House Price

Goal of the project

predict the price of a house by its features.if you are buyer or seller of the house but you do not know the exact price of the house, so machine learning algorithms can help to predict the price of the house just providing features of the target house.

About Dataset

This dataset provides comprehensive information for house price prediction, with 13 column names:

Price: The price of the house.

Area: The total area of the house in square feet.

Bedrooms: The number of bedrooms in the house.

Bathrooms: The number of bathrooms in the house.

Stories: The number of stories in the house.

Mainroad: Whether the house is connected to the main road (Yes/No).

Guestroom: Whether the house has a guest room (Yes/No).

Basement: Whether the house has a basement (Yes/No).

Hot water heating: Whether the house has a hot water heating system (Yes/No).

Airconditioning: Whether the house has an air conditioning system (Yes/No).

Parking: The number of parking spaces available within the house.

Prefarea: Whether the house is located in a preferred area (Yes/No).

 $\label{thm:continuous} \mbox{Furnishing status: The furnishing status of the house (Fully Furnished, Semi-Furnished, Semi-Fu$

Unfurnished).

In []: import numpy as np

In []: import pandas as pd

In []: df=pd.read_csv(r'C:\Users\hp\Desktop\Housing.csv')

In [211]: df

Out[211]:

	price	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	hotwa
0	13300000	7420	4	2	3	yes	no	no	
1	12250000	8960	4	4	4	yes	no	no	
2	12250000	9960	3	2	2	yes	no	yes	
3	12215000	7500	4	2	2	yes	no	yes	
4	11410000	7420	4	1	2	yes	yes	yes	
540	1820000	3000	2	1	1	yes	no	yes	
541	1767150	2400	3	1	1	no	no	no	
542	1750000	3620	2	1	1	yes	no	no	
543	1750000	2910	3	1	1	no	no	no	
544	1750000	3850	3	1	2	yes	no	no	

545 rows × 13 columns

In [212]: df.shape

Out[212]: (545, 13)

In [213]: df.sample(5)

Out[213]:

	price	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	hotwate
360	3710000	4040	2	1	1	yes	no	no	
524	2380000	3264	2	1	1	yes	no	no	
45	7560000	6000	3	2	3	yes	no	no	
104	6195000	5500	3	2	1	yes	yes	yes	
177	5243000	6050	3	1	1	yes	no	yes	
4									>

In [214]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 545 entries, 0 to 544 Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	price	545 non-null	int64
1	area	545 non-null	int64
2	bedrooms	545 non-null	int64
3	bathrooms	545 non-null	int64
4	stories	545 non-null	int64
5	mainroad	545 non-null	object
6	guestroom	545 non-null	object
7	basement	545 non-null	object
8	hotwaterheating	545 non-null	object
9	airconditioning	545 non-null	object
10	parking	545 non-null	int64
11	prefarea	545 non-null	object
12	furnishingstatus	545 non-null	object

dtypes: int64(6), object(7) memory usage: 55.5+ KB

The column 'price' is numeric.

The column 'area(m2)' is numeric.

The column 'bedrooms' is numeric.

The column 'bathrooms' is numeric.

The column 'stories' is numeric.

The column 'mainroad' is catagorical

. The column 'guestroom' is catagorical.

The column 'basement' is catagorical.

The column 'hotwaterheating' is catagorical.

The column 'airconditioning' is catagorical.

The column 'parking' is numeric.

The column 'prefarea' is catagorical.

The column 'furnishingstatus' is catagorical.

In [215]: df.describe()

Out[215]:

	price	area	bedrooms	bathrooms	stories	parking
count	5.450000e+02	545.000000	545.000000	545.000000	545.000000	545.000000
mean	4.766729e+06	5150.541284	2.965138	1.286239	1.805505	0.693578
std	1.870440e+06	2170.141023	0.738064	0.502470	0.867492	0.861586
min	1.750000e+06	1650.000000	1.000000	1.000000	1.000000	0.000000
25%	3.430000e+06	3600.000000	2.000000	1.000000	1.000000	0.000000
50%	4.340000e+06	4600.000000	3.000000	1.000000	2.000000	0.000000
75%	5.740000e+06	6360.000000	3.000000	2.000000	2.000000	1.000000
max	1.330000e+07	16200.000000	6.000000	4.000000	4.000000	3.000000

```
df.isnull().sum()
In [216]:
Out[216]: price
                                0
                                0
           area
           bedrooms
                                0
           bathrooms
                                0
           stories
                                0
           mainroad
                                0
           guestroom
                                0
                                0
           basement
           hotwaterheating
                                0
           airconditioning
                                0
           parking
                                0
           prefarea
                                0
           furnishingstatus
                                0
           dtype: int64
```

thers is no missing in this data set

```
In [217]: df.duplicated().sum()
```

Out[217]: 0

there is no duplicate in this data set

```
In [218]: df.corr()
```

Out[218]:

	price	area	bedrooms	bathrooms	stories	parking
price	1.000000	0.535997	0.366494	0.517545	0.420712	0.384394
area	0.535997	1.000000	0.151858	0.193820	0.083996	0.352980
bedrooms	0.366494	0.151858	1.000000	0.373930	0.408564	0.139270
bathrooms	0.517545	0.193820	0.373930	1.000000	0.326165	0.177496
stories	0.420712	0.083996	0.408564	0.326165	1.000000	0.045547
parking	0.384394	0.352980	0.139270	0.177496	0.045547	1.000000

correlation

price most strongly cor realtion with area area most strongly cor realtion with price bedrooms most strongly cor relation with stories bathrooms most strongly cor realtion with price stories most strongly cor realtion with parking parkings most strongs cor realtion with price

EDA

```
In [219]:
              import matplotlib.pyplot as plt
              import seaborn as sns
In [220]:
In [221]:
              import warnings
              warnings.filterwarnings('ignore')
In [222]:
             sns.pairplot(df)
              plt.show()
                 1.0
                9.0
8.0
                 0.4
                 0.2
                15000
                12500
                7500
                5000
                 4.0
                2.0
                 1.0
                 4.0
                 3.5
                 3.0
                2.5
                 1.5
                 2.5
                 2.0
                2.0
2.1
1.5
                 0.5
                 0.0
```

correlation

In [266]: sns.heatmap(df.corr(),annot=True)

Out[266]: <AxesSubplot:>

price most strongly cor realtion with area area most strongly cor realtion with price bedrooms most strongly cor relation with stories bathrooms most strongly cor realtion with price stories most strongly cor realtion with parking parkings most strongs cor realtion with price

finding outlier in numerical columns in the data set?

```
In [267]: # Outlier Analysis
    fig, axs = plt.subplots(2,3, figsize = (10,5))
    plt1 = sns.boxplot(df['price'], ax = axs[0,0])
    plt2 = sns.boxplot(df['area'], ax = axs[0,1])
    plt3 = sns.boxplot(df['bedrooms'], ax = axs[0,2])
    plt1 = sns.boxplot(df['bathrooms'], ax = axs[1,0])
    plt2 = sns.boxplot(df['stories'], ax = axs[1,1])
    plt3 = sns.boxplot(df['parking'], ax = axs[1,2])

    plt.tight_layout()
```

finding outlier of catagorical columns with respect to house price column?

```
In [268]: plt.figure(figsize=(20, 12))
    plt.subplot(2,3,1)
    sns.boxplot(x = 'mainroad', y = 'price', data = df)
    plt.subplot(2,3,2)
    sns.boxplot(x = 'guestroom', y = 'price', data = df)
    plt.subplot(2,3,3)
    sns.boxplot(x = 'basement', y = 'price', data = df)
    plt.subplot(2,3,4)
    sns.boxplot(x = 'hotwaterheating', y = 'price', data = df)
    plt.subplot(2,3,5)
    sns.boxplot(x = 'airconditioning', y = 'price', data = df)
    plt.subplot(2,3,6)
    sns.boxplot(x = 'furnishingstatus', y = 'price', data = df)
    plt.show()
```


how does the area effect the price?

```
In [223]: plt.figure(figsize=(5,3))
    sns.scatterplot(x=df.area,y=df.price)
    plt.title("Area VS Price")
    plt.show()
```


**Price comparision with bedroom, bathroom, stories and parking

```
fig=plt.subplots(2,2,figsize=(20,10))
In [224]:
          plt.subplot(2,2,1)
          sns.boxplot(x="bedrooms", y="price", data=df)
          plt.xlabel("Bedrooms")
          plt.ylabel("Price")
          plt.title("Bedrooms vs. Price")
          plt.subplot(2,2,2)
          sns.boxplot(x="bathrooms", y="price", data=df)
          plt.xlabel("bathrooms")
          plt.ylabel("Price")
          plt.title("Bedrooms vs. Price")
          plt.subplot(2,2,3)
          sns.boxplot(x="stories", y="price", data=df)
          plt.xlabel("stories")
          plt.ylabel("Price")
          plt.title("Bedrooms vs. Price")
          plt.subplot(2,2,4)
          sns.boxplot(x="parking", y="price", data=df)
          plt.xlabel("parking")
          plt.ylabel("Price")
          plt.title("parking vs. Price")
          plt.show()
```


**furnishingstatus with the price

```
In [265]: import plotly.express as px
fig=px.scatter(x=df['furnishingstatus'],y=df['price'],color=df['furnishingstatus']
fig.show()
```

How does the number of bedrooms affect the sale price?

```
In [226]: # price convert into Lakhs
house_price=df['price']/1000000
```

```
In [227]: plt.figure(figsize=(5,3))
   plt.bar(df.bedrooms,house_price)
   plt.xlabel("No. of bedrooms")
   plt.ylabel("House price in Lakhs")
   plt.title("house price according to No. of bedrooms")
   plt.show()
```


How does the number of bathrooms affect the sale price?

```
In [229]: plt.figure(figsize=(5,3))
    plt.bar(df.bathrooms,house_price)
    plt.xlabel("No. of bathroomd")
    plt.ylabel("House price in Lakhs")
    plt.title("house price according to No. of bathrooms")
    plt.show()
```


How does the number of bathrooms and bedrooms affect the sale price?

In [230]: plt.figure(figsize=(5,4))
 sns.scatterplot(x=df.area, y=house_price, hue=df.bathrooms, size=df.bedrooms
 plt.show()

Data prepration Model

In [232]: df.head()

Out[232]:

	price	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	hotwater
0	13300000	7420	4	2	3	yes	no	no	
1	12250000	8960	4	4	4	yes	no	no	
2	12250000	9960	3	2	2	yes	no	yes	
3	12215000	7500	4	2	2	yes	no	yes	
4	11410000	7420	4	1	2	yes	yes	yes	
4									•

independance variable='area', 'bedrooms', 'bathrooms', 'stories', 'mainroad', 'guestroom', 'basement', 'hotwaterheating', 'airconditioning', 'parking', 'prefarea', 'furnishingstatus' depandance variable= price

Applying One hot Encoding

```
In [233]:
           from sklearn.preprocessing import OrdinalEncoder
In [234]:
           oe=OrdinalEncoder(categories=[['no','yes']])
           col=['mainroad','guestroom','basement','hotwaterheating','airconditioning',
           for col_n in col:
             df[col_n]=oe.fit_transform(df[[col_n]])
In [235]:
          df.head()
Out[235]:
                                        bathrooms stories mainroad guestroom basement hotwater
                  price
                        area bedrooms
            0 13300000 7420
                                                2
                                                        3
                                                                1.0
                                                                           0.0
                                                                                     0.0
                                      4
                                                4
            1 12250000 8960
                                                        4
                                                                1.0
                                                                           0.0
                                                                                     0.0
              12250000 9960
                                      3
                                                2
                                                        2
                                                                1.0
                                                                           0.0
                                                                                     1.0
              12215000 7500
                                      4
                                                2
                                                        2
                                                                           0.0
                                                                                     1.0
                                                                1.0
               11410000 7420
                                                1
                                                        2
                                                                1.0
                                                                           1.0
                                                                                     1.0
           oren=OrdinalEncoder(categories=[['unfurnished','semi-furnished','furnished']
In [236]:
           df['furnishingstatus']=oren.fit_transform(df[['furnishingstatus']])
           df.head()
In [237]:
Out[237]:
                  price
                              bedrooms
                                        bathrooms
                                                   stories
                                                          mainroad
                                                                    guestroom basement hotwater
                        area
                                                2
            0 13300000
                        7420
                                      4
                                                        3
                                                                1.0
                                                                                     0.0
                                                                           0.0
                                                4
                                      4
                                                        4
                                                                           0.0
               12250000
                        8960
                                                                1.0
                                                                                     0.0
              12250000
                        9960
                                      3
                                                2
                                                        2
                                                                1.0
                                                                           0.0
                                                                                     1.0
                                      4
                                                2
                                                        2
               12215000 7500
                                                                1.0
                                                                           0.0
                                                                                     1.0
               11410000 7420
                                      4
                                                1
                                                        2
                                                                                     1.0
                                                                1.0
                                                                           1.0
```

In [238]: df.sample(10)

Out[238]:

	price	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	hotwat
163	5425000	6825	3	1	1	1.0	1.0	1.0	
160	5460000	6210	4	1	4	1.0	1.0	0.0	
312	4098500	3600	3	1	1	1.0	0.0	1.0	
394	3500000	3480	3	1	1	0.0	0.0	0.0	
442	3220000	2684	2	1	1	1.0	0.0	0.0	
8	9870000	8100	4	1	2	1.0	1.0	1.0	
247	4550000	8400	4	1	4	1.0	0.0	0.0	
224	4760000	10240	2	1	1	1.0	0.0	0.0	
222	4760000	9166	2	1	1	1.0	0.0	1.0	
194	5005000	8150	3	2	1	1.0	1.0	1.0	
4									>

In [239]: x=df[['area', 'bedrooms', 'bathrooms', 'stories', 'mainroad','guestroom', '
y=df['price']/100000
x['area']=x['area']/1000

In [240]: x

Out[240]:

	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	hotwaterheating
0	7.42	4	2	3	1.0	0.0	0.0	0.0
1	8.96	4	4	4	1.0	0.0	0.0	0.0
2	9.96	3	2	2	1.0	0.0	1.0	0.0
3	7.50	4	2	2	1.0	0.0	1.0	0.0
4	7.42	4	1	2	1.0	1.0	1.0	0.0
540	3.00	2	1	1	1.0	0.0	1.0	0.0
541	2.40	3	1	1	0.0	0.0	0.0	0.0
542	3.62	2	1	1	1.0	0.0	0.0	0.0
543	2.91	3	1	1	0.0	0.0	0.0	0.0
544	3.85	3	1	2	1.0	0.0	0.0	0.0
545 r	ows ×	12 column						

```
In [241]: y
Out[241]: 0
                  133.0000
          1
                  122.5000
          2
                  122.5000
          3
                  122.1500
           4
                  114.1000
          540
                   18.2000
           541
                   17.6715
           542
                   17.5000
          543
                   17.5000
           544
                   17.5000
          Name: price, Length: 545, dtype: float64
```

Spiliting Data into training and test set

```
In [242]: from sklearn.model_selection import train_test_split
In [243]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_stat)
```

In [244]: print(x_train)
 print(x_test)
 print(y_train)
 print(y_test)

				_	.,				
,	area	bedrooms	bathrooms	stories	s mair	nroad	gues	troom	basement
\	4 500	_			_				
454	4.500	3	1		2	1.0		0.0	0.0
392	3.990	3	1		2	1.0		0.0	0.0
231	4.320	3	1		L	1.0		0.0	0.0
271	1.905	5	1		2	0.0		0.0	1.0
250	3.510	3	1		3	1.0		0.0	0.0
 70	4.000	3	2	• • •	· 2	1.0		0.0	1.0
277	10.360	2	1		1	1.0		0.0	0.0
9	5.750	3	2		1	1.0		1.0	0.0
359	3.600	3	1		L L	1.0		0.0	0.0
192	6.600	3	1		- L	1.0		1.0	1.0
172	0.000	,	-	-	•	1.0		1.0	1.0
	hotwate	_	airconditio		_	pref	area	furni	ishingstatus
454		0.0		1.0	0		0.0		0.0
392		0.0		0.0	0		0.0		1.0
231		0.0		0.0	0		1.0		1.0
271		0.0		0.0	0		0.0		1.0
250		0.0		0.0	0		0.0		1.0
		• • •		• • •					• • •
70		0.0		1.0	0		1.0		1.0
277		0.0		0.0	1		1.0		1.0
9		0.0		1.0	1		1.0		0.0
359		0.0		0.0	1		0.0		0.0
192		0.0		0.0	0		1.0		2.0
[381		12 columns	s] bathrooms	stories	mainr	road	guest	room	basement \
239	4.00	3	1	2		1.0	Висьс	0.0	0.0
113	9.62	3	1	1		1.0		0.0	1.0
325	3.46	4	1	2		1.0		0.0	0.0
66	13.20	2	1	1		1.0		0.0	1.0
479	3.66	4	1	2		0.0		0.0	0.0
									• • • •
• • 477	4.96	2		1		1.0		0.0	0.0
505	4.00	3	1	2		1.0		0.0	0.0
347	3.35	3	1	2		1.0		0.0	0.0
224	10.24	2	1	1		1.0		0.0	0.0
38	6.00	3	1	4					
30	0.00	3	1	4		1.0		1.0	0.0
	hotwate	rheating	airconditio	oning pa	arking	pref	area	furni	ishingstatus
239		0.0		0.0	1		0.0		2.0
113		0.0		0.0	2		1.0		2.0
325		0.0		1.0	0		0.0		1.0
66		1.0		0.0	1		0.0		2.0
479		0.0		0.0	0		0.0		0.0
		•••		• • •					•••
477		0.0		0.0	0		0.0		0.0
505		0.0		1.0	0		0.0		0.0
347		0.0		0.0	0		0.0		0.0
224		0.0		1.0	2		1.0		0.0
38		0.0		1.0	2		0.0		0.0
		3.0		-··	_		5.0		0.0
[164	rows x	12 column	s]						
454	31.43								
392	35.00								
221	16 90								

localhost:8888/notebooks/house_predict.ipynb#

231

271

250

46.90

43.40

45.15

```
67.90
           70
           277
                  43.05
           9
                  98.00
                  37.10
           359
           192
                  50.40
           Name: price, Length: 381, dtype: float64
           239
                  45.850
           113
                  60.830
           325
                  40.075
                  69.300
           66
           479
                  29.400
                   . . .
           477
                  29.400
           505
                  26.530
           347
                  38.360
           224
                  47.600
           38
                  79.625
           Name: price, Length: 164, dtype: float64
In [245]: print("X_train:", x_train.shape)
           print("X_test:", x_test.shape)
          print("y_train:", y_train.shape)
          print("y_test:", y_test.shape)
          X_train: (381, 12)
           X_test: (164, 12)
           y_train: (381,)
           y_test: (164,)
```

feature scaling

```
In [246]:
          from sklearn.preprocessing import MinMaxScaler
In [247]: | mnc=MinMaxScaler()
In [248]: | mnc.fit_transform(x_train)
Out[248]: array([[0.19354839, 0.5
                                                                          , 0.
                                           , 0.
                   0.
                              ],
                  [0.1564952 , 0.5
                                           , 0.
                                                                          , 0.
                   0.5
                              ],
                  [0.18047079, 0.5
                                           , 0.
                                                                          , 1.
                   0.5
                              ],
                  . . . ,
                  [0.28436501, 0.5
                                           , 0.5
                                                        , ..., 0.33333333, 1.
                   0.
                              ],
                  [0.12816042, 0.5
                                           , 0.
                                                        , ..., 0.33333333, 0.
                   0.
                              ],
                  [0.34612031, 0.5
                                           , 0.
                                                        , ..., 0.
                                                                          , 1.
                   1.
                              ]])
In [249]: |x_train_mnc=mnc.transform(x_train)
           x_test_mnc=mnc.transform(x_test)
```

In [250]: x_train_df=pd.DataFrame(x_train_mnc,columns=x_train.columns)

In [251]: x_test_df=pd.DataFrame(x_test_mnc,columns=x_test.columns)

In [252]: x_train_df.describe().round(2)

Out[252]:

	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	hotwaterheati
count	381.00	381.00	381.00	381.00	381.00	381.00	381.00	381.
mean	0.23	0.49	0.14	0.27	0.87	0.17	0.34	0.
std	0.14	0.18	0.24	0.29	0.34	0.38	0.47	0.
min	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.
25%	0.13	0.25	0.00	0.00	1.00	0.00	0.00	0.
50%	0.20	0.50	0.00	0.33	1.00	0.00	0.00	0.
75%	0.33	0.50	0.50	0.33	1.00	0.00	1.00	0.
max	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.
4								>

```
In [253]:
# Before scaling
sns.pairplot(x_train[['area']])
plt.title("Before Scaling")
plt.show()

# After scaling
sns.pairplot(x_train_df[['area']])
plt.title("After Scaling")
plt.show()
```


** thier is no change after scaling

Applying Machine learning Model

```
In [254]: from sklearn.linear_model import LinearRegression
In [255]: lr=LinearRegression()
In [256]: lr.fit(x_train,y_train)
Out[256]: LinearRegression()
```

predict the value of home and test

bathrooms 9.505834 stories 4.183216 mainroad 4.668908 guestroom 3.684976 basement 3.593644 hotwaterheating 12.466533 airconditioning 8.970370 parking 2.233018 prefarea 6.967545 furnishingstatus 2.302227

```
In [261]: # Make predictions
predictions = lr.predict(x_test)
```

```
In [262]:
           predictions
Out[262]: array([ 39.84967274,
                                  62.44647723,
                                                 44.2909099 ,
                                                                73.27161486,
                    28.84712135,
                                  69.80921091,
                                                 32.92173526,
                                                                31.58447774,
                    35.46517873,
                                  82.71816411,
                                                 66.18193859,
                                                                37.51711149,
                                  45.83853187,
                                                 39.66468549,
                                                                20.25300972,
                    37.53935403,
                    39.79784916,
                                                 31.99944395,
                                  36.1581415 ,
                                                                46.76419071
                   58.24326873,
                                  64.1769914 ,
                                                 46.77337712,
                                                                27.28847044
                   53.77896734,
                                  57.07297174,
                                                 53.62417436,
                                                                54.38360521,
                   56.17773482,
                                  58.98735928,
                                                 33.00971795,
                                                                63.60929404,
                   71.64452047,
                                  29.81160306,
                                                 44.51574862,
                                                                51.52282505,
                   49.70121011,
                                  36.50908243,
                                                 29.36483251,
                                                                40.05062876,
                   80.12393067,
                                  49.75403389,
                                                 64.33427878,
                                                                36.14305536,
                    39.06804952,
                                  62.95100537,
                                                 45.47614942,
                                                                27.57858497,
                   41.25556506,
                                  65.34659521,
                                                 39.63785236,
                                                                69.78462055,
                   26.08877822,
                                  29.40798154,
                                                 35.74053204,
                                                                51.88052848,
                                  40.49008067,
                                                 28.78583685,
                                                                44.07158208,
                   70.8525341 ,
                   60.04782606,
                                  66.88667666,
                                                 33.20792848,
                                                                71.66946569,
                   26.26313836,
                                  50.3711751 ,
                                                 66.90131278,
                                                                26.06346969,
                    38.27137257,
                                  50.29135
                                                 43.56153054,
                                                                71.80792622,
                   51.96956719,
                                                 40.6956174 ,
                                                                45.39855598,
                                  59.28376954,
                                                 26.0519806,
                   29.59980651,
                                  75.19193726,
                                                                36.7488136
                   43.56153054,
                                  60.04926747,
                                                 51.03302538,
                                                                54.43102514,
                   38.15751943,
                                  41.1892861 ,
                                                 47.22065955,
                                                                50.50970105,
                    39.09500694,
                                  43.06251269,
                                                 32.68097203,
                                                                58.67054031,
                   31.18760654,
                                  36.09654694,
                                                 45.62963964, 103.86330666,
                    29.66017992,
                                  70.6870154 ,
                                                 43.69845489,
                                                                45.26625951,
                   64.57898598,
                                  32.9344218 ,
                                                 45.45378648,
                                                                34.11726706,
                   73.26598023,
                                  51.45430856,
                                                 40.73440292,
                                                                49.90832461,
                   63.19251381,
                                  26.53338189,
                                                 27.47904182,
                                                                20.4210987
                                                 30.56588608,
                                                                44.11681885,
                   26.48361032,
                                  45.71428393,
                   68.75497538,
                                  26.58315347,
                                                 41.68622859,
                                                                84.50917513,
                   24.17943499,
                                  51.91889426,
                                                 26.35665022,
                                                                48.05677038,
                   27.39519309,
                                  32.80223594,
                                                 74.06378536,
                                                                51.08683427,
                   51.72012042,
                                  38.29962036,
                                                 45.59413825,
                                                                32.20792383,
                    55.38905979,
                                   26.58315347,
                                                 47.83025012,
                                                                85.08441812,
                   45.16843661,
                                  28.98732654,
                                                 43.33314626,
                                                                20.32155555,
                   48.84850653,
                                  50.12884874,
                                                 62.55335571,
                                                                47.67586098,
                                  72.96868438,
                                                                72.41429332,
                   64.68578421,
                                                 47.24566352,
                   64.33668419,
                                  36.93440768,
                                                 60.37737783,
                                                                31.97732919,
                   26.83778911,
                                  67.97360569,
                                                 59.19061286,
                                                                55.71541395,
                   95.84411355,
                                   76.85234397,
                                                 45.92048149,
                                                                29.86807743,
                                  31.39462538,
                                                 63.41172495,
                                                                63.47717335])
                   41.98257183,
In [263]:
          y_test
Out[263]: 239
                  45.850
           113
                  60.830
           325
                  40.075
           66
                  69.300
           479
                  29.400
           477
                  29.400
           505
                  26.530
           347
                  38.360
           224
                  47.600
           38
                  79.625
           Name: price, Length: 164, dtype: float64
```

```
In [264]: lr.score(x_test,y_test)
Out[264]: 0.723501522320035
In [ ]:
```