Машина Тюрінга та її властивості

Андрій Фесенко 15.09.2021

 абстрактний обчислювальний пристрій (стрічка та зчитувальний пристрій)

- абстрактний обчислювальний пристрій (стрічка та зчитувальний пристрій)
- в кожній комірці міститься рівно один символ зі <u>скінченної</u> множини символів Г

- абстрактний обчислювальний пристрій (стрічка та зчитувальний пристрій)
- в кожній **комірці** міститься рівно один **симво**л зі <u>скінченної</u> множини символів Г
- стрічка є потенційно нескінченною в обидві сторони

- абстрактний обчислювальний пристрій (**стрічка** та **зчитувальний пристрій**)
- в кожній **комірці** міститься рівно один **симво**л зі <u>скінченної</u> множини символів Г
- стрічка є потенційно нескінченною в обидві сторони
- Г алфавіт стрічки, алфавіт машини або зовнішний алфавіт

- абстрактний обчислювальний пристрій (стрічка та зчитувальний пристрій)
- в кожній комірці міститься рівно один символ зі <u>скінченної</u> множини символів Г
- стрічка є потенційно нескінченною в обидві сторони
- Г алфавіт стрічки, алфавіт машини або зовнішний алфавіт
- # порожній символ (порожня комірка)

• скінченна множина внутрішніх станів Q (внутрішній алфавіт)

- скінченна множина внутрішніх станів Q (внутрішній алфавіт)
- в кожен момент часу знаходиться рівно в одному з цих станів

- скінченна множина внутрішніх станів Q (внутрішній алфавіт)
- в кожен момент часу знаходиться рівно в одному з цих станів
- ullet один з елементів множини $Q\left(q_0
 ight)-$ початковий стан

- <u>скінченна</u> множина внутрішніх станів Q (внутрішній алфавіт)
- в кожен момент часу знаходиться рівно в одному з цих станів
- ullet один з елементів множини $Q\left(q_{0}
 ight)$ початковий стан
- ullet множина **кінцевих станів** Q_F , $Q_F\subseteq Q$

- <u>скінченна</u> множина внутрішніх станів Q (внутрішній алфавіт)
- в кожен момент часу знаходиться рівно в одному з цих станів
- ullet один з елементів множини $Q\left(q_{0}
 ight)$ початковий стан
- ullet множина **кінцевих станів** Q_F , $Q_F\subseteq Q$
- переміщення зчитувального пристрою

- скінченна множина внутрішніх станів Q (внутрішній алфавіт)
- в кожен момент часу знаходиться рівно в одному з цих станів
- ullet один з елементів множини $Q\left(q_0
 ight)$ **початковий стан**
- ullet множина **кінцевих станів** Q_F , $Q_F\subseteq Q$
- переміщення зчитувального пристрою
- дискретність функціонування

• один **такт** — зчитування символу, зміна стану, записування символу, зміщення зчитувального пристрою

- один такт зчитування символу, зміна стану, записування символу, зміщення зчитувального пристрою
- ullet рух зчитувального пристрою елемент множини $\{L,S,R\}$

- один такт зчитування символу, зміна стану, записування символу, зміщення зчитувального пристрою
- ullet рух зчитувального пристрою елемент множини $\{L,S,R\}$
- впорядкована п'ятірка (q_1, x_1, q_2, x_2, z) , де $q_1, q_2 \in Q$, $x_1, x_2 \in \Gamma$ і $z \in \{L, S, R\}$, команда машини Тюрінга

- один такт зчитування символу, зміна стану, записування символу, зміщення зчитувального пристрою
- ullet рух зчитувального пристрою елемент множини $\{L,S,R\}$
- впорядкована п'ятірка (q_1, x_1, q_2, x_2, z) , де $q_1, q_2 \in Q$, $x_1, x_2 \in \Gamma$ і $z \in \{L, S, R\}$, команда машини Тюрінга
- повний набір команд програма

- один такт зчитування символу, зміна стану, записування символу, зміщення зчитувального пристрою
- ullet рух зчитувального пристрою елемент множини $\{L,S,R\}$
- впорядкована п'ятірка (q_1, x_1, q_2, x_2, z) , де $q_1, q_2 \in Q$, $x_1, x_2 \in \Gamma$ і $z \in \{L, S, R\}$, команда машини Тюрінга
- повний набір команд програма
- ullet $(q_1,x_1)\mapsto (q_2,x_2,z)$ або $q_1,x_1\mapsto q_2,x_2,z$, або $q_1x_1\mapsto q_2x_2z$, або навіть $q_1x_1q_2x_2z$

- один такт зчитування символу, зміна стану, записування символу, зміщення зчитувального пристрою
- ullet рух зчитувального пристрою елемент множини $\{L,S,R\}$
- впорядкована п'ятірка (q_1, x_1, q_2, x_2, z) , де $q_1, q_2 \in Q$, $x_1, x_2 \in \Gamma$ і $z \in \{L, S, R\}$, команда машини Тюрінга
- повний набір команд програма
- ullet $(q_1,x_1)\mapsto (q_2,x_2,z)$ або $q_1,x_1\mapsto q_2,x_2,z$, або $q_1x_1\mapsto q_2x_2z$, або навіть $q_1x_1q_2x_2z$
- для детермінованої машини частково визначена функція $\delta: (Q \setminus Q_F) \times \Gamma \nrightarrow Q \times \Gamma \times \{L,S,R\}$ функція переходів

- один такт зчитування символу, зміна стану, записування символу, зміщення зчитувального пристрою
- ullet рух зчитувального пристрою елемент множини $\{L,S,R\}$
- впорядкована п'ятірка (q_1, x_1, q_2, x_2, z) , де $q_1, q_2 \in Q$, $x_1, x_2 \in \Gamma$ і $z \in \{L, S, R\}$, команда машини Тюрінга
- повний набір команд програма
- ullet $(q_1,x_1)\mapsto (q_2,x_2,z)$ або $q_1,x_1\mapsto q_2,x_2,z$, або $q_1x_1\mapsto q_2x_2z$, або навіть $q_1x_1q_2x_2z$
- ullet для детермінованої машини частково визначена функція $\delta: (Q \setminus Q_F) imes \Gamma
 eg Q imes \Gamma imes Q imes \Gamma imes \{L,S,R\}$ функція переходів
- машина Тюрінга зупиняється, якщо немає відповідної команди

- один **такт** зчитування символу, зміна стану, записування символу, зміщення зчитувального пристрою
- ullet рух зчитувального пристрою елемент множини $\{L,S,R\}$
- впорядкована п'ятірка (q_1, x_1, q_2, x_2, z) , де $q_1, q_2 \in Q$, $x_1, x_2 \in \Gamma$ і $z \in \{L, S, R\}$, команда машини Тюрінга
- повний набір команд програма
- ullet $(q_1,x_1)\mapsto (q_2,x_2,z)$ або $q_1,x_1\mapsto q_2,x_2,z$, або $q_1x_1\mapsto q_2x_2z$, або навіть $q_1x_1q_2x_2z$
- ullet для детермінованої машини частково визначена функція $\delta: (Q \setminus Q_F) imes \Gamma
 to Q imes T imes \{L,S,R\}$ функція переходів
- машина Тюрінга зупиняється, якщо немає відповідної команди
- машина Тюрінга 👄 програма (машини Тюрінга)

ullet $\Sigma \subseteq \Gamma \setminus \{\#\}$ — вхідний алфавіт

- ullet $\Sigma \subseteq \Gamma \setminus \{\#\}$ вхідний алфавіт
- ullet машині подано вхідне слово (або слово подано на вхід машини) $x \in \Sigma^*$, $x = x_1 \dots x_n$, де $x_1, \dots, x_n \in \Sigma$, $n \in \mathbb{N}_0$,

- ullet $\Sigma \subseteq \Gamma \setminus \{\#\}$ вхідний алфавіт
- машині подано вхідне слово (або слово подано на вхід машини) $x \in \Sigma^*$, $x = x_1 \dots x_n$, де $x_1, \dots, x_n \in \Sigma$, $n \in \mathbb{N}_0$,
- машина Тюрінга на вхідному слові зациклюється (не застосовна або є незастосовною до вхідного слова) або зупиняється (застосовна або є застосовною до вхідного слова)

- машині подано вхідне слово (або слово подано на вхід машини) $x \in \Sigma^*$, $x = x_1 \dots x_n$, де $x_1, \dots, x_n \in \Sigma$, $n \in \mathbb{N}_0$,
- машина Тюрінга на вхідному слові зациклюється (не застосовна або є незастосовною до вхідного слова) або зупиняється (застосовна або є застосовною до вхідного слова)
- ullet зупинка зчитувального пристрою (правило з S) eq зупинка машини Тюрінга

Однострічкова детермінована машина Тюрінга

Означення

Однострічкова детермінована машина Тюрінга M — це абстрактний обчислювальний пристрій, який визначається кортежем $(\Gamma, \Sigma, \#, Q, Q_F, q_0, \delta)$, де

- Г непорожня скінченна множина, яку називають алфавітом машини Тюрінга М або алфавітом стрічки;
- \bullet # \in Γ порожній символ;
- $\Sigma \subseteq \Gamma \setminus \{\#\}$ непорожня скінченна множина, яку називають вхідним алфавітом;
- Q непорожня скінченна множина внутрішніх станів;
- $Q_F \subseteq Q$ множина кінцевих внутрішніх станів;
- ullet $q_0 \in Q$ початковий (внутрішній) стан;
- $\delta: (Q \setminus Q_F) \times \Gamma \nrightarrow Q \times \Gamma \times \{L, S, R\}$ (часткова) функція переходів.

$$M = (\Gamma, \Sigma, \#, Q, Q_F, q_0, \delta)$$

$$M = (\Gamma, \Sigma, \#, Q, Q_F, q_0, \delta)$$

• алфавіт машини Тюрінга Г та вхідний алфавіт Σ відрізняються на один символ (стандартне позначення)

$$M = (\Gamma, \Sigma, \#, Q, Q_F, q_0, \delta)$$

- алфавіт машини Тюрінга Г та вхідний алфавіт Σ відрізняються на один символ (стандартне позначення)
- ullet зазвичай вхідний алфавіт $\{0,1\}$

$$M = (\cancel{r}, \cancel{\Sigma}, \cancel{\#}, Q, Q_F, q_0, \delta)$$

- алфавіт машини Тюрінга Г та вхідний алфавіт Σ відрізняються на один символ (стандартне позначення)
- ullet зазвичай вхідний алфавіт $\{0,1\}$
- ullet зазвичай алфавіт стрічки $\{0,1,\#\}$

$$M = (\nabla, \Sigma, \#, Q, Q_F, q_0, \delta)$$

- алфавіт машини Тюрінга Г та вхідний алфавіт Σ відрізняються на один символ (стандартне позначення)
- ullet зазвичай вхідний алфавіт $\{0,1\}$
- ullet зазвичай алфавіт стрічки $\{0,1,\#\}$
- опускають множину всіх кінцевих внутрішніх станів

$$M = (\nabla, \Sigma, \#, Q, Q_F, g_0, \delta)$$

- алфавіт машини Тюрінга Г та вхідний алфавіт Σ відрізняються на один символ (стандартне позначення)
- ullet зазвичай вхідний алфавіт $\{0,1\}$
- ullet зазвичай алфавіт стрічки $\{0,1,\#\}$
- опускають множину всіх кінцевих внутрішніх станів
- ullet стандартне позначення для початкового внутрішнього стану q_0

$$M = (\nabla, \Sigma, \#, Q, Q_F, g_0, \delta)$$

- алфавіт машини Тюрінга Г та вхідний алфавіт Σ відрізняються на один символ (стандартне позначення)
- ullet зазвичай вхідний алфавіт $\{0,1\}$
- зазвичай алфавіт стрічки $\{0,1,\#\}$
- опускають множину всіх кінцевих внутрішніх станів
- ullet стандартне позначення для початкового внутрішнього стану q_0
- всі внутрішні стани зустрічаються в командах

Приклад

Скорочений запис

 $M = (\{q_01q_10R, q_00q_01S, q_11q_21R, q_10q_31S, q_1\#q_11S\})$

Приклад

Скорочений запис

$$M = (\{q_01q_10R, q_00q_01S, q_11q_21R, q_10q_31S, q_1\#q_11S\})$$

Повний запис

$$M = (\{0,1,\#\}, \{0,1\}, \#, \{q_0,q_1,q_2,q_3\}, \{q_2,q_3\}, q_0, \{q_01q_10R, q_00q_01S, q_11q_21R, q_10q_31S, q_1\#q_11S\})$$

Конфігурація машини Тюрінга

Означення

Конфігурацією (однострічкової) машини Тюрінга

 $M = (\Gamma, \Sigma, \#, Q, Q_F, q_0, \delta)$ на будь-якому такті називають впорядковану трійку C=(w,q,v), де $q\in Q$ — значення поточного внутрішнього стану машини Тюрінга, $w, v \in \Gamma^*$ такі, що вміст стрічки машини Тюрінга дорівнює значенню $w \| v$, доповненому з обох боків нескінченною кількістю порожніх символів #, перший символ слова w та останній символ слова v не дорівнюють порожньому символу, на поточному такті зчитувальний пристрій знаходиться над першим символом слова v, тобто слова w та v знаходяться зліва та справа від зчитувального пристрою відповідно. Для довільної конфігурації C = (w, q, v) внутрішній стан q називають **станом конфігурації** C, а слово $w \| v - \mathbf{вмістом} \ \mathbf{конфігурації} \ C$.

C = (w, q, v) використовують запис C = w ||q|| v.

Конфігурація машини Тюрінга

• $C_1 \vdash C_2$ (конфігурація C_2 **безпосередньо виводиться з** конфігурації C_1) означає, що машина Тюрінга за один свій такт змінює конфігурацію з C_1 на C_2 згідно з правилами функції переходів

- $C_1 \vdash C_2$ (конфігурація C_2 безпосередньо виводиться з конфігурації C_1) означає, що машина Тюрінга за один свій такт змінює конфігурацію з C_1 на C_2 згідно з правилами функції переходів
- $C_1 \vDash C_2$ або $C_1 \vdash^* C_2$ (конфігурація C_2 виводиться з конфігурації C_1) означає, що машина Тюрінга за скінченну кількість своїх тактів змінює конфігурацію з C_1 на C_2 згідно з правилами функції переходів

- $C_1 \vdash C_2$ (конфігурація C_2 безпосередньо виводиться з конфігурації C_1) означає, що машина Тюрінга за один свій такт змінює конфігурацію з C_1 на C_2 згідно з правилами функції переходів
- $C_1 \vDash C_2$ або $C_1 \vdash^* C_2$ (конфігурація C_2 виводиться з конфігурації C_1) означає, що машина Тюрінга за скінченну кількість своїх тактів змінює конфігурацію з C_1 на C_2 згідно з правилами функції переходів
- $C_1 \vdash^n C_2$, $n \in \mathbb{N}_1$, (конфігурація C_2 виводиться з конфігурації C_1 за n тактів) означає, що машина Тюрінга M за n своїх тактів змінює конфігурацію з C_1 на C_2 згідно з правилами функції переходів

- $C_1 \vdash C_2$ (конфігурація C_2 безпосередньо виводиться з конфігурації C_1) означає, що машина Тюрінга за один свій такт змінює конфігурацію з C_1 на C_2 згідно з правилами функції переходів
- $C_1 \vDash C_2$ або $C_1 \vdash^* C_2$ (конфігурація C_2 виводиться з конфігурації C_1) означає, що машина Тюрінга за скінченну кількість своїх тактів змінює конфігурацію з C_1 на C_2 згідно з правилами функції переходів
- $C_1 \vdash^n C_2$, $n \in \mathbb{N}_1$, (конфігурація C_2 виводиться з конфігурації C_1 за n тактів) означає, що машина Тюрінга M за n своїх тактів змінює конфігурацію з C_1 на C_2 згідно з правилами функції переходів
- ullet можуть використовуватись позначення $dash_M, dash_M$ або $dash_M^*$, та $dash_M^n$

Твердження

Нехай машина Тюрінга M задана як $M=(\Gamma, \Sigma, \#, Q, Q_F, q_0, \delta)$. Нехай $q_1 \in Q \setminus Q_F$, $q_2 \in Q$, $x,y \in \Gamma^*$ і $a,b,c \in \Gamma$.

- Конфігурація (q_2, xb, y) машини Тюрінга M безпосередньо виводиться з конфігурації (q_1, x, ay) , тобто $(q_1, x, ay) \vdash_M (q_2, xb, y)$, тоді й тільки тоді, коли $\delta(q_1, a) = (q_2, b, R)$.
- Конфігурація (q_2, x, cby) машини Тюрінга M безпосередньо виводиться з конфігурації (q_1, xc, ay) , тобто $(q_1, xc, ay) \vdash_M (q_2, x, cby)$, тоді й тільки тоді, коли $\delta(q_1, a) = (q_2, b, L)$.
- Конфігурація (q_2, x, by) машини Тюрінга M безпосередньо виводиться з конфігурації (q_1, x, ay) , тобто $(q_1, x, ay) \vdash_M (q_2, x, by)$, тоді й тільки тоді, коли $\delta(q_1, a) = (q_2, b, S)$.

ullet конфігурація C_1 — завершальна, якщо $C_1 \not\vdash C_2$ ($\mathring{\vdash} C_1$ та $\mathring{\models} C_1$)

- ullet конфігурація C_1 завершальна, якщо $C_1 \not\vdash C_2$ ($\mathring{\vdash} C_1$ та $\mathring{\vDash} C_1$)
- $C_0, C_1, \ldots, C_m, m \in \mathbb{N}_0 \cup \{\infty\}, C_i \vdash C_{i+1}, 0 \le i < m, -$ обчислення (за Тюрінгом) або шлях обчислень

- ullet конфігурація \mathcal{C}_1 завершальна, якщо $\mathcal{C}_1 \not\vdash \mathcal{C}_2$ ($\mathring{\vdash} \mathcal{C}_1$ та $\mathring{\models} \mathcal{C}_1$)
- $C_0, C_1, \ldots, C_m, m \in \mathbb{N}_0 \cup \{\infty\}, C_i \vdash C_{i+1}, 0 \le i < m, -$ обчислення (за Тюрінгом) або шлях обчислень
- ullet шлях обчислень C_0, C_1, \ldots, C_m скінченний, якщо $m \neq \infty$ і нескінченний, якщо $m = \infty$

- ullet конфігурація \mathcal{C}_1 завершальна, якщо $\mathcal{C}_1
 ot\vdash \mathcal{C}_2$ ($\mathring{\vdash} \mathcal{C}_1$ та $\mathring{\vdash} \mathcal{C}_1$)
- $C_0, C_1, \ldots, C_m, m \in \mathbb{N}_0 \cup \{\infty\}, C_i \vdash C_{i+1}, 0 \le i < m, -$ обчислення (за Тюрінгом) або шлях обчислень
- ullet шлях обчислень C_0, C_1, \ldots, C_m скінченний, якщо $m
 eq \infty$ і нескінченний, якщо $m = \infty$
- шлях обчислень C_0, C_1, \ldots, C_m найбільшої довжини, де $C_0 = (\varepsilon, q_0, x),$ (повний) шлях обчислень для вхідного слова x або виконання машини Тюрінга з вхідним словом x

- ullet конфігурація \mathcal{C}_1 завершальна, якщо $\mathcal{C}_1
 ot\vdash \mathcal{C}_2$ ($\mathring{\vdash} \mathcal{C}_1$ та $\mathring{\vdash} \mathcal{C}_1$)
- $C_0, C_1, \ldots, C_m, m \in \mathbb{N}_0 \cup \{\infty\}, C_i \vdash C_{i+1}, 0 \le i < m, -$ обчислення (за Тюрінгом) або шлях обчислень
- ullet шлях обчислень C_0, C_1, \ldots, C_m скінченний, якщо $m \neq \infty$ і нескінченний, якщо $m = \infty$
- шлях обчислень C_0, C_1, \ldots, C_m найбільшої довжини, де $C_0 = (\varepsilon, q_0, x),$ (повний) шлях обчислень для вхідного слова x або виконання машини Тюрінга з вхідним словом x
- якщо для всіх вхідних слів машини Тюрінга їхні шляхи обчислень є скінченними, то кажуть, що машина Тюрінга завжди зупиняється

- ullet конфігурація \mathcal{C}_1 завершальна, якщо $\mathcal{C}_1
 ot\vdash \mathcal{C}_2$ ($\mathring{\vdash} \mathcal{C}_1$ та $\mathring{\vdash} \mathcal{C}_1$)
- $C_0, C_1, \ldots, C_m, m \in \mathbb{N}_0 \cup \{\infty\}, C_i \vdash C_{i+1}, 0 \le i < m, -$ обчислення (за Тюрінгом) або шлях обчислень
- ullet шлях обчислень C_0, C_1, \ldots, C_m скінченний, якщо $m \neq \infty$ і нескінченний, якщо $m = \infty$
- шлях обчислень C_0, C_1, \ldots, C_m найбільшої довжини, де $C_0 = (\varepsilon, q_0, x),$ (повний) шлях обчислень для вхідного слова x або виконання машини Тюрінга з вхідним словом x
- якщо для всіх вхідних слів машини Тюрінга їхні шляхи обчислень є скінченними, то кажуть, що машина Тюрінга завжди зупиняється
- якщо повний шлях обчислень C_0, C_1, \ldots, C_m для вхідного слова x є скінченним і $C_m = (\varepsilon, q, y)$, то слово $y \in \Gamma^*$ результат застосування машини Тюрінга до вхідного слова x і позначають це як M(x) = y

- ullet конфігурація \mathcal{C}_1 завершальна, якщо $\mathcal{C}_1
 ot\vdash \mathcal{C}_2$ ($\mathring{\vdash} \mathcal{C}_1$ та $\mathring{\vdash} \mathcal{C}_1$)
- $C_0, C_1, \ldots, C_m, m \in \mathbb{N}_0 \cup \{\infty\}, C_i \vdash C_{i+1}, 0 \le i < m, -$ обчислення (за Тюрінгом) або шлях обчислень
- ullet шлях обчислень C_0, C_1, \ldots, C_m скінченний, якщо $m
 eq \infty$ і нескінченний, якщо $m = \infty$
- шлях обчислень C_0, C_1, \ldots, C_m найбільшої довжини, де $C_0 = (\varepsilon, q_0, x)$, (повний) шлях обчислень для вхідного слова x або виконання машини Тюрінга з вхідним словом x
- якщо для всіх вхідних слів машини Тюрінга їхні шляхи обчислень є скінченними, то кажуть, що машина Тюрінга завжди зупиняється
- якщо повний шлях обчислень C_0, C_1, \ldots, C_m для вхідного слова x є скінченним і $C_m = (\varepsilon, q, y)$, то слово $y \in \Gamma^*$ результат застосування машини Тюрінга до вхідного слова x і позначають це як M(x) = y
- ullet зациклювання M(x) = ot

Однострічкова машина Тюрінга

Означення

Машина Тюрінга $M=(\Gamma, \Sigma, \#, Q, Q_F, q_0, \delta)$ обчислює часткову функцію $f: \Sigma^* \nrightarrow \Delta^*$, якщо $\Delta \subset \Gamma$ і для довільного слова з множини визначення функції $x \in D(f), D(f) \subseteq \Sigma^*$, є правильною тотожність M(x)=f(x), а $M(x)=\bot$ тоді й тільки тоді, коли $x \in (\Sigma^* \setminus D(f))$.

Функцію $f: \Sigma^* oup \Delta^*$ називають **обчислюваною (за Тюрінгом)**, якщо існує машина Тюрінга, яка обчислює функцію f.

Однострічкова машина Тюрінга

Означення

Машина Тюрінга $M = (\Gamma, \Sigma, \#, Q, Q_F, q_0, \delta)$ обчислює часткову функцію $f: \Sigma^* \to \Delta^*$, якщо $\Delta \subset \Gamma$ і для довільного слова з множини визначення функції $x \in D(f)$, $D(f) \subseteq \Sigma^*$, є правильною тотожність M(x) = f(x), а $M(x) = \bot$ тоді й тільки тоді, коли $x \in (\Sigma^* \setminus D(f))$.

Функцію $f: \Sigma^* \to \Delta^*$ називають **обчислюваною (за Тюрінгом)**, якщо існує машина Тюрінга, яка обчислює функцію f.

Відстанню між двома комірками стрічки називають кількість комірок між ними, збільшену на одиницю. Для довільного цілого додатного числа $n \in \mathbb{N}^+$ підмножину комірок стрічки, будь-яка пара з яких знаходиться на відстані, що ділиться націло на n називають **решіткою з кроком** n.

Часова складність машини Тюрінга

Означення

Часом роботи машини Тюрінга M, яка завжди зупиняється, на вхідному слові x називають довжину найбільшого повного шляху обчислень для вхідного слова x і позначають як $Time_M(x)$.

Функцією часової складності машини Тюрінга M, яка завжди зупиняється, називають функцію $T_M: \mathbb{N} \to \mathbb{N}$, яка визначена як $T_M(n) = \max_{x \in \Sigma^*, |x| = n} (Time_M(x))$ для довільного натурального числа $n \in \mathbb{N}$.

Говорять, що машина Тюрінга M працює за час t, де $t:\mathbb{N}\to\mathbb{N}$, якщо для довільного вхідного слова $x\in\Sigma^*$ виконується нерівність $T_M(|x|)\leq t(|x|).$

Просторова складність машини Тюрінга

Означення

Використаною пам'яттю машини Тюрінга M, яка завжди зупиняється, на вхідному слові x називають довжину найбільшого вмісту конфігурації з повного шляху обчислень для вхідного слова x і позначають як $Space_M(x)$.

Функцією просторової складності машини Тюрінга M, яка завжди зупиняється, називають функцію $S_M: \mathbb{N} \to \mathbb{N}$, яка визначена як $S_M(n) = \max_{x \in \Sigma^*, |x| = n} (Space_M(x))$ для довільного натурального числа $n \in \mathbb{N}$.

Говорять, що машина Тюрінга M використовує пам'ять s, де $s:\mathbb{N}\to\mathbb{N}$, якщо для довільного вхідного слова $x\in\Sigma^*$ виконується нерівність $S_M(|x|)\leq s(|x|)$.

Види стрічок машини Тюрінга

- за структурою
 - нескінченна в обидві сторони
 - нескінченна в одну сторону
 - з символами обмеження
- за можливістю пересування зчитувального пристрою
 - в будь-яку сторону
 - в одну сторону (одноразова)
 - без зупинок
- за записом-читанням
 - доступна для зчитування та запису;
 - доступна тільки для зчитування;
 - тривіальна (залежить тільки від часу)

Багатострічкова машина Тюрінга

Означення

Багатострічкова детермінована машина Тюрінга M — це абстрактний обчислювальний пристрій, який визначається кортежем $(k, \Gamma, \Sigma, \#, Q, Q_F, q_0, \delta)$, де

- $k \in \mathbb{N}^+$ кількість стрічок;
- Г непорожня скінченна множина, яку називають **алфавітом** машини **Тюрінга** *М* або **алфавітом стрічки**;
- $\# \in \Gamma$ порожній символ;
- $\Sigma \subseteq \Gamma \setminus \{\#\}$ непорожня скінченна множина, яку називають вхідним алфавітом;
- Q непорожня скінченна множина внутрішніх станів;
- $Q_F \subseteq Q$ множина кінцевих внутрішніх станів;
- $\delta: (Q \setminus Q_F) \times \Gamma^k \to Q \times \Gamma^{k-1} \times \{L, S, R\}^k$ (часткова) функція переходів.

Властивості машин Тюрінга

Твердження

Якщо для довільної функції $f:\{0,1\}^* \to \{0,1\}^*$ і довільної функції $t:\mathbb{N} \to \mathbb{N},\ t(n) \geq n$, існує багатострічкова машина Тюрінга $M=(k,\Gamma,\Sigma,\#,Q,Q_F,q_0,\delta)$, яка обчислює значення функції f за час $t(n),\ldots$

- використовуючи алфавіт стрічки Γ , то існує багатострічкова машина Тюрінга \tilde{M} , яка обчислює значення функції f за час $5t(n)\lceil\log|\Gamma|\rceil$, використовуючи алфавіт $\{0,1,\#\}$.
- використовуючи k робочих стрічок (плюс одна вхідна та вихідна), то існує (багатострічкова) машина Тюрінга \tilde{M} , яка обчислює значення функції f за час $5k\left(t(n)\right)^2$, використовуючи одну робочу стрічку (плюс одна вхідна та вихідна).
- використовуючи нескінченні в обидві сторони стрічки, то існує багатострічкова машина Тюрінга \tilde{M} , яка обчислює значення функції f за час t(n), використовуючи стрічки, нескінченні лише в одну сторону.