4. Matching Networks for One Shot Learning

논문: https://arxiv.org/pdf/1606.04080.pdf

유약

- 거리기반 함수를 이용해 support data와 batch data(= query data)간의 유사성을 판단하는 one-shot learning
 Meta Learning에 Episodic training을 사용하여 일반화를 잘 할 수 있도록 학습하는 Meta learner를 만듦
- 모델 구조/손실 계산은 constraive learning과 비슷

풀고자하는 문제

- M-way N-shot learning
 - 🌶 M개의 class와 N개의 support data가 주어졌을 때 batch data(=query data)가 M개의 범주중 어디에 속하는가를 학습하는 문제
 - ex) 5개의 class가 주어지고 support data가 1개씩 주어지면, 5-way 1-shot learning
 - 일반적으로 사용되는 M과 N 값
 - M:5 ~ 25 N:1 ~ 5
 - 일반적인 문제해결 방식
 - Model-based

 - * 학습한 Support data를 메모리에 저장한 뒤 batch data와 함께 모델 연산에 사용해 모델이 정답을 예측하는 기법
 * Metric-based (현 시점까지 리뷰한 논문들이 여기에 해당됨)
 * M*N개의 support data의 feature vector와 batch data를 거리계산 함수(코사인 유사도, 유클리드 거리)로 가장 근접 한 class를 정답으로 선택
 - 모델은 다른 class의 feature vector를 잘 떨어드릴수있게 일반화하도록 학습
 - Optimization-based
 - M*N개의 support data로 모델이 학습을 해도 충분할수 있도록 모델의 파라미터 초기값을 최적화 하는 기법

Meta learning

	Model-based	Metric-based	Optimization-based
Key Idea	RNN; memory	Metric learning	Gradient Descent
How $P_{ heta}(y \mathbf{x})$ is modeled?	$f_{ heta}(\mathbf{x},S)$	$\sum_{(\mathbf{x}_i,y_i)\in S} k_{ heta}(\mathbf{x},\mathbf{x}_i)y_i$ (*)	$P_{g_{\phi}(\theta,S^L)}(y \mathbf{x})$

- Episodic training
 - M-way N-shot learning의 테스트 데이터와 동일한 학습 데이터 구성을 맞추기 위해 논문이 제안한 기법
 - 데이터 구성
 - Episode 단위로 support data(M*N)와 batch data(B)가 주어짐
 - data는 superviesed learning과 동일하게 (x,y) 구성
 - Loss 산출
 - metric based meta learning의 경우 batch data와 support data간의 거리차를 Loss로 사용

모델 및 학습

Figure 1: Matching Networks architecture

- 모델 (그림 1)
 - (그님 I)
 g, f 함수 : Task에 따라 supervised learning에서 사용하는 일반적인 모델
 이미지 분류 : EfficientNet, ResNet
 자연어 분류 : BERT
 g와 f는 파라미터 공유를 해도되고 따로 학습시켜도됨
 논문에서는 모델 파라미터 공유

 - 모델은 attention machanism a를 사용해서 거리차이를 계산.

$$\hat{y} = \sum_{i=1}^{\kappa} a(\hat{x}, x_i) y_i$$

• 논문은 attention kernel로 cosine similarity를 사용함 (LSTM, BERT의 Attention과 다름)
$$a(\hat{x},x_i)=e^{c(f(\hat{x}),g(x_i))}/\sum_{j=1}^k e^{c(f(\hat{x}),g(x_j))}$$

Episode training (Meta strategy)

Meta-learning = Learning to learn

$$\theta = \arg\max_{\theta} E_{L \sim T} \left[E_{S \sim L, B \sim L} \left[\sum_{(x,y) \in B} \log P_{\theta} \left(y | x, S \right) \right] \right]$$

- 학습 (위 그림과 식)
 - 1. episode 마다 전체 데이터 에서 data 를 random sampling random sampling은 class 기준으로 샘플링
 - 2. data 을 support data 와 batch data 로 분리 뽑힌 class의 data에 대해서 random sampling

 - 3. 모델에 오마를 입력으로 의 정답을 예측 4. 예측값을 토대로 손실 계산 및 모델의 파라미터 업데이트 5. 지정한 episode 만큼 1~4 반복

Support set (S)

$$\vec{h}_i, \vec{c}_i = \text{LSTM}(g'(x_i), \vec{h}_{i-1}, \vec{c}_{i-1})$$

$$\overline{h}_i, \overline{c}_i = LSTM(g'(x_i), \overline{h}_{i+1}, \overline{c}_{i+1})$$

$$g(x_i, S) = \vec{h}_i + \overleftarrow{h}_i + g'(x_i)$$

Full Context Embedding

- Support data가 2개 이상인 경우((N>=2) shot learning)와 같은 복잡한 문제에 적용할 수 있는 제안 기법 같은 class끼리 비슷한 결과값이 나올 수 있도록 bidirection-LSTM 결과 값을 support data의 feature vector로 사용 batch data의 feature vector와 support data의 feature vector로 Attention machanism이 적용된 LSTM로 연산한 뒤 거리계산함수를 적용하는 방안을 제안

실험

- 데이터셋에 전체 class을 학습/테스트로 분리 모델은 테스트 셋의 class를 학습하지 않음 실험 결과에 fine-tuning은 최적의 성능을 낼 수있도록 하이퍼퍼라미터를 튜닝한 것이라고 명시되었으나, 상세 튜닝값은 공개하지 않음
- 실험 종류

 - > ... Ominiglot 데이터셋으로 기존 기법과 성능 비교 (표 1) minilmageNet 데이터셋으로 기존 기법과 성능 비교 + Full Context Embedding이 의미있는가? (표 2, 3)
 - Penn Treebank (NLP 데이터)로 제안 기법 성능 확인 (표 4)

Model	Matching Fn	Fine Tune	5-way Acc 1-shot 5-shot	20-way Acc 1-shot 5-shot
PIXELS	Cosine	N	41.7% 63.2%	26.7% 42.6%
BASELINE CLASSIFIER	Cosine	N	80.0% 95.0%	69.5% 89.1%
BASELINE CLASSIFIER	Cosine	Y	82.3% 98.4%	70.6% 92.0%
BASELINE CLASSIFIER	Softmax	Y	86.0% 97.6%	72.9% 92.3%
MANN (No Conv) [21]	Cosine	N	82.8% 94.9%	
CONVOLUTIONAL SIAMESE NET [11]	Cosine	N	96.7% 98.4%	88.0% 96.5%
CONVOLUTIONAL SIAMESE NET [11]	Cosine	Y	97.3% 98.4%	88.1% 97.0%
MATCHING NETS (OURS)	Cosine	N	98.1% 98.9%	93.8% 98.5%
MATCHING NETS (OURS)	Cosine	Y	97.9% 98.7%	93.5% 98.7 %

Table 1: Results on the Omniglot dataset.

Table 2: Results on miniImageNet.

Model	Matching Fn	Fine Tune	5-way Acc 1-shot 5-shot	
PIXELS	Cosine	N	23.0% 26.6%	
BASELINE CLASSIFIER	Cosine	N	36.6% 46.0%	
BASELINE CLASSIFIER	Cosine	Y	36.2% 52.2%	
BASELINE CLASSIFIER	Softmax	Y	38.4% 51.2%	
MATCHING NETS (OURS)	Cosine	N	41.2% 56.2%	
MATCHING NETS (OURS)	Cosine	Y	42.4% 58.0%	
MATCHING NETS (OURS)	Cosine (FCE)	N	44.2% 57.0%	
MATCHING NETS (OURS)	Cosine (FCE)	Y	46.6% 60.0%	

Table 3: Results on full ImageNet on rand and dogs one-shot tasks. Note that $\neq L_{rand}$ and $\neq L_{dogs}$ are sets of classes which are seen during training, but are provided for completeness.

Model	Matching Fn	Fine Tune	ImageNet 5-way 1-shot Acc			
Wodel			L_{rand}	$\neq L_{rand}$	L_{dogs}	$\neq L_{dogs}$
PIXELS	Cosine	N	42.0%	42.8%	41.4%	43.0%
INCEPTION CLASSIFIER	Cosine	N	87.6%	92.6%	59.8%	90.0%
MATCHING NETS (OURS)	Cosine (FCE)	N	93.2%	97.0%	58.8%	96.4%
INCEPTION ORACLE	Softmax (Full)	Y (Full)	$\approx 99\%$	$\approx 99\%$	$\approx 99\%$	$\approx 99\%$

Model	5 way accuracy			
Model	1-shot	2-shot	3-shot	
Matching Nets	32.4%	36.1%	38.2%	
Oracle LSTM-LM	(72.8%)	-	-	