IN THE CLAIMS:

1. Compounds of the formula (I),

where

5

10

15

20

25

*1, *2, *3 and *4 are each independently a stereogenic carbon atom which is in the R- or S- configuration,

 \boldsymbol{X}^1 and \boldsymbol{X}^2 are each independently absent or are oxygen and

 R^1 and R^2 may each independently be: hydrogen, C_1 - C_{20} -alkyl, C_1 - C_{20} -fluoroalkyl, C_2 - C_{20} -alkenyl, C_4 - C_{24} -aryl, C_5 - C_{25} -arylalkyl, C_6 - C_{26} -arylalkenyl or NR^7R^8 , OR^8 , -(C_1 - C_8 -alkyl)- OR^8 , -(C_1 - C_8 -alkyl)- NR^7R^8 or - O_2CR^8 where R^7 and R^8 are each independently C_1 - C_8 -alkyl, C_5 - C_{14} -arylalkyl or C_4 - C_{15} -aryl, or R^7 and R^8 together are a cyclic amino radical having a total of 4 to 20 carbon atoms,

or $\ensuremath{\mathsf{R}}^1$ and $\ensuremath{\mathsf{R}}^2$ are each independently radicals of the formula (II)

$$-R^9-SiR^{10}R^{11}R^{12}$$
 (II)

where

R⁹ is absent, or is oxygen or methylene and

 R^{10} , R^{11} and R^{12} are each independently C_1 - C_{12} -alkyl, C_5 - C_{15} -arylalkyl or C_4 - C_{14} -aryl and

5

R³, R⁴, R⁵ and R⁶ are each independently R¹³, OR¹⁴ or NR¹⁵R¹⁶ where R¹³, R¹⁴, R¹⁵ and R¹⁶ are each independently C₁-C₁₂-alkyl, C₅-C₁₅-arylalkyl or C₄-C₁₄-aryl, or NR¹⁵R¹⁶ together is a cyclic amino radical having 4 to 20 carbon atoms, or R³ and R⁴ and/or R⁵ and R⁶ in each case together are -O-R¹⁷-O-where R¹⁷ is a radical selected from the group of C₂-C₄-alkylene, 1,2-phenylene, 1,3-phenylene, 1,2-cyclohexylene, 1,1'-ferrocenylene, 1,2-ferrocenylene, 2,2'-(1,1'-binaphthylene), 2,2'-(1,1')-biphenylene and 1,1'-(diphenyl-2,2'-methylene)-diyl, and the radicals mentioned may optionally be mono- or polysubstituted by radicals selected from the group of fluorine, chlorine, C₁-C₈-alkoxy and C₁-C₈-alkoxy

15

10

20 2. Compounds according to Claim 1, where, in formula (I), *1,*2,*3,*4 together define the following stereoisomers of the central substituted furan ring:

alkyl.

(1R,2R,3R,4R), (1R,2R,3R,4S), (1R,2R,3S,4S), (1R,2S,3S,4S), (1R,2S,3R,4S), (1R,2S,3S,4R), (1R,2R,3S,4R), (1S,2S,3R,4S), (1S,2S,3S,4R), (1S,2S,3R,4R), (1S,2R,3R,4R), (1S,2R,3R,4R), (1S,2R,3R,4S), (1S,2R,3R,4S), (1S,2R,3S,4R).

3. Compounds according to Claim 1, characterized in that, in formula (I), R¹ and R² are each independently hydrogen, C₁-C₄-alkyl, C₄-C₁₄-aryl, O-R⁸, O₂C-R⁸ where R⁸ is C₁-C₁₂-alkyl, C₅-C₂₅-arylalkyl or

 C_4 - C_{14} -aryl, or $OSiR^{10}R^{11}R^{12}$, and R^{10} , R^{11} , and R^{12} are each independently C_1 - C_{12} -alkyl or C_4 - C_{14} -aryl.

- 4. Compounds according to Claim 1, characterized in that, in formula (I), R¹ and R² are each independently hydrogen, tert-butoxy, trityloxy, tert-butyldimethylsilyloxy, tert-butyldiphenylsilyloxy, trimethylsilyloxy, triethylsilyloxy, triisopropylsilyloxy, neopentoxy or 1-adamantoxy.
- Compounds according to Claim 1, characterized in that, in formula 5. (I), R³, R⁴, R⁵ and R⁶ are each independently R¹³, OR¹⁴ or NR¹⁵R¹⁶ 10 where R¹³, R¹⁴, R¹⁵ and R¹⁶ are each independently C₁-C₁₂-alkyl or C₄-C₁₄-aryl, or NR¹⁵R¹⁶ together is a cyclic amino radical having 4 to 12 carbon atoms, or R³ and R⁴ and/or R⁵ and R⁶ together are each -O-R¹⁷-O- where R¹⁷ is ethylene, 1,2-phenylene, 1,3-phenylene. 1,2-cyclohexylene, 1,1'-ferrocenylene, 1,2-ferrocenylene, di- or 15 tetra- C₁-C₈-alkyl-substituted 1,1'-(diphenyl-2,2'-methylene)-diyl. 2,2'-(1,1'-binaphthylene) or 2,2'-(1,1')-biphenylene, and 2,2'-(1,1'binaphthylene) or 2,2'-(1,1')-biphenylene is substituted at least in the 6,6'-position by radicals selected from the group of C₁-C₈-20 alkoxy and C₁-C₈-alkyl, and may also be substituted in the 5.5'-,4,4'-, 3,3'- or 2,2'-position by radicals selected from the group of fluorine, chlorine, C₁-C₈-alkoxy and C₁-C₈-alkyl.
- 6. Compounds according to Claim 1, characterized in that, in formula

 (I), R³, R⁴, R⁵ and R⁶ are each independently R¹³, OR¹⁴ or NR¹⁵R¹⁶,
 where R¹³ and R¹⁴ are each independently methyl, ethyl, n-propyl,
 isopropyl, tert-butyl, cyclohexyl, phenyl, 2-(C₁-C₀)-alkylphenyl, 3(C₁-C₀)-alkylphenyl, 4-(C₁-C₀)-alkylphenyl, 2,6-di-(C₁-C₀)-alkylphenyl,
 3,5-di-(C₁-C₀)-alkylphenyl, 2,4-di-(C₁-C₀)-alkylphenyl,
 3,4,5-tri-(C₁-C₀)-alkylphenyl, 2-(C₁-C₀)-alkoxyphenyl, 3-(C₁-C₀)-

10

15

alkoxyphenyl, 4-(C_1 - C_8)-alkoxyphenyl, 2,4-di-(C_1 - C_8)-alkoxyphenyl, 2,6-di-(C_1 - C_8)-alkoxyphenyl, 3,5-di-(C_1 - C_8)-alkoxyphenyl, 3,4,5-tri-(C_1 - C_8)-alkoxyphenyl, 3,5-dialkyl-4-(C_1 - C_8)-alkoxyphenyl, 3,5-(C_1 - C_8)-alkoxyphenyl, 3,5-dialkyl-4-di-(C_1 - C_8)-alkylaminophenyl, 4-di-(C_1 - C_8)-alkylaminophenyl, 2,4-bis-((C_1 - C_8)-alkylaminophenyl, 3,5-bis-((C_1 - C_4)-fluoroalkyl), 2,4-bis-((C_1 - C_4)-fluoroalkyl)phenyl and mono-, di-, tri- or tetra-fluorine- and/or –chlorine-substituted phenyl, fluorenyl or naphthyl or NR 15 R 16 as a whole is dimethylamino, diethylamino, pyrrolidino or diisopropylamino or R 3 and R 4 and/or R 5 and R 6 , each in pairs, are O-R 17 -O where R 17 is 1,1'-bis-(4,6-di-(C_1 - C_8 -alkyl)-phenyl)-2,2'-methylene)-diyl or where R 17 is (R)-1,1'-biphenyl-2,2'-diyl, (S)-1,1'-binaphthyl-2,2'-diyl, (S)-1,1'-binaphthyl-2,2'-diyl, 1,1'-[bis-(4-methyl-6-tert-butylphenyl)-2,2'-methylene)]-diyl or 1,1'-[bis-(4-methyl-6-(1-methylcyclohexyl)-2,2'-methylene)]-diyl.

- 7. Compounds according to Claim 1, characterized in that, in formula (I), R³ and R⁴ and/or R⁵ and R⁶ in pairs are identical.
- 20 8. Compounds according to Claim 1, characterized in that they are of formula (Ia) to (Ii)

- where *1,*2,*3,*4, R1, R2, R13, R14, R15 and R16 are each as defined under formula (I) in Claim 1.
 - 9. Compounds of the formula (XIII),

where R^1 , R^2 , R^3 and R^4 are each as defined under formula (I) in Claim 1.

15 10. Compounds selected from the group consisting of 2,3-bis-O(Diphenylphosphino)-1,6-di-O-(triphenylmethyl)-2,5-anhydro-Dmannitol, 2,3-bis-O-(diphenylphosphino)-1,6-dideoxy-2,5-anhydro-

10

15

20

25

D-mannitol, 2,3-bis-O-(diphenylphosphino)-1,6-di-O-(tertbutyldiphenylsilyl)-2.5-anhydro-D-mannitol, 2.3-bis-O-(diphenylphosphino)-1,6-di-O-(triphenylmethyl)-2,5-anhydro-L-iditol, 2,3-bis-O-(diphenylphosphino)-1,6-di-O-(tert-butyldiphenylsilyl)-2,5anhydro-L-iditol, 2,3-bis-O-(diphenylphosphino)-1,6-dideoxy-2,5anhydro-L-iditol, 2,3-bis-O-(di(4-methoxyphenyl)phosphino)-1,6-di-O-(tert-butyldiphenylsilyl)-2,5-anhydro-D-mannitol, 2,3-bis-O-(di((4-Trifluoromethyl)phenyl)phosphino)-1,6-di-O-(tert-butyldiphenylsilyl)-2.5-anhydro-D-mannitol, 2-O-(di(2,4-dimethylphenyl)phosphino)-3-O-(diphenylphosphino)-1,6-di-O-(tert-butyldiphenylsilyl)-2,5anhydro-D-mannitol, 2-O-(di(2,4-dimethylphenyl)phosphino)-3-O-(4.8-ditert-butyl-2.10-dimethyl-12H-dibenzo- $[\delta,\gamma]$ [1,3,2] dioxaphosphocino)-1,6-di-O-(tert-butyldiphenylsilyl)-2,5-anhydro-Dmannitol and 2-O-(di(2,4-dimethylphenyl)phosphino)-3-O-(2,10dimethyl-4.8-bis(1-methylcyclohexyl)-12H-dibenzo[δ , γ]-[1,3,2] dioxaphosphocino)-1,6-di-O-(tert-butyldiphenylsilyl)-2,5-anhydro-Dmannitol.

11. Process for preparing compounds of the formula (XV)

where R^1 , R^2 , R^5 , R^6 and R^{13} are each as defined under formula (I) in Claim 1, comprising t,

in step a)

converting compounds of the formula (XVI)

where R¹ and R² are each defined under formula (I) in Claim 1, in the presence of compounds of the formula (XVII)

10 where

Met² is lithium, sodium or potassium and

R¹³ is as defined under formula (I) in Claim 1,

15

to compounds of the formula (XVIII)

where R¹, R², Met² and R¹³ are as defined above, and, in step b),

reacting the compounds of the formula (XVIII) with compounds of the formula (XIIb)

5

where R^5 and R^6 are each as defined under formula (I) in Claim 1 and

10

Y is chlorine, bromine, iodine, dimethylamino or diethylamino, to give compounds of the formula (XV).

12. Process according to Claim 11, characterized in that the compounds of the formula (XVII) are converted by acidifying to compounds of the formula (XIX)

15

and, in step b), are converted by reacting with compounds of the formula (XIIb) to compounds of the formula (XV).

20

- 13. Process according to Claim 12, characterized in that step b) is carried out in the presence of a base.
- 14. Compounds of the formula (XVIII)

25

where R^1 , R^2 and R^{13} are each as defined under formula (I) in Claim 1 and Met^2 is as defined under formula (XVII) in Claim 10.

5

15. Compounds of the formula (XIX)

10

where R^1 , R^2 and R^{13} are each as defined under formula (I) in Claim 1.

16. Compounds of the formula (XXa)

15

where R¹ and R² are each as defined under formula (I) in Claim 1.

20

17. Compounds of the formula (XXIa),

where R¹, R² and R¹³ are each as defined under formula (I) in Claim 1 and Met² is as defined under formula (XVII) in Claim 10.

18. Compounds of the formula (XXIb),

10

15

20

5

where R^1 , R^2 and R^{13} are each as defined under formula (I), and R^{19} is C_1 - C_{12} -alkyl, C_1 - C_{12} -fluoroalkyl, C_5 - C_{25} -arylalkyl or C_4 - C_{24} -aryl.

- 19. Transition metal complexes containing compounds according to Claim 1.
- 20. Transition metal complexes according to Claim 19, characterized in that the transition metal is selected from the group of ruthenium, osmium, cobalt, rhodium, iridium, nickel, palladium, platinum and copper.
- 21. Transition metal complexes according to Claim 19, characterized in that the molar ratio of transition metal to compounds of Claim 1 is 1:1.

22. Transition metal complexes according to Claim 20, characterized in that they obey the formula (XXIII)

$$[(I)L^{1}_{2}M] \qquad (XXIII)$$

5

where (I) represents a compound of the formula (I) as defined in Claim 1 and

M is rhodium or iridium and

10

- L¹ is in each case a C₂-C₁₂-alkene or a nitrile or
- L₂ together is a (C₄-C₁₂)-diene.

15

20

- 23. [Rh(cod)(2,3-bis-O-(diphenylphosphino)-1,6-di-O-(triphenylmethyl)-2,5-anhydro-D-mannitol)]BF₄, [Rh(cod)(2,3-bis-O-(diphenylphosphino)-1,6-di-O-(tert-butyldiphenylsilyl)-2,5-anhydro-D-mannitol)]BF₄, [Rh(cod)(2,3-bis-O-(diphenylphosphino)-1,6-dideoxy-2,5-anhydro-D-mannitol)]BF₄ and [Ir(cod)(2,3-bis-O-(diphenylphosphino)-1,6-di-O-(tert-butyldiphenylsilyl)-2,5-anhydro-D-mannitol)]BF₄.
- Transition metal complexes according to Claim 19, characterized in
 that they are obtained by reacting transition metal compounds and compounds according to Claim 1.
 - 25. Transition metal complexes according to Claim 24, characterized in that the transition metal compounds used are:

30

transition metal compounds of the formula (XXIIa)

q

30

 $M(An^1)_q$ (XXIIa) where 5 M is rhodium, iridium, ruthenium, nickel, palladium, platinum or copper and An¹ is chloride, bromide, acetate, nitrate, methanesulphonate, trifluoromethanesulphonate or acetylacetonate and 10 is 3 for rhodium, iridium and ruthenium, is 2 for nickel, q palladium and platinum, and is 1 for copper, or transition metal compounds of the formula (XXIIb), 15 $M(An^2)_qL_2^1$ (XXIIb) where 20 M is rhodium, iridium, ruthenium, nickel, paladium, platinum or copper and An² is chloride, bromide, acetate, methanesulphonate or trifluoromethanesulphonate, tetrafluoroborate or 25 hexafluorophosphate, perchlorate, hexafluoroantimonate, tetra(bis-3,5-trifluromethylphenyl)borate or tetraphenylborate and

is 1 for rhodium and iridium, is 2 for ruthenium, nickel,

palladium and platinum, and is 1 for copper,

•	[,] CH-7904	- 66 -
	L ¹	is in each case a C ₂ -C ₁₂ -alkene or
	L ¹ ₂	together is a (C ₄ -C ₁₂)-diene
5	or tra	ensition metal compounds of the formula (XXIIc)
		$[ML^2An^1_2]_2 (XXIIc)$
10	wher	e
10	М	is ruthenium and
45	L ²	is an aryl radical or cyclooctadiene, norbornadiene or methylallyl
15	or tra	insition metal compounds of the formula (XXIId)
		$Met_{q}^{3}[M(An^{3})_{4}]$ (XXIId)
20	wher	e
	M	is palladium, nickel, iridium or rhodium and
05	An ³	is chloride or bromide and
25	Met ³	is lithium, sodium, potassium, ammonium or organic ammonium and
30	q	is 3 for rhodium and iridium, and is 2 for nickel, palladium and platinum,

or transition metal compounds of the formula (XXIIe)

 $[M(L^3)_2]An^4$ (XXIIe)

5 where

M is iridium or rhodium and

L³ is (C₄-C₁₂)-diene and

10

An⁴ is a noncoordinating or weakly coordinating anion

or

- Ni(1,5-cyclooctadiene)₂, Pd₂(dibenzylideneacetone)₃, Pd[PPh₃]₄, cyclopentadienyl₂Ru, Rh(acac)(CO)₂, Ir(pyridine)2(1,5-cyclooctadiene), Cu(phenyl)Br, Cu(phenyl)Cl, Cu(phenyl)I, Cu(PPh3)₂Br, [Cu(CH₃CN)₄]BF₄ and [Cu(CH₃CN)₄]PF₆ or multinuclear bridged complexes, for example [Rh(1,5-cyclooctadiene)Cl]₂, [Rh(1,5-cyclooctadiene)Br]₂, [Rh(ethene)₂Cl]₂ or [Rh(cyclooctene)₂Cl]₂.
- Transition metal complexes according to Claim 25, characterized in that the transition metal compounds used are: [Rh(cod)Cl]₂, [Rh(cod)Br]₂, [Rh(cod)₂]ClO₄, [Rh(cod)₂]BF₄, [Rh(cod)₂]PF₄,
 [Rh(cod)₂]ClO₆, [Rh(cod)₂]OTf, [Rh(cod)₂]BAr₄ (Ar = 3,5-bistrifluoromethylphenyl), [Rh(cod)₂]SbF₆, RuCl₂(cod), [(cymene)RuCl₂]₂, [(benzene)RuCl₂]₂, [(mesityl)RuCl₂]₂, [(cymene)RuBr₂]₂, [(cymene)Ru(BF₄)₂]₂, [(cymene)Ru(BF₆)₂]₂, [(cymene)Ru(BAr₄)₂]₂ (Ar = 3,5-bistrifluoromethylphenyl), [(cymene)Ru(SbF₆)₂]₂, [Ir(cod)Cl]₂, [Ir(cod)₂]PF₆, [Ir(cod)₂]ClO₄, [Ir(cod)₂]SbF₆, [Ir(cod)₂]BF₄, [Ir(cod)₂]OTf,

[Ir(cod)₂]BAr₄ (Ar = 3,5-bistrifluoromethylphenyl), RuCl₃, NiCl₃, RhCl₃, PdCl₂, PdBr₂, Pd(OAc)₂, Pd₂(dibenzylideneacetone)₃, Pd(acetylacetonate)₂, CuOTf, CuI, CuCl, Cu(OTf)₂, CuBr, CuI, CuBr₂, CuCl₂, CuI₂, [Rh(nbd)Cl]₂, [Rh(nbd)Br]₂, [Rh(nbd)₂]ClO₄, [Rh(nbd)₂]BF₄, [Rh(nbd)₂]PF₆, [Rh(nbd)₂]OTf, [Rh(nbd)₂]BAr₄ (Ar = 3,5-bistrifluoromethylphenyl), [Rh(nbd)₂]SbF₆, RuCl₂(nbd), [Ir(nbd)₂]PF₆, [Ir(nbd)₂]ClO₄, [Ir(nbd)₂]SbF₆, [Ir(nbd)₂]BF₄, [Ir(nbd)₂]OTf, [Ir(nbd)₂]BAr₄ (Ar = 3,5-bistrifluoromethylphenyl), Ir(pyridine)₂(nbd), [Ru(DMSO)₄Cl₂], [Ru(CH₃CN)₄Cl₂], [Ru(PhCN)₄Cl₂], [Ru(cod)Cl₂]_n, [Ru(cod)₄(methallyl)₂], [Ru(acetylacetonate)₃].

27. Transition metal complexes according to Claim 26, characterized in that the transition metal compounds used are:

[Rh(cod)Cl]₂, [Rh(cod)Br]₂, [Rh(cod)₂]ClO₄, [Rh(cod)₂]BF₄,

[Rh(cod)₂]PF₄, [Rh(cod)₂]ClO₆, [Rh(cod)₂]OTf, [Rh(cod)₂]BAr₄ (Ar = 3,5-bistrifluoromethylphenyl), [Rh(cod)₂]SbF₆, [Rh(nbd)Cl]₂,

[Rh(nbd)Br]₂, [Rh(nbd)₂]ClO₄, [Rh(nbd)₂]BF₄, [Rh(nbd)₂]PF₆,

[Rh(nbd)₂]OTf, [Rh(nbd)₂]BAr₄ (Ar = 3,5-bistrifluoromethylphenyl),

[Rh(nbd)₂]SbF₆, [Ir(cod)Cl]₂, [Ir(cod)₂]PF₆, [Ir(cod)₂]ClO₄,

[Ir(cod)₂]SbF₆, [Ir(cod)₂]BF₄, [Ir(cod)₂]OTf, [Ir(cod)₂]BAr₄ (Ar = 3,5-bistrifluoromethylphenyl).

- 25 28. Transition metal complexes according to Claim 23, characterized in that the amount of the transition metal compounds used is 25 to 200 mol%, based on the compound according to Claim 1.
- A process for preparing stereoisomerically enriched compounds
 comprising providing transition metal compexes of Claim 19.

10

30

- 30. The process according to Claim 29, characterized in that the stereoisomerically enriched compounds are obtained by asymmetric 1,4-additions, asymmetric hydroformylations, asymmetric hydrocyanations, asymmetric Heck reactions and asymmetric hydrogenations.
- 31. A process for preparing active ingredients in pharmaceuticals and agrochemicals, or intermediates of these two classes comprising providing stereoisomerically enriched compounds of Claim 29.
- 32. A process for catalyzing reactions comprising providing metal complexes according to Claim 19.
- 33. Process for preparing stereoisomerically enriched compounds by catalytic hydrogenations of olefins, enamines, enamides, imines or ketones, 1,4-additions, hydroformylations, hydrocyanations or Heck reactions, characterized in that the catalysts used are those which comprise transition metal complexes according to Claim 19.
- 20 34. Process according to Claim 33, characterized in that the amount of the transition metal complexes used is 0.001 to 5 mol%, based on the substrate used.
- 35. Process according to Claim 33, characterized in that the
 25 stereoisomerically enriched compounds are obtained by catalytic hydrogenation of olefins, enamides or imines.
 - 36. Process according to Claim 33, characterized in that the working temperature is -20°C to 200°C.

- 37. Process according to Claim 34, characterized in that the hydrogen pressure is 0.1 to 200 bar.
- 38. Catalysts comprising transition metal complexes according to Claim19.