Flaviano Williams Fernandes

Instituto Federal do Paraná Campus Irati

7 de Novembro de 2020

Prof. Flaviano W. Fernandes IFPR-Irati

Trabalho na termodinâmica

Sumário

- Trabalho na termodinâmica
- 2 A primeira Lei da Termodinâmica
- Aplicações da Primeira Lei da Termodinâmica
- 4 Apêndice

Comportamento das moléculas em uma câmara fechada

As moléculas de um gás colidem várias vezes com as paredes do recipiente, e a cada colisão as moléculas exercem uma força \vec{F} nas paredes e também no pistão.

Recipiente contendo gás ideal.

Moléculas colidindo com as paredes do recipiente.

Prof. Flaviano W. Fernandes IFPR-Irati

Trabalho realizado por um gás

A força que o gás exerce no pistão realiza um trabalho ausobre ele, deslocando-o para cima por uma distância ΔS . segundo a relação

$$\tau = \mathbf{F} \cdot \Delta \mathbf{S}$$
.

Mas F = pA, sendo A a área do pistão, portanto

$$au = p A \Delta S,$$
 $au = p \Delta V.$

$$\tau = p\Delta V.$$

Aumento ΔV do volume do câmara devido ao trabalho aurealizado pelo gás.

Prof. Flaviano W. Fernandes IFPR-Irati

Diagrama pressão versus volume

Se a pressão e o volume podem variar durante uma transformação termodinâmica, podemos representar essa transformação que ocorre do estado i para o estado f em um diagrama pressão versus volume.

Na mecânica determinamos o trabalho realizado por uma força sabendo a área abaixo da curva. Podemos proceder da mesma maneira para calcular o trabalho associado a um gás num gráfico pressão x volume.

Trabalho realizado de i até f.

Corollary

O trabalho τ de um gás no diagrama pressão versus volume é a área da figura abaixo da curva (positivo ou negativo dependendo do sentido da transformação).

Prof. Flaviano W. Fernandes

O que são sistema, vizinhança e universo?

sistema ΔU=0-6 vizinhança

Representação de sistema, vizinhança e universo

Exemplo de sistema e vizinhança.

Prof. Flaviano W. Fernandes

Convenção de sinais de calor e trabalho na termodinâmica

Convenção de sinais do calor

Se o sistema recebe calor da vizinhança então Q é positivo.

Se o sistema cede calor para a vizinhança então Q é negativo.

Convenção de sinais do trabalho

Se o trabalho está sendo realizado sobre o sistema então τ é negativo.

Se o sistema realiza trabalho sobre a vizinhança então τ é positivo.

Quando um sistema vai de um estado i para o estado f e troca energia com a vizinhança, a sua energia interna aumenta ou diminui e a sua variação é dado por

$$\Delta U = U_f - U_i = Q.$$

Se ele ao mesmo tempo realizar trabalho τ , ou trabalho for feito sobre ele, a quantidade de energia interna que ele recebe ou cede é dado por

$$\Delta U = Q - \tau.$$

Aplicações da Primeira Lei da Termodinâmica

Exemplo de aplicação da primeira Lei da Termodinâmica.

Transformação adiabática

Na transformação adiabática o sistema não troca calor com a vizinhança, portanto Q = 0. A variação da energia interna do gás é dado por

$$\Delta U = Q - \tau,$$

$$\Delta U = -\tau.$$

$$\Delta U = -\tau.$$

Exemplo de transformação adiabática.

Prof. Flaviano W. Fernandes IFPR-Irati

Transformação isotérmica

Na transformação isotérmica, a temperatura do sistema não muda e a energia de um gás depende somente da temperatura T, ou seja,

$$U(T)=\frac{3}{2}Nk_{B}T,$$

portanto $\Delta U = 0$. Pela Primeira Lei da Termodinâmica temos

$$Q - \tau = \Delta U,$$

 $Q - \tau = 0,$
 $Q = \tau.$

Exemplo de transformação isotérmica.

Transformação isovolumétrica

Na transformação isovolumétrica (ou isocórica), o volume do sistema não muda, portanto

A primeira Lei da Termodinâmica

$$\Delta V = 0$$
.

Mas o trabalho associado a um gás é igual a $p\Delta V$, portanto $\tau=0$. Pela Primeira Lei da Termodinâmica temos

$$\Delta U = Q - \frac{0}{\tau},$$

$$\Delta U = Q$$
.

Exemplo de transformação isocórica.

Prof. Flaviano W. Fernandes IFPR-Irati

Transformar um número em notação científica

Corollary

Trabalho na termodinâmica

- Passo 1: Escrever o número incluindo a vírgula.
- Passo 2: Andar com a vírgula até que reste somente um número diferente de zero no lado esquerdo.

Aplicações da Primeira Lei da Termodinâmica

Passo 3: Colocar no expoente da potência de 10 o número de casas decimais que tivemos que "andar"com a vírgula. Se ao andar com a vírgula o valor do número diminuiu, o expoente ficará positivo, se aumentou o expoente ficará negativo.

Exemplo

6 590 000 000 000 000, $0 = 6.59 \times 10^{15}$

Conversão de unidades em uma dimensão

$$1 \text{ mm} = 1 \times 10^{(-1) \times 2} \text{ dm} \rightarrow 1 \times 10^{-2} \text{ dm}$$

$$2,5 \text{ kg} = 2,5 \times 10^{(1) \times 6} \text{ mg} \rightarrow 2,5 \times 10^{6} \text{ mg}$$

10 ms =
$$10 \times 10^{(-1) \times 3}$$
 s $\to 10 \times 10^{-3}$ s

Prof. Flaviano W. Fernandes

$$1 \text{ mm}^2 = 1 \times 10^{(-2) \times 2} \text{ dm}^2 \rightarrow 1 \times 10^{-4} \text{ dm}^2$$

$$2,5 \text{ m}^2 = 2,5 \times 10^{(2) \times 3} \text{ mm}^2 \rightarrow 2,5 \times 10^6 \text{ mm}^2$$

$$10 \text{ ms}^2 = 10 \times 10^{(-2) \times 3} \text{ s}^2 \rightarrow 10 \times 10^{-6} \text{ s}^2$$

Prof. Flaviano W. Fernandes

Trabalho na termodinâmica

$$1 \text{ mm}^3 = 1 \times 10^{(-3) \times \textcolor{red}{2}} \text{ dm}^3 \rightarrow 1 \times 10^{-6} \text{ dm}^3$$

$$2,5 \text{ m}^3 = 2,5 \times 10^{(3) \times 3} \text{ mm}^3 \rightarrow 2,5 \times 10^9 \text{ mm}^3$$

$$2.5 \text{ km}^3 = 2.5 \times 10^{(3) \times 6} \text{ mm}^3 \rightarrow 2.5 \times 10^{18} \text{ mm}^3$$

Prof. Flaviano W. Fernandes

Trabalho na termodinâmica

Alfabeto grego

Alfa
$$A$$
 α
Beta B β
Gama Γ γ
Delta Δ δ
Epsílon E ϵ, ε
Zeta Z ζ
Eta H η
Teta Θ θ
lota I ι
Capa K κ
Lambda Λ λ
Mi M μ

Ni	Ν	ν
Csi	Ξ	ξ
ômicron	0	0
Pi	П	π
Rô	Ρ	ρ
Sigma	Σ	σ
Tau	Τ	au
Ípsilon	Υ	v
Fi	Φ	ϕ, φ
Qui	X	χ
Psi	Ψ	ψ
Ômega	Ω	ω

Referências e observações¹

A. Máximo, B. Alvarenga, C. Guimarães, Física. Contexto e aplicações, v.2, 2.ed., São Paulo, Scipione (2016)

Esta apresentação está disponível para download no endereço https://flavianowilliams.github.io/education

Prof. Flaviano W. Fernandes IFPR-Irati

¹Este material está sujeito a modificações. Recomenda-se acompanhamento permanente.