Machine Learning

Assignment 9: Markov Process

Code:

Output:

```
"C:\Program Files\Java\jdk-19\bin\java.exe" "-javaagent:C:\Program Files\JetBra.

Enter the transition probabilities from rainy:
    rainy: 0.5
    cloudy: 0.3
    sunny: 0.2
    happy: 0.1
    sad: 0.9
Enter the transition probabilities from cloudy:
    rainy: 0.4
    cloudy: 0.2
    sunny: 0.4
    happy: 0.4
    sad: 0.8
Enter the transition probabilities from sunny:
    rainy: 0.4
    cloudy: 0.3
    sunny: 0.7
    happy: 0.6
    sad: 0.2
Enter the transition probabilities from happy:
    rainy: 0.0
    cloudy: 0.0
    sad: 0.0
Enter the transition probabilities from sad:
    rainy: 0.0
    cloudy: 0.0
    sad: 0.0
Enter the transition probabilities from sad:
    rainy: 0.0
    cloudy: 0.0
    sad: 0.0
Enter the transition probabilities from sad:
    rainy: 0.0
    cloudy: 0.0
    sad: 0.0
Enter the transition probabilities from sad:
    rainy: 0.0
    cloudy: 0.0
    sad: 0.0
Enter the observations, separated by spaces: sunny happy sloudy happy sunny sad
Probability of observations: 0.0039
```

Notes

AV	Uo/	Page No.:	YOUVA
-	Markov Process	5 + 6	
	-> TPM (Wangtheon Probabelchy Makrex) -> Row x (olumn Square from of each v	10w=1	
Captus	Pri Piz Prz	59 50	
	TPM P21 P22 P23 Values P31 P32 P33	Y	
	- Present state at it=1	7	
11.	Pos = [resent sites at 1]t	=0	
	95 0.2		
	Comp County	0.7	
	0.8		
	(Sud) (Paris)		
0	Observation. Fin the probability of the seence	ိုဝ	C 1
	DSunny > Happy 2) Cloudy > Happy	1	id
	Rainy 0.5 0-3 0.2 0.4		
		0.6	
		make (x)	
	(3)—XC)—XS		
	7 7	White Park	
	H (w)		
	P(H-H-Sad, Sumy-Cloud-Sumy)	Filip Us	
	= P(Sunny)P(Happy (Sunny) P(Cloudy (Sunny))	PCHappy Clo	udu)
	PChimylcloudy) P(Rad/ Sunny)	117	3
	= P(Amny) XO.8 x0.3x0-4x 0.4x0-2		
	= Pcsunny) x 0. 00768		
	Initial probability formulas:		
	1 2 10.5 0	02 007 =	(T. F. T.
	2)	0-3 0-7	1 1 2 13
		, , , ,	

= 0.57, +0.4T2 + 0.BT = 7, ->0 · 0.3 T, + 0.2 T, + 0.3 T, = T, → (5) 0.27, +0.4 T2 +0.77, = T2 > 3 Replacing egn & with TI+TIZ+TIZ=1 -0.5T, to.4T, +0 T3 =0 >0 Q=3 0 003 T, -008 T, +0.3T, =0 → 3 11,+112+113=1 >3 Substituting egn @ 8 egn @ -0.5 M, +0.4 T 2 +0 M, = 0 - 0-3T1 +0.877-D.3T2=0 - 0.8 TILO. 12TIZ-0.3TT3-0 TI = -0-12T12+0.3T3+0.8 (363) > 0-3T1 -0.8T12 +0.3T3=0 T1 + T12 + T13 =1 TT1 = 0.2182, T2=0.2727, T3=0.509 [T, T2 T3] = [0.2182 0.2727 0.509] 00 8 (Sunney) = 0.\$09 = 0.509 x a 00 768 = 0.0039 .. Probability of given scenario= 0.0039 Sunny & Happy Cloudy & Sad Rainy & Such P(H-5-5, Sunny-cloudy-Rainey) = P(Sunny) P(Happy 1 Sunny) P(Cloudy Sunny) P(Sadleland P(Rusny 1 Cloudy) P(Sad (Raisny) = 0. 569 x 0.8 x 0.3 x 0.6 x 0.4 x 0.9 = 0.0264

Submitted By:

Harshita Pasupuleti

21BCE8421