TD 2 1bac SM

EXERCICES DE LIMITES

Exercice 1

Calculor les limites suivantes

$$\lim_{t \to \frac{1}{2}} \frac{8x^{3} - 1}{2x^{2} + 3x - 2}$$

$$\lim_{x \to x = 6} \frac{2x^2 - 5x - 3}{x - x - 6}$$

$$\lim_{x \to 2} \frac{2x^2 - 3x - 2}{x^2 - x - 2}$$

$$V_{\lim_{x\to 1}} \frac{\sqrt{x^2+3}-x-1}{\sqrt{x+1}-\sqrt{2}}$$

$$\lim_{x \to 0} \frac{\sqrt{x+3} - \sqrt{4x+3}}{\sqrt{2x+4} - \sqrt{x+4}}$$

$$\lim_{x \to 1} \frac{\sqrt{x^2 + 2} - \sqrt{4 - x}}{x - 1} V$$

$$\lim_{x \to 1} \frac{x^2 - 5x + 4}{\sqrt{x} - 2}$$

$$\lim_{x \to 0} \frac{\sin 3x - 2\tan x}{x + \sin 2x}$$

$$\lim_{x\to 0} \frac{2x - \sin x}{x + \sin 2x}.$$

$$\lim_{x \to 3} \frac{\sqrt{x+6} - \sqrt{x+1} - 1}{2x - \sqrt{3} + 2x - 3}$$

$$\lim_{x \to 1} \frac{x^4 + x^3 + x - 3}{x^3 + x^2 - 2}$$

Exercice 2

Calculer les limites suivantes

$$\lim \sqrt{x+1} - x$$

$$\lim_{x \to \infty} \sqrt{4 + x^2} - 3x \quad \bigvee$$

$$\lim_{x \to \infty} \sqrt{x-5} + \frac{2x}{x-3}$$

$$\lim_{x \to \infty} \sqrt{x - 10} + x$$

$$\lim_{r \to \infty} \sqrt{r - \sqrt{2x}} - \sqrt{x + 1}$$

$$\lim_{x \to -\infty} \sqrt{x - \sqrt{x} + 1} - \sqrt{x}$$

$$\lim_{r\to\infty} \sqrt{r^2+2r}+x$$

$$\lim_{x \to \infty} \sqrt{x^2 + 3} - x$$

Exercice 3

Déterminer les limites suivantes

$$\lim_{x \to 0} \frac{\sqrt{\tan x} - \sqrt{\sin x}}{x^2 \sqrt{x}}$$

$$\lim_{x \to \infty} \sqrt{x} E\left(\frac{4}{x}\right)$$

$$\lim_{r\to 0} \frac{1-\cos x \sqrt{\cos 2x}}{r'}$$

$$\lim_{\substack{r\to 0\\r>0}} xE\left(\frac{4}{x^{r}}\right)$$

$$\lim_{r \to \sqrt{2}} \frac{(1-r^2)\sqrt{r^2+2}+2}{r^2-2}$$

$$\lim_{\substack{x \to 0 \\ t \neq 0}} \frac{x - \sqrt{x}}{\sqrt{\tan x - \tan^2 x}}$$

$$\lim_{x\to 0} \frac{x^2}{1-\sqrt{\cos x}}$$

$$\lim_{x \to \infty} \frac{E(\sqrt{x})}{x^2 + 1}$$

Exercice 4

Soil la fonction
$$f(x) = \frac{\sqrt{4 + \cos x} - 2}{x^2}$$

- 1) montrer que $(\forall x \in \mathbb{R}^*)$ $|f(x)| \le \frac{1}{x^2}$
- 2) déduire lim f(x) et lim f(x)

Exercice 5

Soil la fonction
$$f(x) = xE\left(\frac{2}{x^2+1}\right)$$

- 1) montrer que ∀r €]-1, 1[|f(x)| ≤ 21x1
- 2) en déduire lim f(x)

Exercice 6

On considère la fonction s'définie par :
$$f(x) = \frac{2x + |x| + |x - 1|}{x - 2}$$

- 1) Montrer que lim f(x) = 4 el calculer lim f(x)
- 2) Leterminer les limites lim f(x) et lim f(x)

Exercice 7

On pose $f(z) = \frac{(a+2)x' + (b+3)x + 1}{x^2 - 1}$ | a; b deux réels

- 1) discil a suivant a : b la limite lim f(x)
- 2) déler niner a : b pour que $\lim_{x \to a} f(x) = 1$
- 3) Eludior suivant a:b la limite $\lim_{x\to a} f(x)$

Exercice 8

On a socialize la fonction f définie par : $\begin{cases} f(x) = \frac{\sqrt{x} + b}{x - 2} : x \ge 1 \\ f(x) = \frac{2x^2 - ax - 1}{x^2 - x} : x < 1 \end{cases}$

Constitute of

- 1) calculer les limiles lim f(x) el lim f(x)
- 2) dud er suivard a la limite lim f(x)
- 3) calculer $\lim_{x\to 1} f(x)$ puis déterminer b, a pour que f admette une limite en 1

Exercice 9

Sold a radion f telle que: $\begin{cases} f(x) = xE\left(\frac{1}{x}\right) & ; \quad x < 0 \\ f(x) = \frac{x - E(x)}{\sqrt{x}} & ; \quad x > 0 \end{cases}$

- 1) monto a que: $(\forall x \in [0,1]) f(x) = \sqrt{x}$ puis calculer $\lim_{x \to 0} f(x)$
- 2) f ad net-elle une limite au point $x_0 = 0$?

Exercice 10

On a nsidère la fonction f définie par : $f(x) = xE\left(\frac{2}{x}\right)$

- Υ) a) more liver que $(\forall x > 0)$ $2-x < f(x) \le 2$
 - () en léduire $\lim_{x\to 0} f(x)$
 - c) 1 acmet-elle une limite en a = 0?
 - 2) expri ner f(x) sur |2.+ [puis déduire lim f(x)
 - 3) more ver que $\lim_{x \to \infty} f(x) = +\infty$

Les limites

Exercice I

On considere la fonction $f(x) = \frac{x' + 1 - \cos x}{x + \sin x}$

- a) calculer lim f (x)
- b) monther que $\lim_{x\to 0} \frac{f(x)}{x} = \frac{3}{4}$
- c) montrer que

$$\forall x \sim 1 : \frac{x^2}{x-1} \le f(x) \le \frac{x^2+2}{x-1}$$

en déduire $\lim f(x)$

- d) montrer que $\lim_{t\to\infty} \frac{\sin x}{x} = 0$
- el $\lim_{x \to \infty} \frac{1 \cos x}{x} = 0$ puis déduire $\lim_{x \to \infty} f(x)$

Exercise 2

Total la fonction $f(x) = \sqrt{x^2 - 2x \cos x + 1}$

- a) Montrer que (∀x ∈ R) |x = cosx | ≤ f(x)
- (b) Montrer que $\lim_{z \to \infty} \frac{\cos z}{z} = 0$
- c) déterminer $\lim_{x \to \infty} \frac{\cos x}{x}$
- d) Montrer que $(\forall x \in \mathbb{R}^*)$ $f(x) \le x+1$

en déduire $\lim_{x \to 0} \frac{f(x)}{x}$

Exercice 3

Joient a od b = 0

On considère la fonction $f(x) = \frac{x}{a} E\left(\frac{b}{x}\right)$

a) Moontrer que

 $(\forall x \in \mathbb{R}^{n}) / \frac{b}{a} - \frac{x}{a} < f(x) \le \frac{b}{a}$

- b) encadre fix) pour x < 0
- c) en déduire que $(\forall x \in \mathbb{R}^*)$ $\left| f(x) \frac{b}{a} \right| \le \frac{|x|}{a}$ puis calculer $\lim_{x \to a} f(x)$

Exercice 4

1) Determiner suivant a la limite

 $\lim_{x \to 1} \frac{1}{(x-1)^2} - \frac{\alpha x}{(x^2-1)^2}$

2) Eludier suivant a la limite

 $\lim \sqrt{x^2 + x + 1} - ax$

Exercise 5

Goil m ∈ R on considère la fonction

$$f_m(x) = \frac{x^4 + mx + 1}{x^2 + x}$$

- a) déterminer D le domaine de 1.
- b) calculer les limites (im f (x) et (im f (x)
- c) discuter suivant m la limite | lim f_ (x)

Exercice 6

Toil 1 la fonction définie par :

$$\begin{cases} f(x) = \frac{x^2 + 2x - 3}{x^2 - x} & ; x < 1 \\ f(x) = \frac{-2x + k}{\sqrt{x^2 + 2 + 1}} & ; x \ge 1 \end{cases}$$

- a) calculer les limites 1 im f (x) , 1 im f (x)
- b) calculer la limite $\lim_{x \to 0} f(x)$
- c) calculer $\lim_{x\to 1^+} f(x)$ puis déduire b

pour que sadmette une limite en a = 1

Exercise 7

- a) Calculer lim (ax + 1)2 1
- b) montrer par récurrence que

$$\lim_{t\to 0} \frac{(ax+1)^n-1}{t} = na, a \in \mathbb{R}^n$$

c) on déduire $\lim_{x\to 0} \frac{(11x+1)^{157} + (3x-1)^{57}}{x}$

Exercice 8

Tel la fonction $f(x) = \frac{\sin x + E(x)}{x}$

- a) montrer que $\lim_{x \to 0} f(x) = 1$
- () calculer lim f(x)
- c) montrer que $(\forall x \in \mathbb{R}^n)$ $|f(x) 1| \le \frac{2}{n}$ en déduire la limite $\lim_{x\to \infty} f(x)$

Calarter les limites suivantes :

$$\lim_{t \to 0} x^{2} \left(1 - \cos \frac{1}{x}\right), \quad \lim_{t \to 0} \frac{\sqrt{\tan x} - \sqrt{\sin x}}{x^{2} \sqrt{x}}$$

$$\lim_{t \to 1} \frac{\sqrt{x+1} - \sqrt{7-x}}{\sqrt{2x+3} - \sqrt{15-2x}}, \quad \lim_{t \to 0} \frac{x^{2}}{1 - \sqrt{\cos x}}$$

$$\lim_{t \to 1} \frac{\sqrt{x^{2}+2} - \sqrt{4-x}}{x-1}, \quad \lim_{t \to 1} \frac{\sqrt{x^{2}+3} - x - 1}{\sqrt{x+1} - \sqrt{2}}$$

$$\lim_{t \to 1} \frac{\sqrt{x+4} - \sqrt{x-4} - 2}{\sqrt{x-1} - 2}$$

$$\lim_{t \to 1} \sqrt{x - \sqrt{x} + 1} - \sqrt{x-1}; \quad \lim_{t \to 2} xE\left(\frac{4}{x^{2}}\right)$$

$$\lim_{x \to \infty} \sqrt{x - \sqrt{x} + 1} - \sqrt{x - 1} \quad ; \quad \lim_{x \to 0} xE\left(\frac{4}{x^2}\right)$$

$$\lim_{x \to \sqrt{2}} \frac{(1-x^2)\sqrt{x^2+2}+2}{x^2-2} \quad ; \quad \lim_{x \to 1} \frac{E(\sqrt{x})}{x+1}$$

Montrer que

$$\lim_{x \to -\infty} \frac{1}{x} E(x) = 1 , \lim_{x \to -\infty} x^2 E\left(\frac{1}{x}\right) = -\infty$$

Soil 1 la fonction définie par :

$$\begin{cases} f(x) = \frac{x^2 + (m+1)x - 3}{x^2 + x} & ; \ x < -1 \\ f(x) = \frac{-2x + b}{\sqrt{x^2 + 2} + 1} & ; \ x \ge -1 \end{cases}$$

- a) calculer les limites lim f (x) , lim f (x)
- k) disculer suivant mla limite 1im f(x)
- c) calculer $\lim_{x \to \infty} f(x)$ puis déduire b et mpour que 1 admette une limite en 11 = -1

Toil la fonction & définie par :

$$\begin{cases} f(x) = xE\left(\frac{1}{x}\right) & ; \quad x < 0 \\ f(x) = \frac{x - E(x)}{\sqrt{x}} & ; \quad x > 0 \end{cases}$$

- 1) montrer que $(\forall x < 0)$ $1 \le xE\left(\frac{1}{x}\right) < 1 x$ en déduire $\lim_{x\to 0} f(x)$
- 2) sadmet-elle un limite en a=0?

Loit s la fonction définie sur R' par :

$$f(x) = \frac{\sqrt{|x| - E(x)}}{x^2}$$

- 1) montrer que $(\forall x \in \mathbb{R}^{+*})$ $0 \le f(x) < \frac{1}{x^2}$
 - en déduire $\lim f(x)$
- 2) montrer que

$$(\forall x \in \mathbb{R}^{-x})$$
 $0 \le f(x) < \frac{\sqrt{1-2x}}{x^2}$

en déduire $\lim_{x\to\infty} f(x)$

Soit s la fonction définie par :

$$f(x) = \frac{1 - \cos x \cos 2x \cos 3x}{x^2}$$

1) vérifier que

$$\frac{1-\cos x \cos 2x}{x^2} = \frac{1-\cos x}{x^2} + \cos x \frac{1-\cos 2x}{x^2}$$

El calculer
$$\lim_{x \to 0} \frac{1 - \cos x \cos 2x}{x^2}$$

2) en déduire que
$$\lim_{x\to 0} f(x) = 7$$

1	EXERCICE 1 Limites en un point				
	$\lim_{x \to 2} \frac{x\sqrt{x+6} + 1}{x^2 - 1}$	$\lim_{x \to 1} \frac{2x^2 + x - 4}{3x + 1}$	$\lim_{r\to 1} \frac{x^3-1}{x^2-1}$	$\lim_{x \to -1} \frac{2x^2 + x}{4x^2 - 1}$	
	$\lim_{x \to 1} \frac{x^2 - 6x + 9}{x^2 - 9}$	$\lim_{x \to -2} \frac{x^2 + x - 2}{x^2 - 4}$	$\lim_{x \to 1} \frac{x\sqrt{x} - 1}{x^2 - 1}$	$\lim_{x \to -1} \frac{x^2 + 3x}{\left(x+1\right)^2}$	
	$\lim_{x \to 2} \frac{2x^2 - 3x - 2}{x^2 - x - 2}$	$\lim_{r\to 2} \frac{x^2 + 2x}{\left(x-2\right)^2}$	$\lim_{x \to -1} \frac{x^2 - x - 12}{x^2 - 9}$	$\lim_{x \to 3} \frac{\sqrt{2x+3}-3}{x-3}$	
	$\lim_{r \to 2} \frac{x^3 - 8}{x^2 - 3x + 2}$	$\lim_{x\to 4} \frac{\sqrt{2x+1}-3}{\sqrt{x}-2}$	$\lim_{x \to 3} \frac{3x+5}{ x+3 }$	$\lim_{x \to \frac{3}{2}} \frac{2x^2 - 5x + 3}{4x^2 - 9}$	

EXERCICE 2 Limites à droite - limites à gauche

$\lim_{\substack{x \to \frac{1}{2} \\ x \to \frac{1}{2}}} \frac{4x^2 - 5}{2x - 1}$	$\lim_{x \to -3 \atop x \to -3} \frac{2x+3}{x^2-9}$	$\lim_{\substack{x \to 1 \\ x < 1}} \frac{3x - 5}{x^2 - 1}$	$\lim_{\substack{x \to -\frac{3}{2} \\ x < \frac{-3}{2}}} \frac{6x + 5}{4x^2 - 9}$	
$\lim_{\substack{x \to 3 \\ x \to 3}} \frac{x^2 - 4x + 3}{x^2 - 3x}$	$\lim_{\substack{x \to 2 \\ x \to 5}} \frac{\sqrt{x-5}}{x^2 - 5x}$	$\lim_{\substack{x \to 0 \\ x \to 0}} \left(\frac{2}{x} + \frac{x - 3}{x^2} \right)$	$\lim_{\stackrel{x\to -2}{r\to -2}} \frac{x(2x+5)}{(x-3)(x+2)}$	
$\lim_{\substack{x\to 0\\x<0}} \frac{x+8-4\sqrt{x+4}}{x^2}$		$\lim_{\substack{x \to -3 \\ x \to -3}} \frac{\sqrt{x+3} + x^2 - 9}{x+3}$		

EXERCICE 3 Limiles on l'infinie				
$\lim_{r \to +\infty} \sqrt{x^2 - x + 1} + x$	$\lim_{x\to\infty} \sqrt{x^2-x+1}-x$	$\lim_{r\to\infty}\sqrt{x^2-x+1}-2x$		
$\lim_{x\to\infty} \sqrt{4x^2 - 3x + 3} + 2x$	$\lim_{x \to \infty} \frac{\sqrt{x^2 - x + 1} + x}{2x + 3}$	$\lim_{x \to \infty} \sqrt{x^2 + 3} - 2x$		
$\lim_{x \to -\infty} \frac{\sqrt{x^2 - x + 1 + 3x}}{3x + 2}$	$\lim_{x \to -\infty} \sqrt{x^2 - 2x + 3} + 3x$	$\lim_{x \to \infty} \frac{\sin 3x}{x}$		
$\lim_{x \to +\infty} \frac{\sqrt{2x+1} + x}{x+3}$	-1 lim	$\frac{\sqrt{x^2 - x\sqrt{x} + 1} - x}{2\sqrt{x} + 3}$		
$\lim_{t\to\infty} \frac{\sin \pi x}{3x}$	$\lim_{x\to\infty}\frac{2}{x}E(x)$	$\lim_{x \to -\infty} x^2 E\left(\frac{3}{x}\right)$		

EXERCICE 4 Limites trigonométriques

$\lim_{x\to 0} \frac{\tan \pi x}{\sin 2x}$	$\lim_{x \to 0} \frac{5x + 2\sin x}{3\tan 2x - x}$	$\lim_{x\to 0} \frac{1-\cos\left(x\sqrt{2}\right)}{x^2} \checkmark$	$\lim_{x \to \infty} \frac{1 - 2\cos 3x}{x^2 + 2}$	
$\lim_{x\to 0}\frac{\cos\pi x-1}{x\sin3x}$	$\lim_{x\to 0} \frac{\sin 2\pi x}{5x}$	$\lim_{x \to -\frac{\pi}{2}} \frac{\cos x}{1 + \sin x}$	$\lim_{x \to 0} \frac{7x - \sin 3x}{2x - 3\tan 3x}$	
$\lim_{\substack{x\to 0\\x>0}}\frac{1+\sin x}{1-\cos x}$	$\lim_{x \to -1} \frac{\sin(\pi x)}{x+1}$	$\lim_{x \to x} \frac{\sqrt{1 + \cos x}}{\sin^2 x}$	$\lim_{x \to \frac{\pi}{6}} \frac{2\sin x - 1}{3x - \frac{\pi}{2}}$	
$\lim_{x\to 0}\frac{3\cos x}{}$	$\frac{-2\cos\sqrt{2x-1}}{x^2}$	$\lim_{x\to 0} \frac{2\sin x - \sin 2x}{x^3}$		

$$\lim_{x \to -\infty} \frac{x - \sin 3x}{2 \cos x - 3x} \qquad \lim_{x \to 0} \frac{x^2}{2 - \sqrt{3 + \cos x}} \qquad \lim_{x \to 1} \frac{\sqrt{3x^2 + 1}}{\sqrt{x + 2}}$$

$$\lim_{x \to 0} \frac{1 - 2\cos 3x}{2 - x^2} \qquad (2 - x^2)\sqrt{x^2 + 3} + 3 \qquad \lim_{x \to 0} \frac{\cos ax - \cos ax}{\cos ax - ax}$$

$$\lim_{x \to 0^+} \frac{\sin x \sqrt{\tan x} - \tan x \sqrt{\sin x}}{x^3 \sqrt{x}} \qquad \lim_{x \to 1} \frac{1 - \sqrt{3 - \sqrt{7 - 3x}}}{1 - \sqrt{3 - \sqrt{\frac{4}{3 - 2x}}}}$$

EXERCICE 6

Toit m un paramètre réel . on pose $f_m(x) = \frac{x^3 + (1-m)x - m}{x^2 - x}$

- 1) déterminer D l'ensemble de définition de f_m et calculer $\lim_{x\to +\infty} f_m(x)$
- 2) on suppose que m=1 calculer $\lim_{x\to 0} f_1(x)$; $\lim_{x\to 1} f_1(x)$
- 3) on suppose que $m \neq 1$ étudier suivant m la limite

$$\lim_{x\to \infty} \left(f_m(x) + \frac{2(m-1)}{x} \right)$$

EXERCICE 7

On considère la fonction 1 définie par :

$$\begin{cases}
f(x) = \frac{2x^2 + 3mx - 1}{x^2 - 1} & ; x > 1 \\
f(x) = \frac{x + b}{\sqrt{2 - x} + 1} & ; x \le 1
\end{cases}$$

- 1) calculer les limites $\lim_{x\to \infty} f(x)$ et $\lim_{x\to \infty} f(x)$
- 2) étudier suivant m la limite $\lim_{x\to 1} f(x)$
- 3) calculer $\lim_{x\to 1} f(x)$ puis déterminer b et m pour que f admet une limite en $x_0=1$

EXERCICE 8 Calculer les limites ci-dessous

$$\lim_{x \to 4} \frac{x\sqrt{x} - 2\sqrt{x + 5} - 2}{\sqrt{2x + 1} - 3} \lim_{x \to \frac{\pi}{4}} \left(x - \frac{\pi}{4}\right) \tan 2x \qquad \lim_{x \to 0} \frac{x - 3 - \sqrt{x + 1} - 2\sqrt{4 - x}}{x^2}$$

$$\lim_{x \to \pi} \frac{\sqrt{x} - \sqrt{\pi}}{\sqrt{1 + \cos x}} \qquad \lim_{x \to 2} \left(\frac{4}{x^2 - 4} + \frac{1}{x + 2}\right) \lim_{x \to -1} \frac{\sqrt{x + 2} + \sqrt{1 - 3x} - 3}{\sqrt{2x + 3} - \sqrt{3 - x} + 1}$$

$$\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x + \cos x}{1 - \sin x - \cos x} \qquad \lim_{x \to 0} \frac{x^2 \sin \frac{1}{x}}{\sin x} \qquad \lim_{x \to -1} \frac{\sqrt{x + 5\sqrt{1 - 3x} - 3}}{\sqrt{-x + 4\sqrt{3 - x} - 3}}$$

$$\lim_{x \to \pi} \frac{\sqrt{x + 2} - \sqrt{x - 2}}{\sqrt{2x + 3} - \sqrt{2x - 3}} \qquad \lim_{x \to \pi} \frac{x^2 - \pi^2}{\sin x} \qquad \lim_{x \to -1} \frac{\sqrt{2x + 3} - \sqrt{x + 5} + 1}{2\sqrt{x + 2} - \sqrt{3} - x}$$

Calculer les limites suivantes :
$$\lim_{x \to 0} \frac{\sqrt{1+x}-1-\frac{x}{2}}{x^2} \quad ; \quad \lim_{x \to 0} \frac{E\left(\sqrt{x}\right)}{x+1} \quad ; \quad \lim_{x \to 0} \frac{x-\sqrt{x}}{\sqrt{\sin x - \tan^2 x}}$$

$$\lim_{x \to 0} \frac{E(\sqrt{x})}{x+1} ; \qquad \lim_{x \to 0} \frac{x-\sqrt{x}}{\sqrt{\sin x}-1}$$

$$\lim_{x \to 1} \frac{nx^{\frac{n+1}{n}} - (n+1)x + 1}{x^{\frac{n+1}{n}} - x^{\frac{n}{n}} + x - 1} \quad ; \quad \lim_{x \to 1 \atop s \le n} \frac{\sqrt{a^2 - x^2} + a - x}{\sqrt{a - x} + \sqrt{a^2 - x^2}} \quad ; \quad \lim_{x \to 0 \atop s > 0} \sqrt{x} E\left(\frac{3}{x}\right)$$

$$\lim_{\substack{x \to 0 \\ x \neq 0}} \sqrt{x} E\left(\frac{x}{x}\right)$$

$$\left(2 + \sqrt{x}\right)\sqrt{2 - x} - 3$$

$$\lim_{x \to \frac{1}{2}} \frac{1 - \sin x}{\sin(\cos x)}$$

$$\lim_{x \to 0} \frac{1}{x^2} + \sin\left(\frac{1}{x^2}\right)$$

$$\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\sin(\cos x)} \qquad ; \qquad \lim_{x \to 0} \frac{1}{x^2} + \sin\left(\frac{1}{x^2}\right) \qquad ; \qquad \lim_{x \to 1} \frac{\left(2 + \sqrt{x}\right)\sqrt{2 - x} - 3}{x^2 - 1}$$

Exercice (2)

Plai

Soit
$$f$$
 la fonction définie par : $f(x) = x^2 \left(E\left(\frac{1}{x}\right) + E\left(\frac{2}{x}\right) \right)$

h) montrer que
$$(\forall x \in \mathbb{R}^*)$$
 $3x - 2x^2 < f(x) \le 3x$

2) déduire
$$\lim_{x\to 0} f(x)$$

exercice (3)

on considère la fonction définie par :
$$f(x) = \frac{x - E(x)}{x + E(x)}$$

2) a) montrer que
$$\lim_{x\to 0} f(x) = 1$$

b)
$$f$$
 admet-elle un prolongement par continuité en $a=0$

3) montrer que
$$\lim_{x \to +\infty} f(x) = 0$$
 et calculer $\lim_{x \to +\infty} f(x)$

Exercice (4)

Soit k un élément de $\mathbb{N}^*-\{1\}$. on considère la fonction f définie par : $f(x)=xE\left(\frac{1}{\sqrt{x}}\right)$

1) résoudre dans
$$\mathbb{R}$$
 l'équation $f(x) = 0$ puis déduire $\lim_{x \to +\infty} f(x) = 0$

2) a) montrer que
$$\forall x \in \left[\frac{1}{4}, 1\right[$$
 $f(x) = x$ et déterminer $\lim_{\substack{x \to 1 \\ x < 1}} f(x) = \sum_{x = 1}^{n} f(x)$

$$\int b$$
 calculer $\lim_{x \to 1} f(x)$

3) montrer que
$$\lim_{\substack{x\to 0\\x>0}} f(x) = 0$$

4) a) montrer que
$$\left(\forall x \in \left[\frac{1}{k^2}, \frac{1}{(k-1)^2} \right] \right) f(x) = (k-1)x$$

b) étudier la limite de
$$f$$
 au point $\frac{1}{k^2}$

	سب lim f(x) في كل حالة من الحالات التالية:	12/
	x-+x ₀	
.b	$x_0 = 0 \; ; \; f(x) = \frac{\sin 2x}{3x}$.a
.d	$x_0 = 0 \; ; \; f(x) = \frac{\tan 2x}{3x}$.c
1	$x_0 = 0$; $f(x) = \frac{\tan(4\sin x)}{5\sin x}$.e
.h		-g
		التعز
	ب lim f(x) في كل حالة من الحالات التالية: من الحالات التالية:	احسا
.b	$x_0 = 0 \text{if } (x) = \frac{\tan^2 x}{x}$	a
d	$x_0 = 0$; $f(x) = \frac{(1 - \cos x) \sin x}{\tan x^3}$	C
f	$x_0 = 0$; $f(x) = \frac{x^4 + \sin^2 x}{1 - \cos x}$	e
.h	$x_0 = 0$; $f(x) = \frac{x + \sin^2 x}{1 - \cos x}$.8
j		i
1	$x_0 = 0 ; f(x) = \frac{(1 - \cos x)\sin x}{\tan^2 x}$	k
.n	$x_0 = 0 \; ; f(x) = \frac{\cos x}{\tan^2 x}$	m
.p		9
	ا السلامة في كل حالة من الحالات التالية: من على حالة من الحالات التالية:	احا
.b	$x_0 = -\pi/2$; $f(x) = (1 + \sin x) \tan^2 x$.a
.d	$(a \neq \frac{\pi}{2} + k\pi)$; $x_0 = a$; $f(x) = \frac{\sin(x/2) - \sin(a/2)}{\sin x - \sin a}$.c
f	$x_0 = \frac{\pi}{3}$; $f(x) = \frac{\sin 3x}{1 - 2\cos x}$.e
.h	$x_0 = \frac{\pi}{6}$; $f(x) = \frac{2\sin x - 1}{4\cos^2 x - 3}$.8
j	$x_0 = \frac{\pi}{4}$; $f(x) = \frac{\sqrt{2} \sin x - 1}{\sqrt{2} \cos x - 1}$.i
1.1	$x_0 = \frac{\pi}{3}$; $f(x) = \frac{2\cos^2 x + \cos x - 1}{1 - 2\cos x}$	l.k
	d d f h h b d f h f h f h f h j	$x_0 = 0 \; ; \; f(x) = \frac{\tan 2x}{3x}$ $x_0 = 0 \; ; \; f(x) = \frac{\tan(4\sin x)}{5\sin x}$ $x_0 = 0 \; ; \; f(x) = \frac{\sin(x+4\tan x)}{5\tan x}$ $\frac{2i3x}{5\sin x}$ $\frac{1}{\sin x} = \frac{\sin x}{x}$ $\frac{1}{\sin x} = \frac{\sin x}{x}$ $\frac{1}{\sin x} = \frac{x^4 + \sin^2 x}{1 - \cos x}$ $\frac{1}{\sin x} = \frac{x^4 + \sin^2 x}{1 - \cos x}$ $\frac{1}{\sin x} = \frac{x^4 + \sin^2 x}{1 - \cos x}$ $\frac{1}{\sin x} = \frac{x^4 + \sin^2 x}{1 - \cos x}$ $x_0 = 0 \; ; \; f(x) = \frac{x^4 + \sin^2 x}{1 - \cos x}$ $x_0 = 0 \; ; \; f(x) = \frac{x + \sin x}{x - \sin x}$ $x_0 = 0 \; ; \; f(x) = \frac{x + \sin x}{x - \sin x}$ $x_0 = 0 \; ; \; f(x) = \frac{x + \sin x}{x - \sin x}$ $x_0 = 0 \; ; \; f(x) = \frac{(1 - \cos x)\sin x}{\tan^2 x}$ $x_0 = 0 \; ; \; f(x) = \frac{(1 - \cos x)\sin x}{\tan^2 x}$ $x_0 = 0 \; ; \; f(x) = \frac{(1 + \cos x)\sin x}{\tan^2 x}$ $x_0 = 0 \; ; \; f(x) = \frac{\sin x}{\tan x}$ $x_0 = \frac{\pi}{2} \; ; \; f(x) = (1 + \sin x)\tan^2 x$ $x_0 = \frac{\pi}{2} \; ; \; f(x) = \frac{\sin 3x}{1 - 2\cos x}$ $x_0 = \frac{\pi}{4} \; ; \; f(x) = \frac{2\sin x - 1}{4\cos^2 x - 3}$ $y = \frac{\pi}{4} \; ; \; f(x) = \frac{\sqrt{2}\sin x - 1}{\sqrt{2}\cos x - 1}$ $y = \frac{\pi}{4} \; ; \; f(x) = \frac{\sqrt{2}\sin x - 1}{\sqrt{2}\cos x - 1}$

A STATE OF THE PARTY OF THE PAR	
Exercices Calculer la limite de la fonction f quand x tend vers x_0 ,	التمرين: 1 احسب نهاية الدالة f عندما يؤول x اللي xn بي كل حالة من
dans chacun des cas suivants :	الحالات التالية:
2) $x_0 = 5$; $f(x) = \frac{\sqrt{x-1}-2}{x^2-25}$	1) $x_0 = 1$; $f(x) = \frac{\sqrt{x-1}}{x-1}$
4) $x_0 = 1$; $f(x) = \frac{\sqrt{x+3}-2}{x-1}$	3) $x_0 = 3$; $f(x) = \frac{x^2 - 2x - 3}{\sqrt{x} - \sqrt{3}}$
6) $x_0 = 4$; $f(x) = \frac{\sqrt{x+5} - \sqrt{2x+1}}{x-4}$	5) $x_0 = 11$; $f(x) = \frac{x^2 - 121}{\sqrt{x} - \sqrt{11}}$
8) $x_0 = 1$; $f(x) = \frac{\sqrt{3x+1} - \sqrt{x+3}}{2x^2 + 3x - 5}$	7) $x_0 = 2$; $f(x) = \frac{\sqrt{x + 7} - \sqrt{2(x^2 + 3x - 5)}}{\sqrt{x^2 + x - 6}}$
10) $x_0 = 2$; $f(x) = \frac{2\sqrt{5x-1} - (7x-8)}{x^2 + x - 6}$	9) $x_0 = -1$; $f(x) = \frac{6x^2 - 4x + 5}{3x^2 - x - 4}$
12) $x_0 = 2$; $f(x) = \frac{2\sqrt{5x-1} - (7x-8)}{3\sqrt{x^2 + x + 10 - 12}}$	9) $x_0 = -1$; $f(x) = \frac{6}{3x^2 - x - 4}$ 11) $x_0 = 2$; $f(x) = \frac{3 - \sqrt{4x + 1}}{\sqrt{x + 2} - 2}$
14) $x_0 = 0$; $f(x) = \frac{\sqrt{x+1} + \sqrt{x+4} - 3}{x}$	13) $x_0 = 0$; $f(x) = \frac{x}{\sqrt{x^2 + 1} - 1}$ 15) $x_0 = 1$; $f(x) = \frac{\sqrt{x + 1} + \sqrt{x^2 - 1} - \sqrt{x^3 + 1}}{x^3 - 1}$
16) $x_0 = \sqrt{2}$; $f(x) = \frac{1 + \sqrt{x^2 + 1} - \sqrt{x^2 - 1} - \sqrt{2x^2 + 1}}{\sqrt{2x + 1} - \sqrt{x^2 + 1}}$	(3) $x_0 = 1$; $f(x) = \frac{\sqrt{x+1} + \sqrt{x^2 - 1} - \sqrt{x^3 + 1}}{x^3 - 1}$
English 3	التمرين: 2
Calculer la limite de la fonction f quand x tend vers ∴ + ∞ puis - 67	الحسب نهاية الدالة f عندما يؤول x الى ∞ + ثم ∞ - في كل حالة ومن الحالات التالية:
2) $f(x) = 2x - 1 - \sqrt{9x^2 + 3x - 2}$	1) $f(x) = \sqrt{4x^2 + x + 1} - x$
4) $f(x) = 3x + 5 - \sqrt{2x^2 + 6x + 5}$	3) $f(x) = \sqrt{3x^2 + x + 1 - x + 7}$
6) $f(x) = 4.x + 5 - \sqrt{16x^2 + 5x} - 7$	5) $f(x) = \sqrt{25x^2 + 2x + 1 - 5x + 2}$
8) $f(x)=11.x+2-\sqrt{121x^2+6x-5}$	7) $f(x) = \sqrt{5x^2 + 3x + 4 + \sqrt{5}x + 3}$
10) $f(x) = \sqrt{25x^2 + 3x^2} - \sqrt{16x^2 + 2x + 5}$	9) $f(x) = \sqrt{4x^2 + x - 2} + \sqrt{x^2 + 3x - 2}$
12) $f(x) = \sqrt{5x^2 + 4x - 1} - \sqrt{5x^2 + 4x + 1}$	11) $f(x) = \sqrt{9x^2 + x - 2} - \sqrt{9x^2 + 3x - 2}$
Exercice :3	
Calculer la limité de la fonction f quand x tend vers $: +\infty$ puis $-\infty$	أحسب نهاية الدالة f عندما يؤول ج الى 00+ثم 00- في كل حالة من الحالات التالية:
(2) $f(x) = 3x - 1 + \sqrt{9x^2 + 3x - 2}$	1) $f(x) = \sqrt{4x^2 + x + 1} + 2x$
4) $f(x) = 7x + 5 + \sqrt{49x^2 + 6x + 5}$	3) $f(x) = \sqrt{3x^2 + x + 1} + \sqrt{3}x + 7$
6) $f(x) = \sqrt{3} \cdot x + 5 + \sqrt{3}x^2 + 5x - 7$	5) $f(x) = \sqrt{x^2 + 2x + 1 + x + 2}$
8) $f(x)=12.x+2+\sqrt{144x^2+6x-5}$	7) $f(x) = \sqrt{7x^2 + 3x + 4} + \sqrt{7x + 3}$
$f(x) = \sqrt{x^2}$	+ x + 1 - (mx + 2) - aramétre m قيم البار متر)
(discuter suivant les valeurs au j	paramétre m ز تاقش حسب قیم البارمتر (تاقش

		تعرين 01: احسب النهايات التالية:			
$\lim_{x\to 0} \left(\frac{\cos x \sin x}{x} \right)$	$\lim_{x \to +\infty} \frac{x - \sqrt{1 + x^2}}{x}$	$\lim_{x \to 1} \frac{3 - \sqrt{5 + x}}{1 - \sqrt{5 - x}}$	$\lim_{x \to 2} \frac{3x - 1}{ x - 2 }$	$\lim_{x \to 2} \frac{x^3 - 2x^2 + x - 2}{x^2 - 2x}$	
$\lim_{x \to 0} \left(\frac{\sqrt{1+x} - \sqrt{1-x}}{\sin x} \right)$	$\lim_{x \to \infty} \left(\frac{3x^3 + x^2 + 1}{x(x \neq 1)} \right)$	$\lim_{x \to 0^+} \frac{1}{x^2} - \frac{2+x}{x^3}$	$\lim_{\substack{x \to 1 \\ x > 1}} \frac{\sqrt{x^2 - 1} + \sqrt{x} - 1}{\sqrt{x - 1}}$	$\lim_{x \to 1} \frac{\sqrt{x+8}-3}{x-1}$	
$\lim_{x \to 1} \frac{\sin\left(x^2 - x\right)}{x - 1}$	$\lim_{x \to +\infty} \frac{\sqrt{x^2 + 1} - x + 2}{x + 3}$	$\lim_{x \to -3} \frac{x^3 + 27}{x + 3}$	$\lim_{x \to 3} \frac{1 - 2x}{\left(x + 3\right)^2}$	$\lim_{x \to 1} \frac{x^3 + 3x - 4}{2x^2 - 2x}$	
$\lim_{x \to \pi/6} \frac{\sqrt{3}\sin x - \cos x}{x - \pi/6}$	$\lim_{ x \to\infty} \frac{\sqrt{x^2+x+3}}{3x}$	$\lim_{x \to 2^+} \frac{x+3}{x^2 - 5x + 6}$	$\lim_{\substack{x\to 0\\x>0}}\frac{1+2x}{x^2-x}$	$\lim_{x \to 3} \frac{\sqrt{x+1} - 2}{\sqrt{x-2} - 1}$	
$\lim_{x\to 1} \frac{\sin(\pi x)}{x-1}$	$\lim_{x \to +\infty} \left(\frac{2x - \sqrt{x}}{x + \sqrt{x}} \right)$	$\lim_{x \to 1} \frac{\sqrt{x-1}}{x^2 - 1}$	$\lim_{\substack{x \to 2 \\ x < 2}} \frac{4 - 2x}{x^2 - 4x + 4} =$	$\lim_{x\to 2} \frac{1-\sqrt{x-1}}{x-2}$	
$\lim_{x \to 3} \frac{\tan(x^2 - 3x)}{x - 3}$	$\lim_{x \to -\infty} \left(\sqrt{x^2 + 2x + 1} + 3x \right).$	$\lim_{x\to +\infty} x^3 - 2x^2$	$\lim_{\substack{x \to 2 \\ x \neq 2}} \frac{x^2 + 5x - 6}{x^3 - 4x}$	$\lim_{x \to 1} \frac{2x^2 - 5x + 3}{x^2 + 2x - 3}$	
$\lim_{x \to 0^+} \frac{1 - \cos \sqrt{x}}{\sin x}$	$\lim_{ x \to \infty} \frac{\sqrt{x^2 + 1} + x + 1}{x + 2}$	$\lim_{x \to -\infty} -2x^3 - 2x^2 + 5$	$\lim_{\substack{x \to -1 \\ x \to -1}} \frac{x^3 + x}{x^2 - 1}$	$\lim_{x \to 1} \frac{\sqrt{x^2 + 8} - 3}{x^5 - 5x + 6}$	
$\lim_{x \to \pi/2} \frac{\cos(x)}{\cos(3x)}$	$\lim_{x \to +\infty} \frac{\sqrt{3x^2 + 1} - x - 1}{x + 1}$	$\lim_{ x \to+\infty} -2x^2 - 2\sqrt{x}$	$\lim_{\substack{x \to 0 \\ x > 0}} \frac{x^2 - 1}{\sqrt{x^2 + x }}$	$\lim_{x \to 2} \frac{x^3 - 3x^2 + 3x - 2}{3x^2 - 6x}$	
$\lim_{x\to 0} \frac{\sin(2x) - 2\sin(x)}{x^3}$	$\lim_{x \to \infty} \frac{x^3}{x^2 + 1} - x$	$\lim_{x \to +\infty} \frac{5x^2 + x + 1}{x + 2}$	$\lim_{x \to 1} \frac{2x+3}{x^2-4x+3}$	$\lim_{x \to 1} \frac{x - 1}{\sqrt{x} - 1}$	
$\lim_{x\to 0}\frac{\tan(3x)}{\sin(2x)}$	$\lim_{ x \to \infty} \frac{x^2 - 16}{(x - 4)^2 (x + 3)}$	$\lim_{x \to +\infty} \frac{2x^2 - 7x + 3}{3x^2 - 8x - 3}$	$\lim_{x \to 1} \frac{1-x^3}{1-x^2}$	$\lim_{x \to 1} \frac{x - 3\sqrt{x} + 2}{\sqrt{x} - 1}$	
$\lim_{x \to 0^-} \frac{\sqrt{1 - \cos x}}{\tan x}$	$\lim_{ x \to\infty} \left(\sqrt{x^2-2x}-x\right)$	$\lim_{ x \to+\infty}\frac{x-1}{\sqrt{4x^2+5}-3}$	$\lim_{x \to -1} \frac{x^2 + 3x + 2}{x + 1}$	$\lim_{x\to 0} \frac{\sqrt{x^2+1}-1}{x}$	
$\lim_{x \to +\infty} x \left(1 - \cos \frac{1}{x} \right)$	$\lim_{ x \to \infty} \frac{3x^2 + x - 1}{x^4 + 5x^2 - 1}$	$\lim_{x \to +\infty} \frac{x - 3\sqrt{x} + 2}{\sqrt{x} - 1}$	$\lim_{x\to 2} \left(\frac{1}{x-2} - \frac{4}{x^2-4} \right)$	$\lim_{x \to 2} \frac{\sqrt{3x^2 + 4} - 4}{x - 2}$	
$\lim_{x\to +\infty} x \sin\left(\frac{1}{x}\right)$	$\lim_{x \to +\infty} \frac{2x+1}{(x+3)^2}$	$\lim_{x \to -\infty} \frac{\sqrt{3x^2 + 4} - 4}{x - 2}$	$\lim_{x \to 0^+} \frac{x - \sqrt{x}}{x^2 - x}$	$\lim_{x \to -1} \frac{x^2 + x - 2}{x^2 + x}$	
$\lim_{\substack{x \to 0 \\ x > 0}} \sqrt{x} \cos\left(\frac{1}{x}\right)$	$\lim_{x \to \infty} \frac{\sqrt{9x^2 + x + 2}}{x}$	$\lim_{x \to +\infty} \frac{x - \sqrt{x}}{x^2 - x}$	$\lim_{x \to 3} \frac{2x^2 + 7x + 3}{3x^2 - 8x - 3}$	$\lim_{x \to 1} \frac{x - 1}{\sqrt{4x^2 + 5} - 3}$	
$\lim_{x \to \pi/4} \frac{\sin x - \cos x}{x - \pi/4}$	$\lim_{x \to +\infty} \sqrt{x^2 + 1} - \sqrt{x^2 - x}$	$\lim_{x \to +\infty} \frac{x^2 - 9}{\sqrt{x} - \sqrt{3}}$	$\lim_{x \to 1} \frac{x^2 - 1}{x^3 + x - 2}$	$\lim_{x \to 3} \frac{x^2 - 9}{\sqrt{x} - \sqrt{3}}$	
$\lim_{x \to \pi/2} \frac{1 - \sin x}{x - \pi/2}$	$\lim_{x \to +\infty} \frac{x^2 + \cos x}{2x}$	$\lim_{x \to +\infty} \frac{x^2 + 3}{x + 1} - x$	$\lim_{x\to 0} \frac{\sqrt{x+1}-1}{x}$	$\lim_{x \to -1} \frac{3x}{1 - x^2}$	
$\lim_{x\to 0}\cos\left(\pi\frac{\sin x}{x}\right)$	$\lim_{x \to +\infty} x \sin \frac{1}{x}$	$\lim_{x\to-\infty}\sqrt{x^2-2x}+x-1$	$\lim_{x \to 0^+} \frac{x^{3} - 6}{x^2 - 2x}$	$\lim_{x \to 2} \frac{x^2 + x - 2 - 4}{x - 2}$	
$\lim_{x \to 0} \frac{\tan x - \sin x}{x^3}$	$\lim_{x \to +\infty} \frac{\sin x}{x}$	$\lim_{x \to -\infty} \frac{\sqrt{x^2 - 2x + 3}}{\sqrt{2 - x}}$	$\lim_{x \to 2^{+}} \frac{x^{3} - 6}{x^{2} - 2x}$	$\lim_{x\to 2} \frac{x+3}{x-2}$	
$\lim_{\substack{x \to 0 \\ x > 0}} \frac{\sin(2x)}{\sqrt{1 - \cos x}}$	$\lim_{x \to +\infty} x^2 \left(1 - \cos \frac{1}{x} \right)$	$\lim_{x \to -\infty} \frac{1}{x} - \frac{2}{\sqrt{x}}$	$\lim_{x \to 0} \frac{x - \sqrt{x^2 + 1} + 1}{x}$	$\lim_{x \to \frac{1}{2}} \frac{3x+4}{ 2x-1 }$	
$\lim_{x \to \frac{\pi}{2}} \frac{\sin x - 1}{\left(2x - \pi\right)^2}$	$\lim_{x \to \pi/4} \frac{\sqrt{2} - 2\cos x}{\sqrt{2} - 2\sin x}$	$\lim_{x \to +\infty} \frac{x^2 + \cos x}{2x}$	$\lim_{x \to a} \frac{x\sqrt{a} - a\sqrt{x}}{x - a}$	$\lim_{x \to 1} \frac{\left x^3 - x \right }{x - 1}$	

Calculer la limite de la fonction f quand x tend vers x_0 , Exercice: dans chacun des cas suivants ;

1)
$$x_0 = 2$$
; $f(x) = \frac{x^2 - x - 2}{x + 2}$

4)
$$x_0 = 1$$
; $f(x) = \left(\frac{1}{x(x+1)} - \frac{1}{x}\right)$

6)
$$x_0 = -3$$
; $f(x) = \frac{3x^2 + x - 24}{(x+3)(7x-2)}$

8)
$$x_0^* = 1$$
; $f(x) = \frac{7x^2 + 2x - 9}{x^2 + 3x - 4}$

10)
$$x_0 = -2$$
; $f(x) = \frac{x^2 + 2x}{x^2 + x - 2}$

12)
$$x_0 = 2$$
; $f(x) = \frac{x^2 - 2x - 7}{-2x^2 + x + 6}$

14)
$$x_0 = 3$$
; $f(x) = \frac{-2x + 5}{2x^2 + x - 21}$

16)
$$x_0 = 2$$
; $f(x) = \frac{x^2 + 2x - 2}{2x^2 - x - 6}$

الحسب نهاية الدالة f عندما يؤول x إلى x_0 في كل حالة من

1)
$$x_0 = -1$$
; $f(x) = \frac{x^2 - 3x - 2}{x - 2}$
3) $x_0 = 3$; $f(x) = \frac{x^3 - 1}{x^2 + x - 2}$

3)
$$x_0 = 3$$
; $f(x) = \frac{x^3 - 1}{x^2 + x - 2}$

5)
$$x_0 = 1$$
; $f(x) = \frac{t^2 + 2x - 3}{x^2 + x - 2}$

7)
$$x_0 = 2$$
; $f(x) = 3x^2 - 2x = 8$
 $-2x^{24} + x + 6$

9)
$$x_0 = 3$$
, $f(x) = \frac{x^2 - 9}{(x - 3)(7x - 11)}$

11)
$$x_0 = 1$$
; $f(x) = \frac{3x^2 + 2x - 8}{-2x^2 + x + 1}$

13)
$$x_0 = -1$$
; $f(x) = \frac{3x^2 - 2x - 8}{x^2 + x}$

11)
$$x_0 = 3$$
; $f(x) = \frac{3x^2 + 2x - 8}{-2x^2 + x + 1}$
13) $x_0 = -1$; $f(x) = \frac{3x^2 - 2x - 8}{x^2 + x}$
15) $x_0 = -1$; $f(x) = \frac{5x^2 - 2x - 4}{-3x^2 + x + 4}$

التمرين:2

Exercice:2

Calculer la limite de la fonction f quand x tend vers +∞ puis -∞ :

2)
$$f(x) = \frac{-2x^4 - 3x^2 - 2x + 7}{11x^2 - 2x + 7}$$

4) $f(x) = \frac{1}{x(x+1)}$

4)
$$f(x) = \begin{pmatrix} 1 & 1 \\ x(x+1) & x \end{pmatrix}$$

6)
$$f(x) = \frac{-3x^5 + x^2 - 24}{(x^3 + 3)(7x^2 - 2)}$$

(8)
$$f(x) = \frac{7x^2 + 2x - 9}{3x^7 + 3x - 4}$$

$$10) \quad f(x) = \frac{-10x^7 + 2x}{5x^7 + x - 2}$$

$$12) \quad f(x) = \frac{x^2 - 2x^5 - 7}{-2x^2 + x + 6}$$

10)
$$f(x) = \frac{-10x^7 + 2x}{5x^7 + x - 2}$$

12)
$$f(x) = \frac{x^2 - 2x^5 - 7}{-2x^2 + x + 6}$$

14)
$$f(x) = \frac{-2x^5 + 5}{2x^2 + x + 7x^7 - 21}$$

16)°
$$f(x) = \frac{7x^3 + 2x - 2}{2x^5 - x - 6}$$

الى $\infty+$ أحسب نهاية الدالة f عندما يؤول x الى $\infty+$ ثم $\infty-$ في كل حالة و من الحالات التالية:

1)
$$f(x) = \frac{4x^5 - 3x^3 - 2x + 7}{-3x^3 - 2x + 7}$$

3) $f(x) = \frac{-5x^3 - 1}{2x^7 + 5x - 2}$

3)
$$f(x) = \frac{-5x^3 - 1}{2x^7 + 5x - 3}$$

5)
$$f(x) = \frac{2x^2 + 2x - 3}{3x^2 + x - 2}$$

7)
$$f(x) = \frac{3x^3 - 2x - 8}{-2x^3 + x + 6}$$

7)
$$f(x) = \frac{3x^3 - 2x - 8}{-2x^3 + x + 6}$$

9) $f(x) = \frac{x^{11} - 9x + 3}{(x^5 - 3)(7x^3 - 11)}$

11)
$$f(x) = \frac{-3x^{6} + 2x^{4} - 8}{-2x^{2} + x + 1}$$
13)
$$f(x) = \frac{3x^{3} - 2x - 8}{x^{3} + x}$$

13)
$$f(x) = \frac{3x^3 - 2x - 8}{x^3 + x}$$

15)
$$f(x) = \frac{5x^2 - 2x - 4}{-3x^2 + x + 4}$$