CLAIMS

What is claimed is:

1	1. A method of manufacturing a double-gate integrated circuit comprising:
2	forming a laminated structure having a channel layer and first insulating
3	layers on each side of said channel layer;
4	forming openings in said laminated structure;
<u> </u>	forming drain and source regions in said openings;
] 5] 6 4 7	doping said drain and source regions, using said openings in said
	laminated structure to align said doping;
₩ 8	removing portions of said laminated structure to leave said channel layer
] ≟ 9	suspended from said drain and source regions;
≟ 9-10	forming a second insulating layer to cover said drain and source regions
11	and said channel layer; and
12	forming a double-gate conductor over said second insulating layer such
13	that said double-gate conductor includes a first conductor on a first side of said
14	channel layer and a second conductor on a second side of said channel layer.
1	2. The method in claim 1, wherein, during said forming of said double-gate
2	conductor, said drain and source regions and said second insulating layer self-
3	align said double-gate conductor.

•
<u> </u>
Ш
UT
M
IJ
8
<u>ا</u> ظ
<u>O</u>
FI.

3. The method in claim 1, wherein said forming of said laminated structure
includes forming a bottom insulator layer adjacent one of said first insulating
layers and said method further comprises, after said forming of said double-gate
conductor, forming a top insulator layer on an opposite side of said double-gate
conductor from said bottom insulator layer, such that a thickness of said second
insulating layer is independent of a thickness of said bottom insulator layer and
said top insulator layer.

- 4. The method in claim 1, wherein said forming of said drain and source regions comprises epitaxially growing drain and source regions in said openings from said channel layer.
- 5. The method in claim 4, wherein said epitaxially growing of said drain and source regions includes introducing one or more of Si, Ge, C, N and an alloy.
- The method in claim 1, wherein said forming of said drain and source regions comprises epitaxially growing a portion of said drain and source regions in said openings from said channel layer and filling a remainder of said openings with amorphous silicon to complete said drain and source regions.
- 1 7. The method in claim 1, wherein:

2	•	said forming of said laminated structure includes attaching a substrate to
3	said la	aminated structure;
4		said forming of said openings includes exposing said substrate; and
5		said forming of said drain and source regions comprises epitaxially
6	growi	ng said drain and source regions in said openings from said channel layer
7	and sa	aid substrate.
1	8.	The method in claim 1, wherein said channel layer comprises a single
2	crysta	silicon layer and said forming of said laminated structure includes
3	deposi	ting said first insulating layers on each side of said single crystal silicon
4	wafer.	
1	9.	The method in claim 1, wherein, before said forming of said drain and
2	source	regions, said method further comprises forming spacers in said openings.
1	10.	A method of manufacturing a double-gate metal oxide semiconductor
2	transis	tor comprising:
3		forming a laminated structure having a single crystal silicon channel layer
4	and ins	sulating oxide and nitride layers on each side of said single crystal silicon
5	channe	el;
6		forming openings in said laminated structure;
7		forming drain and source regions in said openings;

8	doping said dram and source regions, using said openings in said
9	laminated structure to align said doping;
10	removing portions of said laminated structure to leave said single crystal
11	silicon channel layer suspended from said drain and source regions;
12	forming an oxide layer to cover said drain and source regions and said
13	single crystal silicon channel layer, and
14	forming a double-gate conductor over said oxide layer such that said
15	double-gate conductor includes a first conductor on a first side of said single
16	crystal silicon channel layer and a second conductor on a second side of said
16 17 17 1	single crystal silicon channel layer.
1	11. The method in claim 10, wherein, during said forming of said double-gate
2	conductor, said drain and source regions and said oxide layer self-align said
1 3 1 3 U	double-gate conductor.
1	12. The method in claim 10, wherein said forming of said laminated structure
2	includes forming a lower oxide layer adjacent one of said first insulating layers

\
2. The method in claim 10, wherein said forming of said laminated structure
ncludes forming a lower oxide layer adjacent one of said first insulating layers
nd said method further comprises, after said forming of said double-gate
onductor, forming an upper oxide layer on an opposite side of said double-gate
onductor from said lower oxide layer, such that a thickness of said gate oxide
yer is independent of a thickness of said upper oxide layer and said lower oxide
yer.

U
1
ŲП
m
П
E
⊨
1
圎
Ш

1	13. The method in claim 10, wherein sa	id forming of said drain and source
2	regions comprises epitaxially growing silico	on in said openings from said single
3	crystal silicon channel layer.	
1	14. The method in claim 3, wherein sai	id epitaxially growing of said silicon
2	includes introducing one or more of Si, Ge,	C, N and an alloy.
	\mathcal{M}	
1	15. The method in claim 10, wherein sai	d forming of said drain and source
2	regions comprises epitaxially growing silico	n in a portion of said openings from
3	said single crystal silicon channel layer and i	filling a remainder of said openings
4	with amorphous silicon to complete said dra	in and source regions.
- 1	16 The method in claim 10, wherein	
2	said forming of said laminated structs	ure includes attaching a silicon
3	substrate to said laminated structure;	
.4	said forming of said openings include	es exposing said silicon substrate; and
5	said forming of said drain and source	regions comprises epitaxially
6	growing silicon in said openings from said si	ngle crystal silicon channel layer and
7	said silicon substrate.	
1	17. The method in claim 10, wherein, bef	ore said forming of said drain and

2 source regions, said method frither comprises forming spacers in said openings.

5 4	bh l	18. A double-gate integrated circuit comprising:
	2	a channel layer;
	3	doped drain and source regions connected to said channel layer;
	4	a gate insulating layer covering said channel layer and said doped drain
	5	and source regions;
	6	a double-gate conductor over said insulating layer, said double-gate
-i	7	conductor including a first conductor on a first side of said channel layer and a
7	7 8 9	second conductor on a second side of said channel layer;
A A	9	an upper insulator layer adjacent on a first side of said double-gate
U	10	conductor; and
]	11	a lower insulator layer on an opposite side of said double-gate conductor
i D	12	from said upper insulator layer, wherein a thickness of said gate insulating layer is
	13	independent of a thickness of said upper insulator layer and said lower insulator
]	14	layer.

- 1 19. The double-gate integrated circuit in claim 18, wherein, said first
 2 conductor and said second conductor are self-aligned by said doped regions and
 3 said gate insulating layer.
- 1 20. The double-gate integrated circuit in claim 18, wherein said doped drain

- 2 and source regions comprise silicon epitaxially grown from said channel layer.
- 1 21. The double-gate integrated circuit in claim 20, wherein said epitaxially
- grown silicon includes one or more of Si, Ge, C, N and an alloy.
- 5 1 02 2
 - 22. The double-gate integrated circuit in claim 18, wherein said drain and source regions comprise amorphous silicon and silicon epitaxially grown from said channel layer.
- 1

2

3

3

- 23. The double-gate integrated circuit in claim 18, further comprising a substrate connected to said lower insulator layer, wherein said drain and source regions comprise silicon epitaxially grown from said channel layer and from said substrate.
- 4
 - 1 24. The double-gate integrated circuit in claim 18, wherein said channel layer
 2 comprises a single crystal silicon layer.

