L1-Norm Minimization

Xiaoyi Liu Email:xiaoyil3@uci.edu

Theorem 1: Given two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, the optimal scalar $\boldsymbol{\beta}$ that minimizes $||\boldsymbol{\beta}\mathbf{x} - \mathbf{y}||_1$ is

$$\beta^{\star} = \frac{y_{j_{t^{\star}}}}{x_{j_{t^{\star}}}},$$

where:

- 1. x_i or y_i is the *i*-th element of \boldsymbol{x} or \boldsymbol{y} , respectively;
- 2. $\{j_1, \ldots, j_m\}$ is a permutation of the indices of non-zero elements in \boldsymbol{x} ($\{i_1, \ldots, i_m\}$, where $m \le n$) satisfying $\frac{y_{j_1}}{x_{j_1}} \le \ldots \le \frac{y_{j_m}}{x_{j_m}}$;
- 3. t^* satisfies $\sum_{k=1}^{t} |x_{j_k}| \sum_{k=t+1}^{m} |x_{j_k}| < 0$ for $t < t^*$ and $\sum_{k=1}^{t} |x_{j_k}| \sum_{k=t+1}^{m} |x_{j_k}| \ge 0$ for $t^* \le t \le m$.

Proof: $f(\beta) = ||\beta \mathbf{x} - \mathbf{y}||_1$ is equivalent to

$$f(\beta) = \sum_{i=1}^{n} |\beta x_i - y_i| = \sum_{k=1}^{m} |\beta x_{i_k} - y_{i_k}|$$

$$= \sum_{k=1}^{m} |x_{i_k}| \times \left| \beta - \frac{y_{i_k}}{x_{i_k}} \right| = \sum_{k=1}^{m} |x_{j_k}| \times \left| \beta - \frac{y_{j_k}}{x_{j_k}} \right|.$$
(1)

First, we show the optimal value of β is one of $\frac{y_{j_1}}{x_{j_1}}, \dots, \frac{y_{j_m}}{x_{j_m}}$.

When $\beta \leq \frac{y_{j_1}}{x_{j_1}}$, $f(\beta)$ in (1) is equal to

$$f(\beta) = \sum_{k=1}^{m} |x_{j_k}| \times \left(\frac{y_{j_k}}{x_{j_k}} - \beta\right) = \sum_{k=1}^{m} |x_{j_k}| \times \frac{y_{j_k}}{x_{j_k}} - \left(\sum_{k=1}^{m} |x_{j_k}|\right) \times \beta.$$
 (2)

The minimum of (2) is attained when $\beta = \frac{y_{j_1}}{x_{j_1}}$. Similarly, when $\beta \ge \frac{y_{j_m}}{x_{j_m}}$, we obtain

$$f(\beta) = \sum_{k=1}^{m} \left| x_{j_k} \right| \times \left(\beta - \frac{y_{j_k}}{x_{j_k}} \right) = \left(\sum_{k=1}^{m} \left| x_{j_k} \right| \right) \times \beta - \sum_{k=1}^{m} \left| x_{j_k} \right| \times \frac{y_{j_k}}{x_{j_k}}. \tag{3}$$

The minimum of (3) is achieved when $\beta = \frac{y_{jm}}{x_{jm}}$.

When $\frac{y_{j_t}}{x_{j_t}} \le \beta \le \frac{y_{j_{t+1}}}{x_{j_{t+1}}}$ for $1 \le t \le m-1$, we have

$$f(\beta) = \sum_{k=1}^{t} |x_{j_k}| \times \left(\beta - \frac{y_{j_k}}{x_{j_k}}\right) + \sum_{k=t+1}^{m} |x_{j_k}| \times \left(\frac{y_{j_k}}{x_{j_k}} - \beta\right)$$

$$= \left(\sum_{k=1}^{t} |x_{j_k}| - \sum_{k=t+1}^{m} |x_{j_k}|\right) \times \beta + \sum_{k=t+1}^{m} |x_{j_k}| \times \frac{y_{j_k}}{x_{j_k}} - \sum_{k=1}^{t} |x_{j_k}| \times \frac{y_{j_k}}{x_{j_k}}.$$
(4)

The minimum of (4) is obtained when $\beta = \frac{y_{j_t}}{x_{j_t}}$ if $\sum_{k=1}^t \left| x_{j_k} \right| - \sum_{k=t+1}^m \left| x_{j_k} \right| \ge 0$ and $\beta = \frac{y_{j_{t+1}}}{x_{j_{t+1}}}$ if $\sum_{k=1}^t \left| x_{j_k} \right| - \sum_{k=t+1}^m \left| x_{j_k} \right| < 0$. Therefore, we have shown the optimal β should be one of $\frac{y_{j_1}}{x_{j_1}}, \ldots, \frac{y_{j_m}}{x_{j_m}}$.

Second, we show the optimal $\boldsymbol{\beta}$ is $\boldsymbol{\beta}^{\star} = \frac{y_{j_t \star}}{x_{j_t \star}}$ such that $\sum_{k=1}^{t} \left| x_{j_k} \right| - \sum_{k=t+1}^{m} \left| x_{j_k} \right| < 0$ for $t < t^{\star}$ and $\sum_{k=1}^{t} \left| x_{j_k} \right| - \sum_{k=t+1}^{m} \left| x_{j_k} \right| \ge 0$ for $t^{\star} \le t \le m$. By subtracting $f\left(\frac{y_{j_t}}{x_{j_t}}\right)$ from $f\left(\frac{y_{j_{t+1}}}{x_{j_{t+1}}}\right)$, we get

$$f\left(\frac{y_{j_{t+1}}}{x_{j_{t+1}}}\right) - f\left(\frac{y_{j_{t}}}{x_{j_{t}}}\right) = \sum_{k=1}^{t} |x_{j_{k}}| \times \left(\frac{y_{j_{t+1}}}{x_{j_{t+1}}} - \frac{y_{j_{k}}}{x_{j_{k}}}\right) + \sum_{k=t+2}^{m} |x_{j_{k}}| \times \left(\frac{y_{j_{k}}}{x_{j_{k}}} - \frac{y_{j_{t+1}}}{x_{j_{t+1}}}\right)$$
$$- \sum_{k=1}^{t-1} |x_{j_{k}}| \times \left(\frac{y_{j_{t}}}{x_{j_{t}}} - \frac{y_{j_{k}}}{x_{j_{k}}}\right) - \sum_{k=t+1}^{m} |x_{j_{k}}| \times \left(\frac{y_{j_{k}}}{x_{j_{k}}} - \frac{y_{j_{t}}}{x_{j_{t}}}\right)$$
$$= \left(\sum_{k=1}^{t} |x_{j_{k}}| - \sum_{k=t+1}^{m} |x_{j_{k}}|\right) \times \left(\frac{y_{j_{t+1}}}{x_{j_{t+1}}} - \frac{y_{j_{t}}}{x_{j_{t}}}\right).$$

Note that $\frac{y_{j_{t+1}}}{x_{j_{t+1}}} - \frac{y_{j_t}}{x_{j_t}} \ge 0$. For any $t < t^\star$, $\sum_{k=1}^t \left| x_{j_k} \right| - \sum_{k=t+1}^m \left| x_{j_k} \right| < 0$, thus, $f\left(\frac{y_{j_t}}{x_{j_t}}\right) \ge f\left(\frac{y_{j_{t+1}}}{x_{j_{t+1}}}\right) \ge \cdots \ge f(\beta^\star)$. For any $t > t^\star$, $\sum_{k=1}^t \left| x_{j_k} \right| - \sum_{k=t+1}^m \left| x_{j_k} \right| \ge 0$, thus, $f\left(\frac{y_{j_t}}{x_{j_t}}\right) \ge f\left(\frac{y_{j_{t-1}}}{x_{j_{t-1}}}\right) \ge \cdots \ge f(\beta^\star)$. Furthermore, since $\sum_{k=1}^t \left| x_{j_k} \right| - \sum_{k=t+1}^m \left| x_{j_k} \right|$ is strictly increasing on t, there exists only one such t^\star . The proof is complete.