DISCRETE SEMICONDUCTORS

DATA SHEET

BY8100 series

Very fast high-voltage soft-recovery controlled avalanche rectifiers

Product specification
Supersedes data of October 1994
File under Discrete Semiconductors, SC01

1996 May 24

Very fast high-voltage soft-recovery controlled avalanche rectifiers

BY8100 series

FEATURES

- · Glass passivated
- High maximum operating temperature
- · Low leakage current
- · Excellent stability
- Guaranteed avalanche energy absorption capability
- Soft-recovery switching characteristics
- · Compact construction.

APPLICATIONS

- For colour television and monitors up to 128 kHz
- High-voltage applications for:
 - Multipliers
 - Layer-wound diode-splittransformers where controlled avalanche is required.

DESCRIPTION

Rugged glass package, using a high temperature alloyed construction.

This package is hermetically sealed and fatigue free as coefficients of

expansion of all used parts are matched.

The package is designed to be used in an insulating medium such as resin, oil or SF6 gas.

MARKING

Cathode band colour codes

TYPE NUMBER	PACKAGE CODE	INNER BAND	OUTER BAND
BY8104	SOD61AC	orange	black
BY8106	SOD61AD	orange	green
BY8108	SOD61AE	orange	red
BY8110	SOD61AF	orange	violet
BY8112	SOD61AH	orange	orange
BY8114	SOD61AI	orange	lilac
BY8116	SOD61AJ	orange	grey

Very fast high-voltage soft-recovery controlled avalanche rectifiers

BY8100 series

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{RRM}	repetitive peak reverse voltage				
	BY8104		_	5	kV
	BY8106		_	8	kV
	BY8108		_	10	kV
	BY8110		_	12	kV
	BY8112		_	14	kV
	BY8114		_	17	kV
	BY8116		_	19	kV
V _{RW}	working reverse voltage				
	BY8104		_	4	kV
	BY8106		_	6	kV
	BY8108		_	8	kV
	BY8110		_	10	kV
	BY8112		_	12	kV
	BY8114		_	14	kV
	BY8116		_	16	kV
I _{F(AV)}	average forward current	averaged over any			
	BY8104	20 ms period;	_	20	mA
	BY8106	see Figs 2 to 8	_	10	mA
	BY8108		_	5	mA
	BY8110		_	5	mA
	BY8112		_	5	mA
	BY8114		_	5	mA
	BY8116		_	3	mA
I_{FRM}	repetitive peak forward current	note 1	_	500	mA
P _{RSM}	non-repetitive peak reverse power dissipation	t = 20 μs half sinewave;			
	BY8104	$T_j = T_{j \text{ max}}$ prior to surge	_	1.7	kW
	BY8106		_	2.5	kW
	BY8108		_	3.0	kW
	BY8110		_	3.8	kW
	BY8112		_	5.0	kW
	BY8114		_	5.5	kW
	BY8116		_	6.5	kW
T _{stg}	storage temperature		-65	+120	°C
Tj	junction temperature		-65	+120	°C

Note

1. Withstands peak currents during flash-over in a picture tube.

Very fast high-voltage soft-recovery controlled avalanche rectifiers

BY8100 series

ELECTRICAL CHARACTERISTICS

 T_j = 25 °C; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _F	forward voltage	$I_F = 100 \text{ mA}; T_j = T_{j \text{ max}};$				
	BY8104	see Figs 9 to 15	_	_	26	V
	BY8106		_	_	36	V
	BY8108		_	_	44.5	V
	BY8110		_	_	54.5	V
	BY8112		_	_	75	V
	BY8114		_	_	82.5	V
	BY8116		_	_	94	V
I _R	reverse current	$V_R = V_{RWmax}$; $T_j = 120 ^{\circ}C$	_	_	3	μΑ
Qr	recovery charge	when switched from I_F = 100 mA to $V_R \ge$ 100 V and dI_F/dt = -200 mA/ μ s; see Fig.16	_	_	0.4	nC
t _f	fall time	when switched from I_F = 100 mA to $V_R \ge$ 100 V and dI_F/dt = -200 mA/ μ s; see Fig.16	40	_	_	ns
t _{rr}	reverse recovery time	when switched from $I_F = 2$ mA to $I_R = 4$ mA; measured at $I_R = 1$ mA; see Fig.17	_	_	60	ns
C _d	diode capacitance	V _R = 0 V; f = 1 MHz				
	BY8104		_	0.90	_	pF
	BY8106		_	0.65	_	pF
	BY8108		_	0.55	_	pF
	BY8110		_	0.45	_	pF
	BY8112		_	0.35	_	pF
	BY8114		_	0.30	_	pF
	BY8116		_	0.25	_	pF

Very fast high-voltage soft-recovery controlled avalanche rectifiers

BY8100 series

GRAPHICAL DATA

Maximum permissible average forward current as a function of ambient temperature.

 $a = I_{F(RMS)}/I_{F(AV)}; \ V_R = V_{RWmax}; \ R_{th \ j\text{-}a} \leq 120 \ \text{K/W}.$

a = 1.57: half sinewave.

a = 6.32: line output transformer application; see Fig.18.

Maximum permissible average forward current as a function of ambient temperature.

Maximum permissible average forward current as a function of ambient temperature.

Very fast high-voltage soft-recovery controlled avalanche rectifiers

BY8100 series

Maximum permissible average forward current as a function of ambient temperature.

Maximum permissible average forward current as a function of ambient temperature.

forward voltage.

Very fast high-voltage soft-recovery controlled avalanche rectifiers

BY8100 series

Fig.10 Forward current as a function of maximum forward voltage.

Fig.11 Forward current as a function of maximum forward voltage.

Fig.12 Forward current as a function of maximum forward voltage.

forward voltage.

Dotted line: $T_j = 120 \, ^{\circ}C$.

Solid line: T_j = 25 °C.

Very fast high-voltage soft-recovery controlled avalanche rectifiers

BY8100 series

Fig.14 Forward current as a function of maximum forward voltage.

Fig.15 Forward current as a function of maximum forward voltage.

Very fast high-voltage soft-recovery controlled avalanche rectifiers

BY8100 series

APPLICATION INFORMATION

Very fast high-voltage soft-recovery controlled avalanche rectifiers

BY8100 series

PACKAGE OUTLINE

SOD61 package specification

TYPE NUMBER	PACKAGE CODE	L _{min} (mm)	G _{max} (mm)
BY8104	SOD61AC	30.4	8.3
BY8106	SOD61AD	30.2	8.7
BY8108	SOD61AE	30.0	9.1
BY8110	SOD61AF	29.8	9.5
BY8112	SOD61AH	29.3	10.5
BY8114	SOD61AI	28.8	11.5
BY8116	SOD61AJ	28.3	12.5

DEFINITIONS

Data Sheet Status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification

Application information

Where application information is given, it is advisory and does not form part of the specification.

is not implied. Exposure to limiting values for extended periods may affect device reliability.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.