INTRODUCTION TO QUANTUM INFORMATION SCIENCE

ARTUR EKERT & JORDI MUR-PETIT

4.1. **CP maps revisited.** Any linear transformation (superoperator) T acting on density matrices of a qubit can be completely characterised by its action on the four basis matrices $|a\rangle\langle b|$, where a,b=0,1, and can be represented as a 4×4 matrix,

$$\tilde{T} = \left[\begin{array}{c|c} T(\mid 0\rangle \langle 0\mid) & T(\mid 0\rangle \langle 1\mid) \\ \hline T(\mid 1\rangle \langle 0\mid) & T(\mid 1\rangle \langle 1\mid) \end{array} \right].$$

Write down \tilde{T} for:

- (1) transposition, $\varrho \mapsto \varrho^T$,
- (2) depolarising channel, $\varrho \mapsto (1-p)\varrho + \frac{p}{3} \left(\sigma_x \varrho \sigma_x + \sigma_y \varrho \sigma_y + \sigma_z \varrho \sigma_z\right)$, for some $0 \le p \le 1$.

Show that for completely positive maps T matrix \tilde{T} must be positive semidefinite.

4.2. Quantum error correction.

- (1) Draw a quantum network (circuit) that encodes a single qubit state $\alpha \mid 0 \rangle + \beta \mid 1 \rangle$ into the state $\alpha \mid 00 \rangle + \beta \mid 11 \rangle$ of two qubits. Here and in the following α and β are some unknown generic complex coefficients.
- (2) Two qubits were prepared in state $\alpha \mid 00\rangle + \beta \mid 11\rangle$, exposed to bit flip-errors, and then measured with an ancillary qubit, as shown in Fig. 1. The result of the measurement is x. Can you infer the absence of errors when x=0? Can you infer the presence of errors when x=1? Can you correct any detected errors?

Fig. 1

Fig. 2

Three qubits were prepared in state $\alpha \mid 000 \rangle + \beta \mid 111 \rangle$ and then, by mistake, someone applied the Hadamard gate to one of them, but nobody remembers which one. Your task is to recover the original state of the three qubits.

- (3) Express the Hadamard gate as the sum of two Pauli matrices. Pick up one of the three qubits and apply the Hadamard gate. How is the state $\alpha \, |\, 000 \rangle + \beta \, |\, 111 \rangle$ modified? Interpret this in terms of bit-flip and phase-flip errors.
- (4) You perform the error syndrome measurement shown in Fig. 2. Suppose the outcome of the measurement is $x_1 = 0, x_2 = 1$. How would you recover the original state? Describe the recovery procedure when $x_1 = 0, x_2 = 0$.

The figure below shows two implementations of a controlled-NOT gate acting on the encoded states of the three qubit code.

1

Implementation A

Implementation B

(5) Assume that the only sources of errors are individual controlled-NOT gates which produce bit-flip errors in their outputs. These errors are independent and occur with a small probability p. For each of the two implementations find the probability of generating unrecoverable errors at the output. Which of the two implementations is fault-tolerant?

4.3. Stabilisers define vectors and subspaces.

- (1) We say that a unitary S stabilises $|\psi\rangle$ if $S|\psi\rangle = |\psi\rangle$. Show that the set of stabilisers of $|\psi\rangle$ forms a group (known as the stabiliser group).
- (2) The *n*-qubit Pauli group is defined as

$$\mathcal{P}_n = \{\mathbb{1}, X, Y, Z\}^{\otimes n} \otimes \{\pm 1, \pm i\}$$

where X, Y, Z are the Pauli matrices. Each element of \mathcal{P}_n is, up to an overall phase ± 1 , $\pm i$, a tensor product of Pauli matrices and identity matrices acting on the *n* qubits. Show that the elements of the Pauli group either commute or anticommute.

- (3) We shall restrict our attention to stabilisers which form Abelian subgroups of \mathcal{P}_n and do not contain the element -1. Explain why all such stabilisers (except the trivial one, i.e. the tensor product of the identities) have trace zero and square to 1.
- (4) Show that each stabiliser *S* has the same number of eigenvectors with eigenvalues +1 and -1, and hence "splits" the 2^{2n} dimensional Hilbert space in half. How would you describe the action of the two operators $\frac{1}{2}(1 \pm S)$?
- (5) Consider two stabiliser generators, S_1 and S_2 . Show that eigenvalue +1subspace of S_1 is split again in half by S_2 . That is, in that subspace exactly half of the S_2 eigenvectors have eigenvalue +1 and the other half -1.
- (6) If a stabiliser group in the Hilbert space of dimension 2^n has a minimal number of generators, S_1, \ldots, S_r , what is dimension of the stabiliser subspace?
- (7) State $|0\rangle$ is stabilised by Z and state $|1\rangle$ is stabilised by -Z. What are stabiliser generators for the standard basis of two qubits, i.e. for the states $|00\rangle$, $|01\rangle$, $|10\rangle$ and $|11\rangle$? What are stabiliser generators for each of the four Bell states?
- (8) Construct stabiliser generators for an n = 3, k = 1 (n physical qubits encoding *k* logical qubits) code that can correct a single bit flip, i.e. ensure that recovery is possible for any of the errors in the set $\mathcal{E} = \{111, X11, 1X1, 11X\}$. We often drop the tensor product symbol, Find an orthonormal basis for the two-dimensional code subspace.
- (9) Describe the subspace fixed by the stabiliser generators $X \otimes X \otimes \mathbb{1}$ and $\mathbb{1} \otimes \mathbb{1}$ $X \otimes X$ and its relevance for quantum error correction.
- (10) Let S_1 and S_2 be stabiliser generators for a two qubit state $|\psi\rangle$. The state is modified by a unitary operation U. What are the stabiliser generators for $U | \psi \rangle$?
- (11) Step through the circuit

Hint: Show that Tr $\frac{1}{2}(\mathbb{1} + S_1)S_2 = 0$.

e.g. $\mathbb{1} X \mathbb{1} \equiv \mathbb{1} \otimes X \otimes \mathbb{1}$

Here S is a phase gate: $|0\rangle \mapsto |0\rangle$ and $|1\rangle \mapsto i|1\rangle$. writing down quantum states of the two qubits after each unitary operation and their respective stabiliser generators. How would you describe the action of the three gates, *H*, *S* and controlled-NOT, in the stabiliser language?

4.4. Shor's 9-qubit code. Use 8 stabiliser generators for Shor's 9-qubit code and explain why this code can correct an arbitrary single-qubit error. In fact, it can also X_i , Y_i , or Z_i represents X, Y, or Z applied to the i-th qubit. correct some multiple-qubit errors. Which of the following errors can be corrected by the nine-qubit code: X_1X_3 , X_2X_7 , X_5Z_6 , Z_5Z_6 , Y_2Z_8 ?