Словарь

Kinds – виды, разновидность.

Buoyancy forces –сила Архимеда.

Drag forces – капиллярные силы.

underrelaxation factor – коэффициент нижней релаксации.

Mimicking the formulation – составить линейную комбинацию из уравнений.

Body force – массовая сила.

guessed pressure – предварительно определенное поле давления (промежуточное поле давлений не являющееся решением системы уравнений – это поле результат незавершенного итерационного процесса, это лишь некое незавершенное приближение к истинному распределению).

Кратко об авторе статьи (Ибрагим Сезай):

С 1973 по 1978 года учился в техническом университете на среднем востоке. С 2006 года по настоящее время: Профессор, инженер механик в Восточном Средиземном Университете. Занимается преподавательской деятельностью.

Полунеявная процедура для связывающих уравнений неразрывности и скоростьдавление (SIMPLE) при расчёте несжимаемых течений на совмещенных сетках.

Ибрагим Сезай (I. Sezai) - Восточный Средиземноморский Университет, Департамент Инженеров Механиков, Мерсин 10 – Турция. Правлено в январе 11 года.

1. Введение.

Обычно для решения задач динамики жидкости используются два механизма организации разностной сетки – шахматные (разнесенные) или совмещенные сетки. Для совмещённой сетки векторные переменные и скалярные переменные хранятся в одних и тех же узлах (геометрических позициях), в то время как для шахматных сеток векторные переменные и скалярные переменные хранятся в разных местах (геометрических позициях), сдвинутых на половину контрольного объема в каждом координатном направлении. Шахматные сетки популярны из-за их способности предотвращать несоответствующие физическому смыслу шахматные осцилляции поля давления, которые возникают при решении уравнения сохранения импульса, это обсуждается в главе 6. Тем не менее, программная реализация на шахматных сетках испытывает определенные трудности, так как х и у компоненты уравнения сохранения импульса аппроксимируются для различных контрольных объёмов (позиционно геометрически) смещенных от основного контрольного объема (в котором хранятся такие скаляры как температура или давление) в различных координатных направлениях. Трудности программной реализации сильно возрастают, когда речь заходит о криволинейных или неструктурированных результате почти все программные коды, предназначенные гидродинамических задач на криволинейных или неструктурированных сетках, не используют шахматные сетки.

С другой стороны, совмещённые сетки способны приводить к неправильным распределениям поля давления — шахматные осцилляции (расслоения) поля давления,

если не будут приняты специальные меры. По этой причине в начале 1980-х годов и ранее совмещенные сетки практически не применялись для расчёта гидродинамических задач. Тем не менее, с 1983 года совмещенные сетки стали использоваться более широко, после того как Рхи и Чоу (1983) предложили метод сеточной аппроксимации уравнений сохранения импульса для устранения проблемы с шахматной осцилляцией поля давления.

1. Математическая постановка задачи.

Основными уравнениями для двумерного переноса потоков тепла и массы (жидкой среды под которой понимаются как жидкости, так и газы) в прямоугольных координатах для среды с постоянными теплофизическими свойствами (теплопроводностью, и т.п.) являются

уравнение неразрывности:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \tag{1}$$

х-компонента уравнения сохранения импульса:

$$\frac{\partial(\rho u)}{\partial t} + \frac{\partial(\rho u u)}{\partial x} + \frac{\partial(\rho v u)}{\partial y} = -\frac{\partial p}{\partial x} + \frac{\partial}{\partial x} \left(\mu \frac{\partial u}{\partial x}\right) + \frac{\partial}{\partial y} \left(\mu \frac{\partial u}{\partial y}\right) + s_u$$
 (2)

у-компонента уравнения сохранения импульса:

$$\frac{\partial(\rho v)}{\partial t} + \frac{\partial(\rho u v)}{\partial x} + \frac{\partial(\rho v v)}{\partial y} = -\frac{\partial p}{\partial y} + \frac{\partial}{\partial x} \left(\mu \frac{\partial v}{\partial x}\right) + \frac{\partial}{\partial y} \left(\mu \frac{\partial v}{\partial y}\right) + s_v \tag{3}$$

уравнение сохранения энергии:

$$\frac{\partial(\rho T)}{\partial t} + \frac{\partial(\rho u T)}{\partial x} + \frac{\partial(\rho v T)}{\partial y} = \frac{\partial}{\partial x} \left(\frac{k}{c_p} \frac{\partial T}{\partial x}\right) + \frac{\partial}{\partial y} \left(\frac{k}{c_p} \frac{\partial T}{\partial y}\right) + s_T \tag{4}$$

Уравнения (2)-(4) могут быть представлены в обобщённом виде (который предложил проф. Б. Сполдинг)

$$\frac{\partial(\rho\phi)}{\partial t} + \frac{\partial(\rho u\phi)}{\partial x} + \frac{\partial(\rho v\phi)}{\partial y} = \frac{\partial}{\partial x} \left(\Gamma \frac{\partial \phi}{\partial x}\right) + \frac{\partial}{\partial y} \left(\Gamma \frac{\partial \phi}{\partial y}\right) + s_{\phi}$$
 (5)

где и и v компоненты скорости, T — температура, ϕ - обобщенная переменная (может принимать роль u,v или T), t, ρ , Γ и s_{ϕ} это время, плотность, коэффициент диффузии, и источниковый член в единице объема, соответственно. Кроме того, источниковые члены s_u и s_v представляют собой капиллярные силы, силу Архимеда (плавучесть) и другие. Обратите внимание, что для уравнения неразрывности $\phi=1, \Gamma=0$, и $s_{\phi}=0$. При численных расчётах источниковые члены записываются в линеаризованной форме $s=s_c+s_P\cdot\phi$.

Например, при моделировании естественной конвекции правая часть в уравнении для укомпоненты сохранения импульса содержит дополнительный член $-\rho_{ref}\vec{g}\beta(T-T_{\infty})$ для которого член $s_C=-\rho_{ref}\left|g_{y}\right|\beta_T\left(T-T_{ref}\right)$, а $s_P=0$. Точно также для задач, связанных с выделением тепла в правую часть уравнения сохранения энергии, записывается дополнительный источниковый член \dot{q} , который является скоростью генерации энергии в единице объёма. Тогда в этом случае $s_C=\dot{q}$, $s_P=0$.

Основные уравнения аппроксимированы на совмещённой сетке с помощью метода контрольного объёма, при таком способе все переменные хранятся в центре контрольного объема (см. рис. 1). Проинтегрируем соотношение (5) по контрольному объёму, который ограничен гранями ячейки е, w, n и s, которые окружают центр объема (точку) P, у нас есть:

$$\frac{\rho \Delta x \Delta y}{\Delta t} (\phi_P - \phi_P^0) + [(\rho u \phi)_e - (\rho u \phi)_w] \Delta y + [(\rho v \phi)_n - (\rho v \phi)_s] \Delta x =$$

$$\left[\frac{\Gamma_e}{\delta x_e} (\phi_E - \phi_P) - \frac{\Gamma_w}{\delta x_w} (\phi_P - \phi_W) \right] \Delta y + \left[\frac{\Gamma_n}{\delta y_n} (\phi_N - \phi_P) - \frac{\Gamma_s}{\delta y_s} (\phi_P - \phi_S) \right] \Delta x + s_c \Delta x \Delta y + s_p \phi_P \Delta x \Delta y$$
(6)

где индекс 0 относится к предыдущему временному слою и Δx , Δy , δx_e , δx_w , δy_n и δy_s геометрические длины как показано на рисунке 1.

Рис. 1. Организация совмещённой сетки.

Конечно-разностное представление уравнения неразрывности для несжимаемых течений имеет вид

$$(\rho u_{\rho})\Delta y - (\rho u_{w})\Delta y + (\rho v_{n})\Delta x - (\rho v_{s})\Delta x = 0 \tag{7}$$

Значения обобщенной переменной ϕ_e , ϕ_w на гранях контрольного объема рассчитываются с помощью схемы Леонарда QUICK или любой другой схемы высокого порядка, с помощью применения метода отложенной коррекции. Подставив эти значения в уравнение (6) и приводя подобные слагаемые, получаем окончательную форму дискретного аналога, для обобщенной переменой ϕ , в следующей форме.

$$a_P \phi_P = a_E \phi_E + a_W \phi_W + a_N \phi_N + a_S \phi_S + a_P^o \phi_P^o + b + pterm$$
(8)

где

$$a_{\mathcal{E}} = \frac{\Gamma_e \Delta y}{\Delta x_e} + \max \left[-(\rho u \)_e \Delta y, \ 0 \right]$$

$$a_{\mathcal{W}} = \frac{\Gamma_u \Delta y}{\Delta x_w} + \max \left[(\rho u)_w \Delta y, \ 0 \right]$$

$$a_{\mathcal{S}} = \frac{\Gamma_s \Delta x}{\Delta y_s} + \max \left[-(\rho v)_n \Delta x \ , \ 0 \right]$$

$$a_{\mathcal{S}} = \frac{\Gamma_s \Delta x}{\Delta y_s} + \max \left[(\rho v)_s \Delta x \ , \ 0 \right]$$

$$a_{\mathcal{S}} = \frac{\rho \Delta x \Delta y}{\Delta t}$$

$$a_{\mathcal{P}} = \frac{\rho \Delta x \Delta y}{\Delta t}$$

$$a_{\mathcal{P}} = a_{\mathcal{E}} + a_{\mathcal{W}} + a_{\mathcal{N}} + a_{\mathcal{S}} + a_{\mathcal{P}}^{\rho} - S_{\mathcal{P}} + \Delta F$$

$$\Delta F = (\rho u)_e \Delta y - (\rho u)_w \Delta y + (\rho v)_n \Delta x - (\rho v)_s \Delta x$$

$$b = (s_e)_{eqn} \Delta x \Delta y + b_1 \quad b_1 = S_{de} + (S_e)_{be} \quad S_{\mathcal{P}} = (s_{\mathcal{P}})_{eqn} \Delta x \Delta y + (S_{\mathcal{P}})_{be}$$

$$S_{de} = -\max \left[(\rho u)_e \Delta y, \ 0 \right] (\phi_e - \phi_{\mathcal{P}}) + \max \left[-(\rho u)_e \Delta y, \ 0 \right] (\phi_e - \phi_{\mathcal{E}})$$

$$-\max \left[-(\rho u)_w \Delta y, \ 0 \right] (\phi_w - \phi_{\mathcal{P}}) + \max \left[-(\rho u)_w \Delta y, \ 0 \right] (\phi_w - \phi_{\mathcal{W}})$$

$$-\max \left[(\rho v)_n \Delta x, \ 0 \right] (\phi_n - \phi_{\mathcal{P}}) + \max \left[-(\rho v)_n \Delta x, \ 0 \right] (\phi_n - \phi_{\mathcal{N}})$$

$$-\max \left[-(\rho v)_s \Delta x, \ 0 \right] (\phi_s - \phi_{\mathcal{P}}) + \max \left[(\rho v)_s \Delta x, \ 0 \right] (\phi_s - \phi_s)$$

$$= \begin{cases} = -(p_e - p_w) \Delta y \text{ для x-компоненты сохранения импульса} \\ = -(p_n - p_s) \Delta x \text{ для y-компоненты сохранения импульса} \\ = 0 \text{ для других уравнений} \end{cases}$$

 $(s_p)_{eqn}$, $(s_c)_{eqn} = {}_{\text{источниковые члены в единице объема в дифференциальных уравнениях}$ (для сил плавучести (Архимеда), и капиллярных сил (сил поверхностного натяжения и др.) $(S_p)_{bc}$, $(S_c)_{bc} = {}_{\text{источниковые члены в граничных узлах}$.

где b представляет дискретизованные вклады всех источниковых членов, за исключением источникового члена, который представляет собой перепад давления. Источниковый член Sdc представляет собой результат применения метода отложенной коррекции для каждого значения искомой переменой ϕ на грани контрольного объема, ϕ_p^0 значение переменой ϕ_p с предыдущего шага по времени (дело в том, что в системе алгебраических уравнений может быть неявно учтена лишь противопоточная часть, а дополнение до схемы высокой разрешающей способности, такой как схема Леонарда QUICK, может быть учтена лишь явно, отсюда использование источникового члена и значений переменных с предыдущего $\phi_e, \ \phi_w, \ \phi_n, \ \phi_s$ рассчитываются из подходящей схемы высокой временного слоя). разрешающей способности, такой как QUICK. Sbc это вклад в источниковый член для узлов соседствующих с граничными. Например, если на западной границе стоит условие Дирихле (задано значение функции) $\phi = \phi_{\scriptscriptstyle W}$ то для точки внутри области соседствующей с заданной точкой на западной границе вклад в источниковый член будет $S_{bc} = a_W \phi_{w}$, где $a_{\rm w}$ будет коэффициент, как если бы граничная точка обрабатывалась однообразно с внутренней. Точно также, как $(Sp)_{bc}$ является вкладом в источниковый член для внутренней точки, соседствующей с граничным узлом.

Кроме того, обратите внимание, что источниковые члены, обозначенные маленькими буквами, приводятся на единицу объёма. То есть, $S = s\Delta V$, $Sc = sc\Delta V$, и $Sp = sp\Delta V$, где ΔV объём контрольного объёма.

Можно увидеть, что коэффициенты дискретного аналога для х и у компонент уравнения сохранения импульса одинаковы, на совмещенных сетках (за исключением узлов сетки соседствующих с границей), при условии, что коэффициенты диффузии Г одинаковые в х и у-направлениях.

Для того, чтобы замедлить изменения зависимых переменных в итерационном (последовательном) решателе, в дискретный аналог вводится коэффициент нижней релаксации следующим образом:

$$\frac{a_P}{\alpha_\phi}\phi_P = a_E\phi_E + a_W\phi_W + a_N\phi_N + a_S\phi_S + a_P^o\phi_P^o + b + pterm + \frac{\left(1 - \alpha_\phi\right)}{\alpha_\phi}a_P\phi_P^{n-1} \tag{10}$$

где верхний индекс (n-1) относится к предыдущей итерации. В этом случае, формулы расчёта в уравнении (9) переопределены следующим образом

$$\begin{cases} b \leftarrow b + (1 - \alpha) \frac{a_p}{\alpha} \phi_p^{n-1} \\ a_p \leftarrow \frac{a_p}{\alpha} \end{cases}$$

Уравнение (10) может быть записано следующим образом

$$\phi_{P} = \frac{\alpha_{\phi}}{a_{p}} \left(a_{E} \phi_{E} + a_{W} \phi_{W} + a_{N} \phi_{N} + a_{S} \phi_{S} + b_{p} + a_{p}^{o} \phi_{p}^{o} \right) + \left(1 - \alpha_{\phi} \right) \phi_{P}^{n-1} + \frac{\alpha_{\phi} p term}{a_{p}}$$

$$\tag{11}$$

или

$$\phi_{P} = \frac{\alpha_{\phi}}{a_{P}} \left(a_{E} \phi_{E} + a_{W} \phi_{W} + a_{N} \phi_{N} + a_{S} \phi_{S} + B_{P} \right) + \frac{\alpha_{\phi} p term}{a_{P}}$$
 (12)

где

$$B_p = b_p + a_p^o \phi_p^o + \frac{\left(1 - \alpha_\phi\right)}{\alpha_\phi} a_p \phi_p^{n-1}$$
(13)

4. Интерполяция скорости на грань контрольного объёма.

4.1. Интерполяция скорости на грань контрольного объёма при моделировании установившихся во времени течений.

Обратите внимание, что для стационарных задач $B_p = b_p + \left[\left(1 - \alpha_u \right) / \alpha_u \right] a_p u_p^{n-1}$ [Уравнение (13)]. Для горизонтальной скорости и в узлах Р и Е уравнение (12) можно записать в виде

$$u_p = \frac{\alpha_u \left(\sum_i a_i u_i + B_p\right)_p}{\left(a_p\right)_p} - \frac{\alpha_u \Delta y \left(p_e - p_w\right)_p}{\left(a_p\right)_p} \tag{14}$$

$$u_E = \frac{\alpha_u \left(\sum_i a_i u_i + B_p\right)_E}{\left(a_p\right)_E} - \frac{\alpha_u \Delta y \left(p_e - p_w\right)_E}{\left(a_p\right)_E}$$

$$\tag{15}$$

Комбинируя выражения для узлов Е и Р для горизонтальной скорости и на грани е общей для контрольных объемов Р и Е, можно получить следующее выражение:

$$u_{e} = \frac{\alpha_{u} \left(\sum_{i} a_{i} u_{i} + B_{p} \right)_{e}}{\left(a_{p} \right)_{e}} - \frac{\alpha_{u} \Delta y \left(p_{E} - p_{P} \right)}{\left(a_{p} \right)_{e}}$$

$$(16)$$

где для слагаемых в правой части с индексом е должна проводиться интерполяция на грань контрольного объёма надлежащим образом. Скорости на других гранях контрольного объема, таких как w, n и s могут быть получены аналогичным образом.

В Рхи и Чоу интерполяции скорости на грань ячейки контрольного объёма, первый

числитель и, во-вторых, оба знаменателя в уравнении (16) равные $1/(a_p)_e$ получены методом линейной интерполяции с помощью соотношений (14) и (15).:

$$\left(\frac{\sum_{i} a_{i} u_{i} + B_{p}}{a_{p}}\right)_{e} = f_{e}^{+} \left(\frac{\sum_{i} a_{i} u_{i} + B_{p}}{a_{p}}\right)_{E} + \left(1 - f_{e}^{+}\right) \left(\frac{\sum_{i} a_{i} u_{i} + B_{p}}{a_{p}}\right)_{p} \tag{17}$$

$$\frac{1}{\left(a_{p}\right)_{e}} = f_{e}^{+} \frac{1}{\left(a_{p}\right)_{E}} + \left(1 - f_{e}^{+}\right) \frac{1}{\left(a_{p}\right)_{p}} \tag{18}$$

здесь f_e^+ коэффициент линейной интерполяции, который определяется как $f_e^+ = \frac{\Delta x_p}{2\delta x} \tag{19}$

Для того чтобы иметь более подходящую форму уравнения (16), подставим $\left(\sum_i a_i u_i + B_p / a_p\right)_e$ из уравнения (17) и $\left(\sum_i a_i u_i + B_p / a_p\right)_p$, $\left(\sum_i a_i u_i + B_p / a_p\right)_E$ из

уравнений (14) и (15) в уравнение (16), и опуская член $a_p^{\sigma} u_p^{\sigma}$, мы получаем в итоге

$$u_{e} = \left[f_{e}^{+} u_{E} + \left(1 - f_{e}^{+} \right) u_{P} \right] + \begin{cases} -\frac{\alpha_{u} \Delta y \left(p_{E} - p_{P} \right)}{\left(a_{P} \right)_{e}} + f_{e}^{+} \frac{\alpha_{u} \Delta y \left(p_{e} - p_{w} \right)_{E}}{\left(a_{P} \right)_{E}} \\ + \left(1 - f_{e}^{+} \right) \frac{\alpha_{u} \Delta y \left(p_{e} - p_{w} \right)_{P}}{\left(a_{P} \right)_{P}} \end{cases}$$

$$(20)$$

Уравнения (16) и (20), по существу эквивалентны. Однако уравнение (20) разделяет выражение для скорости на грани контрольного объема на две части: в первой части осуществляется линейная интерполяция скорости на грань контрольного объёма, а во второй части представлено дополнительное корректирующее слагаемое. Слагаемое в является (20)квадратных скобках уравнения взвешенным арифметическим двух значений (линейная интерполяция) скоростей в ячейках совмещенной сетки соседствующих по грани е в прилегающих контрольных объемах. Слагаемое в фигурных скобках может рассматриваться в качестве поправочного члена, который подавляет не соответствующие физическому смыслу осцилляции поля давления. Уравнения (16) с (17) и (18) или выражение (20) представляют собой оригинальный метод интерполяции скорости на грань контрольного объёма (OMIM – Original Momentum Interpolation Method), который как раз и предложили Рхи и Чоу. Маджумдар (Majumdar) (1988) сообщил, что при моделировании установившихся во времени течений с использованием поправки Рхи-Чоу (ОМІМ) наблюдается зависимость полученного решения от коэффициента нижней релаксации. Для устранения зависимости решения от коэффициента нижней релаксации в итерационном алгоритме было предложено вычислять скорость на грани контрольного объёма для стационарных задач следующим образом:

$$u_{e} = \frac{\alpha_{u} \left(\sum_{i} a_{i} u_{i} + b_{p} \right)_{e}}{\left(a_{p} \right)_{e}} - \frac{\alpha_{u} \Delta y \left(p_{E} - p_{P} \right)}{\left(a_{P} \right)_{e}} + \left(1 - \alpha_{u} \right) \left[u_{e}^{n-1} + f_{e}^{+} u_{E}^{n-1} - \left(1 - f_{e}^{+} \right) u_{P}^{n-1} \right]$$
(21)

где индекс n-1 относится к значениям переменных с предыдущей итерации. Эта реализация итерационной процедуры способна рассчитать единственное решение, которое не зависит от коэффициента нижней релаксации.

4.2. Интерполяция скорости на грань контрольного объёма при моделировании неустановившихся во времени течений (нестационарных, когда интересен переходной процесс).

Чой (Choi) (1999) сообщил, что решение задачи по нахождению поля течения жидкости с использованием оригинального Рхи и Чоу метода интерполяции скорости на грань ячейки зависит от размера шага по времени. Он следующим предложил модифицированную Рхи и Чоу схему интерполяции скорости на грань ячейки для нестационарного моделирования полей течения жидкости и его формулировка очень похожа на схему Маджумдара для установившихся во времени течений:

$$u_e = \alpha_u \left(\frac{\sum_i a_i u_i + b_p}{a_p} \right)_e - \frac{\alpha_u \Delta y \left(p_E - p_p \right)}{\left(a_p \right)_e} + \left(1 - \alpha_u \right) u_e^{n-1} + \frac{\alpha_u a_e^o}{\left(a_p \right)_e} u_e^o$$
(22)

в которой

$$a_e^o = \frac{\rho \delta x_e \Delta y}{\Delta t} \tag{23}$$

Следует отметить, что мы пренебрегли, для простоты изложения, массовыми силами в источниковом члене. По аналогии с интерполяцией примененной Маджумдаром в уравнении (21), из уравнения (22) можно получить

$$u_{e} = \left[f_{e}^{+} u_{E} + \left(1 - f_{e}^{+} \right) u_{P} \right] + \begin{cases} -\frac{\alpha_{u} \Delta y \left(p_{E} - p_{P} \right)}{\left(a_{P} \right)_{e}} + f_{e}^{+} \frac{\alpha_{u} \Delta y \left(p_{e} - p_{w} \right)_{E}}{\left(a_{P} \right)_{E}} \\ + \left(1 - f_{e}^{+} \right) \frac{\alpha_{u} \Delta y \left(p_{e} - p_{w} \right)_{P}}{\left(a_{P} \right)_{P}} \\ + \left(1 - \alpha_{u} \right) \left[u_{e}^{n-1} + f_{e}^{+} u_{E}^{n-1} - \left(1 - f_{e}^{+} \right) u_{P}^{n-1} \right] \\ + \left[\frac{\alpha_{u} a_{e}^{o}}{\left(a_{P} \right)_{e}} u_{e}^{o} - f_{e}^{+} \frac{\alpha_{u} \left(a_{P}^{o} \right)_{E}}{\left(a_{P} \right)_{E}} u_{E}^{o} - \left(1 - f_{e}^{+} \right) \frac{\alpha_{u} \left(a_{P}^{o} \right)_{P}}{\left(a_{P} \right)_{P}} u_{P}^{o} \right] \end{cases}$$

$$(24)$$

Согласно Юу (Yu) с соавторами (2002), решения нестационарных уравнений Навье-Стокса, полученные на основе схемы с привлечением соотношения (24), всё еще зависят от величины шага по времени, правда, эта зависимость довольно слабая. Они предложили другую технику интерполяции скорости на грань ячейки для слагаемых, входящих в уравнение (22), и решение, полученное с помощью их интерполяции, кажется не зависит как от параметра нижней релаксации, так и от величины шага по времени. В этом методе первое слагаемое правой части уравнения (22) интерполируется следующим образом:

$$f_{e}^{+} \left(\sum_{i} a_{i} u_{i} + b_{1} \right)_{E} + \left(1 - f_{e}^{+} \right) \left(\sum_{i} a_{i} u_{i} + b_{1} \right)_{p}$$

$$\left(\frac{\sum_{i} a_{i} u_{i} + b_{p}}{a_{p}} \right)_{e} = \frac{+ \left[f_{e}^{+} \left(s_{c} \right)_{E} + \left(1 - f_{e}^{+} \right) \left(s_{c} \right)_{p} \right] \delta x_{e} \Delta y}{f_{e}^{+} \left(\sum_{i} a_{i} \right)_{E} + \left(1 - f_{e}^{+} \right) \left(\sum_{i} a_{i} \right)_{p}}$$

$$- \left[f_{e}^{+} \left(s_{p} \right)_{E} + \left(1 - f_{e}^{+} \right) \left(s_{p} \right)_{p} \right] \delta x_{e} \Delta y + a_{e}^{o}$$

$$(25)$$

где b_1 определено в уравнении (9).

Кроме того, знаменатель второго и четвёртого слагаемого в уравнении (22) интерполируется следующим образом:

$$(a_P)_e = f_e^+ (\Sigma_i a_i)_E + (1 - f_e^+)(\Sigma_i a_i)_P$$

$$- \left[f_e^+ (s_p)_E + (1 - f_e^+)(s_p)_P \right] \delta x_e \Delta y + a_e^o$$
(26)

Уравнение (22) в сочетании с формулой (25) и уравнением (26) представляют собой новую схему интерполяции скорости на грань ячейки контрольного объёма, которая и была предложена Юу с соавторами (2002). Подставляя соотношение (25) в уравнение (22) получаем следующее уравнение:

$$u_{e} = \frac{1}{(a_{p})_{e}} \left\{ -\Delta y \left(p_{E} - p_{P} \right) + f_{e}^{+} \left(a_{p} \right)_{E} u_{p} \right]$$

$$+ \alpha_{u} \left[\left(f_{e}^{+} \left(s_{c} \right)_{E} + \left(1 - f_{e}^{+} \right) \left(s_{c} \right)_{p} \right) \delta x_{e} \Delta y - f_{e}^{+} \left(s_{c} \right)_{E} \Delta x_{E} \Delta y \right]$$

$$+ \alpha_{u} \left[-\Delta y \left(p_{E} - p_{P} \right) + f_{e}^{+} \Delta y \left(p_{e} - p_{w} \right)_{E} + \left(1 - f_{e}^{+} \right) \Delta y \left(p_{e} - p_{w} \right)_{p} \right]$$

$$+ \left(1 - \alpha_{u} \right) \left[\left(a_{p} \right)_{e} u_{e}^{n-1} - f_{e}^{+} \left(a_{p} \right)_{E} u_{E}^{n-1} - \left(1 - f_{e}^{+} \right) \left(a_{p} \right)_{p} u_{p}^{n-1} \right]$$

$$+ \alpha_{u} \left[a_{e}^{o} u_{e}^{o} - f_{e}^{+} \left(a_{p}^{o} \right)_{E} u_{E}^{o} - \left(1 - f_{e}^{+} \right) \left(a_{p}^{o} \right)_{p} u_{p}^{o} \right]$$

$$(27)$$

где $(a_p)_e$ находится из соотношения (26). Следует отметить, что член в скобке, который умножается на $(1-\alpha_u)$ в работе Юу и соавторов (2002) указан неверно.

Следует также отметить, что скорости на грани контрольного объёма, найденные с помощью оригинального метода интерполяции Рхи-Чоу, используются для определения потоков массы через грань контрольного объёма. Они не должны использоваться для значения независимой переменной ϕ на грани контрольного объёма в методе отложенной коррекции (см. поправочный член bdc в уравнении (9)) в случае, когда ϕ обозначает горизонтальную или вертикальную компоненты вектора скорости в х или у проекциях уравнения сохранения импульса. Значения независимой переменной ϕ на грани контрольного объёма вычисляются с помощью подходящей схемы аппроксимации конвективного члена, например, противопоточной схемы (UPWIND) или схемы Б.П. Леонарда (QUICK).

Полунеявная процедура для связывающих уравнений неразрывность и скорость-давление (SIMPLE).

Приближённо найденному в ходе вычислительного процесса полю давления p соответствует скорость u_{ϵ}^{*} на грани е контрольного объёма, она может быть записана с помощью уравнения (22) как:

$$u_{e}^{*} = \frac{\alpha_{u} \left(\sum_{i} a_{i} u_{i}^{*} + b_{p} \right)_{e}}{\left(a_{p} \right)_{e}} - \frac{\alpha_{u} \Delta y \left(p_{E}^{*} - p_{P}^{*} \right)}{\left(a_{p} \right)_{e}} + \left(1 - \alpha_{u} \right) u_{e}^{n-1} + \frac{\alpha_{u} a_{e}^{\circ}}{\left(a_{p} \right)_{e}} u_{e}^{\circ}$$
(28)

Аналогичное соотношение можно записать для скорости v_n на грани п контрольного объёма. Теперь определим поправку давления p' как разницу между правильным полем давления p' и приближённо рассчитанным полем давления в ходе неоконченного вычислительного процесса p^* так что

$$p = p^* + p' \tag{29}$$

Аналогично определяются поправки скорости u' (для горизонтальной компоненты) и v' (для вертикальной компоненты) как

$$u_s = u_s^* + u_s' \tag{30}$$

$$v_n = v_n^* + v_n' \tag{31}$$

Вычитая уравнение (28) из уравнения (22) получим

$$u_{\varepsilon}' = \frac{\alpha_{u} \left(\sum_{i} a_{i} u_{i}' + b_{p} \right)_{\varepsilon}}{\left(a_{p} \right)_{\varepsilon}} - \frac{\alpha_{u} \Delta y \left(p_{E}' - p_{P}' \right)}{\left(a_{p} \right)_{\varepsilon}}$$
(32)

Основная идея SIMPLE (полу неявной процедуры для связывающих давление уравнений) алгоритма заключается в пренебрежении первым членом в вышеприведенном уравнении, что лаёт

$$u'_{\varepsilon} = d'_{\varepsilon} \left(p'_{P} - p'_{E} \right) \tag{33}$$

где

$$d_e^u = \frac{\alpha_u A_e}{(a_P)_e} \tag{34}$$

где $A_{\varepsilon} = \Delta y$ это площадь восточной е грани контрольного объёма. Точно так же

$$v'_{n} = d_{n}^{v} (p'_{p} - p'_{N}) \tag{35}$$

где

$$d_n^{\nu} = \frac{\alpha_{\nu} A_n}{\left(a_P\right)_n} \tag{36}$$

Тогда скорректированные значения скоростей вычисляются следующим образом

$$u_s = u_s^* + d_s^u (p_p' - p_F')$$
 (37)

$$v_n = v_n^* + d_n^v (p_p' - p_N')$$
 (38)

Подставляя скорректированные значения скоростей на грани контрольного объёма, которые даются выражениями (37) и (38), в дискретный аналог уравнения неразрывности (непрерывности) (7) мы получим

$$a_{p}p'_{p} = a_{W}p'_{W} + a_{F}p'_{F} + a_{S}p'_{S} + a_{N}p'_{N} + b \tag{39}$$

гле

$$a_{E} = (\rho Ad)_{e} \quad a_{W} = (\rho Ad)_{w} \quad a_{N} = (\rho Ad)_{n} \quad a_{S} = (\rho Ad)_{s}$$

$$b = (\rho u^{*}A)_{w} - (\rho u^{*}A)_{s} + (\rho v^{*}A)_{s} - (\rho u^{*}A)_{n}$$

$$(40)$$

После нахождения поля поправки давления p' из уравнения (39) скорости на грани контрольного объёма корректируются, используя уравнения (37) и (38), а также корректируется поле давления, используя

$$p = p^* + \alpha_p p' \tag{41}$$

где a_p параметр нижней релаксации для поля давления, который выбирают из интервала (0,1).

Точно также скорости в узлах сетки (центрах контрольных объёмов) корректируются с помощью

$$u_p = u_p^* + d_p^u \left(p_w' - p_e' \right) \tag{42}$$

$$v_p = v_p^* + d_p^v (p_s' - p_n')$$
 (43)

гле

$$d_p^u = \frac{\alpha_u A_e}{(a_p)_p} \qquad d_p^v = \frac{\alpha_v A_n}{(a_p)_p} \tag{44}$$

Поправки давления на гранях контрольного объёма в формулах (42) и (43) вычисляются с помощью линейной интерполяции на основе узловых значений в центрах контрольных объёмов по следующему правилу

$$p'_{w} = f_{w}^{+} p'_{P} + (1 - f_{w}^{+}) p'_{W}$$

$$\tag{45}$$

$$p'_{e} = f^{+}_{e} p'_{E} + (1 - f^{+}_{e}) p'_{P}$$
 (46)

$$p'_{r} = f_{r}^{+} p'_{p} + (1 - f_{r}^{+}) p'_{s} \tag{47}$$

$$p'_{n} = f_{n}^{+} p'_{N} + (1 - f_{n}^{+}) p'_{P} \tag{48}$$

Граничные условия для давления.

Поскольку для давления нет уравнения, то никаких граничных условий для него не требуется, а в граничных узлах давление может быть восстановлено с помощью линейной интерполяции на основе двух ближайших к границе узлов сетки.

Граничные условия для поправки давления в уравнении для поправки давления.

Когда скорости известны в граничных узлах расчетной области, то нет никакой необходимости производить их коррекцию на основе решения уравнения для поправки давления. Например, если скорость известна на западной границе из граничных условий, то тогда в контрольном объёме около западной границы мы получим

$$u_{a} = u_{a}^{*} + d_{a}^{u} \left(p_{P}' - p_{F}' \right) \tag{49}$$

$$u_{\cdot \cdot \cdot} = u_{\cdot \cdot \cdot \cdot \cdot} \tag{50}$$

$$v_{n} = v_{n}^{*} + d_{n}^{v} \left(p_{P}' - p_{N}' \right) \tag{51}$$

$$v_{s} = v_{s}^{*} + d_{s}^{v} \left(p_{s}' - p_{p}' \right) \tag{52}$$

Подставляя соотношения (49)-(52) в дискретный аналог уравнения неразрывности (7) мы получаем следующее уравнение для поправки давления для контрольного объёма около западной границы

$$a_{P}p'_{P} = a_{W}p'_{W} + a_{E}p'_{E} + a_{S}p'_{S} + a_{N}p'_{N} + b$$
(53)

в котором

$$a_{E} = (\rho Ad)_{e} \quad a_{W} = 0 \quad a_{N} = (\rho Ad)_{n} \quad a_{S} = (\rho Ad)_{s}$$

$$a_{P} = a_{W} + a_{E} + a_{S} + a_{N}$$

$$b = (\rho uA)_{wall} - (\rho u^{*}A)_{e} + (\rho v^{*}A)_{s} - (\rho v^{*}A)_{n}$$
(54)

Сравнение уравнений (53)-(54) с уравнениями (39)-(40) показывает, что для контрольных объёмов, расположенных рядом с границей расчётной области, мы получаем те же самые коэффициенты дискретного аналога в уравнении для поправки давления, что и для внутренних контрольных объёмов за исключением того, что один коэффициент (a_W в данном случае для западной границы) мы принимаем равным нулю, а в правой части b мы используем на месте правой границы скорость на этой границе u_{wall} (в слагаемом (ρuA), для b на западной границе).

Вышеупомянутая формулировка граничного условия на поправку давления, соответствует граничному условия Неймана $\partial p'/\partial n = 0$, где n нормаль к границе. В результате никакое конкретное числовое значение для поправки давления (p'_{W}) на границе не потребовалось.

Однако, числовое значение для поправки давления необходимо, для того, чтобы скорректировать скорости во внутреннем контрольном объёме, примыкающем к граничному контрольному объёму. Например, для того, чтобы скорректировать горизонтальную скорость во внутреннем узле P, около западной границы расчётной области, поправка давления на западной границе p'_w необходима в соответствии с уравнением (42). Это значение поправки давления может быть получено при помощи соотношения $\partial p'/\partial n = 0$ на границе, которое означает p'(1, j) = p'(2, j) в реалиях западной границы.

Библиографический список на английском языке первоисточника.

- [1] Choi S. K., "Note on the Use of Momentum Interpolation Method for Unsteady Flows", *Numerical. Heat Transfer* Part, A, vol. 36, pp. 545-550, 1999.
- [2] Majumdar S., "Role of Underrelaxation in Momentum Interpolation for Calculation of Flow with Nonstaggered Grids", *Numerical Heat Transfer*, Part B, vol. 13, pp. 125-132, 1988.
- [3] Rhie C. M. and Chow W. L., "Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation", *AIAA Journal*, vol. 21, no 11, pp. 1525-1535, 1983.
- [4] Yu B., Tao W., and Wei J., "Discussion on Momentum Interpolation Method for Collocated Grids of Incompressible Flow", *Numerical. Heat Transfer Part B*, vol. 42, pp. 141-166, 2002.