Miejsce na identyfikację szkoły	
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY	LISTOPAD 2018
Czas pracy: 170 minut Instrukcja dla zdającego	
 Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron (zadania 1.–34.). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin. Rozwiązania zadań i odpowiedzi zapisz w miejscu na to przeznaczonym. W zadaniach zamkniętych (1.–24.) zaznacz jedną poprawną odpowiedź. W rozwiązaniach zadań otwartych (25.–34.) przedstaw tok rozumowania prowadzący do ostatecznego wyniku. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl. Zapisy w brudnopisie nie będą oceniane. Obok numeru każdego zadania podana jest maksymalna liczba punktów możliwych do uzyskania. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora. Życzymy powodzenia! 	Za rozwiązanie wszystkich zadań można otrzymać łącznie 50 punktów .
Wpisuje zdający przed rozpoczęciem pracy PESEL ZDAJĄCEGO	KOD ZDAJĄCEGO

Arkusz opracowany przez Wydawnictwo Pedagogiczne OPERON. Kopiowanie w całości lub we fragmentach bez zgody wydawcy zabronione.

ZADANIA ZAMKNIĘTE

W zadaniach 1.-24. wybierz i zaznacz jedną poprawną odpowiedź.

Zadanie 1. (0–1)

Wynikiem działania $49^{-6}:7^{-15}$ jest: **A**. 7^{-21} **B**. 7^3

A.
$$7^{-2}$$

B.
$$7^3$$

$$C.7^8$$

D.
$$7^{-27}$$

Zadanie 2. (0–1)

Wyrażenie $\log_3(\log 30 - \log 3)$ jest równe:

$$A. \log_3 10$$

Zadanie 3. (0–1)

Liczbą odwrotną do liczby $\frac{\sqrt{6}-3}{3}$ jest:

A.
$$\frac{3-\sqrt{6}}{3}$$

B.
$$-\sqrt{6}-3$$
 C. $3+\sqrt{6}$

C.
$$3 + \sqrt{6}$$

D.
$$\frac{\sqrt{6}+3}{5}$$

Zadanie 4. (0–1)

Urząd skarbowy został zobowiązany do zwrotu podatku w wysokości 235,40 zł. Kwotę tę zaokrąglono do pełnych dziesiątek złotych. Błąd względny tego zaokrąglenia wyrażony w procentach wyniósł około:

Zadanie 5. (0–1)

Liczba $2 - 2(\sqrt{3} - 1)^2$:

A. należy do przedziału $\langle 1; +\infty \rangle$

B. jest ujemna

C. jest równa 0

D. należy do przedziału (0; 1)

Zadanie 6. (0–1)

Nierówność $\frac{1}{3} - \frac{1}{2}x < \frac{1}{6}$ jest równoważna nierówności:

A.
$$x > \frac{1}{3}$$

B.
$$x < \frac{1}{3}$$

C.
$$x > 3$$

D.
$$x < 3$$

Zadanie 7. (0–1)

Liczba różnych rozwiązań równania $\frac{3x(x^2-9)}{x-3} = 0$ wynosi:

Zadanie 8. (0–1)

Na rysunku przedstawiono wykres pewnej funkcji f. Maksymalny przedział, w którym funkcja f jest rosnaca, to:

 $\mathbf{A}.\langle -2;0\rangle$

 $\mathbf{B}.\langle -2;2\rangle$

 \mathbb{C} . $\langle -3; 2 \rangle$

 $\mathbf{D}.\langle -3; 0 \rangle$

Zadanie 9. (0–1)

Wykres funkcji liniowej $f(x) = \frac{8-3x}{2}$ przecina osie układu współrzędnych w punktach A i B.

Pole trójkąta ABO, w którym punkt O jest początkiem układu współrzędnych, wynosi:

A. $10\frac{2}{3}$

B. $5\frac{1}{2}$

C. $21\frac{1}{2}$

Zadanie 10. (0–1)

Zbiorem wartości funkcji f(x) = -(x+7)(x-3) jest:

 $\mathbf{A}.(-\infty;25)$

B. $\left(-\infty; -2\right)$ **C.** $\left\langle 25; +\infty \right\rangle$ **D.** $\left(-\infty; 2\frac{1}{2}\right)$

Zadanie 11. (0-1)

Wykres funkcji $f(x) = -3^x$ przesunięto równolegle wzdłuż osi OX o dwie jednostki w prawo i otrzymano wykres funkcji y = g(x). Wówczas:

A. $g(x) = -3^x + 2$

B. $g(x) = -3^{x+2}$

C. $g(x) = -3^x - 2$ D. $g(x) = -3^{x-2}$

Zadanie 12. (0–1)

Dodatnich wyrazów ciągu określonego wzorem $a_n = -2n + 2018$ dla $n \ge 1$ jest:

A. nieskończenie wiele

B. 1009

C. 1008

D. 2016

Zadanie 13. (0–1)

Sumę n początkowych wyrazów ciągu (4, 6, 9, ...) można obliczyć ze wzoru:

A. n(n+3)

 $\mathbf{B.} \frac{3n+5}{2} \cdot n \qquad \qquad \mathbf{C.} \, 8 \left[\left(\frac{3}{2} \right)^n - 1 \right] \qquad \qquad \mathbf{D.} \, 2 \left[\left(\frac{3}{2} \right)^n - 1 \right]$

Zadanie 14. (0–1)

W pewnym ciągu arytmetycznym suma dwóch pierwszych wyrazów jest równa $5\frac{1}{2}$, a suma trzech pierwszych wyrazów jest równa 12. Pierwszy wyraz tego ciągu jest równy:

A. $1\frac{1}{2}$

B. $4\frac{1}{2}$

 $C_{\cdot} - \frac{1}{2}$

D. 1

Zadanie 15. (0-1)

Dla pewnego kąta wypukłego α mamy $\operatorname{tg} \frac{\alpha}{3} = \frac{\sqrt{3}}{3}$. Kąt α ma miarę:

A. 210°

B. 60°

C. 90°

D. 120°

Zadanie 16. (0-1)

Wysokość rombu jest równa 12, a jego pole jest równe 180. Sinus kąta ostrego rombu wynosi:

A. 0,4

B. 0.6

C.0,75

D. 0.8

Zadanie 17. (0-1)

Punkty A, B, C i D należą do okręgu o środku w punkcie O (patrz rys.). Suma $\alpha + \beta$ wynosi:

A. 125°

B. 120°

 $\mathbf{C.}\ 100^{\circ}$

D. 90°

Zadanie 18. (0-1)

Obserwowana w laboratorium populacja bakterii podwaja swoją liczebność co 20 minut. Początkowa liczba bakterii wynosiła K sztuk. Oznacza to, że po upływie n godzin liczebność populacji wyniesie:

 $\mathbf{A} \cdot K \cdot 2^{3n}$

B. $K \cdot 6^n$

C. K^{3n}

D. $K \cdot 3n$

Zadanie 19. (0-1)

Przeciwległe wierzchołki kwadratu mają współrzędne A = (1,-3) i C = (-5,3). Bok kwadratu ma długość:

A. 12

B. $6\sqrt{2}$

C. $3\sqrt{2}$

D. 6

Zadanie 20. (0-1)

Ilość wszystkich liczb czterocyfrowych, w których cyfry się nie powtarzają, wynosi:

A. 9.9.8.7

B. 10.9.8.7

 $\mathbf{C.}\,9.10.10.10$

D. 9.8.7.6

Zadanie 21. (0-1)

 $Rzucono\ trzy\ razy\ monetą\ symetryczną.\ Prawdopodobieństwo\ uzyskania\ jednej\ reszki\ wynosi:$

A. $\frac{1}{2}$

B. $\frac{3}{8}$

C. $\frac{7}{8}$

D. $\frac{1}{8}$

Zadanie 22. (0-1)

Średnia arytmetyczna zestawu liczb 5, 8, 1, 3, x, 8 wynosi 6. Mediana tego zestawu jest równa:

B.
$$6\frac{1}{2}$$

Zadanie 23. (0-1)

Na rysunku przedstawiono graniastosłup prawidłowy czworokątny o krawędzi podstawy równej 4. Graniastosłup ten przecięto płaszczyzną przechodzącą przez przekątną BD podstawy i wierzchołek C'. Otrzymany przekrój jest trójkątem, którego wysokość poprowadzona z wierzchołka C' jest równa 12. Wysokość graniastosłupa jest równa:

A. $2\sqrt{35}$

B. $4\sqrt{7}$

C. $2\sqrt{34}$

D. $8\sqrt{2}$

Zadanie 24. (0-1)

Kula o promieniu 6 cm i walec o wysokości równej 4,5 cm mają równe objętości. Średnica podstawy walca ma długość: _

A. 8 cm

 $\mathbf{B.} \ 8\sqrt{2} \ \mathrm{cm}$

C. 16 cm

D. 20 cm

ZADANIA OTWARTE

Rozwiązania zadań 25.–34. należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 25. (0-2)

Rozwiąż nierówność (2x-5)(3-x) > -66.

Odpowiedź:

Zadanie 26. (0-2)

W trapezie ABCD przekątne przecinają się w punkcie P. Punkt P dzieli przekątne na odcinki długości: |AP| = 8, |PC| = 3 i |BP| = 12. Długości podstaw AB i CD trapezu różnią się o 15. Oblicz długość odcinka DP oraz długości podstaw AB i CD trapezu.

Zadanie 27. (0–2)

Wykaż, że jeżeli liczby a i b są kolejnymi liczbami naturalnymi, to liczba $\left(a+\frac{1}{2}b\right)^2-\left(a-\frac{1}{2}b\right)^2$ jest podzielna przez 4.

Zadanie 28. (0-2)

Wiedząc, że kąt α jest rozwarty oraz $\sin^2 \alpha = \frac{9}{25}$, oblicz $\operatorname{tg} \alpha$.

Zadanie 29. (0-2)

Dana jest funkcja $f(x) = -3x^2 + bx + c$ dla $x \in \mathbb{R}$. Prosta o równaniu x = 2 jest osią symetrii paraboli będącej jej wykresem, a zbiorem wartości funkcji f jest przedział $(-\infty; 21)$. Wyznacz współczynniki b i c.

Odpowiedź:

Zadanie 30. (0-2)

Do okręgu o środku w punkcie O poprowadzono z trzech punktów A, B i C leżących na okręgu styczne, które przecięły się w punktach D, E i F (zobacz rysunek). Wykaż, że jeżeli |AF| = x, to obwód trójkąta DEF jest równy 2x.

Zadanie 31. (0-2)

Spośród wszystkich wierzchołków sześciokąta foremnego o krawędzi 1 losujemy dowolne dwa. Oblicz prawdopodobieństwo tego, że wylosowane wierzchołki utworzą odcinek, którego długość jest liczbą niewymierną.

Odpowiedź:

Zadanie 32. (0-3)

Dany jest skończony, pięciowyrazowy ciąg (4a-5; a; b; b+2; 9). Trzy pierwsze wyrazy tego ciągu są trzema kolejnymi wyrazami ciągu arytmetycznego, a trzy ostatnie są trzema kolejnymi wyrazami ciągu geometrycznego. Oblicz a i b.

Zadanie 33. (0-4)

Dany jest trójkąt ABC, w którym A = (-9,8). Bok BC tego trójkąta zawiera się w prostej o równaniu y = -2x + 38. Prosta zawierająca wysokość tego trójkąta poprowadzona z wierzchołka B ma równanie 3x + 2y - 61 = 0. Wyznacz współrzędne wierzchołków B i C oraz napisz równanie prostej zawierającej wysokość trójkąta poprowadzoną z wierzchołka C.

Zadanie 34. (0-5)

W ostrosłupie prawidłowym trójkątnym krawędź boczna jest trzy razy dłuższa od wysokości ostrosłupa. Krawędź podstawy ma długość 12. Oblicz objętość i pole powierzchni bocznej tego ostrosłupa.

