கல்விப் பொதுத் தராதரப் பத்திர(உயர் தர) முன்னோடிப் பரீட்சை - 2019 General Certificate of Education (Adv.Level) Pilot Examination - 2019

இணைந்த கணிதம் I
Combined Mathematics I

10 T	I
------	---

மூன்று மணித்தியாலம் Three hours

சுட்டெண்:	
சுட்டெண்:	

அறிவுறுத்தல்கள்:

- \divideontimes இவ்வினாத்தாள் **பகுதி A** (வினாக்கள் $1{-}10$) **பகுதி B** (வினாக்கள் $11{-}17$) என்னும் இரு பகுதிகளைக் கொண்டது.
- ∗ பகுதி A:

எல்லா வினாக்களுக்கும் விடை எழுதுக. ஒவ்வொரு வினாவுக்கும் உமது விடைகளைத் தரப்பட்டுள்ள இடத்தில் எழுதுக. மேலதிக இடம் தேவைப்படுமாயின், நீர் மேலதிக தாள்களைப் பயன்படுத்தலாம்.

₩ பகுதி B:

ஐந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக.

- * ஒதுக்கப்பட்டுள்ள நேரம் முடிவடைந்ததும் **பகுதி A** யின் விடைத்தாள் ஆனது **பகுதி B** யின் விடைத்தாளுக்கு மேலே இருக்கத்தக்கதாக இரு பகுதிகளையும் இணைத்துப் பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- lpha வினாத்தாளின் **பகுதி B** ஐ மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதற்கு அனுமதிக்கப்படும்.

(10) &	இணைந்த கல	னிதம் I
பகுதி	ഖിனா எண்	புள்ளிகள்
	1	
	2	
	3	
	4	
	5	
A	6	
	7	
	8	
	9	
	10	
	11	
	12	
	13	
В	14	
	15	
	16	
	17	
	மொத்தம்	
	ச தவீ தம்	

வினாத்தாள் I	
வினாத்தாள் II	
மொத்தம்	
இறுதிப்புள்ளி	

இறுதிப் புள்ளிகள்

இலக்கத்தில்	
எழுத்தில்	

குறியீட்டெண்கள்

		
	விடைத்தாள் பரீட்சகர் 1	
I	விடைத்தாள் பரீட்சகர் 2	
I	புள்ளிகளை பரீட்சித்தவர்	
$\left[\right]$	மேற்பார்வை செய்தவர்	

Ц	ж 8	ผ	A
	_,⊆	٠,٠	4.

1.	1. கணிதத்தொகுத்தநிவுக்கோட்பாட்டைப் பயன்படுத்தி என வகுபடும் எனக்காட்டுக.	ல்லா $n\in\mathbb{Z}^{^{+}}$	இ ற்கும்	$2^{3n} + 8^{n-1}$	ஆனது	9	இனால்
2.	2. $y = 3 - x^2$, $y = 2 x $ ஆகிய வரைபுகளை பரும்படியாக	ചെതനപക്ഷ് <i>ഭ</i>	\mathbf{r}^2	$\pm 2 x < 3$		-e	<u>.</u>
	2. $y-3$ x , $y-2 x $ $y=2 x $		நலம் ச	$\pm 2 \lambda \ge 3$	இனைத	தும	b ж .
	y = 3 x , $y = 2$ $ x $ ஆகைய வணரபுகணை பரும்படியாக	o onomyongowi ($\pm 2 x \leq 3$	இனைத 	து.	ь
	y = 3 х , $y = 2$ х ју ஆжи одолуцжовог цијицина			+ 2 <i>x</i> ≥ <i>y</i>	இனைத 	த் 	ь ь.
	2. y = 3 x , y = 2 x ஆகாய வணரபுகணை பரும்படியாக				<u>இ</u> னைத	து ச	
	2. y — 3 х , y — 2 х здаш вивил цавин и царина						
	2. y = 3 x , y = 2 x ஆ au					 	
	2. y = 3 x , y = 2 x ஆ au				<u></u>		
					<u></u>		
	2. y = 3 x , y = 2 x 35 mm showin umuuquna				<u></u>		
	2. y = 3 x , y = 2 x 35 mm suswift growth Light Li						

3.	z-1-	i =1,	Arg(<i>2)</i> – '	4	.0	20			мады		'	01000	രു	ஆகண்
	ഖரிப்பட	த்தில்	குறித்	துக்க	ாட்டுக.	. இச்	சிக்கெ	லண்கள்	z_{1}, z_{2}	எனின்	$z_1 z_2 = i$	எனக்க	ளட்டுக.		
		• • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •											
											•••••				• • • • • • • • • • • • • • • • • • • •
		•••••	•••••	• • • • • • •		• • • • • •								• • • • • • • • • • • • • • • • • • • •	•••••
	•••••			• • • • • • • • • • • • • • • • • • • •			• • • • • • • •	• • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •			
	•••••	• • • • • • •	•••••	• • • • • •			• • • • • • • •			•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •
		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • •	• • • • • •	•••••				•••••			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •											• • • • • • • • • • • • • • • • • • • •
	•••••			•••••	•••••	•••••	• • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
	•••••	• • • • • • •	• • • • • • •		•••••	•••••	• • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •		••••••	• • • • • • • • • • • • • • • • • • • •		
	•••••	• • • • • • •	• • • • • • •	• • • • • • •	•••••	•••••	• • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • •		•••••	• • • • • • • • • • • • • • • • • • • •		
	•••••	• • • • • • •	•••••	• • • • • • •		• • • • • •	•••••	• • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			
4.	•	ි ඉග්	ர்றுக்க	тъ 4	. பп	டகர்க		நாட்டி	2யமாடுப	வர்கள்,		ச்சாளர்க		 ன்ணப்பித்தி	
4.	இவர்க <i>(</i> (i)	ி ஒன் நள் ந நிகழ்	ர்றுக்க நான்கு ச்சிக்கு	тக 4 பே ைதேன	் பா ர நிக வயா	டகர்க ழ்ச்சி னவர்ச	ள், 3 ஒன்றுக கள் எத்	நாட்டி க்கு தெ தனை	தயமாடுப ரிவுசெய் வெவ்சே	வர்கள், பப வே வறு முல	5 பே ண்டி உள்	ச்சாளர்க ளது. தெரியப்	ണ് ഖിൽ പ്രധാന്	ன்ணப்பித்தி எனக்காண்	ருந்தனர்.
4.	இவர்கஞ (i) (ii)	ி ஒன் நள் ந நிகழ் நிகழ்	ர்றுக்க நான்கு ச்சிக்கு ச்சியில்	тக 4 பே ைதேன ஒரு	பா ர நிக வயா ந பா	டகர்க ழ்ச்சி னவர்ச டல்,	ன், 3 ஒன்று கள் எத் ஒரு	நாட்டி ந்கு தெ தனை நடனம்	தயமாடுட ரிவுசெய் வெவ்சே , ஒரு	வர்கள், பய வே பெறு முல பேச்சு	5 பே ண்டி உள் றைகளில்	ச்சாளர்க ளது. தெரியப் ெவேல	ണ് ഖിൽ പ്രധാന്	ன்ணப்பித்தி எனக்காண்	ருந்தனர். ரக.
4.	இவர்கஞ (i) (ii)	ி ஒன் நள் ந நிகழ் நிகழ்	ர்றுக்க நான்கு ச்சிக்கு ச்சியில்	тக 4 பே ைதேன ஒரு	பா ர நிக வயா ந பா	டகர்க ழ்ச்சி னவர்ச டல்,	ன், 3 ஒன்று கள் எத் ஒரு	நாட்டி ந்கு தெ தனை நடனம்	தயமாடுட ரிவுசெய் வெவ்சே , ஒரு	வர்கள், பய வே பெறு முல பேச்சு	5 பேன் ன்டி உள் றநகளில் இருக்க	ச்சாளர்க ளது. தெரியப் ெவேல	ണ് ഖിൽ പ്രധാന്	ன்ணப்பித்தி எனக்காண்	ருந்தனர். ரக.
4.	இவர்கஞ (i) (ii)	ி ஒன் நள் ந நிகழ் நிகழ்	ர்றுக்க நான்கு ச்சிக்கு ச்சியில்	тக 4 பே ைதேன ஒரு	பா ர நிக வயா ந பா	டகர்க ழ்ச்சி னவர்ச டல்,	ன், 3 ஒன்று கள் எத் ஒரு	நாட்டி ந்கு தெ தனை நடனம்	தயமாடுட ரிவுசெய் வெவ்சே , ஒரு	வர்கள், பய வே பெறு முல பேச்சு	5 பேன் ன்டி உள் றநகளில் இருக்க	ச்சாளர்க ளது. தெரியப் ெவேல	ണ് ഖിൽ പ്രധാന്	ன்ணப்பித்தி எனக்காண்	ருந்தனர். ரக.
4.	இவர்கஞ (i) (ii)	ி ஒன் நள் ந நிகழ் நிகழ்	ர்றுக்க நான்கு ச்சிக்கு ச்சியில்	тக 4 பே ைதேன ஒரு	பா ர நிக வயா ந பா	டகர்க ழ்ச்சி னவர்ச டல்,	ன், 3 ஒன்று கள் எத் ஒரு	நாட்டி ந்கு தெ தனை நடனம்	தயமாடுட ரிவுசெய் வெவ்சே , ஒரு	வர்கள், பய வே பெறு முல பேச்சு	5 பேன் ன்டி உள் றநகளில் இருக்க	ச்சாளர்க ளது. தெரியப் ெவேல	ണ് ഖിൽ പ്രധാന്	ன்ணப்பித்தி எனக்காண்	ருந்தனர். ரக.
4.	இவர்கஞ (i) (ii)	ி ஒன் நள் ந நிகழ் நிகழ்	ர்றுக்க நான்கு ச்சிக்கு ச்சியில்	тக 4 பே ைதேன ஒரு	பா ர நிக வயா ந பா	டகர்க ழ்ச்சி னவர்ச டல்,	ன், 3 ஒன்று கள் எத் ஒரு	நாட்டி ந்கு தெ தனை நடனம்	தயமாடுட ரிவுசெய் வெவ்சே , ஒரு	வர்கள், பய வே பெறு முல பேச்சு	5 பேன் ன்டி உள் றநகளில் இருக்க	ச்சாளர்க ளது. தெரியப் ெவேல	ണ് ഖിൽ പ്രധാന്	ன்ணப்பித்தி எனக்காண்	ருந்தனர். ரக.
4.	இவர்கஞ (i) (ii)	ி ஒன் நள் ந நிகழ் நிகழ்	ர்றுக்க நான்கு ச்சிக்கு ச்சியில்	тக 4 பே ைதேன ஒரு	பா ர நிக வயா ந பா	டகர்க ழ்ச்சி னவர்ச டல்,	ன், 3 ஒன்று கள் எத் ஒரு	நாட்டி ந்கு தெ தனை நடனம்	தயமாடுட ரிவுசெய் வெவ்சே , ஒரு	வர்கள், பய வே பெறு முல பேச்சு	5 பேன் ன்டி உள் றநகளில் இருக்க	ச்சாளர்க ளது. தெரியப் ெவேல	ണ് ഖിൽ പ്രധാന്	ன்ணப்பித்தி எனக்காண்	ருந்தனர். ரக.
4.	இவர்கஞ (i) (ii)	ி ஒன் நள் ந நிகழ் நிகழ்	ர்றுக்க நான்கு ச்சிக்கு ச்சியில்	тக 4 பே ைதேன ஒரு	பா ர நிக வயா ந பா	டகர்க ழ்ச்சி னவர்ச டல்,	ன், 3 ஒன்று கள் எத் ஒரு	நாட்டி ந்கு தெ தனை நடனம்	தயமாடுட ரிவுசெய் வெவ்சே , ஒரு	வர்கள், பய வே பெறு முல பேச்சு	5 பேன் ன்டி உள் றநகளில் இருக்க	ச்சாளர்க ளது. தெரியப் ெவேல	ണ് ഖിൽ പ്രധാന്	ன்ணப்பித்தி எனக்காண்	ருந்தனர். ரக.
4.	இவர்கஞ (i) (ii)	ி ஒன் நள் ந நிகழ் நிகழ்	ர்றுக்க நான்கு ச்சிக்கு ச்சியில்	тக 4 பே ைதேன ஒரு	பா ர நிக வயா ந பா	டகர்க ழ்ச்சி னவர்ச டல்,	ன், 3 ஒன்று கள் எத் ஒரு	நாட்டி ந்கு தெ தனை நடனம்	தயமாடுட ரிவுசெய் வெவ்சே , ஒரு	வர்கள், பய வே பெறு முல பேச்சு	5 பேன் ன்டி உள் றநகளில் இருக்க	ச்சாளர்க ளது. தெரியப் ெவேல	ണ് ഖിൽ പ്രധാന്	ன்ணப்பித்தி எனக்காண்	ருந்தனர். ரக.
4.	இவர்கஞ் (i) (ii) 	ி ஒன் நள் ந நிகழ்ச் தீதனை	ர்றுக்க நான்கு ந்சிக்கு ச்சியில் பயான 	பே பே தேன அரி வர்கள்	பா ர நிக வையால் எத்த	டகர்க ழ்ச்சி னவர்ச டல்,	ள், 3 ஒன்றுச தன் எத் ஒரு முறைச	நாட்டி ந்கு தெ தனை நடனம் களில் (பயமாடுப ரிவுசெய் வெவ்சே , ஒரு தெரியப்ப	வர்கள், பப வே பெற்க பேச்சு படலாம்	5 பே ண்டி உள் றநகளில் இருக்க எனக்காஎ	ச்சாளர்க ளது. தெரியப் வென ன்க.	கள் வின	ன்ணப்பித்தி எனக்காண்	ருந்தனர். எக. ஓழ்ச்சிக்கு
4.	இவர்கஞ் (i) (ii) 	ி ஒன் நள் ந நிகழ்ச் தீதனை	ர்றுக்க நான்கு ந்சிக்கு ச்சியில் பயான 	பே பே தேன அரி வர்கள்	பா ர நிக வையால் எத்த	டகர்க ழ்ச்சி னவர்ச டல்,	ள், 3 ஒன்றுச தன் எத் ஒரு முறைச	நாட்டி ந்கு தெ தனை நடனம் களில் (பயமாடுப ரிவுசெய் வெவ்சே , ஒரு தெரியப்ப	வர்கள், பப வே பெற்க பேச்சு படலாம்	5 பே ண்டி உள் றநகளில் இருக்க எனக்காஎ	ச்சாளர்க ளது. தெரியப் வென ன்க.	கள் வின	ன்ணப்பித்தி எனக்காண் எனின் நிக	ருந்தனர். எக. ஓழ்ச்சிக்கு
4.	இவர்கஞ் (i) (ii) 	ி ஒன் நள் ந நிகழ்ச் தீதனை	ர்றுக்க நான்கு ந்சிக்கு ச்சியில் பயான 	பே பே தேன அரி வர்கள்	பா ர நிக வையால் எத்த	டகர்க ழ்ச்சி னவர்ச டல்,	ள், 3 ஒன்றுச தன் எத் ஒரு முறைச	நாட்டி ந்கு தெ தனை நடனம் களில் (பயமாடுப ரிவுசெய் வெவ்சே , ஒரு தெரியப்ப	வர்கள், பப வே பெற்க பேச்சு படலாம்	5 பே ண்டி உள் றநகளில் இருக்க எனக்காஎ	ச்சாளர்க ளது. தெரியப் வென ன்க.	கள் வின	ன்ணப்பித்தி எனக்காண் எனின் நிக	ருந்தனர். எக. ஓழ்ச்சிக்கு
4.	இவர்கஞ் (i) (ii) 	ி ஒன் நள் ந நிகழ்ச் தீதனை	ர்றுக்க நான்கு ந்சிக்கு ச்சியில் பயான 	பே பே தேன அரி வர்கள்	பா ர நிக வையால் எத்த	டகர்க ழ்ச்சி னவர்ச டல்,	ள், 3 ஒன்றுச தன் எத் ஒரு முறைச	நாட்டி ந்கு தெ தனை நடனம் களில் (பயமாடுப ரிவுசெய் வெவ்சே , ஒரு தெரியப்ப	வர்கள், பப வே பெற்க பேச்சு படலாம்	5 பே ண்டி உள் றநகளில் இருக்க எனக்காஎ	ச்சாளர்க ளது. தெரியப் வென ன்க.	கள் வின	ன்ணப்பித்தி எனக்காண் எனின் நிக	ருந்தனர். எக. ஓழ்ச்சிக்கு
4.	இவர்கஞ் (i) (ii) 	ி ஒன் நள் ந நிகழ்ச் தீதனை	ர்றுக்க நான்கு ந்சிக்கு ச்சியில் பயான 	பே பே தேன அரி வர்கள்	பா ர நிக வையால் எத்த	டகர்க ழ்ச்சி னவர்ச டல்,	ள், 3 ஒன்றுச தன் எத் ஒரு முறைச	நாட்டி ந்கு தெ தனை நடனம் களில் (பயமாடுப ரிவுசெய் வெவ்சே , ஒரு தெரியப்ப	வர்கள், பப வே பெற்க பேச்சு படலாம்	5 பே ண்டி உள் றநகளில் இருக்க எனக்காஎ	ச்சாளர்க ளது. தெரியப் வென ன்க.	கள் வின	ன்ணப்பித்தி எனக்காண் எனின் நிக	ருந்தனர். எக. ஓழ்ச்சிக்கு
4.	இவர்கஞ் (i) (ii) 	ி ஒன் நள் ந நிகழ்ச் தீதனை	ர்றுக்க நான்கு ந்சிக்கு ச்சியில் பயான 	பே பே தேன அரி வர்கள்	பா ர நிக வையால் எத்த	டகர்க ழ்ச்சி னவர்ச டல்,	ள், 3 ஒன்றுச தன் எத் ஒரு முறைச	நாட்டி ந்கு தெ தனை நடனம் களில் (பயமாடுப ரிவுசெய் வெவ்சே , ஒரு தெரியப்ப	வர்கள், பப வே பெற்க பேச்சு படலாம்	5 பே ண்டி உள் றநகளில் இருக்க எனக்காஎ	ச்சாளர்க ளது. தெரியப் வென ன்க.	கள் வின	ன்ணப்பித்தி எனக்காண் எனின் நிக	ருந்தனர். எக. ஓழ்ச்சிக்கு
4.	இவர்கஞ் (i) (ii) 	ி ஒன் நள் ந நிகழ்ச் தீதனை	ர்றுக்க நான்கு ந்சிக்கு ச்சியில் பயான 	பே பே தேன அரி வர்கள்	பா ர நிக வையால் எத்த	டகர்க ழ்ச்சி னவர்ச டல்,	ள், 3 ஒன்றுச தன் எத் ஒரு முறைச	நாட்டி ந்கு தெ தனை நடனம் களில் (பயமாடுப ரிவுசெய் வெவ்சே , ஒரு தெரியப்ப	வர்கள், பப வே பெற்க பேச்சு படலாம்	5 பே ண்டி உள் றநகளில் இருக்க எனக்காஎ	ச்சாளர்க ளது. தெரியப் வென ன்க.	கள் வின	ன்ணப்பித்தி எனக்காண் எனின் நிக	ருந்தனர். எக. ஓழ்ச்சிக்கு

_	₁ . 1–	$\cos x \sqrt{\cos 2x}$														
5.	$\lim_{x\to 0} -$	$\frac{\cos x \sqrt{\cos 2x}}{x^2}$	$=\frac{1}{2}$	எனக	காட்டு	க.										
			_													
	•••••			• • • • • • • • • • • • • • • • • • • •				• • • • • • • • • • • • • • • • • • • •			• • • • • • • •				•••••	•••••
	•••••				• • • • • • •	• • • • • • •		• • • • • • • • •						•••••	•••••	•••••
	•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • •					• • • • • • • •	• • • • • • •	• • • • • • • •			• • • • • • •	•••••	•••••
								• • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •				•••••	•••••
		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •				• • • • • • • • • • • • • • • • • • • •								
	•••••						• • • • • • •	•••••	• • • • • • • •	• • • • • • •						• • • • • • •
	•••••				• • • • • • •	• • • • • • •		• • • • • • • • •							•••••	•••••
										• • • • • • •	• • • • • • • •	• • • • • •			• • • • • • •	
						• • • • • •										
																••••
6.	y = 2 s	 ec <i>x</i> எனும்		த		 த்தில்	பரும்	பழயாக		 LüuĽ	 டுள்ளத	 1. <i>y</i>	,	•••••		
6.		ec <i>x</i> எனும்										^	, , ,	/	y = 2	sec <i>x</i>
6.	நிழற்றப்	பட்ட பகுதியி	ள் பர	ப்பளன	வக்	காண்க	ь. Сю	லும் நிடி	ஓ ந்நப்ப	ட்ட ப	பகுதியை		, ,		y = 2	sec <i>x</i>
6.	நிழற்றப்		ள் பர	ப்பளன	வக்	காண்க	ь. Сю		ஓ ந்நப்ப	ட்ட ப			 ,		y = 2	sec <i>x</i>
6.	நிழற்றப் <i>x</i> — அச்	பட்ட பகுதியி $_{lpha}$ சுப்பற்றி 2π	ள் பர சே	ப்பளன காணத்	வக் தினூட	காண் <i>8</i> _ாக	க. மேஒ சுழற்று	லும் நிடி	ஓ ந்நப்ப	ட்ட ப	பகுதியை				y = 2	sec <i>x</i>
6.	நிழற்றப் <i>x</i> — அச்	பட்ட பகுதியி	ள் பர சே	ப்பளன காணத்	வக் தினூட	காண் <i>8</i> _ாக	க. மேஒ சுழற்று	லும் நிடி	ஓ ந்நப்ப	ட்ட ப	பகுதியை				y = 2	sec <i>x</i>
6.	நிழற்றப் <i>x</i> — அச்	பட்ட பகுதியி $_{lpha}$ சுப்பற்றி 2π	ள் பர சே	ப்பளன காணத்	வக் தினூட	காண் <i>8</i> _ாக	க. மேஒ சுழற்று	லும் நிடி	ஓ ந்நப்ப	ட்ட ப	பகுதியை	ib 2			y = 2	$\sec x$
6.	நிழற்றப் <i>x</i> — அச்	பட்ட பகுதியி $_{lpha}$ சுப்பற்றி 2π	ள் பர சே	ப்பளன காணத்	வக் தினூட	காண் <i>8</i> _ாக	க. மேஒ சுழற்று	லும் நிடி	ஓ ந்நப்ப	ட்ட ப	பகுதியை			$\frac{\pi}{2}$	<i>y</i> = 2:	
6.	நிழற்றப் <i>x</i> — அச்	பட்ட பகுதியி $_{lpha}$ சுப்பற்றி 2π	ள் பர சே	ப்பளன காணத்	வக் தினூட	காண் <i>8</i> _ாக	க. மேஒ சுழற்று	லும் நிடி	ஓ ந்நப்ப	ட்ட ப	பகுதியை	ib 2		$\frac{\pi}{3}$	y = 2:	
6.	நிழற்றப் <i>x</i> — அச்	பட்ட பகுதியி $_{lpha}$ சுப்பற்றி 2π	ள் பர சே	ப்பளன காணத்	வக் தினூட	காண் <i>8</i> _ாக	க. மேஒ சுழற்று	லும் நிடி	ஓ ந்நப்ப	ட்ட ப	பகுதியை	ib 2		$\frac{\pi}{3}$	<i>y</i> = 2:	
6.	நிழற்றப் <i>x</i> — அச்	பட்ட பகுதியி $_{lpha}$ சுப்பற்றி 2π	ள் பர சே	ப்பளன காணத்	வக் தினூட	காண் <i>8</i> _ாக	க. மேஒ சுழற்று	லும் நிடி	ஓ ந்நப்ப	ட்ட ப	பகுதியை	ib 2		$\frac{\pi}{3}$	y = 2:	
6.	நிழற்றப் <i>x</i> — அச்	பட்ட பகுதியி $_{lpha}$ சுப்பற்றி 2π	ள் பர சே	ப்பளன காணத்	வக் தினூட	காண் <i>8</i> _ாக	க. மேஒ சுழ <u>ந்</u> று	லும் நிடி	ஓ ந்நப்ப	ட்ட ப	பகுதியை	ib 2		$\frac{\pi}{3}$	y = 2:	
6.	நிழற்றப் <i>x</i> — அச்	பட்ட பகுதியி $_{lpha}$ சுப்பற்றி 2π	ள் பர சே	ப்பளன காணத்	வக் தினூட	காண் <i>8</i> _ாக	க. மேஒ சுழ <u>ந்</u> று	லும் நிடி	ஓ ந்நப்ப	ட்ட ப	பகுதியை	ib 2		$\frac{\pi}{3}$	y = 2:	
6.	நிழற்றப் <i>x</i> — அச்	பட்ட பகுதியி $_{lpha}$ சுப்பற்றி 2π	ள் பர சே	ப்பளன காணத்	வக் தினூட	காண் <i>8</i> _ாக	க. மேஒ சுழ <u>ந்</u> று	லும் நிடி	ஓ ந்நப்ப	ட்ட ப	பகுதியை	ib 2		$\frac{\pi}{3}$	y = 2:	
6.	நிழற்றப் <i>x</i> — அச்	பட்ட பகுதியி $_{lpha}$ சுப்பற்றி 2π	ள் பர சே	ப்பளன காணத்	வக் தினூட	காண் <i>8</i> _ாக	க. மேஒ சுழ <u>ந்</u> று	லும் நிடி	ஓ ந்நப்ப	ட்ட ப	பகுதியை	ib 2		$\frac{\pi}{3}$	y = 2:	
6.	நிழற்றப் <i>x</i> — அச்	பட்ட பகுதியி $_{lpha}$ சுப்பற்றி 2π	ள் பர சே	ப்பளன காணத்	வக் தினூட	காண் <i>8</i> _ாக	க. மேஒ சுழ <u>ந்</u> று	லும் நிடி	ஓ ந்நப்ப	ட்ட ப	பகுதியை	ib 2		$\frac{\pi}{3}$	y = 2:	
6.	நிழற்றப் <i>x</i> — அச்	பட்ட பகுதியி $_{lpha}$ சுப்பற்றி 2π	ள் பர சே	ப்பளன காணத்	வக் தினூட	காண் <i>8</i> _ாக	க. மேஒ சுழ <u>ந்</u> று	லும் நிடி	ஓ ந்நப்ப	ட்ட ப	பகுதியை	ib 2		$\frac{\pi}{3}$	y = 2:	
6.	நிழற்றப் <i>x</i> — அச்	பட்ட பகுதியி $_{lpha}$ சுப்பற்றி 2π	ள் பர சே	ப்பளன காணத்	வக் தினூட	காண் <i>8</i> _ாக	க. மேஒ சுழ <u>ந்</u> று	லும் நிடி	ஓ ந்நப்ப	ட்ட ப	பகுதியை	ib 2		$\frac{\pi}{3}$	y = 2:	
6.	நிழற்றப் <i>x</i> — அச்	பட்ட பகுதியி $_{lpha}$ சுப்பற்றி 2π	ள் பர சே	ப்பளன காணத்	வக் தினூட	காண் <i>8</i> _ாக	க. மேஒ சுழ <u>ந்</u> று	லும் நிடி	ஓ ந்நப்ப	ட்ட ப	பகுதியை	ib 2		$\frac{\pi}{3}$	y = 2:	
6.	நிழற்றப் <i>x</i> — அச்	பட்ட பகுதியி $_{lpha}$ சுப்பற்றி 2π	ள் பர சே	ப்பளன காணத்	வக் தினூட	காண் <i>8</i> _ாக	க. மேஒ சுழ <u>ந்</u> று	லும் நிடி	ஓ ந்நப்ப	ட்ட ப	பகுதியை	ib 2		$\frac{\pi}{3}$	y = 2:	
6.	நிழற்றப் <i>x</i> — அச்	பட்ட பகுதியி $_{lpha}$ சுப்பற்றி 2π	ள் பர சே	ப்பளன காணத்	வக் தினூட	காண் <i>8</i> _ாக	க. மேஒ சுழ <u>ந்</u> று	லும் நிடி	ஓ ந்நப்ப	ட்ட ப	பகுதியை	ib 2		$\frac{\pi}{3}$	y = 2:	
6.	நிழற்றப் <i>x</i> — அச்	பட்ட பகுதியி $_{lpha}$ சுப்பற்றி 2π	ள் பர சே	ப்பளன காணத்	வக் தினூட	காண் <i>8</i> _ாக	க. மேஒ சுழ <u>ந்</u> று	லும் நிடி	ஓ ந்நப்ப	ட்ட ப	பகுதியை	ib 2		$\frac{\pi}{3}$	y = 2:	
6.	நிழற்றப் <i>x</i> — அச்	பட்ட பகுதியி $_{lpha}$ சுப்பற்றி 2π	ள் பர சே	ப்பளன காணத்	வக் தினூட	காண் <i>8</i> _ாக	க. மேஒ சுழ <u>ந்</u> று	லும் நிடி	ஓ ந்நப்ப	ட்ட ப	பகுதியை	ib 2		$\frac{\pi}{3}$	y = 2:	
6.	நிழற்றப் <i>x</i> — அச்	பட்ட பகுதியி $_{lpha}$ சுப்பற்றி 2π	ள் பர சே	ப்பளன காணத்	வக் தினூட	காண் <i>8</i> _ாக	க. மேஒ சுழ <u>ந்</u> று	லும் நிடி	ஓ ந்நப்ப	ட்ட ப	பகுதியை	ib 2		$\frac{\pi}{3}$	y = 2:	
6.	நிழற்றப் <i>x</i> — அச்	பட்ட பகுதியி $_{lpha}$ சுப்பற்றி 2π	ள் பர சே	ப்பளன காணத்	வக் தினூட	காண் <i>8</i> _ாக	க. மேஒ சுழற்று	லும் நிடி	ஓ ந்நப்ப	ட்ட ப	பகுதியை	ib 2		$\frac{\pi}{3}$	y = 2:	

7.	$x=at^2, y=2at$ எனும் பரமானச்சமன்பாடுகளால் தரப்படும் வளையிக்கு $t=t_0, t=2t_0$ ஆகிய புள்ளிகளில்
	வரையப்படும் தொடலிகள் இடைவெட்டும் புள்ளியின் ஒழுக்கு $y^2 = \frac{9a}{2}x$ எனும் பரவளைவு எனக்காட்டுக.
	இங்கு $a\in\mathbb{R}$ ஆகும்.
8.	$ax-2y=c,\ 2x+by=-c$ ஆகிய நேர்கோடுகள் ஒன்றுக்கொன்று செங்குத்தானவை எனவும் $(1,-5)$ எனும்
8.	$ax-2y=c,\ 2x+by=-c$ ஆகிய நேர்கோடுகள் ஒன்றுக்கொன்று செங்குத்தானவை எனவும் $(1,-5)$ எனும் புள்ளியில் இடைவெட்டுகின்றன எனவும் தரப்படின் a,b,c ஆகியவற்றின் பெறுமானங்களைக் காண்க.
8.	
8.	
8.	
8.	
8.	
8.	
8.	
8.	
8.	
8.	
8.	
8.	
8.	
8.	
8.	
8.	

9.	$S_1 \equiv x^2 + y^2 = 5$	எனும்	வட்டத்திற்கு	(1,2)	எனும்	புள்ளியில்	ഖത്വെധப்படும்	தொடலியானது
	$S_2 \equiv x^2 + y^2 = 9$	எனும் வ	ட்டத்தை A,B	எனும் பு	ள்ளிகளில்	இ டைவெட்டு	கின்றது. A,B	ധിல് ഖட்டம் $S_{\scriptscriptstyle 2}$
	இந்கு வரையப்படும்							
			•••••					
			•••••					
			•••••					
10.	$\tan^{-1}(a) + \tan^{-1}(b)$	b) + tan ⁻¹	$\left(\frac{a+b}{ab-1}\right) = \pi$	எனக்காட்(டுக. இங்கு	a,b>0, ab	<i>b</i> > 1 ஆகும்.	
			•••••					

MORA E-TAMILS 2021 | Tamil Stude ு Saculty of Engineration University of Moratuwa | MORA E-TAMILS 2021 | Tamil Students | Ta

கல்விப் பொதுத் தராதரப் பத்திர(உயர் தர) முன்னோடிப் பரீட்சை - 2019 General Certificate of Education (Adv.Level) Pilot Examination - 2019

இணைந்த கணிதம் I Combined Mathematics I 10 T I

பகுதி B

- * ஐந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக
- **11.** (a) $f(x) = ax^2 + bx + c$ எனக்கொள்க. இங்கு a > 0 ஆகும். $f(x) = p(x-q)^2 + r$ ஆகுமாறு p,q,r ஆகியவற்றை a,b,c சார்பில் காண்க. **இதிலிருந்து,** f(x) = 0 எனும் இருபடிச்சமன்பாடு மெய்தீர்வுகளைக் கொண்டிருப்பதற்கான நிபந்தனையையும் பொருந்தும் தீர்வுகளைக் கொண்டிருப்பதற்கான நிபந்தனையையும் காண்க.
 - (i) $x^2 + px + q = 0$ எனும் இருபடிச்சமன்பாட்டின் மூலங்கள் மெய்யானவை எனின் a யின் எல்லா மெய்ப்பெறுமானங்களுக்கும் $x^2 + px + q + (x+a)(2x+p) = 0$ இன் மூலங்கள் மெய்யானவை எனக்காட்டுக.
 - $(ii)\ pq \neq 0,\ q \neq 1$ இந்கு $\left(1-q+rac{p^2}{2}
 ight)x^2+p\left(1+q\right)x+q(q-1)+rac{p^2}{2}=0$ எனும் இருபடிச்சமன்பாடு

பொருந்தும் மூலங்களைக் கொண்டிருக்கும் எனின் $p^2 = 4q$ எனக்காட்டுக.

- $(b)\ k\in\mathbb{R}$ இந்கு $f(x)=4x^3-4x^2+kx-2$ எனக் கொள்க. (x-2) ஆனது f(x) இன் ஒரு காரணி எனின் k இனைக் காண்க. f(x) இனை $(x-2)(ax+b)^2$ எனும் வடிவில் எடுத்துரைக்க. இங்கு a,b துணியப்படவேண்டிய மாறிலிகள் ஆகும்.
 - a,b இன் இப்பெறுமானங்களுக்கு $(ax+b)^2=p(x-2)^2+qx+r$ ஆகுமாறு p,q,r ஆகியவற்றைக் காண்க. **இதிலிருந்து,** f(x) இனை $(x-2)^3$ இனால் வகுக்கப்படும்போது பெறப்படும் மீதியைக் காண்க.
- $\mathbf{12.}\;(\,a\,)\;(1+x)^n$ இற்கான ஈருறுப்பு விரிவை எழுதுக. இங்கு $\,n\in\mathbb{Z}^+\,$ ஆகும்.

 $(1+x)^n = a_0 + a_1 x + \dots + a_r x^r + \dots + a_n x^n$ எனக் கொள்க. இங்கு $a_i \in \mathbb{R}, \ i=1,2,3,\dots,n$ ஆகும். $r \leq n-1$ இந்கு $\frac{a_r}{a_r + a_{r+1}} = \frac{r+1}{n+1}$ எனக்காட்டுக.

 $r \leq n-3$ இற்கு $\dfrac{a_r}{a_r+a_{r+1}}, \dfrac{a_{r+1}}{a_{r+1}+a_{r+2}}, \dfrac{a_{r+2}}{a_{r+2}+a_{r+3}}$ ஆகியன ஒரு கூட்டல் விருத்தியில் இருக்கும்

எனக்காட்டுக. **இதிலிருந்து,** இக்கூட்டல் விருத்தியின் பொது வித்தியாசம் $\dfrac{1}{2020}$ ஆகவும் $a_{r+1}=9a_r$ ஆகுமாறும் r,n ஆகியவற்றின் பெறுமானங்களைக் காண்க.

- $(b\)\ f(r)=rac{1}{re^r}$ எனக் கொள்க. இங்கு $r\in \mathbb{Z}^+$ ஆகும். $f(r)-f(r+1)=rac{r(e-1)+e}{r(r+1)e^{r+1}}$ எனக்காட்டுக. $S_n=\sum_{r=1}^n rac{r(e-1)+e}{r(r+1)e^{r+1}}$ எனக் கொள்க. இங்கு $n\in \mathbb{Z}^+$ ஆகும். வித்தியாச முறையைப் பயன்படுத்தி S_n இனைக் காண்க. **இதிலிருந்து**, $S_\infty=rac{1}{e}$ என உய்த்தறிக. $S_\infty=\frac{1}{e}$ என உய்த்தறிக.
- $13.\ (a)\ A = egin{pmatrix} 1-6 \ 2-6 \end{pmatrix}$ எனவும் $f(x) = x^2 + 5x + 6$ எனவும் கொள்க. f(A) = 0 எனக்காட்டி A^{-1} இனைக்காண்க. f(x) = 0 இன் மூலங்கள் λ_1, λ_2 $(\lambda_1 > \lambda_2)$ எனின் λ_1, λ_2 ஆகியவற்றைக் காண்க. $u = egin{pmatrix} a+1 \ a \end{pmatrix}, v = egin{pmatrix} b \ b-1 \end{pmatrix}$ எனக்கொள்க. $Au = \lambda_1 u$ எனவும் $Av = \lambda_2 v$ எனவும் தரப்படின் a,b ஆகியவற்றைக் காண்க. மேலும் $B = egin{pmatrix} a+1 & b \ a & b-1 \end{pmatrix}$ எனவும் $D = egin{pmatrix} \lambda_1 & 0 \ 0 & \lambda_2 \end{pmatrix}$ எனவும் தரப்படின் $B = A^{-1}BD$ என்பதை வாய்ப்புப் பார்க்க.
 - (b) $z=r(\cos heta+i\sin heta)$ எனக்கொள்க. இங்கு $r\in \mathbb{R},\ 0\leq heta\leq 2\pi$ ஆகும். தமோய்வரின் தேற்றப்படி $n\in \mathbb{Z}^+$ இற்கு z^n இற்கான கோவையை எழுதுக.
 - (i) $\omega = \cos \theta + i \sin \theta$ எனின் $\frac{1}{\omega}$ இனைக் கண்டு $\omega^n, \frac{1}{\omega^n}$ ஆகியவற்றுக்கான கோவைகளை எழுதுக. ஈருறுப்பு விரிவுத் தேற்றத்தைப் பயன்படுத்தி $\left(\omega + \frac{1}{\omega}\right)^5 = \left(\omega^5 + \frac{1}{\omega^5}\right) + 5\left(\omega^3 + \frac{1}{\omega^3}\right) + 10\left(\omega + \frac{1}{\omega}\right)$ எனக்காட்டுக. **இதிலிருந்து,** $\cos^5 \theta = \frac{1}{16}\cos 5\theta + \frac{5}{16}\cos 3\theta + \frac{5}{8}\cos \theta$ என உய்த்தறிக.
 - $(ii)\ \omega = 1 + i$ எனும் சிக்கலெண்ணை $\omega = r(\cos\theta + i\sin\theta)$ எனும் வடிவில் எடுத்துரைக்க. $\omega^2,\ \omega^3,\ \omega^4,\ \omega^5$ ஆகிய சிக்கலெண்களைக் கண்டு ஆகண் வரிப்படத்தில் குறிக்க.

R இனை ஆகண் வரிப்படத்தில் நிழந்றுவதன் மூலம் $\omega, \omega^2, \omega^3, \omega^4, \omega^5$ ஆகிய சிக்கலெண்களுள் எவை R இனுள் கிடக்கும் எனத்துணிக.

14. (a) $x \neq -4$ இந்கு $f(x) = \frac{x^2 - 4x}{(x+4)^2}$ எனக்கொள்க. f(x) இன் முதல் பெறுதி $f'(x) = \frac{4(3x-4)}{(x+4)^3}$ எனக்காட்டுக. இதிலிருந்து y = f(x) எனும் வளையியின் திரும்பல் புள்ளிகளின் ஆள்கூறுகளைக் காண்க. f(x) இன் இரண்டாம் பெறுதி $f''(x) = -\frac{24(x-4)}{(x+4)^4}$ எனத்தரப்படின் y = f(x) எனும் வளையி ஓர் விபத்தி புள்ளியை கொண்டிருக்கும் எனக்காட்டுக. அணுகுகோடுகள், திரும்பல் புள்ளிகள் ஆகியவற்றை தெளிவாகக் காட்டி

y=f(x) எனும் வளையியை பரும்படியாக வரைக. வரைபானது கிடை அணுகுகோட்டை வெட்டும் புள்ளியின் ஆள்கூறுகளை கண்டு சமனிலி $\dfrac{x^2-4x}{(x+4)^2} \leq 1$ இனை தீர்க்க.

 $(b\)\ r$ ஆரையுடைய வட்ட வடிவ கடதாசியிலிருந்து படத்தில் காட்டியவாறு $heta ig(0 < heta < 2\piig)$ ஆரையன் உடைய ஆரைச்சிறை AOB வெட்டப்படுகின்றது. விளிம்புகள் $OA,\,OB$ ஆகியவற்றை சேர்த்து ஒட்டுவதன் மூலம் R ஆரையும் H உயரமும் உடைய கூம்பு ஆக்கப்படுகின்றது.

(i) R=rx எனவும் $H=r\sqrt{1-x^2}$ எனவும் காட்டுக. இங்கு $x=rac{ heta}{2\pi}$ ஆகும்.

(ii) கூம்பின் கனவளவு V ஆனது $V=rac{1}{3}\pi r^3 x^2 \sqrt{1-x^2}$ இனால் தரப்படும் எனக்காட்டுக.

தரப்பட்ட r இந்கு V உயர்வாகுமாறு x இனைக் கண்டு, இச்சந்தர்ப்பத்தில் $\theta = 2\left(\frac{2}{3}\right)^{1/2}\pi$ என உய்த்தறிக.

15. (a) $t = x + \sqrt{1 + x^2}$ எனின் $t + \frac{1}{t}$ இனை எளிய வடிவில் காண்க. $t = x + \sqrt{1 + x^2}$ எனும் பிரதியீட்டைப் பயன்படுத்தி $\int\limits_0^\infty \frac{1}{\left(x + \sqrt{1 + x^2}\right)^8} dx = \frac{8}{63}$ எனக்காட்டுக.

 $(b) y = \frac{x+1}{x+3}$ எனின் $\frac{dy}{dx} = \frac{2}{(x+3)^2}$ எனக்காட்டுக.

பகுதிகளாக தொகையிடலைப் பயன்படுத்தி $\int_{0}^{1} \frac{1}{(x+3)^2} \ln\left(\frac{x+1}{x+3}\right) dx = \frac{1}{6} \ln 3 - \frac{1}{4} \ln 2 - \frac{1}{12}$ எனக்காட்டுக.

(c) $I=\int\limits_0^a rac{f(x)}{f(x)+f(a-x)}dx$ எனத்தரப்படின் பொருத்தமான பிரதியீட்டைப் பயன்படுத்தி $I=rac{a}{2}$

எனக்காட்டுக. **இதிலிருந்து,** பின்வருவனவற்றைக் காண்க.

(i)
$$\int_{0}^{1} \frac{\ln(x+1)}{\ln(2+x-x^{2})} dx$$
 (ii) $\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{\sin(x+\frac{\pi}{4})} dx$

16. $S \equiv x^2 + y^2 - 4\lambda x - 2\lambda y + 4\lambda^2 = 0$ ஆனது xy தளத்தில் உள்ள ஓர் வட்டத்தின் சமன்பாடாகும். இங்கு $\lambda \in \mathbb{R}^+$ ஆகும். வட்டம் S இன் மையம், ஆரை ஆகியவற்றை λ சார்பில் கண்டு வட்டம் S ஆனது x- அச்சை தொடுகின்றது எனக்காட்டுக. உற்பத்தியையும் வட்டம் S இன் மையத்தையும் இணைக்கும் கோடு நேர் x- அச்சுடன் அமைக்கும் கூர்ங்கோணம் α எனின் $\tan 2\alpha = \frac{4}{3}$ எனக்காட்டுக. இதிலிருந்து $l \equiv 3y-4x=0$ எனும் நேர்கோடானது S எனும் வட்டத்திற்கு உற்பத்தியிலிருந்து வரையப்படும் தொடலி எனக்ககாட்டுக. $l' \equiv 4y+3x=15$ எனும் நேர்கோடானது வட்டம் S இற்கு தொடலியாக அமைகின்றது எனின் λ இற்கு சாத்தியமான இரு பெறுமானங்களைக்காண்க.

 $R = \big\{ \big(x,y \big) \colon y \geq 0$ உம் $3y \leq 4x$ உம் $4y + 3x \leq 15$ உம் ஆகும் $\big\}$ எனக் கொள்க. xy தளத்தில் l, l' ஆகிய நேர்கோடுகளைப் பரும்படியாக வரைந்து பிரதேசம் R இனை நிழற்றுக. λ வின் இருவேறு பெறுமானங்களுக்கு பெறப்படும் வட்டங்கள் C_1, C_2 எனவும் வட்டம் C_1 ஆனது R இனுள் கிடக்கின்றது எனவும் தரப்படின் வட்டங்கள் C_1, C_2 ஒன்றையொன்று தொடுவதில்லை எனக்காட்டி அதே படத்தில் வட்டங்கள் C_1, C_2 ஆகியவற்றை பரும்படியாக வரைக.

17. (a) $f(\theta) = \cos\theta \sin^2\left(\frac{\theta}{2}\right)$ எனக்கொள்க. இங்கு $0 < \theta < \pi$ ஆகும். $f(\theta) = a - b(\cos\theta - c)^2$ ஆகுமாறு a,b,c ஆகியவற்றைக் காண்க.

ஒரு முக்கோணி ABC யில் வழமையான குறியீடுகளில் $\cos A \sin^2 \frac{A}{2} + \cos B \sin^2 \frac{B}{2} + \cos C \sin^2 \frac{C}{2} = \frac{3}{8}$ எனின் ABC ஆனது ஒரு சமபக்க முக்கோணி எனக்காட்டுக.

(b) $-rac{\pi}{2} < x < rac{\pi}{2}$ இற்கு $f(x) = rac{1+\cot x}{1+\cot^2 x}$ எனக்கொள்க. $f(x) = A\cos(2x+lpha) + B$ ஆகுமாறு $A,B,\,lpha igg(0 < lpha < rac{\pi}{2}igg)$ ஆகியவற்றைக் காண்க.

இதிலிருந்து, $-\frac{\pi}{2} < x < \frac{\pi}{2}$ இல் y = 2f(x) இன் வரைபை பரும்படியாக வரைக.

- (c) (i) $A+B+C=\pi$ எனின் $\tan A+\tan B+\tan C=\tan A \tan B \tan C$ எனக்காட்டுக.
 - (ii) ஒரு முக்கோணி ABC யின் நிமிர் மையம் H ஆகும். $\angle BAC = \frac{\pi}{4}$ எனவும் நீட்டப்பட்ட AH ஆனது BC இனை D யில் சந்திக்கின்றது எனவும் நீட்டப்பட்ட CH ஆனது AB இனை E யில் சந்திக்கின்றது எனவும் தரப்பட்டுள்ளது. $CH = \frac{b\cos C}{\sin B}$ எனக்காட்டுக.

சைன் விதியைப் பயன்படுத்தி $\frac{CH^2}{\Delta} = \frac{2\sqrt{2}\cos^2 C}{\sin B \sin C}$ எனக்காட்டுக. மேலும் $\tan A, \tan B, \tan C$ ஆகியன முறையே ஒரு கூட்டல் விருத்தியில் இருக்கின்றன எனின் மேலே (i) இலுள்ள முடிவைப் பயன்படுத்தி $\tan B, \tan C$ ஆகியவற்றின் பெறுமானங்களைக் காண்க. இச்சந்தர்ப்பத்தில் $\Delta = 3CH^2$ என **உய்த்தறிக**.

* * *

MORA E-TAMILS 2021 | Tamil Stude இ Saculty of Engines in University of Moratuwa | MORA (- Tamil Stude) Estaulty of Enginesing University of Moratuwa | MORA (- Tamil Stude) கொழ்கள் | பெர்பட்டு கொழ்கள் பெர்பட்டு கொழ்கள் | பெர்பட்டு கொழ்கள் பெரிபட்டு கொழ்கள் பெர்பட்டு கொழ்கள் பெர்பட்டு கொழ்கள் பெர்பட்டு கொழ்கள் பெர்பட்டு கொழ்கள் பெர்பட்டு கொழ்கள் பெர்பட்டு கொழ்கள் பெரிபட்டு கொழக்கள் பெரிபட்டு கொழக்கள் போரிபட்டு கொழக்கள் பெரிபட்டு கொழக்கள் போரிபட்டு க

கல்விப் பொதுத் தராதரப் பத்திர(உயர் தர) முன்னோடிப் பரீட்சை - 2019 General Certificate of Education (Adv.Level) Pilot Examination - 2019

இணைந்த கணிதம் II Combined Mathematics II

- - -

மூன்று மணித்தியாலம் Three hours

ஈட்டெண்:	
₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	

அறிவுறுத்தல்கள்:

- \divideontimes இவ்வினாத்தாள் **பகுதி A** (வினாக்கள் $1{-}10$) **பகுதி B** (வினாக்கள் $11{-}17$) என்னும் இரு பகுதிகளைக் கொண்டது.
- **∗ பகுதி A:**

எல்லா வினாக்களுக்கும் விடை எழுதுக. ஒவ்வொரு வினாவுக்கும் உமது விடைகளைத் தரப்பட்டுள்ள இடத்தில் எழுதுக. மேலதிக இடம் தேவைப்படுமாயின், நீர் மேலதிக தாள்களைப் பயன்படுத்தலாம்.

₩ பகுதி B:

ஐந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக.

- * ஒதுக்கப்பட்டுள்ள நேரம் முடிவடைந்ததும் **பகுதி A** யின் விடைத்தாள் ஆனது **பகுதி B** யின் விடைத்தாளுக்கு மேலே இருக்கத்தக்கதாக இரு பகுதிகளையும் இணைத்துப் பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- lpha வினாத்தாளின் **பகுதி B** ஐ மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதற்கு அனுமதிக்கப்படும்.

(10)	இணைந்த கல	னிதம் II
பகுதி	ഖിனா எண்	புள்ளிகள்
	1	
	2	
	3	
	4	
	5	
A	6	
	7	
	8	
	9	
	10	
	11	
	12	
	13	
В	14	
	15	
	16	
	17	
	மொத்தம்	
	சதவீத ம்	

வினாத்தாள் I	
வினாத்தாள் II	
மொத்தம்	
இறுதிப்புள்ளி	

இறுதிப் புள்ளிகள்

இலக்கத்தில்	
எழுத்தில்	

குறியீட்டெண்கள்

விடைத்தாள் பரீட்சகர் 1	
விடைத்தாள் பரீட்சகர் 2	
புள்ளிகளை பரீட்சித்தவர்	
மேற்பார்வை செய்தவர்	

பகுதி 🗛

1.	ஓர் பொருள் ஓய்வில் இருந்து சீரான ஆர்முடுகல் $2ms^{-2}$ உடன் இயங்கத்தொடங்கி உயர்வேகம் vms^{-1} ஐ	
	அடைந்து , பின்னர் மாறா வேகத்துடன் சென்று ,பின்னர் சீரான அமர்முடுகல் $4ms^{-2}$ இனால் ஓய்வுக்கு வருகின்றது.	
	பயணம் செய்த நேரம் t s உம் சென்ற தூரம் s m உம் எனின் வேக - நேர வளையியினை வரைந்து அதிலிருந்து	
	$3v^2 - 8tv + 8s = 0$ எனக்காட்டுக.	
_	_	
2.	${ m A,B}$ எனும் முறையே ${ m \it m,3m}$ திணிவுகளையுடைய இரு துணிக்கைகள் ஒப்பமான கிடைமேசையில் ஒரே நேர்கோட்டின்	
2.	${ m A,B}$ எனும் முறையே ${ m m,3m}$ திணிவுகளையுடைய இரு துணிக்கைகள் ஒப்பமான கிடைமேசையில் ஒரே நேர்கோட்டின் வழியே ஒன்றை ஒன்று நோக்கி முறையே $2u,u$ கதிகளுடன் இயங்கி நேரடியாக மோதுகின்றன. மீள்மைவுக்குணகம் ${ m e}$	
2.	வழியே ஒன்றை ஒன்று நோக்கி முறையே $2u,u$ கதிகளுடன் இயங்கி நேரடியாக மோதுகின்றன. மீள்மைவுக்குணகம் ${ m e}$	
2.	வழியே ஒன்றை ஒன்று நோக்கி முறையே $2u,u$ கதிகளுடன் இயங்கி நேரடியாக மோதுகின்றன. மீள்மைவுக்குணகம் e எனின் மொத்தலின் சற்றுப்பின் A இன் வேகம் $\dfrac{(9e+1)}{4}u$ எனக் காட்டி, B இன் கதியைக் காண்க.	
2.	வழியே ஒன்றை ஒன்று நோக்கி முறையே $2u,u$ கதிகளுடன் இயங்கி நேரடியாக மோதுகின்றன. மீள்மைவுக்குணகம் e எனின் மொத்தலின் சற்றுப்பின் A இன் வேகம் $\dfrac{(9e+1)}{4}u$ எனக் காட்டி, B இன் கதியைக் காண்க.	
2.	வழியே ஒன்றை ஒன்று நோக்கி முறையே $2u,u$ கதிகளுடன் இயங்கி நேரடியாக மோதுகின்றன. மீள்மைவுக்குணகம் ${ m e}$	
2.	வழியே ஒன்றை ஒன்று நோக்கி முறையே $2u,u$ கதிகளுடன் இயங்கி நேரடியாக மோதுகின்றன. மீள்மைவுக்குணகம் e எனின் மொத்தலின் சற்றுப்பின் A இன் வேகம் $\dfrac{(9e+1)}{4}u$ எனக் காட்டி, B இன் கதியைக் காண்க.	
2.	வழியே ஒன்றை ஒன்று நோக்கி முறையே $2u,u$ கதிகளுடன் இயங்கி நேரடியாக மோதுகின்றன. மீள்மைவுக்குணகம் e எனின் மொத்தலின் சற்றுப்பின் A இன் வேகம் $\dfrac{(9e+1)}{4}u$ எனக் காட்டி, B இன் கதியைக் காண்க. மோதுகையின் பின் இரு துணிக்கைகளும் எதிர் $-$ எதிர் திசைகளில் இயங்கின் $e>\dfrac{1}{3}$ எனக் காட்டுக.	
2.	வழியே ஒன்றை ஒன்று நோக்கி முறையே $2u,u$ கதிகளுடன் இயங்கி நேரடியாக மோதுகின்றன. மீள்மைவுக்குணகம் e எனின் மொத்தலின் சற்றுப்பின் A இன் வேகம் $\dfrac{(9e+1)}{4}u$ எனக் காட்டி, B இன் கதியைக் காண்க. மோதுகையின் பின் இரு துணிக்கைகளும் எதிர் $-$ எதிர் திசைகளில் இயங்கின் $e>\dfrac{1}{3}$ எனக் காட்டுக.	
2.	வழியே ஒன்றை ஒன்று நோக்கி முறையே $2u,u$ கதிகளுடன் இயங்கி நேரடியாக மோதுகின்றன. மீள்மைவுக்குணகம் e எனின் மொத்தலின் சற்றுப்பின் A இன் வேகம் $\dfrac{(9e+1)}{4}u$ எனக் காட்டி, B இன் கதியைக் காண்க. மோதுகையின் பின் இரு துணிக்கைகளும் எதிர் $-$ எதிர் திசைகளில் இயங்கின் $e>\dfrac{1}{3}$ எனக் காட்டுக.	
2.	வழியே ஒன்றை ஒன்று நோக்கி முறையே $2u,u$ கதிகளுடன் இயங்கி நேரடியாக மோதுகின்றன. மீள்மைவுக்குணகம் e எனின் மொத்தலின் சற்றுப்பின் A இன் வேகம் $\dfrac{(9e+1)}{4}u$ எனக் காட்டி, B இன் கதியைக் காண்க. மோதுகையின் பின் இரு துணிக்கைகளும் எதிர் $-$ எதிர் திசைகளில் இயங்கின் $e>\dfrac{1}{3}$ எனக் காட்டுக.	
2.	வழியே ஒன்றை ஒன்று நோக்கி முறையே $2u,u$ கதிகளுடன் இயங்கி நேரடியாக மோதுகின்றன. மீள்மைவுக்குணகம் e எனின் மொத்தலின் சற்றுப்பின் A இன் வேகம் $\dfrac{(9e+1)}{4}u$ எனக் காட்டி, B இன் கதியைக் காண்க. மோதுகையின் பின் இரு துணிக்கைகளும் எதிர் $-$ எதிர் திசைகளில் இயங்கின் $e>\dfrac{1}{3}$ எனக் காட்டுக.	
2.	வழியே ஒன்றை ஒன்று நோக்கி முறையே $2u,u$ கதிகளுடன் இயங்கி நேரடியாக மோதுகின்றன. மீள்மைவுக்குணகம் e எனின் மொத்தலின் சற்றுப்பின் A இன் வேகம் $\dfrac{(9e+1)}{4}u$ எனக் காட்டி, B இன் கதியைக் காண்க. மோதுகையின் பின் இரு துணிக்கைகளும் எதிர் $-$ எதிர் திசைகளில் இயங்கின் $e>\dfrac{1}{3}$ எனக் காட்டுக.	
2.	வழியே ஒன்றை ஒன்று நோக்கி முறையே $2u,u$ கதிகளுடன் இயங்கி நேரடியாக மோதுகின்றன. மீள்மைவுக்குணகம் e எனின் மொத்தலின் சற்றுப்பின் A இன் வேகம் $\dfrac{(9e+1)}{4}u$ எனக் காட்டி, B இன் கதியைக் காண்க. மோதுகையின் பின் இரு துணிக்கைகளும் எதிர் $-$ எதிர் திசைகளில் இயங்கின் $e>\dfrac{1}{3}$ எனக் காட்டுக.	
2.	வழியே ஒன்றை ஒன்று நோக்கி முறையே $2u,u$ கதிகளுடன் இயங்கி நேரடியாக மோதுகின்றன. மீள்மைவுக்குணகம் e எனின் மொத்தலின் சற்றுப்பின் A இன் வேகம் $\dfrac{(9e+1)}{4}u$ எனக் காட்டி, B இன் கதியைக் காண்க. மோதுகையின் பின் இரு துணிக்கைகளும் எதிர் $-$ எதிர் திசைகளில் இயங்கின் $e>\dfrac{1}{3}$ எனக் காட்டுக.	
2.	வழியே ஒன்றை ஒன்று நோக்கி முறையே $2u,u$ கதிகளுடன் இயங்கி நேரடியாக மோதுகின்றன. மீள்மைவுக்குணகம் e எனின் மொத்தலின் சற்றுப்பின் A இன் வேகம் $\dfrac{(9e+1)}{4}u$ எனக் காட்டி, B இன் கதியைக் காண்க. மோதுகையின் பின் இரு துணிக்கைகளும் எதிர் $-$ எதிர் திசைகளில் இயங்கின் $e>\dfrac{1}{3}$ எனக் காட்டுக.	
2.	வழியே ஒன்றை ஒன்று நோக்கி முறையே $2u,u$ கதிகளுடன் இயங்கி நேரடியாக மோதுகின்றன. மீள்மைவுக்குணகம் e எனின் மொத்தலின் சற்றுப்பின் A இன் வேகம் $\dfrac{(9e+1)}{4}u$ எனக் காட்டி, B இன் கதியைக் காண்க. மோதுகையின் பின் இரு துணிக்கைகளும் எதிர் $-$ எதிர் திசைகளில் இயங்கின் $e>\dfrac{1}{3}$ எனக் காட்டுக.	
2.	வழியே ஒன்றை ஒன்று நோக்கி முறையே $2u,u$ கதிகளுடன் இயங்கி நேரடியாக மோதுகின்றன. மீள்மைவுக்குணகம் e எனின் மொத்தலின் சற்றுப்பின் A இன் வேகம் $\dfrac{(9e+1)}{4}u$ எனக் காட்டி, B இன் கதியைக் காண்க. மோதுகையின் பின் இரு துணிக்கைகளும் எதிர் $-$ எதிர் திசைகளில் இயங்கின் $e>\dfrac{1}{3}$ எனக் காட்டுக.	
2.	வழியே ஒன்றை ஒன்று நோக்கி முறையே $2u,u$ கதிகளுடன் இயங்கி நேரடியாக மோதுகின்றன. மீள்மைவுக்குணகம் e எனின் மொத்தலின் சற்றுப்பின் A இன் வேகம் $\dfrac{(9e+1)}{4}u$ எனக் காட்டி, B இன் கதியைக் காண்க. மோதுகையின் பின் இரு துணிக்கைகளும் எதிர் $-$ எதிர் திசைகளில் இயங்கின் $e>\dfrac{1}{3}$ எனக் காட்டுக.	

3.	நிலைக்குத்தாக மேல்நோக்கி $\frac{g}{2}$ ஆர்முடுகலுடன் இயங்கும் செவ்வகப்பெட்டி ஒன்றில் மேல்
	முகத்தின் மையத்தில் இணைக்கப்பட்ட ஒப்பமான கப்பி ஒன்றின் மேல் செல்லும் இலேசான
	நீட்டமுடியாத இழையின் நுனிகளில் P,Q எனும் முறையே $m,2m$ திணிவுகள்
	இணைக்கப்பட்டு இழைகள் இறுக்கமாகவும் கப்பியுடன் தொடுகையுறாத இழையின் பகுதிகள் நிலைக்குத்தாகவும் இருக்க பெட்டி தொடர்பாக ஒய்வில் இருந்து விடப்படுகின்றன. இழையின்
	இழுவை <i>2mg</i> எனக் காட்டுக.
4.	$sin heta=rac{1}{n}$ ஆகவுள்ள சாய்தளத்தில் வலு H ஐ உடைய M திணிவுடைய வாகனமொன்று மேல்நோக்கி தடை
4.	$sin heta=rac{1}{n}$ ஆகவுள்ள சாய்தளத்தில் வலு H ஐ உடைய M திணிவுடைய வாகனமொன்று மேல்நோக்கி தடை விசை R இற்கெதிராக செல்லக்கூடிய உயர்கதி u ஆகும். $H=igg(R+rac{Mg}{n}igg)u$ எனக்காட்டுக. $Sin heta=rac{1}{m}$ ஆகவுள்ள
4.	n
4.	n விசை R இந்கெதிராக செல்லக்கூடிய உயர்கதி u ஆகும். $H=\left(R+\dfrac{Mg}{n}\right)u$ எனக்காட்டுக. $Sin heta=\dfrac{1}{m}$ ஆகவுள்ள சாய்தளத்தில் அதே வாகனம் மேல்நோக்கி தடை விசை $2R$ இந்கெதிராக செல்லக்கூடிய உயர்கதி v ஆகும்.
4.	n விசை R இற்கெதிராக செல்லக்கூடிய உயர்கதி u ஆகும். $H=\left(R+rac{Mg}{n} ight)\!u$ எனக்காட்டுக. $Sin heta=rac{1}{m}$ ஆகவுள்ள
4.	n விசை R இந்கெதிராக செல்லக்கூடிய உயர்கதி u ஆகும். $H=\left(R+\dfrac{Mg}{n}\right)u$ எனக்காட்டுக. $Sin heta=\dfrac{1}{m}$ ஆகவுள்ள சாய்தளத்தில் அதே வாகனம் மேல்நோக்கி தடை விசை $2R$ இந்கெதிராக செல்லக்கூடிய உயர்கதி v ஆகும்.
4.	n விசை R இந்கெதிராக செல்லக்கூடிய உயர்கதி u ஆகும். $H=\left(R+\dfrac{Mg}{n}\right)u$ எனக்காட்டுக. $Sin heta=\dfrac{1}{m}$ ஆகவுள்ள சாய்தளத்தில் அதே வாகனம் மேல்நோக்கி தடை விசை $2R$ இந்கெதிராக செல்லக்கூடிய உயர்கதி v ஆகும்.
4.	n விசை R இந்கெதிராக செல்லக்கூடிய உயர்கதி u ஆகும். $H=\left(R+\dfrac{Mg}{n}\right)u$ எனக்காட்டுக. $Sin heta=\dfrac{1}{m}$ ஆகவுள்ள சாய்தளத்தில் அதே வாகனம் மேல்நோக்கி தடை விசை $2R$ இந்கெதிராக செல்லக்கூடிய உயர்கதி v ஆகும்.
4.	n விசை R இந்கெதிராக செல்லக்கூடிய உயர்கதி u ஆகும். $H=\left(R+\dfrac{Mg}{n}\right)u$ எனக்காட்டுக. $Sin heta=\dfrac{1}{m}$ ஆகவுள்ள சாய்தளத்தில் அதே வாகனம் மேல்நோக்கி தடை விசை $2R$ இந்கெதிராக செல்லக்கூடிய உயர்கதி v ஆகும்.
4.	n விசை R இற்கெதிராக செல்லக்கூடிய உயர்கதி u ஆகும். $H=\left(R+\dfrac{Mg}{n}\right)u$ எனக்காட்டுக. $Sin\theta=\dfrac{1}{m}$ ஆகவுள்ள சாய்தளத்தில் அதே வாகனம் மேல்நோக்கி தடை விசை $2R$ இற்கெதிராக செல்லக்கூடிய உயர்கதி v ஆகும். இவ்வியக்கத்திற்கு மேலுள்ள வடிவில் ஒரு கோவையை எழுதி, $u=2v$ எனின் $n=2m$ என உய்த்தறிக.
4.	n விசை R இற்கெதிராக செல்லக்கூடிய உயர்கதி u ஆகும். $H=\left(R+\dfrac{Mg}{n}\right)u$ எனக்காட்டுக. $Sin heta=\dfrac{1}{m}$ ஆகவுள்ள சாய்தளத்தில் அதே வாகனம் மேல்நோக்கி தடை விசை $2R$ இற்கெதிராக செல்லக்கூடிய உயர்கதி v ஆகும். இவ்வியக்கத்திற்கு மேலுள்ள வடிவில் ஒரு கோவையை எழுதி, $u=2v$ எனின் $n=2m$ என உய்த்தறிக.
4.	ளிசை R இற்கெதிராக செல்லக்கூடிய உயர்கதி u ஆகும். $H=\left(R+\dfrac{Mg}{n}\right)u$ எனக்காட்டுக. $Sin\theta=\dfrac{1}{m}$ ஆகவுள்ள சாய்தளத்தில் அதே வாகனம் மேல்நோக்கி தடை விசை $2R$ இற்கெதிராக செல்லக்கூடிய உயர்கதி v ஆகும். இவ்வியக்கத்திற்கு மேலுள்ள வடிவில் ஒரு கோவையை எழுதி, $u=2v$ எனின் $n=2m$ என உய்த்தறிக.
4.	n விசை R இற்கெதிராக செல்லக்கூடிய உயர்கதி u ஆகும். $H=\left(R+\dfrac{Mg}{n}\right)u$ எனக்காட்டுக. $Sin\theta=\dfrac{1}{m}$ ஆகவுள்ள சாய்தளத்தில் அதே வாகனம் மேல்நோக்கி தடை விசை $2R$ இற்கெதிராக செல்லக்கூடிய உயர்கதி v ஆகும். இவ்வியக்கத்திற்கு மேலுள்ள வடிவில் ஒரு கோவையை எழுதி, $u=2v$ எனின் $n=2m$ என உய்த்தறிக.
4.	ளிசை R இற்கெதிராக செல்லக்கூடிய உயர்கதி u ஆகும். $H=\left(R+\dfrac{Mg}{n}\right)u$ எனக்காட்டுக. $Sin\theta=\dfrac{1}{m}$ ஆகவுள்ள சாய்தளத்தில் அதே வாகனம் மேல்நோக்கி தடை விசை $2R$ இற்கெதிராக செல்லக்கூடிய உயர்கதி v ஆகும். இவ்வியக்கத்திற்கு மேலுள்ள வடிவில் ஒரு கோவையை எழுதி, $u=2v$ எனின் $n=2m$ என உய்த்தறிக.
4.	ளிசை R இற்கெதிராக செல்லக்கூடிய உயர்கதி u ஆகும். $H=\left(R+\dfrac{Mg}{n}\right)u$ எனக்காட்டுக. $Sin\theta=\dfrac{1}{m}$ ஆகவுள்ள சாய்தளத்தில் அதே வாகனம் மேல்நோக்கி தடை விசை $2R$ இற்கெதிராக செல்லக்கூடிய உயர்கதி v ஆகும். இவ்வியக்கத்திற்கு மேலுள்ள வடிவில் ஒரு கோவையை எழுதி, $u=2v$ எனின் $n=2m$ என உய்த்தறிக.
4.	ளிசை R இற்கெதிராக செல்லக்கூடிய உயர்கதி u ஆகும். $H=\left(R+\dfrac{Mg}{n}\right)u$ எனக்காட்டுக. $Sin\theta=\dfrac{1}{m}$ ஆகவுள்ள சாய்தளத்தில் அதே வாகனம் மேல்நோக்கி தடை விசை $2R$ இற்கெதிராக செல்லக்கூடிய உயர்கதி v ஆகும். இவ்வியக்கத்திற்கு மேலுள்ள வடிவில் ஒரு கோவையை எழுதி, $u=2v$ எனின் $n=2m$ என உய்த்தறிக.
4.	ளிசை R இற்கெதிராக செல்லக்கூடிய உயர்கதி u ஆகும். $H=\left(R+\dfrac{Mg}{n}\right)u$ எனக்காட்டுக. $Sin\theta=\dfrac{1}{m}$ ஆகவுள்ள சாய்தளத்தில் அதே வாகனம் மேல்நோக்கி தடை விசை $2R$ இற்கெதிராக செல்லக்கூடிய உயர்கதி v ஆகும். இவ்வியக்கத்திற்கு மேலுள்ள வடிவில் ஒரு கோவையை எழுதி, $u=2v$ எனின் $n=2m$ என உய்த்தறிக.

5.	நிலையான புள்ளி $\mathrm O$ இற்கு இணைக்கப்பட்ட l நீள இலேசான நீளா இழையின் மறுமுனையில் m திணிவுடைய
	துணிக்கை ${ m P}$ இணைக்கப்பட்டுள்ளது. துணிக்கை சுயாதீனமாகத் நிலைக்குத்தாக தொங்கும் நிலையில் கிடையாக u
	எனும் வேகத்துடன் வீசப்படுகிறது. இழை கீழ் முகநிலைக்குத்துடன் 60^{0} கோணம் அமைக்கையில் கணநிலை
	ஓய்விற்கு வரும் எனின் $u=\sqrt{gl}$ எனக் காட்டி, இழையில் உள்ள இழுவையைக் காண்க.
6.	
6.	$\underline{a},\underline{b}$ எனும் இரு காவிகள் $ \underline{a} =5, \underline{b} =3,\;\underline{b}\perp\underline{a}+\underline{b}$ ஆகுமாறு உள்ளன. $\underline{a}.\underline{b}=-9$ எனக் காட்டி, $ \underline{a}+\underline{b} $ ஐக்
6.	
6.	$\underline{a},\underline{b}$ எனும் இரு காவிகள் $ \underline{a} =5, \underline{b} =3,\;\underline{b}\perp\underline{a}+\underline{b}$ ஆகுமாறு உள்ளன. $\underline{a}.\underline{b}=-9$ எனக் காட்டி, $ \underline{a}+\underline{b} $ ஐக்
6.	$\underline{a},\underline{b}$ எனும் இரு காவிகள் $ \underline{a} =5, \underline{b} =3,\;\underline{b}\perp\underline{a}+\underline{b}$ ஆகுமாறு உள்ளன. $\underline{a}.\underline{b}=-9$ எனக் காட்டி, $ \underline{a}+\underline{b} $ ஐக்
6.	$\underline{a},\underline{b}$ எனும் இரு காவிகள் $ \underline{a} =5, \underline{b} =3,\;\underline{b}\perp\underline{a}+\underline{b}$ ஆகுமாறு உள்ளன. $\underline{a}.\underline{b}=-9$ எனக் காட்டி, $ \underline{a}+\underline{b} $ ஐக்
6.	$\underline{a},\underline{b}$ எனும் இரு காவிகள் $ \underline{a} =5, \underline{b} =3,\;\underline{b}\perp\underline{a}+\underline{b}$ ஆகுமாறு உள்ளன. $\underline{a}.\underline{b}=-9$ எனக் காட்டி, $ \underline{a}+\underline{b} $ ஐக்
6.	$\underline{a},\underline{b}$ எனும் இரு காவிகள் $ \underline{a} =5, \underline{b} =3,\;\underline{b}\perp\underline{a}+\underline{b}$ ஆகுமாறு உள்ளன. $\underline{a}.\underline{b}=-9$ எனக் காட்டி, $ \underline{a}+\underline{b} $ ஐக்
6.	$\underline{a},\underline{b}$ எனும் இரு காவிகள் $ \underline{a} =5, \underline{b} =3,\;\underline{b}\perp\underline{a}+\underline{b}$ ஆகுமாறு உள்ளன. $\underline{a}.\underline{b}=-9$ எனக் காட்டி, $ \underline{a}+\underline{b} $ ஐக்
6.	$\underline{a},\underline{b}$ எனும் இரு காவிகள் $ \underline{a} =5, \underline{b} =3,\;\underline{b}\perp\underline{a}+\underline{b}$ ஆகுமாறு உள்ளன. $\underline{a}.\underline{b}=-9$ எனக் காட்டி, $ \underline{a}+\underline{b} $ ஐக்
6.	$\underline{a},\underline{b}$ எனும் இரு காவிகள் $ \underline{a} =5, \underline{b} =3,\;\underline{b}\perp\underline{a}+\underline{b}$ ஆகுமாறு உள்ளன. $\underline{a}.\underline{b}=-9$ எனக் காட்டி, $ \underline{a}+\underline{b} $ ஐக்
6.	$\underline{a},\underline{b}$ எனும் இரு காவிகள் $ \underline{a} =5, \underline{b} =3,\;\underline{b}\perp\underline{a}+\underline{b}$ ஆகுமாறு உள்ளன. $\underline{a}.\underline{b}=-9$ எனக் காட்டி, $ \underline{a}+\underline{b} $ ஐக்
6.	$\underline{a},\underline{b}$ எனும் இரு காவிகள் $ \underline{a} =5, \underline{b} =3,\;\underline{b}\perp\underline{a}+\underline{b}$ ஆகுமாறு உள்ளன. $\underline{a}.\underline{b}=-9$ எனக் காட்டி, $ \underline{a}+\underline{b} $ ஐக்
6.	$\underline{a},\underline{b}$ எனும் இரு காவிகள் $ \underline{a} =5, \underline{b} =3,\;\underline{b}\perp\underline{a}+\underline{b}$ ஆகுமாறு உள்ளன. $\underline{a}.\underline{b}=-9$ எனக் காட்டி, $ \underline{a}+\underline{b} $ ஐக்
6.	$\underline{a},\underline{b}$ எனும் இரு காவிகள் $ \underline{a} =5, \underline{b} =3,\;\underline{b}\perp\underline{a}+\underline{b}$ ஆகுமாறு உள்ளன. $\underline{a}.\underline{b}=-9$ எனக் காட்டி, $ \underline{a}+\underline{b} $ ஐக்
6.	$\underline{a},\underline{b}$ எனும் இரு காவிகள் $ \underline{a} =5, \underline{b} =3,\;\underline{b}\perp\underline{a}+\underline{b}$ ஆகுமாறு உள்ளன. $\underline{a}.\underline{b}=-9$ எனக் காட்டி, $ \underline{a}+\underline{b} $ ஐக்
6.	$\underline{a},\underline{b}$ எனும் இரு காவிகள் $ \underline{a} =5, \underline{b} =3,\;\underline{b}\perp\underline{a}+\underline{b}$ ஆகுமாறு உள்ளன. $\underline{a}.\underline{b}=-9$ எனக் காட்டி, $ \underline{a}+\underline{b} $ ஐக்

7.	W நிறைகொண்ட ஒப்பமான சீரான வட்டத்தட்டு கிடையுடன் α சாய்வுடைய
,.	சாய்தளத்தில் நிலைக்குத்தாக இருக்க வைக்கப்பட்டு படத்தில் காட்டியவாறு
	சாய்தளத்திற்கு சமாந்தரமான, தாக்கக்கோடு மையம் C இனூடு செல்லும் விசை P
	இனால் சமநிலையில் வைத்திருக்கப்படுகிறது. விசை ${ m P}$ ஐயும் மறுதாக்கம் R ஐயும்
	கணிக்க. $P>R$ எனின் $lpha>45^0$ என உய்த்தறிக.
	2 1 1 1 to to the second secon
•	
8.	w நிறையுடைய துணிக்கையொன்று கரடான கிடையுடன் $30^{ m 0}$ சாய்வுள்ள சாய்த்தளத்தில் வைக்கப்பட்டு, தளத்திற்கு
8.	w நிறையுடைய துணிக்கையொன்று கரடான கிடையுடன் 30° சாய்வுள்ள சாய்த்தளத்தில் வைக்கப்பட்டு, தளத்திற்கு சமாந்தரமாக மேல்நோக்கி சீராக அதிகரிக்கும் விசை பிரயோகிக்கப்படுகிறது. பொருளை தளத்தின் வழியே மேல்நோக்கி
8.	w நிறையுடைய துணிக்கையொன்று கரடான கிடையுடன் $30^{ m 0}$ சாய்வுள்ள சாய்த்தளத்தில் வைக்கப்பட்டு, தளத்திற்கு
8.	w நிறையுடைய துணிக்கையொன்று கரடான கிடையுடன் 30° சாய்வுள்ள சாய்த்தளத்தில் வைக்கப்பட்டு, தளத்திற்கு சமாந்தரமாக மேல்நோக்கி சீராக அதிகரிக்கும் விசை பிரயோகிக்கப்படுகிறது. பொருளை தளத்தின் வழியே மேல்நோக்கி
8.	w நிறையுடைய துணிக்கையொன்று கரடான கிடையுடன் 30° சாய்வுள்ள சாய்த்தளத்தில் வைக்கப்பட்டு, தளத்திற்கு சமாந்தரமாக மேல்நோக்கி சீராக அதிகரிக்கும் விசை பிரயோகிக்கப்படுகிறது. பொருளை தளத்தின் வழியே மேல்நோக்கி இயக்கத் தேவையான மிகக்குறைந்த விசையைக் காண்க. உராய்வுக்கோணம் 30° ஆகும்.
8.	w நிறையுடைய துணிக்கையொன்று கரடான கிடையுடன் 30° சாய்வுள்ள சாய்த்தளத்தில் வைக்கப்பட்டு, தளத்திற்கு சமாந்தரமாக மேல்நோக்கி சீராக அதிகரிக்கும் விசை பிரயோகிக்கப்படுகிறது. பொருளை தளத்தின் வழியே மேல்நோக்கி இயக்கத் தேவையான மிகக்குறைந்த விசையைக் காண்க. உராய்வுக்கோணம் 30° ஆகும்.
8.	w நிறையுடைய துணிக்கையொன்று கரடான கிடையுடன் 30° சாய்வுள்ள சாய்த்தளத்தில் வைக்கப்பட்டு, தளத்திற்கு சமாந்தரமாக மேல்நோக்கி சீராக அதிகரிக்கும் விசை பிரயோகிக்கப்படுகிறது. பொருளை தளத்தின் வழியே மேல்நோக்கி இயக்கத் தேவையான மிகக்குறைந்த விசையைக் காண்க. உராய்வுக்கோணம் 30° ஆகும்.
8.	w நிறையுடைய துணிக்கையொன்று கரடான கிடையுடன் 30° சாய்வுள்ள சாய்த்தளத்தில் வைக்கப்பட்டு, தளத்திற்கு சமாந்தரமாக மேல்நோக்கி சீராக அதிகரிக்கும் விசை பிரயோகிக்கப்படுகிறது. பொருளை தளத்தின் வழியே மேல்நோக்கி இயக்கத் தேவையான மிகக்குறைந்த விசையைக் காண்க. உராய்வுக்கோணம் 30° ஆகும்.
8.	w நிறையுடைய துணிக்கையொன்று கரடான கிடையுடன் 30° சாய்வுள்ள சாய்த்தளத்தில் வைக்கப்பட்டு, தளத்திற்கு சமாந்தரமாக மேல்நோக்கி சீராக அதிகரிக்கும் விசை பிரயோகிக்கப்படுகிறது. பொருளை தளத்தின் வழியே மேல்நோக்கி இயக்கத் தேவையான மிகக்குறைந்த விசையைக் காண்க. உராய்வுக்கோணம் 30° ஆகும்.
8.	w நிறையுடைய துணிக்கையொன்று கரடான கிடையுடன் 30° சாய்வுள்ள சாய்த்தளத்தில் வைக்கப்பட்டு, தளத்திற்கு சமாந்தரமாக மேல்நோக்கி சீராக அதிகரிக்கும் விசை பிரயோகிக்கப்படுகிறது. பொருளை தளத்தின் வழியே மேல்நோக்கி இயக்கத் தேவையான மிகக்குறைந்த விசையைக் காண்க. உராய்வுக்கோணம் 30° ஆகும்.
8.	w நிறையுடைய துணிக்கையொன்று கரடான கிடையுடன் 30° சாய்வுள்ள சாய்த்தளத்தில் வைக்கப்பட்டு, தளத்திற்கு சமாந்தரமாக மேல்நோக்கி சீராக அதிகரிக்கும் விசை பிரயோகிக்கப்படுகிறது. பொருளை தளத்தின் வழியே மேல்நோக்கி இயக்கத் தேவையான மிகக்குறைந்த விசையைக் காண்க. உராய்வுக்கோணம் 30° ஆகும்.
8.	w நிறையுடைய துணிக்கையொன்று கரடான கிடையுடன் 30° சாய்வுள்ள சாய்த்தளத்தில் வைக்கப்பட்டு, தளத்திற்கு சமாந்தரமாக மேல்நோக்கி சீராக அதிகரிக்கும் விசை பிரயோகிக்கப்படுகிறது. பொருளை தளத்தின் வழியே மேல்நோக்கி இயக்கத் தேவையான மிகக்குறைந்த விசையைக் காண்க. உராய்வுக்கோணம் 30° ஆகும்.
8.	w நிறையுடைய துணிக்கையொன்று கரடான கிடையுடன் 30° சாய்வுள்ள சாய்த்தளத்தில் வைக்கப்பட்டு, தளத்திற்கு சமாந்தரமாக மேல்நோக்கி சீராக அதிகரிக்கும் விசை பிரயோகிக்கப்படுகிறது. பொருளை தளத்தின் வழியே மேல்நோக்கி இயக்கத் தேவையான மிகக்குறைந்த விசையைக் காண்க. உராய்வுக்கோணம் 30° ஆகும்.
8.	w நிறையுடைய துணிக்கையொன்று கரடான கிடையுடன் 30° சாய்வுள்ள சாய்த்தளத்தில் வைக்கப்பட்டு, தளத்திற்கு சமாந்தரமாக மேல்நோக்கி சீராக அதிகரிக்கும் விசை பிரயோகிக்கப்படுகிறது. பொருளை தளத்தின் வழியே மேல்நோக்கி இயக்கத் தேவையான மிகக்குறைந்த விசையைக் காண்க. உராய்வுக்கோணம் 30° ஆகும்.
8.	w நிறையுடைய துணிக்கையொன்று கரடான கிடையுடன் 30° சாய்வுள்ள சாய்த்தளத்தில் வைக்கப்பட்டு, தளத்திற்கு சமாந்தரமாக மேல்நோக்கி சீராக அதிகரிக்கும் விசை பிரயோகிக்கப்படுகிறது. பொருளை தளத்தின் வழியே மேல்நோக்கி இயக்கத் தேவையான மிகக்குறைந்த விசையைக் காண்க. உராய்வுக்கோணம் 30° ஆகும்.
8.	w நிறையுடைய துணிக்கையொன்று கரடான கிடையுடன் 30° சாய்வுள்ள சாய்த்தளத்தில் வைக்கப்பட்டு, தளத்திற்கு சமாந்தரமாக மேல்நோக்கி சீராக அதிகரிக்கும் விசை பிரயோகிக்கப்படுகிறது. பொருளை தளத்தின் வழியே மேல்நோக்கி இயக்கத் தேவையான மிகக்குறைந்த விசையைக் காண்க. உராய்வுக்கோணம் 30° ஆகும்.
8.	w நிறையுடைய துணிக்கையொன்று கரடான கிடையுடன் 30° சாய்வுள்ள சாய்த்தளத்தில் வைக்கப்பட்டு, தளத்திற்கு சமாந்தரமாக மேல்நோக்கி சீராக அதிகரிக்கும் விசை பிரயோகிக்கப்படுகிறது. பொருளை தளத்தின் வழியே மேல்நோக்கி இயக்கத் தேவையான மிகக்குறைந்த விசையைக் காண்க. உராய்வுக்கோணம் 30° ஆகும்.
8.	w நிறையுடைய துணிக்கையொன்று கரடான கிடையுடன் 30° சாய்வுள்ள சாய்த்தளத்தில் வைக்கப்பட்டு, தளத்திற்கு சமாந்தரமாக மேல்நோக்கி சீராக அதிகரிக்கும் விசை பிரயோகிக்கப்படுகிறது. பொருளை தளத்தின் வழியே மேல்நோக்கி இயக்கத் தேவையான மிகக்குறைந்த விசையைக் காண்க. உராய்வுக்கோணம் 30° ஆகும்.

). கார் தி	ிருடன்	ஒருவன	пш С													
ஆவன்	காரை	இயக்கு	5வதற்க	ாக எ	ழுமாற	ாக திற	<u> ந</u> ப்புகன	ளப் ெ	பாருத்தி	வெற்றி	பெறாத	திறப்பு	 ടണെ	நீக்குகிறா	ான்.	அவன்
இரட்டை	_ តាឈ់ាំខ	களின் எ	ரத்தனிப்	பபுக்கஎ	ளில் க	ாரை இ	இயக்கு	வதற்கா	ன நிகழ்	தகவைக்	காண் க					
••••																
• • • • • • • • • • • • • • • • • • • •																
•••••																
•••••																
•••••																
•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		•••••	•••••	• • • • • •	• • • • • • • • •				• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • •	• • • • •
					• • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • •								• • • • •	
•••••		•••••		• • • • • •		• • • • • • •			• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •		
		•••••		• • • • • •		• • • • • • •					• • • • • • • • • • • • • • • • • • • •					
															• • • • •	• • • • •
•••••																
. {1,2,3,4								•••••								
. {1,2,3,4 இதிலிரு		எனும்				x		 ളെപ്പെ,	நியமவி	 லகல் எ	ன்பன (ழறையே	3, \		5 . 561	
. {1,2,3,4 இதிலிரு காண்க.	4,5} ந்து	எனும் y = 2 <i>x</i>	 தொடை +3 எ	 _ப்புள்6 னும்	 விகள் ஏகபரி၊	 <i>X</i>	 இன் இ ாக உ	 இடை, _ருமாற்ற	 நியமவி Bப்படும்	 லகல் எ <i>y</i> புள்	ன்பன (ளிகளின்	 முறையே இடை	 3, \ ъшщம்	 /2 எனச் நியமவி	5 ക് லகவ	 ரட்டுக லையும்
. {1,2,3,4 இதிலிரு காண்க.	4,5} ந்து	எனும் y = 2 <i>x</i>	 தொடை +3 எ	 _ப்புள்6 னும்	 விகள் ஏகபரி၊	 <i>X</i>	 இன் இ ாக உ	 இடை, _ருமாற்ற	 நியமவி Bப்படும்	 லகல் எ <i>y</i> புள்	ன்பன (ளிகளின்	 முறையே இடை	 3, \ ъшщம்		5 ക് லகவ	 ரட்டுக லையும்
. {1,2,3,4 இதிலிரு காண்க.	4,5} ந்து	எனும் y = 2 <i>x</i>	 தொடை +3 எ	 _ப்புள்6 னும்	 விகள் ஏகபரி၊	 <i>X</i>	 இன் இ ாக உ	 இடை, _ருமாற்ற	 நியமவி Bப்படும்	 லகல் எ <i>y</i> புள்	ன்பன (ளிகளின்	 முறையே இடை	 3, \ ъшщம்	 /2 எனச் நியமவி	5 ക് லகவ	 ரட்டுக லையும்
. {1,2,3,4 இதிலிரு காண்க.	4,5} ந்து	எனும் y = 2 <i>x</i>	 தொடை +3 எ	 _ப்புள்6 னும்	 விகள் ஏகபரி၊	 <i>X</i>	 இன் இ ாக உ	 இடை, _ருமாற்ற	 நியமவி Bப்படும்	 லகல் எ <i>y</i> புள்	ன்பன (ளிகளின்	 முறையே இடை	 3, \ ъшщம்	 /2 எனச் நியமவி	5 ക് லகவ	 ரட்டுக லையுட
. {1,2,3,4 இதிலிரு காண்க.	4,5} ந்து	எனும் y = 2 <i>x</i>	 தொடை +3 எ	 _ப்புள்6 னும்	 விகள் ஏகபரி၊	 <i>X</i>	 இன் இ ாக உ	 இடை, _ருமாற்ற	 நியமவி Bப்படும்	 லகல் எ <i>y</i> புள்	ன்பன (ளிகளின்	 முறையே இடை	 3, \ ъшщம்	 /2 எனச் நியமவி	5 ക് லகவ	 ரட்டுக லையுட
. {1,2,3,4 இதிலிரு காண்க.	4,5} ந்து	எனும் y = 2 <i>x</i>	 தொடை +3 எ	 _ப்புள்6 னும்	 விகள் ஏகபரி၊	 <i>X</i>	 இன் இ ாக உ	 இடை, _ருமாற்ற	 நியமவி Bப்படும்	 லகல் எ <i>y</i> புள்	ன்பன (ளிகளின்	 முறையே இடை	 3, \ ъшщம்	 /2 எனச் நியமவி	5 ക് லகவ	 ாட்டுச லையும
. {1,2,3,4 இதிலிரு காண்க.	4,5} ந்து	எனும் y = 2 <i>x</i>	 தொடை +3 எ	 _ப்புள்6 னும்	 விகள் ஏகபரி၊	 <i>X</i>	 இன் இ ாக உ	 இடை, _ருமாற்ற	 நியமவி Bப்படும்	 லகல் எ <i>y</i> புள்	ன்பன (ளிகளின்	 முறையே இடை	 3, \ ъшщம்	 /2 எனச் நியமவி	5 ക് லகவ	 ரட்டுக லையுட
. {1,2,3,4 இதிலிரு காண்க.	4,5} ந்து	எனும் y = 2 <i>x</i>	 தொடை +3 எ	 _ப்புள்6 னும்	 விகள் ஏகபரி၊	 <i>X</i>	 இன் இ ாக உ	 இடை, _ருமாற்ற	 நியமவி Bப்படும்	 லகல் எ <i>y</i> புள்	ன்பன (ளிகளின்	 முறையே இடை	 3, \ ъшщம்	 /2 எனச் நியமவி	5 ക് லகவ	 ரட்டுக லையுட
. {1,2,3,4 இதிலிரு காண்க.	4,5} ந்து	எனும் y = 2 <i>x</i>	 தொடை +3 எ	 _ப்புள்6 னும்	 விகள் ஏகபரி၊	 <i>X</i>	 இன் இ ாக உ	 இடை, _ருமாற்ற	 நியமவி Bப்படும்	 லகல் எ <i>y</i> புள்	ன்பன (ளிகளின்	 முறையே இடை	 3, \ ъшщம்	 /2 எனச் நியமவி	5 ക് லகவ	 ரட்டுக லையும்
. {1,2,3,4 இதிலிரு காண்க.	4,5} ந்து	எனும் y = 2 <i>x</i>	 தொடை +3 எ	 _ப்புள்6 னும்	 விகள் ஏகபரி၊	 <i>X</i>	 இன் இ ாக உ	 இடை, _ருமாற்ற	 நியமவி Bப்படும்	 லகல் எ <i>y</i> புள்	ன்பன (ளிகளின்	 முறையே இடை	 3, \ ъшщம்	 /2 எனச் நியமவி	5 ക് லகவ	 ரட்டுக லையுட
. {1,2,3,4 இதிலிரு காண்க.	4,5} ந்து	எனும் y = 2 <i>x</i>	 தொடை +3 எ	 _ப்புள்6 னும்	 விகள் ஏகபரி၊	 <i>X</i>	 இன் இ ாக உ	 இடை, _ருமாற்ற	 நியமவி Bப்படும்	 லகல் எ <i>y</i> புள்	ன்பன (ளிகளின்	 முறையே இடை	 3, \ ъшщம்	 /2 எனச் நியமவி	5 ക് லகவ	 ாட்டுச லையும
. {1,2,3,4 இதிலிரு காண்க.	4,5} ந்து	எனும் y = 2 <i>x</i>	 தொடை +3 எ	 _ப்புள்6 னும்	 விகள் ஏகபரி၊	 <i>X</i>	 இன் இ ாக உ	 இடை, _ருமாற்ற	 நியமவி Bப்படும்	 லகல் எ <i>y</i> புள்	ன்பன (ளிகளின்	 முறையே இடை	 3, \ ъшщம்	 /2 எனச் நியமவி	5 ക് லகவ	 ாட்டுச லையும
. {1,2,3,4 இதிலிரு காண்க.	4,5} ந்து	எனும் y = 2 <i>x</i>	 தொடை +3 எ	 _ப்புள்6 னும்	 விகள் ஏகபரி၊	 <i>X</i>	 இன் இ ாக உ	 இடை, _ருமாற்ற	 நியமவி Bப்படும்	 லகல் எ <i>y</i> புள்	ன்பன (ளிகளின்	 முறையே இடை	 3, \ ъшщம்	 /2 எனச் நியமவி	5 ക് லகவ	 ாட்டுச லையும
. {1,2,3,4 இதிலிரு காண்க.	4,5} ந்து	எனும் y = 2 <i>x</i>	 தொடை +3 எ	 _ப்புள்6 னும்	 விகள் ஏகபரி၊	 <i>X</i>	 இன் இ ாக உ	 இடை, _ருமாற்ற	 நியமவி Bப்படும்	 லகல் எ <i>y</i> புள்	ன்பன (ளிகளின்	 முறையே இடை	 3, \ ъшщம்	 /2 எனச் நியமவி	5 ക് லகவ	 ாட்டுச லையும
. {1,2,3,4 இதிலிரு காண்க.	4,5} ந்து	எனும் y = 2 <i>x</i>	 தொடை +3 எ	 _ப்புள்6 னும்	 விகள் ஏகபரி၊	 <i>X</i>	 இன் இ ாக உ	 இடை, _ருமாற்ற	 நியமவி Bப்படும்	 லகல் எ <i>y</i> புள்	ன்பன (ளிகளின்	 முறையே இடை	 3, \ ъшщம்	 /2 எனச் நியமவி	5 ക് லகவ	 ாட்டுச லையும
. {1,2,3,4 இதிலிரு காண்க.	4,5} ந்து	எனும் y = 2 <i>x</i>	 தொடை +3 எ	 _ப்புள்6 னும்	 விகள் ஏகபரி၊	 <i>X</i>	 இன் இ ாக உ	 இடை, _ருமாற்ற	 நியமவி Bப்படும்	 லகல் எ <i>y</i> புள்	ன்பன (ளிகளின்	 முறையே இடை	 3, \ ъшщம்	 /2 எனச் நியமவி	5 ക് லகவ	 ாட்டுச லையும
. {1,2,3,4 இதிலிரு காண்க.	4,5} ந்து	எனும் y = 2 <i>x</i>	 தொடை +3 எ	 _ப்புள்6 னும்	 விகள் ஏகபரி၊	 <i>X</i>	 இன் இ ாக உ	 இடை, _ருமாற்ற	 நியமவி Bப்படும்	 லகல் எ <i>y</i> புள்	ன்பன (ளிகளின்	 முறையே இடை	 3, \ ъшщம்	 /2 எனச் நியமவி	5 ക് லகவ	 ாட்டுச லையும

MORA E-TAMILS 2021 | Tamil Stude at a Saculty of Enginerating University of Moratuva LMORA - TAMILS 2021 | Tamil Stude at a Saculty of Enginerating University of Moratuva LMORA - TAMILS 2021 | Tamil Stude at a Saculty of Enginerating University of Moratuva LMORA - TAMILS 2021 | Tamil Stude at a Saculty of Engineering University of Moratuva LMORA - TAMILS 2021 | Tamil Stude at a Saculty of Engineering University of Moratuva LMORA - TAMILS 2021 | Tamil Stude at a Saculty of Engineering University of Moratuva LMORA - TAMILS 2021 | Tamil Stude at a Saculty of Engineering University of E Tamil Students, Faculty of Engineering University of Constitution of MORA E-TAMILS 2021 பெறியியற் பீடதமிழ் மாணவர்கள் | மெற**்டுட்டுத்தும் ுக்-பெட்டத**் **உயர்க**ரு **மா5001பிருக்கொகள் 601**1 மாணவர்கள் மொறட்டுவைப் பல்கலைக்கழக MORA E-TAMILS 2021 | Tamil Students, Faculty of Engineering University of Moral wal MCE FaTAMILS 2021 | Tamil Students, Faculty of Engineering, University of Moratuwa மோற்ட்டுவைப் பல்கலைக்கழக பொறியியற் பீட தமிழ் மாணவுகள் Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2021 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2021

கல்விப் பொதுத் தராதரப் பத்திர(உயர் தர) முன்னோடிப் பரீட்சை - 2019 General Certificate of Education (Adv.Level) Pilot Examination - 2019

இணைந்த கணிதம் II Combined Mathematics II

பகுதி B

ஐந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக.

11. (*a*)

மேலுள்ள படமானது வீதியொன்றின் சாய்வான பகுதி AC ஐயும் கிடையான பகுதி CE ஐயும் காட்டுகிறது. f Aஇல் ஒய்வில் இருந்து புறப்படும் கார். சீரான ஆர்முகல் a உடன் சென்று ${f B}$ எனும் இடத்தில் 3u கதியை அடைகிறது. உடனயாக தடுப்புக்களைப்பிரயோகித்து சீரான அமர்முடுகல் a இனால் $\, \, {
m C} \,$ ஐ அடையும் போது கதி 2u ஐ பெறுகிறது. பின் சீரான கதி 2u உடன் கிடைவீதியில் இயங்குகிறது. அவ்வீதியில் D இல் உள்ள ஒடுக்கமான குழியை கார் தாண்டும் போது ஏற்படும் கணக்குலுக்கம் காரணமாக கதி u ஆல் குறைகிறது. பின்னர் தொடர்ந்து சீரான கதியுடன் இயங்கி புள்ளி E ஐக் கடந்து செல்கிறது. ${
m CD}$ வழியே கார் இயங்க எடுத்த நேரம் $\frac{u}{2a}$ ஆகவும் DE=d ஆகவும் $AC>\!\!CE$ ஆகவும் உள்ளது. A இல் இருந்து E வரைக்கும் காரின் இயக்கத்திற்கான கதி – நேர வரைபை வரைந்து இதிலிருந்து.

(i) கார் ஆர்முடுகல், அமர்முடுகலுடன் இயங்கிய நேரங்கள் முறையே
$$\frac{3u}{a}, \frac{u}{a}$$
 எனவும்.

(ii) சாய்வான வீதியின் நீளம் $\frac{7u^2}{a}$ எனவும் காட்டுக

(iii) தூரம் CD ஐக் காண்க.

$$u > \sqrt{\frac{3ad}{19}}$$
 என்பதை உய்த்தறிக.

 $(b\)\ a$ ஆகலம் கொண்ட நேரிய ஆறு ஒன்று v வேகத்தில் பாய்கின்றது. நிலையான நீரில் λv கதியில் நீந்தவல்ல மனிதன், ஒரு கரையில் இருந்து மறுகரையை நீந்தி அடைய விரும்புகின்றான். இங்கு $\lambda < 1$ ஆகும். ஆவன் ஒரு கரையில் A எனும் புள்ளியில் இருந்து நேர் எதிர் புள்ளி B இற்கு அருகில் ஆற்நோட்ட திசையில் உள்ள புள்ளி C ஐ அடைகின்றான். BC = x எனின் $x \sin \alpha + a \cos \alpha = \frac{a}{\lambda}$ எனக் காட்டுக. இங்கு α ஏன்பது ஆறுபாயும் திசைக்கு எதிர் திசையுடன் λv அமையும் கோணமாகும்.

lpha மாறுகின்ற போது x இன் இழிவுப் பெறுமானம் $\dfrac{\sqrt{1-\lambda^2}}{\lambda}a$ எனக் காட்டுக.

பொருத்தமான வேக முக்கோணியை வரைவதன் மூலம் அல்லது வேறுவிதமாக x இன் இழிவுக்குரிய lpha இன் பெறுமானம் $\cos^{-1}(\lambda)$ எனக் காட்டுக.

12. (a) உருவில் காட்டப்பட்டுள்ள $BEG = \theta$ ஆக இருக்கும் சரிவகம் ABEG ஆனது இலேசான ஒப்பமான குற்றியின் புவியீர்ப்பு மையத்தினூடாக உள்ள ஒரு நிலைக்குத்துக் குறுக்குவெட்டாகும். இங்கு $\theta = Sin^{-1}\frac{3}{5}$. BE,AG ஆகிய கோடுகள்

நிலைக்குத்தானவையும் கோடு EG ஆனது அதனைக் கொண்டுள்ள முகத்தின் ஓர் அதியுயர் சரிவுக்கோடாகும். குற்றியினுள் BA இற்குச் சமாந்தரமான ஒரு மெல்லிய ஒப்பமான தவாளிப்பு CD உள்ளது. AB ஒப்பமான கிடை நிலத்தின் மீது இருக்குமாறு குற்றி வைக்கப்பட்டுள்ளது.

திணிவுகள் 2m,m ஐ உடைய முறையே P,Q எனும் இரு துணிக்கைகள் முறையே EG,CD ஆகியவற்றின் மீது வைக்கப்பட்டு அவை புள்ளிகள் C,E இல் இருக்கும் சிறிய ஒப்பமான இலேசான கப்பிகளிற்கு மேலாகச் செல்லும் ஒர் இலேசான நீட்டமுடியாத இழையினால் தொடுக்கப்பட்டுள்ளன. இழை இறுக்கமாக இருக்க படத்தில் காட்டிய அமைவிலிருந்து தொகுதி ஒய்வில் இருந்து விடுவிக்கப்படுகிறது.

 $g=10ms^{-2}$ எனக் கொண்டு துணிக்கை P இற்கு EG வழியேயும், துணிக்கை Q இற்கு DC வழியேயும் தொகுதிக்கு AB வழியேயும் இயக்கச் சமன்பாடுகளை எழுதுக.

இலிருந்து குற்றியின் ஆர்முடுகல் $\stackrel{
ightharpoonup}{AB}$ இன் திசையில் $\frac{5}{14}ms^{-2}$ எனக்காட்டி குற்றி தொடர்பான P இன் ஆர்முடுகலை காண்க.

துணிக்கை P ஆனது நேரம் $\frac{7}{5}s$ இயங்கி G ஐ அடையும் போது (துணிக்கை Q ஆனது C ஐ அடையவில்லை) இழை அறும் எனின் P ஆனது குற்றியை விட்டு விலகும் போதுள்ள வேகத்தின் பருமன் $2\sqrt{13}ms^{-1}$ எனவும், திசை கிடையுடன் $\tan^{-1}\!\left(\frac{3}{2}\right)$ எனவும் காட்டுக.

தொடரும் புவியர்ப்பின் கீழ் இயக்கத்தில் துணிக்கை P ஆனது நேரம் $\dfrac{1}{2}s$ இல் நிலத்தை அடிக்கும் எனின் AG=4.25m எனக் காட்டுக.

 $(b\)\,O$ வை மையமாகவும் a ஐ ஆரையாகவும் கொண்ட ஒப்பமான வட்டக்குழாயின் ஒரு பகுதி AB ஆனது நிலைக்குத்து தளத்தில் நிலையாக்கப்பட்டுள்ளது. இங்கு OA நிலைக்குத்தாகவும் $A\stackrel{\wedge}{O}B=120^0$ ஆகவும் உள்ளது m திணிவுடைய ஒரு துணிக்கை P ஆனது A இல் குழாயில் வைக்கப்பட்டு, கிடையாக $\sqrt{\lambda ag}$ உடன் குழாயினுள் எறியப்படுகிறது. இங்கு λ நேர் மாறிலியாகும்.

OP ஆனது கீழ்முக நிலைக்குத்துடன் heta கோணத்தை ஆக்கும் போது P இன் கதி v ஆனது $v^2 = ag(\lambda - 2 + 2\cos\theta)$ ஆல்தரப்படும் எனக்காட்டி, குழாயிற்கும் துணிக்கை P இற்கிடையிலான மறுதாக்கம் R ஐக் காண்க.

 $\lambda=3$ எனின் துணிக்கை P ஆனது Bஐ மட்டுமட்டாக அடையும் எனக்காட்டி, A இற்கும் B இற்கும் இடையில் துணிக்கை P இன் திசை புறமாற்றமடையும் எனவும் காட்டுக.

AL/2019/10/T-II

13.

திணிவு m ஐ உடைய ஒரு துணிக்கை P ஆனது, இயற்கை நீளம் 2a, மீள்தன்மைமட்டு 2mg ஐயும் இயற்கை நீளம் a மீள்தன்மை மட்டு $\frac{mg}{2}$ ஐயும் உடைய இரு இலேசான இழைகளின் இரு நுனிகளுடன் இணைக்கப்பட்டுள்ளது. ஒப்பமான கிடையுடன் 30^{0} சாய்வுடைய சாய்தளத்தின் மேல் துணிக்கை P வைக்கப்பட்டு இழையின் சுயாதீன முனைகளில் 2a இயற்கை நீளமுடையதன் நுனி சாய்தளத்தில் மேலே உள்ள நிலையான புள்ளி A இந்கும், a இயற்கை நீளமுடையதன் நுனி சாய்தளத்தில் கீழே உள்ள நிலையான புள்ளி B இற்கும் இணைக்கப்பட்டுள்ளன. இழைகள் சாய்தளத்தின் அதியுபர் சாய்வுக்கோட்டின் வழியே இருக்க AB = 5a ஆகுமாறுள்ளது. P ஆனது சாய்தளத்தில் புள்ளி C இல் சமநிலையில் இருப்பின் AC = 3a எனக் காட்டுக. இப்போது துணிக்கை P ஆனது AD = 4a ஆகுமாறு சாய்தளத்திலுள்ள புள்ளி D இற்கு கொண்டுவரப்பட்டு, அதிலிருந்து மெதுவாக ஒய்விலிருந்து விடப்படுகிறது. இரு இழைகளும் இறுக்கமாக இருக்க இழை AP இன் நீளம் x ஆக இருக்கும் போது $x + \frac{3g}{2a}(x - 3a) = 0$ எனக் காட்டுக.

$$X=x-3a,\omega^2=rac{3g}{2a}$$
 ஆக இருக்க சமன்பாட்டை $\ddot{X}+\omega^2X=0$ எனும் வடிவில் எழுதுக.

சூத்திரம் $\stackrel{\cdot}{X}^2=\omega^2(c^2-X^2)$ ஐக் கருத்தில் கொண்டு வீச்சம் c ஐக் காண்க.

துணிக்கை P ஆனது அதன் மிக உயர்ந்த இடமான புள்ளி E ஐ அடையும் போது AE ஐக் காண்க. P ஆனது E ஐ அடையும் கணத்தில் இழை AP வெட்டப்படுகிறது.

புதிய இயக்கத்தின் எளிமையிசை இயக்கச்சமன்பாட்டைப் பெற்று அதன் அலைவுமையம் B இல் இருக்கும் எனக்காட்டுக.

துணிக்கை P, D இல் இருந்து இயங்கத்தொடங்கி மீண்டும் D ஐ அடைய எடுக்கும் நேரம் $\sqrt{\frac{2a}{g}} \left[\frac{\pi}{\sqrt{3}} + \cos^{-1} \left(\frac{1}{3} \right) \right]$ எனக் காட்டுக.

14. (a) ஆள்கூற்று அச்சுக்களின் உற்பத்தி O ஆக இருக்க முக்கோணி OAB இல் A,B இன் தானக்காவிகள் முறையே $\underline{a},\underline{b}$ ஆகும். நீட்டப்பட்ட OA இல் Q எனும் புள்ளி OQ:AQ=3:2 ஆகவும் பக்கம் AB யில் புள்ளி R ஆனது AR:RB=2:1 ஆகவும் பக்கம் BO வில் புள்ளி P ஆனது $BP:PO=\lambda:1$ ஆகுமாறும் உள்ளது. P,Q,R ஆகியவற்றின் தானக்காவிகள் $\underline{a},\underline{b},\lambda$ ஆகியவற்றில் காண்க.

இதிலிருந்து P,R,Q ஏன்பன ஒரு நோகோட்டுப்புள்ளிகள் எனின் $\lambda=rac{1}{3}$ எனக் காட்டுக.

- (b) oxy தளத்தில் A,B,C,D என்பவற்றின் தானக்காவிகள் முறையே $\sqrt{3}\underline{i}+\underline{j}$, $4\underline{j}$, $-\sqrt{3}\underline{i}+\underline{3}\underline{j}$, $-\sqrt{3}\underline{i}+\underline{j}$ ஆகும். $\overrightarrow{OA}, \overrightarrow{AB}, \overrightarrow{CB}, \overrightarrow{DC}, \overrightarrow{OD}, \overrightarrow{BO}$ வழியே முறையே $4\sqrt{3}, 10, 2\sqrt{3}, \sqrt{3}, 2\sqrt{3}Q, \sqrt{3}P$ N பருமனுள்ள விசைகள் தாக்குகின்றன. தூரங்கள் m இல் அளக்கப்படுகிறது. இவ்விசைத்தொகுதியானது.
 - (i) ஒரு போதும் சமநிலையில் இருக்கமாட்டது எனக் காட்டுக.
 - (ii) $Q = \frac{4}{3}, P = \frac{31}{3}$ எனின் தொகுதி இணைக்கு சமவலுவானது எனக் காட்டி அதன் திருப்பத்தின் 5Nm இடஞ்சுழியானது எனக் காட்டுக.
 - (iii) P-Q=9 எனவும் B இனூடு செல்லும் தனிவிசைக்கும் ஓடுக்கப்படின் $Q=\frac{7}{4}$ எனக் காட்டுக. இவ்வகையில் தொகுதியானது AC வழியே தனிவிசையுடன் சேர்ந்து ஒரு இணையாக ஓடுக்கப்படலாம் எனக்காட்டி, அவ்விசையையும் இணையின் பருமனையும் காண்க.

15. (*a*)

3a நீளமுள்ள ஒரு சீராக பரமான சட்டம் C இல் செங்கோணமாக வளைக்கப்பட்டுள்ளது. இங்கு AC=a . இச்சட்டத்தின் ஒருமுனை A , கிடைத்தரையில் நிலைப்படுத்தப்பட்ட கரடான பெட்டியின் கிடையான மேல் முகத்தில் தொடவும், B இல் இணைக்கப்பட்ட இலேசான நீளா இழையினால் தாங்கப்பட்டும் உள்ளது. இழையின் மறுமுனை நிலையான புள்ளி D இல் கட்டப்பட்டும் AC,BD என்பன கிடையுடன் சம சாய்வையும் A,B என்பன ஒரே

கிடைமட்டத்திலும் இருக்க A,C,B என்பன நிலைக்குத்து தளம் ஒன்றிலும் இருக்க சட்டம் எல்லைச்சமநிலையில் உள்ளது. சட்டத்தின் அலகு நீள நிறை w எனக் கொண்டு இழையில் உள்ள இழுவிசை $\dfrac{13aw}{4\sqrt{5}}$ எனக் காட்டி, சட்டம் - பெட்டி இடையிலான உராய்வுக்குணகம் μ எனின் $34\mu=13$ எனக் காட்டுக.

 $(b\,)$ உருவில் காட்டப்பட்டுள்ள சட்டப்படல் முனைகள் B,C,Dஎன்பவந்நில் சுயாதீனமாக மூடப்பட்ட AB,BC,CD,BDஎன்னும் நான்கு இலேசான கோல்களைக் கொண்டுள்ளது. DB = BC = CD $\angle BAD = 60^{\circ}$ எனவும் எனவும் தரப்பட்டுள்ளது. \mathbf{A}, D என்பன ஒப்பமான நிலைக்குத்து சுவரில் பிணைக்கப்பட்டும் C இல் சுமை w ஏற்பட்டு, கோல் BDகிடையாக இருக்க சட்டப்படல் ஒரு நிலைக்குத்து தளத்தில் சமநிலையில் உள்ளது. போவின் குறியீட்டைப் பயன்படுத்தி ஒரு A,D இல் மறுதாக்கங்கள் தகைப் வரிப்படத்தை வரைந்து W, Wஎனக்காட்டி, எல்லாக் கோல்களிலும் கண்டு, இத்தகைப்புக்க்ள இமுவைகளாக ககைப்புக்களை உதைப்புக்கான என வேறுபடுத்துக.

16. மையத்தில் 2α கோணத்தை எதிரமைக்கும் a ஆரையுடைய ஆரைச்சிறையின் திணிவு மையம் மையத்தில் இருந்து சமச்சீர் ஆரையில் $\dfrac{2}{3} \bigg[\dfrac{a \sin \alpha}{\alpha} \bigg]$ துரரத்தில் உள்ளது என தொகையிடல் மூலம் காட்டுக.

உயரம் h ஐ உடைய ஒரு சீரான திண்மச் செவ்வட்டக் கூம்பின் திணிவு மையம் கூம்பின் அடியிலிருந்து தூரம் $\dfrac{1}{4}h$ ஆகும்.

பிறையுரு வடிவில் உள்ள சீரான மெல்லிய உலோக அடர் ஒன்று, மையம் C ஐ உடைய a ஆரையுள்ள அரைவட்டத்தாலும், அதன் மையம் O வில் கோணம் $\frac{\pi}{2}$ ஐ எதிரமைக்கும் ஒர் வட்ட வில்லினாலும் உருவில் காணப்படுகின்றவாறு வரைபுற்றுள்ளது. இவ்வுலோக அடரின் திணிவுமையம் O வில் இருந்து சமச்சீர் ஆரைவழியே $\frac{\pi a}{2}$ தூரத்தில் உள்ளதெனக் காட்டுக.

வெற்றிக்கேடயங்களை தயாரிக்கும் நிறுவனம் ஒன்று படத்தில் காட்டியவாறு ஒரு கேடயத்தை உந்பத்தி செய்து வெளியிடுகிறது. இது $\frac{a}{2}$ ஆரையும் 2a உயரமும் W நிரையுமுடைய திண்மக் கூம்பையும், மேற்கூறிய 2wநிரையுடைய பிரைவடிவில் உலோக அடரையும், மெல்லிய சீரான வட்ட உலோக அடரையும் பொருத்துப்புள்ளிகள் A,Bஇணைக்கும் என்பவந்நை கோடு முன்று பொருட்களினதும் சமச்சீர் அச்சுக்களாகம் இருக்குமாறு பொருத்தப்படுகிறது. புள்ளி ஆனது பிரையுருவின் அரைவட்டப்பகுதியின் மையமாக இருப்பதோடு வட்டதட்டின் மையமாகவும் அமைகின்றுது. இக்கேடயத்தின் திணிவுமைய தூரமானது கூம்பின்வட்ட அடியின் மையம் O^1 இல் இருந்து சமச்சீர் அச்சுவழியே

 $\left[rac{W+2(11-\pi)w}{2(W+w)}
ight] a$ தூரத்தில் உள்ள தெனக்காட்டுக.

இக்கேடயத்தின் கூம்புப்பகுதியின் வட்ட அடியானது வழுக்குதலை தடுப்பதற்கு போதிய கரடான, கிடையுடன் eta சாய்வுள்ள சாய்தளத்தில் வைக்கப்படும் போது அது கவிழும் தறுவாயில் இருப்பின் $W=(35-4\pi)w$ எனக் காட்டுக.

இங்கு
$$\beta = \tan^{-1}\left(\frac{2}{3}\right)$$
 ஆகும்.

- **17.** (*a*) ஒரு தனியார் கணனி நிறுவகத்தில் ஒரு குறித்த தொழிலுக்கு பட்டதாரிகள் விண்ணப்பிக்க முடியும். விண்ணப்பிக்கும் பட்டதாரிகளுள் கணணியை பாடமாக கொண்ட பட்டதாரிகள் நேரடியாக தொழிலுக்கு ஒரு தெரிந்தெடுக்கப்படுகிறார்கள். கணணியை ஒரு பாடமாக கொண்டிராத பட்டதாரிகள் ஒரு எழுத்துப் பரீட்சைக்கு தோற்ற வேண்டும். அப்பரீட்சையில் சித்தியடைந்தவர்கள் பின்பு ஒரு நேர்முகப்பரீட்சைக்கும் தோற்ற வேண்டும். நேர்முகப்பரீட்சையில் தெரிவுசெய்யப்படுவர்கள் அத்தொழிக்கு தேர்ந்தெடுக்கப்படுவர். தொழிக்கு விண்ணப்பித்தவர்களில் 20% ஆனோர் கணனியை ஒரு பாடமாக கொண்ட பட்டதாரிகளாகவும், இவர்களில் 60% பெண்களுமாவர். எழுத்துப்பரீட்சைக்கு தோற்றுவோர்களில் 50% சித்திஅடைகின்றனர். சித்தி 90% தெரிவு செய்யப்படுகிறார்கள். நேர்முகப்பரீட்சையில் அடைந்தவர்களில் நேர் முகப்பரீட்சையில் தெரிவு செய்யப்பட்டவர்களில் 70% பெண்களாவர்.
 - (i) இத்தொழிலுக்கு ஒரு பெண் தெரிந்தெடுக்கப்படுவதற்கான.
 - (ii) தொழிலுக்கு ஒரு பெண் தெரிந்தெடுக்கப்பட்டிருப்பின் கணனியை ஒரு பாடமாக கொண்டிராத பட்டத்தாரியாக இருப்பதற்காக நிகழ்தகவைக் காண்க.

(b) குறித்த ஒரு பாடசலை A யில் உயர்தர வகுப்பில் உள்ள 50 மாணவர்கள் பொது அறிவுப்பரீட்சையில் பெற்ற புள்ளிகளின் பரம்பல் கீழே தரப்பட்டுள்ளது.

புள்ளிகள்	மாணவர்களின் எண்ணிக்கை
10 – 20	08
20 - 30	10
30 - 40	12
40 – 50	14
50 – 60	06

இவ்வட்டவணையில் தரப்பட்ட பரம்பலின் இடையைக் காண்டு, நியமவிலகல் $4\sqrt{10}$ எனக் காட்டுக.

வேறு ஒரு பாடசாலை B இன் 150 மாணவர்களிற்கான இப்பாடப்பரீட்சை புள்ளிகளின் நியமவிலகல் $4\sqrt{5}$ ஆகவும், இரு பாடசாலைகளின் இடைகள் சமனாகவும் இருப்பதாகவும் தரப்படின், இரு பாடசாலைகளினதும் மொத்த 200 மாணவர்களினதும் ஒன்று சேர்ந்த நியமவிலகல் 10 எனக் காட்டுக.

* * *