

S900 Multi-Mode Application Processor

Function Description

Version 1.0

Date 2015-10-28

Disclaimer

Information given in this document is provided just as a reference or example for the purpose of using Actions' products, and cannot be treated as a part of any quotation or contract for sale.

Actions products may contain design defects or errors known as anomalies or errata which may cause the products' functions to deviate from published specifications. Designers must not rely on the instructions of Actions' products marked "Reserved" or "undefined". Actions reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

ACTIONS DISCLAIMS AND EXCLUDES ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY AND ALL EXPRESS OR IMPLIED WARRANTIES OF MERCHANTABILITY, ACCURACY, SECURITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY AND THE LIKE TO THE INFORMATON OF THIS DOCUMENT AND ACTIONS PRODUCTS.

IN NO EVENT SHALL ACTIONS BE LIABLE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES WHATSOEVER, INCLUDING, WITHOUT LIMITATION FOR LOST OF DATA, PROFITS, SAVINGS OR REVENUES OF ANY KIND ARISING FROM USING THE INFORMATON OF THIS DOCUMENT AND ACTIONS PRODUCTS. REGARDLESS OF THE FORM OF ACTION, WHETHER BASED ON CONTRACT; TORT; NEGLIGENCE OF ACTIONS OR OTHERS; STRICT LIABILITY; OR OTHERWISE; WHETHER OR NOT ANY REMEDY OF BUYER IS HELD TO HAVE FAILED OF ITS ESSENTIAL PURPOSE, AND WHETHER ACTIONS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES OR NOT.

Actions' products are not designed, intended, authorized or warranted for use in any life support or other application where product failure could cause or contribute to personal injury or severe property damage. Any and all such uses without prior written approval of an Officer of Actions and further testing and/or modification will be fully at the risk of the customer.

Ways of obtaining information

Copies of this document and/or other Actions product literature, as well as the Terms and Conditions of Sale Agreement, may be obtained by visiting Actions' website at: http://www.actions-semi.com or from an authorized Actions representative.

Trademarks

The word "Actions" and the logo are the trademarks of Actions Semiconductor Co., Ltd, and Actions

(Zhuhai) Technology Co., Limited is authorized to use them. Word "炬龙" is the trademark of Actions (Zhuhai) Technology Co., Limited. Names and brands of other companies and their products that may from time to time descriptively appear in this document are the trademarks of their respective holders, no affiliation, authorization, or endorsement by such persons are claimed or implied except as may be expressly stated therein.

Rights Reserved

The provision of this document shall not be deemed to grant buyers any right in and to patent, copyright, trademark, trade secret, know how, and any other intellectual property of Actions or others.

Miscellaneous

Information contained or described herein relates only to the Actions products and as of the release date of this publication, abrogates and supersedes all previously published data and specifications relating to such products provided by Actions or by any other person purporting to distribute such information.

Actions reserves the rights to make changes to information described herein at any time without notice. Please contact your Actions sales representatives to obtain the latest information before placing your product order.

Additional Support

Additional product and company information can be obtained by visiting the Actions website at: http://www.actions-semi.com

About This Document

Purpose

This document describes the function and the basic module of the S900 SoC.

Revision History

Date	Revision	Description
2015-10-28	1.0	First Release

Intended Audience

This document is intended for:

- Field application engineers
- Hardware engineers

Version 1.0 Page iii

Contents

About This Document ·····	·····iii
Purpose	iii
Revision History ·····	iii
Intended Audience ·····	iii
Contents ·····	:
Contents	······································
Figures	xiii
Tables ·····	xiv
1 Introduction	1
1.1 Overview ·····	1
1.2 Architecture ·····	1
1.2.1 Key Features·····	1
1.2.2 Logic Block Diagram ······	3
1.2.3 Application Scope ·····	3
1.3 MPCore CPU·····	3
1.3.1 Function	3
1.3.2 Generic Interrupt Controller ·····	4
1.4 Reset Management ······	5
1.4.1 Function	5
1.4.2 Reset Source ·····	5
1.5 Clock Management ······	6
1.5.1 Function	6
1.6 System Boot ·····	6
1.7 Address Mapping ·····	7
2 System Control	10
2.1 Timer	
2.1.1 Function	
2.1.2 Register List	
2.1.3 Register Description ····································	
2.1.3.1 TO_CTL	
2.1.3.2 TO CMP ···································	
2.1.3.3 TO VAL	
2.1.3.4 T1_CTL	
	11

	2.1.3.5	T1_CMP	12
	2.1.3.6	T1_VAL	12
	2.2 DMA ·		12
		ction ·····	
		Q Source ······	
		ister List·····	
		ister Description······	
	2.2.4.1	DMA IRQ PD0~3	
	2.2.4.2	DMA_IRQ_EN0~3	
	2.2.4.3	DMAx_MODE·····	
	2.2.4.4	DMAx_SOURCE	
	2.2.4.5	DMAx_DESTINATION ·····	19
	2.2.4.6	DMAx_FRAME_LEN ······	19
	2.2.4.7	DMAx_FRAME_CNT	19
	2.2.4.8	DMAx_REMAIN_FRAME_CNT ·····	20
	2.2.4.9	DMAx_REMAIN_CNT	20
	2.2.4.10	DMAx_SOURCE_STRIDE ·····	20
	2.2.4.11	DMAx_DESTINATION_STRIDE ······	20
	2.2.4.12	DMAx_START ·····	20
	2.2.4.13	DMAx_PAUSE ·····	21
	2.2.4.14	DMAx_CHAINED_CTL ······	21
	2.2.4.15	DMAx_CONSTANT ·····	21
	2.2.4.16	DMAx_LINKLIST_CTL ·····	21
	2.2.4.17	DMAx_NEXT_DESCRIPTOR ·····	22
	2.2.4.18	DMAx_CURRENT_DESCRIPTOR_NUM	22
	2.2.4.19	DMAx_INT_CTL·····	22
	2.2.4.20	DMAx_INT_STATUS	······23
	2.2.4.21	DMAx_CURRENT_SOURCE_POINTER······	23
	2.2.4.22	DMAx_CURRENT_DESTINATION_POINTER ·····	24
	2.3 SPS (Si	mart Power System) ······	24
	•	ction ·····	
	2.3.2 Pow	ver on Sequence ······	24
		·	
		e Engine	
	2.4.1 Fun	ction	25
		2Tx	
	2.5.1 Fun	ction ·····	25
_			
3	Multimedia	a System ·····	27
		SI2	
		ction ·····	
	_	ister List·····	
	3.1.3 Reg	ister Description	
	3.1.3.1	CSIx_CTRL ·····	28

3.1.	.3.2	CSIx_SHORT_PACKET ·····	29
3.1.	.3.3	CSIx_ERROR_PENDING ·····	29
3.1.	.3.4	CSIx_STATUS_PENDING ·····	31
3.1.	.3.5	CSIx_LANE_STATUS	31
3.1.	.3.6	CSIx_PHY_T0	32
3.1.	.3.7	CSIx_PHY_T1	32
3.1.	.3.8	CSIx_PHY_T2·····	
3.1.	.3.9	CSIx_ANALOG_PHY	
3.1.	.3.10	CSIx_PIN_MAP	34
3.1.	.3.11	CSIx_CONTEXT_CFG ·····	34
3.1.	.3.12	CSIx_CONTEXT_STATUS ·····	35
3.2 L	VDS ···		36
3.2.1		tion ·····	
3.2.2		ster List·····	
3.2.3		ster Description·····	
3.2.		LCD_CTL	
3.2.	.3.2	LCD_SIZE ·····	
3.2.	.3.3	LCD_STATUS ·····	
3.2.	.3.4	LCD_TIM0 ·····	
3.2.	.3.5	LCD_TIM1	
3.2.	.3.6	LCD_TIM2 ····	
3.2.	.3.7	LCD_COLOR	
3.2.	.3.8	LCD_IMG_XPOS ·····	
3.2.	.3.9	LCD_IMG_YPOS ·····	
3.2.	.3.10	LVDS_CTL ·····	
3.2.	.3.11	LVDS_ALG_CTL0	42
3.3 €	ים/ חחי	mbedded Display Port) ······	15
3.3.1		tion ······	
3.3.2		ster List······	
3.3.3		ster Description·····	
3.3.	_	EDP_LNK_LANE_COUNT······	
3.3.		EDP LNK ENHANCED	
3.3.		EDP_LNK_SCR_CTRL	
3.3.		EDP LNK DSPR CTRL······	
3.3.		EDP LNK PANEL SRF ······	
3.3.		EDP CORE TX EN	
	.3.7	EDP_CORE_MSTREAM_EN ·····	
3.3.		EDP CORE SSTREAM EN	
3.3.		EDP CORE USER CFG	
	.3.10	EDP CORE CAPS······	
	.3.11	EDP CORE ID	
	.3.12	EDP AUX COMD······	
	.3.13	EDP_AUX_WR_FIFO ·······	
	.3.14	EDP AUX ADDR······	
		– –	

3.3.3.15	EDP_AUX_CLK_DIV	54
3.3.3.16	EDP_AUX_STATE ·····	54
3.3.3.17	EDP_AUX_RPLY_DAT	55
3.3.3.18	EDP_AUX_RPLY_CODE······	55
3.3.3.19	EDP_AUX_RPLY_COUNT ······	56
3.3.3.20	EDP_AUX_INT_STAT	56
3.3.3.21	EDP_AUX_INT_MASK ·····	57
3.3.3.22	EDP_AUX_RPLY_DAT_CNT······	57
3.3.3.23	EDP_AUX_STATUS	58
3.3.3.24	EDP_AUX_RCLK_WIDTH ·····	58
3.3.3.25	EDP_MSTREAM_HTOTAL ······	59
3.3.3.26	EDP_MSTREAM_VTOTAL ······	59
3.3.3.27	EDP_MSTREAM_POLARITY······	59
3.3.3.28	EDP_MSTREAM_HSWIDTH······	60
3.3.3.29	EDP_MSTREAM_VSWIDTH ·····	60
3.3.3.30	EDP_MSTREAM_HRES ·····	60
3.3.3.31	EDP_MSTREAM_VRES ·····	61
3.3.3.32	EDP_MSTREAM_HSTART ······	61
3.3.3.33	EDP_MSTREAM_VSTART ······	61
3.3.3.34	EDP_MSTREAM_MISCO······	62
3.3.3.35	EDP_MSTREAM_MISC1 ······	62
3.3.3.36	EDP_M_VID·····	63
3.3.3.37	EDP_MTRANSFER_UNIT ······	63
3.3.3.38	EDP_N_VID	64
3.3.3.39	EDP_USER_PIXEL_WIDTH······	64
3.3.3.40	EDO_USER_DATA_COUNT ·····	65
3.3.3.41	EDP_MSTREAM_INTERLACED ······	65
3.3.3.42	EDP_USER_SYNC_POLARITY······	66
3.3.3.43	EDP_PHY_RESET ·····	66
3.3.3.44	EDP_PHY_PREEM_LO	66
3.3.3.45	EDP_PHY_ PREEM_L1······	67
3.3.3.46	EDP_PHY_ PREEM_L2······	67
3.3.3.47	EDP_PHY_ PREEM_L3······	67
3.3.3.48	EDP_PHY_VSW_LO	68
3.3.3.49	EDP_PHY_VSW_L1·····	68
3.3.3.50	EDP_PHY_VSW_L2·····	68
3.3.3.51	EDP_PHY_VSW_L3·····	68
3.3.3.52	EDP_PHY_VSW_AUX ·····	69
3.3.3.53	EDP_PHY_PWR_DOWN ·····	69
3.3.3.54	EDP_PHY_CAL_CONFIG ······	70
3.3.3.55	EDP_PHY_CAL_CTRL······	70
3.3.3.56	EDP_PHY_CTRL	70
3.3.3.57	EDP_RGB_CTL	72
3.3.3.58	EDP_RGB_STATUS·····	72

	3.3.3	5.59 EDP_RGB_COLOR ·····	73
3.4	MI	IPI DSI·····	74
3.	.4.1	Function	74
3.	.4.2	Register List	74
3.	.4.3	Register Description	75
	3.4.3	3.1 DSI_CTRL·····	75
	3.4.3	3.2 DSI_SIZE·····	76
	3.4.3	3.3 DSI_COLOR ·····	76
	3.4.3	3.4 DSI_VIDEO_CFG······	77
	3.4.3	3.5 DSI_RGBHT0 ·····	78
	3.4.3	3.6 DSI_RGBHT1 ·····	78
	3.4.3	3.7 DSI_RGBVT0	78
	3.4.3	8.8 DSI_RGBVT1·····	79
	3.4.3	9.9 DSI_TIMEOUT ·····	79
	3.4.3	3.10 DSI_TR_STA·····	79
	3.4.3	3.11 DSI_INT_EN	82
	3.4.3	3.12 DSI_ERROR_REPORT	83
	3.4.3	3.13 DSI_FIFO_ODAT ······	83
	3.4.3	3.14 DSI_FIFO_IDAT······	83
	3.4.3	3.15 DSI_IPACK ······	84
	3.4.3	3.16 DSI_PACK_CFG······	84
	3.4.3	3.17 DSI_PACK_HEADER ·····	85
	3.4.3	3.18 DSI_TX_TRIGGER ·····	85
	3.4.3	3.19 DSI_RX_TRIGGER ·····	86
	3.4.3	2.20 DSI_LANE_CTRL······	86
	3.4.3	.21 DSI_LANE_STA ·····	87
	3.4.3	3.22 DSI_PHY_T0	88
	3.4.3	3.23 DSI_PHY_T1	89
	3.4.3	3.24 DSI_PHY_T2	90
	3.4.3	2.25 DSI_LANE_SWAP ·····	90
	3.4.3	.26 DSI_PHY_CTRL ·····	91
3.5	НС	OMI/MHL	93
		Function ·····	
3.6		udio IN/Out······	
3.		Function	
	3.6.1		
_	3.6.1		
		Register List	
3.		Register Description	
	3.6.3	-	
	3.6.3	-	
	3.6.3	_	
	3.6.3	I.4 I2SRX_DAT ·····	97

	3.6.3	5 SPDIF_HDMI_CTL·····	98
	3.6.3		
	3.6.3	7 SPDIF_CLSTAT	99
	3.6.3	8 SPDIF_CHSTAT	99
	3.6.3	9 HDMI_DAT	100
	3.6.3	10 I2STX_SPDIF_HDMI_CTL	100
	3.6.3	11 I2STX_SPDIF_HDMI_DAT ······	100
	3.7 PC	M	101
		Features ······	
		Register List·····	
		Register Description·····	
	3.7.3		
	3.7.3		
	3.7.3		
	3.7.3	4 PCMx_TXDAT ·····	104
4	Memor	y Control ······	105
	4.1 SD	C (SD/MMC Controller)·····	105
	4.1.1	Function	105
	4.1.2	Register List ·····	105
	4.1.3	Register Description ·····	106
	4.1.4	SDx_EN	106
	4.1.5	SDx_CTL ·····	107
	4.1.6	SDx_STATE ·····	110
	4.1.7	SDx_CMD ·····	112
	4.1.8	SDx_ARG ·····	112
	4.1.9	SDx_RSPBUF0	113
	4.1.10	SDx_RSPBUF1 ·····	113
	4.1.11	SDx_RSPBUF2 ·····	113
	4.1.12	SDx_RSPBUF3 ·····	113
	4.1.13	SDx_RSPBUF4 ·····	
	4.1.14	SDx_DAT·····	
	4.1.15	SDx_BLK_SIZE·····	
	4.1.16	SDx_BLK_NUM·····	
	4.1.17	SDx_BUF_SIZE ·····	114
_			445
5	•	ral Interfaces·····	
		ВЗ	
	5.1.1	Function	115
	5.2 US	BH_HSIC·····	115
		Function ·····	
		nernet MAC Controller	
	5.3.1	FUHCHOH	116

5.4	SPI (Se	rial Peripheral Interface)	117
5.4	.1 Fun	ction	117
5.4	.2 Reg	ster List	117
5.4	.3 Reg	ster Description	118
5	5.4.3.1	SPIx_CTL ·····	118
5	5.4.3.2	SPIx_CLKDIV	120
5	5.4.3.3	SPIx_STAT ·····	121
5	5.4.3.4	SPIx_RXDAT	122
5	5.4.3.5	SPIx_TXDAT	122
5	5.4.3.6	SPIx_TCNT	122
5	5.4.3.7	SPIx_SEED ·····	122
5	5.4.3.8	SPIx_TXCR ·····	123
5	5.4.3.9	SPIx_RXCR·····	123
5.5	ΠΔΡΤ/	IR	123
5.5		ction	
5.5		ister List·····	
5.5		ister Description······	
	5.5.3.1	UARTX CTL	
	5.5.3.2	UARTx_RXDAT······	
	5.5.3.3	UARTX_TXDAT ·······	
	5.5.3.4	UARTx_STAT ······	
	5.5.3.5	IR_CTL	
	5.5.3.6	IR_STAT ·····	
	5.5.3.7	IR CC ······	
	5.5.3.8	IR KDC	
	5.5.3.9	IR_TCOUNTER ·····	
	5.5.3.10	IR RCC	
	5.5.3.11	IR FILTER ······	
		_	
5.6			
5.6		ction ······	
5.6	_	ster List······	
5.6	_	ster Description	
5	5.6.3.1	TWIx_CTL	
	5.6.3.2	TWIx_CLKDIV ·····	
	5.6.3.3	TWIx_STAT ·····	
	5.6.3.4	TWIx_ADDR ·····	
5	5.6.3.5	TWIx_TXDAT ·····	
	5.6.3.6	TWIx_RXDAT ·····	
	5.6.3.7	TWIx_CMD	
	5.6.3.8	TWIx_FIFOCTL	
	5.6.3.9	TWIx_FIFOSTAT ·····	
	5.6.3.10	TWIx_DATCNT·····	
5	5.6.3.11	TWIx_RCNT	140

5.7 G	iPIO a	nd I/O Multiplexer·····	141
5.7.1	Fund	ction ·····	141
5.7.2	Regi	ster List·····	141
5.7.3	Regi	ster Description·····	143
5.7.	3.1	GPIO_AOUTEN	143
5.7.	3.2	GPIO_AINEN ·····	143
5.7.	3.3	GPIO_ADAT ·····	144
5.7.	3.4	GPIO_BOUTEN	144
5.7.	3.5	GPIO_BINEN ····	144
5.7.	3.6	GPIO_BDAT ·····	144
5.7.	3.7	GPIO_COUTEN	144
5.7.	3.8	GPIO_CINEN ····	145
5.7.	3.9	GPIO_CDAT ·····	145
5.7.	3.10	GPIO_DOUTEN	145
5.7.	3.11	GPIO_DINEN	145
5.7.	3.12	GPIO_DDAT	146
5.7.	3.13	GPIO_EOUTEN	146
5.7.	3.14	GPIO_EINEN ·····	146
5.7.	3.15	GPIO_EDAT ·····	146
5.7.	3.16	GPIO_FOUTEN	146
5.7.	3.17	GPIO_FINEN	147
5.7.	3.18	GPIO_FDAT ·····	147
5.7.	3.19	MFP_CTL0	147
5.7.	3.20	MFP_CTL1	149
5.7.	3.21	MFP_CTL2	151
5.7.	3.22	MFP_CTL3	153
5.7.	3.23	PWM_CTL0~3	155
5.7.	3.24	PAD_PULLCTLO·····	156
5.7.	3.25	PAD_PULLCTL1·····	157
5.7.	3.26	PAD_PULLCTL2·····	159
5.7.	3.27	PAD_ST0	161
5.7.	3.28	PAD_ST1	163
5.7.	3.29	PAD_CTL	166
5.7.	3.30	PAD_DRV0	167
5.7.	3.31	PAD_DRV1	170
5.7.	3.32	PAD_DRV2	171
5.7.	3.33	PAD_SR0	172
5.7.	3.34	PAD_SR1	174
5.7.	3.35	PAD_SR2	174
5.7.	3.36	INTC_EXTCTL0	175
5.7.	3.37	INTC_GPIOACTL	176
5.7.	3.38	INTC_GPIOA_PD ·····	176
5.7.	3.39	INTC_GPIOA_MSK ·····	176
5.7.	3.40	INTC_GPIOB_PD ·····	177

5.7.3.41	INTC_GPIOB_MSK·····	177
5.7.3.42	INTC_GPIOC_PD ·····	177
5.7.3.43	INTC_GPIOC_MSK·····	177
5.7.3.44	INTC_GPIOD_PD·····	178
5.7.3.45	INTC_GPIOD_MSK ·····	178
5.7.3.46	INTC_GPIOE_PD	178
5.7.3.47	INTC_GPIOE_MSK·····	179
5.7.3.48	INTC_GPIOF_PD	179
5.7.3.49	INTC_GPIOF_MSK·····	179
5.7.3.50	INTC_GPIOA_TYPE0	179
5.7.3.51	INTC_GPIOA_TYPE1	181
5.7.3.52	INTC_GPIOB_TYPE0	183
5.7.3.53	INTC_GPIOB_TYPE1	185
5.7.3.54	INTC_GPIOC_TYPE ·····	187
5.7.3.55	INTC_GPIOD_TYPEO	189
5.7.3.56	INTC_GPIOD_TYPE1	190
5.7.3.57	INTC_GPIOE_TYPE0 ·····	192
5.7.3.58	INTC_GPIOE_TYPE1 ·····	194
5.7.3.59	INTC_GPIOF_TYPE ·····	196
5.7.3.60	SGPIO_OUTEN	197
5.7.3.61	SGPIO_INEN	198
5.7.3.62	SGPIO_DAT ·····	198
5.7.3.63	SGPIO_PD ·····	198
5.7.3.64	SGPIO_PD_MSK·····	199
5.7.3.65	SGPIO_CTL ·····	199
5.7.3.66	SGPIO_MFP ·····	201
5.7.3.67	PWM_CTL4	201
5.7.3.68	PWM_CTL5	202
5.7.3.69	INTC_EXTCTL1·····	202
5.7.3.70	INTC_EXTCTL2·····	203
5.7.3.71	INTC_GPIOBCTL	204
5.7.3.72	INTC_GPIOCCTL ·····	204
5.7.3.73	INTC_GPIODCTL	205
5.7.3.74	INTC_GPIOECTL ·····	205
5.7.3.75	INTC_GPIOFCTL ·····	206

Appendix Acronyms and Terms-------207

Figures

Figure 1 - 1 Logic Block Diagram ······	·····
Figure 1 - 2 Boot Sequence Diagram ······	·····- 7
Figure 2 - 1 S900 Power on Sequence (co-work with ATC260x) ·····	24
Figure 2 - 2 Modes in ARM Core Implementing Secure Extensions ··········-錯誤!	尚未定義書籤。

Tables

Table 1 - 1 Reset Source of Each Block ······	5
Table 1 - 2 Address Mapping	7
Table 2 - 1 Timer Base Address·····	10
Table 2 - 2 Timer Register List ······	10
Table 2 - 3 DRQ Trig Source Table ······	13
Table 2 - 4 DMA Controller Registers Address·····	14
Table 2 - 5 DMA Global Controller Registers·····	14
Table 2 - 6 DMA Logical Channel Controller Registers ······	14
Table 3 - 1 CSI-2 Receiver Registers Address ······	27
Table 3 - 2 CSI-2 Receiver Registers ·····	27
Table 3 - 3 Data Lane configuration register block base address ······	28
Table 3 - 4 Context configuration register	28
Table 3 - 5 TVOUT Controller Registers Address	36
Table 3 - 6 LCD Controller Registers ······	36
Table 3 - 7 eDP Base Address	
Table 3 - 8 eDP Offset Address······	45
Table 3 - 9 MIPI DSI Controller Registers Address ······	74
Table 3 - 10 MIPI DSI Controller Registers······	74
Table 3 - 11 I2S_SPDIF Controller Registers Address ······	95
Table 3 - 12 I2S/SPDIF Controller Registers·····	95
Table 3 - 13 PCMx Controller Registers Address······	101
Table 3 - 14 PCMx Controller Registers ······	101
Table 4 - 1 SDC Base Address	105
Table 4 - 2 SDx Register List	105
Table 5 - 1 SPI Registers Block Base Address·····	117
Table 5 - 2 SPI Registers Offset Address ······	117
Table 5 - 3 UART Registers Block Base Address	124
Table 5 - 4 UART Registers Offset Address ······	124
Table 5 - 5 IRC Registers Offset Address·····	
Table 5 - 6 TWI Block Base Address ······	132
Table 5 - 7 TWI Block Configuration Registers List ······	132
Table 5 - 8 GPIO/MFP/PWM Base Address ······	141
Table 5 - 9 GPIO/MFP/PWM Register List	141

1 Introduction

1.1 Overview

The contents of this document are organized as:

- Chapter 1 Introduction. This chapter describes the S900 architecture.
- Chapter 2 System Control
- Chapter 3 Media System
- Chapter 4 Memory Control
- Chapter 5 Peripheral Interfaces
- Appendix Acronyms and Terms

1.2 Architecture

S900 integrates Quad-Core 64-bit Cortex-A53 CPU with advanced SIMD co-processor and VFPv4 instruction set. It is Actions' latest 28nm super high performance Application Processor with low power consumption. The compact integrated PowerVR G6230 GPU and Video Processing Unit provides up to 4K video effects and gaming experience. The advanced ISP supports camera sensors up to 13M pixel resolutions.

S900 provides rich interfaces such as HDMI, eDP, MIPI CSI, DSI, LVDS and USB3, etc. Bluetooth, WiFi and display peripherals can be easily integrated to construct flexible solutions. Efficient memory systems are built on high performance DDR3/DDR3L/LPDDR2/LPDDR3 and large capacity dual channel NAND Flash controller.

Together with Actions' in-house designed companion chip ATC260x which integrated PMU and Audio Codec together, S900 really makes it the best choice for high performance open platform.

1.2.1 Key Features

Overall Features

- High performance application processor with low power consumption, support high definition video decoding and recording, rich high speed peripherals for multimedia applications
- Integrated Quad-core 64-bit ARM Cortex-A53 processor, up to 1.6GHz
- Integrated PowerVR G6230 GPU and Video Processing unit for 4K video effects and 3D gaming
- ARM TrustZone security engine
- Secure accelerator for AES-128 Encrypt & Decrypt in ECB/CBC/CBC-CTS/CTR mode
- Built-in HDPC 2.2 hardware
- Advanced ISP supports sensors up to 13M pixel resolution
- DDR3/DDR3L/LPDDR2/LPDDR3 and large capacity dual channel NAND Flash

controller

- 28nm semiconductor process
- FCCSP package, 642 balls, 19mm*19mm body size, 0.65mm Pitch
- Work together with Actions' in-house designed companion chip ATC260x which integrated PMU and Audio Codec

Multimedia Features

- Support up to 4K Real-time video decoding of most popular video formats (some are supported by the 3rd party applications), such as H.265, MPEG-4 and H.264, etc.
- HEVC/H.265 up to 4096*2304@30fps
- Embedded video encoder support H.264 baseline profile, up to 1080p @60fps
- Integrated 3D/2D PowerVR G6230 GPU support OpenGL-ES1.1/2.0/3.0/3.1,
 OpenGL 3.2, DirectX 10 and OpenCL 1.2EP
- Support Dual cameras recording simultaneously, support PIP (Picture In Picture) and support RAW data capture
- Support automatic white balance (AWB), automatic exposure (AE) and automatic focus (AF)
- Support contrast, saturation, hue, brightness adjustment
- Up to 2560*1440 LCD display
- Support dual channel LVDS interface LCD display
- Support HDMI up to 1080p@60fps and 4k*2k@30fps display, support MHL2.1 up to 1080p@60fps

Interface Features

- Display interface: HDMI 1.4b & MHL 2.1, dual channel LVDS, 4-lane MIPI DSI V1.1 and eDP V1.3
- DDR3/DDR3L/LPDDR2/LPDDR3 SDRAM frequency up to 720MHz
- Dual channel NAND support SLC, MLC & TLC, and managed NAND Flash
- Four SD/MMC/EMMC controller, support SD3.0, MMC4.5, eMMC4.5, clock up to 200MHz
- One USB3.0, two USB2.0 OTG
- Support 10/100M Ethernet MAC with RMII/SMII interface
- Six TWI (Two Wire Interface) controller integrated, max speed up to 3.4Mbps
- Seven UART (Universal Asynchronous Receiver Transmitter) interfaces
- Four SPI (Synchronous Physical Interface) interfaces
- Six programmable PWM (Pulse Width Modulation) interfaces
- I2S, PCM and SPDIF audio interfaces are supported
- IRC (Infrared Controller) support RC5/RC6/NEC/9012 protocol

1.2.2 Logic Block Diagram

Figure 1 - 1 Logic Block Diagram

1.2.3 Application Scope

Applications of S900 include but not limited to the followings:

- Ultra book
- Virtual Reality glasses
- Smart Video Monitors
- Action Cameras
- Tablets
- MID (Multimedia Internet Device)
- POS machines
- Advertising Machines
- Other Cloud-connected applications

1.3 MPCore CPU

1.3.1 Function

The Cortex-A53 delivers 64-bit capability and significantly increases performance in a footprint suited for cost-sensitive applications.

- ARMv8-A architecture
- 32KB Instruction cache, 32KB data cache
- 1MB L2 Cache

- Four 64-bit idle counter and one 64-bit system counter
- 31*64-bit general purpose registers
- AArch32 for full backward compatibility with ARMv7
- AArch64 for 64-bit support and new architectural features
- NEON advanced SIMD
- In-Order Pipeline of lower power consumption
- Double Precession Floating Point SIMD extensions
- VFPv4 Floating point
- TrustZone security technology supported
- Support Hardware virtualization

1.3.2 Generic Interrupt Controller

SCU is responsible for managing the interconnect, arbitration, communication, cache to cache and system memory transfers, cache coherency and other capabilities for the processor. The Cortex-A53 MPCore processor also exposes these capabilities to other system accelerators and non-cached DMA driven peripherals to increase performance and reduce system wide power consumption. This system coherence also reduces software complexity involved in maintaining software coherence within each OS driver.

Implementing the standardized and architected interrupt controller, the GIC provides a rich and flexible approach to inter-processor communication and the routing and prioritization of system interrupts. Under software control, each interrupt can be distributed across CPU, hardware prioritized, and routed between the operating system and TrustZone software management layer. This routing flexibility and the support for virtualization of interrupts into the operating system, provides one of the key features required to enhance the capabilities of a solution utilizing a hypervisor.

See <ARM Generic Interrupt Controller Architecture> for more information.

1.4 Reset Management

1.4.1 Function

RMU is in control of the reset of CPU_VDD and CORE_VDD power domain, and support reset triggers from watchdog, core, CMU and etc. Each block can be reset by different reset source at same time.

1.4.2 Reset Source

Table 1 - 1 Reset Source of Each Block

Black	POR	Warm	WDx	WD0_RST_Whole	Trst	CMU	Power
Block	POR	Reset ^{Note2}	Reset	Reset	Reset	Reset	Domain
L2 & SCU	Yes	No	No	Yes	No	No	CPU (M) _VDD
CoreSight	Yes	No	No	Yes	Yes ^{Note3}	No	CPU_VDD
GIC_400	Yes	No	No	Yes	No	Yes	CPU_VDD
CPU[x]	Yes	Yes	Yes	Yes	No	Yes ^{Note1}	CPU (M) _VDD
Idle_CNT[x]	Yes	No	No	Yes	No	No	CPU_VDD
WatchDog[x]	Yes	No	No	Yes	No	Yes ^{Note1}	CPU_VDD
System_CNT	Yes	No	No	Yes	No	Yes	CPU_VDD
SPS_CPU	Yes	No	No	Yes	No	Yes	CORE_VDD
Register Configure	Yes	No	No	Yes	No	No	CORE_VDD & CPU_VDD
GPU_PA	-	No	No	Yes	Yes	Yes	GPU_VDD
GPU_PB	-	No	No	-	Yes	Yes	GPU_VDD
CMU	Yes	No	No	Yes	No	No	CORE_VDD
SPS	Yes	No	No	Yes	No	No	CORE_VDD
NOC	Yes	No	No	Yes	No	No	CORE_VDD
Other always on modules	Yes	No	No	Yes	No	Yes	CORE_VDD
Other switchable modules	-	No	No	-	No	Yes	CORE_VDD

Notes:

- 1. CPU[x] can only be reset together with WatchDog[x].
- 2. CPU[x] WarmReset reset has three reset sources: software configuration, CoreSight and CPU[x]
- 3. Trst can only reset JTAG part in CoreSignt.

Copyright[©] 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

1.5 Clock Management

1.5.1 Function

CMU manages the clock system of S900, of which clock source are from HOSC (Host Oscillator), 10 PLLs and LOSC (internal low frequency oscillator). Analog part are these three clock sources, and digital part are consists of frequency dividing circuit, clock control circuit and MUX circuit. Features of CMU are listed below:

- CMU clock source: HOSC, PLL, LOSC
- 10 PLLs are embedded:
 - CORE PLL for CPU
 - DEV_PLL for AHB and APB
 - NAND PLL for NAND and SD
 - DDR_PLL for DDR
 - DISPLAY_PLL for display and high clock frequency modules
 - AUDIO_PLL for audio application
 - ➤ TVOUT_PLL for for TV/HDMI
 - DSI_PLL for MIPI DSI
 - DP_PLL for eDP
 - ASSIST_PLL for Ethernet and etc.
- HOSC is the clock source of all the PLLs

1.6 System Boot

System boot involves the process of hardware peripherals initiation, Power on sequence, loading and driving from storage medium, and firmware update. S900 supports booting from external storage drivers, including NAND Flash, SPI NOR and SD/MMC/eMMC. The BRECLauncher block will conduct loading boot code from external storage drivers, it will check the storage drivers' ID and find the right driver. The right boot code will be loaded into internal SRAM and run. If no storage diver is found right, S900 will load boot code from ADFULauncher. After boot code is executed, the operating system will be boot up or uploaded.

Figure 1 - 2 Boot Sequence Diagram

1.7 Address Mapping

Table 1 - 2 Address Mapping

Physical Address		Size	Function			
Start	End	(Byte)	Function			
0x00000000	0xDFFFFFFF	3.5G	DDR Memory (Bottom)			
0xE0000000	0xE7FFFFF	128M	IO device			
0xE8000000	0xEFFFFFF	128M	Reserved			
0xF0000000	0xFCFFFFFF	208M	Reserved			
			ERAM / BROM			
	OxFFFFFFF	48M	Note:			
0xFD000000			[0xFD000000, 0xFEFFFFFF] is ERAM address space			
			[0xFFFF0000, 0xFFFFFFFF] is BROM address space			
			ERAM and BROM use the same HSEL.			
0x1_00000000	0x1_DFFFFFFF	3.5G	Reserved			
0.4 5000000	0.1 [[[[[[E12N4	DDR Memory (Top)			
0x1_E0000000	0x1_FFFFFFF	512M	Note: accessed by CPU only.			
IO device						
0xE0000000	0xE00FFFFF	1M	Reserved			
0xE0100000	0xE010FFFF	64K	AUDIO (I2S/SPDIF)			
0xE0110000	0xE0117FFF	32K	PCM0 Controller			

0xE0118000 0xE0121FFF 32K PCM1 Controller 0xE0122000 0xE0123FFF 8K UART1 Controller 0xE0122000 0xE0123FFF 8K UART2 Controller 0xE0124000 0xE0125FFF 8K UART3 Controller 0xE0128000 0xE0129FFF 8K UART3 Controller 0xE0128000 0xE0129FFF 8K UART5 Controller 0xE012000 0xE0129FFF 8K UART6 Controller 0xE012000 0xE0129FFF 8K VART6 Controller 0xE0130000 0xE013FFFF 8K AVS 0xE0130000 0xE013FFFF 56K Reserved 0xE0130000 0xE015FFFF 56K Reserved 0xE0140000 0xE015FFFF 32K CMU 0xE0168000 0xE017FFF 32K Reserved 0xE0170000 0xE017FFF 3K TWI0 Controller 0xE0170000 0xE017FFF 3K TWI1 Controller 0xE0170000 0xE017FFF 3K TWI2 Controller 0xE0178000 <th></th> <th></th> <th></th> <th></th>				
0xE0122000 0xE0123FFF 8K UART1 Controller 0xE0124000 0xE0125FFF 8K UART3 Controller 0xE012000 0xE0129FFF 8K UART3 Controller 0xE012000 0xE0129FFF 8K UART5 Controller 0xE012000 0xE012BFFF 8K UART6 Controller 0xE012000 0xE012FFF 8K UART6 Controller 0xE013000 0xE013FFFF 8K AVS 0xE013000 0xE013FFFF 56K Reserved 0xE0140000 0xE015FFF 128K Reserved 0xE0160000 0xE016FFFF 32K CMU 0xE0160000 0xE017FFF 32K Reserved 0xE0170000 0xE0173FFF 3K TWI0 Controller 0xE0170000 0xE0173FFF 8K TWI2 Controller 0xE0174000 0xE0175FFF 8K TWI3 Controller 0xE0175000 0xE017FFF 8K TWI3 Controller 0xE0176000 0xE017FFF 8K TWI4 Controller 0xE0177FFF	0xE0118000	0xE011FFFF	32K	PCM1 Controller
0xE0124000 0xE0125FFF 8K UART2 Controller 0xE0128000 0xE0129FFF 8K UART3 Controller 0xE0128000 0xE0129FFF 8K UART5 Controller 0xE012000 0xE012DFFF 8K UART6 Controller 0xE012000 0xE012FFF 8K UART6 Controller 0xE013000 0xE013FFF 8K AVS 0xE0130000 0xE013FFF 8K AVS 0xE0140000 0xE013FFF 56K Reserved 0xE0140000 0xE016FFFF 128K Reserved 0xE0160000 0xE016FFFF 32K CMU 0xE0160000 0xE017FFF 32K CMU 0xE0170000 0xE017FFF 8K TWI0 Controller 0xE0174000 0xE0175FFF 8K TWI2 Controller 0xE0174000 0xE017FFF 8K TWI3 Controller 0xE0176000 0xE017FFF 8K TWI3 Controller 0xE0176000 0xE017FFF 8K TWI3 Controller 0xE0180000 0xE018FFF </td <td>0xE0120000</td> <td>0xE0121FFF</td> <td>8K</td> <td>UARTO/IRC Controller</td>	0xE0120000	0xE0121FFF	8K	UARTO/IRC Controller
0xE0126000 0xE0129FFF 8K UART3 Controller 0xE0128000 0xE0129FFF 8K UART4 Controller 0xE012A000 0xE012BFFF 8K UART5 Controller 0xE012C000 0xE012FFF 8K UART6 Controller 0xE012E000 0xE013FFFF 8K AVS 0xE013000 0xE013FFFF 56K Reserved 0xE0140000 0xE015FFFF 128K Reserved 0xE0160000 0xE016FFFF 32K CMU 0xE0160000 0xE017FFF 32K Reserved 0xE0170000 0xE017FFF 32K Reserved 0xE0170000 0xE0173FFF 8K TWI0 Controller 0xE0174000 0xE0173FFF 8K TWI2 Controller 0xE0178000 0xE0179FFF 8K TWI3 Controller 0xE0178000 0xE0179FFF 8K TWI3 Controller 0xE0178000 0xE017FFF 8K TWI3 Controller 0xE0176000 0xE017FFF 8K TWI3 Controller 0xE0180000	0xE0122000	0xE0123FFF	8K	UART1 Controller
0xE0128000 0xE0129FFF 8K UART4 Controller 0xE012A000 0xE012BFFF 8K UART5 Controller 0xE012C000 0xE012DFFF 8K UART6 Controller 0xE012000 0xE013FFFF 8K AVS 0xE013000 0xE013FFFF 56K Reserved 0xE0140000 0xE015FFF 128K Reserved 0xE0160000 0xE016FFF 32K CMU 0xE0168000 0xE016FFF 32K Reserved 0xE0170000 0xE0173FFF 8K TWI2 Controller 0xE0172000 0xE0173FFF 8K TWI2 Controller 0xE0174000 0xE0175FFF 8K TWI2 Controller 0xE0174000 0xE018FFF 64K Reserved 0xE0180000	0xE0124000	0xE0125FFF	8K	UART2 Controller
0xE012A000 0xE012BFFF 8K UART6 Controller 0xE012C000 0xE012DFFF 8K UART6 Controller 0xE0132000 0xE013IFFF 8K SPS&RMU 0xE0130000 0xE013IFFF 8K AVS 0xE0140000 0xE015FFFF 56K Reserved 0xE0140000 0xE015FFFF 128K Reserved 0xE0160000 0xE016FFFF 32K CMU 0xE0170000 0xE017FFF 32K Reserved 0xE0172000 0xE0173FFF 8K TWI2 Controller 0xE0172000 0xE0175FFF 8K TWI2 Controller 0xE0174000 0xE0179FFF 8K TWI3 Controller 0xE0178000 0xE0179FFF 8K TWI3 Controller 0xE0178000 0xE0179FFF 8K TWI3 Controller 0xE0180000 0xE0179FFF 8K TWI3 Controller 0xE0190000 0xE017FFF 16K Reserved 0xE0180000 0xE018FFF 64K Reserved 0xE0180000 0xE018FF	0xE0126000	0xE0127FFF	8K	UART3 Controller
0xE012C000 0xE012FFFF 8K UART6 Controller 0xE012E000 0xE012FFFF 8K SPS&RMU 0xE0130000 0xE013FFF 8K AVS 0xE0132000 0xE013FFFF 56K Reserved 0xE0140000 0xE015FFFF 128K Reserved 0xE016000 0xE016FFFF 32K CMU 0xE0170000 0xE0171FFF 8K TWI0 Controller 0xE0172000 0xE0173FFF 8K TWI2 Controller 0xE0174000 0xE0175FFF 8K TWI2 Controller 0xE0174000 0xE0175FFF 8K TWI3 Controller 0xE0174000 0xE0175FFF 8K TWI3 Controller 0xE0174000 0xE0175FFF 8K TWI5 Controller 0xE0174000 0xE0175FFF 8K TWI5 Controller 0xE0180000 0xE018FFFF 64K Reserved 0xE0180000 0xE014FFFF 64K Reserved 0xE0140000 0xE015FFF 64K GPIO/MFP Controller (include PWM) 0xE0150000 </td <td>0xE0128000</td> <td>0xE0129FFF</td> <td>8K</td> <td>UART4 Controller</td>	0xE0128000	0xE0129FFF	8K	UART4 Controller
0xE012E000 0xE012FFFF 8K SPS&RMU 0xE0130000 0xE013FFFF 8K AVS 0xE0140000 0xE013FFFF 56K Reserved 0xE0140000 0xE016FFFF 128K Reserved 0xE0160000 0xE016FFFF 32K CMU 0xE0170000 0xE017FFF 32K Reserved 0xE0170000 0xE0173FFF 8K TWI0 Controller 0xE0174000 0xE0175FFF 8K TWI2 Controller 0xE0174000 0xE0175FFF 8K TWI3 Controller 0xE0178000 0xE0179FFF 8K TWI4 Controller 0xE0178000 0xE0179FFF 8K TWI5 Controller 0xE017A000 0xE0178FFF 8K TWI5 Controller 0xE017A000 0xE017FFF 16K Reserved 0xE018000 0xE019FFFF 64K Reserved 0xE018000 0xE019FFFF 64K Reserved 0xE01B000 0xE01BFFFF 64K Reserved 0xE01D4000 0xE01D5FFF	0xE012A000	0xE012BFFF	8K	UART5 Controller
0xE0130000 0xE013FFFF 8K AVS 0xE0140000 0xE013FFFF 56K Reserved 0xE0160000 0xE016FFFF 128K Reserved 0xE0168000 0xE016FFFF 32K CMU 0xE0170000 0xE017FFF 32K Reserved 0xE0170000 0xE0173FFF 32K Reserved 0xE0170000 0xE0173FFF 32K TWI2 Controller 0xE0174000 0xE0173FFF 8K TWI3 Controller 0xE0178000 0xE0179FFF 8K TWI3 Controller 0xE0174000 0xE0179FFF 8K TWI5 Controller 0xE0174000 0xE0178FFF 8K TWI5 Controller 0xE0174000 0xE017FFF 16K Reserved 0xE0180000 0xE018FFFF 64K Reserved 0xE0180000 0xE018FFFF 64K Reserved 0xE01A0000 0xE01AFFFF 64K Reserved 0xE01D0000 0xE01BFFFF 64K Reserved 0xE01D0000 0xE01D3FFF	0xE012C000	0xE012DFFF	8K	UART6 Controller
0xE0132000 0xE013FFFF 56K Reserved 0xE0140000 0xE015FFFF 128K Reserved 0xE0160000 0xE016FFFF 32K CMU 0xE0170000 0xE0171FFF 8K TWI0 Controller 0xE0172000 0xE0173FFF 8K TWI2 Controller 0xE0174000 0xE0175FFF 8K TWI2 Controller 0xE0174000 0xE0179FFF 8K TWI2 Controller 0xE0174000 0xE0179FFF 8K TWI3 Controller 0xE0173000 0xE0179FFF 8K TWI3 Controller 0xE0174000 0xE0179FFF 8K TWI3 Controller 0xE0174000 0xE0179FFF 8K TWI3 Controller 0xE018000 0xE018FFFF 64K Reserved 0xE018000 0xE018FFFF 64K Reserved 0xE018000 0xE018FFFF 64K Reserved 0xE018000 0xE018FFFF 64K Reserved 0xE010000 0xE01DFFFF 64K Reserved 0xE010000 0xE01	0xE012E000	0xE012FFFF	8K	SPS&RMU
0xE0140000 0xE015FFFF 128K Reserved 0xE0160000 0xE0167FFF 32K CMU 0xE0168000 0xE016FFFF 32K Reserved 0xE0170000 0xE0171FFF 8K TWI0 Controller 0xE0174000 0xE0175FFF 8K TWI2 Controller 0xE0176000 0xE0177FFF 8K TWI2 Controller 0xE0178000 0xE0179FFF 8K TWI3 Controller 0xE017A000 0xE0179FFF 8K TWI5 Controller 0xE017A000 0xE0178FFF 8K TWI5 Controller 0xE017A000 0xE017FFFF 16K Reserved 0xE0180000 0xE018FFFF 64K Reserved 0xE0180000 0xE018FFFF 64K Reserved 0xE0180000 0xE018FFFF 64K Reserved 0xE0120000 0xE015FFF 64K Reserved 0xE01D0000 0xE015FFF 64K Reserved 0xE01D0000 0xE01DFFF 16K SPI2 Controller 0xE01E8000 0xE01EF	0xE0130000	0xE0131FFF	8K	AVS
0xE0160000 0xE0167FFF 32K CMU 0xE0168000 0xE016FFFF 32K Reserved 0xE0170000 0xE0171FFF 8K TWIO Controller 0xE0172000 0xE0173FFF 8K TWI2 Controller 0xE0174000 0xE0175FFF 8K TWI3 Controller 0xE0176000 0xE0179FFF 8K TWI3 Controller 0xE0174000 0xE0178FFF 8K TWI5 Controller 0xE017A000 0xE0178FFF 8K TWI5 Controller 0xE017C000 0xE017FFFF 8K TWI5 Controller 0xE0180000 0xE018FFFF 64K Reserved 0xE0180000 0xE018FFFF 64K Reserved 0xE0180000 0xE018FFF 64K Reserved 0xE0180000 0xE01FFFF 64K Reserved 0xE01D0000 0xE01D3FFF 16K SPI0 Controller (include PWM) 0xE01D0000 0xE01D3FFF 16K SPI0 Controller 0xE01D4000 0xE01DFFF 16K SPI2 Controller 0x	0xE0132000	0xE013FFFF	56K	Reserved
0xE0168000 0xE016FFFF 32K Reserved 0xE0170000 0xE0171FFF 8K TWI0 Controller 0xE0172000 0xE0173FFF 8K TWI1 Controller 0xE0174000 0xE0175FFF 8K TWI2 Controller 0xE0176000 0xE0179FFF 8K TWI3 Controller 0xE0178000 0xE0179FFF 8K TWI4 Controller 0xE0174000 0xE017FFFF 8K TWI5 Controller 0xE0174000 0xE017FFFF 16K Reserved 0xE0180000 0xE018FFFF 64K Reserved 0xE0190000 0xE018FFFF 64K Reserved 0xE0180000 0xE018FFFF 64K Reserved 0xE0180000 0xE018FFFF 64K Reserved 0xE0100000 0xE018FFFF 64K Reserved 0xE0100000 0xE01DFFFF 64K Reserved 0xE01D0000 0xE01DFFFF 16K SPI0 Controller 0xE01D0000 0xE01DFFFF 16K SPI2 Controller 0xE01E0000	0xE0140000	0xE015FFFF	128K	Reserved
0xE0170000 0xE0171FFF 8K TWI0 Controller 0xE0172000 0xE0173FFF 8K TWI1 Controller 0xE0174000 0xE0175FFF 8K TWI2 Controller 0xE0176000 0xE0177FFF 8K TWI3 Controller 0xE0178000 0xE0179FFF 8K TWI4 Controller 0xE017A000 0xE017FFF 8K TWI5 Controller 0xE017C000 0xE017FFFF 16K Reserved 0xE0180000 0xE018FFFF 64K Reserved 0xE0190000 0xE019FFFF 64K Reserved 0xE0140000 0xE018FFFF 64K Reserved 0xE0180000 0xE018FFFF 64K Reserved 0xE0100000 0xE015FFFF 64K Reserved 0xE0100000 0xE010FFFF 64K Reserved 0xE01D0000 0xE01D3FFF 16K SPI0 Controller 0xE01D4000 0xE01DFFFF 16K SPI2 Controller 0xE01B0000 0xE01DFFFF 16K SPI3 Controller 0xE01E0000	0xE0160000	0xE0167FFF	32K	СМИ
0xE0172000 0xE0173FFF 8K TWI1 Controller 0xE0174000 0xE0175FFF 8K TWI2 Controller 0xE0176000 0xE0177FFF 8K TWI3 Controller 0xE0178000 0xE0179FFF 8K TWI4 Controller 0xE017A000 0xE017FFFF 8K TWI5 Controller 0xE017C000 0xE017FFFF 16K Reserved 0xE0180000 0xE018FFFF 64K Reserved 0xE0190000 0xE019FFFF 64K Reserved 0xE0140000 0xE014FFFF 64K Reserved 0xE0180000 0xE018FFFF 64K Reserved 0xE01D0000 0xE012FFFF 64K Reserved 0xE01D0000 0xE013FFFF 64K Reserved 0xE01D0000 0xE01D7FFF 16K SPI0 Controller 0xE01D4000 0xE01DFFF 16K SPI2 Controller 0xE01D0000 0xE01DFFF 16K SPI3 Controller 0xE01E8000 0xE01EFFF 32K Reserved 0xE0200000	0xE0168000	0xE016FFFF	32K	Reserved
0xE0174000 0xE0175FFF 8K TWI2 Controller 0xE0176000 0xE0177FFF 8K TWI3 Controller 0xE0178000 0xE0179FFF 8K TWI4 Controller 0xE017A000 0xE017BFFF 8K TWI5 Controller 0xE017C000 0xE017FFFF 16K Reserved 0xE0180000 0xE018FFFF 64K Reserved 0xE0190000 0xE019FFFF 64K Reserved 0xE0180000 0xE018FFFF 64K Reserved 0xE0180000 0xE018FFFF 64K Reserved 0xE01B0000 0xE01BFFFF 64K Reserved 0xE01D0000 0xE01D3FFF 64K Reserved 0xE01D0000 0xE01D7FFF 16K SPI0 Controller 0xE01D4000 0xE01D8FFF 16K SPI2 Controller 0xE01D8000 0xE01DFFFF 16K SPI3 Controller 0xE01E0000 0xE01FFFF 32K MIPI DSI 0xE01E6000 0xE01EFFFF 32K Reserved 0xE0200000 <td< td=""><td>0xE0170000</td><td>0xE0171FFF</td><td>8K</td><td>TWI0 Controller</td></td<>	0xE0170000	0xE0171FFF	8K	TWI0 Controller
0xE0176000 0xE0177FFF 8K TWI3 Controller 0xE0178000 0xE0179FFF 8K TWI4 Controller 0xE017A000 0xE017BFFF 8K TWI5 Controller 0xE0180000 0xE017FFFF 16K Reserved 0xE0180000 0xE018FFFF 64K Reserved 0xE01A0000 0xE014FFFF 64K Reserved 0xE01B0000 0xE01BFFFF 64K Reserved 0xE01B0000 0xE01BFFFF 64K Reserved 0xE01D0000 0xE01DFFFF 64K Reserved 0xE01D0000 0xE01D3FFF 64K Reserved 0xE01D0000 0xE01D3FFF 16K SPI0 Controller 0xE01D4000 0xE01D8FFF 16K SPI2 Controller 0xE01D8000 0xE01DFFFF 16K SPI3 Controller 0xE01E0000 0xE01EFFFF 32K MIPI DSI 0xE01E8000 0xE01EFFFF 32K Reserved 0xE0200000 0xE021FFFF 32K Reserved 0xE0220000 0xE0	0xE0172000	0xE0173FFF	8K	TWI1 Controller
0xE0178000 0xE0179FFF 8K TWI4 Controller 0xE017A000 0xE017BFFF 8K TWI5 Controller 0xE017C000 0xE017FFFF 16K Reserved 0xE0180000 0xE018FFFF 64K Reserved 0xE01A0000 0xE014FFFF 64K Reserved 0xE01B0000 0xE01BFFFF 64K Reserved 0xE01D0000 0xE012FFFF 64K Reserved 0xE01D0000 0xE012FFFF 64K Reserved 0xE01D0000 0xE01DFFFF 64K Reserved 0xE01D0000 0xE01D3FFF 64K Reserved 0xE01D4000 0xE01D7FFF 16K SPI0 Controller 0xE01D8000 0xE01DBFFF 16K SPI2 Controller 0xE01E0000 0xE01EFFFF 32K MIPI DSI 0xE01E8000 0xE01EFFFF 32K Reserved 0xE021FFFF 32K Reserved 0xE0220000 0xE022FFFF 32K Reserved 0xE0228000 0xE022FFFF 32K	0xE0174000	0xE0175FFF	8K	TWI2 Controller
0xE017A000 0xE017FFF 8K TWIS Controller 0xE017C000 0xE018FFF 16K Reserved 0xE0180000 0xE018FFFF 64K Reserved 0xE0190000 0xE019FFFF 64K eDP Controller 0xE01A0000 0xE01AFFFF 64K Reserved 0xE01B0000 0xE01BFFFF 64K GPIO/MFP Controller (include PWM) 0xE01C0000 0xE01DFFFF 64K Reserved 0xE01D0000 0xE01D3FFF 16K SPI0 Controller 0xE01D4000 0xE01DFFFF 16K SPI2 Controller 0xE01D8000 0xE01DFFFF 16K SPI3 Controller 0xE01E0000 0xE01FFFF 16K SPI3 Controller 0xE01E0000 0xE01FFFF 32K MIPI DSI 0xE01E8000 0xE01FFFF 32K Reserved 0xE01FFFF 44K Reserved 0xE020000 0xE021FFFF 32K Reserved 0xE0220000 0xE022FFFF 32K Reserved 0xE0228000 0xE022FFFF <td>0xE0176000</td> <td>0xE0177FFF</td> <td>8K</td> <td>TWI3 Controller</td>	0xE0176000	0xE0177FFF	8K	TWI3 Controller
0xE017C000 0xE017FFFF 16K Reserved 0xE0180000 0xE018FFFF 64K Reserved 0xE0190000 0xE019FFFF 64K eDP Controller 0xE01A0000 0xE01AFFFF 64K Reserved 0xE01B0000 0xE01BFFFF 64K GPIO/MFP Controller (include PWM) 0xE01C0000 0xE01CFFFF 64K Reserved 0xE01D0000 0xE01D3FFF 16K SPI0 Controller 0xE01D4000 0xE01DFFFF 16K SPI2 Controller 0xE01D8000 0xE01DFFFF 16K SPI3 Controller 0xE01E0000 0xE01FFFF 16K SPI3 Controller 0xE01E0000 0xE01FFFF 32K MIPI DSI 0xE01E8000 0xE01FFFF 32K Reserved 0xE01F0000 0xE01FFFF 44K Reserved 0xE0220000 0xE021FFFF 128K Reserved 0xE0228000 0xE0227FFF 32K Reserved 0xE0230000 0xE0237FFF 32K HDE 0xE0240000	0xE0178000	0xE0179FFF	8K	TWI4 Controller
0xE0180000 0xE018FFFF 64K Reserved 0xE0190000 0xE019FFFF 64K eDP Controller 0xE01A0000 0xE01AFFFF 64K Reserved 0xE01B0000 0xE01BFFFF 64K GPIO/MFP Controller (include PWM) 0xE01C0000 0xE01CFFFF 64K Reserved 0xE01D0000 0xE01D3FFF 16K SPI0 Controller 0xE01D4000 0xE01D8FFF 16K SPI2 Controller 0xE01D8000 0xE01DFFFF 16K SPI3 Controller 0xE01DC000 0xE01DFFFF 16K SPI3 Controller 0xE01E0000 0xE01E7FFF 32K MIPI DSI 0xE01E8000 0xE01EFFFF 32K Reserved 0xE01FFFFF 64K Reserved 0xE0200000 0xE021FFFF 128K Reserved 0xE0220000 0xE0227FFF 32K Reserved 0xE0228000 0xE0237FFF 32K Timer 0xE0238000 0xE0237FFF 32K HDE 0xE0240000 0xE0247FFF	0xE017A000	0xE017BFFF	8K	TWI5 Controller
0xE0190000 0xE019FFFF 64K eDP Controller 0xE01A0000 0xE01AFFFF 64K Reserved 0xE01B0000 0xE01BFFFF 64K GPIO/MFP Controller (include PWM) 0xE01C0000 0xE01CFFFF 64K Reserved 0xE01D0000 0xE01D3FFF 16K SPI0 Controller 0xE01D4000 0xE01D7FFF 16K SPI1 Controller 0xE01D8000 0xE01D8FFF 16K SPI3 Controller 0xE01D0000 0xE01DFFFF 16K SPI3 Controller 0xE01E0000 0xE01E7FFF 32K MIPI DSI 0xE01E8000 0xE01EFFFF 32K Reserved 0xE01FFFF 64K Reserved 0xE0200000 0xE021FFFF 128K Reserved 0xE0220000 0xE0227FFF 32K Reserved 0xE0228000 0xE022FFFF 32K Timer 0xE0238000 0xE023FFFF 32K HDE 0xE0240000 0xE0247FFF 32K HDCP2Tx 0xE0240000 0xE024FFFF	0xE017C000	0xE017FFFF	16K	Reserved
0xE01A0000 0xE01BFFFF 64K Reserved 0xE01B0000 0xE01BFFFF 64K GPIO/MFP Controller (include PWM) 0xE01C0000 0xE01CFFFF 64K Reserved 0xE01D0000 0xE01D3FFF 16K SPI0 Controller 0xE01D4000 0xE01DFFFF 16K SPI1 Controller 0xE01D8000 0xE01DBFFF 16K SPI3 Controller 0xE01DC000 0xE01DFFFF 16K SPI3 Controller 0xE01E0000 0xE01E7FFF 32K MIPI DSI 0xE01E8000 0xE01FFFFF 32K Reserved 0xE01F0000 0xE01FFFFF 64K Reserved 0xE0200000 0xE021FFFF 128K Reserved 0xE0220000 0xE0227FFF 32K Reserved 0xE0230000 0xE022FFFF 32K HDE 0xE0238000 0xE023FFFF 32K HDE 0xE0240000 0xE0247FFF 32K HDCP2Tx 0xE0248000 0xE024FFFF 32K SecureEngine Controller 0xE0250000 <td>0xE0180000</td> <td>0xE018FFFF</td> <td>64K</td> <td>Reserved</td>	0xE0180000	0xE018FFFF	64K	Reserved
0xE01B0000 0xE01BFFFF 64K GPIO/MFP Controller (include PWM) 0xE01C0000 0xE01CFFFF 64K Reserved 0xE01D0000 0xE01D3FFF 16K SPI0 Controller 0xE01D4000 0xE01D7FFF 16K SPI1 Controller 0xE01D8000 0xE01DFFFF 16K SPI3 Controller 0xE01DC000 0xE01DFFFF 16K SPI3 Controller 0xE01E0000 0xE01E7FFF 32K MIPI DSI 0xE01E8000 0xE01EFFFF 32K Reserved 0xE01F0000 0xE01FFFFF 64K Reserved 0xE0200000 0xE021FFFF 128K Reserved 0xE0220000 0xE0227FFF 32K Reserved 0xE0228000 0xE0227FFF 32K Timer 0xE0230000 0xE0237FFF 32K HDE 0xE0238000 0xE023FFFF 32K HDCP2Tx 0xE0240000 0xE0247FFF 32K SRAMI (Nor/SRAM/BROM Controller/ShareSRAMCTL) 0xE0248000 0xE025FFFF 64K HDMI&MHL Controller <	0xE0190000	0xE019FFFF	64K	eDP Controller
0xE01C0000 0xE01CFFFF 64K Reserved 0xE01D0000 0xE01D3FFF 16K SPI0 Controller 0xE01D4000 0xE01D7FFF 16K SPI1 Controller 0xE01D8000 0xE01DFFFF 16K SPI2 Controller 0xE01DC000 0xE01DFFFF 16K SPI3 Controller 0xE01E0000 0xE01E7FFF 32K MIPI DSI 0xE01E8000 0xE01EFFFF 32K Reserved 0xE01F0000 0xE01FFFF 64K Reserved 0xE0200000 0xE021FFFF 128K Reserved 0xE0220000 0xE0227FFF 32K Reserved 0xE0228000 0xE0227FFF 32K Timer 0xE0230000 0xE0237FFF 32K HDE 0xE0240000 0xE0247FFF 32K HDCP2Tx 0xE0240000 0xE0247FFF 32K SecureEngine Controller 0xE0250000 0xE025FFFF 64K HDMI&MHL Controller	0xE01A0000	0xE01AFFFF	64K	Reserved
0xE01D0000 0xE01D3FFF 16K SPI0 Controller 0xE01D4000 0xE01D7FFF 16K SPI1 Controller 0xE01D8000 0xE01DBFFF 16K SPI2 Controller 0xE01DC000 0xE01DFFFF 16K SPI3 Controller 0xE01E0000 0xE01E7FFF 32K MIPI DSI 0xE01E8000 0xE01EFFFF 32K Reserved 0xE01F0000 0xE01FFFFF 64K Reserved 0xE0200000 0xE021FFFF 128K Reserved 0xE0220000 0xE0227FFF 32K Timer 0xE0230000 0xE0237FFF 32K HDE 0xE0238000 0xE023FFFF 32K HDCP2Tx 0xE0240000 0xE0247FFF 32K SRAMI (Nor/SRAM/BROM Controller/ShareSRAMCTL) 0xE0248000 0xE024FFFF 32K SecureEngine Controller 0xE0250000 0xE025FFFF 64K HDMI&MHL Controller	0xE01B0000	0xE01BFFFF	64K	GPIO/MFP Controller (include PWM)
0xE01D4000 0xE01D7FFF 16K SPI1 Controller 0xE01D8000 0xE01DBFFF 16K SPI2 Controller 0xE01DC000 0xE01DFFFF 16K SPI3 Controller 0xE01E0000 0xE01E7FFF 32K MIPI DSI 0xE01E8000 0xE01EFFFF 32K Reserved 0xE01F0000 0xE01FFFFF 64K Reserved 0xE0220000 0xE021FFFF 128K Reserved 0xE0220000 0xE0227FFF 32K Reserved 0xE0228000 0xE022FFFF 32K Timer 0xE0230000 0xE023FFFF 32K HDCP2Tx 0xE0240000 0xE0247FFF 32K SRAMI (Nor/SRAM/BROM Controller/ShareSRAMCTL) 0xE0248000 0xE024FFFF 32K SecureEngine Controller 0xE0250000 0xE025FFFF 64K HDMI&MHL Controller	0xE01C0000	0xE01CFFFF	64K	Reserved
0xE01D8000 0xE01DBFFF 16K SPI2 Controller 0xE01DC000 0xE01DFFFF 16K SPI3 Controller 0xE01E0000 0xE01E7FFF 32K MIPI DSI 0xE01E8000 0xE01EFFFF 32K Reserved 0xE01F0000 0xE01FFFFF 64K Reserved 0xE0200000 0xE021FFFF 128K Reserved 0xE0220000 0xE0227FFF 32K Reserved 0xE0228000 0xE022FFFF 32K Timer 0xE0230000 0xE0237FFF 32K HDE 0xE0238000 0xE023FFFF 32K HDCP2Tx 0xE0240000 0xE0247FFF 32K SRAMI (Nor/SRAM/BROM Controller/ShareSRAMCTL) 0xE0248000 0xE024FFFF 32K SecureEngine Controller 0xE0250000 0xE025FFFF 64K HDMI&MHL Controller	0xE01D0000	0xE01D3FFF	16K	SPI0 Controller
0xE01DC000 0xE01DFFFF 16K SPI3 Controller 0xE01E0000 0xE01E7FFF 32K MIPI DSI 0xE01E8000 0xE01EFFFF 32K Reserved 0xE01F0000 0xE01FFFFF 64K Reserved 0xE0200000 0xE021FFFF 128K Reserved 0xE0220000 0xE0227FFF 32K Reserved 0xE0228000 0xE022FFFF 32K Timer 0xE0230000 0xE0237FFF 32K HDE 0xE0238000 0xE023FFFF 32K HDCP2Tx 0xE0240000 0xE0247FFF 32K SRAMI (Nor/SRAM/BROM Controller/ShareSRAMCTL) 0xE0248000 0xE024FFFF 32K SecureEngine Controller 0xE0250000 0xE025FFFF 64K HDMI&MHL Controller	0xE01D4000	0xE01D7FFF	16K	SPI1 Controller
0xE01E0000 0xE01E7FFF 32K MIPI DSI 0xE01E8000 0xE01EFFFF 32K Reserved 0xE01F0000 0xE01FFFFF 64K Reserved 0xE0200000 0xE021FFFF 128K Reserved 0xE0220000 0xE0227FFF 32K Reserved 0xE0228000 0xE022FFFF 32K Timer 0xE0230000 0xE0237FFF 32K HDE 0xE0238000 0xE023FFFF 32K HDCP2Tx 0xE0240000 0xE0247FFF 32K SRAMI (Nor/SRAM/BROM Controller/ShareSRAMCTL) 0xE0248000 0xE024FFFF 32K SecureEngine Controller 0xE0250000 0xE025FFFF 64K HDMI&MHL Controller	0xE01D8000	0xE01DBFFF	16K	SPI2 Controller
0xE01E8000 0xE01EFFFF 32K Reserved 0xE01F0000 0xE01FFFFF 64K Reserved 0xE0200000 0xE021FFFF 128K Reserved 0xE02220000 0xE0227FFF 32K Reserved 0xE0228000 0xE022FFFF 32K Timer 0xE0230000 0xE0237FFF 32K HDE 0xE0238000 0xE023FFFF 32K HDCP2Tx 0xE0240000 0xE0247FFF 32K SRAMI (Nor/SRAM/BROM Controller/ShareSRAMCTL) 0xE0248000 0xE024FFFF 32K SecureEngine Controller 0xE0250000 0xE025FFFF 64K HDMI&MHL Controller	0xE01DC000	0xE01DFFFF	16K	SPI3 Controller
0xE01F0000 0xE01FFFFF 64K Reserved 0xE0200000 0xE021FFFF 128K Reserved 0xE0220000 0xE0227FFF 32K Reserved 0xE0228000 0xE022FFFF 32K Timer 0xE0230000 0xE0237FFF 32K HDE 0xE0238000 0xE023FFFF 32K HDCP2Tx 0xE0240000 0xE0247FFF 32K SRAMI (Nor/SRAM/BROM Controller/ShareSRAMCTL) 0xE0248000 0xE024FFFF 32K SecureEngine Controller 0xE0250000 0xE025FFFF 64K HDMI&MHL Controller	0xE01E0000	0xE01E7FFF	32K	MIPI DSI
0xE0200000 0xE021FFFF 128K Reserved 0xE0220000 0xE0227FFF 32K Reserved 0xE0228000 0xE022FFFF 32K Timer 0xE0230000 0xE0237FFF 32K HDE 0xE0238000 0xE023FFFF 32K HDCP2Tx 0xE0240000 0xE0247FFF 32K SRAMI (Nor/SRAM/BROM Controller/ShareSRAMCTL) 0xE0248000 0xE024FFFF 32K SecureEngine Controller 0xE0250000 0xE025FFFF 64K HDMI&MHL Controller	0xE01E8000	0xE01EFFFF	32K	Reserved
0xE0220000 0xE0227FFF 32K Reserved 0xE0228000 0xE022FFFF 32K Timer 0xE0230000 0xE0237FFF 32K HDE 0xE0238000 0xE023FFFF 32K HDCP2Tx 0xE0240000 0xE0247FFF 32K SRAMI (Nor/SRAM/BROM Controller/ShareSRAMCTL) 0xE0248000 0xE024FFFF 32K SecureEngine Controller 0xE0250000 0xE025FFFF 64K HDMI&MHL Controller	0xE01F0000	0xE01FFFFF	64K	Reserved
0xE0228000 0xE022FFFF 32K Timer 0xE0230000 0xE0237FFF 32K HDE 0xE0238000 0xE023FFFF 32K HDCP2Tx 0xE0240000 0xE0247FFF 32K SRAMI (Nor/SRAM/BROM Controller/ShareSRAMCTL) 0xE0248000 0xE024FFFF 32K SecureEngine Controller 0xE0250000 0xE025FFFF 64K HDMI&MHL Controller	0xE0200000	0xE021FFFF	128K	Reserved
0xE0230000 0xE0237FFF 32K HDE 0xE0238000 0xE023FFFF 32K HDCP2Tx 0xE0240000 0xE0247FFF 32K SRAMI (Nor/SRAM/BROM Controller/ShareSRAMCTL) 0xE0248000 0xE024FFFF 32K SecureEngine Controller 0xE0250000 0xE025FFFF 64K HDMI&MHL Controller	0xE0220000	0xE0227FFF	32K	Reserved
0xE0238000 0xE023FFFF 32K HDCP2Tx 0xE0240000 0xE0247FFF 32K SRAMI (Nor/SRAM/BROM Controller/ShareSRAMCTL) 0xE0248000 0xE024FFFF 32K SecureEngine Controller 0xE0250000 0xE025FFFF 64K HDMI&MHL Controller	0xE0228000	0xE022FFFF	32K	Timer
0xE02400000xE0247FFF32KSRAMI (Nor/SRAM/BROM Controller/ShareSRAMCTL)0xE02480000xE024FFFF32KSecureEngine Controller0xE02500000xE025FFFF64KHDMI&MHL Controller	0xE0230000	0xE0237FFF	32K	HDE
0xE02400000xE0247FFF32K(Nor/SRAM/BROM Controller/ShareSRAMCTL)0xE02480000xE024FFFF32KSecureEngine Controller0xE02500000xE025FFFF64KHDMI&MHL Controller	0xE0238000	0xE023FFFF	32K	HDCP2Tx
0xE0250000 0xE025FFFF 64K HDMI&MHL Controller	0xE0240000	0xE0247FFF	32K	
0xE0250000 0xE025FFFF 64K HDMI&MHL Controller	0xE0248000	0xE024FFFF	32K	SecureEngine Controller
		0xE025FFFF		
	0xE0260000	0xE026FFFF	64K	DMA Controller

0xE0270000	0xE0277FFF	32K	BISP Controller
0xE0278000	0xE027FFFF	32K	IMX
0xE0280000	0xE0287FFF	32K	VDE
0xE0288000	0xE028FFFF	32K	VCE
0xE0290000	0xE029FFFF	64K	DDR Controller (including 2-ch controller+phy)
0xE02A0000	0xE02AFFFF	64K	LCD Controller
0xE02B0000	0xE02BFFFF	64K	USBH0
0xE02C0000	0xE02CFFFF	64K	USBH1
0xE02D0000	0xE02D7FFF	32K	MIPI CSI_0
0xE02D8000	0xE02DFFFF	32K	MIPI CSI_1
0xE02E0000	0xE02EFFFF	64K	DE (Display Engine)
0xE02F0000	0xE02FFFFF	64K	Reserved
0xE0300000	0xE0307FFF	32K	NAND Flash Controller_0
0xE0308000	0xE030FFFF	32K	NAND Flash Controller_1
0xE0310000	0xE031FFFF	64K	Ethernet Controller
0xE0320000	0xE032FFFF	64K	Reserved
0xE0330000	0xE0333FFF	16K	SD0 Controller
0xE0334000	0xE0337FFF	16K	SD1 Controller
0xE0338000	0xE033BFFF	16K	SD2 Controller
0xE033C000	0xE033FFFF	16K	SD3 Controller
0xE0340000	0xE03FFFFF	768K	Reserved
0xE0400000	0xE04FFFFF	1M	USB3.0 Controller
0xE0500000	0xE05FFFFF	1M	NOC
0xE0600000	0xE06FFFFF	1M	GPU
0xE0700000	0xE07FFFFF	1M	Reserved
SRAMOC:			
0xE4000000	0xE405FFFF	384K	Reserved
			ShareSRAM
			1. 0xE4060000~0xE4067FFF
0xE4060000	0xE40BFFFF	384K	(Independent 32KB SRAM for secure world)
			2. 0xE4068000~0xE407FFFF
			(96KB SRAM shared from DE)
0xE40E0000	0xE40FFFFF	128K	Reserved
0xE4100000	0xE7FFFFF	63M	Reserved
SRAMI Memory:		T	
0xFD000000	0xFD00FFFF	64K	ERAM (in normal mode)
0xFFFF0000	0xFFFFFFF	64K	BROM (in normal mode)

2 System Control

2.1 Timer

2.1.1 Function

There are 4 32-bit timers with IRQ, and all timers are same logic. Timer 2/3 only used in Secure mode

32-bit register TO_VAL and TO_CMP are writable and readable, TO_CMP can be written at any time. When EN=0, TO_VAL can be written, but timer0 does not count up.

When EN=1, T0_VAL will carry on counting from whatever value is loaded into it. However, OS timers are usually implemented by leaving T0_VAL free-running and writing T0_CMP as necessary. T0_VAL counts up at the clock from 24MHz, if IRQEN=1, An IRQ will generate when T0_VAL equals T0_CMP. The IRQ can be cleared by writing 1 to PD.

2.1.2 Register List

Table 2 - 1 Timer Base Address

Name	Physical Base Address
Timer	0xE0228000

Table 2 - 2 Timer Register List

Offset	Register Name	Description
0x0008	TO_CTL	Timer0 Control register
0x000C	T0_CMP	Timer0 Compare Register
0x0010	T0_VAL	Timer0 Value Register
0x0014	T1_CTL	Timer1 Control register
0x0018	T1_CMP	Timer1 Compare Register
0x001C	T1_VAL	Timer1 Value Register
0x0030	T2_CTL	Timer2 Control register
0x0034	T2_CMP	Timer2 Compare Register
0x0038	T2_VAL	Timer2 Value Register
0x003c	T3_CTL	Timer3 Control register
0x0040	T3_CMP	Timer3 Compare Register
0x0044	T3_VAL	Timer3 Value Register

Note: When Setting the TIMERs, program must disable the corresponding enable bit at first and then enable it after setting the value.

2.1.3 Register Description

2.1.3.1 TO_CTL

Timer0 Control Register (VDD)

Offset = 0x0008

Bits	Name	Description	Access	Reset
31	ERR_FLAG	Error flag bit 0:T0 running normally 1:T0 has synchronous reading error This bit can be cleared only by disable T0	R	0
30:3	-	Reserved	-	-
2	EN	Timer0 Enable 0:Disable 1:Enable	RW	0
1	IRQEN	T0 send IRQ Enable When this bit is enabled, if T0_VAL equals T0_CMP, IRQ signal will be sent out until the IRQ pending bit was cleared.	RW	0
0	PD	Timer0 IRQ Pending, Writing 1 to clear this bit.	RW	0

2.1.3.2 TO_CMP

Timer0 compare Register (VDD)

Offset = 0x000C

Bits	Name	Description	Access	Reset
31:0	CMP	compare value	RW	0

2.1.3.3 TO_VAL

Timer0 Value Register (VDD)

Offset = 0x0010

Bits	Name	Description	Access	Reset
31:0	VAL	Read or write current Timer0 value	RW	0

2.1.3.4 T1_CTL

Timer1 Control Register (VDD)

Offset = 0x0014

Bits	Name	Description	Access	Reset
31	ERR_FLAG	Error flag bit	R	0

Copyright[©] 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

		0:T1 running normally 1:T1 has synchronous reading error This bit can be cleared only by disable T1		
30:3	-	Reserved	-	-
		Timer1 Enable		
2	EN	0:Disable	RW	0
		1:Enable		
		T1 send IRQ Enable		
1	IRQEN	When this bit is enabled, If T1_VAL equals T1_CMP, IRQ	RW	0
1	INCLIN	signal will be sent out until the IRQ pending bit was	NVV	U
		cleared.		
0	PD	Timer1 IRQ Pending,	RW	0
U	רט	Writing 1 to clear this bit.	LVV	O

2.1.3.5 T1_CMP

Timer1 compare Register (VDD)

Offset = 0x0018

Bits	Name	Description	Access	Reset
31:0	CMP	compare value	RW	0

2.1.3.6 T1_VAL

Timer1 Value Register (VDD)

Offset = 0x001C

Bits	Name	Description	Access	Reset
31:0	VAL	Read or write current Timer1 value	RW	0

2.2 **DMA**

2.2.1 Function

DMA is the data transmission engine for CPU system memory and peripheral slaves including AXI, AHB and APB. The AXI slave devices include DDR, ShareRAM, NAND Flash, SD/MMC. AHB slave consists of SRAMI, SPI and MIPI DSI. APB slave devices include UART, I2S, PCM, SPDIF, HDMIAudio, etc.

The system transmission engine DMA support 12 logic channels, 32 bytes burst transfer, 4 read outstanding requests, link list mode and unaligned word transfer.

2.2.2 DRQ Source

DMA supports 4 software configurable interrupt lines. Interrupt events include: super block transmission over interrupt (for linklist), block transmission over interrupt, frame transmission over interrupt, half of frame transmission over interrupt, start of last frame transmission over interrupt, and address unaligned error interrupt.

Table 2 - 3 DRQ Trig Source Table

	DRQ_Trig		- 3 DNQ TTIG 30				
DRQ Source	Field	DRQ	Simultaneous	FIFO	FIFO	DRQ	Operatio
	(5bit)	Connect	Task Num	Depth	Wide	Threshold	n Wide
DCU	0	DDOO	>2	DANA	22	A l	120
(ShareSRAM/srmi)	0	DRQ0	(SRC DST)	RAM	32	Always	128
SD0	2	DRQ2	1 (SRC DST)	512B	32	8	32
SD1	3	DRQ3	1 (SRC DST)	512B	32	8	32
SD2	4	DRQ4	1 (SRC DST)	512 B	32	8	32
NANDDATA0	6	DRQ6	1 (SRC DST)	1KB	0	0	32
I2S_t	7	DRQ7	1 (DST)	32	24	16	32
12S_r	8	DRQ8	1 (SRC)	16	24	8	32
PCM0_t	9	DRQ9	1 (DST)	16	16	16	32
PCM0_r	10	DRQ10	1 (SRC)	16	16	8	32
PCM1_t	11	DRQ11	1 (DST)	16	16	16	32
PCM1_r	12	DRQ12	1 (SRC)	16	16	8	32
SPDIF	13	DRQ13	1 (DST)	32	24	16	32
HDMIaudio	14	DRQ14	1 (DST)	32	24	16	32
I2STX_SPDIF_HDMI	15	DRQ15	1 (DST)	32	24	16	32
UARTO_t	16	DRQ16	1 (DST)	16	8	1	32
UARTO_r	17	DRQ17	1 (SRC)	32	8	1	32
UART1_t	18	DRQ18	1 (DST)	16	8	1	32
UART1_r	19	DRQ19	1 (SRC)	32	8	1	32
UART2_t	20	DRQ20	1 (DST)	16	8	1	32
UART2_r	21	DRQ21	1 (SRC)	32	8	1	32
UART3_t	22	DRQ22	1 (DST)	16	8	1	32
UART3_r	23	DRQ23	1 (SRC)	32	8	1	32
UART4_t	24	DRQ24	1 (DST)	16	8	1	32
UART4_r	25	DRQ25	1 (SRC)	32	8	1	32
UART5_t	26	DRQ26	1 (DST)	16	8	1	32
UART5_r	27	DRQ27	1 (SRC)	32	8	1	32
SPIO_t	28	DRQ28	1 (DST)	32	32	16	32
SPIO_r	29	DRQ29	1 (SRC)	32	32	16	32
SPI1_t	30	DRQ30	1 (DST)	32	32	16	32
SPI1_r	31	DRQ31	1 (SRC)	32	32	16	32
SPI2_t	32	DRQ32	1 (DST)	32	32	16	32

SPI2_r	33	DRQ33	1 (SRC)	32	32	16	32
SPI3_t	34	DRQ34	1 (DST)	32	32	16	32
SPI3_r	35	DRQ35	1 (SRC)	32	32	16	32
DSI_t	36	DRQ36	1 (SRC)	32	32	11/16	32
DSI_r	37	DRQ37	1 (DST)	32	32	11/16	32
HDCP2.0_t	41	DRQ41	1 (SRC)	12	32	8	32
HDCP2.0_r	40	DRQ40	1 (DST)	12	32	8	32
UART6_t	42	DRQ42	1 (DST)	16	8	1	32
UART6_r	43	DRQ43	1 (SRC)	32	8	1	32
NANDDATA1	45	DRQ45	1 (SRC DST)	1KB	0	0	32
SD3	46	DRQ46	1 (SRC DST)	512 B	32	8	32

2.2.3 Register List

Table 2 - 4 DMA Controller Registers Address

Tuble 2 - 4 DIVIA CONTIONET REGISTERS Address				
Name	Physical Base Address			
DMA_GLOBAL	0xE0260000			
DMA0	0xE0260100			
DMA1	0xE0260200			
DMA2	0xE0260300			
DMA3	0xE0260400			
DMA4	0xE0260500			
DMA5	0xE0260600			
DMA6	0xE0260700			
DMA7	0xE0260800			
DMA8	0xE0260900			
DMA9	0xE0260A00			
DMA10	0xE0260B00			
DMA11	0xE0260C00			

Table 2 - 5 DMA Global Controller Registers

Offset	Register Name	Description
0x0000~0x000C	DMA_IRQ_PD0~3	DMA IRQ Pending Register0~3
0x0010~0x001C	DMA_IRQ_EN0~3	DMA IRQ enable Register0~3
0x0020	DMA_SECURE_ACCESS_CTL	CTRL of DMA secure access
0x0024	DMA_NIC_QOS	QOS of DMA to NIC
0x002C	DMA_IDLE_STAT	DMA status register

Table 2 - 6 DMA Logical Channel Controller Registers

Offset	Register Name	Description
0000	DMAx_MODE	Mode Register
0x0004	DMAx_SOURCE	Source address Register

0x0008	DMAx_DESTINATION	Destination Address Register
0x000C	DMAx_FRAME_LEN	Frame Length Register
0x0010	DMAx_FRAME_CNT	Frame Count Register
0x0014	DMAx_REMAIN_FRAME_CNT	Remain Frames in the Current Block
0x0018	DMAx_REMAIN_CNT	Remain Count in the Current Frame
0x001C	DMAx_SOURCE_STRIDE	Source Stride Register
0x0020	DMAx_DESTINATION_STRIDE	Destination Stride Register
0x0024	DMAx_START	Start DMA demand
0x0028	DMAx_PAUSE	DMA PAUSE
0x002C	DMAx_CHAINED_CTL	Chained Control Register
0x0030	DMAx_CONSTANT	Constant Fill Mode Data Register
0x0034	DMAx_LINKLIST_CTL	Link list Control Register
0x0038	DMAx_NEXT_DESCRIPTOR	Link list Next DESCRIPTOR Pointer Register
0x003C	DMAx_CURRENT_DESCRIPTOR_NUM	Link list Next DESCRIPTOR Pointer Register
0x0040	DMAx_INT_CTL	Interrupt Control Register
0x0044	DMAx_INT_STATUS	Interrupt Status Register
0x0048	DMAx_CURRENT_SOURCE_POINTER	Current Source Pointer Register
0x004C	DMAx_CURRENT_DESTINATION_POINTE	Current Destination Pointer Register
3,0010	R	Carrent Sestimation Fornier Register

2.2.4 Register Description

2.2.4.1 DMA_IRQ_PD0~3

DMA IRQx Pending Register

Offset = 0x0000+x*0x0004, $0 \le x \le 3$

Bits	Name	Description	Access	Reset
31:12	-	Reserved	-	-
11	DMA11PD	DMA11 Interrupt Pending: (write 1 to reset, write 0 no effect) 0: DMA11 has no interrupt request on interrupt line x 1: DMA11 has interrupt request on interrupt line x	RW	0
10	DMA10PD	DMA10 Interrupt Pending: (write 1 to reset, write 0 no effect) 0: DMA10 has no interrupt request on interrupt line x 1: DMA10 has interrupt request on interrupt line x	RW	0
9	DMA9PD	DMA9 Interrupt Pending: (write 1 to reset, write 0 no effect) 0: DMA9 has no interrupt request on interrupt line x 1: DMA9 has interrupt request on interrupt line x	RW	0
8	DMA8PD	DMA8 Interrupt Pending: (write 1 to reset, write 0 no effect)	RW	0

			1	
		0: DMA8 has no interrupt request on interrupt line x		
		1: DMA8 has interrupt request on interrupt line x		
		DMA7 Interrupt Pending: (write 1 to reset, write 0 no		
7	DMA7PD	effect)	RW	0
,	DIVIATED	0: DMA7 has no interrupt request on interrupt line x	IVV	U
		1: DMA7 has interrupt request on interrupt line x		
		DMA6 Interrupt Pending: (write 1 to reset, write 0 no		
6	DMA6PD	effect)	RW	0
б	DIVIAGPD	0: DMA6 has no interrupt request on interrupt line x	KVV	U
		1: DMA6 has interrupt request on interrupt line x		
		DMA5 Interrupt Pending: (write 1 to reset, write 0 no		
_	DMA5PD	effect)	RW	
5	DIVIASPD	0: DMA5 has no interrupt request on interrupt line x	KVV	0
		1: DMA5 has interrupt request on interrupt line x		
		DMA4 Interrupt Pending: (write 1 to reset, write 0 no		
	DMA4PD	effect)	RW	
4		0: DMA4 has no interrupt request on interrupt line x	NVV	0
		1: DMA4 has interrupt request on interrupt line x		
		DMA3 Interrupt Pending: (write 1 to reset, write 0 no		
2	DMASDD	effect)	D\A/	
3	DMA3PD	0: DMA3 has no interrupt request on interrupt line x	RW	0
		1: DMA3 has interrupt request on interrupt line x		
		DMA2 Interrupt Pending: (write 1 to reset, write 0 no		
2	DMAZDD	effect)	DVA	
2	DMA2PD	0: DMA2 has no interrupt request on interrupt line x	RW	0
		1: DMA2 has interrupt request on interrupt line x		
		DMA1 Interrupt Pending: (write 1 to reset, write 0 no		
1	DMA1DD	effect)	D\A/	
1	DMA1PD	0: DMA1 has no interrupt request on interrupt line x	RW	U
		1: DMA1 has interrupt request on interrupt line x		
		DMA0 Interrupt Pending: (write 1 to reset, write 0 no		
	DMAACDD	effect)	DVA	
0	DMA0PD	0: DMA0 has no interrupt request on interrupt line x	RW	0
		1: DMA0 has interrupt request on interrupt line x		
		1. Divino has interrupt request on interrupt line x		

2.2.4.2 DMA_IRQ_EN0~3

DMA IRQx Enable Register

Offset = 0x0010+x*0x0004, $0 \le x \le 3$

Bits	Name	Description	Access	Reset
31:12	-	Reserved	-	-
		DMA11 Interrupt Enable:		
11	DMA11IRQEN	0: DMA11 disabled interrupt on interrupt line x	RW	0
		1: DMA11 enabled interrupt on interrupt line x		

 $\textbf{Copyright}^{\circledcirc}\textbf{ 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.}$

		DMA10 Interrupt Enable:		
10	DMA10IRQEN	0: DMA10 disabled interrupt on interrupt line x	RW	0
		1: DMA10 enabled interrupt on interrupt line x		
		DMA9 Interrupt Enable:		
9	DMA9IRQEN	0: DMA9 disabled interrupt on interrupt line x	RW	0
		1: DMA9 enabled interrupt on interrupt line x		
		DMA8 Interrupt Enable:		
8	DMA8IRQEN	0: DMA8 disabled interrupt on interrupt line x	RW	0
		1: DMA8 enabled interrupt on interrupt line x		
		DMA7 Interrupt Enable:		
7	DMA7IRQEN	0: DMA7 disabled interrupt on interrupt line x	RW	0
		1: DMA7 enabled interrupt on interrupt line x		
		DMA6 Interrupt Enable:		
6	DMA6IRQEN	0: DMA6 disabled interrupt on interrupt line x	RW	0
		1: DMA6 enabled interrupt on interrupt line x		
		DMA5 Interrupt Enable:		
5	DMA5IRQEN	0: DMA5 disabled interrupt on interrupt line x	RW	0
		1: DMA5 enabled interrupt on interrupt line x		
		DMA4 Interrupt Enable:		
4	DMA4IRQEN	0: DMA4 disabled interrupt on interrupt line x	RW	0
		1: DMA4 enabled interrupt on interrupt line x		
		DMA3 Interrupt Enable:		
3	DMA3IRQEN	0: DMA3 disabled interrupt on interrupt line x	RW	0
		1: DMA3 enabled interrupt on interrupt line x		
		DMA2 Interrupt Enable:		
2	DMA2IRQEN	0: DMA2 disabled interrupt on interrupt line x	RW	0
		1: DMA2 enabled interrupt on interrupt line x		
		DMA1 Interrupt Enable:		
1	DMA1IRQEN	0: DMA1 disabled interrupt on interrupt line x	RW	0
		1: DMA1 enabled interrupt on interrupt line x		
		DMA0 Interrupt Enable:		
0	DMA0IRQEN	0: DMA0 disabled interrupt on interrupt line x		
		1: DMA0 enabled interrupt on interrupt line x		
	•	•		•

2.2.4.3 DMAx_MODE

DMAx Mode Register

Offset = 0x0100+x*0x0100, $0 \le x \le 11$

Bits	Name	Description	Access	Reset
		Chained Mode Enable:		
31	CME	0: Disable	RW	0
		1: Enable		
20	1845	Link list Mode Enable:	DIA	0
30	LME	0: Disable	RW	0

		1: Enable		
	0==	Constant Fill Mode Enable:		
29	CFE	0: Disable	RW	0
		1: Enable		
	NDDBW	NIC Device Data Bus Width:		
28		0: 32	RW	0
20		1: 8 (only for UART byte transfer, not applicable for other	11.00	
		device)		
27:24	-	Reserved	-	-
		Critical Bit: (only take effect in AXI ID field)		
23	СВ	0: Identify the request sent to DCU as non-real time request	RW	0
		1: Identify the request sent to DCU as real time request		
		Priority Weight: N		
		0: 1		
		1: 2		
		2: 4		
22:20	PW	3: 8	RW	0
		4: 16		
		5: 32		
		6: 64		
		7: 128		
		Destination Address Mode:		
		0: Constant		
19:18	DAM	1: Increment	RW	0
19.10	DAIVI	2: Stride	IVV	U
		3: Reserved		
		Source Address Mode:		
		0: Constant		
17:16	SAM	1: Increment	RW	0
17.16	JAIVI	2: Stride	KVV	U
		3: Reserved		
45.43	_	Reserved		
15:12	-		-	-
		Destination Type:		
		0: Device		
11:10	DT	1: Reserved	RW	0
		2: DCU		
		3: ShareRAM		
		Source Type:		
		0: Device		
98	ST	1: Reserved	RW	0
		2: DCU		
		3: ShareRAM		
7:6	-	Reserved	-	-
5:0	TS	Trigger Source:	RW	0

	Refer to the 2nd column of Trig source Table, named	
	DRQ connect	

2.2.4.4 DMAx_SOURCE

DMAx Source Register

Offset = 0x0104+x*0x0100, $0 \le x \le 11$

Bits	Name	Description	Access	Reset
31:0	DSA	DMA Source Address	RW	0

2.2.4.5 DMAx_DESTINATION

DMAx Destination Register

Offset = 0x0108+x*0x0100, $0 \le x \le 11$

Bits	Name	Description	Access	Reset
31:0	DDA	DMA Destination Address	RW	0

2.2.4.6 DMAx_FRAME_LEN

DMAx Frame Length Register

Offset = 0x010C+x*0x0100, $0 \le x \le 11$

Bits	Name	Description	Access	Reset
31:24	-	Reserved	R	0
23:0	DFL	DMA Frame Length (by bytes)	RW	0

2.2.4.7 DMAx_FRAME_CNT

DMAx Frame Count Register

Offset = 0x0110+x*0x0100, $0 \le x \le 11$

Bits	Name	Description	Access	Reset
31:12	-	Reserved	R	0
11:0	DFC	DMA Frame Count (by frames)	RW	1

Note: limitations about the transmission length and address aligning are listed below:

- 1. If logic channel is const fill mode, frame_length must be multiples of 4-byte
- 2. All the access address of all devices must be word aligned (including srmi)
- 3. Frame and framecount should not exceed 4G

Besides all these limitations, address is not request to be aligned; frame length and stride are not limited.

2.2.4.8 DMAx_REMAIN_FRAME_CNT

DMAx Remain Frame Count Register

Offset = 0x0114+x*0x0100, $0 \le x \le 11$

Bits	Name	Description	Access	Reset
30:12	-	Reserved	-	-
11:0	DTRC	DMA Remain Frame Count in the Current Block (by frames)	R	0

2.2.4.9 DMAx_REMAIN_CNT

DMAx Current Frame Remain Count Register

Offset = 0x0118+x*0x0100, $0 \le x \le 11$

Bits	Name	Description	Access	Reset
31:24	-	Reserved	-	-
23:0	DCFRC	DMA Remain Count in the Current Frame (by bytes)	R	0

2.2.4.10 DMAx_SOURCE_STRIDE

DMAx Source Stride Register

Offset = 0x011C+x*0x0100, $0 \le x \le 11$

Bits	Name	Description	Access	Reset
31:0	DSS	DMA Source Stride (by bytes)	RW	0

2.2.4.11 DMAx_DESTINATION_STRIDE

DMAx Destination Stride Register

Offset = 0x0120+x*0x0100, $0 \le x \le 11$

Bits	Name	Description	Access	Reset
31:0	DDS	DMA Destination Stride (by bytes)	RW	0

2.2.4.12 DMAx_START

DMAx Start Register

Offset = 0x0124+x*0x0100, $0 \le x \le 11$

Bits	Name	Description	Access	Reset
31:1	-	Reserved	-	-
		DMA Start Enable:		
		0: Disable		
0	DSE	1: Enable	RW	0
		Note: After a transfer has been finished, the bit will		
		be auto cleared. Writing 0 to START bit can terminate		

	this DMA task whenever transfer is going on.	

2.2.4.13 DMAx_PAUSE

DMAx ACP Attribute Register

Offset = 0x0128+x*0x0100, $0 \le x \le 11$

Bits	Name	Description	Access	Reset
31:1	-	Reserved	-	-
0		DMA PAUSE:	RW	0
	PAUSE	PAUSE 0: Disable		
		1: Enable		

2.2.4.14 DMAx_CHAINED_CTL

DMAx Chained Control Register

Offset = 0x012C+x*0x0100, $0 \le x \le 11$

Bits	Name	Description	Access	Reset
31:4	-	Reserved	-	-
3:0	NLCN	Next Logical Channel Number (which will be hardware auto started after this DMA task finishes)	RW	0

2.2.4.15 DMAx_CONSTANT

DMAx Constant Data Register

Offset = 0x0130+x*0x0100, $0 \le x \le 11$

Bits	Name	Description	Access	Reset
31:0	DCD	DMA Constant Data	RW	0

2.2.4.16 DMAx_LINKLIST_CTL

DMAx Link list Control Register

Offset = 0x0134+x*0x0100, $0 \le x \le 11$

Bits	Name	Description	Access	Reset
31:17	-	Reserved	=	-
16	SUSPEND	Suspend the linked-list transfer at completion of the current block transfer. 0: Linked list is active. 1: Linked list is suspended at the boundary of next descriptor loading.	RW	0
15:12	ı	Reserved	ı	1
11:10	DAV	Destination Address Valid 0: The destination address is not present in the next	RW	0

		descriptor and continuous incrementing is enabled.		
		1: The destination address must be reloaded in the next		
		descriptor transfer.		
		0x2: The destination start address is not present in the		
		next descriptor. But will reload the one from		
		configuration memory which belongs to the previous		
		descriptor.		
		0x3: Reserved		
		Source Address Valid		
		0: The source address is not present in the next		
		descriptor and continuous incrementing is enabled.		
		1: The source address must be reloaded in the next		
98	SAV	descriptor transfer.	RW	0
		0x2: The source start address is not present in the next		
		descriptor. But will reload the one from configuration		
		memory which belongs to the previous descriptor.		
		0x3: Reserved		
7:0	-	Reserved	_	-

2.2.4.17 DMAx_NEXT_DESCRIPTOR

DMAx Next DESCRIPTOR Register

Offset = $0x0138+x*0x0100, 0 \le x \le 11$

Bits	Name	Description	Access	Reset
		Next Descriptor Pointer:		
31:2	NDP	This register contains the Next descriptor Address	RW	0
		Pointer for the link list		
1:0	-	Reserved	-	-

2.2.4.18 DMAx_CURRENT_DESCRIPTOR_NUM

DMAx Current Descriptor Number Register

Offset = 0x013C+x*0x0100, $0 \le x \le 11$

Bits	Name	Description		Reset
31:16	1	Reserved	I	ı
15:0 NDD		This register contains the current active descriptor	R	_
15:0 NDP	number in the link list when it is read	O		

2.2.4.19 **DMAx_INT_CTL**

DMAx Interrupt Control Register

Offset = 0x0140+x*0x0100, $0 \le x \le 11$

Bits N	lame	Description	Access	Reset
--------	------	-------------	--------	-------

31:5	-	Reserved	-	-
		Enable Last Frame Interrupt (start of last frame) :		
4	ELF	0: Disable	RW	0
		1: Enable		
		Enable End of Half Frame Interrupt:		
3	EEHF	0: Disable	RW	0
		1: Enable		
		Enable End of Frame Interrupt:		
2	EEF	0: Disable	RW	0
		1: Enable		
		Enable End of Super Block Interrupt:		
1	EESB	0: Disable	RW	0
		1: Enable		
		Enable End of Block Interrupt:		
0	EEB	0: Disable	RW	0
		1: Enable		

DMAx_INT_STATUS 2.2.4.20

DMAx Interrupt Status Register

Offset = 0x0144+x*0x0100, $0 \le x \le 11$

Bits	Name	Description	Access	Reset
31:5	-	Reserved	-	-
		Last Frame Interrupt (start of last frame):		
4	LF	0: Not Take Place	RW	0
		1: Take Place		
		End of Half Frame Interrupt:		
3	EHF	0: Not Take Place	RW	0
		1: Take Place		
		End of Frame Interrupt:		
2	EF	0: Not Take Place	RW	0
		1: Take Place		
		End of Super Block Interrupt:		
1	ESB	0: Not Take Place	RW	0
		1: Take Place		
		End of Block Interrupt:		
0	EB	0: Not Take Place	RW	0
		1: Take Place		

2.2.4.21 DMAx_CURRENT_SOURCE_POINTER

DMAx Current Source Pointer Register Offset = 0x0148+x*0x0100, $0 \le x \le 11$

Copyright[©] 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

Bits	Name	Description	Access	Reset
31:0	DCSP	DMA Current Source Pointer	R	0

2.2.4.22 DMAx_CURRENT_DESTINATION_POINTER

DMAx Current Destination Pointer Register

Offset = 0x014C+x*0x0100, $0 \le x \le 11$

Bits	Name	Description	Access	Reset
31:0	DCDP	DMA Current Destination Pointer	R	0

2.3 SPS (Smart Power System)

2.3.1 Function

It's very important to provide stable and adequate power for high-speed digital and sensitive analog circuit. Power and ground are separated into several groups to achieve good and stable power quality. This part will introduce the power system of S900, which are divided into several VDD voltage domains.

2.3.2 Power on Sequence

Figure 2 - 1 S900 Power on Sequence (co-work with ATC260x)

S900 get power source from our co-chip ATC260x PMIC, first stage is the power on process of ATC260x, at S900 AVDD/VDD is firstly given and VCC/AVCC will be powered closely after that. Once the power of PMIC is steady, it will send POR (Power on Reset) signal to S900. Then the S900 enters power on stage, after a while the system is powered on, then VDDR's power can be configured by software.

2.4 Secure Engine

2.4.1 Function

The security of the TrustZone subsystem is achieved by partitioning SoC's hardware and software resources into two worlds: Secure world for security subsystem and Normal/non-security world for everything else. The physical processor core provide two virtual cores, one called normal world and other secure. The non-secure virtual processor can only access non-secure system resources, but the secure virtual processor can see all resources. The monitor mode is introduced to switch context between these two worlds. The entry to monitor can be triggered by software executing dedicated instruction or by hardware exception.

Figure 2 - 2 Modes in ARM Core Implementing Secure Extensions

The primary component in implementing the system wide isolation is the AMBA3 AXI bus matrix, which is extended for extra control signal (NS bits) to distinguish secure resources from non-secure

The AMBA3 APB does not carry NS bits, so that it is compatible with the AMBA2 APB bus. In security system, it is attached to the system bus through an AXI-to-APB and APB-to-AXI bridges, which is responsible for managing the security of the APB peripherals.

More details on the TrustZone, please refer to ARM technical book.

2.5 **HDCP2Tx**

2.5.1 Function

A HDCP Transmitter (Tx) and Receiver (Rx) pair performs authentication before it performs AV data transfer. Authentication involves a series of control messages to be exchanged among transmitter and receiver. After receiver is authentic and a secret key that will be used for encrypting AV data, encrypted datum begin to transfer between a HDCP pair.

Hardware and Software together play a role in authentication process. Software detects receiver when it is connected and directs the Hardware to start authentication. Hardware generates control message and associated data for authentication, writes the data to registers and inform Software to let it transfer

Copyright[©] 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

messages to receiver. Control messages received from the other end are written to register set by Software thereby Hardware reads and performs authentication checks.

When successfully finishing authentication, Software started PES payload Encryption after setting raw and encryption datum information, then Hardware would auto got plaintext datum from Input RFIFO, encrypted 128-bit block of payload, put encrypted 128-bit block into Output EFIFO. Hardware could output Encrypted datum with format of no TS Packet, Blu-ray TS Packet or MPEG2 TS Packet.

3 Multimedia System

3.1 MIPI CSI2

3.1.1 Function

The Mobile Industry Processor Interface (MIPI) Alliance defines Camera Serial Interface-2 (CSI2) between a peripheral device (camera) and a host processor (AP). It receives data transmitted from camera sensor and sends it to the image processor for further processing and finally transferred to host processor. S900 has two channel of CSI interface, CSIO and CSI1. Features of MIPI CSI2 are listed below:

- Compliant with MIPI CSI-2 Specification version 1.0 and D-PHY specification version 0.9
- High-Speed Mode: 80 Mbps to 1 Gbps synchronous
- Low-Power Mode: spaced one-hot encoding for data
- Ultra low power support
- Support Data Type: YUV422-8bit, RGB565, RGB888, RAW8, RAW10
- Dual channel CSI of CSIO (4 lane) and CSI1 (2 lane)
- 1-4 Data Lanes Configurable

3.1.2 Register List

Table 3 - 1 CSI-2 Receiver Registers Address

Name	Physical Base Address
CSI0	0xE02D0000
CSI1	0xE02D8000

Table 3 - 2 CSI-2 Receiver Registers

Offset	Register Name	Description
0x00	CSIx_CTRL	CSI-2 Receiver Control Register
0x04	CSIx_SHORT_PACKET	Short Packet Register
0x08	CSIx_ERROR_PENDING	Error Pending Register
0x0C	CSIx_STATUS_PENDING	Status Pending Register
0x10	CSIx_LANE_STATUS	Lane Status Register
0x14	CSIx_PHY_T0	CSI PHY Timing0 Register
0x18	CSIx_PHY_T1	CSI PHY Timing1 Register
0x1C	CSIx_PHY_T2	CSI PHY Timing2 Register
0x20	CSIx_ANALOG_PHY	CSI analog PHY config Register
0x28	CSIx_PIN_MAP	CSI data lane pin mapping control
0x100	CSIx_CONTEXT_CFG	Context Configuration Register

0x104 CSIx CONTEXT STATUS	Context Status Register
---------------------------	-------------------------

Note: 'x' in CSIx_CTRL represents that Each Context is configured independently with a register block, As follows:

Table 3 - 3 Data Lane configuration register block base address

Data Lane	Registers Block Base Address Offset
Context0	0x100
Context1	0x120

Table 3 - 4 Context configuration register

Offset	Register Name	Description
0x00	CONTEXTX_CFG	Context Configuration Register
0x04	CONTEXTX_STATUS	Context Status Register

3.1.3 Register Description

This register is mainly used to configure the CSI-2 Receiver to fit the application.

CSI_CTRL Offset=0x00

Bits	Name	Description	Access	Reset
31:11	-	Reserved	-	-
		HSCLK Sample Edge		
10	HSCLK_EDGE	0:Rising Edge	RW	0
		1:Falling Edge		
09	DUV INIT CEI	0: check the init LP11 sequence	RW	0
09	PHY_INIT_SEL	1: don't check init LP11 sequence	KVV	0
		Force receiving hs clock omitting hs entry		
08	CLK_LANE_HS	sequence:	RW	0
08	CLK_LAINE_H3	0: Disable	NVV	U
		1: Enable		
		CRC Check Enable		
07	CCE	0: Disable	RW	0
		1: Enable		
		ECC Check Enable		
06	ECE	0: Disable	RW	0
		1: Enable		
		Data Lane Number		
		00: Data Lane 0 (1 Data Lane)		
05:04	LANE_NUM	01: Data Lane 0 ~ 1 (2 Data Lanes)	RW	0
		10: Data Lane 0 ~ 2 (3 Data Lanes)		
		11: Data Lane 0 ~ 3 (4 Data Lanes)		
03	PHY_CALEN	Init the D-PHY calibration	RW	0

		0: do not operate		
		1: Init the D-PHY calibration		
		Note: After D-PHY is calibration done, this bit will		
		be changed to '0' .		
		D-PHY Block Enable		
02	D_PHY_EN	0: Disable (D-PHY is powered off)	RW	0
		1: Enable (D-PHY is powered on)		
01	-	Reserved	-	-
		CSI-2 Receiver ENABLE		
		Enable logical operation of CSI-2 Receiver		
		1: Enable		
		0: Disable		
00	EN	Note: When CSI-2 Receiver is enabled, Data Lane	RW	0
		and Clock Lane are both enable, and Data Lane is		
		forced into Receive mode and wait for Stop State.		
		When CSI-2 Receiver is disabled, the state of		
		digital logic goes to initial state.		

3.1.3.2 CSIx_SHORT_PACKET

This register is mainly used to store the short packet information from Image Sensor.

SHORT_PACKET Offset=0x04

Bits	Name	Description	Access	Reset
31:24	-	Reserved	-	-
23:00	SHORT_PACKET	Short Packet Information (Not include ECC)	R	0

3.1.3.3 CSIx_ERROR_PENDING

This register reflects the error pending bit of CSI-2 Receiver .

ERROR_PENDING Offset=0x08

Bits	Name	Description	Access	Reset
31:30	-	Reserved	-	-
		FIFO Overflow		
20	OVE	0: no FIFO Overflow Error	RW	0
29	29 OVF	1: FIFO Overflow Error	KVV	0
		Write 1 to clear the bit		
		False Control Error of Clock Lane		
		0: no error occurred		
28	ERR_CONTROL_CLK	1: an incorrect line state sequence is	RW	0
		detected.		
		Write 1 to clear the bit		
27.24	EDD COTSVNCHS D	Start-of-Transmission (SoT) Error	RW	0
27:24	ERR_SOTSYNCHS_D	0: no error occurred		0

		1. An incorrect synchronization coguence		
		1: An incorrect synchronization sequence is detected (more than 1 bit error)		
		Write 1 to clear the bit		
		False Control Error		
		0: no error occurred		
		1: an incorrect line state sequence is		
23:20	ERR_CONTROL_D	detected. For example, if a BTA request or	RW	0
		escape mode request is immediately		
		followed by a Stop state instead of the		
		required Bridge state.		
		Write 1 to clear the bit		
		Escape Entry Error Pending Bit		
40.46	500 500 0	0: no error occurred	514	
19:16	ERR_ESC_D	1: an unrecognized escape entry	RW	0
		command is received.		
		Write 1 to clear the bit		
15:14	-	Reserved	-	-
		Receive CRC Error Bit		
		0: no error occured		_
13	ERR_CRC	1: a CRC Error occured when receiving	RW	0
		long packet		
		Write 1 to clear the bit		
		Receive ECC Error Bit		
		0: no error occurred or a single-bit error		
12	ERR_ECC	occurs and corrected	RW	0
		1: multi-bit errors occur		
		Write 1 to clear the bit		
		An error Identification on Virtual Channel		
		0~3 is received		
11:08	ERR_ID_VC	0: no error occurred	RW	0
		1: an unrecognized or unimplemented		
		data ID is received.		
		Write 1 to clear the bit		
		Error of Frame Sync Packet on Virtual		
		Channel 0~3		
07:04	EFS_VC	0: No error occurred	RW	0
		1: Error occurred		
		Write 1 to clear the bit		
		Error of Line Sync Packet on Virtual		
		Channel 0~3		
03:00	ELS_VC	0: No error occurred	RW	0
		1: Error occurred		
		Write 1 to clear the bit		

3.1.3.4 CSIx_STATUS_PENDING

This register reflects the status pending bit of CSI-2 Receiver .

STATUS_PENDING Offset=0x0C

Bits	Name	Description	Access	Reset
31:23	-	Reserved	-	-
		Soft Error Pending Bit		
22	COET EDDOD	0: No error occurred	DVA	0
22	SOFT_ERROR	1: Error occurred	RW	0
		Write 1 to clear the bit		
		Hard Error Pending Bit		
21	HADD EDDOD	0: No error occurred	DVA	0
21	HARD_ERROR	1: Error occurred	RW	0
		Write 1 to clear the bit		
		Short Packet received done		
20	CD DV DONE	0: no short packet is received	D\A/	0
20	SP_RX_DONE	1: a short packet is received	RW	U
		Write 1 to clear the bit		
19:17	-	Reserved	-	-
	CONTEXTO	Context 0 Event Complete bit	RW	
		0: Context 0 Event doesn't complete		0
1.0		1: Context 0 Event completes		
16		Note: The corresponding FE of the context		
		is received indicates that event completes.		
		Write 1 to clear the bit		
15:06	-	Reserved	-	-
		Hard Error Interrupt Enable		
05	HARD_ERROR_EN	0: Disable	RW	0
		1: Enable		
		Short Packet received done Interrupt		
0.4	CD DV DONE EN	Enable	D\A/	0
04	SP_RX_DONE_EN	0: Disable	RW	0
		1: Enable		
03:01	-	Reserved	-	-
		Context 0 Event Complete Interrupt		
0	CONTEXTO EN	Enable	RW	
0	CONTEXTO_EN	0: Disable		0
		1: Enable		

3.1.3.5 CSIx_LANE_STATUS

This register specifies the Lane Status of the CSI-2 Receiver

Copyright[©] 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

LANE_STATUS Offset=0x10

Bits	Name	Description	Access	Reset
31:10	-	Reserved	-	=
		Data Lane is in Ultra-Low Power State		
		0: Data Lane is not in Ultra-Low Power State		
09:06	DULP	1: Data Lane is in Ultra-Low Power State	R	0
		Note: Bit 9 for Data Lane 3, Bit 8 for Data Lane		
		2, Bit 7 for Data Lane 1, Bit 6 for Data Lane 0		
		Data Lane is in RX Stop-State		
		0: Data Lane is not in RX Stop State		
05:02	DST	1: Data Lane is in RX Stop State	R	0
		Note: Bit 5 for Data Lane 3, Bit 4 for Data Lane		
		2, Bit 3 for Data Lane 1, Bit 2 for Data Lane 0		
		Clock Lane is in Ultra-Low Power State		
01	CULP	0: Lane is not in Ultra-Low Power State	R	0
		1: Lane is in Ultra-Low Power State		
		Clock Lane is in RX Stop State		
00	CST	0: Lane is not in RX Stop State	R	0
		1: Lane is in RX Stop State		

3.1.3.6 CSIx_PHY_T0

CSI D-PHY Operation Timing0 Register – For Clock Lane/Data Lane initial time.

CSI_PHY_T0 Offset=0x14

Bit (s)	Name	Description	Access	Reset
31:12	-	Reserved	-	-
11:00	T _{INITIAL}	Initial Time for Clock Lane/Data Lane. $T = 16 * (T_{\text{INITIAL}} + 1) * T_{\text{CSI2_Clk}}$ Note: The timing parameter in multiples of CSI2 Clk period.	RW	0x1FF

3.1.3.7 **CSIx_PHY_T1**

CSI D-PHY Operation Timing1 Register – For Clock Lane

CSI_PHY_T1 Offset=0x18

Bit (s)	Name	Description	Access	Reset
31:12	-	Reserved	-	-
		Settle Time for Clock Lane.		
11:04	т	$T = (T_{CLK_SETTLE} + 1) * T_{CSI2_Clk}$	RW	0xF
11.04	11:04 T _{CLK_SETTLE}	Note: The timing parameter in multiples of	NVV	UXF
		CSI2_Clk period.		
03:00	т	Time to enable Clk Lane receiver line	RW	0x3
03.00	CLK_TERM_EN	termination measured from when DN crossed	IVVV	UXS

	Vilmax.	
	$T = (T_{CIk-TERM-EN} + 1) * T_{CSI2_CIk}$	
	Note: The timing parameter in multiples of	
	CSI2_Clk period.	

3.1.3.8 CSIx_PHY_T2

CSI D-PHY Operation Timing2 Register – For Data Lane

CSI_PHY_T2 Offset=0x1c

Bit (s)	Name	Description	Access	Reset
31:12	-	Reserved	-	-
11:04	T _{HS_SETTLE}	Settle Time for Data Lane. $T = (T_{HS-SETTLE} + 1) * T_{CSI2_CIk}$ Note: The timing parameter in multiples of CSI2_CIk period.	RW	0xF
03:00	T _{D_TERM-EN}	Time to enable Data Lane receiver line termination measured from when DN crossed Vilmax. $T = \left(T_{\text{D-TERM-EN}} + 1\right) * T_{\text{CSI2_CIk}}$ Note: The timing parameter in multiples of CSI2_Clk period.	RW	0x3

3.1.3.9 CSIx_ANALOG_PHY

CSI analog-PHY Operation config CSI_Analog_PHY Offset=0x20

Bit (s)	Name	Description	Access	Reset
31:30	-	Reserved	-	-
29:26	DATA3_PH	Adjust data3 phase	RW	0x8
25:22	DATA2_PH	Adjust data2 phase	RW	0x8
21:18	DATA1_PH	Adjust data1 phase	RW	0x8
17:14	DATA0_PH	Adjust data0 phase	RW	0x8
13:10	CLK_PH	Adjust CLOCK lane phase	RW	0x8
		Direction of CSI datalane3,2,1,0		
9:6	DRT_DATA	0: obverse	RW	0
		1:inverse		
		Direction of CSI Clk lane		
5	DRT_CLK	0: obverse	RW	0
		1:inverse		
4:0	CIK DATA EN	Clk lane and four data lane enable signal	RW	0
4.0	CLK_DATA_EN	Order is D4 D3 D2 D1 CK	IVVV	U

CSI data lane pin mapping control

CSI_PIN_MAP Offset=0x28

Bits	Name	Description	Access	Reset
31:12	-	Reserved	-	-
		MIPI CSI Lane 3 Mapping:		
		0: Data 0		
11:9	DLANE3_MAP	1: Data 1	RW	0x3
11.9	DEANES_WAF	0x2: Data 2	1000	0.0.5
		0x3: Data 3		
		Others: Reserved		
		MIPI CSI Lane 2 Mapping:		
		0: Data 0		
8:6	DLANE2_MAP	1: Data 1	RW	0x2
8.0		0x2: Data 2		
		0x3: Data 3		
		Others: Reserved		
		MIPI CSI Lane 1 Mapping:	RW	1
		0: Data 0		
5:3	DLANE1_MAP	1: Data 1		
3.3	DLANLI_WAF	0x2: Data 2		
		0x3: Data 3		
		Others: Reserved		
		MIPI CSI Lane 0 Mapping:		
2:0		0: Data 0		
	DLANEO_MAP	1: Data 1	RW	0
2.0	DEANLO_IVIAF	0x2: Data 2		
		0x3: Data 3		
		Others: Reserved		

3.1.3.11 CSIx_CONTEXT_CFG

This register is mainly used to configure the format of Context x.

Offset=0x100

Note: In the register descripiton, the prosfix "x" means each Context has the register

Bits	Name	Description	Access	Reset
31:09	1	Reserved	ı	-
08:07	VCN	Virtual Channel Number	RW	0
06:01	DT	Data Type of received Long Packet	RW	0x1E

		0x12: Embedded 8-bit non Image Data		
		0x1E: YUV422 8-bit		
		0x22: RGB565		
		0x24: RGB888		
		0x2A: RAW8		
		0x2B: RAW10		
		0x2C: RAW12		
		0x30: User Defined 8-bit Data Type 1		
		0x31: User Defined 8-bit Data Type 2		
		0x32: User Defined 8-bit Data Type 3		
		0x33: User Defined 8-bit Data Type 4		
		Others: Reserved		
		Note: Hardware will use the data type to detect		
		the desired long packet.		
		Enable the Context		
00	EN	0: disable	RW	0
		1: enable		

3.1.3.12 CSIx_CONTEXT_STATUS

This register is mainly used to store the status of Context x.

Offset=0x104

Note: In the register descripiton, the prosfix "x" means each Context has the register

Bits	Name	Description	Access	Reset
31:16	-	Reserved	-	=
15:00	LINE_NUM	Current Line Number	R	0

Copyright[®] 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

3.2 LVDS

3.2.1 Function

LVDS module is to convert the pixel stream output from the display engine to the standard display panels. The features of LVDS module is listed below:

- Support dual channel LVDS interface LCD
- Support max clock frequency up to 200M
- Support LVDS RGB 24/18bit data
- Support data lanes swap for convenient PCB design

The LVDS controller supports single lane or dual lane LVDS interface LCD panel and can be configured to 18bits or 24bits interface. It consists of 8 data channels & 2 clock channels (5 even channels, 5 odd channels)

3.2.2 Register List

Table 3 - 5 TVOUT Controller Registers Address

Name	Physical Base Address
LCD	0xE02A0000
LVDS	0xE02A0200

Table 3 - 6 LCD Controller Registers

Offset	Register Name	Description
0x0000	LCD_CTL	LCD Control register
0x0004	LCD_SIZE	LCD Size register
0x0008	LCD_STATUS	LCD Status register
0x000C	LCD_TIM0	LCD RGB Timing0 register
0x0010	LCD_TIM1	LCD RGB Timing1 register
0x0014	LCD_TIM2	LCD RGB Timing2 register
0x0018	LCD_COLOR	LCD Color register
0x001C	LCD_IMG_XPOS	LCD image x position in the screen
0x0020	LCD_IMG_YPOS	LCD image y position in the screen
0x0000	LVDS_CTL	LVDS Control Register
0x0004	LVDS_ALG_CTL0	LVDS Analog Control Register 0

3.2.3 Register Description

3.2.3.1 LCD_CTL

LCD RGB Control register

Offset = 0x00

Bit (s)	Name	Description	Access	Reset
31	-	Reserved	=	-
30	SELF_RST Self reset enable 0:disable, do not reset when DE_LCD_ST rising edge 1:enable, reset when DE_LCD_ST rising edge		RW	0
29:21	-	Reserved	-	-
20	PD_IDL_STA	LCD pad idle state configuration: 0: default level. 1: all LCD pad are drive low. Note: 1, If you set this bit, the output of all LCD pads will be low. 2, If you want send normal data to LCD, this bit must be cleared.	RW	0
19	-	Reserved	-	-
18:16	PAR_SER_SE L	Panel RGB Interface Type Select 000: 24-bit parallel 001: 18-bit parallel 010: 16-bit (5-6-5 format) parallel 011: 8-color mode parallel 100: 24-bit (8-8-8 format) serial 101: 18-bit (6-6-6 format) serial 110,111: reserved Note: The unused pins of LD[23:0] should be in stable output state to avoid EMI.FOR RGB IF ONLY	RW	0
15:13	CC_ODD	LCD color sequence configuration for odd line 000:RGB 001:RBG 010:GRB 011:GBR 100:BRG 101:BGR Other: reserved	RW	0
12:10	CC_EVEN	LCD color sequence configuration for even line 000: RGB	RW	0

		001:RBG		
		010:GRB		
		011:GBR		
		100:BRG		
		101:BGR		
		Other: reserved		
		Color padding to 32 bit/pixel		
		00: do not pad		
		01: pad X after		
0.0	DAD	10: pad X before	DVA	0
9: 8	PAD	11:reserved	RW	0
		For example:		
		if CC_ODD=0 and PAD=01, then the serial output		
		should be RGBX. FOR RGB IF ONLY		
	VOM	Video Output Mode		
		00:dual mode, drive the LCD with DE0 and DE1.		
		(used with bit28 DUAL_EN)		
7:6		00: Reserved	RW	0x3
		01: Reserved.		
		10: Drive the LCD form DE.		
		11: Drive the LCD with default color.		
5: 2		Reserved	-	-
		Swap R,B in input data		
1	RB_SWAP	0:R,B NO SWAP	RW	0
		1:R,B SWAP		
		LCDC ENABLE		
		0:disable		
0		1:enable		
	ENI	RGB IF:	DVA	0
0	EN	when enable, LCDC get ready to start RGB IF	RW	0
		timing		
		Note: LCDC go start when the LCD_ST signal		
		comes		

3.2.3.2 LCD_SIZE

LCD RGB Size register

Offset = 0x04

Bit (s)	Name	Description	Access	Reset
31:28	-	Reserved	-	-
27:16	Υ	Screen Height (in pixels) for RGB IF IF Panel height is Y+1	RW	0
15:12	-	Reserved	-	-
11: 0	Х	Screen Width (in pixels) for RGB IF	RW	0

 $\textbf{Copyright}^{\circledcirc}\textbf{ 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.}$

Panel width is X+1		

3.2.3.3 LCD_STATUS

LCD Status register

Offset = 0x08

Bit (s)	Name	Description	Access	Reset
31	VBI	Vertical Blanking pending Asserted during vertical no-display period every frame. Interrupt triggered at the beginning of blanking period Write '1' clear.	RW	0
30	VBE	VB interrupt enable	RW	0
29	НВІ	Horizontal Blanking state Asserted during horizontal no-display period every scan line. Interrupt triggered at the beginning of blanking period Write '1' clear.	RW	0
28	HBE	HB interrupt enable	RW	0
27	AVSI	Active Video Display pending Asserted during active video display time for each line, Interrupt triggered at the beginning of active period for each line Write '1' clear.	RW	0
26	AVSE	AVS interrupt enable	RW	0
25	FEIP	Frame trans end interrupt pending Write '1' clear.	RW	0
24	FEIE	FEI enable	RW	0
23:12	СХ	Current scan pixel's x AXIs location (in pixels)	R	1
11:0	CY	Current scan pixel's y AXIs location (in pixels)	R	0

3.2.3.4 LCD_TIM0

LCD RGB Timing0 register

Offset = 0x0C

Bit (s)	Name	Description	Access	Reset
31:14	-	Reserved	-	=
		Pre_line enable		
13	PREL_EN	1:enable pre_line function	RW	0
		0:disable pre_line function		
12:8	PREL_CNT	Pre_line counter.	RW	0

Copyright[®] 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

		If this counter set x, the LCDC will send a pre_line signal to DE when is has send		
		[VSPW-x)] valid horizontal data pulse.		
7	VSYNC_INV	Vsync Output Polarity Inversion	RW	0
6	HSYNC_INV	Hsync Output Polarity Inversion	RW	0
5	DCLK_INV	DCLK Output Polarity Inversion	RW	0
4	LDE_INV	LDE Output Polarity Inversion	RW	0
3:0	-	Reserved	-	-

Notes:

When we define the timing parameters, it often refers to TpClk (short for "pixel cycle period") . In parallel output mode, TpClk = TdClk; in serial mode, TpClk = TdClk * 3.

3.2.3.5 LCD_TIM1

LCD RGB Timing1 register

Offset = 0x10

Bit (s)	Name	Description Access		Reset
31:30	-	Reserved	-	-
29:20	HSPW	Horizontal Sync Pulse Width (in pixels)	RW	0
29.20	пэгч	Thspw = (HSPW+1) * TpClk	IV VV	U
19:10	HFP	Horizontal Front Porch (in pixels)	RW	0
19.10	ПГР	Thfp = (HFP +1) * TpClk	IV VV	U
9:0	НВР	Horizontal Back Porch (in pixels)	RW	0
3.0	пог	Thbp = (HBP +1) * TpClk	LVV	U

3.2.3.6 LCD_TIM2

LCD RGB Timing2 register

Offset = 0x14

Bits	Name	Name Description		Reset
31:30	=	Reserved	-	=
28:20	VSPW	Vertical Sync Pulse Width (in lines)	RW	0
28.20	VSPVV	Tvspw = (VSPW+1) * Thsync	I I V V	0
19:10	VFP	Vertical Front Porch (in lines)	RW	0
19.10	VFP	Tvfp = (VFP +1) * Thsync	I I V V	U
9:0	VBP	Vertical Back Porch (in lines)	RW	0
9.0	VDF	Tvbp = (VBP +1) * Thsync	IV V V	0

LCD_COLOR 3.2.3.7

LCD RGB LCD Color register Offset = 0x18

Copyright[©] 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

Bit (s)	Name	Description	Access	Reset
31:24	-	Reserved	-	-
23:16	R	panel's default color R	RW	0
15:8	G	panel's default color G	RW	0
7:0	В	panel's default color B	RW	0

3.2.3.8 LCD_IMG_XPOS

LCD image x position in the screen

Offset = 0x2C

Bit (s)	Name	Description	Access	Reset
31:28	-	Reserved	-	-
27:16	XSTART	At which line does the image begin	RW	0
15:12	-	Reserved	-	-
11:00	XEND	At which line does the image end	RW	0

3.2.3.9 LCD_IMG_YPOS

LCD image y position in the screen

Offset = 0x30

Bit (s)	Name	Description	Access	Reset
31:28	-	Reserved	-	-
27:16	YSTART	At which column does the image begin	RW	0
15:12	-	Reserved	-	-
11:00	YEND	At which column does the image end	RW	0

3.2.3.10 LVDS_CTL

LVDS Control Register

Offset = 0x0000

Bit (s)	Name	Description	Access	Reset
31:21	-	Reserved -		=
		Even Port RSV Signal Select		
20	E_RSV	0: Always '0'	RW	0
		1: Always '1'		
		Even Port DE Signal Select		
19:18	E DE	00: Always '0'	RW	0
19.10	E_DE	01: Always '1'	IV VV	U
		1x: DE		
		Even Port VS Signal Select		
17:16	E_VS	00: Always '0'	RW	0
		01: Always '1'		

		1x: VS		
		Even Port HS Signal Select		
45.44		00: Always '0'	5,47	
15:14	E_HS	01: Always '1'	RW	0
		1x: HS		
		Odd Port RSV Signal Select		
13	O_RSV	0: Always '0'	RW	0
		1: Always '1'		
		Odd Port DE Signal Select		
42.44	0.55	00: Always '0'	B)4/	
12:11	O_DE	01: Always '1'	RW	0
		1x: DE		
		Odd Port VS Signal Select		
10.0	0.1/5	00: Always '0'	DVA	
10:9	O_VS	01: Always '1'	RW	0
		1x: VS		
		Odd Port HS Signal Select		
0.7	0.116	00: Always '0'	RW	
8:7	O_HS	01: Always '1'		0
		1x: HS		
		LVDS Mirror Select		
6	MIRROR	0: Normal (TXE3+ TXE3 TXO0+ TIO0-)	RW	0
		1: Mirror (TXO0+ TXO0 TXE3+ TIE3-)		
		LVDS Channel Swap Select		
5	CH_SWAP	0: No Swap	RW	0
		1: Odd/Even Swap		
		Output Mapping Select		
4:3	MAPPING	00: NS Mode	RW	0
4.3	IVIAPPING	01: JEIDA Mode	KVV	0
		Others: Reserved		
		Channel Select		
2	CHANNEL	0: Single Channel	RW	0
		1: Dual Channel		
		Output Format		
1	FORMAT	0: 18-bit	RW	0
		1: 24-bit		
		LVDS Interface Enable		
0	EN	0: Disable	RW	0
0	CIN	1: Enable	L/ A/A	U
		(LVDS & RSDS can't be both enabled)		

LVDS_ALG_CTL0 3.2.3.11

LVDS Analog Control Register 0

Offset = 0x04

Bit (s)	Name	Description	Access	Reset
31	IBPOWL	Bias current on&off	RW	0
30	PLLPOWL	PLL power on	RW	0
29:26	-	Reserved	-	-
		Set LVDS Tx CMFB Circuit Bias Current		
25:24	SLVDSIL	'IBLV<14:0>' (IBLV<14>, IBLV<13> not used)	RW	0x2
		20u*[1]+10u*[0]+50u		
23	-	Reserved	-	-
		Set LVDS Tx common mode reference voltage		
		'vocm'		
		000->1.04V		
		001->1.08V		
		010->1.13V		
22:20	SVOCML	011->1.18V	RW	0x4
		100->1.22V		
		101->1.27V		
		110->1.32V		
		111->1.37V		
19:18	_	Reserved	_	_
		Set PLL charge pump current		
17:15	SPLLIL	20u*[2]+10u*[1]+5u*[0]+5u	RW	0x6
	SPLLRL	Set PLL LPF resistor		
		00->6kOhm	5	
14:13		01->8kOhm 10->10kOhm	RW	1
		11->12kOhm		
		PLL watch dog mode		
		00: WD active		
12:11	WDMODEL	01: set vc=1.5	RW	0
		1x: Disable WD		
		PLL input clock delay 180°or not		
10	PLLPOLARL	0: not delay 1: delay	RW	0
9:7	_	Reserved	-	-
		LVDS/RSDS output signal polarity control		1
		0: polarity not changed		
6	POLARL	1: polarity reversed	RW	0
		(all ! P/N swap)		
5	ELVDSPOWL	EVEN PORT Output driver power on	RW	1
4	OLVDSPOWL	ODD PORT Output driver power on	RW	1
<u> </u>	OLV DOI OVVL	Bring forward EVEN PORT channel [D]	11.44	+
		Serializers clock 'CKOUT' 180° or not ('CKSEL' is		
3	ECKPOLARL	also brought forward half period of 'CKOUT')	RW	0
3	LCRFULARL	0:not	17.44	
		1:ahead 180°		

2	OCKPOLARL	Bring forward ODD PORT channel [D] Serializers clock 'CKOUT' 180° or not ('CKSEL' is also brought forward half period of 'CKOUT') RW 0:not 1:ahead 180°		0
1	ENVBPBL	Bring forward DUAL-PORT (except channel [D]) Serializes clock 'CKOUT' 180° or not ('CKSEL' is also brought forward half period of 'CKOUT') 0:not 1:ahead 180°	RW	0
0	LVDS_LOCK	LVDS PLL status	R	0

3.3 eDP (embedded Display Port)

3.3.1 Function

The embedded interface of eDP is the electrical transport for video and auxiliary data between the graphics hardware and the display panel. It primarily connects external box-to-box interfaces. The external interfaces must interoperate with any connected compliant system over a variety of compliant calbes. Features of eDP interface are listed below.

- DisplayPort 1.2 functionality
 - compliance tested core
 - software link policy maker
 - not support HDCP function
 - ➤ SST only
 - Deep color to 24 bits per pixel
- Full link rate and lane count support
 - > 1, 2, or 4 lanes
 - ➤ 1.62Gbps, 2.7Gbps, or 5.4Gbps
- Embedded DisplayPort 1.3
 - Alternate framing / scrambler reset
 - > Fast link training
 - Panel self-refresh
- Main link 1, 2, or 4 lanes
 - Component bit depth 8 bits per color plane
 - > RGB, YCbCr444/422
- Aux Channel
 - Host initiated transactions
 - Hardware request and reply engines
- Hot Plug Detection
 - insertion event detection
 - interrupt detection
 - Audio not support
- eDP PHY supported

3.3.2 Register List

Table 3 - 7 eDP Base Address

Name	Physical Base Address
eDP_Register	0xE0190000

Table 3 - 8 eDP Offset Address

Offset	Register Name	Description
Link configu	ıration Register	
0x0004	EDP_LNK_LANE_COUNT	LINK LANE Count set register
0x0008	EDP_LNK_ENHANCED	LINK Enhanced Frame enable Register
0x0014	EDP_LNK_SCR_CTRL	LINK Scrambling disable register
0x0018	EDP_LNK_DSPR_CTRL	V LINK Downspread control register
0x0020	EDP_LNK_PANEL_SRF	LINK Panel Self Refresh Register
Core Enable	Register	
0x0080	EDP_CORE_TX_EN	CORE Transmitter Output enable Register
0x0084	EDP_CORE_MSTREAM_EN	CORE Main Stream enable Register
0x0088	EDP_CORE_SSTREAM_EN	CORE Secondary Stream Enable Register
0x00C4	EDP_CORE_USER_CFG	CORE User control Status Register
0x00F8	EDP_CORE_CAPS	CORE Capabilities Register
0x00FC	EDP_CORE_ID	CORE ID register
AUX Channe	el Interface Register	
0x0100	EDP_AUX_COMD	AUX Channel COMMAND Register
0x0104	EDP_AUX_WR_FIFO	AUX_WRITE_FIFO register
0x0108	EDP_AUX_ADDR	AUX_ADDRESS register
0,0100	EDD ALLY CLK DIV	Generating the internal 1MHz clock from the 24M
0x010C EDP_AUX_CLK_DIV clock.		clock.
0x0130	EDP_AUX_STATE	AUX status register
0x0134	EDP_AUX_RPLY_DAT	AUX Channel reply data register
0x0138	Contains the reply code received from the	
0,0150	EDI _AOX_III EI _CODE	recent AUX Channel request.
0x013C	EDP AUX RPLY COUNT	Provides an internal count of the number of reply
0.0130	25. 5.6%[2. 260 6.11	transactions received on the AUX Channel.
0x0140	EDP_AUX_INT_STAT	AUX_INTERRUPT_STATUS Register
0x0144	EDP_AUX_INT_MASK	AUX_INTERRUPT_MASK Register
0x0148	EDP_AUX_RPLY_DAT_CNT	Returns the total number of data bytes received
		during a reply transaction from the sink device.
0x014C	EDP_AUX_STATUS	AUX_STATUS register
0x0150	EDP_AUX_RCLK_WIDTH	Reports the width of the AUX channel reply clock in APB_CLK cycles.
Main Strear	n Attributes Register	<u> </u>
		Specifies the total number of clocks in the
0x0180	EDP_MSTREAM_HTOTAL	horizontal framing period for the main stream
		video signal.
		Provides the total number of lines between
0x0184	EDP_MSTREAM_VTOTAL	vertical sync pulses in the main stream video
		frame.
0v0100	EDD MCTDEANA DOLADITY	Provides the polarity values for the video
0x0188	EDP_MSTREAM_POLARITY	horizontal and vertical sync signals.
0x018C	EDP_MSTREAM_HSWIDTH	Sets the width of the horizontal sync pulse

		measured in pixel clock periods.
0x0190	EDP MSTREAM VSWIDTH	Sets the width of the vertical sync pulse in lines.
0x0190	EDP_INISTREAMI_VSWIDTH	, ,
0x0194	EDP_MSTREAM_HRES	Number of active pixels per line of the main stream video.
		Number of active lines of video in the main stream
0x0198	EDP_MSTREAM_VRES	video source.
0,0100	FDD MACTDEANA LICTART	Specifies the number of clocks between the
0x019C	EDP_MSTREAM_HSTART	leading edge of the horizontal sync and the start of active data.
0x01A0	EDP_MSTREAM_VSTART	Number of lines between the leading edge of the
		vertical sync and the first line of active data. contains information about the main link video
0x01A4	EDP_MSTREAM_MISCO	stream clocking and color representation. These
		bits are mapped from the DisplayPort specification MISCO register definitions.
0,0140	FDD NACTOFANA NAICCA	+ '
0x01A8	EDP_MSTREAM_MISC1	provide interlaced and stereo video information
0x01AC	EDP_M_VID	M_VID value
0x01B0	EDP_MTRANSFER_UNIT	TRANSFER_UNIT_SIZE register
0x01B4	EDP_N_VID	N_VID value
0x01B8	EDP_USER_PIXEL_WIDTH	Select single or dual pixel wide interface
0x01BC	EDP_USER_DATA_COUNT	this value is the total number of 16-bit words in a
		line of active data.
0x01C0	EDP_MSTREAM_INTERLACED	Informs the DisplayPort transmitter main link that
		the source video is interlaced.
0x01C4	EDP_USER_SYNC_POLARITY	Indicates the polarity of the video source sync
		signals.
	ration and Status Register	T .
0x0200	EDP_PHY_RESET	Primary reset for the transmitter PHY.
0x0204	EDP_PHY_PREEM_LO	Controls the pre-emphasis level for lane 0 of the
		transmitter.
0x0208	EDP_PHY_PREEM_L1	Controls the pre-emphasis level for lane 1 of the
		transmitter.
0x020C	EDP_PHY_PREEM_L2	Controls the pre-emphasis level for lane 2 of the
		transmitter.
0x0210	EDP_PHY_PREEM_L3	Controls the pre-emphasis level for lane 3 of the
		transmitter.
0x0214	EDP_PHY_VSW_L0	Controls the voltage swing for lane 0 of the
		transmitter.
0x0218	EDP_PHY_VSW_L1	Controls the voltage swing for lane 1 of the
		transmitter.
0x021C	EDP_PHY_VSW_L2	Controls the voltage swing for lane 2 of the
		transmitter.
0x0220	EDP_PHY_VSW_L3	Controls the voltage swing for lane 3 of the
		transmitter.

0x0224	EDP_PHY_VSW_AUX	Controls the voltage swing for aux channel.
0x0228	EDP_PHY_PWR_DOWN	power down the lanes
0x022C	EDP_PHY_CAL_CONFIG	Controls the calibrate function register
0x0230	EDP_PHY_CAL_CTRL	
0x0234	EDP_PHY_CTRL	Controls the PHY channel register.
EDP RGB co	ntrol Register	
0x0500	EDP_RGB_CTL	RGB control register
0x0504	EDP_RGB_STATUS	RGB status register
0x0508	EDP_RGB_COLOR	Set RGB default color

3.3.3 Register Description

EDP_LNK_LANE_COUNT 3.3.3.1

LINK LANE Count set register

Offset = 0x0004

Bit (s)	Name	Description	Access	Reset
31:5	-	Reserved	-	=
		LANE_COUNT_SET		
		The transmitter uses this register to set the number		
		of lanes that will be used to configure and operate		
		the link. Unused lanes will not be active during		
		training or video transmission. In some		
4:0	LCS	implementations, the external PHY will set the	RW	0x0
		unused lanes to the electrically state.		
		4:0 – This field is equivalent to the DPCD register of		
		the same name. Supported values are 1, 2, or 4		
		lanes.		

3.3.3.2 EDP_LNK_ENHANCED

LINK Enhanced Frame enable Register Offset=0x0008

Bit (s)	Name	Description	Access	Reset
31:1	-	Reserved	-	-
		ENHANCED_FRAME_EN Enables the enhanced framing mode as supported		
0	EFE	by the DisplayPort specification. This mode must be used when supporting HDCP functions. Set to a '1' by the source to enable the enhanced framing symbols.	RW	0x0

Copyright[©] 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

3.3.3.3 EDP_LNK_SCR_CTRL

LINK Scrambling disable register

Offset=0x0014

Bit (s)	Name	Description	Access	Reset
31:1	-	Reserved	-	-
		SCRAMBLING_DISABLE		
		Used to disable the internal scrambling function	RW	0x0
0	CD	of the DisplayPort transmitter. This bit must be		
	SD	set during the link training process.	I NVV	UXU
		Set to a '1' to disable the hardware scrambling		
		function. Set to a '0' for normal operation.		

3.3.3.4 EDP_LNK_DSPR_CTRL

LINK Downspread control register

Offset=0x0018

Bit (s)	Name	Description	Access	Reset
31:1	-	Reserved	-	-
0	DSC	DOWNSPREAD_CTRL In order to reduce the electrical noise generated by the DisplayPort link, the transmitter may implement clock downspreading. This function must also be supported by the target sink device as reported in the DPCD information. Set to a '1' to enable a 0.5% spreading of the clock or '0' for none. Note: The clock downspreading function is implemented in the PHY and is dependent on the platform specific implementation.	RW	0x0

3.3.3.5 EDP_LNK_PANEL_SRF

LINK Panel Self Refresh Register

Offset=0x0020

Bit (s)	Name	Description	Access	Reset
31:1	=	Reserved	-	=
	PANEL_SELF_REFRESH Writing to this register causes the DisplayPort controller to issue a properly formatted secondary packet to receiver at the end of the current video frame. This	PANEL_SELF_REFRESH		
		Writing to this register causes the		
0		DisplayPort controller to issue a properly	RW	0x0
		formatted secondary packet to receiver at		
		the end of the current video frame. This		
		secondary packet instructs the receiver to		

enter the panel self-refresh mode.	
Set to a '1' to command the connected receiver	
into panel self-refresh mode. This bit will remain	
high until cleared. When in panel self-refresh	
mode, the core will ignore all video data on the	
user input port. User data transmission will be	
resumed at the next input vertical sync after this	
bit is cleared.	

3.3.3.6 EDP_CORE_TX_EN

CORE Transmitter Output enable Register Offset=0x0080

Bit (s)	Name	Description	Access	Reset
31:1	-	Reserved	-	-
		TRANSMITTER_OUTPUT_ENABLE		
		This bit is used to disable all output of the		
		main link framing logic. When set to '0', the		
		transmitter core will output only stuffing		
		symbols onto the link. No control symbols or		
0	TOE	valid link data are transmitted when disabled.	RW	0x0
		This bit prevents the link controller core from		
		interfering with the PHY power up sequence.		
		Set to a '1' after the link output has been		
	СС	configured and the external PHY is ready to begin		
		operations.		

3.3.3.7 EDP_CORE_MSTREAM_EN

CORE Main Stream enable Register

Offset=0x0084

Bit (s)	Name	Description	Access	Reset
31:1	=	Reserved	=	-
0	MSE	MAIN_STREAM_ENABLE Once the link is configured and is ready to begin transmitting user video and audio data, this bit is written to a '1'. When set to '0', the active lanes of the DisplayPort transmitter will output the "No Video" pattern. Secondary stream data will continue to transmit. Setting this bit to a '0' and the SECONDARY_STREAM_ENABLE bit to a '1' will result in an audio only configuration.	RW	0

When set to '0', the active lanes of the DisplayPort	
transmitter will output only VB-ID information	
with the NoVideoStream flag set to a '1'.	

3.3.3.8 EDP_CORE_SSTREAM_EN

CORE Secondary Stream Enable Register

Offset=0x0088

Bit (s)	Name	Description	Access	Reset
31:1	-	Reserved	-	-
		SECONDARY_STREAM_ENABLE		
		When the host system is ready to begin the		
		transmission of secondary packets including audio		
		information, this bit is written to a '1'. When set		
		to '0', the active lanes of the DisplayPort		
0	SSE	transmitter will not send secondary data as a part	RW	0
		of the stream.		
		A value of '0' in this register will disable secondary		
		data and will set the AudioMute flag in the VB-ID		
		to a '1'.		

EDP_CORE_USER_CFG 3.3.3.9

CORE User control Status Register

Offset=0x00C4

Bit (s)	Name	Description	Access	Reset
31:4	ı	Reserved	-	=
3	UCOE	USER_CONTROL_ODDEVEN: state of the polarity	R	0
3	UCUE	corrected vid_oddeven control input.	ĸ	U
2	UCD	USER_CONTROL_DEN: state of the polarity	R	0
	OCD	corrected vid_enable control input.	n	U
1	1 UCH	USER_CONTROL_HSYNC: state of the polarity	R	0
1		corrected vid_hsync control input.	N	U
		Provides a direct copy of the polarity corrected		
		control signals from the user data interface. This		
0	UCV	register may be used to trigger specific events in	R	0
U	the host system. 0 – USER_CONTROL_VSYNC: state of the polarity	, n	U	
		0 – USER_CONTROL_VSYNC: state of the polarity		
		corrected vid_vsync control input.		

Copyright[®] 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

3.3.3.10 EDP_CORE_CAPS

CORE Capabilities Register

Offset=0x00F8

Bit (s)	Name	Description	Access	Reset
31:11	-	Reserved	-	-
10	EP	EMBEDDED_PRESENT: set to '1' when support for embedded DisplayPort is present	R	0x1
9	SP	SECONDARY_PRESENT: set to '1' when the secondary channel is present.	R	0x1
8	НР	HDCP_PRESENT: set to '1' when the HDCP cipher logic is present.	R	0x0
7:3	-	Reserved	-	-
2:0	LC	Determines what functionality is available in a specific implementation of the core. This register may be used by software to determine the configuration of the core. 2:0 – LANE_COUNT: number of lanes implemented.	R	0x4

3.3.3.11 EDP_CORE_ID

CORE ID register

Offset=0x00FC

Bit (s)	Name	Description	Access	Reset
		Returns the unique identification code of		
31:16	CID	the core.	R	0xA
		Core ID is fixed at 0x000A		
		Returns the unique identification code of		
		the current revision level. These codes		
15:0	RID	may be used by the software to determine	R	0x0305
		the revision level of the core.		
		Core revision level is fixed at 0x0200		

3.3.3.12 EDP_AUX_COMD

AUX Channel COMMAND Register

Offset =0x0100

Bit (s)	Name	Description	Access	Reset
31:13	-	Reserved	=	=
12	AO	ADDRESS_ONLY: Set to a '1' to initiate an address only request.	RW	0x0

		COMMAND: AUX Channel Command.		
		0x8: AUX Write		
		0x9: AUX Read		
		0x0: I2C over AUX Write		
11:8	AC	0x4: I2C over AUX Write, Middle of	RW	0x0
11.0	AC	Transaction bit set	KVV	UXU
		0x1: I2C over AUX Read		
		0x5: I2C over AUX Read, Middle of		
		Transaction bit set		
		0x2: I2C over AUX Write Status		
7:4	-	Reserved	-	-
		Specifies the number of bytes to transfer with		
2.0	Num	the current command. The range of the	RW	0.0
3:0	INUIII	register is 0 to 15 indicating between 1 and		0x0
		16 bytes of data.		

Note: Initiates an AUX channel command of the specified length when written. This register is written last as part of the AUX channel request set up process. When written, the internal state machines will begin transmitting the request to the sink device. The AUX_ADDRESS and, when applicable, the AUX_WRITE_FIFO must be set up before writing this register.

3.3.3.13 EDP_AUX_WR_FIFO

AUX WRITE FIFO register

Offset=0x0104

Bit (s)	Name	Description	Access	Reset
31:8	-	Reserved	-	-
		Before initiating a native or I2C write request		
		on the AUX channel, the host system must		
		provide the write data to the FIFO mapped to		
		this address. Only the number of bytes		
		required to support the current transaction		
7:0	AWF	must be written to the FIFO. Subsequent	W	0x0
		writes to the FIFO must not be performed		
		until the REQUEST_IN_PROGRESS bit is clear.		
		7:0 – Write only AUX Channel byte data. A		
		read from this register is not supported, but		
		will return the last data byte written.		

3.3.3.14 EDP_AUX_ADDR

AUX ADDRESS register

Offset=0x0048

Neset Neset Neset	Bit (s)	Name	Description	Access	Reset
-----------------------	---------	------	-------------	--------	-------

31:20	-	Reserved	-	-
19:0	AADDR	Each AUX request requires a 20-bit address for native AUX requests or an 8-bit address for I2C over AUX requests. This register specifies the address for the current AUX channel command. These bits are used without modification for the address field of the request. 19:0 – Twenty bit address for the start of the AUX Channel burst.	RW	0x0

3.3.3.15 EDP_AUX_CLK_DIV

AUX CLOCK DIVIDER register

Offset=0x010C

Bit (s)	Name	Description	Access	Reset
31:9	-	Reserved	-	-
		Contains the clock divider value for		
		generating the internal 1MHz clock from the		
		APB host interface clock. The clock divider		
8:0	ADIV	register provides integer division only and	RW	0x0
8:0	ADIV	does not support fractional APB clock rates.	KVV	UXU
		(e.g. set to 75 for a 75MHz APB clock)		
		8:0 – APB clock divider value. The valid range		
		is 10 to 400.		

3.3.3.16 EDP_AUX_STATE

AUX STATE Register

Offset=0x0130

Bit (s)	Name	Description	Access	Reset
31:4	-	Reserved	-	-
		Holds status bits which report the internal		
		state of the AUX channel management logic.		
		Some of these signals are used to generate		
3	RT	interrupts and can be used as polled status for	R	0x0
		systems that do not implement interrupts		
		REPLY_TIMEOUT: a '1' indicates that a reply		
		timeout has occurred		
2	RR	REPLY_RECEIVED: a '1' indicates that a reply	R	0x0
		has been received	N .	
1	RIP	REQUEST_IN_PROGRESS: a '1' indicates that a	R	0x0

		request is currently being sent		
0 н	HPDS	HPD_STATE: contains the raw state of the HPD	R	0x1
		pin on the DisplayPort connector		

3.3.3.17 EDP_AUX_RPLY_DAT

AUX Channel REPLY DATA Register

Offset=0x0134

Bit (s)	Name	Description	Access	Reset
31:8	-	Reserved	-	-
7:0	ARDAT	This read only address maps to the internal FIFO which contains up to 16 bytes of information received during the AUX channel reply. Reply data is read from the FIFO starting with byte 0. The number of valid	R	0x0
		bytes in the FIFO corresponds to the number of bytes received as indicated by the REPLY_DATA_COUNT register. 7:0 – AUX reply data from the sink device. Each read advances the internal read pointer.		OXO .

3.3.3.18 EDP_AUX_RPLY_CODE

AUX REPLY CODE Register

Offset=0x0138

Bit (s)	Name	Description	Access	Reset
31:4	-	Reserved	-	-
3:0	ARCOD	Contains the reply code received from the most recent AUX Channel request. This code is the four bit field received by the reply controller from the sink device. The value of the code maps to the DisplayPort specification section 2.4.1.2 which is repeated below for clarity. 3:0 – AUX channel reply code received from the sink device. 0x0 = Native AUX ACK 0x1 = Native AUX NACK 0x2 = Native AUX Defer 0x0 = I2C over AUX ACK 0x4 = I2C over AUX NACK 0x8 = I2C over AUX Defer	R	0x0

3.3.3.19 EDP_AUX_RPLY_COUNT

AUX_REPLY_COUNT Register

Offset=0x013C

Bit (s)	Name	Description	Access	Reset
31:8	-	Reserved	-	-
7:0	ARC	Provides an internal count of the number of reply transactions received on the AUX Channel. Each reply received from the sink device increments the count by 1. The reply code is not considered when incrementing this counter. Writing a '1' to this register clears the count. 7:0 – Current reply count. The value of this register will automatically roll over after reaching 255 replies received. 0 – write a '1' to this bit to clear the value	RW	0x0

3.3.3.20 EDP_AUX_INT_STAT

AUX_INTERRUPT_STATUS Register Offset=0x0140

Bit (s)	Name	Description	Access	Reset
31:4	-	Reserved	-	-
3	RT	The transmitter core interrupt status register contains the cause of an interrupt asserted by the core. The specific events that can cause an interrupt and the associated status bits are shown below. A read from this register clears all values. REPLY_TIMEOUT: a reply timeout has occurred when the sink has not sent a response 400us after the transmitter has sent a request.	RW	0x0
2	RR	REPLY_RECIEVED: an AUX reply transaction has been detected. This value may be used to allow a system to process other events while waiting for a response from the sink device.	RW	0x0
1	HPE	HPD_EVENT: the core has detected the	RW	0x0

		presence of the HPD signal. This interrupt asserts immediately after the detection of HPD and after the loss of HPD for 2 msec.		
0	НРІ	HPD_IRQ: an IRQ framed with the proper timing on the HPD signal has been detected.	RW	0x0

3.3.3.21 EDP_AUX_INT_MASK

AUX_INTERRUPT_MASK Register

Offset=0x0144

Bit (s)	Name	Description	Access	Reset
31:4	-	Reserved	-	-
3	RT	REPLY_TIMEOUT_MASK: write a '0' to this bit to allow reply timeout events to cause an interrupt to be asserted	RW	0x1
2	RR	REPLY_RECEIVED_MASK: write a '0' to this bit to allow reply received events to cause an interrupt	RW	0x1
1	НРЕ	HPD_EVENT_MASK: write a '0' to this bit to allow HPD present events to cause an interrupt	RW	0x1
0	НРІ	HPD_IRQ_EVENT: write a '0' to this bit to allow HPD_IRQ events to cause an interrupt	RW	0x1

3.3.3.22 EDP_AUX_RPLY_DAT_CNT

AUX_REPLY_DATA_COUNT Register

Offset=0x0148

Bit (s)	Name	Description	Access	Reset
31:5	-	Reserved	-	-
4:0	RDC	Returns the total number of data bytes received during a reply transaction from the sink device. This register does not use the length byte of the transaction header. The number of bytes is independently counted by the reply controller. The value of this register is cleared when a request transaction is initiated by the transmitter. 4:0 – Total number of data bytes received during the reply phase of the AUX transaction.	R	0x0

3.3.3.23 EDP_AUX_STATUS

AUX_STATUS register

Offset =0x014C

Bit (s)	Name	Description	Access	Reset
31:4	-	Reserved	-	-
		REPLY_ERROR: When set to a '1', the AUX		
		reply logic has detected an error in the reply		
		to the most recent AUX transaction. Errors		
		are detected when the precharge and sync		
3	RE	phases of the reply last more than 38 cycles	R	0x0
		instead of the maximum 32. This condition		
		typically		
		indicates noise on the AUX channel data		
		signals.		
		REQUEST_IN_PROGRESS: The AUX transaction		
		request controller sets this bit to a '1' while		
2	RQIP	actively transmitting a request on the AUX	R	0x0
		channel. The bit is set to '0' when the AUX		
		transaction request controller is idle.		
		REPLY_IN_PROGRESS: The AUX reply		
1	RIP	detection logic sets this bit to a '1' while	R	0x0
1	KIF	receiving a reply on the AUX channel. The bit	IN.	UXU
		is '0' otherwise.		
		REPLY_RECEIVED: This bit is set to '0' when		
		the AUX request controller begins sending bits		
0	RR	on the AUX serial bus. The AUX reply	RW	0x0
	INIX	controller sets this bit to '1' when a complete	11.00	0.00
		and valid reply transaction has been received.		
		This bit is cleared when a request transaction		
		has been initiated by the request controller.		

Note: This register contains the status of the internal AUX channel controllers. The progress of request and reply transactions are monitored an reply transactions are checked for errors. These bits are valid at all times.

3.3.3.24 EDP_AUX_RCLK_WIDTH

AUX_REPLY_CLOCK_WIDTH Register

Offset =0x0150

Bit (s)	Name	Description	Access	Reset
31:10	-	Reserved	=	-
9:0	ARCW	Reports the width of the AUX channel reply	R	0x0

Copyright[©] 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

clock in APB_CLK cycles. This register is or valid after a properly formatted reply transaction has been received. The clock width is measured during the sync stage of the AUX channel transaction.	
9:0 – Width of the AUX channel receive clo in APB_CLK cycles.	ock

3.3.3.25 EDP_MSTREAM_HTOTAL

MAIN_STREAM_HTOTAL register
Offset =0x0180

Bit (s)	Name	Description	Access	Reset
31:16	-	Reserved	-	=
15:0	Htotal	Specifies the total number of clocks in the horizontal framing period for the main stream video signal. This value is sent as the Main Stream Attribute Htotal. 15:0 – Horizontal line length total in clocks	RW	0x0

3.3.3.26 EDP_MSTREAM_VTOTAL

MAIN_STREAM_VTOTAL register

Offset =0x0184

Bit (s)	Name	Description	Access	Reset
31:16	-	Reserved	-	-
15:0	Vtotal	Provides the total number of lines between vertical sync pulses in the main stream video frame. This value is provided as the Main Stream Attribute Vtotal. 15:0 – Total number of lines per video frame.	RW	0x0

3.3.3.27 EDP_MSTREAM_POLARITY

MAIN_STREAM_POLARITY Register

Offset =0x0188

Bit (s)	Name	Description	Access	Reset
31:2	-	Reserved	-	-
1	VP	Provides the polarity values for the video horizontal and vertical sync signals. These bits are sent as a part of the Main Stream	RW	0x0

 $\textbf{Copyright}^{@}~\textbf{2015}~\textbf{Actions}~\textbf{(Zhuhai)}~\textbf{Technology}~\textbf{Co.,}~\textbf{Ltd.}~\textbf{All}~\textbf{rights}~\textbf{reserved.}$

		Attributes as VSP and HSP. VSYNC_POLARITY: polarity of the vertical sync pulse		
0	НР	HSYNC_POLARITY: polarity of the horizontal sync pulse	RW	0x0

3.3.3.28 EDP_MSTREAM_HSWIDTH

MAIN_STREAM_HSWIDTH Register

Offset=0x018C

Bit (s)	Name	Description	Access	Reset
31:15	-	Reserved	=	-
14:0	HSwidth	Sets the width of the horizontal sync pulse measured in pixel clock periods. This value is provided on the link as the Main Stream Attribute field HSW. 14:0 – Horizontal sync width in clock cycles.	RW	0x0

3.3.3.29 EDP_MSTREAM_VSWIDTH

MAIN_STREAM_VSWIDTH Register

Offset=0x0190

Bit (s)	Name	Description	Access	Reset
31:15	-	Reserved	-	-
		Sets the width of the vertical sync pulse in		
		lines. The Main Stream Attribute VSW is		
14:0	VSwidth	used to carry this information on the link.	RW	0x0
		14:0 – Width of the vertical sync in lines.		

3.3.3.30 EDP_MSTREAM_HRES

MAIN_STREAM_HRES Register

Offset =0x0194

Bit (s)	Name	Description	Access	Reset
31:16	-	Reserved	-	-
15:0	HRES	Horizontal resolution of the main stream video source. This value is the number of active pixels per line and is represented in the Main Stream Attributes as the Hwidth field.	RW	0x0

	15:0 – Number of active pixels per line of the	
	main stream video.	

3.3.3.31 EDP_MSTREAM_VRES

MAIN_STREAM_VRES Register

Offset=0x0198

Bit (s)	Name	Description	Access	Reset
31:16	-	Reserved	-	-
15:0	VRES	Vertical resolution of the main stream video source. The resolution is the number of active lines per frame. The Main Stream Attribute field Vheight carries this information to the sink. 15:0 – Number of active lines of video in the main stream video source.	RW	0x0

3.3.3.32 EDP_MSTREAM_HSTART

MAIN_STREAM_HSTART Register

Offset=0x019C

Bit (s)	Name	Description	Access	Reset
31:16	-	Reserved	-	=
15:0	HSTART	Specifies the number of clocks between the leading edge of the horizontal sync and the start of active data. This value is used for the Main Stream Attribute Hstart and is measured in pixel clocks. 15:0 – Horizontal start clock count	RW	0x0

3.3.3.3 EDP_MSTREAM_VSTART

MAIN_STREAM_VSTART Register

Offset=0x01A0

Bit (s)	Name	Description	Access	Reset
31:16	-	Reserved	-	-
		Number of lines between the leading edge of		
		the vertical sync and the first line of active		
15:0	VSTART	data. This value is carried in the Main Stream	RW	0x0
		Attributes as the Vstart field.		

15:0 – Vertical start line count.	

3.3.3.34 EDP_MSTREAM_MISCO

MAIN_STREAM_MISCO Register

Offset=0x01A4

Bit (s)	Name	Description	Access	Reset
31:8	-	Reserved	-	-
		This 8-bit value contains information about		
		the main link video stream clocking and color		
		representation. These bits are mapped from		
		the DisplayPort specification MISCO register		
		definitions.		
7:5	BD	BIT_DEPTH: number of bits per color	RW	0x0
		000 = 6 bits		
		001 = 8 bits		
		010 = 10 bits		
		011 = 12 bits		
		100 = 16 bits		
		101, 110, 111 = Reserved		
		YCBCR_COLORIMETRY: colorimetry of the		
4	\/C	main link video	RW	0x0
4	YC	0 = ITU-R BT601-5		
		1 = ITU-R BT709-5		
		DYNAMIC_RANGE: color range for each plane		
3	DR	0 = VESA range	RW	0x0
		1 = CEA range		
		COMPONENT_FORMAT: color representation		
		format		
2:1	CF	00 = RGB	RW	0x0
2.1		01 = YCbCr 4:2:2	IXVV	0.00
		10 = YCbCr 4:4:4		
		11 = Reserved		
		SYNCHRONOUS_CLOCK: clocking mode for		
0	sc	the user data	RW	0x0
J		0 = asynchronous clock	11.00	0,0
		1 = synchronous clock		

3.3.3.35 EDP_MSTREAM_MISC1

MAIN_STREAM_ MISC1 Register Offset=0x01A8

Copyright[®] 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

Bit (s)	Name	Description	Access	Reset
31:8	-	Reserved	-	-
		These bits represent the Main Stream		
		Attribute field MISC1 as defined in the		
		DisplayPort specification. These bits provide		
		interlaced and stereo video information.		
7:3	ZERO		RW	0x0
		ZERO		
		This field must be set to a 0 for proper		
		operation. Any other value in this field may		
		cause unpredictable operation.		
		STEREO_VIDEO_ATTRIBUTE:		
		00 = No stereo video transported		
2:1	SVA	01 = Top field or frame is for the RIGHT eye	RW	0x0
		10 = Reserved		
		11 = Top field or frame is for the LEFT eye		
		INTERLACED_TOTAL_EVEN:		
		0 = number of lines per interlaced frame is		
0	ITE	odd	RW	0x0
		1 = number of lines per interlaced frame is		
		even		

3.3.3.36 EDP_M_VID

MAIN_M_VID Register
Offset=0x01AC

Bit (s)	Name	Description	Access	Reset
31:24	-	Reserved	-	-
		The clocking values for the main stream		
		video must be calculated by the host		
		processor and provided in this register for		
		transmission to the sink device. For most		
23:0	M_VID	applications, this value can be set to the user	RW	0x0
		data pixel clock value in KHz.		
		23:0 – unsigned value computed in the		
		asynchronous clock mode		

3.3.3.37 EDP_MTRANSFER_UNIT

MAIN_TRANSFER_UNIT_SIZE Register

Offset=0x01B0

Bit (s) Name	Description	Access	Reset
--------------	-------------	--------	-------

31:7	-	Reserved	-	-
		A transfer unit is a DisplayPort micro-packet and represents valid data symbols and stuffing symbols. This register value sets the size of a transfer unit in the transmitter framing logic. Due to the design of the core, only even values are supported by this register.		
6:0	TUS	6:0 – this number must be in the range of 32 to 64 for DisplayPort compliance and is typically set to a fixed value which depends on the inbound video mode. Larger values should be used for video modes with slower pixel clock rates. Smaller values should be used for video modes with higher pixel clock rates.	RW	0x20

3.3.3.38 EDP_N_VID

MAIN_N_VID Register
Offset =0x01B4

Bit (s)	Name	Description	Access	Reset
31:24	-	Reserved	-	-
23:0	N_VID	The second clocking value for the Main Stream Attributes is set based upon the link rate. This value, when used in conjunction with the M-VID value allows the sink device to recover the frequency of the user data pixel clock. 23:0 – unsigned value computed in the asynchronous clock mode. This value should be set to 162000 when operating the link in 1.62Gbps mode, 270000 when operating the link in 2.7Gbps mode, or 540000 when operating the link is 5.4Gbps mode.	RW	0x0

3.3.3.39 EDP_USER_PIXEL_WIDTH

MAIN_USER_PIXEL_WIDTH
Offset=0x01B8

Copyright[®] 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

Bit (s)	Name	Description	Access	Reset
31:2	-	Reserved	-	-
1:0	UPW	The user data interface to the transmitter core accepts either one or two pixels per clock cycle. This register selects the width of the user data input port and should be set before main link video is enabled. At reset, this register defaults to 1. 1:0 – Set to a value of 1 for a single pixel wide interface or 2 for a dual pixel wide interface.	RW	0x1

3.3.3.40 EDO_USER_DATA_COUNT

MAIN_USER_DATA_COUNT PER LANE Offset=0x01BC

Bit (s)	Name	Description	Access	Reset
31:18	-	Reserved	-	-
		USER_DATA_COUNT_PER_LANE		
	C	Determines the total data count for the		
		transmitter framing logic to read from the user		
17:0	UDCPL	FIFO before sending a blanking start symbol.	D\A/	0.0
17.0	In other words, this value is the total number of 16-bit words in a line of active data. The	In other words, this value is the total number	RW	0x0
		calculated value should be rounded up.		
		17:0 – set to HRES * bits per pixel / 16 - 1		

3.3.3.41 EDP_MSTREAM_INTERLACED

MAIN_STREAM_INTERLACED Offset=0x01C0

Bit (s)	Name	Description	Access	Reset
31:1	-	Reserved	-	-
0	INLA	Informs the DisplayPort transmitter main link that the source video is interlaced. By setting this bit to a '1', the transmitter will set the appropriate fields in the VBID value and Main Stream Attributes. This bit must be set to a '1' for the proper transmission of interlaced sources. 0 – Set to a '1' when transmitting interlaced	RW	0x0

3.3.3.42 EDP_USER_SYNC_POLARITY

MAIN_USER_SYNC_POLARITY

Offset=0x01C4

Bit (s)	Name	Description	Access	Reset
31:4	-	Reserved	-	-
3	UOEP	Indicates the polarity of the video source sync signals. Set each bit to a '1' for active high or a '0' for active low. USER_ODDEVEN_POLARITY: polarity of the input odd/even field flag.	RW	0x1
2	UDEP	USER_DATA_ENABLE_POLARITY: polarity of the input user data enable signal.	RW	0x1
1	UVP	USER_VSYNC_POLARITY: polarity of the input user vertical sync pulse.	RW	0x1
0	UHP	USER_HSYNC_POLARITY: polarity of the input user horizontal sync	RW	0x1

3.3.3.43 EDP_PHY_RESET

EDP_PHY_RESET

Offset =0x0200

Bit (s)	Name	Description	Access	Reset
31:1	-	Reserved	-	-
0	PRST	This reset applies to the entire PHY implementation and holds all analog and digital portions of the implementation in reset. O: normal operation	RW	0x1
		1: hold the PHY in reset.		

3.3.3.44 EDP_PHY_PREEM_LO

EDP_PHY_PRE_EMPHASIS_LANEO

Offset=0x0204

Bit (s)	Name	Description	Access	Reset
31:4	-	Reserved	=	=
		Controls the pre-emphasis level for lane 0 of		
3:0	PREMLO	the transmitter.	RW	0x0
		0000: 0dB		

	0001:3.5dB	
	0010:6dB	
	other reserved	

3.3.3.45 EDP_PHY_ PREEM_L1

EDP_PHY_PRE_EMPHASIS_LANE1

Offset=0x0208

Bit (s)	Name	Description	Access	Reset
31:4	-	Reserved	-	=
3:0	PREML1	Controls the pre-emphasis level for lane 1 of the transmitter. 0000: 0dB 0001:3.5dB 0010:6dB other reserved	RW	0x0

3.3.3.46 EDP_PHY_ PREEM_L2

EDP_PHY_PRE_EMPHASIS_LANE2

Offset=0x020C

Bit (s)	Name	Description	Access	Reset
31:4	-	Reserved	-	-
	PREML2	Controls the pre-emphasis level for lane 2 of		0x0
		the transmitter.	RW	
3:0		0000: 0dB		
3.0		0001:3.5dB		
		0010:6dB		
		other reserved		

3.3.3.47 EDP_PHY_ PREEM_L3

EDP_PHY_PRE_EMPHASIS_LANE3

Offset=0x0210

Bit (s)	Name	Description	Access	Reset
31:4	-	Reserved	-	-
	PREMLO	Controls the pre-emphasis level for lane 3 of		0x0
		the transmitter.	RW	
3:0		0000: 0dB		
3.0		0001:3.5dB		
		0010:6dB		
		other reserved		

 $\textbf{Copyright}^{\circledcirc} \textbf{ 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.}$

3.3.3.48 EDP_PHY_VSW_L0

EDP_PHY_VOLTAGE_DIFF_LANE0

Offset=0x0214

Bit (s)	Name	Description	Access	Reset
31:4	-	Reserved	-	-
	VDL0	Controls the voltage swing for lane 0 of the		0x0
		transmitter.	RW	
2.0		0000: 400mV		
3:0		0001: 600mV		
		0010: 800mV		
		Other reserved		

3.3.3.49 EDP_PHY_VSW_L1

EDP_PHY_VOLTAGE_DIFF_LANE1

Offset=0x0218

Bit (s)	Name	Description	Access	Reset
31:4	-	Reserved	ı	-
	VDL1 transmitte 0000: 400 0001: 600	Controls the voltage swing for lane 1 of the		0x0
		transmitter.	RW	
3:0		0000: 400mV		
3.0		0001: 600mV		
		0010: 800mV		
		Other reserved		

3.3.3.50 EDP_PHY_VSW_L2

EDP_PHY_VOLTAGE_DIFF_LANE2

Offset=0x021C

Bit (s)	Name	Description	Access	Reset
31:4	-	Reserved	ı	-
	VDL2	Controls the voltage swing for lane 2 of the		0x0
		transmitter.	RW	
3:0		0000: 400mV		
3.0		0001: 600mV		
		0010: 800mV		
		Other reserved		

3.3.3.51 EDP_PHY_VSW_L3

EDP_PHY_VOLTAGE_DIFF_LANE3

Offset=0x0220

Bit (s)	Name	Description	Access	Reset
31:4	-	Reserved	-	-
	VDL3 trai	Controls the voltage swing for lane 3 of the		0x0
		transmitter.	RW	
2.0		0000: 400mV		
3:0		0001: 600mV		
		0010: 800mV		
		Other reserved		

3.3.3.52 EDP_PHY_VSW_AUX

EDP_PHY_VOLTAGE_DIFF_AUX

Offset=0x0224

Bit (s)	Name	Description	Access	Reset
31:4	-	Reserved	-	-
	(Controls the voltage swing for aux channel of		
		the transmitter.		
3:0	VDA	0000: 400mV	RW	0x0
3.0	VDA	0001: 600mV	KVV	
		0010: 800mV		
		Other reserved		

3.3.3.53 EDP_PHY_PWR_DOWN

EDP_PHY_POWER_DOWN Register

Offset=0x0228

Bit (s)	Name	Description	Access	Reset
31: 4	-	Reserved	-	=
		All PHY implementations support a power down		
		function to place unused transmitter lanes into a		
		low power state. These register bits control this		
3	PDL3	function within the PHY. These register bits	RW	0x1
		should be set to '0' for normal operation.		
		0: lane3 enable		
	1:	1: lane3 power down		
2		0: lane2 enable	DVV	0.41
2	PDL2	1: lane2 power down	RW	0x1
1	DDI 1	0: lane1 enable	RW	0v1
1 PD	PDL1	1: lane1 power down	KVV	0x1
0	DDLO	0: lane0 enable	DVV	0.41
0	PDL0	1: lane0 power down	RW	0x1

3.3.3.54 EDP_PHY_CAL_CONFIG

PHY calibrate configure Register

Offset=0x022C

Bit (s)	Name	Description	Access	Reset
		EDP PHY driver bypass res calibrate set		
31	-	- 0 :default		0x0
		1: bypass		
30:26	-	Reserved	-	-
		res calibrate setting		
		00: 50.67		0x1
25:24	CAL_RES	01: 50	RW	
		10: 49.34		
		11: 48.7		
23	-	Reserved	-	-
22:16	TRA OV	EDP PHY preemable strength overide value when	RW	0x0
22.10	TRA_OV	bit31 is high.	KVV	UXU
15	-	Reserved	-	-
14:8	SEL OV	EDP PHY sel pmos dirver number overide value	RW	0.5
14:8	SEL_OV	when bit31 is high.	KVV	0x5
7	-	Reserved	-	-
C.O.	DCM/ OV	EDP PHY driver resister control number overide	DVA	0.21
6:0	PSW_OV	value when bit31 is high.	RW	0x31

3.3.3.55 EDP_PHY_CAL_CTRL

PHY calibrate control Register

Offset=0x0230

Bit (s)	Name	Description	Access	Reset
31:9	1	Reserved	=	-
		EDP res calibrate enable signal,		
	8 CAL_EN	0: disable		
8		1: active	RW	0x0
		Write 1 enable the RES calibrate, when calibrate		
	finish, auto clear to 0.			
7	1	Reserved	=	=
C.O.	CAL CODE	Indicate the res calibrate output control code	R	0x30
6.0	6:0 CAL_CODE	when calibrate finish done	ĸ	UXSU

3.3.3.56 EDP_PHY_CTRL

EDP_PHY control Register
Offset=0x0234

Copyright[©] 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

Bit (s)	Name	Description	Access	Reset
31: 16	-	Reserved	-	-
		Main lane output channel Mirror Select		
15	mirror	0: Normal	RW	0x0
		1: Mirror		
14: 13	-	Reserved	-	-
		EDP PHY data lane3 parallel to serial function		
		enable bit		
12	SEREN3	0: disable	RW	0x0
		1: enable		
		EDP PHY data lane2 parallel to serial function		
		enable bit		
11	SEREN2	0: disable	RW	0x0
		1: enable		
		EDP PHY data lane1 parallel to serial function		
4.0	655514	enable bit	5144	
10	SEREN1	0: disable	RW	0x0
		1: enable		
		EDP PHY data lane0 parallel to serial function		
0	CEDENO	enable bit	DVA	00
9	SEREN0	0: disable	RW	UXU
		1: enable		0x0 0x0
		EDP PHY aux channel output signal Polarity select		
8	PAS	0: polarity not changed	RW	0x0
		1: polarity reversed		
		EDP PHY data lane3 output signal Polarity select		
7	PLPS3	0: polarity not changed	RW	0x0
		1: polarity reversed		0x0
		EDP PHY data lane2 output signal Polarity select		
6	PLPS2	0: polarity not changed	RW	0x0
		1: polarity reversed		
		EDP PHY data lane1 output signal Polarity select		
5	PLPS1	0: polarity not changed	RW	0x0
		1: polarity reversed		
		EDP PHY data lane0 output signal Polarity select		
4	PLPS0	0: polarity not changed	RW	0x0
		1: polarity reversed		
		EDP PHY data lane3 edge select signal when		
3	PLES3	receive digital data bus.	RW	0x0
		0: Posedge,		
		1: Negedge		
		EDP PHY data lane2 edge select signal when		
2	PLES2	receive digital data bus.	RW	0x0
		0: Posedge,		

		1: Negadge		
1	PLES1	EDP PHY data lane1 edge select signal when receive digital data bus. 0: Posedge, 1: Negedge	RW	0x0
0	PLESO	EDP PHY data lane0 edge select signal when receive digital data bus. 0: Posedge, 1: Negedge	RW	0x0

3.3.3.57 EDP_RGB_CTL

EDP RGB Control register

This register is mainly used to configure the controller to fit the specified RGB IF panel Offset = 0x0500

Bits	Name	Description	Access	Reset
31:9	-	Reserved	-	-
8:4 PREL_CNT	PREL_CNT	Pre_line counter. if this counter set x, the RGB will send a pre_line signal to DE when is has send [VSPW-x)] valid	RW	0x0
		horizontal data pluse.		
3:2	-	Reserved		-
		Video Output Mode		
1	VOM	0: Drive the LCD form DE.	RW	0x0
		1: Drive the LCD with default color.		
		RGB ENABLE		
		0: disable		
0	EN	1: enable	RW	0
		when enable, RGB controller get ready to start		
		RGB IF timing		

3.3.3.58 EDP_RGB_STATUS

EDP Status register

Offset = 0x0504

Bits	Name	Description	Access	Reset
31:1	-	Reserved	-	-
0 FEIE	Frame trans complete bit			
	FEIF	0: not complete	DVA	00
	FEIE	1: complete	RW	0x0
		Write '1' clear.		

Copyright[©] 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

3.3.3.59 EDP_RGB_COLOR

EDP Color register

Offset = 0x0508

Bits	Name	Description	Access	Reset
31:24	-	Reserved	-	-
23:16	R	panel's default color R	RW	0x0
15:8	G	panel's default color G	RW	0x0
7:0	В	panel's default color B	RW	0x0

3.4 MIPI DSI

3.4.1 Function

MIPI DSI (Display Serial Interface) is the standard display interface that complies with MIPI Alliance. The DSI Host Controller deals with data transmit and receive. When transmitting data, DSI Host Controller may work in High-Speed mode or Low-power mode; when receiving data, DSI Host Controller works in Low-Power mode only. Features of MIPI DSI are listed below:

- Compliant with MIPI DSI Specification version 1.1 and the D-PHY specification version 1.1
- Support Command and Video mode Transmissions
- Support three Transmission Timings in Video mode:
 - Non-Burst Mode with Sync Pulses
 - Non-Burst Mode with Sync Events
 - Burst Mode
- Pixel Format:
 - Command Mode: 8bits, 12bits, 16bits, 18bits, and 24bits per pixel
 - Video Mode: RGB565, RGB666 (Packed), RGB666, and RGB888
- Support Power Save Mode during HS Transmission
- Support LP and ULP transmission
- Support Bus Turn-Around for receiving peripheral-to-processor transmissions
- Support 1-4 data lanes, from 75 Mbps to 1Gbps per lane
- Support four data lanes random mapping

3.4.2 Register List

Table 3 - 9 MIPI DSI Controller Registers Address

Name	Physical Base Address
DSI	0xE01E0000

Table 3 - 10 MIPI DSI Controller Registers

Offset	Register Name	Description
0x0000	DSI_CTRL	DSI Control Register
0x0004	DSI_SIZE	DSI Screen Size Register
0x0008	DSI_COLOR	DSI Default Color Register
0x000C	DSI_VIDEO_CFG	DSI Video Configure Register
0x0010	DSI_RGBHT0	DSI RGB Hsync Timing0 Register
0x0014	DSI_RGBHT1	DSI RGB Hsync Timing1 Register
0x0018	DSI_RGBVT0	DSI RGB Vsync Timing0 Register
0x001c	DSI_RGBVT1	DSI RGB Vsync Timing1 Register
0x0020	DSI_TIMEOUT	DSI Time Out Register

Copyright[©] 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

0x0024	DSI_TR_STA	DSI Transfer State Register
0x0028	DSI_INT_EN	DSI Interrupt Enable Register
0x002c	DSI_ERROR_REPORT	DSI Error Report Register
0x0030	DSI_FIFO_ODAT	DSI FIFO Output Data Register
0x0034	DSI_FIFO_IDAT	DSI FIFO Input Data Register
0x0038	DSI_IPACK	DSI Input Packet Information Register
0x0040	DSI_PACK_CFG	DSI Packet Configure Register
0x0044	DSI_PACK_HEADER	DSI Packet Header Register
0x0048	DSI_TX_TRIGGER	DSI TX Trigger Register
0x004c	DSI_RX_TRIGGER	DSI RX Trigger Register
0x0050	DSI_LANE_CTRL	DSI Lane Control Register
0x0054	DSI_LANE_STA	DSI Lane State Register
0x0060	DSI_PHY_T0	DSI PHY Timing0 Register
0x0064	DSI_PHY_T1	DSI PHY Timing1 Register
0x0068	DSI_PHY_T2	DSI PHY Timing2 Register
0x007c	DSI_LANE_SWAP	DSI LANE SWAP Control Register
0x0080	DSI_PHY_CTRL	DSI D-PHY Control Register

3.4.3 Register Description

3.4.3.1 DSI_CTRL

DSI Control Register

Offset=0x00

Bits	Name	Description	Access	Reset
		D-PHY Block Enable		
31	DSI_PHY_EN	0: Disable (D-PHY is powered off)	RW	0x0
		1: Enable (D-PHY is powered on)		
		Init and CAL the D-PHY Block		
		0: do not operate		
		1: CAL the D-PHY		
30	DSI_CALEN	Note: After D-PHY is powered on, software must		
		initial the	RW	0x0
		D-PHY. When D-PHY_INIT goes to low, Analog Phy		
		completes		
		the initialization process. And Digital Phy starts to		
		work after that		
29:13	-	Reserved	-	-
12	TD MODE	0: Command Mode	5147	0x0
12	TR_MODE	1: Video Mode	RW	UXU
11:10	VC	Virtual channel number (also for Odd Field in	RW	0x0
11.10	VC	Interlaced Video)	IV VV	UXU

		Data Lane Number		
		00: Data Lane 0 (1 Data Lane)		
09:08	DL_NUM	01: Data Lane 0 ~ 1 (2 Data Lanes)	RW	0x0
		10: Data Lane 0 ~ 2 (3 Data Lanes)		
		11: Data Lane 0 ~ 3 (4 Data Lanes)		
		Video Output Mode		
07	VOM	0: Drive the panel with video from DE	RW	0x0
		1: Drive the panel with default color		
		Continue Clock Lane		
06	CON_CLK	1: Continue Clock Lane	RW	0x0
		0: non-Continue Clock Lane		
		Swap R,B in input data		
05	RB_SWAP	0: R,B NO SWAP	RW	0x0
		1: R,B SWAP		
		EOTP Enable		
		0: Disable		
04	EOTP_EN	1: Enable	RW	0x0
		Note: Devices compliant to DSI spec v1.0 and earlier		
		do not support EOTP		
		Soft Reset for RX FIFO 、 RX Logic and TX FIFO、 TX		
03	SOFT RST	Logic when received error occurs.	RW	0x0
03	3011_031	0: no Reset	1/ //	UXU
		1: Reset		
02:00	-	Reserved	-	-

Note: This register is mainly used to configure the controller to fit the application.

3.4.3.2 **DSI_SIZE**

DSI Screen Size Register

Offset=0x04

Bits	Name	Description	Access	Reset
31:28	-	Reserved	-	-
27:16	Υ	Active lines per frame (Active lines per field for interlaced video)	RW	0x0
15:00	-	Reserved	-	-

Note: This register is used to configure the size of the active pixel per line and active lines per frame. Support up to 2048*2048.

3.4.3.3 **DSI_COLOR**

DSI Default Color Register

Offset=0x08

Bits Name Description Access Reset

Copyright[©] 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

31:24	-	Reserved	-	-
23:16	R	panel's default color R	RW	0x0
15:08	G	panel's default color G	RW	0x0
7:0	В	panel's default color B	RW	0x0

Note: This register specifies panel's default color.

3.4.3.4 DSI_VIDEO_CFG

DSI Video Configure Register

Offset=0x0C

Bits	Name	Description	Access	Reset
30:15	-	Reserved	-	-
14	HSA_PS_EN	HSA period in Video mode Power-Saving Mode Enable (only active in Non-Burst Mode with Sync Pulses mode) 1 : Enable 0 : Disable	RW	0x0
13	HBP_PS_EN	HBP period in Video mode Power-Saving Mode Enable 1 : Enable 0 : Disable	RW	0x0
12	HFP_PS_EN	HFP period in Video mode Power-Saving Mode Enable 1 : Enable 0 : Disable	RW	0x0
11	=	Reserved	-	-
10:08	RGB_FM	RGB Color Format 000: 16-bit Format (RGB565) 001: 18-bit Packed Format (RGB666) 010: 18-bit Loosely Packed Format (RGB666) 011: 24-bit Format (RGB888) Others: reserved	RW	0x0
07	-	Reserved	-	-
06:05	EVEN_VC	Virtual channel number For Even Filed (Only Active for Interlaced Video)	RW	0x0
04	SCAN_MOD E	Video Scan Format Select 0 : Progressive 1 : Interlaced	RW	0x0
03	BLLP_PS_EN	BLLP period Power-Saving Mode Enable 1 : Enable 0 : Disable	RW	0x0
02:01	VMS	Video Mode Select 00: Non-Burst Mode with Sync Pulses (Sync mode) 01: Non-Burst Mode with Sync Events (DE mode) 10: Burst Mode (time-compressed mode) 11: reserved	RW	0x0

		Video Mode Start to process		
00	EN	1 : Enable	RW	0x0
		0 : Disable		

Note: This register is mainly used to configure the video mode. (Only for video mode)

3.4.3.5 DSI_RGBHT0

DSI RGB Hsync TimingO Register

Offset=0x10

Bits	Name	Description	Access	Reset
31:30	-	Reserved	-	-
29:20 HAS	ПУС	Horizontal Sync Active Width	D) 4 /	0x0
	$T_{hsa} = HAS * T_{phy_clk} / lane_num$	RW	UXU	
10.10	9:10 HFP	Horizontal Front Porch	RW	0x0
19.10		T _{hfp} = HFP * T _{phy_clk} / lane_num		
9:0	1100	Horizontal Back Porch	DIA	0x0
9.0	HBP	T _{hbp} = HBP * T _{phy_clk} / lane_num	RW	UXU

Note: This register specifies timing parameters of the horizontal sync signal.

The timing settings do not include Packet Header and Packet Foot. Software must consider PH and PF in order to satisfy the accurate Peripheral timing requirement.

3.4.3.6 DSI_RGBHT1

DSI RGB Hsync Timing1 Register

Offset=0x14

Bits	Name	Description	Access	Reset
31:12	-	Reserved	ı	ı
11.00	BLLP	Blanking or Low-Power Interval	RW	0x0
11:00	BLLP	$T_{BLLP} = BLLP * T_{phy_clk} / lane_num$	KVV	UXU

Note: This register specifies timing parameters of the BLLP for burst mode.

The timing settings do not include Packet Header and Packet Foot. Software must consider PH and PF in order to satisfy the accurate Peripheral timing requirement.

3.4.3.7 DSI_RGBVT0

DSI RGB Vsync TimingO Register

Offset=0x18

Bits	Name	Description	Access	Reset
31:28	-	Reserved	-	-
27:24	VFL	DSI_Vsync (to DE) Falling-edge to Active Line Distance 0x0: Reserved; 0x1: 1 lines; 0x2: 2lines; 0x3: 3 lines; 0xc: 12 lines; 0xd: 13 lines; 0xe: 14 lines; 0xf: 15 lines	RW	0x0

Copyright[©] 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

		DSI Preline Number Set (to DE)		
23:20	PLS	0x0: 1 line; 0x1: 2 lines;	RW	0x0
		0xE: 15 lines; 0xF: 16 lines		
19:13 VSA	\/C A	Vertical Sync Active Width (in lines)	RW	0x0
	VSA	$T_{vsa} = VSA * T_{line}$		
12:00	LTOTAL	Total Line in one frame (in lines)		
		T _{Itotal} = LTOTAL * T _{line}	RW	0.0
		Note: 1 field /1frame of Progressive; 2 fields/1 frame		0x0
		of Interlaced.		

Note: This register specifies timing parameters of the vertical sync signal.

3.4.3.8 **DSI_RGBVT1**

DSI RGB Vsync Timing1 Register

Offset=0x1C

Bits	Name	Description	Access	Reset
31:29	-	Reserved	-	-
28:16	LSEF	Active Line Start Position in Even field of Interlaced scan	RW	0x0
15:12	-	Reserved	-	-
11:00	LSOF	Active Line Start Position in Progressive scan or Odd field of Interlaced scan	RW	0x0

Note: This register specifies timing parameters of the vertical sync signal.

3.4.3.9 DSI_TIMEOUT

DSI Time Out Register

Offset=0x20

Bits	Name	Description	Access	Reset
31:24	-	Reserved	-	-
23:00	BTA TO	Time for BTA timeout	RW	00
		Specify time out from Host initiate BTA request to bus		
		grant turns over form DSI peripheral to DSI Host with		0x0
		respect to TX escape clock.		

Note: This register specifies the time of BTA time-out.

3.4.3.10 DSI_TR_STA

DSI Transfer State Register

Offset=0x24

Bits	Name	Description	Access	Reset
31	VBI	Vertical Blanking Interrupt Pending (Video Mode)	RW	0x0

		Asserted during vertical no-display period every frame.		
		Interrupt triggered at the beginning of blanking period.		
		Write 1 to clear.		
30:20	_	Reserved	-	-
		Transfer Complete Interrupt Pending Bit (CMD Mode)		
		0: Transfer is not Complete		
		1: Transfer is Complete		
19	TCIP	Write 1 to clear the bit	RW	0x0
		Note : After a command mode transfer or a trigger		
		transfer finish, the bit is set to 1		
		Indicates when Bus grant turns over from DSI Peripheral		
		to DSI Host		
18	BUS_TURN	0: Bus Turn over not finish	RW	0x0
	OVER	1: Bus grant turns over from DSI Peripheral to DSI Host		
		Write 1 to clear the bit		
		Indicates when a LPDT packet (except for Ack and Error		
		report packet) is received		
17	RX_DAT_DO	0: no LPDT packet is received	RW	0x0
	NE	1: a LPDT packet is received		
		Write 1 to clear the bit		
	RX_ACK_PA	Indicates when an Ack and Error report packet is		
		received.		
16		0: no Ack and Error report packet is received	RW	0x0
	CK	1: an Ack and Error report packet is received		
		Write 1 to clear the bit		
		Indicates when a RX Trigger is received.		
15	RX_TRIGGE	0: no RX Trigger is received	DVA	0.40
15	R	1: a RX Trigger is received	RW	0x0
		Write 1 to clear the bit		
14:11	-	Reserved	-	-
		Output FIFO underflow pending bit		
		Set when output fifo is empty, hardware still detects the		
10	UDF	write pointer of FIFO move.	RW	0.0
10	ODF	0: no error occurred	KVV	0x0
		1: error occurred		
		Write 1 to clear the bit		
		Input FIFO overflow pending bit		
		Set when input fifo is full, hardware still detects the		
09	OVF	write pointer of FIFO move.	RW	0x0
UJ	OVI	0: no error occurred	11.44	0.00
		1: error occurred		
		Write 1 to clear the bit		
08	IFIFO_EMP	Input FIFO Empty Flag	R	x
UU	II II O_LIVIF	0: Not Empty	11	^

		1: Empty		
		BTA Time Out Error occur		
	500 DT4 T	0: no error occurred		
07	ERR_BTA_T	1: a BTA Time Out Error occurred when initiate a BTA	RW	0x0
	0	request		
		Write 1 to clear the bit		
		Receive CRC Error Bit in LPDR		
	ERR_RX_CR	0: no error occurred		
06	С	1: a CRC Error occurred when receiving long packet	RW	0x0
		Write 1 to clear the bit		
		Receive ECC Error Bit in LPDR		
	500 DV 50	0: no error occurred or a single-bit error occurs and		
05	ERR_RX_EC	corrected	RW	0x0
	С	1: multi-bit errors occur		
		Write 1 to clear the bit		
		Escape Mode Entry Error Pending Bit		
		0: no error occurred		
		1: an unrecognized escape entry command is received.		
04	ERR_ESC	Write 1 to clear the bit	RW	0x0
		Note: an unknown Entry Command is received, the bit is		
		also set to '1'.		
		Low-Power Data Transmission Synchronization Error		
	EDD CVNC	0: no error occurred		
03	ERR_SYNC_	1: the number of bits received during a LPDT is not a	RW	0x0
	ESC	multiple of eight when the transmission ends.		
		Write 1 to clear the bit		
		False Control Error		
		0: no error occurred		
	EDD CONTR	1: an incorrect line state sequence is detected. For		
02	ERR_CONTR OL	example, if a BTA request or escape mode request is	RW	0x0
	OL	immediately followed by a Stop state instead of the		
		required Bridge state.		
		Write 1 to clear the bit		
		LP1 Contention Error		
01	ERR_CON_L	0: no error occurred	D)A/	0,0
01	P1	1.DP Line Contention	RW	0x0
		Write 1 to clear the bit		
		LPO Contention Error		
00	ERR_CON_L	0: no error occurred	DVA	00
00	P0	1.DN Line Contention	RW	0x0
		Write 1 to clear the bit		
		THIRE I to clear the Mit		<u> </u>

Note: This register reflects the transfer status of the controller.

Version 1.0 Page 81

Copyright® 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

DSI_INT_EN 3.4.3.11

DSI Interrupt Enable Register Offset=0x28

Bits	Name	Description	Access	Reset
21	VDL EN	VBI interrupt pending enable	DVA	0.40
31	VBI_EN	0: Disable; 1: Enable	RW	0x0
30:20	-	Reserved	-	-
10	TCID FN	TCIP interrupt pending enable	DVA	00
19	TCIP_EN	0: Disable; 1: Enable	RW	0x0
18	BUS_TURN	BUS_TURNOVER interrupt pending enable	RW	0.0
10	OVER_EN	0: Disable; 1: Enable	KVV	0x0
17	RX_DAT_DO	RX_DAT_DONE interrupt pending enable	RW	0.0
17	NE_EN	0: Disable; 1: Enable	KVV	0x0
16	RX_ACK_PA	RX_ACK_PACK interrupt pending enable	RW	0x0
10	CK_EN	0: Disable; 1: Enable	NVV	UXU
15	RX_TRIGGE	RX_TRIGGER interrupt pending enable	RW	0x0
15	R_EN	0: Disable; 1: Enable	NVV	UXU
14:11	-	Reserved	-	-
10	UDF_EN	UDF interrupt pending enable	RW	0x0
10		0: Disable; 1: Enable		
09	OVE EN	OVF interrupt pending enable	RW	0x0
09	OVF_EN	0: Disable; 1: Enable	IVV	
08	-	Reserved	-	-
07	ERR_BTA_T	ERR_BTA_TO interrupt pending enable	RW	0x0
07	O_EN	0: Disable; 1: Enable	NVV	UXU
06	ERR_RX_CR	ERR_RX_CRC interrupt pending enable	RW	0x0
00	C_EN	0: Disable; 1: Enable	NVV	UXU
05	ERR_RX_EC	ERR_RX_ECC interrupt pending enable	RW	0x0
03	C_EN	0: Disable; 1: Enable	IVV	UXU
04	ERR_ESC_E	ERR_ESC interrupt pending enable	RW	0x0
04	N	0: Disable; 1: Enable	17.00	0.00
03	ERR_SYNC_	ERR_SYNC_ESC interrupt pending enable	RW	0x0
03	ESC_EN	0: Disable; 1: Enable	17.00	UNU
02	ERR_CONTR	ERR_CONTROL interrupt pending enable	RW	0x0
02	OL_EN	0: Disable; 1: Enable	11.00	0.00
01	ERR_CON_L	ERR_CON_LP1 interrupt pending enable	RW	0x0
01	P1_EN	0: Disable; 1: Enable	17.00	0.00
00	ERR_CON_L	ERR_CON_LP0 interrupt pending enable	RW	0x0
	PO_EN	0: Disable; 1: Enable	11,00	0.00

Note: This register enable or mask the interrupt sources.

Copyright[®] 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

3.4.3.12 DSI_ERROR_REPORT

DSI Error Report Register

Offset=0x2C

Bits	Name	Description	Access	Reset
31:16	-	Reserved	-	-
15:00	REPORT	Error Reporting Bit (Detailed description see MIPI DSI Spec 1.0) Before a new transfer is started, software must clear the bits to 0x0000	RW	0x0

Note: This register stores the Error Reporting Packet received from the peripherals.

3.4.3.13 DSI_FIFO_ODAT

DSI FIFO Output Data Register

Offset=0x30

Bits	Name	Description	Access	Reset
31:00	DATA	FIFO DATA for Output	RW	0x0

Note: The byte sequence is arranged in little-endian format. The right side (LSB) of the word is sent first. The data stored in LCD is word-aligned, so DSI Host Controller must discard several bytes if the word counter of sending data is not word-aligned.

4th byte	3rd byte	2nd byte	1st byte

MSB LSB

3.4.3.14 **DSI_FIFO_IDAT**

DSI FIFO Input Data Register

Offset=0x34

Bits	Name	Description	Access	Reset
31:00	DATA	FIFO DATA for Input	RW	0x0

Note: The byte sequence is arranged in little-endian format. That is the first byte received is on the right side (LSB) of the word. When the last bytes received cannot compose a word, the bytes should be placed on the right side (LSB) of the word. And FIFO's other bytes must be filled with 0xFF in order to satisfy the word- aligned rule.

4th byte 3rd byte 2nd byte 1st byte

MSB LSB

3.4.3.15 DSI_IPACK

DSI Input Packet Information Register Offset=0x38

Bits	Name	Description	Access	Reset
31:25	-	Reserved	-	-
24	IDACK TYPE	Input Packet Type:	R	0x0
24	24 IPACK_TYPE	0x0: Short Packet; 0x1: Long Packet		
23:16	IPACK_DI	Input Packet Data Identifier	R	0x0
15:0	IPACK_WC	Input Packet Word Count	R	0x0

3.4.3.16 DSI_PACK_CFG

DSI Packet Configure Register (used in command mode) Offset=0x40

Bits	Name	Description	Access	Reset
31:20	-	Reserved	-	-
		Packet Type		
		00: Short Packet without reading back data		
		01: Long Packet (Normal Data From FIFO)		
19:18	PT	10: Long Packet (Pixel Data From DE)	RW	0x0
		Others: Reserved		
		Note: When PT set to 10, Pixel Data must be sent in a		
		packet per line.		
17	-	Reserved	-	-
		CRC Check Enable		
16	CRC_CK_EN	0: Disable	RW	0x0
		1: Enable when receiving data		
15	-	Reserved	-	-
		Transmission Mode Select		
		0: High-Speed		
14	TR_MODE	1: Low-Power	RW	0x0
		Note: High-Speed is preferred. If fetch data from DE,		
		High-Speed mode is only allowed.		
13:08	DT	Data Type	RW	0x0
07	-	Reserved	-	-
		Pixel To Byte Mapping		
		001: Eight bits per pixel format		
		010: Twelve bits per pixel format		
06:04	PTBM	011: Sixteen bits per pixel format	RW	0x3
		100: Eighteen bits per pixel format		
		101: Twenty-four bits per pixel format		
		Others : Reserved		

03:02	-	Reserved	-	-
01	ССМ	Command Continuous Mode (only in Pixel data from DE)	RW	0x0
00	ST	Write "1" to start Packet transmission, auto return to "0" by hardware.	RW	0x0

Note: When starting a short packet transmission, the data to be transmitted is from DSI_Pack_Header register. When starting a long packet transmission, the data to be transmitted is from DMA or from DE.

When in CMD Mode, only one packet per transmission is support.

When reading back data (Use LPDT), the host controller shall judge what type of packet the current transferring packet is. If the read-back packet is Acknowledge and Error Report, store the read-back data in ERR_REP (error report) register. If the read-back packet is other type, store the data in DSI_FIFO_DAT.

3.4.3.17 DSI_PACK_HEADER

DSI Packet Header Register

Offset=0x44

Bits	Name	Description	Access	Reset
		The Null Packet Header of Transmit packet. Note:		
		active when Null_Packet_PH>0 and transmit after		
		RGB Packet.		
31:16	Null_Packet_PH	[7:0] = Data0 (Word Count lower byte for long	RW	0x0
		packet)		
	[15:8] = Data1 (Word Count upper byte	[15:8] = Data1 (Word Count upper byte for long		
		packet)		
		The Packet Header of Transmit packet.		
		[7:0] = Data0 (Word Count lower byte for long		
15:00	PH packet)	packet)	RW	0x0
		[15:8] = Data1 (Word Count upper byte for long		
		packet)		

Note: This register defines the packet header to DSI packets.

When transmission long packet, this register should be set earlier than starting DMA transmission.

3.4.3.18 DSI_TX_TRIGGER

DSI TX Trigger Register

Offset=0x48

Bits	Name	Description	Access	Reset
31:16	•	Reserved	•	-
15:08	TRIGGER	Entry Command Pattern	RW	0x0
07:01	-	Reserved	-	-

Copyright[©] 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

		Start a trigger transmit		
00	ST	0: do not operate	RW	0x0
		1: Start a trigger		

Note: This register is used to send trigger.

3.4.3.19 DSI_RX_TRIGGER

DSI RX Trigger Register

Offset=0x4C

Bits	Name	Description	Access	Reset
31:08	-	Reserved	-	-
07:00	TRIGGER	Entry Command Pattern	RW	0x0

Note: This register stored the received trigger.

Only when a new trigger is received, the register is update. CPU can also write value to the register.

3.4.3.20 DSI_LANE_CTRL

DSI Lane Control Register

Offset=0x50

Bits	Name	Description	Access	Reset
31:07	-	Reserved	-	-
		Force Clock Lane Module to enter the Ultra-Low Power		
06	CLK_ULPS	State.	RW	0x0
00	CLK_OLP3	0: No force; 1: Force	NVV	UXU
		Note: the bit is auto-cleared after 1 byte_clk.		
		Force Clock Lane Module to exit the Ultra-Low Power		
05	CLK_ULPS_E	State.	RW	0x0
03	XIT	0: No force; 1: Force	NVV	UXU
		Note: the bit is auto-cleared after 1 byte_clk.		
		Force Clock Lane Module into Transmit mode /	RW	0x0
04	CLK TXSTOP	(Generate Stop State)		
04	CLK_TXSTOP	0: No force; 1: Force	KVV	UXU
		Note: the bit is auto-cleared after 1 byte_clk.		
		Force DATA Lane Module to enter the Ultra-Low Power		
03	DL ULPS	State.	RW	0x0
03	DL_OLP3	0: No force; 1: Force	NVV	UXU
		Note: the bit is auto-cleared after 1 byte_clk.		
		Force DATA Lane Module to exit the Ultra-Low Power		
02	DL_ULPS_E	State.	RW	0x0
02	XIT	0: No force; 1: Force	NVV	UXU
		Note: the bit is auto-cleared after 1 byte_clk.		
01	DL_TXSTOP	Force DATA Lane Module into Transmit mode /	RW	0x0
01	DL_IX310P	(Generate Stop State)	KVV	UXU

		0: No force; 1: Force		
		Note: the bit is auto-cleared after 1 byte_clk. Whether		
		D-PHY is in TX state or RX state, force TX state to		
		STOP-State and direction go to 0.		
		Force Data Lane 0 Module Bus Turn Around (Only for		
00	DIO DTA	Data Lane 0)	DVA	00
00	DL0_BTA	0: No force; 1: Force	RW	0x0
		Note: the bit is auto-cleared after 1 byte_clk.		

Note: This register is mainly used to control the lane state.

The setting for Data Lane Control is useful for both Data Lane 0 and Data Lane 1, except for DL_RXMODE and DL_BTA. The setting of DL_RXMODE and DL_BTA is useful only for Data Lane 0.

3.4.3.21 DSI_LANE_STA

DSI Lane State Register

Offset=0x54

Bits	Name	Description	Access	Reset
31:16	-	Reserved	-	-
		Data Lane is in Stop State		
		0: Data Lane is not in Stop State		
15:12	DL_ST	1: Data Lane is in Stop State	R	х
		Note: Bit 15 for Data Lane 3, Bit 14 for Data Lane 2,		
		Bit 13 for Data Lane 1, Bit 12 for Data Lane 0		
		Data Lane is in Ultra-Low Power State		
		0: Data Lane is not in Ultra-Low Power State		
11:08	DL_ULPS	1: Data Lane is in Ultra-Low Power State	R	х
		Note: Bit 11 for Data Lane 3, Bit 10 for Data Lane 2,		
		Bit 9 for Data Lane 1, Bit 8 for Data Lane 0		
07:06	-	Reserved	-	-
		Clk Lane is in Stop State		
05	CLK_ST	0: Clock Lane is not in Stop State	R	х
		1: Clock Lane is in Stop State		
		Clk Lane is in Ultra-Low Power State		
04	CLK_ULPS	0: Clock Lane is not in Ultra-Low Power State	R	х
		1: Clock Lane is in Ultra-Low Power State		
03:01	-	Reserved	-	-
		Transmit/Receive Direction (Data Lane 0 Only)		
00	DIR	0: The Lane is in transmitting mode.	R	x
		1: The Lane is in receiving mode.		

Note: This register reflects the status of the lane module.

Copyright[©] 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

3.4.3.22 DSI_PHY_T0

DSI PHY Operation Timing0 – For Clock Lane Offset=0x60

Bit (s)	Name	Description	Access	Reset
31:14	-	Reserved	-	-
		Time to drive HS differential state after last payload		
		clock bit of a HS transmission burst.		
		000: 2 * Phy_Clk		
		001: 4 * Phy_Clk		
13:11	T _{CLK-TRAIL}	010: 6 * Phy_Clk	RW	0x3
		011: 8 * Phy_Clk		
		100: 12 * Phy_Clk		
		101: 16 * Phy_Clk		
		110-111: Reserve		
		Timing that the transmitter shall continue sending HS		
		clock after the last associated Data Lane has		
		transitioned to LP mode.		
		000: 8 * Phy_Clk	RW	
		001: 12 * Phy_Clk		
10:08	T _{CLK-POST}	010: 16 * Phy_Clk		0x3
		011: 20 * Phy_Clk		
		100: 24 * Phy_Clk		
		101: 28 * Phy_Clk		
		110: 32 * Phy_Clk		
		111: 36 * Phy_Clk		
		Timing that the HS clock shall be driven prior to any		
		associated Data Lane beginning the transition from LP		
		to HS mode.	RW	
07:06	T _{CLK-PRE}	00: 1 * Phy_Clk		0x2
		01: 2 * Phy_Clk		
		10: 3 * Phy_Clk		
		11: 4 * Phy_Clk		
		Time for lead HS-0 drive period before starting Clock.		
		000: 2 * Phy_Clk		
		001: 4 * Phy_Clk		
		010: 8 * Phy_Clk		
05:03	T _{CLK-ZERO}	011: 16 * Phy_Clk	RW	0x3
		100: 32 * Phy_Clk		
		101: 64 * Phy_Clk		
		110: 96 * Phy_Clk		
		111: 128 * Phy_Clk		
02:00	т	Time to drive LP-00 to prepare for HS transmission	D\A/	0v2
02:00	T _{CLK-PREPARE}	000: 1 * Phy_Clk	RW	0x3

001: 2 * Phy_Clk	
010: 4 * Phy_Clk	
011: 8 * Phy_Clk	
100: 12 * Phy_Clk	
101: 16 * Phy_Clk	
110-111: Reserve	

3.4.3.23 DSI_PHY_T1

D-PHY TX Operation Timing1 – For Data Lane Offset=0x64

Bit (s)	Name	Description	Access	Reset
31:14	-	Reserved	-	-
		Time to drive LP-11 after HS burst.		
		000: 2 * Phy_Clk		
		001: 4 * Phy_Clk		
		010: 8 * Phy_Clk		
13:11	T _{HS-EXIT}	011: 16 * Phy_Clk	RW	0x3
		100: 24 * Phy_Clk		
		101: 32 * Phy_Clk		
		110: 48 * Phy_Clk		
		111: 64 * Phy_Clk		
		Time to drive flipped differential state after last		
		payload data bit of a HS transmission burst.		
		000: 2 * Phy_Clk		
		001: 4 * Phy_Clk	RW	0x3
10:08	T _{HS-TRAIL}	010: 6 * Phy_Clk		
		011: 8 * Phy_Clk		
		100: 12 * Phy_Clk		
		101: 16 * Phy_Clk		
		110-111: Reserve		
07:06	-	Reserved	-	-
		Time to drive HS-0 before the Sync sequence		
		000: 2 * Phy_Clk		
		001: 4 * Phy_Clk		
		010: 8 * Phy_Clk		
05:03	T _{HS-ZERO}	011: 16 * Phy_Clk	RW	0x3
		100: 24 * Phy_Clk		
		101: 32 * Phy_Clk		
		110: 48 * Phy_Clk		
		111: 64 * Phy_Clk		
		Time to drive LP-00 to prepare for HS transmission		
02:00	T _{HS-PREPARE}	000: 1 * Phy_Clk	RW	0x3
		001: 2 * Phy_Clk		

010: 4 * Phy_Clk	
011: 8 * Phy_Clk	
100: 12 * Phy_Clk	
101: 16 * Phy_Clk	
110-111: Reserve	

3.4.3.24 DSI_PHY_T2

D-PHY TX Operation Timing2 – For LPClk

Offset=0x68

Bit (s)	Name	Description		Reset
31:24	-	Reserved	-	-
	INIT	Time for initial from PHY CAL Done	RW	0x10
23:16		T _{INIT} = (INIT * 256+1) * T _{LPX}		
		Note: The minimum requirement of T _{INT} is 100us,		
		normally sets to 400us – 500us.		
15:08	WAKEUP	Time for wake up from ULPS. (Data Lane & Clock Lane)	RW	0x3
		$T_{\text{WAKEUP}} = \text{(WAKEUP * 256 +1) * } T_{\text{LPX}}$		
07	TA_SURE	Time-out before new TX side starts driving	RW	0x0
		$T_{TA-SURE} = (TA_SURE + 1) * T_{LPX}$		
	PRE_SCALA R	Low-Power Clock pre-scalar value		
06:00		$T_{LPX} = (PRE_SCALAR + 1) * T_{Phy_Clk}$	RW	0xf
		$T_{LP CLK} = 2 * T_{LPX}$		

3.4.3.25 DSI_LANE_SWAP

DSI LANE SWAP Control Register Offset=0x7C

OHSCE-0A76					
Bit (s)	Name	Description	Access	Reset	
31:12	-	Reserved	-	-	
11:9	DLane3_MAP	MIPI DSI Lane 3 Mapping: 0x0: Data 0 (both direction); 0x1: Data 1 (normally using tx direction); 0x2: Data 2 (normally using tx direction); 0x3: Data 3 (normally using tx direction); Others: Reserved		0x3	
8:6	DLane2_MAP	MIPI DSI Lane 2 Mapping: 0x0: Data 0 (both direction); 0x1: Data 1 (normally using tx direction); 0x2: Data 2 (normally using tx direction); 0x3: Data 3 (normally using tx direction); Others: Reserved	RW	0x2	

5:3	DLane1_MAP	MIPI DSI Lane 1 Mapping: 0x0: Data 0 (both direction); 0x1: Data 1 (normally using tx direction); 0x2: Data 2 (normally using tx direction); 0x3: Data 3 (normally using tx direction); Others: Reserved	RW	0x1
2:0	DLane0_MAP	MIPI DSI Lane 0 Mapping: 0x0: Data 0 (both direction); 0x1: Data 1 (normally using tx direction); 0x2: Data 2 (normally using tx direction); 0x3: Data 3 (normally using tx direction); Others: Reserved	RW	0x0

3.4.3.26 DSI_PHY_CTRL

DSI D-PHY Control Register Offset=0x80

Bit (s)	Name	Description	Access	Reset
31	-	Reserved	-	-
		CLK LANE ENABLE signal		
30	CLK_LANE_EN	0: disable	RW	0x0
		1 enable		
		DATA LANE3,2,1,0 enable signal		
29:26	DATA_LANE_EN	0: disable	RW	0x0
		1:enable		
25.24	Output_swing	CLK LANE & ALL DATA LANE output	RW	0x0
25:24		differential swing in HS mode	IXVV	
	Output_slew	LANE & ALL DATA LANE output differential		0x1
23:22		signal slew rate control in HS mode	RW	
23.22		00: slowest		
		11:fastest		
21:18	CLK_delay	CLK LANE match delay setting, the	RW	0x3
21.10		bigger ,the delay further		
	CLK_LANE_SWAP	CLK LANE port SWAP control signal	RW	0x0
17		0: normal		
		1:swap positive port with negedge port		
	DATA_LANE_SWAP	DATA LANE3,2,1,0 port SWAP control signal		
16:13		0: normal	RW	0x0
		1:swap positive port with negedge port		
	LANE_ phase	DATA LANE3,2,1,0 edge select signal	RW	0x0
12:9		0: positive edge		
		1: negedge edge		
8:7	LP_CD_time	DATA LANE LP cd debunce timing length	RW	0x1
0.7		select signal		

		00: the shortest		
		11:the longest		
		DATA LANE3,2,1,0 LPRX enable signal		
6:3	LP_RX_EN	0: disable	RW	0x0
		1: enable		
2:0	LP_Driver	DATA LANE LP TX driver setting.	RW	0x2

3.5 HDMI/MHL

3.5.1 Function

The High Definition Multimedia Interface (HDMI) Module consists of HDMI Video Interface, HDMI Audio Interface, and HDMI Transmitter Core. The HDMI Transmitter Core is a full-function, single-link transmitter with high-bandwidth digital content protection (HDCP), which transmits studio-quality video and/or audio to any HDMI/DVI/HDCP-enabled digital receivers. This module is fully compliant with the HDMI 1.4b (3D Feature), MHL 2.1 (3D Feature), DVI 1.0, and HDCP 1.4 specifications. Following is the main features:

- Compatible with HDMI 1.4b, MHL 2.1, HDCP1.4 and DVI 1.0
- Supports most video formats from 480p to 4kx2k, such as:
 - > 640*480p@59.94/60Hz
 - > 720*480p@59.94/60Hz
 - > 720*576p@50Hz
 - > 1280*720p@59.94/60Hz
 - > 1280*720p@50Hz
 - > 720 (1440) *480i@59.94/60Hz
 - > 720 (1440) *576i@50Hz
 - > 1440*480p@59.94/60Hz
 - > 1440*576p@50Hz
 - > 1920*1080i@59.94/60Hz
 - 1920*1080i@50Hz
 - > 1920*1080p@24Hz
 - 1920*1080p@59.94/60Hz
 - > 1920*1080p@50Hz
 - ➤ 4k*2k@30Hz
- Supports 24bit, 30bit, 36bit, 48bit RGB/YCbCr 4:4:4 format (Deep Color)
- Supports 24bit RGB and YCbCr4:4:4 format in MHL Mode
- Supports PackedPixel YCbCr4:2:2 format in MHL Mode
- Supports xvYCC601, xvYCC709 Enhanced Colorimetry format
- Supports IEC60958 audio format up to 24bits
- Supports High-bitrate compressed audio formats
- Supports up to 8-channel Audio sample, supports 48/96/192/384/44.2/88.4/176.8/ 353.6kHz audio sample rate
- Supports Auto-Lipsync Correction feature
- Supports 3D Frame Packing Structure with 1080p@24Hz, 720p@50Hz, 720p@59.94/60Hz, etc.
- Supports 3D Side-by-Side (Half) Structure with 1080i@59.94/60Hz, 1080i@50Hz, etc.
- Supports 3D Top-and-Bottom Structure with 1080p@24Hz, 720p@50Hz, 720p@59.94/60Hz, etc.

3.6 Audio IN/Out

3.6.1 Function

I2S and SPDIF interface are supported by S900 for audio IN/OUT. I2S is also known as Inter-IC Sound, it is and electrical serial bus interface for digital audio signals, used to communicate PCM audio data between IC and devices. SPDIF is a transmitter interface for digital audio devices, data transmitted is also PCM encoded audio signals. Features of Audio interface are listed below:

- Support I2S, SPDIF, HDMI transmit audio simultaneously.
- Support mix voice from I2S receiver with HDMI audio, SPDIF, I2S transmitter directly in digital domain for karaoke.

I2S:

- Supports 2.0-channel I2S transmitter and receiver
- Supports 7.1-channel and 5.1-channel through I2S transmitter with ext.8-channel and 6-channel DAC or with ATC260x, by TDM (time-division multiplexed) Mode.
- Supports 4-channel through I2S receiver with ATC260x, by TDM Mode for 4-channel record.
- Support stereo DMIC in ATC260x, and data received by I2S receiver of S900.
- I2S can only work as Master Mode.
- I2S supports sample rate 192k/96k/48k/32k/24k/16k/12k/8k/88.2k/44.1k/22.5k/11.025k
- I2S transmitter has 24bit*32level FIFO, and I2S receiver has 24bit*16level FIFO.

SPDIF:

- SPDIF supports transmitter mode only.
- SPDIF supports sample rate 96k/48k/44.1k/32k.

3.6.1.1 I2S Interface

I2S mode supports sample rate 192K/96K/88.2K/48K/44.1K/32K/24K/22.05K/16K/12K/11.025K/8KHz. I2S Module can work as I2S Receiver (I2S RX) and I2S Transmitter (I2S TX), only work as Master Mode. I2S TX Supports 5.1-channel and 7.1-channel with ext.6-channel/8-channel DAC by TDM Mode. It also supports 2.0-Channel Mode. Clock and Data are sent through 4 pins: BCLK, LRCLK, DOUT, and MCLK.

3.6.1.2 SPDIF Interface

S/PDIF is used to transmit digital signals of a number of formats, the most common being the 48 kHz sample rate format used in DAT and the 44.1 kHz format used in CD audio. Instead the data is sent using Biphase mark code, which has either one or two transitions for every bit, allowing the original sample clock to be extracted from the signal itself.

S/PDIF is used for transmitting 20 bit audio data streams plus other related information. To transmit sources with less than 20 bits of sample accuracy, the superfluous bits will be set to zero. S/PDIF can also transport 24 bit samples by way of four extra bits, but not all equipment supports this, and might ignore these extra bits.

3.6.2 Register List

Table 3 - 11 I2S_SPDIF Controller Registers Address

Name	Physical Base Address
I2S_SPDIF	0xE0100000

Table 3 - 12 I2S/SPDIF Controller Registers

Offset	Register Name	Description
0x0000	I2S_CTL	I2S Control Register
0x0004	I2S_FIFOCTL	I2S FIFO Control Register
0x0008	I2STX_DAT	I2S TX FIFO Data Register
0x000c	I2SRX_DAT	I2S RX FIFO Data Register
0x0010	SPDIF_HDMI_CTL	SPDIF and HDMI FIFO Control Register
0x0014	SPDIF_DAT	SPDIF FIFO Data Register
0x0018	SPDIF_CLSTAT	SPDIF TX Channel Low Statue Register
0x001c	SPDIF_CHSTAT	SPDIF TX Channel High Statue Register
0x0020	HDMI_DAT	HDMI FIFO Data Register
0,002.5	IZCTY CDDIE HDMI CTI	I2S TX, SPDIF, HDMI FIFO Virtual Address Control
0x002c	I2STX_SPDIF_HDMI_CTL	Register
0x0030	I2STX_SPDIF_HDMI_DAT	I2S TX, SPDIF, HDMI FIFO Data Register

3.6.3 Register Description

3.6.3.1 I2S_CTL

12S Control Register

Offset = 0x00

Bit (s)	Name	Description	Access	Reset
31:13	-	Reserved	-	-
		I2S PINS MODE:		
		00: 3-wire		
12:11	I2SPM	01: 4-wire	RW	0x0
		10: 6-wire		
		11: reserved		
		I2S RX Clock Select:		
10	I2SRCS	0: from I2S_CLK2	RW	0x0
		1: from I2S_CLK1 (used by I2S TX)		
		I2S RX MODE:		
9:8	IDCDVM	00: 2.0-Channel Mode	DVA	0.40
	I2SRXM	01: 4-Channel TDM Mode A	RW	0x0
		1x: 4-Channel TDM Mode B		

7	-	Reserved	-	-
		I2S TX MODE: 000: 2.0-Channel Mode 001: 5.1-Channel TDM Mode A		
6:4	I2STXM	010: 5.1-Channel TDM Mode B 011: 7.1-Channel TDM Mode A 1xx: 7.1-Channel TDM Mode B	RW	0x0
3	I2STTDMRF	I2S TX TDM Mode data sample edge: 0: BCLK rising edge sample 1: BCLK falling edge sample	RW	0x0
2	-	Reserved	-	-
1	I2SREN	I2S RX Enable. 0: Disable 1: Enable	RW	0x0
0	12STEN	I2S TX Enable. 0: Disable 1: Enable	RW	0x0

3.6.3.2 I2S_FIFOCTL

I2S FIFO Control Register Offset = 0x04

Bit	Name	Description	Access	Reset
31:21	-	Reserved	-	-
		Karaoke Multi-Channel Mix Mode. (not valid		
		in Stereo Mix Mode)		
		I2S RX Data Mix to I2S TX Data :		
20:19	KMCMMI2ST	00: mix to all channels	RW	0x0
		01: mix to FL,FR		
		10: mix to FL,FR,C		
		11: mix to C		
		I2S TX Fifo Source Select:		
18	12STFSS	0: APB	RW	0x0
		1: I2STX_SPDIF_HDMI_DAT		
		I2S RX FIFO Empty Flag.		
17	I2SRFEF	0: Not Empty	R	0x1
		1: Empty		
16	-	Reserved	-	-
		I2S TX Data Mix With I2S RX Data for Karaoke:		
15	I2STXKA	0: Disable	RW	0x0
		1: Enable		
14:13	-	Reserved	-	-
12	I2SRFIP	I2S RX FIFO Full IRQ Pending Bit.	RW	0x0

1
0x0
-
0x0
UXU
0x0
0x0
00
0x0

I2STX_DAT 3.6.3.3

I2S TX FIFO Data Register

Offset = 0x08

Bit	Name	Description	Access	Reset
31:8	I2STFDA	I2STX FIFO Data.	W	х
7:0	-	Reserved	-	-

3.6.3.4 I2SRX_DAT

12S RX FIFO Data Register

Offset = 0x0c

Copyright[®] 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

Bit	Name	Description	Access	Reset
31:8	I2SRFDA	I2S RX FIFO Data.	R	х
7:0	-	Reserved	-	-

3.6.3.5 SPDIF_HDMI_CTL

SPDIF and HDMI Control Register

Offset = 0x010

Bit	Name	Description	Access	Reset
31:17	-	Reserved	-	-
i		Karaoke Multi-Channel Mix Mode. (not valid		
ı		in Stereo Mix Mode)		
ĺ		I2S RX Data Mix to HDMI Data :		
16:15	KMCMMHDM	00: mix to all channels	RW	0x0
ĺ		01: mix to FL,FR		
ĺ		10: mix to FL,FR,C		
ĺ		11: mix to C		
		HDMI Fifo Source Select:		
14	HDMFSS	0: APB	RW	0x0
ı		1: I2STX_SPDIF_HDMI_DAT		
		SPDIF Fifo Source Select:		
13	SPDFSS	0: APB	RW	0x0
ı		1: I2STX_SPDIF_HDMI_DAT		
		HDMI Data Mix With I2S RX Data for Karaoke:		
12	HDMKA	0: Disable	RW	0x0
ı		1: Enable		
		SPDIF Data Mix With I2S RX Data for Karaoke:		
11	SPDKA	0: Disable	RW	0x0
ı		1: Enable		
		SPDIF Enable.		
10	SPDEN	0: Disable (will reset TX state machine)	RW	0x0
ı		1: Enable		
		HDMI FIFO Empty IRQ Enable.		
9	HDMFIEN	0: Disable	RW	0x0
ı		1: Enable		
<u> </u>		HDMI FIFO Empty (16 level left) DRQ Enable.		
8	HDMFDEN	0: Disable	RW	0x0
· I		1: Enable		
		HDMI FIFO FULL Flag.		
7	HDMFFF	0: Not Full	R	0x0
İ		1: Full		
		HDMI FIFO Empty IRQ Pending Bit.		
6	HDMFIP	0: No IRQ	RW	0x0

		4 100		
		1: IRQ		
		Writing 1 to the bit is clear it.		
		SPDIF FIFO Empty IRQ Enable.		
5	SPDFIEN	0: Disable	RW	0x0
		1: Enable		
		SPDIF FIFO Empty (16 level) DRQ Enable.		
4	SPDFDEN	0: Disable	RW	0x0
		1: Enable		
		SPDIF FIFO FULL Flag.		
3	SPDFFF	0: Not Full	R	0x0
		1: Full		
	SPDFIP	SPDIF FIFO Empty IRQ Pending Bit.		
2		0: No IRQ	RW	0x0
2		1: IRQ		
		Writing 1 to the bit is clear it.		
		HDMI FIFO Reset. It Controls Virtual Address		
1	HDMFR	Fifo and Actual Address Fifo.	RW	0x0
1	DOIVIFK	0: Reset FIFO	I K VV	UXU
		1: Enable FIFO		
		SPDIF FIFO Reset. It Controls Virtual Address		
_	SPDFR	Fifo and Actual Address Fifo.	RW	0x0
0	SPUFK	0: Reset FIFO		UXU
		1: Enable FIFO		

3.6.3.6 **SPDIF_DAT**

SPDIF FIFO Data Register

Offset = 0x14

Bit	Name	Description	Access	Reset
31:8	SPDFDA	SPDIF FIFO Data.	W	Х
7:0	-	Reserved	-	-

3.6.3.7 SPDIF_CLSTAT

SPDIF TX Channel Low Statue Register

Offset = 0x18

Bit	Name	Description	Access	Reset
21.0	21.0 CDDCICTAT	SPDIF TX Channel Low Status.	DVA	
31:0 SPDCLSTAT	(Channel status bit31 to bit0.)	RW	Х	

3.6.3.8 SPDIF_CHSTAT

SPDIF TX Channel High Statue Register

Offset = 0x1c

Bit	Name	Description	Access	Reset
31:16	-	Reserved	ı	=
15:0	SPDCHSTAT	SPDIF TX Channel High Status.	RW	v
15:0 SPDCHSIAI	(Channel status bit47 to bit32.)	RW	Х	

3.6.3.9 **HDMI_DAT**

HDMI FIFO Data Register

Offset = 0x20

Bit	Name	Description	Access	Reset
31:8	HDMFDA	HDMI FIFO Data.	W	Х
7:0	-	Reserved	-	-

3.6.3.10 I2STX_SPDIF_HDMI_CTL

I2S TX, SPDIF, HDMI FIFO Virtual Address Control Register

Offset = 0x2c

Bit	Name	Description	Access	Reset
7:0	-	Reserved	ı	=
		Virtual Address DRQ Enable:		
1	VADEN	0: disable	RW	0x0
		1: enable		
		Virtual Address Source Select:		
0	VASS	0: Reserved	RW	0x0
		1: from APB		

3.6.3.11 I2STX_SPDIF_HDMI_DAT

I2S TX, SPDIF, HDMI FIFO Data Register

Offset = 0x30

Bit	Name	Description	Access	Reset
		I2S TX, SPDIF, HDMI FIFO Data.		
		When writing to this address, data will be sent		
31:8	ISHFDA	to I2STFDA, SPDFDA and HDMFDA	W	х
		correspondingly if I2STF2ISHFDA,		
		SPDF2ISHFDA ,HDMF2ISHFDA are enable.		
7:0	-	Reserved	-	-

3.7 PCM

3.7.1 Features

Pulse Code Modulation (PCM) is the method of encoding an audio signal in digital format. Features of PCM are listed below.

- Include 2 PCM Modules, PCM0 and PCM1
- Include PCM TX and PCM RX, both can work as Master Mode or Slave Mode
- Linear PCM (13-16bit), u-Law (8bit), A-Law (8bit)
- PCM clock in Master Mode 2.048MHz, in Slave Mode up to 2.048MHz
- Long Frame Sync and Short Frame Sync

3.7.2 Register List

Table 3 - 13 PCMx Controller Registers Address

Name	Physical Base Address
PCM0	0xE0110000
PCM1	0xE0118000

Table 3 - 14 PCMx Controller Registers

Offset	Register Name	Description
0x0000	PCMx_CTL	PCM Control Register
0x0004	PCMx_STAT	PCM Status Register
0x0008	PCMx_RXDAT	PCM Receive FIFO Data Register
0x000C	PCMx_TXDAT	PCM Transmit FIFO Data Register

Note: x=0,1

3.7.3 Register Description

3.7.3.1 **PCMx_CTL**

PCMx Control Register

Offset = 0x00+x*0x8000, x=0,1

Bit (s)	Name	Description	Access	Reset
31:20	-	Reserved	-	=
		PCM Enable.		
19	EN	0: Disable	RW	0
		1: Enable		

Copyright[©] 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

			1	
		Sign Extension Enable (only when 16bit slots		
		are used) .		
		0: Select zeros padding or audio gain.		
		1: Select sign extension.		
18	SEN	When writing the bit is 0, the unused bits are	RW	0
		audio gain for 13-bit linear sample and zeros		
		padding for 8-bit compounded sample.		
		When writing the bit is 1, the unused bits are		
		both sign extension.		
		Sample Format		
17	SAMF	0: 8bit sample with 8 cycle slot duration	RW	0
		1: 8bit sample with 16 cycle slot duration		
		Inversion Enable.		
		0: Disable		
16	IVEN	1: Enable.	RW	0
10	IVEN	When inversion enables, inversion is	KVV	U
		performed for A-Law even bit and for u-Law all		
		bit.		
		PCM Master/Slave Select.		
15	MS	0: Master	RW	0
		1: Slave		
		PCM Frame Mode Select		
14	FRMS	0: Short Frame Sync Mode	RW	0
		1: Long Frame Sync Mode		
		PCM FIFO Input Source Select.		
		0: Data from APB		
13	FINS	1: Data from ADC	RW	0
		The data will be send out through PCM_OUT		
		pin		
		Loop Back Enable.		
		Set this bit to enable a loop back mode that		
12	LDEN	data coming on the input will be presented on	DW	
12	LBEN	the output.	RW	0
		0: Disable		
		1: Enable		
11:10	-	Reserved	-	-
		LSB or MSB First.		
		0: MSB first		
9	LMFR	1: LSB first	RW	0
		when transmitting and receiving voice		
		samples.		
		SYNC Suppress Output Enable.		
8	SSOE	0: Enable SYNC output	RW	0
		1: Disable SYNC output		
		<u>'</u>	1	1

			1	
		when keeping PCM_CLK running when in		
		master mode. Some CODEC utilize the mode to		
		enter a low power mode.		
		PCM TX IRQ Enable.		
7	TXIE	0: Disable	RW	0
		1: Enable		
		PCM RX IRQ Enable.		
6	RXIE	0: Disable	RW	0
		1: Enable		
		PCM TX DRQ Enable		
5	TXDE	0: Disable	RW	0
		1: Enable		
		PCM RX DRQ Enable		
4	RXDE	0: Disable	RW	0
		1: Enable		
		PCM Data Output Mode.		
3	DATO	0: Normal Output	RW	0
		1: Forces PCM_OUT to output 0		
		PCM Data Mode Select		
		000: u-Law (8bit)		
		001: A-Law (8bit)		
2:0	DATM	010: linear PCM (13bit)	RW	0
		011: linear PCM (14bit)		
		100: linear PCM (15bit)		
		101: linear PCM (16bit)		

3.7.3.2 **PCMx_STAT**

PCMx Status Register

Offset = 0x04+x*0x8000, x=0,1

Bit (s)	Name	Description	Access	Reset
31:8	-	Reserved	-	-
		TX FIFO empty Status		
7	TFES	1: empty	R	1
		0: no empty		
		RX FIFO full Status		
6	RFFS	0: no full	R	0
		1: full		
		TX FIFO Full.		
5	TFFU	1: Full	R	0
		0: No Full		
		RX FIFO Empty.		
4	RFEM	1: Empty	R	1
		0: No Empty		

		TX FIFO Error Pending Bit.		
		0: No Error		
3	TFEP	1: Error	RW	0
		Writing 1 to the bit will clear it or reset FIFO		
		clear it.		
		RX FIFO Error Pending Bit.		
		0: No Error		
2	RFEP	1: Error	RW	0
		Writing 1 to the bit will clear it or reset FIFO		
		clear it.		
	TIP	TX IRQ Pending Bit.		
1		0: No IRQ	RW	1
1		1: IRQ		
		Writing 1 to the bit will clear the bit.		
		RX IRQ Pending Bit.		
0	RIP	0: No IRQ	RW	0
	MIP	1: IRQ		0
		Writing 1 to the bit will clear it.		

3.7.3.3 PCMx_RXDAT

PCMx RX FIFO Data Register
Offset = 0x08+x*0x8000, x=0,1

Bit (s)	Name	Description	Access	Reset
31:16	-	Reserved	-	-
15.0	DVDAT	PCM RX FIFO Data.	D	.,
15:0 RXDAT	The depth of FIFO is 16bit x 16 levels.	R	X	

3.7.3.4 PCMx_TXDAT

PCMx TX FIFO Data Register

Offset = 0x0c+x*0x8000, x=0,1

Bit (s)	Name	Description	Access	Reset
31:16	-	Reserved	=	=
15:0	TXDAT	PCM TX FIFO Data.	W	l v
13.0	INDAI	The depth of FIFO is 16bit x 16 levels.	VV	Х

Copyright[®] 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

4 Memory Control

4.1 SDC (SD/MMC Controller)

4.1.1 Function

The general purpose of the SDC is to translate the host bus protocol to the SD bus protocol. The SDC is based on a state machine which has 11 transfer modes to select. Every mode has a certain consequence to follow and a certain state to be updated to the registers. This module is managing the data transfers between RAM and SD devices. The RAM may be the SRAM or the DDR. The SD devices maybe a SD card, MMC card, eMMC flash, or a SDIO device.

The SDIO interface is connecting the host bus protocol to the SD bus protocol and provide the following features:

- Support SD/HCSD/SDXC (SRD50 mode), miniSD, microSD, memory card, MMC/RSMMC/ MMCPLUS card, INAND, MOVINAND, eMMC 4.51 SPEC, SDIO card etc.
- Support 1 bit, 4bit, 8bit, bus mode.
- Clock max rate up to 200MHz. Support HS200 Single Data Rate eMMC @ 200 MHz 1.8V I/O.
- Contain 512 Byte SRAM*2
- Read /Write CRC Status Hardware auto checked.
- Support Auto multi Block read/write mode.
- Support SDIO function.
- Support boot mode based on eMMC4.5 SPEC.
- Hardware timeout/delay function.
- Integrated Clock Delay Chain Technique to Regulate Card Interface Timing.
- Built-in pull up resistance for CMD/DAT lines.

4.1.2 Register List

Table 4 - 1 SDC Base Address

Name	Physical Base Address
SD0	0xE0330000
SD1	0xE0334000
SD2	0xE0338000
SD3	0xE033C000

Table 4 - 2 SDx Register List

Offset	Register Name	Description
0x0000	SDx_EN	SDC card enable register
0x0004	SDx_CTL	SDC control register

Copyright[©] 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

0x0008	SDx_STATE	SDC STATU register
0x000C	SDx_CMD	SDC command register
0x0010	SDx_ARG	SDC argument register
0x0014	SDx_RSPBUF0	SDC RSP Buffer0 (Bit31~0) register
0x0018	SDx_RSPBUF1	SDC RSP Buffer1 (Bit63~32) register
0x001C	SDx_RSPBUF2	SDC RSP Buffer2 (Bit95~64) register
0x0020	SDx_RSPBUF3	SDC RSP Buffer3 (Bit127~96) register
0x0024	SDx_RSPBUF4	SDC RSP Buffer4 (Bit135~128) register
0x0028	SDx_DAT	SDC DATA register
0x002C	SDx_BLK_SIZE	SDC block size register
0x0030	SDx_BLK_NUM	SDC block number register
0x0034	SDx_BUF_SIZE	SDC buffer size per ping-pong

4.1.3 Register Description

4.1.4 SDx_EN

SDCx Enable Register Offset = 0x0000

Bits	Name	Description	Access	Reset
		Randomize enable		
31	RANE	1: enable rand0mize	RW	0x0
		0: disable randomize		
30	-	Reserved	-	-
		Randomize seed		
29:24	RAN_SEED	The randomize function will has a	RW	0x00
		initial seed as this five bits.		
23:13	-	Reserved	-	-
		Pad power and pull on level SEL bit		
12	S18EN	0:Enable default 3.3V signaling;	RW	0x0
		1:Enable1.8V signaling		
11	-	Reserved	-	-
		Build-in Pull up resistance enable.		
		When set ,CMD,DATAS will be pull up		
		to VCC. The number of data lines will		
10	RESE	be pulled up is equal to SD DATA BUS	RW	0x0
		WIDTH.		
		1: Eenable		
		0: Disable		
		SD MMC DAT1 pad select		
9	DAT1_S	0: DAT1 to pad SD0_D1A	RW	0x0
		1: DAT1 to pad SD0_D1B		

		SD MMC CLK pad select		
8	CLK_S	0: CLK to pad SD0_CLKA	RW	0x0
		1: CLK to pad SD0_CLKB		
		SD module Enable		
7	EN	1: Enable	RW	0x0
		0: Disable		
6:4	-	Reserved	-	-
2	CDIOEN	1: SDIO function enable;	DVA	0.40
3	SDIOEN	0: SDIO function disabled;	RW	0x0
		When enabled, the SDC will send		
	DDBEN	and receive data use the DDR mode.	DW	0x0
2		the CMD line has no effect whether		
2	DDREN	this bit is set or not.	RW	UXU
		1:DDR mode enabled		
		0:DDR mode disabled		
		SD Interface Data Width select		
		00b : 1 bit		
1:0	DATAWID	01b: 4 bit	RW	0x0
		10b: 8 bit		
		11b: Reserved		

4.1.5 SDx_CTL

SDC control register Offset = 0x0004

Bits	Name	Description		Access	Reset
		Enable hardware r/w tim	ne out function.		
		0: Disable Hardware Tim	eout.		
31	TOUTEN	1: Enable Hardware Time	eout.	RW	0x0
		The timeout period is co	nfigured by Data		
		Timeout Counter			
		Hardware Time out co	ounter value: This		
30-24	TOUTCNT	counter determine the timeout time of SD card		RW	0x00
30-24	TOOTCNT	data output. (used in TM	ata output. (used in TM_mode3~7 and boot		
		mode)			
		Latch Input DATA delay Time select (when host			
		controller latching data,	controller latching data, delay the inside latching		
		data clock to compensate signal transmission			
22.20	DDELAV	delay) :		DVA	0.4
23-20	RDELAY	value	delay (ns)	RW	0x4
		0x00	0		
		0x01	0.4		
		0x02	0.8		

		0x03		1.2		
		0x03 0x04		1.6		
		0x04 0x05		2		
		1				
		0x06		2.4		
		0x07		2.8		
		0x08		3.2		
		0x09		3.6		
		0x0A		4.6		
		0x0B		5.6		
		0x0C		6.6		
		0x0D		7.6		
		0x0E		8.6		
		0x0F		13.6		
				select (when host		
				, delay the inside output		
			mpensat	e signal transmission		
		delay) :	1	, ,		
		value	delay	(ns)		
		0x00	0			
		0x01	0.4			
		0x02	0.8			
		0x03	1.2			
		0x04	1.6			
19-16	WDELAY	0x05	2		RW	0x4
		0x06	2.4			
		0x07	2.8			
		0x08	3.2			
		0x09	3.6			
		0x0A	4.6			
		0x0B	5.6			
		0x0C	6.6			
		0x0D	7.6			
		0x0E	8.6			
		0x0F	13.6			
15:14	-	Reserved			-	-
		CMD LOW Enak	ole			
		Enable CMD lin	e drive lo	ow level by Software		
		1: Drive CMD li	ne to low	level		
		0: not drives CN	νD line to	o low.		
13	CMDLEN				RW	0x0
		NOTE:				
		The software ca	an set thi	s bit to 1 to drive CMD		
				ower up, the card can be		
		maintained in b	oot mod	e if the CMD line is		

		always law law look C		
		always low level. So you can read boot data using		
		mode 9 or mode 10.		
		Sending continuous clock.		
		1: Enable		
12	SCC	0: Disable,	RW	0x0
12	JCC		11.00	0.00
		write 0 to this bit, stop continuance sending		
		clock (should clear it after transfer start bit is set)		
		Transfer clock number. The clock number is 16		
11:8	TCN	times of this field value. "0" means 256 clks.	RW	0x0
		(used with TM_MODE8)		
		Transfer Start:		
		1: When write 1 by software to set this bit, SDC		
		transfer starts according to		
		The Transfer Mode, access mode, and other		
		control field.		
		It will automatically clear to 0 after transfer		
		complete or any Err oroccurred.		
7	TS	0: When write 0 by software to clear this bit. The	RW	0x0
		controller needs a few CLKs to stop transfer and		
		reset the state machine fully so the software		
		must check the result after writing "0" to it.		
		Note:		
		Software can not start a new transfer until it		
		comes to "0" actually		
		Data in mode the last block enable bit		
		0: Disable		
		1: Enable		
6	LBE	When set, at the end of the read last block, SDC	RW	0x0
	LDL	will send	11.00	OXO
		more 8 clocks for the card to complete the		
		operation.		
		Command CRC Check		
		1: Disable CRC7 checked		
5	C7EN	0: Enable CRC7 checked	RW	0x0
		When set, this indicates don't check CRC7		
4	_	Reserved	-	_
		Transfer Mode[3:0] Specifies the transfer mode		
		when transfer start bit is set		
		0000: Transfer command without response		
3:0	TM	0001: Transfer command with 6 bytes response	RW	0xF
5.0	'''	(not including Data transfer)	11.00	
		0010: Transfer command with 17 bytes response		
	<u> </u>	(not including Data transfer)		

0011: Transfer command with 6 bytes response,	
and with busy (not including Data transfer)	
0100: Transfer data in mode with command and	
response (include crc16 checked)	
0101: Transfer data out mode with command	
and response	
(include CRC and busy checked)	
0110: Transfer data in mode without command	
and response	
0111: Transfer data out mode without command	
and respon (include CRC and busy checked)	
1000: Transfer only clock (without any command,	
response, and data)	
1001: BOOT mode ,Transfer data in mode with	
Command	
(hardware check data CRC16, do not check boot	
mode acknowledge.)	
1010: BOOT mode ,Transfer data in mode with	
Command	
(hardware check data CRC16, check boot mode	
acknowledge) .	
1011~1111: Reserved	

4.1.6 SDx_STATE

SDC STATU register

Offset = 0x0008

Bits	Name	Description	Access	Reset
31:19	-	Reserved	-	-
		SD0_D1B Status: This bit		
18	D1B_S	reflects the level of the DAT1	R	0x1
		Signal of SD/MMC cardB		
		SDIOB IRQ pending bit		
	SDIOB_P	1: One SDIOB interrupt has		0x0
17		happened	RW	
17		0: No SDIOB interrupt	I I V V	
		happened.		
		Write1 to this bit will clear it.		
		SDIOB IRQ enable		
		1: SDIOB IRQ enable (the		
16	SDIOB_EN	interrupt trigger form	RW	0x0
		SD0_D1B PIN)		
		0: SDIOA interrupt disable		
15	TOUTE	Time out error	R	0x0

l .				1
		If set means a timeout error		
		has happened. Next transfer		
		started will clear it.		
		Boot mode acknowledge error		
		When in TM_MODE9, (boot		
		mode with hardware check		
14	BAEP	acknowledge), if set means a	R	0x0
		acknowledge error or timeout		
		has happened. Next transfer		
		started will clear it.		
13	-	Reserved	-	-
		Memory ready		
		1: memory ready for read or		
12	MEMRDY	write	R	0x0
		0: memory is not ready for		
		read and write		
		CMD Status: This bit reflects		
11	CMDS	the level of the CMD Signal of	R	0x1
		SD/MMC card		
		SD0_D1A Status: This bit		
10	D1A_S	reflects the level of the DAT1	R	0x1
	D1A_3	Signal of SD/MMC cardA		J.A.
		SDIOA IRQ pending bit		
		1: One SDIOA interrupt has		
		happened		
9	SDIOA_P	0: No SDIOA interrupt	RW	0x0
		happened.		
		Write1 to this bit will clear it.		
		SDIOA IRQ enable		
		1: SDIOA IRQ enable (the		
8	SDIOA_EN	interrupt trigger form	RW	0x0
	SDIOA_LIV	SDO D1A PIN)	11.00	OAO
		0: SDIOA interrupt disable		
		DATO Status: This bit reflects		
7	DAT0S	the level of the DATO Signal of	R	0v1
'	DATUS	SD/MMC card	, n	0x1
		•		
	TELE	Transfer end IRQ enable:	DVA	00
6	TEIE	When set, enable interrupt	RW	0x0
		request.		
5	TEI	Transfer end IRQ pending.	R	0x0
		Write1 to this bit will clear it.		
		Command Line No response		
4	CLNR	(only for command with	R	0x0
		response)		

	This bit is auto cleared when		
	Transfer Start is set.		
	Command Line transfer		
	Complete: This bit is auto		
CLC	cleared when Transfer Start is	R	0x0
	set, and is set when command		
	line transfer is complete.		
	CRC Write data Error: When		
	set, this indicated a CRC write		
WC16ER	error detected over the data	R	0x0
	line. This bit is auto cleared		
	when Transfer Start is set.		
	CRC Read data Error: When		
	set, this indicated a CRC16		0x0
DC1CED	error detected over the	D	
RCIDER	received data. This bit is auto	K	
	cleared when Transfer Start is		
	set.		
	CRC command response Error:		
	When set, this indicated CRC7		
CDCZED	error detected over the	D	0x0
CRC/EK	response. This bit is auto	, r	UXU
	cleared when Transfer Start is		
	set.		
		CLC Command Line transfer Complete: This bit is auto cleared when Transfer Start is set, and is set when command line transfer is complete. CRC Write data Error: When set, this indicated a CRC write error detected over the data line. This bit is auto cleared when Transfer Start is set. CRC Read data Error: When set, this indicated a CRC16 error detected over the received data. This bit is auto cleared when Transfer Start is set. CRC command response Error: When set, this indicated CRC7 error detected over the response. This bit is auto cleared when Transfer Start is	Transfer Start is set. Command Line transfer Complete: This bit is auto cleared when Transfer Start is set, and is set when command line transfer is complete. CRC Write data Error: When set, this indicated a CRC write error detected over the data line. This bit is auto cleared when Transfer Start is set. CRC Read data Error: When set, this indicated a CRC16 error detected over the received data. This bit is auto cleared when Transfer Start is set. CRC command response Error: When set, this indicated CRC7 error detected over the response. This bit is auto cleared when Transfer Start is

4.1.7 SDx_CMD

SDC send command register

Offset = 0x000C

Bits	Name	Description	Access	Reset
31:8	-	Reserved	-	-
7:0	CMD	Command register. Fixed the bit7 is '0' The bit6 is '1'	RW	0x40

4.1.8 SDx_ARG

SD MMC 0 argument register

Offset = 0x0010

Bits	Name	Description	Access	Reset
31:0	ARG	Be written before SD_CMD	RW	0x00000000

Copyright[®] 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

4.1.9 SDx_RSPBUF0

SDC RSP Buffer0 (Bit31~0) register

Offset = 0x0014

Bits	Name	Description	Access	Reset
31:0	RSP0	Bit31~0	R	0x00000000

4.1.10SDx_RSPBUF1

SDC RSP Buffer1 (Bit63~32) register

Offset = 0x0018

Bits	Name	Description	Access	Reset
31:0	RSP1	Bit63~32	R	0x00000000

4.1.11SDx_RSPBUF2

SDC RSP Buffer2 (Bit95~64) register

Offset = 0x001C

Bits	Name	Description	Access	Reset
31:0	RSP2	Bit95~64	R	0x00000000

4.1.12SDx_RSPBUF3

SDC RSP Buffer3 (Bit127~96) register

Offset = 0x0020

Bits	Name	Description	Access	Reset
31:0	RSP3	Bit127~96	R	0x00000000

4.1.13SDx_RSPBUF4

SDC RSP Buffer4 (Bit135~128) register

Offset = 0x0024

Bits	Name	Description	Access	Reset
31:8	-	Reserved	-	-
7:0	RSP4	Bit135~128	R	0x00

4.1.14SDx_DAT

SDC DATA register

Offset = 0x0028

Bits	Name	Description	Access	Reset
31:0	DATA	Data register	R	0xxxxxxxx

4.1.15SDx_BLK_SIZE

SDC Block size

Offset = 0x002C

Bits	Name	Description	Access	Reset
31:11	-	Reserved	-	-
		Block Size[9:0]. This field determines a		
0.0	D.C.	block size, that is how many bytes	DVA	0x000
9:0	BS	found a block. In SDR50 mode, only	RW	
		512bytes/block can be set.		

4.1.16SDx_BLK_NUM

SDC Block number

Offset = 0x0030

Bits	Name	Description	Access	Reset
31:14	-	Reserved	-	-
13:0	BN	This field determines block number in one read	RW	0x001
13.0	ым	or write operations. Default value is 1. "0" means no block will be transferred.	KVV	0x001

4.1.17SDx_BUF_SIZE

SDC BUFFER SIZER PER PING-PONG

Offset = 0x0034

Bits	Name	Description	Access	Reset
31:10	-	Reserved	-	-
		This field determines BUFFER SIZE in one		
0.0	DUEC	PING-PONG read or write operations. Default	DVA	0,4200
9:0	BUFS	value is 0X200. "0" means no block will be	RW	0X200
		transferred.		

5 Peripheral Interfaces

5.1 USB3

5.1.1 Function

- A DRD module, no support to OTG.
- Fully compliant with USB Specification 3.0 and 2.0
- USB Supper Speed (5Gb/s), High Speed (480Mb/s) and Full Speed (12Mb/s) supported in Device Mode
- USB Supper Speed, High Speed, Full Speed and Low Speed (1.5Mb/s) supported in Host Mode
- Support Control, Bulk, Isochronous and Interrupt Transfers
- Embedded USB high-speed Transceiver which complies with Interface UTMI+ (level3)
- Embedded USB Supper Speed Transceiver which complies with Interface PIPE3 (32 bits)
- Support DMA master interface
- Support 4 out endpoints and 4 In endpoints excluded control endpoints
- Support 3 USB ports (1 supper speed port and 3 high speed ports) for Host Use, and up to 31 devices supported
- External SRAM, ROM, MCU is supported
- External PHY is supported (optional)
- Support USB remote wake-up feature

5.2 USBH_HSIC

5.2.1 Function

- Complies with On-The-Go Supplement to the USB2.0 Specification Revision 1.0a.
- UTMI+ level2 Transceiver Macrocell Interface.
- HSIC Interface for an option.
- Supports Session Request Protocol (SRP) and Host Negotiation Protocol (HNP) with USB20.
- Supports point-to-point communication with one low-speed, full-speed or high-speed device in Host mode (one series downstream HUB supported) .
- Supports full-speed or high-speed in peripheral mode.
- Supports 15 IN endpoints and 15 OUT endpoints besides Control endpoint0.
- Supports high-speed high-bandwidth Isochronous transfer and Interrupt transfer.
- Integrated 15KB single port RAM as IN, OUT endpoint buffer. Partially configurable endpoint buffer size, endpoint type with single, double, triple or quad buffering.
- Supports suspend, resume and power managements function.
- Support remote wakeup.

- An optional HSIC interface for USBH1 controller.
- One OTG function and the other working as either Device or Host
- 32 bit AHB bus interface to uP for debug use
- Master access to DDR with 32-bit UDMA bus

5.3 Ethernet MAC Controller

5.3.1 Function

The MAC Ethernet controller implements Carrier Sense Multiple Access with Collision Detection (CSMA/CD) algorithms defined by IEEE 802.3 for media access control over the 10Mbps and 100Mbps Ethernet

Communication with an external host is implemented via a set of Control and Status Registers and the DMA controller for external shared RAM memory. For data transfers the MAC AHB operates as a DMA master. It automatically fetches from transmit data buffers and stores received data buffers into external RAM with minimum CPU intervention.

- Supports 10/100Mbps data transfer rate
- Supports RMII/SMII interface
- Meets the IEEE 802.3 CSMA/CD standard
- Full or half duplex operation
- Flexible address filtering
- External RAM for storing MAC addresses
- Up to 16 physical addresses
- 512 bit hash table for multicast addresses
- 32 bit slave AHB interface
- Single interrupt line
- Interrupt mitigation control mechanism
- 32 bit data AHB bus interface
- Scatter/gather capabilities
- Configurable burst length
- Intelligent bus arbitration schemes
- Descriptor "ring" or "chain" structures
- Single descriptor points to up to two data buffers
- Automatic descriptor list polling
- Independent clocks for data and control paths
- Running/Suspended/Stopped modes
- Clock switching support
- Operates as internal configurable FIFOs
- Programmable transmit threshold levels
- Transmit FIFO "store and forward" functionality

5.4 SPI (Serial Peripheral Interface)

5.4.1 Function

SPI (Serial Peripheral Interface) is a four wire, master-slave, full-duplex serial communication protocol. S900 integrated 4 SPI modules, the 4 channels can be configured as either a master or slave device. Features of SPI interface are listed below.

- Support master mode and slave mode. The speed of master mode up to 60Mbps, and slaver up to 20Mbps.
- Support dual I/O write and read mode while use as master
- Support single data rate mode and double data rate (DDR mode) while use as master
- Support two wire mode, only use SCLK and MOSI signal
- Support IRQ and DMA mode to transmit data
- Support system program boot from SPI Nor-flash
- 4 SPI modules

5.4.2 Register List

Table 5 - 1 SPI Registers Block Base Address

Name	Physical Base Address
SPI0	0xE01D0000
SPI1	0xE01D4000
SPI2	0xE01D8000
SPI3	0xE01DC000

Table 5 - 2 SPI Registers Offset Address

Offset	Register Name	Description
0x0000	SPIx_CTL	SPI Control Register
0x0004	SPIx_CLKDIV	SPI Clock Divide Register
0x0008	SPIx_STAT	SPI Status Register
0x000C	SPIx_RXDAT	SPI Receive FIFO Data Register
0x0010	SPIx_TXDAT	SPI Transmit FIFO Data Register
0x0014	SPIx_TCNT	SPI Transmit counter for read only
0x0018	SPIx_SEED	SPI Randomizer seed
0x001C	SPIx_TXCR	SPI TX DMA counter Register
0x0020	SPIx_RXCR	SPI RX DMA counter Register

5.4.3 Register Description

5.4.3.1 SPIx_CTL

SPIx Control Register

Offset = 0x0000

Bits	Name	Description	Access	Reset
		Sample delay time		
		000: No delay		
		001: Delay 1 HCLK cycle time		
31:29	SDT	010: 2 HCLK cycle time	RW	0
31.29	301	011: 3 HCLK cycle time	IXVV	U
		100: 4 HCLK cycle time		
		101: 5 HCLK cycle time		
		110~111: Reserved		
		Boot mode, read only. The function is set in SRAMi		
		module. The default value is defined by the status of CEOS		
		pin.		
28	BM	0: normal mode	R	х
		1: boot mode, the SPI mode is set to MODE3 and the		
		SPI_CLKDIV is set to 0x02 by hardware automatically.		
		Only SPIO support this function.		
	GM	GPS mode		
		0: normal mode		
27		1:GPS mode	RW	0
		When select GPS mode, 3 wires and don't care the SPI SS		
		pin.		
		Convert Endian bit		
		0: not convert Endian		
		0x76543210 ->0x76543210		
		1: convert Endian		
26	CEB	16bit mode:	RW	0
		0x3210->0x1032		
		32-bit mode:		
		0x76543210 ->0x10325476		
		MSB or LSB first shift in or out		
25	-	Reserved	-	-
		Randomizer enable bit		
24	RANFN	0: normal (randomizer bypass)	RW	0
24	RANEN	1: randomizer enable	IVVV	U
		Only SPIO and SPI1 support this function.		
23:22	RDIC	RX DRQ/IRQ Control.	RW	0
23.22	NDIC	00: Set when at least one byte received in IRQ mode.	IVVV	U

		04.6.1.01.11: 100/000.1		
		01: Set when 8 level received in IRQ/DRQ mode		
		10: Set when 16 level received in IRQ/DRQ mode		
		11: Set when 24 level received in IRQ/DRQ mode		
		In DMA mode, DO not set 00, 01, because at least 8 level		
		necessary.		
		TX DRQ/IRQ Control.		
		00: Set when TX FIFO is 1 level empty in IRQ mode.		
		01: Set when TX FIFO is 8 level empty in IRQ/DRQ mode.		
21:20	TDIC	10: Set when TX FIFO is 16 level empty in IRQ/DRQ mode.	RW	0
		11: Set when TX FIFO is 24 level empty in IRQ/DRQ mode.		
		In DMA mode, DO not set 00, 01, because at least 8 level		
		necessary.		
		Two wire mode enable bit		
19	TWME	0: Normal 4 wire mode	RW	0
		1: Two wire mode, use two pin, SPI_CLK and SPI_MOSI		
		Enable.		
18	EN	0: Disable	RW	0
		1: Enable		
		RW control		
		00: Write and read		
17:16	RWC	01: Write only	RW	0
		10: Read only		
		11: Reserved		
		Read Start Control		
15	DTS	Write 1 to start Read clock while use DMA to read data,	RW	0
13	D13	available only in master read only mode.	IXVV	U
		When transfer is finished, this bit will be auto cleared		
		SPI_SS active automatically enable when in mode 0 and		
		mode 2 (CPHA=0), only use in standard mode, except dual		
14	SSATEN	and DDR mode.	RW	0
		0: Disable		
		1: Enable		
		Dual mode and Double data rate		
		Dual mode: Two data wire to read or write		
		Double data rate: DDR		
13:12	DM	00: Single data wire and single data rate read or write	RW	0
		01: Dual and single data rate mode		
		10: Single data wire and DDR mode		
		11: Dual and DDR mode		
11	-	Reserved	-	-
		Master/Slave Select.		
10	MS	0: Master	RW	0
		1: Slave		
9:8	DAWS	Data/Address Width. Select	RW	0

		T		1
		00: 8 bit data and address, low 8 bit		
		01: 16 bit data and address, low 16bit		
		10: 32 bit data and address		
		11: Reserved		
		Clock Polarity Select.		
		CPOL CPHA		
7:6	CPOS	00: Mode 0	RW	0x3
7.0	CPOS	01: Mode 1	NVV	UXS
		10: Mode 2		
		11: Mode 3		
		LSB/MSB First Select.		
5	LMFS	0: Transmit and receive MSB first	RW	0
		1: Transmit and receive LSB first		
		SPI_SS Control Output (only for master mode) .		
4	SSCO	1: Output high	RW	1
		0: Output low.		
		TX IRQ Enable.		
3	TIEN	0: Disable	RW	0
		1: Enable		
		RX IRQ Enable.		
2	RIEN	0: Disable	RW	0
		1: Enable		
		TX DRQ Enable.		
1	TDEN	0: Disable	RW	0
		1: Enable		
		RX DRQ Enable.		
0	RDEN	0: Disable	RW	0
		1: Enable		
			•	

5.4.3.2 SPIx_CLKDIV

SPIx Clock Divide Control Register

Offset = 0x0004

Bits	Name	Description	Access	Reset
31:10	ı	Reserved	-	-
		In master mode:		
	CLKDIV	SPICLK=HCLK/ (CLKDIV*2)	RW	0
		While CLKDIV is set to 1, the divide is 2.		
9:0		The SPI clock rate up to 60MHz.		
9:0		In slave mode:		
		Need not to set this register.		
		Supporting SPI clock rate up to 20MHz.		
		When use, this register cannot be set to 0		

5.4.3.3 SPIx_STAT

SPIx Status Register

Offset = 0x0008

	Offset = 0x0008				
Bits	Name	Description	Access	Reset	
31:10	-	Reserved	-	-	
		TX FIFO Empty.			
9	TFEM	1: Empty	R	1	
		0: Not Empty			
		RX FIFO Full.			
8	RFFU	1: Full	R	0	
		0: Not Full			
		TX FIFO Full.			
7	TFFU	1: Full	R	0	
		0: Not Full			
		RX FIFO Empty.			
6	RFEM	1: Empty	R	1	
		0: Not Empty			
		TX FIFO Error.			
5	TFER	When overflow, the bit is set to 1. Write 1 to the bit will	RW	0	
		clear the bit and reset the FIFO.			
		RX FIFO Error.			
4	RFER	When overflow, the bit is set to 1. Write 1 to the bit will	RW	0	
		clear the bit and reset the FIFO.			
		Bus error bit. Write 1 to the bit will clear the bit			
3	BEB	0: No error	RW	0	
		1: Bus error			
		Transfer Complete Bit.			
		DMA mode: This bit will be set to 1 when all the data sent			
2	тсом	out or receive over, that the SCK has not clock.	RW	0	
		CPU mode: This bit will be set to 1 when every byte data			
		sent out or receive over, that the SCK has not clock. Write 1 will clear to zero			
		TX IRQ Pending Bit.			
		0: No IRQ			
1	TIP	1: IRQ	RW	0	
		Write 1 to the bit will clear it.			
		RX IRQ Pending Bit.			
0	PIP	0: No IRQ	RW	0	
		1: IRQ	KVV		
		Write 1 to this bit will clear it.			

5.4.3.4 SPIx_RXDAT

SPIx RXData Register

Offset = 0x000C

Bits	Name	Description	Access	Reset
21.0 DV	RXDAT	Receive Data.	R	
31:0	NADAI	The depth of RXFIFO is 32-bit×32 levels.	N	Х

5.4.3.5 SPIx_TXDAT

SPIx TXData Register

Offset = 0x0010

Bits	Name	Description	Access	Reset
24.0	31:0 TXDAT	Transmit Data.	w	
31:0		The depth of RXFIFO is 32-bit×32 levels.		X

5.4.3.6 SPIx_TCNT

SPI transmit counter Register

Offset = 0x0014

Bits	Name	Description	Access	Reset
31:12	-	Reserved	-	-
11:0	TCNT	Transmit counter, use to count the clock that sent out to read data in master mode. In read only mode, must first set this counter to determine how much clocks need to send out. The units of the count depend on the data width set by SPI_CTL. For example, if SPI is set 8bit mode, then each byte count 1. If SPI is set 32-bit mode, then each word count 1. This counter only use in read only mode, include CPU and DMA receive	RW	0

5.4.3.7 SPIx_SEED

SPI Randomizer seed Register

Offset = 0x0018

Bits	Name	Description	Access	Reset
31:13	-	Reserved	-	-
12:0	RS	Randomizer seed	RW	0

5.4.3.8 SPIx_TXCR

SPI TX DMA counter Register

Offset = 0x001C

Bits	Name	Description	Access	Reset
31:16	=	Reserved	-	_
15:0	TDWC	TX DMA word counter, use to count data Sent by DMA	RW	0

5.4.3.9 SPIX RXCR

SPI RX DMA counter Register

Offset = 0x0020

Bits	Name	Description	Access	Reset
31:16	-	Reserved	-	-
15:0	RDWC	RX DMA word counter, use to count data Received by DMA	RW	0

5.5 UART/IR

5.5.1 Function

UART (Universal Asynchronous Receiver/Transmitter) is usually an individual (or part of an) integrated circuit used for serial communications over a computer or peripheral device serial port. This module integrates 7 UART interface, the UART and IR module features are listed below:

UART:

- 5-8 Data Bits and LSB first in Transmit and Received
- 1-2 Stop Bits
- Even, Odd, or No Parity
- 32 levels Transmit FIFO and 32 levels Receive FIFO
- Capable of speeds up to 3Mbps to enable connections with Bluetooth and other peripherals
- Support IRQ and DMA mode to transmit data.
- Only UART2/3/4 support RTS/CTS Automatic Hardware Flow Control to reduce interrupts to host system
- Only UARTO support IRC (infrared remote control) Inputs

IRC:

- Support RC6/RC5/9012/NEC (8-bit) protocol.
- Need to connect an IR receiver when use.
- Support IR Paddle

5.5.2 Register List

Each UART is controlled by a register block.

Table 5 - 3 UART Registers Block Base Address

Name	Physical Base Address
UARTO	0xE0120000
UART1	0xE0122000
UART2	0xE0124000
UART3	0xE0126000
UART4	0xE0128000
UART5	0xE012A000
UART6	0xE012C000
IRC	0xE0120050

Each register block contains the registers.

Table 5 - 4 UART Registers Offset Address

Offset	Register Name	Description
0x0000	UARTx_CTL	UART Control Register
0x0004	UARTx_RXDAT	UART Receive FIFO Data Register
0x0008	UARTx_TXDAT	UART Transmit FIFO Data Register
0x000C	UARTx_STAT	UART Status Register

Table 5 - 5 IRC Registers Offset Address

Offset	Register Name	Description
0x00	IR_CTL	Infrared remote control (IRC) interface control register
0x04	IR_STAT	IRC status register
0x08	IR_CC	IRC customer code register
0x0C	IR_KDC	IRC key data code register
0x10	IR_TCOUNTER	IR handle bit width counter
0x14	IR_RCC	The received customer code register, read only
0x18	IR_FILTER	Infrared remote control filter register

5.5.3 Register Description

5.5.3.1 **UARTX_CTL**

UART Control Register

Offset = 0x0000

Bits	Name	Description	Access	Reset
31:23	-	Reserved	-	-

		DMA TX counter reset		
22	DTCR	Write 1 to this bit will reset UART TX internal DMA transmit	RW	0
		counter. Auto clear to 0 while reset over.		
		DMA RX counter reset		
21	DRCR	Write 1 to this bit will reset UART RX internal DMA transmit	RW	0
		counter. Auto clear to 0 while reset over.		
		Loop Back Enable.		
		Set this bit to enable a loop back mode that data coming on		
20	LBEN	the input will be presented on the output.	RW	0
20		0: Disable		
		1: Enable		
		UART TX IRQ Enable.		
19	TXIE	0: Disable	RW	0
		1: Enable		
		UART RX IRQ Enable.		
18	RXIE	0: Disable	RW	0
		1: Enable		
		UART TX DRQ Enable.		
17	TXDE	0: Disable	RW	0
		1: Enable		
		UART RX DRQ Enable.		
16	RXDE	0: Disable	RW	0
		1: Enable		
		UART Enable.		
1 -	EN	When this bit is clear, the UART clock source is inhibited. This	RW	0
15	LIN	can be used to place the module in a low power standby	KVV	0
		state.		
		UART TX/RX FIFO Select		
		TX/RX FIFO Level is reflected in bit[15] to bit[12] of		
14	TRFS	UART_STAT Register.	RW	0
		0: RX FIFO		
		1: TX FIFO		
13	-	Reserved	-	-
		Autoflow Enable		
		Setting this bit enables automatic hardware flow control.		
12	AFE	Enabling this mode overrides software control of the signals.	RW	0
14	AI L	Note:	17.00	J
		This function only used in UART2\UART3\UART4. UART0 and		
		UART1\5\6 not support 4-wire function		
11:7	-	Reserved	-	-

		Parity Select.		
		Bit 6: PEN, Parity enable		
		Bit 5: STKP, Stick parity		
		Bit 4: EPS, Even parity		
c 4	DDC	PEN STKP EPS Selected Parity	514	0
6:4	PRS	0 x x None	RW	U
		100 Odd		
		101 logic 1		
		1 1 0 Even		
		1 1 1 logic 0		
3	-	Reserved	-	-
		STOP Select.		
2	STPS	If this bit is 0, 1 stop bit is generated in transmission. If this bit	RW	0
		is 1, 2 stop bits are generated.		
		Data Width Length Select.		
		00: 5 bits		
1:0	DWLS	01: 6 bits	RW	0
		10: 7 bits		
		11: 8 bits		

Note: FIFO threshold setting requirement:

2. TXFIFO (32 layers in total) threshold:

a) IRQ: 16 layers empty

b) DRQ: Burst mode

3. RX FIFO (32 layers in total) threshold:

a) IRQ: 16 layers received

b) DRQ: single mode

5.5.3.2 UARTx_RXDAT

UART Receive FIFO Data Register

Offset = 0x0004

Bits	Name	Description	Access	Reset
31:8	-	Reserved	-	-
7.0		Received Data.		
7:0	RXDAT	The depth of FIFO is 8bit×32levels.	K	Х

5.5.3.3 UARTx_TXDAT

UART Transmit FIFO Data Register

Offset = 0x0008

Bits	Name	Description	Access	Reset
31:8	-	Reserved	ı	-

7:0		Received Data.	5	
7:0	TXDAT	The depth of FIFO is 8bit×32 levels		X

5.5.3.4 UARTx_STAT

UART Status Register

Offset = 0x000C

Bits	Name	Description	Access	Reset
31:18	-	Reserved	-	_
		UART TX busy bit		
17	UTBB	0:not busy, TX FIFO is empty and all data be shift out	R	0
		1:busy		
	TDEL	TX/RX FIFO Level.	_	
16:11	TRFL	The field indicates the current RX and TX FIFO level.	R	0
		TX FIFO empty Status		
10	TFES	1: empty	R	1
		0: no empty		
		RX FIFO full Status		
9	RFFS	0: no full	R	0
		1: full		
0	DTCC	RTS Status.		
8	RTSS	The bit reflects the status of the external RTS- pin.	R	X
7	CTSS	CTS Status.		
7	C133	The bit reflects the status of the external CTS- pin.	R	Х
		TX FIFO Full.		
6	TFFU	1: Full	R	0
		0: No Full		
		RX FIFO Empty.		
5	RFEM	1: Empty	R	1
		0: No Empty		
		Receive Status.		
4	RXST	0: receive OK	RW	0
4	IVV21	1: receive error.	KVV	0
		Writing 1 to the bit will clear the bit.		
		TX FIFO Error.		
3	TFER	0: No Error	RW	0
3		1: Error	NVV	U
		Writing 1 to the bit will clear the bit and reset the TX FIFO.		
		RX FIFO Error.		
2	RXER	0: No Error	DVA	0
2	INVEN	1: Error	RW	
		Writing 1 to the bit will clear the bit and reset the RX FIFO.		

1	TIP	1: IRQ	RW	0
		Writing 1 to the bit to clear the bit.		
		RX IRQ Pending Bit.	D144	
0	RIP	0: No IRQ		0
0	NIP	1: IRQ	RW	0
		Writing 1 to the bit to clear it.		

5.5.3.5 IR_CTL

infrared remote control register

Offset = 0x00

Bits	Name	Description	Access	Reset
31:5	-	Reserved	-	-
4		IR Paddle enable		
	IPE	0:disable		
		1:enable	RW	0
		When use IR Paddle, must set IRC enable bit; when this bit is		
		set, other IRC mode is not valid.		
3		IRC enable		
	IRCE	0:disable	RW	0
		1:enable		
2	IIE	IRC IRQ enable		
		0:disable	RW	0
		1:enable		
1:0		IRC coding mode select		
		00:9012 code		
	ICMS	01:8bits NEC code	RW	0
		10:RC5 code		
		11:RC6 code		

5.5.3.6 IR_STAT

Infrared remote control register

Offset = 0x04

Bit (s)	Name	Description	Access	Reset
31:8	ı	Reserved	ı	-
		IR Receive FIFO empty bit (only use in IR Paddle mode)		
7	IRFE	0: empty	R	0
		1: not empty, generate IRQ		
6	UCMP	User code don't match pending bit. Write 1 to this bit will	RW	0

		clear it, or auto clear if receive the correct user code the		
		next time.		
		0: user code match		
		1: user code don't match		
5	KDCM	Key data code don't match pending bit. Write 1 to this bit	RW	0
		will clear it, or auto clear if receive the correct key data		
		code the next time		
		0: key data code match		
		1: key data code don't match		
		Repeated code detected, write 1 to this bit will clear it,		
4	RCD	otherwise don't change	RW	0
4	RCD	0: no repeat code	KVV	
		1: detect repeat code		
3	-	Reserved	=	-
	IIP	IRC IRQ pending bit, write 1 to this bit will clear it		
		0: no IRQ pending	RW	0
		1: IRQ pending		
		The precondition of generating interrupt is all the received		
		code is correct, including user code and key value,		
2		moreover, if the user code and key value is not correct, the		
		repeat code reveived following this frame can't generate		
		interrupt.		
		In IR Paddle mode		
		When FIFO is not empty, generate IRQ		
1	-	Reserved	-	-
	IREP	IRC receive error pending		
		0: receive OK		
0		1: receive error occurs if not match the protocol. Writing 1	RW	0
		to this bit will clear this bit, or auto clear if receive the		
		correct user code and key data code the next time.		
L				

5.5.3.7 IR_CC

Infrared remote control customer code register
Offset = 0x08

Bit (s)	Name	Description	Access	Reset
31:16	-	Reserved	-	-
		Infrared remote control customer code		
		In RC5 mode:		
		Bit[4:0] is the customer code		
15:0	ICCC	In 9012 and NEC mode:	RW	0
		Bit[15:0] is the customer code,		
		In RC6 mode:		
		Bit[7:0] is the customer code.		

	In Paddle mode:	
	Reserved	

5.5.3.8 IR_KDC

Infrared remote control KEY data code register

Offset = 0x0C

Bit (s)	Name	Description	Access	Reset
31:20	-	Reserved	-	-
		IRC key data code	-	
		In RC5 mode:		
		Bit 5:0 is the Key data		
		In 9012 and NEC mode:		
		Bit 7:0 is the Key data; Bit 15:8 is the Key		
		anti-data		
19:0	IKDC	In RC6 mode:	R	0
		Bit 7:0 is the Key data;		
		If key value is received, register will be		
		updated, if repeat code is received, register		
		won't be updated.		
		In IR Paddle mode:		
		key data code is 20bit x 8 level RX FIFO		

5.5.3.9 IR_TCOUNTER

Infrared remote control KEY data code register
Offset = 0x10

Bit (s)	Name	Description	Access	Reset
15:14	-	Reserved	-	-
		IR Paddle Leader code width TL counter		
		Determine the length of lead code width TL of		
		infrared game paddle;		0x0F
13:8	ILWC	Determine the number of 200kHz clock source	RW	
13.0		cycles, each cycle is 5μs, 2 cycles (10μs) is a unit	NVV	
		here, for example, to set T = 150µs, then 150/10		
		= 15 should be write here.		
		Default value is 150μs.		
7:6	-	Reserved	-	-
		IR Paddle bit width T counter		
5:0	IDVAC	Determine the length of key width T of infrared	DVA	0x15
	IBWC	game paddle;	RW	OXIO
		Determine the number of 200kHz clock source		

Copyright[®] 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

cycles, each cycle is 5μs, 2 cycles (10μs) is a unit	
here, for example, to set T = 210μ s, then $210/10$	
= 21 should be write here.	

IR_RCC 5.5.3.10

Receive customer code register

Offset = 0x14

Bit (s)	Name	Description	Access	Reset
31:16	-	Reserved	-	-
		Received customer code		
	In RC5 mode:	In RC5 mode:	R	
		Bit 4:0 is the customer code		
		In 9012 and NEC mode:		
		Bit 15:0 is the customer code,		
15:0	ICCC	In RC6 mode:	R	0
		Bit 7:0 is the customer code,		
		In Paddle mode:		
		Reserved		
		The received user code is used to display the		
		received user code for customers' reference		

IR_FILTER 5.5.3.11

Infrared remote control filter register

Offset = 0x18

Bit (s)	Name	Description	Access	Reset
31:9	-	Reserved	ı	=
		IR Filter control bit		
8	FC	0: disable	RW	0
		1: enable		
7:6	-	Reserved	-	-
		IR filter counter		
		Determine the filtered pulse width;		0
5:0	IFC	Determine the number of 200kHz clock source	RW	
5.0	IFC	cycles, each cycle is 5µs, one cycle is a unit	NVV	
		here, for example, to set T = $200\mu s$, then $200/5$		
		= 40 should be write here.		

Copyright[®] 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

5.6 TWI

5.6.1 Function

TWI (Two Wire Interface) is used to communicate across circuit-board distances. At the low end of the spectrum of communication options for "inside the box" communication is TWI. TWI provides support for communication with various slow, on-board peripheral devices that are accessed intermittently, while being extremely modest in its hardware resource needs. It is a simple, low-bandwidth, short-distance protocol. Most available TWI devices operate at speeds up to 400Kbit/s, with some venturing up into the low megahertz range. TWI is easy to use to link multiple devices together since it has a built-in addressing scheme.

- Both master and slave functions support
- Support standard mode (100kbps), fast-speed mode (400kpbs), High-Speed mode (3.4Mbps)
- Multi-master capability
- 10-bit address mode not support
- Internal Pull-Up Resistor (1.5kOhm) optional
- 6 TWI modules
- 8Bit * 128 TX FIFO and 8Bit * 128 RX FIFO

Pull-up resistors are required on both of the TWI signal lines as the TWI drivers are open drain Typically external 2.2kOhm resisters are used to pull the signals up to VCC if not select internal Pull-Up resistor in standard and fast mode.

5.6.2 Register List

Table 5 - 6 TWI Block Base Address

Name	Physical Base Address
TWI0	0xE0170000
TWI1	0xE0172000
TWI2	0xE0174000
TWI3	0xE0176000
TWI4	0xE0178000
TWI5	0xE017a000

Each register block contains the registers.

Table 5 - 7 TWI Block Configuration Registers List

Offset	Register Name	Description
0x0000	TWIx_CTL	TWI Control Register
0x0004	TWIx_CLKDIV	TWI Clock Divide Register
0x0008	TWIx_STAT	TWI Status Register
0x000C	TWIx_ADDR	TWI Address Register
0x0010	TWIx_TXDAT	TWI TX Data Register
0x0014	TWIx_RXDAT	TWI RX Data Register

Copyright[©] 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

0x0018	TWIx_CMD	TWI Command Register
0x001C	TWIx_FIFOCTL	TWI FIFO control Register
0x0020	TWIx_FIFOSTAT	TWI FIFO status Register
0x0024	TWIx_DATCNT	TWI Data transmit counter
0x0028	TWIx_RCNT	TWI Data transmit remain counter

5.6.3 Register Description

5.6.3.1 TWIx_CTL

TWI Control Register

Offset = 0x0000

Bits	Name	Description	Access	Reset
31:12	-	Reserved	-	-
		current-source enable bit		
11	CSE	0: normal operation	RW	0
		1: Reserved		
		Standard high speed mode		
10	SHSM	0: disable standard high speed mode	RW	0
		1: enable standard high speed mode		
		Force in High speed mode		
9	FHSM	0: not in High speed mode	RW	0
		1: Force to High speed mode (3.4MHz)		
		Arbitrate enable		
8	AE	0: disable	RW	0
		1: enable		
		Enable. When enable, reset the status		
7	EN	machine to IDLE	RW	0
′	LIN	0: Disable	IVV	0
		1: Enable		
6	-	Reserved	-	-
		IRQ Enable.		
		0: Disable		
		1: Enable		
		FIFO mode added:		
		When the following conditions is satisfied, IRQ		
5	IRQE	will generate:	RW	0
	INQL	1. When writing TX FIFO empty, counter		
		doesn't count to 0, then IRQ generates; if the		
		counter counts to 0, then IRQ generates after		
		it is stopped.		
		2. When reading RX FIFO full.		
		3. Stop generated or received		

	ı		1	
		4. Received local slave address as slave device		
		6. Received NACK (not neglected NACK)		
4	-	Reserved	-	-
3:2	GBCC	Generating Bus Control Condition (only for master mode). 00: No effect 01: Generating START condition 10: Generating STOP condition 11: Generating Repeated START condition Write the slave address to the TWI_DAT register, select start or restart, and then the start or restart command follow by the slave address will occur on the bus.	RW	0
1	RB	Release Bus. Write 1 to this bit will release the bus.	RW	0
0	GRAS	Generate ACK or NACK Signal. When receive data 0: generate the ACK signal at 9th clock of SCL 1: generate the NACK signal at 9th clock of SCL	RW	0

5.6.3.2 TWIx_CLKDIV

TWI Clock Divide Control Register Offset = 0x0004

Bits	Name	Description	Access	Reset
31:18	-	Reserved	ı	-
		Clk counter compensation		
		00: no compensation		
		01: 10ns		
17:16	CLKCOMP	10: 20ns	D\A/	0
17.10	CLRCOIVIP	11: 30ns	RW	0
		Note: if the clock rising time too slow results in that		
		the pin speed slower than configuration, this bit can		
		be used to compensate.		
		High speed mode Clock Divider Factor (only for the		
15:8	HDIV	master mode) .	RW	0
15.6	ПОІУ	Calculating SCL is as following:	KVV	
		SCL=100M/ (CLKDIV*6)		
		Clock Divider Factor (only for master mode) .		
		TWI clock (SCL) can select standard (100kbps) mode		
7:0	CLKDIV	and fast (400kbps) mode. Calculating SCL is as	RW	0
		following:		
		SCL=100M/ (CLKDIV*16)		

5.6.3.3 **TWIX_STAT**

TWI Status Register

Offset = 0x0008

Bits	Name	Description	Access	Reset
31:11	-	Reserved	R	0
		Slave receive general call		
10	SRGC	0: not receive a general call	R	0
		1: receive a general call		
		Slave address match bit		
9	SAMB	0: slave address not match	R	0
		1: slave address match		
		Last Byte Status Bit.		
		0: Indicate the last byte received or		
8	LBST	transmitted is address	R	0
		1: Indicate the last byte received or		
		transmitted is data		
		Transfer complete bit		
		0: not finish transfer		
7	TCD	1: In normal mode:	DW	0
/	ТСВ	A byte transfer finish, include transfer the	RW	0
		ACK or NACK bit		
		Writing 1 to this bit will clear it.		
		Bus busy bit		
		0: Not busy		
6	BBB	1: Busy	D	0
0	DDD	This bit will set to 1 while the start command	R	0
		detected, and set to 0 after the stop		
		command		
		Start detect bit, include restart.		
		The bit is clear when the TWI module is		
5	STAD	disable or when the STOP condition is	RW	0
	SIAD	detected. Writing 1 to the bit will clear it.	1000	
		0: Start bit is not detected		
		1: Start bit is detected		
		Stop detect bit		
		The bit is clear when the TWI module is		
4	STPD	disable or when the START condition is	RW	0
		detected. Writing 1 to the bit will clear it.	11.00	
		0: Stop bit is not detected		
		1: Stop bit is detected		
		Lose arbitration bit		
3	LAB	0: not lose	RW	0
		1: lose arbitration		

		Write 1 clear it		
		The bit is clear when the TWI module is		
		disable will clear it.		
		IRQ Pending Bit.		
		1: IRQ		
		0: No IRQ		
		Set condition:		
2	IRQP	1. transfer complete	RW	0
		2. detect normal stop bit (no bus error)		
		3. arbit fail		
		Clear condition:		
		Writing 1 to this bit will clear it.		
	BEB	Bus error bit		
		0: No error occur		
		1: Bus error occur		
		Write "1" to clear this bit		
1		The below conditions occur generate error bit:	RW	0
		Detect stop bit right after detect start/restart		
		bit.		
		Detect stop, start bit when sending or		
		receiving data.		
		Receive ACK or NACK when transmit data or		
		address		
	DACK	0: NACK	Б	0
0	RACK	1: ACK	R	0
		The bit will be updated when the 9 th of next		
		byte clock arrived		

5.6.3.4 **TWIX_ADDR**

TWI Address Register Offset = 0x000C

Bits	Name	Description	Access	Reset
31:8	-	Reserved	-	-
		Own Slave Device Address.		
		Only use in slave mode. TWI_ADDR contains		
7:1	SDAD	the own address of the module when the	RW	0
/.1	JUND	device is use in slave mode.	IVV	U
		Content of the register is irrelevant when the		
		TWI module is functioning as a master.		
0	-	Reserved	-	-

5.6.3.5 TWIX_TXDAT

TWI Data Register

Offset = 0x0010

Bits	Name	Description	Access	Reset
31:8	-	Reserved	=	=
7:0	DA	The register of Data or address to be transferred or received to. TWIDAT contains the byte to be transmitted on the TWI-bus or a byte that has been received from the TWI-bus. In master mode, along with the data byte to be transmitted, it also includes the slave address. The seven MSB's are the slave TWI device address while the LSB is the Read/Write bit. 128 layer FIFO, 8*128.	RW	0

5.6.3.6 TWIx_RXDAT

TWI Data Register

Offset = 0x0014

Bits	Name	Description	Access	Reset
31:8	-	Reserved	=	=
7:0	DA	The Receive data Register	RW	
	DA	128 layer FIFO, 8*128.	KVV	U

5.6.3.7 TWIx_CMD

TWI Data Register

Offset = 0x0018

Bits	Name	Description	Access	Reset
31:16	-	Reserved	ı	-
		Start to execute the command list		
		0: not execute		
15	SECL	1: execute command	RW	0
13	SLCL	If this bit is not enabled, then FIFO cannot be	IVVV	
		used, but the original non-FIFO in TWI module		
		can be used.		
14:13	-	Reserved	-	-
		Write or Read select		
12	WRS	0: write	RW	0
	VVNS	1: read	LVV	U
		This bit only used in Slave mode.		

			l	1
		When used as master device, write or read		
		flag can be identified by the bit[0] following		
		the start bit.		
		Master or slave mode select		
11	MSS	0: slave mode	RW	0
		1: Master mode		
		Stop enable		
10	SE	0: disable	RW	0
		1: enable		
		NACK select		
		0: not select		
9	NS	1: select	RW	0
		generate the NACK signal at 9th clock of SCL of		
		the last byte when read data		
		Data enable		
		0: disable		
8	DE	1: enable	RW	0
		The counts of data transmitted depend on the		
		TWIx_CNT register.		
		Second address select		
		000: no address		
		001: 1 byte address		
		010: 2 byte address		
		011: 3 byte address		
7:5	SAS	100: 4 byte address	RW	0
		101: 5 byte address		
		110: 6 byte address		
		111: 7 byte address		
		The address domain following the Restart		
		command.		
		Restart bit enable		
4	RBE	0: not send restart bit	RW	0
		1: send restart bit		
		Address select		
		000: no address		
		001: 1 byte address		
		010: 2 byte address		
		011: 3 byte address		
3:1	AS	100: 4 byte address	RW	0
		101: 5 byte address		
		110: 6 byte address		
		111: 7 byte address		
		The address includes slave address and slave		
		internal memory address.		
		internal memory address.		

		The address domain following the Start command.		
		Start bit enable		
0	SBE	0: not send start bit	RW	0
		1: send start bit		

5.6.3.8 TWIx_FIFOCTL

TWI Counter Register

Offset = 0x001C

Bits	Name	Description	Access	Reset
31:3	-	Reserved	-	-
		TX FIFO reset bit		
2	TFR	Write 1 to reset TX FIFO, auto clear to 0 when	RW	0
		Tx FIFO reset complete.		
		RX FIFO reset bit		
1	RFR	Write 1 to reset RX FIFO, auto clear to 0 when	RW	0
		Rx FIFO reset complete.		
		NACK Ignore Bit		
		0: not ignore, when receive NACK when write,		
		generate Error, do not continue the command		
0	NIB	list execute, generate IRQ	RW	0
		1: ignore NACK, when receive NACK, don't		
		generate error, and will continue the		
		command list execute		

Note: the threshold of Tx FIFO and Rx FIFO generating IRQ is all-empty or all-full.

TWIx_FIFOSTAT 5.6.3.9

TWI Counter Register

Offset = 0x0020

Bits	Name	Description	Access	Reset
31:24	-	Reserved	=	=
22:16	TFD	Tx FIFO level display	R	0
23:16	IFD	This field indicate the current Tx FIFO level	n	0
15:8	RFD	Rx FIFO level display	R C	0
15.6	KFD	This field indicate the current Rx FIFO level		
7	-	Reserved	ı	=
		Write or read status bit when acts as slave,		
6	WRS	used only in FIFO mode	R	0
0	WKS	0: master write to slave	, r	U
		1: master read from slave		
5	TFF	TX FIFO full bit	R	0

		0: not full		
		1: full		
		TX FIFO empty bit		
4	TFE	0: empty	R	0
		1: not empty		
		RX FIFO full bit		
3	RFF	0: not full	R	0
		1: full		
		RX FIFO empty bit		
2	RFE	0: empty	R	0
		1: not empty		
		Receive NACK Error bit		
		0: not receive NACK		
		1: receive NACK when write data		
		Write 1 to clear this bit		
		When writing data outside, if besides the last		
1	RNB	byte, other byte receives NACK in the	RW	0
		transmission, and if FIFOCTL[0] is 0, then this		
		bit should write 1, stop executing CMD and		
		generate interrupt; If FIFOCTL[0] is 1, then this		
		bit should not be set, and continue executing		
		CMD.		
		Command Execute Complete bit		
		0: not complete		
0	CECB	1: complete	R	1
		Writing this bit to 1 meaning that all the		
		instruction and data has been written or read.		

5.6.3.10 TWIX_DATCNT

TWI Counter Register

Offset = 0x0024

Bits	Name	Description	Access	Reset
31:10	-	Reserved	=	=
9:0	тс	Data Transmit counter, is related to CMD register bit[8], if TWI_CMD[8] is not enabled, then this counter is invalid.	RW	0

5.6.3.11 TWIX_RCNT

TWI remain Counter Register

Offset = 0x0028

Bits Name Description	Access	Reset
-----------------------	--------	-------

31:10	-	Reserved	-	-
9:0	тс	Remain counter Displaying the number of data that has not been transmitted.	R	0

5.7 GPIO and I/O Multiplexer

5.7.1 Function

This chapter will describe the multiplexing of the whole system and the GPIO/PWM function. There are 146 bits General purpose I/O port and 6 PWM output port in S900 to bring more flexible application possibility. The multiplexing is software controlled and can be configured for different application. Some special pads with build-in pull up or pull down resistance are described here in this module also.

PWM output module is embedded in S900, in the purpose of controlling the external backlight IC, micro-step motor or the buzzer conveniently. It supplies widely variable output frequency from Hz to MHz and 1024-level duty occupancy for precise adjustment.

Features of GPIO and PWM are listed below:

• Built-in pull-up or pull-down resistance in some functional pads

GPIO:

- 146 GPIOs with independent output and input function
- Several different driving capacity of 146 GPIOs
- Software control for Multiplexing

PWM:

- 6 independent PWM signal from Hz to MHz
- PWM with 1024-level duty adjustment
- PWM with high level or low level active

5.7.2 Register List

Table 5 - 8 GPIO/MFP/PWM Base Address

Name	Physical Base Address
GPIO_MFP_PWM	0xE01B0000

Table 5 - 9 GPIO/MFP/PWM Register List

Offset	Register Name	Description
0x0000	GPIO_AOUTEN	GPIOA Output Enable Register
0x0004	GPIO_AINEN	GPIOA Input Enable Register
0x0008	GPIO_ADAT	GPIOA Data Register
0x000C	GPIO_BOUTEN	GPIOB Output Enable Register
0x0010	GPIO_BINEN	GPIOB Input Enable Register

Copyright[©] 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

0x0014	GPIO_BDAT	GPIOB Data Register
0x0018	GPIO_COUTEN	GPIOC Output Enable Register
0x001C	GPIO_CINEN	GPIOC Input Enable Register
0x0020	GPIO_CDAT	GPIOC Data Register
0x0024	GPIO_DOUTEN	GPIOD Output Enable Register
0x0028	GPIO_DINEN	GPIOD Input Enable Register
0x002C	GPIO_DDAT	GPIOD Data Register
0x0030	GPIO_EOUTEN	GPIOE Output Enable Register
0x0034	GPIO_EINEN	GPIOE Input Enable Register
0x0038	GPIO_EDAT	GPIOE Data Register
0x00F0	GPIO_FOUTEN	GPIOF Output Enable Register
0x00F4	GPIO_FINEN	GPIOF Input Enable Register
0x00F8	GPIO_FDAT	GPIOF Data Register
0x0040	MFP_CTL0	Multiplexing Control 0 Register
0x0044	MFP_CTL1	Multiplexing Control 1 Register
0x0048	MFP_CTL2	Multiplexing Control 2 Register
0x004C	MFP_CTL3	Multiplexing Control 3 Register
0x0050~0x005C	PWM_CTL0~3	PWM0~3 Output Control Register
0x0060	PAD_PULLCTL0	PAD Pull Control Register 0
0x0064	PAD_PULLCTL1	PAD Pull Control Register 1
0x0068	PAD_PULLCTL2	PAD Pull Control Register 2
0x006C	PAD_ST0	PAD Schmitt Trigger enable Register0
0x0070	PAD_ST1	PAD Schmitt Trigger enable Register1
0x0074	PAD_CTL	PAD Control Register
0x0080	PAD_DRV0	PAD Drive Capacity0 Select Register
0x0084	PAD_DRV1	PAD Drive Capacity1 Select Register
0x0088	PAD_DRV2	PAD Drive Capacity2 Select Register
0x0270	PAD_SR0	PAD slew rate control Register0
0x0274	PAD_SR1	PAD slew rate control Register1
0x0278	PAD_SR2	PAD slew rate control Register2
0x0200	INTC_EXTCTL0	Interrupt0 control and status register
0x0204	INTC_GPIOACTL	GPIOA Interrupt Type control register
0x0208	INTC_GPIOA_PD	GPIOA Interrupt Pending Register
0x020C	INTC_GPIOA_MSK	GPIOA Interrupt Mask Register
0x0210	INTC_GPIOB_PD	GPIOB Interrupt Pending Register
0x0214	INTC_GPIOB_MSK	GPIOB Interrupt Mask Register
0x0218	INTC_GPIOC_PD	GPIOC Interrupt Pending Register
0x021C	INTC_GPIOC_MSK	GPIOC Interrupt Mask Register
0x0220	INTC_GPIOD_PD	GPIOD Interrupt Pending Register
0x0224	INTC_GPIOD_MSK	GPIOD Interrupt Mask Register
0x0228	INTC_GPIOE_PD	GPIOE Interrupt Pending Register
0x022C	INTC_GPIOE_MSK	GPIOE Interrupt Mask Register
0x0230	INTC_GPIOF_PD	GPIOF Interrupt Pending Register

0x0234	INTC_GPIOF_MSK	GPIOF Interrupt Mask Register
0x0240	INTC_GPIOA_TYPE0	GPIOA Interrupt TYPEO Register
0x0244	INTC_GPIOA_TYPE1	GPIOA Interrupt TYPE1 Register
0x0248	INTC_GPIOB_TYPE0	GPIOB Interrupt TYPEO Register
0x024C	INTC_GPIOB_TYPE1	GPIOB Interrupt TYPE1 Register
0x0254	INTC_GPIOC_TYPE	GPIOC Interrupt TYPE Register
0x0258	INTC_GPIOD_TYPE0	GPIOD Interrupt TYPE0 Register
0x025C	INTC_GPIOD_TYPE1	GPIOD Interrupt TYPE1 Register
0x0260	INTC_GPIOE_TYPE0	GPIOE Interrupt TYPEO Register
0x0264	INTC_GPIOE_TYPE1	GPIOE Interrupt TYPE1 Register
0x0268	INTC_GPIOF_TYPE	GPIOF Interrupt TYPE Register
0x500	SGPIO_OUTEN	SGPIO Output Enable Register
0x504	SGPIO_INEN	SGPIO Input Enable Register
0x508	SGPIO_DAT	SGPIO Data Register
0x50C	SGPIO_PD	SGPIO input pending Register
0x510	SGPIO_PD_MSK	SGPIO input Pending mask Register
0x514	SGPIO_CTL	SGPIO control Register
0x518	SGPIO_MFP	SGPIO MFP control Register
0x0520~0x0524	PWM_CTL4~5	PWM4~5 Output Control Register
0x0528	INTC_EXTCTL1	Interrupt1 control and status register
0x052C	INTC_EXTCTL2	Interrupt2 control and status register
0x0540	INTC_GPIOBCTL	GPIOB Interrupt Type control register
0x0544	INTC_GPIOCCTL	GPIOC Interrupt Type control register
0x0548	INTC_GPIODCTL	GPIOD Interrupt Type control register
0x054C	INTC_GPIOECTL	GPIOE Interrupt Type control register
0x0550	INTC_GPIOFCTL	GPIOF Interrupt Type control register

5.7.3 Register Description

5.7.3.1 GPIO_AOUTEN

GPIOA Output Enable Register

Offset = 0x0000

Bits	Name	Description	Access	Reset
		GPIOA[31:0] Output Enable.		
31:0	GPIOA_OUTEN	0: Disable	RW	0
		1: Enable		

5.7.3.2 GPIO_AINEN

GPIOA Input Enable Register Offset = 0x0004

Bits	Name	Description	Access	Reset
		GPIOA[31:0] Input Enable.		
31:0	GPIOA_INEN	0: Disable	RW	0
		1: Enable		

5.7.3.3 GPIO_ADAT

GPIOA Data Register

Offset = 0x0008

Bits	Name	Description	Access	Reset
31:0	GPIOA_DAT	GPIOA[31:0] Input/Output Data.	RW	0

5.7.3.4 GPIO_BOUTEN

GPIOB Output Enable Register

Offset = 0x000C

Bits	Name	Description	Access	Reset
		GPIOB[31:0] Output Enable.		
31:0	GPIOB_OUTEN	0: Disable	RW	0
		1: Enable		

5.7.3.5 GPIO_BINEN

GPIOB Input Enable Register

Offset = 0x0010

Bits	Name	Description	Access	Reset
		GPIOB[31:0] Input Enable.		
31:0	GPIOB_INEN	0: Disable	RW	0
		1: Enable		

5.7.3.6 GPIO_BDAT

GPIOB Data Register

Offset = 0x0014

Bits	Name	Description	Access	Reset
31:0	GPIOB_DAT	GPIOB[31:0] Input/Output Data.	RW	0

5.7.3.7 GPIO_COUTEN

GPIOC Output Enable Register

Offset = 0x0018

Bits	Name	Description	Access	Reset
------	------	-------------	--------	-------

31:12	-	Reserved	-	-
		GPIOC[11:0] Output Enable.		
11:0	GPIOC_OUTEN	0: Disable	RW	0
		1: Enable		

5.7.3.8 GPIO_CINEN

GPIOC Input Enable Register

Offset = 0x001C

Bits	Name	Description	Access	Reset
31:12	-	Reserved	=	-
		GPIOC[11:0] Input Enable.		
11:0	GPIOC_INEN	0: Disable	RW	0
		1: Enable		

5.7.3.9 GPIO_CDAT

GPIOC Data Register

Offset = 0x0020

Bits	Name	Description	Access	Reset
31:12	-	Reserved	-	-
11:0	GPIOC_DAT	GPIOC[11:0] Input/Output Data.	RW	0

5.7.3.10 GPIO_DOUTEN

GPIOD Output Enable Register

Offset = 0x0024

Bits	Name	Description	Access	Reset
31:30	-	Reserved	=	-
		GPIOD[29:0] Output Enable.		
29:0	GPIOD_OUTEN	0: Disable	RW	0
		1: Enable		

5.7.3.11 GPIO_DINEN

GPIOD Input Enable Register

Offset = 0x0028

Bits	Name	Description	Access	Reset
31:30	-	Reserved	-	-
		GPIOD[29:0] Input Enable.		
29:0	GPIOD_INEN	0: Disable	RW	0
		1: Enable		

5.7.3.12 GPIO_DDAT

GPIOD Data Register

Offset = 0x002C

Bits	Name	Description	Access	Reset
31:30	-	Reserved	-	-
29:0	GPIOD_DAT	GPIOD[29:0] Input/Output Data.	RW	0

Note: GPIOD[29:0] voltage is fixed 1.8V.

5.7.3.13 GPIO_EOUTEN

GPIOE Output Enable Register

Offset = 0x0030

Bits	Name	Description	Access	Reset
		GPIOE[31:0] Output Enable.		
31:0	GPIOE_OUTEN	0: Disable	RW	0
		1: Enable		

5.7.3.14 GPIO_EINEN

GPIOE Input Enable Register

Offset = 0x0034

Bits	Name	Description	Access	Reset
		GPIOE[31:0] Input Enable.		
31:0	GPIOE_INEN	0: Disable	RW	0
		1: Enable		

5.7.3.15 **GPIO_EDAT**

GPIOE Data Register

Offset = 0x0038

Bits	Name	Description	Access	Reset
31:0	GPIOE_DAT	GPIOE[31:0] Input/Output Data.	RW	0

Note: GPIOE[31:0] voltage is decided by NAND module.

5.7.3.16 GPIO_FOUTEN

GPIOF Output Enable Register

Offset = 0x00F0

Bits	Name	Description	Access	Reset
31:8	-	Reserved	-	-
7:0	GPIOF_OUTEN	GPIOF[7:0] Output Enable.	RW	0

Copyright[©] 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

0: Disable	
1: Enable	

5.7.3.17 GPIO_FINEN

GPIOF Input Enable Register

Offset = 0x00F4

Bits	Name	Description	Access	Reset
31:8	-	Reserved	=	-
		GPIOF[7:0] Input Enable.		
7:0	GPIOF_INEN	0: Disable	RW	0
		1: Enable		

5.7.3.18 GPIO_FDAT

GPIOF Data Register

Offset = 0x00F8

Bits	Name	Description	Access	Reset
31:8	-	Reserved	-	-
7:0	GPIOF_DAT	GPIOF[7:0] Input/Output Data.	RW	0

Note: GPIOF[7:0] voltage is 1.8V or 3.3V optional.

5.7.3.19 MFP_CTL0

Multiplexing Control O Register

Offset = 0x0040

Bits	Name	Description	ı			Access	Reset
31:23	-	Reserved			-	-	
		LVDS PAD n	nultiplex select	•			
		(Note: the	precondition b	efore setting N	1FP		
		is this pad	has set MFP_0	CTL1[22] to digi	ital		
22	LVDS_OXX_UART4	function)			_,	RW	0
		PAD	0	1			
		OAP	ERAM_A0	UART4_RX			
		OAN	ERAM_A2	UART4_TX			
		P_ETH_MDC, P_ETH_MDIO PAD multiplex					
		select.				D14/	
21:20	DAMI MOC MOIO	00: RMII_MDC, RMII_MDIO					0
21.20	RMII_MDC_MDIO	01: PWM2,PWM3				RW	U
		10: UART2_RX, UART2_TX					
		11: Reserved					
19	P_SIRQ01	P_SIRQ0, P	_SIRQ1 PAD mu	ıltiplex select.		RW	0

		0. SIDOO SIDOO		
		0: SIRQ0, SIRQ1		
		1: PWM0,PWM1		
		P_ETH_TXD0, P_ETH_TXD1 PAD multiplex		
		select.		
		000: RMII_TXD0, RMII_TXD1		
		001: SMII_TX, SMII_SYNC		
18:16	RMII_TXD01	010: SPI2_SCLK, SPI2_SS	RW	0
		011: UART6_RX, UART6_TX		
		100: SENSO_D6,SENSO_D7		
		101: PWM0,PWM1		
		1xx: Reserved		
		P_ETH_TX_EN, P_ETH_RX_ER PAD multiplex		
		select.		
		000:RMII_TX_EN, RMII_RX_ER		
		001: UART2_RX, UART2_TX		
15:13	RMII_TXEN_RXER	010: SPI3_SCLK, SPI3_MOSI	RW	0
15.15		011: Reserved		
		100: Reserved		
		101: PWM2,PWM3		
		110: SENSO_VSYNC, SENSO_HSYNC		
		111: Reserved		
		P_ETH_CRS_DV PAD multiplex select.		
		00: RMII_CRS_DV		
12:11	RMII_CRS_DV	OV 01: SMII_RX		0
		10: SPI2_MISO		
		11: UART4_RX		
		P_ETH_RXD1, P_ETH_RXD0 PAD multiplex		
		select.		
		000:RMII_RXD[1:0]		
		001: UART2_RTSB, UART2_CTSB		
10:8	RMII_RXD10	010: SPI3_SS, SPI3_MISO	RW	0
10.0		011: Reserved		
		100: UART5_TX, UART5_RX		
		101: PWM0,PWM1		
		110: SENSO_D8,SENSO_D9		
		111: Reserved		
		P_ETH_REF_CLK PAD multiplex select.		
		00: RMII_REF_CLK/SMII_CLK		
		01: UART4_TX		
7:6	RMII_REF_CLK	10: SPI2_MOSI	RW	0
1		11: Reserved	''''	
		Note: IE/OE of this pad is influenced by		
		MAC_CTRL[8], if it is 0, representing that		
		the reference clock is from CMU internally,		

		and will be sent to the external PHY, so this		
		pad is OUTPUT; if it is 1, the reference is		
		from external, this pad is INPUT.		
		P_I2S_D0, P_I2S_D1 PAD multiplex select.		
5	P_I2S_D0_D1	0: I2S_D0, I2S_D1	RW	0
		1: PCM0_OUT, PCM0_IN		
		P_I2S_LRCLKO, P_I2S_MCLKO PAD multiplex		
		select.		
4.2	13C DCM4	00: I2S_LRCLK0, I2S_MCLK0	RW	0
4:3	I2S_PCM1	01: PCM0_SYNC, PCM0_CLK	KVV	U
		10: PCM1_SYNC, PCM1_CLK		
		11: Reserved		
		P_I2S_BCLK0,P_I2S_BCLK1, P_I2S_LRCLK1,		
		P_I2S_MCLK1 PAD multiplex select.		
2	I2S PCM0	0: I2S_BCLK0, I2S_BCLK1, I2S_LRCLK1,	RW	0
2	123_PCIVIO	P_I2S_MCLK1	NVV	U
		1:PCM0_SYNC, PCM0_CLK, PCM0_CLK,		
		PCM0_SYNC		
		P_PCM1_IN,P_PCM1_CLK, P_PCM1_SYNC,		
		P_PCM1_OUT PAD multiplex select.		
		00: PCM1_IN, PCM1_CLK, PCM1_SYNC,		
		PCM1_OUT		
1:0	PCM1_SPI1_TWI3	01: SPI1_SCLK, SPI1_SS, SPI1_MISO,	RW	0
		SPI1_MOSI		
		10: TWI3_SCLK, PWM4, PWM5,		
		TWI3_SDATA		
		11: -,UART4_RTSB, UART4_CTSB,-		

5.7.3.20 MFP_CTL1

Multiplexing Control 1 Register Offset = 0x0044

Bits	Name	Description	Access	Reset
		ERAM_A[5:7] PAD multiplex select.		
		000: UART4_RTSB, UART4_CTSB		
		001:TCK, TMS, TDI		
31:29	ERAM_A[5:7]	010:ERAM_A[5:7]		
		011:PWM0, PWM1	RW	1
		100: reserved		
		101: SENS0_D[6:8]		
		110 : Reserved		
		111 : Reserved		
20.26	FDANA A[0:40]	ERAM_A[8:10] PAD multiplex select.	DVA	_
28:26	ERAM_A[8:10]	000: -,DRV_VBUS_U20,DRV_VBUS_U3	RW	1

		004:TDO	LADTE DV TO	· T		
			JART5_RX, TRS			
		010:ERAM	_			
			1, PWM2, PWI	VI3		
		100: Reser		CVAIC		
			_D9, SENS0_V	SYNC		
		110 : Reser				
		111 : Reser				
		_	PAD multiple:	x select.		
		000: Reserv				
		001 : Reser				
25.22		010: ERAM	_		DVA	04
25:23	ERAM_A11	011: PWM:			RW	0x4
		100: UART	_			
		101: Reserved 110: SENSO				
		110. SENSO				
			nultiplex selec	+		
			•	GPIO should be		
			o digital first)	GFIO SHOULD DE		
		PAD	0: (analog)	1: (digital)	RW	0
		OEP	OEP	UART2_RX		
		OEN	OEN	UART2_TX		
		ODP	ODP	UART2_RTSB		
22	LVDS_OXX	ODN	ODP	UART2_CTSB		
		OCP	OCP	_		
		OCP	OCP	PCM1_IN		
				PCM1_OUT		
		OBP	OBP	PCM1_CLK		
		OBN	OBN	PCM1_SYNC		
		OAP	OAP	ERAM_A0		
		OAN	OAN	ERAM_A2		
			nultiplex selec			
				GPIO should be		
			digital first)	4. (4:-:4-1)		
		PAD	0: (analog)	1: (digital)		
		EEP	EEP	ERAM_RD		
		EEN	EEN	ERAM_WR		
21	LVDS_EXX	EDP	EDP	ERAM_D13	RW	0
		EDN	EDN	ERAM_D12		
		ECP	ECP	ERAM_D11		
		ECN	ECN	ERAM_A4		
		EBP	EBP	ERAM_D15		
		EBN	EBN	ERAM_D14		
		EAP	EAP	ERAM_D9		

		EAN	EAN	ERAM_D8		
20:6	-	Reserved			-	-
		P_SPI0_SCLK, P_SPI0_MOSI PAD multiplex select.				
5:4	SPI0_TWI3_PCM	00: SPI0_SCLK, SPI0_MOSI			RW	0
		_	A12, ERAM_A			
		10: TWI3_SCLK, TWI3_SDATA				
		11: PCM0_CLK, PCM0_SYNC				
		P_SPIO_SS,	P_SPI0_MISC	PAD multiplex		
		select.				
		000: SPI0_SS, SPI0_MISO				
		001: ERAM	_A[13:14]			
3:1	SPI0_I2S_PCM	010: I2S_LR	CLK1, I2S_MC	LK1	RW	0
		011: PCM1	_OUT, PCM1_I	N		
		100: PCM0	_OUT, PCM0_I	N		
		101: PWM ²	I, PWM5			
		1xx: Reserv	ed			
0	-	Reserved			-	-

5.7.3.21 MFP_CTL2

Multiplexing Control 2 Register

Offset = 0x0048

Bits	Name	Description	Access	Reset
31:24	-	Reserved	-	-
		P_UART2_RTSB PAD multiplex select.		
23	UART2_RTSB	0: UART2_RTSB	RW	0
		1: UARTO_RX		
		P_UART2_CTSB PAD multiplex select.		
22	UART2_CTSB	0: UART2_CTSB	RW	0
		1: UARTO_TX		
		P_UART3_RTSB PAD multiplex select.		
21	UART3_RTSB	0: UART3_RTSB	RW	0
		1: UART5_RX		
		P_UART3_CTSB PAD multiplex select.		
20	UART3_CTSB	0: UART3_CTSB	RW	0
		1: UART5_TX		
		P_SD0_D0 PAD multiplex select.		
		000: SD0_D0		
		001: ERAM_D0		
19:17	SD0_D0	010: Reserved	RW	0
		011: TRST		
		100: UART2_RX		
		101: UART5_RX		

		404 HARTE BY		
		101: UART5_RX		
		110: GPU_TRST		
		111: Reserved		
		P_SD0_D1 PAD multiplex select.		
		000: SD0_D1		
		001: ERAM_D1		
16:14	SD0_D1	010: GPU_PAD_RESET	RW	0
10.11	350_51	011: Reserved		
		100: UART2_TX		
		101: UART5_TX		
		11x: Reserved		
		P_SD0_D[2:3] PAD multiplex select.		
		000: SD0_D[2:3]		
		001: ERAM_D[2:3]		
		010: Reserved		
13:11	SD0_D2_D3	011: TDO, TDI	RW	0
		100: UART2_RTSB, UART2_CTSB		
		101: UART1_TX, UART1_RX		
		110: GPU_TDO, GPU_TDI		
		111: Reserved		
		P_SD1_D[0:3] PAD multiplex select.		
		00: SD1_D[0:3]		
10:9	SD1_D0_D3	01: ERAM_D[4:7]	RW	0
		10: Reserved		
		11: Reserved		
		P_SD0_CMD PAD multiplex select.		
		00: SD0_CMD		
8:7	SD0 CMD	01: ERAM A1	RW	0
	_	10: GPU_TMS		
		11: TMS		
		P_SD0_CLK PAD multiplex select.		
		00: SD0_CLK		
6:5	SD0_CLK	01: ERAM_A3	RW	0
	_	10: TCK		
		11: GPU_TCK		
		P_SD1_CMD, P_SD1_CLK PAD multiplex		
		select.		
4:3	SD1_CMD_CLK	00: SD1_CMD, SD1_CLK	RW	0
		01: ERAM_CEB0_7, ERAM_D10		
		10: Reserved11: Reserved		
		P_UARTO_RX PAD multiplex select.		
		000: UARTO_RX	5141	
2:0	UARTO_RX	001: UART2_RX	RW	0
		010: SPI1_MISO		
		010: SPI1_MISO		

	011: TWI5_SDATA	
	100: PCM1_IN	
	101: I2S_MCLK1	
	11x: Reserved	

5.7.3.22 MFP_CTL3

Multiplexing Control 3 Register

Offset = 0x004C

Bits	Name	Description		Access	Reset	
31:28	-	Reserved			-	-
		P_DNAND0 and SD2 PA	D multiplex select.			
		PAD	0:	1:		
		P_NAND0_D0_D	NAND0_D0	SD2_D0		
		P_NAND0_D1_D	NAND0_D1	SD2_D1		
		P_NAND0_D2_D	NAND0_D2	SD2_D2		
27	DNAND0_SD	P_NAND0_D3_D	NAND0_D3	SD2_D3	DVA	
27	2	P_NAND0_D4_D	NAND0_D4	SD2_D4	RW	0
		P_NAND0_D5_D	NAND0_D5	SD2_D5		
		P_NAND0_D6_D	NAND0_D6	SD2_D6		
		P_NAND0_D7_D	NAND0_D7	SD2_D7		
		P_NAND0_DQSN_D	NAND0_DQSN	SD2_CM		
		P_NAND0_CEB3_D	NANDO_CEB3	SD2_CLK		
26:22	-	Reserved	-	-		
	P_UARTO_TX PAD multiplex select.					
		000: UARTO_TX			RW	0
		001: UART2_TX				
		010: SPI1_SS				
21:19	UARTO_TX	011: TWI5_SCLK				
		100: SPDIF				
		101: PCM1_OUT				
		110: I2S_LRCLK1				
		1xx: Reserved				
		P_TWI0_SCLK, P_TWI0_SDATA PAD multiplex select.				
		000: TWI0_SCLK, TWI0_	SDATA			
		001: UART2_RTSB, UAR	T2_CTSB			
18:16	TWI0_MFP	010: TWI1_SCLK, TWI1_	SDATA		RW	0
		_	011: UART1_TX, UART1_RX			
		100: SPI1_SCLK, SPI1_MOSI				
		101: Reserved11x: Reserved				
		CSIO_CN, CSIO_CP multi				
15	CSIO_CN_CP	Note: the precondition of setting this MFP is that			RW	0
		this pad has set MFP_C	TL3[14] to digital fo	ınction.		

		PAD	0		1			
		CSIO_CN	SENSO)_D0	SENSO	_VSYNC		
		CSIO_CP	SENSO)_D1	SENSO	_HSYNC		
		CSIO PAD multiplex select.						
		PAD	0: (analog)	1: (dig	gital)]	
		CSI0_DN0	CSI	0_DN0	SENSO)_D2	1	
		CSI0_DP0	CSI	0_DP0	SENSO)_D3	1	
		CSI0_DN1	CSI	0_DN1	SENSO)_D4	1	
	CCIO CENICO	CSIO_DP1	CSI	0_DP1	SENSO)_D5	D)4/	0
14	CSI0_SENS0	CSIO_CN	CSI	0_CN	SENSO)_D0	RW	0
		CSIO_CP	CSI	0_CP	SENSO)_D1]	
		CSI0_DN2	CSI	0_DN2	SENSO)_D6]	
		CSIO_DP2	CSI	0_DP2	SENSO)_D7		
		CSI0_DN3	CSI	0_DN3	SENSO)_D8		
		CSIO_DP3	CSI	0_DP3	SENSO)_D9]	
		CSI1 PAD mul	tiplex se	elect.				
		PAD	0:	(analog)	1: (dig	gital)		
		CSI1_DN0	CS	I1_DN0	SENSO)_D0		0
13	CSI1_SENS0	CSI1_DP0	CS	I1_DP0	SENSO)_D1	RW	
13		CSI1_DN1	CS	I1_DN1	SENSO)_D2	IVVV	
		CSI1_DP1	CS	I1_DP1	SENSO)_D3		
		CSI1_CN	CS	I1_CN	SENSO)_D4		
		CSI1_CP	CS	I1_CP	SENSO)_D5		
		DSI PAD mult	iplex se	lect.				
		(Note: used as 1.8V GPIO should be switched to						
		digital first)			Т		_	
		PAD	0: (ana	alog)	1: (digit	-		
		DSI_DP3	DSI_D		UART2_RX			
		DSI_DN3	DSI_D	N3	UART2_TX			
12	DSI	DSI_DP1	DSI_D	P1	UART2_		RW	0
		DSI_DN1	DSI_D		UART2_CTSB			
		DSI_CP	DSI_CI		PCM1_I			
		DSI_CN	DSI_CI		PCM1_0			
		DSI_DP0	DSI_D		PCM1_0			
		DSI_DN0	DSI_D		PCM1_S			
		DSI_DP2			UART4_RX			
		DSI_DN2	DSI_D		UART4_			
		P_DNAND1 a	nd SD3		lex select			
	DNAND1_SD	PAD		0:	1:			
11	3	P_NAND1_[NAND1_I		SD3_D0	RW	0
		P_NAND1_[NAND1_I				
		P_NAND1_)2_D	NAND1_I)2	SD3_D2		

							4	
		P_NAND1_D3	_D	NAND1	_D3	SD3_D3		
		P_NAND1_D4	_D	NAND1	_D4	SD3_D4		
		P_NAND1_D5	_D	NAND1	_D5	SD3_D5		
		P_NAND1_D6	_D	NAND1	_D6	SD3_D6		
		P_NAND1_D7	_D	NAND1	_D7	SD3_D7		
		P_NAND1_DC	SN_	NAND1	DOCN	SD3_CM		
		D		NAND1_	_DQ3N	D		
		P_NAND1_CE	B1_	NAND1	CED1	SD3_CLK		
		D		IVAINDI_	_CLB1	3D3_CLK		
		P_DNAND1 and	PCM0	1 multip	lex select.			
10	DNAND1_PC	PAD		0:		1:	DW	0
10	M01	P_NAND1_CE	B3_D	NANI	D1_CEB3	PWM0	RW	U
		P_NAND1_CE	B0_D	NANI	D1_CEB0	PWM1		
		CSI1_DN0, CSI1	_DP0 n	nultiplex	select.			
		Note: the prec	onditio	n of set	ting this N	MFP is that		
9	CSI1_DN0_D	this pad has set	MFP_	CTL3[13]	to digital	function.	RW	0
9	P0	PAD	0		1		IXVV	U
		CSI1_DN0	SENS	0_D0	SENSOR0	_PCLK		
		CSI1_DP0	SENS	0_D1	SENSOR0	_CKOUT		
		P_UART4_RX, P_UART4_TX PAD multiplex select.						
8	UART4_TWI4	0: UART4_RX, UART4_TX				RW	0	
		1: TWI4_SCLK,	TWI4_S	SDATA				
7:0	-	Reserved					-	-

5.7.3.23 PWM_CTL0~3

PWMx Output Control Register ($x = 0^{3}$)

Offset = 0x0050 + 4 * x

Bits	Name	Description	Access	Reset
31:29	-	Reserved	=	-
		Duty select:		
		0: Duty =0		
		1: Duty =1		0
		2: Duty =2		
28:19	DUTY		RW	
		63: Duty =63		
		1023: Duty =1023		
		T active = (DUTY+1) /DIV		
		DIV select:		
18:9	DIV	0: reserved	RW	0x3F
10.9	DIV	1: DIV=2	LVV	UXSF
		2: DIV=3		

		 63: DIV=64 (default value) 		
		1023: DIV=1024		
		Polarity select		
8	POL_SEL	0:PWM low voltage level active	RW	0
		1:PWM high voltage level active		
7:0	-	Reserved	-	-

5.7.3.24 PAD_PULLCTL0

PAD Pull Control Register 0

Offset = 0x0060

Bits	Name	Description	Access	Reset
31:17	-	Reserved	-	-
		P_ETH_RX_ER PAD pull control.		
		00: hi-Z		
19:18	P_ETH_RX_ER_P	01: pull-up		0
		10: pull-down		
		11: repeater (hold)		
		P_SIRQ0 PAD pull control.		
		00: hi-Z		
17:16	P_SIRQ0_P	01: pull-up	RW	0
		10: pull-down		
		11: repeater (hold)		
		P_SIRQ1 PAD pull control.		
		00: hi-Z		
15:14	P_SIRQ1_P	01: pull-up	RW	0
		10: pull-down		
		11: repeater (hold)		
		P_SIRQ2 PAD pull control.		
		00: hi-Z		
13:12	P_SIRQ2_P	01: pull-up	RW	0
		10: pull-down		
		11: repeater (hold)		
		P_TWI0_SDATA PAD pull control.		
		00: hi-Z		
11:10	P_TWI0_SDATA_P	01: pull-up	RW	0
		10: pull-down		
		11: repeater (hold)		
		P_TWI0_SCLK PAD pull control.		
0.0	D TW//0 CC/// D	00: hi-Z	DVA	
9:8	P_TWI0_SCLK_P	01: pull-up	RW	0
		10: pull-down		

		11: repeater (hold)		
		P_ERAM_A5 PAD pull control.		
		00: hi-Z		
7:6	P_ERAM_A5_P	01: pull-up	RW	1
		10: pull-down		
		11: repeater (hold)		
		P_ERAM_A6 PAD pull control.		
		00: hi-Z		
5:4	P_ERAM_A6_P	01: pull-up	RW	1
		10: pull-down		
		11: repeater (hold)		
		P_ERAM_A7 PAD pull control.		
		00: hi-Z		
3:2	P_ERAM_A7_P	01: pull-up	RW	1
		10: pull-down		
		11: repeater (hold)		
		P_ERAM_A10 PAD pull control.		
		00: hi-Z		
1:0	P_ERAM_A10_P	01: pull-up	RW	1
		10: pull-down		
		11: repeater (hold)		

5.7.3.25 PAD_PULLCTL1

PAD Pull Control Register 1 Offset = 0x0064

Bits	Name	Description	Access	Reset
		P_PCM1_IN PAD pull control.		
		00: hi-Z		
31:30	P_PCM1_IN	01: pull-up	RW	0
		10: pull-down		
		11: repeater (hold)		
		P_PCM1_OUT PAD pull control.		
		00: hi-Z		
29:28	P_PCM1_OUT	01: pull-up	RW	0
		10: pull-down		
		11: repeater (hold)		
		P_SD0_D0 PAD pull control.		
		00: hi-Z		
27:26	P_SD0_D0_P	01: pull-up	RW	1
		10: pull-down		
		11: repeater (hold)		
25:24	P_SD0_D1_P	P_SD0_D1 PAD pull control.	RW	0
23.24	L_2D0_D1_t	00: hi-Z	IVVV	U

		01: pull-up		
		10: pull-down		
		11: repeater (hold)		
		P_SD0_D2 PAD pull control.		
		00: hi-Z		
23:22	P_SD0_D2_P	01: pull-up	RW	0
		10: pull-down		
		11: repeater (hold)		
		P_SD0_D3 PAD pull control.		
		00: hi-Z		
21:20	P_SD0_D3_P	01: pull-up	RW	1
		10: pull-down		
		11: repeater (hold)		
		P_SD0_CMD PAD pull control.		
		00: hi-Z		
19:18	P_SD0_CMD_P	01: pull-up	RW	1
		10: pull-down		
		11: repeater (hold)		
		P_SD0_CLK PAD pull control.		
		00: hi-Z		
17:16	P_SD0_CLK_P	01: pull-up	RW	1
		10: pull-down		
		11: repeater (hold)		
		P_SD1_CMD PAD pull control.		
		00: hi-Z		
15:14	P_SD1_CMD_P	01: pull-up	RW	0
		10: pull-down		
		11: repeater (hold)		
		P_SD1_D0 PAD pull control.		
		00: hi-Z		
13:12	P_SD1_D0_P	01: pull-up	RW	0
		10: pull-down		
		11: repeater (hold)		
		P_SD1_D1 PAD pull control.		
		00: hi-Z		
11:10	P_SD1_D1_P	01: pull-up	RW	0
	_	10: pull-down		
		11: repeater (hold)		
		P_SD1_D2 PAD pull control.		
		00: hi-Z		
9:8	P_SD1_D2_P	01: pull-up	RW	0
		10: pull-down		
	1	· ·		1
		11: repeater (hold)		
	P_SD1_D2_P	10: pull-down 11: repeater (hold) P_SD1_D2 PAD pull control. 00: hi-Z 01: pull-up		

		00: hi-Z		
		01: pull-up		
		10: pull-down		
		11: repeater (hold)		
		P_UARTO_RX PAD pull control.		
		00: hi-Z		
5:4	P_UARTO_RX_P	01: pull-up	RW	0
		10: pull-down		
		11: repeater (hold)		
		P_UARTO_TX PAD pull control.		
		00: hi-Z		
3:2	P_UARTO_TX_P	01: pull-up	RW	0
		10: pull-down		
		11: repeater (hold)		
1:0	-	Reserved	=	-

5.7.3.26 PAD_PULLCTL2

PAD Pull Control Register 2

Offset = 0x0068

Bits	Name	Description	Access	Reset
31:28	-	Reserved	-	-
		P_TWI2_SDATA PAD pull control.		
		00: hi-Z		
27:26	P_TWI2_SDATA_P	01: pull-up	RW	0
		10: pull-down		
		11: repeater (hold)		
		P_TWI2_SCLK PAD pull control.		
		00: hi-Z		
25:24	P_TWI2_SCLK_P	01: pull-up	RW	0
		10: pull-down		
		11: repeater (hold)		
		P_SPI0_SCLK PAD pull control.		
		00: hi-Z		
23:22	P_SPIO_SCLK_P	01: pull-up	RW	0
		10: pull-down		
		11: repeater (hold)		
		P_SPI0_MOSI PAD pull control.		
		00: hi-Z		
21:20	P_SPI0_MOSI_P	01: pull-up	RW	0
		10: pull-down		
		11: repeater (hold)		
19:18	P_TWI1_SDATA_P	P_TWI1_SDATA PAD pull control.	RW	0
13.10	L_IMIT_2DAIA_P	00: hi-Z	17.00	U

		04		
		01: pull-up		
		10: pull-down		
		11: repeater (hold)		
		P_TWI1_SCLK PAD pull control.		
		00: hi-Z		
17:16	P_TWI1_SCLK_P	01: pull-up	RW	0
		10: pull-down		
		11: repeater (hold)		
		P_NAND0_D[0:7]_D PAD pull control.		
15	P_NAND0_D[0:7]_D	0:30K pull-up disable	RW	0
		1:30K pull-up enable		
		P_NAND0_DQSN_D PAD pull control.		
14	P_NAND0_DQSN_D	0:30K pull-up disable	RW	1
		1:30K pull-up enable		
		P_NAND0_DQS_D PAD pull control.		
13	P_NAND0_DQS_D	0:30K pull-down disable	RW	1
		1:30K pull-down enable		
		P_NAND1_D[0:7]_D PAD pull control.		
12	P_NAND1_D[0:7]_D	0:30K pull-up disable	RW	0
		1:30K pull-up enable		
		P_NAND1_DQSN_D PAD pull control.		
11	P_NAND1_DQSN_D	0:30K pull-up disable	RW	1
		1:30K pull-up enable		
		P_NAND1_DQS_D PAD pull control.		
10	P_NAND1_DQS_D	0:30K pull-down disable	RW	1
		1:30K pull-down enable		
		SGPIO2 PAD pull control.		
		00: hi-Z		
9:8	SGPIO2_P	01: pull-up	RW	0
3.0	301102_1	10: pull-down	1000	
		11: repeater (hold)		
		SGPIO3 PAD pull control.		
		00: hi-Z		
7:6	SGPIO3_P	01: pull-up	RW	0
7.0	3dP105_P		NVV	U
		10: pull-down 11: repeater (hold)		
		· · · · ·		
		P_UART4_RX PAD pull control.		
F.4	D LIADTA DV D	00: hi-Z	DVA	
5:4	P_UART4_RX_P	01: pull-up	RW	0
		10: pull-down		
		11: repeater (hold)		
	D	P_UART4_TX PAD pull control.		
3:2	P_UART4_TX_P	00: hi-Z	RW	0
		01: pull-up		

		10: pull-down		
		11: repeater (hold)		
1:0	-	Reserved	-	-

5.7.3.27 PAD_ST0

PAD Schmitt Trigger enable Register0

Offset = 0x006C

Bits	Name	Description	Access	Reset
31	-	Reserved	=	-
30	P_TWI0_SDATA_ST	P_TWI0_SDATA pad Schmitt trigger enable 1: enable Schmitt trigger 0: disable Schmitt trigger	RW	1
29	P_UARTO_RX_ST	P_UARTO_RX pad Schmitt trigger enable 1: enable Schmitt trigger 0: disable Schmitt trigger	RW	0
28	P_ETH_MDC	P_ETH_MDC pad Schmitt trigger enable 1: enable Schmitt trigger 0: disable Schmitt trigger	RW	0
27:24	-	Reserved	-	-
23	P_I2S_MCLK1_ST	P_I2S_MCLK1 pad Schmitt trigger enable 1: enable Schmitt trigger 0: disable Schmitt trigger	RW	0
22	P_ETH_REF_CLK_ST	P_ETH_REF_CLK pad Schmitt trigger enable 1: enable Schmitt trigger 0: disable Schmitt trigger	RW	1
21	P_ETH_TX_EN_ST	P_ETH_TX_EN pad Schmitt trigger enable 1: enable Schmitt trigger 0: disable Schmitt trigger	RW	0
20	P_ETH_TXD0_ST	P_ETH_TXD0 pad Schmitt trigger enable 1: enable Schmitt trigger 0: disable Schmitt trigger	RW	0
19	P_I2S_LRCLK1_ST	P_I2S_LRCLK1 pad Schmitt trigger enable 1: enable Schmitt trigger 0: disable Schmitt trigger	RW	0
18	SGPIO2_ST	SGPIO2 pad Schmitt trigger	RW	0

		enable		
		1: enable Schmitt trigger		
		0: disable Schmitt trigger		
17		SGPIO3 pad Schmitt trigger		
	CCDIO2 CT	enable	RW	
	SGPIO3_ST	1: enable Schmitt trigger		0
		0: disable Schmitt trigger		
		UART4_TX pad Schmitt trigger		
		enable	RW	
16	P_UART4_TX_ST	1: enable Schmitt trigger		0
		0: disable Schmitt trigger		
		P_I2S_D1 pad Schmitt trigger		
		enable		
15	P_I2S_D1_ST	1: enable Schmitt trigger	RW	0
		0: disable Schmitt trigger		
		P_UARTO_TX pad Schmitt trigger		
		enable		
14	P_UARTO_TX_ST	1: enable Schmitt trigger	RW	0
		0: disable Schmitt trigger		
		P_SPI0_SCLK pad Schmitt trigger		
		enable		
13	P_SPI0_SCLK_ST	1: enable Schmitt trigger	RW	1
		0: disable Schmitt trigger		
		P_SD0_CLK pad Schmitt trigger	RW	
		enable		
12	P_SD0_CLK_ST	1: enable Schmitt trigger		1
		0: disable Schmitt trigger		
		P_ERAM_A5 pad Schmitt trigger		
	P_ERAM_A5_ST	enable		
11		1: enable Schmitt trigger	RW	1
		0: disable Schmitt trigger		
10:8	_	Reserved	_	_
		P_TWI0_SCLK pad Schmitt		
	P_TWI0_SCLK_ST	trigger enable	RW	
7		1: enable Schmitt trigger		1
		0: disable Schmitt trigger		
	P_ERAM_A9_ST	P_ERAM_A9 pad Schmitt trigger	RW	
6		enable		
		1: enable Schmitt trigger		0
		0: disable Schmitt trigger		
	P_OEP_ST	P_OEP pad Schmitt trigger		
5		enable		
			RW	0
		1: enable Schmitt trigger		
		0: disable Schmitt trigger		

4	P_ODN_ST	P_ODN pad Schmitt trigger enable 1: enable Schmitt trigger 0: disable Schmitt trigger	RW	0
3	P_OAP_ST	P_OAP pad Schmitt trigger enable 1: enable Schmitt trigger 0: disable Schmitt trigger	RW	0
2	P_I2S_BCLK1_ST	P_I2S_BCLK1 pad Schmitt trigger enable 1: enable Schmitt trigger 0: disable Schmitt trigger	RW	0
1:0	-	Reserved	-	-

5.7.3.28 PAD_ST1

PAD Schmitt Trigger enable Register1 Offset = 0x0070

Bits	Name	Description	Access	Reset
31:30	-	Reserved	-	-
29	P_I2S_LRCLKO_ST	P_I2S_LRCLKO pad Schmitt trigger enable 1: enable Schmitt trigger 0: disable Schmitt trigger	RW	0
28	P_UART4_RX_ST	P_UART4_RX pad Schmitt trigger enable 1: enable Schmitt trigger 0: disable Schmitt trigger	RW	0
27	P_UART3_CTSB_ST	P_UART3_CTSB pad Schmitt trigger enable 1: enable Schmitt trigger 0: disable Schmitt trigger	RW	0
26	P_UART3_RTSB_ST	P_UART3_RTSB pad Schmitt trigger enable 1: enable Schmitt trigger 0: disable Schmitt trigger	RW	0
25	P_UART3_RX_ST	P_UART3_RX pad Schmitt trigger enable 1: enable Schmitt trigger 0: disable Schmitt trigger	RW	0
24	P_UART2_RTSB_ST	P_UART2_RTSB pad Schmitt trigger enable 1: enable Schmitt trigger 0: disable Schmitt trigger	RW	0

	1		1	
23	P_UART2_CTSB_ST	P_UART2_CTSB pad Schmitt trigger enable 1: enable Schmitt trigger 0: disable Schmitt trigger	RW	0
22	P_UART2_RX_ST	P_UART2_RX pad Schmitt trigger enable 1: enable Schmitt trigger 0: disable Schmitt trigger	RW	0
21	P_ETH_RXDO_ST	P_ETH_RXD0 pad Schmitt trigger enable 1: enable Schmitt trigger 0: disable Schmitt trigger	RW	0
20	P_ETH_RXD1_ST	P_ETH_RXD1 pad Schmitt trigger enable 1: enable Schmitt trigger 0: disable Schmitt trigger	RW	0
19	P_ETH_CRS_DV_ST	P_ETH_CRS_DV pad Schmitt trigger enable 1: enable Schmitt trigger 0: disable Schmitt trigger	RW	0
18	P_ETH_RX_ER_ST	P_ETH_RX_ER pad Schmitt trigger enable 1: enable Schmitt trigger 0: disable Schmitt trigger	RW	0
17	P_ETH_TXD1_ST	P_ETH_TXD1 pad Schmitt trigger enable 1: enable Schmitt trigger 0: disable Schmitt trigger	RW	0
16	OCP_ST	OCP pad Schmitt trigger enable 1: enable Schmitt trigger 0: disable Schmitt trigger	RW	0
15	OBP_ST	OBP pad Schmitt trigger enable 1: enable Schmitt trigger 0: disable Schmitt trigger	RW	0
14	OBN_ST	OBN pad Schmitt trigger enable 1: enable Schmitt trigger 0: disable Schmitt trigger	RW	0
13	-	Reserved	-	-
12	P_PCM1_OUT_ST	P_PCM1_OUT pad Schmitt trigger enable 1: enable Schmitt trigger 0: disable Schmitt trigger	RW	0
11	P_PCM1_CLK_ST	P_PCM1_CLK pad Schmitt trigger enable	RW	0

		1: enable Schmitt trigger		
		0: disable Schmitt trigger		
10		P_PCM1_IN pad Schmitt trigger	RW	
	P_PCM1_IN_ST	enable		0
	P_PCMI_IN_SI	1: enable Schmitt trigger		
		0: disable Schmitt trigger		
		P_PCM1_SYNC pad Schmitt		
9	P_PCM1_SYNC_ST	trigger enable	RW	0
		1: enable Schmitt trigger		U
		0: disable Schmitt trigger		
		P_TWI1_SCLK pad Schmitt trigger		
	D TWILL COLK CT	enable	DVA	1
8	P_TWI1_SCLK_ST	1: enable Schmitt trigger	RW	1
		0: disable Schmitt trigger		
		P_TWI1_SDATA pad Schmitt		
_	D TIAMA CDATA CT	trigger enable	DVA	
7	P_TWI1_SDATA_ST	1: enable Schmitt trigger	RW	1
		0: disable Schmitt trigger		
		P_TWI2_SCLK pad Schmitt trigger		
	D. TIMID COLV. CT	enable	DVA	
6	P_TWI2_SCLK_ST	1: enable Schmitt trigger	RW	1
		0: disable Schmitt trigger		
		P_TWI2_SDATA pad Schmitt	RW	
_		trigger enable		
5	P_TWI2_SDATA_ST	1: enable Schmitt trigger		1
		0: disable Schmitt trigger		
	P_SPI0_MOSI_ST	P_SPI0_MOSI pad Schmitt trigger	RW	
4		enable		
4		1: enable Schmitt trigger		0
		0: disable Schmitt trigger		
		P_SPI0_MISO pad Schmitt trigger		
	P_SPI0_MISO_ST	enable	RW	
3		1: enable Schmitt trigger		0
		0: disable Schmitt trigger		
	P_SPIO_SS_ST	P_SPIO_SS pad Schmitt trigger	RW	
2		enable		
		1: enable Schmitt trigger		0
		0: disable Schmitt trigger		
	P_I2S_BCLK0_ST	P_I2S_BCLK0 pad Schmitt trigger	RW	
		enable		
1		1: enable Schmitt trigger		0
		0: disable Schmitt trigger		
0	P_I2S_MCLK0_ST	P_I2S_MCLK0 pad Schmitt trigger	RW	
		enable		0
<u> </u>	I		I	ı

	1: enable Schmitt trigger	
	0: disable Schmitt trigger	

5.7.3.29 PAD_CTL

PAD Control Register

Offset = 0x0074

Bits	Name	Description	Access	Reset
31:11	-	Reserved	-	-
10.0		00: PCM0 MODULE is master mode		
	DCMO MODULE CEL	01: PCM0 MODULE is slaver mode1	RW	
10:9	PCM0_MODULE_SEL	10: PCM0 MODULE is slaver mode2	KVV	0
		11: PCM0 MODULE is slaver mode3		
		P_SD0_D0		
		P_SD0_D1		
		P_SD0_D2		
		P_SD0_D3		
8	SD0_PAD_POWER	P_SD0_CMD	RW	0
		P_SD0_CLK		
		Power (VCC4) select:		
		0:3.3V		
		1:1.8V		
	SD1_PAD_POWER	P_SD1_D0		
		P_SD1_D1		
		P_SD1_D2		
		P_SD1_D3		
7		P_SD1_CMD	RW	0
		P_SD1_CLK	•	
		Power (VCC3) select:		
		0:3.3V		
		1:1.8V		
		The other pad (except LVDS, DSI,		
		NAND, SD01,		
		UART3_TWI2_SGPIO123 and		
6	OTHER_PAD_POWER	PCM1_I2S)	RW	0
		Power (VCC0) select:		
		0:3.3V		
		1:1.8V		
		P_UART3_RX		
	UART3_TWI2_SGPIO123_P	P_UART3_TX		
5	AD_POWER	P_UART3_RTSB	RW	0
	YO_LOWER	P_UART3_CTSB		
		P_TWI2_SCLK		

		P_TWI2_SDATA		
		SGPIO1		
		SGPIO2		
		SGPIO3		
		power (VCC2) select:		
		0:3.3V		
		1:1.8V		
		P_I2S_D0		
		P_I2S_BCLK0		
		P_I2S_LRCLK0		
		P_I2S_MCLK0		
		P_I2S_D1		
		P_I2S_BCLK1		
		P_I2S_LRCLK1		
4	PCM1_I2S_PAD_POWER	P_I2S_MCLK1	RW	0
		P_PCM1_IN		
		P_PCM1_CLK		
		P_PCM1_SYNC		
		P_PCM1_OUT		
		Power (VCC1) select:		
		0:3.3V		
		1:1.8V		
3:2	-	Reserved	-	-
		PAD Enable. All of the PAD are		
		enabled (Not high-z) with their		
		functions determined by the		
		multi-function register's values.		
1	PADEN	0: Disable	RW	0
_	17.02.11	1: Enable		
		Note: If some input PADs are		
		enabled, they shall be configured as		
		GPIO outputs to avoid current		
		leakage.		
0	-	Reserved	-	-

5.7.3.30 PAD_DRV0

PAD Drive Capacity0 Select Register

Offset = 0x0080

Bits	Name	Description	Access	Reset
		SGPIO3 PAD drive level select		
31:30	SGPIO3	00: 2mA	RW	0
		01: 4mA		

Copyright[®] 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

		1.0.0.4		
		10: 8mA		
		11: 12mA		
		SGPIO2 PAD drive level select		
	conica	00: 2mA	514	
29:28	SGPIO2	01: 4mA	RW	0
		10: 8mA		
		11: 12mA		
		SGPIO1 PAD drive level select		
		00: 2mA		
27:26	SGPIO1	01: 4mA	RW	0
		10: 8mA		
		11: 12mA		
		SGPIO0 PAD drive level select		
		00: 2mA		
25:24	SGPIO0	01: 4mA	RW	0
		10: 8mA		
		11: 12mA		
		P_ETH_TXD0, P_ETH_TXD1 PAD drive		
		level select		
23:22	RMII_TXD01	00: 2mA	RW	0
23.22	KIVIII_IXDUI	01: 4mA	INV	0
		10: 8mA		
		11: 12mA		
		P_ETH_TX_EN, P_ETH_RX_ER PAD drive		
		level select		
21:20	DAMIL TYENI DYED	00: 2mA	RW	0
21.20	RMII_TXEN_RXER	01: 4mA	IXVV	0
		10: 8mA		
		11: 12mA		
		P_ETH_CRS_DV PAD drive level select		
		00: 2mA		
19:18	RMII_CRS_DV	01: 4mA	RW	0
		10: 8mA		
		11: 12mA		
		P_ETH_RXD1, P_ETH_RXD0 PAD drive		
		level select		
17.16	DAMI DVD40	00: 2mA	D\A/	
17:16	RMII_RXD10	01: 4mA	RW	0
		10: 8mA		
		11: 12mA		
		P_ETH_REF_CLK PAD drive level select		
45.4.	DAME DEE CHE	00: 2mA	DVA	
15:14	RMII_REF_CLK	01: 4mA	RW	0
		10: 8mA		
·	I	I .	L	

		11·12mA		
		11: 12mA		
		P_ETH_MDC, P_ETH_MDIO PAD drive		
13:12 RM		level select		0 0 0
	RMII_MDC_MDIO	00: 2mA	RW	0
		01: 4mA		
		10: 8mA		
		11: 12mA		
		P_SIRQ0, P_SIRQ1 PAD drive level		
		select		
11:10	SIRQ01	00: 2mA	RW	0
		01: 4mA		
		10: 8mA		
		11: 12mA		
		P_SIRQ2 PAD drive level select		
		00: 2mA		
9:8	SIRQ2	01: 4mA	RW	0
		10: 8mA		
		11: 12mA		
		P_I2S_D0, P_I2S_D1 PAD drive level		
	I2S_D01	select		
7.0		00: 2mA	RW	
7:6		01: 4mA		U
		10: 8mA		
		11: 12mA		
		P_I2S_LRCLKO, P_I2S_MCLKO PAD drive		
		level select		
l ₋ .	100 0014	00: 2mA	5144	
5:4	I2S_PCM1	01: 4mA	RW	0
		10: 8mA		
		11: 12mA		
		P_I2S_BCLK0,P_I2S_BCLK1,		
		P_I2S_LRCLK1, P_I2S_MCLK1 PAD drive		
		level select		
3:2	I2S_PCM0	00: 2mA	RW	0
	_	01: 4mA		
		10: 8mA		
		11: 12mA		
		P_PCM1_IN,P_PCM1_CLK,		
		P_PCM1_SYNC, P_PCM1_OUT PAD		
		drive level select		
1:0	PCM1_SPI1_TWI3	00: 2mA	RW	0
_		01: 4mA		-
		10: 8mA		
		11: 12mA		
		11. 12IIIA		

5.7.3.31 PAD_DRV1

PAD Drive Capacity1 Select Register

Offset = 0x0084

Bits	Name	Description	Access	Reset
31:30	-	Reserved	-	-
		LVDS OAP, OAN PAD drive level select.		
	IVDC EDAMA HADT	00: level1		
29:28	LVDS_ERAM_UART	01: level2	RW	0
	4	10: level3		
		11: reserved		
		LVDS OEP, OEN, ODP, ODN PAD drive level		
		select.		
27.26	IVDC HADTO	00: level1	DVA	0
27:26	LVDS_UART2	01: level2	RW	0
		10: level3		
		11: reserved		
		LVDS OCP, OCN, OBP, OBN PAD drive level		
	LVDS_PCM1	select.		
25.24		00: level1	B147	
25:24		01: level2	RW	0
		10: level3		
		11: reserved		
		LVDS EEP, EEN, EDP, EDN, ECP, ECN, EBP, EBN,		
	LVDS_ERAM	EAP, EAN PAD drive level select.		
22.22		00: level1	DIA	
23:22		01: level2	RW	0
		10: level3		
		11: reserved		
21:20	-	Reserved	-	-
		P_SD1_D[3:0] PAD drive level select		
		00: 2mA		
19:18	SD1_ERAM	01: 4mA	RW	0
		10: 8mA		
		11: 12mA		
		P_SD0_CLK, P_SD0_CMD, P_SD1_CLK,		
		P_SD1_CMD PAD drive level select		
17.16	CD01 CLV CAAD	00: 2mA	DVA	
17:16	SD01_CLK_CMD	01: 4mA	RW	0
		10: 8mA		
		11: 12mA		
	CDIO 53111 =::::5	P_SPI0_SCLK, P_SPI0_MOSI PAD drive level		
15:14	SPIO_ERAM_TWI3_	select	RW	0
13.14	PCM0	00: 2mA	I	I

		01: 4mA		
		10: 8mA		
		11: 12mA		
		P_SPI0_SS, P_SPI0_MISO PAD drive level		
	CDIO EDANA IOC DO	select		
13:12	SPIO_ERAM_I2S_PC	00: 2mA	RW	0
	M01	01: 4mA		
		10: 8mA		
		11: 12mA		
		P_UARTO_RX, P_UARTO_TX PAD drive level		
		select		
11:10	UARTO	00: 2mA	RW	0
11.10	O/ III TO	01: 4mA	1000	
		10: 8mA		
		11: 12mA		
		P_UART4_RX, P_UART4_TX PAD drive level		
	UART4	select		0
9:8		00: 2mA	DIA	
9.8		01: 4mA	RW	
		10: 8mA		
		11: 12mA		
		P_UART2_RX,P_UART2_TX,P_UART2_RTSB,P		
		_UART2_CTSB PAD drive level select		
		00: 2mA		
7:6	UART2	01: 4mA	RW	0
		10: 8mA		
		11: 12mA		
		P_UART3_RX,P_UART3_TX,P_UART3_RTSB,P		
		_UART3_CTSB PAD drive level select		
		00: 2mA		
5:4	UART3	01: 4mA	RW	0
		10: 8mA		
		11: 12mA		
3:0	_	Reserved	_	_
3.0	_	Nesel veu	_	_

5.7.3.32 PAD_DRV2

PAD Drive Capacity2 Select Register Offset = 0x0088

Bits	Name	Description	Access	Reset
		P_TWI0_SCLK,P_TWI0_SDATA PAD drive level select		0
31:30	31:30 TWI01_UART12_SPI1	00: 2mA	RW	
		01: 4mA		

		10.0		
		10: 8mA		
		11: 12mA		
		P_TWI1_SCLK,P_TWI1_SDATA PAD drive		
		level select		
29:28	TWI1	00: 2mA	RW	0
25.20	IVVII	01: 4mA	IVV	O
		10: 8mA		
		11: 12mA		
	TWI2	P_TWI2_SCLK,P_TWI2_SDATA PAD drive		
		level select	RW	0
27:26		00: 2mA		
27.20		01: 4mA		
		10: 8mA		
	ļ	11: 12mA		
25:22	-	Reserved	-	-
		P_SENSORO_PCLK, P_SENSORO_CKOUT PAD		
		drive level select		
21.20	DCLK CKOLIT	00: 2mA	RW	0
21:20	PCLK_CKOUT	01: 4mA	I KVV	U
		10: 8mA		
		11: 12mA		
19:0	-	Reserved	-	-

5.7.3.33 PAD_SR0

PAD slew rate control Register0

Offset = 0x270

Bits	Name	Description	Access	Reset
31:16	-	Reserved	-	-
		SGPIO3 PAD slew rate select		
15	SGPIO3	0: slow (half frequency)	RW	1
		1: fast		
		SGPIO2 PAD slew rate select		
14	SGPIO2	0: slow (half frequency)	RW	1
		1: fast		
		SGPIO1 PAD slew rate select		
13	SGPIO1	0: slow (half frequency)	RW	1
		1: fast		
		SGPIO0 PAD slew rate select		
12	SGPIO0	0: slow (half frequency)	RW	1
		1: fast		
		P_ETH_TXD0, P_ETH_TXD1 PAD slew		
11	RMII_TXD01	rate select	RW	1
		0: slow (half frequency)		

		1: fast		
		P_ETH_TX_EN, P_ETH_RX_ER PAD slew rate select		
10	RMII_TXEN_RXER		RW	1
		0: slow (half frequency) 1: fast		
	DIAIL CDC DV	P_ETH_CRS_DV PAD slew rate select	DW	1
9	RMII_CRS_DV	0: slow (half frequency)	RW	1
		1: fast		
		P_ETH_RXD1, P_ETH_RXD0 PAD slew		
8	RMII_RXD10	rate select	RW	1
		0: slow (half frequency)		
		1: fast		
		P_ETH_REF_CLK PAD slew rate select		
7	RMII_REF_CLK	0: slow (half frequency)	RW	1
		1: fast		
		P_ETH_MDC, P_ETH_MDIO PAD slew		
6	RMII_MDC_MDIO	rate select	RW	1
		0: slow (half frequency)		
		1: fast		
	SIRQ01	P_SIRQ0, P_SIRQ1 PAD slew rate	RW	
5		select		1
		0: slow (half frequency)		
		1: fast		
		P_SIRQ2 PAD slew rate select		
4	SIRQ2	0: slow (half frequency)	RW	1
		1: fast		
		P_I2S_D0, P_I2S_D1 PAD slew rate		
3	I2S_D01	select	RW	1
	_	0: slow (half frequency)		
		1: fast		
		P_I2S_LRCLKO, P_I2S_MCLKO PAD		
2	I2S_PCM1	slew rate select	RW	1
	_	0: slow (half frequency)		
		1: fast		
		P_I2S_BCLK0,P_I2S_BCLK1,		
		P_I2S_LRCLK1, P_I2S_MCLK1 PAD		
1	I2S_PCM0	slew rate select	RW	1
		0: slow (half frequency)		
		1: fast		
		P_PCM1_IN,P_PCM1_CLK,		
		P_PCM1_SYNC, P_PCM1_OUT PAD		
0	PCM1_SPI1_TWI3	slew rate select	RW	1
		0: slow (half frequency)		
		1: fast		

5.7.3.34 PAD_SR1

PAD slew rate control Register1

Offset = 0x274

Bits	Name	Description	Access	Reset
31:26	-	Reserved	-	-
25	SD1_ERAM	P_SD1_D[3:0] PAD slew rate select 0: slow (half frequency) 1: fast	RW	1
24	SD01_CLK_CMD	P_SD0_CLK, P_SD0_CMD, P_SD1_CLK, P_SD1_CMD PAD slew rate select 0: slow (half frequency) 1: fast	RW	1
23	SPIO_ERAM_TWI3_ PCM0	P_SPI0_SCLK, P_SPI0_MOSI PAD slew rate select 0: slow (half frequency) 1: fast	RW	1
22	SPIO_ERAM_I2S_P CM01	P_SPI0_SS, P_SPI0_MISO PAD slew rate select 0: slow (half frequency) 1: fast	RW	1
21	UARTO	P_UARTO_RX, P_UARTO_TX PAD slew rate select 0: slow (half frequency) 1: fast	RW	1
20	UART4	P_UART4_RX, P_UART4_TX PAD slew rate select 0: slow (half frequency) 1: fast	RW	1
19	UART2	P_UART2_RX,P_UART2_TX,P_UART2_RTSB,P_ UART2_CTSB PAD slew rate select 0: slow (half frequency) 1: fast	RW	1
18	UART3	P_UART3_RX,P_UART3_TX,P_UART3_RTSB,P_ UART3_CTSB PAD slew rate select 0: slow (half frequency) 1: fast	RW	1
17:0	-	Reserved	-	-

5.7.3.35 PAD_SR2

PAD slew rate control Register2

Offset = 0x278

Bits	Name	Description	Access	Reset
------	------	-------------	--------	-------

31	TWI01_UART12_SPI1	P_TWI0_SCLK,P_TWI0_SDATA PAD slew rate select 0: slow (half frequency) 1: fast	RW	1
30	TWI1	P_TWI1_SCLK,P_TWI1_SDATA PAD slew rate select 0: slow (half frequency) 1: fast	RW	1
29	TWI2	P_TWI2_SCLK,P_TWI2_SDATA PAD slew rate select 0: slow (half frequency) 1: fast	RW	1
28:26	-	Reserved	-	-
25	PCLK_CKOUT	P_SENSORO_PCLK, P_SENSORO_CKOUT PAD slew rate select 0: slow (half frequency) 1: fast	RW	1
24:0	-	Reserved	-	-

5.7.3.36 INTC_EXTCTL0

External InterruptO Control and Status Register (VDD)
Offset = 0x0200

Bits	Name	Description	Access	Reset
31:8	-	Reserved	-	-
		External Interrupt 0 Type		
		00: High level active.		
7:6	EOTYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		Enable external interrupt 0 (IRQ)		
5	EOEN	0 Disable	RW	0
		1 Enable		
	SIRQ0_CLK_SEL	External Interrupt SIRQ0 sample Clk select		
4		0: 32KHz	RW	0
		1: 24MHz		
3:1	-	Reserved	-	-
		External Interrupt 0 Pending		
		0 External interrupt source 0 is not active.		
	EOPD	1 External interrupt source 0 is active.	RW	0
0	בטייט	Write 1 to the bit will clear it. If external	I K VV	0
		interrupt source 0 is edge-triggered, this bit		
		must be cleared by software after detected.		

Note: External interrupt 0 is used in different trigger method settings, the P_SIRQ0 pull up and pull

Copyright[®] 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

down state should be set relatively, details refer to register PAD_PULLCTL0[17:16].

5.7.3.37 INTC_GPIOACTL

GPIOA Interrupt Type Control Register Offset = 0x0204

Bits	Name	Description	Access	Reset
31:3	-	Reserved	-	
		GPIOA Interrupt sample Clk select		
2	GPIOA_CLK_SEL	0: 32K	RW	0
		1: 24M		
		Enable GPIOA interrupt		
1	GAEN	0 Disable	RW	0
		1 Enable		
		GPIOA Interrupt Pending		
		0 GPIOA interrupt source is not active.		
0	GAPD	1 GPIOA interrupt source is active.	RW	0
U	GAPD	Write 1 to the bit will clear it. If GPIOA is	LVV	U
		edge-triggered, this bit must be cleared by		
		software after detected.		

5.7.3.38 INTC_GPIOA_PD

GPIOA Interrupt Pending Register (VDD)

Offset = 0x0208

Bits	Name	Description	Access	Reset
31:0	GPIOA_PD	Interrupt Pending bit. Interrupt num "n" accords to GPIOA number. 0: Interrupt source n request is not active 1: Interrupt source n request is active. Write 1 to the bit will clear it. If GPIOA is edge-triggered, this bit must be cleared by software after detected.	R	х

5.7.3.39 INTC_GPIOA_MSK

GPIOA Interrupt Mask Register (VDD)

Offset = 0x020C

Bits	Name	Description	Access	Reset
		GPIOA Interrupt Mask bit.		
31:0	GPIOA_MSK	0: Interrupt source n request is not active	RW	0
		1: Interrupt source n request is active.		

5.7.3.40 INTC_GPIOB_PD

GPIOB Interrupt Pending Register (VDD)

Offset = 0x0210

Bits	Name	Description	Access	Reset
31:0	GPIOB_PD	Interrupt Pending bit. Interrupt num "n" accords to GPIOB number. 0: Interrupt source n request is not active 1: Interrupt source n request is active. Write 1 to the bit will clear it. If GPIOB is edge-triggered, this bit must be cleared by software after detected.	R	х

5.7.3.41 INTC_GPIOB_MSK

GPIOB Interrupt Mask Register (VDD)

Offset = 0x0214

Bits	Name	Description	Access	Reset
		GPIOB Interrupt Mask bit.		
31:0	GPIOB_MSK	0: Interrupt source n request is not active	RW	0
		1: Interrupt source n request is active.		

5.7.3.42 INTC_GPIOC_PD

GPIOC Interrupt Pending Register (VDD)

Offset = 0x0218

Bits	Name	Description	Access	Reset
31:12	1	Reserved	ı	-
		Interrupt Pending bit. Interrupt num "n" accords to		
		GPIOC number.		
		0: Interrupt source n request is not active		
11:0	GPIOC_PD	1: Interrupt source n request is active.	R	x
		Write 1 to the bit will clear it. If GPIOC is		
		edge-triggered, this bit must be cleared by software		
		after detected.		

5.7.3.43 INTC_GPIOC_MSK

GPIOC Interrupt Mask Register (VDD)

Offset = 0x021C

Bits	Name	Description	Access	Reset
31:12	-	Reserved	-	-

		GPIOC Interrupt Mask bit.		
11:0	GPIOC_MSK	0: Interrupt source n request is not active	RW	0
		1: Interrupt source n request is active.		

5.7.3.44 INTC_GPIOD_PD

GPIOD Interrupt Pending Register (VDD)

Offset = 0x0220

31:30 - Reserved Interrupt Pending bit. Interrupt num "n" accords to GPIOD number. 0: Interrupt source n request is not active 1: Interrupt source n request is active. Write 1 to the bit will clear it. If GPIOD is	Bits	Name	Description	Access	Reset
GPIOD number. 0: Interrupt source n request is not active 1: Interrupt source n request is active. Write 1 to the bit will clear it. If GPIOD is	31:30	-	Reserved	-	-
0: Interrupt source n request is not active 1: Interrupt source n request is active. Write 1 to the bit will clear it. If GPIOD is					
29:0 GPIOD_PD 1: Interrupt source n request is active. R Write 1 to the bit will clear it. If GPIOD is					
Write 1 to the bit will clear it. If GPIOD is	20:0	CDIOD DD	·	D	v
	29.0	GPIOD_PD	·	n	^
			edge-triggered, this bit must be cleared by software		
			after detected.		

5.7.3.45 INTC_GPIOD_MSK

GPIOD Interrupt Mask Register (VDD)

Offset = 0x0224

Bits	Name	Description	Access	Reset
31:30	-	Reserved	-	-
29:0	GPIOD_MSK	GPIOD Interrupt Mask bit.0: Interrupt source n request is not active1: Interrupt source n request is active.	RW	0

5.7.3.46 INTC_GPIOE_PD

GPIOE Interrupt Pending Register (VDD)

Offset = 0x0228

Bits	Name	Description	Access	Reset
31:0	GPIOE_PD	Interrupt Pending bit. Interrupt num "n" accords to GPIOE number. 0: Interrupt source n request is not active 1: Interrupt source n request is active. Write 1 to the bit will clear it. If GPIOE is edge-triggered, this bit must be cleared by software after detected.	R	х

Copyright[©] 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

5.7.3.47 INTC_GPIOE_MSK

GPIOE Interrupt Mask Register (VDD)

Offset = 0x22c

Bits	Name	Description	Access	Reset
		GPIOE Interrupt Mask bit.		
31:0	GPIOE_MSK	0: Interrupt source n request is not active	RW	0
		1: Interrupt source n request is active.		

INTC_GPIOF_PD 5.7.3.48

GPIOF Interrupt Pending Register (VDD)

Offset = 0x230

Bits	Name	Description	Access	Reset
31:8	1	Reserved	ı	-
		Interrupt Pending bit. Interrupt num "n"		
	GPIOF_PD	accords to GPIOF number.	R	x
		0: Interrupt source n request is not active		
7:0		1: Interrupt source n request is active.		
		Write 1 to the bit will clear it. If GPIOF is		
		edge-triggered, this bit must be cleared by		
		software after detected.		

5.7.3.49 INTC_GPIOF_MSK

GPIOFInterrupt Mask Register (VDD)

Offset = 0x234

Bits	Name	Description	Access	Reset
31:8	-	Reserved	=	-
		GPIOF Interrupt Mask bit.		
7:0	GPIOF_MSK	0: Interrupt source n request is not active	RW	0
		1: Interrupt source n request is active.		

5.7.3.50 INTC_GPIOA_TYPE0

GPIOA Interrupt Pending Register (VDD)

Offset = 0x0240

Bits	Name	Description	Access	Reset
31:30	GA31_TYPE	GPIOA31 Interrupt Type		0
		00: High level active.	RW	
		01: Low level active.		
		10: Rising edge-triggered.		

Copyright[©] 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

		11: Falling edge-triggered.		
		GPIOA30 Interrupt Type		
20.20	0430 TVD5	00: High level active.	5144	
29:28	GA30_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOA29 Interrupt Type		
		00: High level active.		
27:26	GA29_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOA28 Interrupt Type		
		00: High level active.		
25:24	GA28_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOA27 Interrupt Type		
		00: High level active.		
23:22	GA27_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOA26 Interrupt Type		
		00: High level active.		
21:20	GA26_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOA25 Interrupt Type		
		00: High level active.		
19:18	GA25_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOA24 Interrupt Type		
		00: High level active.		
17:16	GA24_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOA23 Interrupt Type		
		00: High level active.		
15:14	GA23_TYPE	01: Low level active.	RW	0
	_	10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOA22 Interrupt Type		
13:12	GA22_TYPE	00: High level active.	RW	0
13.12	JAZZ_IIIL	01: Low level active.	11.44	
		OI. LOW ICYCI ACTIVE.		

10: Rising edge-triggered. 11: Falling edge-triggered. GPIOA21 Interrupt Type 00: High level active. 10: Rising edge-triggered. RW 0 10: Rising edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. GPIOA20 Interrupt Type 00: High level active. 9:8 GA20_TYPE 01: Low level active. 10: Rising edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. 7:6 GA19_TYPE 01: Low level active. 7:6 GA19_TYPE 01: Low level active. RW 0 GPIOA19 Interrupt Type 00: High level active. 10: Rising edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. GPIOA18 Interrupt Type 00: High level active. S:4 GA18_TYPE 01: Low level active. RW 0					
GPIOA21 Interrupt Type 00: High level active. 11:10 GA21_TYPE 01: Low level active. RW 0 10: Rising edge-triggered. 11: Falling edge-triggered. GPIOA20 Interrupt Type 00: High level active. 9:8 GA20_TYPE 01: Low level active. 10: Rising edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. 7:6 GA19_TYPE 01: Low level active. 10: Rising edge-triggered. 11: Falling edge-triggered.			10: Rising edge-triggered.		
00: High level active. 01: Low level active. 10: Rising edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. GPIOA20 Interrupt Type 00: High level active. 9:8 GA20_TYPE 01: Low level active. 10: Rising edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. 7:6 GA19_TYPE 01: Low level active. 7:6 GA19_TYPE 01: Low level active. 10: Rising edge-triggered. 11: Falling edge-triggered. GPIOA18 Interrupt Type 00: High level active. 5:4 GA18_TYPE 01: Low level active. RW 0			11: Falling edge-triggered.		
11:10 GA21_TYPE 01: Low level active. RW 0 10: Rising edge-triggered. 11: Falling edge-triggered. GPIOA20 Interrupt Type 00: High level active. 9:8 GA20_TYPE 01: Low level active. 10: Rising edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. GPIOA19 Interrupt Type 00: High level active. 7:6 GA19_TYPE 01: Low level active. 10: Rising edge-triggered. 11: Falling edge-triggered. GPIOA18 Interrupt Type 00: High level active. 5:4 GA18_TYPE 01: Low level active. RW 0			GPIOA21 Interrupt Type		
10: Rising edge-triggered. 11: Falling edge-triggered. GPIOA20 Interrupt Type 00: High level active. 9:8 GA20_TYPE 01: Low level active. 10: Rising edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. 7:6 GA19_TYPE 01: Low level active. 10: Rising edge-triggered. 11: Falling edge-triggered. 8W 0 10: High level active. 5:4 GA18_TYPE 01: Low level active. RW 0			00: High level active.		
11: Falling edge-triggered. GPIOA20 Interrupt Type 00: High level active. 9:8 GA20_TYPE 01: Low level active. 10: Rising edge-triggered. 11: Falling edge-triggered. GPIOA19 Interrupt Type 00: High level active. 7:6 GA19_TYPE 01: Low level active. 10: Rising edge-triggered. The proof of the proo	11:10	GA21_TYPE	01: Low level active.	RW	0
GPIOA20 Interrupt Type 00: High level active. 9:8 GA20_TYPE 01: Low level active. 10: Rising edge-triggered. 11: Falling edge-triggered. GPIOA19 Interrupt Type 00: High level active. 7:6 GA19_TYPE 01: Low level active. 10: Rising edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. 5:4 GA18_TYPE 01: Low level active. RW 0			10: Rising edge-triggered.		
9:8 GA20_TYPE 01: Low level active. 10: Rising edge-triggered. 11: Falling edge-triggered. GPIOA19 Interrupt Type 00: High level active. 7:6 GA19_TYPE 01: Low level active. 10: Rising edge-triggered. 11: Falling edge-triggered.			11: Falling edge-triggered.		
9:8 GA20_TYPE 01: Low level active. RW 0 10: Rising edge-triggered. 11: Falling edge-triggered. GPIOA19 Interrupt Type 00: High level active. 7:6 GA19_TYPE 01: Low level active. 10: Rising edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. SPIOA18 Interrupt Type 00: High level active. 5:4 GA18_TYPE 01: Low level active. RW 0			GPIOA20 Interrupt Type		
10: Rising edge-triggered. 11: Falling edge-triggered. GPIOA19 Interrupt Type 00: High level active. 7:6 GA19_TYPE 01: Low level active. RW 0 10: Rising edge-triggered. 11: Falling edge-triggered. GPIOA18 Interrupt Type 00: High level active. S:4 GA18_TYPE 01: Low level active. RW 0			00: High level active.		
11: Falling edge-triggered. GPIOA19 Interrupt Type 00: High level active. 7:6 GA19_TYPE 01: Low level active. 10: Rising edge-triggered. 11: Falling edge-triggered. GPIOA18 Interrupt Type 00: High level active. 5:4 GA18_TYPE 01: Low level active. RW 0	9:8	GA20_TYPE	01: Low level active.	RW	0
GPIOA19 Interrupt Type 00: High level active. 7:6 GA19_TYPE 01: Low level active. 10: Rising edge-triggered. 11: Falling edge-triggered. GPIOA18 Interrupt Type 00: High level active. 5:4 GA18_TYPE 01: Low level active. RW 0			10: Rising edge-triggered.		
7:6 GA19_TYPE 01: Low level active. 10: Rising edge-triggered. 11: Falling edge-triggered. GPIOA18 Interrupt Type 00: High level active. 5:4 GA18_TYPE 01: Low level active. RW 0			11: Falling edge-triggered.		
7:6 GA19_TYPE 01: Low level active. RW 0 10: Rising edge-triggered. 11: Falling edge-triggered. GPIOA18 Interrupt Type 00: High level active. 5:4 GA18_TYPE 01: Low level active. RW 0			GPIOA19 Interrupt Type		
10: Rising edge-triggered. 11: Falling edge-triggered. GPIOA18 Interrupt Type 00: High level active. 5:4 GA18_TYPE 01: Low level active. RW 0			00: High level active.		
11: Falling edge-triggered. GPIOA18 Interrupt Type 00: High level active. 5:4 GA18_TYPE 01: Low level active. RW 0	7:6	GA19_TYPE	01: Low level active.	RW	0
GPIOA18 Interrupt Type 00: High level active. 5:4 GA18_TYPE 01: Low level active. RW 0			10: Rising edge-triggered.		
00: High level active. 5:4 GA18_TYPE 01: Low level active. RW 0			11: Falling edge-triggered.		
5:4 GA18_TYPE 01: Low level active. RW 0			GPIOA18 Interrupt Type		
			00: High level active.		
10. Rising edge-triggered	5:4	GA18_TYPE	01: Low level active.	RW	0
10.113116 6486 61886164			10: Rising edge-triggered.		
11: Falling edge-triggered.			11: Falling edge-triggered.		
GPIOA17 Interrupt Type			GPIOA17 Interrupt Type		
00: High level active.			00: High level active.		
3:2 GA17_TYPE 01: Low level active. RW 0	3:2	GA17_TYPE	01: Low level active.	RW	0
10: Rising edge-triggered.			10: Rising edge-triggered.		
11: Falling edge-triggered.			11: Falling edge-triggered.		
GPIOA16 Interrupt Type			GPIOA16 Interrupt Type		
00: High level active.			00: High level active.		
1:0 GA16_TYPE 01: Low level active. RW 0	1:0	GA16_TYPE	01: Low level active.	RW	0
10: Rising edge-triggered.			10: Rising edge-triggered.		
11: Falling edge-triggered.			11: Falling edge-triggered.		

5.7.3.51 INTC_GPIOA_TYPE1

GPIOA Interrupt Pending Register1 (VDD)
Offset = 0x0244

Bits	Name	Description	Access	Reset
		GPIOA15 Interrupt Type		
		00: High level active.		
31:30	GA15_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
29:28	GA14_TYPE	GPIOA14 Interrupt Type	RW	0

Copyright[®] 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

I I		OO. High lavel a stirre		
		00: High level active.		
		01: Low level active.		
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOA13 Interrupt Type		
		00: High level active.		
27:26	GA13_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOA12 Interrupt Type		
		00: High level active.		
25:24	GA12_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOA11 Interrupt Type		
		00: High level active.		
23:22	GA11_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOA10 Interrupt Type		
		00: High level active.		
21:20	GA10_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOA9 Interrupt Type		
		00: High level active.		
19:18	GA9_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOA8 Interrupt Type		
		00: High level active.		
17:16	GA8_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOA7 Interrupt Type		
		00: High level active.		
15:14	GA7_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOA6 Interrupt Type		
		00: High level active.		
13:12	GA6_TYPE	01: Low level active.	RW	0
	_	10: Rising edge-triggered.		
		11: Falling edge-triggered.		

GPIOAS Interrupt Type 00: High level active. 10: Rising edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. GPIOA4 Interrupt Type 00: High level active. GPIOA5 Interrupt Type 00: High level active. RW 0 GPIOA6 Interrupt Type 00: High level active. 10: Rising edge-triggered. 11: Falling edge-triggered.					
11:10 GA5_TYPE 01: Low level active. RW 0 10: Rising edge-triggered. 11: Falling edge-triggered. GPIOA4 Interrupt Type 00: High level active. 10: Rising edge-triggered. RW 0 10: Rising edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. GPIOA3 Interrupt Type 00: High level active. 10: Rising edge-triggered. 11: Falling edge-triggered.			GPIOA5 Interrupt Type		
10: Rising edge-triggered. 11: Falling edge-triggered. GPIOA4 Interrupt Type 00: High level active. 10: Rising edge-triggered. RW 0 GA4_TYPE 01: Low level active. 10: Rising edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. RW 0 GA3_TYPE 01: Low level active. 10: Rising edge-triggered. 11: Falling edge-triggered.			00: High level active.		
11: Falling edge-triggered. GPIOA4 Interrupt Type 00: High level active. 10: Rising edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. 7:6 GA3_TYPE GPIOA3 Interrupt Type 00: High level active. 10: Rising edge-triggered. 11: Falling edge-triggered.	11:10	GA5_TYPE	01: Low level active.	RW	0
GPIOA4 Interrupt Type 00: High level active. 10: Rising edge-triggered. 11: Falling edge-triggered. 7:6 GA3_TYPE 01: Low level active. 00: High level active. 7:6 GA3_TYPE 01: Low level active. 10: Rising edge-triggered. 11: Falling edge-triggered. 5:4 GA2_TYPE 01: Low level active. 10: Rising edge-triggered. 11: Falling edge-triggered.			10: Rising edge-triggered.		
9:8 GA4_TYPE 01: Low level active. 10: Rising edge-triggered. 11: Falling edge-triggered. 6PIOA3 Interrupt Type 00: High level active. 7:6 GA3_TYPE 01: Low level active. 10: Rising edge-triggered. 7:6 GA3_TYPE 01: Low level active. 10: Rising edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. 6PIOA2 Interrupt Type 00: High level active. 10: Rising edge-triggered. 11: Falling edge-triggered. 8PIOA1 Interrupt Type 00: High level active. 10: Rising edge-triggered. 11: Falling edge-triggered.			11: Falling edge-triggered.		
9:8 GA4_TYPE 01: Low level active. RW 0 10: Rising edge-triggered. 11: Falling edge-triggered. GPIOA3 Interrupt Type 00: High level active. 10: Rising edge-triggered. RW 0 7:6 GA3_TYPE 01: Low level active. 10: Rising edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. GPIOA2 Interrupt Type 00: High level active. 10: Rising edge-triggered. 11: Falling edge-triggered.			GPIOA4 Interrupt Type		
10: Rising edge-triggered. 11: Falling edge-triggered. GPIOA3 Interrupt Type 00: High level active. 7:6 GA3_TYPE 01: Low level active. 10: Rising edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. GPIOA2 Interrupt Type 00: High level active. O0: High level active. RW 0 Fixed GA2_TYPE 01: Low level active. 10: Rising edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. GPIOA1 Interrupt Type 00: High level active. 10: Rising edge-triggered. 11: Falling edge-triggered. GPIOA0 Interrupt Type 00: High level active. 1:0 GA0_TYPE 01: Low level active. 1:0 GA0_TYPE 01: Low level active. 1:0 Rising edge-triggered.			00: High level active.		
11: Falling edge-triggered. GPIOA3 Interrupt Type 00: High level active. 7:6 GA3_TYPE 01: Low level active. 10: Rising edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. GPIOA2 Interrupt Type 00: High level active. S:4 GA2_TYPE 01: Low level active. 10: Rising edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. 3:2 GA1_TYPE 01: Low level active. 10: Rising edge-triggered. 11: Falling edge-triggered. GPIOA0 Interrupt Type 00: High level active. 11: GRISING edge-triggered. RW 0 10: Rising edge-triggered. 11: Cow level active. 11: Cow level active. 11: Cow level active. 11: Cow level active. 12: Cow level active. 13: Cow level active. 14: Cow level active. 15: Cow level active. 16: Cow level active. 17: Cow level active. 18: Cow level active. 19:	9:8	GA4_TYPE	01: Low level active.	RW	0
GPIOA3 Interrupt Type 00: High level active. 7:6 GA3_TYPE 01: Low level active. 10: Rising edge-triggered. 11: Falling edge-triggered. GPIOA2 Interrupt Type 00: High level active. S:4 GA2_TYPE 01: Low level active. 10: Rising edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. 3:2 GA1_TYPE 01: Low level active. 10: Rising edge-triggered. 11: Falling edge-triggered. GPIOA0 Interrupt Type 00: High level active. 10: Rising edge-triggered. RW 0			10: Rising edge-triggered.		
7:6 GA3_TYPE 01: Low level active. 10: Rising edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. GPIOA2 Interrupt Type 00: High level active. 10: Rising edge-triggered. RW 0 5:4 GA2_TYPE 01: Low level active. 10: Rising edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. 3:2 GA1_TYPE 01: Low level active. 10: Rising edge-triggered. 11: Falling edge-triggered.			11: Falling edge-triggered.		
7:6 GA3_TYPE 01: Low level active. RW 0 10: Rising edge-triggered. 11: Falling edge-triggered. GPIOA2 Interrupt Type 00: High level active. 10: Rising edge-triggered. RW 0 10: Rising edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. 3:2 GA1_TYPE 01: Low level active. 10: Rising edge-triggered. 11: Falling edge-triggered.			GPIOA3 Interrupt Type		
10: Rising edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. GPIOA2 Interrupt Type 00: High level active. 10: Rising edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. GPIOA1 Interrupt Type 00: High level active. RW 0 3:2 GA1_TYPE O1: Low level active. 10: Rising edge-triggered. 11: Falling edge-triggered. GPIOA0 Interrupt Type 00: High level active. 00: High level active. RW 0 GPIOA0 Interrupt Type 00: High level active. RW 0 1:0 GA0_TYPE O1: Low level active. RW 0			00: High level active.		
11: Falling edge-triggered. GPIOA2 Interrupt Type 00: High level active. 10: Rising edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. 3:2 GA1_TYPE O1: Low level active. 00: High level active. 10: Rising edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. GPIOA0 Interrupt Type 00: High level active. 00: High level active. RW O GA0_TYPE O1: Low level active. 10: Rising edge-triggered.	7:6	GA3_TYPE	01: Low level active.	RW	0
GPIOA2 Interrupt Type 00: High level active. 10: Rising edge-triggered. 11: Falling edge-triggered. GPIOA1 Interrupt Type 00: High level active. 3:2 GA1_TYPE O1: Low level active. 10: Rising edge-triggered. RW O 3:2 GA1_TYPE O1: Low level active. 10: Rising edge-triggered. 11: Falling edge-triggered. CPIOA0 Interrupt Type O0: High level active. O0: High level active. RW O ADDITIONAL INTERVAL IN			10: Rising edge-triggered.		
O0: High level active. O1: Low level active. 10: Rising edge-triggered. 11: Falling edge-triggered. GPIOA1 Interrupt Type O0: High level active. RW O GRA1_TYPE O1: Low level active. RW O GPIOA0 Interrupt Type O1: Low level active. CPIOA0 Interrupt Type O1: Rising edge-triggered. 11: Falling edge-triggered. CPIOA0 Interrupt Type O0: High level active. O1: Low level active. RW O GRO_TYPE O1: Low level active. RW O RW O RW O RW O			11: Falling edge-triggered.		
5:4 GA2_TYPE 01: Low level active. RW 0 10: Rising edge-triggered. 11: Falling edge-triggered. GPIOA1 Interrupt Type 00: High level active. 10: Rising edge-triggered. RW 0 Analysis and the sequence of the			GPIOA2 Interrupt Type		
10: Rising edge-triggered. 11: Falling edge-triggered. GPIOA1 Interrupt Type 00: High level active. 3:2 GA1_TYPE 01: Low level active. 10: Rising edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. 11: Falling edge-triggered. 11: GPIOA0 Interrupt Type 00: High level active. 1:0 GA0_TYPE 01: Low level active. 10: Rising edge-triggered.			00: High level active.		
11: Falling edge-triggered. GPIOA1 Interrupt Type 00: High level active. 3:2 GA1_TYPE 01: Low level active. 10: Rising edge-triggered. 11: Falling edge-triggered. GPIOA0 Interrupt Type 00: High level active. 1:0 GA0_TYPE 01: Low level active. 1:0 Rising edge-triggered. RW 0 10: Rising edge-triggered.	5:4	GA2_TYPE	01: Low level active.	RW	0
GPIOA1 Interrupt Type 00: High level active. 01: Low level active. 10: Rising edge-triggered. 11: Falling edge-triggered. GPIOA0 Interrupt Type 00: High level active. 1:0 GA0_TYPE 01: Low level active. 1:0 GA0_TYPE 01: Low level active. 10: Rising edge-triggered.			10: Rising edge-triggered.		
3:2 GA1_TYPE 01: Low level active. 10: Rising edge-triggered. 11: Falling edge-triggered. GPIOA0 Interrupt Type 00: High level active. 1:0 GA0_TYPE 01: Low level active. 10: Rising edge-triggered.			11: Falling edge-triggered.		
3:2 GA1_TYPE 01: Low level active. RW 0 10: Rising edge-triggered. 11: Falling edge-triggered. GPIOA0 Interrupt Type 00: High level active. 1:0 GA0_TYPE 01: Low level active. 10: Rising edge-triggered.			GPIOA1 Interrupt Type		
10: Rising edge-triggered. 11: Falling edge-triggered. GPIOA0 Interrupt Type 00: High level active. 1:0 GA0_TYPE 01: Low level active. 10: Rising edge-triggered.			00: High level active.		
11: Falling edge-triggered. GPIOA0 Interrupt Type 00: High level active. 1:0 GA0_TYPE 01: Low level active. 10: Rising edge-triggered.	3:2	GA1_TYPE	01: Low level active.	RW	0
GPIOA0 Interrupt Type 00: High level active. 1:0 GA0_TYPE 01: Low level active. 10: Rising edge-triggered.			10: Rising edge-triggered.		
1:0 GAO_TYPE 00: High level active. 01: Low level active. 10: Rising edge-triggered.			11: Falling edge-triggered.		
1:0 GA0_TYPE 01: Low level active. RW 0 10: Rising edge-triggered.			GPIOA0 Interrupt Type		
10: Rising edge-triggered.			00: High level active.		
	1:0	GA0_TYPE	01: Low level active.	RW	0
11: Falling edge-triggered			10: Rising edge-triggered.		
TI. Talling Cage triggerea.			11: Falling edge-triggered.		

5.7.3.52 INTC_GPIOB_TYPE0

GPIOB Interrupt Pending Register (VDD)

Offset = 0x0248

Bits	Name	Description	Access	Reset
		GPIOB31 Interrupt Type		
		00: High level active.		
31:30	GB31_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOB30 Interrupt Type		
29:28	GB30_TYPE	00: High level active.	RW	0
		01: Low level active.		

		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOB29 Interrupt Type		
		00: High level active.		
27:26	GB29_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOB28 Interrupt Type		
		00: High level active.		
25:24	GB28_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOB27 Interrupt Type		
		00: High level active.		
23:22	GB27_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOB26 Interrupt Type		
		00: High level active.		
21:20	GB26_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOB25 Interrupt Type		
		00: High level active.		
19:18	GB25_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOB24 Interrupt Type		
		00: High level active.		
17:16	GB24_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOB23 Interrupt Type		
		00: High level active.		
15:14	GB23_TYPE	01: Low level active.	RW	0
	_	10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOB22 Interrupt Type		
		00: High level active.		
13:12	GB22_TYPE	01: Low level active.	RW	0
	_	10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOB21 Interrupt Type		
11:10	GB21_TYPE	00: High level active.	RW	0
		Jan 10 to to to do the to		

		01: Low level active.		
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOB20 Interrupt Type		
		00: High level active.		
9:8	GB20_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOB19 Interrupt Type		
		00: High level active.		
7:6	GB19_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOB18 Interrupt Type		
		00: High level active.		
5:4	GB18_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOB17 Interrupt Type		
		00: High level active.		
3:2	GB17_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOB16 Interrupt Type		
		00: High level active.		
1:0	GB16_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		

5.7.3.53 INTC_GPIOB_TYPE1

GPIOB Interrupt Pending Register1 (VDD)

Offset = 0x024C

Bits	Name	Description	Access	Reset
		GPIOB15 Interrupt Type		
		00: High level active.		
31:30	GB15_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOB14 Interrupt Type		
		00: High level active.		
29:28	GB14_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		

		1		
		GPIOB13 Interrupt Type		
		00: High level active.		
27:26	GB13_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOB12 Interrupt Type		
		00: High level active.		
25:24	GB12_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOB11 Interrupt Type		
		00: High level active.		
23:22	GB11_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOB10 Interrupt Type		
		00: High level active.		
21:20	GB10_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOB9 Interrupt Type		
		00: High level active.		
19:18	GB9_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOB8 Interrupt Type		
		00: High level active.		
17:16	GB8_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOB7 Interrupt Type		
		00: High level active.		
15:14	GB7_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOB6 Interrupt Type		
		00: High level active.		
13:12	GB6_TYPE	01: Low level active.	RW	0
	_	10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOB5 Interrupt Type		
		00: High level active.		
11:10	GB5_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
I		20. Monip cape triggered.		

		44. Falling adea triangued		
		11: Falling edge-triggered.		
		GPIOB4 Interrupt Type		
		00: High level active.		
9:8	GB4_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOB3 Interrupt Type		
		00: High level active.		
7:6	GB3_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOB2 Interrupt Type		
		00: High level active.		
5:4	GB2_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOB1 Interrupt Type		
		00: High level active.		
3:2	GB1_TYPE	01: Low level active.	RW	0
	_	10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOBO Interrupt Type		
		00: High level active.		
1:0	GBO TYPE	01: Low level active.	RW	0
	_	10: Rising edge-triggered.		
		11: Falling edge-triggered.		
	1	0 - 10 - 100 1		

5.7.3.54 INTC_GPIOC_TYPE

GPIOC Interrupt Pending Register (VDD)

Offset = 0x0254

Bits	Name	Description	Access	Reset
31:24	-	Reserved	-	-
		GPIOC11 Interrupt Type		
		00: High level active.		
23:22	GC11_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOC10 Interrupt Type		
		00: High level active.		
21:20	GC10_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
19:18	GC9_TYPE	GPIOC9 Interrupt Type	RW	0

		00: High level active.		
		01: Low level active.		
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOC8 Interrupt Type		
		00: High level active.		
17:16	GC8_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOC7 Interrupt Type		
		00: High level active.		
15:14	GC7_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOC6 Interrupt Type		
		00: High level active.		
13:12	GC6_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOC5 Interrupt Type		
		00: High level active.		
11:10	GC5_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOC4 Interrupt Type		
		00: High level active.		
9:8	GC4_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOC3 Interrupt Type		
		00: High level active.		
7:6	GC3_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOC2 Interrupt Type		
		00: High level active.		
5:4	GC2_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOC1 Interrupt Type		
		00: High level active.		
3:2	GC1_TYPE	01: Low level active.	RW	0
	_	10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		11: Failing eage-triggered.		

		GPIOCO Interrupt Type		
		00: High level active.		
1:0	GC0_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		

5.7.3.55 INTC_GPIOD_TYPE0

GPIOD Interrupt Pending Register (VDD)

Offset = 0x0258

Bits	Name	Description	Access	Reset
31:28	-	Reserved	-	-
		GPIOD29 Interrupt Type		
		00: High level active.		
27:26	GD29_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOD28 Interrupt Type		
		00: High level active.		
25:24	GD28_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOD27 Interrupt Type		
		00: High level active.		
23:22	GD27_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOD26 Interrupt Type		
		00: High level active.		
21:20	GD26_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOD25 Interrupt Type		
		00: High level active.		
19:18	GD25_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOD24 Interrupt Type		
		00: High level active.		
17:16	GD24_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
15.14	CD33 TVDE	GPIOD23 Interrupt Type	DVA	0
15:14	GD23_TYPE	00: High level active.	RW	0

		01: Low level active.		
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOD22 Interrupt Type		
		00: High level active.		
13:12	GD22_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOD21 Interrupt Type		
		00: High level active.		
11:10	GD21_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOD20 Interrupt Type		
		00: High level active.		
9:8	GD20_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOD19 Interrupt Type		
		00: High level active.		
7:6	GD19_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOD18 Interrupt Type		
		00: High level active.		
5:4	GD18_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOD17 Interrupt Type		
		00: High level active.		
3:2	GD17_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOD16 Interrupt Type		
		00: High level active.		
1:0	GD16_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		

5.7.3.56 INTC_GPIOD_TYPE1

GPIOD Interrupt Pending Register1 (VDD)

Offset = 0x025C

Bits Name	Description	Access Reset
-----------	-------------	--------------

		GPIOD15 Interrupt Type		
		00: High level active.		
31:30	GD15_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOD14 Interrupt Type		
		00: High level active.		
29:28	GD14_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOD13 Interrupt Type		
		00: High level active.		
27:26	GD13_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOD12 Interrupt Type		
		00: High level active.		
25:24	GD12_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOD11 Interrupt Type		
		00: High level active.		
23:22	GD11_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOD10 Interrupt Type		
		00: High level active.		
21:20	GD10_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOD9 Interrupt Type		
		00: High level active.		
19:18	GD9_TYPE	01: Low level active.	RW	0
	_	10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOD8 Interrupt Type		
		00: High level active.		
17:16	GD8_TYPE	01: Low level active.	RW	0
	_	10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOD7 Interrupt Type		
		00: High level active.		
15:14	GD7_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
	1	בטרווטוון במשב נווששבובמ.		

		11: Falling edge-triggered.		
		GPIOD6 Interrupt Type		
		00: High level active.		
13:12	GD6_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOD5 Interrupt Type		
		00: High level active.		
11:10	GD5_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOD4 Interrupt Type		
		00: High level active.		
9:8	GD4_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOD3 Interrupt Type		
		00: High level active.		
7:6	GD3_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOD2 Interrupt Type		
		00: High level active.		
5:4	GD2_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOD1 Interrupt Type		
		00: High level active.		
3:2	GD1_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOD0 Interrupt Type		
		00: High level active.		
1:0	GD0_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		

5.7.3.57 INTC_GPIOE_TYPE0

GPIOE Interrupt Pending Register0 (VDD)

Offset = 0x0260

Bits	Name	Description	Access	Reset
31:30 GE15_1	CE1E TYPE	GPIOE15 Interrupt Type	RW	0
	GET2_LIVE	00: High level active.	LVV	U

		Od. Lav. Javal a stire		
		01: Low level active.		
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOE14 Interrupt Type		
		00: High level active.		
29:28	GE14_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOE13 Interrupt Type		
		00: High level active.		
27:26	GE13_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOE12 Interrupt Type		
		00: High level active.		
25:24	GE12_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOE11 Interrupt Type		
		00: High level active.		
23:22	GE11_TYPE	01: Low level active.	RW	0
	_	10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOE10 Interrupt Type		
		00: High level active.		
21:20	GE10_TYPE	01: Low level active.	RW	0
	_	10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOE9 Interrupt Type		
		00: High level active.		
19:18	GE9_TYPE	01: Low level active.	RW	0
	_	10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOE8 Interrupt Type		
		00: High level active.		
17:16	GE8_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.	_	-
		11: Falling edge-triggered.		
		GPIOE7 Interrupt Type		
		00: High level active.		
15:14	GE7_TYPE	01: Low level active.	RW	0
13.17		10: Rising edge-triggered.	11.44	
		11: Falling edge-triggered.		
12.12	GE6 TVDE		RW	0
13:12	GE6_TYPE	GPIOE6 Interrupt Type	LVV	U

		00: High level active.		
		01: Low level active.		
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOE5 Interrupt Type		
		00: High level active.		
11:10	GE5_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOE4 Interrupt Type		
		00: High level active.		
9:8	GE4_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOE3 Interrupt Type		
		00: High level active.		
7:6	GE3_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOE2 Interrupt Type		
		00: High level active.		
5:4	GE2_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOE1 Interrupt Type		
		00: High level active.		
3:2	GE1_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOE0 Interrupt Type		
		00: High level active.		
1:0	GEO_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
	i.			

5.7.3.58 INTC_GPIOE_TYPE1

GPIOE Interrupt Pending Register1 (VDD)

Offset = 0x0264

Bits	Name	Description	Access	Reset
31:30 GE31_TYPE		GPIOE31 Interrupt Type		
	CE21 TVDE	00: High level active.	RW	0
	GEST_LINE	01: Low level active.	KVV	U
		10: Rising edge-triggered.		

		11. Falling odgs twissound		
		11: Falling edge-triggered.		1
		GPIOE30 Interrupt Type		
		00: High level active.		
29:28	GE30_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOE29 Interrupt Type		
		00: High level active.		
27:26	GE29_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOE28 Interrupt Type		
		00: High level active.		
25:24	GE28_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOE27 Interrupt Type		
		00: High level active.		
23:22	GE27_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOE26 Interrupt Type		
		00: High level active.		
21:20	GE26_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOE25 Interrupt Type		
		00: High level active.		
19:18	GE25_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOE24 Interrupt Type		
		00: High level active.		
17:16	GE24_TYPE	01: Low level active.	RW	0
	_	10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOE23 Interrupt Type		
		00: High level active.		
15:14	GE23_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOE22 Interrupt Type		
13:12	GE22_TYPE	00: High level active.	RW	0
13.12	GLZZ_TIFL	01: Low level active.	1///	
		OI. LOW IEVEL ACTIVE.		

		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOE21 Interrupt Type		
		00: High level active.		
11:10	GE21_TYPE	01: Low level active.	RW	0
11.10	0222_1112	10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOE20 Interrupt Type		
		00: High level active.		
9:8	GE20_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOE19 Interrupt Type		
		00: High level active.		
7:6	GE19_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOE18 Interrupt Type		
		00: High level active.		
5:4	GE18_TYPE	01: Low level active.	RW	0
	_	10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOE17 Interrupt Type		
		00: High level active.		
3:2	GE17_TYPE	01: Low level active.	RW	0
	_	10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOE16 Interrupt Type		
		00: High level active.		
1:0	GE16_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		

5.7.3.59 INTC_GPIOF_TYPE

GPIOF Interrupt Pending Register (VDD)
Offset = 0x0268

Bits	Name	Description	Access	Reset
		GPIOF7 Interrupt Type		
		00: High level active.		
15:14	GF7_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
13:12	GF6_TYPE	GPIOF6 Interrupt Type	RW	0

		00: High level active.		
		01: Low level active.		
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOF5 Interrupt Type		
		00: High level active.		
11:10	GF5_TYPE	01: Low level active.	RW	0
	_	10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOF4 Interrupt Type		
		00: High level active.		
9:8	GF4_TYPE	01: Low level active.	RW	0
	_	10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOF3 Interrupt Type		
		00: High level active.		
7:6	GF3_TYPE	01: Low level active.	RW	0
	_	10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOF2 Interrupt Type		
		00: High level active.		
5:4	GF2_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOF1 Interrupt Type		
		00: High level active.		
3:2	GF1_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		GPIOFO Interrupt Type		
		00: High level active.		
1:0	GF0_TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		

SGPIO_OUTEN 5.7.3.60

SGPIO Output Enable Register Offset = 0x500

Bits	Name	Description	Access	Reset
31	100 51	Cpu_2_Core power domain isolation enable 0: isolation disable	614	
	ISO_EN	1: isolation enable	RW	0
		Note:		

Copyright® 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

		1.in isolation disable mode in default		
		2.only need to set the value, when external		
		DC-DC controls the CPU_VDD		
		3.only effect the CPU_VDD power down		
		process, not the isolation of power on		
		process.		
30:4	-	Reserved	-	-
		SGPIO[3:0] Output Enable		
3:0	SGPIO_OUTEN	0: Disable	RW	0
		1: Enable		

5.7.3.61 SGPIO_INEN

SGPIO Input Enable Register

Offset = 0x504

Bits	Name	Description	Access	Reset
31:4	-	Reserved	=	-
		SGPIO[3:0] Input Enable.		
3:0	SGPIO_INEN	0: Disable	RW	0
		1: Enable		

5.7.3.62 SGPIO_DAT

SGPIO Data Register

Offset = 0x508

Bits	Name	Description	Access	Reset
31:4	-	Reserved	-	-
3:0	SGPIO_DAT	SGPIO[3:0] Input/Output Data.	RW	0

5.7.3.63 SGPIO_PD

SGPIO wake-up input Pending Register

Offset = 0x50C

Bits	Name	Description	Access	Reset
31:4	-	Reserved	-	-
		SGPIO[3:0] wake-up input Pending bit.		
		0: wake-up input is not active		
3:0	SGPIO[3:0]_PD	1: wake-up input is active.	RW	0
		Note: This register is Only for wake-up mode,		
		Write 1 to clear it.		

Copyright[©] 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

5.7.3.64 SGPIO_PD_MSK

SGPIO wake-up input Pending mask Register Offset = 0x510

Bits	Name	Description	Access	Reset
31:4	-	Reserved	-	-
	SGPIO[3:0] wake-up input Pending mask			
		control bit.		
3:0	SGPIO[3:0] MSK	0:wake-up input Pending is not active	RW	0
3.0	3GPIO[3.0]_IVI3K	1:wake-up input Pending is active	L AA	U
		Note: This register is Only for wake-up		
		mode		

5.7.3.65 **SGPIO_CTL**

SGPIO Control Register

Offset = 0x514

Bits	Name	Description	Access	Reset
31:24	-	Reserved	-	-
		SGPIO3 sample Clk select, only		
23	SGPIO3 CLK SEL	for WAKE-UP mode	RW	
23	SGPIOS_CLK_SEL	0: 32KHz	IVVV	0
		1: 24MHz		
		SGPIO2 sample Clk select, only		
22	CCDIO3 CIV CEI	for WAKE-UP mode	RW	0
22	SGPIO2_CLK_SEL	0: 32KHz	KVV	U
		1: 24MHz		
		SGPIO1 sample Clk select, only		0
21	SGPIO1_CLK_SEL	for WAKE-UP mode	RW	
21		0: 32KHz		
		1: 24MHz		
		SGPIO0 sample Clk select, only		0
20	SGPIOO CLK SEL	for WAKE-UP mode	RW	
20	SGPIOU_CLK_SEL	0: 32KHz	NVV	U
		1: 24MHz		
		SGPIO3 output level select		
19	SGPIO3_OUTPUT_LEVEL	0:LOW level	RW	0
		1:HIGH level		
		SGPIO2 output level select		
18	SGPIO2_OUTPUT_LEVEL	0:LOW level	RW	0
		1:HIGH level		
17	CONO1 OUTDUT LEVE	SGPIO1 output level select	DVA	0
17	SGPIO1_OUTPUT_LEVEL	0:LOW level	RW	0

		4.111011.11		
		1:HIGH level		
		SGPIO0 output level select		
		0:LOW level		
		1:HIGH level		
16	SGPIO0_OUTPUT_LEVEL	Note: this bit should be set, only	RW	0
		when SGPIOO is set to WAKEUP		
		mode and SGPIOO output is		
		enabled, same with SGPIO1/2/3.		
		0:WAKE-UP mode		
15	SGPIO3_MODE_SEL	1:NORMAL mode	RW	0
		In normal mode, SGPIO3 act as		
		normal GPIO		
		0:WAKE-UP mode		
14	SGPIO2_MODE_SEL	1:NORMAL mode	RW	0
		In normal mode, SGPIO2 act as		-
		normal GPIO		
		0:WAKE-UP mode		
13	SGPIO1_MODE_SEL	1:NORMAL mode	RW	0
		In normal mode, SGPIO1 act as		
		normal GPIO		
	SGPIO0_MODE_SEL	0:WAKE-UP mode	RW	
12		1:NORMAL mode		0
12		In normal mode, SGPIO0 act as		
		normal GPIO		
		SGPIO3 wake-up type select		
		00: High level		
11:10	SGPIO3_INPUT_TYPE	01: Low level	RW	0
		10: Rising edge		
		11: Falling edge		
		SGPIO2 wake-up type select		
		00: High level		
9:8	SGPIO2_INPUT_TYPE	01: Low level	RW	0
		10: Rising edge		
		11: Falling edge		
		SGPIO1 wake-up type select		
		00: High level		
7:6	SGPIO1_INPUT_TYPE	01: Low level	RW	0
		10: Rising edge		
		11: Falling edge		
		SGPIO0 wake-up type select		
		00: High level		
5:4	SGPIO0_INPUT_TYPE	01: Low level	RW	0
		10: Rising edge		
		11: Falling edge		

		Note: this bit should be set, only when SGPIOO is set to WAKEUP mode and SGPIOO output is enabled, same with SGPIO1/2/3.		
3	USB3	USB3 IRQ input control 0:Input disable 1:Input enable	RW	0
2	USB2H0	USB2H0 IRQ input control 0:Input disable 1:Input enable	RW	0
1	USB2H1	USB2H1IRQ input control 0:Input disable 1:Input enable	RW	0
0	-	Reserved	-	-

5.7.3.66 SGPIO_MFP

SGPIO Multiplexing Control Register

Offset = 0x518

Bits	Name	Description	Access	Reset
31:1	-	Reserved	-	-
		SGPIO2, SGPIO3 PAD multiplex select.		
0	SGPIO23_TWI5	0:SGPIO2, SGPIO3	RW	0
		1:TWI5_SCLK, TWI5_SDATA		

5.7.3.67 PWM_CTL4

PWM4 Output Control Register

Offset = 0x0520

Bits	Name	Description	Access	Reset
31:29	-	Reserved	=	-
		Duty select:		
		0: Duty =0		
		1: Duty =1		
		2: Duty =2		
28:19	DUTY		RW	0
		63: Duty =63		
		1023: Duty =1023		
		T active = (DUTY+1) /DIV		
		DIV select:		
18:9	DIV		RW	0x3F
		0: reserved		

		1: DIV=2		
		2: DIV=3		
		63: DIV=64 (default value)		
		1023: DIV=1024		
		Polarity select		
8	POL_SEL	0:PWM low voltage level active	RW	0
		1:PWM high voltage level active		
7:0	-	Reserved	-	-

5.7.3.68 PWM_CTL5

PWM5 Output Control Register

Offset = 0x0524

Bits	Name	Description	Access	Reset
31:29	-	Reserved	=	-
		Duty select:		
		0: Duty =0		
		1: Duty =1		
		2: Duty =2		
28:19	DUTY	 63: Duty =63	RW	0
		 1023: Duty =1023		
		T active = (DUTY+1) /DIV		
		DIV select:		
		0: reserved		
		1: DIV=2		
18:9	DIV	2: DIV=3	RW	0x3F
10.0				
		63: DIV=64 (default value)		
		 1023: DIV=1024		
		Polarity select		
8	POL_SEL	0:PWM low voltage level active	RW	0
		1:PWM high voltage level active		
7:0	-	Reserved	-	-

5.7.3.69 INTC_EXTCTL1

External Interrupt1 Control and Status Register (VDD)

Copyright[®] 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

Offset = 0x0528

Bits	Name	Description	Access	Reset
31:8	-	Reserved	-	-
		External Interrupt 1 Type 00: High level active.		
7:6	E1TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.		
		11: Falling edge-triggered.		
		Enable external interrupt 1 (IRQ)		
5	E1EN	0 Disable	RW	0
		1 Enable		
	SIRQ1_CLK_SEL	External Interrupt SIRQ1 sample Clk	RW	
4		select		0
	SINQ1_6EK_5EE	0: 32KHz	11.00	0
		1: 24MHz		
3:1	-	Reserved	-	-
		External Interrupt 1 Pending		
		0 External interrupt source 1 is not		
		active.		
١	E1PD	1 External interrupt source 1 is active.	RW	0
0	ETAD	Write 1 to the bit will clear it. If external	KVV	0
		interrupt source 1 is edge-triggered, this		
		bit must be cleared by software after		
		detected.		

Note: external interrupt 1 when used in different trigger method settings, the P_SIRQ1 pull up and pull down should be set relatively, details refer to register PAD_PULLCTL0[15:14]

5.7.3.70 INTC_EXTCTL2

External Interrupt2 Control and Status Register (VDD)
Offset = 0x052C

Bits	Name	Description	Access	Reset
31:8	-	Reserved	-	-
		External Interrupt 2 Type		
		00: High level active.		
7:6	E2TYPE	01: Low level active.	RW	0
		10: Rising edge-triggered.	İ	
		11: Falling edge-triggered.		
		Enable external interrupt 2 (IRQ)		
5	E2EN	0 Disable	RW	0
		1 Enable		
		External Interrupt SIRQ2 sample Clk		
4	SIRQ2_CLK_SEL	select	RW	0
		0: 32K		

		1: 24M		
3:1	-	Reserved	-	-
		External Interrupt 2 Pending		
		0 External interrupt source 2 is not		
	E2PD	active.		
0		1 External interrupt source 2 is active.	RW	0
0		Write 1 to the bit will clear it. If external	IVVV	
		interrupt source 2 is edge-triggered, this		
		bit must be cleared by software after		
		detected.		

Note: external interrupt 2 when used in different trigger method settings, the P_SIRQ2 pull up and pull down should be set relatively, details refer to register PAD_PULLCTL0[13:12]

5.7.3.71 INTC_GPIOBCTL

GPIOB Interrupt Type Control Register Offset = 0x0540

Bits	Name	Description	Access	Reset
31:3	-	Reserved	-	-
		GPIOB Interrupt sample Clk select		
2	GPIOB_CLK_SEL	0: 32K	RW	0
		1: 24M		
		Enable GPIOB interrupt		
1	GBEN	0 Disable	RW	0
		1 Enable		
	GBPD	GPIOB Interrupt Pending		
		0 GPIOB interrupt source is not active.		
0		1 GPIOB interrupt source is active.	RW	0
U		Write 1 to the bit will clear it. If GPIOB		
		is edge-triggered, this bit must be		
		cleared by software after detected.		

5.7.3.72 INTC_GPIOCCTL

GPIOC Interrupt Type Control Register

Offset = 0x0544

Bits	Name	Description	Access	Reset
31:3	-	Reserved	=	-
		GPIOC Interrupt sample Clk select		
2	GPIOC_CLK_SEL	0: 32K	RW	0
		1: 24M		
1	GCEN	Enable GPIOC interrupt	RW	0
1	1 GCEN	0 Disable		0

Version 1.0 Page 204

Copyright[©] 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

		1 Enable		
0	GCPD	GPIOC Interrupt Pending 0 GPIOC interrupt source is not active. 1 GPIOC interrupt source is active. Write 1 to the bit will clear it. If GPIOC is edge-triggered, this bit must be	RW	0
		cleared by software after detected.		

5.7.3.73 INTC_GPIODCTL

GPIOD Interrupt Type Control Register

Offset = 0x0548

Bits	Name	Description	Access	Reset
31:3	-	Reserved	-	-
		GPIOD Interrupt sample Clk select		
2	GPIOD_CLK_SEL	0: 32K	RW	0
		1: 24M		
		Enable GPIOD interrupt		
1	GDEN	0 Disable	RW	0
		1 Enable		
		GPIOD Interrupt Pending		
	GDPD	0 GPIOD interrupt source is not active.		
0		1 GPIOD interrupt source is active.	RW	0
0		Write 1 to the bit will clear it. If GPIOD	NVV	
		is edge-triggered, this bit must be		
		cleared by software after detected.		

5.7.3.74 INTC_GPIOECTL

GPIOE Interrupt Type Control Register

Offset = 0x054C

Bits	Name	Description	Access	Reset
31:3	-	Reserved	-	-
		GPIOE Interrupt sample Clk select		
2	GPIOE_CLK_SEL	0: 32K	RW	0
		1: 24M		
	GEEN	Enable GPIOE interrupt		
1		0 Disable	RW	0
		1 Enable		
		GPIOE Interrupt Pending		0
0	GEPD	0 GPIOE interrupt source is not active.	RW	
		1 GPIOE interrupt source is active.		
		Write 1 to the bit will clear it. If GPIOE		

is edge-triggered, this bit must be	
cleared by software after detected.	

5.7.3.75 INTC_GPIOFCTL

GPIOF Interrupt Type Control Register
Offset = 0x0550

Bits	Name	Description	Access	Reset
31:3	-	Reserved	-	-
		GPIOF Interrupt sample Clk select		
2	GPIOF_CLK_SEL	0: 32K	RW	0
		1: 24M		
		Enable GPIOF interrupt		
1	GFEN	0 Disable	RW	0
		1 Enable		
		GPIOF Interrupt Pending		0
	GFPD	0 GPIOF interrupt source is not active.		
0		1 GPIOF interrupt source is active.	RW	
		Write 1 to the bit will clear it. If GPIOF	KVV	
		is edge-triggered, this bit must be		
		cleared by software after detected.		

Copyright[®] 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

Appendix Acronyms and Terms

ADC Analog-to-Digital Converter

AHB Advanced High-Performance Bus

ALE Address-Locked Enable

APB Advanced Peripheral Bus

BISP Basic Image Signal Processor

BIST Built-in Self-Test

CLE Command-Locked Enable
CMU Clock Management Unit
CPO System Control Coprocessor
CRC Cyclic Redundancy Check

CVBS Composite Video Broadcasting Signal

DAC Digital-to-Analog Converter

DB Decibel

DC Direct Current

DMA Direct Memory RW

DSP Digital Signal Processing

DVB Digital Video Broadcasting

DVFS Dynamic Voltage Frequency Scaling

ECC End of Active Video
ECC Error Correct Code

FIR Fast Infrared

GPIO General-Purpose Input/Output

IP Inter-IC Sound
IF Interface
IR Infrared

IrDA Infrared Data Association

IRQ Interrupt Request

JPEG Joint Photographic Experts Group

LCD Liquid Crystal Display

Liquid Crystal Display Controller
Lithium Ion (battery type)
LRADC
Liquid Crystal Display Controller
Lithium Ion (battery type)
Low Resolution ADC

MAC Multiplier Accumulator Control
MIPS Million Instructions per Second

MIR Mid Infrared
MJPEG Motion JPEG
MLC Multi-level Cell
MMC Multimedia Card

MMU Memory Management Unit
MPEG Motion Picture Expert Group

MS Memory stick card

NTSC National Television Standards Committee

OLED Polymer Light-Emitting Diode

OS Operation System
PA Power Amplifier
PAL Phase Alteration Line

PFM Pulse Frequency Modulation

PLL Phase-Locked Loop

PMU Power Management Unit
PWM Pulse Width Modulation

RISC Reduced Instruction Set Computing

RTC Real-Time Clock
SAV Start of Active Video

SD Secure Digital memory card

SIR Slow Infrared
SLC Single-Level Cell

SMC State Machine Controller

SoC System on Chip
SPEC Specification

SPI Serial Peripheral Interface

SPRAM Scratch Pad RAM

SW Software

TFT Thin Film Transistor
THD Total Harmonic Distortion
TLB Translation Look-aside Buffer

TS Transport Stream
TWI Two wire interface

UART Universal Asynchronous Receiver Transmitter

WMA Windows Media Audio
WMV Windows Media Video

Actions (Zhuhai) Technology Co., Limited

Address: No. 1 / C, Ke Ji Si Road, Hi-Tech Zone, Tangjia, Zhuhai

Tel: +86-756-3392353 Fax: +86-756-3392251 Post Code: 519085

http://www.actions-semi.com

Business Email: mp-sales@actions-semi.com
Technical Service Email: mp-cs@actions-semi.com