Evaluation Mathématiques	
$\mathbf{TES4}$	TOTO toto
Vendredi 20.12.2019	

Un volume constant de $2200m^3$ d'eau est réparti entre deux bassins A et B. Le bassin A refroidit une machine. Pour des raisons d'équilibre thermique on crée un courant d'eau entre les deux bassins à l'aide de pompes.

On modélise les échanges entre les deux bassins de la facon suivante :

- au départ, le bassin A contient $800m^3$ d'eau et le bassin B contient $1400m^3$ d'eau;
- tous les jours, 15% du volume d'eau présent dans le bassin B au début de la journée est transferé vers le bassin A;
- tous les jours, 10% du volume d'eau présent dans le bassin A au début de la journée est transféré vers le bassin B.

Pour tout entier naturel n, on note :

- a_n le volume d'eau, exprimé en m^3 , contenu dans le bassin A à la fin du n-ième jour de fonctionnement;
- b_n le volume d'eau, exprimé en m^3 , contenu dans le bassin B à la fin du n-ième jour de fonctionnement.

Question 1 du circuit?	Par quelle relation entre a_n et b_n traduit-on la conservation du vo	lume total d'eau
Question 2	Justifier que, pour tout entier naturel $n, a_{n+1} = 0,75 \times a_n + 330.$	fp j

Variables: n est un nombre entier naturel
Variables : a est un nombre réèl
n prend la valeur 0;
2 a prend la valeur 800;
3 Tant que $a < 1100$ faire
4 a prend la valeur;
5 n prend la valeur;
6 Fin
Sortie : Afficher n ;
Sortie • Amener n,
Question 3 L'algorithme ci-dessus permet de déterminer la plus petite valeur de n à partir
de laquelle a_n est supérieur ou égal à 1100. Recopier et compléter les parties manquantes de cet
algorithme.
Pour tout entier naturel n , on note $u_n = a_n - 1320$.
Overtion 4. Montron que le quite (e.) est une quite géométrique dent en précisere le premier
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le premier
terme et la raison.

Question 5	Exprimer u_n en fonction de n .	fp j
Question 6	En déduire que pour tout entier naturel $n, a_n = 1320 - 520 \times 0, 75^n$	fp j
Question 7 cube près, le r	On cherche à savoir si, un jour donné, les deux bassins peuvent nême volume d'eau. Proposer une méthode pour répondre à ce que	
Question 8	BONUS : Montrer que $1 + \frac{1}{11} + \frac{1}{11^2} + \frac{1}{11^3} + \frac{1}{11^4} + \dots = \frac{11}{10}$	fp j

Evaluation Mathématiques	
TES4	TATA tata
Vendredi 20.12.2019	

Un volume constant de $2200m^3$ d'eau est réparti entre deux bassins A et B. Le bassin A refroidit une machine. Pour des raisons d'équilibre thermique on crée un courant d'eau entre les deux bassins à l'aide de pompes.

On modélise les échanges entre les deux bassins de la facon suivante :

- au départ, le bassin A contient $800m^3$ d'eau et le bassin B contient $1400m^3$ d'eau;
- tous les jours, 15% du volume d'eau présent dans le bassin B au début de la journée est transferé vers le bassin A;
- tous les jours, 10% du volume d'eau présent dans le bassin A au début de la journée est transféré vers le bassin B.

Pour tout entier naturel n, on note :

- a_n le volume d'eau, exprimé en m^3 , contenu dans le bassin A à la fin du n-ième jour de fonctionnement;
- b_n le volume d'eau, exprimé en m^3 , contenu dans le bassin B à la fin du n-ième jour de fonctionnement.

On a done	$a_0 = 800 \text{ et } b_0 = 1400.$	
Question 1 du circuit?	Par quelle relation entre a_n et b_n traduit-on la conservation du vo	lume total d'eau
Question 2	Justifier que, pour tout entier naturel $n, a_{n+1} = 0,75 \times a_n + 330.$	_f _p _ j

Variables: n est un nombre entier naturel
Variables : a est un nombre réèl
n prend la valeur 0;
2 a prend la valeur 800;
3 Tant que $a < 1100$ faire
4 a prend la valeur;
5 n prend la valeur;
6 Fin
Sortie : Afficher n ;
Sortie • Amener n,
Question 3 L'algorithme ci-dessus permet de déterminer la plus petite valeur de n à partir
de laquelle a_n est supérieur ou égal à 1100. Recopier et compléter les parties manquantes de cet
algorithme.
Pour tout entier naturel n , on note $u_n = a_n - 1320$.
Overtion 4. Montron que le quite (e.) est une quite géométrique dent en précisere le premier
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le premier
terme et la raison.

Question 5	Exprimer u_n en fonction de n .	fp j
Question 6	En déduire que pour tout entier naturel $n, a_n = 1320 - 520 \times 0, 75^n$	fp j
Question 7 cube près, le r	On cherche à savoir si, un jour donné, les deux bassins peuvent nême volume d'eau. Proposer une méthode pour répondre à ce que	
Question 8	BONUS : Montrer que $1 + \frac{1}{11} + \frac{1}{11^2} + \frac{1}{11^3} + \frac{1}{11^4} + \dots = \frac{11}{10}$	fp j

Evaluation Mathématiques	
TES4	TITI toto
Vendredi 20.12.2019	

Un volume constant de $2200m^3$ d'eau est réparti entre deux bassins A et B. Le bassin A refroidit une machine. Pour des raisons d'équilibre thermique on crée un courant d'eau entre les deux bassins à l'aide de pompes.

On modélise les échanges entre les deux bassins de la facon suivante :

- au départ, le bassin A contient $800m^3$ d'eau et le bassin B contient $1400m^3$ d'eau;
- tous les jours, 15% du volume d'eau présent dans le bassin B au début de la journée est transferé vers le bassin A ;
- tous les jours, 10% du volume d'eau présent dans le bassin A au début de la journée est transféré vers le bassin B.

Pour tout entier naturel n, on note :

- a_n le volume d'eau, exprimé en m^3 , contenu dans le bassin A à la fin du n-ième jour de fonctionnement;
- b_n le volume d'eau, exprimé en m^3 , contenu dans le bassin B à la fin du n-ième jour de fonctionnement.

Question 1 du circuit?	Par quelle relation entre a_n et b_n traduit-on la conservation du vo	lume total d'eau
Question 2	Justifier que, pour tout entier naturel $n, a_{n+1} = 0,75 \times a_n + 330.$	☐f ☐p ■ j

Variables: n est un nombre entier naturel
Variables : a est un nombre réèl
n prend la valeur 0;
2 a prend la valeur 800;
3 Tant que $a < 1100$ faire
4 a prend la valeur;
5 n prend la valeur;
6 Fin
Sortie : Afficher n ;
Sortie • Amener n,
Question 3 L'algorithme ci-dessus permet de déterminer la plus petite valeur de n à partir
de laquelle a_n est supérieur ou égal à 1100. Recopier et compléter les parties manquantes de cet
algorithme.
Pour tout entier naturel n , on note $u_n = a_n - 1320$.
Overtion 4. Montron que le quite (e.) est une quite géométrique dent en précisere le premier
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le premier
terme et la raison.

Question 5	Exprimer u_n en fonction de n .	fp j
Question 6	En déduire que pour tout entier naturel $n, a_n = 1320 - 520 \times 0, 75^n$	fp j
Question 7 cube près, le r	On cherche à savoir si, un jour donné, les deux bassins peuvent nême volume d'eau. Proposer une méthode pour répondre à ce que	
Question 8	BONUS : Montrer que $1 + \frac{1}{11} + \frac{1}{11^2} + \frac{1}{11^3} + \frac{1}{11^4} + \dots = \frac{11}{10}$	fp j

Evaluation Mathématiques	
TES4	TUTU tata
Vendredi 20.12.2019	

Un volume constant de $2200m^3$ d'eau est réparti entre deux bassins A et B. Le bassin A refroidit une machine. Pour des raisons d'équilibre thermique on crée un courant d'eau entre les deux bassins à l'aide de pompes.

On modélise les échanges entre les deux bassins de la facon suivante :

- au départ, le bassin A contient $800m^3$ d'eau et le bassin B contient $1400m^3$ d'eau;
- tous les jours, 15% du volume d'eau présent dans le bassin B au début de la journée est transferé vers le bassin A ;
- tous les jours, 10% du volume d'eau présent dans le bassin A au début de la journée est transféré vers le bassin B.

Pour tout entier naturel n, on note :

- a_n le volume d'eau, exprimé en m^3 , contenu dans le bassin A à la fin du n-ième jour de fonctionnement;
- b_n le volume d'eau, exprimé en m^3 , contenu dans le bassin B à la fin du n-ième jour de fonctionnement.

Question 1 du circuit?	Par quelle relation entre a_n et b_n traduit-on la conservation du vo	lume total d'eau f p j
Question 2	Justifier que, pour tout entier naturel n , $a_{n+1} = 0,75 \times a_n + 330$.	fp j

Variables: n est un nombre entier naturel
Variables : a est un nombre réèl
n prend la valeur 0;
2 a prend la valeur 800;
3 Tant que $a < 1100$ faire
4 a prend la valeur;
5 n prend la valeur;
6 Fin
Sortie : Afficher n ;
Sortie • Amener n,
Question 3 L'algorithme ci-dessus permet de déterminer la plus petite valeur de n à partir
de laquelle a_n est supérieur ou égal à 1100. Recopier et compléter les parties manquantes de cet
algorithme.
Pour tout entier naturel n , on note $u_n = a_n - 1320$.
Overtion 4. Montron que le quite (e.) est une quite géométrique dent en précisere le premier
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le premier
terme et la raison.

Question 5	Exprimer u_n en fonction de n .	fp j
Question 6	En déduire que pour tout entier naturel $n, a_n = 1320 - 520 \times 0, 75^n$	fp j
Question 7 cube près, le r	On cherche à savoir si, un jour donné, les deux bassins peuvent nême volume d'eau. Proposer une méthode pour répondre à ce que	
Question 8	BONUS : Montrer que $1 + \frac{1}{11} + \frac{1}{11^2} + \frac{1}{11^3} + \frac{1}{11^4} + \dots = \frac{11}{10}$	fp j

Evaluation Mathématiques	
$\mathbf{TES4}$	TETE toto
Vendredi 20.12.2019	

Un volume constant de $2200m^3$ d'eau est réparti entre deux bassins A et B. Le bassin A refroidit une machine. Pour des raisons d'équilibre thermique on crée un courant d'eau entre les deux bassins à l'aide de pompes.

On modélise les échanges entre les deux bassins de la facon suivante :

- au départ, le bassin A contient $800m^3$ d'eau et le bassin B contient $1400m^3$ d'eau;
- tous les jours, 15% du volume d'eau présent dans le bassin B au début de la journée est transferé vers le bassin A ;
- tous les jours, 10% du volume d'eau présent dans le bassin A au début de la journée est transféré vers le bassin B.

Pour tout entier naturel n, on note :

- a_n le volume d'eau, exprimé en m^3 , contenu dans le bassin A à la fin du n-ième jour de fonctionnement;
- b_n le volume d'eau, exprimé en m^3 , contenu dans le bassin B à la fin du n-ième jour de fonctionnement.

Question 1 du circuit?	Par quelle relation entre a_n et b_n traduit-on la conservation du vo	lume total d'eau
Question 2	Justifier que, pour tout entier naturel n , $a_{n+1} = 0,75 \times a_n + 330$.	☐f ☐p ■ j

Variables: n est un nombre entier naturel
Variables : a est un nombre réèl
n prend la valeur 0;
2 a prend la valeur 800;
3 Tant que $a < 1100$ faire
4 a prend la valeur;
5 n prend la valeur;
6 Fin
Sortie : Afficher n ;
Sortie • Amener n,
Question 3 L'algorithme ci-dessus permet de déterminer la plus petite valeur de n à partir
de laquelle a_n est supérieur ou égal à 1100. Recopier et compléter les parties manquantes de cet
algorithme.
Pour tout entier naturel n , on note $u_n = a_n - 1320$.
Overtion 4. Montron que le quite (e.) est une quite géométrique dent en précisere le premier
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le premier
terme et la raison.

Question 5	Exprimer u_n en fonction de n .	fp j
Question 6	En déduire que pour tout entier naturel $n, a_n = 1320 - 520 \times 0, 75^n$	fp j
Question 7 cube près, le r	On cherche à savoir si, un jour donné, les deux bassins peuvent nême volume d'eau. Proposer une méthode pour répondre à ce que	
Question 8	BONUS : Montrer que $1 + \frac{1}{11} + \frac{1}{11^2} + \frac{1}{11^3} + \frac{1}{11^4} + \dots = \frac{11}{10}$	fp j

Evaluation Mathématiques	
TES4	TYTY tata
Vendredi 20.12.2019	

Un volume constant de $2200m^3$ d'eau est réparti entre deux bassins A et B. Le bassin A refroidit une machine. Pour des raisons d'équilibre thermique on crée un courant d'eau entre les deux bassins à l'aide de pompes.

On modélise les échanges entre les deux bassins de la facon suivante :

- au départ, le bassin A contient $800m^3$ d'eau et le bassin B contient $1400m^3$ d'eau;
- tous les jours, 15% du volume d'eau présent dans le bassin B au début de la journée est transferé vers le bassin A ;
- tous les jours, 10% du volume d'eau présent dans le bassin A au début de la journée est transféré vers le bassin B.

Pour tout entier naturel n, on note :

- a_n le volume d'eau, exprimé en m^3 , contenu dans le bassin A à la fin du n-ième jour de fonctionnement;
- b_n le volume d'eau, exprimé en m^3 , contenu dans le bassin B à la fin du n-ième jour de fonctionnement.

Question 1 du circuit?	Par quelle relation entre a_n et b_n traduit-on la conservation du vo	lume total d'eau
Question 2	Justifier que, pour tout entier naturel $n, a_{n+1} = 0,75 \times a_n + 330$.	☐f ☐p ☐ j

Variables: n est un nombre entier naturel
Variables : a est un nombre réèl
n prend la valeur 0;
2 a prend la valeur 800;
3 Tant que $a < 1100$ faire
4 a prend la valeur;
5 n prend la valeur;
6 Fin
Sortie : Afficher n ;
Sortie • Amener n,
Question 3 L'algorithme ci-dessus permet de déterminer la plus petite valeur de n à partir
de laquelle a_n est supérieur ou égal à 1100. Recopier et compléter les parties manquantes de cet
algorithme.
Pour tout entier naturel n , on note $u_n = a_n - 1320$.
Overtion 4. Montron que le quite (e.) est une quite géométrique dent en précisere le premier
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le premier
terme et la raison.

Question 5	Exprimer u_n en fonction de n .	fp j
Question 6	En déduire que pour tout entier naturel $n, a_n = 1320 - 520 \times 0, 75^n$	fp j
Question 7 cube près, le r	On cherche à savoir si, un jour donné, les deux bassins peuvent nême volume d'eau. Proposer une méthode pour répondre à ce que	
Question 8	BONUS : Montrer que $1 + \frac{1}{11} + \frac{1}{11^2} + \frac{1}{11^3} + \frac{1}{11^4} + \dots = \frac{11}{10}$	fp j

Evaluation Mathématiques	
TES4	TOUTOU toto
Vendredi 20.12.2019	

Un volume constant de $2200m^3$ d'eau est réparti entre deux bassins A et B. Le bassin A refroidit une machine. Pour des raisons d'équilibre thermique on crée un courant d'eau entre les deux bassins à l'aide de pompes.

On modélise les échanges entre les deux bassins de la facon suivante :

- au départ, le bassin A contient $800m^3$ d'eau et le bassin B contient $1400m^3$ d'eau;
- tous les jours, 15% du volume d'eau présent dans le bassin B au début de la journée est transferé vers le bassin A ;
- tous les jours, 10% du volume d'eau présent dans le bassin A au début de la journée est transféré vers le bassin B.

Pour tout entier naturel n, on note :

- a_n le volume d'eau, exprimé en m^3 , contenu dans le bassin A à la fin du n-ième jour de fonctionnement;
- b_n le volume d'eau, exprimé en m^3 , contenu dans le bassin B à la fin du n-ième jour de fonctionnement.

Question 1 du circuit?	Par quelle relation entre a_n et b_n traduit-on la conservation du vo	lume total d'eau
Question 2	Justifier que, pour tout entier naturel $n, a_{n+1} = 0,75 \times a_n + 330.$	☐f ☐p ■ j

Variables: n est un nombre entier naturel
Variables : a est un nombre réèl
n prend la valeur 0;
2 a prend la valeur 800;
3 Tant que $a < 1100$ faire
4 a prend la valeur;
5 n prend la valeur;
6 Fin
Sortie : Afficher n;
Question 3 L'algorithme ci-dessus permet de déterminer la plus petite valeur de n à partir
de laquelle a_n est supérieur ou égal à 1100. Recopier et compléter les parties manquantes de cet
algorithme.
Pour tout entier naturel n , on note $u_n = a_n - 1320$.
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le premier
terme et la raison.

Question 5	Exprimer u_n en fonction de n .	fp j
Question 6	En déduire que pour tout entier naturel $n, a_n = 1320 - 520 \times 0, 75^n$	fp j
Question 7 cube près, le r	On cherche à savoir si, un jour donné, les deux bassins peuvent nême volume d'eau. Proposer une méthode pour répondre à ce que	
Question 8	BONUS : Montrer que $1 + \frac{1}{11} + \frac{1}{11^2} + \frac{1}{11^3} + \frac{1}{11^4} + \dots = \frac{11}{10}$	fp j

Evaluation Mathématiques	
TES4	TANTAN tata
Vendredi 20.12.2019	

Un volume constant de $2200m^3$ d'eau est réparti entre deux bassins A et B. Le bassin A refroidit une machine. Pour des raisons d'équilibre thermique on crée un courant d'eau entre les deux bassins à l'aide de pompes.

On modélise les échanges entre les deux bassins de la facon suivante :

- au départ, le bassin A contient $800m^3$ d'eau et le bassin B contient $1400m^3$ d'eau;
- tous les jours, 15% du volume d'eau présent dans le bassin B au début de la journée est transferé vers le bassin A ;
- tous les jours, 10% du volume d'eau présent dans le bassin A au début de la journée est transféré vers le bassin B.

Pour tout entier naturel n, on note :

- a_n le volume d'eau, exprimé en m^3 , contenu dans le bassin A à la fin du n-ième jour de fonctionnement;
- b_n le volume d'eau, exprimé en m^3 , contenu dans le bassin B à la fin du n-ième jour de fonctionnement.

Question 1 du circuit?	Par quelle relation entre a_n et b_n traduit-on la conservation du vo	lume total d'eau
Question 2	Justifier que, pour tout entier naturel $n, a_{n+1} = 0,75 \times a_n + 330$.	☐f ☐p ∭ j

Variables: n est un nombre entier naturel
Variables : a est un nombre réèl
n prend la valeur 0;
2 a prend la valeur 800;
3 Tant que $a < 1100$ faire
4 a prend la valeur;
5 n prend la valeur;
6 Fin
Sortie : Afficher n;
Question 3 L'algorithme ci-dessus permet de déterminer la plus petite valeur de n à partir
de laquelle a_n est supérieur ou égal à 1100. Recopier et compléter les parties manquantes de cet
algorithme.
Pour tout entier naturel n , on note $u_n = a_n - 1320$.
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le premier
terme et la raison.

Question 5	Exprimer u_n en fonction de n .	fp j
Question 6	En déduire que pour tout entier naturel $n, a_n = 1320 - 520 \times 0, 75^n$	fp j
Question 7 cube près, le r	On cherche à savoir si, un jour donné, les deux bassins peuvent nême volume d'eau. Proposer une méthode pour répondre à ce que	
Question 8	BONUS : Montrer que $1 + \frac{1}{11} + \frac{1}{11^2} + \frac{1}{11^3} + \frac{1}{11^4} + \dots = \frac{11}{10}$	fp j