

WH-LTE-7S1-E Hardware Manual

Document version: V1.0.0

WH-LTE-7S1-E Hardware Manual	1
1. Overview	3
2. Introduction	3
2.1. Specifications	3
2.2. System Diagram	4
2.3. Pins Definition	5
2.4. Evaluation Board	6
3. Application Interfaces	7
3.1. Power Interface	7
3.2. USB Interface	8
3.3. UART Interface	8
3.4. SIM Interface	9
3.5. Indicators	11
3.6. Reset/Reload	13
3.7. Turn on/off Module Using PWRKEY	13
4. Electrical Characteristics	14
4.1. Operating/Storage Temperature	14
4.2. Power Supply	14
4.3. IO Voltage Range	14
4.4. IO Current Range	15
5. Mechanical Characteristics	15
5.1. Reflow Soldering	15
5.2. Dimensions	16

1. Overview

This document describes the pin definition, electrical characteristics and structural dimensions of the WH-LTE-7S1-E module.

Combined with this document and other application documents of WH-LTE-7S1-E module, users can quickly embed the module in various terminal devices to design mobile communication application schemes.

About the user manual and encapsulation library, please download in this link:

https://www.pusr.com/products/LTE-Cat-1-module.html

2. Introduction

2.1. Specifications

	Parameters	Description	
	WH-LTE-7S1-E	Supports B1/B3/B7/B8/B20/B28	
	Encapsulation	DIP 23pin	
	Power	3.4V~4.2V / 5~16V (Not coexisting)	
	Indicators	WORK, NET, LINKA, LINKB, DATA	
Basic Parameters	SIM/USIM	3V/1.8V SIM slot, 2FF	
	USB interface	USB 2.0 High speed	
	UART interface	AT commands and data transmission, TTL-3.0V	
	RF	IPEX	
Environmental	Dimensions(mm)	44.4mm×41.8mm×12.5mm	
Environmental	Weight(g)	15g	
	Operating temperature	-30°C~ +75°C	
Temperature	Expansion temperature	-40°C~ +85°C	
	Storage temperature	-40°C~ +90°C	
Humidity	Operating humidity	5%~95% (non-condensing)	
Transmission	LTE FDD Rel.13	10MbpsDL/5Mbps UL	
speed	GPRS	85.6KbpsDL/85.6Kbps UL(multi-slot class 12)	
Bands	LTE FDD	B1/B3/B7/B8/B20	
Danus	GSM	900/1800MHz	
	FDD:B1/3/7/8/20/28	23dBm±2dB	
TX Power	GSM:900MHz	33dBm±2dB	
	GSM:1800MHz	30dBm±2dB	
Rx Sensitivity	GSM:900MHz	-109.5dBm	
ix sensitivity	GSM:1800MHz	-108dBm	

	FDD:B1/3/20	-98dBm
	FDD:B7	-97.5dBm
	FDD:B8/B28	-98.5dBm
	Operating mode	TCP/UDP/HTTPD/SMS transparent transmission
	Configuration command	AT+command
Software	Network protocol	TCP/UDP/DNS/FTP/HTTP
	Socket number	4
	User configuration	Serial/Network/SMS AT command
	Socket distribution protocol	Support
	FOTA self upgrade	Support
Factoria	Security	Support
Features	Base station geolocation	Support
	FTP upgrade	Support
	NTP	Support

2.2. System Diagram

WH-LTE-7S1-E uses a double inline package design, offers multiple communication interfaces: POWER, Reset, Reload, work status indicators, SIM, USB, UART and so on.

2.3. Pins Definition

Pin	Name	Direction	Description		
1	LINKA	0	Output high level when socket A connection is established.		
2	LINKB	0	Output high level when socket B connection is established.		
3	USB_DM	I/O	USB-		
4	USB_DP	I/O	USB+		
5	V_PAD	Р	3.0V IO Power domain.		
6	UTXD1	0	UART data out, data output from module to user device (3.0V)		
7	URXD1	I	UART data in, data input from user device to module (3.0V)		
8	VBUS	Р	USB Power		
9	WORK	0	Working status indicator, flashes. The high and low level change every second.		
10	POWER KEY	I	Power on and off, low level off.		
11	GND	Р	Power GND.		
12	GND	Р	Power GND.		
13	DCIN	Р	5-16V power.		
14	DCIN	Р	5-16V power.		

15	NET	0	Network status indicator.	
16		Р	Power supply: 3.4~4.2V, recommend 3.8V. Can not	
10	VCAP	Р	use with DCIN simultaneously.	
17	NC			
18	RELOAD	I	Pull down 3~15s to restore to factory settings.	
19		ı	Reset, module should restart when this pin is pulled	
19	RESET	I	down.	
20	VSIM	Р	SIM card power.	
21	SIM_DAT	I/O	SIM card data.	
22	SIM_CLK	I/O	SIM card clock.	
23	SIM_RST	0	SIM card control.	

Note:

- 1. "P" means power supply pin, "I" means the input pin, "O" means the output pin.
- 2. LINKA, LINKB, WORK, NET pin: high level is 1.8V, if need to be compatible with 7S2, 7S3 design, please pay attention to level matching to avoid damage module.
- 3. POWER_KEY and RESET have the same function to control the power on and off of the module.
- 4. RELOAD and RST pins are compatible with 3.3V and 5V input.
- 5. NC: pin is not in use.
- 6. I/O stands for bidirectional data transfer pins.

2.4. Evaluation Board

In order to facilitate application development with 7S1-E conveniently, we supplies the evaluation board (EVB)--USR-7SX-EVK.

3. Application Interfaces

3.1. Power Interface

WH-LTE-7S1-E supports DC 5~16V or DC 3.4~4.2V power supply.

3.1.1.DC 5~16V Power Supply

Connecting pins 13 and 14 with $5\sim16V$ power supply. When designing the product, please ensure that the peripheral circuit can provide sufficient power supply capacity, and strictly control it within $5V\sim16V$. It is recommended to add 220uF electrolytic capacitor at the front end of the pin interface to increase the stability of the power supply. Reference circuits are as follows:

3.1.2.DC 3.4~4.2V Power Supply

Connecting pin 16 with 3.4-4.2V power supply (Recommend 3.8V, cannot exceed the range), please place a large capacitor behind DC/DC or LDO to prevent the voltage drop of the external power supply during the pulse current period. Bypass capacitors stabilize the input voltage.

Reference circuit is as follows:

3.2. USB Interface

7S1-E module provides a standard USB2.0 interface, supports both High Speed (480Mbps) and Full Speed (12Mbps) circuits, supports suspend and resume, and can work in HOST mode and DEVICE mode. The USB interface can map multiple serial ports on the PC by cooperating with the driver. The recommended circuit is shown in the figure below. The typical voltage of USB interface power supply (USB_VCC) is 5V (range: 4.75 ~ 5.25V). According to the different requirements of application products, should consider different requirements of ESD and EMI. Design recommendations:

- 1. We recommend a common-mode suppression filter or 0 ohm resistor in the USB circuit to facilitate subsequent debugging.
- 2. When used as an operation interface or debugging interface, the protection of ESD interface must be considered on the USB signal line, the junction capacitance of ESD is not more than 3pF. TVS recommends SEMTECH's RClamp0521P.TCT or INFINEO's ESD0P2RF-02LRHE6327. Other devices of the same specification can also be selected according to the parameters.
- 3. USB_DP and USB_DM must be in differential signal, try to keep the two lines the same length, keep the differential impedance at 90ohm.
- 4. USB_DP and USB_DM need to be protected by the ground.

PIN	Symbol	Description	Type voltage
3	USB_DM	USB D-	
4	USB_DP	USB D+	
8	VBUS	USB Power supply	5V

Reference circuit:

3.3. UART Interface

WH-LTE-7S1-E supports below baud rate:

1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600

When the I/O of the user's MCU is not 3.0V, level matching is needed to achieve communication with WH-LTE-7S1-E module. The conversion circuit is as follows:

TXD:

RXD:

V_PAD is the module serial power pin (3.0V). VDD is the user's MCU level. For triodes, S9014/J6 of JCET Group is recommended, or other devices of the same specification.

3.4. SIM Interface

The module provides an ISO 7816-3 standard SIM card interface that automatically recognizes 3.0V and 1.8V SIM cards.

WH-LTE-7S1-E has integrated SIM card function and can be used directly, users can also design according to the needs with the SIM pins.

Recommendations:

- In order to prevent the damage of USIM card and chip caused by static electricity, it is necessary to add TVS tube for electrostatic protection. Please select devices with rated reverse working voltage VRWM =5V and junction capacitance CJ < 10 pF. The reference ground of the antistatic device and the module must be connected.
- 2. It is suggested to use VSIM power to pull up SIM_DATA 10K to ensure that SIM_DATA has a stable high level in three states, so as to improve the driving ability and the edge characteristics of its waveform.
- 3. In order to meet the requirements of 3GPP TS 51.010-1 protocol and EMC certification, it is recommended to place the SIM card holder close to the SIM card interface of the module to avoid serious distortion of the waveform and influence of signal integrity due to too long wiring.
- SIM_CLK and SIM_DAT should be protected by the ground.
- 5. Please parallel a capacitor of 0.1uF and 33pF between VSIM and GND, and a capacitor of 33pF between SIM_CLK, SIM_RST, SIMA_DAT and GND to filter the interference of RF signals.
- 6. The ESD protection device should be placed close to the SIM card slot.

PIN	Symbol	Description	Type(V)
20	VSIM	SIM power	1.8/3.0
21	SIM_DAT	SIM data I/O	1.8/3.0
22	SIM_CLK	SIM clock I/O	1.8/3.0
23	SIM_RST	SIM reset I/O	1.8/3.0

3.5. Indicators

WH-LTE-7S1-E provides LED to display the working status of the module.

PIN	Symbol	Description	Type voltage
1	LINKA	Socket A status	3.0V
2	LINKB	Socket B status	3.0V
9	WORK	Module work status	3.0V
15	NET	Network status	3.0V

WH-LTE-7S1-E itself provides 3 status indicator lights:

POWER: Always on after the module is powered on.

NET: Flashes after connecting to the network.

WORK: Flashes after the module works normally.

It is recommended to drive the indicator light through a triode, and connect the positive pole of the light with

a stable voltage.

Reference circuit:

Note:

If the user needs to read the indicator light level, cannot directly connect the MCU pins to the module's indicator light pins, need to do the level matching. VCC is the user level.

3.6. Reset/Reload

WH-LTE-7S1-E supports hardware reset and restore the factory settings:

RESET: Pull down the "RESET" pin for 0.5s, then pull up or open it.

Reload: Pull down for 3~15s, then pull up or open it to restore the factory settings.

Reference circuit:

3.7. Turn on/off Module Using PWRKEY

If unused, must keep this pin open. When the module is powered on, can pull down the PWRKEY pin to restart the module. Reference circuit is as follows:

Р	'IN	Symbol	Description	Type voltage
1	10	PWRKEY	Power pin, pull up by default.	VBAT

4. Electrical Characteristics

4.1. Operating/Storage Temperature

Parameter	Min	Max
Operating temperature	-35 ℃	+75℃
Expansion temperature	-40℃	+85℃
Storage temperature	-40℃	+90℃

Note:

When the module works in the operating temperature range, the related performance meets the requirements of 3GPP standard.

When works in the expansion temperature, the module can still keep the normal working state and has the functions of voice, SMS and data transmission. There will be no irreversible failure, the radio frequency spectrum and network are basically unaffected. Only a few parameters, such as output power, may be outside the range of the 3GPP standard. When the temperature returns to the normal operating temperature range, all the indicators of the module still meet the 3GPP standard.

4.2. Power Supply

Paramete	Pin	Min.	Тур.	Max.
Input Voltage	13、14	5V	12V	16V
Input Voltage	16	3.4V	3.8V	4.2V

4.3. IO Voltage Range

For SIM power pin USIM_VDD:

1.8V U(S)IM: Class C, USIM_VDD=1.8V 3.0V U(S)IM: Class B, USIM_VDD=3.0V

For RST, POWER KEY and others:

1.8V I/O voltage parameters:

Symbol	Parameter	Min	Тур	Max	Unit
ViH	High-level input voltage	1.17	1.8	1.8	V
VIL	Low-level input voltage	-0.4	0	0.63	V
Vон	High-level output voltage	1.35	1.8	1.8	V
Vol	Low-level output voltage	0	0	0.45	V

3.0V I/O voltage parameters:

Symbol	Parameter	Min	Тур	Max	Unit
Vih	High-level input voltage	2.1	3.0	3.0	V
VIL	Low-level input voltage	0	0	0.6	V
Vон	High-level output voltage	2.1	3.0	3.1	V
Vol	Low-level output voltage	0	0	0.45	V

4.4. IO Current Range

IO pin	Maximum input current	Maximum drive current
IO current	4mA	4mA

5. Mechanical Characteristics

5.1. Reflow Soldering

Slope 1		Max temperature		Reflow time/220°C		Soak time 140~200°C		TCs
15%	2.1	24%	248.6	-83%	65.2	26%	116.7	2
25%	2.3	2%	245.3	-149%	45.4	24%	116.0	3
10%	2.1	-16%	242.6	-116%	55.1	20%	114.0	4
12%	2.1	15%	247.3	-85%	64.5	19%	113.7	6
	0.15		6.00		19.82		3.04	Temp. difference

5.2. Dimensions

Unit: mm Error: +/-0.2mm

