

LifeTIME Final Presentation

Enabling second-life battery production.

Image from Nano Magazine - https://nano-magazine.com/news/2018/6/13/the-technologies-which-are-revolutionizing-batteriesc

The iOS family pile (2015) - Blake Patterson via flickr. Licenced under Creative Commons By 2.0 Deed

Image by Ashley Felton - Public Domain

Image from National Institute for Occupational Safety and Health (NIOSH) USA - Public Domain

By User:Synth85 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=75041978

By Varistor60 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=59368531

Adapted from Drax.com

7 AFFORDABLE AND CLEAN ENERGY

11 SUSTAINABLE CITIES AND COMMUNITIES

RESPONSIBLE CONSUMPTION AND PRODUCTION

The Strategy of Achieving Flexibility in Materials and Configuration of Flexible Lithium-Ion Batteries - Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/Schematic-diagram-of-working-mechanism-of-lithium-ion-battery_fig1_356134415 [accessed 3 Jun, 2024]

Lithium-Phosphate

- Used in energy storage and off-grid living.
- Low capacity loss over time.
- Heavier, Larger.

Lithium-Cobalt

- Used in portable applications (phones, tablets, cars)
- High capacity loss.
- Lighter, smaller.

Power = Voltage x Current

Capacity (mWh)

Capacity (mAh)

The problems with predicting battery health.

- Cycling data is expensive
- Degradation depends on:
 - Charging and Discharging (Speed, Depth)
 - Temperature
 - Cell chemistry
 - Time spent charged.
- Future life application depends on the process which degraded.

EIS: A different approach

EIS = Electrochemical Impedance Spectroscopy

EIS Testing Equipment

An example of an EIS spectrum

Why is EIS useful?

How do we use the EIS graph to simulate what's going on inside the battery?

Fitting a circuit to EIS

How does this help LiFETIME reach their goal?

Aged first-life pack

Device outputs remaining capacity 60% 65% 80% 90% 30% 20% 70% 75% 60% 65% 80% 90%

Suitable for recycling

Suitable for energy storage if grouped ±5%

Suitable for EVs

Challenges of fitting circuit models

Software packages for circuit fitting

impedance.py

Impedance.py

Scipy.optimize

Scipy.optimise.curve_fit with KDE

Summary

Aged first-life pack

Suitable for recycling

Suitable for energy storage if grouped ±5%

Suitable for EVs

References

- Slides 4.5:

- Brown M, Hilton M., Crosette S. et Al (2021). Cutting Lithium-Ion Battery Fires in the Waste Industry, Eunomia [Link]
- United Nations Institute for Training and Research. (2024). Leading countries based on electronic waste generation worldwide in 2022 (in 1,000 metric tons) [Graph]. In Statista. Retrieved June 06, 2024 [Link]
- Slide 9: United Nations. "The 17 Goals." United Nations Sustainable Development. https://sdgs.un.org/goals. Accessed May 2023.

- Slides 14-16:

- Danae, Lithium Iron Phosphate vs Lithium Cobalt Oxide (2020), Grepow [Link]
- Chandan, P., Chang, CC., Yeh, KW. et al. Voltage fade mitigation in the cationic dominant lithium-rich NCM cathode. Commun Chem 2, 120 (2019). https://doi.org/10.1038/s42004-019-0223-3

- Slide 17:

- Edge, Jacqueline & O'Kane et Al.. (2021). Lithium Ion Battery Degradation: What you need to know. Physical Chemistry Chemical Physics. 23. 10.1039/D1CP00359C
- Zhang, Han, et al. "BatteryML: An Open-source platform for Machine Learning on Battery Degradation." arXiv preprint arXiv:2310.14714 (2023).

Slides 18-23:

- Westerhoff, U., Kurbach, K., Lienesch, F. & Kurrat, M., 2016. Analysis of Lithium-Ion Battery Models Based on Electrochemical Impedance Spectroscopy. Energy Technology, 4(12), pp.1620-1630. Available at: https://doi.org/10.1002/ente.201600154.
- Lohmann, N., Weßkamp, P., Haußmann, P., Melbert, J. & Musch, T. Electrochemical impedance spectroscopy for lithium-ion cells: Test equipment and procedures for aging and fast characterization in time and frequency domain. J. Power Sources 273, 613–623 (2015).
- Lohmann, N., Weßkamp, P., Haußmann, P., Melbert, J. & Musch, T. Electrochemical impedance spectroscopy for lithium-ion cells: Test equipment and procedures for aging and fast characterization in time and frequency domain. J. Power Sources 273, 613–623 (2015).
- Lifetime Cambridge. "Impact." Lifetime Cambridge, https://lifetimecambridge.co.uk/impact.