## 3.4.1

Use the methods of this chapter to prove that  $\forall x (P(x) \land Q(x))$  is equivalent to  $\forall x P(x) \land \forall x Q(x)$ .

We want to prove  $\forall x (P(x) \land Q(x) \iff \forall x P(x) \land \forall x Q(x))$ .

**Theorem.** The statement  $\forall x (P(x) \land Q(x))$  is equivalent to  $\forall x P(x) \land \forall x Q(x)$ .

*Proof.* ( $\rightarrow$ ) Suppose  $\forall x (P(x) \land Q(x))$ . Let y be arbitrary. Since  $\forall x (P(x) \land Q(x))$  it follows P(y) and Q(y). Since y was arbitrary, we can conclude  $\forall x P(x)$  and  $\forall x Q(x)$  or  $\forall x P(x) \land \forall x Q(x)$ .

 $(\leftarrow)$  Let y be arbitrary. Since  $\forall x P(x)$  and  $\forall x Q(x)$  then it follows P(y) and Q(y). Since y was arbitrary we can conclude  $\forall x (P(x) \land Q(x))$ .

#### 3.4.2

Prove that if  $A \subseteq B$  and  $A \subseteq C$  then  $A \subseteq B \cap C$ .

**Theorem.** If  $A \subseteq B$  and  $A \subseteq C$  then  $A \subseteq B \cap C$ .

*Proof.* Let x be arbitrary and suppose  $x \in A$ . Since  $A \subseteq B$  then  $x \in B$  and since  $A \subseteq C$  then  $x \in C$  or  $x \in B \cap C$ . Therefore, if  $x \in A$  then  $x \in B \cap C$  and since x was arbitrary we can conclude  $A \subseteq B \cap C$ .

#### 3.4.3

Suppose  $A \subseteq B$ . Prove that for every set  $C, C \setminus B \subseteq C \setminus A$ .

**Theorem.** Suppose  $A \subseteq B$ , then for every set C,  $C \setminus B \subseteq C \setminus A$ .

*Proof.* Suppose  $A \subseteq B$  and C is an arbitrary set. Let x be arbitrary and suppose  $x \in C \setminus B$ , which means  $x \in C$  and  $x \notin B$ . Since  $x \notin B$  and  $A \subseteq B$ , then  $x \notin A$ , which means that  $x \in C \setminus A$ . Therefore, if  $x \in C \setminus B$  then  $x \in C \setminus A$  and since x and C were arbitrary, we can conclude  $\forall C(C \setminus B \subseteq C \setminus A)$ .

#### 3.4.5

Prove that if  $A \subseteq B \setminus C$  and  $A \neq \emptyset$  then  $B \not\subseteq C$ .

**Theorem.** If  $A \subseteq B \setminus C$  and  $A \neq \emptyset$  then  $B \not\subseteq C$ .

*Proof.* Let x be arbitrary and suppose  $x \in A$ . Since  $A \subseteq B \setminus C$  then  $x \in B$  and  $x \notin C$ . Since x was arbitrary we can conclude  $B \not\subseteq C$ .

## 3.4.6

Prove that for any sets A, B, and C,  $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$  finding a string of equivalences starting with  $x \in A \setminus (B \cap C)$  and ending with  $x \in (A \setminus B) \cup (A \setminus C)$ .

**Theorem.** for any sets A, B, and C,  $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$ .

*Proof.* Suppose A, B, and C are arbitrary sets. Then

```
\begin{split} x \in A \setminus (B \cap C) \text{ iff } x \in A \to (x \notin B \land x \notin C) \\ \text{ iff } x \notin A \lor (x \notin B \land x \notin C) \\ \text{ iff } (x \notin A \lor x \notin B) \land (x \notin A \lor x \notin C) \\ \text{ iff } (x \in A \to x \notin B) \lor (x \in A \to x \notin C) \\ \text{ iff } x \in A \setminus B \lor x \in A \setminus C \\ \text{ iff } x \in (A \setminus B) \cup (A \setminus C) \end{split}
```

## 3.4.7

**Theorem.** For any sets A and B,  $\mathscr{P}(A \cap B) = \mathscr{P}(A) \cap \mathscr{P}(B)$ .

*Proof.*  $(\rightarrow)$  Let M be an arbitrary set and suppose  $M \in \mathscr{P}(A \cap B)$ . Then  $M \subseteq A \cap B$ . Let x be arbitrary and suppose  $x \in M$ . Since  $M \subseteq A \cap B$ ,  $x \in A \cap B$  and therefore  $x \in A$ . Since x was arbitrary,  $M \subseteq A$  and therefore  $M \in \mathscr{P}(A)$ . Similarly, since  $M \subseteq A \cap B$ ,  $x \in B$ . Since x was arbitrary,  $M \subseteq B$  and therefore  $M \in \mathscr{P}(B)$ . Therefore,  $M \in \mathscr{P}(A)$  and  $M \in \mathscr{P}(B)$ .

 $(\leftarrow)$  Now suppose  $M \in \mathscr{P}(A) \cap \mathscr{P}(B)$ . Then  $M \subseteq A$  and  $M \subseteq B$ . Suppose  $x \in M$ . Since  $M \subseteq A$  and  $M \subseteq B$  then  $x \in A \cap B$ . Since x was arbitrary,  $M \subseteq A \cap B$  and therefore  $M \in \mathscr{P}(A \cap B)$ .

# 3.4.8

**Theorem.**  $A \subseteq B \iff \mathscr{P}(A) \subseteq \mathscr{P}(B)$ 

*Proof.*  $(\rightarrow)$  Suppose  $A \subseteq B$ . Let M be an arbitrary set and suppose  $M \in \mathscr{P}(A)$ . Then  $M \subseteq A$ . Now let y be arbitrary and suppose  $y \in M$ . Since  $M \subseteq A$  then  $y \in A$ , and since  $A \subseteq B$  then  $y \in B$ . Since y was arbitrary,  $M \subseteq B$  and therefore  $M \in \mathscr{P}(B)$ . Since M was arbitrary,  $\mathscr{P}(A) \subseteq \mathscr{P}(B)$ .

 $(\leftarrow)$  Now suppose  $\mathscr{P}(A) \subseteq \mathscr{P}(B)$  and  $y \in A$ . Then the set  $\{y\}$  is in  $\mathscr{P}(A)$ . Since  $\mathscr{P}(A) \subseteq \mathscr{P}(B)$  then  $\{y\} \in \mathscr{P}(B)$  and  $y \in B$ . Since y was arbitrary,  $A \subseteq B$ .