

Facultad de Ingeniería y Ciencias Agropecuarias IBT621 Balance de Masa y Energía

Período 2017-1

1. Identificación

Número de sesiones: 48

Número total de horas de aprendizaje: 120 h = 48 presenciales + 72 h de trabajo autónomo.

Créditos – malla actual: 4.5

Profesor: Ing. Francisco Javier Domínguez Rodríguez, MSc, PhD.

Correo electrónico del docente (Udlanet): francisco.dominguez@udlanet.ec

Coordinador: MSc. Paola Posligua

Campus: Queri

Pre-requisito: QUI200 / MAT310 Co-requisito: Ninguno

Paralelos: 1 y 2 Tipo de asignatura:

Optativa	
Obligatoria	Х
Práctica	

Organización curricular:

Unidad 1: Formación Básica	
Unidad 2: Formación Profesional	Х
Unidad 3: Titulación	

Campo de formación:

Campo de formación					
Fundamentos	Praxis	Epistemología y	Integración de	Comunicación y	
teóricos	profesional	metodología de la	saberes,	lenguajes	
		investigación	contextos y		
			cultura		
Х					

2. Descripción del curso

Para iniciar este curso es indispensable que el estudiante tenga una base sólida en cuanto al manejo de unidades y habilidades matemáticas, razón por la cual se hace una pequeña introducción de conceptos básicos. El curso en su parte medular cubre los apartados de: balances de masa, con y sin reacción; en estado estacionario y no estacionario y de varias operaciones. Adicionalmente, se abordan los métodos de resolución de balances de energía revisando tablas de vapor en sistemas con y sin reacción. Al final se realizará un proyecto relacionado con una industria de interés donde se debe llevar acabo un extenso balance de masa y energía.

3. Objetivo del curso

Desarrollar en el estudiante habilidades en el área de la ingeniería para lograr el diseño de procesos químicos ambientales eficientes; a través del análisis y la resolución de problemas balances de masa y energía y la realización de ejercicios.

4. Resultados de aprendizaje deseados al finalizar el curso

Resultados de aprendizaje (RdA)	RdA perfil de egreso de carrera	Nivel de desarrollo (carrera)
 2 Establece las variables asociadas a un balance de masa y energía. 4 Plantea ecuaciones de utilidad que permiten la resolución de balances de masa y energía. 	 Evalúa y diseña tecnologías químicas aplicadas a procesos productivos, basados en normativas legales y de calidad, con el objetivo de optimizar los recursos y aumentar la productividad en empresas y laboratorios, con ética profesional. Aplica su conocimiento en forma de consultoría en la búsqueda innovadora de soluciones económicamente viables y atractivas para realizar remediación de sistemas, con responsabilidad social y ambiental. 	Inicial () Medio (X) Final ()

5. Sistema de evaluación

De acuerdo al Modelo Educativo de la UDLA la evaluación busca evidenciar el logro de los resultados de aprendizaje (RdA) enunciados en cada carrera y asignatura, a través de mecanismos de evaluación (MdE). Por lo tanto la evaluación debe ser continua, formativa y sumativa. La UDLA estipula la siguiente distribución porcentual para los reportes de evaluaciones previstas en cada semestre de acuerdo al calendario académico:

Reporte de progreso 1	35%
Tareas/ejercicios	7.5%
Controles	7.5%
Examen progreso 1:	20%
Reporte de progreso 2	35%
Tareas/ejercicios	7.5%
Controles	7.5%
Examen progreso 2:	20%
Evaluación final	30%
Proyecto de fin de curso:	15%
Examen progreso 3:	15%

Al finalizar el curso habrá un examen de recuperación para los estudiantes que, habiendo cumplido con más del 80% de asistencia presencial a clases, deseen reemplazar la nota de un examen anterior (ningún otro tipo de evaluación). Este examen debe integrar todos los conocimientos estudiados durante el periodo académico, por lo que será de alta exigencia y el estudiante necesitará prepararse con rigurosidad. La nota de este examen reemplazará a la del examen que sustituye. Se debe recordar que para rendir el EXAMEN DE RECUPERACIÓN, es requisito que el estudiante haya asistido por lo menos al 80% del total de las sesiones programadas de la materia. No se podrá sustituir la nota de un examen previo en el que el estudiante haya sido sancionado por una falta grave, como copia o deshonestidad académica.

6. Metodología del curso y de mecanismos de evaluación.

Las metodologías y mecanismos de evaluación deben explicarse en los siguientes escenarios de aprendizaje:

6.1. Escenario de aprendizaje presencial.

El estudiante realizará ejercicios individuales y en colaboración con sus compañeros y el profesor. También se impartirán conferencias teóricas en donde los estudiantes pueden participar resolviendo los ejercicios propuestos. Además al final del curso el estudiante deberá realizar una exposición grupal de su proyecto.

Control (7.5%): Se formarán grupos heterogéneos de trabajo en el aula y se suministrará un ejercicio a cada grupo. Se establece que se debe trabajar en equipo y todos deben participar en la resolución de un ejercicio de mediana a alta complejidad por cada grupo.

Examen progreso (20%): Cada estudiante deberá rendir un examen individualmente en donde deberá resolver de 3 a 4 ejercicios de complejidad intermedia y que estén relacionados directamente con el (los) contenidos de la(s) unidad(es) estudiada(s). Solamente el examen de progreso 3 tiene una ponderación del 15%.

6.2. Escenario de aprendizaje virtual.

El aula virtual se actualizará constantemente con las presentaciones mostradas en clase para el refuerzo del estudiante.

Tareas/Ejercicios (7.5%): El estudiante tendrá que demostrar sus habilidades resolviendo ejercicios cortos de baja o mediana complejidad en el aula virtual.

Al final del curso el estudiante realizará su proyecto y lo entregará en la tarea creada en el aula virtual. Adicionalmente podrá recibir asistencia virtual de parte del profesor.

6.3. Escenario de aprendizaje autónomo.

El estudiante realizará ejercicios de trabajo autónomo usando las lecturas disponibles en el aula virtual, las notas de clase, las referencias bibliográficas proporcionadas y podrá recibir asistencia de parte del profesor solicitando tutorías.

Proyecto de fin de curso (15%): En grupos de trabajo se asignará un proyecto relacionado con una industria ambiental en donde los estudiantes podrán poner en práctica sus conocimientos en la resolución de balances de masa y energía de una forma práctica y aplicada. El proyecto deberá ser presentado en la clase en una exposición evaluada.

7. Temas y subtemas del curso

RdA	Temas	Subtemas
1. Calcula las variables asociadas a	1. Introducción a los	1.1 Análisis dimensional
un balance de masa y energía.	cálculos de ingeniería	1.2 Conceptos generales
		1.3 Composición química y
		expresiones de la
		concentración (Felder &
		Rousseau, 2004)
2.a Plantea ecuaciones de utilidad	2. Balance de masa en	2.1 Base de cálculo. Sistema y
que permiten la resolución de	diferentes tipos de	límites del sistema. Procesos y
balances de masa.	procesos	tipos de procesos. Diagramas
		de flujo. Grados de Libertad
		2.2 Ley de conservación de la
		materia.
		2.3 Balance de masa, tipos de
		balance.
		2.4 Metodologías para realizar
		balances de masa.
		2.5 Balances de masa en
		sistemas estacionarios sin
		reacción química.
		2.6 Balances de masa en
		sistemas estacionarios con
		reacción química.
2.b Plantea ecuaciones de utilidad	3. Balance de energía en	3.1 Tipos de energía.
que permiten la resolución de	diferentes tipos de	3.2 Ecuación general del
balances de energía.	procesos	balance de energía.
		3.3 Tablas de vapor
		3.4 Balance de energía en
		sistemas sin reacción química.
		3.5 Balance de energía en
		sistemas con reacción
		química.
2. Plantea ecuaciones de utilidad	4. Balance de masa y	4.1 Balances de masa y
que permiten la resolución de	energía combinados en	energía en sistemas no
balances de masa y energía.	diferentes tipos de	estacionarios.
	procesos	4.2 Balance de masa y energía
		combinados en diferentes
		tipos de procesos

8. Planificación secuencial del curso

# Rd A	Tema	Sub tema	Actividad/ metodología/clase	Tarea/ trabajo autónomo	MdE/Producto/ fecha de entrega
	lana 1-7				citticgu
1	1.Introducción	1.1 Análisis dimensional	(1) Presentación sobre análisis dimensional.	(2) Resolución de ejercicios de análisis dimensional de FELDER, R. (2004). Principios Elementales de los procesos químicos, ejercicios del 2.1 al 2.15.	Ejercicios Resueltos /Semana 1
		1.2 Conceptos generales	(1)Resolución de ejercicios análisis dimensional	(2)Resolución de ejercicios planteados en clases	Ejercicios Resueltos /Semana 2
		Composición Química y expresiones de la concentració n	 (1)Presentación sobre composición química y expresiones de la concentración. (1) Resolución de ejercicios análisis dimensional. 	(2)Resolución de ejercicios de FELDER, R. (2004). (2)Principios Elementales de los procesos químicos, ejercicios del 3.3 al 3.10.	Ejercicios Resueltos /Semana 3
		1.3 Base de cálculo. Sistema y límites del sistema. Procesos y tipos de procesos. Diagramas de flujo. Grados de Libertad	(1) Lectura sobre Base de cálculo. Sistema y límites del sistema. Procesos y tipos de procesos. Diagramas de flujo y grados de libertad.	2) Trabajo en grupos sobre: base de cálculo. Sistema y límites del sistema. Procesos y tipos de procesos. Diagramas de flujo de FELDER, R. (2004).	Ejercicios Resueltos /Semana 4
		1.4 Ley de conservación de la materia.	(1) Presentación sobre la ley de la conservación de la materia.	(2) Lectura sobre procedimientos para realizar balances de	Ejercicios Resueltos /Semana 5

			I		1
				materia de Dorán., P. (1998). Principios de	
				ingeniería de los	
					Prueba
					Progreso 1
Sem	ana 8-14				
2	2. Balance				Ejercicios
	de masa	2.3 Balance de	(1) Presentación	(2) Aplicar la	Resueltos
	en	masa, tipos de	sobre balance	metodología para	/Semana 9
	diferentes	balance.	de masa y tipos	realizar un balance de	
	tipos de		de balance.	masa en ejercicios	
	procesos			propuestos en clase.	
				(2) Resolver ejercicios	
				propuestos en clase y	
				los ejercicios múltiplos	
				de cinco de FELDER, R.	
				(2004). Principios	
		2.4 Metodologías	(1) Resolución de	Elementales de los procesos químicos,	Ejercicios Resueltos
		para realizar	ejercicios de	capítulo 4 para sistemas	/Semana 10
		balances de	balance de masa en	no reactivos.	/Scilialia 10
		masa.	sistemas		
			estacionarios sin	(2) Resolver ejercicios	
			reacción química.	propuestos en clase y	
				los ejercicios múltiplos de cinco de FELDER, R.	
				(2004). Principios	
				Elementales de los	Ejercicios
			Presentación y	procesos químicos,	Resueltos
		2.5 Balances de	resolución de	capítulo 4 para sistemas	/Semana 11
		masa en sistemas	ejercicios de	reactivos.	
		estacionarios sin	balance de masa en sistemas		
		reacción química.	estacionarios con		
		2.6 Balances de	reacción química.		
		masa en sistemas	'	(2) Resolver ejercicios	
		estacionarios con	Presentación y	propuestos en clase.	
		reacción química.	resolución de		
			ejercicios de		
			balance de masa		
					Ejercicios
	3. Balance		(1) Discusión y		Resueltos
	de energía	3.1 Tipos de	presentación sobre	4-14	/Semana 12
	en	energía.	tipos de energía.	(2)Lectura	
	diferentes			complementaria de	
	tipos de			Dorán., P. (1998).	

		1				
	procesos			(1)Discusión sobre	Principios de ingeniería	
			Ecuación	la ecuación general	de los bioprocesos.	
			eral del	del balance de		
			ance de	energía.	(2)Lectura sobre	
	ene		rgía.		metodología para	
				(1)Presentación	resolver ejercicios de	
		3.3	Tablas de	sobre tablas de	balance de energía.	
		vap	or	vapor, uso y		
			manejo.	(2)Resolución de		
					ejercicios de FELDER, R.	
					(2004). Principios	
		3.4	Balance de	(1)Resolución de	Elementales de los	
		ene	rgía en	ejercicios de	procesos químicos.	
		sist	emas sin	energía en sistemas		
			cción química.	sin reacción	(2)Resolución de	
				química.	ejercicios planteados en	
	3.5		Balance de		clases.	
	ene		rgía en	(1)Resolución de		
			emas con	ejercicios de		Prueba
		rea	cción química.	energía en sistemas		Progreso 2
				con reacción		
				química.		
Sem	ana 15-16					
2	4. Balance d	le	4.1 Balances	Resolución de	Trabajo final: Realizar	Entrega del
	masa y enei	rgía	de masa y	ejercicios de	los balances de masa y	Proyecto de fin
			energía en	balance de masa y	energía en una planta	de curso.
			sistemas no	energía en sistemas	industrial.	Exposición del
			estacionarios	no estacionarios.		proyecto de fin
						de
				Resolución de		curso/Semana
				ejercicios de		15
			Balance de	balance de masa y		
			masa y	energía		
			energía	combinados.		
			combinados			Examen final
			en diferentes			/Semana 16
			tipos de			
			procesos			

Código (1): Actividad Presencial; Código (2): Actividad Virtual

9. Normas y procedimientos para el aula

Se tomará lista en los primeros 5 minutos de clase, en caso de que el alumno llegue retrasado puede incorporarse a la clase siempre y cuando lo haga de forma respetuosa y desapercibida, sin embargo, contará como falta. Los alumnos que tomen la materia deben como requisito tener conocimientos sobre física, resolución de ecuaciones, derivadas e integrales. El alumno es responsable de garantizar su aprendizaje, y de no ser así el docente estará siempre dispuesto a reforzar cualquier parte de la materia en el horario establecido para las tutorías. El trabajo final debe compilar los conocimientos obtenidos a lo largo del curso y no puede sobrepasar el 9% de

similitud detectada en turnitin. De ser así el trabajo se evaluará sobre menor puntuación de acuerdo a la gravedad de la falta.

Se permitirá únicamente el uso de dispositivos electrónicos solo por motivos didácticos, durante la hora de clase. Durante pruebas y exámenes queda prohibido el uso de dispositivos electrónicos.

Los trabajos, deberes y pruebas deben ser entregados en las fechas indicadas, en caso de retraso se calificará por la mitad del puntaje del mismo, siempre que sea entregado máximo hasta el día siguiente y con la justificación respectiva.

10. Referencias bibliográficas

10.1. Principales.

Felder, R., & Rousseau, R. (2004). *Principios elementales de los procesos químicos* (3ra ed.). México D.F: Limusa Wiley.

10.2. Referencias complementarias.

Murphy, R. (2007). *Introduction to chemical processes: Principles, Analysis, Synthesis.* United States: McGraw-Hill.

Doran, P. (1998). *Principios de Ingeniería de los Bioprocesos*. Zaragoza: ACRIBIA S.A. Himmelblau, D. (1997). *Principios Básicos y Cálculos en Ingeniería Química*. México D.F: Prentice-Hall. Hispanoamericana S.A.

11. Perfil del docente

Ing. Francisco Javier Domínguez Rodríguez. Ingeniero Químico. Máster en Ingeniería Química. Doctor en Ingeniería Química con Mención en Superficies y Catálisis. Experiencia en el campo docente en el área de Fisicoquímica y Termodinámica del Equilibrio de Fases, así como también en Balance de Materiales y Energía. Amplia experiencia de laboratorio en la preparación, caracterización y evaluación de sistemas catalíticos utilizados en la industria química y petroquímica. Líneas de investigación enfocadas a la Ingeniería Ambiental.

Horario de Tutorías: Lunes: 15:40 - 16:40 **Contacto:** francisco.dominguez@udlanet.ec

^{*}Otros suministrados durante el curso.