Algebra I (Math 200)

UCSC, Fall 2021

Robert Boltje[©]

Contents

1	Semigroups and Monoids	1
2	Groups	7
3	Normal Subgroups and Factor Groups	19

Chapter I: Groups

1 Semigroups and Monoids

- **1.1 Definition** Let S be a set.
- (a) A binary operation on S is a function $b: S \times S \to S$. Usually, b(x, y) is abbreviated by xy, $x \cdot y$, x * y, $x \bullet y$, $x \circ y$, x + y, etc.
 - (b) Let $(x, y) \mapsto x * y$ be a binary operation on S.
 - (i) * is called associative, if (x * y) * z = x * (y * z) for all $x, y, z \in S$.
 - (ii) * is called *commutative*, if x * y = y * x for all $x, y \in S$.
- (iii) An element $e \in S$ is called a *left* (resp. *right*) identity, if e * x = x (resp. x * e = x) for all $x \in S$. It is called an *identity element* if it is a left and right identity.
- (c) The set S together with a binary operation * is called a *semigroup* if * is associative. A semigroup (S,*) is called a *monoid* if it has an identity element.
- **1.2 Examples** (a) Addition (resp. multiplication) on $\mathbb{N}_0 = \{0, 1, 2, ...\}$ is a binary operation which is associative and commutative. The element 0 (resp. 1) is an identity element. Hence $(\mathbb{N}_0, +)$ and (\mathbb{N}_0, \cdot) are commutative monoids. $\mathbb{N} := \{1, 2, ...\}$ together with addition is a commutative semigroup, but not a monoid. (\mathbb{N}, \cdot) is a commutative monoid.
- (b) Let X be a set and denote by $\mathcal{P}(X)$ the set of its subsets (its *power set*). Then, $(\mathcal{P}(X), \cup)$ and $(\mathcal{P}(X), \cap)$ are commutative monoids with respective identities \emptyset and X.
- (c) x*y := (x+y)/2 defines a binary operation on \mathbb{Q} which is commutative but not associative. (Verify!)
- (d) Let X be a set. Then, composition $(f,g) \mapsto f \circ g$ is a binary operation on the set F(X,X) of all functions $X \to X$. $(F(X,X), \circ)$ is a monoid with the identity map $\mathrm{id}_X \colon X \to X$, $x \mapsto x$, as identity element. In general it is not commutative. (Verify!)

1.3 Remark Sometimes a binary operation * is given by a table of the form

For instance, the binary operation "and" on the set {true, false} can be depicted as

Thus, $(\{\text{true}, \text{false}\}, \land)$ is a commutative monoid with identity element true.

- **1.4 Remark** Let (S, *) be a semigroup and let $x_1, \ldots, x_n \in S$. One defines $x_1 * x_2 * \cdots * x_n := x_1 * (x_2 * (\cdots * x_n) \cdots)$. Using induction on $n \ge 3$, one can prove that this element equals the element that one obtains by any other choice of setting the parentheses. We omit the proof.
- **1.5 Proposition** Let S be a set with a binary operation *. If $e \in S$ is a left identity and $f \in S$ is a right identity, then e = f. In particular, there exists at most one identity element in S.

Proof Since e is a left identity, we have e * f = f. And since f is a right identity, we also have e * f = e. Thus, e = e * f = f.

- **1.6 Remark** Identity elements are usually denoted by 1 (resp. 0), if the binary operation is denoted by $*, \cdot, \bullet, \circ$ (resp. +).
- **1.7 Definition** Let (M, *) be a monoid and let $x \in M$. An element $y \in M$ is called a *left* (resp. *right*) *inverse* of x if y * x = 1 (resp. x * y = 1). If y is a left and right inverse of x, then y is called an *inverse* of x. If x has an inverse, we call x an *invertible* element of M.
- **1.8 Proposition** Let (M, *) be a monoid and let $x \in M$. If $y \in M$ is a left inverse of x and $z \in M$ is a right inverse of x, then y = z. In particular, every element of M has at most one inverse.

Proof We have y = y * 1 = y * (x * z) = (y * x) * z = 1 * z = z.

1.9 Remark If x is an invertible element in a monoid, then we denote its (unique) inverse by x^{-1} (resp. -x), if the binary operation is denoted by *, \cdot , \bullet , \circ (resp. +).

1.10 Example Let

$$M := \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \middle| a, b, c \in \mathbb{Z} \right\}.$$

M is a non-commutative monoid under matrix multiplication. The element $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ has an inverse if and only if $a, c \in \{\pm 1\}$. In this case, one has

$$\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}^{-1} = \begin{pmatrix} a & -abc \\ 0 & c \end{pmatrix} .$$

(Verify!)

- **1.11 Proposition** Let (M,*) be a monoid and let $x,y \in M$.
 - (a) If x is invertible, then also x^{-1} is invertible with $(x^{-1})^{-1} = x$.
- (b) If x and y are invertible, then also x * y is invertible with inverse $y^{-1} * x^{-1}$.
 - (c) The identity element 1 is invertible with $1^{-1} = 1$.

Proof (a) Since $x * x^{-1} = 1 = x^{-1} * x$, the element x is a left and right inverse of x^{-1} .

- (b) We have $(x*y)*(y^{-1}*x^{-1}) = ((x*y)*y^{-1})*x^{-1} = (x*(y*y^{-1}))*x^{-1} = (x*1)*x^{-1} = x*x^{-1} = 1$, and similarly, we have $(y^{-1}*x^{-1})*(x*y) = 1$. This implies that $y^{-1}*x^{-1}$ is a left and right inverse of x*y.
 - (c) This follows from the equation 1 * 1 = 1.

1.12 Definition In a semigroup S we set $x^n := x * \cdots * x$ (n factors) for any $x \in S$ and $n \in \mathbb{N}$. If S is a monoid we also define $x^0 := 1$ for all $x \in S$. If additionally x is invertible, we define $x^{-n} := x^{-1} * \cdots * x^{-1}$ (n factors) for any $n \in \mathbb{N}$.

1.13 Remark For an element x in a semigroup (resp. monoid) one has

$$x^m * x^n = x^{m+n}$$
 and $(x^m)^n = x^{mn}$,

for all $m, n \in \mathbb{N}$ (resp. all $m, n \in \mathbb{N}_0$). If x is an invertible element in a monoid, these rules hold for all $m, n \in \mathbb{Z}$. This can be proved by distinguishing the cases that m, n are positive, negative or equal to 0.

Moreover, if x and y are elements in a commutative semigroup (resp. monoid) then

$$(x * y)^n = x^n * y^n$$
 for all $n \in \mathbb{N}$ (resp. all $n \in \mathbb{N}_0$).

If x and y are invertible elements in a commutative monoid, this holds for all $n \in \mathbb{Z}$.

Exercises for Section 1

- 1. Determine the invertible elements of the monoids among the examples in 1.2.
 - 2. Prove the statement in Example 1.10.
 - **3.** Let S be the set of all matrices

$$\begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix}$$

with entries $a, b \in \mathbb{Z}$. Show that S is a semigroup under matrix multiplication and show that S has a right identity but no left identity. Determine all right identities. Give an example of a semigroup which has a left identity but no right identity.

- **4.** Let G be a semigroup which has a left identity element e such that every element of G has a left inverse with respect to e, i.e., for every $x \in G$ there exists an element $y \in G$ with yx = e. Show that e is an identity element and that each element of G is invertible. (In other words, G is a group; see Section 2 for a definition.)
- **5.** (a) Let S, T, U, and V be sets and let $X \subseteq S \times T, Y \subseteq T \times U$, and $Z \subseteq U \times V$ be subsets. Define

$$X * Y := \{(s, u) \in S \times U \mid \exists t \in T : (s, t) \in X \text{ and } (t, u) \in Y\} \subseteq S \times U.$$

Show that

$$(X * Y) * Z = X * (Y * Z).$$

- (b) Let S be a set. Show that $(\mathcal{P}(S \times S), *)$ is a monoid. Is it commutative?
- (c) What are the invertible elements in the monoid of Part (b)?

Digression into category theory

Definition A category \mathcal{C} is a mathematical structure consisting of

- a class of *objects*, denoted by Ob(C),
- for any two objects $X, Y \in Ob(\mathcal{C})$, a set $Hom_{\mathcal{C}}(X, Y)$, called the *morphisms* from X to Y,
- and for any three objects $X, Y, Z \in Ob(\mathcal{C})$, a function

$$\operatorname{Hom}_{\mathcal{C}}(Y,Z) \times \operatorname{Hom}_{\mathcal{C}}(X,Y) \to \operatorname{Hom}_{\mathcal{C}}(X,Z), \quad (g,f) \mapsto g \circ f,$$

called composition,

satisfying the following axioms:

(i) Associativity of composition: For all $W, X, Y, Z \in Ob(\mathcal{C})$ and all $f \in Hom_{\mathcal{C}}(W, X)$, $g \in Hom_{\mathcal{C}}(X, Y)$, $h \in Hom_{\mathcal{C}}(Y, Z)$, one has

$$(h \circ g) \circ f = h \circ (g \circ f)$$
.

(ii) For every $X \in \text{Ob}(\mathcal{C})$ there exists a morphism id_X (called the *identity morphism of* X), with the property that for all $W, Y \in \text{Ob}(\mathcal{C})$ and all $f \in \text{Hom}_{\mathcal{C}}(W, X)$ and $g \in \text{Hom}_{\mathcal{C}}(X, Y)$, one has

$$id_X \circ f = f$$
 and $g \circ id_X = g$.

(iii) If X, Y, X', Y' are objects of \mathfrak{C} and $(X, Y) \neq (X', Y')$ then $\operatorname{Hom}_{\mathfrak{C}}(X, Y) \cap \operatorname{Hom}_{\mathfrak{C}}(X', Y') = \emptyset$.

If $f \in \text{Hom}_{\mathbb{C}}(X, Y)$ then X is called the *source* or *domain* of f and Y is called the *target* or *codomain* of f. By (iii), every morphism has a unique source object and a unique target object.

- **6.** (a) Show that if \mathcal{C} is a category and X is an object of \mathcal{C} then $\operatorname{Hom}_{\mathcal{C}}(X,X)$ is a monoid under \circ .
 - (b) Show that the following examples form categories:
- (i) The category Set of sets, whose objects are the sets, whose morphisms are the functions between two sets, and whose composition is the usual composition of functions.
- (ii) The category Semigr of semigroups, whose objects are semigroups, whose morphisms are functions $f: X \to Y$ between semigroups X and Y which

respect the binary operations of X and Y (i.e., f(xx') = f(x)f(x') for all $x, x' \in X$), and the usual composition of functions.

- (iii) The category Mon of monoids, whose objects are monoids, whose morphisms are functions $f: X \to Y$ between monoids X and Y that respect the binary operations (as in (ii)) and identity elements (i.e., $f(1_X) = 1_Y$), and the usual composition of functions.
- (iv) The category $\widetilde{\mathsf{Set}}$, whose objects are sets, whose morphisms are given by $\mathsf{Hom}_{\widetilde{\mathsf{Set}}}(T,S) := \mathcal{P}(S \times T)$, and whose composition is the *-product from Exercise 5.

Notation A morphism $f \in \text{Hom}_{\mathbb{C}}(X,Y)$ is often depicted as arrow $f \colon X \to Y$, although it does not need to be a function (as for instance in 6(b)(iv)). Often the composition symbol ' \circ ' is omitted and one writes gf instead of $g \circ f$ if the meaning is clear from the context.

2 Groups

From now on through the rest of this chapter we will usually write abstract binary operations in the multiplicative form $(x, y) \mapsto xy$ and denote identity elements by 1.

- **2.1 Definition** A group is a monoid in which every element is invertible. A group is called *abelian* if it is commutative. The *order* of a group G is the number of its elements. It is denoted by |G|.
- **2.2 Remark** If G is a semigroup with a left (resp. right) identity e and if every element of G has a left (resp. right) inverse with respect to e, then G is a group. (see Exercise 4 of Section 1.)
- **2.3 Examples** (a) $(\mathbb{Z}, +)$, $(\mathbb{Q}, +)$, $(\mathbb{R}, +)$, $(\mathbb{C}, +)$ are abelian groups, but $(\mathbb{N}_0, +)$ is not a group.
- (b) $(\mathbb{Q} \setminus \{0\}, \cdot)$, $(\mathbb{R} \setminus \{0\}, \cdot)$, $(\mathbb{C} \setminus \{0\}, \cdot)$ are abelian groups, but $(\mathbb{Z} \setminus \{0\}, \cdot)$ and (\mathbb{Q}, \cdot) are not groups.
- (c) $(\{1\},\cdot)$ and $(\{0\},+)$ are groups of order 1. A group of order 1 is called a *trivial group*.
- (d) For any set X, the set $\operatorname{Sym}(X) := \{f : X \to X \mid f \text{ is bijective}\}$ is a group under composition. It is called the *symmetric group on X*. Its elements are called *permutations* of X. If |X| = n, then $|\operatorname{Sym}(X)| = n!$. We write $\operatorname{Sym}(n)$ instead of $\operatorname{Sym}(\{1,2,\ldots,n\})$ and call $\operatorname{Sym}(n)$ the *symmetric group of degree n*. We use the following notation for $\pi \in \operatorname{Sym}(n)$:

$$\pi = \begin{pmatrix} 1 & 2 & \cdots & n \\ \pi(1) & \pi(2) & \cdots & \pi(n) \end{pmatrix}.$$

So if, for instance, π and ρ are elements of Sym(3) given by

$$\pi = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \text{and} \quad \rho = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

then

$$\pi \rho = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} .$$

(e) If G_1, G_2, \ldots, G_n are groups, then also their direct product

$$G_1 \times G_2 \times \cdots \times G_n$$

is a group under the binary operation defined by

$$(x_1,\ldots,x_n)(y_1,\ldots,y_n) := (x_1y_1,\ldots,x_ny_n).$$

- (f) For every $n \in \mathbb{N}$, the sets $\mathrm{GL}_n(\mathbb{Q})$, $\mathrm{GL}_n(\mathbb{R})$, $\mathrm{GL}_n(\mathbb{C})$ of invertible matrices with entries in \mathbb{Q} , \mathbb{R} , \mathbb{C} , respectively, form groups under multiplication.
- **2.4 Definition** Let G and H be groups. A function $f: G \to H$ is called a *homomorphism*, if f(xy) = f(x)f(y) for all $x, y \in G$. The set of all homomorphisms from G to H is denoted by Hom(G, H). A homomorphism $f: G \to H$ is called
 - (a) a monomorphism if f is injective,
 - (b) an epimorphism if f is surjective,
 - (c) an isomorphism if f is bijective (often indicated by $f: G \stackrel{\sim}{\to} H$),
 - (d) an endomorphism if G = H,
 - (e) an automorphism if G = H and f is bijective.
- **2.5 Remark** Let $f: G \to H$ be a homomorphism between groups G and H. Then $f(1_G) = 1_H$ and $f(x^{-1}) = f(x)^{-1}$ for all $x \in G$. Moreover, if also $g: H \to K$ is a homomorphism between H and a group K, then $g \circ f: G \to K$ is a homomorphism. If $f: G \to H$ is an isomorphism, then also its inverse $f^{-1}: H \to G$ is an isomorphism. The automorphisms $f: G \to G$ form again a group under composition, called the *automorphism group* of G and denoted by $\operatorname{Aut}(G)$.
- **2.6 Examples** (a) For each $n \in \mathbb{N}$, the function $(\mathbb{Z}, +) \to (\mathbb{Z}, +)$, $k \mapsto nk$, is a monomorphism.
 - (b) $(\mathbb{R}, +) \to (\mathbb{R}_{>0}, \cdot), x \mapsto e^x$, is an isomorphism.
- (c) Let G be a group and let $g \in G$. Then $c_g : G \to G$, $x \mapsto gxg^{-1}$, is an automorphism of G with inverse $c_{g^{-1}}$. One calls c_g the inner automorphism induced by g (or conjugation with g). Note that $c_g \circ c_h = c_{gh}$ for $g, h \in G$. Thus, $G \to \operatorname{Aut}(G)$, $g \mapsto c_g$, is a group homomorphism.
 - (d) For each $n \in \mathbb{N}$, the sign map

$$\operatorname{sgn} \colon \operatorname{Sym}(n) \to \left(\{\pm 1\}, \cdot\right), \quad \pi \mapsto \prod_{1 \leqslant i < j \leqslant n} \frac{\pi(j) - \pi(i)}{j - i},$$

is a homomorphism (see Exercise 2). To see that $\operatorname{sgn}(\pi) \in \{\pm 1\}$, let $\mathcal{P}_n^{(2)}$ denote the set of all subsets $\{i, j\}$ of $\{1, \ldots, n\}$ of cardinality 2 and note that

$$|\operatorname{sgn}(\pi)| = \prod_{\{i,j\} \in \mathcal{P}_n^{(2)}} \frac{|\pi(j) - \pi(i)|}{|j - i|} = \frac{\prod_{\{i,j\} \in \mathcal{P}_n^{(2)}} |\pi(j) - \pi(i)|}{\prod_{\{i,j\} \in \mathcal{P}_n^{(2)}} |j - i|} = 1,$$

since, for fixed $\pi \in \operatorname{Sym}(n)$, the function $\mathcal{P}_n^{(2)} \to \mathcal{P}_n^{(2)}$, $\{i, j\} \mapsto \{\pi(i), \pi(j)\}$, is a bijection. If $\operatorname{sgn}(\pi) = 1$ (resp. $\operatorname{sgn}(\pi) = -1$), then we call π an even (resp. odd) permutation.

- (e) For every $n \in \mathbb{N}$, the determinant map $\det : \operatorname{GL}_n(\mathbb{R}) \to (\mathbb{R} \setminus \{0\}, \cdot)$ is an epimorphism.
- **2.7 Definition** Two groups G and H are called *isomorphic*, if there exists an isomorphism $f: G \xrightarrow{\sim} H$. In this case we write $G \cong H$.
- **2.8 Remark** (a) The relation \cong ('is isomorphic to') is an equivalence relation, i.e., for groups G, H, K we have:
 - (i) $G \cong G$.
 - (ii) If $G \cong H$ then $H \cong G$.
 - (iii) If $G \cong H$ and $H \cong K$ then $G \cong K$.
- (b) Isomorphic groups G and H behave identically in all respects. In fact, if $f: G \xrightarrow{\sim} H$ is an isomorphism, every statement about G can be translated into a statement about H using f, and vice-versa. G and H are basically the same group: one arises from the other by renaming the elements using f, but keeping the multiplication.
- **2.9 Definition** Let G be a group. A subset H of G is a called a *subgroup* of G if the following hold:
 - (i) If $x, y \in H$ then $xy \in H$.
 - (ii) $1_G \in H$.
 - (iii) If $x \in H$ then x^{-1} in H.

In this case, H together with the restricted binary operation $H \times H \to H$, $(x,y) \mapsto xy$, is again a group. We write $H \leqslant G$, if H is a subgroup of G. A subgroup H of G is called a *proper subgroup*, if $H \neq G$. In this case we write H < G.

2.10 Proposition Let G be a group and let H be a subset of G. Then the following are equivalent:

- (i) H is a subgroup of G.
- (ii) H is non-empty and if $x, y \in H$ then also $xy^{-1} \in H$.

Proof Exercise 3.

- **2.11 Examples** (a) For each group G one has $\{1_G\} \leq G$ and $G \leq G$. The subgroup $\{1_G\}$ is called the *trivial subgroup* of G.
- (b) If $H \leq G$ and $K \leq H$ then $K \leq G$. Also, if $K \subseteq H \leq G$ and $K \leq G$ then $K \leq H$.
- (c) The intersection of any collection of subgroups of a group G is again a subgroup. (Warning: In general, the union of subgroups is not a subgroup.)
 - (d) \mathbb{Z} , \mathbb{Q} and \mathbb{R} are subgroups of $(\mathbb{C}, +)$.
 - (e) For any non-empty subsets X_1, X_2, \dots, X_n of a group G we define

$$X_1 X_2 \cdots X_n := \{ x_1 x_2 \cdots x_n \mid x_1 \in X_1, \dots, x_n \in X_n \}.$$

In general, this is not a subgroup, even if X_1, \ldots, X_n are. For subgroups $H, K \leq G$ one has (see Exercise 4):

$$HK \leqslant G \iff KH = HK$$
.

In any case, if H and K are finite subgroups one has (see Excercise 5):

$$|HK| = \frac{|H| \cdot |K|}{|H \cap K|} \,.$$

(f) If X is a non-empty subset of a group G, its normalizer is defined as

$$N_G(X) := \{ g \in G \mid gXg^{-1} = X \}.$$

Note that $gXg^{-1} = X \iff c_g(X) = X \iff gX = Xg$. One always has $N_G(X) \leqslant G$.

Moreover, the *centralizer* of X is defined as

$$C_G(X) := \{ g \in G \mid gxg^{-1} = x \text{ for all } x \in X \}.$$

Note that $g \in C_G(X) \iff c_g$ is the identity on $X \iff gx = xg$ for all $x \in X$. It is easy to check that $C_G(X) \leqslant N_G(X)$ is again a subgroup. If $X = \{x\}$ consists only of one element we also write $C_G(x)$ instead of $C_G(\{x\})$.

- (g) The subgroup $Z(G) := C_G(G) = \{g \in G \mid gx = xg \text{ for all } x \in G\}$ is called the *center* of G. It is an abelian subgroup.
- (h) If $f: G \to H$ is a group homomorphism and if $U \leqslant G$ and $V \leqslant H$, then $f(U) \leqslant H$ and $f^{-1}(V) := \{g \in G \mid f(g) \in V\} \leqslant G$. In particular, the *image of* f, $\operatorname{im}(f) := f(G)$, is a subgroup of H, and the *kernel of* f, $\ker(f) := f^{-1}(\{1_H\})$ is a subgroup of G. Note: f is injective if and only if $\ker(f) = 1$. (See Exercise 7.)

The kernel of sgn: $\operatorname{Sym}(n) \to \{\pm 1\}$ is called the *alternating group of degree* n and is denoted by $\operatorname{Alt}(n)$.

The kernel of det: $GL_n(\mathbb{R}) \to (\mathbb{R} \setminus \{0\}, \cdot)$ is called the *special linear group* of degree n over \mathbb{R} and is denoted by $SL_n(\mathbb{R})$.

2.12 Theorem The subgroups of $(\mathbb{Z}, +)$ are the subsets of the form $n\mathbb{Z} := \{nk \mid k \in \mathbb{Z}\}$ for $n \in \mathbb{N}_0$.

Proof For every $n \in \mathbb{Z}$, the function $\mathbb{Z} \to \mathbb{Z}$, $k \mapsto kn$, is a group homomorphism (cf. Example 2.6(a)) with image $n\mathbb{Z}$. By Example 2.11(h), it is a subgroup of \mathbb{Z} .

Conversely, assume that $H \leq \mathbb{Z}$. If $H = \{0\}$, then $H = 0\mathbb{Z}$ and we are done. So assume that $H \neq \{0\}$. Then H contains a non-zero integer and with it its inverse. So, H contains a positive integer. Let n be the smallest positive integer contained in H. We will show that $H = n\mathbb{Z}$. First, since $n \in H$ also $n+n, n+n+n, \ldots \in H$. Since H is a subgroup also the inverses of these elements, namely $-n, -n+(-n), \ldots$ are in H. Thus, $n\mathbb{Z} \leq H$. To show the other inclusion, take an arbitrary element h of H and write it as h = qn+r with $q \in \mathbb{Z}$ and $r \in \{0,1,\ldots,n-1\}$. Then we have $r = h-qn \in H$ which implies r = 0 (by the minimality of n). This shows that $h = qn \in n\mathbb{Z}$. So, $H \leq n\mathbb{Z}$.

- **2.13 Definition** Let G be a group and let $X \subseteq G$ be a subset.
 - (a) The subgroup generated by X is defined as

$$\langle X \rangle := \{ x_1^{\epsilon_1} \cdots x_k^{\epsilon_k} \mid k \in \mathbb{N}, \ x_1, \dots, x_k \in X, \ \epsilon_1, \dots, \epsilon_k \in \{\pm 1\} \}.$$

If $X = \emptyset$ one defines $\langle X \rangle := \{1_G\}$. Clearly, $\langle X \rangle$ is a subgroup of G. Moreover, if U is a subgroup of G which contains X then U also contains $\langle X \rangle$. Thus, $\langle X \rangle$ is characterized as the the smallest subgroup of G which contains X.

Moreover, one has

$$\langle X \rangle = \bigcap_{X \subseteq U \leqslant G} U,$$

i.e., $\langle X \rangle$ is the intersection of all subgroups of U that contain X.

- (b) If $\langle X \rangle = G$, then we call X a generating set or a set of generators of G. If G is generated by a single element, then G is called cyclic.
- **2.14 Examples** (a) Let G be a group and let $x, y \in G$. The element $[x, y] := xyx^{-1}y^{-1}$ is called the *commutator* of x and y. One has xy = [x, y]yx. Thus, [x, y] = 1 if and only if xy = yx, i.e., x and y commute. The subgroup of G generated by all the commutators [x, y], $x, y \in G$, is called the *commutator subgroup* (or the *derived subgroup*) of G and it is denoted by G' or [G, G]. Note that $[x, y]^{-1} = [y, x]$. Therefore,

$$G' = \{ [x_1, y_1] \cdots [x_k, y_k] \mid k \in \mathbb{N}, \ x_1, \dots, x_k, y_1, \dots, y_k \in G \}.$$

Note that

$$G' = \{1\} \iff G \text{ is abelian } \iff Z(G) = G.$$

(b) The elements

$$x = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \qquad y = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$$

generate a subgroup V_4 of Sym(4), which is called the *Klein 4-group*. One checks easily that $x^2 = 1$, $y^2 = 1$ and

$$xy = yx = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} =: z.$$

This shows that $V_4 = \{1, x, y, z\}$ and we obtain the following multiplication table:

2.15 Definition Let G be a group and let $H \leq G$. For $x, y \in G$ we define $x_H \sim y$ if $x^{-1}y \in H$. This defines an equivalence relation on G (verify). The

equivalence class containing $x \in G$ is equal to xH (verify) and is called the *left coset* of H containing x. The set of equivalence classes is denoted by G/H. The number |G/H| is called the *index* of H in G and is denoted by [G:H].

- **2.16 Remark** Let G be a group and let $H \leq G$. In a similar way one defines the relation γ_H on G by $x \gamma_H y$ if $xy^{-1} \in H$. This is again an equivalence relation. The equivalence class of $x \in G$ is equal to Hx, the right coset of H containing x. The set of right cosets is denoted by $H \setminus G$. We will mostly work with left cosets. If G is abelian then xH = Hx for all $x \in G$. However, in general this is not the case.
- **2.17 Example** Fix $n \in \mathbb{N}_0$ and $k \in \mathbb{Z}$. Then the set $k + n\mathbb{Z}$ is a left and right coset of $n\mathbb{Z}$ in $(\mathbb{Z}, +)$. For example,

$$2 + 5\mathbb{Z} = \{\ldots, -8, -3, 2, 7, 12, \ldots\}.$$

For this particular choice $(G = \mathbb{Z} \text{ and } H = n\mathbb{Z})$ we also write $x \equiv y \mod n$ instead of $x_H \sim y$ and say "x is congruent to y modulo n". The coset $k + n\mathbb{Z}$ is called the congruence class of k modulo n. One has

$$\mathbb{Z}/n\mathbb{Z} = \{0 + n\mathbb{Z}, 1 + n\mathbb{Z}, \dots, (n-1) + n\mathbb{Z}\}\$$

and $[\mathbb{Z}:n\mathbb{Z}]=n$.

- **2.18 Proposition** Let G be a group and let $H \leq G$.
- (a) For each $g \in G$, the function $H \to gH$, $h \mapsto gh$, is a bijection. In particular, any two left cosets of H have the same cardinality, namely |H|.
- (b) For each $g \in G$, the function $H \to Hg$, $h \mapsto hg$, is a bijection. In particular, any two right cosets of H have the same cardinality, namely |H|.
- (c) The function $G/H \to H \backslash G$, $gH \mapsto Hg^{-1}$, is well-defined and bijective. In particular, $|G/H| = |H \backslash G|$.
- **Proof** (a) It is easy to verify that $gH \to H$, $x \mapsto g^{-1}x$, is an inverse.
 - (b) One verifies easily that $Hg \to H$, $x \mapsto xg^{-1}$, is an inverse.
- (c) In order to show that the function is well-defined assume that $g_1, g_2 \in G$ such that $g_1H = g_2H$. We need to show that then $Hg_1^{-1} = Hg_2^{-1}$. But, we have: $g_1H = g_2H \iff g_1^{-1}g_2 \in H \iff Hg_1^{-1} = Hg_2^{-1}$. Finally, the function $H \setminus G \to G/H$, $Hg \mapsto g^{-1}H$, is an inverse.

2.19 Corollary (Lagrange 1736–1813) Let H be a subgroup of a group G. Then

$$|G| = [G:H] \cdot |H|$$

(with the usual rules for the quantity ∞). In particular, if G is a finite group then |H| and [G:H] are divisors of |G|.

Proof G is the disjoint union of the left cosets of H. There are [G:H] such cosets, and each one has |H| elements by Proposition 2.18(a).

- **2.20 Examples** (a) The subgroups V_4 and Alt(4) of Sym(4) have order 4 and 12, which are divisors of 24 (in accordance with Lagrange's Theorem). By Lagrange, Sym(4) cannot have a subgroup of order 10. We will see later: Alt(4) does not have a subgroup of order 6, although 6 divides 12.
- (b) Let G be a finite group whose order is a prime p. Then, by Lagrange, $\{1\}$ and G are the only subgroups of G. Moreover, G is cyclic, generated by any element $x \neq 1$. In fact, $H := \langle x \rangle$ is a subgroup of G with 1 < |H|. Thus H = G.

Exercises for Section 2

- 1. Prove the statements in Remark 2.5.
- **2.** Let $n \in \mathbb{N}$. For pairwise distinct elements a_1, \ldots, a_k in $\{1, \ldots, n\}$ we denote by (a_1, a_2, \ldots, a_k) the permutation $\sigma \in \operatorname{Sym}(n)$ given by $\sigma(a_1) = a_2, \sigma(a_2) = a_3, \ldots, \sigma(a_{k-1}) = a_k, \sigma(a_k) = a_1, \text{ and } \sigma(a) = a$ for all other $a \in \{1, \ldots, n\}$. Such an element is called a k-cycle. A 2-cycle is also called a t-ransposition.
 - (a) Show that every element in Sym(n) is a product of disjoint cycles.
 - (b) Show that every cycle is a product of transpositions.
- (c) Show that every transposition is a product of an odd number of *simple* transpositions, i.e., transpositions of the form (i, i + 1), i = 1, ..., n 1.
- (d) Let $\sigma \in \operatorname{Sym}(n)$. A pair (i,j) of natural numbers i,j with $1 \leq i < j \leq n$ is called an *inversion* for σ if $\sigma(j) < \sigma(i)$. We denote by $l(\sigma)$ the number of inversions of σ . Show that for a transposition $\tau = (a,b)$ with $1 \leq a < b \leq n$ one has $l(\tau) = 2(b-a) 1$.
 - (e) Show that for every i = 1, ..., n 1 one has

$$l((i, i+1)\sigma) - l(\sigma) = \begin{cases} 1 & \text{if } \sigma^{-1}(i) < \sigma^{-1}(i+1), \\ -1 & \text{if } \sigma^{-1}(i) > \sigma^{-1}(i+1). \end{cases}$$

- (f) Show that if $\sigma \in \operatorname{Sym}(n)$ can be written as a product of r transpositions then $r \equiv l(\sigma) \mod 2$. Conclude that if σ can also be written as a product of s transpositions then $r \equiv s \mod 2$.
- (g) Show that the function $\operatorname{Sym}(n) \to \{\pm 1\}$, $\sigma \mapsto (-1)^{l(\sigma)}$, is a group homomorphism which coincides with the homomorphism sgn from class and that $\operatorname{sgn}(\tau) = -1$ for every transposition τ .
 - **3.** Prove the statement in Proposition 2.10.
 - **4.** Let H and K be subgroups of a group G. Show that

$$HK \leq G \iff KH = HK$$
.

5. Let H and K be finite subgroups of a group G. Show that

$$|HK| = \frac{|H| \cdot |K|}{|H \cap K|} \,.$$

Hint: Consider the function $f: H \times K \to HK$ given by f(h,k) = hk. Show that for every element $x \in HK$ there exist precisely $|H \cap K|$ elements $(h,k) \in H \times K$ with hk = x.

- **6.** Show that for any non-empty subset X of a group G, the normalizer of X, $N_G(X)$, and the centralizer of X, $C_G(X)$, is again a subgroup of G. Show also that $C_G(X)$ is contained in $N_G(X)$.
 - 7. Let $f: G \to H$ be a group homomorphism.
 - (a) If $U \leq G$ then $f(U) \leq H$.
- (b) If $V \leq H$ then $f^{-1}(V) := \{g \in G \mid f(g) \in V\}$ is a subgroup of G. (The subgroup $f^{-1}(V)$ is also called the *preimage* of V under f. Note that the notation $f^{-1}(V)$ does not mean that f has an inverse.)
 - (c) Show that f is injective if and only if $ker(f) = \{1\}$.
 - **8.** Let H be a subgroup of a group G.
- (a) Show that the relation $_{H}\!\!\sim$ on G defined in Definition 2.15 is an equivalence relation.
- (b) Show that the equivalence class of the element $g \in G$ with respect to H^{\sim} is equal to gH.
- **9.** Let G and A be groups and assume that A is abelian. Show that the set Hom(G,A) of group homomorphisms from G to A is again an abelian group under the multiplication defined by

$$(f_1 \cdot f_2)(g) := f_1(g)f_2(g)$$
 for $f_1, f_2 \in \text{Hom}(G, A)$ and $g \in G$.

- **10.** Consider the elements $\sigma := (1,2,3)$ and $\tau := (1,2)$ of Sym(3). Here we used the cycle notation from Exercise 2.
 - (a) Show that $\sigma^3 = 1$, $\tau^2 = 1$ and $\tau \sigma = \sigma^2 \tau$.
 - (b) Show that $\{\sigma, \tau\}$ is a generating set of Sym(3).
- (c) Show that every element of Sym(3) can be written in the form $\sigma^i \tau^j$ with $i \in \{0, 1, 2\}$ and $j \in \{0, 1\}$.
 - (d) Compute all subgroups of Sym(3) and their normalizers and centralizers.
 - (e) Compute the commutator subgroup of Sym(3) and the center of Sym(3).
 - **11.** Consider the elements $\sigma := (1, 2, 3, 4)$ and $\tau := (1, 4)(2, 3)$ of Sym(4).
 - (a) Show that $\sigma^4 = 1$, $\tau^2 = 1$, and $\tau \sigma = \sigma^3 \tau$.
- (b) Determine the subgroup $\langle \sigma, \tau \rangle$ of Sym(4). It is called the *dihedral group* of order 8 and is denoted by D_8 .
 - (c) Determine $Z(D_8)$.
 - (d) Determine the derived subgroup D_8' of D_8 .
 - **12.** Let G and H be groups and let $f: G \to H$ be an isomorphism.
 - (a) Show that G is abelian if and only if H is abelian.
- (b) Let X be a subset of G and set $Y := f(X) \subseteq H$. Show that $f(\langle X \rangle) = \langle Y \rangle$, $f(N_G(X)) = N_H(Y)$, $f(C_G(X)) = C_H(Y)$.
 - (c) Show that G is cyclic if and only if H is cyclic.
 - (d) Show that f(Z(G)) = Z(H).
 - (e) Show that f(G') = H'.
- **13.** (Dedekind's Identity) Let U, V, W be subgroups of a group G with $U \leq W$. Show that

$$UV \cap W = U(V \cap W)$$
 and $W \cap VU = (W \cap V)U$.

- **14.** (a) Let p be a prime, let $C_p = \langle x \rangle$ be a cyclic group of order p and set $G := C_p \times C_p$. Show that G has exactly p+1 subgroups of order p.
- (b) A group of 25 mathematicians meets for a 6 day conference. Between the morning and afternoon lectures they have their lunch in a room with 5 round tables and 5 chairs around each table. The organizer would like to assign every day new places at the tables in such a way that each participant has eaten with any other one at least once at the same table. Is this possible? (Hint: Use (a) and use convenient equivalence relations on G.)

More category theory

Definition Let \mathcal{C} be a category and let $f: X \to Y$ be a morphism in \mathcal{C} .

(a) f is called a monomorphism if for all objects W of \mathcal{C} and all $g_1, g_2 \in \operatorname{Hom}_{\mathcal{C}}(W, X)$ one has

$$f \circ g_1 = f \circ g_2 \Rightarrow g_1 = g_2$$
.

(b) f is called an *epimorphism* if for all objects Z of \mathcal{C} and all $g_1, g_2 \in \operatorname{Hom}_{\mathcal{C}}(Y, Z)$ one has

$$g_1 \circ f = g_2 \circ f \Rightarrow g_1 = g_2$$
.

(c) f is called an isomorphism if there exists $g \in \text{Hom}_{\mathcal{C}}(Y, X)$ with $g \circ f = \text{id}_X$ and $f \circ g = \text{id}_Y$.

Definition Let \mathcal{C} be a category and X an object of \mathcal{C} .

- (a) X is called an *initial object* in \mathfrak{C} if $|\mathrm{Hom}_{\mathfrak{C}}(X,Y)| = 1$ for all objects Y of \mathfrak{C} .
- (b) X is called a final object in \mathcal{C} if $|\mathrm{Hom}_{\mathcal{C}}(W,X)| = 1$ for all objects W of \mathcal{C} .
- (c) X is called a zero object in \mathcal{C} if it is an initial and final object in \mathcal{C} .
- **15.** Prove the following statements for the category **Set**:
- (a) A morphism $f: X \to Y$ is a monomorphism in Set if and only if f is injective.
- (b) A morphism $f: X \to Y$ is an epimorphism in Set if and only if f is surjective.
 - (c) A morphism $f: X \to Y$ is an isomorphism in Set if and only if f is bijective.
 - (d) Does Set have an initial object? Does Set have a final object?
- **16.** (a) Let $f: X \to S$ be a morphism of semigroups. Show that if X is a monoid (resp. group) then also f(X) is a monoid (resp. group) with the binary operation restricted from S.
- (b) Consider \mathbb{N}_0 and \mathbb{Z} equipped with the binary operation +. Show that the inclusion $i \colon \mathbb{N}_0 \to \mathbb{Z}$ is an epimorphism in the category Semigr and also in the category Mon.
- 17. Prove the following statements for the category Gr, whose objects are the groups, whose morphisms are the group homomorphisms, and whose composition is the usual composition of functions.
 - (a) Gr has a zero object.
- (b) A morphism $f: G \to H$ in Gr is a monomorphism if and only if it is injective.

Note: It is also true that a morphism $f: G \to H$ in Gr is an epimorphism if and only if f is surjective. But it is more difficult to prove. We will get back to that when we have more tools available.

Definition Two objects X and Y of a category \mathcal{C} are called *isomorphic* if there exists an isomorphism $f \colon X \to Y$ in \mathcal{C} . Notation: $X \cong Y$.

- **18.** Let C be a category.
- (a) Show that if $f: X \to Y$ is an isomorphism in \mathcal{C} then there exists precisely one morphism $g: Y \to X$ with the property $g \circ f = \mathrm{id}_X$ and $f \circ g = \mathrm{id}_Y$. This morphism will be denoted by f^{-1} and called the *inverse* of f.
- (b) Show that if $f\colon X\to Y$ and $g\colon Y\to Z$ are isomorphisms in $\mathcal C$ then also $g\circ f$ is an isomorphism in $\mathcal C$.
- (c) Let X be an object of \mathcal{C} . An isomorphism $f: X \to X$ in \mathcal{C} is called an *automorphism* of X. Show that the set $\operatorname{Aut}_{\mathcal{C}}(X)$ of automorphisms of X is a group under composition.
 - (d) Show that if X and Y are initial (resp. final) objects of \mathcal{C} then $X \cong Y$.

3 Normal Subgroups and Factor Groups

- **3.1 Theorem** Let G be a group, let N be a subgroup of G, and let $\nu: G \to G/N$ denote the function defined by $\nu(g) := gN$. Then the following are equivalent:
- (i) G/N is a group under $(g_1N, g_2N) \mapsto (g_1N)(g_2N)$, where $(g_1N)(g_2N)$ is defined as the product of the subsets g_1N and g_2N of G as in Example 2.11(e).
- (ii) G/N has a group structure such that the function ν is a homomorphism.
- (iii) There exists a group H and a group homomorphism $f: G \to H$ such that $\ker(f) = N$.
 - (iv) $gNg^{-1} \subseteq N$ for all $g \in G$.
 - (v) $gNg^{-1} = N$ for all $g \in G$.
 - (vi) gN = Ng for all $g \in G$.
- **Proof** (i) \Rightarrow (ii): Use the group structure defined in (i). We need to show that ν is a homomorphism. For $g_1, g_2 \in G$ we have $\nu(g_1)\nu(g_2) = (g_1N)(g_2N)$ which must be again a left coset by (i). But $(g_1N)(g_2N)$ contains the element g_1g_2 . This implies that $(g_1N)(g_2N) = (g_1g_2)N$. Thus, $\nu(g_1)\nu(g_2) = (g_1N)(g_2N) = (g_1g_2)N = \nu(g_1g_2)$, and ν is a homomorphism.
- (ii) \Rightarrow (iii): Set H := G/N, which has a group structure, by (ii), such that $f := \nu$ is a homomorphism. Moreover, since ν is a homomorphism, $\nu(1) = N$ must be the identity element of G/N. Thus, $\ker(\nu) = \{g \in G \mid gN = N\} = N$.
 - (iii) \Rightarrow (iv): For each $g \in G$ and each $n \in N$ one has

$$f(gng^{-1}) = f(g)f(n)f(g^{-1}) = f(g) \cdot 1 \cdot f(g)^{-1} = 1$$

which shows that $gng^{-1} \in \ker(f) = N$. Thus $gNg^{-1} \subseteq N$ for all $g \in G$.

- (iv) \Rightarrow (v): Let $g \in G$. Then, (iv) applied to the element g^{-1} yields $g^{-1}Ng \subseteq N$. Applying c_g then implies $N = gg^{-1}Ngg^{-1} \subseteq gNg^{-1}$. Together with (iv) for g we obtain (v) for g.
 - (v) \Rightarrow (vi): For each $g \in G$ we have $gN = gNg^{-1}g \stackrel{(v)}{=} Ng$.
 - (vi) \Rightarrow (i): For any $g_1, g_2 \in G$ we have

$$(g_1N)(g_2N) \stackrel{\text{(vi)}}{=} g_1g_2NN = g_1g_2N$$
 (3.1.a)

so that $(g_1N, g_2N) \mapsto (g_1N)(g_2N)$ is a binary operation on G/N. Obviously, it is associative. Moreover, by (3.1.a), $N = 1 \cdot N$ is an identity element, and for any $g \in G$, $g^{-1}N$ is an inverse of gN.

3.2 Definition If the conditions (i)–(vi) in Theorem 3.1 are satisfied, we call N a normal subgroup of G and write $N \subseteq G$. We write $N \triangleleft G$, if N is a proper normal subgroup of G. If $N \subseteq G$ then (i) and (vi) in the previous theorem imply that the set G/N of left cosets is again a group under the binary operation

$$(g_1N, g_2N) \mapsto (g_1N)(g_2N) = g_1g_2NN = g_1g_2N$$
.

It is called the factor group of G with respect to N, or shorter 'G modulo N'. Moreover, by the proof of (i) \Rightarrow (ii), the function ν : $G \to G/N$, $g \mapsto gN$, is a homomorphism, called the canonical epimorphism or natural epimorphism.

3.3 Examples (a) We always have $\{1\} \subseteq G$ and $G \subseteq G$. If G and $\{1\}$ are the only normal subgroups of G and if $G \neq \{1\}$, we call G a *simple* group. By Lagrange's Theorem, groups of prime order are always simple. If G is not simple, there exists $\{1\} < N \triangleleft G$ and we think of G as being built from the two groups N and G/N. This is often depicted as

$$\begin{array}{c|cccc} & & & & \bullet & G \\ \hline G/N & \{ & | & & \\ \hline N & & \bullet & N \\ \hline N & & N \cong N/\{1\} & \{ & | & \\ & & & \bullet & \{1\} \\ \hline \end{array}$$

We may think of G/N as an approximation to G. An element of G/N determines an element of G up to an error term in N, and the multiplication in G/N determines the multiplication in G up to an error term in N.

(b) If G is a group and $H \leq Z(G)$, then $H \subseteq G$. In particular, $Z(G) \subseteq G$. In an abelian group G, every subgroup is normal (since G = Z(G)). The center of G is even more special. For every $f \in \operatorname{Aut}(G)$ one has f(Z(G)) = Z(G) (verify!). A subgroup $N \leq G$ with f(N) = N for all $f \in \operatorname{Aut}(G)$ is called *characteristic* in G. In this case we write $N \subseteq G$. Note that $N \subseteq G$ implies that $N \subseteq G$ (since $C_g \in \operatorname{Aut}(G)$ for all $G \in G$).

(c) Let G be a group and let $G' \leq H \leq G$, where G' denotes the commutator subgroup of G, cf. Example 2.14(a). Then $H \subseteq G$ and G/H is abelian. In fact, for any $g \in G$ and $h \in H$ one has

$$ghg^{-1} = ghg^{-1}h^{-1}h = [g, h]h \in G'H \leqslant H$$
,

and for any $x, y \in G$ one has

$$(xH)(yH) = xyH = xy[y^{-1}, x^{-1}]H = yxH = (yH)(xH).$$

Here, the second equality holds, since $[y^{-1}, x^{-1}] \in H$. In particular, with H = G', we obtain that G' is normal in G and that G/G' is abelian.

Conversely, if N is a normal subgroup of G with abelian factor group G/N, then $G' \leq N \leq G$. In fact, let $x, y \in G$. Then one has

$$[x,y]N = xyx^{-1}y^{-1}N = (xN)(yN)(x^{-1}N)(y^{-1}N) = [xN,yN] = N$$

which implies that $[x, y] \in N$. Thus, we have $G' \leq N$.

The above two considerations show that G' is the smallest (with respect to inclusion) normal subgroup of G with abelian factor group. This factor group G/G' is called the *commutator factor group* of G and it is denoted by G^{ab} .

- (d) If $H \leq G$ with [G:H] = 2 then $H \triangleleft G$. In fact, for $g \in H$ we have gH = H = Hg, and for $g \in G \setminus H$ we have $gH = G \setminus H = Hg$, since there are only two left cosets and two right cosets and one of them is H.
- (e) For every subgroup H of G one has $H \subseteq N_G(H) \leqslant G$. Moreover, $N_G(H) = G$ if and only if $H \subseteq G$.
- (f) For each subset X of a group G one has $C_G(X) \subseteq N_G(X)$ (see Exercises). In particular, setting X = G, we obtain again $Z(G) \subseteq G$.
 - (g) For each $n \in \mathbb{N}$ one has $Alt(n) = ker(sgn) \leq Sym(n)$.
 - (h) For each $n \in \mathbb{N}$ one has $SL_n(\mathbb{R}) = \ker(\det) \leq GL_n(\mathbb{R})$.
 - (i) Let G := Sym(3) and let

$$H := \left\langle \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \right\rangle = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \right\}.$$

Then $H \not \supseteq G$, since

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \notin H.$$

3.4 Theorem (Fundamental Theorem of Homomorphisms, Universal Property of $\nu: G \to G/N$) Let G be a group, $N \subseteq G$, and let $\nu: G \to G/N$, $g \mapsto gN$, denote the natural epimorphism.

For every homomorphism $f: G \to H$ with $N \leq \ker(f)$, there exists a unique homomorphism $\overline{f}: G/N \to H$ such that $\overline{f} \circ \nu = f$:

$$G \xrightarrow{f} H$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

Moreover, $\ker(\overline{f}) = \{aN \mid a \in \ker(f)\} = \ker(f)/N \text{ and } \operatorname{im}(\overline{f}) = \operatorname{im}(f).$

Proof (a) Existence: Let $a, b \in G$ with aN = bN. Then $a^{-1}b \in N$ and $f(b) = f(aa^{-1}b) = f(a)f(a^{-1}b) = f(a)$, since $N \leq \ker(f)$. Therefore, the function $\overline{f}: G/N \to H$, $aN \mapsto f(a)$, is well-defined. It is a homomorphism, since

$$\overline{f}(aNbN) = \overline{f}(abN) = f(ab) = f(a)f(b) = \overline{f}(aN)\overline{f}(bN)$$

for all $a, b \in G$. Moreover, for all $a \in G$, we have $\overline{f}(\nu(a)) = \overline{f}(aN) = f(a)$. Thus, $\overline{f} \circ \nu = f$.

- (b) Uniqueness: If also $\tilde{f}: G/N \to H$ satisfies $\tilde{f} \circ \nu = f$, then $\tilde{f}(aN) = (\tilde{f} \circ \nu)(a) = (\overline{f} \circ \nu)(a) = \overline{f}(aN)$, for all $a \in G$. Thus $\tilde{f} = \overline{f}$.
 - (c) For all $a \in G$ we have

$$aN \in \ker(\overline{f}) \iff \overline{f}(aN) = 1 \iff f(a) = 1 \iff a \in \ker(f)$$
.

Therefore,
$$\ker(\overline{f}) = \{aN \in G/N \mid a \in \ker(f)\} = \ker(f)/N$$
.
Finally, $\operatorname{im}(\overline{f}) = \{\overline{f}(aN) \mid a \in G\} = \{f(a) \mid a \in G\} = \operatorname{im}(f)$. \Box .

- **3.5 Remark** (a) Assume the notation of Theorem 3.4. Note that $\nu: G \to G/N$ has the property that $N \leq \ker(f)$, or equivalently that $\nu(N) = \{1\}$. The homomorphism ν is universal with this property in the sense that every other homomorphism $f: G \to H$ with the property $f(N) = \{1\}$ can be factored in a unique way through ν .
- (b) In the situation of Theorem 3.4 we also say that f induces the homomorphism \overline{f} .

3.6 Corollary Let $f: G \to H$ be a homomorphism. Then f induces an isomorphism $\overline{f}: G/\ker(f) \stackrel{\sim}{\to} \operatorname{im}(f)$. If f is an epimorphism then $G/\ker(f) \cong H$.

Proof This follows immediately from Theorem 3.4, choosing $N := \ker(f)$. Note that \overline{f} is injective, since $\ker(\overline{f}) = \ker(f)/\ker(f) = \{\ker(f)\} = \{1_{G/\ker(f)}\}$ is the trivial subgroup of $G/\ker(f)$.

3.7 Example For $n \ge 2$, the sign homomorphism $\operatorname{sgn} : \operatorname{Sym}(n) \to \{\pm 1\}$ is surjective with kernel $\operatorname{Alt}(n)$. By the Fundamental Theorem of Homomorphisms, we obtain an isomorphism $\operatorname{Sym}(n)/\operatorname{Alt}(n) \cong \{\pm 1\}$. In particular, $[\operatorname{Sym}(n) : \operatorname{Alt}(n)] = 2$ and $|\operatorname{Alt}(n)| = n!/2$ by Lagrange's Theorem, Corollary 2.19.

Before we state the next theorem, note that the additive groups \mathbb{Z} and $\mathbb{Z}/n\mathbb{Z}$ (for $n \in \mathbb{N}$) are cyclic, generated by 1 and $1 + n\mathbb{Z}$, respectively. The next theorem shows that, up to isomorphism, there are no other cyclic groups.

- **3.8 Theorem** (Classification of cyclic groups) Let G be a cyclic group generated by the element $g \in G$.
- (a) If G is infinite then $G \cong \mathbb{Z}$, $G = \{g^k \mid k \in \mathbb{Z}\}$ and, for all $i, j \in \mathbb{Z}$, one has $g^i = g^j$ if and only if i = j.
- (b) If G is of finite order n then $G \cong \mathbb{Z}/n\mathbb{Z}$, $G = \{1, g, g^2, \dots, g^{n-1}\}$ and, for all $i, j \in \mathbb{Z}$, one has $g^i = g^j$ if and only if $i \equiv j \mod n$.

Proof We consider the function $f: \mathbb{Z} \to G$, $k \mapsto g^k$. It is a homomorphism, since $g^k g^l = g^{k+l}$ for all $k, l \in \mathbb{Z}$. We have $G = \langle g \rangle = \{g^k \mid k \in \mathbb{Z}\}$ which implies that f is an epimorphism. By Theorem 2.12 we have $\ker(f) = n\mathbb{Z}$ for some $n \in \mathbb{N}_0$. By Theorem 3.4 we obtain an isomorphism $\overline{f}: \mathbb{Z}/n\mathbb{Z} \to G$, $k + n\mathbb{Z} \mapsto g^k$. This implies that G is infinite if and only if n = 0. Now all the assertions follow from considering the isomorphism \overline{f} .

3.9 Theorem (Fermat, 1601–1665) Let G be a finite group, let $g \in G$ and let $k \in \mathbb{Z}$. Then $g^k = 1$ if and only if $|\langle g \rangle|$ divides k. In particular, $g^{|G|} = 1$.

Proof Since G is finite, the order of $\langle g \rangle$ is finite. Applying Theorem 3.8(b) to the cyclic group $\langle g \rangle$, we obtain

$$g^k = 1 \iff g^k = g^0 \iff k \equiv 0 \mod |\langle g \rangle| \iff |\langle g \rangle| \text{ divides } k$$
.

3.10 Definition Let G be a group and let $g \in G$. One calls $|\langle g \rangle| \in \mathbb{N} \cup \{\infty\}$ the *order* of g and denotes it by o(g). If o(g) is finite then, by Theorem 3.9, we have $o(g) = \min\{n \in \mathbb{N} \mid g^n = 1\}$, and if also |G| is finite then o(g) divides |G| (by Lagrange).

3.11 Theorem (1st Isomorphism Theorem) Let G be a group and let $N, H \leq G$ be subgroups such that $H \leq N_G(N)$ (this is satisfied for instance if $N \subseteq G$). Then

$$HN = NH \leq G$$
, $N \triangleleft HN$, $H \cap N \triangleleft H$

and

$$H/H \cap N \to HN/N$$
, $h(H \cap N) \mapsto hN$,

is an isomorphism.

Proof For all $h \in H$ and $n \in N$ we have $hn = (hnh^{-1})h \in NH$ and $nh = h(h^{-1}nh) \in HN$, since $H \leq N_G(N)$. Thus, HN = NH. By Examples 2.11(e), HN is a subgroup of G. Moreover, for $n \in N$ and $h \in H$ we have $nhN(nh)^{-1} = nhNh^{-1}n^{-1} = nNn^{-1} = N$, since $h \in N_G(N)$. Thus $N \leq NH$. The composition of the inclusion $H \subseteq HN$ and the natural epimorphism $HN \to HN/N$ is a homomorphism $f: H \to HN/N$, $h \mapsto hN$. It is surjective, since hnN = hN = f(h) for all $h \in H$ and $n \in N$. Its kernel is $H \cap N$. Thus, $H \cap N \leq H$, and, by Corollary 3.6, f induces an isomorphism $f: H/H \cap N \to HN/N$, $h(H \cap N) \mapsto hN$.

3.12 Theorem (Correspondence Theorem and $2^{\rm nd}$ Isomorphism Theorem) Let G be a group, let $N \subseteq G$ and let $\nu \colon G \to G/N$ denote the canonical epimorphism. The function

$$\Phi \colon \{H \mid N \leqslant H \leqslant G\} \to \{X \mid X \leqslant G/N\} \,, \quad H \mapsto H/N = \nu(H) \,,$$

is a bijection with inverse $\Psi \colon X \mapsto \nu^{-1}(X)$. For subgroups H, H_1 and H_2 of G which contain N one has:

$$H_1 \leqslant H_2 \iff H_1/N \leqslant H_2/N \quad \text{and} \quad H \leq G \iff H/N \leq G/N$$
.

Moreover, if $N \leq H \leq G$ then $(G/N)/(H/N) \cong G/H$.

Proof Since images and preimages of subgroups are again subgroups (see Examples 2.11(g) applied to ν), the functions Φ and Ψ have values in the indicated sets and obviously respect inclusions. In fact, in regards to the function Ψ , note that $N = \ker(\nu) = \nu^{-1}(\{1\})$ is contained in $\nu^{-1}(X)$ for every subgroup X of G/N. For every $N \leq H \leq G$ we have $\nu^{-1}(\nu(H)) = H$, since $N \leq H$ (see also Exercise 6). And for every $X \leq G/N$ we have $\nu(\nu^{-1}(X)) = X$, since ν is surjective (see also Exercise 6). Thus, Φ and Ψ are inverse bijections.

The statement concerning H_1 and H_2 now follows immediately, since $H_1 \leqslant H_2 \leqslant G$ implies $\nu(H_1) \leqslant \nu(H_2)$ and $X_1 \leqslant X_2 \leqslant G/N$ implies $\nu^{-1}(X_1) \leqslant \nu^{-1}(X_2)$. Moreover, for $N \leqslant H \leqslant G$, $h \in H$ and $g \in G$ we have

$$ghg^{-1} \in H \iff ghg^{-1}N \in H/N \iff (gN)(hN)(g^{-1}N) \in H/N$$
.

This shows that $N_G(H)/N = N_{G/N}(H/N)$. In particular, H is normal in G if and only if H/N is normal in G/N. Finally, for $N \leq H \leq G$, the composition $f: G \to (G/N)/(H/N)$ of the two canonical epimorphisms $G \to G/N$ and $G/N \to (G/N)/(H/N)$ is an epimorphism with kernel H. Now, Corollary 3.6 induces an isomorphism $\overline{f}: G/H \to (G/N)/(H/N)$.

3.13 Proposition Every subgroup and factor group of a cyclic group is cylic.

Proof Let G be a cyclic group generated by $g \in G$. If $N \subseteq G$ then G/N is generated by gN. To prove that subgroups of G are again cyclic, we may assume that $G = \mathbb{Z}$ or $G = \mathbb{Z}/n\mathbb{Z}$ for $n \in \mathbb{N}$, using Theorem 3.8 and Exercise 5. In the first case $(G = \mathbb{Z})$, by Theorem 2.12, subgroups of \mathbb{Z} are of the form $k\mathbb{Z}$, $k \in \mathbb{Z}$, and $k\mathbb{Z}$ is cyclic, generated by k. Now consider the second case $G = \mathbb{Z}/n\mathbb{Z}$ with $n \in \mathbb{N}$. By the Correspondence Theorem, subgroups of $\mathbb{Z}/n\mathbb{Z}$ are of the form $k\mathbb{Z}/n\mathbb{Z}$ with $n\mathbb{Z} \leqslant k\mathbb{Z} \leqslant \mathbb{Z}$. But $k\mathbb{Z}$ is cyclic and, by the initial argument of the proof, with $k\mathbb{Z}$ also every factor group of $k\mathbb{Z}$ is cyclic.

Exercises for Section 3

1. Let M and N be normal subgroups of a group G. Show that also $M \cap N$ and MN are normal subgroups of G.

- **2.** Let G be a group and let X be a subset of G. Show that $C_G(X) \leq N_G(X)$.
- **3.** Let G be a group. Show that Z(G) and G' are characteristic subgroups of G.
- **4.** (a) Let G be a group, let N be a normal subgroup of G, and let $\nu \colon G \to G/N, g \mapsto gN$, denote the natural epimorphism. Show that, for every group H, the function

$$\operatorname{Hom}(G/N, H) \mapsto \{ f \in \operatorname{Hom}(G, H) \mid N \leqslant \ker(f) \}, \quad \alpha \mapsto \alpha \circ \nu,$$

is bijective.

(b) Let G be a group and let A be an abelian group. Let $\nu \colon G \to G^{ab} := G/G'$ denote the canonical epimorphism. Show that, with the group structure from Exercise 2.9 on the homomorphism sets, the function

$$\operatorname{Hom}(G^{\operatorname{ab}}, A) \to \operatorname{Hom}(G, A), \quad \alpha \mapsto \alpha \circ \nu,$$

is a group isomorphism.

- **5.** Let G and H be groups and let $f: G \to H$ be an isomorphism. Moreover, let $N \subseteq G$ and set M := f(N). Show that M is normal in H and that $G/N \cong H/M$.
- **6.** (a) Let $f\colon G\to H$ be a group homomorphism and let $U\leqslant G$ and $V\leqslant H$ be subgroups. Show that

$$f^{-1}(f(U)) = U\ker(f)$$
 and $f(f^{-1}(V)) = V \cap \operatorname{im}(f)$.

- (b) Let G be a group, let $N \subseteq G$ and let $\nu: G \to G/N$ denote the canonical epimorphism. Show that for every subgroup U of G one has $\nu(U) = UN/N$.
 - 7. Let G be a group. Show that:
 - (a) $H \underset{\text{char}}{\underline{\triangleleft}} G \Rightarrow H \underline{\triangleleft} G$.
 - (b) $M \underset{\text{char}}{\underline{\triangleleft}} N \underset{\text{char}}{\underline{\triangleleft}} G \Rightarrow M \underset{\text{char}}{\underline{\triangleleft}} G$.
 - (c) $M \underset{\text{char}}{\underline{\lhd}} N \underline{\lhd} G \Rightarrow M \underline{\lhd} G$.
 - (d) $M \subseteq N \subseteq G \not\Rightarrow M \subseteq G$. (Give a counterexample.)
- **8.** Let G be a cyclic group of order n and let $m \in \mathbb{N}$ be a divisor of n. Show that G has precisely one subgroup of order m.
- **9.** (Butterfly Lemma or Zassenhaus Lemma or 3^{rd} Isomorphism Theorem) Let U and V be subgroups of a group G and let $U_0 \subseteq U$ and $V_0 \subseteq V$. Show that

$$U_0(U \cap V_0) \le U_0(U \cap V)$$
, $(U_0 \cap V)V_0 \le (U \cap V)V_0$, $(U_0 \cap V)(U \cap V_0) \le U \cap V$

and

$$U_0(U \cap V)/U_0(U \cap V_0) \cong (U \cap V)/(U_0 \cap V)(U \cap V_0) \cong (U \cap V)V_0/(U_0 \cap V)V_0$$
.

To see the 'butterfly', draw a diagram of the involved subgroups.

- 10. Let G be a finite group and let π be a set of primes. An element x of G is called a π -element if its order involves only primes from π . It is called a π' -element if its order involves only primes outside π .
- (a) Let $g \in G$. Assume that we can write g = xy with a π -element $x \in G$ and a π' -element $y \in G$ satisfying xy = yx. Show that x and y are powers of g.
 - (b) Show that for given $g \in G$ there exist unique elements $x, y \in G$ satisfying:

x is a π -element, y is a π' -element, q = xy and xy = yx.

(The element x is called the π -part of g and the element y is called the π' -part of g. Notation: $x = g_{\pi}, y = g_{\pi'}$.)

- **11.** Let G and H be groups and let $p_1: G \times H \to G$, $(g,h) \mapsto g$, and $p_2: G \times H \to H$, $(g,h) \mapsto h$, denote the projection maps. Note that they are epimorphisms. This exercise gives a description of all subgroups of $G \times H$.
 - (a) Let $X \leq G \times H$. Set

$$k_1(X) := \{ g \in G \mid (g, 1) \in X \} \text{ and } k_2(X) := \{ h \in H \mid (1, h) \in X \}.$$

Let $i \in \{1,2\}$. Show that $k_i(X) \leq p_i(X)$. Moreover, show that the composition $\pi_i \colon X \to p_i(X) \to p_i(X)/k_i(X)$ of the projection map p_i and the natural epimorphism induces an isomorphism $\overline{\pi}_i \colon X/(k_1(X) \times k_2(X)) \xrightarrow{\sim} p_i(X)/k_i(X)$.

(b) Let $K_1 \subseteq P_1 \leqslant G$, let $K_2 \subseteq P_2 \leqslant H$, and let $\eta \colon P_1/K_1 \xrightarrow{\sim} P_2/K_2$ be an isomorphism. Define

$$X := \{(q, h) \in P_1 \times P_2 \mid \eta(qK_1) = hK_2\}.$$

Show that X is a subgroup of $G \times H$.

- (c) Use the constructions in (a) and (b) to show that the set of subgroups of $G \times H$ is in bijection with the set of all quintuples $(P_1, K_1, \eta, P_2, K_2)$ such that $K_1 \leq P_1 \leqslant G$, $K_2 \leq P_2 \leqslant H$, and $\eta \colon P_1/K_1 \xrightarrow{\sim} P_2/K_2$ is an isomorphism.
- 12. Let $f: G \to H$ be a homorphism. Show that f can be written as a composition $f = i \circ g \circ p$ of homomorphisms with the property that p is a natural epimorphism from G onto a factor group of G, g is an isomorphism, and i is the inclusion of a subgroup of H into H.

13. A short exact sequence of groups is a sequence of group homomorphisms

$$1 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 1$$

where 1 denotes a trivial group, such that at A, B and C the image of the incoming arrow is equal to the kernel of the outgoing arrow.

Let A, B, C be groups. Show that there exists a short exact sequence as above if and only if there exists a normal sugroup N of B such that $N \cong A$ and $B/N \cong C$.

More category theory

Definition Let \mathcal{C} be a category. Its *opposite* category \mathcal{C}^{op} has the same objects as \mathcal{C} and for objects C and D of \mathcal{C}^{op} , one sets

$$\operatorname{Hom}_{\mathfrak{C}^{\operatorname{op}}}(C,D) := \operatorname{Hom}_{\mathfrak{C}}(D,C)$$
.

A morphism $f: D \to C$ is denoted by $f^{\text{op}}: C \to D$, if considered in the category \mathcal{C}^{op} . The composition of morphism $g^{\text{op}}: E \to D$ and $f^{\text{op}}: D \to C$ in the category \mathcal{C}^{op} is defined by

$$f^{\mathrm{op}} \circ g^{\mathrm{op}} := (g \circ f)^{\mathrm{op}}$$
.

- **14.** Let C be a category.
- (a) Show that for every object C of \mathcal{C} one has $(\mathrm{id}_C)^{op} = \mathrm{id}_C$.
- (b) Show that $(\mathcal{C}^{op})^{op} = \mathcal{C}$.
- **15.** Let C be a category. Prove the following statements:
- (a) A morphism $f: C \to D$ in \mathcal{C} is a isomorphism if and only if $f^{\mathrm{op}}: D \to C$ is an isomorphism in $\mathcal{C}^{\mathrm{op}}$. In this case $(f^{\mathrm{op}})^{-1} = (f^{-1})^{\mathrm{op}}$.
- (b) A morphism $f: C \to D$ in \mathcal{C} is a monomorphism (resp. epimorphism) if and only if $f^{\text{op}}: D \to C$ is an epimorphism (resp. monomorphism) in \mathcal{C}^{op} .
- (c) An object C of \mathcal{C} is an initial (resp. final) object of \mathcal{C} if and only if C is a final (resp. initial) object in \mathcal{C}^{op} .
- (d) An object C of \mathcal{C} is a zero object in \mathcal{C} if and only if C is a zero object in \mathcal{C}^{op} .

Definition Let \mathcal{C} be a category and let X and Y be objects of \mathcal{C} . A product of X and Y is an object P of \mathcal{C} together with morphisms $p \colon P \to X$ and $q \colon P \to Y$ in \mathcal{C} such that for any object Z of \mathcal{C} the function

$$\operatorname{Hom}_{\mathcal{C}}(Z, P) \to \operatorname{Hom}_{\mathcal{C}}(Z, X) \times \operatorname{Hom}_{\mathcal{C}}(Z, Y), \quad f \mapsto (p \circ f, q \circ f),$$

is bijective. In other words, for every $g \colon Z \to X$ and every $h \colon Z \to Y$ in $\mathcal C$ there exists a unique $f \colon Z \to P$ in $\mathcal C$ such that $g = p \circ f$ and $h = q \circ f$. In. this case p and q are called the *projections* of the product. (Note: Given X and Y, a product of X and Y might not exist.)

- **16.** Assume that \mathcal{C} is a category and that X and Y are objects of \mathcal{C} . Assume further that an object Z together with morphisms $p\colon Z\to X$ and $q\colon Z\to Y$ is a product of X and Y and assume further that also an object Z' together with morphisms $p'\colon Z'\to X$ and $q'\colon Z'\to Y$ is a product of X and Y in \mathcal{C} . Show that there exists an isomorphism $f\colon Z\to Z'$ such that $p'\circ f=p$ and $q'\circ f=q$. In this sense, products are unique up to unique isomorphism.
- 17. Let \mathcal{C} be a category and let P together with $p \colon P \to X$ and $q \colon P \to Y$ be a product of the objects X and Y of \mathcal{C} . Show that p and q are epimorphisms in \mathcal{C} .
- **18.** Show that the cartesian product $X \times Y$ of two sets X and Y, together with the projections maps $p: X \times Y \to X$ and $q: X \times Y \to Y$, given by p(x, y) = x and q(x, y) = y, for $(x, y) \in X \times Y$, is a product in the category Set.
 - 19. Let G and H be groups. Does there exist a product of G and H in Gr?
- **20.** Let \mathcal{C} be a category and let X and Y be objects of \mathcal{C} . A coproduct of X and Y is an object C of \mathcal{C} together with two morphisms $i: X \to C$ and $j: Y \to C$ in \mathcal{C} such that, for every object Z in \mathcal{C} , the function

$$\operatorname{Hom}_{\mathcal{C}}(C,Z) \to \operatorname{Hom}_{\mathcal{C}}(X,Z) \times \operatorname{Hom}_{\mathcal{C}}(Y,Z), \quad f \mapsto (f \circ i, f \circ j),$$

is bijective. In this case i and j are called the *injections* of the coproduct.

- **21.** Let \mathcal{C} be a category and let X and Y be objects in \mathcal{C} . Moreover, let P be an object of \mathcal{C} and let $p \colon P \to X$ and $q \colon P \to Y$ be morphisms in \mathcal{C} . Show that the following are equivalent:
 - (i) The object P together with p and q is a product of X and Y in \mathcal{C} .
- (ii) The object P together with $p^{op}: X \to P$ and $q^{op}: Y \to P$ is a coproduct of X and Y in \mathcal{C}^{op} .
 - **22.** Find a coproduct of X and Y in the category Set.