Detecting Diabetes with Machine Learning

Ian Butler
In Association with the Center for Disease Control

Objective - Increase Accessibility to Diabetes Testing

Complications

- Heart Disease
- Vision Loss
- Lower-Limb Amputation
- Kidney Disease
- Stroke

Early Diagnosis

- Lifestyle Changes
- More Effective Treatment

Data - CDC's Behavioral Risk Factor Surveillance System

250,000 Records

- Respondent-Reported Fields
 - o Diet
 - Exercise
 - General Health
- Calculated Fields
 - \circ BMI
 - High Cholesterol
 - High Blood Pressure

Results - Final Model and Performance

GBC 2

- Gradient Boosting Classifier
- Ensemble Method
- Regression Trees

Performance

- Accuracy: 75%
- Precision: 74%
- Recall: 80%
- F1: 76%
- AUC: 83%

Deployment - Streamlit

Moving Forward - Improving the Application

Next steps:

- Reduce Dimensionality
 - Less Questions
 - Ease of Use

- Multiple Models
 - Variety of Questions
 - Flexibility

Thank you!

