Поз. обозначение	Наименование	Кол	Примечание	
	<u> Конденсаторы</u>			
C1*-C4*	Конденсатор чип GR442QR73D102KW01	4	Murata	
	(1000 2000)		*) не уст.	
	Допуск (ААААААААА)			
C5,C6	Конденсатор чип C0805C105K4RAC	2	Kemet	
	(1 мк 16)			
C7,C8	Конденсатор танталовый чип Т491С107К010АТ	2	Kemet	
	(100 мк)			
C9-C15	Конденсатор чип C0805C105K4RAC	7	Kemet	
	(1 мк 16)			
C16*	Конденсатор чип C0805C105K4RAC	1	Kemet	
	(1 мк 16)		DDDDDDD	
	Ty 45476587-90		*) не уст.	
C17*	Конденсатор чип C0805C105K4RAC1	1	Kemet	
	(1 мк 16)		DDDDDD	
	Ty 45476587-90		*) не уст.	
C18*	Конденсатор чип C0805C105K4RAC2	1	Kemet DDDDD *) не уст.	
	(1 мк 16)			
	Ty 45476587-90			
C19*	Конденсатор чип С0805С105К4RAС3	1	Kemet	
	(1 мк 16)		DDDD	
	Ty 45476587-90		*) не уст.	
C20*	Конденсатор чип C0805C105K4RAC4	1	Kemet	
	(1 мк 16)		DDD	
	Ty 45476587-90		*) не уст.	
C21*	Конденсатор чип С0805С105К4RAС5	1	Keme	
	(1 mk 16)		DDDDDDD	
	CCCC	CCC		
Изм Лист Л Разраб. 1	№ докум. Подп. Дата	Лит.	Лист Листов	
$\Pi pob.$ 2	AAAAAAA		1 6	
H. контр. 5	BBBBBBBB			
Утв. 6				

Взам. инв. $N^{\underline{o}} \mid H$ нв. $N^{\underline{o}} \neq Jy6$ л.

Подп. и дата

 $\mathit{И}$ нв. \mathscr{N} подл.

Поз. обозначение	Наименование	Кол	Примечание				
	Ty 45476587-90		*) не уст.				
	<u>Микросхемы</u>						
DD1,DD2	Микросхема SN74AHC1G125DCK	2	Texas Instrument				
	<u>Резисторы</u>						
R1*-R4*	Резистор чип CRCW06032K20JN (2,2 к 75)	4	Vishay				
			*) не уст.				
R5	Резистор чип CRCW06032K20JN (2,2 к 75)	1	Vishay				
R6*-R8*	Резистор чип CRCW06032K20JN (2,2 к 75)	3	Vishay				
			*) не уст.				
R9,R10	Резистор чип CRCW0603220RJN (220 75)	2	Vishay				
R11	Резистор чип CRCW06032K20JN (2,2 к 75)	1	Vishay				
R12*	Резистор чип CRCW060361R9FK (61,9 75)	1	Vishay				
			*) не уст.				
R13	Резистор чип CRCW060361R9FK (61,9 75)	1	Vishay				
R14-R16	Резистор чип CRCW06032K20JN (2,2 к 75)	3	Vishay				
R17	Резистор чип CRCW06030000Z0 (0 75)	1	Vishay				
R18	Резистор чип CRCW0603220RJN (220 75)	1	Vishay				
R19	Резистор чип CRCW06032K20JN (2,2 к 75)	1	Vishay				
R20	Резистор чип CRCW06030000Z0 (0 75)	1	Vishay				
R21	Резистор чип CRCW06032K20JN (2,2 к 75)	1	Vishay				
R22*	Резистор чип CRCW06030000Z0 (0 75)	1	Vishay				
			*) не уст.				
R23-R30	Резистор чип CRCW04020000Z0 (0 50)	8	Vishay				
R31*	Резистор чип CRCW06030000Z0 (0 75)	1	Vishay				
			*) не уст.				
			*) не уст.				
		CCCC					

Взам. инв. $N^{\underline{\bullet}}$ | Инв. $N^{\underline{\bullet}}$ Дубл.

Подп. и дата

 $\mathit{И}$ нв. $\mathcal{N}^{\underline{o}}$ подл.

	Наименование	Кол	Примечание		
R32-R37	Резистор чип CRCW04020000Z0 (0 50)	6	Vishay		
R38*,R39*	Резистор чип CRCW04020000Z0 (0 50)	2	Vishay		
			*) не уст.		
R40*	Резистор чип CRCW06030000Z0 (0 75)	1	Vishay		
			*) не уст.		
R41*,R42*	Резистор чип CRCW04020000Z0 (0 50)	2	Vishay		
			*) не уст.		
R43*	Резистор чип CRCW06030000Z0 (0 75)	1	Vishay		
			*) не уст.		
R44,R45	Резистор чип CRCW04020000Z0 (0 50)	2	Vishay		
R46	Резистор чип CRCW06030000Z0 (0 75)	1	Vishay		
R47,R48	Резистор чип CRCW04020000Z0 (0 50)	2	Vishay		
R49	Резистор чип CRCW06030000Z0 (0 75)	1	Vishay		
R50	Резистор чип CRCW06032K20JN (2,2 к 75)	1	Vishay		
R51*	Резистор чип CRCW06030000Z0 (0 75)	1	Vishay		
			*) не уст.		
R52-R63	Резистор чип CRCW04020000Z0 (0 50)	12	Vishay		
R64	Резистор чип CRCW06032K20JN (2,2 к 75)	1	Vishay		
R65*	Резистор чип CRCW06030000Z0 (0 75)	1	Vishay		
			*) не уст.		
R66-R77	Резистор чип CRCW04020000Z0 (0 50)	12	Vishay		
R78*-R91*	Резистор чип CRCW04020000Z0 (0 50)	14	Vishay		
			*) не уст.		
R92-R97	Резистор чип CRCW04020000Z0 (0 50)	6	Vishay		
R98,R99	Резистор чип CRCW0603220RJN (220 75)	2	Vishay		
R100	Резистор чип CRCW06032K20JN (2,2 к 75)	1	Vishay		
R101*	Резистор чип CRCW06030000Z0 (0 75)	1	Vishay		
			*) не уст.		
	Резистор чип CRCW06032K20JN (2,2 к 75)	1	Vishay		

Bзам. инв. $\mathbb{N}^{\underline{\flat}} \mid \underline{M}$ нв. $\mathbb{N}^{\underline{\flat}} \perp \underline{U}$ бл.

Подп. и дата

Инв. N $^{\underline{0}}$ подл.

Поз. обозначение	Наименование	Кол	Примечание		
R103*	Резистор чип CRCW06030000Z0 (0 75)	1	Vishay		
			*) не уст.		
R104	Резистор чип CRCW06030000Z0 (0 75)	1			
R105*,R106*	Резистор чип CRCW06030000Z0 (0 75)	2	Vishay		
			*) не уст.		
R107	Резистор чип CRCW06030000Z0 (0 75)	1	Vishay		
R108	Резистор чип CRCW06032K20JN (2,2 к 75)	1	Vishay		
R109*	Резистор чип CRCW06030000Z0 (0 75)	1	Vishay		
			*) не уст.		
R110*	Резистор чип CRCW0603220RJN (220 75)	1	Vishay		
			*) не уст.		
R111	Резистор чип CRCW0603220RJN (220 75)	1	Vishay		
R112*	Резистор чип CRCW0603220RJN (220 75)	1	Vishay		
			*) не уст.		
R113	Резистор чип CRCW0603220RJN (220 75)	1	Vishay		
R114*	Резистор чип CRCW0603220RJN (220 75)	1	Vishay		
			*) не уст.		
R115	Резистор чип CRCW0603220RJN (220 75)	1	Vishay		
R116-R119	Резистор чип CRCW04020000Z0 (0 50)	4	Vishay		
R120*	Резистор чип CRCW06030000Z0 (0 75)	1	Vishay		
			*) не уст.		
R121-R124	Резистор чип CRCW04020000Z0 (0 50)	4	Vishay		
R125*	Резистор чип CRCW0603220RJN (220 75)	1	Vishay		
			*) не уст.		
R126	Резистор чип CRCW0603220RJN (220 75)	1	Vishay		
R127*	Резистор чип CRCW0603220RJN (220 75)	1	Vishay		
			*) не уст.		
R128	Резистор чип CRCW0603220RJN (220 75)	1	Vishay		
R129*-R144*	Резистор чип CRCW04020000Z0 (0 50)	16	Vishay		
Изм Лист Л	<u>*</u> докум. Подп. Дата	CCCCC			

Bзам. инв. $\mathbb{N}^{\underline{\flat}} \mid \underline{M}$ нв. $\mathbb{N}^{\underline{\flat}} \perp \underline{M}$ бл.

Подп. и дата

Инв. N $^{\underline{0}}$ подл.

XP1-XP6 Ви XP7 Ви XS1-XS4 Роз До XS5 Ви XS6 Роз XS7 Роз XS8 Роз До XT1,XT2 Ле XT3,XT4 Ло	Диоды Соединители IKA 53398-1071 IKA QMS-078-02-SL-D-RA-MG етка VJ779-10006 IYCK (VJ773-10001) IKA 83612-9020 етка 280-027S5S50MTNA етка MUSB-C111-M0 етка VJ779-10006 IYCK (VJ773-10001) IKA 6440-78	1 1 4 1 1 1 1 1 2	*) не уст. NXP Molex Samtec Amphenol Molex Glenair Amphenol Amphenol	
XP1-XP6 Ви XP7 Ви XS1-XS4 Роз До XS5 Ви XS6 Роз XS7 Роз XS8 Роз До XT1,XT2 Ле XT3,XT4 Ло		6 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Molex Samtec Amphenol Molex Glenair Amphenol	
XP1-XP6 Ви XP7 Ви XS1-XS4 Роз До XS5 Ви XS6 Роз XS7 Роз XS8 Роз До XT1,XT2 Ле XT3,XT4 Ло		6 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Molex Samtec Amphenol Molex Glenair Amphenol	
XP1-XP6 Ви XP7 Ви XS1-XS4 Роз До XS5 Ви XS6 Роз XS7 Роз XS8 Роз До XT1,XT2 Ле XT3,XT4 Ло	Соединители IKA 53398-1071 IKA QMS-078-02-SL-D-RA-MG етка VJ779-10006 IYCK (VJ773-10001) IKA 83612-9020 етка 280-027S5S50MTNA етка MUSB-C111-M0 етка VJ779-10006 IYCK (VJ773-10001)	6 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Molex Samtec Amphenol Molex Glenair Amphenol	
XP1-XP6 Ви XP7 Ви XS1-XS4 Роз До XS5 Ви XS6 Роз XS7 Роз XS8 Роз До XT1,XT2 Ле XT3,XT4 Ло	Соединители IKA 53398-1071 IKA QMS-078-02-SL-D-RA-MG етка VJ779-10006 IYCK (VJ773-10001) IKA 83612-9020 етка 280-027S5S50MTNA етка MUSB-C111-M0 етка VJ779-10006 IYCK (VJ773-10001)	6 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Molex Samtec Amphenol Molex Glenair Amphenol	
XP7 Ви XS1-XS4 Роз До XS5 XS6 Роз XS7 Роз XS8 Роз До XT1,XT2 XT3,XT4 Ло	ика 53398-1071 ика QMS-078-02-SL-D-RA-MG етка VJ779-10006 иуск (VJ773-10001) ика 83612-9020 етка 280-027S5S50MTNA етка MUSB-C111-M0 етка VJ779-10006	1 4 1 1 1	Samtec Amphenol Molex Glenair Amphenol	
XP7 Ви XS1-XS4 Роз До XS5 XS6 Роз XS7 Роз XS8 Роз До XT1,XT2 XT3,XT4 Ло	ика 53398-1071 ика QMS-078-02-SL-D-RA-MG етка VJ779-10006 иуск (VJ773-10001) ика 83612-9020 етка 280-027S5S50MTNA етка MUSB-C111-M0 етка VJ779-10006	1 4 1 1 1	Samtec Amphenol Molex Glenair Amphenol	
XP7 Ви XS1-XS4 Роз До XS5 XS6 Роз XS7 Роз XS8 Роз До XT1,XT2 XT3,XT4 Ло	ика QMS-078-02-SL-D-RA-MG етка VJ779-10006 пуск (VJ773-10001) ика 83612-9020 етка 280-027S5S50MTNA етка MUSB-C111-M0 етка VJ779-10006 пуск (VJ773-10001)	1 4 1 1 1	Samtec Amphenol Molex Glenair Amphenol	
XP7 Ви XS1-XS4 Роз До XS5 XS6 Роз XS7 Роз XS8 Роз До XT1,XT2 XT3,XT4 Ло	ика QMS-078-02-SL-D-RA-MG етка VJ779-10006 пуск (VJ773-10001) ика 83612-9020 етка 280-027S5S50MTNA етка MUSB-C111-M0 етка VJ779-10006 пуск (VJ773-10001)	1 4 1 1 1	Samtec Amphenol Molex Glenair Amphenol	
XS1-XS4 Pos До XS5 Ви XS6 Pos XS7 Pos XS8 Pos До XT1,XT2 Ле XT3,XT4 Ло	етка VJ779-10006 пуск (VJ773-10001) пка 83612-9020 етка 280-027S5S50MTNA етка MUSB-C111-M0 етка VJ779-10006 пуск (VJ773-10001)	1 1 1 1	Amphenol Molex Glenair Amphenol	
До XS5 Ви XS6 Роз XS7 Роз XS8 Роз До XT1,XT2 Ле XT3,XT4 Ло	нуск (VJ773-10001) ка 83612-9020 етка 280-027S5S50MTNA етка MUSB-C111-M0 етка VJ779-10006 нуск (VJ773-10001)	1 1 1 1	Molex Glenair Amphenol	
XS5 Ви XS6 Роз XS7 Роз XS8 Роз До XT1,XT2 Ле XT3,XT4 Ло	етка 83612-9020 етка 280-027S5S50MTNA етка MUSB-C111-M0 етка VJ779-10006 пуск (VJ773-10001)	1 1 1	Glenair Amphenol	
XS6 Pos XS7 Pos XS8 Pos До XT1,XT2 Ле XT3,XT4 Ло	етка 280-027S5S50MTNA етка MUSB-C111-M0 етка VJ779-10006 пуск (VJ773-10001)	1 1 1	Glenair Amphenol	
XS7 Pos XS8 Pos До XT1,XT2 Ле XT3,XT4 Ло	етка MUSB-C111-M0 етка VJ779-10006 пуск (VJ773-10001)	1	Amphenol	
XS8 Pos До XT1,XT2 Ле XT3,XT4 Ло	етка VJ779-10006 пуск (VJ773-10001)	1		
До XT1,XT2 Ле XT3,XT4 Ло	уск (VJ773-10001)		Amphenol	
XT1,XT2 Ле. XT3,XT4 Ло		2		
ХТ3,ХТ4 Ло	есток 2-1,6-6,0-14-00 ГОСТ 16840-78	2		
·				
X1,X2 Ka	витель СТИК.741532.035	2	НИИАО	
	бель FFMD-05-T-02.00-01-N	2	Samtec	

Взам. инв. $N^{\underline{\bullet}}$ | Инв. $N^{\underline{\bullet}}$ Дубл.

Подп. и дата

 $\mathit{И}$ нв. $\mathcal{N}^{\underline{o}}$ подл.

	Лист регистрации изменений Номера листов (страниц) Васко нистор Входящий №								
Изм.	изме-	заме- ненных	новых	аннули- рован- ных	Всего листов (страниц) в докум.	№ докум.	сопроводитель- ного докум. и дата	Подп.	Дата
	1					1			