14.1 प्रास्ताविङ

તમે ધોરણ IX ના અભ્યાસમાં આપેલ માહિતીનું અવર્ગીકૃત તેમજ વર્ગીકૃત આવૃત્તિ-વિતરણોમાં વર્ગીકરણ કરવાનો અભ્યાસ કર્યો છે. તમે માહિતીને વિવિધ સચિત્ર આલેખો જેવા કે, લંબાલેખો, સ્તંભાલેખો (જેમની પહોળાઈ બદલાતી હોય તેવા સ્તંભાલેખો સહિત) અને આવૃત્તિ બહુકોણોને ચિત્રાત્મક રીતે દર્શાવવાનો અભ્યાસ પણ કર્યો છે. વાસ્તવમાં, તમે અવર્ગીકૃત માહિતીના સંખ્યાત્મક પ્રતિનિધિ સ્વરૂપે મધ્યક (mean), મધ્યસ્થ (median) અને બહુલક (mode) જેવા મધ્યવર્તી સ્થિતિનાં માપોનો અભ્યાસ કરીને .એક ડગલું આગળ વધ્યા હતા. આ પ્રકરણમાં આપણે આ માપો મધ્યક, મધ્યસ્થ અને બહુલકનો અભ્યાસ અવર્ગીકૃત માહિતી પરથી વર્ગીકૃત માહિતી સુધી વિસ્તૃત કરીશું. આપણે સંચયી આવૃત્તિ અને સંચયી આવૃત્તિ-વિતરણની સંકલ્પનાની પણ ચર્ચા કરીશું. વળી, સંચયી આવૃત્તિ વક્રો (Ogives) કેવી રીતે દોરવા, તે શીખીશ<u>ં</u>,

14.2 વગીકૃત માહિતીનો મધ્યક

આપણે જાણીએ છીએ તેમ અવલોકનોનો મધ્યક એ તમામ અવલોકનોના સરવાળાનું અવલોકનોની કુલ સંખ્યા વડે ભાગફળ છે. ધોરણ IX ના અભ્યાસમાંથી, યાદ કરો કે, જો અવલોકનો x_1, x_2, \ldots, x_n હોય અને તેમને અનુરૂપ આવૃત્તિઓ f_1, f_2, \ldots, f_n હોય, તો એનો અર્થ, અવલોકન x_1 એ f_1 વખત આવે છે, x_2 એ f_2 વખત આવે છે અને આ જ રીતે આગળ પણ અર્થઘટન કરી શકાય.

હવે, તમામ અવલોકનોનો સરવાળો = $f_1x_1 + f_2x_2 + ... + f_nx_n$ અને અવલોકનોની સંખ્યા = $f_1 + f_2 + ... + f_n$

તેથી, માહિતીનો મધ્યક x, નીચેના સુત્રથી આપવામાં આવે છે :

$$\overline{x} = \frac{f_1 x_1 + f_2 x_2 + \dots + f_n x_n}{f_1 + f_2 + \dots + f_n}$$

યાદ કરો કે, જેનો અર્થ સરવાળો છે તેવા ગ્રીક અક્ષર Σ (sigma)નો ઉપયોગ કરીને આપણે આ સૂત્રને સંક્ષિપ્ત સ્વરૂપમાં લખી શકીએ. એટલે કે,

$$\overline{x} = \frac{\sum_{i=1}^{n} f_i x_i}{\sum_{i=1}^{n} f_i}$$

જો એ સ્પષ્ટ હોય કે, i એ 1 થી n સુધી કિંમતો લે છે, તો આ સૂત્રને સંક્ષિપ્તમાં, $\overline{x} = \frac{\sum f_i x_i}{\sum f_i}$ તરીકે પણ લખી શકાય.

ચાલો, આપણે આ સૂત્રનો ઉપયોગ નીચેના ઉદાહરણમાં મધ્યક શોધવા માટે કરીએ :

ઉદાહરણ 1: એક શાળામાં ધોરણ X ના 30 વિદ્યાર્થીઓએ ગણિતના 100 ગુણના પ્રશ્નપત્રમાં મેળવેલા ગુણ નીચેના કોષ્ટકમાં આપેલા છે. વિદ્યાર્થીએ મેળવેલા ગુણનો મધ્યક શોધો :

મેળવેલ ગુણ (x_i)	10	20	36	40	50	56	60	70	72	80	88	92	95
વિદ્યાર્થીઓની સંખ્યા (f_i)	1	1	3	4	3	2	4	4	1	1	2	3	1

ઉંકેલ : યાદ કરો કે, ગુણનો મધ્યક શોધવા માટે, આપણને પ્રત્યેક x_i ના તેને અનુરુપ આવૃત્તિ f_i સાથેના ગુણાકારની આવશ્યક્તા છે. તેથી, ચાલો, આપણે કોષ્ટક 14.1માં બતાવ્યા પ્રમાણે તે સંખ્યાઓને સ્તંભમાં મૂકીએ.

કોષ્ટક 14.1

મેળવેલ ગુણ (x_i)	વિદ્યાર્થીઓની સંખ્યા (f_i)	$f_i x_i$
10	1	10
20	1	20
36	3	108
40	4	160
50	3	150
56	2	112
60	4	240
70	4	280
72	1	72
80	1	80
88	2	176
92	3	276
95	1	95
કુલ	$\Sigma f_i = 30$	$\Sigma f_i x_i = 1779$

હવે,
$$\bar{x} = \frac{\sum f_i x_i}{\sum f_i} = \frac{1779}{30} = 59.3$$

તેથી, મેળવેલ ગુણનો મધ્યક 59.3 છે.

આપણા જીવનની મોટા ભાગની વાસ્તવિક પરિસ્થિતિઓમાં, નિયમિત માહિતી એટલી વિશાળ હોય છે કે, તેના અર્થપૂર્ણ અભ્યાસ માટે વર્ગીકૃત માહિતીનું સંક્ષેપન અનિવાર્ય હોય છે. તેથી, આપેલ અવર્ગીકૃત માહિતીને વર્ગીકૃત માહિતીમાં પરિવર્તિત કરવાની આવશ્યકતા રહે છે અને તેનો મધ્યક શોધવા માટે કોઈક રીતની પ્રાપ્તિ આવશ્યક છે.

ચાલો, આપણે ઉદાહરણ 1ની અવર્ગીકૃત માહિતીને વર્ગીકૃત માહિતીમાં પરિવર્તિત કરીએ. તે માટે વર્ગ-અંતરાલોની લંબાઈ, કહો કે 15 ની લઈએ. યાદ રાખો, પ્રત્યેક વર્ગ-અંતરાલને આવૃત્તિની ફાળવણી કરતી વખતે, વિદ્યાર્થીઓની સંખ્યા કોઈ પણ ઊર્ધ્વ વર્ગ-સીમા જેટલી હોય, તો તેમને તે પછીના વર્ગમાં ગણવામાં આવશે. ઉદાહરણ તરીકે, જે 4 વિદ્યાર્થીઓએ 40 ગુણ મેળવ્યા છે, તે 4 વિદ્યાર્થીઓને વર્ગ-અંતરાલ 40-55 માં ગણવામાં આવશે અને 25-40 માં નહિ. હવે આપણે આ રૂઢિ ધ્યાનમાં રાખીને વર્ગીકૃત આવૃત્તિ વિતરણનું કોષ્ટક તૈયાર કરીએ. (જુઓ કોષ્ટક 14.2.)

કોષ્ટક 14.2

વર્ગ-અંતરાલ	10 - 25	25 - 40	40 - 55	55 - 70	70 - 85	85 - 100
વિદ્યાર્થીઓની સંખ્યા	2	3	7	6	6	6

હવે, પ્રત્યેક વર્ગ-અંતરાલ માટે, જેને સમગ્ર વર્ગના પ્રતિનિધિ તરીકે ઉપયોગમાં લઈ શકાય એવી એક સંખ્યાની આપણને જરૂર છે. આપણે એવું માની લઈએ છીએ કે, *દરેક વર્ગ-અંતરાલની આવૃત્તિ તેની મધ્યકિંમતની આસપાસ કેન્દ્રિત થાય છે.* તેથી, પ્રત્યેક વર્ગની મધ્યકિંમતને વર્ગમાં આવતાં અવલોકનોને દર્શાવવા માટે પસંદ કરી શકાય. યાદ કરો કે, આપણે વર્ગની ઊર્ધ્વસીમા અને અધઃસીમાની સરેરાશ શોધીને તે વર્ગની મધ્યકિંમત શોધીએ છીએ એટલે કે,

કોષ્ટક 14.2ના સંદર્ભમાં વર્ગ 10-25 માટે, મધ્યકિંમત $\frac{10+25}{2}$, એટલે કે, 17.5 છે. આ જ પ્રમાણે, બાકીના વર્ગ-અંતરાલો માટે આપણે મધ્યકિંમત શોધી શકીએ. આપણે તેમને કોષ્ટક 14.3 માં મૂકીએ. આ મધ્યકિંમત આપણા માટે x_i જેવું કાર્ય કરે છે. હવે, વ્યાપક રીતે, i માં વર્ગ-અંતરાલ માટે, આપણી પાસે મધ્યકિંમત x_i ને અનુરુપ આવૃત્તિ f_i છે. હવે, આપણે મધ્યકની ગણતરી, ઉદાહરણ 1 ની રીતે જ કરીએ.

કોષ્ટક 14.3

વર્ગ-અંતરાલ	વિદ્યાર્થીઓની સંખ્યા (f_i)	મધ્યકિમત (x_i)	$f_i x_i$
10 - 25	2	17.5	35.0
25 - 40	3	32.5	97.5
40 - 55	7	47.5	332.5
55 - 70	6	62.5	375.0
70 - 85	6	77.5	465.0
85 - 100	6	92.5	555.0
કુલ	$\Sigma f_i = 30$		$\Sigma f_i x_i = 1860.0$

છેલ્લા સ્તંભની કિંમતોનો સરવાળો આપણને $\Sigma f_i x_i$ આપે છે. તેથી, આપેલ માહિતીનો મધ્યક \overline{x} , નીચેના સૂત્ર પ્રમાણે મળે છે :

$$\overline{x} = \frac{\sum f_i x_i}{\sum f_i} = \frac{1860.0}{30} = 62$$

મધ્યક શોધવાની આ નવી રીત <mark>પ્રત્યક્ષ રીત</mark> તરીકે ઓળખાય છે.

આપણે નિરીક્ષણ કરીએ કે કોષ્ટક 14.1 અને 14.3 માં મધ્યકની ગણતરી માટે એક જ માહિતીનો ઉપયોગ કરી રહ્યા છીએ અને ગણતરી માટે સમાન સૂત્રને લાગુ કરીએ છીએ. પરંતુ મળતાં પરિણામો ભિન્ન છે. આપ કલ્પી શકશો કે, આવું કેમ બને છે અને કયું પરિણામ વધારે ચોક્કસ છે? બે કિંમતોમાં તફાવત, એ કોષ્ટક 14.3 માં મધ્યકિંમતની ધારણાને કારણે છે. 59.3 એ સાચો મધ્યક છે, જ્યારે 62 એ આસન્ન (અંદાજિત) મધ્યક છે.

કેટલીક વાર જ્યારે x_i અને f_i નાં સંખ્યાત્મક મૂલ્યો મોટાં હોય, ત્યારે x_i અને f_i નો ગુણાકાર શોધવાનું કંટાળાજનક થઇ જાય છે અને વધુ સમય માંગી લે છે. તેથી ચાલો, આ પ્રકારની પરિસ્થિતિમાં આપણે ગણતરીની સરળ રીતનો વિચાર કરીએ.

આપણે f_i ને કશું જ કરી શકતાં નથી, પરંતુ આપણી ગણતરી સરળ બને તે રીતે આપણે પ્રત્યેક x_i ને નાની સંખ્યામાં પરિવર્તિત કરી શકીએ, જેથી આપણી ગણતરી સરળ બને. આ આપણે કેવી રીતે કરી શકીશું? આ પ્રત્યેક x_i માંથી નિયત સંખ્યાને બાદ કરવા અંગે વિચારી શકીએ. ચાલો, આપણે આ રીતનો પ્રયત્ન કરીએ.

પ્રથમ પગલું એ છે કે, બધાં x_i માંથી એકને *ધારી લીધેલ મધ્યક* તરીકે પસંદ કરો અને તેને 'a' વડે દર્શાવો. વળી, આગળ ઉપર આપણું ગણતરીનું કાર્ય ઓછું કરવા, આપણે 'a' ને જે x_1, x_2, \ldots, x_n ની મધ્યે રહેલો હોય એવો x_i લઈ શકીએ. તેથી, આપણે a=47.5 અથવા a=62.5 પસંદ કરી શકીએ. ચાલો, આપણે a=47.5 પસંદ કરીએ.

(આ જરૂરી નથી. a કોઈપણ વાસ્તવિક સંખ્યા હોઈ શકે. આ માત્ર અનુકૂળતા માટે છે.)

પછીનું પગલું છે, a અને પ્રત્યેક x_i વચ્ચેનો તફાવત d_i શોધવાનું એટલે કે, પ્રત્યેક x_i થી a નું વિચલન શોધવાનું. અર્થાત્, $d_i=x_i-a=x_i-47.5$

ત્રીજું પગલું છે, d_i નો અનુરૂપ f_i સાથેનો ગુણાકાર શોધવાનો અને તમામ f_id_i નો સરવાળો કરવાનો છે. આ ગણતરીઓ કોષ્ટક 14.4 માં દર્શાવેલ છે.

કોષ્ટક 14.4

વર્ગ-અંતરાલ	વિદ્યાર્થીઓની સંખ્યા (f_{i})	મધ્યકિંમત (x_i)	$d_i = x_i - 47.5$	$f_i d_i$
10 - 25	2	17.5	-30	-60
25 - 40	3	32.5	-15	-4 5
40 - 55	7	47.5 = a	0	0
55 - 70	6	62.5	15	90
70 - 85	6	77.5	30	180
85 - 100	6	92.5	45	270
કુલ	$\Sigma f_i = 30$			$\Sigma f_i d_i = 435$

તેથી, કોષ્ટક 14.4 પરથી, વિચલનોનો મધ્યક,
$$\overline{d}=\frac{\sum f_i d_i}{\sum f_i}$$
.

હવે ચાલો, આપણે \overline{d} અને \overline{x} વચ્ચેનો સંબંધ શોધીએ. d_i મેળવવા માટે, આપણે પ્રત્યેક x_i માંથી 'a' ની બાદબાકી કરી છે. તેથી, \overline{x} મેળવવા માટે, આપણને \overline{d} માં 'a' ઉમેરવાની જરૂર છે. આ હકીકત, ગાણિતિક રીતે નીચે પ્રમાણે વર્ણવી શકાય :

વિચલનનો મધ્યક,
$$\overline{d} = \frac{\sum f_i d_i}{\sum f_i}$$
 તેથી,
$$\overline{d} = \frac{\sum f_i (x_i - a)}{\sum f_i}$$

$$= \frac{\sum f_i x_i}{\sum f_i} - \frac{\sum f_i a}{\sum f_i}$$

$$= \overline{x} - a \frac{\sum f_i}{\sum f_i}$$

$$= \overline{x} - a$$
 તેથી,
$$\overline{x} = a + \overline{d}$$
 એટલે કે,
$$\overline{x} = \frac{a}{\sum f_i d_i}$$

 $a, \; \Sigma f_i d_i$ અને $\; \Sigma f_i$ ની કિંમતો કોષ્ટક 14.4 માંથી મૂકતાં, આપણને

 $\overline{x} = 47.5 + \frac{435}{30} = 47.5 + 14.5 = 62$ મળે છે. આમ, વિદ્યાર્થીઓ દ્વારા મેળવેલા ગુણનો મધ્યક 62 છે.

ઉપર્યુક્ત વર્શવેલ રીતને ધારી લીધેલ મધ્યકની રીત (Assumed Mean Method) કહે છે.

પ્રવૃત્તિ 1: કોષ્ટક 14.3 પરથી પ્રત્યેક x_i (એટલે કે, 17.5, 32.5, અને આમ આગળ)ને 'a' તરીકે લઈને મધ્યક શોધો. તમે શું નિરીક્ષણ કરો છો? તમે જોઈ શકશો કે, પ્રત્યેક કિસ્સામાં પ્રાપ્ત થતો મધ્યક એક જ (સમાન) છે, એટલે કે, 62. (કેમ?)

નોંધ : ખરેખર તો 'a' તરીકે કોઈ પણ અનુકૂળ સંખ્યા લઈ શકાય. તેથી, આપણે કહી શકીએ કે મેળવેલા મધ્યકની કિંમત, 'a' ની પસંદગી પર આધારિત નથી.

કોષ્ટક 14.4 માં નિરીક્ષણ કરો કે, સ્તંભ 4 ની બધી જ કિંમતો 15 ની ગુણક છે. તેથી જો આપણે આખા સ્તંભ 4 ની બધી જ કિંમતોનો 15 વડે ભાગાકાર કરીએ, તો આપણે f_i સાથે ગુણાકાર કરવા માટે નાની સંખ્યાઓ પ્રાપ્ત કરી શકીએ. (અહીં દરેક વર્ગઅંતરાલની વર્ગલંબાઈ 15 છે.)

તેથી, $u_i = \frac{x_i - a}{h}$ લો. અહીં a ધારી લીધેલ મધ્યક અને h એ વર્ગલંબાઈ છે.

હવે, આપણે આ પ્રમાણે u_i ની ગણતરી કરીએ અને ગણતરી આગળ પ્રમાણે ચાલુ રાખીએ (એટલે કે, f_iu_i શોધીએ અને પછી Σf_iu_i). ચાલો આપણે h=15 લઈને કોપ્ટક 14.5 રચીએ.

વર્ગ-અંતરાલ	f_i	x_i	$d_i = x_i - a$	$u_i = \frac{x_i - a}{h}$	$f_i u_i$
10 - 25	2	17.5	- 30	-2	- 4
25 - 40	3	32.5	-15	- 1	- 3
40 - 55	7	47.5=a	0	0	0
55 - 70	6	62.5	15	1	6
70 - 85	6	77.5	30	2	12
85 - 100	6	92.5	45	3	18
	$\Sigma f_i = 30$				$\Sigma f_i u_i = 29$

કોષ્ટક 14.5

$$\overline{u} = \frac{\sum f_i u_i}{\sum f_i}$$
 eq.

અહીં, ચાલો આપણે ફરીથી \overline{u} અને \overline{x} વચ્ચેનો સંબંધ શોધીએ.

આપણી પાસે,
$$u_i = \frac{x_i - a}{h}$$
 છે.

તેથી,
$$\overline{u} = \frac{\sum f_i \frac{(x_i - a)}{h}}{\sum f_i} = \frac{1}{h} \left[\frac{\sum f_i x_i - a \sum f_i}{\sum f_i} \right]$$
$$= \frac{1}{h} \left[\frac{\sum f_i x_i}{\sum f_i} - a \frac{\sum f_i}{\sum f_i} \right]$$
$$= \frac{1}{h} \left[\overline{x} - a \right]$$
તેથી,
$$h\overline{u} = \overline{x} - a$$

એટલે કે
$$\overline{x} = a + h\overline{u}$$

તેથી,
$$\overline{x} = a + h \left(\frac{\sum f_i u_i}{\sum f_i} \right)$$

હવે, $a,\ h,\ \Sigma f_i u_i$ અને Σf_i નાં મૂલ્યો કોષ્ટક 14.5 માંથી મૂકતાં, આપણને

$$\overline{x} = 47.5 + 15 \times \left(\frac{29}{30}\right)$$

$$=47.5+14.5=62$$
 મળે છે.

તેથી, વિદ્યાર્થી દ્વારા મેળવેલ ગુણનો મધ્યક 62 છે.

ઉપર્યુક્ત દર્શાવેલ રીતને પદ-વિચલનની રીત (Step-deviation method) કહેવાય છે.

આપણે નોંધ કરીએ :

- ullet જો તમામ d_i માં સામાન્ય અવયવ હોય તો પદ-વિચલનની રીતનો ઉપયોગ અનુકૂળ રહેશે.
- ત્રણે ય રીતો દ્વારા મેળવેલ તમામ મધ્યક સમાન છે.
- ધારી લીધેલ મધ્યકની રીત અને પદ-વિચલનની રીત એ પ્રત્યક્ષ રીતનાં સહેલાઈથી સમજાય એવાં સ્વરૂપો માત્ર છે.
- જો a અને h ઉપર પ્રમાણે આપેલ ન હોય, પરંતુ, તે કોઈ પણ શૂન્યેતર સંખ્યાઓ હોય કે જેથી, $u_i = \frac{x_i a}{h}$ હોય, તો પણ સૂત્ર $\overline{x} = a + h\overline{u}$ સત્ય રહે છે.

ચાલો, આપણે આ રીતનો અન્ય ઉદાહરણમાં ઉપયોગ કરીએ.

<mark>ઉદાહરણ 2 :</mark> નીચે આપેલ કોષ્ટક, ભારતનાં કેટલાંક રાજ્યોનાં ગ્રામીણ વિસ્તારો અને કેન્દ્રશાસિત પ્રદેશો (Union Territories) ની પ્રાથમિક શાળાઓમાં સ્ત્રી શિક્ષકોનું ટકાવાર વિતરણ આપે છે. આ વિભાગમાં વર્ણવેલ ત્રણે ય રીતો દ્વારા સ્ત્રી શિક્ષકોની સંખ્યાનો મધ્યક ટકામાં શોધો.

સ્ત્રી શિક્ષકોની ટકાવારી	15-25	25-35	35-45	45-55	55-65	65-75	75-85
રાજ્યો/કેન્દ્રશાસિત પ્રદેશોની સંખ્યા	6	11	7	4	4	2	1

સ્ત્રોત : NCERT દ્વારા હાથ ધરાયેલ સાતમું ઑલ ઇન્ડિયા શાળાશિક્ષણ સર્વેક્ષણ

6કેલ : ચાલો, આપણે પ્રત્યેક વર્ગ માટે મધ્યકિંમત x_i શોધીએ, અને તેને સ્તંભમાં મૂકીએ. (જુઓ કોષ્ટક 14.6.)

કોપ્ટક 14.6

સ્ત્રી શિક્ષકોની	રાજ્યો/કેન્દ્રશાસિત	x_i
ટકાવારી	પ્રદેશોની સંખ્યા (f_i)	
15-25	6	20
25-35	11	30
35-45	7	40
45-55	4	50
55-65	4	60
65-75	2	70
75-85	1	80

અહીં આપણે a=50 તથા h=10 લઈએ. આથી $d_i=x_i-50$ અને $u_i=\frac{x_i-50}{10}$ થશે. હવે, આપણે d_i અને u_i શોધીએ અને તેમને કોષ્ટક 14.7 માં મૂકીએ.

કોષ્ટક 14.7

સ્ત્રી શિક્ષકોની ટકાવારી	રાજ્યો/કે.શા. પ્રદેશોની સંખ્યા (f_i)	x_i	$d_i = x_i - 50$	$u_i = \frac{x_i - 50}{10}$	$f_i x_i$	$f_i d_i$	$f_i u_i$
15 - 25	6	20	- 30	– 3	120	- 180	- 18
25 - 35	11	30	- 20	- 2	330	- 220	- 22
35 - 45	7	40	- 10	– 1	280	– 70	-7
45 - 55	4	50 = a	0	0	200	0	0
55 - 65	4	60	10	1	240	40	4
65 - 75	2	70	20	2	140	40	4
75 - 85	1	80	30	3	80	30	3
કુલ	$\Sigma f_i = 35$				1390	- 360	$\Sigma f_i u_i = -36$

ઉપરના કોપ્ટક પરથી આપણને $\Sigma f_i = 35$, $\Sigma f_i x_i = 1390$ મળે. $\Sigma f_i d_i = -360$, $\Sigma f_i u_i = -36$ મળે છે.

પ્રત્યક્ષ રીતનો ઉપયોગ કરતાં,
$$\bar{x} = \frac{\sum f_i x_i}{\sum f_i} = \frac{1390}{35} = 39.71$$

ધારી લીધેલ મધ્યકની રીતનો ઉપયોગ કરતાં,

$$\overline{x} = a + \frac{\sum f_i d_i}{\sum f_i} = 50 + \frac{(-360)}{35} = 39.71$$

પદ-વિચલનની રીતનો ઉપયોગ કરતાં,

$$\overline{x} = a + \left(\frac{\sum f_i u_i}{\sum f_i}\right) \times h = 50 + \left(\frac{-36}{35}\right) \times 10 = 39.71$$

તેથી, ગ્રામીણ વિસ્તારોની પ્રાથમિક શાળાઓમાં સ્ત્રી શિક્ષકોની ટકાવારીનો મધ્યક 39.71 છે.

નોંધ : ત્રણે રીતો દ્વારા મેળવેલ તમામ પરિણામ સમાન છે. તેથી ઉપયોગમાં લેવાની રીતની પસંદગી સંખ્યાત્મક કિંમતો x_i અને f_i પર આધારિત છે. જો x_i અને f_i ની કિંમતો પર્યાપ્ત રીતે નાની હોય, તો પ્રત્યક્ષ રીત યોગ્ય પસંદગી છે. જો x_i અને f_i સંખ્યાત્મક રીતે મોટી સંખ્યાઓ હોય, તો આપણે ધારી લીધેલ મધ્યકની રીત અથવા પદ-વિચલનની રીતનો ઉપયોગ કરી શકીએ. જો વર્ગલંબાઈ અસમાન હોય અને x_i સંખ્યાત્મક રીતે મોટી સંખ્યાઓ હોય, તો તેવા સંજોગોમાં તમામ h ને d_i ના યોગ્ય ભાજક તરીકે લઈને પદ-વિચલનની રીતનો ઉપયોગ કરી શકીએ.

<mark>ઉદાહરણ 3 ઃ</mark> નીચે આપેલ વિતરણ એક-દિવસીય ક્રિકેટ મૅચોમાં બૉલરો દ્વારા લેવાયેલી વિકેટોની સંખ્યા બતાવે છે. યોગ્ય રીત પસંદ કરીને વિકેટોની સંખ્યાનો મધ્યક શોધો. મધ્યક શું સૂચવે છે ?

વિકેટોની સંખ્યા	20-60	60-100	100-150	150-250	250-350	350-450
બોલરોની સંખ્યા	7	5	16	12	2	3

ઉંકેલ : અહીં, વર્ગલંબાઈ અચળ નથી અને x_i મોટા છે. ચાલો આપણે અહીં પણ a=200 અને h=20 લઈને પદ-વિચલનની રીતનો ઉપયોગ કરીએ. આપણને કોષ્ટક 14.8 દર્શાવ્યા પ્રમાણેની માહિતી મળે છે.

કોષ્ટક 14.8

લીધેલ વિકેટોની સંખ્યા	બૉલરોની સંખ્યા (<i>f_i</i>)	x_i	$d_i = x_i - 200$	$u_i = \frac{d_i}{20}$	$f_i u_i$
20 - 60	7	40	- 160	- 8	- 56
60 - 100	5	80	- 120	- 6	- 30
100 - 150	16	125	– 75	- 3.75	- 60
150 - 250	12	a = 200	0	0	0
250 - 350	2	300	100	5	10
350 - 450	3	400	200	10	30
કુલ	$\Sigma f_i = 45$				$\Sigma f_i u_i =$
					– 106

તેથી,
$$\overline{u} = \frac{-106}{45}$$
. આને કારણે, $\overline{x} = 200 + 20 \left(\frac{-106}{45}\right) = 200 - 47.11 = 152.89$

આ માહિતી આપણને કહે છે કે, આ 45 બૉલરો દ્વારા એક દિવસીય ક્રિકેટમાં, સરેરાશ 152.89 વિકેટો લેવામાં આવી છે. હવે, આપણે જોઈએ કે, આ વિભાગમાં જેની ચર્ચા કરેલ તે સંકલ્પનાનો તમે કેટલી સારી રીતે ઉપયોગ કરી શકો છો ! પ્રવૃત્તિ 2:

તમારા વર્ગના વિદ્યાર્થીઓને ત્રણ સમૂહમાં વિભાજિત કરો અને પ્રત્યેક સમૂહને કહો કે, નીચે આપેલ પ્રવૃત્તિઓમાંથી કોઈ એક પ્રવૃત્તિ કરે.

- 1. તમારી શાળાએ તાજેતરમાં લીધેલ પરીક્ષામાં તમારા વર્ગના બધા જ વિદ્યાર્થીઓએ ગણિતમાં મેળવેલા ગુણ પ્રાપ્ત કરે. મેળવેલ માહિતી પરથી વર્ગીકૃત આવૃત્તિ-વિતરણ તૈયાર કરે.
- 2. તમારા શહેરમાં 30 દિવસોના ગાળા દરમિયાન દરરોજ નોંધાયેલ મહત્તમ તાપમાન મેળવે. આ માહિતીને વર્ગીકૃત આવૃત્તિકોષ્ટકના રૂપમાં પ્રસ્તુત કરે.
- 3. તમારા વર્ગના બધા જ વિદ્યાર્થીઓની ઊંચાઈ (સેમીમાં) માપે અને આ માહિતીનું વર્ગીકૃત આવૃત્તિ-વિતરણ કોષ્ટક રચે.

તમામ સમૂહો દ્વારા માહિતી એકઠી થાય અને વર્ગીકૃત આવૃત્તિ-વિતરણ કોષ્ટકોની રચના થાય તે પછી, સમૂહો માટે યોગ્ય લાગે તે રીતનો ઉપયોગ કરીને પ્રત્યેક કિસ્સામાં મધ્યક શોધો.

સ્વાધ્યાય 14.1

1. વિદ્યાર્થીઓના એક સમૂહ દ્વારા તેમના પર્યાવરણ જાગૃતિ કાર્યક્રમના ભાગરૂપે એક સર્વેક્ષણ હાથ ધરવામાં આવ્યું. તેમાં તેમણે એક વિસ્તારનાં 20 ઘરોમાં વનસ્પતિના છોડની સંખ્યા વિશે નીચેની માહિતી એકઠી કરી. ઘર દીઠ છોડની સંખ્યાઓનો મધ્યક શોધો.

છોડની સંખ્યા	0-2	2-4	4-6	6-8	8-10	10-12	12-14
ઘરોની સંખ્યા	1	2	1	5	6	2	3

મધ્યક શોધવા માટે કઈ રીતનો ઉપયોગ કરશો ? શા માટે ?

2. એક ફ્રેક્ટરીમાં 50 કારીગરોના દૈનિક વેતનના નીચે આપેલ આવૃત્તિ વિતરણનો વિચાર કરો :

દૈનિક વેતન (₹ માં)	500-520	520-540	540-560	560-580	580-600
કારીગરોની સંખ્યા	12	14	08	06	10

યોગ્ય રીતનો ઉપયોગ કરીને કારખાનાના કારીગરોના દૈનિક વેતનનો મધ્યક શોધો.

 નીચેનું આવૃત્તિ વિતરણ વસ્તીનાં બાળકોનું દૈનિક ખિસ્સાભથ્થું દર્શાવે છે. ખિસ્સાભથ્થાનો મધ્યક ₹ 18 છે. ખૂટતી આવૃત્તિ f શોધો.

દૈનિક ખિસ્સાભથ્થું (₹ માં)	11-13	13-15	15-17	17-19	19-21	21-23	23-25
બાળકોની સંખ્યા	7	6	9	13	f	5	4

4. એક હૉસ્પિટલમાં દાક્તરે ત્રીસ મહિલાઓની શારીરિક તપાસ કરી અને પ્રતિ મિનિટ હૃદયના ધબકારાની નોંધ કરી તથા નીચે પ્રમાણે સારાંશ તૈયાર કર્યો. યોગ્ય રીત પસંદ કરીને, આ મહિલાઓના પ્રતિ મિનિટ હૃદયના ધબકારાનો મધ્યક શોધો.

પ્રતિ મિનિટ હૃદયના ધબકારાની સંખ્યા	65-68	68-71	71-74	74-77	77-80	80-83	83-86
મહિલાઓની સંખ્યા	2	4	3	8	7	4	2

5. એક છૂટક વેચાણ બજારમાં, ફળ વેચનારાઓ બંધ ખોખાંઓમાં કેરીઓ વેચી રહ્યા હતા. આ ખોખાંઓમાં કેરીઓ જુદી-જુદી સંખ્યાઓમાં હતી. ખોખાંઓની સંખ્યાના પ્રમાણમાં કેરીઓનું આવૃત્તિ વિતરણ નીચે પ્રમાણે હતું :

કેરીઓની સંખ્યા	50-52	53-55	56-58	59-61	62-64
ખોખાંઓની સંખ્યા	15	110	135	115	25

બંધ ખોખામાં મૂકેલ કેરીઓની સંખ્યાનો મધ્યક શોધો. મધ્યક શોધવા માટે તમે કઈ રીત પસંદ કરી હતી ?

6. નીચેનું કોષ્ટક એક વિસ્તારમાં 25 પરિવારના ખોરાકનો દૈનિક ઘરગથ્થું ખર્ચ બતાવે છે :

દૈનિક ખર્ચ (₹ માં)	100 - 150	150 - 200	200 - 250	250 - 300	300 - 350
પરિવારોની સંખ્યા	4	5	12	2	2

પરિવારના ખોરાક પરના દૈનિક ઘરગથ્થું ખર્ચનો મધ્યક યોગ્ય રીતનો ઉપયોગ કરીને શોધો.

 એક ચોક્કસ શહેરમાં 30 વિસ્તારોમાં હવામાં SO₂ ની સાંદ્રતા (ઘટકો પ્રતિ દસ લાખમાં, એટલે કે, ppm માં) શોધવા માટે નીચે દર્શાવેલ માહિતી એકત્રિત કરવામાં આવી હતી :

SO ₂ ની સાંદ્રતા (ppm માં)	આવૃત્તિ
0.00 - 0.04	4
0.04 - 0.08	9
0.08 - 0.12	9
0.12 - 0.16	2
0.16 - 0.20	4
0.20 - 0.24	2

હવામાં SO₂ ની સાંદ્રતાનો મધ્યક શોધો.

8. એક વર્ગની સમગ્ર સત્રની 40 વિદ્યાર્થીઓની ગેરહાજરીની યાદી વર્ગશિક્ષક પાસે છે. વિદ્યાર્થીઓની ગેરહાજર દિવસોની સંખ્યાનો મધ્યક શોધો.

ગેરહાજર દિવસોની સંખ્યા	0 - 6	6 - 10	10 - 14	14 - 20	20 - 28	28 - 38	38 - 40
વિદ્યાર્થીઓની સંખ્યા	11	10	7	4	4	3	1

9. નીચેનું કોષ્ટક 35 શહેરોમાં સાક્ષરતા દર (પ્રતિશતમાં) આપે છે. સાક્ષરતા દરનો મધ્યક શોધો.

સાક્ષરતા દર (ટકા માં)	45 - 55	55 - 65	65 - 75	75 - 85	85 - 95
શહેરોની સંખ્યા	3	10	11	8	3

14.3 વર્ગીકૃત માહિતીનો બહુલક

યાદ કરો, ધોરણ IX માં અભ્યાસ દરમ્યાન આપેલ અવલોકનોમાં સૌથી વધુ વખત આવતું અવલોકન એ બહુલક છે તેમ તમે જોયું હતું. એટલે કે, જે અવલોકનની આવૃત્તિ મહત્તમ હોય તે બહુલક છે. વધુમાં, અવર્ગીકૃત માહિતીનો બહુલક શોધવાની રીતની આપણે ચર્ચા કરી હતી. અહીં, વર્ગીકૃત માહિતીનો બહુલક મેળવવાની રીતો વિશે ચર્ચા કરીશું. એવું શક્ય છે કે, એક

ગણિત

કરતાં વધારે મૂલ્યને સમાન મહત્તમ આવૃત્તિ હોય. આવી પરિસ્થિતિઓમાં માહિતીને *બહુ-બહુલક (multimodal)* કહે છે. વર્ગીકૃત માહિતી બહુ-બહુલક માહિતી હોઈ શકે છે, છતાં આપણે આપણી જાતને જેમાં માત્ર એક બહુલક હોય તેવા કૂટપ્રશ્નો સુધી સીમિત રાખીશું.

ચાલો, આપણે નીચેના ઉદાહરણ દ્વારા પહેલાં તો યાદ કરીએ કે આપણે કેવી રીતે અવર્ગીકૃત માહિતી માટે બહુલક શોધ્યો હતો.

ઉદાહરણ 4 : એક બૉલર દ્વારા 10 ક્રિકેટ મૅચોમાં નીચે પ્રમાણે વિકેટો લેવામાં આવી છે :

2 6 4 5 0 2 1 3 2 3

આ માહિતીનો બહુલક શોધો.

ઉકેલ : ચાલો આપણે આપેલ માહિતીનું આવૃત્તિ-વિતરણ કોષ્ટક નીચે પ્રમાણે તૈયાર કરીએ :

વિકેટોની સંખ્ય	0	1	2	3	4	5	6
મૅચોની સંખ્યા	1	1	3	2	1	1	1

સ્પષ્ટ છે કે, સૌથી વધુ 3 મેચમાં 2 વિકેટ લીધી છે. તેથી આ માહિતીનો બહુલક 2 છે.

વર્ગીકૃત આવૃત્તિ-વિતરણમાં આવૃત્તિની માહિતી જોતાં જ બહુલક શોધવો શક્ય નથી. અહીં, આપણે કેવળ મહત્તમ આવૃત્તિવાળા વર્ગને ઓળખી શકીએ. તેને બહુલક વર્ગ (modal class) કહેવાય છે. બહુલક એ બહુલક વર્ગમાં આવેલું એક મૂલ્ય છે, અને તે,

બહુલક =
$$m{l} + \left(rac{f_1 - f_0}{2f_1 - f_0 - f_2}
ight) imes m{h}$$

સૂત્ર દ્વારા આપવામાં આવે છે :

જ્યાં, 🛾 = બહુલક વર્ગની અધઃસીમા

h = aર્ગ અંતરાલની લંબાઈ (બધા વર્ગની લંબાઈ સમાન છે એમ માનીને)

 f_1 = બહુલક વર્ગની આવૃત્તિ

 f_0 = બહુલક વર્ગની આગળના વર્ગની આવૃત્તિ

 f_2 = બહુલક વર્ગની પાછળના વર્ગની આવૃત્તિ

આ સૂત્રના ઉપયોગની સમજૂતી માટે ચાલો આપણે નીચેનાં ઉદાહરણો જોઈએ.

ઉદાહરણ 5 : વિદ્યાર્થીઓના એક સમૂહે એક વસ્તીમાં 20 પરિવારની સભ્યસંખ્યા પર સર્વેક્ષણ હાથ ધર્યો. તેનાથી પરિવારના સભ્યોની સંખ્યા માટે નીચેનું આવૃત્તિકોષ્ટક બન્યું.

પરિવારની સભ્યસંખ્યા	1 - 3	3 - 5	5 - 7	7 - 9	9 - 11
પરિવારોની સંખ્યા	7	8	2	2	1

આ માહિતીનો બહુલક શોધો.

ઉકેલ : અહીં, મહત્તમ વર્ગઆવૃત્તિ 8 છે. આ આવૃત્તિને અનુરૂપ વર્ગ 3 – 5 છે. તેથી બહુલક વર્ગ 3 – 5 છે.

હવે બહુલક વર્ગ 3 - 5 છે. બહુલક વર્ગની અધ:સીમા (l)=3, વર્ગ લંબાઈ (h)=2

બહુલક વર્ગની આવૃત્તિ $(f_1)=8$

બહુલક વર્ગની આગળના વર્ગની આવૃત્તિ $(f_0)=7$

બહુલક વર્ગની પાછળના વર્ગની આવૃત્તિ $(f_2)=2$

હવે, ચાલો આપણે આ કિંમતો બહુલક શોધવાના સૂત્રમાં મૂકીએ :

બહુલક
$$=l+\left(rac{f_1-f_0}{2f_1-f_0-f_2}
ight) imes h$$

$$=3+\left(\frac{8-7}{2\times8-7-2}\right)\times2=3+\frac{2}{7}=3.286$$

આમ, આપેલ માહિતીનો બહુલક 3.286 છે.

<mark>ઉદાહરણ 6 :</mark> ગણિતની પરીક્ષામાં 30 વિદ્યાર્થીઓના ગુણનું વિતરણ ઉદાહરણ 1 ના કોષ્ટક 14.3 માં આપેલ છે. આ માહિતીનો બહુલક શોધો. વળી, તેને મધ્યક સાથે સરખાવો તથા બહુલક અને મધ્યકનું અર્થઘટન કરો.

ઉકેલ : ઉદાહરણ 1ના કોષ્ટક 14.3ના સંદર્ભમાં, મહત્તમ સંખ્યામાં વિદ્યાર્થીઓએ (એટલે કે, 7) અંતરાલ 40-55 માં ગુણ મેળવ્યાં હોવાથી, બહુલક વર્ગ 40-55 છે. આને કારણે,

બહુલક વર્ગની અધઃસીમા (l)=40

વર્ગલંબાઈ (h) = 15

બહુલક વર્ગની આવૃત્તિ $(f_1)=7$

બહુલક વર્ગની આગળના વર્ગની આવૃત્તિ $(f_0)=3$

બહુલક વર્ગની પાછળના વર્ગની આવૃત્તિ $(f_2)=6$

હવે, સૂત્રનો ઉપયોગ કરતાં,

બહુલક
$$=l+\left(rac{f_1-f_0}{2f_1-f_0-f_2}
ight) imes h$$

આથી, બહુલક =
$$40 + \left(\frac{7-3}{14-6-3}\right) \times 15 = 52$$

તેથી, પ્રાપ્ત ગુણનો બહુલક 52 છે.

હવે, ઉદાહરણ 1 પરથી, આપ જાણો છો કે, ગુણનો મધ્યક 62 છે. તેથી, મહત્તમ સંખ્યામાં વિદ્યાર્થીઓએ 52 ગુણ મેળવ્યા છે. જ્યારે, સરેરાશની દેષ્ટિએ વિદ્યાર્થીઓ 62 ગુણ મેળવ્યા છે.

નોંધ :

- 1. ઉદાહરણ 6 માં બહુલક એ મધ્યક કરતાં નાનો છે. પરંતુ કેટલાક અન્ય પ્રશ્નો માટે તે મધ્યક જેટલો અથવા તેના કરતાં મોટો પણ હોઈ શકે.
- 2. આપણો રસ વિદ્યાર્થીઓએ મેળવેલા સરેરાશ ગુણ શોધવામાં છે કે મોટા ભાગના વિદ્યાર્થીઓએ મેળવેલા ગુણ શોધવામાં એ પરિસ્થિતિની જરૂરિયાત પર આધાર રાખે છે. પ્રથમ પરિસ્થિતિમાં મધ્યકની જરૂરિયાત છે અને બીજી પરિસ્થિતિમાં બહલકની જરૂરિયાત છે.

પ્રવૃત્તિ 3 : પ્રવૃત્તિ 2 માં રચેલા સમૂહો અને સમૂહોને સોંપેલી સ્થિતિઓ સાથે જ આગળ વધો. પ્રત્યેક સમૂહને માહિતીનો બહુલક શોધવાનું કહો. વળી, તેમણે બહુલકની સરખામણી મધ્યક સાથે કરવી જોઈએ અને બંનેનું અર્થઘટન કરવું જોઈએ.

નોંધ ઃ અસમાન વર્ગલંબાઈવાળી વર્ગીકૃત માહિતી માટે પણ બહુલકની ગણતરી કરી શકાય. પરંતુ આપણે તેની ચર્ચા કરીશું નહિ.

સ્વાધ્યાય 14.2

1. નીચેનું કોષ્ટક એક વર્ષ દરમિયાન એક દવાખાનામાં દાખલ થયેલા દર્દીઓની ઉંમર દર્શાવે છે :

ઉંમર (વર્ષમાં)	5 - 15	15 - 25	25 - 35	35 - 45	45 - 55	55 - 65
દર્દીઓની સંખ્યા	6	11	21	23	14	5

ઉપર આપેલ માહિતી માટે બહુલક અને મધ્યક શોધો. કેન્દ્રિય મધ્યવર્તી સ્થિતિનાં આ બે માપોની સરખામણી અને અર્થઘટન કરો.

2. નીચેની માહિતી 225 વીજઉપકરણોના આયુષ્યની (કલાકોમાં) પ્રાપ્ત માહિતી દર્શાવે છે.

આયુષ્ય (કલાકો	માં) 0 - 20	20 - 40	40 - 60	60 - 80	80 - 100	100 - 120
આવૃત્તિ	10	35	52	61	38	29

તો ઉપકરણોના આયુષ્યનો બહુલક નક્કી કરો.

 નીચેની માહિતી એક ગામનાં 200 કુટુંબો માટે તેમના ઘર ચલાવવા માટે કુલ માસિક ખર્ચનું આવૃત્તિ વિતરણ દર્શાવે છે. કુટુંબોના માસિક ખર્ચનો બહુલક શોધો તથા કુટુંબોના માસિક ખર્ચનો મધ્યક શોધો :

માસિક ખર્ચ (₹ માં)	કુટુંબોની સંખ્યા
1000 - 1500	24
1500 - 2000	40
2000 - 2500	33
2500 - 3000	28
3000 - 3500	30
3500 - 4000	22
4000 - 4500	16
4500 - 5000	7

4. નીચેનું વિતરણ ભારતની ઉચ્ચતર માધ્યમિક શાળાઓમાં રાજ્યવાર શિક્ષક-વિદ્યાર્થી ગુણોત્તરનું આવૃત્તિ વિતરણ આપે છે. આ માહિતીનો બહુલક અને મધ્યક શોધો. આ બે માપનું અર્થઘટન કરો.

પ્રતિ શિક્ષક વિદ્યાર્થીઓની સંખ્યા	રાજ્યો/કેન્દ્ર શાસિત પ્રદેશોની સંખ્યા
15 - 20	3
20 - 25	8
25 - 30	9
30 - 35	10
35 - 40	3
40 - 45	0
45 - 50	0
50 - 55	2

5. નીચે આપેલ આવૃત્તિ વિતરણ વિશ્વના કેટલાક શ્રેષ્ઠ બૅટ્સમેનો દ્વારા એક દિવસીય આંતરરાષ્ટ્રીય મૅચોમાં નોંધાવેલ રનની સંખ્યા આપે છે :

નોંધાવેલ રન	બેટ્સમેનોની સંખ્યા
3000 - 4000	4
4000 - 5000	18
5000 - 6000	9
6000 - 7000	7
7000 - 8000	6
8000 - 9000	3
9000 - 10000	1
10000 - 11000	1

માહિતીનો બહુલક શોધો.

6. એક વિદ્યાર્થીએ, પ્રત્યેક 3 મિનિટનો એક એવા 100 સમયગાળાઓ માટે રસ્તા પરની એક જ્ગ્યાએથી પસાર થતી ગાડીઓની સંખ્યાની નોંધ કરી અને તેને નીચે આપેલ કોષ્ટકમાં સંક્ષિપ્ત સ્વરૂપમાં દર્શાવી છે. આ માહિતીનો બહુલક શોધો.

ગાડીઓની સંખ્યા	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60	60 - 70	70 - 80
આવૃત્તિ	7	14	13	12	20	11	15	8

14.4 વર્ગીકૃત માહિતીનો મધ્યસ્થ

ધોરણ IX માં તમે અભ્યાસ કર્યો છે તેમ, મધ્યસ્થ માહિતીમાં મધ્યના અવલોકનનું મૂલ્ય આપતું હોય એવું મધ્યવર્તી સ્થિતિમાનનું માપ છે. યાદ કરો, અવર્ગીકૃત માહિતીનો મધ્યસ્થ શોધવા માટે, આપશે પહેલાં માહિતીનાં અવલોકનોને ચઢતા ક્રમમાં ગોઠવીએ છીએ. ત્યાર બાદ, જો n-અયુગ્મ હોય, તો મધ્યસ્થ એ $\left(\frac{n+1}{2}\right)$ મું અવલોકન છે. અને જો n-યુગ્મ હોય, તો મધ્યસ્થ એ $\frac{n}{2}$ માં અને $\left(\frac{n}{2}+1\right)$ માં અવલોકનોની સરેરાશ છે.

ગણિત

નીચે 100 વિદ્યાર્થીઓએ 50 ગુણની એક કસોટીમાં મેળવેલા ગુણ દર્શાવ્યા છે. આ માહિતીનો મધ્યસ્થ શોધવો છે.

મેળવેલા ગુણ	20	29	28	33	42	38	43	25
વિદ્યાર્થીઓની સંખ્યા	6	28	24	15	2	4	1	20

સૌપ્રથમ, આપણે ગુણને ચઢતા ક્રમમાં ગોઠવીએ અને નીચે પ્રમાણે આવૃત્તિ કોષ્ટક તૈયાર કરીએ :

કોષ્ટક 14.9

મેળવેલા ગુણ	વિદ્યાર્થીઓની સંખ્યા (આવૃત્તિ)
20	6
25	20
28	24
29	28
33	15
38	4
42	2
43	1
કુલ	100

અહીં, n=100 એ યુગ્મ છે. તેથી મધ્યસ્થ એ $\frac{n}{2}$ માં અને $\left(\frac{n}{2}+1\right)$ માં અવલોકનોની સરેરાશ થશે, એટલે કે, તે 50 માં અને 51 માં અવલોકનોની સરેરાશ થશે. આ અવલોકનો શોધવા માટે, નીચે પ્રમાણે આગળ વધીએ :

કોષ્ટક 14.10

મેળવેલા ગુણ	વિદ્યાર્થીઓની સંખ્યા
20	6
25 સુધી	6 + 20 = 26
28 સુધી	26 + 24 = 50
29 સુધી	50 + 28 = 78
33 સુધી	78 + 15 = 93
38 સુધી	93 + 4 = 97
42 સુધી	97 + 2 = 99
43 સુધી	99 + 1 = 100

આપણે આ માહિતીને ઉપરના આવૃત્તિ કોષ્ટકને દર્શાવતો હોય, તેમાં એક બીજો સ્તંભ ઉમેરીએ અને તેનું નામ સંચયી આવૃત્તિ-સ્તંભ રાખીશું.

કોષ્ટક 14.11

મેળવેલા ગુણ	વિદ્યાર્થીઓની સંખ્યા	સંચયી આવૃત્તિ
20	6	6
25	20	26
28	24	50
29	28	78
33	15	93
38	4	97
42	2	99
43	1	100

ઉપરના કોષ્ટક પરથી, આપણે જોઈ શકીએ છીએ કે,

(શા માટે?)

51 મું અવલોકન 29 છે.

તેથી, મધ્યસ્થ =
$$\frac{28+29}{2}$$
 = 28.5

નોંધ : કોષ્ટક 14.11 ના સ્તંભ 1 અને સ્તંભ 3 થી બનેલો ભાગ સંચયી આવૃત્તિ કોષ્ટક તરીકે ઓળખાય છે. આશરે 50 % વિદ્યાર્થીઓએ 28.5 કરતાં ઓછા ગુણ મેળવ્યા છે અને બીજા 50 % વિદ્યાર્થીઓએ 28.5 કરતાં વધુ ગુણ મેળવ્યાં છે એવી માહિતી મધ્યસ્થ 28.5 દ્વારા મળે છે.

હવે, ચાલો આપણે જોઈએ કે વર્ગીકૃત માહિતી માટે મધ્યસ્થ કેવી રીતે મેળવવો. નીચેની પરિસ્થિતિ દ્વારા તે સમજીએ.

એક ચોક્કસ પરીક્ષામાં 53 વિદ્યાર્થીઓએ 100 માંથી મેળવેલા ગુણનું વર્ગીકૃત આવૃત્તિ-વિતરણ નીચે આપેલ છે તેનો અભ્યાસ કરો :

કોષ્ટક 14.12

ગુણ	વિદ્યાર્થીઓની સંખ્યા
0 - 10	5
10 - 20	3
20 - 30	4
30 - 40	3
40 - 50	3
50 - 60	4
60 - 70	7
70 - 80	9
80 - 90	7
90 - 100	8

ઉપરના કોષ્ટક પરથી, નીચેના પ્રશ્નોના ઉત્તર આપવા પ્રયત્ન કરો :

કેટલા વિદ્યાર્થીઓએ 10 કરતાં ઓછા ગુણ મેળવ્યા?

જવાબ સ્પષ્ટ છે કે, 5.

કેટલા વિદ્યાર્થીઓએ 20 કરતાં ઓછા ગુણ મેળવ્યા?

નિરીક્ષણ કરો કે, જે વિદ્યાર્થીઓએ 20 કરતાં ઓછા ગુણ મેળવ્યા છે તે સંખ્યા 0 - 10 સુધી મેળવેલા ગુણવાળા વિદ્યાર્થીઓની સંખ્યા તેમજ 10 - 20 સુધી મેળવેલા ગુણવાળા વિદ્યાર્થીઓની સંખ્યાનો પોતાનામાં સમાવેશ કરે છે. તેથી 20 કરતાં ઓછા ગુણવાળા વિદ્યાર્થીઓની સંખ્યા 5 + 3 એટલે કે 8 છે. આપણે કહીએ છીએ કે વર્ગ 10 - 20 ની સંચયી આવૃત્તિ 8 છે.

આ જ પ્રમાણે, બીજા વર્ગો માટે સંચયી આવૃત્તિની ગણતરી કરી શકીએ. એટલે કે, 30 કરતાં ઓછા ગુણવાળા વિદ્યાર્થીઓની સંખ્યા, 40 કરતાં ઓછા, ... , 100 કરતાં ઓછા સુધી. આપણે તેમને નીચે આપેલ કોષ્ટક 14.13 માં દર્શાવીએ છીએ :

કોષ્ટક 14.13

5185 1	4.13
મેળવેલા ગુણ	વિદ્યાર્થીઓની સંખ્યા (સંચયી આવૃત્તિ)
10 કરતાં ઓછા	5
20 કરતાં ઓછા	5 + 3 = 8
30 કરતાં ઓછા	8 + 4 = 12
40 કરતાં ઓછા	12 + 3 = 15
50 કરતાં ઓછા	15 + 3 = 18
60 કરતાં ઓછા	18 + 4 = 22
70 કરતાં ઓછા	22 + 7 = 29
80 કરતાં ઓછા	29 + 9 = 38
90 કરતાં ઓછા	38 + 7 = 45
100 કરતાં ઓછા	45 + 8 = 53

ઉપર આપેલ વિતરણને *'થી ઓછા પ્રકારનું'* સંચયી આવૃત્તિ-વિતરણ કહે છે. અહીં 10, 20, 30, ..., 100, એ જે-તે વર્ગ અંતરાલોની ઊર્ધ્વસીમાઓ છે.

આપણે આ જ પ્રમાણે, 0 કે તેના કરતાં વધારે ગુણવાળા, 10 કે તેના કરતાં વધારે ગુણવાળા, 20 કે તેના કરતાં વધારે ગુણવાળા, અને આમ આગળ, વિદ્યાર્થીઓની સંખ્યા માટેનું કોષ્ટક બનાવી શકીએ. કોષ્ટક 14.12 પરથી, આપણે નિરીક્ષણ કરીએ છીએ કે, તમામ 53 વિદ્યાર્થીઓએ 0 કે તેનાથી વધારે ગુણ મેળવ્યા છે. 5 વિદ્યાર્થીઓએ અંતરાલ 0-10 માં ગુણ મેળવ્યા છે. તેથી, આનો અર્થ એ થાય છે કે 53-5=48 વિદ્યાર્થીઓ 10 કે તેથી વધુ ગુણ મેળવે છે. આ જ પ્રમાણે આગળ વધતાં, આપણને 20 કે તેથી વધુ ગુણ મેળવવાવાળા વિદ્યાર્થીઓની સંખ્યા 48-3=45, 30 કે વધુ માટે 45-4=41, અને આમ આગળ, કોષ્ટક 14.14 માં બતાવ્યા પ્રમાણે.

કોપ્ટક 14.14

મેળવેલા ગુણ	વિદ્યાર્થીઓની સંખ્યા (સંચયી આવૃત્તિ)
0 કે તેથી વધારે	53
10 કે તેથી વધારે	53 - 5 = 48
20 કે તેથી વધારે	48 - 3 = 45
30 કે તેથી વધારે	45 – 4 = 41
40 કે તેથી વધારે	41 - 3 = 38
50 કે તેથી વધારે	38 - 3 = 35
60 કે તેથી વધારે	35 - 4 = 31
70 કે તેથી વધારે	31 - 7 = 24
80 કે તેથી વધારે	24 – 9 = 15
90 કે તેથી વધારે	15 - 7 = 8

ઉપરના કોષ્ટકને, 'થી વધારે પ્રકારનું' સંચયી આવૃત્તિ-વિતરણ કહે છે. અહીં, 0, 10, 20, 30, ..., 90 એ જે તે વર્ગ-અંતરાલની અધઃસીમાઓ છે.

હવે, વર્ગીકૃત માહિતીનો મધ્યસ્થ શોધવા માટે આપણે આ પૈકી ગમે તે સંચયી આવૃત્તિ-વિતરણનો ઉપયોગ કરી શકીએ.

ચાલો, આપણે નીચે આપેલ કોષ્ટક 14.15 મેળવવા માટે કોષ્ટકો 14.12 અને 14.13 ને એકત્રિત કરીએ.

કોષ્ટક 14.15

મેળવેલા ગુણ	વિદ્યાથીઓની સંખ્યા <i>(f</i>)	સંચયી આવૃત્તિ (<i>cf</i>)
0 - 10	5	5
10 - 20	3	8
20 - 30	4	12
30 - 40	3	15
40 - 50	3	18
50 - 60	4	22
60 - 70	7	29
70 - 80	9	38
80 - 90	7	45
90 - 100	8	53

ગણિત

હવે, વર્ગીકૃત માહિતીમાં, સંચયી આવૃત્તિઓ તરફ દષ્ટિપાત કરીને જ આપણે મધ્યનું અવલોકન શોધવા સમર્થ ન હોઇ શકીએ, કારણ કે મધ્યનું અવલોકન એ કોઈક વર્ગઅંતરાલની અંદરનું મૂલ્ય હશે. તેથી કોઈક વર્ગમાં એક એવું અવલોકન શોધવું આવશ્યક છે, જે સમગ્ર વિતરણના બે સમાન ભાગ કરે. પરંતુ આ કયો વર્ગ હોવો જોઈએ?

આ વર્ગ શોધવા માટે, આપણે બધા વર્ગોની સંચયી આવૃત્તિઓ અને $\frac{n}{2}$ શોધીએ. હવે, આપણે એવો ચોક્કસ વર્ગ નક્કી કરીએ કે, જેની સંચયી આવૃત્તિ $\frac{n}{2}$ કરતાં મોટી (અને $\frac{n}{2}$ ની સૌથી નજીક) છે. આને $\frac{n}{2}$ કહેવાય છે. ઉપરના વિતરણમાં, n=53. તેથી, $\frac{n}{2}=26.5$. હવે, જેની સંચયી આવૃત્તિ 29 હોય તેવો વર્ગ 60 - 70 છે. 29 એ $\frac{n}{2}$ એટલે કે, 26.5 પછી તુરત જ મોટી આવૃત્તિ છે.

તેથી, 60 - 70 એ મધ્યસ્થ વર્ગ છે.

મધ્યસ્થ વર્ગ શોધ્યા પછી, આપણે મધ્યસ્થ શોધવા માટે નીચેના સૂત્રનો ઉપયોગ કરીએ :

મધ્યસ્થ
$$= l + \left(rac{rac{n}{2} - cf}{f}
ight) imes h$$

જ્યાં, 1 = મધ્યસ્થ વર્ગની અધ:સીમા

n = અવલોકનોની સંખ્યા

cf = મધ્યસ્થ વર્ગની આગળના વર્ગની સંચયી આવૃત્તિ

f = મધ્યસ્થ વર્ગની આવૃત્તિ

h = વર્ગલંબાઈ (માની લીધું છે કે વર્ગલંબાઈ સમાન છે.)

ફિંમલો
$$\frac{n}{2}$$
 = 26.5, l = 60, cf = 22, f = 7, h = 10

ઉપરના સૂત્રમાં આ કિંમતો મૂકતાં,

મધ્યસ્થ =
$$60 + \left(\frac{26.5 - 22}{7}\right) \times 10$$

= $60 + \frac{45}{7}$
= 66.4 મળશે.

તેથી, લગભગ અડધા વિદ્યાર્થીઓએ 66.4 કરતાં ઓછા ગુણ મેળવ્યા છે અને અડધા વિદ્યાર્થીઓએ 66.4 કરતાં વધારે ગુણ મેળવ્યા છે.

ઉદાહરણ 7: એક શાળાના ધોરણ X ની 51 છોકરીઓની ઊંચાઈનો (સેમીમાં) સર્વેક્ષણ હાથ ધરવામાં આવ્યો અને નીચેની માહિતી મેળવવામાં આવી :

ઊંચાઈ (સેમીમાં)	છોકરીઓની સંખ્યા		
140 કરતાં ઓછી	4		
145 કરતાં ઓછી	11		
150 કરતાં ઓછી	29		
155 કરતાં ઓછી	40		
160 કરતાં ઓછી	46		
165 કરતાં ઓછી	51		

ઊંચાઈનો મધ્યસ્થ શોધો.

ઉકેલ : મધ્યસ્થ ઊંચાઈની ગણતરી કરવા માટે આપણને વર્ગઅંતરાલો અને તેમને અનુરૂપ આવૃત્તિની જરૂર છે.

આપેલ વિતરણ 'થી ઓછા પ્રકારનું' છે. 140, 145, 150, ..., 165 અનુરૂપ વર્ગ અંતરાલોની ઊર્ધ્વસીમાઓ છે. તેથી વર્ગો 140 થી ઓછી સંખ્યા. 140 - 145, 145 - 150, ..., 160 - 165 હોવા જોઈએ. નિરીક્ષણ કરો કે, આપેલ વિતરણ પરથી, આપણને જ્ઞાત થાય છે કે 4 છોકરીઓની ઊંચાઈ 140 સેમી કરતાં ઓછી છે, એટલે કે 140 થી નીચેના વર્ગ અંતરાલની આવૃત્તિ 4 છે. હવે, જેમની ઊંચાઈ 145 કરતાં ઓછી છે એવી 11 છોકરીઓ છે અને 4 છોકરીઓની ઊંચાઈ 140 કરતાં ઓછી છે. તેથી, અંતરાલ 140–145 માં જેમની ઊંચાઈ હોય તેવી છોકરીઓની સંખ્યા 11–4 = 7 છે, આ જ પ્રમાણે 145 - 150 ની આવૃત્તિ છે, 29–11 = 18, 150 - 155 માટે 40–29 = 11 અને આમ આગળ. તેથી આપણું આવૃત્તિ–વિતરણ કોષ્ટક આપેલ સંચયી આવૃત્તિઓ દર્શાવવાની આ રીતનું થશે :

કોષ્ટક 14.16

વર્ગ-અંતરાલો	આવૃત્તિ	સંચયી આવૃત્તિ
140 થી ઓછી	4	4
140 - 145	7	11
145 - 150	18	29
150 - 155	11	40
155 - 160	6	46
160 - 165	5	51

હવે,
$$n=51$$
. તેથી, $\frac{n}{2}=\frac{51}{2}=25.5$. આ અવલોકન વર્ગ 145 - 150 માં છે. તેથી,

l (અધઃસીમા) = 145

cf (145 - 150 થી આગળના વર્ગની સંચયી આવૃત્તિ) = 11

f (મધ્યસ્થ વર્ગ 145 – 150 ની આવૃત્તિ) = 18

h (વર્ગલંબાઈ) = 5

સૂત્ર, મધ્યસ્થ
$$= l + \left(\frac{\frac{n}{2} - cf}{f}\right) \times h$$
 નો ઉપયોગ કરતાં,

આપણી પાસે, મધ્યસ્થ =
$$145 + \left(\frac{25.5 - 11}{18}\right) \times 5$$
 = $145 + \frac{72.5}{18} = 149.03$

તેથી, છોકરીઓની મધ્યસ્થ ઊંચાઈ 149.03 સેમી છે.

આનો અર્થ છે કે લગભગ 50 % છોકરીઓની ઊંચાઈ આ ઊંચાઈ કરતાં ઓછી અને 50 % છોકરીઓની ઊંચાઈ આના કરતાં વધારે છે.

ઉદાહરણ 8 : નીચે આપેલ માહિતીનો મધ્યસ્થ 525 છે. જો કુલ આવૃત્તિ 100 હોય, તો x અને y નાં મૂલ્યો શોધો.

વર્ગ-અંતરાલ	આવૃત્તિ
0 - 100	2
100 - 200	5
200 - 300	x
300 - 400	12
400 - 500	17
500 - 600	20
600 - 700	у
700 - 800	9
800 - 900	7
900 - 1000	4

ઉકેલ :

વર્ગ-અંતરાલ	આવૃત્તિ	સંચયી આવૃત્તિ
0 - 100	2	2
100 - 200	5	7
200 - 300	x	7 + x
300 - 400	12	19 + x
400 - 500	17	36 + x
500 - 600	20	56 + x
600 - 700	у	56 + x + y
700 - 800	9	65 + x + y
800 - 900	7	72 + x + y
900 - 1000	4	76 + x + y

$$n = 100$$
 આપેલ છે.

તેથી,
$$76 + x + y = 100$$
, એટલે કે $x + y = 24$... (1) મધ્યસ્થ 525 છે, અને તે વર્ગ 500 – 600 માં આવેલ છે. તેથી, $l = 500$, $f = 20$, $cf = 36 + x$, $h = 100$ સૂત્રનો ઉપયોગ કરતાં,

મધ્યસ્થ =
$$l + \left(\frac{\frac{n}{2} - cf}{f}\right) \times h$$

આપણને મળે છે,
$$525 = 500 + \left(\frac{50-36-x}{20}\right) \times 100$$
 એટલે કે,
$$525 - 500 = (14-x) \times 5$$
 એટલે કે,
$$25 = 70 - 5x$$
 એટલે કે,
$$5x = 70 - 25 = 45$$
 તેથી,
$$x = 9$$
 આને કારણે, (1) પરથી આપણને મળે છે. $9 + y = 24$, એટલે કે
$$y = 15$$

હવે, તમે મધ્યવર્તી સ્થિતિમાનનાં તમામ ત્રણે ય માપોનો અભ્યાસ કર્યો છે, ચાલો આપણે ચર્ચા કરીએ કે કયું માપ ચોક્કસ જરૂરિયાત માટે ઉત્તમપણે અનુકૂળ રહેશે.

મધ્યક એ સૌથી વધુ વખત ઉપયોગમાં લેવાતું મધ્યવર્તી સ્થિતિમાનનું માપ છે, કારણ કે તે તમામ અવલોકનોને ગણતરીમાં લે છે અને સંપૂર્ણ માહિતીના સૌથી મોટા અને સૌથી નાના અવલોકનોની સીમાઓની વચ્ચે રહે છે. તે આપણને બે કે તેથી વધુ વિતરણોની સરખામણી કરવા માટેનું સામર્થ્ય આપે છે. ઉદાહરણ તરીકે, એક ચોક્કસ પરીક્ષાના જુદી-જુદી શાળાઓના વિદ્યાર્થીઓના પરિણામના મધ્યકની સરખામણી કરવાથી, આપણે તારવી શકીએ કે, કઈ શાળાની કામગીરી વધુ સારી છે.

જોકે, માહિતીમાં આત્યંતિક કિંમતો મધ્યકને અસર કરે છે. ઉદાહરણ તરીકે, જ્યાં વર્ગોની આવૃત્તિ લગભગ એકસરખી હોય ત્યારે વર્ગોનો મધ્યક, માહિતીનું સારું પ્રતિનિધિત્વ કરે છે. પરંતુ, જો એક વર્ગની આવૃત્તિ 2 હોય અને બીજા પાંચની આવૃત્તિઓ 20, 25, 20, 21, 18 હોય, તો માહિતી જે રીતે વર્તે છે તેને મધ્યક સારી રીતે પ્રતિબિંબિત નહિ કરે. તેથી, આવી પરિસ્થિતિમાં મધ્યક, માહિતીનું સારી રીતે પ્રતિનિધિત્વ કરતો નથી.

જેમાં વ્યક્તિગત અવલોકનો મહત્ત્વનાં નથી તેવા પ્રશ્નો અંગે આપણે ઇચ્છીએ કે 'નમૂનારૂપ' અવલોકન શોધી કાઢીએ, ત્યારે મધ્યસ્થ વધારે યોગ્ય છે. ઉદાહરણ તરીકે, કામદારોનો નમૂનારૂપ ઉત્પાદન દર શોધવો, દેશમાં સરેરાશ

ગણિત

વેતન વગેરે. આ પ્રકારની પરિસ્થિતિઓમાં આત્યંતિક મૂલ્યો હોઈ પણ શકે. તેથી મધ્યકને લેવા કરતાં આપણે મધ્યસ્થને વધુ સારા મધ્યવર્તી સ્થિતિમાનના માપ તરીકે લઈએ છીએ.

જે પરિસ્થિતિઓમાં સૌથી વધુ વખત આવતું મૂલ્ય અથવા સૌથી લોકપ્રિય વસ્તુને સ્થાપિત કરવાની જરૂર છે તે સ્થિતિમાં બહુલક શ્રેષ્ઠ વિકલ્પ છે. ઉદાહરણ તરીકે સૌથી વધુ જોવાતો લોકપ્રિય ટી.વી. કાર્યક્રમ, સૌથી વધુ માંગવાળી ઉપભોક્તા વસ્તુ, સૌથી વધુ લોકો દ્વારા ઉપયોગમાં લેવાતો વાહનનો રંગ વગેરે.

નોંધ :

- 1. મધ્યવર્તી સ્થિતિમાનનાં ત્રણ માપો વચ્ચે પ્રયોગમૂલક સંબંધ છે.
 - $3 \times$ મધ્યસ્થ = બહુલક + $2 \times$ મધ્યક
- 2. વર્ગલંબાઈ અસમાન હોય તેવી વર્ગીકૃત માહિતીના મધ્યસ્થની પણ ગણતરી કરી શકાય છે. પરંતુ, આપણે અહીં તે ચર્ચા કરીશું નહિ.

સ્વાધ્યાય 14.3

1. નીચેનું આવૃત્તિ-વિતરણ એક વિસ્તારમાં 68 ગ્રાહકોનો માસિક વીજવપરાશ આપે છે. આ માહિતીનો મધ્યસ્થ, મધ્યક અને બહુલક શોધો અને તેમને સરખાવો.

માસિક વપરાશ (એકમમાં)	ગ્રાહકોની સંખ્યા
65 - 85	4
85 - 105	5
105 - 125	13
125 - 145	20
145 - 165	14
165 - 185	8
185 - 205	4

2. જો નીચે આપેલ આવૃત્તિ વિતરણનો મધ્યસ્થ 28.5 હોય, તો x અને y નાં મૂલ્યો શોધો.

વર્ગ-અંતરાલ	આવૃત્તિ
0 - 10	5
10 - 20	\boldsymbol{x}
20 - 30	20
30 - 40	15
40 - 50	у
50 - 60	5
કુલ	60

3. એક જીવનવીમા એજન્ટે, 100 પૉલિસીધારકોની ઉંમર માટે નીચેનું વિતરણ પ્રાપ્ત કર્યું. જેમની ઉંમર 18 વર્ષથી વધુ, પરંતુ 60 વર્ષથી ઓછી હોય તેવી જ વ્યક્તિઓને પૉલિસીઓ આપવામાં આવી હોય, તો તેમની મધ્યસ્થ ઉંમર શોધો.

ઉંમર (વર્ષમાં)	પૉલિસીધારકોની સંખ્યા
20 થી ઓછી	2
25 થી ઓછી	6
30 થી ઓછી	24
35 થી ઓછી	45
40 થી ઓછી	78
45 થી ઓછી	89
50 થી ઓછી	92
55 થી ઓછી	98
60 થી ઓછી	100

4. એક છોડનાં 40 પાંદડાંઓની લંબાઈ ખૂબ જ નજીકના મિલીમીટર સુધી માપવામાં આવી અને મેળવેલ માહિતી નીચેના કોષ્ટકમાં દર્શાવી છે :

લંબાઈ (મિમીમાં)	પાંદડાંઓની સંખ્યા
118 - 126	3
127 - 135	5
136 - 144	9
145 - 153	12
154 - 162	5
163 - 171	4
172 - 180	2

પાંદડાંઓની મધ્યસ્થ લંબાઈ શોધો.

 $(\frac{1}{4}$ સ્વન : મધ્યસ્થ શોધવા માટે માહિતીને સતત વર્ગીમાં ફેરવવાની જરૂર છે, કારણ કે સૂત્ર સતત વર્ગી માટે છે. વર્ગી 117.5-126.5, 126.5-135.5, ..., 171.5-180.5 માં પરિવર્તિત થાય છે.)

5. નીચેનું કોષ્ટક 400 નીઓન ગોળાના આયુષ્યનું આવૃત્તિ વિતરણ આપે છે :

આયુષ્ય (કલાકોમાં)	ગોળાની સંખ્યા
1500 - 2000	14
2000 - 2500	56
2500 - 3000	60
3000 - 3500	86
3500 - 4000	74
4000 - 4500	62
4500 - 5000	48

ગોળાના આયુષ્યનો મધ્યસ્થ શોધો.

6. સ્થાનિક ટેલિફોન યાદીમાંથી 100 અટક યાદચ્છિક રીતે પસંદ કરવામાં આવી હતી અને અંગ્રેજી મૂળાક્ષરોમાં અટકોમાં આવતા અક્ષરોની સંખ્યાનું આવૃત્તિ-વિતરણ નીચે પ્રમાણે મેળવ્યું હતું :

અક્ષરોની સંખ્યા	1 - 4	4 - 7	7 - 10	10 - 13	13 - 16	16 - 19
અટકોની સંખ્યા	6	30	40	16	4	4

અટકોમાં આવતા અક્ષરોની સંખ્યાનો મધ્યસ્થ શોધો. અટકોમાં આવતા અક્ષરોની સંખ્યાનો મધ્યક પણ શોધો. અટકોમાં અક્ષરોની સંખ્યાનો બહુલક શોધો.

7. નીચેનું વિતરણ એક ધોરણના 30 વિદ્યાર્થીઓનાં વજન આપે છે. વિદ્યાર્થીઓનાં વજનનો મધ્યસ્થ શોધો.

વજન (કિગ્રામાં)	40 - 45	45 - 50	50 - 55	55 - 60	60 - 65	65 - 70	70 - 75
વિદ્યાર્થીઓની સંખ્યા	2	3	8	6	6	3	2

14.5 સંચયી આવૃત્તિ-વિતરણની આલેખીય પ્રસ્તુતિ

આપણે જાણીએ છીએ તેમ, ચિત્રો શબ્દો કરતાં વધુ સ્પષ્ટ કહી જાય છે. આલેખીય નિરૂપણ પર દેષ્ટિપાત કરતાં જ આપણને તે આપેલ માહિતીને સમજવામાં મદદ કરે છે. ધોરણ IX માં આપણે માહિતીને લંબાલેખ, સ્તંભાલેખ અને આવૃત્તિ બહુકોણ દ્વારા દર્શાવી છે.

ચાલો, હવે આપણે સંચયી આવૃત્તિ-વિતરણને આલેખ દ્વારા દર્શાવીએ.

ઉદાહરણ તરીકે, ચાલો આપણે કોષ્ટક 14.13 માં આપેલ સંચયી આવૃત્તિ-વિતરણનો વિચાર કરીએ.

યાદ કરો કે, કિંમતો 10, 20,30, ..., 100 અનુરૂપ વર્ગઅંતરાલોની ઊર્ધ્વસીમાઓ છે. કોષ્ટકની માહિતીને આલેખ દ્વારા દર્શાવવા માટે, આપણે વર્ગઅંતરાલોની ઊર્ધ્વસીમાઓને સમક્ષિતિજ અક્ષ (x-અક્ષ) અને

તેમની અનુરૂપ સંચયી આવૃત્તિઓ શિરોલંબ અક્ષ (ho-અક્ષ) પર અનુકૂળ માપ પસંદ કરીને દર્શાવીશું. બંને અક્ષો પર માપ સમાન ન પણ હોઈ શકે. ચાલો હવે આપણે ક્રમયુક્ત જોડોને અનુરૂપ બિંદુઓ

(ઊર્ધ્વસીમા, અનુરૂપ સંચયી આવૃત્તિ) એટલે કે, (10, 5), (20, 8), (30, 12), (40, 15), (50, 18), (60, 22), (70, 29), (80, 38), (90, 45), (100, 53) આલેખપત્ર પર મૂકીએ અને તેમને મુક્તહસ્ત સળંગ વક્ર દ્વારા જોડીએ. આપણે જે વક્ર મેળવીએ છીએ તેને *સંચયી આવૃત્તિ વક્ર* અથવા *થી ઓછા પ્રકારનો ઓજીવ (ogive*) (જુઓ આકૃતિ 14.1) કહે છે.

શબ્દ 'ogive' નો ઉચ્ચાર ઓજીવ થાય છે અને તે શબ્દ ogee પરથી ઊતરી આવ્યો છે. ogee અંતર્ગોળ ચાપનું બહિર્ગોળ ચાપ સાથે મિલન થતું હોય તેવા આકારથી બને છે. આથી શિરોલંબ અંતવાળો S આ આકારનો વક બને છે. સ્થાપત્ય કલામાં 14 મી તથા 15 મી સદીની ગોથીક પદ્ધતિનાં લક્ષણો પૈકીનું એક ogee આકાર છે.

તે પછી, ફરીથી આપણે કોષ્ટક 14.14 માં આપેલ સંચયી આવૃત્તિ-વિતરણનો વિચાર કરીએ અને તેનો 'થી વધ પ્રકારનો ઓજીવ' દોરીએ.

યાદ કરો, અહીં, 0, 10, 20, ..., 90 એ અનુક્રમે વર્ગ અંતરાલો 0 - 10, 10 - 20, ..., 90 - 100ની અધઃસીમાઓ છે. 'કરતાં વધારે પ્રકારનું' આલેખીય નિરૂપણ કરવા માટે આપણે x-અક્ષ પર અધઃસીમાઓ અને અન્3પ y-અક્ષ પર સંચયી આવૃત્તિઓ દર્શાવીશું. પછી આપણે બિંદુઓ (અધઃસીમા, અનુરૂપ સંચયી આવૃત્તિ), એટલે કે, (0, 53), (10, 48), (20, 45), (30, 41), (40, 38), (50, 35),(60, 31), (70, 24), (80, 15), (90, 8) આલેખ પેપર પર દર્શાવીશું અને તેમને મુક્તહસ્ત સળંગ વક દ્વારા જોડીશું. આપણને જે વક્ર મળે છે તે સંચયી આવૃત્તિ વક્ર છે અથવા ધ 鎼 *પ્રકાર* નો ઓજીવ છે. (જુઓ આકૃતિ 14.2.)

નોંધ ઃ નોંધ કરો કે, બંને ઓજીવ જે કોષ્ટક 14.12 માં આપેલ છે. (આકૃતિ 14.1 અને આકૃતિ 14.2) તે એક જ માહિતીને અનુરૂપ છે.

253

હવે, ઓજીવ મધ્યસ્થ સાથે કોઈ પણ રીતે સંબંધિત છે?

કોષ્ટક 14.12 ની માહિતીને અનુરૂપ, આ બંને સંચયી આવૃત્તિ વક્રો પરથી શું મધ્યસ્થ મેળવવો શક્ય છે? ચાલો આપને જોઈએ.

y-અક્ષ પર $\frac{n}{2} = \frac{53}{2} = 26.5$ નું સ્થાન દર્શાવવું તે એક સ્પષ્ટ રસ્તો છે. (જુઓ આકૃતિ 14.3.) આ બિંદુથી વક્રના બિંદુમાં છેદતી હોય તેવી *x*-અક્ષને સમાંતર રેખા દોરો. આ બિંદુથી x-અક્ષને લંબ દોરો. આ લંબના x-અક્ષ સાથેના છેદબિંદુનો x-યામ માહિતીનો મધ્યસ્થ આપે છે (જુઓ આકૃતિ 14.3.)

આકૃતિ 14.3

મધ્યસ્થ શોધવાની અન્ય રીતો નીચે આપેલ છે :

એક જ અક્ષ પર બંને ઓજીવ દોરો. (એટલે કે, 'થી ઓછા પ્રકારનો અને થી વધારે પ્રકારનો') બે ઓજીવ એકબીજાને એક બિંદુમાં છેદશે. આ બિંદુથી, જો આપણે x-અક્ષ પર લંબ દોરીએ, તો બિંદુ x-અક્ષને જ્યાં તે છેદશે, તેનો x-યામ મધ્યસ્થ આપશે. (જુઓ આકૃતિ 14.4.)

આકૃતિ 14.4

ઉદાહરણ 9 : નીચેનું વિતરણ એક વસતીનાં શોપિંગ કૉમ્પ્લેક્ષની 30 દુકાનો દ્વારા પ્રાપ્ત નફો આપે છે :

ι)

ઉપર આપેલ માહિતી માટે બંને ઓજીવ દોરો. તે પરથી મધ્યસ્થ નફો મેળવો.

ઉકેલ : પહેલાં આપણે યામાક્ષો દોરીએ, નફાની અધઃસીમાઓ સમિક્ષિતિજ અક્ષ પર અને સંચયી આવૃત્તિ y-અક્ષ પર લઈએ. પછી બિંદુઓ (5, 30), (10, 28), (15, 16), (20, 14), (25, 10), (30, 7) અને (35, 3) દર્શાવો. આપણે આ બિંદુઓને સળંગ મુક્ત હસ્ત વક્ર દ્વારા 'થી વધારે' પ્રકારનો ઓજીવ મેળવવા માટે જોડીએ. (આકૃતિ 14.5 માં બતાવ્યા પ્રમાણે)

હવે, ચાલો આપણે નીચે આપેલ કોષ્ટક પરથી વર્ગો, તેમની આવૃત્તિઓ અને સંચયી આવૃત્તિ મેળવીએ :

કોષ્ટક 14.17

વર્ગો	5 - 10	10 - 15	15 - 20	20 - 25	25 - 30	30 - 35	35 - 40
દુકાનોની સંખ્યા	2	12	2	4	3	4	3
સંચયી આવૃત્તિ	2	14	16	20	23	27	30

આ કિંમતોનો ઉપયોગ કરીને, આપણે બિંદુઓ (10, 2), (15, 14), (20, 16), (25, 20), (30, 23), (35, 27), (40, 30) દર્શાવીને એ અક્ષો પર આકૃતિ 14.5 માં છે તેમ 'થી ઓછાં' પ્રકારનો ઓજીવ મેળવીએ. આકૃતિ 14.6 માં બતાવ્યા પ્રમાણે મુક્ત હસ્ત વક્ર દોરીએ.

તેમનાં છેદ બિંદુઓનો *x*-યામ 17.5 ની નજીક છે અને તે મધ્યસ્થ છે. આ હકીકતને સૂત્રનો ઉપયોગ કરીને પણ ચકાસી શકાય. તેથી, મધ્યસ્થ નફો ₹ 17.5 લાખ છે.

નોંધ : ઉપર્યુક્ત ઉદાહરણમાં, અત્રે નોંધનીય છે કે, વર્ગઅંતરાલો સતત હતા. ઓજીવ દોરવા માટે, વર્ગઅંતરાલો સતત હોય, તે સુનિશ્ચિત કરવું જોઈએ. (વળી, ધોરણ IX માં સ્તંભાલેખની રચનાઓ જુઓ.)

स्वाध्याय 14.4

1. નીચેનું આવૃત્તિ વિતરણ એક કારખાનાના 50 કર્મીઓનું દૈનિક વેતન દર્શાવે છે :

દૈનિક વેતન (₹ માં)	100 - 120	120 - 140	140 - 160	160 - 180	180 - 200
કામદારોની સંખ્યા	12	14	8	6	10

ઉપરના આવૃત્તિ વિતરણને, 'થી ઓછા પ્રકાર' નાં સંચયી આવૃત્તિ-વિતરણમાં ફેરવો અને તેનો 'ઓજીવ' દોરો.

2. એક વર્ગના 35 વિદ્યાર્થીઓની દાક્તરી તપાસ દરમિયાન, તેમનાં વજન નીચે પ્રમાણે નોંધાયા :

વજન (કિલોગ્રામમાં)	વિદ્યાર્થીઓની સંખ્યા
38 કરતાં ઓછું	0
40 કરતાં ઓછું	3
42 કરતાં ઓછું	5
44 કરતાં ઓછું	9
46 કરતાં ઓછું	14
48 કરતાં ઓછું	28
50 કરતાં ઓછું	32
52 કરતાં ઓછું	35

આપેલ માહિતી માટે 'થી ઓછા પ્રકાર'નો ઓજીવ દોરો. તેથી વજનનો મધ્યસ્થ મેળવો. આલેખ પરથી આ મેળવેલા પરિણામને સ્ત્રનો ઉપયોગ કરીને ચકાસો.

ગણિત

નીચેનું કોષ્ટક એક ગામનાં 100 ખેતરોમાં પ્રતિ હેક્ટર ઘઉંનું ઉત્પાદન દર્શાવે છે :

ઉત્પાદન ક્ષમતા	50 - 55	55 - 60	60 - 65	65 - 70	70 - 75	75 - 80
(કિગ્રા/હેક્ટર)						
ખેતરોની સંખ્યા	2	8	12	24	38	16

આ આવૃત્તિ વિતરણને 'થી વધારે પ્રકાર'ના વિતરણમાં પરિવર્તિત કરો અને તેનો ઓજીવ દોરો.

14.6 સારાંશ

આ પ્રકરણમાં તમે નીચેના મુદ્દાઓ વિશે અભ્યાસ કર્યો :

1. વર્ગીકૃત માહિતીનો મધ્યક નીચેનાં સૂત્રો દ્વારા મેળવી શકાય :

(i) પ્રત્યક્ષ રીત :
$$\overline{x} = \frac{\sum f_i x_i}{\sum f_i}$$

(ii) ધારેલ મધ્યકની રીત :
$$\overline{x} = a + \frac{\sum f_i d_i}{\sum f_i}$$

(iii) પદ વિચલનની રીત :
$$\overline{x} = a + \left(\frac{\sum f_i u_i}{\sum f_i}\right) \times h$$

અત્રે વર્ગની આવૃત્તિ તેના મધ્યબિંદુએ કેન્દ્રિત છે એવી ધારણા લીધી છે. આ મધ્યબિંદુને વર્ગની મધ્યકિંમત કહે છે.

2. વર્ગીકૃત માહિતીનો બહુલક,

બહુલક
$$= l + \left(rac{f_1 - f_0}{2f_1 - f_0 - f_2}
ight) imes h$$

સૂત્રનો ઉપયોગ કરીને શોધી શકાય છે. સંકેતોના પ્રચલિત અર્થો છે.

3. જેને આપેલ વર્ગથી અગાઉના બધા વર્ગોની આવૃત્તિઓનો સરવાળો કરીને મેળવાય છે એવી આવૃત્તિ સંચયી આવૃત્તિ છે.

4. વર્ગીકૃત માહિતીનો મધ્યસ્થ,

મધ્યસ્થ
$$= l + \left(\frac{rac{n}{2} - cf}{f}\right) imes h$$

સૂત્રનો ઉપયોગ કરીને મેળવી શકાય છે.

સંકેતોને તેમના પ્રચલિત અર્થો છે.

 સંચયી આવૃત્તિ-વિતરણને આલેખીય સ્વરૂપે સંચયી આવૃત્તિ વક્ર અથવા 'થી ઓછા પ્રકાર'નો અને 'થી વધારે પ્રકાર'ના ઓજીવ દ્વારા દર્શાવી શકાય છે.

 વર્ગીકૃત માહિતીના મધ્યસ્થને આલેખ દ્વારા, આ માહિતીઓના બે ઓજીવના છેદબિંદુના x-યામ તરીકે મેળવી શકાય છે.

વાચકને નોંધ

વર્ગીકૃત માહિતીના બહુલક અને મધ્યસ્થની ગણતરી કરવા માટે સૂત્રોના ઉપયોગ કરતાં પહેલાં તે સુનિશ્ચિત કરી લેવું જોઈએ કે, વર્ગ અંતરાલો સતત છે. આ જ શરત ઓજીવની રચના માટે પણ લાગુ પડે છે. વધુમાં, ઓજીવના કિસ્સામાં, બને અક્ષો પર માપ અસમાન પણ હોઈ શકે.

