Exploring the impact of Transfer Learning and Semi Supervised GANs for Tumor Classification In Medical Imaging

FYP RESEARCH PROJECT DEFENSE

SUPERVISOR: DR. M. IRFAN UDDIN

S.No.	Student Name	GPA
S1	Hussam Umer	3.75
S2	NIL	N/A
S3	NIL	N/A

Table of Contents

- Research Title
- ☐ Research Questions
- ☐ Problem Statement
- Background
- ☐ The Proposed Architecture
- ☐ Flow Chart
- Dataset Selection
- ☐ Tools & Technologies

Research Title

Exploring the impact of Transfer Learning and Semi Supervised GAN for Tumor Classification

Research Questions

- ☐ How does transfer learning impact the performance of CycleGAN in generating synthetic medical images for tumor classification?
- What are the computational requirements and training time differences between TL-SCycleGAN and traditional CycleGAN for generating synthetic medical images?
- □ Can TL-SCycleGAN effectively overcome domain shift issues when applied to different medical imaging modalities for tumor classification?
- ☐ How does the performance of TL-SCycleGAN compare with other state-of-theart methods for synthetic data generation in medical imaging?

Problem Statement

In recent research,

- □ Identification of benign and malignant tumors in medical imaging is challenging
- ☐ Existing deep learning approaches require large labeled datasets for effective training
- ☐ Imbalance between benign and malignant cases further complicates classification
- ☐ Data diversity and realism, which means generating diverse and realistic synthetic tumor images

Base Research Papers

Title	Author	Date	Model
Transfer Learning-Based Semi-Supervised Generative Adversarial Network for Malaria Classification	Ibrar Amin , Saima Hassan , Samir Brahim Belhaouari, and Muhammad Hamza Azam	2022	TL-S- GAN
Unpaired Image-to-Image Translation using Cycle- Consistent Adversarial Networks	Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexie A.Afros	2017	Cycle- GAN
Deep Residual Learning for Image Recognition	Kaiming He; Xiangyu Zhang; Shaoqing Ren; Jian Sun	2016	ResNET- 50
Very deep convolutional networks for large-scale image recognition	Karen Simonyan & Andrew Zisserman	2015	VGG-16

Background

Cycle GAN is a Generative Adversarial Network (GAN) that uses *two* generators and *two* discriminators.

One generator *G*, it convert images from the *X* domain to the *Y* domain. The other generator is called *F*, and converts images from *Y* to *X*.

$$G: X \to Y$$

 $F: Y \to X$

Each generator has a corresponding discriminator, which attempts to tell apart its synthesized images from real ones.

 D_y : Distinguishes y from G(x)

 D_x : Distinguishes x from F(y)

Working Flow(Cycle GAN)

Architecture

Generator Architecture:

- Encoder
- ☐ Transformation Blocks
- Decoder

Discriminator Architecture:

PatchGAN

Architecture(Generator)

Architecture(Discriminator)

The Proposed Architecture

1. ResNET-50:

- ☐ Initial Layer
- ☐ Pooling Layer
- ☐ Residual Block
- Bottleneck Design
- ☐ Block Stacking
- ☐ Avg. Pooling Layer
- ☐ Fully connected Layer

ResNET-50

Working Flow(ResNET- 50 Cycle GAN)

The Proposed Architecture

2. VGG-16:

- Convolutional Layers
- ☐ Pooling Layer
- ☐ Fully Connected Layers
- ☐ Block Structure
- ☐ Architecture Depth
- Design Philosophy

VGG-16

VGG-16

Conv 1-1

Conv 1-1

Pooling

Conv 2-1

Conv 2-2

Conv 3-1
Conv 3-2
Conv 3-3
Pooling

Conv 4-1
Conv 4-2
Conv 4-3
Pooling

Conv 5-1 Conv 5-2 Conv 5-3 Dense Dense Output

Working Flow(VGG-16 Cycle GAN)

Semi-Supervision

The objective Function

There are two components to the CycleGAN objective function, an *adversarial* loss and a cycle consistency loss. Both are essential to getting good results.

1. Adversarial Loss:

The adversarial loss measures how well the generator can fool the discriminator.

The objective is to minimize this loss, which encourages the generator to generate

realistic data samples.

$$Loss_{adv}(G, D_y, X) = \frac{1}{m} \sum_{i=1}^{m} (1 - D_y(G(x_i)))^2$$

$$Loss_{adv}(F, D_x, Y) = \frac{1}{m} \sum_{i=1}^{m} (1 - D_x(F(y_i)))^2$$

The objective Function(Cont.)

2. Cycle-Consistency Loss:

The cycle-consistency loss is introduced to enforce that the output generated by the generator, when passed through another generator in the opposite direction, should reconstruct the original input.

It enforces that $F(G(x)) \approx x$ and $G(F(y)) \approx y$.

$$Loss_{cyc}(G, F, X, Y) = \frac{1}{m} \sum_{i=1}^{m} [F(G(x_i)) - x_i] + [G(F(y_i)) - y_i]$$

The objective Function(Cont.)

The objective Function(Cont.)

3. Cross Entropy Loss:

The cross entropy loss quantifies the difference between the predicted probability distribution and the actual distribution.

For binary classification, it is defined as:

$$\mathcal{L} = -\left[y\log(p) + (1-y)\log(1-p)\right]$$

Where:

- y is the actual label (0 or 1).
- p is the predicted probability of the positive class (1).

Dataset

BreakHis Histology Slides

Total Images = 210

Training = 200

Benign = 100

Malignant = 100

Testing = 20

Benign = 10

Malignant = 10

Zoom Range = 400x.

Dataset(Examples)

Dataset(Examples)

Evaluation Metrics

- Classification Metrics
- a) Accuracy
- b) Precision
- c) Recall
- d) F1 Score
- ☐ Rating and Preference Judgment.
- a) Rating Image Quality
- b) Real/Fake

Evaluation Metrics(Cont.)

- ☐ Fully Convolutional Network Metrics
- a) Intersection-Over-Union(IOU)
- b) Average-Per-Pixel Accuracy
- c) Average-Per-Class Accuracy
- ☐ Image Quality Measures
- a) Structural Similarity Index Matrix(SSIM)
- b) Peak-Signal-Noise Ratio(PSNR)
- c) Mean Squared Error(MSE)

Results

Classification Metrics:

Model	Accuracy	Precision	Recall	F1 Score
VGG-16 CycleGAN	0.5000	0.5000	1.0000	0.67
ResNET-50 CycleGAN	0.9500	0.9036	1.0	0.95
Simple CycleGAN	0.70	1.0	0.400	0.57

Classification Results

Results(Cont.)

FCN Results:

Model	Intersection over Union (IoU)	Average Per-Pixel Accuracy	Average Per-Class Accuracy
Simple CycleGAN	0.3091	0.9426	0.4653
VGG-16 CycleGAN	0.6787	0.9547	0.8374
ResNET-50 CycleGAN	0.2603	0.8962	0.4578

FCN Results:

Results(Cont.)

Image Quality Measures:

SSIM:

Image Quality Measures(cont.)

PSNR:

Image Quality Measures(Cont.)

MSE:

Results(Cont.)

Rating and Preference Judgment:

Model	Average Image Quality	Real/Fake(%)
Simple CycleGAN	3.51	0.80
VGG16 CycleGAN	4.2	0.95
ResNet50 CycleGAN	2.85	0.50
Real Images	3.9	0.90

Simple Cycle GAN:

VGG-16 Cycle GAN:

ResNET-50:

Tools/Simulators:

- Python
- Pytorch
- ☐ Scikit Learn
- Matplotlib
- Seaborn
- ☐Google Colab
- ☐Google Drive
- Pycharm
- Anaconda Jupyter Notebook
- ☐ BreakHis Dataset

Limitations:

- ☐ The generated images often contain noticeable noise and artifacts, affecting quality and realism.
- ☐ Significant computational power is required, limiting accessibility for researchers with constrained resources.
- ☐ Training deep models is time-intensive, often taking several hours to days.
- ☐ A substantial amount of labeled data is still needed, which is time-consuming and costly to acquire.
- ☐ The models may not generalize well across different medical imaging modalities and tumor types, needing further validation.

Thank You