Neural Networks

Matt R

June 24, 2022

Contents

Ι	Ne	eural Networks and Deep Learning	4
1	Log	sistic Regression	5
	1.1	The Gradient	6
	1.2	Implementation in Python via numpy	7
	1.3	Implementation in Python via sklearn	12
2	Net	ıral Networks: A Single Hidden Layer	13
	2.1	Backward Propagation	15
	2.2	Activation Functions	19
		2.2.1 The Sigmoid Function	19
		2.2.2 The Hyperbolic Tangent Function	20
		2.2.3 The Rectified Linear Unit Function	20
		2.2.4 The Softmax Function	21
	2.3	Binary Classification - An Example	$\frac{1}{22}$
		2.3.1 Random Initialization	23
3	Dee	ep Neural Networks	24
	3.1	Backward Propagation	24
	3.2	Implementation in Python via numpy	25
	3.3	Implementation in Python via tensorflow	30
	3.4	Better Backpropagation	31
	0.1	Better Buenpropagation	01
II		nproving Deep Neural Networks: Hyperparam- Tuning, Regularization, and Optimization	38
CU	ei i	runnis, riegularization, and Optimization	00

4	Tra	ining, Development and Test Sets	39
	4.1	Python Implementation	41
5	Reg	gularization	42
	5.1	Python Implementation	43
	5.2	(Inverted) Dropout Regularization	47
		5.2.1 Python Implementation	48
	5.3	Data Augmentation	53
	5.4	Early Stopping	53
6	Gra	adients and Numerical Remarks	54
	6.1	Numerical Gradient Checking	54
	6.2	Python Implementation	55
7	Gra	adient Descent	56
	7.1	Weighted Averages	58
	7.2	Gradient Descent with Momentum	60
	7.3	Root Mean Squared Propagation (RMSProp)	62
	7.4	Adaptive Moment Estimation: The Adam Algorithm	63
	7.5	Learning Rate Decay	65
	7.6	Python Implementation	65
8	Tur	ning Hyper-Parameters	73
	8.1	Python Implementation	74
9	Bat	sch Normalization	7 5
	9.1	Backward Propagation	77
	9.2	Inferencing	83
	9.3	Algorithm Outline	84
	9.4	Better Backpropagation	86
	9.5	Python Implementation	92
10	Mu	lti-Class Softmax Regression	93
Η	Ι (Convolutional Neural Networks	97
11	An	Introduction to Convolutions	98
		Cross-Correlation	98
		Convolution with Padding	100

11.3 Strided Convolution	102
11.4 Strided Convolutions with Padding	103
11.5 Convolutions Over Volumes	
11.6 Multiple Filters	
12 Convolutional Networks	106
12.1 Convolutional Layers (conv)	106
12.2 Pooling Layers (pool)	107
12.2.1 Max Pooling	107
12.2.2 Average Pooling	107
12.3 A Convolutional Network	108
12.4 Backpropagation	109
Appendix A utils.py	111
Appendix B activators.py	125
Appendix C The Normalization Operator	127
C.1 The Normalization Operator v.2	131
References	136

Part I Neural Networks and Deep Learning

1 Logistic Regression

We begin with a review of binary classification and logistic regression. To this end, suppose we have we have training examples $x \in \mathbb{R}^{m \times n}$ with binary labels $y \in \{0,1\}^{1 \times n}$. We desire to train a model which yields an output a which represents

$$a = \mathbb{P}(y = 1|x).$$

To this end, let $\sigma: \mathbb{R} \to (0,1)$ denote the sigmoid function, i.e.,

$$\sigma(z) = \frac{1}{1 + e^{-z}},$$

and let $w \in \mathbb{R}^{1 \times m}$, $b \in \mathbb{R}$, and let

$$a = \sigma(wx + b).$$

To analyze the accuracy of model, we need a way to compare y and a, and ideally this functional comparison can be optimized with respect to (w, b) in such a way to minimize the error. To this end, we note that

$$\mathbb{P}(y|x) = a^y (1-a)^{1-y},$$

or rather

$$\mathbb{P}(y = 1|x) = a, \qquad \mathbb{P}(y = 0|x) = 1 - a,$$

so $\mathbb{P}(y|x)$ represents the corrected probability. Now since we want

$$a \approx 1$$
 when $y = 1$,

and

$$a \approx 0$$
 when $y = 0$,

and $0 \le a \le 1$, any error using differences won't be refined enough to analyze when tuning the model. Moreover, since introducing the sigmoid function, our usual mean-squared-error function won't be convex. This leads us to apply the log function, which when restricted to (0,1) is a bijective mapping of $(0,1) \to (-\infty,0)$. This leads us to define our log-loss function

$$L(a, y) = -\log(\mathbb{P}(y|x))$$

= $-\log(a^{y}(1-a)^{1-y})$
= $-[y\log(a) + (1-y)\log(1-a)],$

and finally, since we wish to analyze how our model performs on the entire training set, we need to average our log-loss functions to obtain our cost function $\mathbb J$ defined by

$$\mathbb{J}(w,b) = \frac{1}{n} \sum_{j=1}^{n} \mathbb{L}(a_j, y_j)
= -\frac{1}{n} \sum_{j=1}^{n} \left[y_j \log(a_j) + (1 - y_j) \log(1 - a_j) \right]
= -\frac{1}{n} \sum_{j=1}^{n} \left[y_j \log(\sigma(wx_j + b)) + (1 - y_j) \log(1 - \sigma(wx_j + b)) \right].$$

1.1 The Gradient

To compute the gradient of our cost function \mathbb{J} , we first write \mathbb{J} as a sum of compositions as follows: We have the log-loss function considered as a map $\mathbb{L}:(0,1)\times\mathbb{R}\to\mathbb{R}$,

$$\mathbb{L}(a, y) = -[y \log(a) + (1 - y) \log(1 - a)],$$

we have the sigmoid function $\sigma: \mathbb{R} \to (0,1)$ with $\sigma(z) = a$ and $\sigma'(z) = a(1-a)$, and we have the collection of affine-functionals $\phi_x: \mathbb{R}^{1\times m} \times \mathbb{R} \to \mathbb{R}$ given by

$$\phi_r(w,b) = wx + b,$$

for which we fix an arbitrary $x \in \mathbb{R}^m$ and write $\phi = \phi_x$, and set $z = \phi(w, b)$. Finally, we introduce the auxiliary function $\mathcal{L} : \mathbb{R}^{1 \times m} \times \mathbb{R} \to \mathbb{R}$ given by

$$\mathcal{L}(w,b) = \mathbb{L}(\sigma(\phi(w,b)), y).$$

Then by the chain rule, we have that

$$d\mathcal{L}_{(w,b)} = d_a \mathbb{L}_{(a,y)} \circ d\sigma_z \circ d\phi_{(w,b)}$$

$$= \left[-\frac{y}{a} + \frac{1-y}{1-a} \right] \cdot a(1-a) \cdot \begin{bmatrix} x^T & 1 \end{bmatrix}$$

$$= \left[-y(1-a) + a(1-y) \right] \cdot \begin{bmatrix} x^T & 1 \end{bmatrix}$$

$$= (a-y) \begin{bmatrix} x^T & 1 \end{bmatrix}$$

Composition turns into matrix multiplication in the tangent space. Moreover, for function $f: \mathbb{R}^N \to \mathbb{R}$ in Euclidean space, we have that $\nabla f = (df)^T$, and hence that

$$\nabla \mathcal{L}(w, b) = (a - y) \begin{bmatrix} x \\ 1 \end{bmatrix},$$

or rather

$$\partial_w \mathbb{L}(a, y) = (a - y)x, \qquad \partial_b \mathbb{L}(a, y) = a - y.$$

Finally, since our cost function \mathbb{J} is the sum-log-loss, we have by linearity that

$$\partial_w \mathbb{J}(w, b) = \frac{1}{n} \sum_{j=1}^n (a_j - y_j) x_j$$
$$= \frac{1}{n} ((a - y) \cdot x^T)^T$$
$$= \frac{1}{n} x \cdot (a - y)^T$$

and

$$\partial_b \mathbb{J}(w,b) = \frac{1}{n} \sum_{j=1}^n (a_j - y_j).$$

1.2 Implementation in Python via numpy

Here we include the general method of coding a logistic regression model with L^2 -regularization via the classical numpy library.

```
1 #! python3
з import numpy as np
  from mlLib.utils import apply_activation
  class LinearParameters():
      def __init__(self, dims, bias=True, seed=1):
           Parameters:
10
11
           dims : tuple(int, int)
12
           bias : Boolean
13
               Default : True
14
           seed : int
15
               Default : 1
16
```

```
17
           Returns:
18
           -----
19
           None
20
21
           np.random.seed(seed)
22
           self.dims = dims
23
           self.bias = bias
24
           self.w = np.random.randn(*dims) * 0.01
25
26
                self.b = np.zeros((dims[0], 1))
28
      def forward(self, x):
29
30
           Parameters:
31
           -----
32
33
           x : array_like
34
           Returns:
35
36
           z : array_like
37
38
           z = np.einsum('ij,jk', self.w, x)
39
           if self.bias:
40
               z += self.b
41
42
           return z
43
44
      def backward(self, dz, x):
45
46
           Parameters:
47
           -----
48
           dz : array_like
49
           x : array_like
50
51
           Returns:
52
           -----
53
           None
54
           11 11 11
55
           if self.bias:
56
                self.db = np.sum(dz, axis=1, keepdims=True)
57
                assert (self.db.shape == self.b.shape)
58
59
           self.dw = np.einsum('ij,kj', dz, x)
60
           assert (self.dw.shape == self.w.shape)
61
62
      def update(self, learning_rate=0.01):
```

```
11 11 11
64
            Parameters:
65
            -----
66
            learning_rate : float
67
                Default : 0.01
68
69
            Returns:
70
            _____
71
            None
72
73
            w = self.w - learning_rate * self.dw
            self.w = w
75
76
            if self.bias:
77
                b = self.b - learning_rate * self.db
78
                self.b = b
79
80
81 class LogisticRegression():
       def __init__(self, lp_reg):
82
83
            Parameters:
84
            lp_reg : int
85
                2 : L_2 Regularization is imposed
86
                1 : L_1 Regularization is imposed
87
                0 : No regulariation is imposed
88
            Returns:
90
91
            None
92
            11 11 11
93
            self.lp_reg = lp_reg
94
95
       def predict(self, params, x):
96
97
            Parameters:
98
99
            params : class[LinearParameters]
100
101
            x : array_like
102
            Returns:
103
            -----
104
            a : array_like
105
            dg : array_like
106
107
            z = params.forward(x)
108
            a, dg = apply_activation(z, 'sigmoid')
109
110
            return a, dg
```

```
111
       def cost_function(self, params, x, y, lambda_=0.01, eps=1e-8):
112
113
            Parameters:
114
115
            params : class[LinearParameters]
116
            x : array_like
117
            y : array_like
118
119
            lambda_ : float
                Default: 0.01
120
            eps : float
121
                Default : 1e-8
122
123
            Returns:
124
            -----
125
            cost : float
126
127
            n = y.shape[1]
128
129
            R = np.sum(np.abs(params.w) ** self.lp_reg)
130
            R *= (lambda_ / (2 * n))
131
132
            a, _ = self.predict(params, x)
133
            a = np.clip(a, eps, 1 - eps)
134
135
            J = (-1 / n) * (np.sum(y * np.log(a) + (1 - y) * np.log(1 - a)))
136
137
            cost = float(np.squeeze(J + R))
138
139
            return cost
140
141
       def fit(self, x, y, learning_rate=0.1, lambda_=0.01, seed=1, num_iters=10000):
142
143
            Parameters:
144
145
            x : array_like
146
            y : array_like
147
            learning_rate : float
148
                Default : 0.1
149
            lambda_ : float
150
                Default : 0.0
151
            num_iters : int
152
                Default : 10000
153
154
155
            Returns:
            -----
156
            costs : List[floats]
157
```

```
params : class[Parameters]
158
159
            dims = (y.shape[0], x.shape[0])
160
            n = x.shape[1]
161
            params = LinearParameters(dims, True, seed)
162
163
            if self.lp_reg == 0:
164
                lambda_{-} = 0.0
165
166
            costs = []
167
            for i in range(num_iters):
168
                a, _ = self.predict(params, x)
169
                cost = self.cost_function(params, x, y, lambda_)
170
                costs.append(cost)
171
                dz = (a - y) / n
172
                params.backward(dz, x)
173
                params.update(learning_rate)
174
175
                if i % 1000 == 0:
176
                     print(f'Cost_after_iteration_{i}:_{cost}')
177
178
            return params
179
180
       def evaluate(self, params, x):
181
182
183
            Parameters:
            _____
184
            params : class[Parameters]
185
            x : array_like
186
187
            Returns:
188
            -----
189
            y_hat : array_like
190
191
            a, _ = self.predict(params, x)
192
            y_hat = (\sim(a < 0.5)).astype(int)
193
194
195
            return y_hat
196
       def accuracy(self, params, x, y):
197
198
            Parameters:
199
200
            params : class[Parameters]
201
            x : array_like
202
            y : array_like
203
204
```

1.3 Implementation in Python via sklearn

Here we include the general method of coding a logistic regression model via scikit-learn's modeling library.

```
1 #! python3
з import pandas as pd
4 import numpy as np
5 from sklearn.model_selection import train_test_split
6 from sklearn.linear_model import LogisticRegression
8 def main(csv):
      df = pd.read_csv(csv)
      dataset = df.values
10
      x = dataset[:, :10]
11
      y = dataset[:, 10]
12
13
      x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)
      mu = np.mean(x, axis=0, keepdims=True)
15
      var = np.var(x, axis=0, keepdims=True)
      x_train = (x_train - mu) / np.sqrt(var)
17
      x_{test} = (x_{test} - mu) / np.sqrt(var)
18
19
      log_reg = LogisticRegression()
      log_reg.fit(x_train, y_train)
21
      train_acc = log_reg.score(x_train, y_train)
      print(f'The_accuracy_on_the_training_set:_{train_acc}.')
23
      test_acc = log_reg.score(x_test, y_test)
      print(f'The_accuracy_on_the_test_set:_{test_acc}.')
```

2 Neural Networks: A Single Hidden Layer

Suppose we wish to consider the binary classification problem given the training set (x, y) with $x \in \mathbb{R}^{m_0 \times n}$ and $y \in \{0, 1\}^{1 \times n}$. Usually with logistic regression we have the following type of structure:

$$[x^1,...,x^{m_0}] \stackrel{\varphi}{\longrightarrow} [z] \stackrel{g}{\longrightarrow} [a] \stackrel{=}{\longrightarrow} \hat{y},$$

where

$$z = \varphi(x) = w^T x + b,$$

is our affine-linear transformation, and

$$a = g(z) = \sigma(z)$$

is our sigmoid function. Such a structure will be called a *network*, and the [a] is known as the *activation node*. Logistic regression can be too simplistic of a model for many situations, e.g., if the dataset isn't linearly separable (i.e., there doesn't exist some well-defined decision boundary built from a linear-surface), then logistic regression won't give a high-accuracy model. To modify this model to handle more complex situations, we introduce a new "hidden layer" of nodes with their own (possibly different) activation functions. That is, we consider a network of the following form:

$$\underbrace{\begin{bmatrix} x^1 \\ \vdots \\ x^{m_0} \end{bmatrix}}_{\text{Laver 0}} \xrightarrow{\varphi^{[1]}} \underbrace{\begin{bmatrix} z^{[1]1} \\ \vdots \\ z^{[1]m_1} \end{bmatrix}}_{\text{Laver 1}} \xrightarrow{g^{[1]}} \underbrace{\begin{bmatrix} a^{[1]1} \\ \vdots \\ a^{[1]m_1} \end{bmatrix}}_{\text{Laver 2}} \xrightarrow{\varphi^{[2]}} \underbrace{[z^{[2]}]}_{\text{Layer 2}} \xrightarrow{g^{[2]}} \hat{y},$$

where

$$\varphi^{[1]}: \mathbb{R}^{m_0} \to \mathbb{R}^{m_1}, \qquad \varphi^{[1]}(x) = W^{[1]}x + b^{[1]},
\varphi^{[2]}: \mathbb{R}^{m_1} \to \mathbb{R}, \qquad \varphi^{[2]}(x) = W^{[2]}x + b^{[2]},$$

and $W^{[1]} \in \mathbb{R}^{m_1 \times m_0}, W^{[2]} \in \mathbb{R}^{1 \times m_1}, b^{[1]} \in \mathbb{R}^{m_1}, b^{[2]} \in \mathbb{R}$, and $g^{[\ell]}$ is a broad-casted activator function (e.g., the sigmoid function $\sigma(z)$, or $\tanh(z)$, or $\operatorname{ReLU}(z)$). Such a network is called a 2-layer neural network where x is the input layer (called layer-0), $a^{[1]}$ is a hidden layer (called layer-1), and $a^{[2]}$ is the output layer (called layer-2).

Definition 2.1. Suppose $g : \mathbb{R} \to \mathbb{R}$ is any function. Then we say $G : \mathbb{R}^m \to \mathbb{R}^m$ is the **broadcast** of g from \mathbb{R} to \mathbb{R}^m if

$$G(v) = G(v^i e_i)$$
$$= g(v^i)e_i,$$

where $v \in \mathbb{R}^m$ and $\{e_i : 1 \le i \le m\}$ is the standard basis for \mathbb{R}^m . In practice, we will write g = G for a broadcasted function, and let the context determine the meaning of g.

castingDifferential

Lemma 2.2. Suppose $g: \mathbb{R} \to \mathbb{R}$ is any smooth function and $G: \mathbb{R}^m \to \mathbb{R}^m$ is the broadcasting of g from \mathbb{R} to \mathbb{R}^m . Then the differential $dG_z: T_z\mathbb{R}^m \to T_{G(z)}\mathbb{R}^m$ is given by

$$dG_z(v) = [g'(z^i)] \odot [v^i],$$

where \odot is the Hadamard product (also know as component-wise multiplication), and has matrix-representation in $\mathbb{R}^{m \times m}$ given by

$$[dG_z]_j^i = \delta_j^i g'(z^i).$$

Proof: We calculate

$$dG_z(v) = \frac{d}{dt}\Big|_{t=0} G(z+tv)$$

$$= \frac{d}{dt}\Big|_{t=0} (g(z^i+tv^i))$$

$$= (g'(z^i)v^i)$$

$$= [g'(z^i)] \odot [v^i],$$

and letting $e_1, ... e_m$ denote the usual basis for $T_z \mathbb{R}^m$ (identified with \mathbb{R}^m), we see that

$$dG_z(e_j) = [g'(z^i)] \odot e_j$$

= $g'(z^j)e_j$,

from which conclude that dG_z is diagonal with (j, j)-th entry $g'(z^j)$ as desired.

Returning to our network, let us lay out all of these functions explicitly (in the Smooth Category) as to facilitate our later computations for our cost function and our gradients. To this end:

$$\varphi^{[1]}: \mathbb{R}^{m_0} \to \mathbb{R}^{m_1}, \qquad d\varphi^{[1]}: T\mathbb{R}^{m_0} \to T\mathbb{R}^{m_1},
z^{[1]} = \varphi^{[1]}(x) = W^{[1]}x + b^{[1]}, \qquad d\varphi^{[1]}_x(v) = W^{[1]}v;$$

$$\begin{split} g^{[1]} : \mathbb{R}^{m_1} &\to \mathbb{R}^{m_1}, & dg^{[1]} : T\mathbb{R}^{m_1} \to T\mathbb{R}^{m_1}, \\ a^{[1]} &= g^{[1]}(z^{[1]}), & \frac{\partial a^{[1]\mu}}{\partial z^{[1]\nu}} = \delta^{\mu}_{\nu} g^{[1]'}(z^{[1]\mu}); \\ \varphi^{[2]} : \mathbb{R}^{m_1} &\to \mathbb{R}^{m_2}, & d\varphi^{[2]} : T\mathbb{R}^{m_1} \to T\mathbb{R}^{m_2}, \\ z^{[2]} &= \varphi^{[2]}(a^{[1]}) = W^{[2]}a^{[1]} + b^{[2]}, & d\varphi^{[2]}_{a^{[2]}}(v) = W^{[2]}v; \\ & & & & & & & \\ g^{[2]} : \mathbb{R}^{m_2} \to \mathbb{R}^{m_2}, & & & & & & \\ a^{[2]} &= g^{[2]}(z^{[2]}), & & & & & & \\ & \frac{\partial a^{[2]\mu}}{\partial z^{[2]\nu}} = \delta^{\mu}_{\nu} g^{[2]'}(z^{[2]\mu}). \end{split}$$

That is, given an input $x \in \mathbb{R}^{m_0}$, we get a predicted value $\hat{y} \in \mathbb{R}^{m_2}$ of the form

$$\hat{y} = g^{[2]} \circ \varphi^{[2]} \circ g^{[1]} \circ \varphi^{[1]}(x).$$

This compositional function is known as forward propagation.

2.1 Backward Propagation

Since we wish to optimize our model with respect to our parameter $W^{[\ell]}$ and $b^{[\ell]}$, we consider a generic loss function $\mathbb{L}: \mathbb{R}^{m_2} \times \mathbb{R}^{m_2} \to \mathbb{R}$, $\mathbb{L}(\hat{y}, y)$, and by acknowledging the potential abuse of notation, we assume y is fixed, and consider the aforementioned as a function of a single-variable

$$\mathbb{L}_y: \mathbb{R}^{m_2} \to \mathbb{R}, \qquad \mathbb{L}_y(\hat{y}) = \mathbb{L}(\hat{y}, y).$$

We also define the function

backPropDerivation

$$\Phi(A, u, \xi) = A\xi + u,$$

and note that we're suppressing a dependence on the layer ℓ which only affects our domain and range of Φ (and not the actual calculations involving the derivatives). Moreover, in coordinates we see that

$$\frac{\partial \Phi^{i}}{\partial A^{\mu}_{\nu}} = \frac{\partial}{\partial A^{\mu}_{\nu}} (A^{i}_{j} \xi^{j} + u^{i})$$
$$= (\delta^{i}_{\mu} \delta^{\nu}_{j} \xi^{j})$$
$$= \delta^{i}_{\mu} \xi^{\nu};$$

$$\frac{\partial \Phi^{i}}{\partial u^{\mu}} = \frac{\partial}{\partial u^{\mu}} (A_{j}^{i} \xi^{j} + u^{i})$$
$$= \delta_{\mu}^{i};$$

and

$$\frac{\partial \Phi^{i}}{\xi^{\mu}} = \frac{\partial}{\partial \xi^{\mu}} (A_{j}^{i} \xi^{j} + u^{i})$$
$$= A_{j}^{i} \delta_{\mu}^{j}$$
$$= A_{\mu}^{i}.$$

We now define the compositional function

$$F: \mathbb{R}^{m_2 \times m_1} \times \mathbb{R}^{m_2} \times \mathbb{R}^{m_1 \times m_0} \times \mathbb{R}^{m_1} \times \mathbb{R}^{m_0} \to \mathbb{R}$$

given by

$$F(C,c,B,b,x) = \mathbb{L}_y \circ g^{[2]} \circ \Phi \circ (\mathbb{1}_{\mathbb{R}^{m_2 \times m_1}} \times \mathbb{1}_{\mathbb{R}^{m_2}} \times (g^{[1]} \circ \Phi))(C,c,B,b,x).$$

We first introduce an error term $\delta^{[2]} \in \mathbb{R}^{m_2}$ defined by

$$\delta^{[2]} := \nabla (\mathbb{L}_y \circ g^{[2]})(z^{[2]})$$
$$= (d\mathbb{L}_y \circ g^{[2]})_{z^{[2]}})^T.$$

Now we calculate the gradient $\frac{\partial F}{\partial C}$ in coordinates by

$$\frac{\partial F}{\partial C_{\nu}^{\mu}} = \frac{\partial}{\partial C_{\nu}^{\mu}} \left[\mathbb{L}_{y} \circ g^{[2]} \circ \Phi(C, c, a^{[1]}) \right]
= \sum_{j=1}^{m_{2}} \delta^{[2]j} \frac{\partial}{\partial C_{\nu}^{\mu}} (C_{i}^{j} a^{[1]i} + c^{j})
= \sum_{j=1}^{m_{2}} \delta^{[2]j} \delta_{\mu}^{j} a^{[1]\nu}
= \delta^{[2]}{}_{\mu} a^{[1]\nu}
= [a^{[1]} \delta^{[2]T}]_{\mu}^{\nu}$$

and hence that

$$\frac{\partial F}{\partial C} = \left[\frac{\partial F}{\partial C_{\nu}^{\mu}}\right]^{T}$$
$$= \left[\delta_{\mu}^{[2]} a^{[1]\nu}\right]^{T}$$
$$= \delta^{[2]} a^{[1]T}.$$

Moreover, we also calculate

$$\frac{\partial F}{\partial c^{\mu}} = \sum_{j=1}^{m_2} \delta^{[2]j} \delta^j_{\mu},$$

and hence that

$$\frac{\partial F}{\partial c} = \delta^{[2]}.$$

Next we introduce another error term $\delta^{[1]} \in \mathbb{R}^{m_1}$ defined by

$$\delta^{[1]} = [dg_{\tau^{[1]}}^{[1]}]^T C^T \delta^{[2]}$$

 $d_{z^{[1]}}F$

with coordinates

$$\begin{split} (\delta^{[1]\mu})^T &= \sum_{i=1}^{m_2} \sum_{j=1}^{m_1} \delta^{[2]i} C^i_j g^{[1]\prime}(z^{[1]j}) \delta^j_\mu \\ &= \sum_{i=1}^{m_2} \delta^{[2]i} C^i_\mu g^{[1]\prime}(z^{[1]\mu}) \end{split}$$

and now calculate the gradient $\frac{\partial F}{\partial B}$ in coordinates by

$$\begin{split} \frac{\partial F}{\partial B^{\mu}_{\nu}} &= \frac{\partial}{B^{\mu}_{\nu}} \left[\mathbb{L}_{y} \circ g^{[2]} \circ \Phi(C, c, g^{[1]}(Bx + b)) \right] \\ &= \sum_{j=1}^{m_{2}} \delta^{[2]j} \sum_{\rho=1}^{m_{1}} \frac{\partial \Phi^{j}}{\partial \xi^{\rho}} \sum_{\lambda=1}^{m_{1}} \frac{\partial a^{[1]\rho}}{\partial z^{[1]\lambda}} \frac{\partial \Phi^{\lambda}}{\partial B^{\mu}_{\nu}} \\ &= \sum_{j=1}^{m_{2}} \delta^{[2]j} \sum_{\rho=1}^{m_{1}} \frac{\partial \Phi^{j}}{\partial \xi^{\rho}} \sum_{\lambda=1}^{m_{1}} \delta^{\rho}_{\lambda} g^{[1]'}(z^{[1]\rho}) \delta^{\lambda}_{\mu} x^{\nu} \\ &= \sum_{j=1}^{m_{2}} \delta^{[2]j} \sum_{\rho=1}^{m_{1}} \frac{\partial \Phi^{j}}{\partial \xi^{\rho}} \delta^{\rho}_{\mu} g^{[1]'}(z^{[1]\rho}) x^{\nu} \\ &= \sum_{j=1}^{m_{2}} \delta^{[2]j} \sum_{\rho=1}^{m_{1}} C^{j}_{\rho} \delta^{\rho}_{\mu} g^{[1]'}(z^{[1]\rho}) x^{\nu} \\ &= \sum_{j=1}^{m_{2}} \delta^{[2]j} C^{j}_{\mu} g^{[1]'}(z^{[1]\mu}) x^{\nu} \\ &= \delta^{[1]}_{\mu} x^{\nu} \\ &= \left[x \delta^{[1]T} \right]^{\nu}_{\mu}, \end{split}$$

and hence that

$$\frac{\partial F}{\partial B} = \left[\frac{\partial F}{\partial B^{\mu}_{\nu}}\right]^{T}$$
$$= \delta^{[2]} x^{T}.$$

Moreover, from the above calculation, we immediately see that

$$\frac{\partial F}{\partial b^{\mu}} = \delta^{[1]}.$$

In summary, we've computed the following gradients

$$\frac{\partial F}{\partial W^{[2]}} = \delta^{[2]} a^{[1]T}$$
$$\frac{\partial F}{\partial b^{[2]}} = \delta^{[2]}$$
$$\frac{\partial F}{\partial W^{[1]}} = \delta^{[1]} x^{T}$$
$$\frac{\partial F}{\partial b^{[1]}} = \delta^{[1]},$$

where

$$\begin{split} \delta^{[2]} &= [d(\mathbb{L}_y \circ g^{[2]})_{z^{[2]}}]^T \\ \delta^{[1]} &= [dg_{z^{[1]}}^{[1]}]^T C^T \delta^{[2]}. \end{split}$$

Finally, we recall that our cost function \mathbb{J} is the average sum of our loss function \mathbb{L} over our training set, we get that

$$\mathbb{J}(W^{[2]}, b^{[2]}, W^{[1]}, b^{[1]}) = \frac{1}{n} \sum_{i=1}^{n} F(W^{[2]}, b^{[2]}, W^{[1]}, b^{[1]}, x_j),$$

and hence that

$$\begin{split} \frac{\partial \mathbb{J}}{\partial W^{[2]}} &= \frac{1}{n} \sum_{j=1}^{n} \delta^{[2]}{}_{j} a^{[1]}{}_{j}{}^{T} = \frac{1}{n} \delta^{[2]} a^{[1]T} \\ \frac{\partial \mathbb{J}}{\partial b^{[2]}} &= \frac{1}{n} \sum_{j=1}^{n} \delta^{[2]}{}_{j} \\ \frac{\partial \mathbb{J}}{\partial W^{[1]}} &= \frac{1}{n} \sum_{j=1}^{n} \delta^{[1]}{}_{j} x_{j}^{T} = \frac{1}{n} \delta^{[1]} x^{T} \\ \frac{\partial \mathbb{J}}{\partial b^{[1]}} &= \frac{1}{n} \sum_{j=1}^{n} \delta^{[1]}{}_{j} \end{split}$$

2.2 Activation Functions

There are mainly only a handful of activating functions we consider for our non-linearity conditions.

2.2.1 The Sigmoid Function

We have the sigmoid function $\sigma(z)$ given by

$$\sigma: \mathbb{R} \to (0,1), \qquad \sigma(z) = \frac{1}{1+e^{-z}}.$$

We note that since

$$1 - \sigma(z) = 1 - \frac{1}{1 + e^{-z}}$$
$$= \frac{e^{-z}}{1 + e^{-z}}$$

$$\sigma'(z) = \frac{e^{-z}}{(1 + e^{-z})^2}$$

$$= \frac{1}{1 + e^{-z}} \cdot \frac{e^{-z}}{1 + e^{-z}}$$

$$= \sigma(z)(1 - \sigma(z))$$

Moreover, suppose that $g: \mathbb{R}^m \to \mathbb{R}^m$ is the broadcasting of σ from \mathbb{R} to \mathbb{R}^m , then for $z = (z^1, ..., z^m) \in \mathbb{R}^m$, we have that

$$g(z) = (\sigma(z^i)),$$

and $dg_z: T_z\mathbb{R}^m \to T_{g(z)}\mathbb{R}^m$ given by

$$dg_z(v) = \frac{d}{dt} \Big|_{t=0} g(z + tv)$$

$$= \frac{d}{dt} \Big|_{t=0} (\sigma(z^i + tv^i))$$

$$= (\sigma'(z^i)v^i)$$

$$= (\sigma(z^i)(1 - \sigma(z^i))v^i)$$

$$= g(z) \odot (1 - g(z)) \odot v,$$

where \odot represents the Hadamard product (or component-wise multiplication); or rather, as as a matrix in $\mathbb{R}^{m \times m}$,

$$[dg_z]^{\mu}_{\nu} = \delta^{\mu}_{\nu} \sigma(z^{\mu}) (1 - \sigma(z^{\mu})).$$

2.2.2 The Hyperbolic Tangent Function

We have the hyperbolic tangent function tanh(z) given by

$$\tanh : \mathbb{R} \to (-1, 1), \qquad \tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}.$$

We then calculate

$$\tanh'(z) = \frac{(e^z + e^{-z})(e^z + e^{-z}) - (e^z - e^{-z})(e^z - e^{-z})}{(e^z + e^{-z})^2}$$
$$= \frac{(e^z + e^{-z})^2}{(e^z + e^{-z})^2} - \frac{e^z - e^{-z})^2}{(e^z + e^{-z})^2}$$
$$= 1 - \tanh^2(z).$$

Suppose $g: \mathbb{R}^m \to \mathbb{R}^m$ is the broadcasting of tanh from \mathbb{R} to \mathbb{R}^m , then for $z = (z^1, ..., z^m) \in \mathbb{R}^m$, we have that

$$g(z) = (\tanh(z^i)),$$

and $dg_z: T_z\mathbb{R}^m \to T_{g(z)}\mathbb{R}^m$ given by

$$dg_z(v) = [\tanh'(z^i)] \odot [v^i]$$

= $[1 - \tanh^2(z^i)] \odot [v^i]$
= $\delta_i^i (1 - \tanh^2(z^i)) v^j$.

2.2.3 The Rectified Linear Unit Function

We have the leaky-ReLU function $ReLU(z; \beta)$ given by

$$ReLU : \mathbb{R} \to \mathbb{R}, \qquad ReLU(z; \beta) = \max\{\beta z, z\},\$$

for some $\beta > 0$ (typically chosen very small).

We have the rectified linear unit function ReLU(z) given by setting $\beta=0$ in the leaky-ReLu function, i.e.,

$$ReLU : \mathbb{R} \to [0, \infty), \qquad ReLU(z) = ReLU(z; \beta = 0) = \max\{0, z\}.$$

We then calculate

$$ReLU'(z;\beta) = \begin{cases} \beta & z < 0 \\ 1 & z \ge 0 \end{cases}$$
$$= \beta \chi_{(-\infty,0)}(z) + \chi_{[0,\infty)}(z),$$

where

$$\chi_A(z) = \begin{cases} 1 & z \in A \\ 0 & z \notin A \end{cases},$$

is the indicator function.

Suppose $g: \mathbb{R}^m \to \mathbb{R}^m$ is the broadcasting of ReLU from \mathbb{R} to \mathbb{R}^m . Then for $z = (z^1, ..., z^m) \in \mathbb{R}^m$, we have that

$$g(z) = \text{ReLU}(z^i; \beta)$$

and $dg_z: T_z\mathbb{R}^m \to T_{g(z)}\mathbb{R}^m$ given by

$$dg_z(v) = [\operatorname{ReLU}'(z^i; \beta)] \odot [v^i]$$

= $\delta_i^i(\beta \chi_{(-\infty,0)}(z^i) + \chi_{[0,\infty)}(z^i))v^j$.

2.2.4 The Softmax Function

We finally have the softmax function softmax(z) given by

softmax:
$$\mathbb{R}^m \to \mathbb{R}^m$$
, softmax $(z) = \frac{1}{\sum_{j=1}^m e^{z^j}} \begin{pmatrix} e^{z^1} \\ e^{z^2} \\ \vdots \\ e^{z^m} \end{pmatrix}$,

which we typically use on our outer-layer to obtain a probability distribution over our predicted labels. Let

$$S^i = x^i \circ \operatorname{softmax}(z),$$

denote the *i*-th component of softmax(z), and so we calculate

$$\begin{split} \frac{\partial S^i}{\partial z^j} &= \frac{\partial}{\partial z^j} \left[\left(\sum_{k=1}^m e^{z^k} \right)^{-1} e^{z^i} \right] \\ &= - \left(\sum_{k=1}^m e^{z^k} \right)^{-2} \left(\sum_{k=1}^m e^{z^k} \delta^k_j \right) e^{z^i} + \left(\sum_{k=1}^m e^{z^k} \right)^{-1} e^{z^i} \delta^i_j \\ &= - \left(\sum_{k=1}^m e^{z^k} \right)^{-2} e^{z^j} e^{z^i} + S^i \delta^i_j \\ &= - S^j S^i + S^i \delta^i_j \\ &= S^i (\delta^i_j - S^j). \end{split}$$

That is, as a map $dS_z: T_z\mathbb{R}^m \to T_{S(z)}\mathbb{R}^m$, we have that

$$dS_z = [S^i(\delta^i_j - S_j)]^i_j,$$

and we make note that dS_z is symmetric.

2.3 Binary Classification - An Example

We return the network given by

$$\underbrace{\begin{bmatrix} x^1 \\ \vdots \\ x^{m_0} \end{bmatrix}}_{\text{Layer 0}} \xrightarrow{\varphi^{[1]}} \underbrace{\begin{bmatrix} z^{[1]1} \\ \vdots \\ z^{[1]m_1} \end{bmatrix}}_{\text{Layer 1}} \xrightarrow{g^{[1]}} \underbrace{\begin{bmatrix} a^{[1]1} \\ \vdots \\ a^{[1]m_1} \end{bmatrix}}_{\text{Layer 2}} \xrightarrow{\varphi^{[2]}} \underbrace{[z^{[2]}]}_{\text{Layer 2}} \xrightarrow{g^{[2]}} \hat{y},$$

and show how such a model would be trained using python below. We assume layer-2 has the sigmoid function (since it's binary classification) as an activator and our hidden layer has the ReLU function as activators.

We note that $m_2 = 1$ since we're dealing with a single activator in this layer, and

$$a^{[2]} = q^{[2]}(z^{[2]}) = \sigma(z^{[2]}),$$

with

$$d(g^{[2]})_{z^{[2]}} = \sigma'(z^{[2]}) = \sigma(z^{[2]})(1 - \sigma(z^{[2]})) = a^{[2]}(1 - a^{[2]}).$$

In layer-1, we have that

$$a^{[1]} = g^{[1]}(z^{[1]}) = \text{ReLU}(z^{[1]}),$$

with

$$d(g^{[1]})_{z^{[1]}} = \left[\delta^{\mu}_{\nu} \chi_{[0,\infty)}(z^{[1]\mu})\right]^{\mu}_{\nu}.$$

Finally, we choose our loss function $\mathbb{L}(\hat{y}, y)$ to be the log-loss function (since we're using the sigmoid activator on the outer-layer), i.e.,

$$\mathbb{L}(\hat{y}, y) = -y \log(\hat{y}) - (1 - y) \log(1 - \hat{y}),$$

or rather

$$\mathbb{L}(x,y) = -y\log(a^{[2]}) - (1-y)\log(1-a^{[2]}).$$

We then have the cost function \mathbb{J} given by

$$\mathbb{J}(W^{[2]}, b^{[2]}, W^{[1]}, b^{[1]}) = \frac{-1}{n} \sum_{j=1}^{n} \left(y_j \log(a^{[2]}_j) + (1 - y_j) \log(1 - a^{[2]}_j) \right) \\
= \frac{-1}{n} \left(\left\langle y, \log(a^{[2]}) \right\rangle + \left\langle 1 - y, \log(1 - a^{[2]}) \right\rangle \right)$$

Moreover, when using backpropagation, we see that

$$\delta^{[2]_{j}^{T}} = d(\mathbb{L}_{y_{j}})_{a^{[2]}} \cdot d(g^{[2]})_{z^{[2]_{j}}}$$

$$= \left(-\frac{y_{j}}{a^{[2]_{j}}} + \frac{1 - y_{j}}{1 - a^{[2]_{j}}}\right) \cdot \left(a^{[2]_{j}}(1 - a^{[2]_{j}})\right)$$

$$= a^{[2]_{j}} - y_{j},$$

or rather

$$\delta^{[2]} = a^{[2]} - y.$$

Similarly, we compute

$$\begin{split} \delta^{[1]}{}_{j}^{T} &= \delta^{[2]}{}_{j}^{T} W^{[2]} [dg^{[1]}_{z^{[1]}{}_{j}}] \\ &= \delta^{[2]}{}_{j}^{T} W^{[2]} [\delta^{\mu}_{\nu} \cdot \chi_{[0,\infty)}(z^{[1]}{}_{j}^{\mu})] \end{split}$$

2.3.1 Random Initialization

In the section that follows, we see that to begin gradient descent for a shallow neural network, we initialize our parameters $b^{[\ell]}$ to be 0, but choose an arbitrarily small, but nonzero initialization for $W^{[\ell]}$. Let's see why we choose $W^{[\ell]}$ to be nonzero. Indeed, suppose we initialize with $b^{[\ell]} = 0$ and $W^{[\ell]} = 0$. Then we see that

$$\delta^{[1]T} = \delta^{[2]}W^{[2]}dg_{z^{[1]}}^{[1]} = 0,$$

and so

$$\frac{\partial \mathbb{J}}{\partial W^{[1]}} = \frac{1}{n} \delta^{[1]} x^T = 0.$$

Then we conclude that our parameter $W^{[1]}$ remains at 0 during every iteration which is enough reason to not initialize $W^{[2]}$ at 0. Similarly, since

$$a^{[1]} = \tanh(W^{[1]}x + b^{[1]}) = \tanh(0) = 0,$$

we reach a similar conclusion about $W^{[1]}$ and $W^{[2]}$, respectively.

3 Deep Neural Networks

In this section we discuss a general "deep" neural network, which consist of L layers. That is, we have a network of the form:

$$\underbrace{\begin{bmatrix} x^{1} \\ \vdots \\ x^{m_{0}} \end{bmatrix}}_{\text{Layer 0}} \xrightarrow{\varphi^{[1]}} \underbrace{\begin{bmatrix} z^{[1]1} \\ \vdots \\ z^{[1]m_{1}} \end{bmatrix}}_{\text{Layer 1}} \xrightarrow{\varphi^{[2]}} \underbrace{\begin{bmatrix} z^{[2]1} \\ \vdots \\ z^{[2]m_{2}} \end{bmatrix}}_{\text{Layer 2}} \xrightarrow{\varphi^{[3]}} \cdots$$

$$\underbrace{\begin{bmatrix} z^{[1]1} \\ \vdots \\ z^{[1]m_{1}} \end{bmatrix}}_{\text{Layer 1}} \xrightarrow{\varphi^{[1]}} \underbrace{\begin{bmatrix} z^{[1]1} \\ \vdots \\ z^{[2]m_{2}} \end{bmatrix}}_{\text{Layer 2}} \xrightarrow{\varphi^{[1]}} \underbrace{\begin{bmatrix} z^{[1]1} \\ \vdots \\ z^{[L]1} \end{bmatrix}}_{\text{Layer L}} \xrightarrow{\varphi^{[1]}} \underbrace{\begin{bmatrix} z^{[L]1} \\ \vdots \\ z^{[L]m_{L}} \end{bmatrix}}_{\text{Layer L}} \xrightarrow{\varphi^{[1]}} \underbrace{\begin{bmatrix} \hat{y}^{1} \\ \vdots \\ \hat{y}^{m_{L}} \end{bmatrix}}_{\text{Layer L}},$$

where

 $m_{\ell} := \text{ the number of nodes in layer-}\ell,$

$$\varphi^{[\ell]}: \mathbb{R}^{m_{\ell-1}} \to \mathbb{R}^{m_{\ell}}, \qquad \varphi^{[\ell]}(\xi) = W^{[\ell]}\xi + b^{[\ell]}, \qquad W^{[\ell]} \in \mathbb{R}^{m_{\ell} \times m_{\ell-1}}, b \in \mathbb{R}^{m_{\ell}},$$

and

$$g^{[\ell]}: \mathbb{R}^{m_\ell} \to \mathbb{R}^{m_\ell},$$

is a broadcasted activation function determined by the layer- ℓ .

As with a shallow network, our functional composition to obtain $a^{[L]}$ is known as forward propagation.

3.1 Backward Propagation

As the general derivation for backpropagation can be easily (if not tediously) generalized from Section 2.1 using induction, we give the general outline for computational purposes.

Let $\mathbb{L}: \mathbb{R}^{m_L} \times \mathbb{R}^{m_L} \to \mathbb{R}$ be a generic loss function, and suppose our cost function is given by the usual

$$\mathbb{J}(W,b) = \frac{1}{n} \sum_{j=1}^{n} \mathbb{L}(\hat{y}_j, y_j).$$

Then from previous computations, we have the following gradients for any

 $\ell \in \{1, 2, ..., L\}$, that

$$\begin{split} \frac{\partial \mathbb{J}}{\partial W^{[\ell]}} &= \frac{1}{n} \delta^{[\ell]} a^{[\ell-1]T} \\ \frac{\partial \mathbb{J}}{\partial b^{[\ell]}} &= \frac{1}{n} \sum_{j=1}^n \delta^{[\ell]}{}_j \end{split}$$

where we impose the notation of

$$a^{[0]} := x.$$

So we need only give a full characterization of $\delta^{[\ell]}$.. To this end, we define recursively starting at layer-L by

$$\begin{split} \delta^{[L]T} &:= d(\mathbb{L}_y)_{a^{[L]}} \cdot dg_{z^{[L]}}^{[L]}, \\ \delta^{[L-1]T} &:= \delta^{[L]T} \cdot W^{[L]} \cdot dg_{z^{[L-1]}}^{[L-1]}, \\ & \vdots \\ \delta^{[\ell]T} &:= \delta^{[\ell+1]T} W^{[\ell+1]} dg_{z^{[\ell]}}^{[\ell]}, \\ & \vdots \\ \delta^{[1]T} &:= \delta^{[2]T} W^{[2]} dg_{z^{[1]}}^{[1]}, \end{split}$$

as desired.

3.2 Implementation in Python via numpy

We implement a neural network with an arbitrary number of layers and nodes, with the ReLU function as the activator on all hidden nodes and the sigmoid function on the output layer for binary classification with the log-loss function.

```
11
           config : Dict
12
               config['lp_reg'] = 0,1,2
13
               config['nodes'] = List[int]
14
               config['bias'] = List[Boolean]
               config['activators'] = List[str]
16
           Returns:
18
           -----
19
           None
20
           11 11 11
^{21}
           self.config = config
22
           self.lp_reg = config['lp_reg']
23
           self.nodes = config['nodes']
24
           self.bias = config['bias']
25
           self.activators = config['activators']
26
           self.L = len(config['nodes']) - 1
28
      def forward_propagation(self, params, x):
29
30
           Parameters:
31
32
           params : Dict[class[Parameters]]
33
               params[l].w = Weights
34
               params[1].bias = Boolean
35
               params[1].b = Bias
           x : array_like
37
           Returns:
39
           -----
40
           cache = Dict[array_like]
41
               cache['a'] = a
42
               cache['dg'] = dg
43
44
45
           # Initialize dictionaries
46
           a = \{\}
47
           dg = \{\}
48
49
           a[0], dg[0] = apply_activation(x, self.activators[0])
50
51
           for 1 in range(1, self.L + 1):
52
               z = params[1].forward(a[1 - 1])
53
               a[l], dg[l] = apply_activation(z, self.activators[l])
54
55
           cache = \{'a' : a, 'dg' : dg\}
56
           return cache
57
```

```
58
       def cost_function(self, params, a, y, lambda_=0.01, eps=1e-8):
59
60
           Parameters:
61
62
            params: class[Parameters]
63
           a: array_like
           y: array_like
65
            lambda_: float
66
                Default: 0.01
67
            eps: float
68
                Default: 1e-8
69
70
            Returns:
71
            -----
72
            cost: float
73
74
           n = y.shape[1]
75
            if self.lp_reg == 0:
76
                lambda_{-} = 0.0
77
78
            # Compute regularization term
79
           R = 0
80
            for param in params.values():
81
                R += np.sum(np.abs(param.w) ** self.lp_reg)
82
           R *= (lambda_ / (2 * n))
84
            # Compute unregularized cost
85
            a = np.clip(a, eps, 1 - eps)
                                               # Bound a for stability
86
            J = (-1 / n) * (np.sum(y * np.log(a) + (1 - y) * np.log(1 - a)))
87
88
            cost = float(np.squeeze(J + R))
89
90
            return cost
91
92
       def backward_propagation(self, params, cache, y):
93
            11 11 11
94
            Parameters:
95
            -----
96
            params : Dict[class[Parameters]]
97
                params[l].w = Weights
98
                params[1].bias = Boolean
99
                params[1].b = Bias
100
            cache : Dict[array_like]
101
                cache['a'] : array_like
102
                cache['dg'] : array_like
103
           y : array_like
104
```

```
105
            Returns:
106
            -----
107
            None
108
            11 11 11
109
110
            # Retrieve cache
111
            a = cache['a']
112
            dg = cache['dg']
113
114
            # Initialize differentials along the network
115
            delta = \{\}
116
            delta[self.L] = (a[self.L] - y) / y.shape[1]
117
118
            for l in reversed(range(1, self.L + 1)):
119
                delta[1 - 1] = dg[1 - 1] * params[1].backward(delta[1], a[1 - 1])
120
121
       def update_parameters(self, params, learning_rate=0.1):
122
123
            Parameters:
124
            _____
125
            params : Dict[class[Parameters]]
126
                params[1].w = Weights
127
                params[1].bias = Boolean
128
                params[1].b = Bias
129
            learning_rate : float
130
                Default: 0.01
131
132
            Returns:
133
            -----
134
            None
135
136
            for param in params.values():
137
                param.update(learning_rate)
138
139
       def fit(self, x, y, learning_rate=0.1, lambda_=0.01, num_iters=10000):
140
            11 11 11
141
142
            Parameters:
            -----
143
            x : array_like
144
            y : array_like
145
            learning_rate : float
146
                Default : 0.1
147
            lambda_ : float
148
                Default : 0.0
149
            num_iters : int
150
                Default : 10000
151
```

```
152
            Returns:
153
            _____
154
            costs : List[floats]
155
            params : class[Parameters]
156
157
            # Initialize parameters per layer
            params = \{\}
159
            for l in range(1, self.L + 1):
160
                params[l] = LinearParameters((self.nodes[l], self.nodes[l - 1]), self.b
161
162
            costs = []
163
            for i in range(num_iters):
164
                cache = self.forward_propagation(params, x)
165
                cost = self.cost_function(params, cache['a'][self.L], y, lambda_)
166
                costs.append(cost)
167
168
                self.backward_propagation(params, cache, y)
                self.update_parameters(params, learning_rate)
169
170
                if i % 1000 == 0:
171
                    print(f'Cost_after_iteration_{i}:_{cost}')
172
173
            return params
174
175
       def evaluate(self, params, x):
176
177
            Parameters:
178
179
            params : class[Parameters]
180
            x : array_like
181
182
           Returns:
183
            -----
184
            y_hat : array_like
185
186
            cache = self.forward_propagation(params, x)
187
            a = cache['a'][self.L]
188
            y_hat = (\sim(a < 0.5)).astype(int)
189
            return y_hat
190
191
       def accuracy(self, params, x, y):
192
193
194
            Parameters:
            -----
195
            params : class[Parameters]
196
           x : array_like
197
            y : array_like
198
```

3.3 Implementation in Python via tensorflow

We implement a neural network using tensorflow.keras.

```
1 #! python3
3 import pandas as pd
4 import numpy as np
5 from sklearn.model_selection import train_test_split
6 from tensorflow import keras
7 from keras import Model, Input
8 from keras.layers import Dense
  def keras_functional_nn(csv):
      df = pd.read_csv(csv)
11
      dataset = df.values
12
      x, y = dataset[:, :-1], dataset[:, -1].reshape(-1, 1)
13
      x_{train}, x_{test}, y_{train}, y_{test} = train_{test_{split}}(x, y, test_{size}=0.15)
14
      train = {'x' : x_train, 'y' : y_train}
      test = {'x' : x_test, 'y' : y_test}
16
      mu = np.mean(train['x'], axis=0, keepdims=True)
      var = np.var(train['x'], axis=0, keepdims=True)
18
      train['x'] = (train['x'] - mu) / np.sqrt(var)
      test['x'] = (test['x'] - mu) / np.sqrt(var)
20
      ## Define network structure
22
      input_layer = Input(shape=(10,))
      hidden_layer_1 = Dense(
24
25
           activation='relu',
26
           kernel_initializer='he_normal',
27
           bias_initializer='zeros'
      )(input_layer)
29
      hidden_layer_2 = Dense(
30
31
           activation='relu',
```

```
kernel_initializer='he_normal',
33
           bias_initializer='zeros'
34
      )(hidden_layer_1)
35
      output_layer = Dense(
36
37
           1,
           activation='sigmoid',
38
           kernel_initializer='he_normal',
           bias_initializer='zeros'
40
      )(hidden_layer_2)
41
42
      model = Model(inputs=input_layer, outputs=output_layer)
43
      model.summary()
44
45
      ## Compile desired model
46
      model.compile(
47
           loss='binary_crossentropy',
48
           optimizer='adam',
49
           metrics=['accuracy']
50
51
52
      ## Train the model
53
      hist = model.fit(
           train['x'],
55
           train['y'],
56
           batch_size=32,
57
           epochs = 150,
           validation_split=0.17
59
      )
60
61
      ## Evaluate the model
       test_scores = model.evaluate(test['x'], test['y'], verbose=2)
63
      print(f'Test_Loss:_{test_scores[0]}')
64
      print(f'Test_Accuracy:_{test_scores[1]}')
65
```

3.4 Better Backpropagation

We consider a neural network of the form

where we have the functions:

1.

$$G^{[\ell]}: \mathbb{R}^{n^{[\ell]}} \to \mathbb{R}^{n^{[\ell]}}$$

is the broadcasting of the activation unit $g^{[\ell]}: \mathbb{R} \to \mathbb{R}$.

2.

$$\phi^{[\ell]}: \mathbb{R}^{n^{[\ell]} \times n^{[\ell-1]}} \times \mathbb{R}^{n^{[\ell-1]}} \to \mathbb{R}^{n^{[\ell]}}$$

is given by

$$\phi^{[\ell]}(W, x) = Wx.$$

3.

$$\psi^{[\ell]}: \mathbb{R}^{n^{[\ell]}} \times \mathbb{R}^{n^{[\ell]}} \to \mathbb{R}^{n^{[\ell]}}$$

is given by

$$\psi^{[\ell]}(b, x) = x + b.$$

4.

$$\mathbb{L}: \mathbb{R}^{n^{[2]}} \times \mathbb{R}^{n^{[2]}} \to \mathbb{R}$$

is the given loss-function.

We now consider back-propagating through the neural network via "reverse exterior differentiation". We represent our various reverse derivatives via the following diagram:

First, we need to consider our individual derivatives:

1. Suppose $G: \mathbb{R}^n \to \mathbb{R}^n$ is the broadcasting of $g: \mathbb{R} \to \mathbb{R}$. Then for $(x, \xi) \in T\mathbb{R}^n$, we have that

$$dG_x(\xi) = G'(x) \odot \xi$$

= diag(G'(x)) \cdot \xi\$

and for any $\zeta \in T_{G(x)}\mathbb{R}^n$, the reverse derivative is given by

$$rG_x(\zeta) = G'(x) \odot \zeta$$

= diag $(G'(x)) \cdot \zeta$.

2. Suppose $\phi: \mathbb{R}^{m \times n} \times \mathbb{R}^n \to \mathbb{R}^m$ is given by

$$\phi(A, x) = Ax$$
.

Then we have two differentials to consider:

(a) For any $(A, x) \in \mathbb{R}^{m \times n} \times \mathbb{R}^n$ and any $\xi \in T_x \mathbb{R}^n$, we have that

$$d\phi_{(A,x)}(\xi) = A\xi$$
$$= L_A(\xi);$$

and for any $\zeta \in T_{\phi(A,x)}\mathbb{R}^m$, we have the reverse derivative

$$r\phi_{(A,x)}(\zeta) = A^T \zeta$$

= $L_{A^T}(\zeta)$;

where $L_A(B) = AB$, i.e., left-multiplication by A.

(b) For any $(A, x) \in \mathbb{R}^{m \times n} \times \mathbb{R}^n$ and any $Z \in T_A \mathbb{R}^{m \times n}$ we have that

$$d_1\phi_{(A,x)}(Z) = Zx$$

= $R_x(Z)$;

and for any $\zeta \in T_{\phi(A,x)}\mathbb{R}^m$, we have the reverse derivative

$$r_1 \phi_{(A,x)}(\zeta) = \zeta x^T$$

= $R_{x^T}(\zeta)$;

where $R_A(B) = BA$, i.e, right-multiplication by A.

3. Suppose $\psi: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ is given by

$$\psi(b, x) = x + b.$$

Then we again have two (identical) differentials to consider:

(a) For any $(x, b) \in \mathbb{R}^n \times \mathbb{R}^n$ and any $\xi \in T_x \mathbb{R}^n$, we have that

$$d\psi_{(b,x)}(\xi) = \xi;$$

and for any $\zeta \in T_{\psi(b,x)}\mathbb{R}^n$, we have the reverse derivative

$$r\psi_{(b,x)}(\zeta) = \zeta.$$

(b) For any $(x, b) \in \mathbb{R}^n \times \mathbb{R}^n$ and any $\eta \in T_b \mathbb{R}^n$, we have that

$$d_1\psi_{(b,x)}(\eta) = \eta;$$

and for any $\zeta \in T_{(\psi(b,x)}\mathbb{R}^n$, we have the reverse derivative

$$\overline{r}_1\psi_{(b,x)}(\zeta)=\zeta.$$

Proposition 3.1. Suppose we have the compositional diagram

$$\mathbb{R}^n \xrightarrow{f} \mathbb{R}^m \xrightarrow{g} \mathbb{R}^k \xrightarrow{h} \mathbb{R}^l$$

and we let $F = h \circ g \circ f : \mathbb{R}^n \to \mathbb{R}^l$. Then for any $x \in \mathbb{R}^n$ and any $\zeta \in T_{F(x)}\mathbb{R}^l$, the reverse derivative satisfies

$$rF_x(\zeta) = rf_x \circ rg_{f(x)} \circ rh_{g(f(x)}(\zeta).$$

Proof: For any $\xi \in T_x \mathbb{R}^n$ and any $\zeta \in T_{F(x)} \mathbb{R}^l$, we have by definition

$$\langle rF_{x}(\zeta), \xi \rangle_{\mathbb{R}^{n}} = \langle \zeta, dF_{x}(\xi) \rangle_{\mathbb{R}^{l}}$$

$$= \langle \zeta, dh_{g(f(x))} \circ dg_{f(x)} \circ df_{x}(\xi) \rangle_{\mathbb{R}^{l}}$$

$$= \langle rh_{g(f(x))}(\zeta), dg_{f(x)} \circ df_{x}(\xi) \rangle_{\mathbb{R}^{k}}$$

$$= \langle rg_{f(x)} \circ rh_{g(f(x))}(\zeta), df_{x}(\xi) \rangle_{\mathbb{R}^{m}}$$

$$= \langle rf_{x} \circ rg_{f(x)} \circ rh_{g(f(x))}(\zeta), \xi \rangle_{\mathbb{R}^{n}}$$

as desired.

Lemma 3.2. Suppose $f: \mathbb{R}^{n \times m} \to \mathbb{R}^k$, and for $P \in \mathbb{R}^{n \times m}$, let $R = rf_P$. Then $R \in \mathbb{R}^k_n{}^m$ is rank (1,2)-tensor written in coordinates as

$$R = R_i^{\mu}{}_{\nu} \frac{\partial}{\partial X_{\nu}^{\mu}} \otimes dx^i,$$

and the components is given by

$$R_i^{\mu}{}_{\nu} = \frac{\partial f^i}{\partial X^{\nu}_{\mu}}$$

Proof: Considering the basis vectors $\frac{\partial}{\partial X_{\mu}^{\nu}} \in T_{P}\mathbb{R}^{n \times m}$ and $\frac{\partial}{\partial x^{i}} \in T_{f(P)}\mathbb{R}^{k}$ we have that

$$\begin{split} R_{i}{}^{\mu}{}_{\nu} &= \left\langle R \left(\frac{\partial}{\partial x^{i}} \right), \frac{\partial}{\partial X_{\mu}^{\nu}} \right\rangle_{F} \\ &= \left\langle \frac{\partial}{\partial x^{i}}, df_{P} \left(\frac{\partial}{\partial X_{\mu}^{\nu}} \right) \right\rangle_{\mathbb{R}^{k}} \\ &= \left\langle \frac{\partial}{\partial x^{i}}, \frac{\partial f^{\alpha}}{\partial X_{\mu}^{\nu}} \frac{\partial}{\partial x^{\alpha}} \right\rangle_{\mathbb{R}^{k}} \\ &= \delta_{i\alpha} \frac{\partial f^{\alpha}}{\partial X_{\mu}^{\nu}}, \end{split}$$

as desired.

Returning to our neural network, for each point (x_j, y_j) in our training set, we first let

$$F_{i} := \mathbb{L} \circ G^{[2]} \circ \psi^{[2]} \circ \phi^{[2]} \circ G^{[1]} \circ \psi^{[1]} \circ \phi^{[1]},$$

and we have our cost function

$$\mathbb{J} := \frac{1}{N} \sum_{j=1}^{N} F_j.$$

We use the following notation for our inputs and outputs of our respective functions:

, [4]

$$\phi^{[\ell]}: (W^{[\ell]}, a^{[\ell-1]}_{j}) \mapsto u^{[\ell]}_{j},$$

•

$$\psi^{[\ell]}:(b^{[\ell]},u^{[\ell]}_{j})\mapsto v^{[\ell]}_{j},$$

ullet

$$G^{[\ell]}: v^{[\ell]}{}_j \mapsto a^{[\ell]}{}_j.$$

Let $p = (W^{[1]}, b^{[1]}, W^{[2]}, b^{[2]})$ is a point in our parameter space. Suppose we wish to apply gradient descent with learning rate $\alpha \in T_{\mathbb{J}(p)}\mathbb{R}$, we would define our parameter updates via

$$\begin{split} W^{[1]} &:= W^{[1]} - r_1 \mathbb{J}_p(\alpha) \\ b^{[1]} &:= b^{[1]} - \overline{r}_1 \mathbb{J}_p(\alpha) \\ W^{[2]} &:= W^{[2]} - r_2 \mathbb{J}_p(\alpha) \\ b^{[2]} &:= b^{[2]} - \overline{r}_2 \mathbb{J}_p(\alpha). \end{split}$$

Moreover, by linearity (and independence of our training data), we see that

$$r\mathbb{J}_p = \frac{1}{N} \sum_{j=1}^{N} r(F_j)_p,$$

so we need only calculate the various reverse derivatives of F_j .

To this end, we suppress the index j when we're working with the compositional function F. We calculate the reverse derivatives in the order traversed in our back-propagating path along the network.

1. $\overline{r}_2 \mathbb{J}_p$:

$$\begin{split} \overline{r}_2 F_p &= \overline{r}_2 (\mathbb{L} \circ G^{[2]} \circ \psi^{[2]})_p \\ &= \overline{r}_2 \psi_p^{[2]} \circ r G_{v^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}} \\ &= \mathbb{1} \circ r G_{v^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}} \\ &= r G_{v^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}}, \end{split}$$

and hence

$$\overline{r}_2 \mathbb{J}_p = \frac{1}{N} \sum_{i=1}^N r G_{v^{[2]}_j}^{[2]} \cdot r \mathbb{L}_{a^{[2]}_j}$$

 $2. r_2 \mathbb{J}_p$:

$$\begin{split} r_2 F_p &= r_2 (\mathbb{L} \circ G^{[2]} \circ \psi^{[2]} \circ \phi^{[2]})_p \\ &= r_2 \phi_p^{[2]} \circ r \psi_{u^{[2]}}^{[2]} \circ r G_{v^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}} \\ &= R_{a^{[1]T}} \circ \mathbb{1} \circ r G_{v^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}} \\ &= R_{a^{[1]T}} \circ r G_{v^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}}, \end{split}$$

and hence

$$r_2 \mathbb{J}_p = \frac{1}{N} \sum_{j=1}^{N} R_{a^{[1]T_j}} \circ rG_{v^{[2]}_j}^{[2]} \cdot r \mathbb{L}_{a^{[2]}_j}.$$

Notice that this is not just a sum after matrix multiplication since we have composition with an operator, namely, $R_{a^{[1]T_j}}$. However, since the learning rate $\alpha \in T_{\mathbb{J}(p)}\mathbb{R} \cong \mathbb{R}$, which may pass through the aforementioned linear composition, we conclude that

$$\begin{split} r_2 \mathbb{J}_p &= \frac{1}{N} \sum_{j=1}^N R_{a^{[1]T}{}_j} \circ r G_{v^{[2]}{}_j}^{[2]} \cdot r \mathbb{L}_{a^{[2]}{}_j} \\ &= \frac{1}{N} \sum_{j=1}^N r G_{v^{[2]}{}_j}^{[2]} \cdot r \mathbb{L}_{a^{[2]}{}_j} a^{[1]T}{}_j. \end{split}$$

3. $\overline{r}_1 \mathbb{J}_p$:

$$\begin{split} \overline{r}_1 F_p &= \overline{r}_1 (\mathbb{L} \circ G^{[2]} \circ \psi^{[2]} \circ \phi^{[2]} \circ G^{[1]} \circ \psi^{[1]})_p \\ &= \overline{r}_1 \psi_p^{[1]} \circ r G_{v^{[1]}}^{[1]} \circ r \phi_{a^{[1]}}^{[2]} \circ r \psi_{u^{[2]}}^{[2]} \circ r G_{v^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}} \\ &= \mathbbm{1} \circ r G_{v^{[1]}}^{[1]} \circ L_{W^{[2]T}} \circ \mathbbm{1} \circ r G_{v^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}} \\ &= r G_{v^{[1]}}^{[1]} \circ L_{W^{[2]T}} \circ r G_{v^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}}, \end{split}$$

and hence

$$\overline{r}_1 \mathbb{J}_p = \frac{1}{N} \sum_{i=1}^N r G_{v^{[1]}_j}^{[1]} \cdot W^{[2]T} \cdot r G_{v^{[2]}_j}^{[2]} \cdot r \mathbb{L}_{a^{[2]}_j}.$$

4. $r_1 \mathbb{J}_p$:

$$\begin{split} r_1 F_p &= r_1 (\mathbb{L} \circ G^{[2]} \circ \psi^{[2]} \circ \phi^{[2]} \circ G^{[1]} \circ \psi^{[1]} \circ \phi^{[1]})_p \\ &= r_1 \phi_p^{[1]} \circ r \psi_{u^{[1]}}^{[1]} \circ r G_{v^{[1]}}^{[1]} \circ r \phi_{a^{[1]}}^{[2]} \circ r \psi_{u^{[2]}}^{[2]} \circ r G_{v^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}} \\ &= R_{x^T} \circ \mathbb{1} \circ r G_{v^{[1]}}^{[1]} \circ L_{W^{[2]T}} \circ \mathbb{1} \circ r G_{v^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}} \\ &= R_{x^T} \circ r G_{v^{[1]}}^{[1]} \circ L_{W^{[2]T}} \circ r G_{v^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}}, \end{split}$$

and hence

$$r_{1} \mathbb{J}_{p} = \frac{1}{N} \sum_{j=1}^{N} R_{x^{T}} \circ rG_{v^{[1]}}^{[1]} \cdot W^{[2]T} \cdot rG_{v^{[2]}}^{[2]} \cdot r \mathbb{L}_{a^{[2]}}$$

$$= \frac{1}{N} \sum_{j=1}^{N} rG_{v^{[1]}}^{[1]} \cdot W^{[2]T} \cdot rG_{v^{[2]}}^{[2]} \cdot r \mathbb{L}_{a^{[2]}} \cdot x^{T}$$

Part II
Improving Deep Neural
Networks: Hyperparameter
Tuning, Regularization, and
Optimization

4 Training, Development and Test Sets

Let $\mathbb{D} = \{(x_j, y_j) \in \mathbb{R}^m \times \mathbb{R}^K : 1 \leq j \leq N\}$ denote a dataset. Then we partition \mathbb{D} into three distinct sets

$$\mathbb{D} = \mathbb{X} + \mathcal{D} + \mathcal{T}.$$

where \mathbb{X} is called our training set, \mathcal{D} is called our development, or cross-validation set, and \mathcal{T} is called our test set. We make this partition randomly, however, if $N = |\mathbb{D}| \leq 10^4$, we see a partition being divided accordingly to the following ratios:

$$n_X := |\mathbb{X}| \approx \frac{3}{5}N,$$

$$n_D := |\mathcal{D}| \approx \frac{1}{5}N,$$

and

$$n_T := |\mathfrak{T}| \approx \frac{1}{5}N.$$

If however, we have a very large dataset (i.e., $N > 10^4$), then we assume a much smaller ratio of something similar to

$$\frac{n_X}{N} \approx 0.98, \qquad \frac{n_D}{N} \approx 0.01, \qquad \frac{n_T}{N} \approx 0.01.$$

In general, we use our training set \mathbb{X} to train our parameters $W^{[\ell]}$ and $b^{[\ell]}$, we use our development set \mathcal{D} to tune our hyper-parameters (i.e., learning rate, number of layers, number of nodes per layer, activation function, number of iterations to perform gradient descent, regularization parameters, etc), and we use our test set \mathcal{T} to evaluate the accuracy of our model. Since we're partitioning our dataset to better increase the accuracy of our model, we need to define an error function. To this end, define $\mathcal{E}: 2^{\mathbb{D}} \to [0,1]$ by

$$\mathcal{E}(\mathcal{A}) = \frac{1}{|\mathcal{A}|} \sum_{(x,y) \in \mathcal{A}} \varepsilon(x,y),$$

where $\varepsilon : \mathbb{D} \to \{0,1\}$ is defined by

$$\varepsilon(x,y) = \begin{cases} 1 & \text{if } y = \hat{y}(x) \\ 0 & \text{else.} \end{cases}$$

From our partition and error function we can make several claims of the fitting of our model to our data. Indeed, let $\epsilon > 0$ be a small percentage (with exact value depending on specific examples), then:

- If $\mathcal{E}(\mathbb{X}) < \epsilon$ and $\mathcal{E}(\mathbb{X}) < \mathcal{E}(\mathcal{D}) \lesssim 10\epsilon$, then we say our model has high variance since our model is overfitting the data.
- If $\mathcal{E}(\mathbb{X}) \approx \mathcal{E}(\mathcal{D}) \gtrsim 10\epsilon$, then we say our model has high bias since our model is underfitting the data.
- If $10\epsilon \lesssim \mathcal{E}(\mathbb{X}) \ll \mathcal{E}(\mathcal{D})$, then we say our model has both high bias (since it doesn't fit our training data well) and high variance (because the model fits the training data better than the development data).
- If $\mathcal{E}(\mathbb{X})$, $\mathcal{E}(\mathcal{D}) < \epsilon$, then we say the model has both low bias and low variance.

Remark 4.1. The interpretations of our error percentage is based on two crucial assumptions:

- \mathcal{D} and \mathcal{T} come from samplings with the same distribution of outputs (i.e., if we're determining whether a collection of images contain a cat, we should never have that \mathcal{D} is mostly cat pictures, and \mathcal{T} is mostly non-cat pictures).
- The optimal error for the model is approximately 0%. That is, if a human were looking at the data, they could determine the correct response with negligible error. This is sometimes called the Bayes error.

If either of these assumptions fail to hold, other methods of analysis may be required to obtain meaningful insights for the performance of our model.

A methodology for using errors could be as follows

- 1. Check $\mathcal{E}(\mathbb{X})$ for high bias.
 - a. If "Yes", then we can try a bigger network, we can train longer, or we can change the neural network architecture. Then we return to (1.).
 - b. If "No", then we move to (2.).
- 2. Check $\mathcal{E}(\mathcal{D})$ for high variance.
 - a. If "Yes", then we can try to get more data, try regularization, or try changing the neural network architecture. Then we return to (1.).
 - b. If "No", then we're done.

4.1 Python Implementation

To implement a partitioning we could do something like the following:

```
1 import numpy as np
2 from sklearn.utils import shuffle
4 def partition_data(x, y, train_ratio):
      Parameters
6
      -----
      x : array_like
          x.shape = (m, N)
      y : array_like
10
          y.shape = (k, N)
11
      train_ratio : float
12
13
          0<=train_ratio<=1</pre>
14
      Returns
15
      -----
16
      train : Tuple[array_like]
17
      dev : Tuple[array_like]
      test : Tuple[array_like]
19
      11 11 11
      ## Shuffle the data
21
      x, y = shuffle(x.T, y.T) #
      x = x.T
23
      y = y.T
25
      ## Get the size of partitions
      N = x.shape[1]
27
      N_train = int(train_ratio * N)
      N_mid = (N - N_train) // 2
29
30
      ## Create partitions
31
      train = (x[:,:N_train], y[:,:N_train])
32
      dev = (x[:, N_train:N_train+N_mid], y[:, N_train:N_train+N_mid])
      test = (x[:,N_train+N_mid:], y[:,N_train+N_mid:])
34
      assert(x.all() == np.concatenate([train[0], dev[0], test[0]], axis=1).all())
36
      assert(y.all() == np.concatenate([train[1], dev[1], test[1]], axis=1).all())
37
38
      return train, dev, test
```

5 Regularization

Suppose we're training an L-layer neural network with dataset $\{(x_j, y_j)\} \subset \mathbb{R}^{m_0} \times \mathbb{R}^{m_L}$ with N examples. Assuming a generic loss function $\mathbb{L} : \mathbb{R}^{m_L} \times \mathbb{R}^{m_L} \to \mathbb{R}$, then we have our cost function \mathbb{J} defined on our one-parameter families of parameters W and b given by

$$\mathbb{J}(W,b) = \frac{1}{N} \sum_{j=1}^{N} \mathbb{L}(\hat{y}_j, y_j).$$

If our model suffers from overfitting the training set, it's reasonable to impose constraints on the parameters W and/or b. That is, define the function

$$R(W) = \frac{\lambda}{2N} \sum_{\ell=1}^{L} \|W^{[\ell]}\|_F^2,$$

for some $\lambda > 0$, where $\|\cdot\|_F$ represents the Frobenius norm on matrices, and we define the regularized cost function \mathbb{J}^R given by

$$\mathbb{J}^{R}(W,b) = \mathbb{J}(W,b) + R(W)
= \frac{1}{N} \sum_{j=1}^{N} \mathbb{L}(\hat{y}_{j}, y_{j}) + \frac{\lambda}{2N} \sum_{\ell=1}^{L} \|W^{[\ell]}\|_{F}^{2}.$$

Adding such an R(W) to our cost function is known as L^2 -regularization. We note that by linearity we have the following equalities amongst gradients:

$$\frac{\partial \mathbb{J}^R}{\partial b^{[\ell]}} = \frac{\partial \mathbb{J}}{\partial b^{[\ell]}}$$

and

$$\frac{\partial \mathbb{J}^R}{\partial W^{[\ell]}} = \frac{\partial \mathbb{J}}{\partial W^{[\ell]}} + \frac{\lambda}{N} W^{[\ell]}.$$

The idea behind regularization is that we're now minimizing

$$\min_{W,b} \mathbb{J}^R(W,b) = \min_{W,b} \left\{ \mathbb{J}(W,b) + R(W) \right\},\,$$

and so for suitably chosen $\lambda > 0$, it forces $||W^{[\ell]}||_F$ to be small, along with minimizing the cost \mathbb{J} . This balancing-act of minimizing the two functions simultaneously helps with overfitting the data.

A typical usage of regularization would be similar to the following outline:

- i. Partition our dataset $\mathbb{D} = \mathbb{X} \cup \mathcal{D} \cup \mathcal{T}$.
- ii. Give a set Λ of potential regularization parameters.
- iii. For each $\lambda \in \Lambda$, we first train on X, that is, we obtain

$$(W, b) = \arg \min_{W, b} \mathbb{J}^{R}(W, b)$$

$$= \arg \min_{W, b} \left\{ \frac{1}{n_{X}} \sum_{(x,y) \in \mathbb{X}} \mathbb{L}(\hat{y}, y) + \frac{\lambda}{2n_{X}} \sum_{\ell=1}^{L} \|W^{[\ell]}\|_{F}^{2} \right\}$$

which dependent on λ .

- iv. Then using the aforementioned $(W, b) = (W, b)(\lambda)$, we evaluate $\mathcal{E}_{\lambda}(\mathbb{X})$ and $\mathcal{E}_{\lambda}(\mathcal{D})$.
- v. After finding $\mathcal{E}_{\lambda}(\mathbb{X})$ and $\mathcal{E}_{\lambda}(\mathcal{D})$ for each $\lambda \in \Lambda$, we choose our desired λ and hence our desired parameters W and b.
- vi. We evaluate our model on \mathcal{T} to determine the overall accuracy.

5.1 Python Implementation

```
1 import numpy as np
з import mlLib.utils as utils
4 import mlLib.npActivators as npActivators
6 def forward_propagation(x, params, activators):
      Parameters
      x : array_like
10
          x.shape = (layers[0] n)
11
      params : Dict[Dict]
12
          params['w'][1] : array_like
13
               wl.shape = (layers[1], layers[1-1])
14
          params['b'][1] : array_like
15
               bl.shape = (layers[l], 1)
16
      activators : List[str]
17
          activators[1] = activation function of layer 1+1
18
      Returns
19
20
      cache : Dict[Dict]
```

```
cache['z'][1] : array_like
22
               z[1].shape = (layers[1], n)
23
           cache['a'][1] : array_like
24
               a[1].shape = (layers[1], n)
25
26
      # Retrieve parameters
27
      w = params['w']
      b = params['b']
29
      L = len(w) # Number of layers excluding output layer
      n = x.shape[1]
31
      # Set empty caches
      a = \{ \}
33
      z = \{\}
34
      # Initialize a
35
      a[0] = x
36
      for l in range(1, L + 1):
37
           z[1], a[1] = utils.linear_activation_forward(a[1 - 1], w[1], b[1], activator
38
39
      cache = \{'a' : a, 'z' : z\}
40
      return cache
41
42
43 def compute_cost(y, params, cache, lambda_=0.0):
44
      Parameters
45
      -----
46
      y : array_like
47
           y.shape = (layers[-1], n)
48
      params : Dict[Dict[array_like]]
           params['w'][1] : array_like
50
               w[1].shape = (layers[1], layers[1-1])
51
           params['b'][1] : array_like
52
               b[1].shape = (layers[1], 1)
53
      cache : Dict[Dict[array_like]]
54
           cache['z'][1] : array_like
55
               z[1].shape = (layers[1], n)
56
           cache['a'][1] : array_like
57
               a[1].shape = (layers[1], n)
      lambda_ : float
59
           Default: 0.0
60
61
      Returns
62
       _____
63
      cost : float
64
           The cost evaluated at y and aL
65
      ## Retrieve parameters
67
      n = y.shape[1]
```

```
a = cache['a']
69
       w = params['w']
70
       L = len(a)
71
       aL = a[L - 1]
72
73
       ## Regularization term
74
       R = 0
       for l in range(1, L):
76
           R += np.sum(w[1] * w[1])
77
       R *= (lambda_ / (2 * n))
78
       ## Unregularized cost
80
       J = (-1 / n) * (np.sum(y * np.log(aL)) + np.sum((1 - y) * np.log(1 - aL)))
81
82
       ## Total Cost
83
       cost = J + R
84
       cost = float(np.squeeze(cost))
85
       return cost
86
87
88 def backward_propagation(x, y, params, cache, activators, lambda_=0.0):
89
90
       Parameters
       _____
91
       x : array_like
92
           x.shape = (layers[0], n)
93
       y : array_like
           y.shape = (layers[-1], n)
95
       params : Dict[Dict[array_like]]
           params['w'][1] : array_like
97
                w[1].shape = (layers[1], layers[1-1])
98
           params['b'][1] : array_like
99
                b[1].shape = (layers[1], 1)
100
       cache : Dict[Dict[array_like]]
101
           cache['a'][1] : array_like
102
                a[1].shape = (layers[1], n)
103
           cache['z'][1] : array_like
104
                z[1].shape = (layers[1], n)
105
       activators : List[str]
106
           activators[l] = activation function of layer 1+1
107
       lambda_ : float
108
           Default: 0.0
109
110
111
       Returns
       -----
112
       grads : Dict[Dict]
113
           grads['dw'][l] : array_like
114
                dw[1].shape = w[1].shape
115
```

```
grads['db'][1] : array_like
116
                db[1].shape = b[1].shape
117
118
       ## Retrieve parameters
119
       a = cache['a']
120
       z = cache['z']
121
       w = params['w']
       n = x.shape[1]
123
       L = len(z)
124
125
       ## Compute deltas
126
       delta = {}
127
       delta[L] = a[L] - y
128
       for 1 in reversed(range(1, L)):
129
            delta[1] = utils.linear_activation_backward(delta[1 + 1], z[1], w[1 + 1], a_0
130
131
       ## Compute gradients
132
       dw = \{\}
133
       db = \{\}
134
       for l in range(1, L + 1):
135
            db[1] = (1 / n) * np.sum(delta[1], axis=1, keepdims=True)
136
            assert(db[1].shape == (w[1].shape[0], 1))
137
            dw[1] = (1 / n) * (delta[1] @ a[1 - 1].T + lambda_ * w[1])
138
            assert(dw[1].shape == w[1].shape)
139
       grads ={ 'dw' : dw, 'db' : db}
140
       return grads
141
142
143
144 def model(x, y,
              hidden_layer_sizes,
145
              activators,
146
              lambda_=0.0,
147
              num_iters=1e4,
148
              print_cost=False):
149
150
       Parameters
151
       -----
152
       x : array_like
153
            x.shape = (layers[0], n)
154
       y : array_like
155
            y.shape = (layers[-1], n)
156
       hidden_layer_sizes : List[int]
157
            The number nodes layer 1 = hidden_layer_sizes[1-1]
158
       activators : List[str]
159
            activators[1] = activation function of layer 1+1
160
       lambda_ : float
161
            The regularization parameter
162
```

```
Default: 0.0
163
       num iters : int
164
           Number of iterations with which our model performs gradient descent
165
           Default: 10000
166
       print_cost : Boolean
167
           If True, print the cost every 1000 iterations
168
           Default: False
170
       Returns
171
       _____
172
       params : Dict[Dict]
173
           params['w'][1] : array_like
174
               w[1]. shape = (layers[1], layers[1-1])
175
           params['b'][1] : array_like
176
                b[1].shape = (layers[1], 1)
177
       cost : float
178
           The final cost value for the optimized parameters returned
179
180
       ## Set dimensions and Initialize parameters
181
       n, layers = utils.dim_retrieval(x, y, hidden_layer_sizes)
182
       params = utils.initialize_parameters_random(layers)
183
       # main gradient descent loop
185
       for i in range(num_iters):
186
           cache = forward_propagation(x, params, activators)
187
           cost = compute_cost(y, params, cache, lambda_)
           grads = backward_propagation(x, y, params, cache, activators, lambda_)
189
           params = utils.update_parameters(params, grads)
190
191
           if print_cost and i % 1000 == 0:
192
                print(f'Cost_after_iteration_{i}:_{cost}')
193
194
       return params, cost
195
```

5.2 (Inverted) Dropout Regularization

For illustrative purposes, suppose we have a 3-layer neural network of the following form:

$$\underbrace{\begin{bmatrix} x^1 \\ \vdots \\ x^{m_0} \end{bmatrix}}_{\text{Layer 0}} \xrightarrow{\varphi^{[1]}} \underbrace{\begin{bmatrix} z^{[1]1} \\ \vdots \\ z^{[1]m_1} \end{bmatrix}}_{\text{Layer 1}} \xrightarrow{g^{[1]}} \underbrace{\begin{bmatrix} a^{[1]1} \\ \vdots \\ a^{[1]m_1} \end{bmatrix}}_{\varphi^{[2]}} \xrightarrow{\varphi^{[2]}} \underbrace{\begin{bmatrix} z^{[2]1} \\ \vdots \\ z^{[2]m_2} \end{bmatrix}}_{\text{Layer 2}} \xrightarrow{g^{[2]}} \underbrace{\begin{bmatrix} a^{[2]1} \\ \vdots \\ a^{[2]m_2} \end{bmatrix}}_{\varphi^{[3]}} \text{ output,}$$

Let Q_0, Q_1, Q_2 denote the collection of all nodes in Layers 0, 1, 2, respectively. Let $p_0, p_1, p_2 \in [0, 1]$, and define a probability distribution \mathbb{P}_{ℓ} on Q_{ℓ} by

$$\mathbb{P}_{\ell}(q=1) = p_{\ell}, \qquad \mathbb{P}_{\ell}(q=0) = 1 - p_{\ell},$$

where q=1 represents the node existing in layer- ℓ , and q=0 represents the dropping of the node from layer- ℓ . That is we're effectively reducing the number of nodes throughout the network, thus simplifying the network and reducing the amount of influence of any single feature or node on the entire model. That is, we would implement a methodology similar to the following:

i. For each layer ℓ and each training example x_j define the "dropout vector" $D^{[\ell]}{}_j$ by

$$D^{[\ell]}{}_j = \begin{bmatrix} d^1_j \\ \vdots \\ d^{m_\ell}_j \end{bmatrix},$$

where

$$d_j^i = \begin{cases} 1 & \text{if } \mathbb{P}(q^i) \le p_\ell \\ 0 & \text{if } \mathbb{P}(q^i) > p_\ell \end{cases}.$$

ii. During forward propagation, we redefine

$$a^{[\ell]} \mapsto \frac{a^{[\ell]} \odot D^{[\ell]}}{p_\ell}.$$

iii. During backward propagation, we define

$$\delta^{[\ell]} \mapsto \frac{\delta^{[\ell]} \odot D^{[\ell]}}{p_\ell}.$$

iv. Then perform gradient descent, etc with these new values.

5.2.1 Python Implementation

We see here the use of inverted dropout regularization in a general neural network.

```
1 import numpy as np
3 import mlLib.utils as utils
5 def dropout_matrices(layers, num_examples, keep_prob):
      Parameters
      _____
      layers : List[int]
          layers[1] = number of nodes in layer 1
10
      num_examples : int
11
          The number of training examples
12
      keep_prob : List[float]
13
          keep_prob[1] = The probabilty of keeping a node in layer 1
14
15
      Returns
16
      _____
17
      D : Dict[array_like]
18
          D[1].shape = (layers[1], num_ex)
19
          D[1] = a Boolean array
20
21
      np.random.seed(1)
22
      L = len(layers)
23
      D = \{\}
24
      for l in range(L - 1):
25
          D[1] = np.random.rand(layers[1], num_examples)
          D[1] = (D[1] < keep_prob[1]).astype(int)
27
          assert(D[1].shape == (layers[1], num_examples))
      return D
29
30
31
32
33 def forward_propagation(x, params, activators, D, keep_prob):
34
      Parameters
35
      _____
36
      x : array_like
37
          x.shape = (layers[0] n)
38
      params : Dict[Dict]
39
          params['w'][1] : array_like
40
               wl.shape = (layers[1], layers[1-1])
41
          params['b'][1] : array_like
42
               bl.shape = (layers[l], 1)
43
      activators : List[str]
44
          activators[1] = activation function of layer 1+1
      D : Dict[array_like]
46
          D[1].shape = (layer_dims[1], num_ex)
```

```
D[1] = a Boolean array
48
      keep_prob : List[float]
49
           keep_prob[1] = The probabilty of keeping a node in layer 1
50
51
      Returns
52
       _____
53
      cache : Dict[Dict]
           cache['z'][1] : array_like
55
               z[1].shape = (layers[1], n)
           cache['a'][l] : array_like
57
               a[1].shape = (layers[1], n)
59
      # Retrieve parameters
60
      w = params['w']
61
      b = params['b']
62
      L = len(w) # Number of layers including input layer
63
64
      n = x.shape[1]
      # Set empty caches
66
      a = \{\}
67
      z = \{\}
68
      # Dropout on layer 0
      a[0] = x
70
      a[0] = a[0] * D[0]
71
      a[0] /= keep_prob[0]
72
      # Loop through hidden layers
      for l in range(1, L):
74
           zl, al = utils.linear_activation_forward(a[1 - 1], w[1], b[1], activators[1]
75
           al = al * D[1]
76
           al /= keep_prob[1]
77
           z[1] = z1
78
           a[1] = a1
79
80
      # Output layer
      z[L], a[L] = utils.linear_activation_forward(a[L - 1], w[L], b[L], activators[-
82
83
      cache = \{'z' : z, 'a' : a\}
84
85
      return cache
86
87 def backward_propagation(x, y, params, cache, activators, D, keep_prob):
88
      Parameters
89
90
      x : array_like
91
           x.shape = (layers[0], n)
      y : array_like
93
           y.shape = (layers[-1], n)
```

```
params : Dict
 95
                                params['w'][1] : array_like
 96
                                           w[1].shape = (layers[1], layers[1-1])
 97
                                params['b'][1] : array_like
 98
                                           b[1].shape = (layers[1], 1)
 99
                    cache : Dict
100
                                cache['a'][1] : array_like
                                            a[1].shape = (layers[1], n)
102
                                cache['z'][1] : array_like
103
                                            z[1].shape = (layers[1], n)
104
                    activators : List[str]
105
                                activators[1] = activation function of layer 1+1
106
                    D : Dict[array_like]
107
                               D[1].shape = (layer[1], num_ex)
108
                                D[1] = a Boolean array
109
                    keep_prob : List[float]
110
                                keep_prob[1] = The probabilty of keeping a node in layer 1
111
112
                    Returns
113
114
                    grads : Dict[Dict]
115
                                grads['dw'][1] : array_like
116
                                            dw[1].shape = w[1].shape
117
                                grads['db'][1] : array_like
118
                                            db[1].shape = b[1].shape
119
120
                    ## Retrieve parameters
121
                    a = cache['a']
122
                    z = cache['z']
123
                    w = params['w']
124
                    n = x.shape[1]
125
                    L = len(z)
126
127
                    ## Compute deltas
128
                    delta = \{\}
129
                    delta[L] = a[L] - y
130
                    for 1 in reversed(range(1, L)):
131
                                deltal = utils.linear_activation_backward(delta[1 + 1], z[1], w[1 + 1], activation_backward(delta[1 + 1], activation_backward(delta[1 + 1], z[1], w[1 + 1], activation_backward(delta[1 + 1], z[1], w[1 + 1], w[1 + 1]
132
                                deltal = deltal * D[1]
133
                                deltal /= keep_prob[1]
134
                                delta[1] = deltal
135
136
                    ## Compute gradients
137
                    dw = \{\}
138
                    db = \{\}
139
140
                    for l in range(1, L + 1):
141
```

```
db[1] = (1 / n) * np.sum(delta[1], axis=1, keepdims=True)
142
           assert(db[1].shape == (w[1].shape[0], 1))
143
           dw[1] = (1 / n) * delta[1] @ a[1 - 1].T
144
           assert(dw[1].shape == w[1].shape)
145
       grads = {'dw' : dw, 'db' : db}
146
       return grads
147
149 def model(x, y,
                hidden_sizes,
150
                activators,
151
                keep\_prob = 1.0,
152
                num_iters=2500,
153
                learning_rate=0.1,
154
                print_cost=False):
155
156
       Parameters
157
       _____
158
       Parameters
159
       _____
160
       x : array_like
161
           x.shape = (layers[0], n)
162
       y : array_like
163
           y.shape = (layers[-1], n)
164
       hidden_sizes : List[int]
165
           The number nodes layer 1 = hidden_sizes[1-1]
166
       activators : List[function]
167
           activators[1] = activation function of layer 1+1
168
       keep_prob : List[float] | float
169
           keep_prob[1] = The probabilty of keeping a node in layer 1
170
           keep_prob = The same probability for all input and hidden layers
171
       num_iters : int
172
           Number of iterations with which our model performs gradient descent
173
       learning_rate : float
174
           The learning rate for gradient descent
175
       print_cost : Boolean
176
           If True, print the cost every 1000 iterations
177
178
       Returns
179
       _____
180
       params : Dict[Dict]
181
           params['w'][1] : array_like
182
                w[1].shape = (layers[1], layers[1-1])
183
184
           params['b'][1] : array_like
                b[1].shape = (layers[1], 1)
185
       cost : float
           The final cost value for the optimized parameters returned
187
188
```

```
## Retrieve parameters
189
       n, layers = utils.dim_retrieval(x, y, hidden_sizes)
190
       params = utils.initialize_parameters_random(layers)
191
192
       ## Expand keep_prob to a list if it's a single float
193
       if isinstance(keep_prob, float):
194
           keep_prob = [keep_prob] * (len(layers) - 1)
       ## Main gradient descent loop
196
       for i in range(num_iters):
197
           D = dropout_matrices(layers, n, keep_prob)
198
           cache = forward_propagation(x, params, activators, D, keep_prob)
199
           cost = utils.compute_cost(y, cache)
200
           grads = backward_propagation(x, y, params, cache, activators, D, keep_prob)
201
           params = utils.update_parameters(params, grads, learning_rate)
202
203
           if print_cost and i % 1000 == 0:
204
               print(f'Cost_after_iteration_{i}:_{cost}')
205
206
       return params, cost
207
```

5.3 Data Augmentation

This section requires work.

There are few other regularization techniques. One of the simplest techniques is data augmentation, i.e., transforming data you currently have into related but different example to gather a larger dataset (e.g., flipping or distorting images to obtain other relevant images).

5.4 Early Stopping

This section requires work.

Another technique is stop the training early (fewer iterations) before the model develops higher variance.

6 Gradients and Numerical Remarks

This section requires work. See "He Initialization" and "Xavier Initialization"

We first remark, that by our use of gradient descent, there are few outlier cases which may occur. Namely our gradients may explode or vanish. One way to attempt to fix such a situation to impose a normalization on our weights depending on our activation functions.

• If $g^{[\ell]} = \text{ReLU}$, then we wish to impose the requirement that

$$\mathbb{E}[(W^{[\ell]2})] = \frac{1}{m_{\ell-1}}.$$

6.1 Numerical Gradient Checking

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is a smooth function. Then, we recall the definition of the partial derivative

$$\frac{\partial f}{\partial x^j} = \lim_{h \to 0} \frac{f(x + he_j) - f(x)}{h}$$
$$= \lim_{\epsilon \to 0^+} \frac{f(x + \epsilon e_j) - f(x - \epsilon e_j)}{2\epsilon},$$

and so for sufficiently small $\epsilon > 0$, we have the approximation

$$\frac{\partial f}{\partial x^j} \approx \frac{f(x + \epsilon e_j) - f(x - \epsilon e_j)}{2\epsilon}.$$

Define the approximation function $F: \mathbb{R}^n \times (0,1) \to \mathbb{R}^n$ by

$$F(x,\epsilon) = \frac{1}{2\epsilon} \begin{bmatrix} f(x+\epsilon e_1) - f(x-\epsilon e_1) \\ \vdots \\ f(x+\epsilon e_n) - f(x-\epsilon e_n) \end{bmatrix}.$$

Then we may check that our gradient computation $\nabla f(x)$ is correct by checking that

$$\frac{\|F(x,\epsilon) - \nabla f(x)\|_2}{\|F(x,\epsilon)\|_2 + \|\nabla f(x)\|_2} \approx 0.$$

6.2 Python Implementation

```
_{1} ## f(x) = x_1*x_2*...*x_n
2 def fctn(x):
      n = x.shape[0]
3
      y = np.prod(x)
      grad = np.zeros((n, 1))
      for i in range(n):
           omit = 1 - np.eye(1, n, i).T
           omit = np.array(omit, dtype=bool)
           grad[i, 0] = np.prod(x, where=omit)
9
      return y, grad
10
11
12 def gradient_check(grad, f, x, epsilon=1e-3):
13
      Parameters
14
      -----
15
      grad : array_like
16
           grad.shape= (n, 1)
17
      f : function
18
           The function to check.
      x : array_like
20
           x.shape = (n, 1)
21
      epsilon : float
22
           Default 0.001
      Returns
24
      error : float
25
26
      11 11 11
27
      n = x.shape[0]
28
29
      y_diffs = []
      for i in range(n):
30
           e = np.eye(1, n, i).T
31
           x_plus = x + epsilon * e
32
           x_minus = x - epsilon * e
33
           y_plus, _ = f(x_plus)
           y_{minus}, = f(x_{minus})
35
           y_diffs.append(y_plus - y_minus)
36
      y_diffs = np.array(y_diffs).reshape(n, 1)
37
      y_diffs = y_diffs / (2 * epsilon)
39
      error = (np.linalg.norm(y_diffs - grad)
                   / (np.linalg.norm(y_diffs) + np.linalg.norm(grad)))
41
      return error
```

7 Gradient Descent

So far in our implementation of gradient descent, we use the entire training set for every iteration of gradient descent. This method is called batch gradient descent. Gradient descent has many downfalls. Indeed, since we're typically working in a very high dimensional space, the majority of the critical points for our cost function are actually saddle points (these can be thought of as plateaus of the loss-manifold). These pitfalls (amongst others) are what we wish to overcome. To this end, we first consider a modification of batch gradient descent by partitioning the training set into smaller "mini-batches" and using each mini-batch recursively throughout the iterative process.

That is, suppose we have training set \mathbb{X} with $|\mathbb{X}| = n$, where n is very large (e.g., n = 5000000). We fix a batch size b (e.g., b = 5000), and partition \mathbb{X} into (e.g., 1000 distinct) mini-batches

$$\left\{ \mathbb{X}^k : 1 \le k \le \left\lceil \frac{n}{b} \right\rceil \right\}, \qquad \mathbb{X} = \bigcup_{k=1}^{\left\lceil \frac{n}{b} \right\rceil} \mathbb{X}^k,$$

where $\lceil \frac{n}{b} \rceil$ denote the ceiling function. If we shuffle \mathbb{X} and partition during each epoch (i.e., each iteration) so our loss-manifold changes during each batch iteration within each epoch, we can then perform gradient descent in the following manner:

- 1. For $0 \le i < \text{num_iters}$:
 - a. Let $B = \left\lceil \frac{n}{b} \right\rceil$, and generate batches $\{\mathbb{X}^k\}$.
 - b. For $1 \le k \le B$:
 - i. Perform forward propagation on \mathbb{X}^k :

$$\begin{split} a^{[0]} &= x(\mathbb{X}^k) \\ z^{[\ell]} &= W^{[\ell]} a^{[\ell-1]} + b^{[\ell]} \\ a^{[\ell]} &= g^{[\ell]} (z^{[\ell]}) \end{split}$$

ii. Evaluate the cost \mathbb{J}^k on \mathbb{X}^k :

$$\mathbb{J}^{k}(W,b) = \frac{1}{|\mathbb{X}^{k}|} \sum_{(x,y) \in \mathbb{X}^{k}} \mathbb{L}(\hat{y},y) + \frac{\lambda}{2|\mathbb{X}^{k}|} \sum_{\ell=1}^{L} \|W^{[\ell]}\|_{F}^{2}.$$

iii. Perform backward propagation on \mathbb{X}^k :

$$\frac{\partial \mathbb{J}^k}{\partial W^{[\ell]}} = \frac{1}{|\mathbb{X}^k|} \delta^{[\ell]} a^{[\ell-1]T} + \frac{\lambda}{|\mathbb{X}^k|} W^{[\ell]}$$
$$\frac{\partial \mathbb{J}^k}{\partial b^{[\ell]}} = \frac{1}{|\mathbb{X}^k|} \sum_{\rho \sim \mathbb{X}^k} \delta^{[\ell]}{}_{\rho}$$

iv. Perform gradient descent:

$$\begin{split} W^{[\ell]} &:= W^{[\ell]} - \alpha \frac{\partial \mathbb{J}^k}{\partial W^{[\ell]}} \\ b^{[\ell]} &:= b^{[\ell]} - \alpha \frac{\partial \mathbb{J}^k}{\partial b^{[\ell]}} \end{split}$$

We make several remarks about mini-batch gradient descent:

- Batch gradient descent doesn't always decrease (e.g., our learning rate is too large). Mini-batch may oscillate rapidly, but the general direction should move towards a minimum.
- If b = n, then we fully recover batch gradient descent. This is typically too computationally expensive since we use the full training set for each iteration.
- If b = 1, then we recover stochastic gradient descent, i.e., we train our model on a different example during each iteration. We lose all the speed related to vectorization, since we're dealing with single examples during each iteration.
- Choose 1 < b < n is typically always the best solution, since it deals with both of the aforementioned problems.
- \bullet Due to the nature of a computer's internal structure, it's typically better to choose a batch size b for the form

$$b = 2^{p}$$
.

for some $p \in \{6, 7, 8, 9, 10\}$ (usually p < 10).

ullet Choose a batch size b that ensures your computer's CPU/GPU can hold a dataset of that size.

7.1 Weighted Averages

Suppose $x_t \in \mathbb{R}^m$ is some collection of data indexed by t which we may consider a time-variable, that is, after each successive unit of time (say for example, each day), our collection adds a new data point. That is, the collection

$$\{x_t \in \mathbb{R}^m : 1 \le t \le T\}$$

has variable T.

Then if X is the random vector associated to x, our usual mean μ is given by

$$\mu(T) := \mathbb{E}[X] = \frac{1}{T} \sum_{t=1}^{T} x_t.$$

Since our collection of data is growing and evolving over time, it's reasonable in many applications to have the most recent data points affect a model more than older data points. That is, we wish to impose a "weight" on more recent data points.

One way (and likely the most trivial) to achieve such a weighing is to have only the most recent k examples affect our model. That is, for fixed $k \in \mathbb{N}$, and $t \geq k$, define the vector $\hat{x}_{t+1} \in \mathbb{R}^m$ by

$$\hat{x}_{t+1} = \frac{1}{k} \sum_{j=t-mk+1}^{t} x_j.$$

Then \hat{x}_{t+1} represents the mean of the most recent k-examples. This may be interpreted as the "predicted-value" for x_{t+1} . This predictive model is known as a *simple moving average*, or SMA.

The simple moving average satisfies our weight requirement of focusing more on the most recent data, however, older data, though being less relevant, should still affect our model, but in a reduced form. The simple model does not satisfy this more refined requirement. Let's modify the simple model as follows: Fix $\beta_1 \in [0,1)$ and we initialize a $V_0 = 0 \in \mathbb{R}^m$, and define recursively the vector $V_t \in \mathbb{R}^m$ given by

$$V_t = \beta_1 V_{t-1} + (1 - \beta_1) x_t.$$

We claim that V_t can be interpreted as the next predicted value \hat{x}_{t+1} . Indeed,

expanding our recursive definition

$$V_{t} = \beta_{1}V_{t-1} + (1 - \beta_{1})x_{t}$$

$$= \beta_{1}(\beta_{1}V_{t-2} + (1 - \beta_{1})x_{t-1}) + (1 - \beta_{1})x_{t}$$

$$= \beta_{1}^{2}V_{t-2} + (1 - \beta_{1})(\beta_{1}x_{t-1} + x_{t})$$

$$= \beta_{1}^{2}(\beta_{1}V_{t-3} + (1 - \beta_{1})x_{t-2}) + (1 - \beta_{1})(\beta_{1}x_{t-1} + x_{t})$$

$$= \beta_{1}^{3}V_{t-3} + (1 - \beta_{1})(\beta_{1}^{2}x_{t-2} + \beta_{1}x_{t-1} + x_{t})$$

$$\vdots$$

$$= \beta_{t}^{t}V_{0} + (1 - \beta_{1})\sum_{j=0}^{t-1}\beta_{j}^{j}x_{t-j}$$

$$= (1 - \beta_{1})\sum_{j=0}^{t-1}\beta_{j}^{j}x_{t-j}.$$

Moreover, if we define a probability distribution \mathbb{P} as given by

$$\mathbb{P}(X = x_j) = (1 - \beta_1)\beta_1^j,$$

then we immediately see that V_t is the weighted-average over the last t-days, and hence may be interpreted as the predicted-value \hat{x}_{t+1} as desired. Finally, since

$$1 - \beta_1 = \frac{1}{\frac{1}{1 - \beta_1}},$$

we may interpret $\frac{1}{1-\beta_1}$ as the size of the relevant sampling, i.e., V_t is the average of x over the previous $\frac{1}{1-\beta_1}$ days (assuming our time-units are measured in days). This predictive model is known as an *exponentially moving* average, or EMA.

Remark 7.1. We note that since we initialize our EMA with $V_0 = 0$, that our predictive model is very bad for small t. This usually is irrelevant for many models, but if we need to correct for bias, we may make the modification of

$$V_t = \frac{\beta_1 V_{t-1} + (1 - \beta_1) x_t}{1 - \beta_1^t}.$$

Indeed, since $\beta_1 \in [0,1)$, we note that

$$\frac{1}{1-\beta_1} = \sum_{j=0}^{\infty} \beta_1^j$$

$$= \sum_{j=t}^{\infty} \beta_t^j + \sum_{j=0}^{t-1} \beta_1^j$$

$$= \beta_1^t \sum_{j=0}^{\infty} \beta_1^j + \sum_{j=0}^{t-1} \beta_1^j$$

$$= \frac{\beta_1^t}{1-\beta_1} + \sum_{j=0}^{t-1} \beta_1^j,$$

and so

$$\sum_{j=0}^{t-1} \beta_1^j = \frac{1 - \beta_1^t}{1 - \beta_1}.$$

We then see that

$$V_{t} = \frac{\beta_{1}V_{t-1} + (1 - \beta_{1})x_{t}}{1 - \beta_{1}^{t}}$$

$$= \frac{(1 - \beta_{1})\sum_{j=0}^{t-1}\beta_{1}^{j}x_{t-j}}{1 - \beta_{1}^{t}}$$

$$= \frac{\sum_{j=0}^{t-1}\beta_{1}^{j}x_{t-j}}{\sum_{j=0}^{t-1}\beta_{1}^{j}},$$

which is the explicit definition of a weighted-average.

7.2 Gradient Descent with Momentum

Gradient descent has an issue with potentially plateauing during areas with a flat gradient, or bouncing around drastically before arriving at a minimum. One reason for this is that each iterative step only depends on the previous value of the gradient (or rather, the most recently updated parameter). The algorithm doesn't see larger trends, and so this leads to give our algorithm more history of the movements. We do this by using EMA.

We first recall our gradient descent algorithm:

1. We initialize $W^{\{0\}}$ and $b^{\{0\}}$.

- 2. For $0 \le i < \text{num_iters}$:
 - a. Let $B = \left\lceil \frac{n}{b} \right\rceil$, and generate batches $\{X^k\}$.
 - b. For $1 \le k \le B$:
 - i. Apply forward propagation on \mathbb{X}^k .
 - ii. Compute the cost \mathbb{J} on \mathbb{X}^k .
 - iii. Apply backward propagation on \mathbb{X}^k to obtain

$$\frac{\partial \mathbb{J}}{\partial W}^{\{t\}}, \qquad \frac{\partial \mathbb{J}}{\partial b}^{\{t\}}.$$

iv. We update parameters

$$W^{\{t\}} = W^{\{t-1\}} - \alpha \frac{\partial \mathbb{J}}{\partial W}^{\{t\}}$$
$$b^{\{t\}} = b^{\{t-1\}} - \alpha \frac{\partial \mathbb{J}^{\{t\}}}{\partial b}^{\{t\}}$$

Using this formulation of gradient descent, we insert EMA applied to the sequences of gradients depending on the iteration t := i + k. That is, we have the following algorithm:

- 1. Initialize our parameters $W^{\{0\}}$ and $b^{\{0\}}$. Initialize $V_W^{\{0\}} = V_b^{\{0\}} = 0$. Fix a momentum hyper-parameter $\beta_1 \in [0,1)$.
- 2. For $0 \le i < \mathsf{num_iters}$:
 - a. Let $B = \left\lceil \frac{n}{b} \right\rceil$, and generate batches $\{\mathbb{X}^k\}$.
 - b. For $1 \le k \le B$:
 - i. Apply forward propagation on \mathbb{X}^k .
 - ii. Compute the cost \mathbb{J} on \mathbb{X}^k .
 - iii. Apply backward propagation on \mathbb{X}^k to obtain

$$\frac{\partial \mathbb{J}}{\partial W}^{\{t\}}, \qquad \frac{\partial \mathbb{J}}{\partial b}^{\{t\}}.$$

iv. Define

$$V_W^{\{t\}} = \beta_1 V_W^{\{t-1\}} + (1 - \beta_1) \frac{\partial \mathbb{J}}{\partial W}^{\{t\}}$$
$$V_b^{\{t\}} = \beta_1 V_b^{\{t-1\}} + (1 - \beta_1) \frac{\partial \mathbb{J}}{\partial b}^{\{t\}}$$

v. We update parameters

$$W^{\{t\}} = W^{\{t-1\}} - \alpha V_W^{\{t\}}$$

$$b^{\{t\}} = b^{\{t-1\}} - \alpha V_b^{\{t\}}$$

7.3 Root Mean Squared Propagation (RMSProp)

One of the main drawbacks to gradient descent with momentum is the uniformity of the modification regardless of the direction. That is, suppose our desired minimum is in the \vec{b} direction, but the gradient $\partial_b \mathbb{J}$ is small while the gradient $\partial_W \mathbb{J}$ is large. As a result, our steps will oscillate wildly in the \vec{w} direction, while moving very slowing in the \vec{b} direction to our desired minimum. This as a whole can be very computationally slow, and is undesired.

The main idea for fixing these oscillatory issues is have a variable learning rate α which also depends on the direction. That is, if $\partial_W \mathbb{J}$ is large, and not in our desired direction of motion, we would like our update for W to be small, and vice-versa if $\partial_b \mathbb{J}$ is small. Moreover, we wish to exaggerate the magnitudes of these vectors so we ensure our algorithm works efficiently. That is, we relate some vector S via

$$S \sim \frac{\partial \mathbb{J}^2}{\partial W},$$

where we're taking that Hadamard-square (i.e., component-wise product with itself). Then we perform step via

$$W = W - \alpha \frac{1}{\sqrt{S}} \odot \frac{\partial \mathbb{J}}{\partial W},$$

where where taking the Hadamard-root. Note that this root is necessary for our update to make sense (consider the units involved in such an equation), but it does introduce the potential to divide by zero (which we'll fix by a small. Moreover, we would like use the history of gradients as in EMA to further our refinement of the descent algorithm. To this end, we have the following *RMSProp algorithm*:

- 1. Initialize our parameters $W^{\{0\}}$ and $b^{\{0\}}$. Initialize $S_W^{\{0\}} = S_b^{\{0\}} = 0$. Fix a momentum $\beta_2 \in [0,1)$ and let $\epsilon > 0$ be sufficiently small ($\epsilon = 10^{-8}$ is a good starting point).
- 2. For $0 \le i < \mathsf{num_iter}$:

a. Let $B = \left\lceil \frac{n}{b} \right\rceil$, and generate batches $\{X^k\}$

b. For $1 \le k \le B$:

i. Apply forward propagation on \mathbb{X}^k .

ii. Compute the cost \mathbb{J} on \mathbb{X}^k .

iii. Apply backward propagation on \mathbb{X}^k to obtain

$$\frac{\partial \mathbb{J}}{\partial W}^{\{t\}}, \qquad \frac{\partial \mathbb{J}}{\partial b}^{\{t\}}.$$

iv. Define

$$S_W^{\{t\}} = \beta_2 S_W^{\{t-1\}} + (1 - \beta_2) \left(\frac{\partial \mathbb{J}}{\partial W}^{\{t\}}\right)^2$$
$$S_b^{\{t\}} = \beta_2 S_b^{\{t-1\}} + (1 - \beta_2) \left(\frac{\partial \mathbb{J}}{\partial b}^{\{t\}}\right)^2$$

v. Update parameters via

$$\begin{split} W^{\{t\}} &= W^{\{t-1\}} - \alpha \frac{\frac{\partial \mathbb{J}}{\partial W}^{\{t\}}}{\sqrt{S_W^{\{t\}}} + \epsilon} \\ b^{\{t\}} &= b^{\{t-1\}} - \alpha \frac{\frac{\partial \mathbb{J}}{\partial b}^{\{t\}}}{\sqrt{S_b^{\{t\}}} + \epsilon} \end{split}$$

7.4 Adaptive Moment Estimation: The Adam Algorithm

We first note that with the momentum algorithm utilizing the EMA as it does, that it is an algorithm of the first moment (i.e., the mean of the gradients). Similarly, with RMSProp utilizing the square of the gradient as it does, we say it is an algorithm of the second moment (i.e., the uncentered variance of the gradients). Our goal it utilize both gradient descent with momentum and RMSProp simultaneously to optimize our parameters. This combination of algorithms is called the *Adam algorithm* and is implemented as follows:

1. Initialize our parameters $W^{\{0\}}$ and $b^{\{0\}}$. Initialize $V_W^{\{0\}} = V_b^{\{0\}} = 0$ and $S_W^{\{0\}} = S_b^{\{0\}} = 0$. Fix our constants of momenta $\beta_1, \beta_2 \in [0, 1)$ and let $\epsilon > 0$ be sufficiently small.

2. For $0 \le i < \mathsf{num_iters}$:

a. Let $B = \left\lceil \frac{n}{b} \right\rceil$, and generate batches $\{\mathbb{X}^k\}$

b. For $1 \le k \le B$:

i. Apply forward propagation on \mathbb{X}^k .

ii. Compute the cost \mathbb{J} on \mathbb{X}^k .

iii. Apply backward propagation on \mathbb{X}^k to obtain

$$\frac{\partial \mathbb{J}}{\partial W}^{\{t\}}, \qquad \frac{\partial \mathbb{J}}{\partial b}^{\{t\}}.$$

iv. Define

$$V_{W}^{\{t\}} = \beta_{1} V_{W}^{\{t-1\}} + (1 - \beta_{1}) \frac{\partial \mathbb{J}}{\partial W}^{\{t\}},$$

$$V_{b}^{\{t\}} = \beta_{1} V_{b}^{\{t-1\}} + (1 - \beta_{1}) \frac{\partial \mathbb{J}}{\partial b}^{\{t\}},$$

and define

$$S_W^{\{t\}} = \beta_2 S_W^{\{t-1\}} + (1 - \beta_2) \left(\frac{\partial \mathbb{J}}{\partial W}^{\{t\}}\right)^2,$$

$$S_b^{\{t\}} = \beta_2 S_b^{\{t-1\}} + (1 - \beta_2) \left(\frac{\partial \mathbb{J}}{\partial b}^{\{t\}}\right)^2.$$

v. Utilize bias correction via:

$$\hat{V}_{W}^{\{t\}} = \frac{V_{W}^{\{t\}}}{1 - \beta_{1}^{t}}$$

$$\hat{V}_{b}^{\{t\}} = \frac{V_{b}^{\{t\}}}{1 - \beta_{1}^{t}}$$

$$\hat{S}_{W}^{\{t\}} = \frac{S_{W}^{\{t\}}}{1 - \beta_{2}^{t}}$$

$$\hat{S}_{b}^{\{t\}} = \frac{S_{b}^{\{t\}}}{1 - \beta_{2}^{t}}$$

vi. Update the parameters:

$$\begin{split} W^{\{t\}} &= W^{\{t-1\}} - \alpha \frac{\hat{V}_W^{\ \{t\}}}{\sqrt{\hat{S}_W^{\ \{t\}}} + \epsilon} \\ b^{\{t\}} &= b^{\{t-1\}} - \alpha \frac{\hat{V}_b^{\ \{t\}}}{\sqrt{\hat{S}_b^{\ \{t\}}} + \epsilon} \end{split}$$

We note that though we may still need to tune the hyper-parameter α , the hyper-parameters β_1, β_2 and ϵ typically work quite well with default values of

$$\beta_1 = 0.9, \qquad \beta_2 = 0.999, \qquad \epsilon = 10^{-8}.$$

7.5 Learning Rate Decay

Finally, one further method we may utilize in our optimization problem, is the idea of slowly reducing our learning rate α . That is, if i is our epoch iteration, and $\eta > 0$ is a fixed decay rate, we can define new learning rates in many ways. That is, for $\alpha = \alpha(i)$ we can define

$$\alpha(i) = \frac{1}{1 + \eta i} \alpha_0,$$

•

$$\alpha(i) = \alpha_0 \eta^i,$$

•

$$\alpha(i) = \frac{\eta}{\sqrt{i}}\alpha_0.$$

One could also implement a "manual decay", but this should only be used under ideal circumstances.

7.6 Python Implementation

```
import copy

import numpy as np
from sklearn.utils import shuffle
```

```
6 import mlLib.utils as utils
8 def get_batches(x, y, b):
9
      Parameters
10
11
      x : array_like
12
           x.shape = (m, n)
13
      y : array_like
           y.shape = (k, n)
15
      b : int
16
17
      Returns
18
       -----
19
      batches : List[Dict]
20
           batches[i]['x'] : array_like
21
               x.shape = (m, b) # except last batch
               y.shape = (k, b) # except last batch
23
24
      ,, ,, ,,
25
      m, n = x.shape
26
      ## Shuffle the data
27
      x, y = \text{shuffle}(x.T, y.T) \# \text{Only shuffles rows, so transpose is needed}
28
      x = x.T
29
      y = y.T
30
31
      B = int(np.ceil(n / b))
32
      batches = []
      for i in range(B):
34
           x_{temp} = x[:,(b * i):(b * (i + 1))]
35
           y_{temp} = y[:,(b * i):(b * (i + 1))]
36
           batches.append({'x' : x_temp, 'y' : y_temp})
37
      # Slicing automatically ends at the end of
38
      # the list if the stop is outside the index
39
      return batches
40
41
42 def initialize_momenta(layers):
43
      Parameters
44
       -----
45
      layers : List[int]
46
           layers[1] = # nodes in layer 1
47
48
      Returns
       -----
49
      v : Dict[Dict[array_like]]
      s : Dict[Dict[array_like]]
51
```

```
vw = \{\}
53
      vb = \{\}
54
      sw = \{\}
55
      sb = \{\}
56
      for l in range(1, len(layers)):
57
           vw[1] = np.zeros((layers[1], layers[1 - 1]))
58
           sw[1] = np.zeros((layers[1], layers[1 - 1]))
           vb[l] = np.zeros((layers[l], 1))
60
           sb[1] = np.zeros((layers[1], 1))
61
62
      v = \{'w' : vw, 'b' : vb\}
63
      s = \{'w' : sw, 'b' : sb\}
64
65
      return v, s
66
67
68 def learning_rate_decay(epoch, learning_rate=0.01, decay_rate=0.0):
69
      Parameters
70
       _____
71
      eposh : int
72
      learning_rate : float
73
           Default: 0.01
      decay_rate : float
75
           Default: 0.0 - Returns a constant learning_rate
76
77
      Returns
       _____
79
      learning_rate : float
80
81
      learning_rate = (1 / (1 + epoch * decay_rate)) * learning_rate
82
      return learning_rate
83
84
85 def corrected_momentum(v, grads, update_iter, beta1=0.0):
86
      Parameters
87
88
      v : Dict[Dict[array_like]]
89
           v['w'][1].shape = w[1].shape
90
           v['b'][1].shape = b[1].shape
91
      grads : Dict[Dict]
92
           grads['w'][l] : array_like
93
               dw[1].shape = w[1].shape
94
           grads['b'][l] : array_like
95
               db[1].shape = b[1].shape
96
      update_iter : int
      beta1 : float
98
           Default: 0.0 - Returns grads
```

```
Usual: 0.9
100
101
       Returns
102
       _____
103
       v : Dict[Dict[array_like]]
104
            v['w'][1].shape = dw[1].shape
105
            v['b'][1].shape = db[1].shape
106
107
       ## Retrieve velocities and gradients
108
       vw = v['w']
109
       vb = v['b']
110
       dw = grads['w']
111
       db = grads['b']
112
       L = len(dw)
113
114
       for l in range(1, L + 1):
115
            vw[1] = beta1 * vw[1] + (1 - beta1) * dw[1]
116
            vw[1] /= (1 - beta1 ** update_iter)
117
            assert(vw[1].shape == dw[1].shape)
118
            vb[1] = beta1 * vb[1] + (1 - beta1) * db[1]
119
            vb[1] /= (1 - beta1 ** update_iter)
120
            assert(vb[1].shape == db[1].shape)
121
122
       v = \{'w' : vw, 'b' : vb\}
123
       return v
124
125
126 def corrected_rmsprop(s, grads, update_iter, beta2=0.999):
127
       Parameters
128
       _____
129
       s : Dict[Dict[array_like]]
130
            s['w'][1]. shape = w[1]. shape
131
           s['b'][1].shape = b[1].shape
132
       grads : Dict[Dict]
133
            grads['w'][1] : array_like
134
                dw[1].shape = w[1].shape
135
            grads['b'][l] : array_like
136
137
                db[1].shape = b[1].shape
       update_iter : int
138
       beta2 : float
139
           Default: 0.999
140
141
142
       Returns
       -----
143
       s : Dict[Dict[array_like]]
            s['w'][1].shape = w[1].shape
145
            s['b'][1]. shape = b[1]. shape
146
```

```
11 11 11
147
       ## Retrieve accelerations and gradients
148
       sw = s['w']
149
       sb = s['b']
150
       dw = grads['w']
151
       db = grads['b']
152
       L = len(dw)
154
       for l in range(1, L + 1):
155
            sw[1] = beta2 * sw[1] + (1 - beta2) * (dw[1] * dw[1])
156
            sw[1] /= (1 - beta2 ** update_iter)
157
            assert(sw[1].shape == dw[1].shape)
158
            sb[1] = beta2 * sb[1] + (1 - beta2) * (db[1] * db[1])
159
            sb[1] /= (1 - beta2 ** update_iter)
160
            assert(sb[1].shape == db[1].shape)
161
162
       s = \{'w' : sw, 'b' : sb\}
163
       return s
164
165
166
167 def update_parameters_adam(params, grads, epoch, batch_iter, v, s, momenta=[1e-8, 0
168
       Parameters
169
170
       params : Dict[Dict]
171
            params['w'][1] : array_like
172
                w[l].shape = (layers[l], layers[l-1])
173
            params['b'][1] : array_like
174
                b[1].shape = (layers[1], 1)
175
       grads : Dict[Dict]
176
            grads['dw'][1] : array_like
177
                dw[1].shape = w[1].shape
178
            grads['db'][1] : array_like
179
                db[1].shape = b[1].shape
180
       epoch : int
181
       batch_iter : int
182
       learning_rate : float
183
            Default: 0.01
184
       momenta : List[float]
185
            momenta[0] = epsilon
186
                Default: 10^{-8}
187
            momenta[1] = beta_1
188
                Default: 0.9
189
            momenta[2] = beta_2
190
                Default: 0.999
191
192
       Returns
193
```

```
194
       params : Dict[Dict]
195
            params['w'][1] : array_like
196
                w[1].shape = (layers[1], layers[1-1])
197
            params['b'][1] : array_like
198
                b[1].shape = (layers[1], 1)
199
200
       update_iter = epoch + batch_iter
201
202
       ## Retrieve parameters
       w = copy.deepcopy(params['w'])
203
       b = copy.deepcopy(params['b'])
204
       L = len(w)
205
206
       ## Update velocites and accelerations
207
       v = corrected_momentum(v, grads, update_iter, momenta[1])
208
       vw = v['w']
209
210
       vb = v['b']
       s = corrected_rmsprop(s, grads, update_iter, momenta[2])
211
       sw = s['w']
212
       sb = s['b']
213
214
       ## Update learning rate
215
       learning_rate = learning_rate_decay(epoch, alpha0, decay_rate)
216
217
       ## Perform update
218
       for l in range(1, L + 1):
219
           w[1] = w[1] - learning_rate * vw[1] / (np.sqrt(sw[1]) + momenta[0])
220
           b[1] = b[1] - learning_rate * vb[1] / (np.sqrt(sb[1]) + momenta[0])
221
222
       params = \{'w' : w, 'b' : b\}
223
       return params
224
225
226 def model(x, y,
            hidden_layer_sizes,
227
            activators,
228
            batch_size,
229
            lambda_=0.0,
230
231
            num_iters=10000,
            print_cost=False):
232
233
       Parameters
234
       _____
235
236
       x : array_like
           x.shape = (layers[0], n)
237
       y : array_like
238
            y.shape = (layers[-1], n)
239
       hidden_layer_sizes : List[int]
^{240}
```

```
The number nodes layer 1 = hidden_layer_sizes[1-1]
241
       activators : List[str]
242
           activators[1] = activation function of layer 1+1
243
       batch_size : int
244
       lambda_ : float
^{245}
           The regularization parameter
246
           Default: 0.0
247
       num_iters : int
248
           Number of iterations with which our model performs gradient descent
249
           Default: 10000
250
       print_cost : Boolean
251
           If True, print the cost every 1000 iterations
252
           Default: False
253
254
       Returns
255
       -----
256
257
       params : Dict[Dict]
           params['w'][1] : array_like
258
                w[l].shape = (layers[l], layers[l-1])
259
           params['b'][1] : array_like
260
                b[1].shape = (layers[1], 1)
261
       cost : float
262
           The final cost value for the optimized parameters returned
263
264
       n, layers = utils.dim_retrieval(x, y, hidden_layer_sizes)
265
       params = utils.initialize_parameters_random(layers)
266
       v, s = initialize_momenta(layers)
267
268
269
       ## main descent loop
270
       for i in range(num_iters):
271
           batches = get_batches(x, y, batch_size)
272
           ## batch loop
273
           batch_iter = 1
274
           cost = 0
275
           for batch in batches:
276
                x = batch['x']
277
                y = batch['y']
278
                cache = utils.forward_propagation(x, params, activators)
279
                cost += utils.compute_cost(y, params, cache)
280
                grads = utils.backward_propagation(x, y, params, cache, activators)
281
                params = update_parameters_adam(params,
282
283
                                             grads,
                                             i,
284
                                             batch_iter,
                                             ٧,
286
287
                                             S,
```

```
momenta=[1e-8, 0.9, 0.999],
288
                                            learning_rate=0.01,
289
                                             decay_rate = 0.0
290
               batch_iter += 1
291
292
           if print_cost and i % 1000 == 0:
293
               print(f'Cost_after_iteration_{i}:_{cost}')
294
295
       return params, cost
296
```

8 Tuning Hyper-Parameters

Suppose that we have the dataset \mathbb{D} with the usual partition of

$$\mathbb{D} = \mathbb{X} \cup \mathcal{D} \cup \mathcal{T}.$$

Furthermore, suppose we impose a neural network architecture which has a collection of hyper-parameters (relabeled as):

$$\eta_1, \eta_2, ... \eta_K$$
.

The naive method of hyper-parameter tuning would instinctively be something of the form: Let $[d_i, d_i + k_i \Delta_i]$ denote an interval for which we require

$$\eta_i \in [d_i, d_i + k_i \Delta_i],$$

with an even-partition of

$$d_i < d_i + \Delta_i < d_i + 2\Delta_i < \cdots < d_i + k_i \Delta_i$$

of length Δ_i . This collection forms a "grid" in \mathbb{R}^K for which each point of the grid gives us a full collection of hyper-parameters which we can then use to train our model. However, if certain hyper-parameters do not affect our model's accuracy very much, we've added at least a full dimension of validation which is not needed. A more randomized approach would be best to determine such a hyper-parameter characterization must faster. Thus a random collection of points H_i for which we constrain $\eta_i \in H_i$.

How should we implement this set H_i ? Suppose for example, we wish to find

$$\eta_i \in [0.0001, 1],$$

but the majority of the random points will likely be in [0.1, 1]. Suppose we partition the interval

$$[0.0001, 1] = 0.0001 < 0.001 < 0.01 < 0.1 < 1$$
$$= 10^{-4} < 10^{-3} < 10^{-2} < 10^{-1} < 10^{0}.$$

This suggests we obtain a distribution of points using a logarithmic (in base 10) scale. Indeed, let

$$p\in [0,1],$$

be a random point. Then letting $r=-4p\in[-4,0],$ we obtain another random point, and let

$$H_i = \{10^{-4p} : p \in \text{rand}([0,1])\},\$$

for some prescribed set-cardinality. This allows us to choose more appropriately scaled-options for our hyper-parameters.

Remark 8.1. Suppose we're using exponentially moving averages and have a hyper-parameter $\beta_1 \in [0,1)$. If we do not use a log-scale, then the sensitivity of our model with respect to β_1 when $\beta_1 \approx 1$ is very strong. Indeed, we recall that when $\beta_1 = 0.999$, this corresponds to averaging over the previous 1000 days. And it we change β_1 slightly to

$$\beta_1 = 0.9995$$
.

then we've changed the interpretation of our model to the previous 2000 days. A subtle change for β_1 , but a drastic change to our model. The log-scale fixes this issue immediately.

We finally note that our hyper-parameters can become *stale* over time. That is, suppose we've trained a neural network, and tuned the hyper-parameters to allow an acceptable accuracy for our model. As the model refines over time, with more data being inserted to train on, it's import to re-test our hyper-parameters to make sure our model hasn't opened up to a better choice of one (or some or all) of the hyper-parameters we've previously tuned.

8.1 Python Implementation

```
1 def hyperparameter_scale(k, p):
2
      Parameters
3
      -----
4
      k : int
          The number random points to generate
6
      p: int
          The smallest magnitude for our log-scale
      Returns
10
      _____
11
      hypers : List[float]
12
          The list of hyper-parameters with which to tune
13
14
      hypers = []
15
      for _ in range(k):
16
          r = p * np.random.rand()
17
          hypers.append(10 ** r)
18
      return hypers
```

9 Batch Normalization

See [1].

We recall feature-normalization: Suppose $x \in \mathbb{R}^{m \times n}$ is some training data, and let

$$\mu = \mathbb{E}[X], \qquad \sigma^2 = \mathbb{E}[(X - \mu)^2],$$

denote the mean and variance of the random-vector representation X of x, respectively. Then we consider the map

$$x_j \mapsto \frac{x_j - \mu}{\sigma} =: \hat{x}_j,$$

to be the *normalization* of x_i .

This definition is so "vanilla", that it should be clear that this can be easily applied to each hidden-layer (we shall not use it on the output layer) of a neural network as well. However, we first note that there is an ambiguous choice amongst the implementation, namely, do we normalize $z^{[\ell]}$ or $a^{[\ell]}$, i.e., does normalization occur before or after we compute the activation unit. It seems more common to apply normalization to $z^{[\ell]}$, so that is what we do here without further mention of this choice.

Let $\gamma, \beta \in \mathbb{R}^m$, if we consider the map

$$\hat{x}_j \mapsto \gamma \odot \hat{x}_j + \beta := \tilde{x}_j,$$

we can see fairly trivially that we can recover x_j (thus allowing for identity activation units), indeed, let $\gamma = \sigma$ and $\beta = \mu$, and hence

$$\tilde{x}_{j} = \gamma \odot \hat{x}_{j} + \beta$$

$$= \gamma \odot \frac{x_{j} - \mu}{\sigma} + \beta$$

$$= x_{j} - \mu_{\beta}$$

$$= x_{j}$$

as desired. Moreover, we see that we can actually control what mean and variance we wish to impose on our input-vectors x. Indeed, let \hat{x} denote the

normalized x, and consider

$$\mathbb{E}[\gamma \odot \hat{X} + \beta] = \frac{1}{n} \sum_{j=1}^{n} (\gamma \odot \hat{x}_j + \beta)$$
$$= \gamma \odot \mathbb{E}[\hat{X}] + \beta$$
$$= 0 + \beta$$
$$= \beta,$$

and so the new mean would be given by β . Similarly,

$$\mathbb{E}[(\gamma \odot \hat{X} + \beta - \beta)^2] = \frac{1}{n} \sum_{j=1}^n (\gamma \odot \hat{x}_j)^2$$

$$= \frac{1}{n} \sum_{j=1}^n (\gamma^2 \odot \hat{x}_j^2)$$

$$= \gamma^2 \odot \mathbb{E}[(\hat{X} - 0)^2]$$

$$= \gamma^2 \odot 1$$

$$= \gamma^2$$

and so we see the new variance would be given by γ^2 . Thus, we see that by composition, the act of normalization can be characterized by the new parameters γ and β , and is mathematically-superfluous to consider both, but for computational considerations and algorithmic stability it shall be beneficial to keep both. That is, suppose we're training on some batch \mathbb{X}^k and focused on layer- ℓ , with parameters $\gamma^{[\ell]}, \beta^{[\ell]} \in \mathbb{R}^{m_\ell}$ and some $\epsilon > 0$, arbitrarily small and prescribed for numerical stability, we define the batch-normalization map $BN_{\gamma^{[\ell]},\beta^{[\ell]}}: \mathbb{R}^{m_\ell} \to \mathbb{R}^{m_\ell}$ given by the compositional-map

$$\begin{split} z^{[\ell]} &\mapsto \frac{1}{|\mathbb{X}^k|} \sum_{x \in \mathbb{X}^k} z^{[\ell]} =: \mu^{[\ell]}; \\ (z^{[\ell]}, \mu^{[\ell]}) &\mapsto \frac{1}{|\mathbb{X}^k|} \sum_{x \in \mathbb{X}^k} (z^{[\ell]} - \mu^{[\ell]})^2 =: \sigma^{[\ell]2}; \\ (z^{[\ell]}, \mu^{[\ell]}, \sigma^{[\ell]}, \epsilon) &\mapsto \frac{z^{[\ell]} - \mu^{[\ell]}}{\sqrt{\sigma^{[\ell]2} + \epsilon}} =: \hat{z}^{[\ell]}; \\ (\hat{z}^{[\ell]}, \gamma^{[\ell]}, \beta^{[\ell]}) &\mapsto \gamma^{[\ell]} \odot \hat{z}^{[\ell]} + \beta^{[\ell]} =: \tilde{z}^{[\ell]}. \end{split}$$

Suppose we have an L-layer neural network, each layer with m_{ℓ} nodes, and we focus on the ℓ -th layer specifically to expand:

$$\cdots \xrightarrow{\varphi^{[\ell]}} \underbrace{\begin{bmatrix} z^{[1]1} \\ \vdots \\ z^{[1]m_{\ell}} \end{bmatrix}}^{BN_{\gamma^{[\ell]}},\beta^{[\ell]}} \xrightarrow{\begin{bmatrix} \tilde{z}^{[\ell]1} \\ \vdots \\ \tilde{z}^{[\ell]}_{m_{\ell}} \end{bmatrix}}^{g^{[\ell]}} \xrightarrow{\begin{bmatrix} a^{[1]1} \\ \vdots \\ a^{[1]m_{\ell}} \end{bmatrix}}^{\varphi^{[\ell+1]}} \xrightarrow{\cdots}$$

$$\xrightarrow{\text{Laver } \ell}$$

The procedure for forward propagation should be immediately obvious from the closer look at layer- ℓ . However, we notice that

$$a^{[\ell-1]} \mapsto \gamma^{[\ell]} \odot \frac{W^{[\ell]} a^{[\ell-1]} + b^{[\ell]} - \mu^{[\ell]}}{\sqrt{\sigma^{[\ell]2} + \epsilon}} + \beta^{[\ell]}$$
$$= \frac{\gamma^{[\ell]}}{\sqrt{\sigma^{[\ell]2} + \epsilon}} (W^{[\ell]} a^{[\ell-1]} - \mu^{[\ell]}) + \beta^{[\ell]},$$

after absorbing the $b^{[\ell]}$ into the parameter $\beta^{[\ell]}$. That is, we have 3 trainable parameters given by $W^{[\ell]} \in \mathbb{R}^{m_{\ell} \times m_{\ell-1}}, \, \gamma^{[\ell]}, \beta^{[\ell]} \in \mathbb{R}^{m_{\ell}}$.

9.1 Backward Propagation

We now show how batch normalization affects the backward propagation algorithm. For illustrative purposes, we assume a 2-layer neural network with arbitrary activation functions and generic loss function. We recall the setup (without bias $b^{[\ell]}$) used in Section 2.1

$$\underbrace{\begin{bmatrix} x^1 \\ \vdots \\ x^{m_0} \end{bmatrix}}_{\text{Layer 0}} \xrightarrow{\Phi^{[1]}} \underbrace{\begin{bmatrix} z^{[1]1} \\ \vdots \\ z^{[1]m_1} \end{bmatrix}}_{\text{Example 1}} \xrightarrow{BN_{\gamma,\beta}} \underbrace{\begin{bmatrix} \tilde{z}^{[\ell]1} \\ \vdots \\ \tilde{z}^{[\ell]}_{m_\ell} \end{bmatrix}}_{\text{Layer 1}} \xrightarrow{\Phi^{[2]}} \cdots$$

$$\underbrace{\begin{bmatrix} z^{[2]1} \\ \vdots \\ z^{[2]m_2} \end{bmatrix}}_{\text{Layer 2}} \xrightarrow{\Phi^{[2]}} \underbrace{\begin{bmatrix} a^{[2]1} \\ \vdots \\ a^{[2]m_2} \end{bmatrix}}_{\text{Example 2}} \xrightarrow{\Phi^{[2]}} \underbrace{\begin{bmatrix} \hat{y}^1 \\ \vdots \\ \hat{y}^{m_2} \end{bmatrix}}_{\text{Interval 2}},$$

where

$$\Phi^{[1]}: \mathbb{R}^{m_1 \times m_0} \times \mathbb{R}^{m_0} \to \mathbb{R}^{m_1}, \qquad \Phi^{[1]}(A, x) = Ax;$$

and

$$\Phi^{[2]}: \mathbb{R}^{m_2 \times m_1} \times \mathbb{R}^{m_2} \times \mathbb{R}^{m_1} \to \mathbb{R}^{m_2}, \qquad \Phi^{[2]}(A, b, x) = Ax + b.$$

Define the compositional function

$$G: \mathbb{R}^{m_2 \times m_1} \times \mathbb{R}^{m_2} \times \mathbb{R}^{m_1} \times \mathbb{R}^{m_1} \times \mathbb{R}^{m_1 \times m_0} \times \mathbb{R}^{m_0} \to \mathbb{R},$$

given by

$$G(B, b, \gamma, \beta, A, x) = \mathbb{L}_y \circ g^{[2]} \circ \Phi^{[2]}(B, b, g^{[1]} \circ BN_{\gamma,\beta}(\Phi^{[1]}(A, x))).$$

This leads to compute some auxiliary differentials before continuing further.

Lemma 9.1. For $N \in \mathbb{N}$, we define the expectation function $\mathbb{E} : \mathbb{R}^N \to \mathbb{R}$ given by

$$\mathbb{E}[(x_1, ..., x_N)] = \frac{1}{N} \sum_{j=1}^{N} x_j.$$

Let $z = \{z_1, ..., z_N\} \subset \mathbb{R}$ be fixed, and define the mean

$$\mu := \mathbb{E}[z] = \frac{1}{N} \sum_{j=1}^{N} z_j.$$

Then as a differential, we have that $d\mathbb{E}_z: T_z\mathbb{R}^N \to T_\mu\mathbb{R}$ given by

$$d\mathbb{E}_z = \frac{1}{N} \sum_{j=1}^{N} dx_j |_{x=z}, \qquad d\mathbb{E}_z(v) = \frac{1}{N} \sum_{j=1}^{N} v^j.$$

Moreover, for $\alpha = 1, ..., N$, let $\iota_{z_{\alpha}} : \mathbb{R} \to \mathbb{R}^{N}$ denote the inclusion

$$\iota_{z_{\alpha}}(x) = (z_1, ..., z_{\alpha-1}, x, z_{\alpha+1}, ..., z_N).$$

Then the differentials

$$d_{\alpha}\mathbb{E}_{z_{\alpha}} := d(\mathbb{E} \circ \iota_{z_{\alpha}})_{z_{\alpha}} : T_{z_{\alpha}}\mathbb{R} \to T_{\mu}\mathbb{R},$$

are given by

$$d_{\alpha}\mathbb{E}_{z_{\alpha}} = d(\mathbb{E} \circ \iota_{z_{\alpha}})_{z_{\alpha}}$$
$$= d\mathbb{E}_{z} \cdot d(\iota_{z_{\alpha}})_{z_{\alpha}}$$
$$= \frac{1}{N} dx_{z_{\alpha}}.$$

Since we don't use batch normalization on the output layer, the bias term still exists.

Similarly, we define the variance function $\mathbb{V}: \mathbb{R}^N \to \mathbb{R}$ given by

$$\mathbb{V}[(x_1, ..., x_N)] = \frac{1}{N} \sum_{j=1}^{N} (x_j - \mathbb{E}[(x_1, ..., x_N)])^2.$$

For fixed z, define the variance

$$\sigma^2 = \mathbb{V}[z].$$

Then as a differential, we have that $d\mathbb{V}_z: T_z\mathbb{R}^N \to T_{\sigma^2}\mathbb{R}$ given by

$$d\mathbb{V}_z = \frac{2}{N} \sum_{j=1}^{N} (z_j - \mu) dx^j \big|_{x=z}, \qquad d\mathbb{V}_z(v) = \frac{2}{N} \sum_{j=1}^{N} (z_j - \mu) v^j.$$

Moreover, for $\alpha = 1, ..., N$, the differentials

$$d_{\alpha} \mathbb{V}_{z_{\alpha}} := d(\mathbb{V} \circ \iota_{z_{\alpha}})_{z_{\alpha}} : T_{z_{\alpha}} \mathbb{R} \to T_{\sigma^{2}} \mathbb{R}$$

are given by

$$\begin{aligned} d_{\alpha} \mathbb{V}_{z_{\alpha}} &= d(\mathbb{V} \circ \iota_{z_{\alpha}})_{z_{\alpha}} \\ &= d\mathbb{V}_{z} \cdot d(\iota_{z_{\alpha}})_{z_{\alpha}} \\ &= \frac{2}{N} (z_{\alpha} - \mu) dx_{z_{\alpha}} \end{aligned}$$

Proof: Immediate from direct calculation.

Corollary 9.2. For $\alpha = 1, ..., N$, let $\mathcal{N}_{\alpha} : \mathbb{R}^{m \times N} \to \mathbb{R}^m$ denote the α -th component of the vector-valued, normalization transformation. That is,

$$\hat{x}_{\alpha} = \mathcal{N}_{\alpha}(x_1, ..., x_N),$$

with

$$\hat{x}_{\alpha}^{i} = \frac{\pi_{\alpha}(x^{i}) - \mathbb{E}[x^{i}]}{(\mathbb{V}[x^{i}] + \epsilon)^{\frac{1}{2}}},$$

where $\pi_{\alpha}: \mathbb{R}^{N} \to \mathbb{R}$ is the projection onto the α -th coordinate

$$\pi_{\alpha}(x_1,...,x_N) = x_{\alpha}.$$

Fix $z_1, ..., z_N \in \mathbb{R}^m$, let $\mu = \mathbb{E}[z] \in \mathbb{R}^m$ denote vector-mean and let $\sigma^2 = \mathbb{V}[z] \in \mathbb{R}^m$ denote the component-wise, vector-variation (i.e., $(\sigma^2)^i = \mathbb{V}[z^i]$). Then the differentials

$$d_{\alpha}(\mathcal{N}_{\alpha})_{z_{\alpha}} := d(\mathcal{N}_{\alpha} \circ \iota_{z_{\alpha}})_{z_{\alpha}} : T_{z_{\alpha}} \mathbb{R}^m \to T_{\hat{z}_{\alpha}} \mathbb{R}^m$$

are given by the diagonal matrices

$$d_{\alpha}(\mathcal{N}_{\alpha})_{z_{\alpha}} = \left(\frac{1 - \frac{1}{N}}{\sqrt{(\sigma^2)^i + \epsilon}} - \frac{1}{N} \frac{(z_{\alpha}^i - \mu^i)^2}{((\sigma^2)^i + \epsilon)^{\frac{3}{2}}}\right) \delta_j^i.$$

Proof: We compute directly after noting that

$$d_{\alpha}(\mathcal{N}_{\alpha})_{z_{\alpha}} = \begin{bmatrix} d_{\alpha}(\hat{x}_{\alpha}^{1})_{z_{\alpha}^{1}} & \cdots & 0 \\ 0 & \ddots & 0 \\ 0 & \cdots & d_{\alpha}(\hat{x}_{\alpha}^{m})_{z_{\alpha}^{m}} \end{bmatrix}$$

To this end, fix $1 \le i \le m$ and we compute

$$\begin{split} d_{\alpha}(\hat{x}_{\alpha}^{i})_{z_{\alpha}^{i}} &= d_{\alpha}(\mathcal{N}_{\alpha}^{i})_{z_{\alpha}^{i}} \\ &= \frac{d_{\alpha}(\pi_{\alpha})_{z_{\alpha}^{i}} - d_{\alpha}\mathbb{E}_{z_{\alpha}^{i}}}{\sqrt{(\sigma^{2})^{i} + \epsilon}} - \frac{z_{\alpha}^{i} - \mu^{i}}{2((\sigma^{2})^{i} + \epsilon)^{\frac{3}{2}}} d_{\alpha}\mathbb{V}_{z_{\alpha}^{i}} \\ &= \frac{dx_{z_{\alpha}^{i}} - \frac{1}{N}dx_{z_{\alpha}^{i}}}{\sqrt{(\sigma^{2})^{i} + \epsilon}} - \frac{z_{\alpha}^{i} - \mu^{i}}{2((\sigma^{2})^{i} + \epsilon)^{\frac{3}{2}}} \left(\frac{2}{N}(z_{\alpha}^{i} - \mu^{i})dx_{z_{\alpha}^{i}}\right) \\ &= \left(\frac{1 - \frac{1}{N}}{\sqrt{(\sigma^{2})^{i} + \epsilon}} - \frac{(z_{\alpha}^{i} - \mu^{i})^{2}}{N((\sigma^{2})^{i} + \epsilon)^{\frac{3}{2}}}\right) dz_{\alpha}^{i}, \end{split}$$

as desired.

Proposition 9.3. Let $\mathcal{N}: \mathbb{R}^{m \times N} \to \mathbb{R}^{m \times N}$ denote the usual normalization transformation with $\hat{x}_{\alpha} = \mathcal{N}_{\alpha}(x)$. Let $BN: \mathbb{R}^{m} \times \mathbb{R}^{m} \times \mathbb{R}^{m \times N} \to \mathbb{R}^{m \times N}$ denote the batch normalization transformation $[x_{j}] \mapsto [\tilde{x}_{j}]$, i.e.,

$$\tilde{x}_j^i = \gamma^i \hat{x}_j^i + \beta^i,$$

where $x^i \in \mathbb{R}^N$. Moreover, given $\gamma, \beta \in \mathbb{R}^m$, for $\alpha \in \{1, ..., N\}$, let

$$BN_{\alpha}^{\gamma,\beta}: \mathbb{R}^{m\times N} \to \mathbb{R}^m$$

denote

$$BN_{\alpha}^{\gamma,\beta}(x) = \gamma \odot \mathcal{N}_{\alpha}(x) + \beta.$$

Fix $z_1, ..., z_N \in \mathbb{R}^m$, and let

$$\hat{z}_{\alpha} = \mathcal{N}_{\alpha}(z_1, ..., z_N) \in \mathbb{R}^m, \qquad \mu^i = \mathbb{E}[z^i] \in \mathbb{R}, \qquad (\sigma^2)^i = \mathbb{V}[z^i] \in \mathbb{R}.$$

For $\alpha \in \{1,...,N\}$, $z \in \mathbb{R}^{m \times N}$ and for $\gamma, \beta \in \mathbb{R}^m$, we have the differentials:

• $d(BN_{\alpha}^{\beta,z})_{\gamma}: T_{\gamma}\mathbb{R}^m \to T_{\tilde{z}}\mathbb{R}^m$, is given by

$$d(BN_{\alpha}^{\beta,z})_{\gamma}(v) = \hat{z}_{\alpha} \odot v, \qquad \frac{\partial \tilde{z}_{\alpha}^{i}}{\partial \gamma^{j}} = \hat{z}_{\alpha}^{i} \delta_{j}^{i}.$$

• $d(BN_{\alpha}^{\gamma,z})_{\beta}: T_{\beta}\mathbb{R}^m \to T_{\tilde{z}}\mathbb{R}^m$ is given by

$$d(BN_{\alpha}^{\gamma,z})_{\beta}(v) = v, \qquad \frac{\partial \tilde{z}_{\alpha}^{i}}{\partial \beta^{j}} = \delta_{j}^{i}.$$

• $d(BN_{\alpha}^{\gamma,\beta})_{\hat{z}_{\alpha}}: T_{\hat{z}_{\alpha}}\mathbb{R}^{m} \to T_{\tilde{z}}\mathbb{R}^{m}$ is given by

$$d(BN_{\alpha}^{\gamma,\beta})_{\hat{z}_{\alpha}}(v) = \gamma \odot v, \qquad \frac{\partial \tilde{z}_{\alpha}^{i}}{\partial \hat{z}_{\alpha}^{j}} = \gamma^{i} \delta_{j}^{i}.$$

• $d_{\alpha}(BN_{\alpha}^{\gamma,\beta})_{z_{\alpha}} := d(BN_{\alpha}^{\gamma,\beta} \circ \iota_{z_{\alpha}})_{z_{\alpha}} : T_{z_{\alpha}}\mathbb{R}^{m} \to T_{\tilde{z}_{\alpha}}\mathbb{R}^{m} \text{ is given by}$ $d_{\alpha}(BN_{\alpha}^{\gamma,\beta})_{z_{\alpha}} = (\gamma \odot)d_{\alpha}(\mathcal{N}_{\alpha})_{z_{\alpha}},$

$$\frac{\partial \tilde{z}_{\alpha}^{i}}{\partial z_{\alpha}^{j}} = \gamma^{i} \left(\frac{1 - \frac{1}{N}}{\sqrt{(\sigma^{2})^{i} + \epsilon}} - \frac{(z_{\alpha}^{i} - \mu^{i})^{2}}{N((\sigma^{2})^{i} + \epsilon)^{\frac{3}{2}}} \right) \delta_{j}^{i}$$

Proof: Follows immediately from the previous Corollary.

We now return to considering the compositional function

$$G: \mathbb{R}^{m_2 \times m_1} \times \mathbb{R}^{m_2} \times \mathbb{R}^{m_1} \times \mathbb{R}^{m_1} \times \mathbb{R}^{m_1 \times m_0} \times \mathbb{R}^{m_0} \to \mathbb{R},$$

given by

$$G(B, b, \gamma, \beta, A, x_{\alpha}) = \mathbb{L}_{y} \circ g^{[2]} \circ \Phi^{[2]}(B, b, g^{[1]} \circ BN_{\alpha}^{\gamma, \beta}(\Phi^{[1]}(A, x))).$$

We compute (and since $\alpha \in \{1, ..., N\}$ is fixed, we ignore implied summation for the moment)

 $d_{B}G_{B}(V) = d_{B}(\mathbb{L}_{y} \circ g^{[2]} \circ \Phi^{[2]})_{B}(V)$ $= \frac{d}{dt} \Big|_{t=0} \mathbb{L}_{y} \circ g^{[2]}((B+tV)a^{[1]}_{\alpha} + b)$ $= (\delta^{[2]}_{\alpha}^{T})_{\rho} \frac{d}{dt} \Big|_{t=0} \left[(B_{\lambda}^{\rho} + tV_{\lambda}^{\rho})a^{[1]_{\lambda}^{\lambda}} + b^{\rho}) \right]$ $= (\delta^{[2]}_{\alpha}^{T})_{\rho}V_{\lambda}^{\rho}a^{[1]_{\alpha}^{\lambda}}$ $= (a^{[1]}_{\alpha}\delta^{[2]}_{\alpha}^{T})_{\rho}^{\lambda}V_{\lambda}^{\rho},$

and hence

$$d_B G_B = a^{[1]}{}_{\alpha} \delta^{[2]}{}_{\alpha}{}^T, \qquad \frac{\partial G}{\partial B} = \delta^{[2]}{}_{\alpha} a^{[1]}{}_{\alpha}{}^T.$$

•

$$d_b G_b(v) = d_B(\mathbb{L}_y \circ g^{[2]} \circ \Phi^{[2]})_b(v)$$

$$= (\delta^{[2]}{}_{\alpha}{}^T)_{\rho} \left. \frac{d}{dt} \right|_{t=0} \left[B_{\lambda}^{\rho} a^{[1]}{}_{\alpha}^{\lambda} + (b^{\rho} + tv^{\rho}) \right]$$

$$= \delta^{[2]}{}_{\alpha}{}^T v$$

yielding

$$d_b G_b = \delta^{[2]}{}_{\alpha}{}^T, \qquad \frac{\partial G}{\partial b} = \delta^{[2]}{}_{\alpha}.$$

ullet

$$\begin{split} d_{\gamma}G_{\gamma}(\xi) &= d_{\gamma}(\mathbb{L}_{y} \circ g^{[2]} \circ \Phi^{[2]}(B, b, g^{[1]} \circ BN_{\alpha}^{\beta, z^{[1]}_{\alpha}}))_{\gamma}(\xi) \\ &= (\delta^{[2]}_{\alpha}^{T}) \cdot B \cdot dg_{\bar{z}^{[1]}_{\alpha}}^{[1]}(\hat{z}_{\alpha} \odot \xi) \\ &= (\delta^{[2]}_{\alpha}^{T}) \cdot B \cdot dg_{\bar{z}^{[1]}_{\alpha}}^{[1]} \mathrm{diag}(\hat{z}_{\alpha}^{[1]}) \xi \\ &= \delta^{[1]}_{\alpha}^{T} \mathrm{diag}(\hat{z}^{[1]}_{\alpha}) \xi, \end{split}$$

and so

$$d_{\gamma}G_{\gamma} = \delta^{[1]}{}_{\alpha}{}^{T}\operatorname{diag}(\hat{z}^{[1]}{}_{\alpha}), \qquad \frac{\partial G}{\partial \gamma} = \operatorname{diag}(\hat{z}^{[1]}{}_{\alpha})\delta^{[1]}{}_{\alpha}.$$

$$d_{\beta}G_{\beta}(\eta) = d_{\beta}(\mathbb{L}_{y} \circ g^{[2]} \circ \Phi^{[2]}(B, b, g^{[1]} \circ BN_{\alpha}^{\gamma, z^{[1]}_{\alpha}}))_{\beta}(\eta)$$

= $\delta^{[1]}{}_{\alpha}{}^{T}\eta$,

thus

$$d_{\beta}G_{\beta} = \delta^{[1]}{}_{\alpha}{}^{T}, \qquad \frac{\partial G}{\partial \beta} = \delta^{[1]}{}_{\alpha}.$$

 $d_A G_A(V) = \delta^{[1]}{}_{\alpha}{}^T \cdot d_{\alpha} (B N_{\alpha}^{\gamma,\beta})_{z^{[1]}{}_{\alpha}} d\Phi_A^{[1]}(V)$ $= \delta^{[1]}{}_{\alpha}{}^T \operatorname{diag}(\gamma) d_{\alpha} (\mathcal{N}_{\alpha})_{z^{[1]}{}_{\alpha}} V x_{\alpha},$

and hence

$$d_{A}G_{A} = x_{\alpha}\delta^{[1]}{}_{\alpha}{}^{T}\operatorname{diag}(\gamma)d_{\alpha}(\mathcal{N}_{\alpha})_{z^{[1]}{}_{\alpha}},$$
$$\frac{\partial G}{\partial A} = \operatorname{diag}(\gamma)d_{\alpha}(\mathcal{N}_{\alpha})_{z^{[1]}{}_{\alpha}}\delta^{[1]}{}_{\alpha}x_{\alpha}{}^{T}.$$

Finally, since

$$\mathbb{J}(W^{[2]}, b^{[2]}, \gamma, \beta, W^{[1]}) = \frac{1}{N} \sum_{\alpha=1}^{N} G(W^{[2]}, b^{[2]}, \gamma, \beta, W^{[1]}, x_{\alpha}),$$

we've described our desired gradients after summation.

9.2 Inferencing

We note that in our computation for forward propagation, that our normalization transforms change with out batches. This leads to ambiguity when predicting a label for a new example. One fix would be to average our means and variances over our batches. That is, suppose during our iteration process, we have training-batches of the form $\{\mathbb{X}^k : 1 \leq k \leq K\}$, where each \mathbb{X}^k has cardinality $|\mathbb{X}^k| = n$. Then for each hidden-layer $\ell \in \{1, ..., L-1\}$, we obtain the means

$$\mu^{[\ell]}_k = \frac{1}{n} \sum_{x \in \mathbb{X}^k} z^{[\ell]},$$

and the variances

$$\sigma^{2^{[\ell]}}{}_k = \frac{1}{n} \sum_{z \in \mathbb{X}^k} (z^{[\ell]} - \mu^{[\ell]}{}_k)^2.$$

That is, for each hidden-layer ℓ , we have the collection

$$\{\mu^{[\ell]}_k : 1 \le k \le K\}$$

from which we average again to obtain

$$\mu^{[\ell]} := \frac{1}{K} \sum_{k=1}^{K} \mu^{[\ell]}_{k},$$

and the collection

$$\{\sigma^{2^{[\ell]}}_{k}: 1 \le k \le K\},\$$

from which we use the unbiased estimate

$$\sigma^{2[\ell]} := \frac{n}{n-1} \frac{1}{K} \sum_{k=1}^{K} \sigma^{2[\ell]}_{k}.$$

These quantities are what we use when computing the batch-normalization transforms of the hidden units for new examples.

9.3 Algorithm Outline

Suppose we have a training set \mathbb{X} with which we wish to train a binary classification via an L-layer neural network. Let $N=|\mathbb{X}|$ and let $n=2^p$ be the batch size with $K=\lceil \frac{N}{n} \rceil$ batches per epoch. Then our algorithm would be as follows:

- 1. Set hyper-parameters. Initialize parameters.
- 2. For $0 \le i \le \text{num_iters}$:
 - a. Generate batches $\{X^k : 1 \le k \le K\}$.
 - b. For $1 \le k \le K$:
 - i. Perform forward propagation on \mathbb{X}^k :

 $z^{[1]} = W^{[1]}x$ • For $\ell \in \{1,...,L-1\}$: $- z^{[\ell]} = W^{[\ell]}a^{[\ell-1]}$

$$\mu^{[\ell]}{}_k = \frac{1}{n} \sum_{x \in \mathbb{X}^k} z^{[\ell]}$$

$$\sigma^{2[\ell]}{}_k = \frac{1}{n} \sum_{x \in \mathbb{X}^k} (z^{[\ell]} - \mu^{[\ell]}{}_k)^2$$

$$\hat{z}^{[\ell]} = (\sigma^{2[\ell]}{}_k + \epsilon)^{-\frac{1}{2}} \odot (z^{[\ell]} - \mu^{[\ell]}{}_k)$$

$$\tilde{z}^{[\ell]} = \gamma^{[\ell]} \odot \hat{z}^{[\ell]} + \beta^{[\ell]}$$

$$a^{[\ell]} = g^{[\ell]} (\tilde{z}^{[\ell]})$$

$$z^{[L]} = W^{[L]} a^{[L-1]} + b$$

- ii. Compute cost \mathbb{J} on \mathbb{X}^k .
- iii. Apply backwards propagation on \mathbb{X}^k to obtain

$$\frac{\partial \mathbb{J}}{\partial W^{[\ell]}}, \quad \frac{\partial \mathbb{J}}{\partial b}, \quad \frac{\partial \mathbb{J}}{\partial \gamma^{[\ell]}}, \quad \frac{\partial \mathbb{J}}{\partial \beta^{[\ell]}}.$$

- iv. Update parameters.
- 3. Compute

$$\begin{split} \boldsymbol{\mu}^{[\ell]} &= \mathbb{E}[\boldsymbol{\mu}^{[\ell]}_k], \\ \boldsymbol{\sigma}^{2[\ell]} &= \frac{n}{n-1} \mathbb{E}[\boldsymbol{\sigma}^{2[\ell]}_k] \end{split}$$

4. Return

$$W^{[\ell]}, \quad b, \quad \gamma^{[\ell]}, \quad \beta^{[\ell]}, \quad \mu^{[\ell]}, \quad \sigma^{2^{[\ell]}}.$$

9.4 Better Backpropagation

We consider a neural network utilizing batch normalization of the form

where we have the functions

1.

$$\mathbb{L}: \mathbb{R}^{n^{[2]} \times N} \times \mathbb{R}^{n^{[2]} \times N} \to \mathbb{R}$$

is the given loss function. If we're working with a binary classification problem, then we have that

$$\mathbb{L}(y, \hat{y}) = -\frac{1}{N} \sum_{j=1}^{n} \{ y_j \log \hat{y}_j + (1 - y_j) \log(1 - \hat{y}_j) \}$$
$$= -\frac{1}{n} [\langle y, \log y \rangle_{\mathbb{R}^N} + \langle 1 - y, \log(1 - \hat{y}) \rangle_{\mathbb{R}^N}].$$

2.

$$G^{[\ell]}: \mathbb{R}^{n^{[\ell]} \times N} \to \mathbb{R}^{n^{[\ell]} \times N}$$

is the broadcasting of the activation unit $g^{[\ell]}: \mathbb{R} \to \mathbb{R}$.

3.

$$\phi^{[\ell]}: \mathbb{R}^{n^{[\ell]} \times n^{[\ell-1]}} \times \mathbb{R}^{n^{[\ell-1]} \times N} \to \mathbb{R}^{n^{[\ell]} \times N}$$

is given by

$$\phi^{[\ell]}(W, x) = Wx.$$

4.

$$\psi^{[\ell]}: \mathbb{R}^{n^{[\ell]}} \times \mathbb{R}^{n^{[\ell]} \times N} \to \mathbb{R}^{n^{[\ell]} \times N}$$

is given by

$$\psi(b, x) = x + b\vec{1}^T,$$

where

$$\vec{1}^T = \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix} \in \mathbb{R}^{n^{[\ell]}}.$$

5.

$$N^{[1]} \cdot \mathbb{R}^{n^{[1]} \times N} \to \mathbb{R}^{n^{[1]} \times N}$$

is the normalization operator given by

$$N^{[1]}: x_j^i \mapsto \frac{x_j^i - \mathbb{E}[x^i]}{\sqrt{\mathbb{V}[x^i] + \epsilon}},$$

where \mathbb{E} is the expectation operator, i.e.,

$$\mathbb{E}[x^i] = \frac{1}{N} \sum_{j=1}^{N} x_j^i,$$

and V is the variance operator, i.e.,

$$\mathbb{V}[x^i] = \mathbb{E}[(x^i - \mathbb{E}[x^i])^2].$$

6.

$$\Gamma^{[\ell]} \cdot \mathbb{R}^{n^{[\ell]}} \times \mathbb{R}^{n^{[\ell]} \times N} \to \mathbb{R}^{n^{[\ell]} \times N}$$

is given by

$$\Gamma(\gamma, x) = \gamma \vec{1}^T \odot x,$$

where

$$\vec{1}^T = \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix} \in \mathbb{R}^{n^{[\ell]}}.$$

We now consider back-propagating through the network via reverse differentiations as in the following diagram:

We consider our individual derivatives:

1. Suppose $G: \mathbb{R}^{m \times n} \to \mathbb{R}^{m \times n}$ is the broadcasting of $g: \mathbb{R} \to \mathbb{R}$. Then for any $(x, \xi) \in T\mathbb{R}^{m \times n}$ we have that

$$dG_x(\xi) = G'(x) \odot \xi.$$

Then for any $\zeta \in T_{G(x)}\mathbb{R}^{m\times n}$, we have the reverse derivative is given by

$$rG_x(\zeta) = G'(x) \odot \zeta.$$

2. Suppose $\phi : \mathbb{R}^{m \times n} \times \mathbb{R}^{n \times N} \to \mathbb{R}^{m \times N}$ is given by

$$\phi(W, x) = Wx.$$

Then we have two differential paths to consider:

(a) For any $(W, x) \in \mathbb{R}^{m \times n} \times \mathbb{R}^{n \times N}$ and any $\xi \in T_x \mathbb{R}^{n \times N}$, we have that

$$d\phi_{(W,x)}(\xi) = W \cdot \xi$$
$$= L_W(\xi),$$

and for any $\zeta \in T_{\phi(W,x)}\mathbb{R}^{m\times N}$, we have the reverse differential

$$r\phi_{(W,x)}(\zeta) = W^T \cdot \zeta$$
$$= L_{W^T}(\zeta).$$

(b) For any $(W, x) \in \mathbb{R}^{m \times n} \times \mathbb{R}^{n \times N}$ and any $Z \in T_W \mathbb{R}^{m \times n}$, we have that

$$d_1\phi_{(W,x)}(Z) = Z \cdot x$$
$$R_x(Z),$$

and for any $\zeta \in T_{\phi(W,x)}\mathbb{R}^{m\times N}$, we have the reverse differential

$$r_1 \phi_{(W,x)}(\zeta) = \zeta \cdot x^T$$

= $R_{x^T}(\zeta)$.

3. Suppose $\psi: \mathbb{R}^n \times \mathbb{R}^{n \times N} \to \mathbb{R}^{n \times N}$ is given by

$$\psi(b, x) = x + b\vec{1}^T,$$

where

$$\vec{1}^T = \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix} \in \mathbb{R}^N.$$

Then we look at the two differential paths and for any $(b, x) \in \mathbb{R}^n \times \mathbb{R}^{n \times N}$ any any $\xi \in T_x \mathbb{R}^{n \times N}$, $\eta \in T_b \mathbb{R}^n$ and $\zeta \in T_{\psi(b,x)} \mathbb{R}^{n \times N}$:

(a) In the network direction, we have that

$$d\psi_{(b,x)}(\xi) = \xi,$$

with reverse differential

$$r\psi_{(b,x)}(\zeta) = \zeta.$$

(b) In the parameter-space direction, we have that

$$\overline{d}\psi_{(b,x)}(\eta) = \eta \cdot \overrightarrow{1}^T
= R_{\overrightarrow{1}^T}(\eta),$$

with reverse differential

$$\overline{r}\psi_{(b,x)}(\zeta) = \zeta \cdot \vec{1}$$

$$= R_{\vec{1}}(\zeta).$$

4. Suppose $\Gamma: \mathbb{R}^n \times \mathbb{R}^{n \times N} \to \mathbb{R}^{n \times N}$ is given by

$$\Gamma(\gamma, x) = \gamma \vec{1}^T \odot x.$$

The considering the two paths of differentiation, we have that for any $((\gamma, x), (\eta, \xi)) \in T(\mathbb{R}^n \times \mathbb{R}^{n \times N})$ and $\zeta \in T_{\Gamma(\gamma, x)} \mathbb{R}^{n \times N}$ that:

(a) In the network direction, we have that

$$d\Gamma_{(\gamma,x)}(\xi) = \gamma \vec{1}^T \odot \xi,$$

with reverse differential

$$r\Gamma_{(\gamma,x)}(\zeta) = \gamma \vec{1}^T \odot \zeta.$$

(b) In the parameter-space direction, we have that

$$\hat{d}\Gamma_{(\gamma,x)}(\eta) = \eta \vec{1}^T \odot x$$

= $\odot_x \circ R_{\vec{1}^T}(\eta),$

with reverse differential

$$\hat{r}\Gamma_{(\gamma,x)}(\zeta) = (x \odot \zeta) \cdot \vec{1}$$
$$= R_{\vec{1}} \circ \odot_x(\zeta).$$

- 5. As the normalization operator is quite involved, we move its computation to the appendix, Section C.
- 6. For the loss function $\mathbb{L}: \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$ given by

$$L(y, \hat{y}) = -\frac{1}{N} [\langle y, \log \hat{y} \rangle + \langle 1 - y, \log(1 - \hat{y}) \rangle],$$

we fix $y, \hat{y} \in \mathbb{R}^N$ and for $\xi \in T_{\hat{y}} \mathbb{R}^N$, we see that

$$d\mathbb{L}_{(y,\hat{y})}(\xi) = -\frac{1}{N} \sum_{j=1}^{N} \left[\frac{y_j}{\hat{y}_j} - \frac{1 - y_j}{1 - \hat{y}_j} \right] \xi_j$$
$$= -\frac{1}{N} \left\langle \frac{y}{\hat{y}} - \frac{1 - y}{1 - \hat{y}}, \xi \right\rangle,$$

and hence for $\zeta \in T_{L(y,\hat{y})}\mathbb{R}$, it follows that

$$r\mathbb{L}_{(y,\hat{y})}(\zeta) = -\frac{1}{N} \left[\frac{y}{\hat{y}} - \frac{1-y}{1-\hat{y}} \right] \zeta.$$

We're now ready to compute our various gradients of our cost function. That is, if we let

$$\mathbb{J}: \mathbb{R}^{n^{[2]}} \times \mathbb{R}^{n^{[2]} \times n^{[1]}} \times \mathbb{R}^{n^{[1]}} \times \mathbb{R}^{n^{[1]}} \times \mathbb{R}^{n^{[1]} \times n^{[0]}} \to \mathbb{R}$$

is given by

$$\mathbb{J}(W^{[2]},\gamma^{[1]},\beta^{[1]},W^{[2]},b^{[2]}) = \mathbb{L}(y,G^{[2]}\circ\psi^{[2]}(b^{[2]},\phi^{[2]}(W^{[2]},G^{[2]}\circ\psi^{[2]}(\beta^{[1]},\Gamma^{[1]}(\gamma^{[1]},N^{[1]}\circ\phi^{[1]}(W^{[1]},x))))))$$

and we compute the reverse differentials for a learning rate $\alpha \in T_{\mathbb{J}}\mathbb{R}$ with the assumption that our second activator function is the sigmoid function. Indeed,

$$r(\mathbb{L} \circ G^{[2]})_v(\alpha) = rG_v^{[2]} \circ r\mathbb{L}_a(\alpha)$$

$$= -\frac{\alpha}{N}G^{[2]'}(v) \odot \left[\frac{y}{a} - \frac{1-y}{1-a}\right]$$

$$= -\frac{\alpha}{N}a(1-a)\left[\frac{y}{a} - \frac{1-y}{1-a}\right]$$

$$= -\frac{\alpha}{N}[y(1-a) - a(1-y)]$$

$$= -\frac{\alpha}{N}[y-a]$$

$$= \frac{a-y}{N}\alpha.$$

This leads us to

$$\begin{split} \overline{r}_{2} \mathbb{J}_{b^{[2]}}(\alpha) &= \overline{r}_{2}(\psi^{[2]})_{(b^{[2]}, u^{[2]})} \circ rG_{v^{[2]}}^{[2]} \circ r\mathbb{L}_{(y, a^{[2]})} \\ &= \frac{\alpha}{N} R_{\vec{1}}(a^{[2]} - y) \\ &= \frac{\alpha}{N} \sum_{j=1}^{N} (a^{[2]}_{j} - y_{j}); \end{split}$$

$$\begin{split} r_2 \mathbb{J}_{W^{[2]}}(\alpha) &= r_2 \phi_{(W^{[2]}, a^{[1]})}^{[2]} \circ r \psi_{(b^{[2]}, u^{[2]})}^{[2]} \left(\frac{\alpha}{N} (a^{[2]} - y) \right) \\ &= r_2 \phi_{(W^{[2]}, a^{[1]})}^{[2]} \left(\frac{\alpha}{N} (a^{[2]} - y) \right) \\ &= \frac{\alpha}{N} (a^{[2]} - y) a^{[1]T}; \end{split}$$

$$\begin{split} \overline{r}_{1} \mathbb{J}_{\beta^{[1]}}(\alpha) &= \overline{r}_{1} \psi_{(\beta^{[1]}, \hat{z}^{[1]})}^{[1]} \circ r G_{\tilde{z}^{[1]}}^{[1]} \circ r \phi_{(W^{[2]}, a^{[2]})}^{[2]} \circ r \psi_{(b^{[2]}, u^{[2]})}^{[2]} \circ r (\mathbb{L} \circ G^{[2]})_{v^{[2]}}(\alpha) \\ &= \frac{\alpha}{N} \overline{r}_{1} \psi_{(\beta^{[1]}, \hat{z}^{[1]})}^{[1]} \circ r G_{\tilde{z}^{[1]}}^{[1]} \circ r \phi_{(W^{[2]}, a^{[2]})}^{[2]}(a^{[2]} - y) \\ &= \frac{\alpha}{N} \overline{r}_{1} \psi_{(\beta^{[1]}, \hat{z}^{[1]})}^{[1]} \circ r G_{\tilde{z}^{[1]}}^{[1]} \left(W^{[2]T}(a^{[2]} - y) \right) \\ &= \frac{\alpha}{N} \overline{r}_{1} \psi_{(\beta^{[1]}, \hat{z}^{[1]})}^{[1]} \left(G^{[1]'}(\tilde{z}^{[1]}) \odot W^{[2]T}(a^{[2]} - y) \right) \\ &= \frac{\alpha}{N} \sum_{i=1}^{N} g^{[1]'}(\tilde{z}^{[1]}_{j}) \odot W^{[2]T}(a^{[2]}_{j} - y_{j}); \end{split}$$

$$\begin{split} \hat{r}_{1} \mathbb{J}_{\gamma^{[1]}}(\alpha) &= \frac{\alpha}{N} \hat{r}_{1} \Gamma_{(\gamma^{[1]}, z^{[1]})}^{[1]} \left(G^{[1]'}(\tilde{z}^{[1]}) \odot W^{[2]T}(a^{[2]} - y) \right) \\ &= \frac{\alpha}{N} R_{\vec{1}} \left(z^{[1]} \odot \left(G^{[1]'}(\tilde{z}^{[1]}) \odot W^{[2]T}(a^{[2]} - y) \right) \right) \\ &= \frac{\alpha}{N} \sum_{j=1}^{n} z^{[1]}{}_{j} \odot g^{[1]'}(\tilde{z}^{[1]}{}_{j}) \odot W^{[2]T}(a^{[2]}{}_{j} - y_{j}); \end{split}$$

and finally,

$$\begin{split} r_{1}\mathbb{J}_{W^{[1]}}(\alpha) &= \frac{\alpha}{N}r_{1}\phi_{(W^{[1]},x)}^{[1]} \circ rN_{u^{[1]}}^{[1]} \circ r\Gamma_{(\gamma^{[1]},z^{[1]})}^{[1]} \left(G^{[1]'}(\tilde{z}^{[1]}) \odot W^{[2]T}(a^{[2]} - y)\right) \\ &= \frac{\alpha}{N}r_{1}\phi_{(W^{[1]},x)}^{[1]} \circ rN_{u^{[1]}}^{[1]} \left(\gamma\vec{1}^{T} \odot G^{[1]'}(\tilde{z}^{[1]}) \odot W^{[2]T}(a^{[2]} - y)\right) \\ &= \frac{\alpha}{N}R_{x^{T}} \circ rN_{u^{[1]}}^{[1]} \left(\gamma\vec{1}^{T} \odot G^{[1]'}(\tilde{z}^{[1]}) \odot W^{[2]T}(a^{[2]} - y)\right) \\ &= \frac{\alpha}{N}\sum_{j,l=1}^{N}\sum_{i=1}^{n^{[1]}}T_{i}^{jk}_{l}\gamma^{i}g^{[1]'}(\tilde{z}^{[1]i}_{j})W^{[2]}_{i}(a^{[2]}_{j} - y_{j})x_{l}^{m} \end{split}$$

9.5 Python Implementation

Work in Progress

10 Multi-Class Softmax Regression

Thus far, we've mostly been dealing with binary classification problems, that is, our true label y takes values in $\{0,1\}$, where y=1 represents when the object in question represents our desired classification, and y=0 when it does not. However, in many examples we wish to expand upon this, for example, instead of knowing whenever an image contains a cat (y=1) or it doesn't contain a cat (y=0), maybe we would like to have a table of the following

Table 1: Classification	
y	Label
y = 0	None of the following
y = 1	Cat
y = 2	Dog
y = 3	Bird
y = 4	Elephant
y = 5	Bear

That is, we have a total of 6 classes we wish to distinguish. If we were to train a neural network for this classification problem, the only time this needs to be considered is on the output layer. With this in mind, we shall only consider the simple regression problem

$$\begin{bmatrix} x^1 \\ \vdots \\ x^m \end{bmatrix} \xrightarrow{Wx+b} \begin{bmatrix} z^1 \\ \vdots \\ z^C \end{bmatrix} \xrightarrow{g(z)} \begin{bmatrix} a^1 \\ \vdots \\ a^C \end{bmatrix} \longrightarrow \hat{y},$$

where C is the number of labels in our classification.

First, we need to *one-hot encode* our labels. That is, if our labels are given by

$${0,1,...,C-1},$$

then we consider the basis vectors in \mathbb{R}^C

$$\{e_1, ..., e_C\},\$$

which clearly admits a bijection

$$\{0, 1, ..., C-1\} \xrightarrow{\cong} \{e_1, ..., e_C\}, \qquad i \mapsto e_{i+1}.$$

Thus, we've effectively mapped our true labels

$$y \in \{0, 1, ..., C - 1\}^N \mapsto y \in \mathbb{R}^{C \times N}$$

where

$$(y=i) \mapsto (y=e_{i+1}).$$

Next, we need to decide which type of nonlinearity $g: \mathbb{R}^C \to \mathbb{R}^C$ to impose. To this end, we would like a^i to satisfy

$$a^i = \mathbb{P}(y = i - 1),$$

then we can declare a prediction via

$$i_0 = \arg \max_i a^i, \qquad \hat{y} = e_{i_0} \leftrightarrow \hat{y} = i_0 - 1.$$

That is, we would like our target output vector $a \in \mathbb{R}^C$ to be a probability distribution, i.e.,

$$0 \le a^i \le 1, i \in \{1, ..., C\},\$$

and

$$\sum_{i=1}^{C} a^i = 1.$$

This leads us to letting g be the softmax function, i.e.,

$$g(z^1,...,z^C) = \frac{1}{\sum_{i=1}^C e^{z^i}} \begin{bmatrix} e^{z^1} \\ \vdots \\ e^{z^C} \end{bmatrix}.$$

Finally, we need to define a cost function $\mathbb{L}: \mathbb{R}^C \times \mathbb{R}^C \to \mathbb{R}$ with which we can compare our true value to our predicted value. To this end, we consider the cross-entropy function \mathbb{L} defined by

$$\mathbb{L}(a_j, y_j) = -\sum_{i=1}^C y_j^i \log a_j^i.$$

We note that since $y_j = e_k$ for some $k \in \{1, ..., C\}$, that this sum is actually a single element. Moreover, when C = 2, we recover our log-loss function for the sigmoid activation. This finally yields a cost function

$$J(W, b) = -\frac{1}{N} \sum_{j=1}^{N} \sum_{i=1}^{C} y_j^i \log a_j^i$$
$$= -\frac{1}{N} (y : \log a),$$

where

$$A: B = \langle A, B \rangle_F = \operatorname{tr}(A^T B),$$

is the Frobenius norm on $\mathbb{R}^{C \times N}$.

To minimize our cost, we first note

$$\frac{\partial \mathbb{L}_{y} \circ g}{\partial z^{\mu}} = \sum_{i=1}^{C} \frac{\partial \mathbb{L}_{y}}{\partial a^{i}} \frac{\partial S^{i}}{\partial z^{\mu}}$$

$$= -\sum_{i=1}^{C} \frac{y^{i}}{a^{i}} a^{i} (\delta^{i}_{\mu} - a^{\mu})$$

$$= -\sum_{i=1}^{C} y^{i} (\delta^{i}_{\mu} - a^{\mu})$$

$$= -y^{\mu} + a^{\mu} \sum_{i=1}^{C} y^{i}$$

$$= a^{\mu} - y^{\mu},$$

then we see that

$$\begin{split} \frac{\partial z^{\mu}}{\partial W^{\alpha}_{\beta}} &= \frac{\partial}{\partial W^{\alpha}_{\beta}} (W^{\mu}_{k} x^{k} + b^{\mu}) \\ &= \sum_{k=1}^{m} \delta^{\mu}_{\alpha} \delta^{\beta}_{k} x^{k} \\ &= \delta^{\mu}_{\alpha} x^{\beta}, \end{split}$$

and

$$\frac{\partial z^{\mu}}{\partial b^{\alpha}} = \delta^{\mu}_{\alpha}.$$

Hence,

$$\frac{\partial \mathbb{L}_y}{\partial W_\beta^\alpha} = \sum_{\mu=1}^C (a^\mu - y^\mu) \delta_\alpha^\mu x^\beta$$
$$= x(a-y)^T,$$

yielding a gradient of

$$\frac{\partial \mathbb{L}_y}{\partial W} = (a - y)x^T,$$

and similarly

$$\frac{\partial \mathbb{L}_y}{\partial b^{\alpha}} = \sum_{\mu=1}^C (a^{\mu} - y^{\mu}) \delta_{\alpha}^{\mu}$$
$$= a^{\alpha} - y^{\alpha},$$

and so

$$\frac{\partial \mathbb{L}_y}{\partial b} = a - y.$$

Finally, we conclude that

$$\frac{\partial \mathbb{J}}{\partial W} = \frac{1}{N} \sum_{j=1}^{N} (a_j - y_j)(x_j)^T = \frac{1}{N} (a - y) x^T,$$

and

$$\frac{\partial \mathbb{J}}{\partial b} = \frac{1}{N} \sum_{j=1}^{N} (a_j - y_j).$$

We remark that for a deep neural network, the backwards propagation follows a similar path backwards through the network since we have the aforementioned differentials.

Part III Convolutional Neural Networks

11 An Introduction to Convolutions

One common application of neural networks is that of image detection/classification. Recall that an image in grayscale can be seen as a matrix $x \in \mathbb{R}^{m \times n}$, where

$$x_j^i \in \{0, 1, ..., 9, 10\},\$$

and 10 represents "white" and 0 represents "black".

Instead of flattening the pixels into a vector $\vec{x} \in \mathbb{R}^{nm}$ and feeding the input into a deep network, we observe that several simple detections may be imposed on the image first while it's in matrix form. That is, suppose we wish to detect vertical or horizontal edges in the image first. As there are typically several of such edges in an image, and these edges are the "atomic" pieces of full images, this initial detection would be of great benefit.

To this end, we wish to impose an operation which finds where a pixel x_j^i changes dramatically when moving to a neighboring pixel. One way to find these changes is with convolutions, or cross-correlations.

11.1 Cross-Correlation

We first recall that given two function $f, g : \mathbb{Z} \to \mathbb{R}$, the (discrete) cross-correlation f * g is defined by

$$f * g(n) = \sum_{j=-\infty}^{\infty} f(j)g(j+n).$$

We note that cross-correlation is not commutative, however, we see that

$$g * f(-n) = \sum_{j=-\infty}^{\infty} g(j)f(j-n) \qquad i = j-n$$
$$= \sum_{i=-\infty}^{\infty} f(i)g(i+n)$$
$$= f * g(n).$$

We may similarly define for $f, g: \mathbb{Z}^2 \to \mathbb{R}$,

$$f * g(k, l) = \sum_{(i,j) \in \mathbb{Z}^2} f(i,j)g(i+k, j+l).$$

Whenever f or g has finite support, say in [-M, M], the above sum reduces to

$$f * g(n) = \sum_{j=-M}^{M} f(j)g(j+n).$$

Suppose $x \in \mathbb{R}^{n_h^{[0]} \times n_w^{[0]}}$ and let $F \in \mathbb{R}^{f^{[1]} \times f^{[1]}}$ with $f^{[1]} \leq \min\{n_h^{[0]}, n_w^{[0]}\}$. Define

$$n_{\alpha}^{[1]} = n_{\alpha}^{[0]} - f^{[1]} + 1, \qquad \alpha = h, w,$$

and we obtain the matrix $F * x \in \mathbb{R}^{n_h^{[1]} \times n_w^{[1]}}$ given by

$$(F * x)_l^k = \sum_{i,j=1}^{f^{[1]}} F_j^i x_{j+l-1}^{i+k-1}.$$

Note that this is exactly the cross-correlation defined above, except with finite support and reindexed to start at 1.

In what follows, this cross-correlation operator will be called the convolution operator, and F will be called the filter (or kernel).

Example 11.1. Suppose

$$x = \begin{bmatrix} 1 & 2 & 0 & 3 \\ 4 & 5 & 6 & 0 \\ 0 & 1 & 2 & 3 \end{bmatrix}$$

and

$$F = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}.$$

Then f = 2, $n_h^{[0]} = 3$, $n_w^{[0]} = 4$, and so

$$n_h^{[1]} = 3 - 2 + 1 = 2,$$

$$n_w^{[1]} = 4 - 2 + 1 = 3.$$

We now compute $(F * x) \in \mathbb{R}^{2 \times 3}$

$$(F * x)_1^1 = 1 * 1 + 0 * 2 + 1 * 4 + 1 * 5 = 10$$

$$(F * x)_2^1 = 1 * 2 + 0 * 0 + 1 * 5 + 1 * 6 = 13$$

$$(F * x)_3^1 = 1 * 0 + 0 * 3 + 1 * 6 + 1 * 0 = 6$$

$$(F * x)_1^2 = 1 * 4 + 0 * 5 + 1 * 0 + 1 * 1 = 5$$

$$(F * x)_2^2 = 1 * 5 + 0 * 6 + 1 * 1 + 2 * 2 = 10$$

$$(F * x)_3^2 = 1 * 6 + 0 * 0 + 1 * 2 + 1 * 3 = 11,$$

and hence

$$F * x = \begin{bmatrix} 10 & 13 & 6 \\ 5 & 10 & 11 \end{bmatrix}.$$

Example 11.2. Suppose

which can be seen as a grayscale image that's white on the left half of the image and black on the right half. Now define the filter

$$F = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{bmatrix}.$$

Then $F * x \in \mathbb{R}^{4 \times 4}$ and is given by

which looks like an image a "white" edge in the middle, telling us the original has an edge in the middle that goes from "bright" pixels to "dark" pixels.

This idea of convolution seems to be able to detect our edges. However, we see that the pixels in the "interior" of the matrix affect the convolution much more the the pixels on the "boundary". This may not always matter, but when it does, we need a technique to allow for the boundary pixels to be more prominent. One such fix is to add some "padding" around the original image.

11.2 Convolution with Padding

Suppose $x \in \mathbb{R}^{m \times n}$ is matrix, and let $p \in \mathbb{Z}_{\geq 0}$, which we will call the *padding*. Define a new matrix $(x, p) \in \mathbb{R}^{(m+2p) \times (n+2p)}$ given by

$$(x,p)_l^k = \begin{cases} x_{l-p}^{k-p} & \text{if } p < k \le m+p \text{ and } p < l \le n+p, \\ 0 & \text{else.} \end{cases}$$

Example 11.3. Suppose

$$x = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}.$$

Then (x,0) = x immediately,

From the previous example, we see a recursive property with padding, i.e.,

$$(x,p) = ((x,p-1),1)$$

$$= (((x,p-2),1),1)$$

$$\vdots$$

$$= \underbrace{((\cdots((x,\underbrace{1),1},\cdots 1),1)}_{p-\text{times}}$$

Suppose $x \in \mathbb{R}^{n_h^{[0]} \times n_w^{[0]}}$, let $F \in \mathbb{R}^{f^{[1]} \times f^{[1]}}$ be a filter, and let $p \in \mathbb{Z}_{\geq 0}$ be the padding. Then since (x, p) is an $(n_h^{[0]} + 2p) \times (n_w^{[0]} + 2p)$ -matrix, we have that the convolution F * (x, p) has a size given by

$$n_{\alpha}^{[1]} = n_{\alpha}^{[0]} + 2p - f^{[1]} + 1, \qquad \alpha = h, w,$$

and we write

$$F *^p x = F * (x, p).$$

When p = 0, we say that $F *^p x$ is a valid convolution, and we'll typically drop the p-superscript. When $p = \frac{f^{[1]}-1}{2}$, we say that $F *^p x$ is a same convolution, since

$$n_{\alpha}{}^{[1]}=n_{\alpha}{}^{[0]}, \qquad \alpha=h,w.$$

We remark here that in many application our desired filters have $f^{[1]}$ being odd (if it's not odd, then it cannot be a same convolution).

11.3 Strided Convolution

We note that in our definition of a convolution

$$(F * x)_{l}^{k} = \sum_{i,j=1}^{f^{[1]}} F_{j}^{i} x_{j+l-1}^{i+k-1},$$

that we're sliding our filter F along x with a *stride* of s = 1. This does not necessarily have to be the case. We modify our definition of convolution to allow for $s \in \mathbb{N}$ as follows:

Suppose $x \in \mathbb{R}^{n_h^{[0]} \times n_w^{[0]}}$, let $F \in \mathbb{R}^{f^{[1]} \times f^{[1]}}$ be a filter and let $s \in \mathbb{N}$ be the stride. Let

$$n_{\alpha}^{[1]} = \lfloor \frac{n_{\alpha}^{[0]} - f^{[1]}}{s} + 1 \rfloor, \qquad \alpha = h, w,$$

and define $F *_s x \in \mathbb{R}^{n_h^{[1]} \times n_w^{[1]}}$ to be the matrix given by

$$(F *_s x)_l^k = \sum_{i,j=1}^{f^{[1]}} F_j^i x_{j+s(l-1)}^{i+s(k-1)}.$$

We note that the definition of a strided convolution is a direct generalization of our previous definition of convolution, namely with stride s = 1.

Example 11.4. Suppose

$$x = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 3 & 0 & 4 & 0 \\ 0 & 5 & 0 & 6 \\ 7 & 0 & 8 & 0 \end{bmatrix},$$
$$F = \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix},$$

and suppose we have a stride of 2 (any larger stride would result in a (1×1) -matrix). Then we see that

$$n_{\alpha}^{[1]} = \lfloor \frac{4-2}{2} + 1 \rfloor = 2, \qquad \alpha = h, w,$$

and hence that

$$(F *2 x)11 = 1 * 1 + 1 * 0 + 2 * 3 + 0 * 0 = 7$$

$$(F *2 x)21 = 1 * 2 + 1 * 0 + 2 * 4 + 0 * 0 = 10$$

$$(F *2 x)12 = 1 * 0 + 1 * 5 + 2 * 7 + 0 * 0 = 19$$

$$(F *2 x)22 = 1 * 0 + 1 * 6 + 2 * 8 + 0 * 0 = 22,$$

or rather

$$F *_2 x = \begin{bmatrix} 7 & 10 \\ 19 & 22 \end{bmatrix}.$$

11.4 Strided Convolutions with Padding

Suppose $x \in \mathbb{R}^{n_h^{[0]} \times n_w^{[0]}}$, let $F \in \mathbb{R}^{f^{[1]} \times f^{[1]}}$ be a filter, let $s \in \mathbb{N}$ be the stride, and let $p \in \mathbb{Z}_{\geq 0}$ be the padding. We define

$$F *_s^p x := F *_s (x, p),$$

that is, we first pad x, then compute the strided convolution of the filter F with (x, p). From our previous work, we see that for $\alpha = h, w$, that

$$n_{\alpha}^{[1]} = \left\lfloor \frac{n_{\alpha}'^{[0]} - f^{[1]}}{s} + 1 \right\rfloor, \qquad n' \sim (x, p)$$
$$= \left\lfloor \frac{n_{\alpha}^{[0]} + 2p - f^{[1]}}{s} + 1 \right\rfloor.$$

Moreover, to compute a closed form of the strided convolution with padding, we first define the set

$$\begin{split} \mathcal{I}^{[1]k} &= \mathcal{I}(n_h^{[0]}, n_w^{[0]}, p, s; k, l) \\ &:= \left\{ (i, j) \in \mathbb{Z}^2 : p < i + s(k - 1) - p \le n_h^{[0]} + p ; \\ &\quad p < j + s(l - 1) - p \le n_w^{[0]} + p \right\} \\ &= \left\{ (i, j) \in \mathbb{Z}^2 : 2p - s(k - 1) < i \le 2p - s(k - 1) + n_h^{[0]} ; \\ &\quad 2p - s(l - 1) < j \le 2p - s(l - 1) + n_w^{[0]} \right\} \end{split}$$

and now we immediately see by chasing the definitions that

$$\begin{split} (F*^p_s x)^k_l &= (F*_s (x,p))^k_l \\ &= \sum_{i,j=1}^{f^{[1]}} F^i_j(x,p)^{i+s(k-1)}_{j+s(l-1)} \\ &= \sum_{i,j=1}^{f^{[1]}} F^i_j x^{i+s(k-1)-p}_{j+s(l-1)-p} \chi_{\mathcal{I}^{[1]}^k_l}(i,j) \end{split}$$

Example 11.5. Suppose

$$x = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 3 & 0 \\ 4 & 0 & 5 \end{bmatrix},$$

and we have a filter

$$F = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.$$

We first compute $F *_{2}^{1} x$: Since we we're using a padding of p = 1, we have that

$$(x,1) = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 4 & 0 & 5 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Using a stride of s = 2, we see we have resultant dimensions of the form

$$n_{\alpha}^{[1]} = \lfloor \frac{3+2*1-2}{2} + 1 \rfloor$$

= 2,

that is, $F *_{2}^{1} x \in \mathbb{R}^{2 \times 2}$. We now compute

$$\begin{split} &(F*_2^1x)_1^1=1*0+1*0+0*0+1*1=1\\ &(F*_2^1x)_2^1=1*0+1*0+0*0+1*2=2\\ &(F*_2^1x)_1^2=1*0+1*0+0*0+1*4=4\\ &(F*_2^1x)_2^2=1*0+1*0+0*5+1*0=0, \end{split}$$

or rather

$$F *_2^1 x = \begin{bmatrix} 1 & 2 \\ 4 & 0 \end{bmatrix}.$$

11.5 Convolutions Over Volumes

At the beginning of this section, we began by considering a grayscale image which we represented as a matrix $x \in \mathbb{R}^{n_h \times n_w}$. Suppose that instead of grayscale, we have an RGB image. Then for each fixed color component, we may represent the component as a matrix as before. However, since flattening a color image into a grayscale image would break our desired

symmetries (e.g., for edges, etc), we would like a way to handle convolutions of an RGB image being represented as a rank-3 tensor $x \in \mathbb{R}^{n_h \times n_w \times n_c}$. This n_c parameter represents the "depth" of the image, which we shall call the channels. That is, x has a red, a green, and a blue channel. We wish to work with channels simultaneously to see simplifications in their relationships with each other. To this end, we introduce a notion of convolution over volumes, which instead of moving a $f^{[1]} \times f^{[1]}$ -square across x, we move a $f^{[1]} \times f^{[1]} \times n_c^{[0]}$ -prism across x instead.

Suppose $x \in \mathbb{R}^{n_h^{[0]} \times n_w^{[0]} \times n_c^{[0]}}$, and suppose $F \in \mathbb{R}^{f^{[1]} \times f^{[1]} \times n_c^{[0]}}$ is a filter (noted the channel size of the input must match the channel size of the filter). Then as before we have that

$$n_{\alpha}^{[1]} = n_{\alpha}^{[0]} - f + 1, \qquad \alpha = h, w,$$

and we define $F * x \in \mathbb{R}^{n_h^{[1]} \times n_w^{[1]}}$ by

$$(F * x)_l^k = \sum_{i,j=1}^{f^{[1]}} \sum_{\rho=1}^{n_c^{[0]}} F^i{}_j{}^{\rho} x^{i+k-1}{}_{j+l-1}{}^{\rho}.$$

Similarly, if $p \in \mathbb{Z}_{>0}$ is the padding and $s \in \mathbb{N}$ is the stride, we have that

$$n_{\alpha}^{[1]} = \left[\frac{n_{\alpha}^{[0]} + 2p - f^{[1]}}{s} + 1\right], \qquad \alpha = h, w,$$

and we define $F *_{s}^{p} x \in \mathbb{R}^{n_{h}^{[1]} \times n_{w}^{[1]}}$ by

$$(F *_s^p x)_l^k = \sum_{\rho=1}^{n_c^{[0]}} \sum_{i,j=1}^{f^{[1]}} F^i{}_j{}^\rho x^{i+s(k-1)-p}{}_{j+s(l-1)-p}{}^\rho \chi_{\mathcal{I}^{[1]}{}_l^k}(i,j).$$

11.6 Multiple Filters

Suppose $x \in \mathbb{R}^{n_h^{[0]} \times n_w^{[0]} \times n_c^{[0]}}$, and we wish to convolve x with $n_c^{[1]}$ -filters, i.e.,

$$F_{\eta} \in \mathbb{R}^{f^{[1]} \times f^{[1]} \times n_c^{[0]}}, \qquad \eta \in \{1, ..., n_c^{[1]}\}.$$

Then we have that

$$n_{\alpha}^{[1]} = \left[\frac{n_{\alpha}^{[0]} + 2p - f^{[1]}}{s} + 1\right], \qquad \alpha = h, w,$$

and letting $F = \{F_{\eta} : 1 \leq \eta \leq n_c^{[1]}\}$, we define $F *_s^p x \in \mathbb{R}^{n_h^{[1]} \times n_w^{[1]} \times n_c^{[1]}}$ to be given by

$$(F *_{s}^{p} x)_{\eta}{}^{k}{}_{l} = (F_{\eta} *_{s}^{p} x)^{k}{}_{l}.$$

12 Convolutional Networks

We've now seen enough of how to compute convolutions, and are ready to implement them into a neural network architecture. There are three main types of layers that occur in a convolutional neural network, namely, a convolutional layer (conv), a pooling layer (pool), and a fully connected layer (FC), which the usual type of neural network layer we've seen previously.

12.1 Convolutional Layers (conv)

Suppose we are propagating from layer- ℓ to layer- $(\ell+1)$ in a neural network, and suppose $a^{[\ell]} \in \mathbb{R}^{n_h^{[\ell]} \times n_w^{[\ell]} \times n_c^{[\ell]}}$. Suppose we have $n_c^{[\ell+1]}$ -filters we wish to convolve with, each of size $f^{[\ell+1]} \times f^{[\ell+1]} \times n_c^{[\ell]}$, and we have padding $p^{[\ell+1]}$ and a stride $s^{[\ell+1]}$. We let $\mathsf{conv}^{[\ell+1]}(a^{[\ell]})$ denote the mapping:

• For $\eta \in \{1, ..., n_c^{[\ell]}\}$, compute

$$F_{\eta} *_{s[\ell+1]}^{p^{[\ell+1]}} a^{[\ell]} + b_{\eta}^{[\ell+1]},$$

where $b_{\eta}^{[\ell+1]} \in \mathbb{R}$ and the sum is a broadcasting.

• Stack the resultant matrices to obtain an $n_h^{[\ell+1]} \times n_w^{[\ell+1]} \times n_c^{[\ell+1]}$ tensor.

$$\mathsf{conv}^{[\ell+1]}(a^{[\ell]}) = F *_{s^{[\ell+1]}}^{p^{[\ell+1]}} a^{[\ell]} + b^{[\ell+1]}$$

Letting

$$z^{[\ell+1]} = \mathsf{conv}^{[\ell+1]}(a^{[\ell]}),$$

we may then apply our activation unit for the layer $g^{[\ell+1]}$ (broadcasted to the rank-3 tensor). That is, we have $a^{[\ell+1]} \in \mathbb{R}^{n_h^{[\ell+1]} \times n_w^{[\ell+1]} \times n_c^{[\ell+1]}}$ given by

$$a^{[\ell+1]} \eta^k{}_l = g^{[\ell+1]} (z_{\eta}^{[\ell+1]})^k{}_l,$$

where

$$z_{\eta}^{[\ell+1]k}{}_{l} = F_{\eta} *_{s^{[\ell+1]}}^{p^{[\ell+1]}} a^{[\ell]} + b^{[\ell+1]}.$$

We remark here that the number of parameters we need to train is given by the filters with number of parameters

$$f^{[\ell+1]} \times f^{[\ell+1]} \times n_c^{[\ell]} \times n_c^{[\ell+1]}$$

plus the bias terms

$$1 \times n_c^{[\ell+1]}$$

that is,

#(Parameters) =
$$f^{[\ell+1]} \times f^{[\ell+1]} \times n_c^{[\ell]} \times n_c^{[\ell+1]} + 1 \times n_c^{[\ell+1]}$$

= $n_c^{[\ell+1]} (n_c^{[\ell]} (f^{[\ell+1]})^2 + 1)$

12.2 Pooling Layers (pool)

To reduce computational cost and to help prevent over-fitting, a new type of layer is needed to reduce the overall dimensions of the input-size. This is done with a "pooling" layer. There are two main types of pooling layers that we'll discuss here, the *max pooling* layer and the *average pooling* layer.

12.2.1 Max Pooling

Suppose

$$x = \begin{bmatrix} 1 & 3 & 2 & 1 \\ 2 & 9 & 1 & 1 \\ 1 & 3 & 2 & 3 \\ 5 & 6 & 1 & 2 \end{bmatrix},$$

and we wish to apply maxPool with a "filter size" of f = 2, a stride s = 2 and padding p = 0. Then we apply the max operator to the (2×2) -submatrices moving with a stride of 2, i.e., maxPool $(x) \in \mathbb{R}^{2 \times 2}$ given by

$$\begin{split} \max & \mathsf{Pool}(x) = \begin{bmatrix} \max\{1,3,2,9\} & \max\{2,1,1,1\} \\ \max\{1,3,5,6\} & \max\{2,3,1,2\} \end{bmatrix} \\ & = \begin{bmatrix} 9 & 2 \\ 6 & 3 \end{bmatrix}. \end{split}$$

Since each layer of max pooling has 3 hyper-parameters (and no trainable parameters), we denote these via

$$\mathsf{maxPool}_{\{f,p,s\}}(x).$$

12.2.2 Average Pooling

Suppose

$$x = \begin{bmatrix} 1 & 3 & 2 & 1 \\ 2 & 9 & 1 & 1 \\ 1 & 3 & 2 & 3 \\ 5 & 6 & 1 & 2 \end{bmatrix},$$

and we wish to apply avPool with a "filter size" of f=2, a stride of s=2 and padding p=0. Then we apply the averaging operator to the (2×2) -submatrices moving with a stride of 2, i.e., $avPool(x) \in \mathbb{R}^{2\times 2}$ given by

$$\begin{aligned} \operatorname{avPool}(x) &= \begin{bmatrix} \mathbb{E}[\{1,3,2,9\}] & \mathbb{E}[\{2,1,1,1\}] \\ \mathbb{E}[\{1,3,5,6\}] & \mathbb{E}[\{2,3,1,2\}] \end{bmatrix} \\ &= \begin{bmatrix} 3.75 & 1.25 \\ 3.75 & 2 \end{bmatrix}. \end{aligned}$$

Since each layer of average pooling has 3 hyper-parameters (and again, no trainable parameters), we denote these via

$$avPool_{\{f,p,s\}}(x).$$

12.3 A Convolutional Network

Suppose we have a collection of images (our training set), where each image is of the form $x \in \mathbb{R}^{n_h^{[0]} \times n_w^{[0]} \times n_c^{[0]}}$. We shall denote the forward propagation from layer-0 to layer-1 via convolution as the mapping $\operatorname{conv}(1)$ which encompasses the following information:

$$conv(1) = \begin{cases} filter \\ padding \\ stride \\ number of filter. \end{cases}$$

We similarly use pool(1) to encompass the following information:

$$pool(1) = \begin{cases} pool \text{ type} \\ \text{filter} \\ padding} \\ \text{stride.} \end{cases}$$

This yields a network architecture of the following form:

$$\begin{split} [x] & \stackrel{\mathsf{conv}^{[1]}}{\longrightarrow} [z^{[1]}] \stackrel{\mathsf{pool}^{[1]}}{\longrightarrow} [\zeta^{[1]}] \stackrel{g^{[1]}}{\longrightarrow} [a^{[1]}] \stackrel{\mathsf{conv}^{[2]}}{\longrightarrow} [z^{[2]}] \stackrel{\mathsf{pool}^{[2]}}{\longrightarrow} [\zeta^{[2]}] \stackrel{g^{[2]}}{\longrightarrow} \\ & \stackrel{g^{[2]}}{\longrightarrow} [a^{[2]}] \stackrel{\mathsf{flatten}}{\longrightarrow} [a^{[2]}] \stackrel{\varphi^{[1]}}{\longrightarrow} [z^{[3]}] \stackrel{g^{[3]}}{\longrightarrow} [a^{[3]}] \longrightarrow \cdots \longrightarrow \hat{y} \end{split}$$

We remark here that the convolution and pooling layers are done before the fully connected layers. Moreover, we apply the nonlinearity after the pooling, but this doesn't matter when doing max pooling, since our nonlinearities are typically non-decreasing. We choose this order because it's typically computationally cheaper.

We also remark that since each output of a convolutional layer only depends on a subset of features, our model is less prone to over-fitting.

12.4 Backpropagation

We introduce the following tensoral notation: We say $x \in \mathbb{R}^{a}_{b,c}$ is a (1,2)-tensor written in index form

$$x = (x^{\rho}_{ij})$$

with $1 \le \rho \le a$, $1 \le i \le b$ and $1 \le j \le c$. Similarly, we say $W \in \mathbb{R}^{a,b,c}_d$ is a (3,1)-tensor written in index form

$$W = (W^{\eta ij}_{\rho}).$$

Suppose $x \in \mathbb{R}^{n_c}{}_{n_h,n_w}$, $W \in \mathbb{R}^{m_c,f,f}{}_{n_c}$ and $b \in \mathbb{R}^{m_c}$ with padding $p \geq 0$ and stride $s \in \mathbb{N}$. Then we have that

$$z=\operatorname{conv}(x)\in\mathbb{R}^{m_c}{}_{m_h,m_w}$$

is given by

$$z^{\eta}_{k,l} = \sum_{\rho=1}^{n_c} \sum_{i,j=1}^{f} W^{\eta,i,j}{}_{\rho} x^{\rho}{}_{i+s(k-1)-p,j+s(l-1)-p} \chi_{\mathcal{I}_{k,l}}(i,j) + b^{\eta}.$$

This is the general formula for the forward propagation of a conv layer.

We now compute derivatives for general loss function \mathbb{L} :

$$\frac{\partial z^{\eta}_{k,l}}{\partial b^{\mu}} = \delta^{\eta}_{\mu},$$

and hence

$$\frac{\partial \mathbb{L}}{\partial b^{\mu}} = \sum_{\eta=1}^{m_c} \sum_{k=1}^{m_h} \sum_{l=1}^{m_w} \frac{\partial \mathbb{L}}{\partial z^{\eta}_{k,l}} \frac{\partial z^{\eta}_{k,l}}{\partial b^{\mu}}$$

$$= \sum_{\eta=1}^{m_c} \sum_{k=1}^{m_h} \sum_{l=1}^{m_w} \frac{\partial \mathbb{L}}{\partial z^{\eta}_{k,l}} \delta^{\eta}_{\mu}$$

$$= \sum_{k=1}^{m_h} \sum_{l=1}^{m_w} \frac{\partial \mathbb{L}}{\partial z^{\mu}_{k,l}}.$$

Next we consider

$$\frac{\partial z^{\eta}{}_{k,l}}{\partial W^{\alpha,\mu,\nu}{}_{\beta}} = \sum_{\rho=1}^{n_c} \sum_{i,j=1}^f \delta^{\eta}_{\alpha} \delta^i_{\mu} \delta^j_{\nu} \delta^{\beta}_{\rho} x^{\rho}{}_{i+s(k-1)-p,j+s(l-1)-p} \chi_{\mathcal{I}_{k,l}}(i,j)$$

$$= \delta^{\eta}_{\alpha} x^{\beta}{}_{\mu+s(k-1)-p,\nu+s(l-1)-p} \chi_{\mathcal{I}_{k,l}}(\mu,\nu)$$

and hence

$$\frac{\partial \mathbb{L}}{\partial W^{\alpha,\mu,\nu_{\beta}}} = \sum_{\eta=1}^{m_c} \sum_{k=1}^{m_h} \sum_{l=1}^{m_w} \frac{\partial \mathbb{L}}{\partial z^{\eta_{k,l}}} \frac{\partial z^{\eta_{k,l}}}{\partial W^{\alpha,\mu,\nu_{\beta}}}$$

$$= \sum_{\eta=1}^{m_c} \sum_{k=1}^{m_h} \sum_{l=1}^{m_w} \frac{\partial \mathbb{L}}{\partial z^{\eta_{k,l}}} \delta^{\eta}_{\alpha} x^{\beta}_{\mu+s(k-1)-p,\nu+s(l-1)-p} \chi_{\mathcal{I}_{k,l}}(\mu,\nu)$$

$$= \sum_{k=1}^{m_h} \sum_{l=1}^{m_w} \frac{\partial \mathbb{L}}{\partial z^{\alpha_{k,l}}} x^{\beta}_{\mu+s(k-1)-p,\nu+s(l-1)-p} \chi_{\mathcal{I}_{k,l}}(\mu,\nu).$$

Finally, we consider

$$\begin{split} \frac{\partial z^{\eta}{}_{k,l}}{\partial x^{\alpha}{}_{\mu,\nu}} &= \sum_{\rho=1}^{n_c} \sum_{i,j=1}^{f} W^{\eta,i,j}{}_{\rho} \delta^{\rho}_{\alpha} \delta^{\mu}_{i+s(k-1)-p} \delta^{\nu}_{j+s(l-1)-p} \chi_{\mathcal{I}_{k,l}}(i,j) \\ &= W^{\eta,\mu-p-s(k-1),\nu-p-s(l-1)}{}_{\alpha} \chi_{\mathcal{I}_{k,l}}(\mu-p-s(k-1),\nu-p-s(l-1)) \\ &= W^{\eta,\mu-p-s(k-1),\nu-p-s(l-1)}{}_{\alpha} \begin{cases} 1 & \text{if } p < (\mu,\nu) \le p + (n_h,n_w) \\ 0 & \text{else} \end{cases}, \end{split}$$

and hence

$$\frac{\partial \mathbb{L}}{\partial x^{\alpha}_{\mu}, \nu} = \sum_{\eta=1}^{m_c} \sum_{k=1}^{m_h} \sum_{l=1}^{m_w} \frac{\partial \mathbb{L}}{\partial z^{\eta}_{k,l}} \frac{\partial z^{\eta}_{k,l}}{\partial x^{\alpha}_{\mu,\nu}}$$

Appendices

A utils.py

```
1 #! python3
2 import copy
4 import numpy as np
5 from sklearn.utils import shuffle
7 import mlLib.npActivators as npActivators
8 from mlLib.npActivators import ACTIVATORS
10 ## Usefule printing function
11 def print_array_dict(D):
      11 11 11
12
      Parameters
13
      D : Dict[array_like]
15
      Returns
17
      _____
      None
19
20
      txt = "Array_{0}_has_shape_{1}\n{2}"
21
      for k, v in D.items():
           print(txt.format(str(k), v.shape, v))
23
26 ## Partition data into training, development, and test sets
27 def partition_data(x, y, train_ratio):
28
      Parameters
29
      -----
30
      x : array_like
           x.shape = (m, N)
32
      y : array_like
           y.shape = (k, N)
34
      train_ratio : float
35
           0<=train_ratio<=1</pre>
36
37
      Returns
38
      train : Tuple[array_like]
40
      dev : Tuple[array_like]
```

```
test : Tuple[array_like]
42
43
      ## Shuffle the data
44
      x, y = \text{shuffle}(x.T, y.T) \# \text{Only shuffles rows, so transpose is needed}
45
      x = x.T
46
      y = y.T
47
      ## Get the size of partitions
49
      N = x.shape[1]
50
      N_train = int(train_ratio * N)
51
      N_mid = (N - N_train) // 2
53
      ## Create partitions
54
      train = (x[:,:N_train], y[:,:N_train])
55
      dev = (x[:,N_train:N_train + N_mid], y[:,N_train:N_train + N_mid])
56
      test = (x[:,N_train + N_mid:], y[:,N_train + N_mid:])
57
58
      assert(x.all() == np.concatenate([train[0], dev[0], test[0]], axis=1).all())
59
      assert(y.all() == np.concatenate([train[1], dev[1], test[1]], axis=1).all())
60
61
      return train, dev, test
62
64 ## Partition training data into batches
65 def get_batches(x, y, b):
66
67
      Parameters
       ------
68
      x : array_like
           x.shape = (m, n)
70
      y : array_like
71
           y.shape = (k, n)
72
      b : int
73
74
      Returns
75
76
      batches : List[Dict]
77
           batches[i]['x'] : array_like
78
               x.shape = (m, b) # except last batch
79
               y.shape = (k, b) # except last batch
80
81
      ,, ,, ,,
82
      m, n = x.shape
83
      B = int(np.ceil(n / b))
84
      batches = []
85
      for i in range(B):
           x_{temp} = x[:,(b * i):(b * (i + 1))]
87
           y_{temp} = y[:,(b * i):(b * (i + 1))]
```

```
batches.append({'x' : x_temp, 'y' : y_temp})
89
       # Slicing automatically ends at the end of
90
       # the list if the stop is outside the index
91
       return batches
92
93
94 ##### General Neural Network Model #####
96 ## Retrieve number of examples and layer dimensions
97 def dim_retrieval(x, y, hidden_sizes):
98
       Parameters
       -----
100
       x : array_like
101
           x.shape = (layers[0], n)
102
       y : array_like
103
           y.shape = (layers[L], n)
104
       hidden_sizes : List[int]
105
           hidden_sizes[i-1] = The number nodes layer i
106
       Returns
107
108
       n : int
109
           The number of training examples
110
       layers : List
111
           layer[1] = # nodes in layer 1
112
113
       ,, ,, ,,
114
       m, n = x.shape
115
116
       assert(y.shape[1] == n)
       K = y.shape[0]
117
       layers = [m]
       layers.extend(hidden_sizes)
119
       layers.append(K)
120
121
       return n, layers
123
124 ## Initialize parameters using the size of each layer
125 def initialize_parameters_random(layers):
126
       Parameters
127
       _____
128
       layers : List[int]
129
           layers[l] = # nodes in layer 1
130
131
       Returns
       -----
132
       params : Dict[Dict]
           w[l] : array_like
134
                dwl.shape = (layers[1], layers[1-1])
```

```
b[l] : array_like
136
                dbl.shape = (layers[l], 1)
137
       ,, ,, ,,
138
       W = \{\}
139
       b = \{ \}
140
       for l in range(1, len(layers)):
141
            w[l] = np.random.randn(layers[l], layers[l - 1]) * 0.01
142
            b[1] = np.zeros((layers[1], 1))
143
       params = \{'w' : w, 'b' : b\}
144
       return params
145
147 ## Forward and Backward Linear Activations
148 def linear_activation_forward(a_prev, w, b, activator):
       11 11 11
149
       Parameters
150
        ------
151
152
       a_prev : array_like
            a_prev.shape = (layers[1], n)
153
       w : array_like
154
            w.shape = (layers[l+1], layers[l])
155
       b : array_like
156
            b.shape = (layers[l+1], 1)
157
       activator : str
158
            activator in ACTIVATORS
159
160
161
       Returns
       _____
162
       z : array_like
163
            z.shape = (layer_dims[l+1], n)
164
       a : array_like
165
            a.shape = (layer_dims[l+1], n)
166
167
       assert activator in ACTIVATORS, f'{activator}_is_not_a_valid_activator.'
168
169
       z = w @ a_prev + b
170
       if activator == 'relu':
171
            a, _ = npActivators.relu(z)
172
173
       elif activator == 'sigmoid':
            a, _ = npActivators.sigmoid(z)
174
       elif activator == 'tanh':
175
            a, _ = npActivators.tanh(z)
176
       return z, a
177
178
179 def linear_activation_backward(delta_next, z, w, activator):
180
       Parameters
181
       ------
182
```

```
delta_next : array_like
183
           delta_next.shape = (layers[l+1], n)
184
       z : array_like
185
           z.shape = (layers[l+1], n)
186
       w : array_like
187
           w.shape = (layers[l+1], layers[l])
188
       activator : str
           activator in ACTIVATORS
190
191
       Returns
192
       _____
193
       delta : array_like
194
           delta.shape = (layers[1], n)
195
196
       assert activator in ACTIVATORS, f'{activator}_is_not_a_valid_activator.'
197
198
       n = delta_next.shape[1]
199
200
       if activator == 'relu':
201
           _, dg = npActivators.relu(z)
202
       elif activator == 'sigmoid':
203
           _, dg = npActivators.sigmoid(z)
204
       elif activator == 'tanh':
205
           _, dg = npActivators.tanh(z)
206
207
       da = w.T @ delta_next
208
       assert(da.shape == (w.shape[1], n))
209
       delta = da * dg
210
       assert(delta.shape == (w.shape[1], n))
211
       return delta
213
214
215 ## Forward and Backward Propagation with Dropout Regularization
216 # Generate dropout matrices
217 def dropout_matrices(layers, num_examples, keep_prob):
218
       Parameters
219
220
       _____
       layers : List[int]
221
           layers[1] = number of nodes in layer 1
222
       num_examples : int
^{223}
           The number of training examples
224
       keep_prob : List[float]
225
           keep_prob[1] = The probabilty of keeping a node in layer 1
226
227
       Returns
228
       _____
```

```
D : Dict[array_like]
230
            D[1].shape = (layers[1], num_ex)
231
            D[1] = a Boolean array
232
233
       np.random.seed(1)
234
       L = len(layers)
235
       D = \{\}
236
       for l in range(L - 1):
237
            D[1] = np.random.rand(layers[1], num_examples)
238
            D[1] = (D[1] < keep_prob[1]).astype(int)</pre>
239
            assert(D[1].shape == (layers[1], num_examples))
240
       return D
241
242
243 def forward_propagation_dropout(x, params, activators, D, keep_prob):
244
       Parameters
245
       _____
246
       x : array_like
247
           x.shape = (layers[0] n)
248
       params : Dict[Dict]
249
            params['w'][1] : array_like
250
                wl.shape = (layers[1], layers[1-1])
251
            params['b'][1] : array_like
252
                bl.shape = (layers[l], 1)
253
       activators : List[str]
254
            activators[1] = activation function of layer 1+1
255
       D : Dict[array_like]
256
           D[1].shape = (layer_dims[1], num_ex)
257
           D[l] = a Boolean array astype(int)
258
       keep_prob : List[float]
259
            keep_prob[1] = The probabilty of keeping a node in layer 1
260
261
       Returns
262
       _____
263
       cache : Dict[Dict]
264
            cache['z'][1] : array_like
265
                z[1].shape = (layers[1], n)
266
            cache['a'][1] : array_like
267
                a[1].shape = (layers[1], n)
268
       269
       # Retrieve parameters
270
       w = params['w']
271
272
       b = params['b']
       L = len(w) # Number of layers excluding output layer
273
       n = x.shape[1]
       # Set empty caches
275
       a = \{\}
276
```

```
z = \{\}
277
       # Dropout on layer 0
278
       a[0] = x
279
       a[0] = a[0] * D[0]
280
       a[0] /= keep_prob[0]
281
       # Loop through hidden layers
282
       for l in range(1, L + 1):
            zl, al = linear_activation_forward(a[l - 1], w[l], b[l], activators[l - 1])
284
            al = al * D[1]
285
            al /= keep_prob[1]
286
            z[1] = z1
287
            a[1] = a1
288
       # Output layer
289
       z[L], a[L] = linear_activation_forward(a[L - 1], w[L], b[L], activators[-1])
290
291
       cache = \{'z' : z, 'a' : a\}
292
293
       return cache
294
295 def backward_propagation_dropout(x, y, params, cache, activators, D, keep_prob):
296
       Parameters
297
298
       x : array_like
299
           x.shape = (layers[0], n)
300
       y : array_like
301
            y.shape = (layers[-1], n)
302
       params : Dict[Dict[array_like]]
303
            params['w'][1] : array_like
304
                w[1].shape = (layers[1], layers[1-1])
305
            params['b'][1] : array_like
306
                b[1].shape = (layers[1], 1)
307
       cache : Dict[Dict[array_like]]
308
            cache['a'][1] : array_like
309
                a[1].shape = (layers[1], n)
310
            cache['z'][1] : array_like
311
                z[1].shape = (layers[1], n)
312
       activators : List[str]
313
            activators[1] = activation function of layer 1+1
314
       D : Dict[array_like]
315
           D[1].shape = (layer_dims[1], num_ex)
316
           D[1] = a Boolean array astype(int)
317
       keep_prob : List[float]
318
            keep_prob[1] = The probabilty of keeping a node in layer 1
319
320
       Returns
321
       _____
322
       grads : Dict[Dict]
323
```

```
grads['dw'][1] : array_like
324
                dw[1].shape = w[1].shape
325
            grads['db'][1] : array_like
326
                db[1].shape = b[1].shape
327
328
       ## Retrieve parameters
329
       a = cache['a']
       z = cache['z']
331
       w = params['w']
332
       n = x.shape[1]
333
       L = len(z)
334
335
       ## Compute deltas
336
       delta = \{\}
337
       delta[L] = a[L] - y
338
       for 1 in reversed(range(1, L)):
339
            deltal = linear_activation_backward(delta[1 + 1], z[1], w[1 + 1], activators
340
            deltal = deltal * D[1]
341
            deltal /= keep_prob[1]
342
            delta[1] = deltal
343
344
       ## Compute gradients
345
       dw = \{\}
346
       db = \{\}
347
348
       for l in range(1, L + 1):
            db[1] = (1 / n) * np.sum(delta[1], axis=1, keepdims=True)
350
            assert(db[1].shape == (w[1].shape[0], 1))
351
            dw[1] = (1 / n) * delta[1] @ a[1 - 1].T
352
            assert(dw[1].shape == w[1].shape)
353
       grads = {'w' : dw, 'b' : db}
354
       return grads
355
356
358 ## Forward and Backward Propagation with L2-Regularization
359 def forward_propagation(x, params, activators):
       11 11 11
360
361
       Parameters
       -----
362
       x : array_like
363
           x.shape = (layers[0] n)
364
       params : Dict[Dict]
365
366
            params['w'][1] : array_like
                wl.shape = (layers[1], layers[1-1])
367
            params['b'][l] : array_like
368
                bl.shape = (layers[l], 1)
369
       activators : List[str]
```

```
activators[1] = activation function of layer 1+1
371
       Returns
372
       _____
373
       cache : Dict[Dict]
374
            cache['z'][1] : array_like
375
                z[1].shape = (layers[1], n)
376
            cache['a'][1] : array_like
                a[1].shape = (layers[1], n)
378
       ,, ,, ,,
379
       # Retrieve parameters
380
       w = params['w']
381
       b = params['b']
382
       L = len(w) # Number of layers excluding output layer
383
       n = x.shape[1]
384
       # Set empty caches
385
       a = \{\}
386
387
       z = \{\}
       # Initialize a
388
       a[0] = x
389
       for l in range(1, L + 1):
390
            z[1], a[1] = linear_activation_forward(a[1 - 1], w[1], b[1], activators[1 -
391
392
       cache = \{'a' : a, 'z' : z\}
393
       return cache
394
395
  def backward_propagation(x, y, params, cache, activators, lambda_=0.0):
396
397
       Parameters
398
399
       x : array_like
400
           x.shape = (layers[0], n)
401
       y : array_like
402
           y.shape = (layers[-1], n)
403
       params : Dict[Dict[array_like]]
404
            params['w'][1] : array_like
405
                w[l].shape = (layers[l], layers[l-1])
406
            params['b'][1] : array_like
407
                b[1].shape = (layers[1], 1)
408
       cache : Dict[Dict[array_like]]
409
            cache['a'][1] : array_like
410
                a[1].shape = (layers[1], n)
411
            cache['z'][1] : array_like
412
413
                z[1].shape = (layers[1], n)
       activators : List[str]
414
            activators[1] = activation function of layer 1+1
415
       lambda_ : float
416
           Default: 0.0
417
```

```
418
                   Returns
419
                    _____
420
                    grads : Dict[Dict]
421
                               grads['w'][l] : array_like
422
                                           dw[1].shape = w[1].shape
423
                               grads['b'][l] : array_like
                                           db[1].shape = b[1].shape
425
                    ,, ,, ,,
426
                   ## Retrieve parameters
427
                   a = cache['a']
428
                    z = cache['z']
429
                   w = params['w']
430
                   n = x.shape[1]
431
                   L = len(z)
432
433
                   ## Compute deltas
434
                    delta = {}
435
                    delta[L] = a[L] - y
436
                    for 1 in reversed(range(1, L)):
437
                               delta[1] = linear_activation_backward(delta[1 + 1], z[1], w[1 + 1], activatorical variables activated and the second variables are second variables. The second variables are second variables and the second variables are second variables. The second variables are second variables are second variables are second variables. The second variables are second variables are second variables are second variables. The second variables are second variables are second variables are second variables are second variables. The second variables are second variables are second variables are second variables are second variables. The second variables are second variables are second variables are second variables are second variables. The second variables are second variables are second variables are second variables are second variables. The second variables are second variables are second variables are second variables are second variables. The second variables are second variables. The second variables are second variables. The second variables are second v
438
                   ## Compute gradients
440
                   dw = \{\}
441
                   db = \{\}
442
                    for l in range(1, L + 1):
                               db[1] = (1 / n) * np.sum(delta[1], axis=1, keepdims=True)
444
                               assert(db[1].shape == (w[1].shape[0], 1))
445
                               dw[1] = (1 / n) * (delta[1] @ a[1 - 1].T + lambda_ * w[1])
446
                               assert(dw[1].shape == w[1].shape)
447
                    grads ={'w' : dw, 'b' : db}
448
                    return grads
449
450
452 ## Compute the (L2-regulated) cost
453 def compute_cost(y, params, cache, lambda_=0.0):
                    11 11 11
454
                    Parameters
455
                    -----
456
                   y : array_like
457
                               y.shape = (layers[-1], n)
458
                    params : Dict[Dict[array_like]]
459
460
                               params['w'][1] : array_like
                                          w[l].shape = (layers[l], layers[l-1])
461
                               params['b'][l] : array_like
462
                                           b[1].shape = (layers[1], 1)
463
                    cache : Dict[Dict[array_like]]
464
```

```
cache['z'][1] : array_like
465
                z[1].shape = (layers[1], n)
466
            cache['a'][1] : array_like
467
                a[1].shape = (layers[1], n)
468
       lambda_ : float
469
            Default: 0.0
470
       Returns
472
       _____
473
       cost : float
474
            The cost evaluated at y and aL
475
476
       ## Retrieve parameters
477
       n = y.shape[1]
478
       a = cache['a']
479
       w = params['w']
480
481
       L = len(a)
       aL = a[L - 1]
482
483
       ## Regularization term
484
       R = 0
485
       for l in range(1, L):
486
            R += np.sum(w[1] * w[1])
487
       R \star = (lambda_ / (2 \star n))
488
489
       ## Unregularized cost
       J = (-1 / n) * (np.sum(y * np.log(aL)) + np.sum((1 - y) * np.log(1 - aL)))
491
492
       ## Total Cost
493
       cost = J + R
494
       cost = float(np.squeeze(cost))
495
       return cost
496
497
498
499 ## Update parameters via gradient descent
500 def update_parameters(params, grads, learning_rate=0.01):
       n n n
501
502
       Parameters
       -----
503
       params : Dict[Dict]
504
            params['w'][1] : array_like
505
                w[1].shape = (layers[1], layers[1-1])
506
            params['b'][1] : array_like
507
                b[1].shape = (layers[1], 1)
508
       grads : Dict[Dict]
509
            grads['w'][l] : array_like
510
                dw[1].shape = w[1].shape
511
```

```
grads['b'][l] : array_like
512
                db[1].shape = b[1].shape
513
       learning_rate : float
514
           Default: 0.01
515
           The learning rate for gradient descent
516
517
       Returns
       _____
519
520
       params : Dict[Dict]
            params['w'][1] : array_like
521
                w[1].shape = (layers[1], layers[1-1])
522
            params['b'][1] : array_like
523
                b[1].shape = (layers[1], 1)
524
525
       ## Retrieve parameters
526
       w = copy.deepcopy(params['w'])
527
528
       b = copy.deepcopy(params['b'])
       L = len(w)
529
530
       ## Retrieve gradients
531
       dw = grads['w']
532
       db = grads['b']
533
534
       ## Perform update
535
       for l in range(1, L + 1):
536
           w[1] = w[1] - learning_rate * dw[1]
537
           b[1] = b[1] - learning_rate * db[1]
538
539
       params = \{'w' : w, 'b' : b\}
540
       return params
541
542
543
544
545
546
547
548
549
550
551 #### Dropout NN Model ####
552 def model_nn(x, y, hidden_layer_sizes, activators, keep_prob=1.0, num_iters=10000,
553
554
       Parameters
       _____
555
       x : array_like
556
           x.shape = (layers[0], n)
557
       y : array_like
558
```

```
y.shape = (layers[-1], n)
559
       hidden_layer_sizes : List[int]
560
           The number nodes layer 1 = hidden_layer_sizes[1-1]
561
       activators : List[str]
562
           activators[1] = activation function of layer 1+1
563
       keep_prob : List[float] | float
564
           keep_prob[1] = The probabilty of keeping a node in layer 1
           keep_prob = The same probability for all input and hidden layers
566
       num_iters : int
567
           Number of iterations with which our model performs gradient descent
568
       print_cost : Boolean
569
           If True, print the cost every 1000 iterations
570
571
       Returns
572
       _____
573
       params : Dict[Dict]
574
575
           params['w'][1] : array_like
               w[l].shape = (layers[l], layers[l-1])
576
           params['b'][1] : array_like
577
               b[1].shape = (layers[1], 1)
578
       cost : float
579
           The final cost value for the optimized parameters returned
581
       ## Set dimensions and Initialize parameters
582
       n, layers = dim_retrieval(x, y, hidden_layer_sizes)
583
       params = initialize_parameters_random(layers)
585
       ## Expand keep_prob to a list if it's a single float
586
       if isinstance(keep_prob, float):
587
           keep_prob = [keep_prob] * (len(layers) - 1)
588
589
       # main gradient descent loop
590
       for i in range(num_iters):
591
           D = dropout_matrices(layers, n, keep_prob)
592
           cache = forward_propagation(x, params, activators, D, keep_prob)
593
           cost = compute_cost(cache, y)
594
           grads = backward_propagation(x, y, params, cache, activators, D, keep_prob)
595
           params = update_parameters(params, grads)
596
597
           if print_cost and i % 1000 == 0:
598
                print(f'Cost_after_iteration_{i}:_{cost}')
599
600
601
       return params, cost
602
603
```

604 605

```
606
607
608
609 ######## TESTING #########
610 def test_dropout_nn():
       x = np.random.rand(4, 500)
611
       y = np.random.rand(1, 500)
612
       hidden_layer_sizes = [4, 5, 4]
613
       activators = ['relu', 'relu', 'relu', 'sigmoid']
614
       keep\_prob = 1.0
615
       params, cost = model_nn(x, y, hidden_layer_sizes, activators, keep_prob)
616
       print(params)
617
618
619
620
621 ####### Functions to use later
622 def reshape_labels(num_labels, y):
       ,, ,, ,,
623
       Parameters
624
625
       num_labels : int
626
            The number of possible labels the output y may take
627
       y : array_like
628
            y.size = n
629
            y[i] takes values in {1,2,...,num_labels}
630
       Returns
631
       Y : array_like
632
            Y.shape = (num_lables, n)
633
            Y[i][j] = 1 if y[j] = i, Y[i][j] = 0 otherwise
634
635
       ,, ,, ,,
636
637
       if num_labels <= 2:</pre>
638
            return y
639
       else:
640
            omega = []
641
            for i in range(num_labels):
642
                omega.append(np.eye(1, num_labels, i)) # the standard i-th basis vector
643
644
            Y = np.concatenate([omega[i] for i in y], axis=0).T
645
            for i in range(num_labels):
646
                for j in range(n):
647
                     if y[j] == i:
648
                         assert Y[i][j] == 1
649
                     else:
650
                         assert Y[i][j] == 0
651
            return Y
652
```

B activators.py

```
1 import numpy as np
3 ACTIVATORS = ['relu', 'sigmoid', 'tanh', 'linear', 'softmax']
5 ## Activator functions
6 # The (leaky-)ReLU function
7 def relu(z, beta=0.0):
      11 11 11
      Parameters
9
      -----
10
      z : array_like
11
      beta : float
^{12}
13
      Returns
      -----
15
      r : array_like
16
           The (broadcasted) ReLU function when beta=0, the leaky-ReLU otherwise.
17
      dr : array_like
18
          The (broadcasted) derivative of the (leaky-)ReLU function
19
20
      # Change scalar to array if needed
21
      z = np.array(z)
22
      # Compute value of ReLU(z)
23
      r = np.maximum(z, beta * z)
24
      # Compute differential ReLU'(z)
      dr = ((^{(z < 0))} * 1) + ((z < 0) * beta)
26
      return r, dr
27
28
29 # The sigmoid function
30 def sigmoid(z):
      n n n
31
      Parameters
32
      _____
      z : array_like
34
35
      Returns
36
37
      sigma : array_like
38
           The (broadcasted) value of the sigmoid function evaluated at z
39
```

```
dsigma : array_like
40
           The (broadcasted) derivative of the sigmoid function evaluate at z
41
42
      # Compute value of sigmoid
43
      sigma = (1 / (1 + np.exp(-z)))
44
      # Compute differential of sigmoid
45
      dsigma = sigma * (1 - sigma)
46
      return sigma, dsigma
47
48
49 # The hyperbolic tangent function
50 def tanh(z):
      11 11 11
51
      Parameters
52
53
      z : array_like
54
55
56
      Returns
      phi : array_like
57
           The (broadcasted) value of the hyperbolic tangent function evaluated at z
58
      dphi : array_like
59
           The (broadcasted) derivative of hyperbolic tangent function evaluated at z
60
61
      # Compute value of tanh
62
      phi = np.tanh(z)
63
      # Compute differential of tanh
64
      dphi = 1 - (phi * phi)
65
      return phi, dphi
66
68 # The linear activator function
69 def linear(z):
      11 11 11
70
      Parameters
71
       -----
72
      z : array_like
73
74
      Returns
75
76
77
      id : array_like
      d_id
78
79
      id = z
80
      d_id = np.ones(z.shape)
81
```

return id, d_id

C The Normalization Operator

sec:normOp

In this section, we wish to character the (reverse) differential of the normalization operator $N: \mathbb{R}^{m \times n} \to \mathbb{R}^{m \times n}$ given in coordinates by

$$N: x_j^i \mapsto \frac{x_j^i - \mathbb{E}[x^i]}{\sqrt{\mathbb{V}[x^i] + \epsilon}}.$$

First, let's rewrite this without coordinates

$$N(x) = (\mathbb{V}[x] + \vec{\epsilon})^{\odot - \frac{1}{2}} \vec{1}^T \odot (x - \mathbb{E}[x] \vec{1}^T)$$

=: $f(x) \odot g(x)$.

Now, let's fix $(x, \xi) \in T\mathbb{R}^{m \times n}$, and we immediately see that the Hadamard product obeys the Leibniz Rule with exterior differentiation, i.e.,

$$dN_x(\xi) = g(x) \odot df_x(\xi) + f(x) \odot dg_x(\xi),$$

so we consider these computations separately. Moreover, we now need to compute the derivative of the expectation \mathbb{E} and variance \mathbb{V} operators.

1. For the expectation of a random vector, $\mathbb{E}: \mathbb{R}^{m \times n} \to \mathbb{R}^m$, we first rewrite \mathbb{E} as follows

$$\mathbb{E}[x] = \sum_{i=1}^{m} \left(\frac{1}{n} \sum_{j=1}^{n} x_j^i\right) e_i$$
$$= \frac{1}{n} x \cdot \vec{1}$$
$$= \frac{1}{n} R_{\vec{1}}(x)$$

where $\vec{1}=(1,1,...,1)\in\mathbb{R}^n$. This is clearly linear, so for $(x,\xi)\in T\mathbb{R}^{m\times n}$, we have that

$$d\mathbb{E}_x(\xi) = \mathbb{E}[\xi]$$
$$= \frac{1}{n}R_{\vec{1}}(\xi).$$

For a fixed $x \in \mathbb{R}^{m \times n}$, we let $\mu := \mathbb{E}[x] \in \mathbb{R}^m$ denote the output.

2. For the variance of a random vector, $\mathbb{V}: \mathbb{R}^{m \times n} \to \mathbb{R}^m$, we rewrite \mathbb{V} as follows

$$\mathbb{V}[x] = \sum_{i=1}^{m} \left(\frac{1}{n} \sum_{j=1}^{n} (x_j^i - \mu^i)^2 \right) e_i$$
$$= \mathbb{E}\left[(x - \mu \vec{1}^T) \odot (x - \mu \vec{1}^T) \right]$$
$$= \mathbb{E}\left[(x - \mu \vec{1}^T)^{\odot 2} \right].$$

From the first calculation, we know how to compute the derivative of \mathbb{E} , so we focus on the input $(x - \mu \vec{1}^T)^{\odot 2}$.

To this end, we define $\psi: \mathbb{R}^{m \times n} \to \mathbb{R}^{m \times n}$ to be the inner-most function given by

$$\psi(x) = x - \mathbb{E}[x]\vec{1}^T$$

= $(\mathbb{1}_{\mathbb{R}^{m \times n}} - R_{\vec{1}^T} \circ \mathbb{E})(x),$

which is clearly linear. Then for $(x,\xi) \in T\mathbb{R}^{m\times n}$ we see that

$$d\psi_x(\xi) = \left(\mathbb{1}_{T_x \mathbb{R}^{m \times n}} - \frac{1}{n} R_{\vec{1}^T} \circ R_{\vec{1}}\right)(\xi),$$

where we used our previous computation for $d\mathbb{E}_x$.

Next, define $\phi: \mathbb{R}^{m \times n} \to \mathbb{R}^{m \times n}$ to be the Hadamard-square, i.e.,

$$\phi(x) = x^{\odot 2} = x \odot x.$$

Using our previous remark of the Leibniz Rule in regard to the Hadamard product, we see that for $(x, \xi) \in T\mathbb{R}^{m \times n}$,

$$d\phi_x(\xi) = x \odot \xi + \xi \odot x$$
$$= 2x \odot \xi$$
$$= \odot_{2x}(\xi).$$

Finally, by the compositional definition of \mathbb{V} ,

$$\mathbb{V}[x] = \mathbb{E} \circ \phi \circ \psi(x),$$

we compute for any $(x, \xi) \in T\mathbb{R}^{m \times n}$ that

$$\begin{split} d\mathbb{V}_x(\xi) &= d\mathbb{E}_{\phi(\psi(x))} \circ d\phi_{\psi(x)} \circ d\psi_x(\xi) \\ &= d\mathbb{E}_{\phi(\psi(x))} \circ d\phi_{\psi(x)} \left(\xi - \frac{1}{n} \xi \vec{\mathbf{1}} \vec{\mathbf{1}}^T \right) \\ &= d\mathbb{E}_{\phi(\psi(x))} \left(2(x - \mu \vec{\mathbf{1}}^T) \odot \left(\xi - \frac{1}{n} \xi \vec{\mathbf{1}} \vec{\mathbf{1}}^T \right) \right) \\ &= \mathbb{E} \left[2(x - \mu \vec{\mathbf{1}}^T) \odot \left(\xi - \frac{1}{n} \xi \vec{\mathbf{1}} \vec{\mathbf{1}}^T \right) \right] \\ &= \mathbb{E} \left[2(x - \mu \vec{\mathbf{1}}^T) \odot \xi \right] - 2\mathbb{E} \left[(x - \mu \vec{\mathbf{1}}^T) \odot (\mathbb{E}[\xi] \vec{\mathbf{1}}^T) \right]. \end{split}$$

Next, we notice that if we let $\gamma := \mathbb{E}[\xi] \in \mathbb{R}^m$, then

$$\gamma \vec{1}^T = \begin{pmatrix} \gamma^1 \\ \vdots \\ \gamma^m \end{pmatrix} \begin{pmatrix} 1 & 1 & \cdots & 1 \end{pmatrix} \\
= \begin{bmatrix} \gamma^1 & \gamma^1 & \cdots & \gamma^1 \\ \gamma^2 & \gamma^2 & \cdots & \gamma^2 \\ \vdots & \vdots & \ddots & \vdots \\ \gamma^m & \gamma^m & \cdots & \gamma^m \end{bmatrix} \in \mathbb{R}^{m \times n}$$

and hence that

$$\mathbb{E}[(x - \mu \vec{1}^T) \odot \gamma \vec{1}^T] = \sum_{i=1}^m \left(\frac{1}{n} \sum_{j=1}^n (x_j^i - \mu^i) \gamma^i \right) e_i$$
$$= \sum_{i=1}^m \left(\gamma^i (\mathbb{E}[x^i] - \mu^i) \right) e_i$$
$$= 0.$$

Resuming our computation, we now have that

$$d\mathbb{V}_{x}(\xi) = \mathbb{E}\left[2(x - \mu\vec{1}^{T}) \odot \xi\right]$$
$$= \frac{2}{n}R_{\vec{1}} \circ \odot_{x - \mu\vec{1}^{T}}(\xi)$$

We remark that for a fixed $x \in \mathbb{R}^{m \times n}$, we let $\sigma^2 := \mathbb{V}[x]$ denote the output.

We have now computed the following differentials for any $(x, \xi) \in T\mathbb{R}^{m \times n}$,

$$d\mathbb{E}_{x}(\xi) = \frac{1}{n} R_{\vec{1}}(\xi),$$

$$d\mathbb{V}_{x}(\xi) = \frac{2}{n} R_{\vec{1}} \circ \odot_{x-\mu\vec{1}^{T}}(\xi),$$

and are now ready to compute the differentials of our previously defined f and g, that is,

$$f: \mathbb{R}^{m \times n} \to \mathbb{R}^{m \times n}, \qquad f(x) = (\mathbb{V}[x] + \vec{\epsilon})^{\odot - \frac{1}{2}} \vec{1}^T,$$

and

$$g: \mathbb{R}^{m \times n} \to \mathbb{R}^{m \times n}, \qquad g(x) = x - \mathbb{E}[x]\vec{1}^T.$$

However, we see here that $g \equiv \psi$ as defined, and so for any $(x, \xi) \in T\mathbb{R}^{m \times n}$, we have that

$$dg_x(\xi) = \left(\mathbb{1} - \frac{1}{n} R_{\vec{\mathbf{1}}^T} \circ R_{\vec{\mathbf{1}}}\right)(\xi) = \xi - \frac{1}{n} \xi \vec{\mathbf{1}} \vec{\mathbf{1}}^T.$$

Hence we need only focus on f. To this end, for $(x,\xi) \in T\mathbb{R}^{m\times n}$, we first compute the differential of the Hadamard-root operator, $h(x) = x^{\odot -\frac{1}{2}}$,

$$dh_{x}(\xi) = \frac{d}{dt} \Big|_{t=0} (x+t\xi)^{\odot -\frac{1}{2}}$$

$$= \frac{d}{dt} \Big|_{t=0} \left[(x_{j}^{i} + t\xi_{j}^{i})^{-\frac{1}{2}} \right]$$

$$= \left[-\frac{1}{2} (x_{j}^{i})^{-\frac{3}{2}} \xi_{j}^{i} \right]$$

$$= -\frac{1}{2} x^{\odot -\frac{3}{2}} \odot \xi$$

$$= -\frac{1}{2} \odot_{x^{\odot -\frac{3}{2}}} (\xi).$$

After writing f as the composition

$$f(x) = R_{\vec{1}^T} \circ h(\mathbb{V}[x] + \vec{\epsilon}),$$

we now compute

$$\begin{split} df_x(\xi) &= R_{\vec{1}^T} \circ dh_{\sigma^2 + \vec{\epsilon}} \circ d\mathbb{V}_x(\xi) \\ &= -\frac{1}{n} R_{\vec{1}^T} \circ \odot_{(\sigma^2 + \vec{\epsilon})^{\odot - \frac{3}{2}}} \circ R_{\vec{1}} \circ \odot_{x - \mu \vec{1}^T}(\xi) \\ &= -\frac{1}{n} (\sigma^2 + \vec{\epsilon})^{\odot - \frac{3}{2}} \vec{1}^T \odot (x - \mu \vec{1}^T) \odot \xi \vec{1} \end{split}$$

Finally, recalling that we defined

$$N(x) = f(x) \odot g(x),$$

and so we have that

$$dN_{x}(\xi) = g(x) \odot df_{x}(\xi) + f(x) \odot dg_{x}(\xi)$$

$$= -\frac{1}{n} \odot_{x-\mu\vec{1}^{T}} R_{\vec{1}^{T}} \circ \odot_{(\sigma^{2}+\vec{\epsilon})^{\odot -\frac{3}{2}}} \circ R_{\vec{1}} \circ \odot_{x-\mu\vec{1}^{T}}(\xi)$$

$$+ (\sigma^{2} + \vec{\epsilon})^{\odot -\frac{1}{2}} \vec{1}^{T} \odot \left(\mathbb{1} - \frac{1}{n} R_{\vec{1}^{T}} \circ R_{\vec{1}} \right) (\xi).$$

To simplify the expression for implementation in python, we make the auxiliary definitions (which only depend on the forward propagating computations)

$$y := N(x),$$

and

$$\theta := (\sigma^2 + \vec{\epsilon})^{\odot - \frac{1}{2}}.$$

Then our computation reduces to

$$dN_x(\xi) = -\frac{1}{n}(x - \mu \vec{1}^T) \odot$$

$$dN_x(\xi) = -\frac{1}{n}\eta \circ R_{\vec{1}^T} \circ \Theta \circ R_{\vec{1}} \circ \eta(\xi) + \theta \circ \left(\mathbb{1} - \frac{1}{n}R_{\vec{1}^T} \circ R_{\vec{1}}\right)(\xi)$$
$$= \left[-\frac{1}{n}\eta \circ R_{\vec{1}^T} \circ \Theta \circ R_{\vec{1}} \circ \eta + \theta - \frac{1}{n}\theta \circ R_{\vec{1}^T} \circ R_{\vec{1}} \right](\xi).$$

Then for $\zeta \in T_{N(x)}\mathbb{R}^{m \times n}$, we have the reverse differential

$$\begin{split} \langle rN_x(\zeta),\xi\rangle_F &= \langle \zeta,dN_x(\xi)\rangle_F \\ &= \left\langle \left[-\frac{1}{n}\eta\circ R_{\vec{1}^T}\circ\Theta\circ R_{\vec{1}}\circ\eta + \theta - \frac{1}{n}R_{\vec{1}^T}\circ R_{\vec{1}}\circ\theta \right](\zeta),\xi\right\rangle_F. \end{split}$$

C.1 The Normalization Operator v.2

Suppose $N:(\mathbb{R}^m)^n\to(\mathbb{R}^m)^n$ is given by

$$N(x_1,...,x_n) = (y_1,...,y_n),$$

where

$$y_j = \frac{x_j - \mathbb{E}[x]}{\sqrt{\mathbb{V}[x] + \epsilon}}.$$

Then for $(x,\xi) \in T(\mathbb{R}^m)^n$, we have that

$$dN_x(\xi) = \bigoplus_{j=1}^n d_j N_x(\xi_j).$$

For what follows, we fix $x \in (\mathbb{R}^m)^n$, $\alpha, \beta \in \{1, ..., n\}$, and let $\xi \in T_{x_\alpha} \mathbb{R}^m$ and consider

$$d_{\alpha}y_{x}(\xi),$$

where

$$y := y_{\beta} : (\mathbb{R}^m)^n \to \mathbb{R}^m.$$

To this end, if we let

$$\mu := \mathbb{E}[x], \qquad \sigma^2 := \mathbb{V}[x],$$

and consider y written compositionally as

$$y: (\mathbb{R}^m)^n \times \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}^m, \qquad y(x, \mu, \sigma^2) = (\sigma^2 + \vec{\epsilon})^{\odot - \frac{1}{2}} \odot (x_\beta - \mu),$$

then by the chain rule it follows that

$$d_{\alpha}y_{x}(\xi) = d_{\alpha}y_{(x,\mu,\sigma^{2})}(\xi) + d_{\mu}y_{(x,\mu,\sigma^{2})} \circ d_{\alpha}\mathbb{E}_{x}(\xi) + d_{\sigma^{2}}y_{(x,\mu,\sigma^{2})} \circ d_{\alpha}\mathbb{V}_{x}(\xi).$$

Computing these differentials yields

$$d_{\alpha}y_{(x,\mu,\sigma^{2})}(\xi) = \delta_{\alpha\beta}(\sigma^{2} + \vec{\epsilon})^{\odot - \frac{1}{2}} \odot \xi$$

$$d_{\mu}y_{(x,\mu,\sigma^{2})}(\xi) = -(\sigma^{2} + \vec{\epsilon})^{\odot - \frac{1}{2}} \odot \xi$$

$$d_{\sigma^{2}}y_{(x,\mu,\sigma^{2})}(\xi) = -\frac{1}{2}(\sigma^{2} + \vec{\epsilon})^{\odot - \frac{3}{2}} \odot (x_{\beta} - \mu) \odot \xi$$

$$d_{\alpha}\mathbb{E}_{x}(\xi) = \frac{1}{n}\xi$$

$$d_{\alpha}\mathbb{V}_{x}(\xi) = \frac{2}{n}(x_{\alpha} - \mu) \odot \xi.$$

Substituting in these differentials, we see that

$$d_{\alpha}(y_{\beta})_{x}(\xi) = \left[\delta_{\alpha\beta}(\sigma^{2} + \vec{\epsilon})^{\odot - \frac{1}{2}} - \frac{1}{n}(\sigma^{2} + \vec{\epsilon})^{\odot - \frac{1}{2}} - \frac{1}{n}(\sigma^{2} + \vec{\epsilon})^{\odot - \frac{3}{2}} \odot (x_{\beta} - \mu) \odot (x_{\alpha} - \mu)\right] \odot \xi,$$

and noting that derivative only acts via the Hadamard-product, we may conclude that the reverse derivative coincides with the usual derivative, i.e.,

$$r_{\alpha}(y_{\beta})_x \cong d_{\alpha}(y_{\beta})_x$$

after the usual identification of tangent spaces. To simplify this expression, we define the constant (with respect to the tangent space)

$$\theta = (\sigma^2 + \vec{\epsilon})^{\odot - \frac{1}{2}},$$

which leads us to write

$$d_{\alpha}(y_{\beta})_{x}(\xi) = \left[\delta_{\alpha\beta}\theta - \frac{1}{n}\theta - \frac{1}{n}\theta\odot y_{\alpha}\odot y_{\beta}\right]\odot\xi.$$

Moreover, since

$$d(y_{\beta})_{x}(\xi) = \sum_{\alpha=1}^{n} d_{\alpha}(y_{\beta})_{x}(\xi_{\alpha}), \qquad \xi_{\alpha} \in T_{x_{\alpha}} \mathbb{R}^{m},$$

it follows that for $\zeta_{\beta} \in T_{y_{\beta}} \mathbb{R}^m$, that

$$\langle r(y_{\beta})_{x}(\zeta_{\beta}), \xi \rangle_{(\mathbb{R}^{m})^{n}} = \langle \zeta_{\beta}, d(y_{\beta})_{x}(\xi) \rangle_{T_{y_{\beta}}\mathbb{R}^{m}}$$

$$= \left\langle \zeta_{\beta}, \sum_{\alpha=1}^{n} d_{\alpha}(y_{\beta})_{x}(\xi_{\alpha}) \right\rangle_{T_{y_{\beta}}\mathbb{R}^{m}}$$

$$= \sum_{\alpha=1}^{n} \left\langle r_{\alpha}(y_{\beta})(\zeta_{\beta}), \xi_{\alpha} \right\rangle_{T_{x_{\alpha}}\mathbb{R}^{m}}$$

$$= \left\langle \bigoplus_{\alpha=1}^{n} r_{\alpha}(y_{\beta})_{x}(\zeta_{\beta}), \xi \right\rangle_{(\mathbb{R}^{m})^{n}} ,$$

and hence that

$$r(y_{\beta})_x(\zeta_{\beta}) = \bigoplus_{\alpha=1}^n r_{\alpha}(y_{\beta})_x(\zeta_{\beta}).$$

Next, for $(x,\xi) \in T(\mathbb{R}^m)^n$ and $\zeta \in T_y(\mathbb{R}^m)^n$, we have that

$$\langle rN_{x}(\zeta), \xi \rangle_{(\mathbb{R}^{m})^{n}} = \langle \zeta, dN_{x}(\xi) \rangle_{(\mathbb{R}^{m})^{n}}$$

$$= \left\langle \zeta, \bigoplus_{\beta=1}^{n} d(y_{\beta})_{x}(\xi) \right\rangle_{(\mathbb{R}^{m})^{n}}$$

$$= \sum_{\beta=1}^{n} \left\langle \zeta_{\beta}, d(y_{\beta})_{x}(\xi) \right\rangle_{T_{y_{\beta}}\mathbb{R}^{m}}$$

$$= \sum_{\beta=1}^{n} \sum_{\alpha=1}^{n} \left\langle \zeta_{\beta}, d_{\alpha}(y_{\beta})_{x}(\xi_{\alpha}) \right\rangle_{T_{y_{\beta}}\mathbb{R}^{m}}$$

$$= \sum_{\beta=1}^{n} \sum_{\alpha=1}^{n} \left\langle r_{\alpha}(y_{\beta})_{x}(\zeta_{\beta}), \xi_{\alpha} \right\rangle_{T_{x_{\alpha}}\mathbb{R}^{m}}$$

$$= \sum_{\beta=1}^{n} \left\langle \bigoplus_{\alpha=1}^{n} r_{\alpha}(y_{\beta})_{x}(\zeta_{\beta}), \xi \right\rangle_{(\mathbb{R}^{m})^{n}}$$

$$= \sum_{\beta=1}^{n} \left\langle r(y_{\beta})_{x}(\zeta_{\beta}), \xi \right\rangle_{(\mathbb{R}^{m})^{n}}$$

$$= \left\langle \sum_{\beta=1}^{n} r(y_{\beta})_{x}(\zeta_{\beta}), \xi \right\rangle_{(\mathbb{R}^{m})^{n}}.$$

That is,

$$rN_{x}(\zeta) = \sum_{\beta=1}^{n} r(y_{\beta})_{x}(\zeta_{\beta})$$

$$= \bigoplus_{\alpha=1}^{n} \left\{ \sum_{\beta=1}^{n} r_{\alpha}(y_{\beta})_{x}(\zeta_{\beta}) \right\}$$

$$= \bigoplus_{\alpha=1}^{n} \left\{ \sum_{\beta=1}^{n} \left[\delta_{\alpha\beta}\theta \odot \zeta_{\beta} - \frac{1}{n}\theta \odot \zeta_{\beta} - \frac{1}{n}\theta \odot y_{\alpha} \odot y_{\beta} \odot \zeta_{\beta} \right] \right\}$$

$$= \bigoplus_{\alpha=1}^{n} \left\{ \theta \odot \zeta_{\alpha} - \frac{1}{n}\theta \odot \sum_{\beta=1}^{n} \zeta_{\beta} - \frac{1}{n}\theta \odot y_{\alpha} \odot \sum_{\beta=1}^{n} y_{\beta} \odot \zeta_{\beta} \right\}$$

$$= \bigoplus_{\alpha=1}^{n} \left\{ \theta \odot (\zeta e_{\alpha}) - \frac{1}{n}\theta \odot (\zeta_{1}) - \frac{1}{n}\theta \odot y_{\alpha} \odot (y \odot \zeta_{1}) \right\}.$$

$$= r_{\alpha}N_{x}(\zeta)$$

We note here that rN_x is a rank (2,2)-tensor, and as such we need to compute its components if we wish to implement this in python. To this end, let $\{E_i^j\}$ denote the basis for $\mathbb{R}^{m\times n}$, where

$$(E_i^j)_l^k = \delta_i^k \delta_l^j,$$

and let $\{\epsilon_j\}$, $\{e_j\}$ denote the standard bases for \mathbb{R}^m and \mathbb{R}^n , respectively. We now compute

$$rN_{x}(E_{i}^{j}) = \bigoplus_{l=1}^{n} \left\{ \theta \odot (E_{i}^{j}e_{l}) - \frac{1}{n}\theta \odot (E_{i}^{j}\vec{1}) - \frac{1}{n}\theta \odot y_{l} \odot (y \odot E_{i}^{j})\vec{1} \right\}$$

$$= \bigoplus_{l=1}^{n} \left\{ \theta^{k}\delta_{i}^{k}\delta_{l}^{j}\epsilon_{k} - \frac{1}{n}\theta^{k}\delta_{i}^{k}\epsilon_{k} - \frac{1}{n}\theta^{k}y_{l}^{k}y_{j}^{k}\delta_{i}^{k}\epsilon_{k} \right\}$$

$$= \bigoplus_{l=1}^{n} \theta^{k} \left\{ \delta_{i}^{k}\delta_{l}^{j} - \frac{1}{n}\delta_{i}^{k}(1 - y_{l}^{k}y_{j}^{k}) \right\} \epsilon_{k}$$

$$= \theta^{k} \left[\delta_{i}^{k}\delta_{l}^{j} - \frac{1}{n}\delta_{i}^{k}(1 - y_{l}^{k}y_{j}^{k}) \right] E_{k}^{l} \qquad \text{definition of direct sum}$$

$$= \theta^{k} [\delta_{i}^{k}\delta_{l}^{j} - z^{k}_{lj}\delta_{i}^{k}] E_{k}^{l},$$

that is, if ζ_i^i is a matrix, we yield the matrix

$$rN_x(\zeta) = \left[\theta^k \left[\delta_i^k \delta_l^j - z^k_{lj} \delta_i^k\right] \zeta_i^i\right]_l^k,$$

which is easily implemented in python via numpy's "einsum" function.

References

[1] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. CoRR, abs/1502.03167, 2015.