

 $\rm IIC2283$ - Diseño y Análisis de Algoritmos - $\rm 2^{do}$ semestre 2022

PAUTA INTERROGACIÓN 2

Pregunta 1

Considere la siguiente ecuación de recurrencia:

$$T(n) = \begin{cases} n & n \le 5\\ 5T\left(\left\lfloor \frac{n}{3} \right\rfloor\right) + T\left(\left\lceil \frac{n}{4} \right\rceil\right) + n^2 \cdot \log n & n > 5 \end{cases}$$

Encuentre una función $f: \mathbb{N} \to \mathbb{N}$ tal que $T(n) \in \Theta(f)$. Debe demostrar que la propiedad se cumple.

Solución. Defina $T_1: \mathbb{N} \to \mathbb{N}$ y $T_2: \mathbb{N} \to \mathbb{N}$ como

$$T_1(n) = \begin{cases} 5 & n \le 5 \\ 6T\left(\left\lfloor \frac{n}{4} \right\rfloor\right) + n^2 \cdot \log n & n > 5 \end{cases} \qquad T_2(n) = \begin{cases} 5 & n \le 5 \\ 6T\left(\left\lfloor \frac{n}{3} \right\rfloor\right) + n^2 \cdot \log n & n > 5 \end{cases}$$

Es claro que para n > 5 se cumple que $T_1(n) \le T(n) \le T_2(n)$ (hay puntaje adicional si se demuestra esto formalmente). Luego, para usar el **tercer caso** del Teorema Maestro con $T_1(n)$ y $T_2(n)$, hay que mostrar que la función $n^2 \cdot \log n$ es (6, 4)-regular y (6, 3)-regular:

$$a \cdot \left(\left\lfloor \frac{n}{b} \right\rfloor \right)^2 \log \left(\left\lfloor \frac{n}{b} \right\rfloor \right) \le a \cdot \left(\frac{n}{b} \right)^2 \log \left(\frac{n}{b} \right)$$
$$= \frac{a}{b^2} \cdot n^2 (\log(n) - \log(b))$$
$$\le \frac{a}{b^2} \cdot n^2 \log(n)$$

Por lo que siempre que $a < b^2$, podemos tomar la constante $c = \frac{a}{b^2} < 1$, demostrando así la (a,b)-regularidad. En este caso, como $6 < 3^2 < 4^2$, entonces $n^2 \cdot \log n$ es (6,4)-regular y (6,3)-regular.

Ahora, sabemos que $n^2 \cdot \log n \in \Omega(n^2)$, y además, el valor de $\log_4(6)$ y $\log_3(6)$ está entre 1 y 2. Con esto, podemos encontrar fácilmente un $\varepsilon > 0$ tal que se cumpla la condición pedida en el Teorema Maestro, y por lo tanto, $T_1(n) \in \Theta(n^2 \cdot \log n)$ y $T_2(n) \in \Theta(n^2 \cdot \log n)$. Con esto, finalmente $T(n) \in \Theta(n^2 \cdot \log n)$.

Rúbrica. Dado lo anterior, la atribución de puntaje es la siguiente:

(2 Puntos) Por definir correctamente $T_1(n)$ y $T_2(n)$ tal que $T_1(n) \le T(n) \le T_2(n)$, para $n \ge n_0$.

(3 Puntos) Por mostrar que $n^2 \cdot \log n$ es (a, b)-regular para ambos casos.

(1 Punto) Por concluir correctamente usando el Teorema Maestro que $T(n) \in \Theta(n^2 \log n)$.

(0.5 Puntos) BONUS: Por demostrar formalmente que $T_1(n) \le T(n) \le T_2(n)$ a partir de algún n en adelante.

(Consideración) El puntaje máximo a obtener en la pregunta sigue siendo 6 puntos, independiente del BONUS.

Pregunta 2

El siguiente es el algoritmo visto en clases para calcular la mediana de una lista en tiempo $\mathcal{O}(n)$:

```
Calcular Mediana (L[1 \dots n])
      if n < 2001 then
              Mergesort(L)
              return L[\left|\frac{n}{2}\right|]
       else
              sea R una lista de \left[n^{\frac{3}{4}}\right] números enteros escogido con
                                distribución uniforme y de manera independiente desde {\cal L}
              Mergesort(R)
              \begin{split} d &:= R\left[\left\lfloor\frac{1}{2}\cdot n^{\frac{3}{4}} - n^{\frac{1}{2}}\right\rfloor\right]; \ u := R\left[\left\lceil\frac{1}{2}\cdot n^{\frac{3}{4}} + n^{\frac{1}{2}}\right\rceil\right] \\ S &:= \varnothing; \ m_d := 0; \ m_u := 0 \end{split}
               for i := 1 to n do
                      if d \leq L[i] and L[i] \leq u then Append(S, [L[i]])
                      else if L[i] < d then m_d := m_d + 1
                      else m_u := m_u + 1
              if m_d \geq \left\lceil \frac{n}{2} \right\rceil or m_u \geq \left\lceil \frac{n}{2} \right\rceil or Length(S) > 4 \cdot \left\lceil n^{\frac{3}{4}} \right\rceil then
                      {f return}\ sin\_resultado
              else
                      Mergesort(S)
                      return S\left[\left\lceil \frac{n}{2}\right\rceil - m_d\right]
```

- 1. Explique los pasos que realiza el algoritmo CalcularMediana cuando se retorna un resultado.
- Indique cuándo el algoritmo Calcular Mediana retorna sin_resultado y la razón de porqué no se entrega resultado.
- 3. Explique por qué el algoritmo **CalcularMediana** es correcto. No es necesaria una demostración matemática, más bien indique cuáles son las ideas centrales que muestran que el algoritmo es correcto.

Solución. A continuación se muestra una posible demostración para cada inciso:

- 1. La respuesta debe mencionar los siguientes conceptos:
 - (a) Primero, para n pequeños, el algoritmo simplemente ordena la lista usando **Mergesort**, esto ya que en un análisis del algoritmo permite acotar la probabilidad de error de manera más fácil y porque no influye en la complejidad $\mathcal{O}(n)$ del algoritmo completo.
 - (b) Luego se eligen $\lceil n^{3/4} \rceil$ números de manera uniforme e independiente desde L y se colocan en una nueva lista R que se ordena. Esto toma tiempo $\mathcal{O}(n^{3/4} \log n)$.
 - (c) Se eligen dos índices d y u de la lista R, cada uno separado a una distancia de \sqrt{n} de la mediana de la lista R.
 - (d) Se clasifican cada uno de los elementos de L respecto a como se comparan con los elementos de R. En particular, se guardan todos los elementos x de L que cumplan con $d \le x \le u$ en una nueva lista S, y la cantidad de elementos menores y mayores que d y u se almacenan en m_d y m_u , respectivamente.
 - (e) Si se cumple que $d \leq L'[\lceil n/2 \rceil] \leq u$ (con L' la lista L ordenada), entonces la mediana de L está en S. Luego, si es que el tamaño de S es $\mathcal{O}(n^{3/4})$, se procede a ordenar S y se retorna el elemento que corresponderá a la mediana de L.
- 2. La respuesta debe mencionar que el algoritmo no entrega resultado en tres casos:
 - Cuando m_d o m_u son mayores o iguales a $\lceil n/2 \rceil$. Esto porque en ambos casos necesariamente la mediana de L no estará dentro de S, puesto que el elemento más pequeño (o más grande) de S será necesariamente mayor (o menor) que la mediana de L. Como la mediana de L no estará en S, es imposible que el resto del algoritmo entregue la mediana de L correctamente.
 - Cuando el tamaño de S es mayor que $4 \cdot \lfloor n^{3/4} \rfloor$ (4 es una constante fija que podría haber sido otro número cualquiera). Esto es para asegurar que el tamaño de S es $\mathcal{O}(n^{3/4})$, dado que en el paso siguiente se ordena S y es necesario que eso tome tiempo $\mathcal{O}(n^{3/4}\log n)$ que es sublineal.
- 3. La respuesta debe mencionar los siguientes conceptos:

- Siempre en cada paso se toma tiempo $\mathcal{O}(n)$, evitando la complejidad $\mathcal{O}(n \log n)$.
- \bullet La probabilidad de que lista S pueda contener la mediana de la lista L puede acotarse por una constante menor a 1 (usando la desigualdad de Chebyshev).
- Cuando la mediana de L está en S entonces siempre se puede encontrar el resultado correcto. Si L' es la lista L ordenada, la posición $L'[\lceil n/2 \rceil]$ corresponde a la mediana de L. Entonces, S va a corresponder al rango $L'[m_d \dots m_d + \mathbf{Length}(S)]$, luego claramente $L'[\lceil n/2 \rceil] = S[\lceil n/2 \rceil m_d]$.

Rúbrica. Dado lo anterior, la atribución de puntaje es la siguiente:

```
En ítem 1. (0.4 Puntos) Por cada concepto mencionado correctamente (2 Puntos en Total). En ítem 2. (1 Punto) Por explicar correctamente los casos de m_d \geq \left\lceil \frac{n}{2} \right\rceil y m_u \geq \left\lceil \frac{n}{2} \right\rceil. (1 Punto) Por explicar correctamente el caso de Length(S) > 4 \cdot \left\lfloor n^{\frac{3}{4}} \right\rfloor. En ítem 3. (0.6 Puntos) Por cada uno de los primeros 2 conceptos mencionados correctamente (1.2 Puntos en Total). (0.8 Puntos) Por el último concepto mencionado correctamente.
```

Pregunta 3

Considere el siguiente algoritmo aleatorizado para verificar si un número es primo:

```
TestPrimalidad(n,k)

if n=2 then return PRIMO

else if n\equiv 0\pmod 2 then return COMPUESTO

else if EsPotencia(n) then return COMPUESTO

else

sea a_1,\ldots,a_k una lista de números elegidos de

manera uniforme e independiente desde \{1,\ldots,n-1\}

for i:=1 to k do

if \mathbf{MCD}(a_i,n)>1 then return COMPUESTO

b_i:=\mathbf{EXP}(a_i,\frac{n-1}{2},n)

neg:=0

for i:=1 to k do

if b_i\equiv -1\pmod n then neg:=neg+1

else if b_i\not\equiv 1\pmod n then return COMPUESTO

if neg=0 then return COMPUESTO

return PRIMO
```

- Indique qué recibe como entrada, cómo se puede equivocar y cuál es la probabilidad de error de TestPrimalidad.
- 2. Explique los pasos del algoritmo **TestPrimalidad**.
- 3. Explique por qué el algoritmo **TestPrimalidad** es correcto. No es necesaria una demostración matemática, más bien indique cuáles son las ideas centrales que permiten acotar la probabilidad de error del algoritmo.

Solución. A continuación se muestra una posible demostración para cada inciso:

1. El algoritmo recibe dos números $n, k \in \mathbb{N}$, siendo n el número que se desea verificar si es primo, y k un parámetro que modula la certeza que tendrá el algoritmo de una respuesta correcta.

El algoritmo se equivoca en dos casos:

• Si n es primo y ocurre que la lista a_1, \ldots, a_k es tal que todo $b_i \equiv 1 \pmod{n}$, entonces el algoritmo se equivoca respondiendo COMPUESTO.

- Si n es compuesto y ocurre que:
 - No es par ni de la forma $n = a^b$.
 - La lista a_1, \ldots, a_k es tal que
 - * $a_i \in \mathbb{Z}_n^*$ para todo $1 \le i \le k$.
 - * $b_i \equiv 1 \pmod{n}$ o $b_i \equiv -1 \pmod{n}$ para todo $1 \leq i \leq k$.
 - * Existe $1 \le i \le k$ tal que $b_i \equiv -1 \pmod{n}$.

Entonces el algoritmo se equivoca respondiendo PRIMO.

La probabilidad de error tanto de entregar como respuesta PRIMO dado que n no era primo, y de entregar COMPUESTO dado que n sí era primo, será $\left(\frac{1}{2}\right)^k$.

- 2. La respuesta debe mencionar los siguientes conceptos:
 - (a) Primero, se verifica si n no es par, respondiendo acordemente.
 - (b) Luego, se verifica si $n = a^b$ para algún $a, b \in \mathbb{N}$. Este paso se puede realizar en tiempo $\mathcal{O}(\log^3(n))$. Si n es compuesto y resulta no ser de la forma $n = a^b$, entonces es seguro que $n = n_1 \cdot n_2$, con $\gcd(n_1, n_2) = 1$.
 - (c) Se eligen k números menores que n de manera uniforme e independiente. Por cada número a_i elegido se verifica si $gcd(a_i, n) > 1$ usando el algoritmo de Euclides (tiempo $\mathcal{O}(k \log n)$). Si alguno resulta no ser primo relativo con n entonces necesariamente n es compuesto.
 - (d) Dado que $gcd(a_i, n) = 1$ para todo a_i , luego $a_i \in \mathbb{Z}_n^*$. Se computa $b_i = a_i^{\frac{n-1}{2}} \mod n$ usando exponenciación rápida (tiempo $\mathcal{O}(k \log n)$).
 - (e) Para cada b_i se verifica si $b_i \equiv -1 \pmod{n}$, es decir, si $a_i \in S_n^-$. Si es cierto esto, se incrementa el contador neg.
 - (f) Para cada b_i se verifica si $b_i \not\equiv -1 \pmod{n}$ y $b_i \not\equiv 1 \pmod{n}$. De ser cierto en ambos casos, entonces $a_i \not\in S_n$ y n debe ser compuesto.
 - (g) Finalmente, si todos los a_i cumplen con $a_i \in S_n$: si se encontró un $b_i \equiv -1 \pmod{n}$, se responde que n es primo, y si no, se responde que n es compuesto. Esta es la única parte en que el algoritmo puede cometer un error.
- 3. La respuesta debe mencionar los siguientes conceptos:
 - Cuando el algoritmo responde COMPUESTO por ser par, de la forma a^b , o no ser primo relativo de n, son claramente respuestas correctas por definición de números primos.
 - Dado que para n primo se cumple $|S_n^+| = |S_n^-| = \frac{n-1}{2}$, entonces si existe $b_i \not\equiv -1 \pmod{n}$ y $b_i \not\equiv 1 \pmod{n}$, claramente n es compuesto y el algoritmo no se equivoca en ese caso. Por la misma razón, para que el algoritmo responda COMPUESTO y se equivoque debe ocurrir que todos los $a_i \in S_n^+$, lo que posee probabilidad $\left(\frac{1}{2}\right)^k$.
 - Para que n se equivoque respondiendo PRIMO, debe ocurrir que $n = n_1 \cdot n_2$ con $gcd(n_1, n_2) = 1$ (ya que $n \neq a^b$ para algún par a, b). Por lo que se sabe que $|S_n| \leq \frac{1}{2} |\mathbb{Z}_n^*|$, así que la probabilidad de elegir solo $a_i \in S_n$, dado que al menos se eligió un $a_i \in S_n^-$, va a ser acotada por $\left(\frac{1}{2}\right)^k$.

Rúbrica. Dado lo anterior, la atribución de puntaje es la siguiente:

En ítem 1.

- (0.2 Puntos) Por describir correctamente lo que recibe el algoritmo.
- (1.2 Puntos) Por describir correctamente cuándo el algoritmo se equivoca.
- (0.6 Puntos) Por mencionar la probabilidad de error del algoritmo.

En ítem 2.

(2/7 Puntos) Por cada concepto respondido correctamente (2 Puntos en Total).

En ítem 3.

- (0.4 Puntos) Por el primer concepto mencionado correctamente.
- (0.8 Puntos) Por el segundo concepto mencionado correctamente.
- (0.8 Puntos) Por el tercer concepto mencionado correctamente.

Pregunta 4

Demuestre que **Quicksort** en el caso promedio es $\Theta(n \log(n))$, considerando que la entrada del algoritmo es una lista de enteros no repetidos y que la operación básica a contar es la comparación entre enteros.

Solución. Considere $n \ge 2$ y sea \mathcal{E}_n el conjunto de listas L con n elementos distintos sacados de $\{1, \ldots, n\}$. Sea $L \in \mathcal{E}_n$. Primero, se define la variable aleatoria X_n como:

 $X_n := \text{Número de comparaciones realizadas por la llamada } \mathbf{Quicksort}(L, 1, n)$

Queremos demostrar que $E(X_n) \in \Theta(n \cdot \log n)$. Para esto podemos definir una variable aleatoria para cada $i, j \in \{1, ..., n\}$ con $i \leq j$ tal que:

 $Y_{ij} := \text{Número de veces que } i \text{ es comparado con } j \text{ en la llamada } \mathbf{Quicksort}(L, 1, n)$

Entonces se tiene lo siguiente:

$$X_n = \sum_{i=1}^n \sum_{j=1}^n Y_{ij}$$

Dado que la esperanza de una variable aleatoria es una función lineal:

$$E(X_n) = \sum_{i=1}^n \sum_{j=1}^n E(Y_{ij})$$

Notar que dada la definición de **Partición** no es posible comparar un elemento consigo mismo. Por lo que $Y_{ij} = 0$ para i = j, luego $E(Y_{ij}) = 0$ en ese caso.

Considere el caso general $1 \le i < j \le n$. Note que la única forma en que **Quicksort** puede comparar i con j es que el primer elemento que escoja **Partición** desde el conjunto $\{i, i+1, \ldots, j\}$ sea i o j, y se realiza a lo más una comparación.

Dicho eso, entonces se tiene que Y_{ij} es igual a 0 o a 1, y además que:

$$\Pr(Y_{ij} = 1) = \frac{2}{j - i + 1}$$

dado que $|\{i, i+1, \dots, j\}| = j-i+1$ y existen solo dos casos favorables: que pivote = i y pivote = j. Luego:

$$E(Y_{ij}) = 0 \cdot Pr(Y_{ij} = 0) + 1 \cdot Pr(Y_{ij} = 1) = \frac{2}{j - i + 1}$$

Luego se concluye que:

$$E(X_n) = \sum_{i=1}^n \sum_{j=1}^n E(Y_{ij})$$

$$= \sum_{i=1}^{n-1} \sum_{j=i+1}^n E(Y_{ij})$$

$$= \sum_{i=1}^{n-1} \sum_{j=i+1}^n \frac{2}{j-i+1}$$

$$= \sum_{i=1}^{n-1} \sum_{k=2}^{n-i+1} \frac{2}{k}$$

$$= \sum_{k=2}^n (n+1-k) \cdot \frac{2}{k}$$

$$= 2 \cdot (n+1) \cdot \left(\sum_{k=2}^n \frac{1}{k}\right) - 2 \cdot (n-1)$$

$$= 2 \cdot (n+1) \cdot \left(\sum_{k=1}^n \frac{1}{k}\right) - 4 \cdot n$$

Se puede acotar la sumatoria armónica $\sum_{k=1}^{n} \frac{1}{k}$ usando la integral $\int \frac{1}{x} dx$, pues se cumple que

$$\sum_{k=2}^{n} \frac{1}{k} \le \int_{1}^{n} \frac{1}{x} dx \le \sum_{k=1}^{n} \frac{1}{k}$$

Dado que $\int_1^n \frac{1}{x} dx = \ln(n) - \ln(1) = \ln(n)$ se puede concluir que:

$$\ln(n) \le \sum_{k=1}^{n} \frac{1}{k} \le \ln(n) + 1$$

Por lo tanto:

$$2 \cdot (n+1) \cdot \ln(n) - 4 \cdot n \le E(X_n) \le 2 \cdot (n+1) \cdot (\ln(n) + 1) - 4 \cdot n$$

Y se concluye entonces que $E(X_n) \in \Theta(n \cdot \log(n))$.

Rúbrica. Dado lo anterior, la atribución de puntaje es la siguiente:

- (1 Punto) Por mencionar que se va a trabajar con listas de \mathcal{E}_n .
- (1 Punto) Por definir correctamente Y_{ij} y hacer notar que X_n se puede escribir como una suma de Y_{ij} .
- (2 Puntos) Por encontrar el valor de $E(Y_{ij})$ para cualquier i, j.
- (1 Punto) Por desarrollar $E(X_n)$ y llegar al término con la sumatoria armónica.
- (1 Punto) Por acotar la sumatoria armónica por logaritmos, y concluir que $E(X_n) \in \Theta(n \cdot \log(n))$.