1 Adjoint Method

Let M a manifold, and $x(t) \in C^1(\mathbb{R}, M)$ a trajectory, obeying

$$\frac{\mathrm{d}x}{\mathrm{d}t}(t) = f(t, x(t); \theta),$$

and

$$x(t_0) = x_0,$$

where $f \in C(\mathbb{R} \times M, T_M)$ parameterized by θ . For $\forall t_1 > t_0$, let

$$x_1 := x_0 + \int_{t_0}^{t_1} f(t, x(t); \theta) dt.$$

Then

Theorem 1. Let $L \in C^1(M, \mathbb{R})$, and $\forall x(t) \in C^1(\mathbb{R}, M)$ obeying dynamics $f(t, x; \theta) \in C^1(\mathbb{R} \times M, T_M)$ with initial value $x(t_0) = x_0$. Denote

$$L_x(t;t_0,x_0,\theta) := L(x(t;t_0,x_0,\theta)) = L\bigg(x_0 + \int_{t_0}^t f(t,x(t);\theta)\bigg),$$

and XXX

$$a_{\alpha}(\tau) := \frac{\partial L_x}{\partial x_0^{\alpha}}(t; \tau, x_0; \theta).$$

Then we have

$$\frac{\partial L_x}{\partial x_0^{\alpha}}(t) = -\int_{t_0}^t a_{\beta}(\tau) \frac{\partial f^{\beta}}{\partial x^{\alpha}(\tau)}(\tau, x(\tau); \theta) d\tau$$

and

$$\frac{\partial L_x}{\partial \theta}(t) = -\int_{t_0}^t a_{\beta}(\tau) \frac{\partial f^{\beta}}{\partial \theta}(\tau, x(\tau); \theta) d\tau$$

Proof. Suppose the x(t) is layerized, the L depends on the variables (inputs and model parameters) on the ith layer can be regarded as the loss of a new model by truncating the original at the ith layer, which we call $L_i(z_i)$.

$$\begin{split} \frac{\partial L_{i}}{\partial x_{i}^{\alpha}}(x_{i}) &= \frac{\partial L_{i+1}}{\partial x_{i+1}^{\beta}}(x_{i+1}) \frac{\partial x_{i+1}^{\beta}}{\partial x_{i}^{\alpha}}(x_{i}) \\ &= \frac{\partial L_{i+1}}{\partial x_{1}^{\beta}}(x_{i+1}) \frac{\partial}{\partial x_{i}^{\alpha}}(x_{i}^{\beta} + f^{\beta}(t_{i}, x_{i}; \theta) \Delta t) \\ &= \frac{\partial L_{i+1}}{\partial x_{i+1}^{\alpha}}(x_{i+1}) + \frac{\partial L_{i+1}}{\partial x_{i+1}^{\beta}}(x_{i+1}) \partial_{\alpha} f^{\beta}(t_{i}, x_{i}; \theta) \Delta t. \end{split}$$

This hints that

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L(x(t_1))}{\partial x^{\alpha}(t)} = -\frac{\partial L(x(t_1))}{\partial x^{\beta}(t)} \frac{\partial f^{\beta}}{\partial x^{\alpha}(t)}(t, x(t); \theta).$$

Varing θ will vary the $L_i(x_i)$ from two aspects, the effect from $\partial L_{i+1}/\partial \theta$ and the Δx_{i+1} caused by $\Delta \theta$.

$$\begin{split} \frac{\partial L_i}{\partial \theta}(x_i) = & \frac{\partial L_{i+1}}{\partial \theta}(x_{i+1}) + \frac{\partial L_{i+1}}{\partial x_{i+1}} \frac{\partial x_{i+1}}{\partial \theta} \\ = & \frac{\partial L_{i+1}}{\partial \theta}(x_{i+1}) + \frac{\partial L_{i+1}}{\partial x_{i+1}} \frac{\partial}{\partial \theta}(x_i^{\beta} + f^{\beta}(t_i, x_i; \theta) \Delta t) \\ = & \frac{\partial L_{i+1}}{\partial \theta}(x_{i+1}) + \frac{\partial L_{i+1}}{\partial x_{i+1}} \frac{\partial f^{\beta}}{\partial \theta}(t_i, x_i; \theta) \Delta t. \end{split}$$

This hints that

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L(x(t_1))}{\partial \theta} = -\frac{\partial L(x(t_1))}{\partial x^{\alpha}(t)} \frac{\partial f^{\beta}}{\partial \theta}(t, x(t), \theta).$$

1.1 Calculation of $\partial L/\partial x$

1.2 Calculation of $\partial L/\partial \theta$

Suppose the model is layerized, the loss depends on the variables (inputs and model parameters) on the *i*th layer can be regarded as the loss of a new model by truncating the original at the *i*th layer, which we call $L_i(z_i)$. Varing θ will vary the $L_0(z_0)$ from two aspects, the effect from $dL_1/d\theta$ and the Δz_1 caused by $\Delta \theta$.

$$\frac{\mathrm{dL}_0}{d\theta}(z_0) = \frac{\mathrm{dL}_1}{d\theta}(z_1) + \frac{\mathrm{dL}_1}{\mathrm{dz}_1} \frac{\partial z_1}{\partial \theta}$$

The same relation holds for any i, by simply considering a truncated model,

$$\frac{\mathrm{dL}_i}{d\theta}(z_0) = \frac{\mathrm{dL}_{i+1}}{d\theta}(z_{i+1}) + \frac{\mathrm{dL}_{i+1}}{\mathrm{dz}_{i+1}} \frac{\partial z_{i+1}}{\partial \theta}.$$

Thus we have, recursely,

$$\begin{array}{rcl} \frac{\mathrm{dL_0}}{d\theta}(z_0) & = & \frac{\mathrm{dL_1}}{d\theta}(z_1) + \frac{\mathrm{dL_1}}{\mathrm{dz_1}} \frac{\partial z_1}{\partial \theta} \\ & = & \left[\frac{\mathrm{dL_2}}{d\theta}(z_1) + \frac{\mathrm{dL_2}}{\mathrm{dz_2}} \frac{\partial z_2}{\partial \theta} \right] + \frac{\mathrm{dL_1}}{\mathrm{dz_1}} \frac{\partial z_1}{\partial \theta} \\ & = & \frac{\mathrm{dL_2}}{d\theta}(z_1) + \frac{\mathrm{dL_2}}{\mathrm{dz_2}} \frac{\partial z_2}{\partial \theta} + \frac{\mathrm{dL_1}}{\mathrm{dz_1}} \frac{\partial z_1}{\partial \theta} \\ & = & \dots \\ & = & \frac{\mathrm{dL_N}}{d\theta}(z_1) + \sum_{i=1}^N \frac{\mathrm{dL_i}}{\mathrm{dz_i}} \frac{\partial z_i}{\partial \theta}. \end{array}$$

By
$$z_{i+1}(t) = z_i(t) + \epsilon f(z_i(t), t; \theta), \ \partial z_i / \partial \theta = \epsilon \partial f(z_i, t; \theta) / \partial \theta$$

2 Continuum of Hopfield

2.1 Hopfield Network

Consider Hopfield network. Let $x(t) \in \{-1, +1\}^N$ denotes the state of the network at descrete time t = 0, 1, ...; and W a matrix on \mathbb{R}^N , essentially ensuring $W_{\alpha\beta} = W_{\beta\alpha}$ and $W_{\alpha\alpha} = 0$. Define energy $E_W(x(t)) := -W_{\alpha\beta} x^{\alpha}(t) x^{\beta}(t)$.

Theorem 2. Along dynamics $x_{\alpha}(t+1) = \text{sign}[W_{\alpha\beta} x^{\beta}(t)], E_W(x(t+1)) - E_W(x(t)) \leq 0.$

Proof. Consider the async-updation of Hopfield network. Let's change the component at dimension $\hat{\alpha}$, i.e. $x'_{\hat{\alpha}} = \text{sign}[W_{\hat{\alpha}\beta}x^{\beta}]$, then

$$E_W(x') - E_W(x) = -W_{\alpha\beta} x'^{\alpha} x'^{\beta} + W_{\alpha\beta} x^{\alpha} x^{\beta}$$
$$= -2 (x'^{\hat{\alpha}} - x^{\hat{\alpha}}) W_{\hat{\alpha}\beta} x^{\beta},$$

which employs conditions $W_{\alpha\beta} = W_{\beta\alpha}$ and $W_{\alpha\alpha} = 0$. Next, we prove that, combining with $x'_{\hat{\alpha}} = \text{sign}[W_{\hat{\alpha}\beta}x^{\beta}]$, this implies $E_W(x') - E_W(x) \leq 0$.

If $(x'^{\hat{\alpha}} - x^{\hat{\alpha}}) > 0$, then $x'^{\hat{\alpha}} = 1$ and $x^{\hat{\alpha}} = -1$. Since $x'_{\hat{\alpha}} = \text{sign}[W_{\hat{\alpha}\beta}x^{\beta}]$, $W_{\hat{\alpha}\beta}x^{\beta} > 0$. Then $E_W(x') - E_W(x) < 0$. Contrarily, if $(x'^{\hat{\alpha}} - x^{\hat{\alpha}}) < 0$, then $x'^{\hat{\alpha}} = -1$ and $x^{\hat{\alpha}} = 1$, implying $W_{\hat{\alpha}\beta}x^{\beta} < 0$. Also $E_W(x') - E_W(x) < 0$. Otherwise, $E_W(x') - E_W(x) = 0$. So, we conclude $E_W(x') - E_W(x) \le 0$.

Since the states of the network are finite, the E_W is lower bounded. Thus the network converges (relaxes) at finite t.

2.2 Continuum

Let's consider applying the convergence of Hopfield network to neural ODE for generic network architecture. This makes the descrete time t a continuum.

Theorem 3. Let M be a Riemann manifold with metric g. Given any function $\mathcal{E} \in C^1(M, \mathbb{R})$. Let $x(t) \in C^1(\mathbb{R}, M)$ denote trajectory. Then, $d\mathcal{E} / dt \leq 0$ along x(t) if

$$\frac{dx^{\alpha}}{dt}(t) = -\nabla^{\alpha}\mathcal{E}(x(t)).$$

Proof. We have

$$\frac{d\mathcal{E}}{dt}(t) = \nabla_{\alpha}\mathcal{E}(x(t))\frac{dx^{\alpha}}{dt}(t) = -\nabla_{\alpha}\mathcal{E}(x(t))\nabla^{\alpha}\mathcal{E}(x(t)) \leqslant 0.$$

Further, if the function \mathcal{E} is lower bounded, then the trajectory converges (relaxes) at finite t. We call this dynamic with lower bounded \mathcal{E} as "Hopfield dynamic with energy \mathcal{E} ".

This is the continuum analogy to the convergence of Hopfield network. Indeed, let M be \mathbb{R}^N , and $\mathcal{E}(x) = -W_{\alpha\beta} x^{\alpha} x^{\beta}$ with $W_{\alpha\beta} = W_{\beta\alpha}$, then dynamics becomes

$$\frac{dx_{\alpha}}{dt}(t) = -\nabla_{\alpha}\mathcal{E}(x(t)) = -2W_{\alpha\beta}x^{\beta}(t),$$

which makes

$$\frac{d\mathcal{E}}{dt}(t) = -2\frac{dx^{\alpha}}{dt}(t) W_{\alpha\beta} x^{\beta}(t).$$

Comparing with the proof of convergence of Hopfield network, i.e. $\Delta E_W(x) = -2\Delta x^{\alpha} W_{\alpha\beta} x^{\beta}$, the analogy is obvious. The only differences are that the condition $W_{\alpha\alpha} = 0$ and the sign-function are absent here.

It is known that a Riemann manifold can be locally re-coordinated to be Euclidean. Thus, locally $\exists \hat{x}$ coordinate, s.t.

$$\frac{dx^{\alpha}}{dt}(t) = -\delta^{\alpha\beta} \frac{\partial \mathcal{E}}{\partial x^{\beta}}(x(t)).$$

2.3 General Form

In the proof of theorem 3,

$$\frac{d\mathcal{E}}{dt}(t) = \nabla_{\alpha}\mathcal{E}(x(t))\frac{dx^{\alpha}}{dt}(t).$$

We try to find the generic form of dx^{α}/dt that ensures $d\mathcal{E}/dt \leq 0$. To restrict the formation, symmetries are called for. Denote

$$\frac{dx^{\alpha}}{dt} = F^{\alpha}[\mathcal{E}](x),$$

where operator $F: C^{\infty}(M, M) \mapsto C(M, M)$.

Axiom 4. Locality.

This implies:

$$F[\mathcal{E}] = F(\mathcal{E}, \nabla \mathcal{E}, \nabla^2 \mathcal{E},);$$

Axiom 5. $\mathcal{E} \to \mathcal{E} + C$ for any constant C.

Combining with the previous, this then implies

$$F[\mathcal{E}] = F(\nabla \mathcal{E}, \nabla^2 \mathcal{E},).$$

Axiom 6. Co-variance.

This implies the balance of index. Thus

$$F^{\alpha}[\mathcal{E}] = c_1 \nabla^{\alpha} \mathcal{E} + c_3 \nabla^{\alpha} \mathcal{E}(\nabla^{\beta} \mathcal{E} \nabla_{\beta} \mathcal{E}) + c_3' \nabla^{\alpha} \mathcal{E}(\nabla^{\beta} \nabla_{\beta} \mathcal{E}) + \mathcal{O}(\nabla^5).$$

Axiom 7. For $x \to \lambda x$, $\exists k < m < M < K$ s.t. $m < F[\mathcal{E}](x) < M$ for any λ , where k and K are numerically finite. E.g. $k \sim 1$ and $K \sim 10$. This is essential for numerical stability, i.e. no underand over-flow.

First, we have to notice a property of the feed forward neural network with rectified activations (e.g. ReLU, leaky ReLU, and linear).

Lemma 8. Rectified activations are linearly homogeneous.

Lemma 9. If f and g are homogeneous with order λ_f and λ_g respectively, then $f \circ g$ is homogeneous with order $\lambda_f + \lambda_g$.

Theorem 10. Let $f_{nn}(x;\theta)$ a feed forward nerval network with rectified activations, where θ represents the parameters (weights and biases). At the initial stage of training, $f_{nn}(.;\theta)$ is linearly homogeneous. That is

$$f_{\rm nn}(\lambda x; \theta_{\rm ini}) = \lambda f(x; \theta_{\rm ini}).$$

Proof. Notice that $f_{nn}(.;\theta)$ is linearly homogeneous when its biases vanish, and that biases are initialized as zeros. So $f_{nn}(.;\theta)$ is linearly homogeneous at initial stage of training.

If \mathcal{E} is constructed by such neural network, $F[\mathcal{E}]$ can be further simplified. Indeed, if $\mathcal{E}(x;\theta) := \sqrt{f_{\alpha}(x;\theta) f^{\alpha}(x;\theta)}$, then $\mathcal{E}(\lambda x;\theta_{\text{ini}}) = \lambda \mathcal{E}(x;\theta_{\text{ini}})$, implying $F^{\alpha}[\mathcal{E}] = c_1 \nabla^{\alpha} \mathcal{E} + c_3 \nabla^{\alpha} \mathcal{E}(\nabla^{\beta} \mathcal{E} \nabla_{\beta} \mathcal{E}) + \mathcal{O}(\nabla^5)$, which scales as $\lambda^{0.1}$

Alternatively, if $\mathcal{E}(x;\theta) := f^2(x;\theta)$, then $\mathcal{E}(\lambda x;\theta_{\rm ini}) = \lambda^2 \mathcal{E}(x;\theta_{\rm ini})$. In this case, axiom 7 can never be satisfied.

^{1.} Numerical experiment on MNIST dataset shows that this configuration indeed out-performs than others, like $\mathcal{E}(x;\theta) := f_{\alpha}(x;\theta)$ $f^{\alpha}(x;\theta)$, $\mathcal{E}(x;\theta) := f^{2}(x;\theta)$, and non-Hopfield, e.t.c. In this experiment, $c_{1} = 5$ and $c_{i>1} = 0$; Nadam optimizer is employed, with standard parameters, except for $\epsilon = 10^{-3}$; the dimension of x is 64. For the details, c.f. the file node/experiments/Hopfield.ipynb.