Examenul de bacalaureat național 2020 Proba E. c)

Matematică *M_pedagogic*

BAREM DE EVALUARE ȘI DE NOTARE

Test 2

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\left(\frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{3}\right) \cdot \frac{6}{\sqrt{27} + \sqrt{8}} = \left(\frac{3\sqrt{3}}{6} + \frac{2\sqrt{2}}{6}\right) \cdot \frac{6}{3\sqrt{3} + 2\sqrt{2}} =$	3p
	$= \frac{3\sqrt{3} + 2\sqrt{2}}{6} \cdot \frac{6}{3\sqrt{3} + 2\sqrt{2}} = 1$	2p
2.	$2n+1 \le n+2 \Leftrightarrow n \le 1$	2p
	Cum n este număr natural, obținem $n = 0$ sau $n = 1$	3 p
3.	$x^{2} + 5 = 4x + 1 \Rightarrow x^{2} - 4x + 4 = 0$	3 p
	x = 2, care convine	2 p
4.	100% - 50% - 25% = 25%	2 p
	$\frac{25}{100}$ · $x = 10$ km, unde x este lungimea traseului, deci $x = 40$ km	3 p
5.	AC = 3	2p
	Înălțimea din <i>B</i> a triunghiului <i>ABC</i> este egală cu 4, deci $\mathcal{A}_{\Delta ABC} = \frac{4 \cdot 3}{2} = 6$	3p
6.	$\cos 30^\circ = \frac{\sqrt{3}}{2}$, $\sin 30^\circ = \frac{1}{2}$, $\sin 45^\circ = \frac{\sqrt{2}}{2}$	3p
	$\sqrt{3} \cdot \cos 30^{\circ} + \sin 30^{\circ} - 2\sin^2 45^{\circ} = \sqrt{3} \cdot \frac{\sqrt{3}}{2} + \frac{1}{2} - 2 \cdot \left(\frac{\sqrt{2}}{2}\right)^2 = \frac{3}{2} + \frac{1}{2} - 2 \cdot \frac{2}{4} = 2 - 1 = 1$	2 p

SUBIECTUL al II-lea (30 de puncte)

1.	$\sqrt{2} * \left(-\sqrt{2}\right) = \sqrt{2} \cdot \left(-\sqrt{2}\right) - \sqrt{2} \cdot \sqrt{2} - \sqrt{2} \cdot \left(-\sqrt{2}\right) + \sqrt{2} + 2 =$	3p
	$= -2 - 2 + 2 + \sqrt{2} + 2 = \sqrt{2}$	2 p
2.	$x * y = xy - \sqrt{2}x - \sqrt{2}y + 2 + \sqrt{2} =$	2p
	$= x\left(y - \sqrt{2}\right) - \sqrt{2}\left(y - \sqrt{2}\right) + \sqrt{2} = \left(x - \sqrt{2}\right)\left(y - \sqrt{2}\right) + \sqrt{2}, \text{ pentru orice numere reale } x \text{ si } y$	3 p
3.	$x*(1+\sqrt{2})=(x-\sqrt{2})(1+\sqrt{2}-\sqrt{2})+\sqrt{2}=x-\sqrt{2}+\sqrt{2}=x$, pentru orice număr real x	2p
	$(1+\sqrt{2})*x = (1+\sqrt{2}-\sqrt{2})(x-\sqrt{2})+\sqrt{2} = x-\sqrt{2}+\sqrt{2} = x = x*(1+\sqrt{2})$, pentru orice număr	3р
	real x, deci $e = 1 + \sqrt{2}$ este elementul neutru al legii de compoziție ",*"	
4.	$\left(a - \sqrt{2}\right)\left(a - \sqrt{2}\right) + \sqrt{2} = 2 + \sqrt{2} \Leftrightarrow \left(a - \sqrt{2}\right)^2 = 2$	3p
	$a=0$ sau $a=2\sqrt{2}$	2 p
5.	$\left(4^x - \sqrt{2}\right)\left(2^x - \sqrt{2}\right) + \sqrt{2} = \sqrt{2} \Leftrightarrow \left(4^x - \sqrt{2}\right)\left(2^x - \sqrt{2}\right) = 0$	3 p
	$x = \frac{1}{4} \text{ sau } x = \frac{1}{2}$	2p

Probă scrisă la matematică *M_pedagogic*

Barem de evaluare și de notare

6.	$\left(x+\sqrt{2}-\sqrt{2}\right)\left(x-\sqrt{2}-\sqrt{2}\right)+\sqrt{2}\leq\sqrt{2}\Leftrightarrow x\left(x-2\sqrt{2}\right)\leq0$	3p
	$x \in \left[0, 2\sqrt{2}\right]$	2p

SUBIECTUL al III-lea

(30 de puncte)

1.	$\det A = \begin{vmatrix} 2 & 0 \\ 3 & 1 \end{vmatrix} = 2 \cdot 1 - 3 \cdot 0 =$	3p 2p
	-2-0-2	<u> 2</u> p
2.	$B+C = \begin{pmatrix} 2+x & x \\ 3 & 1 \end{pmatrix}, \text{ pentru orice număr real } x$	3 p
	$ \begin{pmatrix} 2+x & x \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 3 & 1 \end{pmatrix} \Leftrightarrow x = 0 $	2p
3.	$ \begin{pmatrix} 2+x & x \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 3 & 1 \end{pmatrix} \Leftrightarrow x = 0 $ $ B - C = \begin{pmatrix} 2-x & x \\ 3 & -1 \end{pmatrix} \Rightarrow \det(B-C) = \begin{vmatrix} 2-x & x \\ 3 & -1 \end{vmatrix} = -2 - 2x, \text{ pentru orice număr real } x $	3 p
	$-2-2x=0 \Leftrightarrow x=-1$	2p
4.	$B \cdot C = \begin{pmatrix} 2x & x \\ 3x & 0 \end{pmatrix}, C \cdot B = \begin{pmatrix} 2x & x^2 \\ 3 & 0 \end{pmatrix} \Rightarrow B \cdot C - C \cdot B = \begin{pmatrix} 0 & x - x^2 \\ 3x - 3 & 0 \end{pmatrix}, \text{ pentru orice număr}$	3p
	real x	l
	$\det(B \cdot C - C \cdot B) = 3(x-1)(x^2 - x) = 3x(x-1)^2$, pentru orice număr real x	2p
5.	Pentru $x = 1$, obținem $B = \begin{pmatrix} 2 & 1 \\ 3 & 0 \end{pmatrix} \Rightarrow B \cdot \begin{pmatrix} 0 & \frac{1}{3} \\ 1 & -\frac{2}{3} \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 3 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & \frac{1}{3} \\ 1 & -\frac{2}{3} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$	2 p
	$\begin{bmatrix} 0 & \frac{1}{3} \\ 1 & -\frac{2}{3} \end{bmatrix} \cdot B = \begin{bmatrix} 0 & \frac{1}{3} \\ 1 & -\frac{2}{3} \end{bmatrix} \cdot \begin{pmatrix} 2 & 1 \\ 3 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2, \text{ deci matricea} \begin{bmatrix} 0 & \frac{1}{3} \\ 1 & -\frac{2}{3} \end{bmatrix} \text{ este inversa matricei } B$	3р
6.	Pentru $x = 1$, obținem $C = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$	2p
	$X = B^{-1} \cdot A \Rightarrow X = \begin{pmatrix} 1 & \frac{1}{3} \\ 0 & -\frac{2}{3} \end{pmatrix}$	3р