

PCS3413

Engenharia de Software e Banco de Dados

Aula Views e Sequencias

Segurança em Banco de dados

VIEWS

Segurança em Banco de Dados

- proteção dos dados contra acessos não autorizados
 - restrições no emprego de operações.
 - visão parcial dos dados:
 - Permite especificar o que usuários/aplicações terão acesso.
 - Nem sempre é desejável que todos os usuários tenham acesso a todas as informações de uma tabela. Aspectos de segurança podem exigir que determinados dados não estejam disponíveis para todos os usuários

Visão Parcial dos

ANSI (American National Standards Institute) SPARC (Standards Planning and Requirements Commitee)

Arquitetura ANSI/SPARC

ou Esquema conceitual

exemplo do Esquema Lógico

```
representação relacional
```

não é o único formalismo

ansi/ sparc

```
relation FUNC [
                                      relation PAG [
   key = \{FNO\}
                                          key = {CARGO}
   attributes = {
                                         attributes = {
    FNO: character(9)
                                           CARGO: character(10)
    FNOME: character(15)
                                           SALARIO: numeric(6) }]
    CARGO : character(10) }]
                                      relation DESIG [
relation PROJ [
                                          key = \{FNO, PNO\}
   key = \{PNO\}
                                         attributes = {
                                           FNO: character(9)
   attributes = {
    PNO: character(7)
                                           PNO: character(7)
    PNOME : character(20)
                                           RESPONSAVEL: character(10)
                                           DURAÇÃO : numeric(3) }]
    ORCAMEN : numeric(7) }]
```

exemplo do Esquema Interno

```
internal_rel FUNCL [
  index on FNO call FMINX
  field = {
    CABEÇALHO : byte(1)
    FNO: byte(9)
    FNOME : byte(15)
    CARGO : byte(10) }]
```

ansi/ sparc

Esquema Externo ou Visão (View)

Create view nomeView as <expressão da consulta>

definição da visão

 Exemplo 1 – relatório sobre orçamento de cada projeto

create view

budget (NOME, ORCAMEN)

as select PNOME, ORCAMEN from PROJ

utilização da visão

lista de todos os projetos com orçamento de 100mil

select nome as Projeto from budget where orcamen = 100000;

views - continuação

- Pode-se definir visões a partir de visões.
- Pode-se eliminar visões
 - drop view budget
- Operações sobre visões
 - normalmente só se faz busca sobre visões.
 - problemas em atualizações de visões:

problemas em atualizações de views

create view INFO
as select distinct rua, cidade
from clientes

CLIENTE

nome_cli	rua	cidade	
João	azul	SP	
Maria	amarela	RN	
Ana	branca	RJ	
José	amarela	RN	

rua	cidade	
azul	SP	
amarela	RN	
branca	RJ	

Modificações em tabelas

CLIENTE

nome_cli	rua	cidade	
João	azul	SP	
Maria	amarela	RN RJ	
Ana	branca		
José	amarela	RN	
Bruno	verde	SP	

Toda atualização na tabela gera automaticamente a atualização nas views associadas

Select * From INFO;

rua	cidade	
azul	SP	
amarela	RN	
branca	RJ	
verde	SP	

E modificações nas views?

Insert

INFO

rua	cidade				
azul	SP				
amarela	RN	CL	IENTE		
Branca	RJ	nor	nome_cli	rua	cidade
2161136			João	azul	SP
preto	RJ	1	Maria	amarela	RN
		•	Ana	branca	RJ
			José	amarela	RN
			?	preto	RJ

Delete

INFO

Update

Pior caso: visão é uma combinação de mais de uma tabela

Proteção de Dados

usuários não autorizados não podem acessar o dado

criptografia dados residentes em disco dados que trafegam em rede

Ref. Silberschatz, A.; Korth, H. Suddarshan, S. Sistemas de BD. – Tópico: Segurança

Autorização sobre operações

- usuários só podem executar operações que foram autorizadas.
 - usuários diferentes tem direitos diferentes sobre os mesmos objetos no banco de dados.
 - # é preciso definir usuário ou grupos de usuários, objetos e direitos

Autorização sobre operações - continuação

♯ controle de autorização: (usuário, operação e objeto)

tipo de objeto (relação, tupla, atributo, visão)

Direitos:

grant <tipo-de-operação> on <objeto> to <usuário>
revoke <tipo-de-operação> from <objeto> to <usuário>

Autorização sobre operações - continuação

Exemplos:

postgre não permite a autorização por campos

grant select on conta to José, Maria; grant update (saldo) on conta to Maria;

privilégios de usuários sobre objetos, registrados no catálogo ou dicionário de dados como regra de autorização

mais exemplos - continuação

 permite ao usuário Maria criar referências a campos de outras tabelas:

grant references (cargo) on PAG to Maria;

quando permite-se que um usuário crie referências a um campo, estamos modificando as permissões sobre a tabela referenciada — determinado usuário pode não mais conseguir remover um determinado cargo de PAG sem alterar também a tabela que contém a referencia.

mais exemplos - continuação

• public refere-se a todos os usuários (atuais e futuros) do sistema

grant select on PAG to public
 dá a Maria todos os privilégios sob a tabela
 grant all privileges on PAG to Maria

grant select on PAG to Maria with grant option

dá a Maria privilégio para fornecer privilégio de select sob a tabela PAG para outro usuário

Autorização sobre alterações no esquema:

- riação de novas tabelas
- alteração de tabelas (atributos)
- eliminação de tabelas
- riação de índices
- eliminação de índices

SEQUÊNCIAS NO POSTGRESQL

Sequências

Pode-se usar um gerador de sequências

```
CREATE [ TEMPORARY | TEMP ] SEQUENCE nome

[ INCREMENT [ BY ] incremento ]

[ MINVALUE minvalor | NO MINVALUE ]

[ MAXVALUE maxvalor | NO MAXVALUE ]

[ START [ WITH ] início ]

[ CACHE cache ]

[ [ NO ] CYCLE ]
```

OBS: o nome da sequência deve ser diferente do de outra sequência, tabela, view ou índice existentes.

Parâmetros

- Temporary or Temp a sequência é criada somente para esta sessão e é automaticamente removido no fim da sessão.
- Nome o nome da sequência a ser criada.
- INCREMENT BY incremento: especifica que o valor a ser adicionado ao valor corrente da sequência para criar um novo valor. Um valor positivo resultará numa sequência crescente e, um valor negativo numa sequência decrescente. A cláusula é opcional. O valor default é 1.
- MINVALUE minvalor | NO MINVALUE : determina o valor mínimo que pode ser gerado para a sequência. Caso a cláusula seja omitida ou a opção NO MINVALUE seja especificada, então o valor default será usado. Os defaults são 1 e -2⁶³ -1 para sequências crescente e decrescentes, respectivamente.
- MAXVALUE maxvalor | NO MAXVALUE: similar ao anterior, só que determina o valor máximo. Na omissão da cláusula ou uso de NO MAXVALUE os valores default são usados. Os defaults são 2⁶³ -1 e -1 para sequências crescente e decrescente, respectivamente.
- START [WITH] início: permite que a sequência inicie em qualquer ponto. O valor default inicial é o minvalor para sequência crescente e maxvalor para sequência decrescente.

- CACHE cache: especifica quantos números da sequência serão pré-alocados e armazenados em memória para acesso rápido. O valor mínimo é 1 (somente um valor pode ser gerado por vez, isto é, não cache), e este é o default.
- [NO] CYCLE: permite recomeçar a sequência quando o valor máximo (maxvalor) ou o valor mínimo (minvalor) for atingido para uma sequência crescente ou decrescente respectivamente. Se o limite for atingido, o próximo número gerado será o minvalor ou o max valor, respectivamente.
 - Se NO CYCLE é especificado, qualquer chamada para o próximo valor (nextval) retornará um erro. Se nem CYCLE ou No CYCLE for especifiado, o default é NO CYCLE.

Manipulação da sequência

- nextval (text)
 - retorna o novo valor da sequência (avança a sequência). O tipo de dado retornado é do tipo bigint.
- Currval (text)
 - retorna o valor corrente da sequência (valor mais recente gerado com nextval).

select currval ('text')

• Verifique a sequência:

Select * from nome_sequencia

exemplos

CREATE [TEMPORARY | TEMP] SEQUENCE nome
[INCREMENT [BY] incremento]

[MINVALUE minvalor | NO MINVALUE]

[MAXVALUE maxvalor | NO MAXVALUE]

[START [WITH] inicio]

[CACHE cache]

[[NO] CYCLE]

- Cria uma sequência de nome serial que inicia em 101
 CREATE SEQUENCE serial START 101
- Seleciona o próximo número da sequência:
 SELECT nextval ('serial');
- 3. Remove a sequência:

 Drop sequence nome