LOGICAL AND THEORETICAL FOUNDATIONS OF COMPUTER SCIENCE

LATFOCS

Pamela Fleischmann

fpa@informatik.uni-kiel.de

Winter Semester 2019

Kiel University Dependable Systems Group

now we have analogous definitions to the propositional logic - can we again automate the check for validity?

now we have analogous definitions to the propositional logic - can we again automate the check for validity?

 all-quantifier and infinite universe means infinitely many checks . . .

now we have analogous definitions to the propositional logic - can we again automate the check for validity?

- all-quantifier and infinite universe means infinitely many checks . . .
- for semantic entailment we have to check infinitely many models

now we have analogous definitions to the propositional logic - can we again automate the check for validity?

- all-quantifier and infinite universe means infinitely many checks . . .
- for semantic entailment we have to check infinitely many models

automation is not possible in general!

Quantifier Equivalence Example

Consider
$$A = \{1, 2\}, P^{\mathcal{M}} = \{1\}, \text{ and } Q^{\mathcal{M}} = \{2\}$$

 \bigcirc is \mathcal{M} a model of $\forall x P(x) \rightarrow \forall x Q(x)$?

Quantifier Equivalence Example

Consider
$$A = \{1, 2\}$$
, $P^{\mathcal{M}} = \{1\}$, and $Q^{\mathcal{M}} = \{2\}$

 \bigcirc is \mathcal{M} a model of $\forall x P(x) \rightarrow \forall x Q(x)$?

$$\mathcal{M} \models \forall x P(x) \rightarrow \forall x Q(x)$$

iff $\mathcal{M} \models \forall x P(x)$ implies $\mathcal{M} \models \forall x Q(x)$
iff for all $a \in A(\mathcal{M} \models_{\ell[x \mapsto a]} P(x))$ implies
for all $b \in A(\mathcal{M} \models_{\ell[x \mapsto b]} Q(x))$

Quantifier Equivalence Example

Consider
$$A = \{1, 2\}, P^{\mathcal{M}} = \{1\}, \text{ and } Q^{\mathcal{M}} = \{2\}$$

 \bigcirc is \mathcal{M} a model of $\forall x P(x) \rightarrow \forall x Q(x)$?

$$\mathcal{M} \models \forall x P(x) \rightarrow \forall x Q(x)$$

iff $\mathcal{M} \models \forall x P(x)$ implies $\mathcal{M} \models \forall x Q(x)$
iff for all $a \in A(\mathcal{M} \models_{\ell[x \mapsto a]} P(x))$ implies
for all $b \in A(\mathcal{M} \models_{\ell[x \mapsto b]} Q(x))$

an implication is true if either the premise is false or both the premise and the conclusion are true

premise only for a = 1 true but the conclusion isn't true for
 b = 1!

UNDECIDABILITY OF PREDICATE

Logic

Decision Problem for Predicate Logic

Definition

Given a predicate logic formula φ , decide whether $\models \varphi$ holds.

Decision Problem for Predicate Logic

Definition

Given a predicate logic formula φ , decide whether $\models \varphi$ holds.

 Can we write a computer programme answering this question correctly?

Decision Problem for Predicate Logic

Definition

Given a predicate logic formula φ , decide whether $\models \varphi$ holds.

- Can we write a computer programme answering this question correctly?
- we cannot and we will prove this

 \bigcirc if we take an unsolvable problem \dots

- \bigcirc if we take an unsolvable problem . . .
- and reduce it to our problem (each instance is mapped to one of our problem) . . .

- \bigcirc if we take an unsolvable problem . . .
- and reduce it to our problem (each instance is mapped to one of our problem) . . .
- can our problem be solvable?

- if we take an unsolvable problem . . .
- and reduce it to our problem (each instance is mapped to one of our problem) . . .
- can our problem be solvable?
- \bigcirc it cannot, using the rules $(\neg i)$ and $(\neg e)$

Post Correspondence Problem (PCP)

Definition

Given $(s_1, t_1), \ldots, (s_k, t_k) \in \{0, 1\}^* \times \{0, 1\}^*$ (binary strings), decide whether there exists a sequence of indices i_1, \ldots, i_n such that

$$s_{i_1}\ldots s_{i_n}=t_{i_1}\ldots t_{i_n}.$$

Post Correspondence Problem (PCP)

Definition

Given $(s_1, t_1), \ldots, (s_k, t_k) \in \{0, 1\}^* \times \{0, 1\}^*$ (binary strings), decide whether there exists a sequence of indices i_1, \ldots, i_n such that

$$s_{i_1}\ldots s_{i_n}=t_{i_1}\ldots t_{i_n}.$$

Notice that you are allowed to take a tuple more than once!

PCP and Domino

A visualisation of PCP is the game Domino:

- \bigcirc consider the tuples to be domino tiles $\begin{pmatrix} s_i \\ t_i \end{pmatrix}$
- you have each tile as often as you like
- put them next to each other such that the upper row and the lower row are identical

PCP and Domino

A visualisation of PCP is the game Domino:

- \bigcirc consider the tuples to be domino tiles $\begin{pmatrix} s_i \\ t_i \end{pmatrix}$
- you have each tile as often as you like
- put them next to each other such that the upper row and the lower row are identical

Example: given
$$\begin{pmatrix} 1 \\ 101 \end{pmatrix}$$
, $\begin{pmatrix} 10 \\ 00 \end{pmatrix}$, $\begin{pmatrix} 011 \\ 11 \end{pmatrix}$

PCP and Domino

A visualisation of PCP is the game Domino:

- \bigcirc consider the tuples to be domino tiles $\begin{pmatrix} s_i \\ t_i \end{pmatrix}$
- you have each tile as often as you like
- put them next to each other such that the upper row and the lower row are identical

Example: given
$$\begin{pmatrix} 1 \\ 101 \end{pmatrix}$$
, $\begin{pmatrix} 10 \\ 00 \end{pmatrix}$, $\begin{pmatrix} 011 \\ 11 \end{pmatrix}$ we have a solution with

$$\left(\begin{array}{c} 1\\101 \end{array}\right) \left(\begin{array}{c} 011\\11 \end{array}\right) \left(\begin{array}{c} 10\\00 \end{array}\right) \left(\begin{array}{c} 011\\11 \end{array}\right) = \left(\begin{array}{c} 101110011\\101110011 \end{array}\right)$$

Theorem

 $The \ decision \ problem \ of \ validity \ in \ predicate \ logic \ is \ undecidable.$

Theorem

The decision problem of validity in predicate logic is undecidable.

Proof.

Oplan: reducing PCP to the decision problem

Theorem

The decision problem of validity in predicate logic is undecidable.

Proof.

- Oplan: reducing PCP to the decision problem
- \bigcirc $C = ((s_1, t_1), \dots, (s_k, t_k))$ instance of PCP

Theorem

The decision problem of validity in predicate logic is undecidable.

Proof.

- plan: reducing PCP to the decision problem
- \bigcirc $C = ((s_1, t_1), \dots, (s_k, t_k))$ instance of PCP
- \odot we need to find in finite space and time a predicate logic formula φ with

$$\models \varphi$$
 iff *C* has solution

Theorem

The decision problem of validity in predicate logic is undecidable.

Proof.

- plan: reducing PCP to the decision problem
- \bigcirc $C = ((s_1, t_1), \dots, (s_k, t_k))$ instance of PCP
- \odot we need to find in finite space and time a predicate logic formula φ with

$$\models \varphi$$
 iff *C* has solution

 \bigcirc idea for constructing φ : encode the bitstring in a formula

Theorem

The decision problem of validity in predicate logic is undecidable.

Proof.

- plan: reducing PCP to the decision problem
- \bigcirc $C = ((s_1, t_1), \dots, (s_k, t_k))$ instance of PCP
- \odot we need to find in finite space and time a predicate logic formula φ with

$$\models \varphi$$
 iff *C* has solution

- \odot idea for constructing φ : encode the bitstring in a formula
- we have constants, predicates, formulae

 \bigcirc constant e for the empty string

- \bigcirc constant *e* for the empty string
- \bigcirc function f_0 and f_1 (for the concatenation of 0 resp. 1)

- \bigcirc constant *e* for the empty string
- \bigcirc function f_0 and f_1 (for the concatenation of 0 resp. 1)
- predicate *P* (for the existence of a sequence comparing *s* and *t*)

- \bigcirc constant *e* for the empty string
- \bigcirc function f_0 and f_1 (for the concatenation of 0 resp. 1)
- predicate *P* (for the existence of a sequence comparing *s* and *t*)
- $\bigcirc \varphi := \varphi_1 \land \varphi_2 \rightarrow \varphi_3 \text{ with }$

$$\varphi_1 := \bigwedge_{i \in [k]} P(f_{s_i}(e), f_{t_i}(e))$$

$$\varphi_2 := \forall v \forall w (P(v, w) \to \bigwedge_{i \in [k]} P(f_{s_i}(v), f_{t_i}(w)))$$

$$\varphi_3 := \exists z P(z, z)$$

Now we have to prove: $\models \varphi$ iff C has a solution.

Now we have to prove: $\models \varphi$ iff *C* has a solution. \Rightarrow

 \bigcirc assume $\models \varphi$

Now we have to prove: $\models \varphi$ iff *C* has a solution. \Rightarrow

- \bigcirc assume $\models \varphi$
- $\bigcirc\ e^{\mathcal{M}}:=\varepsilon$

Now we have to prove: $\models \varphi$ iff *C* has a solution. \Rightarrow

- \bigcirc assume $\models \varphi$
- $\bigcirc e^{\mathcal{M}} := \varepsilon$
- $f_h^{\mathcal{M}}(s) = sb \text{ for } b \in \{0, 1\}$

Now we have to prove: $\models \varphi$ iff *C* has a solution. \Rightarrow

- \bigcirc assume $\models \varphi$
- $\bigcirc e^{\mathcal{M}} := \varepsilon$
- $f_h^{\mathcal{M}}(s) = sb \text{ for } b \in \{0, 1\}$
- $P^{\mathcal{M}} = \{(s,t) | \exists (i_1,\ldots,i_m) : s = s_1 \ldots s_m \land t = t_1 \ldots t_m \}$

Now we have to prove: $\models \varphi$ iff *C* has a solution. \Rightarrow

- \bigcirc assume $\models \varphi$
- $\bigcirc e^{\mathcal{M}} := \varepsilon$
- $\bigcirc f_b^{\mathcal{M}}(s) = sb \text{ for } b \in \{0, 1\}$
- $P^{\mathcal{M}} = \{(s,t) | \exists (i_1,\ldots,i_m) : s = s_1 \ldots s_m \land t = t_1 \ldots t_m \}$
- $\bigcirc \models \varphi \text{ implies } \mathcal{M} \models \varphi$

Claim: $\mathcal{M} \models \varphi$ implies $\mathcal{M} \models \varphi_1$ and $\mathcal{M} \models \varphi_2$

Proof:

Claim: $\mathcal{M} \models \varphi$ implies $\mathcal{M} \models \varphi_1$ and $\mathcal{M} \models \varphi_2$ Proof:

 $(s,t) \in \mathcal{P}^{\mathcal{M}}$ implies sequence (i_1,\ldots,i_m) with $s=s_1\ldots s_{i_m}$ and $t=t_1\ldots t_{i_m}$

Claim: $\mathcal{M} \models \varphi$ implies $\mathcal{M} \models \varphi_1$ and $\mathcal{M} \models \varphi_2$ Proof:

- $(s,t) \in \mathcal{P}^{\mathcal{M}}$ implies sequence (i_1,\ldots,i_m) with $s=s_1\ldots s_{i_m}$ and $t=t_1\ldots t_{i_m}$
- \bigcirc choose (i_1,\ldots,i_m,i)

Claim: $\mathcal{M} \models \varphi$ implies $\mathcal{M} \models \varphi_1$ and $\mathcal{M} \models \varphi_2$ Proof:

- $(s,t) \in \mathcal{P}^{\mathcal{M}}$ implies sequence (i_1,\ldots,i_m) with $s=s_1\ldots s_{i_m}$ and $t=t_1\ldots t_{i_m}$
- \bigcirc choose (i_1, \ldots, i_m, i)
- \bigcirc then $ss_i = s_{i_1} \dots s_{i_m} s_i$ and $tt_i = t_{i_1} \dots t_{i_m} t_i$

Claim: $\mathcal{M} \models \varphi$ implies $\mathcal{M} \models \varphi_1$ and $\mathcal{M} \models \varphi_2$ Proof:

- $(s,t) \in \mathcal{P}^{\mathcal{M}}$ implies sequence (i_1,\ldots,i_m) with $s=s_1\ldots s_{i_m}$ and $t=t_1\ldots t_{i_m}$
- \bigcirc choose (i_1, \ldots, i_m, i)
- \bigcirc then $ss_i = s_{i_1} \dots s_{i_m} s_i$ and $tt_i = t_{i_1} \dots t_{i_m} t_i$
- \bigcirc thus $\mathcal{M} \models \varphi_2$

$$\bigcirc \ \mathcal{M} \models \varphi_1 \land \varphi_2 \to \varphi_3 \text{ and } \mathcal{M} \models \varphi_1 \land \varphi_2 \text{ imply } \mathcal{M} \models \varphi_3$$

$$\bigcirc$$
 $\mathcal{M} \models \varphi_1 \land \varphi_2 \rightarrow \varphi_3$ and $\mathcal{M} \models \varphi_1 \land \varphi_2$ imply $\mathcal{M} \models \varphi_3$

○ thus there is a solution for *C*

 \leftarrow

 \bigcirc (i_1,\ldots,i_n) solution for C

- \bigcirc (i_1, \ldots, i_n) solution for C
- to show: all models \mathcal{M}' with a constant $e^{\mathcal{M}'}$, two binary functions $f_0^{\mathcal{M}'}$, $f_1^{\mathcal{M}'}$ and a binary predicate $P^{\mathcal{M}'}$ satisfy φ $(\mathcal{M}' \models \varphi)$

- \bigcirc (i_1, \ldots, i_n) solution for C
- o to show: all models \mathcal{M}' with a constant $e^{\mathcal{M}'}$, two binary functions $f_0^{\mathcal{M}'}$, $f_1^{\mathcal{M}'}$ and a binary predicate $P^{\mathcal{M}'}$ satisfy φ $(\mathcal{M}' \models \varphi)$
- \bigcirc if $\mathcal{M}' \not\models \varphi_1$ or $\mathcal{M}' \not\models \varphi_2$, the claim is true due to the implication

- \bigcirc (i_1, \ldots, i_n) solution for C
- to show: all models \mathcal{M}' with a constant $e^{\mathcal{M}'}$, two binary functions $f_0^{\mathcal{M}'}$, $f_1^{\mathcal{M}'}$ and a binary predicate $P^{\mathcal{M}'}$ satisfy φ $(\mathcal{M}' \models \varphi)$
- \bigcirc if $\mathcal{M}' \not\models \varphi_1$ or $\mathcal{M}' \not\models \varphi_2$, the claim is true due to the implication
- \bigcirc assume $\mathcal{M}' \models \varphi_1 \land \varphi_2$

- \bigcirc (i_1, \ldots, i_n) solution for C
- to show: all models \mathcal{M}' with a constant $e^{\mathcal{M}'}$, two binary functions $f_0^{\mathcal{M}'}$, $f_1^{\mathcal{M}'}$ and a binary predicate $P^{\mathcal{M}'}$ satisfy φ $(\mathcal{M}' \models \varphi)$
- \bigcirc if $\mathcal{M}' \not\models \varphi_1$ or $\mathcal{M}' \not\models \varphi_2$, the claim is true due to the implication
- \bigcirc assume $\mathcal{M}' \models \varphi_1 \land \varphi_2$
- \bigcirc we need to verify $\mathcal{M} \models \varphi_3$

 \bigcirc idea: interpreting finite, binary strings in the domain of values of \mathcal{A}' (like interpreter do for one programming language in another)

- \bigcirc idea: interpreting finite, binary strings in the domain of values of \mathcal{A}' (like interpreter do for one programming language in another)
- define

$$\begin{split} & \text{interpret}(\varepsilon) = e^{\mathcal{M}'} \\ & \text{interpret}(s0) = f_0^{\mathcal{M}'}(\text{interpret}(s)) \\ & \text{interpret}(s1) = f_1^{\mathcal{M}'}(\text{interpret}(s)). \end{split}$$

$$\bigcirc$$
 by $\mathcal{M}' \models \varphi_1$ we have for all $i \in [k]$

 $(interpret(s_i), interpret(t_i)) \in P^{\mathcal{M}'}$

 \bigcirc by $\mathcal{M}' \models \varphi_1$ we have for all $i \in [k]$ $(\mathsf{interpret}(s_i), \mathsf{interpret}(t_i)) \in P^{\mathcal{M}'}$

 \bigcirc by $\mathcal{M}' \models \varphi_2$ we have for all $i \in [k]$

 $(interpret(ss_i), interpret(tt_i)) \in P^{\mathcal{M}'}$

○ by
$$\mathcal{M}' \models \varphi_1$$
 we have for all $i \in [k]$

 \bigcirc by $\mathcal{M}' \models \varphi_2$ we have for all $i \in [k]$

$$(interpret(ss_i), interpret(tt_i)) \in P^{\mathcal{M}'}$$

 $(interpret(s_i), interpret(t_i)) \in P^{\mathcal{M}'}$

 \bigcirc recursive application leads to

$$(\text{interpret}(s_{i_1} \dots s_{i_n}), \text{interpret}(t_{i_1} \dots t_{i_n})) \in P^{\mathcal{M}'}$$

 $\bigcirc \ \ s_{i_1} \dots s_{i_n}$ and $t_{i_1} \dots t_{i_n}$ are solution of C

- $\bigcirc \ s_{i_1} \dots s_{i_n}$ and $t_{i_1} \dots t_{i_n}$ are solution of C
- $\, \bigcirc \, \rightsquigarrow \text{they are equal} \,$

- $\bigcirc s_{i_1} \dots s_{i_n}$ and $t_{i_1} \dots t_{i_n}$ are solution of C
- $\bigcirc \sim$ they are equal
- \bigcirc \rightarrow interpret($s_{i_1} \dots s_{i_n}$), and interpret($t_{i_1} \dots t_{i_n}$) are equal

- $\bigcirc s_{i_1} \dots s_{i_n}$ and $t_{i_1} \dots t_{i_n}$ are solution of C
- $\bigcirc \rightarrow$ they are equal
- \bigcirc \rightarrow interpret($s_{i_1} \dots s_{i_n}$), and interpret($t_{i_1} \dots t_{i_n}$) are equal
- $\bigcirc \mathcal{M}' \models \exists z P(z,z)$

Undecidability of Satisfiability

 \bigcirc consequence of the definitional clause $\mathcal{M} \models_{\ell} \neg \varphi$:

Undecidability of Satisfiability

 \bigcirc consequence of the definitional clause $\mathcal{M} \models_{\ell} \neg \varphi$:

Theorem

 φ unsatisfiable iff $\neg \varphi$ valid

Undecidability of Satisfiability

 \bigcirc consequence of the definitional clause $\mathcal{M} \models_{\ell} \neg \varphi$:

Theorem

 φ unsatisfiable iff $\neg \varphi$ valid

Corollary

Satisfiability is not decidable.

Undecidability of Provability

Theorem (Not proven here)

$$\models \varphi \; \mathit{iff} \vdash \varphi$$

Undecidability of Provability

Theorem (Not proven here)

 $\models \varphi \; \mathit{iff} \vdash \varphi$

Corollary

Provability is undecidable.

EXPRESSIVENESS OF PREDICATE

Logic

Propositional Logic vs. Predicate Logic

 predicate logic much more expressive than propositional logic

Propositional Logic vs. Predicate Logic

- predicate logic much more expressive than propositional logic
- neither validity, nor satisfiability, nor provability are decidable

Interpretation as Directed Graphs

 in reality we often have only binary relations: software models, design standards, execution models for hardware and software

Interpretation as Directed Graphs

- in reality we often have only binary relations: software models, design standards, execution models for hardware and software
- \bigcirc elements of A can be visualised as nodes, the ones of $R^{\mathcal{M}}$ as edges

Interpretation as Directed Graphs

- in reality we often have only binary relations: software models, design standards, execution models for hardware and software
- \bigcirc elements of A can be visualised as nodes, the ones of $R^{\mathcal{M}}$ as edges
- a question in software models for the automotive industry is for instance: is the node for braking always reachable?

Example

Consider

- $\bigcirc A = \{s_0, s_1, s_2, s_3\}$ and
- $\bigcirc R^{\mathcal{M}} = \{(s_0, s_1), (s_1, s_0), (s_1, s_1), (s_1, s_2), (s_2, s_0), (s_3, s_0), (s_3, s_2)\}$

Example

Consider

- $\bigcirc A = \{s_0, s_1, s_2, s_3\}$ and
- $\bigcirc R^{\mathcal{M}} = \{(s_0, s_1), (s_1, s_0), (s_1, s_1), (s_1, s_2), (s_2, s_0), (s_3, s_0), (s_3, s_2)\}$

Example

Consider

- $\bigcirc A = \{s_0, s_1, s_2, s_3\}$ and
- $\bigcirc R^{\mathcal{M}} = \{(s_0, s_1), (s_1, s_0), (s_1, s_1), (s_1, s_2), (s_2, s_0), (s_3, s_0), (s_3, s_2)\}$

If s_3 is the *braking state*, we are not able to brake if we are in before in the states s_0 , s_1 , or s_2 !

Definition

Definition

Given a directed graph G = (V, E) and nodes $u, v \in V$, decide whether there exists a path from u to v.

○ Can we solve this problem with predicate logic?

Definition

- Can we solve this problem with predicate logic?
- \bigcirc idea: constructing a formula φ for G, u, v such that φ is satisfiable iff there exists a path from u to v

Definition

- Can we solve this problem with predicate logic?
- \bigcirc idea: constructing a formula φ for G, u, v such that φ is satisfiable iff there exists a path from u to v
- \odot unfortunately we are not (φ would be infinitely large)

Definition

- Can we solve this problem with predicate logic?
- \bigcirc idea: constructing a formula φ for G, u, v such that φ is satisfiable iff there exists a path from u to v
- \bigcirc unfortunately we are not (φ would be infinitely large)
- O we need two other important results before we prove this

Theorem

If all finite subsets of a set of predicat logic sentences Γ are satisfiable, then Γ is as well.

Theorem

If all finite subsets of a set of predicat logic sentences Γ are satisfiable, then Γ is as well.

Proof:

 \bigcirc Assumption: Γ is not satisfiable

Theorem

If all finite subsets of a set of predicat logic sentences Γ are satisfiable, then Γ is as well.

- \bigcirc Assumption: Γ is not satisfiable
- $\bigcirc \longrightarrow \Gamma \models \bot$ (no model in which all $\varphi \in \Gamma$ are true)

Theorem

If all finite subsets of a set of predicat logic sentences Γ are satisfiable, then Γ is as well.

- \bigcirc Assumption: Γ is not satisfiable
- $\bigcirc \longrightarrow \Gamma \models \bot$ (no model in which all $\varphi \in \Gamma$ are true)
- \bigcirc completeness $\leadsto \Gamma \vdash \bot$ valid

Theorem

If all finite subsets of a set of predicat logic sentences Γ are satisfiable, then Γ is as well.

- \bigcirc Assumption: Γ is not satisfiable
- $\bigcirc \leadsto \Gamma \models \bot$ (no model in which all $\varphi \in \Gamma$ are true)
- \bigcirc completeness $\leadsto \Gamma \vdash \bot$ valid
- \bigcirc \rightarrow this sequent has a proof in natural deduction

Theorem

If all finite subsets of a set of predicat logic sentences Γ are satisfiable, then Γ is as well.

- \bigcirc Assumption: Γ is not satisfiable
- $\bigcirc \leadsto \Gamma \models \bot$ (no model in which all $\varphi \in \Gamma$ are true)
- \bigcirc completeness $\leadsto \Gamma \vdash \bot$ valid
- \bigcirc \rightarrow this sequent has a proof in natural deduction
- \odot proofs are finite \leadsto only finitely many premises Δ from Γ are used

Theorem

If all finite subsets of a set of predicat logic sentences Γ are satisfiable, then Γ is as well.

- \bigcirc Assumption: Γ is not satisfiable
- $\bigcirc \longrightarrow \Gamma \models \bot$ (no model in which all $\varphi \in \Gamma$ are true)
- \bigcirc completeness $\rightsquigarrow \Gamma \vdash \bot$ valid
- \bigcirc \rightarrow this sequent has a proof in natural deduction
- \bigcirc proofs are finite \leadsto only finitely many premises Δ from Γ are used
- $\bigcirc \rightsquigarrow \Delta \vdash \bot$

Theorem

If all finite subsets of a set of predicat logic sentences Γ are satisfiable, then Γ is as well.

- \bigcirc Assumption: Γ is not satisfiable
- $\bigcirc \longrightarrow \Gamma \models \bot$ (no model in which all $\varphi \in \Gamma$ are true)
- \bigcirc completeness $\rightsquigarrow \Gamma \vdash \bot$ valid
- \bigcirc \rightarrow this sequent has a proof in natural deduction
- \bigcirc proofs are finite \leadsto only finitely many premises Δ from Γ are used
- $\bigcirc \rightsquigarrow \Delta \vdash \bot$
- $\bigcirc \rightarrow \Delta \models \bot \text{ (soundness)}$

Theorem

If all finite subsets of a set of predicat logic sentences Γ are satisfiable, then Γ is as well.

- \bigcirc Assumption: Γ is not satisfiable
- $\bigcirc \longrightarrow \Gamma \models \bot$ (no model in which all $\varphi \in \Gamma$ are true)
- \bigcirc completeness $\rightsquigarrow \Gamma \vdash \bot$ valid
- \bigcirc \rightarrow this sequent has a proof in natural deduction
- \odot proofs are finite \leadsto only finitely many premises Δ from Γ are used
- $\bigcirc \sim \Delta \vdash \bot$
- $\bigcirc \rightarrow \Delta \models \bot \text{ (soundness)}$
- not all finite subsets are consistent

Theorem

Let ψ be a predicate logic sentence such that for all $n \in \mathbb{N}$ there exists a model of ψ with at least n element. Then ψ has a model with infinitely many elements.

Theorem

Let ψ be a predicate logic sentence such that for all $n \in \mathbb{N}$ there exists a model of ψ with at least n element. Then ψ has a model with infinitely many elements.

Proof:

 $\bigcirc \varphi_n = \exists x_1 \dots \exists x_n (\bigwedge_{1 \le i < j \le n} \neg (x_i = x_j))$ specifies the existence of at least n elements

Theorem

Let ψ be a predicate logic sentence such that for all $n \in \mathbb{N}$ there exists a model of ψ with at least n element. Then ψ has a model with infinitely many elements.

- $\bigcirc \varphi_n = \exists x_1 \dots \exists x_n (\bigwedge_{1 \le i < j \le n} \neg (x_i = x_j))$ specifies the existence of at least n elements
- $\cap \Gamma := \{\psi\} \cup \{\varphi_n | n \in \mathbb{N}\}, \Delta \text{ finite subset of } \Gamma$

Theorem

Let ψ be a predicate logic sentence such that for all $n \in \mathbb{N}$ there exists a model of ψ with at least n element. Then ψ has a model with infinitely many elements.

- $\bigcirc \varphi_n = \exists x_1 \dots \exists x_n (\bigwedge_{1 \le i < j \le n} \neg (x_i = x_j))$ specifies the existence of at least n elements
- $\cap \Gamma := \{\psi\} \cup \{\varphi_n | n \in \mathbb{N}\}, \Delta \text{ finite subset of } \Gamma$
- choose $k \in \mathbb{N}$ such that for all $n \leq k$, $\varphi_n \in \Delta$

Theorem

Let ψ be a predicate logic sentence such that for all $n \in \mathbb{N}$ there exists a model of ψ with at least n element. Then ψ has a model with infinitely many elements.

- $\bigcirc \varphi_n = \exists x_1 \dots \exists x_n (\bigwedge_{1 \le i < j \le n} \neg (x_i = x_j))$ specifies the existence of at least n elements
- $\cap \Gamma := \{\psi\} \cup \{\varphi_n | n \in \mathbb{N}\}, \Delta \text{ finite subset of } \Gamma$
- choose $k \in \mathbb{N}$ such that for all $n \leq k$, $\varphi_n \in \Delta$
- $\bigcirc \{\psi, \varphi_k\}$ satisfiable by assumption $\rightsquigarrow \Delta$ satisfiable

Theorem

Let ψ be a predicate logic sentence such that for all $n \in \mathbb{N}$ there exists a model of ψ with at least n element. Then ψ has a model with infinitely many elements.

- $\bigcirc \varphi_n = \exists x_1 \dots \exists x_n (\bigwedge_{1 \le i < j \le n} \neg (x_i = x_j))$ specifies the existence of at least n elements
- \cap $\Gamma := \{\psi\} \cup \{\varphi_n | n \in \mathbb{N}\}, \Delta \text{ finite subset of } \Gamma$
- choose $k \in \mathbb{N}$ such that for all $n \leq k$, $\varphi_n \in \Delta$
- $\bigcirc \{\psi, \varphi_k\}$ satisfiable by assumption $\leadsto \Delta$ satisfiable
- \bigcirc compactness theorem $\leadsto \Gamma$ satisfiable by some model $\mathscr M$

Theorem

Let ψ be a predicate logic sentence such that for all $n \in \mathbb{N}$ there exists a model of ψ with at least n element. Then ψ has a model with infinitely many elements.

- $\bigcirc \varphi_n = \exists x_1 \dots \exists x_n (\bigwedge_{1 \le i < j \le n} \neg (x_i = x_j))$ specifies the existence of at least n elements
- $\cap \Gamma := \{\psi\} \cup \{\varphi_n | n \in \mathbb{N}\}, \Delta \text{ finite subset of } \Gamma$
- choose $k \in \mathbb{N}$ such that for all $n \leq k$, $\varphi_n \in \Delta$
- $\bigcirc \{\psi, \varphi_k\}$ satisfiable by assumption $\leadsto \Delta$ satisfiable
- \bigcirc compactness theorem $\rightsquigarrow \Gamma$ satisfiable by some model \mathscr{M}
- $\bigcirc \rightsquigarrow \mathcal{M} \models \psi$

Theorem

Let ψ be a predicate logic sentence such that for all $n \in \mathbb{N}$ there exists a model of ψ with at least n element. Then ψ has a model with infinitely many elements.

- $\bigcirc \varphi_n = \exists x_1 \dots \exists x_n (\bigwedge_{1 \le i < j \le n} \neg (x_i = x_j))$ specifies the existence of at least n elements
- $\ \ \cap \ \Gamma := \{\psi\} \cup \{\varphi_n | n \in \mathbb{N}\}, \Delta \text{ finite subset of } \Gamma$
- choose $k \in \mathbb{N}$ such that for all $n \leq k$, $\varphi_n \in \Delta$
- $\bigcirc \ \{\psi, \varphi_k\}$ satisfiable by assumption $\leadsto \Delta$ satisfiable
- \circ compactness theorem $\sim \Gamma$ satisfiable by some model.
- $\bigcirc \rightsquigarrow \mathcal{M} \models \psi$
- \bigcirc \mathcal{M} satisfies all $\varphi_n \rightsquigarrow$ is has to be infinite

Theorem

 $Reachability\ is\ not\ expressible\ in\ predicate\ logic.$

Theorem

Reachability is not expressible in predicate logic.

Proof:

 \bigcirc Supposition: φ formula expressing the path-existence from u to v in G

Theorem

Reachability is not expressible in predicate logic.

- \bigcirc Supposition: φ formula expressing the path-existence from u to v in G
- \bigcirc *c*, *c'* constants

Theorem

Reachability is not expressible in predicate logic.

- \bigcirc Supposition: φ formula expressing the path-existence from u to v in G
- \bigcirc *c*, *c'* constants
- \bigcirc φ_n formula expressing the existence of a path from c to c' of length n:

Theorem

Reachability is not expressible in predicate logic.

- \bigcirc Supposition: φ formula expressing the path-existence from u to v in G
- \bigcirc *c*, *c'* constants
- \bigcirc φ_n formula expressing the existence of a path from c to c' of length n:

•
$$\varphi_0 := c = c'$$

Theorem

Reachability is not expressible in predicate logic.

- \bigcirc Supposition: φ formula expressing the path-existence from u to v in G
- \bigcirc c, c' constants
- \bigcirc φ_n formula expressing the existence of a path from c to c' of length n:
 - $\varphi_0 := c = c'$
 - \circ $\varphi_1 := R(c, c')$

Theorem

Reachability is not expressible in predicate logic.

- \bigcirc Supposition: φ formula expressing the path-existence from u to v in G
- \bigcirc c, c' constants
- \bigcirc φ_n formula expressing the existence of a path from c to c' of length n:
 - $\varphi_0 := c = c'$
 - \circ $\varphi_1 := R(c, c')$

$$\bigcirc \ \Delta := \{ \neg \varphi_i | \ i \in \mathbb{N}_0 \} \cup \{ \varphi[c/u,c'/v] \}$$

- $\bigcirc \ \Delta := \{ \neg \varphi_i | \ i \in \mathbb{N}_0 \} \cup \{ \varphi[c/u, c'/v] \}$
- \bigcirc all elements of Δ are sentences

- $\bigcirc \ \Delta := \{ \neg \varphi_i | \ i \in \mathbb{N}_0 \} \cup \{ \varphi[c/u, c'/v] \}$
- \bigcirc all elements of \triangle are sentences
- \triangle unsatisfiable (conjunction says: no path of length i for all $i \in \mathbb{N}_0$)

- $\bigcirc \Delta := \{ \neg \varphi_i | i \in \mathbb{N}_0 \} \cup \{ \varphi[c/u, c'/v] \}$
- \bigcirc all elements of \triangle are sentences
- Δ unsatisfiable (conjunction says: no path of length i for all $i \in \mathbb{N}_0$)
- $\bigcirc \varphi[c/u,c'/v]$ means: finite path from c to c'

- $\bigcirc \Delta := \{ \neg \varphi_i | i \in \mathbb{N}_0 \} \cup \{ \varphi[c/u, c'/v] \}$
- \bigcirc all elements of \triangle are sentences
- Δ unsatisfiable (conjunction says: no path of length i for all $i \in \mathbb{N}_0$)
- $\bigcirc \varphi[c/u,c'/v]$ means: finite path from c to c'
- \bigcirc path of every finite length \Rightarrow all finite subsets of \triangle satisfiable

- $\bigcirc \Delta := \{ \neg \varphi_i | i \in \mathbb{N}_0 \} \cup \{ \varphi[c/u, c'/v] \}$
- \bigcirc all elements of \triangle are sentences
- Δ unsatisfiable (conjunction says: no path of length i for all $i \in \mathbb{N}_0$)
- $\bigcirc \varphi[c/u,c'/v]$ means: finite path from c to c'
- \bigcirc path of every finite length \Rightarrow all finite subsets of \triangle satisfiable
- \bigcirc Compactness Theorem \rightsquigarrow contradiction

SECOND-ORDER LOGIC - AN OUT-

LOOK

- O description of first-order predicate logic:
 - o propositional logic enriched by
 - functions (and constants), predicates
 - variables
 - quantifiers specifying only variables

- description of first-order predicate logic:
 - o propositional logic enriched by
 - o functions (and constants), predicates
 - variables
 - quantifiers specifying only variables
- oreachability problem not expressible

- description of first-order predicate logic:
 - o propositional logic enriched by
 - functions (and constants), predicates
 - variables
 - quantifiers specifying only variables
- reachability problem not expressible
- we don't want to develop a complete new language

- description of first-order predicate logic:
 - o propositional logic enriched by
 - o functions (and constants), predicates
 - variables
 - quantifiers specifying only variables
- reachability problem not expressible
- we don't want to develop a complete new language
- how can we extend the first-oder predicate logic?

Second-Order Logic

Definition

A formula φ is in existential second-order predicate logic

- $\odot \ \varphi$ has only elements of a first-order predicate logic formula
- $\odot \ \varphi$ has additionally constructs $\exists P \psi$ where P is a predicate symbol

Definition

A formula φ is in Universal Second-Order Logic iff $\neg \varphi$ is in Existential First Order Logic.

Second-Order Logic

Definition

A formula φ is in existential second-order predicate logic

- $\odot \ arphi$ has only elements of a first-order predicate logic formula
- \circ φ has additionally constructs $\exists P\psi$ where P is a predicate symbol

Definition

A formula φ is in Universal Second-Order Logic iff $\neg \varphi$ is in Existential First Order Logic.

In universal Second-Order Logic describes the reachability problem is describable.

Second-Order Predicate Logic

In the general Second-Order Predicate Logic both quantifiers quantifying predicates are allowed.

Second-Order Predicate Logic

In the general Second-Order Predicate Logic both quantifiers quantifying predicates are allowed.

- higher order logic: quantifying relations over relation over relation . . .
- keeping soundness and completness is hard (see Russel's Antimony)

