Colorful k-Center Algorithms

Ari Jordan

28.06.2021

Motivation

Colorful k-Center

Input: *P*: *n* points with metric

 C_1, \ldots, C_{ω} : partition of P

 p_1,\ldots,p_ω : coverage requirements

Output: $F \subseteq P \mid |F| \le k$: set of centers

Goal: Minimize radius r, such that

$$\left| \left(\bigcup_{k \in F} B(k, r) \right) \bigcap C_i \right| \geq p_i \ \forall i \in \{1, \dots, \omega\}$$

Instance

Random

Optimal

Furthest

Furthest

Disks

Disks

Densest

Densest

Helper LP

Hill Climbing

Hill Climbing

All Algorithms

2 Colors

Optimal

EPFL 3-Approximation

All Algorithms

Empirical Runtime

Empirical Approximation ratio

Approximation ratio for 2 colors and 3 centers over 30 runs for exponentially distributed points

Conclusion

Takeaways

- EPFL 3-approximation has bad runtime
- ► The Furthest, Disks, Densest, and Helper LP algorithms give bad approximations for colorful *k*-center
- ▶ Hill climbing is a decent heuristic for colorful k-center

Open Questions

- ▶ Is there a 2-approximation for colorful k-center?
- Is there a 3-approximation for colorful k-center with a better runtime?

Mall Data

Exponential Instance

Normal Instance with small p

