Hints for OCS Questions

Julian Wolf Philipp Gabler

November 13, 2017

1 Basics

Question 1. What is the definition of a general mathematical optimization problem? Give an example and explain the notion of an objective function, a constraint set, an optimal solution and the definition of the level sets of a function.

Draw level lines and arrows

• General form:

$$\min_{x} f(x) \quad \text{s.t. } x \in X,$$

- Objective function f, constraint set X.
- A solution x^* is globally optimal if $f(x^*) \leq f(x), \forall x \in X$ (locally, if this holds in an environment in X around x^*).
- Level sets: for $c \in \mathbb{R}$, the sets

$$S_c(f) = \{x \in X : f(x) = c\}$$

of values with equal outcome.

Question 2. Explain nonlinear programming, linear programming, quadratic programming, convex programming and give examples. What is the definition of a convex set and a convex function? Give examples for convex sets and convex functions.

• Linear: objective functions and constraints are all linear:

$$\min_{x} c^{\top} x, \quad \text{s.t. } Ax \le b, \ x \ge 0.$$

• Quadratic: objective function is quadratic, constraints linear:

$$\min_{x} \frac{1}{2} x^{\top} Q x + c^{\top} x, \quad \text{s.t. } Ax \le b, \ Ex = d.$$

If Q is positive semidefinite, the objective is convex and the problem is polynomially solvable.

- Nonlinear: no further requirements objective function and constraints may be arbitrary. Usually used if not known whether the problem is convex. Not much theory available in general form.
- Convex set: a set X is convex, if for all $x, y \in X$ and $\alpha \in [0, 1]$:

$$\alpha x + (1 - \alpha)y \in X$$
.

This means that X contains all convex combinations of points from it.

• Convex function: $f: X \to \mathbb{R}$ is convex if for all $x, y \in X$ and $\alpha \in [0, 1]$:

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y).$$

This means that no points lie below any tangent.

Question 3. What is the difference between local and global minima. Give examples. Give the first order necessary condition of optimality and prove it. What is the second order necessary condition of optimality? Show that for differentiable convex functions, the first order necessary condition of optimality becomes sufficient.

• A point x^* is called an global minimum of f if for all $x \in X$

$$f(x^*) \le f(x)$$
.

• x^* is called an local minimum of f if it is minimal in some neighbourhood; i.e., there is an $\epsilon > 0$ such that

$$f(x^*) \le f(x) \quad \forall x \text{ with } ||x^* - x|| \le \epsilon.$$

• First order neccessary condition: If f is continuously differentiable, then in a small neighbourhood of x^* , we can by Taylor expansion write f as

$$f(x) = f(x^* + \Delta x) = f(x^*) + \nabla f(x^*)^{\top} \Delta x + o(\|\Delta x\|).$$

Since x^* is a local minimum, $f(x^* + \Delta x) - f(x^*) > 0$, and we have

$$f(x^*) + \nabla f(x^*)^{\top} \Delta x - f(x^*) = \nabla f(x^*)^{\top} \Delta x \ge 0.$$

Since we can equally choose Δx to have the opposite sign, it holds also that

$$\nabla f(x^*)^{\top} \Delta x \le 0,$$

so $\nabla f(x^*)^{\top} \Delta x = 0$, which, since Δx is arbitrary, implies that $\nabla f(x^*) = 0$, which is the necessary condition.

• Second order necessary condition: $\nabla^2 f(x^*)$ must be positive semidefinite.

• Assume $\nabla f(x^*) = 0$, but x^* were not optimal, so there is a y^* with $f(y^*) < f(x^*)$. Then, by convexity of f,

$$f(y^*) \ge f(x^*) + \langle \nabla f(x^*), y^* - x^* \rangle = f(x^*);$$

this contradicts the assumption, therefore x^* must be optimal.

Figure 1: Local/global minima.

Question 4. Discuss the optimality conditions for a quadratic optimization problem of the form

$$\min_x \frac{1}{2} x^\top Q x - b^\top x.$$

When is this problem convex and what does convexity imply? Give a simple example in 2D showing different realizations of Q.

Example for $f: \mathbb{R} \to \mathbb{R}$: in this case, $f(x) = \frac{1}{2}qx^2 + bx$. We have:

- First order necesses sary optimality condition: $\nabla f(x^*) = qx - b = 0$.
- Second order necessessary optimality condition: $\nabla^2 f(x^*) = q \ge 0$.

Since this is a parabola, we have three cases:

- 1. q > 0: Unique minimum exists as minimum of upwards parabola.
- 2. q = 0: Horizontal line, every point is locally minimal.
- 3. q < 0: Downwards parabola, not bounded from below, so no minimum.

Example for $f: \mathbb{R} \to \mathbb{R}^2$:

• First order necessessary optimality condition: $\nabla f(x^*) = Qx - b = 0$

• Second order necesses sary optimality condition: $\nabla^2 f(x^*) = Q$ is positive semidefinite.

In more concrete form: if $Q = \operatorname{diag}(\alpha, \beta), b^{\top} = [1, 0]$, then

$$f(x) = \frac{1}{2}(\alpha x^2 + \beta y^2) + x.$$

Q is positive definite if all eigenvalues, which in this case are α and β , are positive. See Figure 2. The second case is not bounded from below; the fourth case is a saddle surface.

Figure 2: Different scenarios for Q.

2 Gradient Methods, Optimality

Question 5. What is a descent direction? Draw a simple example explaining the properties of a descent direction. Give the general form of a gradient method and show that $d^{(k)} = -D^{(k)}\nabla f(x_k)$ with $D^{(k)}$ symmetric and positive definite is a descent direction.

• $d^{(k)}$ is a descent direction if

$$\frac{\partial f}{\partial d^{(k)}}(x^{(k)}) = \nabla f(x^{(k)})^{\top} d^{(k)} < 0$$

Interpretation: $d^{(k)}$ goes more downhill than uphill; see Figure 5.

Figure 3: Illustration of a descent direction.

- General form of gradient method:
 - 1. Choose an initial vector $x^{(0)} \in \mathbb{R}^n$
 - 2. Choose a descent direction $d^{(k)}$ that satisfies $\nabla f(x^{(k)})^{\top}d^{(k)} < 0$
 - 3. Choose a positive step size $\alpha^{(k)}$
 - 4. Compute the new vector as

$$x^{(k+1)} = x^{(k)} + \alpha^{(k)}d^{(k)}$$

- 5. Set k = k + 1 and goto 2, until some termination criterion is fulfilled
- We have

$$\nabla f(x^{(k)})^{\top} d^{(k)} = -\nabla f(x^{(k)})^{\top} D^{(k)} \nabla f(x^{(k)}) < 0,$$

by direct application of the definition of positive definiteness.

Question 6. Give three different standard choices for descent directions based on choosing the scaling matrix $D^{(k)}$ and discuss their numerical performance. What is the Armijo step size selection rule? Draw an example explaining the set of acceptable step sizes.

Possible descent scalings:

- $D^{(k)} = I$: steepest descent, slow convergence if the level lines are elongated (leads to zig-zagging).
- $D^{(k)} = \nabla^2 f(x^{(k)})$: Newton's method, very fast convergence near minima. Unstable in wrt. initial values (may diverge). Requires recalculation of inverse of Hessian in every step very expensive in large dimensions.

- $d^{(k)} = \left(\frac{\partial^2 f(x^{(k)})}{\partial (x_i)^2}\right)^2$: diagonal scaling, an approximation of Newton's method, but usually not worth it (scales only in diagonal directions).
- $d^{(k)} = (\nabla g(x^{(k)}) \nabla g(x^{(k)})^{\top})^{-1}$: Gauss-Newton method, for least squares problems with design function g. Good performance; again calculation of inverse, but not of the Hessian.

Armijo rule: it is not sufficient to simply ensure that $f(x^{(k+1)}) < f(x^{(k)})$. To apply it, we fix scalars s, $0 < \beta < 1$, and $0 < \sigma < 1$, and set $\alpha^{(k)} = \beta^{m_k} s$, where we choose m_k as the first nonnegative integer for which

$$f(x^{(k)} + \beta^{m_k} s d^{(k)}) - f(x^{(k)}) \le \sigma \beta^{m_k} s \nabla f(x^{(k)})^{\top} d^{(k)}.$$

Thus, the step sizes are chosen such that the energy decrease is sufficiently large – see Figure 4.

Figure 4: Graphical representation of the idea of the Armijo rule.

3 Convergence

Question 7. What is a Lipschitz continuous gradient, and what is the descent lemma? Give the proof of the descent lemma.

A differentiable function $f:\mathbb{R}^n\to\mathbb{R}$ has Lipschitz continuous gradient if there is a Lipschitz constant $L\geq 0$, such that for all $x,y\in\mathbb{R}^n$

$$\left\|\nabla f(x) - \nabla f(y)\right\| \le L \|x - y\|,\,$$

or equivalently

$$\|\nabla f(x+ty) - \nabla f(x)\| \le Lt\|y\| \quad \forall t \in [0,1]$$

for some norm.

Let $f: \mathbb{R}^n \to \mathbb{R}$ have an L-Lipschitz continuous gradient. Then for all x, y, we have the following quadratic upper bound on the objective function at x:

$$f(y) \le f(x) + \left\langle \nabla f(x), y - x \right\rangle + \frac{L}{2} \|y - x\|^2$$

Proof: let g(t) = f(x + t(y - x)), so that g(0) = f(x) and g(1) = f(y). Then

$$\begin{split} f(y) &= f(x) + f(y) - f(x) \\ &= f(x) + g(1) - g(0) \\ &= f(x) + \int_0^1 g'(t) \, \mathrm{d}t \\ &= f(x) + \int_0^1 \nabla f(x + t(y - x))^\top (y - x) \, \mathrm{d}t \\ &= f(x) + \int_0^1 \left\langle \nabla f(x), y - x \right\rangle \, \mathrm{d}t + \int_0^1 \left\langle \nabla f(x + t(y - x)) - \nabla f(x), y - x \right\rangle \, \mathrm{d}t \\ &\leq f(x) + \left\langle \nabla f(x), y - x \right\rangle + \int_0^1 \left\| \nabla f(x + t(y - x)) - \nabla f(x) \right\| \cdot \left\| y - x \right\| \, \mathrm{d}t \\ &\leq f(x) + \left\langle \nabla f(x), y - x \right\rangle + \left\| y - x \right\| \int_0^1 Lt \left\| y - x \right\| \, \mathrm{d}t \\ &= f(x) + \left\langle \nabla f(x), y - x \right\rangle + \frac{L}{2} \left\| y - x \right\|^2, \end{split}$$

where (1) is an application of the Cauchy-Schwarz theorem ($\langle x, y \rangle \leq ||x|| \cdot ||y||$), and (2) follows from Lipschitz continuity of the gradient

Question 8. What is a rate of convergence? Explain linear, superlinear, and sublinear convergence and give examples.

- Linear: $\limsup_{k\to\infty} \frac{e(x^{k+1})}{e(x^k)} \le \beta$ (blue line)
- superlinear: $\limsup_{k\to\infty} \frac{e(x^{k+1})}{e(x^k)^p} < \infty$ (red line)
- sublinear: $\limsup_{k \to \infty} \frac{e(x^{k+1})}{e(x^k)} = 1$ (black line)

Figure 5: Graphical representation of linear, superinear and sublinear convergence

4 Newton's method

Question 9. Show that the plain form of Newton's method can be derived from a second order Taylor approximation of the objective function. Show that Newton's method is invariant with respect to an affine change of the coordinate system.

- $\tilde{g}(x, x^k) = g(x^k) + \nabla g(x^k)'(x x^k)$
- is affine: because the derivation of the function is independent to a move of constants?!?!?

5 Least squares problems

Question 10. What are linear (and nonlinear) least squares problems? Give an example. What is the Gauss-Newton method, and what is its relation to Newton's method?

Linear:

- pointcloud, best fitting by polynomial equations
- Solve least square problem to find optimal parameters
- $\bullet \ \ \frac{1}{2}||Ax-z||^2$

Non-Linear:

- Measure distance to beacons to get our own unknown location
- non linear least squares problem
- $min_x \frac{1}{2} \sum_{i=1^m} (d_i \sqrt{(x_i p_1^i)^2 + (x_2 p_2^i)^2})^2$

Gauss-Newton:

- Uses $(\nabla q(x^k)\nabla q(x^k)')^{-1}$ instead of hessian
- Approximates Current point with parabola and minimizes this subproblem (as plain Newton)

(check this shit out)

Question 11. What is a Kalman filter? How does it relate to an optimization problem? What is an extended Kalman filter?

- incremental of gauss newton incremental growing least squares estimate
- example watertank: many measurements with noise a very good and fast convergence to correct level is reached
- extended Kalman Filter: input data behaves according to a function

6 Accelerated gradient methods

Question 12. What is the lower bound of first order methods on quadratic problems? What is an optimal algorithm for quadratic problems?

- ullet Q positive semidefinite: not motivated to write formula
- Best method: conjugate gradient method (by Polyak) see next question

Question 13. Write down the conjugate gradient (CG) method and specialize the algorithm for solving a least squares problem of the form

$$\min_{x} \frac{1}{2} x^{\top} Q x - b^{\top} x.$$

What is the relation to solving linear system of equations?

- Motivation: converge faster the GD but avoid Newton overhead
- Q-conjugate if: $d^iQd^j=0, \forall i,j$ with $i\neq j$
- Algorithm: Use Gram-Schmidt to find conjugate direction, calculate new search direction (easy as all but one coefficient are zero), choose α^k by minimization method, algorithm terminates after at most n steps.

(I think this is the algorithm where every single dimension is differenciated and optimized - hence the n termination)

Question 14. Explain the difference between the heavy-ball algorithm and Nesterov's algorithm. What are the rates of convergence of those algorithms on strongly convex problems?

- Heavy-ball: Idea is like in physics: a ball uses its momentum it gained beforehand to overcome small increases or flat areas of its way
- Problem: function needs to be strongly $\mu>0$ convex and twice continously differentiable
- Nesterov overcomes the twice diff. and the $\mu > 0$ problem by a dynamic choice of overrelaxation param $\beta^k = \frac{t_k 1}{t_k + 1} \to 1$, gradient is evaluated at extrapolated point
- Both algorithms are optimal
- HB is optimal like the Q positive semidefinite optimality, Nesterov also yields linear convergence rate on strongly convex sets

7 Contrained optimization

Question 15. Give an example showing the necessary optimality condition for minimizing a differentiable function over a convex set. Why does it fail in case the feasible set is non-convex?

- the gradient $\nabla f(x^*)$ makes an angle ≤ 90 in all feasable points
- this condition is in general not reachable

Failure in the non-convex case

Figure 6: Graphical representation of convex and non-convex set

Question 16. What is a projection on a convex set? Give the optimality condition and specialize the condition to the case where the convex set is a subspace. What are the properties of a subspace?

- z is a fixed vector, find vector x^* in a closed convex set X
- $min_x f(x) = ||x z||^2$

Question 17. What is a feasible direction? Give an example. What is the general form of a feasible direction method? Also give an alternative form of the feasible direction based on a feasible vector \bar{x} .

middle/end of pages slide 10 - start in interior and just take small steps -> we can ignore constraint under these conditions

- Given a feasible vector x, a feasible direction at x is a vector d such that the vector $x + \alpha d$ is feasible for all sufficiently small $\alpha > 0$.
- a feasable method generates starts at x^0 and generates multiple such points x^{k+1}

Question 18. Explain the conditional gradient method and the projected gradient method. What is different? For both methods draw a simple example showing how the feasible directions are computed.

- Conditional gradient solves subproblem with linear cost, gradient projection method solves quadratic cost fct
- The conditional gradient method generates the point \overline{x}^k by finding a feasible point which is furthest way from x^k along the negative gradient direction $-\nabla f(x^k)$.

Figure 7: Graphical representation of conditional (left) and projective (right) method

Question 19. What is the affine scaling method for solving an equality constrained LP? Show how the LP is solved based on solving a sequence of linearly constrained quadratic programs. Why can the inequality constraint be skipped?

- iterative method $x^{k+1} = x^k + \alpha^k (H^k)^{-1} (\text{big AHA formula})$
- affine scaling: choose $H^k=(X^k)^{-2}, X^k=diag(x_1,...,x_n)$ leads to $y^{k+1}=y^k+\alpha^k(AX^kA')^{-1}b, \ \alpha^k$ ensures $x^{k+1}>0$

Question 20. What is the Lagrange multiplier theorem for equality constrained optimization problems? Draw a simple example and explain why the gradients of the constraint functions need to be linearly independent.

- Interpretation 1: The gradient of the cost function $\nabla f(x^*)$ belongs to the subspace spanned by the gradients of the constraint functions $\nabla h_i(x^*)$
- Interpretation 2: The cost gradient $\nabla f(x^*)$ is orthogonal to the subspace of first order feasible directions
- for failure see figure 8. The Eigenvectors are lineary dependent, we loose one dimension and thus we can not optimize the problem (at least I think so)

Question 21. Show how to solve the projection problem:

$$\min_{x} \frac{1}{2} \|x - y\|^2$$

Write down the Lagrangian, give the KKT conditions and show how the problem is solved.

Question 22. Show how to compute the projection onto a half space:

$$\min_{x} \frac{1}{2} \|x - y\|^2 \quad \textit{s.t.} \quad a^{\top} x = b$$

 $\label{lem:with_conditions} Write\ down\ the\ Lagrangian,\ give\ the\ KKT\ conditions\ and\ show\ how\ the\ problem$ is solved.

Figure 8: Example 1, 24.01.2017

Figure 9: Example 2, 24.01.2017