Правительство Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Высшая школа экономики" Московский институт электроники и математики им. А.Н. Тихонова Департамент прикладной математики

МЕЖДИСЦИПЛИНАРНАЯ КУРСОВАЯ РАБОТА

по теме:

Исследование вопросов оптимизации методов анализа некоторых схем шифрования сохраняющих формат (промежуточный)

Руководитель курсовой работы	Д.Б. Фомин
Академический руководитель	
образовательной программы	А.Б. Лось

СПИСОК ИСПОЛНИТЕЛЕЙ

Выполнил студент	 Щеглова П.Н.

СОДЕРЖАНИЕ

Определения, обозначения и сокращения	4
Обозначения и сокращения	4
Определения	4
Функции	4
Введение	5
1 Шифрование с сохранением формата	6
1.1 Описание концепции	6
1.2 Действующие стандарты	6
1.2.1 FEA-1	7
2 Линейный метод	9
2.1 Схема и обозначения	9
2.2 Теорема ([?])	10
2.3 Алгоритм метода	10
3 Эксперименты	12
3.1 Эксперимент № 1	12

ОПРЕДЕЛЕНИЯ, ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ

В настоящей работе применяются следующие термины с соответствующими определениями и сокращениями:

Обозначения и сокращения

с.в. случайная величина ;

Определения

Функции

$$a \oplus b = \begin{cases} 0, (a,b) \in \{(0,0), (1,1)\} \\ 1, (a,b) \in \{(0,1), (1,0)\} \end{cases}$$

$$Ind(Expr) = \begin{cases} 1, Expr = True \\ 0, Expr = False \end{cases}$$

$$(\alpha, b) = (\alpha_1 \cdot b_1) \oplus ... \oplus (\alpha_N \cdot b_N); \alpha = [\alpha_1, ..., \alpha_N], b = [b_1, ..., b_N];$$

ВВЕДЕНИЕ

С ускорением глобальной информатизации все острее встает вопрос о защите информации, в частности персональных данных. Несмотря на то, что существуют законы, регламентирующие порядок хранения и обработки персональных данных, возлагающие ответственность за их сохранность на операторов персональных данных, в большинстве случаев эта информация хранятся в базах в открытом виде, и несанкционированный доступ к ней не требует больших усилий от злоумышленника. В связи с тем, что последствия реализации данного типа угроз могут быть достаточно серьезными, остро встает задача безопасного хранения подобных данных. Для персональной информации наиболее подходящим способ защиты является шифрование с сохранение формата (format-preserving encryption, FPE), так как в отличие от традиционных механизмов шифрования, оно, во-первых, позволяет программам, обрабатывающим данные как переменные заранее заданного типа, так же успешно обрабатывать и зашифрованные данные, и, во-вторых, позволяет скрыть сам факт шифрования. В 2021 году Тим Бейн, аспирант Лёвенсокго католического университета в Бельгии, представил работу [?], в которой продемонстрировал, как можно уменьшить сложность атак на FPE-алгоритмы с настройками с помощью линейного криптографического анализа. В данной курсовой работе демонстрируются: описание линейного метода анализа схем FPE с настройками на основе сети Фейстеля, а именно стандарта FEA-1; применение линейного метода с акцентом на использование статистических критериев с использованием теоретических обоснований, представленных в анализируемой статье; а также результаты эксперимента по нахождению линейного статистического аналога для входных и выходных последовательностей шифропреобразования.

1 Шифрование с сохранением формата

1.1 Описание концепции

Format-preserving encryption (FPE) — это семейство перестановок на произвольном множестве \mathcal{S} , индексируемое ключом K [?]

$$FPE_K: \mathcal{S} \to \mathcal{S}$$
.

Примеры отображений: шифрование 16—значного номера банковской карты 16—значным числом; шифрование одного английского слова другим английским словом. Блочный шифр — частный случай FPE—схемы, для которой $\mathcal{S} = \{0,1\}^n$, где n — длина блока.

Истинно случайная перестановка является идеальным шифром FPE, однако для больших множеств невозможно предварительно сгенерировать и запомнить такую перестановку. Таким образом, проблема FPE состоит в том, чтобы сгенерировать псевдослучайную перестановку из секретного ключа так, чтобы время вычисления для одного значения было небольшим (в идеале постоянным, но, что наиболее важно, меньшим, чем O(n), где n - размер входных данных).

Алгоритм FPE можно реализовать с использованием сети Фейстеля. Например, стандарты FF1 и FF3-1 [?] берут за основу алгоритма сеть Фейстеля, а в качестве раундовой функции шифрования части входных данных F стандартизированный блочный шифр с блоками длины 128 бит (AES).

1.2 Действующие стандарты

Существует множество реализованных алгоритмов типа FPE, к действующим можно отнести разработанные в США FF1 и FF3-1 [?], а также южно-корейские FEA-1 и FEA-2 [?]. Алгоритм FEA, представленный институтом исследований национальной безопасности (NSR), также основан на сети Фейстеля, аналогично стандартам NIST, FF1 и FF3-1.

Разница между FEA-1 и FEA-2 состоит в том, что FEA-1 имеет размер настройки (параметра, подающегося на вход раундовой функции F) 128-n бит (где n - размер входной последовательности), каждый с 12, 14 и 16 раундами при длине двоичного ключа 128, 192 и 256, соответственно. FEA-2 имеет фиксированный размер настройки в 128 бит с 18, 21 и 24 раундами при длинах ключей 128, 192 и 256, соответственно.

1.2.1 FEA-1

Опишем подробнее стандарт, который анализируется в данной работе, а именно FEA-1:

На вход алгоритму подаются последовательности чисел из конечного множества, мощностью от 2^8 до 2^{128} , размер двоичного ключа K может составлять 128, 192 или 256 бит. Алгоритм представляет собой последовательное применение итераций сети Фейстеля, ее общая схема представлена в левой части рисунка 1. Входная последовательность X на каждом раунде делится на две равные части X_a и X_b , X_b передается на вход F-функции, общая схема которой обозначена в правой части рисунка 1: T_a и T_b - левая и правая половины настройки, принцип формирования которой будет описан далее, RK_a и RK_b - левая и правая половины раундового ключа, S - блок подстановки (в данной схеме применяются идентичные S-блоки), \mathcal{M} - блок умножения на заданную матрицу.

Рисунок 1 — Структура итерации FEA, на основе сети Фейстеля

Выбор настройки для каждого раунда происходит по следующему алгоритму: настройка T (битовый вектор длины 128-n) делится на две под-настройки $T_L=T_{[0:64-n_2-1]}$ и $T_R=T_{[64-n_2:128-n-1]}$ длины $64-n_2$ и $64-n_1$, соответственно. Полагаем $T_a^i=0$ для каждой итерации и T_b^i для i-ой итерации, как:

$$T_b^i = \begin{cases} T_L & \frac{i}{2} \in N \\ T_R & \frac{i+1}{2} \in N \end{cases}$$

2 Линейный метод

2.1 Схема и обозначения

Сначала опишем общую схему алгоритма и обозначения для применения линейного метода криптоанализа.

Известно T пар открытых текстов и соответствующих шифртекстов $(a^{(i)},c^{(i)}),i\in\overline{1,T}$, каждый из которых состоит из N бит: $a_1^{(i)},...,a_N^{(i)}$ и $c_1^{(i)},...,c_N^{(i)}$. Пусть схема шифропреобразования с ключом K разбита на две последовательные части F_{K_1} и F_{K_2} , как показано на рисунке 2. Нарисовать свой рисунок, заменить обозначения шифртекста и проме-

Рисунок 2—Схема разбиения алгоритма на два блока для проведения линейного криптографического анализа

жуточного шифртекста

В первой из них используется часть исходного ключа K_1 , во второй, соответсвенно, K_2 (при этом K_1 может частично совпадать с K_2). $F_{K_1'}(a^{(i)}) = b^{(i)} = b_1^{(i)}, ..., b_N^{(i)}$ – промежуточный шифртекст, зашифрованный на некотором ключе K_1' . $\alpha = \alpha_1, ..., \alpha_N; \beta = \beta_1, ..., \beta_N$ – битовые маски, которые мы будем накладывать на промежуточный и итоговый шифртексты, соответственно. Наложение маски подразумевает скалярное произведение двух векторов: $(\alpha, b^{(i)})$.

Для отбраковывания ложных ключей линейный метод предполагает проверку выполнения некоторого соотношения с нужной вероятностью.

Для двух масок $\alpha \in \mathbb{F}_2^n$ и $\beta \in \mathbb{F}_2^m$ и функции $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ определим следующую величину:

$$C_{\alpha,\beta}^{F} = 2 \cdot P\left(\left(\alpha, x\right) = \left(\beta, F(x)\right), x \in \mathbb{F}_{2}^{n}\right) - 1 = 2 \cdot \left(\frac{\sum_{x \in \mathbb{F}_{2}^{n}} \left(-1\right)^{\left(\alpha, x\right) \oplus \left(\beta, F(x)\right)}}{2 \cdot 2^{n}} + \frac{1}{2}\right) - 1 = \frac{1}{2^{n}} \sum_{x \in \mathbb{F}_{2}^{n}} \left(-1\right)^{\left(\alpha, x\right) \oplus \left(\beta, F(x)\right)}$$

и назовем ее преобладанием.

Для равномерно распределенной функции $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ справедлива следующая теорема:

2.2 Теорема ([?])

Пусть определено преобладание $C_{\alpha,\beta}^F$ для равномерно распределенной функции $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$. Тогда случайная величина $\xi = 2^{n-1}(C_{\alpha,\beta}^F + 1)$ (у [?] речь идет о $Imb(\alpha,\beta) = 2^{n-1} \cdot C_{\alpha,\beta}^F$) имеет биномиальное распределение $Bi(2^n,\frac{1}{2})$ с математическим ожиданием $M\xi = 2^{n-1}$ и дисперсией $D\xi = 2^{n-2}$. В частности, при $n \to \infty$ распределение $2^{n/2}C_{\alpha,\beta}^F$ сходится к стандартному нормальному распределению $\mathcal{N}(0,1)$ (об этом в [?] ничего нет).

Осталось вывести переход к $C_{\alpha,\beta}^{F_1,\ldots,F_r}$.

2.3 Алгоритм метода

Перейдем к описанию алгоритма. α и β заданы, вычислено теоритическое значение $C^F_{\alpha,\beta}$, вычислен доверительный интервал. Для каждого K_1' :

- а) Полагаем $\overline{P} = 0$;
- б) Для каждого $a^{(i)}, i \in \overline{1,T}$, вычисляем $b^{(i)} = F_{K_1'}(a^{(i)});$
- в) Проверяем выполнено ли равентсво $(\alpha, b^{(i)}) = (\beta, c^{(i)}).$

- г) Если равенство выполнилось, полагаем $\overline{P}=\overline{P}+1$
- д) После перебора материала полагаем $\overline{P}=\frac{\overline{P}}{T};$
- е) Если $\overline{P} \cong P$, считаем, что часть ключа $K_1 = K_1'$, при необходимости продолжаем работу с F_{K_2} по той же схеме.
- ж) Иначе, отбрасываем ключ K_1' как ложный, выбираем новый и повторяем все итерации.

Чем больше при этом T и $|C_{\alpha,\beta}^F|$, тем большая доля значений $K_1^{'}$ будет отбракована на каждой итерации, вплоть до однозначного определения $K_1^{'}$.

Для того, чтобы применить вычисляемую оценку для отбраковывания ложных ключей, необходим различитель, который на основе теоритической $C_{\alpha,\beta}^F$ определяет, выполнилось ли соотношение с нужной вероятностью. Чтобы построить различитель, воспользуемся результатами, полученными в [?].

3 Эксперименты

Оценивание значения преобладания $C_{\alpha,\beta}^F$ позволяет оценить и эффективность линейного метода. Обычно вместо непосредственно преобладания оценивают величину $(C_{\alpha,\beta}^F)^2$, для простоты дальнейшего построения доверительного интервала. В качестве оценки указанной случайной величины используем статистику:

$$\left(\frac{2}{N} \cdot \sum_{i=1}^{N} v_i - 1\right)^2$$

где $v_i = Ind\Big((\alpha,x_i) = (\beta,F(x_i))\Big)$ - реализация независимых случайных величин, распределенных по биномиальному закону по теореме , $x_i,F(x_i)$ – і-ые открытый и шифрованный тексты, соответственно, а N - количество материала. При этом по построению предполагается, что вероятность

$$P(v_i = 0) = \frac{C_{\alpha,\beta}^F + 1}{2}.$$

3.1 Эксперимент № 1

Целью первого типа экспериментов является оценка $C_{\alpha,\beta}^F$ в случае, когда функция F - биективное отображение $\mathbb{F}_2^n \to \mathbb{F}_2^n$, причем выбор образа для заданного элемента множества открытых текстов считаем сделанным по равновероятной схеме. $v_i = Ind\Big((\alpha, x_i) = (\beta, F(x_i)) \Big),$ $\overline{v} = (v_1, v_2, ..., v_{2^n})$ – вектор из $\mathbb{F}_2^{2^n}$.

Рассмотрим случайную величину $\xi = \sum_{i=1}^{2^n} v_i, \xi \in \overline{0,2^n}$, соответствующую количеству единиц в векторе \overline{v} в зависимости от истинной подстановки. Тогда всего существует $\binom{2^n}{\xi}$ возможных векторов, для которых количество единиц совпадает с истинным.

При применении линейного метода криптоанализа проверяются лишь первые (для определенности) N координат вектора \overline{v} , число N соответствует количеству материала , т.е. количеству известных пар

открытого и шифрованного текстов. В таком случае возникает случайная величина $\xi_N = \sum_{i=1}^N v_i, \xi_N \in \overline{0,N}$. Найдем математическое ожидание для с.в. $\eta = \varphi(\xi_N)$, где φ - произвольная функция определенная на множестве целых чисел \mathbb{Z} :

$$E\eta = E\varphi(\xi_N) = \sum_{j=0}^{N} \varphi(j) \cdot P(\xi_N = j)$$

При этом вероятность события $\xi_N=j$ можно представить в виде суммы вероятностей с помощью формулы Байеса, где гипотезы $\{\xi=k\}_{k=\overline{0,2^n}}$ образуют полную группу событий:

$$E\eta = \sum_{j=0}^{N} \varphi(j) \cdot P(\xi_N = j) = \sum_{j=0}^{N} \varphi(j) \cdot \sum_{k=0}^{2^n} P(\xi_N = j | \xi = k) P(\xi = k)$$