

OTIMIZAÇÃO CONVEXA CAPÍTULO 22

Def. gráfico de uma função

O gráfico de $f:\Omega o\mathbb{R},\Omega\subset\mathbb{R}^n$, é o conjunto de pontos em $\Omega imes\mathbb{R}\subset\mathbb{R}^{n+1}$ dado por

$$\left\{egin{pmatrix} x \ f(x) \end{pmatrix}: x \in \Omega
ight\}$$

Def. epígrafe de uma função

A epígrafe de uma função $f:\Omega o\mathbb{R},\Omega\subset\mathbb{R}^n$, representada por epi(f), é o conjunto de pontos em $\Omega imes\mathbb{R}$ dado por

$$\left\{egin{pmatrix} x \ eta \end{pmatrix}: x \in \Omega, eta \in \mathbb{R}, eta \geq f(x)
ight\}$$

Def. função convexa

Uma função $f:\Omega \to \mathbb{R}, \Omega \subset \mathbb{R}^n$, será *convexa em* Ω se epi(f) for um conjunto convexo.

Se uma função $f:\Omega \to \mathbb{R}, \Omega \subset \mathbb{R}^n$, for convexa em Ω , então Ω é um conjunto convexo.

Obs 1: Toda projeção orthogonal de um conjunto convexo é um conjunto convexo.

Obs 2: O conjunto Ω , domínio de f, é a projeção orthogonal de epi(f) sobre \mathbb{R}^n .

Uma função $f:\Omega \to \mathbb{R}$, definida em um conjunto convexo $\Omega \subset \mathbb{R}^n$ será convexa se, e somente se, $\forall x,y \in \Omega$ e $\forall \alpha \in (0,1)$, tivermos

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y).$$

Suponha que f e g sejam funções convexas, então, para qualquer $\kappa \geq 0$, as funções κf e f+g também são convexas.

Def. função estritamente convexa

Uma função $f:\Omega\to\mathbb{R}$, definida em um conjunto convexo $\Omega\subset\mathbb{R}^n$, será estritamente convexa se $\forall x,y\in\Omega,x\neq y$ e $\alpha\in(0,1)$, tivermos

$$f(\alpha x + (1 - \alpha)y) < \alpha f(x) + (1 - \alpha)f(y).$$

Def. função côncava

Uma função $f:\Omega\to\mathbb{R}$, definida em um conjunto convexo $\Omega\subset\mathbb{R}^n$, será (estritamente) côncava se -f for (estritamente) convexa.

Exercício:

A função $f(x)=x_1x_2$ é convexa em $\Omega\equiv\{x:x_1\geq 0,x_2\geq 0\}$?

Proposição.

Uma forma quadrática $f:\Omega o\mathbb{R}$, $\Omega\subset\mathbb{R}^n$, dada por $f(x)=x^tQx$ com

$$Q \in \mathbb{R}^{n imes n} \;\; ext{ e } \;\; Q = Q^t \;\; ext{(matriz simétrica)},$$

será convexa em Ω se, e somente se, $\forall x,y\in \Omega$, tivermos

$$(x-y)^t Q(x-y) \ge 0,$$

ou seja, Q é uma matriz semidefinida positiva.

Exercício:

Retornando à função $f(x)=x_1x_2$, mostre que f pode ser escrita como

$$f(x) = x^t Q x$$
 (forma quadrática),

mas Q não será uma matriz semidefinida positiva.

Seja $f:\Omega\to\mathbb{R}, f\in\mathcal{C}^1$, definida em um conjunto aberto e convexo $\Omega\subset\mathbb{R}^n$. Então, f será convexa em Ω se, e somente se, $\forall x,y\in\Omega$, tivermos

$$f(y) \geq f(x) +
abla f(x)(y-x).$$

Seja $f:\Omega\to\mathbb{R}, f\in\mathcal{C}^2$, definida em um conjunto aberto e convexo $\Omega\subset\mathbb{R}^n$. Então, f será convexa em Ω se, e somente se, $\forall x\in\Omega$, a matriz hessiana $\nabla^2 f(x)$ for semidefinita positiva.

Exercício:

Determine se as funções abaixo são convexas, côncavas ou nenhuma das duas.

(1) $f:\mathbb{R} \to \mathbb{R}$,

$$f(x) = -8x^2$$
.

(2) $f:\mathbb{R}^3 o\mathbb{R},$

$$f(x)=4x_1^2+3x_2^2+5x_3^2+6x_1x_2+x_1x_3-3x_1-2x_2+15.$$

(3) $f:\mathbb{R}^2 o\mathbb{R},$

$$f(x)=2x_1x_2-x_1^2-x_2^2.$$

Se $f:\Omega \to \mathbb{R}$ é função convexa, então, em Ω , todo minimizador local de f também será um minimizador global.

Lema.

Se $g:\Omega o\mathbb{R}$ for uma função convexa, então, para cada $c\in\mathbb{R}$, o conjunto $\Gamma_c=\{x\in\Omega:g(x)\leq c\}$ será convexo.

Corolário.

Se $f:\Omega \to \mathbb{R}$ for uma função convexa, então o conjunto de minimizadores globais de f em Ω será convexo.

Lema.

Sejam $f:\Omega\to\mathbb{R}$ uma função convexa de classe \mathcal{C}^1 em um conjunto aberto contendo $\Omega\subset\mathbb{R}^n$. Suponha que $x^*\in\Omega$ é tal que, $\forall x\in\Omega$, $x\neq x^*$, temos

$$\nabla f(x^*)(x-x^*) \ge 0.$$

Sejam $f:\Omega\to\mathbb{R}$ uma função convexa de classe \mathcal{C}^1 em um conjunto aberto contendo $\Omega\subset\mathbb{R}^n$. Suponha que $x^*\in\Omega$ é tal que, para qualquer direção viável d em x^* , temos

$$d^t
abla f(x^*) \geq 0.$$

Corolário.

Seja $f:\Omega o\mathbb{R}$ uma função convexa de classe \mathcal{C}^1 . Suponha que $x^*\in\Omega$ é tal que

$$abla f(x^*) = 0.$$

Sejam $f:\Omega o\mathbb{R}$ uma função convexa de classe \mathcal{C}^1 em

$$\Omega = \{x \in \mathbb{R}^n : h(x) = 0\},$$

onde $h:\mathbb{R}^n o\mathbb{R}^m$, $h\in\mathcal{C}^1$. Suponha que existam $x^*\in\Omega$ e $\lambda^*\in\mathbb{R}^m$ tais que

$$abla f(x^*) + (\lambda^*)^t
abla h(x^*) = 0.$$

Teorema. Condições de Karush-Kuhn-Tucker (KKT)

Sejam $f:\Omega o\mathbb{R}$ uma função convexa de classe \mathcal{C}^1 em

$$\Omega = \{x \in \mathbb{R}^n : h(x) = 0\},$$

onde $h:\mathbb{R}^n o\mathbb{R}^m$, $g:\mathbb{R}^n o\mathbb{R}^p$, $h,g\in\mathcal{C}^1$. Suponha que existam $x^*\in\Omega$, $\lambda^*\in\mathbb{R}^m$ e $\mu^*\in\mathbb{R}^p$ tais que

- (1) $\mu^* \geq 0$.
- (2) $abla f(x^*) + (\lambda^*)^t
 abla h(x^*) + (\mu^*)^t
 abla g(x^*) = 0.$
- (3) $(\mu^*)^t g(x^*) = 0$.

FIM