Analiza parcijalnih valova u procesima fotoprodukcije piona

R. Omerović, H. Osmanović, M. Hadžimehmedović, J. Stahov

Univerzitet u Tuzli Prirodno-matematički fakultet

30. juni 2022.

Sadržaj

- Motivacija
- Osnovne teorijske pretpostavke
- Rezultati MTZ analize
- Zaključak

Motivacija

- Ekscitacijski spektri nukleona su imali važnu ulogu u otkriću kvarkova i naboja boje.
- Neusaglašenost teorijskih predviđanja i eksperimentalnih rezultata na višim energijama.
- Zadatak: analiza energijskih spektara na energijama ispod 2.2
 GeV i određivanje amplituda parcijalnih valova.
- Eksperimentalna mjerenja su ključna za analizu parcijalnih valova.

Analiza parcijalnih valova - problem višeznačnosti

- Jedan od osnovnih problema u SE PWA.
- Zahtjev da rješenja parcijalnih valova u funkciji energije budu "glatka" se pokazao kao nedovoljan.
- Dodatni uslovi se mogu nametnuti koristeći analitičnost amplituda raspršenja.
- Disperzione relacije?
- Pietarinenov razvoj! IA se mogu razviti preko analitičkih funkcija koje imaju istu analitičku strukturu kao amplitude raspršenja.

Analiza parcijalnih valova - Pietarinenov razvoj

Postupak je već primijenjen u poznatoj KH80 analizi πN raspršenja. Naša grupa (Mainz-Tuzla-Zagreb kolaboracija) je ovaj postupak primijenila na procese η i π^0 fotoprodukcije.

H. Osmanović, et al.,

Phys. Rev. C 97, (2018) 015207, Phys. Rev. C 100, (2019) 055203.

- Postupak se sastoji od dvije odvojene analize:-
 - Analiza amplituda pri konstantnoj vrijednosti varijable t (Fixed-t AA) - određivanje invarijantnih amplituda raspršenja iz eksperimentalnih podataka na zadatoj, fiksnoj, vrijednosti varijable t.
 - Analiza parcijalnih valova na diskretnim vrijednostima energija (SE PWA).
- Dvije navedene analize su povezane tako da se rezultati jedne (Ft AA) koriste kao dodatni uslov u drugoj (SE PWA) i obrnuto, u iterativnom postupku.

MTZ PWA = FtAA + SE PWA

Veza između SE PWA i FtAA

- Multipoli dobijeni iz SE PWA se koriste kako bi se izračunale helicitetne amplitude (na zadatim enegijama), koje se zatim koriste kao dodatni uslov u FtAA.
- Cijeli postupak se ponavlja do konvergencije rješenja.

Kinematika pionske fotoprodukcije

 p_i -četverovektor impulsa ulaznog nukleona p_f - četverovektor impulsa izlaznog nukleona

k - četverovektor ulaznog fotona

q - četverovektor impulsa π mezona

Mandelstamove varijable:

$$s = w^2 = (p_i + k)^2$$

 $t = (q - k)^2$
 $u = (p_i - q)^2$
 $v = \frac{s - u}{4m}$
 $s + t + u = 2m^2 + m_\pi^2$;
 m - masa nukleona

$$m_\pi$$
 - masa π mezona

Kinematika pionske fotoprodukcije

Razmatramo sljedeće rekacije:

$$\gamma + p \rightarrow \pi^0 + p; \qquad \gamma + p \rightarrow \pi^+ + n$$

$$\gamma + n \rightarrow \pi^0 + n; \qquad \gamma + n \rightarrow \pi^- + p$$

- Za svaku reakciju imamo po 4 nezavisne invarijantne amplitude (IA) B₁, B₂, B₆ and B₈ (I. G. Aznauryan, Phys. Rev C67, (2013) 015209).
- IA se mogu zapisati preko izospinske kombinacije: $B^{(\pm)}, B^{(0)}$.
- $B^{(\pm)}$ opisuje apsorpciju izovektorskog fotona $(I_3 = 1)$; $B^{(0)}$ opisuje apsorpciju izoskalarnog fotona $(I_3 = 0)$.

Kinematika pionske fotoprodukcije

IA koje opisuju reakcije (charged):

•
$$B_i(\gamma + p \to \pi^0 + p) = B_i^{(+)} + B_i^{(0)}$$

•
$$B_i(\gamma + n \to \pi^0 + n) = B_i^{(+)} - B_i^{(0)}$$

•
$$B_i(\gamma + n \to \pi^+ + n) = \sqrt{2}(B_i^{(-)} + B_i^{(0)})$$

•
$$B_i(\gamma + n \to \pi^- + p) = -\sqrt{2}(B_i^{(-)} - B_i^{(0)})$$

Kako bi se dopio potpunu opis πN sistema proučavanjem pionske fotoprodukcije, potrebni su podaci za barem 3 reakcije (4 x 3 IA). Svaka reakcija daje linearnu kombinaciju multipola sa različitim izospinskim stanjima.

Observable, amplitude i multipoli u pionskoj fotoprodukciji

16 observabli

	Spin	Type
Obs	servable	
	σ_0	
	$\hat{\Sigma}$	S
	\hat{T}	(single spin)
	\hat{P}	
	\hat{G}	
	\hat{H}	BT
	\hat{E}	(beam-target)
	\hat{F}	
	$\hat{O_{x'}}$	
	$\hat{O_{z'}}$	BR
	$\hat{C}_{x'}$	(beam-recoil)
	$\hat{C}_{z'}$	
	$\hat{T_{x'}}$	
	$\hat{T_{z'}}$	TR
	$\hat{L_{x'}}$ $\hat{L_{z'}}$	(target-recoil)
	$\hat{L_{z'}}$	

Observable su opisani setom od 4 kompleksne amplitude:

- CGLN amplitude $(F_k(W, \cos \theta), k = 1, 2, 3, 4)$
- Helicitetne amplitude $(H_k(W, \cos \theta), k = 1, 2, 3, 4)$
- Invarijantne amplitude $(B_k(s,t),\ k=1,2,6,8)$

Amplitude su date kao razvoji po električnim $(E_{\ell\pm})$ i magnetnim $(M_{\ell\pm})$ multipolima.

Observable, amplitude and multipoli u pionskoj fotoprodukciji

Primjer diferencijalnog udarnog presjeka izraženog preko helicitetnih amplituda:

$$\frac{d\sigma}{d\Omega} = \frac{q}{2k} (|H_1|^2 + |H_2|^2 + |H_3|^2 + |H_4|^2)$$

Razvoj CGLN amplituda preko multipola (do $\ell=L_{\it max}$)

$$egin{aligned} F_1 &= \sum_{\ell \geq 0}^{L_{max}} \{ (\ell M_{\ell+} + E_{\ell+}) P'_{\ell+1} + [(\ell+1) M_{\ell-} + E_{\ell-}] P'_{\ell-1} \}, \ &F_2 &= \sum_{\ell \geq 1}^{L_{max}} [(\ell+1) M_{\ell+} + \ell M_{\ell-}] P'_{\ell}, \ &F_3 &= \sum_{\ell \geq 1}^{L_{max}} [(E_{\ell+} - M_{\ell+}) P''_{\ell+1} + (E_{\ell-} - M_{\ell-}) P''_{\ell-1}] \ &F_4 &= \sum_{\ell \geq 2}^{L_{max}} (M_{\ell+} - E_{\ell+} - M_{\ell-} - E_{\ell-}) P''_{\ell} \end{aligned}$$

Nametanje analitičnosti pri konst. vrijednosti varijable t

SE PWA se izvodi duž crvenih linija, a FT AA duž zelenih linija. Plave tačke su eksperimentalni podaci u fizikalnoj oblasti za pionsku fotoprodukciju (primjer diferencijalnog presjeka za $p(\gamma, \pi^0)p$ reakciju).

FtAA u pionskoj fotoprodukciji

Za datu vrijednost *t* invarijantne amplitude se mogu napisati korištenjem Pietarinenovog razvoja (l. G. Aznauryan, Phys. Rev. C 67, 015209 (2003)):

$$B_1 = B_{1N} + (1+z) \sum_{i=0}^{N} b_{1i} z^i, \quad B_2 = B_{2N} + (1+z) \sum_{i=0}^{N} b_{2i} z^i$$

$$B_6 = B_{6N} + (1+z) \sum_{i=0}^{N} b_{6i} z^i, \quad \frac{B_8}{\nu} = \frac{B_{8N}}{\nu} + (1+z) \sum_{i=0}^{N} b_{8i} z^i$$

 B_{iN} su poznati doprinosi polova, B_i su crossing simetrične invarijantne amplitude.

REZULTAT: Koeficijenti $\{b_{1i}\}, \{b_{2i}\}, \{b_{6i}\}$ i $\{b_{8i}\}.$

Eksperimentalni podaci

Priprema podataka za analizu

Fit eksperimentalnih podataka ($t = -0.2 \text{ GeV}^2$)

(a)
$$p(\gamma, \pi^{0})p$$
, (b) $p(\gamma, \pi^{+})n$, (c) $n(\gamma, \pi^{-})p$

Fit eksperimentalnih podataka (W=1210 MeV)

(a)
$$p(\gamma,\pi^0)p$$

Fit eksperimentalnih podataka i predikcije

(c)
$$n(\gamma, \pi^-)p$$

Multipoli

Konačni rezultati analize parcijalnih valova su električni i magnetni multipoli: $E_{\ell\pm}, M_{\ell\pm}$

Prikazani su multipoli za S, P, D i F parcijalne valove.

Reprezentacija multipola za izospinska stanja.

Multipoli		L	Parcijalni valovi		J^P
			I = 1/2	I = 3/2	
E_{0+}	-	0	S_{11}	S_{31}	1/2-
-	M_{1-}	1	P_{11}	P_{31}	1/2+
E_{1+}	M_{1+}		P_{13}	P_{33}	$3/2^{+}$
E_{2-}	M_{2-}	2	D_{13}	D_{33}	3/2-
E_{2+}	M_{2+}		D_{15}	D_{35}	5/2-
E_{3-}	M_{3-}	3	F_{15}	F_{35}	5/2+
E_{3+}	M_{3+}	0	F_{17}	F_{37}	7/2+
E_{4-}	M_{4-}	4	G_{17}	G_{37}	7/2-
E_{4+}	M_{4+}	4	G_{19}	G_{39}	$9/2^{-}$
E_{5-}	M_{5-}	5	H_{19}	H_{39}	9/2+
E_{5+}	M_{5+}	,	$H_{1,11}$	$H_{3,11}$	$11/2^{+}$

Multipoli za I = 3/2

Multipoli za I = 1/2 proton

Multipoli za I = 1/2 neutron

Zaključak

- Model nezavisna SE analiza parcijalnih valova.
- Primijenjena na 4 reakcije u pionskoj fotoprodukciji: $p(\gamma, \pi^0)p$, $p(\gamma, \pi^+)n$, $n(\gamma, \pi^-)p$ i $n(\gamma, \pi^0)n$.
- Rezultat: električni i magnetni multipoli.
- Rješenja su uspoređena sa postojećim ED rješenjima, kao i sa dvije SE analize (MAID i SAID).
- Dobijena rješenja su jedinstvena, uz određena odstupanja na višim energijama.
- Potreba za dodatnim eksperimentalnim mjerenjima.
- Rezultati publicirani u Phys. Rev. C 104, 034605.

