Meromorphic Functions and the

Ldgarithm

luojunxun

2023年3月30日

(Singularity): z_0 is a ingularity of f while f has no defination at z_0

(Types of Singularities):1.Removable Singularitiy:0 for $f(z) = \frac{\sin z}{z}$ 2.Pole:0 for $f(z) = \frac{1}{z}$

3.Essential Singularity:0 for $e^{1/z}$

Theorem Laurent-serie: $f(z) = f(z_0) + \sum_{n=-\infty}^{-1} a_n (z-z_0)^n + \sum_{n=0}^{\infty} (z-z_0)^n$ the first part is called the Principal-Part, the second part is called the Analytic-Part.espacially a_{-1} is called the residue of f at z_0

Theorem 1.1: f hol on Ω , $f(z_0) = 0 \Rightarrow \exists u = O(z_0, r) \ \exists g(z)$ defines on $u, \exists n > 0$ s.t. $f(z) = (z - z_0)^n g(z)$ the n called the order of z_0

Theorem 1.2: f hol on Ω, z_0 is a pole of $f \Rightarrow \exists h(z)$ hol on $\Omega, \exists n > 0$ s.t. $f(z) = (z - z_0)^{-n}h(z)$ n called the order of pole z_0

Theorem 1.3: if f has a pole of order $n \Rightarrow f(z) = \frac{a_{-n}}{(z-z_0)^n} + \cdots + \frac{a_{-1}}{z-z_0} + g(z)$ g is hol on a neiborhood of z_0

Theorem 1.4:
$$res_{z_0}f = \lim_{z \to z_0} (z - z_0)f(z) = \lim_{z \to z_0} \frac{1}{(n-1)!} \frac{d^n}{dz^n} (z - z_0)^n f(z)$$

The residue formula

Theorem 2.1: z_0 is a pole of f and f hol on $\Omega - \{z_0\}, z_0 \in Int(C), C \cup Int(C) \subset \Omega \Rightarrow res_{z_0} f = \frac{1}{2\pi i} \int_C f(z) dz$

Corollary 2.2:
$$\int_C f(z)dz = 2\pi i \sum_{k=1}^N res_{z_k} f$$

Corollary 2.3:
$$\int_{\gamma} f(z)dz = 2\pi i \sum_{k=1}^{N} res_{z_k} f$$