INTELIGENŢĂ ARTIFICIALĂ

Sisteme inteligente

Sisteme care învață singure

- generative AI-

Laura Dioşan

Sumar

A. Scurtă introducere în Inteligența Artificială (IA)

c. Sisteme inteligente

- Sisteme care învaţă singure
 - Arbori de decizie
 - Reţele neuronale artificiale
 - kNN
 - Algoritmi evolutivi
 - Maşini cu suport vectorial
- Sisteme bazate pe reguli
- Sisteme hibride
- B. Rezolvarea problemelor prin căutare
 - Definirea problemelor de căutare
 - Strategii de căutare
 - Strategii de căutare neinformate
 - Strategii de căutare informate
 - Strategii de căutare locale (Hill Climbing, Simulated Annealing, Tabu Search, Algoritmi evolutivi, PSO, ACO)
 - Strategii de căutare adversială

Materiale de citit și legături utile

- https://www.tensorflow.org/text/tutorials/word2vec
- https://radimrehurek.com/gensim/models/word2vec.html
- https://www.ruder.io/word-embeddings-1/
- <u>https://aylien.com/blog/a-review-of-the-recent-history-of-natural-language-processing?ref=ruder.io</u>
- https://nlp.stanford.edu/~manning/ a lot of lectures about NLP

De ce reprezentari vectoriale ale intelesului unui cuvant/text?

- Permit determinarea similaritatii intre cuvinte/texte
 - fast is similar to rapid
 - tall is similar to height

Question answering:

```
➤Q: "How tall is Mt. Everest?"

Candidate A: "The official height of Mount Everest is 29029 feet"
```

Intuitia din spatele similaritatii

■ Exemplu: Ce este o Sirrus X 3.0?

The **Sirrus X 3.0** invites you to explore beyond boundaries. With confidence-inspiring tires, an upright riding position, and intuitive components, **Sirrus X 3.0** is your ticket to adventure.

□ Din context, o persoana poate ghici ca Sirrus X 3.0 este un model de bicicleta

Pentru un algoritm, intuitia e ca doua cuvinte sunt similar daca ele sunt folosite in context similare

Diferite reprezentari vectoriale pentru text

- Reprezentari rare (*sparse*):
 - Mutual-information weighted word cooccurrence matrices
- Reprezentari dense (compacte):
 - 2. Singular Value Decomposition (si Latent Semantic Analysis)
 - Neural-network-inspired models (skip-grams, CBOW)
 - 4. Altele (e.g. brown clusters)

Vectori rari vs. densi

- Vectorii → matricea de co-ocurenta a termenilor
 - lungi (length |V|= 20,000 -> 50,000)
 - rari (f multe elemente sunt 0)
- Alternativa: vectori invatati (prin AI/ML)
 - scurti (length 200-1000)
 - densi (multe elemente nu sunt 0)
- De ce vectori densi?
 - Vectorii scurti -> folositi mai usor ca si features in algoritmii de invatare (mai putini coeficienti de invatat)
 - Vectorii densi pot generaliza mai bine, captand sinonimia termenilor
 - Bike scooter
 - Car automobile
 - House apartment

Modele de predictie (invatare) a reprezentarilor

Evolutie

- Word-level
 - 2003 N-gram Neural language model (Montreal Bengio)
 - https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
 - Probability of the target word based on previous k words
 - Estimation of the probability by an ANN -> prediction of the next word in a sequence
 - 2008 multi-task model (Princeton Collobert)
 - https://ronan.collobert.com/pub/matos/2008_nlp_icml.pdf
 - Probability of MORE target words (a sequence of words)
 - Estimation of the probability by an ANN -similar to Bengio's model,
 - 2013 word2vec (Google Mikolov)
 - https://papers.nips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
 - Continous BOW model -> try to predict a word based on its context (neighbours); input = neighbour words, output = target word
 - Skip-gram model -> try to predict context (neighbours) of a word; input = target word; output = neighbour words;
 - Visualisation of embeddings https://ronxin.github.io/wevi/
 - Trained vectors https://radimrehurek.com/gensim/models/word2vec.html or https://github.com/3Top/word2vec-api#where-to-get-a-pretrained-models
- Sentence (document) level (2014 ...)
 - 2014 Paragraph embedding https://arxiv.org/abs/1405.4053
- Contextual word-vectors (Word vectors compress all contexts into a single vector) (2016 ...)
 - 2016 context2vec https://www.aclweb.org/anthology/K16-1006.pdf
 - 2017 tagLM https://arxiv.org/abs/1705.00108
 - 2017 CoVe https://papers.nips.cc/paper/2017/hash/20c86a628232a67e7bd46f76fba7ce12-Abstract.html
 - 2018 ELMo https://www.aclweb.org/anthology/N18-1202/
 - 2018 ULMFiT https://arxiv.org/abs/1801.06146
 - 2019 BERT https://arxiv.org/abs/1810.04805

Modele de predictive (invatare) a reprezentarilor

■ Modelul Word2vec

- **Skip-gram** (Mikolov et al. 2013a), **CBOW** (Mikolov et al. 2013b)
- Se invata reprezentari, numite embeddings, ca parte din procesul de predictive/generare a textului
- Se antreneaza o retea neuronala pentru prezicerea urmatorului cuvant
- Avantaje
 - □ Rapid, simplu de antrenat
 - Modele gata antrente disponibile online

Invatare supervizata fara etichetare manuala de date

- Text: "She rides a bike. He rides a scooter in park. My father drives a motorcycle. ..."
- Vocabular V = {she, ride, bike, he, scooter, park, my, father, drive, motorcycle}
- Perechi (context, cuvant)

Negative sampling

[she ride] bike	1	[she ride] he	0
[ride bike] he	1	[she ride] scooter	0
[he ride] scooter	1	[she ride] park	0
[ride scooter] park	1	[she ride] my	0
[my father] drive	1	[she ride] father	0
[father drive] motorcycle	1	[she ride] drive	0
		[ride bike] scooter	0
		[ride bike] park	0
		[father drive] she	0

Arhitecturi

		she	ride	bike	he	scooter	park	my	father	drive	motorcycle
٠	She	1	0	0	0	0	0	0	0	0	0
	Ride	0	1	0	0	0	0	0	0	0	0
	Bike	0	0	1	0	0	0	0	0	0	0

		she	ride	bike	he	scooter	park	my	father	drive	motorcycle
-	She	1	0	0	0	0	0	0	0	0	0
	Ride	0	1	0	0	0	0	0	0	0	0
	Bike	0	0	1	0	0	0	0	0	0	0

Cursul următor

A. Scurtă introducere în Inteligența Artificială (IA)

B. Sisteme inteligente

- Sisteme care învaţă singure
 - Arbori de decizie
 - Rețele neuronale artificiale transformers
 - Maşini cu suport vectorial
 - Algoritmi evolutivi
- Sisteme bazate pe reguli
- Sisteme hibride

C. Rezolvarea problemelor prin căutare

- Definirea problemelor de căutare
- Strategii de căutare
 - Strategii de căutare neinformate
 - Strategii de căutare informate
 - Strategii de căutare locale (Hill Climbing, Simulated Annealing, Tabu Search, Algoritmi evolutivi, PSO, ACO)
 - Strategii de căutare adversială

- Informaţiile prezentate au fost colectate din diferite surse de pe internet, precum şi din cursurile de inteligenţă artificială ţinute în anii anteriori de către:
 - Conf. Dr. Mihai Oltean www.cs.ubbcluj.ro/~moltean
 - Lect. Dr. Crina Groşan www.cs.ubbcluj.ro/~cgrosan
 - Prof. Dr. Horia F. Pop <u>www.cs.ubbcluj.ro/~hfpop</u>
 - Prof. Dr. Radu Ionescu https://raduionescu.herokuapp.com/