Research Presentation

Active Learning with V-Learning

Thorben Werner March 31, 2022

Information Systems and Machine Learning Lab (ISMLL)
Institute for Computer Science
University of Hildesheim

Methodology

Pool-Based Active Learning

 $\mathcal{L} \in \mathbb{R}^{\lambda imes m}$ Labeled Set $\mathcal{U} \in \mathbb{R}^{\mu imes m}$ Unlabeled Set $\phi_{ heta} := \mathbb{R}^m o \mathbb{R}^c$ Classifier $\mathcal{K} \in \mathbb{R}^{k imes m}$ Unlabeled Sample $\psi := \mathbb{R}^{k imes m} o \mathbb{R}^k$ Active Learning Heuristic $\pi_{\psi} := argmax \ \psi(\mathcal{S})$ Active Learning Policy

Active Learning Cycle

Active Learning with Q-Learning

State Space:

- 1. Internal state of the environment: content of labeled pool \mathcal{L} , state of the classifier θ , remaining budget, current F1-Score, etc. $\to \mathbb{R}^i$
- 2. Information about the unlabeled sample K: Output of the classifier $\phi_{\theta}(k_t)$, the datapoints themselves, other metrics, etc. $\to \mathbb{R}^{k \times j}$

Results in a flattened state space of $S \in \mathbb{R}^{i+k \times j}$

Active Learning with Q-Learning

 $\mathcal{S} \in \mathbb{R}^{i+k imes j}$ State Space $\mathcal{A} \in [\mathsf{o}, \dots, k]$ Action Space $\mathcal{R} := \mathcal{S} imes \mathcal{A} o \mathbb{R}$ Reward Function $\tau := \{\mathcal{S}, \mathcal{A}, \mathcal{S}, \mathcal{R}, \mathbb{R}\}$ Transition

Problems:

- Fixed Sample size
- Expensive Transitions
- Same actions in different places

Example: Pick a Card

Consider a cardgame where the agent needs to collect cards with high value

Each card is worth a certain number of points, and the goal is to collect the maximum amount of points

At each iteration the agent is presented two cards to choose from

Q-Learning is not the correct choice of agent here

Active Learning with Q-Learning

Sample Size k = 2

The same datapoint can appear in multiple places in the input

Both output nodes essentially learn the same function since the datapoints are sampled randomly and independently.

A permutation invariant network can fix the problem and create a ranking of actions

The Bellman Target

Q-Learning Target: What is the expected discounted improvement in F1-Score under the current policy when we choose a given datapoint?

The Bellman target does not rank actions, but tries to estimate their independent, global value under the current policy

Reinforcement Learning

$$\mathcal{L}_Q := \hat{\pi}(s_t, a_t) - r_t + \gamma \max_{a}(\pi(s_{t+1}))$$
pred target

Ranking (Triplet Loss)

V-Learning vs Q-Learning

Q-Learning:

$$Q(\mathsf{s}_t) = \mathbb{R}^4$$

$$Q(s_t) = \begin{bmatrix} V(s_{t+1}(up) \\ V(s_{t+1}(down) \\ V(s_{t+1}(left) \\ V(s_{t+1}(right) \end{bmatrix} \qquad Q(s_t, a) = V(s_{t+1}(a))$$

V-Learning:

$$V(s_{t+1}(a)) = \mathbb{R}$$
 with $a = [1, ..., 4]$

$$Q(s_t,a)=V(s_{t+1}(a))$$

Active Learning with V-Learning

Adaptations

- We use the batch dimension ϕ for representing the sample size k
- No action space needed

$$\mathcal{S} \in \mathbb{R}^{i+j}$$
 State Space $\mathcal{R} := \mathcal{S} o \mathbb{R}$ Reward Function $V_{ heta} := \mathcal{S} o \mathbb{R}$ Agent Network

Active Learning with V-Learning

Example:

State is generated : $s \in \mathbb{R}^{\phi \times (i+j)}$

Agents makes prediction : $v = V_{\theta}(s)$

Policy selects a point : $a = \operatorname{argmax}_{\perp} v_{\phi}$

Φ

Action is applied : s' = env(a)

Reward is observed : $r = \mathcal{R}(s')$

Transition is stored : $\tau = \{s_a, r, \bar{s}', done\}$

with :
$$\bar{s}' = \frac{1}{\phi} \sum_{p=0}^{\phi} s'_p$$

Storing Transitions in Memory

Q-Learning:

$$O(\tau) = \mathbf{s} \times \mathbf{a} \times \mathbf{s}' \times \mathbf{r} \times \mathbb{R}$$
$$O(\tau) = \mathbf{k}^2 \times \sigma^2 + 3$$

V-Learning:

$$O(\tau) = s_a \times a \times \overline{s}' \times r \times \mathbb{R}$$

$$O(\tau) = 2 \times \sigma^2 + 3$$

Storing Transitions in Memory

Q-Learning:

$$O(\tau) = \mathbf{s} \times \mathbf{a} \times \mathbf{s}' \times \mathbf{r} \times \mathbb{R}$$
$$O(\tau) = \mathbf{k}^2 \times \sigma^2 + 3$$

V-Learning:

$$O(\tau) = s_a \times a \times \overline{s}' \times r \times \mathbb{R}$$

$$O(\tau) = 2 \times \sigma^2 + 3$$

Current Status

Agent Performance

V-Learning

CIFAR-10 (Custom Embedding)

Samplesize: 20

Interactions: 2.4M

Problems

- Extremely hard to train a sequence of 2000 interactions
- $\bullet\,$ Seemingly sensible state spaces collapse the performance
- Agent is overly sensitive

Mock Environment

To test different agents and perform a quasi-gridsearch in feasible time I created a mock environment

Internal state is a fictional F1-Score

Each sample is a collection of random "quality" values that govern mock Entropy and BvsSB scores

A choosen sample add its "quality" value to the internal F1-Score

Grid Search

Hand-picked combinations of "Budget", "Interactions", "LR", etc.

3-fold cross validation

Measuring regret with respect to BvsSB baseline

Preleminary results:

- Large Budgets (>200) need excessive training of >2M. The current results might be overperformance
- N-Steps seem not to work in this environment. (Accumulating noise?)