

DISPOSITIVOS SEMICONDUCTORES http://materias.fi.uba.ar/6625/

Evaluación Final 23 de julio de 2019

Nombre y apellido:	Padrón:
e-mail:	Cuatrimestre de cursada:

- Para aprobar deben contestarse bien 6 puntos del total.
- Cada pregunta otorga una cantidad de puntos especificada entre corchetes sobre el margen izquierdo.
- Si la pregunta es respondida correctamente suma el puntaje especificado.
- Si la pregunta tiene opciones y es respondida incorrectamente resta el puntaje especificado.
- Si la pregunta no es respondida no se asignan puntos.
- Considerar $V_{th} = 26 \,\mathrm{mV}$.
- [½ pt.] 1) Calcular la diferencia de potencial (ϕ_B [mV]) entre los extremos de un bloque de silicio de 2 mm de largo cuyo nivel de dopaje sigue la ley: $N_D(x) = (5 \cdot 10^7 + x \cdot 0.5 \cdot 10^{18} \text{m}^{-1}) \text{ at/cm}^3 \text{ con } x \text{ en metros.}$
- [1 pt.] 2) En un diodo PN con dopajes $N_A = 10^{18} {\rm at/cm^3}$, $N_D = 10^{17} {\rm at/cm^3}$, polarizado, donde **no** vale la hipótesis de diodo corto, se genera un exceso de minoritarios en la QNR del lado menos dopado que sigue la función $\delta m(x) = 10^3 {\rm at/cm^3} \exp\left(-\frac{x-x_o}{1\,\mu{\rm m}}\right)$ donde m es la concentración de minoritarios en el lado menos dopado, x_o es el límite entre la SCR y la QNR del lado menos dopado, y la longitud de la QNR a partir de x_o es $L = 5\,\mu{\rm m}$. Calcular la densidad de corriente de difusión de minoritarios en el lado menos dopado en el punto $x x_o = L/2$ (J_{diff} [A/cm²]).
- [1 pt.] 3) Calcular la carga por unidad de área en el gate $(Q'_G[\text{C/cm}^2])$ de una juntura MOS fabricada con polysilicio dopado tipo P y sustrato dopado con $N_D = 10^{17} \, cm^{-3}$, $C'_{ox} = 2.7 \times 10^{-7} \, \text{F/cm}^2$, $\gamma = 0.1 \, \text{V}^{1/2}$, $V_T = -0.6 \, \text{V}$ cuando se aplica $V_{GB} = 1.7 \, \text{V}$.
- [1 pt.] 4) Dado un diodo ideal con $N_D = 10^{18} \text{at/cm}^3$, $N_A = 10^{16} \text{at/cm}^3$, $I_o = 1,19 \cdot 10^{-13} \text{A}$, $A = 0,05 \text{ mm}^2$, hallar el tiempo de tránsito de los electrones: τ_{TN} [s].
- [½ pt.] 5) Un JFET de canal N está conectado de la siguiente forma: el drain conectado a una fuente de alimentación de 5 V, el source conectado a una resistencia $R=1\,\mathrm{k}\Omega$ y el otro extremo de la resistencia está conectado a tierra, y el gate conectado a una fuente de tensión que controla la corriente de drain. Los parámetros del transistor son $I_{DSS}=4\,\mathrm{mA}$ y $V_P=-2\,\mathrm{V}$. ¿Cuál debe ser la tensión que se aplica al gate para obtener $I_D=1\,\mathrm{mA}$?
- [½ pt.] 6) En un proceso de fabricación CMOS de sustrato tipo P, luego de aplicarse la máscara de ZONA ACTIVA, ¿cuál máscara debe aplicarse?
- [1 pt.] 7) En un proceso CMOS estándar se fabricó un inversor CMOS de forma tal que $W_n = W_p$ y $L_n = L_p$. En este proceso, se sabe que $\mu_n = 3 \times \mu_p$ y se puede considerar $V_{Tn} \simeq -V_{Tp}$. Se midió el tiempo de propagación de alto a bajo y se obtuvo $t_{PHL} = 10 \, \text{ns.}$ ¿Cuánto será el tiempo de propagación de bajo a alto (t_{PLH}) ?
- [1 pt.] 8) Se implementa un amplificador emisor común sin realimentación con un transistor NPN con parámetros $\beta=200,\ V_A=20\,\mathrm{V}$ y $V_{BE(ON)}=0.7\,\mathrm{V}$. La tensión de alimentación es $V_{CC}=5\,\mathrm{V}$, y el transistor está polarizado con **dos** resistencia de base: $R_{B1}=30\,\mathrm{k}\Omega$ conectada entre V_{CC} y la base del transistor, y $R_{B2}=20\,\mathrm{k}\Omega$ conectada entre la base del transistor y tierra; y una resistencia de colector, $R_C=100\,\Omega$. A la entrada del amplificador, se conecta una señal (v_s) con resistencia serie $R_s=1\,\mathrm{k}\Omega$ a través de un capacitor de desacople de valor adecuado. Calcular $A_{vo},\ R_{IN}$ y R_{OUT} .

DISPOSITIVOS SEMICONDUCTORES http://materias.fi.uba.ar/6625/

Evaluación Final 23 de julio de 2019

- [½ pt.] 9) Se implementa un amplificador emisor común sin realimentación y sin carga, polarizado con una única R_B y una única R_C . A la entrada, la fuente de señal presenta una tensión v_s pico y una resistencia serie R_s no nula. El diseño es tal que se obtiene $v_{in} = 10 \,\mathrm{mV}$ pico y una señal a la salida que presenta distorsión solamente en el semiciclo negativo. ¿Qué se debe cambiar en el diseño para evitar todo tipo de distorsión?
 - [1 pt.] 10) Un amplificador source común alimentado con $V_{DD}=3\,\mathrm{V}$ está polarizado con $I_{DQ}=2\,\mathrm{mA}$ y resistencia de drain $R_D=500\,\Omega$. Los parámetros del transistor son μ $C'_{OX}=150\,\mu\mathrm{A}/\mathrm{V}^2$, $W=500\,\mu\mathrm{m},\ L=5\,\mu\mathrm{m},\ V_T=0.8\,\mathrm{V}$ y se puede considerar $\lambda=0$. ¿Cuál es la máxima tensión pico de señal a la salida que se puede obtener sin distorsión?
- [1 pt.] 11) Se implementa un circuito serie compuesto por una fuente de tensión senoidal $(V_S(t), V_{eff} = 220 \,\mathrm{V}, f = 50 \,\mathrm{Hz})$ conectada al ánodo de un tiristor (SCR), el propio tiristor, y una resistencia de $10 \,\Omega$ conectada al cátodo del tiristor. La señal de disparo $(v_g(t))$ está sincronizada con la tensión de la red de forma que se genera un evento de disparo luego de un tiempo $\alpha = 5 \,\mathrm{ms}$ luego de cada cruce por cero de la misma. El tiristor tiene una tensión de encendido que se puede considerar constante $V_{AK,ON} = 2 \,\mathrm{V}$. Calcular la potencia disipada en el tiristor.
- [1 pt.] 12) Realizar el corte lateral de un MOSFET de potencia indicando sus características constructivas mas importantes.