Slides for Patryk's Notes

Patryk Kozlowski

October 31, 2025

1/18

Patryk Kozlowski Siloss in Patryk Solows October 31, 2025

1. Dunn

2. PJ

3. Littlewood

4. Our ideas

1. Dunn

2. PJ

3. Littlewood

4. Our ideas

Setup

We will work with an electron-boson Hamiltonian of the form

$$H = \sum_{k} \epsilon_{k} a_{k}^{\dagger} a_{k} + \frac{1}{2} \sum_{q} (P_{q}^{\dagger} P_{q} + \omega_{q}^{2} Q_{q}^{\dagger} Q_{q}) + \sum_{q} \gamma_{q} Q_{q} \rho_{q}^{\dagger}$$
(1)

with HO position $Q_q = \sqrt{rac{1}{2\Omega_q}} \left(b_q + b_{-q}^\dagger
ight)$, momentum

 $P_q=i\sqrt{rac{\Omega_q}{2}}\left(b_{-q}^\dagger-b_q
ight)$, and density $ho_q=\sum_k a_{k+q}^\dagger a_k \langle k+q|e^{iq\cdot r}|k
angle$. In the presence of this interaction, the EOM for the electron annihilation operator is given by

$$\frac{da_k(t)}{dt} = -i\epsilon_k a_k(t) - i\sum_q g_{qk} Q_q(t) a_{k+q}(t)$$
 (2)

$$\implies a_k(t) = e^{-i\epsilon_k t} T \exp \left[-i \int_0^t d\tau \sum_q Q_q(\tau) \Gamma_{qk}(\tau) \right] a_k \qquad (3)$$

Patryk Kozlowski Slokas for Parryk's Notes October 31, 2025 4 / 18

Proof

Start by introducing a rotated operator.

$$\tilde{a}_k(t) = e^{i\epsilon_k t} a_k(t) \tag{4}$$

$$\implies \frac{d\tilde{a}_k(t)}{dt} = i\epsilon_k e^{i\epsilon_k t} a_k(t) + e^{i\epsilon_k t} \frac{da_k(t)}{dt}$$
 (5)

$$=-i\sum_{q}g_{qk}e^{i\epsilon_{k}t}Q_{q}(t)a_{k+q}(t) \tag{6}$$

$$=-i\sum_{q}g_{qk}Q_{q}(t)e^{i\left(\epsilon_{k}-\epsilon_{k+q}\right)t}\tilde{a}_{k+q}(t) \tag{7}$$

$$=-i\sum_{q}Q_{q}(t)\Gamma_{qk}(t)\tilde{a}_{k}(t) \tag{8}$$

5 / 18

$$\implies a_k(t) = e^{-i\epsilon_k t} T \exp \left[-i \int_0^t d\tau \sum_q Q_q(\tau) \Gamma_{qk}(\tau) \right] a_k \qquad (9)$$

with $\Gamma_{qk}(t) = g_{qk}e^{i\epsilon_k t}e^{q\cdot\frac{d}{dk}}e^{-i\epsilon_k t} = g_{qk}e^{i\left(\epsilon_k - \epsilon_{k+q}\right)t}e^{q\cdot\frac{d}{dk}}$, where $e^{q\cdot\frac{d}{dk}}$ can be understood as a translation operator in k-space.

Patryk Kozlowski Sides to Panyka Wores October 31, 2025

Retarded Green's function for an insulator

$$G_{k}(t) = i\Theta(t)e^{-i\epsilon_{k}t}\operatorname{Tr}\left[\rho T\left(\exp\left(-i\sum_{q}\int_{0}^{t}d\tau\frac{b_{q}(\tau)+b_{-q}^{\dagger}(\tau)}{\sqrt{2\Omega_{q}}}\Gamma_{qk}(\tau)\right)\right)\right]$$

$$= i\Theta(t)e^{-i\epsilon_{k}t}\left\langle 1+TAB+\ldots\right\rangle_{\rho} \quad \text{(disconnected terms vanish)}$$

$$= i\Theta(t)e^{-i\epsilon_{k}t}T\exp\left[i\sum_{q}\int_{0}^{t}d\tau\int_{0}^{\tau}d\tau'D_{q}(\tau-\tau')\Gamma_{qk}(\tau)\Gamma_{-qk}(\tau')\right]$$

$$(12)$$

with $D_q(au- au')=rac{i}{2\Omega_q}\left((1+ extsf{N}(\Omega_q))e^{-i\Omega_q| au- au'|}+ extsf{N}(\Omega_q)e^{+i\Omega_q| au- au'|}
ight)$ the phonon occupation number $N(\Omega_q)=rac{1}{\frac{\Omega_q}{kT}-1}$.

Approximation procedure

So with the underbraced differential operator as S

$$G_k(t) = i\Theta(t) \exp\left(-i\epsilon_k t - i\sum_{n=1}^{\infty} \frac{1}{n!} T[S^n]_c\right)$$
 (13)

$$= i\Theta(t) \exp(iA_k(t)) \tag{14}$$

with $T[S^n]_c = T[S^n] - \sum_{m=1}^{n-1} \frac{(n-1)!}{m!(n-m-1)!} T[S^m] T[S^{n-m}]_c$, where $T[S]_c = T[S]$. To Nth order, we can write

$$G_k(t) = i\Theta(t)e^{-i\epsilon_k t} \prod_{n=1}^N e^{T[S^n]_c}$$
(15)

but thinking about it in this way does not lead to self-consistency.

Patryk Kozlowski October 31, 2025 7/18

Notions of self-consistency

The action function can be written as

$$A_k(t) = \phi_k(t) - i \sum_{n=1}^{\infty} \frac{1}{n!} T \left[\bar{S}^n \right]_c$$
 (16)

where $\phi_k(t)$ can be chosen so as to improve the approximation with

$$\bar{S} = -i \int_{0}^{t} d\tau \left(\epsilon_{k} + \frac{d}{d\tau} \phi_{k}(\tau) \right) - i \sum_{q} \int_{0}^{t} d\tau \int_{0}^{\tau} d\tau' D_{q} \left(\tau - \tau' \right) \bar{\Gamma}_{-qk}(\tau) \bar{\Gamma}_{qk}$$

$$\tag{17}$$

using the transformed vertex operators

$$\bar{\Gamma}_{qk}(\tau) \equiv \hat{U}(\tau)\Gamma_{qk}(\tau)\hat{U}^{-1}(\tau) = g_{qk}e^{-i\phi_k(\tau)}e^{q\cdot\frac{d}{dk}}e^{+i\phi_k(\tau)}$$
(18)

Dunn's choice

Dunn chooses $\phi_k(t) = -\epsilon_k t$, giving (to first order)

$$A_{k}(t) \equiv \phi_{k}(t) - iT[\bar{S}]_{c}$$

$$= -\epsilon_{k}t + i\sum_{q} |g_{qk}|^{2} \left[(1 + N_{q}) \frac{e^{itb_{-}} - 1 - itb_{-}}{b_{-}^{2}} + N_{q} \frac{e^{itb_{+}} - 1 - itb_{+}}{b_{+}^{2}} \right]$$

$$(20)$$

where $b_{\mp}=\epsilon_k-\epsilon_{k-q}\mp\Omega_q$. Clearly, this resembles the Landau form of the cumulant, which is $C(t)=\int d\omega \frac{\beta(\omega)}{\omega^2}\left[e^{-i\omega t}+i\omega t-1\right]$. Then,

$$\epsilon_k \equiv -\lim_{t \to \infty} \frac{d}{dt} \operatorname{Re} (A_k(t))$$
 (21)

$$= \epsilon_k^{(0)} - \mathcal{P} \sum_{\mathbf{z}} |g_{qk}|^2 \left[\frac{1 + N_q}{\epsilon_k - \epsilon_{k+q} - \Omega_q} + \frac{N_q}{\epsilon_k - \epsilon_{k+q} + \Omega_q} \right]$$
(22)

which gives an energy self-consistency condition.

Patryk Kozlowski Slidis for Parryk's Noises October 31, 2025 9 / 18

1. Dunn

2. PJ

3. Littlewood

4. Our ideas

PJ's choice

He had $G_k(t) = i\Theta(t)e^{C_k(t)}$ and chose $\phi_k(t) = C_k(t)$, which gave

$$\frac{d\mathcal{G}_k(t)}{dt} = \frac{d}{dt} \left[-i\Theta(t)e^{C_k(t)} \right]$$
 (23)

$$=\dot{C}_k(t)\mathcal{G}_k(t) \tag{24}$$

SO

$$\mathcal{G}_{k}^{(n+1)}(t) = \mathcal{G}_{k}^{(0)}(t) \exp \left[i \sum_{q} \int_{0}^{t} d\sigma \int_{0}^{\sigma} d\tau |g_{qk}|^{2} D_{q}^{(0)}(\sigma - \tau) \frac{\mathcal{G}_{k-q}^{(n)}(\sigma)}{\mathcal{G}_{k-q}^{(n)}(\tau)} \frac{\mathcal{G}_{k}^{(n)}(\tau)}{\mathcal{G}_{k}^{(n)}(\sigma)} \right]$$
(25)

which for iterations $n \ge 2$, we use

$$\mathcal{G}_{\mathbf{k}}^{(n+1)}(t) = \mathcal{G}_{\mathbf{k}}^{(0)}(t) \exp\left(-i\sum_{\mathbf{q}} \int_{0}^{t} d\sigma \int_{0}^{\sigma} d\tau |g_{qk}|^{2}\right)$$
(26)

 $\times D_{\mathbf{a}}^{0}(\sigma-\tau)\mathcal{G}_{\mathbf{k}}^{(0)}(\tau-\sigma)\mathcal{G}_{\mathbf{k}-\mathbf{a}}^{(0)}(\sigma-\tau)e^{F^{(n)}(\mathbf{k},\mathbf{q},\sigma,\tau)}$

Patryk Kozlowski

11 / 18

PJ's Solution

We introduce the notation

$$F^{(n)}(\mathbf{k}, \mathbf{q}, \sigma, \tau) = F_2^{(n)}(\mathbf{k}, \mathbf{q}, \sigma, \tau) + F_4^{(n)}(\mathbf{k}, \mathbf{q}, \sigma, \tau) + \cdots$$
 (27)

where

$$F_i^{(n)}(\mathbf{k}, \mathbf{q}, \sigma, \tau) = C_i^{(n)}(\mathbf{k} - \mathbf{q}, \sigma) - C_i^{(n)}(\mathbf{k} - \mathbf{q}, \tau) - C_i^{(n)}(\mathbf{k}, \sigma) + C_i^{(n)}(\mathbf{k}, \tau)$$
(28)

So his self-consistency for the Greens function is recursive; involving higher order cumulants at each successive iteration. Past the second order cumulants, you began double counting diagrams, which explains the negative spectral weight. Now, if we define $y_k(t) = e^{C_k(t)}$, the EOM is

$$\frac{dy_k(t)}{dt} = -i \sum_{q} \int_0^t d\tau \, |g_{qk}|^2 \, D_q^{(0)}(t-\tau) e^{i(\epsilon_k - \epsilon_{k-q})(t-\tau)} \frac{y_k(\tau)y_{k-q}(t)}{y_{k-q}(\tau)}$$
(29)

which is a VIDE, and they solved it numerically using the appropriate methods.

Patryk Kozlowski Sloies for Parryk's Notes October 31, 2025

12 / 18

1. Dunn

2. PJ

3. Littlewood

4. Our ideas

Littlewood

PJ showed that this method reduces to self-consistent Migdal, analogous to scGW, in the TDL, so this method does not seem useful for our purposes.

14 / 18

Patryk Kozlowski Sildes for Patryk's Notes October 31, 2025

1. Dunn

2. PJ

3. Littlewood

4. Our ideas

Determining Fock matrix

 \mathbf{F}_{pq} is determined by D_{pq} . Then,

$$D_{pq} = \int_{-\infty}^{\infty} f(\omega - \mu) A_{pq}(\omega) d\omega$$
 (30)

with the Fermi-Dirac distribution $f(\omega-\mu)=\frac{1}{e^{\beta(\omega-\mu)}+1}$, and the spectral function $A_{pq}(\omega)=-\frac{1}{\pi}\operatorname{Im} G_{pq}^R(\omega)$. So we need to get $G_{pq}^R(\omega)$. This can be achieved by accumulating data for $G_{pq}^R(t)$ at different time steps, and then performing a numerical Fourier transform.

$$G_{pq}^{R}(t) = -i\Theta(t)e^{-i\epsilon_{p}t}e^{C_{pq}^{(2)}(t)}$$
(31)

So we need to evaluate $C_{pp}^{(2)}(t_n)$ at each time step t_n . Note that after we determine \mathbf{F}_{pq} for a given iteration, we can update the single particle energies ϵ_p in $G_{pp}^0(\omega)$ for the next iteration.

Patryk Kozlowski Slides for Parryk's Notes October 31, 2025 16 / 18

Evaluating the cumulant

$$C_{pq}^{(2)}(t) \equiv i \int \frac{d\omega}{2\pi} \frac{\tilde{\Sigma}_{pq}^{(2)}(\omega + \epsilon_p)}{(\omega + i\eta)^2} e^{-i\omega t}$$
(32)

$$\implies C_{pq}^{(2)}(t) = \frac{1}{2} \sum_{iab} \langle pi \mid \mid ab \rangle \langle ab \mid \mid qi \rangle \int \frac{d\omega}{2\pi} \frac{ie^{-i\omega t}}{\omega^2 \left(\omega - \epsilon_{pi}^{ab}\right)}$$
(33)

$$+\frac{1}{2}\sum_{ija}\langle pa||ij\rangle\langle ij||qa\rangle\int\frac{d\omega}{2\pi}\frac{ie^{-i\omega t}}{\omega^{2}\left(\omega-\epsilon_{pa}^{ij}\right)}$$
(34)

where $\epsilon_{pi}^{ab} = \epsilon_a + \epsilon_b - \epsilon_p - \epsilon_i$ and $\epsilon_{pa}^{ij} = \epsilon_i + \epsilon_j - \epsilon_p - \epsilon_a$. This is exact up to second order in the bare Coulomb interaction because the improper Σ and proper Σ second-order self-energy are equivalent in MP partitioning, so the former has the form

$$\tilde{\Sigma}_{pq}^{(2)}(\omega) = \frac{1}{2} \sum_{iab} \frac{\langle pi||ab\rangle\langle ab||qi\rangle}{\omega + \epsilon_i - \epsilon_a - \epsilon_b} + \frac{1}{2} \sum_{iia} \frac{\langle pa||ij\rangle\langle ij||qa\rangle}{\omega + \epsilon_a - \epsilon_i - \epsilon_j}$$
(35)

Patryk Kozlowski October 31, 2025

Scaling analysis

In order to evaluate 34 with Fock self-consistency in mind, this would require the maximum scaling of $N_O N_V^2$ for the summations, N_ω points for the frequency integration, and (not exploiting symmetry) $N_{\rm orb}^2$ for runs through p and q, leading to a total scaling of $O(N_O N_V^2 N_W N_{orb}^2)$. For a given iteration, we accumulate data for the value of the interacting Green's function for all N_T time steps, with the intention of performing a numerical Fourier transform to obtain $G_{pq}(\omega)$.

Patryk Kozlowski 18 / 18