Dernière mise à jour	Informatique	Denis DEFAUCHY – <u>Site web</u>
19/05/2022	10 - Représentation des nombres	TD 10-1 – Entiers binaires

Informatique

10 Représentation des nombres

TD 10-1
Entiers binaires

Dernière mise à jour	Informatique	Denis DEFAUCHY – <u>Site web</u>
19/05/2022	10 - Représentation des nombres	TD 10-1 – Entiers binaires

Exercice 1: Transcodage simple

Dans cet exercice, un mot binaire sera codé sous la forme d'une chaine de caractères, par exemple, le nombre 100 sera codé en binaire sous la forme '1100100'.

Question 1: Créer une fonction $bin2ent(N_Bin)$ transformant le mot binaire N_Bin en son entier associé

Vérifier :

```
>>> bin2ent('1100100')
100
```

Question 2: Créer une fonction $reverse_bits(N_Bin)$ permettant d'inverser l'ordre des bits d'un mot binaire

Vérifier :

```
>>> reverse_bits('1000101')
'1010001'
```

Question 3: Créer une fonction $ent2bin(N_Ent)$ qui utilise la fonction $reverse_bits$ et transformant le nombre entier naturel N_Ent en son binaire associé

Vérifier:

```
>>> ent2bin(100)
'1100100'
```


Dernière mise à jour	Informatique	Denis DEFAUCHY – <u>Site web</u>
19/05/2022	10 - Représentation des nombres	TD 10-1 – Entiers binaires

Exercice 2: Transcodage par récursivité

Transcodage Binaire → Base 10

On propose différentes méthodes de transcodage :

- Méthode 1 : On réalise la somme des puissances de 2 de gauche à droite, la puissance étant définie par le nombre de bits du mot binaire étudié
- Méthode 2 : On réalise la somme des puissances de 2 de droite à gauche, la puissance étant « transmise » à chaque étape par la fonction elle-même (argument optionnel en plus de la chaine de caractères)
- Méthode 3 : On exploite le fait que :

```
 (1001)_{2} = (100)_{2} * (2)_{10} + (1)_{2} = (100)_{2} * (2)_{10} + (1)_{10} 
 (100)_{2} = (10)_{2} * (2)_{10} + (0)_{2} = (10)_{2} * (2)_{10} + (0)_{10} 
 (10)_{2} = (1)_{2} * (2)_{10} + (0)_{2} = (1)_{2} * (2)_{10} + (0)_{10} 
 (1)_{2} = (1)_{10}
```

Autrement dit: $(1001)_2 = (((1)_2 * (2)_{10} + (0)_{10}) * (2)_{10} + (0)_{10}) * (2)_{10} + (1)_{10}$

Question 1: Ecrire une fonction récursive Bin2Ent_1 utilisant la méthode 1
Question 2: Ecrire une fonction récursive Bin2Ent_2 utilisant la méthode 2
Question 3: Ecrire une fonction récursive Bin2Ent_3 utilisant la méthode 3
Vérifiez vos trois fonctions sur un exemple.

Transcodage Base 10 → Binaire

On souhaite maintenant transcoder un entier en base 10 en un entier binaire en exploitant les restes de la division euclidienne par 2 et de manière récursive.

Question 4: Ecrire une fonction récursive Ent2Bin(n) renvoyant la chaine de caractères binaire correspondant à un entier n

Question 5: Adapter la fonction précédente en une fonction Ent2Binb(n,b) renvoyant la chaine de caractères correspondant à un entier n en base b≤10 Vérifier:

```
>>> Ent2Binb(54,2)
'110110'
>>> Ent2Binb(54,10)
'54'
```

