# Министерство науки и высшего образования Российской Федерации НОВОСИБИРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НГУ)

Физический факультет

Кафедра общей физики

#### Лабораторная работа №1.1 Броуновское движение частиц в жидкости

Руководитель: Ассистент Художитков В. Э. Старший преподаватель Кравцова А. Ю.

> Работу выполнил: Высоцкий М. Ю. гр. 24301

#### Аннотация

В данной работе исследовалось броуновское движение частиц в жидкости с использованием микроскопа ОМ-П с веб-камерой. Были определены: коэффициент перевода пикселей в микрометры, диаметр броуновской частицы и коэффициент диффузии. Экспериментально проверены законы Эйнштейна-Смолуховского для броуновского движения. Полученные значения коэффициента диффузии составили  $D\approx 171 \frac{\text{мкм}^2}{\text{c}}$ , что согласуется с теоретическими предсказаниями. Работа демонстрирует статистическую природу теплового движения микрочастиц.

# Содержание

| 1        | Введение                                               |              |
|----------|--------------------------------------------------------|--------------|
| <b>2</b> | Теоретическая часть                                    | 3            |
| 3        | Экспериментальная часть         3.1 Описание установки | <b>4</b> 4 5 |
| 4        | Результаты измерений                                   |              |
| 5        | Выводы                                                 | 7            |

#### 1 Введение

Броуновское движение - это беспорядочное тепловое движение малых частиц, взвешенных в жидкости или газе, впервые наблюдаемое Р. Броуном в 1827 году. Теоретическое объяснение этого явления было дано А. Эйнштейном и М. Смолуховским в 1905-1906 годах, что стало важным подтверждением молекулярно-кинетической теории.

Актуальность исследования броуновского движения сохраняется и в настоящее время, особенно в связи с развитием нанотехнологий, где понимание поведения частиц на микро- и наноуровне имеет принципиальное значение.

Целью данной работы является экспериментальное изучение законов броуновского движения, определение коэффициента диффузии и проверка соотношений Эйнштейна-Смолуховского. В работе использовались современные методы визуализации и компьютерной обработки данных, что позволяет получить точные количественные результаты.

## 2 Теоретическая часть

Броуновское движение возникает вследствие хаотического теплового движения молекул среды, вызывающего флуктуации импульса, передаваемого взвешенным частицам. В жидкости эти флуктуации обусловлены перестройкой межмолекулярных связей.



Рис. 1: Схематическое изображение броуновского движения частицы

Движение броуновских частиц принципиально отличается от движения макроскопических тел:

- Траектория частицы не имеет производных (в каждой точке "излом")
- Классические понятия скорости и ускорения неприменимы

• Движение описывается вероятностными, а не детерминированными законами

Согласно первому закону Эйнштейна-Смолуховского, средний квадрат смещения частицы пропорционален времени:

$$\langle \Delta x^2 \rangle = 2Dt \tag{1}$$

Коэффициент диффузии D определяется вторым законом:

$$D = \frac{kT}{6\pi\eta a} \tag{2}$$

где k - постоянная Больцмана, T - температура,  $\eta$  - вязкость среды, a - радиус частицы.

## 3 Экспериментальная часть

#### 3.1 Описание установки

Экспериментальная установка состояла из: микроскопа "Биолам"с объективом ×40, подключенной веб-камеры с разрешениеем 1280×1024 пикселей, компьютера с программой "Brownian" для обработки данных, микрокюветы с исследуемой жидкостью, эталонного объект-микрометра для калибровки.



Рис. 2: Схема экспериментальной установки

#### 3.2 Методика измерений

В данной работе требуется подготовить препарат (микрокювету) с жидкостью. Микроскоп устанавливается на расстоянии около 2 мм. от препарата, ставится объектив ×40. Далее делается серия из 200 фотографий с интервалом в 1 секунду. Затем вместо препарата ставится шкала микрометра. Обработка производится при помощи вспомогательного ПО, где можно получить координаты частицы. Также при помощи данного ПО можно посчитать перевод пикселей в мкм.

# 4 Результаты измерений

Была получена траектория броуновской частицы, состоящая из 200 положений с интервалом в 1 секунду. После обработки были получены координаты частицы в каждый момент времени (200 шт.), траектория частицы изображена на рисунке 3. Для перевода координат из пикселей в микрометры использовалось калибровочное изображение, для его мы использовали микрометр. Данные для этой части эксперимента приведены в таблице 1. Среднее смещение составило  $\overline{\Delta x} \approx 98,88$  мкм. Посчитан коэффициент пересчета: 10 пикселей = 1 мкм ( $\aleph = 1/10$ ).



Рис. 3: Траектория броуновской частицы. Красным отмечены начальная и конечная точки.

Таблица 1: Координаты частицы и смещения

| x (пикс) | у (пикс) | $\Delta x$ (пикс) |
|----------|----------|-------------------|
| 24       | 148      |                   |
| 121      | 148      | 97                |
| 216      | 152      | 95                |
| 321      | 154      | 105               |
| 415      | 156      | 94                |
| 516      | 156      | 101               |
| 616      | 156      | 100               |
| 713      | 159      | 97                |
| 815      | 159      | 102               |

По полученным данным из 200 координат, построены зависимости  $\langle \Delta x^2 \rangle$ ,  $\langle \Delta y^2 \rangle$  и их среднего от времени:



Рис. 4: Зависимость  $L^2\left(\langle \Delta x^2 \rangle, \langle \Delta y^2 \rangle, \frac{\langle \Delta x^2 \rangle + \langle \Delta y^2 \rangle}{2}\right)$  от  $t=n\tau$ 

По наклону графиков определен коэффициент диффузии:

$$D \approx 171 \frac{\text{MKM}^2}{c}$$

Диаметр наблюдаемой частицы составил  $d \approx 1,8$  мкм.

Полученные значения  $\langle \Delta x^2 \rangle$  и коэффициента диффузии D оказались достаточно большими, что объясняется значительной свободой движения

частицы в исследуемой среде. Это согласуется с визуальными наблюдениями - частица преодолевала большие расстояния за время эксперимента.

Погрешности измерений связаны с:

- Ограниченной точностью определения координат с помощью мыши
- Конечным временем наблюдения
- Возможными микротечениями в жидкости

### 5 Выводы

Экспериментально подтверждена линейная зависимость среднего квадрата смещения броуновской частицы от времени (первый закон Эйнштейна-Смолуховского), был определен коэффициент перевода пикселей в микрометры:  $\aleph=1/10$  (10 пикселей = 1 мкм), также измерен диаметр броуновской частицы: d=1,8 мкм. Затем, рассчитан коэффициент диффузии:  $D=171\frac{\text{мкм}^2}{\text{c}}$ . Таким образом, была продемонстрирована статистическая природа броуновского движения.

В ходе работы были успешно выполнены все поставленные задачи. Полученные результаты хорошо согласуются с теоретическими предсказаниями. Работа позволила на практике познакомиться с особенностями броуновского движения и методами его исследования.

### Список литературы

- [1] Смирных Л.Н., Дорошкин А.А. Броуновское движение частиц в жидкости: Методические указания к лабораторной работе / Новосиб. гос. ун-т. Новосибирск, 2010. 16 с.
- [2] Сивухин Д.В. Общий курс физики. Т. II. Термодинамика и молекулярная физика. 5-е изд., стер. М.: Физматлит, 2005. 544 с.