INTRODUCTION TO DATA SCIENCE

JOHN P DICKERSON

Lecture #4 – 09/09/2021 Lecture #5 – 09/14/2021

CMSC320 Tuesdays & Thursdays 5:00pm - 6:15pm COMPUTER SCIENCE
UNIVERSITY OF MARYLAND

ANNOUNCEMENTS

Register on Piazza: piazza.com/umd/fall2021/cmsc320

- XXX have registered already
- Very few have not registered yet

If you were on Piazza, you'd know ...

- Project 1 will be out shortly. (Worth 10% of grade, as are each of the four projects.)
- Link will be on course website @ cmsc320.github.io

We've also linked some reading for the week!

Quizzes are generally due on Tuesdays at noon; on ELMS now.

THE DATA LIFECYCLE

NEXT FEW CLASSES

1. NumPy: Python Library for Manipulating nD Arrays

Multidimensional Arrays, and a variety of operations including Linear Algebra

2. Pandas: Python Library for Manipulating Tabular Data

Series, Tables (also called **DataFrames**)
Many operations to manipulate and combine tables/series

3. Relational Databases

Tables/Relations, and SQL (similar to Pandas operations)

4. Apache Spark

Sets of objects or key-value pairs MapReduce and SQL-like operations

NEXT FEW CLASSES

NumPy: Python Library for Manipulating nD Arrays Multidimensional Arrays, and a variety of operations including Linear Algebra

2. Pandas: Python Library for Manipulating Tabular Data

Series, Tables (also called **DataFrames**)
Many operations to manipulate and combine tables/series

3. Relational Databases

Tables/Relations, and SQL (similar to Pandas operations)

4. Apache Spark

Sets of objects or key-value pairs MapReduce and SQL-like operations

NUMERIC & SCIENTIFIC APPLICATIONS

Number of third-party packages available for numerical and scientific computing These include:

- NumPy/SciPy numerical and scientific function libraries.
- numba Python compiler that support JIT compilation.
- ALGLIB numerical analysis library.
- pandas high-performance data structures and data analysis tools.
- pyGSL Python interface for GNU Scientific Library.
- ScientificPython collection of scientific computing modules.

NUMPY AND FRIENDS

By far, the most commonly used packages are those in the NumPy stack. These packages include:

- NumPy: similar functionality as Matlab
- SciPy: integrates many other packages like NumPy
- Matplotlib & Seaborn plotting libraries
- iPython via Jupyter interactive computing
- Pandas data analysis library
- SymPy symbolic computation library

THE NUMPY STACK

NUMPY

Among other things, NumPy contains:

- A powerful n-dimensional array object.
- Sophisticated (broadcasting/universal) functions.
- Tools for integrating C/C++ and Fortran code.
- Useful linear algebra, Fourier transform, and random number capabilities, etc.

Besides its obvious scientific uses, NumPy can also be used as an efficient multidimensional container of generic data.

NUMPY

ndarray object: an *n*-dimensional array of homogeneous data types, with many operations being performed in compiled code for performance

Several important differences between NumPy arrays and the standard Python sequences:

- NumPy arrays have a fixed size. Modifying the size means creating a new array.
- NumPy arrays must be of the same data type, but this can include Python objects may not get performance benefits
- More efficient mathematical operations than built-in sequence types.

NUMPY DATATYPES

Wider variety of data types than are built-in to the Python language by default.

Defined by the numpy.dtype class and include:

- intc (same as a C integer) and intp (used for indexing)
- int8, int16, int32, int64
- uint8, uint16, uint32, uint64
- float16, float32, float64
- complex64, complex128
- bool_, int_, float_, complex_ are shorthand for defaults.

These can be used as functions to cast literals or sequence types, as well as arguments to NumPy functions that accept the dtype keyword argument.

NUMPY DATATYPES

```
>>> import numpy as np
>>> x = np.float32(1.0)
>>> x
1.0
>>> y = np.int_([1,2,4])
>>> y
array([1, 2, 4])
>>> z = np.arange(3, dtype=np.uint8)
>>> z
array([0, 1, 2], dtype=uint8)
>>> z.dtype
dtype('uint8')
```

There are a couple of mechanisms for creating arrays in NumPy:

- Conversion from other Python structures (e.g., lists, tuples)
 - Any sequence-like data can be mapped to a ndarray
- Built-in NumPy array creation (e.g., arange, ones, zeros, etc.)
 - Create arrays with all zeros, all ones, increasing numbers from 0 to 1 etc.
- Reading arrays from disk, either from standard or custom formats (e.g., reading in from a CSV file)

In general, any numerical data that is stored in an array-like container can be converted to an ndarray through use of the array() function. The most obvious examples are sequence types like lists and tuples.

```
>>> x = np.array([2,3,1,0])

>>> x = np.array([2, 3, 1, 0])

>>> x = np.array([[1,2.0],[0,0],(1+1j,3.)])

>>> x = np.array([[ 1.+0.j, 2.+0.j], [ 0.+0.j, 0.+0.j], [ 1.+1.j, 3.+0.j]])
```

Creating arrays from scratch in NumPy:

zeros (shape) – creates an array filled with 0 values with the specified shape. The
default dtype is float64.

```
>>> np.zeros((2, 3))
array([[ 0., 0., 0.], [ 0., 0., 0.]])
```

- ones (shape) creates an array filled with 1 values.
- arange() like Python's built-in range

```
>>> np.arange(10)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.arange(2, 10, dtype=np.float)
array([ 2., 3., 4., 5., 6., 7., 8., 9.])
>>> np.arange(2, 3, 0.2)
array([ 2., 2.2, 2.4, 2.6, 2.8])
```

linspace()— creates arrays with a specified number of elements, and spaced equally between the specified beginning and end values.

```
>>> np.linspace(1., 4., 6)
array([ 1. , 1.6, 2.2, 2.8, 3.4, 4. ])
random.random(snape) - creates arrays with random moats over the interval
[0,1).
```

Printing an array can be done with the print

- statement (Python 2)
- function (Python 3)

```
>>> import numpy as np
>>> a = np.arange(3)
>>> print(a)
[0 \ 1 \ 2]
>>> a
array([0, 1, 2])
\rightarrow \rightarrow b = np.arange(9).reshape(3,3)
>>> print(b)
[[0 \ 1 \ 2]]
 [3 4 5]
 [6 7 8]]
>>> C =
np.arange (8).reshape (2,2,2)
>>> print(c)
[[[0 1]
  [2 3]]
 [[4 5]
```

INDEXING

Single-dimension indexing is accomplished as usual.

```
>>> x = np.arange(10)
>>> x[2]
2
>>> x[-2]
8
```

Multi-dimensional arrays support multi-dimensional indexing.

```
>>> x.shape = (2,5) # now x is 2-dimensional
>>> x[1,3]
8
>>> x[1,-1]
```

INDEXING

Using fewer dimensions to index will result in a subarray:

```
>>> x = np.arange(10)
>>> x.shape = (2,5)
>>> x[0]
array([0, 1, 2, 3, 4])
```

This means that x[i, j] = x[i][j] but the second method is less efficient.

INDEXING

Slicing is possible just as it is for typical Python sequences:

```
>>> x = np.arange(10)
>>> x[2:5]
array([2, 3, 4])
>>> x[:-7]
array([0, 1, 2])
>>> x[1:7:2]
array([1, 3, 5])
>>> y = np.arange(35).reshape(5,7)
>>> y[1:5:2,::3]
array([[ 7, 10, 13], [21, 24, 27]])
```

Basic operations apply element-wise. The result is a new array with the resultant

elements.

```
>>> a = np.arange(5)
\rightarrow \rightarrow b = np.arange(5)
>>> a+b
array([0, 2, 4, 6, 8])
>>> a-b
array([0, 0, 0, 0, 0])
>>> a**2
array([ 0, 1, 4, 9, 16])
>>> a>3
array([False, False, False, False, True], dtype=bool)
>>> 10*np.sin(a)
array([ 0., 8.41470985, 9.09297427, 1.41120008, -
7.568024951)
>>> a*b
array([ 0, 1, 4, 9, 16])
```

Since multiplication is done element-wise, you need to specifically perform a dot product to perform matrix multiplication.

```
\rightarrow \rightarrow a = np.zeros(4).reshape(2,2)
>>> a
array([[ 0., 0.],
     [ 0., 0.]])
>>> a[0,0] = 1
\rightarrow \rightarrow a[1,1] = 1
\rightarrow \rightarrow b = np.arange(4).reshape(2,2)
>>> b
array([[0, 1],
        [2, 3]])
>>> a*b
array([[ 0., 0.],
      [ 0., 3.]])
>>> np.dot(a,b)
array([[ 0., 1.],
```

There are also some built-in methods of ndarray objects.

Universal functions which may also be applied include exp, sqrt, add, sin, cos, etc.

```
\rightarrow \rightarrow a = np.random.random((2,3))
>>> a
array([[ 0.68166391, 0.98943098,
0.693615821,
        [ 0.78888081, 0.62197125,
0.40517936]])
>>> a.sum()
4.1807421388722164
>>> a.min()
0.4051793610379143
>>> a.max(axis=0)
array([ 0.78888081, 0.98943098,
0.69361582])
>>> a.min(axis=1)
array([ 0.68166391, 0.40517936])
```

An array shape can be manipulated by a number of methods.

resize(size) will modify an array in place.

reshape(size) will return a copy of the array with a new shape.

```
np.floor(10*np.random.random((3,4)))
>>> print(a)
 [ 7. 5. 9. 7.]
 [ 8. 2. 7. 5.]]
>>> a.shape
(3, 4)
>>> a.ravel()
array([ 9., 8., 7., 9., 7., 5., 9.,
7., 8., 2., 7., 5.])
>>> a.shape = (6,2)
>>> print(a)
[[ 9. 8.]
 [ 7. 9.]
 [ 7. 5.]
 [ 8. 2.]
 [ 7. 5.]]
>>> a.transpose()
array([[ 9., 7., 7., 9., 8., 7.],
```

LINEAR ALGEBRA

One of the most common reasons for using the NumPy package is its linear algebra module.

It's like Matlab, but free!

```
>>> from numpy import *
>>> from numpy.linalg import *
>>> a = array([[1.0, 2.0],
              [3.0, 4.0]])
>>> print(a)
>>> a.transpose()
array([[ 1., 3.],
      [ 2., 4.]])
>>> inv(a) # inverse
array([[-2., 1.],
  [1.5, -0.5]
```

```
>>> u = eye(2) \# unit 2x2 matrix; "eye" represents "I"
>>> u
array([[ 1., 0.],
      [ 0., 1.]])
>>> j = array([[0.0, -1.0], [1.0, 0.0]])
>>> dot(j, j) # matrix product
array([[-1., 0.],
       [0., -1.]]
>>> trace(u) # trace (sum of elements on diagonal)
2.0
>>> y = array([[5.], [7.]])
>>> solve(a, y) # solve linear matrix equation
array([-3.],
>>> eig(j) # get eigenvalues/eigenvectors of matrix
(array([ 0.+1.j, 0.-1.j]),
 array([[ 0.70710678+0.j, 0.70710678+0.j],
        [0.00000000-0.70710678],
0.00000000+0.70710678
```

SCIPY?

In its own words:

SciPy is a collection of mathematical algorithms and convenience functions built on the NumPy extension of Python. It adds significant power to the interactive Python session by providing the user with high-level commands and classes for manipulating and visualizing data.

Basically, SciPy contains various tools and functions for solving common problems in scientific computing.

SCIPY

SciPy gives you access to a ton of specialized mathematical functionality.

Just know it exists. We won't use it much in this class.

Some functionality:

- Special mathematical functions (scipy.special) -- elliptic, bessel, etc.
- Integration (scipy.integrate)
- Optimization (scipy.optimize)
- Interpolation (scipy.interpolate)
- Fourier Transforms (scipy.fftpack)
- Signal Processing (scipy.signal)
- Linear Algebra (scipy.linalg)
- Compressed Sparse Graph Routines (scipy.sparse.csgraph)
- Spatial data structures and algorithms (scipy.spatial)
- Statistics (scipy.stats)
- Multidimensional image processing (scipy.ndimage)
- Data IO (scipy.io) overlaps with pandas, covers some other formats

ONE SCIPY EXAMPLE

We can't possibly tour all of the SciPy library and, even if we did, it might be a little boring.

 Often, you'll be able to find higher-level modules that will work around your need to directly call low-level SciPy functions

Say you want to compute an integral:

$$\int_{a}^{b} \sin x \, dx$$

SCIPY.INTEGRATE

We have a function object -np.sin defines the sin function for us.

We can compute the definite integral from x = 0 to $x = \pi$ using the quad function.

```
>>> res = scipy.integrate.quad(np.sin, 0, np.pi)
>>> print(res)
(2.0, 2.220446049250313e-14) # 2 with a very small error
margin!
>>> res = scipy.integrate.quad(np.sin, -np.inf, +np.inf)
>>> print(res)
(0.0, 0.0) # Integral does not converge
```

SCIPY.INTEGRATE

Let's say that we don't have a function object, we only have some (x,y) samples that "define" our function.

We can estimate the integral using the trapezoidal rule.

```
>>> sample x = np.linspace(0, np.pi, 1000)
>>> sample y = np.sin(sample x) # Creating 1,000 samples
>>> result = scipy.integrate.trapz(sample y, sample x)
>>> print(result)
1.99999835177
>>> sample x = np.linspace(0, np.pi, 1000000)
>>> sample y = np.sin(sample x) # Creating 1,000,000
samples
>>> result = scipy.integrate.trapz(sample y, sample x)
>>> print(result)
2.0
```

WRAP UP: FIRST PART

Shift thinking from imperative coding to operations on datasets

Numpy: A low-level abstraction that gives us really fast multi-dimensional arrays

Next class:

Pandas: Higher-level tabular abstraction and operations to manipulate and combine tables

Reading Homework focuses on Pandas and SQL