ALGEBRA PER INFORMATICA 2020-21

FOGLIO DI ESERCIZI 6

Esercizio 1. Si consideri la seguente relazione sull'insieme $\mathbb{R} \times \mathbb{R}$:

$$(a,b) \triangleleft (c,d) \iff (a < c) \text{ OR } (a = c \text{ AND } b < d).$$

Stabilire se si tratta di una relazione d'ordine. In caso affermativo, descincide con qualche relazione d'ordine nota?

Esercizio 2. Si consideri la seguente relazione sull'insieme \mathbb{Z} :

$$m \triangleleft n \iff m+n \in 2\mathbb{Z}$$
.

Stabilire se si tratta di una relazione d'ordine. In caso affermativo, descincide con qualche relazione d'ordine nota?

Esercizio 3. Si consideri la seguente relazione sull'insieme $A = \{a, b, c, d\}$:

$$R = \{(a,a), (b,b), (c,c), (d,d), (c,a), (a,d), (c,d), (b,c), (b,d), (b,a)\}.$$

Stabilire se si tratta di una relazione d'ordine e in caso affermativo se è una relazione d'ordine totale.

Esercizio 4. Si consideri la seguente relazione sull'insieme \mathbb{N} :

$$a \triangleleft b \iff b = 2^k a \text{ for some } k \in \mathbb{N}.$$

Stabilire se si tratta di una relazione d'ordine e in caso affermativo se è una relazione d'ordine totale. Determinare, se esistono, elementi minimali e massimali, minimo e massimo.

Esercizio 5. Sia $A = \mathbb{N}^{\mathbb{N}} = \{f : \mathbb{N} \to \mathbb{N} \text{ funzione}\}\$ dotato della relazione:

$$f \triangleleft g \iff f(x) \le g(x) \ \forall x \in \mathbb{N}.$$

Provare che \triangleleft è una relazione d'ordine su A. Si tratta di una relazione d'ordine totale? Determinare, se esistono, elementi minimali e massimali, minimo e massimo.

Esercizio 6. Si consideri l'insieme $A = \{\{1\}, \{2\}, \{3\}, \{4\}, \{1,3\}, \{1,4\}, \{2,4\}, \{3,4\}, \{1,2,4\}, \{2,3,4\}\}\}$, con la relazione d'ordine parziale \subseteq .

- (1) Trovare gli elementi massimali.
- (2) Trovare gli elementi minimali.
- (3) Esiste un massimo?
- (4) Esiste un minimo?
- (5) Trovare tutti i maggioranti dell'insieme $B = \{\{2\}, \{4\}\}.$

- (6) Trovare l'estremo superiore dell'insieme $B = \{\{2\}, \{4\}\}$, se esiste.
- (7) Trovare tutti i minoranti dell'insieme $C = \{\{1,2,4\}, \{2,3,4\}\}.$
- (8) Trovare l'estremo inferiore dell'insieme $C = \{\{1,2,4\},\{2,3,4\}\}$, se esiste.

Esercizio 7. Si consideri il poset $(\mathbb{N} \times \mathbb{N}, \le \times \le)$ e il sottoinsieme $A = \{(2,2), (2,3), (2,6), (4,3)\}.$

- (1) Trovare gli elementi massimali e minimali di A.
- (2) Trovare, se esistono, massimo e minimo di A.
- (3) Trovare tutti i maggioranti e i minoranti di A.
- (4) Trovare, se esistono, estremo inferiore e superiore di *A*.
- (5) Si consideri A come sottoinsieme del poset $(\mathbb{N} \times \mathbb{N}, LEX)$ e si risponda alle domande dei punti (1) (4) in questo caso.

Esercizio 8. Si consideri il poset (\mathbb{R}, \leq) e si determinino, se esistono, massimo e minimo, estremo inferiore e superiore dei seguenti insiemi:

$$A = (0,1), B = (0,1], C = (0,2] \setminus \{1\}, D = \left\{\frac{1}{n} : n \in \mathbb{N}^*\right\}, E = \mathbb{Q},$$

$$F = \mathbb{N}, G = D \cup \{-2\}, H = \{\pi\}, I = (-1,0) \cup (1,2), J = (-1,0] \cup [1,2).$$

Esercizio 9. Si consideri il poset (\mathbb{R}^2 ,LEX) e i sottoinsiemi $A = \{(x,y) \in \mathbb{R}^2 : 1 \le x \le 2\}$ e $B = [1,2] \times [1,3]$.

- (1) Trovare, se esistono, massimo e minimo di A e B.
- (2) Trovare tutti i maggioranti e i minoranti di A e B.
- (3) Trovare, se esistono, estremo inferiore e superiore di *A* e *B*.