1. OVERVIEW

- Objective: To build an image classification model to recognize and classify 10 different types of food
- Universal workflow of machine learning framework
 - Step 1: Defining the problem and assembling a dataset
 - Step 2: Choosing a measure of success
 - Step 3: Deciding on an evaluation protocol
 - Step 4: Preparing your data
 - Step 5: Developing a model that does better than a baseline
 - Step 6: Scaling up: train the model until it overfits
 - Step 7: Regularizing your model and tuning your hyperparameters

1. OVERVIEW

STEP 1: DEFINING THE PROBLEM AND ASSEMBLING A DATASET

Type of Problem

A multiclass classification problem with 10 classes of output

Inputs and Outputs

- Inputs (training): 750 food images per type
- Inputs (validation): 200 food images per type
- Inputs (testing): 50 food images per type
- Output: Food labels

1. OVERVIEW

STEP 2: CHOOSING A MEASURE OF SUCCESS

STEP 3: DECIDING ON AN EVALUATION PROTOCOL

Measure of Success Accuracy

<u>Evaluation Protocol</u>
 Maintaining a hold-out validation set
 (Dataset is huge – images)

2. Data Preprocessing and Data Loading

STEP 4: PREPARE YOUR DATA

- Platform
 - Google Drive
 - Issues encountered during uploading of photos. Training folder had more images than it should have.
 - Google Colab

Data Loading

```
import os
# Load the Drive helper and mount
from google.colab import drive
                                                                Linking Colab to
# This will prompt for authorization.
                                                                Google Drive
drive.mount('/content/drive')
# After executing the cell above, Drive
# files will be present in "/content/drive/My Drive".
!ls "/content/drive/My Drive/"
                                                                Folder directory of
base_dir = "/content/drive/My Drive/NP DL/ASG1/food"
                                                                training, validation and
train_dir = os.path.join(base_dir, 'train')
                                                                testing dataset
validation dir = os.path.join(base dir, 'validation')
test_dir = os.path.join(base_dir, 'test')
```

2. Data Preprocessing and Data Loading

image size
img size = 150

• Import package from tensorflow.keras.preprocessing.image import ImageDataGenerator

Data Preprocessing

```
# data preprocessing
# rescale pixel values (0 and 255) to [0, 1] interval
train_datagen = ImageDataGenerator(rescale=1./255) # floating point
test datagen = ImageDataGenerator(rescale=1./255)
train generator = train datagen.flow from directory(
        # path to target directory
        train dir,
        # images target size
        target_size=(img_size, img_size),
        batch size=75,
        # type of label arrays
        class mode='categorical')
validation_generator = test_datagen.flow_from_directory(
        validation dir,
        target_size=(img_size, img_size),
        batch size=40,
        class mode='categorical')
Found 7500 images belonging to 10 classes.
Found 2000 images belonging to 10 classes.
```

Rescale images to [0, 1] by dividing by 255 (0: black; 255: white)

Image size standardised to 150 x 150 px

BASELINE MODEL (FROM SCRATCH USING CONV2D & DENSE LAYERS)

Utilise Convolutional Neural Network (CNN or ConvNet)

Import libraries and packages

```
# Import the Required Packages
from tensorflow.keras import layers
from tensorflow.keras import models
from tensorflow.keras import optimizers
```

Build the model

```
Sequential Model
# Build the Model
# image size
                                                  Conv2D (ConvNet)
img size = 150
                                                        8 filters, filter size: 3x3px
model_1A = models.Sequential()
# feature extraction layers
model 1A.add(layers.Conv2D(8, (3, 3), activation='relu',
                           input_shape=(img_size, img_size, 3)))
                                                                    Input image size: 150x150px;
model 1A.add(layers.MaxPooling2D((2, 2)))
                                                                    Channels: 3
model_1A.add(layers.Conv2D(8, (3, 3), activation='relu'))
model 1A.add(layers.MaxPooling2D((2, 2)<del></</del>
                                                        Max-Pool: 2x2px
# classifier layers
                                                       To convert 3D to "1D" tensor
model 1A.add(layers.Flatten()

★
model_1A.add(layers.Dense(4, activation='relu'))
                                                       for multiclass, single label classification
model 1A.add(layers.Dense(10, activation='softmax'))
```

BASELINE MODEL (FROM SCRATCH USING CONV2D & DENSE LAYERS)

Model summary

```
model 1A.summary()
Model: "sequential 26"
                            Output Shape
 Layer (type)
                                                      Param #
 conv2d_49 (Conv2D)
                            (None, 148, 148, 8)
                                                      224
 max pooling2d_49 (MaxPoolin (None, 74, 74, 8)
 g2D)
                                                                 Feature extraction
                      (None, 72, 72, 8)
 conv2d 50 (Conv2D)
                                                      584
                                                                 layers
 max_pooling2d_50 (MaxPoolin (None, 36, 36, 8)
 g2D)
 flatten_26 (Flatten)
                            (None, 10368)
 dense 54 (Dense)
                            (None, 4)
                                                      41476
                                                                   Classifier layers
 dense_55 (Dense)
                            (None, 10)
                                                      50
Total params: 42,334
Trainable params: 42,334
Non-trainable params: 0
```

of Parameters

BASELINE MODEL (FROM SCRATCH USING CONV2D & DENSE LAYERS)

Compile the model

```
Root Mean Square
Propagation optimizer
```

Learning rate of optimizer

for multiclass, single label classification

Measure of success

Fit (or Train) the model

BASELINE MODEL (FROM SCRATCH USING CONV2D & DENSE LAYERS)

Import package for plotting

```
import matplotlib.pyplot as plt
%matplotlib inline
```

Plot the Training and Validation Accuracy & Loss Scores

```
# Plot the Training and Validation Accuracy & Loss Scores
acc 1A = history 1A.history['accuracy']
val_acc_1A = history_1A.history['val_accuracy']
loss 1A = history 1A.history['loss']
val loss 1A = history 1A.history['val loss']
epochs_1A = range(len(acc 1A))
plt.plot(epochs_1A, acc_1A, 'bo', label='Training acc')
plt.plot(epochs_1A, val_acc_1A, 'b', label='Validation acc')
                                                                 Plot Accuracy to Epoch
plt.title('Training and validation accuracy')
plt.legend()
plt.figure()
plt.plot(epochs_1A, loss_1A, 'bo', label='Training loss')
plt.plot(epochs_1A, val_loss_1A, 'b', label='Validation loss')
plt.title('Training and validation loss')
                                                                  Plot Loss to Epoch
plt.legend()
plt.show()
```

Save the model

```
# Save the Model
model_1A.save('/content/drive/My Drive/NP DL/ASG1/food_model_1A.h5')
```

3. I	3. DEVELOP THE IMAGE CLASSIFICATION MODELS								
Con	COMPARISON OF MODELS (REGULARIZATION AND HYPERPARAMETERS								
TUN	TUNING)								

L2 weight

regularizatio

n with avg-

pooling and

Adam

optimizer

6

0.001

Avg-Pooling

0.5

Adam(0.001)

1.849M

Dropout

layer

6

0.001

Max-

Pooling

0.5

RMSProp(0.001)

1.849M

Dropout

layer with

avg-pooling

and SGD

optimizer

6

0.001

Avg-Pooling

0.5

SGD(0.001)

1.849M

Reduced

learning

rate

6

0.001

Max-

Pooling

0.5

RMSProp(0.0001)

1.849M

1F

Data

Augmentati

on

6

0.001

Max-

Pooling

0.5

RMSProp(0.001)

1.849M

TUNING)								
	model_1A	model_1B	model_1C	model_1C _2	model_1D	model_1D _2	model_1E	model_

TUNING)								
	model_1A	model_1B	model_1C	model_1C _2	model_1D	model_1D _2	model_1E	mode

L2 weight

regularizatio

n

6

0.001

Max-

Pooling

RMSProp(0.001)

1.849M

Increased

network

size (layers,

filters,

nodes)

6

Max-

Pooling

RMSProp(0.001)

1.849M

Baseline

4

Max-

Pooling

RMSProp(0.001)

42.33K

Features

No. of

layers

on

L2 weight regularizati

Type of

pooling

Dropout

Optimizer

layer

Total

params

	Best Validation Accuracy (%)	Best Validation Loss	Approx. Epoch where overfitting occurs	Remarks
model_1A	24	2.1	15	-
model_1B	49	1.6	6	-
model_1C	50	1.7	10	-
model_1C_2	47	1.7	9	-
model_1D	61	2.0	-	Has not overfitted at 100th epoch. Accuracy is still increasing.
model_1D_2	30	2.46	-	Has not overfitted at 100th epoch. Accuracy is still increasing.
model_1E	55	1.7	27	-
model_1F	76	1.0	-	Has not overfitted at 100th epoch. Stagnant from around 90th epoch.

PRETRAINED MODEL VGG16

- Utilise Pretrained Model (VGG16)
 - Import libraries and packages

```
# for pre-trained models
from tensorflow.keras.applications import VGG16
```

Build the model

3. **DEVELOP THE IMAGE CLASSIFICATION MODELS**PRETRAINED MODEL VGG16

Model summary

```
model 2B.summary()
Model: "sequential_6"
                             Output Shape
 Layer (type)
                                                        Param #
 vgg16 (Functional)
                             (None, 4, 4, 512)
                                                        14714688
 flatten 5 (Flatten)
                            (None, 8192)
                             (None, 256)
 dense 12 (Dense)
                                                        2097408
 dense 13 (Dense)
                             (None, 10)
                                                        2570
Total params: 16,814,666
Trainable params: 2,099,978
Non-trainable params: 14,714,688
```

of Parameters

PRETRAINED MODEL VGG16

Compile the model

Fit (or Train) the model

3. **DEVELOP THE IMAGE CLASSIFICATION MODELS**Pretrained Model VGG16

Plot the Training and Validation Accuracy & Loss Scores

```
# Plot the Training and Validation Accuracy & Loss Scores
acc 2B = history 2B.history['accuracy']
val acc 2B = history 2B.history['val accuracy']
loss 2B = history 2B.history['loss']
val loss 2B = history 2B.history['val loss']
epochs 2B = range(len(acc 2B))
plt.plot(epochs 2B, acc 2B, 'bo', label='Training acc')
plt.plot(epochs_2B, val_acc_2B, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()
plt.figure()
plt.plot(epochs 2B, loss 2B, 'bo', label='Training loss')
plt.plot(epochs 2B, val loss 2B, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()
```

Save the model

```
# Save the Model
model_2B.save('/content/drive/My Drive/NP DL/ASG1/food_model_2B.h5')
```

COMPARISON OF MODELS (REGULARIZATION AND HYPERPARAMETERS

TUNING)	ISON OF MOL	ELS (REGULA	ARIZATION AND	THERPARA	IVIETERS
	model_2A	model_2B	model_2C	model_2D	model_2E
Features	FE w/o data augmentation	FE wtih data augmentation	FE with fine tuning and reduced learning rate (and data	FE with dropout layer (wtih fine tuning, reduced learning rate and data	FE with L2 weight regularizatio (wtih fine tuni dropout laye reduced learn

	model_2A	model_2B	model_2C	model_2D	model_2E
Features	FE w/o data augmentation	FE wtih data augmentation	FE with fine tuning and reduced learning rate (and data augmentation)	FE with dropout layer (wtih fine tuning, reduced learning rate and data	FE with L2 weight regularization (wtih fine tunin dropout layer reduced learning

Features	FE w/o data augmentation	FE wtih data augmentation	FE with fine tuning and reduced learning rate (and data augmentation)	layer (wtih fine tuning, reduced learning rate and data augmentation)	regularization (wtih fine tuning, dropout layer, reduced learning rate and data augmentation)
Data augmentation	N	Υ	Υ	Υ	Υ

			augmentation)	data augmentation)	reduced learning rate and data augmentation)
Data augmentation	N	Υ	Υ	Υ	Υ
Fine tuning			Last 3 layers of	Last 3 layers of	Last 3 layers of

0.00002

2.1M

conv_base

0.00001

9.2M

conv_base

0.00001

0.5

0.00001

9.2M

conv_base

0.00001

0.5

9.2M

Fine tuning

Optimizer

L2 weight

params

learning rate

Dropout layer

regularization

Total trainable

0.00002

14.7M

	Validation Accuracy	Validation Loss	Epoch where overfitting	Remarks
			occurs	
model_2A	70	0.95	12	Overfitting may not have occurred yet.
				Training and validation accuracy
				stagnant from 12 th epoch
model_2B	72	0.9	90	Overfitting may not have occurred yet.
				Training and validation accuracy
				stagnant from 90th epoch
model_2C	82	0.65	60	Overfitting may not have occurred yet.
				Training and validation accuracy
				stagnant from 60th epoch
model_2D	84	0.6	57	Overfitting may not have occurred yet.
				Training and validation accuracy
				stagnant from 58th epoch
model_2E	82	0.6	77	Overfitting may not have occurred yet.
				Training and validation accuracy
				stagnant from 77 th epoch

4. EVALUATE THE MODELS USING TEST IMAGES

```
# Model #1A
model_1A = keras.models.load_model('/content/drive/My Drive/NP DL/ASG1/food_model_1A.h5')
# test_datagen = ImageDataGenerator(rescale=1./255)
test_generator_1A = test_datagen.flow_from_directory(
       test_dir,
       target_size=(img_size, img_size),
       batch size=20,
       class mode='categorical')
test loss 1A, test acc 1A = model 1A.evaluate(test generator 1A, steps=25)
print('test acc:', test_acc_1A)
Found 500 images belonging to 10 classes.
25/25 [========== ] - 82s 3s/step - loss: 2.5115 - accuracy: 0.2060
test acc: 0.20600000023841858
```

Test accuracy

4. EVALUATE THE MODELS USING TEST IMAGES

- model_2D and model_2E yielded the best performance of 81.2%
- However, according to the plotted accuracy and loss vs epoch curves, model_2E does not seem to have any better performance. This may be due to the regularization did not take effect.
- Hence, best model among these is model_2D

5. Use the Best Model to Perform Classification

 The best model, model_2D, managed to correctly classify all 3 images downloaded from the internet!

6. CONCLUSION

- Improvements
 - Use other pretrained models
 - Continue to tune the hyperparameters to get even better performance
 - Continue to fine-tune the conv_base layers