Objetivo

- Comprender la estructura general de un programa
- Distinguir los tipos de datos y operadores

Tipos de datos

type	set of values	common operators	sample literal values
int	integers	+ - * / %	99 12 2147483647
double	floating-point numbers	+ - * /	3.14 2.5 6.022e23
boolean	boolean values	&& !	true false
char	characters		'A' '1' '%' '\n'
String	sequences of characters	+	"AB" "Hello" "2.5"

Integers (Enteros)

expression	value	comment
99	99	integer literal
+99	99	positive sign
-99	-99	negative sign
5 + 3	8	addition
5 - 3	2	subtraction
5 * 3	15	multiplication
5 / 3	1	no fractional part
5 % 3	2	remainder
1 / 0		run-time error
3 * 5 - 2	13	* has precedence
3 + 5 / 2	5	/ has precedence
3 - 5 - 2	-4	left associative
(3-5)-	2 -4	better style
3 - (5 - 2) 0	unambiguous

Flotantes

expression	value
3.141 + 2.0	5.141
3.141 - 2.0	1.111
3.141 / 2.0	1.5705
5.0 / 3.0	1.666666666666667
10.0 % 3.141	0.577
1.0 / 0.0	Infinity
Math.sqrt(2.0)	1.4142135623730951
Math.sqrt(-1.0)	NaN

Booleanos

a	!a	а	b	a && b	a b
true	false	false	false	false	false
false	true	false	true	false	true
		true	false	false	true
		true	true	true	true

Comparación

op	meaning	true	false
==	equal	2 == 2	2 == 3
!=	not equal	3 != 2	2 != 2
<	less than	2 < 13	2 < 2
<=	less than or equal	2 <= 2	3 <= 2
>	greater than	13 > 2	2 > 13
>=	greater than or equal	3 >= 2	2 >= 3

Metodos de Librerias Imprimir Strings

```
void System.out.print(String s) print s
void System.out.println(String s) print s, followed by a newline
void System.out.println() print a newline
```

Convertir String a Valores Primitivos

int Integer.parseInt(String s)
double Double.parseDouble(String s)
long Long.parseLong(String s)

convert s to an int value convert s to a double value convert s to a long value

Funciones Matematicas

public class Math

```
double abs(double a)
                                          absolute value of a
double max(double a, double b)
                                          maximum of a and b
double min(double a, double b)
                                          minimum of a and b
double sin(double theta)
                                          sine of theta
double cos(double theta)
                                          cosine of theta
double tan(double theta)
                                          tangent of theta
double toRadians(double degrees)
                                          convert angle from degrees to radians
double toDegrees(double radians)
                                          convert angle from radians to degrees
double exp(double a)
                                          exponential (e a)
double log(double a)
                                          natural log (log, a, or ln a)
double pow(double a, double b)
                                          raise a to the bth power (ab)
  long round(double a)
                                          round a to the nearest integer
double random()
                                          random number in [0, 1)
double sqrt(double a)
                                          square root of a
double E
                                          value of e (constant)
double PI
                                          value of \pi (constant)
```

method call	library	return type	value
<pre>Integer.parseInt("123")</pre>	Integer	int	123
Double.parseDouble("1.5")	Double	double	1.5
Math.sqrt(5.0*5.0 - 4.0*4.0)	Math	double	3.0
Math.log(Math.E)	Math	double	1.0
Math.random()	Math	double	random in [0, 1)
Math.round(3.14159)	Math	long	3
Math.max(1.0, 9.0)	Math	double	9.0

expression	expression type	expression value
(1 + 2 + 3 + 4) / 4.0	double	2.5
Math.sqrt(4)	double	2.0
"1234" + 99	String	"123499"
11 * 0.25	double	2.75
(int) 11 * 0.25	double	2.75
11 * (int) 0.25	int	0
(int) (11 * 0.25)	int	2
(int) 2.71828	int	2
Math.round(2.71828)	long	3
(int) Math.round(2.71828)	int	3
<pre>Integer.parseInt("1234")</pre>	int	1234

Ejercicios

Primavera

 Escribir un programa que lea dos valores enteros de la consola e imprima verdadero si las fechas estan en el rango de 20 de Marzo a 20 de Junio

Convertir Celcius a Fahrenheit

• Fahrenheit = Valor Celcius x 1.8 + 32

Convertir Fahrenheit a Celcius

• Celcius = (Fahrenheit -32) x 0.5556

Calcular Modulo

• 7 % 5 = 2

Pasos para calcular modulo

```
x=7, n=5
q=x/n
p=q*n
m=x-p
```

Dia de la semana

 Un programa, que lee de la consola, 3 valores (mes), (dia), (año)

```
y_0 = y - (14 - m) / 12

x = y_0 + y_0 / 4 - y_0 / 100 + y_0 / 400

m_0 = m + 12 \times ((14 - m) / 12) - 2

d_0 = (d + x + 31m_0 / 12) \mod 7
```

Agosto 2,1953

```
y0 = 1953 - 0 = 1953

x = 1953 + 1953/4 - 1953/100 + 1953/400 = 2426

m0 = 8 + 12*0 - 2 = 6

d0 = (2 + 2426 + (31*6) / 12) \mod 7 = 2443 \mod 7 = 0 (Sunday)
```

Año Bisiesto

- Un año es bisiesto si cumple los siguientes criterios:
 - Es divisible entre 4.
 - Si termina en 00, es divisible entre 400 (2000 y 2400 sí son bisiestos. 2100, 2200 y 2300 no lo son).
- Desde un enfoque algorítmico, se consideran las proposiciones o enunciados lógicos siguientes:
 - p: Es divisible entre 4
 - q: Es divisible entre 100
 - r: Es divisible entre 400
- Entonces se utiliza la fórmula $p \wedge (\neg q \vee r)$ para establecer si un año dado es bisiesto: es bisiesto si es divisible entre cuatro y (no es divisible entre 100 ó es divisible entre 400).