

Image Processing

Intensity Transformation and Spatial Filtering (Part I)

Pattern Recognition and Image Processing Laboratory (Since 2012)

Introduction

Transformation

Intensity Transformation Function

A spatial domain processing is denoted by the expression.

$$g(x,y) = T[f(x,y)]$$
Output Image

Operator on f

Intensity Transformation Function

Intensity Transformation Function

>> ex3_01 % See demonstration

Intensity Transformation Function

>> f = imread('breast.tif');

>> g1 = imadjust(f, [0 1], [1 0]); % Neg. Image

>> g11 = imcomplement(f);

>> imshow(g1), figure, imshow(g11)

Note: Compare the results between g1 and g11.

Intensity Transformation Function

>> g2 = imadjust(f, [0.5 0.75], [1 0]);

>> g3 = imadjust(f, [], [], 2);

>> figure, imshow(g2)

>> figure, imshow(g3)

Note: Compare the results between g2 and g3.

Logarithm Transformation

Logarithm transformation is implemented using the expression

>>
$$g = c * log(1+double(f))$$
Constant
Input Image

Note: One of the principal uses of the log transformation is to suppress dynamic range.

Logarithm Transformation

Note: Compare the results between gc and gc1.

Contrast-Stretching Transformation

A contrast-stretching transformation function is defined as

Contrast-Stretching Transformation

>> ex3_02 % See demonstration

Intensity Histogram

Intensity Histogram

The histogram of a digital image is defined as the discrete function

$$h(r_k) = n_k$$

where r_{k} is k^{th} intensity level in the interval [0, G] and n_{ν} is the number of pixels in the image whose intensity level is r_k .

Intensity Histogram

>> b = 256

>> h = imhist(f, b) % b is the number of bins,

% by default b = 256 >>

>> p = imhist(f, b)/numel(f) % The normalized

>>

% histogram

Intensity Histogram

Histogram Equalization

>> h = imhist(f, b)% b is the number of bins,

% by default b = 256.

>> p = imhist(f, b)/numel(f) % The normalized % histogram.

>> ex3_03 % See demonstration

