

Engineering Sciences (SPI) Doctoral School

Analytic stochastic processes for signal processing

INTRODUCTION TO THE CONCEPT OF GRAVITATIONAL ALLOCATIONS

Diala HAWAT

Director: Rémi Bardenet

Co-Director: Raphael Lachieze-Rey

Point process

② Gravitational allocation

ullet Homogeneous Poisson point process $\mathsf{PPP}(\lambda)$

• Homogeneous Poisson point process $PPP(\lambda)$

- Homogeneous Poisson point process $PPP(\lambda)$
- Determinantal point process

- Homogeneous Poisson point process $PPP(\lambda)$
- Determinantal point process

- Homogeneous Poisson point process $PPP(\lambda)$
- Determinantal point process
- Permanental point process

- Homogeneous Poisson point process $PPP(\lambda)$
- Determinantal point process
- Permanental point process

Transportation, Matching, Allocation:

• A transportation between ν and μ is a measure ρ on $\Lambda \times \Lambda$ whose first marginal is ν and the second marginal is μ .

- A transportation between ν and μ is a measure ρ on $\Lambda \times \Lambda$ whose first marginal is ν and the second marginal is μ .
- When ν and μ are both counting measures, the transportation will be also called a matching.

- A transportation between ν and μ is a measure ρ on $\Lambda \times \Lambda$ whose first marginal is ν and the second marginal is μ .
- \bullet When ν and μ are both counting measures, the transportation will be also called a matching.

- A transportation between ν and μ is a measure ρ on $\Lambda \times \Lambda$ whose first marginal is ν and the second marginal is μ .
- \bullet When ν and μ are both counting measures, the transportation will be also called a matching.
- ullet When u is the Lebesgue measure and μ is a counting measure, the transportation will be called an allocation.

- A transportation between ν and μ is a measure ρ on $\Lambda \times \Lambda$ whose first marginal is ν and the second marginal is μ .
- When ν and μ are both counting measures, the transportation will be also called a matching.
- ullet When u is the Lebesgue measure and μ is a counting measure, the transportation will be called an allocation.

Gravitational allocation from Lebesgue to the Poisson point process:

- ullet Let $\mathcal Z$ be a standard Poisson point process on $\mathbb R^d$
- Consider the vector function

$$F(x) := \sum_{z \in \mathcal{Z}, |z-x|\uparrow} \frac{z-x}{|z-x|^d},$$

to be the force of attraction acting on each point x of $\mathbb{R}^d \setminus \mathcal{Z}$.

• For any $x \in \mathbb{R}^d \setminus \mathcal{Z}$, consider the integral curve $Y_x(t)$, to be unique solution of

$$\frac{dY_x(t)}{dt} = F(Y_x(t)), \ Y_x(0) = x.$$

define for some maximal time $\tau_x \in]0, \infty]$.

We call these curves the gravitational flow curves.

Proposition:

Assume $d \ge 3$. Almost surely, the above series defining the force function

$$F(x) := \sum_{z \in \mathcal{Z}, |z-x|\uparrow} \frac{z-x}{|z-x|^d},$$

converges simultaneously for all x for which it is defined, and defines a translation-invariant (in distribution) vector valued random function. The random function F is almost surely continuously differentiable where it is defined.

Alternative formulation of F:

$$F(x) := \sum_{z \in \mathcal{Z}, |z-x| \uparrow} \frac{z-x}{|z-x|^d},$$

$$\sum_{z \in \mathcal{Z}, |z-u| \uparrow} \frac{z-x}{|z-x|^d} - \sum_{z \in \mathcal{Z}, |z-v| \uparrow} \frac{z-x}{|z-x|^d} = \kappa_d(u-v). \tag{1}$$

This equation lead to a new formulation of the force function F as follow:

$$F(x) := \sum_{z \in \mathcal{Z}, |z-x| \uparrow} \frac{z-x}{|z-x|^d},$$

$$F(x) := \sum_{z \in \mathcal{Z}, |z| \uparrow} \frac{z - x}{|z - x|^d} + \kappa_d x.$$

The force function was taken to be:

$$F(x) = \sum_{z \in \mathcal{Z}, |z| \uparrow} \frac{z - x}{|z - x|^d} + \kappa_d x,$$

while its the divergence is:

$$\operatorname{div}(F) = -d\kappa_d \sum_{z \in \mathcal{Z}} \delta_z + d\kappa_d,$$

$$F(x) = -\nabla u(x), \ \Delta u = -\operatorname{div}(F)$$

$$F(x) = -\nabla u(x), \ \Delta u = -\operatorname{div}(F)$$

ullet A potential function u super-harmonic on $\mathbb{R}^d \setminus \mathcal{Z}$, i.e.

$$\Delta u(x) \leq 0.$$

$$F(x) = -\nabla u(x), \ \Delta u = -\operatorname{div}(F)$$

ullet A potential function u super-harmonic on $\mathbb{R}^d \setminus \mathcal{Z}$, i.e.

$$\Delta u(x) \leq 0$$
.

$$F(x) = -\nabla u(x), \ \Delta u = -\operatorname{div}(F)$$

ullet A potential function u super-harmonic on $\mathbb{R}^d \setminus \mathcal{Z}$, i.e.

$$\Delta u(x) \leq 0.$$

• The gradient curves $Y_x(t)$ are the unique solution of the differential equation

$$\frac{dY_x(t)}{dt} = F(Y_x(t)) = -\nabla u(Y_x(t)), \quad Y_x(0) = x.$$

THANK YOU.