TRINITY INTERNATIONAL COLLEGE

(Tribhuvan University Affiliated)

Lab Assignment 7: Advance Java Programming

Submitted By:	Submitted to:
Name: Dipendra Shrestha	
Program: B. Sc. (CSIT)	Aman Maharjan

Roll No: 16

Semester: seventh (7th)

Date: 5th July 2020

KATHMANDU, NEPAL 2020

1. Assume that a database named Astronomy contains the name and mass of each of the 8 planet of the solar system and its distance from the sun in a table with the schema planets (id, planet, mass, distance). Create a 2D array capable of holding all the data contained in this table. Use JDBC to populate the array from the data in the table. The 2D array should also hold the calculated value of gravitational force between each planet and the sun. This can be calculated using the data you just retrieved. Display the data in the final 2D array in a Swing JTable component with appropriate column headers.

Use Newton's Law of Universal Gravitation to calculate the gravitational force between the sun and each of the planets (one at a time):

$$F = G \frac{m_s m_p}{r^2}$$

where,

```
gravitation constant (G) = 6.67430 \times 10^{-11} m^3 kg^{-1}s^{-2}, the mass of the sun is 1.989 \times 1030 kg This can be represented in Java with the following code:
```

```
double G = 6.67430e-11;
double m_s = 1.989e+30;
```

 \Rightarrow

Program

```
package combinedastronomy;
import javax.swing.*;
import java.sql.*;
public class CombinedAstronomy extends JFrame
    public static void main(String[] args) throws Exception
        CombinedAstronomy frame = new CombinedAstronomy();
        frame.setVisible(true);
    public CombinedAstronomy() throws Exception
       String url = "jdbc:mariadb://localhost:3306/Astronomy";
       String username = "root";
       String password= "";
        Connection DriverManager.getConnection
                                             (url, username, password);
        String sql = "select mass , distance from planets";
        Statement statement = connection.createStatement();
        ResultSet resultSet = statement.executeQuery(sql);
```

```
//st Retrieving the stored value of mass and distance from Database st
        Double[] massOfPlanet = new Double[8];
       Double[] distance = new Double[8];
        int i = 0;
       while (resultSet.next())
            massOfPlanet[i] = resultSet.getDouble("mass");
            distance[i] = resultSet.getDouble("distance");
            i++;
        //***** Calculating Gravitational Force ****
        Double G = 6.67430e-11;
        Double ms = 1.989e+30;
        Double[] force = new Double[8];
        //calculating gravitational force and storing it into array.
        for (i = 0; i<force.length; i++)</pre>
        force[i] = (G*ms*massOfPlanet[i]) / (Math.pow(distance[i],2));
        //*** Send Calculated Gravitational Force to database ****
        String insertSql = "UPDATE planets SET gforce = ? WHERE id =
        PreparedStatement statement1 = connection.prepareStatement
                                                         (insertSql);
        for (i=1; i<=force.length; i++)</pre>
            statement1.setDouble(1, force[i-1]);
           statement1.setInt(2,i);
           statement1.executeUpdate();
//** Retrieving overall data of Database along with Calculated
     gravitational force in 2D Array. ****
        String selectAllSql = "select * from planets";
        Statement statement2 = connection.createStatement();
       ResultSet resultSet1 = statement2.executeQuery(selectAllSql);
       Object[][] planetDetails = new Object[8][5];
        int row =0;
       while (resultSet1.next())
           planetDetails[row][0] =resultSet1.getInt(1);
           planetDetails[row][1] = resultSet1.getString(2);
           planetDetails[row][2] = resultSet1.getDouble(3);
            planetDetails[row][3] = resultSet1.getDouble(4);
            planetDetails[row][4] = resultSet1.getDouble(5);
            row++;
        statement.close();
        connection.close();
        //***** Display Values in Table ************
        String column[] = {"ID", "Planets", "Mass", "Distance",
                           "Gravitational Force Between Plane and
```

```
Sun"};

JTable table = new JTable(planetDetails, column)
{
    public boolean isCellEditable(int row, int column)
    {
        return false;
    }
};

JScrollPane pane = new JScrollPane(table);
add(pane);

pack();
setDefaultCloseOperation(EXIT_ON_CLOSE);
}
```

Outpu 	t:							
+ Opt	ions							
← 7	\rightarrow		\neg	id	planet	mass	distance	gforce
	🥜 Edit	≩ € Copy	Delete	1	Mercury	3.3e23	57.9	1.306764474214073e40
	<i></i> €dit	≩ Copy	Delete	2	Venus	4.87e24	108.2	5.522235791612711e40
	🥜 Edit	≩ € Copy	Delete	3	Earth	5.98e24	149.6	3.5471414210622265e40
	Ø Edit	≩ Copy	Delete	4	Mars	6.42e23	227.9	1.6409180206710214e39
	🥜 Edit	≩ € Copy	Delete	5	Jupiter	1.9e27	778.3	4.163897659316688e41
	Ø Edit	≩ € Copy	Delete	6	Saturn	5.69e26	1427	3.709409901985386e40
	<i></i> € Edit	≩ € Copy	Delete	7	Uranus	8.68e25	2871	1.39795710908676e39
	<i>⋛</i> Edit	≩ € Copy	Delete	8	Neptune	1.02e26	4497.1	6.695385520686304e38
t_		Check all	With se	lecte	d: 🥜 E	dit 💤	Сору 🥥	Delete Export

ID	Planets	Mass	Distance	Gravitational Force
	Mercury	3.3E23	57.9	1.3067644742140
	Venus	4.87E24	108.2	5.5222357916127
	Earth	5.98E24	149.6	3.5471414210622
	Mars	6.42E23	227.9	1.6409180206710
	Jupiter	1.9E27	778.3	4.1638976593166
	Saturn	5.69E26	1427.0	3.7094099019853
	Uranus	8.68E25	2871.0	1.3979571090867
	Neptune	1.02E26	4497.1	6.6953855206863