ÁLGEBRA LINEAR :: LISTA DE EXERCÍCIOS 02

Exercício 1. Determine as coordenadas do vetor v na base β e na base γ ; a matriz de mudança de base de β para a base γ ; e verifique que $(v)_{\beta} = [\mathrm{id}]_{\beta}^{\gamma}(v)_{\gamma}$:

- (a) Considere $v = (4, -5, 3) \in \mathbb{R}^3$, β a base canônica e $\gamma = \{(1, 1, 1), (1, 2, 0), (3, 1, 0)\}$.
- (b) Considere $v = (1,0) \in \mathbb{R}^2$, $\beta = \{(1,1), (1,-1)\}$ e $\gamma = \{(2,3), (4,6)\}$.
- (c) Considere $v = at^2 + bt + c \in \mathcal{P}_2(\mathbb{R}), \ \beta = \{1, 1+t, 1+t+t^2\} \ \text{e } \gamma = \{1, 2-t, 1+t^2\}.$
- (d) Considere $v = \begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix} \in \mathfrak{sl}_2(\mathbb{R}),$

$$\beta = \left\{ \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \right\} \quad \text{e} \quad \gamma = \left\{ \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix} \right\}.$$

(e) Considere o \mathbb{R} -espaço vetorial $V = \mathbb{C}$, $v = \pi + \sqrt{2}i$, $\beta = \{1, i\}$ e $\gamma = \{1 + i, 1 - i\}$.

Exercício 2. Considere o sistema linear

$$S: \begin{cases} y + z + w = 0 \\ x + 2y + 2z + w = 0 \\ x + y + z = 0 \end{cases}$$

e o subespaço $W \subset \mathbb{R}^4$ formado por todas as soluções de S.

- (a) Determine as coordenadas do vetor $(0, \pi, -\pi, 0)$ na base $\alpha = \{(1, -1, 0, 1); (1, 0, -1, 1)\}.$
- (b) Encontre a matriz $[\mathrm{id}]^{\varepsilon}_{\alpha}$ de mudança de base de α para $\varepsilon = \{(0,\pi,-\pi,0); (e^2,0,-e^2,e^2)\}.$
- (c) Verifique que $[\mathrm{id}]^{\varepsilon}_{\alpha}[w]_{\varepsilon} = [w]_{\alpha}$ para todo $w \in W$.

Exercício 3. Mostre que a função T é uma transformação linear:

- (a) $T: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ dada por $T(A) = A^t$ para todo $A \in M_2(\mathbb{R})$.
- (b) $\operatorname{tr}: M_2(\mathbb{R}) \to \mathbb{R}$ dada por $\operatorname{tr} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = a + d$ para toda $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{R})$.
- (c) Dado um \mathbb{R} -espaço vetorial V e um escalar $\alpha \in \mathbb{R}$, considere $T: V \to V$ dada por $T(v) = \alpha v$ para todo $v \in V$.
- (d) Dado um \mathbb{R} -espaço vetorial V, considere o \mathbb{R} -espaço vetorial $V \times V$, e T como sendo a soma $s: V \times V \to V$.

Exercício 4. Usando a definição de transformação linear, explique por que as seguintes funções não são transformações lineares:

- (a) det : $M_2(\mathbb{R}) \to \mathbb{R}$ dada por det $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad bc$ para toda $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{R})$. (b) Dado um \mathbb{R} -espaço vetorial V e um vetor $w \in V, w \neq o_V$, considere a função $t: V \to V$
- (b) Dado um \mathbb{R} -espaço vetorial V e um vetor $w \in V, w \neq o_V$, considere a função $t : V \to V$ dada por t(v) = v + w para todo $v \in V$.
- (c) Dado um \mathbb{R} -espaço vetorial $V \neq \{o\}$, considere o \mathbb{R} -espaço vetorial $\mathbb{R} \times V$, e a função m como sendo a multiplicação escalar $m : \mathbb{R} \times V \to V$.

2

Exercício 5.

- (a) Dadas as bases canônicas $\mathcal{C} = \{(1,0),(0,1)\}\ de\ \mathbb{R}^2\ e\ \mathcal{D} = \{(1,0,0),(0,1,0),(0,0,1)\}\$ de \mathbb{R}^3 , construa a única transformação linear $T:\mathbb{R}^2\to\mathbb{R}^3$ que satisfaz T(1,0)=(0,1,1) e T(0,1)=(1,1,0), e calcule $[T]_{\mathcal{D}}^{\mathcal{C}}$.
- (b) Denote por E_{ij} a matriz cuja entrada na posição (i,j) é 1 e todas as outras entradas são 0. Observe que $\mathcal{C} = \{E_{ij} \mid i, j \in \{1, 2\}\}$ é uma base de $M_2(\mathbb{R})$; construa a única transformação linear $T: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ que satisfaz $T(E_{ij}) = E_{ji}$ para todo $i, j \in \{1, 2\}$; e encontre a matriz $[T]_{\mathfrak{C}}^{\mathfrak{C}}$.
- (c) Dada a base $\beta = \{\sqrt{17}\}$ de \mathbb{R} e a base $\gamma = \{\begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}\}$ de $M_2(\mathbb{R})$, construa a única transformação linear $T: \mathbb{R} \to M_2(\mathbb{R})$ que satisfaz $T(\sqrt{17}) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, e encontre a matriz $[T]_{\gamma}^{\beta}$.
- (d) Dada a base $\gamma = \{1, 1+t, 1+t+t^2\}$ de $\mathcal{P}_2(\mathbb{R})$ e $\mathcal{C} = \{1,t\}$ de $\mathcal{P}_1(\mathbb{R})$, construa a única transformação linear $T: \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_1(\mathbb{R})$ tal que T(1) = 0, T(1+t) = 1 e $T(1+t+t^2)=1+2t$, e encontre a matriz $[T]_c^{\gamma}$.

Exercício 6. Dados o \mathbb{R} -espaço vetorial V de dimensão n>0 e a matriz $A\in M_n(\mathbb{R})$, encontre uma transformação linear $T: V \to V$ e uma base $\beta \subset V$, tais que $[T]^{\beta}_{\beta} = A$.

- (a) Considere $V = \mathbb{R}^2$ e $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$.
- (b) Considere $V = \mathbb{R}^3$ e $A = \begin{pmatrix} 0 & 2 & 1 \\ 3 & 1 & 0 \\ 4 & 2 & 1 \end{pmatrix}$. (c) Considere $V = \mathcal{P}_1(\mathbb{R})$ e $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$.

Exercício 7. Considere a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ dada por

$$T(x, y, z) = (-y - z, -x - z, -x - y),$$

e as bases $\mathcal{B} = \{(1,1,1), (-1,0,1), (-1,1,0)\}\ e\ \mathcal{C} = \{(1,0,0), (0,1,0), (0,0,1)\}\ de\ \mathbb{R}^3$.

- (a) Encontre a matriz $[T]_{\mathbb{B}}^{\mathfrak{B}} \in M_3(\mathbb{R})$, que satisfaz $[T]_{\mathbb{B}}^{\mathfrak{B}}(v)_{\mathbb{B}} = (T(v))_{\mathbb{B}}$ para todo $v \in \mathbb{R}^3$.
- (b) Encontre a matriz $[\mathrm{id}]^{\mathfrak{B}}_{\mathfrak{C}} \in M_3(\mathbb{R})$, que satisfaz $[\mathrm{id}]^{\mathfrak{B}}_{\mathfrak{C}}(v)_{\mathfrak{B}} = (v)_{\mathfrak{C}}$ para todo $v \in \mathbb{R}^3$.

Exercício 8. Seja V um \mathbb{R} -espaço vetorial. Mostre que:

- (a) Para toda $T \in \mathcal{L}(V, V)$, temos $\mathrm{id}_V \circ T = T = T \circ \mathrm{id}_V$.
- (b) Se $R, S, T \in \mathcal{L}(V, V)$, então $R \circ (S \circ T) = (R \circ S) \circ T$.
- (c) Se $R, S, T \in \mathcal{L}(V, V)$, então $R \circ (S + T) = (R \circ S) + (R \circ T)$.

Exercício 9. Encontre exemplos de:

- (a) Transformações lineares $S, T : \mathbb{R}^2 \to \mathbb{R}^2$ tais que $T \circ S \neq S \circ T$.
- (b) Funções $f, g: X \to Y$ e $h: Y \to Z$, tais que $h \circ (f+g) \neq (h \circ f) + (h \circ g)$.
- (c) Vetores $(x_1, y_1), (x_2, y_2), (x_3, y_3) \in \mathbb{R}^2$, para os quais não existe transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^2$ satisfazendo $T(1,0) = (x_1,y_1), T(0,1) = (x_2,y_2)$ e $T(1,1) = (x_3,y_3).$
- (d) Matrizes $A \in M_2(\mathbb{R})$ para as quais não existem bases $\alpha, \beta \subset \mathbb{R}^2$ tais que $[\mathrm{id}]^{\alpha}_{\beta} = A$.

Exercício 10. Considere a transformação linear $F: \mathbb{R}^3 \to \mathbb{R}^3$ dada por

$$F(x, y, z) = (x + 2y + 2z, 3x + 2y, 2x + 2y + z).$$

- (a) Encontre o núcleo de F. Justifique.
- (b) Encontre a imagem de F. Justifique.

Exercício 11. Mostre que a transformação linear $S: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$ dada por $S(t^i) = t^{i+1}$ para todo $i \geq 0$ é injetora, mas não é sobrejetora (e consequentemente que S não é bijetora). Por que isso não contradiz o corolário do Teorema do Núcleo-Imagem (veja p. 113 do Callioli)?

Exercício 12. Sejam V, W, U três espaços vetoriais, $T: V \to W$ e $S: W \to U$ duas transformações lineares.

- (a) Mostre que $\mathrm{id}_V: V \to V$, dada por $\mathrm{id}_V(v) = v$ para todo $v \in V$, é um automorfismo.
- (b) Mostre que, se $T:V\to W$ é um isomorfismo, então $T^{-1}:W\to V$ é um isomorfismo.
- (c) Mostre que, se T e S são isomorfismos, então $(S \circ T): V \to U$ é isomorfismo.
- (d) Mostre que, se V = W = U e T não é um isomorfismo, então $(S \circ T)$ não é um isomorfismo para nenhuma transformação linear S.

Exercício 13. Determine se T é um isomorfismo linear ou não.

- (a) Considere $T: \mathbb{R}^2 \to \mathbb{C}$ dado por T(x,y) = (x+y) + (x-y)i.
- (b) Considere $T: \mathbb{R}^2 \to \mathbb{R}^3$ dado por T(z, w) = (z + w, z + 2w, 2z + w).
- (c) Considere $T: \mathfrak{sl}_2(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R})$ dado por $T\begin{pmatrix} a & b \\ c & -a \end{pmatrix} = (a+c) + (a+b)t + (b+c)t^2$.
- (d) Considere $T: \mathbb{C} \to \mathbb{R}$ dado por T(z) = ||z||.
- (e) Considere $T: \mathbb{R}^3 \to \mathbb{R}^3$ dado por T(x, y, z) = (2y + z, 3x + y, 4x + 2y + z).

Exercício 14. Considere o \mathbb{R} -espaço vetorial $\mathbb{R}_{>0} = \{\alpha \in \mathbb{R} : \alpha > 0\}$ munido da adição dada por

$$s: \mathbb{R}_{>0} \times \mathbb{R}_{>0} \longrightarrow \mathbb{R}_{>0}$$
$$(a,b) \longmapsto ab,$$

e da multiplicação escalar dada por

$$m: \mathbb{R} \times \mathbb{R}_{>0} \longrightarrow \mathbb{R}_{>0}$$

 $(r, a) \longmapsto a^r.$

Considere o \mathbb{R} -espaço vetorial \mathbb{R} munido da soma (usual) dada por

$$s: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$$

 $(a,b) \longmapsto (a+b),$

e da multiplicação escalar (usual) dada por

$$m: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$$

 $(r, a) \longmapsto ra.$

Considere também a função $E: \mathbb{R} \to \mathbb{R}_{>0}$, dada por $E(x) = e^x$, para todo $x \in \mathbb{R}$.

- (a) Mostre que E é uma transformação linear.
- (b) E é um isomorfismo? Justifique.

Exercício 15. Determine se as seguintes afirmações são verdadeiras ou falsas e justifique sua resposta.

- (a) A transformação linear $H: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$ satisfazendo $H(t^i) = t^{i+1}$ para cada $i \geq 0$ é um automorfismo.
- (b) Se $T: \mathbb{R}^{17} \to \mathbb{R}^{17}$ não é invertível, então $S \circ T: \mathbb{R}^{17} \to \mathbb{R}^{17}$ não é invertível para nenhuma $S: \mathbb{R}^{17} \to \mathbb{R}^{17}$.

Exercício 16. Considere a transformação linear $F: \mathbb{R}^3 \to \mathbb{R}^3$ dada por

$$F(x, y, z) = (x + 2y + 2z, 2x + y + 2z, 2x + 2y + z),$$

o subconjunto e $\mathcal{B} = \{(1, 1, 1), (-1, 0, 1), (-1, 1, 0)\}$ e a base $\mathcal{C} = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ de \mathbb{R}^3 .

- (a) Encontre a matriz $[F]_{\mathfrak{B}}^{\mathfrak{B}} \in M_3(\mathbb{R})$, que satisfaz $[F]_{\mathfrak{B}}^{\mathfrak{B}}(v)_{\mathfrak{B}} = (F(v))_{\mathfrak{B}}$ para todo $v \in \mathbb{R}^3$.
- (b) Encontre a matriz $[\mathrm{id}]^{\mathfrak{B}}_{\mathfrak{C}} \in M_3(\mathbb{R})$, que satisfaz $[\mathrm{id}]^{\mathfrak{B}}_{\mathfrak{C}}(v)_{\mathfrak{B}} = (v)_{\mathfrak{C}}$ para todo $v \in \mathbb{R}^3$.
- (c) Encontre a matriz $[F]_{\mathfrak{C}}^{\mathfrak{B}} \in M_3(\mathbb{R})$, que satisfaz $[F]_{\mathfrak{C}}^{\mathfrak{B}}(v)_{\mathfrak{B}} = (F(v))_{\mathfrak{C}}$ para todo $v \in \mathbb{R}^3$.
- (d) F é um automorfismo? Justifique.