一、机器学习流程、预处理、特征工程

- 1、三个主要页面(官网: http://scikit-learn.org/stable/index.html):
- (1) scikit-learn tutorials:
- (2) User guide:
- (3) API reference:
- 2 ml
- (1) 无监督方法:聚类、降维(PCA)
- (2) 有监督基本概念:
- ➤ Features 特征(属性、特征维、维度)
- ➤ Samples 样本
- ➤ Targets 目标值(y 值)
- (3) 预处理(Preprocessing) 重点:
- ▶ 数据异常值处理(基本:箱线图的上界限和下界限筛选异常值;升级:根据数据分布做处理)等数据清洗
- ▶ 特征抽取(目标:对计算机读不懂的数据进行特征工程处理)

理, 如根据买牛仔裤的平均价格预测下次买牛仔裤的价格

- (4)模型:LR,GBDT,FFM,用AOC评价模型好坏
- ➤ 拓展: <1>把年龄小于8岁的打上"小孩"标签,年龄大于60岁打上"老人"标签,然后再做特征处理,将有很大的帮助======= <2>电商用户购买价格一般没有什么参考意义,但根据对场景的认识,做一定的统计处
- ➤ 面试需准备的原理: 朴素贝叶斯(文本类问题)——词袋模型(一句话中词的顺序不会影响大家对词的理解),抽取 TF-IDF,深度学习 LSTM; 逻辑回归(万能简单的算法); 决策树(数学模型)随机森林/GBDT/XGBoost; SVM 统治了机器学习届 18 年(背后有严谨的数学支撑,如果不能手推 SVM,千万不要写精通 SVM,冯老师第八期课有手推 SVM); k-means 聚类
- (5<mark>) sklearn 常用方法(记)</mark>
- ▶ train_test_split: 对数据做切分, test_size 一般使用 3/7 或 2/8 做数据切分, random_state 表示随机种子做采样或抽取
- ➤ 5 个函数<mark>(很重要!!!)</mark>: fit 做拟合,transform 对数据做降维等,fit_transform 既拟合也降维,predict 做预测,predict proba 预测同时计算概率
- Perceptron
- ▶ 逻辑回归: $F(z) = \frac{1}{1+e^{-z}}$
- ▶ 支持向量机: rbf-kernel
- ▶ 决策树:通过机器学习找到判定的分支
- ▶ K 近邻 (用得少)
- (6) 过拟合和正则化
- P Overfitting: 多灌数据、或加约束(例如 logistic 加 L1 或 L2 正则化项)
 → 目的在于调整超参数
- ➤ Underfitting: 换模型

二、Kaggle 机器学习比赛中的特征工程处理方法

- 1、如何分析数据:
- ▶ 先查看数据分布情况 info()、describe()
- ▶ 依次分析各个字段对结果的影响,然后拉出最突出的数据属性分析(简单,少用)
- 2、数据预处理(占比 70%的工作)
- ▶ 遇缺失值常见的处理方式:
 - 如果缺值的样本占总数比例极高,可能直接舍弃,避免带入 noise 影响最后的结果
 - 如果缺值的样本适中,而该属性为非连续值特征属性(比如说类目属性),那就把 NaN 作为一个新类别,加到类别特征中
 - 如果缺值的样本适中,而该属性为连续值特征属性,有时候我们会考虑给定一个 step(比如这里的 age, 我们可以考虑每隔 2/3 岁为一个步长),然后把它离散化,之 后把 NaN 作为一个 type 加到属性类目中。
 - 有些情况下,缺失的值个数并不是特别多,那我们也可以试着根据已有的值,拟合 一下数据,补充上
- ▶ 对类目型的特征因子化/one-hot 编码,得到数值型特征的数据:可以使用 pandas 的"get_dummies"(哑变量变换)方法实现
- ► 标准化:将一些变化幅度较大的属性值特征化到[-1,1]之间:可以使用 scikit-learn 的 preprocessing 模块做一个 scaling(StandardScaler 模块)
- ▶ 归一化: scikit-learn.preprocessing 的 Normalization 模块
- ➤ 二值化: scikit-learn.preprocessing 的 Binarization 模块
- 3、用训练数据建模
- ➤ 使用 sklearn.model_selection 的 train_test_split 模块分割训练集和测试集,注意 X/Y 数据 均是 numpy 格式的数据(pandas 的 dataframe 格式数据可以使用 df.as_matrix()方法转换)
- 常用模型:线性回归(sklearn.linear_model.LinearRegression)、logistic回归(sklearn.linear_model.LogisticRegression)、SVM(sklearn.svm.SVC)、朴素贝叶斯(sklearn.naive_bayes.GaussianNB)、随机森林(sklearn.ensemble.RandomForestRegressor)、KNN(sklearn.neighbors.KNeighborsClassifier)
- 4、用测试集做 Prediction
- ▶ <mark>注意:</mark>测试数据需要与训练数据保持一致的数据预处理再做 predict
- ▶ predict proba()方法将输出有概率的预测
- 5、评估、优化模型
- 过拟合 V.S.欠拟合:
 - 过拟合(overfitting/high variace): train 阶段表现好,test 阶段很不好
 - 欠拟合(underfitting/high bias): train 阶段 test 阶段都不好
 - 解决:如果出现过拟合,可以做 feature selection 或者增加训练数据;如果出现欠拟合,通常需要更多的 feature 和更复杂的模型来提高准确度
- ▶ 使用 currentModel.coef_查看当前模型系数======要对数据敏感了=======,通过观察权重系数分析各属性对结果的影响,例如:
 - 权重大将极大提高事件发生概率,反之,负相关将拉低事件发生概率
 - 小幅度正相关可能由于对属性细化程度不够=====试试将连续值离散化
- ▶ 做交叉验证优化模型,并绘制 learning_curve 曲线评判模型好坏

- 拿出原始训练集=====使用 sklearn.cross_validation.train_test_split 分割成 train 和 test 部分分别进行建模和预测,再观察原始数据中====出现错误分类的数据=====, =====可以开始优化了======
- 例如:组合两个属性成类目属性(采用 one-hot 编码)作为新的特征维度优化模型, 去掉很奇怪但又没用的特征试试, blabla.....

● 调参方法:

● 调参万法:		
模型	使用示例	
cross_validation	>	Sklearn.cross_validation
	>	clf=LogisticRegression(C=1.0,penalty='l1',tol=1e-6)
	>	cross_validation.cross_val_score(clf, X, y, cv=5) → 查看打
		分情况
	>	split_train,split_cv=cross_validation.train_test_split(df,
		test_size=0.3, random_state=0) → 分割训练集数据
	>	clf.fit(split_train.as_matrix()[:,1:],split_train.as_matrix()[:,0])
	>	<pre>predictions = clf.predict(split_cv.as_matrix()[:,1:])</pre>
	>	split_cv[predictions != split_cv.as_matrix()[:,0]] → 查看错
		误分类的数据
	>	特征选择、特征处理等
GridSearchCV	A	sklearn.grid_search.GridSearchCV
	>	params={"n_neighbors":np.arange(1,3),
		"metric":{"euclidean","cityblock"}}
	>	grid = GridSearchCV(estimator=knn, param_grid=params)
	>	grid.fit(X_train,y_train)
	>	grid.best_score_ → 得到交叉验证的平均结果
	>	grid.best_estimatorn_neighbors → 寻找最佳参数
RandomizeSearchCV	>	sklearn.grid_search. RandomizeSearchCV
	>	params={"n_neighbors":np.arange(1,5),
		"weights":{"uniform","distance"}}
	>	rsearch= RandomizeSearchCV(estimator=knn,
		param_distributions=param,cv=4,n_iter=8,random_state=5)
	>	rsearch.fit(X_train,y_train)
	>	rsearch.best_score_

▶ 模型融合

- 使用不同的分类器模型 (logistic regression, SVM, KNN, random forest, 神经网络), 选择结果最优的模型
- 一个模型下的融合:使用 sklearn.ensemble.BaggingRegressor模块,用训练集内不同子集训练出不同的模型,选择===最好/平均===,如

● 优点:缓解单一模型训练过程中产生的过拟合问题

三、特征工程处理方法、交叉验证、Pipeline 搭建机器学习模型

- 1、(很重要!!!)预处理(所有的库 → sklearn.preprocessing: Preprocessing and Normalization)
- ▶ 独热向量编码 (one-hot encoding): OneHotEncoder 或者 pd.get_dummies()
- ▶ 连续值离散化:
 - bins = np.linspace(最小值,最大值,树桩数) → 按树桩数划分数据区间
 - np.digitize(X, bins=bins) → 使输入数据按照树桩分组
- ▶ 多项式特征(PolynomialFeatures)
 - 在原始数值列的基础上造些高次项 (degree 属性),观察其与结果的线性关系 (get_feature_names()方法查看新属性)
 - 构造组合特征
- 2、特征选择(sklearn.feature_selection)——<mark>绘制特征重要度的图,然后做特征筛选</mark>
 - (1) 单变量分析(SelectPercentile 模块): 基于每一维对 v 的相关性进行特征选择
 - (2) 基于模型的特征选择: SelectFromModel 模块可结合模型完成特征的选择
 - (3) 逐步特征删除(RFE——Recursive feature selection 递归特征筛选)
- (4) 序列化特征选择(用得少): mlxtend.feature selection.SequentialFeatureSelector
- 3、模型评估与参数调优
- (1) 问题: 直接使用 sklearn.model_selection.train_test_split 模块分割数据集存在随机性,对样本训练程度可能不够;
- (2) 交叉验证:
- > sklearn.model_selection.cross_val_score 模块:
 - 默认 3 折(cv=3)交叉验证,返回测试集打分结果
 - 缺点: 样本分布不均衡时, 交叉验证效果不好, 如下:

sklearn.model_selection.stratifiedkFold 模块:保证每一折中的样本比例均衡

- ▶ sklearn.model selection.ShuffleSplit 模块: 乱序分割交叉验证,赋给 cross val score 的 cv
- ▶ sklearn.model_selection.LeaveOneOut 模块:留一交叉验证,所有训练样本中留一个做交叉验证,赋给 cross_val_score 的 cv,基本不用
- (4) <mark>网格搜索交叉验证</mark>(sklearn.model_selection.GridSearchCV 模块),为了找到最好的参数和最好的模型

- ▶ 给出参数字典 param_grid:
 - key 表示模型参数
 - value 表示所有候选值
 - 技巧:根据经验和对业务的理解设置参数,再通过二分法等继续调优参数
 - 调参指南表如下:

Model	Parameters to optimize	Good range of values	
Linear Regression	fit_intercept normalize	True / False True / False	
Ridge	alpha Fit_intercept Normalize	 0.01, 0.1, 1.0, 10, 100 True/False True/False 	
k-neighbors	N_neighborsp	• 2, 4, 8, 16 • 2, 3	
SVM	C Gamma class_weight	 0.001, 0.01101001000 'Auto', RS* 'Balanced', None 	
Logistic Regression	Penalty C	• L1 or I2 • 0.001, 0.0110100	
Naive Bayes (all variations)	NONE	NONE	
Lasso	Alpha Normalize	• 0.1, 1.0, 10 • True/False	
Random Forest	 N_estimators Max_depth Min_samples_split Min_samples_leaf Max features 	 120, 300, 500, 800, 1200 5, 8, 15, 25, 30, None 1, 2, 5, 10, 15, 100 1, 2, 5, 10 Log2, sqrt, None 	
Xgboost	 Eta Gamma Max_depth Min_child_weight Subsample Colsample_bytree Lambda alpha 	• 0.01,0.015, 0.025, 0.05, 0.1 • 0.05-0.1,0.3,0.5,0.7,0.9,1.0 • 3, 5, 7, 9, 12, 15, 17, 25 • 1, 3, 5, 7 • 0.6, 0.7, 0.8, 0.9, 1.0 • 0.6, 0.7, 0.8, 0.9, 1.0 • 0.01-0.1, 1.0, RS* • 0, 0.1, 0.5, 1.0 RS*	

- ▶ 初始化 GridSearchCV 完成参数的候选操作,如: GridSearchCV(SVC(), param grid, cv=5)
- ▶ 用 fit 拟合数据集
- ▶ 得到交叉验证后的结果:
 - best_params_: 最好的参数
 - best_score_: 最高的评分
 - best_estimator_: 最好的分类器,可以直接用
 - grid_scores_: 查看所有交叉验证参数选择的结果
- 4、搭建流程(sklearn.pipeline)
- (1) Pipeline 模块
 - 用 list 初始化流水线上的所有环节,并给每个环节一个 tuple (名字,操作)
 - 可以使用 GridSearchCV 找流水线上的最优参数,注意参数名称
- (2) make_pipeline 模块
 - 不需要指定流水线上每个环节的名字

- steps 属性: 查看流程内的参数
- named steps[name]: 取出参数

四、机器学习建模实践

- 1、机器学习目的:从过去的大量数据中"总结"出来"泛化规律",用于新数据预测。
- 2、(面试) 无监督学习:
- ▶ 聚类: k-means 怎么做?如何迭代?终止条件?如何确定团 k?
 - 常用 k-means 方法: 随机初始化 k 个中心点; 对每个点找到最近的中心点并聚为一类,再对每一类更新中心点,重复迭代找到"最优的"中心点和 k 个类
 - 优化: k-means++初始化法,随机选择第一个类中心点,再依次以"大概率"选择 "距离已定中心点最近的点"作为下一个类中心点;
 - 终止条件:由于目标函数单调递减且有界,所以一定收敛,能找到最优的中心点
 - 确定团 k: 使用交叉验证法、或肘方法 (Elbow's method) 找到一个损失函数下降比较平的 k 值
- ▶ 降维: PCA
- 3、构建机器学习系统的一般流程

4、如何选择机器学习算法

5、自动特征选择

(1) sklearn.feature_selection.SelectPercentile 模块:按一定比例选择特征(存在随机性)

```
select = SelectPercentile(percentile=50)
select.fit(X_train, y_train)
# transform training set:
X_train_selected = select.transform(X_train)
print(X_train.shape)
print(X_train_selected.shape)
```

(284L, 80L) (284L, 40L)

(2) sklearn.feature_selection.SelectFromModel 模块: 基于模型的特征选择

select = SelectFromModel(RandomForestClassifier(n_estimators=100, random_state=42), threshold="median")

```
select.fit(X_train, y_train)
X_train_l1 = select.transform(X_train)
print(X_train.shape)
print(X_train_l1.shape)
```

(284L, 80L) (284L, 40L)

(3) sklearn.feature selection.RFE 模块: 递归的删除不相关的特征

```
select = RFE(RandomForestClassifier(n_estimators=100, random_state=42), n_features_to_select=40)
#select = RFE(LogisticRegression(penalty="l1"), n_features_to_select=40)
select.fit(X_train, y_train)
```

五、使用 scikit-learn 刷天池 AI 电力能耗预测大赛

- 1、知识回顾
- (1) 常用模型
- ➤ 工业界: LR、DT、RF
- ▶ 比赛: xgboost、GBDT、NN

- (2) LR: 线性回归模型的 sigmoid 函数,输出每一特征维度的概率值,对分类/回归结果的相关性一目了然,模型的可解释性强,训练快,添加特征简单,常用于征信数据中。
- (3) DT: 空间体现即用很多超平面切割样本点,生成算法有 ID3(计算原树在新特征分割下的信息增益)、C4.5(信息增益率)、CART(基尼指数)。泛化能力差,极容易过拟合。
- (4) SVM: 使用 linear 核函数即弱化成线性模型,使用 rbf 核函数具有很高的模型复杂度,能解决非线性切分问题,但在数据量大的情况下计算非常复杂。
- 2、AI 电力能耗预测大赛实现步骤
- (1) 合并数据,包括训练集和测试集;
- (2)统一做特征工程:如根据给的数据造些特征——day_of_week、day_of_month、day_of_year、month_of_year、holiday、week_of_month、period_of_month、festival 等
- (2) 拆分成训练集和测试集;
- (3) 选择合适的模型建模: LR、RF、GBDT等;
- (4) 模型融合/网格搜索交叉验证调参;
- (5) 模型评估:
- (6) 实例主函数如下:

```
if __name__ == '__main__':
   print "Loding data..
   total_df = load_data()
   print "Feature engineering..."
   total_df = feature_eng(total_df)
   print "Get features..."
   columns = get_columns(total_df)
   print "Split data..."
   train_X, test_X, train_y = split_data(total_df)
   print 'Create model...
   # model = create_rf_model(train_X, train_y)
   model = create xgb model(train X, train y)
   print 'Predict model result...'
   result df = predict model(model, test X)
   print 'Get feature importance...
   feature_imp = get_feature_imp(train_X, model)
   plot_feature_imp(train_X, train_X.columns.values, model)
```