TBO – REGULAR EXPRESSION

FIRDAUS SOLIHIN

-Asal Gagasan Regular Expression

- Warren McCulloch dan Walter Pitts ahli neuro-physiologist tahun 1940 mengembangkan model sederhana mengenai sistem syaraf pada level neuron.
- Stephen Kleene mendeskripsikan modelmodel yang ditemukan McCulloch dan Pitts ini secara
 - formal dalam 1 aljabar yang disebut himpunan reguler. dan
 - mengemukakan notasi sederhana untuk mengekspresikan himpunan reguler ini dan disebut ekspresi reguler.

-Asal Gagasan Regular Expression (Cont)

- Pada tahun 1968, Ken Thompson menggunakan ekspresi reguler untuk persoalan komputasi,
 - ditulis dalam makalah berjudul "Reguler Expression Search Algorithm" yang mendeskripsikan kompilator ekspresi reguler sehingga menghasilkan kode objek untuk komputer 8094.

Definisi Regular Expression

Regular Expression (RE) Adalah
 Perumusan Untuk Mengembangkan
 Bahasa Dari Himpunan Kata-kata
 Yang Ada

Regular Expression (Contoh)

Expression	Description		
[013]	A single digit 0, 1, or 3.		
[0-9][0-9]	Any two-digit number from 00 to 99.		
[0-9&&[^4567]]	A single digit that is 0, 1, 2, 3, 8, or 9.		
[a-z0-9]	A single character that is either a lowercase letter or a digit.		
[a-zA-z][a-zA-Z0- 9_\$]*	A valid Java identifier consisting of alphanumeric characters, underscores, and dollar signs, with the first character being an alphabet.		
[wb] (ad eed)	Matches wad, weed, bad, and beed.		
(AZ CA CO)[0-9][0-9]	Matches AZxx,CAxx, and COxx, where x is a single digit.		

Pembentukan Bahasa

- ABJAD
- KATA
- KALIMAT
- PARAGRAF
- BAHASA

Regular Expression (RE)

- ABJAD = kesatuan terkecil dari suatu bahasa, Contoh X
- Notasi $E = \{ x^n \text{ dimana } n = 1,2,3 \dots \}$
 - \circ $x^2 = xx$
 - \circ $x^5 = xxxxx$

Operasi dalam RE

- Closure = Aⁿ adalah himpunan string dengan panjang n yang dibentuk dari simbol-simbol di himpunan simbol/alfabet A
 - Transitif Closure/Kleen Closure (A*)
 - Positive Closure (A+)
- Gabungan (AB) = AB
- Pilihan (A+B) = bisa A,B

Transitif Closure/Kleen Closure (A*)

- $A^* = A^n$ dimana $n = \{ 0,1,2,3, ... \}$
- Contoh
 - \circ b* = { λ ,b,bb,bbb,bbbb,bbbb, ...}
 - $0 1^* = {\lambda, 1, 11, 111, 1111, 11111 \dots}$
 - $0^* = {\lambda, 0, 00, 000, ...}$

Positive Closure (A+)

- $A^+ = A^n$ dimana $n = \{1, 2, 3, ...\}$
- Contoh

 - $^{\circ}$ 1+ = {1,11,111,1111,11111 ...}

Operasi Gabungan "AB"

- ab* = bhs yang terbentuk diawali satu a digabung dengan b bebas
 ab* = a, ab, abb, abbb, abbb, ...
- (ab)* = bhs yang terbentuk dari gabungan ab bebas
 (ab)* = λ, ab, abab, ababab, ...

Operasi Gabungan "AB"

a*b* = bhs yang terbentuk dari a, b bebas tapi tidak mungkin ada a setelah b
 a*b* = λ,a,b,aa,bb,ab,aab,aabb,abbb ...

Operasi Pilihan A+B

- (a+b)* = bhs yang terbentuk dari semua kata dari huruf a atau b atau keduannya (a+b)* = λ,a,b,ab,ba,aa,bb,aba,bab, bbaa, abba, ...
- Ekspresi reguler (0+1)* = elemen himpunan "string simbol" dengan memiliki kemungkinan : λ, 0, 1, 01, 10, ...

Contoh RE = 1*10

1*	10	1*10
λ	10	10
1	10	110
11	10	1110
111	10	111 <mark>10</mark>
1111	10	1111 <mark>10</mark>
11111	10	1111110

Contoh RE = (0+1)*011

(0+1)*	011	(0+1)*011
λ	011	011
0 1	011	0011
	011	1011
01	011	01 <mark>011</mark>
10	011	10 <mark>011</mark>
11	011	11011
00	011	00 <mark>011</mark>
010	011	010 <mark>011</mark>
011	011	011 <mark>011</mark>
101	011	101 <mark>011</mark>
	011	

Contoh RE = (a+b)(a+b+0+1)*

(a+b)	(a+b+0+1)*	(a+b)(a+b+0+1)*	(a+b)	(a+b+0+1)*	(a+b)(a+b+0+1)*
а	λ	a	а	ab	<u>a</u> ab
b	λ	b	b	ab	bab
a	а	aa	а	a0	aa0
b	а	ba	b	a0	ba0
a	b	<mark>a</mark> b	а	a1	aa1
b	Ь	ba	b	a1	ba1
а	0	<mark>a</mark> 0	а	ba	<mark>a</mark> ba
b	0	b 0	b	ba	<mark>b</mark> ba
a	1	a1	а	bab	<mark>a</mark> bab
b	1	b1	b	bab	<mark>b</mark> bab
a	aa	aaa	а	•••	
b	aa	baa	b	•••	

Mendapatkan RE

Suatu bahasa memiliki anggota € = {x} RE yang dapat membentuk semua kata dengan panjang ganjil adalah

```
X, XXX, XXXXX, XXXXXXXX ...
RE = x(XX)^*
```

■ Anggota suatu bahasa € = {a,b}
RE yang mewaliki semua kata yang diawali oleh a

a, ab, abb, abbb, abab, aabb, ... $RE = a(a+b)^*$

Latihan 1

- 1. $aa^* =$
- 2. a*aa* =
- 3. $a^*a =$
- 4. $a^*aa^*a^* =$
- 5. $a^*a^*a^*a^* =$
- 6. $aa^*a^+ =$

Latihan 2

Anggota suatu bahasa $\mathcal{E} = \{a,b\}$,

- RE yang mewakili semua kata yang diawali a dan diakhiri b
- RE mewakili semua kata yang mempunyai double a
- RE yang mewakili semua kata yang panjangnya tepat 3 karakter
- RE yang mewakili semua kata yang sedikitnya punya satu a

FINITE AUTOMATA

Coming Soon