Model-theoretic aspects of relativised cylindric set algebras

Daniel Rogozin

1 The problem itself

Is the class \mathbf{IG}_{ω} (the isomorphism-closure of the ω -dimensional cylindric relativised set algebras in which the unit is closed under substitutions and permutations) a variety, or even a pseudo-elementary class? Is it closed under ultraproducts?

2 Model-theoretic and universal algebraic preliminaries

2.1 Ultraproducts

Here are the required notions and facts from model theory and universal algebra [5] [6] [11].

Let A be a non-empty set, an *ultrafilter* on A is a set of subsets $U \subseteq \mathcal{P}(\mathcal{P})(A)$ such that A is closed under intersections, \subseteq -upwardly closed, and either $X \in U$ or $-X \in U$, where $X \subseteq A$. An ultrafilter is called principal if it has the form $\uparrow X = \{Y \in \mathcal{P}(A) \mid X \subseteq Y\}$.

Let $\Omega = \langle \text{Cnst}, \text{Fn}, \text{Pred} \rangle$ be a signature and Λ an index set, and let $\{M_{\lambda}\}_{{\lambda} \in \Lambda}$ be an indexed set of Ω structures. The Ω -structure

$$M = \prod_{\lambda \in \Lambda} M_{\lambda}$$

is called a *product* that defined as follows. Its domain is the Cartesian product of the domains of M_{λ} . $a \in M$ is a function $\Lambda \to \bigcup_{\lambda \in \Lambda} \operatorname{dom}(M_{\lambda})$ such that $a(\lambda) \in M_{\lambda}$ for each $\lambda \in \Lambda$. Given $\lambda \in \Lambda$ and $\lambda \in M_{\lambda}$, we denote the function mapping λ to $\lambda \in \Lambda$ as $\lambda \in \Lambda$. We define the

interpretation of Ω -symbols as

- 1. If $c \in \text{Cnst}$, then $c^M = \langle c^{M_\lambda} \mid \lambda \in \Lambda \rangle$
- 2. If $f \in \text{Fn}$ is an *n*-ary function symbol, then $f^M(\overline{a}) = \langle f^{M_{\lambda}}(\overline{a}) \mid \lambda \in \Lambda \rangle$, where $\overline{n} \in M^n$
- 3. If $R \in \text{Pred}$ is an n-ary relation symbol and $\overline{n} \in M^a$, then $R^M(\overline{a}) = \langle R^{M_\lambda}(\overline{a}) \mid \lambda \in \Lambda \rangle$

Given $\lambda \in \Lambda$, we define the λ th projection as $\pi_{\lambda} : M \to M_{\lambda}$ such that $\pi_{\lambda}(a) = a(\lambda)$.

Let Λ be an index set and D an ultrafilter on the Boolean algebra $\langle \mathcal{P}(\Lambda), \cup, -, \Lambda, \varnothing \rangle$. Consider the product $M = \prod_{\lambda \in \Lambda} M_{\lambda}$ of the Ω -structures $\{M_{\lambda}\}_{{\lambda} \in \Lambda}$ and the equivalence relation on dom(M) defined as

$$a_1 \sim a_2 \Leftrightarrow \{\lambda \in \Lambda \mid a_1(\lambda) = a_2(\lambda)\} \in D$$

Let us denote $\operatorname{dom}(M)/\sim$ as U and $[a]_{\sim}$ as a/D, where $a\in\operatorname{dom}(M)$. We also denote the ultraproduct of $\{M_{\lambda}\}_{\lambda}$ as $\prod_{\lambda\in\Lambda}M_{\lambda}/D$, or, for brevity, as $\prod_{D}M_{\lambda}$. The Ω -symbols have the following interpretation

- 1. If $c \in \text{Cnst}$, then $c^U = c^M/D$
- 2. If $f \in \text{Fn}$ is an n-ary function symbol and $\overline{a} \in M^n$, then $f^U(\overline{a}) = f^M(x) = f^M(\overline{a})/D$
- 3. If $R \in \text{Fn}$ is an n-ary relation symbol and $\overline{a} \in M^n$, then $U \models R(\overline{a}/D)$ iff $\{\lambda \in \Lambda \mid M_{\lambda} \models R(\overline{a}(\lambda))\} \in D$

The ultraproduct is principal if D is a principal filter.

Definition 1.

- 1. Let $\{M_{\lambda}\}_{{\lambda}\in\Lambda}$ be a set of Ω -structures such that every M_{λ} is isomorphic to the single structure M, then their ultraproduct over D is called the ultrapower over D. The denotation is $\prod_{D} M$ or M^{Λ}/D .
- 2. If $\prod_{D} M \cong N$ for some structure N, then M is an ultraroot of N.

Theorem 1 (Los). Let $\{M_{\lambda}\}_{{\lambda}\in\Lambda}$ be Ω -structures and D an ultrafilter on Λ , and let $U=\prod_{D}M_{\lambda}$ be an ultraproduct of $\{M_{\lambda}\}_{{\lambda}\in\Lambda}$ over D. For each first-order formula $\varphi(x_1,\ldots,x_n)$ and for each $a_1/D,\ldots,a_n/D\in U$:

$$U \models \varphi(a_1/D, \dots, a_n/D) \text{ iff } \{\lambda \in \Lambda \mid \varphi(a_1(\lambda), \dots, a_n(\lambda))\} \in D$$

The Los has the following helpful corollary:

Corollary 1. Let $\prod_{D} M$ be an ultrapower of M. For $a \in M$, let us define a function $\overline{a} : a \mapsto a/D$. Then such a map is an elementary embedding of M into $\prod_{D} M$.

Moreover, any elementary equivalent structures have isomorphic ultrapowers.

Recall that a class of Ω -structures **K** is called *elementary*, if **K** = Mod(T) for some first-order theory **T**. In that case, T is an axiomatisation of **K**.

Theorem 2. Let \mathbf{K} be a class Ω -structures, \mathbf{K} is elementary iff \mathbf{K} is closed under isomorphic copies, ultraroots, and ultrapowers.

2.2 Preliminaries from universal algebra

Definition 2. Let \mathbf{K} be a class of Ω -structures, then \mathbf{K} is a variety, if it is defined by some set of equations. The variety generated by \mathbf{K} is the smallest variety containing \mathbf{K} . \mathbf{K} is a quasi-variety, if it is defined by some set of quasi-identities.

Given a class **K** of Ω -structures, then $\mathbf{I}(\mathbf{K})$, $\mathbf{S}(\mathbf{K})$, $\mathbf{H}(\mathbf{K})$, and $\mathbf{P}(\mathbf{K})$ are the classes of isomorphic copies, algebras isomorphic to subalgebras belonging to **K**, algebras isomorphic to homomorphic images belonging to **K**, and algebras isomorphic to direct products belonging to **K**. We claim that $\mathbf{I}(\mathbf{K}) \subseteq \mathbf{S}(\mathbf{K})$. $\mathbf{Up}(\mathbf{K})$ is the class of algebras isomorphic to ultraproducts belonging to **K**.

Theorem 3. Let **K** be a class of Ω -structures

- 1. **K** is a variety iff $\mathbf{H}(\mathbf{K}), \mathbf{S}(\mathbf{K}), \mathbf{P}(\mathbf{K}) \subseteq \mathbf{K}$
- 2. HSP(K) = H(S(P(K))) is the smallest variety containg K
- 3. **K** is a quasi-variety iff it is closed under subalgebras, products, and ultraproducts, iff $\mathbf{SPUp}(\mathbf{K}) = \mathbf{K}$.

2.3 Subdirect products

Definition 3.

- 1. Let $\{A\}_{i\in I}$ be Ω -structures, a subdirect product of $\langle A_i \mid i\in I\rangle$ is a subalgebra B of $\prod_{i\in I}A_i$ such that for each $i\in I$, a projection map $\pi_i:B\to A_i$ is a surjection.
- 2. A subdirect representation of an Ω -structure is an embedding $f: A \to \prod_{i \in I} A_i$ for some I and $\{A_i\}_{i \in I}$ such that $f \circ \pi_i : A \to A_i$ is a surjection.
- 3. An Ω -structure A is subdirectly irreducible if for every subdirect representation $f: A \to \prod_{i \in I} A_i$ there exists a projection π_i such that $f \circ \pi_i$ is an isomorphism.
- 4. Sir(K) is the class of subdirectly irreducible structures belonging to K.
- 5. A subdirect decomposition of A if there exists a subdirect representation $f: A \to \prod_{i \in I} A_i$ such that every A_i is subdirectly irreducible.

It is known that every Boolean algebra with operators has a subdirect demcomposition. Moreover, that implies:

Theorem 4.

- 1. If \mathbf{K} is a variety, then every element of \mathbf{K} has a subdirect decomposition with some subdirect irreducible elements of \mathbf{K} .
- 2. If **K** is a variety and ε is an equation, $Sir(\mathbf{K}) \models \varepsilon \Leftrightarrow \mathbf{K} \models \varepsilon$.

2.4 Pseudo-elementary classes

3 Cylindric algebras

3.1 (Representable) cylindric algebras and cylindric set algebras

Let α be an ordinal. Let U^{α} be the set of all functions mapping α to a non-empty set U. We denote $x(i) = x_i$ for $x \in U^{\alpha}$ and $i < \alpha$.

Definition 4.

- 1. A subset of U^{α} is an α -ry relation on U. For $i,j < \alpha$, the i,j-diagonal D_{ij} is the set of all elements of U such that $y_i = y_j$. If $i < \alpha$ and X is an α -ry relation on U, then the i-th cylindrification C_iX is the set of all elements of U that agree with some element of X on each coordinate except the i-th one. To be more precise, $C_iX = \{y \in U^{\alpha} \mid \exists x \in X \forall i < \alpha \ (i \neq j \Rightarrow y_j = x_j)\}$.
- 2. A cylindic set algebra of dimension α is an algebra consisting of a set S of α -ry relation on some base set U with the constants and operations $0 = \emptyset$, $1 = U^{\alpha}$, \cap , -, the diagonal elements $\{D_{ij}\}_{i,j<\alpha}$, the cylindrifications $\{C\}_{i<\alpha}$. A generalised cylindric set algebra of dimension α is a subdirect of cylindric algebras that have dimension α
- 3. A cylindric algebra of dimension α is an algebra $\mathcal{C} = \langle \mathcal{B}, \{c_i\}_{i < \alpha}, \{d_{ij}\}_{i,j < \alpha} \rangle$ such that

- \mathcal{B} is a Boolean algebra, for each $i, j < \alpha$ c_i is an operator and $d_{ij} \in \mathcal{B}$
- For each $i < \alpha$, $a \le c_i a$, $c_i (a \land c_i b) = c_i a \land c_i b$ and $d_{ii} = 1$
- For every $i, j < \alpha$, $c_i c_j a = c_j c_i a$
- If $k \neq i, j < \alpha$, then $d_{ij} = c_k(d_{ij} \wedge d_{jk})$
- If $i \neq j$, then $c_i(d_{ij} \wedge a) \wedge c_i(d_{ij} \wedge -a) = 0$

 $\mathbf{C}\mathbf{A}_{\alpha}$ is the class of all cylindric algebras of dimension α

4. An α -dimensional cylindric algebra C is representable, if it is isomorphic to a generalised cylindric set algebra of dimension α . Such is isomorphism is a representation of C. \mathbf{RCA}_{α} is the class of all representable cylindric algebras that have dimension α .

3.2 Substitution in cylindric algebras

Definition 5. Given a cylindric algebra of dimension α C, let x be a term of its signature, the substitution operator s_i^i have the following definition:

$$s_{j}^{i}x = \begin{cases} x, & \text{if } i = j \\ c_{i}(d_{ij} \land x), & \text{otherwise} \end{cases}$$

Proposition 1. Let α be an ordinal and let $i, j, k, l < \alpha$. The following facts hold in \mathbf{CA}_{α}

- 1. $s_j^i x \leqslant c_i x$.
- 2. $s_j^i(x \wedge y) = s_j^i x \wedge s_j^i y$, $s_j^i(x \vee y) = s_j^i x \vee s_j^i y$, $-s_j^i x = s_j^i(-x)$. Moreover, s_j^i is completely additive.
- 3. $i \neq k, l$ implies $s_i^i d_{ik} = d_{jk}$ and $s_j^i d_{kl} = d_{kl}$.
- 4. $d_{ik} \wedge s_i^i = d_{ik} \wedge s_k^i$.
- 5. $s_i^i c_i x = c_i x$.
- 6. $k \neq i, j \text{ implies } s_i^i c_i x = c_i s_i^i x.$
- 7. $c_i s_i^i x = c_i s_i^j x$.
- 8. $i \neq j$ implies $c_i s_i^i x = s_i^i x$.
- 9. $i \neq k$ implies $s_i^i s_k^i = s_k^i x$.
- 10. If either $i \notin \{k, l\}$ and $k \notin \{i, j\}$, or j = l, then $s_i^i s_l^k x = s_l^k s_i^i x$.
- 11. $s_i^i s_i^j x = s_i^i x$.
- 12. $s_k^i s_i^j x = s_k^i s_k^j x = s_k^j s_i^i x$

- 4 IG_{ω} class
- 5 Cylindric modal logic
- 6 IG_{ω} and ultraproducts
- 7 IG $_{\omega}$ is (not) a variety; is (not) (pseudo-)elementary

References

- Hajnal Andréka, Robert Goldblatt, and István Németi. Relativised quantification: Some canonical varieties of sequence-set algebras. The Journal of Symbolic Logic, 63(1):163–184, 1998.
- [2] Hajnalka Andréka. A finite axiomatization of locally square cylindric-relativized set algebras. Studia Scientiarum Mathematicarum Hungarica, 38(1-4):1–11, 2001.
- [3] Dov M Gabbay and Valentin B Shehtman. Products of modal logics. part 2: Relativised quantifiers in classical logic. *Logic Journal of the IGPL*, 8(2):165–210, 2000.
- [4] Leon Henkin, J.Donald Monk, and Alfred Tarski. Representable cylindric algebras. *Annals of Pure and Applied Logic*, 31:23 60, 1986.
- [5] Robin Hirsch and Ian Hodkinson. Relation algebras by games. Elsevier, 2002.
- [6] Wilfrid Hodges et al. A shorter model theory. Cambridge university press, 1997.
- [7] Agi Kurucz. Representable cylindric algebras and many-dimensional modal logics. In *Cylindric-like Algebras and Algebraic Logic*, pages 185–203. Springer, 2013.
- [8] Anatolij Ivanovic Mal'Cev. *Algebraic systems*, volume 192. Springer Science & Business Media, 2012.
- [9] Maarten Marx and Yde Venema. Multi-dimensional modal logic. Springer, 1997.
- [10] Istvan Németi. A fine-structure analysis of first-order logic. Arrow Logic and Multimodal Logics, Studies in Logic, Language and Information, pages 221–247, 1996.
- [11] Hanamantagouda P Sankappanavar and Stanley Burris. A course in universal algebra. Graduate Texts Math, 78, 1981.
- [12] Yde Venema. A modal logic for quantification and substitution. *Logic Journal of the IGPL*, 2(1):31–45, 1994.
- [13] Yde Venema. Cylindric modal logic. Journal of Symbolic Logic, pages 591–623, 1995.
- [14] Yde Venema. *Cylindric Modal Logic*, pages 249–269. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.