ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ»

Факультет информационных технологий и анализа больших данных Департамент анализа данных и машинного обучения

Дисциплина: «Теория вероятностей и математическая статистика»

Направление подготовки: 01.03.02 «Прикладная математика и информатика» Профиль: «Анализ данных и принятие решений в экономике и финансах» Форма обучения очная, учебный 2020/2021 год, 4 семестр

Билет 115

- 1. Дайте определение случайной величины, которая имеет χ^2 -распределение с n степенями свободы. Запишите плотность χ^2 - распределения. Выведите формулы для математического ожидания $\mathbb{E}(X)$ и дисперсии $\mathbb{V}ar(X)$ χ^2 -распределение с n степенями свободы. Найдите a) $\mathbb{P}(\chi^2_{20}>10.9)$, где χ^2_{20} –случайная величина, которая имеет χ^2 — распределение с 20 степенями свободы; б) найдите 93% (верхнюю) точку $\chi^2_{0.93}(5)$ хи-квадрат распределения с 5 степенями свободы
- 2. Случайные величины X и Y независимы и имеют равномерное распределение на отрезках [0;4] и [0;7] соответственно. Для случайной величины $Z=\frac{Y}{X}$ найдите: 1) функцию распределения $F_Z(x)$; 2) плотность распределения $f_Z(x)$ и постройте график плотности; 3) вероятность $\P(0.035\leqslant Z\leqslant 2.775)$.
- 3. (10) Известно, что доля возвратов по кредитам в банке имеет распределение $F(x)=x^{\beta}, 0\leqslant x\leqslant 1$. Наблюдения показали, что в среднем она составляет 75,0%. Методом моментов оцените параметр eta и вероятность того, что она опуститься ниже 20%
- 4. (10) В группе Ω учатся студенты: $\omega_1...\omega_{25}$. Пусть X и Y-100-балльные экзаменационные оценки по математическому анализу и теории вероятностей. Оценки ω_i студента обозначаются: $x_i = X(\omega_i)$ и $y_i = Y(\omega_i)$, i = 1...25. Все оценки известны $x_0 = 73, y_0 = 44, x_1 = 44, y_1 = 83, x_2 = 49, y_2 = 41, x_3 = 36, y_3 = 32, x_4 = 48, y_4 = 60,$ $x_5 = 53, y_5 = 37, x_6 = 70, y_6 = 86, x_7 = 61, y_7 = 82, x_8 = 42, y_8 = 57, x_9 = 94, y_9 = 40, x_{10} = 44, y_{10} = 78, y_{10}$ $x_{11} = 85, y_{11} = 78, \ x_{12} = 48, y_{12} = 66, \ x_{13} = 88, y_{13} = 82, \ x_{14} = 31, y_{14} = 39, \ x_{15} = 84, y_{15} = 68, \ x_{16} = 49, y_{16} = 51, x_{16} = 49, x_{16}$ $x_{17} = 84, y_{17} = 55, x_{18} = 65, y_{18} = 67, x_{19} = 37, y_{19} = 99, x_{20} = 46, y_{20} = 31, x_{21} = 84, y_{21} = 46, x_{22} = 40, y_{22} = 67, x_{10} = 40, x_{$ $x_{23} = 86, y_{23} = 54, x_{24} = 89, y_{24} = 32$ Требуется найти следующие условные эмпирические характеристики: 1) ковариацию X и Y при условии, что одновременно $X\geqslant 50$ и $Y\geqslant 50$; 2) коэффициент корреляции X и Y при том же условии.
- 5. (10) Эмпирическое распределение признаков X и Y на генеральной совокупности Ω задано таблицей частот

	Y = 2	Y=4	Y=5
X = 200	1	6	23
X = 300	13	30	27

Из Ω случайным образом без возвращения извлекаются 13 элементов. Пусть $ar{X}$ и $ar{Y}$ – средние значения признаков на выбранных элементах. Требуется найти: 1) математическое ожидание $\mathbb{E}(\bar{Y})$; 2) стандартное отклонение $\sigma(\bar{X})$; 3) ковариацию $Cov(\bar{X}, \bar{Y})$

6. (10) Пусть X_1, X_2, X_3, X_4 выборка из $N(\theta, \sigma^2)$. Рассмотрим две оценки параметра θ :

$$\hat{\theta}_1 = \frac{2X_1 + 6X_2 + X_3 + X_4}{10}, \hat{\theta}_1 = \frac{5X_1 + X_2 + X_3 + 3X_4}{10}$$

а) Покажите, что обе оценки несмещенные. б) Какая из оценок оптимальная?

Подготовил

П.Е. Рябов

Утверждаю: Первый заместитель руководителя департамента

Рекшин Феклин В.Г.

Дата 01.06.2021