Portfolio Optimization

Graph-Based Portfolios

Daniel P. Palomar (2025). *Portfolio Optimization: Theory and Application.*Cambridge University Press.

portfoliooptimizationbook.com

Latest update: March 14, 2025

Outline

- Introduction
- 2 Hierarchical clustering and dendrograms
- 3 Hierarchical clustering-based portfolios
 - Hierarchical 1/N portfolio
 - Hierarchical risk parity (HRP) portfolio
 - Hierarchical equal risk contribution (HERC) portfolio
- Mumerical experiments
- Summary

Abstract

Graphs offer a compact representation of big data, enabling analysis of large networks and pattern extraction. For financial data, asset graphs provide crucial information for modern portfolio design, potentially enhancing the mean-variance portfolio formulation. However, the optimal incorporation of graph information in portfolio optimization remains an open question. These slides explore some attempts in the literature (Palomar 2025, chap. 12).

Outline

- Introduction
- 2 Hierarchical clustering and dendrograms
- 3 Hierarchical clustering-based portfolios
 - Hierarchical 1/N portfolio
 - Hierarchical risk parity (HRP) portfolio
 - Hierarchical equal risk contribution (HERC) portfolio
- 4 Numerical experiments
- 5 Summary

Introduction

Markowitz's mean-variance portfolio:

- Balances expected return and risk.
- Optimization problem:

$$\begin{array}{ll} \underset{\boldsymbol{w}}{\text{maximize}} & \boldsymbol{w}^{\mathsf{T}}\boldsymbol{\mu} - \frac{\lambda}{2}\boldsymbol{w}^{\mathsf{T}}\boldsymbol{\Sigma}\boldsymbol{w} \\ \text{subject to} & \boldsymbol{w} \in \mathcal{W}, \end{array}$$

- λ : risk-aversion hyper-parameter.
- \mathcal{W} : constraint set (e.g., $\mathcal{W} = \{ \mathbf{w} \mid \mathbf{1}^\mathsf{T} \mathbf{w} = 1, \mathbf{w} \geq \mathbf{0} \})$.

• Challenges with estimation errors:

- ullet Mean vector μ and covariance matrix Σ are prone to errors.
- Estimation errors significantly impact portfolio performance.

• Improvement using graph of assets:

- Potential for enhancement by incorporating asset graph connectivity.
- Graph connectivity patterns may reveal key investment insights.

Graphs and distance matrices

- Graph-based portfolio construction:
 - Utilizes graph information encoded as a distance matrix **D**.
 - Distance reflects the relationship between asset pairs.
- Correlation-based distance matrix:

$$D_{ij} = \sqrt{rac{1}{2}(1-
ho_{ij})}$$

where ρ_{ij} is the correlation between assets i and j.

- Connection with Euclidean distance:
 - Standardized data columns: $\tilde{\mathbf{x}}_i = (\mathbf{x}_i \mu_i)/\sigma_i$
 - Empirical correlation:

$$\rho_{ij} = \frac{1}{T} \tilde{\boldsymbol{x}}_i^\mathsf{T} \tilde{\boldsymbol{x}}_j$$

• Normalized squared Euclidean distance:

$$\frac{1}{T} \|\tilde{\mathbf{x}}_i - \tilde{\mathbf{x}}_j\|_2^2 = 2(1 - \rho_{ij})$$

6 / 66

Portfolio Optimization Graph-Based Portfolios

Graphs and distance matrices

- Other distance functions:
 - Minkowski metric based on p-norm:

$$D_{ij} = \|\tilde{\boldsymbol{x}}_i - \tilde{\boldsymbol{x}}_j\|_p$$

where
$$\|\boldsymbol{a}\|_p = \left(\sum_{t=1}^T |a_i|^p\right)^{1/p}$$

- Manhattan distance (p = 1)
- Euclidean distance (p = 2).
- Holistic distance matrix approach: Euclidean distance between distance vectors:

$$\tilde{D}_{ij} = \|\boldsymbol{d}_i - \boldsymbol{d}_j\|_2$$

- d_i : ith column of D.
- Reflects similarity of assets with the entire asset universe.
- Overcomes the limitation of pairwise-only information.

Toy example

• Correlation matrix C:

$$\mathbf{C} = \begin{bmatrix} 1 & 0.7 & 0.2 \\ 0.7 & 1 & -0.2 \\ 0.2 & -0.2 & 1 \end{bmatrix}$$

Correlation-based distance matrix D:

$$\mathbf{D} = \begin{bmatrix} 0 & 0.3873 & 0.6325 \\ 0.3873 & 0 & 0.7746 \\ 0.6325 & 0.7746 & 0 \end{bmatrix}$$

• Euclidean distance matrix of correlation distances \tilde{D} :

$$\tilde{\boldsymbol{D}} = \begin{bmatrix} 0 & 0.5659 & 0.9747 \\ 0.5659 & 0 & 1.1225 \\ 0.9747 & 1.1225 & 0 \end{bmatrix}.$$

8 / 66

Graphs and distance matrices

Other advanced graph estimation methods (Palomar 2025, chap. 5):

Heavy-tailed Markov random field (MRF) with degree control:

where

- gdet(·): generalized determinant
- w: graph weight vector
- $\mathcal{L}(\mathbf{w})$: Laplacian operator
- $\mathfrak{d}(\boldsymbol{w})$: degree operator
- $m{\cdot}$ ν : controls heavy-tailness.

Graphs and distance matrices

• *k*-component heavy-tailed MRF with degree control: Aims for a *k*-component graph (graph with *k* clusters)

where

- \bullet γ : regularization hyper-parameter
- F: enforces low-rank property.

Outline

- Introduction
- 2 Hierarchical clustering and dendrograms
- 3 Hierarchical clustering-based portfolios
 - Hierarchical 1/N portfolio
 - Hierarchical risk parity (HRP) portfolio
 - Hierarchical equal risk contribution (HERC) portfolio
- 4 Numerical experiments
- Summary

Hierarchical clustering and dendrograms

Clustering overview:

- Multivariate statistical analysis technique.
- Used in machine learning, data mining, pattern recognition, bioinformatics, finance, etc.
- Groups elements into clusters based on similar characteristics.
- Unsupervised classification method.

• Hierarchical clustering:

- Forms a recursive nested clustering.
- Builds a binary tree of data points representing nested groups.
- Allows data exploration at different levels of granularity.
- Contrasts with partitional clustering, which finds all clusters simultaneously without a hierarchical structure.

Dendrogram:

- Visual representation of the hierarchical clustering tree.
- Encodes the successive or hierarchical clustering process.
- Provides a complete, interpretable description of the clustering in graphical format.
- Popular due to its high interpretability.

Hierarchical clustering and dendrograms

Consider a toy example with distance matrix:

$$\tilde{\boldsymbol{D}} = \begin{bmatrix} 0 & 0.5659 & 0.9747 \\ 0.5659 & 0 & 1.1225 \\ 0.9747 & 1.1225 & 0 \end{bmatrix}$$

The dendrogram groups first the first and second elements since they have the smallest distance:

Portfolio Optimization Graph-Based Portfolios 13 / 66

Basic procedure

Hierarchical clustering process:

- Requires a distance matrix **D**.
- Sequentially clusters items based on distance.

Methods for hierarchical clustering:

- Agglomerative (bottom-up):
 - Starts with each item as a singleton cluster.
 - Merges the closest clusters sequentially.
 - Continues until one cluster remains.

Divisive (top-down):

- Starts with all items in one cluster.
- Recursively divides each cluster into smaller ones.

Levels of hierarchy:

- Each level represents a grouping into disjoint clusters.
- The entire hierarchy is an ordered sequence of groupings.

Basic procedure

- Linkage clustering methods: measure of dissimilarity between clusters:
 - Single linkage:
 - Distance is the minimum distance between any two points in the clusters.
 - Related to the minimum spanning tree (MST).
 - Complete linkage:
 - Distance is the maximum distance between any two points in the clusters.
 - Average linkage:
 - Distance is the average distance between any two points in the clusters.
 - Ward's method:
 - Distance is the increase in squared error when merging clusters.
 - Related to distances between cluster centroids.

• Effects of Linkage Method:

- Significantly impacts the resulting hierarchical clustering.
- Single linkage may cause a "chaining" effect and imbalanced groups.
- Complete linkage tends to produce more balanced groups.
- Average linkage is an intermediate case.
- Ward's method often yields results similar to average linkage.

Dendrograms of S&P 500 stocks

Number of clusters

Determining the number of clusters:

- Traversing the dendrogram from top to bottom transitions from one giant cluster to N singleton clusters.
- In practice, dealing with N singleton clusters may lead to overfitting.

Simplification vs. detail:

- Fewer clusters simplify the data but lose fine details, too many clusters might identify spurious patterns.
- The challenge lies in choosing the optimal number of clusters.

Automatic detection of optimal clusters:

- Essential to avoid overfitting.
- Aids in identifying the most appropriate number of clusters.

• Gap statistic:

- Determines the optimal number of clusters.
- Compares empirical within-cluster dissimilarity to uniformly distributed data.
- Identifies the balance between simplification and preserving significant patterns.

Quasi-diagonalization of correlation matrix

Quasi-diagonalization of correlation matrix:

- Hierarchical clustering reorders items in the correlation matrix.
- Groups similar assets closer and dissimilar assets farther apart.
- Known as matrix seriation or matrix quasi-diagonalization.
- An old statistical technique for revealing inherent clusters.

• Benefits of quasi-diagonalization:

- Rearranges the correlation matrix into a quasi-diagonal form.
- Reveals similar assets as blocks along the main diagonal.
- Enhances visual pattern recognition compared to a randomly ordered matrix.

• Visualization through heatmaps:

- Heatmaps can display the original and quasi-diagonal correlation matrices.
- Original matrix with randomly ordered stocks shows no clear pattern.
- Quasi-diagonal matrix, after reordering, clearly shows correlated stocks in diagonal blocks.

• Identification of clusters:

- Quasi-diagonal matrix allows for easy identification of asset clusters.
- Corresponding dendrograms can confirm the number and composition of these clusters.

Quasi-diagonalization of correlation matrix

Effect of seriation in the correlation matrix of S&P 500 stocks:

Outline

- 1 Introduction
- 2 Hierarchical clustering and dendrograms
- 3 Hierarchical clustering-based portfolios
 - Hierarchical 1/N portfolio
 - Hierarchical risk parity (HRP) portfolio
 - Hierarchical equal risk contribution (HERC) portfolio
- 4 Numerical experiments
- Summary

Hierarchical clustering-based portfolios

Portfolio design based on graph of assets:

- Aims to create robust, diversified portfolios with better risk-adjusted performance.
- Less reliance on noisy estimates of mean vector μ and covariance matrix Σ .

• Hierarchical clustering for diversification:

- Distributes capital weights across hierarchically nested clusters.
- Identifies isolated stocks contributing to diversification.
- Visualized using the hierarchical tree layout.

Capital allocation in hierarchical clustering-based portfolios:

- Total capital starts at the top of the dendrogram.
- Capital is allocated top-down through the hierarchy.
- Each division of a cluster into sub-clusters splits the capital accordingly.
- Portfolios for sub-clusters are designed at each split.

Hierarchical clustering-based portfolios

Characteristics of hierarchical clustering-based portfolios:

- **Distance matrix:** Defines the graph (e.g., correlation-based, distance matrix of columns, sophisticated graph learning).
- Linkage method: Employed in the clustering process (e.g., single, complete, average, Ward).
- Clustering stopping criterion: Determines when to stop clustering (e.g., single-item clusters, gap statistic).
- **O Splitting criterion:** Recursively splits the assets (e.g., bisection, dendrogram-based).
- **1 Intra-weight allocation:** Allocation of weights within clusters.
- Inter-weight allocation: Allocation of weights across clusters.

• We will explore:

- Hierarchical 1/N Portfolio.
- Hierarchical Risk Parity Portfolio.
- Hierarchical Equal Risk Contribution Portfolio.

Outline

- 1 Introduction
- 2 Hierarchical clustering and dendrograms
- 3 Hierarchical clustering-based portfolios
 - Hierarchical 1/N portfolio
 - Hierarchical risk parity (HRP) portfolio
 - Hierarchical equal risk contribution (HERC) portfolio
- 4 Numerical experiments
- Summary

Cluster-based waterfall portfolio overview:

- Introduced by (Papenbrock 2011) in his PhD thesis.
- Utilizes hierarchical tree from correlation-based distance matrix.
- Allocation process splits weights equally at each dendrogram split.

Allocation process:

- Proceeds in a top-down manner through the dendrogram.
- Splits weights equally at each splitting point.
- Illustration provided in the next figure.

Illustration of the hierarchical 1/N portfolio construction in a top-down manner:

Impact of linkage method on weight allocation:

- Single linkage:
 - Suffers from "chaining" effect, leading to high weights on some stocks.
- Complete linkage:
 - Produces more even groups and weights.
- Average linkage:
 - Intermediate between single and complete linkage.
- Ward's method:
 - Similar to complete linkage but with even more balanced groups and weights.
- Regular 1/N portfolio:
 - Represents equalized weights without using graph information, termed naive 1/N portfolio.

Chaining effect of different linkage methods on the hierarchical 1/N allocation:

Portfolio Optimization Graph-Based Portfolios 27 / 66

Summary:

- Distance matrix:
 - Correlation-based: $D_{ij} = \sqrt{\frac{1}{2}(1-\rho_{ij})}$.
- 2 Linkage method:
 - Single linkage for high-risk investors.
 - Ward's method for risk-averse investors.
- Clustering stopping criterion:
 - Continues to single-item clusters.
- Splitting criterion:
 - Follows the dendrogram.
- Intra-weight allocation:
 - 1/N portfolio strategy.
- Inter-weight allocation:
 - 1/N portfolio with N=2, i.e., 50% 50% split at each branching.

• Comparing hierarchical 1/N portfolios with different linkage methods:

- ullet Hierarchical 1/N portfolios are compared using single, complete, average, and Ward's linkage methods.
- Naive 1/N portfolio serves as a benchmark.

Backtest results:

- ullet Ward's method seems to be a good choice for hierarchical 1/N portfolio construction.
- The original publication (Papenbrock 2011) supports the use of Ward's method for subsequent analysis.

Portfolio allocation of hierarchical 1/N portfolios with different linkage methods:

Backtest performance of hierarchical 1/N portfolios with different linkage methods:

Portfolio Optimization Graph-Based Portfolios 31 / 66

- Comparison of hierarchical 1/N portfolio using different distance matrices:
 - Orrelation-based distance matrix:
 - As per (Papenbrock 2011):

$$D_{ij} = \sqrt{rac{1}{2}(1-
ho_{ij})}$$

- Orrelation-based distance-of-distance matrix:
 - As used in (López de Prado 2016):

$$\tilde{D}_{ij} = \|\boldsymbol{d}_i - \boldsymbol{d}_j\|_2$$

- Graphs estimated via heavy-tailed MRF:
 - Regular heavy-tailed MRF.
 - k-component heavy-tailed MRF.
- Backtest observations:
 - The simple correlation-based distance-of-distance matrix appears to have a better drawdown profile.
 - More exhaustive backtests are recommended to draw definitive conclusions.

Portfolio allocation of hierarchical 1/N portfolios with different distance matrices:

Backtest performance of hierarchical 1/N portfolios with different distance matrices:

Portfolio Optimization Graph-Based Portfolios

34 / 66

• Final comparison of hierarchical 1/N portfolio:

- Selected version uses Ward's method for linkage and correlation-based distance-of-distance matrix.
- Benchmarks: naive 1/N portfolio, global minimum variance portfolio (GMVP), and Markowitz mean-variance portfolio (MVP).

Observations:

- ullet Hierarchical 1/N portfolio shows a distinct allocation pattern, emphasizing diversification.
- MVP exhibits the worst drawdown due to sensitivity in estimating μ .
- GMVP and naive 1/N portfolio show better performance than MVP.
- ullet Hierarchical 1/N portfolio demonstrates the mildest drawdown, indicating superior risk management.

Considerations and further evaluation:

- The presented backtest is anecdotal and not sufficient for definitive conclusions.
- A proper empirical evaluation requires multiple randomized backtests.
- Further analysis is necessary to robustly assess the performance of the hierarchical 1/N portfolio against benchmarks.

Portfolio allocation of hierarchical 1/N portfolio along benchmarks:

Backtest performance of hierarchical 1/N portfolio along benchmarks:

Outline

- Introduction
- 2 Hierarchical clustering and dendrograms
- 3 Hierarchical clustering-based portfolios
 - Hierarchical 1/N portfolio
 - Hierarchical risk parity (HRP) portfolio
 - Hierarchical equal risk contribution (HERC) portfolio
- Mumerical experiments
- Summary

- Hierarchical risk parity (HRP) portfolio overview:
 - Introduced by (López de Prado 2016).
 - Based on hierarchical tree from correlation-based distance-of-distance matrix.
 - Utilizes single linkage method for clustering.
 - Allocation process uses inverse-variance portfolio (IVarP) for weight splitting.
- Global minimum variance portfolio (GMVP) recap:
 - Minimizes portfolio variance subject to budget constraint.
 - ullet Solution simplifies to IVarP if covariance matrix $oldsymbol{\Sigma}$ is diagonal:

$$\mathbf{w} = \frac{\mathbf{\sigma}^{-2}}{\mathbf{1}^{\mathsf{T}}\mathbf{\sigma}^{-2}}.$$

- Inverse-variance portfolio (IVarP) for N=2 assets:
 - Weight allocation based on inverse of variances:

$$\begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} \sigma_2^2/(\sigma_1^2 + \sigma_2^2) \\ \sigma_1^2/(\sigma_1^2 + \sigma_2^2) \end{bmatrix}.$$

HRP portfolio design process:

ullet Similar to hierarchical 1/N portfolio, allocation proceeds top-down through the dendrogram.

Differences:

- Uses bisection for splitting, not the dendrogram's natural structure.
- Weight splitting based on IVarP for N = 2 assets.
- ullet Empirical evaluation required to compare performance with hierarchical 1/N portfolio.

• Interpretation and connection to GMVP:

- HRP can be seen as a refined version of the IVarP.
- At each step, weights are scaled based on inverse variances, ignoring correlations between subsets.
- Correlations considered only in variance computation of subsets.
- When covariance matrix is diagonal, IVarP, GMVP, and HRP coincide.
- Connection between HRP and GMVP explored further in subsequent sections.

Comparison of bisection splitting and dendrogram-based splitting:

Summary:

- Distance matrix:
 - Correlation-based distance-of-distance matrix.
- 2 Linkage method:
 - Single linkage.
- Clustering stopping criterion:
 - Continues to single-item clusters.
- Splitting criterion:
 - Bisection, ignoring dendrogram grouping sizes.
- Intra-weight allocation:
 - IVarP.
- Inter-weight allocation:
 - IVarP for N=2.

Comparison of HRP portfolios with benchmarks:

- HRP portfolios compared with global minimum variance portfolio (GMVP) and inverse-variance portfolio (IVarP).
- Two versions of HRP: one with bisection split and another with dendrogram split.

Observations:

- GMVP shows concentration in two assets, while others are more diversified.
- HRP portfolios show similar diversification to IVarP.
- HRP portfolios exhibit slight improvement over IVarP.
- Graphs estimated via heavy-tailed MRF methods may offer better performance than correlation-based methods.
- HRP portfolios aim to balance diversification and risk management.
- The choice of splitting method in HRP (bisection vs. dendrogram) may not significantly alter the diversification profile compared to IVarP.
- The performance of HRP portfolios in terms of drawdown and P&L suggests potential advantages over traditional IVarP, especially when using advanced graph estimation methods.

Portfolio allocation of HRP portfolios and benchmarks:

Backtest performance of HRP portfolios and benchmarks:

Portfolio Optimization Graph-Based Portfolios 45 / 66

Outline

- Introduction
- 2 Hierarchical clustering and dendrograms
- 3 Hierarchical clustering-based portfolios
 - Hierarchical 1/N portfolio
 - Hierarchical risk parity (HRP) portfolio
 - Hierarchical equal risk contribution (HERC) portfolio
- 4 Numerical experiments
- Summary

Hierarchical equal risk contribution (HERC) portfolio overview:

- Introduced by (Raffinot 2018).
- Refines and extends the hierarchical 1/N and HRP portfolios.
- Incorporates early stopping based on the gap statistic for cluster selection.
- Utilizes equal risk contribution (ERC) for weight allocation among clusters.

• Key differences from previous approaches:

- Early stopping with Gap statistic:
 - Automatically selects the appropriate number of clusters.
 - Avoids clustering down to single assets.
- General equal risk contribution:
 - Splits weights based on alternative risk measures (e.g., standard deviation, conditional value-at-risk).
 - Formula for two clusters:

$$\begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} \mathsf{RC}_1/(\mathsf{RC}_1 + \mathsf{RC}_2) \\ \mathsf{RC}_2/(\mathsf{RC}_1 + \mathsf{RC}_2) \end{bmatrix},$$

where RC_i is the risk contribution of the ith cluster.

• Main findings:

- Hierarchical 1/N portfolio is a strong baseline.
- HERC portfolios based on downside risk measures (especially conditional drawdown-at-risk) show statistically better risk-adjusted performances.

• Illustration of early stopping:

- The next figure demonstrates early stopping in hierarchical clustering with a toy dendrogram.
- Groups assets into clusters based on the gap statistic, avoiding overly granular clustering.

Effect of early stopping in the hierarchical clustering process:

Three clusters Two clusters

Summary:

- Distance matrix:
 - Correlation-based distance-of-distance matrix.
- ② Linkage method:
 - Ward's method.
- Clustering stopping criterion:
 - Gap statistic for optimal cluster selection.
- Splitting criterion:
 - Follows the dendrogram structure.
- Intra-weight allocation:
 - 1/N portfolio strategy.
- Inter-weight allocation:
 - Equal risk contribution based on various risk measures.

Conclusion: HERC portfolio represents a sophisticated approach to portfolio construction, balancing risk across clusters for improved risk-adjusted returns.

• Simplification in weight splitting for HERC portfolios:

- For weight allocation, two risk contribution measures are considered:
 - RC_i = 1: Leads to a 50% 50% split, similar to the hierarchical 1/N portfolio.
 - $RC_i = 1/\sigma_i^2$: Aligns with the inverse-variance portfolio (IVarP) formula, akin to the HRP portfolio.

Comparison of HERC portfolios with benchmarks:

- Benchmarks include: 1/N portfolio, hierarchical 1/N portfolio, inverse-variance portfolio (IVarP), and HRP portfolio.
- Two versions of HERC portfolios are evaluated: one with bisection split and another with dendrogram split.

Portfolio allocation of HERC portfolios and benchmarks:

Backtest performance of HERC portfolios and benchmarks:

53 / 66

Observations and further evaluation:

- Difficult to draw definitive conclusions from a single backtest.
- More exhaustive backtests are necessary to robustly assess the performance of HERC portfolios.
- Future analysis should aim to evaluate the risk-adjusted returns and drawdown characteristics of HERC portfolios in various market conditions.

Conclusion:

- The HERC portfolio introduces a nuanced approach to portfolio construction by incorporating risk contributions and early stopping based on the gap statistic.
- Its performance relative to traditional and hierarchical portfolio strategies warrants further empirical investigation to fully understand its benefits and limitations.

From portfolio risk minimization to hierarchical portfolios

- The basic structure of hierarchical portfolios is heuristic and suboptimal, which is understandable since the motivation was not optimality but stability against estimation errors.
- On the other hand, portfolios designed based on the minimization of some properly chosen measure of risk are not heuristic by definition but optimal according to the design criterion.
- Can we make an explicit connection between the two paradigms?

• Indeed, it is possible to design a continuum between hierarchical portfolios and optimally designed portfolios (Palomar 2025, sec. 12.3.4).

Outline

- Introduction
- 2 Hierarchical clustering and dendrograms
- 3 Hierarchical clustering-based portfolios
 - Hierarchical 1/N portfolio
 - Hierarchical risk parity (HRP) portfolio
 - Hierarchical equal risk contribution (HERC) portfolio
- Mumerical experiments
- Summary

Numerical experiments

Overview:

- Conducted multiple randomized backtests using S&P 500 stocks from 2015-2020.
- Generated 200 resamples with N = 50 stocks and a random two-year period.
- Walk-forward backtest with a 1-year lookback, reoptimizing monthly.
- Caution: Results are indicative and should be supplemented with more exhaustive backtests.

Observations:

- **Splitting**: Natural dendrogram splits might be expected to outperform, but it seems that bisection might provide more balanced clusters (while utilizing dendrogram ordering).
- **Graph learning**: Sophisticated methods do not clearly outperform simple graph-based approaches.

Numerical experiments - Splitting: bisection versus dendrogram

Comparison of graph-based portfolios: bisection versus dendrogram splitting:

Numerical experiments - Graph estimation: simple versus sophisticated

Comparison of graph-based portfolios: simple versus sophisticated graph learning methods:

Portfolios compared:

- Hierarchical 1/N portfolio.
- HERC 1/N portfolio.
- HRP portfolio.
- HERC IVarP.

Benchmarks:

- 1/N portfolio.
- IVarP.

Empirical results:

• The following table and figures show no significant differences among methods.

Conclusion:

- Further exhaustive comparison needed to draw clear conclusions.
- Current analysis does not favor one graph-based portfolio method over others.

Comparison of selected graph-based portfolios: performance measures:

Portfolio	Sharpe ratio	annual return	annual volatility	max drawdown
1/N	1.01	14%	14%	11%
Hierarchical $1/N$	0.81	12%	14%	11%
HERC 1/N	0.99	14%	14%	11%
IVarP	1.04	13%	12%	10%
HRP	0.91	11%	12%	10%
HERC IVarP	0.89	12%	13%	10%

Comparison of selected graph-based portfolios: barplots of maximum drawdown and annualized volatility:

Comparison of selected graph-based portfolios: boxplots of Sharpe ratio:

Outline

- Introduction
- 2 Hierarchical clustering and dendrograms
- 3 Hierarchical clustering-based portfolios
 - Hierarchical 1/N portfolio
 - Hierarchical risk parity (HRP) portfolio
 - Hierarchical equal risk contribution (HERC) portfolio
- 4 Numerical experiments
- **5** Summary

Summary

Graphs compactly represent big data, revealing underlying structure and patterns.

Key takeaways for portfolio design using graphs:

- Graphs represent asset relationships: nodes are assets, edges are pairwise relationships.
- Financial graphs can be learned from data, e.g., based on heavy-tailed Markov random fields or k-component versions for clustered graphs (Palomar 2025, chap. 5).
- Hierarchical clustering partitions assets into clusters at different levels of detail.
- Graph information should be incorporated into portfolio formulation, with notable examples being hierarchical 1/N, risk parity, and equal risk contribution portfolios.

References I

- López de Prado, M. 2016. "Building Diversified Portfolios That Outperform Out of Sample." *Journal of Portfolio Management* 42 (4): 59–69.
- Palomar, D. P. 2025. Portfolio Optimization: Theory and Application. Cambridge University Press.
- Papenbrock, J. 2011. "Asset Clusters and Asset Networks in Financial Risk Management and Portfolio Optimization." PhD thesis, Karlsruher Institute für Technologie.
- Raffinot, T. 2018. "The Hierarchical Equal Risk Contribution Portfolio." SSRN Electronic Journal. https://dx.doi.org/10.2139/ssrn.3237540.