

Práctica Calificada 4

1. Ecuaciones diferenciales de primer orden (6 ptos)

Resuelva las siguientes ecuaciones diferenciales:

a) (3 ptos)
$$\frac{dy}{dt} - 2\left(\frac{y}{t}\right) = t$$
. Considere que $t > 0$.

b) (3 ptos)
$$\frac{dy}{dt} = ry(1 - ay)$$
, donde $r > 0$ y $a > 0$. Considere que $0 < y < (1/a)$.

2. Ecuaciones diferenciales de segundo orden (4 ptos)

Considere la siguiente ecuación diferencial

$$\ddot{y} + ay = 0,$$

donde la trayectoria de y satisface y(0) = y(2) = 0.

- a) (2 ptos) Muestre que si a=0 o a<0, entonces la única solución posible es la trivial y(t)=0.
- b) (2 ptos) Encuentre los valores de a > 0 para los que existe una solución no trivial $y(t) \neq 0$.

3. Crecimiento logístico con extinción (4 ptos)

Considere la siguiente extensión del modelo de crecimiento logístico

$$\frac{\dot{P}}{P} = r \left(1 - \frac{P}{M} \right) \left(1 - \frac{n}{P} \right) \,,$$

donde $r>0,\, M>n>0$ y P>0 denota la población (número de individuos) de una especie.

- a) (1 pto) Encuentre los valores de estado estacionario de P.
- b) (2 ptos) Esboce, con el mayor detalle posible, el diagrama de fase en el plano (P, \dot{P}) y evalúe la estabilidad de los estados estacionarios.
- c) (1 pto) Verifique la estabilidad de los estados estacionarios de P mediante la linealización de la ecuación diferencial.

4. Crecimiento logístico con competencia (6 ptos)

Considere la siguiente extensión del modelo de crecimiento logístico, donde dos especies compiten por los recursos de un mismo espacio geográfico

$$\frac{\dot{x}}{x} = 1 - \frac{\alpha x + y}{(1+\alpha)K}$$
 y $\frac{\dot{y}}{y} = r\left(1 - \frac{\alpha y + x}{(1+\alpha)K}\right)$,

donde K > 0, r > 0 y $\alpha > 1$.

- a) (1 pto) Considere que x > 0 e y > 0. Encuentre el estado estacionario del sistema.
- b) (2 ptos) Esboce el diagrama de fase en el plano (x, y) y determine gráficamente si el equilibrio encontrado en a) es estable.
- c) (1 pto) Tras linealizar el sistema, verifique si el equilibrio encontrado en a) es estable, y determine si es un nodo, foco o punto de ensilladura.
- d) (1 pto) Suponga que la especie x se extingue. Clasifique el estado estacionario en este caso.
- e) (1 pto) Suponga que la especie y se extingue. Clasifique el estado estacionario en este caso.