Álgebra Moderna Ejercicios Clase 1

Tomás Ricardo Basile Álvarez 316617194

25 de septiembre de 2020

(b) Prueba que si $b \in G$ satisface que ab = e entonces $b = a^{-1}$

$$ab=e$$

$$a^{-1}ab=a^{-1}e \ \text{Como}\ a\in G \ \text{entonces tiene inverso}\ a^{-1}$$
que multiplicamos a la izquierda
$$eb=a^{-1}e \ \text{Por la def. de inverso},\ a^{-1}a=e$$

$$b=a^{-1} \ \text{por la definición del neutro}$$

- c) Sea $G = \{z \in \mathbb{C} \mid z^n = 1 \text{ para algún } n \in Z\}$
 - (c1) Prueba que G es un grupo con el producto de los complejos:
 - Cerradura: Sea z, w en G, entonces cumplen que zⁿ = 1, w^m = 1 para enteros n, m. Luego, su producto es zw.
 Si elevamos este número a la nm, obetenemos: (zw)^{nm} = z^{nm}w^{nm} = (zⁿ)^m(w^m)ⁿ = 1^m · 1ⁿ = 1.
 Y como nm es un entero, zw cumple la condición para pertenecer a G. Y entonces el producto es cerrado.
 - 2) Asociatividad: Como el producto en $\mathbb C$ es asociativo y $G\subset \mathbb C$, entonces el producto es asociativo en G.
 - 3) Neutro: El neutro es 1, que pertenece al grupo ya que $1^1=1$ por lo que cumple con la condición para pertenecer. Como $G\subset \mathbb{C}$, y 1 es el neutro de \mathbb{C} , entonces 1 es también es el neutro de \mathbb{C} . Pues si $z\in G$, entonces $z\in \mathbb{C}$ y por tanto $z\cdot 1=z$.
 - 4) Inverso: Sea $z \in G$, entonces z tiene el inverso z^{-1} en \mathbb{C} . Solamente falta probar que $z^{-1} \in G$. Como $z \in G$, entonces existe un $n \in \mathbb{Z}$ tal que $z^n = 1$, y también, $(z^{-1})^n = z^{-n} = (z^n)^{-1} = (1)^{-1} = 1$. Por lo tanto, z^{-1} cumple con la condición para pertenecer al conjunto G.