

This presentation is released under the terms of the **Creative Commons Attribution-Share Alike** license.

You are free to reuse it and modify it as much as you want as long as:

(1) you mention Séverin Lemaignan as being the original author, (2) you re-share your presentation under the same terms.

You can download the sources of this presentation here: github.com/severin-lemaignan/lecture-hri-data-analysis

Human-Robot Interaction Data Analysis for HRI

Séverin Lemaignan

Bristol Robotics LabUniversity of the West of England

Two questions to answer:

Two questions to answer: Are my groups different?

Two questions to answer:

Are my groups different?

Does a specific variable explain the difference?

- Two questions to answer:
 - Are my groups different?

 Does a specific variable explain the difference?
- Hands-on data analysis with Python!

hoortroto

nntTD

A DATASET

bbtTD	age	condition	score	heartrate
1	22	control	643	76
2	26	cdt1	234	72
3	24	control	356	73
4	24	cdt1	587	75
5	29	cdt1	561	75
6	31	control	544	75
7	20	control	470	74
8	23	cdt1	212	72
9	23	control	388	73
10	22	cdt1	201	72
11	28	control	278	72
12	29	cdt1	599	76
13	27	control	366	73
14	21	cdt1	597	75
15	22	cdt1	571	75
16	30	control	55/	75

condition

Is there a difference?

- o Are the distributions the same?
- o How big the difference?
- Could chance explain that difference?

IS THE DISTRIBUTION THE SAME?

Data often (but not always!) follows a normal (or Gaussian) distribution. Two parameters: **mean** μ **and variance** σ^2 .

IS THE DISTRIBUTION THE SAME?

Data often (but not always!) follows a normal (or Gaussian) distribution. Two parameters: **mean** μ **and variance** σ^2 .

Many statistical tests only work if the underlying data follows a normal distribution – so-called **parametric tests**.

You need to check that your data is normally distributed first! (for instance, by plotting it)

COMPARE DISTRIBUTIONS (HISTOGRAMS, DENSITY)

Control group

COMPARE DISTRIBUTIONS (HISTOGRAMS, DENSITY)

Control + condition group \rightarrow beware the bimodal distribution!

TWO ADDITIONAL DATASETS

TWO ADDITIONAL DATASETS

	mean	std
cdt1 control	516.5 451.5	85.3 127.1
$\mu_1 - \mu_2$	69.2	

	mean	std
cdt1 control	516.5 451.5	85.3 127.1
$\mu_1 - \mu_2$	69.2	

	mean	std
cdt1 control	687.3 451.5	81.5 127.1
$\mu_1 - \mu_2$	235.8	

	mean	std
cdt1 control	516.5 451.5	85.3 127.1
$\mu_1 - \mu_2$	69.2	

	mean	std
cdt1 control	687.3 451.5	81.5 127.1
$\mu_1 - \mu_2$	235.8	

	mean	std
cdt1 control	404.0 451.5	192.2 127.1
$\mu_1 - \mu_2$	47.5	

	mean	std
cdt1 control	516.5 451.5	85.3 127.1
$\mu_1 - \mu_2$	69.2	

	mean	std
cdt1 control	687.3 451.5	81.5 127.1
$\mu_1 - \mu_2$	235.8	

	mean	std
cdt1 control	404.0 451.5	192.2 127.1
$\mu_1 - \mu_2$	47.5	

does not account for the variance in the dataset

std

HOW BIG IS THE DIFFERENCE?

	mean	std
cdt1 control	516.5 451.5	85.3 127.1
$\frac{\mu_1 - \mu_2}{\frac{\mu_1 - \mu_2}{\sigma}}$	69.2 0.62	

cdt1 control	687.3 451.5	81.5 127.1
$\mu_1 - \mu_2$	235.8	
$\frac{\mu_1 - \mu_2}{\sigma}$	2.21	

mean

	mean	std
cdt1 control	404.0 451.5	192.2 127.1
$\frac{\mu_1 - \mu_2}{\frac{\mu_1 - \mu_2}{\sigma}}$	47.5 0.29	

	mean	std
cdt1 control	516.5 451.5	85.3 127.1
$\frac{\mu_1 - \mu_2}{\frac{\mu_1 - \mu_2}{\sigma}}$	69.2 0.62	

	mean	std
cdt1 control	687.3 451.5	81.5 127.1
$\frac{\mu_1 - \mu_2}{\frac{\mu_1 - \mu_2}{\sigma}}$	235.8 2.21	

	mean	std
cdt1 control	404.0 451.5	192.2 127.1
$\frac{\mu_1 - \mu_2}{\frac{\mu_1 - \mu_2}{\sigma}}$	47.5 0.29	

A common measure of effect size: **Cohen's** $d = \frac{\mu_1 - \mu_2}{\sigma}$

ightarrow Interactive visualisation and interpretation of Cohen's d

DIFFERENCE DUE TO CHANCE?

A statistical hypothesis test makes an assumption about the outcome, called the **null hypothesis**.

Our *null hypothesis* is that there is no difference between the means of our two populations.

DIFFERENCE DUE TO CHANCE?

A statistical hypothesis test makes an assumption about the outcome, called the **null hypothesis**.

Our *null hypothesis* is that there is no difference between the means of our two populations.

p-value: probability of observing the result *given that the null hypothesis is true*.

 \Rightarrow Meaning of a low *p*-value?

DIFFERENCE DUE TO CHANCE?

A statistical hypothesis test makes an assumption about the outcome, called the **null hypothesis**.

Our *null hypothesis* is that there is no difference between the means of our two populations.

p-value: probability of observing the result *given that the null hypothesis is true*.

\Rightarrow Meaning of a low *p*-value?

To interpret p, you need to choose a *significance level* α . For instance, 10% (0.1), 5% (0.05), 2% (0.02)...

p = 0.05

'There's only 5% of chance of observing these distributions if my null hypothesis is true (ie, no difference between my groups).'

o If parametric data, Student's t-test

o If parametric data, Student's t-test

t statistic -1.51 *p* 0.155

o If parametric data, Student's t-test

o If parametric data, Student's t-test

t statistic	0.71
р	0.48

- If parametric data, **Student's** *t***-test**
- o If non-parametric data, Mann-Whitney U-test

- If parametric data, **Student's** *t***-test**
- o If non-parametric data, Mann-Whitney U-test

U statistic 46.0 p 0.07

See Wikipedia page for examples and interpreation of U

IMPACT OF N?

What is the impact of the sample size n on p?

IMPACT OF N?

What is the impact of the sample size n on p?

The higher n, the more unlikely the difference is due to chance

$$\nearrow n \Rightarrow \searrow p$$

IMPACT OF N?

What is the impact of the sample size n on p?

The higher n, the more unlikely the difference is due to chance

$$\nearrow n \Rightarrow \searrow p$$

ia

BE CAREFUL WITH "STATISTICALLY SIGNIFICANT"!

aender

genaei	'9		
male	76.51		
male	76.53		
female	76.66		
female	76.65		
female	76.64		
female	76.63		
male	76.54		
female	76.64		
male	76.51		
female	76.60		
female	76.63		
male	76.52		
female	76.64		
male	76.51		
female	76.60		
fomalo	76.63		

t statistic	12.52		
р	< 0.001		
Mean female	76.64		
Mean male	76.54		

$$M_{female} > M_{male}, p < 0.001$$

t statistic	12.52		
<i>t</i> Statistic	12.52		
р	< 0.001		
Mean female	76.64		
Mean male	76.54		

$$M_{female} > M_{male}, p < 0.001$$

Girls are more intelligent! We knew it!

<i>t</i> statistic	12.52
р	< 0.001
Mean female	76.64
Mean male	76.54

 $M_{female} > M_{male}, p < 0.001$

Girls are more intelligent! We knew it!

...wait... how big is our effect?

 $M_{female} - M_{male} = 0.1$ on a scale of 100??

<i>t</i> statistic	12.52
р	< 0.001
Mean female	76.64
Mean male	76.54

$$M_{female} > M_{male}, p < 0.001$$

Girls are more intelligent! We knew it!

...wait... how big is our effect?

 $M_{female} - M_{male} = 0.1$ on a scale of 100??

Cohen's d

 $d=rac{\mu_1-\mu_2}{\sigma}=4.12\Rightarrow$ high, because σ very low

Statistical power

The statistical power of a hypothesis test is the probability of detecting an effect, if there is a true effect present to detect.

or:

Statistical power

The statistical power of the test is the probability that the test correctly rejects a *false* null hypothesis.

Types of errors

- Type I error: Reject the null hypothesis when there is in fact no significant effect (too optimistic!)
- Type II error: Not reject the null hypothesis when there is a significant effect (too pessimistic!)

Types of errors

- Type I error: Reject the null hypothesis when there is in fact no significant effect (too optimistic!)
- Type II error: Not reject the null hypothesis when there is a significant effect (too pessimistic!)

The boy who cried wolf

- o Type I error:
 - "there's a wolf!" (too optimistic: there's no wolf!)
- Type II error:
 - ...the villager don't respond when there really is a wolf (too pessimistic: there is indeed a wolf!)

Types of errors

- Type I error: Reject the null hypothesis when there is in fact no significant effect (too optimistic!)
- Type II error: Not reject the null hypothesis when there is a significant effect (too pessimistic!)

Statistical power

The statistical power of a hypothesis test is the probability of detecting an effect, if there is a true effect present to detect.

Types of errors

- Type I error: Reject the null hypothesis when there is in fact no significant effect (too optimistic!)
- Type II error: Not reject the null hypothesis when there is a significant effect (too pessimistic!)

Statistical power

The statistical power of a hypothesis test is the probability of detecting an effect, if there is a true effect present to detect.

Power = 1 - Type II Error

A puzzle with four pieces:

- Effect size
- Sample size
- Significance (chance of Type I error found inexistant effect)
- Statistical power (1 chance of Type II error missed the effect)

EXAMPLE: POWER ANALYSIS OF STUDENT'S T-TEST

o **Effect size**: Cohen's d > 0.8

• Significance: 5%

Statistical power: 80%

Sample size?

EXAMPLE: POWER ANALYSIS OF STUDENT'S T-TEST

• **Effect size**: Cohen's d > 0.8

• Significance: 5%

Statistical power: 80%

Sample size?

Using for instance Python's ${\tt statsmodels.stats.power.TTestIndPower}, \ {\tt we \ can \ compute \ that} \\ n=25.5 \ ({\tt per \ condition})$

EXAMPLE: POWER ANALYSIS OF STUDENT'S *T*-TEST

• **Effect size**: Cohen's d > 0.8

• Significance: 5%

Statistical power: 80%

Sample size?

Using for instance Python's statsmodels.stats.power.TTestIndPower, we can compute that n=25.5 (per condition)

A good read on statistical power analysis:

A Gentle Introduction to Statistical Power and Power Analysis in Python

2 groups, independent measures, normal distribution:
 Independent t-test

- 2 groups, independent measures, normal distribution:
 Independent t-test
- 2 groups, dependent measures, normal distribution: Paired t-test (for instance, conditions are within-subject)

- 2 groups, independent measures, normal distribution:
 Independent t-test
- 2 groups, dependent measures, normal distribution: Paired t-test (for instance, conditions are within-subject)
- 2 groups, non-parametric: Mann-Whitney U (and Wilcoxon signed-rank test for paired samples)

- 2 groups, independent measures, normal distribution:
 Independent t-test
- 2 groups, dependent measures, normal distribution: Paired t-test (for instance, conditions are within-subject)
- 2 groups, non-parametric: Mann-Whitney U (and Wilcoxon signed-rank test for paired samples)
- o Three or more groups: ANOVA (analysis of variance)

- 2 groups, independent measures, normal distribution:
 Independent t-test
- 2 groups, dependent measures, normal distribution: Paired t-test (for instance, conditions are within-subject)
- 2 groups, non-parametric: Mann-Whitney U (and Wilcoxon signed-rank test for paired samples)
- o Three or more groups: ANOVA (analysis of variance)

- 2 groups, independent measures, normal distribution:
 Independent t-test
- 2 groups, dependent measures, normal distribution: Paired t-test (for instance, conditions are within-subject)
- 2 groups, non-parametric: Mann-Whitney U (and Wilcoxon signed-rank test for paired samples)
- Three or more groups: ANOVA (analysis of variance)

Always report an **effect size** (for instance, **Cohen's** *d*)

- 2 groups, independent measures, normal distribution:
 Independent t-test
- 2 groups, dependent measures, normal distribution: Paired t-test (for instance, conditions are within-subject)
- 2 groups, non-parametric: Mann-Whitney U (and Wilcoxon signed-rank test for paired samples)
- Three or more groups: ANOVA (analysis of variance)

Always report an **effect size** (for instance, **Cohen's** *d*) Keep a close eye on your data distributions (**plot them**)

DOES ONE VARIABLE EXPLAIN THE

DIFFERENCE?

OUR DATASET

pptID	age	condition	score	heartrate
1	22	control	643	76
2	26	cdt1	234	72
3	24	control	356	73
4	24	cdt1	587	75
5	29	cdt1	561	75
6	31	control	544	75
7	20	control	470	74
8	23	cdt1	212	72
9	23	control	388	73
10	22	cdt1	201	72
11	28	control	278	72
12	29	cdt1	599	76
13	27	control	366	73
14	21	cdt1	597	75
15	22	cdt1	571	75
16	30	control	55/	75

ASSOCIATION

What is the degree of association between two variables?

 \rightarrow main tool: correlation

PEARSON CORRELATION

 $\begin{array}{ccc} \text{Pearson's correlation} & & & \\ \rho & & 0.98 \\ p & & < 0.001 \end{array}$

PEARSON CORRELATION

Pearson's correlation	
ρ	-0.022
р	0.92

INTERPRETATION OF ρ

 ρ reflects the degree of linearity and direction

INTERPRETATION OF ρ

 ρ does not reflect the slope of the regression line

INTERPRETATION OF ρ

Are my two groups different?

 ρ does not capture non-linear interactions

Source: Wikipedia

OTHER MEASURES OF ASSOCIATION

- o Non-parametric ordinal data: Spearman rank correlation
- Association between categorical data (for instance, relationship between 'gender' and 'preferred style of cuisine'): **Pearson's Chi-Square** χ^2

Source: XKCD

Source: XKCD

Be careful when tempted to write something like:

"the significant positive correlation between the heart rate and the score shows that you need to have a high heart rate to win"

TO CONCLUDE: ANSCOMBE'S QUARTET

I		II		III		IV	
X	у	X	у	X	у	X	у
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

TO CONCLUDE: ANSCOMBE'S QUARTET

Property	Value
Mean of x	9
Sample variance of x	11
Mean of y	7.50
Sample variance of y	4.125
Correlation between x and y	0.816
Linear regression line	y = 3.00 + 0.500x
Coefficient of determination of the	0.67
linear regression	

TO CONCLUDE: ANSCOMBE'S QUARTET

THE TOOLS

Data analysis tools:

- R: www.r-project.org
- Python's Pandas: pandas.pydata.org

THE TOOLS

Data analysis tools:

- R: www.r-project.org
- Python's Pandas: pandas.pydata.org

Jupyter notebooks are a great way of creating an interactive, easy-to-follow, data analysis.

Python is the leading language in data analysis/data mining/machine learning. **Learn it!**

Python is the leading language in data analysis/data mining/machine learning. **Learn it!**

Python is the leading language in data analysis/data mining/machine learning. **Learn it!**

Large set of tools \Rightarrow the SciPy landscape can be confusing at first:

o numpy, scipy: the 'math' core

Python is the leading language in data analysis/data mining/machine learning. **Learn it!**

- o numpy, scipy: the 'math' core
- o ipython, Jupyter notebook: interactive Python

Python is the leading language in data analysis/data mining/machine learning. **Learn it!**

- o numpy, scipy: the 'math' core
- o ipython, Jupyter notebook: interactive Python
- matplotlib, seaborn: data visualisation (including plotting)

Python is the leading language in data analysis/data mining/machine learning. **Learn it!**

- o numpy, scipy: the 'math' core
- ipython, Jupyter notebook: interactive Python
- matplotlib, seaborn: data visualisation (including plotting)
- pandas, statsmodels: stats, data analysis (modelled after R)

Python is the leading language in data analysis/data mining/machine learning. **Learn it!**

- o numpy, scipy: the 'math' core
- ipython, Jupyter notebook: interactive Python
- matplotlib, seaborn: data visualisation (including plotting)
- pandas, statsmodels: stats, data analysis (modelled after R)
- scikit-learn (along with specialist ML libraries: TensorFlow, pyTorch): machine learning

Python is the leading language in data analysis/data mining/machine learning. **Learn it!**

- o numpy, scipy: the 'math' core
- o ipython, Jupyter notebook: interactive Python
- matplotlib, seaborn: data visualisation (including plotting)
- pandas, statsmodels: stats, data analysis (modelled after R)
- scikit-learn (along with specialist ML libraries: TensorFlow, pyTorch): machine learning
- anaconda (and a few other): Python distribution for scientific computing

