PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERU FACULTAD DE ESTUDIOS GENERALES CIENCIAS

Solución a las experiencias 1 y 2 del Laboratorio 7

EXPERIENCIA 1 y 2 DEL LABORATORIO 7

ALUMNO:

MATEO GUERRERO ISUIZA

CÓDIGO:

20191867

HORARIO:

0441

PROFESOR:

Flores Espinoza Donato Andrés

2020-2

Lima, Noviembre, 2020

Circuito seguidor de línea

Un vehículo seguidor de línea posee las entradas y salidas indicadas en la Tabla 1:

Tabla 1 - Entradas y salidas del circuito seguidor de línea

Señal	Modo	Descripción
reset n	entrada de 1 bit	Señal de reset asíncrono activo en baja
clk	entrada de 1 bit	Señal de reloj de 1 Hz, a ser usada por flanco de subida
P	entrada de 1 bit	Señal producida por un interruptor de parada
L	entrada de 1 bit	Señal proveniente de un sensor de color lateral izquierdo
R	entrada de 1 bit	Señal proveniente de un sensor de color lateral derecho
M1a	salida de 1 bit	La señal de salida del circuito seguidor de línea, M1a corresponde a la entrada del controlador de un motor para avance
M2a	salida de 1 bit	Las señales de salida del circuito seguidor de línea, M2a, M2l
M2I	salida de 1 bit	y M2r corresponden a las entradas del controlador del motor
M2r	salida de 1 bit	para giro

Para el circuito seguidor de línea considere que si P es '0' el vehículo no se mueve (todo desactivado), de otro modo (P = '1'), se evalúa la siguiente situación:

- L = '0' y R = '0' el vehículo no se mueve.
 L = '0' y R = '1' el vehículo avanza girando hacia la derecha.
 L = '1' y R = '0' el vehículo avanza girando hacia la izquierda.
 L = '1' y R = '1' el vehículo avanza en línea recta.

Por otro lado, la salida para el controlador del motor de avance. M1, tiene la siguiente lógica:

- Motor de avance desactivado (M1a = '0')
 Motor de avance activado (M1a = '1')

Por otro lado, las salidas para el controlador del motor de giro, M2, tienen la siguiente lógica¹:

> Motor de giro desactivado (M2a = '0', M2l = '0' y M2r='0')

> Motor de giro activado hacia la derecha (M2a = '1', M2l = '0' y M2r='1')

> Motor de giro activado hacia la izquierda (M2a = '1', M2l = '1' y M2r='0')

1. EXPERIENCIA 1

i. Realizar el diagrama de estados de una FSM Moore para el circuito seguidor de línea.

(2.0 puntos)

(3.0 puntos)

ii. Realizar la descripción del circuito seguidor de línea, (archivo seguidor_moore.vhd).

iii. Realizar la simulación del circuito seguidor_moore, muestre los valores de las señales internas del circuito2 (señales de estado) y luego automatice por medio del start.do. Recuerde que esta simulación le debe permitir analizar los casos de acción del circuito seguidor de línea. (3.0 puntos)

2. EXPERIENCIA 2

Realizar el diagrama de estados de una FSM Mealy para el circuito seguidor de línea.
 (2.0 puntos)

ii. Realizar la descripción del circuito seguidor de línea, (archivo seguidor mealy.vhd).

PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ

iii. Realizar la simulación del circuito seguidor_mealy, muestre los valores de las señales internas del circuito3 (señales de estado) y luego automatice por medio del start.do. Recuerde que esta simulación le debe permitir analizar los casos de acción del circuito seguidor de línea. (2.0 puntos)

