Recall the homework guidelines for this course.

- 1. Let $A = \{n^3 : n \in \mathbb{N}\}$ and $B = \{k : k \in \mathbb{N}, k > 5\}$. Show that $A \subsetneq B$.
- 2. Let A and B be sets. Show that the following hold.
 - (a) $\emptyset \in \mathscr{P}(A)$ and $A \in \mathscr{P}(A)$.
 - (b) $\mathscr{P}(A) \neq \emptyset$.
 - (c) $A \subseteq B \leftrightarrow \mathscr{P}(A) \subseteq \mathscr{P}(B)$.
 - (d) $A = B \leftrightarrow \mathscr{P}(A) = \mathscr{P}(B)$.
- 3. Let A, B, and C be sets. Determine whether each of the following statements is true or false. If a statement is true, provide a proof. If it is false, give a counterexample
 - (a) If $A \cup B = A \cup C$, then B = C.
 - (b) If $A \cap B = A \cap C$, then B = C.
 - (c) If $A \cup B = A \cup C$, and $A \cap B = A \cap C$, then B = C.
 - (d) A and \emptyset are disjoint.
 - (e) If A and B are disjoint and B and C are disjoint, then A and C are disjoint.
 - (f) If A has 5 elements and B has 6 elements, then $A \cup B$ has 11 elements.
- 4. Let A, B, and C be subsets of a set U. Prove directly that the following set properties hold.
 - (a) $A \cup A = A$ and $A \cap A = A$.
 - (b) $A \cup B = B \cup A$ and $A \cap B = B \cap A$.
 - (c) $A \subseteq A \cup B$ and $A \cap B \subseteq B$.
 - (d) $A \cup \emptyset = A$ and $A \cap U = A$.
 - (e) $A \cap \emptyset = \emptyset$ and $A \cup U = U$.
 - (f) $(A \cup B) \cup C = A \cup (B \cup C)$ and $(A \cap B) \cap C = A \cap (B \cap C)$.
- 5. Show De Morgan's laws for numbered sets: Let $A = \{A_i : i \in I\}$ be a set such that, for all $i \in I$, A_i is a set. Then

(a)
$$\overline{\left(\bigcap_{i\in I} A_i\right)} = \bigcup_{i\in I} \overline{A_i}$$

(b)
$$\overline{\left(\bigcup_{i\in I} A_i\right)} = \bigcap_{i\in I} \overline{A_i}$$

- 6. Let $A, B \subseteq U$ and let $x, y \in U$. Match each statement on the left with an equivalent statement on the right. You do not need to justify.
 - (a) $\{x, y\} \{x\} = \emptyset$
 - (b) $\overline{A} = \emptyset$
 - (c) $A \subseteq B$
 - (d) $A \{x\} = \emptyset$
 - (e) $\{x\} \neq \{y\}$
 - (f) $A \cup \{x\} = A$
 - (g) $x \in \emptyset$
 - (h) $A \cup B = \emptyset$
 - (i) $A \{x\} = A$
 - (j) $A \cap B = \emptyset$
 - (k) $\overline{A} = U \{\emptyset\}$
 - (l) $A = \emptyset$
 - (m) $A \cap B = B$

- (1) $x \notin A$
- (2) $A = B = \emptyset$
- $(3) \ A \subseteq \{x\}$
- $(4) \ \mathscr{P}(A) \subseteq \mathscr{P}(B)$
- $(5) \ x = y$
- (6) $\overline{A} \subseteq \overline{B}$
- $(7) A = \{\emptyset\}$
- (8) $\mathscr{P}(A) = \{\emptyset\}$
- $(9) \{x\} \cap \{y\} = \emptyset$
- $(10) \mathscr{P}(\emptyset) = \{\}$
- $(11) \ x \in A$
- $(12) \ A \subseteq \overline{B}$
- (13) A = U