

Delta learning & Backpropagation

TCTI-VKAAI-17: Applied Artificial Intelligence

Huib Aldewereld

Leerdoelen

- Na deze les kan de student:
 - Leeralgoritmen voor neurale netwerken uitleggen en toepassen.
 - Weloverwogen keuzes maken met betrekking tot netwerktopologie, initialisatie, gewichten en leeralgoritme in het bouwen van een neuraal netwerk voor een specifiek doel.

Inhoudsopgave

- Korte herhaling
- Trainen NN
 - Cost functies
 - Gradient descent
- Delta regel
- Backpropagation

3

Herhaling

Forward propagation

- Output op basis van gewogen som van inputs (per neuron)
- Activatie liefst gradueel, dus d.m.v. sigmoid of tanh functie

$$\sigma(z) = \frac{1}{(1 + e^{-z})}$$

$$tanh(z) = 2\sigma(2z) - 1$$

Inhoudsopgave

- Korte herhaling
- Trainen NN
 - Cost functies
 - Gradient descent
- Delta regel
- Backpropagation

5

Leren van NN

- Maak een aanpassing aan de gewichten, zodanig dat de output dichter bij de gewenste output komt
- De threshold functie (step-function) die we nu gebruiken maakt dit erg lastig!

Cost functie

- Mate om te bepalen hoe goed de classifier presteert op een bepaalde input
 - Supervised (output bekend)
 - Wat is de afwijking t.o.v. verwachte output?
- Afstand tussen werkelijke uitkomst en verwachte uitkomst

$$\vec{a}(\vec{x}_i) \longleftrightarrow \vec{y}_i$$
 Activatie van output neuronen (vector) bij trainingsitem \vec{x}_i Label (verwachte output vector) bij trainingsitem i

Meest gebruikte cost functie is Mean Squared Error (MSE)

7

Mean Squared Error

- Gekwadrateerde afstand tussen verwachte output en werkelijke output
 - Gekwadrateerd om min-tekens kwijt te raken

$$C(\vec{w}) = MSE = \frac{1}{2n} \sum_{i=1}^n |\vec{y}_i - \vec{a}(\vec{x}_i)|^2$$
 Cost gegeven een gewichten vector d.w.z. hoe slecht presteert het netwerk gegeven deze gewichten
$$|\vec{v}| = \sqrt{v_1^2 + \ldots + v_n^2}$$
 Mean = gemiddelde, dus delen door n

Deling door 2 wegens berekenen afgeleide

Doel: minimaliseren van de Cost

MSE vs. # correct answers

- Waarom gebruiken we MSE en tellen we niet gewoon hoeveel items goed worden geclassificeerd (zoals bij kNN)?
- Probleem met tellen correcte antwoorden is dat die functie niet gradueel (smooth) is
- Een abrupte functie (zoals tellen van goede antwoorden)
 maakt het lastig om te weten in welke richting je moet bewegen om een verbetering te krijgen
 - Maken van kleine veranderingen heeft geen invloed

ç

Gradient Descend

- Berekenen wanneer $C(\vec{w})$ minimaal is, is exponentieel omdat \vec{w} erg groot kan worden
 - Voor praktische netwerken zijn duizenden gewichten niet ongewoon
- Gradient Descend als oplossing
 - Optimalisatie techniek die (locale) minima van een functie benadert door stapjes te nemen in de richting van de grootste (negatieve) helling
 - Vergelijk met een bal in een vlak

Gradient Descend, vervolg

- Probleem: minimum niet te berekenen
 - Functie is complex, multi-dimensioneel, en niet uniform (grillig)
- Benader het met het GD algoritme:
 - Begin op een random plek; en
 - Zet telkens een stapje in een richting waardoor je Cost kleiner wordt
- Ofwel vindt $\Delta \vec{w}$ zodanig dat $-\Delta C(\vec{w})$
- Blijf dat doen totdat alle $\Delta \vec{w}$ een $+\Delta C(\vec{w})$ oplevert
 - Geen stapjes meer mogelijk om de Cost te laten dalen

11

Gradient Descend, vervolg

- De stapjes $\Delta \vec{w}$ kunnen worden berekend door middel van afgeleides
- Bereken de gradient (helling) op onze huidige locatie \vec{w}

 Volgens gradient descent zouden we nu dus stapjes moeten zetten in de richting van $-\nabla C$ Geven afgeleides je hoofdpijn, of weet je niet meer wat het is; bekijk dan eens de eerste 3 episodes van "Essence of

Calculus" van Youtuber 3Blue1Brown: https://youtu.be/WUvTyaaNkzM

Gradient Descent, vervolg

 Met gebruik van de gradient vector kunnen we nu de update regel specificeren

$$\vec{w}' = \vec{w} - \Delta \vec{w} = \vec{w} - \eta \nabla C$$

Of gesplitst per gewicht

Verandering van C t.o.v. veranderingen in w_i

Mate van verandering (grootte van de stap).
Te groot → overshoot
Te klein → traag

Leerrate = learning rate

13

Inhoudsopgave

- Korte herhaling
- Trainen NN
 - Cost functies
 - Gradient descent
- Delta regel
- Backpropagation

Delta regel

- Cost functie hiervoor gebruikt alle trainingsinputs
 - Veel berekeningen voor slechts 1 stap
 - Mogelijk om een stap te zetten na elk trainingsvoorbeeld
 - (algoritme wordt sneller, maar ook iets minder precies)

$$C(\vec{w}) = \frac{1}{2}|\vec{y} - \vec{a}(\vec{x})|^2$$

We kunnen nu de partiele afgeleide berekenen per gewicht

$$\Delta w'_{i,j} = \eta \frac{\partial C}{\partial w_{i,j}}$$

$$= \eta \frac{\partial (\frac{1}{2}|\vec{y} - \vec{a}(\vec{x})|^2)}{\partial w_{i,j}} = -\eta a_i g'(in_j)(y_k - a_j)$$

Delta regel, vervolg

- In enkellaags netwerk heeft elke input direct invloed op de output (= perceptron)
- Invloed van elk gewicht is dus 'makkelijk' te achterhalen

$$w'_{j,k} = w_{j,k} - \Delta w_{j,k} = w_{j,k} + \eta a_j g'(in_k)(y_k - a_k)$$

• a_j is de activatiewaarde van neuron j

Delta regel, vervolg

- In enkellaags netwerk heeft elke input direct invloed op de output (= perceptron)
- Invloed van elk gewicht is dus 'makkelijk' te achterhalen

$$w'_{j,k} = w_{j,k} - \Delta w_{j,k} = w_{j,k} + \eta \ a_j \underbrace{g'(in_k)}_{} (y_k - a_k)$$

g' is de afgeleide van de activatiefunctie Voor de sigmoid functie:

$$g' = \sigma(z)(1 - \sigma(z))$$

 $(tanh'(z) = 1 - tanh^2(z))$

Delta regel, vervolg

- In enkellaags netwerk heeft elke input direct invloed op de output (= perceptron)
- Invloed van elk gewicht is dus 'makkelijk' te achterhalen

$$w'_{j,k} = w_{j,k} - \Delta w_{j,k} = w_{j,k} + \eta \ a_j \ g'(in_k)(y_k - a_k)$$

 in_k is gewogen som van alle inputs van neuron k

Delta regel, vervolg

- In enkellaags netwerk heeft elke input direct invloed op de output (= perceptron)
- Invloed van elk gewicht is dus 'makkelijk' te achterhalen

$$w'_{j,k} = w_{j,k} - \Delta w_{j,k} = w_{j,k} + \eta \ a_j \ g'(in_k) \underbrace{(y_k - a_k)}_{j,k}$$

• $(y_k - a_k)$ is afstand tussen gewenste (y_k) en geleverde uitkomst (a_k)

Delta regel, toepassing

- Start door random toewijzing van de gewichten
- Gebruik van de delta regel update de gewichten van de outputs (met respect tot de trainingsdata)
- Blijf updaten (trainingsdata voeren en vergelijken met output) totdat er geen veranderingen meer gemaakt wordt aan de gewichten
 - Kan erg lang duren, dus stop na een 'redelijke' tijd
- Merk op: de delta regel update alle gewichten tegelijkertijd
 - Alle $\Delta w_{j,k}$ worden berekend, en daarna worden ze pas geüpdatet

Voorbeeld: Training AND

- Gegeven:
 - Modeleer een AND-functie
 - Perceptron, dus a_i , a_j inputs, a_o output
 - Hyperbool tangens functie als activatie g
 - Learnrate $\eta = 0.1$
- Gewichten 'random' geïnitieerd als

$$w_{i,o} = 0.2$$

$$w_{i,o} = 0.8$$

Training op drie voorbeelden

$$\left(\begin{array}{c}1\\1\end{array}\right)\to 1, \left(\begin{array}{c}1\\0\end{array}\right)\to 0, \left(\begin{array}{c}0\\1\end{array}\right)\to 0$$

21

Voorbeeld: Training AND $\begin{pmatrix} 1 \\ 1 \end{pmatrix} o 1$

Delta regel:

$$w'_{j,k} = w_{j,k} + \eta \ a_j \ g'(in_k)(y_k - a_k)$$
$$g'(x) = 1 - \tanh(\tanh(x))$$

$$a_{o} = g(a_{i} \times w_{i,o} + a_{j} \times w_{j,o}) = g(1.0 \times 0.2 + 1.0 \times 0.8) = tanh(1.0) = 0.76$$

$$w_{i,o} = 0.2 + 0.1 \times 1.0 \times g'(1.0 \times 0.2 + 1.0 \times 0.8)(1.0 - 0.76)$$

$$= 0.2 + 0.1 \times 1.0 \times (1 - tanh(tanh(1.0)))(1.0 - 0.76) = 0.21$$

$$w_{j,o} = 0.8 + 0.1 \times 1.0 \times g'(1.0 \times 0.2 + 1.0 \times 0.8)(1.0 - 0.76) = 0.81$$

Voorbeeld: Training AND $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \rightarrow 0$

Delta regel:

$$w'_{j,k} = w_{j,k} + \eta \ a_j \ g'(in_k)(y_k - a_k)$$
$$g'(x) = 1 - tanh(tanh(x))$$

$$a_o = g(a_i \times w_{i,o} + a_j \times w_{j,o}) = g(1.0 \times 0.21 + 0.0 \times 0.81) = tanh(0.21) = 0.21$$
$$w_{i,o} = 0.21 + 0.1 \times 1.0 \times g'(1.0 \times 0.21)(0.0 - 0.21) = 0.19$$

$$w_{j,o} = 0.81 + 0.1 \times 0.0 \times g'(0.21)(0.0 - 0.21) = 0.81$$

23

Voorbeeld: Training AND $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \rightarrow 0$

Delta regel:

$$w'_{j,k} = w_{j,k} + \eta \ a_j \ g'(in_k)(y_k - a_k)$$
$$g'(x) = 1 - \tanh(\tanh(x))$$

$$a_o = g(a_i \times w_{i,o} + a_j \times w_{j,o}) = g(0.0 \times 0.19 + 1.0 \times 0.81) = tanh(0.81) = 0.67$$

$$w_{i,o} = 0.19 + 0.1 \times 0.0 \times g'(1.0 \times 0.81)(0.0 - 0.67) = 0.19$$

$$w_{j,o} = 0.81 + 0.1 \times 1.0 \times g'(0.81)(0.0 - 0.67) = 0.78$$

Inhoudsopgave

- Korte herhaling
- Trainen NN
 - Cost functies
 - Gradient descent
- Delta regel
- Backpropagation

25

Trainen MLP, output zijde

- Probleem: gewichten in hidden lagen hebben indirect invloed op output
 - Geen directe koppeling tussen input \vec{x} en output \vec{y}
- Herschrijf updateregel om aan te geven wat een error is

worden aangepast

$$\Delta_k = g'(in_k)(y_k - a_k)$$
 Error in de output van neuron k

$$w_{j,k} = w'_{j,k} + \eta a_j \Delta_k$$
 Gebruik makend van die error kan je bepalen hoe de gewichten moeten

Trainen MLP, input zijde

Betreffende de input i naar een hidden node j, zouden we de veranderingen in gewichten kunnen berekenen als we zouden weten Δ_i (de fout in output van de neuron)

$$w_{i,j} = w'_{i,j} + \eta a_i \Delta_j$$

Neuron is proportioneel verantwoordelijk voor de fout van de volgende laag

Proportioneel op gewichten

27

Meerdere lagen: Backpropagation

- Mate van fout propageert terug door het netwerk:
 - Output (error) → Hidden (error) → Input (error)
- Voor een gewicht tussen neuron j en neuron p geldt

$$w_{i,j} = w'_{i,j} + \eta a_i \Delta_j$$

Als j een hidden neuron:

Als j een output:

$$\Delta_j = g'(in_j) \sum_p w_{j,p} \Delta_p$$

$$\Delta_j = g'(in_j)(y_j - a_j)$$

Voorbeeld: Training XOR

- XOR netwerk heeft 1 hidden laag
- Feitelijk een combinatie van OR + NOT AND op hidden laag, en AND op output laag
- Met volgende gewichten (en threshold activatie) levert dit een

XOR: $w_{i,h} = 1$ $w_{j,h} = 1$ $w_{i,l} = -1$ $w_{j,l} = -1$ $w_{h,o} = 1$ $w_{l,o} = 1$

2

Voorbeeld: Training XOR

- Trainen
 - Kies 'random' gewichten
 - Leerrate = 0.1
 - Voorbeelden:

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} \to 0 \qquad \begin{pmatrix} 0 \\ 0 \end{pmatrix} \to 0$$
$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \to 1 \qquad \begin{pmatrix} 0 \\ 1 \end{pmatrix} \to 1$$

■ Meerlaagsnetwerk → backpropagation

Voorbeeld: Training XOR
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} \rightarrow 0$$

$$\begin{aligned} a_i &= a_j = 1 \\ a_h &= g(0.2 - 0.4) = -0.2 \\ a_l &= g(0.7 + 0.1) = 0.66 \\ a_o &= g(0.6 \times -0.2 + 0.9 \times 0.66) = 0.44 \end{aligned}$$

$$\Delta_o = g'(0.46) \times (0 - 0.44) = -0.26$$

$$\Delta_h = g'(-0.2) \times 0.6 \times -0.26 = -0.18$$

$$\Delta_l = g'(0.8) \times 0.9 \times -0.26 = -0.1$$

$$\begin{split} w_{h,o} &= 0.6 + 0.1 \times -0.2 \times -0.26 = 0.61 \\ w_{l,o} &= 0.9 + 0.1 \times 0.66 \times -0.26 = 0.88 \\ w_{i,h} &= 0.2 + 0.1 \times 1.0 \times -0.18 = 0.18 \\ w_{j,h} &= -0.4 + 0.1 \times 1.0 \times -0.18 = -0.42 \\ w_{i,l} &= 0.7 + 0.1 \times 1.0 \times -0.1 = 0.69 \\ w_{j,l} &= 0.1 + 0.1 \times 1.0 \times -0.1 = 0.09 \end{split}$$

Voorbeeld: Training XOR $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \rightarrow 1$

$$a_i = 1$$
 $a_j = 0$
 $a_h = g(0.17) = 0.17$
 $a_l = g(0.69) = 0.60$
 $a_o = g(0.61 \times 0.17 + 0.88 \times 0.6) = 0.55$

$$\Delta_o = g'(0.63) \times (1 - 0.55) = 0.22$$

$$\Delta_h = g'(0.17) \times 0.61 \times 0.22 = 0.11$$

$$\Delta_l = g'(0.6) \times 0.88 \times 0.22 = 0.10$$

$$\begin{split} w_{h,o} &= 0.61 + 0.1 \times 0.17 \times 0.22 = 0.61 \\ w_{l,o} &= 0.88 + 0.1 \times 0.6 \times 0.22 = 0.89 \\ w_{i,h} &= 0.18 + 0.1 \times 1.0 \times 0.11 = 0.18 \\ w_{j,h} &= -0.42 + 0.1 \times 0.0 \times 0.11 = -0.42 \\ w_{i,l} &= 0.69 + 0.1 \times 1.0 \times 0.1 = 0.70 \\ w_{j,l} &= 0.09 + 0.1 \times 0.0 \times 0.1 = 0.09 \end{split}$$