2018 - FCS Revision Exam

November 9, 2018

Propositional Logics

Represent the following statements in a mathematical logic with proper notations and meaningful predicate names:

- Some students love FCS.
- Not everyone loves FCS.
- No one loves FCS.
- Only 1 person in this room has the surname Smith.
- There is only one head of department in Department of Computing.
- Everyone loves everyone.
- Everyone only loves themselves.
- Everyone loves everyone except themselves.

Mathematical Induction

Prove using math induction:

- $3^n > n+1, n > 2$
- $5^n + 2 < 6^n, n > 2$
- $2|(3^{4n}-1), n > 0$

Set Theory

Consider set:

- $A_i = \{1, 2, 3, ..., i\}, 1 \le i \le 100$
- $B_i = \{80, 79, 78, ..., i\}, 10 \le i \le 80$

• $C_i = \{2, 4, 6, ..., 2i\}, 1 \le i \le 100$

Evaluate:

- $\bullet \bigcup_{i=1}^{50} A_i$
- $\bullet \bigcap_{i=7}^{39} A_i$
- $\bullet \bigcup_{i=20}^{59} B_i$
- $\bullet \bigcap_{i=47}^{56} B_i$
- $\bullet \bigcup_{i=30}^{83} C_i$
- $\bullet \bigcap_{i=19}^{91} C_i$
- \bullet $P(A_2)$
- \bullet $P(C_3)$
- \bullet $P(\varnothing)$
- $P(\{\varnothing\})$

- $P(\{\varnothing, \{\varnothing\}\})$
- $|P(B_{35})|$
- $|P(C_{57})|$

Relations

Let $A = \{1, 2, 3, 4, 5\}, B = \{w, x, y, z\}$ For each set, derive:

- The relation which is reflexive and transitive.
- The relation which is NOT symmetric and NOT anti-symmetric, but transitive.
- The relation which is NOT reflexive, NOT symmetric, NOT anti-symmetric, NOT transitive.
- The relation which is a poset(partial order).
- Find an equivalence relationship R from
 - $-A \times A$ and compute the equivalence class of $[3]_R$.
 - $-B \times B$ and compute the equivalence class of $[x]_R$

Discrete Probability

You have an unbiased coin (50% change to land on either side). Calculate the probability of having:

- 1 head and 1 tail (any order) after flipping it 2 times.
- 4 tails after flipping it 4 times.
- at least 2 heads after flipping it 3 times.

• exactly 2 tails after flipping it 4 times, knowing that the first flip is head.

Counting

A class consists of 8 men and 6 women. Find the number of ways to form a group in the following cases:

- 7 people.
- 4 men and 3 women.
- 12 people, but 3 students have to be together (either all three in the group or not at all).
- 5 men and 3 women, but one of the men and one of the women are fighting, so they cannot be in the same group.

Recursion

- Find a recurrence relation and give initial conditions for the number of bit strings of length *n* that contain the pattern 000. How many such bit strings are there of length 5?
- Find a recurrence relation and give initial conditions for the number of bit strings of length *n* that contain the pattern 01. How many such bit strings are there of length 5?
- Find a recurrence relation and give initial conditions for the number of bit strings of length *n* that contain even number of zeros. How many such bit strings are there of length 5?

- Find a recurrence relation and give initial conditions for the number of bit strings of length n that contain exactly two of '1' bit. How many such bit strings are there of length 5?
- Find a recurrence relation and give initial conditions for the number of ways to climb stair with n steps if the person climbing the stair can take only two or three steps at a time. How many ways can this person climb a stair with 6 steps?

Tree

What is a definition of a tree? Draw a tree with the following degrees: (if impossible, justify the reason)

(The amount of the number determines the number of vertices)

- 1, 2, 3
- 1, 2, 1
- 1, 1, 3
- 2, 2, 2, 1
- 1, 2, 1, 2
- 3, 1, 1, 1
- 1, 1, 1, 1, 1
- 3, 2, 2, 1, 1
- 1, 1, 4, 1, 1
- 1, 2, 3, 2, 1, 1
- 3, 2, 1, 2, 3, 1

Path and Circuit

Look at the following 3 graphs:

- Is there any Euler circuit (draw it)? If not, why? How about Euler path (draw it)? If not, why?
- Is there any Hamilton circuit (draw it)? If not, why? How about Hamilton path (draw it)? If not, why?

The complete 3-partite graph $K_{n,m,p}$, with $n,m,p\geq 1$, is a simple graph that has its vertex set partitioned into 3 disjoint nonempty subsets of n,m and p vertices, respectively. Two vertices are adjacent if and only if they are in different subsets in the partition.

- Draw $K_{1,1,1}$, $K_{1,2,3}$, and $K_{3,3,3}$.
- What is the definition of Euler Circuit? What is the condition for it to exist?
- Give 3 examples of $K_{n,m,p}$ that has Euler circuit. What is the general formula to find value of n, m, p that still contains Euler circuit?