Probability Distributions: A Quick Reference

Statistics Department

Key Probability Distributions

Discrete Distributions

Bernoulli Distribution $X \sim \text{Bernoulli}(p)$

- PMF: $P(X = x) = p^x (1 p)^{1 x}, x \in \{0, 1\}$
- Mean: $\mu = p$
- Variance: $\sigma^2 = p(1-p)$
- Application: Models binary outcomes (success/failure)

Binomial Distribution $X \sim \text{Bin}(n, p)$

- PMF: $P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad k \in \{0, 1, ..., n\}$
- Mean: $\mu = np$
- Variance: $\sigma^2 = np(1-p)$
- \bullet Application: Number of successes in n independent Bernoulli trials

Poisson Distribution $X \sim \text{Poisson}(\lambda)$

- PMF: $P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}, \quad k \in \{0, 1, 2, ...\}$
- Mean: $\mu = \lambda$
- Variance: $\sigma^2 = \lambda$
- Application: Number of events in a fixed time interval

Geometric Distribution $X \sim \text{Geom}(p)$

- PMF: $P(X = k) = (1 p)^{k-1}p$, $k \in \{1, 2, ...\}$
- Mean: $\mu = \frac{1}{p}$
- Variance: $\sigma^2 = \frac{1-p}{p^2}$
- Application: Number of trials until first success

Continuous Distributions

Uniform Distribution $X \sim \text{Uniform}(a, b)$

- PDF: $f(x) = \frac{1}{b-a}$, $a \le x \le b$
- Mean: $\mu = \frac{a+b}{2}$
- Variance: $\sigma^2 = \frac{(b-a)^2}{12}$
- Application: Models equal probability across interval

Normal Distribution $X \sim \mathcal{N}(\mu, \sigma^2)$

- PDF: $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad x \in \mathbb{R}$
- Mean: μ
- Variance: σ^2
- Application: Central Limit Theorem, modeling natural phenomena

Exponential Distribution $X \sim \text{Exp}(\lambda)$

• PDF: $f(x) = \lambda e^{-\lambda x}, \quad x \ge 0$

• Mean: $\mu = \frac{1}{\lambda}$

• Variance: $\sigma^2 = \frac{1}{\lambda^2}$

• Application: Time between Poisson events, memoryless property

Important Relationships

• Sum of n independent Bernoulli(p) \Rightarrow Bin(n, p)

• $\operatorname{Bin}(n,p)$ with $n\to\infty,\,p\to0,\,np=\lambda$ fixed \Rightarrow Poisson (λ)

• Sum of n independent $\mathcal{N}(\mu_i, \sigma_i^2) \Rightarrow \mathcal{N}(\sum \mu_i, \sum \sigma_i^2)$

• Minimum of independent $\text{Exp}(\lambda_i) \Rightarrow \text{Exp}(\sum \lambda_i)$

Central Limit Theorem

For a sequence of i.i.d. random variables $X_1, X_2, ..., X_n$ with mean μ and variance σ^2 , as $n \to \infty$:

$$\frac{\sum_{i=1}^{n} X_i - n\mu}{\sigma\sqrt{n}} \xrightarrow{d} \mathcal{N}(0,1)$$