Week 2: Dot Product and Hyperplanes in \mathbb{R}^n

Definition 2.1. For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, write $\mathbf{x} = (x_1, x_2, ..., x_n)$ and $\mathbf{y} = (y_1, y_2, ..., y_n)$. The $dot\ product$ of \mathbf{x} and \mathbf{y} is defined to be the real number

$$\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n.$$

Theorem 2.2. The dot product has the following properties.

- (1) $\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.
- (2) $\mathbf{x} \cdot \mathbf{x} = \|\mathbf{x}\|^2 \ge 0$ for all $\mathbf{x} \in \mathbb{R}^n$. Moreover $\mathbf{x} \cdot \mathbf{x} = 0$ if and only if $\mathbf{x} = \mathbf{0}$.
- (3) $(c\mathbf{x}) \cdot \mathbf{y} = c(\mathbf{x} \cdot \mathbf{y}) = \mathbf{x} \cdot (c\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $c \in \mathbb{R}$.
- (4) $\mathbf{x} \cdot (\mathbf{y} + \mathbf{z}) = \mathbf{x} \cdot \mathbf{y} + \mathbf{x} \cdot \mathbf{z}$ for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^n$.

Proof. We prove (2) and (4). Write $\mathbf{x} = (x_1, x_2, ..., x_n)$ and $\mathbf{y} = (y_1, y_2, ..., y_n)$ and $\mathbf{z} = (z_1, z_2, ..., z_n)$. (2) Since $r^2 \ge 0$ for all $r \in \mathbb{R}$

$$\mathbf{x} \cdot \mathbf{x} \\ = x_1^2 + x_2^2 + \dots + x_n^2 \\ = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}^2 \\ = \|\mathbf{x}\|^2 \\ \ge 0.$$

Similarly, if $\mathbf{x} \cdot \mathbf{x} = 0$, then $x_1^2 + x_2^2 + \dots + x_n^2 = 0$. But if the sum of nonnegative real numbers is 0, then each of the summands must be 0. That is, $x_i^2 = 0$ for each $i \leq n$ and so $x_i = 0$ for each $i \leq n$. It follows that $(x_1, x_2, ..., x_n) = (0, 0, ..., 0)$; in other words $\mathbf{x} = \mathbf{0}$.

(4) We have

$$\mathbf{x} \cdot (\mathbf{y} + \mathbf{z})$$
= $(x_1, x_2, ..., x_n) \cdot ((y_1, y_2, ..., y_n) + (z_1, z_2, ..., z_n))$
= $(x_1, x_2, ..., x_n) \cdot (y_1 + z_1, y_2 + z_2, ..., y_n + z_n)$ (Defn of $+$ in \mathbb{R}^n)
= $x_1(y_1 + z_1) + x_2(y_2 + z_2) + ... + x_n(y_n + z_n)$ (Defn of \cdot in \mathbb{R}^n)
= $x_1y_1 + x_1z_1 + x_2y_2 + x_2z_2 + ... + x_ny_n + x_nz_n$ (Distributive Property in \mathbb{R})
= $x_1y_1 + x_2y_2 ... + x_ny_n + x_1z_1 + x_2z_2 + ... + x_nz_n$ (Commutative Property of $+$ in \mathbb{R})
= $(x_1, x_2, ..., x_n) \cdot (y_1, y_2, ..., y_n) + (x_1, x_2, ..., x_n) \cdot (z_1, z_2, ..., z_n)$ (Defn of \cdot in \mathbb{R}^n)
= $\mathbf{x} \cdot \mathbf{y} + \mathbf{x} \cdot \mathbf{z}$.

Corollary 2.3. $\|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + 2\mathbf{x} \cdot \mathbf{y} + \|\mathbf{y}\|^2$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

Proof. We no longer need to write vectors in coordinate form to prove things about the dot product. We have

$$\|\mathbf{x} + \mathbf{y}\|^{2}$$

$$= (\mathbf{x} + \mathbf{y}) \cdot (\mathbf{x} + \mathbf{y}) \text{ (Theorem 2.2(2))}$$

$$= (\mathbf{x} + \mathbf{y}) \cdot \mathbf{x} + (\mathbf{x} + \mathbf{y}) \cdot \mathbf{y} \text{ (Theorem 2.2(4))}$$

$$= \mathbf{x} \cdot \mathbf{x} + \mathbf{y} \cdot \mathbf{x} + \mathbf{x} \cdot \mathbf{y} + \mathbf{y} \cdot \mathbf{y} \text{ (Theorem 2.2(4))}$$

$$= \|\mathbf{x}\|^{2} + \mathbf{y} \cdot \mathbf{x} + \mathbf{x} \cdot \mathbf{y} + \|\mathbf{y}\|^{2} \text{ (Theorem 2.2(2))}$$

$$= \|\mathbf{x}\|^{2} + \mathbf{x} \cdot \mathbf{y} + \mathbf{x} \cdot \mathbf{y} + \|\mathbf{y}\|^{2} \text{ (Theorem 2.2(1))}$$

$$= \|\mathbf{x}\|^{2} + 2(\mathbf{x} \cdot \mathbf{y}) + \|\mathbf{y}\|^{2}.$$

Definition 2.4. Two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ are called orthogonal if $\mathbf{x} \cdot \mathbf{y} = 0$.

Theorem 2.5. Given $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ with $\mathbf{y} \neq \mathbf{0}$. There exists vectors $\mathbf{x}^{\parallel}, \mathbf{x}^{\perp} \in \mathbb{R}^n$ such that

- (i) \mathbf{x}^{\parallel} is parallel to \mathbf{y}
- (ii) \mathbf{x}^{\perp} is orthogonal to \mathbf{y}
- (iii) $\mathbf{x} = \mathbf{x}^{\parallel} + \mathbf{x}^{\perp}$.

Proof. Suppose that $\mathbf{x}^{\parallel}, \mathbf{x}^{\perp} \in \mathbb{R}^n$ satisfy conditions (i), (ii), and (iii). Then

$$\mathbf{x} \cdot \mathbf{y} = (\mathbf{x}^{\parallel} + \mathbf{x}^{\perp}) \cdot \mathbf{y} = \mathbf{x}^{\parallel} \cdot \mathbf{y} + \mathbf{x}^{\perp} \cdot \mathbf{y} = \mathbf{x}^{\parallel} \cdot \mathbf{y} + \mathbf{0} = \mathbf{x}^{\parallel} \cdot \mathbf{y} = c\mathbf{y} \cdot \mathbf{y} = c \|\mathbf{y}\|^{2}$$

It follows that

$$c = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{y}\|^2}.$$

Take

$$\mathbf{x}^{\parallel} = rac{\mathbf{x} \cdot \mathbf{y}}{\left\|\mathbf{y}
ight\|^2} \mathbf{y}$$

and so

$$\mathbf{x}^{\perp} = \mathbf{x} - \frac{\mathbf{x} \cdot \mathbf{y}}{\left\|\mathbf{y}\right\|^2} \mathbf{y}.$$

Since

$$\mathbf{x}^{\perp} \cdot \mathbf{y} = (\mathbf{x} - \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{y}\|^2} \mathbf{y}) \cdot \mathbf{y} = \mathbf{x} \cdot \mathbf{y} - \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{y}\|^2} \mathbf{y} \cdot \mathbf{y} = \mathbf{x} \cdot \mathbf{y} - \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{y}\|^2} \left\| \mathbf{y} \right\|^2 = \mathbf{x} \cdot \mathbf{y} - \mathbf{x} \cdot \mathbf{y} = \mathbf{0}$$

we have verified that \mathbf{x}^{\perp} is orthogonal to \mathbf{y} .

Definition 2.6. Given $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ with $\mathbf{y} \neq \mathbf{0}$. We call the vector \mathbf{x}^{\parallel} the projection of \mathbf{x} onto \mathbf{y} . We denote this projection by

$$\operatorname{proj}_{\mathbf{y}}(\mathbf{x}) = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{v}\|^2} \mathbf{y}.$$

Theorem 2.7. (Cauchy-Schwarz Inequality) If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, then $|\mathbf{x} \cdot \mathbf{y}| \leq ||\mathbf{x}|| ||\mathbf{y}||$. Equality holds if and only if \mathbf{x} and \mathbf{y} are parallel.

Proof. We give an alternative proof than the one from the text. Let

$$f(t) = \|\mathbf{x} - t\mathbf{y}\|^2.$$

Notice that f is the square of a real number so that $\|\mathbf{x} - t\mathbf{y}\|^2 \ge 0$. Now,

$$f(t) = \|\mathbf{x} - t\mathbf{y}\|^2 = (\mathbf{x} - t\mathbf{y}) \cdot (\mathbf{x} - t\mathbf{y}) = \|\mathbf{x}\|^2 + 2t\mathbf{x} \cdot \mathbf{y} + t^2 \|\mathbf{y}\|^2.$$

By inspection, we see that f(t) is a quadratic function in the variable t. Indeed,

$$f(t) = c + bt + at^2$$
 where $c = \|\mathbf{x}\|^2$ and $b = 2\mathbf{x} \cdot \mathbf{y}$ and $a = \|\mathbf{y}\|^2$.

Since f has at most one real root, the discriminant $D = b^2 - 4ac$ satisfies $D \le 0$. That is,

$$(2\mathbf{x} \cdot \mathbf{y})^{2} - 4 \|\mathbf{y}\|^{2} \|\mathbf{x}\|^{2} \leq 0$$

$$4(\mathbf{x} \cdot \mathbf{y})^{2} \leq 4 \|\mathbf{y}\|^{2} \|\mathbf{x}\|^{2}$$

$$(\mathbf{x} \cdot \mathbf{y})^{2} \leq \|\mathbf{y}\|^{2} \|\mathbf{x}\|^{2}$$

$$|\mathbf{x} \cdot \mathbf{y}| \leq \|\mathbf{x}\| \|\mathbf{y}\|.$$

Referring back to our quadratic, Notice that $f(t) = \|\mathbf{x} - t\mathbf{y}\|^2 = 0$ (i.e. has one real root) exactly when D = 0. In other words,

$$|\mathbf{x} \cdot \mathbf{y}| = ||\mathbf{x}|| ||\mathbf{y}||$$
iff $||\mathbf{x} - t\mathbf{y}||^2 = 0$
iff $||\mathbf{x} - t\mathbf{y}|| = 0$

Remark 2.8. Notice that $\|\mathbf{x} \cdot \mathbf{y}\| \le \|\mathbf{x}\| \|\mathbf{y}\|$ if and only if $\frac{\|\mathbf{x} \cdot \mathbf{y}\|}{\|\mathbf{x}\| \|\mathbf{y}\|} \le 1$ if and only if $-1 \le \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|} \le 1$. This allows us to make the following definition.

Definition 2.9. We define the angle θ between the vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ to be the real number

$$\theta = \cos^{-1}(\frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}).$$

Exercises. Section 1.2: 1(d), 2(d), 7, 10, 11, 13, 14, 17, 18.

Hyperplanes in \mathbb{R}^n

Definition 2.10. Let $\mathbf{a} \in \mathbb{R}^n$ be a nonzero vector. The *hyperplane* in \mathbb{R}^n with normal vector \mathbf{a} through the point \mathbf{x}_0 is the set

$$H(\mathbf{x}_0, \mathbf{a}) = {\mathbf{x} \in \mathbb{R}^n : \mathbf{a} \cdot \mathbf{x} = \mathbf{a} \cdot \mathbf{x}_0}.$$

Example 2.11. If n = 2, then $H(\mathbf{x}_0, \mathbf{a})$ is a line through \mathbf{x}_0 . If n = 3, then $H(\mathbf{x}_0, \mathbf{a})$ is a plane through \mathbf{x}_0 . Generalize. Let us prove the second statement. Write $\mathbf{a} = (a, b, c)$ and $\mathbf{x} = (x, y, z)$ and set $\mathbf{a} \cdot \mathbf{x}_0 = d$.

$$\mathbf{x} \in H(\mathbf{x}_0, \mathbf{a})$$

$$\mathbf{a} \cdot \mathbf{x} = \mathbf{a} \cdot \mathbf{x}_0$$

$$(a, b, c) \cdot (x, y, z) = c$$

$$ax + by + cz = d.$$

We can assume that $a \neq 0$ (one of a, b, c must be nonzero). Then $x = d - \frac{b}{a}y - \frac{c}{a}z$ and

$$\begin{aligned} \mathbf{x} &=& (x,y,z) \\ &=& (d-\frac{b}{a}y-\frac{c}{a}z,y,z) \\ &=& (d,0,0)+(-\frac{b}{a}y,y,0)+(\frac{c}{a}z,0,z) \\ &=& (d,0,0)+y(-\frac{b}{a},1,0)+z(\frac{c}{a},0,1). \end{aligned}$$

Take $\mathbf{y}_0 = (d,0,0)$ and $\mathbf{u} = (-\frac{b}{a},1,0)$ and $\mathbf{v} = (\frac{c}{a},0,1)$. The computations above show that $H(\mathbf{x}_0,\mathbf{a}) = P(\mathbf{y}_0,\mathbf{u},\mathbf{v})$.

Exercises. Section 1.3: 4, 6, 7, 9-13