Package 'pompom'

October 14, 2022

Type Package

Title Person-Oriented Method and Perturbation on the Model

Version 0.2.1

Maintainer Xiao Yang <vwendy@gmail.com>

Description An implementation of a hybrid method of person-oriented method and perturbation on the model. Pompom is the initials of the two methods. The hybrid method will provide a multivariate intraindividual variability metric (iRAM). The person-oriented method used in this package refers to uSEM (unified structural equation modeling, see Kim et al., 2007, Gates et al., 2010 and Gates et al., 2012 for details). Perturbation on the model was conducted according to impulse response analysis introduced in Lutkepohl (2007).

Kim, J., Zhu, W., Chang, L., Bentler, P. M., & Ernst, T. (2007) <doi:10.1002/hbm.20259>. Gates, K. M., Mole-

naar, P. C. M., Hillary, F. G., Ram, N., & Rovine, M. J. (2010) <doi:10.1016/j.neuroimage.2009.12.117>. Gates, K. M., & Molenaar, P. C. M. (2012) <doi:10.1016/j.neuroimage.2012.06.026>. Lutkepohl, H. (2007, ISBN:3540262393).

License GPL-2

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

Depends R (>= 3.0.0)

Imports lavaan (>= 0.5-23.1097), ggplot2 (>= 2.2.1), reshape2 (>= 1.4.2), qgraph, utils

Suggests knitr, rmarkdown, testthat

VignetteBuilder knitr

NeedsCompilation no

Author Xiao Yang [cre, aut], Nilam Ram [aut],

Peter Molenaar [aut]

Repository CRAN

Date/Publication 2021-02-15 00:40:02 UTC

R topics documented:

	bootstrap_iRAM_2node
	bootstrap_iRAM_3node
	iRAM
	iRAM_equilibrium
	model_summary
	parse_beta
	plot_integrated_time_profile
	plot_iRAM_dist
	plot_network_graph
	plot_time_profile
	simts_2node
	simts_3node
	true_beta_2node
	true_beta_3node
	uSEM
	usemmodelfit
Index	15

bootstrap_iRAM_2node Bootstrapped iRAM (including replications of iRAM and corresponding time profiles) for the bivariate time-series (simts2node)

Description

Bootstrapped iRAM (including replications of iRAM and corresponding time profiles) for the bivariate time-series (simts2node)

Usage

bootstrap_iRAM_2node

Format

An object of class list of length 5.

Details

Data bootstrapped from the estimated three-node network structure with 200 replications.

Examples

bootstrap_iRAM_2node\$mean # mean of bootstrapped iRAM bootstrap_iRAM_2node\$upper # Upper bound of confidence interval of bootstrapped iRAM bootstrap_iRAM_2node\$lower # lower bound of confidence interval of bootstrapped iRAM bootstrap_iRAM_2node\$time.profile.data # time profiles generated from the bootstrapped beta matrices bootstrap_iRAM_2node\$recovery.time.reps # iRAMs generated from the bootstrapped beta matrices

bootstrap_iRAM_3node

Bootstrapped iRAM (including replications of iRAM and corresponding time profiles) for the 3-variate time-series (simts)

Description

Bootstrapped iRAM (including replications of iRAM and corresponding time profiles) for the 3-variate time-series (simts)

Usage

bootstrap_iRAM_3node

Format

An object of class list of length 5.

Details

Data bootstrapped from the estimated three-node network structure with 200 replications.

Examples

bootstrap_iRAM_3node\$mean # mean of bootstrapped iRAM bootstrap_iRAM_3node\$upper # Upper bound of confidence interval of bootstrapped iRAM bootstrap_iRAM_3node\$lower # lower bound of confidence interval of bootstrapped iRAM bootstrap_iRAM_3node\$time.profile.data # time profiles generated from the bootstrapped beta matrices bootstrap_iRAM_3node\$recovery.time.reps # iRAMs generated from the bootstrapped beta matrices 4 iRAM

iRAM

Generate iRAM (impulse response anlaysis metric) from model fit.

Description

Generate iRAM (impulse response anlaysis metric) from model fit.

Usage

```
iRAM(
  model.fit,
  beta,
  var.number,
  lag.order = 1,
  threshold = 0.01,
  boot = FALSE,
  replication = 200,
  steps = 100
)
```

Arguments

model.fit model fit object generated by lavaan beta beta matrix for a point estimate var.number number of variables in the time series lag.order lag order of the model to be fit threshold threshold of calculation of recovery time (duration of perturbation), default value is 0.01 boot to bootstrap, default value is FALSE replication number of replication of bootstrap, default value is 200 number of steps of impulse response analysis, default value is 100 steps

Value

iRAM matrix. Rows represent where the orthognal impulse was given, and columns represent the response. Dimension is var.number by var.number.

References

Lütkepohl, H. (2007). New introduction to multiple time-series analysis. Berlin: Springer.

iRAM_equilibrium 5

Examples

```
boot.iRAM <- iRAM(model.fit = usemmodelfit,
    beta = NULL,
    var.number = 3,
    lag.order = 1,
    threshold = 0.01,
    boot = TRUE,
    replication = 200,
    steps = 100
    )
boot.iRAM$mean</pre>
```

iRAM_equilibrium

Generate iRAM (impulse response anlaysis metric) in the equilibrium form.

Description

Generate iRAM (impulse response anlaysis metric) in the equilibrium form.

Usage

```
iRAM_equilibrium(beta.matrix, var.number, lag.order)
```

Arguments

beta.matrix beta matrix for a point estimate
var.number number of variables in the time series
lag.order lag order of the model to be fit

Value

a list of equilibria. First numeric number in the variable name indicate where the impulse was given, and the second numeric number indicate the response, e.g., e12 indicates equilibrium of node 2 when node 1 is given an impulse.

```
iRAM_evalue <- iRAM_equilibrium(beta.matrix = true_beta_3node,
    var.number = 3,
    lag.order = 1
```

6 model_summary

```
)
iRAM_evalue
```

model_summary

Provide model summary.

Description

Provide model summary.

Usage

```
model_summary(model.fit, var.number, lag.order)
```

Arguments

model.fit model fit object generated by lavaan var.number number of variables in the time-series

lag.order lag order of model

Details

Model fit criteria: 3 out of 4 rule, meaning 3 out of 4 critea should be satisfied, including CFI and TLI should be greater than 0.95, RMSEA and SRMR should be less than 0.08.

Value

beta matrix estimates
matrix of standard error of beta

matrix of psi estimates

fit statistics CFI

fit statistics TLI

fit statistics RMSEA

fit statistics SRMR

parse_beta 7

Examples

parse_beta

Parse the beta from model fit object

Description

Parse the beta from model fit object

Usage

```
parse_beta(var.number, model.fit, lag.order, matrix = F)
```

Arguments

var.number number of variables in the time series model.fit model fit object generated by lavaan lag.order lag order of the model to be fit

matrix output beta in matrix format or estimates format, default value is FALSE (as

estimates)

Value

beta

8 plot_iRAM_dist

beta.matrix

```
plot_integrated_time_profile
```

Plot the time profiles in the integrated form

Description

Plot the time profiles in the integrated form

Usage

```
plot_integrated_time_profile(beta.matrix, var.number, lag.order = 1)
```

Arguments

beta.matrix matrix of temporal relations, cotaining both lag-1 and contemporaneous

var.number number of variables in the time series

lag.order lag order of the model to be fit

Examples

Description

Plot distribution of recovery time based on bootstrapped version of iRAM

Usage

```
plot_iRAM_dist(recovery.time.reps)
```

plot_network_graph 9

Arguments

```
recovery.time.reps
bootstrapped version of recovery time
```

Examples

```
plot_iRAM_dist(bootstrap_iRAM_3node$recovery.time.reps)
```

plot_network_graph

Plot the network graph

Description

Plot the network graph

Usage

```
plot_network_graph(beta, var.number)
```

Arguments

beta matrix of temporal relations, cotaining both lag-1 and contemporaneous

var.number number of variables in the time series

simts_2node

·	Plot time profiles given a time-series generated by impulse response analysis
---	---

Description

Plot time profiles given a time-series generated by impulse response analysis

Usage

```
plot_time_profile(time.series.data, var.number, threshold = 0.01, xupper = 20)
```

Arguments

```
time.series.data
```

data of impulse response in long format

var.number number of variables in the time-series threshold threshold of asymptote of equilibrium

xupper upper limit of x-axis

Examples

 $simts_2node$

Simulated bivariate time-series data

Description

Simulated bivariate time-series data

Usage

simts_2node

Format

An object of class data. frame with 200 rows and 2 columns.

simts_3node

Details

Data simulated from a given three-node network structure with 200 measurements. Network structure is shown in the dataset true.beta. Process noise has mean of 0 and SD .1.

Examples

```
data(simts_2node)
```

simts_3node

Simulated 3-variate time-series data

Description

Simulated 3-variate time-series data

Usage

simts_3node

Format

An object of class data. frame with 100 rows and 3 columns.

Details

Data simulated from a given three-node network structure with 200 measurements. Network structure is shown in the dataset true.beta. Process noise has mean of 0 and SD .1.

Examples

data(simts_3node)

true_beta_3node

true_beta_2node

The true beta matrix (4 by 4) used in simulation.

Description

The true beta matrix (4 by 4) used in simulation.

Usage

true_beta_2node

Format

An object of class matrix (inherits from array) with 4 rows and 4 columns.

Details

Examples

true_beta_2node

true_beta_3node

The true beta matrix (6 by 6) used in simulation.

Description

The true beta matrix (6 by 6) used in simulation.

Usage

true_beta_3node

Format

An object of class matrix (inherits from array) with 6 rows and 6 columns.

Details

uSEM 13

Examples

```
true_beta_3node
```

uSEM

Fit a multivariate time series with uSEM (unified Structural Equation Model).

Description

Fit a multivariate time series with uSEM (unified Structural Equation Model).

Usage

```
uSEM(var.number,
    data,
    lag.order = 1,
    verbose = FALSE,
    trim = FALSE)
```

Arguments

var.number number of variables in the time series
data time series data, must be in long format

lag order of the model to be fit, default value is 1. Note: Higher order (greater

than 1) might not run.

verbose print intermediate model fit (iterations), default value is FALSE

trim to trim the insignificant betas (just one step, not iterative), default value is FALSE

Details

The purpose of uSEM is to quantify the temporal relations (both contemporaneous and lag-1) between variables. Model specification and estimation can be found in the references.

Value

model fit object generated by lavaan

14 usemmodelfit

References

Kim, J., Zhu, W., Chang, L., Bentler, P. M., & Ernst, T. (2007). Unified Structural Equation Modeling Approach for the Analysis of Multisubject, Multivariate Functional MRI Data. Human Brain Mapping, 93, 85–93. doi:10.1002/hbm.20259

Gates, K. M., & Molenaar, P. C. M. (2012). Group search algorithm recovers effective connectivity maps for individuals in homogeneous and heterogeneous samples. NeuroImage 63(1), 310-319. doi: 10.1016/j.neuroimage.2012.06.026

Gates, K. M., Molenaar, P. C. M., Hillary, F. G., Ram, N., & Rovine, M. J. (2010). Automatic search for fMRI connectivity mapping: An alternative to Granger causality testing using formal equivalences among SEM path modeling, VAR, and unified SEM. NeuroImage, 50(3), 1118–1125. doi: 10.1016/j.neuroimage.2009.12.117

Examples

usemmodelfit

Model fitbased on similated time-series by uSEM.

Description

Model fitbased on similated time-series by uSEM.

Usage

usemmodelfit

Format

An object of class lavaan of length 1.

```
data(usemmodelfit)
```

Index

```
* datasets
    bootstrap_iRAM_2node, 2
    bootstrap_iRAM_3node, 3
    simts_2node, 10
    simts_3node, 11
    true_beta_2node, 12
    true_beta_3node, 12
    usemmodelfit, 14
bootstrap_iRAM_2node, 2
bootstrap_iRAM_3node, 3
iRAM, 4
iRAM_equilibrium, 5
model_summary, 6
parse_beta, 7
plot_integrated_time_profile, 8
plot_iRAM_dist, 8
\verb|plot_network_graph|, 9
plot_time_profile, 10
simts_2node, 10
simts\_3node, 11
true_beta_2node, 12
true_beta_3node, 12
uSEM, 13
usemmodelfit, 14
```