Space-efficient set differences with applications to Jaccard estimation

Yoshihiro Shibuya¹, Djamal Belazzougui² and Gregory Kucherov¹

 LIGM, CNRS, Univ. Gustave Eiffel, Marne-la-Vallée, France
CAPA, DTISI, Centre de Recherche sur l'Information Scientifique et Technique, Algiers, Algeria

Context

Bottom-s minHash sketches of size s = 5.

$$J_{AB} = \frac{|A \cap B|}{|A \cup B|} \approx \frac{|S(A \cup B) \cap S(A) \cap S(B)|}{|S(A \cup B)|}$$

Problem:

- ▶ If $A \approx B$ choosing small s leads to $J_{AB} = 1$
- Increasing s nullies the space advatages of sketching

Figure: Image taken from [Ondov et al., 2016]

This work

Goal:

 Estimate Jaccard similarity of very similar sequences using small space

Assumptions:

- ► All sequence pairs are of high similarity
- Storing all k-mer sets explicitly is not possible

Ideas:

- Use Invertible Bloom Look-up Tables (IBLTs) instead of minHash sketches
- Combine IBLTs with syncmers for further space reductions

Invertible Bloom Look-up Tables

Invertible Bloom Look-up Tables (IBLTs) are inspired by Bloom filters:

- ▶ A table *T* of *m* buckets
- ▶ r (pair-wise) independent hash functions $h_1(\cdot), \dots, h_r(\cdot)$ mapping elements to $[1, \dots, m]$
- ▶ An additional (global) hash function $h_e(\cdot)$

- ► Each bucket contains:
 - ► A counter C
 - A hash field H
 - ► A payload *P*

С	Н	Р
0	0	0
0	0	0

- ► Each bucket contains:
 - ► A counter C
 - A hash field H
 - ► A payload P

(The utility of H and $h_e(\cdot)$ will be explained later)

С	Н	Р
0	0	0
0	0	0

- ► Each bucket contains:
 - ► A counter C
 - A hash field H
 - ► A payload P

(The utility of H and $h_e(\cdot)$ will be explained later)

- insertions
- deletions

- ► Each bucket contains:
 - A counter C
 - A hash field H
 - ► A payload P

(The utility of H and $h_e(\cdot)$ will be explained later)

- insertions
- deletions
- listing of the elements they contain
 - Succeeds (with high probability, w.h.p.) depends on the number of stored elements compared to IBLT size
 - An over-charged IBLT can be listed again if enough elements are removed

ı			Р
	C	Н	P
	0	0	0
i			
		•••	• • • •
	0	0	0

IBLT: dimensioning

- ▶ IBLTs are closely related to *r*-hypergraphs
 - nodes are buckets
 - edges are the elements stored
- Listing is equivalent to peeling the hypergraph
 - ▶ a r-hypergraph of m nodes and n edges is peelable w.h.p. iff $m > c_r n$
 - c_r is a peelability threshold (constant)
 - for r=3, $c_r \approx 1.23$ [Goodrich and Mitzenmacher, 2011]

IBLT: insertions and deletions

Insertions

```
Data: new element p, IBLT T foreach j in [1, \cdots, r] do  \begin{vmatrix} i \leftarrow h_j(p); \\ T[i].C \leftarrow T[i].C + 1; \\ T[i].H \leftarrow T[i].H \oplus h_e(p); \\ T[i].P \leftarrow T[i].P \oplus p;  \end{vmatrix}  end
```

Deletions

```
Data: element p to be deleted, IBLT T foreach j in [1, \dots, r] do i \leftarrow h_j(p); T[i].C \leftarrow T[i].C - 1; T[i].H \leftarrow T[i].H \oplus h_e(p); T[i].P \leftarrow T[i].P \oplus p; end
```

Since \oplus (bitwise XOR) is the inverse of itself deleting elements from fields H and P is the same as inserting them.

ACA	0x04
ACG	0x06
AGC	0x09
ATG	0x0E
CAC	0x11
CAT	0x13
CGA	0x18
CGT	0x1B
GAC	0x21
GCA	0x24
GCG	0x26
GTC	0x2D
TAG	0x32
TCG	0x36
TGC	0x39
TTA	0x3C

С	Н	Р
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0

ACA	0x04-				
ACG	0x06				
AGC	0x09				
ATG	0x0E	\x3			
CAC	0x11	/^3	C	Н	Р
CAT	0x13			•	0
CGA	0x18		0	0	0
CGT	0x1B	\rightarrow	3	0xDB	0x04
GAC	0x21		0	0	0
GCA	0x24		0	0	0
GCG	0x26		0	0	0
GTC	0x2D		0	0	0
TAG	0x32		U	U	U
TCG	0x36				
TGC	0x39				
TTA	0x3C				

ACA	0x04				
ACG	0x06				
AGC	0x09				
ATG	0x0E				
CAC	0x11		C	Н	Р
CAT	0x13		7	0. D0	0.04
CGA	0x18		7	0xD3	0x24
CGT	0x1B	\rightarrow	11	0x78	0x0F
GAC	0x21		6	0xCB	0x3D
GCA	0x24		7	0x61	0x31
GCG	0x26		8	0xEE	0x26
GTC	0x2D	x2/	9		OxOA
TAG	0x32		9	0xB9	UXUA
TCG	0x36				
TGC	0x39				
TTA	0x3C				

IBLT: difference

С	Н	Р
7	0xD3	0x24
11	0x78	0x0F
6	0xCB	0x3D
7	0x61	0x31
8	OxEE	0x26
9	0xB9	OxOA

- subtract a modified version of input A, called B from T
 - ► B obtained from A by replacing CAC with CGC

The sketch is now peelable:

С	Н	Р
0	0x78	80x0
-1	0x6E	0x19
0	0x00	0x00
-1	0x6E	0x19
0	0x00	0x00
2	0x00	0x00

С	Н	Р
0	0x78	0x08
-1	0x6E	0x19
0	0x00	0x00
-1	0x6E	0x19
0	0x00	0x00
2	0x00	0x00

The sketch is now peelable:

start by finding a bucket i with |T[i].C| = 1

С	Н	Р
0	0x78	80x0
-1	0x6E	0x19
0	0x00	0x00
-1	0x6E	0x19
0	0x00	0x00
2	0x00	0x00

The sketch is now peelable:

start by finding a bucket i with |T[i].C| = 1

С	Н	Р
0	0x78	0x08
-1	0x6E	0x19
0	0x00	0x00
-1	0x6E	0x19
0	0x00	0x00
2	0x00	0x00

- start by finding a bucket i with |T[i].C| = 1
- extract k-mer stored in T[i].P: $0x19 \rightarrow CGC$

С	Н	Р
0	0x78	0x08
-1	0x6E	0x19
0	0x00	0x00
-1	0x6E	0x19
0	0x00	0x00
2	0x00	0x00

- start by finding a bucket i with |T[i].C| = 1
- extract k-mer stored in T[i].P: $0 \times 19 \rightarrow CGC$
- ▶ delete CGC from *T*

С	Н	Р
1	0x16	0x11
0	0x00	0x00
2	0x00	0x00

- start by finding a bucket i with |T[i].C| = 1
- extract k-mer stored in T[i].P: $0x19 \rightarrow CGC$
- ▶ delete CGC from *T*

С	Н	Р
1	0x16	0x11
0	0x00	0x00
2	0x00	0x00

- start by finding a bucket i with |T[i].C| = 1
- extract k-mer stored in T[i].P: $0x19 \rightarrow CGC$
- delete CGC from T
- new peelable buckets can appear

С	Н	Р
1	0x16	0x11
0	0x00	0x00
2	0x00	0x00

- start by finding a bucket i with |T[i].C| = 1
- extract k-mer stored in T[i].P: $0x19 \rightarrow CGC$
- delete CGC from T
- new peelable buckets can appear

С	Н	Р
1	0x16	0x11
0	0x00	0x00
2	0x00	0x00

- start by finding a bucket i with |T[i].C| = 1
- extract k-mer stored in T[i].P: $0x19 \rightarrow CGC$
- delete CGC from T
- new peelable buckets can appear
- ▶ delete CAC from *T*

С	Н	Р
1	0x16	0x11
0	0x00	0x00
2	0x00	0x00

- start by finding a bucket i with |T[i].C| = 1
- extract k-mer stored in T[i].P: $0x19 \rightarrow CGC$
- delete CGC from T
- new peelable buckets can appear
- ▶ delete CAC from *T*

С	Н	Р
0	0x00	0x00

- start by finding a bucket i with |T[i].C| = 1
- extract k-mer stored in T[i].P: $0\times19 \rightarrow CGC$
- delete CGC from T
- new peelable buckets can appear
- delete CAC from T
- ► {CAC,CGC} is the symmetric difference between A and B

Use two IBLTs instead of minHash sketches to compute Jaccard:

 \blacktriangleright build sketches T_A and T_B of size m from A and B

- \blacktriangleright build sketches T_A and T_B of size m from A and B
- ▶ subtract T_B from T_A to obtain T_{AB}

- \blacktriangleright build sketches T_A and T_B of size m from A and B
- ightharpoonup subtract T_B from T_A to obtain T_{AB}
- ▶ retrieve the symmetric difference $(A \setminus B) \cup (B \setminus A)$ by peeling T_{AB}
 - ▶ elements in $(A \setminus B)$ can be recognized from $(B \setminus A)$ by the sign of their count field

- \blacktriangleright build sketches T_A and T_B of size m from A and B
- ▶ subtract T_B from T_A to obtain T_{AB}
- ▶ retrieve the symmetric difference $(A \setminus B) \cup (B \setminus A)$ by peeling T_{AB}
 - ightharpoonup elements in $(A \setminus B)$ can be recognized from $(B \setminus A)$ by the sign of their count field
- compute Jaccard as

$$J(A,B) = \frac{|A| - |A \setminus B|}{|A| + |B \setminus A|} = \frac{|B| - |B \setminus A|}{|B| + |A \setminus B|}.$$

- \blacktriangleright build sketches T_A and T_B of size m from A and B
- ▶ subtract T_B from T_A to obtain T_{AB}
- ▶ retrieve the symmetric difference $(A \setminus B) \cup (B \setminus A)$ by peeling T_{AB}
 - ▶ elements in $(A \setminus B)$ can be recognized from $(B \setminus A)$ by the sign of their count field
- compute Jaccard as

$$J(A,B) = \frac{|A| - |A \setminus B|}{|A| + |B \setminus A|} = \frac{|B| - |B \setminus A|}{|B| + |A \setminus B|}.$$

- ► All previous methods based on IBLTs left *B* unsketched
 - ▶ inspired by [Porat and Lipsky, 2007] we obtain T_{AB} by doing $T_A T_B$
 - T_A and T_B must have the same number of buckets and the same hash functions

Reducing space - lightweight IBLTs

Hash field H is used to detect false peelable buckets

- ▶ |T[i].C| = 1 can arise due to unrelated k-mer colliding into the same bucket
- ▶ A false peelable bucket is detected whenever $h_e(T[i].P) \neq T[i].H$

Reducing space - lightweight IBLTs

Hash field H is used to detect false peelable buckets

- ▶ |T[i].C| = 1 can arise due to unrelated k-mer colliding into the same bucket
- ▶ A false peelable bucket is detected whenever $h_e(T[i].P) \neq T[i].H$

We remove H to save space:

Reducing space - lightweight IBLTs

Hash field H is used to detect false peelable buckets

- ▶ |T[i].C| = 1 can arise due to unrelated k-mer colliding into the same bucket
- ▶ A false peelable bucket is detected whenever $h_e(T[i].P) \neq T[i].H$

We remove H to save space:

- For a potential peelable bucket at position i we check $i \in h_1(T[i].P), \dots, h_r(T[i].P)$
- ► Failure probability depends on sketch size *m*

Reducing space - sampling

When comparing a mutated sequence to its original:

- ▶ Up-to *k* new *k*-mers for each mutation
- ► Symmetric difference up to *k* times bigger than what would be necessary

Reducing space - sampling

When comparing a mutated sequence to its original:

- ▶ Up-to *k* new *k*-mers for each mutation
- ► Symmetric difference up to *k* times bigger than what would be necessary

Sampling k-mers before inserting them into an IBLT can help.

Reducing space - sampling

When comparing a mutated sequence to its original:

- ▶ Up-to *k* new *k*-mers for each mutation
- ► Symmetric difference up to *k* times bigger than what would be necessary

Sampling k-mers before inserting them into an IBLT can help.

Three different possibilities:

- 1. hash-based sampling
- 2. minimizers: biased estimators of Jaccard similarity [Belbasi, Blanca, Harris, Koslicki, and Medvedev, 2022]
- 3. syncmers

Reducing space - sampling

When comparing a mutated sequence to its original:

- ▶ Up-to *k* new *k*-mers for each mutation
- Symmetric difference up to k times bigger than what would be necessary

Sampling k-mers before inserting them into an IBLT can help.

Three different possibilities:

- 1. hash-based sampling
- 2. minimizers: biased estimators of Jaccard similarity [Belbasi, Blanca, Harris, Koslicki, and Medvedev, 2022]
- 3. syncmers

Which one to choose?

Hash-based sampling vs minimizers vs syncmers

All methods use the same sampling rate ν by choosing minimizer and syncmer lengths accordingly. Each point is the average over 500 trials using simulated sequences of length $L=10{\rm K}.$

IBLT dimensioning with syncmers

Assuming

- Sequences of length L
- ightharpoonup mutation rate p_m
- ▶ *k* large enough to have unique *k*-mers
- syncmer parameter z

IBLT dimensioning with syncmers

Assuming

- Sequences of length L
- \triangleright mutation rate p_m
- ▶ *k* large enough to have unique *k*-mers
- syncmer parameter z

we have

- ▶ 2*k* new *k*-mer per mutation in the symmetric difference
- $\triangleright p_m L$ mutations
- syncmer density $\approx \frac{2}{k-z+1}$ [Edgar, 2021]

IBLT dimensioning with syncmers

Assuming

- Sequences of length L
- \triangleright mutation rate p_m
- ▶ k large enough to have unique k-mers
- ▶ syncmer parameter z

we have

- ▶ 2*k* new *k*-mer per mutation in the symmetric difference
- $\triangleright p_m L$ mutations
- syncmer density $\approx \frac{2}{k-z+1}$ [Edgar, 2021]

Then the expected number n in the symmetric difference of syncmer sets is:

$$n = \frac{4kp_mL}{k - z + 1}$$

Results

- 1. minHash comparisons on:
 - ▶ Subsample of 50 SARS-CoV-2 genomes.
 - ► Subsample of 28 *Streprococcus Pneumoniae*. All sequences have pairwise mutation rates < 0.0005

minHash vs IBLTs on SARS-CoV-2 with k = 15, z = 4

minHash vs IBLTs on S. Pneumoniae with k = 15, z = 4

Conclusion

When sequences are of high similarity:

- 1. k-mer set difference can be found without storing the whole sets
- 2. $T_{AB} = T_A T_B$ instead of $T_A B = T_A B$
- 3. Hash field H can be removed in order to save space
- 4. Syncmers + IBLTs are better than minHash sketches for Jaccard estimation

Additional work

Further results not presented here include:

- ightharpoonup Hash-based sampling + syncmers ightharpoonup even smaller sketches + (errors)
- Retrieval of supersets k-mer set symmetric differences by tracking only n' < kn differences

Preprint: "Efficient reconciliation of genomic datasets of high similarity" at doi.org/10.1101/2022.06.07.495186

Implementation

IBLTs implemented in "km-peeler" at https://github.com/yhhshb/km-peeler

▶ Make use of the *k*-mers in the symmetric difference:

- ► Make use of the *k*-mers in the symmetric difference:
 - ► Locally assemble them ?
 - ▶ Use them as seeds ?

- ► Make use of the *k*-mers in the symmetric difference:
 - ► Locally assemble them ?
 - ▶ Use them as seeds ?
- ► Improve km-peeler:
 - ► Store multiplicities together with *k*-mers
 - Variable-length payload fields P

- ► Make use of the *k*-mers in the symmetric difference:
 - ► Locally assemble them ?
 - ▶ Use them as seeds ?
- ► Improve km-peeler:
 - ► Store multiplicities together with *k*-mers
 - ► Variable-length payload fields P
- Other applications
 - Fast VCF difference computation for genotyping
 - Efficient unique substring identification

References I

- Mahdi Belbasi, Antonio Blanca, Robert S. Harris, David Koslicki, and Paul Medvedev. The minimizer jaccard estimator is biased and inconsistent. bioRxiv, 2022. doi: 10.1101/2022.01.14.476226. URL https://www.biorxiv.org/content/early/2022/01/17/2022.01.14.476226.
- Robert Edgar. Syncmers are more sensitive than minimizers for selecting conserved k-mers in biological sequences. *PeerJ*, 9:e10805, February 2021. ISSN 2167-8359. doi: 10.7717/peerj.10805. URL https://peerj.com/articles/10805.
- Michael T. Goodrich and Michael Mitzenmacher. Invertible Bloom lookup tables, 2011. URL https://arxiv.org/abs/1101.2245.
- Brian D. Ondov, Todd J. Treangen, Páll Melsted, Adam B. Mallonee, Nicholas H. Bergman, Sergey Koren, and Adam M. Phillippy. Mash: fast genome and metagenome distance estimation using MinHash. *Genome Biology*, 17(1):132, June 2016. ISSN 1474-760X. doi: 10.1186/s13059-016-0997-x. URL https://doi.org/10.1186/s13059-016-0997-x.

References II

Ely Porat and Ohad Lipsky. Improved sketching of hamming distance with error correcting. In Bin Ma and Kaizhong Zhang, editors, *Combinatorial Pattern Matching*, pages 173–182, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. ISBN 978-3-540-73437-6.

Sampling syncmers before IBLT insertion

Figure: Effect of sampling syncmers before IBLT insertion on the average absolute error. η is the compression rate $(1/\nu)$ used for sampling syncmer sets before IBLT insertion. $\eta=1$ means no sampling (full syncmer sets).

IBLTs vs KMC - mutation probability = 0.001

IBLTs vs KMC - mutation probability = 0.01

