Lecture Notes for **Machine Learning in Python**

Professor Eric Larson

Optimizing Neural Networks

Class Logistics and Agenda

- Logistics
 - Grading
 - Flipped Module
- Agenda:
 - Practical Multi-layer Architectures
 - Programming Examples and Adaptive Eta's
- Next Time: More MLPs

Class Overview, by topic

Semester Summary, so far!

- Adaline network, Widrow and Hoff, 1960
 - · iterative linear regression
- Perceptron
 - with sigmoid: logistic regression
- One-versus-all implementation is the same as having **w**_{class} be rows of weight matrix, **W**
 - works in adaline
 - works in logistic regression

these networks were created in the 50's and 60's but were abandoned

why were they not used?

The First Al Winter (if not covered already)

The Rosenblatt-Widrow-Hoff Dilemma

 1960's: Rosenblatt got into a public academic argument with Marvin Minsky and Seymour Papert

"Given an elementary α -perceptron, a stimulus world W, and any classification C(W) for which a solution exists; let all stimuli in W occur in any sequence, provided that each stimulus must reoccur in finite time; then beginning from an arbitrary initial state, an error correction procedure will always yield a solution to C(W) in finite time..."

Minsky and Papert publish limitations paper, 1969:

"the style of research being done on the perceptron is doomed to failure because of these limitations."

- Widrow and Rosenblatt try to build bigger networks without limitations and fail
 - Neural Networks research basically stops for 17 years
- Until: researchers revisit training bigger networks
 - Neural Networks with multiple layers

Stable Training of Multi-layer Architectures: history

- 1986: Rumelhart, Hinton, and Williams popularize gradient calculation for multi-layer network
 - technically introduced by Werbos in ~1982
- difference: Rumelhart et al. validated ideas with a computer
- until this point no one could train a multiple layer network consistently
- algorithm is popularly called **Back-Propagation**
- wins pattern recognition prize in 1993, becomes de-facto machine learning algorithm until: SVMs and Random Forests in ~2004
- would eventually see a resurgence for its ability to train algorithms for Deep Learning applications: **Hinton is widely considered the**

founder of deep learning

David Rumelhart

Geoffrey Hinton

Review: Back propagation

- Optimize all weights of network at once
- Steps:
 - 1. Forward propagate to get all **Z**(1), **A**(1)
 - 2. Get final layer gradient
 - 3. Back propagate sensitivities
 - 4. Update each **W**(1)

$$J(\mathbf{W}) = \| \mathbf{Y} - \hat{\mathbf{Y}} \|^{2}$$

$$w_{i,j}^{(l)} \leftarrow w_{i,j}^{(l)} - \eta \frac{\partial J(\mathbf{W})}{\partial w_{i,j}^{(l)}}$$

$$b_{i}^{(l)} \leftarrow b_{i}^{(l)} - \eta \frac{\partial J(\mathbf{W})}{\partial b_{i}^{(l)}}$$

**Recall from Flipped Assignment!

Review: Back Propagation Summary

4. Update each **W**(1), **b**(1)

$$\mathbf{V}^{(1)} = \mathbf{A}^{(2)} * (1 - \mathbf{A}^{(2)}) * [\mathbf{W}^{(2)}]^T \cdot \mathbf{V}^{(2)}$$

$$\nabla^{(1)} = \mathbf{V}^{(1)} \cdot [\mathbf{A}^{(1)}]^T$$

$$\mathbf{W}^{(l)} \leftarrow \mathbf{W}^{(l)} - \eta \nabla^{(l)}$$

Where is the problem of vanishing gradients introduced?

**Recall from Flipped Assignment!

Lightning Demo

07a. MLP Neural Networks with bias.ipynb

same as Flipped Assignment! with regularization and vectorization and mini-batching

A.
$$\mathbf{z} = \mathbf{W} \cdot \mathbf{a}_{bias}$$
 old notebooks

B.
$$\mathbf{z} = \mathbf{W} \cdot \mathbf{a} + \mathbf{b}$$
 new notebook!

Optimization Heuristics

```
def print_message(num_of_times) {
    for i in range(num_of_times) {
        print("Bython is awesome!");
    }
}

if __name__ == "__main__" {
    print_message(10);
}
```

Bython

Python with braces. Because Python is awesome, but whitespace is awful.

Bython is a Python preprosessor which translates curly brackets into indentation.

A new Loss landscape

What are some optimization problems?

- A. There are many local optima that gradients will be fooled by
- B. There are many interconnected parameters that change each other
- C. There are large flat areas in the loss function, where the gradient is small
- D. All of the above

Mini-batching

- Numerous instances to find one gradient update
 - solution: mini-batch

shuffle ordering each epoch and update W's after each batch

- Remaining problems: there might be many local optima...
 - solutions:
 - · momentum
 - adaptive learning rate (cooling)

Momentum and Cooling Intuition

Topological

Momentum

$$\mathbf{W}_{k+1} = \mathbf{W}_k - \rho_k$$

Momentum

$$\rho_k = \eta \cdot \nabla J(\mathbf{W}_k) + \alpha \cdot \rho_{k-1}$$

Nesterov's Accelerated Gradient

$$\rho_k = \beta \nabla J \left(\mathbf{W}_k + \alpha \nabla J(\mathbf{W}_{k-1}) \right) + \alpha \nabla J(\mathbf{W}_{k-1})$$
step twice

Cooling (Learning Rate Reduction)

· Fixed Reduction at Each Epoch, k

$$\eta_k = \eta_0 \cdot d^{\lfloor rac{k_{max}}{k}
floor}$$
drop by d every $\eta_k = \eta_0^{(1+k\cdot d)}$ drop a little every epoch

- · Adjust on Plateau
 - · make smaller when J rapidly changes
 - · make bigger when J not changing much

Learning Rate Schedules

- Many scheduling rate functions exist and can be different for each application
- Some first increase plate and then decrease

Demo

07. MLP Neural Networks.ipynb

comparison:

mini-batch momentum adaptive learning rate L-BFGS (if time)

$$\rho_k = \eta \cdot \nabla J(\mathbf{W}_k) + \alpha \cdot \rho_{k-1}$$

$$\eta_k = \eta_0^{(1+k\cdot d)}$$

