Effect of treatments on leaves

Ajay Shankar A

2023-11-11

Effect of Treatments on leaves to produce roots

An experiment was conducted to find the rooting potential of the leaves mainly angiosperms to root when treated with different phyto-hormones.

- In the experiment, 4 treatments were applied on 8 different species, and the observations included:
 - Number of roots (num_roots_n).

- Length of the longest root in centimeters (lng_long_root_cm).
- Diameter of the longest root in millimeters (dia_long_root_mm).

Loading Required packages

```
library(tidyverse)
library(gt)
```

Loading the data and formatting

The data is loaded as a dataframe and columns such as treatments(Treatment) and species(Species) are changes to factors as they are not suitable as strings.

A tibble: 6 x 5

	Species	Treatment	num_roots_n	<pre>lng_long_root_cm</pre>	dia_long_root_mm
	<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	Conidium verigatum	Control	0	0	0
2	Conidium verigatum	Control	0	0	0
3	Conidium verigatum	Control	0	0	0
4	Conidium verigatum	Control	0	0	0
5	Conidium verigatum	Control	0	0	0
6	Conidium verigatum	Control	0	0	0

• Confirming that only 8 species and 4 treatments are used in the experiment.

```
treatments and species <- list(unique(ths_data$Treatment), unique(ths_data$Species))
  treatments_and_species
[[1]]
[1] Control
                               Coconut water
[3] IBA 1000ppm
                               IBA 100ppm + Coconut water
Levels: Control Coconut water IBA 1000ppm IBA 100ppm + Coconut water
[[2]]
[1] Conidium verigatum
                          Rawolfia tetraphylla Justicia Sps
[4] Zizupus rugosa
                          Jasminum Sps
                                                Cyclea pelteta
[7] Bredelia scandens
                          Hemigraphis alternata
8 Levels: Bredelia scandens Conidium verigatum ... Zizupus rugosa
```

Aggregating data and formatting the results into a table.

The data is aggregated by the average of root lengths with standard deviation(SD)

```
ths_data_1 <- ths_data %>% group_by(Species, Treatment) %>%
 summarise(avg_n_roots = mean(num_roots_n),
           SD_n_roots = sd(num_roots_n),
           avg_lng_root = mean(lng_long_root_cm),
           SD_lng_root = sd(lng_long_root_cm),
           avg_dia_root = mean(dia_long_root_mm),
           SD_dia_root = sd(dia_long_root_mm)) %>%
 # rounding of to 2 digits
 mutate(across(where(is.double), ~round(., digits = 2))) %>%
 # combining means and SD into a single column
 unite(avg_n_roots_SD, avg_n_roots, SD_n_roots, sep = " \u00b1 ") %>%
 unite(avg_lng_root_SD, avg_lng_root, SD_lng_root, sep = " \u00b1 ") %>%
 unite(avg_dia_root_SD, avg_dia_root, SD_dia_root, sep = " \u00b1 ") %>%
 # using 'gt' package to get a table
 gt(rowname_col = "Treatment") %>%
 tab_header(
   title = "Thesis Data of the Species",
   subtitle = "Influence of growth regulators on the root generation"
 opt_align_table_header(align = "center") %>%
 cols_label( # renaming columns
```

Thesis Data of the Species
Influence of growth regulators on the root generation

	Mean number of roots \pm SD	Mean length of longest roots \pm SD (cm)	Μ
Bredelia scandens			
Control	0 ± 0	0 ± 0	
Coconut water	0 ± 0	0 ± 0	
IBA 1000ppm	3.22 ± 0.44	6.06 ± 2.02	
IBA 100ppm + Coconut water	3 ± 0.5	6.02 ± 1.26	
Conidium verigatum			
Control	0 ± 0	0 ± 0	
Coconut water	2.89 ± 1.05	4.52 ± 1.1	
IBA 1000ppm	7.89 ± 3.62	7.52 ± 2.55	
IBA 100ppm + Coconut water	2.44 ± 0.88	4.74 ± 1.09	
Cyclea pelteta			
Control	0 ± 0	0 ± 0	
Coconut water	3.33 ± 0.71	2.48 ± 0.37	
IBA 1000ppm	5.22 ± 1.39	4.89 ± 1.17	
IBA 100ppm + Coconut water	8.89 ± 2.03	12.64 ± 3.23	
Hemigraphis alternata			
Control	0 ± 0	0 ± 0	
Coconut water	1.11 ± 0.33	5.89 ± 0.84	
IBA 1000ppm	2.22 ± 0.83	8.06 ± 1.58	
IBA 100 ppm + Coconut water	1.11 ± 0.33	5.33 ± 1.93	
Jasminum Sps			

Control	0 ± 0	0 ± 0				
Coconut water	1.89 ± 0.6	8.06 ± 0.88				
IBA 1000ppm	5.11 ± 1.17	14.82 ± 1.59				
IBA 100ppm + Coconut water	2.67 ± 1.22	12.12 ± 2.27				
Justicia Sps						
Control	0 ± 0	0 ± 0				
Coconut water	1.22 ± 0.44	3.28 ± 1.24				
IBA 1000ppm	1.89 ± 0.78	8.64 ± 2.41				
IBA 100ppm + Coconut water	1.22 ± 0.44	5.47 ± 1.84				
Rawolfia tetraphylla						
Control	0.56 ± 1.13	0.26 ± 0.51				
Coconut water	1.78 ± 0.97	5.4 ± 2.64				
IBA 1000ppm	4.78 ± 2.17	11.59 ± 4.79				
IBA 100ppm + Coconut water	2.67 ± 1.41	10.09 ± 2.34				
Zizupus rugosa						
Control	0 ± 0	0 ± 0				
Coconut water	1.22 ± 0.83	2.94 ± 1.34				
IBA 1000ppm	4.44 ± 1.59	5.56 ± 2.08				
IBA 100ppm + Coconut water	2.22 ± 0.67	4.26 ± 1.11				

Plotting the data for better understanding.

• Plotting a bar graph to see how each treatment performed on each species.

```
theme(legend.position = "bottom",
    axis.text.x = element_text(angle = 45, hjust = 1))
```

Effect of treatments on rooting

- We can clearly see that *Control* treatment is not producing any roots in majority of the species.
- **IBA 1000ppm** is clearly showing most promising results in most of the species in the graph.

Finding corelation

We are going to filter out the control treatment as it is not significant at producing roots at all.

```
ths_data |> filter(Treatment!= "Control") |>
    ggplot(aes(x = lng_long_root_cm, y = dia_long_root_mm)) +
    geom_point(aes(color = Treatment)) +
    geom_smooth(method = "lm", aes(group = Treatment, color = Treatment)) +
    labs(title = "Plotting Root length Vs Root Diameter",
        x = "Length of the longest root",
```

```
y = "Diameter of the longest root") +
theme(legend.position = "bottom")
```

`geom_smooth()` using formula = 'y ~ x'

• The graph clearly shows that the Coconut Water treatment has the highest Slope.