CHAPITRE 0

Logique (rudiment

Table des matières

Ι	Algèbre de Boole	3
II	Déduction naturelle	7
III	Raisonement par l'absurde	9
IV	Prédicat	11
\mathbf{V}	Logique douteuse	13

Definition

Un proposition est un énoncé qui est soit vrai, soit faux.

Exemple

$$A:$$
 "B est vraie" $B:$ "A est fausse" Le système $\{A,B\}$ est une auto-contradiction

Definition

 $\underline{\text{D\'emontrer}}$ une proposition revient à prouver qu'elle est vraie

Première partie Algèbre de Boole

-

Definition

Soient A et B deux propositions. La proposition \underline{A} et \underline{B} est définie par la table de vérité suivante :

A	B	$A ext{ et } B$
\overline{V}	V	V
\overline{V}	F	F
\overline{F}	V	F
\overline{F}	F	F

Definition

Soient A et B deux propositions. La proposition \underline{A} ou \underline{B} est définie par la table de vérité suivante :

A	B	A ou B
\overline{V}	V	V
\overline{V}	F	V
\overline{F}	V	V
\overline{F}	F	F

Definition

Soit A une proposition. La négation de A, notée non(A) est définie par :

$$\begin{array}{c|c} A & \text{non}(A) \\ \hline V & F \\ \hline F & V \end{array}$$

Definition

Deux propositions A et B sont <u>équivalentes</u> si elles ont la même table de vérité. Dans ce cas, on note $A \iff B$

Proposition

Soient A, B et C trois propositions.

1.
$$(A \text{ et } B) \text{ et } C \iff A \text{ et } (B \text{ et } C)$$

$$2. \ A \ {\rm et} \ A \iff A$$

3.
$$A \text{ et } B \iff B \text{ et } A$$

4.
$$(A \text{ ou } B) \text{ ou } C \iff A \text{ ou } (B \text{ ou } C)$$

5.
$$A$$
 ou $A \iff A$

6.
$$A$$
 ou $B \iff B$ ou A

7. non (non
$$(A)$$
) $\iff A$

8.
$$A$$
 et $(B$ ou $C) \iff A$ et B ou A et C

9. $A \text{ ou } (B \text{ et } C) \iff (A \text{ ou } B) \text{ et } (A \text{ et } C)$

10. non $(A \text{ et } B) \iff \text{non } (A) \text{ ou non } (B)$

11. non $(A \text{ ou } B) \iff \text{non } (A) \text{ et non } (B)$

Preuve

8.

A	B	C	B ou C	A et $(B$ ou $C)$	A et B	A et C	$A \in B$ ou $A \in C$
\overline{V}	V	V	V	V	V	V	\overline{V}
\overline{V}	V	F	V	V	F	F	\overline{V}
\overline{V}	F	V	V	V	F	V	\overline{V}
\overline{V}	F	F	F	F	F	F	\overline{F}
\overline{F}	V	V	V	F	F	F	\overline{F}
\overline{F}	V	F	V	F	F	F	\overline{F}
\overline{F}	F	V	V	F	F	F	\overline{F}
\overline{F}	F	F	F	F	F	F	F

10.

A	B	A et B	non (A et B)	non(A)	non (B)	non (A) ou non (B)
\overline{V}	V	V	F	F	F	\overline{F}
\overline{V}	F	F	V	F	V	\overline{V}
\overline{F}	V	F	V	V	F	\overline{V}
\overline{F}	F	F	V	V	V	\overline{V}
		•	'		'	

Definition

Soient A et B deux propositions. La proposition $\underline{A} \Longrightarrow \underline{B}$ (A implique B) est définie par :

A	B	$A \implies B$
\overline{V}	V	V
\overline{V}	F	F
\overline{F}	V	V
\overline{F}	F	V

Definition

Soient A et B deux propositions telles que $A \Longrightarrow B$ est vraie. On dit que A est une <u>condition suffisante</u> pour que B soit vraie. On dit que B est une <u>condition nécessaire</u> pour que A soit vraie.

Proposition

Contraposée

Soient A et B deux propositions.

$$(A \implies B) \iff (\text{ non } B \implies \text{ non } A)$$

Preuve

A	B	non A	non B	$non B \implies$	non A	$A \Longrightarrow$	B
\overline{V}	V	F	F	V		V	
\overline{V}	F	F	V	F		F	
\overline{F}	V	V	F	V		V	
\overline{F}	F	V	V	V		V	

Proposition

Soient A et B deux propositions.

$$(A \Longrightarrow B) \iff ((A \Longrightarrow B) \text{ et } (B \Longrightarrow A))$$

Preuve

A	$\mid B \mid$	$A \iff B$	$A \Longrightarrow B$	$B \implies A$	$(A \Longrightarrow B) \text{ et } (B \Longrightarrow A)$
\overline{V}	V	V	V	V	V
\overline{V}	F	F	F	V	F
\overline{F}	V	F	V	F	F
\overline{F}	F	V	V	V	V

Proposition

Soient A et B deux propositions.

$$(A \Longrightarrow B) \iff (B \text{ ou non } (A))$$

Preuve

On obtient par contraposée

$$non (A \Longrightarrow B) \iff (A \text{ et } non (B))$$

donc

$$(A \Longrightarrow B) \iff \text{non } (A \text{ et non } (B))$$
 $\iff \text{non } (A) \text{ ou non } (\text{ non } (B))$
 $\iff \text{non } (A) \text{ ou } B$
 $\iff B \text{ ou non } (A)$

Deuxième partie Déduction naturelle

Dans ce paragraphe, A et B sont deux propositions.

A et B

Comment démontrer A et B?

- On démontre A
- On démontre B

Comment utiliser l'hypothèse A et B?

On utilise A ou on utilise B.

A ou B

Comment démontrer A ou B?

On essaie de démontrer A. Si on y arrive, alors on a prouvé A ou B sinon on démontre B.

$\underline{\text{Variante}}$

On suppose A faux. On démontre B.

Comment utiliser l'hypothèse A ou B?

On fait une disjonction des cas :

- Cas 1 : On suppose A
- Cas 2: On suppose B

$A \implies B$

Comment démontrer $A \implies B$?

On suppose A. On démontre B.

Comment utiliser l'hypothèse $A \implies B$?

On démontre A. On utilise B.

Troisième partie Raisonement par l'absurde

Situation:

Soient A et B deux propositions.

On veut montrer $A \implies B$.

On suppose \underline{A} . On suppose aussi \underline{B} faux.

On cherche à faire apparaı̂tre une contradiction $(\mbox{\it \rlap{\sl}})$

Quatrième partie

Prédicat

IV Prédicat

Definition

Un <u>prédicat</u> $\mathscr{P}(x)$ est un énoncé dont la valeur de vérité dépend de l'objet x, élément d'un ensemble E.

Le <u>domaine de validité</u> de $\mathscr P$ est l'ensemble des valeurs x de E pour lequelles $\mathscr P(x)$ est vraie :

$$\{x \in E \mid \mathscr{P}(x)\}\$$

Remarque Notation

On écrit

$$\forall x \in E, \mathscr{P}(x)$$

pour dire que $\mathscr{P}(x)$ est vraie pour tous les x de E.

On écrit

$$\exists x \in E, \mathscr{P}(x)$$

pour dire qu'il existe (au moints) un élément $x \in E$ pour lequels $\mathscr{P}(x)$ est vraie.

On écrit

$$\exists ! x \in E, \mathscr{P}(x)$$

pour dire qu'il existe un unique élément $x \in E$ tel que $\mathscr{P}(x)$ est vraie.

Comment utiliser $\forall x \in E, \mathscr{P}(x)$?

On choisit (spécialise) une ou plusieurs (voir toutes) valeurs de x et on exploite $\mathscr{P}(x)$.

Exemple

Soient $a, b, c \in \mathbb{R}$. On suppose que

$$\forall n \in \mathbb{N}, a+b \times 2^n + c \times 3^n$$

Montrons que a = b = c = 0.

Montrons que
$$a = b = c = 0$$
.
On sait que (S) :
$$\begin{cases} a + b + c = 0 & (n = 0) \\ a + 2b + 3c = 0 & (n = 1) \\ a + 4b + 9c = 0 & (n = 2) \end{cases}$$

$$(S) \iff \begin{cases} a + b + c = 0 \\ b + 2c = 0 \\ 3b + 8c = 0 \end{cases} \iff \begin{cases} a + b + c = 0 \\ b + 2c = 0 \\ 2c = 0 \end{cases} \iff \begin{cases} c = 0 \\ a = 0 \end{cases}$$

Cinquième partie Logique douteuse

Definition

On définit
$$\varpi=\frac{e^{\pi-\sqrt{2}}-\ln 4+\Upsilon}{\gamma}$$
 où $\Upsilon=\pi!=\Gamma(\pi+1)\approx 7.18$ On a $\varpi\approx 19.7979$

Definition

Soit P(x) un prédicat sur E. On dit que P(x) est <u>quasi-vraie</u> (pour un certain $\varepsilon>0$) si

$$\mathfrak{Y}_E(P) = \frac{\operatorname{Card}(F)}{\operatorname{Card}(V)} < \varepsilon$$

où $V = \{x \in E \mid P(x) \text{ vrai}\}\ \text{et } F = \{x \in E \mid P(x) \text{ faux}\}\$ Par convention, on choisit généralement $\varepsilon = \varpi$.

Exemple

Soit $x \in \mathbb{R}$. Montrons que P(x): " $\sqrt{x^2} = x$ ".

On sait que P(x) est vraie pour tout x positif (ou nul).

Or,
$$\forall x \in \mathbb{R}^-, P(x)$$
 est faux $(\sqrt{x^2} = -x)$

Alors, P(x) est quasi-vraie

On note
$$\infty = \operatorname{Card}(\mathbb{R}^+) = \operatorname{Card}(\mathbb{R}^-)$$
. On a donc $\mathfrak{Y}_E(P) = \frac{\infty}{\infty} = 1$

Théorème

Théorème du pipeau qui marche

" C'est du pipeau ... mais ça marche!"

Toute proposition quasi-vraie est vraie.

Remarque

Ce théorème est très utile. On l'appèle aussi le théorème du marchand de tapis ou le théorème du random-bullshit.

La preuve de ce théorème est très complexe et utilise principalement des notions qui ne sont pas au programme. Malgrès cela, on peut tout de même comprendre la preuve.

Preuve

principe de la preuve

On a une proposition P(x) sur un ensemble E. On note n = Card(E). On pose V et F comme dans la définition d'une proposition quasi-vraie.

On montre que $F \xrightarrow[n \to +\infty]{} \emptyset$ et donc que $V \xrightarrow[n \to +\infty]{} E$ en démontrant que $\operatorname{Card} V \xrightarrow[n \to +\infty]{} \operatorname{Card} E$.

Exemple

On pose $\forall x \in \mathbb{R}, P(x)$: " $\frac{1}{x}$ existe". On sait que $\frac{1}{0}$ n'existe pas. Cependant, P est quand même quasi-vraie. Donc d'après le théorème du pipeau qui marche,

P est vraie.

Proposition

Les équivalents autour d'un points sont des égalités à $\pm \varepsilon$.

Exemple

Avec
$$\varepsilon = \frac{1}{2}$$
, $\sin \theta \approx \theta$, $\cos \theta \approx 1$

${\bf Corollaire}$

Toute notation en "petit o" est optionnelle avec l'utilisation de " \approx ". Avec la valeur de ε correspodante,

$$\forall x \in \mathbb{R}, \mathsf{o}(x) \approx 0$$

Remarque

Notation

Au lieu d'utiliser "≈", on écrit "=" à la place.

On a donc $sin(\theta) = \theta$ et $cos(\theta) = 1$.