# **ABSTRACT**

Due to the climate of India, it is prone to many kinds of natural disaster at different times of the year. For this the Government of India has allocated two types of funds -State Disaster Response Fund (SDRF) and National Disaster Response Fund (SDRF). In this project we are mostly interested in SDRF. For SDRF, the contribution is made by both the Central Government and State Governments for all states. The SDRF shall be used only for meeting the expenditure for providing immediate relief to the victims of cyclone, drought, earthquake, fire, flood, tsunami, hailstorm, landslide, avalanche, cloud burst, pest attack and frost & cold wave. Initially we do an exploratory analysis to find the insight of the data, association and pattern.

Next, we try to see any particular factors like population, area and coastline length of the states are affecting the allocation of SDRF. So we only focus on the 9 states with coastline areas (West Bengal, Madhya Pradesh, Maharashtra, Tamil Nadu, Kerala, Karnataka, Goa, Gujrat and Odisha). We also check the assumptions of our model and if any assumption is violated(i.e if the data has heteroscedasticity or multicollinearity or autocorrelation) we will take measures to remove any model inadequacies.

Lastly we would like to do a time series analysis on the data mainly to forecast the 2024 SDRF for the 28 states. Our entire analysis will be focused within the period 2011-2023 and will check how close the forecasted SDRF values are for year 2024(the 2024 data has released recently). We also want to do a bivariate time series to incorporate any possible correlation between states and central to get better results.

# **CONTENTS**

| 1. | Introduction                                                                  | 4   |
|----|-------------------------------------------------------------------------------|-----|
| 2. | About the Data                                                                | 5   |
| 3. | Data Source                                                                   | 5   |
| 4. | Objective                                                                     | .5  |
| 5. | Methodology                                                                   | .6  |
|    | 5.1Visualization of Data                                                      |     |
|    | 5.1.1 Pie-Doughnut chart for SDRF state share                                 | 7   |
|    | 5.1.2 Pie-Doughnut chart for SDRF central share                               | 8   |
|    | 5.2Exploratory study on SDRF data                                             |     |
|    | 5.2.1 Clustering using k-medoids                                              | 9   |
|    | 5.2.2 Rank Correlation Test                                                   | .15 |
|    | 5.3Fitting of Linear Regression                                               |     |
|    | 5.3.1. Fitting Multiple regression on the states with distinct coastline area | .16 |
|    | 5.3.2 checking for inadequacies in the model                                  | 18  |
|    | 5.4Forecasting for 2024                                                       |     |
|    | 5.4.1 Forecasting using univariate time series                                | 20  |
|    | 5.4.2 Forecasting using Vector Autoregressive Model                           | 28  |
| 6. | Conclusion                                                                    | 33  |
| 7. | References                                                                    | 34  |
| 8. | Appendix                                                                      |     |
|    | (a) Data tables for calculations                                              | 35  |
|    | (b) The R code                                                                | 38  |

## 1.INTRODUCTION:

India is a large country with a geographical area of 3.28 million sq. kms. Situated between the latitudes 8 4' N and 37 6' N and Longitudes 68 7' E and 97 25', India has a tropical and subtropical Climate. The country is bounded in the north by the Himalayan mountain ranges . India, on account of its geographical position, climate and geological setting, has had from time immemorial, a fair share of natural disasters. There is hardly a year when some part of the country or other does not face the spectre of drought, due to the failure of monsoons in vulnerable areas. One or two cyclones strike the peninsular region of the country every year. Similarly, floods are a regular feature of the Eastern India where Himalayan rivers inundate large parts of its catchment areas uprooting people, disrupting livelihood and damaging infrastructure. The fragility of the Himalayan mountain ranges are a continuing source of concern for their high vulnerability to earthquakes, landslides and avalanches. The recent earthquakes in Maharashtra and Madhya Pradesh have demonstrated that the areas considered comparatively safe till now, are really not so. Some of the most common natural disasters in India are -flood ,drought ,avalanches, cyclone, earthquake and landslides.

The Government allots annual funding to each state in response to the natural disaster and for providing immediate relief to the victims.

#### State Disaster Response Fund (SDRF) and National Disaster Response Fund (NDRF)

The Government of India supplements the effort of the State Government by providing assistance for relief of immediate nature through two ways (i) State Disaster Response Fund (SDRF) and (ii) National Disaster Response Fund (NDRF) as per established procedure.

The allocation of funds under SDRF and NDRF is based on the recommendations of the successive Financial Commissions. For SDRF, the contribution is made by the Central Government and State Governments.

In this project we mainly focus on the State Disaster Response Fund (SDRF) considering both central share and state share for analysis.

# **2.ABOUT THE DATA**

The following data consists of 13(+1) years of allocated State Disaster Response Fund (SDRF) (including both central and states share) for 29 states from year 2011 to 2023. The 2024 SDRF data is also collected after the national budget is sanctioned.

**Disaster (s) covered under SDRF:** Cyclone, drought, earthquake, fire, flood, tsunami, hailstorm, landslide, avalanche, cloudburst, pest attack, frost and cold waves.

The State Disaster Response Fund (SDRF), constituted under Section 48 (1) (a) of the Disaster Management Act, 2005, is the primary fund available with State Governments for responses to notified disasters. The Central government also contributes a significant amount.

# 3.SOURCE OF THE DATA

The State Disaster Response Fund data is collected from the following website:

## https://ndmindia.mha.gov.in/response-fund

The population and density of states data is collected from

https://en.wikipedia.org/wiki/List of states in India by past population

the coastline length data is collected from:

https://testbook.com/ias-preparation/coastal-states-of-india

# 4.OBJECTIVE

The main objective of this project is to

- 1. Forecast of State Disaster Response Fund (SDRF), using time series analysis
- **2.** To see if there is any influence of area, population and coastline length on the SDRF allocation on certain states.

# **5.METHODOLOGY**

### 5.1 Visualisation

- The data collected on State Disaster Response Fund (SDRF) for both state and central share for 29 states from the year 2011-2023 has been organised into two tables for time series analysis:
- 1. For state share
- 2. For Central share

Firstly, we visualize our data

So we take the means SDRF for each state over 13 years and draw the doughnut diagrams accordingly:

### 5.1.1 Doughnut chart for SDRF state share

Fig5.1.1: Chart showing State Disaster Response Fund (SDRF) state share



Comment: The doughnut chart shows with the most fund gets allocated to Odisha, Maharashtra, Gujrat, Madhyapradesh, Haryana, Rajasthan and Tamil Nadu.

## 5.1.2 Doughnut chart for SDRF central share

Fig5.1.2: Chart showing State Disaster Response Fund (SDRF) central share



Comment: The doughnut chart shows with the most fund gets allocated to Odisha ,Maharashtra,Gujrat ,Madhyapradesh, Haryana, Rajasthan and Tamil Nadu.

## Information regarding Natural disaster and the states associated with it.

Table 5.1.1Breakdown of natural disasters in India per type of event and nature of losses

|             | Natural disasters | Material loss | Human loss |
|-------------|-------------------|---------------|------------|
| Floods      | 52%               | 63%           | 32%        |
| Hurricanes  | 30%               | 19%           | 32%        |
| Landslides  | 10%               | -             | 2%         |
| Earthquakes | 5%                | 10%           | 33%        |
| Droughts    | 3%                | 5%            | 1%         |
| Total       | 100%              | 100%          | 100%       |

Table 5.1.2 List of major natural disasters that have occurred over the last 20 years in India

| Date              | Place                   | Nature of the event | Economic<br>losses<br>(in billio | losses | Number<br>of<br>fatalities | Number of affected persons               |
|-------------------|-------------------------|---------------------|----------------------------------|--------|----------------------------|------------------------------------------|
| May 2020          | West Bengal             | Hurricane<br>Amphan | 13.5                             | ND     | 103                        | 500 000<br>homeless                      |
| August<br>2018    | Kerala                  | Floods              | 3.52                             | 0.37   | 504                        | 223 139<br>homeless                      |
| November<br>2015  | Chennai<br>(Tamil Nadu) | Floods              | 2.37                             | 0.98   | 289                        | -                                        |
| April 2015        | Himalaya                | Storm               | -                                | -      | 78                         | 20 000 injured                           |
| October<br>2014   | Andhra<br>Pradesh       | Storm               | 7.56                             | 0.68   | 68                         | 43 injured                               |
| September<br>2014 | Jammu and<br>Kashmir    | Floods              | 6.45                             | 0.26   | 665                        | -                                        |
| June 2013         | Uttarranchal            | Floods              | 1.21                             | 0.55   | 5 748                      | 4 473 injured<br>271 931<br>homeless     |
| September<br>2009 | Andhra<br>Pradesh       | Floods              | 5.63                             | 0.06   | 300                        | 2 000 000<br>homeless                    |
| August<br>2006    | Gujarat                 | Floods              | 4.3                              | 0.52   | 350                        | 4 000 000<br>homeless                    |
| July 2005         | Maharashtra             | Floods              | 4.36                             | 0.93   | 1 150                      | 15 000<br>homeless                       |
| January<br>2001   | Gujarat                 | Earthquake          | 6.13                             | 0.14   | 19 737                     | 166 850 injured<br>1 790 000<br>homeless |

Source: <a href="https://www.atlas-mag.net/en/article/natural-disasters-risk-in-india">https://www.atlas-mag.net/en/article/natural-disasters-risk-in-india</a>

Note: The most occurring disasters are noted in states -Maharasthra, Gujrat, Andra Pradesh ,West Bengal and some more mentioned in the above table. Hence they are allocated with more disaster funds. Interesting enough most of this states mentioned above contain prominent coastline areas, so we may want to check if the length of coastline has any effect or not. Also most of the state are moderately large in population and area. We will also take that into account.

# 5.2 Explorative Study on SDRF data

First we cluster the data and see if there is any interesting feature of fund allocation from state or central for any state:

### 5.2.1 Clustering using K-medoid

The K-Medoids algorithm is similar to the K-Means Algorithm, the only difference being that the clusters are centered on their medians, not their means. The algorithm divides the dataset into k (where k is specified from beforehand) clusters or groups, in such a manner that that variation within each cluster is minimized. This ensures that the observations within a cluster are as similar to each other as possible, and the clusters themselves are such that the properties of one cluster are distinct from the other clusters. In our context, this would ensure that each cluster would contain countries with distinct socio-economic conditions, and the countries within a cluster would be as similar to each other as possible. Here, similarity is measured in terms of Euclidean distance.

Let,  $C_1$ ,  $C_2$ ,  $C_3$ ,..., $C_k$  denote the sets containing the indices of the observations belonging to the k clusters. Then we have:

- $C_1 \cup C_2 \cup ... \cup C_k = \{1,...,n\}$  this means that each observation belongs to at least one cluster.
- $C_1 \cap C_2 \cap ... \cap C_k = \emptyset$  this means that no observation can belong to more than one cluster simultaneously.

## The Algorithm

- <u>Step 1:</u> A number from {1, 2,..., k} is randomly assigned to each of the observations. These are the initial cluster assignments; the observations start out as belonging to the cluster they have been assigned.
- <u>Step 2:</u> The p-feature median is computed for each cluster.
- <u>Step 3:</u> Then each observation is assigned to the cluster whose median it is closest to. Here, closeness is defined in terms of Euclidean distance.
- <u>Step 4:</u> Steps 2 and 3 are repeated till the cluster assignments stop changing, that is, convergence is achieved.

- For a cluster  $C_k$  the within cluster sum of squares  $W(C_k)$  is a measure of how much the observations inside the cluster  $C_k$  differ from each other. So, our objective is to minimize:
- $minC_1,...,C_k \sum W(C_k)$
- We achieve this using the concept of Euclidean distance. The within-cluster variation for the k th cluster is the sum of all of the pairwise squared Euclidean distances between the observations in that cluster, divided by the total number of observations in the cluster. The within cluster sum of squares for the cluster Ck can alternatively also be defined as:
- $W(C_k) = (1/|C_k|) \sum \sum (xij xi'j)^2$
- Where:  $|C_k|C_k$  denotes the number of observations in the k-th cluster.
- Thus, within cluster sum of squares for each cluster is written in terms of the squared Euclidean distance.
- The problem now becomes to minimize:
- $\min C_1, \dots, C_k \sum_{k'=1}^k \frac{1}{|C'k|} \sum_{i,i' \in C'k} \sum_{j=1}^p (xij xi'j)$
- This is achieved with the help of the algorithm. This algorithm is run on our dataset.
  However, before we can finalize the number of clusters and further study them, we
  need to determine the optimum number of clusters. In order to do so, we use the
  Elbow Method.
- We run the algorithm on the dataset for a range of k. Next, we plot the total within sum of squares, summed over all the clusters, versus k.

Results

Now we cluster the data on the basis of the budgets allotted by SRDF over the course of 13 years. Here we take the 13 years of SRDF fund for each state as the data points

For SRDF state share

Elbow method:

We run the algorithm on the dataset for a range of k. Next, we plot the total within sum of squares, summed over all the clusters, versus k.

Fig 5.2.1



Clearly the optimum no of clusters we need is 2

So the clusters are as follows:

Fig -5.2.2



Now we study the characteristics of both the clusters:

Table 5.2.1 table showing cluster means

| Year | Cluster 1 means | Cluster 2 means |
|------|-----------------|-----------------|
| 2011 | 415.677         | 101.07526       |
| 2012 | 436.471         | 115.70895       |
| 2013 | 458.293         | 111.43632       |
| 2014 | 481.207         | 117.00842       |
| 2015 | 480.144         | 122.86000       |
| 2016 | 769.400         | 178.26316       |
| 2017 | 807.900         | 187.15789       |
| 2018 | 848.200         | 196.42105       |
| 2019 | 890.800         | 206.15789       |
| 2020 | 935.100         | 215.10526       |
| 2021 | 531.700         | 78.00000        |
| 2022 | 425.360         | 62.40000        |
| 2023 | 446.560         | 65.47368        |

Studying the cluster means it is evident the clusters are well formed with obviously states with higher SDRF goes to cluster 1 and the states with lower SDRF goes to cluster 2.

For SDRF central Share

Elbow method:

Fig 5.2.3



Clearly the optimum no of clusters we need is 2

Fig 5.2.4



Now we study the characteristics of both the clusters:

Table 5.2.2 table showing cluster means

| Year | Cluster 1 means | Cluster 2 means |
|------|-----------------|-----------------|
| 2011 | 310.3720        | 64.95553        |
| 2012 | 311.3160        | 61.38316        |
| 2013 | 331.7130        | 100.06000       |
| 2014 | 407.2555        | 103.22158       |
| 2015 | 334.2690        | 112.25474       |
| 2016 | 590.4280        | 150.09000       |
| 2017 | 547.5380        | 152.60895       |
| 2018 | 696.4440        | 127.28211       |
| 2019 | 629.4210        | 177.97474       |
| 2020 | 739.8970        | 186.24053       |
| 2021 | 1595.0000       | 328.10526       |
| 2022 | 1276.0000       | 262.48421       |
| 2023 | 1340.0000       | 275.53684       |

Studying the cluster means it is evident the clusters are well formed with obviously states with higher SDRF goes to cluster 1 and the states with lower SDRF goes to cluster 2.

The clusters are given as follows:

Table 5.2.3 Table showing with state has been placed in which cluster

| State             | cluster(stateshare) | cluster(centralshare) |
|-------------------|---------------------|-----------------------|
| Andhra Pradesh    | 1                   | 1                     |
| Bihar             | 1                   | 1                     |
| Gujarat           | 1                   | 1                     |
| Madhya Pradesh    | 1                   | 1                     |
| Maharashtra       | 1                   | 1                     |
| Odisha            | 1                   | 1                     |
| Rajasthan         | 1                   | 1                     |
| Tamil Nadu        | 1                   | 1                     |
| Uttar Pradesh     | 1                   | 1                     |
| West Bengal       | 1                   | 1                     |
| Arunachal Pradesh | 2                   | 2                     |
| Assam             | 2                   | 2                     |
| Chhattisgarh      | 2                   | 2                     |
| Goa               | 2                   | 2                     |
| Haryana           | 2                   | 2                     |
| Himachal Pradesh  | 2                   | 2                     |
| jammu &kashmir    | 2                   | 2                     |
| Jharkhand         | 2                   | 2                     |
| Karnataka         | 2                   | 2                     |
| Kerala            | 2                   | 2                     |
| Manipur           | 2                   | 2                     |
| Meghalaya         | 2                   | 2                     |
| Mizoram           | 2                   | 2                     |
| Nagaland          | 2                   | 2                     |
| Punjab            | 2                   | 2                     |
| Sikkim            | 2                   | 2                     |
| Telangana         | 2                   | 2                     |
| Tripura           | 2                   | 2                     |
| Uttarakhand       | 2                   | 2                     |

**Comment:** From the table we can see that the state that is in cluster 1 for SDRF state share is also in cluster 1 for SDRF Central share, eg. Kerala is in cluster 2(the cluster with low SDRF fund allocation) for both central and state share. Also fig 5.2.3 and fig 5.2.4 are very similar in nature and structure though the clusters are not same. The data for state and central may have some kind of association or correlation.

To see the relationship between the SDRF state share and Central share we do a rank correlation test.

#### 5.2.2 Rank correlation Test

The Spearman's rank coefficient

The Spearman's rank coefficient of correlation or Spearman correlation coefficient is a nonparametric measure of rank correlation (statistical dependence of ranking between two variables).

It measures the strength and direction of the association between two ranked variables.

$$r_R = 1 - rac{6 \Sigma_i {d_i}^2}{n(n^2 - 1)}$$

Here,

n= number of data points of the two variables
 di= difference in ranks of the "ith" element
 The Spearman Coefficient, ρ, can take a value between +1 to -1 where,

- A ρ value of +1 means a perfect association of rank
- A ρ value of 0 means no association of ranks
- •A  $\rho$  value of -1 means a perfect negative association between ranks.

**Results** 

Hence for cluster 1(cluster with high disaster-prone states)

The rank correlation between state and central share of SDRF

rho

0.9151515

For cluster 2(cluster with low disaster-prone states)

The rank correlation between state and central share of SDRF

0.9245614

Overall rank correlation between the SDRF State Share and Central Share.

Rho= 0.9753695

**Comment**: Here we can see the SDRF state share and central share is highly associated among each other. This also indicate that the state that gets higher SDRF share from state also gets higher share from central .This means that there is no unfairness in SDRF

allocation to any state from central. . Each state has uniform allocation of funds with higher disaster-prone state getting comparatively more fund than the low disaster-prone states.

# 5.3 Fitting of linear Regression

Now we perform multiple regression on both the clusters of SDRF state and also SDRF central share.

#### 5.3.1 Multiple Regression

A linear model is usually fit to a data set where the response (y) and the regressor (xi's) variables have a clear linear relationship.

Then our linear model is of the form

 $y = \beta 0 + \beta 1x 1 + \beta 2x 2 + \dots + \beta p - 1x p - 1 + e$ 

Where the  $\beta i's$  are the parameters and e is the error.

However, this model is valid only under the following assumptions:

- > There is a linear relationship between the response and each of the regressor variables.
- > The mean of the errors must be equal to 0.
- > The errors are independently distributed.
- > The errors follow a normal distribution with mean 0 and constant variance.
- > The errors must be uncorrelated
- The covariates must be independent of each other
- > Covariates is independent of errors.

#### Variables in the data

The variables that are used in the study are:

- 1. y = SDRF state share mean/SDRF central share mean
- 2.  $x_1$  =population of state
- 3.  $x_2$ = coastal length(km)
- 4.  $x_3 = Area(km^2)$

Here y is the response variable or the dependent variable and  $x_1$ ,  $x_2$ ,  $x_3$  are the regressor or the independent variables.

#### 5.3.1.1 Check if the model fits the data

Firstly, we try to fit linear multiple regression to the given data. Once a linear model is fitted to the data, next we check if the model fits the data well. This is done by calculating the F-

Statistic and comparing it with the tabulated F-Statistic. If the calculated F-Statistic is greater than the tabulated F-Statistic, we reject the null hypothesis  $H0: \beta 1=\cdots=\beta p=0$ , with the alternative hypothesis H1: at least one  $\beta i$ , i=1(1)p is non-zero which implies that our linear model fits the data well.

## 5.3.1.2 Check for possible model inadequacies

When we have a data in hand, and we have already fitted a linear model to it, it is not always necessary that our fitted model will be adequate for the data.

So we will check if the assumptions of linear model are violated or not.

## 5.3.1.3 Check for Multicollinearity

## Multicollinearity

- Multicollinearity is a statistical concept where several independent variables in a model are correlated.
- Multicollinearity among independent variables will result in less reliable statistical inferences.

**Detection of Multicollinearity:** 

The Variance Inflation Factor (VIF) measures the severity of multicollinearity in <u>regression analysis</u>.

$$VIF_i = \frac{1}{1 - R_i^2} = \frac{1}{Tolerance}$$

Where  $\mathbf{R_i}^2$  represents the unadjusted coefficient of determination for regressing the  $i^{th}$  independent variable on the remaining ones.

Vif>5 indicates presence of multicollinearity.

## Removal of multicollinearity

There are several ways to remove multicollinearity (PCA, Ridge Regression, Lasso etc) Here we will use Lasso:

In statistics and machine learning, lasso (least absolute shrinkage and selection operator; also Lasso or LASSO) is a regression analysis method that performs both variable selection and regularization in order to enhance the prediction accuracy and interpretability of the resulting statistical model

Letting X be the covariate matrix, so that  $X_{ij}=(x_i)_j$  and  $x_i^T$  is the i th row of X, the expression can be written more compactly as

$$\min_{eta_0,eta}\left\{\|y-eta_0-Xeta\|_2^2
ight\} ext{ subject to } \|eta\|_1 \leq t,$$

where 
$$\|u\|_p = \left(\sum_{i=1}^N |u_i|^p 
ight)^{1/p}$$
 is the standard  $\ell^p$  norm.

## 5.3.1.4 Heteroscadasticity

Heteroskedasticity refers to a situation where the variance of the residuals is unequal over a range of measured values.

Detection: Gold-feld Quant Test

### **Steps to Perform Goldfeld-Quandt Test:**

**Step 1:** Arrange the observations in ascending order of  $X_i$ . If there are more than one explanatory variables (X) then you choose the one regarding which you have a concern that with this variable the error variance is positively related and arrange in ascending order according to this variable. In other words, you can choose any one of them to arrange.

**Step 2:** Omit 'c' central observations and divide the remaining (n-c) observations into two groups containing (n-c)/2 observations each. The first (n-c)/2 observations belong to the first group(the smaller variance group) and the remaining (n-c)/2 observations belong to the second group(the larger variance group).

**Step 3:** Fit a separate regression model for the first group and obtain RSS<sub>1</sub>. Also, fit a separate regression model on the second group and obtain RSS<sub>2</sub>.

This RSS each have (n-c)/2 - k or (n-c-2k)/2 degrees of freedom, where k is the number of parameters to be estimated.

For a model with only one explanatory variable(X) the value of k = 2 and increases with an increase in the number of explanatory variables.

Step 4: Compute the Test Statistic F

Step 5: Find out the critical value

Use the <u>F Table</u> to find out the critical value for the given level of significance(alpha). In this test, the values of  $df_1$  and  $df_2$  are the same(df1=df2).

**Step 6:** Compare F<sub>critical</sub> and F<sub>calculated</sub> and state the result.

#### 5.3.1.5 *Autocorrelation*

Autocorrelation represents the degree of similarity between a given time series and a lagged version of itself over successive time intervals.

**Detection: Durbin Watson Test** 

**Durbin Watson Test:** A test developed by statisticians professor James Durbin and Geoffrey Stuart Watson is used to detect autocorrelation in residuals from the Regression analysis. It is popularly known as Durbin-Watson d statistic, which is defined as

$$d = \frac{\sum_{t=2}^{t=n} (u_t - u_{t-1})^2}{\sum_{t=1}^{t=n} u_t^2}$$

Results

Now we check if the coastline , area and population has has any effect on the SDRF

Note: we have total 9 states with coastal area ,hence we have 9 data points.

Since SDRF state share and central share is highly correlated we will just check for the state share.

```
Hence the SDRF state share model is given by
```

```
Call:
lm(formula = statemean ~ est.population + area.in.sq.km. + coastline.km.,
   data = c d
Residuals:
       1
                                                                              8
-75.5965 -24.7579 -42.1251 -314.2992
                                           0.5579 137.7355
                                                                        51.2337
                                                            119.1441
148.1074
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
               4.412e+00 1.371e+02
                                     0.032
(Intercept)
est.population -2.283e-07
                          4.372e-06 -0.052
                                                0.960
area.in.sq.km.
               2.819e-03 1.691e-03
                                      1.667
                                                0.156
coastline.km.
               8.553e-02
                          2.067e-01
                                      0.414
Residual standard error: 181.4 on 5 degrees of freedom
Multiple R-squared: 0.7714,
                              Adjusted R-squared:
F-statistic: 5.623 on 3 and 5 DF, p-value: 0.04655
```

Comment: The results shows none of the covariates have any influence on the response ,which is contradictory to the fact that in table 5.1.2 we found that most notable natural disaster have occurred in states with prominent coastal areas. Also the R-squared is 0.77 and adjusted R-squared is 0.63. The linear model is not giving best fit but not worst fit as well. So we check if the model violates any assumption of linear model.

#### Observations

- No heteroscadatiscity(using Gold feld Quandt test)
- No autocorrelation (using Durbin Watson test)
- Presence of multicollinearity (using variance inflation factor)
- population area.in.sq.km. coastline.km.
- 6.636687 5.741128 1.455836

We see for both population and area the vif >5 ,so we suspect multicollinearity and proceed to remove it by Lasso

#### Lasso

Best lamda(tunning parameter) = 21.99194

```
The estimates of lasso (Intercept) 57.574201105 est.population . area.in.sq.km. 0.002560779 coastline.km. 0.037420223
```

Comment: Hence both the area and length of coastline has a significance influence on the statemean. This implies states with coastal areas (with larger area) are more prone to disaster and should be allotted with higher SDRF for immediate relief of the casualties.. Also this applies for central share.

# **5.4 Time series Analysis & Forecasting**

**Time Series Analysis** is a way of studying the characteristics of the response variable concerning time as the independent variable.

To perform the <u>time series analysis</u>, we have to follow the following steps:

- Collecting the data and cleaning it
- Preparing Visualization with respect to time vs key feature
- Observing the stationarity of the series
- Developing charts to understand its nature.
- Model building AR, MA, ARMA and ARIMA
- Extracting insights from prediction
- Forecasting.

#### **5.4.1** Forecasting using univariate time series

#### Step 1: Organizing the data:

We set up 29 univariate time series model(each for one state) for SDRF state share over the span of 13 years starting from 2011 to 2023 and forecast the SDRF state share 2024 for 29 states from this 29 models.

Similarly for SDRF central share we take 29 univariate time series model(each for one state) over the span of 13 years starting from 2011 to 2023 and forecast for 2024.

Step 2: Initially we try to visualize the SDRF central and state share data over the course of 13 years for some states.

Fig 5.4.1 Andhra Pradesh



Fig. 5.4.2Bihar



Fig 5.4.3 Madhyapradesh



Fig5.4.4 West Bengal



<u>Comment:</u> Not much can be said except we can see trend for certain states and there is a sudden rise in central share around the year 2019-2020. This indicates the central allocated huge funding during the corona pandemic. Corona pandemic can be assumed as the irregular component in this analysis. No seasonality present. Overall it can be assumed none the time series model for any state is stationary.

step 3: checking for stationarity of the data

To check stationarity Dickey Fuller Test

**Dickey Fuller test** is a statistical test that is used to check for <u>stationarity</u> in <u>time series</u>. This is a type of unit root test, through which we find if the time series is having any unit root.

**Unit root** is a feature of time series that indicates if there is any stochastic trend in the time series that drives it away from its mean value. Presence of unit root makes a time series non-stationary and as a result it leads to difficulties in deriving statistical inferences from the time series and future predictions.

Dickey Fuller test assumes a AR(1) type time series model and it is represented mathematically as,

$$y_t = \mu + \varphi_1 y_{t-1} + \varepsilon_t$$

After we substract yt-1 from both the side, we get:

$$\Delta y_t = \mu + \delta y_{t-1} + \varepsilon_t$$

where,

**μ**: Constant

 $\phi$ : Co-efficient

yt-1: Value in the time series at lag of 1

**Et**: Error component

The test statistic formula is:

$$t_{\widehat{\delta}} = \frac{\widehat{\delta}}{SE(\widehat{\delta})}$$

Augmented Dickey Fuller(ADF) Test

**Augmented Dickey Fuller(ADF) test** is an extension of Dickey Fuller test for more complex models than AR(1). The primary difference between the two tests is that the ADF is utilized for a larger sized set of time series models which can be more complicated.

Augmented Dickey Fuller test assumes a AR(p) type time series model and it is represented mathematically as,

$$y_t = \mu + \sum_{i=1}^p \varphi_i \, y_{t-1} + \varepsilon_t$$

After we substract yt-1 from both the side, we get:

$$\Delta y_t = \mu + \delta y_{t-1} + \sum_{i=1}^{P} \beta_i \, \Delta y_{t-1} + \varepsilon_t$$

ADF is the same equation as the DF with the only difference being the addition of differencing terms representing a larger time series.

The test statistic formula is:

$$t_{\widehat{\beta}_{i}} = \frac{\widehat{\beta}_{i}}{SE(\widehat{\beta}_{i})}$$

Assumptions

The test is conducted under following assumptions:

- 1. **Null Hypothesis (H0)**: There exists a unit root in the time series and it is non-stationary. **Unit root** = 1 or  $\delta$  = 0
- 2. **Alternate Hypothesis (H1)**: There exists no unit root in the time series and it is stationary. **Unit root** < 1 or  $\delta$  < 0

## Condition to reject H0 and accept H1

If the *test statistic is less than the critical value* or if the *p-value is less than a pre-specified significance level (e.g., 0.05)*, then the null hypothesis is rejected and the time series is considered *stationary*.

If the test statistic is greater than the critical value, the null hypothesis cannot be rejected, and the time series is considered *non-stationary*.

The critical value is found from the Dickey Fuller table (similar to t-table that we use for t-test, we have a table with critical values for Dickey Fuller test)

Results

We will use dickey fuller test for some state and print the p-values to find whether the time series is stationary or not.

Table 5.4.1 table showing the adf test p values

| state          | State share | Central share |
|----------------|-------------|---------------|
| Andhra Pradesh | 0.4495      | 0.99          |
| Bihar          | 0.9422      | 0.99          |
| Gujarat        | 0.9635      | 0.9606        |
| Madhya Pradesh | 0.9434      | 0.99          |
| Maharashtra    | 0.9316      | 0.9822        |
| Odisha         | 0.9505      | 0.99          |
| Tamil Nadu     | 0.9482      | 0.5261        |
| Uttar Pradesh  | 0.9469      | 0.99          |
| Uttarakhand    | 0.959       | 0.9786        |
| West Bengal    | 0.9572      | 0.9856        |

Comment: We reject the null if p-value is <0.05. Clearly for all states the p-value>0.05 and none of the time series processes are stationary.

Step4: We fit the best models for 29 states using auto.arima() and hence forecast:

Note: We have recently collected the SDRF data of 2024. So we also check the errors and compare the forecasting with observed data.

Table 5.4.2. table showing the forecasted values of SDRF state Share 2024 using Univariate time series

|                | SDRF      |               | error    |
|----------------|-----------|---------------|----------|
| state          | predicted | SDRF observed |          |
| Andhra Pradesh | 312.8     | 328           | 15.2     |
| Arunachal      |           |               |          |
| Pradesh        | 28.50794  | 24.8          | -3.70794 |
| Assam          | 64.54316  | 76            | 11.45684 |
| Bihar          | 396.8     | 416           | 19.2     |
| Chhattisgarh   | 139.3082  | 127           | -12.3082 |
| Goa            | 3.512316  | 3.2           | -0.31232 |
| Gujarat        | 429.1213  | 388.8         | -40.3213 |
| Haryana        | 166.114   | 144           | -22.114  |
| Himachal       |           |               |          |
| Pradesh        | 34.33364  | 40            | 5.66636  |
| Jharkhand      | 197.4236  | 166.4         | -31.0236 |
| Karnataka      | 221.6     | 232           | 10.4     |
| Kerala         | 105.8558  | 92            | -13.8558 |
| Madhya Pradesh | 484.3477  | 535.2         | 50.8523  |
| Maharashtra    | 902.4     | 947.2         | 44.8     |
| Manipur        | 3.510959  | 4             | 0.489041 |
| Meghalaya      | 5.879444  | 6.4           | 0.520556 |
| Mizoram        | 3.631959  | 4.8           | 1.168041 |
| Nagaland       | 3.726901  | 4             | 0.273099 |
| Odisha         | 473.649   | 471.2         | -2.449   |
| Punjab         | 129.8937  | 145.6         | 15.7063  |
| Rajasthan      | 386.0188  | 435.2         | 49.1812  |
| Sikkim         | 4.396841  | 4.8           | 0.403159 |
| Tamil Nadu     | 263.8184  | 300           | 36.1816  |
| Telangana      | 125.6     | 132           | 6.4      |
| Tripura        | 37.03846  | 6.4           | -30.6385 |
| Uttar Pradesh  | 541.6     | 568           | 26.4     |
| Uttarakhand    | 81.94894  | 92            | 10.05106 |
| West Bengal    | 313.0195  | 297.6         | -15.4195 |

Note: The observations for Jammu & Kashmir is absent in 2024 SDRF data ,so we have omitted it while model fitting & forecasting.

Table 5.4.3. table showing the forecasted values of SDRF central Share 2024 using Univariate time series

|                | SDRF      |               | error     |
|----------------|-----------|---------------|-----------|
| state          | predicted | SDRF observed |           |
| Andhra Pradesh | 940       | 987.2         | 47.2      |
| Arunachal      |           |               |           |
| Pradesh        | 210.4     | 220.8         | 10.4      |
| Assam          | 628.1271  | 680.8         | 52.6729   |
| Bihar          | 1189.6    | 1248.8        | 59.2      |
| Chhattisgarh   | 483.8088  | 380.8         | -103.0088 |
| Goa            | 9.6       | 9.6           | 0         |
| Gujarat        | 1112      | 1168          | 56        |
| Haryana        | 402.4662  | 433.6         | 31.1338   |
| Himachal       |           |               |           |
| Pradesh        | 342.4     | 360.8         | 18.4      |
| Jharkhand      | 476.8     | 500.8         | 24        |
| Karnataka      | 664       | 697.6         | 33.6      |
| Kerala         | 257.1296  | 277.6         | 20.4704   |
| Madhya Pradesh | 1528.8    | 1605.6        | 76.8      |
| Maharashtra    | 2706.4    | 2841.6        | 135.2     |
| Manipur        | 35.2      | 37.6          | 2.4       |
| Meghalaya      | 54.4      | 58.4          | 4         |
| Mizoram        | 39.2      | 41.6          | 2.4       |
| Nagaland       | 34.4      | 36.8          | 2.4       |
| Odisha         | 1348      | 1415.2        | 67.2      |
| Punjab         | 416       | 436.8         | 20.8      |
| Rajasthan      | 1244.8    | 1307.2        | 62.4      |
| Sikkim         | 42.4      | 44.8          | 2.4       |
| Tamil Nadu     | 831.6612  | 900           | 68.3388   |
| Telangana      | 377.6     | 396           | 18.4      |
| Tripura        | 55.47763  | 60.8          | 5.32237   |
| Uttar Pradesh  | 1624      | 1705.6        | 81.6      |
| Uttarakhand    | 787.2     | 826.4         | 39.2      |
| West Bengal    | 849.6     | 892           | 42.4      |

Note: The observations for Jammu & Kashmir is absent in 2024 SDRF data ,so we have omitted it while model fitting & forecasting.

Comment: We can see overall errors are less and the forecasted values are close to the observed for most of the cases except some like Chhattisgarh, Odisha, Maharashtra etc. So we go bivariate time series to get more better forecasting since bivariate time series will take account of the correlation between the two data sets (SDRF state share and SDRF central share), if exists.

### 5.4.2 Bivariate time series using VAR(vector autoregressive) model

The <u>vector autoregressive (VAR) model</u> is a workhouse multivariate <u>time series model</u> that relates current observations of a variable with past observations of itself and past observations of other variables in the system.

VAR models are characterized by their *order*, which refers to the number of earlier time periods the model will use. Continuing the above example, a 5th-order VAR would model each year's wheat price as a linear combination of the last five years of wheat prices. A *lag* is the value of a variable in a previous time period. So in general a pth-order VAR refers to a VAR model which includes lags for the last p time periods. A pth-order VAR is denoted "VAR(p)" and sometimes called "a VAR with p lags". A pth-order VAR model is written as

$$y_t = c + A_1 y_{t-1} + A_2 y_{t-2} + \cdots + A_p y_{t-p} + e_t,$$

The variables of the form  $y_{t-i}$  indicate that variable's value i time periods earlier and are called the "ith lag" of  $y_t$ . The variable c is a k-vector of constants serving as the intercept of the model.  $A_i$  is a time-invariant ( $k \times k$ )-matrix and  $e_t$  is a k-vector of error terms. The error terms must satisfy three conditions:

- 1.  $E(e_t) = 0$ . Every error term has a mean of zero.
- 2.  $\mathrm{E}(e_t e_t') = \Omega$  The contemporaneous covariance matrix of error terms is a  $k \times k$  positive-semidefinite matrix denoted  $\Omega$ .
- 3.  $E(e_t e'_{t-k}) = 0$  for any non-zero k. There is no correlation across time. In particular, there is no serial correlation in individual error terms.<sup>[1]</sup>

The process of choosing the maximum lag p in the VAR model requires special attention because inference is dependent on correctness of the selected lag order. [2][3]

Table 5.4.4 The forecasted SDRF state share using VAR for 2024 is given as follows:

|                | SDRF state share | SDRF state share | error    |
|----------------|------------------|------------------|----------|
| state          | observed         | forecasted       |          |
| Andhra Pradesh | 328              | 327.1744         | 0.8256   |
| Arunachal      |                  |                  |          |
| Pradesh        | 24.8             | 27.44237         | -2.64237 |
| Assam          | 76               | 89.3588          | -13.3588 |
| Bihar          | 416              | 433.2009         | -17.2009 |
| Chhattisgarh   | 127              | 140.5525         | -13.5525 |
| Goa            | 3.2              | 3.991417         | -0.79142 |
| Gujarat        | 388.8            | 418.0767         | -29.2767 |
| Haryana        | 144              | 123.8707         | 20.1293  |
| Himachal       |                  |                  |          |
| Pradesh        | 40               | 36.3116          | 3.6884   |
| Jharkhand      | 166.4            | 207.0528         | -40.6528 |
| Karnataka      | 232              | 243.6302         | -11.6302 |
| Kerala         | 92               | 93.13062         | -1.13062 |
| Madhya Pradesh | 535.2            | 512.7026         | 22.4974  |
| Maharashtra    | 947.2            | 978.216          | -31.016  |
| Manipur        | 4                | 3.525181         | 0.474819 |
| Meghalaya      | 6.4              | 3.10103          | 3.29897  |
| Mizoram        | 4.8              | 6.435243         | -1.63524 |
| Nagaland       | 4                | 3.869455         | 0.130545 |
| Odisha         | 471.2            | 431.9485         | 39.2515  |
| Punjab         | 145.6            | 114.4376         | 31.1624  |
| Rajasthan      | 435.2            | 469.0038         | -33.8038 |
| Sikkim         | 4.8              | 4.425299         | 0.374701 |
| Tamil Nadu     | 300              | 279.5414         | 20.4586  |
| Telangana      | 132              | 101.6309         | 30.3691  |
| Tripura        | 6.4              | 11.19773         | -4.79773 |
| Uttar Pradesh  | 568              | 536.2882         | 31.7118  |
| Uttarakhand    | 92               | 102.4633         | -10.4633 |
| West Bengal    | 297.6            | 281.3147         | 16.2853  |
|                |                  |                  |          |

Table 4.5.5 The forecasted SDRF central share using VAR for 2024 is given as follows:

|                | SDRF central   | SDRF central share | error    |
|----------------|----------------|--------------------|----------|
| state          | share observed | forecasted         | 21101    |
| Andhra Pradesh | 987.2          | 918.0885           | 69.1115  |
| Arunachal      | 307.2          | 310.0003           | 03.1113  |
| Pradesh        | 220.8          | 212.334            | 8.466    |
| Assam          | 680.8          | 702.6123           | -21.8123 |
| Bihar          | 1248.8         | 1329.5483          | -80.7483 |
| Chhattisgarh   | 380.8          | 319.3916           | 61.4084  |
| Goa            | 9.6            | 9.996663           | -0.39666 |
| Gujarat        | 1168           | 1221.416           | -53.416  |
| Haryana        | 433.6          | 412.0805           | 21.5195  |
| Himachal       |                |                    |          |
| Pradesh        | 360.8          | 369.9809           | -9.1809  |
| Jharkhand      | 500.8          | 467.2192           | 33.5808  |
| Karnataka      | 697.6          | 628.5106           | 69.0894  |
| Kerala         | 277.6          | 207.0521           | 70.5479  |
| Madhya Pradesh | 1605.6         | 1576.173           | 29.427   |
| Maharashtra    | 2841.6         | 2894.173           | -52.573  |
| Manipur        | 37.6           | 29.64423           | 7.95577  |
| Meghalaya      | 58.4           | 54.77315           | 3.62685  |
| Mizoram        | 41.6           | 41.71454           | -0.11454 |
| Nagaland       | 36.8           | 29.27142           | 7.52858  |
| Odisha         | 1415.2         | 1351.2             | 64       |
| Punjab         | 436.8          | 370.8643           | 65.9357  |
| Rajasthan      | 1307.2         | 1264.482           | 42.718   |
| Sikkim         | 44.8           | 39.90876           | 4.89124  |
| Tamil Nadu     | 900            | 822.9605           | 77.0395  |
| Telangana      | 396            | 422.3875           | -26.3875 |
| Tripura        | 60.8           | 58.45076           | 2.34924  |
| Uttar Pradesh  | 1705.6         | 1644.355           | 61.245   |
| Uttarakhand    | 826.4          | 808.2952           | 18.1048  |
| West Bengal    | 892            | 878.9571           | 13.0429  |

Comment: Forecasted values by VAR gives much closer results to 2024 SDRF thatn univariate time series forecasting with significance decrease in errors

## A chart for comparison of errors:

Table 5.4.6 table showing SDRF state share errors

|                   | SDRF state share errors |                         |
|-------------------|-------------------------|-------------------------|
|                   | predicted by univariate | SDRF state share errors |
| state             | time series             | predicted by VAR        |
| Andhra Pradesh    | 15.2                    | 0.8256                  |
| Arunachal Pradesh | -3.70794                | -2.64237                |
| Assam             | 11.45684                | -9.3588                 |
| Bihar             | 19.2                    | -17.2009                |
| Chhattisgarh      | -12.3082                | -13.5525                |
| Goa               | -0.31232                | -0.19142                |
| Gujarat           | -40.3213                | -29.2767                |
| Haryana           | -22.114                 | 20.1293                 |
| Himachal Pradesh  | 5.66636                 | 3.6884                  |
| Jharkhand         | -31.0236                | -40.6528                |
| Karnataka         | 10.4                    | -6.6302                 |
| Kerala            | -13.8558                | -1.13062                |
| Madhya Pradesh    | 50.8523                 | 22.4974                 |
| Maharashtra       | 44.8                    | -31.016                 |
| Manipur           | 0.489041                | 0.474819                |
| Meghalaya         | 0.520556                | 3.29897                 |
| Mizoram           | 1.168041                | -1.63524                |
| Nagaland          | 0.273099                | 0.130545                |
| Odisha            | -2.449                  | 9.2515                  |
| Punjab            | 15.7063                 | -8.8376                 |
| Rajasthan         | 49.1812                 | -33.8038                |
| Sikkim            | 0.403159                | 0.374701                |
| Tamil Nadu        | 36.1816                 | 20.4586                 |
| Telangana         | 6.4                     | 30.3691                 |
| Tripura           | -30.6385                | -4.79773                |
| Uttar Pradesh     | 26.4                    | 31.7118                 |
| Uttarakhand       | 10.05106                | -10.4633                |
| West Bengal       | -15.4195                | 16.2853                 |

Comment: The combined MSE for SDRF state share using Univariate Time series is 624.1676 and the combined MSE for SDRF state share using VAR is 238.3536. There is a significance decrease in MSE. The predicted model using VAR is giving better forecasted values for 2024 data.

Table 5.4.7 table showing SDRF state share errors

|                   | SDRF central share errors |                           |
|-------------------|---------------------------|---------------------------|
|                   | predicted by univariate   | SDRF central share errors |
| state             | time series               | predicted by VAR          |
| Andhra Pradesh    | 15.2                      | 0.8256                    |
| Arunachal Pradesh | -3.70794                  | -2.64237                  |
| Assam             | 11.45684                  | -9.3588                   |
| Bihar             | 19.2                      | -17.2009                  |
| Chhattisgarh      | -12.3082                  | -13.5525                  |
| Goa               | -0.31232                  | -0.19142                  |
| Gujarat           | -40.3213                  | -29.2767                  |
| Haryana           | -22.114                   | 20.1293                   |
| Himachal Pradesh  | 5.66636                   | 3.6884                    |
| Jharkhand         | -31.0236                  | -40.6528                  |
| Karnataka         | 10.4                      | -6.6302                   |
| Kerala            | -13.8558                  | -1.13062                  |
| Madhya Pradesh    | 50.8523                   | 22.4974                   |
| Maharashtra       | 44.8                      | -31.016                   |
| Manipur           | 0.489041                  | 0.474819                  |
| Meghalaya         | 0.520556                  | 3.29897                   |
| Mizoram           | 1.168041                  | -1.63524                  |
| Nagaland          | 0.273099                  | 0.130545                  |
| Odisha            | -2.449                    | 9.2515                    |
| Punjab            | 15.7063                   | -8.8376                   |
| Rajasthan         | 49.1812                   | -33.8038                  |
| Sikkim            | 0.403159                  | 0.374701                  |
| Tamil Nadu        | 36.1816                   | 20.4586                   |
| Telangana         | 6.4                       | 30.3691                   |
| Tripura           | -30.6385                  | -4.79773                  |
| Uttar Pradesh     | 26.4                      | 31.7118                   |
| Uttarakhand       | 10.05106                  | -10.4633                  |
| West Bengal       | -15.4195                  | 16.2853                   |

Comment: The combined MSE for SDRFcentral share using Univariate Time series is 27740.77and the combined MSE for SDRF central share using VAR is 8468.891 . There is a significance decrease in MSE. The predicted model using VAR is giving better

forecasted values for 2024 data.

# **Conclusion**

#### From the project we found that

- From the clustering we see the SDRF central share and state share have high positive
  association. In other words ,the central and states allocates high SDRF for higher
  disaster-prone states and lower SDRF for less disaster-prone state. The allocation is
  fair. We confirm this by using Rank correlation which comes out to be positive
  indicating high association between the two shares.
- Using regression it can be said that the length of coastline and area of each state also
  have significance influence on the allocation of SDRF. Geometrically the coastline
  plays a significant role in the natural disaster as the coastline area is more prone to
  cyclone, hurricane, flood etc. Statistically it is also evident that the states with coastal
  region are allocated with more SDRF.
- We also forecasted the SDRF (both state and central share) for year 2024. The VAR
  model gives better values than the forecasted values by univariate time series model
  by reducing the MSE significantly due to the consideration of correlation between the
  2 sets of data(state share and central share).
- Another interesting find is that central allocated huge SDRF share during the corona pandemic in 2019-2020.

# References:

- 1. T. Hastie, R. Tibshirani & J. Friedman: The Elements of Statistical Learning
- 2. R.A. Johnson & D.W. Wichern: Applied Multivariate Statistical Analysis
- 3. C. Chatfield: The Analysis of Time Series An Introduction
- 4. G.E.P. Box ,G.M. Jenkins & G.C.Reinsel : Time Series Analysis Forecasting & Control
- 5. P.J. Brockwell & R.A. Davis: Introduction to Time Series Analysis and Forecasting
- 6. A.Pankratz: Forecasting with Univariate Box-Jenkins Model
- 7. G. Janacek and L. Swift: Time Series –Forecasting, Simulation, Applications