Operating Systems

(Principles of Operating Systems)

Đỗ Quốc Huy
huydq@soict.hust.edu.vn
Department of Computer Science
School of Information and Communication Technology

Course Info

Text book:

 Operating System Concepts – Abraham Siblerschatz

 Modern Operating System – Andrew Tanenbaum

Group Projects

- Notion of operating system
- 2 History of operating Systems
- 3 Definition and Classifications
- 4 Basic Properties of Operating Systems
- 5 Notions in operating systems
- **6** Operating System structures
- Principles of Operating Systems

- Operating system notion
- 2 History of Operating Systems
- 3 Definition and Classifications
- 4 Basic Properties of Operating Systems
- 5 Notions in operating systems
- **6** Operating System structures
- Principles of Operating Systems

Chapter 1. Operating System Overview 1. Notion of operating system

- 1 Notion of operating system
 - Layered structure of a computing system
 - Operating system's functions

- 1. Notion of operating system
 - 1.1. Layered structure of a computing system

A computer system's structure

- One/ many CPUs, controlling devices are linked by a common bus system to access a shared memory.
- Controlling devices and CPU operate simultaneously and compete with each other.

- 1. Notion of operating system
 - 1.1. Layered structure of a computing system

A computer system's structure

- 1. Notion of operating system
 - 1.1. Layered structure of a computing system

Operating systems turn ugly hardware into beautiful abstractions

- 1. Notion of operating system
 - 1.1. Layered structure of a computing system

A computer system's components (Silberschatz 2002)

- 1. Notion of operating system
 - 1.1. Layered structure of a computing system

A computer system's components (Tanenbaum 2001)

Banking system	Airline reservation	Web browser	Application programs
Compilers	Editors	Command interpreter	System
Operating system			programs
Machine language			
Microarchitecture			Hardware
Physical devices			

Chapter 1. Operating System Overview 1. Notion of operating system 1.1. Layered structure of a computing system

- A computing system's components
- Hardware: Provides basic computing resources (CPU, memory, inputoutput devices)
- Operating system: controls and cooperates hardware using works for application programs of different users.
- Application programs: (compiler, database system, game...) utilizes computer's resource to handle users' requests.
- Users: People who work/operate the machines or computers

Chapter 1. Operating System Overview
1. Notion of operating system
1.1. Layered structure of a computing system

Objectives

 Operating system lies between the system's hardware and application program

Application

Operating System

Physical Machine Interface

Hardware

- **Objectives**: To provide an environment which helps user run application program and use the computer system easier, more conveniently and effectively.
 - Standardize the user interface for different hardware systems
 - Utilize hardware resource effectively and exploit the hardware performance optimally.

Chapter 1. Operating System Overview 1. Notion of operating system

- 1 Notion of operating system
 - Layered structure of a computing system
 - Operating system's functions

Chapter 1. Operating System Overview
1. Notion of operating system
1.2. Operating system's functions

1 Simulate a virtual computer machine

2 Manage system resources

- 1. Notion of operating system
 - 1.2. Operating system's functions

Simulate a virtual computer machine

Help hide detailed works and exploit computer hardware's functions easier and more effectively.

- Simplify programming problem
 - No need to work with binary sequences
 - Each program thinks that it own the whole computer's memory, CPU time, devices...
 - Help communicating with devices easier than with original device. Ex: Ethernet card: Reliable communication, ordered (TCP/IP)
- Extend the system's abilities: The system seem to have desired resources (virtual memory, virtual printer...)
- Help programs not violating each other → a program which does not work would not damage the whole system
- Useful for operating system's development
 - If the experimental operating system get errors, only limited in the virtual machine
 - Help verifying other programs in the operating system

- 1. Notion of operating system
 - 1.2. Operating system's functions

Simulate a virtual computer machine

Non virtual machine

With virtual machine

Chapter 1. Operating System Overview
1. Notion of operating system
1.2. Operating system's functions

System's resources management

- System's resources (CPU, memory, IO devices, files...) are utilized by program to perform a determined task.
- Programs require resources: time (CPU-usage) and space (memory)
- The operating system has to manage the resource so that the computer can work in the most effective way.
 - Provide resource for program when it's necessary.
 - Competition handling
 - Decide the order of resource providing for the programs' requirements
 - Example: memory resource management (limited)
 - Many program can operate at the same time.
 - Avoid illegal access
 - Data protection (memory sharing: file)

- Operating system notion
- 2 History of Operating Systems
- 3 Definition and Classifications
- 4 Basic Properties of Operating Systems
- 5 Notions in operating systems
- **6** Operating System structures
- Principles of Operating Systems

Chapter 1. Operating System Overview 2. History of Operating Systems

Operating systems development's history

- History of electronic computer
- Operating systems development's history

Development history of electronic computers

- 1936 A. Turing & Church present logic computing model and prove the existence of a computer: Turing machine
 - Model of a character processing device;
 Simple but able to perform all the computer's algorithm
 - ●A Turing machine that is able to simulate any other Turing machine -> a universal Turing machine
 - *Turing* is considered as the father of computer science and artificial intelligence

Development history of electronic computers

- 1941- Konrad Zuse (German) Constructed world's first programmable computer; the functional program-controlled Turing-complete Z3
 - ●Z3: use binary system
 - Has separated memory and controller
 - Mechanical technique

Development history of electronic computers

1946 ENIAC based on electric bulbs

- 18000 vacuum tube
- 70000 resistance
- 5 million metal connector
- Faster but least reliable

Development history of electronic computers

plug board

Development history of electronic computers

- 1950-1958 Transistor
- 1959-1963 Semiconductor

• 1964-1974 Integrated Circuit (IC)

Development history of electronic computers

1974-1990 Large scale IC:

Allow CPU, main memory or similar device to be produced in a single integrated circuit

-> new class of smaller, cheaper computer and parallel processor with multi CPUs

• 1990-now Very large scale IC, smart IC

Chapter 1. Operating System Overview 2. History of Operating Systems

Operating systems development's history

- History of electronic computer
- Operating systems development's history

- * 1948-1970 : Hardware expensive; human labor cheap
- * 1970-1981 : Hardware cheap; human labor expensive
- * 1981-: Hardware very cheap; human labor very expensive
- * 1981- : Distributed system
- * 1995-: Mobile devices

- * 1948-1970 :
- * Computer 1-5 M\$: Nation 's property, mainly used for military's purposes ⇒ Require optimization for using hardware effectively
- * Lack of human-machine interact
- * User, programmer; operator are same group of people
- * One user at a single time
 - * User wrote program on punched cards
 - * First card is bootstraps loader is loaded into memory and executed
 - * Instructions in bootstraps loader fetch into memory and execute instructions on other later cards (application program)
 - * Check light bulb for results, debug
- * Debugging is difficult
- * Waste processor time
- * Solution: batch processing

* 1948-1970 :

- Batch processing and professional operator
- Programmer give program to operator
- Operator group program into a single pack (batch)
- * Computer read and run each program consequently
- * Operator take the result, print out and give to programmer

- Reduce waiting time between jobs
- Input/output problem
 - Computer getting faster
 - Card reader still slow
- ⇒CPU has to wait for card reading/writing

- Replace card reader by tape ⇒ Independent external computers for reading/writing data
- * External devices are designed to be able to Direct Memory Access, using interrupt and i/o channel
 - OS request I/O device then continue its work
 - * OS receive interrupt signal when I/O devices finishes
- * ⇒Allow overlap between computing and I/O

- CPU is reprogrammed to be switch easily between programs
- Hard ware: memory space larger and cheaper Some program can run simultaneously -> multi programming

- More overlap between computing and I/O
- Require memory protection between programs and keep one crashed program from damaging the system
- Problem: OS has to manage all interaction ⇒ out of control (OS360: 1000 error)

- * 1970-1981 :
- Computers prices about 10.000\$ \Rightarrow used widely for different jobs
- OS technology became stable.
- Using cheap terminal device (1000\$) allow many user to interact with the system at the same time
 - User perform different works (text editor, chat, program debugging,...) ⇒ require system to be exploited effectively Example: a PC: 10M calculation/s; typing speed 0.2s/1 character => lost 2M calculation per one typing
 - ⇒ Time sharing operating system
 - Problem: system's response time
- Computer network was born (ARPANet: 1968) Communication between computer; Protection against network attack

Time sharing system

Time-sharing Environment

[FAIZAL MOHAMAD – Introduction to operating system]

- * 1981-1995 :
- Computers prices about 1000\$; human labor 100K \$/year ⇒
 Computer are used more widely for working more effectively
- Personal computing
 - Cheap computer, single person can afford (PC).
 - OS on PC
- Hardware resources are limited (Early: 1980s)
 - OS become library of available procedures
 - Run One program at a time (DOS)
- PC become more powerful
 - OS meet complex problems: multi tasking, memory protection...
 (WINXP)
- Graphical user interface (MAC, WIN,..)

DOS User interface

```
Welcome to FreeDOS
CuteMouse ∨1.9.1 alpha 1 [FreeDOS]
Installed at PS/2 port
C:\>ver
FreeCom version 0.82 pl 3 XMS_Swap [Dec 10 2003 06:49:21]
C:\>dir
Volume in drive C is FREEDOS C95
Volume Serial Number is 0E4F-19EB
Directory of C:\
FDOS
                     <DIR>
                            08-26-04
                                       6:23p
AUTOEXEC BAT
                            08-26-04
BOOTSECT BIN
                       512
                            08-26-04
                                      6:23p
                                                        6 items
        COM
                    93.963 08-26-04
COMMAND
                                      6:24p
        SYS
                       801
                            08-26-04
CONFIG
                                      6:24p
FDOSBOOT BIN
                       512
                            08-26-04
KERNEL
        SYS
                    45,815 04-17-04 9:19p
        6 file(s)
                          142,038 bytes
                                                        Empty Folder
         1 dir(s)
                    1,064,517,632 bytes free
```

* Macintosh User interface

- Distributed systems
- Development time of networking and distributed operating

systems

- Local area network
 - Computers share resources: printer, File servers,...
 - Client / Server model
- Services
 - Computing, storage
 - Services provided through Internet.
- Problems
 - Transmission delay; bandwidth, reliable...
 - Virus (love letter virus 05/2000),...

- >45 millions computers were infected
- Stole information
- Auto send emails from contact list
- Download Trojan

- * Mobile devices
- * Mobile devices become more popular
 - * Phone, Laptop, PDA . . .
 - * Small, changeable and cheap → More computers/human
 - * Limited ability: speed, memory,...
- * Wide area network, wireless network
 - * Traditional computer divided into many components (wireless keyboards, mouse, remoting storage)
- * peer-to-peer system
 - * Devices with the same role working together
 - * "Operating system's" components are spread globally
- * Cloud computing
 - * Cloud operating system

- * Conclusion
- The development of the operating systems are strongly connected with the computers' development
- Operating system development pulled the development of computers

- Operating system notion
- 2 History of Operating Systems
- 3 Definition and Classifications
- 4 Basic Properties of Operating Systems
- 5 Notions in operating systems
- **6** Operating System structures
- Principles of Operating Systems

Chapter 1. Operating System Overview 3. Operating System definition and classification

Operating System definition and classification

- Definitions
- Classifications

3. Operating System definition and classification 3.1. Definition of operating system

Observer's perspective

- Different objects have different requirements for operating system
- Different observing perspectives ⇒ different definitions

User: A system of programs that help exploiting the computing system conveniently

Manager: A system of programs that help managing computing system's resource effectively

Technical perspective: A system of programs equipped for a specific computer to make a new logic computer with new resource and new ability

System engineer perspective: A system of programs that modelize, simulate the operation of computer, user and operators. It work in a communicating mode in order to make a convenient environment for exploiting the computer system and maximum resource management.

3. Operating System definition and classification 3.1. Definition of operating system

System engineer's perspective

Simulate 3 roles \Rightarrow require 3 types of languages

- Machine language
 - The only working language of the system
 - All other languages have to be translated into machine language
- System operation's language
 - OS commands (DOS: Dir, Del..; Unix: ls, rm,..)
 - Translated by the Shell
- Algorithm language
 - Programming language
 - Compiler

Chapter 1. Operating System Overview 3. Operating System definition and classification

Operating System definition and classification

- Definitions
- Classifications

- Batch processing single program system
- Batch processing multi program system
- Time sharing system
- Parallel system
- Distributed system
- Real-time processing system

Batch processing single program system

- Programs are performed consequently follow predetermined instructions
- When a program finished, the system auto run the next program without any external intervention
- Require a supervisor process the sequence of jobs and the supervisor has to stay permanent in the memory
- Need to organize a job queue
- Problem: when a program access an I/O device, processor has to wait

Batch processing multi program system

- Allow many programs to run at the same time
 - Load one part of code and data of the programs into the memory (the remaining parts will be loaded at proper moments). The program are ready to run
 - Run the program similar to single program system
 - If the current program perform an IO, processor will be change to another program
- Save memory (no need to load all the program into the memory)
- Reduce processor spare-time
- High cost for processor scheduling. Which program can use processor next?
- Solve the memory sharing problem between programs

3. Operating System definition and classification 3.2. Operating System Classification

Time sharing system

- Processor's usage allowance time is shared among ready-to-run programs
- Similar to batch processing multi program system (only load part of the programs)
- Processor is issued mainly by the operating system ⇒ how ? ⇒ Chapter
- Swapping times between program are small -> programs seem to run parallel
- Usually called: Multi tasking operating system (Windows)

3. Operating System definition and classification 3.2. Operating System Classification

Parallel system

- Constructed for system that has many processors
 - Many processors, works are done faster
 - More reliable: one processor breaks down will not affect the system
 - Advantage over single processor computer due to memory, peripheral devices sharing...
- Symmetric multi processing (SMP: symmetric)
 - Each processor run a single program
 - Processors communicate via a shared memory
 - Fault tolerance mechanism and optimal load balance
 - Problem: processor synchronization
 - Example: WinNT operating system

3. Operating System definition and classification 3.2. Operating System Classification

Parallel system

- Asymmetric multi processing (ASMP: asymmetric)
 - One processor controls the whole system
 - Other processors follow the main processor's commands or predetermined instructions
 - This model has the master-slave relation form: The main process will make schedule for other processors
 - Example: IBM System/360

Distributed system

- Each processor has a local memory and communicate via transmission lines
- Processors are different from sizes to functions (personal machine, workstation, mini computer,..)
- Distributed system is used for
 - Resource sharing: provide a mechanism for file sharing, remote printer...
 - Increase computing speed: One computing operation is divided into smaller parts and performed on different places at the same time.
 - Safety: One position get problem, others can continue working

Real-time processing system

- Used mainly in controlling field.
- Solve a problem no late than a specific time.
 - Each problem has a deadline
 - The system must generate correct result in a determined time period
- This OS requires highly cooperate between software and hardware.

- Operating system notion
- 2 History of Operating Systems
- 3 Definition and Classifications
- 4 Basic Properties of Operating Systems
- 5 Notions in operating systems
- **6** Operating System structures
- Principles of Operating Systems

Basic Properties of Operating Systems

- High reliability
- Secure
- Effectiveness
- General overtime/ Inherit and adaption
- Convenience

High reliability

- Every actions, notations have to be accurate
 - Only provide information when it's surely correct
 - When error happens: notify and stop the proceed or let the user decide
 - Require support from device
- Example: C:/>COPY C:/F.TXT A:

High reliability

- Example: C:/>COPY C:/F.TXT A:
 - Check the syntax of command copy
 - Check I/O card (motor, drive accessibility)
 - Check for file F.TXT existence in C drive
 - Check A drive
 - Check if file F.TXT already existed in A drive
 - Check if there is enough space in A
 - Check if the disk is write protection
 - Check written information (if required)
 - **....**

Basic Properties of Operating Systems

- High reliability
- Secure
- Effectiveness
- General overtime/ Inherit and adaption
- Convenience

Security

- Data and programs have to be protected
 - No unwanted modification in every working mode
 - Secure from illegal access
- Different resources have different protection requirements
- Many levels protections with various of tools
- Important for multi tasking system

Basic Properties of Operating Systems

- High reliability
- Secure
- Effectiveness
- General overtime/ Inherit and adaption
- Convenience

Effectiveness

- Resources are exploited thoroughly;
- Resource that is limited still able to handle complex requirement.
- The system need to maintain the synchronization;
 - Slow devices do not affect the whole system operation

Basic Properties of Operating Systems

- High reliability
- Secure
- Effectiveness
- Generalizable overtime/ Inherit and adaption
- Convenience

Generalizable overtime

- System must be Inheritable
 - Operations, notification can not change
 - If changed: notify and with detailed guide (chkdsk/scandisk)
 - Help keeping and increasing users
- System must have ability to adapt to changes that may happen
- Example: Y2K problem; FAT 12/16/32

Basic Properties of Operating Systems

- High reliability
- Secure
- Effectiveness
- General overtime/ Inherit and adaption
- Convenience

Convenience

- Easy to use
- Various effective levels
- Have many assisting system

- Operating system notion
- 2 History of Operating Systems
- 3 Definition and Classifications
- 4 Basic Properties of Operating Systems
- 5 Notions in operating systems
- **6** Operating System structures
- Principles of Operating Systems

Chapter 1 Operating System Overview 5. Notions in operating systems

Notions in operating systems

- Process and Thread
- System's resources
- Shell
- System calls

Chapter 1 Operating System Overview 5. Notions in operating systems 5.1. Process and Thread

Process

- A running program
 - Codes: Program's executable instruction
 - Program's data
 - Stack, stack pointer, registers
 - Information that is necessary for running program
- Process >< program</p>
 - Program: a passive object, contains computer's instructions to perform a specific task
 - Process: program's active state.

Chapter 1 Operating System Overview 5. Notions in operating systems 5.1. Process and Thread

Multi-process timesharing system:

- Periodically: OS pause one process and start another process
 - Need to store processes' information ⇒ process table
- One process can start other process
 - •Ex: OS's Shell start a process to perform the command; when the command is done, terminate the started process
- Process can exchange information
- One process can include many threads

Chapter 1 Operating System Overview 5. Notions in operating systems 5.1. Process and Thread

Thread

- A sequence/thread of instructions executed in the program
 - Executable code, data
 - Instruction pointer, stack, registers
- Heavyweight Process: process contains one thread
- Lightweight process: contains more than one thread
- Multi_Threading model:
 - Threads running parallel, sharing process's global variables

Chapter 1 Operating System Overview 5. Notions in operating systems 5.1. Process and Thread

Chapter 1 Operating System Overview 5. Notions in operating systems

Notions in operating systems

- Process and Thread
- System's resources
- Shell
- System calls

Definition

- Everything that is necessary for a program to be performed
 - Space: System's storage space
 - Time: Instruction executing time, data accessing time
- System's resources
 - Memory
 - Distinguished by: Storage size, directly access, sequent access
 - Levelled by: main memory/internal; extend, external
 - Notions' distinguish: memory (physical area that contain data) and memory access (the process of searching for the data's location in memory)

- System's resources
 - Memory
 - Processor
 - System's most important component
 - Access level: instruction
 - Processing time
 - Multi-processor system: each processor's time is managed and scheduled independently
 - Peripheral devices
 - Retrieve, output information (I/O device)
 - Attached to the system via controller
 - Commonly considered peripheral devices-controller devices

Resource's classification

- Resource's types
 - Physical resource: physical devices
 - Logic resource: variable; virtual devices
- Sharing ability
 - Sharable resource: at a specific time, it can be allocate for different processes. Example: Memory
 - Non-sharable but dividable resource: Processes use the resource follow an order; Example: processor
 - Non-sharable and non-dividable resource: at a specific time, only one process can use the resource. Example: Printer

Virtual printer

- Resource allocated for user's program in a changed form
- Only appear when the system requires or when the system creates it
- Automatically disappear then the system terminate or more precisely, when the process that works with this resource terminates

Example: Virtual printer

Chapter 1 Operating System Overview 5. Notions in operating systems

Notions in operating systems

- Process and Thread
- System's resources
- Shell
- System calls

Chapter 1 Operating System Overview 5. Notions in operating systems 5.3 Shell

- A special process: user and OS communication environment
- Task
 - Receive user's command
 - Analysis received command
 - Generate new process to perform command's requirement
- Receives command from command's line or graphical interface
- Single task environment (MS-DOS):
 - Shell will wait until one process finishes and then receive new command
- In multi-tasking system (UNIX, WINXP, . . .) After creating and running new process, Shell can receive new command

Chapter 1 Operating System Overview 5. Notions in operating systems 5.3 Shell

3View..

4Edit..

5Comp

Left

Left	The state of the s	sk Com	nands	Tools	Righ		THE	19:0
C: # Name ANATOMY ATLAS CALDB CDPRO DOS ENTERCD GRAFIKA GRY MAPA_PL MOJEDO~1 MOUSE NC PROGRA~1 QPRO	SUB-DIR	Date 97.07.02 97.07.02 97.06.30 97.06.30 97.06.30 97.07.02 97.07.02 97.07.02 97.06.30 97.06.30 97.06.30 97.06.30	17:29 21:16 12:02 11:36 21:17 17:39 18:42 18:30 11:56 14:23 11:51 12:19	C: Name aatekst dealer desc Descript file_id history ncmain01 readme register scancode st	txt doc sdi ion diz doc if doc doc	NTILIS\CAI Size ▶UPDIR 156 1072 435 268 435 573 21155 4762 2023 335 36186 46965	Date	Time 17:14 17:40 1:01 1:01 17:48 1:01 1:01 1:01 1:01 1:01 0:00
R13 RECYCLED SM18PNP CDPRO	►SUB-DIR ►SUB-DIR ►SUB-DIR	97.07.02 97.06.30 97.06.30 97.06.30	20:04 20:42	st.exe	auc		93.09.01	0:06

6DeComp 7Find

8Histry 9EGA Ln 10Tree

Chapter 1 Operating System Overview 5. Notions in operating systems

Notions in operating systems

- Process and Thread
- System's resources
- Shell
- System calls

- Provides environment for interacting between user's program and the operating system
 - Programs utilize system calls to request services from operating system
 - Create, delete, use other software objects operated by the operating system
 - Every single system call is corresponding to a library of sub-programs (functions)
- System calls are done in the form of
 - Instructions in low-levels programming languages
 - Interrupt requests (Int) in assembly language
 - API functions calls in Windows
- Input parameters for the services and returned results are located in special memory areas
 - For example: when making request for an interrupt, the function name is stored in the register AH
 - Int 05: print to monitor; Int 13/AH=03h: DISK WRITE/ DISK SECTOR

Example

Func BOOL WINAPI ExitWindowsEx(int uFlags, int dwReason);						
uFlags	Shutdown types					
EWX_LOGOFF EWX_POWEROFF EWX_REBOOT	End process and exit Windows Shutdown system and turn off computer Shutdown and restart computer					
dwReason	Reason for shutdown					

File log_off.c

```
#include_<windows.h>
int_main(int_argc,_char_*argv[]){
____ExitWindowsEx(EWX_LOGOFF,_0);
____return_0;
}
```

Chapter 1 Operating System Overview

- Operating system notion
- 2 History of Operating Systems
- 3 Definition and Classifications
- 4 Basic Properties of Operating Systems
- 5 Notions in operating systems
- **6** Operating System structures
- Principles of Operating Systems

Chapter 1 Operating System Overview 6. Operating System structures

- System's components
- Operating system's services
- System calls
- Operating system's structures

- Process management
- Main memory management
- Input Output system management
- Files management
- Storage memory management
- Data transmission system (network)
- Protection system
- User interface

Process management

- Process: A running program
- Process utilize system's resources to complete its task
 - Resources are allocated when process created or while it's running
 - Process terminates, resources are returned
- It is possible for many processes to exist in the system at the same time
 - System process
 - User process
- The tasks of OS in process management
 - Create and terminate user's process and system's process
 - Block or re-execute a process
 - Provide mechanism for process synchronization
 - Provide method for processes' communication
 - Provide mechanism for controlling deadlock among processes

Main memory management

- Main memory: an array of byte(word); Each element has an address; where data are accessed by CPU
- To be executed, a program must be given an absolute address and loaded into main memory. When the program is running, the system access instructions and data in main memory.
- To optimize CPU time and computer's speed, some processes are kept in memory
- The role of OS in main memory management
 - Store information about used areas in memory and who used them
 - Decide which process will be fetched into main memory when the memory is available.
 - Allocate and retrieve memory when it's necessary

Input-Output system management

- Objective: hide physical devices' details from users to help them operate easier.
- Input-Output system management includes
 - Memory management of buffering, caching, spooling
 - Communicate with device drivers.
 - Controller for special hardware devices. Only device driver understand its associated-device's specific structure

File management

- Computer can store information on many types of storage devices
- File: storage unit
- File management task
 - Creates/ deletes a file/directory
 - Provides operations over files and directory
 - Reflects file on secondary storage system
 - Backs up file system on storage devices

Storage memory management

- Program is stored in secondary memory (magnetic disk) until it's fetched into main memory and executed.
- Disk is utilized for storing data and processed result.
- Data and result can be stored temporarily on disk: virtual memory
- The role of operating system in disk management
 - Unused area management
 - Provide storage area as requested
 - Schedule disk accessing effectively

Data transmission system (Distributed system)

- Distributed system combined of set of processor (sym/asym)
 without common clock and memory. Each processor has a local
 memory.
- Processor connected via transmission network
- Transmission is performed via protocols (FTP, HTTP...)
- Distributed system allow user to access different resource
- Access to sharing resources will allow
 - Increase computing speed
 - Increase data availability
 - •Increase the system reliable

System's protection

- Multi users operate with the system at the same time ⇒ Processes have to be protected from other processes' activities
- Protection is a controlling mechanism of program or user's access to system or resource
- Protection mechanism will require
 - Distinguish between legal or illegal usage
 - Set imposed controls
 - Provide tools for imposing

User interface

- Perform user's command. Commands are provide for operating system 's command controller to
 - Create and manage process
 - Manage main memory and storage memory
 - Access file system
 - Protect
 - Network system
 - •...
- User interface can be command line (DOS, UNIX) or more friendly with graphical interface (Windows, MacOS)

User interface

Some forms of human-computer interact

- Command line
 - Simple but organized
 - Do not require complex system specification
 - Easy to add parameter
- Selection table
 - Menu
 - Popup
 - Menu popup: 2 method: on and onselect
- Symbol window, icon, desktop

Chapter 1 Operating System Overview 6. Operating System structures

- System's components
- Operating system's services
- System calls
- Operating system's structures

Main and basic services

- Program execution: the system is able to load the program into memory and execute it. Program must be finish execution in a normal or abnormal (has error) way.
- Input-output operations: To increase the performance, programs do not directly access IO devices. The OS has to provide means to perform I/O.
- File system operations: Program is able to read, write, create or delete file.
- Communication: Information exchange between running process on the same computer or different computer in the network.
- Communication is performed via sharing memory or message transferring technique.
- Error detection: Confirm work correctly by showing an error is from CPU, memory, in devices or in programs. Each type of error, OS has a corresponding way to handle.

Support services

Not for user but for operate the system effectively

- Provide resources Allocate resource for many users or tasks to perform at the same time
- Report statistics Store information of types and amount of used resources for computing (usage cost), research (system improvement)
- Protection Ensure all access to system resources are controlled

Chapter 1 Operating System Overview 6. Operating System structures

- System's components
- Operating system's services
- System calls
- Operating system's structures

System call

Provide an interface between process and operating system

System call

- Process management: initialize, terminate process...
- Memory management: allocate and free memory...
- File management: create, delete, read and write file...
- Input Output device management: perform input/output...
- Exchange information with the system. Example get/set time/date...
- Inter process communication

Chapter 1 Operating System Overview 6. Operating System structures

- System's components
- Operating system's services
- System calls
- Operating system's structures

MS-DOS structure (Silberschatz 2002)

UNIX structure (Silberschatz 2002)

1		_,						
User Mode			Applications	(the users)				
OSEI MOGE			Standard Libs shells and commands compilers and interpreters system libraries					
			system-call interface to the kernel					
Kernel Mode	Kernel		signals terminal handling character I/O system terminal drivers	file system swapping block I/O system disk and tape drivers	CPU scheduling page replacement demand paging virtual memory			
			kernel interface to the hardware					
Hardware			terminal controllers terminals	device controllers disks and tapes	memory controllers physical memory			

Chapter 1 Operating System Overview 6. Operating System structures

6.4 Operating system's structures

OS/2 structure (Silberschatz 2002)

Virtual machine(Silberschatz 2002)

Client-Server Model (Tanenbaum 2001)

Client-Server model in distributed OS (Tanenbaum 2001)

Chapter 1 Operating System Overview

- Operating system notion
- 2 History of Operating Systems
- 3 Definition and Classifications
- 4 Basic Properties of Operating Systems
- 5 Notions in operating systems
- **6** Operating System structures
- Principles of Operating Systems

Chapter 1 Operating System Overview 7. Principles of Operating Systems

Principles of Operating Systems

- Modul principles
- Relatively localization principle
- Macroprocessor principle
- Initialization when start-up principle
- Function overlap principle
- •Standard value principle
- Multi-level protections principle

Chapter 1 Operating System Overview

Summary

- 1 Notion of Operating system
 - Layering structure of OS
 - OS's functions
- 2 History of Operating system
 - History of computers
 - History of Operating system
- 3 Definition and classification of OS
 - Definitions
 - Classification
- 4 Basic properties of OS
 - High reliability
 - Security
 - Effective
 - Generalize overtime
 - Convenience

- 5 Notions of Operating system
 - Process and Thread
 - System's resources
 - Shell
 - System calls
- 6 Operating system's structure
 - OS's components
 - OS's services
 - System calls
 - System's structures
- Principles of Operating System

