PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-120383

(43)Date of publication of application: 23.04.2002

(51)Int.Cl.

B41J 2/175 B65B 51/10

(21)Application number: 2000-315533

(71)Applicant:

CANON INC

(22)Date of filing:

16.10.2000

(72)Inventor:

то нтозні

KAWAMURA IWAO

IKUI KAZUNORI

ENCHI HIROAKI

(54) VESSEL

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an ink tank that can surely prevent protruding of a resin, i.e., creation of a welding burr which may occur when a tank box and a cover for forming the ink tank are bonded by welding.

SOLUTION: An opening section at the upper portion of the tank box 2 housing an upper absorption body 23 is covered with the tank cover 25 to form the ink tank. The tank box 21 and the tank cover 25 are welded to be bonded at a welding portion 43 by ultrasonic welding. A groove 21g positioned at a side of an external peripheral face of the ink tank rather than the welding portion 43 is formed on an edge face of the upper opening section of the tank box 21 and the groove 21g is covered with the tank cover 25. A trapezoidal rib 25f that can enter the groove 21g is formed on the rear face of the tank cover 25. As a part of the resin melting during the welding stays in the groove 25g, the melted resin does not protrude at the external peripheral face of the ink tank so that the appearance of the ink tank is not damaged.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of

rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2002-120383 (P2002-120383A)

(43)公開日 平成14年4月23日(2002.4.23)

(51) Int.Cl.7

識別記号

FΙ

テーマコート*(参考)

B 4 1 J 2/175

B65B 51/10

B 6 5 B 51/10

G 2C056

B41J 3/04

102Z 3E094

審査請求 未請求 請求項の数4 OL (全 14 頁)

(21)出願番号

特願2000-315533(P2000-315533)

(22)出願日

平成12年10月16日(2000.10.16)

(71)出願人 000001007

キヤノン株式会社

東京都大田区下丸子3丁目30番2号

(72) 発明者 伊藤 均

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(72) 発明者 川村 巌

東京都三鷹市下連省6-3-3 コピア株

式会社内

(74)代理人 100088328

弁理士 金田 暢之 (外2名)

最終頁に続く

(54) 【発明の名称】 容 器

(57)【要約】

【課題】 インクタンクを構成するタンク箱と蓋の溶着 時に発生する樹脂のはみ出し、すなわち溶着バリの発生 を確実に防止できるインクタンクを実現する。

【解決手段】 上側吸収体23等を収納したタンク箱2 1の上側の開口部がタンク蓋25によって覆われて塞が れることにより、インクタンクが構成される。タンク箱 21とタンク蓋25が超音波溶着によって溶着箇所43 で溶着され、結合される。タンク箱21の上側の開口端 面には、溶着箇所 4 3 となる部分よりもインクタンクの 外周面側に位置する溝21gが形成され、溝21gがタ ンク蓋25によって覆われる。タンク蓋25の裏面に は、溝21g内に入り込む台形形状リブ25fが形成さ れている。溶着の際に溶融した樹脂が部分が溝25g内 に留まるので、その溶融した樹脂がインクタンクの外周 面にはみ出ることがなく、インクタンクの美観が損なわ れない。

2

【特許請求の範囲】

【請求項1】 開口部を有する器と、該器の前記開口部を 複って塞ぐ蓋とを超音波溶着により結合してなる容器 において、

1

前記器と前記蓋の2つの部材うち少なくともいずれか一方の部材に、前記超音波溶着による前記器と前記蓋との溶着箇所よりも前記容器の外周面側に位置する溝が形成され、他方の部材が、該溝を覆う大きさであることを特徴とする容器。

【請求項2】 前記器と前記蓋のうちの前記他方の部材 10 に、前記溝に対応する位置に配置されて前記溝に入り込む凸部が形成されている請求項1に記載の容器。

【請求項3】 前記容器は、液体を収容するものである 請求項1に記載の容器。

【請求項4】 前記容器は、記録媒体に向けてインクを 吐出することで記録媒体に記録を行うインクジェットプ リントカートリッジに搭載され、該インクジェットプリ ントカートリッジの記録手段に供給するためのインクを 収納するものである請求項3に記載の容器。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、液体を収容する容器に関し、特に、インクジェットヘッドカートリッジの記録ヘッドに供給するためのインクを収容するインクタンクとして用いられる容器に関する。

[0002]

【従来の技術】インクジェット記録装置は、インクタンクより供給された液体インクを記録へッドの吐出口から吐出して、紙などの被記録媒体に文字や図形等の記録を行うものである。この記録装置で使用されるインクタン 30クとしては、一部を開口した箱形状の器と、その器の開口部を覆って塞ぐ蓋とから構成された容器が用いられる。容器内には、液体インクをそのまま充填したり、負圧発生部材と共に充填、またはインクの入ったインク袋を充填したり等、様々な方法でインクを収容している。【0003】容器を構成する器と蓋は、一般的に、樹脂でできており、そられが互いに結合することで容器を形成している。容器に内蔵されたインクが容器の内壁に直接、接する場合には、器と蓋を溶着により結合し、容器のシール性(密封性)を確保している。

【0004】容器の器と蓋を溶着する方法としては、器の内側の縁と、その内側の縁に沿った位置に溶着用の略三角形断面のリブが形成された蓋を合わせ、超音波振動をかけて溶着する超音波溶着が知られている。図22は、従来のインクタンクにおける器と蓋との溶着部を示す断面図である。

【0005】図22に示されるインクタンク420は、 上面に開口部が形成されたタンク箱421と、タンク箱 421の開口部を閉じるように接合されたタンク蓋42 5と、タンク箱421内に収納された吸収体423等と 50

から構成されている。吸収体423は、その内部にインクを吸収することでインクタンク420内にインクを収納し、タンク箱421の下面に形成された供給孔からインクが滴下することを防ぐ負圧を発生する。タンク箱421およびタンク蓋425の構成材料としては樹脂が用いられており、タンク蓋425が超音波溶着によってタンク箱421に結合されている。タンク箱421とタンク蓋425との超音波溶着は、インクタンク420の外周面に近い位置で溶着されているため、タンク蓋425とタンク箱421との溶着箇所の周囲には、溶融した樹脂が広がり、広がった樹脂が固まることによって、インクタンク420の縁部に、そのタンクの外部に露出したバリ441が形成されている。

[0006]

【発明が解決しようとする課題】図22に基づいて説明したインクタンクでは、上述したように溶着箇所がタンクの外周面に近い位置にあるので、溶着によって溶融した樹脂がインクタンクの外周面にはみ出し、その外周面に溶着バリが形成される。このようにインクタンクの外間面に溶着バリが露出すると、インクタンクの美観が損なわれるという問題点がある。

【0007】本発明の目的は、容器を構成する器と蓋の 溶着時に発生する樹脂のはみ出しを確実に防止できる容 器を提供することにある。

[0008]

【課題を解決するための手段】上記目的を達成するために、本発明は、開口部を有する器と、該器の前記開口部を覆って塞ぐ蓋とを超音波溶着により結合してなる容器において、前記器と前記蓋の2つの部材うち少なくともいずれか一方の部材に、前記超音波溶着による前記器と前記蓋との溶着箇所よりも前記容器の外周面側に位置する溝が形成され、他方の部材が、該溝を覆う大きさであることを特徴とする。

【0009】また、前記器と前記蓋のうちの前記他方の部材に、前記溝に対応する位置に配置されて前記溝に入り込む凸部が形成されていることが好ましい。

【0010】さらに、前記容器は、液体を収容するものとして用いられることが好ましい。具体的には、記録媒体に向けてインクを吐出することで記録媒体に記録を行うインクジェットプリントカートリッジに前記容器を搭載し、その容器を、該インクジェットプリントカートリッジの記録手段に供給するためのインクを収納するものとして用いることができる。

【0011】上記の通りの発明では、器の開口部を覆って塞ぐ蓋が超音波溶着によりその器に結合されてなる容器において、器と蓋の2つの部材のうち少なくともいずれか一方の部材に、器と蓋との溶着箇所よりも容器の外周面側に位置する溝が形成されていることにより、溶着の際に溶融した部分が前記溝に留まり、さらには、前記溝が他方の部材で覆われているために、その溶融した部

分が容器の外周面にはみ出ることがなく、その外周面に 溶着バリが発生することがない。このように、容器の外 周面での溶着バリの発生がないため、容器の美観が損な われることはない。

【0012】また、容器を構成する器と蓋のうちの前記他方の部材に、前記溝に対応する位置に配置されて前記溝に入り込む凸部が形成されたことにより、器と蓋との溶着の際に溶融した部分が容器の外周面にはみ出ることが抑制され、溶着バリのはみ出し防止に対してさらに高い効果が得られる。また、器と蓋との合わせ箇所で隙間が生じても前記凸部によってその隙間が目立ちにくくなり、容器の美観が損なわれることがない。

[0013]

【発明の実施の形態】次に、本発明の実施形態について 図面を参照して説明する。なお、下記には上記本発明に 関する最も効果的な形態のみについて説明を行うが、これらの要件は全て必須なものではなく、それぞれ個別の 構成により以下の文中で述べる効果を奏するものであ ス

【0014】図1は、本発明の一実施形態に係るインタ 20 ンクの概略を示す分解斜視図、図2は図1に示したイン クタンクの横幅方向における断面図、図3は図1に示したインクタンクの縦幅方向における断面図である。

【0015】図1~図3に示すように、本実施形態のインクタンク20は、インクを収納するとともに、圧接体22、上側吸収体23、および下側吸収体24を収納する、器としてのタンク箱21と、タンク箱21の上部開口面を閉じるタンク蓋25と、タンク蓋25の大気連通路25cおよびインク注入孔25eを覆うシー 30ルテープ28と、タンク箱21のインク供給孔21fを保護する保護キャップ27とを有している。タンク箱21の上面には開口部が形成されており、その開口部がタンク蓋25によって覆われて塞がれる。これらタンク箱21とタンク蓋25が、後述するように超音波溶着により結合されることで、液体インクを収納する容器が構成される。

【0016】タンク箱21は、PP(ポリプロピレン) 樹脂からなり1.7mm~2mmの肉厚を有する部材に より上部が開口した箱状に成形されており、その内部は 仕切り壁21aによって負圧室21bとインク収納室と しての生インク室21cとの2つの室に区画されてい る。また、負圧室21bの底面にはインク供給孔21f が形成され、生インク室21cの底面にはインク残量検 知用プリズム部21d(図4参照)が形成されている。 さらに、仕切り壁21aの底面側には、生インク室21 c内に収容されたインクを負圧室21bに供給すると共 に負圧室21b側から生インク室21c内に空気を取り 入れる、気液交換溝21e'を伴った開口21eが形成 されている(図5および図6参照)。生インク室21c

は、負圧室21bに対しての連通を除いて実質的な密閉空間を形成している。

【0017】また、負圧発生部材としての上側吸収体23および下側吸収体24は、ともにPP(ポリプロピレン)繊維から成り、上側吸収体23には繊維径が6デニール(9000mに伸ばしたときの重さが6g)の繊維が用いられ、下側吸収体24には繊維径が2デニール(9000mに伸ばしたときの重さが2g)の繊維が用いられている。上側吸収体23および下側吸収体24は、共に内部にインクを吸収して収納し、インク供給孔21fからインクが滴下することを防ぐ負圧を発生する。

【0018】圧接体22は、PP(ポリプロピレン)繊維から成り、タンク箱21のインク供給孔21fの内径に合致する外径を有する円柱形の形状に形成されている。タンク箱21には、まず圧接体22がインク供給孔21f内にタンク箱21の内側から挿入され、次いで下側吸収体24と上側吸収体23とが圧縮された状態でタンク箱21内に順に挿入される。各吸収体23,24は、図2の矢印方向(タンク箱21の横幅方向)のみ本来の幅の1/2~1/3の幅に圧縮される。各吸収体23,24が、その高さ方向および縦幅方向は本来の寸法のままで、タンク箱21内に収容される。

【0019】図7は、図1等に示したタンク箱の上部開口面とタンク蓋の裏面とを示す斜視図である。

【0020】図7に示すように、タンク箱21の上部開 口面における内側の縁すなわちその開口面の内縁には、 タンク蓋25が溶着されるための溶着用の平面形状部2 1 j が形成されている。よって、タンク箱21における タンク蓋25との溶着箇所が平面形状部21jとなって いる。また、タンク箱21の上部開口面の縦方向両側に は、平面形状部21jよりもインクタンク20の外周面 側に位置する溝21gが形成されている。溝21gは、 タンク箱21にタンク蓋25を溶着した際にタンク蓋2 5によって覆われ、塞がれる。すなわち、タンク蓋25 は、タンク箱21の溝21gの全体を覆うことができる ような大きさに形成されている。この溝21g内には、 タンク蓋25の、溝21gに対応する位置に形成され た、凸部としての台形形状リブ25 f が入り込む。 【0021】一方、タンク蓋25も、タンク箱21と同 様に PP (ポリプロピレン) 樹脂からなり、タンク蓋2

【0021】一方、タンク蓋25も、タンク箱21と同様にPP(ポリプロピレン)樹脂からなり、タンク蓋25の裏面には、タンク箱21の溶着用の平面形状部21jおよび仕切り壁21aの上端面のそれぞれに対応する位置に、タンク箱21との溶着用の三角リブ25aが形成されている。よって、三角リブ25aが、タンク蓋25におけるタンク箱21との溶着箇所に形成されており、この三角リブ25aは、平面形状部21jに対応する位置では平面形状部21jに沿うように、仕切り壁2

1 a に対応する位置では仕切り壁21 a に沿うように形成されている。三角リブ25 a の断面形状はほぼ三角形であり、タンク蓋25をタンク箱21に溶着する際に三角リブ25 a の先端が平面形状部21 および仕切り壁21 a の上端面のそれぞれに当接させられる。また、タンク蓋25の裏面には、タンク箱21の負圧室21 b に収容された吸収体23,24を押さえるように負圧室21 b 側に突出した複数の吸収体押さえ用リブ25 b と、上述した台形形状リブ25 f とが形成されている。

【0022】さらに、図1に示すように、タンク蓋25 10 の表面には迷路状に形成された大気連通路25cが設けられ、その中央には負圧室21bに貫通した大気連通口25dが形成されている。また、タンク蓋25には、タンク箱21の生インク室21cに通じるインク注入孔25eが、生インク室21cの中央付近に貫通する位置に設けられている。

【0023】ここで、再び図1や図12〜図14等を参照して、上記に説明した構成のインクタンク20の組立工程について説明する。図12は、インク箱にインク蓋を結合した状態を示す断面図、図13は、図12のH部 20においてインク箱にインク蓋を溶着する直前の状態を示す断面図、図14は、図12のH部におけるインク箱とインク蓋の溶着後の状態を示す断面図である。

【0024】まず、タンク箱21の負圧室21b内に圧接体22、下側吸収体24、および上側吸収体23を順に挿入した後、タンク蓋25をタンク箱21の上部開口面の所定の位置に対して位置合わせし、図12に示すようにタンク蓋25をタンク箱21の上部開口面に超音波溶着により取り付ける。このとき、超音波溶着の条件は、振動数を約19kHzとし、プレス圧を140kP30a程度とし、溶着エネルギーを150J程度とすることが好ましい。

【0025】ここで、超音波溶着によるタンク箱21とタンク蓋25の結合では、まず、図13に示すようにタンク蓋25の三角リブ25aをタンク箱21の平面形状部21jおよび仕切り壁21aに接触させる。そして、タンク蓋25の表面に接する溶着ホーン300からの超音波振動によって、三角リブ25aの先端近傍から樹脂の溶融が開始し、図14に示すようにタンク箱21とタンク蓋25の溶着が完了する。このとき、タンク箱21の平面形状部21jの部分と、タンク蓋25の三角リブ25aとが互いに溶融してから固化することにより、それらの部分が溶着箇所43となって結合される。

【0026】溶着の際に溶融した樹脂は、溶着箇所の周囲の隙間に流れ込む。ここで、タンク箱21に形成された溝21gは、この隙間からはみ出した樹脂を受け入れることができる十分な大きさである。また、溝21gが、溶着箇所43よりもインクタンク20の外周面側に位置し、その上、上述したように溝21gがタンク蓋25によって覆われている。これらのことから、タンク箱50

21およびタンク蓋25において溶着の際に溶融した部 分は、溝21g内に留まってインクタンク20の外周面 にはみ出ることはない。よって、隙間からはみ出した樹 脂が固まって溶着バリが形成される際には、図14に示 すように溝21g内にバリ41が形成されても、そのバ リ41がインクタンク20の外周面に形成されて露出す ることはない。すなわち、溶着時に溶融した樹脂がイン クタンク20の外周面すなわち外観に溶着バリとして発 生することはなく、インクタンク20の美観が損なわれ ることがない。また、タンク蓋25の台形形状リブ25 fによって、溶融した樹脂がインクタンク20の外周面 にはみ出ることが抑制され、その外周面に露出するよう な溶着バリの発生を防止することができる。それと同時 に、タンク箱21とタンク蓋25の外周面での合わせ箇 所に隙間が生じても、台形形状リブ25fによってその 隙間が目立ちにくく、インクタンク20の美観を損なう ことはない。よって、溝21g内に入り込む台形形状リ ブ25 fが設けられていることにより、そのリブがない 場合と比較して、溶着バリのはみ出し防止に対してさら に高い効果が得られるとともに、インクタンク20の美 観が損なわれることを防止する効果がさらに高くなる。 【0027】次に、タンク蓋25のインク注入孔25e とタンク箱21の供給孔21fから、インクタンク20 内にインクを注入する。本実施形態では約45gのイン クが注入される。インクを注入した後、タンク蓋25の インク注入孔25eにPP(ポリプロピレン)製のボー ル栓26を圧入するとともに、タンク箱21のインク供 給孔21fに保護キャップ27を超音波溶着により取り 付ける。

【0028】ここで、保護キャップ27は、タンク箱2 1のインク供給孔21fの外径部を囲む円筒形状のキャ ップ部27aと、キャップ部27aの周囲に形成された 2つの溶着用突起27bと、溶着用突起27bの1つか ら延びる弓形のレバー部27cとが樹脂により一体に成 形されて成るものである。さらに、キャップ部27aの 内側には、インク供給孔21fのシールを確実にするた めに、弾性を有するエラストマ部材29 (図2参照)が 固定されている。保護キャップ27は、上記のようにイ ンクタンク20内にインクを注入した後に、インク供給 孔21fに保護キャップ27をかぶせ、2ヶ所の溶着用 突起27bの裏から溶着ホーンを当ててタンク箱21の 底面に超音波溶着を行うことで、タンク箱21に固定さ れる。このときの超音波溶着の条件は、振動数を約28 kHzとし、プレス圧を220kPa程度とし、溶着エ ネルギーを10」程度とすることが好ましい。

【0029】最後に、タンク蓋25の大気連通口25 d、大気連通路25c、およびボール栓26が圧入された注入孔25eを覆うように、タンク蓋25の表面にシールテープ28を熱溶着により貼り付ける。

【0030】以上の工程により、本実施形態のインクタ

ンク20が完成する。この完成したインクタンク20の 全質量は85g程度になる。そして、完成したインクタ ンク20は、高熱収縮フィルムによって包装された後、 運送形態や販売形態に適した梱包がなされる。

【0031】(変形例)図15および図16は、図1等に基づいて上述したインクタンク20の変形例について説明するための断面図である。図15には、インク箱にインク蓋を溶着する直前の状態が示され、図16には、インク箱とインク蓋の溶着後の状態が示されている。このインクタンクでは、上述したものと比較して、インク10箱とインク蓋のそれぞれの部材においてそれらの部材同士の溶着箇所の外側部分の形状が一部異なっている。図15および図16では、上述したインクタンクと同一の構成部品および同一の箇所には同一の符号を付してあり、次では、図1等に基づいて説明したインクタンク20と異なる点を中心に説明する。

【0032】この変形例では、図15に示すように、タンク箱21の上部開口面の縦方向両側には、平面形状部21jよりもインクタンク20の外周面側に位置する溝121gが形成されている。溝121gは、上述した溝201gと同様に、タンク箱21にタンク蓋25を溶着した際にタンク蓋25によって覆われ、塞がれる。すなわち、この変形例においても、タンク蓋25は、タンク箱21の溝121gの全体を覆うことができるような大きさに形成されている。溝121g内には、タンク蓋25の、溝121gに対応する位置に形成された、凸部としての台形形状リブ125fが入り込む。また、タンク箱21の上部開口面の縦方向両側には、溝121gよりもインクタンクの外周面側に位置する、凸部としての台形形状リブ121fが形成されている。30

【0033】一方、タンク蓋25の裏面には、上述した台形形状リブ125fと、台形形状リブ125fよりもインクタンク20の外周面側に位置する溝125gとが形成されている。溝125gは、タンク箱21にタンク蓋25を溶着した際にタンク箱21によって覆われ、塞がれる。すなわち、タンク箱21は、タンク蓋25の溝125gの全体を覆うことができるような大きさに形成されている。タンク箱21の、上述した台形形状リブ121fは、この溝125gに対応する位置でタンク箱21に形成されており、タンク箱21とタンク蓋25とを 40溶着した際に溝125g内に台形形状リブ25fが入り込む。

【0034】このようなインクタンクでは、超音波溶着によってタンク箱21にタンク蓋25を結合する際に、まず、図15に示すようにタンク蓋25の三角リブ25 aをタンク箱21の平面形状部21jおよび仕切り壁21aに接触させる。そして、タンク蓋25の表面に接する溶着ホーン300からの超音波振動によって、三角リブ25aの先端近傍から樹脂の溶融が開始し、図16に示すようにタンク箱21とタンク蓋25の溶着が完了す 50

る。このとき、タンク箱21の平面形状部21jの部分と、タンク蓋25の三角リブ25aとが互いに溶融してから固化することにより、それらの部分が溶着箇所43となって結合される。のような工程により、溝121g内に台形形状リブ125fが入り込み、溝125g内に台形形状リブ121fが入り込む。

【0035】溶着の際に溶融した樹脂は、溶着箇所の周 囲の隙間に流れ込む。ここで、タンク箱21に形成され た溝121g、およびタンク蓋25に形成された溝12 5 gは、この隙間からはみ出した樹脂を受け入れること ができる十分な大きさである。また、溝121g, 12 5gが、溶着箇所 43よりもインクタンクの外周面側に 位置し、その上、上述したようにタンク箱21の溝12 1gがタンク蓋25によって覆われ、タンク蓋25の溝 125gがタンク箱21によって覆われている。これら のことから、タンク箱21およびタンク蓋25において 溶着の際に溶融した部分は、溝121gや125g内に 留まってインクタンクの外周面にはみ出ることはない。 よって、隙間からはみ出した樹脂が固まって溶着バリが 形成される際には、図16に示すようにバリ42が溝1 21 g内に形成され、さらにバリ42が溝125 g内に 形成されても、そのバリ42がインクタンクの外周面に 形成されて露出することはない。すなわち、溶着時に溶 融した樹脂がインクタンクの外周面すなわち外観に溶着 バリとして発生することはなく、インクタンクの美観が 損なわれることがない。

【0036】また、図1等に基づいて説明したインクタンク20と比較して、タンク箱21の台形形状リブ121fとタンク蓋25の台形形状リブ125fとによって、溶融した樹脂がインクタンクの外周面にはみ出ることが抑制され、その外周面に露出するような溶着バリの発生をさらに防止できる。それと同時に、タンク箱21とタンク蓋25の外周面での合わせ箇所に隙間が生じても、台形形状リブ121f、125fによってその隙間が目立ちにくく、インクタンクの美観を損なうことはない。

【0037】(インクジェットヘッドカートリッジ)図8~10は、本実施形態のインクタンク20をインクジェットカートリッジ220に搭載する動作を説明するための図であり、図8はインクジェットカートリッジに搭載される前のインクタンクを示す斜視図、図9はインクタンクがインクジェットカートリッジに搭載される前の状態のインクタンクとインクジェットカートリッジに搭載された後の状態のインクタンクとインクジェットカートリッジに搭載された後の状態のインクタンクとインクジェットカートリッジとを示す斜視図である。

【0038】インクタンク20をインクジェットカートリッジ220へ取付ける際には、まず、シールテープ28の二点鎖線部(図8(a)参照)を切り取って大気連通路25cを開放し、インクタンク20の内圧を大気圧

と釣り合わせる。その後、保護キャップ27のレバー部27cに指をかけ、キャップ部27aに刻印されている矢印(図8(b)参照)の方向に保護キャップ27を回転させて保護キャップ27とタンク箱21との溶着部を切り離し、インク供給孔21fを開放する。

【0039】その後、図9に示す向きでインクタンク20をカートリッジ220へ装着することにより、図10に示すようにインクジェットカートリッジ220へのインクタンク20の装着が完了する。

【0040】図11は、インクタンクとインクジェット 10 カートリッジとをインクタンクがインクジェットカート リッジに搭載された状態で示す断面図である。

【0041】インクタンク20は、インクタンク20の タンク箱21に形成された、2つの突起部としてのタン ク位置決め爪21 i (図11には1つの位置決め爪21 jのみ示されている)を、インクジェットカートリッジ 220のタンクホルダ31に形成された2つの係合穴3 1 a (図11には1つの係合穴31aのみ示されてい る)内に挿入し、インクタンク20の突起部としての位 置決めピン21nをタンクホルダ31に形成された係合 20 穴31bに挿入し、さらに、インクタンク20のタンク 箱21の側壁に根本部を中心に復元可能に撓むように形 成された取り付けレバー21hのラッチ爪21kを、タ ンクホルダ31に形成された係合部31cに引っかける ことにより、タンクホルダ31内に固定される。なお、 インクタンク20は、取り付けレバー21hを押しなが らインクタンク20を図示上方に押し出すことにより、 インクジェットカートリッジ220から取り外すことが できる。このように、インクタンク20は、インクジェ ットカートリッジ220に対して着脱自在に構成されて 30 いる。

【0042】図17は上記に説明したインクタンクが装着されるインクジェットカートリッジを示す図であり、同図(a)は背面上方から見た斜視図、同図(b)は正面下方から見た斜視図である。

【0043】インクジェットカートリッジ220は、インクを吐出する記録手段としての記録ヘッド1およびインクジェット記録装置本体(不図示)のキャリッジ211(図19等参照)との電気的接続部を備える記録ヘッドホルダ30と、インクタンク20(図1等参照)を装着可能な装着部としてのタンクホルダ31とを備えている。記録ヘッド1は吐出口からインクを吐出するために、内部に例えば電気熱変換素子(不図示)が備えられ、この素子の発熱により気泡を発生させることで、インクを吐出するように構成されている。本実施形態の場合、このような電気熱変換素子を1つの吐出口に対して2つ備えることで、40pl(ピコリットル)以下の小液滴と、70pl以上の大液滴とを適宜吐出することができるようになっている。このように吐出液滴の吐出量を変調させることで、高解調の画像記録を実現すること 50

が可能となっている。

【0044】ここで、再び図11を参照して説明する。インクタンク20内のインクは、インクタンク20内のインクは、インクタンク20のインク供給孔21fからフィルタ32を介してタンクホルダ31の流路へ供給され、さらに、流路部材33の流路管33aを通って記録ヘッド1へ供給される。フィルタ32および流路部材33はタンクホルダ31に超音波溶着によって取り付けられており、流路部材33の流路管33aと記録ヘッド1との接続部は、ジョイントシールゴム34にてシールされている。

10

【0045】(インクジェット記録装置)図18はインクジェットカートリッジに設けられた各位置決め部を示す側面図、図19はインクジェット記録装置におけるキャリッジを、一部を破断して示す斜視図、図20は図19に示したキャリッジをインクジェットカートリッジが搭載された状態で示す斜視図である。

【0046】図18に示すようにインクジェットカート リッジ220に設けられたX方向位置決め部221、X 2方向位置決め部222、およびY方向位置決め部22 3は、それぞれ、図19に示すように設けられたキャリ ッジ211のX方向位置決め部217、XZ方向位置決 め部214、およびY方向位置決め部215に突き当た り、各方向の位置決めがなされる。キャリッジ211の インクジェットカートリッジ220との電気的接続部で あるコンタクト部212の押圧力によってインクジェッ トカートリッジ220のXZ方向位置決め部222がキ ャリッジ211のXZ方向位置決め部214に付勢さ れ、キャリッジ211のヘッドフック213に取り付け られた引張りばね216 (図21参照)の復元力によっ てXZ方向位置決め部222がキャリッジ211のXZ 方向位置決め部214に付勢されると共に X 方向位置決 め部221がキャリッジ211のX方向位置決め部21 7に付勢される。さらに、キャリッジ211に固定され たインクジェットカートリッジ220を付勢する板ばね 218により、インクジェットカートリッジ220のY 方向位置決め部223がキャリッジ211のY方向位置 決め部215に付勢される。インクジェットカートリッ ジ220は、このようにしてキャリッジ211に位置決 め固定される。

【0047】なお、キャリッジ211は仕切り壁219によって4区画に仕切られており、インクジェットカートリッジ220が4つ搭載できるようになっている。本実施形態では図20に示すように、キャリッジ211には、それぞれBk(ブラック)、C(シアン)、M(マゼンダ)、Y(イエロー)のインクタンク20を備えた4つのインクジェットカートリッジ220が搭載されている。

【0048】図21はインクジェット記録装置における キャリッジおよびプラテン等を示す断面図である。

【0049】インクジェット記録装置200は、キャリ

ッジ211を主走査方向(図21の紙面に対して垂直な方向)に案内するキャリッジ案内レール202と、キャリッジ211に搭載されたインクジェットカートリッジ220の記録ヘッド201のインク吐出口面に対向する位置に配置され、記録媒体204を保持するプラテン203と、記録媒体204を図示の搬送方向(副走査方向)に搬送する搬送ローラ対205とを有している。キャリッジ211は、例えば、一方がモータで駆動され他方が自由に回転する一対のプーリ(不図示)と、この一対のプーリに巻回されたタイミングベルト(不図示)とで構成される駆動手段によって、主走査方向に往復移動される。

【0050】記録媒体204に対して画像記録を行う際には、まず、キャリッジ211をインクジェット記録装置200のキャリッジ案内レール202に沿って主走査方向に走査しつつ、記録ヘッド201の吐出口に対向するプラテン203上に配置された記録媒体204にインクを吐出し、1走査分の画像記録を行う。1走査分の画像記録が終了したら、搬送ローラ対205により、記録媒体204を図示の搬送方向(副走査方向)に1走査分の記録幅だけ搬送する。そして、再びキャリッジ211を走査しつつ記録ヘッド201からインクを吐出し、記録媒体204に1走査分の画像記録を行う。この動作を繰り返すことによって、記録媒体204の全体に所望の画像を記録する。

[0051]

【発明の効果】以上説明したように本発明は、器と蓋を 超音波溶着により結合してなる容器において、器と蓋の 2つの部材のうち少なくともいずれか一方の部材に、器 と蓋との溶着箇所よりも容器の外周面側に位置する溝が 30 形成されたことにより、器と蓋の溶着の際に溶融した部 分が前記溝に留まり、さらには、前記溝が他方の部材で 覆われているために、その溶融した部分が容器の外周面 にはみ出ることがなく、容器の美観が損なわれることが ないという効果がある。

【0052】また、容器を構成する器と蓋のうちの前記他方の部材に、前記満に対応する位置に配置されて前記溝に入り込む凸部が形成されたことにより、器と蓋との溶着の際に溶融した部分が容器の外周面にはみ出ることが抑制され、溶着バリのはみ出し防止に対してさらに高い効果が得られる。また、器と蓋との合わせ箇所で隙間が生じても前記凸部によってその隙間が目立ちにくくなり、容器の美観が損なわれることを防止する効果がさらに高くなる。

【図面の簡単な説明】

【図1】本発明の一実施形態に係るインタンクの概略を 示す分解斜視図である。

【図2】図1に示したインクタンクの横幅方向における 断面図である。

【図3】図1に示したインクタンクの縦幅方向における 50

断面図である。

【図4】図1に示したインクタンクに設けられたプリズム部を示すための、タンク箱の断面図である。

12

【図5】図1に示したインクタンクに設けられた開口および気液交換溝を示すための、タンク箱の断面図である。

【図6】図1に示したインクタンクに設けられた開口および気液交換溝を示すための、タンク箱の拡大断面図である。

【図7】図1等に示したタンク箱の上部開口面とタンク 蓋の裏面とを示す斜視図である。

【図8】インクジェットカートリッジに搭載される前の インクタンクを示す斜視図である。

【図9】インクタンクがインクジェットカートリッジに 搭載される前の状態のインクタンクとインクジェットカ ートリッジとを示す斜視図である。

【図10】インクタンクがインクジェットカートリッジ に搭載された後の状態のインクタンクとインクジェット カートリッジとを示す斜視図である。

【図11】インクタンクとインクジェットカートリッジ とをインクタンクがインクジェットカートリッジに搭載 された状態で示す断面図である。

【図12】インク箱にインク蓋を結合した状態を示す断面図である。

【図13】図12のH部においてインク箱にインク蓋を 溶着する直前の状態を示す断面図である。

【図14】図12のH部におけるインク箱とインク蓋の 溶着後の状態を示す断面図である。

【図15】図1等に基づいて説明したインクタンクの変形例について説明するための図であって、インク箱にインク蓋を溶着する直前の状態を示す断面図である。

【図16】図1等に基づいて説明したインクタンクの変形例について説明するための図であって、インク箱とインク蓋の溶着後の状態を示す断面図である。

【図17】インクタンクが装着されるインクジェットカートリッジを示す図である。

【図18】インクジェットカートリッジに設けられた各位置決め部を示す側面図である。

【図19】インクジェット記録装置におけるキャリッジを、一部を破断して示す斜視図である。

【図20】図19に示したキャリッジをインクジェットカートリッジが搭載された状態で示す斜視図である。

【図21】インクジェット記録装置におけるキャリッジ およびプラテン等を示す断面図である。

【図22】従来のインクタンクにおける器と蓋との溶着 部を示す断面図である。

【符号の説明】

20 インクタンク

21 タンク箱

21a 仕切り壁

14

13

2 1 b	負圧室			3 1	タンクホルダ
2 1 c	生インク室			31a,	3 1 b 係合穴
2 1 d	プリズム部			31с	係合部
2 1 e	開口			3 2	フィルタ
21e'	気液交換溝			3 3	流路部材
2 1 f	インク供給孔			3 3 a	流路管
2 1 g.	121g, 125g	溝		3 4	ジョイントシールゴム
2 1 h	レバー			41,4	2 バリ
2 1 i	平面形状部			4 3	溶着箇所
21 ј	位置決め爪		10	200	インクジェット記録装置
2 1 k	ラッチ爪			201	記録ヘッド
2 1 n	位置決めピン			202	キャリッジ案内レール
2 2	圧接体			203	プラテン
2 3	上側吸収体			204	記録媒体
2 4	下側吸収体			205	搬送ローラ対
2 5	タンク蓋			2 1 1	キャリッジ
2 5 a	三角リブ			2 1 2	コンタクト部
2 5 b	吸収体押さえ用リブ			2 1 3	ヘッドフック
25с	大気連通路			2 1 4	XZ方向位置決め部
2 5 d	大気連通孔		20	2 1 5	Y方向位置決め部
2 5 e	インク注入孔			216	引張りばね
25f,	121f, 125f	台形形状リブ		2 1 7	X方向位置決め部
2 6	ボール栓			2 1 8	板ばね
2 7	保護キャップ			219	仕切り壁
27 a	キャップ部			220	インクジェットカートリッジ
27 b	溶着用突起			2 2 1	X方向位置決め部
27с	レバー部			222	XZ方向位置決め部
2 8	シールテープ			223	Y方向位置決め部
2 9	エラストマ部材			300	溶着ホーン
3 0	記録ヘッドホルダ				

【図17】

フロントページの続き

(72)発明者 生井 一徳 東京都三鷹市下連雀6-3-3 コピア株 式会社内 (72)発明者 圓地 浩昭 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 F ターム(参考) 2C056 HA08 HA09 KC11 KC13 KC16 KC22 KC30

3E094 AA02 BA01 CA22 DA02 HA08