TERMODINÁMICA

Nombre	Grupo

Problema -1 (3,5 puntos)

El esquema inferior representa el funcionamiento de una central térmica de ciclo binario, consistente en combinar un ciclo de Rankine que emplea mercurio como fluido de trabajo con otro ciclo de Rankine recorrido por agua. La conexión entre ambos ciclos se realiza en un intercambiador de calor (condensador Hg/Evaporador de agua en la figura), en el que el mercurio cede calor al agua, actuando así de condensador del mercurio y de evaporador del agua. En la caldera se comunica una cierta potencia, que se emplea en evaporar el mercurio, que sale de ella en estado de vapor saturado, y en sobrecalentar el agua, que llega como vapor saturado.

Las expansiones en las turbinas se pueden considerar adiabáticas, con un rendimiento adiabático isentrópico igual al 80 % en la turbina de mercurio, al 93,858 % en la turbina de vapor de alta presión (6a-7a) y un rendimiento que hay que calcular para la turbina de vapor de baja presión (7a-8a).

Los valores conocidos aparecen en la tabla que se adjunta, tabla que se pide rellenar (única y exclusivamente las casillas remarcadas¹ y las que sean necesarias para responder a las cuestiones del problema).

Se sabe que la entropía generada en el condensador del agua es igual a 21,8 kW/K. El agua de circulación (**m** circ entrada -:- **m** circ salida) debe considerarse como fluido incompresible con calor específico c = 4186,0 J/kg-K, entrando en el condensador a 10°C y saliendo de él a 25°C.

Las bombas del ciclo de agua-vapor tienen un rendimiento del 100 % y el trabajo de la bomba del ciclo de mercurio puede despreciarse. La circulación por los conductos se produce sin pérdida de presión, ni de calor.

Calular:

- a) Caudal másico de refrigeración que pasa por el condensador (m circ).
- b) Caudal másico del ciclo de mercurio.
- c) Rendimiento adiabático isentrópico de la turbina de vapor de baja presión.
- d) Potencia suministrada por cada una de las turbinas.
- e) Potencia necesaria en la caldera.
- f) Rendimiento global del ciclo binario.
- g) Rendimiento del ciclo de mercurio, como si no existiese el ciclo de vapor y el mercurio se condensara por refrigeración exterior
- h) Rendimiento que se tendría con el ciclo de agua sólo, operando con los mismos parámetros de ciclo que se tienen en el binario. Es decir, eliminando el ciclo de mercurio y dando calor al agua en la caldera desde el punto 4a hasta el 6a.

¹ Todos los caudales, todas las presiones, todas las entalpías y las temperaturas 1a, 3a y 5a

Punto	Caudal [kg/s]	Presión [bar]	Temperatura [°C]	Título [p.u.]	Volumen específico [m³/kg]	Entalpía [kJ/kg]	Entropía [kJ/kg-K]
1a		0,05		0			
2a							
3a				0			
4a							
5a				1			
6a		25	540				
7a		10					
8a	56						
m circ entrada		2,5	10	No aplica	0,001		
m circ salida		2,5	25	No aplica	0,001		
Punto	Caudal [kg/s]	Presión [atm]	Temperatura [°C]	Título [p.u.]	Volumen específico [m³/kg]	Entalpía [kJ/kg]	Entropía [kJ/kg-K]
1m				0			
2m							
3m		14		1			
4m		0,1					

Propiedades del agua

Vapor húmedo (temperatura)									
Т	р	h _f	h _g	S _f	s_g				
[°C]	[bar]	[kJ/kg]	[kJ/kg]	[kJ/kg·K]	[kJ/kg·K]				
150	4,75717	632,32	2746,4	1,8421	6,8381				
155	5,42993	653,95	2752,3	1,8927	6,7937				
160	6,17663	675,65	2758	1,9429	6,7503				
165	7,00293	697,43	2763,3	1,9927	6,7078				
170	7,91471	719,28	2768,5	2,0421	6,6662				
175	8,91805	741,22	2773,3	2,091	6,6254				
180	10,01927	763,25	2777,8	2,1397	6,5853				
185	11,2249	785,37	2782	2,1879	6,5459				
190	12,54165	807,6	2785,8	2,2358	6,5071				
195	13,97647	829,93	2789,4	2,2834	6,4689				
200	15,5365	852,38	2792,5	2,3308	6,4312				
205	17,22907	874,96	2795,3	2,3778	6,394				
210	19,06173	897,66	2797,7	2,4246	6,3572				
215	21,04222	920,51	2799,7	2,4712	6,3208				
220	23,17846	943,51	2801,3	2,5175	6,2847				
225	25,4786	966,67	2802,4	2,5637	6,2488				
230	27,95097	990	2803,1	2,6097	6,2131				
235	30,6041	1013,52	2803,3	2,6556	6,1777				
240	33,44673	1037,24	2803	2,7013	6,1423				
245	36,48781	1061,16	2802,1	2,747	6,107				

	Vapor húmedo (presión)										
р	T	V _f	h _f	h _g	S _f	Sg					
[bar]	[°C]	[m3/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg·K]	[kJ/kg·K]					
0,05	32,88	0,001005	137,73	2560,5	0,4761	8,393					
0,1	45,79	0,00101	191,72	2583,7	0,6489	8,1487					
0,2	60,05	0,001017	251,34	2608,9	0,8318	7,9072					
0,3	69,09	0,001022	289,18	2624,5	0,9438	7,7676					
0,4	75,85	0,001026	317,52	2636,1	1,0257	7,6692					
0,5	81,31	0,00103	340,43	2645,3	1,0908	7,5932					
1	99,61	0,001043	417,4	2675,1	1,3024	7,3592					
2	120,22	0,00106	504,7	2706,5	1,5301	7,1275					
3	133,53	0,001073	561,51	2725,2	1,6719	6,9923					
4	143,62	0,001084	604,81	2738,5	1,7768	6,8963					
5	151,84	0,001093	640,29	2748,6	1,8608	6,8216					
10	179,9	0,001127	762,8	2777,7	2,1387	6,5861					
15	198,31	0,001154	844,78	2791,5	2,3148	6,4439					
20	212,4	0,001177	908,62	2798,7	2,447	6,3397					
25	223,98	0,001197	961,92	2802,2	2,5543	6,2561					
30	233,88	0,001217	1008,24	2803,3	2,6453	6,1856					
35	242,59	0,001235	1049,59	2802,6	2,725	6,124					
40	250,38	0,001252	1087,18	2800,6	2,7961	6,069					
45	257,47	0,001269	1121,85	2797,6	2,8607	6,0188					
50	263,97	0,001286	1154,17	2793,7	2,9201	5,9726					

Vapor sobrecalentado

p = 0,05	p = 0,05 bar (sat = 32,88 °C)								
Т	h	s							
[°C]	[kJ/kg]	[kJ/kg·K]							
sat	2560,5	8,393							
40	2574	8,4366							
50	2592,9	8,496							
60	2611,8	8,5536							
70	2630,7	8,6095							
80	2649,7	8,6639							
90	2668,6	8,7167							
100	2687,5	8,7682							
110	2706,5	8,8184							
120	2725,5	8,8674							
130	2744,6	8,9153							

p = 10 bar (sat = 179,9 °C)								
Т	h	s						
[°C]	[kJ/kg]	[kJ/kg·K]						
sat	2777,7	6,5861						
200	2827,4	6,6932						
240	2919,6	6,8805						
280	3007,5	7,0454						
320	3093,4	7,1954						
360	3178,6	7,3344						
400	3263,8	7,4648						
440	3349,3	7,5882						
480	3435,3	7,7055						
520	3522	7,8177						
560	3609,6	7,9254						

p = 25 bar (sat = 223,98 °C)							
Т	h	s					
[°C]	[kJ/kg]	[kJ/kg·K]					
sat	2802,2	6,2561					
240	2850,8	6,3522					
280	2958,4	6,5543					
320	3055,9	6,7246					
360	3148,7	6,876					
400	3239,2	7,0146					
440	3328,6	7,1436					
460	3373,1	7,2052					
500	3462,2	7,3235					
540	3551,4	7,436					
580	3641,2	7,5438					

Pi	PROPIEDADES TERMODINÁMICAS DEL VAPOR DE MERCURIO (SATURACIÓN)									
р	Т	V f	V g	h _f	h _g	Sf	S _g			
[atm]	[°C]	[m ³ /kg]	[m³/kg]	[kJ/kg]	[kJ/kg]	[kJ/kgK]	[kJ/kgK]			
0,001	119,5	7,52E-05	165,9	16,577	319,06	0,0498	0,8200			
0,0015	128	7,53E-05	113	17,707	322,07	0,0527	0,8062			
0,002	134,6	7,54E-05	56,16	18,628	320,69	0,0553	0,7962			
0,006	161,5	7,58E-05	30,62	22,353	323,66	0,0636	0,7568			
0,01	175	0,000076	18,94	24,237	325,21	0,0682	0,7397			
0,02	195	7,62E-05	9,893	26,958	327,35	0,0745	0,7162			
0,06	230,9	7,67E-05	3,55	31,939	331,36	0,0846	0,6786			
0,1	249,6	0,000077	2,209	34,535	333,46	0,0892	0,6614			
0,5	318,8	0,000078	0,5003	44,162	341,12	0,1067	0,6082			
1	355	7,85E-05	0,2655	49,227	345,14	0,1151	0,5860			
2	395,8	7,91E-05	0,1414	54,878	349,57	0,1243	0,5647			
5	458,9	8,01E-05	0,06187	64,046	356,77	0,1369	0,5366			
10	515,5	8,09E-05	0,03333	72,209	362,93	0,1478	0,5166			
14	546,7	8,14E-05	0,02475	76,813	366,32	0,1532	0,5065			
20	582,4	8,19E-05	0,01808	82,129	370,13	0,1595	0,4960			
30	627,1	8,27E-05	0,01268	88,659	374,56	0,1670	0,4847			

Punto	Caudal [kg/s]	Presión [bar]	Temperatura [°C]	Título [p.u.]	Volumen específico [m³/kg]	Entalpía [kJ/kg]	Entropía [kJ/kg-K]
1a	56	0,05	32.88	0	0.001005	137.73	0.4761
2a	56	OK				138.725	
3a	69.974	σk	179.90	0	0.001127	762.80	
4a	69.974	25				764.49	
5a	69.974	25	223.98	1		2802.20	
6a	69.974	25	540			355 . 40	7.436
7a	69.974	10				3263.80	7.436 7.4648
8a	56	0.05				2379.87	
m circ entrada	2000	2,5	10	No aplica	0,001		
m circ salida	2000	2,5	25	No aplica	0,001		
Punto	Caudal [kg/s]	Presión [atm]	Temperatura [°C]	Título [p.u.]	Volumen específico [m³/kg]	Entalpía [kJ/kg]	Entropía [kJ/kg-K]
1m	592.25	0.1		0		34.535	
2m	592,25	14				34.535	
3m	592.25	14		1		366.32	0,5065
4m	592.25	0,1				275.29	

Ciclo de mercario. - Punto 3m directamente en tabla Para 5 = 0.5065 J p=0.1 atm

h4ms = 34.535 + 0.72929 (333.46-34.535)

 $h_{4m5} = 253.53815 \Rightarrow 0.8 = \frac{366.32 - h_{4m}}{366.32 - 252.53815}$

h4m = 275,2945

han directamente en tabla han a han por ser despreciable el trabajo de la bomba.

Ciclo agua-vapor

Condensador

Supongo que el vapor a la descarga de la turbina es vapos húmedo, con título x 56 kg/s, hga, Sga in 10°C. in 25°C. 56 kg/s 137.73 kJ/kg 0.4761 kJ/kg-K de tablas.

 $l_{8a} = 137.73 + x [2560,5-137.73] =$ = 137.73 + 2422.77x 58a = 0.4761 + x [8.393-0.4761] =

 $= 0.4761 + 7.9169 \times$

Balance energético: El agua de circulación gana la energía que pierde el vapor in 4.186 [25-10] = 56 [137.73+2422.77x-137.73] $62.79 \, \dot{m} = 135675.12 \times (I)$ Balance entrépsico: Es entrada + Squi- Es salid 56[0.4761+7.9169x]+ in 4.186 ln[273.15+1610]+ +21.8 = 56.0.4761+in 4,186 ln[273.15+25] 443.3464 x + 21.8 = 0.216080998 ii (II) Resolviendo (I) y (II) $\dot{m} = 1999.68 \, kg/s$ x = 0.925445725Tomo $\dot{m} = 2000 \, kg/s$ h8a = 2379.87 (De a), pág auterior) haa= 137.73+0.001005×100[10-0.1]=138.725 Bomba 2 Sh4a = 762.8 + 0.001127 [25-10]100 = 764.49 Turbina de alta presión 56a= 7.436 para P=10 y S=56a htas = 3178.6+ 3263.8-3178.6 (7.436-7,3344)= = 3244,98

0.93858 = hea-hta = hfa=3263.8; 57=7.464
Balance en calcutador abierto 56 x /38.725+3263.80 = (56+0) 762.8 \(\times = 13.9737 \text{ bg/s}; \text{ in total = 69.974 kg/s}\)
Turbina de baja presión
\(\text{para } = 5 = 570 \text{ y } p = 0.05 \text{ bar } a ×8as = 7.4668-0.4761 = 0.883 8,393-0.4761 M8as = 137.73+0.883[2560.5-137.73] = = 2277.06; $\eta = \frac{3263.8 - 2379.87}{3263.8 - 2277.06} = 89.58\%$ Balance en condensador de 49 69.974 [2802.2-764.49] = Wing [275,29-34.535] any = 592,2456 kg/s Potencias: TAPHO 69.974 [3551.4-3263.8] = 20124.52 kW TBPH20 56 [3263.8-2379.87] = 49500,08 kW 592.25 [366.32-275,29] = 53912.52 kW Bomba 1 56 [138.725-137.73] = 55, 72 kW Bonba 2 69.974 [764.49-762.8] = 118,26 bW

Potencia veta = 123363.14 kW

(4) Potencia Suministrada fros la caldera

592.25 [366,32-34.535] + 69.974 [3551,40-2802.2] =

= 248988 kW

NGLOBAL = 123363.14 = 49.55%

NHg (Pregnuta g)

NHg = 53912.52

592.25 [366.32-34.535] =

= 27.44%

1 H20 (Pregunta le)

7H20 = 20124.52 + 49500,08-55,72-118.26 = 69.974 [3551.4-764:49] = 35,61%

TERMODINÁMICA

Nombre	Grupo

Problema – 2 (3,5 puntos)

El esquema inferior representa una bomba de calor geotérmica agua/agua que capta calor del suelo (foco a $T_S = 14$ °C), aporta calefacción a una vivienda (foco a $T_V = 23$ °C) y calienta el agua caliente de consumo doméstico que llega desde la red (foco de masa) (a1) y se envía al acumulador (foco de masa) (a2). La instalación consta de la máquina "bomba de calor" en sí (encerrada en línea discontinua en la figura) y de dos circuitos de agua, uno para captar el calor del suelo (s1, s2 y s3) y otro para ceder el calor a la vivienda (v1, v2 y v3), incluyendo cada uno de éstos una bomba.

El calor que la instalación cede a la vivienda (el recibido por el foco) es de 20 kW. El rendimiento isentrópico del compresor es del 70%. Los rendimientos isentrópicos de las bombas son del 100 %. El agua (circuitos del suelo, vivienda y usos domésticos) se considera líquido incompresible con un calor específico de 4,18 kJ/kg-K y una densidad de 1000 kg/m³. Nótese que existen pérdidas de presión en los intercambiadores de los circuitos "V" y "S", reflejadas en la tabla.

Se pide:

- a) Rellenar las casillas recuadradas de la tabla adjunta (flujos de cada circuito y entalpías de la bomba de calor), así como las necesarias para resolver el problema.
- b) Potencia consumida por cada bomba y el compresor.
- b) COP de la máquina "bomba de calor" (volumen de control encerrado en línea discontinua)².
- c) COP de la instalación completa³.
- d) Entropía generada total en la instalación completa.

² Los calores se miden en los intercambiadores de calor de la máquina y las bombas quedan fuera del volumen de control.

³ Los calores se miden en los focos y las bombas se consideran parte de la instalación.

Punto	Caudal [kg/s]	Presión [bar]	Temperatura [°C]	Título [p.u.]	Densidad [kg/ m ³]	Entalpía [kJ/kg]	Entropía [kJ/kg-K]
v1		2,5	35		1000		
v2		5,5			1000		
v3		4,5	40		1000		
b1		4,75	5				
b2		15,3					
b3		15,3		1			
b4		15,3		0			
b5		4,75					
s1		2,5	10		1000		
s2		9,0			1000		
s3		7,5	5		1000		
a1		3,0	12		1000		
a2		3,0	60		1000		

Propiedades de saturación (líquido-vapor) del R290

p	T	V _f	v _g	u _f	u _g	h _f	h _g	Sf	s _g
[bar]	[ºC]	[m³/kg]	[m³/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-K]	[kJ/kg-K]
2	-25,44	0,001781	0,21929	137,90	501,7	138,25	545,6	0,76478	2,40912
2,5	-19,38	0,001805	0,17777	152,13	508,2	152,58	552,7	0,82155	2,39807
3	-14,18	0,001827	0,14962	164,51	513,8	165,05	558,7	0,86987	2,38975
3,5	-9,593	0,001847	0,12923	175,55	518,7	176,20	563,9	0,91217	2,38322
4	-5,476	0,001865	0,11375	185,58	523,1	186,33	568,6	0,94996	2,37793
4,5	-1,728	0,001883	0,10158	194,81	527,0	195,66	572,7	0,98422	2,37355
5	1,721	0,001900	0,09175	203,39	530,7	204,34	576,6	1,01566	2,36983
5,5	4,923	0,001916	0,08364	211,43	534,1	212,48	580,1	1,04476	2,36664
6	7,916	0,001932	0,07682	219,01	537,2	220,16	583,3	1,07190	2,36385
12	34,38	0,002097	0,03812	289,14	563,8	291,66	609,5	1,31073	2,34429
12,5	36,09	0,002110	0,03651	293,91	565,4	296,55	611,0	1,32624	2,34313
13	37,76	0,002123	0,03502	298,57	566,9	301,33	612,4	1,34132	2,34200
13,5	39,38	0,002136	0,03363	303,13	568,4	306,01	613,8	1,35600	2,34087
14	40,96	0,002149	0,03233	307,59	569,8	310,60	615,1	1,37031	2,33976
14,5	42,49	0,002162	0,03113	311,97	571,2	315,10	616,3	1,38426	2,33864
15	43,99	0,002174	0,02999	316,26	572,5	319,53	617,5	1,39789	2,33753
15,5	45,45	0,002187	0,02893	320,48	573,8	323,87	618,6	1,41122	2,33641
16	46,88	0,002200	0,02792	324,62	575,0	328,14	619,7	1,42426	2,33529
16,5	48,28	0,002213	0,02698	328,70	576,2	332,35	620,7	1,43702	2,33415
17	49,64	0,002226	0,02609	332,71	577,3	336,49	621,7	1,44954	2,33300

Propiedades de vapor sobrecalentado del R290

4,75 bar (sat: 0,03 °C)						15,3 bar (sat: 44,9 °C)					
Т	V	u	h	S	_	Т	V	u	h	S	
[°C]	[m³/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-K]	_	[°C]	[m³/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-K]	
sat	0,09642	528,9	574,7	2,37162		sat	0,02934	573,3	618,2	2,33686	
0,5	0,09667	529,6	575,5	2,37469		45	0,02938	573,6	618,5	2,33783	
1	0,09693	530,4	576,4	2,37794		47	0,02986	577,6	623,3	2,35284	
1,5	0,09719	531,2	5,77	2,38119		49	0,03032	581,6	628,0	2,36755	
2	0,09745	531,9	578,2	2,38444		51	0,03078	585,6	632,7	2,38199	
2,5	0,09771	532,7	579,1	2,38767		53	0,03122	589,5	637,3	2,39620	
3	0,09797	533,5	580,0	2,39090		55	0,03165	593,5	641,9	2,41019	
3,5	0,09822	534,2	580,9	2,39412		57	0,03208	597,4	646,4	2,42400	
4	0,09848	535,0	581,8	2,39733		59	0,03249	601,2	650,9	2,43763	
4,5	0,09874	535,8	582,7	2,40054		61	0,03290	605,1	655,4	2,45112	
5	0,09899	536,5	583,6	2,40373		63	0,03331	608,9	659,9	2,46446	
5,5	0,09925	537,3	584,4	2,40693		65	0,03370	612,8	664,4	2,47767	
6	0,09950	538,1	585,3	2,41011		67	0,03410	616,6	668,8	2,49076	
6,5	0,09976	538,8	586,2	2,41329		69	0,03448	620,5	673,2	2,50374	
7	0,10001	539,6	587,1	2,41646		71	0,03486	624,3	677,7	2,51663	

Punto	Caudal [kg/s]	Presión [bar]	Temperatura [°C]	Título [p.u.]	Densidad [kg/ m³]	Entalpía [kJ/kg]	Entropía [kJ/kg-K]
v1	0,948	2,5	35		1000		
v2		5,5			1000		
v3		4,5	40		1000		
b1	0'067	4,75	5			1836	
b2		15,3				663,9	
b3		15,3		1		618,2	
b4		15,3		0		322,1	-
b5		4,75				322.1	
s1	0'827	2,5	10		1000		
s2		9,0			1000		
s3		7,5	5		1000		
a1	0'015	3,0	12		1000		
a2		3,0	60		1000		

Baubo de color

$$0.7 = \frac{639.77591 - 583.6}{h_{L} - 583.6} \rightarrow h_{Z} = 663.85 \text{ K}^{3}/\text{Ky}$$

$$W_{B} = \frac{P_{2} - P_{1}}{P} = \frac{(5'5 - 2.5)100}{100} = 0'3 \times 1/kg$$

$$W_{B} = \frac{P_{2} - P_{1}}{P} = \frac{(5'5 - 2.5)100}{1000} = 0'3 \times 1/kg$$

$$W_{B} = \frac{P_{2} - P_{1}}{P} = \frac{(5'5 - 2.5)100}{1000} = 0'3 \times 1/kg$$

$$W_{B} = \frac{P_{2} - P_{1}}{P} = \frac{1000}{1000}$$

$$\dot{q}_{\omega n} = h_{3} - h_{2} = \frac{4.18(40 - Tv_{2}) + \frac{(4.5 - 5.5)100}{1000}}{1000} = 20.8 \frac{kJ}{ky}$$

$$\dot{q}_{\omega n} = h_{3} - h_{2} = Tv_{1} = 35.0$$

$$q_{con} = N_3 - N_2$$

 $Q_{B} = 1 = 3 T_{V2} = T_{V1} = 35C$

Como
$$l_B = 1 \Rightarrow Tv2 = Tv. = 35C$$
 $l_B = 1 \Rightarrow Tv2 = Tv. = 35C$
 $l_{A.5} = \frac{2.5}{100} = 21.4 \text{ rJ/kg}$
 $l_{A.5} = \frac{20}{1000} = 21.4 \text{ rJ/kg}$

$$\frac{\text{relo}}{WB} = \frac{P_2 - P_1}{f} = \frac{(9 - 2.5)100}{1000} = 0.65 \text{ KJ/Ky}$$

$$W_{S} = \frac{1000}{6}$$
 $W_{S} = \frac{1000}{1000} = \frac{1000}{1000} = \frac{20.4 \text{ kJ}}{1000}$
 $W_{S} = \frac{1000}{1000} = \frac{21.05 \text{ kJ}}{1000}$

$$\frac{4}{5} = h_1 - h_3 - \frac{4}{18} \left(\frac{7}{2} - \frac{7}{1} \right) \frac{(9 - 7.7)}{100} = 21.05 \frac{1}{100}$$

$$\frac{4}{5} = h_2 - h_3 = \frac{4}{18} \left(\frac{7}{2} - \frac{7}{100} \right) + \frac{(9 - 7.7)}{100} = 21.05 \frac{1}{100}$$

$$m_{S} \times 21.05 = 0.06659(583,6-322,13) \rightarrow m_{A} = 0.02719 \frac{14}{3}$$

April coliente donés true

$$\dot{W}_{BV} = 0.82714 \times 0.65 = 0.53764 \text{ KW}$$

$$\dot{W}_{c} = 0.82714 \times 0.65 = \frac{134385}{663.85 - 583.6} = \frac{5134385}{134385} \times W$$

$$COP_{RC} = \frac{663.85 - 322.13}{663.85 - 583.6} = \frac{4.2582}{663.85 - 583.6}$$

$$\angle \hat{W} = 0.28436 + 0.53764 + 5.34385 = 6.16585 kW$$

$$W = 0.18430$$

$$COP_{inst} = \frac{20+3.0397}{6.16585} = \frac{3.7367}{6.16585}$$

$$\frac{dSu}{dz} = -\frac{\dot{a}S}{T_0} + \frac{\dot{a}u}{T_0} = \frac{\dot{a}Su}{T_0} + \frac{\dot{a}v}{T_0} = \frac{\dot{a}Su}{T_0} + \frac{\dot{a}u}{T_0} = \frac{\dot{a}u}{T_0} = \frac{\dot{a}u}{T_0} = \frac{\dot{a}u}{T_0} + \frac{\dot{a}u}{T_0} = \frac{\dot{a}u}{T$$

$$= \frac{-1687365}{287} + 6.01515 \times 4.18 \left[\frac{333}{285} \right] + \frac{20}{296} =$$

No es preciso dorse avente de que Tv2 = Tvi y No es preciso dorse aventver el publicame yea Le que Ts2 = Tos para rensiver el publicame yea NOTA opere le préde aplicer et bolance de energie à and aranto:

viviende:
$$9\cos + WB = 9v = 9\cos = (hvs - hv1) - \frac{Pv2 - Pv1}{P}$$

Le donde sobe 7 on se regal planteando TV2. Evidente mente, n'se regal planteando

From = $hv3 - hv2 = hv3 - hv_1 - \frac{Pv2 - Pv_1}{f}$ As Mayor a grave $hv2 = hv_1 + \frac{Pv_2 - Pv_1}{f}$ And we presche or derivor concess $hv3 - hv1 = \frac{Pv_2 - Pv_1}{f}$

 $Nuz - hui = \frac{ruz - rui}{f}$ $C(Tvz - Tvi) + \frac{Puz - Pvi}{f} = \frac{Puz - Pvi}{f} \Longrightarrow Tuz = Tvi$

y le misure se puede hore on el arcuito del

otre alternative para hallor directremente huz e aptivor la ecuación (x), propis de una bante isentispica.

TERMODINÁMICA

Nombre	Grupo	

Problema -3 (3 puntos)

Se dispone de un ciclo de potencia que recibe calor a una temperatura media de 1053 K y lo cede en sendos procesos de temperaturas medias 344 K y 325 K. El calor aportado al ciclo procede de un foco a 1373 K y el cedido se dirige al ambiente (foco a 293 K).

La variación de entropía del universo es de 440,65 kW/K, la entropía generada por irreversibilidades interiores en el ciclo es de 190,25 kW/K y el rendimiento del ciclo es del 57,5 %.

Se pide:

- a) Trabajo neto desarrollado por el ciclo
- b) Calor disipado por el ciclo en cada uno de los dos procesos de cesión de calor

$$\frac{1373 \, \text{K}}{\text{dc}} = \frac{-\text{dc}}{1373} + \frac{\text{dfl} + \text{df2}}{293} \quad (1)$$

$$\frac{1}{1373} = 1 - \frac{\text{dfl} + \text{df2}}{\text{dc}} \quad (2)$$

$$\frac{1}{1373} = 1 - \frac{\text{dfl} + \text{df2}}{\text{dc}} \quad (2)$$

$$\frac{1}{1373} = \frac{\text{dfl}}{\text{dc}} + \frac{\text{dfl}}{327} \quad (3)$$

$$\frac{1}{1373} = \frac{\text{dfl}}{344} + \frac{\text{dfl}}{327} \quad (3)$$

La resolución del sisterce (4) puede recliforte ma mudwente:

$$Q_{F1} + Q_{F2} = 259320,8$$
 $Q_{F1} + \frac{349}{325}Q_{F2} = 769,7257 \times 349$

En degri

dear:

$$G_{F2} \left(1 - \frac{344}{325} \right) = -5457,892 \Rightarrow G_{F2} = \frac{93358,68 \text{ kw}}{325}$$

$$G_{F1} = \frac{165}{962,12 \text{ kw}}$$

Ahora bien, también puede hourt motividmente:

En este case, le matir de coeticientes està mal condicionado el mor miners grande" y "peque nosi, de mucho, que or no mo se toures sur create atrès decimals prede meher derviacions respecto el rendado correito. Asi:

éperando con la Hi? (invirtiendo la mahi) y undkplicando) remoltas

QF(= 170 603,32 KW 0=2 = 88717,48 KW

 $Q_{F1} = -6'027965 \rightarrow desviación < 3%$

6F7 - dF7 = 0,049714 -> dervices < 5%

shuacions del venultoció perfectemen te ommible. Parce que le estimación se m brese arencado undo má a la política execta se palion haber tourado 6 a tros decimals:

OF(= 166027.07 KW angu miliade 5: QPZ = 93293,73 KW

coinardente prédicemente con les volon exacts. Otna alternative padria habe vido acondi crom la matit willo en el caso che la resilición mainel:

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 344/325 = 1.0585 \end{bmatrix} \begin{bmatrix} 6.71 \\ 0.72 \end{bmatrix} = \begin{bmatrix} 2.59 & 3.20.8 \\ 769, 7055 \times 344 \end{bmatrix}$$

obtenienob.

también coincidente con et volor nomot.

Al margen de varons matemièties, estes peque nos discapancies (25%) de deber a equia mas discapancies (25%) de deber a equia pentible (may per entopio 3 una obrante el remitorio perqueño y para obrante el quan rem preciso de recquiere preciso de mitamient

Este le die tourbien on el pl, jondre die ble pare heller le enhapie del liquide incomprendre pare run el conditésoder de breio 1273" en lugar de "273, 15" los remitodos paran a res:

M= 1979, 72 K4/1 x = 0,9160

 $\frac{\dot{m} - \dot{m}^*}{\dot{m}^3} = 0.01 = 1.76$

$$\frac{y-y^*}{y} = 0.01 = 1\%$$