Тенденции выбора падежной формы в конструкциях типа Фермер продал три овцы // трех овец.

Ангелина Присяжная

Введение

Вариативность (наличие нескольких вариантов чего-либо) – очень распространенное явление в русском языке. Она имеет место в различных областях языка, в том числе и в морфологии. Интересно изучить то, что именно влияет на выбор того или иного варианта из нескольких возможных, а также выявить тенденции этого выбора.

Для более подробного изучения взяты конструкции типа Фермер продал три овцы // трех овец. Целью данной работы является выявление тенденций выбора падежной формы в этих конструкциях и определение факторов, влияющих на этот выбор.

Для изучения были взяты числительные оба, два, три, четыре. Подбор материала осуществлялся с помощью НКРЯ и корпуса SketchEngine. Я использовала лексико-грамматический поиск и вводили следующий запрос: оба/два/три/четыре (в именительном или винительном падеже) + существительное (женского рода, во множественном числе, одушевленное, семантический класс - животное), расстояние между словоформами от 1 до 3. При таком запросе также находятся и диминутивы существительных.

В данных конструкциях может быть использована одушевленная или неодушевленная форма винительного падежа. Формы обе/две/три/четыре будем называть "неодушевленными", а формы обеих/двух/трех/четырех – "одушевленными":

Завтракал Орлов (деж.). Долго гулял, убил **три вороны**. Занимался и писал, а после обеда читал Аликс вслух. [Николай II. Дневники 1904-1907 (1904-1907)]

Гейден. Погулял еще и убил **трех ворон**. Занимался с успехом. [Николай II. Дневники 1904-1907 (1904-1907)]

Из найденных примеров не рассматривались те, в которых использовались существительные пиявка, креветка (для данных существительных в Грамматическом словаре русского языка А.А.Зализняка указаны колебания по одушевленности):

А теперь припустил себе к носу **две пиявки** да воображает, что у него усы! [М. Н. Загоскин. Москва и москвичи (1842-1850)]

Сергей выбрал еще **три креветки**, стараясь найти среди них самые крепкие и привлекательные, наживил каждую из них, тщательно продев крючок сквозь всетуловище, и осторожно опустил за борт свою снасть. [Фазиль Искандер. Морской скорпион (1977)]

Необходимые библиотеки.

```
library('languageR')
library('Hmisc')
library(party)
library(lattice)
library(rms)
library(ggplot2)
```

Файлы с данными.

```
nk = read.csv('/Users/angelinaprisyazhnaya/Desktop/ovtsy_ruscorpora.csv', sep=';')
se = read.csv('/Users/angelinaprisyazhnaya/Desktop/ovtsy_sketch.csv', sep=';')
ovtsy_all = read.csv('/Users/angelinaprisyazhnaya/Desktop/ovtsy_all.csv', sep=';')
```

Данные из НКРЯ

В НКРЯ было найдено 729 подходящих примеров. На графике показано количество вхождений для различных форм и числительных.

```
summary(nk)
```

```
##
       numeral
                       form
                                                             homogenious parts
                                     year
                                                century
    chetyre: 63
                  anim :607
                                       :1709
                                               XIX :197
                                                                      :575
##
                                Min.
##
    dva
           :481
                  inanim:122
                                1st Qu.:1892
                                               XVIII: 13
                                                            yes_anim :117
##
           : 19
                                Median :1932
                                                            yes_inanim: 37
    oba
                                               XX
                                                     :429
##
    tri
           :166
                                Mean
                                     :1929
                                               XXI : 90
                                3rd Qu.:1977
##
                                       :2011
##
                                Max.
##
    pair numerals definiteness adjectives
    no :711
                  high :586
                                no :577
##
##
    yes: 18
                  low
                         : 15
                                yes:152
##
                  medium: 128
##
##
##
```

```
head(nk)
```

```
##
                form year century homogenious_parts pair_numerals definiteness
## 1
          dva inanim 2011
                                XXI
                                                                    no
                                                                                 high
##
   2
          dva inanim 2003
                                XXI
                                                                                  low
                                                     no
                                                                   yes
          dva inanim 2003
                                XXI
                                                                              medium
##
                                                     no
                                                                    no
##
          dva inanim 2001
                                XXI
                                                                                 high
                                                     no
                                                                    no
##
          dva inanim 2001
                                XXI
                                                                              medium
                                              yes anim
                                                                    no
##
          dva inanim 2001
                                XXI
                                                     no
                                                                   yes
                                                                                  low
##
     adjectives
##
   1
              no
## 2
             yes
## 3
              no
##
              no
## 5
             yes
## 6
```

ggplot(nk, aes(numeral)) + geom_bar(aes(fill = form), position="dodge") + geom_tex t(stat='count',aes(label=..count.., hjust=0.5, vjust=-0.5, group=form), position=p osition_dodge(width = 1)) + xlab("Числительное") + ylab("Количество вхождений") + ggtitle("Количество вхождений на основе НКРЯ")

Количество вхождений на основе НКРЯ

Данные из SketchEngine

B SketchEngine было найдено 784 подходящих примера. На графике показано количество вхождений для различных форм и числительных.

```
summary(se)
```

```
##
       numeral
                       form
                                  homogenious_parts pair_numerals definiteness
    chetyre: 69
                   anim :643
##
                                            :669
                                                     no :720
                                                                           :528
                                                                    high
                                                     yes: 64
                   inanim:141
##
    dva
           :508
                                 yes anim : 86
                                                                    low
                                                                           : 64
                                                                    medium:192
##
    oba
           : 23
                                 yes inanim: 29
##
    tri
           :184
##
    adjectives
##
    no :633
##
    yes:151
##
##
```

head(se)

```
##
     numeral
                form homogenious_parts pair_numerals definiteness adjectives
         dva inanim
## 1
                                                                 high
                                      no
                                                     no
                                                                                no
         dva inanim
## 2
                                      no
                                                     no
                                                                 high
                                                                                no
## 3
         dva inanim
                                                     no
                                                                 high
                                      no
                                                                              yes
## 4
         dva inanim
                                      no
                                                     no
                                                                 high
                                                                                no
         dva inanim
                                                                 high
## 5
                                      no
                                                     no
                                                                              yes
         dva inanim
## 6
                                                                 high
                                      nο
                                                     nο
                                                                               no
```

```
ggplot(se, aes(numeral)) + geom_bar(aes(fill = form), position="dodge") + geom_tex t(stat='count',aes(label=..count.., hjust=0.5, vjust=-0.5, group=form), position=p osition_dodge(width = 1)) + xlab("Числительное") + ylab("Количество вхождений") + ggtitle("Количество вхождений на основе SketchEngine")
```

Количество вхождений на основе SketchEngine

Факторы

Я предположила, что выбор формы может зависеть от следующих факторов:

- наличие однородных членов;
- двойные числительные;
- определенность;
- наличие определений;
- дата.

Наличие однородных членов

Возможны три варианта для данного фактора:

- есть одушевленный однородный член (yes_anim)
 - Сии последние стреляли по двум полкам, оставшимся верными королю, и убили до смерти шестерых всадников и двух лошадей. [Журнал событиям, совершившимся в Париже в 11-го по 17-е июля 1789 года (1789)]
- есть неодушевленный однородный член (yes_inanim) *Один из грабителей убит, двое скрылись, оставив двух лошадей и ценные вещи.*[неизвестный. Вести (1911.02.13) // «Новое время», 1911]
- нет однородных членов (no)

Гипотеза: если в предложении содержатся однородные члены в "неодушевленной" форме, то название животного подвергается их влиянию и употребляется в "неодушевленной" форме (и наоборот).

Двойные числительные

Возможны два варианта для данного фактора:

- двойное числительное (yes)

 Лишь некоторые зажиточные вогуличи держали при юртах одну-две коровы. [Финноугорские народы. Манси (2001) // «Жизнь национальностей», 2001.12.28]
- обычное одиночное числительное (no)

Гипотеза: двойные числительные чаще употребляются в "неодушевленной" форме, чем в "одушевленной".

Определенность

Возможны три варианта для данного фактора:

- Речь о конкретных объектах, их количество точно определено (high)

 Привязав обеих лошадей к прутьям ограды, монах вошел в палисадник. [Роберт Штильмарк. Наследник из Калькутты (1950-1951)]
- Речь не о конкретных объектах, но их количество точно определено (medium)
 На эти деньги мы должны приобрести четырех собак. [Марта Баранова, Евгений Велтистов. Тяпа, Борька и ракета (1962)]
- Речь не о конкретных объектах, их количество точно не определено (low) *И не зря: как ни пойдешь, всегда тут две-три гадюки увидишь.* [В. В. Бианки. Лесные были и небылицы (1923-1958)]

Гипотеза: с повышением определенности чаще употребляются "одушевленные" формы.

Наличие определений

Возможны два варианта для данного фактора:

- есть определение (yes)
 - Нюра еще издали окинула взглядом путик и поняла, что рыжая лесовая собака не успела пробежаться по нему и напроказить, может, погрызла двух-трех тундровых птиц, никак не больше. [Владимир Личутин. Вдова Нюра (1973)]
- нет определения (no)

Гипотеза: при наличии определений чаще употребляются "одушевленные" формы.

Дата

Возможные варианты для данного фактора: XVIII, XIX, XX, XXI века.

Цель - проверить, есть ли временная тенденция.

Дерево решений

Для того, чтобы выяснить, зависит ли выбор падежной формы от каких-либо рассматриваемых факторов, я решила использовать дерево решений.

Дерево решений на основе данных из НКРЯ

nk.ctree=ctree(form ~ definiteness + homogenious_parts + adjectives, nk) plot(nk.ctree, main="Дерево решений на основе данных из НКРЯ")

Дерево решений на основе данных из SketchEngine

se.ctree=ctree(form ~ definiteness + homogenious_parts + adjectives, se) plot(se.ctree, main="Дерево решений на основе данных из SketchEngine")

Дерево решений на основе данных из SketchEngine

Результаты показывают, что на выбор падежной формы действительно влияют следующие факторы:

- определенность (при низкой определенности чаще употребляются "неодушевленные" формы);
- наличие однородных членов (при наличии однородных членов в "неодушевленной" форме чаще употребляются "неодушевленные" формы).

Дерево решений на основе всех данных

Также я построила дерево для агрегированных данных - и из НКРЯ, и из SketchEngine. Но в этом случае анализ неточный, поскольку некоторые примеры могут встречаться в обеих выборках (дублироваться) - и в НКРЯ, и в SketchEngine. При этом, если это пересечение есть, то оно неравномерно, так как SketchEngine содержит только современные тексты.

ovtsy_all.ctree=ctree(form ~ definiteness + homogenious_parts + adjectives, ovtsy_ all) plot(ovtsy_all.ctree)

Логистическая регрессия на основе данных из НКРЯ

nk.lrm=lrm(form ~ definiteness + homogenious_parts + adjectives, data=nk, x=T, y=T
, linear.predictors=T)
nk.lrm

```
## Logistic Regression Model
##
##
    lrm(formula = form ~ definiteness + homogenious_parts + adjectives,
##
       data = nk, x = T, y = T, linear.predictors = T)
##
##
                          Model Likelihood
                                               Discrimination
                                                                 Rank Discrim.
##
                             Ratio Test
                                                  Indexes
                                                                    Indexes
##
   Obs
                 729
                        LR chi2
                                      49.63
                                               R2
                                                       0.111
                                                                         0.675
##
     anim
                  607
                        d.f.
                                                        0.657
                                                                         0.351
                                                                 Dxy
                                               g
                                                                 gamma
##
     inanim
                 122
                        Pr(> chi2) <0.0001
                                                       1.929
                                                                         0.456
                                               gr
##
   max |deriv| 8e-09
                                                        0.095
                                                                 tau-a
                                                                         0.098
                                               gp
##
                                               Brier
                                                        0.128
##
##
                                               Wald Z Pr(>|Z|)
                                 Coef
                                         S.E.
                                 -1.9518 0.1511 -12.91 <0.0001
##
   Intercept
##
   definiteness=low
                                  2.7519 0.5721
                                                 4.81 < 0.0001
##
   definiteness=medium
                                 0.7344 0.2424 3.03 0.0025
##
   homogenious parts=yes anim
                                0.6643 0.2580 2.57 0.0100
##
   homogenious parts=yes inanim 1.3023 0.3731 3.49 0.0005
##
   adjectives=yes
                                -0.6693 0.3051 -2.19 0.0283
##
```

Определенность и наличие однородных членов оказывают значимое влияние на выбор падежной формы.

Логистическая регрессия на основе данных из SketchEngine

```
se.lrm=lrm(form ~ definiteness + homogenious_parts + adjectives, data=se, x=T, y=T
, linear.predictors=T)
se.lrm
```

```
## Logistic Regression Model
##
##
    lrm(formula = form ~ definiteness + homogenious_parts + adjectives,
##
        data = se, x = T, y = T, linear.predictors = T)
##
##
                          Model Likelihood
                                                Discrimination
                                                                   Rank Discrim.
##
                             Ratio Test
                                                   Indexes
                                                                      Indexes
                                       41.02
##
    Obs
                  784
                         LR chi2
                                                R2
                                                         0.084
                                                                           0.651
##
     anim
                  643
                         d.f.
                                                         0.543
                                                                           0.302
                                                                   Dxy
                                                g
                                                                   gamma
##
     inanim
                  141
                         Pr(> chi2) <0.0001
                                                         1.721
                                                                           0.380
                                                qr
##
   max |deriv| 1e-09
                                                         0.087
                                                                   tau-a
                                                                           0.089
                                                gр
##
                                                Brier
                                                         0.139
##
##
                                                 Wald Z Pr(>|Z|)
                                  Coef
                                          S.E.
                                  -1.9205 0.1490 -12.89 <0.0001
##
    Intercept
##
    definiteness=low
                                   1.3780 0.2921
                                                   4.72 < 0.0001
    definiteness=medium
                                                   3.09 0.0020
##
                                   0.6691 0.2165
##
   homogenious parts=yes anim
                                  0.1673 0.3029 0.55 0.5807
##
   homogenious parts=yes inanim 1.6137 0.3962 4.07 < 0.0001
##
    adjectives=yes
                                  -0.2155 0.2655 -0.81 0.4169
##
```

Результаты очень близки к результатам на основе НКРЯ.

Логистическая регрессия на основе всех данных

Регрессию я также применила и к агрегированным данным (но здесь та же проблема - данные могут дублироваться).

```
ovtsy_all.lrm=lrm(form ~ definiteness + homogenious_parts + adjectives, data=ovtsy
_all, x=T, y=T, linear.predictors=T)
ovtsy_all.lrm
```

```
## Logistic Regression Model
##
##
    lrm(formula = form ~ definiteness + homogenious_parts + adjectives,
        data = ovtsy_all, x = T, y = T, linear.predictors = T)
##
##
##
                           Model Likelihood
                                                 Discrimination
                                                                   Rank Discrim.
##
                              Ratio Test
                                                    Indexes
                                                                       Indexes
##
    Obs
                 1513
                          LR chi2
                                       82.58
                                                 R2
                                                          0.088
                                                                            0.659
     anim
##
                 1250
                          d.f.
                                                          0.585
                                                                   Dxy
                                                                            0.319
                                                 g
##
                                                                   gamma
     inanim
                  263
                         Pr(> chi2) <0.0001
                                                          1.795
                                                                            0.405
                                                 qr
##
    max |deriv| 8e-09
                                                          0.090
                                                                            0.092
                                                                   tau-a
                                                 gp
##
                                                 Brier
                                                          0.135
##
                                                  Wald Z Pr(>|Z|)
##
                                  Coef
                                          S.E.
##
    Intercept
                                  -1.9298 0.1056 -18.27 < 0.0001
##
    definiteness=low
                                   1.6473 0.2475
                                                    6.66 < 0.0001
##
    definiteness=medium
                                   0.6915 0.1603
                                                    4.31 < 0.0001
##
    homogenious parts=yes anim
                                   0.4403 0.1940
                                                    2.27 0.0233
##
    homogenious parts=yes inanim 1.4107 0.2685 5.25 <0.0001
##
    adjectives=yes
                                  -0.4187 0.1986 -2.11 0.0350
##
```

Временная тенденция

Отдельно от всех рассмотренных факторов рассмотрим дату, чтобы выяснить, существует ли какая-либо зависимость употребления падежной формы от времени. В данном случае будут рассматриваться только данные НКРЯ, так как в датасете из SketchEngine нет информации о годе написания текста.

Временная тенденция (на основе данных из НКРЯ)

```
ggplot(nk, aes(form, year)) + geom_violin(scale = "count", draw_quantiles = c(0.25, 0.5, 0.75)) + xlab("Форма") + ylab("Год написания текста") + ggtitle("Временная тендеция выбора падежной формы")
```

Временная тендеция выбора падежной формы

График показывает, что "неодушевленные" формы употребляются на всем временном промежутке. "Одушевленные" формы начинают употребляться значительно позже.

Временная тенденция для разных числительных (на основе данных из НКРЯ)

Рассмотрим также зависимость от времени для различных числительных.

```
ggplot(nk, aes(form, year)) + geom_violin(scale = "count") + xlab("Форма") + ylab(
"Год написания текста") + ggtitle("Временная тендеция для различных числительных")
+ facet_wrap(~numeral)
```

Временная тендеция для различных числительных

Для числительного оба в НКРЯ вообще не нашлось неодушевленных форм. Для всех остальных числительных видна четкая временная тенденция - чаще начинают употребляться одушевленные формы.

Заключение

Удалось выяснить, что:

- с течением времени количество употреблений "одушевленных" форм возрастает, а "неодушевленных" убывает;
- если однородные члены в "неодушевленной" форме, то исследуемая конструкция подвергается их влиянию (чаще используется в "неодушевленной" форме);
- с возрастанием определенности чаще употребляются "одушевленные" формы.