```
%Links = ([theta d a alpha sigma (tipo de articulación) mHD Offset])
L1 = Link ('revolute', 'd', 4.4, 'a', 0, 'alpha', pi/2 , 'offset', 0); %Eslabón 1
L2 = Link ('revolute', 'd', 0, 'a', 10.6, 'alpha', 0 , 'offset', pi/2);
L3 = Link ('revolute', 'd' , 0, 'a', 10.6, 'alpha', 0, 'offset', -pi/2);
L4 = Link ('revolute', 'd' , 0, 'a', 7.5, 'alpha', 0, 'offset', 0);
Phantom = SerialLink([L1 L2 L3 L4]', 'name', 'Phantom')
```

Phantom =

Phantom:: 4 axis, RRRR, stdDH, slowRNE

++ j	theta	d	a	alpha	offset
1 2 3 4	q1 q2 q3 q4	4.4 0 0 0	0 10.6 10.6 7.5	0	1.5708 -1.5708

```
Phantom.plot([0 0 0 0]) view([-13.1 17.9])
```


help SerialLink/base

```
%primera posición
Phantom.plot([-25, 15, -20, 20]*(pi/180))
```



```
%Segunda posición
Phantom.plot([35,-35, 30, -30]*(pi/180))
view([35.2 14.2])
```



```
%Tercera posición
Phantom.plot([-85, 20, -55, 17]*(pi/180))
view([-87.2 16.3])
```



```
%Cuarta posición
Phantom.plot([-80, 35, -55, 45]*(pi/180))
view([-74.4 23.8])
```

