Spring 2016-17	EEE 202: (Circuit Theory	Instructors: Ö. I	Morgül & E.Ü. Sarıtaş
23/03/2017		Midterm 1 Examination		120 minutes
Name:			Student ID:	
	Signature:			

Instructions:

- 1. Attempt all questions.
- 2. No partial credits to unjustified answers.
- 3. Show all the steps of your work clearly.
- 4. Specify all node, mesh labels (A, B, C, etc.) clearly on the circuit diagrams.
- 5. Clearly indicate the unit of any answer you provide.
- 6. Extra paper is available if you need it.

Question	Points	Your Score
Q1	24	
Q2	26	
Q3	26	
Q4	24	
TOTAL	100	

Question 1. [24 points]

analysis.

i) [6 points] Consider the following circuit. Find V_A , node voltage of node A, by using node analysis.

$$1y = VB$$

 $Vx = VA - 3iy = VA - 3VB$
 $ECL \ a+ A : -4 + VA - 3VB + VA - VB = C$
 $2VA - 4VB = 4$
 $VA - 2VB = 2$

$$V_A - 4V_B = 0$$

$$V_A = 4V_B$$

$$V_A = 4V_B = 1$$

$$V_A = 4V_B = 1$$

ii) [6 points] Consider the following circuit. Find the mesh current
$$i_c$$
 by using mesh

iii) [6 points] Consider the following 3 experimental results. Here L represents the same linear circuit, which contains ideal sources, dependent sources, and resistors. Find the current i_3 in the third experiment.

iv) [6 points] Consider the following circuit. Here, the OPAMP is ideal and operates in the linear region. Load 1 and Load 2 represent arbitrary circuits. Find i_O in terms of i_S .

$$VB = 0$$

$$is = \frac{V_B - V_A}{1} = -V_A \implies V_A = -is$$

$$VA = \frac{3}{2}is$$

$$VA = \frac{3}{2}is$$

Question 2. [26 points] Note that this question has two parts; both parts contain the same circuit. But both parts should be solved independently, i.e., the results obtained in one part cannot be used in the other part.

i) [13 points] Consider the following circuit. By using node analysis find the node voltages and i_x . For the node convention, use the labeling indicated in the figure.

Supernody: (A)

$$4A$$
 $4A$
 $4A$

ii) [13 points] Consider the following circuit below. By using mesh analysis find the mesh currents. For the mesh currents, use the labeling indicated in the figure. Find i_x , as well.

Question 3. [26 points]

i) [13 points] Consider the circuit below. Find I_o by using superposition.

From voltage source

$$V_{y} = V_{y}$$
 $V_{y} = V_{y}$
 $V_{y} = V_{y}$

* From current source:

$$V_A = 0$$

$$V_X = -V_D$$

$$V_Y = V_C$$

Superiode:
$$\frac{\sqrt{B}}{2} + \frac{\sqrt{B}}{2} + \frac{\sqrt{D}}{4} + \frac{\sqrt{D}}{4} - 5 = 0$$

$$3V_{c} - 2V_{B} - 2(-V_{D}) = 0$$

 $3V_{c} - 2V_{B} + 2V_{D} = 0 = 0$

$$3V_{D} = 10 \Rightarrow V_{D} = \frac{10}{3}V$$

Then,
$$I_2 = \frac{V_0}{4} + \frac{V_0}{4} - 5 = \frac{V_0}{2} - 5$$

$$I_2 = \frac{5}{3} - 5 = \boxed{-\frac{10}{3}} A$$

Finally,
$$I_0 = I_1 + I_2 = -\frac{20}{3} - \frac{10}{3} = \boxed{-10 \text{ A}}$$

ii) [13 points] Consider the circuit below. Find the Norton Equivalent of the circuit between the terminals A-B. Draw the equivalent circuit.

Reg: Kill all independent sources. * I2=0.

$$I_1 = \frac{V}{2}$$

from KCL: $V + 4I_1 + V_4 + \frac{V}{2} = I$

$$\begin{array}{cccc}
+ \frac{1}{2} & = I \\
\hline
- \frac{1}{4} & = I \\
\hline
- \frac{1}{4} & = I
\end{array}$$

$$\begin{array}{cccc}
- \frac{1}{4} & = I \\
\hline
- \frac{1}{4} & = I
\end{array}$$

$$I_1=0$$

$$I_2=3A$$

$$Vy=4V$$

$$3V_{x}=-6 \Rightarrow V_{x}=-2V$$

$$\frac{1}{1}N = \frac{\sqrt{3}}{4} + \frac{\sqrt{3}}{2} + 2I_2 = 1 - 1 + 6 = 6A$$

Question 4. [24 points]

Consider the following circuit. All OPAMPs are ideal. The positive/negative saturation voltages are equal to the supply voltages.

- a) Express the voltages V_{o1} and V_{o2} as a function of the input voltages V_1 and V_2 , assuming that the OPAMPs are in linear region.
- b) Find the value of v_o if $v_1 = 3$ V and $v_2 = 2$ V.
- c) Find the value of v_o if $v_1 = 1$ V and $v_2 = 2$ V.

a) opamp 1:
$$V_4 = \frac{V_1}{2} = V_-$$

$$\frac{V_2 - \frac{V_1}{2}}{1} = \frac{\frac{V_1}{2} - V_{01}}{10} \Rightarrow 10V_2 - 5V_1 = \frac{V_1}{2} - V_{01}$$

$$V_{01} = \frac{11V_1 - 20V_2}{2}$$

OPOAMPL:
$$V_{+} = \frac{V_{01}}{3} = V_{-}$$

$$\frac{V_{02}}{5} = V_{-} = \frac{V_{01}}{3} \implies V_{02} = \frac{5}{3} V_{01} = \frac{55 V_{1} - 100 V_{2}}{6}$$

b) if
$$V_1 = 3V_1$$
, $V_2 = 2V_2$, $V_{01} = \frac{33 - 40}{2} = \boxed{-3.5V}$ not saturated $V_{02} = \frac{5}{3}V_{01} = \boxed{-5.83V}$ not saturated

c) if
$$v_1=1V$$
, $v_2=2V$, $v_{01}=\frac{11-40}{2}=\frac{-29}{2}=-14.5V$ not possible OPAMP1 is saturated. \Rightarrow $v_{01}=-5V$

Then,
$$Voz = \frac{5}{3}Vo_1 = \frac{-25}{3} = \left[-8.33V\right]V$$
 not saturated (in linear region)