When you raise something to the power of (1/4) you are essentially taking the square root of that number two times.

| In [4]:<br>Out[4]: | ad_c | onversion |               |          |  |
|--------------------|------|-----------|---------------|----------|--|
|                    |      | spent_usd | n_impressions | n_clicks |  |
|                    | 0    | 1.43      | 7350          | 1        |  |
|                    | 1    | 1.82      | 17861         | 2        |  |
|                    | 2    | 1.25      | 4259          | 1        |  |
|                    | 3    | 1.29      | 4133          | 1        |  |
|                    | 4    | 4.77      | 15615         | 3        |  |
|                    |      |           |               |          |  |
|                    | 931  | 358.19    | 1129773       | 252      |  |
|                    | 932  | 173.88    | 637549        | 120      |  |
|                    | 933  | 40.29     | 151531        | 28       |  |
|                    | 934  | 198.71    | 790253        | 135      |  |
|                    | 935  | 165.61    | 513161        | 114      |  |
|                    |      |           |               |          |  |

```
# Create qdrt_n_impressions and
1
   qdrt_n_clicks
   ad_conversion["qdrt_n_impressions"] =
   ad_conversion['n_impressions'] ** 0.25
   ad_conversion["qdrt_n_clicks"] =
   ad_conversion['n_clicks'] ** 0.25
4
5
   plt.figure()
6
7
   # Plot using the transformed variables
   sns.regplot(x='qdrt_n_impressions',
   y='qdrt_n_clicks', data=ad_conversion,
   ci=None)
   plt.show()
9
```

So the plot looks like:



Make the model:

```
1 ad_conversion["qdrt_n_impressions"] =
   ad_conversion["n_impressions"] ** 0.25
2 ad_conversion["qdrt_n_clicks"] =
   ad_conversion["n_clicks"] ** 0.25
3
4 # Run a linear regression of your
   transformed variables
5 mdl_click_vs_impression = ols
   ('qdrt_n_clicks ~ qdrt_n_impressions',
   data=ad_conversion).fit()
```



```
ad_conversion["qdrt_n_impressions"] = ad_conversion["n_impressions"] ** 0.25
    ad_conversion["qdrt_n_clicks"] = ad_conversion["n_clicks"] ** 0.25
    mdl_click_vs_impression = ols("qdrt_n_clicks ~ qdrt_n_impressions", data=ad_conversion,
    ci=None).fit()
    explanatory_data = pd.DataFrame({"qdrt_n_impressions": np.arange(0, 3e6+1, 5e5) ** .25,
                                    "n_impressions": np.arange(0, 3e6+1, 5e5)})
    # Complete prediction_data
    prediction_data = explanatory_data.assign(
10
        qdrt_n_clicks = mdl_click_vs_impression.predict(explanatory_data),
11
12
        n_clicks=mdl_click_vs_impression.predict(explanatory_data) ** 4
13
14
    # Print the result
15
    print(prediction_data)
16
```

|   | qdrt_n_impressions | n_impressions | qdrt_n_clicks | n_clicks  |
|---|--------------------|---------------|---------------|-----------|
| 0 | 0.000              | 0.000e+00     | 0.072         | 2.650e-05 |
| 1 | 26.591             | 5.000e+05     | 3.038         | 8.514e+01 |
| 2 | 31.623             | 1.000e+06     | 3.599         | 1.677e+02 |
| 3 | 34.996             | 1.500e+06     | 3.975         | 2.497e+02 |
| 4 | 37.606             | 2.000e+06     | 4.266         | 3.312e+02 |
| 5 | 39.764             | 2.500e+06     | 4.507         | 4.125e+02 |
| 6 | 41.618             | 3.000e+06     | 4.714         | 4.936e+02 |