Измерение вязкости воздуха по течению в тонких трубках (1.3.3)

Павлушкин Вячеслав

15 мая 2022 г.

1 Аннотация

В данной работе проводится экспериментальное выявление участка сформировавшегося ламинарного течения; экспериментально определяются режимы ламинарного и турбулентного течения; проводится определение числа Рейнольдса.

2 Введение

Цель работы: экспериментально исследовать свойства течения газов по тонким трубкам при различных числах Рейнольдса; выявить область применимости закона Пуазейля и с его помощью определить коэффициент вязкости воздуха.

В работе используются: система подачи воздуха (компрессор, поводящие трубки); газовый счетчик барабанного типа; спиртовой микроманометр с регулируемым наклоном; набор трубок различного диаметра с выходами для подсоединения микроманометра; секундомер

3 Теоретические сведения

Характер движения газа по трубке определяется числом Рейнольдса:

$$Re = \frac{ur\rho}{\eta},\tag{1}$$

где u - скорость потока, r - радиус трубки, ρ - плотность жидкости, η - вязкость. Переход от ламинарного движения к турбулентному: $Re \sim 1000$.

Для ламинарного течения при постоянном удельном объеме верна формула Пуазейля:

$$Q_V = \frac{\pi r^4}{8l\eta} (P_1 - P_2),$$

где $P_1 - P_2$ - разность давлений в двух сечениях, расстояние между которыми - l. Формула позволяет определить вязкость по расходу Q_V .

Ламинарное течение газа устанавливается на расстоянии

$$a \sim 0.2r \cdot Re$$
.

Градиент давления на участке с турбулентным течением больше, чем на участке с ламинарным, что позволяет разделить их экспериментально.

4 Ход работы

В работе использовались 3 трубки, диаметрами: $d_1=(3.0\pm0.1)$ мм, $d_2=(3.95\pm0.05)$ мм, $d_3=(5.05\pm0.0.5)$ мм.

Для каждой трубки снимем зависимость $Q(\Delta P)$, с помощью секундомера и газового счетчика ($\sigma_v = 0.05~\mathrm{Д}\mathrm{u}^3/\mathrm{m}$) получим расход, с помощью микроманометра – разность давления на участке трубы ($\sigma_{\Delta P} = 0.5~\mathrm{Д}\mathrm{e}\mathrm{n}.=0.1~\mathrm{\Pi}\mathrm{a}$).

Проведем эксперимент для каждой трубы, на участке с наибольшей длиной, и получим таблицы:

$d_2=3.95\ \mathrm{mm}$						
V , Дц 3	t, c	ΔP , Дел.	$Q \cdot 10^{-6}, \mathrm{m}^3/\mathrm{c}$			
0.3	86.45	3	3			
0.5	38.61	10	13			
0.5	20.49	19	24			
1	28.04	28	36			
1	20.60	39	49			
1.5	24.06	49	62			
2	27.26	60	73			
2	24.14	68	83			
2	21.12	82	95			
2.5	24.66	91	101			
2.5	23.68	102	106			
2.5	23.15	113	108			
2.5	23.02	131	109			
2.5	19.52	180	128			
4	26.21	250	153			

$d_3=5.05\ { m mm}$					
V , Дц 3	t, c	ΔP , Дел.	$Q \cdot 10^{-6}, \mathrm{m}^3/\mathrm{c}$		
1	35.29	7	28		
1.5	27.98	14	54		
1.5	22.98	18	65		
2	25.65	20	78		
2	20.13	26	99		
2.5	21.66	30	115		
2.5	21.14	33	118		
3	22.83	39	131		
3	22.15	42	135		
3.5	22.40	61	156		
3.5	20.35	78	172		
4	19.77	103	202		
5	21.84	130	229		
5.5	21.79	155	252		
5.5	20.74	171	265		

Таблица 1: Результаты измерений двух трубок

По полученным таблицам построим график $Q(\Delta P)$ по точкам на ламинарном участке (первые точки таблицы – ламинарный поток, вторая половина – турбулентный).

Рис. 1: График зависимости $Q(\Delta P)$, для трубки диаметра 3.0 мм

Рис. 2: График зависимости $Q(\Delta P)$, для трубки диаметра 3.0 мм

Рис. 3: График зависимости $Q(\Delta P)$, для трубки диаметра 5.05 мм

Линии проведены при помощи МНК, по точкам с ламинарным течением. С помощью коэффициентов наклона мы можем найти вязкость воздуха из формулы (1):

$$\eta = \frac{\pi R^4}{8kl}$$

где k – коэффициент наклона графика, l – длина участка трубы, а R – радиус трубки. По графикам определим значения коэффициента наклона с погрешностями:

	$d_1 = 3.0 \text{ MM}$	$d_2 = 3.95 \text{ mm}$	$d_3 = 5.05 \text{ mm}$
$k \cdot 10^{-7}$, м ³ /с·Па	6.85	6.29	17.14
$\sigma_k^{\text{случ}}$, м $^3/\text{с}\cdot\Pi$ а	0.41	0.09	0.90
σ_k , м ³ /с·Па	0.47	0.22	1.06
$\eta \cdot 10^{-5}, \Pi a \cdot c$	1.45	1.89	1.86
$\sigma_{\eta} \cdot 10^{-5}, \Pi \text{a·c}$	0.14	0.08	0.12

Таблица 2: Результаты полученные из графиков

Заметно, что первое измерение достаточно сильно отличается от двух следующих, тогда возьмем, без учета первого диаметра:

$$\eta = (1.88 \pm 0.1) \; \Pi a \cdot c$$

Далее найдем критическое число Рейнольдса $Re_{\rm kp}$ для всех трубок:

$$Re = \frac{\rho uR}{\eta} = \frac{\rho Q}{\pi R \eta}$$

- $d_1=3.00$ мм: критический расход: $Q_1=91\cdot 10^{-6}$ м $^3/\mathrm{c}$, тогда $Re_1=1181\pm 70.$
- $d_2=3.95$ мм: критический расход: $Q_2=78\cdot 10^{-6}$ м $^3/{
 m c}$, тогда $Re_2=763\pm 40.$
- $d_3=5.05$ мм: критический расход: $Q_3=131\cdot 10^{-6}$ м $^3/\mathrm{c}$, тогда $Re_3=1010\pm 45$.

Далее определим длину участка трубы, на котором происходит установление потока. Для этого построим графики зависимости P(x) для каждой трубы.

Рис. 4: График зависимости P(x)

По графику можно определить примерную длину участка, на котором устанавливается ламинарный поток (на графике отсчитывается от выхода трубы, я же рассматриваю длину на которой устанавливается поток, то есть от входа воздуха):

- $d_1 = 3.00$ мм, по графику поток устанавливается через 6.5 0 см от входа. По расчетам $(L_{\rm ycr} \approx 0.2R_1 \cdot Re_1)$ получается 11.5 см. На мой взгляд полученный результат удовлетворительный.
- $d_2 = 3.95$ мм, по графику поток устанавливается через 41.5 0 см от входа. По расчетам $(L_{\rm ycr} \approx 0.2R_2 \cdot Re_2)$ получается 30.1 см. Результат сходится с вычисленным.
- $d_3 = 5.05$ мм, по графику поток устанавливается через 41.5 0 см от входа. По расчетам $(L_{\rm ycr} \approx 0.2R_3 \cdot Re_3)$ получается 51 см. Возможно, что формула примерная, поэтому я считаю, что данный результат тоже достаточно удовлетворительный.

Для проверки пропорциональности расхода к радиусу трубы при ламинарном и турбулентном режиме построим графики $\ln Q(\ln R)$ для разных труб при установившемся и неустановившемся течении.

Рис. 5: График зависимости $P \ln Q(\ln R)$ для ламинарного течения

Рис. 6: График зависимости $\ln Q(\ln R)$ для турбулентного течения

Полученные коэффициенты по графикам:

- Для ламинарного течения: $\beta_{\rm ycr} = 3.13 \pm 0.56$.
- Для турбулентного течения: $\beta_{\text{тур}} = 1.92 \pm 0.50$.

5 Вывод

Экспериментально исследовались свойства течения газов по тонким трубкам при различных числах Рейнольдса; выявить область применимости закона Пуазейля и с его помощью определить коэффициент вязкости воздуха. Получили вязкость воздуха:

$$\eta = (1.88 \pm 0.1) \; \Pi a \cdot c$$

Сравнили зависимость расхода при ламинарном и турбулентном течении в зависимости от радиуса трубы:

- Для ламинарного течения теоретический коэффициент: $\beta=4$; Экспериментальный: $\beta_{\rm ycr}=3.16\pm0.56$.
- Для турбулентного течения теоретический коэффициент: $\beta=2.5$; Экспериментальный: $\beta=1.92\pm0.50$.