Announcements:

Midterm 2: Wed. 10/18 7:00-8:30, Noyes 217 (some time/place as Midterm 1)

Quiz 2: Fri 10/13 (in class)

Optimization: want to minimize or maximize some quantity

Algorithms:

Kruskal's algorithm: find a minimal-weight spanning tree Dijkstra's algorithm: find a shortest path from u to v

Both are "greedy" algorithms: charge ahead, and don't look

Let G be a weighted graph w/ nonneg. wts.

The weight of the path/spanning tree/etc. is the <u>sum</u> of the weights of its edges

Different convention than what we used in the weighted matrix tree thm. related by log

Kruskal's Algorithm (2.3.1) (for convenience, assume distinct wts)

Input: A weighted conn. graph G

Start: Let Ts G be the subgraph V(T) = V(6), E(T) = Ø

While T is disconnected!

Let e be the least weight of an edge not yet considered

If the endpoints of e are in diff. components of T:

(i.e. if Tue is acyclic)

Add e to T

Output: A minimal-weight spanning tree T

Class activity: Kruskal!

Thm 2.2.3: The output of kruskal's Algorithm is always a minimum-weight spanning tree

Pf:

Dijkstra's Algorithm (2.3.5)

Input: A weighted graph G and a vertex $u \in V(G)$ Start: $S = \{u\}$, t(u) = 0, $t(z) = \min_{u \in S} \omega t(e)$ if $z \neq u$

While $\exists z \notin S$, $t(z) < \infty$:

Choose $v \notin S$ s.t. $t(v) = \min_{z \notin S} t(z)$ Add v to SFor all edges $v \in S$, $v \in S$;

Replace $t(z) \in S$ w/ $\min_{z \in S} (t(z)) + \inf_{z \in S} (t(z))$ Output: t(v) = d(u,v) for all $v \in V(G)$

Class activity: Dijkstra!

$$= (9) +$$

Thm 2.3.7: The output of Dijkstra's Algorithm is always the distance function d(u,v).

?