



## **PHYSICS NMDCAT**

**TOPIC WISE TEST (UNIT-4)** 

www.saeedmdcat.com

|              | SAEED                                                                                                                                                       | MDCAT                                              |  |  |  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--|--|--|
|              | 03418729745(W                                                                                                                                               | hatsApp Groups)                                    |  |  |  |
| TOPI         |                                                                                                                                                             |                                                    |  |  |  |
| $\checkmark$ | Waves                                                                                                                                                       |                                                    |  |  |  |
| Q.1          | The speed of sound waves having a free                                                                                                                      | quency of 256 Hz, compared with the speed of       |  |  |  |
|              | sound waves having a frequency of 512Hz is                                                                                                                  |                                                    |  |  |  |
|              | A. Half as great                                                                                                                                            | B. Four times as great                             |  |  |  |
|              | C. Twice as great                                                                                                                                           | D. Same                                            |  |  |  |
| Q.2          | Speed of sound in a gas is proportional to                                                                                                                  |                                                    |  |  |  |
|              | A. Square root of isothermal elasticity                                                                                                                     | B. Isothermal elasticity                           |  |  |  |
|              | C. Square root of adiabatic elasticity                                                                                                                      | D. Adiabatic elasticity                            |  |  |  |
| Q.3          | With the propagation of a longitudinal wave through a material medium, the quantities transferred in the direction of propagation are                       |                                                    |  |  |  |
|              | A. Energy, momentum and mass                                                                                                                                | B. Energy and mass                                 |  |  |  |
|              | C. Energy and momentum                                                                                                                                      | D. Energy                                          |  |  |  |
| Q.4          | When a wave goes from one medium to another, there is a change in the                                                                                       |                                                    |  |  |  |
|              | A. Velocity                                                                                                                                                 | B. Frequency                                       |  |  |  |
|              | C. Wavelength                                                                                                                                               | D. Both "A" and "B"                                |  |  |  |
| Q.5          | How does the speed v of sound in air depend on the atmospheric pressure P?                                                                                  |                                                    |  |  |  |
|              | A. $\mathbf{v} \propto \mathbf{P}^{-1}$                                                                                                                     | B. $v \propto P^{1/2}$                             |  |  |  |
|              | $C. \ v \propto P^2$                                                                                                                                        | P. $P$ 0                                           |  |  |  |
| Q.6          |                                                                                                                                                             | in air will be 1.5 times its value at 27°C in air? |  |  |  |
| Q.O          | A. 102°C                                                                                                                                                    | B. 204°C                                           |  |  |  |
|              | C. 204°C                                                                                                                                                    | D. 402°C                                           |  |  |  |
| Q.7          | When sound waves enter from air into                                                                                                                        |                                                    |  |  |  |
|              | A. λ increases                                                                                                                                              | B. Frequency increases                             |  |  |  |
|              | C. Speed decreases                                                                                                                                          | D. All of them                                     |  |  |  |
| Q.8          | The velocity of sound is $v_s$ in air. If d                                                                                                                 | lensity of air is increased twice then the new     |  |  |  |
|              | velocity of sound will be                                                                                                                                   |                                                    |  |  |  |
|              | $A. v_s$                                                                                                                                                    | B. $\sqrt{2}v_s$                                   |  |  |  |
|              | > / \   =   =                                                                                                                                               | D. $\frac{3}{2}v_s$                                |  |  |  |
|              | C. $\frac{v_s}{\sqrt{2}}$                                                                                                                                   | D. $\frac{1}{2}v_s$                                |  |  |  |
| Q.9          | An ultrasonic scanner is used in a hospital to detect tumour in tissue. The working                                                                         |                                                    |  |  |  |
|              | frequency of the scanner is 4.2 mega Hz. The velocity of sound in the tissue is 2.1 kms <sup>-1</sup> . The wavelength of sound in the tissue is nearest to |                                                    |  |  |  |
|              | A. $4 \times 10^{-3}$ m                                                                                                                                     | B. $5 \times 10^{-4}$ m                            |  |  |  |
|              | C. $8 \times 10^{-3}$ m                                                                                                                                     | D. $8 \times 10^{-4} \text{ m}$                    |  |  |  |
| Q.10         | The percentage error in Newton's form                                                                                                                       |                                                    |  |  |  |
| £.20         | A. 15%                                                                                                                                                      | B. 20%                                             |  |  |  |
|              | C. 16%                                                                                                                                                      | D. 10%                                             |  |  |  |
| Q.11         | When a source of sound is in motion towa                                                                                                                    | ards a stationary observer, the effect observed is |  |  |  |





- A. Increase in the velocity of sound only
- B. Increase in frequency of sound only
- C. Decrease in the velocity of sound only
- D. Increase in both the velocity and the frequency of sound
- Q.12 The velocity of sound is generally greater is solids than in gases because
  - A. The density of solids is high and the elasticity is low
  - B. The density of solids is low and the elasticity is high
  - C. Both the density and the elasticity of solids are very low
  - D. The elasticity of solids is very high
- Q.13 In sound waves during the compressions
  - A. density of medium is maximum
- B. density of the medium is minimum
- C. pressure of medium is maximum
- D. both 'A' and 'B'
- Q.14 The isothermal elasticity of a medium is  $E_i$  and the adiabatic elasticity is  $E_a$ . The velocity of the sound in the medium is proportional to
  - A.  $\sqrt{E_i}$

B.  $\sqrt{E_a \gamma}$ 

C. E.

- D. E.
- Q.15 A particular wavelength received from a galaxy is measured on earth and is found to be 5% more then that its' wave length. Hence galaxy is
  - A. Moving towards earth
- B. stationary with respect to earth
- C. Going away from earth
- D. none of these
- Q.16 Which of the following has maximum audible frequency range?
  - A. Dolphin

B. Cat

C. Bat

- D. Dog
- Q.17 Doppler Effect is used to monitor blood flow through major arteries by ultrasound waves of frequency.
  - A. 5 Hz to 10 Hz

B. 5 KHz to 10 KHz

C. 5 MHz to 10 MHz

- D. 5 GHz to 10 GHz
- Q.18 RADAR operates on the principle of
  - A. beats

B. Doppler's Effect

C. interference

- D. Compton's Effect
- Q.19 Newton's formula for the speed of sound in fluids is

A. 
$$v = \sqrt{\frac{P}{\rho}}$$

B. 
$$v = \sqrt{\frac{\rho}{E}}$$

C. 
$$v = \sqrt{\frac{E}{n}}$$

D. 
$$v = \sqrt{\frac{\gamma P}{\rho}}$$

- Q.20 The speed of sound in vacuum at 10°C is
  - A. 338.2 ms

B.  $332 \text{ ms}^{-1}$ 

C. 340 ms<sup>-1</sup>

- D.  $0 \text{ ms}^{-1}$
- Q.21 Which one of the following graphs shows constructive interference?





- Q.22 With rise in temperature, the speed of sound in a gas
  - A. Increases
  - B. Decreases
  - C. Remains same
  - D. May increase or decrease depending upon air pressure
- Q.23 The value of  $\gamma$  for diatomic gas is





|      | A. 1.40                                                                                                                                                                               | В. 1                                                       | 29                                                                                             |  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|
|      | C. 1.67                                                                                                                                                                               | D. 1.                                                      | 47                                                                                             |  |
|      |                                                                                                                                                                                       |                                                            |                                                                                                |  |
|      |                                                                                                                                                                                       |                                                            |                                                                                                |  |
| 0.24 | XX/1-2-1 C-41 C-11                                                                                                                                                                    | ·                                                          | $\mathbf{C}_{\mathbf{p}}$                                                                      |  |
| Q.24 | Which of the follow                                                                                                                                                                   | ing nas maximum va                                         | nue or $\gamma = \frac{1}{C}$                                                                  |  |
|      |                                                                                                                                                                                       |                                                            |                                                                                                |  |
|      | A. Monoatomic gas                                                                                                                                                                     |                                                            | B. Polyatomic gas                                                                              |  |
|      | C. Diatomic gas                                                                                                                                                                       |                                                            | D. All have same value                                                                         |  |
| Q.25 | The displacement of particle in S.H.M. in one-time period, if its amplitude of its motion is                                                                                          |                                                            |                                                                                                |  |
|      | "A" will be                                                                                                                                                                           |                                                            |                                                                                                |  |
|      | A. Zero                                                                                                                                                                               |                                                            | B. 2A                                                                                          |  |
|      | C. A                                                                                                                                                                                  |                                                            | D. 4A                                                                                          |  |
| Q.26 | Which of the follow                                                                                                                                                                   | ing is mechanical wa                                       |                                                                                                |  |
|      | A. Light waves                                                                                                                                                                        |                                                            | B. X-rays                                                                                      |  |
|      | C. Sound waves                                                                                                                                                                        |                                                            | D. Radio waves                                                                                 |  |
| Q.27 | Sound travels faster                                                                                                                                                                  | in moist air at STP                                        | because                                                                                        |  |
|      | A. Moist air is heavier than dry air                                                                                                                                                  |                                                            |                                                                                                |  |
|      |                                                                                                                                                                                       | oist air is greater than                                   | that of dry air                                                                                |  |
|      |                                                                                                                                                                                       | <mark>moist air</mark> is greater tha                      |                                                                                                |  |
|      |                                                                                                                                                                                       | oist air is less than that                                 |                                                                                                |  |
| Q.28 |                                                                                                                                                                                       |                                                            | n <mark>d time period T</mark> will be                                                         |  |
| Q.20 | A. 1                                                                                                                                                                                  | nai frequency (w) an                                       | B. $2\pi$                                                                                      |  |
|      |                                                                                                                                                                                       |                                                            | B. 211                                                                                         |  |
|      | C. $\frac{\pi}{2}$                                                                                                                                                                    |                                                            | D. π                                                                                           |  |
|      | 2                                                                                                                                                                                     |                                                            |                                                                                                |  |
| Q.29 | On decreasing the ter                                                                                                                                                                 | mperature, the freque                                      | <mark>ency of an o</mark> rgan pipe becomes                                                    |  |
|      | A. Decrease                                                                                                                                                                           |                                                            | B. Equal                                                                                       |  |
|      | C. Increase                                                                                                                                                                           |                                                            | D. Infinity                                                                                    |  |
| Q.30 | In a stationary wave                                                                                                                                                                  | the distance between                                       | n consecutive antinodes is 25 cm. If the wave                                                  |  |
|      | velocity is 300 ms <sup>-1</sup> , t                                                                                                                                                  | hen the freq <mark>uency of v</mark>                       | <mark>wave w</mark> ill be                                                                     |  |
|      | A. 150 Hz                                                                                                                                                                             |                                                            | B. 600 Hz                                                                                      |  |
|      | C. 300 Hz                                                                                                                                                                             |                                                            | D. 750 Hz                                                                                      |  |
| Q.31 | A sitar wire vibrates                                                                                                                                                                 | with frequency of 330                                      | vibrations per second. If its length is increased                                              |  |
|      |                                                                                                                                                                                       |                                                            | mes, then the frequency of the wire will be                                                    |  |
|      | A. 110 Hz                                                                                                                                                                             |                                                            | B. 330 Hz                                                                                      |  |
|      | C. 220 Hz                                                                                                                                                                             |                                                            | D. 440 Hz                                                                                      |  |
| Q.32 |                                                                                                                                                                                       | is 1m, tension in it is                                    |                                                                                                |  |
| 2.02 | The length of a string is 1m, tension in it is 40N and mass of the string is 0.1 kg. Then the velocity of transverse waves produced in the string will be:                            |                                                            |                                                                                                |  |
|      | A. 400 ms <sup>-1</sup>                                                                                                                                                               | waves produced in the                                      | B. 80 ms <sup>-1</sup>                                                                         |  |
|      | C. 180 ms <sup>-1</sup>                                                                                                                                                               |                                                            | D. 20 ms <sup>-1</sup>                                                                         |  |
| Q.33 |                                                                                                                                                                                       | and and containing                                         |                                                                                                |  |
| Q.JJ | A tube closed at one end and containing air produce fundamental note of frequency of 256 Hz. If the tube is open at both ends, the fundamental frequency will be:                     |                                                            |                                                                                                |  |
|      | A. 512 Hz                                                                                                                                                                             | open at both chus, th                                      | B. 128 Hz                                                                                      |  |
|      | C. 384 Hz                                                                                                                                                                             |                                                            | D. 64 Hz                                                                                       |  |
| 0.24 |                                                                                                                                                                                       | 1 C -4 i                                                   |                                                                                                |  |
| Q.34 |                                                                                                                                                                                       | ig laws of strings is no                                   | ot correct? Where "n" is frequency of string.                                                  |  |
|      | A. $n \propto \frac{1}{\sqrt{m}}$                                                                                                                                                     | (1 ) IVII )(                                               | B. $\mathbf{n} \propto \sqrt{\mathbf{T}}$                                                      |  |
|      | $\sqrt{\mathrm{m}}$                                                                                                                                                                   |                                                            |                                                                                                |  |
|      |                                                                                                                                                                                       |                                                            | D. $n \propto \frac{1}{n}$                                                                     |  |
|      | C. $n \propto \ell$                                                                                                                                                                   |                                                            | D. $n \propto \frac{1}{\ell}$                                                                  |  |
| 0.35 | When both course of                                                                                                                                                                   | nd listonon move in t                                      | he same direction with a valegity equal to half                                                |  |
| Q.35 | When both source and listener move in the same direction with a velocity equal to half<br>the velocity of sound, the change in frequency of the sound as detected by the listener is: |                                                            |                                                                                                |  |
|      |                                                                                                                                                                                       | the change in freque                                       |                                                                                                |  |
|      | A. 50%                                                                                                                                                                                | DALELL                                                     | B. Zero                                                                                        |  |
| 0.36 | C. 25%                                                                                                                                                                                | ط صاربا را الا                                             | D. None of these                                                                               |  |
| Q.36 | stationary listener at 3                                                                                                                                                              | ne produced by a so $32~\mathrm{ms}^{-1}$ , what will be a | urce is 0.8m. If the source moves towards the pparent wavelength of the sound? The velocity of |  |

B. 0.40 m

D. 0.32 m

sound is  $320 \,\mathrm{ms}^{-1}$ .

A. 0.80 m

C. 0.72 m





|          |                                                                                                                                                            | 30.0                                                                 |  |  |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--|--|
| Q.37     | The velocity of sound in air is 332 second overtone is 332 Hz, will be:                                                                                    | ms <sup>-1</sup> . The length of a closed pipe whose frequency of    |  |  |
|          | A. 0.51 m                                                                                                                                                  | B. 1.25 m                                                            |  |  |
|          | C. 0.75 m                                                                                                                                                  | D. 1.75 m                                                            |  |  |
| Q.38     |                                                                                                                                                            | 0 ms <sup>-1</sup> . The fundamental frequency of an organ pipe      |  |  |
| <b>C</b> | open at both ends and length 0.3 m                                                                                                                         |                                                                      |  |  |
|          | A. 200 Hz                                                                                                                                                  | B. 300 Hz                                                            |  |  |
|          | C. 275 Hz                                                                                                                                                  | D. 550 Hz                                                            |  |  |
| Q.39     | A source of sound of frequency 50                                                                                                                          | 00 Hz is moving towards on observer with velocity 30                 |  |  |
|          | ms <sup>-1</sup> . The speed of sound is 330 ms                                                                                                            | -1. The frequency heard by observer will be:                         |  |  |
|          | A. 550 Hz                                                                                                                                                  | B. 530 Hz                                                            |  |  |
|          | C. 458.3 Hz                                                                                                                                                | D. 454.5 Hz                                                          |  |  |
| Q.40     | If a stretched-string is 4m and it                                                                                                                         | has 4 loops of stationary waves, then wave length is                 |  |  |
|          | A. 1m                                                                                                                                                      | B. 2m                                                                |  |  |
|          | C. 3m                                                                                                                                                      | D. 4m                                                                |  |  |
| Q.41     | If a string vibrates in "n" loops, t                                                                                                                       | the wavelength of s <mark>tationary wave</mark> will be:             |  |  |
|          | A. $\frac{2\ell}{}$                                                                                                                                        | $\mathbf{p}$ $\mathbf{n}\ell$                                        |  |  |
|          | A. — n                                                                                                                                                     | B. $\frac{1}{2}$                                                     |  |  |
|          |                                                                                                                                                            | B. $\frac{n\ell}{2}$ D. $\frac{\ell}{2n}$                            |  |  |
|          | C. $\frac{2n}{\ell}$                                                                                                                                       | D. $\frac{\delta}{2\pi}$                                             |  |  |
| 0.42     | Ł                                                                                                                                                          |                                                                      |  |  |
| Q.42     | In resonance tube, which of the f A. node                                                                                                                  | B. antinodes                                                         |  |  |
|          | C. neither a nor b                                                                                                                                         | D. either a or b                                                     |  |  |
| Q.43     |                                                                                                                                                            |                                                                      |  |  |
| Q.43     | A tight wire is clamped at two points 2 m apart. It is plucked near one end, what are the three longest wavelengths produced on the vibrating wire:        |                                                                      |  |  |
|          | A. 2 m, 1 m, 0.67 m                                                                                                                                        | B. 4 m, 2 m, 1.33 m                                                  |  |  |
|          | C. 4 m, 2 m, 1 m                                                                                                                                           | D. 1 m, 0.5 m, 0.33 m                                                |  |  |
| Q.44     |                                                                                                                                                            |                                                                      |  |  |
| Q.11     | The frequency of the fundamental mode of transverse vibration of a stretched wire 1000 mm long is 250 Hz. When the wire is shortened to 500 mm at the same |                                                                      |  |  |
|          | tension, what is the fundamental                                                                                                                           |                                                                      |  |  |
|          | A. 125 Hz                                                                                                                                                  | B. 250 Hz                                                            |  |  |
|          | C. 500 Hz                                                                                                                                                  | D. 1000 Hz                                                           |  |  |
| Q.45     |                                                                                                                                                            | ay is v <sub>c</sub> and its speed on hot day is v <sub>a</sub> then |  |  |
| 2.10     | A. $v_c = v_a$                                                                                                                                             | B. $v_c < v_a$                                                       |  |  |
|          | $C. v_c > v_a$                                                                                                                                             | D. $v_c$ may be more or less than $v_a$                              |  |  |
| Q.46     |                                                                                                                                                            | h fundamental frequency of 50 Hz. The wavelength                     |  |  |
| <b>C</b> |                                                                                                                                                            | ransverse wave in the string is 100 ms <sup>-1</sup>                 |  |  |
|          | A. 66 cm                                                                                                                                                   | B. 33 cm                                                             |  |  |
|          | C. 50 cm                                                                                                                                                   | D. 100 cm                                                            |  |  |
|          |                                                                                                                                                            |                                                                      |  |  |
| Q.47     | Distance and displacement trave                                                                                                                            | eled by a vibrating body in a time equal to $\frac{3}{4}$ T;         |  |  |
|          |                                                                                                                                                            |                                                                      |  |  |
|          | where T is the period of the vibra                                                                                                                         |                                                                      |  |  |
|          | A. $3x_o, 3x_o$                                                                                                                                            | B. $3x_0, 0$<br>D. $2x_0, 0$                                         |  |  |
|          | C. $3x_{0}, x_{0}$                                                                                                                                         | D. $2x_{0}$ , 0                                                      |  |  |
| Q.48     | The chasing car 'B' traveling at                                                                                                                           | 20 ms <sup>-1</sup> sounds a horn which the driver of leading        |  |  |
|          | car A travelling at 16 ms <sup>-1</sup> estima                                                                                                             | ates has frequency 340 Hz. The frequency which B's                   |  |  |
|          | own drive hears $(v = 340 \text{ ms}^{-1})$                                                                                                                |                                                                      |  |  |
|          | A. 332 Hz                                                                                                                                                  | B. 336 Hz                                                            |  |  |
|          | C. 334 Hz                                                                                                                                                  | D. 338 Hz                                                            |  |  |
| Q.49     | The ratio of 2 <sup>nd</sup> overtone to 3 <sup>rd</sup>                                                                                                   | overtone in stationary wave produced in an air                       |  |  |
| Ç        | column open at both ends is                                                                                                                                | EUNDUAL                                                              |  |  |
|          | 4                                                                                                                                                          |                                                                      |  |  |
|          | A. $\frac{4}{3}$                                                                                                                                           | B. $\frac{2}{3}$                                                     |  |  |
|          | 3                                                                                                                                                          | 5                                                                    |  |  |
|          | $C^{\frac{3}{2}}$                                                                                                                                          | $D = \frac{1}{2}$                                                    |  |  |





Q.50 In one end close pipe system of length 50 cm then wavelength for 3<sup>rd</sup> mode of vibration when stationary wave is formed.

A. 66.6 cm

B. 40 cm

C. 20 cm

D. 33.3 cm

For More Test And Lecture , Visit Our Official Website www.saeedmdcat.com

And Must be Join Our WhatsApp Group(03418729745)

## SAEED MDCAT TEAM SAEED MDCAT TEAM SAEED MDCAT TEAM

|                                               | CTS-                                                 | T+                                                           |                                              |                                                      |
|-----------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------|------------------------------------------------------|
|                                               | Phy                                                  | sies                                                         |                                              |                                                      |
| 1-p                                           | It-B                                                 | 21- A                                                        | 31-6                                         | 41-0                                                 |
| 2-6                                           | 12 - P                                               | 77-A                                                         | 32 0                                         | 42-13                                                |
| 3.0                                           | 13- 0                                                | 23 - A                                                       | 33-1)                                        | 45-Q                                                 |
| 4-0                                           | 14 - wrong                                           | 24-0                                                         | 34-C                                         | 44-6                                                 |
| 5-D                                           | 15-C                                                 | 25-A                                                         | 31 B                                         | 95-B                                                 |
| 6-0                                           | 16-A                                                 | 26-0                                                         | 36-C                                         | 46- C                                                |
| 7-A                                           | 17-C                                                 | 27-12                                                        | 37-8                                         | 41-0                                                 |
| 8- C                                          | 18-B                                                 | 28-8                                                         | 38 D                                         | 48-B                                                 |
| 9 - B                                         | 19-11                                                | 29-A                                                         | 39-A                                         | 49-6                                                 |
| 10-0                                          | 20-D                                                 | 30 - B                                                       | 40-B                                         | 50-B                                                 |
| 10-0                                          |                                                      |                                                              |                                              |                                                      |
|                                               | Chen                                                 | nistry                                                       |                                              |                                                      |
|                                               |                                                      |                                                              |                                              |                                                      |
| 1-B                                           | 11-D                                                 | 21-8                                                         | 31-C                                         | 41- B                                                |
| 1-B                                           |                                                      |                                                              | 31- C<br>32- A                               | 41-13<br>42-A                                        |
| 2-D                                           | 11- D                                                | 21-8                                                         |                                              |                                                      |
|                                               | 11- D<br>12-C                                        | 21-B<br>22-A                                                 | 32-A                                         | 42 - A                                               |
| 2-D<br>3-A<br>4-D                             | 11-D<br>12-C<br>13-B<br>14-D                         | 21-B<br>22-A<br>23-B<br>24-A                                 | 32 - A<br>33 - A                             | 42 - A<br>43 - A                                     |
| 2-D<br>3-A<br>4-D<br>5-B                      | 11-D<br>12-C<br>13-B<br>14-D<br>15-C                 | 21-B<br>22-A<br>23-B<br>24-A<br>25-B                         | 32 - A<br>33 - A<br>34 - B                   | 42-A<br>43-A<br>44-C                                 |
| 2-D<br>3-A<br>4-D<br>5-B<br>6-A               | 11-D<br>12-C<br>13-B<br>14-D<br>15-C<br>16-B         | 21-B<br>22-A<br>23-B<br>24-A<br>25-B<br>26-C                 | 32 - A<br>33 - A<br>34 - B<br>35 - A         | 42-A<br>43-A<br>44-C<br>45-D                         |
| 2-D<br>3-A<br>4-D<br>5-B<br>6-A<br>7-D        | 11-D<br>12-C<br>13-B<br>14-D<br>15-C<br>16-B<br>17-B | 21-B<br>22-A<br>23-B<br>24-A<br>25-B                         | 32 - A<br>33 - A<br>34 - B<br>35 - A         | 42-A<br>43-A<br>44-C<br>45-D<br>46-A                 |
| 2-D<br>3-A<br>4-D<br>5-B<br>6-A<br>7-D        | 11-D<br>12-C<br>13-B<br>14-D<br>15-C<br>16-B         | 21-B<br>22-A<br>23-B<br>24-A<br>25-B<br>26-C<br>27-A         | 32-A<br>33-A<br>34-B<br>35-A<br>36-A<br>37-D | 42-A<br>43-A<br>44-C<br>45-D<br>46-A<br>47-B         |
| 2-D<br>3-A<br>4-D<br>5-B<br>6-A<br>7-D<br>8-C | 11-D<br>12-C<br>13-B<br>14-D<br>15-C<br>16-B<br>17-B | 21-B<br>22-A<br>23-B<br>24-A<br>25-B<br>28-C<br>27-A<br>28-B | 32-A<br>33-A<br>34-B<br>35-A<br>36-A<br>37-D | 42-A<br>43-A<br>44-C<br>45-D<br>46-A<br>47-B<br>48-D |