

HOJA DE DESARROLLO LABORATORIO DE FÍSICA II **PÉNDULO SIMPLE**

Fecha:		 	
Horario:	 	 	

Integrantes:

(1)David Salazar Garcia

(2) Juan José Henao Osorio

(3) Juan Felipe Cortes Castrillon

(4) Juan Diego Hernandez Gomez

PROCEDIMIENTO

1. Registro de datos experimentos 1: Periodo según la longitud L

(a) Tabla 1: Condiciones del péndulo: Masa:0,8kg; sitio gravitacional: Tierra; amplitud : 12 grados; sin fricción

Longitud	L ₁ = 1m	L ₂ =0,8	L ₃ =0,5	L ₄ = 0,3
Lastinas dal	2.016	1,84	1,39	0,95
Lecturas del	1.994	1,88	1,45	1,03
periodo	2.02	1,85	1,47	1
Periodo Promedio	T ₁ = 2,01	T ₂ = 1,85	T ₃ = 1,43	T ₄ = 0,99

(b) Tabla 2: Condiciones del péndulo Masa:0,8kg; sitio gravitacional; júpiter;amplitud 12 grados; sin fricción

Longitud	L ₁ = 1m	L ₂ =0,8	L ₃ =0,5	L ₄ = 0,3
Lasturas dal	1,178	0,976	0,88	0,67
Lecturas del periodo	1,132	1	0,91	0,63
	1,128	0,996	0,93	0,68
Periodo Promedio	T ₁ = 1,14	T ₂ =1,0	T ₃ = 0,906	$T_4 = 0.66$

2. Registro de datos experimentos 2: Periodo según la masa

Tabla 3: Condiciones del péndulo: Longitud:1,0m; sitio gravitacional:Luna; amplitud 12 grados; sin fricción

Masa	m ₁ = 1,0	m ₂ =1,5	$m_3 = 0.7$	m ₄ = 0,4
Lecturas del periodo	4.92	4.90	4.95	4.99
	4.97	5.07	4.86	4.75
	5.02	4.98	4.87	5.31
Periodo Promedio	T ₁ =4.97	T ₂ =4.98	T ₃ =4.89	T ₄ = 5.01
Si los periodos resultaron comparables: T _{prom} = 4,96				

3. Análisis para el EXPERIMENTO 1

(a) Utilizando los valores de las tablas 1 y 2 se hace en Excel la gráfica de T^2 Vs. L (ubique en el eje x la longitud (L) y en el eje y el periodo al cuadrado (T^2). ¿Son colineales estos puntos?

Gráfica 2

Gráficas de Cuadrado del periodo versus longitud del péndulo

Regresión lineal.

Para la gravedad de la Tierra 1. Ecuación de ajuste 1: 4,41 x+-0,242; R²:0,991

Para la gravedad de <u>Júpiter</u>: Ecuación de ajuste 2: 1,14x+0,151; R²:0,956

Ecuación 1 descrita en términos de T^2 y L: 1,14

Ecuación 2 escrita en términos de T2 y L: 4,41 T2 MACROS

(c) Resumen de resultados

Sitio gravitacional	Valor experimental (deducida de la recta)	Valor teórico (preinforme)
Tierra	8,95	9,8
Júpiter	34,63	24,73

Cálculo del error experimental (con proceso):

Para la tierra: % E =8,6%

Para Júpiter: % E =40.1%

Explique a qué se debe este márgen de error

- a. La longitud de la cuerda que pudo alterar la fórmula.
- b. Error de tiempos en el cálculo.
- c. Falta de equipos de medición.

4. Análisis para el EXPERIMENTO 2

a. Cálculo del periodo a partir del periodo promedio de la tabla 3

$$T = 2\pi\sqrt{\frac{L}{g}}$$
 Despejando: $g = 7,95$

Evaluando: g = 7,95

b. Porcentaje de error. Use el valor teórico consultado en el preinforme.

$$\% E_T = \left| \frac{T_{teórico} - T_{experimental}}{T_{teórico}} \right| \times 100 =$$

Resultaron comparables los resultados? Explicar las causas de error

La principal causa de error es la inexactitud a la hora de medir la oscilaciones para determinar el periodo

PREGUNTAS

a. Imagine dos péndulos idénticos, uno situado a nivel del mar y el otro en un lugar a 6000 m de altitud, ¿sus periodos serán idénticos? ¿Por qué?

No son iguales, ya que el valor de la gravedad varía dependiendo de la altitud a la que se encuentran, generando un desfase en las oscilaciones de los péndulos

b. Un péndulo ha sido diseñado para funcionar como reloj cuando la temperatura ambiente es de 20° C. ¿Qué sucederá en un día de verano si la temperatura se aproxima a los 40°C, el reloj se adelantará o se atrasará?. Suponga que la cuerda del péndulo es metálica.

R//: Se atrasa, ya que la cuerda al ser metálica y al haber un cambio de temperatura se puede expandir lo cual alarga la longitud de la cuerda incrementando el tiempo que le toma al péndulo hacer una oscilación.

CONCLUSIONES (De acuerdo con los objetivos planteados en la práctica)

- El periodo es inversamente proporcional a la masa y la gravedad ya que a mayor masa y mayor gravedad menor periodo.
- Es posible hallar la gravedad a partir de la fórmula del periodo (T)
- Existe un porcentaje de error a causa de los tiempos de reacción a la hora de pausar o iniciar el cronómetro para medir el tiempo que tarda la oscilación