

http://www.twoears.eu/

Integral interactive model of auditory perception and experience

Alexander RAAKE

^aAssessment of IP-based Applications
Telekom Innovation Labs (T-Labs)
Technical University Berlin, Germany
www.aipa.tu-berlin.de

Jens Bauert^b, Jonas Braasch^c, Guy Brown^d, Patrick Danès^e, Torsten Dau^f, Bruno Gas^g, Sylvain Argentieri^g, Armin Kohlrausch^h, Dorothea Kolossa^b, Nicolas Le Goff^f, Tobias May^f, Klaus Obermayerⁱ, Christopher Schymura^b, Sascha Spors^j, Thomas Walther^b, Hagen Wierstorf^a

^bRuhr-University Bochum, Germany; ^cRensselaer Polytechnic Institute, USA ^dUniversity of Sheffield, UK; ^eUniversité Toulouse III Paul Sabatier, France ^fTechnical University of Denmark; ^gUniversité Pierre et Marie Curie, France ^hTechnische Universiteit Eindhoven, The Netherlands; ^fTechnische Universität Berlin, Germany ^kUniversität Rostock, Germany

Level I – Database of scenarios

Settings

- Defined content formats, shared platform
- Central database of labeled audio-visual scenes & tools for interactive generation
- Head-tracked ear signals incl. translatory movements

Scenarios

- Natural/synthetic, partly captured with mobile robot platform
- Ear-signals, head-related impulse responses (HRIRs)
- Multichannel recordings, multichannel room-impulse responses
- Still images and video sequences

Dedicated Signal Processing Techniques for dynamic scenes capture

- Advanced techniques for range extrapolation of HRIRs
- Combination of microphone array data with HRIRs
- Capturing of time-variant impulse responses from dynamic sources

Levels II, III

Levels II, III

Input level II

- Binaural ear signals consisting of multiple active sources
- Feedback from higher stages to adapt bottom-up processing

Extract primary cues

- Monaural cues: onsets, offsets, amplitude modulation, periodicity, across-channel synchrony
- Binaural cues: ITDs, ILDs, IC

Perform pre-segmentation

 Determine active sound source positions, detect speech activity (speech segregation), ...

Output

- Multidimensional auditory representation ("activity maps")
- Organized in topological manner, e.g. time, frequency, activity
- Features for auditory-scene analysis (higher levels)
 - Temporally collocated across different spectral bands
 - May later be associated with particular objects

Levels III-V

- Blackboard & graphical model architecture
- Blackboard accessed by different modules
- Different levels of abstraction

Level V

Level IV

Level III

Level III-V: Example for feature extraction, object formation & meaning assignment

Level V

Human cognition

- World-knowledge: Hypothesis generation
- Adaptation & verification processes

Information accessed by multi-expert system (=software modules)

- Analyze blackboard info (expertise)
- Identify whether blackboard information corresponds to available knowledge

Expertise

- Psychoacoustics, object-identification,
- Cross-modal integration, proprioception
- Speech communication,
- Music, sound quality, ...

Feedback...

Level V

Level IV

Level III

Level II

Levell

Hardware & software system

Testbed of gradual complexity & versatility

- Head-&-torso-simulator (HATS)
- HATS endowed with pan motion and cameras
- Audio- & visio-auditory head on a PR2 robot

Software architecture

- Functional & cognitive layers
- Modular architecture specified with GenoM on the top of the Robot Operating System (ROS) middleware

"Smart" audio-visual sensors

- Hardcoding of auditory cues with dedicated SoC
- High-quality cues: Must be embedded, under strong temporal constraints
- Modular tests under various experimental conditions

Applications & proof of concept

Dynamic auditory scene analysis – search & rescue

- Audio SLAM (simultaneous localization and mapping)
- Speaker identification
- Keyword-type speech recognition
- Relevance identification
- Coarse audio-type identification

Quality of Experience

- Applied to multi-loudspeaker audio reproduction
- Active exploration of listening area
- Internal reference
- Meaning assignment

Summary: Reading the World with Two!EARS

- Functional implementation of active binaural listening & understanding
- Integration of bottom-up & top-down processing
- Computational structure
 - Binaural analysis of acoustic scenes
 - Proprioceptive & visual sensing
 - Active exploration
 - Feedback-based adaptation
 - Cognitive abilities (e.g. attention, source recognition, reasoning, quality)
- Modular test-bed
 - Open software framework
 - Robot for implementation of structure
- Proof-of-concept applications
 - Search-&-Rescue
 - Quality-of-Experience Assessment

Thank you for your attention! http://www.twoears.eu/

