

education

Department:
Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P1

FEBRUARY/MARCH 2009

MEMORANDUM

MARKS: 150

This memorandum consists of 15 pages.

1.1.1	$3x + \frac{1}{x} = 4$ $3x^{2} - 4x + 1 = 0$ $(3x - 1)(x - 1) = 0$ $x = \frac{1}{3} \text{ or } x = 1$	✓ standard form ✓ factors ✓ answers (4)
1.1.2	$5x(x-3) = 2$ $5x^{2} - 15x - 2 = 0$ $x = \frac{-(-15) \pm \sqrt{(-15)^{2} - 4(5)(-2)}}{2(5)}$ $x = \frac{15 \pm \sqrt{265}}{10}$ $x = 3,13 \text{ or } x = -0,13$	✓ standard form ✓ substitution into formula ✓ 265 ✓ ✓ answers (5)
1.1.3	$x^{2}-2x > 3$ $x^{2}-2x-3 > 0$ $(x-3)(x+1) > 0$ $\frac{+ 0 - 0 +}{-1 3}$ OR $x < -1 \text{ or } x > 3$	✓ standard form ✓ critical values ✓ answers (4)
1.2	$x-3y = 1$ $x = 1+3y$ $(1+3y)^{2} - 2(1+3y)y + 9y^{2} = 17$ $1+6y+9y^{2} - 2y-6y^{2} + 9y^{2} - 17 = 0$ $12y^{2} + 4y - 16 = 0$ $3y^{2} + y - 4 = 0$ $(3y+4)(y-1) = 0$ $y = -\frac{4}{3} \text{ or } y = 1$ $x = -3 \text{ or } x = 4$	✓ $x = 1 + 3y$ ✓ substitution ✓ simplification ✓ factors ✓ answers ✓ 4

Copyright reserved

	OR	
	x - 3y = 1	
	$y = \frac{x-1}{3}$	
	$x^{2} - 2x\left(\frac{x-1}{3}\right) + 9\left(\frac{x-1}{3}\right)^{2} = 17$	
	$x^{2} - \frac{2x^{2} - 2x}{3} + 9\left(\frac{x^{2} - 2x + 1}{9}\right) = 17$	
	$x^{2} - \frac{2x^{2} - 2x}{3} + x^{2} - 2x + 1 = 17$	
	$3x^2 - 2x^2 + 2x + 3x^2 - 6x + 3 = 51$	
	$4x^2 - 4x - 48 = 0$	
	$x^2 - x - 12 = 0$	
	(x+3)(x-4) = 0	
	x = -3 or $x = 4$	
	$y = -\frac{4}{3} \text{or} y = 1$	
1.3	let $1234567893 = n$	
	Then	✓ method
	1234567893 × 1234567894 – 1234567895 × 1234567892	✓ simplification
	= n(n+1) - (n+2)(n-1)	
	$= n^2 + n - n^2 - n + 2$	✓ answer
	=2	(3)
	OR	
	Full marks for	
	$(3\times4)-(5\times2)=2$	[23]

2.1.1	1 1		
2.1.1	$S_2 = \frac{1}{1 \times 2} + \frac{1}{2 \times 3}$		
	$= \frac{1}{2} + \frac{1}{6}$ $= \frac{2}{3}$		
	$-\frac{2}{2}$	✓ answer	
	_ 3		(1)
2.1.2	1 1 1		
2.1.2	$S_3 = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4}$		
	$=\frac{2}{3}+\frac{1}{12}$		
	3 12 9		
	$= \frac{9}{12}$ $= \frac{3}{4}$		
	3		
	$=\frac{1}{4}$	✓ answer	(1)
2.1.2	1 1 1		(1)
2.1.3	$S_4 = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \frac{1}{4 \times 5}$		
	$=\frac{3}{4}+\frac{1}{20}$		
	$=\frac{16}{20}$		
	20 A	✓ answer	
	$=\frac{4}{5}$	unswer	(1)
2.2	If n represents the number of terms then the sum will be n divided by	✓ ✓ answer	
	n+1.		(2)
	OR		
	$S_n = \frac{n}{n+1}$		
2.3	g 2008	✓ answer	
	$S_n = \frac{2008}{2009}$		(1)
			[6]

3.1	(2p-3)-(1-p)=(p+5)-(2p-3)	✓ equating	
	2p-3-1+p=p+5-2p+3	differences	
	3p-4=-p+8	✓ simplification	
	4p = 12		
	p = 3	✓ answer	
	•		(3)
3.2.1	First term = $1 - p = 1 - 3 = -2$	\checkmark – 2	
			(1)
3.2.2	-2;3;8	✓ answer	
	Common difference = 5		(1)
	OR		
	3p-4=3(3)-4=5		
3.3	After the first term -2, all the other terms end in either a 3 or an 8.		
	Perfect squares never end in a 3 or an 8.	√ √ explanation	
	-	_	(2)
			[7]

QUESTION 4

4.1	6;6;2;-6;-18;		
	First difference: $0, -4, -8, -12, \dots$		
	Therefore the next term is:	√ - 34	
	-18 - 16 = -34		(1)
4.2	$\begin{bmatrix} 6 & 6 & 2 & -6 \\ 0 & -4 & -8 \end{bmatrix}$		
	-4 -4		
	2a = -4	$\checkmark a = -2$	
	a = -2		
	$T_n = -2n^2 + bn + c$		
	6 = -2 + b + c		
	$8 = b + c \qquad \dots(i)$		
	6 = -8 + 2b + c	✓ solving	
	14 = 2b + c(ii)	simultaneously	
	(ii) – (i): $6 = b$		
	$\therefore c=2$	✓ b = 6	
	$T_n = -2n^2 + 6n + 2$	$\checkmark c = 2$	
	n · · · · · · · · · · · · · · · · · · ·	✓ general term	
	OR		(5)
	OR		

iviaticinatics/1 1	NSC – Memorandum	DOL/Teor. – Water 2009
With children in the state of	$\frac{2}{-4} - \frac{6}{-4}$ $\frac{2}{-4} - \frac{8}{-4}$	✓ $a = -2$ ✓ $c = 2$ ✓ substitution ✓ $b = 6$ ✓ general term (5) ✓ obtaining differences ✓ adding both sides ✓ substituting $T_1 = 6$ ✓ expression for sum of terms ✓ simplification (5)
$4.3 -6838 = -2n^2 + 6n$ $-2n^2 + 6n + 6840 = -2n^2$		
$n^{2} - 3n - 3420 = 0$ $n = \frac{3 \pm \sqrt{(-3)^{2} - 4}}{2}$ 3 ± 117	(1)(-3420)	✓ standard form ✓ substitution
	ossible	✓ values of n
$T_{60} = -6838$		✓ answer (4) [10]

5.1	Area of unshaded square = $1 - \frac{1}{16}$	√1 , 1
	$=\frac{15}{16}$	$\checkmark \frac{1}{16}$
	16	√ answer
		(2)
5.2	Sum of the unshaded areas of the first seven squares	(avancesian for some
	$= (1-1) + \left(1 - \frac{1}{4}\right) + \left(1 - \frac{1}{4^2}\right) + \dots + \left(1 - \frac{1}{4^6}\right)$	✓ expression for sum of unshaded areas
	$=7-\left(1+\frac{1}{4}+\frac{1}{4^2}+\cdots+\frac{1}{4^6}\right)$	✓ simplification
	$=7-\left(\frac{1\left(1-\left(\frac{1}{4}\right)^{7}\right)}{1-\frac{1}{4}}\right)$	✓ answer (5)
	= 7 – 1,333251953	
	= 5,666748047	
	= 5,67	
	OR Sum of the unshaded areas of the first seven squares $= (1-1) + \left(1 - \frac{1}{4}\right) + \left(1 - \frac{1}{4^2}\right) + \dots + \left(1 - \frac{1}{4^6}\right)$	
	$= 6 - \left(\frac{1}{4} + \frac{1}{4^2} + \dots + \frac{1}{4^6}\right)$	
	$=6-\frac{\frac{1}{4}\left(1-\left(\frac{1}{4}\right)^{6}\right)}{1}$	
	$1-\frac{1}{4}$	
	= 6 - 0.332519531	
	= 5,666748047	
	= 5,67	[7]

6.1	$y = \frac{a}{x-1} + 2$ $0 = \frac{a}{0-1} + 2$ $0 = -a+2$ $a = 2$ $y = \frac{2}{x-1} + 2$	√ b = 1 $ √ c = 2 $ $ √ substitution of $ $ (0; 0) $ $ √ a = 2$	(4)
	OR $(x-1)(y-2) = k$ But g passes through the origin $\therefore (-1)(-2) = k = 2$ $\therefore (x-1)(y-2) = 2$	✓ equation ✓ through origin ✓ substitution ✓ equation	(4)
6.2	$g(x) = (x-1)^{2} + q$ $0 = (2,5-1)^{2} + q$ $q = -\frac{9}{4}$ Turning point $\left(1; -\frac{9}{4}\right)$		(4)
6.3	y = 2 $x = 2$	✓ answer ✓ answer	(2)
6.4	$h(x) = -(x-1)^2 + \frac{9}{4}$	✓ answer	(1) [11]

7.1	Any base raised to the power 0 is 1 which means the y-intercept of	✓ y-intercept
	the graph $h(x) = a^x$ will be (0; 1) therefore Q(0; 1)	✓ any base raised to power 0 is 1
	OR	(2)
	$h(0) = a^0 = 1$	
	∴ Q(0;1)	
7.2	$a^{-1} = \frac{1}{2}$	✓ substitution
	$\frac{1}{a} = \frac{1}{2}$	✓ answer
	a = 2	(2)
7.3	$2^{y} = x$	\checkmark interchanging x and
	$y = \log_2 x$	y ✓ answer
		(2)
7.4	↑	\checkmark point $(0,5;-1)$ or
	·	any other valid point ✓ point (1; 0)
	3	✓ shape
		(3)
	h^{-1}	(3)
	(2:1)	
	·	
7.5	x > 0.5	✓ reading off from
7.5		graph
		✓ answer
7.6	$\therefore 2 + x \log 3 = x \log 2$	(2) ✓ equating
		✓ logs both sides
	$\therefore x = \frac{2}{\log \frac{2}{3}} = -11.36$	✓ answer (3)
	$\mathbf{OR} \ \left(\frac{2}{3}\right)^{x} = 100$	
	$\therefore x \log \left(\frac{2}{3}\right) = 2$	[14]
	$\therefore x = \frac{2}{\log \frac{2}{3}} = -11.36$	

Copyright reserved

8.1	, y	✓ shape ✓ amplitude	
	2 1 1 -180 -90 180 270 360	(2	2)
8.2	$y \in [-4;4]$	√√ answer (2	2)
8.3	720°	√√ answer (2	
8.4	Shift f 90° to the left to get 2cos x . $\therefore \theta = 90^{\circ} + \text{n.360}^{\circ}$	√√ answer Accept 90° (2	2)

9.1	$2000\left(1+\frac{i}{12}\right)^{18} = 2860$	✓ substitution
	$\left(1 + \frac{i}{12}\right)^{18} = 1,43$	$\checkmark \left(1 + \frac{i}{12}\right)^{18} = 1,43$
	$1 + \frac{i}{12} = 1,020069541\dots$	
	$\frac{i}{12} = 0.020069541$	
	i = 0,24083 i = 24,08%	✓ i = 0,24083 $✓ answer$ (4)
9.2	$F_{v} = \frac{100\left[\left(1 + \frac{0,08}{12}\right)^{12} - 1\right]}{\frac{0,08}{100}}$	✓ formula ✓ substitution
	= R1 244,99	✓✓ answer
	The accumulated amount is less than R1 300 required to buy the bike. Farouk will not be able to buy the bike on 1 January 2009.	✓ conclusion (5) [9]

QUESTION 10

10.1	Loan = $125000 - \frac{15}{100} \times 125000$ Loan = R 106 250 OR Loan = 0.85×125000 Loan = R 106 250	✓ answer	(1)
10.2	$106250 = x \left[\frac{1 - \left(1 + \frac{0,125}{12}\right)^{-6 \times 12}}{\frac{0,125}{12}} \right]$	✓ substitution $\checkmark - 72$ $\checkmark \left(\frac{0,125}{12}\right)$ ✓ simplification	
	$1106,770833 = x \left(1 - \left(1 + \frac{0,125}{12} \right)^{-6 \times 12} \right)$ $x = R \ 2104,94$	✓ answer	(5)
			[6]

11.1	f(x+h)-f(x)	✓ method
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $(x+h)^2 - 2(x+h) - x^2 + 2x$	✓ substitution
	$= \lim_{h \to 0} \frac{(x+h)^2 - 2(x+h) - x^2 + 2x}{h}$ $= \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 2x - 2h - x^2 + 2x}{h}$	✓ simplification
	$= \lim_{h \to 0} \frac{2xh + h^2 - 2h}{h}$	
	$= \lim_{h \to 0} \frac{h(2x+h-2)}{h}$	✓ factorising
	$=\lim_{h\to 0}(2x-2+h)$	
	=2x-2	✓ answer (5)
11.2.1	$D_x[(x^3 - 3)^2]$ = $D_x[x^6 - 6x^3 + 9]$	✓ simplification
	$=6x^5 - 18x^2$	√√ answer (3)
11.2.2	$y = \frac{4}{\sqrt{x}} - \frac{x^3}{9}$	
	$y = 4x^{-\frac{1}{2}} - \frac{1}{9}x^3$	✓ power form
	9"	√√ answer
	$\frac{dy}{dx} = -2x^{-\frac{3}{2}} - \frac{x^2}{3}$	(3) [11]

12

Please turn over Copyright reserved

12.1	$h'(x) = -3x^2 + 2ax + b$	$\checkmark h'(x)$
	$h'(-1) = -3(-1)^2 + 2a(-1) + b$	\checkmark substitution of $x = -1$
	0 = -3 - 2a + b	$\checkmark h'(x) = 0$
	2a - b = -3 (i)	✓ simplification
	$h'(2) = -3(2)^2 + 2a(2) + b$	
	0 = -12 + 4a + b	✓ substitution
	4a + b = 12 (ii)	✓ solving
	(ii) + (i): $6a = 9$	simultaneously
	$a=\frac{3}{2}$	
	<u> </u>	(6)
	$\therefore 2\left(\frac{3}{2}\right) - b = -3$	
	b = 6	
	OR	
	$h(-1) = -(-1)^3 + a(-1)^2 + b(-1) = \frac{-7}{2}$	✓ substitution of $x = -1$
	2	$\checkmark h(-1) = \frac{-7}{2}$
	$\therefore a - b = \frac{-9}{2}$	✓ simplification
	$2a - 2b = -9 \qquad \cdots (i)$	_
	$h(2) = -(2)^3 + a(2)^2 + b(2) = 10$	✓ substitution of $x = 2$
	4a + 2b = 18 ···(ii)	and $h(2) = 10$ \checkmark simplification
		Simplification
	(i) + (ii): $6a = 9$	✓ solving
	$a=\frac{3}{2}$	simultaneously
	(3) -9	
	$\left(\frac{3}{2}\right) - b = \frac{-9}{2}$	
	b = 6	(6)
12.2	Average Gradient	
12.2		
	$=\frac{10-(-3,5)}{2-(-1)}$	✓ substitution
	$=\frac{13,5}{}$	
	$={3}$	
	$=\frac{9}{2}$	✓ answer
	_ 2	(2)

Copyright reserved

12.3	11() 2 2 2 6	$\sqrt{h'(x)}$
12.3	$h'(x) = -3x^2 + 3x + 6$	$\checkmark h'(x)$
	$h'(-2) = -3(-2)^2 + 3(-2) + 6$	✓ substitution ✓ gradient
	h'(-2) = -12	Siddlent
	Point of contact (-2; 2)	✓ point
	y - 2 = -12(x + 2)	
	y = -12x - 22	✓ answer
		(5)
		(5)
12.4	$h'(x) = -3x^2 + 3x + 6$	
	h''(x) = -6x + 3	✓ second derivative $\checkmark = 0$
	-6x + 3 = 0	v = 0
	$x = \frac{1}{2}$	✓ answer
	$\left \begin{array}{c} x - \overline{2} \end{array} \right $	
	OR	
	$x = \frac{-1+2}{2}$	(2)
		(3)
	$x = \frac{1}{2}$	
10.7		
12.5	p > 3.5 or $p < -10$	√√ answer
		(2) [19]
		[19]
1		l l

13.1	$AB^{2} = (a^{2} - 0)^{2} + (a - 3)^{2}$	√substitution	
	$AB^2 = a^4 + a^2 - 6a + 9$	✓ simplification	
	AB = a + a - 6a + 9		(2)
13.2	$\frac{d}{da}AB^2 = 4a^3 + 2a - 6$	$\sqrt{\frac{d}{da}}AB^2$	
	$0 = 4a^3 + 2a - 6$	$\checkmark \frac{d}{da} AB^2 = 0$	
	$0 = 2a^3 + a - 3$	<i>da</i> ✓ simplification	
	$0 = (a-1)(2a^2 + 2a + 3)$	✓ factorisation	
	a=1	✓ answer	
	There is no real solution for $2a^2 + 2a + 3 = 0$		(5)
	There is no real solution for $2u + 2u + 3 = 0$		` /
			[7]

QUESTION 14

14.1	$x \ge 200$	✓ answer	
	$x + y \le 600$	✓ answer	
	$50x + 100y \le 45000$	✓ answer	(2)
			(3)
14.2 and 14.3	700 - 700 -	✓ 600 ✓ 450 ✓ 200 ✓ 600 ✓ 900 ✓ feasible region	(5) (1)
14.4	P = 30x + 40y	✓✓ answer	
14.5	14 1 (200 200)	(1.1	(2)
14.5	Maximum at (300; 300)	✓ search line	(2)
		✓ answer	(2) [13]

TOTAL: 150