```
1/39/1
To DIALOG(R) File 345: Inpadoc/Fam. & Legal Stat
 (c) 2006 EPO. All rts. reserv.
 14710236
 Basic Patent (No, Kind, Date): WO 9823043 Al 19980528
                                                       <No. of Patents: 008>
 Patent Family:
                                  Applic No
     Patent No
                  Kind Date
                                              Kind Date
                   A1 19980610
                                     AU 9676388 A
                                                         19961122
     AU 7638896
                     A1 19980610
                                     AU 9676388
     AU 9676388
                                                    Α
                                                         19961122
                                     AU 9676388
     AU 706075
                    B2 19990610
                                                         19961122
     EP 878921
                    A1 19981118
                                    EP 96939304
                                                         19961122
                                    EP 96939304
     EP 878921
                    A4
                         20040901
                                                         19961122
                                    JP 98523447 A
US 77749 A
WO 96JP3443 A
   - JP 3135586
                    B2
                        20010219
                                                         19961122
     US 6349119
                    BA 20020219
                                                         19980611
     WO 9823043
                    A1
                        19980528
                                                         19961122
                                                                   (BASIC)
 Priority Data (No, Kind, Date):
     WO 96JP3443 A 19961122
 PATENT FAMILY:
 AUSTRALIA (AU)
   Patent (No, Kind, Date): AU 7638896 Al 19980610
     Transmission line presuming circuit and modem using the same (English)
     Patent Assignee: MITSUBISHI ELECTRIC CORP
     Author (Inventor): SOGABE YASUSHI; AKIYOSHI MASANORI
     Priority (No, Kind, Date): WO 96JP3443 A
                                               19961122
     Applic (No, Kind, Date): AU 9676388 A 19961122
            H04B-007/00; H04B-007/02; H04B-007/15; H04B-007/26; H04L-001/02
     Language of Document: English
   Patent (No, Kind, Date): AU 9676388 Al 19980610
     TRANSMISSION LINE PRESUMING CIRCUIT AND MODEM USING THE SAME (English)
     Patent Assignee: MITSUBISHI ELECTRIC CORP
     Author (Inventor): SOGABE YASUSHI; AKIYOSHI MASANORI
     Priority (No, Kind, Date): WO 96JP3443 A
                                               19961122
     Applic (No, Kind, Date): AU 9676388 A 19961122
     IPC: * H04B-007/00; H04B-007/02; H04B-007/15; H04B-007/26; H04L-001/02
     Derwent WPI Acc No: * G 98-312824
     Language of Document: English
   Patent (No, Kind, Date): AU 706075 B2 19990610
     Transmission line presuming circuit and modem using the same (English)
     Patent Assignee: MITSUBISHI ELECTRIC CORP
     Author (Inventor): SOGABE YASUSHI; AKIYOSHI MASANORI
     Priority (No, Kind, Date): WO 96JP3443 A 19961122
     Applic (No, Kind, Date): AU 9676388 A 19961122
     IPC: * H04B-007/00; H04B-007/02; H04B-007/15; H04B-007/26; H04L-001/02
     Language of Document: English
 EUROPEAN PATENT OFFICE (EP)
    Patent (No, Kind, Date): EP 878921 A1 19981118
      TRANSMISSION LINE PRESUMING CIRCUIT AND MODEM USING THE SAME LIGNE DE
       TRANSMISSION MISE EN OEUVRE PAR UN CIRCUIT ET UN MODEM
       ANTRIEBSSCHALTUNG FUR UBERTRAGUNGSLEISTUNG UND MODEM FUR IHRE
       VERWENDUNG (English; French; German)
      Patent Assignee: MITSUBISHI ELECTRIC CORP (JP)
     Author (Inventor): SOGABE YASUSHI (JP); AKIYOSHI MASANORI
     Priority (No, Kind, Date): WO 96JP3443 A
                                               19961122
     Applic (No, Kind, Date): EP 96939304 A
                                              19961122
     Designated States: (National) DE; FR; GB
      IPC: * H04B-007/00; H04B-007/02; H04B-007/15; H04B-007/26; H04L-001/02
        ; H04L-012/28; H04B-007/04; H04B-017/00; H04B-007/01; H04L-025/02
     Language of Document: English
    Patent (No, Kind, Date): EP 878921 A4 20040901
      TRANSMISSION LINE PRESUMING CIRCUIT AND MODEM USING THE SAME LIGNE DE
       TRANSMISSION MISE EN OEUVRE PAR UN CIRCUIT ET UN MODEM
       ANTRIEBSSCHALTUNG FUR UBERTRAGUNGSLEISTUNG UND MODEM FUR IHRE
       VERWENDUNG (English; French; German)
      Patent Assignee: MITSUBISHI ELECTRIC CORP (JP)
     Author (Inventor): SOGABE YASUSHI (JP); AKIYOSHI MASANORI (JP)
      Priority (No, Kind, Date): WO 96JP3443 A
```

```
Applic (No, Kind, Date): EP 96939304 A
                                           19961122
    Designated States: (National) DE; FR; GB
    IPC: * H04B-007/00; H04B-007/02; H04B-007/15; H04B-007/26; H04L-001/02
      ; H04L-012/28; H04B-007/04; H04B-017/00; H04B-007/01; H04L-025/02
   Language of Document: English
EUROPEAN PATENT OFFICE (EP)
  Legal Status (No, Type, Date, Code, Text):
                       19961122 EP AA
                    Ρ
                                              PRIORITY (PATENT
    EP 878921
                             APPLICATION) (PRIORITAET (PATENTANMELDUNG))
                             WO 96JP3443 A 19961122
   EP 878921
                  P
                       19961122 EP AE
                                              EP-APPLICATION
                             (EUROPAEISCHE ANMELDUNG)
                             EP 96939304 A
                                             19961122
   EP 878921 P
                       19981118 EP AK
                                              DESIGNATED CONTRACTING
                             STATES IN AN APPLICATION WITH SEARCH REPORT:
                             (IN EINER ANMELDUNG BENANNTE VERTRAGSSTAATEN)
                             DE FR GB
   EP 878921
                   Ρ
                       19981118 EP A1
                                              PUBLICATION OF APPLICATION
                             WITH SEARCH REPORT (VEROEFFENTLICHUNG DER
                             ANMELDUNG MIT RECHERCHENBERICHT)
   EP 878921
                   Ρ
                       19981118 EP 17P
                                              REQUEST FOR EXAMINATION
                             FILED (PRUEFUNGSANTRAG GESTELLT)
                             980625
   EP 878921
                       19990107 EP D17D
                                              SEARCH REPORT (DELETED)
                             (RECHERCHENBERICHT (GELOESCHT))
   EP 878921
                       19990107 EP RHK1
                                             MAIN CLASSIFICATION
                             (CORRECTION) (HAUPTKLASSIFIKATION (KORR.))
                             H04B 7/00
    EP 878921
                   Ρ
                       20040630 EP RIC1
                                             CLASSIFICATION (CORRECTION)
                             (KLASSIFIKATION (KORR.))
                             IPC: 7H 04B 7/00 A ; IPC: 7H 04B 7/02 B ;
                             IPC: 7H 04B 7/15 B ; IPC: 7H 04B 7/26 B ;
                             IPC: 7H 04L 1/02 B ; IPC: 7H 04L 12/28 B ;
                             IPC: 7H 04B 7/04 B ; IPC: 7H 04B 17/00 B ;
                             IPC: 7H 04B 7/01 B ; IPC: 7H 04L 25/02 B
   EP 878921
                       20040901 EP A4
                                              SUPPLEMENTARY SEARCH REPORT
                             (ERGAENZENDER RECHERCHENBERICHT)
                             DATE: 20040721
    EP 878921 P
                       20060503 EP RAP1
                                             APPLICANT REASSIGNMENT
                             (CORRECTION) (ANMELDER UEBERTRAGUNG (KORR.))
                             MITSUBISHI DENKI KABUSHIKI KAISHA
JAPAN (JP)
  Patent (No, Kind, Date): JP 3135586 B2 20010219
    Priority (No, Kind, Date): WO 96JP3443 A 19961122
   Applic (No, Kind, Date): JP 98523447 A 19961122
    IPC: * H04B-007/00; H04B-007/02; H04B-007/15; H04B-007/26; H04L-001/02
      ; H04L-012/00
   Language of Document: Japanese
UNITED STATES OF AMERICA (US)
  Patent (No, Kind, Date): US 6349119 BA 20020219
    Transmission line presuming circuit and modem using the same (English)
    Patent Assignee: MITSUBISHI ELECTRIC CORP (JP)
   Author (Inventor): SOGABE YASUSHI (JP); AKIYOSHI MASANORI (JP)
   Priority (No, Kind, Date): WO 96JP3443 A 19961122
   Applic (No, Kind, Date): US 77749 A 19980611
   National Class: * 375316000
   IPC: * H04L-027/06
    Language of Document: English
UNITED STATES OF AMERICA (US)
 Legal Status (No, Type, Date, Code, Text):
                                              CORRESPONDS TO PCT
    US 9877749
                   A 19980611 US REFW
                             APPLICATION (ENTSPRICHT PCT ANMELDUNG)
```

```
WO 9823043 P
                       19961122 US AA
   US 6349119
                  Ρ
                                             PRIORITY (PATENT)
                             WO 96JP3443 A
                                             19961122
   US 6349119
                   Ρ
                       19980611 US AE
                                             APPLICATION DATA (PATENT)
                             (APPL. DATA (PATENT))
                             US 77749 A 19980611
                   Ρ
   US 6349119
                       20020219 US BA
                                             PATENT (NO PREVIOUS
                             PRE-GRANT PUBLICATION)
WORLD INTELLECTUAL PROPERTY ORGANIZATION, PCT (WO)
  Patent (No, Kind, Date): WO 9823043 Al 19980528
    TRANSMISSION LINE PRESUMING CIRCUIT AND MODEM USING THE SAME LIGNE DE
     TRANSMISSION MISE EN OEUVRE PAR UN CIRCUIT ET UN MODEM (English)
   Patent Assignee: MITSUBISHI ELECTRIC CORP (JP); SOGABE YASUSHI (JP);
     AKIYOSHI MASANORI (JP)
   Author (Inventor): SOGABE YASUSHI (JP); AKIYOSHI MASANORI (JP)
    Priority (No, Kind, Date): WO 96JP3443 A 19961122
   Applic (No, Kind, Date): WO 96JP3443 A 19961122
   Designated States: (National) AU; JP; US (Regional) AT; BE; CH; DE;
```

; H04L-001/00 Language of Document: Japanese

WORLD	ΙN	ITELLECT	UAL	PROPE	RTY	ORGANI	ZATION,	PCT	(WO)
Lega	1	Status	(No,	Type, I	Date	e, Code,	Text):		

DK; ES; FI; FR; GB; GR; IE; IT; LU; MC; NL; PT; SE

Filing Details: WO 100000 With international search report

WO 9823043	P	19961122 WO AE	APPLICATION DATA	(APPL.
		DATA)		
		WO 96JP3443 A	19961122	
WO 9823043	Р	19980528 WO AK	DESIGNATED STATES	CITED IN
		DUDITALIAN DOL	TORMTON LITHUR OFFICER	

WO 9823043	P	19980528 WO AK DESIGNATED STATES CITED IN A	
		PUBLISHED APPLICATION WITH SEARCH REPORT	
		(DESIGNATED STATES CITED IN A PUBLISHED APPL.	
		WITH SEARCH REPORT)	
		AU JP US	

IPC: * H04B-007/00; H04B-007/02; H04B-007/15; H04B-007/26; H04L-001/02

WO	9823043	P	19980528	WO AI		DESIGNATED	COUNTRIE	ES FOR
			REG:	IONAL	PATENTS	CITED IN A	PUBLISHE	ED
			APP	LICAT	HTIW NO:	SEARCH REP	ORT (DES	SIGNATED
			COU	NTRIES	FOR REC	GIONAL PATE	NTS CITE) IN A
			PUB	LISHE	APPL. V	WITH SEARCH	REPORT)	
			AT I	BE CH	DE DK ES	S FI FR GB	GR IE IT	LU MC NL
			PT :	SE				
M	9823013	D	10000520	T47		סווסד דכיתידה	או הב ידעיב	

WO	9823043	P	19980528	8 WO	A1	PUE	BLICAT	NOI	OF THE	Ξ	
			II	NTERN.	ATIONAL	APPLIC	CATION	N WIT	THE		
			II	NTERN.	ATIONAL	SEARCH	REPO	DRT	(PUB.	OF	THE
			II	NTERN.	ATIONAL	APPL.	WITH	THE	INTER	ITA	ONAL
			SI	EARCH	REPORT)					

WO 9823043	P	19980611 WO ENP	ENTRY	INTO	THE	NATIONAL
		PHASE IN:				
		US 77749 A	19980611			

WO	9823043	P	199808	320	WO	WR	LA	TER	PUBL	ICATIO	ON OF A	\boldsymbol{A}
				REV]	SED	VERSION	OF.	AN I	NTER	NATION	VAL SE	ARCH
				REPO	DRT	(LATER	PUB.	OF	A RE	VISED	VERSI	ON OF
				AN I	NTE	RNATIONAL	L SE	ARCH	REP	ORT)		

WO 9823043	P	19981014 WO 121	EP: PCT APP. ART.	158 (1)
		(EP: PCT ANM.	ART. 158 (1))	

(19)日本国特許庁 (JP)

(12) 特 許 公 報 (B 2)

(11)特許番号

特許第3135586号 (P3135586)

(45)発行日 平成13年2月19日(2001.2.19)

(24)登録日 平成12年12月1日(2000.12.1)

(51) Int.Cl. ⁷		識別記号	ΡI	
H04B	7/00		H04B	7/00
	7/02			7/02
	7/15		H04L	1/02
	7/26		H 0 4 B	7/15
H 0 4 L	1/02			7/26
				請求項の数12(全 32 頁) 最終頁に続く
(21)出願番号	+	特顯平10-523447	(73)特許権	者 999999999
				三菱電機株式会社
(86) (22)出版	顏日	平成8年11月22日(1996.11.22)		東京都千代田区丸の内2丁目2番3号
			(72)発明者	曽我部 靖志
(86)国際出願	番号	PCT/JP96/03443		東京都千代田区丸の内2丁目2番3号
(87)国際公開	番号	WO98/23043		三菱電機株式会社内
(87)国際公開	日	平成10年5月28日(1998.5.28)	(72)発明者	秋吉 政徳
審査請求	日	平成11年11月29日(1999.11.29)		東京都千代田区丸の内2丁目2番3号
				三菱電機株式会社内
			(74)代理人	99999999
				弁理士 田澤 博昭 (外1名)
			審査官	▲徳▼田 賢二
				最終頁に続く

(54) 【発明の名称】 伝送路推定回路、およびそれを用いた変復調装置

1

(57)【特許請求の範囲】

【請求項1】相互に通信を行っている送信側の無線端末と受信側の無線端末の間に複数の伝送路が存在する場合に、それら各伝送路の中から最適な伝送路を推定する伝送路推定回路において、

前記無線端末の周囲の状況を幾何学的に取り込む幾何情報入力装置と、

前記幾何情報入力装置の取り込んだ幾何情報の中から相 手局のアンテナをサーチして、当該アンテナの位置情報 を出力する幾何情報認識装置と、

前記幾何情報入力装置の取り込んだ幾何情報と、前記幾何情報認識装置の出力するアンテナの位置情報をもと に、伝送路モデルを作成するモデル作成装置とを備えた ことを特徴とする伝送路推定回路。

【請求項2】周囲の建造物や相手局のアンテナの位置が

2

既知である場合に、自局の無線端末の位置を認識し、当該自局の無線端末の位置と、前記建造物や相手局のアンテナの情報とに基づいて、幾何情報入力装置の取り込んだ幾何情報の中から伝送路の推定を行うべき処理領域を限定し、それを幾何情報認識装置に出力する幾何情報認識補助装置を設けたことを特徴とする請求の範囲第1項記載の伝送路推定回路。

【請求項3】送信側と受信側との間に複数の伝送路が存在する通信システムの無線端末に用いられ、送受信される信号の変調および復調を行う変復調装置において、

前記無線端末の周囲の状況を幾何学的に取り込む幾何情報入力装置と、幾何情報入力装置の取り込んだ幾何情報の中から相手局のアンテナをサーチし、当該アンテナの位置情報を出力する幾何情報認識装置、および前記幾何情報入力装置の取り込んだ幾何情報と前記幾何情報認識

30

40

装置の出力するアンテナの位置情報をもとに、伝送路モ デルを作成するモデル作成装置を有した伝送路推定回路 ٤.

前記伝送路推定回路が前記伝送路モデルに基づいて出力 するアンテナの位置情報に従って、相手局のアンテナの 方向に指向性を変えるアンテナとを備えたことを特徴と する変復調装置。

【請求項4】伝送路推定回路にて求められた伝送路モデ ルのもとに、自局と相手局の無線端末の間のパスの推定 を行い、最も通信に適したパスを求めて、指向性を変更 10 するための制御信号を自局のアンテナに出力するパス推 定装置を設けたことを特徴とする請求の範囲第3項記載 の変復調装置。

【請求項5】送信側と受信側との間に複数の伝送路が存 在する通信システムの無線端末に用いられ、送受信され る信号の変調および復調を行う変復調装置において、 前記無線端末の周囲の状況を幾何学的に取り込む幾何情 報入力装置、幾何情報入力装置の取り込んだ幾何情報の 中から相手局のアンテナをサーチし、当該アンテナの位 置情報を出力する幾何情報認識装置、および前記幾何情 報入力装置の取り込んだ幾何情報と前記幾何情報認識装 置の出力するアンテナの位置情報をもとに、伝送路モデ ルを作成するモデル作成装置を有した伝送路推定回路 ٤.

前記伝送路推定回路にて求められた伝送路モデルをもと に、自局と相手局の無線端末の間のパスの推定を行い、 その推定結果をバス情報として出力するバス推定装置 ٤.

前記パス推定装置より出力されるパス情報を用いて、受 信信号の中からマルチパス成分を除去し、または合成す ることによってマルチパス成分の影響を抑える復調器と を備えたことを特徴とする変復調装置。

【請求項6】送信側と受信側との間で伝送路の切り替え が行われる通信システムの無線端末に用いられ、送受信 される信号の変調および復調を行う変復調装置におい て、

前記無線端末の周囲の状況を幾何学的に取り込む幾何情 報入力装置、幾何情報入力装置の取り込んだ幾何情報の 中から相手局のアンテナをサーチし、当該アンテナの位 置情報を出力する幾何情報認識装置、および前記幾何情 報入力装置の取り込んだ幾何情報と前記幾何情報認識装 置の出力するアンテナの位置情報をもとに、伝送路モデ ルを作成するモデル作成装置を有した伝送路推定回路 と、

前記伝送路推定回路で求められた伝送路モデルにて、伝 送路の切り替えが発生した場合に予想されるドップラー シフトによる周波数偏差量を常時推定しておき、伝送路 の切り替え時には推定された前記周波数偏差量を周波数 情報として出力する周波数偏差演算回路と、

力される周波数情報に基づいて、ドップラーシフトによ る周波数偏差量を除去する機能を有した復調器とを備え たことを特徴とする変復調装置。

【請求項7】送信側と受信側との間で伝送路の切り替え が行われる通信システムの無線端末に用いられる変復調 装置であって、

伝送路推定回路で求められた伝送路モデルにて、伝送路 の切り替えが発生した場合に予想されるドップラーシフ トによる周波数偏差量を常時推定しておく周波数偏差演 算同路と、

伝送路の切り替え時には前記周波数偏差演算回路から出 力される周波数情報に基づいて、ドップラーシフトによ る周波数偏差量を除去する機能を有した復調器とを設け たことを特徴とする請求の範囲第3項から第5項のうち のいずれか1項記載の変復調装置。

【請求項8】送信側と受信側との間に複数の伝送路が存

在する通信システムの無線端末に用いられ、送受信され る信号の変調および復調を行う変復調装置において、 前記無線端末の周囲の状況を幾何学的に取り込む幾何情 報入力装置、幾何情報入力装置の取り込んだ幾何情報の 中から相手局のアンテナをサーチし、当該アンテナの位 置情報を出力する幾何情報認識装置、および前記幾何情 報入力装置の取り込んだ幾何情報と前記幾何情報認識装 置の出力するアンテナの位置情報をもとに、伝送路モデ ルを作成するモデル作成装置を有した伝送路推定回路 ٤.

前記伝送路推定回路にて求められた伝送路モデルをもと に自局と相手局の無線端末の間のパスの推定を行い、そ の推定結果に基づいて復調器に接続されている等化器の 必要性を判定し、前記等化器の動作/停止を制御する制 御信号を出力する判定回路とを備えたことを特徴とする 変復調装置。

【請求項9】送信側と受信側との間に複数の伝送路が存 在する通信システムの無線端末に用いられ、送受信され る信号の変調および復調を行う変復調装置において、 前記無線端末の周囲の状況を幾何学的に取り込む幾何情 報入力装置、幾何情報入力装置の取り込んだ幾何情報の 中から相手局のアンテナをサーチし、当該アンテナの位 置情報を出力する幾何情報認識装置、および前記幾何情 報入力装置の取り込んだ幾何情報と前記幾何情報認識装 置の出力するアンテナの位置情報をもとに、伝送路モデ ルを作成するモデル作成装置を有した伝送路推定回路

前記伝送路推定回路にて求められた伝送路モデルをもと に自局と相手局の無線端末の間のバスの推定を行い、そ の推定結果に基づいて伝送路の状態を診断して、当該伝 送路における伝送速度の決定を行う伝送路診断回路とを 備えたことを特徴とする変復調装置。

【請求項10】送信側と受信側との間に複数の伝送路が 伝送路の切り替え時には前記周波数偏差演算回路から出 50 存在する通信システムの無線端末に用いられ、送受信さ

5

れる信号の変調および復調を行う変復調装置において、前記無線端末の周囲の状況を幾何学的に取り込む幾何情報入力装置、幾何情報入力装置の取り込んだ幾何情報の中から相手局のアンテナをサーチし、当該アンテナの位置情報を出力する幾何情報認識装置、および前記幾何情報入力装置の取り込んだ幾何情報と前記幾何情報認識装置の出力するアンテナの位置情報をもとに、伝送路モデルを作成するモデル作成装置を有した伝送路推定回路

前記伝送路推定回路にて求められた伝送路モデルをもと 10 に自局と相手局の無線端末の間のバスの推定を行い、その推定結果に基づくバス情報を出力するバス推定装置と、

前記パス推定装置の出力するパス情報を用いて、受信局の無線端末におけるマルチパス成分の影響を抑えるように、送信側の無線端末からの送信パターンを制御する送信制御部とを備えたことを特徴とする変復調装置。

【請求項11】送信側と受信側との間で伝送路の切り替えが行われる通信システムの無線端末に用いられ、送受信される信号の変調および復調を行う変復調装置において、

前記無線端末の周囲の状況を幾何学的に取り込む幾何情報入力装置、幾何情報入力装置の取り込んだ幾何情報の中から相手局のアンテナをサーチし、当該アンテナの位置情報を出力する幾何情報認識装置、および前記幾何情報入力装置の取り込んだ幾何情報と前記幾何情報認識装置の出力するアンテナの位置情報をもとに、伝送路モデルを作成するモデル作成装置を有した伝送路推定回路と、

前記伝送路推定回路で求められた伝送路モデルにて、伝 30 送路の切り替えが発生した場合に予想されるドップラー シフトによる周波数偏差量を常時推定しておき、伝送路 の切り替え時には推定された前記周波数偏差量を周波数 情報として出力する周波数偏差演算回路と、

伝送路の切り替え時には前記周波数偏差演算回路から出力される周波数情報に基づいて、ドップラーシフトによる周波数偏差量を除去するよう送信周波数を制御する機能を有した変調器とを備えたことを特徴とする変復調装置。

【請求項12】伝送路推定回路が、周囲の建造物や相手局のアンテナの位置が既知である場合に、自局の無線端末の位置を認識し、当該自局の無線端末の位置と、前記建造物や相手局のアンテナの情報とに基づいて、幾何情報入力装置の取り込んだ幾何情報の中から伝送路の推定を行うべき処理領域を限定し、それを幾何情報認識装置に出力する幾何情報認識補助装置を有するものであることを特徴とする請求の範囲第3項から第11項のうちいずれか1項記載の変復調装置。

【発明の詳細な説明】

技術分野

6

この発明は、移動体通信や移動体衛星通信システムに おいて、通信を行う際に伝送路モデルを用いて伝送路状態の推定を行うための伝送路推定回路、およびその伝送 路推定回路を用いた変復調装置に関するものである。 背景技術

従来の伝送路状態の推定を行うシステムとして、送信アンテナおよび通信アンテナの各々を6ビームアンテナとし、36通りの伝送路の中から最良の伝送路を選択する方式が提案されている。

そのような従来の伝送路推定のためのシステムを第1 図および第2図に示す。この第1図および第2図は、例えば第6回 回路とシステム軽井沢ワークショップ(19 93)、「高速無線LANの技術動向」(提他)に記載された図を簡略化したものである。第1図において、1は机の上等に設置された、ユーザ・モジュール(以下、UMという)と呼ばれる無線端末、2は天井等に設置されて、複数のUM1と無線で接続されたコントロール・モジュール(以下、CMという)と呼ばれる無線端末であり、3は模式的に表わされた室内の壁面である。なお、第1図中の実線はCM2とUMIの間の伝送路を示している。また、第2図の表中において、"Good"、"Better"、"Bad"は回線の状態を示すもので、それぞれ回線の状態が"良い"、"普通"、"悪い"を表しており、空欄は不感を表している。

第1図に示したように、CM2およびUMIはそれぞれ6ビームアンテナを用いているので、CM2とそれに接続される1つのUMIの間には36通りの伝送路が存在する。CM2とUMIは常に、この36通りの伝送路どとの伝送品質を、第2図に示したような表の形で認識している。そして、実際に通信を行う場合には、この第2図に示した表の中から最良の伝送路を選択して使用する。

次に動作について説明する。

今、第1図に示されたように、壁面3で囲まれた室内にCM2とUM1とを配置し、これらUM1とCM2の間の、ある時間における伝送路の伝送品質が第2図に示した表のようになったものとする。この時、伝送路は第1図に示した実線で示す4通りしか存在していない。この4通りの伝送路の中で最良の伝送路を検索すると、CM2の第5アンテナからUM1の第6アンテナへの1通りである。従って、今から通信を行う場合には、このCM2の第5アンテナからUM1の第6アンテナへの伝送路を選択することになる。

従来の伝送路推定のためのシステムは以上のように構成されているので、伝送路の伝送品質の推定にあたっては受信信号が用いられ、1バースト前の信号によって現バーストの伝送路を決定するものであるため、伝送品質の急激な変動には追従できないという課題があった。

また、常に伝送路の伝送品質をモニタする必要があり、非通信時にもCM2とUMIの間で送受信を行っているたいの、回線効率を低下させるという課題もあった。

20

30

さらに、従来の伝送路推定のためのシステムは固定局 間の通信を想定したものであって、UMIなどの無線端末 が移動して、通信中にチャネルの切り替えが生じるよう なシステムにつての考慮はなされていなかった。

この発明は上記のような課題を解決するためになされ たもので、送信機と受信機の間の伝送路を幾何学的にモ デル化し、その伝送路モデルによる幾何情報を用いて送 信アンテナの位置を認識し、パスを推定することによっ て、より高い精度で伝送路状態の推定を行うことが可能 な伝送路推定回路を得ることを目的とする。

また、幾何学的にパスを推定することで、回線効率を 向上させることができる伝送路推定回路を得ることを目 的とする。

さらに、急激な伝送路の変動に対して、送受信間のバ スを幾何学的にモデル化された伝送路モデルを用いて追 従させることで、高品質な通信を行うことのできる変復 調装置を得ることを目的とする。

さらに、通信中に端末が移動しながらチャネルの切り 替えを行う場合でも、高速にチャネル切り替えを行うこ とができる変復調装置を得ることを目的とする。 発明の開示

請求の範囲第1項記載の発明に係る伝送路推定回路 は、幾何情報入力装置を用いて周囲の状況を幾何学的に 取り込み、幾何情報認識装置によって、その取り込まれ た幾何情報の中から相手局のアンテナをサーチしてその 位置情報を求め、当該アンテナの位置情報と取り込まれ た幾何情報とを用いて、モデル作成装置で自局側と相手 局側の無線端末の間の伝送路を幾何学的にモデル化する ようにしたものである。

とのことによって、幾何学的に推定された相手局のア ンテナの位置をもとに、当該アンテナのサーチをより精 度よく行うことが可能となり、取り込まれた幾何情報よ り作成した伝送路モデルを用いれば、より高い精度で伝 送路状態の推定を行うことができ、また、伝送路の伝送 品質を常にモニタしている必要がなくなって、回線効率 が向上するなどの効果がある。

請求の範囲第2項記載の発明に係る伝送路推定回路 は、自局と相手局の無線端末間の伝送路を幾何学的にモ デル化するに際して、相手局のアンテナの位置や伝送路 に影響を与える周辺の建造物が既知の場合に、幾何情報 認識補助装置から出力される情報を用いて当該アンテナ をサーチする処理範囲を限定するようにしたものであ

とのことによって、請求の範囲第1項記載の発明と同 様の効果を得ることができ、さらに幾何情報認識補助装 置からの情報を用いることで、相手局のアンテナをサー チする処理が高速化できる効果がある。

請求の範囲第3項記載の発明に変復調装置は、請求の 範囲第1項記載の伝送路推定回路を用いることで、幾何

ナがこの伝送路推定回路から出力される前記アンテナの 位置情報に基づいて、自身の指向性を相手局のアンテナ の方向に変更するようにしたものである。

このことによって、相手局のアンテナの位置が幾何学 的に的確に推定され、より精度よく直接波を受信すると とが可能となるため、マルチパス成分を除去することが できて、より髙品質な通信を行うことができる効果があ

請求の範囲第4項記載の発明に係る変復調装置は、請 求の範囲第1項記載の伝送路推定回路を用いて伝送路を モデル化し、この伝送路推定回路が求めた伝送路モデル をもとに、パス推定装置において自局と相手局の無線端 末の間のパスを推定し、そのパスの中から最も通信に適 したバスを選んで、その方向に自局のアンテナの指向性 を変更するようにしたものである。

このことによって、請求の範囲第3項記載の発明と同 様の効果を得ることができ、さらに、常に伝送路モデル により求められた最適なパスを用いて通信を行っている ため、直接波が遮蔽物によって遮断されるような場合で あっても品質の高い通信を行うことができ、また、急激 な伝送路の変動にも追従することができるなどの効果が ある。

請求の範囲第5項記載の発明に係る変復調装置は、請 求の範囲第1項記載の伝送路推定回路を用いて伝送路を モデル化し、復調器においてこの伝送路推定回路が求め た伝送路モデルをもとに、受信信号の中からマルチパス 成分を除去または合成するようにしたものである。

このことにより、受信波におけるマルチパス成分の影 響を抑えることが可能となるため、受信アンテナに無指 向性のものを使用しても髙品質な通信を行うことができ る効果がある。

請求の範囲第6項記載の発明に係る変復調装置は、請 求の範囲第1項記載の伝送路推定回路を用いて伝送路を モデル化し、周波数偏差演算回路において常時、伝送路 の切り替えが発生した場合に予想されるドップラーシフ トによる周波数偏差量を、その伝送路モデルを用いて推 定しておき、伝送路の切り替え時にはこの推定された周 波数偏差量を周波数情報として復調器に出力し、復調器 ではその周波数情報に基づいてドップラーシフトによる 40 周波数偏差量を除去するようにしたものである。

このことによって、ドップラーシフトによる周波数偏 差量を伝送路の切り替え時に除去することが可能とな り、より高速な初期引き込みを行うことができる効果が ある。

請求の範囲第7項記載の発明に係る変復調装置は、請 求の範囲第3項から第5項のうちのいずれか1項記載の 変復調装置に請求の範囲第6項における周波数偏差演算 回路を設けて、伝送路の切り替えが発生した場合に予想 されるドップラーシフトによる周波数偏差量を常時推定 学的に相手局のアンテナの位置を推定し、自局のアンテ 50 しておき、伝送路の切り替え時にはその推定された周波 数情報に基づいてドップラーシフトによる周波数偏差量 を除去するようにしたものである。

このことによって、請求の範囲第3項から第5項記載の発明と同様の効果を得ることができ、さらに請求の範囲第6項記載の発明と同様に、より高速な初期引き込みが可能になるという効果がある。

請求の範囲第8項記載の発明に係る変復調装置は、請求の範囲第1項記載の伝送路推定回路を用いて伝送路をモデル化し、この伝送路推定回路が求めた伝送路モデルをもとに、判定回路において自局と相手局の無線端末の 10間のパスの推定を行い、その推定結果によって等化器の必要性を判断して制御信号を等化器に出力し、等化器が必要の場合には等化器を動作させ、不要の場合は等化器の動作を停止させるようにしたものである。

このことによって、周囲の状況から等化器のオン/オフを判定することが可能となり、等化器の不必要な動作を停止させることで、装置の低消費電力化をはかることができる効果がある。

請求の範囲第9項記載の発明に係る変復調装置は、請求の範囲第1項記載の伝送路推定回路を用いて伝送路をモデル化し、伝送路診断回路において、この伝送路推定回路が求めた伝送路モデルをもとに送受信機間の伝送路の状態を診断し、その診断結果に対応した伝送速度を決定するようにしたものである。

とのことによって、送受信機間の伝送路の状態の診断 結果に対応した伝送速度で通信が行われるようになるた め、より最適な伝送速度で通信を行うことができる効果 がある。

請求の範囲第10項記載の発明に係る変復調装置は、請求の範囲第4項記載の発明と同様に、請求の範囲第1項 30 記載の伝送路推定回路が求めた伝送路モデルをもとに、バス推定装置において自局と相手局の無線端末間のバスの推定を行い、送信制御部がこのバス推定装置の求めたバス情報を用いて、受信側でのマルチバス成分の影響を抑えるように送信バターンの制御を行うようにしたものである。

このことによって、送信側において受信側のマルチバス成分の影響を抑えるように制御が行われるため、受信側には等化器が不要になり、さらにマルチバス成分もなくなって、受信側では無指向性のアンテナを使用しても 40高い品質の通信を行うことができるなどの効果がある。

請求の範囲第11項記載の発明に係る変復調装置は、請求の範囲第1項記載の伝送路推定回路を用いて伝送路をモデル化し、周波数偏差演算回路において常時、伝送路の切り替えが発生した場合に予想されるドップラーシフトによる周波数偏差量を、その伝送路モデルを用いて推定しておき、チャネル切り替え時にはこの推定された周波数偏差量を周波数情報として変調器に出力し、変調器ではその周波数情報に基づいて、ドップラーシフトによる周波数偏差量を除去するように送信周波数の制御を行

うようにしたものである。

このととによって、ドップラーシフトによる周波数偏差量を、伝送路の切り替え時に変調器側で除去することができるので、受信側では伝送路の切り替え時にドップラーシフトによる周波数偏差を考慮する必要がなくなり、より高速な初期引き込みが可能になる効果がある。

10

請求の範囲第12項記載の発明に係る変復調装置は、請求の範囲第3項から第11項のうちのいずれか1項記載の発明における伝送路推定回路を、自局と相手局の無線端末間の伝送路を幾何学的にモデル化する際、幾何情報認識補助装置から出力される情報を用いて相手局のアンテナをサーチする処理範囲を限定するようにした、請求の範囲第2項記載の伝送路推定回路で代替したものである。

このことによって、請求の範囲第3項から第11項のうちのいずれか1項記載の発明のそれぞれと同様の効果に加えて、さらに相手局のアンテナをサーチする処理を高速化することができる効果がある。

図面の簡単な説明

20 第1図は従来の伝送路推定のためのシステムを説明するための図である。

第2図は従来の伝送路推定の際の各伝送路の伝送品質 を表形式で示した図である。

第3図はこの発明の実施の形態1による伝送路推定回路のブロック構成を示す図である。

第4図はこの発明の実施の形態1における伝送路推定 回路を用いたシステムのイメージを示す図である。

第5図はこの発明の実施の形態1における伝送路推定 回路の動作を示すフローチャートである。

第6図はこの発明の実施の形態1における幾何情報入力装置で取り込まれた幾何情報の一例を示す図である。

第7図はこの発明の実施の形態2による変復調装置の 復調部のブロック構成を示す図である。

第8図はこの発明の実施の形態2における復調部を用いたシステムのイメージを示す図である。

第9図はこの発明の実施の形態2における復調部の動作を示すフローチャートである。

第10図はこの発明の実施の形態3による変復調装置の 復調部のブロック構成を示す図である。

第11図はこの発明の実施の形態3における復調部を用いたシステムのイメージを示す図である。

第12図はこの発明の実施の形態3における復調部の動作を示すフローチャートである。

第13図はこの発明の実施の形態3における送受信アンテナ間に遮蔽物がある場合の伝送路のイメージを示す図である。

第14図はこの発明の実施の形態5による変復調装置の 復調部のブロック構成を示す図である。

第15図はこの発明の実施の形態5における復調部を用 50 いたシステムのイメージを示す図である。 第16図はこの発明の実施の形態5における復調部の動作を示すフローチャートである。

第1/図はこの発明の実施の形態5における受信信号と 推定により求められた直接波成分および反射波成分の時 間関係を示す図である。

第18図はこの発明の実施の形態7による変復調装置の 復調部のブロック構成を示す図でる。

第19図はこの発明の実施の形態7における復調部を用いたシステムの動作を説明するための図である。

第20図はこの発明の実施の形態7における復調部の動作を示すフローチャートである。

第21図はこの発明の実施の形態7におけるドップラーシフトによる周波数偏差を説明するための図である。

第22図はこの発明の実施の形態8による変復調装置の 復調部のブロック構成を示す図である。

第23図はこの発明の実施の形態8における復調部の動作を示すフローチャートである。

第24図はこの発明の実施の形態9における伝送路推定 のためのシステムのイメージを示す図である。

第25図はこの発明の実施の形態10による変復調装置の 20 等化器用スイッチのブロック構成を示す図である。

第26図はこの発明の実施の形態10における等化器用スイッチの動作を示すフローチャートである。

第27図はこの発明の実施の形態11による変復調装置の 伝送速度決定部のブロック構成を示す図である。

第28図はこの発明の実施の形態11における伝送速度決定部の動作を示すフローチャートである。

第29図はこの発明の実施の形態12による変復調装置の 送信部のブロック構成を示す図である。

第30図はこの発明の実施の形態12による送信部を用いたシステムのイメージを示す図である。

第31図はこの発明の実施の形態12における送信部の動作を示すフローチャートである。

第32図はこの発明の実施の形態12における推定によって求められた直接波成分と反射波成分の時間関係を示す図である。

第33図はこの発明の実施の形態12における送信アンテナの動作を説明するための図である。

第34図はこの発明の実施の形態13による変復調装置の変調部のブロック構成を示す図である。

第35図はこの発明の実施の形態13における変調部を用いたシステムのイメージを示す図である。

第36図はこの発明の実施の形態13における変調部の動作を示すフローチャートである。

第37図はこの発明の実施の形態14による伝送路推定回路のブロック構成を示す図である。

第38図はこの発明の実施の形態14における伝送路推定 回路の動作を示すフローチャートである。

第39図はこの発明の実施の形態14における幾何情報認識補助装置の出力の一例を示す図である。

12

第40図はこの発明の実施の形態14における幾何情報認 識の動作を説明するための図である。

第41図はこの発明の実施の形態15による変復調装置の 変調部のブロック構成を示す図である。

第42図はこの発明の実施の形態15における変調部の動作を示すフローチャートである。

発明を実施するための最良の形態

以下、この発明をより詳細に説明するために、この発明を実施するための最良の形態について、添付の図面に 10 従って説明する。

実施の形態1.

第3図はこの発明の実施の形態1による伝送路推定回路のブロック構成を示す図である。図において、11は周囲の状態を幾何学的に取り込むカメラ等による幾何情報入力装置であり、12はこの幾何情報入力装置11によって取り込まれた幾何情報中の、相手局のアンテナである送信アンテナのサーチを行い、得られた送信アンテナの位置情報を出力する幾何情報認識装置である。13は幾何情報入力装置11が取り込んだ幾何情報と幾何情報認識装置12から出力される送信アンテナの位置情報をもとに、伝送路モデルを作成するモデル作成装置である。41はこれら幾何情報入力装置11、幾何情報認識装置12およびモデル作成装置13で構成される伝送路推定回路である。

また、第4図は上記伝送路推定回路41が用いられた伝送路推定のためのシステムのイメージを示す図である。図において、100は市街地の道路を走行している車両であり、110はこの車両100に搭載されている、図面には現れない自局の無線端末のアンテナ(以下、車載アンテナという)である。120は車両100に搭載されて、走行中の市街地の状況を撮影して幾何学的に取り込む、前記幾何情報入力装置11としての車載カメラであり、130はこの車載カメラ120の撮像範囲である。141,142は市街地は道路上に配置された柱上に設置された相手局の無線端末としての基地局でり、151,152は前記幾何情報認識装置12にてサーチされる送信アンテナとしての、この基地局141あるいは142の柱上アンテナである。

次に動作について説明する。

40

ここで、第4図に示すように、無線端末を搭載した車両100が市街地の道路上を矢印で示す方向に走行しており、この車両100に搭載された無線端末を用いて基地局141と通信を行うのに先出って、車載アンテナ110と柱上アンテナ151との間の伝送路の状態を推定する場合について考える。そのときの、第3図に示した伝送路推定回路41の動作フローを第5図に示す。

第5図のステップST1においてまず、第4図に示すように車両100の前面に取り付けられた幾何情報入力装置1(車載カメラ120)によって、車両100の進行方向の市街地の状況を撮影してその幾何情報を取り込む。第6図にこの幾何情報入力装置11によって取り込まれた幾何情の報の一例を示す。図示のように、楕円で示した車載カメ

ラ120の撮像範囲130内の画像が幾何情報として取り込ま れる。

次にステップST2において、幾何情報認識装置12は幾 何情報入力装置11の取り込んだ第6図に示す幾何情報の 中から、パターン認識等の幾何情報認識によって送信ア ンテナ(柱上アンテナ151)をサーチする。送信アンテ ナが認識できたらステップST3に進み、受信アンテナ (車載アンテナ110) との位置関係を幾何学的に求め、 その送信アンテナの位置情報をモデル作成装置13に出力 する。なお、この送信アンテナとの位置関係を3次元的 10 に求めるにあたっては、例えば車載カメラ120のオート フォーカス機構よりそれを求めることが可能である。

次にステップST4において、モデル作成装置13はこの 幾何情報認識装置12が出力する送信アンテナの位置情報 と、幾何情報入力装置11が取り込んだ幾何情報をもとに 伝送路モデルとしての3次元伝送路モデルを作成する。 なお、以下の説明では、作成される伝送路モデルはすべ て3次元伝送路モデルであるものとする。ここで、モデ ル作成装置13にて3次元伝送路モデルを作成するにあた っては、取り込んだ幾何情報に加えて距離情報が必要で あるが、各建造物や移動物の距離情報は、この場合も例 えば車載カメラ120のオートフォーカス機構により求め ることができる。

伝送路推定回路41の出力するこの3次元伝送路モデル を用いて、送信機のアンテナと受信機のアンテナとの間 の伝送路の推定が行われる。

ととで、伝送路推定回路41より出力される3次元伝送 路モデルによって求まるものとしては、例えば、所望の 送信アンテナ(柱上アンテナ151,152)の位置情報(距 離、髙さ、方向等)や、周囲の建造物を考慮した通信バ 30 ある。また、160は柱上アンテナ151からの電波が建造物 ス、各通信パスにおける信号の遅延量や位相等である。 また、車両と車両の間などの移動体間で通信を行う場合 には、前記各情報に加えて、対象物の速度や移動方向が 求まる。

以上のように、この実施の形態1によれば、幾何学的 に所望の送信アンテナの位置を推定することにより、よ り精度よく相手局のアンテナをサーチすることができ、 また、取り込んだ幾何情報を用いて伝送路モデルを作る ことで、より高い精度で伝送路状態の推定を行うことが 可能となり、伝送路の伝送品質を常時モニタしている必 要もなくなって、回線効率を向上させることができるな どの効果がある。

なお、上記説明では3次元伝送路モデルをリアルタイ ムに作成するものを示したが、一旦作成した3次元伝送 路モデルについては、そのモデルに対して回転や、拡大 および縮小などの演算操作を行うことにより、幾何情報 入力装置11からの入力のたびに3次元伝送路モデルを作 成する必要をなくし、全体的な演算量を削減することも 可能である。ただし、幾何情報入力装置11からの入力に よって新たに追加された物体情報や距離情報について

14

は、その都度、既存の3次元伝送路モデルにそれを追加 してゆく。

また、上記説明では幾何情報入力装置11として車載カ メラ120を用いた場合を例に説明を行ってきたが、この 幾何情報入力装置11は3次元伝送路モデルを作成するた めの情報収集手段であるので、例えば、赤外線カメラや レーダー、ソナーなどの他の装置で代替してもよいこと はいうまでもない。

実施の形態2.

第7図はこの発明の実施の形態2による変復調装置の 復調部のブロック構成を示す図であり、この復調部は上 記実施の形態1において説明したものと同一構成の伝送 路推定回路を用いて構成されている。図において、41は その伝送路推定回路であり、14はこの伝送路推定回路41 の作成した3次元伝送路モデルに基づく情報によってそ の指向性の変更が可能な受信アンテナである。15はこの 受信アンテナ14で受信された受信信号の復調処理を行 い、処理結果を復調データとして出力する復調器であ る。51はこれら伝送路推定回路41、受信アンテナ14およ 20 び復調器15で構成される復調部である。

また、第8図は上記復調部51を備えた変復調装置が用 いられた伝送路推定のためのシステムのイメージを示す 図である。図において、100は車両、110は車載アンテ ナ、120は車載カメラ、130は車載カメラ120の撮像範 囲、141,142は基地局、151,152は柱上アンテナであり、 これらは図4に同一符号を付して示した実施の形態1に おけるそれらに相当する部分である。なお、車載アンテ ナ110は伝送路推定回路41からの情報に従ってその指向 性を変える、前記受信アンテナ14として機能するもので などによって反射されることなく直接車載アンテナ110 で受信される直接波である。

次に動作について説明する。

ここで、第8図に示すように、無線端末を搭載した車 両100が市街地の道路上を矢印で示す方向に走行してお り、この車両100に搭載された無線端末を用いて基地局1 41からの信号を受信する場合について考える。そのとき の第7図に示した復調部51の動作フローを第9図に示 す。

まずステップST11において伝送路推定回路41が、実施 の形態1の場合と同様にして、第8図のように車両100 の前面に取り付けられた車載カメラ120で進行方向の幾 何情報を取り込み、送信機と受信機の間の3次元伝送路 モデルを作成する。次にステップST12において、伝送路 推定回路41はその3次元伝送路モデルを用いて、送信ア ンテナ(柱上アンテナ151)の位置情報に後段に接続さ れた受信アンテナ14(車載アンテナ110)に対して出力 し、受信アンテナ14はこの伝送路推定回路41からの送信 アンテナの位置情報をもとに自身の指向性を送信アンテ 50 ナの方向に変更する。

以下、この処理を繰り返すことによってリアルタイム でアンテナの制御を行うことができ、常に自局の受信ア ンテナ14の指向性を相手局の送信アンテナの方向に合わ せておき、確実に直接波160を受信することができる。

以上のように、との実施の形態2によれば、幾何学的 に相手局の送信アンテナの位置を推定することで、より 精度よく直接波160を受信することができ、マルチパス 成分を除去することが可能となって、より高い品質の通 信を行うことができる効果がある。 実施の形態3.

なお、上記実施の形態2では、伝送路推定回路41から 受信アンテナ14に対して直接、送信アンテナの位置信号 を入力してその指向性を制御する場合について説明した が、伝送路推定回路41で求めた伝送路モデルをもとに送 信機と受信機の間のパスの推定を行い、それに基づいて 受信アンテナ14の指向性を制御するようにしてもよい。

第10図はこの発明の実施の形態3による変復調装置の 復調部のブロック構成を示す図であり、相当部分には図 7と同一の符号を付してその説明を省略する。図におい て、16は伝送路推定回路41と受信アンテナ14との間に配 20 置された、伝送路推定回路41にて求められた3次元伝送 路モデルをもとに送信機と受信機の間のバスの推定を行 って、受信アンテナ14にその指向性を制御するための制 御信号を送出するバス推定装置である。52はこのバス推 定装置16と、伝送路推定回路41、受信アンテナ14および 復調器15によって構成された復調部である。

また、第11図は上記復調部52を備えた変復調装置が用 いられた伝送路推定のためのシステムのイメージを示す 図であり、相当部分には図8と同一の符号を付してその 説明を省略する。図において、171,172は送信アンテナ としての柱上アンテナ151からの電波が、建造物などに よって反射されて受信アンテナとしての車載アンテナ11 0まで到達する反射波であり、180は通信を行わない基地 局142の柱上アンテナ152から車載アンテナ110への電波 である。

次に動作について説明する。

この場合も実施の形態2と同様に、第11図のごとく市 街地の道路上を矢印で示す方向に走行している車両100 に搭載された無線端末を用いて基地局141からの信号を 受信する場合について考える。そのときの第10図に示し た復調部52の動作フローを第12図に示す。

実施の形態2と同様にして、まずステップST21におい て、伝送路推定回路41が進行方向の幾何情報を取り込ん で3次元伝送路モデルを作成し、それをバス推定装置16 に対して出力する。次にステップST22において、パス推 定装置16はこの伝送路推定回路41から受け取った3次元 伝送路モデルをもとに、第11図に示す直接波160、反射 波171,172などのパスを推定し、それによって得られた バスの中から通信に最適なバスを求め、その最適なバス を選択できるようにするために受信アンテナ14に対して 50 置が用いられた伝送路推定のためのシステムのイメージ

16

制御信号を出力する。次にステップST23において、受信 アンテナ14はこのバス推定装置16から送られてきた制御 信号に基づいて、最も通信に適したパスの方向にその指 向性を変更する。

ここで、第11図に示すように、送信アンテナである柱 上アンテナ151と受信アンテナ14である車載アンテナ110 との間になんらの遮蔽物もなければ、ステップST22にお いて、柱上アンテナ151と車載アンテナ110の間の直接波 160のパスが最適なパスとして求められる。一方、第13 図に示されるように、柱上アンテナ151と車載アンテナ1 10 10との間に遮蔽物190があって、柱上アンテナ151からの 直接波160が車載アンテナ110公届かない場合には、ステ ップST22において、反射波171あるいは172のパスの中か ら伝送品質が良いと推定されたパスが最適なパスとして 求められる。

以下、この処理を繰り返すことによってリアルタイム で受信アンテナ14の指向性の制御を行うことができ、そ れによって常に最適なパスを用いて通信を行うことがで きるので、品質の高い通信を行うことが可能となる。

以上のように、この実施の形態3によれば、常に伝送 路モデルにより求められた最適なパスを用いて通信を行 うため、さらに、直接波160が遮蔽物190により遮断され るような場合でも髙品質な通信を行うことが可能とな り、また、急激な伝送路の変動にも追従することができ るなどの効果がある。 実施の形態4.

ことで、上記実施の形態3においては、受信機(車載 端末) 側で、通信に適したパスの方向に受信アンテナの 指向性を変える場合について説明したが、この処理を送 30 信機(基地局)側で行ってもよい。そのような場合に は、3次元伝送路モデルで送信機と受信機の間のバスの 中で最も最適なパスを推定し、その推定結果に従って送 信アンテナ(柱上アンテナ)の指向性を変えることにな る。

実施の形態5.

40

第14図はこの発明の実施の形態5による変復調装置の 復調部のブロック構成を示す図である。図において、41 は実施の形態1で説明したものと同一構成の伝送路推定 回路であり、17はこの伝送路推定回路41にて求められた 3次元伝送路モデルをもとに送信機と受信機の間のバス を推定し、得られたパス情報を出力するパス推定装置で ある。18は無指向性の受信アンテナであり、19はパス推 定装置17の出力するパス情報を用いて、受信アンテナ18 の受信信号の中からマルチパス成分を除去または合成す ることによって、マルチパス成分の影響を抑える復調器 である。53はこれら伝送路推定回路41、バス推定装置1 7、受信アンテナ18および復調器19で構成される復調部

また、第15図はこのような復調部53を備えた変復調装

行う。

17

を示す図であり、各部には第11図の相当部分と同一符号を付してその説明は省略する。

次に動作について説明する。

この場合においても、実施の形態2と同様に、第15図に示すように車両100に搭載された無線端末を用いて基地局141からの信号を受信する場合を考える。そのときの第14図に示した復調部53の動作フローを第16図に示す。

まず、ステップST31において、実施の形態2と同様にして伝送路推定回路41で3次元伝送路モデルを作成し、それを後段に接続されたパス推定装置17に対して出力する。パス推定装置17はこの伝送路推定回路41よりも3次元伝送路モデルを受け取ると、ステップST32において、それをもとにパスの推定を行う。パス推定装置17ではこの推定されたパスについて、遅延時間、位相の回転量、減衰量等を求め、これらの情報をパス情報として後段に接続された復調器19に出力する。復調器19はパス推定装置17よりパス情報を受け取ると、ステップST33において、それらを用いて受信信号の中からマルチパス成分、すなわち反射波171および172の成分を除去または合成することにより、マルチパス成分の影響を抑える。

今、バス推定装置17によるバスの推定の結果、第15図 に示すように、直接波160のバスと、2つの反射波171および172のバスが推定されらとする。無指向性の受信アンテナ18で受信される信号はこの3つの経路を通った信号が合成されたものとなっている。この3つの受信信号の中の反射波171,172の成分は、直接波160の成分に比べて経路長が長いため遅延を生じ、また、反射によって信号の位相も変化している。そのため受信信号はこれら2つの反射波171,172の信号成分によって歪みを受けることになり、伝送品質を低下させる大きな原因となっている。従って、この反射波171および172の信号成分を取り除くことを考える。

次にこの反射波171,172の成分を除去する例を第17図 を用いて説明する。

ここで、バス推定装置17によるバス推定の結果、バスは直接波160のバスと2つの反射波171,172のバスが存在し、各々のバスのバラメータが以下のように求められたものとする。

直接波160:遅延時間=0、反射なし

反射波171:遅延時間= 口、反射係数=0.5

反射波172:遅延時間 = t2、反射係数 = 0.25

このパラメータをもとに、受信信号を直接波160の成分および反射波171と172の成分の3つの信号成分に分解する。第17図に受信信号とそれら各信号成分の波形を示す。なお、第17図(a)は受信信号を、同図(b)は直接波160の成分を、同図(c)は反射波171の成分を、同図(d)は反射波172の成分をそれぞれ示している。復調器19はこのようにして求められた各信号成分の中から、直接波160の成分だけを用いて復調データの生成を

18

以上のように、この実施の形態5によれば、3次元伝 送路モデルより求められたパス情報を用いて受信信号か らマルチパス成分を除去しているので、受信アンテナ18 として無指向性アンテナを用いても、マルチパスの影響

の無い高い品質の通信を行うことができる効果がある。

なお、上記説明では復調器19ではバス推定装置17で求められたバス情報を用いて、受信信号の中から反射波171,172の成分を除去することにより、マルチバス成分の影響を抑えていたが、バス推定装置17からのバス情報を用いて反射波171,172の成分と直接波160の成分とを合成することによってもマルチバルス成分の影響を抑えることは可能である。

また、上記説明においては、送信アンテナと受信アンテナの間に遮蔽物が無い場合に、バス情報を用いて受信信号の中から反射波171,172の成分を除去または合成することにより、マルチバス波成分の影響を抑えるものを示したが、第13図のように直接波160のバスに遮蔽物190があるような場合には、反射波171あるいは172の中から伝送品質がよいと推定された信号以外の反射波を除去するか、それらを合成することによりマルチバス成分の影響を抑える。

実施の形態6.

ここで、上記実施の形態2〜実施の形態5では、屋外での基地局と車載端末との間で通信する場合を例に説明したが、それらを構内無線ローカル・エリア・ネットワーク(以下、構内無線LANという)等の屋内通信に適用することも可能である。その場合、壁、天井等の建造物や、机や棚等の設置物は固定であるので、これらの情報30をあらかじめ記憶しておくことで、伝送路モデルを構成する物体の3次元伝送路モデルをリアルタイムで作成する必要がなくなり、リアルタイムでセンシングしなければならない物体を減らすことが可能となるため、より少ない演算処理で目的を達成することができる。実施の形態7.

なお、上記各実施の形態においては、基地局と車両に 搭載された無線端末との間で通信する移動体通信システムや、機内無線LANなどに適用した場合について説明したが、周回衛星を用いた衛星通信システムに適用するこ 40 とも可能である。

第18図はそのような衛星通信システムで用いられる、この実施の形態7による変復調装置の復調部のブロックを示す図であり、この復調部も実施の形態1において説明したものと同一構成の伝送路推定回路41を備えている。図において、20はその伝送路推定回路41で求められた3次元伝送路モデルをもとに、伝送路を切り替えるチャネル切り替えすなわち衛星切り替えが発生した時のドップラーシフトによる周波数偏差量を推定し、衛星切り替え時には推定された周波数偏差量を周波数情報として50 出力する周波数偏差演算回路である。21は衛星切り替え

時には周波数偏差演算回路20の出力する周波数情報に基づいて、ドップラーシフトによる衛星切り替え時の周波数偏差量を除去する回路を持った復調器である。54はこれら伝送路推定回路41、周波数偏差演算回路20および復調器21で構成される復調部である。

また、第19図はこのように構成された復調部54を有する変復調装置を用いた衛星通信システムの動作を説明するための図である。図において、200は上記変復調装置を備えた地上局のアンテナである。211は現在地上局と通信している通信衛星であり、その周回運動によって矢 10 印Aで示すように、このアンテナ200より遠ざかるものである。また、212は衛星切り替えによって次に地上局と通信を開始する通信衛星であり、その周回運動によって矢印Bで示すように、アンテナ200に近づいてくるものである。

次に動作について説明する。

ここで、第20図は上記第18図に示すように構成された 復調部54の動作を示すフローチャートであり、第21図は ドップラーシフトによる周波数偏差を説明するための図 である。

まずステップST41において、伝送路推定回路41が取り込んだ幾何情報をもとに3次元伝送モデルを作成する。なお、この3次元伝送路モデルの作成は実施の形態2と同様に行われる。ここで、この3次元伝送路モデルに用いられる通信衛星としては、現在通信中の通信衛星211と、チャネル切り替え(衛星切り替え)後に接続が予定されている通信衛星212の2つであるとする。通信衛星21はアンテナ200より遠ざかりつつあるので、ドップラーシフトによってその周波数は低い方に遷移し、逆に、通信衛星212はアンテナ200に近づきつつあるので、ドップラーシフトによってその周波数は高い方に遷移する。従って、通信衛星211から通信衛星212への衛星切り替えを行った場合、そのドップラーシフトによって大きな周波数偏差が生じる。

周波数偏差演算回路20ではステップST42において、この伝送路推定回路41から送られてくる3次元伝送路モデルをもとに、常時衛星切り替え時のドップラーシフトによる周波数偏差量を推定しておく。その後、ステップST43において衛星切り替えが検出されるとステップST44に進み、周波数偏差演算回路20は推定した周波数偏差量を周波数情報として復調器21に出力する。復調器21ではステップST45において、この周波数偏差演算回路20から出力される周波数情報に基づいてドップラーシフトによる周波数偏差量を除去して復調処理を実行する。

ここで、第21図に示した例によれば、現在通信を行っている通信衛星211は地上局のアンテナ200より遠ざかってゆくので、その通信に使用されている周波数 f_a はドップラーシフトによって、本来のチャネル周波数 f_a よりも周波数偏差量 Δf_a だけ低い周波数となっている。また、次に接続が予定されている通信衛星212は地上局のアン

テナ200に近づいてくるので、通信衛星212との通信開始時に移行すると予想される周波数 f_1 はドップラーシフトによって、本来のチャネル周波数 f_2 よりも周波数倡差量 Δf_1 だけ高い周波数となる。周波数個差演算回路20では、この通信衛星211のドップラーシフトによる周波数個差量 Δf_1 と通信衛星212のドップラーシフトによる周波数個差量 Δf_1 との和 Δf_1 ($\Delta f_1 = \Delta f_1 + \Delta f_2$)を、衛星切り替えが生じた場合に予想される周波数個差量として常時推定しておくととになる。

以上のように、この実施の形態7によれば、チャネル切り替え(衛星切り替え)時のドップラーシフトによる周波数偏差量を常時推定しておくことにより、チャネル切り替え時にドップラーシフトによる周波数偏差量を除去することができるので、より高速な初期引き込みが可能になる効果がある。

実施の形態8.

20

ここでは、この発明の実施の形態8として、実施の形 態2における変復調装置の復調部に、実施の形態7の周 波数偏差演算回路と周波数偏差量を除去する復調器とを 適用したものについて説明する。第22図はこの実施の形 態8による変復調装置の復調部のブロック構成を示す図 である。図において、41は実施の形態1で説明したよう に構成された伝送路推定回路、14はこの伝送路推定回路 41の作成した3次元伝送路モデルに基づく情報によって その指向性の変更が可能な受信アンテナであり、20は伝 送路推定回路41からの3次元伝送路モデルより推定され た周波数偏差量を、衛星切り替え時に周波数情報として 出力する周波数偏差演算回路、21はその周波数情報をも とに衛星切り替え時の周波数偏差量を除去する回路を持 った復調器である。この伝送路推定回路41および受信ア ンテナ14は実施の形態2で用いられたものと同一のもの であり、周波数偏差演算回路20および復調器21は実施の 形態7で用いられたものと同一のものである。55はこれ ら伝送路推定回路41、受信アンテナ14、周波数偏差演算 回路20なよび復調器21で構成される復調部である。

次に動作について説明する。

てこで、第23図は上記第22図に示すように構成された 復調部55の動作を示すフローチャートである。実施の形 態7の場合と同様にして、まずステップST51にて伝送路 40 推定回路41が3次元伝送路モデルを作成し、ステップST 52において周波数偏差演算回路20が、伝送路推定回路41 で求められた3次元伝送路モデルをもとに、常時衛星切 り替え時のドップラーシフトによる周波数偏差量を推定 しておく。そして、ステップST53で衛星切り替えを監視 し、衛星切り替え時にはステップST54に進んで、伝送路 推定回路41が3次元伝送路モデルに基づく送信アンテナ の位置情報(通信中の衛星の位置情報)を、受信アンテナ ナ14に対して出力する。受信アンテナ14はステップST55 において、その送信アンテナの位置情報をもとに、自身 50 の指向性を送信アンテナの方向に変更する。次にステッ プST56において周波数倡差演算回路20が、3次元伝送路 モデルより推定した周波数倡差量を周波数情報として復 調器21に対して出力する。この周波数情報を受け取った 復調器21は、ステップST57においてドップラーシフトに よる衛星切り替え時の周波数倡差量を除去して復調処理 を実行する。

以上のように、この実施の形態8によれば、衛星切り替え時にドップラーシフトによる周波数偏差量を除去できるので、より高速な初期引き込みが可能になるとともに、マルチバスの成分が除去されて、より高品質な通信 10が可能となる効果がある。

なお、上記説明では、実施の形態2における変復調装置の復調部に対して、実施の形態7における周波数偏差 演算回路と復調器とを適用したものを示したが、実施の 形態3~実施の形態5における変復調装置の復調部に対 して、実施の形態7における周波数偏差演算回路と復調 器とを適用できることはいうまでもない。

そのようにすることで、初期引き込みをより高速に行うことが可能になるとともに、遮蔽物で直接波が遮断されるような場合にも高品質な通信ができ、急激な伝送路の変動にも容易に追従可能となり、あるいは無指向性のアンテナを用いても十分に高品質な通信を行うことができる効果を奏する。

実施の形態9.

ととで、上記実施の形態8においては、周回衛星を用いた衛星通信システムに適用した場合を例に説明していたが、これを移動している車両相互間の通信に適用することも可能である。第24図はこの発明の実施の形態9による伝送路推定のためのシステムのイメージを示す図である。図において、101~103はそれぞれ市街地の道路上を移動している車両であり、111~113はそれら各車両101~103に搭載された無線端末の車載アンテナ、121~123は周囲の状況を幾何学的に取り込むための、各車両101~103の車載カメラである。

次に動作について説明する。

実施の形態7の場合と同様にして、通信を行う車両の位置を幾何学的に認識する。さらに、次にチャネル切り替えによって通信を行うと予想される車両についても位置を幾何学的に認識する。そして、3次元伝送路モデルを作成し、常時チャネル切り替え時のドップラーシフトによる周波数偏差量を推定しておく。チャネル切り替え時には受信アンテナの指向性を変更するとともに、ドップラーシフトによる周波数偏差量を除去する。また、自局のアンテナの指向性を所望のアンテナ(通信相手のアンテナ)とすることや、マルチバス成分を抑えることで、所望の相手以外からの干渉波を抑えることができる。

実施の形態10.

第25図はこの発明の実施の形態10による変復調装置に 態を診断する。そして、このステップST72の診断によっ おける、復調部の等化器の動作/停止制御のための等化 50 て求められた伝送路の状態をもとに、ステップST73で最

器用スイッチのブロック構成を示す図である。図において、41は実施の形態1で説明したものと同一構成の伝送路推定回路である。22はこの伝送路推定回路41で求められた3次元伝送路モデルをもとに、送信機と受信機の間のパスの推定を行い、当該変復調装置の復調部内に配さ

22

れた等化器の必要性を判定し、その判定結果に基づく制御信号をその等化器に出力する判定回路である。61はこれら伝送路推定回路41およ判定回路22で構成される等化器用スイッチである。

次に動作について説明する。

ことで、第26図は上記第2図に示すように構成された 等化器用スイッチ61の動作を示すフローチャートであ る。まずステップST61において、伝送路推定回路41が実 施の形態1と同様にして、進行方向の幾何情報を取り込 んで3次元伝送路モデルを作成し、それを判定回路22に 対して出力する。判定回路22はステップST62において、 との伝送路推定回路41より送られてきた3次元伝送路モデルをもとにパスの推定を行い、その推定結果を用いて 等化器が必要であるか否かの判定を行う。判定の結果、 等化器が必要であればステップST63において、判定回路 22は後段に接続された当該変復調装置の復調部の等化器 に対して、それを動作させるための制御信号を出力して 等化器を動作させる。一方、等化器が不要の場合にはステップST63において、等化機の動作を停止させる。 制御信号を出力して等化器の動作を停止させる。

以上のように、この実施の形態10によれば、周囲の状況から等化器のオン/オフを判定することで、等化器の不必要な動作を停止させることができ、装置の低消費電力化が可能になる効果がある。

0 実施の形態11.

20

第27図はこの発明の実施の形態11による変復調装置に おける、伝送速度決定のための伝送速度決定部のブロック構成を示す図である。図において、41は実施の形態 1 で説明したものと同一構成の伝送路推定回路であり、23 はこの伝送路推定回路41で求められた3次元伝送路モデルをもとに、送信機と受信機の間の伝送路の状態を診断し、伝送に適した伝送速度の決定を行う送信路診断回路である。71はこれら伝送路推定回路41および伝送路診断回路23で構成される伝送速度決定部である。

) 次に動作について説明する。

ててで、第28図は上記第27図に示すように構成された 伝送速度決定部71の動作を示すフローチャートである。 実施の形態 1 と同様にして、伝送路推定回路41がまずステップST71において、進行方向の幾何情報を取り込み3次元伝送路モデルを作成し、それを伝送路診断回路23に対して出力する。伝送路診断回路23はステップST72において、その伝送路推定回路41より送られてきた3次元伝送路モデルをもとに送信機と受信機との間の伝送路の状態を診断する。そして、このステップST72の診断によって求められた伝送路の状態をもとに、ステップST73で最

適な伝送速度を決定し、それに基づく制御信号を当該伝 送路診断回路23の後段に接続されている変調器および復 調器に出力して伝送速度を操作する。例えば、伝送路の 状態が良い場合には高速伝送を行い、伝送路の状態が悪 い場合には低速伝送を行う。

以上のように、この実施の形態11によれば、送信機と 受信機との間の伝送路の状態を診断し、その診断結果に 対応した伝送速度で通信を行うことが可能となるので、 より最適な伝送速度で通信を行うことができる効果があ る。

実施の形態12.

なお、上記実施の形態5 においては、車両に搭載された車載カメラを用いて、送信アンテナである柱上アンテナのサーチを行うものについて説明したが、基地局(送信機)側より車両に搭載された無線端末(受信機)の車載アンテナをサーチするようにしてもよい。

第29図はこの発明の実施の形態12による復調変調装置の送信部のブロック構成を示す図である。図において、41は実施の形態5で用いられたものと同じ伝送路推定回路であり、17は実施の形態5で用いられたものと同じパ 20ス推定装置である。また、24はこのパス推定装置17によって求められたパス情報に基づく制御信号を、後述する送信アンテナに対して出力する送信制御部である。25はこの送信制御部24から送られてきた制御信号に基づいて送信パターンを決定し、その送信パターンに従って送信信号を送信する、指向性を有した送信アンテナである。81はこれら伝送路推定回路41、パス推定装置17、送信制御部24および送信アンテナ25で構成された送信部である。

また、第30図はこのような送信部81を備えた変復調装 30 置が用いられた伝送路推定のためのシステムのイメージ を示す図であり、各部には第15図の相当部分と同一符号 を付してその説明は省略する。

次に動作について説明する。

この場合も、実施の形態愛5の場合と同様に、第30図 に示す車両100の車載無線端末と基地局141の間で通信を 行う場合を考える。そのときの第29図に示した送信部81 の動作フローを第31図に示す。

まずステップST81において、伝送路推定回路41が3次元伝送路モデルを作成してそれをバス推定装置17に送出する。それを受けたバス推定装置17は、ステップST82において、その3次元伝送路モデルを用いて送信機と受信機の間のバスを推定し、推定結果に基づくバス情報を送信制御部24に出力する。この場合、実施の形態5の場合とは異なり、車載カメラ120を用いて柱上アンテナ151のサーチを行うのではなく、基地局141より車両100の車載アンテナ110がサーチされることになる。

今、このバス推定装置17によるバス推定の結果、第30 図に示す直接波160のバスと、2つの反射波171および17 2のバスが推定されたものとする。第32図にそれら各バ スの信号成分の波形を示す。すなわち、第32図(a)には直接波160の成分が、同図(b)には反射波171の成分が、同図(c)には反射波172の成分がそれぞれ示されている。ここで、もし送信側(基地局141側)で制御を行わなければ、受信アンテナ(車載アンテナ110)において受信される受信信号はこの3つの経路を通った信号が合成されるので、実施の形態5の第17図(a)に示すような受信信号になる。そこで送信側で送信アンテナ25(柱上アンテナ51)に対して送信バターンの制御を行う10ことでマルチパスの影響を抑えることを考える。

24

そのため、次にステップST83において、送信制御部24はバス推定装置17より受け取ったバス情報を用いて、推定された第30図に示す3つのバスの中で最も状態の良いバスを用いて通信を行うことができるように、所望のバスにのみ送信アンテナ25のビームを設定するための送信バターンを作成して送信アンテナ25に出力する。次にステップST84において、送信アンテナ25は受け取った送信バターンに応じて自身の指向性の制御を行って送信信号を送信する。これにより、不要なバスは存在しなくなってマルチバスの影響を抑えることができる。また、このように送信側で制御することにより、受信アンテナが無指向性アンテナであってもマルチバスの影響をなくすことができる。

なお、上記説明では、送信アンテナ25のビームを所望のパスにすることでマルチパスの影響を抑えていたが、送信アンテナ25にマルチビームアンテナを用い、マルチパスの影響を抑えるように各ビームを制御することでも実現できる。パス推定の結果、第32図に示すように反射波171,172の直接波160に対する遅延時間がそれぞれは、t2であるとわかっているので、送信時に各パスに対して遅延を与え、受信アンテナにおいて反射波遅延を生じないようにする。

例えば、第30図に示す柱上アンテナ151 (通信アンテナ25) を3 ビームアンテナとし、各ビームの指向性を直接波160のビーム(ビーム3)、反射波171のビーム(ビーム2)、反射波172のビーム(ビーム1)の3 方向に設定する。そして、各ビームに対して第33図に示すように

ビーム1:遅延=0

ビーム2:遅延= t2- t1

ビーム3:遅延=t2

のように遅延を与えて送信する。

このようにすることで、受信機における受信信号には 遅延波が存在しなくなるので、マルチパスの影響を抑え ることができる。

以上のように、この実施の形態12によれば、送信機側でマルチパス成分の影響を抑えるように制御を行っているので、受信機には等化器が不要となり、さらにマルチパス成分が無くなるため、受信側では無指向性のアンテ 50 ナを使用しても十分に品質の高い通信を行うことができ

20

25

る効果がある。 実施の形態13.

第34図はこの発明の実施の形態13による変復調装置の 変調部のブロック構成を示す図である。図において、41 は実施の形態1で説明したものと同一構成の伝送路推定 回路であり、20はこの伝送路推定回路41の求めた3次元 伝送路モデルをもとにドップラーシフトによるチャネル 切り替え時の周波数偏差量を推定し、チャネル切り替え 時には推定された周波数偏差量を周波数情報として出力 する周波数偏差演算回路である。26はチャネル切り替え 時には周波数偏差演算回路20から出力される周波数情報 に基づいて、ドップラーシフトによるチャネル切り替え 時の周波数偏差量を除去する回路を持ち、送信信号を変 調処理して出力する変調器である。91はこれら伝送路推 定回路41、周波数偏差演算回路20なよび変調器26で構成 される変調部である。なお、伝送路推定回路41および周 波数偏差演算回路20は実施の形態7にて用いられたもの と同じである。

また、第35図はこのような変調部91を備えた変復調装置が用いられた伝送路推定のためのシステムのイメージを示す図であり、各部には第15図の相当部分と同一符号を付してその説明は省略する。

次に動作について説明する。

なお、ここでは、無線端末を搭載した車両100が市街地に道路を走行しており、この車載端末を用いて基地局と通信する場合を例に説明する。今、第35図に示すように、車載端末を用いて基地局142と通信しているものとする。そのとき、車両100は矢印で示すように、基地局142から基地局141の方向に進んでおり、ある時点で車載端末は基地局142から基地局141に通信チャネルの切り替えを行う。その場合、実施の形態7と同様に、ドップラーシフトにより車載端末における受信信号は、基地局141で送信する周波数より高い周波数側に周波数偏差を持つことになる。この周波数偏差を基地局141側にて推定し、送信時にその周波数偏差量を除去するような周波数で送信することを考える。そのときの第34図に示した変調部91の動作フローを第36図に示す。

まずステップST91において、伝送路推定回路41が周囲の幾何情報を取り込んで3次元伝送路モデルを作成し、それを周波数偏差演算回路20に対して出力する。ここて、自局(基地局141)に対してチャネル切り替えを行うと予想される車載端末については、基地局142などの他局からの情報をもとにサーチしてもよいし、自局の近辺の全ての車載端末を認識してモデル化するようにしてもよい。次にステップST92において、周波数偏差演算回路20が伝送路推定回路41より受けた3次元伝送路モデルに基づいて、常時チャネル切り替え時のドップラーシフトによる周波数偏差量を推定しておく。

そして、ステップST93でチャネル切り替えの監視を行い、チャネル切り替え時にはステップST94に進んで、推 50

26

定された周波数倡差量を周波数情報として変調器26公出力する。次にステップST95において、チャネル切り替え時に変調器26が周波数倡差演算回路20から出力された周波数情報に基づいて、チャネル切り替えが行われる車載端末において、ドップラーシフトによる周波数偏差量を除去できるように送信周波数を制御する。

このようにすることで、チャネル切り替え時に、ドップラーシフトによる周波数偏差量を除去することができるようになり、受信側(車載端末側)ではチャネル切り替え時にドップラーシフトによる周波数偏差を考慮する必要がなくなり、より高速な初期引き込みが可能になる。

なお、第35図に示した例では、自局(基地局141)に対してチャネル切り替えを行ってくると予想される車載端末は、自局に向かっている。従って、もし、基地局141が周波数f。で送信をすれば、ドップラーシフトにより車載端末では周波数f。+ Δ fで受信されることになる。よって、車載端末側でチャネル切り替えによる周波数偏差を生じないようにするためには、チャネル切り替え発生時に、変調器26で送信周波数をf。+ Δ fと設定する。そのため、周波数偏差演算回路20では伝送路推定回路41からの3次元伝送路モデルを用いてこの周波数偏差量 Δ fを常時推定しておくことになる。そして、チャネル切り替え発生時にはこの Δ fを周波数情報として変調器26に出力し、変調器26ではこの周波数情報に従って送信周波数を制御する。

以上のように、この実施の形態13によれば、送信側でチャネル切り替え時のドップラーシフトによる周波数偏差量 Δ f を常時推定しておくことで、チャネル切り替え時にこのドップラーシフトによる周波数偏差量を除去することが可能となり、受信側ではチャネル切り替え時にドップラーシフトによる周波数偏差を考慮する必要がなくなって、より高速な初期引き込みが可能になる効果がある。

実施の形態14.

第37図はこの発明の実施の形態14による伝送路推定回路のブロック構成を示す図であり、この実施の形態14は実施の形態1において説明した伝送路推定回路41に、グローバル・ポジショニング・システム(以下、GPSという)を用いた幾何情報認識補助装置を付加したものである。なお、相当部分には第3図と同一符号を付してその説明を省略する。図において、27は幾何情報入力装置11の取り込んだ幾何情報から相手局の送信アンテナを認識する場合に、GPSから得られる地図情報をもとにアンテナの認識を容易にするための幾何情報認識補助装置であり、42はこの幾何情報認識補助装置27、および幾何情報入力装置位11、幾何情報認識装置12、モデル作成装置13によって構成される伝送路推定回路である。

次に動作について説明する。

ことで、第38図は上記第37図に示すように構成された

30

伝送路推定回路42の動作を示すフローチャートであり、 第39図はこの伝送路推定回路42の幾何情報認識補助装置 27の出力の一例を示す図、第40図は幾何情報認識補助装 置27の幾何情報認識の動作を説明するための図である。

実施の形態1と同様に、まずステップST101におい て、車載カメラなどによる幾何情報入力装置11にて進行 方向の周囲の状況を幾何学的に取り込む。ことで、一般 的には相手局の送信アンテナの位置は未知であるので、 周囲の状況の幾何情報認識においては、取り込んだ幾何 情報の全ての領域について幾何情報認識を行う必要があ った。ここで、GPSのように、走行している車両の現在 位置がわかる場合について考える。GPSでは、第39図に 示すように、地図上で自分の現在位置を認識することが できる。従って、送信アンテナ(柱上アンテナ151)の 位置や周辺の建造物が既知である場合には、この地図上 に送信アンテナや建造物の情報(設置場所、設置高、形 状等)を記載しておく。例えば、第39図の例では、走行 時にGPSを用いた幾何情報認識補助装置27から、基地局1 41の柱上アンテナ151の位置は道路左側との情報を得る ことで、第40図に示すように、取り込んだ車載カメラの 20 撮像範囲130の幾何情報のうちの、処理領域131で示され る道路より左側の部分に対してのみ幾何情報認識を行 う。

以上のように、この実施の形態14によれば、幾何情報 認識に際して不要な領域の幾何情報認識を行わなくて済 むため、アンテナサーチ、および伝送路状態の推定の処 理が簡略化され、それらの処理をさらに高速化すること ができる効果がある。

実施の形態15.

なお、上記実施の形態2~実施の形態13では、上記実 施の形態 1 に示した伝送路推定回路41を用いた変復調装 置について説明したが、上記実施の形態14に示した伝送 路推定回路42を用いるようにしてもよい。ここでは、実 施の形態2に示した変復調装置において、実施の形態1 による伝送路推定回路41のかわりに、実施の形態14によ る伝送路推定回路42を用いた場合を例に説明する。

第41図はこの発明の実施の形態15による変復調装置の 復調部のブロック構成を示す図である。図において、42 は実施の形態14で説明したものと同一構成の伝送路推定 回路であり、14はこの伝送路推定回路42の作成した3次 元伝送路モデルに基づく情報によってのその指向性の変 更が可能な受信アンテナ、15はこの受信アンテナ14で受 信された受信信号の復調処理を行い、処理結果を復調デ ータとしてを出力する復調器である。56はこれら伝送路 推定回路42、受信アンテナ14および復調器15で構成され る復調部である。なお、上記受信アンテナ14および復調 器15は実施の形態2に記載されたものと同一のものであ る。

次に動作について説明する。

28

ととで、第42図は上記第41図に示すように構成された 復調部56の動作を示すフローチャートである。実施の形 態1の場合と同様に、まずステップST111において伝送 路推定回路42が、取り込まれた幾何情報の中からパター ン認識等の幾何情報認識によって送信アンテナをサーチ する。そのとき、実施の形態14において説明したよう に、送信アンテナの位置や周辺の建造物が既知である場 合には、GPSを用いた幾何情報認識補助装置27から、送 信アンテナや建造物についての設置場所、設置高、形状 等の情報を得る。伝送路推定回路42は次に、ステップST 112において得られた3次元伝送路モデルを用い、送信 アンテナの位置を位置情報として受信アンテナ14亿対し て出力する。次にステップST113において、受信アンテ ナ14は受け取った位置情報をもとに、自身の指向性を送 信アンテナの方向に変更する。

以上のように、との実施の形態15によれば、幾何情報 認識補助装置27を有する復調部56を用いることで、幾何 情報認識において不要な領域の幾何情報認識を行わなく て済むため、マルチパス成分を除去できてより高品質な 通信を行うことができるという実施の形態2の効果に加 えて、所望のアンテナの認識が容易になって、処理をよ り高速化することができるという効果もある。

なお、上記説明では、実施の形態2による復調部51に 実施の形態14の伝送路推定回路42を適用したものを示し たが、実施の形態3~実施の形態9における復調部52~ 55、実施の形態10亿おける等化器用スイッチ61、実施の 形態11における伝送速度決定部71、実施の形態12におけ る送信部81、あるいは実施の形態13における変調部91に 実施の形態14の伝送路推定回路42を適用した場合には、 それら各実施の形態の効果とともに、さらに所望のアン テナの認識が容易になり、処理の高速化がはかれる効果 がある。

産業上の利用可能性

以上のように、この発明に係る伝送路推定回路は、移 動体通信システムや衛星通信システムなどにおける変復 調装置において、複数存在する伝送路の中から最良の伝 送路を推定する際、あるいはチャネル切り替え時にドッ ブラーシフトによる周波数偏差の影響を除去する際に、 その復調部、等化器用スイッチ、伝送速度決定部、送信 部、変調部などに用いるのに適している。

また、この発明に係る変復調装置は、送信側と受信側 との間に反射などによる複数の伝送路が存在する、移動 体通信システムや衛星通信システムなどの変復調装置と して、特に、伝送路に急激な変動がある場合や、無線端 末の移動によって通話中にチャネル切り替えが生じるよ うな場合に、マルチパスの影響を除去して、より品質の 高い通信を行う際の変復調装置として用いるのに適して いる。

【第5図】

【第8図】

【第9図】

【第11図】

【第12図】

【第18図】

【第13図】

【第14図】

【第15図】

【第16図】

【第20図】

【第21図】

【第22図】

【第24図】

【第25図】

【第23図】

【第26図】

【第27図】

【第29図】

【第28図】

【第30図】

【第31図】

【第32図】

【第33図】

【第34図】

【第35図】

【第36図】

【第40図】

【第37図】

【第38図】

【第41図】

【第42図】

フロントページの続き

(51)Int.Cl.⁷

識別記号

FΙ

H O 4 L 12/00

H 0 4 L 11/00

(56)参考文献 特開 平8-194029 (JP, A)

特開 平7-235900(JP, A)

特開 平8-204590(JP, A)

森浩徳、外3名, "レイトレース法を 用いたマイクロセル遅延波到来方向特性 の検討", 信学技報, 平成9年6月, V ol. 97, No. 132 (SSE97-45, RCS97-40), p. 53-58

今井哲郎、藤井輝也, "レイトレース を用いた市街地対応移動通信伝搬推定シ ステム",信学技報,平成9年6月,V ol. 97,No. 132 (SSE97-42, RCS97-37),p. 31-38 (58)調査した分野(Int.Cl.', DB名)

H04B 7/00

H04B 7/02 - 7/26 113

H04L 1/02 - 1/06

H04Q 7/00 - 7/04