PROGRAMACIÓ D'ARQUITECTURES ENCASTADES

Control d'un Robot

Classe 1

Avaluació

Pràctiques: 15%

- Assistència obligatòria (màxim una falta no justificada)
- S'ha d'haver entregat un mínim del 75 % (2) dels informes

Projecte: 55 %

Examen: 30 %

En cada part s'ha de treure un mínim de 4 per fer mitja.

Pràctiques

- Comencen la setmana del 21 de febrer.
- En grups de **dos**, puntualment 3.
- S'usarà el Code Composer Studio 10.4.0
 - Feu servir la mateixa versió i NO actualitzeu!
 - Guia per la instal·lació en la pràctica 1: https://campusvirtual.ub.edu/mod/resource/view.php?id=32822

 03&redirect=1
- L'entrega consta d'un informe en pdf (mireu l'exemple del campus) i el projecte del CCS. Feu servir noms únics!
- Aprofiteu el temps de pràctiques perquè serà INSUFICIENT.
 Porteu l'estructura bàsica preparada de casa i feu servir el temps de pràctiques per validar el vostre codi.
- Penalitzacions per retard en l'entrega: -2.5 la primera setmana, -5 la segona, -10 més de tres. Si veieu que no arribeu, parleu amb el professor de pràctiques **abans** de la data límit.

Pràctiques

- Grup dilluns:
 - Christophe Serre: <u>cserre@ub.edu</u>
 - Giovanni Vescio: <u>gvescio@ub.edu</u>
- Grup dimarts:
 - Albert Casas: albertcasas@ub.edu
 - Francisco Palacio: <u>francisco.palacio@ub.edu</u>
- Grup dijous:
 - David Roma: <u>droma@ub.edu</u>
 - Miguel Ángel Moruno: mamoruno@ub.edu
- Grup divendres:
 - Albert Casas: <u>albertcasas@ub.edu</u>
 - Oscar Castillo: <u>ocastillo@ub.edu</u>

L'Objectiu de l'assignatura és adquirir els coneixements bàsics per a programar sistemes basats en processadors encastats (*embedded processors*).

Són la base de multitud dels dispositius que fem servir quotidianament a l'actualitat: des de dispositius mòbils fins a electrodomèstics o subsistemes d'equips més grans (automoció, instrumentació mèdica, etc).

La idea és veure com hem de programar aquests dispositius a molt baix nivell, és a dir, programant directament el hardware, per després dissenyar un sistema de llibreries que permetin la programació del mateix equip sense conèixer aquest hardware i reutilitzar el software d'alt nivell en diferents hardware.

Dissenyarem el que denominarem un sistema de capes d'abstracció

de hardware.

El nostre robot base

MSP-EXP432P401R Experimenter Board

Assignació de pins del MSP432P401

Diagrama de blocs Funcional del MSP432P401

Cortex ARM M4F

- Consum reduït, baix capacitat de processat
- Arquitectura ARM flexible, fins a sistemes

Data throughput

MSP-EXP432P401R USER INTERFACES

- 2 Polsadors.
- LEDs 1 (Vermell) i 2(RGB).
- · Connectors per a BoosterPacks.
- Connector amb els pins que no es fan servir a la placa, i no van al connector dels BoosterPacks.

Electrostatic Discharge (ESD)

- El cos humà actua com una capacitat que pot anar acumulant càrrega: cas típic de que fa vent i ús "piqueu" al tocar el cotxe, pany, etc.
- Aquesta descàrrega sobtada pot cremar els circuits electrònics:
 - No tocar mai les parts
 metàl·liques/pins de la placa.
 - Tocar una presa de terra abans.

BOOSTXL-EDUMKII *BoosterPack*

BOOSTXL-EDUMKII *BoosterPack*

MSP-EXP430F5438 USER INTERFACES

- Pantalla a Color TFT-LCD: 128x128 píxels.
- Joystick de 2 eixos + Polsador.
- 2 Polsadors, S1 i S2.
- LED RGB.
- Acceleròmetre 3 eixos. Entrades Analògiques.
- Micròfon. Entrada Analògica.
- Buzzer (Sortida d'Àudio).
- Sensor de Llum (OPT3001, I²C).
- Sensor de Temperatura (TMP006, I²C).
- •

MOTORS: Dynamixel AX-12

Cada mòdul AX-12 té un microcontrolador per gestionar les comunicacions amb el sistema central i accionar el motor adequadament.

Per poder distingir entre els diferents AX-12 que hi ha al robot, cada un té un identificador que ha de ser únic al sistema. Quan volem comunicarnos amb ell enviem un missatge amb aquest identificador i el que volem que faci.

Connexió amb un bus únic, mitjançant Daisy Chain.

MÒDUL SENSOR: Dynamixel AX-S1

A diferència dels motors, a cada robot només hi haurà un mòdul sensor AX-S1.

Aquest mòdul té els següents sensors:

- 3 Sensors d'Infrarojos en 3 direccions diferents, per detectar distàncies, angles i llum.
- Micròfon Intern.
- Buzzer.
- Control remot per infrarojos.

La connexió es fa al mateix bus que els motors, per tant l'identificador ha de ser diferent als dels motors.

Comunicació amb els Mòduls Dynamixel

Com s'ha dit abans, la comunicació entre el controlador central i els mòduls es fa amb un bus únic. Els punts importants són:

- Cada mòdul ha de tenir un identificador "ID" diferent al de la resta.
- Per comunicar-se el controlador envia una trama que conté el ID del mòdul amb el que vol comunicar-se i la funció que vol que faci.
- El mòdul pot contestar amb una trama de status.
- Es poden enviar trames *Broadcast*.

En realitat el que fa el controlador quan envia una trama a un mòdul és escriure a una memòria interna del mòdul. Cada posició d'aquesta memòria té un significat específic, i el microcontrolador que té cada mòdul llegeix aquesta memòria i actua en conseqüència.

Projecte

- Recórrer la paret d'una habitació amb obstacles
- Sensors reals tenen errors, no podeu fer servir navegació inercial, sinó que haureu de fer servir un llaç tancat de control
- Els retards en el llaç de control son problemàtics
- Disposareu d'un simulador (introduït en la pràctica 4) per entendre la problemàtica (no és representatiu del moviment real)

Per comentar

- Material (cable USB...)
- Campus (poseu foto)
- Grups

Bibliografia i Documentació

- MSP432P4xx Technical Reference Manual.
- MSP432P401 Datasheet.
- www.ti.com/msp432
- MSP-EXP432P401R LaunchPad User's Guide.
- http://www.bioloid.info/tiki/tiki-index.php