Empowering Job Seekers with Advanced NLP: A Revolutionary Approach to Career Navigation in the Modern Job Market

Class: DATS 6202- Natural Language Processing

Team 2: Amjad Altuwayjiri, Muhannad Alwhebie, Nammin Woo

I. Introduction

by job seekers in navigating the job market by providing a user-friendly tool that leverages advanced NLP techniques to connect them with career opportunities that align with their qualifications and aspirations, thereby streamlining and enhancing their job-hunting experience.

I. Introduction

- The project has two main parts:
- 1 Text Classification Model for predicting job levels in resumes
 - 2. Semantic Similarity Search using Siamese-BERT Networks.

Data Classification Semantic similarity

- ONET® Database by the U.S. Department of Labor
- Rich data set with detailed information, including job responsibilities, required skills, and educational requirements

1. Abilities: Title-Element-Scale

- PK: SOC Code (873 Occupations) Element (52 Abilities) Scale ID (2 Types of value)
 - 90792 records (873 * 52 * 2)
 - Two Text descriptions: Description SOC(Job), Description Ele(Abilities)
 - Created 'Value ratio': Data Value/Maximum
 - Element:
 - Name
 - Description (from Base information table)

ex.Problem Sensitivity ability:The ability to tell when something is wrong or is likely to go wrong. It does not involve solving the problem, only recognizing that there is a problem.

Title	Element Name	Scale Name	Minimum	Maximum	Data Value	Value_ratio
Statisticians	Problem Sensitivity	Importance	1	5	3.38	0.676
Statisticians	Problem Sensitivity	Level	0	7	3.75	0.536

Data
Processing
Workflow

Classification

Semantic similarity

Final ONET Job Corpus Data has 1,016 records with 10 features. Job levels are uniformly distributed except level 1

C.Features:	
0*NET-SOC Code	object
Title	object
Description	object
Description_Abilities	object
Description_Knowledge	object
Description_Skills	object
Description_Tech	object
Description_Interests	object
Description_Job	object
Job Zone	float64
dtype: object	

D.Null value check:	
0*NET-SOC Code	0
Title	0
Description	0
Description_Abilities	0
Description_Knowledge	0
Description_Skills	0
Description_Tech	0
Description_Interests	0
Description_Job	0
Job Zone	93
dtype: int64	


```
Description_Job Job Zone
Chief Executives Determine and formulate polic... 5.0
Chief Sustainability Officers Communicate and ... 5.0
General and Operations Managers Plan, direct, ... 4.0
```

Data

Classification

Semantic similarity

1. BERT transformer with a linear layer: 72%

BERT Architecture

<u>Inherit Body</u>

+

Modify Head

Embedding Layer Attention Layer Transformer Layers Add linear layers

Dropout layer

Dense Layer (for 5 job levels) Data Classification Semantic similarity

1. BERT transformer with a linear layer: 72%

Data Classification Semantic similarity

2. MLP

3. Logistic regression

MLP

Logistic regression

2. MLP

3. Logistic regression

Logistic regression

Classification

Semantic similarity

4. Naïve Base 66%

- Siamese-BERT Networks (Sentence-BERT)
- Semantic similarity searches
- Embedding vectors for both job description corpus and resumes

Figure 1: SBERT architecture with classification objective function, e.g., for fine-tuning on SNLI dataset. The two BERT networks have tied weights (siamese network structure).

Figure 2: SBERT architecture at inference, for example, to compute similarity scores. This architecture is also used with the regression objective function.

Streamlit architecture

Application

Result

BERT got the highest accuracy of 72%, MLP and LG achieved accuracy of 69%, then Naïve Base of 66%.

Instead of personal guess of the job level and the title a job seeker looks for, we propose a systematic NLP approach by using a friendly user interface.

Expand the dataset to include a wider range of jobs and titles.

Thank you