SEMESTER I EXAMINATIONS 2019-2020

	EE445 DIGITAL SIGNAL PROCESSING						
	SOLUTIONS						
Q.1	(a) $y(n) = x$	(n) + 0.3	3x(n-1)-	-0.420	(n-2) -	-0.4y(n-1) y(n-2)	1
	Input: DC1	n) =	u(n)[1]	+ 0.91	7		
	0		2				
		0.9					
)			1.8				1,
		0,72	1.72	27			'
	n χ(n)	$\propto (n-1)$	oc(n-2)	0-32	(n-1)	-0.4x(n-2)	
	0 2	0	0	0		0	
	1 1,9	2	0	0.6)	0	
	2 1.81	1.9		0.5		-0.8	
	3 1.729	1.81	1,9	0.54	13	-0.76	5
	y(n-1) y	* (n-2)	-0.44(n-1)	y(n	·)	
	0	0	0		2		
	2	0	-0.8		1.7	•	
	1,7	2	-0.68	1	2.0		
	2.9	1.7	-1016		2.0)52	
	(b) y(n) =	x(n) - ()·4x(n-1)+0.5	5y(n-2		
	H(Z)	= _	1-0.4	-) 2			İ
			1-0-57	= -			
	H(0)	=	1-0	·4eJE			
-)		10	1-0.5	3020			
		= 4	-0.4 Coc	Of tj	0.45/n	9	1 1
			-0.5 cm	20 tj	0.5 sin	20	1

)	$ H(\theta) = \frac{\left[(1 - 0.4 \cos \theta)^2 + (0.4 \sin \theta)^2 \right]^2}{\left[(1 - 0.5 \cos 2\theta)^2 + (0.5 \sin 2\theta)^2 \right]^{\frac{1}{2}}}$	
	$[H(\theta)] = \tan \left[\frac{0.4 \sin \theta}{1 - 0.4 \cos \theta} \right] - \tan \left[\frac{0.5 \sin 2\theta}{1 - 0.5 \cos 2\theta} \right]$	
	$\Theta = \frac{2\pi}{5}$	1
,	$= \frac{1}{1+(0)} = \frac{2\pi}{(1-0.4\cos\frac{2\pi}{5})^2 + (0.4\sin\frac{2\pi}{5})^2} = \frac{1}{(1-0.5\cos\frac{4\pi}{5})^2 + (0.5\sin\frac{4\pi}{5})^2} = \frac{1}{(0.8764)^2 + (0.3804)^2} = \frac{1}{(0.38764)^2} = \frac{1}{(0.3804)^2} = $	
-)	$[(1.4045)^2 + (0.2939)^2]^2$	
	[2.059]2	
	$= 0.6658$ $[H(0) = \tan \left[\frac{0.3804}{0.8764} \right] - \tan \left[\frac{0.2939}{1.4045} \right]$	1
	= 0.4095 - 0.2063 = 0.2032 rado	1
-)	(c) Time-domain convolution	
	$y(n) = \sum_{R=-\infty}^{\infty} x(k)R(n-k)$ Output: $y(n) = \{6, 11, -2, 14, 19, 5, -3\}$	3
	- debails of y(3)	
	- cross-check of duration of $y(h)$: $N_1 + N_2 - 1 = 3 + 5 - 1 = 7$	1
	Phase response: filte has non-linear phase response; as	
	filte has non-linear phase response, as impulse response h(n) is not symmetric about its mid-point	(20)

Ø, 2	(a) $\chi(z) = 3\bar{z}^2 + \bar{z}^3 - \bar{z}^4 + 2\bar{z}^5 + 3\bar{z}^6$ $H(z) = 2 + \bar{z}^1 - 3\bar{z}^2$	1
	$X(z). H(z): 6\overline{z}^{2} + 2\overline{z}^{3} - 2\overline{z}^{4} + 4\overline{z}^{5} + 6\overline{z}^{6}$ $3\overline{z}^{3} + \overline{z}^{4} - \overline{z}^{5} + 2\overline{z}^{6} + 3\overline{z}^{7}$ $-9\overline{z}^{4} - 3\overline{z}^{5} + 3\overline{z}^{6} - 6\overline{z}^{7} - 9\overline{z}^{8}$ $6\overline{z}^{2} + 5\overline{z}^{3} - 10\overline{z}^{4} + 11\overline{z}^{6} - 3\overline{z}^{7} - 9\overline{z}^{8}$	
	$R(n) \times s(n) = \{6, 5, -10, 0, 11, -3, -9\} @ n = 2$	1
	If $x(n)$ starts at $n=4$, then $y(n)$ will be the same sample sequence, but delayed by 2 samples (b) $H(z) = a$	
	(b) $H(z) = a$ $1-6\overline{z}'$ $H(0) = a$ $1-b\overline{e}J^{0}$ $H(9) _{0=0} = a$	1
-7)	For DC gain of 0.5, we require $\frac{a}{1-6} = 0.5$ =) $a = 0.5(1-6)$	1
	(c) zeros $Q = 0.2 \pm j 1.2$ poles $Q = -0.3 \pm j 0.5$	
	$f_{X} = 100 \text{ Hz}$ $\Rightarrow \theta_{X} = 2\pi \frac{100}{400}$ $= \frac{\pi}{2}$ $= 0 + j$	
	- 017	

-)	111(0)1 - 11	1
	$ H(\Theta_X) = \frac{L_1 L_2}{L_3 L_4}$	
	$L_1 = \sqrt{(0.2-0)^2 + (1.2-1)^2} = 0.2828$	
	$L_2 = \sqrt{(0.2-0)^2 + (-1.2-1)^2} = 2.2091$	
	$L_3 = \sqrt{(-0.3-0)^2 + (0.5-1)^2} = 0.5831$	12
	$L_4 = \sqrt{(-0.3-0)^2 + (-0.5-1)^2} = 1.5297$	12
	7 (050) (051)	
	=) $ H(0x) = 0.7004$	1
-)	(d) Thurd harmonic =) fo = 150th	
	$\theta_0 = 277 150' = 0.377$	
	1000	
	$r \approx 1 - \Lambda f_{\pi} = 1 - \frac{30}{1000} = 0.9057$	1
	$6_1 = -2r \cos \theta_0 = 1.0647$	
	$62 = r^2 = 0.8203$	1,
	H(2) = 1	
	1+1.06472+0.820322	
	Dc gain = 1+1.0647 +0.8203 = 0.3466	1
	A	
	y(n) = x(n) - 1.0647 y(n-1) - 0.8203 y(n-2)	1
	$\frac{2}{-0.8203}$ $\frac{3}{9}$ $\frac{1}{(n-2)}$	
	*	
The second secon		
		(20)
_		
J		

Q.3	(a) Windowing	
٧,	- explanation of wooder	
	- explanation of wordow - brade-off: width of main lobe is. side lobe suppression	2
	side lobe suppression	12
	- anglication: simple angline filts	1,
	- application: signal analysis, filter design	
	g. g.	
	Calculation:	
	Twin = 40 mo =) Nwin = 1280	1
-)	$\Delta f = fs \leq 20 Hz$	
/	NEET P	
	$\frac{N_{FFT}}{\Rightarrow N_{FFT}} \ge \frac{f_s}{20} \ge 1600$	1
	Next Righest power of 2 is 2048	
	Next Righest power of 2 is 2048 =) no. of samples for zero padding = 2048-1280 = 768	
	= 2048 - 1280 = 768	1
	Computational complexity: no. of MPY: 2N log2N For N = 20748, we need 45056 MPY	
	no of MPY: 2N logo N	
-)	For N = 2048, we need 45056 MPY	1
	40 ms frames, with 0% overlap	
	= 25 frames /sec	
	· we need 25 x 45056 = 1,126,400 MPY/sec	1
	(b) Concade and parallel decomposition	
	Point:	
	- easier to analyse	3
	- re-use H/W or S/W	
	- funite anothemetre effects	
)———	11	

		_
	Decomposition:	
	0.2 T 5 T T T - 1.2 -0.25 T 0.8	2
-)	(c) $b_1 = -2\sin\theta_0 = 3\sin\theta_0 = -\frac{61}{2}$ $\sin(\theta_0 + \Delta\theta_0) = -(b_1 + \Delta b_1)$	1
	$=) \sin\left(\frac{2\pi f_0}{f_s} + 2\pi \frac{\Delta f_0}{f_s}\right) = -\frac{6i}{2} - \frac{\Delta 6i}{2}$	1
	$=) \sin(2\pi f_0) \cos(2\pi f_0) + \cos(2\pi f_0) \sin(2\pi f_0)61 - 161$	1
	if No is small, Cos (211 Afo) ~ 1, sin (211 Afo) ~ 211 Afo	
	Note: sin(211, fc) = - 5	1
)	$=) \cos\left(\frac{2\pi f}{f}\right) 2\pi \Delta f_0 = -\frac{\Delta f_0}{2}$	1
	$=) \frac{2\pi \Delta R}{R} = -\frac{\Delta G}{2}$ $COS(2\pi R_0)$	1
	[,-	
	$=) \Delta f_0 = -f_S \Delta b_1$ $+\pi \cos\left(\frac{2\pi f_0}{f_S}\right)$	1
	73)	(20)
		(20)
)		

Q	$90 = 2\pi \frac{50}{1200} = \frac{11}{12}$	
	$\Theta_0 = 2\pi \frac{50}{} = \frac{\Pi}{12}$	
	1200	
	Pole radius: $r \propto 1 - \frac{15}{1200}T = 0.9607$	1
	6=-2rcco00 =-1.8559	
	$b_2 = r^2 = 0.9229$	
	Zeron:	
	$\alpha_1 = -2r \cos \theta_0 = -1.9318$	
	$a_2 = r^2 = 1$	
-)	-1 -2	
718/18/2017 (b) (3 - 10 - 1)**	$H(z) = \frac{1 - 1.9318z^{-1} + z^{-2}}{1 - 1.8559z^{-1} + 0.9229z^{-2}}$	
	Scaling factor to get DC gain of 1:	
	K = 1-1-8559 + 0-9229 = 0-9824	
	1-1-9318 +1	
	y(n) = 0.9824[x(n) + 1.9318 x(n-1) + x(n-2) 7	
	y(n) = 0.9827[x(n)]	
€	$+1.9318 \times (n-1)$	
	+1.8559 y(n-1) -0.9229 y(n-2)	
	-0.9229 y(n-2)	
	(6) $H(s) = wc$	
	5+WC	
	Desired digital cut-off frequency: $\theta c = 2\pi \frac{2.5}{10} = 0.3125\pi$	1
	$\frac{6c - 211}{16} = 0.312511$	
	Due - Waren :	
	Pre-warp: $\frac{2}{Wc} = \frac{2}{7} \tan(\frac{Qc}{2})$	
	= 17 104.36 rods	1
	Bilinean bransform	
	$= \frac{17,104.36 \text{ rad/s}}{\text{Bilinean bransform}}$ $= \frac{2}{7} \frac{1-2}{1+2}$	1
	1 172	•

	$H(z) = \omega_c = \omega_c (1+\bar{z}')$	
	$\frac{21-\bar{z}'}{11+\bar{z}'} + \omega_c \qquad (2f_s+\omega_c) + (\omega_c - 2f_s)\bar{z}'$	
	11+2	
	Substitute for for and we to get	
2	Substitute for fs and we to get $H(z) = 17109.36(1+z^{1})$	
	(32000+17104.36)+(17104.36-32000)=1	1
	= 17104.36(1+21)	
	49104.36-14895.642	
	$= 0.3483(1+\overline{z}^{1})$	1
)	1-0.3033 21	
	Without pre-warping:	
	Without pre-warping: 04 = 2 tan (2) = 0.9126 rab = 2TIfd	
	$= 2\pi f_d$ f_s	
	i i	
	for = Outs = 2,323.92 Hz (22.5 hHz)	1
	(c) High pars filter $\theta_c = 2\pi \frac{1}{8} = \frac{\pi}{4}$ $R(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(\theta) e^{jn\theta} d\theta$	
	$\Theta_{c} = \frac{1}{2\pi} = \frac{\pi}{4}$	/
	$h(n) = \overline{II} + H(0) e^{-int} d\theta$	1
)	$= 5(n) - \frac{1}{n\pi} \sin(\frac{n\pi}{4})$	
	$= S(n) - n\pi^{S/r}(4)$	3
	We require group delay of 9 msec = 72 samples @ $f_s = 8 \text{ hHz}$ $X = \frac{N-1}{2}$ $N = 20 + 1 = 145$ coefficients	
	= 79 samples @ fs = 8 hHz	
	$(X = \frac{N}{2}) = 100 + 1 = 145$ coefficients	
	$R(n) = S(n-72) - \frac{1}{(n-72)\pi} sin \left[\frac{(n-72)\pi}{4} \right]$	+,
	$(n-72)\pi$	
	0-0: 144	_
	n=0,1,,144	(20)
		1
		_