- Adı Soyadı:

Okul No:

İmza:

15.09.2015/17:00

NOT:Her türlü maddi-manevi alışveriş yasaktır. Başarılar... SAÜ TF MEKATRONİK MÜHENDİSLİĞİ FİZİK-1 SINAV SORULARI

1) m=2 kg kütleli bir hareketlinin t_1 anındaki hızı $\vec{V_1}=2\hat{i}+3\hat{j}+3\hat{k}$ (m/s) ve t_2 anındaki hızı da $\vec{V_2}=3\hat{i}+4\hat{j}-6\hat{k}$ (m/s)

olduğuna göre; (a) \vec{V}_1 vektörünün \vec{V}_2 vektörüne dik olduğunu gösteriniz (7P). (b) \vec{V}_1 ve \vec{V}_2 vektörlerine dik bir \vec{A}

vektörü bulunuz (7P). (c) t_1 ve t_2 anları arasında bu hareketli üzerine etki eden net kuvvetin yaptığı işi bulunuz (6P). $\overrightarrow{V_1} \cdot \overrightarrow{V_2} = \overrightarrow{V_{12}} \underbrace{V_{22}}_{(1,1)} + \underbrace{V_{12}}_{(1,1)} + \underbrace{V_{12}}_{(1,1)} \underbrace{V_{22}}_{(1,1)} + \underbrace{V_{12}}_{(1,1)} \underbrace{V_{22}}_{(1,1)} + \underbrace{V_{12}}_{(1,1)} \underbrace{V_{22}}_{(1,1)} + \underbrace{V_{12}}_{(1,1)} \underbrace{V_{22}}_{(1,1)} \underbrace{V_{12}}_{(1,1)} + \underbrace{V_{12}}_{(1,1)} \underbrace{V$

- (b) $\vec{A} = \vec{V}_1 \times \vec{V}_2 = \begin{vmatrix} \vec{v}_1 & \vec{v}_2 \\ \vec{V}_{12} & \vec{V}_{13} & \vec{V}_{13} \\ \vec{V}_{22} & \vec{V}_{13} & \vec{V}_{13} \end{vmatrix} = \hat{i} \left[3 \cdot (-\epsilon) 3 \cdot 4 \right] \hat{j} \left[2 \cdot (-\epsilon) 3 \cdot 3 \right] + \hat{k} \left(2 \cdot 4 3 \cdot 3 \right) = -30 \hat{i} + 21 \hat{j} \hat{k} = \hat{A} \cdot \vec{V}_1 + \hat{V}_{13} + \hat{$
- (c) $W_{net}^{r} = \Delta K = K_2 K_1 = \frac{1}{2} m V_2^2 \frac{1}{2} m V_1^2 = V_2^2 V_1^2 = 61 22 = 39$ $V_{2}^{1} = \vec{V}_{1} \cdot \vec{V}_{1} = 3^{\frac{1}{2}} \cdot 4^{\frac{1}{2}} + (-6)^{2} = 61$ $V_{2}^{1} = \vec{V}_{2} \cdot \vec{V}_{1} = 2^{\frac{1}{2}} + 3^{\frac{1}{2}} + 3^{\frac{1}{2}} = 92$
 - 2) m=2 kg kütleli bir blok şekilde görülen masa üzerindeki θ =53° eğimli eğik düzlemin tepesinden h=5 m yükseklikten serbest bırakılıyor. Eğik düzlem sürtünmesizdir ve H=4 m yüksekliğindeki masaya tutturulmuştur. (a) Blok eğik düzlemi hangi sürat ile terk eder?(8P) (b) Blok zemine, masadan ne kadar uzakta çarpar?(10P) (c) Bloğun kütlesi yukarıdaki hesaplamaları etkiler mi?(2P) (g=10 N/kg, cos53=0,6; sin53=0,8)

(c) Kotlenin jaroldon gib; highir etkis; phtur

 $M_3 h = \frac{1}{2} h V_c^2$ $V_c = \sqrt{29} h' = [2.10.5] = 10 m/s$

(b) $V_{ex} = V_{e} cos\Theta = 10.016 = 6.0115$ $V_{ey} = V_{e} sine = 10.016 = 6.0115$ $K = V_{ex} + 10.016 = 0.016 = 0.015$ H= V, + + 19 +2 vy= Vy=V, +9t=12

3) Eylemsizlik momenti I olan bir makaranın; R_1 iç yarıçapına sarılmış ipin ucu, θ eğimli sürtünmesiz bir eğik düzlemde duran m_1 kütleli bloğa bağlıdır. Makaranın R_2 dış yarıçapına sarılmış ipin ucuna da m₂ kütleli blok şekildeki gibi asılmıştır. Bu sistem durgun halden serbest bırakılıyor ve sistem m2 kütlesi aşağı yönde gidecek şekilde hareket ediyor. (a) Sistemdeki kütleler üzerine etki eden tüm kuvvetleri çizip, ivmelerini q_{λ}^{ψ} gösteriniz. Yazılabilecek bütün eşitlikleri yazıp; makaranın açısal ivmesi a'yı m₁, m₂, I, g, R₁ ve R₂ cinsinden veren ifadeyi bulunuz. (13P) (b) I=4 kgm², m₁=2 kg, m₂=1 kg, R_1 =1 m, R_2 =2m, θ =30° ve g=10 N/kg ise; sistemdeki tüm ivmeleri hesaplayınız.(7P)

(a)
$$m_1$$
 is in N.2 Hasandar Fret= $m_1\vec{q}_1 \Rightarrow T_1 - m_1q\sin\theta = m_1q_1$ (1) Makes m_2 is $m_2 = m_2\vec{q}_2 \Rightarrow m_2q - T_2 = m_2q_2$ (2)

Makes $q_1 = m_2\vec{q}_2 \Rightarrow m_2q - T_2 = m_2q_2$ (2)

 $C_{net} = T_2R_2 - T_1R_1 = T_2 \times (3)$
 $C_1 = xR_1$ (4)

 $C_2 = xR_2$ (5)

 $C_3 = xR_2$ (6)

 $C_4 = xR_1$ (9)

 $C_4 = xR_1$ (9)

 $C_4 = xR_1$ (9)

 $C_5 = xR_2$ (9)

 $C_6 = xR_1$ (9)

 $C_7 = xR_2$ (9)

 $C_7 = xR_2$ (10)

 $C_7 = xR_2$ (10)

 $C_7 = xR_2$ (10)

 $C_7 = xR_2$ (10)

 $C_7 = xR_2$ (10)

 $m_2 + R_2 - m_2 \propto R_2^2 - m_1 \propto R_1^2 - m_1 + m_2 + m_3 \approx 0$ $\alpha = \frac{m_{2} + k_{2} - m_{1} + m_{1} + k_{2}}{1 + m_{1} + k_{2}^{2} + m_{2} + k_{2}^{2}}$

4) Şekildeki sistemde m_1 kütlesi l uzunluğunda bir ipin ucunda \bar{V}_1 hızıyla atılıyor. İp A $^{\mathrm{m}}_{\$}$ tam düşey konuma geldiğinde kopuyor ve m_1 kütlesi B noktasında durmakta olan m, 'ye çarparak yapışıyor.

(a) İpin dayanıklılığını (T) m_1 , g, l ve V_1 cinsinden bulunuz (8P).

(b) $(m_1 + m_2)$ yapışık kütleleri kinetik sürtünme katsayısının μ_k olan 21 uzunluğundaki BC yolunu alıp aşağıya düşmeden hemen önce durmaktadır. Buna göre $\mu_{\mathbf{k}}$ sürtünme katsayısı için m_1 , m_2 , g, l ve V_1 cinsinden bir ifade türetiniz (12P).

(a)
$$m_1$$
 between ℓ tests as a glob. h_{121} energy for the f_1 f_2 f_3 f_4 f_5 f_6 f_6 f_6 f_7 f_8

$$\frac{2F_{r} = m_{1}q_{r}}{T - m_{1}q_{r}} = m_{1} \frac{V_{3}^{2}}{\ell} \Rightarrow T = \frac{m_{1}V_{1}^{2}}{\ell} + 3m_{1}q_{r}$$

$$E = E_{c} - E_{B} = W_{f_{3}} = -f_{5} 2\ell$$

$$\frac{1}{2}(m_{1}4m_{2})V_{c_{1}}^{2} = -M_{1}(m_{1}2m_{2})Q_{1}2\ell$$

$$M_{k} = \frac{V_{c0}}{42\ell} = \left(\frac{m_{1}}{m_{1}+m_{2}}\right)^{2} \frac{V_{b}^{2}}{43\ell} = \left(\frac{m_{1}}{m_{1}+m_{2}}\right)^{2} \left(\frac{V_{1}^{2}}{43\ell} + \frac{1}{2}\right)$$