Contents

	Language	Lib/SDK	TOOL	-		
Adeinc.	C#	EMGU	Visual Studio 2015	정규화 데이터 변환, 각도 검출		
	C#	EMGU	Visual Studio 2015	전봇대 특정 객체 검출		
Final Project	C#	OpenCVSharp	Visual Studio 2017	Macro		
	C#	ARCore, ADMob	Unity, Visual Studio 2017	AR 박스 쌓기		
Semi Project	C#		Unity, Visual Studio 2017	3D Simulation		
Mimi Project	C++	OpenCV	Visual Studio 2017	차량 번호판 & 번호 검출		
	C#		Visual Studio 2017	비행기 슈팅 게임		

입사 희망자 : 홍 길 동

[정규화 데이터 변환, 각도 검출_1]

i	TCWFS11												
	E0SAA0101A01												
	###10.150.14.66#FabVision#Storage#DimRecipes#Recipes-WVSEC-57-P1_pm4-TCWFS12-1.pm4												
Wafer	1												
Slot	1												
Cassette	UA2844												
ScanDate1	06/14/2018	3 13:11:18											
RawFilena	180614131	1-969045.v	vsfv										
Location(r	0	1	2	3	4	5	6	7	8	9	10	11	
-150	-	-	-	-	-	-	-	-	-	-	-		
-149	-	-	-	-	-	-	-	-	-	-	-		
-148	-	-	-	-	-	-	-	-	-	-	-		
-147	-	-	-	-	-	-	-	-	-	-	-		
-146	0.329591	-	-	-	-	0.611305	0.630737	-	-	0.614115	-	0.537522 -	
-145	0.341293	0.418999	0.484233	0.539983	0.585214	0.618559	0.640633	0.651419	0.64612	0.627678	0.598866	0.553532	
-144	0.356237	0.429457	0.49482	0.551113	0.597589	0.632627	0.655777	0.666312	0.662888	0.647061	0.617459	0.577064	
-143	0.370124	0.442605	0.507595	0.56376	0.610358	0.645837	0.670025	0.681655	0.679599	0.665305	0.637823	0.599178	
-142	0.382815	0.454657	0.519198	0.575392	0.622262	0.658128	0.683141	0.695741	0.695395	0.682477	0.65715	0.62002	
-141	0.394008	0.465321	0.52944	0.58572	0.633025	0.669366	0.695115	0.708568	0.709961	0.698286	0.674973	0.63966	
-140	0.403385	0.47422	0.538128	0.594385	0.642144	0.678982	0.705608	0.719852	0.722743	0.712414	0.690663	0.658043	
-139	0.410862	0.481253	0.545022	0.601246	0.649282	0.686664	0.714147	0.729375	0.733151	0.724792	0.704684	0.674679	
-138	0.416415	0.486443	0.549971	0.606348	0.65435	0.692414	0.72051	0.737064	0.741683	0.735457	0.717101	0.688821	
-137	0.419936	0.489697	0.552934	0.609439	0.657356	0.696179	0.724906	0.742689	0.748443	0.743984	0.727512	0.700763	
-136	0.421278	0.490714	0.553687	0.610111	0.65832	0.697751	0.7271	0.745895	0.753161	0.749976	0.73557	0.71058	
-135	0.420325	0.489328	0.552018	0.608311	0.657057	0.6968	0.726813	0.746541	0.755585	0.75355	0.741091	0.71813	
-134	0.417027	0.485628	0.547991	0.604186	0.653308	0.693275	0.724069	0.744727	0.755432	0.754644	0.743857	0.723172	
-133	0.411413	0.479576	0.541653	0.597751	0.646906	0.687446	0.719001	0.74055	0.752616	0.753301	0.744174	0.725567	
-132	0.403465	0.471034	0.532957	0.588914	0.638091	0.67942	0.711592	0.733984	0.747158	0.749629	0.742192	0.725514	
-131	0.392977	0.460001	0.521891	0.577743	0.627086	0.66897	0.701774	0.725089	0.73945	0.743598	0.737908	0.723059	
-130	0.379946	0.446696	0.508485	0.564377	0.613863	0.656202	0.689735	0.713961	0.729374	0.735091	0.731318	0.718277	
-129	0.364779	0.431377	0.492907	0.548886	0.598462	0.641295	0.675625	0.70082	0.717085	0.724472	0.722361	0.711327	
-128	0.347822	0.414126	0.475393	0.531358	0.58112	0.624479	0.659401	0.685709	0.702872	0.711676	0.711169	0.702157	
-127	0.329287	0.395158	0.456232	0.512046	0.562126	0.605968	0.641316	0.668539	0.686858	0.696853	0.697955	0.690665	
-126	0.309497	0.374825	0.435722	0.491413	0.541699	0.585786	0.621572	0.649511	0.669186	0.680359	0.682978	0.677244	
125	0.200612	0.252227	0.414050	0.460607	0.510042	0.564104	0.600407	0.620156	0.640006	0.662471	0.666525	0.662205	

- 전공정 이후 컷팅된 웨이퍼의 정규화 데이터
- 해당 데이터를 기반으로 웨이퍼 이미지를 생성 후 각도 검출
- 각도 0도 ~ 180도
- 위치 값 -150 ~ +150

[정규화 데이터 변환, 각도 검출_2]

```
Console.WriteLine("최소값 : " + minValue);
Console.WriteLine("최대값 : " + maxValue);
// 최대값 - 최소값 /255 = x.xx~ -x.xx 로 이루어진 실수값의 분포를 255
double colorField = (maxValue - minValue) / 255;
double valueCompare = 0;
int colorValueConvert = 0;
for (int column = 1; column < BasicConfig.ColumnCount; column++)</pre>
    for (int row = 1; row < BasicConfig.RowCount; row++)</pre>
       valueCompare = realData[column, row];
       // 최소값을 기준으로 colorField를 더하다 보면, cell에 위치한 집
       for (double oneStep = 0; oneStep <= Math.Abs(minValue) + maxVa
           if (colorField == 0)
            if (valueCompare >= minValue + oneStep)
               realData[column, row] = colorValueConvert;
           colorYalueConvert++;
        colorValueConvert = 0;
minValue = 0:
maxValue = 0:
return realData;
```

- Csv의 데이터 0.XXX ~ -X.XXXX 로 이루어진 실수 분포에서, 최소, 최대값을 찾은 후, 255로 나누어
- 0 ~ 255에 해당하는 GrayColor 값을 찾아낸다.

[정규화 데이터 변환, 각도 검출_3]

```
List<List<double>> standardDeviation = new List<List<double>>();
for (int j = 1; j \le 181; j \leftrightarrow 1
    double variance = 0d;
    double average = 0d;
    double sum = 0:
    standardDeviation.Add(new List<double>(j));
    for (int i = 6; i \le 286; i \leftrightarrow 1)
        sum += realData[i, j];
    average = sum / 281;
    for (int i = 6; i \le 286; i \leftrightarrow j
        variance += Math.Pow(realData[i, j] - average, 2);
    standardDeviation[i - 1].Add(realData[0, i]);
    standardDeviation[j - 1].Add(Math.Sgrt(variance / 281));
double minDeviation = 0;
double angle = 0;
for (int i = 0; i < standardDeviation.Count; i++)</pre>
    if (i == 0)
        minDeviation = standardDeviation[i][1];
        angle= standardDeviation[i][0];
   else if(minDeviation>standardDeviation[i][1])
        minDeviation = standardDeviation[i][1];
        angle = standardDeviation[i][0];
double realAngle = 180 - angle;
Console.WriteLine("각도: "+realAngle):
Console.WriteLine("최소 표준편차 : " + minDeviation);
```

- 표준 편차 이용
- 직선상의 Pixel Color 값을 기반으로 180도에 해당하는 180개의 변화량을 측정
- 해당 데이터의 표준 편차량이 가장 적은 것을 기준 각도로 선정.

[정규화 데이터 변환, 각도 검출_4]

- Csv 데이터를 기반으로, 이진화 임계 값, 상하 좌우 반전, 회전 값
- 입력 값을 기반으로 csv 정규 데이터를 이미지로 변환.

[정규화 데이터 변환, 각도 검출_5]

- 변환된 이미지와 검출한 각도.
- 첫팅된 웨이퍼의 결에서, 각도를 검출.

[전봇대 특정 객체 검출_1]

- 영상에서 검출된 볼트, 짧은 틈, 긴 틈의 좌표 값을 리턴.

AR 블록 쌓기 & C# Macro

[프로젝트 개요]

- · 개발 기간: 2018-02-05 ~ 2018-04-04
- · 투입 인원: 2명
- ㆍ 프로젝트 소개
 - 1. Android Platform AR(증강현실) 박스 쌓기 게임
 - * AR SDK Computer Vision 중 Markerless Tracking 기능 적용
 - 2. C# & Winform 앱 플레이어 모바일 게임 자동 Macro
 - * OpenCV dll을 이용하여 이미지 유사도 검출 이 후, 검출된 이미지 해당 좌표 값에 Win API 마우스 클릭 이벤트 발생
- ㆍ 개발 목적
 - 새로운 기술(AR)의 도입과, C#을 활용한 윈도우OS 환경 프로그램 제어 학습을 위해, Android Platform AR 박스 쌓기 게임과, C#을 이용한 앱 플레이어 모바일 게임 자동 Macro를 개발하게 되었습니다.
 - 2명의 인원으로, 동시에 같은 분야 개발을 진행하였고, 2명의 소스 코드 중 최적의 소스 코드를 게임에 적용하며 개발을 진행 하였습니다.
- ・ 본인 역할
 - 팀장
 - AR SDK 분석 및 개발 주도.
 - OpenCVSharp dll 분석 및 Macro 개발 주도.

[개발환경]

- AR 박스 쌓기
- · OS: Windows 10
- · 사용 언어: C#
- · 사용 Tool: Unity, Visual Studio 2017, Android Studio
- · API, SDK, Lib: Google AR Core, jdk, Admob
- etc: Android 7.0 Version or Higher Device (Galaxy s7)

- C# Macro
- · OS: Windows 10
- · 사용 언어: C#
- · 사용 Tool: Visual Studio 2017
- · API, SDK, Lib: OpenCVSharp
- etc: Android App Player(MoMo AppPlayer)

1. AR 박스 쌓기

[AR 박스 쌓기 - 설명]

[AR 박스 쌓기 - Script_1]

```
ARController.cs ≠ X
28 ARCoreTest TestTest

    GoogleARCore.HelloAR.ARController

→ Ø Update

                         TrackableHitFlags raycastFilter = TrackableHitFlags.PlaneWithinPolygon
                             TrackableHitFlags.FeaturePointWithSurfaceNormal;
                         if (startCheck == true)
                             if (Frame.Raycast(touch.position.x, touch.position.y, raycastFilter, out hit))
                                 VisualizePlanescnt = 1;
                                 floorObject = Instantiate(StartFloor, hit.Pose.position, hit.Pose.rotation);
                                 floorObject.transform.rotation = Quaternion.identity;
                                 showTouchFloorUI = false;
                                 boxrColor = rndColor.Next(0, 256);
                                 boxgColor = rndColor.Next(0, 256);
                                 boxbColor = rndColor.Next(0, 256);
                                 fixBox = GameObject.FindWithTag("FixedBox");
                                 fixBox.GetComponent<MeshRenderer>().material.color = new Color(boxrColor * 0.00392156f, b
                                 anchor = hit.Trackable.CreateAnchor(hit.Pose);
                                 if ((hit.Flags & TrackableHitFlags.PlaneWithinPolygon) != TrackableHitFlags.None)
                                     Vector3 cameraPositionSameY = FirstPersonCamera.transform.position;
                                     cameraPositionSameY.y = hit.Pose.position.y;
                                 floorObject.transform.parent = anchor.transform;
                                 startCheck = false;
                                 VisualizePlanes = false;
                         TouchFloorUI.SetActive(showTouchFloorUI);
```

바닥 인식 후 터치, 초기 1회 floorObject 생성(바닥 위에 띄워질 첫 번째 박스)

R/G/B 랜덤 컬러 선언,

Anchor를 부모 오브젝트로 선언하여, AR환경에서 처음 생성된 첫 번째 박스의 위치가 고정되도록.

[AR 박스 쌓기 - Script_2]

```
CubeCoroutine.cs + X ARController.cs
ARCoreTest TestTest

→ MoveCubeCoroutine

                                                                                        - ♥ GameStart()
            void Start()
                BoxPrefabs = (GameObject)Resources.Load("moveCube");
            void Update()
                if (this.GetComponent<GoogleARCore.HelloAR.ARController>().MovePhoneFindFloorCnt == 1)
                    StartCoroutine(PhoneZoomInOut());
     ΙĠ
                if (this.GetComponent<GoogleARCore.HelloAR.ARController>().MovePhoneFindFloorCnt == 0 && Cnt == 0)
                    StopCoroutine(PhoneZoomInOut());
                    sw.Stop();
                    StartCoroutine(GameStart());
                    Cnt = 1;
            IEnumerator GameStart()
                while (true)
                    vield return null;
                    if (this.GetComponent<GoogleARCore.HelloAR.ARController>().startCheck == false)
                        if (firstCnt == true)
                            startBeginningX = this.GetComponent<GoogleARCore.HelloAR.ARController>().floorObject.trar
                            startBeginningY = this.GetComponent<GoogleARCore.HelloAR.ARController>().floorObject.trar
                            startBeginningZ = this.GetComponent<GoogleARCore.HelloAR.ARController>().floorObject.trar
                            beginningX = this.GetComponent<GoogleARCore.HelloAR.ARController>().floorObject.transform
                            beginningZ = this.GetComponent<GoogleARCore.HelloAR.ARController>().floorObject.transform
```

리소스의 오브젝트를 prefab으로 생성 후 첫 번째 박스가 생성되면, 해당 오브젝트에 있는 MovePhoneFindFloorCnt index값을 참조하여, GameStart Coroutine 진행과 동시에 초기 생성박스 위치좌표를 받아오며, X/Z좌표 왕복 운동을 하는 박스를 생성.

[AR 박스 쌓기-아키텍처]

Camera: 영상입력

AR Rocognizer : Camera로 부터 입력 받은 영상에서 특정 객체(바닥)을 인식 *개발에 사용된 Tracking 기술은 Markerless기반 이므로, 특이점의 밀집도 분석을 통해 바닥인지 아닌지를 판단.

AR Tracker : 카메라를 통해 입력 받는 영상 안에서 3D Object가 계속 움직이는 경우 해당 Object를 지속적으로 추적/인식하는 역할. Display/UI : 최종적으로 합성된 영상을 사용자에게 보여주는 부분, 스마트폰의 디스플레이에 해당.

Renderer : Event Handler에서 등록 및 결정된 정보 및 합성 정보를 이용하여 실질적인 영상 합성을 진행하며, 동시에 Display로 최종 합성 결과(게임 영상)를 전달.

Event Handler : 카메라 영상과 3D Object의 합성 정보, 디바이스 입력 값을 생성하고 전달.

2. C# Macro

[C# Macro - 설명_1]

[C# Macro - 설명_2]

[C# Macro – Sources_1]

```
using OpenCvSharp;
⊡namespace 02 Test
     public partial class Form1 : Form
         //앱플레이어 찾기、User32 FindWindow API 사용을 위해 DllImport 선언
         [System.Runtime.InteropServices.DllImport("User32", EntryPoint = "FindWindow")]
         private static extern IntPtr FindWindow(string lpClassName, string lpWindowName);
         //앱플레이어 캡처, User32 PrintWindow API 사용을 위해 DllImport 선언
         [System.Runtime.InteropServices.DllImport("user32.dll")]
         internal static extern bool PrintWindow(IntPtr hWnd, IntPtr hdcBlt, int nFlags);
         //마우스 클릭 이벤트를 발생시키기 위해 SendMessage, FindWindowEx API 사용.
         [System.Runtime.InteropServices.DllImport("user32.dll")]
         public static extern int SendMessage(IntPtr hwnd, int wMsg, int wParam, IntPtr lParam);
         [System.Runtime.InteropServices.DllImport("User32.dll")]
         public static extern IntPtr FindWindowEx(IntPtr Parent, IntPtr Child, string lpszClass, string lpszW
         public const int WM_LBUTTONDOWN = 0x201;
         public const int WM_LBUTTONUP = 0x202;
         private bool one = true;
         private bool mainGamestart = false;
         private bool GameStartSettingFinish = true;
         private bool startButton = true;
         private bool Repetition = false; //포션 구매후 자동사냥
         int i = 0;
         double maxval;
         String AppPlayerName = "[MOMO]앱플레이어-2";
         Bitmap[] CheckImage = new Bitmap[33];
```

OpenCvSharp 및 핵심 API 사용 선언부.

> 이 후, Bitmap 에 검출 해야할 이미지를 순차적으로 삽입.

[C# Macro - Sources_2]

```
//searchIMG에 스크린 이미지와 검은사막 아이콘 이미지가 들어감
public void SearchIMG(Bitmap screen img, Bitmap search img)
   using (Mat ScreenMat = OpenCvSharp.Extensions.BitmapConverter.ToMat(screen_img))
   // 찾을 이미지 선언
   using (Mat FindMat = OpenCvSharp.Extensions.BitmapConverter.ToMat(search img))
   //스크린 이미지에서 FindMat이미지를 찾아라
   using (Mat res = ScreenMat.MatchTemplate(FindMat, TemplateMatchModes.CCoeffNormed))
      // 찾은 이미지의 유사도를 담을 더불형 최대 최소값을 선업.
      double minval;
      maxval = 0;
      // 찾은 이미지의 위치를 담을 포인트형을 선언.
      OpenCvSharp.Point minloc, maxloc;
      // 찾은 이미지의 유사도 및 위치 값을 받는다.
      Cv2.MinMaxLoc(res, out minval, out maxval, out minloc, out maxloc);
      Debug.WriteLine("이미지의 유사도" + i + " 번째: " + maxval);
      //검은 사막 아이콘을 찾았을경우 클릭 이벤트 발생, 게임 켜짐
      if (maxval >= 0.8)...
//x,v 값을 전달해주면 클릭이벤트를 발생합니다.
public void InClick(int x, int y)
   //클릭이벤트를 발생시킬 플레이어를 찾습니다.
   IntPtr findwindow = FindWindow(null, AppPlayerName);
   if (findwindow != IntPtr.Zero)
      //플레이어를 찾았을 경우 클릭이벤트를 발생시킬 핸들을 가져옵니다.
      IntPtr hwnd child = FindWindowEx(findwindow, IntPtr.Zero, "RenderWindow", "TheRender");
      IntPtr lparam = new IntPtr(x | (y << 16));</pre>
      //플레이어 핸들에 클릭 이벤트를 전달합니다.
      SendMessage(hwnd_child, WM_LBUTTONDOWN, 1, lparam);
      SendMessage(hwnd child, WM LBUTTONUP, 0, lparam);
```

찾을 이미지가 현재 스크린 이미지 내에서 유사도 80%이상이면 InClick 호출과 동시에 x, y인자 값 전달. 해당 위치 클릭이벤트 발생.

[C# Macro - 아키텍처]

App Player : 안드로이드 앱플레이어

Screen Capture : System Drawing Api를 이용하여 앱플레이어 전체 화면을 1초에 한번씩 캡처.

Image Detection : Event Handler를 통해 전달 받은 검출하고자 하는 이미지를 Screen 내에서 검출. Event Handler:
Image Detection을
통해 검출된
이미지의 좌표 값을
기준으로, 마우스
클릭 이벤트를 발생.

Unity-Crazy Rhino

[프로젝트 개요]

- · 투입 인원: 2명
- ・ 프로젝트 소개
 - 1. 월드맵을 돌아다니며, 각종 건물 및 야생동물을 파괴시키는 게임
 - * Steam Goat Simulation
 - 2. Terrain 지형 구현
 - 3. 플레이어 Rhino와 건물 충돌 시 파괴 구현
 - 4. 도망 다니는 야생동물 AI 구현
 - 5. Unity(C#)
- ・ 본인 역할
 - 팀원
 - 기획
 - 지형 구현, 건물 파괴, 야생동물 AI 구현

[Crazy Rhino 설명_1]

Steam, Goat Simulation 참고하여 개발 진행.

[Crazy Rhino 설명_2]

Terrain Paint Texture 및 Paint Tree를 이용하여, 맵 디자인

[Crazy Rhino 설명_3]

플레이어 Rhino와 건물 충돌 시 파괴 구현

[Crazy Rhino 설명_4]

```
□public class csBarrelsDestroy0 : MonoBehaviour
      GameObject building;
      GameObject[] BuildingTop;
      float xpos;
      Rigidbody rigid;
      Rigidbody toprigid;
      void Start()
          rigid = GetComponent<Rigidbody>();
          building = GameObject.FindWithTag("Barrels");
          xpos = building.GetComponent<Transform>().position.x;
      private void OnCollisionEnter(Collision collision)
          BuildingTop = GameObject.FindGameObjectsWithTag("BarrelsTop");
Ιġ
          foreach (GameObject t in BuildingTop)
             toprigid = t.GetComponent<Rigidbody>();
              if (collision.gameObject.tag == "Player")
                  rigid.constraints = RigidbodyConstraints.None;
                  if (xpos != building.transform.position.x)
                      toprigid.constraints = RigidbodyConstraints.None;
```

각 건물의 벽, 바닥, 천장은
 rigidbody → constaints →
 position/rotation 모두
 FreezeALL 상태이다.
 플레이어 Rhino와 Collision이
 발생하면,
 RigidbodyConstraints.None으로
 값을 변환. 건물이 고정 되어있다가,
 부셔진다.

[Crazy Rhino 설명_5]

- 플레이어 Rhino와 스크립트가 삽입된, 해당 오브젝트의 거리를 Vector3.Distance 를 이용하여 float 값으로 리턴 받은 후, 해당 거리가 40보다 작아지면, 플레이어 Rhino가 달려오는 방향으로 해당 동물이 달려서 도망간다.

```
private void Update()
   float dist = Vector3.Distance(playerTransform.position, _transform.position);
   if (dist <= 40f)
       pos = transform.position;
       direction = (pos - playerTransform.position).normalized;
       Quaternion rot = Quaternion.LookRotation(direction);
       Vector3 vAngle = rot.eulerAngles;
       transform.eulerAngles = new Vector3(0f, vAngle.y, 0f);
       anim.SetInteger("moveFlag", 2);
       transform.position = pos + direction * Time.deltaTime * 20f;
       if (WalkIdle == 0)
           if (cnt == 0)
               Invoke("Idle2", randwait);
               Invoke("Idle2", 3f);
       else if (WalkIdle == 1)
           Invoke("Walk2", 3f);
       prepos = playerTransform.position;
```

1. C# Winform 슈팅 게임 2. OpenCV 차량 번호판 인식

[C# Winform 슈팅 게임 개요]

- · 투입 인원 : 1명
- · C# Winform 슈팅 게임 소개
- 키보드 방향 값 으로 움직이는 비행기 슈팅게임
- Picturebox 로 비행기 및 배경 제작.
- Picturebox 2개를 이용하여, 백그라운드 스크롤 효과,
- 적 비행기 랜덤 한 위치 생성,
- 미사일 picturebox와 적 비행기 picturebox x, y좌표가 일치되면, 적 비행기 폭파 picturebox(Gif) 출력
- progressBar 이용하여 체력 바 생성
- Visual Studio 2017 (C#)

[C# Winform 슈팅 게임 이미지_1]

[OpenCV 번호판 인식 개요]

- · 투입 인원: 1명
- ・ 번호판 인식 소개
- 차량 사진 內 번호판 검출 이후 콘솔<u>에 숫자 출력.</u>
- Canny 엣지검출 → GaussianBlur 노이즈 제거 이후, 검출 영역에 레이블링 작업.
- 실제 자동차 번호판의 가로/세로 비율과 번호판 숫자의 가로세로 비율은 고정비율이므로, 레이블링 작업 이후 가로/세로 비율 값을 기준으로, 번호판 검출 → 숫자 검출 준비 놓은 0 - 9 까지의 2채널 bmp 파일과 비교하여, 일치하는 값을 콘솔에 출력
- Visual Studio 2017 (C++, OpenCV)

[OpenCV 번호판 인식 이미지_1]

