Homework 13

Joe Baker, Brett Schreiber, Brian Knotten

February 11, 2018

19

\mathbf{a}

Problem 5.9 part (a): Show that EXACT INDSET $\in \pi_2^p$.

Proof.

EXACT INDSET can be expressed as the following language in first-order logic:

 $\text{EXACT INDSET} = \big\{ (G, k) \mid \forall \text{ Independent Sets } S_1 \in G, \exists \text{ an Independent Set } S_2 \in G \text{ such that } |S_2| = k \text{ and } |S_2| > = |S_1| \big\}.$

By the definition of π_2^p , EXACT INDSET $\in \pi_2^p$.

b

Problem 5.11: Show that SUCCINCT SET-COVER $\in \Sigma_2^p$.

Proof:

SUCCINCT SET COVER can be expressed as the following language in first-order logic:

SUCCINCT SET COVER = $\{(S, k) \mid \exists S' \subseteq S, \forall \text{ possible assignments of } S', \text{ then } |S'| <= k \text{ and } S' \text{ true} \}.$

By the definition of Σ_2^p , SUCCINCT SET COVER $\in \Sigma_2^p$.

\mathbf{c}

Problem 5.13: Show that VC-DIMENSION $\in \Sigma_3^p$.

Proof:

VC-DIMENSION can be expressed as the following language in first-order logic:

VC-DIMENSION = $\{(C, k) \mid \exists X \subseteq U, \forall X' \subseteq X, \exists i, \text{ such that } |X| >= k \text{ and } C_i \cup X = X' \}.$

By the definition of Σ_3^p , VC-DIMENSION $\in \Sigma_3^p$.

\mathbf{d}

Problem 5.9 part(b): Show that EXACT INDSET \in DP.

Proof:

Let $L_1 = \{(G, k) \mid \exists$ an Independent Set S, such that $|S| = k\}$. $L_1 \in \text{NP}$ because $L_1 \in \Sigma_1^p$ by definition and $\Sigma_1^p = \text{NP}$.

Let $L_2 = \{(G, k) \mid \forall \text{ Independent Sets } S, \text{ such that } |S| <= k\}.$ $L_2 \in \text{co-NP}$ because it is in π_1^p by definition and $\pi_1^p = \text{co-NP}$.

Since the intersection of two sets requires both constraints to be met:

Let $L = L_1 \cap L_2 = \{(G, k) \mid \forall \text{ Independent Sets } S_1, \exists \text{ an Independent Set } S_2, \text{ such that } |S_1| <= k \text{ and } |S_2| = k \} = \text{EXACT IND SET.}$

Finally, since $L = L_1 \cap L_2$ and $L_1 \in NP$ and $L_2 \in co-NP$, then $L \in DP$.

20

Problem 5.3: Show that if 3SAT is polynomial-time reducible to $\overline{3SAT}$, then PH = NP.

Proof:

First we will show that if 3SAT is polynomial-time reducible to $\overline{3SAT}$, then NP = co-NP:

Since 3SAT $\leq_P \overline{3\text{SAT}}$, then there is a bijective function $f: \{0,1\}^* \to \{0,1\}^*$ where $x \in 3\text{SAT}$ if and only if $f(x) \in \overline{3\text{SAT}}$. Since 3SAT is NP-complete, for each language $L_{\text{NP}} \in \text{NP}$, there exists some bijective function $f_{L_{\text{NP}}}$ which reduces L_{NP} to 3SAT. Similarly, since $\overline{3\text{SAT}}$ is co-NP-complete, for each language $L_{\text{co-NP}} \in \text{co-NP}$, there exists some bijective function $f_{L_{\text{co-NP}}}$ which reduces $L_{\text{co-NP}}$ to $\overline{3\text{SAT}}$. Thus any language $L_{\text{NP}} \in \text{NP}$ can be reduced to some language $L_{\text{co-NP}} \in \text{co-NP}$ by applying $f_{\text{NP}}(f(f_{\text{co-NP}}(x)))$ for each $x \in L_{\text{NP}}$ and any language $L_{\text{co-NP}}$. Thus $3\text{SAT} \leq_P \overline{3\text{SAT}}$ implies that any language in NP is also in co-NP, and any language in co-NP is also in NP.

Next we will show that if NP = co-NP, then $\Sigma_2^p = \text{NP} = \pi_2^p = \text{co-NP}$:

Consider an arbitrary language $L \in NP$. If NP = co-NP, then $L \in \text{co-NP}$.

L being in NP implies that for some string $x \in L$, there exists a certificate c of polynomial size which a poly-time Turing machine can use to verify that $x \in L$.

L being in co-NP implies that for some string $x \in L$, for all arbitrary "counter examples", a poly-time Turing machine can verify these counter examples do not forbid x from being a member of L.

Consider an arbitrary language M such that $M \in \Sigma_2^p$. This means that M can be described as an existential statement followed by a universal. Since NP = co-NP, this latter universal statement can be rewritten as an existential statement, because instead of providing all counter examples, a verifier TM can be given a verifying certificate c. So M can be rewritten as two existential statements, which can further be rewritten as a single existential statement requiring a pair of values which would both verify an input string $x \in M$. Since M can be verified by a poly-time verifier and a certificate (containing a tuple), $M \in \text{NP}$. Therefore, for all $M \in \Sigma_2^p \Rightarrow M \in \text{NP}$.

It follows that any language $N \in \Pi_2^p \Rightarrow N \in \text{co-NP}$, because N's universal and existential statement can be rewritten as a universal statement requiring a pair of values. And since $N \in \text{co-NP}$, $N \in \text{NP}$.

This strategy can be applied to all levels of the polynomial hierarchy. Any given class Σ_n^p can have its final existential or universal quantifier be rewritten as a universal or existential quantifier respectively and combined with the previous quantifier to expect a pair of values, which transforms the class into Σ_{n-1}^p , which itself can have its final quantifier be rewritten and be combined with the previous quantifier to expect a 3-tuple of values. This can be repeatedly applied until the class Σ_1^p is reached, which is NP. The same is true for any given class Π_n^p .

Finally, we can repeat the logic used to show that Σ_2^p and π_2^p collapse into NP and co-NP to show that higher levels of the polynomial time hierarchy collapse into NP and co-NP. Thus if 3SAT is polynomial-time reducible to $\overline{3SAT}$, then PH = NP.