Cuadro 1: Comparativa: objetivo, hiperparámetros y equivalentes GPU (cuML / XGBoost).

Regresor	Objetivo $J(\beta, b)$ (con b no regularizado)	Hiperparámetros clave	Implementación en RAPIDS
LinearRegression (OLS)	$J = \frac{1}{2n} \left\ y - X\beta - b1 \right\ _2^2$	fit_intercept	cuML LinearRegression
Ridge	$J = rac{ au^e}{2n} \left\ y - Xeta - b 1 ight\ _2^2 \ + \ \lambda \left\ eta ight\ _2^2$	$\texttt{alpha} \; (\equiv \lambda), \texttt{fit_intercept}$	cuML Ridge
Lasso	$J = \frac{1}{2n} \left\ y - X\beta - b1 \right\ _{2}^{2} + \lambda \ \beta\ _{1}$	$\texttt{alpha}\;(\equiv \lambda),\texttt{max_iter},\texttt{tol},\texttt{fit_intercept}$	cuML Lasso
ElasticNet	$J = \frac{1}{2n} \ y - X\beta - b1 \ _{2}^{2}$ $J = \frac{1}{2n} \ y - X\beta - b1 \ _{2}^{2} + \lambda \ \beta\ _{2}^{2}$ $J = \frac{1}{2n} \ y - X\beta - b1 \ _{2}^{2} + \lambda \ \beta\ _{1}$ $J = \frac{1}{2n} \ y - X\beta - b1 \ _{2}^{2} + \lambda ((1 - \rho) \ \beta\ _{2}^{2} + \rho \ \beta\ _{1}), \ \rho \in [0, 1]$	$\texttt{alpha} \; (\equiv \lambda), \texttt{l1_ratio} \; (\equiv \rho), \texttt{max_iter}, \texttt{tol}, \\ \texttt{fit_intercept}$	${ m cuML}$ ElasticNet
KernelRidge (KRR)	$J(f) = \frac{1}{2n} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda f _{\mathcal{H}}^2, \text{con } f \in \mathcal{H}_k \text{ y } f(\cdot) = \sum_{i} \alpha_i k(x_i, \cdot)$	$\label{eq:alpha} \texttt{alpha} \; (\equiv \lambda), \; \texttt{kernel} \; (\texttt{rbf/linear/poly}), \; \texttt{gamma}, \\ \texttt{degree}, \; \texttt{coef0}$	${f cuML}$ KernelRidge
$\mathbf{SGDRegressor}$	$J = \frac{1}{2n} \sum_{i=1}^{n} (y_i - x_i^{\top} \beta - b)^2 + \lambda \Omega(\beta), \ \Omega \in \{ \ \cdot \ _1, \ \cdot \ _2 \}$ $\max_{\theta, \sigma^2} \log p(y X, \theta, \sigma^2) = -\frac{1}{2} y^{\top} (K_{\theta} + \sigma^2 I)^{-1} y - \frac{1}{2} \log K_{\theta} + \sigma^2 I - \frac{n}{2} \log(2\pi)$	loss, alpha ($\equiv \lambda$), penalty (L1/L2/EN), learning_rate, max_iter, tol	cuML SGD
Gaussian Process Regressor	$\max_{\theta, \sigma^2} \log p(y X, \theta, \sigma^2) = -\frac{1}{2} y^{\top} (K_{\theta} + \sigma^2 I)^{-1} y - \frac{1}{2} \log K_{\theta} + \sigma^2 I - \frac{n}{2} \log(2\pi)$	kernel $(k_{ heta})$, alpha $(\equiv \sigma^2)$, n_restarts_optimizer	${f cuML}$ GaussianProcessRegressor
SVR (ε -insensitive)	$\min_{w,b,\xi,\xi^*} \frac{1}{2} \ w\ _2^2 + C \sum_{i=1}^n (\xi_i + \xi_i^*) \text{ s.a. } \begin{cases} y_i - \langle w, \phi(x_i) \rangle - b \le \varepsilon + \xi_i \\ \langle w, \phi(x_i) \rangle + b - y_i \le \varepsilon + \xi_i^* \\ \xi_i, \xi_i^* \ge 0 \end{cases}$	C, epsilon, kernel, gamma, degree, coef0	cuML SVR
${\bf Random Forest Regressor}$	En cada nodo $S \to \{S_L, S_R\}$: $\max_s \Delta(s) = \operatorname{Var}(S) - \frac{ S_L }{ S } \operatorname{Var}(S_L) - \frac{ S_R }{ S } \operatorname{Var}(S_R)$ (reducción MSE, promediado en T árboles)	<pre>n_estimators, max_depth, max_features, min_samples_leaf, bootstrap</pre>	${f cuML}$ RandomForestRegressor
${\bf Gradient Boosting Regressor}$	$\min_{F} \sum_{i=1}^{n} \ell(y_i, F(x_i)), F_m = F_{m-1} + \nu h_m, h_m \text{ ajusta residuos } -\nabla_F \ell$	learning_rate $(\nu), {\tt n_estimators}, {\tt max_depth}, {\tt subsample}$	XGBoost Regressor (tree_method=gpu_hist)