Hanoi University of Science and Technology School of Engineering Physics

LAB REPORT

For Electrics and Thermodynamics

Experiment 6

Student name: Nguyen Viet Anh

Student ID : 20150143

Group number: 1

Name: Nguyen Viet Anh
Date: 8stApril 2017

ID : 20150143

Experiment 6

DETERMINATION OF SPECIFIC HEAT RATIO OF AIR BASED ON CLEMENT DESORME'S METHOD

I. EXPERIMENT MOTIVATION

To determine the specific heat ratio $\gamma = Cp/Cv$ for air.

II. EXPERIMENTAL RESULTS

1. Measurement result:

H = 250mm				
Trial	L ₁ (mm)	L_2 (mm)	h = L1 - L2	$\gamma = \frac{H}{H - h}$
1	355	297	58	1.30
2	356	296	60	1.32
3	354	298	56	1.29
4	355	297	58	1.30
5	354	298	56	1.29
6	355	297	58	1.30
7	356	296	60	1.32
8	356	296	60	1.32
9	357	295	62	1.33
10	357	295	62	1.33

2. Calculation of heat ratio of air

We have:

$$\bar{\gamma} = \frac{1}{10} \sum_{i=1}^{10} \gamma_i = 1.31$$

We have the standard deviation:

s. d =
$$\sqrt{\frac{\sum_{i=1}^{10} (\gamma_i - \overline{\gamma})^2}{10}}$$
 = 0.02

The uncertainty of γ :

$$S.D._{\gamma} = \Delta \gamma = \frac{s.d}{\sqrt{n}} = \frac{0.02}{\sqrt{10}} \approx 0.01$$

Hence:

$$\gamma = \bar{\gamma} \pm \Delta \gamma = 1.31 \pm 0.01$$

3. Theoretical result and comparison

- The formula: $\gamma = \frac{i+2}{i}$

Where i is the Degree of Freedom of ideal gas (in this case is air), which mean i=5. We got:

$$\gamma = \frac{5+2}{5} = 1.40$$

The theoretical results is a little higher than the directly measured results.