Midterm 1 Version 3 Solution

March 20, 2020

Question 1

a. Since $S_1 = \{ab, ba, aab, bba, baa, \dots\}$ and $S_2 = \{aaa, aab, aba, baa, abb, bab, bba\},$ $S_2 \setminus S_1 = \{aaa, aab, aba, bab\}$

Correct Solution:

Since $S_1 = \{ab, ba, aab, abb, bba, baa, \dots\}$ and $S_2 = \{aaa, aab, aba, baa, abb, bab, bba, bbb\},$ $S_2 \setminus S_1 = \{aaa, aba, bab, bbb\}$

b. See table below						
	p	q	r	$\neg r$	$p \Rightarrow q$	$\mid (p \Rightarrow q) \Leftrightarrow \neg r$
	Т	Т	Т	F	Т	F
	Т	Т	F	Т	Т	Т
	Т	F	Т	F	F	T
	F	Т	Т	F	Т	F
	Т	F	F	Т	F	F
	F	Т	F	Т	Т	Т
	F	F	Τ	F	Т	F
	F	F	F	Т	Т	T

c. Let $x = \underline{\hspace{1cm}}$, and $y \in \mathbb{N}$.

We will prove that P(x) is true and Q(x,y) or Q(x,y+1) is false.

Correct Solution:

Negation: $\exists x \in \mathbb{N}, \forall y \in \mathbb{N}, P(x) \land (\neg Q(x, y) \land \neg Q(x, y + 1))$

Let $x = \underline{\hspace{1cm}}$ and $y \in \mathbb{N}$.

We will prove that P(x) is true, and both Q(x, y) and Q(x, y+1) are false.

Question 2

a. $\forall x \in T, Canadian(x) \land Star(x)$

Correct Solution:

 $\forall x \in T, Canadian(x) \Rightarrow Star(x)$

b. $\forall x \in T, Canadian(x) \Rightarrow \forall y \in T, \neg Canadian(y) \land Defeated(x, y)$

Correct Solution:

$$\forall x \in T, Canadian(x) \Rightarrow (\forall y \in T, \neg Canadian(y) \Rightarrow Defeated(x, y))$$

c. $\exists x \in T, Canadian(x) \land Star(x) \Rightarrow \forall y \in T, \exists z \in T, y \neq z \land Canadian(y) \land Defeated(y, z)$

Correct Solution:

 $\exists x \in T, Canadian(x) \land Star(x) \Rightarrow (\forall y \in T, Canadian(y) \Rightarrow \exists z \in T, y \neq z \land Defeated(y, z))$

d. $\exists x \in T, Canadian(x) \land Star(x) \land (\forall y \in T, x \neq y \land Canadian(y) \land \neg Star(y))$

Correct Solution:

 $\exists x \in T, \ Canadian(x) \land Star(x) \land (\forall y \in T, \ x \neq y \land Canadian(y) \Rightarrow \neg Star(y))$

Question 3

a. $\forall n \in \mathbb{N}, \exists k \in \mathbb{N}, n > 1 \land n = 2k + 1 \Rightarrow \exists p, q \in \mathbb{Z}^+, n = p^2 - q^2$

b. Let $n \in \mathbb{N}$. Assume n > 1, and that there exists $k \in \mathbb{Z}$ such that n = 2k + 1.

Also, let p = k + 1 and q = k.

Then,

$$p^2 - q^2 = (k+1)^2 - k^2 (1)$$

$$= k^2 + 2k + 1 - k^2 \tag{2}$$

$$=2k+1\tag{3}$$

$$=n$$
 (4)

Then, it follows from above that the statement $\forall n \in \mathbb{N}, \exists k \in \mathbb{N}, n > 1 \land n = 2k + 1 \Rightarrow \exists p, q \in \mathbb{Z}^+, n = p^2 - q^2 \text{ is true.}$

Question 4

• Let $d, n \in \mathbb{N}$. Assume $d \mid n$ and $d \neq n$.

Then, $\exists k \in \mathbb{N}$,

$$n = kd \tag{1}$$

Since $k \in \mathbb{N}$, there are two cases of divisors. One is when k = 1, and the other is $k \geq 2$.

Since $n \neq d, k \geq 2$.

Then,

$$n = kd \tag{2}$$

$$\geq 2d$$
 (3)

Then,

$$\frac{n}{2} \ge d \tag{4}$$

Then, it follows from above that the statement $\forall d,n\in\mathbb{N},\,d\mid n\wedge d\neq n\Rightarrow d\leq \frac{n}{2}$ is true.