CH402 Chemical Engineering Process Design

Class Notes L2

Piping Design

Piping Design

Piping can range from 15 to 70% of the total delivered equipment cost.

This does not include instrumentation (control valves, sensors, actuators, IT.)

equivalent

length (straight

Piping Design Equations

Mechanical Energy Balance – 1st Law

Determines energy for pumping fluid through pipe network. BLUF - very important – energy has cost (\$/kWh).

> pipe + kinetic frictional fittings) new term external energy losses potential not used in pressure change inside energy CH365 change piping change $f = f(R_n)$ (slide 4) specific volume, m³/kg Correction factor: $\Delta(pv) = \frac{p_2 - p_1}{\rho}$ $R_{n} = \frac{DV\rho}{\mu}$ $\alpha = 1.0$ (turbulent) $\alpha = 0.5$ (viscous)

incompressible:

Eq. 12-12, page 492

1st Law, steady state, one entrance, one exit, constant T

compressible:

Eq. 12-13, page 493 (example 12-2)

$$\Delta h = R \cdot \int_{T_1}^{T_2} \left(C_{P_{298}}^{ig} / R \right) dT$$
 not shown in eq 12-13
$$W + Q = g \Delta Z + \Delta h + \Delta \left(\frac{V^2}{2\alpha} \right) + \sum F$$

Best handled in CHEMCAD

<u>Friction Factors – Straight Pipe</u>

$$R_n = \frac{DV\rho}{\mu}$$
Eq. 12-3b,
page 486

Figure 12-1
Fanning friction factors for long, straight pipes. [Based on L. F. Moody, *Trans. ASME*. 66: 671–684 (1944).]

Re ≤ 2100

 $f = \frac{16}{\text{Re}}$ Eq. 12-4, page 487

4000 < Re < 100,000

$$f = \frac{.079}{\text{Re}^{0.25}}$$
 Eq. 12-5, page 487

$$\frac{1}{f^{1/2}} = -4\log \left[\frac{\varepsilon}{3.7D} + \frac{1.256}{(\text{Re})(f)^{1/2}} \right]$$

Frictional Losses in Fittings

Table 12-1 on page 490 is more comprehensive

$F = \frac{2fV^2 \left(L_{\text{straight}} + L_e\right)}{D}$	L _e /D per fitting (dimensionless)		
45-degree elbows	15		
90-degree elbows, std. radius	32		
90-degree elbows, med. Radius	26		
90-degree elbows, long radius	20		
90-degree elbows, square	60		
180-degree close-return bend	75		
180-degree medium-radius return bend	50		
Tee, used as elbow, entering run	60		
Tee, used as elbow, entering branch	90		
couplings	0		
unions	0		
gate valves, open	7		
globe valves, open	300		

 $F_{constriction} = \frac{K_c V_2^2}{2\alpha}$ for $A_2 / A_1 < 0.715$, $K_c = 0.4(1.25 - A_2 / A_1)$

for $A_2 / A_1 > 0.715$, $K_c = 0.75(1.00 - A_2 / A_1)$ for conical and rounded shapes, $K_c = 0.05$

Cost of Piping

http://www.mhhe.com/engcs/chemical/peters/data/ce.html

Figure 12-4
Purchased cost of pipe per unit length

Additional Charts and Data:

Pipes pp 503-504 (figs. 12-4 to 12-6)
Valves pp 505-507 (figs. 12-7 to 12-11)
Insulation, paint p 507 (fig 12-12)
Additional Fittings See Link to Pipe Fitting Prices – 1979 Edition

Factors for Determining Cost:

- Length
- Diameter and thickness
- Material of construction
- Mounting and support hardware
- Insulation and paint

How to Find the Pipe Diameter

Combination of Pipe Cost and Pumping Power Cost

Chapter 12: Eqns. 12-15,16 page 501 (abbreviated)

$$D_{i,opt} = 0.363 \dot{m}_v^{0.45} \rho^{0.13}$$

Re > 2100 and $D_i \ge 0.0254$ m

$$D_{i,opt} = 1.33 \dot{m}_v^{0.40} \mu^{0.20}$$

Re < 2100 and D_i ≤ 0.0254m

book has .133 (typo)

$$\dot{m}_v = \text{volumetric flowrate}, \ \frac{m^3}{s}$$

$$\mu = \text{viscosity}, Pa \cdot s$$

Chapter 9: Eqns. 9-76 to 9-79 page 404

(complete set of equations)

$$D_{i,opt} = 0.363 \dot{m}_v^{0.45} \rho^{0.13} \mu^{0.025}$$

Re > 2100 and D_i \ge 0.0254m

$$D_{i,opt} = 0.49 \dot{m}_v^{0.49} \rho^{0.14} \mu^{0.027}$$

Re > 2100 and D_i < 0.0254m

$$D_{i,opt} = 0.863 \dot{m}_v^{0.36} \mu^{0.18}$$
 Re < 2100 and D_i \geq 0.0254m

$$D_{i,opt} = 1.33 \dot{m}_v^{0.40} \mu^{0.20}$$
 Re < 2100 and D_i < 0.0254m

962

(To learn more, there is an excellent tutorial hyperlinked to figure, or copy and paste this link into your browser: https://hardhatengineer.com/pipe-class-piping-specifications-pipeend/pipe-schedule-chart-nominal-pipe-sizes/)

Nominal pipe size, in.	OD, in.	Schedule no.	ID, in.	Flow area	Surface per linear ft, ft ²		Weight per lin ft,
					Outside	Inside	lb steel
ж	0.405	40 ⁸	0.269	0.058	0.106	0.070	0.25
		80¢	0.215	0.036	0.106	0.056	0.32
Х	0.540	40	0.364	0.104	0.141	0.095	0.43
		80	0.302	0.072	0.141	0.079	0.54
36	0.675	40	0.493	0.192	0.177	0.129	0.57
		80	0.423	0.141	0.177	0.111	0.74
Ж	0.840	40	0.622	0.304	0.220	0.163	0.85
		80	0.546	0.235	0.220	0.143	1.09
74	1.05	40	0.824	0.534	0.275	0.216	1.13
		80	0.742	0.432	0.275	0.194	1.48
I	1.32	40	1.049	0.864	0.344	0.274	1.68
		80	0.957	0.718	0.344	0.250	2.17
1%	1.66	40	1.380	1.50	0.435	0.362	2.28
	1.00	80	1.278	1.28	0.435	0.335	3.00
1%	1.90	40	1.610	2.04	0.498	0.422	2.72
		80	1.500	1.76	0.498	0.393	3.64
2	2.38	40	2.067	3.35	0.622	0.542	3.66
	2,00	80	1.939	2.95	0.622	0.508	5.03
21/2	2.88	40	2.469	4.79	0.753	0.627	5.80
	2.00	80	2.323	4.23	0.753	0.609	7.67
3	3,50	40	3.068	7.38	0.917	0.804	7.58
-		80	2.900	6.61	0.917	0.760	10.3
4	4.50	40	4.026	12.7	1.178	1.055	10.8
		80	3.826	11.5	1.178	1.002	15.0
6	6.625	40	6.065	28.9	1.734	1.590	19.0
		80	5.761	26.1	1.734	1.510	28.6
8	8.625	40	7.981	50.0	2.258	2.090	28.6
		80	7.625	45.7	2.258	2.000	43.4
10	10.75	40	10.02	78.8	2.814	2.62	40.5
		60	9.75	74.6	2.814	2.55	54.8
12	12.75	30	12.09	115	3.338	3.17	43.8
16	16.0	30	15.25	183	4.189	4.00	62.6
20	20.0	20	19.25	291	5.236	5.05	78.6
24	24.0	20	23.25	425	6.283	6.09	94.7

Pipe Schedule No.

Eqs. 12-14 and 12-14a page 499

$$schedule = \frac{1000P_s}{S_s}$$

$$P_s = \frac{2S_s t_m}{D_m}$$

 P_s = safe working pressure, kPa

 S_s = safe working stress, kPa

 $S_s = 49,000 \text{ kPa}$ for butt-welded steel

 $S_s = 62,000 \text{ kPa}$ for lap-welded steel

Stresses are in Table 12-10 page 555

 t_m = wall thickness

 D_m = mean diameter, m

The data provided in this table are in the USCS units used by the pipe manufacturers in the United States.

Schedule 40 designates former "standard" pipe.

^{*}Schedule 80 designates former "extra-strong" pipe.

Homework

Problem 12-1

Estimate the size of the motor necessary to pump a lean oil to the top of an absorption tower operating at a pressure of 445 kPa. The oil is to be pumped from an open tank with a liquid level 3 m above the floor through 46 m of pipe with an inside diameter of 0.078 m. There are five 90° elbows in the line, and the top of the tower is 9.1 m above the floor level. A flow of 2.7 kg/s of lean oil is required. The viscosity of the oil is 15 cP, and its density is 857 kg/m³. Assume that the efficiency of the pumping system including the motor is 40%.

Problem 12-2

What is the pressure loss when 2.14 kg/s of pure benzene at 40°C flows through a 21-m length of straight pipe with an inside diameter of .0409 m? The pipeline contains six 90° elbows, one tee used as an elbow (equivalent resistance equal to 60 pipe diameters), one globe valve, and one gate valve. The density of the benzene is 849 kg/m³., and the viscosity at 40°C is 5x10⁻⁴ Pa·s Assume that the efficiency of the pumping system including the motor is 40%.

Supplemental Slides

http://www.balkanplumbing.com/water-valve-replacement-repair-guide/

PUSH-DOWN-TO-CLOSE VALVE BODY ASSEMBLY

http://encyclopedia2.thefreedictionary.com/Welded+Joint

http://www.mechlook.com/pipe-production/

