ELEC 341 – Graded Assignments

Assignment A6 Proportional Control

100 Marks

Required Files

Available on Canvas

e341-a6.pdf

a6Submit.p

e341-APE.pdf

Assignment description (this document)

Grading script (LATEST version)

Instructions for submitting graded work (for reference)

Topics

Open-Loop Gain

root locus & ultimate gain

Closed-Loop Gain

proportional control

Tuned Response

· closed-loop metrics & RCGs

Parameter	Value	Physical Units
σ_1	#A x -1	rad/s
σ_2	#B x -2	rad/s
ω_2	#C x 2	rad/s
σ_3	#D x -3	rad/s
σ_4	#E x -5	rad/s
σ_5	#F x -12	rad/s
K _p	#A ⁻¹ x 3	m/V
K _s	#B ⁻¹ x 5	V/m

A proportional controller **K** controls a plant **Gp** with a sensor **Hs**, as shown in **Figure 1**.

Gp and **Hs** have the Open-Loop characteristics shown in **Figure 2**.

 $\mathbf{K_p}$ is the dc gain of the plant $\mathbf{G_p}$, and $\mathbf{K_s}$ is the dc gain of the sensor $\mathbf{H_s}$.

Find feedback gain K_h.

Find forward path gain G: $G = y_a/x_1$ Find feedback path gain H: $H = y_m/y_a$

Find ultimate gain K_u.

1. 20 mark(s) Open-Loop TF

Q1.Kh (m/V) Scalar
 Q1.G (m/V) LTI
 Q1.H (m/m) LTI
 Q1.Ku (V/m) Scalar

COW: Use **pzmap()** or **rla()** to check your poles & zeros.

Set the gain to half the ultimate gain: $K = K_u/2$. Find the closed-loop transfer function: $G_{cl} = y_a/y_d$

2. 10 mark(s) Closed-Loop TF

• Q2.Gcl (pure) LT

Get the step response of the closed-loop system.

Find rise-time T_r , peak-time T_p , and settle-time T_s .

Find final value \mathbf{y}_{f} , peak value \mathbf{y}_{p} , and steady-state error \mathbf{E}_{ss} .

Find percentage over-shoot, **OS**_u and **OS**_v.

There is no such thing as **under-shoot**. If a system does not overshoot, then: **OS = 0**.

3. 20 mark(s) Step Response

 Q3.Tr 	(s)	Scalar
 Q3.Tp 	(s)	Scalar
 Q3.Ts 	(s)	Scalar
 Q3.yf 	(m)	Scalar
 Q3.yp 	(m)	Scalar
 Q3.Ess 	(%)	Scalar
 Q3.OSu 	(%)	Scalar
 Q3.OSy 	(%)	Scalar

COW: Are these values reasonable for proportional control ???

For what type of practical system would this be an acceptable response ???

RCG: $OS_v = 20\%$ (no more, no less)

Find the gain **K** to meet the above RCG for a **Unit Step** input.

Find the resulting settle time T_s and steady-state error E_{ss} .

4. 25 mark(s) Tuned Gain #1

• Q4.K	(V/m)	Scalar
 Q4.Ts 	(s)	Scalar
 Q4.Ess 	(%)	Scalar

RCG: $T_p = 90\%$ (of T_p from Q3)

Find the gain **K** to meet the above RCG for a **Unit Step** input.

Find the resulting settle time T_s and steady-state error E_{ss} .

5. 25 mark(s) Tuned Gain #2

 Q5.K 	(V/m)	Scalar
 Q5.Ts 	(s)	Scalar
 Q5.Ess 	(%)	Scalar

COW: If you had to satisfy both RCGs simultaneously, how could you do that ???