The Gamma-distribution

Parametrisation

The Gamma-distribution has the following density

$$\pi(y) = \frac{b^a}{\Gamma(a)} y^{a-1} \exp(-by), \qquad a > 0, \quad b > 0$$

where $E(y) = \mu = a/b$ and $Var(y) = 1/\tau = a/b^2$, where τ is the precision and μ is the mean. We will use the following parameterisation for the precision

$$\tau = (s\phi)/\mu^2$$

where ϕ is the precision parameter (or $1/\phi$ is the dispersion parameter) and s > 0 is a fixed scaling, which gives this density

$$\pi(y) = \frac{1}{\Gamma(s\phi)} \left(\frac{(s\phi)}{\mu} \right)^{(s\phi)} y^{(s\phi)-1} \exp\left(-(s\phi) \frac{y}{\mu} \right)$$

Link-function

The linear predictor η is linked to the mean μ using a default log-link

$$\mu = \exp(\eta)$$

Hyperparameter

The hyperparameter is the precision parameter ϕ , which is represented as

$$\phi = \exp(\theta)$$

and the prior is defined on θ .

Specification

- \bullet family = gamma
- Required arguments: y and s (argument scale)

The scalings have default value 1.

Hyperparameter spesification and default values

hyper

theta

name precision parameter short.name prec initial 4.60517018598809 fixed FALSE prior loggamma param 1 0.01 to.theta function(x) log(x) from.theta function(x) exp(x)

```
survival FALSEdiscrete FALSElink default logpdf gamma
```

Example

In the following example we estimate the parameters in a simulated example.

Notes

None.