WHAT IS CLAIMED IS:

1. A compound of Formula 1

$$A_1 \xrightarrow{X}_{Y} \xrightarrow{Z}_{N} \xrightarrow{N}_{R_1} \xrightarrow{N}_{R_2} \xrightarrow{N}_{W} \xrightarrow{A_2}$$

Formula 1

or a pharmaceutically acceptable salt thereof, wherein

A₁ is an optionally substituted di-alkylamino, an optionally substituted aryl group, an optionally substituted 5- or 6- membered heteroaryl group, an optionally substituted bicyclic heteroaryl group having a 5-membered heteroaryl ring fused to a phenyl ring, an optionally substituted partially unsaturated or aromatic heterocyclic group having two 6-membered rings, an optionally substituted 5- to 7-membered heterocycloalkyl group containing at least one nitrogen atom and 0 or 1 additional heteroatoms, an optionally substituted partially unsaturated 5- to 7-membered heterocycloalkyl group containing at least one nitrogen atom and 0 or 1 additional heteroatoms, a 5- or 6-membered heterocycloalkyl group fused to a phenyl or heteroaryl ring, or a fused or spiro 8 to 11-membered bicyclic heterocycloalkyl group containing at least one nitrogen atom and 0 to 3 additional heteroatoms;

A₂ is

$$(ix)$$

$$R_{16}$$

$$R_{11}$$

$$(xi)$$

(xiii)
$$R_{13}$$
 R_{14} R_{12} R_{13} R_{14} R_{12}

$$R_{13}$$
 R_{14} R_{12} R_{12}

(x)

R₁₁ / \ R₁₃ R₁₄

`R₁₂

R₁₆

API-0002

t is 0 or 1;

X and W are independently O, S, NR, or absent, where R is hydrogen, optionally substituted C₁-C₆alkyl, or optionally substituted aryl(C₀-C₄alkyl);

V is C₁-C₆ alkyl, C₂-C₆alkenyl, C₃-C₇cycloalkyl, or absent;

Y is C_1 - C_6 alkyl, C_1 - C_6 alkyl substituted with C_3 - C_7 cycloalkyl, C_2 - C_6 alkenyl, C_3 - C_7 cycloalkyl, or absent;

wherein when V is absent, W is absent;

Z is carbonyl, thiocarbonyl, imino, or C_1 - C_6 alkylimino;

R₁ and R₂ are independently hydrogen, or

R₁ and R₂ are independently C₁-C₆alkyl, C₂-C₆ alkenyl, or C₂-C₆ alkynyl, each of which is substituted with 0 to 3 substituents independently chosen from halogen, hydroxy, amino, C₁-C₄alkoxy, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy, or

R₁ and R₂ are joined to form a 5- to 7-membered saturated or mono-unsaturated ring optionally containing one additional heteroatom chosen from N, S, and O, which 5- to 7-membered saturated or mono-unsaturated ring is substituted with 0 to 3 substituents independently chosen from halogen, hydroxy, amino, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₄alkyl)amino, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy;

 R_{10} is C_1 - C_6 alkyl;

R₁₁ and R₁₂ each represent 0 to 3 substituents independently chosen from halogen, hydroxy, cyano, C₁-C₆alkyl, C₁-C₆alkoxy, mono- and di-(C₁-C₆alkyl)amino, C₂-C₆alkanoyl, C₁-C₂haloalkyl, C₁-C₂haloalkoxy, and phenyl; and

 R_{13} and R_{14} are independently chosen at each occurrence from hydrogen and C_1 - C_4 alkyl;

 R_{15} is C_4 - C_6 alkoxy or C_4 - C_6 alkyl;

R₁₆ is C₂-C₆alkoxy or C₂-C₆alkyl; and

R₁₇ represents 0 to 2 substituents independently chosen from halogen, methyl, and methoxy;

- 2. A compound or salt according to Claim 1 wherein
- A₁ is a di-(C₁-C₆alkyl)amino, an aryl group, a 5- or 6- membered heteroaryl group, a bicyclic heteroaryl group having a 5-membered heteroaryl ring fused to a phenyl ring, a partially unsaturated or aromatic heterocyclic group having two 6-membered rings, a 5- to 7-membered heterocycloalkyl group containing at least one nitrogen atom and 0 or 1 additional heteroatoms, a partially unsaturated 5- to 7-membered heterocycloalkyl group containing at least one nitrogen atom and 0 or 1 additional heteroatoms, a 5- or 6-membered heterocycloalkyl group fused to a phenyl or heteroaryl ring, or a fused or spiro 8 to 11-membered bicyclic heterocycloalkyl group containing at least one nitrogen atom and 0 to 3 additional heteroatoms; each of which A₁ is substituted with 0 to 5 substituents independently chosen from:
- (a) halogen, hydroxy, cyano, amino, nitro, oxo, -COOH, -CONH₂, -SO₂NH₂, -SH, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy,
- (b) C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆alkynyl, C₁-C₆alkoxy, C₂-C₆alkenyloxy, C₁-C₄alkoxy(C₁-C₄alkyl), amino(C₁-C₆)alkyl, mono- and di-(C₁-C₆alkyl)amino, mono- and di-(C₁-C₄alkyl)aminoC₁-C₄alkyl, C₂-C₆alkanoyl, C₂-C₈alkanoyloxy, C₁-C₈alkoxycarbonyl, -mono- and di-(C₁-C₆alkyl)carboxamide, (C₃-C₇cycloalkyl)carboxamide, mono- and di-(C₁-C₆alkyl)sulfonamide, C₁-C₆alkylthio, aryl(C₀-C₄alkyl)thio, C₁-C₆alkylsulfinyl, and C₁-C₆alkylsulfonyl, and
- (c) -GR_a where
 - G is chosen from -(CH₂)_n-, C₂-C₄alkenyl, C₂-C₄alkynyl, -(CH₂)_nO(CH₂)_m-, and -(CH₂)_nN(CH₂)_m-, where n and m are independently 0, 1, 2, 3, or 4; and R_a is chosen from C₃-C₈cycloalkyl, C₂-C₇monocyclic heterocycloalkyl, C₅-

each of which (b) and (c) is substituted with 0 to 5 substituents independently chosen from halogen, hydroxy, amino, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₄alkyl)amino, C₂-C₄alkanoyl, C₁-C₄alkoxycarbonyl, C₁-C₂haloalkyl, C₁-C₂haloalkoxy, and phenyl; X and W are independently O, S, NR, or absent,

C₁₀bicyclicheterocycloalkyl, indanyl, tetrahydronapthyl, aryl, and heteroaryl;

where R is hydrogen or R is C_1 - C_6 alkyl or aryl(C_0 - C_4 alkyl), each of which is substituted with 0 to 5 substitutents independently chosen from halogen, hydroxy, cyano, amino, nitro, oxo, C_1 - C_2 haloalkyl, C_1 - C_2 haloalkoxy, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, and mono- and di-(C_1 - C_6 alkyl)amino;

V is independently C₁-C₆ alkyl, C₂-C₆alkenyl, C₃-C₇cycloalkyl, or absent;

Y is C₁-C₆ alkyl, C₁-C₆ alkyl substituted with C₃-C₇cycloalkyl, C₂-C₆alkenyl, C₃-C₇cycloalkyl, or absent;

wherein when V is absent, W is absent;

Z is carbonyl, thiocarbonyl, or imino; and

R₁ and R₂ are independently hydrogen, or

R₁ and R₂ are independently C₁-C₆alkyl, C₂-C₆ alkenyl, or C₂-C₆ alkynyl, each of which is substituted with 0 to 3 substituents independently chosen from halogen, hydroxy, amino, C₁-C₄alkoxy, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy, or

R₁ and R₂ are joined to form a 5- to 7-membered saturated or mono-unsaturated ring optionally containing one additional heteroatom chosen from N, S, and O, which 5- to 7-membered saturated or mono-unsaturated ring is substituted with 0 to 3 substituents independently chosen from halogen, hydroxy, amino, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₄alkyl)amino, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy.

- 3. A compound or salt according to Claim 1 or 2 in which Z is thiocarbonyl.
- 4. A compound or salt according to Claim 1 or 2 in which Z is imino or C_1 - C_6 alkylimino.
 - 5. A compound or salt according to Claim 4 in which Z is imino or methylimino.
 - 6. A compound or salt according to Claim 1 or 2 in which Z is carbonyl.
- 7. A compound or salt according to any one of Claims 1 to 6 in which X is oxygen and Y is -CH₂-.

- 8. A compound or salt according to any one of Claims 1 to 6 in which X is oxygen and Y is -CH₂CH₂-.
- 9. A compound or salt according to any one of Claims 1 to 6 wherein when X and Y are absent.
- 10. A compound or salt according to any one of Claims 1 to 9 wherein V and W are absent.
- 11. A compound or salt according to any one of Claims 1 to 9 in which V is C_1 - C_2 alkyl and W is absent.
- $12. \hspace{0.5cm} A \hspace{0.1cm} compound \hspace{0.1cm} or \hspace{0.1cm} salt \hspace{0.1cm} according \hspace{0.1cm} to \hspace{0.1cm} any \hspace{0.1cm} one \hspace{0.1cm} of \hspace{0.1cm} Claims \hspace{0.1cm} 1 \hspace{0.1cm} to \hspace{0.1cm} 11 \hspace{0.1cm} in \hspace{0.1cm} which \hspace{0.1cm} R_1 \hspace{0.1cm} and \hspace{0.1cm} R_2$ are independently

hydrogen, or

- C₁-C₄alkyl, C₂-C₄alkenyl, or C₂-C₄alkynyl, each of which is substituted with 0 to 3 substituents independently chosen from halogen, hydroxy, amino, C₁-C₄alkoxy, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy.
- 13. A compound or salt according to Claim 12 in which R₁ and R₂ are independently hydrogen, methyl, or ethyl.
 - 14. A compound or salt according to Claim 13 in which R_1 and R_2 are both hydrogen.
- 15. A compound or salt according to any one of Claims 1 to 11 in which R₁ and R₂ are joined to form a 5- to 7-membered saturated or mono-unsaturated ring optionally containing one additional heteroatom chosen from N, S, and O, which 5- to 7-membered saturated or mono-unsaturated ring is substituted with 0 to 3 substituents independently chosen from halogen, hydroxy, amino, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₄alkyl)amino, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy.

- 16. A compound or salt according to Claim 15 in which
- R₁ and R₂ are joined to form a 5- to 7-membered saturated or mono-unsaturated ring containing no additional heteroatoms, which 5- to 7-membered saturated or mono-unsaturated ring is substituted with 0 to 3 substituents independently chosen from halogen, hydroxy, amino, C₁-C₂alkyl, and C₁-C₂alkoxy.
- 17. A compound or salt according to any one of Claims 2 to 16 wherein A₁ is aryl, a partially unsaturated heterocyclic group, or heteroaryl group; substituted with 0 to 5 substituents independently chosen from:
- (a) halogen, hydroxy, cyano, amino, nitro, oxo, -COOH, -CONH₂, -SO₂NH₂, -SH, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy, and
- (b) C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆alkynyl, C₁-C₆alkoxy, C₂-C₆alkenyloxy, C₁-C₄alkoxy(C₁-C₄alkyl), amino(C₁-C₆)alkyl, mono- and di-(C₁-C₆alkyl)amino, mono- and di-(C₁-C₄alkyl)aminoC₁-C₄alkyl, C₂-C₆alkanoyl, C₂-C₈alkanoyloxy, C₁-C₈alkoxycarbonyl, mono- and di-(C₁-C₆alkyl)carboxamide, (C₃-C₇cycloalkyl)carboxamide, mono- and di-(C₁-C₆alkyl)sulfonamide, C₁-C₆alkylthio, aryl(C₀-C₄alkyl)thio, C₁-C₆alkylsulfinyl, and C₁-C₆alkylsulfonyl, and
- (c) -GR_a where
 - G is chosen from -(CH₂)_n-, C₂-C₄alkenyl, C₂-C₄alkynyl, -(CH₂)_nO(CH₂)_m-, and -(CH₂)_nN(CH₂)_m-, where n and m are independently 0, 1, 2, 3, or 4; and R_a is chosen from C₃-C₈cycloalkyl, C₂-C₇monocyclic heterocycloalkyl, C₅-

C₁₀bicyclicheterocycloalkyl, indanyl, tetrahydronapthyl, aryl, and heteroaryl; each of which (b) and (c) is substituted with 0 to 5 substituents independently chosen from halogen, hydroxy, amino, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₄alkyl)amino, C₂-C₄alkanoyl, C₁-C₄alkoxycarbonyl, C₁-C₂haloalkyl, C₁-C₂haloalkoxy, and phenyl.

- 18. A compound or salt according to Claim 17 wherein
- A₁ is phenyl, naphthyl, pyridyl, pyrimidinyl, thienyl, pyrrolyl, furanyl, pyrazolyl, imidazolyl, thiazolyl, triazolyl, thiadiazolyl, oxazolyl, isoxazolyl, benzofuranyl, benzothiazolyl, benzothiophenyl, benzoxadiazolyl, benzo[d]oxazolyl, dihydrobenzodioxynyl, indolyl, pyrazolopyrimidinyl, thienylpyrazolyl, benzopyranyl, or 4H-chromenyl,
- each of which is substituted with 0 to 5 substituents independently chosen from
- (a) halogen, hydroxy, cyano, amino, nitro, oxo, -COOH, -CONH₂, -SO₂NH₂, -SH, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy, and
- (b) C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆alkynyl, C₁-C₆alkoxy, C₂-C₆alkenyloxy, C₁-C₄alkoxy(C₁-C₄alkyl), amino(C₁-C₆)alkyl, mono- and di-(C₁-C₆alkyl)amino, mono- and di-(C₁-C₄alkyl)aminoC₁-C₄alkyl, C₂-C₆alkanoyl, C₂-C₈alkanoyloxy, C₁-C₈alkoxycarbonyl, -mono- and di-(C₁-C₆alkyl)carboxamide, (C₃-C₇cycloalkyl)carboxamide, mono- and di-(C₁-C₆alkyl)sulfonamide, C₁-C₆alkylthio, aryl(C₀-C₄alkyl)thio, C₁-C₆alkylsulfinyl, and C₁-C₆alkylsulfonyl, and
- (c) –GR_a where
 - G is chosen from -(CH₂)_n-, C₂-C₄alkenyl, C₂-C₄alkynyl, -(CH₂)_nO(CH₂)_m-, and -(CH₂)_nN(CH₂)_m-, where n and m are independently 0, 1, 2, 3, or 4; and R_a is chosen from C₃-C₈cycloalkyl, C₂-C₇monocyclic heterocycloalkyl, C₅-

C₁₀bicyclicheterocycloalkyl, indanyl, tetrahydronapthyl, aryl, and heteroaryl; each of which (b) and (c) is substituted with 0 to 5 substituents independently chosen from halogen, hydroxy, amino, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₄alkyl)amino, C₁-C₂haloalkyl, C₁-C₂haloalkoxy, and phenyl.

19. A compound or salt according to Claim 18 in which

A₁ is phenyl, naphthyl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyrimidin-2-yl, pyrimidinyl-4-yl, pyrimidin-5-yl, thien-2-yl, thien-3-yl, thiazol-4-yl, pyrrol-1-yl, pyrrol-2-yl, pyyrol-3-yl, furan-2-yl, furan-3-yl, pyrazol-1-yl, pyrazol-2-yl pyrazol-4-yl, pyrazol-5-yl, imdiazol-1-yl, imdiazol-2-yl, imdiazol-4-yl, imdiazol-5-yl, thiazol-3-yl, thiazol-3-yl, thiazol-5-yl, 1,2,3-triazol-4-yl, 1,2,3-thiadiazol-5-yl, oxazol-2-yl, isoxazol-4-yl, isoxazol-5-yl, oxazol-2-yl, isoxazol-4-yl, isoxazol-5-yl, benzofuran-2-yl, benzofuran-3-yl, benzopyran-2-yl, benzopyran-3-yl, benzopyran-4-yl, benzo[d]oxazol-2-yl benzo[d]thiazol-2-yl, benzo[b]thiophen-2-yl, 4H-chromen-2-yl, benzo[c][1,2,5]oxadiazolyl, 2,3-dihydrobenzo[b][1,4]dioxin-2-yl, pyrazolo[1,5-a]pyrimidin-5-yl, thieno[2,3-c]pyrazol-4-yl, or 1H-thieno[2,3-c]pyrazol-5-yl,

each of which is substituted with 0 to 5 substituents independently chosen from

- (a) halogen, hydroxy, cyano, amino, nitro, oxo, -COOH, -CONH₂, -SO₂NH₂, -SH, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy, and
- (b) C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆alkynyl, C₁-C₆alkoxy, C₂-C₆alkenyloxy, C₁-C₄alkoxy(C₁-C₄alkyl), amino(C₁-C₆)alkyl, mono- and di-(C₁-C₆alkyl)amino, mono- and di-(C₁-C₄alkyl)aminoC₁-C₄alkyl, C₂-C₆alkanoyl, C₂-C₈alkanoyloxy, C₁-C₈alkoxycarbonyl, -mono- and di-(C₁-C₆alkyl)carboxamide, (C₃-C₇cycloalkyl)carboxamide, mono- and di-(C₁-C₆alkyl)sulfonamide, C₁-C₆alkylthio, aryl(C₀-C₄alkyl)thio, C₁-C₆alkylsulfinyl, and C₁-C₆alkylsulfonyl, and
- (c) –GR_a where

G is chosen from -(CH₂)_n-, C₂-C₄alkenyl, C₂-C₄alkynyl, -(CH₂)_nO(CH₂)_m-, and -(CH₂)_nN(CH₂)_m-, where n and m are independently 0, 1, 2, 3, or 4; and R_a is chosen from C₃-C₈cycloalkyl, C₂-C₇monocyclic heterocycloalkyl, C₅-

C₁₀bicyclicheterocycloalkyl, indanyl, tetrahydronapthyl, aryl, and heteroaryl; each of which (b) and (c) is substituted with 0 to 5 substituents independently chosen from halogen, hydroxy, amino, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₄alkyl)amino, C₁-C₂haloalkyl, C₁-C₂haloalkoxy, and phenyl.

- 20. A compound or salt according to Claim 19 in which A_1 is substituted with 0 to 5 substituents independently chosen from
- (a) halogen, hydroxy, cyano, amino, nitro, oxo, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy, and
- (b) C₁-C₆alkyl, C₁-C₆alkoxy, C₁-C₄alkoxy(C₁-C₄alkyl), amino(C₁-C₄)alkyl, mono- and di-(C₁-C₄alkyl)amino, and mono- and di-(C₁-C₄alkyl)aminoC₁-C₄alkyl; and
- (c) -GR_a where

phenyl,

- G is from -(CH₂)_n-, -(CH₂)_nO(CH₂)_m-, and -(CH₂)_nN(CH₂)_m-, and R_a is C₃-C₈cycloalkyl, 5 or 6-membered heterocycloalkyl containing 1 or 2 heteroatoms independently chosen from O, S, and N, 5- or 6-membered heteroaryl containing 1, 2, or 3 heteroatoms independently chosen from O, S, and N, indanyl, and
- each of which (b) and (c) is substituted with 0 to 5 substituents independently chosen from halogen, hydroxy, amino, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₂alkyl)amino, and C₁-C₂haloalkyl, and C₁-C₂haloalkoxy.
 - 21. A compound or salt according to Claim 20 in which
- A₁ is substituted with 0 to 3 substituents independently chosen from halogen, hydroxy, cyano, amino, nitro, oxo, C₁-C₂haloalkyl, C₁-C₂haloalkoxy, C₁-C₆alkyl, C₁-C₆alkoxy, C₁-C₄alkoxy(C₁-C₄alkyl), amino(C₁-C₄)alkyl, mono- and di-(C₁-C₄alkyl)amino, and mono- and di-(C₁-C₄alkyl)aminoC₁-C₄alkyl.

- 22. A compound or salt according to any one of Claim 3 to 16 wherein A₁ is C₁-C₆ alkyl, C₃-C₇cycloalkyl, or C₂-C₇monocyclic heterocycloalkyl, each of which is substituted with 0 to 5 substituents independently chosen from:
- (a) halogen, hydroxy, cyano, amino, nitro, oxo, -COOH, -CONH₂, -SO₂NH₂, -SH, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy, and
- (b) C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆alkynyl, C₁-C₆alkoxy, C₂-C₆alkenyloxy, C₁-C₄alkoxy(C₁-C₄alkyl), amino(C₁-C₆)alkyl, mono- and di-(C₁-C₆alkyl)amino, mono- and di-(C₁-C₄alkyl)aminoC₁-C₄alkyl, C₂-C₆alkanoyl, C₂-C₈alkanoyloxy, C₁-C₈alkoxycarbonyl, -mono- and di-(C₁-C₆alkyl)carboxamide, (C₃-C₇cycloalkyl)carboxamide, mono- and di-(C₁-C₆alkyl)sulfonamide, C₁-C₆alkylthio, aryl(C₀-C₄alkyl)thio, C₁-C₆alkylsulfinyl, and C₁-C₆alkylsulfonyl, and
- (c) -GR_a where
 - G is chosen from -(CH₂)_n-, C₂-C₄alkenyl, C₂-C₄alkynyl, -(CH₂)_nO(CH₂)_m-, and -(CH₂)_nN(CH₂)_m-, where n and m are independently 0, 1, 2, 3, or 4; and R_a is chosen from C₃-C₈cycloalkyl, C₂-C₇monocyclic heterocycloalkyl, C₅-

C₁₀bicyclicheterocycloalkyl, indanyl, tetrahydronapthyl, aryl, and heteroaryl; each of which (b) and (c) is substituted with 0 to 5 substituents independently chosen from halogen, hydroxy, amino, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₄alkyl)amino, C₂-C₄alkanoyl, C₁-C₄alkoxycarbonyl, C₁-C₂haloalkyl, C₁-C₂haloalkoxy, and phenyl.

- 23. A compound or salt according to Claim 22 wherein
- A₁ is C₁-C₆ alkyl, C₃-C₇cycloalkyl, pyrrolidinyl, piperazinyl, or morpholinyl; each of which is substituted with 0 to 3 substituents independently chosen from:
- (a) halogen, hydroxy, cyano, amino, nitro, oxo, -COOH, -CONH₂, -SO₂NH₂, -SH, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy, and
- (b) C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆alkynyl, C₁-C₆alkoxy, C₂-C₆alkenyloxy, C₁-C₄alkoxy(C₁-C₄alkyl), amino(C₁-C₆)alkyl, mono- and di-(C₁-C₆alkyl)amino, mono- and di-(C₁-C₄alkyl)aminoC₁-C₄alkyl, C₂-C₆alkanoyl, C₂-C₈alkanoyloxy, C₁-C₈alkoxycarbonyl, -mono- and di-(C₁-C₆alkyl)carboxamide, (C₃-C₇cycloalkyl)carboxamide, mono- and di-(C₁-C₆alkyl)sulfonamide, C₁-C₆alkylthio, aryl(C₀-C₄alkyl)thio, C₁-C₆alkylsulfinyl, and C₁-C₆alkylsulfonyl, and
- (c) -GR_a where

G is chosen from -(CH₂)_n-, C₂-C₄alkenyl, C₂-C₄alkynyl, -(CH₂)_nO(CH₂)_m-, and -(CH₂)_nN(CH₂)_m-, where n and m are independently 0, 1, 2, 3, or 4; and R_a is chosen from C₃-C₈cycloalkyl, and phenyl.

24. A compound or salt according to Claim 1 or 2 of Formula 2, wherein:

$$A_{1} \xrightarrow{X} \xrightarrow{Q} \xrightarrow{R_{10}} \xrightarrow{R_{10}} \xrightarrow{R_{11}} \xrightarrow{Formula 2}$$

R₁ and R₂ are hydrogen or methyl;

 R_{10} is C_1 - C_6 alkyl; and

R₁₁ represents 0 to 3 substituents independently chosen from halogen, hydroxy, cyano, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₄alkyl)amino, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy.

25. A compound or salt according to Claim 1 or 2 of Formula 3, wherein:

$$A_{1} \xrightarrow{X} Y \xrightarrow{O} \underset{R_{1}}{\overset{O}{\bigvee}} \underset{R_{2}}{\overset{N}{\bigvee}} \underset{R_{11}}{\overset{N}{\bigvee}} \underset{R_{12}}{\overset{N}{\bigvee}} \underset{Formula 3}{\overset{N}{\bigvee}}$$

R₁ and R₂ are hydrogen or methyl; and

 R_{11} and R_{12} each represent 0 to 3 substituents independently chosen from halogen, hydroxy, cyano, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, mono- and di- $(C_1$ - C_4 alkyl)amino, C_1 - C_2 haloalkyl, and C_1 - C_2 haloalkoxy.

26. A compound or salt according Claim 1 or 2 of Formula 4, wherein:

 R_1 and R_2 are independently hydrogen or methyl;

 R_{11} and R_{12} each represent 0 to 3 substituents independently chosen from halogen, hydroxy, cyano, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, mono- and di- $(C_1$ - C_4 alkyl)amino, C_1 - C_2 haloalkyl, and C_1 - C_2 haloalkoxy; and

R₁₃ and R₁₄ are independently hydrogen or methyl.

27. A compound or salt according to Claim 1 or 2 of Formula 5, wherein

- I offinite

 R_{11} and R_{12} each represent 0 to 3 substituents independently chosen from halogen, hydroxy, cyano, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, mono- and di- $(C_1$ - C_4 alkyl)amino, C_1 - C_2 haloalkyl, and C_1 - C_2 haloalkoxy.

28. A compound or salt according to any one of Claim 1 or 2 of Formula 6, wherein

$$A_1 \xrightarrow{X_1} A_1 \xrightarrow{X_2} A_1 \xrightarrow{X_1} A_2 \xrightarrow{R_{11}} A_1 \xrightarrow{R_{12}} A_1 \xrightarrow{R_{12}} A_1 \xrightarrow{R_{12}} A_1 \xrightarrow{R_{12}} A_1 \xrightarrow{R_{13}} A_2 \xrightarrow{R_{14}} A_1 \xrightarrow{R_{15}} A_2 \xrightarrow{R_{15}} A_2 \xrightarrow{R_{15}} A_3 \xrightarrow{R_{15}} A_4 \xrightarrow{R_{15}} A_5 \xrightarrow{R_{$$

Formula 6

R₁ and R₂ are independently hydrogen or methyl; and

R₁ and R₂ are independently hydrogen or methyl; and

 R_{11} and R_{12} each represent 0 to 3 substituents independently chosen from halogen, hydroxy, cyano, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, mono- and di- $(C_1$ - C_4 alkyl)amino, C_1 - C_2 haloalkyl, and C_1 - C_2 haloalkoxy.

29. A compound or salt according to Claim 1 or 2 of Formula 7:

R₁ and R₂ are independently hydrogen or methyl;

R₁₁ and R₁₂ each represent 0 to 3 substituents independently chosen from halogen, hydroxy, cyano, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₄alkyl)amino, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy; and

 R_{13} and R_{14} are independently hydrogen or methyl.

30. A compound or salt according to Claim 1 or 2 of Formula 8, wherein

$$A_1 \xrightarrow{X_1} A_1 \xrightarrow{X_2} A_1 \xrightarrow{X_1} A_1 \xrightarrow{X_1$$

Formula 8

R₁ and R₂ are independently hydrogen or methyl;

R₁₁ represents 0 to 3 substituents independently chosen from halogen, hydroxy, cyano, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₄alkyl)amino, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy; and

R₁₅ represents C₄-C₆alkoxy or C₄-C₆alkyl.

31. A compound salt according to Claim 1 or 2 of Formula 9, wherein

$$\begin{array}{c|c}
A_1 & X & Y & N & R_{16} \\
\hline
 & N & N & R_{11} \\
R_1 & R_2 & Formula 9
\end{array}$$

R₁ and R₂ are independently hydrogen or methyl;

R₁₁ represents 0 to 3 substituents independently chosen from halogen, hydroxy, cyano, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₄alkyl)amino, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy; and

R₁₆ is C₂-C₆alkoxy or C₂-C₆alkyl.

32. A compound or salt according to Claim 1 or 2 of Formula 10, wherein

Formula 10

R₁ and R₂ are independently hydrogen or methyl;

 R_{11} is represents 0 to 3 substituents independently chosen from halogen, hydroxy, cyano, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, mono- and di- $(C_1$ - C_4 alkyl)amino, C_1 - C_2 haloalkyl, and C_1 - C_2 haloalkoxy; and

R₁₆ is C₂-C₆alkoxy or C₂-C₆alkyl.

33. A compound or salt according to Claim 1 or 2 of Formula 11, wherein

Formula 11

R₁ and R₂ are independently hydrogen or methyl;

R₁₁ is represents 0 to 3 substituents independently chosen from halogen, hydroxy, cyano, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₄alkyl)amino, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy; and

 R_{16} is C_2 - C_6 alkoxy or C_1 - C_6 alkyl.

34. A compound or salt according to Claim 1 or 2 of Formula 12, wherein

$$A_1 \xrightarrow{X_1} Q \xrightarrow{X_1}$$

Formula 12

R₁ and R₂ are independently hydrogen or methyl;

R₁₁ is represents 0 to 3 substituents independently chosen from halogen, hydroxy, cyano, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₄alkyl)amino, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy; and

R₁₆ is C₂-C₆alkoxy or C₂-C₆alkyl.

35. A compound or salt according to Claim 1 or 2 of Formula 13, wherein

R₁ and R₂ are independently hydrogen or methyl; and

R₁₁ and R₁₂ each represent 0 to 3 substituents independently chosen from halogen, hydroxy, cyano, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₄alkyl)amino, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy.

36. A compound or salt according to Claim 1 or 2 of Formula 14, wherein

R₁ and R₂ are independently hydrogen or methyl;

 R_{11} and R_{12} each represent 0 to 3 substituents independently chosen from halogen, hydroxy, cyano, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, mono- and di- $(C_1$ - C_4 alkyl)amino, C_1 - C_2 haloalkoxy; and

 R_{13} and R_{14} are independently hydrogen or methyl.

37. A compound salt according to Claim 1 or 2 of Formula 15, wherein

 R_1 and R_2 are independently hydrogen or methyl;

 R_{11} and R_{12} each represent 0 to 3 substituents independently chosen from halogen, hydroxy, cyano, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, mono- and di- $(C_1$ - C_4 alkyl)amino, C_1 - C_2 haloalkyl, and C_1 - C_2 haloalkoxy; and

 R_{13} and R_{14} are independently chosen at each occurrence from hydrogen and methyl.

38. A compound salt according to Claim 1 or 2 of Formula 16, wherein

Formula 16

 R_1 and R_2 are independently hydrogen or methyl;

 R_{11} and R_{12} each represent 0 to 3 substituents independently chosen from halogen, hydroxy, cyano, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, mono- and di- $(C_1$ - C_4 alkyl)amino, C_1 - C_2 haloalkoxy; and

R₁₇ represents 0 to 2 substituents independently chosen from halogen, methyl, and methoxy.

39. A compound or salt according to any one of Claim 24 to 38 in which

X is NR and Y is $-CH_2$ - or $-CH_2CH_2$ -; or

X is O and Y is $-CH_2$ - or $-CH_2CH_2$ -; or

X and Y are absent.

- 40. A compound or salt according to any one of Claims 1, 2, or 24 to 38, wherein A₁ is pyrazinyl, pyridyl, or quinaxolinyl, each of which is substituted with 0 to 3 substituents independently chosen from halogen, hydroxy, cyano, amino, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₄alkyl)amino, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy.
- 41. A compound or salt according to any one of Claims 1, 2, or 24 to 38 of Formula 17, wherein

Formula 17

wherein

- R_{18A} is hydrogen, halogen, hydroxy, cyano, amino, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₄alkyl)amino, C₁-C₂haloalkyl, or C₁-C₂haloalkoxy; and
- R₁₈ represents 0 to 3 substituents independently chosen from halogen, hydroxy, cyano, amino, nitro, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₄alkyl)amino, C₁-C₂haloalkyl, C₁-C₂haloalkoxy, and phenyl.
- 42. A compound or salt according to Claim 41 in which X and Y are absent; and R₁ and R₂ are independently hydrogen or methyl.

43. A compound or salt according to any one of Claims 1, 2, or 24 to 38 of Formula 18, wherein

r is 1, 2, or 3;

 R_{20} and R_{21} are independently selected from hydrogen and C_1 - C_4 alkyl; or R_{20} and R_{21} are joined to form a C_3 - C_7 cycloalkyl group; and

 R_{22} and R_{23} are independently chosen C_1 - C_6 alkyl groups; each of which is substituted with 0 to 5 substituents independently chosen from halogen, hydroxy, cyano, amino, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, mono- and di- $(C_1$ - C_4 alkyl)amino, C_1 - C_2 haloalkyl, and C_1 - C_2 haloalkoxy.

44. A compound or salt according to any one of Claims 1, 2, or 24 to 38 of Formula 19, wherein

Formula 19

r is 1, 2, or 3;

R₂₀ and R₂₁ are independently selected from hydrogen and C₁-C₄alkyl; or R₂₀ and R₂₁ are joined to form a C₃-C₇cycloalkyl group;

R₂₂ is C₁-C₆ alkyl which is substituted with 0 to 5 substituents independently chosen from halogen, hydroxy, cyano, amino, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₄alkyl)amino, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy; and

R₂₄ represents 0 to 3 substituents independently chosen from halogen, hydroxy, cyano, amino, nitro, -COOH, -CONH₂, -SO₂NH₂, -SH, C₁-C₂haloalkyl, C₁-C₂haloalkoxy, C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆alkynyl, C₁-C₆alkoxy, C₂-C₆alkenyloxy, C₁-C₄alkoxy(C₁-C₄alkyl), amino(C₁-C₆)alkyl, mono- and di-(C₁-C₆alkyl)amino, mono- and di-(C₁-C₄alkyl)aminoC₁-C₄alkyl, C₂-C₆alkanoyl, C₂-C₈alkanoyloxy, C₁-C₈alkoxycarbonyl, -mono- and di-(C₁-C₆alkyl)carboxamide, (C₃-C₇cycloalkyl)carboxamide, mono- and di-(C₁-C₆alkyl)sulfonamide, C₁-C₆alkylthio, aryl(C₀-C₄alkyl)thio, C₁-C₆alkylsulfinyl, and C₁-C₆alkylsulfonyl.

45. A compound or salt according to Claim 44, wherein

R₂₄ represents 0 to 3 substituents independently chosen from halogen, hydroxy, cyano, amino, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₄alkyl)amino, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy.

46. A compound or salt according any one of Claims 1, 2 or 24 to 38 of Formula 20, wherein

r is 1, 2, or 3;

R₂₀ and R₂₁ are independently selected from hydrogen and C₁-C₄alkyl; or R₂₀ and R₂₁ are joined to form a C₃-C₇cycloalkyl group; and

R₂₅ represents 0 to 3 substituents independently chosen from halogen, hydroxy, cyano, amino, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₄alkyl)amino, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy.

47. A compound or salt according any one of Claims 1, 2 or 24 to 38 of Formula 21, wherein

Formula 21

r is 1, 2, or 3;

R₂₀ and R₂₁ are independently selected from hydrogen and C₁-C₄alkyl; or R₂₀ and R₂₁ are joined to form a C₃-C₇cycloalkyl group; and

R₂₅ represents 0 to 3 substituents independently chosen from halogen, hydroxy, cyano, amino, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₄alkyl)amino, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy; and

Q is O, S, or NR₂₆; where R₂₆ is hydrogen or R₂₆ is C₁-C₆alkyl, phenyl, pyridyl, or pyrimidinyl, each of which is substituted with 0 to 3 substituents independently chosen from halogen, hydroxy, cyano, amino, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₆alkyl)amino, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy.

48. A compound or salt according any one of Claims 1, 2 or 24 to 38 of Formula 22, wherein

$$R_{27}$$
 O O S A_2 R_{25} R_{20} R_{21} R_1 R_2 R_2 Formula 22

r is 1, 2, or 3;

R₂₀ and R₂₁ are independently selected from hydrogen and C₁-C₄alkyl; or R₂₀ and R₂₁ are joined to form a C₃-C₇cycloalkyl group; and

R₂₅ and R₂₇ each represent 0 to 2 substituents independently chosen from halogen, hydroxy, cyano, amino, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₄alkyl)amino, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy.

49. A compound or salt according any one of Claims 1, 2 or 24 to 38 of Formula 23, wherein

$$R_{25}$$
 R_{20}
 R_{21}
 R_{1}
 R_{2}
 R_{20}
 R_{21}
 R_{1}
 R_{2}
Formula 23

r is 1, 2, or 3;

s is 1, 2, or 3;

 R_{20} and R_{21} are independently selected from hydrogen and C_1 - C_4 alkyl; or R_{20} and R_{21} are joined to form a C_3 - C_7 cycloalkyl group; and

R₂₅ represents 0 to 3 substituents independently chosen from halogen, hydroxy, cyano, amino, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₄alkyl)amino, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy.

50. A compound or salt according any one of Claims 1, 2 or 24 to 38 of Formula 24, wherein

$$\begin{array}{c|c}
R_{25} & O & S \\
N & N & N \\
R_1 & R_2
\end{array}$$

Formula 24

- R₂₅ represents 0 to 3 substituents independently chosen from halogen, hydroxy, cyano, amino, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₆alkyl)amino, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy; and
- G is O, S, SO₂, or NR₂₆; where R₂₆ is hydrogen or R₂₆ is C₁-C₆alkyl, phenyl, pyridyl, or pyrimidinyl, each of which is substituted with 0 to 3 substituents independently chosen from halogen, hydroxy, cyano, amino, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₆alkyl)amino, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy.
 - 51. A compound or salt according to Claim 50, wherein
- R₂₅ represents a di-(C₁-C₆alkyl)amino substituent and 0 to 2 additional substituents independently chosen from halogen, hydroxy, cyano, amino, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₆alkyl)amino, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy.

52. A compound or salt according to any one of Claims 1, 2, or 24 to 38 of Formula 25, wherein

$$R_{25}$$
 R_{1}
 R_{2}
 R_{25}
 R_{1}
 R_{2}

Formula 25

R₂₅ represents 0 to 3 substituents independently chosen from halogen, hydroxy, cyano, amino, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₄alkyl)amino, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy; and

R₂₇ represents 0 to 2 substituents independently chosen from halogen, hydroxy, cyano, amino, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₄alkyl)amino, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy.

53. A compound or salt according to Claim 52, wherein

R₂₅ represents a di-(C₁-C₆alkyl)amino substituent and 0 to 2 additional substituents independently chosen from halogen, hydroxy, cyano, amino, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₆alkyl)amino, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy.

54. A compound or salt according any one of Claims 1, 2 or 24 to 38 of Formula 26, wherein

Formula 26

q is an integer from 1 to 5; and

 R_{31} and R_{32} are independently chosen from C_1 - C_6 alkyl and phenyl; each of which is substituted with 0 to 3 substituents independently chosen from halogen, hydroxy, cyano, amino, nitro, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, mono- and di- $(C_1$ - C_4 alkyl)amino, C_1 - C_2 haloalkyl, and C_1 - C_2 haloalkoxy.

55. A compound or salt according to any one of Claims 1, 2, or 24 to 38 of Formula 27, wherein

wherein

R₁₈ represents 0 to 3 substituents independently chosen from halogen, hydroxy, cyano, amino, nitro, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₄alkyl)amino, C₁-C₂haloalkyl, C₁-C₂haloalkoxy, and phenyl.

56. A compound or salt according to Claim 55 wherein X is oxygen and Y is -CH₂-.

Formula 27

- 57. A compound or salt according to Claim 55 wherein X and Y are absent.
- 58. A compound or salt according to any one of Claims 1, 2, or 24 to 38, wherein A₁ is 5-membered heteroaryl group selected from furan-2-yl, furan-3-yl, isoxazol-3-yl, isoxazol-4-yl, thiophen-2-yl, thiophen-3-yl, pyrrol-2-yl, pyrrol-3-yl, and pyrazolyl; each of which is substituted with 0 to 3 substituents independently chosen from halogen, hydroxy, cyano, amino, nitro, C₁-C₄alkyl, C₂-C₄alkenyl, C₁-C₄alkoxy, mono- and di-(C₁-C₄alkyl)amino, C₁-C₂haloalkyl, C₁-C₂haloalkoxy, and phenyl.
 - 59. A compound or salt according to Claim 58 wherein X is oxygen and Y is -CH₂-.
 - 60. A compound or salt according to Claim 58 wherein X and Y are absent.
- 61. A compound or salt according to any one of Claims 1, 2, or 24 to 38, wherein A₁ is pyridin-2-yl or pyridin-3-yl, each of which is substituted with 0 to 3 substituents independently chosen from halogen, hydroxy, cyano, amino, nitro, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₄alkyl)amino, C₁-C₂haloalkyl, C₁-C₂haloalkoxy, and phenyl.

- 62. A compound or salt according to Claim 61 wherein X is oxygen and Y is -CH₂-.
- 63. A compound or salt according to Claim 61 wherein X and Y are absent.
- 64. A compound or salt according to any one of Claims 1, 2, or 24 to 38 of Formula 28, wherein

$$R_{28} \xrightarrow{N} \xrightarrow{N} \xrightarrow{N} \xrightarrow{N} \xrightarrow{N} A_2$$

$$R_{29} \xrightarrow{N} \xrightarrow{N} \xrightarrow{N} A_2$$

Formula 28

wherein

R₂₈ is phenyl or pyridyl, each of which is substituted with 0 to 3 substituents independently chosen from halogen, hydroxy, cyano, amino, nitro, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₄alkyl)amino, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy; and R₂₉ is hydrogen, methyl or ethyl.

65. A compound or pharmaceutically acceptable salt of Formula IB, wherein

$$A_1$$
 A_1
 A_2
 A_1
 A_2
 A_1
 A_2
 A_3
 A_4
 A_2
 A_4
 A_2
 A_3
 A_4
 A_4
 A_5
 A_5
 A_7
 A_8
 A_8
Formula IB

A₁ is di-(C₁-C₈alkyl)amino, an *N*-(C₁-C₆alkyl)-*N*-phenyl-amino group, an *N*-(C₁-C₆alkyl)-*N*-pyridyl amino group, a 5- to 7-membered monocyclic heterocycloalkyl group covalently bound to a point of attachment in Formula IB via a Nitrogen atom, a 5- to 7-membered monocyclic partially unsaturated heterocyclic group covalently bound to a point of attachment in Formula IB via a Nitrogen atom, a 5- to 7- membered heterocycloalkyl group covalently bound to a point of attachment in Formula IB via a Carbon atom which is adjacent to a Nitrogen atom, or an 8- to 11- membered bicyclic heterocycloalkyl in which the rings are fused or spiro covalently bound to a point of attachment in Formula IB via a Nitrogen atom;

A₂ is C₃-C₈ cycloalkyl, a partially unsaturated or aromatic carbocyclic group, or a saturated, partially unsaturated, or aromatic heterocyclic group;

each of which A_1 and A_2 is substituted with 0 to 5 substituents independently chosen from (a), (b), and (c), where

- (a) is independently chosen from halogen, hydroxy, cyano, amino, nitro, oxo, -COOH, -CONH₂, -SO₂NH₂, -SH, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy,
- (b) is independently chosen from C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆alkynyl, C₁-C₆alkoxy, C₂-C₆alkenyloxy, C₁-C₄alkoxy(C₁-C₄alkyl), amino(C₁-C₆)alkyl, mono- and di-(C₁-C₆alkyl)amino, mono- and di-(C₁-C₄alkyl)aminoC₁-C₄alkyl, C₂-C₆alkanoyl, C₂-C₈alkanoyloxy, C₁-C₈alkoxycarbonyl, -mono- and di-(C₁-C₆alkyl)carboxamide, (C₃-C₇cycloalkyl)carboxamide, mono- and di-(C₁-C₆alkyl)sulfonamide, C₁-C₆alkylthio, aryl(C₀-C₄alkyl)thio, C₁-C₆alkylsulfinyl, and C₁-C₆alkylsulfonyl, and
- (c) is $-GR_a$ where G is chosen from $-(CH_2)_{n^-}$, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, $-(CH_2)_nO(CH_2)_{m^-}$, and $-(CH_2)_nN(CH_2)_{m^-}$, where n and m are independently 0, 1, 2, 3, or 4; and
- R_a is chosen from C₃-C₈cycloalkyl, C₂-C₇monocyclic heterocycloalkyl, C₅-C₁₀bicyclicheterocycloalkyl, indanyl, tetrahydronapthyl, aryl, and heteroaryl;

- each of which (b) and (c) is substituted with 0 to 5 substituents independently chosen from halogen, hydroxy, amino, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₄alkyl)amino, C₂-C₄alkanoyl, C₁-C₄alkoxycarbonyl, C₁-C₂haloalkyl, C₁-C₂haloalkoxy, and phenyl;
- W is O, S, NR, or absent, where R is hydrogen or R is C₁-C₆alkyl or aryl(C₀-C₄alkyl), each of which is substituted with 0 to 5 substitutents independently chosen from halogen, hydroxy, cyano, amino, nitro, oxo, C₁-C₂haloalkyl, C₁-C₂haloalkoxy, C₁-C₆alkyl, C₁-C₆alkoxy, and mono- and di-(C₁-C₆alkyl)amino;
- V is C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_3 - C_7 cycloalkyl, or absent; and when V is absent, W is absent; Y is C_1 - C_6 alkyl substituted with
 - 0 or 1 of C₃-C₇cycloalkyl, a 5- to 7-membered monocyclic heterocycloalkyl, or 8- to 11-membered bicyclic heterocycloalkyl in which the rings are fused or spiro; each of which substituted with 0 to 3 substituents independently chosen from halogen, hydroxy, cyano, amino, nitro, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₄alkyl)amino, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy; or

Y is absent:

- R₁ and R₂ are independently hydrogen or C₁-C₆alkyl, C₂-C₆ alkenyl, or C₂-C₆ alkynyl, each of which is substituted with 0 to 3 substituents independently chosen from halogen, hydroxy, amino, C₁-C₄alkoxy, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy, or R₁ and R₂ are joined to form a 5- to 7-membered saturated or mono-unsaturated ring optionally containing one additional heteroatom chosen from N, S, and O, which 5- to 7-membered saturated or mono-unsaturated ring is substituted with 0 to 3 substituents independently chosen from halogen, hydroxy, amino, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₄alkyl)amino, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy.
 - 66. A compound or salt according to Claim 65 wherein V and W are absent.
 - 67. A compound or salt according to Claim 65 in which Y is absent.
 - 68. A compound or salt according to Claim 65 in which Y is -CH₂-.

- 69. A compound or salt according to Claim 65 in which Y is -CH₂- substituted with C₃-C₆cycloalkyl, pyrrolidinyl, or piperidinyl.
- 70. A compound or salt according to any one of Claims 65 to 69 in which R_1 and R_2 are independently hydrogen or C_1 - C_4 alkyl.
- 71. A compound or salt according to Claim 70 in which R_1 and R_2 are independently hydrogen or methyl.
 - 72. A compound or salt according to any one of Claims 65 to 71 wherein
- A₂ is C₅-C₇cycloalkyl, phenyl, pyridyl, naphthyl, pyrimidinyl, pyrazinyl, benzothiazolyl, benzodioxyl, quinolinyl, or isoquinolinyl, each of which is substituted with 0 to 5 substituents independently chosen from (a), (b), and (c) where
- (a) is chosen from halogen, hydroxy, cyano, amino, nitro, oxo, -COOH, -CONH₂, -SO₂NH₂, -SH, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy,
- (b) is chosen from C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆alkynyl, C₁-C₆alkoxy, C₂-C₆alkanoyl, and C₁-C₈alkoxycarbonyl, and
- (c) is -GR_a where G is chosen from -(CH₂)_n-, C₂-C₄alkenyl, C₂-C₄alkynyl, -(CH₂)_nO(CH₂)_m-, and -(CH₂)_nN(CH₂)_m-, where n and m are independently 0, 1, 2, 3, or 4; and R_a is chosen from C₃-C₈cycloalkyl, piperidinyl, piperazinyl, morpholinyl, tetrahydroisoquinolinyl, indanyl, tetrahydronaphthyl, phenyl, pyridyl, benzothiophenyl, and benzofuranyl;
- each of which (b) and (c) is substituted with 0 to 5 substituents independently chosen from halogen, hydroxy, amino, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₄alkyl)amino, C₂-C₄alkanoyl, C₁-C₄alkoxycarbonyl, C₁-C₂haloalkyl, C₁-C₂haloalkoxy, and phenyl.

73. A compound of Formula II

$$\begin{array}{c|c}
J & S \\
 & N & N \\
 & R_1 & R_2
\end{array}$$

Formula II

or a pharmaceutically acceptable salt thereof wherein

- A₂ is C₃-C₈ cycloalkyl, a partially unsaturated or aromatic carbocyclic group, a saturated, partially unsaturated, or an aromatic heterocyclic group substituted with 0 to 5 substituents independently chosen from:
- (a) halogen, hydroxy, cyano, amino, nitro, oxo, -COOH, -CONH₂, -SO₂NH₂, -SH, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy, and
- (b) C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆alkynyl, C₁-C₆alkoxy, C₂-C₆alkenyloxy, C₁-C₄alkoxy(C₁-C₄alkyl), amino(C₁-C₆)alkyl, mono- and di-(C₁-C₆alkyl)amino, mono- and di-(C₁-C₄alkyl)aminoC₁-C₄alkyl, C₂-C₆alkanoyl, C₂-C₈alkanoyloxy, C₁-C₈alkoxycarbonyl, -mono- and di-(C₁-C₆alkyl)carboxamide, (C₃-C₇cycloalkyl)carboxamide, mono- and di-(C₁-C₆alkyl)sulfonamide, C₁-C₆alkylthio, aryl(C₀-C₄alkyl)thio, C₁-C₆alkylsulfinyl, and C₁-C₆alkylsulfonyl, and
- (c) -GR_a where

G is chosen from -(CH₂)_n-, C₂-C₄alkenyl, C₂-C₄alkynyl, -(CH₂)_nO(CH₂)_m-, and -(CH₂)_nN(CH₂)_m-, where n and m are independently 0, 1, 2, 3, or 4; and R_a is chosen from C₃-C₈cycloalkyl, C₂-C₇monocyclic heterocycloalkyl, C₅-

C₁₀bicyclicheterocycloalkyl, indanyl, tetrahydronapthyl, aryl, and heteroaryl; each of which (b) and (c) is substituted with 0 to 5 substituents independently chosen from halogen, hydroxy, amino, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₄alkyl)amino, C₂-C₄alkanoyl, C₁-C₄alkoxycarbonyl, C₁-C₂haloalkyl, C₁-C₂haloalkoxy, and phenyl;

V is C₁-C₆ alkyl, C₂-C₆alkenyl, or absent; and

Z is carbonyl, thiocarbonyl, or imino;

R₁ and R₂ are independently

hydrogen, or

- C₁-C₆alkyl, C₂-C₆ alkenyl, or C₂-C₆ alkynyl, each of which is substituted with 0 to 3 substituents independently chosen from halogen, hydroxy, amino, C₁-C₄alkoxy, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy, or
- R₁ and R₂ are joined to form a 5- to 7-membered saturated or mono-unsaturated ring optionally containing one additional heteroatom chosen from N, S, and O, which 5- to 7-membered saturated or mono-unsaturated ring is substituted with 0 to 3 substituents independently chosen from halogen, hydroxy, amino, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₄alkyl)amino, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy;

the group:

is a group of Formula (i)

that is a saturated, partially unsaturated, or aromatic heterocyclic group where J is O, S, or NR₃ substituted with 0 to 5 substituents independently chosen from: (a), (b), and (c) above; and

R₃ is

- (d) hydrogen, C₁-C₂haloalkyl, or C₁-C₂haloalkoxy;
- (e) C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_4 alkoxy(C_1 - C_4 alkyl), or amino(C_1 - C_6)alkyl, or
- (f) -LR_b where

L is chosen from -(CH₂)_r-, C₂-C₄alkenyl, C₂-C₄alkynyl, -(CH₂)_rO(CH₂)_s-, and -(CH₂)_rN(CH₂)_s-, where r and s are independently 0, 1, 2, 3, or 4; and R_b is chosen from C₃-C₈cycloalkyl, C₂-C₇monocyclic heterocycloalkyl, C₅-

C₁₀bicyclicheterocycloalkyl, indanyl, tetrahydronapthyl, aryl, and heteroaryl; each of which (e) and (f) is substituted with 0 to 5 substituents independently chosen from halogen, hydroxy, amino, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₄alkyl)amino, C₁-C₂haloalkyl, C₁-C₂haloalkoxy, and phenyl.

- 74. A compound or salt according to Claim 73 wherein Z is carbonyl.
- 75. A compound or salt according to Claim 73 or Claim 74 wherein V is absent or V is C₁-C₄alkyl.

- 76. A compound or salt according to any one of Claims 73 to 75 wherein R_1 and R_2 are independently hydrogen or methyl.
- 77. A compound or salt according to any one of Claims 73 to 76 wherein A₂ is C₅-C₇cycloalkyl, phenyl, pyridyl, naphthyl, pyrimidinyl, pyrazinyl, benzothiazolyl, benzodioxyl, quinolinyl, or isoquinolinyl, each of which is substituted with 0 to 5 substituents independently chosen from (a), (b), and (c).
- 78. A compound or salt according to any one of Claims 73 to 77 wherein A₂ is C₅-C₇cycloalkyl, phenyl, pyridyl, naphthyl, benzothiazolyl, benzodioxyl, quinolinyl, or isoquinolinyl, each of which is substituted with 0 to 5 substituents independently chosen from
- (a) halogen, hydroxy, cyano, amino, nitro, oxo, -COOH, -CONH₂, -SO₂NH₂, -SH, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy,
- (b) C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy, C_2 - C_6 alkanoyl, and C_1 - C_8 alkoxycarbonyl, and
- (c) -GR_a where
 - G is chosen from -(CH₂)_n-, C₂-C₄alkenyl, C₂-C₄alkynyl, -(CH₂)_nO(CH₂)_m-, and -(CH₂)_nN(CH₂)_m-, where n and m are independently 0, 1, 2, 3, or 4; and R_a is chosen from C₃-C₈cycloalkyl, piperidinyl, piperazinyl, morpholinyl, tetrahydroisoquinolinyl, indanyl, tetrahydronaphthyl, phenyl, pyridyl, benzothiophenyl, and benzofuranyl;
- each of which (b) and (c) is substituted with 0 to 5 substituents independently chosen from halogen, hydroxy, amino, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₄alkyl)amino, C₂-C₄alkanoyl, C₁-C₄alkoxycarbonyl, C₁-C₂haloalkyl, C₁-C₂haloalkoxy, and phenyl.

79. A compound or salt according to any one of Claims 73 to 78 wherein

is a group of Formula (i)

where Formula (i) is a heteroaryl group that is pyridyl, pyrimidinyl, thienyl, pyrrolyl, furanyl, pyrazolyl, imidazolyl, thiazolyl, thiadiazolyl, oxazolyl, isoxazolyl, benzofuranyl, benzothiazolyl, benzothiophenyl, benzoxadiazolyl, benzo[d]oxazolyl, dihydrobenzodioxynyl, indolyl, pyrazolopyrimidinyl, or thienylpyrazolyl oriented such that the heteroatom J is adjacent to the point of attachment of the group of Formula (i)

the group of Formula (i) is substituted with 0 to 5 substituents independently chosen from: (a), (b), and (c);

J is S, O, or NR₃; and

R₃ is

(d) hydrogen, C₁-C₂haloalkyl, or C₁-C₂haloalkoxy;

 $(e) \ C_1-C_6 alkyl, \ C_2-C_6 alkenyl, \ C_2-C_6 alkynyl, \ C_1-C_4 alkoxy(C_1-C_4 alkyl), \ or \ amino(C_1-C_6) alkyl, \ or \ am$

(f) $-LR_b$ where

L is chosen from -(CH₂)_r-, C₂-C₄alkenyl, C₂-C₄alkynyl, -(CH₂)_rO(CH₂)_s-, and -(CH₂)_rN(CH₂)_s-, where r and s are independently 0, 1, 2, 3, or 4; and R_h is chosen from C₃-C₈cycloalkyl, C₂-C₇monocyclic heterocycloalkyl, C₅-

C₁₀bicyclicheterocycloalkyl, indanyl, tetrahydronapthyl, aryl, and heteroaryl; each of which (e) and (f) is substituted with 0 to 5 substituents independently chosen from halogen, hydroxy, amino, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₄alkyl)amino, C₁-C₂haloalkyl, C₁-C₂haloalkoxy, and phenyl.

80. A compound or salt of Claim 79 wherein

wherein

is a group of Formula (i)

where Formula (i) is a heteroaryl group that is pyridyl, pyrimidinyl, thienyl, pyrrolyl, furanyl, pyrazolyl, imidazolyl, thiazolyl, thiadiazolyl, oxazolyl, isoxazolyl, benzofuranyl, benzothiazolyl, benzothiazolyl, benzothiazolyl, benzoxadiazolyl, benzo[d]oxazolyl, dihydrobenzodioxynyl, indolyl, pyrazolopyrimidinyl, or thienylpyrazolyl oriented such that the heteroatom J is adjacent to the point of attachment of the group of Formula (i) in Formula II;

the group of Formula (i) is substituted with 0 to 5 substituents independently chosen from:

- (a) halogen, hydroxy, cyano, amino, nitro, oxo, -COOH, -CONH₂, -SO₂NH₂, -SH, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy, and
- (b) C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy, C_2 - C_6 alkanoyl, and C_1 - C_8 alkoxycarbonyl,
- (c) -GR_a where

G is chosen from -(CH₂)_n-, C₂-C₄alkenyl, C₂-C₄alkynyl, -(CH₂)_nO(CH₂)_m-, and -(CH₂)_nN(CH₂)_m-, where n and m are independently 0, 1, 2, 3, or 4; and R_a is chosen from C₃-C₈cycloalkyl, piperidinyl, piperazinyl, morpholinyl, tetrahydroisoquinolinyl, indanyl, tetrahydronaphthyl, phenyl, pyridyl, benzothiophenyl, and benzofuranyl;

each of which (b) and (c) is substituted with 0 to 5 substituents independently chosen from halogen, hydroxy, amino, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₄alkyl)amino, C₂-C₄alkanoyl, C₁-C₄alkoxycarbonyl, C₁-C₂haloalkyl, C₁-C₂haloalkoxy, and phenyl;

J is S, O, or NR₃, and

R₃ is

- (d) hydrogen,
- (e) C_1 - C_6 alkyl, or
- (f) -LR_b where

L is chosen from $-(CH_2)_r$, $-(CH_2)_rO(CH_2)_s$, and $-(CH_2)_rN(CH_2)_s$, where r and s are independently 0, 1, 2, 3, or 4; and

```
R<sub>b</sub> is chosen from C<sub>3</sub>-C<sub>8</sub>cycloalkyl, piperidinyl, piperazinyl, morpholinyl, indanyl, tetrahydronapthyl, phenyl, and pyridyl;
```

- each of which (e) and (f) is substituted with 0 to 5 substituents independently chosen from halogen, hydroxy, amino, C₁-C₄alkyl, C₁-C₄alkoxy, mono- and di-(C₁-C₄alkyl)amino, C₁-C₂haloalkyl, C₁-C₂haloalkoxy, and phenyl.
- 81. A compound or pharmaceutically acceptable salt thereof, in which the compound is selected from
- 1-(Furan-2-carbonyl)-3-(4-benzo[d]thiazol-2-yl-phenyl)-thiourea;
- 1-(Benzofuran-2-yl-carbonyl)-3-[5-(benzo[d]oxazol-2-yl)-2-methyl]phenylthiourea;
- 1-(3-(Benzo[d]thiazol-2-yl)phenyl)-3-(2-phenoxyacetyl) thiourea;
- 1-(4-(Benzo[d]oxazol-2-yl)phenyl)-3-propionylthiourea;
- 1-(Pyridin-3-carbonyl)-3-(4-benzo[d]thiazol-2-yl-phenyl)-thiourea;
- 1-[3-(2-chlorophenyl-5-methyl-isoxazol-4-yl)-carbonyl]-3-(4-isopropylphenyl)thiourea;
- Butyl4-(3-(2-phenoxyacetyl) thioureido)benzoate;
- Butyl 4-(3-acetylthioureido)benzoate;
- Butyl 4-(3-(2-(3-chlorophenoxy) acetyl) thioureido)benzoate;
- Butyl 4-(3-(3-phenoxypropanoyl) thioureido)benzoate;
- Butyl 4-(3-(2-(naphthalen-3-yloxy)acetyl)thioureido)benzoate;
- Butyl 4-(3-(benzofuran-2-yl-carbonyl)thioureido)benzoate;
- Ethyl 2-(4-(3-(2-phenoxyacetyl)thioureido)phenyl)acetate;
- Ethyl 4-(3-(2-phenoxyacetyl)thioureido)benzoate;
- Butyl 4-(3-(2-methoxyacetyl) thioureido)benzoate;
- Butyl 4-(3-(2-(2,4-dichlorophenoxy) acetyl)thioureido)benzoate;
- Butyl 4-(3-(2-(4-tert-butylphenoxy) acetyl)thioureido)benzoate;
- Butyl 4-(3-(2-(4-(benzyloxy) phenoxy)acetyl)thioureido)benzoate;
- Butyl 4-(3-(2-(2-methoxyphenoxy) acetyl)thioureido)benzoate;
- Butyl 4-(3-(2-(o-tolyloxy)acetyl)thioureido)benzoate;
- Butyl 4-(3-(2-(2,4,6-trichlorophenoxy)acetyl)thioureido)benzoate;
- Butyl 4-(3-(3,4-dichlorophenyl) carbonyl)thioureido)benzoate;
- 1-(3,4-dichlorophenyl-carbonyl)-3-(3-trifluromethylphenyl)thiourea;

```
1-(3,4-Dichlorophenyl-carbonyl)-3-(3-benzoxy-phenyl)thiourea;
1-(3,4-Dichlorophenyl-carbonyl)-3-(3-phenoxy-phenyl)thiourea;
1-(3,4-Diflurophenyl-carbonyl)-3-(3-(5-methylfuran-2-yl)-phenyl)thiourea;
Butyl 4-(3-(naphth-2-yl) carbonyl)thioureido)benzoate;
Butyl 4-(3-(4-cyanophenyl) carbonyl)thioureido)benzoate;
Butyl 4-(3-(methylacetate) carbonyl)thioureido)benzoate;
1-((Benzofuran-2-yl-carbonyl)-3-(4-(phenoxy)-phenyl)thiourea;
Butyl 4-(3-(2-(3,4-dichlorophenoxy)acetyl)thioureido)benzoate;
1-(4-Butylphenyl)-3-(2-phenoxyacetyl)thiourea;
(Amino-(3-(benzyloxy)phenyl) methanethiocarbamoyl)methyl acetate;
1-(3-(Methylthio)propanoyl)-3-(3-(benzyloxy)phenyl)thiourea;
1-(2-(2-Chlorophenoxy)acetyl)-3-(3-(benzyloxy)phenyl)thiourea;
Butyl 4-(3-(naphth-1-yl) carbonyl)thioureido)benzoate;
(S)-1-(Amino-N-p-(butylacetate) methanethiocarbamoyl)ethyl acetate;
Butyl 4-(3-(2-(2-methoxyethoxy)acetyl)thioureido)benzoate;
(AminoN-(4-cyclohexylphenyl)methanethiocarbamoyl)(phenyl)methyl acetate;
Ethyl 3-(amino-N-(4-cyclohexylphenyl)methanethiocarbamoyl)propanoate;
1-Butyryl-3-(4-cyclohexylphenyl)thiourea;
(S)-1-(Amino-N-(4-cyclohexylphenyl)methanethiocarbamoyl)ethyl acetate;
1-(3-(Benzyloxy)phenyl)-3-(2-hydroxyacetyl)thiourea;
Butyl 4-(3-(2-(2,6-dichlorophenoxy) acetyl)thioureido)benzoate;
Butyl 4-(3-(2-(3-methoxyphenoxy) acetyl) thioureido)benzoate;
1-[(1-methyimidazol-2-yl) -carbonyl]-3-(3-benzoxy-phenyl)thiourea;
tert-Butyl 2-(aminoN-(3-(benzyloxy) phenyl)methanethiocarbamoyl) pyrrolidone-1-carboxylate;
Butyl 4-(3-(pyrrolidin-1-yl) carbonyl)thioureido)benzoate;
Butyl 4-(3-(1-methyl-benzofuran-2-yl) carbonyl)thioureido)benzoate;
1-(4-Hexylphenyl)-3-(2-phenoxyacetyl)thiourea;
1-(4-(Pentyloxy)phenyl)-3-(2-phenoxyacetyl)thiourea;
1-((Benzofuran-2-yl-carbonyl)-3-(4-pentyloxy)-phenyl)thiourea;
1-(4-Pentylphenyl)-3-(2-phenoxyacetyl)thiourea;
1-((Benzofuran-2-yl-carbonyl)-3-(4-pentyl)-phenyl)thiourea;
```

```
1-((Benzofuran-2-yl-carbonyl)-3-(4-pentyloxy)-phenyl)thiourea;
1-(4-Butoxyphenyl)-3-(2-phenoxyacetyl)thiourea;
1-((Benzofuran-2-yl-carbonyl)-3-(3-phenyl)-phenyl)thiourea;
1-(2-Phenoxyacetyl)-3-(3-phenyl)-phenylthiourea;
Isopropyl 4-(3-(benzofuran-2-yl) carbonyl)thioureido)benzoate;
1-(2-phenoxyacetyl)-3-94-fluoro-phenyl)-phenylthiourea;
1-(3-benzylphenyl)-3-(2-phenoxyacetyl)thiourea;
1-((Benzofuran-2-yl-carbonyl)-3-(3-benzyl)-phenyl)thiourea;
1-((Benzofuran-2-yl-carbonyl)-3-(4-benzyl)-phenyl)thiourea;
1-(4-(p-Tolyloxy)phenyl)-3-(2-phenoxyacetyl)thiourea;
Isobutyl 4-(3-(benzofuran-2-yl) carbonyl)thioureido)benzoate;
Isobutyl 4-(3-(2-phenoxyacetyl)thioureido)benzoate;
1-(2-(phenylmethanone)phenyl)-3-(2-phenoxyacetyl)thiourea;
1-(3-(Phenylcarbamoyl)phenyl)-3-(2-phenoxyacetyl)thiourea;
1-(3-(2-Methylpyrimidin-4-yl)phenyl)-3-(2-phenoxyacetyl)thiourea;
1-(4-(4-Chlorophenoxy)phenyl)-3-(2-phenoxyacetyl)thiourea;
1-((Benzofuran-2-yl-carbonyl)-3-(4-Chlorophenoxy)-phenyl)thiourea;
1-(4-(3,4-Dihydroisoquinolin-2(1H)-yl)phenyl)-3-(2-phenoxyacetyl)thiourea;
1-(3-Fluoro-4-(octahydroquinolin-1(2H)-yl)phenyl)-3-(2-phenoxyacetyl)thiourea;
1-(3-Fluoro-4-(octahydroquinolin-1(2H)-yl)phenyl)-3-(2-phenoxyacetyl)thiourea;
1-(3-Fluoro-4-(piperidin-1-yl)phenyl)-3-(2-phenoxyacetyl)thiourea;
1-((Benzofuran-2-yl-carbonyl)-3-(3-fluoro-4-(piperidin-1-yl)phenyl)-phenyl)thiourea;
1-(3-(3-Methoxybenzyloxy) phenyl)-3-(2-phenoxyacetyl) thiourea;
1-((Benzofuran-2-yl-carbonyl)-3-(3-(3-methoxybenzyloxy)) phenyl)-phenyl)thiourea;
1-(3-(2-Methoxybenzyloxy) phenyl)-3-(2-phenoxyacetyl) thiourea;
1-((Benzofuran-2-yl-carbonyl)-3-(3-(2-Methoxybenzyloxy) phenyl)-thiourea;
1-(3-(4-Methoxybenzyloxy) phenyl)-3-(2-phenoxyacetyl) thiourea;
1-((Benzofuran-2-yl-carbonyl)-3-(3-(cyclohexylmethoxy) phenyl)-thiourea;
1-(3-(Cyclohexylmethoxy) phenyl)-3-(2-phenoxyacetyl)thiourea;
1-((Benzofuran-2-yl-carbonyl)-3-(4-(5,6-dihydropyridin-1(2H)-yl))phenyl)-thiourea;
1-((5-Methoxy-benzofuran-2-yl-carbonyl)-3-(3-benzyloxy-phenyl)-thiourea;
```

- Butyl 4-(3-(5-chloro-benzofuran-2-yl) carbonyl)thioureido)benzoate;
- 1-(7-Methoxy-benzofuran-2-yl-carbonyl)-3-(3-methoxybenzyloxy)phenyl)-phenyl)thiourea;
- 1-(2,3,4-tetrahydronapthalen-2-yl-carbonyl)-3-(3-(3-methoxybenzyloxy))phenyl)-phenyl)thiourea;
- 1-(2-(4-(Trifluoromethoxy) phenoxy) acetyl)-3-(3-(benzyloxy)phenyl) thiourea;
- 1-(3-(Benzyloxy)phenyl)-3-(2-(pyridin-3-yloxy)acetyl) thiourea;
- 1-(4-oxo-4-*H*-chromen-2-yl-carbonyl)-3-(3-methoxybenzyloxy)phenyl)-phenyl)thiourea;
- 1-(3-(Benzyloxy)phenyl)-3-(2-(pyridin-2-yloxy)acetyl) thiourea;
- 1-(Pyridin-2-yl-carbonyl)-3-(3-methoxybenzyloxy)phenyl)-phenyl)thiourea;
- 1-(3-Chloro-benzo[b]thiophen-2-yl-carbonyl)-3-(3-ethoxybenzyloxy)phenyl)-phenyl)thiourea;
- 1-(4-Trifluoromethoxy-phenyl-carbonyl)-3-(3-ethoxybenzyloxy)phenyl)-phenyl)thiourea;
- 1-(5-Methylisoxazol-3-yl-carbonyl)-3-(3-ethoxybenzyloxy)phenyl)-phenyl)thiourea;
- 1-(2-Methyl-5-phenyl-furan-3-yl-carbonyl)-3-(3-ethoxybenzyloxy)phenyl)-phenyl)thiourea;
- 1-(4-Trifluoromethyl-phenyl-carbonyl)-3-(3-ethoxybenzyloxy)phenyl)-phenyl)thiourea;
- 1-(3-Chloro-benzo[b]thiophen-2-yl-carbonyl)-3-(3-phenyloxy)phenyl)-phenyl)thiourea;
- 1-(4-Trifluoromethoxyphenyl-carbonyl)-3-(3-phenyloxy)phenyl)-phenyl)thiourea;
- 1-(3,5-Dimethylisoxazol-4-yl-carbonyl)-3-(3-phenyloxy)phenyl)-phenyl)thiourea;
- 1-(5-Methylisoxazol-3-yl-carbonyl)-3-(3-phenyloxy)phenyl)-phenyl)thiourea;
- 1-(4-Trifluoromethylphenyl-carbonyl)-3-(3-phenyloxy)phenyl)-phenyl)thiourea;
- (S)-1-(Amino-N-(3-(benzyloxy) phenyl)methanethiocarbamoyl)ethyl acetate;
- (S)-1-(Amino-N-(3-phenoxyphenyl)methane thiocarbamoyl)ethyl acetate;
- (S)-1-(Amino-N-(3-benzyl-phenyl)methanethiocarbamoyl)ethyl acetate;
- Ethyl 1-(2-fluoro-4-(3-(benzofuran-2-yl-carbonyl)thioureido)phenyl)-4-phenylpiperidine-4-carboxylate;
- 1-(4-Trifluoromethylphenyl-carbonyl)-3-(2-phenylbenzo[d][1,3]dioxol-6-yl) phenyl)thiourea;
- 1-(3-Chloro-methylbenzo[b]thiophen-2-yl-carbonyl)-3-(2-phenylbenzo[d][1,3]dioxol-6-yl) phenyl)thiourea;
- 1-(4-Trifluoromethoxyphenyl-carbonyl)-3(2-phenylbenzo[d][1,3]dioxol-6-yl) thiourea;
- 1-(5-Methylisoxazol-3-yl-carbonyl)-3-(2-phenylbenzo[d][1,3]dioxol-6-yl) phenyl)thiourea;
- 1-(3-((R)-1-Phenylethoxy)phenyl)-3-(4-trifluoromethylphenyl-carbonyl)thiourea;
- 1-(3-((R)-1-Phenylethoxy)phenyl)-3-(3-chloro-methylbenzo[b]thiophen-2-yl-carbonyl)thiourea;

```
1-(3-((R)-1-Phenylethoxy)phenyl)-3-(4-trifluoromethoxy-phenyl-carbonyl)thiourea;
1-(3-((R)-1-Phenylethoxy)phenyl)-3-(5-methylisoxazol-3-yl-carbonyl)thiourea;
1-(3-((S)-1-Phenylethoxy)phenyl)-3-(4-trifluoromethylphenyl-carbonyl)-thiourea;
1-(3-((S)-1-Phenylethoxy)phenyl)-3-(4-trifluoromethoxyphenyl-carbonyl)-thiourea;
1-(3-((S)-1-Phenylethoxy)phenyl)-3-(5-methylisoxazol-3-yl-carbonyl)-thiourea;
1-(3-(Phenethyloxy)phenyl)-3-(4-trifluoromethylphenyl-carbonyl)-thiourea:
1-(3-(Phenethyloxy)phenyl)-3-(3-chloro-methylbenzo[b]thiophen-2-yl-carbonyl)-thiourea;
1-(3-(Phenethyloxy)phenyl)-3-(4-trifluoromethoxyphenyl-carbonyl)-thiourea;
1-(3-(Phenethyloxy)phenyl)-3-(3,5-dimethylisoxazol-4-yl-carbonyl)-thiourea;
1-(3-(Phenethyloxy)phenyl)-3-(5-methylisoxazol-3-yl-carbonyl)-thiourea;
1-(3-(2,3-Dihydro-1H-inden-2-yloxy)phenyl)-3-(4-trifluoromethylphenyl-carbonyl)thiourea;
1-(3-(2,3-Dihydro-1H-inden-2-yloxy)phenyl)-3-(4-trifluoromethoxyphenyl-carbonyl)thiourea;
1-(3-(2,3-Dihydro-1H-inden-2-yloxy)phenyl)-3-(3,5-dimethylisoxazol-4-yl-carbonyl)thiourea;
1-(3-(2,3-Dihydro-1H-inden-2-yloxy)phenyl)-3-(5-methylisoxazol-3-yl-carbonyl)thiourea;
1-(2-Phenylbenzo[d][1,3]dioxol-6-yl)-3-(benzofuran-2-yl-carbonyl)thiourea;
1-(3-((S)-1-Phenylethoxy)phenyl)-3-(benzofuran-2-yl-carbonyl)-thiourea;
1-(3-(Phenethyloxy)phenyl)-3-(benzofuran-2-yl-carbonyl)-thiourea;
1-(3-(2,3-Dihydro-1H-inden-2-yloxy)phenyl)-3-(benzofuran-2-yl-carbonyl)thiourea;
1-(3-((R)-1-Phenylethoxy)phenyl)-3-(benzofuran-2-yl-carbonyl)thiourea;
1-(2,4-dimethylthiazol-5-yl-carbonyl)-3-(3-phenyloxy)phenyl)-phenyl)thiourea;
1-(1-methyl-pyrrol-2-yl-carbonyl)-3-(3-(benzyloxy)phenyl)thiourea;
1-(3-(Phenethyloxy)phenyl)-3-((2,7-dimethylpyrazolo[1,5-a]pyrimidin-6-yl)-carbonyl)-thiourea;
1-(3-(Phenethyloxy)phenyl)-3-(1-ethyl-3-methyl-1H-pyrazol-5-yl-carbonyl)-thiourea;
1-(3-(2,3-Dihydro-1H-inden-2-yloxy)phenyl)-3-(2,4-dimethylthiazol-5-yl-carbonyl)thiourea;
1-(3-(2,3-Dihydro-1H-inden-2-yloxy)phenyl)-3-((2,7-dimethylpyrazolo[1,5-a]pyrimidin-6-yl)-
       carbonyl)thiourea;
1-(3-(2,3-Dihydro-1H-inden-2-yloxy)phenyl)-3-(1-ethyl-3-methyl-1H-pyrazol-5-yl-
       carbonyl)thiourea;
1-(4-Methyl-1,2,3-thiadiazol-5-yl-carbonyl)-3-(3-phenyloxy)phenyl)-phenyl)thiourea;
```

1-(Benzo[d]thiazol-2-yl-carbonyl)-3-(3-phenyloxy)phenyl)-phenyl)thiourea;

1-(4-Methyl-1,2,3-thiadiazol-5-yl-carbonyl)-3-(3-(benzyloxy) phenyl)thiourea;

```
1-(Benzo[d]thiazol-2-yl-carbonyl)-3-(3-(benzyloxy) phenyl)thiourea;
1-(Benzofuran-2-yl-carbonyl)-3-(3-fluoro-5-pentoxy-phenyl)thiourea;
1-(2-Methyl-pyridin-3-yl-carbonyl)-3-(3-(benzyloxy) phenyl)thiourea;
1-(1-phenyl-1H-pyrazol-5-yl-carbonyl)-3-(3-(benzyloxy) phenyl)thiourea;
1-(1-phenyl-1H-pyrazol-5-yl)-3-((3-phenyloxy)phenyl)-phenyl)thiourea;
1-(2-Phenylbenzo[d][1,3]dioxol-6-yl)-3-(1-phenyl-1H-pyrazol-5-yl-carbonyl)thiourea;
1-(1-phenyl-1H-pyrazol-5-yl)-3-(4-pentoxy-phenyl)-phenyl)thiourea;
1-(1-phenyl-1H-pyrazol-5-yl)-3-((3-phenyloxy-phenyl)-phenyl)thiourea;
1-(Methylbenzo[b]thiophen-2-yl-carbonyl)-3-((4-pentoxy-phenyl)-phenyl)thiourea;
1-(isoxazol-5-yl-carbonyl)-3-(3-(benzyloxy) phenyl)thiourea;
1-(isoxazol-5-yl-carbonyl)-3-(3-(phenoxy) phenyl)thiourea;
1-(isoxazol-5-yl-carbonyl)-3-(4-(pentyl) phenyl)thiourea;
1-(isoxazol-5-yl-carbonyl)-3-(4-(pentoxy) phenyl)thiourea;
1-(isoxazol-5-yl-carbonyl)-3-(3-(phenoxy) phenyl)thiourea;
1-(isoxazol-5-yl-carbonyl)-3-(3-(phenoxy) phenyl)thiourea;
1-((3-(trifluoromethyl)phenyl)furan-2-yl-carbonyl)-3-(3-(benzyloxy) phenyl)thiourea;
1-((3-(trifluoromethyl)phenyl)furan-2-yl-carbonyl)-3-(3-(phenoxy) phenyl)thiourea;
1-(5-Bromo-benzofuran-2-yl-carbonyl)-3-(3-(benzyloxy) phenyl)thiourea;
1-(5-Bromo-benzofuran-2-yl-carbonyl)-3-(3-(phenoxy) phenyl)thiourea;
1-(5-Nitro-benzofuran-2-yl-carbonyl)-3-(3-(benzyloxy) phenyl)thiourea;
1-(5-Nitro-benzofuran-2-yl-carbonyl)-3-(3-(phenoxy) phenyl)thiourea;
1-(5-Bromo-benzofuran-2-yl-carbonyl)-3-(4-pentyl phenyl)thiourea:
1-(5-Bromo-benzofuran-2-yl-carbonyl)-3-(4-pentoxy phenyl)thiourea;
1-(Benzofuran-2-yl-carbonyl)-3-(4-(hex-1-ynyl)phenyl) thiourea;
1-(Benzofuran-2-yl-carbonyl)-3-(3-(2-(pyridin-3-yl)ethynyl)phenyl) thiourea;
1-(Benzofuran-2-yl-carbonyl)-3-(3-(2-(pyridin-3-yl)ethyl)phenyl) thiourea;
1-(Benzofuran-2-yl-carbonyl)-3-(3-(pyridin-2-yl) phenyl) thiourea;
1-(Benzofuran-2-yl-carbonyl)-3-(3-(pyridin-2-yl-oxy)-phenyl) thiourea;
1-(3,5-Dimethylisoxazole-4-yl-carbonyl)-3-(4-(hex-1-ynyl)phenyl) thiourea;
1-(3,5-Dimethylisoxazole-4-yl-carbonyl)-3-(3-(2-(pyridin-3-yl)ethynyl)phenyl) thiourea;
1-(Benzofuran-2-yl-carbonyl)-3-((3-(trifluoromethyl)benzyloxy)-phenyl) thiourea;
```

```
1-(Benzofuran-2-yl-carbonyl)-3-(4-((1-methylpiperidin-4-yl)methoxy)-3-fluorophenyl)thiourea;
1-(Benzofuran-2-yl-carbonyl)-3-(3-(trifluoromethyl)-4-(piperidin-1-yl)phenyl)thiourea;
1-(1,3-dimethyl-1H-thieno[2,3-c]pyrazol-5-yl-carbonyl)-3-(3-(phenoxy) phenyl)thiourea;
1-(5-(2-methylthiazol-4-yl)isoxazol-3-yl-carbonyl)-3-(3-(benzyloxy) phenyl)thiourea;
1-(5-(2-methylthiazol-4-yl)isoxazol-3-yl-carbonyl)-3-(3-phenoxy-phenyl)thiourea;
1-(5-(2-methylthiazol-4-yl)isoxazol-3-yl-carbonyl)-3-(4-pentyl-phenyl)thiourea;
1-(5-(2-methylthiazol-4-yl)isoxazol-3-yl-carbonyl)-3-(4-pentoxy-phenyl)thiourea;
1-(1,5-Dimethyl-1H-pyrazol-3-yl-carbonyl)-3-(3-(benzyloxy) phenyl)thiourea;
1-(1,5-Dimethyl-1H-pyrazol-3-yl-carbonyl)-3-(3-(phenoxy) phenyl)thiourea;
1-(1,5-Dimethyl-1H-pyrazol-3-yl-carbonyl)-3-(4-pentyl-phenyl)thiourea;
1-(1,5-Dimethyl-1H-pyrazol-3-yl-carbonyl)-3-(4-pentoxy-phenyl)thiourea;
1-(1-Methyl-3-tert-butyl-1H-pyrazol-3-yl-carbonyl)-3-(3-(benzyloxy) phenyl)thiourea;
1-(1-Methyl-3-tert-butyl-1H-pyrazol-3-yl-carbonyl)-3-(3-(phenoxy) phenyl)thiourea;
1-(1-Methyl-3-tert-butyl-1H-pyrazol-3-yl-carbonyl)-3-(4-pentyl-phenyl)thiourea;
1-(2-Trifluoromethyl-5-methyl-furan-2-yl-carbonyl)-3-(3-(benzyloxy)-phenyl)thiourea;
1-(2-Trifluoromethyl-5-methyl-furan-2-yl-carbonyl)-3-(3-(phenoxy)-phenyl)thiourea;
1-(2-Trifluoromethyl-5-methyl-furan-2-yl-carbonyl)-3-(4-pentyl-phenyl)thiourea;
1-(Benzo[c][1,2,5]oxadiazol-5-yl-carbonyl)-3-(3-(benzyloxy) phenyl)thiourea;
1-(Benzo[c][1,2,5]oxadiazol-5-yl-carbonyl)-3-(3-(phenoxy) phenyl)thiourea;
1-(Benzo[c][1,2,5]oxadiazol-5-yl-carbonyl)-3-(4-(pentyl) phenyl)thiourea;
1-(Benzo[c][1,2,5]oxadiazol-5-yl-carbonyl)-3-(4-(pentoxy) phenyl)thiourea;
1-(2,7-Dimethylpyrazolo[1,5-a]pyrimidin-6-yl-carbonyl)-3-(3-(benzyloxy)-phenyl)thiourea;
1-(2,7-Dimethylpyrazolo[1,5-a]pyrimidin-6-yl-carbonyl)-3-(3-(phenoxy)-phenyl)thiourea;
1-(2,7-Dimethylpyrazolo[1,5-a]pyrimidin-6-yl-carbonyl)-3-(4-(pentyl)-phenyl)thiourea;
1-(3-Methylisoxazol-4-yl-carbonyl)-3-(3-(benzyloxy)-phenyl)thiourea;
1-(3-Methylisoxazol-4-yl-carbonyl)-3-(3-(phenoxy)-phenyl)thiourea;
1-(3-Methylisoxazol-4-yl-carbonyl)-3-(4-(pentyl)-phenyl)thiourea;
1-(3-Methylisoxazol-4-yl-carbonyl)-3-(4-(pentoxy)-phenyl)thiourea;
1-(5-Methyl-2-phenyl-2H-1,2,3-triazol-4-yl-carbonyl)-3-(3-(benzyloxy)-phenyl)thiourea;
1-(5-Methyl-2-phenyl-2H-1,2,3-triazol-4-yl-carbonyl)-3-(3-(phenoxy)-phenyl)thiourea;
1-(5-Chloro-3-methylbenzo[b]thiophen-2-yl-carbonyl)-3-(3-(benzyloxy)-phenyl)thiourea;
```

```
1-(5-Chloro-3-methylbenzo[b]thiophen-2-yl-carbonyl)-3-(3-(phenoxy)-phenyl)thiourea;
1-(1,3-Dimethyl-1H-pyrazol-5-yl-carbonyl)-3-(3-(benzyloxy)-phenyl)thiourea;
1-(1,3-Dimethyl-1H-pyrazol-5-yl-carbonyl)-3-(3-(phenoxy)-phenyl)thiourea;
1-(1,3-Dimethyl-1H-pyrazol-5-yl-carbonyl)-3-(4-(pentyl)-phenyl)thiourea;
1-(1,3-Dimethyl-1H-pyrazol-5-yl-carbonyl)-3-(4-(pentoxy)-phenyl)thiourea;
1-(2-(Pyridin-3-yl)thiazol-4-yl-carbonyl)-3-(3-(benzyloxy)-phenyl)thiourea;
1-(2-(Pyridin-3-yl)thiazol-4-yl-carbonyl)-3-(3-(phenyloxy)-phenyl)thiourea;
1-(2-(Pyridin-3-yl)thiazol-4-yl-carbonyl)-3-(4-(pentyl)-phenyl)thiourea;
1-(2-(Pyridin-3-yl)thiazol-4-yl-carbonyl)-3-(4-(pentoxy)-phenyl)thiourea;
1-(4-Methoxy-benzofuran-2-yl-carbonyl)-3-(4-(benzyloxy)-phenyl)thiourea;
1-(4-Methoxy-benzofuran-2-yl-carbonyl)-3-(3-fluoro-4-pentoxy-phenyl)thiourea;
1-(Benzofuran-2-yl-carbonyl)-3-(3,5-dibromo-4-(pent-4-enyloxy)phenyl)thiourea;
1-(Benzofuran-2-yl-carbonyl)-3-(3-((pyridin-3-yl)methyl) phenyl)thiourea;
1-(5-Iodo-benzofuran-2-yl-carbonyl)-3-(3-(benzyloxy)phenyl)thiourea;
1-(5-Phenyl-benzofuran-2-yl-carbonyl)-3-(3-(benzyloxy)phenyl)thiourea;
1-(5-(2-Pyridyl)benzofuran-2-yl-carbonyl)-3-(3-(benzyloxy)phenyl)thiourea;
1-(3-Propoxy-pyridin-2-yl-carbonyl)-3-(4-(pentyl)phenyl)thiourea;
1-(2,5-Dichlorothiophen-3-yl-carbonyl)-3-(4-(pentoxy)-phenyl)thiourea;
1-(3-Methyl-5-(methylthio)-4-vinylthiophen-2-yl-carbonyl)-3-(4-(pentoxy)-phenyl)thiourea;
1-(3-Methyl-5-(methylthio)-4-vinylthiophen-2-yl-carbonyl)-3-(4-(benzyloxy)-phenyl)thiourea;
1-(5-(Methylthio)-thiophen-2-yl-carbonyl)-3-(4-(benzyloxy)-phenyl)thiourea;
1-(5,7-Dimethylpyrazolo[1,5-a]pyrimidin-2-yl-carbonyl)-3-(4-(benzyloxy)-phenyl)thiourea;
1-(2.5-Dichlorothiophen-3-vl-carbonyl)-3-(4-(phenoxy)-phenyl)thiourea:
1-(3-Methyl-5-(methylthio)-4-vinylthiophen-2-yl-carbonyl)-3-(4-(phenoxy)-phenyl)thiourea;
1-(5-(Methylthio)-thiophen-2-yl-carbonyl)-3-(4-(phenoxy)-phenyl)thiourea;
1-(7-Fluoro-benzofuran-2-yl-carbonyl)-3-(4-(pentoxy)-phenyl)thiourea;
1-(7-Fluoro-benzofuran-2-yl-carbonyl)-3-(3-(benzyloxy)-phenyl)thiourea;
1-(2-(1,3-Dioxoisoindolin-2-yl)acetyl)-3-(3-phenoxyphenyl)thiourea;
1-(2-(1,3-Dioxoisoindolin-2-yl)acetyl)-3-(3-benzyloxyphenyl)thiourea;
1-(Benzofuran-2-yl-carbonyl)-3-(3-(benzyloxy)methyl-phenyl)thiourea;
1-(Benzofuran-2-yl-carbonyl)-3-(3-(phenylamino)methyl-phenyl)thiourea;
```

```
1-(Benzofuran-2-yl-carbonyl)-3-(4-(N-benzyl-N-methylamino)-3-fluorophenyl) thiourea;
Phenyl 3-(3-((benzofuran-2-yl)-carbonyl)thioureido)benzoate;
1-(4-Cyanophenyl-carbonyl)-3-(3-(benzyloxy)-phenyl)thiourea;
1-(4-Cyanophenyl-carbonyl)-3-(4-(pentyloxy)-phenyl)thiourea;
1-(4-Cyanophenyl-carbonyl)-3-(3-phenoxy-phenyl)thiourea;
1-(Quinoxalin-2-yl-carbonyl)-3-(3-phenoxy-phenyl)thiourea;
1-(Quinoxalin-2-yl-carbonyl)-3-(4-pentoxy-phenyl)thiourea;
1-(Ouinoxalin-2-yl-carbonyl)-3-(4-pentyl-phenyl)thiourea;
1-(4-Trifluoromethoxyphenyl-carbonyl)-3-(4-pentyl-phenyl)thiourea;
1-(4-Trifluoromethoxyphenyl-carbonyl)-3-(4-pentoxy-phenyl)thiourea;
1-(4-Trifluoromethylphenyl-carbonyl)-3-(4-pentoxy-phenyl)thiourea;
1-(4-Trifluoromethylphenyl-carbonyl)-3-(4-pentyl-phenyl)thiourea;
1-(5-Cyano-benzofuran-2-yl-carbonyl)-3-(3-phenoxy-phenyl)thiourea;
1-(5-Cyano-benzofuran-2-yl-carbonyl)-3-(4-pentyl-phenyl)thiourea;
1-(4-Methyl-1,2,3-thiadiazol-5-yl-carbonyl)-3-(4-pentoxy-phenyl)thiourea;
1-(4-Methyl-1,2,3-thiadiazol-5-yl-carbonyl)-3-(4-pentoxy-phenyl)thiourea;
Butyl 4-(3-(4-Methyl-1,2,3-thiadiazol-5-yl-) carbonyl)thioureido) benzoate;
1-(Pyrazin-2-yl-carbonyl)-3-(3-phenoxy-phenyl)thiourea;
1-(Pyrazin-2-yl-carbonyl)-3-(4-pentyl-phenyl)thiourea;
1-(Pyrazin-2-yl-carbonyl)-3-(4-pentoxy-phenyl)thiourea;
1-(3-Fluoro-4-(pentyloxy)phenyl)-3-(2-(1,3-dioxoisoindolin-2-yl)acetyl)thiourea;
1-(Benzofuran-2-yl-carbonyl)-3-(3-trifluoromethyl-4-pentoxy-phenyl)thiourea;
1-(1-Benzyl-1H-tetrazol-5-yl-carbonyl)-3-(3-(benzyloxy)-phenyl)thiourea;
1-(Benzofuran-2-yl-carbonyl)-3-(4-(N-methyl-N-pentylamino)-3-fluorophenyl)thiourea;
1-(1-Benzyl-1H-tetrazol-5-yl-carbonyl)-3-(3-(benzyloxy)-phenyl)thiourea;
1-(6-Trifluoromethyl-pyrid-3-yl-carbonyl)-3-(4-pentyl-phenyl)thiourea;
1-(6-Trifluoromethyl-pyrid-3-yl-carbonyl)-3-(4-pentoxy-phenyl)thiourea;
1-(3-Trifluoromethyl-phenyl-carbonyl)-3-(3-phenoxy-phenyl)thiourea;
1-(3-Trifluoromethyl-phenyl-carbonyl)-3-(4-pentyl-phenyl)thiourea;
1-(3-Trifluoromethyl-phenyl-carbonyl)-3-(4-pentoxy-phenyl)thiourea;
1-(3-Trifluoromethoxy-phenyl-carbonyl)-3-(4-pentyl-phenyl)thiourea;
```

```
1-(3-Trifluoromethoxy-phenyl-carbonyl)-3-(4-pentoxy-phenyl)thiourea;
1-(2-Chloro-5-trifluoromethoxy-phenyl-carbonyl)-3-(4-pentyl-phenyl)thiourea;
1-(3-Difluoromethyl-phenyl-carbonyl)-3-(3-phenoxy-phenyl)thiourea;
1-(3-Difluoromethyl-phenyl-carbonyl)-3-(3-phenoxy-phenyl)thiourea;
1-(5-(Trifluoromethyl)-2-phenyloxazol-4-yl-carbonyl)-3-(3-(benzyloxy)-phenyl)thiourea;
1-(5-(Trifluoromethyl)-2-phenyloxazol-4-yl-carbonyl)-3-(3-(phenoxy)-phenyl)thiourea;
1-(5-(2-Chloro-5-trifluoromethylphenyl)-furan-2-yl-carbonyl)-3-(4-(pentoxy)-phenyl)thiourea;
1-(3-Trifluoromethyl-4-methoxy-phenyl-carbonyl)-3-(3-phenoxy-phenyl)thiourea;
1-(3-Trifluoromethyl-4-chloro-phenyl-carbonyl)-3-(4-pentyl-phenyl)thiourea;
1-(3-Trifluoromethyl-4-chloro-phenyl-carbonyl)-3-(4-pentoxy-phenyl)thiourea;
1-(3-Trifluoromethyl-4-methyl-phenyl-carbonyl)-3-(3-benzyloxy-phenyl)thiourea;
1-(3-Trifluoromethyl-4-methyl-phenyl-carbonyl)-3-(3-phenoxy-phenyl)thiourea;
1-(3-Trifluoromethyl-4-methyl-phenyl-carbonyl)-3-(4-pentyl-phenyl)thiourea;
1-((5-Acetamidobenzofuran-2-yl)carbonyl)-3-(3-phenoxyphenyl)thiourea;
1-Acetyl-3-(3-phenoxyphenyl)thiourea:
1-Acetyl-3-(4-(pentyloxy)phenyl)thiourea;
1-Acetyl-3-(4-pentylphenyl)thiourea;
1-(Dimethylamino-acetyl)-3-(3-phenoxyphenyl)thiourea;
1-(Dimethylamino-acetyl)-3-(3-benzyloxyphenyl)thiourea;
1-(3,5-Dimethylisoxazole-4-yl-carbonyl)-3-(4-pentyl-phenyl)thiourea;
1-(Benzofuran-2-yl-carbonyl)-3-((2,3,4,5,6-penta-fluorophenoxy)-phenyl)thiourea;
1-(Benzofuran-2-yl-carbonyl)-3-(9-methyl-9H-fluoren-7-yl)thiourea;
Pentyl 2-phenyl- 4-(3-(benzofuran-2-yl)thioureido)benzoate:
1-(3-Pyrid-3-yl-carbonyl)-3-(3-benzyloxy-phenyl)thiourea;
1-(3-Pyrid-3-yl-carbonyl)-3-(3-phenoxy-phenyl)thiourea;
1-(3-Pyrid-3-yl-carbonyl)-3-(4-pentoxy-phenyl)thiourea;
```

1-(2-Morpholinoacetyl)-3-(3-phenoxyphenyl)thiourea; 1-(2-Morpholinoacetyl)-3-(4-(pentyloxy)phenyl)thiourea;

1-(3-Pyrid-3-yl-carbonyl)-3-(4-pentyl-phenyl)thiourea;

1-(4-Phenylbutanoyl)-3-(3-phenoxyphenyl)thiourea;

1-(4-Phenylbutanoyl)-3-(3-benzyloxyphenyl)thiourea;

- 1-(2-Morpholinoacetyl)-3-(4-(pentyl)phenyl)thiourea;
- 1-(4-(Pentyloxy)phenyl)-3-(2-(piperidin-1-yl)acetyl)thiourea;
- 1-(N-Methyl-N-phenylamino-acetyl)-3-(3-benzyloxyphenyl)thiourea;
- 1-(Benzofuran-2-yl-carbonyl)-3-(6-pentoxy-pyrid-3-yl)thiourea;
- 1-(3-Pyrid-3-yl-carbonyl)-3-(3-benzyloxy-phenyl)thiourea hydrochloride;
- 1-(3-Pyrid-3-yl-carbonyl)-3-(3-phenoxy-phenyl)thiourea hydrochloride;
- 1-(3-Pyrid-3-yl-carbonyl)-3-(4-pentyl-phenyl)thiourea hydrochloride;
- 1-(Benzofuran-2-yl-carbonyl)-3-(trifluoromethylthio-phenyl)thiourea;
- 1-(3-(Piperidin-1-yl)propanoyl)-3-(4-pentylphenyl)thiourea;
- 1-(3-(Piperidin-1-yl)propanoyl)-3-(4-(pentyloxy)phenyl)thiourea;
- 1-(3-(Piperidin-1-yl)propanoyl)-3-(3-phenoxyphenyl)thiourea;
- 1-(3-Morpholinopropanoyl)-3-(4-(pentyloxy)phenyl)thiourea;
- 1-(1-Methylpiperidin-3-yl-carbonyl)-3-(4-(pentyloxy)phenyl)thiourea;
- 1-(1-Methylpiperidin-3-yl-carbonyl)-3-(4-(pentyloxy)phenyl)thiourea;
- 1-(2-(2-methylpiperidin-1-yl)acetyl)-3-(4-(pentyloxy)phenyl)thiourea;
- 1-(2-Oxo-4-phenyl-pyrrolidin-1-ylcarbonyl)-3-(3-benzyloxy-phenyl)thiourea; and
- 1-(5-Trifluoromethoxy-benzofuran-2-yl-carbonyl)-3-(3-benzyloxy-phenyl)thiourea.
- 82. A pharmaceutical composition comprising a compound or salt according to any one of Claims 1 to 81 together with a pharmaceutically acceptable carrier, diluent, or excipient.
- 83. A pharmaceutical composition according to Claim 82, wherein the composition is formulated as an injectable fluid, an aerosol, a cream, a gel, a pill, a capsule, a syrup, a tablet, ophthalmic solution, or a transdermal patch.
- 84. A package comprising a pharmaceutical composition of Claim 82 in a container and further comprising instructions for using the composition to treat a patient suffering from Hepatitis C infection.
- 85. A compound or salt according to Claim 1 that exhibits an EC₅₀ of less than 10 micromolar in a replicon assay of HCV replication.

- 86. A compound or salt according to Claim 1 that exhibits an EC₅₀ of less than 1 micromolar in a replicon assay of HCV replication.
- 87. A method for treating Hepatitis C infection comprising administering to a patient in need of such treatment a therapeutically effective amount of a compound or salt according to Claim 1.
 - 88. The method of Claim 87 wherein the patient is a human patient.
- 89. The method of Claim 88 wherein the therapeutically effective amount is an amount sufficient to significantly decrease the number of HCV antibodies in the patient's blood or serum.
- 90. A method of inhibiting HCV replication *in vivo* comprising administering to a patient infected with HCV a concentration of a compound or salt according to Claim 1 sufficient to inhibit HCV replicant replication *in vitro*.