×

Week 1 Quiz

5/5 questions correct

Quiz passed!

Continue Course (/learn/data-cleaning/lecture/njjbw/reading-from-mysql)

Back to Week 1 (/learn/data-cleaning/home/week/1)

The American Community Survey distributes downloadable data about United States communities. Download the 2006 microdata survey about housing for the state of Idaho using download.file() from here:

https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2Fss06hid.csv (https://d396qusza40orc.cloudfront.net /getdata%2Fdata%2Fss06hid.csv)

and load the data into R. The code book, describing the variable names is here:

https://d396qusza40orc.cloudfront.net /getdata%2Fdata%2FPUMSDataDict06.pdf (https://d396qusza40orc.cloudfront.net /getdata%2Fdata%2FPUMSDataDict06.pdf)

How many properties are worth \$1,000,000 or more?

\bigcirc	31			
\bigcirc	2076			
\bigcirc	159			
	53			
Well done!				

Use the data you loaded from Question 1. Consider the variable FES in the code book. Which of the "tidy data" principles does this variable violate?

	Each tidy data table contains information about only one type of observation.	
\bigcirc	Each variable in a tidy data set has been transformed to be interpretable.	
	Tidy data has one variable per column.	
Well done!		

Tidy data has one observation per row.

Download the Excel spreadsheet on Natural Gas Aquisition Program here:

https://d396qusza40orc.cloudfront.net /getdata%2Fdata%2FDATA.gov_NGAP.xlsx (https://d396qusza40orc.cloudfront.net /getdata%2Fdata%2FDATA.gov_NGAP.xlsx)

Read rows 18-23 and columns 7-15 into R and assign the result to a variable called:

dat					
What is the value of:					
<pre>sum(dat\$Zip*dat\$Ext,na.rm=T)</pre>					
(original data source: http://catalog.data.gov/dataset/natural-gas-acquisition-program (http://catalog.data.gov/dataset/natural-gas-acquisition-program))					
338924					
184585					
36534720					
Well done!					
O 0					

4

Read the XML data on Baltimore restaurants from here:

https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2Frestaurants.xml (https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2Frestaurants.xml)

How many restaurants have zipcode 21231?			
\bigcirc	181		
\bigcirc	100		
\bigcirc	130		
\bigcirc	127		
Well done!			

The American Community Survey distributes downloadable data about United States communities. Download the 2006 microdata survey about housing for the state of Idaho using download.file() from here:

https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2Fss06pid.csv (https://d396qusza40orc.cloudfront.net /getdata%2Fdata%2Fss06pid.csv)

using the fread() command load the data into an R object

DT			
The following are ways to calculate the average value of the variable			
pwgtp15			
broken down by sex. Using the data.table package, which will deliver the fastest user time?			
\bigcirc	tapply(DT\$pwgtp15,DT\$SEX,mean)		
	sapply(split(DT\$pwgtp15,DT\$SEX),mean)		
	mean(DT[DT\$SEX==1,]\$pwgtp15); mean(DT[DT\$SEX==2,]\$pwgtp15)		
\bigcirc	DT[,mean(pwgtp15),by=SEX]		
Well done!			
	rowMeans(DT)[DT\$SEX==1]; rowMeans(DT)[DT\$SEX==2]		
\bigcirc	mean(DT\$pwgtp15,by=DT\$SEX)		

