SIGNALS AND SYSTEMS USING MATLAB Chapter 8 — Sampling Theory

L. F. Chaparro and A. Akan

Uniform sampling

Modulation

$$\delta_{T_s}(t), \text{ periodic}, \ \Omega_s = 2\pi/T_s, \quad \delta_{T_s}(t) = \sum_{k=-\infty}^{\infty} D_k e^{jk\Omega_s t}$$

$$D_k = \frac{1}{T_s}, \quad x_s(t) = x(t)\delta_{T_s}(t) = \frac{1}{T_s} \sum_{k=-\infty}^{\infty} x(t)e^{jk\Omega_s t}$$

$$X_s(\Omega) = \frac{1}{T_s} \sum_{k=-\infty}^{\infty} X(\Omega - k\Omega_s)$$

• Discrete-time Fourier transform

$$x_s(t) = \sum_{n = -\infty}^{\infty} x(nT_s)\delta(t - nT_s)$$

$$X_s(\Omega) = \sum_{n = -\infty}^{\infty} x(nT_s)e^{-j\Omega T_s n}$$

$$X_s(\Omega) = \sum_{n = -\infty}^{\infty} x(nT_s)e^{-j\Omega T_s n}$$

(a) Spectrum of band-limited signal, (b) spectrum of sampled signal when satisfying the Nyquist sampling rate condition, (c) spectrum of sampled signal with aliasing (superposition of spectra, shown in dashed lines, gives a constant shown by continuous line)

Band-limited signals and Nyquist condition

A signal x(t) is band-limited if its low-pass spectrum $X(\Omega)$ is such that

$$|X(\Omega)| = 0 \text{ for } |\Omega| > \Omega_{max}, \quad \Omega_{max}: \text{ max frequency in } x(t)$$

can be sampled uniformly and without frequency aliasing using a sampling frequency

$$\Omega_s = \frac{2\pi}{T_s} \ge 2\Omega_{max} \quad \text{Nyquist sampling rate condition}$$

Example:
$$x(t) = 2\cos(2\pi t + \pi/4), -\infty < t < \infty$$
, band-limited

$$T_s=0.4, \quad \Omega_s=2\pi/T_s=5\pi>2\Omega_{max}=4\pi, \text{ satisfy Nyquist}$$

$$\underline{x(nT_s)}=2\cos(2\pi \ 0.4n+\pi/4)=2\cos\left(\frac{4\pi}{5}n+\frac{\pi}{4}\right) \qquad -\infty < n < \infty$$

$$T_s = 1$$
, $\Omega_s = 2\pi < 2\Omega_{max} = 4\pi$ aliasing $x(nT_s) = 2\cos(2\pi n + \pi/4) = 2\cos(\pi/4) = \sqrt{2}$.

Sampling of $x(t) = 2\cos(2\pi t + \pi/4)$: (a) $T_s = 0.2$, (b) $T_s = 0.4$, (c) $T_s = 0.5$ and (d) $T_s = 1$ sec/sample

Nyquist-Shannon sampling theorem

Low-pass signal x(t) is band-limited (i.e., $X(\Omega) = 0$ for $|\Omega| > \Omega_{max}$)

• Information in x(t) preserved by sampled signal $x_s(t)$, with samples $x(nT_s) = x(t)|_{t=nT_s}$, $n = 0, \pm 1, \pm 2, \cdots$, provided

sampling frequency $\Omega_s \geq 2\Omega_{max}$ (Nyquist sampling rate condition), or sampling rate f_s (samples/sec) or sampling period T_s (sec/sample) are $f_s = \frac{1}{T_s} \geq \frac{\Omega_{max}}{\pi}$

• When Nyquist condition is satisfied, x(t) can be reconstructed by ideal low-pass filtering $x_s(t)$:

frequency response ideal LPF
$$H(j\Omega) = \begin{cases} T_s & -\Omega_s/2 < \Omega < \Omega_s/2 \\ 0 & \text{otherwise} \end{cases}$$

Reconstructed (sinc interpolation)

$$x_r(t) = \sum_{n=-\infty}^{\infty} x(nT_s) \frac{\sin(\pi(t - nT_s)/T_s)}{\pi(t - nT_s)/T_s}$$

Antialiasing filtering

For signals that do not satisfy the band-limitedness condition

Anti-aliasing filtering of non band-limited signal

Example: Aliasing effects

$$x_1(t) = \cos(\Omega_0 t), \quad x_2(t) = \cos((\Omega_0 + \Omega_1)t) \quad \Omega_1 > 2\Omega_0$$

sampling signals with $T_s = 2\pi/\Omega_1$
 $x_1(nT_s) = \cos(\Omega_0 nT_s), \quad x_2(nT_s) = \cos((\Omega_0 + \Omega_1)nT_s) = \cos(\Omega_0 T_s n) = x_1(nT_s)$

No frequency aliasing in $x_1(nT_s)$, frequency aliasing in $x_2(nT_s)$

Sampling sinusoids of frequencies Ω_0 = 1 and Ω_0 + Ω_1 = 8 with T_s = $2\pi/\Omega_1$. The higher frequency signal is under–sampled, causing aliasing and making the two sampled signals coincide

Practical aspects of sampling — Sample-and-hold sampling

Sample-and-hold sampling system for $\Delta = T_s$; $y_s(t)$ multi-level signal

$$y_s(t) = (x_s * h)(t) \implies Y_s(\Omega) = \left[\frac{1}{T_s} \sum_k X(\Omega - k\Omega_s)\right] \frac{\sin(\Delta\Omega/2)}{\Omega/2} e^{-j\Omega\Delta/2}$$

Practical aspects of sampling — Quantization and coding

Four-level quantizer and coder.

Sampled signal $x(nT_s) = x(t)|_{t=nT_S}$

four-level quantizer: $k\Delta \le x(nT_s) < (k+1)\Delta \implies \hat{x}(nT_s) = k\Delta, \quad k = -2, -1, 0, 1$

coder assigns binary number to each output level of quantizer

Application to digital communications

PCM system: transmitter, channel and receiver.

Time Division Multiplexing (TDM) system: transmitter, channel and receiver