CSC 226 Assignment 3 Written

2) Longest	- Path (DAG G, Vertex erc.
for	all u in V where u + src do [u] = - 00
Self Cale	realization (C)
Serte	edit to pologica (Sort (61
	t in sorted[] do
F.	ralladiv to u do
	$if [D[v] < D[u] + w((u,v))$ $\mathcal{D}[v] \leftarrow D[u] + w((u,v))$
Scanned with CamScanner	

	Norwind 48	New London 54	Westerly 53	Providence	3) Providence
- 1	و د المار	18	0	53	hesterly
	12	0	. 18	54	New London
	0	12	101-20	48	Nowith
	0	/2	191-130	48	Nowich

tion: toj

(4) If $M^2(i,j) = 1$, then there is a path^involving at the most one intermediate vertex; so there exist at least one path where (i,k), (kj) $\in E$, or (i,j) $\in E$.

If M2(i,j) =0, then there is no such pate, where i.e. (i,k), (k,j) &E and (i,j) &E.

e

6

6) $M^{4}(i,j) = (M^{2}(i,1) \cdot M^{2}(l_{i,j})) + (M^{2}(i,2) \cdot M^{2}(2_{i,j})) + ... + (M^{4}(i,i) - M^{4}(i,j))$ $M^{4}(i,j) = (M^{TR}(i,1) \cdot M^{TR}(l_{i,j})) + (M^{TR}(i,2) \cdot M^{TR}(2_{i,j})) + ... + (M^{TR}(i,n) \cdot M^{TR}(n,j))$ for any $M^{4}(i,j) = (M^{4}(i,j) \cdot M^{4}(i,j)) + ... + (M^{4}(i,n) \cdot M^{4}(n,j))$ for any $M^{4}(i,j) = (M^{4}(i,j) \cdot M^{4}(i,j)) + ... + (M^{4}(i,n) \cdot M^{4}(n,j))$ for any $M^{4}(i,j) = (M^{4}(i,j) \cdot M^{4}(i,j)) + ... + (M^{4}(i,n) \cdot M^{4}(n,j))$ for any $M^{4}(i,j) = (M^{4}(i,j) \cdot M^{4}(i,j)) + ... + (M^{4}(i,n) \cdot M^{4}(i,j))$ for any $M^{4}(i,j) = (M^{4}(i,j) \cdot M^{4}(i,j)) + ... + (M^{4}(i,n) \cdot M^{4}(i,j))$ for any $M^{4}(i,j) = (M^{4}(i,j) \cdot M^{4}(i,j)) + ... + (M^{4}(i,n) \cdot M^{4}(i,j))$

5) If $M^2(i,j) = d$, then there is a directed path from i to j with at most one intermediate vertex from i to j, with a path neight d.

For Mk(i,j) = d, there is a directed path in from i to j with at most k edges, with path length d.

