9.5.4. Design example

Quiescent operating point

Input voltage $V_g = 28V$

Output V = 15V, $I_{load} = 5A$, $R = 3\Omega$

Quiescent duty cycle D = 15/28 = 0.536

Reference voltage $V_{ref} = 5V$

Quiescent value of control voltage $V_c = DV_M = 2.14V$

Gain H(s) $H = V_{ref}/V = 5/15 = 1/3$

Small-signal model

Open-loop control-to-output transfer function $G_{vd}(s)$

$$G_{vd}(s) = \frac{V}{D} \frac{1}{1 + s\frac{L}{R} + s^2 LC}$$

standard form:

$$G_{vd}(s) = G_{d0} \, \frac{1}{1 + \frac{s}{Q_0 \omega_0} + \left(\frac{s}{\omega_0}\right)^2} \label{eq:Gvd}$$

salient features:

$$G_{d0} = \frac{V}{D} = 28V$$

$$f_0 = \frac{\omega_0}{2\pi} = \frac{1}{2\pi\sqrt{LC}} = 1\text{kHz}$$

$$Q_0 = R\sqrt{\frac{C}{L}} = 9.5 \Rightarrow 19.5\text{dB}$$

Open-loop line-to-output transfer function and output impedance

$$G_{vg}(s) = D \frac{1}{1 + s\frac{L}{R} + s^2LC}$$

—same poles as control-to-output transfer function standard form:

$$G_{vg}(s) = G_{g0} \frac{1}{1 + \frac{s}{Q_0 \omega_0} + \left(\frac{s}{\omega_0}\right)^2}$$

Output impedance:

$$Z_{out}(s) = R \parallel \frac{1}{sC} \parallel sL = \frac{sL}{1 + s\frac{L}{R} + s^2LC}$$

System block diagram

Uncompensated loop gain (with $G_c = 1$)

Lead compensator design

- Obtain a crossover frequency of 5 kHz, with phase margin of 52°
- T_u has phase of approximately 180° at 5 kHz, hence lead (PD) compensator is needed to increase phase margin.
- Lead compensator should have phase of + 52° at 5 kHz
- T_{μ} has magnitude of 20.6 dB at 5 kHz
- Lead compensator gain should have magnitude of + 20.6 dB at 5 kHz
- Lead compensator pole and zero frequencies should be

$$f_z = (5\text{kHz}) \sqrt{\frac{1 - \sin(52^\circ)}{1 + \sin(52^\circ)}} = 1.7\text{kHz}$$

 $f_p = (5\text{kHz}) \sqrt{\frac{1 + \sin(52^\circ)}{1 - \sin(52^\circ)}} = 14.5\text{kHz}$

• Compensator dc gain should be $G_{c0} = \left(\frac{f_c}{f_0}\right)^2 \frac{1}{T_{u0}} \sqrt{\frac{f_z}{f_p}} = 3.7 \Rightarrow 11.3 \text{dB}$

9.5.1. Lead (PD) compensator

$$G_c(s) = G_{c0} \frac{\left(1 + \frac{s}{\omega_z}\right)}{\left(1 + \frac{s}{\omega_p}\right)}$$

Improves phase margin

Lead compensator: maximum phase lead

Lead compensator design

To optimally obtain a compensator phase lead of θ at frequency f_c , the pole and zero frequencies should be chosen as follows:

$$f_z = f_c \sqrt{\frac{1 - \sin(\theta)}{1 + \sin(\theta)}}$$

$$f_p = f_c \sqrt{\frac{1 + \sin(\theta)}{1 - \sin(\theta)}}$$

If it is desired that the magnitude of the compensator gain at f_c be unity, then $G_{c\theta}$ should be chosen as

$$G_{c0} = \sqrt{\frac{f_z}{f_p}}$$

Lead compensator Bode plot

Loop gain, with lead compensator

1/(1+T), with lead compensator

Improved compensator (PID)

T(s) and 1/(1+T(s)), with PID compensator

Open-loop line-to-output transfer function and output impedance

$$G_{vg}(s) = D \frac{1}{1 + s\frac{L}{R} + s^2LC}$$

—same poles as control-to-output transfer function standard form:

$$G_{vg}(s) = G_{g0} \frac{1}{1 + \frac{s}{Q_0 \omega_0} + \left(\frac{s}{\omega_0}\right)^2}$$

Output impedance:

$$Z_{out}(s) = R \parallel \frac{1}{sC} \parallel sL = \frac{sL}{1 + s\frac{L}{R} + s^2LC}$$

Line-to-output transfer function

