跨平台地图可视化渲染软件开发 用户手册

目录

1.引言.		. 3
1.1	编制说明	. 3
1.2	背景	. 3
1.3	术语	. 4
2.软件机	既述	. 5
2.1	软件用途	. 5
2.2	运行环境	. 5
	2.2.1 硬件环境	. 5
	2.2.2 软件环境	6
3.操作证	兑明	6
3.1	二维地图	6
	3.1.1 添加图层	6
	3.1.2 地图操作	. 7
3.2	地图注记	9
	3.2.1 矩形	10
	3.2.2 划线与画折线	10
	3.2.3 多边形	11
	3.2.4 颜色设置	11
3.3	三维图形	13
	3.3.1 三维操作	15
	3.3.2 线框模式	15
	3.3.3 填充模式	17
	3.3.4 光照模型	18
3.4	退出	19

跨平台地图可视化渲染软件开发 用户手册

1.引言

1.1 编制说明

用户手册讲述怎样使用"跨平台地图可视化渲染软件开发",详细介绍了各项功能的具体操作,帮助用户更好地了解和使用该系统。

本软件的作用是对地图信息进行可视化处理,使用户能够以更加直观、灵活、逼真的方式浏览和查询地图信息。具体来说,本软件能够在计算机上生成、处理和显示地图信息,包括地图底图、地形地貌、道路、建筑物等等。用户可以通过本软件进行地图缩放、拖拽、标记等操作,以满足自己的需求。本软件的作用在于为用户提供一个更加直观、灵活、逼真的地图信息展示方式,以提高用户的使用体验和效率。

1.2 背景

地图可视化技术可以将地图信息以更加直观、灵活、逼真的方式展现给用户,这对于人们的生活和工作都有着重要的帮助。在现代社会,地图信息已经成为了人们生活和工作中不可或缺的一部分。为了满足用户对地图信息可视化的需求,研发一款具有多种功能的地图渲染器就成为了必要的工作。地图渲染器的研发是基于当前计算机图形学技术的发展。随着计算机图形学技术的不断进步,越来越多的图形处理技术得到了应用,如深度缓存、背面剔除、光照模型等等。这些技术的应用可以大幅提高地图信息的渲染效果,使得地图信息展示更加真实、生动、可视化。因此,通过研发这款地图渲染器,可以将这些技术应用到地图信息的可视化中,为用户提供更加直观、灵活、逼真的地图信息展示方式。

地图渲染器的研发也面临着一些挑战。首先,地图信息的数据量通常较大,需要处理的数据包括地图底图、地形地貌、道路、建筑物等等。处理这些数据需要高效、快速的计算能力和存储能力。其次,地图信息的渲染需要考虑到不同场景和环境下的光照效果,这需要采用高级的光照模型和算法。此外,地图渲染器的研发还需要考虑到用户体验和交互性,例如用户需要能够方便地进行地图缩放、拖拽、标记等操作。为了解决这些挑战,地图渲染器的研发需要涉及多个领域的知识和技术,包括计算机图形学、计算机视觉、数据库、网络通信等等。因此,通过研发这款地图渲染器,可以将这些技术应用到地图信息的可视化中,为用户提供更加直观、灵活、逼真的地图信息展示方式。为了更加直观地展现计算机图形学的基本原理,调动学习计算机图形学的积极性从而取得更好的教学效果,系统开发人员设计并开发了面向教学的光栅化软渲染系统,用于计算机图形学课堂

中的辅助教学与演示。

在软件研发过程中,我们采用了模块化的设计思路,将不同的功能模块分开设计和实现,以提高软件的可扩展性和可维护性。同时,我们还注重用户体验和交互性的设计,通过对用户需求的深入了解和分析,优化了软件的交互方式和界面设计,提高了用户的满意度和使用体验。 综上所述,地图渲染器的研发是一个涉及多个领域的综合性工作,需要不断地优化和改进,以满足用户对地图信息可视化的更高要求。我们将继续关注地图渲染器的研发,以提供更加直观、灵活、逼真的地图信息展示方式。

1.3 术语

地理信息技术: 地理信息技术是一种集地理学、计算机科学和信息技术于一体的交叉学科, 主要用于处理、分析、管理和呈现地理信息数据。

地图信息可视化: 将地图信息以更加直观、灵活、逼真的方式展现给用户。

计算机图形学: 研究如何在计算机上生成、处理和显示图形的学科。

光栅化: 光栅化就是把顶点数据转换为片元的过程。片元中的每一个元素对应于帧缓冲区中的一个像素,是一种将几何图元变为二维图像的过程。

软渲染: 通过软件程序实现图形的渲染与绘制, 利用 CPU 而不是 GPU

矢量数据: 矢量数据结构是对矢量数据模型进行数据的组织。通过记录实体坐标及其关系,尽可能精确地表现点、线、多边形等地理实体。

二维变换: 指平面几何的几种变换。如平移, 旋转, 错切等的变换。

深度缓存: 一种基于像素的算法, 用于确定哪些像素会被渲染。

背面剔除:一种基于面的算法、用于在渲染时忽略不可见的面。

光照模型: 用于计算物体表面受到光照影响的一种数学模型。

真实感图形绘制:真实感图形绘制是通过综合运用数学、物理学、计算机科学、心理学等知识,在计算机图形输出设备上绘制出逼真景象的技术。

高洛德模型:是一种平滑着色方式,常用于三维软件,有一套复杂的光影数学计算。

分层渲染:一种基于场景复杂度的算法,用于优化渲染效率,提高渲染速度。 **用户体验**:用户在使用产品过程中的总体感受和满意度。

交互性设计:设计用户与产品之间的交互方式和界面,以提高用户的使用体验和效率。

可视化: 是利用计算机图形学和图像处理技术,将数据转换成图形或图像在屏幕上显示出来,再进行交互处理的理论、方法和技术。

2.软件概述

2.1 软件用途

该软件的主要用途是帮助用户查看地图信息,并实现逼真的光照效果。用户可以选择地图的多个图层文件,并进行叠加显示,同时可以对图层进行平移、旋转、缩放等操作,方便用户在地图上查看不同区域的信息。此外,该软件还具有二维图形的绘制功能,用户可以在地图上添加标记或其他图形,方便标注地图信息。二维绘制的图形可以进行各种几何操作,包括鼠标滚轮上下滑动即可进行缩放。通过视图操作可以对图形进行消隐,隐藏现实世界中看不见的线条,并进行区域填充,使得三维图形更接近真实形态。使用的是背面剔除以及深度缓存算法,可以更加准确地显示地图信息。该软件还具有光照模型,采用的是 Gouraud 明暗处理算法,可以实现逼真的光照效果。用户可以通过方式鼠标滚轮或键盘对图形进行操作,更直观地看到不同区域的光照强度的不同。该软件是一款非常实用的工具,适用于需要查看地图信息并实现逼真光照效果的用户。

同时本软件具有很好的可移植性,它不依赖于 GPU,可以在各种环境下运行,包括低配置的移动设备。这意味着用户可以在不同的设备上使用本软件,而无需担心设备的性能是否足够强大。具体来说,本软件具有以下几个方面的可移植性:

- 1.平台可移植性: 本软件不依赖于 GPU, 在 Windows X86 操作系统平台上运行, 但只需将图形库里面的与平台相关的部分用对应平台实现, 就可以移植到其他操作平台上。
- 2. 硬件可移植性: 本软件不依赖于特定的硬件设备, 可以在各种计算机硬件上运行, 包括桌面电脑、笔记本电脑、服务器等, 用户可以选择不同的硬件设备进行使用。
- 3. 移动设备可移植性: 本软件可以移植到低配置的移动设备上,包括智能手机、平板电脑等,用户可以在移动设备上使用本软件进行地图制作和浏览等操作。综上所述,本软件具有很好的可移植性,可以在不同的操作系统平台、计算机硬件和移动设备上运行,使得用户能够更加方便地使用本软件进行地图制作和浏览等操作。

2.2 运行环境

2.2.1 硬件环境

表 2-1 硬件环境

设备类型	PC 机			
CPU	1GHz 及以上			

运行内存	1GB 及以上
存储内存	500M 以上可用存储空间
网络	有无网络均可运行
GPU	不依赖任何 GPU

2.2.2 软件环境

表 2-2 软件环境

操作系统	Windows X86
支撑软件	无

3.操作说明

3.1 二维地图

该模块是本软件二维地图模块的一个重要组成部分,它的作用是为用户提供载入和显示地图图层的功能。用户可以通过该模块打开并显示.shp 格式的地图文件,以获取地图信息并进行进一步的操作。在打开图层操作中,用户可以选择需要显示的文件,例如道路、河流、建筑物、行政区划等等,即可加载该图层,使其在地图上显现出来。同时,用户可以选择多个图层文件,将它们叠加显示在地图上,以获取更加丰富的地图信息。该模块的功能非常重要,因为地图图层是地图信息可视化的基础。通过该模块,用户可以自由选择需要显示的地图图层,以满足自己的需求,同时也可以将不同的图层进行叠加显示,以获得更加丰富的地图信息。因此,该模块在本软件二维地图模块中扮演着非常重要的角色,能够使地图信息更加直观、完整,提高用户的使用体验和效率。

3.1.1 添加图层

添加图层操作可以为用户打开.shp 文件并显示。选择需要显示的文件,即可加载该图层。同时,用户可以选择多个图层文件,均可进行叠加显示。

名称	修改日期	类型	大小
域市快速路 常州市.shp.xml	2015/12/24 13:29	XML file	
高速 常州市.shp.xml	2015/12/24 13:32	XML file	
国道 常州市.shp.xml	2015/12/24 13:30	XML file	
🗋 绿地 常州市.shp.xml	2015/12/24 13:33	XML file	
其他路 常州市.shp.xml	2015/12/24 13:29	XML file	
省道 常州市.shp.xml	2015/12/24 13:31	XML file	
小系 常州市.shp.xml	2015/12/24 13:33	XML file	
铁路 常州市.shp.xml	2015/12/24 13:32	XML file	
县道 常州市.shp.xml	2015/12/24 13:27	XML file	
乡镇村道 常州市.shp.xml	2015/12/24 13:28	XML file	

图 3-1 添加图层选项二级菜单

3.1.2 地图操作

选择需要显示的文件,即可加载该图层。用户可以添加单个图层的显示。如下图 3-2 所示,改图为常州市市界的显示。

图 3-2 常州市市界单图层显示

用户不仅可以添加单个图层的显示,同时也可以选择多个图层文件,进行叠加显示。如下图 3-3 所示,该图为常州市市界及城市快速路和高速的叠加显示。

图 3-3 常州市市界及城市快速路和高速的叠加显示

地图图层可进行各种几何操作,包括平移、旋转、缩放和对称,在菜单上点击视图操作,通过二级菜单对地图图层进行几何变换,如图 3-4。

图 3-4 视图操作菜单

通过鼠标和键盘也可以完成相应的几何操作, 鼠标滚轮上下滑动即可进行缩放, 在键盘上对相关图形的操作如下表所示:

功能	操作			
绕y轴旋转	shift+↑/↓			
绕 x 轴旋转	shift+↑/↓			
缩放	ctrl+↑/↓			
平移	↑/↓/←/→			

表 3-1 操作说明

经过缩放与旋转后的图片如图 3-5 所示。

图 3-5 图形变换对比显示

3.2 地图注记

地图注记选项为绘制基本的图形,本软件可以绘制矩形、划线、折线与多边形。在地图信息可视化的基础上,2D图形绘制可以增加更多的细节和标注,以提高用户对地图信息的理解和使用。具体来说,二维图形绘制可以用来绘制地图上的标志、符号、箭头、线条等等,以表示不同的地图元素和信息。例如,在一张地图中,可以使用线条表示道路、建筑物轮廓,使用符号表示公园、博物馆等景点,使用文字标注地名、建筑物名称等等。这些二维图形元素可以使地图信息更加直观、清晰,帮助用户更好地理解和使用地图。因此,二维图形绘制在本软件中扮演着非常重要的角色,能够使地图信息更加丰富、完整,提高用户的使用体验和效率。用户点击菜单选项地图注记,即可出现如下二级菜单(如图 3-6 所示)。

图 3-6 2D 图形选项界面

3.2.1 矩形

用户点击选项"矩形",系统则会绘制矩形,该算法使用多边形扫描变换进行填充,算法为 X 扫描线法,如下图 3-7 所示。

图 3-7 矩形绘制界面

3.2.2 划线与画折线

用户点击划线使用鼠标进行绘制,左键开始绘制,左右键均可结束绘制点击 画折线,左键为开始绘制,再按左键为一个转折点,右键可结束绘制,该算法采用的是 Bresham 算法,如下图 3-8 所示。

图 3-8 折线绘制界面

3.2.3 多边形

用户点击选项"画多边形", 单击鼠标左键键入顶点, 再单击左键为一转折点, 单击鼠标右键完成闭合和填充, 完成绘制, 如下图 3-9 所示。

图 3-9 多边形绘制界面

二维绘制的图形也可进行各种几何变换操作,可以通过点击视图变换在菜单中操作,也可根据表 3.1 在鼠标和键盘上进行变换操作。

3.2.4 颜色设置

通过点击颜色设置,选择画笔颜色,即可将线段颜色进行改变,选择填充颜色,即可将填充区域颜色改变,如图 3-10。图 3-11 为颜色选择器界面。图 3-12 为将线段改为黄色,填充区域改为红色后的绘制界面。

图 3-10 二级菜单界面

图 3-11 颜色选择器界面

图 3-12 修改颜色后的绘制界面

以上功能都可以叠加地图图层使用,作为地图中的动态标注信息,如图 3-13。

图 3-13 地图注记与地图图层的叠加显示

3.3 三维图形

三维图形选项为绘制立体的图形,在该选项中,本软件有线框图和填充两种模式,也可以选择光照模型,并可以对三维图形进行对应的操作。在地图信息可视化的基础上,增加更加立体、逼真的效果,以提高用户对地图信息的理解和使用。具体来说,该模块可以用来绘制地图中的 3D 元素,如建筑物、景观等等,以增加地图的真实感和立体感。用户可以选择线框图绘制模式,以更好地查看地图中的 3D 元素,同时也可以进行消隐操作,使得绘制的图形更加真实。此外,用户还可以选择不同的光照模型,以改变 3D 元素的光照效果,使其更加逼真。因此,该模块可以使地图信息更加直观、真实,帮助用户更好地理解和使用地图。

图 3-14 三维图形操作选项界面

3.3.1 三维操作

二维绘制的图形可以在菜单上点击三维操作,选择对应的操作即可对三维图 形进行几何变换,如图 3-15。

图 3-15 三维操作菜单

在平移功能中,用户可以通过鼠标拉动橡皮线的方式,使立方体图形平移相 应距离。如图 3-16 所示。

图 3-16 正方体平移对比显示

在旋转功能中,用户可以发现根据原多边形旋转后的图形,同时多次点击旋转按钮,可以叠加旋转,每次旋转 45°。如图 3-17 所示。

图 3-17 旋转变换显示

在缩放功能中,用户可以通过鼠标拖拽,对正方体进行缩放。

图 3-18 缩放变换显示

通过鼠标和键盘也可以完成相应的几何操作, 鼠标滚轮上下滑动即可进行缩放, 在键盘上对相关图形的操作如下表所示:

表 3-2	操作说明
~~ -	カレコー クロン・

** ***********************************				
功能	操作			
在 xy 面上旋转	ctrl+←/→			
在 xz 面上旋转	shift+←/→			
在 yz 面上旋转	shift+↑/↓			
缩放	ctrl+↑/↓			
平移	↑/↓/←/→			

3.3.2 线框模式

线框模型是本软件中的一个重要功能,它可以帮助用户绘制和编辑 3D 元素的线框图形,并进行消隐和光照模型的选择,以增加地图的真实感和立体感。在软件中,线框模型主要用于以下几个方面:绘制 3D 元素的线框图形:在制作 3D 地图时,用户需要先绘制 3D 元素的线框图形,才能进行后续的细节处理和渲染。通过线框模型,用户可以快速、准确地绘制 3D 元素的线框图形,提高制作效率和准确度。线框模型在软件中扮演着重要的角色,能够帮助用户更加高效、准确地制作和编辑 3D 元素,提高地图的真实感和立体感,以便用户更好地理解和使用地图信息。

消隐是本软件中非常重要的一个功能,它可以帮助用户在绘制 3D 元素时,去除被遮挡的面、边界线等,以保证绘制的 3D 元素更加真实、准确。具体来说,消隐在本软件中的作用主要包括以下几个方面:

- 1. 提高地图的真实感: 在 3D 地图制作过程中,可能会有一些元素被遮挡, 无法在视图中显示,这样就会降低地图的真实感。通过消隐功能,用户可以去除 这些被遮挡的元素,使得地图更加真实、逼真。
- 2. 加快地图制作的速度: 在制作 3D 地图时, 如果没有消隐功能, 用户需要手动删除被遮挡的元素, 这样会浪费大量的时间和精力。通过消隐功能, 用户可以快速找到并删除或隐藏被遮挡的元素, 从而提高地图制作的速度。
- 3. 提高地图的准确性: 如果不进行消隐操作, 被遮挡的元素可能会被误认为是可见的, 从而导致地图的准确性降低。通过消隐功能, 用户可以找到并删除或隐藏被遮挡的元素, 保证地图的准确性。 综上所述, 消隐功能在本软件中扮演着非常重要的角色, 能够帮助用户绘制更加真实、准确的 3D 地图, 提高地图制作的速度和准确性, 使得用户能够更好地理解和使用地图信息。

在本软件中,点击三维图形,选择绘制模式,再点击线框模式,即可出现正方体的线框模型,此时的线框模型为经过了消隐的线框模型,使用的是背面剔除算法,如图 3-20 所示。

miniGL						0-0	
二维地图(F)	视图操作	地图注记	三维图形	渲染	帮助(H)		
			三维操作 绘制模式		>		
					>	线框模式	
			光照模型			填充模式	

图 3-19 绘制模式的菜单显示

图 3-20 正方体的线框模型

同时也可以进行变换, 3D 渲染模式下, 可以进行基本的旋转、平移等操作, 鼠标滚轮也可进行缩放。经过变换后, 相应视图如图 3-21 与 3-22 所示。

图 3-21 正方体旋转对比显示

图 3-22 正方体缩放对比显示

本软件还能对线框图进行三维剪裁,对图像进行缩放,只要有一个顶点在窗口外,它所连接的线段都会被删除。如图 3-23 所示。

图 3-23 正方体三维剪裁对比显示

3.3.3 填充模式

在本软件中,点击三维图形,选择绘制模式,再点击填充模式,即可对消隐后的线框模型进行区域填充,使用的是深度缓存算法,能对背面剔除后的点进行进一步消隐,使得三维图形更接近真实形态。线框模型填充后如图 3-24 所示。

图 3-24 正方体线框模型填充显示

也可以通过鼠标滚轮、键盘或二级菜单对立体图像进行三维变换操作,包括缩放、旋转、平移、对称。进行三维变换后的线框模型如图 3-25、3-26 所示

图 3-25 填充正方体旋转对比显示

图 3-26 填充正方体缩放对比显示

3.3.4 光照模型

光照模型是本软件中的一个重要功能,它可以帮助用户为 3D 元素添加逼真的光照效果。根据软件说明,本软件采用的是 Gouraud 明暗处理算法,该算法在多边形顶点处采用 Phong 局部反射模型计算光强,而在多边形内的其他点采用双向线性插值,这种着色法引入环境光、漫射光,以及光源本身的强度来影响最终的颜色,假定物体表面是光滑的并且由理想材料构成,所生成的图形可以模拟出不透明物体表面的光照明暗过渡效果,达到逼真的效果。具体来说,光照模型在本软件中的作用主要包括以下几个方面:

- 1. 增强 3D 元素的逼真度: 通过光照模型, 用户可以为 3D 元素添加逼真的光照效果, 使其看起来更加真实、立体, 增强 3D 元素的逼真度。
- 2. 改变 3D 元素的表现形式:通过调整光照模型中的参数,如环境光、漫射光、光源强度等等,用户可以改变 3D 元素的表现形式,使其更加符合实际情况或个人喜好。
- 3. 帮助用户更好地理解 3D 元素: 逼真的光照效果可以使 3D 元素看起来更加真实、立体,有助于用户更好地理解 3D 元素的结构和特征,提高使用效果。综上所述,光照模型在本软件中扮演着非常重要的角色,能够为 3D 元素添加逼真的光照效果,改变其表现形式,帮助用户更好地理解 3D 元素,使得用户能够更好地利用地图信息。

在本软件中, 在绘制完成线框图之后, 点击光照模型, 即可完成相应的变换, 如图 3-27 所示。

也可对光照模型进行平移、旋转、缩放变换,如图 3-28 所示。

图 3-27 Gouraud 明暗处理显示

图 3-28 缩放与旋转显示

3.4 退出

点击退出选项, 用户可以退出本系统。

图 3-29 退出