R documentation

of 'AUC.Rd' etc.

May 17, 2019

AUC

Calculates the AUC of an ROC curve.

Description

Calculates the area under an ROC curve (AUC).

Usage

AUC(tpfp)

Arguments

tpfp

A matrix with two columns, the true positive and the false positive rates.

Value

A number between 0 and 1, the area under the curve (AUC).

```
n <- 40
p <- 50
mu <- rep(0, p)
tol <- 1e-8
K <- cov_cons(mode="sub", p=p, seed=1, spars=0.2, eig=0.1, subgraphs=10)</pre>
true_edges <- which(abs(K) > tol & diag(p) == 0)
dm < -1 + (1-1/(1+4*exp(1)*max(6*log(p)/n, sqrt(6*log(p)/n))))
set.seed(1)
x \leftarrow tmvtnorm::rtmvnorm(n, mean = mu, sigma = solve(K),
       lower = rep(0, p), upper = rep(Inf, p), algorithm = "gibbs",
       burn.in.samples = 100, thinning = 10)
est <- estimate(x, "trun_gaussian", elts=NULL, centered=TRUE,</pre>
         symmetric="symmetric", lambda_length=100, mode="min_pow",
         param1=1, param2=3, diagonal_multiplier=dm)
# Apply tp_fp to each estimated edges set for each lambda
TP_FP <- t(sapply(est$edgess, function(edges){tp_fp(edges, true_edges, p)}))</pre>
par(mfrow=c(1,1), mar=c(5,5,5,5))
```

2 avgrocs

```
auc <- AUC(TP_FP)
plot(c(), c(), ylim=c(0,1), xlim=c(0,1), cex.lab=1,
    main=paste("ROC curve, AUC",round(auc,4)), xlab="False Positives",
    ylab="True Positives")
points(TP_FP[,2], TP_FP[,1], type="l")
points(c(0,1), c(0,1), type = "l", lty = 2)</pre>
```

avgrocs

Takes the vertical average of ROC curves.

Description

Takes the vertical average of ROC curves using algorithm 3 from Fawcett (2006). The resulting ROC curve preserves the average AUC.

Usage

```
avgrocs(rocs, num_true_edges, p)
```

Arguments

rocs A list of ROC curves, each of which is a matrix with two columns corresponding to the true positive and false positive rates, respectively.

num_true_edges A positive integer, the number of true edges

p A positive integer, the dimension

Value

The averaged ROC curve, a matrix with 2 columns and (p^2-p-num_true_edges+1) rows.

References

Tom Fawcett. An introduction to ROC analysis. Pattern Recognition Letters, 27(8):861-874, 2006.

```
n <- 40
p <- 50
mu <- rep(0, p)
tol <- 1e-8
K <- cov_cons(mode="sub", p=p, seed=1, spars=0.2, eig=0.1, subgraphs=10)</pre>
true_edges <- which(abs(K) > tol & diag(p) == 0)
dm < -1 + (1-1/(1+4*exp(1)*max(6*log(p)/n, sqrt(6*log(p)/n))))
ROCs <- list()
par(mfrow=c(2,2), mar=c(5,5,5,5))
for (i in 1:3){
  set.seed(i)
  x \leftarrow tmvtnorm::rtmvnorm(n, mean = mu, sigma = solve(K),
         lower = rep(0, p), upper = rep(Inf, p), algorithm = "gibbs",
         burn.in.samples = 100, thinning = 10)
  est <- estimate(x, "trun_gaussian", elts=NULL, centered=TRUE,</pre>
           symmetric="symmetric", lambda_length=100, mode="min_pow",
           param1=1, param2=3, diag=dm)
```

compare_two_results 3

```
# Apply tp_fp to each estimated edges set for each lambda
TP_FP <- t(sapply(est$edgess, function(edges){tp_fp(edges, true_edges, p)}))
ROCs[[i]] <- TP_FP
plot(c(), c(), ylim=c(0,1), xlim=c(0,1), cex.lab=1,
    main=paste("ROC, trial ",i,", AUC ",round(AUC(TP_FP),4),sep=""),
    xlab="False Positives", ylab="True Positives")
points(TP_FP[,2], TP_FP[,1], type="l")
points(c(0,1), c(0,1), type = "l", lty = 2)
}
average_ROC <- avgrocs(ROCs, length(true_edges), p)
plot(c(), c(), ylim=c(0,1), xlim=c(0,1), cex.lab=1,
    main=paste("Average ROC, AUC",round(AUC(average_ROC),4)),
    xlab="False Positives", ylab="True Positives")
points(average_ROC[,2], average_ROC[,1], type="l")
points(c(0,1), c(0,1), type = "l", lty = 2)</pre>
```

compare_two_results

Compares two lists returned from estimate().

Description

Compares two lists returned from estimate().

Usage

```
compare_two_results(res, res2)
```

Arguments

res A res list returned from estimate().
res2 A res list returned from estimate().

Value

A list of numbers all of which should be close to 0 if res and res2 are expected to be the same.

```
compare_two_sub_results
```

Compares two lists returned from get_results().

Description

Compares two lists returned from get_results().

Usage

```
compare_two_sub_results(res, res2)
```

Arguments

```
res A res list returned from get_results().
res2 A res list returned from get_results().
```

4 cov_cons

Value

A list of numbers all of which should be close to 0 if res and res2 are expected to be the same.

COV	cons

Random generator of inverse covariance matrices.

Description

Random generator of inverse covariance matrices.

Usage

```
cov_cons(mode, p, seed = NULL, spars = 1, eig = 0.1, subgraphs = 1)
```

Arguments

mode	A string, see details.
р	A positive integer \geq 2, the dimension.
seed	A number, the seed for the generator. Ignored if NULL or mode $==$ "band" or mode $==$ "chain".
spars	A number, see details. Ignored if mode == "chain". Default to 1.
eig	A positive number, the minimum eigenvalue of the returned matrix. Default to $0.1.$
subgraphs	A positive integer, the number of subgraphs for the "sub" mode. Note that p must be divisible by subgraphs.

Details

The function generates an inverse covariance matrix according to the mode argument as follows. The diagonal entries of the matrix are set to the same value such that the minimum eigenvalue of the returned matrix is equal to eig.

Takes the Q matrix from the QR decomposition of a p by p random matrix with independent Normal(0,1) entries, and calculates Q'diag(ev)Q. Randomly zeros out its upper triangular entries using independent uniform Bernoulli(spars) variables, and then symmetrizes the matrix using the upper triangular part.

- "randoistib" Constructs a block diagonal matrix with subgraphs disconnected subgraphs with equal number of nodes. In each subgraph, takes each entry independently from Uniform(0.5,1), and randomly zeros out its upper triangular entries using independent uniform Bernoulli(spars) variables, and finally symmetrizes the matrix using the upper triangular part.
- "er" Constructs an Erdős-Rényi game with probability spars, and sets the edges to independent Uniform(0.5,1) variables, and finally symmetrizes the matrix using the lower triangular entries.
- "band" Constructs a banded matrix so that the (i,j)-th matrix is nonzero if and only if $|i-j| \le spars$, and is equal to 1 |i-j|/(spars + 1) if i! = j.
- "chain" A chain graph, where the (i,j)-th matrix is nonzero if and only if |i-j| <= 1, and is equal to 0.5 if |i-j| == 1. A special case of the "band" construction with spars equal to 1.

crbound_mu 5

Value

A p by p inverse covariance matrix. See details.

References

Lina Lin, Mathias Drton, and Ali Shojaie. Estimation of high-dimensional graphical models using regularized score matching. Electron. J. Stat., 10(1):806–854, 2016. \insertRefRpack:bibtexRdpack \insertReflin16genscore

Examples

```
p <- 100
K1 <- cov_cons("random", p, seed = 1, spars = 0.05, eig = 0.1)
K2 <- cov_cons("sub", p, seed = 2, spars = 0.5, eig = 0.1, subgraphs=10)
K3 <- cov_cons("er", p, seed = 3, spars = 0.05, eig = 0.1)
K4 <- cov_cons("band", p, spars = 2, eig = 0.1)
K5 <- cov_cons("chain", p, eig = 0.1)</pre>
```

crbound_mu

The Cramér-Rao lower bound (times n) for estimating the mean parameter from a univariate truncated normal sample with known variance parameter.

Description

The Cramér-Rao lower bound (times n) on the variance for estimating the mean parameter mu from a univariate truncated normal sample, assuming the true variance parameter sigmasq is known.

Usage

```
crbound_mu(mu, sigmasq)
```

Arguments

mu The mean parameter.
sigmasq The variance parameter.

Details

The Cramér-Rao lower bound in this case is defined as $\sigma^4/var(X-\mu)$.

Value

A number, the Cramér-Rao lower bound.

6 diff_lists

crbound_sigma	The Cramér-Rao lower bound (times n) for estimating the variance parameter from a univariate truncated normal sample with known mean
	parameter.

Description

The Cramér-Rao lower bound (times n) on the variance for estimating the variance parameter sigmasq from a univariate truncated normal sample, assuming the true mean parameter mu is known.

Usage

```
crbound_sigma(mu, sigmasq)
```

Arguments

mu The mean parameter. sigmasq The variance parameter.

Details

The Cramér-Rao lower bound in this case is defined as $4\sigma^8/var((X-\mu)^2)$.

Value

A number, the Cramér-Rao lower bound .

diff_lists

Computes the sum of absolute differences between two lists.

Description

Computes the sum of absolute differences between two lists using diff_vecs().

Usage

```
diff_lists(l1, l2, name = NULL)
```

Arguments

11 A list.12 A list.

name A string, default to NULL. If not NULL, computes the differences in the 11[[name]]

and 12[[name]].

Value

Returns the sum of absolute differences between 11 and 12 if name is NULL, or that between 11[[name]] and 12[[name]] otherwise. If name is not NULL and if name is in exactly one of 11 and 12, returns Inf; if name is in neither, returns NA. Exception: Returns a positive integer if the two elements compared hold NA, NULL or Inf values in different places.

diff_vecs 7

diff_vecs	Computes the sum of absolute differences in the finite non-NA/NULL elements between two vectors.

Description

Computes the sum of absolute differences in the finite non-NA/NULL elements between two vectors.

Usage

```
diff_vecs(l1, l2, relative = FALSE)
```

Arguments

11 A vector.12 A vector.

relative A boolean, default to FALSE. If TRUE, returns the relative difference (sum of

absolute differences divided by the elementwise minimum between 11 and 12).

Value

The sum of (relative) absolute differences in 11 and 12, or a positive integer if two vectors differ in length or hold NA, NULL or Inf values in different places.

eBIC *eBIC score with or without refitting.*

Description

Calculates the eBIC score both with and without refitting an unpenalized model restricted to the estimated support.

Usage

```
eBIC(res, elts, BIC_refit = TRUE, gammas = c(0, 0.5, 1))
```

Arguments

res	A list of results returned by get_results().
-----	--

elts A list, elements necessary for calculations returned by get_elts().

BIC_refit A boolean, whether to get the BIC scores by refitting an unpenalized model re-

stricted to the estimated edges, with lambda1=0, lambda2=0 and diagonal_multiplier=1.

Default to TRUE.

gammas Optional. A number of a vector of numbers. The γ parameter in eBIC. Default

to c(0,0.5,1).

Value

A vector of length 2*length(gammas). The first length(gammas) numbers are the eBIC scores without refitting for each gamma value, and the rest are those with refitting if BIC_refit == TRUE, or Inf if BIC_refit == FALSE.

Examples

```
if (!requireNamespace("tmvtnorm", quietly = TRUE)){
  stop("Please install package \"tmvtnorm\" first.", call. = FALSE)
require(tmvtnorm)
n <- 50
p <- 30
h_hp <- get_h_hp("min_pow", 1, 3)
mu \leftarrow rep(0, p)
K <- diag(p)</pre>
dm < -1 + (1-1/(1+4*exp(1)*max(6*log(p)/n, sqrt(6*log(p)/n))))
x <- tmvtnorm::rtmvnorm(n, mean = mu, sigma = solve(K),</pre>
       lower = rep(0, p), upper = rep(Inf, p), algorithm = "gibbs",
       burn.in.samples = 100, thinning = 10)
elts_NC_NP <- get_elts(h_hp$h, h_hp$hp, x, setting="trun_gaussian",</pre>
                centered=FALSE, profiled=FALSE, diag=dm)
res_nc_np <- get_results(elts_NC_NP, symmetric="symmetric",</pre>
               lambda1=0.35, lambda2=2, previous_res=NULL,
               is_refit=FALSE)
eBIC(res_nc_np, elts_NC_NP, BIC_refit=TRUE, gammas=c(0,0.5,1))
```

estimate

The main function for the generalized score-matching estimator for graphical models.

Description

The main function for the generalized score-matching estimator for graphical models.

Usage

```
estimate(x, setting, elts = NULL, centered = TRUE,
  symmetric = "symmetric", scale = "norm", lambda1s = NULL,
  lambda_length = NULL, lambda_ratio = Inf, mode = NULL,
  param1 = NULL, param2 = NULL, h = NULL, hp = NULL,
  verbose = TRUE, verbosetext = "", tol = 1e-06, maxit = 1000,
  BIC_refit = TRUE, warmstart = TRUE, diagonal_multiplier = NULL,
  eBIC_gammas = c(0, 0.5, 1), return_raw = FALSE)
```

Arguments

x A matrix, the data.

setting

A string that indicates the setting, must be one of "exp", "gamma", "gaussian", "trun_gaussian", or of the form "ab_NUM1_NUM2", where NUM1 is the a value and NUM2 is the b value.

elts A list (optional), elements necessary for calculations returned by get elts(). centered A boolean, whether in the centered setting (assume $\mu = \eta = 0$) or not. Default to TRUE. A string. If equals "symmetric", estimates the minimizer **K** over all symmetric symmetric matrices; if "and" or "or", use the "and"/"or" rule to get the support. Default to "symmetric". A string indicating the scaling method. If contains "sd", columns are scaled scale by standard deviation; if contains "norm", columns are scaled by 12 norm; if contains "center" and setting == "gaussian", columns are centered to have mean zero. Default to "norm". lambda1s A vector of lambdas, the penalty parameter for K. lambda_length An integer >= 2, the number of lambda1s. Ignored if lambda1s is provided, otherwise a grid of lambdas is automatically chosen so that the results range from an empty graph to a complete graph. Default to 10 if neither lambda1s nor lambda_length is provided. lambda_ratio A positive number, the fixed ratio between $\lambda_{\mathbf{K}}$ and $\lambda_{\boldsymbol{\eta}}$, if $\lambda_{\boldsymbol{\eta}} \neq 0$ (non-profiled) in the non-centered setting. A string, the class of the h function. Ignored if elts, or h and hp are provided, mode or if setting == "gaussian". param1 A number, the first parameter to the h function. Ignored if elts, or h and hp are provided, or if setting == "gaussian". A number, the second parameter (may be optional depending on mode) to the h param2 function. Ignored if elts, or h and hp are provided, or if setting == "gaussian". h A function, the h function. Must evaluate to 0 at 0. Ignored if elts is provided, or if setting == "gaussian". A function, the derivative of the h function. Must be provided if h is provided, hp or if setting == "gaussian". verbose Optional. A boolean, whether to output intermediate results. verbosetext Optional. A string, text to be added to the end of each printout if verbose == TRUE. tol Optional. A number, the tolerance parameter. Default to 1e-6. maxit Optional. A positive integer, the maximum number of iterations for each fit. Default to 1000. BIC_refit A boolean, whether to get the BIC scores by refitting an unpenalized model restricted to the estimated edges, with lambda1=lambda2=0 and diagonal_multiplier=1. Default to TRUE. warmstart Optional. A boolean, whether to use the results from a previous (larger) lambda as a warm start for each new lambda. Default to TRUE. diagonal_multiplier A number >= 1, the diagonal multiplier. Optional and ignored if elts is provided.

A number >= 1, the diagonal multiplier. Optional and ignored if elts is provided. If ncol(x) > ncol(n), a value strictly larger than 1 is recommended. Default to $1 + \left(1 - \left(1 + 4e \max\left(6\log p/n, \sqrt{6\log p/n}\right)\right)^{-1}\right)$.

to $1 + \left(1 - \left(1 + 4e \max\left(6 \log p/n, \sqrt{6 \log p/n}\right)\right)\right)$.

Optional. A number of a vector of numbers. The γ parameter in eBIC. Default

return_raw A boolean, whether to return the raw estimates of K. Default to FALSE.

to c(0,0.5,1).

eBIC_gammas

Value

edgess A list of vectors of integers: indices of the non-zero edges. If applicable, a lambda_length*p matrix of eta estimates with the *i*-th row etas corresponding to the i-th lambda1, and may contain NAs after the first lambda that gives the complete graph. Otherwise NULL. BICs A lambda_length by length(eBIC_gammas) matrix of raw eBIC scores (without refitting). May contain Infs for rows after the first lambda that gives the complete graph. BIC_refits NULL if BIC_refit == FALSE, otherwise a lambda_length by length(eBIC_gammas) matrix of refitted eBIC scores, obtained by refitting unpenalized models restricted to the estimated edges. May contain Infs for rows after the first lambda that gives the graph restricted to which an unpenalized model does not have a solution (loss unbounded from below). lambda1s A vector of numbers of length lambda_length: the grid of lambda1s over which the estimates are obtained. lambda2s A vector of numbers of length lambda_length: the grid of lambda2s over which the estimates are obtained, if applicable, otherwise NULL. A vector of booleans of length lambda_length: indicators of convergence for converged each fit. May contain 0s for all lambdas after the first lambda that gives the complete graph. A vector of integers of length lambda_length: the number of iterations run for iters each fit. May contain 0s for all lambdas after the first lambda that gives the complete graph. An empty list if return_raw == FALSE, otherwise a list that contains lambda_length raw_estimate estimates for K of size ncol(x)*ncol(x). May contain ncol(x)*ncol(x) matrices of NAs for all lambdas after the first lambda that gives the complete graph.

```
if (!requireNamespace("tmvtnorm", quietly = TRUE)){
  stop("Please install package \"tmvtnorm\" first.", call. = FALSE)
}
require(tmvtnorm)
n <- 50
p <- 30
mu \leftarrow rep(0, p)
K <- diag(p)</pre>
lambda1s <- c(0.01, 0.1, 0.2, 0.3, 0.4, 0.5)
dm < -1 + (1-1/(1+4*exp(1)*max(6*log(p)/n, sqrt(6*log(p)/n))))
x <- tmvtnorm::rtmvnorm(n, mean = mu, sigma = solve(K),</pre>
       lower = rep(0, p), upper = rep(Inf, p), algorithm = "gibbs",
       burn.in.samples = 100, thinning = 10)
## Centered estimates, no elts or h provided, mode and params provided
est1 <- estimate(x, "trun_gaussian", elts=NULL, centered=TRUE,</pre>
          symmetric="symmetric", lambda1s=lambda1s, mode="min_pow",
          param1=1, param2=3, diag=dm, return_raw=TRUE)
h_hp <- get_h_hp("min_pow", 1, 3)
## Centered estimates, no elts provided, h provided; equivalent to est1
est2 <- estimate(x, "trun_gaussian", elts=NULL, centered=TRUE,</pre>
          symmetric="symmetric", lambda1s=lambda1s, h=h_hp$h,
```

```
hp=h_hp$hp, diag=dm, return_raw=TRUE)
elts_C <- get_elts(h_hp$h, h_hp$hp, x, setting="trun_gaussian",</pre>
            centered=TRUE, diag=dm)
## Centered estimates, elts provided; equivalent to est1 and est2
est3 <- estimate(x, "trun_gaussian", elts=elts_C,</pre>
          {\tt symmetric="symmetric", lambda1s=lambda1s, diag=NULL,}\\
          return raw=TRUE)
## Noncentered estimates with Inf penalty on eta; equivalent to est1~3
est4 <- estimate(x, "trun_gaussian", elts=NULL, centered=FALSE,</pre>
          lambda_ratio=0, symmetric="symmetric", lambda1s=lambda1s,
          h=h_hp$h, hp=h_hp$hp, diag=dm, return_raw=TRUE)
compare_two_results(est1, est2) ## Should be almost all 0
compare_two_results(est1, est3) ## Should be almost all 0
sum(abs(est4$etas)) ## Should be 0 since non-centered with lambda ratio 0 is equivalent to centered
est4$etas <- NULL ## But different from est1 in that the zero etas are returned in est4
compare_two_results(est1, est4) ## Should be almost all 0
## Profiled estimates, no elts or h provided, mode and params provided
est5 <- estimate(x, "trun_gaussian", elts=NULL, centered=FALSE,</pre>
          lambda_ratio=Inf, symmetric="or", lambda1s=lambda1s,
          mode="min_pow", param1=1, param2=3, diag=dm, return_raw=TRUE)
## Profiled estimates, no elts provided, h provided; equivalent to est5
est6 <- estimate(x, "trun_gaussian", elts=NULL, centered=FALSE,</pre>
          lambda_ratio=Inf, symmetric="or", lambda1s=lambda1s,
          h=h_hp$h, hp=h_hp$hp, diag=dm, return_raw=TRUE)
elts_NC_P <- get_elts(h_hp$h, h_hp$hp, x, setting="trun_gaussian",</pre>
                centered=FALSE, profiled=TRUE, diag=dm)
## Profiled estimates, elts provided; equivalent to est5~6
est7 <- estimate(x, "trun_gaussian", elts=elts_NC_P, centered=FALSE,</pre>
          lambda_ratio=Inf, symmetric="or", lambda1s=lambda1s,
          diagonal_multiplier=NULL, return_raw=TRUE)
compare_two_results(est5, est6) ## Should be almost all 0
compare_two_results(est5, est7) ## Should be almost all 0
## Non-centered estimates, no elts or h provided, mode and params provided
est8 <- estimate(x, "trun_gaussian", elts=NULL, centered=FALSE,</pre>
          lambda_ratio=2, symmetric="and", lambda_length=100,
          mode="min_pow", param1=1, param2=3, diag=dm, return_raw=TRUE)
## Non-centered estimates, no elts provided, h provided; equivalent to est5
est9 <- estimate(x, "trun_gaussian", elts=NULL, centered=FALSE,</pre>
          lambda_ratio=2, symmetric="and", lambda_length=100,
          h=h_hp$h, hp=h_hp$hp, diag=dm, return_raw=TRUE)
elts_NC_NP <- get_elts(h_hp$h, h_hp$hp, x, setting="trun_gaussian", centered=FALSE,</pre>
                profiled=FALSE, diag=dm)
## Non-centered estimates, elts provided; equivalent to est8~9
est10 <- estimate(x, "trun_gaussian", elts=elts_NC_NP,</pre>
           centered=FALSE, lambda_ratio=2, symmetric="and",
           lambda_length=100, diag=NULL, return_raw=TRUE)
compare_two_results(est8, est9) ## Should be almost all 0
```

12 get_crit_nopenalty

```
compare_two_results(est8, est10) ## Should be almost all 0
```

find_max_ind

Finds the max index in a vector that does not exceed a target number.

Description

Finds the max index in a vector that does not exceed a target number.

Usage

```
find_max_ind(vals, target, start = 1)
```

Arguments

vals A vector of numbers.

target A number. Must not be smaller than vals[start].

start A number, the starting index; default to 1. Must be such that vals[start] <= target.

Value

The max index i such that $vals[i] \le target$ and $i \ge start$.

Examples

```
for (i in 1:100) {
  vals <- 1:i
  for (start in 1:i)
    for (target in seq(start, i+0.5, by=0.5))
        if (find_max_ind(vals, target, start) != floor(target))
            stop()
}</pre>
```

get_crit_nopenalty

Minimized loss for unpenalized restricted asymmetric models.

Description

Analytic solution of the minimized loss for an unpenalized asymmetric model restricted to a given support. Does not work if symmetric == "symmetric".

Usage

```
get_crit_nopenalty(elts, exclude = NULL, exclude_eta = NULL,
    previous_res = NULL)
```

get_elts 13

Arguments

elts	A list, elements necessary for calculations returned by get_elts().
exclude	Optional. A $p*p$ binary matrix or a p^2 binary vector, where 1 indicates the entry in K was estimated to 0 in the previous estimate. Default to NULL.
exclude_eta	Optional. A p-binary vector, similar to exclude. Default to NULL.
previous_res	Optional. A list, the returned list by get_results() run previously with another lambda value. Default to NULL.

lambda value. Default to NULL.

Details

If previous_res is provided, exclude and exclude_eta must be NULL or be consistent with the estimated support in previous_res. If previous_res and exclude are both NULL, assume all edges are present. The same applies to the non-profiled non-centered case when previous_res and exclude_eta are both NULL.

Value

A number, the refitted loss.

Examples

```
if (!requireNamespace("tmvtnorm", quietly = TRUE)){
  stop("Please install package \"tmvtnorm\" first.", call. = FALSE)
}
require(tmvtnorm)
n <- 50
p <- 30
h_hp <- get_h_hp("min_pow", 1, 3)
mu \leftarrow rep(0, p)
K <- diag(p)</pre>
dm < -1 + (1-1/(1+4*exp(1)*max(6*log(p)/n, sqrt(6*log(p)/n))))
x <- tmvtnorm::rtmvnorm(n, mean = mu, sigma = solve(K),</pre>
       lower = rep(0, p), upper = rep(Inf, p), algorithm = "gibbs",
       burn.in.samples = 100, thinning = 10)
elts_NC_NP <- get_elts(h_hp$h, h_hp$hp, x, setting="trun_gaussian",</pre>
                centered=FALSE, profiled=FALSE, diag=dm)
res_nc_np <- get_results(elts_NC_NP, symmetric="symmetric", lambda1=0.35,</pre>
               lambda2=2, previous_res=NULL, is_refit=FALSE)
get_crit_nopenalty(elts_NC_NP, previous_res=res_nc_np)
```

get_elts

The function wrapper to get the elements necessary for calculations for all settings.

Description

The function wrapper to get the elements necessary for calculations for all settings.

14 get_elts

Usage

```
get_elts(h, hp, x, setting, centered = TRUE,
  profiled_if_noncenter = TRUE, scale = "norm",
  diagonal_multiplier = 1, use_C = TRUE,
  tol = .Machine$double.eps^0.5)
```

Arguments

h A function, the h function. Must evaluate to 0 at 0. Ignored if elts is provided.

hp A function, the derivative of the h function. Must be provided if h is provided.

x A matrix, the data matrix.

setting A string that indicates the setting, must be one of " \exp ", "gamma", "gaussian",

"trun_gaussian", or of the form "ab_NUM1_NUM2", where NUM1 is the a value

and NUM2 is the b value.

centered A boolean, whether in the centered setting(assume $\mu = \eta = 0$) or not. Default

to TRUE.

profiled_if_noncenter

A boolean, whether in the profiled setting $(\lambda_{\eta} = 0)$ if noncentered. Parameter

ignored if centered=TRUE. Default to TRUE.

scale A string indicating the scaling method. If contains "sd", columns are scaled

by standard deviation; if contains "norm", columns are scaled by 12 norm; if contains "center" and setting == "gaussian", columns are centered to have

mean zero. Default to "norm".

diagonal_multiplier

A number \geq 1, the diagonal multiplier.

 $\mbox{use_C} \qquad \qquad \mbox{Optional.} \ \ \, \mbox{A boolean, use C (TRUE) or R (FALSE) functions for computation.}$

Default to TRUE. Ignored if setting == "gaussian".

tol Optional. A positive number. If setting != "gaussian", function stops if

any entry if smaller than -tol, and all entries between -tol and 0 are set to tol, for numerical stability and to avoid violating the assumption that $h(\mathbf{x}) > 0$ almost

surely.

Details

Computes the Γ matrix and the g vector for generalized score matching.

Here, Γ is block-diagonal, and in the non-profiled non-centered setting, the j-th block is composed of $\Gamma_{\mathbf{KK},j}$, $\Gamma_{\mathbf{K}\eta,j}$ and its transpose, and finally $\Gamma_{\eta\eta,j}$. In the centered case, only $\Gamma_{\mathbf{KK},j}$ is computed. In the profiled non-centered case,

$$\Gamma_j \equiv \Gamma_{\mathbf{K}\mathbf{K},j} - \Gamma_{\mathbf{K}\boldsymbol{\eta},j}\Gamma_{\boldsymbol{\eta}\boldsymbol{\eta},j}^{-1}\Gamma_{\mathbf{K}\boldsymbol{\eta}}^{\top}.$$

Similarly, in the non-profiled non-centered setting, g can be partitioned p parts, each with a p-vector $g_{\mathbf{K},j}$ and a scalar $g_{\eta,j}$. In the centered setting, only $g_{\mathbf{K},j}$ is needed. In the profiled non-centered case,

$$g_j \equiv g_{\mathbf{K},j} - \Gamma_{\mathbf{K}\boldsymbol{\eta},j}\Gamma_{\boldsymbol{\eta}\boldsymbol{\eta},j}^{-1}g_{\boldsymbol{\eta},j}.$$

The formulae for the pieces above are

$$\Gamma_{\mathbf{KK},j} \equiv \frac{1}{n} \sum_{i=1}^{n} h\left(X_{j}^{(i)}\right) X_{j}^{(i)^{2a-2}} \boldsymbol{X}^{(i)^{a}} \boldsymbol{X}^{(i)^{a}\top},$$

get_elts 15

$$\begin{split} \mathbf{\Gamma}_{\mathbf{K}\boldsymbol{\eta},j} &\equiv -\frac{1}{n} \sum_{i=1}^{n} h\left(X_{j}^{(i)}\right) X_{j}^{(i)^{a+b-2}} \boldsymbol{X}^{(i)^{a}}, \\ &\mathbf{\Gamma}_{\boldsymbol{\eta}\boldsymbol{\eta},j} \equiv \frac{1}{n} \sum_{i=1}^{n} h\left(X_{j}^{(i)}\right) X_{j}^{(i)^{2b-2}}, \\ &g_{\mathbf{K},j} \equiv \frac{1}{n} \sum_{i=1}^{n} \left(h'\left(X_{j}^{(i)}\right) X_{j}^{(i)^{a-1}} + (a-1)h\left(X_{j}^{(i)}\right) X_{j}^{(i)^{a-2}}\right) \boldsymbol{X}^{(i)^{a}} + ah\left(X_{j}^{(i)}\right) X_{j}^{(i)^{2a-2}} \boldsymbol{e}_{j,p}, \\ &g_{\boldsymbol{\eta},j} \equiv \frac{1}{n} \sum_{i=1}^{n} -h'\left(X_{j}^{(i)}\right) X_{j}^{(i)^{b-1}} - (b-1)h\left(X_{j}^{(i)}\right) X_{j}^{(i)^{b-2}}, \end{split}$$

where $e_{j,p}$ is the p-vector with 1 at the j-th position and 0 elsewhere.

In the profiled non-centered setting, the function also returns t_1 and t_2 defined as

$$oldsymbol{t}_1 \equiv oldsymbol{\Gamma}_{oldsymbol{\eta}oldsymbol{\eta}}^{-1} oldsymbol{g}_{oldsymbol{\eta}}, \quad oldsymbol{t}_2 \equiv oldsymbol{\Gamma}_{oldsymbol{\eta}oldsymbol{\eta}}^{-1} oldsymbol{\Gamma}_{oldsymbol{K}oldsymbol{\eta}}^{\top},$$

so that $\hat{\boldsymbol{\eta}} = \boldsymbol{t}_1 - \boldsymbol{t}_2 \text{vec}(\hat{\mathbf{K}})$.

Value

A list that contains the elements necessary for estimation.

n The sample size.

p The dimension.

centered The centered setting or not. Same as input.

scale The scaling method. Same as input.

diagonal_multiplier

The diagonal multiplier. Same as input.

diagonals_with_multiplier

A vector that contains the diagonal entries of Γ after applying the multiplier.

setting The setting. Same as input.

g_K The g vector. In the non-profiled non-centered setting, this is the g sub-vector corresponding to K. A p^2 -vector. Not returned if setting == "gaussian" since it is just diag(p).

Gamma_K The Γ matrix with no diagonal multiplier. In the non-profiled non-centered setting, this is the Γ sub-matrix corresponding to K. A vector of length p^2 if setting == "gaussian" or p^3 otherwise.

g_eta Returned in the non-profiled non-centered setting. The g sub-vector corresponding to η . A p-vector. Not returned if setting == "gaussian" since it is just numeric(p).

Gamma_K_eta Returned in the non-profiled non-centered setting. The Γ sub-matrix corresponding to interaction between \mathbf{K} and η . If setting == "gaussian", returns a vector of length p, or p^2 otherwise.

Gamma_eta Returned in the non-profiled non-centered setting. The Γ sub-matrix corresponding to η . A p-vector. Not returned if setting == "gaussian" since it is just rep(1,p).

t1, t2 Returned in the profiled non-centered setting, where the η estimate can be retrieved from $t_1 - t_2 \hat{\mathbf{K}}$ after appropriate resizing.

16 get_elts_ab

Examples

```
if (!requireNamespace("mvtnorm", quietly = TRUE)){
  stop("Please install package \"mvtnorm\" first.", call. = FALSE)
if (!requireNamespace("tmvtnorm", quietly = TRUE)){
 stop("Please install package \"tmvtnorm\" first.", call. = FALSE)
require(mvtnorm)
require(tmvtnorm)
n <- 50
p <- 30
h_{p} \leftarrow get_{p}("min_{pow}", 1, 3)
mu <- rep(0, p)
K <- diag(p)</pre>
diagonal_multiplier <- 1 + (1-1/(1+4*exp(1)*max(6*log(p)/n, sqrt(6*log(p)/n))))
x <- tmvtnorm::rtmvnorm(n, mean = mu, sigma = solve(K),</pre>
       lower = rep(0, p), upper = rep(Inf, p), algorithm = "gibbs",
       burn.in.samples = 100, thinning = 10)
h_hp <- get_h_hp("min_pow", 1, 3)
{\tt get\_elts(h\_hp\$h,\ h\_hp\$hp,\ x,\ setting="trun\_gaussian",}
  centered=TRUE, scale="norm", diag=1.5)
get_elts(h_hp$h, h_hp$hp, x, setting="ab_0.7_1.2",
  centered=FALSE, profiled=FALSE, scale="sd", diag=1.9)
x <- mvtnorm::rmvnorm(n, mean=mu, sigma=solve(K))</pre>
get_elts(NULL, NULL, x, setting="gaussian", centered=FALSE,
  profiled=FALSE, scale="center_norm", diag=1.3)
```

get_elts_ab

The R implementation to get the elements necessary for calculations for general a and b.

Description

The R implementation to get the elements necessary for calculations for general a and b.

Usage

```
get_elts_ab(hx, hpx, x, a, b, setting, centered = TRUE,
   profiled_if_noncenter = TRUE, scale = "norm",
   diagonal_multiplier = 1)
```

Arguments

hx	A matrix, $h(\mathbf{x})$, should be of the same dimension as \mathbf{x} .
hpx	A matrix, $h'(\mathbf{x})$, should be of the same dimension as \mathbf{x} .
x	A matrix, the data matrix.
а	A number, must be strictly larger than $b/2$.
b	A number, must be ≥ 0 .
setting	A string that indicates the setting. Returned without being checked or used in the function body.

get_elts_ab

centered A boolean, whether in the centered setting (assume $\mu=\eta=0$) or not. Default to TRUE.

profiled_if_noncenter

A boolean, whether in the profiled setting $(\lambda_{\eta} = 0)$ if noncentered. Parameter ignored if centered=TRUE. Default to TRUE.

A string indicating the scaling method. Returned without being checked or used in the function body. Default to "norm".

diagonal_multiplier

A number >= 1, the diagonal multiplier.

Details

Computes the Γ matrix and the g vector for generalized score matching.

Here, Γ is block-diagonal, and in the non-profiled non-centered setting, the j-th block is composed of $\Gamma_{\mathbf{KK},j}$, $\Gamma_{\mathbf{K}\eta,j}$ and its transpose, and finally $\Gamma_{\eta\eta,j}$. In the centered case, only $\Gamma_{\mathbf{KK},j}$ is computed. In the profiled non-centered case,

$$\mathbf{\Gamma}_j \equiv \mathbf{\Gamma}_{\mathbf{K}\mathbf{K},j} - \mathbf{\Gamma}_{\mathbf{K}oldsymbol{\eta},j} \mathbf{\Gamma}_{oldsymbol{\eta}oldsymbol{\eta},j}^{-1} \mathbf{\Gamma}_{\mathbf{K}oldsymbol{\eta}}^{ op}$$

Similarly, in the non-profiled non-centered setting, g can be partitioned p parts, each with a p-vector $g_{\mathbf{K},j}$ and a scalar $g_{\eta,j}$. In the centered setting, only $g_{\mathbf{K},j}$ is needed. In the profiled non-centered case,

$$g_j \equiv g_{\mathbf{K},j} - \Gamma_{\mathbf{K}\boldsymbol{\eta},j}\Gamma_{\boldsymbol{\eta}\boldsymbol{\eta},j}^{-1}g_{\boldsymbol{\eta},j}.$$

The formulae for the pieces above are

$$\mathbf{\Gamma}_{\mathbf{K}\mathbf{K},j} \equiv \frac{1}{n} \sum_{i=1}^{n} h\left(X_{j}^{(i)}\right) X_{j}^{(i)^{2a-2}} \boldsymbol{X}^{(i)^{a}} \boldsymbol{X}^{(i)^{a}\top},$$

$$\boldsymbol{\Gamma}_{\mathbf{K}\boldsymbol{\eta},j} \equiv -\frac{1}{n} \sum_{i=1}^{n} h\left(\boldsymbol{X}_{j}^{(i)}\right) \boldsymbol{X}_{j}^{(i)\,a+b-2} \boldsymbol{X}^{(i)\,a},$$

$$\Gamma_{\eta\eta,j} \equiv \frac{1}{n} \sum_{i=1}^{n} h\left(X_{j}^{(i)}\right) X_{j}^{(i)^{2b-2}},$$

$$\boldsymbol{g}_{\mathbf{K},j} \equiv \frac{1}{n} \sum_{i=1}^{n} \left(h'\left(X_{j}^{(i)}\right) X_{j}^{(i)^{a-1}} + (a-1)h\left(X_{j}^{(i)}\right) X_{j}^{(i)^{a-2}} \right) \boldsymbol{X}^{(i)^{a}} + ah\left(X_{j}^{(i)}\right) X_{j}^{(i)^{2a-2}} \boldsymbol{e}_{j,p},$$

$$g_{\eta,j} \equiv \frac{1}{n} \sum_{i=1}^{n} -h'\left(X_{j}^{(i)}\right) X_{j}^{(i)^{b-1}} - (b-1)h\left(X_{j}^{(i)}\right) X_{j}^{(i)^{b-2}},$$

where $e_{j,p}$ is the p-vector with 1 at the j-th position and 0 elsewhere.

In the profiled non-centered setting, the function also returns t_1 and t_2 defined as

$$oldsymbol{t}_1 \equiv oldsymbol{\Gamma}_{oldsymbol{\eta}oldsymbol{\eta}}^{-1} oldsymbol{g}_{oldsymbol{\eta}}, \quad oldsymbol{t}_2 \equiv oldsymbol{\Gamma}_{oldsymbol{\eta}oldsymbol{\eta}}^{-1} oldsymbol{\Gamma}_{oldsymbol{K}oldsymbol{\eta}}^{\top},$$

so that $\hat{\boldsymbol{\eta}} = \boldsymbol{t}_1 - \boldsymbol{t}_2 \text{vec}(\hat{\mathbf{K}})$.

18 get_elts_ab

Value

A list that contains the elements necessary for estimation.

The sample size. The dimension. р centered The centered setting or not. Same as input. scale The scaling method. Same as input. diagonal_multiplier The diagonal multiplier. Same as input. diagonals_with_multiplier A vector that contains the diagonal entries of Γ after applying the multiplier. The setting. Same as input. setting The g vector. In the non-profiled non-centered setting, this is the g sub-vector g_K corresponding to K. Gamma_K The Γ matrix with no diagonal multiplier. In the non-profiled non-centered setting, this is the Γ sub-matrix corresponding to K. Returned in the non-profiled non-centered setting. The g sub-vector correspondg_eta ing to η . Gamma_K_eta Returned in the non-profiled non-centered setting. The Γ sub-matrix corresponding to interaction between **K** and η . Returned in the non-profiled non-centered setting. The Γ sub-matrix corre-Gamma_eta sponding to η .

trieved from $t_1 - t_2 \hat{\mathbf{K}}$ after appropriate resizing.

Returned in the profiled non-centered setting, where the η estimate can be re-

Examples

t1,t2

```
if (!requireNamespace("tmvtnorm", quietly = TRUE)){
  stop("Please install package \"tmvtnorm\" first.", call. = FALSE)
}
require(tmvtnorm)
n <- 50
p < -30
h_hp <- get_h_hp("min_pow", 1, 3)
mu \leftarrow rep(0, p)
K <- diag(p)</pre>
x \leftarrow tmvtnorm::rtmvnorm(n, mean = mu, sigma = solve(K),
       lower = rep(0, p), upper = rep(Inf, p), algorithm = "gibbs",
       burn.in.samples = 100, thinning = 10)
h_hp <- get_h_hp("min_pow", 1, 3)
hx \leftarrow t(apply(x, 1, h_hp\$h))
hpx \leftarrow t(apply(x, 1, h_hp$hp))
get_elts_ab(hx, hpx, x, a=0.5, b=0.5, setting="trun_gaussian",
             centered=TRUE, scale="norm", diag=1.5)
get_elts_ab(hx, hpx, x, a=0.7, b=1.2, setting="ab_0.7_1.2",
            centered=FALSE, profiled=FALSE, scale="sd", diag=1.9)
```

get_elts_exp 19

get_elts_exp	The R implementation to get the elements necessary for calculations for the exponential square-root setting (a =0.5, b =0.5).

Description

The R implementation to get the elements necessary for calculations for the exponential square-root setting (a=0.5, b=0.5).

Usage

```
get_elts_exp(hx, hpx, x, centered = TRUE, profiled_if_noncenter = TRUE,
    scale = "norm", diagonal_multiplier = 1)
```

Arguments

hx A matrix, $h(\mathbf{x})$, should be of the same dimension as x. hpx A matrix, $h'(\mathbf{x})$, should be of the same dimension as x.

x A matrix, the data matrix.

centered A boolean, whether in the centered setting (assume $\mu = \eta = 0$) or not. Default

to TRUE.

profiled_if_noncenter

A boolean, whether in the profiled setting $(\lambda_{\eta} = 0)$ if noncentered. Parameter

ignored if centered=TRUE. Default to TRUE.

scale A string indicating the scaling method. Returned without being checked or used

in the function body. Default to "norm".

diagonal_multiplier

A number >= 1, the diagonal multiplier.

Details

For details on the returned values, please refer to get_elts_ab or get_elts.

Value

A list that contains the elements necessary for estimation.

n The sample size.
p The dimension.

centered The centered setting or not. Same as input.

scale The scaling method. Same as input.

diagonal_multiplier

The diagonal multiplier. Same as input.

diagonals_with_multiplier

A vector that contains the diagonal entries of Γ after applying the multiplier.

setting The setting "exp".

 g_K The g vector. In the non-profiled non-centered setting, this is the g sub-vector

corresponding to **K**.

20 get_elts_gamma

Gamma_K	The Γ matrix with no diagonal multiplier. In the non-profiled non-centered setting, this is the Γ sub-matrix corresponding to K .
g_eta	Returned in the non-profiled non-centered setting. The ${\it g}$ sub-vector corresponding to ${\it \eta}$.
Gamma_K_eta	Returned in the non-profiled non-centered setting. The Γ sub-matrix corresponding to interaction between K and η .
Gamma_eta	Returned in the non-profiled non-centered setting. The Γ sub-matrix corresponding to η .
t1,t2	Returned in the profiled non-centered setting, where the η estimate can be retrieved from $t_1-t_2\hat{\mathbf{K}}$ after appropriate resizing.

Examples

get_elts_gamma The R implementation to get the elements necessary for calculations for the gamma setting (a=0.5, b=0).

Description

The R implementation to get the elements necessary for calculations for the gamma setting (a=0.5, b=0).

Usage

```
get_elts_gamma(hx, hpx, x, centered = TRUE,
  profiled_if_noncenter = TRUE, scale = "norm",
  diagonal_multiplier = 1)
```

Arguments

hx	A matrix, $h(\mathbf{x})$, should be of the same dimension as x.
hpx	A matrix, $h'(\mathbf{x})$, should be of the same dimension as \mathbf{x} .
X	A matrix, the data matrix.

get_elts_gamma 21

centered A boolean, whether in the centered setting (assume $\mu=\eta=0$) or not. Default to TRUE.

profiled_if_noncenter

A boolean, whether in the profiled setting ($\lambda_{\eta} = 0$) if noncentered. Parameter

ignored if centered=TRUE. Default to TRUE.

scale A string indicating the scaling method. Returned without being checked or used

in the function body. Default to "norm".

diagonal_multiplier

A number >= 1, the diagonal multiplier.

Details

For details on the returned values, please refer to get_elts_ab or get_elts.

Value

A list that contains the elements necessary for estimation.

n The sample size.
p The dimension.

centered The centered setting or not. Same as input.

scale The scaling method. Same as input.

diagonal_multiplier

The diagonal multiplier. Same as input.

diagonals_with_multiplier

A vector that contains the diagonal entries of Γ after applying the multiplier.

setting The setting "gamma".

 g_K The g vector. In the non-profiled non-centered setting, this is the g sub-vector

corresponding to ${\bf K}.$

Gamma_K The Γ matrix with no diagonal multiplier. In the non-profiled non-centered

setting, this is the Γ sub-matrix corresponding to K.

g_eta Returned in the non-profiled non-centered setting. The g sub-vector correspond-

ing to η .

Gamma_K_eta Returned in the non-profiled non-centered setting. The Γ sub-matrix corre-

sponding to interaction between **K** and η .

Gamma_eta Returned in the non-profiled non-centered setting. The Γ sub-matrix corre-

sponding to η .

t1, t2 Returned in the profiled non-centered setting, where the η estimate can be re-

trieved from $t_1 - t_2 \hat{\mathbf{K}}$ after appropriate resizing.

```
if (!requireNamespace("tmvtnorm", quietly = TRUE)){
   stop("Please install package \"tmvtnorm\" first.", call. = FALSE)
}
require(tmvtnorm)
n <- 50
p <- 30
h_hp <- get_h_hp("min_pow", 1, 3)
mu <- rep(0, p)</pre>
```

22 get_elts_gauss

get_elts_gauss

The R implementation to get the elements necessary for calculations for the untruncated gaussian setting.

Description

The R implementation to get the elements necessary for calculations for the untruncated gaussian setting.

Usage

```
get_elts_gauss(x, centered = TRUE, profiled_if_noncenter = TRUE,
    scale = "norm", diagonal_multiplier = 1)
```

Arguments

x A matrix, the data matrix.

centered A boolean, whether in the centered setting (assume $\mu = \eta = 0$) or not. Default to TRUE.

profiled_if_noncenter

A boolean, whether in the profiled setting $(\lambda_{\eta}=0)$ if noncentered. Parameter

ignored if centered==TRUE. Default to TRUE.

scale A string indicating the scaling method. Returned without being checked or used

in the function body. Default to "norm".

diagonal_multiplier

A number >= 1, the diagonal multiplier.

Details

For details on the returned values, please refer to get_elts_ab or get_elts.

Value

A list that contains the elements necessary for estimation.

n The sample size.

p The dimension.

centered The centered setting or not. Same as input.

scale The scaling method. Same as input.

diagonal_multiplier

The diagonal multiplier. Same as input.

get_elts_trun_gauss 23

diagonals_with_multiplier

A vector that contains the diagonal entries of Γ after applying the multiplier.

setting The setting "gaussian".

Gamma_K The Γ matrix with no diagonal multiplier. In the non-profiled non-centered

setting, this is the Γ sub-matrix corresponding to K. Except for the *profiled*

setting, this is $\mathbf{x}\mathbf{x}^{\top}/n$.

Gamma_K_eta $\;\;$ Returned in the non-profiled non-centered setting. The Γ sub-matrix corre-

sponding to interaction between ${\bf K}$ and ${\boldsymbol \eta}.$ The minus column means of ${\bf x}.$

t1, t2 Returned in the profiled non-centered setting, where the η estimate can be re-

trieved from $t_1 - t_2 \hat{\mathbf{K}}$ after appropriate resizing.

Examples

```
if (!requireNamespace("mvtnorm", quietly = TRUE)){
   stop("Please install package \"mvtnorm\" first.", call. = FALSE)
}
require(mvtnorm)
n <- 50
p <- 30
h_hp <- get_h_hp("min_pow", 1, 3)
mu <- rep(0, p)
K <- diag(p)
x <- mvtnorm::rmvnorm(n, mean=mu, sigma=solve(K))
get_elts_gauss(x, centered=TRUE, scale="norm", diag=1.5)
get_elts_gauss(x, centered=FALSE, profiled=FALSE, scale="sd", diag=1.9)</pre>
```

get_elts_trun_gauss

The R implementation to get the elements necessary for calculations for the truncated gaussian setting (a=1, b=1).

Description

The R implementation to get the elements necessary for calculations for the truncated gaussian setting (a=1, b=1).

Usage

```
get_elts_trun_gauss(hx, hpx, x, centered = TRUE,
  profiled_if_noncenter = TRUE, scale = "norm",
  diagonal_multiplier = 1)
```

Arguments

hx A matrix, $h(\mathbf{x})$, should be of the same dimension as x. hpx A matrix, $h'(\mathbf{x})$, should be of the same dimension as x.

x A matrix, the data matrix.

centered A boolean, whether in the centered setting (assume $\mu = \eta = 0$) or not. Default

to TRUE.

profiled_if_noncenter

A boolean, whether in the profiled setting ($\lambda_{\eta}=0$) if noncentered. Parameter ignored if centered=TRUE. Default to TRUE.

24 get_elts_trun_gauss

A string indicating the scaling method. Returned without being checked or used in the function body. Default to "norm".

diagonal_multiplier

A number \geq 1, the diagonal multiplier.

Details

For details on the returned values, please refer to get_elts_ab or get_elts.

Value

A list that contains the elements necessary for estimation.

n The sample size.
p The dimension.

centered The centered setting or not. Same as input.

scale The scaling method. Same as input.

diagonal_multiplier

The diagonal multiplier. Same as input.

 ${\tt diagonals_with_multiplier}$

A vector that contains the diagonal entries of Γ after applying the multiplier.

setting The setting "trun_gaussian".

g_K The g vector. In the non-profiled non-centered setting, this is the g sub-vector

corresponding to ${\bf K}.$

Gamma_K The Γ matrix with no diagonal multiplier. In the non-profiled non-centered

setting, this is the Γ sub-matrix corresponding to K.

 $g_{\underline{a}}$ Returned in the non-profiled non-centered setting. The g sub-vector correspond-

ing to η .

Gamma_K_eta $\;\;$ Returned in the non-profiled non-centered setting. The Γ sub-matrix corre-

sponding to interaction between **K** and η .

Gamma_eta Returned in the non-profiled non-centered setting. The Γ sub-matrix corre-

sponding to η .

t1, t2 Returned in the profiled non-centered setting, where the η estimate can be re-

trieved from $t_1 - t_2 \mathbf{K}$ after appropriate resizing.

get_h_hp 25

```
hpx <- t(apply(x, 1, h_hp$hp))
get_elts_trun_gauss(hx, hpx, x, centered=TRUE, scale="norm", diag=1.5)
get_elts_trun_gauss(hx, hpx, x, centered=FALSE, profiled=FALSE, scale="sd", diag=1.9)</pre>
```

get_h_hp

Generator of h and hp functions.

Description

Generator of h and hp (h') functions.

Usage

```
get_h_hp(mode, para = NULL, para2 = NULL)
```

Arguments

mode A string, see details.

para May be optional. A number, the first parameter. Default to NULL.

para2 May be optional. A number, the second parameter. Default to NULL.

Details

The mode parameter can be chosen from the options listed below along with the corresponding definitions of h under appropriate choices of para and para2 parameters. Unless otherwise noted, para and para2, must both be strictly positive if provided, and are set to 1 if not provided. Functions h and hp should only be applied to non-negative values x and this is not enforced or checked by the functions.

- asinh An asinh function $h(x) = \operatorname{asinh}(\operatorname{para} \cdot x) = \log \left(\operatorname{para} \cdot x + \sqrt{(\operatorname{para} \cdot x)^2 + 1}\right)$. Unbounded and takes one parameter. Equivalent to min_asinh(x, para, Inf).
- cosh A shifted cosh function $h(x) = \cosh(\operatorname{para} \cdot x) 1$. Unbounded and takes one parameter. Equivalent to min_cosh(x, para, Inf).
- exp A shifted exponential function $h(x) = \exp(\operatorname{para} \cdot x) 1$. Unbounded and takes one parameter. Equivalent to min_exp(x, para, Inf).
- identity The identity function h(x) = x. Unbounded and does not take any parameter. Equivalent to pow(x, 1) or min_pow(x, 1, Inf).
- log_pow A power function on a log scale $h(x) = \log(1+x)^{\text{para}}$. Unbounded and takes one parameter. Equivalent to min_log_pow(x, para, Inf).
- mcp Treating λ =para, γ =para2, the step-wise MCP function applied element-wise: $\lambda x x^2/(2\gamma)$ if $x \leq \lambda \gamma$, or $\gamma \lambda^2/2$ otherwise. Bounded and takes two parameters.
- min_asinh A truncated asinh function applied element-wise: $\min(\operatorname{asinh}(\operatorname{para} \cdot \boldsymbol{x}), \operatorname{para}_2)$. Bounded and takes two parameters.
- min_cosh A truncated shifted cosh function applied element-wise: $\min(\cosh(\operatorname{para} \cdot \boldsymbol{x}) 1, \operatorname{para}_2)$. Bounded and takes two parameters.
- min_exp A truncated shifted exponential function applied element-wise: $h(x) = \min(\exp(\operatorname{para} \cdot x) 1, \operatorname{para}_2)$. Bounded and takes two parameters.
- min_log_pow A truncated power on a log scale applied element-wise: $h(x) = \min(\log(1 + x), \operatorname{para}_2)^{\operatorname{para}}$. Bounded and takes two parameters.

26 get_results

min_pow A truncated power function applied element-wise: $h(x) = \min(x, \text{para}_2)^{\text{para}}$. Bounded and takes two parameters.

- min_sinh A truncated sinh function applied element-wise: $\min(\sinh(\operatorname{para} \cdot \boldsymbol{x}), \operatorname{para}_2)$. Bounded and takes two parameters.
- min_softplus A truncated shifted softplus function applied element-wise: $\min(\log(1+\exp(\operatorname{para} \cdot \boldsymbol{x})) \log(2), \operatorname{para}_2)$. Bounded and takes two parameters.
- pow A power function $h(x) = x^{\text{para}}$. Unbounded and takes two parameter. Equivalent to min_pow(x, para, Inf).
- scad Treating λ =para, γ =para2, the step-wise SCAD function applied element-wise: λx if $x \leq \lambda$, or $(2\gamma\lambda x x^2 \lambda^2)/(2(\gamma-1))$ if $\lambda < x < \gamma\lambda$, or $\lambda^2(\gamma+1)/2$ otherwise. Bounded and takes two parameters, where para2 must be larger than 1, and will be set to 2 by default if not provided.
- sinh A sinh function $h(x) = \sinh(\operatorname{para} \cdot x)$. Unbounded and takes one parameter. Equivalent to $\min_{x \in \mathbb{R}} \sinh(x, x)$ para, Inf).
- softplus A shifted softplus function $h(x) = \log(1 + \exp(\operatorname{para} \cdot x)) \log(2)$. Unbounded and takes one parameter. Equivalent to min_softplus(x, para, Inf).
- tanh A tanh function $h(x) = \tanh(\text{para} \cdot x)$. Bounded and takes one parameter.
- truncated_sin A truncated sin function applied element-wise: $\sin(\operatorname{para} \cdot x)$ if $\operatorname{para} \cdot x \leq \pi/2$, or 1 otherwise. Bounded and takes one parameter.
- truncated_tan A truncated tan function applied element-wise: $\tan(\operatorname{para} \cdot x)$ if $\operatorname{para} \cdot x \leq \pi/4$, or 1 otherwise. Bounded and takes one parameter.

Value

A list containing two functions h and hp (h').

Examples

```
get_h_hp("mcp", 2, 4)
get_h_hp("min_log_pow", 1, log(1+3))
get_h_hp("min_pow", 1, 3)
get_h_hp("min_softplus")
```

get_results

Estimate **K** and η using elts from get_elts() given one λ _**K** (and λ _ η if non-profiled non-centered) and applying warm-start with strong screening rules.

Description

Estimate K and η using elts from get_elts() given one λ_K (and λ_{η} if non-profiled non-centered) and applying warm-start with strong screening rules.

Usage

```
get_results(elts, symmetric, lambda1, lambda2 = 0, tol = 1e-06,
maxit = 10000, previous_res = NULL, is_refit = FALSE)
```

get_results 27

Arguments

elts A list, elements necessary for calculations returned by get_elts().

symmetric A string. If equals "symmetric", estimates the minimizer **K** over all symmetric

matrices; if "and" or "or", use the "and"/"or" rule to get the support.

lambda1 A number, the penalty parameter for K.

lambda2 A number, the penalty parameter for η . Default to 0. Cannot be Inf if non-

profiled non-centered.

tol Optional. A number, the tolerance parameter.

maxit Optional. A positive integer, the maximum number of iterations.

previous_res Optional. A list or NULL, the returned list by this function run previously with

another lambda value.

is_refit A boolean, in the refit mode for BIC estimation if TRUE. If TRUE, lambda1,

previous_lambda1 and lambda2 are all set to \emptyset , and estimation is restricted

to entries in exclude that are 0.

Value

converged A boolean indicating convergence.

crit A number, the final penalized loss.

edges A vector of the indices of entries in the K estimate that are non-zero.

eta A p-vector, the eta estimate. Returned only if elts\$centered == FALSE.

eta_support A vector of the indices of entries in the eta estimate that are non-zero. Returned

only if elts\$centered == FALSE && elts\$profiled_if_noncenter == TRUE.

iters An integer, number of iterations run.

K A p*p matrix, the K estimate.

n An integer, the number of samples.

p An integer, the dimension.

is_refit,lambda1,maxit,previous_lambda1,symmetric,tol

Same as in the input.

lambda2 Same as in the input, and returned only if elts\$centered == FALSE and

elts\$profiled_if_noncenter == FALSE.

28 get_trun

get_safe_log_h_hp

Asymptotic log of h and hp functions for large x for some modes.

Description

Asymptotic log of h and hp functions for large x for some modes.

Usage

```
get_safe_log_h_hp(mode, para)
```

Arguments

mode A string, the class of the h function.

para A number, the first parameter to the h function.

Value

A list of two functions, logh and loghp.

get_trun

The truncation point for h.

Description

The truncation point for h.

Usage

```
get_trun(mode, param1, param2)
```

lambda_max 29

Arguments

mode A string, the class of the h function.

param1 A number, the first parameter to the h function.

param2 A number, the second parameter (may be optional depending on mode) to the h

function.

Value

Returns the truncation point (the point where h becomes constant and hp becomes 0) for some selected modes.

lambda_max

Analytic solution for the minimum $\lambda_{\mathbf{K}}$ that gives the empty graph.

Description

Analytic solution for the minimum $\lambda_{\mathbf{K}}$ that gives the empty graph. In the non-centered setting the bound is not tight, as it is such that both \mathbf{K} and η are empty. The bound is also not tight if symmetric == "and".

Usage

```
lambda_max(elts, symmetric, lambda_ratio = Inf)
```

Arguments

elts A list, elements necessary for calculations returned by get_elts().

symmetric A string. If equals "symmetric", estimates the minimizer K over all symmetric

matrices; if "and" or "or", use the "and"/"or" rule to get the support.

lambda_ratio A positive number (or Inf), the fixed ratio λ_K and λ_η , if $\lambda_\eta \neq 0$ (non-profiled)

in the non-centered setting.

Value

A number, the smallest lambda that produces the empty graph in the centered case, or that gives zero solutions for K and η in the non-centered case. If symmetric == "and", it is not a tight bound for the empty graph.

```
if (!requireNamespace("tmvtnorm", quietly = TRUE)){
   stop("Please install package \"tmvtnorm\" first.", call. = FALSE)
}
require(tmvtnorm)
n <- 50
p <- 30
h_hp <- get_h_hp("min_pow", 1, 3)
mu <- rep(0, p)
K <- diag(p)
dm <- 1 + (1-1/(1+4*exp(1)*max(6*log(p)/n, sqrt(6*log(p)/n))))
x <- tmvtnorm::rtmvnorm(n, mean = mu, sigma = solve(K),</pre>
```

30 mu_sigmasqhat

```
lower = rep(0, p), upper = rep(Inf, p), algorithm = "gibbs",
       burn.in.samples = 100, thinning = 10)
elts_NC_NP <- get_elts(h_hp$h, h_hp$hp, x, setting="trun_gaussian",</pre>
                centered=FALSE, profiled=FALSE, diag=dm)
# Exact analytic solution for the smallest lambda such that K and eta are both zero,
# but not a tight bound for K only
lambda_max(elts_NC_NP, "symmetric", 2)
# Use the upper bound as a starting point for numerical search
test_lambda_bounds2(elts_NC_NP, "symmetric", lambda_ratio=2, lower = FALSE,
     lambda_start = lambda_max(elts_NC_NP, "symmetric", 2))
# Exact analytic solution for the smallest lambda such that K and eta are both zero,
# but not a tight bound for K only
lambda_max(elts_NC_NP, "or", 2)
# Use the upper bound as a starting point for numerical search
test_lambda_bounds2(elts_NC_NP, "or", lambda_ratio=2, lower = FALSE,
     lambda_start = lambda_max(elts_NC_NP, "or", 2))
# An upper bound, not tight.
lambda_max(elts_NC_NP, "and", 2)
# Use the upper bound as a starting point for numerical search
test_lambda_bounds2(elts_NC_NP, "and", lambda_ratio=2, lower = FALSE,
     lambda_start = lambda_max(elts_NC_NP, "and", 2))
elts_NC_P <- get_elts(h_hp$h, h_hp$hp, x, setting="trun_gaussian",</pre>
              centered=FALSE, profiled=TRUE, diag=dm)
# Exact analytic solution
lambda_max(elts_NC_P, "symmetric")
# Numerical solution, should be close to the analytic solution
test_lambda_bounds2(elts_NC_P, "symmetric", lambda_ratio=Inf, lower = FALSE,
     lambda_start = NULL)
# Exact analytic solution
lambda_max(elts_NC_P, "or")
# Numerical solution, should be close to the analytic solution
test_lambda_bounds2(elts_NC_P, "or", lambda_ratio=Inf, lower = FALSE,
     lambda_start = NULL)
# An upper bound, not tight
lambda_max(elts_NC_P, "and")
# Use the upper bound as a starting point for numerical search
test_lambda_bounds2(elts_NC_P, "and", lambda_ratio=Inf, lower = FALSE,
     lambda_start = lambda_max(elts_NC_P, "and"))
```

mu_sigmasqhat

Estimates the mu and sigma squared parameters from a univariate truncated normal sample.

Description

Estimates the mu and sigma squared parameters from a univariate truncated normal sample.

output 31

Usage

mu_sigmasqhat(x, mode, param1, param2, mu = NULL, sigmasq = NULL)

Arguments

x A vector, the data.

mode A string, the class of the h function.

param1 A number, the first parameter to the h function.

param2 A number, the second parameter (may be optional depending on mode) to the h

function.

mu A number, may be NULL. If NULL, an estimate will be given; otherwise, the value

will be treated as the known true mu parameter and is used to calculate an esti-

mate for sigmasq, if sigmasq is NULL.

sigmasq A number, may be NULL. If NULL, an estimate will be given; otherwise, the value

will be treated as the known true sigmasq parameter and is used to calculate an

estimate for mu, if mu is NULL.

Details

If both mu and sigmasq are provided, they are returned immediately. If neither is provided, the estimates are given as

$$[1/\sigma^2, \mu/\sigma^2] = \left\{ \sum_{i=1}^n h(X_i)[X_i, -1][X_i, -1]^\top \right\}^{-1} \left\{ \sum_{i=1}^n \left[h(X_i) + h'(X_i)X_i, -h'(X_i) \right] \right\}.$$

If only sigmasq is provided, the estimate for mu is given as

$$\sum_{i=1}^{n} [h(X_i)X_i - \sigma^2 h'(X_i)] / \sum_{i=1}^{n} h(X_i).$$

If only mu is given, the estimate for sigmasq is given as

$$\sum_{i=1}^{n} h(X_i)(X_i - \mu)^2 / \sum_{i=1}^{n} [h(X_i) + h'(X_i)(X_i - \mu)].$$

Value

A vector that contains the mu and the sigmasq estimates.

output

Helper function for outputting if verbose.

Description

Helper function for outputting if verbose.

Usage

output(out, verbose, verbosetext)

32 rab_arms_R

Arguments

out Text string.
verbose Boolean.
verbosetext Text string.

Value

If verbose == TRUE, outputs a string that concatenates verbosetext and out.

 ${\it rab_arms_R} \qquad \qquad {\it Random\ data\ generator\ from\ general\ a-b\ distributions}.$

Description

Random data generator from general a-b graphs using adaptive rejection metropolis sampling (ARMS).

Usage

```
rab_arms_R(n, a, b, eta, K, seed = NULL, burn_in = 1000,
    thinning = 1000, verbose = TRUE)
```

Arguments

n	A number, number of observations.
а	A number, must be strictly larger than $b/2$.
b	A number, must be ≥ 0 .
eta	A vector, the linear part in the distribution.
K	A strictly co-positive square matrix, the interaction matrix.
seed	Optional. A number, the seed for the random generator.
burn_in	Optional. A positive integer, the number of burn-in samples in ARMS to be discarded.
thinning	Optional. A positive integer, thinning factor in ARMS. Samples are taken at iteration steps burn_in + 1, burn_in + 1 + thinning,, burn_in + 1 + $(n-1) *$ thinning. Default to 1000.
verbose	Optional. A boolean. If TRUE, prints a progress bar showing the progress. Defaults to TRUE.

Details

Randomly generates n samples from the p-variate a-b distributions with parameters η and K, where p is the length of η or the dimension of the square matrix K.

The a-b distribution is proportional to

$$\exp\left(-\frac{1}{2a}\boldsymbol{x}^{a\top}\mathbf{K}\boldsymbol{x}^{a}+\boldsymbol{\eta}^{\top}\frac{\boldsymbol{x}^{b}-\mathbf{1}_{p}}{b}\right)$$

on the non-negative orthant of \mathbf{R}^p .

ran_mat 33

Value

An $n \times p$ matrix of samples, where p is the length of eta.

Examples

```
p <- 30
set.seed(1)
eta <- stats::rnorm(p)*0.5
K <- cov_cons("er", p, seed = 3, spars = 0.05, eig = 0.1)
rab_arms_R(n=100, a=1.5, b=2.3, eta=eta, K=K,
    seed=1, burn_in=100, thinning=1000, verbose=TRUE)
rab_arms_R(n=100, a=1.2, b=0.9, eta=eta, K=K,
    seed=2, burn_in=200, thinning=2000, verbose=TRUE)</pre>
```

ran_mat

Random generator of matrices with given eigenvalues.

Description

Random generator of matrices with given eigenvalues.

Usage

```
ran_mat(p, ev = stats::runif(p, 0, 10), seed = NULL)
```

Arguments

p A positive integer \geq 2, the dimension.

ev A vector of length p, the eigenvalues of the output matrix.
seed A number, the seed for the generator. Ignored if NULL.

Details

The function randomly fills a p by p matrix with independent Normal(0,1) entries, takes the Q matrix from its QR decomposition, and returns Q'diag(ev)Q.

Value

A p by p matrix whose eigenvalues equal to ev.

```
p <- 30
eigen_values <- (0.1*p-1+1:p)/p
K <- ran_mat(p, ev=eigen_values, seed=1)
sort(eigen(K)$val)-eigen_values</pre>
```

34 refit

refit

Loss for a refitted (restricted) unpenalized model

Description

Refits an unpenalized model restricted to the estimated edges, with lambda1=0, lambda2=0 and diagonal_multiplier=1. Returns Inf if no unique solution exists (when the loss is unbounded from below or has infinitely many minimizers).

Usage

```
refit(res, elts)
```

Arguments

```
res A list of results returned by get_results().

elts A list, elements necessary for calculations returned by get_elts().
```

Details

Currently the function only returns Inf when the maximum node degree is >= the sample size, which is a sufficient and necessary condition for inexistence of a unique solution with probability 1 if symmetric != "symmetric". In practice it is also a sufficient and necessary condition for most cases and symmetric == "symmetric".

Value

A number, the loss of the refitted model.

```
if (!requireNamespace("tmvtnorm", quietly = TRUE)){
  stop("Please install package \"tmvtnorm\" first.", call. = FALSE)
}
require(tmvtnorm)
n <- 50
p <- 30
h_{p} \leftarrow get_{p}("min_{pow}", 1, 3)
mu <- rep(0, p)
K <- diag(p)</pre>
dm < -1 + (1-1/(1+4*exp(1)*max(6*log(p)/n, sqrt(6*log(p)/n))))
x <- tmvtnorm::rtmvnorm(n, mean = mu, sigma = solve(K),</pre>
       lower = rep(0, p), upper = rep(Inf, p), algorithm = "gibbs",
       burn.in.samples = 100, thinning = 10)
elts_NC_NP <- get_elts(h_hp$h, h_hp$hp, x, setting="trun_gaussian",</pre>
                 centered=FALSE, profiled=FALSE, diag=dm)
res_nc_np <- get_results(elts_NC_NP, symmetric="symmetric",</pre>
               lambda1=0.35, lambda2=2, previous_res=NULL, is_refit=FALSE)
refit(res_nc_np, elts_NC_NP)
elts_NC_P <- get_elts(h_hp$h, h_hp$hp, x, setting="trun_gaussian",</pre>
                centered=FALSE, profiled=TRUE, diag=dm)
```

rexp_gamma_reject_R Random data generator from exp or gamma graphs.

Description

Random data generator from exponential square-root (a=0.5, b=0.5) or gamma (a=0.5, b=0) graphs using basic rejection sampling.

Usage

```
rexp_gamma_reject_R(n, gamm, eta, K, seed = NULL, burn_in = 1000,
    thinning = 1000, max_iter = 1e+05, verbose = TRUE)
```

Arguments

n	A number, number of observations.
gamm	A boolean, generate from gamma (TRUE) or exponential square-root (FALSE) graphs.
eta	A vector, the linear part in the distribution.
K	A strictly co-positive square matrix, the interaction matrix.
seed	Optional. A number, the seed for the random generator.
burn_in	Optional. A positive integer, the number of burn-in samples in Gibbs sampling to be discarded.
thinning	Optional. A positive integer, thinning factor in Gibbs sampling. Samples are taken at iteration steps burn_in+1, burn_in+1+thinning,, burn_in+1+ $(n-1)*$ thinning. Default to 1000.
max_iter	Optional. A positive integer, the maximum number of proposals for each sample. Default to 100000.
verbose	Optional. A boolean. If TRUE, prints a progress bar showing the progress. Defaults to TRUE.

Details

Note: rab_arms_R() with a=0.5 and b=0.5 (exp) or b=0 (gamma) may be a more stable generator.

Randomly generates n samples from the p-variate exponential square-root or gamma distributions with parameters eta and K, where p is the length of eta or the dimension of the square matrix K.

The exponential square-root distribution is proportional to

$$\exp\left(-\sqrt{\boldsymbol{x}}^{\top}\mathbf{K}\sqrt{\boldsymbol{x}}+2\boldsymbol{\eta}^{\top}\sqrt{\boldsymbol{x}}\right)$$

36 test_lambda_bounds

on the non-negative orthant of \mathbf{R}^p .

The gamma distribution is proportional to

$$\exp\left(-\sqrt{oldsymbol{x}}^{ op}\mathbf{K}\sqrt{oldsymbol{x}}+oldsymbol{\eta}^{ op}\log(oldsymbol{x})
ight)$$

on the non-negative orthant of \mathbf{R}^p .

Value

An $n \times p$ matrix of samples, where p is the length of eta.

Examples

```
p <- 30
set.seed(1)
eta <- stats::rnorm(p)*0.5
eta[eta <= -1] <- abs(eta[eta <= -1])
K <- cov_cons("er", p, seed = 3, spars = 0.05, eig = 0.1)
rexp_gamma_reject_R(n=1000, gamm=TRUE, eta=eta, K=K, seed=1,
    burn_in=100, thinning=1000, max_iter=1e+05, verbose=TRUE)
rexp_gamma_reject_R(n=1000, gamm=FALSE, eta=eta, K=K, seed=2,
    burn_in=200, thinning=2000, max_iter=1e+05, verbose=TRUE)</pre>
```

test_lambda_bounds

Searches for a tight bound for λ_K that gives the empty or complete graph starting from a given lambda with a given step size

Description

Searches for the smallest lambda that gives the empty graph (if lower == FALSE) or the largest that gives the complete graph (if lower == TRUE) starting from the given lambda, each time updating by multiplying or dividing by step depending on the search direction.

Usage

```
test_lambda_bounds(elts, symmetric, lambda = 1, lambda_ratio = 1,
  step = 2, lower = TRUE, verbose = TRUE, tol = 1e-06,
  maxit = 10000, cur_res = NULL)
```

Arguments

elts	A list, elements necessary for calculations returned by get_elts().
symmetric	A string. If equals "symmetric", estimates the minimizer ${\bf K}$ over all symmetric matrices; if "and" or "or", use the "and"/"or" rule to get the support
lambda	A number, the initial searching point for $\lambda_{\mathbf{K}}$.
lambda_ratio	A positive number (or Inf), the fixed ratio $\lambda_{\mathbf{K}}$ and λ_{η} , if $\lambda_{\eta} \neq 0$ (non-profiled) in the non-centered setting.
step	A number, the multiplicative constant applied to lambda at each iteration. Must be strictly larger than 1.

test_lambda_bounds2 37

lower	A boolean. If TRUE, finds the largest possible lambda that gives the complete graph (a <i>lower</i> bound). If FALSE, finds the smallest possible lambda that gives the empty graph (an <i>upper</i> bound).
verbose	Optional. A boolean. If TRUE, prints out the lambda value at each iteration.
tol	Optional. A number, the tolerance parameter.
maxit	Optional. A positive integer, the maximum number of iterations in model fitting for each lambda.
cur_res	Optional. A list, current results returned from a previous lambda. If provided, used as a warm start. Default to NULL.

Value

lambda A number, the best lambda that produces the desired number of edges. 1e-10 or 1e15 is returned if out of bound.

cur_res A list, results for this lambda. May be NULL if lambda is out of bound.

Examples

```
if (!requireNamespace("tmvtnorm", quietly = TRUE)){
  stop("Please install package \"tmvtnorm\" first.", call. = FALSE)
}
#require(tmvtnorm)
#n <- 50
#p <- 30
#h_hp <- get_h_hp("min_pow", 1, 3)</pre>
#mu <- rep(0, p)
#K <- diag(p)
\#dm < -1 + (1-1/(1+4*exp(1)*max(6*log(p)/n, sqrt(6*log(p)/n))))
#x <- tmvtnorm::rtmvnorm(n, mean = mu, sigma = solve(K),</pre>
        lower = rep(0, p), upper = rep(Inf, p), algorithm = "gibbs",
        burn.in.samples = 100, thinning = 10)
\#elts_NC_NP \leftarrow get_elts(h_hp\$h, h_hp\$hp, x, setting="trun_gaussian",
                 centered=FALSE, profiled=FALSE, diag=dm)
#lambda_cur_res <- test_lambda_bounds(elts_NC_NP, "symmetric", lambda=1,</pre>
                         lambda_ratio=1, step=1.5, lower=TRUE, cur_res=NULL)
#lambda_cur_res2 <- test_lambda_bounds(elts_NC_NP, "symmetric", lambda=1,</pre>
                    lambda_ratio=1, step=1.5, lower=FALSE, cur_res=lambda_cur_res$cur_res)
```

test_lambda_bounds2 Searches for a tight bound for $\lambda_{\mathbf{K}}$ that gives the empty or complete graph starting from a given lambda

Description

Searches for the smallest lambda that gives the empty graph (if lower == FALSE) or the largest that gives the complete graph (if lower == TRUE) starting from the given lambda.

Usage

```
test_lambda_bounds2(elts, symmetric, lambda_ratio = Inf, lower = TRUE,
  verbose = TRUE, tol = 1e-06, maxit = 10000, lambda_start = NULL)
```

test_lambda_bounds2

Arguments

38

elts	A list, elements necessary for calculations returned by get_elts().
symmetric	A string. If equals "symmetric", estimates the minimizer ${\bf K}$ over all symmetric matrices; if "and" or "or", use the "and"/"or" rule to get the support
lambda_ratio	A positive number (or Inf), the fixed ratio $\lambda_{\bf K}$ and λ_{η} , if $\lambda_{\eta} \neq 0$ (non-profiled) in the non-centered setting.
lower	A boolean. If TRUE, finds the largest possible lambda that gives the complete graph (a $lower$ bound). If FALSE, finds the smallest possible lambda that gives the empty graph (an $upper$ bound).
verbose	Optional. A boolean. If TRUE, prints out the lambda value at each iteration.
tol	Optional. A number, the tolerance parameter.
maxit	Optional. A positive integer, the maximum number of iterations in model fitting for each lambda.
lambda_start	Optional. A number, the starting point for searching. If NULL, set to 1e-4 if lower == TRUE, or 1 if lower == FALSE.

Details

This function calls test_lambda_bounds three times with step set to 10, $10^{(1/4)}$, $10^{(1/16)}$, respectively.

Value

A number, the best lambda that produces the desired number of edges. 1e-10 or 1e15 is returned if out of bound.

```
if (!requireNamespace("tmvtnorm", quietly = TRUE)){
 stop("Please install package \"tmvtnorm\" first.", call. = FALSE)
require(tmvtnorm)
n <- 50
p <- 30
h_h < get_h = (min_pow), 1, 3)
mu <- rep(0, p)
K <- diag(p)</pre>
dm < -1 + (1-1/(1+4*exp(1)*max(6*log(p)/n, sqrt(6*log(p)/n))))
x <- tmvtnorm::rtmvnorm(n, mean = mu, sigma = solve(K),</pre>
      lower = rep(0, p), upper = rep(Inf, p), algorithm = "gibbs",
      burn.in.samples = 100, thinning = 10)
{\tt centered=FALSE, profiled=FALSE, diag=dm)}
test_lambda_bounds2(elts_NC_NP, "symmetric", lambda_ratio=2,
    lower=TRUE, lambda_start=NULL)
test_lambda_bounds2(elts_NC_NP, "symmetric", lambda_ratio=2,
    lower=FALSE, lambda_start=1.0)
```

tp_fp

tp_fp	Calculates the true and false positive rates given the estimated and true edges.

Description

Calculates the true and false positive rates given the estimated and true edges.

Usage

```
tp_fp(edges, true_edges, p)
```

Arguments

edges	A vector of indices corresponding to the estimated edges. Should not contain the diagonals.
true_edges	A vector of indices corresponding to the true edges.
р	A positive integer, the dimension.

Value

A vector containing the true positive rate and the false positive rate.

```
n <- 40
p <- 50
mu <- rep(0, p)
tol <- 1e-8
K <- cov_cons(mode="sub", p=p, seed=1, spars=0.2, eig=0.1, subgraphs=10)</pre>
true_edges <- which(abs(K) > tol & diag(p) == 0)
dm < -1 + (1-1/(1+4*exp(1)*max(6*log(p)/n, sqrt(6*log(p)/n))))
set.seed(1)
x <- tmvtnorm::rtmvnorm(n, mean = mu, sigma = solve(K),</pre>
       lower = rep(0, p), upper = rep(Inf, p), algorithm = "gibbs",
       burn.in.samples = 100, thinning = 10)
est <- estimate(x, "trun_gaussian", elts=NULL, centered=TRUE,</pre>
         symmetric="symmetric", lambda_length=100, mode="min_pow",
         param1=1, param2=3, diagonal_multiplier=dm,)
# Apply tp_fp to each estimated edges set for each lambda
TP_FP <- t(sapply(est$edgess, function(edges){tp_fp(edges, true_edges, p)}))</pre>
par(mfrow=c(1,1), mar=c(5,5,5,5))
plot(c(), c(), ylim=c(0,1), xlim=c(0,1), cex.lab=1, main = "ROC curve",
  xlab="False Positives", ylab="True Positives")
points(TP_FP[,2], TP_FP[,1], type="l")
points(c(0,1), c(0,1), type = "1", lty = 2)
```

40 varhat

varhat	Asymptotic variance (times n) of the estimator for mu or sigmasq for the univariate truncated normal assuming the other parameter is known.

Description

Asymptotic variance (times n) of the estimator for mu or sigmasq for the univariate truncated normal assuming the other parameter is known.

Usage

```
varhat(mu, sigmasq, mode, param1, param2, est_mu)
```

Arguments

mu	A number, the true mu parameter.
sigmasq	A number, the true sigmasq parameter.
mode	A string, the class of the h function.
param1	A number, the first parameter to the h function.
param2	A number, the second parameter (may be optional depending on mode) to the h function.
est_mu	A boolean. If TRUE, returns the asymptotic variance of muhat assuming sigmasq is known; if FALSE, returns the asymptotic variance of sigmasqhat assuming mu is known.

Details

The estimates may be off from the empirical variance, or may even be Inf or NaN if "mode" is one of "cosh", "exp", and "sinh") as the functions grow too fast. If est_mu == TRUE, the function numerically calculates

$$E\left[\sigma^2h^2(X)+\sigma^4{h'}^2(X)\right]/E^2[h(X)],$$

and if est_mu == FALSE, the function numerically calculates

$$E\left[\left(2\sigma^6h^2(X)+\sigma^8{h'}^2(X)\right)(X-\mu)^2\right]/E^2\left[h(X)(X-\mu)^2\right],$$

where E is the expectation over the true distribution $TN(\mu, \sigma)$ of X.

Value

A number, the asymptotic variance.

```
varhat(0, 1, "min_log_pow", 1, 1, TRUE)
varhat(0.5, 4, "min_pow", 1, 1, TRUE)
```

Index

```
AUC, 1
avgrocs, 2
compare_two_results, 3
compare_two_sub_results, 3
cov_cons, 4
crbound_mu, 5
crbound_sigma, 6
diff_lists, 6
diff_vecs, 7
eBIC, 7
estimate, 8
find_max_ind, 12
get_crit_nopenalty, 12
get\_elts, 13
\texttt{get\_elts\_ab}, \, \textcolor{red}{16}
get_elts_exp, 19
{\tt get\_elts\_gamma, \textcolor{red}{20}}
get_elts_gauss, 22
get_elts_trun_gauss, 23
get_h_hp, 25
get_results, 26
{\tt get\_safe\_log\_h\_hp,\,28}
\texttt{get\_trun}, \textcolor{red}{28}
lambda_max, 29
\texttt{mu\_sigmasqhat}, \textcolor{red}{30}
output, 31
rab_arms_R, 32
ran_mat, 33
refit, 34
rexp_gamma_reject_R, 35
test\_lambda\_bounds, 36
test_lambda_bounds2, 37
tp_fp, 39
varhat, 40
```