Probability Theory and Statistics

Jakob Rasmussen, Department of Mathematical Sciences jgr@math.aau.dk

Literature:

Walpole, Myers, Myers & Ye:

Probability and Statistics for Engineers and Scientists, Prentice Hall, 9th ed.

Slides and lecture overview:

http://ses.moodle.aau.dk/course/view.php?id=627

Lecture format:

2x45 min lecturing followed by exercises in group rooms

STATISTICS What is it good for?

Forecasting:

- Expectations for the future?
- How will the stock markets behave??

Analysis of sales:

- How much do we sell, and when?
- Should we change or sales strategy?

Quality control:

- What is my rate of defective products?
- How can I best manage my production?
- What is the best way to sample?

Lecture1

Statistics is used in order to make inference based on data

Why do we need statistics/statistical models?

- The major reason for using statistics is variation(!) in the observed data
- Statistics is used to model the patterns of variation in order to learn from them.

Reasons for variation in data:

- The real-world problems is not completely predictable at levels of precision that are important for our goal (intrinsic variability of the real-world)
- Variability induced in the data collection process (measurement, "sampling", errors)

Probability theory Sample space and events

Consider an experiment

Sample space S:

S VENN DIAGRAM

Example:

S={1,2,...,6} rolling a die S={tail,head} flipping a coin

Event A:

Example:

A={1,6} when rolling a die

Complementary event A':

Example:

A'={2,3,4,5} rolling a die

Probability theory Events

Example:

Rolling a die

Disjoint events: $C \cap D = \emptyset$

C={1,3,5} and D={2,4,6} are disjoint

Ways of placing your bets: Guess the results of 13 matches
Possible outcomes:

lecture 1

Ordering *n* different objects Number of permutations ???

There are

- n ways of selecting the first object
- n -1 ways of selecting second object:
- 1 way of selecting the last object

"n factorial"

n · (n -1) · · · · · 1 = n! ways

The multiplication rule

Multiplication rule:

If k independent operations can be performed in n_1, n_2, \ldots, n_k ways, respectively, then the k operations can be performed in

$$n_1 \cdot n_2 \cdot \cdots \cdot n_k$$
 ways

Flipping a coin three times (Head/Tail)

 2^3 = 8 possible outcomes

Number of possible ways of selecting *r* objects from a set of *n* distinct elements:

	Without replacement	With replacement
Ordered	$_{n}P_{r}=\frac{n!}{(n-r)!}$	n^r
Unordered	$\binom{n}{r} = \frac{n!}{r!(n-r)!}$	-

Example:

Ann, Barry, Chris, and Dan should form a committee consisting of two persons, i.e. unordered without replacement.

Number of possible combinations:

$$\binom{4}{2} = \frac{4!}{2!2!} = 6$$

Writing it out : AB AC AD BC BD CD

lecture 1

Example:

Select 2 out of 4 different balls ordered and without replacement

Number of possible combinations:
$${}_{4}P_{2} = \frac{4!}{(4-2)!} = 12$$

Probability theoryProbability

Let A be an event, then we denote

P(A) the probability for A

It always hold that $0 \le P(A) \le 1$ $P(\emptyset) = 0$ P(S) = 1

$$P(\emptyset) = 0$$

$$P(S) = 1$$

Consider an experiment which has N equally likely outcomes, and let exactly *n* of these events correspond to the event A. Then

$$P(A) = \frac{n}{N}$$
 = $\frac{\text{# successful outcomes}}{\text{# possible outcomes}}$

Example:

Rolling a die

$$P(\text{even number})$$

$$=\frac{3}{6}=\frac{1}{2}$$

Probability theoryProbability

Example: Quality control

A batch of 20 units contains 8 defective units.

Select 6 units (unordered and without replacement).

Event A: no defective units in our random sample.

Number of possible samples: $N = \binom{20}{6}$ (# possible)

Number of samples without defective units: $n = \binom{12}{6}$ (# successful)

$$P(A) = \frac{\binom{12}{6}}{\binom{20}{6}} = \frac{12!6!14!}{6!6!20!} = \frac{77}{3230} = 0.024$$

• • Probability theory Probability

Example: continued

Event B: exactly 2 defective units in our sample

Number of samples with exactly 2 defective units: $n = \binom{12}{4} \binom{8}{2}$

(# successful)

$$P(B) = \frac{\binom{12}{4}\binom{8}{2}}{\binom{20}{6}} = \frac{\frac{12!}{4!8!}\frac{8!}{2!6!}}{\frac{20!}{6!14!}} = \frac{12!8!6!14!}{4!8!2!6!20} = 0.3576$$

Probability theory Rules for probabilities

If A and B are disjoint: $P(A \cup B) = P(A) + P(B)$

In particular: P(A) + P(A') = 1

Probability theoryConditional probability

Conditional probability for A given B:
$$P(A|B) = \frac{P(A \cap B)}{P(B)} \quad \text{where P (B) > 0}$$

Bayes' Rule:
$$P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$$

Rewriting Bayes' rule:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A')P(A')}$$

lecture 1

Probability theory Conditional probability

Example page 63:

The distribution of employed/unemployed amongst men and women in a small town.

	Employed	Unemployed	Total
Man	460	40	500
Woman	140	260	400

$$P(\text{man | employed}) = \frac{P(\text{man \& employed})}{P(\text{employed})} = \frac{460/900}{600/900} = \frac{460}{600} = \frac{23}{30} = 0.767$$

$$P(\text{man | unemployed}) = \frac{P(\text{man \& unemployed})}{P(\text{unemployed})} = \frac{40/900}{300/900} = \frac{40}{300} = \frac{2}{15} = 0.133$$

Probability theoryBayes' rule

Example: Lung disease & Smoking

According to "The American Lung Association" 7% of the population suffers from a lung disease, and 90% of these are smokers. Amongst people without any lung disease 25.3% are smokers.

<u>Events</u> :	<u>Probabilities</u> :	
A: person has lung disease	P(A)	= 0.07
B: person is a smoker	P(B A)	= 0.90
	P(B A´)	= 0.253

What is the probability that at smoker suffers from a lung disease?

$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A')P(A')} = \frac{0.9 \cdot 0.07}{0.9 \cdot 0.07 + 0.253 \cdot 0.93} = 0.211$$

Probability theory Bayes' rule – extended version

 A_1, \dots, A_k are a partitioning of S

Law of total probability:

$$P(B) = \sum_{i=1}^{n} P(B|A_i) P(A_i)$$

Bayes' extended rule:

$$P(A_r|B) = \frac{P(B|A_r)P(A_r)}{\sum_{i=1}^{k} P(B|A_i)P(A_i)}$$

• • Probability theory Independence

Definition:

Two events A and B are said to be independent if and only if

$$P(B|A) = P(B)$$
 or $P(A|B) = P(A)$

Alternative Definition:

Two events A and B are said to be independent if and only if

$$P(A \cap B) = P(A)P(B)$$

Notice: Disjoint event (mutually exclusive event) are dependent!

Probability theory Conditional probability

Example:

	Employed	Unemployed	Total
Man	460	40	500
Woman	140	260	400
Total	600	300	900

$$P(\text{man}|\text{employed}) = \frac{460/900}{600/900} = 0.767$$

 $P(\text{man}) = 500/900 = 0.556$

Conclusion: the two events "man" and "employed" are dependent.

Probability theory Rules for conditional probabilities

Probability of events A and B happening simultaneously

$$P(A \cap B) = P(A|B)P(B)$$

Probability of events A, B and C happening simultaneously

$$P(A \cap B \cap C) = P(A|B \cap C)P(B|C)P(C)$$

Proof:

$$P\left(A\cap B\cap C\right) = P\left(A\left|B\cap C\right.\right)P\left(B\cap C\right) = P\left(A\left|B\cap C\right.\right)P\left(B\left|C\right.\right)P\left(C\right)$$

General rule:

$$\begin{split} P\left(A_1 \cap A_2 \cap \dots \cap A_k\right) = \\ P\left(A_1 | A_2 \cap \dots \cap A_k\right) \cdot P\left(A_2 | A_3 \cap \dots \cap A_k\right) \cdots P\left(A_{k-1} | A_k\right) P\left(A_k\right) \end{split}$$