

DIO

J. Christian Andersen

Kursusuge 6

Plan

- Stabilitetsmargin
 - Begreber (igen)
 - Nyquist plot
- PID design ud fra frekvensanalyse
 - P- regulator
 - PI regulator
 - P-Lead regulator

DTU Electrical Engineering

Department of Electrical Engineering

Bodeplot begreber Stabilitetsmargin

Stabilitetsmargin og bodeplot: Altid åben sløjfe (open loop)

Krydsfrekvens (crossing frequency): Frekvens ω_c , hvor åben sløjfe krydser 0 dB gain.

Fasemargin γ_M (gamma M) er fasemargin ved ω_c ned til -180 grader

Pi-frekvens:

frekvens ω_π , hvor åben sløjfe fasedrejning er -180 grader

Nyquist plot - samme begreber, blot andet plot-format

Nyquist plot

$$G_{\mathring{a}} = \frac{1.075}{s^3 + 5s^2 + 2.1s + 1}$$

Andet system (åben sløjfe)

$$G_{\mathring{a}}(s) = 0.13 \frac{1.5}{s(2s+1)(s+1)}$$

MATLAB:

G2 =
$$tf([1.075],[1 5 2.1 1])$$

nyquist(G2)

DTU 🗮

Nyquist forenklede stabilitetkriterie

- åben sløjfe

Når nyquistkurven af $G(j\omega)$ fra **lav til høj frekvens** har **-1 punkt til venstre** er systems **lukket sløjfe** stabilt

DTU Electrical Engineering, Technical University of Denmark

(gælder når der *ikke* er poler i højre halvplan)

"Audio" forstærker

(reduceret i frekvens og båndbredde – og dårligt design (motorboating))

Åben sløjfe bode plot

Krydsfrekvens? Stabil?

"Audio" forstærker

(reduceret i frekvens og båndbredde – og dårligt design (motorboating))

0.01

0.02

0.03

0.0

Nyquist af 3 åben sløjfe systemer med $K_P=1$ (ingen poler i højre halvplan)

Opgave 1:

– Hvilke af de 3 systemer vil give et stabilt lukket sløjfe system?

Opgave 2:

- Hvordan kan K_P ændres (ca.) for hvert system før at lukket sløjfe bliver marginalt stabilt?

Opgave 3:

- For rødt system, hvad skal $\,K_P\,$ være for at fasemargin $\gamma_M=60^o$

Nyquist af 3 åben sløjfe systemer med $K_P=1$ (ingen poler i højre halvplan)

Opgave 1:

– Hvilke af de 3 systemer vil give et stabilt lukket sløjfe system?

G1: ustabilt, -1 er til højre for kurven

G2: stabilt

G3: stabilt, da -1 er til venstre for kurven

Nyquist af 3 åben sløjfe systemer med $K_P=1$ (ingen poler i højre halvplan)

Opgave 2:

- Hvordan kan K_P ændres (ca.) for hvert system før at lukket sløjfe bliver marginalt stabilt?

G1: Gain kan reduceres fra ca. 1.5 til 1.0, Kp = 1/1.5 = 0.67 for marginal stabil

G2: Kp kan gøres meget stor før marginal stabil

G3: 2 muligheder

- a) gain kan reduceres til Kp=0.5 eller —
- b) øges til Kp = 5

Nyquist af 3 åben sløjfe systemer med $K_P=1$ (ingen poler i højre halvplan)

Opgave 3:

- For rødt system, hvad skal K_P være for at fasemargin $\gamma_M=60^o$

G1: Gain hvor $\angle G_{å1} = 120^\circ$ er (ca.) 2.6 (+8.3 dB)
Derfor skal Kp ændres med -8.3dB, eller Kp = 0.385.
Så vil -1 være til venstre og system stabilt

PID design

PID design

Optimal regulering

- System output følger referencen hurtigt og præcist eller $\ y(t)=r(t)$

PID design **Kp - led**

 K_P kan rykke amplituden op og ned (men ikke ændre fasen).

Og dermed ændre fasemargin γ_M og krydsfrekvens ω_c .

- Mindre Kp giver (normalt) Bedre fasemargin (og gainmargin) og (normalt) mindre oversving.
- Større Kp giver (normalt) mindre statisk fejl

For enhedsstep – lukket sløjfe:

$$\mathbf{e}_{ss} = \lim_{s \to 0} s \; \frac{1}{1 + G_{\mathring{a}}} \; \frac{1}{s}$$

$$e_{ss} = \frac{1}{1 + 3.3K_P}$$

$$K_P = 1 \Rightarrow e_{ss} = 23\%$$

$$G_{\mathring{a}} = K_P G(s)$$

$$G(s) = \frac{3.3}{s^3 + 5s^2 + 2.1s + 1}$$

PID design Kp – led statisk fejl

 K_P kan rykke amplituden op og ned (men *ikke* ændre fasen).

Og dermed ændre fasemargin γ_M og krydsfrekvens ω_c .

- Mindre Kp giver (normalt)
 Bedre fasemargin (og gainmargin)
 og (normalt) mindre oversving.
- Større Kp giver (normalt) mindre statisk fejl

For input = enhedsstep
$$R(s) = \frac{h_0}{s} \;, \; h_0 = 1$$
 $G_{\aa} = K_P G(s)$

$$G(s) = \frac{3.3}{s^3 + 5s^2 + 2.1s + 1}$$

$$e_{ss} = \lim_{s \to 0} \left(\frac{1}{1 + G_{\mathring{a}}} \right)$$

$$e_{ss} = \frac{1}{1 + 3.3K_P}$$

$$K_P = 1 \Rightarrow e_{ss} = 23\%$$

$$K_P = 10 \Rightarrow e_{ss} = 3\%$$

$$K_P = 100 \Rightarrow e_{ss} = 0.3\%$$

$$K_P = 0.2 \Rightarrow e_{ss} = 60\%$$

PID design Kp - led

 K_P kan rykke amplituden op og ned (men *ikke* ændre fasen).

$$G(s) = \frac{3.3}{s^3 + 5s^2 + 2.1s + 1}$$

$$K_P = 0dB = 1 \Rightarrow \gamma_M = 20^\circ$$

$$K_P = -10dB = 0.31 \Rightarrow \gamma_M = 65^\circ$$

$$K_P = -20dB = 0.1 \Rightarrow \gamma_M = ?$$

Frequency (rad/s)

PID design Kp - led

 K_P kan rykke amplituden op og ned (men *ikke* ændre fasen).

$$G(s) = \frac{3.3}{s^3 + 5s^2 + 2.1s + 1}$$

$$K_P = 0dB = 1 \Rightarrow \gamma_M = 20^\circ$$

$$K_P = -10dB = 0.31 \Rightarrow \gamma_M = 65^\circ$$

$$K_P = -20dB = 0.1 \Rightarrow \gamma_M = \infty$$

1. Design en P-regulator til et system G1

$$G_1(s) = \frac{40}{s(s+10)^2}$$

Med en fasemargin på 60 grader,

- a) hvad skal Kp være?
- b) Hvad bliver lukket sløjfe overføringsfunktion fra R til e?

$$\frac{e(s)}{R(s)} = 3$$

- c) Hvad er stationær fejl for et enhedsstep?
- d) Plot et steprespons for lukket sløjfe Hvad bliver oversving?

$$G_1(s) = \frac{40}{s(s+10)^2} = \frac{40}{s^3 + 20s^2 + 100s}$$

Med en fasemargin på 60 grader, a) hvad skal Kp være?

Fasemargin 60 grader kræver en krydsfrekvens hvor fasedrejning er -120 grader.

Som vist er det ved 2.68 rad/s, hvor gain er -17.2 dB

$$K_P = +17.2 \text{ dB}$$

$$K_P = 10^{\frac{17.2}{20}} = 7.16$$

1. Design en P-regulator til et system G1

$$G_1(s) = \frac{0.1}{s(s+10)^2}$$
 $K_P = 7.16$

b) Hvad bliver lukket sløjfe overføringsfunktion fra R til e?

$$\frac{e(s)}{R(s)} = \frac{1}{1 + K_P G_1}$$

$$\frac{e(s)}{R(s)} = \frac{s^3 + 20s^2 + 100s}{s^3 + 20s^2 + 100s + 286.5}$$

c) Hvad er stationær fejl for et enhedsstep?
$$e_{r,ss} = \lim_{s\to 0} s \frac{1}{1+K_PG_1} \frac{1}{s} \quad \Rightarrow e_{r,ss} = 0$$

d) Plot et steprespons for lukket sløjfe Hvad bliver oversving? Oversving 7.7% **DTU Electrical Engineering, Technical University of Denmark**

stepinfo(Gcl)

RiseTime: 0.4541 SettlingTime: 1.4176

SettlingMin: 0.9079

SettlingMax: 1.0771 Overshoot: 7,7083

Undershoot: 0

Peak: 1.0771

PeakTime⁰³⁻⁰0-19855

PID-design I-led

PID-design I-led

20

$$C(s) = K_P \left(1 + \frac{1}{\tau_i s} \right)$$
$$C(s) = K_P \frac{\tau_i s + 1}{\tau_i s}$$

I-led giver høj gain ved $\omega \to 0$ og dermed mindre stationær fejl - for step input $e_{ss} \to 0$

-m

Integrator virkning aftager med frekvensen Negativ fasedrejning (-90^{o}) aftager ved I-leddets knækfrekvens ω_{i}

Magnitude (dB) 10 $\tau_i s$ -10 -20 Phase (deg) 10^{-2} 10^{-1} 10^{0} 10¹ Frequency (rad/s)

Bode Diagram

DTU Electrical Engineering, Technical University of Denmark

PID design I - led

$$C(s) = \frac{\tau_i s + 1}{\tau_i s}$$

I-led tilføjer en pol i $\omega=0$ og et nulpunkt (knæk op) ved ω_i

Nulpunkt ved ω_i placeres lavere end ω_c med en faktor N_i for at mindske tab af fasemargin

$$N_i = \frac{\omega_c}{\omega_i} = \omega_c \tau_i \quad \Rightarrow \quad \tau_i = \frac{N_i}{\omega_c}$$

Fasemargin effekt $\varphi_i = -\arctan\frac{1}{N_i}$

PID-design Lead (D) - led

PID-design Lead (D) - led

$$C_D \approx \frac{\tau_d s + 1}{\alpha \tau_d s + 1} , \alpha < 1$$

$$\varphi_m = \arcsin \frac{1 - \alpha}{1 + \alpha}$$

Nulpunkt giver positiv fasedrejning, som kan udnyttes til bedre fasemargin

Pol tilføjet for at undgå $\omega \to \infty \Rightarrow |G_D| \to \infty$ (og gøre system implementerbart)

DTU Electrical Engineering, Technical University of Denmark How??

PID design Lead – led

Et Lead-led tilføjer et nulpunkt og en pol

$$C_D(s) = \frac{\tau_d s + 1}{\alpha \tau_d s + 1} \qquad ; \alpha = 0.2$$

Positiv fasedrejning $\,arphi_m\,$ skal helst udnyttes ved den nye $\,\omega_{c,ny}\,$

Her er $K_P=0.31~{\rm og}~N_i=3$ bevaret, og vist grønt

Her placeres $\omega_{c,ny}$ så $\gamma_M=52^o$

2. Design en PI-Lead-regulator skal designes

Det besluttes at bruge følgende (typiske) værdier:

$$N_1 = 3, \ \alpha = 0.3, \ \gamma_M = 60^{\circ}$$

- a) Hvilken fasedrejning giver I-leddet ved krydsfrekvensen?
- b) Hyilken fasedrejning giver Lead leddet maksimalt?
- c) Når der skal opnås 60 grader fasemargin, ved hvilken fasevinkel for systemet G(s) skal krydsfrekvensen findes?
- d) Når systemet er

$$G(s) = \frac{40}{(s+1)(s+10)^2}$$

Hvad bliver så den nye krydsfrekvens?

e) Hvad skal Kp være for at opnå denne krydsfrekvens?

2. Design en PI-Lead-regulator skal designes

Det besluttes at bruge følgende (typiske) værdier:

$$N_1 = 3, \ \alpha = 0.3, \ \gamma_M = 60^{\circ}$$

a) Hvilken fasedrejning giver I-leddet ved krydsfrekvensen?

$$\varphi_i = -\arctan\left(\frac{1}{N_i}\right) * 180/\pi = -18.4^o$$

b) Hvilken fasedreining giver Lead-leddet maksimalt?

$$\varphi_d = \arcsin\left(\frac{1-\alpha}{1+\alpha}\right) * 180/\pi = 32.6^{\circ}$$

c) Når der skal opnås 60 grader fasemargin, ved hvilken fasevinkel for systemet G(s) skal krydsfrekvensen findes?

$$\varphi_G = -180^o + 60^o - 32.6^o + 18.4^o = -134.2^o$$

2. Design en PI-Lead-regulator skal designes

Det besluttes at bruge:

$$N_1 = 3, \ \alpha = 0.3, \ \gamma_M = 60^{\circ}$$

c) ved hvilken fasevinkel skal krydsfrekvensen findes?

$$\varphi_G = -134.2^{\circ}$$

d) Hvad bliver den nye krydsfrekvens?

$$\omega_c = 5.22 \text{ rad/sek}$$

$$\tau_i = \frac{N_i}{\omega_c} = 0.57 \qquad \tau_d = \frac{1}{\omega_c \sqrt{\alpha}} = 0.35$$

e) Hvad skal Kp være?

 \rightarrow Kp = 7.0849

Grupperegning og Dagens øvelse

- Næste gang: bl.a. midtvejstest og midtvejsevaluering
- Grupperegning PI-Lead
- Øvelse 6+7+8 dampmaskineopgave

Grupperegning

1. Design en PI-Lead regulator til et system G1

$$G_1 = \frac{9000}{(100s+1)(s^2+60s+900)}$$

a) Design en PI-Lead regulator, når der vælges:

$$N_i = 2, \ \alpha = 0.1 \text{ og } \gamma_M = 70^o$$

2. Multible choice opgaver på campusnet