Assignment #3.

Flugo SA cou

Q.1. No! Let
$$B = \left\{ \frac{|0\rangle + \hat{1}|1\rangle}{\sqrt{12}}, \frac{|0\rangle - |1\rangle}{\sqrt{12}} \right\}$$
.

Measuring the first qubit of $| \Phi^{+} \rangle$ in B and getting $| b_{\sigma} \rangle$ gives us the following state vector:

$$\left|\overrightarrow{Q}^{+}\right\rangle = \frac{1}{\sqrt{2}}\left(10\right\rangle - \left|1\right\rangle = 0\times \left|1\right\rangle + 1\times \left|1\right\rangle.$$

However, measuring the last qubit, we are guaranteed to obtain $|b_2\rangle$ and not $|b_2\rangle$.

Thus, the statement is false.

By the symmetry of the state vector, measuring the 2nd qubit and getting 160> also gives 164> as a state vector.

Q2 Define $|V_0\rangle = \alpha |0\rangle + \beta |1\rangle$. We measure the first qubit of the state vector $|\Phi^-\rangle$ and get the following state vector:

$$|\mathring{\phi}^{-}\rangle = \frac{1}{\sqrt{2}}(\overline{\alpha}|\Delta - \overline{\beta}|0\rangle).$$

Measuring the other qubit, we have the following probability of getting 100>:

Pr $[\widehat{\Phi}]$ measured as $|J_0\rangle = |\langle J_0|\widehat{\Phi}\rangle|^2$ $= |\underline{\alpha}\underline{\beta} - \underline{\alpha}\underline{\beta}|^2$ = 0.

Thus, we always measure (b) at the second measurement.

Conversely, by the symmetry of the system (except a "-" sign, which won't add any problem as probability of measurment uses 1-1), we get the same result if we measure the 2rd gubit and get a 1b1), and then measure the 1st gubit.

END of Assignment #3