Engenharia de Computação e Informação Algoritmo para Implementar 10/2014

Erik Papa Quiroz

PESC/COPPE-UFRJ

1. Considere o siguiente algoritmo

Algoritmo

Inicialização: Seja $\{\lambda_k\}$ uma sequencia de parámetros positivos limitada superiormente y un punto inicial:

$$x^0 \in \mathbb{R}^n. \tag{0.1}$$

Passos Principais: Para cada $k=1,2,\ldots,$ y $x^{k-1}\in \mathbb{R}^n,$ encontrar $x^k\in \mathbb{R}^n,$ tal que:

$$\nabla \left(f(.) + \frac{\lambda_k}{2} d(.) \right) (x^k) = 0. \tag{0.2}$$

donde

$$d(x) = \sum_{i=1}^{n-1} (x_i - x_i^{k-1})^2 + \left[(x_n - x_n^{k-1}) - (e^{x_{n-1}} - e^{x_{n-1}^{k-1}}) \right]^2$$

Criterio de Parada: Se $x^k = x^{k-1}$ ou $\nabla f(x^k) = 0$, então finalizar. Caso contrario, fazer $k-1 \leftarrow k$ y retornar ao passo principal

- 2. Implementar o algoritmo usando para resolver (0.2) o método de gradiente, o método de Newton e o método de quase-Newton
- 3. Usar o algoritmo para obter os pontos mínimos (se existem) de

(a)
$$f(x_1, x_2) = x_1^2 + (e^{x_1} - x_2)^2$$

(b)
$$f(x_1, x_2) = \sqrt{x_1^2 + (e^{x_1} - x_2)^2}$$

(c)
$$f(x_1, x_2) = \ln(1 + x_1^2 + (e^{x_1} - x_2)^2)$$

4. Colocar em uma tabela os resultados com respeito a cada método usado para resolver (0.2) y compare o número de iterações, tempo computacional, erro de aproximação, etc. Por exemplo, uma tabela pode ser presentada da seguinte forma: Aquí,

X0	Iter.	Call. Armijo	Opt. Point	Opt. Value	Error
(0.45, 0.51)	65	65	(0.499999, 0.5)	1.66511	9.27003e-007
(0.4, 0.6)	71	71	(0.499999, 0.500001)	1.66511	9.93398e-007
(0.1, 0.9)	85	85	(0.499999, 0.500001)	1.66511	8.92053e-007
(0.2, 0.3)	79	79	(0.499999, 0.499999)	1.66511	8.79813e-007
(0.7,0.6)	75	75	$(\ 0.500001, 0.500001)$	1.66511	8.82938e-007

 X^0 denota o ponto inicial do algoritmo, Iter o número de iterações do algoritmo, $Call\ Armijo$ o número de testes de Armijo, $Opt.\ Point$ o ponto ótimo encontrado pelo algoritmo, $Opt.\ value$ o valor ótimo encontrado pelo algoritmo, Error o erro absoluto de aproximação.