PŘEHLED VZORCŮ A HLAVNÍCH POJMŮ

na přednáškách KMA/PSA 3. a 4. týdne ZS 2015/16

(následující bude mj. promítnuto během těchto přednášek PSA - volná místa na stránkách jsou úmyslně : po vytištění lze používat k doplnění vlastních poznámek)

Vysvětlení, použití, grafy, příklady, etc. budou na přednášce.

4. NĚKTERÁ DISKRÉTNÍ ROZDĚLENÍ

X ... diskrétní náhodná veličina

• ALTERNATIVNÍ rozdělení s parametrem $p \in (0, 1)$:

Xnabývá jen hodnot0nebo 1, přičemž $\boxed{P(0)=1-p\,,\ P(1)=p}$

Píšeme: $X \sim A(p)$.

Výpočtem: E(X) = p, D(X) = p(1-p).

• BINOMICKÉ rozdělení s parametry $n \in \mathbb{N}, \ p \in (0,1)$: X nabývá jen $0,1,\ldots,n$ a platí: $P(k) = \binom{n}{k} p^k (1-p)^{n-k}$ pro $k=0,1,\ldots,n$ Píšeme: $X \sim Bi(n, p)$

Bi(n,p)je součtem nnezáv. veličin s rozd. A(p),takže: $E(X)=n\,p\,, D(X)=n\,p\,(1-p)$

HYPERGEOMETRICKÉ rozdělení s param. $N, K, n \in \mathbb{N}, n \leq N, K \leq N$: $P(k) = \frac{\binom{K}{k} \cdot \binom{N-K}{n-k}}{\binom{N}{n}}$ pro všechna $k \in \mathbb{N} \cup \{0\}$, taková, že $k \leq K$, $0 \leq n-k \leq N-K$

$$P(k) = \frac{\binom{K}{k} \cdot \binom{N-K}{n-k}}{\binom{N}{n}}$$

Píšeme: $X \sim HG(N, K, n)$.

• POISSONOVO rozdělení s parametrem $\lambda > 0$:

X může nabývat jen hodnot $k=0,1,2,\ldots$ a platí

$$P(k) = e^{-\lambda} \cdot \frac{\lambda^k}{k!}$$
 pro $k = 0, 1, 2, \dots$

Píšeme: $X \sim Po(\lambda)$

Výpočtem: $E(X) = \lambda$, $D(X) = \lambda$

Jsou-li $X_i \sim Po(\lambda_i), i=1,2,\ldots,n$ nezávislé náh. veličiny, $X=\sum\limits_{i=1}^n X_i$, pak $X\sim Po(\lambda)$, kde $\lambda=\sum\limits_{i=1}^n \lambda_i$.

Poisson. rozdělení lze použít k aproximaci binomického rozdělení: pro $\boxed{n \geq 30}$ a $\boxed{p \leq 0, 1}$

$$Bi(n, p) \approx Po(\lambda), \quad \text{kde } \lambda = n \cdot p$$

Funkční hodnoty distribuční funkce F(x) Poissonova rozdělení bývají **tabelovány** pro některá $\lambda \leq 10$.

Pro $\lambda \geq 9$ používáme aproximaci normálním rozdělením - bude později.

5. NĚKTERÁ SPOJITÁ ROZDĚLENÍ

$X \dots$ spojitá náhodná veličina

ROVNOMĚRNÉ rozdělení na intervalu (a, b):

X má hustotu ppsti

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{pro } x \in (a,b) \\ 0 & \text{jinde.} \end{cases}$$

Píšeme: $X \sim R(a, b)$

Výpočtem: $E(X) = \frac{a+b}{2}$, $D(X) = \frac{(b-a)^2}{12}$.

EXPONENCIÁLNÍ rozdělení s parametrem $\delta > 0$:

X má hustotu

$$f(x) = \begin{cases} 0 & \text{pro } x \in (-\infty, 0] \\ \frac{1}{\delta} e^{-\frac{x}{\delta}} & \text{pro } x \in (0, +\infty) \end{cases}$$

Píšeme: $X \sim Exp(\delta)$.

 $Distribu\check{c}ni\ funkce:$

$$F(x) = \begin{cases} 0 & \text{pro } x \in (-\infty, 0] \\ 1 - e^{-\frac{x}{\delta}} & \text{pro } x \in (0, +\infty) \end{cases}$$

Výpočtem: $E(X) = \delta$, $D(X) = \delta^2$.

NORMÁLNÍ rozdělení s parametry $\mu \in \mathbb{R}$, $\sigma > 0$:

X má pro $x \in (-\infty, +\infty)$ hustotu

$$f(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}$$

(její graf je symetrický kolem přímky $x=\mu)$

Píšeme: $X \sim N(\mu, \sigma^2)$

Výpočtem lze ověřit: $E(X) = \mu \;\;, \quad D(X) = \sigma^2 \,.$

Používá se též název GAUSSOVO rozdělení.

N(0,1) . . . normované normální rozdělení

Hustota:
$$\varphi(u) = \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}}$$
, $u \in (-\infty, +\infty)$

její graf je symetrický kolem přímky $u=0,\,\mathrm{a}$ proto

distribuční funkce - píšeme $\Phi(u)$ - je tabelována jen pro $u \geq 0,$ neboť platí:

$$\boxed{\Phi(-u) = 1 - \Phi(u)}$$

Je-li F(x) distribuční funkce rozdělení $N(\mu,\sigma^2),$ pak

$$F(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$$

6. APROXIMACE NORMÁLNÍM ROZDĚLENÍM

Je-li $n \in N$ tak velké, že $n p (1-p) \ge 9$, pak

$$Bi(n,p) \approx N(np, np (1-p))$$

Je-li $\boxed{\lambda \geq 9}$, lze použít aproximaci:

$$Po(\lambda) \approx N(\lambda, \lambda)$$

Jsou-li X_1,X_2,\ldots,X_n nezávislé náhodné veličiny se stejným rozdělením, $E(X_i)=\mu_0,$ $D(X_i)=\sigma_0^2,$ pak pro "dost velké n"platí:

$$\sum_{i=1}^{n} X_i \approx N(n\mu_0, n\sigma_0^2)$$

Odtud pak: $\overline{X} = \frac{1}{n} \sum\limits_{i=1}^n X_i \approx N\left(\mu_0,\, \frac{\sigma_0^2}{n}\right)$

Mají-li X_1, X_2, \dots, X_n navíc normální rozdělení, má i jejich součet a průměr (přesně) normální rozdělení.