

#### **Lecture Slides for**

**INTRODUCTION TO** 

# Machine Learning 2nd Edition

© The MIT Press, 2010

alpaydin@boun.edu.tr http://www.cmpe.boun.edu.tr/~ethem/i2ml2e

**CHAPTER 11:** 

# Multilayer Perceptrons

#### **Neural Networks**

- Networks of processing units (neurons) with connections (synapses) between them
- Large number of neurons: 10<sup>10</sup>
- Large connectitivity: 10<sup>5</sup>
- Parallel processing
- Distributed computation/memory
- Robust to noise, failures



# Understanding the Brain

- Levels of analysis (Marr, 1982)
  - 1. Computational theory
  - 2. Representation and algorithm
  - 3. Hardware implementation
- Reverse engineering: From hardware to theory
- Parallel processing: SIMD vs MIMD

Neural net: SIMD with modifiable local memory

Learning: Update by training/experience

#### Perceptron

$$\mathbf{y} = \sum_{j=1}^{d} \mathbf{w}_{j} \mathbf{x}_{j} + \mathbf{w}_{0} = \mathbf{w}^{T} \mathbf{x}$$





(Rosenblatt, 1962)

# What a Perceptron Does

Regression: y=wx+w<sub>0</sub>

• Classification:  $y=1(wx+w_0>0)$ 



# **K** Outputs

#### Classification:

$$o_{i} = \mathbf{w}_{i}^{T} \mathbf{x}$$

$$y_{i} = \frac{\exp o_{i}}{\sum_{k} \exp o_{k}}$$

$$\operatorname{choose} C_{i}$$

$$\operatorname{if} y_{i} = \max_{k} y_{k}$$

#### Regression:

$$\mathbf{y}_i = \sum_{j=1}^d \mathbf{w}_{ij} \mathbf{x}_j + \mathbf{w}_{i0} = \mathbf{w}_i^T \mathbf{x}$$



# **Training**

- Online (instances seen one by one) vs batch (whole sample) learning:
  - No need to store the whole sample
  - Problem may change in time
  - Wear and degradation in system components
- Stochastic gradient-descent: Update after a single pattern
- Generic update rule (LMS rule):

$$\Delta \mathbf{w}_{ij}^{t} = \eta (\mathbf{r}_{i}^{t} - \mathbf{y}_{i}^{t}) \mathbf{x}_{j}^{t}$$

Update = LearningFactor · ( DesiredOutput – ActualOutput ) · Input

#### Training a Perceptron: Regression

Regression (Linear output):

$$E^{t}(\mathbf{w} \mid \mathbf{x}^{t}, r^{t}) = \frac{1}{2}(r^{t} - y^{t})^{2} = \frac{1}{2}[r^{t} - (\mathbf{w}^{T}\mathbf{x}^{t})]^{2}$$
$$\Delta w_{j}^{t} = \eta(r^{t} - y^{t})x_{j}^{t}$$

#### Classification

Single sigmoid output

$$y^{t} = \operatorname{sigmoid}(\mathbf{w}^{T}\mathbf{x}^{t})$$

$$E^{t}(\mathbf{w} | \mathbf{x}^{t}, \mathbf{r}^{t}) = -r^{t} \log y^{t} - (1 - r^{t}) \log (1 - y^{t})$$

$$\Delta w_{j}^{t} = \eta (r^{t} - y^{t}) x_{j}^{t}$$

K>2 softmax outputs

$$y^{t} = \frac{\exp \mathbf{w}_{i}^{T} \mathbf{x}^{t}}{\sum_{k} \exp \mathbf{w}_{k}^{T} \mathbf{x}^{t}} \quad E^{t} (\{\mathbf{w}_{i}\}_{i} | \mathbf{x}^{t}, \mathbf{r}^{t}) = -\sum_{i} r_{i}^{t} \log y_{i}^{t}$$
$$\Delta w_{ij}^{t} = \eta (r_{i}^{t} - y_{i}^{t}) x_{j}^{t}$$

# Learning Boolean AND



 $x_1$ 

 $x_2$ 

#### XOR

| $x_1$ | $\chi_2$ | r |
|-------|----------|---|
| 0     | 0        | 0 |
| 0     | 1        | 1 |
| 1     | 0        | 1 |
| 1     | 1        | 0 |

• No  $w_0$ ,  $w_1$ ,  $w_2$  satisfy:





(Minsky and Papert, 1969)

#### Multilayer Perceptrons



$$\mathbf{y}_i = \mathbf{v}_i^\mathsf{T} \mathbf{z} = \sum_{h=1}^H \mathbf{v}_{ih} \mathbf{z}_h + \mathbf{v}_{i0}$$

$$z_h = \operatorname{sigmoid}(\mathbf{w}_h^T \mathbf{x})$$

$$= \frac{1}{1 + \exp\left[-\left(\sum_{j=1}^d w_{hj} x_j + w_{h0}\right)\right]}$$

(Rumelhart et al., 1986)



 $x_1 \text{ XOR } x_2 = (x_1 \text{ AND } ^{\sim} x_2) \text{ OR } (^{\sim} x_1 \text{ AND } x_2)$ 

#### Backpropagation



$$y_{i} = \mathbf{v}_{i}^{T} \mathbf{z} = \sum_{h=1}^{H} v_{ih} z_{h} + v_{i0}$$

$$z_{h} = \operatorname{sigmoid}(\mathbf{w}_{h}^{T} \mathbf{x})$$

$$= \frac{1}{1 + \exp\left[-\left(\sum_{j=1}^{d} w_{hj} x_{j} + w_{h0}\right)\right]}$$

$$\frac{\partial E}{\partial w_{hj}} = \frac{\partial E}{\partial y_i} \frac{\partial y_i}{\partial z_h} \frac{\partial z_h}{\partial w_{hj}}$$

#### Regression

$$\mathbf{y}^t = \sum_{h=1}^H \mathbf{v}_h \mathbf{z}_h^t + \mathbf{v}_0$$

**Forward** 

$$z_h = \frac{\text{sigmoid}(\mathbf{w}_h^T \mathbf{x})}{\uparrow}$$

X

$$E(\mathbf{W}, \mathbf{v} \mid \mathcal{X}) = \frac{1}{2} \sum_{t} (r^{t} - y^{t})^{2}$$

$$\downarrow$$

$$\Delta v_{h} = \sum_{t} (r^{t} - y^{t}) z_{h}^{t}$$

**Backward** 

$$\Delta w_{hj} = -\eta \frac{\partial E}{\partial w_{hj}}$$

$$= -\eta \sum_{t} \frac{\partial E}{\partial y^{t}} \frac{\partial y^{t}}{\partial z_{h}^{t}} \frac{\partial z_{h}^{t}}{\partial w_{hj}}$$

$$= -\eta \sum_{t} -(r^{t} - y^{t}) v_{h} z_{h}^{t} (1 - z_{h}^{t}) x_{j}^{t}$$

$$= \eta \sum_{t} (r^{t} - y^{t}) v_{h} z_{h}^{t} (1 - z_{h}^{t}) x_{j}^{t}$$

# Regression with Multiple Outputs

$$E(\mathbf{W}, \mathbf{V} \mid \mathcal{X}) = \frac{1}{2} \sum_{t} \sum_{i} (\mathbf{r}_{i}^{t} - \mathbf{y}_{i}^{t})^{2}$$

$$\mathbf{y}_{i}^{t} = \sum_{h=1}^{H} \mathbf{v}_{ih} \mathbf{z}_{h}^{t} + \mathbf{v}_{i0}$$

$$\Delta \mathbf{v}_{ih} = \eta \sum_{t} (\mathbf{r}_{i}^{t} - \mathbf{y}_{i}^{t}) \mathbf{z}_{h}^{t}$$

$$\Delta w_{hj} = \eta \sum_{t} \left[ \sum_{i} \left( r_{i}^{t} - y_{i}^{t} \right) v_{ih} \right] z_{h}^{t} \left( 1 - z_{h}^{t} \right) x_{j}^{t}$$



Initialize all  $v_{ih}$  and  $w_{hj}$  to rand(-0.01, 0.01)Repeat For all  $(\boldsymbol{x}^t, r^t) \in \mathcal{X}$  in random order For  $h = 1, \ldots, H$  $z_h \leftarrow \operatorname{sigmoid}(\boldsymbol{w}_h^T \boldsymbol{x}^t)$ For  $i = 1, \ldots, K$  $y_i = \boldsymbol{v}_i^T \boldsymbol{z}$ For  $i = 1, \ldots, K$  $\Delta \boldsymbol{v}_i = \eta(r_i^t - y_i^t)\boldsymbol{z}$ For  $h = 1, \ldots, H$  $\Delta \boldsymbol{w}_h = \eta \left( \sum_i (r_i^t - y_i^t) v_{ih} \right) z_h (1 - z_h) \boldsymbol{x}^t$ For  $i = 1, \ldots, K$  $\boldsymbol{v}_i \leftarrow \boldsymbol{v}_i + \Delta \boldsymbol{v}_i$ For  $h = 1, \ldots, H$  $\boldsymbol{w}_h \leftarrow \boldsymbol{w}_h + \Delta \boldsymbol{w}_h$ Until convergence

18





#### **Two-Class Discrimination**

• One sigmoid output  $y^t$  for  $P(C_1 | \mathbf{x}^t)$  and  $P(C_2 | \mathbf{x}^t) \equiv 1 - y^t$ 

$$y^{t} = \operatorname{sigmoid}\left(\sum_{h=1}^{H} v_{h} z_{h}^{t} + v_{0}\right)$$

$$E(\mathbf{W}, \mathbf{v} \mid \mathcal{X}) = -\sum_{t} r^{t} \log y^{t} + (1 - r^{t}) \log (1 - y^{t})$$

$$\Delta v_{h} = \eta \sum_{t} (r^{t} - y^{t}) z_{h}^{t}$$

$$\Delta w_{hj} = \eta \sum_{t} (r^{t} - y^{t}) v_{h} z_{h}^{t} (1 - z_{h}^{t}) x_{j}^{t}$$

#### K>2 Classes

$$o_{i}^{t} = \sum_{h=1}^{H} v_{ih} z_{h}^{t} + v_{i0} \qquad y_{i}^{t} = \frac{\exp o_{i}^{t}}{\sum_{k} \exp o_{k}^{t}} \equiv P(C_{i} \mid \mathbf{x}^{t})$$

$$E(\mathbf{W}, \mathbf{v} \mid \mathcal{X}) = -\sum_{t} \sum_{i} r_{i}^{t} \log y_{i}^{t}$$

$$\Delta v_{ih} = \eta \sum_{t} \left( r_{i}^{t} - y_{i}^{t} \right) z_{h}^{t}$$

$$\Delta w_{hj} = \eta \sum_{t} \left[ \sum_{i} \left( r_{i}^{t} - y_{i}^{t} \right) v_{ih} \right] z_{h}^{t} \left( 1 - z_{h}^{t} \right) x_{j}^{t}$$

# Multiple Hidden Layers

 MLP with one hidden layer is a universal approximator (Hornik et al., 1989), but using multiple layers may lead to simpler networks

$$z_{1h} = \operatorname{sigmoid}(\mathbf{w}_{1h}^{T}\mathbf{x}) = \operatorname{sigmoid}\left(\sum_{j=1}^{d} w_{1hj}x_{j} + w_{1h0}\right), h = 1, ..., H_{1}$$

$$z_{2l} = \operatorname{sigmoid}(\mathbf{w}_{2l}^{T}\mathbf{z}_{1}) = \operatorname{sigmoid}\left(\sum_{h=1}^{H_{1}} w_{2lh}z_{1h} + w_{2l0}\right), l = 1, ..., H_{2}$$

$$\mathbf{y} = \mathbf{v}^{\mathsf{T}} \mathbf{z}_2 = \sum_{l=1}^{H_2} \mathbf{v}_l \mathbf{z}_{2l} + \mathbf{v}_0$$

### Improving Convergence

Momentum

$$\Delta \mathbf{w}_{i}^{t} = -\eta \frac{\partial \mathbf{E}^{t}}{\partial \mathbf{w}_{i}} + \alpha \Delta \mathbf{w}_{i}^{t-1}$$

Adaptive learning rate

$$\Delta \eta = \begin{cases} +a & \text{if } E^{t+\tau} < E^t \\ -b\eta & \text{otherwise} \end{cases}$$

## Overfitting/Overtraining

Number of weights: H(d+1)+(H+1)K





#### Structured MLP



(Le Cun et al, 1989)

# Weight Sharing



#### Hints

(Abu-Mostafa, 1995)

Invariance to translation, rotation, size









- Virtual examples
- Augmented error:  $E' = E + \lambda_h E_h$

If x' and x are the "same":  $E_h = [g(x|\theta) - g(x'|\theta)]^2$ 

Approximation hint:

$$E_h = \begin{cases} 0 & \text{if } g(x \mid \theta) \in [a_x, b_x] \\ (g(x \mid \theta) - a_x)^2 & \text{if } g(x \mid \theta) < a_x \\ (g(x \mid \theta) - b_x)^2 & \text{if } g(x \mid \theta) > b_x \end{cases}$$

#### **Tuning the Network Size**

- **Destructive**
- Weight decay:

$$\Delta w_{i} = -\eta \frac{\partial E}{\partial w_{i}} - \lambda w_{i}$$
$$E' = E + \frac{\lambda}{2} \sum_{i} w_{i}^{2}$$

$$E' = E + \frac{\lambda}{2} \sum_{i} w_{i}^{2}$$

- Constructive
- Growing networks



# Bayesian Learning

• Consider weights  $w_i$  as random vars, prior  $p(w_i)$ 

$$p(\mathbf{w} \mid \mathcal{X}) = \frac{p(\mathcal{X} \mid \mathbf{w})p(\mathbf{w})}{p(\mathcal{X})} \quad \hat{\mathbf{w}}_{MAP} = \underset{\mathbf{w}}{\operatorname{arg max log }} p(\mathbf{w} \mid \mathcal{X})$$

$$\log p(\mathbf{w} \mid \mathcal{X}) = \log p(\mathcal{X} \mid \mathbf{w}) + \log p(\mathbf{w}) + C$$

$$p(\mathbf{w}) = \prod_{i} p(w_{i}) \text{ where } p(w_{i}) = c \cdot \exp\left[-\frac{w_{i}^{2}}{2(1/2\lambda)}\right]$$

$$E' = E + \lambda ||\mathbf{w}||^{2}$$

 Weight decay, ridge regression, regularization cost=data-misfit + λ complexity

More about Bayesian methods in chapter 14

# **Dimensionality Reduction**





### **Learning Time**

- Applications:
  - Sequence recognition: Speech recognition
  - Sequence reproduction: Time-series prediction
  - Sequence association
- Network architectures
  - Time-delay networks (Waibel et al., 1989)
  - Recurrent networks (Rumelhart et al., 1986)

# Time-Delay Neural Networks



#### Recurrent Networks



**Unfolding in Time** 



