MMM MMM MMM MMM MMM MMM MMMMM MMMMMM		HHH HH HHH HH	RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR		LLL
MMMMM MMMMMM	111	HHH HH		III	LLL
MMMMM MMMMM	777	HHH HH		ŢŢŢ	LLL
	ŤŤŤ			III	LLL
		нин ин		III	LLL
MMM MMM MMM	III	ннн нн		III	LLL
MMM MMM MMM	III	ннн нн		TTT	LLL
MMM MMM	TTT	нининининини		TTT	LLL
MMM MMM	TTT	нининининини	RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR	TTT	LLL
MMM MMM	TTT	нининининини	RRRRRRRRRRRR	TTT	LLL
MMM MMM	TTT	ннн нн		ŤŤŤ	III
MMM MMM	TTT	ннн нн		ŤŤŤ	III
MMM MMM	TTT	ннн нн		ŤŤŤ	III
MMM MMM	ŤŤŤ	ннн нн		ŤŤŤ	iii
MMM MMM	ŤŤŤ	нин ин		ŤŤŤ	iii
MMM MMM	ŤŤŤ	нин ин		ŤŤŤ	iii
MMM MMM	ŤŤ				
		ннн нн		III	LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
MMM MMM	III	нин ни		III	LLLLLLLLLLLLLLLL
MMM MMM	111	ннн нн	RRR RRR	TTT	LLLLLLLLLLLLLLL

RR RR RR

000000

0000

\$\$\$\$\$\$\$\$ \$\$\$\$\$\$\$\$

\$\$\$\$\$\$\$ \$\$\$\$\$\$\$ \$\$ \$\$ \$\$

MM	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	HH H	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	GGGGGGGG GGGGGGGG GG GG GG GG GG GG GG
		\$		

MTH:

MTH\$CGSQRT
Table of contents

(2) 49 HISTORY ; Detailed Current Edit History
(3) 57 DECLARATIONS
(4) 84 MTH\$CGSQRT - compute G COMPLEX*16 square root

Page 0

MTH Sym ARG MTH MTH MTH MTH MTH

MTH

PSE

Pha Ini Com Pas Sym Pas Sym Pse Cro Ass

The 213 The 197 1 p

Mac _\$2 0 G

MAC

The

16-SEP-1984 01:10:12 VAX/VMS Macro V04-00 Page 1 6-SEP-1984 11:21:11 [MTHRTL.SRC]MTHCGSQRT.MAR;1 (1)

**F

.TITLE MTH\$CGSQRT

; File: MTHCSQRT.MAR SBL1002

COPYRIGHT (c) 1978, 1980, 1982, 1984 BY DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS. ALL RIGHTS RESERVED.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY TRANSFERRED.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT CORPORATION.

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.

FACILITY: MATH LIBRARY

ABSTRACT:

This module contains routine MTH\$CGSQRT - compute G COMPLEX*16 square root.

VERSION: 1

HISTORY:

AUTHOR:

41234567

Steven B. Lionel, 24-July-1979

MODIFIED BY:

MTHSCGSQRT 1-002 MTH:

```
MTHSCGSQRT
1-002
                                   MTH$CGSQRT - compute G COMPLEX*16 square 6-SEP-1984 01:10:12
                                                                                                          VAX/VMS Macro V04-00
[MTHRTL.SRC]MTHCGSQRT.MAR; 1
                                                               .SBTTL MTH$CGSQRT - compute G COMPLEX*16 square root
                                                       FUNCTIONAL DESCRIPTION:
                                                              The square root of a complex number (r, i) is computed as follows:
                                                              ROOT = SQRT((ABS(r) + CABS((r, i))) / 2)
                                                              Q = i / (2*ROOT)
                                                                                CSQRT((r, i))
                                                                                (ROOT, Q)
(Q, ROOT)
(-Q, -ROOT)
                                                              >=0
                                                              <0
                                                                       >=0
                                                                       <0
                                                        CALLING SEQUENCE:
                                                              CALL MTH$CGSQRT (result.wgc.r, arg.rgc.r)
                                                        INPUT PARAMETERS:
                              80000008
                                                              arg
                                                                                         : The G COMPLEX*16 argument, passed
                                                                                         : by reference.
                                                        IMPLICIT INPUTS:
                                                        OUTPUT PARAMETERS:
                             00000004
                                                                                         ; The G COMPLEX*16 result, passed by
                                                              result = 4
                                                                                         : reference.
                                                        IMPLICIT OUTPUTS:
                                                        COMPLETION CODES:
                                                              NONE
                                                        SIDE EFFECTS:
                                                              SS$_ROPRAND
                                                                                If either part of argument is reserved operand.
                                  007C
                                                              .ENTRY MTH$CGSQRT, MTH$FLAG_JACKET
                                                                                         ^M<R2, R3, R4, R5, R6>
                                                                                                  ; flag as math routine
                     00000000 GF
                                                                       G^MTH$$JACKET_HND, (FP)
                                                                                                  ; set handler address to jacket ; handler
```

135

	52 00000 0000 52	08 8000 08 'GF 50 50 00000 08	BB A 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0	50FD AA DD FB 40FD 44FD 16 DO 53FD 12 7C	0009 000E 0013 0016 001D 0021 0025 002B 002F 0032	136 137 138 1390 141 143 1445 1445 1447		MOVG BICW PUSHLS ADDG2 MOVG MOVG BREG BREG BREG MOVG BREG MOVG BREG MOVG BREG MOVG BREG MOVG BREG MOVG BREG MOVG BREG MOVG BREG MOVE BREG MOVE BREG MOVE BREG MOVE BREG MOVE BREG MOVE BREG MOVE BREG MOVE BREG BREG MOVE BREG BREG BREG BREG BREG BREG BREG BRE	@arg(AP), R2 #^x8000, R2 arg(AP) #1, G^MTH\$CGABS R2, R0 #0.5, R0 G^MTH\$GSQRT_R5 arg(AP), R2 R0 1\$ R5 R5 2\$ R0, 8(R2), R5	R2-R3 = r R2-R3 = ABS(r) Put address of arg on stack R0-R1 = CABS((r, i)) R0-R1 = ABS(r) + CABS((r, i)) R0-R1 = (ABS(r) + CABS((r, i))) / 2 R0-R1 = R00T = SQRT(above) R2 -> (r, i) is R00T zero? no, go ahead make zero quotient	
55	08	A2 55	0A00028	47FD 44FD 53FD	0036 0038 003E 0042 0045	148	15: 25:	BRB DIVG3 MULG2 TSTG BGEQ	#0.5, R5 (R2)+	no, go ahead make zero quotient skip divide R5 = i / R00T R5 = Q = i / (2 * R00T) if r positive, then return (R00T, Q) else switch R00T and Q if i positive	
		50 55	62 0A 55 06	53FD 18 52FD 52FD 11	0034 0038 0038 00447 00447 00447 00557 00557 0064 0064 0064	149 150 151 153 155 156 157 158 160 161 163		TSTG BGEQ MNEGG MNEGG BRB	RETRN RO, R3 (R2) RETRN1 R5, R0 R3, R5 RETRN	; else switch ROOT and Q ; if i positive ; then return (Q, ROOT) ; else negate ROOT and Q ; and return (-Q, -ROOT)	
		50 55	55 53	7D 7D	0059 0059 0050	159 160 161	RETRN1:	MOVQ MOVQ	R5, R0 R3, R5	; continue to swap ROOT and Q ; and return (Q, ROOT)	
	52	82 62	AC 50 55	70 70 04	005F 0063 0066 0069	163 164 165 166 167 168 169	NE INN:	MOVL MOVQ MOVQ RET	result(AP), R2 R0, (R2)+ R5, (R2)	<pre>; result address ; real part ; imaginary part</pre>	
					006A 006A	168		.END			

```
D 6
 MTHSCGSQRT
                                                                                                                                                                 VAX/VMS Macro V04-00
[MTHRTL.SRC]MTHCGSQRT.MAR; 1
                                                                                                                                                                                                                Page
 Symbol table
                          = 00000008
MTHSSJACKET_HND
MTHSCGABS
MTHSCGSQRT
MTHSGSQRT_R5
                                                      01
00
01
00
                             *******
                              *******
                             00000000 RG
                              ******
                             00000004
0000005F R
00000059 R
RESULT
RETRN
                                                      01
RETRN1
                                                                                     Psect synopsis
PSECT name
                                                                                        PSECT No.
                                                       Allocation
                                                                                                           Attributes
     ABS
                                                       00000000
0000006A
                                                                                                           NOPIC
                                                                                                                                                       LCL NOSHR NOEXE NORD
                                                                                                                                                                                            NOWRT NOVEC BYTE
 MTH$CODE
                                                                             106.)
                                                                                                                        USR
                                                                                                                                   CON
                                                                                                                                             REL
                                                                                                                                                                                            NOWRT NOVEC LONG
                                                                                                                                                                           EXE
                                                                                Performance indicators
Phase
                                          Page faults
                                                                    CPU Time
                                                                                             Elapsed Time
                                                                                             00:00:00.58
00:00:04.27
00:00:02.57
00:00:00.00
00:00:02.14
00:00:00.23
                                                       122
89
Initialization
                                                                    00:00:00.08
                                                                    00:00:00.64
00:00:00.72
00:00:00.00
Command processing
Pass 1
Symbol table sort
Pass 2
Symbol table output
Psect synopsis output
                                                                    00:00:00.02
                                                                    00:00:00.02
00:00:00.00
00:00:01.98
                                                                                             00:00:00.00
Cross-reference output
Assembler run totals
The working set limit was 900 pages.
2877 bytes (6 pages) of virtual memory were used to buffer the intermediate code.
There were 10 pages of symbol table space allocated to hold 8 non-local and 2 local symbols.
229 source lines were read in Pass 1, producing 11 object records in Pass 2.
1 page of virtual memory was used to define 1 macro.
                                                                              Macro library statistics
Macro Library name
                                                                            Macros defined
```

\$255\$DUA28:[SYSLIB]STARLET.MLB;2

0

O GETS were required to define O macros.

There were no errors, warnings or information messages.

MACRO/ENABLE=SUPPRESSION/DISABLE=(GLOBAL, TRACEBACK)/LIS=LIS\$:MTHCGSQRT/OBJ=OBJ\$:MTHCGSQRT MSRC\$:MTHJACKET/UPDATE=(ENH\$:MTHJACKET)+MS

0258 AH-BT13A-SE

DIGITAL EQUIPMENT CORPORATION CONFIDENTIAL AND PROPRIETARY

