

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 9730000 \text{ Nmm} \sigma_{a} = 270 \text{ N/mm}^{2}
                                                                                                                                                             = 72000 \text{ N/mm}^2
         = 140000 N
Ν
                                                                                                                                                   G
                                                                                                            = 200000 \text{ N/mm}^2
         = 11600000 Nmm
                                                          = 6830000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 7110000 \text{ Nmm} \sigma_a = 270 \text{ N/mm}^2
                                                                                                                                                           = 72000 \text{ N/mm}^2
Ν
         = 152000 N
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 12100000 Nmm
                                                          = 7160000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 7770000 \text{ Nmm} \sigma_{a} = 270 \text{ N/mm}^{2}
                                                                                                                                                              = 72000 \text{ N/mm}^2
         = 166000 N
Ν
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 8930000 Nmm
                                                           = 8050000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                   σ
                                                                                                   \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 8480000 \text{ Nmm} \sigma_{a} = 270 \text{ N/mm}^{2}
                                                                                                                                                             = 72000 \text{ N/mm}^2
         = 121000 N
Ν
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 9550000 Nmm
                                                          = 8240000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                   σ
                                                                                                   \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 6490000 \text{ Nmm} \sigma_{a} = 270 \text{ N/mm}^{2}
                                                                                                                                                             = 72000 \text{ N/mm}^2
         = 139000 N
Ν
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 10300000 Nmm
                                                           = 7790000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_x = 4730000 \text{ Nmm} \sigma_a = 270 \text{ N/mm}^2
                                                                                                                                                        = 72000 \text{ N/mm}^2
         = 150000 N
Ν
                                                                                                                                               G
                                                                                                        = 200000 \text{ N/mm}^2
         = 10900000 Nmm
                                                        = 8150000 Nmm
M₊
                                                                                               Ε
                                                                                               \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                               \tau(M_t) =
y_{G}
                                                                                               σ
                                                                                               \sigma_{l}
                                               \sigma(N) =
                                                                                               \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 5220000 \text{ Nmm} \sigma_a = 270 \text{ N/mm}^2
                                                                                                                                                               = 72000 \text{ N/mm}^2
         = 165000 N
Ν
                                                                                                                                                     G
                                                                                                             = 200000 \text{ N/mm}^2
         = 8080000 Nmm
                                                           = 9320000 Nmm
M₊
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   \sigma_{\text{I}}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 5670000 \text{ Nmm} \sigma_{a} = 270 \text{ N/mm}^{2}
                                                                                                                                                             = 72000 \text{ N/mm}^2
Ν
         = 119000 N
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 8690000 Nmm
                                                          = 9570000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}}=
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

					o. tagoa			0
Ν	= 173000 N	M_{\star}	= 6250000 Nmm	σ_{a}	= 270 N/mm ²	G	= 72000 1	√mm²
M_t	= 12100000 Nmm	M_y	= 12100000 Nmm	E	$= 200000 \text{ N/mm}^2$			
x_{G}	=	J_{xy}	=	σ(M	y'	σ_{mis}	es=	
y_G	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{st.ve}$	en=	
u_o	=	J_v	=	σ	=	θ_{t}	=	
V_{o}	=	α	=	τ	=	r_{u}	=	
Α	=	J_t	=	σ_{l}	=	r_{v}	=	
J_{xx}	=	$\sigma(N)$	=	σ_{II}	=	r_{o}	=	
J_{yy}	=	σ(M	₍)=	σ_{tres}				
	dolfo Zavelani Rossi, F	Politec	nico di Milano, vers.27	.03.13	3			23.05.16

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 4520000 \text{ Nmm} \sigma_{a} = 270 \text{ N/mm}^{2}
                                                                                                                                             = 72000 \text{ N/mm}^2
        = 187000 N
Ν
                                                                                                                                     G
                                                                                                 = 200000 \text{ N/mm}^2
        = 12900000 Nmm
                                                     = 12900000 Nmm
M_t
                                            M_{v}
                                                                                        Ε
                                                                                        \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                     \sigma_{\text{mises}}=
                                                                                        \tau(M_t) =
y_{G}
                                                                                        σ
                                            α
                                                                                        \sigma_{\text{I}}
                                            \sigma(N) =
                                                                                        \sigma_{\text{II}}
                                            \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13
                                                                                                                                                               23.05.16
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i accitativo: ic	pprocontaro	andamonto don	0 .0	n tangoniziani			•
Ν	= 208000 N	$M_x = 504$	0000 Nmm	σ_{a}	$= 270 \text{ N/mm}^2$	G	= 72000 N	I/mm ^²
M_t	= 9610000 Nmm	$M_{v} = 146$	00000 Nmm	E	$= 200000 \text{ N/mm}^2$			
x_G	=	$J_{xy} =$		$\sigma(M_{v})$)=	σ_{mise}	es=	
y_{G}	=	$J_u =$		$\tau(M_t)$	=	$\sigma_{st.ve}$	_{en} =	
u_o	=	$J_{v} =$		σ	=	θ_{t}	=	
V_{o}	=	$\alpha =$		τ	=	r_u	=	
Α	=	$J_t =$		σ_{I}	=	r_{v}	=	
J_{xx}	=	$\sigma(N) =$		σ_{II}	=	r_{o}	=	
J_{yy}	=	$\sigma(M_x)=$		σ_{tresc}	a=			
	dolfo Zavelani Rossi, F	Politecnico di	Milano, vers.27.0	03.13				23.05.16

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

					o. tan.go <u>-</u> .a			•
Ν	= 150000 N	M_{\star}	= 5450000 Nmm	σ_{a}	$= 270 \text{ N/mm}^2$	G	= 72000 N	N/mm ²
M_t	= 10400000 Nmm	M_{v}^{λ}	= 15200000 Nmm	E	$= 200000 \text{ N/mm}^2$			
x_{G}	=	J_{xy}	=	σ(M	y <i>'</i>	σ_{mis}	es=	
y_{G}	=	J_u	=	$\tau(M_t$) =	$\sigma_{\text{st.v}}$	en=	
u_o	=	J_v	=	σ	=	θ_{t}	=	
V_{o}	=	α	=	τ	=	r_u	=	
Α	=	J_t	=	σ_{I}	=	r_{v}	=	
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=	
J_{yy}	=	$\sigma(M_s)$	_x)=	σ_{tres}	_{ca} =			
						23.05.16		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 10800000 \text{ Nmm} \sigma_a = 270 \text{ N/mm}^2
                                                                                                                                                            = 72000 \text{ N/mm}^2
         = 149000 N
Ν
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 13100000 Nmm
                                                          = 7770000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 7970000 \text{ Nmm} \sigma_{a} = 270 \text{ N/mm}^{2}
                                                                                                                                                             = 72000 \text{ N/mm}^2
         = 162000 N
Ν
                                                                                                                                                   G
                                                                                                            = 200000 \text{ N/mm}^2
         = 13800000 Nmm
                                                          = 8190000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 8690000 \text{ Nmm} \sigma_a = 270 \text{ N/mm}^2
                                                                                                                                                           = 72000 \text{ N/mm}^2
         = 177000 N
Ν
                                                                                                                                                  G
                                                                                                          = 200000 \text{ N/mm}^2
         = 10100000 Nmm
                                                         = 9200000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 9500000 \text{ Nmm} \sigma_{a} = 270 \text{ N/mm}^{2}
                                                                                                                                                              = 72000 \text{ N/mm}^2
         = 129000 N
Ν
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 10900000 Nmm
                                                          = 9460000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                   \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 7400000 \text{ Nmm} \sigma_a = 270 \text{ N/mm}^2
                                                                                                                                                                  = 72000 \text{ N/mm}^2
Ν
          = 148000 N
                                                                                                                                                         G
                                                                                                               = 200000 \text{ N/mm}^2
          = 11700000 Nmm
                                                            = 8740000 Nmm
                                                  M_{v}
M₊
                                                                                                     Ε
                                                                                                     \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                         \sigma_{\text{mises}} =
                                                                                                     \tau(M_t) =
y_{G}
                                                                                                                                                         \sigma_{\text{st.ven}}=
                                                                                                     σ
                                                                                                     \sigma_{\text{I}}
                                                  \sigma(N) =
                                                                                                     \sigma_{\text{II}}
                                                  \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 5400000 \text{ Nmm} \sigma_a = 270 \text{ N/mm}^2
                                                                                                                                             = 72000 \text{ N/mm}^2
        = 161000 N
Ν
                                                                                                                                    G
                                                                                                = 200000 \text{ N/mm}^2
        = 12400000 Nmm
                                                    = 9190000 Nmm
M₊
                                                                                        Ε
                                                                                        \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                    \sigma_{\text{mises}} =
                                                                                        \tau(M_t) =
y_{G}
                                                                                        σ
                                                                                        \sigma_{\text{I}}
                                            \sigma(N) =
                                                                                        \sigma_{\text{II}}
                                            \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13
                                                                                                                                                              23.05.16
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 5940000 \text{ Nmm} \sigma_{a} = 270 \text{ N/mm}^{2}
                                                                                                                                                                    = 72000 \text{ N/mm}^2
Ν
          = 177000 N
                                                                                                                                                          G
                                                                                                                = 200000 \text{ N/mm}^2
          = 9200000 Nmm
                                                             = 10500000 Nmm
                                                   M_{v}
M₊
                                                                                                      Ε
                                                                                                      \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                          \sigma_{\text{mises}}=
                                                                                                      \tau(M_t) =
y_{G}
                                                                                                                                                          \sigma_{\text{st.ven}}=
                                                                                                      σ
                                                                                                      \sigma_{\text{I}}
                                                   \sigma(N) =
                                                                                                      \sigma_{\text{II}}
                                                   \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 6480000 \text{ Nmm} \sigma_a = 270 \text{ N/mm}^2
                                                                                                                                                               = 72000 \text{ N/mm}^2
         = 128000 N
Ν
                                                                                                                                                     G
                                                                                                             = 200000 \text{ N/mm}^2
         = 9930000 Nmm
                                                           = 10800000 Nmm
M₊
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   \sigma_{\text{I}}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 7050000 \text{ Nmm} \sigma_{a} = 270 \text{ N/mm}^{2}
                                                                                                                                                                   = 72000 \text{ N/mm}^2
          = 183000 N
Ν
                                                                                                                                                         G
                                                                                                                = 200000 \text{ N/mm}^2
          = 13700000 Nmm
                                                             = 13500000 Nmm
M_t
                                                   M_{v}
                                                                                                      Ε
                                                                                                      \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                         \sigma_{\text{mises}}=
                                                                                                      \tau(M_t) =
y_{G}
                                                                                                                                                         \sigma_{\text{st.ven}}=
                                                                                                      σ
                                                   α
                                                                                                      \sigma_{\text{I}}
                                                   \sigma(N) =
                                                                                                      \sigma_{\text{II}}
                                                   \sigma(M_x)=
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i additativo. id	~PP. 00	ornaro ramaamonto ao		or tarigoriziani			_
Ν	= 197000 N	M_x	= 5110000 Nmm	σ_{a}	$= 270 \text{ N/mm}^2$	G	= 72000 1	N/mm ²
M_t	= 14600000 Nmm	M_{v}	= 14400000 Nmm	E	$= 200000 \text{ N/mm}^2$			
X_G	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	es=	
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{\text{st.ve}}$	en=	
u_{o}	=	J_v	=	σ	=	θ_{t}	=	
V_{o}	=	α	=	τ	=	r_u	=	
Α	=	J_t	=	σ_{I}	=	r_{v}	=	
J_{xx}	=	$\sigma(N)$) =	σ_{II}	=	r_{o}	=	
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =			
	dolfo Zavelani Rossi, I	Polited	nico di Milano, vers.27	.03.13	}			23.05.16

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 220000 N	M _×	= 5690000 Nmm	σ_a	= 270 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 10900000 Nmm	M_{v}	= 16300000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_u	=	τ(M	_t) =	$\sigma_{\text{st.}}$	_{/en} =
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	$\sigma(N)$		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_×)=	σ_{tres}	_{sca} =		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 158000 N	M _×	= 6170000 Nmm	σ_a	= 270 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 11800000 Nmm	M_{v}	= 17000000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_G	=	J_{xy}	=	σ(M		σ_{mis}	ses=
y_G	=	J_{u}	=	$\tau(M)$	t) =	$\sigma_{st.v}$	_{/en} =
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N	•	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(x)=	σ_{tres}	_{sca} =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 161000 N	M _×	= 11600000 Nmm	σ_a	= 270 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 13600000 Nmm	M_{v}^{λ}	= 7870000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y ·	σ_{mis}	ses=
y_{G}	=	J_u	=	$\tau(M_1$	_t) =	$\sigma_{st.v}$	_{/en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	=(_x	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 8480000 \text{ Nmm} \sigma_{a} = 270 \text{ N/mm}^{2}
                                                                                                                                                             = 72000 \text{ N/mm}^2
Ν
         = 175000 N
                                                                                                                                                   G
                                                                                                            = 200000 \text{ N/mm}^2
         = 14300000 Nmm
                                                          = 8250000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 9290000 \text{ Nmm} \sigma_{a} = 270 \text{ N/mm}^{2}
                                                                                                                                                             = 72000 \text{ N/mm}^2
         = 191000 N
Ν
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 10500000 Nmm
                                                          = 9280000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_x = 10100000 \text{ Nmm} \sigma_a = 270 \text{ N/mm}^2
                                                                                                                                                         = 72000 \text{ N/mm}^2
Ν
         = 139000 N
                                                                                                                                                G
                                                                                                         = 200000 \text{ N/mm}^2
         = 11200000 Nmm
                                                         = 9500000 Nmm
M₊
                                                                                               Ε
                                                                                               \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                               \tau(M_t) =
y_{G}
                                                                                                σ
                                                                                                \sigma_{l}
                                               \sigma(N) =
                                                                                               \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

						_	2
Ν	= 158000 N	M_{x}	= 7830000 Nmm	σ_a	= 270 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 12200000 Nmm	M_{y}^{x}	= 8860000 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	<i>)</i> ·	σ_{mis}	es=
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{st.v}$	en=
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N)	=	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	_{ca} =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 5700000 \text{ Nmm} \sigma_a = 270 \text{ N/mm}^2
                                                                                                                                                              = 72000 \text{ N/mm}^2
         = 171000 N
Ν
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 12900000 Nmm
                                                           = 9280000 Nmm
                                                 M_{v}
M₊
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   σ
                                                                                                   \sigma_{\text{I}}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N.I			C200000 Nimm			_	70000 N/m = 2
N	= 188000 N	M_x	= 6300000 Nmm	σ_{a}	$= 270 \text{ N/mm}^2$	G	$= 72000 \text{ N/mm}^2$
M_t	= 9570000 Nmm	M_{y}	= 10600000 Nmm	Ε	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	<i>y</i> ·	σ_{mis}	es=
y_G	=	J_u	=	$\tau(M_t)$) =	$\sigma_{\text{st.v}}$	en=
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M ₂	_x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i accitativo: ia	PP. 00	ornaro ramaamonto aoi				
Ν	= 136000 N	M_x	= 6850000 Nmm	σ_{a}	$= 270 \text{ N/mm}^2$	G	$= 72000 \text{ N/mm}^2$
M_t	= 10300000 Nmm	M_{v}		E	$= 200000 \text{ N/mm}^2$		
X_G	=	J_{xy}	=	σ(M,	_y)=	σ_{mis}	es=
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{\text{st.ve}}$	_{en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	_{ca} =		
· ·							00.0=

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 167000 N	M _×	= 6490000 Nmm	σ_{a}	= 270 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 11500000 Nmm	M_{v}	= 12200000 Nmm		$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(N	y.	σ_{mis}	ses=
y_{G}	=	J_u	=	τ(M	_t) =	$\sigma_{st.v}$	_{/en} =
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	\mathbf{r}_{u}	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	=(_x	σ_{tres}	_{sca} =		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 4710000 \text{ Nmm} \sigma_a = 270 \text{ N/mm}^2
                                                                                                                                                             = 72000 \text{ N/mm}^2
         = 181000 N
Ν
                                                                                                                                                   G
                                                                                                            = 200000 \text{ N/mm}^2
         = 12300000 Nmm
                                                          = 13000000 Nmm
M_t
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}}=
                                                                                                  \tau(M_t) =
y_{G}
                                                 α
                                                                                                  \sigma_{\text{I}}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

1 doctative rapprocentare randamente delle terre tangenziam								
Ν	= 201000 N	M_{x}	= 5220000 Nmm	σ_{a}	$= 270 \text{ N/mm}^2$	G	= 72000 1	ا/mm²
M_t	= 9170000 Nmm	M_{v}	= 14700000 Nmm	E	$= 200000 \text{ N/mm}^2$			
x_G	=	J_{xy}	=	σ(M,	_/)=	σ_{mis}	es=	
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{\text{st.ve}}$	en=	
u_o	=	J_{v}	=	σ	=	Θ_{t}	=	
V_{o}	=	α	=	τ	=	\mathbf{r}_{u}	=	
Α	=	J_t	=	σ_{I}	=	r_v	=	
J_{xx}	=	σ(N)	=	σ_{II}	=	r_{o}	=	
J_{yy}	=	$\sigma(M_s)$	₍)=	σ_{tres}	_{ca} =			
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13							23.05.16	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 145000 N	M _×	= 5660000 Nmm	σ_{a}	$= 270 \text{ N/mm}^2$	G	$= 72000 \text{ N/mm}^2$
M_t	= 9950000 Nmm	M_{y}^{2}	= 15400000 Nmm		$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y ·	σ_{mis}	es=
y_G	=	J_u	=	$\tau(M_t$) =	$\sigma_{\text{st.v}}$	en=
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_×)=	σ_{tres}	ca =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 12900000 \text{ Nmm} \sigma_{a} = 270 \text{ N/mm}^{2}
                                                                                                                                            = 72000 \text{ N/mm}^2
        = 171000 N
Ν
                                                                                                                                    G
                                                                                                = 200000 \text{ N/mm}^2
        = 15400000 Nmm
                                                    = 8940000 Nmm
M₊
                                                                                       Ε
                                                                                       \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                    \sigma_{\text{mises}} =
                                                                                       \tau(M_t) =
y_{G}
                                                                                        σ
                                                                                        \sigma_{l}
                                           \sigma(N) =
                                                                                       \sigma_{\text{II}}
                                           \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13
                                                                                                                                                             23.05.16
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 9470000 \text{ Nmm} \sigma_{a} = 270 \text{ N/mm}^{2}
                                                                                                                                                             = 72000 \text{ N/mm}^2
         = 186000 N
Ν
                                                                                                                                                   G
                                                                                                            = 200000 \text{ N/mm}^2
         = 16300000 Nmm
                                                          = 9420000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 10300000 \text{ Nmm} \sigma_a = 270 \text{ N/mm}^2
                                                                                                                                                           = 72000 \text{ N/mm}^2
Ν
         = 203000 N
                                                                                                                                                  G
                                                                                                          = 200000 \text{ N/mm}^2
         = 11900000 Nmm
                                                          = 10500000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_x = 11300000 \text{ Nmm} \sigma_a = 270 \text{ N/mm}^2
                                                                                                                                                        = 72000 \text{ N/mm}^2
Ν
         = 148000 N
                                                                                                                                               G
                                                                                                         = 200000 \text{ N/mm}^2
         = 12800000 Nmm
                                                        = 10800000 Nmm
M₊
                                                                                               Ε
                                                                                               \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                               \tau(M_t) =
y_{G}
                                                                                               σ
                                                                                               \sigma_{l}
                                               \sigma(N) =
                                                                                               \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 169000 N	M _×	= 8870000 Nmm	σ_{a}	= 270 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 13900000 Nmm	M_{v}	= 9930000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_u	=	$\tau(M_t$	_t) =	$\sigma_{st.v}$	_{/en} =
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	$\sigma(N)$		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

			0.4000000 NJ		0	_	7 0000 N// 2
Ν	= 183000 N	M_x	= 6480000 Nmm	σ_{a}	= 270 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 14700000 Nmm	M_{y}	= 10400000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_G	=	J_{xy}	=	σ(N	y.	σ_{mis}	ses=
y_{G}	=	J_u	=	τ(M	$_{t}) =$	$\sigma_{\text{st.}}$	_{/en} =
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	σ(N		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	sca=		
					_		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 201000 N	M _×	= 7140000 Nmm	σ_a	= 270 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 10800000 Nmm	M_y	= 11900000 Nmm		$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y'	σ_{mis}	es=
y_G	=	J_u	=	$\tau(M_t$) =	$\sigma_{\text{st.v}}$	_{ren} =
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_{u}	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	$\sigma(N)$		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 7790000 \text{ Nmm} \sigma_{a} = 270 \text{ N/mm}^{2}
                                                                                                                                                               = 72000 \text{ N/mm}^2
         = 146000 N
Ν
                                                                                                                                                      G
                                                                                                             = 200000 \text{ N/mm}^2
         = 11700000 Nmm
                                                           = 12200000 Nmm
M₊
                                                                                                    Ε
                                                                                                    \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                      \sigma_{\text{mises}} =
                                                                                                    \tau(M_t) =
y_{G}
                                                                                                    σ
                                                                                                    \sigma_{\text{I}}
                                                  \sigma(N) =
                                                                                                    \sigma_{\text{II}}
                                                  \sigma(M_x)=
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 8350000 \text{ Nmm} \sigma_{a} = 270 \text{ N/mm}^{2}
                                                                                                                                                              = 72000 \text{ N/mm}^2
         = 205000 N
Ν
                                                                                                                                                     G
                                                                                                             = 200000 \text{ N/mm}^2
         = 16300000 Nmm
                                                           = 15300000 Nmm
M_t
                                                 M_{v}
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                     \sigma_{\text{mises}}=
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   σ
                                                 α
                                                                                                   \sigma_{\text{I}}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i accitativo. i	арріоо	oritaro raridarriorito do		o. tarigoriziani.			•
Ν	= 221000 N	M_{x}	= 6050000 Nmm	σ_{a}	$= 270 \text{ N/mm}^2$	G	= 72000 1	N/mm ²
M_t	= 17400000 Nmm	M_{v}	= 16300000 Nmm	E	$= 200000 \text{ N/mm}^2$			
x_G	=	J_{xy}	=	σ(M	_v)=	σ_{mis}	es=	
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{st.ve}$	en=	
u_{o}	=	J_v	=	σ	=	Θ_{t}	=	
V_{o}	=	α	=	τ	=	r_u	=	
Α	=	J_{t}	=	σ_{l}	=	r_{v}	=	
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=	
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =			
···							23.05.16	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

					2	_	2
Ν	= 246000 N	M_{x}	= 6760000 Nmm	σ_{a}	= 270 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 12900000 Nmm	M_y	= 18400000 Nmm		$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y ·	σ_{mis}	ses=
y_{G}	=	J_u	=	τ(M	$_{t}) =$	$\sigma_{st.v}$	_{/en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	σ(N		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	sca=		
					_		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i acoitativo. ia	ppics	critare randamento dei	ic teri	s. tarigorizian.			_
Ν	= 178000 N	M_x	= 7330000 Nmm	σ_{a}	$= 270 \text{ N/mm}^2$	G	= 72000 N	N/mm ²
M_t	= 14000000 Nmm	M_{v}	= 19300000 Nmm	E	$= 200000 \text{ N/mm}^2$			
x_{G}	=	J_{xy}	=	$\sigma(M_v)$)=	σ_{mise}	es=	
y_{G}	=	J_{u}	=	$\tau(M_t)$	=	$\sigma_{st.ve}$	en=	
u_{o}	=	J_v	=	σ	=	θ_{t}	=	
V_{o}	=	α	=	τ	=	r_u	=	
Α	=	J_t	=	σ_{I}	=	r_{v}	=	
J_{xx}	=	σ(N)	=	σ_{II}	=	r_{o}	=	
J_{yy}	=	$\sigma(M_s)$	₍)=	σ_{tresc}	a=			
							23.05.16	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 8630000 \text{ Nmm} \sigma_{a} = 270 \text{ N/mm}^{2}
                                                                                                                                                             = 72000 \text{ N/mm}^2
         = 131000 N
Ν
                                                                                                                                                   G
                                                                                                            = 200000 \text{ N/mm}^2
         = 10000000 Nmm
                                                          = 5920000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 6310000 \text{ Nmm} \sigma_a = 270 \text{ N/mm}^2
                                                                                                                                                           = 72000 \text{ N/mm}^2
Ν
         = 143000 N
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 10600000 Nmm
                                                          = 6250000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 6950000 \text{ Nmm} \sigma_{a} = 270 \text{ N/mm}^{2}
                                                                                                                                                              = 72000 \text{ N/mm}^2
         = 156000 N
Ν
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 7800000 Nmm
                                                           = 7030000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                   σ
                                                                                                   \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 7590000 \text{ Nmm} \sigma_{a} = 270 \text{ N/mm}^{2}
                                                                                                                                                              = 72000 \text{ N/mm}^2
         = 114000 N
Ν
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 8390000 Nmm
                                                           = 7250000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                   σ
                                                                                                   \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 5620000 \text{ Nmm} \sigma_a = 270 \text{ N/mm}^2
                                                                                                                                                            = 72000 \text{ N/mm}^2
         = 130000 N
Ν
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 8950000 Nmm
                                                          = 6840000 Nmm
M_t
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 4080000 \text{ Nmm} \sigma_{a} = 270 \text{ N/mm}^{2}
                                                                                                                                                                = 72000 \text{ N/mm}^2
Ν
         = 140000 N
                                                                                                                                                      G
                                                                                                              = 200000 \text{ N/mm}^2
         = 9420000 Nmm
                                                            = 7120000 Nmm
M₊
                                                                                                    Ε
                                                                                                    \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                      \sigma_{\text{mises}} =
                                                                                                    \tau(M_t) =
y_{G}
                                                                                                    σ
                                                                                                    \sigma_{\text{I}}
                                                  \sigma(N) =
                                                                                                    \sigma_{\text{II}}
                                                  \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 4550000 \text{ Nmm} \sigma_{a} = 270 \text{ N/mm}^{2}
                                                                                                                                                                = 72000 \text{ N/mm}^2
         = 155000 N
Ν
                                                                                                                                                      G
                                                                                                              = 200000 \text{ N/mm}^2
         = 6990000 Nmm
                                                           = 8100000 Nmm
                                                  M_{v}
M₊
                                                                                                    Ε
                                                                                                    \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                      \sigma_{\text{mises}} =
                                                                                                    \tau(M_t) =
y_{G}
                                                                                                    σ
                                                                                                    \sigma_{\text{I}}
                                                  \sigma(N) =
                                                                                                    \sigma_{\text{II}}
                                                  \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 4910000 \text{ Nmm} \sigma_{a} = 270 \text{ N/mm}^{2}
                                                                                                                                                                       = 72000 \text{ N/mm}^2
Ν
          = 111000 N
                                                                                                                                                             G
                                                                                                                  = 200000 \text{ N/mm}^2
          = 7470000 Nmm
                                                              = 8310000 Nmm
                                                    M_{v}
M₊
                                                                                                        Ε
                                                                                                        \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                        \tau(M_t) =
y_{G}
                                                                                                                                                             \sigma_{\text{st.ven}}=
                                                                                                        σ
                                                                                                        \sigma_{\text{I}}
                                                    \sigma(N) =
                                                                                                        \sigma_{\text{II}}
                                                    \sigma(M_x)=
                                                                                                        \sigma_{tresca} =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

	i accitativo. ii	арріоо	ornaro ranaamonto ao		o. tarigoriziani,			•
Ν	= 165000 N	M_x	= 5310000 Nmm	σ_{a}	$= 270 \text{ N/mm}^2$	G	= 72000 1	N/mm ²
M_t	= 10500000 Nmm	M_{v}	= 10900000 Nmm	E	$= 200000 \text{ N/mm}^2$			
x_G	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	es=	
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{\text{st.ve}}$	en=	
u_{o}	=	J_{v}	=	σ	=	θ_{t}	=	
V_{o}	=	α	=	τ	=	\mathbf{r}_{u}	=	
Α	=	J_t	=	σ_{I}	=	r_{v}	=	
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=	
J_{yy}	=	σ(M	×)=	σ_{tres}	_{ca} =			
	dolfo Zavelani Rossi,	Polited	nico di Milano, vers.27	.03.13	}			23.05.16

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

	i additativo. id	approcontaro ramaamon	to dono torior tarigoriziani	•
Ν	= 177000 N	$M_x = 3840000 \text{ Nmm}$	$\sigma_a = 270 \text{ N/mm}^2$	$G = 72000 \text{ N/mm}^2$
M_t	= 11200000 Nmm	$M_v = 11500000 \text{ Nm}$		
X_G	=	J_{xy} =	$\sigma(M_y)=$	$\sigma_{mises} =$
y_{G}	=	J_u =	$\tau(M_t) =$	$\sigma_{\text{st.ven}}$ =
u_{o}	=	$J_{v} =$	σ =	$\theta_{t} =$
V_{o}	=	α =	τ =	$r_u =$
Α	=	$J_t =$	$\sigma_{l} =$	$r_v =$
J_{xx}	=	$\sigma(N) =$	σ _{II} =	$r_o =$
J_{yy}	=	$\sigma(M_x)=$	σ_{tresca} =	
	dolfo Zavelani Rossi, I	Politecnico di Milano, ve	rs.27.03.13	23.05.16

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

	i accitativo: ic	.рр. 000	itaro ramaamomo aon	0 .0	n tangoniziani			•
Ν	= 198000 N	$M_x =$: 4290000 Nmm	σ_{a}	$= 270 \text{ N/mm}^2$	G	= 72000 N	l/mm ²
M_t	= 8330000 Nmm	$M_v =$: 13100000 Nmm	E	= 200000 N/mm ²			
X_G	=	$J_{xy} =$	•	$\sigma(M_y)$)=	σ_{mise}	es=	
y_{G}	=	$J_u =$	•	$\tau(M_t)$	=	$\sigma_{st.ve}$	en=	
u_{o}	=	$J_v =$	•	σ	=	θ_{t}	=	
V_{o}	=	α =	<u> </u>	τ	=	r_u	=	
Α	=	$J_t =$	<u> </u>	σ_{I}	=	r_{v}	=	
J_{xx}	=	$\sigma(N) =$	<u> </u>	σ_{II}	=	r_{o}	=	
J_{yy}	=	$\sigma(M_x)=$	•	σ_{tresc}	a=			
	dolfo Zavelani Rossi, I	Politecnic	co di Milano, vers.27.0	03.13				23.05.16

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 142000 N	M _×	= 4630000 Nmm	σ_a	= 270 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 9030000 Nmm	M_{v}^{λ}	= 13600000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y'	σ_{mis}	es=
y_{G}	=	J_u	=	$\tau(M_t)$) =	$\sigma_{st.v}$	en=
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{treso}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 9700000 \text{ Nmm} \sigma_{a} = 270 \text{ N/mm}^{2}
                                                                                                                                                             = 72000 \text{ N/mm}^2
         = 140000 N
Ν
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 11500000 Nmm
                                                          = 6800000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 7090000 \text{ Nmm} \sigma_{a} = 270 \text{ N/mm}^{2}
                                                                                                                                                             = 72000 \text{ N/mm}^2
Ν
         = 153000 N
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 12100000 Nmm
                                                           = 7130000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 7770000 \text{ Nmm} \sigma_{a} = 270 \text{ N/mm}^{2}
                                                                                                                                                              = 72000 \text{ N/mm}^2
         = 166000 N
Ν
                                                                                                                                                     G
                                                                                                             = 200000 \text{ N/mm}^2
         = 8890000 Nmm
                                                           = 8030000 Nmm
M_t
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   σ
                                                                                                   \sigma_{l}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 8480000 \text{ Nmm} \sigma_{a} = 270 \text{ N/mm}^{2}
                                                                                                                                                             = 72000 \text{ N/mm}^2
         = 121000 N
Ν
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 9500000 Nmm
                                                          = 8210000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                   σ
                                                                                                   \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_x = 6450000 \text{ Nmm} \sigma_a = 270 \text{ N/mm}^2
                                                                                                                                                           = 72000 \text{ N/mm}^2
         = 139000 N
Ν
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 10200000 Nmm
                                                          = 7730000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{\text{I}}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_x = 4690000 \text{ Nmm} \sigma_a = 270 \text{ N/mm}^2
                                                                                                                                                           = 72000 \text{ N/mm}^2
         = 151000 N
Ν
                                                                                                                                                  G
                                                                                                          = 200000 \text{ N/mm}^2
         = 10800000 Nmm
                                                         = 8090000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{\text{I}}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 5190000 \text{ Nmm} \sigma_a = 270 \text{ N/mm}^2
                                                                                                                                                               = 72000 \text{ N/mm}^2
         = 166000 N
Ν
                                                                                                                                                     G
                                                                                                             = 200000 \text{ N/mm}^2
         = 8000000 Nmm
                                                           = 9280000 Nmm
M_t
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   σ
                                                                                                   \sigma_{\text{I}}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_x = 5640000 \text{ Nmm} \sigma_a = 270 \text{ N/mm}^2
                                                                                                                                           = 72000 \text{ N/mm}^2
        = 120000 N
Ν
                                                                                                                                  G
                                                                                               = 200000 \text{ N/mm}^2
        = 8600000 Nmm
                                                   = 9510000 Nmm
M₊
                                                                                       Ε
                                                                                       \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                  \sigma_{\text{mises}} =
                                                                                       \tau(M_t) =
y_{G}
                                                                                       σ
                                                                                       \sigma_{\text{I}}
                                           \sigma(N) =
                                                                                       \sigma_{\text{II}}
                                           \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13
                                                                                                                                                            23.05.16
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

					o. togo=.o			0
Ν	= 174000 N	M_{x}	= 6060000 Nmm	σ_{a}	= 270 N/mm ²	G	= 72000 1	√mm²
M_t	= 12000000 Nmm	M_{y}^{λ}	= 12200000 Nmm	E	$= 200000 \text{ N/mm}^2$			
x_{G}	=	J_{xy}	=	σ(M	y <i>'</i>	σ_{mis}	es=	
y_G	=	J_u	=	$\tau(M_t$) =	$\sigma_{st.ve}$	en=	
u_o	=	J_v	=	σ	=	θ_{t}	=	
V_{o}	=	α	=	τ	=	r_{u}	=	
Α	=	J_t	=	σ_{I}	=	r_{v}	=	
J_{xx}	=	σ(N)	=	σ_{II}	=	r_{o}	=	
J_{yy}	=	$\sigma(M_s)$	₍)=	σ_{tres}	_{ca} =			
	dolfo Zavelani Rossi, F	Politec	nico di Milano, vers.27	.03.13	}			23.05.16

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

					o			
Ν	= 188000 N	M_{\star}	= 4380000 Nmm	σ_{a}	$= 270 \text{ N/mm}^2$	G	= 72000 N	√mm²
M_t	= 12800000 Nmm	M_y	= 13000000 Nmm	E	$= 200000 \text{ N/mm}^2$			
x_{G}	=	J_{xy}	=	σ(M	,,	σ_{mis}	es=	
y_G	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{st.ve}$	_{en} =	
u_o	=	J_v	=	σ	=	θ_{t}	=	
V_{o}	=	α	=	τ	=	r_{u}	=	
Α	=	J_t	=	σ_{I}	=	r_{v}	=	
J_{xx}	=	σ(N)	=	σ_{II}	=	r_{o}	=	
J_{yy}	=	σ(M	_x)=	σ_{tres}	_{ca} =			
	dolfo Zavelani Rossi, F	Polited	nico di Milano, vers.27.	.03.13				23.05.16