import pandas as pd
import numpy as np

df = pd.read_csv('/content/AcademicPerformance.csv')

df.head()

	Gender	Math Score	Reading Score	Writing Score	Placement Score	Placement Offer Count	Region
0	Female	85.0	75	65.0	27	2	Pune
1	Male	90.0	80	60.0	30	3	Mumbai
2	Female	75.0	70	67.0	25	1	Amravati
3	Male	92.0	82	70.0	40	4	Pune
4	Female	70.0	62	55.0	20	1	Mumbai

from sklearn import preprocessing
le = preprocessing.LabelEncoder()

from sklearn.preprocessing import LabelEncoder

df['Gender'] = LabelEncoder().fit_transform(df['Gender'])

df.head()

	Gender	Math Score	Reading Score	Writing Score	Placement Score	Placement Offer Count	Region
0	0	85.0	75	65.0	27	2	Pune
1	1	90.0	80	60.0	30	3	Mumbai
2	0	75.0	70	67.0	25	1	Amravati
3	1	92.0	82	70.0	40	4	Pune
4	0	70.0	62	55.0	20	1	Mumbai

df['Region'] = LabelEncoder().fit_transform(df[' Region'])

df.head()

	Gender	Math Score	Reading Score	Writing Score	Placement Score	Placement Offer Count	Region	Region
0	0	85.0	75	65.0	27	2	Pune	2
1	1	90.0	80	60.0	30	3	Mumbai	1
2	0	75.0	70	67.0	25	1	Amravati	0
3	1	92.0	82	70.0	40	4	Pune	2
4	0	70.0	62	55.0	20	1	Mumbai	1

df.boxplot()


```
import seaborn as sns
import matplotlib.pyplot as plt
plt.plot()
     []
       0.04
       0.02
       0.00
      -0.02
      -0.04
               -0.04
                       -0.02
                                0.00
                                        0.02
                                                 0.04
from scipy import stats
z = np.abs(stats.zscore(df['Placement Score']))
print(z)
          0.15087
          0.15087
     1
          0.35203
     2
     3
          1.15667
          0.85493
     4
     5
          0.05029
     6
          1.05609
          0.35203
          2.16247
          1.35783
     Name: Placement Score, dtype: float64
threshold = 2
print(np.where(z > 1))
     (array([3, 6, 8, 9]),)
df['Math Score'].mean()
     83.6666666666667
df['Math Score'].std()
     9.578622030334008
zs = (95 - 83.66666666666667)/ 9.578622030334008
print(zs)
     1.1831903688695955
mean = df['Math Score'].mean()
std = df['Math Score'].std()
threshold = 70
outlier = []
for i in df['Math Score']:
    zs = (i - mean)/std
    print(zs)
    if zs \rightarrow threshold:
     outlier.append(i)
print("Ouliers", outlier)
     0.13919886692583433
     0.6611946178977148
     -0.9047926350179268
     0.8699929182864671
     -1.4267883859898074
     0.24359801712021042
```

0.6611946178977148 1.1831903688695955 -1.4267883859898074 Ouliers []

• ×