```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
```

In [2]: data=pd.read_csv(r"C:\Users\user\Downloads\21_cities - 21_cities.csv")
 data

Out[2]:

	id	name	state_id	state_code	state_name	country_id	country_code	countr
0	52	Ashkāsham	3901	BDS	Badakhshan	1	AF	Afgl
1	68	Fayzabad	3901	BDS	Badakhshan	1	AF	Afgl
2	78	Jurm	3901	BDS	Badakhshan	1	AF	Afgl
3	84	Khandūd	3901	BDS	Badakhshan	1	AF	Afgl
4	115	Rāghistān	3901	BDS	Badakhshan	1	AF	Afgl
150449	131496	Redcliff	1957	MI	Midlands Province	247	ZW	Zir
150450	131502	Shangani	1957	MI	Midlands Province	247	ZW	Zir
150451	131503	Shurugwi	1957	MI	Midlands Province	247	ZW	Zir
150452	131504	Shurugwi District	1957	MI	Midlands Province	247	ZW	Zir
150453	131508	Zvishavane District	1957	MI	Midlands Province	247	ZW	Zir
150454 rows × 11 columns								
4								•

In [3]: df=data.head(100)
df

Out[3]:

	id	name	state_id	state_code	state_name	country_id	country_code	country_name
0	52	Ashkāsham	3901	BDS	Badakhshan	1	AF	Afghanistan
1	68	Fayzabad	3901	BDS	Badakhshan	1	AF	Afghanistan
2	78	Jurm	3901	BDS	Badakhshan	1	AF	Afghanistan
3	84	Khandūd	3901	BDS	Badakhshan	1	AF	Afghanistan
4	115	Rāghistān	3901	BDS	Badakhshan	1	AF	Afghanistan
95	180	Bashkia Po l içan	629	BR	Berat District	3	AL	Albania
96	186	Bashkia Skrapar	629	BR	Berat District	3	AL	Albania
97	191	Berat	629	BR	Berat District	3	AL	Albania
98	280	Çorovodë	629	BR	Berat District	3	AL	Albania
99	219	Kuçovë	629	BR	Berat District	3	AL	Albania

100 rows × 11 columns

In [4]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100 entries, 0 to 99
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype			
0	id	100 non-null	int64			
1	name	100 non-null	object			
2	state_id	100 non-null	int64			
3	state_code	100 non-null	object			
4	state_name	100 non-null	object			
5	country_id	100 non-null	int64			
6	country_code	100 non-null	object			
7	country_name	100 non-null	object			
8	latitude	100 non-null	float64			
9	longitude	100 non-null	float64			
10	wikiDataId	100 non-null	object			
<pre>dtypes: float64(2), int64(3), object(6)</pre>						

memory usage: 8.7+ KB

```
In [5]: |df.columns
 Out[5]: Index(['id', 'name', 'state_id', 'state_code', 'state_name', 'country_id',
                 'country_code', 'country_name', 'latitude', 'longitude', 'wikiDataI
         d'],
                dtype='object')
 In [6]: | x=df[['id', 'state_id', 'country_id', 'latitude', 'longitude']]
         y=df['latitude']
 In [7]: from sklearn.model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
 In [8]: | from sklearn.linear_model import LinearRegression
         lr=LinearRegression()
         lr.fit(x_train,y_train)
 Out[8]: LinearRegression()
 In [9]: print(lr.intercept_)
          -3.765876499528531e-13
         coeff = pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
In [10]:
         coeff
Out[10]:
                      Co-efficient
                    4.602989e-18
            state_id 7.914676e-17
          country_id 1.161222e-13
             latitude 1.000000e+00
           longitude -5.139643e-16
```

```
In [11]:
         prediction=lr.predict(x_test)
         plt.scatter(y_test,prediction)
Out[11]: <matplotlib.collections.PathCollection at 0x209983aafd0>
          40
          38
          36
          34
                                 36
                                          38
                                                    40
In [12]: print(lr.score(x_test,y_test))
         1.0
In [13]:
         print(lr.score(x_train,y_train))
         1.0
In [14]: from sklearn.linear model import Ridge,Lasso
In [15]: rr=Ridge(alpha=10)
         rr.fit(x train,y train)
Out[15]: Ridge(alpha=10)
In [16]: rr.score(x_test,y_test)
Out[16]: 0.9976329265007883
In [17]: la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[17]: Lasso(alpha=10)
In [18]: la.score(x_test,y_test)
```

Out[18]: 0.056756764675745974

```
In [19]: from sklearn.linear model import ElasticNet
         en=ElasticNet()
         en.fit(x_train,y_train)
Out[19]: ElasticNet()
In [20]: print(en.coef )
         [-0.00164638 -0.00094384 0.
                                               0.72049145 0.02575576]
In [21]: |print(en.intercept_)
         11.770182131069216
In [22]:
         print(en.predict(x_test))
         [35.69848184 34.31021039 35.63260119 36.14810055 40.63836254 36.57709354
          35.71153497 32.78946491 35.82535888 34.61386997 36.27505233 36.5363532
          36.17901807 34.13159904 35.00204544 34.725074 33.95681083 35.50378974
          33.93814851 36.32708931 36.16208892 33.7884018 33.08834566 36.14727426
                      35.60398412 35.45126896 34.96373557 34.51107679 36.36798057]
In [23]: |print(en.score(x_test,y_test))
         0.9338044979260387
```

Evaluation metrics

Model Saving

```
In [28]: import pickle
In [29]: filename='prediction'
  pickle.dump(lr,open(filename,'wb'))
In []:
```