

Lecture Pattern Analysis

Part 24: Recap: Max Flow and Min Cut

Christian Riess

IT Security Infrastructures Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg July 26. 2022

Overview

- Max flow is a combinatorial standard problem, solved in polynomial time
- Given: graph with positive edge weights, source node, sink node
- Task: If edge weights are tube capacities, then determine the maximum possible throughput of water ("flow") from source s to sink t per time unit:

- The minimum cut task seeks the smallest sum of edges to disconnect s and t.
- Max flow and min cut are identical: a min cut is easily found, e.g., by selecting the red edges until there is no s-t path left

Ford Fulkerson in a Nutshell (1/2)

- Max flow algorithm by Ford and Fulkerson is probably most well-known:
 - 1. Greedily search shortest path
 - 2. Max out the flow capacity along that path, reduce edge weights
 - 3. Introduce backward edges to undo greedy dead ends, goto 1) if s-t path left

Ford Fulkerson in a Nutshell (2/2)

 The third shortest path uses a back link, and completes the max flow algorithm:

- The total flow is 1 + 2 + 1 = 4, with pipe usage as shown on slide 1
- The minimum cut includes the edge D o t and any one of the edges (s o A, A o C, C o t)
- · Hence, the four sets of edges for equivalent minimum cuts are
 - $(C \rightarrow t, D \rightarrow t)$,
 - $(A \rightarrow C, D \rightarrow t)$, and
 - (s o A, A o D, D o t), where A o D goes backwards and does not count

Lecture Pattern Analysis

Part 25: MRF Inference via Min Cuts

Christian Riese

IT Security Infrastructures Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg July 25. 2022

Overview

The MRF inference task is to find optimal label assignments

$$z_1^*, ..., z_N^* = \underset{z_1, ..., z_N}{\operatorname{argmax}} \frac{1}{Z} \exp \left(-\sum_i E(x_i, z_i) - \sum_{i,j} E(z_i, z_j) \right)$$
 (1)

(where we limited the maximum clique size to 2, i.e., each term includes at most two hidden variables)

This is equivalent to the minimization of the sum of energy terms

$$z_1^*, ..., z_N^* = \underset{z_1, ..., z_N}{\operatorname{argmin}} \sum_i E(x_i, z_i) + \sum_{i,j} E(z_i, z_j)$$
 (2)

- The idea of MRF inference via graph cuts¹ is to
 - encode these energy terms in a specialized graph,
 - such that that graph's minimum cut also minimizes the sum of energy terms

¹The literature reference for this lecture is the paper by Kolmogorov and Zabih, which is uploaded to studOn

Constraints and Benefits

- The construction requires
 - binary labels (for convenience, I will just write "0" and "1"),
 - maximum clique size of 2, and
 - that pairwise energy terms satisfy the submodularity condition

$$E(0,0) + E(1,1) \le E(0,1) + E(1,0)$$
 (3)

- Under these constraints, the algorithm finds
 - a globally optimal labeling
 - · in polynomial time
- The lpha-expansion algorithm extends the method to non-binary labelings
- α -expansion is only locally optimal, but within a guaranteed margin around the global optimum

Construction Idea

- 1 Start with the neighborhood relationship of the hidden variables z_i
- 2.a To encode the optimization problem, add a source s and sink t
- 2.b Identify s with label 0 and t with label 1
- 2.c Set appropriately chosen edges and edge weights between all nodes
- 3.a Calculate minimum cut
- 3.b Nodes connected with s obtain label 0, the others obtain label 1
- 3.c The minimal s-t cut is identical to the minimal-energy binary labeling of the MRF

Additivity of Graphs

- · Let us clarify how this magic works
- Key to success is that the min cut construction is homomorphic under graph composition:
 - if G_1 encodes min (E_1) and G_2 encodes min (E_2) ,
 - then $(G_1 \cup G_2)$ encodes min $(E_1 + E_2)$
- Hence, if you encode each energy term such that it is optimal under min cut, then the combination of all energy terms will also be optimal under min cut
- I think the beauty of this result speaks for itself.
- So, let us now look for optimal encodings of the unary and pairwise potentials

Encoding of Unary Energy Terms

• Graph construction for a single unary term $E(x_i, z_i)$, with s = 0, t = 1:

- For example, a cut between s and z_i assigns the label $z_i = t = 1$
- Hence, the cost is $E(x_i, 1)$, which relates observation x_i to label 1
- Note that the minimum cut remains the same if we construct an equivalent smaller graph: For example, if $E(x_i, 1) > E(x_i, 0)$, the equivalent graph is

s
$$E(x_i, 1) - E(x_i, 0)$$

• Conversely, if $E(x_i, 1) < E(x_i, 0)$, then we can just use weight $E(x_i, 0) - E(x_i, 1)$ between z_i and t and remove the other edge

Encoding of Pairwise Energy Terms (1/2)

• Graph construction for a single pairwise term $E(z_i, z_j)$, with s = 0, t = 1:

Possible cuts and associated costs:

- This graph has 5 edges, but only 4 terms E(0,0), E(0,1), E(1,0), E(1,1)
- Hence, let us use immediately write the equivalent smaller graph

Encoding of Pairwise Energy Terms (2/2)

- Most (submodular!) tasks satisfy E(1,0) > E(0,0) and E(1,0) > E(1,1)
- These relations admit the simplified graph

with edge weights a, b, c obtained from the linear system of equations

$$a+k=E(1,1) \tag{4}$$

$$c+k=E(0,0) \tag{5}$$

$$b+k=E(0,1) \tag{6}$$

$$a + c + k = E(1,0)$$
 (7)

with constant offset *k*, and without *b* in Eqn. 7 since this is a backward edge

Graph Cut Inference for Binary and Non-Binary Labels

- The full graph is constructed by summing the subgraphs of all energy terms
- Min cut on that full graph finds in polynomial time a solution that is globally optimal for binary labels
- Non-binary labellings can be found via α -expansion:
 - 1. From the set of labels, select one specific label $\boldsymbol{\alpha}$
 - 2. Fix hidden variables that already have label $\boldsymbol{\alpha}$
 - 3. Seek the lowest energy labelling that switches at least one other hidden variable to α
 - 4. Keep this "expanded" α labelling if its energy is lower than the current energy

Fig. 1. An example of an expansion move. The labeling on the right is a white-expansion move from the labeling on the left.