Binary Classification Problem

Classification of Subreddits

Jocelyn Pok

Problem Statement

- identify the best classification model
- identify important word features

Target 1: /r/keto Target 0:/r/gainit

Commonalities shared by both:

- 1. Focus on caloric intake and fitness
- 2. Macronutrients: high-protein, high-fat diet.

Stakeholders

Advertisers – develop marketing strategies specifically targeted at each subreddit

Moderators- flag out misclassified posts to maintain the integrity of the posts

03

Exploratory Data Analysis

Wordcloud, unigram, bi-gram

Wordcloud

Target 1

Target 0

Unigram

Top 20 words for target:0 months around bench gym gain muscle body started eating week protein eat much get kg calories like bs day weight 150 200 50 100 250 300 0

Target 1

Target 0

Bi-gram

Target 1

Target 0

Model Prep

A pipeline is created for each model, varying the vectorizer for each

CountVectorizer => Logistic Regression

pipe_params = { 'cvec__max_features' :[1000,2000, 3000], 'cvec__min_df':[2,3], 'cvec__max_df':[0.9,0.95], 'cvec__ngram_range': [(1, 1),(1, 2),(1, 3)], 'logreg__C': [0.01, 0.1, 1, 10], 'logreg__class_weight':[None, 'balanced'],

Best params = {'cvec_max_df': 0.9, 'cvec_max_features': 1000, 'cvec_min_df': 2, 'cvec_ngram_range': (1, 2), 'logreg_C': 0.01, 'logreg_class_weight': None, 'logreg_penalty': 'l2'}

'logreg__penalty': ['l1', 'l2']

TfidfVectorizer => Logistic Regression

```
pipe_params = {
'tvec__max_features' :[1000, 2000,3000],
'tvec__min_df':[2,3],
'tvec__max_df':[0.9,0.95],
'tvec__ngram_range': [(1, 1),(1, 2),(1, 3)],
'logreg__C': [0.01, 0.1, 1, 10],
'logreg__class_weight':[None, 'balanced'],
'logreg__penalty': ['ll', 'l2']
```

```
Best params = {'logreg__C': 1, 'logreg__class_weight': 'balanced', 'logreg__penalty': 'l2', 'tvec__max_df': 0.9, 'tvec__max_features': 1000, 'tvec__min_df': 2, 'tvec__ngram_range': (1, 2)}
```

CountVectorizer => MultinomialNB

TfidfVectorizer => MultinomialNB

```
pipe_params = {
    'cvec__max_features' :[1000,2000,3000],
    'cvec__min_df':[2,3],
    'cvec__max_df':[0.9,0.95],
    'cvec__ngram_range': [(1, 1),(1, 2),(1, 3)],
    'nb__fit_prior':[True,False]
    pipe_params = {
        'tvec__max_features' :[1000,2000,3000],
        'tvec__max_features' :[1000,2000
```

```
Best params = {'cvec_max_df': 0.9, 'cvec_max_features': Best params = {'nb__fit_prior': False, 'tvec_max_df': 0.9, 2000, 'tvec_max_features': 1000, 'tvec_min_df': 3, 'cvec_min_df': 2, 'cvec_ngram_range': (1, 3), 'tvec_ngram_range': (1, 3)} 'nb__fit_prior': False}
```

05

Model fit and evaluation

Metrics: accuracy, precision, fl-score and ROC AUC score is used to identify the best model

Accuracy for train vs test

Model	Hyperparameter	Training Accuracy	Testing Accuracy	Vectorizer
MultinomialNB	$\alpha = 1$	0.967	0.895	CountVectorizer
MultinomialNB	$\alpha = 1$	0.963	0.892	TfidfVectorizer
logistic regression	<i>C</i> = 1	0.988	0.904	TfidfVectorizer
logistic regression	C = 0.01	0.947	0.892	CountVectorizer

ROC AUC

Model	ROC AUC	Vectorizer	
MultinomialNB	0.961	CountVectorizer	
MultinomialNB	0.964	TfidfVectorizer	
logistic regression	0.966	TfidfVectorizer	
logistic regression	0.953	CountVectorizer	

Precision, Recall

Precision: The logistic regression classifier performed better
Recall: The naive bayes classifier performed better

f1-score

Vectoriser: CountVectoriser Model: Logistic Regression recall f1-score 0.92 0.85 0.88 0.93 0.87 0.90 Vectoriser: CountVectoriser preMission Multipamial AB-score 0.95 0.83 0.88 0.96 0.86 0.90

Vectoriser: TfidfVectoriser Model: Logistic Regression recall f1-score precision 0.94 0.87 Vectoriser: TfidfVectoriser Model: MultinomialNB precision recall f1-score

0.82

0.96

0.88

0.90

0.95

0.85

06

Business Recommendations and Conclusion

Best Model

TfidfVectorizer => Logistic Regression

- Identify words that contain more predictive power-Words that occur often in one document but don't occur in many documents
- 2. Separates the feature space into classes and typically works reasonably well even when some of the variables are correlated

Food for thought

The community in general are concerned about reducing the net carb intake

```
[('carbs', 12.26241662938849),
  ('diet', 6.173476240153748),
```

weight loss', 2.887377820367173) sugar', 2.8720463504916385),

```
('net carbs', 2.4353711344093765), ('meat', 2.396066460427404),
```


Thank you.