

A fenti ábrán az

$$f(x) = x_1^4 + x_1^3 - 2x_1^2 - x_1 + x_2^3 + x_2^2 - 3x_2 + 1$$

függvény szintvonalai és a normált negatív gradiensmező látható. (Normált: a nyilak hosszát egységesítettük, hogy irányuk könnyebben felismerhető legyen.)

Az ábra alapján, az fminsearch függvény segítségével közelítse az f függvénynek az ábrázolt tartományba eső valamelyik lokális minimumhelyét. A közelítést (jelölje x^*) 4 tizedesjegyre adja meg.

$$x_1^* = \begin{bmatrix} -1,3526 \end{bmatrix} \checkmark$$

$$x_2^* = \begin{bmatrix} 0,7207 \end{bmatrix} \checkmark$$

>> f = $@(x) x(1).^4 + x(1).^3 - 2*x(1).^2 - x(1) + x(2).^3 + x(2).^2 - 3*x(2) + 1;$

>> x = fminsearch(f, [-2, 1])

-1.3526 0.7207

Milyen érteket vesz fel a 0 helyen az a minimális fokszámú H polinom, melyre $H(-3)=31,\ H(1)=7,\ H'(-3)=-22?$ Mi a polinom főegyütthatója?

A helyettesítési érték: 1

A főegyüttható: 4

A fenti ábrán azt a minimális fokszámú p polinomot ábrázoltuk, melyre

x_i	1	2
$p(x_i)$	\boldsymbol{a}	\boldsymbol{b}
$p'(x_i)$	c	d
$p''(x_i)$		e

ahol a,b,c,d,e értéke a lent adott értékek valamelyike. Jelölje meg melyik értékeket használtuk.

Válasszon ki egyet vagy többet:

- a. a = -5 ✓ Az 1 pontban a függvény értéke -5
- \Box b. a=5
- a c. b = -8 \checkmark A 2 pontban a függvény értéke -8
- d. b = 8
- \blacksquare e. $c = -4 \lor A$ függvénynek ez a része csökkenő, tehát negatív a derivált
- lacksquare f. c=4
- \square g. d=-2 A függvénynek ez a része csökkenő, tehát negatív a derivált
- lacksquare h. d=2
- $oxed{}$ i. e=-20
- \blacksquare j. $e = 20 \checkmark$ A függvény 'mosolygós', tehát a második derivált pozitív

A feladat megoldásához használja a lenti ablakot.

Közelítse az alábbi integrál értékét a beépített integral függvény segítségével, illetve összetett trapéz képlettel is (a trapz függvénnyel), úgy, hogy az intervallumot 10 részintervallumra bontja.

$$\int\limits_0^5 \frac{1+x}{1+x^2} dx$$

Az eredményeket 2 tizedesjegyre kerekítse.

A közelítés az integral függvénnyel: 3,00

A közelítés a trapz függvénnyel: 2,98

l: 3,00

a =

3.0024

>>
$$x = [0:0.5:5];$$

>> $b = trapz(x, f(x))$

b =

2.9800

A feladat megoldásához használhatja a lenti ablakot.

Határozza meg az (-2,9), (-1,-1), (1,3), (2,5) pontokra illeszkedő minimális fokszámú polinom főegyütthatóját. Adja meg a polinom helyettesítési értékét a -3-ban.

A főegyüttható: -1

A helyettesítési érték: 35

```
>> t = [-2 -1 1 2];
>> f = [9 -1 3 5];
>> p = polyfit(t, f, 3)

p =
    -1.0000    2.0000    3.0000    -1.0000

>> y = polyval(p, -3)

y =
    35.0000
```

Feladat

Megfigyelünk egy folyamatot: a t_1,\ldots,t_m időpillanatokban az f_1,\ldots,f_m értékeket mérjük. A megfigyeléseinkre egy

$$F(t) = x_1 + x_2 t + x_3 t \cos(3t)$$

alakú modellt szeretnénk illeszteni. Egészítse ki a lenti kódot úgy, hogy a legkisebb négyzetes értelemben legjobban illeszkedő modell paramétereinek x vektorával térjen vissza. A mérési időpontok és a megfigyelések a t és t oszlopvektorokban adottak.

Ne feledkezzen meg a sorvégi pontosvesszőkről!

Kiegészítő információk:

A modell paraméterei minden teszt esetén egyértelműen meghatározhatóak.

Ennél a feladatnál tilos használni ["for", "while", "do", "until", "if", "switch"]-re épülő konstrukciókat.

For example:

Test	Result
<pre>disp(forbidden({'for','while','do','until','if','switch'}));</pre>	restrictions: passed
t=linspace(0,2*pi,10)'; f=[0.1931, 0.2580, 0.3677, 6.5296, 0.3480, 0.3062, 12.9382, 0.2020, 0.2901, 19.0892]'; disp(fun(t,f));	0.278266 1.00128 2.00007

Answer: (penalty regime: 0 %)

Rocat ancimar

```
function x=fun(t,f)
A = [ones(size(t)), t, t.*cos(3*t)];
x = A'*A \ A'*f;
end
```


Feladat

Az

$$x=rac{x^3-x-2}{5}$$

egyenlet egy megoldását szeretnénk tudni.

Tudjuk, hogy tetszőleges $x_0 \in [-1,1]$ kezdőértékből elindulva az

$$x_k = rac{x_{k-1}^3 - x_{k-1} - 2}{5}$$

sorozat ($k=1,2,\ldots$) az egyenlet egy megoldásához tart.

A lenti ablakban írjon egy Matlab függvényt, mely tetszőleges $x_0 \in [-1,1]$ és N pozitív egész szám esetén az $y=x_N$ értékét adja vissza. A függvény neve fun legyen, a bemenő változók sorrendje pedig x_0, N .

Kiegészítő információk:

A kódnak csak a kért értéket kell visszaadnia, a köztes értékekre nem vagyunk kíváncsiak.

For example:

Test	Result	
disp(fun(0,6))	-0.339875	
disp(fun(0.5,4))	-0.339643	

Answer: (penalty regime: 0 %)

```
1 | function y = fun(x0, N)

2 | for i=1:N

3 | x0 = (x0.^3 - x0 - 2) / 5;

4 | end

5 | y = x0;

6 | end
```


A fenti ábrán az

$$f(x) = e^x \cos(5x) + 1$$

függvényt ábrázoltuk a [2.5, 4] intervallumon. Ebben az intervallumban a függvénynek 2 zérushelye van. A Matlab fzero vagy fsolve függvénye segítségével közelítse ezeket. A gyökök közelítését növekvó sorrendben, 4 tizedesjegyre kerekítve adja meg.


```
>> f = @(x) exp(x) .* cos(5*x) + 1;
>> x1 = fzero(f, 2.75)

x1 =
     2.8391
>> x2 = fzero(f, 3.3)
x2 =
     3.4494
```