7. Proposes of the Riemann Integral

Theorem 35 let J. [a,5] - IR le R-integrable.

If [c,d] < [a,5] then f is R integrable on [c,d].

Proof Let 8>0. Then there is a PCP with U(J,P)-L(J,P) < E.

If we let $P' = P \cup \{c,d\} = \{x_0,x_1,...,x_n = c,x_n,...,x_n\}$ then $U(J,P') - L(J,P') \leq U(J,P) - L(J,P) < \epsilon$

Now take $P'' = \{ x_k, x_{kn}, \dots, x_{nrr} \}$, which is a partition of [c, d] with $u(f, P'') - L(f, P'') = \sum_{i=1}^{knr} (M_i - m_i) \Delta x_i$

 $\leq \sum_{i=1}^{n} (M_{i} - M_{i}) \Delta \times \epsilon$

= U(J,P1)- L(J,P1) < c

The fix R-mayoulde our [c, 1].

Theorem 36 Lt J: [a,5] > R be R-integrable over [a,c] at [c,6]

where access. Then of is IR-newgroble over I. Sland

$$\int_{a}^{b} J(x) dx = \int_{a}^{c} J(x) dx + \int_{a}^{b} J(x) dx$$

Proof let EDO and P, a parkton of East, Pr a partition of Icill with $U(J_1P_1) - L(J_1P_1) < \frac{2}{3}$ u(f, h) - L(f, h) < { Thus P=PuP is a partition of Iubl with u(1, P) - 2(4, P) = u(1, P,) + u(1, P) - 2(4, P,) - 2(4, P,) < & and have of is R- akyrable on [a, S]. Moreover 2 (1, 9) <) 1(2) +× < U(1, 9,) L (1, 12) ≥ \$ 16) dx ≤ U(1, 12,) so let ((1, P) = (1(x) dx + (f(x) dx = a(1, P) By defaulto, $L(J,P) \leq \int J(x) dx \leq U(J,P)$ so that - E < L(1,1) - U(1,1) ≥ ∫ f(x)dx + ∫ 1(x)dx - ∫ 1(x)dx < 4(1,1)-1(1,1) < E and thus 4×20 | $\int \int (x) dx + \int \int (x) dx - \int \int (x) dx | < \epsilon$ Kun, SJ(8) dr. 1 SJ(8) dr = SJ(8) dr. Definition for a>5, on defin \$ John = - Sfor) de

Then (a)
$$U(f+g,P) \leq U(f,P) + U(g,P)$$

Pool (a) On a subinhord I;

$$M_{i}(fy) = \sup_{x \in \mathcal{I}_{i}} (f(x) + g(x)) \leq \sup_{x \in \mathcal{I}_{i}} f(x) + \sup_{x \in \mathcal{I}_{i}} g(x)$$

Thus
$$U(y_g,P) = \sum_{\alpha_i} M_i(y_g) \Delta x_i \leq \sum_{\alpha_i} M_i(y) \Delta x_i + \sum_{\alpha_i} M_i(y_i) \Delta x_i$$

$$= U(y_i,P) + U(y_i,P)$$

(b) somulazion.

Theorem 38 Let Jij: [a,5] -> 18 be R- integrable and CEIR.

Then Jeg and cf are R-integrable, and

$$\int_{a}^{b} f(x) dy(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} g(x) dx$$

$$\int_{c}^{c} \int_{a}^{c} \int_{a$$

$$U(J_1P_1) - L(J_1P_1) < \frac{5}{2}$$
 $U(g_1P_2) - L(g_1P_1) < \frac{5}{2}$

$$u(1, P) - L(1, P) \leq u(1, P) - L(1, P) < \frac{5}{2}$$

 $u(3, P) - L(9, P) \leq u(3, P) - L(9, P) < \frac{5}{2}$

By Theorem 37,

As in the proof of Thom 36 on can show that also

$$\left|\int_{a}^{b} \int_{a}^{b} \int_$$

(6) One can show that
$$U(cf, P) - L(cf, P)$$

The est is cornered.

Theorem 39 let of: [a,5] = IR be R-mhyrable.

If g: [a.s] - R differ from f at finishly many print.

Then g is also R-inhegrable with

For $c \in [a_1b]$, define $X_c(x) = \begin{cases} 1 & x = c \\ 0 & x \neq c \end{cases}$

Then $g(x) = f(x) + \sum_{i=1}^{N} (g(c_i) - f(c_i)) \chi_{c_i}(x)$

and it suffices to show that $\chi(x)$ is R-integrable with $\chi(x)$ decrees.

If acced then choose P= {a, x, x, b} wik acxiccexes

and $x_i - x_i < \varepsilon$ by get $0 = L(X_{\varepsilon_i} P) < U(X_{\varepsilon_i} P) < \varepsilon$.

If c=a the choose P= {a, x, b} will acx, ebut x, eace

Logit $0 = L(X_a, P) < u(X_a, P) < \varepsilon$ (smile, if $c = \delta$).

Avalleso Horisa portica Punk U(2gP)-L(2gP) ex

Theseen 40 let J. y: [a,b] =1R be R ntegrable - If $f(x) \leq g(x) \ \forall x \in [4,5] \ \text{Hun} \qquad \int f(x) dx \leq \int g(x) dx$

Proof $g(x)-f(x) \ge 0$, and thus $0 \le L(g-f, P) \le \int_a^b g(x)-f(x) dx$ $= \int g(x) dx - \int f(x) dx \qquad D$

Theorem 41 If
$$\int : [a, 5] \rightarrow iR$$
 is $R - integrable$,

then $|\int |\int |f(x)| dx = \int |f(x)| dx$

Proof For PEP, we define

$$M_{i} = \sup_{x \in \mathcal{I}_{i}} |f(x)|$$
 $X \in \mathcal{I}_{i}$
 $M_{i} = \sup_{x \in \mathcal{I}_{i}} |f(x)|$
 $X \in \mathcal{I}_{i}$
 $M_{i} = \inf_{x \in \mathcal{I}_{i}} |f(x)|$
 $X \in \mathcal{I}_{i}$
 $X \in \mathcal{I}_{i}$

Now starting with

So
$$N_{i}$$
 $U(y_{i}, P) - L(y_{i}, P) = \sum_{i=1}^{n} (M_{i} - m_{i}) \Delta x_{i}$

$$\leq \sum_{i=1}^{n} (M_{i} - m_{i}) \Delta x_{i} = U(y_{i}, P) - L(y_{i}, P)$$

As I is R-alegrable, it follows that I is R-integrable.

 $-\left|\int_{a}(x)\right| \leq \int_{a}(x) \leq \left|\int_{a}(x)\right|$

it was follows that

$$-\int_{0}^{b} |J(x)dx = \int_{a}^{b} J(x)dx \leq \int_{a}^{b} |J(x)|dx$$

Theorem 42 If J: [a,5] -> IR is R-integrable them

J2 is R-integrable.

Proof to Jis founded, 1 Jul) = M for all x & [a.l].

Given a partition P, in han $M_i(J^2) = (M_i(H))^2$

and $m_i(j^2) = (m_i(j))^2$

so that

 $M_{i}(J^{2}) - m_{i}(J^{2}) = (M_{i}(181) + m_{i}(181))(M_{i}(181) - m_{i}(181))$ $\leq 2M \qquad (M_{i}(181) - m_{i}(181))$

Thus $U(f', P) - L(f', P) \leq 2M(U(ifl, P) - L(ifl, P))$

Here $\int_{a}^{2} is Rintegrable (and <math display="block">\int_{a}^{3} \int_{a}^{2} (x) dx \leq 2M \int_{a}^{3} \mathcal{W}(x) 1/x$

Theorem 43 If Jig [a,5] - IR are 12-1 Ategrable then

Jg is R-integrable

 $\frac{\operatorname{Proof}}{\int (x) g(x)} = \frac{1}{4} \left(\left(\int (x) + g(x) \right)^2 - \left(\int (x) - g(x) \right)^2 \right)$

Jeg and Jeg arelentegrable by Theorem 38,

at thus (J+g) at (J-g) ar R-ontegrable leg Theorem 42.

By Theore 38 id follows that $19 = \frac{1}{4} (1+1)^2 - \frac{1}{4} (1+1)^2$ is Enhagrable.

8. The Fundamental Theorem of Calculus

Definition 44 Let I be a newed and $f: I \rightarrow IR$.

A differhable furtion $F: I \rightarrow IR$ is called an antiderivative of fif F'(x) = f(x) for all $x \in I$

Theorem 45 If F and 6 are ontroduced fires of f, then $G = F + c \quad \text{for som } c \in \mathbb{R}. \quad \text{Also, } F + c \text{ is an addivide for all } c \in \mathbb{R}$ $\begin{array}{l} \text{Proof} \\ \text{Proof} \end{array} \quad \begin{pmatrix} G - F \end{pmatrix}' = G' - F' = J - J = 0, \text{ so } G + \text{ is constaint} \\ \text{Also } \left(F + c \right)' = F' = f \quad \text{for all } c \in \mathbb{R} \end{array}$ $\begin{array}{l} \text{D} \\ \text{D} \end{array}$

Theorem 46 (Fundamental Theorem of Calculus, FTC)

Theorem 46 [Fundamental Theorem of Calculus, FTC)

ankders water of J then $\int_{a}^{b} J(x) dx = F(b) - F(a)$

Proof Let P be a partition of East. Applying the MVT to T_i , then wish C_i : $X_{i,i} < C_i$ $X_{i,i} < C_i$ $X_{i,i}$ such that $F(X_i) - F(X_{i,i}) = F'(C_i) (X_i - X_{i,i}) = f(C_i) \Delta X_i$

We have $m_i = n f(x) \le f(c_i) \le \sup_{\lambda \in J_i} f(\lambda) = M_i$

So that $m_i \Delta x_i \leq F(x_i) - F(x_{i-1}) \leq M_i \Delta x_i$

and k_{in} $L(J,P) \leq \sum_{i=1}^{n} (F(x_{i}) - F(x_{i-1})) \leq U(J,P)$ F(J) - F(a)

Therefore
$$\int_{a}^{b} \int_{a}^{b} (x) dx \leq F(b) - F(a) \leq \int_{a}^{b} \int_{a}^{b} (x) dx$$
 and $\int_{a}^{b} \int_{a}^{b} (x) dx = F(b) - F(a)$

Examples
$$\int_{-\infty}^{\alpha} \frac{dx}{x} = \log x \Big|_{-\infty}^{\alpha} = \log \alpha - \log 1 = \log \alpha \quad \text{e.e.}$$

Theorem 47 Let
$$j: [a, C] \to \mathbb{R}$$
 be R -integrable and define $F: [a, C] \to \mathbb{R}$ by $F(H) = \int_{a}^{b} \int_{\mathbb{R}} f(x) dx$

- Then
 (a) F is continuous on [a,6]
 - (6) If j is continuous at $c \in [a, b]$ then

 F is differentiable at c and F'(c) = f(c).
- Proof (a) $\int_{\mathbb{R}^{n}} |x|^{2} = \mathbb{R}^{n} \int_{\mathbb{R}^{n}} |x|^{$
- (b) $\forall \epsilon \geq 0 \; \exists \delta \geq 0 \; : \; |x c| < \delta \Rightarrow |f(\epsilon) f(c)| < \epsilon \; .$ Thus $\forall t : |t c| < \delta \; \text{ we have }$ $\left| \frac{F(s) F(c)}{t c} f(c) \right| = \left| \frac{Sf(\kappa)dx}{t c} \frac{Sf(c)dx}{t c} \right| \leq \left| \frac{Sf(s) f(c)dx}{c t} \right| < \epsilon$ Thus $F'(c) = \lim_{t \to c} \frac{F(t) F(c)}{t c} \; \text{ exists and } F'(c) = f(c)$

Example
$$\int : [-1,0] \to \mathbb{R}$$
 $\int (x) = \begin{cases} 0 & x \in [-1,0] \\ 1 & x \in (0,1] \end{cases}$

$$F(1) = \int_{-1}^{1} [-1,0] dx = \begin{cases} 0 & \text{to } [-1,0] \\ 1 & \text{to } [-1,0] \end{cases}$$

F(H) is continuous on [-1,0], diffortable on [-1,0) v (0,1] but not diffortable at t=0.

Cocollary Every continuous function J: [a,b] > R has an antiderivative

Proof By Theorem 47, $F(t) = \int_{a}^{b} f(t)dt$ is an articleoirable of $\int_{a}^{b} g(t)dt$

Definition 48 Id F is an antiderivative of d, are define $\int f(x)dx = F(x) + c, \text{ the integral of } f$ (In contrast to the definite Riemann integral $\int f(x)dx$)

Theorem 49 If fact y have antiderivatives, then so to J+g and cf for CEIR, and $\int (J+g) dx = \int J(x)dx + \int g(x)dx \qquad \int cJ(x)dx = c \int J(x)dx$

Proof (a) $F'=\int G'=g$ imply $(F+G)'=F'+G'=\int +g$ Thus $\int \int (x) +g(x) dx = F-6) +G(x) = \int \int (x) dx + \int g(x) dx$ (b) of analogous