionamento.

Un possibile assegnamento indirizzi/interfacce è riportato di seguito:

Le tabelle di routing sono le seguenti

4a-6 Esercizio

Un Internet Service Provider (ISP) ha a disposizione lo spazio di indirizzamento 164.143.128.0/22. Si chiede di partizionare lo spazio di indirizzamento sulla base della struttura di rete dell'ISP riportata in figura (per ogni rete locale è indicato il numero dei dispositivi connessi). Indicare chiaramente sulla figura quali porzioni di rete sono sottoreti IP, assegnare un indirizzo di rete ad ogni sottorete IP ed indicare chiaramente quale è l'indirizzo di broadcast diretto per ogni sottorete definita. Scrivere la tabella di routing più compatta possibile per il *router* R4.

Soluzione

La suddivisione delle sottoreti IP è riportata in figura.

Rete A: 200 host, 8 bit nel campo di host

Rete B: 130 host, 8 bit nel campo di host

Rete C: 60 host, 6 bit nel campo di host

Rete D, Rete E: 100 host, 7 bit nel campo di host

Rete F: 30 host, 5 bit nel campo di host

Rete G, Rete H: 50 host, 6 bit nel campo di host

Pp1, pp2: 2 host, 2 bit nel campo di host

164.143.128.0/22 da partizionare

164.143.128.0/24: assegnato a Rete A, broadcast diretto: 164.143.128.255

164.143.129.0/24: assegnato a Rete B, BROADCAST DIRETTO: 164.143.129.255

164.143.130.0/24: da partizionare

164.143.131.0/24: da partizionare

164.143.130.0/25: assegnato a Rete D, BROADCAST DIRETTO: 164.143.130.127

164.143.130.128/25: assegnato a Rete E, *BROADCAST DIRETTO*: 164.143.130.255

164.143.131.0/26: assegnato a Rete C, BROADCAST DIRETTO: 164.143.131.63

164.143.131.128/26: assegnato a Rete G, BROADCAST DIRETTO: 164.143.131.191

164.143.131.64/26: assegnato a Rete H, BROADCAST DIRETTO: 164.143.131.127

164.143.131.192/26: da partizionare

164.143.131.192/27: assegnato a Rete F, BROADCAST DIRETTO: 164.143.131.223

164.143.131.224/27: da partizionare

164.143.131.224/28: assegnato a pp1, BROADCAST DIRETTO: 164.143.131.239

164.143.131.240/28: assegnato a pp2, BROADCAST DIRETTO: 164.143.131.245

Le sottoreti relative ai collegamenti punto punto avrebbero potuto anche essere definite con *netmask* /30.

Il *router* R4 ha una sola via d'uscita (oltre le interfacce locali). Quindi la tabella di *routing* minima è:

0.0.0.0/0 next-hop: Router 3

4a-7 Esercizio

Il Dipartimento di Biofisica dell'Università della Svizzera possiede il seguente spazio di indirizzamento IP: 120.13.192.0/22. La rete complessiva è rappresentata in figura. Definire un piano di indirizzamento in grado di supportare il numero di *indirizzi* indicato di seguito:

- LAN1 deve supportare 62 *indirizzi*
- LAN2 deve supportare 510 indirizzi
- LAN3 deve supportare 110 *indirizzi*
- LAN4 deve supportare 21 *indirizzi*
- LAN5: deve supportare 60 *indirizzi*
- LAN6: deve supportare 60 *indirizzi*
- le connessioni punto-punto (R1-R2, R2-R3) devono supportare 2 *indirizzi*.

Per ogni sottorete, IP indicare l'indirizzo di sottorete, la *netmask*, l'indirizzo di *broadcast* diretto ed il numero di indirizzi IP ancora disponibili (oltre a quelli specificati nel piano).

<u>Soluzione</u>

Si noti che LAN 1, LAN 5 e LAN 6 costituiscono un'unica rete IP. I requisiti di indirizzamento sono quindi:

LAN1+LAN5+LAN6: 182 indirizzi

LAN2: 510 indirizzi LAN3: 110 indirizzi LAN4: 21 indirizzi

punto-punto R1-R2: 2 indirizzi punto-punto R2-R3: 2 indirizzi

Lo spazio di indirizzamento da partizionare è: 120.13.192.0/22.

Allungando di 1 *bit* la *netmask*, definisco due sottoreti con 9 *bit* nella parte di *host*, quindi in grado di indirizzare 510 *host* (2⁹-2=510). Posso usare una delle due sottoreti per indirizzare le *macchine* di LAN2 ed usare l'altra rete per ulteriore partizionamento.

LAN2: 120.13.192.0/23, broadcast diretto: 120.13.193.255

Lo spazio di indirizzamento rimanente da partizionare è: 120.13.194.0/23.

Allungando di 1 *bit* la *netmask*, definisco due sottoreti con 8 *bit* nella parte di *host*, quindi in grado di indirizzare 254 *macchine* (2⁸-2=254). Posso usare una delle due sottoreti per indirizzare le *macchine* di LAN1+LAN5+LAN6 ed usare l'altra rete per ulteriore partizionamento.

LAN1+LAN5+LAN6: 120.13.194.0/24, broadcast diretto: 120.13.194.255

Lo spazio di indirizzamento rimanente da partizionare è: 120.13.195.0/24.

Allungando di 1 *bit* la *netmask*, definisco due sottoreti con 7 *bit* nella parte di *host*, quindi in grado di indirizzare 126 *macchine* (2⁷-2=126). Posso usare una delle due sottoreti per indirizzare le *macchine* di LAN3 ed usare l'altra rete per ulteriore partizionamento.

LAN3: 120.13.195.0/25, broadcast diretto: 120.13.195.127

Lo spazio di indirizzamento rimanente da partizionare è: 120.13.195.128/25.

Per indirizzare le *macchine* di LAN4 posso usare una *netmask* di 27 "1" (5 *bit* rimanenti nella parte di *host*) con cui si è in grado di supportare fino a 2^5 -2=30 indirizzi.

LAN4: 120.13.195.128/27, broadcast diretto: 120.13.195.159

Lo spazio di indirizzamento rimanente da partizionare è: 120.13.195.192/27, 120.13.195.160/27, 120.13.195.224/27.

Per definire sottoreti IP relative ai collegamenti punto-punto, posso prendere due delle sottoreti "avanzate", applicare una *netmask* di 30 "1".

punto –punto R1-R2: 120.13.195.192/30, *broadcast* diretto: 120.13.195.195 punto –punto R2-R3: 120.13.195.160/30, *broadcast* diretto: 120.13.195.163

4a-8 Esercizio

Il Dipartimento di Ingegneria Meccanica dell'Università delle Marche possiede il seguente spazio di indirizzamento IP: 135.155.64.0/22 La rete complessiva del dipartimento è rappresentata in figura. Definire un piano di indirizzamento in grado di supportare il numero di *host* indicato nella figura. Indicare le sottoreti IP graficamente nella figura (evidenziare i confini e assegnare una lettera identificativa). Per ciascuna sottorete definire l'indirizzo di rete, la *netmask*, e l'indirizzo di *broadcast* diretto.

Scrivere la tabella di instradamento del *router* R5 nel modo più compatto possibile dopo aver assegnato opportunamente degli indirizzi ai *router* a cui R5 è connesso direttamente.

Soluzione

Le reti IP sono messe in evidenza nella figura qui sotto. Il criterio generale per capire quali sono le rei IP "vere" è il seguente: gli *host* che sono separati da dispositivi di livello di rete (*router*) o di livello superiore (*proxy*) appartengono a due reti/sottoreti IP diverse, mentre gli *host* che sono separati dispositivi di livello più basso (*bridge*, *switch*, *repeater*) appartengono alla stessa sottorete IP.

Rete A: 200 host, 8 bit nella parte di host dell'indirizzo

Rete B: 180 host, 8 bit nella parte di host dell'indirizzo

Reti C, D, E: 100 host, 7 bit nella parte di host dell'indirizzo

Rete F: 50 host, 6 bit nella parte di host dell'indirizzo

Rete G: 25 host, 5 bit nella parte di host dell'indirizzo

Pp1, pp2, pp3, pp4: 2 host, 2 bit nella parte di host dell'indirizzo

Indirizzo iniziale: 135.155.64.0/22

Allungando di 2 *bit* la *netmask*, definisco 4 sottoreti con 8 *bit* nella parte di *host*, quindi in grado di indirizzare 254 *host* (2⁸-2=254). Posso usare una delle quattro sottoreti per indirizzare gli *host* di Rete A ed usare un'altra sottorete per indirizzare gli *host* di Rete B.

Rete A: 135.155.64.0/24, *broadcast* diretto: 135.155.64.255 Rete B: 135.155.65.0/24, *broadcast* diretto: 135.155.65.255

Rimangono due sottoreti per ulteriore partizionamento:

135.155.66.0/24 135.155.67.0/24

Allungando di 1 *bit* la *netmask* per entrambe le sottoreti rimaste, definisco 4 sottoreti con 7 *bit* nella parte di *host*, quindi in grado di indirizzare 126 *host* (2⁷-2=126). Posso usare tre delle quattro sottoreti per indirizzare gli *host* di Rete C, Rete D e Rete E.

Rete C: 135.155.66.0/25, *broadcast* diretto: 135.155.66.127 Rete D: 135.155.66.128/25, *broadcast* diretto: 135.155.66.255 Rete E: 135.155.67.0/25, *broadcast* diretto: 135.155.67.127

Rimane una sotterete per ulteriore partizionamento:

135.155.67.128/25

Allungando di 1 *bit* la *netmask*, definisco 2 sottoreti con 6 *bit* nella parte di *host*, quindi in grado di indirizzare 62 *host* (2⁶-2=62). Posso usare una delle due sottoreti per indirizzare gli *host* di Rete F.

Rete F: 135.155.67.128/26, broadcast diretto: 135.155.67. 191

Rimane una sotterete per ulteriore partizionamento: 135.155.67.192/26

Allungando di 1 *bit* la *netmask*, definisco 2 sottoreti con 5 *bit* nella parte di *host*, quindi in grado di indirizzare 30 *host* (2⁵-2=30). Posso usare una delle due sottoreti per indirizzare gli *host* di Rete G. Rete G: 135.155.67.192/27, *broadcast* diretto: 135.155.67.223

Rimane una sotterete per ulteriore partizionamento: 135.155.67.224/27

Allungando di 3 *bit* la *netmask*, definisco 8 sottoreti con 2 *bit* nella parte di *host*, quindi in grado di indirizzare 2 *host* (2²-2=2). Posso usare quattro delle otto sottoreti per indirizzare gli *host* di pp1, pp2, pp3, pp4

Pp1: 135.155.67.224/30, *broadcast* diretto: 135.155.67.227 Pp2: 135.155.67.228/30, *broadcast* diretto: 135.155.67.231 Pp3: 135.155.67.232/30, *broadcast* diretto: 135.155.67.235 Pp4: 135.155.67.236/30, *broadcast* diretto: 135.155.67.239

Il *router* R5 ha due interfacce di rete su Rete E e pp2. E' sufficiente una tabella di *routing* con un'unica riga per raggiungere tutte le reti IP non direttamente connesse. Supponendo che l'indirizzo IP dell'interfaccia di R5 collegata a pp2 sia 131.155.67.230, allora la tabella di *routing* di R5 più compatta possibile è:

0.0.0.0 0.0.0.0 131.155.67.229

4a-9 Esercizio

Un *router* ha la seguente tabella di *routing*. E' possibile ridurre la dimensione della tabella di *routing*? Se sì, come?

Destinazione	Netmask	Next Hop
131.175.132.0	255.255.255.0	131.123.124.125
131.175.21.0	255.255.255.0	131.124.123.121
131.175.20.0	255.255.255.0	131.124.123.121
131.175.133.0	255.255.255.0	131.123.124.125
131.175.135.0	255.255.255.0	131.123.124.128
0.0.0.0	0.0.0.0	131.123.124.126

Soluzione

La seconda e la terza sottorete in tabella hanno indirizzi IP contigui (differiscono per l'ultimo *bit* del terzo *byte*) e hanno *next hop* in comune.

La prima, la quarta e la quinta sottorete hanno indirizzi IP uguali fino al terzultimo *bit* del terzo *byte*; la prima e la quarta sottorete hanno anche *next hop* comune. E' possibile ridurre la tabella di *routing* come segue.

Destinazione	Netmask	Next Hop
131.175.20.0	255.255.254.0	131.124.123.121
131.175.132.0	255.255.254.0	131.123.124.125
131.175.135.0	255.255.255.0	131.123.124.128
0.0.0.0	0.0.0.0	131.123.124.126

4a-10 Esercizio

Un *router* ha la seguente tabella di *routing*. E' possibile ridurre la dimensione della tabella di *routing*? Se sì, come?

Destinazione	Netmask	Next Hop
131.175.132.0	255.255.255.0	131.123.124.125
131.175.21.0	255.255.255.0	131.124.123.121
131.175.20.0	255.255.255.0	131.124.123.121
131.175.133.0	255.255.255.0	131.123.124.125
131.175.134.0	255.255.255.0	131.123.124.130
131.175.135.0	255.255.255.0	131.123.124.125
131.175.50.0	255.255.254.0	131.123.124.126
0.0.0.0	0.0.0.0	131.123.124.126

Soluzione

La seconda e la terza sottorete in tabella hanno indirizzi IP contigui (differiscono per l'ultimo *bit* del terzo *byte*) e hanno *next hop* in comune. Possono dunque essere aggregate:

```
131.175.20.0 255.255.254.0131.124.123.121
```

La prima, la quarta, la quinta e la sesta sottorete hanno indirizzi IP uguali fino al terzultimo *bit* del terzo *byte*; la prima, la quarta e la sesta sottorete hanno anche *next hop* comune.

131.175.132.0	255.255.252.0131.123.124.125
131.175.134.0	255.255.255.0131.123.124.130

La settima sottorete ha lo stesso next-hop della route di default e quindi può essere eliminata.

E' dunque possibile ridurre la tabella di *routing* come segue:

Destinazione	Netmask	Next Hop
131.175.20.0	255.255.254.0	131.124.123.121
131.175.132.0	255.255.252.0	131.123.124.125
131.175.134.0	255.255.255.0	131.123.124.130
0.0.0.0	0.0.0.0	131.123.124.126

In generale le regole da seguire per l'aggregazione sono:

- 1. Si possono aggregare gruppi di reti contigue che hanno lo stesso next-hop. Ovviamente il numero di reti deve essere una potenza di 2 (gruppi di 2, 4, 8, ... reti). Il gruppo è sostituito da un'unica riga che contiene l'aggregato (ottenuto accorciando la *netmask*)
- 2. Si possono aggregare reti contigue come nella prima regola anche se per alcune il next-hop è diverso. In questo caso il gruppo è sostituito da un'unica riga che contiene l'aggregato, più una riga per ciascuna delle righe del gruppo con diverso next-hop (eccezioni) che sono lasciate inalterate.
- 3. Si possono aggregare reti contigue come nella prima regola anche se mancano nella tabella alcune reti. In questo caso il gruppo è sostituito da un'unica riga che contiene l'aggregato, più una riga per ciascuna delle reti mancanti con next-hop pari a quello della rotta di default.
- 4. Si possono eliminare tutte le reti con next-hop pari alla rotta di default.

4a-11 Esercizio (esempio di seconda prove in itinere - Luglio 2016)

Un ISP possiede il seguente spazio di indirizzamento IP: 29.88.192.0/22 La rete complessiva dell'ISP è rappresentata in figura. Indicare le sotto-reti IP graficamente nella figura (mettere in evidenza i confini e assegnare una lettera identificativa). Si escluda dal piano il collegamento tra il router R0 e il router R1. Definire un piano di indirizzamento in grado di supportare il numero di host indicato nella figura. Per ciascuna sottorete definire l'indirizzo di rete, la netmask, e l'indirizzo di broadcast diretto. Scrivere la tabella di instradamento del router R1 nel modo più compatto possibile dopo aver assegnato opportunamente degli indirizzi ai router a cui R1 è connesso direttamente.

Soluzione

Le sottoreti IP sono indicate in rosso in figura.

L'albero di partizionamento dello spazio di indirizzamento disponibile è riportato di seguito:

In sintesi, la tabella qui sotto riporta nome della sottorete IP, indirizzo assegnato ed indirizzo di broadcast diretto.

Nome	Network	Broadcast
NET1	29.88.192.0/23	29.88.193.255
NET2	29.88.194.0/25	29.88.194.127
NET3	29.88.194.128/25	29.88.194.255
NET4	29.88.195.0/26	29.88.195.63
NET5	29.88.195.64/26	29.88.195.127
NET6	29.88.195.128/26	29.88.195.191
NET7	29.88.195.192/27	29.88.195.223
PP1	29.88.195.224/30	29.88.195.227
PP2	29.88.195.228/30	29.88.195.231
PP3	29.88.195.232/30	29.88.195.235
PP4	29.88.195.236/30	29.88.195.239
PP5	29.88.195.240/30	29.88.195.243

Il *router* R1 è collegato ai *router* R5 e R2. Una possibile configurazione delle interfacce di R2 e R5 collegate a R1 è la seguente:

Interfaccia di R5 su PP1: 29.88.195.225 Interfaccia di R2 su PP2: 29.88.195.229

Una possibile tabella di routing di R1 è:

Network	Netmask	Next-hop
29.88.192.0	255.255.254.0	29.88.195.225
29.88.194.0	255.255.255.128	29.88.195.225
29.88.194.128	255.255.255.128	29.88.195.229
29.88.195.0	255.255.255.192	29.88.195.229
29.88.195.64	255.255.255.192	29.88.195.229
29.88.195.192	255.255.255.224	29.88.195.225
29.88.194.232	255.255.255.252	29.88.195.225
29.88.194.236	255.255.255.252	29.88.195.225
29.88.194.240	255.255.255.252	29.88.195.229
0.0.0.0	0.0.0.0	12.67.7.254

4a-12 Esercizio (Esempio di Tema d'esame – Luglio 2016)

Si consideri la rete in figura a cui è assegnato lo spazio di indirizzamento IP 2.34.16.0/21.

- a) Si suddivida la rete in sotto-reti (si escluda il collegamento R1-R0). Per ciascuna rete si scriva l'indirizzo, la *netmask*, l'indirizzo braodcast.
- b) Si scriva la tabella di routing di R1 assegnando opportunamente degli indirizzi ai *router* vicini.

Soluzione

a) L'albero di partizionamento è il seguente:

Fondamenti di Internet e Reti 097246

Esercizi

Network addr.	Netmask	Broadcast add.
2.34.16.0/23	255.255.254.0	2.34.17.255
2.34.18.0/23	255.255.254.0	2.34.19.255
2.34.20.0/24	255.255.255.0	2.34.20.255
2.34.21.0/24	255.255.255.0	2.34.21.255
2.34.22.0/25	255.255.255.128	2.34.22.127
2.34.22.128/25	255.255.255.128	2.34.22.255
2.34.23.0/25	255.255.255.128	2.34.23.127
2.34.23.128/30	255.255.255.252	2.34.23.131
2.34.23.132/30	255.255.255.252	2.34.23.135
2.34.23.136/30	255.255.255.252	2.34.23.139
2.34.23.140/30	255.255.255.252	2.34.23.143

b) Tabella di routing R1

Network	Netmask	Next-hop
2.34.16.0/23	255.255.254.0	2.34.23.129 (R2)
2.34.18.0/23	255.255.254.0	2.34.23.141 (R5)
2.34.20.0/24	255.255.255.0	2.34.23.137 (R4)
2.34.21.0/24	255.255.255.0	2.34.23.137 (R4)
2.34.22.0/25	255.255.255.128	2.34.23.133 (R3)
2.34.22.128/25	255.255.255.128	2.34.23.133 (R3)
2.34.23.0/25	255.255.255.128	2.34.23.141 (R5)
0.0.0.0	0.0.0.0	131.175.21.1

4a-13 Esercizio (Tema d'Esame - Febbraio 2017)

Un ISP possiede il seguente spazio di indirizzamento IP: 29.88.192.0/22 La rete complessiva dell'ISP è rappresentata in figura

- Indicare le sotto-reti IP graficamente nella figura (mettere in evidenza i confini e assegnare una lettera identificativa). Si escluda dal piano il collegamento tra il *router* R0 e il *router* R1
- Definire un piano di indirizzamento in grado di supportare il numero di *host* indicato nella figura. Per ciascuna sottorete riportare in tabella l'indirizzo di rete, la *netmask*, e l'indirizzo di broadcast diretto.
- Riempire la tabella di instradamento del *router* R1 nel modo più compatto possibile dopo aver assegnato opportunamente degli indirizzi ai *router* a cui R1 è connesso direttamente.

Soluzione

I primi due ottetti degli indirizzi di rete sono sempre 29.88

PIANO INDIRIZZAMENTO

Nome	Network Address	Broadcast
Net A	192.0/24	192.255
Net B	193.0/24	193.255
Net C	194.0/25	194.127

pp3	195.136/30	195.139	
pp2	195.132/30	195.135	
pp1	195.128/30	195.131	
Net G	195.64/26	195.127	
Net F	195.0/26	195.63	
Net E	194.192/26	194.255	
Net D	194.128/26	194.191	

TABELLA DI INSTRADAMENTO DI R1

Nome rete destinaz.	Network prefix/netmask	Next Hop
Net A	192.0/24	195.133
Net B	193.0/24	195.137
Net C-D-E	194.0/24	195.133
pp1	195.128/30	195.133
Internet	0.0.0.0	12.67.7.254

La soluzione rappresentata è una delle molteplici soluzioni corrette.