What is claimed is:

1	1. A flat-panel display comprising two glass plates enclosing at least one array of fibers,
2	which serves to form structure within said display, where one of said two glass
3	plates is larger than the other in all directions in a plane of said glass plates.
1	2. A flat-panel display according to claim 1, wherein said display is a plasma display panel
2	having a hermetically sealed gas filled enclosure containing at least one array of
3	fibers to form part of a plasma cell structure.
1	3. A flat-panel display according to claim 1, wherein said display is a plasma addressed
2	liquid crystal panel having at least one array of fibers to form a plasma cell
3	structure.
1	4. A flat-panel display according to claim 1, wherein said display is a field emission
2	display panel having a hermetically sealed vacuum enclosure containing at least
3	one array of fibers to form part of said structure in said display.
1	5. A flat-panel display according to claim 2, wherein said hermetically sealed gas filled
2	enclosure contains two orthogonal arrays of fibers that forms an entire plasma cell
3	structure.
1	6. A flat-panel display according to claim 5, wherein said hermetically sealed gas filled
2	enclosure contains:
3	two glass plates sandwiched around a top fiber array and a bottom fiber array, said
4	top and bottom fiber arrays being substantially orthogonal and defining a
5	structure of said display, said top fiber array disposed on a side facing
6	towards a viewer;
7	said top fiber array including identical top fibers having at least two ends, each top
8	fiber including two wire sustain electrodes located near a surface of said top
9	fiber on a side facing away from said viewer and a thin dielectric layer
10	separating said sustain electrodes from said surface, said surface being
11	covered by an emissive film;

1 2

12	said bottom fiber array including three alternating bottom fibers, each bottom fiber
13	having at least two ends and including a pair of barrier ribs that define a
14	plasma channel, at least one wire address electrode located near a surface of
15	said plasma channel, and a phosphor layer coating on said surface of said
16	plasma channel, wherein a luminescent color of said phosphor coating in
17	each of said three alternating bottom fibers represents a subpixel color of
18	said plasma display;
19	each subpixel being formed by a crossing of one top fiber and one corresponding
20	bottom fiber; and
21	said plasma display being hermetically sealed with a glass frit where said wire
22	electrodes are brought out through said glass frit.
1	7. A flat-panel display according to claim 6, wherein said glass frit covers said ends of said
2	top and bottom fibers to dielectrically isolate said wire electrodes.
1	8. A flat-panel display according to claim 5, wherein a glass frit is used to form a hermetic
2	seal and wire electrodes extend through a frit-seal region and are connected to a
3	circuit board containing high voltage drive electronics.
1	9. A flat-panel display according to claim 8, wherein said glass frit is forced to flow into a
2	gap between said two glass plates.
1	10. A flat-panel display according to claim 2, wherein a top glass plate is larger than a
2	bottom glass plate in all directions in a plane of said glass plates where said top
3	glass plate is disposed on a side facing towards a viewer.
1	11. A flat-panel display according to claim 10, wherein said display is hermetically sealed
2	with a glass frit that connects a surface of said top glass plate to an edge of an
3	entire perimeter of said bottom glass plate.
1	12. A flat-panel display that has a vacuum tube attachment where a glass frit to seal a

vacuum tube to said panel is forced to flow into a tube panel junction using a glass

- 3 washer over said vacuum tube.
- 1 13. A curved-panel display comprising two glass plates enclosing two orthogonal fiber
- 2 arrays, which serves to form a structure within said display.
- 1 14. A curved-panel display according to claim 13, wherein one of said two glass plates is
- larger than the other in all directions in a plane of said glass plates.