5/5

MAC105 FUNDAMENTOS DE MATEMÁTICA PARA A COMPUTAÇÃO FOLHA DE SOLUÇÃO

Nome: PEDRO GIGECK FREIRE

Número USP: 10737136

Assinatura

PEDRO GIGELA FREIRE

Sua assinatura atesta a autenticidade e originalidade de seu trabalho e que você se compromete a seguir o código de ética da USP em suas atividades acadêmicas, incluindo esta atividade.

Exercício: 56

Data: 09/05/2018

SOLUÇÃO

(i) a) \circ (ii) \circ (iii) \circ (iii)

· n[x] · 5.[3,19150.] = 5.3 = 15.

· [2] = 17-[17] = 3,141592 ... -3 = 0,141592...

b) . [nx] = [s(-17)], Ambogamente Ao itemia): Temos -3-\$ (-17 < -3, Logo

- 16 (-ST (-15 , PORTANTO

LS(-T)] = -16

· n[x]: 5.[-11]: 5.(-4):-20 =

· {x} = x - [x]: -3,1475 -- (-4): 4-#= 0,8584...

(ii) Queremos Provar ([nx] = n[x] (nfx) <1

Namos provar $\lfloor nx \rfloor = n\lfloor x \rfloor \Rightarrow n\{x\} (1)$, substituinto x for $\lfloor x \rfloor + \{x\}$,

Seque $\lfloor n(\lfloor x \rfloor + \{x\}) \rfloor = n\lfloor x \rfloor \Rightarrow \lfloor n\lfloor x \rfloor + n\{x\} \rfloor = n\lfloor x \rfloor$ (como $n\lfloor x \rfloor \in \mathbb{Z}$, temos $n\lfloor x \rfloor + \lfloor n\{x\} \rfloor = n\lfloor x \rfloor \Rightarrow \lfloor n\{x\} \rfloor = 0$. Assim, para $\lfloor n\{x\} \rfloor = 0$, temos que $\lfloor n\{x\} \rfloor = 0$ está entre $0 \in I$, logo $\lfloor n\{x\} \rfloor < 1$.

+3/3

Algora vamos provar nfx) (1 =) [nx] = n[x]

Consideremos [x] = x - [x], Seque $n(x - [x]) < 1 \Rightarrow nx - n[x] < 1 \Rightarrow nx < 1 + n[x]$ "TIRANDO O chão" De Ambos os laros, podemos ter que [nx] = [n[x]] se x for finteiro, Ass Temos

 $[nx] \leq [1+n[x]]$, como $n[x] \in \mathbb{Z}$, $[nx] \leq 1+n[x]$ ou $[nx]-1 \leq n[x]$

Agora, SABEMOS que LX1+1XX, logo nlx1+n xxn, "Tiranno on drão" de ambos o lados, remos anix1 + n > 1xn1

Analisantia as designal bades seque ique

lnx $\leq n(x) \leq lnx$ $\Rightarrow n(x) = lnx$

al. Aliena holo at the ignal des

1 xn 1 - 1

两种等 n. 3. 4

(A) (A) (A) (A) (A) (A) (A)