

% Entalpier % Kompressorudgang sat til 115C h1 = 1489.161 *u.kJ/u.kg;h2 = 1672.9*u.kJ/u.kg;

h5 = 1735.522*u.kJ/u.kg; % ikke kølet kompressor

 $phi_RK = q_V^*rho_V^*cp_V^*(t_r - t_f);$

phi_RK = vpa(unitConvert(phi_RK, u.kW), 6)

% Vores Phi0

 $phi_RK = 452.642 kW$

h3 = 459.45*u.kJ/u.kg;

super = 1491.49*u.kJ/u.kg; konding = 485.03*u.kJ/u.kg; subbing = 459.19*u.kJ/u.kg;

h4 = h3;

% billede

Phi0 = phi_RK;

vpa(Pel*24*u.h, 3)

COP = vpa(phi_RK/Pel, 3)

ans = $2600.0 \,h\,kW$

COP = 4.18

syms qV_vand

 $rho_V = 999.1 * u.kg/u.m^3;$ $cp_V = 4182 * u.J/(u.kg*u.K);$

%-----%

% Henover kondensator

 $kond_desuper = 79.7445 kW$

 $kond_konding = 442.422 kW$

 $kond_subbing = 11.3588 kW$

% Ekspansionsventil

epv = 0.0

 $eta_v = 0.84;$

syms q_Vs_komp

 $qV_NH3 = eta_v * q_Vs_komp;$

% Massestrøm $q_mr = Phi0/(h1 - h4);$ q_mr = vpa(unitConvert(q_mr, "SI"), 3) % El-effekt $Pel = q_mr*(h5-h1);$ Pel = vpa(unitConvert(Pel, u.kW), 6) $Pel = 108.296 \, kW$

% Kompressorudgangstemperatur ikke specificeret - fra det "faktiske"

% Kondenseringspunkter, til udregning af kondensatorens 3 faser

% Køling på kompressoren - 137C til 115C phi_komp_cool = q_mr*(h5-h2); phi_komp_cool = vpa(unitConvert(phi_komp_cool, u.kW),5) $phi_komp_cool = 27.527 kW$ % Vandstrøm omkring kompressor. Antagede ind og ud værdier $T_v_{ind_komp} = 18*u.K;$

qV_vand = solve(eq, qV_vand); $qV_vand = vpa(unitConvert(qV_vand, u.m^3/u.h), 6)$ qV_vand = $0.456113 \frac{\text{m}^3}{\text{h}}$

eq = phi_komp_cool == qV_vand*rho_V*cp_V*(T_v_ud_komp - T_v_ind_komp);

T_v_ud_komp = 70*u.K; % Det skal bruges til fjernvarme og skulle gerne være samme temp som det der kommer ned i akk. tanken

% Henover kompressor kompressor = vpa(unitConvert(q_mr*(h1-h2), u.kW), 4) $kompressor = -80.77 \, kW$

kondensator = vpa(unitConvert(q_mr*(h2-h3), u.kW), 6) kondensator = 533.411 kW $kond_desuper = vpa(unitConvert(q_mr^*(h2-super), u.kW), 6)$

kond_konding = vpa(unitConvert(q_mr*(super-konding), u.kW), 6)

kond_subbing = vpa(unitConvert(q_mr*(konding - subbing), u.kW), 6)

kond_total = vpa(kond_desuper+kond_konding+kond_subbing, 6) $kond_total = 533.525 kW$

% Fordamper % Det ses det stemmer overens med den indledende beregning af Phi0 fordamper = $vpa(unitConvert(q_mr^*(h4-h1), u.kW), 4)$ fordamper = $-452.6 \,\mathrm{kW}$

% Beregning af nødvendig slagvolumen, til dimensionering af varmepumpe $t_nh3_ind = 115*u.K;$ $t_nh3_ud = 60*u.K;$ $cp_NH3 = 2.881 * u.kJ/(u.kg*u.K);$ $rho_NH3 = 15.47 * u.kg/u.m^3;$

 $epv = vpa(unitConvert(q_mr^*(h3-h4), u.kW), 4)$

eq = kondensator == $qV_NH3 * rho_NH3 * cp_NH3 * (t_nh3_ind - t_nh3_ud);$ q_Vs_komp = solve(eq, q_Vs_komp); $q_Vs_komp = vpa(unitConvert(q_Vs_komp, u.m^3/u.h), 3)$ $q_Vs_komp =$

phi_kond_vand = qV_vand_kond*rho_V*cp_V*(t_kond_vu - t_kond_vi);

NH₃ (tør/våd) | 15 - 20 /8 - 15

5 - 10¹⁾

7 - 121)

15 - 25

7 - 121)

8 - 15¹⁾

0,5 - 2

0,4 - 1

(< 20)

(< 20)

(20 - 22)

 $qV_vand_kond = vpa(unitConvert(qV_vand_kond, u.m^3/u.h), 3)$

% Volumenstrøm af vand i kondensator

eq = kondensator == phi_kond_vand;

qV_vand_kond = solve(eq, qV_vand_kond);

 $t_kond_vi = 40 * u.K;$ $t_kond_vu = 54 * u.K;$

syms qV_vand_kond

Sugeledninger

Varmgasledninger

Væskeledninger (fra kondensator)

 $A1 = 148.0 \, \text{cm}^2$

cA1 = 13.7 cm

cA2 = 12.8 cm

cA1 = vpa(sqrt(A1/pi)*2, 3)

 $qV_NH3 = vpa(unitConvert(qV_NH3, u.m^3/u.h), 3);$

 $%q_Vs_komp = 2000 * u.m^3/u.h; % Valgt ud fra casen$

qV_vand_kond = Rørdimensioner Strømningshastighed, c 2) [m/s] Kølemiddel Anvendelsesområd

R134a

R404A

R134a

R404A NH_3

R134a

 NH_3

R404A 0,4 - 1Brine 0,3 - 1,5 Vand 0,5 - 2Tabel 5.1: Anbefalede strømningshastigheder i forskellige typer rørledninger i kompressionskøleanlæg. 1) I små anlæg anvendes lavere hastigheder. ²⁾ Tallene i parentes gælder store anlæg. % Sugeledninger til kondensator c1 = 17.5 * u.m/u.s; $NH3_ind = q_Vs_komp;$ $A1 = NH3_ind/c1;$ A1 = vpa(unitConvert(A1, "SI"), 3); $A1 = vpa(unitConvert(A1, u.cm^2), 3)$

 $%A = (D/2)^2*pi$ %D = sqrt(A/pi)*2

% Varmgasledninger c2 = 20 * u.m/u.s; $NH3_ind = q_Vs_komp;$ $A2 = NH3_ind/c2;$ A2 = vpa(unitConvert(A2, "SI"), 3); $A2 = vpa(unitConvert(A2, u.cm^2), 3)$ $A2 = 130.0 \,\mathrm{cm}^2$ cA2 = vpa(sqrt(A2/pi)*2, 3)

% Væskeledninger fra kondensator efter EPV c3 = 1.25 * u.m/u.s; $NH3_ind = q_Vs_komp;$ $A3 = NH3_ind/c3;$ A3 = vpa(unitConvert(A3, "SI"), 3);

 $A3 = vpa(unitConvert(A3, u.cm^2), 3)$

 $A3 = 2070.0 \, \text{cm}^2$ cA3 = vpa(sqrt(A3/pi)*2, 3)cA3 = 51.4 cm