Подсчет и комбинаторные тождества.

- (a) Докажите *правило Паскаля*: $C_{n+1}^{k+1}=C_n^{k+1}+C_n^k$, если $0\leqslant k\leqslant n-1$. (b) Докажите рекуррентное соотношения для чисел Стирлинга второго рода:

$$S(n+1, k+1) = (k+1) \cdot S(n, k+1) + S(n, k).$$

S(n,k) — количество разбиений n-элементного множества на k непустых подмножеств.

- (a) Во скольких подмножествах множества $\{1, 2, \dots, 11\}$ не найдется двух подряд идущих чисел?
 - (b) Во скольких подмножествах множества $\{1, 2, \dots, 11\}$ не найдется трех подряд идущих чисел?
- 3. Найдите суммы:

 - (a) $C_n^0 C_n^1 + \ldots + (-1)^n C_n^n$; (b) $C_n^0 + \frac{1}{2} C_n^1 + \frac{1}{3} C_n^2 + \ldots + \frac{1}{n+1} C_n^n$; (c) $C_n^k + C_{n+1}^{k+1} + \ldots + C_{n+m}^{k+m}$; (d) $(C_n^0)^2 + \ldots + (C_n^n)^2$; (e) $C_{2n}^n + 2C_{2n-1}^n + 4C_{2n-2}^n + \ldots + 2^n C_n^n$.
- 4. Найдите «явные» формулы для сумм. В ответе используйте только целочисленные функции целочисленного аргумента.

 - (a) $\sum_{k\geqslant 0}C_n^{2k}$; (b) $\sum_{k\geqslant 0}C_n^{4k}$.