Heat Transfer Lumped system assumption

Lecturer: Jakob Hærvig

Slides by Jakob Hærvig (AAU Energy) and Jacob Andersen (AAU Build)

What is the lumped system assumption and why?

- Most heat transfer problems are complex because temperature varies in both with time and space
 - In lumped systems, temperature only varies with time and not space

$$T = f(x, y, z, t)$$

$$\longrightarrow T = f(t)$$

 Applying the lumped system assumption significantly simplifies the analysis

A roast beef (not lumped system)

A copper ball (lumped system)

Starting point of lumped system analysis

- Consider a body of arbitrary shape with:
 - \circ Mass m
 - \circ Volume V
 - \circ Density ρ
 - \circ Specific heat capacity c_p
 - \circ Initial internal temperature T_i
- ullet At time t=0 the body is exposed to convective heat transfer from the outside:
 - $\circ~$ Surrounding temperature T_{∞}
 - Heat transfer coefficient *h*
 - \circ Surface area A_s

Derivation of the lumped system equation

• Energy transferred to body during $\mathrm{d}t$:

$$hA_s(T_\infty-T)\mathrm{d}t=mc_p\mathrm{d}T$$
 $=
ho Vc_p\mathrm{d}T$

• Because T_{∞} is constant, we may expand dT:

$$hA_s(T_{\infty} - T)dt$$

$$= -hA_s(T - T_{\infty})dt$$

$$= \rho V c_p d(T - T_{\infty})$$

..Re-arranging:

$$rac{\mathrm{d}(T-T_{\infty})}{T-T_{\infty}} = -rac{hA_s}{
ho V c_p} \mathrm{d}t$$

ullet Now, intergrating from t=0 where $T=T_i$ to any time t at which T=T(t) we get:

$${
m ln}rac{T(t)-T_{\infty}}{T_i-T_{\infty}}=-rac{hA_s}{
ho Vc_p}t$$

• Exponential on both sides gives **lumped system equation**:

$$rac{T(t)-T_{\infty}}{T}=\mathrm{e}^{-rac{hA_{s}}{
ho V c_{p}}t}$$

The time constant for lumped systems

• Introducing $b=hA_s/(
ho Vc_p)$, we obtain:

$$rac{T(t)-T_{\infty}}{T_i-T_{\infty}}=\mathrm{e}^{-rac{hA_s}{
ho Vc_p}t}=\mathrm{e}^{-bt}$$

- ullet The time constant (1/b) describes the rate at which the system approaches the surrounding temperature T_{∞}
 - Large b value, system approaches surrounding temperature quickly
 - Small b value, system approaches surrounding temperature slowly

Validity of lumped system assumption

• We define a **Biot number**:

$$\mathrm{Bi}=hL_c/k$$

- If ${
 m Bi}=0$: lumped system assumption is **exact**
- ullet If $Bi \leq 0.1$: lumped system assumption is resonable accurate
- $\circ~$ with the characteristic length $L_c=V/A_s~$ If ${
 m Bi}>0.1$: lumped system assumption is <code>inaccurate</code>

Example

