Retrieving Data Using the SQL select Statement

Objectives

- After completing this lesson, you should be able to do the following:
 - List the capabilities of SQL SELECT statements
 - Execute a basic SELECT statement
 - Differentiate between SQL statements and iSQL*Plus commands

Capabilities of SQL SELECT Statements

Basic Select Statement

```
SELECT *|{[DISTINCT] column|expression [alias],...}
FROM table;
```

- SELECT identifies the columns to be displayed
- FROM identifies the table containing those columns

Selecting All Columns

SELECT *
FROM departments;

DEPARTMENT_ID	DEPARTMENT_NAME	MANAGER_ID	LOCATION_ID
10	Administration	200	1700
20	Marketing	201	1800
50	Shipping	124	1500
60	IT	103	1400
80	Sales	149	2500
90	Executive	100	1700
110	Accounting	205	1700
190	Contracting		1700

Selecting Specific Columns

```
SELECT department_id, location_id
FROM departments;
```

DEPARTMENT_ID	LOCATION_ID
10	1700
20	1800
50	1500
60	1400
80	2500
90	1700
110	1700
190	1700

Writing SQL Statements

- SQL statements are not case-sensitive.
- SQL statements can be on one or more lines.
- Keywords cannot be abbreviated or split across lines.
- Clauses are usually placed on separate lines.
- Indents are used to enhance readability.
- In *i*SQL*Plus, SQL statements can optionally be terminated by a semicolon (;). Semicolons are required if you execute multiple SQL statements.
- In SQL*plus, you are required to end each SQL statement with a semicolon (;).

Column Heading Defaults

- *i*SQL*Plus:
 - Default heading alignment: Center
 - Default heading display: Uppercase
- SQL*Plus:
 - Character and Date column headings are left- aligned
 - Number column headings are right-aligned
 - Default heading display: Uppercase

Arithmetic Expressions

 Create expressions with number and date data by using arithmetic operators.

Operator	Description
+	Add
-	Subtract
*	Multiply
1	Divide

Using Arithmetic Operators

```
SELECT last_name, salary, salary + 300
FROM employees;
```

LAST_NAME	SALARY	SALARY+300
King	24000	24300
Kochhar	17000	17300
De Haan	17000	17300
Hunold	9000	9300
Ernst	6000	6300

Operator Precedence

SELECT last_name, salary, 12*salary+100
FROM employees;

LAST_NAME	SALARY	12*SALARY+100
King	24000	288100
Kochhar	17000	204100
De Haan	17000	204100

20 rows selected.

SELECT last_name, salary, 12*(salary+100)
FROM employees;

LAST_NAME	SALARY	12*(SALARY+100)
King	24000	289200
Kochhar	17000	205200
De Haan	17000	205200

Defining a Null Value

- A null is a value that is unavailable, unassigned, unknown, or inapplicable.
- A null is not the same as a zero or a blank space.

SELECT last_name, job_id, salary, commission_pct
FROM employees;

JOB_ID	SALARY	COMMISSION_PCT
AD_PRES	24000	
AD_VP	17000	
SA_MAN	10500	.2
SA_REP	11000	.3
SA_REP	8600	.2
AC_ACCOUNT	8300	
	AD_PRES AD_VP SA_MAN SA_REP SA_REP	AD_PRES 24000 AD_VP 17000 SA_MAN 10500 SA_REP 11000 SA_REP 8600

Null Values in Arithmetic Expressions

 Arithmetic expressions containing a null value evaluate to null.

SELECT last_nam	
FROM employee	s;
Kochhar	
King	
LAST_NAME	12*SALARY*COMMISSION_PCT
•••	
Zlotkey	25200
Abel	39600
Taylor	20640
Gietz	

Defining a Column Alias

- A column alias:
 - Renames a column heading
 - Is useful with calculations
 - Immediately follows the column name (There can also be the optional AS keyword between the column name and alias.)
 - Requires double quotation marks if it contains spaces or special characters or if it is case-sensitive

Using Column Aliases

SELECT FROM	last_name employees	 commission	n_pct co	mm
King Kochhar De Haan	NAME		COMM	
• • • 20 rows selecte	d.			
	last_name employees;	salary*12	"Annual	Salary
SELECT	last_name	salary*12		Salary
SELECT	last_name employees;			Salary 288000
SELECT FROM	last_name employees;			

Concatenation Operator

- A concatenation operator:
 - Links columns or character strings to other columns
 - Is represented by two vertical bars (||)
 - Creates a resultant column that is a character expression

```
SELECT last_name||job_id AS "Employees"
FROM employees;
```

```
Employees

KingAD_PRES

KochharAD_VP

De HaanAD_VP
```

Literal Character Strings

- A literal is a character, a number, or a date that is included in the SELECT statement.
- Date and character literal values must be enclosed by single quotation marks.
- Each character string is output once for each row returned.

Using Literal Character Strings

```
SELECT last_name | ' is a ' | job_id

AS "Employee Details"

FROM employees;
```

King is a AD_PRES Kochhar is a AD_VP De Haan is a AD_VP Hunold is a IT_PROG Ernst is a IT_PROG
De Haan is a AD_VP Hunold is a IT_PROG Ernst is a IT_PROG
Hunold is a IT_PROG Ernst is a IT_PROG
Ernst is a IT_PROG
L
Lorentz is a IT_PROG
Mourgos is a ST_MAN
Rajs is a ST_CLERK

Alternative Quote (q) Operator

- Specify your own quotation mark delimiter
- Choose any delimiter
- Increase readability and usability

```
SELECT department name ||
q'[, it's assigned Manager Id: ]'
|| manager_id
AS "Department and Manager"
FROM departments;
```

```
Department and Manager

Administration, it's assigned manager ID: 200

Marketing, it's assigned manager ID: 201

Shipping, it's assigned manager ID: 124
```

Duplicate Rows

• The default display of queries is all rows, including duplicate rows.

SELECT FROM	<pre>department_id employees;</pre>	1
	DEPARTMENT_ID	
		90
		90
		90
20 rows selected	1 .	
	DISTINCT department id	
	<pre>DISTINCT department_id employees;</pre>	2
SELECT		2
SELECT	employees;	2
SELECT	employees;	10 20
SELECT	employees;	

SQL and iSQL*Plus Interaction

by ABHISHEK SHARMA

SQL Statements Versus iSQL*Plus Commands iSQL*Plus

- A language
- ANSI standard
- Keyword cannot be abbreviated
- Statements manipulate data and table definitions in the database

- An environment
- Oracle-proprietary
- Keywords can be abbreviated
- Commands do not allow manipulation of values in the database
- Runs on a browser
- Centrally loaded; does not have to be implemented on each machine

*i*SQL*Plus commands

SQL statements

Overview of iSQL*Plus

- After you log in to iSQL*Plus, you can:
 - Describe table structures
 - Enter, execute, and edit SQL statements
 - Save or append SQL statements to files
 - Execute or edit statements that are stored in saved script files

Logging In to iSQL*Plus

From your browser environment:

iSQL*Plus Environment

Displaying Table Structure

• Use the *i*SQL*Plus DESCRIBE command to display the structure of a table:

DESC[RIBE] tablename

Displaying Table Structure

DESCRIBE employees

Name	Null?	Туре
EMPLOYEE_ID	NOT NULL	NUMBER(6)
FIRST_NAME		VARCHAR2(20)
LAST_NAME	NOT NULL	VARCHAR2(25)
EMAIL	NOT NULL	VARCHAR2(25)
PHONE_NUMBER		VARCHAR2(20)
HIRE_DATE	NOT NULL	DATE
JOB_ID	NOT NULL	VARCHAR2(10)
SALARY		NUMBER(8,2)
COMMISSION_PCT		NUMBER(2,2)
MANAGER_ID		NUMBER(6)
DEPARTMENT_ID		NUMBER(4)

by ABHISHEK SHARMA

iSQL*Plus History Page

iSQL*Plus History Page

Setting iSQL*Plus Preferences

Setting the Output Location Preference

Summary

- In this lesson, you should have learned how to:
 - Write a SELECT statement that:
 - Returns all rows and columns from a table
 - Returns specified columns from a table
 - Uses column aliases to display more descriptive column headings
 - Use the iSQL*Plus environment to write, save, and execute SQL statements and iSQL*Plus commands

```
SELECT *|{[DISTINCT] column|expression [alias],...}
FROM table;
```

Practice 1: Overview

- This practice covers the following topics:
 - Selecting all data from different tables
 - Describing the structure of tables
 - Performing arithmetic calculations and specifying column names
 - Using iSQL*Plus