Fast Polarization Manipulation

Ismail Nassar

Research Proposal

Under the supervision of Prof. David Gershoni

April 2023

Abstract

The generation of a pair of entangled photons from the biexcition-exciton cascade is complicated by the presence of fine structure splitting (FSS)[2] that leads to the degradation of the degree of entanglement. Many methods were implemented to overcome the problem with varying degrees of success, but the problem continues to persist.

This research proposal aims to take a different approach to the problem by implementing a scheme for the restoration of the degree of entanglement of the photon pairs by fast polarization manipulation [3, 4].

This scheme can be potentially used as a method for fast photon rerouting in integrated photonics.

Contents

1	Introduction	1
	1.1 Quantum Dots	1
2	Preliminary Results	6
3	The Proposal	7

1 Introduction

1.1 Quantum Dots

Self-assembled quantum dots (QDs) are nano-scale semiconductor structures that create a three-dimensional potential well, in both the valence and conduction band electrons and holes in three dimensions. Due to their small confinement length relative to the particle's wavelength, the energy levels of the QD are quantized with properties similar to atomic spectra which lead them to be described as "Artificial Atoms"[1].

In recent years, QDs were thoroughly investigated as technology-compatible single photon sources[**Dekel2000**], providing a quantum source of "flying qubits" on demand. Moreover, recently it has been shown that QDs can emit pair of entangled photons and that an emitted photon can be entangled with the remaining spin in the QD. These achievements form the required building blocks for quantum information processing.

Populating the dot with electrons and holes is done with either resonant or non-resonant excitation. In resonant excitation an absorption of a photon excites an electron from the valence band to the conduction band where the photon energy is equal the difference in energy between these level. The missing electron in the valence band is treated as hole with a spin opposite in direction of the excited electron. This electron-hole pair form the bright exciton (BE) due to the Coulomb interaction between the negative electron and the positive hole. In non-resonant excitation, a strong laser excites the surrounding bulk material that generate electrons and holes in the vicinity of the QD. These charge carriers are free to move inside the semiconductor which can be randomly trapped in the quantum dot po-

tential.

The projection of the spin of the electron on the z-axis (growth axis) of the QD can be either 1/2 or -1/2 while for the heavy hole the spin projection is either 3/2 or -3/2 such that the two spin states of the bright exciton are $\left|\frac{1}{2}, -\frac{3}{2}\right\rangle$ and $\left|-\frac{1}{2}, \frac{3}{2}\right\rangle$ with a total spin in the z direction of ± 1 . While in case of electron-hole pair with parallel spin, the spin states are $\left|\frac{1}{2}, \frac{3}{2}\right\rangle$ and $\left|-\frac{1}{2}, -\frac{3}{2}\right\rangle$ with a total spin of ± 2 . In figure 1 we describe two of the simple configurations that we can have in a QD. We start with empty dot which we denote by $|0\rangle$.

Figure 1: Schematic of the energy levels in the quantum dot for empty quantum dot (a), exciton (b) and a biexciton (c)

while having two electron-hole pairs falling in the dot a biexciton is formed and we denote it by $|XX_0\rangle$. The total energy of the biexciton differs from twice the energy of the exciton due to the interaction between all the particles.

In an ideal QD, the radiative decay path of the biexciton back to the ground state goes via one path, but due to the anisotropy of the QD, the energy of exciton is split in what is defined as the fine structure splitting (FSS) as seen in figure 2b.

Here we refer to the up (down) spin of the electron as $|\uparrow\rangle$ ($|\downarrow\rangle$ and the up (down) spin of the hole as $|\uparrow\rangle$ ($|\downarrow\rangle$ such as the two eigenstates of the exciton are $|\uparrow\downarrow\rangle$ and $|\downarrow\uparrow\rangle$, and the decay from these states result in the emission of photons with colinear polarization. Here we refer to them as horizontal $|H\rangle$ and vertical $|V\rangle$. We can represent these two rectilinear bases using the Bloch sphere where the poles in the sphere are $|H\rangle$ and $|V\rangle$ base.

In addition to the rectilinear polarization states, We can define the diagonal linear and the circular polarization bases:

$$|L\rangle = (|H\rangle + i |V\rangle)/\sqrt{2}$$

$$|R\rangle = (|H\rangle - i |V\rangle)/\sqrt{2}$$
(1)

where $|R\rangle$ and $|L\rangle$ are the left and right circular bases respectively, and:

$$|D\rangle = (|H\rangle + |V\rangle)/\sqrt{2}$$

$$|\bar{D}\rangle = (|H\rangle + |V\rangle)/\sqrt{2}$$
(2)

 $|D\rangle$ and $\left|\bar{D}\right\rangle$ are the diagonal and anti-diagonal bases respectively

Figure 2: a) A Bloch sphere representation of the spin state. A point on the sphere represents an arbitrarily polarized spin state. b) Decay paths of the biexciton back the ground state where the red arrows represent the emission of a H polarized photon and blue arrows represent the emission of V polarized photon.

When the biexciton spontaneously radiatively decays it emits a photon leaving in the QD an exciton in coherent superposition of its two eigenstates. The optical selection rules for the biexciton radiative recombination and the lack of information by "which path" the recombination proceeds result in entanglement between the exciton state and the polarization state of the emitted photon. Their mutual wave function is given by:

$$|\psi_{X^0}\rangle = \frac{1}{\sqrt{2}}(\left|H_1 H_H^1\right\rangle + \left|V_1 V_V^1\right\rangle) \tag{3}$$

here $|H_1\rangle$ and $|V1\rangle$ are the two rectilinear polarization states of the first (biexciton) photon. since the two exciton eigenstates are not degenerate, the relative phase between these eigenstates precesses in time with a period of $T_P = h/\triangle$, where where h is the Planck constant and \triangle is the exciton FSS [rwinik2017]. This

precession is schematically described on the exciton Bloch sphere in figure. 2a. The precession "stops" when the exciton recombines and the radiative cascade is completed with the emission of a second photon. The two photons are thus entangled. Their mutual wave function depends on the recombination time and is given by:

$$|\psi_{X^0}\rangle = \frac{1}{\sqrt{2}}(|H_1H_1\rangle + e^{-i2\pi t/T_P}|V_1V_2\rangle)$$
 (4)

where $|H_2\rangle$ and $|V_2\rangle$ are the second (exciton) photon polarization states and $t=t_{X_0}-t_{XX_0}$ is the time between the emission of the biexciton photon t_{XX_0} and that of the exciton t_{X_0} .

2 Preliminary Results

3 The Proposal

References

- [1] Marc A. Kastner. "Artificial Atoms". In: *Physics Today* 46 (Jan. 1993), pp. 24–31. ISSN: 0031-9228. DOI: 10.1063/1.881393.
- [2] R. Winik et al. "On-demand source of maximally entangled photon pairs using the biexciton-exciton radiative cascade". In: *Phys. Rev. B* 95 (23 June 2017), p. 235435.
- [3] A. Fognini et al. "Universal fine-structure eraser for quantum dots". In: *Opt. Express* 26.19 (Sept. 2018), pp. 24487–24496.
- [4] Simone Varo, Gediminas Juska, and Emanuele Pelucchi. "An intuitive protocol for polarization-entanglement restoral of quantum dot photon sources with non-vanishing fine-structure splitting". In: *Scientific Reports 2022 12:1* 12 (Mar. 2022), pp. 1–8.

Appendices

Appendix I

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Appendix 2

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.