

蛟龙四班 简单贪心

Mas

#1062 过河问题

题目描述

在漆黑的夜里,N 位旅行者来到了一座狭窄而且没有护栏的桥边

如果不借助手电筒的话,大家是无论如何也不敢过桥去的

不幸的是,N个人一共只带了一只手电筒,而桥窄得只够让两个人同时过

如果各自单独过桥的话,N 人所需要的时间已知

而如果两人同时过桥,所需要的时间就是走得比较慢的那个人单独行动时所需的时间

问题是,如何设计—个方案,让这 N 人尽快过桥

输入格式

第一行是一个整数 T 表示测试数据的组数

每组测试数据的第一行是一个整数 N 表示共有 N 个人要过河

每组测试数据的第二行是 N 个整数 Si ,表示此人过河所需要花时间

输出格式

输出所有人都过河需要用的最少时间

样例输入

1 4 1 2 5 10

样例输出

17

数据规模

对于全部的数据 $1 \leq T \leq 20, 1 \leq N \leq 1000, 0 < Si \leq 100$

#1062 过河问题

将 S 升序排序

若 n=1 答案为 S_1

若 n=2 答案为 S_2

若 n = 3 答案为 $S_1 + S_2 + S_3$

考虑 $n \ge 4$ 时的情况

尝试将问题拆分成性质相同的子问题,存在两种拆分策略

策略1

 S_1 和 S_n 过河, S_1 返回

 S_1 和 S_{n-1} 过河, S_1 返回

总代价为 $2S_1 + S_{n-1} + S_n$

策略2

 S_1 和 S_2 过河, S_1 返回

 S_n 和 S_{n-1} 过河, S_2 返回

总代价为 $S_1 + 2S_2 + S_n$

择优选取策略累加代价即可

#2141、货仓选址

题目描述

在一条数轴上有 N 家商店,它们的坐标分别为 $A_1 \sim A_N$ 。

现在需要在数轴上建立一家货仓,每天清晨,从货仓到每家商店都要运送一车商品。

为了提高效率, 求把货仓建在何处, 可以使得货仓到每家商店的距离之和最小。

输入格式

第一行输入整数 N 。

第二行 N 个整数 $A_1 \sim A_N$ 。

输出格式

输出一个整数,表示距离之和的最小值。

输入样例:

```
4
6 2 9 1
```

输出样例:

12

数据范围

对于全部的数据 $1 \leq N \leq 100000$,坐标不超过 2^{31}

#2141、货仓选址

给定一个数列中位数有这样的性质: 所有数与中位数的绝对差之和最小

记商店排序后的位置为 $x_1, x_2, x_3, \dots, x_{n-1}, x_n$, 货仓位置为 x, 距离之和为 d

$$d = |x_1 - x| + |x_2 - x| + \dots + |x_{n-1} - x| + |x_n - x|$$

$$= (|x_n - x| + |x_1 - x|) + (|x_{n-1} - x| + |x_2 - x|) + \dots$$

$$\geq x_n - x_1 + x_{n-1} - x_2 + \dots$$
(1)

不难发现,对于任意一对 $x_i > x_j$, 当 $x > x_i$ 或 $x < x_j$, $|x_i - x| + |x_j - x| \ge x_i - x_j$

要使得 d 取最小值,需要使得 (1) 中括号内每一组都满足 $x_j \le x \le x_i$

当 n 为奇数时, x 为数列中位数

*n*为偶数时?

#1102 加勒比海盗

题目描述

在北美洲东南部,有一片神秘的海域,那里碧海蓝天、阳光明媚,这正是传说中海盗最活跃的加勒比海(Caribbean Sea)

17世纪时,这里更是欧洲大陆的商旅舰队到达美洲的必经之地,所以当时的海盗活动非常猖獗,海盗不仅攻击过往商人,甚至攻击英国皇家舰……

有一天,海盗们截获了一艘装满各种各样古董的货船,每一件古董都价值连城,一旦打碎就失去了它的价值

虽然海盗船足够大,但载重量为 C ,每件古董的重量为 w_i ,海盗们该如何把尽可能多数量的宝贝装上海盗船呢?

输入描述

第一行是两个整数 c,n 表示载重量 c 及古董的个数 n 第二行是 n 个数,分别表示第 i 个古董的重量

输出描述

输出能装入的古董最大数量

输入样例

30 8

4 10 7 11 3 5 14 2

输出样例

数据规模

采用重量轻先装的贪心选择策略

可产生该问题的最优解

#1102 加勒比海盗

设集装箱依其重量从小到大排序, (x_1, x_2, \dots, x_n) 且 $x_i \in \{0,1\}$ 是其最优解

设 x_k 是第一个等于1的

- k = 1,满足贪心选择性质
- 如 $k \neq 1$,用 x_1 替换 x_k ,构造的新解同原解最优值相同,故也是最优解,满足贪心选择性质

该问题具有最优子结构性质

记T(S,W)为物品 $S \sim n$ 装船(载重量为W)的最大数量

当 $W < w_S$ 时 T(S, W) = 0

若第一个物品可以选取, $T(1,W) = 1 + T(2,W - w_1)$,因 T(1,W)为最优解,则 $T(2,W - w_1)$ 一定为最优解

若 $T(2,W-w_1)$ 不是该问题的最优解

则存在最优解 $T'(2, W - w_1) > T(2, W - w_1)$ 使得 $1 + T'(2, W - w_1) = T'(1, W) > T(1, W)$

与T(1,W)是最优解相矛盾,故 $T(2,W-w_1)$ 一定是最优值

#1102 加勒比海盗

也可通过强化结论+反证法来证明

强化解的比较规则

对于两个可行解 (p_1, p_2, \dots, p_a) 和 (q_1, q_2, \dots, q_b)

若 $a \neq b$ 则认为数量少的解更优,若 a = b 则认为总重量少的解更优,即比较 $\sum p_i$ 和 $\sum q_i$ 谁更小

断言

采用重量轻先装的贪心选择策略一定能得到最优解

反证

假设贪心策略不一定正确,即可能存在某个解 (p_1, p_2, \cdots, p_a) ,在强化规则下比贪心解严格更优

将这个最优解排序, 至少有一个未被装的物品 t 满足 $t < p_a$ (否则这个最优解就是贪心解了)

找到第一个 k 满足 $p_k > t$ 用 t 替换 p_k ,用 p_k 替换 p_{k+1} ,,用 p_{a-1} 替换 p_a

显然新构造的解严格比原解更优,产生了矛盾,说明不存在解比贪心解严格更优

#609 活动安排

题目描述

设有 n 个活动的集合 $E=\{1,2,..,n\}$,其中每个活动都要求使用同一资源,如演讲会场等,而在同一时间内只有一个活动能使用这一资源。

每个活动 i 都有一个要求使用该资源的起始时间 s_i 和一个结束时间 f_i ,且 $s_i < f_i$ 。如果选择了活动 i ,则它在时间区间 $[s_i,f_i)$ 内占用资源。

若区间 $\left[s_i,f_i\right)$ 与区间 $\left[s_j,f_j\right)$ 不相交,则称活动 i 与活动 j 是相容的。也就是说,当 $f_i\leq s_j$ 或 $f_j\leq s_i$ 时,活动 i 与活动 j 相容。选择出由互相兼容的活动组成的最大集合。

输入格式

第一行一个整数 n ;

接下来的 n 行,每行两个整数 s_i 和 f_i 。

输出格式

输出互相兼容的最大活动个数。

数据范围与提示

对于全部的数据 $1 \leq n \leq 1000$

样例输入

4			
1	3		
4	6		
2	5		
1	7		

样例输出

2

#609 活动安排

对结束时间进行升序排序,若当前活动不与上一个活动产生交集那么选取,可产生该问题的最优解

设活动按结束时间从早到晚排序

 (x_1, x_2, \dots, x_n) 且 $x_i \in \{0,1\}$ 是一组最优解

设 x_k 是第一个等于1的

- k = 1,满足贪心选择性质
- 如 $k \neq 1$,用 x_1 替换 x_k ,构造的新解同原解最优值相同,故也是最优解,满足贪心选择性质

该具有最优子结构性质

尝试证明

题目描述

给定 n 个闭区间 $[a_i,\ b_i]$,其中 $i=1,2,\ldots,n$ 。任意两个相邻或相交的闭区间可以合并为一个闭区间。例如, [1,2] 和 [2,3] 可以合并为 [1,3] , [1,3] 和 [2,4] 可以合并为 [1,4] ,但是 [1,2] 和 [3,4] 不可以合并。 如果这些区间可以合并,请将他们合并

输入格式

输出格式

输出可能有多行,按区间左边界升序输出合并后的区间 每行一个合并后的区间,输出这个闭区间的左右边界,用单个空格隔开

样例输入

5	
5 6	
1 5	
10 10	
6 9	
8 10	

样例输出

1 10

#1508、区间合并

将所有区间按照左端点升序排序

将第一个区间加入 M 数组中,并按顺序依次考虑之后的每个区间:

- 若当前区间的左端点在数组 M 中最后一个区间的右端点后,那么它们不会重合,可直接将该区间加入数组 M
- 否则,它们重合,用当前区间的右端点更新数组 M 中最后一个区间的右端点,将其置为二者较大值

在排序后的数组中,两个可合并的区间未合并

说明存在三元组 (i,j,k) 及区间 a[i],a[j],a[k] 满足 i < j < k 且 a[i],a[k] 能合并,但 a[i],a[j] 和 a[j],a[k]不能合并

$$a[i].e \ge a[k].s$$

显然 $a[i].s \le a[i].e$, 联立上述不等式可得

$$a[i].s \le a[i].e < a[j].s \le a[j].e < a[k].s$$

说明假设是不成立,故所有能够合并的区间都必然是连续的

#1199、整数区间

题目描述

请编程完成以下任务:

- 读取闭区间的个数及它们的描述;
- 找到一个含元素个数最少的集合,使得对于每一个区间,都至少有一个整数属于该集合,输出该集合的元素个数。

输入格式

首行包括区间的数目 $n(1 \le n \le 10000)$,接下来的 n 行,每行包括两个整数 a,b ,被一空格隔开, $0 \le a \le b \le 10000$,它们是某一个区间的开始值和结束值。

输出格式

第一行集合元素的个数、对于每一个区间都至少有一个整数属于该区间,且集合所包含元素数目最少。

输入样例

输出样例

将所有区间按照右端点升序排序

选取第一个区间并将第一个区间的右端点记为 pre

• 若当前区间的左端点在 *pre* 之后 那么它们不会重合,让一个新数覆盖,并用当前区间右端点更新 *pre*

• 否则

它们重合不需要选择新的数覆盖

正确性?

谢谢观看