CMPE 362 Digital Image Processing

Spatial Domain Operations II: Spatial Filtering

Asst. Prof. Dr. Aslı Gençtav
Department of Computer Engineering
TED University

Spatial domain operations

$$g(x,y) = T[f(x,y)]$$

f(x, y): input image

g(x, y): output image

T: operator defined over a neighborhood of (x, y)

FIGURE 3.1

A 3×3 neighborhood about a point (x, y) in an image in the spatial domain. The neighborhood is moved from pixel to pixel in the image to generate an output image.

Spatial filtering

- Spatial filtering consists of
 - 1. a neighborhood (typically a small rectangle)
 - 2. a predefined operation
 - If the operation is linear, the filter is linear.
 - Otherwise, the filter is nonlinear.
- Uses
 - Enhance images
 - Noise reduction, resize, increase contrast, artistic effect, etc.
 - Extract information from images
 - Texture, edges, distinctive points, etc.
 - Detect patterns
 - Template matching

Linear spatial filtering

• Linear spatial filtering of an $M \times N$ image with a $m \times n$ filter is given by

$$g(x, y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x + s, y + t)$$

where m = 2a + 1 and n = 2b + 1.

input image f

	0	1	2	3	4
0	10	80	60	50	20
1	20	40	40	30	20
2	30	10	10	20	60
3	40	10	20	10	40
4	60	10	30	10	30

filter w

1	2	1
2	4	2
1	2	1

output image g

	0	1	2	3	4
0					
1		?			
2					
3					
4					

$$g(1, 1) = ?$$

Poll 1

input image f

	0	1	2	3	4
0	10	80	60	50	20
1	20	40	40	30	20
2	30	10	10	20	60
3	40	10	20	10	40
4	60	10	30	10	30

filter w

1	2	1
0	0	0
-1	-2	-1

output image g

	0	1	2	3	4
0					
1			?		
2					
3					
4					

$$g(1, 2) = ?$$

Poll 2

Linear spatial filtering Correlation vs. Convolution

Correlation:

- 1. Move the filter mask to a location
- 2. Compute the sum of products
- 3. Go to 1

Convolution:

- 1. Rotate the filter by 180 degrees (flip the filter in both dimensions: bottom to top, right to left)
- 2. Correlation

Linear spatial filtering Correlation vs. Convolution

Correlation:

- 1. Move the filter mask to a location
- 2. Compute the sum of products
- 3. Go to 1

Convolution:

- 1. Rotate the filter by 180 degrees (flip the filter in both dimensions: bottom to top, right to left)
- 2. Correlation

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \xrightarrow{\text{flip from}} \begin{bmatrix} 7 & 8 & 9 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{bmatrix} \xrightarrow{\text{flip from}} \begin{bmatrix} 9 & 8 & 7 \\ 6 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$
bottom to top
right to left

Linear spatial filtering Correlation vs. Convolution

Correlation:

$$(w \Leftrightarrow f)(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$$
 (3-34)

• Convolution:

$$(w \star f)(x, y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x - s, y - t)$$
 (3-35)

Correlation

Origin
$$f$$
 w (a) 0 0 0 1 0 0 0 0 1 2 4 2 8

Correlation result

Extended (full) correlation result

(h) 0 0 0 8 2 4 2 1 0 0 0 0

Convolution Correlation Origin w rotated 180° Origin 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 2 4 2 8 8 2 4 2 1 (i) (a) 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 (b) (j) 8 2 4 2 1 1 2 4 2 8 L Starting position alignment [←] Starting position alignment Zero padding – ·Zero padding – 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 (c) (k) 1 2 4 2 8 8 2 4 2 1 ¹ Starting position ¹ Starting position 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 (d) (1) 1 2 4 2 8 8 2 4 2 1 Position after 1 shift Position after 1 shift (e) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 (m) 1 2 4 2 8 8 2 4 2 1 Position after 3 shifts - Position after 3 shifts (f) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 (n) 1 2 4 2 8 8 2 4 2 1 Final position — Final position — **Correlation result Convolution result**

Extended (full) correlation result Extended (full) convolution result 0 0 0 8 2 4 2 1 0 0 0 0 0 0 0 1 2 4 2 8 0 0 0 0

0 8 2 4 2 1 0 0

(g)

(h)

0 1 2 4 2 8 0 0

(o)

(p)

Correlation

ı	7	- In	itia	ıl po	osit	ion	for w	Cor	rela	tio	n re	esult	Ful	ll co	orre	elati	ion	res	ult
ı	$ \overline{1} $	2	3	0	0	0	0						0	0	0	0	0	0	0
ı	4	5	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ı	7	8	9	0	0	0	0	0	9	8	7	0	0	0	9	8	7	0	0
	0	0	0	1	0	0	0	0	6	5	4	0	0	0	6	5	4	0	0
ı	0	0	0	0	0	0	0	0	3	2	1	0	0	0	3	2	1	0	0
ı	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ı	0	0	0	0	0	0	0						0	0	0	0	0	0	0
	(c)							(d)						(e)					

Convolution

$\mathbf{Rotated}\ w$	Convolution result	Full convolution result
9 8 7 0 0 0 0		0 0 0 0 0 0 0
6 5 4 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0 0
3_2_1 0 0 0 0	0 1 2 3 0	0 0 1 2 3 0 0
0 0 0 1 0 0 0	0 4 5 6 0	0 0 4 5 6 0 0
0 0 0 0 0 0 0	0 7 8 9 0	0 0 7 8 9 0 0
0 0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0 0
0 0 0 0 0 0 0		0 0 0 0 0 0 0
(f)	(g)	(h)

TABLE 3.5

Some fundamental properties of convolution and correlation. A dash means that the property does not hold.

Property	Convolution	Correlation
Commutative	$f \star g = g \star f$	_
Associative	$f \star (g \star h) = (f \star g) \star h$	_
Distributive	$f \star (g + h) = (f \star g) + (f \star h)$	$f \approx (g + h) = (f \approx g) + (f \approx h)$

Linear spatial filtering Correlation vs. Convolution

• What if the values of the filter are symmetric about its center?

Practical matters What about near the edge?

- the filter window falls off the edge of the image
- need to extrapolate
- methods:
 - clip filter (black) 000000|abcdefgh|000000 g = cv2.filter2D(f, -1, w, borderType=cv2.BORDER_CONSTANT)
 - copy edge aaaaaa|abcdefgh|hhhhhhh g = cv2.filter2D(f, -1, w, borderType=cv2. BORDER_REPLICATE)
 - reflect across edge fedcba|abcdefgh|hgfedcb g = cv2.filter2D(f, -1, w, borderType=cv2. BORDER_REFLECT)
 - reflect across edge **gfedcb**|abcdefgh|**gfedcba** g = cv2.filter2D(f, -1, w, borderType=cv2. BORDER_REFLECT_101)

Poll 4

	0	1	2	3
0	10	80	60	50
1	20	40	40	30
2	30	10	10	20
3	40	10	20	10

1	1	1
1	2	1
2	4	2
1	2	1
1	1	1

BORDER_CONSTANT BORDER_REPLICATE BORDER_REFLECT BORDER_REFLECT_101

input image f

filter w

		0	1	2	3
_	0	700	840	880	800
A	1				
	2				
	3				

		0	1	2	3
	0	600	1030	1130	970
B	1				
	2				
	3				

		_	_	_	_
	0	580	980	1050	910
C	1				
	2				
	3				

1

2

3

		0	1	2	3
D	0	320	650	690	450
	1				
	2				
	3				

Smoothing spatial filters

- Linear filters
 - Averaging filter (Box filter)
 - Gaussian filter
- Nonlinear filters
 - Median filter

Common types of noise

Salt and pepper noise:

• Impulse noise:

Gaussian noise:

Original

Impulse noise

Salt and pepper noise

Gaussian noise

Source: S. Seitz

Common types of noise

- Salt and pepper noise: random occurrences of black and white pixels
- Impulse noise: random occurrences of white pixels
- Gaussian noise:
 variations in intensity
 drawn from a Gaussian
 normal distribution

Original

Impulse noise

Salt and pepper noise

Gaussian noise

Source: S. Seitz

Gaussian noise

$$f(x,y) = \overbrace{\widehat{f}(x,y)}^{\text{Ideal Image}} + \overbrace{\eta(x,y)}^{\text{Noise process}}$$

Gaussian i.i.d. ("white") noise: $\eta(x,y) \sim \mathcal{N}(\mu,\sigma)$

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

• What values belong in the kernel *H* for the moving average example?

$$G = H \otimes F$$

Smoothing by averaging filter

box filter white = high value, black = low value

filtered

What if the filter size increases?

A Gaussian kernel gives less weight to pixels further from the center of the filter.

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h(u,v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2 + v^2}{2\sigma^2}}$$

$$\sigma = 1$$

$$h(u,v) = \frac{1}{2\pi} e^{-\frac{u^2 + v^2}{2}}$$

$$h(0,0) = \frac{1}{2\pi} e^{-\frac{0^2 + 0^2}{2}} = 0.1592$$

$$h(-1,0) = \frac{1}{2\pi} e^{-\frac{(-1)^2 + 0^2}{2}} = 0.0965$$

$$h(0,-1) = h(0,1) = h(1,0) = h(-1,0)$$

$$h(-1,-1) = \frac{1}{2\pi} e^{-\frac{(-1)^2 + (-1)^2}{2}} = 0.0585$$

$$h(-1,1) = h(1,-1) = h(1,1) = h(-1,-1)$$

Normalized to have sum 1

Averaging filter vs. Gaussian filter

- What parameters matter here?
- **Size** of kernel or mask
 - Note, Gaussian function has infinite support, but discrete filters use finite kernels

- What parameters matter here?
- **Variance** of Gaussian: determines extent of smoothing

Choosing kernel width

• Rule of thumb: set filter half-width to about 3σ

Smoothing with a Gaussian

Parameter σ is the scale/width/spread of the Gaussian kernel, and controls the amount of smoothing.

Gaussian Kernel

- Convolution with self is another Gaussian
 - So can smooth with small- σ kernel, repeat, and get same result as larger- σ kernel would have
 - Convolving two times with Gaussian kernel with std. dev. σ is same as convolving once with kernel with std. dev. $\sigma\sqrt{2}$

Gaussian Kernel

- Convolution with self is another Gaussian
 - So can smooth with small- σ kernel, repeat, and get same result as larger- σ kernel would have
 - Convolving two times with Gaussian kernel with std. dev. σ is same as convolving once with kernel with std. dev. $\sigma\sqrt{2}$
- Separable kernel
 - Factors into product of two 1D Gaussians

• Discrete example:
$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$$

Separability of Gaussian filter

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{x^{2}+y^{2}}{2\sigma^{2}}}$$

$$= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{x^{2}}{2\sigma^{2}}}\right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{y^{2}}{2\sigma^{2}}}\right)$$

The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Separability

- In some cases, filter is separable, and we can factor into two steps:
 - Convolve all rows
 - Convolve all columns

Separability example

2D convolution (center location only)

1	2	1	
2	4	2	
1	2	1	

65

The filter factors into a product of 1D filters:

1	2	1	
2	4	2	=
1	2	1	

Х	1	2	1

Perform convolution along rows:

2	3	3
3	5	5
4	4	6

	11	
8	18	
	18	

Followed by convolution along the remaining column:

(A)	65	

Slide Credit: K. Grauman

Why is separability useful?

• What is the complexity of filtering an $N \times N$ image with an $M \times M$ kernel?

• What if the kernel is separable?

Why is separability useful?

- What is the complexity of filtering an $N \times N$ image with an $M \times M$ kernel?
 - $O(N^2M^2)$

- What if the kernel is separable?
 - $O(N^2M)$

Predict outputs using correlation filtering

Input image

Smoothed

Shifted *left* by 1 pixel

\sim	•	•	1
O_1	r19	211	ıal
	-	_	

0	0	0
0	1	0
0	0	0

?

Original

100

Filtered (no change)

Ori	gi1	nal

0	0	0
0	0	1
0	0	0

Original

Shifted *left* by 1 pixel

Original

1	1	1	1
<u>Т</u>	1	1	1
9	1	1	1

?

Original

Blur (with a box filter)

Original

0	0	0	1	1	1	1
0	2	0	– 1/9	1	1	1
0	0	0	9	1	1	1

(Note that filter sums to 1)

Slide Credit: D. Lowe

0	0	0
0	2	0
0	0	0

Original

Sharpening filter:

Accentuates differences with local average

Filtering examples: sharpening

before after

Sharpening

What does blurring take away?

Let's add it back:

Unsharped Masking

- Blur the original image
- Substract the blurred one from the original one
- Add the mask to the original

$$g(x,y) = f(x,y) + k(f(x,y) - \overline{f(x,y)})$$

k = 1 unsharped masking

k > 1 highboost filtering

Unsharp Masking

original sharpened

Unsharp Masking

input image

1	2	1
0	0	0
-1	-2	-1

Sobel A

Sobel B

1 vertical edge (absolute value)

2 horizontal edge (absolute value)

Other filters

1	0	-1
2	0	-2
1	0	-1

Sobel B

vertical edge (absolute value)

Other filters

1	2	1
0	0	0
-1	-2	-1

Sobel

horizontal edge (absolute value)

Nonlinear Filters

Median filter

Median filter

 A median filter operates over a window by selecting the median intensity in the window

Is median filtering linear?

	0	1	2	3
0	10	80	60	50
1	20	40	40	30
2	30	10	10	20
3	40	10	20	10

3x3 median filter

	0	1	2	3
0				
1				
2		?		
3				

input image f

output image g

$$g(2, 1) = ?$$

Median filter

Plots of a row of the image

Median filter

- What advantage does median filtering have over Gaussian filtering?
 - Robustness to outliers
 - Median filter is edge preserving

filters have width 5:

Slide Credit: K. Grauman

Averaging filter vs. Median filter

a b c

FIGURE 3.35 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with a 3×3 averaging mask. (c) Noise reduction with a 3×3 median filter. (Original image courtesy of Mr. Joseph E. Pascente, Lixi, Inc.)

Gaussian filter vs. Median filter

Isolated clusters of pixels that are light or dark with respect to their neighbors, and whose area is less than $m^2/2$ (one-half the filter area), are forced by an $m \times m$ median filter to have the value of the median intensity of the pixels in the neighborhood.

Week 04 – Hands on activity

 Prepare and submit a Jupyter Notebook file containing the code and the results for the following Task

Task

- Read a colored image of your choice.
- Convert it into a gray-scale image and display the result.
- Filter the gray-scale image using each of the following filters.

$$\begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

- Display the result using a colormap other than gray.
- Display the absolute value of the result using a colormap that you choose.