MULTIPLICATIVE STRUCTURES ON SPHERES

ISHAN LEVY

What multiplicative structures do the spheres S^n have? Globally, $S^0 = \mathbb{F}_2$, $S^1 = \mathbb{BZ}$ are \mathbb{E}_{∞} -spaces and $S^3 = \Omega \mathbb{HP}^{\infty}$ is a \mathbb{E}_1 -space. S^7 admits an \mathbb{A}_2 -structure because of the octonions, but this doesn't extend to \mathbb{A}_3 , as there is a 3-primary obstruction visible from the Steenrod algebra action on the cohomology of the hypothetical \mathbb{OP}^3 . By Hopf invariant one, there are no more \mathbb{A}_2 multiplications on spheres, with the obstruction being K(1)-local at the prime 2.

If we work p-adically (equivalently p-locally), then more spheres can become multiplicative. Rationally, S^{2n} is not even \mathbb{A}_2 (the obstruction is the whitehead square of the identity), and since the obstruction persists after base-change to \mathbb{Q}_p , S^{2n} has no hope of being \mathbb{A}_2 p-adically. S^{2n-1} is an Eilenberg Mac Lane space rationally, so there is a hope of getting multiplicative structures p-adically for odd spheres.

Proposition 0.1. For p > 2, the map $S^{2k-1} \to \Omega J_{p-1}(S^{2k})$ can be refined to a map of \mathbb{A}_{p-1} -algebras.

Proof. The obstruction to refining an \mathbb{A}_{i-1} -algebra map to an \mathbb{A}_i -algebra map amounts to producing a lift in the diagram

$$S^{2ni-3} \longrightarrow D^{2ni-2}$$

$$\downarrow \qquad \qquad \downarrow$$

$$S^{2k-1} \longrightarrow \Omega J_{p-1}(S^{2k})$$

where ob_i is the obstruction to refining an \mathbb{A}_{i-1} algebra structure on S^{2k-1} to an \mathbb{A}_i algebra structure.

By the EHP sequence, the fibre of the lower horizontal map is $\Omega^2 S^{2pk-1}$, so we learn that there is no obstruction to producing the lift for i < p.

From the proof above, we see that there is a potential obstruction to an \mathbb{A}_p -structure on S^{2k-1} . The obstruction doesn't always cause issues:

Theorem 0.2 (Sullivan). S^{2k-1} is an \mathbb{E}_1 -algebra if k|p-1.

Proof. For the first statement, we observe that $S^{2k-1} = \Omega((B^2\mathbb{Z}_p)_{hG_k})$, where G_k is the cyclic subgroup of \mathbb{F}_p^{\times} of order k acting on \mathbb{Z}_p . This can be seen from the Eilenberg-Moore/Serre spectral sequence.

Wilkerson showed that in all other odd primary cases, there is a K(1)-local obstruction to an \mathbb{A}_p -multiplication.

Theorem 0.3 (Wilkerson). If $k \nmid p-1$, then S^{2k-1} is not \mathbb{A}_p .

Proof. If S^{2k-1} was \mathbb{A}_p , we could form the p^{th} -truncated bar construction $B_p(S^{2k-1})$, which would have cohomology ring $\mathbb{Z}_p[x]/x^{p+1}$. It follows that $K^0(B_p(S^{2k-1}))$ as a ring is isomorphic to $\mathbb{Z}_p[x]/x^{p+1}$. The Adams operations ψ^q , give an action of \mathbb{Q}_p^{\times} on this, with the following properties:

- $(1) \ \psi^p(x) \equiv x^p \ (\text{mod } p)$
- (2) $\psi^q(x) \equiv qx \pmod{x^2}$

The second property comes from the inclusion of the first cell, which is a sphere, whose Adams operations we know.

Given a power series f, let $f[x^i]$ denote the x^i -coefficient. We show inductively for $i \leq p$ that

$$v_p(\psi^p(x)[x^i]) \ge k - (v_p(k) + 1)|\{0 < j < i \text{ such that } p - 1|jk\}|$$

Let m_i denote the number on the right hand side of the above equation. If we can show the claim, we are finished, since we know from (1) that the x^p coefficient is 1 mod p, but $m_p = k - (v_p(k) + 1) \gcd(i, p - 1)$ is positive unless k|p - 1.

To show the claim inductively for i+1 assuming it for lower i, we compare the x^{i+1} coefficients of the equation $\psi^p\psi^q(x)=\psi^q\psi^p(x)$ after reducing mod p^{m_i} , using the inductive hypothesis to see that $\psi^p(x)[x^{i+1}]q^{k(i+1)}=\psi^p(x)[x^{i+1}]q^k$ mod p^{m_i} . It follows that $v_p(\psi^p(x)[x^i])+v_p(q^{k(i+1)}-q^k)\geq m_i$. Choose q to be a topological generator of \mathbb{Z}_p^{\times} , so that $v_p(q^{k(i+1)}-q^n)$ is 0 unless p-1|k(i+1) in which case it is $v_p(k)+1$. This gives the inductive step.