课程编号: (小5号字) 北京理工大学_2022 — _2023 学年 第<u>二</u>学期

____级__级__电路分析基础_课程试卷_A_卷

开课学院:	集成电	路与电子学	院	任课	任课教师:			
试卷用途:	□期中	√期末	□补考	□重修				
考试形式:	□开卷	□半开卷	√闭卷					
考试日期:	2023	年5月27日			所需时间:	120_分钟		
考试允许带	昔:					入场		
班级: 学号:				姓名:				

考生承诺:"我确认本次考试是完全通过自己的努力完成的。"

考生签名:

题序			Ξ	四	五.	六	七	八	总分
满分	30	8	10	10	10	10	10	12	100
得分									
评卷人									

备用数据:

一、填空题(每空2分,共30分)

- 1. 某教学楼内有 40W, 220V 的白炽灯 100 个, 若每月以 30 天计算, 平均每天 使用 3 小时,则每月消耗的电能为 kW•h。
- 2. 图 1(a), (b)两个电路中 a, b 端以左的电路对 10Ω电阻来说是否等效。

- 3. 对于具有n个节点、b条支路的电路,可以列出 个独立的 KVL 方程。
- 4. 已知某一阶 RC 动态电路中电容电压的零输入响应分量为 $\left(2e^{-t}\right)V$,零状态响应分量为 $\left(1-e^{-t}\right)V$,当激励电源变为原来的 3 倍、零状态保持不变时,全响应为 V。
- 5. 对于二阶 RLC 串联电路,当 $R_{2\sqrt{L/C}}$ 时,电路处于欠阻尼状态。
- 6. 电路的品质因数越 , 电路的选择性越好。
- 7. 单位冲激响应是系统在单位冲激信号激励下的 响应。
- 8. 图 2 所示电路中, ab 端右侧的总电容为 μF。

9. 电路如图 3 所示,已知 $L_1 = 6$ H , $L_2 = 4$ H , M = 3H ,则从 1-1′ 看进去的等效电感为 亨利。

10. 已知 $i_s = (1 + \sqrt{2} \sin 1000t) A$,则该电流的有效值为____A。

- 11. 对于一个感性负载,可以通过在其两端______的方式提高电路的功率因数。
- 12. 若某 RL 串联电路在某频率下的等效阻抗为(1+ j2)Ω,且其 消耗的有功功率为 9W,则该串联电路的电流为____A,无功功率为____(请写单位)。
- 13. 电路如图 4 所示,在角频率为 ω 时转移电压比 $\frac{\dot{U}_2}{\dot{U}_1}$ 的幅频特性表达式为

以下为计算题

二、(8分)电路如图 6 所示,请列出以 i_{m1} , i_{m2} 和 i_{m3} 为网孔电流变量的网孔电流方程。

四、(10分) 含有理想运算放大器的电路如图 8 所示,试求 $u_{\rm o}$ 与 $u_{\rm s}$ 的关系。

五、(10 分) 如图 9 所示电路中, $R=1.5\Omega$, $R_L=10\Omega$,a、b 端的等效电阻 为0.25 Ω ,g=3S,求理想变压器的变比n。

- 六、(10 分) 某收音机的输入回路如图 10 所示,L=0.3mH,R=10Ω,为收到电台 560kHz 信号,求:
 - (1) 调谐电容 C 值;
 - (2) 如果输入电压为1.5μV,求谐振电流和此时的电容电压。

七、(10 分) 如图 11 所示电路, $\dot{I}_{\rm s}=4\angle0^{\circ}{\rm A}$, 当负载 $Z_{\rm L}$ 获得最大功率时,求负载 $Z_{\rm L}$ 和最大功率 $P_{\rm Lmax}$ 。

八、(12 分) 在图 12 所示电路中, $u_{C}(0_{-})=0$,在t=0时将开关 S 闭合,求 开关 S 闭合后的 $u_{C}(t)$,并画出其波形。已知 $U_{s}=10$ V, $R_{1}=R_{2}=4\Omega$, $R_{3}=2\Omega$,C=1F。

