Rockchip RK2206 Datasheet

Revision 1.1 April. 2020

Revision History

Date	Revision	Description
2020-4-27	1.1	Add new device information
2019-9-23	1.0	Initial Release

Table of Content

Table of Content	3
Figure Index	
Table Index	
Warranty Disclaimer	6
Chapter 1 Introduction	7
1.1 Overview	7
1.2 Features	
1.3 Block Diagram	. 13
Chapter 2 Package Information	
2.1 Order Information	14
2.2 Top Marking	. 14
2.3 QFN68L Dimension	
2.4 Ball Map	. 17
2.5 Pin Number List	
2.6 Power/Ground IO Description	. 19
2.7 Function IO Description	
2.8 IO Pin Name Description	
2.9 IO Type	. 27
Chapter 3 Electrical Specification	. 29
3.1 Absolute Ratings	20
3.2 Recommended Operating Condition	29
3.3 DC Characteristics	30
3.4 Electrical Characteristics for General IO	30
3.5 Electrical Characteristics for PLL	31
3.6 Electrical Characteristics for USB 2.0 Interface	
3.7 Electrical Characteristics for TSADC	
3.8 Electrical Characteristics for SARADC	
Chapter 4 Thermal Management	
4.1 Overview	
4.2 Package Thermal Characteristics	34

Figure Index

Fig.1-1	RK2206 Block Diagram	13
	Package definition	
	Package Top View	
	Package Side View	
	Package Bottom View	
	Package dimension	
	Ball Man	

Table Index

Table 2-1	Pin Number List Information	 17
Table 2-2	Power/Ground IO information	 19
Table 2-3	Function IO description	 20
Table 2-4	IO function description list	 24
Table 2-4	IO Type List	 27
Table 3-1	Absolute ratings	 29
Table 3-2	Recommended operating condition	 29
	DC Characteristics	
Table 3-4	Electrical Characteristics for Digital General IO	 30
Table 3-5	Electrical Characteristics for PLL	 . 31
Table 3-6	Electrical Characteristics for USB 2.0 Interface	 31
Table 3-7	Electrical Characteristics for TSADC	 32
Table 3-8	Electrical Characteristics for SARADC	 32
Table 4-1	Thermal Resistance Characteristics	 34

Warranty Disclaimer

Rockchip Electronics Co., Ltd makes no warranty, representation or guarantee (expressed, implied, statutory, or otherwise) by or with respect to anything in this document, and shall not be liable for any implied warranties of non-infringement, merchantability or fitness for a particular purpose or for any indirect, special or consequential damages.

Information furnished is believed to be accurate and reliable. However, Rockchip Electronics Co., Ltd assumes no responsibility for the consequences of use of such information or for any infringement of patents or other rights of third parties that may result from its use.

Rockchip Electronics Co., Ltd.'s products are not designed, intended, or authorized for using as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Rockchip Electronics Co., Ltd.'s product could create a situation where personal injury or death may occur, should buyer purchase or use Rockchip Electronics Co., Ltd.'s products for any such unintended or unauthorized application, buyers shall indemnify and hold Rockchip Electronics Co., Ltd and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, expenses, and reasonable attorney fees arising out of, either directly or indirectly, any claim of personal injury or death that may be associated with such unintended or unauthorized use, even if such claim alleges that Rockchip Electronics Co., Ltd was negligent regarding the design or manufacture of the part.

Copyright and Patent Right

Information in this document is provided solely to enable system and software implementers to use Rockchip Electronics Co., Ltd 's products. There are no expressed or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Rockchip Electronics Co., Ltd does not convey any license under its patent rights nor the rights of others.

All copyright and patent rights referenced in this document belong to their respective owners and shall be subject to corresponding copyright and patent licensing requirements.

Trademarks

Rockchip and Rockchip[™] logo and the name of Rockchip Electronics Co., Ltd.'s products are trademarks of Rockchip Electronics Co., Ltd. and are exclusively owned by Rockchip Electronics Co., Ltd. References to other companies and their products use trademarks owned by the respective companies and are for reference purpose only.

Confidentiality

The information contained herein (including any attachments) is confidential. The recipient hereby acknowledges the confidentiality of this document, and except for the specific purpose, this document shall not be disclosed to any third party.

Reverse engineering or disassembly is prohibited.

ROCKCHIP ELECTRONICS CO.,LTD. RESERVES THE RIGHT TO MAKE CHANGES IN ITS PRODUCTS OR PRODUCT SPECIFICATIONS WITH THE INTENT TO IMPROVE FUNCTION OR DESIGN AT ANY TIME AND WITHOUT NOTICE AND IS NOT REQUIRED TO UNDATE THIS DOCUMENTATION TO REFLECT SUCH CHANGES.

Copyright ©2020 Rockchip Electronics Co., Ltd.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electric or mechanical, by photocopying, recording, or otherwise, without the prior written consent of Rockchip Electronics Co., Ltd.

Chapter 1 Introduction

1.1 Overview

RK2206 is a Low-Power High-Integration Stand-Alone MCU-Based WLAN processor. It can be used in different application fields, such as Internet of Things(IoT), Wearable Equipment, Home Automation, Cloud Connectivity and so on.

RK2206 integrates Cortex-M4F with I/D cache to run operating system and APPs. Cortex-M0 with I/D cache can be used for running WLAN MAC stack. HiFi3 DSP can be used for running audio and intelligent voice interaction related algorithms. Integrated 480KB system memory and eXecute In Place(XIP) Flash/pSRAM interface make RK2206 flexible for different application development. Different capacity on chip Flash and pSRAM can be provided according to application requirements by multiple chip package(MCP).

RK2206 supports 802.11b/g/n Radio and Full Medium Access Control WLAN total solution with integrated PA, Transmit/Receive switch, Balun, LNA for low BOM cost. Optimized high throughput in open office environment makes smooth internet application. Support automatic hardware calibration solution to tune the RF characteristic to achieve best RF performance, which can avoid RF performance penalty caused by the hardware board differentiation.

Co-work with RK812 ASIC, provide one channel DAC and three channel ADC for audio playback and intelligent voice interaction application. Rich peripherals, such as USB2.0 OTG, I2C, UART, PWM, SPI, CapSense, I2S, PDM, i8080 display interface, camera serial interface and so on, make products development more easy and diverse.

Co-work with RK812 ASIC, support power by battery directly without external regulators to save BOM cost.

Embedded voice activity detection function will monitor human voice at any time, respond to human voice request timely and fast setup intelligent voice interaction application, which will also reduce hardware system power consumption and improve battery endurance.

1.2 Features

The features listed below which may or may not be present in actual product, may be subject to the third party licensing requirements. Please contact Rockchip for actual product feature configurations and licensing requirements.

1.2.1 Cortex-M4F Microprocessor

- The processor implements the ARMv7-M Thumb instruction set
- Support floating point unit (FPU)
- Nested Vectored Interrupt Controller (NVIC) closely integrated with the processor core to achieve low latency interrupt processing
- Support memory protection unit (MPU)
- Serial wire debug port (SW-DP) debug access
- 16KB I-Cache and 16KB D-Cache
- 2-way set associative
- 256 bit Cache line

1.2.2 Cortex-M0 Microprocessor

- The processor implements the ARMv6-M Thumb instruction set
- Nested Vectored Interrupt Controller (NVIC) closely integrated with the processor core to achieve low latency interrupt processing
- Serial wire debug port (SW-DP) debug access

- 16KB I/D Cache
- 2-way set associative
- 256 bit Cache line

1.2.3 DSP

- HiFi3 with 4 24-bit MAC or dual 32-bit MAC architecture
- 3 VLIW slots, 2-Way SIMD Vector FPU
- Voice noise reduction optimization
- Integrated 32KB/192KB I/D TCM
- Integrated 16KB/16KB I/D Cache

1.2.4 Memory Organization

- Internal on-chip memory
 - **BootROM**
 - Internal SRAM
 - eFuse
- External off-chip memory
 - SD Card
- Memory device by Multiple Chip Package(MCP)
 - MCP with Serial Nor Flash by Flexible Serial Peripheral Interface(FSPI)
 - Support transfer data from/to serial flash device
 - ◆ Support x1,x2,x4 data bits mode
 - ◆ Support XIP(eXecute In Place)
 - Support 1 chip select
 - ◆ Support 2MB/4MB/8MB optional capacity
 MCP with Serial pSRAM by Flexible Serial Peripheral Interface(FSPI)
 - ◆ Support transfer data from/to pSRAM device
 - ◆ Support x1,x2,x4 data bits mode
 - ◆ Support 1 chip select
 - Support 2MB/8MB optional capacity
 - MCP with HyperBus pSRAM
 - Support transfer data from/to HyperBus pSRAM device
 - Support 8 data bits mode
 - Support DDR mode
 - Support 1 chip select
 - Support 2MB/4MB/8MB optional capacity

1.2.5 Internal Memory

- Internal BootROM
 - Support system boot from the following device:
 - FSPI Nor Flash interface
 - SDMMC interface
 - Support system code download by the following interface:
 - USB OTG interface (Device mode)
 - SPI interface(Slave mode)
- Internal SRAM
 - 256KB system memory
 - Partial DSP TCM memory can be switched as system memory by software configurable
- eFuse
 - Support 1K bit Size
 - Support Program/Read/Idle mode

1.2.6 External Storage Device Interface

- SD/MMC Interface
 - Compatible with SD3.0, MMC ver4.51
 - Data bus width is 1bit

1.2.7 System Component

- CRU (clock & reset unit)
 - One oscillator with 40MHz clock input
 - One 32.768KHz low power RC oscillator clock with trim function
 - Support 2 PLLs to generate all clocks
 - Support clock gating control for individual components
 - Support global soft-reset control for whole chip, also individual soft-reset for each component
- PMU(power management unit)
 - 3 separate power domains, which can be power up/down by software based on different application scenes
 - Multiple configurable work modes to save power by different frequency or automatic clock gating control or power domain on/off control
 - Support WLAN power save mode

Timer

- Total Seven 64bits timers with interrupt-based operation
- Support two operation modes: free-running and user-defined count
- Support timer work state checkable

Watchdog

- 32-bit watchdog counter
- Counter counts down from a preset value to 0 to indicate the occurrence of a timeout
- WDT can perform two types of operations when timeout occurs:
 - ◆ Generate a system reset
 - ◆ First generate an interrupt and if this is not cleared by the service routine by the time a second timeout occurs then generate a system reset
- Programmable reset pulse length
- Total 16 defined-ranges of main timeout period
- Three WDTs for Cortex-M4F, Cortex-M0 and DSP separately

MailBox

- Two MailBoxs in RK2206 to service muti-core communication
- Support four mailbox elements per mailbox, each element includes one data word, one command word register and one flag bit that can represent one interrupt
- Provide muti-lock registers for software to use to indicate whether mailbox is occupied

DMAC

- Support for memory-to-memory, memory-to-peripheral and peripheral-to-memory DMA transfers
- Up to 6 channels, programmable channel priority
- 16 hardware request from peripherals, programmable hardware request priority
- Multi-block transfers achieved through
 - Linked Lists (block chaining)
 - Auto-reloading of channel registers
 - ◆ Contiguous address between blocks
- Support Scatter/Gather
- Crypto Engine

- Support SHA-1, SHA-256/224, SHA-512/384, MD5 with hardware padding
- Support HMAC of SHA-1, SHA-256, SHA-512, MD5 with hardware padding
- Support AES-128, AES-192, AES-256 encrypt & decrypt cipher
- Support DES & TDES cipher
- Support AES ECB/CBC/OFB/CFB/CTR/CTS/XTS/CCM/GCM/CBC-MAC/CMAC mode
- Support DES/TDES ECB/CBC/OFB/CFB mode
- Support up to 4096 bits PKA mathematical operations for RSA/ECC
- Support up to 256 bits TRNG output
- Temperature Sensor(TSADC)
 - Support one temperature sensor
 - Up to 50KS/s sampling rate
 - -40~125°C temperature range and 5°C temperature resolution

1.2.8 WLAN Subsystem

- WLAN
 - IEEE 802.11b/g/n Radio, Baseband, Full Medium Access Control(Full MAC)
 - One Transmit and one Receive path(1T1R)
 - 2.4GHz band and 20MHz bandwidth
 - Integrated TR switch, BALUN, LNA, and Power Amplifier
 - Support STA, AP and P2P operation modes
 - Support concurrent STA and P2P operation
 - Integrated TCP/IP Stack
 - Security support WEP, WPA, WPA2
 - Frame aggregation for increased MAC efficiency(A-MSDU,A-MPDU) and Low latency immediate High-Throughput Block Acknowledgement
 - Intelligent power control, including 802.11 power save mode
 - Dynamic power management based on packet signal quality
 - DSSS with DBPSK and DQPSK,CCK modulation
 - OFDM with BPSK, QPSK, 16QAM and 64QAM modulation. Convolutional Coding Rate:1/2, 2/3, 3/4 and 5/6
 - Maximum data rate 11Mbps for 802.11b, 54Mbps for 802.11g and 65Mbps(72.2Mbps in SGI mode) for 802.11n
 - Fast receiver Automatic Gain Control(AGC)
 - Support 96KB data buffer

1.2.9 Video Input Processor(VICAP)

- VICAP
 - Support BT601 YCbCr 422 8-bit input
 - Support BT656 YCbCr 422 8-bit input
 - Support UYVY/VYUY/YUYV/YVYU configurable
 - Support RAW 8-bit input
 - Support window cropping
 - Support virtual stride when write to internal memory
 - Support different stored address for Y and UV

1.2.10 Video Output Processor(VOP)

- VOP
 - Support RGB565/YUV420 source data format
 - Support YUV2RGB
 - Support RGB565 display data format
 - Support i8080 MCU interface
 - Support max output resolution 480x320

1.2.11 Audio Interface

- I2S0
 - Connects to Chip IO

- Up to 4 channels TX and 2 channels RX path
- Support master mode and slave mode
- Support I2S normal, left and right justified mode serial audio data transfer
- Support PCM early, late1, late2, late3 mode serial audio data transfer
- Support resolution from 16bits to 32bits
- Sample rate up to 192KHz

I2S1

- Connects to Audio Codec Controller inside Chip
- Up to 2 channels TX and 4 channels RX path
- Support master mode and slave mode
- Support I2S normal, left and right justified mode serial audio data transfer
- Support PCM early, late1, late2, late3 mode serial audio data transfer
- Support resolution from 16bits to 32bits
- Sample rate up to 192KHz

PDM

- Support PDM master receive mode
- Support 2 wire PDM interface with one is clock and 1 data line
- Support up to 2 mono microphones or 1 stereo microphones
- Support 16~24 bit sample resolution
- Support sample rate up to 192KHz
- Support programmable data sampling sensibility, rising or falling edge

Audio PWM

- Support 2 channels audio PWM
- Audio data width from 16bits to 32bits
- Support audio resolution 8/9/10/11bits
- Support linear interpolation by 2/4/6/8/16 oversampling
- Support sample rate up to 16KHz

Voice Activity Detection(VAD)

- Support single Mic human voice detection
- Support human voice frequency band filtering
- Support human voice amplitude detection
- Support Muti-Mic array data store before voice detection event or after voice detection event two modes, and also can support Muti-Mic array data is not stored in voice detection process
- Support Mic data from I2S0, I2S1 and PDM
- Store memory is shared with system internal memory

Audio Codec Controller

- Co-work with RK812 ASIC to provide full Audio Codec solution
- Support mono line out for 24bit DAC
- Support 2 channel microphone input and 1 channel AEC from 24bit ADC
- Support I2S digital interface connected with I2S1
- Support both I2S master and slave mode
- Support 16bits/24bits resolution
- Support sample rate
 - ◆ Group1: 8khz,16khz,32kHz,64kHz,128khz
 - Group2: 11.025khz,22.05khz,44.1khz,88.2khz,176.4khz
 - Group3: 12khz,24khz,48khz,96khz,192khz

1.2.12 Connectivity

- USB 2.0 OTG
 - Compatible with USB 2.0 specification
 - Supports high-speed(480Mbps), full-speed(12Mbps) and low-speed(1.5Mbps) mode

SPI interface

- Support two SPI Controller(SPI0/SPI1)
- Support one chip-select for each SPI Controller
- Support serial-master and serial-slave mode, software-configurable

I2C interface

- Support three I2C interface(I2C0/I2C1/I2C2)
- Support 7bits and 10bits address mode
- Software programmable clock frequency
- Data on the I2C-bus can be transferred at rates of up to 100 kbit/s in the Standard-mode, up to 400 kbit/s in the Fast-mode or up to 1 Mbit/s in Fast-mode Plus

UART Controller

- Support three UART interface(UART0/UART1/UART2)
- Embedded two 64-byte FIFO for TX and RX operation respectively
- Support 5bit,6bit,7bit,8bit serial data transmit or receive
- Standard asynchronous communication bits such as start, stop and parity
- Support different input clock for UART operation to get up to 4Mbps baud rate
- Support auto flow control mode

SPI2APB interface

- Support slave mode SPI protocol
- Support serial-slave mode only
- Embedded a APB master interface

PWM

- Three on-chip 4-channels PWM controllers with interrupt-based operation
- Programmable pre-scaled operation to bus clock and then further scaled
- Embedded 32-bit timer/counter facility
- Support capture mode
- Provides reference mode and output various duty-cycle waveform
- Support continuous mode or one-shot mode
- Optimized for IR application for last channel of each PWM controller

Touch Key Controller

- Support muti-channel CapSense monitor
- Support trigger interrupt waterline configurable
- Support LPF and DC elimination

Multiple group of GPIO

- All of GPIOs can be used to generate interrupt
- Support level trigger and edge trigger interrupt
- Support configurable polarity of level trigger interrupt
- Support configurable rising edge, falling edge and both edge trigger interrupt
- Support configurable pull direction(pull-up or pull-down)

Successive Approximation ADC (SARADC)

- 10-bit resolution
- Up to 1MS/s sampling rate
- 8 single-ended input channels

1.3 Block Diagram

The following diagram shows the basic block diagram.

Fig.1-1 RK2206 Block Diagram

Chapter 2 Package Information

2.1 Order Information

Orderable Device	FLASH Capacity	PSRAM Capacity	RoHS status	Package	Package Qty
RK2206ANN1	8MB	8MB	RoHS	QFN68L	3000pcs by reel
RK2206AN0A	8MB	N/A	RoHS	QFN68L	3000pcs by reel
RK2206ALL1	4MB	4MB	RoHS	QFN68L	3000pcs by reel

2.2 Top Marking

Fig.2-1 Package definition

Remark:

① :RK2206ABCD, the ABCD please refer to following definition tables for the actually chipset order name:

Character	Defined	Detail Number	Description				
Α	Packaging	A	QFN68 7*7				
		0	No embedded Flash				
В	FLASH	Н	2048 Kbytes of Flash memory				
B	Capacity	L	4096 Kbytes of Flash memory				
		N	8192 Kbytes of Flash memory				
		0	No embedded PSRAM				
	PSRAM	Н	2048 Kbytes of PSRAM				
	Capacity	L	4096 Kbytes of PSRAM				
		N	8192 Kbytes of PSRAM				
		1	3.3V Flash(QPI) , 1.8V PSRAM(H8)				
D	FLASH and	5	3.3V Flash(QPI) , 1.8V PSRAM (QPI)				
	PSRAM voltage	Α	3.3V Flash(QPI), no embedded PSRAM				
		Z	No embedded Flash and PSRAM				

2.3 QFN68L Dimension

Fig.2-2 Package Top View

Fig.2-3 Package Side View

Fig.2-4 Package Bottom View

	MILLIMETER							
SYMBOL	MIN	NOM	MAX					
A	0.80	0.85	0.90					
A1	0	0.02	0.05					
b	0.10	0.15	0.20					
b1		0.08RE	7					
С		0.203RE	EF					
D	6.90	7.00	7.10					
D2	5.50	5.60	5.70					
D3	1.95	2.05	2.15					
D4	3.00	3.10	3.20					
е	0.35BSC							
e1	1.775BSC							
e2	1	.95BSC						
Nd	5	.60BSC						
E	6.90	7.00	7.10					
E2	5.50	5.60	5.70					
E 3	1.95	2.05	2.15					
E4	3.00	3.10	3.20					
Ne	5	.60BSC						
L	0.35 0.40 0.49							
L1	0.10REF							
L2	0.05REF							
K	0.30REF							
K1		0.45REF	r					
h	0.30	0.35	0.40					

Fig.2-5 Package dimension

2.4 Ball Map

Fig.2-6 Ball Map

2.5 Pin Number List

Table 2-1 Pin Number List Information

No.	Pin Name
1	CODEC_SYNC_M0/PWM5_M1/TKEY1_M1/UART1_TX_M2/SPI1_CS0N_M2/I2C0_SCL_M3/PWM_AUDIO_R_M2/GPI00 _D1_u
2	PMIC_INT_M0/PWM9/TKEY4_M1/UART2_RX_M0/SPI1_MISO_M2/I2S_LRCK_TX_M1/GPIO0_D4_u
3	VDD
4	CODEC_ADC_D_M0/PWM6_M1/TKEY2_M1/UART2_CTSN_M0/SPI1_CLK_M2/I2S_MCLK_M1/GPI00_D2_u
5	VCCIO2
6	I2C2_SDA_M0/PWM10/TKEY5_M1/UART2_TX_M0/I2C1_SDA_M3/I2S_SDO0_M1/PWM_AUDIO_L_M3/GPI00_D5_u
7	I2C2_SCL_M0/PWM11/TKEY6_M1/TKEY_DRIVE_M5/I2C1_SCL_M3/I2S_SDI_M1/PWM_AUDIO_R_M3/GPI00_D6_u
8	VCCIO4
9	VDD
10	NPOR_u
11	TVSS
12	VCCIO0
13	LCD_CSN/CIF_VSYNC/I2C1_SCL_M2/TKEY15/PMU_DEBUG/PMU_STATE1/AONJTAG_TDO/DSPJTAG_TDO/GPIO0_
13	A3_u

No.	Pin Name
	LCD_RS/CIF_HREF/I2C1_SDA_M2/TKEY14/TKEY_DRIVE_M3/PMU_STATE0/AONJTAG_TDI/DSPJTAG_TDI/GPIO0_A
14	2 u
15	LCD_WRN/CIF_CLKIN/UART1_RTSN_M1/PDM_CLK_M0/TKEY17/PMU_STATE3/CODEC_SYNC_M1/GPIO0_A5_d
	LCD_RDN/CIF_CLKOUT/UART1_CTSN_M1/TKEY16/PMU_SLEEP/PMU_STATE2/CODEC_CLK_M1/AONJTAG_TRSTN
16	/DSPJTAG_TRSTN/GPIO0_A4_u
	LCD_D0/CIF_D0/I2C0_SDA_M2/TKEY12/M4F_WFI/M4F_JTAG_TCK/M0_JTAG_TCK/AONJTAG_TCK/DSPJTAG_TCK/
17	GPIO0_A0_u
	LCD_D1/CIF_D1/I2C0_SCL_M2/TKEY13/M0_WFI/M4F_JTAG_TMS/M0_JTAG_TMS/AONJTAG_TMS/DSPJTAG_TMS/G
18	PIO0_A1_u
19	LCD_D2/CIF_D2/UART1_RX_M1/PDM_SDI_M0/TKEY18/PMU_STATE4/CODEC_ADC_D_M1/GPIO0_A6_d
20	LCD_D3/CIF_D3/UART1_TX_M1/PDM_CLK_S_M0/TKEY19/TEST_CLKOUT/CODEC_DAC_DL_M1/GPI00_A7_d
21	LCD_D4/CIF_D4/UART2_CTSN_M1/SPI1_CS0N_M1/SPI_SLV_CSN/GPIO0_B0_u
22	LCD_D5/CIF_D5/UART2_RTSN_M1/SPI1_CLK_M1/SPI_SLV_CLK/GPI00_B1_u
23	LCD_D6/CIF_D6/UART2_RX_M1/SPI1_MOSI_M1/SPI_SLV_MOSI/GPIO0_B2_u
24	LCD_D7/CIF_D7/UART2_TX_M1/SPI1_MISO_M1/SPI_SLV_MISO/GPIO0_B3_u
25	VCCIO0
	PWM0_M1/UART0_CTSN_M0/SPI0_CS0N_M0/I2C0_SDA_M0/TKEY0_M0/TKEY_DRIVE_M0/PWM_AUDIO_L_M0/I2C2_
26	SDA_M1/GPIO0_B4_d
	PWM1_M1/UART0_RTSN_M0/SPI0_CLK_M0/I2C0_SCL_M0/TKEY1_M0/PWM_AUDIO_R_M0/I2C2_SCL_M1/GPIO0_B5
27	_d
28	PWM2_M1/UART0_RX_M0/SPI0_MOSI_M0/I2C1_SDA_M0/TKEY2_M0/GPIO0_B6_d
29	PWM3_M1/UART0_TX_M0/SPI0_MISO_M0/I2C1_SCL_M0/TKEY3_M0/TKEY_DRIVE_M2/GPIO0_B7_d
30	PWM7_M1/SPI0_CS1N/SPI1_CS1N/GPIO1_D0_u
31	VCCIO3
32	VDD
33	EFUSE_VDD_2V5
34	SRADC0/PWM0_M0/UART1_CTSN_M0/SPI0_CS0N_M1/I2S_SDO1_M0/SDMMC_CLKOUT/TKEY9/GPIO0_C0_u
35	SRADC2/PWM2_M0/UART1_RX_M0/SPI0_MOSI_M1/I2C1_SCL_M1/I2S_LRCK_RX_M0/SDMMC_D0/TKEY11/GPI00_C
- 55	2_u
36	SRADC4/PWM4_M0/UART0_CTSN_M1/SPI1_CS0N_M0/PDM_CLK_M1/I2S_SCLK_TX_M0/TKEY5_M0/GPI00_C4_u
37	SRADC1/PWM1_M0/UART1_RTSN_M0/SPI0_CLK_M1/I2C1_SDA_M1/I2S_SCLK_RX_M0/SDMMC_CMD/TKEY10/GPI0
- 01	0_C1_u
38	SRADC3/PWM3_M0/UART1_TX_M0/SPI0_MISO_M1/PDM_CLK_S_M1/I2S_MCLK_M0/TKEY4_M0/TKEY_DRIVE_M1/G
	PIO0_C3_d
39	SRADC6/PWM6_M0/UART0_RX_M1/SPI1_MOSI_M0/I2C0_SDA_M1/I2S_SDO_M0/TKEY7/PWM_AUDIO_L_M1/GPI00_
	C6_0
40	SRADC5/PWM5_M0/UART0_RTSN_M1/SPI1_CLK_M0/PDM_SDI_M1/I2S_LRCK_TX_M0/TKEY6_M0/GPI00_C5_u
41	SRADC7/PWM7_M0/UART0_TX_M1/SPI1_MISO_M0/I2C0_SCL_M1/I2S_SDI_M0/TKEY8/PWM_AUDIO_R_M1/PMIC_IN
	T_M1/GPIO0_C7_d
42	ADC_AVDD_3V3
43	VDD
44	VSS
45	AVSS
46	RF_VDD_1V1
47	RF_VDD_1V8
48	WIFI_OSC_AVSS VIN_40M
49 50	XIN_40M
50	XOUT_40M
51	WIFI_OSC_AVSS PE_VDD_1V8
52	RF_VDD_1V8

No.	Pin Name
53	RF_PAD_REFRES
54	RF_VDD_1V8
55	AVSS
56	RF_PAD_RFIO
57	AVSS
58	RF_VDD_3V3
59	VSS
60	VDD
61	OTG_ID
62	OTG_VBUS
63	OTG_VDD_3V3
64	OTG_DM
65	OTG_DP
66	OTG_EXTR
67	CODEC_CLK_M0/PWM4_M1/TKEY0_M1/UART1_RX_M2/TKEY_DRIVE_M4/I2C0_SDA_M3/PWM_AUDIO_L_M2/GPI00
07	_D0_u
68	CODEC_DAC_DL_M0/PWM8/TKEY3_M1/UART2_RTSN_M0/SPI1_MOSI_M2/I2S_SCLK_TX_M1/GPI00_D3_u
EPAD1	VSS
EPAD2	AVSS

2.6 Power/Ground IO Description

Table 2-2 Power/Ground IO information

Group	Ball#	Descriptions
VSS	44,59,EPAD1	Digital Ground
AVSS	45,55,57,EPAD2	Analog Ground
WIFI_OSC_AVSS	48,51	WLAN OSC Analog Ground
	•	
VDD	3,9,32,43,60	Digital Power
VCCIO0	12,25	VCCIO0 Power Domain Power
VCCIO2	5	VCCIO2 Power Domain Power
VCCIO3	31	VCCIO3 Power Domain Power
VCCIO4	8	VCCIO4 Power Domain Power
	*	
OTG_VDD_3V3	63	USB OTG2.0 PHY Power
RF_VDD_1V1	46	WLAN Digital Power
RF_VDD_1V8	47,52,54	WLAN Analog Power
RF_VDD_3V3	58	WLAN Analog Power
ADC_AVDD_3V3	42	SARADC Analog Power
EFUSE_VDD_2V5	33	eFuse Analog Power

2.7 Function IO Description

Table 2-3 Function IO description

Pin	Pin Name	Func1	Func2	Func3	Func4	Func5	Func6	Func7	Func8	Func9	Func10	Pad Type①	Def3	Pull	Drive Strength②	INT	Power Domain
10	NPOR_u	NPOR										1	I	up			
11	TVSS	TVSS										I	I	down			
17	LCD_D0/CIF_D0/I2C0_SDA_ M2/TKEY12/M4F_WFI/M4F_J TAG_TCK/M0_JTAG_TCK/A0 NJTAG_TCK/DSPJTAG_TCK/G PIO0_A0_u	LCD_D0	CIF_D0	I2C0_SD A_M2	TKEY12	M4F_W FI	M4F_JTA G_TCK	M0_JTA G_TCK	AONJTA G_TCK	DSPJTAG _TCK	GPIOO_ A0	I/O	I	up	8mA	√	
18	LCD_D1/CIF_D1/I2C0_SCL_ M2/TKEY13/M0_WFI/M4F_JT AG_TMS/M0_JTAG_TMS/AON JTAG_TMS/DSPJTAG_TMS/GP IO0_A1_u	LCD_D1	CIF_D1	I2C0_SC L_M2	TKEY13	M0_WF	M4F_JTA G_TMS	M0_JTA G_TMS	AONJTA G_TMS	DSPJTAG _TMS	GPIOO_ A1	I/O	I	up	8mA	√	
14	LCD_RS/CIF_HREF/I2C1_SD A_M2/TKEY14/TKEY_DRIVE_ M3/PMU_STATE0/AONJTAG_T DI/DSPJTAG_TDI/GPI00_A2_ u	LCD_RS	CIF_HRE F	I2C1_SD A_M2	TKEY14	TKEY_ DRIVE_ M3	PMU_ST ATE0	AONJTA G_TDI	DSPJTA G_TDI	GPIO0_A		I/O	I	up	8mA	√	
13	LCD_CSN/CIF_VSYNC/I2C1_ SCL_M2/TKEY15/PMU_DEBU G/PMU_STATE1/AONJTAG_T DO/DSPJTAG_TDO/GPIO0_A3 _u	LCD_CSN	CIF_VSY NC	I2C1_SC L_M2	TKEY15	PMU_D EBUG	PMU_ST ATE1	AONJTA G_TDO	DSPJTA G_TDO	GPIO0_A		I/O	I	up	8mA	√	VCCIO0
16	LCD_RDN/CIF_CLKOUT/UART 1_CTSN_M1/TKEY16/PMU_SL EEP/PMU_STATE2/CODEC_CL K_M1/AONJTAG_TRSTN/DSPJ TAG_TRSTN/GPIO0_A4_u	LCD_RD N	CIF_CLK OUT	UART1_ CTSN_M 1	TKEY16	PMU_S LEEP	PMU_ST ATE2	CODEC_ CLK_M1	AONJTA G_TRS TN	DSPJTAG _TRSTN	GPIO0_ A4	I/O	I	up	8mA	√	
15	LCD_WRN/CIF_CLKIN/UART1 _RTSN_M1/PDM_CLK_M0/TK EY17/PMU_STATE3/CODEC_S YNC_M1/GPIO0_A5_d	LCD_WR	CIF_CLKI N	UART1_ RTSN_M 1	PDM_CL K_M0	TKEY17	PMU_ST ATE3	CODEC_ SYNC_M 1	GPIO0_ A5			I/O	I	down	8mA	√	
19	LCD_D2/CIF_D2/UART1_RX_ M1/PDM_SDI_M0/TKEY18/PM U_STATE4/CODEC_ADC_D_M 1/GPIO0_A6_d	LCD_D2	CIF_D2	UART1_ RX_M1	PDM_S DI_M0	TKEY18	PMU_ST ATE4	CODEC_ ADC_D_ M1	GPIO0_ A6			I/O	I	down	8mA	√	
20	LCD_D3/CIF_D3/UART1_TX_ M1/PDM_CLK_S_M0/TKEY19/ TEST_CLKOUT/CODEC_DAC_ DL_M1/GPIO0_A7_d	LCD_D3	CIF_D3	UART1_ TX_M1	PDM_CL K_S_M0	TKEY19	TEST_CL KOUT	CODEC_ DAC_DL _M1	GPIO0_ A7			I/O	I	down	8mA	√	
21	LCD_D4/CIF_D4/UART2_CTS N_M1/SPI1_CS0N_M1/SPI_S LV_CSN/GPI00_B0_u	LCD_D4	CIF_D4	UART2_ CTSN_M 1	SPI1_C SON_M1	SPI_SL V_CSN	GPIO0_ B0					I/O	I	up	8mA	√	

Pin	Pin Name	Func1	Func2	Func3	Func4	Func5	Func6	Func7	Func8	Func9	Func10	Pad Type①	Def3	Pull	Drive Strength②	INT	Power Domain
22	LCD_D5/CIF_D5/UART2_RTS N_M1/SPI1_CLK_M1/SPI_SL V_CLK/GPIO0_B1_u	LCD_D5	CIF_D5	UART2_ RTSN_M 1	SPI1_CL K_M1	SPI_SL V_CLK	GPIO0_ B1					NO	I	up	8mA	√	
23	LCD_D6/CIF_D6/UART2_RX_ M1/SPI1_MOSI_M1/SPI_SLV _MOSI/GPI00_B2_u	LCD_D6	CIF_D6	UART2_ RX_M1	SPI1_M OSI_M1	SPI_SL V_MOS I	GPIO0_ B2					I/O	I	up	8mA	√	
24	LCD_D7/CIF_D7/UART2_TX_ M1/SPI1_MISO_M1/SPI_SLV _MISO/GPIO0_B3_u	LCD_D7	CIF_D7	UART2_ TX_M1	SPI1_MI SO_M1	SPI_SL V_MIS O	GPIOO_ B3					I/O	I	up	8mA	√	
26	PWM0_M1/UART0_CTSN_M0/ SPI0_CS0N_M0/I2C0_SDA_M 0/TKEY0_M0/TKEY_DRIVE_M 0/PWM_AUDIO_L_M0/I2C2_S DA_M1/GPI00_B4_d	PWM0_M 1	UARTO_C TSN_M0	SPIO_CS 0N_M0	I2C0_S DA_M0	TKEY0_ M0	TKEY_D RIVE_M 0	PWM_A UDIO_L _M0	I2C2_S DA_M1	GPIO0_B		I/O	I	down	8mA	√	
27	PWM1_M1/UARTO_RTSN_M0/ SPI0_CLK_M0/I2C0_SCL_M0/ TKEY1_M0/PWM_AUDIO_R_M 0/I2C2_SCL_M1/GPI00_B5_d	PWM1_M	UARTO_R TSN_M0	SPIO_CL K_M0	I2C0_S CL_M0	TKEY1_ M0	PWM_AU DIO_R_ M0	I2C2_S CL_M1	GPIOO_ B5			I/O	I	down	8mA	√	
28	PWM2_M1/UART0_RX_M0/SP I0_MOSI_M0/I2C1_SDA_M0/ TKEY2_M0/GPI00_B6_d	PWM2_M 1	UARTO_R X_M0	SPIO_M OSI_MO	I2C1_S DA_M0	TKEY2_ M0	GPIO0_ B6					I/O	I	down	8mA	√	
29	PWM3_M1/UARTO_TX_M0/SP I0_MISO_M0/I2C1_SCL_M0/ TKEY3_M0/TKEY_DRIVE_M2/ GPIO0_B7_d	PWM3_M 1	UARTO_T X_M0	SPIO_MI SO_M0	I2C1_S CL_M0	TKEY3_ M0	TKEY_D RIVE_M 2	GPIOO_ B7),			I/O	I	down	8mA	√	
30	PWM7_M1/SPI0_CS1N/SPI1_ CS1N/GPIO1 D0 u	PWM7_M 1	SPIO_CS 1N	SPI1_CS 1N	GPIO1_ D0							I/O	I	up	8mA	√	
34	SRADCO/PWM0_M0/UART1_C TSN_M0/SPI0_CS0N_M1/I2S _SD01_M0/SDMMC_CLKOUT /TKEY9/GPI00_C0_u	SRADC0	PWM0_M 0	UART1_ CTSN_M 0	SPIO_C SON_M1	I2S_SD O1_M0	SDMMC_ CLKOUT	TKEY9	GPIO0_ C0			I/O	I	up	8mA	√	
37	SRADC1/PWM1_M0/UART1_R TSN_M0/SPI0_CLK_M1/I2C1 _SDA_M1/I2S_SCLK_RX_M0/ SDMMC_CMD/TKEY10/GPI00 _C1_u	SRADC1	PWM1_M 0	UART1_ RTSN_M 0	SPIO_CL K_M1	I2C1_S DA_M1	I2S_SCL K_RX_M 0	SDMMC _CMD	TKEY10	GPIO0_C		I/O	I	up	8mA	√	
35	SRADC2/PWM2_M0/UART1_R X_M0/SPI0_MOSI_M1/I2C1_ SCL_M1/I2S_LRCK_RX_M0/S DMMC_D0/TKEY11/GPIO0_C 2 u	SRADC2	PWM2_M 0	UART1_ RX_M0	SPIO_M OSI_M1	I2C1_S CL_M1	I2S_LRC K_RX_M 0	SDMMC _D0	TKEY11	GPIO0_C 2		I/O	I	up	8mA	√	ADC_AVDD_3V3
38	SRADC3/PWM3_M0/UART1_T X_M0/SPI0_MISO_M1/PDM_ CLK_S_M1/I2S_MCLK_M0/TK EY4_M0/TKEY_DRIVE_M1/GP IO0_C3_d	SRADC3	PWM3_M 0	UART1_ TX_M0	SPI0_MI SO_M1	PDM_C LK_S_ M1	I2S_MCL K_M0	TKEY4_ M0	TKEY_D RIVE_M 1	GPIO0_C		I/O	I	down	8mA	√	
36	SRADC4/PWM4_M0/UART0_C TSN_M1/SPI1_CS0N_M0/PD	SRADC4	PWM4_M 0	UARTO_ CTSN_M 1	SPI1_C SON_M0	PDM_C LK_M1	I2S_SCL K_TX_M 0	TKEY5_ M0	GPIO0_ C4			I/O	I	up	8mA	√	

Pin	Pin Name	Func1	Func2	Func3	Func4	Func5	Func6	Func7	Func8	Func9	Func10	Pad Type(1)	Def3	Pull	Drive Strength(2)	INT	Power Domain
	M_CLK_M1/I2S_SCLK_TX_M0 /TKEY5 M0/GPIO0 C4 u														3.0		
40	SRADC5/PWM5_M0/UART0_R TSN_M1/SPI1_CLK_M0/PDM_ SDI_M1/I2S_LRCK_TX_M0/T KEY6_M0/GPI00_C5_u	SRADC5	PWM5_M 0	UARTO_ RTSN_M 1	SPI1_CL K_M0	PDM_S DI_M1	I2S_LRC K_TX_M 0	TKEY6_ M0	GPIO0_ C5			I/O	I	up	8mA	√	
39	SRADC6/PWM6_M0/UART0_R X_M1/SPI1_MOSI_M0/I2C0_ SDA_M1/I2S_SD0_M0/TKEY 7/PWM_AUDIO_L_M1/GPIO0 C6_u	SRADC6	PWM6_M 0	UARTO_ RX_M1	SPI1_M OSI_M0	I2C0_S DA_M1	I2S_SD O_M0	TKEY7	PWM_A UDIO_L _M1	GPIOO_C	0	I/O	I	up	8mA	√	
41	SRADC7/PWM7_M0/UART0_T X_M1/SPI1_MISO_M0/I2C0_ SCL_M1/I2S_SDI_M0/TKEY8/ PWM_AUDIO_R_M1/PMIC_IN T_M1/GPI00_C7_d	SRADC7	PWM7_M 0	UARTO_ TX_M1	SPI1_MI SO_M0	I2C0_S CL_M1	I2S_SDI _M0	TKEY8	PWM_A UDIO_ R_M1	PMIC_IN T_M1	GPIOO_ C7	I/O	I	down	8mA	√	
67	CODEC_CLK_M0/PWM4_M1/T KEY0_M1/UART1_RX_M2/TKE Y_DRIVE_M4/I2C0_SDA_M3/ PWM_AUDIO_L_M2/GPIO0_D 0_u	CODEC_ CLK_M0	PWM4_M 1	TKEYO_ M1	UART1_ RX_M2	TKEY_ DRIVE_ M4	I2C0_SD A_M3	PWM_A UDIO_L _M2	GPIO0_ D0			I/O	I	up	8mA	~	
1	CODEC_SYNC_M0/PWM5_M1 /TKEY1_M1/UART1_TX_M2/S PI1_CSON_M2/I2CO_SCL_M3 /PWM_AUDIO_R_M2/GPIOO_ D1_u	CODEC_ SYNC_M 0	PWM5_M 1	TKEY1_ M1	UART1_ TX_M2	SPI1_C SON_M 2	I2C0_SC L_M3	PWM_A UDIO_R _M2	GPIO0_ D1			I/O	I	up	8mA	~	
4	CODEC_ADC_D_M0/PWM6_M 1/TKEY2_M1/UART2_CTSN_ M0/SPI1_CLK_M2/I2S_MCLK _M1/GPI00_D2_u	CODEC_ ADC_D_ M0	PWM6_M 1	TKEY2_ M1	UART2_ CTSN_M 0	SPI1_C LK_M2	I2S_MCL K_M1	GPIO0_ D2				I/O	I	up	8mA	√	
68	CODEC_DAC_DL_M0/PWM8/T KEY3_M1/UART2_RTSN_M0/ SPI1_MOSI_M2/I2S_SCLK_T X_M1/GPIO0_D3_u	CODEC_ DAC_DL_ M0	PWM8	TKEY3_ M1	UART2_ RTSN_M 0	SPI1_M OSI_M 2	I2S_SCL K_TX_M 1	GPIO0_ D3				I/O	I	up	8mA	√	VCCIO2
2	PMIC_INT_M0/PWM9/TKEY4_ M1/UART2_RX_M0/SPI1_MIS O_M2/I2S_LRCK_TX_M1/GPI O0_D4_u	PMIC_IN T_M0	PWM9	TKEY4_ M1	UART2_ RX_M0	SPI1_M ISO_M 2	I2S_LRC K_TX_M 1	GPIO0_ D4				I/O	I	up	8mA	√	
6	I2C2_SDA_M0/PWM10/TKEY 5_M1/UART2_TX_M0/I2C1_S DA_M3/I2S_SD00_M1/PWM_ AUDIO_L_M3/GPI00_D5_u	I2C2_SD A_M0	PWM10	TKEY5_ M1	UART2_ TX_M0	I2C1_S DA_M3	I2S_SD 00_M1	PWM_A UDIO_L _M3	GPIO0_ D5			I/O	I	up	8mA	√	
7	I2C2_SCL_M0/PWM11/TKEY6 _M1/TKEY_DRIVE_M5/I2C1_ SCL_M3/I2S_SDI_M1/PWM_ AUDIO_R_M3/GPIO0_D6_u	I2C2_SC L_M0	PWM11	TKEY6_ M1	TKEY_D RIVE_M 5	I2C1_S CL_M3	I2S_SDI _M1	PWM_A UDIO_R _M3	GPIO0_ D6			I/O	I	up	8mA	√	
49	XIN_40M	XIN_40M	X									I	I				RF_VDD_1V8/RF_VD
50	XOUT_40M	XOUT_40 M		•								0	0				

Pin	Pin Name	Func1	Func2	Func3	Func4	Func5	Func6	Func7	Func8	Func9	Func10	Pad Type①	Def3	Pull	Drive Strength②	INT	Power Domain
53	RF_PAD_REFRES	RF_PAD_ REFRES										A					
56	RF_PAD_RFIO	RF_PAD_ RFIO										А	9				
61	OTG_ID	OTG_ID										A					
62	OTG_VBUS	OTG_VB US										A					
64	OTG_DM	OTG_DM										A					OTG_VDD_3V3
	OTG_DP	OTG_DP										Α					
	OTG_EXTR	OTG_EXT R										А					

Notes:

@: Pad types: I = input, O = output, I/O = input/output (bidirectional)

AP = Analog Power, AG = Analog Ground DP = Digital Power, DG = Digital Ground

A = Analog

②: Output Drive Unit is mA, only Digital IO has drive value;

③: Reset state: I = input, O = output;

2.8 IO Pin Name Description

This sub-chapter will focus on the detailed function description of every pins based on different interface.

Table 2-4 IO function description list

Interface	Pin Name	Direction	Description
	XIN_40M	I	Clock input of 40MHz crystal
NA:	XOUT_40M	0	Clock output of 40MHz crystal
Misc	NPOR	I	Chip hardware reset
	TVSS	I	Chip test mode enable

Intouface	Din Name	Divoction	Description
Interface	Pin Name	Direction	Description
	M4F_JTAG_TCK	I	SWD interface tck signal for Cortex-M4F
	M4F_JTAG_TMS	I/O	SWD interface tms signal for Cortex-M4F
	M0JTAG_TCK	I	SWD interface tck signal for Cortex-M0
	M0JTAG_TMS	I/O	SWD interface tms signal for Cortex-M0
	AONJTAG_TCK	I	JTAG interface tck signal for WLAN
	AONJTAG_TMS	I	JTAG interface tms signal for WLAN
	AONJTAG_TRSTN	I	JTAG interface trstn signal for WLAN
	AONJTAG_TDI	I	JTAG interface tdi signal for WLAN
	AONJTAG_TDO	0	JTAG interface tdo signal for WLAN
	DSPJTAG_TCK	I	JTAG interface tck signal for DSP
	DSPJTAG_TMS	Ī	JTAG interface tms signal for DSP
DEBUG	DSPJTAG_TRSTN	I	JTAG interface trstn signal for DSP
DLBOG	DSPJTAG_TDI	I	JTAG interface tdi signal for DSP
	DSPJTAG_TDO	0	JTAG interface tdo signal for DSP
	PMU_STATE0	0	PMU state machine debug output signal
	PMU_STATE1	0	PMU state machine debug output signal
	PMU_STATE2	0	PMU state machine debug output signal
	PMU_STATE3	0	PMU state machine debug output signal
	PMU_STATE4	0	PMU state machine debug output signal
	PMU_DEBUG	0	PMU state machine debug output signal
	M4F_WFI	0	Cortex-M4F WFI indication signal
	M0_WFI	0	Cortex-M0 WFI indication signal
	TEST_CLKOUT	0	Chip internal clock output for measurement
	PMU_SLEEP	0	Chip low power mode output indication signal

Interface	Pin Name	Direction	Description
	SDMMC_CLKOUT	0	sdmmc card clock
SD/MMC	SDMMC_CMD	I/O	sdmmc card command output and response input
	SDMMC_D0	I/O	sdmmc card data input and output

Interface	Pin Name	Direction	Description
	LCD_RS	0	i8080 interface command/data signa
	LCD_CSN	0	i8080 interface chip select
VOP	LCD_WRN	0	i8080 interface write enable
	LCD_RDN	0	i8080 interface read enable
	LCD_Di(i=0~7)	0	i8080 interface data output

Interface	Pin Name	Direction	Description
	CIF_CLKIN	I	Camera interface input pixel clock
	CIF_CLKOUT	0	Camera interface output work clock
VICAP	CIF_VSYNC	I	Camera interface vertical sync signal
	CIF_HREF	I	Camera interface horizontal sync signal
	CIF_D <i>i</i> (<i>i</i> =0~7)	I	Camera interface input pixel data

Interface	Pin Name	Direction	Description
	I2S_MCLK_M $j(j=0\sim1)$	0	I2S/PCM/TDM clock source
	I2S_SCLK_RX_M <i>j</i> (<i>j</i> =0~1)	I/O	I2S/PCM/TDM receiving serial clock
	I2S_SCLK_TX_M $j(j=0\sim1)$	I/O	I2S/PCM/TDM transmitting serial clock
I2S	I2S_LRCK_RX_M $j(j=0\sim1)$ ($i=0\sim1$)	I/O	I2S/PCM/TDM left & right channel signal for receiving serial data
125	I2S_LRCK_TX_M $j(j=0\sim1)$	I/O	I2S/PCM/TDM left & right channel signal for transmitting serial data
	I2S_SDO_M $j(j=0\sim1)$	0	I2S/PCM/TDM serial data output
	I2S_SDO1_M <i>j</i> (<i>j</i> =0~1)	0	I2S/PCM/TDM serial data output
	I2S_SDI_M <i>j</i> (<i>j</i> =0~1)	I	I2S/PCM/TDM serial data input

Interface	Pin Name	Direction	Description
	PDM_CLK_M $j(j=0\sim1)$	0	PDM sampling clock
PDM	PDM_CLK_S_M $j(j=0\sim1)$	0	PDM sampling clock
	PDM_SDI_M <i>j</i> (<i>j</i> =0~2)	I	PDM data

Interface	Pin Name	Direction	Description				
	SPI <i>i</i> _CLK_M <i>j</i> (<i>i</i> =0,1; <i>j</i>	T/O	SPI serial clock				
	=0,1,2)	I/O	SPI Selidi Clock				
	SPI <i>i</i> _CSN0_M <i>j</i> (<i>i</i> =0,1;	1/0	CDI chin coloct cignal law active				
CDI	j=0,1,2)	I/O	SPI chip select signal, low active				
SPI	SPIi_MISO_Mj(i=0,1;	1/0	CDI covial data input/output				
	j=0,1,2)	I/O	SPI serial data input/output				
	SPIi_MOSI_Mj(i=0,1;	1/0	CDI covial data input/output				
	j=0,1,2)	I/O	SPI serial data input/output				

Interface	Pin Name	Direction	Description
SPI2APB	SPI_SLV_CLK	I	SPI2APB serial clock

Interface	Pin Name	Direction	Description
	SPI_SLV_CSN	I	SPI2APB chip select signal, low active
	SPI_SLV_MOSI	I	SPI serial data input
	SPI_SLV_MISO	0	SPI serial data output

Interface	Pin Name	Direction	Description
	PWM0_Mj(j=0,1)	I/O	Pulse Width Modulation input and output
	PWM1_Mj(j=0,1)	I/O	Pulse Width Modulation input and output
	PWM2_Mj(j=0,1)	I/O	Pulse Width Modulation input and output
	D)MM2 Mi(i 0 1)	I/O	Pulse Width Modulation input and output, can
	PWM3_Mj(j=0,1)		be used for IR application
	PWM4_Mj(j=0,1)	I/O	Pulse Width Modulation input and output
	PWM5_Mj(j=0,1)	I/O	Pulse Width Modulation input and output
PWM	PWM6_Mj(j=0,1)	I/O	Pulse Width Modulation input and output
	PWM7_Mj(j=0,1) I/O	1/0	Pulse Width Modulation input and output, can
		1/0	be used for IR application
	PWM8_Mj(j=0,1)	I/O	Pulse Width Modulation input and output
	PWM9_Mj(j=0,1)	I/O	Pulse Width Modulation input and output
	PWM10_Mj(j=0,1)	I/O	Pulse Width Modulation input and output
	DWM11 Mi/i=0 1	1/0	Pulse Width Modulation input and output, can
	PWM11_Mj(j=0,1)	I/O	be used for IR application

Interface	Pin Name	Direction	Description
	PWM_AUDIO_L_Mj(j	0	AUDIO PWM left channel output data
AUDIO	=0,1)		
PWM	$\begin{array}{c} PWM_AUDIO_R_Mj(j\\ =0,1) \end{array}$	О	AUDIO PWM right channel output data

Interface	Pin Name	Direction	Description
I2C	I2C i _SDA_M j (i =0,1,2; j =0,1,2,3)	I/O	I2C data
120	I2Ci_SCL_Mj(i=0,1,2 ;j=0,1,2,3)	I/O	I2C clock

Interface	Pin Name	Direction	Description	
	UART i _RX_M j (i =0,1,	т	LIADT carial data input	
	2; <i>j</i> =0,1,2)	1	UART serial data input	
	UART <i>i_</i> TX_M <i>j</i> (<i>i</i> =0,1,	0	LIADT carial data output	
UART	2; <i>j</i> =0,1,2)	O	UART serial data output	
UAKT	UART <i>i</i> _CTSN_M <i>j</i> (<i>i</i> =0,	т.	UART clear to send modem status input	
	1,2; <i>j</i> =0,1,2)	1	OAKT clear to send modern status input	
	UART <i>i_</i> RTSN_M <i>j</i> (<i>i</i> =0,	0	LIADT modern central request to send output	
	1,2; <i>j</i> =0,1,2)	O	UART modem control request to send output	

Interface	Pin Name	Direction	Description		
	TKEY $i_Mj(i=0\sim19;j=$	т	Touch You data input		
Touch Koy	0,1)	1	Touch Key data input		
Touch Key	TKEY_DRIVE_M $j(j=0,$	0	Tayah Kayadiiya alaak aybayb		
	1,2,3,4,5)	0	Touch Key drive clock output		

Interface	Pin Name	Direction	Description
	OTG_DP	I/O	USB 2.0 Data signal DP
	OTG_DM	I/O	USB 2.0 Data signal DM
	OTC EVED	0	Connect 133 ohm resistor to ground to
USB 2.0	OTG_EXTR	O	generate reference current
	OTG_VBUS	I	Insert detect when act as USB device
	OTG_ID	I	USB Mini-Receptacle Identifier

Interface	Pin Name	Direction	Description
	CODEC_CLK_Mj(i=0,	0	Codec clock output signal
	CODEC_SYNC_Mj(i= 0,1)	0	Codec data sync signal
Audio Codec	CODEC_ADC_D_M $j(i = 0,1)$	I	Codec ADC data input
	CODEC_DAC_DL_Mj(i =0,1)	0	Codec DAC data output
	PMIC_INT_Mj(i=0,1)	1	External PMIC chip interrupt indication signal

2.9 IO Type

The following list shows Digital IO type.

Table 2-5 IO Type List

Туре	Diagram	Description	Pin Name
В	C PAD PAD OEN	Tri-State Output Pad with Schmitt Trigger Input and Enable Controlled Pull-Down, Fail-Safe	Pad of digital GPIO

Chapter 3 Electrical Specification

3.1 Absolute Ratings

The below table provides the absolute ratings. Absolute maximum ratings specify the values beyond which the device may be damaged permanently. Long-term exposure to absolute maximum ratings conditions may affect device reliability.

Table 3-1 Absolute ratings

Parameters	Related Power Group	Min	Max	Unit
Supply voltage for Digital	VDD	0	1.21	V
Supply voltage for VCCIO0	VCCIO0	0	3.63	>
Supply voltage for VCCIO2	VCCIO2	0	3.63	V
Supply voltage for VCCIO3	VCCIO3	0	3.63	>
Supply voltage for VCCIO4	VCCIO4	0	3.63	٧
Supply voltage for USB	OTG_VDD_3V3	0	3.63	٧
Supply voltage for WLAN	RF_VDD_1V1	0	1.21	٧
Supply voltage for WLAN	RF_VDD_1V8	0	1.98	٧
Supply voltage for WLAN	RF_VDD_3V3	0	3.63	٧
Supply voltage for SARADC	ADC_AVDD_3V3	0	3.63	V
Supply voltage for eFuse	EFUSE_VDD_2V5	0	2.75	V
Storage Temperature	Tstg	-40	125	°C
Max Conjunction Temperature	Tj	-40	125	°C

3.2 Recommended Operating Condition

Following table describes the recommended operating condition.

Table 3-2 Recommended operating condition

Parameters	Symbol	Min	Тур	Max	Unit
Supply voltage for Digital	VDD	0.99	1.10	1.21	V
Supply voltage for VCCIO0	VCCIO0	2.97	3.30	3.63	V
Supply voltage for VCCIO2	VCCIO2	2.97	3.30	3.63	V
Supply voltage for vcc102	VCCIO2	1.62	1.80	1.98	V
Cupply veltage for VCCIO2	VCCIO3	2.97	3.30	3.63	V
Supply voltage for VCCIO3	VCC103	1.62	1.80	1.98	V
Supply voltage for VCCIO4	VCCIO4	2.97	3.30	3.63	V
	VCC104	1.62	1.80	1.98	
Supply voltage for USB	OTG_VDD_3V3	2.97	3.30	3.63	V
Supply voltage for WLAN	RF_VDD_1V1	0.99	1.10	1.21	V
Supply voltage for WLAN	RF_VDD_1V8	1.62	1.80	1.98	V
Supply voltage for WLAN	RF_VDD_3V3	2.97	3.30	3.63	V
Supply voltage for SARADC	ADC_AVDD_3V3	2.97	3.30	3.63	V
Supply voltage for eFuse	EFUSE_VDD_2V5	2.25	2.50	2.75	V
OSC input clock frequency		N/A	40	N/A	MHz
Ambient Operating Temperature	Та	TBD	25	TBD	°C

Notes:

②: Symbol name is same as the pin name in the io descriptions

3.3 DC Characteristics

Table 3-3 DC Characteristics

	Parameters	Symbol	Min	Тур	Max	Unit
	Input Low Voltage	Vil	-0.3	NA	0.8	V
	Input High Voltage	Vih	2.0	NA	3.6	V
Digital GPIO	Output Low Voltage	Vol	NA	NA	0.4	V
@3.3V mode	Output High Voltage	Voh	2.4	NA	NA	V
	Pullup Resistor	Rpu	58	86	133	Kohm
	Pulldown Resistor	Rpd	52	78	128	Kohm
	Input Low Voltage	Vil	-0.3	NA	0.63	V
	Input High Voltage	Vih	1.17	NA	3.6	V
Digital GPIO	Output Low Voltage	Vol	NA	NA	0.45	V
@1.8V mode	Output High Voltage	Voh	1.35	NA	NA	V
	Pullup Resistor	Rpu	117	194	331	Kohm
	Pulldown Resistor	Rpd	91	159	291	Kohm

3.4 Electrical Characteristics for General IO

Table 3-4 Electrical Characteristics for Digital General IO

Parameters		Symbol	Test condition	Min	Тур	Max	Unit
	Input leakage current	Ii	Vin = 3.3V or 0V	NA	NA	10	uA
	Tri-state output leakage current	Ioz	Vout = 3.3V or 0V	NA	NA	10	uA
Digital GPIO		Iih	Vin = 3.3V, pull down disabled	NA	NA	10	uA
@3.3V mode	High level input current	1111	Vin = 3.3V, pull down enabled	NA	NA	63	uA
	Low level input current	Iil	Vin = 0V, pull up disabled	NA	NA NA	10	uA
	Low level input current	111	Vin = 0V, pull up enabled	NA		57	uA
	Input leakage current	Ii	Vin = 1.8V or 0V	NA	NA	10	uA
	Tri-state output leakage current	Ioz	Vout = 1.8V or 0V	NA	NA	10	uA
Digital GPIO	High level input current	Iih	Vin = 1.8V, pull down disabled NA NA	NA	10	uA	
@1.8V mode	riigii level iiiput current	1	Vin = 1.8V, pull down enabled		NA	20	uA uA uA uA uA
	Low level input current	Til	Vin = 0V, pull up disabled	NA	NA	10	uA
	Low level lilput current	111	Vin = 0V, pull up enabled		NA	15	uA

3.5 Electrical Characteristics for PLL

Table 3-5 Electrical Characteristics for PLL

	Parameters	Symbol	Test condition	Min	Тур	Max	Unit
	Input clock	Fin	Fin = FREF	1		800	MHz
	frequency(Int)	• ""	@3.3V/1.1V	_		000	2
	Input clock	Fin	Fin = FREF	10		800	MHz
	frequency(Frac)	ı ın	@3.3V/1.1V	10		000	11112
	VCO operating range	F_vco	Fvco = Fref * FBDIV	375		2400	MHz
	veo operating range	I vco	@3.3V/1.1V	3/3		2400	MIZ
	Output clock frequency	Fout	Fout = Fvco/POSTDIV	12		2400	MHz
	Output clock frequency	Fout	@3.3V/1.1V	12		2400	MITIZ
			FREF=40M,REFDIV=1				Input
PLL	Lock time	T _{lt}	@3.3V/1.1V		1000	1500	clock
			w3.3V/1.1V				cycles
			Fvco = 1000MHz,				
	VDDHV current		@3.3V		0.85	1	mA
	consumption		Current scale as		0.65	1	IIIA
			(Fvco/1GHz) ^{1.5}				
	DVDD Current		DVDD =1.1V		0.8	1.56	uA/MHz
	consumption		DVDD =1.1V		0.8	1.56	u <i>A</i> y™⊓Z
	Power consumption		DD LITCH @27 °C	•	0.09@3.3v		
	(power-down mode)		PD=HIGH, @27 °C		6@1.1v		uA

Notes:

3.6 Electrical Characteristics for USB 2.0 Interface

Table 3-6 Electrical Characteristics for USB 2.0 Interface

Paramete	ers	Test condition	Min	Тур	Max	Units
HS transmit, maximum OTG_DVDD			N/A	5.35	N/A	mA
transition density (all 0's data in DP/DM)	Current From OTG_VDD_3V3		N/A	24	N/A	mA
(all 1's data in DP/DM) Current From OTG VDD 3V3	75°C , OTG VDD 3V3 = 3.3V,	N/A	4.07	N/A	mA	
	OTG_DVDD = 1.1V , 15-cm USB cable attached to	N/A	19.9	N/A	mA	
HS idle mode	Current From OTG_DVDD	DP/DM	N/A	5.4	N/A	mA
C	Current From OTG_VDD_3V3		N/A	9.16	N/A	mA
	Current From OTG_DVDD		N/A	3.25	N/A	mA

[@] REFDIV is the input divider value;

[@] FBDIV is the feedback divider value;

[§] VDDHV is supplied by ADC_AVDD_3V3, DVDD is supplied by VDD

Paramet	ers	Test condition	Min	Тур	Max	Units
FS transmit, maximum transition density (all 0's data in DP/DM)	Current From OTG_VDD_3V3		N/A	23.6	N/A	mA
LS transmit, maximum	Current From OTG_DVDD		N/A	3.62	N/A	mA
transition density (all 0's data in DP/DM)	Current From OTG_VDD_3V3		N/A	24.2	N/A	mA
Sucpord mode	Current From OTG_DVDD		N/A	61.2	N/A	uA
Suspend mode Sleep mode	Current From OTG_VDD_3V3		N/A	122	N/A	uA
	Current From OTG_DVDD		N/A	0.2	N/A	mA
	Current From OTG_VDD_3V3		N/A	760	N/A	uA

Notes:

@ OTG_DVDD is supplied by VDD

3.7 Electrical Characteristics for TSADC

Table 3-7 Electrical Characteristics for TSADC

Parameters	Symbol	Test condition	Min	Тур	Max	Unit
Temperature Resolution				+/-5		$^{\circ}$
Temperature Range			-40		125	°
Sample rate	Fs	Fs			50	KHz
Analog power	IAVDD	Fs= 50KS/s		240		uA
Digital power	IDVDD	Fs= 50KS/s		10		uA
Power Down Current from Analog	JAVDD	Power down		1		uA
Power Down Current from Digital	IDVDD	Power down		1		uA

Notes:

@ AVDD is supplied by ADC_AVDD_3V3, DVDD is supplied by VDD

3.8 Electrical Characteristics for SARADC

Table 3-8 Electrical Characteristics for SARADC

Parameters	Symbol	Test condition	Min	Тур	Max	Units
Resolution				10		bit
Effective Number of Bit	ENOB			9		bit
Differential Nonlinearity	DNL		-1		+1	LSB
Integral Nonlinearity	INL		-2		+2	LSB
Internal Reference Voltage	VREF			2.373		V

Parameters	Symbol	Test condition	Min	Тур	Max	Units
Input Voltage Range	VIN		0		1	AVDD or VREF
Input Capacitance	CIN			8		pF
Sampling Rate	fs				1	MS/s
Analog power	IAVDD	Fs= 1MS/s		450		uA
Digital power	IDVDD	Fs= 1MS/s		50		uA
Power Down Current from Analog	IAVDD	Power down		1		uA
Power Down Current from Digital	IDVDD	Power down		1	•	uA

Notes:

[@] AVDD is supplied by ADC_AVDD_3V3, DVDD is supplied by VDD

Chapter 4 Thermal Management

4.1 Overview

For reliability and operability concerns, the absolute maximum junction temperature has to be below 125°C.

4.2 Package Thermal Characteristics

Table 4-1 provides the RK2206 thermal resistance characteristics for the package used on the SoC. The resulting simulation data for reference only, please prevail in kind test.

Table 4-1 Thermal Resistance Characteristics

Parameter	Symbol	Typical	Unit
Junction-to-ambient thermal resistance	$ heta_{JA}$	29	(°C/W)
Junction-to-board thermal resistance	$ heta_{JB}$	4.5	(°C/ W)
Junction-to-case thermal resistance	θ_{JC}	9	(°C/ W)

Note: The testing PCB is 4 layers, 114.3mm×101.5mm, 1.6mm thickness, Ambient temperature is 25 °C.

