

Aritmética e códigos binários

Sistemas Digitais 2020/2021

Pedro Salgueiro CLAV-256 pds@uevora.pt

Aritmética e códigos binários

- Aritmética
 - Operações
- Números com sinal
 - Complemento para 2
 - Overflow
- Códigos
 - Códigos binários
 - Códigos numéricos
 - Códigos alfanuméricos
- Exercícios

Aritmética

Operações

Os algoritmos são idênticos aos da aritmética decimal

- Soma e multiplicação
 - Noção de transporte
- Subtração
 - Noção de empréstimo
- Os números têm de estar na mesma base!

Adição

Base 10

1 1 4 3 5 + 2 6 7 7 0 2

435 ₁₀ + 267 ₁₀ = 702₁₀

transporte

Base 2

• 1011₂+110₂=10001₂

Base 16

transporte

Subtração

Base 10

Base 2

Base 16

emrpéstimo

 40
 10
 1
 1

 1
 1
 0

 0
 1
 0
 1

empréstimo

4 A⁹ ¹5

- 2 6 B

- 2 3 A

empréstimo

$$\bullet$$
 4 A 5 ₁₆ - 2 6 B ₁₆ = 2 3 A ₁₆

Multiplicação

Base 10

Base 2

Base 16

1 0 1

x 1 1 0

0 0 0

1 0 1

+ 1 0 1

1 1 1 1 0

4 A 3
x 5 2
9 4 6
+ 1 7 2 F
1 7 C 3 6

• $435_{10} \times 23_{10} = 10005_{10}$

• 1011₂ x 110₂ = 11110₂

• 4 A 3 ₁₆ - 5 2 ₁₆ = 1 7 C 3 6 ₁₆

Multiplicação

Base 10

Base 2

Números com sinal

Números com sinal

Objetivo

Utilizar o mesmo algoritmo para operações de adição e subtração

Solução

- Encontrar uma representação adequada para os números positivos e negativos
- Sistema binário
 - Representação complemento para dois

Complemento para 2

Complemento para 2ⁿ de x

- É o resultado da operação 2ⁿ x
- Exemplo
 - O complemento para 2⁴ de 0101 é 1011
- Propriedade
 - O complemento para 2 ⁿ do complemento para 2 ⁿ de x é x
- Propriedade
 - Sendo conhecido o número de bits, diz-se apenas complemento para 2

	1	0	0	0	0
-		0	1	0	1
		1	0	1	1

Cálculo do complemento para 2

- Outra forma de calcular o complemento para 2
 - 1. Encontrar o complemento para 1
 - Trocar o valor de cada bit
 - 2. Somar 1
- Exemplo
 - O complemento para 2⁴ de 0101 é 1011
 - o 0101 complemento para 1 1010 somar 1 1011

Cálculo do complemento para 2

- Outra forma de calcular o complemento para 2
 - 1. Da direita para a esquerda, copiar os bits até ao primeiro 1 (inclusive)
 - 2. Trocar o valor de cada um dos outros bits
- Exemplo
 - O complemento para 24 de 0101 é 1011
 - 0101 copiar bits até ao primeiro 1 xxx1 trocar os outros bits 1011

Representação de números em complemento para 2 com n bits

- O bit mais significativo representa o sinal
 - 0 → o número é positivo
 - 1 → o número é negativo
- Número positivo
 - É o próprio número (representado com n bits)
- Número negativo
 - É o complemento para 2 do número positivo correspondente (representado com n bits)
- Propriedades
 - O resultado da soma de um número com o seu simétrico é zero

Intervalo de representação

- Com n bits conseguem-se representar os números no intervalo
 - \circ [-2ⁿ⁻¹, +2ⁿ⁻¹ 1]
- Exemplo
 - Com 4 bits é possível representar os números entre - 8 e 7

0000	0	1000	-8
0001	1	1001	-7
0010	2	1010	-6
0011	3	1011	-5
0100	4	1100	-4
0101	5	1101	-3
0110	6	1110	-2
0111	7	1111	-1

Adição na representação C2

Dois números positivos

$$\circ$$
 (+2) + (+5) = +7

Dois números negativos

(-2) + (-5) = -7

+ 1 0 1 1_{c2}

 Um números positivo e um negativo

	1	1	1	0 c2
+	0	1	0	1 _{c2}
4	0	0	1	1 .2

Nota: Apenas se consideram os n bits menos significativos

Subtração na representação C2

• *x* - *y* é equivalente a

$$\circ$$
 $x + (-y)$

Exemplo

	0	1	0	1 _{c2}
+	1	0	0	0 c2
	1	1	0	1 ,,

Overflow

- Que acontece se o resultado da operação estiver "fora" do intervalo de representação?
 - Existe um erro de overflow
- Quando acontece?
 - Sempre que a soma de dois números (do mesmo sinal) não for representável com o número de bits disponível
- Como verificar?
 - A soma de 2 números positivos parece ser negativa
 - A soma de 2 números negativos parece ser positiva

Overflow

Exemplo

- Representação C2 com 4 bits
 - o intervalo de representação [-8, 7]

1 0 0 0 c2 + 0 1 0 1 c2

- \bullet (+4) + (+5) = +9
 - O resultado parece negativo

- \bullet (-5) + (-6) = -11
 - o O resultado parece positivo

Códigos

Código binário

- O que é
 - Forma de representar informação com "0" e "1"s
- Como se define?
 - Estabelecem-se palavras binárias (sequências de bits) com um nº adequado de bits; e
 - Faz-se uma correspondência entre cada uma das possibilidades de informação a codificar e as palavras
- Tipos
 - Numéricos
 - Alfanuméricos

Conceitos

- Palavra de código
 - Conjunto de bits
 - Representa uma das possibilidades de informação a codificar
- Comprimento da palavra
 - Número de bits da palavra
- Código regular
 - Todas as palavras do código têm o mesmo comprimento

Código numérico

•	É um código para informação numérica o Para codificar valores numéricos	andar	cód. 1	cód. 2
		R/C	000	000
•	Exemplo o Construir um código regular para controlar o	1°	001	001
	 Construir um codigo regular para controlar o elevador de um prédio de 5 andares 	2°	010	011
	Quantas palavras?6: uma para cada andar + R/C	3°	011	010
	 Qual o comprimento mínimo? 	4°	100	110
	o 3 bits	5°	101	111

Código redundante

•	É um código com palavras de comprimento maior que o estritamente necessário	andar	cód. 1
•	A redundância confere-lhe alguma capacidade para:	R/C	0000
	detecção de erroscorreção de erros (eventualmente)	1°	0011
•	Exemplo	2°	0101
	 Código onde cada andar é codificado com um nº par de "1"s 	3°	1100
	 Se o elevador estiver num piso codificado por "0111" houve um erro! 	4°	1010
		5°	1001

Código CBN

- Código Binário Natural (CBN)
 - Código regular
 - Codifica em binário o seu equivalente decimal
- Se *n* for o comprimento da palavra
 - O nº máximo de palavras do código é 2 n
- Exemplo
 - CBN de comprimento 5
 - o Consegue codificar 32 palavras
 - Equivalentes decimais de 0₁₀ a 31₁₀

Código de Gray

• É um CBR

- Construído a partir de um CBR com palavras do mesmo tamanho;
- As palavras em linhas consecutivas são adjacentes.

Construção recursiva

- Considera-se o código com palavras de comprimento 1;
- 2. Para formar o código de n bits, parte-se do código de n 1 bits, repetindo cada uma das suas palavras por ordem inversa (reflectidas no espelho);
- 3. Junta-se-lhe o n-ésimo bit igual a 0 nas primeiras 2ⁿ⁻¹ posições e igual a 1 nas 2ⁿ⁻¹ seguintes.

3 bits

Código de Gray com 3 bits

0	0	0	0	0
0	1	0	0	1
1	1	0	1	1
1	0	0	1	0
1	0	1	1	0
1	1	1	1	1
0	1	1	0	1
0	0	1	0	0

cód. BCD

1001

decimal

Código BCD

•	BCD (binary coded decimal) – decimal codificado em binário	0	0000
	Codifica os 10 dígitos do sistema decimal	1	0001
•	Utiliza as 10 primeiras palavras de comprimento do CBN	2	0010
		3	0011
•	Cada dígito decimal é codificado diretamente em 4 bits	4	0100
		5	0101
•	Exemplos	6	0110
	 37.5₁₀ = 0011 0111 . 0101_{BCD} 1001 1001_{BCD} = 11000011₂ 	7	0111
	BCD2	8	1000

Código BCD

		decimal	cód. BCD
•	BCD (binary coded decimal) – decimal codificado em binário	0	0000
	Codifica os 10 dígitos do sistema decimal	1	0001
•	Utiliza as 10 primeiras palavras de comprimento do CBN	2	0010
		3	0011
•	Cada dígito decimal é codificado diretamente em 4 bits	4	0100
		5	0101
•	Exemplos	6	0110
	 37.5₁₀ = 0011 0111 . 0101_{BCD} 1001 1001_{BCD} = 11000011₂ 	7	0111
		8	1000
		9	1001

Código alfanumérico

- Para além de codificar informação numérica, codifica informação alfanumérica
 - Letras maiúsculas e minúsculas
 - Símbolos
 - Letras acentuadas
 - Símbolos
 - o Etc.
- Exemplos
 - ASCII
 - ISO-9960-1 (isolatin1)
 - UNICODE
 - 0 ..

Código ASCII

- ASCII American Standard Code for Information Interchange
 - Utiliza palavras de comprimento 7

Codifica

- Símbolos de controlo
- Símbolos de pontuação
- Algarismos
- Letras maiúsculas e minúsculas (A..Za..z)
- Símbolos algébricos

Limitações

- Não contém símbolos de acentuação (foi desenhado para a língua inglesa)
- Não é capaz de codificar símbolos das línguas orientais

Outros códigos

- Extensão ao ASCII
 - Pressuposto
 - Aumentar o comprimento da palavra para 8 bits, mantendo os 7 bits menos significativos iguais
 - Problema
 - Foram criados vários códigos alfanuméricos com este pressuposto
 - Exemplo: ISO-8859-1
 - Permite os caracteres acentuados das línguas da Europa Ocidental

UNICODE

 Código evolutivo com palavras de 16 bits, aberto à inclusão de novos caracteres e símbolos

Exercícios

Aritmética

- 1. A que valor (base 10) correspondem as representações C2 (com 10 bits) de:
 - a. 0001110101
 - b. 1111111101
- 2. Qual a representação C2 com 10 bits dos números (em sistema decimal):
 - a. +65
 - b. 5
- 3. Que operações realizadas em C2 com 6 bits produzem overflow?
 - a. (+30) + (+5)
 - b. (+17) (-21)

Exercícios

Códigos

- 1. Qual o código CBN de comprimento mínimo para
 - a. n=31
 - b. n=1647
 - c. n=52674
- 2. Construa o código de Gray de 5 bits
- 3. Considere o número 352.4 ₈ e represente-o em binário, decimal e BCD
- 4. Indique o código BCD para
 - a. 12.5₁₀
 - b. 123.1₁₀
 - c. 11000111₂
 - d. 21.5₈

Tarefas até à próxima aula prática

- Ficha 2: Aritmética e códigos binários
 - o 1b);
 - o 2a); 2b); 2c);
 - o 3a); 3b);
 - o 5b); 5d);
 - o 6b);