

Ayudantía 3

Cálculo 2

Problema 1

Determine si las siguientes series convergen.

a)
$$\sum_{n=5}^{\infty} \frac{(n^3-1)(n+1)}{(n-4)(n^5-8)}$$
.

b)
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}.$$

c)
$$\sum_{n=4}^{\infty} \frac{1}{n \ln(n) \ln(\ln(n))}$$

Problema 2

Aproxime la serie por sus primeros cinco términos, estime el error y determine cuantos terminos se deben sumar para obtener un error absoluto menor a 0.0001.

1.
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

2.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^4+1}}$$

Problema 3

Demuestre que si $a_n > 0$ y $\lim_{n \to \infty} na_n \neq 0$ entonces $\sum_{1}^{\infty} a_n$ diverge.

Problema 4*: Conjunto de Cantor Generalizado

Sea $0 < \gamma < 1$. El conjunto de Cantor C_{γ} se construye de la siguiente forma:

Comenzamos con el intervalo cerrado [0,1]. En el primer paso, removemos el intervalo abierto de largo γ , situado en el centro del intervalo. Esto deja dos intervalos, $\left[0,\frac{1-\gamma}{2}\right]$ y $\left[\frac{1+\gamma}{2},1\right]$. En el segundo paso, eliminamos el intervalo abierto central de largo γ de cada uno de estos intervalos. Continuamos este procedimiento de manera indefinida, eliminando en cada paso el intervalo abierto central de largo γ de cada intervalo restante. El conjunto C_{γ} consiste en los números que permanecen en [0,1] después de eliminar todos estos intervalos.

1. Demuestre que la longitud de todos los intervalos eliminados es 1.

- 2. ¿Puede C_{γ} contener un intervalo abierto?
- 3. (Propuesto) Demuestre que C_{γ} contiene infinitos puntos.

Problema 5

Determine los valores de p para los cuales la siguiente serie converge,

$$\sum_{n=2}^{\infty} \frac{1}{n \ln (n)^p}.$$

Problemas propuestos

Problema Propuesto 1

Sea $n \in \mathbb{N}$ y considere la sucesión

$$x_k = \sqrt{\int_{2^{-k}}^{2^{-k+1}} ne^{-nt} dt}.$$

Muestre que la serie $\sum_{k=1}^{\infty} |x_k|^2$ converge.

Problema Propuesto 2

Use el criterio de comparación para determinar si las siguientes integrales convergen o divergen

(a)
$$\int_0^1 \frac{\sec^2(x)}{x\sqrt{x}} \ dx.$$

(b)
$$\int_0^\infty \frac{\arctan(x)}{2 + e^x} \ dx.$$