北京航空航天大学

2012 ~2013 学年第 二 学期

《电子电路设计训练》期末考试试卷

(2013 年 6 月 22 日)

班级:	; 学号:		; 姓名:		; <i>)</i>	龙绩:	
		(宋体五号字)				
注意事项:	1、本试卷为闭 2、解答问题的 3、请直接在记	,请给出必要 卷上作答;		主意结构完	整;		
	4、模拟部分和数字部分分别计分。						
总计分栏	:						
1	模拟部分	(50分) 娄	女字部分(50)分)	合计		
	0			$-\mathbf{I}$	2		T
					- 72		J
A . 模拟部分 (共 50 分)							
计分栏							
(2分)	2 (2 分) (3 分)	1	5 6 分) (2分)	7 (12 分)	8 (5分)	9 (18 分)	合计
VV	VV	- 4	96				
	·						
正题: (宋/	体五号字)(题。	単形式)					

(分)(分)

B. 数字部分 (共 **50** 分)

计分栏

一 (5 分)	二 (5 分)	三 (18分)	四 (22 分)	合计

一、	选择题	(共5分,	每空 1	. 分)
•	公子区		→ — ■	- /1	

C.!4'b1011 || !4'b0000 = 1'b1;

、	选择题(共 5 分,每	空1分)					
1.	综合是 EDA 设计流程	程的关键步骤,	在下面对综合	合的描述中,	D;	是错误的。	
	A.综合就是把抽象设	计层次中的一	一种表示转化局	成另一种表示!	的过程;		
	B.综合就是将电路的高级语言转化成低级的,可与 FPGA/CPLD 的基本结构相映射的网						
	表文件;						
	C.综合就是将行为描述逻辑转换成门级结构表示的一个映射过程;						
	D.综合可理解为,用	D.综合可理解为,用电路网表文件表示软件描述与给定硬件结构的映射过程,并且这种					
	映射关系是唯一的	0					
2.	不完整的 IF 语句,其	综合结果可多	F现A	_ •			
	A.时序逻辑电路		В	3.组合逻辑电路	络		
	C.双向电路		Г).三态控制电	路		
3.	P、Q、R 都是同样大	小的存储器类	型变量,下面	īC表:	达式是正确	的。	
	A.reg[n-1:0] P[m:1], (Q, R	В	3.reg [m:1] P, (Q, R		
	C.reg[n-1:0] P[m:1], Q	Q[m:1], R[m:1]	Е	o.reg[n-1:0] [n	n:1]P, [m:1]Q), [m:1]R	
4.	下列程序中,always	下列程序中,always 状态将描述一个带异步 Nreset 和 Nset 输入端的上升沿触发器,则					
	下面 D 表述是正确的。						
	always@()						
	if(!Nreset)						
	Q<=0;						
	else if(Nset)						
	Q<=1; else						
	Q<=D;						
	A.posedge Nreset or posedge Clock or negedge Nset						
	B.negedge Nreset or posedge Clock or negedge Nset						
	C.negedge Nreset or negedge Clock or posedge Nset						
	D.negedge Nreset or posedge Clock or posedge Nset						
5.	下列表达式中正确的。	是C。					
	A.4'b1010 & 4'b1101	= 1'b1:		B.~4'b110	0 = 1'b1:		

D.&4'b1101 = 1'b1;

二、填空题(共5分,每空1分)

- 1. 相对于 VHDL, Verilog HDL 在语法结构方面更加灵活,同时对于不同的行为抽象级别 (系统级、算法级等), Verilog HDL 在 开关电路级 层面比 VHDL 的描述能力更强。
- 2. 状态机按照输出逻辑可以分为两种,一种称为____Mealy_____状态机,其时序逻辑的输出不仅取决于当前状态,还取决于输入;另一种称为___Moore____状态机,其时序逻辑的输出只取决于当前状态。
- 3. 下面程序中,语句 4、5、6、11 是并行执行,语句 8、9 是顺序执行。

```
module M(\cdots);
1
       input .....;
2
       output ....;
3
       reg
                 a,b....;
4
       always@(····..)
5
       assign
                f=c&d;
6
       always@(····..)
7
          begin
8
            a=....:
9
            b=....;
10
          end
11
       mux
                mux1(out,in0,in1);
    endmodule
```

三、电路及时序分析题(共18分)

1. 请利用行为描述的方式设计一个 1 位 D 触发器,包括一个异步清零端 clr,一个时钟接入端 clk,一个数据输入端 d,一个数据输出端 q,一个数据输出反向端 qb;基于此,利用模块实例化的方法设计一个 4 位的移位寄存器,clrb 是全局清零信号,clk 是全局时钟,IN 为串行输入信号,Q 为输出信号。(8 分)


```
\begin{array}{ll} \text{module D\_FF (d, clr, clk, q, qb );} & \text{module shifter(IN, clrb, clk, Q);} \\ \text{input d, clk, clr;} & \text{input IN, clk, clrb;} \\ \text{output q, qb;} & \text{output [3:0] Q;} \\ \text{reg q;} & \text{D\_FF D1(IN, clrb, clk, Q[0],),} \\ \text{assign qb = $\sim$q;} & \text{D2(Q[0], clrb, clk, Q[1],),} \\ \text{always $@$( posedge clk or negedge clr)} & \text{D3(Q[1], clrb, clk, Q[2],),} \end{array}
```

```
begin D3(Q[2], clrb, clk, Q[3],); if(!clr) \qquad endmodule Q <= 0; else Q <= D; end endmodule
```

2. 设计如下码型变换器,并将图中输出信号的波形补充完整。输入信号 RST(复位信号), CLK(时钟信号,与数据 X 同步),X(输入待处理信号),Y(输出)。(异或运算:两 个输入相同则输出 0,不同则输出 1, Z^1 运算:信号延迟一个时钟输出)。注:复位之前 输出信号的状态即波形图中黑色区域为未知状态)。(10 分)

四、电路设计题(共22分)

1. 设计一个 5 分频电路 (输出信号的频率为输入信号频率的 1/5 倍),使输出信号相邻的两个时钟周期,占空比分别为 3:2 和 2:3,即如果当前输出信号周期的高电平比低电平长一个时钟周期,则下一个输出信号的周期高电平时间应该比低电平短一个周期。(输入信号为 rst (异步重置,低电平有效),clk,输出为 out)。(6 分)

```
module FenPin(rst, clk, out);
  input rst, clk;
  output out;
  reg out;
  reg[3:0] count;
  always @(posedge clk or negedge clr)
  begin
     if(!clr)
          count \le 4'd0:
     else if(count==4'd9)
          count \ll 4'd0;
     else
          count<=count+1;
     if(!clr)
          out \leq 0;
     else if(count==4'd0 || count==4'd3 || count==4'd5 || count==4'd7)
          out \leq \sim out;
  end
endmodule
```

- 2. 设计一个密码锁,密码控制电路由一个密码校验模块和时序控制模块组成。打开密码锁时,需先按"#"号(送往时序控制模块),时序控制模块开始30s计时,如果输入时间超过30s,则自动清零,需重新按"#"号开启下一个开锁过程;如果在30s以内,密码输入完毕,则按"OK"按钮(送往密码校验模块和时序控制模块),当密码校验模块返回密码正确,则密码锁被打开,直到密码箱关闭并送给时序控制模块 close 信号;如果密码校验错误,则密码清零,需重新输入密码,并且计时初值恢复到30s。(共16分)
 - 1) 根据题干信息,设计该密码锁时序控制模块的状态转移图。(8分)
 - a) 输入端口:
 - clk 时钟信号(假设时钟频率 100Hz)
 - p1 "#"电平(电平信号,高电平有效,手离开按钮信号消失)
 - p2 "OK"电平(电平信号,高电平有效,手离开按钮信号消失)
 - CRC 交验结果(电平信号,高电平有效,并假定校验稳态输出时间在 一个时钟周期以内)
 - close 密码锁关闭信号(电平信号,高电平有效)
 - b) 输出端口:
 - open 开锁信号(电平信号,高电平有效)
 - c) 中间变量:
 - count 计数器值

2) 为了实现密码管理功能增强,约定密码校验时,最多只能连续输入3次错误密码, 否则密码锁将被锁定1小时后才能恢复正常,请根据题干信息,对1)问中的状态 转移图进行修正,可以增加中间变量 flag 用于错误密码校验计数。(8分)

