1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

1

2

3

4

5

P.7

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

1. (Original) A computer-implemented method for generating graphical warps or deformations through transformation of an undeformed model to a deformed model, said computer-implemented method comprising:

receiving said undeformed model and a set of feature specifications each of said set of feature specifications comprising a source feature, a target feature, and related deformation parameters;

receiving a set of transformations corresponding to said set of feature specifications and for mapping said source feature to said target feature in each of said set of feature specifications;

receiving a set of strength fields corresponding to said set of feature specifications and defined over said undeformed model for scaling the magnitude of each of said set of transformations, establishing a set of scaled transformations;

receiving a set of weighting fields corresponding to said set of feature specifications and defined over said undeformed model for determining the relative influence of said set of scaled transformations;

computing a sum of said set of scaled transformations weighted by said set of weighting fields, for deforming said undeformed model to generate said deformed model; and returning said deformed model.

2. (Original) The computer-implemented method according to claim 1 wherein at least one of said set of feature specifications is continuous and has corresponding parameterized strength field, transformation, and weighting field, and further comprising:

receiving a sampling function for discretizing said parameterized transformation

and sampling said strength field and said weighting field;

target coordinate frames.

Appl. No. 10/602,556
Reply to Notice of Missing Parts dated Nov mber 12, 2003
Preliminary Amendment

PATENT --

	computing a discretized transformation, a sampled strength field, and a sampled		
	weighting field with said sampling function; and wherein said step of computing an sum of said		
	set of scaled transformations employs said discretized transformation, said sampled strength		
	field, and said sampled weighting field.		
	,		
	3. (Original) The computer-implemented method according to claim 2 wherein		
	said set of feature specifications, said set of transformations, said set of strength fields, said set of		
	weighting fields, and said sampling function are received by a combined function that computes		
	said discretized transformation, said sampled strength field, and said sampled weighting field.		
	4. (Original) The computer-implemented method according to claim 1 wherein:		
said set of feature specifications comprises a plurality of line segment features;			
	said set of transformations corresponding to said plurality of line segment features map source		
	coordinate frames to target coordinate frames; and		
	said set of weighting fields corresponding said plurality of line segment features		
	fall off with distance.		
	5. (Original) The computer-implemented method according to claim 4 wherein:		
said set of weighting fields give influence to line segment features in said			
plurality of line segment features in relation to their length.			
	6 (Original). The computer implemented method ecception to alsign 4 when in		
	6. (Original) The computer-implemented method according to claim 4 wherein:		
said source coordinate frames comprise a constrained basis vector and an			
	unconstrained basis vector and wherein said unconstrained basis vector is selected responsive to		
	a weighted sum of the vectors perpendicular to the constrained basis vector for each of said		

7. (Original) The computer-implemented method according to claim 1 wherein:
said set of feature specifications comprises control points in an at least two
dimensional lattice; said at least two dimensional lattice having an associated local coordinate
system;

Appl. No. 10/602,556

Reply to Notice of Missing Parts dated November 12, 2003

Preliminary Amendment

DA	THE REST OF
PA	LENT

Ç	said set of weighting fields corresponding to said control points comprise		
6	Bernstein polynomials with arguments comprising points of said undeformed model represente		
7	in said local coordinate system.		
1	8. (Original) The computer-implemented method according to claim 1 wherein:		
2	said set of feature specifications comprises an oriented point in an least two		
3	dimensional lattice; said at least two dimensional lattice having an associated local coordinate		
4	system;		
5	the transformation in said set of transformations corresponding to said oriented		
6	maps a source coordinate frame to a target coordinate frames; and		
7	said set of weighting fields corresponding to said oriented points comprise		
8	Bernstein polynomials with arguments comprising points of said undeformed model represented		
9	in said local coordinate system.		
1	9. (Original) The computer-implemented method according to claim 1 wherein:		
2	said set of transformations comprises a geometrically parameterized		
3	transformation.		
1	10. (Original) The computer-implemented method according to claim 9 wherein:		
2	said set of transformations comprises plural geometrically parameterized		
3	transformations; and		
4	said set of strength fields modulate said plural geometrically parameterized		
5	transformations.		
1	11. (Original) The computer-implemented method according to claim 10		
2	wherein:		
3	said set of weighting fields blend said plural geometrically parameterized		
4	transformations.		

12. (Original) The computer-implemented method according to claim 1 wherein:

1

Reply to N tice of Missing Parts dated November 12, 2003

Appl. No. 10/602,556 ___

PATENT

Preliminary Amendment at least one of said set of feature specifications comprises a source curve and a 2 3 target curve; 4 corresponding members of said set of transformations comprise a composition of 5 a translation from points along said source curve to points along said target curve, a rotation 6 taking the tangent at said points along said source curve to the tangent at said points along said 7 target curve, and a scale centered at said points along said source curve; 8 corresponding members of said set of strength fields comprise a falloff function 9 having a domain and a range and monotonically decreasing over said range, and wherein over at least a portion of said domain arguments of said falloff function comprise a distance between 10 11 points of said undeformed model and point along said source curve and a rate of falloff for said 12 distance. 13 corresponding members of said set of weighting fields comprise a scaled 14 displacement function having a domain and a range, wherein for at least a portion of said domain 15 said scaled displacement function comprises a power of the displacement of elements of said 16 undeformed model by said corresponding members of said set of transformations. 1 13. (Original) The computer-implemented method according to claim 12 wherein 2 said scaled displacement function comprises a power of the displacement of elements of said 3 undeformed model by said corresponding members of said set of transformations for the entirety 4 of said domain. 1 14. (Original) The computer-implemented method according to claim 1 wherein: 2 said undeformed model comprises control vertices of a fine surface model; and 3 at least one of said set of feature specifications comprise: 4 a source position and a target position of one or more vertices of a coarse 5 deformation mesh configured for deformation of said fine surface model, and 6 a set of edges incident on said one or more vertices. 1 15. (Original) The computer-implemented method according to claim 14 2 wherein:

Appl. No. 10/602,556 Reply to Notice of Missing Parts dated November 12, 2003 Preliminary Amendment 3 corresponding members of said set of transformations comprise a composition of: 4 a translation mapping said source position to said target position, and 5 at least an approximation of a mapping of said set of edges in said 6 undeformed model to said deformed model. 1 16. (Original) The computer-implemented method according to claim 15 2 wherein: 3 corresponding members of said set of weighting fields comprise a falloff function, 4 said falloff function substantially zero at a distal end of each of said set edges incident on said 5 one or more vertices, and said falloff function substantially at its maximum value for arguments 6 proximate to said source positions of said control vertices. 1 17. (Original) The computer-implemented method according to claim 1 wherein: 2 said undeformed model comprises control vertices of a surface for deformation, 3 wherein source and target features are parameterized as a function that returns a tuple comprising a point and a vector normal to said point; 4 5 at least one of said set of feature specifications comprises a source region and a 6 target region; 7 corresponding members of said set of transformations comprise a composition of: 8 a translation mapping points on said source region to points on said target region, 9 and 10 a rotation taking said vector normal to said points on said source region to said 11 vector normal to said points on said target region of said surface. 1 18. (Original) The computer-implemented method according to claim 17 wherein 2 corresponding members of said set of strength fields localize the effect of said set of 3 transformations around said source surface region. 1 19. (Original) The computer-implemented method according to claim 18 2

wherein:

Appl. No. 10/602,556
Reply to Notice of Missing Parts dated November 12, 2003
Preliminary Amendment

PATENT

,	corresponding members of said set of weighting fields decrease monotonically	
\$	with corresponding members of said set of strength fields and wherein said set of weighting	
5	fields decrease responsive to:	
5	a distance between control vertices of said surface for deformation and	
7	said point on said surface, and	
3	a range for limiting the region of said weighting field, and	
)	a rate for controlling the rate of decrease of said weighting field.	
l	20. (Original) The computer-implemented method according to claim 1 wherein:	
2	one of said set of feature specifications act with substantially full strength across	
}	said undeformed model and corresponding the member of said set of weighting fields dominates	
1	weighting contributions of other members of said set of weighting fields.	