Large-scale semi-supervised learning with online spectral graph sparsification

daniele.calandriello@inria.fr, alessandro.lazaric@inria.fr, michal.valko@inria.fr

Graph Learning

Draw $\mathcal{X}=(\mathbf{x}_1,\ldots,\mathbf{x}_n)$ from \mathbb{R}^d ,
Build the graph $\mathcal{G}=(\mathcal{X},\mathcal{E})$ with $|\mathcal{E}|=m$,
The weights $a_{e_{i,j}}$ encode the "distance" between nodes.

Transductive setting for Semi-Supervised Learning

There exists a label y_i for each node in \mathcal{G}

 ${\color{red} l}$ nodes are placed in ${\color{red} {\cal S}}$ the remaining ${\color{red} u}=n-l$ in ${\color{red} {\cal T}}$

The algorithm receive the labels in $\mathcal S$ and the graph $\mathcal G$ and outputs a function $\mathbf f:\mathcal X\to\mathbb R.$

Measure ${\bf f}$ prediction error over ${\cal T}$

The graph $\mathcal G$ never changes

(e.g. in spam classification, our email corpus is fixed)
The subset S that is revealed to the algorithm is random

(e.g. which emails the users classify as spam or ham)

Harmonic Function Solution (HFS)

$$\widehat{\mathbf{f}} = \underset{\mathbf{f} \in \mathbb{R}^n}{\arg \min} \frac{1}{l} (\mathbf{f} - \mathbf{y})^{\mathsf{T}} I_{\mathcal{S}} (\mathbf{f} - \mathbf{y}) + \gamma \mathbf{f}^{\mathsf{T}} L_{\mathcal{G}} \mathbf{f}, \qquad (1)$$

Algorithmic Stability

$$\mathcal{S}_{\mathcal{S}'} = \begin{pmatrix} y_1, y_2, y_3, y_4, \dots, y_{l-1}, y_l, & 0, & 0, 0, 0, \dots \\ y_1, y_2, y_3, y_4, \dots, y_{l-1}, & 0, & y_{l+1}, & 0, 0, 0, \dots \end{pmatrix} \to \mathbf{f}'$$

$$|(\mathbf{f}(\mathbf{x}) - \mathbf{y}(\mathbf{x}))^2 - (\mathbf{f}'(\mathbf{x}) - \mathbf{y}(\mathbf{x}))^2| \le \beta.$$

Theoretical guarantees for stable transductive algorithms [1]

$$R(\widetilde{\mathbf{f}}) \le \widehat{R}(\widetilde{\mathbf{f}}) + \beta + \left(2\beta + \frac{c^2(l+u)}{lu}\right)\sqrt{\frac{\pi(l,u)\log(1/\delta)}{2}}$$
$$\pi(l,u) = \frac{lu}{l+u-0.52\max\{l,u\}}$$

Toy example

Spam Classification (TREC07)

We would like to thank loannis Koutis for many useful discussions.

[3] I. Koutis, G. L. Miller, and R. Peng. A nearly-m log n time solver for SDD linear systems. FOCS, 2011