Symmetric vs. public-key crypto

Symmetric keys

- Common key k (secret)
- Both for encryption and decryption
- Secure channel without trusted third party

Public key cryptography

- pk, sk pair of keys (public, secret)
- pk at sender, sk at receiver
- distribute keys:
 - pk publicly sent (through authenticated channel)
 - pk broadcast, independent of sender
- multiple senders one receiver
- 2-3 orders of magnitude slower :(

Definiition of public key scheme

Definition

A public key scheme is a triple $\Pi = (Gen, Enc, Dec)$ with:

- Gen, the key generation, a prob. algorithm that has 1^n as input (security param.) and (pk, sk) as output (key pair). The public key is pk, the secret key is sk, and $|pk|, |sk| \ge n$
- Enc, the encryption, a PPT algo. with pk and message $m \in \mathcal{M}$) as inputs and $c \in \mathcal{C}$, $c := Enc_{pk}(m)$ as output (ciphertext)
- Dec, the decryption a deterministic algo. with sk and $c \in C$ as inputs. The output is an element of \mathcal{M} , $Dec_{sk}(c)$.

Properties of public key scheme

Correctness

We trivially need $\forall n, \forall pk, sk$ and $\forall m \in \mathcal{M}$, that

$$Dec_{sk}Enc_{pk}(m) = m.$$

Definition (indistinguishability experiment with eavesdropping $PubK^{eav}_{\mathcal{A}.\Pi}(n)$)

- 2 The adversary A issues messages $m_0, m_1 \in M$ on input pk, where $|m_0| = |m_1|$.
- **3** $k = Gen(1^n), b \in_R \{0,1\} : c = Enc_{pk}(m_b)$ given to A
- **4** *A* issues $b' \in \{0, 1\}$
- $PubK_{\mathcal{A},\Pi}^{eav}(n)=1, \text{ if } b=b', \text{ otherwise 0.}$

Definition

A scheme $\Pi = (Gen, Enc, Dec)$ is secure agains one eavesdropping if any PPT adversary $\forall A, \exists e(.)$ negligible s.t.

$$P(PubK_{\mathcal{A},\Pi}^{eav}(n) = 1) \le \frac{1}{2} + e(n).$$

Definition (CPA indistinguishability experiment $PubK^{cpa}_{\mathcal{A},\Pi}(n)$)

- 2 The adversary A has oracle access to $Enc_{pk}(.)$ for pk, then issues m_0, m_1 , with $|m_0| = |m_1|$
- **3** $b \in_R \{0,1\} : c = Enc_{pk}(m_b)$ given to A
- A has renewed oracle access to $Enc_{pk}(.)$. Then issues $b' \in \{0,1\}$
- $PubK^{cpa}_{\mathcal{A},\Pi}(n)=1, \text{ if } b=b', \text{ otherwise 0.}$

Definition

A scheme $\Pi = (Gen, Enc, Dec)$ is CPA-secure if for any PPT adversary $\forall A, \exists e(.)$ negligible s.t.

$$P(PubK_{\mathcal{A},\Pi}^{cpa}(n) = 1) \le \frac{1}{2} + e(n).$$

Definition (indistinguishability experiment with multiple eavesdroppings $PubK^{meav}_{\mathcal{A},\Pi}(n)$)

Slight modification of definition

Adversary A issues

$$M_0 = (m_{01}, \dots, m_{0t}), M_1 = (m_{11}, \dots, m_{1t})$$
 sequences, $\forall i : |m_{0i}| = |m_{1i}|$

②
$$b \in_R \{0,1\} : C = (c_1, \ldots, c_t) : c_i = Enc_{pk}(m_{bi})$$
 is given to A

Theorem

If Π is secure against one eavesdropping \Rightarrow CPA-security follows

Theorem

If Π is secure against one eavesdropping \Rightarrow also secure against multiple eavesdroppings

Theorem

 $\exists \Pi \text{ perfectly secure scheme (i.e. } \forall \mathcal{A} : PubK_{\mathcal{A},\Pi}^{eav}(n) = 1/2)$

Number theory for cypto

Euler's totient function φ

- $\varphi(n) = |\{k : 1 \le k \le n, (k, n) = 1\}|$
- $p \text{ prime: } \varphi(p) = p 1, \varphi(p^m) = p^m p^{m-1}$
- $\varphi(nm) = \varphi(n)\varphi(m)$, ha (n,m) = 1

Theorem (Euler-Fermat)

$$\forall a: 1 \le a \le n, (a, n) = 1 \Rightarrow a^{\varphi(n)} \equiv 1 \mod n.$$

Number theory for cypto

Theorem (Prime number theorem)

For x>0 let $\pi(x)$ denote the number of primes up to x. We have $\pi(x)\sim \frac{x}{\log x}$

Corollary

 $\exists c > 0 \forall n > 1$: Number of n-bit primes roughly $c \cdot 2^{n-1}/n$.

- n^2/c random picks will result in at least one prime with prob. $1-1/e^n$
- 2002: DPT primality test
- practice: PPT test
- e.g. Miller-Rabin

Textbook RSA

Textbook RSA

Gen • For input 1^n , choose primes p, q with n-bits. Set N = pq

- Let $e \in \{2, \dots, N-1\} : (e, \varphi(N)) = 1$
- Let $d \in \{2, \ldots, N-1\} : ed \equiv 1 \mod \varphi(N)$
- pk = (N, e), sk = (p, q, d)

Enc For message $m \in \mathbb{Z}_N^*$ and private key pk, let $c \equiv m^e \mod N$

Dec For ciphertext $c \in \mathbb{Z}_N^*$ and secret key sk, let $m \equiv c^d \mod N$

Seciruty of textbook RSA

Textbook RSA

Gen

- $N = pq, ed \equiv 1 \mod \varphi(N)$
- pk = (N, e), sk = (p, q, d)

Enc For $m \in \mathbb{Z}_N^*$ and pk, $c \equiv m^e \mod N$

Dec For $c \in \mathbb{Z}_N^*$ and sk, $m \equiv c^d \mod N$

Security

- correctness: $(x^e)^d$) = $x^{ed} \equiv x^{ed \bmod \varphi(N)} \equiv x^1 = x$
- Enc DPT \Rightarrow no security unless randomization added

RSA

Factorization problem

For random RSA modulus input N, find p, q : N = pq.

RSA problem

For random RSA instance N, e, c, find $m : m^e \equiv c \mod N$.

Statement

Factoring tractable ⇒ RSA tractable. Note: ← only conjectured.

RSA

Properties

- Rivest, Shamir, Adleman '76
- p, q 1024-bit Sophie-Germain primes (2p + 1) is also prime
- $e = 2^{16} + 1$ (prím)
- PPP encryption: m' = (r||m) with r fixed length random

Theorem

If RSA problem difficult ⇒ randomized RSA is CPA-secure