11.4. Assolute and contidenal convergence. we have now many tools to tent with positive relies. Let's introduce some tools to deal with series with nightine terms. The series I am converges Isolubely if I land converges. Not all belies conveye absolutely. The series I am converges eonditionally of I am converges but I land diverges. So, we have:

secies: I am converge I conditionally. I land to. > diverge. | Zan | 400. Example: The series ###### = sin(n) converges absolutely: MANNEY if Elant conveyer than I am conveyes , Example: The series $\frac{1}{2}$ in which is a diversity becomes series. the convergence of selies with notitive and negotive terms is very hard. Either they converge absolutely (and other they converge) or they are affected by and we have the following test: hibrit test: Let fant positive men segnence, decreasing, horse meo. Then: S= = (-1) an converges and 0 < S(a, and S2NKSKS. Example: The afternation harmonic series = (-1)" converges by hisnit. Example: The alternating series $\sum_{n=0}^{\infty} (-1)^n \frac{3n+4}{2n^2+3n+5}$ converges on test. conditionally. (i) $\sum_{n=0}^{\infty} \left| \frac{3n+4}{2n^2+3n+5} \right|$ diverges by limit composition test. (ii) an = $\frac{3n+4}{2n^2+3n+5}$ with partition, lim an = 0, $\int_{-\infty}^{\infty} (2x^2+3x+5)^2 dx$.