1. Déterminer $(a,b) \in \mathbb{R}^2$ tels que $\forall k \in \mathbb{N}^*$, $\frac{1}{(k+1)(k+2)} = \frac{a}{k+1} + \frac{b}{k+2}$. En déduire :

$$\sum_{k=1}^{n} \frac{1}{(k+1)(k+2)}.$$

2. Déterminer trois réels a, b et c tels que : $\forall k \in \mathbb{N}^*$, $\frac{k-1}{k(k+1)(k+3)} = \frac{a}{k} + \frac{b}{k+1} + \frac{c}{k+3}$.

En déduire la valeur de $\sum_{k=1}^{n} \frac{k-1}{k(k+1)(k+3)}$.

3. Déterminer trois réels a, b et c tels que : $\forall k \in \mathbb{N}^*$, $\frac{1}{k(k+1)(k+2)} = \frac{a}{k} + \frac{b}{k+1} + \frac{c}{k+2}$.

En déduire la valeur de $\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)}$. Retrouver ce résultat par récurrence : montrer que $\forall n \geq 1 : \sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)} =$