Revisão de Limites

Luis Alberto D'Afonseca

Cálculo de Funções de Várias Variáveis - I

Conteúdo

Limites

Técnicas para Calcular Limites em uma Variáve

Lista Mínima

Limite de uma Função

Seja f(x) definida em um intervalo aberto em torno de a, exceto, possivelmente, no próprio a

O limite de f(x) quando x tende para a é o número L

$$\lim_{x \to a} f(x) = L$$

se, para cada $\,\epsilon > O\,,$ existir $\,\delta > O\,,$ tais que

$$0 < |x - a| < \delta$$
 \Rightarrow $|f(x) - L| < \epsilon$

Limites de algumas funções

$$\lim_{x\to a}c=c$$

$$\lim_{x\to a} x = a$$

$$\lim_{x\to a} x^n = a^n$$

n número inteiro positivo

$$\lim_{x\to a} \sqrt[n]{x} = \sqrt[n]{a}$$

nnúmero inteiro positivo, se n for par precisamos impor $a \geq 0$

$$\lim_{x\to a}p(x)=p(a)$$

onde p(x) é um polinômio em x

Limites de algumas funções

$$\lim_{x\to\infty}\frac{1}{x}=0$$

$$\lim_{x \to 0^+} \frac{1}{x} = \infty$$

$$\lim_{x\to 0^-}\frac{1}{x}=-\infty$$

Propriedades de Limites

Se os limites $\lim_{x\to a} f(x)$ e $\lim_{x\to a} g(x)$ existirem, então:

$$x \rightarrow a$$
 $x \rightarrow a$

1.
$$\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

2.
$$\lim_{x \to a} (f(x) - g(x)) = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$

$$x \rightarrow 0$$

$$a_a f(x), \quad \forall \ c \in \mathbb{R}$$

5. $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$ desde que $\lim_{x \to a} f(x) \neq 0$

4.
$$\lim_{x \to a} (f(x)g(x)) = \left(\lim_{x \to a} f(x)\right) \left(\lim_{x \to a} g(x)\right)$$

3.
$$\lim_{x \to a} (cf(x)) = c \lim_{x \to a} f(x), \quad \forall \ c \in \mathbb{R}$$

Soma

Diferenca

Produto

Ouociente

6/29

Teorema do confronto

Se
$$g(x) < j(x) < h(x)$$

para todo x em um intervalo aberto contendo a, exceto x = a, e

$$\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L$$

então

$$\lim_{x \to a} f(x) = L$$

Conteúdo

Limites

Técnicas para Calcular Limites em uma Variável

Lista Mínima

Estratégia Geral para Cálculo de Limites

- 1. Substituir diretamente o valor da variável no limite
- 2. Identificar o resultado: número finito, $\pm \infty$ ou indeterminação
- 3. Em caso de indeterminação:
 - aplicar manipulações algébricas
 - utilizar fatorações
 - racionalizações
 - dividir pelo termo de maior grau

Indeterminações Comuns

$$ightharpoonup \frac{0}{0}$$

 $\sim \frac{\infty}{\infty}$

$$ightharpoonup \infty - \infty$$

 $ightharpoonup 0\cdot\infty$

$$ightharpoonup 1^{\infty}$$
, 0^0 , ∞^0

indeterminação algébrica

formas racionais

diferença de infinitos

Exemplo 1

Avalie o limite
$$\lim_{x\to 2} \frac{x^2-4}{x-2}$$

Exemplo 1 – Solução

Substituindo diretamente

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \frac{x^2 - 4}{x - 2} \bigg|_{x = 2} = \frac{2^2 - 4}{2 - 2} = \frac{0}{0}$$

Indeterminação 0/0,

não podemos dizer nada sobre o limite

Exemplo 1 – Solução

Fatorando o numerador

$$f(x) = \frac{x^2 - 4}{x - 2}$$

$$= \frac{(x - 2)(x + 2)}{x - 2}$$

$$= x + 2$$

Calculando o Limite

$$\lim_{x \to 2} f(x) = \lim_{x \to 2} (x+2) = (x+2) \Big|_{x=2} = 4$$

Exemplo 2

Calcule o limite
$$\lim_{x\to\infty} \frac{3x^2 + 5x}{2x^2 - x}$$

Exemplo 2 – Solução

Não podemos substituir diretamente, mas sabemos que

$$\lim_{x\to\infty}3x^2+5x=\infty$$

$$\lim_{x\to\infty}2x^2-x=\infty$$

portanto temos uma indeterminação ∞/∞

e não podemos dizer nada sobre o limite

Exemplo 2 – Solução

Dividindo o numerador e o denominador pelo termo de maior grau, x^2

$$f(x) = \frac{3x^2 + 5x}{2x^2 - x} = \frac{(3x^2 + 5x)/x^2}{(2x^2 - x)/x^2} = \frac{3 + 5/x}{2 - 1/x}$$

Sabemos que $\lim_{x\to\infty}\frac{1}{x}=0$, então

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{3 + \frac{5}{x}}{2 - \frac{1}{x}} = \frac{3 + 0}{2 - 0} = \frac{3}{2}$$

Exemplo 3

Avalie
$$\lim_{x\to\infty} \left(\sqrt{x^2+3x}-x\right)$$

Exemplo 3 – Solução

Não podemos substituir diretamente, mas sabemos que

$$\lim_{x \to \infty} \sqrt{x^2 + 3x} = \infty$$

$$\lim_{x \to \infty} x = \infty$$

portanto temos uma indeterminação $\, \infty - \infty \,$

e não podemos dizer nada sobre o limite

Exemplo 3 – Solução

$$f(x) = \sqrt{x^2 + 3x} - x$$

$$= \left(\sqrt{x^2 + 3x} - x\right) \frac{\sqrt{x^2 + 3x} + x}{\sqrt{x^2 + 3x} + x}$$

$$= \frac{x^2 + 3x - x^2}{\sqrt{x^2 + 3x} + x}$$

$$= \frac{3x}{\sqrt{x^2 + 3x} + x}$$

$$= \frac{3x}{\sqrt{x^2 + 3x} + x}$$

$$= \frac{3x}{\sqrt{x^2 + 3x} + x}$$

$$f(x) = \frac{3x}{x\sqrt{1 + \frac{3}{x}} + x}$$
$$= \frac{3x}{x\left(\sqrt{1 + \frac{3}{x}} + 1\right)}$$
$$= \frac{3}{\sqrt{1 + \frac{3}{x}} + 1}$$

Exemplo 3 – Solução

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{3}{\sqrt{1 + \frac{3}{x} + 1}}$$

$$= \frac{3}{\sqrt{1 + \lim_{x \to \infty} \left(\frac{3}{x}\right)} + 1}$$

$$= \frac{3}{\sqrt{1 + 0} + 1} = \frac{3}{2}$$

Exemplo 4

Avalie
$$\lim_{x\to 0^+} x \ln(x)$$

Exemplo 4 – Solução

Não podemos substituir diretamente, mas sabemos que

$$\lim_{x \to 0^+} x = 0$$

$$\lim_{x \to 0^+} \ln x = -\infty$$

portanto temos uma indeterminação $0(-\infty)$

e não podemos dizer nada sobre o limite

Exemplo 4 – Solução

$$\lim_{x \to 0^{+}} x \ln(x) = \lim_{x \to 0^{+}} \frac{\ln(x)}{\frac{1}{x}}$$

$$= \lim_{x \to 0^{+}} \frac{(\ln(x))'}{(x^{-1})'}$$

$$= \lim_{x \to 0^{+}} \frac{x^{-1}}{-x^{-2}}$$

$$= \lim_{x \to 0^{+}} \frac{x^{2}}{-x}$$

$$= \lim_{x \to 0^{+}} -x = 0$$

indeterminação
$$\frac{\infty}{\infty}$$

Regra de L'Hôpital

Exemplo 5

Calcule
$$\lim_{x\to 0} x \operatorname{sen}\left(\frac{1}{x}\right)$$

Dica: use o Teorema do Confronto

Exemplo 5 – Solução

Como

$$-1 \le \operatorname{sen}(u) \le 1 \qquad \forall u \in \mathbb{R}$$

para $x \neq 0$

$$-1 \le \operatorname{sen}\left(\frac{1}{x}\right) \le 1$$

portanto

$$-|x| \le x \operatorname{sen}\left(\frac{1}{x}\right) \le |x|$$

Exemplo 5 – Solução

Sabemos que

$$\lim_{x\to 0} |x| = 0 \qquad \text{e} \qquad \lim_{x\to 0} -|x| = 0$$

Portanto, pelo Teorema do Confronto,

$$\lim_{x \to 0} x \operatorname{sen}\left(\frac{1}{x}\right) = 0$$

Técnicas principais

- Substituição direta
- Fatoração e simplificação algébrica
- Divisão por maior potência para limites no infinito
- Racionalização em diferenças envolvendo raízes
- Reescrita de produtos em quocientes
- Uso da Regra de L'Hôpital

Conteúdo

Limites

Técnicas para Calcular Limites em uma Variáve

Lista Mínima

Lista Mínima

Cálculo Vol. 1 do Thomas 12^a ed.

1. Revisar atentamente texto do Capítulo 2

Atenção: A prova é baseada no livro, não nas apresentações