TD 3: Applications linéaires

2020/2021

E3FI

Semestre 2

1 Applications linéaires

1.1 Définitions et propriétés générales

Définition 1. Soit (E, +, .) et (F, +) deux \mathbb{K} -espaces vectoriels. On appelle dit que $f : E \longrightarrow F$ est **linéaire** (ou un morphisme d'espace vectoriel) si :

- 1. $\forall x, y \in E, onaf(x+y) = f(x) + f(y)$
- 2. $\forall \lambda \in \mathbb{K}, \forall x \in E \text{ on } a : f(\lambda x) = \lambda f(x)$

On note $\mathcal{L}(E,F)$ l'ensemble des applications linéaires de E dans F.

Proposition 1. Caractérisation des applications linéaires

Soit $f: E \longrightarrow F$.

L'application f est linéaire, si et seulement si :

$$\forall \lambda, \mu \in \mathbb{K}, \forall x, y \in E, f(\lambda x + \mu y) = \lambda f(x) + \mu f(y)$$

Proposition 2. Soient (E, +, .), (F, +, .), (G, +, .) des \mathbb{K} -espaces vectoriels.

- 1. Si l'application linéaire $f: E \longrightarrow F$ est linéaire alors $f(0_E) = 0_F$
- 2. Si $f: E \longrightarrow F$ et $g: F \longrightarrow G$ sont linéaires alors $g \circ f: E \longrightarrow G$ est linéaire.
- 3. Si $e_1, \ldots e_n$ sont des vecteurs de E alors $\forall \lambda_1, \ldots, \lambda_n \in \mathbb{K} : f(\sum_{k=1}^n \lambda_k e_k) = \sum_{k=1}^n \lambda_k f(e_k)$

1.2 Applications linéaires particulières

Définition 2. On appelle forme linéaire sur un \mathbb{K} -espace vectoriel de E, toute application linéaire de E dans \mathbb{K} . On note E^* au lieu de $\mathcal{L}(E,\mathbb{K})$ l'ensemble des formes linéaires sur E.

Définition 3. On appelle **endomorphisme** de E, toute application linéaire de E dans lui même. On note $\mathcal{L}(E)$, au lieu de $\mathcal{L}(E,E)$ l'ensemble des endomorphisme.

Définition 4. On appelle **isomorphisme** d'un \mathbb{K} -espace vectoriel E vers un \mathbb{K} -espace vectoriel F, toute application linéaire bijective de E vers F.

On note Iso(E), au lieu de $\mathcal{L}(E,E)$ l'ensemble des isomorphisme de E dans F.

Définition 5. On appelle **automorphisme** de E, toute application linéaire bijective de E dans E. On note Gl(E) l'ensemble des automorphisme de E.

Rappel 1. Une application $f: E \to F$ est bijective si elle est injective $(\forall x, x' \in E, f(x) = f(x') \Rightarrow x = x')$ et surjective $(\forall y \in F \exists x \in E \mid y = f(x))$.

2 Noyau et image d'une application linéaire

Théorème 1. Soit $f: E \longrightarrow F$ une application linéaire.

Si V est un sous-espace vectoriel de E alors f(V) est un sous-espace vectoriel de F.

Si W est un sous-espace vectoriel de F alors $f^{-1}(W)$ est un sous-espace vectoriel de E.

Définition 6. Soit $f: E \longrightarrow F$

- 1. On appelle image de f et on le note Imf le sous espace vectoriel f(E) de F. Le rang d'une application linéaire est l'entier naturel égal à la dimension de son image, on note rg(f) = dim(Imf).
- 2. On appelle noyau de f et on noteKerf le sous espace vectoriel $f^{-1}(\vec{0})$ de E.

Méthode

Pour **déterminer l'image** d'une application linéaire f, on détermine les valeurs prises par f, c'est à dire les $y \in F$ tels qu'il existe $x \in E$ pour lesquels y = f(x).

Pour déterminer le noyau d'une application linéaire f, on résout dans E l'équation $f(x) = \vec{0}_F$.

Exemple 1. Déterminons le noyau de l'application linéaire $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ définie par f(x,y) = (x-y,x+y) Soit $u = (x,y) \in \mathbb{R}^2$:

$$f(u) = 0 \Leftrightarrow \left\{ \begin{array}{l} x - y = 0 \\ x + y = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = y \\ x = -y \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = 0 \\ y = 0 \end{array} \right.$$

Nous allons a présent déterminer l'image de f:

Soit $\vec{e_1} = (1,0)$ et $\vec{e_2} = (0,1)$ une base de \mathbb{R}^2 .

Etudions leurs images : $f(\vec{e_1}) = (1,1)$ et $f\vec{e_2} = (-1,1)$

On a: Im(f) = Vect((1,1), (1,-1))

Théorème 2. Si $f: E \longrightarrow F$ est une application linéaire alors :

- 1. f est surjective, si et seulement si Im f = F
- 2. f est injective, si et seulement si, $Kerf = {\vec{0}_E}$

Théorème 3. Soient E et F deux espaces vectoriels sur un même corps \mathbb{K} . Soit f une application linéaire de E dans F. Alors

$$dim(Ker(f)) + dim(Im(f)) = dim \ E$$

Exercice 1. Les applications entre \mathbb{R} -espaces vectoriels suivantes sont-elles linéaires :

- 1. $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ définie par f(x, y, z) = x + y + 2z
- 2. $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ définie par f(x,y) = x + y + 1
- 3. $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ définie par f(x, y, z) = xy
- 4. $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ définie par f(x, y, z) = x z
- 5. $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ définie par f(x,y) = (2x+y, x-y)
- 6. $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ définie par f(x, y, z) = (xy, x, y)
- 7. $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ définie par f(x, y, z) = (2x + y + z, y z, x + y)
- 8. $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^4$ définie par f(x,y) = (y,0,x-7y,x+y)

Exercice 2. Soit $u : \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ définie pour tout $x = (x_1, x_2, x_3) \in \mathbb{R}^3$ par $u(x) = (x_1 + x_2 + x_3, 2x_1 + x_2 - x_3)$

- 1. Montrer que u est linéaire.
- 2. Déterminer Ker(u)

Exercice 3. Soit E un espace vectoriel et soient E_1 et E_2 deux sous-espaces vectoriels de dimension finie de E, on définit l'application $f: E_1 \times E_2 \to E$ par $f(x_1, x_2) = x_1 + x_2$

- 1. Montrer que f est linéaire.
- 2. Déterminer le noyau et l'image de f.
- 3. Que donne le théorème du rang?

Exercice 4. Soit $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ définie par f(x,y,z) = (-2x + y + z, x - 2y + z)

- 1. Montrer que f est une application linéaire.
- 2. Donner une base de Ker(f), en déduire dim(Im(f)).
- 3. Donner une base de Im(f)

Exercice 5. On considère l'application $h: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ définie par : h(x,y) = (x-y, -3x+3y)

- 1. Montrer que h est une application linéaire.
- 2. Montrer que h est ni injective, ni surjective.
- 3. Donner une base de son noyau et son image.

Exercice 6. Soit $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ définie par f(x,y,z) = (x+y+z, -x+2y+2z) On appelle $\beta = (e_1,e_2,e_3)$ la base canonique de \mathbb{R}^3 et $\beta' = (f_1,f_2)$ la base canonique de \mathbb{R}^2

- 1. Montrer que f est une application linéaire
- 2. Donner une base et la dimension de ker(f) et une base et la dimension de Im(f).

Exercice 7. Soit f l'application linéaire $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ définie par :

$$f(x_1, x_2, x_3) = (x_1 - x_3, 2x_1 + x_2 - 3x_3, -x_2 + 2x_3)$$

Et soit (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 .

- 1. Calculer $f(e_1)$, $f(e_2)$ et $f(e_3)$ et déterminer les coordonnées de chacun dans la base canonique.
- 2. Déterminer une base de Ker(f) et une base de Im(f).

Exercice 8. Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ définie par f(x,y) = (x+y,x-y). Montrer que f est un automorphisme de \mathbb{R}^2 et déterminer son automorphisme réciproque.

Exercice 9. Pour chaque cas suivant, déterminer Kerf et Imf et en déduire si f est injective, surjective, bijective.

- 1. $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ tel que f(x,y) = (2x + y, x y)
- 2. $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ tel que f(x, y, z) = (2x + y + zyx z, x + y)
- 3. $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^4$ tel que f(x,y) = (y,0,x-7y,x+y)

Exercice 10. Soit $J: \mathcal{C}^{\infty}([0,1],\mathbb{R}) \to \mathbb{R}$ définie par $J(f) = \int_0^1 f(t)dt$. Montrer que J est une forme linéaire.

Exercice 11. Soit E et F deux espaces vectoriels de dimensions finies et $u, v \in \mathcal{L}(E, F)$. Montrer que $rg(u + v) \leq rg(u) + rg(v)$