

中华人民共和国国家标准

GB/T 38635.1—2020

信息安全技术 SM9 标识密码算法 第 1 部分:总则

Information security technology—Identity-based cryptographic algorithms SM9— Part 1: General

2020-04-28 发布 2020-11-01 实施

目 次

前言
引言
1 范围
2 规范性引用文件
3 术语和定义
4 符号
5 有限域和椭圆曲线
5.1 有限域
5.2 有限域上的椭圆曲线
5.3 椭圆曲线群
5.4 椭圆曲线多倍点运算
5.5 椭圆曲线子群上点的验证
5.6 离散对数问题
6 双线性对及安全曲线
6.1 双线性对
6.2 安全性
6.3 嵌入次数及安全曲线
7 数据类型及其转换
7.1 数据类型
7.2 数据类型转换
8 系统参数及其验证
8.1 系统参数
8.2 系统参数的验证
附录 A (规范性附录) 参数定义 ····································
附录 B (资料性附录) 关于椭圆曲线的背景知识 ····································
附录 C(资料性附录) 椭圆曲线上双线性对的计算 ······2
附录 D (资料性附录) 数论算法 ······ 2
参考文献

前 言

GB/T 38635《信息安全技术 SM9 标识密码算法》分为两个部分:

- ——第1部分:总则;
- ——第2部分:算法。

本部分为 GB/T 38635 的第1部分。

本部分按照 GB/T 1.1-2009 给出的规则起草。

请注意本文件的某些内容可能涉及专利。本文件的发布机构不承担识别这些专利的责任。

本部分由全国信息安全标准化技术委员会(SAC/TC 260)提出并归口。

本部分起草单位:国家信息安全工程技术研究中心、北京国脉信安科技有限公司、深圳奥联信息安全技术有限公司、中国科学院软件研究所、武汉大学、中科院信息工程研究所。

本部分主要起草人:陈晓、程朝辉、张振峰、叶顶峰、胡磊、陈建华、季庆光、袁文恭、刘平、马宁、袁峰、李增欣、王学进、杨恒亮、张青坡、马艳丽、浦雨三、唐英、孙移盛、安萱、封维端、张立圆。

引 言

A. Shamir 在 1984 年提出了标识密码(Identity-based cryptography)的概念,在标识密码系统中,用户的私钥由密钥生成中心(KGC)根据主密钥和用户标识计算得出,用户的公钥由用户标识唯一确定,由标识管理者保证标识的真实性。与基于证书的公钥密码系统相比,标识密码系统中的密钥管理环节可以得到适当简化。

1999年,K.Ohgishi、R.Sakai 和 M.Kasahara 在日本提出了用椭圆曲线对(pairing)构造基于标识的密钥共享方案;2001年,D.Boneh 和 M.Franklin,以及 R.Sakai、K.Ohgishi 和 M.Kasahara 等人独立提出了用椭圆曲线对构造标识公钥加密算法。这些工作引发了标识密码的新发展,出现了一批用椭圆曲线对实现的标识密码算法,其中包括数字签名算法、密钥交换协议、密钥封装机制和公钥加密算法等。

椭圆曲线对具有双线性的性质,它在椭圆曲线的循环子群与扩域的乘法循环子群之间建立联系,构成了双线性 DH、双线性逆 DH、判定性双线性逆 DH、 τ -双线性逆 DH 和 τ -Gap-双线性逆 DH 等难题,当椭圆曲线离散对数问题和扩域离散对数问题的求解难度相当时,可用椭圆曲线对构造出安全性和实现效率兼顾的标识密码。

信息安全技术 SM9 标识密码算法 第 1 部分: 总则

1 范围

GB/T 38635 的本部分规定了 SM9 标识密码算法涉及的必要相关数学基础知识、密码技术和具体参数。

本部分适用于 SM9 标识密码的实现和应用。

2 规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB/T 32905 信息安全技术 SM3 密码杂凑算法

GB/T 32907 信息安全技术 SM4 分组密码算法

3 术语和定义

下列术语和定义适用于本文件。

3.1

标识 identity

由实体无法否认的信息组成,如实体的可识别名称、电子邮箱、身份证号、电话号码、街道地址等,可唯一确定一个实体的身份。

3.2

主密钥 master key

处于标识密码密钥分层结构最顶层的密钥,包括主私钥和主公钥,其中主公钥公开,主私钥由 KGC 秘密保存。KGC 用主私钥和用户的标识生成用户的私钥。在标识密码中,主私钥一般由 KGC 通过随机数发生器产生,主公钥由主私钥结合系统参数产生。

3.3

密钥生成中心 key generation center; KGC

在 SM9 标识密码中,负责选择系统参数、生成主密钥并产生用户私钥的可信机构。

3.4

SM3 算法 SM3 algorithm

由 GB/T 32905 定义的一种杂凑算法。

3.5

SM4 算法 SM4 algorithm

由 GB/T 32907 定义的一种分组加密算法。

4 符号

下列符号适用于本文件。

GB/T 38635.1-2020

cf:椭圆曲线阶相对于 N 的余因子。

cid:用一个字节表示的曲线识别符,用以区分所用曲线的类型。

deg(f):多项式 f(x)的次数。

 $d_1, d_2:k$ 的两个因子。

E:定义在有限域上的椭圆曲线。

ECDLP:椭圆曲线离散对数问题。

 $E(F_a)$:有限域 F_a 上椭圆曲线 E 的所有有理点(包括无穷远点 O)组成的集合。

 $E(F_a)[r]$: $E(F_a)$ 上 r-扭点的集合[即曲线 $E(F_a)$ 上的 r 阶扭子群]。

 $e: \mathcal{M} G_1 \times G_2$ 到 G_T 的双线性对。

eid:用一个字节表示的双线性对e的识别符,用以区分所用双线性对的类型。

FDLP:有限域上离散对数问题。

 F_{b} :包含 p 个元素的素域。

 F_a :包含 q 个元素的有限域。

 F_a^* :由 F_a 中所有非零元构成的乘法群。

 F_{q^m} :有限域 F_q 的 m 次扩域。

 G_T : 阶为素数 N 的乘法循环群。

 G_1 : 阶为素数 N 的加法循环群。

 G_2 : 阶为素数 N 的加法循环群。

gcd(x,y):x 和 y 的最大公因子。

k:曲线 $E(F_a)$ 相对于 N 的嵌入次数,其中 N 是 $\sharp E(F_a)$ 的素因子。

m:有限域 F_{am} 关于 F_a 的扩张次数。

mod f(x):模多项式 f(x)的运算。

modn: 模n 运算。

示例:23 mod 7=2。

N:循环群 G_1 、 G_2 和 G_T 的阶,为大于 2^{191} 的素数。

O:椭圆曲线上的一个特殊点,称为无穷远点或零点,是椭圆曲线加法群的单位元。

 $P: P = (x_p, y_p)$ 是椭圆曲线上除 O 之外的一个点,其坐标 x_p, y_p 满足椭圆曲线方程。

 $P_1:G_1$ 的生成元。

 $P_2:G_2$ 的生成元。

P+Q:椭圆曲线 E 上两个点 P 与 Q 的和。

p:大于 2191 的素数。

q:有限域 F_a 中元素的数目。

 x_P :点 P 的 x 坐标。

 $x \parallel y: x = y$ 的拼接,其中 x 和 y 是比特串或字节串。

 $x \equiv y \pmod{q}$: $x \ni y \notin q$ 同余。即, $x \mod q = y \mod q$ 。

 y_P :点 P 的 y 坐标。

 $\sharp E(K): E(K)$ 上点的数目,称为椭圆曲线群 E(K)的阶,其中 K 为有限域(包括 F_q 和 F_{q^k})。 < P > : 由椭圆曲线上点 P 生成的循环群。

[u]P:椭圆曲线上点 P 的 u 倍点。

[x,y]:不小于 x 且不大于 y 的整数的集合。

[x]: 顶函数,不小于 x 的最小整数。例如, [7]=7, [8.3]=9。

[x]:底函数,不大于 x 的最大整数。例如, |7|=7, |8.3|=8。

β:扭曲线参数。

 $\psi:G_2$ 到 G_1 的同态映射,满足 $P_1=\psi(P_2)$ 。

⊕:长度相等的两个比特串按比特的模 2 加运算。

5 有限域和椭圆曲线

5.1 有限域

5.1.1 概述

域由一个非空集合 F 和两种运算共同组成,这两种运算分别为加法(用"+"表示)和乘法(用"•"表示),并且满足下列算术特性:

- a) (F,+)对于加法运算构成加法交换群,单位元用 0表示;
- b) $(F \setminus \{0\}, \bullet)$ 对于乘法运算构成乘法交换群,单位元用 1 表示;
- c) 分配律成立:对于所有的 $a,b,c \in F$,都有 $(a+b) \cdot c = a \cdot c + b \cdot c$ 。

若集合 F 是有限集合,则称域为有限域。有限域的元素个数称为有限域的阶。

5.1.2 素域 F,

阶为素数的有限域是素域。

设 p 是一个素数,则整数模 p 的全体余数的集合 $\{0,1,2,...,p-1\}$ 关于模 p 的加法和乘法构成一个 p 阶素域,用符号 F 。表示。

F。具有如下性质:

- a) 加法单位元是 0;
- b) 乘法单位元是1;
- c) 域元素的加法是整数的模 p 加法,即若 $a,b \in F_b$,则 $a+b=(a+b) \mod p$;
- d) 域元素的乘法是整数的模 p 乘法,即若 $a,b \in F_b$,则 $a \cdot b = (a \cdot b) \mod p$ 。

5.1.3 有限域 F_a 的 m 次扩域 F_{am}

设 q 是一个素数或素数方幂,f(x) 是多项式环 $F_q[x]$ 上的一个 m(m>1) 次不可约多项式(称为约化多项式或域多项式),商环 $F_q[x]/(f(x))$ 是含 q^m 个元素的有限域(记为 F_{q^m}),称 F_{q^m} 是有限域 F_q 的 扩域,域 F_q 为域 F_{q^m} 的子域,m 为扩张次数。 F_{q^m} 可以看成 F_q 上的 m 维向量空间。 F_{q^m} 的每一个元可以唯一地写成 $a_0\beta_0+a_1\beta_1+\cdots+a_{m-1}\beta_{m-1}$ 的形式,其中 $a_i\in F_q$,而 β_0 , β_1 ,…, β_{m-1} 是向量空间 F_{q^m} 在 F_q 上的一组基。

 F_{q^m} 中的元素可以用多项式基或正规基表示。在本部分中,如果不作特别说明, F_{q^m} 中元素均采用多项式基表示。

不可约多项式 f(x)可取为首一的多项式 $f(x)=x^m+f_{m-1}x^{m-1}+\cdots+f_2x^2+f_1x+f_0$ (其中 $f_i\in F_q$ $,i=0,1,\ldots,m-1$), F_{q^m} 中的元素由多项式环 $F_q[x]$ 中所有次数低于 m 的多项式构成。多项式集合 $\{x^{m-1},x^{m-2},\ldots,x,1\}$ 是 F_{q^m} 在 F_q 上的一组基,称为多项式基。域 F_{q^m} 上的任意一个元素 $a(x)=a_{m-1}x^{m-1}+a_{m-2}x^{m-2}+\cdots+a_1x+a_0$ 在 F_q 上的系数恰好构成了一个 m 维向量,用 $a=(a_{m-1},a_{m-2},\ldots,a_1,a_0)$ 表示,其中分量 $a_i\in F_q$, $i=0,1,\ldots,m-1$ 。

 F_{a^m} 具有如下性质:

- a) 零元 0 用 m 维向量(0,...,0,0)表示;
- b) 乘法单位元 1 用 m 维向量(0,...,0,1)表示;
- c) 两个域元素的加法为向量加法,各个分量用域 F_q 的加法;
- d) 域元素 a 和 b 的乘法定义如下:设 a 和 b 对应的 F_a 上多项式为 a(x)和 b(x),则 $a \cdot b$ 定义为

GB/T 38635.1-2020

多项式 $(a(x) \cdot b(x)) \mod f(x)$ 对应的向量;

e) 逆元:设 a 对应的 F_q 上多项式为 a(x), a 的逆元 a^{-1} 对应的 F_q 上多项式为 $a^{-1}(x)$, 那么有 $a(x) \cdot a^{-1}(x) \equiv 1 \mod f(x)$ 。

本部分使用 F。上的 12 次扩域见附录 A。

关于有限域的扩域 F_{q^m} 更多细节,参见附录 B中的 B.1。

5.2 有限域上的椭圆曲线

有限域 $F_{q^m}(m \ge 1)$ 上的椭圆曲线是由点组成的集合。在仿射坐标系下,椭圆曲线上点 P(非无穷远点)用满足一定方程的两个域元素 x_p 和 y_p 表示, x_p , y_p 分别称为点 P 的 x 坐标和 y 坐标,并记 $P = (x_p, y_p)$ 。

本部分描述特征为大素数 p 的域上的曲线。

本部分如果不作特别说明,椭圆曲线上的点均采用仿射坐标表示。

定义在 F_{nm} 上的椭圆曲线方程见式(1):

椭圆曲线 $E(F_{n^m})$ 定义为:

 $E(F_{p^m}) = \{(x,y) | x, y \in F_{p^m}, \text{且满足式}(1)\} \cup \{O\}, \text{其中 } O$ 是无穷远点。

椭圆曲线 $E(F_{p^m})$ 上的点的数目用 $\sharp E(F_{p^m})$ 表示,称为椭圆曲线 $E(F_{p^m})$ 的阶。

本部分规定素数 p>2191。

设 E 和 E'是定义在 F_q 上的椭圆曲线,如果存在一个同构映射 $\phi_d: E'(F_{q^d}) \rightarrow E(F_{q^d})$,其中 d 是使映射存在的最小整数,则称 E'为 E 的 d 次扭曲线。当 $p \geqslant 5$ 时,d 的取值有三种情况:

- a) 若 $a = 0, b \neq 0,$ 那么 $d = 6, E': y^2 = x^3 + \beta b, \phi_6: E' \rightarrow E: (x, y) \mapsto (\beta^{-1/3} x, \beta^{-1/2} y);$
- b) 若 $b = 0, a \neq 0,$ 那么 $d = 4, E' : y^2 = x^3 + \beta ax, \phi_4 : E' \rightarrow E : (x, y) \mapsto (\beta^{-1/2} x, \beta^{-3/4} y) :$
- c) 若 $a \neq 0, b \neq 0,$ 那么 $d = 2, E': y^2 = x^3 + \beta^2 ax + \beta^3 b, \phi_2: E' \rightarrow E: (x, y) \mapsto (\beta^{-1} x, \beta^{-3/2} y)$ 。

5.3 椭圆曲线群

椭圆曲线 $E(F_{b^m})$ $(m \ge 1)$ 上的点按照下面的加法运算规则,构成一个交换群:

- a) $O+O=O_{\circ}$
- b) $\forall P = (x, y) \in E(F_{p^m}) \setminus \{O\}, P + O = O + P = P_{o}$
- c) $\forall P = (x, y) \in E(F_{p^m}) \setminus \{O\}, P$ 的逆元素 $-P = (x, -y), P + (-P) = O_o$
- d) 两个非互逆的不同点相加的规则:

设
$$P_1 = (x_1, y_1) \in E(F_{p^m}) \setminus \{O\}, P_2 = (x_2, y_2) \in E(F_{p^m}) \setminus \{O\}, 且 x_1 \neq x_2,$$

设 $P_3 = (x_3, y_3) = P_1 + P_2$,则:

$$\begin{cases} x_3 = \lambda^2 - x_1 - x_2 \\ y_3 = \lambda (x_1 - x_3) - y_1 \end{cases}$$

其中:

$$\lambda = \frac{y_2 - y_1}{x_2 - x_1} \ .$$

e) 倍点规则:

设 $P_1 = (x_1, y_1) \in E(F_{p^m}) \setminus \{O\}$,且 $y_1 \neq 0$, $P_3 = (x_3, y_3) = P_1 + P_1$,则:

$$\begin{cases} x_3 = \lambda^2 - 2x_1 \\ y_3 = \lambda(x_1 - x_3) - y_1 \end{cases}$$

其中:

$$\lambda = \frac{3x_1^2 + a}{2y_1} \ .$$

5.4 椭圆曲线多倍点运算

椭圆曲线上同一个点的重复相加称为该点的多倍点运算。设 u 是一个正整数,P 是椭圆曲线上的点,其 u 倍点 $Q=[u]P=\underbrace{P+P+\cdots+P}$ 。

多倍点运算可以扩展到 0 倍点运算和负数倍点运算:[0]P = O,[-u]P = [u](-P)。 多倍点运算可以通过一些技巧有效地实现,参见 B.2。

5.5 椭圆曲线子群上点的验证

输入:定义 F_{q^m} 上(q 为奇素数, $m \ge 1$)椭圆曲线方程的参数 a 、b ,椭圆曲线 $E(F_{q^m})$ 上子群 G 的阶 N , F_{q^m} 上的一对元素(x ,y)。

输出: $\Xi(x,y)$ 是群 G 中的元素,则输出"有效";否则输出"无效"。

计算步骤为

- a) 在 $F_{a'''}$ 上验证(x,y)是否满足椭圆曲线方程 $y^2 = x^3 + ax + b$;
- b) $\Leftrightarrow Q = (x, y), \text{ with } N = 0$.

若以上任何一项验证失败,则输出"无效";否则,输出"有效"。

5.6 离散对数问题

5.6.1 有限域上离散对数问题(FDLP)

有限域 $F_{q^m}(q$ 为奇素数, $m \ge 1$)的全体非零元素构成一个乘法循环群,记为 $F_{q^m}^*$ 。 $F_{q^m}^*$ 中存在元素 g,使得 $F_{q^m}^* = \{g^i \mid 0 \le i \le q^m - 2\}$,称 g 为生成元。 $F_{q^m}^*$ 中元素 a 的阶是满足 $a^t = 1$ 的最小正整数 t 。 群 $F_{q^m}^*$ 的阶为 $q^m - 1$,因此 $t \mid q^m - 1$ 。

设乘法循环群 $F_{q^m}^*$ 的生成元为 g , $y \in F_{q^m}^*$, 有限域上离散对数问题是指确定整数 $x \in [0, q^m - 2]$, 使得 $y = g^x$ 在 $F_{q^m}^*$ 上成立。

5.6.2 椭圆曲线离散对数问题(ECDLP)

已知椭圆曲线 $E(F_{q^m})$ $(m \ge 1)$,阶为 n 的点 $P \in E(F_{q^m})$ 及 $Q \in P >$,椭圆曲线离散对数问题是指确定整数 $l \in [0, n-1]$,使得 Q = [l]P 成立。

6 双线性对及安全曲线

6.1 双线性对

设 $(G_1,+)$ 、 $(G_2,+)$ 和 (G_T,\bullet) 是三个循环群 $,G_1$ 、 G_2 和 G_T 的阶均为素数 N,P_1 是 G_1 的生成元 $,P_2$ 是 G_2 的生成元,存在 G_2 到 G_1 的同态映射 ψ 使得 $\psi(P_2)=P_1$ 。

双线性对 e 是 $G_1 \times G_2 \rightarrow G_T$ 的映射,满足以下条件:

- a) 双线性性:对任意的 $P \in G_1, Q \in G_2, a, b \in Z_N, f(a) = e([a]P, [b]Q) = e(P, Q)^{ab};$
- b) 非退化性: $e(P_1, P_2) \neq 1_{G_T}$;
- c) 可计算性:对任意的 $P \in G_1$, $Q \in G_2$, 存在有效的算法计算 e(P,Q).

所用的双线性对定义在椭圆曲线群上,主要有 Weil 对、Tate 对、Ate 对、R-ate 对等,相关描述参见

附录C。

6.2 安全性

双线性对的安全性主要建立在以下几个问题的难解性基础之上:

问题 1 [双线性逆 DH(BIDH)]对 $a,b \in [1,N-1]$,给定($[a]P_1,[b]P_2$),计算 $e(P_1,P_2)^{b/a}$ 是困难的。

问题 2 [判定性双线性逆 DH(DBIDH)]对 a,b, $r \in [1, N-1]$,区分 $(P_1, P_2, [a]P_1, [b]P_2, e(P_1, P_2)^{b/a})$ 和 $(P_1, P_2, [a]P_1, [b]P_2, e(P_1, P_2)^r)$ 是困难的。

问题 3 $[\tau$ -双线性逆 DH $(\tau$ -BDHI)]对正整数 τ 和 $x \in [1, N-1]$,给定 $(P_1, [x]P_1, P_2, [x]P_2, [x]P_$

问题 4 [τ -Gap-双线性逆 DH(τ -Gap-BDHI)]对正整数 τ 和 $x \in [1, N-1]$,给定(P_1 ,[x] P_1 , P_2 , [x] P_2 ,[x] P_2 ,…,[x] P_2 ,…,[x] P_2)和 DBIDH 确定算法,计算 $e(P_1,P_2)^{1/x}$ 是困难的。

上述问题的难解性是 SM9 标识密码的安全性的重要基础,这些问题的难解性都意味着 G_1 、 G_2 和 G_T 上的离散对数问题难解,选取的椭圆曲线应首先使得离散对数问题难解。

6.3 嵌入次数及安全曲线

设 G 是椭圆曲线 $E(F_q)$ 的 N 阶子群,使 $N|q^k-1$ 成立的最小正整数 k 称为子群 G 相对于 N 的嵌入次数,也称为曲线 $E(F_q)$ 相对于 N 的嵌入次数。

设 G_1 是 $E(F_{qd_1})(d_1$ 整除 k)的 N 阶子群, G_2 是 $E(F_{q^{d_2}})(d_2$ 整除 k)的 N 阶子群,则椭圆曲线双线性对的值域 G_T 是 $F_{q^k}^*$ 的子群,因此椭圆曲线双线性对可将椭圆曲线离散对数问题转化为有限域 $F_{q^k}^*$ 上离散对数问题。嵌入次数越大安全性越高,但双线性对的计算越困难,因而需要采用嵌入次数适中且达到安全性标准的椭圆曲线。本部分规定 $q^k > 2^{1.536}$ 。

本部分规定选用如下的曲线:

- a) 基域 q 为大于 2^{191} 的素数、嵌入次数 $k = 2^{i}3^{j}$ 的常曲线,其中 $i > 0, j \ge 0$;
- b) 基域 q 为大于 2^{768} 的素数、嵌入次数 k=2 的超奇异曲线。

对小于 2^{360} 的 N,建议:

- a) N-1 含有大于 2^{190} 的素因子;
- b) N+1 含有大于 2^{120} 的素因子。

7 数据类型及其转换

7.1 数据类型

本部分规定的数据类型包括比特串、字节串、域元素、椭圆曲线上的点和整数。

比特串:有序的0和1的序列。

字节串:有序的字节序列,其中8比特为1个字节,最左边的比特为最高位。

域元素:有限域 $F_{a^m}(m \ge 1)$ 中的元素。

椭圆曲线上的点: 椭圆曲线 $E(F_{q^m})(m \ge 1)$ 上的点 P 或者是无穷远点 O,或者是一对域元素 (x_p, y_p) ,其中域元素 x_p 和 y_p 满足椭圆曲线方程。

点的字节串表示有多种形式,用一个字节 PC 加以标识。无穷远点 O 的字节串表示是单一的零字节 PC=00。非无穷远点 $P=(x_p,y_p)$ 有以下三种字节串表示形式:

- a) 压缩表示形式,PC=02或03;
- b) 未压缩表示形式, PC=04;

- c) 混合表示形式, PC=06 或 07。
- **注**:混合表示形式既包含压缩表示形式又包含未压缩表示形式。在实现中,它允许转换到压缩表示形式或者未压缩表示形式。对于椭圆曲线上点的压缩表示形式和混合表示形式,本部分定为可选形式。椭圆曲线上点的压缩表示形式参见 B.4。

7.2 数据类型转换

7.2.1 数据类型转换关系

图 1 表示了各种数据类型之间的转换关系,线上的标志是相应数据转换方法所在的条号。

图 1 数据类型和转换约定示意图

7.2.2 整数到字节串的转换

输入:非负整数 x,以及字节串的目标长度 l(其中 l 满足 $2^{8l} > x$)。 **输出:**长度为 l 的字节串 M。

计算步骤为:

- a) 设 M_{l-1} , M_{l-2} ,..., M_0 是M从最左边到最右边的字节;
- b) M 的字节满足:

$$x = \sum_{i=0}^{l-1} 2^{8i} M_i$$
 .

7.2.3 字节串到整数的转换

输入:长度为l的字节串M。

输出:整数 x。

计算步骤为:

- a) 设 M_{l-1} , M_{l-2} ,..., M_0 是M从最左边到最右边的字节;
- b) 将M转换为整数x:

$$x = \sum_{i=0}^{l-1} 2^{8i} M_i$$
 .

7.2.4 比特串到字节串的转换

输入:长度为 n 的比特串 s。

GB/T 38635.1-2020

输出:长度为 l 的字节串 M,其中 $l = \lceil n/8 \rceil$ 。

计算步骤为:

- a) 设 s_{n-1} , s_{n-2} , ..., s_0 是 s 从最左边到最右边的比特;
- b) 设 M_{l-1} , M_{l-2} , ..., M_0 是 M 从最左边到最右边的字节,则: $M_i = s_{8i+7} s_{8i+6} \cdots s_{8i+1} s_{8i}$,其中 $0 \le i < l$, 当 $8i+j \ge n$, $0 < j \le 7$ 时, $s_{8i+j} = 0$.

7.2.5 字节串到比特串的转换

输入:长度为l的字节串M。

输出:长度为n的比特串s,其中n=8l。

计算步骤为:

- a) 设 M_{l-1} , M_{l-2} ,..., M_0 是M从最左边到最右边的字节;
- b) 设 s_{n-1} , s_{n-2} , ..., s_0 是 s 从最左边到最右边的比特,则 s_i 是 M_j 右起第 i-8j+1 比特,其中 $j=\lfloor i/8 \rfloor_0$

7.2.6 域元素到字节串的转换

输入: $F_{a^m}(m \ge 1)$ 中的元素 $\alpha = (a_{m-1}, a_{m-2}, ..., a_1, a_0), q = p$ 。

输出:长度 l 的字节串 S,其中 $l = \lceil \log_2 q/8 \rceil \times m$ 。

计算步骤为:

- a) 若 m=1,则 $\alpha=a_0(q=p)$, α 必为区间[0,q-1]中的整数,按 7.2.2 的细节把 α 转换成长度为 l 的字节串 S;
- b) 若 m > 1,则 $\alpha = (a_{m-1}, a_{m-2}, ..., a_1, a_0)$ (q = p),其中 $a_i \in F_q$, i = 0, 1, ..., m-1;
 - 1) $r = \lceil \log_2 a/8 \rceil$:
 - 2) 对 i 从 m-1 到 0 执行: 按 7.2.2 的细节把 $a_i(q=p)$ 转换成长度为 r 的字节串 s_i ;
 - 3) $S = s_{m-1} \| s_{m-2} \| \cdots \| s_0$

7.2.7 字节串到域元素的转换

情形 1:转换为基域中元素

输入:域 F_q ,q=p,长度为l的字节串S, $l=\lceil \log_2 q/8 \rceil$ 。

输出: F_a 中的元素 α 。

若 q=p,则按 7.2.3 的细节将 S 转换为整数 α,若 α \notin [0,q-1],则报错。

情形 2:转换为扩域中元素

输入:域 $F_{q^m}(m \ge 2)$,q = p,长度为l的字节串S,其中 $l = \lceil \log_2 q/8 \rceil \times m$ 。

输出: F_{q^m} 中的元素 α 。

计算步骤为:

- a) 将字节串 S 平均分成 m 段,每段长度为 l/m,记作 $S = (S_{m-1}, S_{m-2}, ..., S_1, S_0)$;
- b) 对 i 从 m-1 到 0 执行: 按 7.2.3 的细节将 S_i 转换为整数 a_i ,若 $a_i \notin [0,q-1]$,则报错;
- c) 若 q = p,输出 $\alpha = (a_{m-1}, a_{m-2}, ..., a_1, a_0)$ 。

7.2.8 点到字节串的转换

点到字节串的转换分为两种情形:一种是在计算过程中,将椭圆曲线点转换为字节串后才能作为某个函数(如杂凑函数)的输入,这种情况下只需直接将点转换为字节串;一种是在传输或存储椭圆曲线点

时,为了减少传输的量或存储空间,可采用点的压缩或混合压缩表示形式,这种情况下需要加入一个字节的识别符 *PC* 来指示点的表示形式。下面分两种情况说明详细的转换过程。

情形 1:直接转换

输入:椭圆曲线 $E(F_{q^m})(m \ge 1)$ 上的点 $P = (x_p, y_p)$,且 $P \ne O$ 。

输出:长度为 2l 的字节串 $X_1 \parallel Y_1$ 。(当 m=1 时, $l=\lceil \log_2 q/8 \rceil$;当 m>1 时, $l=\lceil \log_2 q/8 \rceil \times m$ 。) 计算步骤为:

- a) 按 7.2.6 中的细节把域元素 x_p 转换成长度为 l 的字节串 X_1 ;
- b) 按 7.2.6 中的细节把域元素 y_p 转换成长度为 l 的字节串 Y_1 ;
- c) 输出字节串 X₁ || Y₁。

情形 2:添加一字节识别符 PC 的转换

输入:椭圆曲线 $E(F_{q^m})(m \ge 1)$ 上的点 $P = (x_P, y_P)$,且 $P \ne O$ 。

输出:字节串 PO。若选用未压缩表示形式或混合表示形式,则输出字节串长度为 2l+1;若选用压缩表示形式,则输出字节串长度为 l+1。(当 m=1 时, $l=\lceil \log_2 q/8 \rceil$;当 m>1 时, $l=\lceil \log_2 q/8 \rceil$ ×m)。

计算步骤为:

- a) 按 7.2.6 中的细节把域元素 x_p 转换成长度为 l 的字节串 X_1 。
- b) 若选用压缩表示形式,则:
 - 1) 计算比特 γ_n (参见 B.4);
 - 2) 若 $_{y_n}^{\sim} = 0$,则令PC = 02;若 $_{y_n}^{\sim} = 1$,则令PC = 03;
 - 3) 字节串 *PO=PC* || *X*₁。
- c) 若选用未压缩表示形式,则:
 - 1) 按 7.2.6 的细节把域元素 y_p 转换成长度为 l 的字节串 Y_1 ;
 - 2) $\Rightarrow PC = 04$;
 - 3) 字节串 PO=PC || X₁ || Y₁。
- d) 若选用混合表示形式,则:
 - 1) 按 7.2.6 的细节把域元素 y_p 转换成长度为 l 的字节串 Y_1 ;
 - 2) 计算比特 \hat{y}_{p} (参见 B.4);
 - 3) $\ddot{z}_{y_p} = 0$, $\dot{y}_p = 0$, $\dot{y}_p = 0$, $\dot{y}_p = 0$, $\dot{y}_p = 1$, $\dot{y}_p = 0$,
 - 4) 字节串 *PO=PC* || *X*₁ || *Y*₁。

7.2.9 字节串到点的转换

字节串到点的转换是 7.2.8 的逆过程。下面也分两种情况加以说明。

情形 1:直接转换

输入:定义 $F_{q^m}(m \ge 1)$ 上椭圆曲线的域元素 $a \ b$,长度为 2l 的字节串 $X_1 \parallel Y_1, X_1 \ Y_1$ 的长度均为 l (当 m=1 时, $l=\lceil \log_2 q/8 \rceil$; 当 $m \ge 1$ 时, $l=\lceil \log_2 q/8 \rceil \times m$)。

输出:椭圆曲线上的点 $P = (x_p, y_p)$,且 $P \neq O$ 。

计算步骤为:

- a) 按 7.2.7 的细节把字节串 X_1 转换成域元素 x_p ;
- b) 按 7.2.7 的细节把字节串 Y_1 转换成域元素 y_n 。

情形 2:包含一字节识别符 PC 的字节串的转换

输入:定义 F_{q^m} ($m \ge 1$)上椭圆曲线的域元素 $a \ , b$,字节串 PO。若选用未压缩表示形式或混合表示形式,则字节串 PO 长度为 2l+1;若选用压缩表示形式,则字节串 PO 长度为 l+1(当 m=1 时, $l=\lceil \log_2 q/8 \rceil$;当 m>1 时, $l=\lceil \log_2 q/8 \rceil \times m$)。

GB/T 38635.1-2020

输出:椭圆曲线上的点 $P = (x_p, y_p)$,且 $P \neq O$ 。

计算步骤为:

- a) 若选用压缩表示形式,则 $PO = PC \parallel X_1$;若选用未压缩表示形式或混合表示形式,则 $PO = PC \parallel X_1 \parallel Y_1$,其中 PC 是单一字节, X_1 和 Y_1 都是长度为 l 的字节串。
- b) 按 7.2.7 的细节把字节串 X_1 转换成域元素 x_p 。
- c) 若选用压缩表示形式,则:
 - 1) 检验 PC=02 或者是 PC=03,若不是这种情形,则报错;
 - 2) $\ddot{A} PC = 02$, $\dot{M} \Rightarrow \dot{v}_{p} = 0$; $\ddot{A} PC = 03$, $\dot{M} \Rightarrow \dot{v}_{p} = 1$;
 - 3) 将 (x_p, y_p) 转换为椭圆曲线上的一个点 (x_p, y_p) (参见 B.4)。
- d) 若选用未压缩表示形式,则:
 - 1) 检验 PC=04, 若不是这种情形,则报错;
 - 2) 按 7.2.7 的细节把字节串 Y₁转换成域元素 y_p。
- e) 若选用混合表示形式,则:
 - 1) 检验 PC=06 或者 PC=07,若不是这种情形,则报错;
 - 2) 执行以下步骤:
 - 按 7.2.7 的细节把字节串 Y_1 转换成域元素 y_p ;
 - $\stackrel{\leftarrow}{R}$ PC = 06, $\mathbb{N} \diamondsuit \stackrel{\sim}{y_p} = 0$, $\mathbb{N} \diamondsuit \stackrel{\sim}{y_p} = 1$;

将 $(x_p, \stackrel{\sim}{y_p})$ 转换为椭圆曲线上的一个点 (x_p, y_p) (参见 B.4)。

- f) 验证(xp,yp)是否满足曲线方程,若不满足,则报错。
- g) $P = (x_p, y_p)_{\circ}$

8 系统参数及其验证

8.1 系统参数

系统参数包括:

- a) 曲线的识别符 cid,用一个字节表示:0x10 表示 F_q (素数 q>3)上常曲线,0x11 表示 F_q 上超奇 异曲线,0x12 表示 F_q 上常曲线及其扭曲线。
- b) 椭圆曲线基域 F_a 的参数:基域参数为大于 3的素数 q。
- c) F_q 中的两个元素 a 和 b,它们定义椭圆曲线 E 的方程: $y^2 = x^3 + ax + b$; 扭曲线参数 β (若 cid 的低 4 位为 2)。
- d) 余因子 cf 和素数 N,其中 $cf \times N = \#E(F_q)$, $N > 2^{191}$ 且 N 不整除 cf,如果 N 小于 2^{360} ,建议 N-1 含有大于 2^{190} 的素因子,N+1 含有大于 2^{120} 的素因子。
- e) 曲线 $E(F_q)$ 相对于 N 的嵌入次数 k (N 阶循环群(G_T , •) $\subset F_{qk}^*$),规定 $q^k > 2^{1536}$ 。
- f) N 阶循环群 $(G_1,+)$ 的生成元 $P_1 = (x_{P_1}, y_{P_1}), P_1 \neq O_0$
- g) N 阶循环群 $(G_2,+)$ 的生成元 $P_2=(x_{P_2},y_{P_2}), P_2\neq O$ 。
- h) 双线性对用一个字节的识别符 *eid* 表示:0x01 表示 Tate 对,0x02 表示 Weil 对,0x03 表示 Ate 对,0x04 表示 R-ate 对。本部分采用 R-ate 对。
- i) (选项)参数 $d_1, d_2,$ 其中 d_1, d_2 整除 k 。
- j) (选项) G_2 到 G_1 的同态映射 ψ ,使得 $P_1 = \psi(P_2)$ 。
- k) (选项)BN 曲线的基域特征 q,曲线阶 r,Frobenius 映射的迹 tr 可通过参数 t 来确定,t 至少达到 63 比特。

具体参数,见附录 A。

8.2 系统参数的验证

下面的条件应由系统参数的生成者加以验证。这些条件也能由系统参数的用户验证。

输入:系统参数集合。

输出: 若所有参数有效,则输出"有效"; 否则输出"无效"。

计算步骤为:

- a) 验证 q 是大于 3 的素数(参见附录 D 中的 D.1.5);
- b) 验证 a,b 是区间[0,q-1]中的整数;
- c) 验证在 F_q 上 $4a^3 + 27b^2 \neq 0$;若 cid 的低 4 位为 2,验证 β 是非平方元(参见 D.1.4.3.1);
- d) 验证 N 为大于 2^{191} 的素数且 N 不整除 cf,如果 N 小于 2^{360} ,验证 N-1 含有大于 2^{190} 的素因子,N+1 含有大于 2^{120} 的素因子;
- e) 验证 $|q+1-cf \times N| < 2q^{1/2}$;
- f) 验证 $q^k > 2^{1.536}$,且 k 为使 $N | (q^m 1)$ 成立的最小正整数 m;
- g) 验证 (x_{P_1}, y_{P_1}) 是群 G_1 中的元素;
- h) 验证 (x_{P_2}, y_{P_2}) 是群 G_2 中的元素;
- i) 验证 $e(P_1, P_2) \in F_{q^k}^* \setminus \{1\},$ 且 $e(P_1, P_2)^N = 1$;
- j) (选项)验证 d_1, d_2 整除 k;
- k) (选项)验证 $P_1 = \psi(P_2)$;
- 1) (选项)验证 t 至少达到 63 比特。

若以上任何一项验证失败,则输出"无效";否则,输出"有效"。

附 录 A (规范性附录) 参数定义

A.1 系统参数

本部分使用 256 位的 BN 曲线。

椭圆曲线方程: $y^2 = x^3 + b$ 。

曲线参数:

参数 t:60000000 0058F98A

遊 $tr(t) = 6t^2 + 1$:D8000000 019062ED 0000B98B 0CB27659

基域特征 $q(t) = 36t^4 + 36t^3 + 24t^2 + 6t + 1$:

 $B6400000\ 02A3A6F1\ D603AB4F\ F58EC745\ 21F2934B\ 1A7AEEDB\ E56F9B27\ E351457D$

方程参数 b:05

群的阶 $N(t) = 36t^4 + 36t^3 + 18t^2 + 6t + 1$:

B6400000 02A3A6F1 D603AB4F F58EC744 49F2934B 18EA8BEE E56EE19C D69ECF25

余因子 cf:1

嵌入次数 k:12

扭曲线的参数 β : $\sqrt{-2}$

k 的因子 $d_1 = 1, d_2 = 2$

曲线识别符 cid:0x12

群 G_1 的生成元 $P_1 = (x_{P_1}, y_{P_1})$:

坐标 x_{P_1} :93DE051D 62BF718F F5ED0704 487D01D6 E1E40869 09DC3280 E8C4E481 7C66DDDD

坐标 y_{P_1} :21FE8DDA 4F21E607 63106512 5C395BBC 1C1C00CB FA602435 0C464CD7 0A3EA616

群 G_2 的生成元 $P_2 = (x_{P_2}, y_{P_2})$:

坐标 x_{P_0} :(85AEF3D0 78640C98 597B6027 B441A01F F1DD2C19 0F5E93C4 54806C11 D8806141,

37227552 92130B08 D2AAB97F D34EC120 EE265948 D19C17AB F9B7213B AF82D65B)

坐标 y_{P_0} : (17509B09 2E845C12 66BA0D26 2CBEE6ED 0736A96F A347C8BD 856DC76B 84EBEB96 ,

A7CF28D5 19BE3DA6 5F317015 3D278FF2 47EFBA98 A71A0811 6215BBA5 C999A7C7) 双线性对的识别符 *eid*:0x04

A.2 扩域元素的表示

 F_{g12} 的 1-2-4-12 塔式扩张:

$$(1)F_{q^2}[u]=F_q[u]/(u^2-\alpha),\alpha=-2$$

$$(2)F_{a^4}\lceil v\rceil = F_{a^2}\lceil v\rceil/(v^2-\xi), \xi=u$$

$$(3)F_{q^{12}}[w]=F_{q^4}[w]/(w^3-v), v^2=\xi$$

其中:

第(1)进行二次扩张的约化多项式为: $x^2 - \alpha$, $\alpha = -2$;

第(2)进行二次扩张的约化多项式为: $x^2 - u$, $u^2 = \alpha$, $u = \sqrt{-2}$;

第(3)进行三次扩张的约化多项式为: $x^3 - v$, $v^2 = u$, $v = \sqrt{\sqrt{-2}}$:

u 属于 F_{a^2} ,表示为(1,0),左边是第 1 维(高维),右边是第 0 维(低维)。

v 属于 F_{q^4} ,表示为(0,1,0,0),其中左边(0,1)是 F_{q^4} 中元素以 F_{q^2} 表示的第 1 维(高维),右边(0,0) 是 F_{q^4} 中元素以 F_{q^2} 表示的第 0 维(低维)。

 $F_{a^{12}}$ 中元素有三种表示方法:

a) F_{g12} 中元素 A用 F_{g4} 中元素表示:

$$A = aw^2 + bw + c = (a,b,c)$$

a,b,c 用 F_{q^2} 中元素表示:

$$a = a_1 v + a_0 = (a_1, a_0)$$

 $b = b_1 v + b_0 = (b_1, b_0)$
 $c = c_1 v + c_0 = (c_1, c_0)$

其中: $a_1, a_0, b_1, b_0, c_1, c_0 \in F_{q^2}$ 。

b) $F_{a^{12}}$ 中元素 A 用 F_{a^2} 中的元素表示:

$$A = (a_1, a_0, b_1, b_0, c_1, c_0)$$

 $a_1, a_0, b_1, b_0, c_1, c_0$ 用基域 F_a 中的元素表示:

$$a_{0} = a_{0,1}u + a_{0,0} = (a_{0,1}, a_{0,0})$$

$$a_{1} = a_{1,1}u + a_{1,0} = (a_{1,1}, a_{1,0})$$

$$b_{0} = b_{0,1}u + b_{0,0} = (b_{0,1}, b_{0,0})$$

$$b_{1} = b_{1,1}u + b_{1,0} = (b_{1,1}, b_{1,0})$$

$$c_{0} = c_{0,1}u + c_{0,0} = (c_{0,1}, c_{0,0})$$

$$c_{1} = c_{1,1}u + c_{1,0} = (c_{1,1}, c_{1,0})$$

其中: $a_{0,1}$, $a_{0,0}$, $a_{1,1}$, $a_{1,0}$, $b_{0,1}$, $b_{0,0}$, $b_{1,1}$, $b_{1,0}$, $c_{0,1}$, $c_{0,0}$, $c_{1,1}$, $c_{1,0}$ $\in F_q$ 。

 $c)F_{a^{12}}$ 中元素 A 用基域 F_a 中的元素表示:

$$A = (a_{0,1}, a_{0,0}, a_{1,1}, a_{1,0}, b_{0,1}, b_{0,0}, b_{1,1}, b_{1,0}, c_{0,1}, c_{0,0}, c_{1,1}, c_{1,0})$$

其中: $a_{0,1}$, $a_{0,0}$, $a_{1,1}$, $a_{1,0}$, $b_{0,1}$, $b_{0,0}$, $b_{1,1}$, $b_{1,0}$, $c_{0,1}$, $c_{0,0}$, $c_{1,1}$, $c_{1,0}$ $\in F_q$ 。

 F_{g^2} 中单位元的表示为(0,1)。

 F_{g^4} 中单位元的表示为(0,0,0,1)。

 F_{g12} 中单位元的表示为(0,0,0,0,0,0,0,0,0,0,0,0,0)。

各种扩域中分量序为:左边是高维,右边是低维。

示例数据中,扩域中的元素均用基域中的元素表示。

附 录 B (资料性附录) 关于椭圆曲线的背景知识

B.1 有限域

B.1.1 素域 F,

设 p 是一个素数,整数模 p 的全体余数的集合 $\{0,1,2,...,p-1\}$ 关于模 p 的加法和乘法构成一个 p 阶素域,用符号 F_p 表示。加法单位元是 0,乘法单位元是 1, F_p 的元素满足如下运算法则:

- 一加法:设 $a,b \in F_b$,则a+b=r,其中 $r=(a+b) \mod p$, $r \in [0,p-1]$ 。
- ——乘法:设 $a,b \in F_p$,则 $a \cdot b = s$,其中 $s = (a \cdot b) \mod p$, $s \in [0,p-1]$ 。

记 F_p^* 是由 F_p 中所有非零元构成的乘法群,由于 F_p^* 是循环群,所以在 F_p 中至少存在一个元素 g,使得 F_p 中任一非零元都可以由 g 的一个方幂表示,称 g 为 F_p^* 的生成元(或本原元),即 $F_p^* = \{g^i \mid 0 \le i \le p-2\}$ 。设 $a = g^i \in F_p^*$,其中 $0 \le i \le p-2$,则 a 的乘法逆元为: $a^{-1} = g^{p-1-i}$ 。

示例:素域 F_{19} , $F_{19} = \{0,1,2,\ldots,18\}$ 。

 F_{19} 中加法的示例: $10,14 \in F_{19},10+14=24,24 \mod 19=5$,则 10+14=5。

 F_{19} 中乘法的示例:7,8 \in F_{19} ,7 \times 8=56,56 mod 19 =18,则 7 • 8=18。

13 是 F_{19}^* 的一个生成元,则 F_{19}^* 中元素可由 13 的方幂表示出来:

 $13^{0} = 1, 13^{1} = 13, 13^{2} = 17, 13^{3} = 12, 13^{4} = 4, 13^{5} = 14, 13^{6} = 11, 13^{7} = 10, 13^{8} = 16, 13^{9} = 18,$

 $13^{10} = 6, 13^{11} = 2, 13^{12} = 7, 13^{13} = 15, 13^{14} = 5, 13^{15} = 8, 13^{16} = 9, 13^{17} = 3, 13^{18} = 1$

B.1.2 有限域 F_q^m

设 q 是一个素数或素数方幂,f(x)是多项式环 $F_q[x]$ 上的一个 m(m>1)次不可约多项式(称为约化多项式或域多项式),商环 $F_q[x]/(f(x))$ 是含 q^m 个元素的有限域(记为 F_{q^m}),称 F_{q^m} 是有限域 F_q 的 扩域,域 F_q 为域 F_{q^m} 的子域,m 为扩张次数。 F_{q^m} 可以看成 F_q 上的 m 维向量空间,也就是说,在 F_{q^m} 中存在 m 个元素 α_0 , α_1 ,…, α_{m-1} ,使得 $\forall a \in F_{q^m}$, α 可以唯一表示为: $a = a_{m-1}\alpha_{m-1} + \cdots + a_1\alpha_1 + a_0\alpha_0$,其中 $a_i \in F_q$,称 $\{\alpha_{m-1}, \ldots, \alpha_1, \alpha_0\}$ 为 F_{q^m} 在 F_q 上的一组基。给定这样一组基,就可以由向量 $\{a_{m-1}, a_{m-2}, \ldots, a_1, a_0\}$ 来表示域元素 a。

 F_{am} 在 F_a 上的基有多种选择:多项式基和正规基等。

不可约多项式 f(x)可取为首一的多项式 $f(x)=x^m+f_{m-1}x^{m-1}+\cdots+f_2x^2+f_1x+f_0$ (其中 $f_i\in F_q$ $,i=0,1,\cdots,m-1$) $,F_{q^m}$ 中的元素由多项式环 $F_q[x]$ 中所有次数低于 m 的多项式构成,即 $F_{q^m}=\{a_{m-1}x^{m-1}+a_{m-2}x^{m-2}+\cdots+a_1x+a_0\,|\,a_i\in F_q$ $,i=0,1,\ldots,m-1\}$ 。多项式集合 $\{x^{m-1},x^{m-2},\cdots,x,1\}$ 是 F_{q^m} 作为向量空间在 F_q 上的一组基,称为多项式基。当 m 含有因子 d(1< d< m) 时, F_{q^m} 可以由 F_{q^d} 扩张生成,从 $F_{q^d}[x]$ 中选取一个合适的 m/d 次不可约多项式作为 F_{q^m} 在 F_{q^d} 上的约化多项式, F_{q^m} 可以由塔式扩张方法 (towering method) 得到,这种扩张的基本形式仍是由 F_q 中元素组成的向量。例如当 m=6 时,可以先由 F_q 经过 3 次扩张得扩域 F_{q^3} ,再由 F_{q^3} 经过 2 次扩张得到扩域 F_{q^6} ;也可以先由 F_q 经过 2 次扩张得扩域 F_{q^2} ,再由 F_{q^2} 经过 3 次扩张得到扩域 F_{q^6} 。

 F_{q^m} 在 F_q 上形如 $\{\beta,\beta^q,\beta^{q^2},\dots,\beta^{q^{m-1}}\}$ 的一组基称为正规基,其中 $\beta\in F_{q^m}$ 。 $\forall a\in F_{q^m}$,a 可以唯一表示为: $a=a_0\beta+a_1\beta^q+\dots+a_{m-1}\beta^{q^{m-1}}$,其中 $a_i\in F_q$, $i=0,1,\dots,m-1$ 。对于任意有限域 F_q 及其扩域 F_{q^m} ,这样的基总是存在的。

如果不作特别说明, F 。 中元素均采用多项式基表示。

域元素 $a_{m-1}x^{m-1}+a_{m-2}x^{m-2}+\cdots+a_1x+a_0$ 相对于多项式基可以由向量 $(a_{m-1},a_{m-2},\cdots,a_1,a_0)$ 表示,所以 $F_{q^m}=\{(a_{m-1},a_{m-2},\cdots,a_1,a_0)|a_i\in F_q,i=0,1,\cdots,m-1\}$ 。

乘法单位元 1 由 $(0,\dots,0,1)$ 表示,零元由 $(0,\dots,0,0)$ 表示。域元素的加法和乘法定义如下:

- 一一加法运算: $\forall (a_{m-1}, a_{m-2}, \dots, a_1, a_0), (b_{m-1}, b_{m-2}, \dots, b_1, b_0) \in F_{q^m}, 则(a_{m-1}, a_{m-2}, \dots, a_1, a_0)$ + $(b_{m-1}, b_{m-2}, \dots, b_1, b_0) = (c_{m-1}, c_{m-2}, \dots, c_1, c_0),$ 其中 $c_i = a_i + b_i \in F_q, i = 0, 1, \dots, m-1,$ 即加法运算按分量执行域 F_q 的加法运算。
- 一乘法运算:∀ $(a_{m-1},a_{m-2},\cdots,a_1,a_0)$, $(b_{m-1},b_{m-2},\cdots,b_1,b_0)$ ∈ F_{q^m} ,则 $(a_{m-1},a_{m-2},\cdots,a_1,a_0)$ • $(b_{m-1},b_{m-2},\cdots,b_1,b_0)$ = $(r_{m-1},r_{m-2},\cdots,r_1,r_0)$,其中多项式 $(r_{m-1}x^{m-1}+r_{m-2}x^{m-2}+\cdots+r_1x+r_0)$ 是 $(a_{m-1}x^{m-1}+a_{m-2}x^{m-2}+\cdots+a_1x+a_0)$ • $(b_{m-1}x^{m-1}+b_{m-2}x^{m-2}+\cdots+b_1x+b_0)$ 在 $F_q[x]$ 中模f(x)的余式。

 F_{q^m} 恰包含 q^m 个元素。记 $F_{q^m}^*$ 是由 F_{q^m} 中所有非零元构成的乘法群, $F_{q^m}^*$ 是循环群,在 F_{q^m} 中至少存在一个元素g,使得 F_{q^m} 中任一非零元都可以由g的一个方幂表示,称g为 $F_{q^m}^*$ 的生成元(或本原元),即: $F_{q^m}^* = \{g^i \mid 0 \leqslant i \leqslant q^m - 2\}$ 。设 $a = g^i \in F_{q^m}^*$,其中 $0 \leqslant i \leqslant q^m - 2$,则a的乘法逆元为: $a^{-1} = g^{q^m - 1 - i}$ 。

示例: F_{32} 的多项式基表示

取 F_3 上的一个不可约多项式 $f(x)=x^2+1$,则 F_{33} 中的元素是:

$$(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)$$

加法:(2,1)+(2,0)=(1,1)

乘法: $(2,1) \cdot (2,0) = (2,2)$

$$(2x+1) \cdot 2x = 4x^{2} + 2x$$

$$= x^{2} + 2x$$

$$= 2x + 2 \pmod{f(x)}$$

即 2x+2 是 $(2x+1) \cdot 2x$ 除以 f(x)的余式。

乘法单位元是(0,1), $\alpha=x+1$ 是 F_{3}^{*} 的一个生成元,则 α 的方幂为:

$$\alpha^{0} = (0,1), \alpha^{1} = (1,1), \alpha^{2} = (2,0), \alpha^{3} = (2,1), \alpha^{4} = (0,2), \alpha^{5} = (2,2), \alpha^{6} = (1,0), \alpha^{7} = (1,2), \alpha^{8} = (0,1), \alpha^{1} = (0,1), \alpha^{1} = (0,1), \alpha^{2} = (0,1), \alpha^{3} = (0,1), \alpha^{4} = (0,1), \alpha^{5} = (0,1), \alpha^{5$$

B.1.3 有限域上的椭圆曲线

B.1.3.1 概述

有限域上椭圆曲线常用的表示形式有两种: 仿射坐标表示和射影坐标表示。

B.1.3.2 仿射坐标表示

设 p 是大于 3 的素数, $F_{p'''}$ 上椭圆曲线方程在仿射坐标系下可以简化为 $y^2 = x^3 + ax + b$,其中 a,b $\in F_{p'''}$,且使得 $4a^3 + 27b^2 \neq 0$ 。 椭圆曲线上的点集记为 $E(F_{p'''}) = \{(x,y) | x,y \in F_{p'''}, \text{且满足曲线方程 } y^2 = x^3 + ax + b\} \bigcup \{O\}$,其中 O 是椭圆曲线的无穷远点,又称为零点。

 $E(F_{p^m})$ $(m \ge 1)$ 上的点按照下面的加法运算规则,构成一个交换群:

- a) O+O=O;
- b) $\forall P = (x, y) \in E(F_{p^m}) \setminus \{O\}, P + O = O + P = P;$
- c) $\forall P = (x, y) \in E(F_{p^m}) \setminus \{O\}, P$ 的逆元素-P = (x, -y), P + (-P) = O;

$$\begin{cases} x_3 = \lambda^2 - x_1 - x_2, \\ y_3 = \lambda(x_1 - x_3) - y_1 \end{cases}$$

其中:

示例:有限域 F_{19} 上一条椭圆曲线

 F_{19} 上方程: $y^2 = x^3 + x + 1$,其中 a = 1, b = 1。则 F_{19} 上曲线的点为:

(0,1),(0,18),(2,7),(2,12),(5,6),(5,13),(7,3),(7,16),(9,6),(9,13),(10,2),(10,17),(13,8),(13,11), (14.2),(14.17),(15,3),(15,16),(16,3),(16,16)

则 $E(F_{19})$ 有 21 个点(包括无穷远点 O)。

a) 取 $P_1 = (10,2), P_2 = (9,6),$ 计算 $P_3 = P_1 + P_2$:

$$\lambda = \frac{y_2 - y_1}{x_2 - x_1} = \frac{6 - 2}{9 - 10} = \frac{4}{-1} = -4 \equiv 15 \pmod{19},$$

$$x_3 = 15^2 - 10 - 9 = 225 - 10 - 9 = 16 - 10 - 9 = -3 = 16 \pmod{19}$$

$$y_3 = 15 \times (10 - 16) - 2 = 15 \times (-6) - 2 = 3 \pmod{19}$$

所以 $P_3 = (16,3)$ 。

b) 取 $P_1 = (10,2)$, 计算[2] P_1 :

$$\lambda = \frac{3x_1^2 + a}{2y_1} = \frac{3 \times 10^2 + 1}{2 \times 2} = \frac{3 \times 5 + 1}{4} = \frac{16}{4} = 4 \pmod{19},$$

$$x_3 = 4^2 - 10 - 10 = -4 \equiv 15 \pmod{19}$$
,

$$y_3 = 4 \times (10 - 15) - 2 = -22 \equiv 16 \pmod{19}$$
,

所以 $[2]P_1 = (15,16)$ 。

B.1.3.3 射影坐标表示

设 p 是大于 3 的素数, F_{p^m} 上椭圆曲线方程在标准射影坐标系下可以简化为 $y^2z=x^3+axz^2+bz^3$,其中 a,b \in F_{p^m} ,且 $4a^3+27b^2\neq 0$ 。椭圆曲线上的点集记为 $E(F_{p^m})=\{(x,y,z)|x,y,z\in F_{p^m}$ 且 满足曲线方程 $y^2z=x^3+axz^2+bz^3\}$ 。对于 (x_1,y_1,z_1) 和 (x_2,y_2,z_2) ,若存在某个 u \in F_{p^m} 且 $u\neq 0$,使得: $x_1=ux_2$, $y_1=uy_2$, $z_1=uz_2$,则称这两个三元组等价,表示同一个点。

若 $z\neq 0$,记 X=x/z,Y=y/z,则可从标准射影坐标表示转化为仿射坐标表示 : $Y^2=X^3+aX+b$; 若 z=0,(0,1,0)对应的仿射坐标系下的点即无穷远点 O。

标准射影坐标系下, $E(F_{sm})$ 上点的加法运算定义如下:

- a) O+O=O;
- b) $\forall P = (x, y, z) \in E(F_{p^m}) \setminus \{O\}, P + O = O + P = P;$
- c) $\forall P = (x, y, z) \in E(F_{p^m}) \setminus \{O\}, P$ 的逆元素 $-P = (ux, -uy, uz), u \in F_{p^m}$ 且 $u \neq 0, P + (-P) = O$:
- d) 设点 $P_1 = (x_1, y_1, z_1) \in E(F_{p^m}) \setminus \{O\}, P_2 = (x_2, y_2, z_2) \in E(F_{p^m}) \setminus \{O\}, P_3 = P_1 + P_2 = (x_3, y_3, z_3) \neq O,$

若 $P_1 \neq P_2$,则:

$$\lambda_1 = x_1 z_2$$
, $\lambda_2 = x_2 z_1$, $\lambda_3 = \lambda_1 - \lambda_2$, $\lambda_4 = y_1 z_2$, $\lambda_5 = y_2 z_1$, $\lambda_6 = \lambda_4 - \lambda_5$, $\lambda_7 = \lambda_1 + \lambda_2$, $\lambda_8 = z_1 z_2$, $\lambda_9 = \lambda_3^2$, $\lambda_{10} = \lambda_3 \lambda_9$, $\lambda_{11} = \lambda_8 \lambda_6^2 - \lambda_7 \lambda_9$, $x_3 = \lambda_3 \lambda_{11}$, $y_3 = \lambda_6 (\lambda_9 \lambda_1 - \lambda_{11}) - \lambda_4 \lambda_{10}$, $z_3 = \lambda_{10} \lambda_8$; 若 $P_1 = P_2$, 则:

$$\lambda_1 = 3x_1^2 + az_1^2, \lambda_2 = 2y_1z_1, \lambda_3 = y_1^2, \lambda_4 = \lambda_3 x_1 z_1, \lambda_5 = \lambda_2^2, \lambda_6 = \lambda_1^2 - 8\lambda_4^2,$$
 $x_3 = \lambda_2 \lambda_6, y_3 = \lambda_1 (4\lambda_4 - \lambda_6) - 2\lambda_5 \lambda_3, z_3 = \lambda_2 \lambda_5,$

B.1.3.4 Jacobian 加重射影坐标系

设 p 是大于 3 的素数, F_{p^m} 上椭圆曲线方程在 Jacobian 加重射影坐标系下可以简化为 $y^2 = x^3 + axz^4 + bz^6$ 。其中 $a,b \in F_{p^m}$,且 $4a^3 + 27b^2 \neq 0$ 。椭圆曲线上的点集记为 $E(F_{p^m}) = \{(x,y,z) | x,y,z \in F_{p^m}$ 且满足曲线方程 $y^2 = x^3 + axz^4 + bz^6\}$ 。对于 (x_1,y_1,z_1) 和 (x_2,y_2,z_2) ,若存在某个 $u \in F_{p^m}$ 且 $u \neq 0$,使得 $\{x_1 = u^2x_2,y_1 = u^3y_2,z_1 = uz_2,y_1\}$ 则称这两个三元组等价,表示同一个点。

若 $z\neq 0$,记 $X=x/z^2$, $Y=y/z^3$,则可从 Jacobian 加重射影坐标表示转化为仿射坐标表示: $Y^2=X^3+aX+b$ 。

Jacobian 加重射影坐标系下, $E(F_{p^m})$ 上点的加法运算定义如下:

- a) O+O=O;
- b) $\forall P = (x, y, z) \in E(F_{p^m}) \setminus \{O\}, P + O = O + P = P;$
- c) $\forall P = (x, y, z) \in E(F_{p^m}) \setminus \{O\}, P$ 的逆元素 $-P = (u^2x, -u^3y, uz), u \in F_{p^m} \perp u \neq 0, P + (-P) = O$:
- d) 设点 $P_1 = (x_1, y_1, z_1) \in E(F_{p^m}) \setminus \{O\}, P_2 = (x_2, y_2, z_2) \in E(F_{p^m}) \setminus \{O\}, P_3 = P_1 + P_2 = (x_3, y_3, z_3) \neq O,$

若 $P_1 \neq P_2$,则:

$$\begin{split} &\lambda_1 = x_1 z_2^2 \,, \lambda_2 = x_2 z_1^2 \,, \lambda_3 = \lambda_1 - \lambda_2 \,, \lambda_4 = y_1 z_2^3 \,, \lambda_5 = y_2 z_1^3 \,, \lambda_6 = \lambda_4 - \lambda_5 \,, \lambda_7 = \lambda_1 + \lambda_2 \,, \\ &\lambda_8 = \lambda_4 + \lambda_5 \,, \lambda_9 = \lambda_7 \lambda_3^2 \,, x_3 = \lambda_6^2 - \lambda_9 \,, \lambda_{10} = \lambda_9^2 - 2x_3 \,, y_3 = (\lambda_{10} \lambda_6 - \lambda_8 \lambda_3^3) / 2 \,, z_3 = z_1 z_2 \lambda_3 \,; \\ &\ddot{E} \, P_1 = P_2 \,, \, & \text{則} \,: \end{split}$$

$$\lambda_1 = 3x_1^2 + az_1^4, \lambda_2 = 4x_1y_1^2, \lambda_3 = 8y_1^4, x_3 = \lambda_1^2 - 2\lambda_2, y_3 = \lambda_1(\lambda_2 - x_3) - \lambda_3, z_3 = 2y_1z_1$$

B.1.4 有限域上椭圆曲线的阶

有限域 F_{q^m} 上一条椭圆曲线的阶是指点集 $E(F_{q^m})$ 中元素的个数,记为 $\sharp E(F_{q^m})$ 。由 Hasse 定理 知: $q^m+1-2q^{m/2}$ 《 $\sharp E(F_{qm})$ 》《 $q^m+1+2q^{m/2}$,即 $\sharp E(F_{q^m})=q^m+1-t$,其中 t 称为 Frobenius 迹且 |t| 《 $2q^{m/2}$ 。

若 F_{q^m} 的特征整除 Frobenius 迹 t,则称此曲线为超奇异的,否则为非超奇异的。

设 $E(F_{q^m})$ 是 F_{q^m} 上的椭圆曲线,r 是与 q^m 互素的整数,则 $E(F_{q^m})$ 的 r 阶扭子群 $E(F_{q^m})[r] = \{P \in E(F_{q^m}) \mid [r]P = O\}$, $E(F_{q^m})[r]$ 中的点称为 r-扭点。

B.2 椭圆曲线多倍点运算

椭圆曲线上同一个点的重复相加称为该点的多倍点运算。设 u 是一个正整数,P 是椭圆曲线上的点,其 u 倍点 $Q = [u]P = P + P + \cdots + P$ 。

多倍点运算可以扩展到 0 倍点运算和负数倍点运算: [0]P = O, [-u]P = [u](-P)。 椭圆曲线多倍点运算的实现有多种方法, 这里只介绍最基本的三种方法, 以下都假设 $1 \le u < N$ 。 算法一: 二进制展开法

输入:点P,l 比特的整数 $u = \sum_{j=0}^{l-1} u_j 2^j$, $u_j \in \{0,1\}$ 。

输出:Q = [u]P。

- a) 置Q=O。
- b) 对i从l-1降至0执行:

GB/T 38635.1-2020

- 1) $Q = \lceil 2 \rceil Q$;
- 2) 若 $u_i = 1$,则 Q = Q + P。
- c) 输出 Q。

算法二:加减法

输入:点 P, l 比特的整数 $u = \sum_{j=0}^{l-1} u_j 2^j, u_j \in \{0,1\}$ 。

输出:Q = [u]P。

- a) 设 3u 的二进制表示是 $h_r h_{r-1} \cdots h_1 h_0$,其中最高位 h_r 为 1,显然 r=l 或 l+1。
- b) 设u的二进制表示是 $u_ru_{r-1}\cdots u_1u_0$ 。
- c) 置 Q = P 。
- d) 对i从r-1降至1执行:
 - 1) $Q = \lceil 2 \rceil Q$;
 - 2) 若 $h_i = 1$,且 $u_i = 0$,则 Q = Q + P;
 - 3) 若 $h_i = 0$,且 $u_i = 1$,则 Q = Q P。
- e) 输出 Q。

注:减去点(x,y),只要加上(x,-y)。有多种不同的变种可以加速这一运算。

算法三:滑动窗法

输入:点 P, l 比特的整数 $u = \sum_{j=0}^{l-1} u_j 2^j, u_j \in \{0,1\}$ 。

输出:Q = [u]P。

设窗口长度 r > 1。

预计算

- a) $P_1 = P_1 P_2 = \lceil 2 \rceil P_0$
- b) i 从 $1 \sim (2^{r-1}-1)$ 计算 $P_{2i+1} = P_{2i-1} + P_2$.
- c) 置j = l 1, Q = 0。

主循环

- d) 当 $i \ge 0$ 执行:
 - 1) 若 $u_i = 0$,则 $Q = \lceil 2 \rceil Q$, j = j 1;
 - 2) 否则:
 - $\Diamond t \not\in i t + 1 \leq r \not\in u_t = 1$ 的最小整数;

$$\bullet \quad h_j = \sum_{i=0}^{j-t} u_{t+i} 2^i ;$$

- $Q = [2^{j-t+1}]Q + P_{h_i};$
- 置j=t-1。
- e) 输出 Q。

B.3 离散对数问题

B.3.1 求解有限域上离散对数问题的方法

有限域 F_q 的全体非零元素构成一个乘法循环群,记为 F_{q^*} 。 F_{q^*} 中存在一个元素 g,g 称为生成元,使得 $F_{q^*} = \{g^i \mid 0 \leqslant i \leqslant q-2\}$ 。 $a \in F_q$ 的阶是满足 $a^t = 1$ 的最小正整数 t。循环群 F_{q^*} 的阶为 q-1,因此 $t \mid q-1$ 。

设乘法循环群 F_{q^*} 的生成元为 g , $y \in F_{q^*}$, 有限域上离散对数问题是指确定整数 $x \in [0, q-2]$, 使

得 $y = g^x \mod q$ 成立。

有限域上离散对数问题现有攻击方法有:

- a) Pohlig-Hellman 方法:设 $l \neq q-1$ 的最大素因子,则时间复杂度为 $O(l^{1/2})$;
- b) BSGS 方法:时间复杂度与空间复杂度均为 $(\pi q/2)^{1/2}$;
- c) Pollard 方法:时间复杂度为 $(\pi q/2)^{1/2}$;
- d) 并行 Pollard 方法:设 s 为并行处理器个数,时间复杂度为 $(\pi q/2)^{1/2}/s$;
- e) 线性筛法(对素域 F_a):时间复杂度为 $\exp((1+o(1))(\log q)^{1/2}(\log\log q)^{1/2})$;
- f) Gauss 整数法(对素域 F_a):时间复杂度为 $\exp((1+o(1))(\log a)^{1/2}(\log\log a)^{1/2})$;
- g) 剩余列举筛法(对素域 F_q):时间复杂度为 $\exp((1+o(1))(\log q)^{1/2}(\log\log q)^{1/2})$;
- h) 数域筛法(对素域 F_a):时间复杂度为 $\exp(((64/9)^{1/3} + o(1))(\log q (\log \log q)^2)^{1/3})$;
- i) 函数域筛法(对小特征域):时间复杂度为 $\exp(c (\log q (\log \log q)^2)^{1/4+o(1)})$ 和拟多项式时间。

从以上列举的求解离散对数问题的方法及其时间复杂度可知:对于一般的大特征域上的离散对数问题,存在亚指数级计算复杂度的攻击方法,对小特征域上的离散对数问题,目前已经有拟多项式时间的攻击方法。

B.3.2 求解椭圆曲线离散对数问题的方法

已知椭圆曲线 $E(F_q)$, 阶为 n 的点 $P \in E(F_q)$ 及 $Q \in P >$, 椭圆曲线离散对数问题是指确定整数 $u \in [0, n-1]$, 使得 Q = [u]P 成立。

ECDLP 现有攻击方法有:

- a) Pohlig-Hellman 方法:设 $l \in n$ 的最大素因子,则时间复杂度为 $O(l^{1/2})$;
- b) BSGS 方法:时间复杂度与空间复杂度均为 $(\pi n/2)^{1/2}$;
- c) Pollard 方法:时间复杂度为 $(\pi n/2)^{1/2}$;
- d) 并行 Pollard 方法:设 r 为并行处理器个数,时间复杂度为 $(\pi n/2)^{1/2}/r$;
- e) MOV-方法:把超奇异椭圆曲线及具有相似性质的曲线的 ECDLP 降到 F_q 的小扩域上的离散 对数问题(亚指数级计算复杂度算法);
- f) Anomalous 方法: 对 Anomalous 曲线($\sharp E(F_q) = q$ 的曲线)的有效攻击方法(多项式级计算 复杂度算法);
- g) GHS-方法:利用 Weil 下降技术求解扩张次数为合数的二元扩域上椭圆曲线离散对数问题,将 *ECDLP* 转化为超椭圆曲线离散对数问题,而求解高亏格的超椭圆曲线离散对数存在亚指数级计算复杂度算法;
- h) DGS-点分解方法:对低次扩域上的椭圆曲线离散对数利用的指标计算方法,在某些特殊情况下,其求解复杂度低于平方根时间复杂度。

从上述对椭圆曲线离散对数问题解法的描述与分析可知:对于一般曲线的离散对数问题,目前的求解方法都为指数级计算复杂度,未发现亚指数级计算复杂度的一般攻击方法;而对于某些特殊曲线的离散对数问题,存在多项式级或者亚指数级计算复杂度算法。

B.4 点的压缩

B.4.1 概述

对于椭圆曲线 $E(F_q)$ 上的任意非无穷远点 $P=(x_p,y_p)$,该点能由坐标 x_p 及由 x_p 和 y_p 导出的一个特定比特简洁地表示,称为点的压缩表示。

B.4.2 F,上椭圆曲线点的压缩与解压缩方法

设 $P = (x_P, y_P)$ 是定义在 F_p 上椭圆曲线 $E: y^2 = x^3 + ax + b$ 上的一个点, \tilde{y}_P 为 y_P 的最右边的一个比特,则点 P 可由 x_P 和比特 \tilde{y}_P 表示。

由 x_P 和 y_D 恢复 y_P 的方法如下:

- a) 在 F_p 上计算域元素 $\alpha = x_p^3 + ax_p + b$;
- b) 计算 α 在 F_p 上的平方根 β (参见 D.1.4),若输出是"不存在平方根",则报错;
- c) 若 β 的最右边比特等于 \hat{y}_P ,则置 $y_P = \beta$;否则置 $y_P = p \beta$ 。

B.4.3 $F_{a^m}(q)$ 为奇素数, $m \ge 2$)上椭圆曲线点的压缩与解压缩方法

设 $P = (x_P, y_P)$ 是定义在 F_{q^m} 上椭圆曲线 $E: y^2 = x^3 + ax + b$ 上的一个点,则 y_P 可表示为(y_{m-1} , y_{m-2} , \dots , y_1 , y_0), $\overset{\sim}{y_P}$ 为 y_0 的最右边的一个比特,则点 P 可由 x_P 和比特 $\overset{\sim}{y_P}$ 表示。

由 x_p 和 $\stackrel{\sim}{y_p}$ 恢复 y_p 的方法如下:

- a) 在 F_{q^m} 上计算域元素 $\alpha = x_P^3 + ax_P + b$;
- b) 计算 α 在 F_{q^m} 上的平方根 β (参见 D.1.4),若输出是"不存在平方根",则报错。

若 β 的表示(β_{m-1} , β_{m-2} ,…, β_1 , β_0)中 β_0 的最右边比特等于 \tilde{y}_p ,则置 $y_p = \beta$;否则置 $y_p = (\beta'_{m-1}, \beta'_{m-2}, \dots, \beta'_1, \beta'_0)$,其中 $\beta'_i = (q - \beta_i) \in F_q$, $i = 0, 1, \dots, m-1$ 。

附 录 C (资料性附录)

椭圆曲线上双线性对的计算

C.1 概述

设有限域 F_q 上椭圆曲线为 $E(F_q)$,若 \sharp $E(F_q) = cf \times r$,r 是素数且 $\gcd(r,q) = 1$,cf 为余因子,则使 $r \mid q^k - 1$ 的最小正整数 k 称为椭圆曲线相对于 r 的嵌入次数。若 G 是 $E(F_q)$ 的 r 阶子群,则 G 的嵌入次数也是 k 。

设 \overline{F}_a 是有限域 F_a 的代数闭包,E[r]表示 $E(\overline{F}_a)$ 中所有r阶点的集合。

C.2 Miller 算法

设 F_{q^k} 上椭圆曲线 $E(F_{q^k})$ 的方程为 $y^2 = x^3 + ax + b$,定义过 $E(F_{q^k})$ 上点 U 和 V 的直线为 $g_{U,V}$: $E(F_{q^k}) \rightarrow F_{q^k}$,若过 U,V 两点的直线方程为 $\lambda x + \delta y + \tau = 0$,则令函数 $g_{U,V}(Q) = \lambda x_Q + \delta y_Q + \tau$,其中 $Q = (x_Q, y_Q)$ 。当 U = V 时, $g_{U,V}$ 定义为过点 U 的切线;若 U 和 V 中有一个点为无穷远点 $O, g_{U,V}$ 就是过另一个点且垂直于 x 轴的直线。一般用 g_U 作为 $g_{U,V}$ 的简写。

记 $U=(x_U,y_U)$, $V=(x_V,y_V)$, $Q=(x_Q,y_Q)$, $\lambda_1=(3x_V^2+a)/(2y_V)$, $\lambda_2=(y_U-y_V)/(x_U-x_V)$, 则有以下性质:

- a) $g_{U,V}(Q) = g_{U,Q}(Q) = g_{Q,V}(Q) = 1$;
- b) $g_{V,V}(Q) = \lambda_1(x_Q x_V) y_Q + y_V, Q \neq 0;$
- c) $g_{U,V}(Q) = \lambda_2(x_Q x_V) y_Q + y_V, Q \neq O, U \neq \pm V;$
- d) $g_{V,-V}(Q) = x_Q x_V, Q \neq 0$.

Miller 算法是计算双线性对的有效算法。

输入:曲线 E, E 上两点 P 和 Q,整数 c。

输出: $f_{P,c}(Q)$ 。

- a) 设 c 的二进制表示是 $c_i \cdots c_1 c_0$,其最高位 c_i 为 1。
- b) $\mathbb{E} f = 1, V = P$.
- c) 对i从i-1降至0,执行:
 - 1) 计算 $f = f^2 \cdot g_{V,V}(Q)/g_{2V}(Q), V = [2]V$;
 - 2) 若 $c_i = 1$, 令 $f = f \cdot g_{VP}(Q)/g_{V+P}(Q)$, V = V + P 。
- d) 输出 f。
- 一般,称 $f_{P,c}(Q)$ 为 Miller 函数。

C.3 Weil 对的计算

设 $E \in F_q$ 上的椭圆曲线,r 是与 q 互素的正整数,设 μ_r 是 r 次单位根集合,k 是相对于 r 的嵌入次数,即 $r \mid q^k - 1$,则 $\mu_r \subset F_{q^k}$ 。

令 $G_1 = E[r]$, $G_2 = E[r]$, $G_T = \mu_r$, 则 Weil 对是从 $G_1 \times G_2$ 到 G_T 的双线性映射,记为 e_r 。

设 $P \in G_1$, $Q \in G_2$, 若 P = O 或 Q = O, 则 $e_r(P,Q) = 1$; 如果 $P \neq O$ 且 $Q \neq O$, 随机选取非无穷远点 $T \in G_1$, $U \in G_2$, 使得 P + T 和 T 均不等于 U 或 U + Q, 则 Weil 对为:

$$e_r(P,Q) = \frac{f_{P+T,r}(Q+U)f_{T,r}(U)f_{U,r}(P+T)f_{Q+U,r}(T)}{f_{T,r}(Q+U)f_{P+T,r}(U)f_{O+U,r}(P+T)f_{U,r}(T)}$$

 $f_{P+T,r}(Q+U), f_{T,r}(Q+U), f_{P+T,r}(U), f_{T,r}(U), f_{Q+U,r}(P+T), f_{Q+U,r}(T), f_{U,r}(P+T)$ 和 $f_{U,r}(T)$ 均可用 Miller 算法计算。在计算过程中,若出现分母为 0 的情况,则更换点 T 或 U 重新计算。

C.4 Tate 对的计算

设 E 是 F_q 上的椭圆曲线,r 是与 q 互素的正整数,k 是相对于 r 的嵌入次数。设 Q 是 $E(F_{q^k})[r]$ 上的 r 阶点,由 Q 生成的循环群记为<Q>。 $(F_{q^k}^*)^r$ 为 $F_{q^k}^*$ 中每一个元素的 r 次幂构成的集合, $(F_{q^k}^*)^r$ 是 $F_{q^k}^*$ 的子群, $F_{q^k}^*$ 关于 $(F_{q^k}^*)^r$ 的商群记为 $F_{q^k}^*/(F_{q^k}^*)^r$ 。

令 $G_1 = E(F_q)[r]$, $G_2 = \langle Q \rangle$, $G_T = F_{qk}^*/(F_{qk}^*)^r$, 则 Tate 对是从 $G_1 \times G_2$ 到 G_T 的双线性映射,记为 t_r 。

设 $P \in G_1$, $Q \in G_2$, 若 P = O 或 Q = O, 则 $t_r = 1$; 若 $P \neq O$ 且 $Q \neq O$, 随机选择非无穷远点 $U \in E$ (F_{ok}) , 使得 $P \neq U$, $P \neq Q + U$, $U \neq -Q$, 则 Tate 对为:

$$t_r(P,Q) = \frac{f_{P,r}(Q+U)}{f_{P,r}(U)}$$

 $f_{P,r}(Q+U)$ 和 $f_{P,r}(U)$ 可通过 Miller 算法计算。在计算过程中,若出现分母为 0 的情况,则更换点 U 重新计算。

在实际应用中,一般使用约化 Tate 对:

$$t_r(P,Q) = \begin{cases} f_{P,r}(Q)^{(q^k-1)/r}, & Q \neq O, \\ 1, & Q = O \end{cases}$$

约化 Tate 对比一般 Tate 对的计算量减少了一半。若相对于r 的嵌入次数 k 是偶数时,约化 Tate 对的计算方法可以进一步优化。算法 1 描述的是一般约化 Tate 对的计算方法,算法 2、3、4 均指 k=2d 的情况。

算法

输入:与 q 互素的整数 $r, P \in E(F_q)[r], Q \in E(F_{q^k})[r]$ 。

输出: $t_r(P, Q)$ 。

- a) 设r的二进制表示是 r_j … r_1r_0 ,其最高位 r_j 为1。
- b) $\exists f=1, V=P$
- c) 对 i = j 1 降至 0,执行:
 - 1) 计算 $f = f^2 \cdot g_{V,V}(Q)/g_{V}(Q), V = [2]V$;
 - 2) 若 $r_i = 1$,则计算 $f = f \cdot g_{V,P}(Q)/g_{V+P}(Q)$,V = V + P。
- d) 计算 $f = f^{(q^k-1)/r}$
- e) 输出 f。

算法2

输入:与 q 互素的整数 $r, P \in E(F_q)[r], Q \in E(F_{q^k})[r]$ 。

输出: $t_r(P, Q)$ 。

- a) 设r的二进制表示是 r_j … r_1r_0 ,其最高位 r_j 为1。
- b) 置 f = 1, V = P。
- c) 对 i = j-1 降至 0,执行:
 - 1) 计算 $f = f^2 \cdot g_{V,V}(Q)/g_{2V}(Q), V = [2]V;$
 - 2) 若 $r_i = 1$,则计算 $f = f \cdot g_{V,P}(Q)/g_{V+P}(Q)$,V = V + P。

- d) 计算 $f = f^{qd-1}$ 。
- e) 计算 $f = f^{(q^d+1)/r}$ 。
- f) 输出 f。

算法 3

如果将 F_{q^k} (k=2d)看成 F_{q^d} 的二次扩域,则 F_{q^k} 上元素可表示成 $w=w_0+iw_1$ 的形式,其中 w_0 , $w_1 \in F_{q^d}$,则 w 的共轭 $w=w_0-iw_1$,此时算法 1 中的求逆运算可用共轭代替。

输入:与 q 互素的整数 $r, P \in E(F_q)[r], Q \in E(F_{qk})[r]$ 。

输出: $t_r(P,Q)$ 。

- a) 设r的二进制表示是 $r_i \cdots r_1 r_0$,其最高位 r_i 为 1。
- b) 置 f = 1, V = P。
- c) 对i从j-1降至0,执行:
 - 1) 计算 $f = f^2 \cdot g_{VV}(Q) \cdot g_{2V}(Q), V = [2]V$;
 - 2) 若 $r_i = 1$,令 $f = f \cdot g_{V,P}(Q) \cdot \overline{g}_{V+P}(Q)$,V = V + P。
- d) 计算 $f = f^{q^{d-1}}$
- e) 计算 $f = f^{(q^{d+1})/r}$ 。
- f) 输出 f。

算法 4

当 q 为大于 3 的素数时,点 $Q \in E'$, E' 是 E 的扭曲线,此时算法可进一步优化。

输入: $P \in E(F_q)[r], Q \in E'(F_{q^d})[r]$,整数 r。

输出: $t_r(P, Q)$ 。

- a) 设r的二进制表示是 $r_i \cdots r_1 r_0$,其最高位 r_i 为 1。
- b) 置 f = 1, V = P。
- c) 对i从j-1降至0,执行:
 - 1) 计算 $f = f^2 \cdot g_{V,V}(Q), V = [2]V$;
 - 2) 若 $r_i = 1$,则计算 $f = f \cdot g_{VP}(Q)$,V = V + P。
- d) 计算 $f = f^{q^{d-1}}$ 。
- e) 计算 $f = f^{(qd+1)/r}$
- f) 输出 f。

C.5 Ate 对的计算

C.5.1 概述

设 π_q 为 Frobenius 自同态,即 $\pi_q: E \to E$, $(x,y) \mapsto (x^q,y^q)$; [q] 为映射: $E \to E$, $Q \mapsto [q]Q$; [1] 为单位映射; π_q 的对偶为 π_q' ,满足 $\pi_q \bullet \pi_q' = [q]$;Ker()表示映射的核;设椭圆曲线 $E(F_q)$ 的 Frobenius 迹为 t,令 T = t - 1。

下面给出不同结构下的 Ate 对的计算方法。

C.5.2 定义在 $G_2 \times G_1$ 上 Ate 对的计算

设 $G_1 = E[r] \cap \operatorname{Ker}(\pi_q - [1])$, $G_2 = E[r] \cap \operatorname{Ker}(\pi_q - [q])$, $P \in G_1$, $Q \in G_2$ 。 定义 $G_2 \times G_1$ 上 Ate 对:

Ate:
$$G_2 \times G_1 \rightarrow F_{qk}^* / (F_{qk}^*)^r$$

 $(Q, P) \mapsto f_{Q, T} (P)^{(qk-1)/r}$

下面给出 $G_2 \times G_1$ 上 Ate 对的计算方法:

输入: $G_1 = E[r] \cap \text{Ker}(\pi_q - [1])$, $G_2 = E[r] \cap \text{Ker}(\pi_q - [q])$, $P \in G_1$, $Q \in G_2$,整数 T = t - 1。 输出:Ate(Q, P)。

- a) 设T的二进制表示是 t_i … t_1t_0 ,其最高位 t_i 为1。
- b) 置 f = 1, V = Q。
- c) 对i从i-1降至0,执行:
 - 1) 计算 $f = f^2 \cdot g_{VV}(P), V = [2]V$;
 - 2) 若 $t_i = 1$, 计算 $f = f \cdot g_{V,Q}(P)/g_{V+Q}(P)$, V = V + Q.
- d) 计算 $f = f^{(q^k-1)/r}$ 。
- e) 输出 f。

C.5.3 定义在 $G_1 \times G_2$ 上 Ate 对的计算

对于超奇异椭圆曲线来说,以上 Ate 对的定义与技术可以直接应用;而对于常曲线来说,需要把 G_2 转换到扭曲线上才可以定义 Ate 对。

超奇异椭圆曲线上 Ate 对:

设 E 为定义在 F_q 上的超奇异椭圆曲线, $G_1 = E[r] \cap \operatorname{Ker}(\pi_q' - [q])$, $G_2 = E[r] \cap \operatorname{Ker}(\pi_q' - [1])$, $G_T = F_{gk}^* / (F_{gk}^*)^r$, $P \in G_1$, $Q \in G_2$ 。 定义 $G_1 \times G_2$ 上的 Ate 对:

Ate:
$$G_1 \times G_2 \rightarrow F_{qk}^* / (F_{qk}^*)^r$$

 $(P,Q) \mapsto f_{P,T}(Q)^{(qk-1)/r}$

下面给出 $G_1 \times G_2$ 上 Ate 对的计算方法:

输入: $G_1 = E[r] \cap \text{Ker}(\pi_q' - [q])$, $G_2 = E[r] \cap \text{Ker}(\pi_q' - [1])$, $P \in G_1$, $Q \in G_2$,整数 T = t - 1。 输出:Ate(P,Q)。

- a) 设T的二进制表示是 t_i … t_1t_0 ,其最高位 t_i 为1。
- b) 置 f = 1, V = P。
- c) 对i从i-1降至0,执行:
 - 1) 计算 $f = f^2 \cdot g_{V,V}(Q), V = [2]V$;
 - 2) 若 $t_i = 1$, 计算 $f = f \cdot g_{V,P}(Q)/g_{V+P}(Q)$, V = V + P 。
- d) 计算 $f = f^{(q^k-1)/r}$ 。
- e) 输出 f。

常曲线上的 Ate 对:

对于常曲线来说,存在一个整数 e,使得 $(\pi_q')^e$ 成为 G_1 上的自同构,这样可以用扭曲线理论在 Ate (P,Q)和 $f_{P,T_e}(Q)$ 之间建立起联系,其中 T=t-1,t 为迹。

设 E 是定义在 F_q 上的椭圆曲线,E'为 E 的 d 次扭曲线。k 为嵌入次数, $m = \gcd(k,d)$,e = k/m, C_m 是 m 次本原单位根,当 $p \geqslant 5$ 时,d 的取值有三种情况:

- a) d = 6, $\beta = \zeta_m^{-6}$, $E': y^2 = x^3 + \beta b$, $\phi_6: E' \to E: (x, y) \mapsto (\beta^{-1/3} x, \beta^{-1/2} y)$, $G_1 = E[r] \cap \text{Ker}(\pi_q [1])$, $G_2 = E'[r] \cap \text{Ker}([\beta^{-1/6}] \pi_q^e [1])$;
- b) d=4, $\beta=\zeta_m^{-4}$, $E': y^2=x^3+\beta ax$, $\phi_4: E' \to E: (x,y) \mapsto (\beta^{-1/2}x, \beta^{-3/4}y)$, $G_1=E[r] \cap \operatorname{Ker}(\pi_q \lceil 1 \rceil)$, $G_2=E'\lceil r \rceil \cap \operatorname{Ker}(\lceil \beta^{-1/4} \rceil \pi_q^e \lceil 1 \rceil)$;
- c) $d = 2, \beta = \zeta_m^{-2}, E' : y^2 = x^3 + \beta^2 ax + \beta^3 b, \phi_2 : E' \to E : (x, y) \mapsto (\beta^{-1} x, \beta^{-3/2} y), G_1 = E[r] \cap \text{Ker}(\pi_q [1]), G_2 = E'[r] \cap \text{Ker}([\beta^{-1/2}]\pi_{q^e} [1]).$

设 $P \in G_1$, $Q \in G_2$ 。 定义 $G_1 \times G_2$ 上 Ate 对:

Ate:
$$G_1 \times G_2 \rightarrow F_{ak}^* / (F_{ak}^*)^r$$

$$(P,Q) \mapsto f_{P,T^e} (Q)^{(q^k-1)/r}$$

下面给出具体算法描述:

输入: $G_1, G_2, P \in G_1, Q \in G_2$,整数 T = t - 1.

输出:Ate(P,Q)。

- a) 计算 $u = T^e$ 。
- b) 设u的二进制表示是 t_i … t_1t_0 ,其最高位 t_i 为1。
- c) 置 f=1, V=P。
- d) 对i从j-1降至0,执行:
 - 1) 计算 $f = f^2 \cdot g_{V,V}(Q), V = [2]V$;
 - 2) 若 $t_i = 1$,计算 $f = f \cdot g_{VP}(Q)/g_{V+P}(Q)$,V = V + P。
- e) 计算 $f = f^{(q^k-1)/r}$ 。
- f) 输出 f。

如果定义在 $G_1 \times G_2$ 上的 Ate 对所基于的椭圆曲线是超奇异的,则容易看出它比 Tate 对有更高的效率。但对于常曲线来说,只有当 $|T^e| \le r$ 时它的运算效率才会比 Tate 对高,所以只有在 t 值较小时才推荐使用 Ate 对。

C.6 R-ate 对的计算

C.6.1 R-ate 对的定义

R-ate 对中的"R"可视为两个对的比值,也可以看成是 Tate 对的某固定幂次。

令 A, B, a, $b \in Z$, A = aB + b. Miller 函数 $f_{Q,A}(P)$ 有如下性质:

$$\begin{split} f_{Q,A}(P) &= f_{Q,aB+b}(P) = f_{Q,aB}(P) \cdot f_{Q,b}(P) \cdot g_{[aB]Q,[b]Q}(P) / g_{[A]Q}(P) \\ &= f_{Q,B}^{a}(P) \cdot f_{[B]Q,a}(P) \cdot f_{Q,b}(P) \cdot \frac{g_{[aB]Q,[b]Q}(P)}{g_{[A]Q}(P)} \end{split}$$

定义 R-ate 对为

$$\begin{split} R_{A,B}(Q,P) &= (f_{[B]Q,a}(P) \cdot f_{Q,b}(P) \cdot \frac{g_{[aB]Q,[b]Q}(P)}{g_{[A]Q}(P)})^{(qk-1)/n} \\ &= (\frac{f_{Q,A}(P)}{f_{Q,B}^{a}(P)})^{(qk-1)/n} \end{split}$$

如果 $f_{Q,A}(P)$ 和 $f_{Q,B}(P)$ 是非退化对的 Miller 函数,则 $R_{A,B}(Q,P)$ 也是非退化对。

令
$$L_1, L_2, M_1, M_2 \in \mathbb{Z}$$
,使得 $e_n^{L_1}(Q, P) = (f_{Q, A}(P))^{M_1 \cdot (q^k - 1)/n}$

$$e_n^{L_2}(Q,P) = (f_{Q,R}(P))^{M_2 \cdot (q^k-1)/n}$$

 $\diamondsuit M = lcm(M_1, M_2), m = (M/M_1) \cdot L_1 - a \cdot (M/M_2) \cdot L_2$

为了非退化,n 不能整除m,有:

$$e_n^m(Q,P) = e_n^{\frac{M}{M_1}L_1 - a\frac{M}{M_2}L_2}(Q,P) = \frac{e_n(Q,P)^{L_1\frac{M}{M_1}}}{e_n(Q,P)^{aL_2\frac{M}{M_2}}} = \left(\frac{f_{Q,A}(P)}{f_{Q,B}(P)^a}\right)^{M \cdot (q^k - 1)/n}$$

易见 $e_n^m(Q,P) = R_{A,B}(Q,P)^M$

一般来说,不是任意整数对(A;B)都能给出非退化对,(A;B)有四种选择:

- a) $(A;B) = (q^i;n);$
- b) $(A;B) = (q;T_1);$
- c) $(A;B) = (T_i;T_j);$
- d) $(A;B) = (n;T_i)_{\circ}$

其中 $T_i \equiv q^i \pmod{n}$, $i \in \mathbb{Z}$, 0 < i < k.

情形 1: $(A; B) = (q^i; n)$,由于 A = aB + b, 即 $q^i = an + b$. 因此 $b \equiv q^i \pmod{n}$,

$$\mathbb{Z} (\frac{f_{Q,q^i}(P)}{f_{Q,n}^a(P)})^{(q^k-1)/n} \! = \! R_{A,B}(Q,P) \! = \! (f_{[n]Q,a}(P)f_{Q,b}(P) \frac{g_{[an]Q,[b]Q}(P)}{g_{[q^i]Q}(P)})^{(q^k-1)/n}$$

因为 $b \equiv q^i \pmod{n}$,所以 $g_{\lceil an \rceil Q, \lceil b \rceil Q}(P) = g_{\lceil q^i \rceil Q}(P)$ 。更进一步, $f_{\lceil n \rceil Q, a}(P) = 1$,因此:

$$R_{A,B}(Q,P) = f_{Q,q^i}(P)^{(q^k-1)/n}$$

情形 $2:(A;B)=(q;T_1)$,即 $q=aT_1+b$,则:

$$(\frac{f_{Q,q}(P)}{f_{Q,T_1}^a(P)})^{(q^{k-1})/n} = R_{A,B}(Q,P) = (f_{[T_1]Q,a}(P)f_{Q,b}(P)\frac{g_{[aT_1]Q,[b]Q}(P)}{g_{[q]Q}(P)})^{(q^k-1)/n}$$

由于 $f_{[T_1]Q,a}(P) = f_{Q,a}^q(P)$,因此:

$$R_{A,B}(Q,P) = (f_{Q,a}^{q}(P)f_{Q,b}(P) \frac{g_{[aT_1]Q,[b]Q}(P)}{g_{[q]Q}(P)})^{(q^k-1)/n}$$

情形 3: $(A;B) = (T_i;T_j)$, 即 $T_i = aT_j + b$,有:

$$(\frac{f_{Q,T_i}(P)}{f_{Q,T_j}^a(P)})^{(q^k-1)/n} = R_{A,B}(Q,P) = (f_{[T_j]Q,a}(P)f_{Q,b}(P)\frac{g_{[aT_j]Q,[b]Q}(P)}{g_{[q^i]Q}(P)})^{(q^k-1)/n}$$

同样,因为 $f_{\Gamma_{T; \neg Q, a}}(P) = f_{Q, a}^{q_j}(P)$,因此:

$$R_{A,B}(Q,P) = (f_{Q,a}^{qj}(P)f_{Q,b}(P) \frac{g_{[aT_j]Q,[b]Q}(P)}{g_{[a^i]Q}(P)})^{(q^k-1)/n}$$

情形 4: $(A;B) = (n;T_i)$,即 $n = aT_i + b$,因此:

$$(\frac{f_{Q,n}(P)}{f_{Q,T_{i}}^{a}(P)})^{(q^{k-1)/n}} = R_{A,B}(Q,P) = (f_{[T_{i}]Q,a}(P)f_{Q,b}(P)\frac{g_{[aT_{i}]Q,[b]Q}(P)}{g_{[n]Q}(P)})^{(q^{k-1)/n}}$$

同样,由 $f_{[T_i]Q,a}(P) = f_{Q,a}^{q_i}(P)$ 得:

$$R_{A,B}(Q,P) = (f_{Q,a}^{q_i}(P)f_{Q,b}(P) \frac{g_{[aT_i]Q,[b]Q}(P)}{g_{[n]Q}(P)})^{(qk-1)/n}$$

情形 1 的 R-ate 对也称 Ate_i对。情形 2、情形 3、情形 4 的对计算需要两个长度为 $\log a$ 和 $\log b$ 的 Miller 循环。情形 2 和情形 4 只能改变一个参数 i 来获得有效对,情形 3 可以改变两个参数。因此,一般都选择情形 3 的 R-ate 对,这时(A; B)=(T_i ; T_i)。

为了降低 Miller 循环次数,可以尝试不同的 i 和 j,使整数 a 和 b 足够小,从而使 Miller 循环次数 减至 $\log(r^{1/\phi(k)})$ 。

C.6.2 BN 曲线上 R-ate 对的计算

Barreto 和 Naehrig 提出了一种构造素域 F_q 上适合对的常曲线的方法,通过此方法构造的曲线称为 BN 曲线。BN 曲线方程为 $E: y^2 = x^3 + b$,其中 $b \neq 0$.嵌入次数 k = 12,曲线阶 r 也是素数。

基域特征 q,曲线阶 r,Frobenius 映射的迹 tr 可通过参数 t 来确定:

$$q(t) = 36t^4 + 36t^3 + 24t^2 + 6t + 1$$

$$r(t) = 36t^4 + 36t^3 + 18t^2 + 6t + 1$$

$$tr(t) = 6t^2 + 1$$

其中 $t \in \mathbb{Z}$ 是任意使得 q = q(t) 和 r = r(t) 均为素数的整数,为了达到一定的安全级别,t 应足够大,至少达到 63 比特。

BN 曲线存在定义在 F_{q^2} 上的 6 次扭曲线 E': $y^2 = x^3 + \beta b$,其中 $\beta \in F_{q^2}$,并且在 F_{q^2} 上既不是二次元也不是三次元,选择 β 使得 r | ‡ E' (F_{q^2}), G_2 中点可用扭曲线 E' 上的点来表示, ϕ_6 : $E' \to E$: (x,y) \mapsto ($\beta^{-1/3}x$, $\beta^{-1/2}y$)。因此对的计算限制在 $E(F_q)$ 上点 P 和 E' (F_{q^2})上点 Q'。

 π_q 为 Frobenius 自同态, $\pi_q: E \to E$, $\pi_q(x, y) = (x^q, y^q)$ 。

$$\pi_{q^2}: E \to E, \ \pi_{q^2}(x,y) = (x^{q^2}, y^{q^2})$$

R-ate 对的计算:

输入: $P \in E(F_q)[r]$, $Q \in E'(F_{q^2})[r]$, a = 6t + 2 。

输出: $R_a(Q, P)$ 。

a) 设
$$a = \sum_{i=0}^{L-1} a_i 2^i$$
, $a_{L-1} = 1$ 。

- b) 置 T = Q, f = 1
- c) 对i从L-2降至0,执行:
 - 1) 计算 $f = f^2 \cdot g_{T,T}(P)$, T = [2]T;
 - 2) 若 $a_i = 1$, 计算 $f = f \cdot g_{T,O}(P)$, T = T + Q.
- d) 计算 $Q_1 = \pi_q(Q)$, $Q_2 = \pi_{q^2}(Q)$ 。
- e) 计算 $f = f \cdot g_{T,Q_1}(P)$, $T = T + Q_1$ 。
- f) 计算 $f = f \cdot g_{T,-Q_2}(P)$, $T = T Q_2$ 。
- g) 计算 $f = f^{(q^{12}-1)/r}$ 。
- h) 输出 f。

关于 Weil 对、Tate 对、Ate 对、R-ate 对的更多计算方法参见参考文献[18]、[21]、[32]、[37]、[45]、[47]、[50]、[56]、[57]和[58]。

C.7 适合对的椭圆曲线

对于超奇异曲线,双线性对的构造相对容易,但对于随机生成的曲线,构造可计算的双线性对比较困难,因此采用常曲线时,需要构造适合对的曲线。

假设 E 是定义在 F_a 上的椭圆曲线,如果以下三个条件成立,则称 E 是适合对的曲线:

- a) $\sharp E(F_a)$ 有一个不小于 \sqrt{g} 的素因子 r;
- b) E 相对于r 的嵌入次数小于 $\log_2(r)/8$;
- c) $r\pm 1$ 的最大素因子的规模与r 相当。

构造适合对的椭圆曲线的步骤如下:

步骤 1:选定 k,计算整数 t、r、q,使得存在一条椭圆曲线 $E(F_q)$,其迹为 t,具有一个素数阶 r 的子群且嵌入次数为 k;

步骤 2:利用复乘方法在 F_q上计算该曲线的方程参数。

构造适合对的椭圆曲线的方法参见参考文献[16]、[20]、[21]、[22]、[24]、[30]、[31]、[33]、[34]、[48]、[51]、[52]、[57]和[64]。

附 录 D (资料性附录) 数论算法

D.1 有限域中的运算

D.1.1 有限域中的指数运算

设 a 是正整数,g 是域 F_q 上的元素,指数运算是计算 g^a 的运算过程。通过以下的二进制方法可以有效地执行指数运算。

输入:正整数a,域 F_q ,域元素g。

输出:g^a。

- a) $\mathbb{E} e = a \mod(q-1)$, $\hat{\pi} e = 0$, 则输出 1。
- b) 设 e 的二进制表示是 $e_r e_{r-1} ... e_1 e_0$,其最高位 e_r 为 1。
- c) 置x=g。
- d) 对i从r-1降至0执行:
 - 1) 置 $x = x^2$;
 - 2) 若 $e_i = 1$,则置 $x = g \cdot x$ 。
- e) 输出 x。

其他加速算法参见参考文献[25]和[44]。

D.1.2 有限域中的逆运算

设 g 是域 F_q 上的非零元素,则逆元素 g^{-1} 是使得 $g \cdot c = 1$ 成立的域元素 c。由于 $c = g^{q-2}$,因此 求逆可通过指数运算实现。若 q 是素数,g 是满足 $1 \le g \le q-1$ 的整数,则 g^{-1} 是整数 c, $1 \le c \le q-1$,且 $g \cdot c \equiv 1 \pmod{q}$ 。

输入:域 F_a , F_a 中的非零元素g。

输出:逆元素 g^{-1} 。

- a) 计算 $c = g^{q-2}$ (参见 D.1.1);
- b) 输出 c。

更为有效的方法是扩展的欧几里德(Euclid)算法,参见参考文献「44」。

D.1.3 Lucas 序列的生成

令 X 和 Y 是非零整数, X 和 Y 的 Lucas 序列 U_k , V_k 的定义如下:

 $U_0 = 0, U_1 = 1, \le k \ge 2 \text{ ft}, U_k = X \cdot U_{k-1} - Y \cdot U_{k-2};$

 $V_0 = 2, V_1 = X, \le k \ge 2 \text{ if } V_k = X \cdot V_{k-1} - Y \cdot V_{k-2}$.

上述递归式适于计算 k 值较小的 U_k 和 V_k 。对大整数 k ,下面的算法可有效地计算 $U_k \bmod q$ 和 $V_k \bmod q$ 。

输入:奇素数 q,整数 X 和 Y,正整数 k。

输出: $U_k \mod q$ 和 $V_k \mod q$ 。

- a) 置 $\Delta = X^2 4Y_{\circ}$
- b) 设 k 的二进制表示是 $k = k_r k_{r-1} ... k_1 k_0$,其中最高位 k_r 为 1。

- c) 置 U=1,V=X 。
- d) 对i从r-1降至0执行:
 - 1) $\mathbb{E}(U,V) = ((U \cdot V) \mod q, ((V^2 + \Delta \cdot U^2)/2) \mod q);$
 - 2) 若 $k_i = 1$,则置 $(U,V) = (((X \cdot U + V)/2) \mod q, ((X \cdot V + \Delta \cdot U)/2) \mod q)$
- e) 输出 U 和 V。

D.1.4 平方根的求解

D.1.4.1 F_a 上平方根的求解

设 q 是奇素数,g 是满足 $0 \le g < q$ 的整数,g 的平方根(mod q)是整数 g,即 g^2 mod q = g, $0 \le g$ < p.

若 g=0,则只有一个平方根,即 y=0;若 $g\neq0$,则 g 有零个或两个平方根,若 y 是其中一个平方根,则另一个平方根就是 g-y。

下面的算法可以确定 g 是否有平方根,若有,就计算其中一个根。

输入:奇素数 q,整数 g,0< g < q。

输出:若存在 g 的平方根,则输出一个平方根,否则输出"不存在平方根"。

算法 1:对 $q \equiv 3 \pmod{4}$,即存在正整数 u,使得 q = 4u + 3。

- a) 计算 $y = g^{u+1} \mod q$ (参见 D.1.1);
- b) 计算 $z = y^2 \mod q$;
- c) 若 z=g,则输出 y;否则输出"不存在平方根"。

算法 2:对 $q \equiv 5 \pmod{8}$,即存在正整数 u,使得 q = 8u + 5。

- a) 计算 $z = g^{2u+1} \mod q$ (参见 D.1.1);
- b) 若 $z \equiv 1 \pmod{q}$, 计算 $y = g^{u+1} \mod q$, 输出y, 终止算法;
- c) 若 $z \equiv -1 \pmod{q}$, 计算 $y = (2g \cdot (4g)^u) \mod{q}$, 输出 y, 终止算法;
- d) 输出"不存在平方根"。

算法 3:对 $q \equiv 1 \pmod{8}$,即存在正整数 u,使得 q = 8u + 1。

- a) <math> <math>
- b) 生成随机数 X,0< X < q;
- c) 计算 Lucas 序列元素(参见 D.1.3): $U=U_{4u+1} \mod q$, $V=V_{4u+1} \mod q$;
- d) 若 $V^2 \equiv 4Y \pmod{q}$,则输出 $y = (V/2) \mod{q}$,并终止;
- e) 若 $U \mod q \neq 1$ 且 $U \mod q \neq q-1$,则输出"不存在平方根",并终止;
- f) 返回步骤 b)。

D.1.4.2 F_{q^2} 上平方根的求解

设 q 是奇素数,对于二次扩域 F_{q^2} ,假设约化多项式为 $f(x)=x^2-n$, $n\in F_q$,则 F_{q^2} 中元素 β 可表示成 a+bx 的形式, $a,b\in F_q$,则 β 的平方根为:

$$\sqrt{\beta} = \sqrt{a + bx} = \pm \left(\sqrt{\frac{a + \sqrt{a^2 - nb^2}}{2}} + \frac{xb}{2\sqrt{\frac{a + \sqrt{a^2 - nb^2}}{2}}}\right)$$

$$\pm \left(\sqrt{\frac{a - \sqrt{a^2 - nb^2}}{2}} + \frac{xb}{2\sqrt{\frac{a - \sqrt{a^2 - nb^2}}{2}}}\right)$$

下面的算法可以确定 β 是否有平方根,若有,就计算其中一个根。

GB/T 38635.1-2020

输入: F_{a^2} 中元素 $\beta = a + bx$ 且 $\beta \neq 0$,q 为奇素数。

输出: 若存在 β 的平方根,则输出一个平方根z,否则输出"不存在平方根"。

- a) 计算 $U=a^2-nb^2$ 。
- b) 利用 D.1.4.1 的方法求 $U \mod q$ 的平方根,若 $U \mod q$ 的平方根存在,记作 w_i ,即 $w_i^2 = U \mod q$,i = 1, 2,转步骤 c);否则输出"不存在平方根",并终止。
- c) 对i从 $1)\sim 2)$ 执行:
 - 1) 计算 $V = (a + w_i)/2$;
 - 2) 利用 D.1.4.1 的方法求 $V \mod q$ 的平方根,若 $V \mod q$ 的平方根存在,任取一个根 y,即 $y^2 = V \mod q$,转步骤 d);若 $V \mod q$ 的平方根不存在且 i = 2,输出"不存在平方根",并 终止算法。
- d) 计算 $z_1 = b/2y \pmod{q}$, 令 $z_0 = y$.
- e) 输出 $z = z_0 + z_1 x$.

D.1.4.3 F_{am} 上平方根的求解

D.1.4.3.1 F_{am} 上平方元检测

设 q 是奇素数,且 $m \ge 2$, g 是域 F_{am} 中非零元素,下面算法给出 g 是否为一个平方元的检测。

输入:域元素g。

输出:若 g 是平方元则输出"是平方元",否则输出"不是平方元"。

- a) 计算 $B = g^{(q^m-1)/2}$ (参见 D.1.1);
- b) 若 B=1,则输出"是平方元";
- c) 若 B=-1,则输出"不是平方元"。

D.1.4.3.2 F_{q^m} 上平方根的求解

设 q 是奇素数,且 $m \ge 2$ 。

输入:域元素 g。

输出:若 g 是平方元则输出平方根 B,否则输出"没有平方根"。

- a) 随机选取非平方元 Y。
- b) 计算 $q^m 1 = 2^u \times k$ (其中 k 为奇数)。
- c) 计算 $Y=Y^k$ 。
- d) 计算 $C = g^k$ 。
- e) 计算 $B = g^{(k+1)/2}$ 。
- f) 若 $C^{2^{n-1}} \neq 1$,则输出"没有平方根",终止算法。
- g) 当 $C \neq 1$ 执行:
 - 1) 设 i 是使 $C^{2^i} = 1$ 成立的最小正整数;
 - 2) 计算 $C = C \times Y^{2^{u-i}}$:
 - 3) 计算 $B = B \times Y^{2^{u-i-1}}$ 。
- h) 输出 B。

D.1.5 概率素性检测

设 u 是一个大的正整数,下面的概率算法(Miller-Rabin 检测)将确定 u 是素数还是合数。

输入:一个大的奇数 u 和一个大的正整数 T。

输出:"概率素数"或"合数"。

- a) 计算 v 和奇数 w,使得 $u-1=2^{v} \cdot w$.
- b) 对i从 $1\sim T$ 执行:
 - 1) 在区间[2,u-1]中选取随机数 a。
 - 2) 置 $b=a^w \mod u$ 。

 - 4) 对 i 从 $1 \sim (v-1)$ 执行:
 - $\exists b = b^2 \mod u$:
 - 若 *b*=*u*-1,转到步骤 6);
 - $\overline{A} b = 1$,输出"合数"并终止:
 - 下一个 i。
 - 5) 输出"合数",并终止。
 - 6) 下一个j。
- c) 输出"概率素数"。

若算法输出"合数",则 u 是一个合数。若算法输出"概率素数",则 u 是合数的概率小于 2^{-2T} 。这样,通过选取足够大的 T,误差可以忽略。

D.2 有限域上的多项式

D.2.1 最大公因式

若 $f(x) \neq 0$ 和 $g(x) \neq 0$ 是系数在域 F_q 中的两个多项式,则唯一地存在次数最高的首一多项式 d(x),其系数在域 F_q 中且同时整除 f(x)和 g(x)。多项式 d(x)称为 f(x)和 g(x)的最大公因子,记为 g(x)0。利用下面的算法(欧几里德算法)可计算出两个多项式的最大公因子。

输入:有限域 F_a , F_a 上的两个非零多项式 $f(x) \neq 0$, $g(x) \neq 0$.

输出: $d(x) = \gcd(f(x), g(x))$ 。

- a) $\mathbb{E} a(x) = f(x), b(x) = g(x)$.
- b) 当 $b(x) \neq 0$ 时,循环执行:
 - 1) 置 $c(x) = a(x) \mod b(x)$;
 - 2) $\mathbb{E} a(x) = b(x);$
 - 3) 置b(x)=c(x)。

设 α 是 a(x)的首项系数并输出 $\alpha^{-1}a(x)$ 。

D.2.2 F_q 上多项式不可约性的检测

设 f(x)是 F_a 上的多项式,利用下面的算法可以有效地检测 f(x)的不可约性。

输入: F_q 上的首一多项式 f(x),素数 q。

输出:若 f(x)在 F_a 上不可约,则输出"正确";否则,输出"错误"。

- a) $\mathbb{E} u(x) = x, m = \deg(f(x))$.
- b) 对i从 $1\sim \lfloor m/2 \rfloor$ 执行:
 - 1) 计算 $u(x) = u^q(x) \mod f(x)$;
 - 2) 计算 $d(x) = \gcd(f(x), u(x) x)$;
 - 3) 若 $d(x) \neq 1$,则输出"错误",并终止算法。
- c) 输出"正确"。

D.3 椭圆曲线算法

D.3.1 椭圆曲线点的寻找

给定有限域上的椭圆曲线,利用下面的算法可有效地找出曲线上任意一个非无穷远点。

a) $E(F_t)$ 上点的寻找

输入:素数 p, F_b 上一条椭圆曲线 E 的参数 a, b。

输出: $E(F_p)$ 上一个非无穷远点。

- 1) 选取随机整数 $x,0 \le x < p$;
- 2) 置 $\alpha = (x^3 + ax + b) \mod p$;
- 3) 若 $\alpha = 0$,则输出(x,0)并终止算法;
- 4) 求 α mod p 的平方根 y (参见 D.1.4.1);
- 5) 若步骤 4)的输出是"不存在平方根",则返回步骤 1);
- 6) 输出(*x*,*y*)。
- b) $E(F_{am})(m \ge 2)$ 上点的寻找

输入:有限域 $F_{q^m}(q)$ 为奇素数), F_{q^m} 上的椭圆曲线 E 的参数 a,b。

输出: E 上一个非无穷远点。

- 1) 随机选取 F_{am} 上元素 x;
- 2) 在 F_{am} 上计算 $\alpha = x^3 + ax + b$:
- 3) 若 $\alpha = 0$,则输出(x,0)并终止算法;
- 4) 在 F_{am} 上求 α 的平方根 y(参见 D.1.4.3);
- 5) 若步骤 4)的输出是"不存在平方根",则返回步骤 1);
- 6) 输出(*x*,*y*)。

D.3.2 椭圆曲线上 l 阶点的寻找

本算法可用于椭圆曲线 l 阶子群生成元的求取。

输入:椭圆曲线 $E(F_a)$ 的参数 $a \ b$,曲线阶 $\sharp E(F_a) = n = l \cdot r$,其中 l 为素数。

输出: $E(F_a)$ 上一个 l 阶点。

- a) 用 D.3.1 的方法随机选取曲线上点 Q;
- b) 计算 $P = \lceil r \rceil Q$;
- c) 若 P=O,返回步骤 a);
- d) 输出 P。

D.3.3 扭曲线上 l 阶点的寻找

设 F_{q^m} 上椭圆曲线 E 的方程: $y^2 = x^3 + ax + b$, 其阶 $\sharp E(F_{q^m}) = q^m + 1 - t$, 设其扭曲线 E'的方程: $y^2 = x^3 + \beta^2 \cdot ax + \beta^3 \cdot b$, β 为 F_{q^m} 上非平方元, $E'(F_{q^m})$ 的阶 $\sharp E'(F_{q^m}) = q^m + 1 + t$.

输入: 椭圆曲线 $E(F_{q^m})$ 的扭曲线 $E'(F_{q^m})$ 的参数 a 、b 和 β ,扭曲线阶 $\sharp E'(F_{q^m}) = n' = l \cdot r$,其中 l 为素数。

输出: $E'(F_{q^m})$ 上一个 l 阶点。

- a) 用 D.3.1 的方法随机选取 $E'(F_{am})$ 上点 Q。
- b) 计算 $P = \lceil r \rceil Q_{\circ}$
- c) 若 P=O,返回步骤 a)。 否则, $P \neq l$ 阶点。
- d) 输出 P。

参考文献

- [1] ISO/IEC 14888-3:2004 Information technology—Security techniques—Digital signatures with appendix—Part 3:Discrete logarithm based mechanisms
- [2] ISO/IEC 15946-1:2002 Information technology—Security techniques—Cryptographic techniques based on elliptic curves—Part 1:General
- [3] ISO/IEC 15946-2:2002 Information technology—Security techniques—Cryptographic techniques based on elliptic curves—Part 2:Digital signatures
- [4] ISO/IEC 15946-3:2002 Information technology—Security techniques—Cryptographic techniques based on elliptic curves—Part 3:Key establishment
- [5] ISO/IEC 15946-4:2003 Information technology—Security techniques—Cryptographic techniques based on elliptic curves—Part 4:Digital signatures giving message recovery
- [6] ITU-T Recommendation X.680 Information technology—Abstract Syntax Notation One (ASN.1): Specification of basic notation
- [7] ITU-T Recommendation X. 681 Information technology—Abstract Syntax Notation One (ASN.1):Information object specification
- [8] ITU-T Recommendation X.682 Information technology—Abstract Syntax Notation One (ASN.1):Constraint specification
- [9] ITU-T Recommendation X.683 Information technology—Abstract Syntax Notation One (ASN.1): Parametrization of ASN.1 specifications
- [10] ITU-T Recommendation X.690 Information technology—ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)
- [11] ITU-T Recommendation X.691 Information technology—ASN.1 encoding rules: Specification of Packed Encoding Rules (PER)
 - [12] IEEE P1363:2000 Standard for Public Key Cryptography
- [13] ANSI X9. 62-1999 Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA)
- [14] ANSI X9.63-2001 Public Key Cryptography for the Financial Services Industry: Key Agreement and Key Transport Using Elliptic Curve Cryptography
- [15] Abdalla M, Lange T, Eds. 2012. Pairing-Based Cryptography-Pairing 2012. Proceedings (2012), vol. 7708 of Lecture Notes in Computer Science, Springer-Verlag.
- [16] Atkin A, Morain F. 1993. Elliptic Curves and Primality Proving, Mathematics of Computation61(203):29-68.
- [17] Barbulescu R, Gaudry P, Joux A, Thome E. 2014. A Heuristic Quasi-polynomial Algorithm for Discrete Logarithm in Finite Fields of Small Characteristic. In P. Q. Nguyen and E. Oswald, editors, Advances in Cryptology: Proceedings of EUROCRYPT'14, volume 8441 of LNCS, Springer-Verlag, 1-16.
- [18] Barreto P, Galbraith S, et al. 2004. Efficient Pairing Computation on Supersingular Abelian Varieties. Cryptology ePrint Archive, Report 2004/375.
- [19] Barreto P, Kim H, Lynn B, et al. 2002. Efficient Algorithms for Pairing-based Cryptosystems, Proceedings of CRYPTO 2002, LNCS 2442. Springer-Verlag, 354-369.

- [20] Barreto P, Lynn B, Scott M. 2002. Constructing Elliptic Curves with Prescribed Embedding Degrees. In: Security in Communication Networks-SCN' 2002, LNCS 2576. Springer-Verlag, 263-273.
- [21] Barreto P, Lynn B, Scott M. 2003. On the Selection of Pairing-friendly Groups. In: Selected Areas in Cryptography-SAC'2003, LNCS 3006. Ottawa, Canada: Springer-Verlag, 17-25.
- [22] Barreto P, Naehrig M. 2005. Pairing-friendly Elliptic Curves of Prime Order. Cryptology ePrint Archive, Report 2005/133.
 - [23] Boneh D, Franklin M. 2001. Identity Based Encryption from the Weil-pairing, Proceedings of CRYPTO 2001, LNCS 2139. Springer-Verlag, 213-229.
- [24] Brezing F, Weng A. 2005. Elliptic Curves Sutable for Pairing Based Cryptography, Designs, Codes and Cryptography, 37:133-141.
- [25] Brickell E, Gordon D, Mccurley K, et al. 1993. Fast Exponentiation with Precomputation. In: Advances in Cryptology-EUROCRYPT'92, LNCS 658. Berlin: Springer-Verlag, 200-207.
- [26] Cao Zhenfu, Zhang Fanggou, Eds. 2013. Pairing-Based Cryptography-Pairing 2013. Proceedings (2013), vol. 8365 of Lecture Notes in Computer Science, Springer-Verlag.
- [27] Cha J C, Cheon J H. 2002. An Identity-based Signature from Gap Diffie-Hellman Groups, Proceedings of PKC 2002, LNCS 2567. Springer-Verlag, 18-30.
- [28] Cheng Qi, Wan Daqing and Zhuang Jincheng. 2014. Traps to the BGJT-Algorithm for Discrete Logarithms. ePrint 2014.
- [29] Cheon, J. H. 2006. Security Analysis of the Strong Diffie-hellman Problem. In EURO-CRYPT (2006), S. Vaudenay, Ed., vol. 4004 of Lecture Notes in Computer Science, Springer-Verlag, 1-11.
- [30] Duan P, Cui S, Wah Chan C. 2005. Special Polynomial Families for Generating More Suitable Elliptic Curves for Pairing-based Cryptosystems. Cryptology ePrint Archive, Report 2005/342.
- [31] Dupont R, Enge A, Morain F. 2005. Building Curves with Arbitrary Small MOV Degree over Finite Prime Fields, Journal of Cryptology, 18(2):79-89.
- [32] Eisentrager K, Lauter K, Montgomery P. 2003. Fast Elliptic Curve Arithmetic and Improved Weil-pairing Evaluation. In: Topics in Cryptology, CT-RSA03, LNCS 2612. Springer-Verlag, 343-354.
- [33] Freeman D. 2006. Constructing Pairing-friendly Elliptic Curves with Embedding Degree 10. In: Algorithmic Number Theory Symposium-ANTS-VII, LNCS 4076. Springer-Verlag, 452-465.
- [34] Freeman D, Scott M, Teske E. 2006. A Taxonomy of Pairing-friendly Elliptic Curves, Cryptology ePrint Archive Report 2006/372.
- [35] Frey G, Müller M, Rück H. 1999. The Tate-pairing and the Discrete Logarithm Applied to Elliptic Curve Cryptosystems, IEEE Transactions on Information Theory, 45(5):1717-1719.
- [36] Galbraith S. 2001. Supersingular Curves in Cryptography, Proceedings of Asiacrypt 2001, LNCS 2248. Springer-Verlag, 495-513.
- [37] Galbraith S, Harrison K, Soldera D. 2002. Implementing the Tate-pairing, Proceedings of ANTSV, LNCS 2369. Springer-Verlag, 324-337.
- [38] Galbraith S, Paterson K, Eds. 2008. Pairing-Based Cryptography-Pairing 2008. Proceedings (2008), vol. 5209 of Lecture Notes in Computer Science, Springer-Verlag.
- [39] Googlu F, Granger R, McGuire G, and Zumbrael J. 2013. On the Function Field Sieve and the Impact of Higher Splitting Probabilities: Application to discrete logarithms in F_2^{1971} . Cryptology

- ePrint Archive, Report 2013/074.
- [40] Hess F, Smart N, Vercauteren F. 2006. The Eta-pairing Revisited. Cryptology ePrint Archive, Report 2006/110.
- [41] Joux A. 2013. Faster Index Calculus for the Medium Prime Case Application to 1175-bit and 1425-bit Finite Fields. In Advances in Cryptology EUROCRYPT 2013. Springer-Verlag, 177-193.
- [42] Joux A. 2013. A New Index Calculus Algorithm with Complexity L(1/4 + o(1)) in Very Small characteristic. In Selected Areas in Cryptography-SAC 2013, volume 8282 of Lecture Notes in Computer Science, Springer-Verlag, 355-382.
- [43] Joye M, Miyaji A, Otsuka A, Eds. 2010. Pairing-Based Cryptography-Pairing 2010. Proceedings (2010), vol. 6487 of Lecture Notes in Computer Science, Springer-Verlag.
- [44] Knuth D. 1981. The Art of Computer Programming(Vol 2). 2nd ed. Reading(MA): Addison-Wesley.
- [45] Kobayashi T, Aoki K, Imai H. 2006. Efficient Algorithms for Tate-pairing. IEICE Trans. Fundamentals, E89-A.
 - [46] Koblitz N. 1987. Elliptic Curve Cryptosystems. Mathematics of Computation, 48:203-209.
- [47] Lauter K, Montgomery P, Naehrig M. 2010. An Analysis of Affine Coordinates for Pairing Computation. Pairing-Based Cryptography-Pairing 2010. Proceedings (2010), vol. 6487 of Lecture Notes in Computer Science, Springer-Verlag.
- [48] Lay G, Zimmer H. 1994. Constructing Elliptic Curves with Given Group Order over Large Finite Fields, In: Algorithmic Number Theory Symposium-ANTS-1, LNCS 877. Springer-Verlag, 250-263 Menezes A. 1993. Elliptic Curve Public Key Cryptosystems. Boston: Kluwer Academic Publishers.
- [49] Lidl R, Niederreiter H. 1983. Finite Fields. Reading(MA): Addison-Wesley Menezes A, Okamoto T, Vanstone S. 1993. Reducing Elliptic Curve Logarithms to Logarithms in a Finite Field. IEEE Transactions on Information Theory, 39:1639-1646.
- [50] Miller V. 2004. The Weil-pairing and its Efficient Calculation, Journal of Cryptology, 17: 235-261.
 - [51] Milne J. 2006. Complex Multiplication, http://www.jmilne.org/math.
- [52] Miyaji A, Nakabayashi M, Takano S. 2001. New Explicit Conditions of Elliptic Curve Traces for FR-reduction, IEICE Transactions on Fundamentals, E84-A(5):1234-1243.
- [53] Müller V. 1995. Counting the Number of Points on Elliptic Curves over Finite Fields of Characteristic Greater than Three: [Doctorate Dissertation]. Saarlandes: University of Saarlandes.
- [54] Pollard J. 1978. Monte Carlo Methods for Index Computation mod p. Mathematics of Computation, 32:918-924.
- [55] Schoof R. 1985. Elliptic Curves over Finite Fields and the Computation of Square Roots mod p.Mathematics of Computation, 44(170):483-494.
- [56] Scott M. 2005. Computing the Tate-pairing. In: CT-RSA, LNCS 3376. Springer-Verlag, 293-304.
 - [57] Scott M. 2006, Implementing Cryptographic Pairings, ECC 2006.
- [58] Scott M, Barreto P. 2004. Compressed Pairings. In: Advances in Cryptology Crypto' 2004, LNCS 3152. Springer-Verlag, 140-156.
- [59] Scott M, Barreto P. 2006. Generating More MNT Elliptic Curves, Designs, Codes and Cryptography, 38:209-217.

GB/T 38635.1-2020

- [60] Shacham H, Waters B, Eds. 2009. Pairing-Based Cryptography-Pairing 2009. Proceedings (2009), vol. 5671 of Lecture Notes in Computer Science, Springer-Verlag.
 - [61] Silverman J. 1986. The Arithmetic of Elliptic Curves. Berlin: springer-Verlag, GTM 106
- [62] Smart N. 1999. The Discrete Logarithm Problem on Elliptic Curves of Trace One. Journal of Cryptology, 12(3):193-196.
- [63] Takagi T, Okamoto T, Okamoto E, and Okamoto T, Eds. 2007. Pairing-Based Cryptography-Pairing 2007. Proceedings (2007), vol. 4575 of Lecture Notes in Computer Science, Springer-Verlag.
- [64] Thuen Ø. 2006. Constructing Elliptic Curves over Finite Fields Using Complex Multiplication, Master of Science in Physics and Mathematics.