MMC-Univ. Minho 2016/2017

Lógica da Programação

Teste 04.01.17

(Duração: 3h)

Nota: Justifique adequadamente todas as suas respostas.

- 1. a) Construa uma derivação que prove que $(p_0 \wedge p_1) \to \neg (p_0 \to \neg p_1)$ é um teorema de DNP_i.
 - b) (i) Construa uma derivação que prove que $\neg(p_0 \to \neg p_1) \to (p_0 \land p_1)$ é um teorema de DNP_c e (ii) prove que, no entanto, esta fórmula não é um teorema de DNP_i.
- 2. Considere o fragmento da lógica intuicionista com os conetivos \rightarrow , \wedge , \bot . Sem recurso aos teoremas da correção e completude, prove que, para todo o conjunto de fórmulas Γ e para todo a fórmula φ , $\Gamma \vdash_i \varphi$ implica $\vdash_i \Gamma \Rightarrow \varphi$.
- 3. Seja L o tipo de linguagem que contém apenas o símbolo de relação unário R. Seja φ a L-fórmula $\exists x_0(R(x_0) \to \forall x_0 R(x_0))$. Seja $K = (\{w_0, w_1, w_2\}, \leq, \{E_w\}_{w \in \{w_0, w_1, w_2\}})$ a L-estrutura de Kripke onde: $w_0 < w_1 < w_2$; $dom(E_{w_0}) = \{a\}$, $dom(E_{w_1}) = \{a, b\}$, $dom(E_{w_2}) = \{a, b\}$; a função interpretação de E_{w_i} é notada por I_{w_i} e estas funções são tais que $I_{w_0}(R) = \{a\}$, $I_{w_1}(R) = \{a\}$, $I_{w_2}(R) = \{a, b\}$.
 - a) Para cada $w \in \{w_0, w_1, w_2\}$, diga se $w \Vdash \varphi$.
 - b) Diga se φ é uma fórmula válida em lógica intuicionista.
- **4.** a) Dê exemplo de λ -termos M, N, N' e de uma variável $x \in LIV(M)$ tais que $N \to_{\beta} N'$, mas $\underline{\text{n\~{a}o}}\ M[N/x] \to_{\beta} M[N'/x]$. Justifique.
 - **b)** Prove que, para quaisquer λ-termos M, N, N' e para qualquer variável $x, N \to_{\beta} N'$ implica $M[N/x] \to_{\beta}^* M[N'/x]$.
- 5. Considere o combinador SOMA = $\lambda x_0 x_1 x_2 x_3 . x_0 x_2 (x_1 x_2 x_3)$ e, recorde que, dado um tipo simples σ , $Nat_{\sigma} = (\sigma \to \sigma) \to \sigma \to \sigma$.
 - a) Prove que $\vdash \mathsf{SOMA} : Nat_{\sigma} \to Nat_{\sigma} \to Nat_{\sigma}$ (considerando tipificação à la Curry).
 - **b)** Prove que SOMA $\mathbf{c}_1 \mathbf{c}_1 =_{\beta} \mathbf{c}_2$.
 - c) Sabendo que a função soma em \mathbb{N}_0 é λ -definível pelo combinador SOMA, prove que a função $f: \mathbb{N}_0 \to \mathbb{N}_0$ tal que f(n) = 2n, para todo $n \in \mathbb{N}_0$, é λ -definível.
- 6. Mostre que se M é um λ -termo tal que $M=_{\beta}(\lambda x_0.x_0x_0)(\lambda x_0.x_0x_0)$, então M não é tipificável.
- 7. Considere a fórmula $\varphi = (((p_0 \to p_1) \to p_1) \to p_1) \to p_0 \to p_1$.
 - a) Indique uma derivação \mathcal{D} em $\text{DNP}_i^{\Rightarrow_w}$ com classes de hipóteses do sequente $\Rightarrow \varphi$.
 - **b)** Indique um habitante M (à la Church) do tipo $t(\varphi)$.
 - c) Justifique se para $M \in \mathcal{D}$ indicados nas alíneas anteriores se tem $t(\mathcal{D}) = M$.