Announcements

PSet-2 announced, due on Tues, March 4th

Last time: Clustering

- Agglomerative Clustering
- Divisive Clustering
- K-means
- Vector Quantization with K-Means
- Mixtures of Gaussians
- Expectation Maximization

Last time: Clustering

K-Means in the neural nets era

Fig. 1: Illustration of the proposed method: we iteratively cluster deep features and use the cluster assignments as pseudo-labels to learn the parameters of the convnet.

Deep cluster: A self-supervised learning algorithm

Self-supervised + cross-modal learning

Cross-Modal Deep Clustering (XDC)

Self-supervised + cross-modal learning

Today

- Expectation Maximization
- Linear Regression
- Analyzing your model
- Regularizing Linear Regression

Today

- Expectation Maximization
- Linear Regression
- Analyzing your model
- Regularizing Linear Regression

Mixture of Gaussians

- Each component represents a cluster.
- K-means → mixture of K
 Gaussians.
- K-th component Gaussian has parameters μ_k , Σ_k

Maximum Likelihood Solution for Mixture of Gaussians

This distribution is known as a Mixture of Gaussians

$$p(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x \mid \mu_k \mid \Sigma_k)$$

- We can estimate these parameters via Expectation Maximization (EM)
- Solution: Use coordinate descent

Recall: Parameters

Variable	Role
К	Number of clusters / mixture models
μ_k	Mean of Gaussian distribution (k)
$\Sigma_{\mathbf{k}}$	Variance of Gaussian distribution (k)
δ_k	Cluster membership indicator
$p(\delta)$	Marginal distribution of mixture of Gaussian membership
p(x)	Distribution of the Mixture of Gaussians

Expectation Maximization Algorithm

- A general technique for finding maximum likelihood estimators in latent variable models
- Initialize and iterate until convergence:

E-Step: estimate posterior probability of the latent variables $p(\delta_k|x)$, holding parameters fixed

Expectation Maximization Algorithm

- A general technique for finding maximum likelihood estimators in latent variable models
- Initialize and iterate until convergence:

M-Step: maximize likelihood w.r.t parameters (here μ_k , Σ_k , π_k) using latent probabilities from E-step

EM for Gaussian Mixtures Example

Bishop Figure 9.8 Illustration of the EM algorithm using the Old Faithful set as used for the illustration of the K-means algorithm in Figure 9.1. See the text for details.

EM for Gaussian Mixtures

- 1. Initialize parameters θ with means μ_k , covariances Σ_k , and mixing coefficients π_k , and evaluate the initial value of the log likelihood **2. E step.** Evaluate x_i using the current parameter values $\theta^{(n)}$
 - **M step.** Re-estimate the parameters using current x_i

$$\mu_k^{(n+1)} = \frac{\sum_i x_i w_{ij}}{\sum_i w_{ij}} \qquad w_{ij} = p(\delta_{ij} = 1 | \theta^{(n)}, x)$$

$$\Sigma_k^{(n+1)} = \frac{\sum_i \left(x_i - \mu_k^{(n+1)}\right) \left(x_i - \mu_k^{(n+1)}\right)^T}{\sum_i w_{ij}} \qquad \pi_j^{(n+1)} = \frac{\sum_i w_{ij}}{N}$$

Today

- Expectation Maximization
- Linear Regression
- Analyzing your model
- Regularizing Linear Regression

What is the difference between classification and regression? Select all that apply.

Regression

 Given a training set consisting of inputs and outputs, learn to map novel, unseen inputs to outputs

The novel inputs are called a test set

Multidimensional inputs

Task- *Predicting price*

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

x (features)

y (label)

Goal: f(x) = y

Why do we want to learn f?

Goal: f(x) = y

• Helps *estimate* the cost of homes given new x.

Multidimensional inputs

Task- *Predicting price*

Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

x (features) y (label)

Goal:
$$f(x) = y$$

f is also referred to as hypothesis.

Linear Regression with one variable

Task- *Predicting price*

Goal:
$$f(x) = y$$

• f is also referred to as hypothesis.

Linear Regression with one variable

Hypothesis: f(x) = y

$$y = x^T \beta + \xi$$

 β, ξ : Parameters

 Goal: Choose parameter values such that f(x) is close to y for the red crosses (your training data).

Linear Regression with one variable

Hypothesis:

$$y = x^T \beta + \xi$$

 β, ξ : Parameters

Goal: Minimize

$$L(\beta) = \frac{1}{N} \sum_{i=1}^{M} ((f(x^{i}) - y^{i})^{2})$$

SSD = sum of squared differences, also known as SSE = sum of squared errors

Two potential solutions

$$\min_{\beta} \mathcal{L}(\beta)$$

Gradient descent (or other iterative algorithm)

- Start with a guess for β
- Change β to decrease $\mathcal{L}(\beta)$
- Until reach minimum

Recall: Intuitive visualization of the optimization landscape

We use iterative algorithms to find our way to the bottom of the landscape

Visualizing gradient descent

Two potential solutions

$$\min_{\beta} \mathcal{L}(\beta)$$

Gradient descent (or other iterative algorithm)

- Start with a guess for β
- Change β to decrease $\mathcal{L}(\beta)$
- Until reach minimum

Direct minimization

- Take derivative, set to zero
- Sufficient condition for minima
- Not possible for most "interesting" cost functions

Solving Linear Regression

Direct Solution

Simple case: 2 points

Hypothesis:
$$y = x^{7}\beta + \xi$$

$$y^1 = x^1\beta + \xi$$

$$y^2 = x^2\beta + \xi$$

Two unknowns, two points, two equations

Rearrange and find the right values for β , ξ

Generalizing direct solution

- More generally, N > d
 - Hard to find a linear function that fits all the data.

	Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
N	2104	5	1	45	460
	1416	3	2	40	232
	1534	3	2	30	315
	852	2	1	36	178

d

Solution: Solve for means squared error function

Direct solution

Hypothesis: $y = x^T \beta + \xi$

Want to minimize Sum of Squared distances (SSD):

$$\xi_i = \frac{1}{N} \sum_i (y_i - x_i^T \beta)^2$$

Find minima where the gradient is zero

$$m{eta} \in \mathbb{R}^d$$
 $\min_{eta_j} \mathcal{L}(eta_j) \text{ (for every } j\text{)}$
Solve for $\beta_1, \beta_2, ..., \beta_d$

Direct solution

$$\xi_i = \frac{1}{N} \sum_{i} (y_i - x_i^T \beta)^2$$

Rewrite SSD using vector-matrix notation:

$$\xi = \frac{1}{N} (y - \mathcal{X}\beta)^T (y - \mathcal{X}\beta)$$

Where:

$$\mathcal{X} = \begin{pmatrix} x_1^T \\ x_2^T \\ \dots \\ x_n^T \end{pmatrix} \qquad y = \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix}$$

Derivation of Normal Equations

SSE in matrix form:

$$\xi = \frac{1}{N} (y - X\beta)^{T} (y - X\beta)$$

$$= \frac{1}{N} (\beta^{T} (X^{T} X) \beta - 2(X^{T} y)^{T} \beta + const)$$

$$y^{T} y$$

Derivation of Normal Equations

SSE in matrix form:

$$\xi = \frac{1}{N} (y - X\beta)^T (y - X\beta)$$
$$= \frac{1}{N} (\beta^T (X^T X) \beta - 2(X^T y)^T \beta + const)$$

• Take derivative with respect to β (vector), set to 0

$$= \frac{\partial \xi}{\partial \beta} \propto \mathcal{X}^T \mathcal{X} \beta - \mathcal{X}^T y = 0$$
 ignore constant multiplier

$$-\beta = (\mathcal{X}^T \mathcal{X})^{-1} \mathcal{X}^T y$$

Derivation of Normal Equations

SSE in matrix form:

$$\xi = \frac{1}{N} (y - \mathcal{X}\beta)^T (y - \mathcal{X}\beta)$$
$$= \frac{1}{N} (\beta^T (\mathcal{X}^T \mathcal{X}) \beta - 2(\mathcal{X}^T y)^T \beta + const)$$

• Take derivative with respect to β (vector), set to 0

$$= \frac{\partial \xi}{\partial \beta} \propto \mathcal{X}^T \mathcal{X} \beta - \mathcal{X}^T y = 0$$
 ignore constant multiplier

$$-\beta = (\mathcal{X}^T \mathcal{X})^{-1} \mathcal{X}^T y$$

Also known as the least mean squares, or least squares solution

Example: N = 4, d = 4

	$r_{ m o}$	Size (feet ²) x_1	Number of bedrooms x_2	Number of floors x_3	Age of home (years) x_4	Price (\$1000)
N	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	x_1	x_2	x_3	<i>w</i> 4	y
	1	2104	5	1	45	460
	1	1416	3	2	40	232
	1	1534	3	2	30	315
	1	852	2	1	36	178
		d				

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix}$$

a.k.a Design Matrix

$$y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$$

To find parameters, evaluate the Normal Equations

$$\beta = (\mathcal{X}^T \mathcal{X})^{-1} \ \mathcal{X}^T y$$

Trade-offs

N training examples, d features.

Gradient Descent

- Need to choose learning rate (η)
- Requires multiple iterations

 For a given N, performs well even if d is large

Normal Equations

- No need to choose η
- Don't need to iterate

Need to compute

$$(X^TX)^{-1}$$

 For a given N, slow if d is large

Today

- Expectation Maximization
- Linear Regression
- Analyzing your model
- Regularizing Linear Regression

Poorly performing regression models

How do we determine if we have a good model?

Metric: Mean-squared error

Assume have found an estimate our parameters $\hat{\beta}$ by solving:

$$\mathcal{X}^T \mathcal{X} \, \hat{\beta} - \mathcal{X}^T y = 0$$

We can compute the error using the residual vector

$$e = y - \mathcal{X}\hat{\beta}$$

Which gives us mean-squared error:

$$m = \frac{e^T e}{N}$$
 Lower is better!

Metric: R-squared

Model:

$$y = X\beta + e$$

Quality Measure: $var[y] = var[X\beta] + var[e]$

$$R^2 = \frac{\text{var}[\mathcal{X}\beta]}{\text{var}[y]}$$

Higher is better!

Comparing R^2

R vs R-squared

 R (correlation): the strength of the relationship between an independent and a dependent variable.

 R-squared: the extent to which the variance of one variable explains the variance of the second variable.

Metric: Cook's Distance

Goal: check the effect of removing a data point on regression

Model: estimate linear regression parameters by omitting the ith data point

$$y_i^{(p)} = \mathcal{X}\beta_i$$

this would give us the Cook's distance for the *i*th data point

Points with higher cook's distance - require closer inspection.

Will an outlier have a high cook's distance?

Why use Cook's distance?

Points with high cook's distance means other points cannot predict it well, e.g.,

Summary: Metrics for model analysis

- Mean-squared error (lower is better)
- R-squared (higher is better)
- Cook's distance (lower is better)
- What does cook's distance offer differently from R-squared?

Tips for evaluating your regression

Plot your data

Check if it predicts a constant

Check for a random residual

Box-Cox transformation

Definition: Transformation of the dependent variable that improves the regression

$$y_i^{(bc)} = \begin{cases} \frac{y_i^{\lambda} - 1}{\lambda} & \text{if } \lambda \neq 0\\ \log y_i & \text{if } \lambda = 0 \end{cases}$$

Estimate λ using maximum likelihood

Box-Cox Example

Without Transformation

Weight vs length in perch from Lake Laengelmavesi 1000 800 Weight (gr) 200 0 30 10 20 40 Length (cm)

With Transformation

Weight vs length in perch from Lake Laengelmavesi

Today

- Expectation Maximization
- Linear Regression
- Analyzing your model
- Regularizing Linear Regression

Recall: Overfitting

Bias vs variance

Not performing well on training data

(underfit)

Not generalizing well from training to unseen data

(overfit)

Bias and Variance

Bias: Inability of the model to capture the true relationship between data and labels

Bias: Inability of the model to capture the true relationship between data and labels

Test data

Bias vs Variance

Irreducible Error: Unavoidable incorrect predictions

 Error due to Bias: Difference between the model prediction and the correct value.

 Error due to Variance: How much the predictions for a given point vary between different realizations of the model.

The Bias-Variance Trade-off

There is a trade-off between bias and variance:

- Less complex models (fewer parameters) have high bias and hence low variance
- More complex models (more parameters) have low bias and hence high variance
- Optimal model will have a balance

Which is worse between having a model with high bias or a model with high variance?

Recall: Reasons for overfitting

 What is it: Model overfits to the underlying training data.

Model too complex

Model not well-trained Small training data

Train-test data distribution mismatch

- Early stopping
- Ensemble models
- Better loss **functions**

Data

augmentation

Iterative training

pruning Regularization

Model

Recall: Reasons for overfitting

 What is it: Model overfits to the underlying training data.

Model too complex

Model not well-trained Small training data

Train-test data distribution mismatch

- Early stopping
- **Ensemble** models
- Better loss **functions**

Data

augmentation

Iterative training

- Model pruning
- Regularization 2.

Recall: Classification training objective

Loss =
$$\frac{1}{N} \sum_{i=1}^{N} C(y_i, \gamma_i) + \lambda \left(\frac{a^T a}{2}\right)$$

$$\lambda = \text{regularization strength (hyperparameter)}$$

Data loss: Model predictions should align with ground truth

Regularizer: Prevent the model from doing too well.

Regularized Regression Objective

Basic Idea:

$$\frac{1}{N}(y - X\beta)^{T}(y - X\beta) + \lambda \beta^{T}\beta$$

where $\lambda > 0$

The Bias-Variance Trade-off

There is a trade-off between bias and variance:

- Less complex models (fewer parameters) have high bias and hence low variance
- More complex models (more parameters) have low bias and hence high variance
- Optimal model will have a balance

How do we search for the right model hyper parameters?

Diagnosing model's performance

Suppose your learning algorithm is performing less well than you were hoping. (\mathbb{E}_{cv} or \mathbb{E}_{test} is high.) Is it a bias problem or a variance problem?

Diagnosing model's performance

Suppose your learning algorithm is performing less well than you were hoping. (\mathbb{E}_{cv} or \mathbb{E}_{test} is high.) Is it a bias problem or a variance problem?

Bias (underfit):

 \mathbb{E}_{train} will be high, $\mathbb{E}_{cv} \approx \mathbb{E}_{train}$

Variance (overfit):

 \mathbb{E}_{train} will be low, $\mathbb{E}_{cv}\gg\mathbb{E}_{train}$

Next Class

Regression II: More model selection, regression trees

Reading: Forsyth Ch 11.1-11.2