Happy Numbers

Let the sum of the squares of the digits of a positive integer s_0 be represented by s_1 . In a similar way, let the sum of the squares of the digits of s_1 be represented by s_2 , and so on. If s_i =1 for some $1 \le i$, then the original integer s_0 is said to be **happy**. For example, starting with 7 gives the sequence **7**, **49** (=7^2), **97** (=4^2+9^2), **130** (=9^2+7^2), **10** (=1^2+3^2), **1** (=1^2), so 7 is a happy number, which reaches 1 on 6 iterations.

The first few happy numbers are 1, 7, 10, 13, 19, 23, 28, 31, 32, 44, 49, 68, 70, 79, 82, 86, 91, 94, 97, 100, The number of iterations i required for these to reach 1 are, respectively, 1, 6, 2, 3, 5, 4, 4, 5, 5, 3, A number that is not happy is called **unhappy**. Once it is known whether a number is happy (unhappy), then any number in the sequence s_1 , s_2 , s_3 , ... will also be happy (unhappy). Unhappy numbers have eventually periodic sequences of s_i which do not reach 1 (e.g., 4, 16, 37, 58, 89, 145, 42, 20, 4, ...). You need to write a program to find all the happy numbers in a given closed interval, which reach 1 within 10 iterations.

Input Specification

It is a single line input of two positive integers separated by a space.

Output Specification

 Print all happy numbers in the interval and the number of iterations required by it to reach 1, separated by a space and each in a new line.

Sample Input	Sample Input
7 11	44 68
Sample Output	Sample Output
76	44 5
10 2	49 5
	68 3