ICT & Business Intelligence & CRM Databases - Relational Model

Andrea Vandin
Scuola Superiore Sant'Anna
Paolo Ferragina
Scuola Superiore Sant'Anna
Anna Monreale
Università di Pisa

Relational Model

First presented in seminal work from the 70s:

«A model based on n-ary relations, a normal form for data base relations, and the concept of a universal data sublanguage are introduced.»

Edgar F. Codd, 1970

Nice overview:

https://users.dimi.uniud.it/~massimo.franceschet/ds/syllabus/learn/database/RM.html

Relational Model

It is based on the concept of relation

- Whose representation is a table
 - relation-table can be used interchangeably
- comes from set theory
- Not to be confused with the conceptual relationship of the ER model

The relational model consists of two main components:

- the structures that allow to organize the data
 - The tables
- the integrity constraints that allow data to be kept consistent
 - The constraints on the values in specific columns of tables

Elements of the model

- Database
 - Set of tables
- Table (or relation)
 - Set of records
 - It has
 - Columns, aka attributes,
 - have a name and a domain (type of data)
 - One special column (or a subset of columns) contains the **primary key**» a value that distinguishes every row (a.g. tay sade)
 - » a value that distinguishes every row (e.g. tax code)
 - Rows, aka records,
 - containing a value per attribute
- Record
 - Set of pairs (attribute, value)

Example: Students, Courses, Exams

Database: University

Tables:

- Students
 - name, surname, **studentID**, date of birth
- Courses
 - code, title of course, teacher
- Exams
 - course, student, mark, laud

Example: Students, Courses, Exams

Students

- name: string
- surname: string
- studentID: integer
- date of birth: date

Courses

- code: string
- title: string
- teacher: string

Exams

- course: "reference" to a course (its code)
- student: "reference" to a student (its studentID)
- mark: integer
- laud: yes/no

Attributes

StudentID	Surname	Name	Date of Birth
276545	Rossi	Maria	25/11/1991
485745	Neri	Anna	23/04/1992
200768	Verdi	Fabio	12/02/1992
587614	Rossi	Luca	10/10/1991
937653	Bruni	Mario	01/12/1991

```
TABLE Students (
studentID integer,
surname char(20),
name char(20),
DateofBirth date);
```

- Each attribute has a domain defining the set of valid values for the attribute Ex. dom(studentID) = integer
- We cannot have a repetition of attributes (column names are univoque)
- We can have a repetition of domains in the same relation (name and surname have same domain)!

Types

numbers

- N := c | V | N1 + N2 | N1 N2 | CASE WHEN B THEN N1 ELSE N2 END
 - X + 2*Y Z
 - CASE WHEN x < y THEN 1 WHEN x > y THEN -1 ELSE 0 END

String

- S := c | CONCAT(S, S) | CASE WHEN B THEN S1 ELSE S2 END
 - 'buon' + 'giorno' |
 - 'buon' || 'giorno'
 - CONCAT('buon', 'giorno')
 - CASE WHEN x < y THEN 'minore' ELSE 'maggiore' END

boolean

- B := c | N1 < N2 | N1 <= N2 | N1 <> N2 | N1 = N2 | N1 > N2 | N1 >= N2 | N1 BETWEEN c1 AND c2 | S1 < S2 | S1 <= S2 | S1 <> S2 | S1 = S2 | S1 > S2 | S1 > S2 | S1 >= S2 | S1 > S2 | S1
 - 3 BETWEEN 2 AND 7 → 2 <= 3 <= 7
 - surname NOT LIKE 'rug%'

Constraints on the order of the data

Stud	entID	Surname	Name	Date of Birth
276	545	Rossi	Maria	25/11/1991
485	745	Neri	Anna	23/04/1992
200	768	Verdi	Fabio	12/02/1992
587	614	Rossi	Luca	10/10/1991
937	653	Bruni	Mario	01/12/1991

- Order of records is not important
- Order of columns is important

Constraints on data

_				
	StudentID	Surname	Name	Date of Birth
	20/11/1991	Rossi	Maria	25/11/1991
	485745	Neri	Anna	23/04/1992
	200768	Verdi	Fabio	12/02/1992
	587614	Rossi	Luca	10/10/1991
	937653	Bruni	Mario	01/12/1991

- No equal attributes (1) (no equal column names)
- No equal rows (2)
- Data of column must be homogeneous (3)

Courses

COURSES

Code	Title	Teacher
01	Analisi	Giani
03	Chimica	Melli
04	Chimica	Belli

```
TABLE Courses(
   code char(2),
   title char(50),
   teacher char(20));
```

Exams

Exams

StudentID

of a

student

Student	Mark	Laud	Course
276545	28	0	01
276545	27	0	04
937653	25	0	01
200768	30	1	04

Code of a course

```
TABLE Exams(
    student integer,
    mark integer,
    laud bool,
    course char(3));
```

Tables

Students

	StudentID	Surname	Name	Date of Birth
1	276545	Rossi	Maria	25/11/1991
	485745	Neri	Anna	23/04/1992
	200768	Verdi	Fabio	12/02/1992
	587614	Rossi	Luca	10/10/1991
	937653	Bruni	Mario	01/12/1991

Exams

Student	Mark	Laud	Course
276545	28	0	01 —
276545	27	0	04
937653	25	0	01 —
200768	30	1	04

Courses

Code	Title	Teacher
01	Analisi	Giani
03	Chimica	Melli
04	Chimica	Belli

DB Schema

```
TABLE Students(
    studentID integer,
    surname char(20),
    name char(20),
    DateofBirth date);
```

```
TABLE Exams(
    student integer,
    mark integer,
    laud bool,
    course char(3));
```

```
TABLE Courses(
   code char(3),
   title char(50),
   teacher char(20));
```

NULL Values

Are supported as a systematic representation of missing information

Students

StudentID	Surname	Name	Date of Birth
276545	Rossi	Maria	25/11/1991
485745	Neri	Anna	23/04/1992
200768	Verdi	Fabio	12/02/1992
587614	Rossi	Luca	10/10/1991
937653	Bruni	Mario	01/12/1991
993354	Gialli	Lucia	null

Courses

Code	Title	Teacher	
01	Analisi	Giani	
03	Chimica	Melli	
04	Chimica	Belli	
05	Basi Dati	null	

Null Value

Null Value

Constraints on Data

- Rules of the scenario
- Unicity of identifiers (keys)
 - Code of courses and studentID
- Conditions on values of the records
 - Students mark
 - Range: 18 30
 - Laud only if mark is 30
- Correctness of references

Primary Key

- Key: a minimal set of attributes uniquely identifying
 - tuples in a relation
 - I.E., rows in a table

	StudentID	Surname	Name	Date of Birth
14	276545	Rossi	Maria	25/11/1991
Key	485745	Neri	Anna	23/04/1992
	200768	Verdi	Fabio	12/02/1992
	587614	Rossi	Luca	10/10/1991
	937653	Bruni	Mario	01/12/1991

- {Surname,Name}: is not a real Key!
- A (Primary) Key cannot have null value

Database with errors

Students

	StudentID	Surname	Name	Date of Birth
	276545	Rossi	Maria	25/11/1991
	485745	Neri	Anna	23/04/1992
	200768	Verdi	Fabio	12/02/1992
*	937653	Rossi	Luca	10/10/1991
A	937653	Bruni	Mario	01/12/1991

Unicity

Exams

Student	Mark	Laud	Course
276545	32	Û	01
276545	27	1	04
937653	25	0	01
300300	30	1	04

incorrect mark

Reference

Integrity Constraints

- Rules on data
- Constraints on single tables
 - Key Constraints
 - Constraints on tuples
- Constraints between tables
 - Constraints of referential integrity

Integrity Constraints

- Key Constraints
- Key: identifier for tuples
 - ex: "studentID" is a Key for "Students"
- Constraints on tuple
 - Predicates on the values of tuples
 - ex: (mark>=18 and mark<=30)
- Referential Constraints
 - Absence of references that do not exist

Key Constraints

StudentID	Surname	Name	Date of Birth
276545	Rossi	Maria	25/11/1991
485745	Neri	Anna	23/04/1992
200768	Verdi	Fabio	12/02/1992
587614	Rossi	Luca	10/10/1991
937653	Bruni	Mario	01/12/1991

```
TABLE Students(
    studentID integer PRIMARY KEY,
    TaxCode char(16),
    surname char(20),
    name char(20),
    DateofBirth date,
    UNIQUE(TaxCode));
```

Constraints on tuples

Exams

Student	Mark	Laud	Course
276545	28	0	01
276545	27	0	04
937653	25	0	01
200768	30	1	04

```
TABLE Exams (
   student integer,
   mark integer,
   course char(3),
   laud bool,
   CHECK (mark>=18 and mark<=30),
   CHECK (not laud or mark=30));</pre>
```

Referential Constraints

Exams

Student	Mark	Laud	Course
276545	28	0	01
276545	27	0	04
937653	25	0	01
200768	30	1	04

```
TABLE Exams (
    student integer,
    mark integer,
    course char(3),
    laud bool,
    CHECK (mark>=18 and mark<=30),
    CHECK (not laud or mark=30),
    FOREIGN KEY(student) REFERENCES Students(studentID),
    FOREIGN KEY(course) REFERENCES Courses(code));</pre>
```

Schema with Integrity Constraints

```
TABLE Students(
    studentID integer PRIMARY KEY,
    surname char(20),
    name char(20),
    DateofBirth date,
    UNIQUE(studentID));
```

```
TABLE Exams(
    student integer,
    mark integer,
    laud bool,
    course char(3),
    CHECK (mark>=18 and mark<=30),
    CHECK (not laud or mark=30),
    FOREIGN KEY(course) REFERENCES Courses(code),
    FOREIGN KEY(student) REFERENCES Students(studentID),
    UNIQUE(studentID, course));</pre>
```

```
TABLE Courses(
   code char(3) PRIMARY KEY,
   title char(50),
   teacher char(20),
   UNIQUE(code));
```

Characteristics of the Model

Links based on values

- Absence of pointers
- The DB does not have a real notion of pointer
 - The linking (the arrow from previous slides) is by value

Value must be simple

- Atomic values : number, chars, string, boolean, date ecc.
- no 'nesting'

Pointers

The red arrows are in reality just values:

- Exams:
 - Third row contain 937653, fourth row contain 04

StudentID	Surname	Name	Date of Birth
276545	Rossi	Maria	25/11/1991
485745	Neri	Anna	23/04/1992
200768	Verdi	Fabio	12/02/1992
587614	Rossi	Luca	10/10/1991
937653	Bruni	Mario	01/12/1991

Exan	ns	T		
Stu	dent	Mark	Laud	Course
276	545	28	0	01
276	545	27	0	04
937	653	25	0	01
200	768	30	1	04

Courses	C	0	u	r	S	e	5
---------	---	---	---	---	---	---	---

Code	Title	Teacher
01	Analisi	Giani
03	Chimica	Melli
04	Chimica	Belli

Nested Structure

not supported!

Dal Sudicio Via Buia, Pisa					
Ricevuta Fiscale 1235 del 12/10/2001					
3	Coperti	3,00			
2	Antipasti	6,20			
3	Primi	12,00			
2	Bistecche	18,00			
	Totale 39,20				

Dal Sudicio Via Buia, Pisa						
	Ricevuta Fiscale 1240 del 13/10/2001					
2	Coperti	2,00				
2	Antipasti	7,00				
2	Primi	8,00				
2	Orate	20,00				
2	Caffè	2,00				
	Totale	39,00				

Possible Representation

_		4
ν.	α	/ute
	-c	/utc

numero	data	totale
1235	12/10/2000	39,20
1240	13/10/2000	39,00

Dettaglio

numero	qta	portata	prezzo
1235	3	Coperti	3,00
1235	2	Antipasti	6,20
1235	3	Primi	12,00
1235	2	Bistecche	18,00
1240	2	Coperti	2,00
	•••		