Title	Special Topics in Algorithms	Number	CS7xxx
Department	Computer Science	L-T-P [C]	3-0-0 [3]
Offered for	B. Tech., M.Tech., PhD	Туре	Elective
Prerequisite	Algorithm Design and Analysis, Maths for Computing	Antirequisite / Preferred Knowledge	None

Objectives

1. The objective of the course is to introduce several advanced algorithmic techniques.

Learning Outcomes

Students will gain the ability to:

- 1. Learn a new set of techniques to cope with NP-hard problems.
- 2. Identify novel and significant open research questions in the field.

Contents

Parameterized Algorithms [13 lectures]: Introduction to Parameterized Complexity and basics [2 Lectures]; Branching [4 Lectures]; Iterative Compression [3 Lectures]; Kernelization [4 Lectures]

Approximation Algorithms: [10 lectures]: Greedy Algorithm – Load Balancing, Center Selection Problem, Set Cover [5 Lectures]; The Pricing Method: Vertex Cover, Linear Programming and Rounding: An application to Vertex Cover, Knapsack [5 Lectures] Randomized Algorithms [10 lectures]: Contention Resolution, Global Mincut, Random Variables and Expectations, Max-3-SAT approximation [7 Lectures]; Color Coding [3 Lectures]

Exact Exponential Time Algorithms [7 lectures]: Exact Algorithms for Coloring, SAT, Directed Feedback Arc Set, Max-Cut, Monotone-Local-Search, Or some other topics of contemporary interest.

Streaming Algorithms [2 lectures]: Introduction to streaming algorithms and its application to some graph theoretic problems.

Textbooks

- Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Marcin Pilipczuk, Michal Pilipczuk, Saket Saurabh (2015): Parameterized Algorithms, Springer.
- 2. Jon Kleinberg, Eva Tardos (2005), Algorithm Design, Pearson Education, 1st Edition.
- 3. Fedor V. Fomin, Dieter Kratsch (2010), Exact Exponential Time Algorithms, An EATCS Series, Springer.

Self Learning Material

- 1. https://www.youtube.com/watch?v=Ex8TueBsF1g&list=PLhkiT_RYTEU0gpi97fqjtaHy96k47oF85&index=1
- 2. https://sites.google.com/view/sakethome/teaching/parameterized-complexity?authuser=0
- 3. https://www.youtube.com/watch?v=S8Acu3EpvsE&list=PLhkiT_RYTEU2itsMqCNdXU q4cdFUWJn3-&index=4
- 4. https://www.youtube.com/watch?v=jNfQ3GZlrjM&list=PLhkiT_RYTEU3vSaVleEm_-bl PBzCqRQHK

Courses Offered by Department of Computer Science and Engineering

Course - List

Course Name	Page No.
200 - Level Courses	7
• Compulsory Courses (CSE and AI&DS)	7
Data Structures and Algorithms	7
Design and Analysis of Algorithms	8
Human-Machine Interaction	9
Maths for Computing	10
Pattern Recognition and Machine Learning	11
Principles of Computer Systems - I	12
Principles of Computer Systems - II	13
Principles of Programming Languages	14
Software Engineering	15
300 - Level Courses	16
• Compulsory Courses (CSE and AI&DS)	16
Artificial Intelligence (300)	16
Computer Architecture	17
Computer Networks	18
Database Systems	19
Data Engineering	20
Maths for Big Data	22
Operating Systems	23
400 - Level Courses	24
• Compulsory Courses (CSE and AI&DS)	24
Data Visualization (400)	24
Deep Learning (400)	25
Dependable AI (400)	26