

Bachelor thesis

RIGHT-ANGLED COXETER GROUPS ARE RFRS

NICLAS RIST

May 16, 2024

JProf. Dr. Claudio Llosa Isenrich

Department of Mathematics

Karlsruhe Institute of Technology

Niclas Rist: Right-angled Coxeter groups are RFRS, © May 16, 2024

SUPERVISOR: JProf. Dr. Claudio Llosa Isenrich

LOCATION:

Karlsruhe, Germany

TIME FRAME:

Novembre 11, 2023 - May 16, 2024

CONTENTS

1	Introduction	1
Ι	Preliminaries	
2	Preliminaries	5
	2.1 Coxeter Groups	5
	2.2 Representation of Coxeter groups	6
	2.3 The Tits cone - An example	9
	2.4 The word metric and the faithful representation	11
	2.5 The fundamental domain and Stabilizers	14
	2.6 Covering actions - A Toolbox	17
3	The main theorem	19
	3.1 Construction of the manifold cover	19
	3.2 Some orbifold theory	20
	3.3 The cofinal cover	21
	Bibliography	25

1 INTRODUCTION

Part I

PRELIMINARIES

2 | PRELIMINARIES

2.1 COXETER GROUPS

First of all, we define the main object of interest we want to study.

Definition 2.1.1. Let S be a set consisting of elements s_i indexed by an index set I with $|I| = n < \infty$. Let $(m_{ij}) = M$ be a symmetrical matrix in $(\mathbb{N} \cup \{\infty\})^{n \times n}$, where $m_{ii} = 1$ for all i and $m_{ij} \geqslant 2$ for $i \neq j$. Define a group W via the following presentation:

$$W := \langle S \mid (s_i s_j)^{m_{ij}} = 1 \text{ for all } i, j \in I \rangle,$$

where the relations with $m_{ij} = \infty$ are usually ommitted, i.e. give trivial relations. The pair (W,S) is called a Coxeter System and M is called the corresponding Coxeter Matrix. A Coxeter group is a group isomorphic to a group W, corresponding to a Coxeter System (W,S). It is generated by the set S.

In this work we will be particularly interested in a special class of Coxeter groups that we call right-angled. They are defined as follows, by imposing significant constraints on the entries of the Coxeter matrix.

Definition 2.1.2. A Coxeter System (W,S) is right-angled if, for all distinct $i, j \in I$, the condition $m_{ij} \in \{2, \infty\}$ is satisfied. In this context, the group W is then called a right-angled Coxeter group (RACG).

We give some important examples of Coxeter groups as well as right-angled Coxeter groups.

Example 2.1.3. 1. Dihedral groups, $D_{2m} \cong \langle s_1, s_2 \mid s_1^2 = s_2^2 = 1, (s_1s_2)^m = 1 \rangle$ are Coxeter groups for all $m \in \mathbb{N}$.

- 2. The triangle groups, $\Delta(l, m, n) \cong \langle r, s, t \mid r^2 = s^2 = t^2 = (rs)^l = (st)^m = (tr)^n = 1 \rangle$ with l, m and n integers greater or equal to 2 are Coxeter groups.
- 3. The infinite Dihedral group, $D_{\infty}\cong \langle s,t\mid s^2=t^2=1\rangle$ is a right-angled Coxeter group.
- 4. The free product, $\mathbb{Z}/_{2\mathbb{Z}} * \mathbb{Z}/_{2\mathbb{Z}} * \mathbb{Z}/_{2\mathbb{Z}} \cong \langle r, s, t \mid r^2 = s^2 = t^2 = 1 \rangle$ is a right-angled Coxeter group.

In Figure 2.1 below, a small portion of the combinatorial Cayley graphs of these examples are depicted.

Figure 2.1: The combinatorial Cayley graph of ...

We define a special type of subgroups, called parabolic subgroups within a Coxeter group W. These subgroups are constructed from a subset of the index set I. The definition is as follows:

Definition 2.1.4. Let (W, S) be a Coxeter System as above with finite index set I, and J be a subset of the index set I. The group $W_I := \langle \{s_i \mid j \in J\} \rangle$, generated by the s_i in S with $j \in J$, is then called a parabolic subgroup of W. Moreover, we call any conjugate of W_1 a parabolic subgroup as well.

Once we have constructed the representation of Coxeter groups on a vector space as well as the Tits cone in the coming section, the parabolic subgroups will be a useful tool to form a deeper understanding of these objects. We will extensively use them in Sections 2.4 and 2.5.

REPRESENTATION OF COXETER GROUPS 2.2

Given a Coxeter System (W, S), let V be a real vector space with basis $\{e_1, \ldots, e_n\}$, where n = |I| = |S|. This provides a natural identification, $GL_n(V) \cong GL_n(\mathbb{R})$. We define a bilinear form B_W on V as follows:

$$B_W(e_i, e_j) := \begin{cases} -\cos\left(\frac{\pi}{m_{ij}}\right) &, m_{ij} < \infty \\ -1 &, m_{ij} = \infty \end{cases}.$$

By Definition 2.1.1, it is assured that $m_{ij} \ge 2$ for distinct i, j, ensuring the cosine term is nonpositive. Consequently, we have $B_W(e_i, e_i) \le 0$ for distinct i, j. Furthermore, from $m_{ii} = 1$, it follows that $B_W(e_i, e_i) = 1$. Using this bilinear form, we define hyperplanes with corresponding reflections for each basis element e_i as follows:

$$H_i := \left\{ \nu \in V \mid B_W(e_i, \nu) = 0 \right\}, \qquad \sigma_i : V \to V, \quad \nu \mapsto \nu - 2B_W(e_i, \nu)e_i.$$

Theorem 2.2.1. *The map given by:*

$$\rho: W \to GL_n(V) \cong GL_n(\mathbb{R}), \quad s_i \mapsto \sigma_i$$

is an injective homomorphism and therefore a faithful representation of W.

Before we prove the homomorphism property, we recall: A map $\varphi: S \to G$ from a set S to a group G extends to a homomorphism $\hat{\varphi}: \langle S \mid R \rangle \to G$, if and only if the induced homomorphism $\overline{\phi}: F_S \to G$ from the free group over S satisfies $\overline{\phi}(r) = 1_G$ for every $r \in R$.

Proof. Observe that $\sigma_i^2 = id$ in $GL_n(V)$ and thus to prove that ρ is a homomorphism, we apply the above to our situation to see that it suffices to show that the product $\sigma_i \sigma_j$ has order m_{ij} in $GL_n(V)$ for distinct i, $j \in I$. To do so, consider the two-dimensional subspace V_{ij} spanned by two basis vectors e_i and e_j in V. We take a general element $v = \lambda e_i + \mu e_j$, $\lambda, \mu \in \mathbb{R}$ in V_{ij} and distinguish the two cases in the definition of B_W :

1) $m_{ij} < \infty$: In this case B_W is positive definite, since for $v \neq 0$

$$B_{W}(\nu,\nu) = \lambda^{2} - 2\lambda\mu\cos\left(\frac{\pi}{m_{ij}}\right) + \mu^{2} = \left(\lambda - \mu\cos\left(\frac{\pi}{m_{ij}}\right)\right)^{2} + \mu^{2}\sin^{2}\left(\frac{\pi}{m_{ij}}\right) > 0.$$

Up to a change of basis, we identify $(V_{ij}, B_W|_{V_{ij}})$ with the euclidean plane $(\mathbb{R}^2, \langle \cdot, \cdot \rangle)$. Now σ_i and σ_j act on V_{ij} by orthogonal reflections in the hyperplanes H_i , H_j intersected with V_{ij} . We take a look at the inner product of e_i , e_j

$$B_W(e_i, e_j) = -\cos\left(\frac{\pi}{m_{ij}}\right) = \cos\left(\pi - \frac{\pi}{m_{ij}}\right)$$

and obtain that the angle between them in V_{ij} is given by $\pi - \frac{\pi}{m_{ij}}.$ Thus, the angle between the reflecting lines is $\frac{\pi}{m_{ij}}$ and the product $\sigma_i \sigma_j$ turns out to be a rotation by $\frac{2\pi}{m_{ij}}$, showing that $\sigma_i \sigma_j$ has order m_{ij} in the subspace V_{ij} . And since $\sigma_i \sigma_j$ fixes the orthogonal complement of V_{ij} by definition of the σ_i , it has order m_{ij} on the whole vector space V.

2) $m_{ij} = \infty$: By the following, we now have to deal with a non-positive definite form:

$$B_W(\nu,\nu) = \lambda^2 - 2\lambda\mu + \mu^2 = (\lambda - \mu)^2 \geqslant 0.$$

Indeed, we can only expect it to be positive semidefinite on V_{ij} . Using the calculation

$$(\sigma_{\mathfrak{i}}\sigma_{\mathfrak{j}})(e_{\mathfrak{i}}) = \sigma_{\mathfrak{i}}(e_{\mathfrak{i}} + 2e_{\mathfrak{j}}) = e_{\mathfrak{i}} + 2(e_{\mathfrak{i}} + e_{\mathfrak{j}}),$$

together with an induction argument, we get that $(\sigma_i \sigma_j)^n(e_i) = e_i + 2n(e_i + e_j)$. Therefore, the concatenation has infinite order on V_{ij} and in particular on the whole of V.

This proves that ρ extends to a homomorphism. It remains to show the injectivity of ρ . This will be a consequence of a bigger result in section 2.4, see Corollary 2.4.4.

Remark 2.2.2. It is worth to note that in the above proof, we have seen that two-generator subgroups of Coxeter groups are dihedral. Either of order 2m_{ij} or infinite order.

We want to extend the action of W to the dual of the vector space V. This is achieved by acting on V^* via the dual representation of ρ , which we define by

$$\rho^*: W \to GL_n(V^*), \quad w \mapsto (\rho^*(w): V^* \to V^*, \ \varphi \mapsto \rho^*(w)(\varphi)), \quad w \in W, \varphi \in V^*.$$

We can evaluate the functional $\rho^*(w)(\varphi)$ on some $v \in V$ via $(\rho^*(w)(\varphi))(v) := \varphi(\rho(w^{-1})(v))$. Notation wise, we will simply write w(v), when $w \in W$ acts on $v \in V$ via $\rho(w)(v)$. Similarly, we write $w(\varphi)$ when we mean that $w \in W$ acts on some element $\varphi \in V^*$ of the dual space, via the dual representation $\rho^*(w)(\varphi)$. As in the case of the vector space V, we want to give a definition for the notion of a hyperplane with corresponding reflection in the dual space V* as well. By dual hyperplane, we mean a subspace $H_i^* := \{ \phi \in V^* \mid \phi(e_i) = 0 \}$, and the corresponding dual reflections will be a map from V* to V*, given by:

$$\sigma_i^*: V^* \to V^*, \quad \phi \mapsto \phi \circ \sigma_i = \phi - 2B_W(e_i, \cdot) \phi(e_i).$$

To further explore Coxeter groups and their action via this representation, we need some more notation. In particular, we want a so-called *chamber*. This should be thought of as a cone over a polytope with finitely many faces such that the reflections in its codimension one faces correspond to the generators of W under the representation.

Definition 2.2.3. *The fundamental chamber C of the dual representation is the set, given by*

$$C := \{ \phi \in V^* \mid \phi(e_i) \geqslant 0 \; \forall i \in I \} \subset V^*.$$

Denote by $\{e_1^*, \dots, e_n^*\}$ the dual basis of V^* corresponding to the standard basis $\{e_1, \dots, e_n\}$ of V. Then we calculate, using the σ_i^* from above:

$$\sigma_{\mathfrak{i}}^*(e_{\mathfrak{j}}^*) = e_{\mathfrak{j}}^* - 2B_W(e_{\mathfrak{i}}, \cdot)e_{\mathfrak{j}}^*(e_{\mathfrak{i}}) = \begin{cases} e_{\mathfrak{j}}^* & \text{for } \mathfrak{i} \neq \mathfrak{j} \\ e_{\mathfrak{j}}^* - 2B_W(e_{\mathfrak{j}}, \cdot) & \text{for } \mathfrak{i} = \mathfrak{j} \end{cases},$$

which implies that each reflection σ_i^* fixes all the hyperplanes H_i^* , for distinct indices i and j. Moreover, note that the fundamental chamber can be written of the form

$$C = \bigcap_{\mathfrak{i} \in I} \{ \phi \in V^* \mid \phi(e_{\mathfrak{i}}) \geqslant 0 \} = \bigcap_{\mathfrak{i} \in I} (H_{\mathfrak{i}}^* \cup \{ \phi \in V^* \mid \phi(e_{\mathfrak{i}}) > 0 \}),$$

where we observe that the sets $H_i^* \cap C$ form the pairwise distinct codimension one faces of the chamber C. The open halfspaces $\{\varphi \in V^* \mid \varphi(e_i) > 0\}$ in the latter term will be called A_i^* and using these, we define the open fundamental chamber to be the intersection of the open halfspaces:

$$int(C) = \mathring{C} = \bigcap_{i \in I} A_i^*.$$

As mentioned above, we want to study the action of our Coxeter group via the dual representation, acting by reflection in the faces H_i*. However, in general the translates of the chamber under the group action won't cover the whole of V*, which motivates the following definition:

Definition 2.2.4. The Tits cone is the union of all W-translates of the chamber, $WC := \bigcup_{w \in W} wC \subset V^*$.

As the name suggests, the fundamental chamber is a fundamental domain for the action of W on the Tits cone WC under the dual representation ρ^* . This will be proved in Theorem 2.5.7. While the formal defintion of the Tits cone provides a rigorous foundation, it is not very

insightful from a geometric perspective. As one can think about the Tits cone quite geometrically, especially in low dimensions, we will take a closer look at an explicit example in the following section. Before doing so, we end this section with the following remark.

Remark 2.2.5. One may ask why we transport everything to the dual space, instead of working in the standard representation $\rho.$ For this, consider the infinite dihedral group $D_{\infty}\cong \langle s,t\mid s^2=t^2=1\rangle.$ We fix a basis $\{e_1, e_2\}$ of V and obtain that the bilinear form in this basis is given by the matrix

$$B_W = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}.$$

We observe that $H_1 = span\{e_1 + e_2\} = H_2$, which implies that σ_1 and σ_2 fix the same hyperplane, despite having different (-1)-Eigenspaces (namely the span of e_1 , resp. e_2). Therefore, in general, working in the standard representation won't result in a chamber, giving rise to the existence of the Tits cone. Now, passing to the dual space V^* by fixing the dual basis $\{e_1^*, e_2^*\}$, consider the dual reflections σ_i^* as discussed before. By the more general calculation earlier, we obtain

$$\sigma_1^*(H_2^*) = H_2^*$$
 and $\sigma_2^*(H_1^*) = H_1^*$.

And furthermore, we note that for all $i, j \in \{1, 2\}$

$$\sigma_{i}^{*}(B_{W}(e_{i},\cdot)) = B_{W}(e_{i},\cdot) - 2B_{W}(e_{i},\cdot)B_{W}(e_{i},e_{i}) = -B_{W}(e_{i},\cdot),$$

using that $B_W(e_i,\cdot) = -B_W(e_i,\cdot)$. This shows that both dual reflections have the same (-1)-Eigenspace, but fix different hyperplanes (i. e., have different (+1)-Eigenspaces), resulting in a chamber as wished.

THE TITS CONE - AN EXAMPLE 2.3

As an example we take a closer look at the free product $W \cong \langle r, s, t \mid r^2 = s^2 = t^2 = 1 \rangle$, a right-angled Coxeter group from Example 2.1.3. We fix the basis $\{e_1, e_2, e_3\}$ and identify V with \mathbb{R}^3 . In this basis, the bilinear form B_W is given by the matrix

$$B_W = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix}.$$

By the spectral theorem we find a basis of orthonormal Eigenvectors, in which B_W is a diagonal matrix with its eigenvalues as entries. Using the Gram-Schmidt procedure, we get

$$\begin{pmatrix} -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

In other words, we have $V^TB_WV = D$ with $V \in O(n)$ and D = diag(2, 2, -1). Now, since we have a diagonal matrix, we can multiply the entries by squares, since the resulting matrix will be congruent to the given one:

Let
$$A = diag(\mu_1, ..., \mu_n) \in \mathbb{R}^{n \times n}$$
,
$$S = diag(\lambda_1, ..., \lambda_n) \in (\mathbb{R} \setminus \{0\})^{n \times n} \implies S^T A S = diag(\lambda_1^2 \mu_1, ..., \lambda_n^2 \mu_n).$$

To apply this and further transform our matrix D, define the invertible matrix T as follows

$$T = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & 0\\ 0 & \frac{1}{\sqrt{2}} & 0\\ 0 & 0 & 1 \end{pmatrix},$$

which then implies $\widetilde{D} := T(V^T B_W V)T = diag(1,1,-1)$. The images of the basis vectors $\{e_1, e_2, e_3\}$ are given by the three columns of the matrix TV^T , namely:

$$\widetilde{e}_1 = \begin{pmatrix} -\frac{1}{2} \\ -\frac{\sqrt{3}}{6} \\ \frac{1}{\sqrt{3}} \end{pmatrix}, \ \widetilde{e}_2 = \begin{pmatrix} 0 \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{pmatrix} \text{ and } \widetilde{e}_3 = \begin{pmatrix} \frac{1}{2} \\ -\frac{\sqrt{3}}{6} \\ \frac{1}{\sqrt{3}} \end{pmatrix}.$$

Note that we have $V \cong \mathbb{R}^3$, equipped with the inner product

$$\langle x, y \rangle_{2,1} := x^{\mathsf{T}} \widetilde{\mathsf{D}} y = x_1 y_1 + x_2 y_2 - x_3 y_3.$$

Since $\langle \widetilde{e}_i, \widetilde{e}_i \rangle_{2,1} = 0$ for all $i \in \{1, 2, 3\}$, we have that these three vectors span an ideal triangle in the hyperboloid model of \mathbb{H}^2 , given by $\langle x,y\rangle_{2,1}=-1$. One gets the ideal triangle by intersecting the hyperboloid with the hyperplanes spanned by each two of the \tilde{e}_i (they will only intersect in the surrounding cone of the hyperboloid).

Given these new coordinates under the transformation TV^T, the Tits cone will be given by $x_1^2 + x_2^2 - x_3^2 < 0$ union the images of \tilde{e}_1 , \tilde{e}_2 and \tilde{e}_3 under the reflection in the sides of the chamber i. e., in the sides of the ideal triangle. Moreover, we get a subgroup of $O(2,1)_{+}$ generated by the three matrices

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -\frac{5}{3} & -\frac{4}{3} \\ 0 & \frac{4}{3} & \frac{5}{3} \end{pmatrix}, \begin{pmatrix} -1 & \frac{2}{\sqrt{3}} & -\frac{2}{\sqrt{3}} \\ \frac{2}{\sqrt{3}} & \frac{1}{3} & \frac{2}{3} \\ \frac{2}{\sqrt{3}} & -\frac{2}{3} & \frac{5}{3} \end{pmatrix} \text{ and } \begin{pmatrix} -1 & -\frac{2}{\sqrt{3}} & \frac{2}{\sqrt{3}} \\ -\frac{2}{\sqrt{3}} & \frac{1}{3} & \frac{2}{3} \\ -\frac{2}{\sqrt{3}} & -\frac{2}{3} & \frac{5}{3} \end{pmatrix}.$$

Each of the above matrices corresponds to one of the generators r, s and t of the right angled Coxeter group W under the transformation TV^T, constructed above.

THE WORD METRIC AND THE FAITHFUL REPRESENTATION 2.4

Recall that for any finitely generated group $W = \langle S \rangle$, its Cayley graph induces a metric on W, relative to the generating set S. We call it the word metric of W relative to S and denote it by d_S. Also note that the word metric is left-invariant, meaning that for group elements $u, v, w \in W$, we have the equality $d_S(uv, uw) = d_S(v, w)$. Now, define the *word length* of an element $w \in W$ to be $\ell(w) := d_S(w, 1_W)$, the distance of an element to the neutral element of the group. Note that $\ell(w) = 0$ if and only if $w = 1_W$.

Lemma 2.4.1. We collect some properties of the length function we will use later on.

```
1. \forall w \in W : \ell(w) = \ell(w^{-1})
2. \forall s \in S : \ell(s) = 1 \text{ and } \ell(w) = 1 \iff w \in S^{\pm 1}
3. \forall v, w \in W : \ell(vw) \leq \ell(v) + \ell(w)
4. \forall v, w \in W : \ell(v) - \ell(w) \leq \ell(vw)
5. \forall w \in W, s \in S^{\pm 1} : \ell(w) - 1 \leq \ell(ws) \leq \ell(w) + 1
```

Proof. All of the above statements follow from the fact that d_S is a left-invariant metric.

Coming back to Coxeter groups, by definition each generator $s \in S$ has order 2 in W. Therefore, we can write every non-trivial element in W as a sequence of generators in S. Note that in this sequence there might be redundencies, so that the following definition makes sense. We call an expression $w = s_{i_1} \cdots s_{i_r}$ for $i_1, \ldots, i_r \in I$ and $r \in \mathbb{N}$ reduced, if $\ell(w) = r$, i.e. wcannot be represented by a shorter word. These reduced expressions have the caveat of not being unique by any means.

Given a parabolic subgroup W_{J} of a Coxeter group W, it admits its own word metric with respect to $J \subset I$. Therefore each parabolic subgroup admits its own length function, which we denote by $\ell_I(w)$ for words w in W_I . In the following we will make use of the general fact that we have $\ell(w) \leq \ell_{\rm I}(w)$ for all $w \in W_{\rm I}$.

The length function turns out to be an important and powerful tool in studying Coxeter groups. Indeed, its role will be demonstrated in several of the forthcoming proofs, beginning with the following theorem which is a key step in proving faithfulness of our previously defined representation. But before doing so, we want to motivate the next theorem. We consider the set $\{w(e_i) \mid i \in I, w \in W\}$. Note that we fixed a basis in our representation vector space and therefore each of these elements can be written as a linear combination of the basis vectors. We will use this to define 'positive' and 'negative' elements. An element $w(e_i)$ is said to be

- positive (denoted $w(e_i) > 0$), if $w(e_i) = \sum_{i \in I} \lambda_i e_i$ with $\lambda_i \ge 0$ for all $i \in I$,
- negative (denoted $w(e_i) < 0$), if $w(e_i) = \sum_{i \in I} \lambda_i e_i$ with $\lambda_i \le 0$ for all $i \in I$.

Theorem 2.4.2. Let $w \in W$ and $s_i \in S$ for $i \in I$. Then $\ell(ws_i) > \ell(w)$ implies that $w(e_i) > 0$.

Proof. The base case is trivial, as $\ell(w) = 0$ implies $w = 1_W$ and thus w fixes every basis element. Therefore, assume w is non-trivial and in reduced form. We state the induction hypothesis.

(IH) Let $v \in W$, so that $\ell(v) < \ell(w)$ and $\ell(vs_i) > \ell(v)$, then we have $v(e_i) > 0$.

Claim 1: There is a $j \in I$ such that $s_i \neq s_j$ and $\ell(ws_j) = \ell(w) - 1$.

Proof of Claim 1. Since w is in reduced form, write $w = s_{i_1} \cdots s_{i_k}$ and set $s_j = s_{i_k}$. This implies

$$\ell(ws_i) > \ell(w) > \ell(w) - 1 = \ell(ws_i),$$

and in particular $s_i \neq s_i$. This proves the first Claim.

Consider the parabolic subgroup $\langle s_i, s_i \rangle \leq W$, generated by these two distinct elements in S. Set $J := \{i, j\}$ in I and denote the subgroup by W_I . We use the decomposition $W = W/W_I \cdot W_I$ to decompose w into two parts, each living in one component. For this, consider a specific subset of the coset $wW_{\rm I}$, given by

$$A := \{ v \in W \mid vW_J = wW_J \text{ and } \ell(v) + \ell_J(v^{-1}w) = \ell(w) \}.$$

By definition, $w \in A$. With regard to the following, we choose $v \in A$ such that its length $\ell(v)$ is minimal. Now set $v_{\rm I} = v^{-1}w$, which is equivalent to writing $w = vv_{\rm I}$, giving us a decomposition of w as desired. Due to this decomposition, our analysis of w now boils down to studying the separate actions of v and $v_{\rm J}$ on V. First note that $ws_{\rm j}$ is contained in A as well. Clearly, $s_i^{-1} = s_j$ and thus we have that

$$s_i w^{-1} w = s_i \in W_I$$
 and $\ell(w s_i) + \ell_I(s_i) = \ell(w) - 1 + 1 = \ell(w)$.

By the choice of $\ell(v)$ to be minimal, we have $\ell(v) \leq \ell(ws_1) = \ell(w) - 1$, implying $\ell(v) < \ell(w)$. Hence, we are almost set up to apply the induction hypothesis to ν and s_i . The last ingredient missing to do so is the following Claim.

Claim 2: For the lengths of vs_i and v, we have the relation: $\ell(vs_i) \ge \ell(v)$.

Proof of Claim 2. Assume towards contradiction: $\ell(vs_i) < \ell(v)$, equivalently $\ell(vs_i) = \ell(v) - 1$. Then:

$$\begin{split} \ell(w) &= \ell(\nu \nu_J) = \ell(\nu s_i s_i \nu^{-1} w) \leqslant \ell(\nu s_i) + \ell(s_i \nu^{-1} w) \\ &\leqslant \ell(\nu) - 1 + \ell_J(\nu^{-1} w) + 1 = \ell(\nu) + \ell_J(\nu^{-1} w) = \ell(w). \end{split}$$

This means equality holds throughout and in particular $\ell(w) = \ell(vs_i) + \ell_I(s_iv^{-1}w)$. But this implies vs_i belongs to A, contradicting the minimality of $\ell(v)$. Thus, the claim holds.

Applying the induction hypothesis (IH) to v and s_i leaves us with $v(e_i) > 0$. The exact same argument applied to ν and s_i shows $\nu(e_i) > 0$, so that we omit this here. Due to the decomposition and the fact that w lies in $W_{\rm J}$, we are now reduced to the rank two situation. As we have seen that all two generator subgroups are dihedral, we work in the flat plane. But first, we have to observe the following claim.

Claim 3: For $v_I s_i$ and v_I , we have the relation: $\ell_I(v_I s_i) \ge \ell(v)$.

Proof of Claim 3. Assume towards contradiction, that $\ell_I(\nu_I s_i) < \ell(\nu_I)$ holds. Then:

$$\ell(ws_{\mathfrak{i}}) = \ell(vv_{J}s_{\mathfrak{i}}) \leqslant \ell(v) + \ell(v_{J}s_{\mathfrak{i}}) \leqslant \ell(v) + \ell_{J}(v_{J}s_{\mathfrak{i}}) < \ell(v) + \ell_{J}(v_{J}) = \ell(w),$$

which contradicts the assumption of the theorem, that $\ell(ws_i) > \ell(w)$.

Moreover, this shows that every reduced expression of v_I in the parabolic subgroup W_I has to end in s_i . Otherwise, we would have $\ell(v_I) > \ell(v_I s_i)$, which contradicts *Claim* 3. To deduce the theorem, it suffices to show the following claim.

Claim 4:
$$(s_i s_j)(e_i) = \lambda_i e_i + \lambda_j e_j$$
 with $\lambda_i, \lambda_j \ge 0$, implying $(s_i s_j)(e_i) > 0$.

Proof of Claim 4. We already know that $W_{\rm J}$ is dihedral, either of order $2m_{\rm ij}$ or infinite order. As pointed out above, every reduced expression of v_I - an alternating product of s_i and s_j - in W_I has to end in s_i. Using this, we distinguish the two cases.

- 1) $m_{ij} < \infty$: W_I is dihedral of order $2m_{ij}$. Note that the maximum length of $w \in W_I$ is precisely m_{ii} (as the Cayley graph is a cycle of length 2m_{ii}) and the element of maximal length is represented by the reduced expressions $s_i s_j \cdots s_i s_i$ and $s_j s_i \cdots s_i s_i$. This implies that v_I has to have length strictly smaller m_{ij} , else it would have a reduced expression ending in s_i , contradicting the above. Then v_J is a product of less than $\lfloor \frac{m_{ij}}{2} \rfloor$ terms $s_i s_j$, and each of the products $s_i s_j$ is a rotation about $\frac{2\pi}{m_{ij}}$ towards e_j . Using that e_i and e_j are at angle $\pi - \frac{\pi}{m_{ij}}$, we see that v_J rotates e_i at most about $\pi - \frac{2\pi}{m_{ij}}$ towards e_i . Thus, $v_I(e_i)$ still lies inside the cone spanned by e_i and e_i . It could very likely be that we have another reflection s_i , but as the angle between e_i and the reflecting line is $\frac{\pi}{2} - \frac{\pi}{m_{ij}}$, the resulting vector still lies in the cone.
- 2) $m_{ij} = \infty$: In the case of the infinite dihedral group, we already have seen in the proof of Theorem 2.2.1 that $(s_i s_j)^n(e_i) = e_i + 2n(e_i + e_j)$. Thus, $\lambda_i, \lambda_j \ge 0$ with $|\lambda_i - \lambda_j| = 1$.

This proves the last Claim.

Now that we have established that $w = vv_I$ holds, for the element $w(e_i)$ we have

$$w(e_i) = (vv_J)(e_i) = v(\lambda_i e_i + \lambda_j e_j) = \lambda_i \underbrace{v(e_i)}_{>0} + \lambda_j \underbrace{v(e_j)}_{>0}.$$

Claim 4 implies $\lambda_i, \lambda_i \ge 0$, allowing us to conclude $w(e_i) > 0$.

The result of the previous theorem readily extends to its converse, offering valuable insights as well. We shall formally record this implication as a corollary.

Corollary 2.4.3. In the previous theorem, set $w = \widetilde{w} s_i$ for $i \in I$. Then $\ell(\widetilde{w} s_i) < \ell(w)$ implies $\ell(\widetilde{w}s_is_i) > \ell(\widetilde{w}s_i)$. Thus we have $(ws_i)(e_i) = -w(e_i) > 0$, or equivalently $w(e_i) < 0$.

With Corollary 2.4.3 and Theorem 2.4.2 in hand, we will finally be able to deduce the injectivity and thus faithfulness of our representation ρ.

Corollary 2.4.4. *The homomorphism of Theorem 2.2.1 is injective and thus a faithful representation.*

Proof. Assume $w \in \ker\{\rho\}$ non-trivial. Then there is an $i \in I$ with corresponding $s_i \in S$, such that $\ell(ws_i) < \ell(w)$. Now Corollary 2.4.3 implies $w(e_i) < 0$, but $w(e_i) = e_i > 0$ as $\rho(w) = id_V$, which is a contradiction and thus, the statement holds.

THE FUNDAMENTAL DOMAIN AND STABILIZERS 2.5

In this section, we will prove that the fundamental chamber $C \subset V^*$ is indeed a fundamental domain for the action of W on its Tits cone WC. Moreover, we will work out how stabilizers of points look like and then show that the Tits cone is really a convex cone in the dual space V^* .

We start by translating the results of the previous section to the language of chambers and halfspaces. The following two lemmas capture this essence.

Lemma 2.5.1. Let $w \in W$ and $i \in I$. The relation $\ell(s_i w) > \ell(w)$ is equivalent to saying that w leaves the open chamber Č inside the open halfspace A_i*, corresponding to the generator s_i. Put more formally, this states that the set $w(\check{C})$ is a subset of the open halfspace A_i^* .

Proof. Observe that $\ell(s_i w) > \ell(w)$ is equivalent to $\ell(w^{-1} s_i) > \ell(w^{-1})$. Then by by Theorem 2.4.2, we have that $w^{-1}(e_i) > 0$. Take an arbitrary point $\varphi \in \mathring{\mathbb{C}}$ in the open fundamental chamber, then we have that $w(\varphi)(e_i) = \varphi(w^{-1}(e_i))$. Since the chamber C lies in A_i^* for all $i \in I$ and $\varphi \in \mathring{C}$, we see that $w(\varphi) > 0$ is equivalent to $w^{-1}(e_i) > 0$. But this is true by assumption and since φ is arbitrary, we conclude that $w(\mathring{C}) \subset A_i^*$.

Of course this lemma also has a corresponding converse result as in the previous section.

Lemma 2.5.2. Let $w \in W$ and $i \in I$. The relation $\ell(s_i w) < \ell(w)$ is equivalent to saying that w now moves the open chamber \mathring{C} inside the open halfspace, complementary to A_i^* . More formally, this states that the set w(C) is a subset of the open halfspace $s_i(A_i^*)$, as the s_i permute A_i^* and its corresponding complementary halfspace.

Proof. Take $w' = s_i w$ for some $i \in I$ and $w \in W$ so that $\ell(s_i w) > \ell(w)$. Then we have that the length of $s_i w' = w$ is strictly smaller then then length of w'. By applying above lemma we get that $w(\mathring{C}) \subset A_i^*$, which is equivalent to $s_i w'(\mathring{C}) \subset A_i^*$. Apply s_i to both sides leaves us with $w'(\mathring{C}) \subset s_i(A_i^*)$, which proves the lemma.

Building onto this insight, we now want to study the action of parabolic subgroups on the Tits cone to get an understanding of the stabilizers of points. To do so, decompose the fundamental chamber into subsets corresponding to the parabolic subgroups of W as follows.

Definition 2.5.3. Given a parabolic subgroup W_I corresponding to $J \subset I$, set

$$C_J := \bigcap_{j \in J} H_j^* \cap \bigcap_{k \notin J} A_k^*.$$

We call these the corresponding parabolic subsets (of the fundamental chamber).

1. When the set J is empty, the corresponding parabolic subset C_{\emptyset} coincides with Example 2.5.4. the entire chamber C. Conversely, when J contains all indices, C_I reduces to the singleton {0}.

2. If J is a proper subset of I with cardinality one, then the corresponding subset C_1 coincides with a codimension-one face of the chamber C.

Theorem 2.5.5. Let $w \in W$ and $J, K \subset I$ be subsets. Then $w(C_I) \cap C_K \neq \emptyset$ implies $J = K, w \in W_I$ and thus $w(C_1) = C_1$. In particular, the isotropy groups of the sets C_1 are the parabolic subgroups W_1 .

Proof. Let $w \in W$ and J, K \subset I be subsets, such that $w(C_1) \cap C_K \neq \emptyset$. The proof is by induction on the length of w. The base case $\ell(w) = 0$ is trivial, as then w is trivial.

Assume that $\ell(w) > 0$ and choose $i \in I$, such that $\ell(s_i w) < \ell(w)$. Writing $w = s_i(s_i w)$, by Lemma 2.5.2 we know that w moves the open chamber \mathring{C} into the open halfspace $s_i(A_i^*)$, i.e. $w(\check{C}) \subset s_i(A_i^*)$. Now using the continuity of the group action, we note that $w(C) \subset s_i(A_i^*)$. Recall that by definition, the fundamental chamber C lies in the halfspaces $\overline{A_i^*}$ for all $i \in I$. Thus, we record that $w(C) \cap C \subset H_i^*$ and since s_i fixes the corresponding H_i^* by definition, it fixes every point in the intersection of C and its translate w(C). Note that the sets C_I and C_K are subsets of the fundamental chamber C and therefore, si fixes every point in the non-empty set $w(C_1) \cap C_K$. But if s_i fixes some point φ in C_K , we calculate

$$\varphi(e_i) = s_i(\varphi)(e_i) = \varphi(s_i(e_i)) = -\varphi(e_i) \implies \varphi(e_i) = 0 \iff \varphi \in H_i^*.$$

We deduce $i \in K$, respectively $s_i \in W_K$. Using this together with the assumption, we get that $s_i w(C_I) \cap C_K = s_i(w(C_I) \cap C_K)$ is non-empty. We apply the induction hypothesis to the element $s_i w$, to see that J = K and $s_i w \in W_J$. Finally, since $s_i \in W_J = W_K$, we have that $s_i w \in W_I$ implies $w \in W_I$, proving the theorem.

Before proceeding with proving that the fundamental chamber lives up to its name, we want to clearly state what is meant by a fundamental domain.

Definition 2.5.6. *Let* G *be a group, acting on a topological space* X. We call a closed subset $F \subset X$ a (strict) fundamental domain, if for each $x \in F$ its orbit Orb(x) intersects F in exactly one point.

Note that, by definition of the Tits cone WC, every W-orbit of a point $\varphi \in C$ meets the fundamental chamber C in at least one point, namely φ . Thus, it suffices to proof that each W-orbit meets C in at most one point, to prove the following theorem.

Theorem 2.5.7. The fundamental chamber is a fundamental domain for the action of the Coxeter group W on its Tits cone WC, justifying its name.

Proof. Assume that $\varphi, \psi \in C$ lie in the same W-orbit, but in different parabolic subsets C_J , respectively C_K of the fundamental chamber. Since they lie in the same orbit, there is a $w \in W$ with $\varphi = w(\psi)$. Thus, the intersection $w(C_I) \cap C_K$ is non-empty and Theorem 2.5.5 implies

equality of J and K, as well as $w \in W_I$. We deduce $\varphi = w(\psi) = \psi$. Thus, every W-orbit of a point $\phi \in C$ meets the fundamental chamber C at most in ϕ , proving the theorem.

Define a set \mathcal{C} as the union of all translates of possible parabolic subsets C_{I} i. e., define \mathcal{C} by

$$\mathfrak{C} := \bigcup_{J \subset I} \bigcup_{w \in W/W_J} w(C_J).$$

We want to emphasize here that by Theorem 2.5.5 the sets of the form $w(C_1)$ in the Tits cone WC are all disjoint for different $J \subset I$ and w ranging over the coset W/W_I . Thus, the sets of C form a partition of the Tits cone. This decomposition (altough not into chambers) is a key component in the following theorem.

Theorem 2.5.8. The Tits cone WC is a convex cone, and every closed line segment in the Tits cone meets only finitely many of the sets in C.

Proof. First note that the fundamental chamber is a convex cone as the intersection of the finitely many closed halfspaces \overline{A}_i^* . This implies that the Tits cone is a cone as well. We will prove the convexity by showing that every closed segment between any two points in the Tits cone is contained in it. Furthermore, we will prove that these segments can be covered by finitely many of the sets in the above defined union C, implying latter statement.

Consider the closed segment $[\phi, \psi]$ with $\phi, \psi \in WC$ and assume the endpoints lie in different chambers. Proceed by induction on the word length $\ell(w)$. The base case $\ell(w) = 0$ reduces to $\varphi, \psi \in C$. Since C is convex and can trivially be covered by finitely many of the C_I , this case has been dealt with.

Therefore, we now assume $\ell(w) > 0$. Intersect the segment $[\varphi, \psi]$ with the fundamental chamber C, to receive two new segments $[\varphi, \xi]$ and $[\xi, \psi]$ (cf. Figure 2.2a). The first segment can be covered by finitely many of the sets in C, as it lies inside the fundamental chamber C. Thus, we need to show that we can cover the second segment $[\xi, \psi]$ by finitely many of these sets. Assume further, we have a $J \subset I$, such that $\psi \in s_i(A_i^*)$ for an $i \in J$ and $\psi \in \overline{A_i^*}$ for all $i \notin J$. Then we have that $\psi \notin C$.

Claim 1: ξ has to lie in one of the codimension-one faces H_i^* , $i \in J$.

Proof of Claim 1. Assume that ξ lies in the open halfspace A_i^* for some $i \in J$. Then every point ζ in the intersection of a neighborhood of ξ , contained in A_i^* , with the segment $[\xi, \psi]$ has to also lie in A_i^* . Clearly, $\zeta \in \overline{A_i^*}$ for $i \notin J$ holds as well, implying that $\zeta \in C$. But this is a contradiction to the decomposition of the initial segment $[\varphi, \psi]$. Thus, ξ has to lie in one of the H_i.

Using the assumptions $\psi \in s_i(A_i^*)$ and $\psi \in w(C)$, we deduce $w(C) \subset \overline{s_i(A_i^*)}$, hence by continuity of the action $w(\check{C}) \subset s_i(A_i^*)$. By Lemma 2.5.2 this is equivalent to $\ell(s_i w) < \ell(w)$ and we are set up to apply the induction hypothesis to ξ and $s_i(\psi) \in s_i w(C)$. This produces a cover of $[\xi, s_i(\psi)]$ by finitely many sets in \mathcal{C} . But since we established that ξ has to lie in H_i^* , translation by s_i gives $[s_i(\xi), s_i^2(\psi)] = [\xi, \psi]$, and thus we can cover this segment by finitely many sets as well. The result follows.

To summarize, the essence of this section is that first of all the fundamental chamber is indeed a fundamental domain of the action of a Coxeter group on its Tits cone. This was shown in Theorem 2.5.7. Furthermore, we want to emphasize that each point in the interior of the fundamental chamber has trivial stabilizer, which is a direct consequence of Theorem 2.5.5. Moreover, every point in a parabolic subset C_I of C, for J a subset of I, is stabilized by the corresponding parabolic subgroup W_I.

2.6 COVERING ACTIONS - A TOOLBOX

In this section we will assemble a set of tools, mostly coming from algebraic topology, connecting group actions to the notion of coverings. They will be somewhat essential in the proof of the main theorem in the next chapter. We start by saying what is meant by a covering.

Definition 2.6.1. Let X, Y be topological spaces. A continuous map $p: Y \to X$ is a covering map and Y a covering space for X, if every point x in X has an open neighborhood U, such that the preimage of U under p is a disjoint union of open sets U_i in Y for an index set I. Furthermore, the map p has to be a local homeomorphism, meaning the restriction of p to the U_i is a homeomorphism onto its image $p(U_i)$. Then, U is called evenly covered and |I| the degree of the covering, while the open sets U_i are called the sheets over U and the preimage of an x in X is called a fiber of x.

It turns out that restricting the action of a group on a topological space in the right way will give coverings by quotienting out the action. We make this precise in the following.

Definition 2.6.2. *Let* G *be a group, acting on a space* X. *The action is said to be* **properly** discontinuous, *if every point in* X *has a neighborhood* U *such that the set* $\{g \in G \mid g(U) \cap U \neq \emptyset\}$ *is finite.*

Definition 2.6.3. *Let* G *be a group, acting on a space* X. *The action is said to be a covering (space)* action if every point has a neighborhood U such that the set $\{g \in G \mid g(U) \cap U \neq \emptyset\}$ consists only of the neutral element.

Obviously, this last condition is even more restrictive. Yet, at least for Hausdorff spaces, there is a connection between the two. In addition to acting properly discontinuously, we have to demand the action to be free.

Lemma 2.6.4. *Let* G *be a group that acts freely and properly discontinuously on a Hausdorff space* X. Then the action of G is a covering action in the above sense.

Proof. Let X be a Hausdorff space and G be a group acting freely, properly discontinuously on X. Then for an open neighborhood U of $x \in X$, the set $M := \{g \in G \mid gU \cap U \neq \emptyset\}$ is finite. For these $g \in M$ we pick pairwise disjoint Neighborhoods V_g of gx, which is possible since X is Hausdorff and G acts freely (thus $gx \neq x$). Finally, set $V = \left(\bigcap_{g \in M} g^{-1}V_g\right) \cap U$, which is open as finite intersection of open sets and by definition a neighborhood of x.

To finally construct coverings from group actions and connect them in some sense, we need a last condition on the space the group acts on.

Definition 2.6.5. A path-connected topological space X is called simply connected, if $\pi_1(X) \cong \{1\}$.

Lemma 2.6.6. *Let* G *be a group, acting by covering action on a simply connected topological space* X. Then the quotient map $p_G : (X, x_0) \to (G \setminus X, Orb(x_0))$ is a covering map and $\pi_1(G \setminus X, Orb(x_0)) \cong G$.

Proof. Let U be an open neighborhood of $x \in X$, such that $\{g \in G \mid gU \cap U \neq \emptyset\} = \{1\}$.

Claim 1: The map p_G restricted to U is a continuous bijection onto its image $p_G(U)$.

Proof of Claim 1.

- Continuity: $V \subset G \setminus X$ is open if and only if $\mathfrak{p}_G^{-1}(V)$ is open and thus \mathfrak{p}_G is continuous.
- Surjectivity: Since orbits of points are non-empty, p_G is surjective.
- Injectivity: Assume $x, y \in X$ distinct with $p_G(x) = p_G(y)$. But then there is a non-trivial element $g \in G$, $g \neq 1_G$ with gx = y, implying $g(U) \cap U \neq \emptyset$. This is a contradiction to G acting by covering action.

Claim 2: Every point $Orb(x) \in G \setminus X$ has a neighborhood $V \subset G \setminus X$ with $\mathfrak{p}_G^{-1}(V) = \bigsqcup_{i \in I} U_i$.

Proof of Claim 2. By assumption the sets gU are all disjoint neighborhoods of $gx \in X$ for all $g \in G$. Moreover, for $V := p_G(U) \subset G \setminus X$, we have $p_G^{-1}(V) = \bigsqcup_{g \in G} gU$, proving the Claim.

Claim 3: The map $p_G|_{gU} \to V = p_G(U)$ is a homeomorphism for all $g \in G$.

Proof of Claim 3. Note that the action of G on X is by homeomorphisms and $U \subset X$ is open. Then the union $\bigsqcup_{g \in G} gU$ is open as well and since $\mathfrak{p}_G^{-1}(V) = \bigsqcup_{g \in G} gU$, the set V is open in the quotient topology of $G\setminus X$. Therefore, the map p_G restricted to gU for $g\in G$ is an open map and hence, by Claim 1 a homeomorphism.

Now all conditions in Definition 2.6.1 are satisfied, so p_G is a covering map. For the last part of the statement, note that X is simply connected, meaning that it is the universal cover of $G\setminus X$. By definition, G is the group of Deck transformations, thus $\pi_1(G\setminus X, Orb(x_0)) \cong G$.

3 THE MAIN THEOREM

Let us quickly recall the main theorem we want to prove.

Theorem. A finitely generated right-angled Coxeter group W has a finite index subgroup W' such that W' is residually finite and rationally solvable (RFRS).

For the following, we consider the Tits cone WC corresponding to W, living in \mathbb{R}^n for n=|I|. Before continuing, we want to shortly mention that the fundamental chamber C has a natural orbifold structure as the quotient WC/W. This will be covered later on in slightly greater detail. In the first section, our goal is to produce a manifold cover $C' \to C$ of the fundamental chamber. This cover will be induced by a finite index subgroup in the right-angled Coxeter group W.

3.1 CONSTRUCTION OF THE MANIFOLD COVER

Consider the abelianization W_{ab} of W, which is isomorphic to $(\mathbb{Z}/2\mathbb{Z})^n$. Now, the abelianization yields a homomorphism $\alpha: W \to W_{ab}$ to whose kernel ker α , we will turn our attention to in the following. Note that by the first homomorphism theorem, ker α has finite index in W, since

$$\left| \frac{W}{\ker \alpha} \right| = \left| \frac{\mathbb{Z}}{2\mathbb{Z}} \right|^n = 2^n < \infty.$$

Here we used the fact that W is finitely generated, whence $n = |I| = |S| < \infty$.

Furthermore, note that for each $J \subset I$ with W_J finite, we have an isomorphism between W_J and $(\mathbb{Z}/2\mathbb{Z})^{|J|}$. Thus, the restriction of α to each such subgroup $\alpha|_{W_J}$ is an injective homomorphism. We now use that in the right-angled case, the isotropy subgroups of codimension-k faces are all of this form. This can be seen, as the isotropy subgroup of a codimension-k face F is generated by the reflections in the k codimension-1 faces, whose intersection forms F. As all these codimension-1 faces meet at angle $\frac{\pi}{2}$, the generators commute paiwise. Therefore, all isotropy subgroups inject into the abelianization of W. This implies that the intersection of an isotropy subgroup with the kernel of α is trivial and consequently no isotropy group is contained in the kernel ker α . Since finite subgroups are contained in isotropy subgroups, the kernel ker α acts freely on the Tits cone WC corresponding to W.

In particular, by Theorem 2.5.5 the action of W on the interior of its Tits cone int(WC) is properly discontinuously and by Theorem 2.5.8 the Tits cone is also a convex cone, implying that it has trivial fundamental group. Having all this information, we are able to apply Lemma 2.6.6 to obtain the covering

$$int(WC) \longrightarrow \frac{int(WC)}{ker \alpha} \qquad x \mapsto Orb_{ker \alpha}(x).$$

Using the local homeomorphism property of a covering map and the fact that the Tits cone WC is a subspace of \mathbb{R}^n , we conclude that the quotient $\inf(WC)/\ker \alpha$ is indeed a manifold.

SOME ORBIFOLD THEORY 3.2

In this section, we want to elaborate more on the natural orbifold structure of the fundamental chamber C. We start by giving a formal definition of an orbifold. We break the definition down into smaller pieces, starting with local models, also called (orbifold) charts.

Definition 3.2.1. A local model is a pair (\widetilde{U}, Γ) , where $\widetilde{U} \subset \mathbb{R}^n$ is open and Γ is a finite subgroup of the group of diffeomorphisms of \widetilde{U} , denoted diffeo(\widetilde{U}), acting on \widetilde{U} . By abusing notation, we will sometimes say that the quotient $U = U_{\Gamma}$ is the local model.

Now that we defined a local structure of an orbifold, we want to translate between these local models. This is being made precise by orbifold maps.

Definition 3.2.2. An orbifold map between local models $(\widetilde{U}_i, \Gamma_i)$, $(\widetilde{U}_i, \Gamma_i)$ is a pair of maps $(\widetilde{\psi}, \varphi)$. The map $\widetilde{\psi}:\widetilde{U}_i\to\widetilde{U}_j$ is smooth and $\varphi:\Gamma_i\to\Gamma_j$ a homomorphism of groups, such that the map $\widetilde{\psi}$ is $\phi\text{-equivariant, meaning that for all }g\in\Gamma_i\text{ and all }\widetilde{x}\in\widetilde{U}_i, \widetilde{\psi}(g\widetilde{x})=\phi(g)\widetilde{\psi}(\widetilde{x})\text{ holds. Then }\widetilde{\psi}\text{ induces a}$ map $\psi: \overset{\tilde{U}_i}{/_{\Gamma_i}} \to \overset{\tilde{U}_j}{/_{\Gamma_i}}$, between the local models. When all three of these maps are injective, we call ψ a local isomorphism.

Now that we have these local definitions, we 'glue' them together, to obtain an orbifold. Recall that a topological space is paracompact, if

Definition 3.2.3. An n-dimensional (smooth) orbifold Q is a pair (X_Q, A) . The space X_Q is a paracompact Hausdorff space, called the underlying space. The set A is called an orbifold atlas, consisting of charts (U_i, ϕ_i) , indexed by some set I and satisfying the following conditions:

- the U_i form an open cover of the underlying space X_Q ,
- for each U_i there exists a local model $\widetilde{U}_{i/\Gamma_i}$ with a homeomorphism $\phi_i:U_i\to\widetilde{U}_{i/\Gamma_i}$ and
- charts have to be compatible, meaning that for $U_i \subset U_i$ the inclusion is a local isomorphism.

To sketch the connection between manifolds and orbifolds, let us mention one more thing.

Definition 3.2.4. The local group loc(x) of some x in a local model $\frac{U}{\Gamma}$ is the isotropy group of any \tilde{x} in \tilde{U} , getting projected onto x. The singular locus $\Sigma(Q)$ of an orbifold Q consists of all points in the underlying space X_O with non-trivial local group, i.e. $\Sigma(Q) = \{x \in X_O \mid loc(x) \neq \{1\}\}$.

By this definition, we see that an orbifold with empty singular locus is just a manifold. Furthermore, when thinking about an orbifold, we can just think about the underlying space and label each element in the singular locus by its local group.

Many basic examples arise by taking the quotient relative to a properly discontinuous group action on \mathbb{R}^n . We want to mention at least some examples.

Example 3.2.5.

Many orbifolds arise by passing to the quotient M/G of a properly discontinuous action of a group G on a topological space M. This is also the case for the fundamental chamber C, its natural orbifold structure arises by taking the quotient of the Tits cone of W by its action.

Another concept worth mentioning is the theory of orbifold coverings.

Definition 3.2.6. An orbifold covering $p:Q'\to Q$ is a continuous map on the underlying spaces $X_{Q'} \to X_Q$, such that for each point $x \in X_Q$ there is a local model $U = U / \Gamma$ around x and each component V_i of $\mathfrak{p}^{-1}(U)$ is homeomorphic to \widetilde{U}_{Γ_i} for a subgroup Γ_i of Γ . Furthermore, the restriction $\mathfrak{p}|_{V_i}: V_i \to U \text{ corresponds to the natural projection } \overset{\tilde{U}}{/}_{\Gamma_i} \to \overset{\tilde{U}}{/}_{\Gamma}.$

3.3 THE COFINAL COVER

In this section, we want to at least *sketch* the proof of the existence of a cofinal sequence of two-fold covers, arising by iteratively reflecting in faces. Some more results from the theory of orbifolds are needed for the whole proof. We will state and use them without proof.

The following proposition tells us, that for a right-angled Coxeter group, we are able to 'double' the fundamental chamber in one of its faces and are still able to cover the whole Tits cone WC by reflecting in the faces of the resulting chamber. By doubling, pictorially, we mean to unfold the fundamental chamber (more generally a polytope) along one of its faces, by reflecting in this face. The chamber and its double will then be the new chamber of interest.

Proposition 3.3.1. Let $C \subset \mathbb{R}^n$ be the fundamental chamber of a right-angled Coxeter group W, acting on its Tits cone WC. The orbifold fundamental group $\pi_1^{orb}(P)$ of the doubled chamber P is isomorphic to the reflection group generated by reflections in its faces. Further, it has index 2 in the orbifold fundamental group $\pi_1^{orb}(C)$ of C. This procedure can be iterated and the induced group action of $\pi_1^{orb}(P)$ by reflections in the faces of the doubled polytope P on the Tits cone WC corresponding to W satisfies the following conditions

$$g\mathring{P}\cap\mathring{P}\neq\emptyset\implies g=1\qquad\text{and}\qquad\bigcup_{g\in\pi_1^{\text{orb}}(P)}gP=WC.$$

To state the other helping lemma we will need, we first want to show that each chamber in the Tits cone can uniquely labeled by elements of its corresponding group.

Lemma 3.3.2. Let W be a Coxeter group and WC its Tits cone. The chambers of the form w(C) in the Tits cone can be labeled uniquely by elements in W.

Proof. Let v(C), w(C) be chambers in WC for $v, w \in W$, such that $v \neq w$ and w(C) = v(C). But then, by Theorem 2.5.5 we have that

$$w(C) \cap v(C) = w(C \cap w^{-1}v(C)) \neq \emptyset \implies w^{-1}v = 1 \iff w = v.$$

Thus, the chambers can be labeled in a unique way.

We proceed with a helpful result, whose proof will be sketched.

Lemma 3.3.3. Let $C \subset \mathbb{R}^n$ be the fundamental chamber of a Coxeter group W. The non-trivial labels $w_i \neq 1_W$ of the chambers, defining the polytope $P = \bigcup_{i=1}^n w_i C$, are not contained in the reflection group, generated by reflecting in its faces.

Proof. The idea is to produce a contradiction to Proposition 3.3.1. Let $w_i \neq 1_W$ be one of those labels. But then, $w_i(\mathring{P}) \cap \mathring{P} \neq \emptyset$, contradicting said proposition. \square

Using this insight, we define a graph G with vertices $V(G) := \{w(C) \mid w \in W\}$ and edges $E(G) := W \times S$. The endpoint map is given by $\delta : W \times S \to 2^{V(G)}$, $(w,s) \mapsto (w(C), ws(C))$. Thus, two vertices w(C) and v(C) have an edge, if there is an $s \in S$, such that ws = v. Then, clearly we have $wsw^{-1}w(C) = ws(C) = v(C)$. Note that the element wsw^{-1} is the only element, that flips the edge $\{w(C), ws(C)\}$. Thus, the map $W \times S \to W$, $\{w, s\} \mapsto wsw^{-1}$ defines a labeling of the edges by elements in W. We will call the combinatorial graph of G (meaning that every double edge gets collapsed) the *chamber graph* Cham(W, S) of W.

It is obvious, that this graph is isomorphic to the combinatorial Cayleygraph of the group W and we see that the Cayleygraph 'embeds' into the Tits cone WC. This will be useful to prove the next theorem.

Theorem 3.3.4. By doubling in a face of the fundamental chamber and iteratively doubling the resulting chamber, we will at some point cover every chamber in the Tits cone WC.

Proof. The proof is by induction on the word length $\ell(w)$. For $\ell(w) = 0$, the corresponding chamber is the fundamental chamber C, which is covered by itself.

(IH) Chambers with labels ν of length $\ell(\nu) = k-1$ are covered by a polytope $P = \bigcup_{i=1}^{n} w_i(C)$.

We need to show that chambers of the form w(C) with $\ell(w) = k$ can be covered by reflecting in a face of the polytope P. Using the chamber graph Cham(W, S), constructed above, we deduce that for each such w, there is a $v \in W$ of length $\ell(v) = k-1$, connected to w by an edge in Cham(W, S). This is due to the fact that the chamber graph is isomorphic to the Cayleygraph of W and the length function of W is induced by the Cayleygraph. But then, the chamber w(C)is adjacent to the chamber v(C) and the latter is contained in P by (IH). Thus, either w(C) itself is already contained in P or we reflect in the face shared by w(C) and v(C) to cover w(C) with the double P' of P. Now, continuing with the next element w of length k, we eventually double P' and repeat this for all such w. This iterative doubling process is valid by Proposition 3.3.1 and by induction every chamber g(C) for $g \in W$ can be covered.

BIBLIOGRAPHY

- [1] Ian Agol. "Criteria for virtual fibering." In: Journal of Topology (2008).
- [2] Michael W. Davis. *The Geometry and Topology of Coxeter Groups.* (*LMS-32*) -. Kassel: Princeton University Press, 2012. ISBN: 978-1-400-84594-1.
- [3] Allen Hatcher. *Algebraic topology*. Cambridge: Cambridge Univ. Press, 2002. ISBN: 0-521-79540-0.
- [4] James E. Humphreys. *Reflection Groups and Coxeter Groups -*. Cambridge: Cambridge University Press, 1992. ISBN: 978-0-521-43613-7.
- [5] Anne Thomas. *Geometric and Topological Aspects of Coxeter Groups and Buildings* -. European Mathematical Society Publishing House, 2018. ISBN: 978-3-037-19189-7.