PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-342675

(43) Date of publication of application: 03.12.2003

(51)Int.Cl.

C22C 38/00 C22C 38/14

C22C 38/58

(21)Application number: 2003-070029

(71)Applicant: NIPPON STEEL CORP

(22)Date of filing:

14.03.2003

(72)Inventor: KIYOSE AKITO

HIROKADO TARO OHASHI WATARU

OTA MITSUHIKO

(30)Priority

Priority number: 2002076593

Priority date: 19.03.2002

Priority country: JP

(54) STEEL MATERIAL HAVING EXCELLENT TOUGHNESS AT BASE MATERIAL AND HEAT AFFECTED ZONE (57)Abstract:

PROBLEM TO BE SOLVED: To provide a steel material having good toughness at base material and a heat affected zone. SOLUTION: The steel material contains C, Si, Mn, P and S in a appropreate range and contains 0.01-0.03% Ti, 0.003-0.010% N, 0.003-0.02% REM, and also TiN having an equivalent circular diameter of 5-100 nm are dispersed in the number of ≥2 × 106/mm2, and further preferably, REM-containing inclusions having an equivalent circular diameter of 50-500 nm are dispersed in the number of ≥105/mm2. MTiN defined by the formula: MTiN=[%Ti] × [% N] is 4.0×10^{-5} to 2.0×10^{-4} and also DTiN defined by the formula: DTiN=[%N]-0.292 × [%Ti] is $-2.4 \times 10-3$ to $4.1 \times 10-3$, wherein [%N] is N concentration in the steel expressed by mass% and [%Ti] is Ti concentration in the steel expressed by mass%.

LEGAL STATUS

[Date of request for examination]

15.09.2005

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-342675

(P2003-342675A)

(43)公開日 平成15年12月3日(2003.12.3)

(51) Int.Cl.7	酸別記号	FΙ		テーマコード(参考)
C 2 2 C 38/0	0 301	C 2 2 C	38/00	301B
38/1	4		38/14	
38/5	8		38/58	

審査請求 未請求 請求項の数7 OL (全 8 頁)

(21)出願番号	特顏2003-70029(P2003-70029)	(71)出顧人	000006655
(22)出顧日	平成15年3月14日(2003.3.14)		新日本製鐵株式会社 東京都千代田区大手町2丁目6番3号
(==) -1457 -1	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(72)発明者	清澈 明人
(31)優先権主張番号	特願2002-76593 (P2002-76593)		富津市新富20-1 新日本製鐵株式会社技
(32)優先日	平成14年3月19日(2002.3.19)		術開発本部内
(33)優先権主張国	日本 (JP)	(72)発明者	廣角 太朗
	•		室蘭市仲町12番地 新日本製鐵株式会社室
			蘭製鐵所內
		(74)代理人	100105441
			弁理士 田中 久谷 (外1名)

最終頁に続く

(54) 【発明の名称】 母材および溶接熱影響部の靭性に優れた鋼材

(57)【要約】

【課題】 母材および溶接熱影響部の靭性が良好な鋼材を提案する。

【解決手段】 C、Si、Mn、P、Sを適正範囲とし、Ti:0.01~0.03%、N:0.003~0.01~0.01~0.003~0.02%を含有し、かつ、円相当径で5~100nmのTiNが2×10°個/mm²以上分散させ、好ましくはさらに、円相当径で50~500nmのREM含有介在物を10°個/mm²以上分散させる。また、下記(1)式で定義される M_{TIN} が4.0×10-3~2.0×10-1であり、かつ下記(2)式で定義される D_{TIN} が一2.4×10-3~4.1×10-3であることを特徴とする。

 $M_{T+N} = [\%T i] \times [\%N]$

· · (1)

 $D_{T+N} = [\%N] - 0.292 \times [\%Ti]$

. . (2)

ここで、[%N] は質量%で表した鋼中のN 濃度、[% Ti] は質量%で表した鋼中のTi 濃度である。

【特許請求の範囲】

【請求項1】 円相当径で5~100nmのTiNが2 ×10°個/mm'以上分散していることを特徴とする母 材および溶接熱影響部の靭性に優れた鋼材。

【請求項2】 円相当径で10~30nmのTiNが1 0°個/mm'以上分散していることを特徴とする請求項 1 に記載の母材および溶接熱影響部の靭性に優れた鋼 材。

【請求項3】 質量%で、

 $C: 0. 01\% \sim 0. 3\%$

 $Si:0.01\sim0.5\%$

 $Mn: 0.3\sim 3.0\%$

P:0.025%以下、

 $M_{\text{Tin}} = [\%T i] \times [\%N]$

 $D_{\text{TIN}} = [\%N] - 0.292 \times [\%Ti]$

ここで、[%N]は質量%で表した鋼中のN濃度、[% Ti] は質量%で表した鋼中のTi濃度である。

【請求項5】 円相当径で50~500nmのREM含 有介在物が10°個/mm'以上分散していることを特徴 影響部の靭性に優れた鋼材。

【請求項6】 鋼中のREM濃度が0.003~0.0 2質量%であることを特徴とする請求項1~5いずれか に記載の母材および溶接熱影響部の靭性に優れた鋼材。

【請求項7】 質量%で、さらに、

Cu: 1. 5%以下、

Ni:1.5%以下、

Mo:1%以下、

Cr:1%以下、

Nb:0.05%以下、

V:0.05%以下、

B: 0. 002%以下、

Zr:0.03%以下、

Ta:0.05%以下、

Co: 0. 05%以下、

₩:0.05%以下、

Ca: 0.005%以下、

Mg: 0.006%以下

の1種または2種以上を含有することを特徴とする請求 項1~6いずれかに記載の母材および溶接熱影響部の靭 40 当径0.05μm以下のTiNを1×10'個/mm'以 性の優れた鋼材。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は母材および溶接熱影 響部 (Heat Affected Zone:以降H AZと記載する) 靭性の優れた鋼材に関するものであ る。本発明の鋼材は、良好な母材靭性および小入熱溶接 から超大入熱溶接までの広範な溶接条件において良好な HAZ靭性を有するので、建築、橋梁、造船、ラインバ イブ、建設機械、海洋構造物、タンクなどの各種溶接鋼 50 、0,:70%以下からなる介在物組成を有する酸化物系

*S:0.015%以下、

 $A1:0.001\sim0.10\%$

 $Ti:0.005\sim0.03\%$

 $0:0.001\sim0.006\%$

 $N: 0. 002 \sim 0. 010\%$

を含有し、残部がFe および不可避的不純物からなる化 学成分を有することを特徴とする請求項1または2に記 載の母材および溶接熱影響部の靱性に優れた鋼材。

【請求項4】 下記(1)式で定義されるM_{でもの}が4.

10 0×10-'~2.0×10-'であり、かつ下記(2)式 で定義されるD₁₁が-2. 4×10⁻³~4. 1×10 - * であることを特徴とする請求項1~3いずれかに記載 の母材および溶接熱影響部の靭性に優れた鋼材。

· (1)

 $\cdot \cdot \cdot (2)$

構造物に用いられる。

[0002]

【従来の技術】一般に、溶接鋼構造物用鋼は、鋳片を加 熱炉にて加熱し、粗圧延、仕上げ圧延を施されて製造さ とする請求項1~4いずれかに記載の母材および溶接熱 20 れる。このような鋼の靭性は最終の結晶粒径が小さいほ ど高くなる。最終の結晶粒径を細かくするためには、粗 圧延前の加熱オーステナイト (γ) 粒径を細かくすると とが重要である。通常、粗圧延前には1200℃程度ま で加熱されるため、1200℃程度でも消失しない析出 物、例えば、TiNなどを鋼中に分散させることで加熱 γ粒の成長を抑制することが行われる。

> 【0003】一方、溶接熱影響部(HAZ)において は、溶融線に近づくほど溶接時の加熱温度は高くなり、 特に溶融線近傍の1400℃以上に加熱される領域では 30 上記TiNは鋼中に溶解し始める。入熱量が少ない場合 は、溶融線近傍の1400℃以上に加熱される領域は実 質的にほとんどなく、TiNの消失はほとんどない。し かしながら、大入熱溶接の場合、TiNの個数密度が低 いと、TiNが消失し、加熱γ粒が著しく粗大化してし まう。そのため、冷却後のHAZ組織が粗大化して靭性 が劣化する。

【0004】このような問題点を解決する手段として、 REM: 0. 0010~0. 0200%かつCa: 0. 0010~0.0200%を含有し、かつ、鋼中に円相 上、円相当径0. 03~0. 20μmのTiNを1×1 0'/mm'以上1×10'/mm'未満分散させたことを 特徴とした母材および溶接熱影響部靭性に優れた非調質 高張力鋼材が知られている(例えば、特許文献1参 照)。

[0005] \$t, REM: 0. 0010~0. 020 0%かつCa: 0. 0010~0. 0200%を含有 し、かつ、重量%で、Ti酸化物:90%以下、Ca酸 化物およびREM酸化物の合計:5~20%、A1

介在物を200nm以上の円相当径を有するものの個数 で1×10³個/mm³以上1×10³個/mm³未満分散 させたことを特徴とした母材および溶接熱影響部靭性に 優れた非調質高張力鋼材が知られている(例えば、特許 文献2参照)。

[0006]

【特許文献1】特開2001-20031号公報 【特許文献2】特開2001-20033号公報 [0007]

【発明が解決しようとする課題】しかしながら、上記の 10 $Si:0.01\sim0.5\%$ 、 特許文献1、及び特許文献2によって示される鋼も、母 材の靭性を高めることができず、また、HAZ部におい ても十分な靭性を得ることは困難であった。さらに、溶 接入熱量が20kJ/mm程度を超えるような大入熱溶 接HAZにおいては十分な靭性を得ることはより困難で あった。その原因は母材靭性、HAZ靭性のいずれに対 してもピン止め粒子の個数密度が不足するからである。 【0008】本発明が解決しようとする課題は、良好な 母材靭性、および、大入熱溶接においても、良好なHA 乙朝性を有するよう十分な個数密度のピン止め粒子を鋼 20 載の母材および溶接熱影響部の靱性に優れた鋼材。

[0009]

【課題を解決するための手段】本発明者らは、母材靭性 およびHAZ靭性の向上を狙いとして、加熱γ粒成長抑 制、微細析出物の多量分散について鋭意研究し、新たな 金属学的効果を知見して本発明に至った。

中に分散させた鋼材を提供することを目的とする。

【0010】本発明の要旨は、以下の通りである。

 $M_{TIN} = [\%Ti] \times [\%N]$

 $\cdot \cdot \cdot (2)$ $D_{\text{Tim}} = [\%N] - 0. 292 \times [\%T i]$

ここで、[%N]は質量%で表した鋼中のN濃度、[% 30 W:0.05%以下、 Ti]は質量%で表した鋼中のTi濃度である。

【0015】(5) 円相当径で50~500nmのR EM含有介在物が10'個/mm'以上分散していること を特徴とする(1)~(4)いずれかに記載の母材およ び溶接熱影響部の靭性に優れた鋼材。

【0016】(6) 鋼中のREM濃度が0.003~ 0.02質量%であることを特徴とする(1)~(5) いずれかに記載の母材および溶接熱影響部の靱性に優れ た鋼材。

【0017】(7) 質量%で、さらに、

Cu: 1. 5%以下、

Ni:1.5%以下、

Mo:1%以下、

Cr:1%以下、

Nb:0.05%以下、

V:0.05%以下、

B:0.002%以下、

Zr:0.03%以下、

Ta:0.05%以下、

Co: 0. 05%以下、

* 【0011】(1) 円相当径で5~100nmのTi Nが2×10°個/mm'以上分散していることを特徴と する母材および溶接熱影響部の靱性に優れた鋼材。

【0012】(2) 円相当径で10~30nmのTi Nが10°個/mm'以上分散していることを特徴とする (1) に記載の母材および溶接熱影響部の靭性に優れた 鋼材。

【0013】(3) 質量%で、

 $C: 0. 01\% \sim 0.3\%$

 $Mn: 0. 3\sim 3. 0\%$

P:0.025%以下、

S:0.015%以下、

 $A1:0.001\sim0.10\%$

 $Ti:0.005\sim0.03\%$

 $0:0.001\sim0.006\%$

 $N: 0. 002 \sim 0. 010\%$

を含有し、残部がFe および不可避的不純物からなる化 学成分を有することを特徴とする請求項1または2に記

【0014】(4) 下記(1)式で定義されるM_{T+R} が4. 0×10⁻³~2. 0×10⁻⁴であり、かつ下記 (2)式で定義されるD₊₁が-2.4×10⁻³~4. 1×10⁻³であることを特徴とする(1)~(3)いず れかに記載の母材および溶接熱影響部の靭性に優れた鋼

 $\cdot \cdot \cdot (1)$

Ca: 0. 005%以下、

Mg: 0. 006%以下

の1種または2種以上を含有することを特徴とする (1)~(6) いずれかに記載の母材および溶接熱影響 部の靭性の優れた鋼材。

[0018]

【発明の実施の形態】鋼材の靭性を向上させるために は、鋼材の結晶粒径を微細にすることが重要である。そ のためには、圧延の出発組織である粗圧延前の加熱γ粒 40 を微細にすることが重要である。粗圧延前には、通常1 200℃程度に加熱されるため、この温度でも消失しな い微細粒子を鋼中に分散させることで加熱γ粒の成長を 抑制することができる。円相当径5~100mmのTi Nは素材が1200℃程度に加熱される時のγ粒の成長 を抑制し、加熱後の組織微細化に寄与する。また、溶接 入熱量が比較的少ない場合のHAZでは、溶融線近傍の 1400℃以上に加熱されている領域が実質的にほとん どなく、TiNはほとんど消失しないため、HAZのア 組織微細化にも寄与する。しかし、個数が2×10°個

50 /mm²未満では、加熱後の組織微細化が不十分であ

る。通常TEMで観察される粒子の最小径は5nm程度 であり、100nmを越えるTiNは5~100nmの TiNに比べて、その数が極端に少なく、γ粒の微細化 にはほとんど寄与しない。したがって、円相当径5~1 00nmのTiNの個数は2×10°個/mm'以上とす ることで、良好な母材およびHAZの靭性に優れた鋼材 が得られる。

【0019】 ことで、母材とは溶接を施す前の鋼材を意 味しており、この母材は溶接施工した際のHAZ部の靭 性が良好な性質を有するものである。

【0020】また、鋼中のTiNの粒径には分布がある ため、ピン止め効果のより大きい粒径範囲のTiNを活 用すると効率的である。そこで、粒径ごとのピン止め力 を評価した結果、円相当径で5~100nmの個数密度 を上記の通り満足させながら、円相当径で10~30 n mのTiNの個数密度を10°個/mm'以上とすること で、ピン止め効果がより大きくなることから、より良好 な母材およびHAZの靭性が得られることが判明した。 また、ピン止め効果のより大きい円相当径10~30 n mのTiNの個数密度が10°個/mm²未満の場合、加 熱γ粒がやや粗大化しやすく、母材およびHAZ靭性が やや低下する。したがって、円相当径で10~30nm のTiNの個数密度を10°個/mm'以上とするのが好 ましい。

【0021】以下に、各々の化学成分の限定理由につい て説明する。

【0022】Cの下限である0.01質量%は、母材お よび溶接部の強度、靭性を確保するための最小量であ る。しかし、Cが多すぎると母材およびHAZの靭性を 低下させるとともに溶接性を劣化させるため、その上限 30 する。一方、〇が0.006質量%を超える場合、鋼の を0.3質量%とする。Siは脱酸のために鋼に含有さ れ、母材の強度確保に有効である。よって、下限を0. 01質量%とする。しかし、多すぎると溶接性およびH AZ靭性が劣化するため、上限を0.5質量%とする。 良好なHAZ靭性を得るためにはSiを0.3質量%以 下にするのが望ましい。

【0023】Mnは母材および溶接部の強度、靭性の確 保に不可欠であり、下限を0.3質量%とする。しか し、Mnが多すぎるとHAZ靭性を劣化させたり、スラ ブの中心偏析を助長し、溶接性を劣化させるため上限を 40 3.0質量%とする。

【0024】Pは本発明鋼において不純物元素であり、 0.025質量%以下とする。Pの低減はスラブ中心偏 析の軽減を通じて母材およびHAZの機械的性質を改善 し、さらには、HAZの粒界破壊を抑制する。Pは不純 物元素のため下限は特に規定するものではない。

【0025】Sは、多すぎると中心偏析を助長したり、 延伸したMnSが多量に生成したりするため、母材およ びHAZの機械的性質が劣化する。したがって、上限を 0.015質量%とする。Sは上記の通り少ないほど好 50 好ましい。

ましいため下限は特に規定するものではない。

【0026】A1は、脱酸のために鋼に添加される。A 1を0.10質量%を超えて添加すると、介在物がアル ミナとなりクラスターを形成し粗大化する。そのため、 靭性が劣化する。また、0.001質量%未満の場合、 溶鋼中の酸素濃度がやや高くなりすぎ、靭性を劣化させ る粗大な介在物が増加し易くなる。したがって、Alは 0.001質量%以上0.1質量%以下とする。

【0027】Tiは、ピン止め粒子として有効なTiN 10 を生成するために重要な元素である。母材及びHAZの 靭性を確保するためには、0.005質量%以上が好ま しい。一方、Ti濃度が0.03質量%超の場合、生成 するTiNが粗大化し、ピン止めに有効な10~50n mのTiNを十分な個数生成させることができない。さ らに粗大なTiNは母材の靭性が低下する原因となる。 したがって、Tiは0.01質量%以上0.03質量% 以下が好ましい。

【0028】Nは、ピン止め粒子として有効なTiNを 生成するために重要な元素である。母材及びHAZの靭 20 性を確保するためには、0.002質量%以上が好まし い。一方、0.010質量%を超える場合、固溶Nが過 剰となり、粗大なTiNが生成するため、母材およびH AZ靭性が低下する。したがって、N濃度は0.002 ~0.010質量%の範囲が好ましい。

【0029】鋼中のTi濃度とN濃度の好ましい範囲は 図1の境界線上を含む網掛け部である。

【0030】Oは、ピン止め粒子であるREM含有介在 物を構成する元素の一つである。〇が0.001質量% 未満の場合、酸化物の個数が不足し、HAZ靭性が劣化 清浄度が低下して機械的性質が劣化する。

【0031】また、残部のFeおよび不可避的不純物か らなる化学成分とは、特に規定するものではないが、通 常はCu、Ni、Cr、H等の微量成分が混入してい る。

【0032】次に、本発明者らはTiNを効果的に多数 均一分散するため、種々のTi及びN濃度に調整した溶 鋼を鋳造し、鋼材中のTiNの存在形態を調査した。そ の結果、TiNの径及び個数密度は、下記(1)式で定 義されるMTIN、すなわち鋼中Ti濃度とN濃度の積の 値に依存し、質量%で表した濃度の積M_{T 1 M}が4.0× 10⁻¹~2.0×10⁻¹である場合、最も多数のTiN が均一微細分散し、得られた鋼材を圧延加工した際、母 材靭性が非常に優れた鋼となる結果を得た。M_{TIN}が 4. 0×10⁻¹未満の場合、TiNの析出駆動力が小さ くなりやすく、析出する個数がやや減少する。一方、M TINが2. 0×10-1超の場合、TiNの成長速度が大 きくなりやすく、析出物がやや粗大になる。したがっ て、M₇₁の範囲は4. 0×10⁻⁵~2. 0×10⁻⁴が

7

[0033]

 $M_{TIR} = [\%Ti] \times [\%N]$

しかし、同時に鋼中TiとNの原子数の比も重要であ り、鋼中TiとNの原子数の比がTi窒化物の構成比で ある1:1から大きく逸脱すると、材質の劣化を生じや すくなる。具体的には、鋼中Ti濃度がNに対する当量 を大きく越える場合、すなわち下記(2)式で定義され るD.,,が2. 4×10-3未満であると、固溶Tiが増 加し、Ti 炭化物を生成してHAZ 朝性を劣化させやす*

> $D_{TIR} = [\%N] - 0.292 \times [\%T i]$ $\cdot \cdot \cdot (2)$

ここで、[%N]は質量%で表した鋼中のN濃度、[% Ti]は質量%で表した鋼中のTi濃度である。

【0035】鋼中のTi濃度とN濃度のさらに好ましい 範囲は図2の境界線上を含む網掛け部である。

【0036】さらに、HAZにおいては溶融線に近づく ほど溶接時の加熱温度は高くなり、特に溶融線近傍の1 400℃以上に加熱される領域では上記TiNは鋼中に 溶解し始め、溶接入熱量が多い場合には、TiN個数密 度が不足していると、ビン止め粒子が消失するため、加 熱γ粒が著しく粗大化してしまう。そのため、冷却後の HAZ組織が粗大化して靭性が劣化しやすくなる。そこ で、大入熱HAZにおいても良好な靭性を得るために は、1400℃に加熱されても消失しない微細粒子をピ ン止め粒子として多量に分散させることが重要である。 そのような粒子として、円相当径が50~500nmで REMを含有する介在物を鋼中に10°個/mm²以上分 散させることが有効であることを見出した。この粒子は 1400℃においても鋼中で安定に存在し、γ粒の成長 を抑制するピン止め粒子として有効に作用するため、よ り好ましい。また、REMを含有する介在物は溶鋼中で 生成するため、固体鉄中で析出するTiNに比べてやや 粒径が大きいことから、50nm未満の介在物は極めて 少なく、50nm未満のREMを含有する介在物は加熱 γ粒の微細化には実質的に寄与しない。一方、500 n mを越えるREM含有介在物は靭性を劣化させる原因と なるのでできるだけ少ない方が好ましい。さらに、加熱 γ粒微細化に有効な50~500nmのREMを含有す る介在物個数が10°個/mm°未満の場合は、大入熱溶 接時の加熱γ粒がやや粗大である。したがって、50~ 500nmのREMを含有する介在物個数は10°個/ mm゚以上が好ましい。

【0037】 ここで、REMはCe, La, Ndなどの いわゆるランタノイドであり、いずれを用いても、ま た、2種以上が複合する場合においても同等の効果を有 する。また、REM含有介在物は、酸化物、硫化物、酸 硫化物のいずれでもよい。

【0038】本発明で規定した微細粒子の分散状態は、 例えば、以下にような方法で定量的に測定される。

【0039】例えば、5~100nmのTiNの分散状 態は、母材鋼材の任意の場所から抽出レプリカ試料を作 50 しかし、1.5質量%を超えると溶接性およびHAZ靱

 $\cdot \cdot \cdot (1)$

*くなる。よって D₁₁の下限は - 2. 4×10⁻³が好ま しい。一方、鋼中N濃度が当量を大きく越える場合、す なわちD,,,,が4. 1×10-3を超えると、固溶Nが増 大し、母材及びHAZ靭性を劣化させやすくなる。よっ てD714の上限は4. 1×10-3が好ましい。 [0034]

製し、これを透過電子顕微鏡(TEM)を用いて100 00~10000倍の倍率で少なくとも1000μm *以上の面積にわたって観察し、対象となる大きさの析 出物の個数を測定し、単位面積当たりの個数に換算す る。このとき、TiNの同定は、TEMに付属のエネル ギー分散型X線分光法(EDX)による組成分析と、T EMによる電子線回折像の結晶構造解析によって行われ

【0040】一方、このような同定を測定するすべての 析出物に対して行うことが煩雑な場合、簡易的に次の手 順を用いても良い。まず、対象となる大きさの析出物の 個数を上記の要領で測定する。次に、このような方法で 個数を測定した析出物のうち少なくとも10個程度以上 について上記の要領で同定を行い、TiNが存在してい る割合を算出する。そして、はじめに測定された析出物 の個数にこの割合を掛け合わせる。鋼中の炭化物が上記 のTEM観察を邪魔する場合、500℃以下の熱処理に よって炭化物を凝集・粗大化させ、対象となる複合析出 物の観察を容易にすることができる。

【0041】また、10~30nmのTiNや、50~ 500nmのREM含有介在物の分布状態についても、 同様の方法で定量的に測定される。

【0042】鋼中に円相当径が50~500nmでRE Mを含有する介在物を鋼中に10°個/mm°以上分散さ せるためには、REM濃度を適当な範囲に調整すること が重要である。REM濃度が0.003質量%未満の場 合、鋼中のREM含有介在物の個数密度が少なすぎ、加 熱γ粒が粗大化し、靭性が劣化する。一方、REM濃度 が0.02質量%超の場合、REM含有介在物が粗大化 し、ピン止めに有効な50~500nmの粒径のものが 減少し、1μm超の靭性を劣化させる粗大なREM含有 介在物が増加する。したがって、鋼中のREM濃度は質 量%で0.003%~0.02%の範囲が好ましい。

【0043】続いて、Cu、Ni、Mo、Cr、Nb、 V、B、Zr、Ta、Co、W、Ca、Mgの1種また は2種以上を選択成分として添加することが好ましい理 由について説明する。

【0044】Cu、Niは溶接性およびHAZ靭性に悪 影響を及ぼすことなく母材の強度、靭性を向上させる。

性が劣化するため、いずれも1.5質量%以下が好まし い。また、これら成分を選択成分として添加する場合 に、下限は特に規定するものではないが、0質量%は含 まない(以下の選択成分についても同様である。)。

【0045】Mo、Crは母材の強度、靭性を向上させ る。しかし、1 質量%を超えると母材の靭性、溶接性お よびHAZ靭性が劣化するため、いずれも1.0質量% 以下が好ましい。また、下限は特に規定するものではな いが、0質量%は含まない。

【0046】Nbは母材組織の微細化に有効な元素であ 10 り、母材の機械的性質を控除させる。しかし、0.05 質量%を超えるとHAZ靭性が劣化するため、0.05 質量%以下が好ましい。また、下限は特に規定するもの ではないが、0質量%は含まない。

【0047】 Vは母材の靭性を向上させる。しかし0. 05質量%を超えると溶接性およびHAZ靭性が劣化す るため、0.05質量%以下が好ましい。また、下限は 特に規定するものではないが、0質量%は含まない。

【0048】Bは焼き入れ性を高めて母材やHAZの機 械的性質を向上させる。しかし、0.002質量%を超 20 えて添加するとHAZ靭性や溶接性が劣化するため、

0.002質量%以下が好ましい。また、下限は特に規 定するものではないが、0質量%は含まない。

【0049】Zrは、Mnに優先して髙温で硫化物を形 成し、熱間圧延時に硫化物が延伸化されることを軽減 し、製品の母材やHAZの機械的性質の向上に有効であ る。但し0.03質量%を越えるとHAZ靱性が劣化す るため、上限は0.03質量%が好ましい。また、下限 は特に規定するものではないが、0質量%は含まない。 Ta、Co、Wは母材の強度、靭性を向上させる。しか 30 し、0.05質量%を超えると母材の靭性、溶接性およ びHAZ靭性が劣化するため、0.05質量%以下が好 ましい。また、下限は特に規定するものではないが、0 質量%は含まない。

【0050】Caは、Mnに優先して髙温で硫化物を形 成し、熱間圧延時に硫化物が延伸化されることを軽減 し、製品の母材やHAZの機械的性質の向上に有効であ る。しかし、0.005質量%を越えると粗大な介在物 が増加し鋼の機械的性質を劣化させるため、0.005 質量%以下が好ましい。また、下限は特に規定するもの 40 ではないが、0質量%は含まない。

【0051】Mgは、Mnに優先して髙温で硫化物を形 成し、熱間圧延時に硫化物が延伸化されることを軽減 し、製品の母材やHAZの機械的性質の向上に有効であ る。しかし、0.006質量%を越えると粗大な介在物 が増加し鋼の機械的性質を劣化させるため、0.006 質量%以下が好ましい。また、下限は特に規定するもの ではないが、0質量%は含まない。

【0052】また、本発明鋼の製造方法は、鉄鋼業の製 鋼工程において、本願発明の範囲内の所定の化学成分に 50 【0062】鋼14は、 $D_{ au + \mathbf{k}}$ がの値が低すぎ、5~1

調整し、連続鋳造を行い、鋳片を再加熱した後に厚板圧 延によって形状と母材材質を付与することで製造され る。REM含有介在物個数を上記した範囲に調整するた めには、Ce、La等のREMを10質量%以上含有す る合金、例えば、ミッシュメタル、Fe-Si-REM 合金を添加すればよい。さらに、必要に応じ、鋼材に各 種の熱処理を施して母材の材質を制御することも行われ る。鋳片を再加熱することなく、ホットチャージ圧延す ることも可能である。

【0053】本発明が適用される鋼材の素材である鋳片 は厚みに関係なく同等の効果を有する。

[0054]

【実施例】表1に示す組成の厚鋼材を試作した。試作鋼 は転炉で吹錬し、真空精錬装置であるRHで脱水素、脱 酸、合金添加をした後、連続鋳造した。鋳片の厚みは2 40mmである。鋼中のTiNの量は、主として鋼中の Ti濃度、N濃度を変化させ、また、REM含有介在物 の個数は主として鋼中のREM濃度を変化させることで 調整した。REM濃度の調整に用いたREM合金はRE M含有量が30質量%程度のミッシュメタルあるいはF e-Si-REM合金であり、これらの合金の効果は同 等であった。

【0055】表1には、介在物の分散状態を併示した。 表2に鋼材の製造条件、機械的性質、溶接条件および溶 接部の靭性を示す。

【0056】表1のTiNおよびREM含有介在物の個 数の測定は、鋼材の板厚1/4厚部から抽出レプリカ試 料を作製し、これを、30000倍の倍率で2000μ m'の面積に渡ってTEM観察することでおこなった。 個数を測定した粒子の内、30個についてEDXで組成 分析を行い、TiNあるいはREM含有介在物の存在割 合を求めた。

【0057】本発明鋼は、母材および溶接入熱量が10 ~100kJ/mmのエレクトロガス溶接部あるいはエ レクトロスラグ溶接部の溶融線において従来にない良好 な靭性を有する。

【0058】本発明鋼は、Ti, N, REMの量を厳密 に制御し、γ粒成長抑制に有効なTiNとREM含有介 在物の分散状態を有することで良好な母材靭性および大 入熱溶接においても良好なHAZ靭性を達成している。 【0059】一方、比較鋼は化学成分やTiNやREM 含有介在物の分散状態が適正でないため、母材およびH AZの機械的性質が劣っている。

【0060】鋼12は、鋼中のN濃度が低すぎ、5~1 00nmのTiNの個数密度が小さいため、母材および HAZの靭性が低い。

【0061】鋼13は、M_{τ i n}の値が大きすぎ、5~1 00nmのTiNの個数密度が小さく、粗大なTiNも 多数析出するため、母材およびHAZの靭性が低い。

12

00nmのTiNの個数密度が小さいため、母材の靭性が低い。

【0063】鋼15は、Drinの値が大きすぎ、5~1 00nmのTiNの個数密度が小さく、さらに、粗大な TiNが多数析出するため、母材およびHAZの靭性が 低い

【0064】鋼16は、N濃度が低すぎ、 $5\sim100$ n mのT i Nの個数密度が小さいのに加えて、R E M濃度も低すぎ、 $50\sim500$ n mのR E M含有介在物の個数が少ないため、母材およびHA Z の靭性が低い。

【0065】鋼17は、N 混度が低すぎ、 $5\sim100$ n mのT i N の個数密度が小さいのに加えて、R E M 混度が高すぎ、粗大なR E M 含有介在物の個数が多いことと、 $50\sim500$ n mのR E M 含有介在物の個数が少ないことのため、H A Z の靭性が低い。

[0066]

【表1】

20

30

40

Ľ	L								1				ľ				
XI								17字成5	化字成分(質重%)	<u>ج</u>			Z	Ğ	5~100nm0	10~30nm0	50~500nmØREM
*	额	၀	iδ	ž	۵	S	Æ	П	REM	0	z	その他の元素	× 10-4	× 10 3	TINO	TiNの回数	合有介在物の個数
_1															@/mm²	图/mm	(⊞/mm)
		0.15	0.20	1.50	0.008	0.003	0'00'0	0.015	0.015 0.0100	0.0020	0.0050		7.50	0.62	3.0 × 10 ⁶	2.4 × 10°	3.0 × 10 ³
*	7	0.14	0.22	1.40	0.010	0.005	0.020	0.020	0.0080	0.0025		0,0060 Nb:0.015, Zr:0,005	12.00	91'0	2.5 × 10°	2.0 × 10 ⁶	2.4×10 ^b
畎	ຕ	3 0.15	0.20	1.35	0.00	0.003	0.020	0.016	0,0030	0.0030	0.0040	0.0040 Ta:0.005, W:0.002	8.40	6.67	3.1 × 10 ⁶	2.5 × 10°	1.5 × 10 ³
審	*	0.16	0.25	1.50	0.008	0.003	0.020	0.020	0.0150	0.0024	0.0050	0.0050 Cu:1.0, Nf.0.5	10.00 00.00	-0.84	3.5 × 10°	3D×10	3.5 × 10°
菱	NO.	5 0.15	0.18	0,30	0.00	0,003	0.020	0,016	0,0100	0,0025	0.0000	0.0080 Nb:0.015, Ca:0.0008	12.80	3.33	6.0 × 10 ⁶	5.0 × 10 ⁸	3.0 × 10°
	8	0.15	0.10	1.50	0.008	0.003	0.020	0.012	0.012 0,0090	0.0030	0.0050	0.0050 Nb.0.03, V.0.02	8.00	1.50	4.0 × 10 ⁶	30×10 ³	2.8 × 10 ³
	^	0.16	0.25	1.50	9000	0.003	0.020	0.015	0.0180	0.0015	0.0045	0.0045 Cr.0.3, Mo.0.2, Mg.0.002	6.75	0.12	3.0 × 10°	23×10	5.0 × 10 ⁶
_	8	3 0.12	0.20	1.35	0,008	0,003	0.020	0.015	0.015 0.0070	0.0025	0,0000	0,0000 Nb:0.01, B:0.001	9.00	1,62	5.0 × 10 ⁶	40 × 10	2.5 × 10 ⁸
	9	0.15	020	1.50	0000	0.003	0.020	0.014	0.0050	0.0030	0.000	0.0070 Ni:1.0, Cr.0,2, Nb.0.02	9.80	2.91	5.0 × 10°	3.5×10°	1.8 × 10 ⁶
	10	0.15	0,20	1.50	0.008	0.003	0.020	0.018	0.018 0.0100	0.0035	0.0050	0.0050 Nb:0.02, V:0.02, Bi:0.002	8.00	0.33	2,5 × 10 ⁶	2,0 × 10	2,9 × 10 ⁸
	Ξ	0.15	0.20	1.50	0.008	0.003	0.020	0.018	0.0080	0.0025	0.0050	Nb:0.02, V.0.02. Co.0.003	9.00	-0.28	2.0 × 10 ⁶	1.5 × 10 ¹	3.0 × 10 ⁵
_	12	0.15	0.20	1.50	0.008	0.003	0.020	0.018	0.016 0.0100	0.0020	0.0019	0.0019 Cu:0.3, Mo:0.5	3.04	-2.77	0.8 × 10 ⁶	0.3 × 10	3,0 × 10 ⁸
丑	5	0.16	0.20	1.45	6000	0.007	0.005	0.025	0.025 0.0110	0.0020	0.0110		27.50	3.70	1.5 × 10 ⁶	09×10 ⁴	3.1 × 10°
禁	=	0.15	0.20	1.30	0.010	0.010	0.015	0.035	0.0090	0.0025	0.0050 Nb:0.01	Nb:0.01	17.50	-5.22	0.5 × 10 ⁰	02 × 10	2.8 × 10 ⁶
盘	5	0.15	0.20	1.50	0.015	0.012	0.030	0.004	0.0100	0.0030	0.0000	0.0090 Cu:0.8, Ni:0.5, Nb:0.02	3.60	7.83	1.8 × 10 ⁸	0.8 × 10	3,0 × 10 ⁵
	16	3 0.16	0.21	0.90	0.008	0.003	0.025	0.015	0.015 0.0020	0.0025	0.0018	0.0018 Nb.0.02, V.0.02	2,70	-2.58	0.8 × 10 ⁶	0.5 × 10	0.8 × 10 ⁵
	11	0.16	0.25	1.50	0.010	0.010 0.004	0.020		0.0350	0.020 0.0350 0.0026	0.0018	0,0018 Cr.0.2, Mo.0.2	3.60	-4.04	0.8 × 10 ⁶	0.5 × 10	0,9 × 10 ⁵
ĺ		ĺ															

【0067】 【表2】

14

図		スラブ	板厚	圧延後		母材材質 ²⁾			HAZ靱性³>			
分	鋼	加熱温度	(mm)	冷却	烈 処理 ¹⁾	YS	TS	vTrs	溶接法	入熟量		vE(-40°C)
		(°C)				(MPa)	(MPa)	(°C)		(kJ/mm)	(J/cm²)	(J/cm²)
		1200	20	空冷		440	550	-100	エレクトロスラグ	10	230	130
本	2	1250	30	空冷		450	580	-80	エレクトロスラグ	35	190	90
発	3		25	空冷	1	440	540	-90	エレクトロスラグ	25	200	100
明	4		50	加速冷却	-	480	620	-60	エレクトロガス	30	170	80
鋼	5		40	加速冷却	-	480	590	-50	エレクトロスラグ	50	140	80
	6	1150	40	加速冷却		410	520	-80	エレクトロガス	35	200	110
		1250	80	空冷	910°CQ, 600°CT	550	650_	-40	エレクトロスラグ	100	100	60
	8	1200	50	212	910°CQ 550°CT	450	550	-60	エレクトロスラグ	70	120	70
	9	1190	45	212	-	480	650	-80	エレクトロスラグ	90	150	90
	10		40	213	-	510	660	-50	エレクトロスラグ	80	130	90
	11	1220	40	加速冷却		510	660	-50	エレクトロスラグ	50	130	90
	12	1250	55	空冷	910°CQ, 580°CT	420	530	-10	エレクトロスラグ	80	80	40
比	13	1200	20	空冷	-	430	560	0	エレクトロスラグ	20	60_	_30
較	14	1150	30	空冷	-	450	570	-10	エレクトロスラグ	35	70	30
鋼	15		25	企 空		410	500	-10	エレクトロスラグ	25	60	25
	16	1200	40	加速冷却	-	470	600	10	エレクトロガス	30	40	10
	17	1200	80	空冷	910°CQ, 600°CT	560	660	0	エレクトロスラグ	100	40	10

1)

Q:再加熱焼入れ、T:焼き戻し 母材1/2t部、C方向の材質

YS: 降伏強度 TS: 引張強度

13

vTrs:破面遷移温度

vE:3本のシャルピー吸収エネルギーの平均値(2mmVノッチの位置は溶融線から1mm離れたHAZ)

[0068]

【発明の効果】本発明により、母材およびHAZ部の靭 性が良好な鋼材の製造が可能となり、各種の溶接構造物 の安全性が格段に向上できる。

20*【図1】母材及び溶接熱影響部の靭性を良好にする鋼中 のTi濃度とN濃度の関係を示す図である。

【図2】母材及び溶接熱影響部の靭性をさらに良好にす る鋼中のTi濃度とN濃度の関係を示す図である。

【図面の簡単な説明】

*

[図1]

【図2】

フロントページの続き

(72)発明者 大橋 渡

富津市新富20-1 新日本製鐵株式会社技 術開発本部内

(72)発明者 太田 光彦

富津市新富20-1 新日本製鐵株式会社技 術開発本部内