CS2500 Homework 1

Evan Wilcox

Due January 31, 2019

1.1-4

Both algorithms are trying to find the most efficient path for the situation but the traveling-salesman starts and ends at the same location and the shortestpath ends at a different location than it starts.

1.1-5

Sorting is a problem that only the best solution will do because something that is mostly sorted won't work. Finding the fastest path between two places in a city is an example of a problem that an "approximate" is good enough because even if its not the fastest it will sill get you there.

1.2-2 Insertion sort out performs Merge sort when n = [2, 43].

1-1

	1 second	1 minute	1 hour	1 day	1 month	1 year	1 century
-lg n	9.9×10^{301029}	5.5×10^{18061799}	$2.5 \times 10^{1083707984}$				
\sqrt{n}	$1x10^{12}$	$3.6 \text{x} 10^{15}$	$1.3 \text{x} 10^{19}$	$7.5 \text{x} 10^{21}$	$6.7 \text{x} 10^{24}$	$9.6 \text{x} 10^{27}$	9.96×10^{30}
\overline{n}	$1x10^{6}$	$6x10^{7}$	3.6×10^9	8.6×10^{10}	$2.6 \text{x} 10^{12}$	$3.1 \text{x} 10^{13}$	$3.1 \text{x} 10^{15}$
$n \lg n$	$6.3x10^4$	2.6×10^6	$1.3x10^8$	$6.8 \text{x} 10^8$	$7.2 \text{x} 10^{10}$	$7.9 \text{x} 10^{11}$	6.8×10^{13}
n^2	$1x10^{3}$	7.7×10^3	$6x10^4$	$2.9 \text{x} 10^5$	1.6×10^6	5.6×10^6	$5.6 \text{x} 10^7$
n^3	$1x10^{2}$	3.9×10^2	$1.5 \text{x} 10^3$	$4.4 \text{x} 10^3$	$1.4 \text{x} 10^4$	$3.1 \text{x} 10^4$	$1.5 \text{x} 10^5$
2^n	19	25	31	36	41	44	51
n!	9	11	12	13	15	16	17

2.1-3

```
linearSearch(A, v)
1 for j = 1 to A.length:
2    if A[j] == v:
3        return j
```

At the start of each iteration of the for loop, the subarray A[1...j-1] consists of elements that are not equal to v.

- a) We need to prove that for any input it has the same output every time it is run.
- b) At the start of each iteration of the for loop, the subarray A[j+1...A.length-1] consists of elements that are greater that A[j].
 - **Initialization:** We start by showing that the loop invariant holds before the first loop iteration, when j = A.length. The subarray, therefore, consists of no elemets. This subarray shows that the loop invariant holds prior to the first iteration of the loop.
 - **Maintenance:** The program checks if A[j] < A[j-1] and swaps them if so. Essentially, moving numbers greater than A[j] to the right of it so the only numbers right of A[j] are greater than it. This holds true with the loop invariant.
 - **Termination:** The condition causing the for loop to terminate is that j < i+1. Because each loop iteration decreases j by 1, we must have j = i-1 at that time. Substituting i-1 for j in the wording of loop invariant, we have that the subarray A[i...A.length-1] consists of the elements greater than A[i].
- c) At the start of each iteration of the for loop, the subarray A[1...i-1] consists of sorted elements.
 - **Initialization:** We start by showing that the loop invariant holds before the first loop iteration, when i = 1. The subarry is an empty array so it is sorted.
 - **Maintenance:** The program increments i in order to begin sorting the next element.
 - **Termination:** The condition causing the for loop to terminate is that i > A.length 1. Because each loop iteration increase i by 1, we must have i = n + 1 at that time. Substituting n + 1 for i in the wording of loop invariant, we have that the subarray A[1...n] consists of the sorted elements.