A Simulation Preorder for Koopman-like Lifted Control Systems

Antoine Aspeel & Necmiye Ozay

Goal

Given a system and a specification, find a policy such that the closed-loop system satisfies the specification.

$$f \vDash_{\pi} S$$

Systems and specifications

• A discrete-time system

$$x(t+1) = f_X(x(t), u(t))$$

with state $x(t) \in X$ and $u(t) \in U$

- A **specification** is a set of sequences of (x, u) pairs: $S \subseteq (X \times U)^{\infty}$
- The **behavior** of a system under a policy π is the set $B_{\pi}[f_X] \coloneqq \{(x, u) | (x, u) \text{ is a max. solution } \& u(t) = \pi(x(0), ..., x(t))\}$
- The specification S is **satisfied** by the system f_X under the policy π if $B_{\pi}[f_X] \subseteq S$. This is written $f_X \vDash_{\pi} S$

Few words on simulation relations

Simulation-based approach:

- 1. Define a notion of simulation between systems $f_X \leq f_Y$
- 2. Prove that $f_X \leq f_Y$ implies $\boldsymbol{B}_{\pi}[f_X] \subseteq \boldsymbol{B}_{\pi}[f_Y]$

Why is it useful?

- 1. Replace the system f_X by a simpler (e.g., affine) one f_Y s.t. $f_X \leq f_Y$
- 2. Synthesize a policy π s.t. $f_Y \vDash_{\pi} S$
- 3. It follows that $f_X \vDash_{\pi} S$

Koopman approach

$$x^{+} = f_{X}(x, u)$$

$$y = \psi(x)$$

$$y^{+} \in Ay + Bu \oplus W$$

$$x = Cy$$

Lifted systems

A **lifted system** is a tuple $LS_Y = (X, U, \psi_Y, f_Y, g_Y)$

- *X* is a set of outputs
- *U* is a set of inputs
- $\psi_Y : \mathbb{R}^{n_X} \to \mathbb{R}^{n_Y}$ is a lifting function
- $f_Y: \mathbb{R}^{n_Y} \times U \rightrightarrows \mathbb{R}^{n_Y}$ is a set-valued dynamics
- $g_Y: \mathbb{R}^{n_Y} \to \mathbb{R}^{n_X}$ is an output map such that $g_Y(\psi_Y(x)) = x$

A solution of LS_Y is a tuple $(x, u, y) \in X^{[0,T[} \times U^{[0,T[} \times (\mathbb{R}^{n_Y})^{[0,T[} \text{ s.t.})])] \times U^{[0,T[} \times U^{[0,T[} \times (\mathbb{R}^{n_Y})^{[0,T[} \times U^{[0,T[} \times U^{[0,T[}$

- $y(0) = \psi_Y(x(0))$
- $y(t+1) \in f_{\mathbf{Y}}(y(t), u(t))$
- $x(t) = g_Y(y(t))$

The **behavior** of LS_Y under a policy π is the set

$$B_{\pi}[LS_Y] = \{ (x, u) \mid \exists y \text{ s. t. } (x, u, y) \text{ is a max. solution } \& u(t) = \pi(x(0), ..., x(t)) \}$$

Important classes of lifted systems

• Unlifted (i.e., "classical") systems

$$x(t+1) = f_X(x(t), u(t))$$

are lifted systems with $n_Y=n_X$ and $\psi_Y=g_Y=id$

• Affine lifted systems

$$y(t+1) \in Ay(t) + Bu(t) \oplus W$$

 $x(t) = Cy(t)$

for which linear control methods can be used

Picewise affine lifted systems

Simulation relation for lifted systems

 LS_Y is **simulated** by LS_Z (denoted $LS_Y \leq LS_Z$) if there exists a set-valued map $\rho: \mathbb{R}^{n_Z} \rightrightarrows \mathbb{R}^{n_Y}$ such that

• $\forall x \in X : \psi_Y(x) \in \rho(\psi_Z(x))$

- (Relation between liftings)
- $\forall (z, u) \in \mathbb{R}^{n_Z} \times U : f_Y(\rho(z), u) \subseteq \rho(f_Z(z, u))$

(between dynamics)

• $\forall z \in \mathbb{R}^{n_Z} : g_Y(\rho(z)) \subseteq \{g_Z(z)\}$

(between outputs)

Simulation implies behavioral inclusion

THEOREM

Given two lifted systems LS_Y and LS_Z and a policy π , if LS_Y is simulated by LS_Z , then the closed loop behavior of LS_Y under π is included in the closed loop behavior of LS_Z under π , i.e.,

$$LS_Y \leq LS_Z \implies \boldsymbol{B}_{\pi}[LS_Y] \subseteq \boldsymbol{B}_{\pi}[LS_Z]$$

<u>Proof idea:</u> If (x, u, y) is a max. sol. of LS_Y , it exists z s.t. (x, u, z) is a max. sol. of LS_Z

- $\forall x \in X : \psi_Y(x) \in \rho(\psi_Z(x))$ $\rightarrow y(0) \in \rho(z(0))$
- $\forall (z, u) \in \mathbb{R}^{n_Z} \times U : f_Y(\rho(z), u) \subseteq \rho(f_Z(z, u))$ $\Rightarrow y(t) \in \rho(z(t)) \Rightarrow y(t+1) \in \rho(z(t+1))$
- $\forall z \in \mathbb{R}^{n_Z} : g_Y(\rho(z)) \subseteq \{g_Z(z)\}\$ $\Rightarrow y(t) \in \rho(z(t)) \Rightarrow g_Y(y(t)) = g_Z(z(t))$

Why is it useful?

COROLLARY

The specification S is satisfied by the lifted system LS_Z under the policy π

The specification S is satisfied by the lifted system LS_Y under the policy π

Given an unlifted system LS_X , and two affine lifted systems LS_Y and LS_Z , if

$$LS_X \leq LS_Y \leq LS_Z$$

then LS_Y is a « better » representation of LS_X than LS_Z

Some special cases of $LS_Y \leq LS_Z$

If LS_Y is unlifted and

- LS_Z is affine
 - → Koopman over-approximation in (Balim, Aspeel, Liu, Ozay, 2023)
- LS_Z is affine and all systems are autonomous (i.e., $U=\{0\}$)
 - → approximate immersion in (Wang, Jungers, Ong, 2023)

- LS_Z is picewise affine and unlifted
 - → Hybridization in (Girard, Martin, 2011)

Computational aspects

Verifying if $LS_Y \leq LS_Z$ is a feasibility problem:

Find ρ s.t. ρ : $\mathbb{R}^{n_Z} \rightrightarrows \mathbb{R}^{n_Y}$ Infinite number of variables

- $\forall x \in X : \psi_Y(x) \in \rho(\psi_Z(x))$ $\forall (z, u) \in \mathbb{R}^{n_Z} \times U : f_Y(\rho(z), u) \subseteq \rho(f_Z(z, u))$ $\forall z \in \mathbb{R}^{n_Z} : g_Y(\rho(z)) \subseteq \{g_Z(z)\}$

Infinite number of constraints

We derived finite-dimensional sufficient conditions in two cases:

- 1. LS_Y is unlifted and LS_Z is (picewise) affine
- 2. LS_V and LS_Z are both (picewise) affine

In practice...

Given a classical (i.e., unlifted) system LS_X

- 1. Pick K lifting functions $\psi_1, ..., \psi_K$
- 2. For each, compute an affine lifted system: LS_k s.t. $LS_X \leq LS_k$
- 3. If $LS_i \leq LS_j$, delete LS_j

Experiments with backward reachable sets

Take home message

Simulation relations between lifted systems

- Contribution to abstraction/hybridization theory
 - → More general class of simulations

- Contribution to finite-dimensional Koopman theory
 - ightarrow Tools to select the lifting function ψ

Acknowledgments: The authors thank Zexiang Liu for insightful discussions on earlier versions of this work.