<기상통계학 과제 3>

학과: 대기환경과학과

과목 : 기상통계학

담당 교수님 : 정일웅 교수님

이름 : 조준호

학번 : 20220587

<사용한 자료>

- -전 지구 (Land) 월 아노말리 자료 1901년 ~ 2000년
- -전 지구 (ocean) 월 아노말리 자료 1901년 ~ 2000년
- -전 지구 (Land + ocean) 연 아노말리 자료 1910년 ~ 2000년
- -아시아 지역 (Land + ocean) 연 아노말리 자료 1910년 ~ 2000년

<사용한 도구>

- Fortran
- gnuplot
- 미국 NCEI 사이트

(https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/global/time-series)

<Fortran 계획 형식 및 코드>

1901년 ~ 2000년의 전 지구 (Land or ocean) 월 아노말리 자료를 다양한 방식으로 나누어 1901~, 1930~, 1950~, 1970~, 1980~, 1990~ 의 6가지 중 하나를 선택 후 그 자료에 대한 선형 회귀분석과 다양한 데이터 값들을 출력한다.

포트란 a.exe 형식)

```
[Land] -> 1 | [Ocean] -> 2
1
[1901] -> 1 | [1930] -> 2 | [1950] -> 3
[1970] -> 4 | [1980] -> 5 | [1990] -> 6
1
```

그 후 자동으로 gnuplot을 이용하여 그 시기의 선형 회귀분석 그래프를 그린다.

<자료 해석 방식>

100년간 12달의 모든 자료의 개수는 1200개로 각각 아노말리의 x축 좌표 값을 1~1200으로 계산했다.

<포트란 코드 및 gnuplot 코드>

! linear regression analysis (Global Land and Ocean Temperature Anomalies) integer ∷ n real, allocatable, dimension(:)::x,y,yex real :: xmean,ymean,cov,sx,sy,r,T,B,al,Mean_cal real :: SSR, SSE, SST, MSR, MSE, MST, Fsta, Ta, Tb, se, sa, sb real(kind=selected_real_kind(18,4931)) :: P,pcal integer :: EDF,RDF,TDF,k,e,bo,lao write(*,*)'[Land] -> 1 | [Ocean] -> 2 ' read(*,*)lao write(*,*)'[1901] -> 1 | [1930] -> 2 | [1950] -> 3' write(*,*)'[1970] -> 4 | [1980] -> 5 | [1990] -> 6' read(*,*)nopen(1,file='land/la1901-2000.csv') open(2,file='land/la1930-2000.csv') open(3,file='land/la1950-2000.csv') open(4,file='land/la1970-2000.csv') open(5,file='land/la1980-2000.csv') open(6,file='land/la1990-2000.csv') open(7,file='ocean/oc1901-2000.csv') open(8,file='ocean/oc1930-2000.csv') open(9,file='ocean/oc1950-2000.csv') open(10,file='ocean/oc1970-2000.csv') open(11,file='ocean/oc1980-2000.csv') open(12,file='ocean/oc1990-2000.csv') open(44,file='land/data/resultla.dat') open(45,file='land/data/result30la.dat') open(46,file='land/data/result50la.dat') open(47,file='land/data/result70la.dat') open(48,file='land/data/result80la.dat') open(49,file='land/data/result90la.dat') open(50,file='ocean/data/resultOC.dat') open(51,file='ocean/data/result300C.dat') open(52,file='ocean/data/result50OC.dat')

open(53,file='ocean/data/result700C.dat')

```
open(54,file='ocean/data/result800C.dat')
open(55,file='ocean/data/result900C.dat')
open(999,file='logfind.dat')
call ne(n,e,bo,lao)
allocate(x(n),y(n),yex(n))
do i = 1,n
       read(e,*)x(i),y(i)
       x(i) = i + bo
end do
xmean = Mean_cal(n,x) ; ymean = Mean_cal(n,y)
cov = covxy(x,y,xmean,ymean,n)
sx = scal(x, xmean, n)
sy = scal(y,ymean,n)
r = Rcal(cov, sx, sy)
T = Tcal(r,n)
P = Pcal(n,T)
B = beta(x,y,xmean,ymean,n)
al = acal(xmean,ymean,B)
do i = 1,n
yex(i) = tyex(al,B,x(i))
end do
se = Secal(y, yex, n)
sa = Sacal(se,x,xmean,n)
sb = Sbcal(se,x,xmean,n)
Ta = tabcal(al,sa)
Tb = tabcal(B,sb)
call cssr(SSR,y,yex,n)
call csse(SSE,yex,ymean,n)
call csst(SST,SSR,SSE)
k = 1 !단순회귀 -> 독립변수(k) = 1
EDF = k
RDF = n-k-1
```

```
TDF = n-1
MSE = SSE/(EDF*1.0)
MSR = SSR/(RDF*1.0)
MST = SST/(TDF*1.0)
Fsta = MSE/MSR
!write
call gplot(y,al,B,n,e,bo,lao)
CALL SYSTEM('gnuplot -p plot.plt')
write(e+43,10)'xmean =',xmean
write(e+43,10)'ymean =',ymean
write(e+43,10)'covxy =',cov
write(e+43,10)'sx =',sx
write(e+43,10)'sy =',sy
write(e+43,10)'r =',r
write(e+43,10)'R = ',r**2
write(e+43,10)'T = ',T
write(e+43,10)'P-val =',P
write(e+43,10)'LRA a =',al
write(e+43,122)'LRA b = ',B
write(e+43,10)'SSR =',SSR
write(e+43,10)'SSE =',SSE
write(e+43,10)'SST =',SST
write(e+43,10)'MSR = ',MSR
write(e+43,10)'MSE =',MSE
write(e+43,10)'MST =',MST
write(e+43,11)'EDF = ',EDF
write(e+43,11)'RDF = ',RDF
write(e+43,11)'TDF =',TDF
write(e+43,10)'Fsta =',Fsta
write(e+43,10)'se ='.se
write(e+43,10)'sa =',sa
write(e+43,10)'sb =',sb
write(e+43,10)'ta =',ta
write(e+43,10)'tb = ',tb
call write_anova(EDF,RDF,TDF,SSE,SSR,SST,MSE,MSR,MST,Fsta,e)
```

!format

```
10
       format(a15,f15.4)
11
       format(a15,i10)
122
       format(a15,f15.8)
end
! function & subroutine
function Mean_cal(n,x) result(xm)
       integer∷n
       real,dimension(n)∷x
       real ∷ xm
       xm = 0
       do i = 1,n
       xm = x(i) + xm
       end do
       xm = xm/(n*1.0)
end
function covxy(x,y,xm,ym,n) result(f)
       real∷xm,ym
       integer ∷ n
       real,dimension(n)::x,y
       f = 0
       do i = 1,n
       f = (x(i) - xm)*(y(i)-ym) + f
       end do
      f = f/((n-1)*1.0)
end
function scal(x,xm,n) result(f)
       real∷xm,f
       integer :: n
       real,dimension(n)∷x
       f = 0
       do i = 1,n
       f = (x(i) - xm)**2 + f
       end do
```

```
f = sqrt(f/((n-1)*1.0))
end
function Secal(y,yex,n) result(f)
       real ∷ f,t
       integer ∷ n
       real,dimension(n)::y,yex
       t = 0
       do i = 1,n
       t = (y(i)-yex(i))**2 + t
       end do
       f = (1/((n-2)*1.0)) * t
       f = sqrt(f)
end
function Sacal(se,x,xm,n) result(f)
       real :: se, xm, f, T, H
       integer ∷ n
       real,dimension(n) :: x
       T = 0; H = 0;
       do i = 1,n
       T = x(i)**2 + T
       H = (x(i)-xm)**2 + H
       end do
       f = se*(T/((n*1.0)*H))
end
function Sbcal(se,x,xm,n) result(f)
       real ∷ se,xm,f,T
       integer ∷ n
       real,dimension(n) :: x
       T = 0
       do i = 1,n
       T = (x(i)-xm)**2 + T
       end do
```

```
f = se / sqrt(T)
end
function Tcal(r,n) result(f)
       real :: f,r
       integer ∷ n
       f = r*sqrt(((n-2)*1.0))/sqrt((1-r**2))
end
function Tabcal(a,s) result(f)
       real ∷ f.a.s
       f = a/s
end
function Rcal(c,x,y) result(f)
       real :: c,x,y,f
       f = c/(x*y)
end
function Pcal(n,T) result(f)
       integer ∷ n,v
       real, parameter :: pi = 4. * atan(1.)
       real :: T
       real(kind=selected_real_kind(18,4931)) :: f
       v = n-2
       f = gamma((v + 1.0d0)/2.0d0)/(gamma(v/2.0d0)*sqrt(v * pi))/sqrt((1.0d0 + 1.0d0)/2.0d0))
(T*T/v))**(v+1.0d0))
end
function beta(x,y,xm,ym,n) result(f)
       real,dimension(n)::x,y
       integer :: n
       real :: xm,ym,re1,re2
       re1 = 0; re2 = 0; f = 0
       do i = 1,n
       re1 = ((x(i) - xm)*(y(i) - ym)) + re1
       re2 = (x(i) - xm)**2 + re2
       end do
       f = re1/re2
end
```

```
function acal(xm,ym,b) result(f)
      real ∷ b,xm,ym
      f = ym - (b*xm)
end
function tyex(a,b,x) result(f)
      real∷a,b,x
      f = a + (b*x)
end
subroutine cssr(x,y,ye,n)
      integer ∷ n
      real,dimension(n) ∷ y,ye
      real ∷ x
      x = 0;
      do i = 1, n
      x = (y(i) - ye(i))**2 + x
      end do
end
subroutine csse(x,ye,ym,n)
      integer ∷ n
      real,dimension(n) :: ye
      real ∷ ym,x
      x = 0;
      do i = 1, n
      x = (ye(i)-ym)**2 + x
      end do
end
subroutine csst(f,x,y)
      real ∷ f,x,y
      f = x + y
end
subroutine write_anova(EDF,RDF,TDF,SSE,SSR,SST,MSE,MSR,MST,Fsta,e)
       real :: SSE,SSR,SST,MSE,MSR,MST,Fsta
       integer :: EDF,RDF,TDF,e
```

```
if (e == 1) link = 'land/data/ANOVA1'
           if (e == 2) link = 'land/data/ANOVA2'
           if (e == 3) link = 'land/data/ANOVA3'
           if (e == 4) link = 'land/data/ANOVA4'
          if (e == 5) link = 'land/data/ANOVA5'
           if (e == 6) link = 'land/data/ANOVA6'
           if (e == 7) link = 'ocean/data/ANOVA1'
           if (e == 8) link = 'ocean/data/ANOVA2'
           if (e == 9) link = 'ocean/data/ANOVA3'
           if (e == 10) link = 'ocean/data/ANOVA4'
           if (e == 11) link = 'ocean/data/ANOVA5'
           if (e == 12) link = 'ocean/data/ANOVA6'
     open(9999,file=link)
     write(9999,100)'',' | ','Degrees of freedom',' | ','Sum of Square',' | ','Mean
Square',' | ','F Statistic'
write(9999.103)'-----
     write(9999,101)'Regression',' | ',EDF,' | ',SSE,' | ',MSE,' | ',Fsta
write(9999,103)'-----
     write(9999,102)'Residual',' | ',RDF,' | ',SSR,' | ',MSR,' | '
write(9999.103)'-----
     write(9999,102)'Total',' | ',TDF,' | ',SST,' | ',MST,' | '
write(9999.103)'-----
_____'
100
     format(a15,4(a3,a20))
101
     format(a15,a3,i20,3(a3,f20.4))
102
     format(a15,a3,i20,2(a3,f20.4),a3)
103
     format(a107)
end
```

character (len = 20):: link

subroutine ne(n,e,bo,lao)

```
integer ∷ n,e,bo,lao
```

```
if ( lao == 1) then
       if(n==1)then
       n = 1200
       e = 1
       bo = 0
       else if(n==2)then
       n = 852
       e = 2
       bo = 1200 - 852
       else if(n==3)then
       n = 612
       e = 3
       bo = 1200 - 612
       else if(n==4)then
       n = 372
       e = 4
       bo = 1200 - 372
       else if(n==5)then
       n = 252
       e = 5
       bo = 1200 - 252
       else if(n==6)then
       n = 132
       e = 6
       bo = 1200 - 132
       end if
else if (lao == 2) then
       if(n==1)then
       n = 1200
       e = 7
       bo = 0
       else if(n==2)then
       n = 852
       e = 8
       bo = 1200 - 852
```

else if(n==3)then

```
n = 612
       e = 9
       bo = 1200 - 612
       else if(n==4)then
       n = 372
       e = 10
       bo = 1200 - 372
       else if(n==5)then
       n = 252
       e = 11
       bo = 1200 - 252
       else if(n==6)then
       n = 132
       e = 12
       bo = 1200 - 132
       end if
end if
end
subroutine gplot(x,a,b,n,e,bo,lao)
       real,dimension(n)::x
       integer ∷ n,e,bo
       real ∷ a,b
       character (len = 12):: link
       if (lao == 1) then
       link = 'land/data/'
       else if (lao == 2) then
       link = 'ocean/data/'
       end if
       open(777,file='data.txt')
       open(888,file='plot.plt')
       do i = 1,n
       write(777,*)i+bo,x(i)
       end do
       write(888, '(a)')'set title "linear regression analysis (Global Temperature
Anomalies)"'
       write(888, '(a)')'set nokey'
       write(888, '(a)')'set grid'
```

```
write(888,'(a)')'set ylabel "anomaly"'
write(888,'(a)')'set xlabel "year/month count"'
write(888,'(a)')'m="data.txt"'
write(888,'(a)')'set style line 11 lc rgb "#808080" lt 1'
write(888,'(a)')'set border 3 back ls 11'
write(888,'(a)')'set tics nomirror'
write(888,'(a)')'set style line 12 lc rgb "#808080" lt 0 lw 1'
write(888,'(a)')'set grid back ls 12'
write(888,'(a)')'set term png size 1000,600'
write(888,'(a,i4,a,i4,a)')'set xrange [',bo,':',1200,']'
write(888,'(a,a,i2,a)')'set output "',link,e,'.png"'
write(888,200)'plot m using 1:2 pt 1 ps 1 lt 1 lw 1,',a,'+',b,'*x'
format(a57,f15.4,a1,f15.8,a2)
```

end

200

<분석 자료>

linear regression analysis (Global Land Temperature Anomalies)>

<시작 연도 1901년,1930년,1950년,1970년,1980년,1990년 별 ANOVA 표>

(17 EX 1001)	2,1000 6,1000 6,10			
1) 1901년 ~ 2000년	Degrees of freedom	Sum of Square	Mean Square	F Statistic
Regression	1	82.0754	82.0754	750.1984
Residual	1198	131.0671	0.1094	
Total	1199	213.1425	0.1778	
2) 1930년 ~ 2000년 	Degrees of freedom	Sum of Square	Mean Square	F Statistic
Regression	1	31.9518	31.9518	280.6967
Residual	850 850	96.7557	0.1138	1
Total	851	128.7075	0.1512	
3)1950년 ~ 2000년 	Degrees of freedom	Sum of Square	Mean Square	F Statistic
Regression	1	35.3936	35.3936	325.2395
Residual	610	66.3821	0.1088	1
Total	611	101.7757	0.1666	1
4)1970년 ~ 2000년 	Degrees of freedom	Sum of Square	Mean Square	F Statistic
Regression	1	19.4989	19.4989	183.4198
Residual	370	39.3337	0.1063	
Total	371	58.8326	0.1586	
5)1980년 ~ 2000년 	Degrees of freedom	Sum of Square	Mean Square	F Statistic
Regression	1	4.9265	4.9265	44.2310
Residual	250	27.8452	0.1114	
Total	251	32.7716	0.1306	
6)1990년 ~ 2000년				
	Degrees of freedom	Sum of Square	Mean Square	F Statistic
Regression	1	1.0788	1.0788	8.6176
Residual	130	16.2736	0.1252	1
Total	131	17.3523	0.1325	

[1901년 ~ 2000년]

xmean = ymean = 90.6715 346.5554 0.4216 0.6205 0.3851 27.3897 P-val = NaN -0.4532 LRA a = LRA b = 0.00075496 SSR = 131.0671 SSE = 82.0754 213.1425 MSR = 0.1094 MSE = 82.0754 MST = 0.1778 1198 RDF = 1199 750.1984 0.3308 0.0011 0.0000 sb = -410.5417 27.3898 tb =

[1930년 ~ 2000년]

xmean	#	774.5000
ymean	=	0.1307
соvху		47.6855
SX	=	246.0954
sy		0.3889
r		0.4982
R	=	0.2483
T		16.7548
P-val	=	Nan
LRA a		-0.4791
LRA b		0.00078737
SSR	=	96.7557
SSE		31.9518
SST	=	128.7075
MSR		0.1138
MSE		31.9518
MST		0.1512
EDF		1
RDF	=	850
TDF	=	851
Fsta	=	280.6967
se	=	0.3374
sa		0.0043
sb		0.0006
ta		-110.8353
tb	¥	16.7548

[1950년 ~ 2000년]

		_
xmean	=	894.5000
ymean		0.1831
covxy	=	42.5553
5X	=	176.8128
sy		0.4081
r	=	0.5897
R	=	0.3478
T	=	18.0344
P-val	=	NaN
LRA a	=	-1.0345
LRA b	=	0.00136121
SSR	=	66.3821
SSE	=	35.3936
SST	=	101.7757
MSR	=	0.1088
MSE		35.3936
MST		0.1666
EDF	=	1
RDF	=	610
TDF		611
Fsta	=	325.2395
se	(=	0.3299
sa		0.0144
sb	=	0.0001
ta	=	-72.0566
tb		18.0343

[1970년 ~ 2000년]

	-	
xmean	=	1014.5000
ymean	=	0.3277
covxy	=	24.6521
sx	=	107.5314
5y	=	0.3982
n	=	0.5757
R	_	0.3314
T	=	13.5433
P-val	=	NaN
LRA a	=	-1.8352
LRA b		0.00213198
SSR	=	39.3337
SSE	=	19.4989
SST	=	58.8326
MSR	=	0.1063
MSE	=	19.4989
MST	=	0.1586
EDF	=	1
RDF		370
TDF	=	371
Fsta	=	183.4198
se	=	0.3260
sa		0.0791
sb		0.0002
ta	=	-23.2008
tb		13.5433

[1980년 ~ 2000년]

[_	
xmean	=	1074.5000
ymean	=	0.4640
covxy	=	10.2118
5X	=	72.8903
sy	=	0.3613
r	=	0.3877
R		0.1503
T	=	6.6506
P-val	=	0.0000
LRA a	=	-1.6012
LRA b	=	0.00192204
SSR	=	27.8452
SSE	=	4.9265
SST	=	32.7716
MSR	=	0.1114
MSE	=	4.9265
MST	=	0.1306
EDF	=	1
RDF	=	250
TDF	=	251
Fsta	=	44.2310
se	=	0.3337
sa	=	0.2903
sb	=	0.0003
ta	=	-5.5165
tb	=	6.6506
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

[1990년 ~ 2000년]

		_	
xmean	=	1134.5000	
ymean	=	0.5839	
covxy	=	3.4710	
SX	=	38.2492	
sy		0.3640	
r	=	0.2493	
R	=	0.0622	
T	=	2.9356	
P-val	=	0.0059	
LRA a	=	-2.1077	
LRA b	=	0.00237249	
SSR	=	16.2736	
SSE	=	1.0788	
SST	=	17.3523	
MSR	=	0.1252	
MSE	=	1.0788	
MST	=	0.1325	
EDF	=	1	
RDF	=	130	
TDF	=	131	
Fsta	=	8.6176	
se	=	0.3538	
sa	=	2.3788	
sb	=	0.0008	
ta	=	-0.8861	
tb	=	2.9356	

[1901년 ~ 2000년]

[1930년 ~ 2000년]

[1950년 ~ 2000년]

[1970년 ~ 2000년]

[1980년 ~ 2000년]

[1990년 ~ 2000년]

linear regression analysis (Global Ocean Temperature Anomalies)>

<시작년도 1901년, 1930년, 1950년, 1970년, 1980년, 1990년 별 ANOVA 표>

		2, 2,		
1) 1901년 ~ 2000년	Degrees of freedom	Sum of Square	Mean Square	F Statistic
Regression	1	46.7918	46.7918	2673.1499
Residual	1198	20.9702	0.0175	l
Total	1199	67.7621	0.0565	I
2) 1930년 ~ 2000년	Degrees of freedom	Sum of Square	Mean Square	F Statistic
Regression	1	13.0365	13.0365	695.2209
Residual	850	15.9388	0.0188	I
Total	851	28.9753	0.0340	
3) 1950년 ~ 2000년 	Degrees of freedom	Sum of Square	Mean Square	F Statistic
Regression	1	10.3433	10.3433	881.2685
Residual	610	7.1595	0.0117	
Total	611	17.5027	0.0286	
4) 1970년 ~ 2000년				
1, 22.00	Degrees of freedom	Sum of Square	Mean Square	F Statistic
Regression	1	4.9643	4.9643	495.4407
Residual	370	3.7074	0.0100	l
Total	371	8.6717	0.0234	
5) 1980년 ~ 2000년 	Degrees of freedom	Sum of Square	Mean Square	F Statistic
Regression	1	0.6214	0.6214	78.0510
Residual	250	1.9903	0.0080	1
Total	251	2.6117	0.0104	Ĭ
6) 1990년 ~ 2000년				
	Degrees of freedom	Sum of Square	Mean Square	F Statistic
Regression	1	0.1239	0.1239	12.9038
Residual	130	1.2480	0.0096	
Total	131	1.3719	0.0105	

xmean	=	600.5000
ymean	=	0.0000
covxy	=	68.4619
5X		346.5554
sy	=	0.2377
r		0.8310
R		0.6905
T		51.7023
P-val	=	NaN
LRA a		-0.3423
LRA b		0.00057004
SSR	=	20.9702
SSE	¥	46.7918
SST	=	67.7621
MSR		0.0175
MSE		46.7918
MST	=	0.0565
EDF	=	1
RDF		1198
TDF		1199
Fsta	=	2673.1499
se	=	0.1323
sa		0.0004
sb	=	0.0000
ta	=	-775.1439
tb		51.7026

[1901년 ~ 2000년] [1930년 ~ 2000년] [1950년 ~ 2000년]

xmean	=	774.5000
ymean	=	0.1066
COVXV		30.4592
5X		246.0954
sy	=	0.1845
n		0.6708
R		0.4499
T	=	26.3671
P-val	=	NaN
LRA a	=	-0.2829
LRA b		0.00050293
SSR		15.9388
SSE	=	13.0365
SST	=	28.9753
MSR		0.0188
MSE	=	13.0365
MST	=	0.0340
EDF	=	1
RDF		850
TDF		851
Fsta	=	695.2209
se	=	0.1369
sa		0.0018
sb	=	0.0000
ta	=	-161.2719
tb	=	26.3670

•		_	_,
1	xmean	=	894.5000
	ymean	=	0.1473
	covxy	=	23.0049
	5X	=	176.8128
	sy	=	0.1693
	r	#	0.7687
	R	=	0.5910
	T	=	29.6863
	P-val	=	NaN
	LRA a		-0.5110
	LRA b	=	0.00073586
	SSR	=	7.1595
	SSE	=	10.3433
	SST	=	17.5027
	MSR	=	0.0117
	MSE	=	10.3433
	MST	=	0.0286
	EDF	=	1
	RDF	=	610
	TDF	=	611
	Fsta	=	881.2685
	se	=	0.1083
	sa	=	0.0047
	sb	=	0.0000
	ta	=	-108.3699
	tb	=	29.6861

[1970년 ~ 2000년]

[10.0]	2000 []
xmean =	1014.5000
ymean =	0.2278
covxy =	12.4388
SX =	107.5314
sy =	0.1529
r =	0.7566
R =	0.5725
T =	22.2585
P-val =	NaN
LRA a =	-0.8635
LRA b =	0.00107574
SSR =	3.7074
SSE =	4.9643
SST =	8.6717
MSR =	0.0100
MSE =	4.9643
MST =	0.0234
EDF =	1
RDF =	370
TDF =	371
Fsta =	495.4407
se =	0.1001
sa =	0.0243
sb =	0.0000
ta =	-35.5581
th =	22.2585

[1980년 ~ 2000년]

[1000 년	- 2000 [1]
xmean =	1074.5000
ymean =	0.3022
covxy =	3.6267
5X =	72.8903
sy =	0.1020
n:=	0.4878
R =	0.2379
T =	8.8346
P-val =	0.0000
LRA a =	-0.4313
LRA b =	0.00068261
SSR =	1.9903
SSE =	0.6214
SST =	2.6117
MSR =	0.0080
MSE =	0.6214
MST =	0.0104
EDF =	1
RDF =	250
TDF =	251
Fsta =	78.0510
se =	0.0892
sa =	0.0776
sb =	0.0001
ta =	-5.5576
tb =	8.8346

[1990년 ~ 2000년]

xmean	=	1134.5000
ymean	=	0.3439
covxy	=	1.1762
SX	=	38.2492
sy	=	0.1023
r	=	0.3005
R	=	0.0903
T	=	3.5922
P-val	=	0.0008
LRA a	=	-0.5683
LRA b	=	0.00080398
SSR	=	1.2480
SSE	=	0.1239
SST	=	1.3719
MSR	=	0.0096
MSE	=	0.1239
MST	=	0.0105
EDF	=	1
RDF	=	130
TDF	=	131
Fsta	=	12.9038
se	=	0.0980
sa	=	0.6588
sb	=	0.0002
ta	=	-0.8626
tb	=	3.5922

[1901년 ~ 2000년]

[1930년 ~ 2000년]

[1950년 ~ 2000년]

[1970년 ~ 2000년]

[1980년 ~ 2000년]

[1990년 ~ 2000년]

1) 관심있는 월(monthly) 또는 연(annual) 아노말리 자료를 사용하여 선형 회귀분석을 전 지구 육지와 해양 각각에 대해 수행하고, 그 결과를 비교 분석하시오.

<결과 비교 분석>

Global Land Temperature Anomalies의 자료를 시작 연도별로 비교분석 하면모든 자료의 결정계수가 40% 미만으로 시작 연도별 종속변수의 변동이 최대 약 40% 최저 약 6%로 설명된다. 선형 회귀분석에서 기울기 b는 0.00075496에서 0.00237249까지 점점 증가하였으며 1970년부터 비교한 자료의 기울기 b에 비해 1980년부터 비교한 자료의 기울기 b는 소폭 줄어들었다. 아노말리의 평균은 0.001에서 0.5839로 증가하였으며 이는 지구의 온도가 증가하고 있음을 나타낸다. 선형 회귀분석한 그래프를 보면 아노말리의 주기가 보이지 않으며 이상치가 많이보인다.

Global Ocean Temperature Anomalies의 자료를 시작 연도별로 비교분석 하면 시작 연도별 종속변수의 변동은 최대 약 69% 최소 9%로 설명된다. 선형 회귀분석에서 기울기 b는 0.00057004에서 0.00107574까지 점점 증가했으며 1970년부터 비교한 자료의 기울기 b에 비해 1980년부터 비교한 자료의 기울기 b는 소폭 줄어든 후 1990년부터 비교한 자료의 기울기 b는 다시 소폭 증가하였다. 아노말리의 평균은 0에서 0.3439로 증가하였으며 이는 지구의 온도가 증가하고 있음을 나타낸다. 선형 회귀분석한 그래프를 보면 아노말리의 주기가 뚜렷하다.

Global Land Temperature Anomalies의 자료와 Global Ocean Temperature Anomalies의 자료를 보았을 때 1970년부터 비교한 자료의 기울기 b에 비해 1980년부터 비교한 자료의 기울기 b는 둘 자료다 소폭 줄어드는 것을 볼 수 있으며 육지와 바다의 비열 차이에 의해 아노말리의 평균에 차이가 있지만 두 자료 다 증가하는 모습을 보였다.

Global Land Temperature Anomalies의 자료의 결정계수는 40%를 넘지 않은 반면 Global Ocean Temperature Anomalies의 자료의 결정계수는 최대 약 69%로 적합도가 Ocean이 더 높았다.

- 100년간 land 월별 아노말리와 1901년부터 1990년도까지 시작 범위를 좁혀가며 선형 회귀분석을 한 결과 그래프

(녹색 : 1901 ~ 2000년 | 주황 : 1930 ~ 2000년 | 파랑 : 1950 ~ 2000년 | 검정 : 1970 ~ 2000년 | 빨강 : 1980 ~ 2000년 | 하늘 : 1990 ~ 2000년)

- 100년간 ocean 월별 아노말리와 1901년부터 1990년도까지 시작 범위를 좁혀가며 선형 회귀분석을 한 결과 그래프

(녹색 : 1901 ~ 2000년 | 주황 : 1930 ~ 2000년 | 파랑 : 1950 ~ 2000년 | 검정 : 1970 ~ 2000년 | 빨강 : 1980 ~ 2000년 | 하늘 : 1990 ~ 2000년)

2) 연 아노말리 자료에 대한 선형 회귀분석에 따르면, 전지구(land+ocean)적인 온난화가 점점 가속 또는 감속되고 있는가?

위 그래프를 보면 NCEI의 웹 기반 도구로 연도별 Global Land and ocean Temperature Anomalies 자료를 1901년부터 2000년, 1950년부터 2000년, 1985년부터 2000년 3개의 연 자료를 선형 회귀분석하여 나타낸 그래프이다. 점점 시작 연도를 늘릴수록 기울기가 0.07에서 0.18까지 늘어난 것을 볼 수 있다. 이는 지구 온난화가 점점 가속화하고 있다는 것을 알 수 있다.

(3) 1910-2022년의 기간에 대해 아시아 지역에서의 온난화율은 전지구(land+ocean) 온난화율의 몇 배나 더 큰지제시하시오. (단, 연 아노말리 자료사용하시오.)

1910년부터 2022년까지의 연도별 Global Land and ocean Temperature Anomalies의 자료 와 1910년부터 2022년까지의 연도별 Aisa Land Temperature Anomalies의 자료를 비교분석 한다. 여기서 온난화 율의 정의는 1910년부터 2000년까지의 자료를 선형 회귀분석하여 나온 기울기와 2000년부터 2022년까지의 자료를 선형 회귀분석하여 나온 기울기를 비교하여 기울기의 증가 비율이다.

Global Land and ocean Temperature Anomalies의 선형 회귀분석에 따르면 1910년 ~ 2000년까지의 기울기는 0.08, 2000년 ~ 2022년까지의 기울기는 0.21로 기울기는 162.5% 증가하였으며 Aisa Land Temperature Anomalies의 선형 회귀분석에 따르면 1910년 ~ 2000년까지의 기울기는 0.11, 2000년 ~ 2022년까지의 기울기는 0.35로 기울기는 약 218% 증가했다. 약 아시아 지역에서의 온난화 율이 전지구의 온난화 율의 약 1.34배이다.

(4) 전체 기간, 전 지구에 대한 선형회귀 모형에 의해 관심있는 월 또는 연에 대한 2050년 전지구 평균 지표온도 아노말리를 전망해 보시오.

1901년부터 2000년까지의 월별 Global Land and Ocean Temperature Anomalies의 자료를 선형 회귀분석한 결과 y 절편은 -0.3739 기울기는 0.00062258이 나왔다. 2050년의 전지구 평균 지표온도를 구하려면 2050년 1월 ~ 12월 까지의 값을 예측 후 평균을 낸다. x 좌표로는 1789~ 1800까지로 설정 후 계산한다.

<포트란 코드>

```
real,parameter :: a = -0.3739, b = 0.00062258 real :: f
f = 0
do i = 1789,1800
f = a + b*i + f
end do
f = f/12.
```

write(*,*)f end

Ans. :: 0.743319809