A Graph Based Approach for Contextual Text Normalization

Çağıl Uluşahin Sönmez, Arzucan Özgür Dec 2013

Introduction

- What is this thing called noise?
- There is a evolving internet language, that has its own slang.
- It is individual.
- The mistakes are also individual.
- The equation is even more complicated when mobile devices get involved.

Text Normalization

- Text normalization is a
 preprocessing step to restore
 noisy words in text to their
 original (canonical) forms.
- The normalization task restores
 Out of Vocabulary(OOV) words
 into their In Vocabulary(IV)
 forms.
- Yet not all OOV word requires normalization: ill-formed words

talk 2 u later talk to you later

enormoooos

enrmss enormous

enourmos

ppl people

tanks tanks, thanks

btw by the way

OOV -> **IV**

Choudhury et al. Error Classification

Unintentional Errors

- pressing of the wrong key
- pressing of a key more than the desired number of times
- deletion of a character
- inadequate knowledge of spelling

Intentional Errors

- character deletion ("tlk" for "talk", "msg" for "message", "tomoro" for "tomorrow", "mob" for "mobile")
- phonetic substitution ("nite" for "night", "bk" for "back", "u" for "you", "m8" for "mate")
- abbreviations ("btw" for "by the way", "kgp" for "Kharagpur")
- non-standard usage ("wanna" for "want to", "betta" for "better", "sumfin" for "something", "b/c" for "because")

Related Work

- Noisy channel models
- Lexicon models
- ML systems
- Graph based approaches

Our Methodology

- A graph based approach
- models both contextual and lexical similarity features
- contextual features which are extracted from a pre-generated directed word association graph
- Lexical similarity features are based on edit distance, longest common subsequence ratio, and double metaphone distance.
- A slang dictionary is used as an external resource to enrich the normalization candidate set.

Preprocessing

Token	POS tag	Confidence
with	P	0.9963
a	D	0.998
beautiful	A	0.9971
smile	N	0.9712

Token	POS tag	Confidence	
w	P	0.7486	
a	D	0.9920	
beatiful	A	0.9733	
smile	N	0.9806	

Table 2: Sample POS tagger output obtained by using CMU Ark Tagger (P:Pronoun, D:Determiner, A:Adjective, N:Noun, G:Miscellaneous) [14, 15]

- Tokenization
- Part-of-Speech(POS) tagging

Word Association Graph

- Contextual information is modeled through a word association graph.
- Created using a large corpus of social media text.
- Directed, weighted graph
- The graph encodes the relative positions of the POS tagged words in the text with respect to each other.
- After preprocessing, each text message in the corpus is traversed in order to extract the nodes and the edges of the graph.

Let's_L start_V this_D morning_N $w_P a_D$ beatiful_A smile_N.

Tokens	Let's, start, this, morning, w, a, beatiful, smile, .			
Nodes	Let's L, start V, this D, morning N, w P, a D, beatiful A, smile N, . ,			
Edges	$\{Let's L,start V,distance:1\}, \{Let's L,this D,distance:2\},$			
	•••			
	{a D, beatiful A, distance:1}, {a D, smile N, distance:2},			
	$ \{a D, beatiful A, distance:1\}, \{a D, smile N, distance:2\}, \\ \{beatiful A, smile N, distance:1\} $			

Table 3: Sample tokenized, POS tagged sentence and the corresponding nodes and edges in the word association graph.

- Each node is a unique set of a token and its POS tag.
- This helps us to identify the candidate IV words for a given OOV word by considering not only lexical and contextual similarity, but also grammatical similarity in terms of POS tags.
- Node properties: id, oov, freq, tag.

```
node id: smile|A, freq: 3, oov: False, tag: A
node id: smile|N, freq: 3403, oov: False, tag: N
node id: smile|V, freq: 2796, oov: False, tag: V
```

Table 4: The nodes in the word association graph representing the token *smile* tagged with different POS tags.

- An edge is created between tword pair (i.e. token/POS pai
- with a beautiful smile

- The two words co-occur with message in the corpus.
- Each word has a minimum frequency on
- The directionality of the edges is based on the sequence of words in the text messages in the corpus.
- The from property indicates the first word and to is the latter in the phrase.
- The direction and the distance together represent a unique triplet.

from: with P, to: smile N, dis: 3, weight: 72.24415

from: a|D, to: smile|N, dis: 2, weight: 274.37365

from: beautiful A, to: smile N, dis: 1, weight: 240.716

Table 5: Example edges extracted from the sample phrase "with a beautiful smile"

The Graph

Graph Based Contextual Similarity

Contextual Similarity Metrics

Edge Weight Score

 The edge weight score, favors and identifies the candidates which are (1) related to many neighbors, and (2) have a high association score with each neighbor.

Frequency Score

 The frequency score of the candidate is a real number between 0 and 1. It is proportional to the frequency of the candidate with respect to the frequencies of the other candidates in the corpus.

Candidates with edge weight score and frequency

Lexical Similarity

- The lexical similarity features are based on edit distance, double metaphone (phonetic edit distance), and longest common subsequence ratio (LCSR)
- We use these features (1) to filter the candidates
 (2) to find new candidates (3) to score/rank/sort the candidates

Edit distance & LCSR Scoring

- The edit distance, phonetic edit distance, and LCSR between each candidate and the OOV token are calculated.
- Any candidate with an edit distance greater than edt and phonetic edit distance greater than pedt has been removed from the candidate list
- LCSR is calculated using LCS/max_length*ED_skeleton
- LCSR and Edit distance score are used as lexical features

oov	Candidate	LCSR	Distance	Phonetic
missin (MSN)	missing (MSNK)	0.8571	0.8572	1
missin (MSN)	missed (MST)	0.6667	0.6666	1
confrims (KNFR)	confirms (KNFR)	0.8750	0.75	0
confrims (KNFR)	confirm (KNFR)	0.7500	0.6240	0
soemthing (SMTN)	something (SMTN)	0.8889	0.7778	0
soemthing (SMTN)	sorting (SRTN)	0.6666	0.6666	1

Window size

- The window size is chosen as 7, with 3 neighbours in each side of the OOV token. (when available)
- Ex: "I just happend 2 stroll on ur name saw a twit pic I liked so w not u know keep it beautiful:)?? thank u!"

Unlike the regular POS taggers designed for well-written newswire-like text, social media POS taggers pro-vide a broader set of tags specific to the peculiarities of social text [14, 15]. Using this extended set of tags we can identify tokens such as discourse mark- ers (e.g. rt for retweets, cont. for a tweet whose content follows up in the coming tweet) or URLs. This enables us to better model the context of the words in social media text.