TDDD12 - Assignment 3

jacee719, gusda3202020-05-05

1 Task 1

Given relation schema R(A,B,C,D,E,F) and functional dependencies:

- FD1: $\{A\} \rightarrow \{B,C\}$
- FD2: $\{C\} \rightarrow \{A,D\}$
- FD3: $\{D,E\} \rightarrow \{F\}$

Derive $\{C\} \to \{B\}$ and $\{A,E\} \to \{F\}$

$\{C\} \rightarrow \{B\}$:

Decomposition of FD2: $\{C\} \rightarrow \{A\}$ (FD4) Transivity of FD1 and FD3: $\{C\} \rightarrow \{B,C\}$ (FD5) Decomposition of FD5: $\{C\} \rightarrow \{B\}$ (FD6) Q.E.D.

${A,E} \rightarrow {F}$:

Decomposition of FD1: $\{A\} \rightarrow \{C\}$ (FD7) Transivity of FD2 and FD7: $\{A\} \rightarrow \{A,D\}$ (FD8) Decomposition of FD8: $\{A\} \rightarrow \{D\}$ (FD9) Pseudo-transivity of FD9 and FD3: $\{A,E\} \rightarrow \{F\}$ (FD10) Q.E.D

2 Task 2

```
 X^{+} = X = \{A\}  FD1: \{A\} \subseteq X^{+} \text{ AND } \{B, C\} \nsubseteq X^{+} \to X^{+} = \{A, B, C\}  FD2: \{C\} \subseteq X^{+} \text{ AND } \{A, D\} \nsubseteq X^{+} \to X^{+} = \{A, B, C, D\}  FD3: \{D, E\} \nsubseteq X^{+}  \therefore X^{+} = \{A, B, C, D\} \text{ w.r.t. } \text{FD1-FD3 of } X = \{A\}   X^{+} = X = \{C, E\}  FD2: \{C\} \subseteq X^{+} \text{ AND } \{A, D\} \nsubseteq X^{+} \to X^{+} = \{A, C, D, E\}  FD1: \{A\} \subseteq X^{+} \text{ AND } \{B, C\} \nsubseteq X^{+} \to X^{+} = \{A, B, C, D, E\}  FD3: \{D, E\} \subseteq X^{+} \text{ AND } \{F\} \nsubseteq X^{+} \to X^{+} = \{A, B, C, D, E, F\}  \therefore X^{+} = \{A, B, C, D, E, F\} \text{ w.r.t. } \text{FD1-FD3 of } X = \{C, E\}
```

3 Task 3

Given relation schema R(A,B,C,D,E,F) and functional dependencies:

- FD1: $\{A,B\} \rightarrow \{C,D,E,F\}$
- FD2: $\{E\} \rightarrow \{F\}$
- FD3: $\{D\} \rightarrow \{B\}$

3.1 a)

The candidate keys for R are

- Candidate key 1: $\{A,B\}^+ = \{A,B,C,D,E,F\}$, due to FD1
- Candidate key 2: $\{A,D\}^+ = \{A,B,C,D,E,F\}$, due to FD3 and FD1.

3.2 b)

The closure for the FDs are the following

- FD1: $\{A,B\}^+ = \{A,B,C,D,E,F\}$
- $FD2: \{E\}^+ = \{E,F\}$
- FD3: $\{D\}^+ = \{B,D\}$

therefor FD2 and FD3 violate BCNF due to the closure not containing all attributes in ${\bf R}.$

3.3 c)

Following the algorithm for decomposing R and with knowing that FD1 satisfies BCNF, R is decomposed into

- R1(A,B,C,D,E)
- R2(E,F)

Since the closure of E is known due to non trivial relation $E \to F$, this gives that E is a key for R2. In R1 there is still the violation of BCNF with $D \to B$ so it's decomposed again with the final result of

- R1X(D,B)
- R1Y(A,C,D,E)
- R2(E,F).

This decomposition has however lost the original constraint FD1.

4 Task 4

Given relation schema R(A,B,C,D,E) and functional dependencies:

- FD1: $\{A,B,C\} \rightarrow \{D,E\}$
- FD2: $\{B,C,D\} \rightarrow \{A,E\}$
- FD3: $\{C\} \rightarrow \{D\}$

4.1 a)

The closure for the following FDs are

- FD1: $\{A,B,C\}^+ = \{A,B,C,D,E\}$
- FD2: $\{B,C,D\}^+ = \{A,B,C,D,E\}$
- FD3: $\{C\}^+ = \{C,D\}$

Since FD3 does not contain all attributes BCNF is violated.

4.2 b)

The candidate key is $\{B,C\}$ since the closure is $\{B,C\}^+ = \{A,B,C,D,E\}$ due to FD3 and FD1 and it's the only candidate key since there is no way through FDs to obtain B or C. The relation is then decomposed with respect to FD3 since it violates BCNF.

- R1(C,D)
- R2(A,B,C,E)

FD2 is however not fully preserved but the decomposition is now in BCNF.