Combien de zeros à la fin de 1000!?

Par definition, $\forall n \in \mathbb{N}^*$, $n! = 1 \times 2 \times 3 \times \cdots \times n = \prod_{k=1}^{n} k$.

Avont de nous attaquer à 1000!, regardons ce qu'il se passe pour 30!. Nous donnous ci-dessons pour chaque nombre R de TT R R=1

1 ~ Pas de Bacteurs	44 0 44	
premiers		21 ~ 3×¥
242 lui-même	12 m 2 x 3	22 2×11
3~3	13 20 13	23 4 23
4 2 2 2 = 22	14 2×7	24 ~ 23 × 3
5~5	15 ~ 3×5	25 2 52
6 2×3	16 24	26 2× 13
¥~» ¥	17 ~> 1¥	27 ~ 33
82 23	18 2 2 x 32	28 2 × × ×
5 ~ 3²	તલ ⊶ તલ	25 ~> 25
40 ~ 2×5	20 2 2 × 5	30 mg 2 x 3 x 5

Combien "Babrique - t-on" des zoros à la fin de 30! ? Il faut

partir à la reclienche des 10 que l'on peut former à l'aide des facteurs

premiers données ci-dessus.

Con 10=5×2

Connueurous par cliencher les cinq . Ils apparaissent dans 5, 10,

15, 20, 25 et 30, autrement dit dans les multiples de 5 compris

entre 1 et 30 au seus lange. Cela nons Bournit 6+1=7

Bacteurs premiers Eganx à 5 dans notre tableau ci-dessus (le f)

vient de ce que 25=5²).

Pour obtain un 10, chaque 5 doit être multiplie par me 2.

A-t-on assez de 2? Clainement oni! Par exemple, il y a $\frac{30}{2}$ = 15 nultiples de 2 appartenant à $\{1,2,\cdots;30\}$.

Nous avons maintenant tous les ingrédients pour répondre à notre question hantement métaphysique.

Cherchous les 5 apparaissant dans $\frac{100}{627}$ &. Il y a $\frac{1000}{5}$ = 200 multiples de 5 dans $\{1,2,\dots,1000\}$. Clacum d'enx va Commin un 5 an moins. En Cait, il Cant ensuite considérer les unltiples de $25=5^2$: chaeme d'enx va Convenir un 5 de plus. Il y a $\frac{1000}{25}$ = 40 multiples de 25. Ensuite, les multiples de $125=5^3$ vont Commin $\frac{1000}{125}$ = 8 Cacteurs premiens Eganx à 5 de plus. Enfin, comme 5^4 = 625 et $\frac{1000}{625}$ = 1,6, nons avons juste 625 comme multiple de 625 dans [1, 1000] (bien entendu, on pent voin cela directement).

Au total, cela nous fait:

Un 5 de pars Courrier par chaque multiple de 5.

Un 5 de pars Courrier multiple de 5, 25

the 5 de pars Courrier multiple de 5, 25

the 5 de pars Courrier multiple de 5.

· A-t-on assez de 2? Out carrily a $\frac{1000}{2}$ = 500 multiples de 2 dans [1, 1000].

multiple de 25 et 5.

En resume, 1000! se gint par 249 zeros.

Finisson avec une solution de passione informatique. Ce qui suit a été fait à l'aide de SAGE (voir sagemate sur Google).

