

REPUBLIQUE TUNISIENNE

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Carthage

Institut National des Sciences Appliquées et de Technologie

Devoir Surveillé	Examen	Session principale	
		Session de contrôle	9 1
Matière :	Algorithmique et structures de données II	Semestre: 2	
Enseignant(s):	Majdi Jribi et Rabaa Youssef	Date: 09 Mars 2022	
Filière(s) :	MPI	Durée: 1h30	
Barème :	05-15	Documents : autorisés	
Nombre de pages :	02	non autorisés	

Exercice 1 (05 pts)

Un nombre romain peut se composer des chiffres suivants(représentés par des lettres majuscules):

Chiffre romain	M	D	С	L	Х	٧	ı
Valeur	1000	500	100	50	10	5	1

Un nombre romain est interprété grâce aux règles suivantes:

- La valeur du nombre est égale à celle du chiffre romain si celui-ci est composé d'un seul chiffre.
- Si le nombre contient au moins deux chiffres, on considère les deux chiffres les plus à gauche :
 - Si le 1^{er} chiffre (le plus à gauche) est supérieur ou égal au 2^{ème}, alors la valeur du nombre romain correspond à la somme de la valeur du 1^{er} chiffre et de la valeur du nombre composé de tous les <u>chiffres restants</u> du nombre.
 - Si le 1^{er} chiffre est inférieur au 2^{ème}, alors la valeur du nombre correspond à la différence entre la valeur du nombre composé des <u>chiffres restants</u> et la valeur du 1^{er}chiffre (le plus à gauche).

Exemples:

- IIII = 4; IV = 4
- VIIII =9; IX = 9
- MIM= 1999; MCMXCIX = 1999
- 1. Ecrire en langage C une fonction itérative

int evalue_chiffre_romain (Char c)

qui renvoie la valeur numérique associée au chiffre romain passé en paramètre sous la forme d'un simple caractère.

2. Ecrire en langage C une fonction récursive

int evalue_nombre_romain(char * ch)

qui reçoit en paramètre un nombre romain représenté par une chaîne de caractères, et qui renvoie le résultat de l'évaluation de ce nombre.

Remarque: on suppose que la syntaxe du nombre romain donné est correcte.

Exercice 2 (15 pts)

Nous souhaitons modéliser les matrices à l'aide des listes chainées. Pour cela nous définissons les structures de données suivantes :

```
typedef struct Noeud {
    float valeur;
    struct Noeud *next_col;
    struct Noeud *next_lig;
} Noeud;
```

```
typedef struct {
    Noeud *first;
    int nb_lignes;
    int nb_colonnes;
} Matrice;
```

La structure Noeud contient trois champs :

- Un champs de données valeur de type réel.
- Un champ pointeur sur la colonne suivante next_col qui est un pointeur sur le nœud de la colonne suivante au nœud actuel.
- Un champ pointeur sur la ligne suivante **next_lig** qui est un pointeur sur le nœud de la ligne suivante au nœud actuel.

Figure 1 : Illsutration de la structure Noeud

Une matrice (qui correspond au type Matrice) est représentée par une structure de données contenant trois champs :

- Un champ first qui est pointeur sur Noeud et qui correspond à l'adresse de la matrice. C'est l'adresse de l'élément le plus à gauche et en haut de la matrice (comme mentionné par la figure 2).
- Un champ **nb** lignes de type entier qui indique le nombre de lignes de la matrice.
- Un champ nb_colonnes de type entier qui indique le nombre de colonnes de la matrice.

Figure 2: Illustration d'une matrice avec nb_lignes=3 et nb_colonnes=4

- 1- Ecrire en langage C la fonction Matrice Creation (Matrice M, int nb_lignes, int nb_colonnes) qui permet de créer une Matrice M de nb_lignes lignes et de nb_colonnes colonnes. Les champs de données seront saisies par l'utilsateur.
- 2- Ecrire en langage C la fonction

 Matrice Inserer_Lig (Matrice M, int nb_lignes, int
 nb_colonnes, Matrice Ligne, int pos)
 qui permet d'inserer dans la Matrice M de nb_lignes lignes et de nb_colonnes
 colonnes une matrice Ligne (contenant 1 ligne et nb_colonnes colonnes) dans
 une ligne d'indice pos dans la matrice M)
- 3- Ecrire en langage C la fonction

 Matrice Inserer_Col (Matrice M, int nb_lignes, int
 nb_colonnes, Matrice Colonne, int pos)
 qui permet d'inserer dans la Matrice M de nb_lignes lignes et de nb_colonnes
 colonnes une matrice Colonne (contenant nb_lignes lignes et 1 colonne) dans une
 colonne d'indice pos dans la matrice M)
- 4- Ecrire en langage C la fonction

 Matrice Supp_Lig (Matrice M, int nb_lignes, int

 nb_colonnes, int pos)

 qui permet de supprimer de la Matrice M de nb_lignes lignes et de nb_colonnes

 colonnes la ligne (contenant 1 ligne et nb_colonnes colonnes) d'indice pos dans la

 Matrice M.
- 5- Ecrire en langage C la fonction

 Matrice Supp_Col (Matrice M, int nb_lignes, int
 nb_colonnes, int pos)

 qui permet de supprimer de la Matrice M de nb_lignes lignes et de nb_colonnes
 colonnes la colonne (contenant nb_lignes lignes et 1 colonne) d'indice pos dans la
 Matrice M.