

MODELISER LE COMPORTEMENT DES SYSTEMES MECANIQUES DANS LE BUT D'ETABLIR UNE LOI DE COMPORTEMENT OU DE DETERMINER DES ACTIONS MECANIQUES EN UTILISANT LE PFD

1 OBJECTIFS

1.1 Objectif technique

Objectif:

L'objectif de ce TP est de choisir un moteur (couple maximal, vitesse maximale) afin d'actionner la barrière de péage.

1.2 Contexte pédagogique

Analyser:

☐ A3 – Conduire l'analyse

Modéliser:

- ☐ Mod2 Proposer un modèle
- ☐ Mod3 Valider un modèle

Résoudre:

- Rés2 Procéder à la mise en œuvre d'une démarche de résolution analytique
- ☐ Rés3 Procéder à la mise en œuvre d'une démarche de résolution numérique

l.3 Évaluation des écarts

L'objectif de ce TP est de vérifier si le moteur de la barrière est compatible avec le besoin du client en analysant les résultats établis analytiquement.

Problème 1

Problème 2

Problème 3

Problème 4

Hypothèses:

On suppose que le moteur est directement accouplé à la barrière. On cherche à résoudre le problème en statique.

Problématique :

Donner le couple moteur à fournir par le moteur en fonction de l'angle d'ouverture de la barrière.

Résultats attendus

- Démarche de résolution de problème.
- Tracer du couple moteur en fonction de l'angle d'ouverture de la barrière sous Python [résolution analytique].
- Tracer du couple moteur en fonction de l'angle d'ouverture de la barrière sous SolidWorks [résolution numérique].
- Confrontation des courbes sous Python.

Hypothèses:

On suppose que le moteur est directement accouplé à la barrière. On cherche à résoudre le problème en dynamique. Le temps d'ouverture de la barrière est fixé à 1 seconde.

Problématique :

Donner le couple moteur à fournir par le moteur en fonction de l'angle d'ouverture de la barrière.

Résultats attendus

- Démarche de résolution de problème.
- Tracer du couple moteur en fonction de l'angle d'ouverture de la barrière sous Python [résolution analytique].
- Tracer du couple moteur en fonction du temps sous Python [résolution analytique].
- Tracer du couple moteur en fonction de l'angle d'ouverture de la barrière sous SolidWorks [résolution numérique].
- Tracer du couple moteur en fonction du temps sous SolidWorks [résolution numérique].
- Confrontation des courbes sous Python.

Hypothèses:

On suppose que le moteur est accouplé à la barrière par l'intermédiaire du système de transformation de mouvement. On cherche à résoudre le problème en statique.

Problématique :

Donner le couple moteur à fournir par le moteur en fonction de l'angle d'ouverture de la barrière.

Résultats attendus

- Démarche de résolution de problème.
- Tracer du couple moteur en fonction de l'angle d'ouverture de la barrière ou du temps sous Python [résolution analytique].
- Tracer du couple moteur en fonction de l'angle d'ouverture de la barrière ou du temps sous SolidWorks [résolution numérique].
- Confrontation des courbes sous Python

Hypothèses :

On suppose que le moteur est accouplé à la barrière par l'intermédiaire du système de transformation de mouvement. On cherche à résoudre le problème en dynamique. Le temps d'ouverture de la barrière est fixé à 1 seconde.

Problématique :

Donner le couple moteur à fournir par le moteur en fonction de l'angle d'ouverture de la barrière.

Résultats attendus

- Démarche de résolution de problème.
- Tracer du couple moteur en fonction de l'angle d'ouverture de la barrière ou du temps sous Python [résolution analytique].
- Tracer du couple moteur en fonction de l'angle d'ouverture de la barrière ou du temps sous SolidWorks [résolution numérique].
- Confrontation des courbes sous Python

2 ANNEXES

2.1 Ingénierie Système

2.1.1 Diagramme des exigences

2.1.2 Diagramme de définition des blocs

