impl SelectionMeasure for RangeDivergence

Michael Shoemate

February 26, 2025

1 Hoare Triple

Precondition

Compiler-verified

- Associated Type RV
 - RV must implement trait InverseCDF.
- Method random_variable Types consistent with pseudocode.
- ullet Method privacy_map $\mathit{Types}\ consistent\ with\ pseudocode.$

Caller-verified

- Associated Type RV (no caller verified preconditions)
- Method random_variable
 - scale is positive (cannot be null due to FBig dtype).
- Method privacy_map
 - d_in is non-null and non-negative.
 - scale is non-null and non-negative.

Pseudocode

```
class RangeDivergence(SelectionMeasure):
      ONE_SHOT = True
      RV = GumbelRV
      @staticmethod
      def random_variable(shift: FBig, scale: FBig) -> GumbelRV:
          return GumbelRV(shift=shift, scale=scale)
      @staticmethod
9
      def privacy_map(d_in: f64, scale: f64, k: usize) -> f64:
10
          if d_in < 0:</pre>
11
               raise ValueError("input distance must be non-negative")
12
13
          if scale.is_zero():
14
15
               return f64.INFINITY
16
          return d_in.inf_div(scale).inf_mul(f64.inf_cast(k))
```

Postcondition

Theorem 1.1. The implementation is consistent with all associated items in the SelectionMeasure trait.

- 1. Associated Type RV
- 2. Method random_variable
- 3. Method privacy_map

Definition 1.2. A random variable follows the Gumbel distribution if it has density

$$f(x) = \frac{1}{\beta} e^{-e^{-e^{-z}} - z} \tag{1}$$

where $z = \frac{x-\mu}{\beta}$, μ is the location parameter and β is the scale parameter.

Proof of valid associated type: RV. The associated type RV is defined as GumbelRV, which represents a random variable following the Gumbel distribution 1.2. The compiler verifies that GumbelRV implements the InverseCDF trait.

Proof of valid method: random_variable. By the precondition on scale being positive, random_variable returns a valid instance of GumbelRV.

Proof of valid method: $privacy_map$. By Lemma 4.2 of [2], $\mathcal{M}_{Gumbel}^k(x)$ is equal in distribution to the peeling exponential mechanism, which is the k-fold composition of the exponential mechanism. Proposition 2 of [1] shows that the exponential mechanism satisfies the RangeDivergence privacy guarantee.

References

- [1] Jinshuo Dong, David Durfee, and Ryan Rogers. Optimal differential privacy composition for exponential mechanisms and the cost of adaptivity. *CoRR*, abs/1909.13830, 2019.
- [2] David Durfee and Ryan Rogers. Practical differentially private top-k selection with pay-what-you-get composition. *CoRR*, abs/1905.04273, 2019.