Diretoria de Tecnologia e Inovação

Sensor de Umidade AULA 12 do Solo

GOVERNADOR DO ESTADO DO PARANÁ

Carlos Massa Ratinho Júnior

SECRETÁRIO DE ESTADO DA EDUCAÇÃO

Renato Feder

DIRETOR DE TECNOLOGIA E INOVAÇÃO

Andre Gustavo Souza Garbosa

COORDENADOR DE TECNOLOGIAS EDUCACIONAIS

Marcelo Gasparin

Produção de Conteúdo

Cleiton Rosa Michelle dos Santos

Validação de Conteúdo

Cleiton Rosa

Revisão Textual

Adilson Carlos Batista

Projeto Gráfico e Diagramação

Edna do Rocio Becker

Ilustração

Jocelin Vianna

2021

Sumário

Introdução	2
Objetivos desta Aula	2
Competências Gerais Previstas na BNCC	3
Habilidades do Século XXI a Serem Desenvolvidas	4
Lista de Materiais	4
Roteiro da Aula	5
1. Contextualização	5
2. Montagem e Programação	7
3. Feedback e Finalização	14
Videotutorial	15

Atribuição NãoComercial - Compartilhalgual 4.0 Internacional

Introdução

Em sua residência, provavelmente, deve existir alguma planta ou horta. Para mantê-las saudáveis, é necessário verificar a qualidade do solo, pois existem algumas situações que dificultam ou comprometem o crescimento das plantas, como, por exemplo, a quantidade de água disponível no solo.

Nesta aula, utilizaremos o **Sensor de Umidade do Solo**, conhecido como **Higrômetro**, para desenvolver um sistema capaz de monitorar a umidade presente no solo.

Objetivos desta Aula

- Conhecer o componente eletrônico Sensor de Umidade do Solo;
- Entender o funcionamento do Sensor de Umidade do Solo;
- Desenvolver um sistema via programação, capaz de monitorar a umidade presente no solo.

Competências Gerais Previstas na BNCC

[CG02] - Exercitar a curiosidade intelectual e recorrer à abordagem própria das ciências, incluindo a investigação, a reflexão, a análise crítica, a imaginação e a criatividade, para investigar causas, elaborar e testar hipóteses, formular e resolver problemas e criar soluções (inclusive tecnológicas) com base nos conhecimentos das diferentes áreas.

[CG04] - Utilizar diferentes linguagens - verbal (oral ou visual-motora, como Libras, e escrita), corporal, visual, sonora e digital -, bem como conhecimentos das linguagens artística, matemática e científica, para se expressar e partilhar informações, experiências, ideias e sentimentos em diferentes contextos e produzir sentidos que levem ao entendimento mútuo.

[CG05] - Compreender, utilizar e criar tecnologias digitais de informação e comunicação de forma crítica, significativa, reflexiva e ética nas diversas práticas sociais (incluindo as escolares) para se comunicar, acessar e disseminar informações, produzir conhecimentos, resolver problemas e exercer protagonismo e autoria na vida pessoal e coletiva.

[CG09] - Exercitar a empatia, o diálogo, a resolução de conflitos e a cooperação, fazendo-se respeitar e promovendo o respeito ao outro e aos direitos humanos, com acolhimento e valorização da diversidade de indivíduos e de grupos sociais, seus saberes, identidades, culturas e potencialidades, sem preconceitos de qualquer natureza.

[CG10] - Agir pessoal e coletivamente com autonomia, responsabilidade, flexibilidade, resiliência e determinação, tomando decisões com base em princípios éticos, democráticos, inclusivos, sustentáveis e solidários.

SENSOR DE UMIDADE DO SOLO

Habilidades do Século XXI a Serem Desenvolvidas

- Pensamento crítico;
- Afinidade digital;
- Resiliência;
- Resolução de problemas;
- Colaboração;
- Comunicação.

Lista de Materiais

- 01 Placa Protoboard;
- 01 Placa Arduino Uno R3;
- 01 Cabo USB;
- 01 Sensor de Umidade do Solo;
- O1 LED verde 5mm;
- 01 LED vermelho 5mm;
- 06 Jumpers Macho/Macho;
- 05 Jumpers Fêmea-Fêmea;
- O1 Recipiente (copo plástico) com terra;
- O1 Recipiente (copo plástico) com água;
- 01 Notebook;
- Software Arduino IDE.

Roteiro da Aula

1. Contextualização (15min):

Normalmente, as plantas são usadas nas residências para ornamentação em vasos, jardins, ou até mesmo hortas e plantações. Para mantê-las sempre saudáveis e de boa qualidade é necessário estar atento à umidade do solo. Esta umidade depende, dentre outros fatores, da quantidade de precipitação, da intensidade do consumo de água pelas plantas e da temperatura do ar.

Vale destacar, quanto maior a quantidade de água no solo, maior a umidade e menor a resistência, fazendo com que este conduza mais eletricidade. Por outro lado, um solo com baixa umidade contém menos água, é considerado seco e com maior resistência, ocasionando uma menor condução de eletricidade.

Sabendo disso, talvez, você esteja se perguntando: é possível detectar a quantidade de água disponível no solo? Existe algum mecanismo que permite tal façanha?

A resposta para estas perguntas é sim! Geralmente, são utilizados sensores no solo, denominados de Higrômetros, para monitorar a umidade presente nesse, contribuindo assim para o crescimento das plantas.

O Módulo Sensor de Umidade do Solo, ou simplesmente Higrômetro, é composto por uma sonda formada por duas hastes metálicas, as quais, quando enterradas no solo, medem o conteúdo volumétrico de água presente nesse. Este componente possui, também, um pequeno módulo contendo um circuito integrado comparador LM393, responsável pela leitura dos dados que vem da sonda, e um potenciômetro que permite, com auxílio de uma chave de fenda, ajustar o nível de umidade que se deseja no solo. Além disso, há quatro pinos, sendo um pino de saída digital (DO), um pino de saída analógica (AO) e dois pinos de alimentação (VCC e GND), conforme mostra a figura 1.

POTENCIÔMETRO

Figura 1 - Módulo Sensor de Umidade do Solo (Higrômetro)

O Sensor de Umidade do Solo utiliza o método medição de quantidade de água por resistência elétrica e funciona da seguinte maneira: possui dois eletrodos (as hastes) para conduzir corrente elétrica pelo solo, fazendo a leitura indireta de umidade relativa por comparação com a resistência elétrica do solo, visto que a água diminui a resistência, enquanto em solo seco a resistência é maior.

SENSOR DE UMIDADE DO SOLO

Para Saber Mais...

A Invenção do sensor de umidade é atribuída a Leonardo Da Vinci.

http://ave.dee.isep.ipp.pt/~lbf/LABSI/Proj%20 2019_2020/48%20Sistemas%20de%20 Agricultura%20de%20Precis%E3o/

Irrigação inteligente na agricultura, com a plataforma IoT.

www.noticiasagricolas.com.br/noticias/ maquinas-e-tecnologias/264079-brasilavanca-em-tecnologia-de-irrigacao-deprecisao-com-uso-de-internet-das-coisas. html#.YDesgehKiUk

2. Montagem e Programação (60min):

Vamos começar a montagem dos componentes eletrônicos encaixando os LEDs na placa Protoboard. A seguir, utilize 2 Jumpers Fêmea-Fêmea para unir a sonda do sensor com seu módulo de controle, conforme figura 2.

FC28

FC28

Fritzing

Figura 2 - Conexões dos LEDs na Protoboard

Conecte os Resistores nos terminais longos dos LEDs, conforme mostra a figura 3.

Figura 3 - Conexão dos Resistores aos terminais dos LEDs

Prepare 3 Jumpers Macho-Fêmea, unindo as extremidades de 3 Jumpers Macho-Macho com as extremidades de 3 Jumpers Fêmea--Fêmea. A seguir, interligue, através de 1 Jumper Macho-Fêmea, os pinos VCC do Sensor de umidade com o pino 5V do Arduino, conforme a figura 4.

fritzing RESET **EVE** GND GND 2 FC-28 VIN

Figura 4 - Conexão do Sensor com Jumpers

Conecte mais 1 Jumper Macho-Fêmea entre o pino GND do Sensor com a porta GND do Arduino. Com auxílio de 1 Jumper Macho-Macho interligue o pino GND do Arduino com a linha lateral azul da Protoboard, na qual os terminais negativos dos LEDs estão inseridos, figura 5.

Com 1 Jumper Macho-Fêmea, interligue o pino AO do Sensor de Umidade com o pino AO do Arduino. Com auxílio de outros 2 Jumpers, conecte os pinos 3 e 4 da placa Arduino aos Resistores que estão ligados aos terminais positivos dos LEDs, como mostra a figura 5.

Figura 5 - Conexão entre Sensor, Arduino e Resistores

SENSOR DE UMIDADE DO SOLO

Com os componentes eletrônicos montados, vamos programar o Sensor de Umidade do Solo para monitorar a umidade presente nesse.

Linguagem de programação por código

Parainiciar a programação, conecte a placa Arduino ao computador, através de um cabo USB, a fim de que ocorra a comunicação entre a placa microcontroladora e o Arduino IDE.

No software IDE, crie um sketch e lembre-se de selecionar a porta que o computador atribuiu ao Arduino; então, digite ou copie e cole o código-fonte de programação, conforme apresentado no quadro 1.

Atenção!

Ao copiar o código diretamente do pdf, evite quebra da página (e consequentemente erros na compilação), copiando o código por partes.

Quadro 1 - Código-fonte da programação na linguagem do Arduino

```
/* Programa: Sensor de Umidade do Solo */

/* Definições de pinos para o sensor e para os LEDs */
#define pino_Sensor A0
#define pino_LED_Verde 3
#define pino_LED_Vermelho 4

/* Porcentagem de umidade mínima para iniciar a irrigação */
int Valor_Critico = 45;
/* Variável para armazenar o valor analógico do sensor */
```



```
int ValAnalogIn;
void setup() {
 /* Inicia a comunicação serial com a velocidade de 9600
bauds */
  Serial.begin (9600);
 /* Configura os pinos dos LEDs como saída */
 pinMode(pino LED Verde, OUTPUT);
 pinMode(pino LED Vermelho, OUTPUT);
} /* End Setup */
void loop() {
  /* Realiza a leitura do sensor e armazena o valor na
variável ValAnalogIn */
  ValAnalogIn = analogRead(pino Sensor);
 /* Converte o valor analógico para porcentagem */
  int Porcento = map(ValAnalogIn, 1023, 0, 0, 100);
  /* Imprime o valor em Porcento no monitor Serial */
  Serial.print(Porcento);
  /* Imprime o símbolo junto ao valor encontrado */
  Serial.println("%");
  /* Se a porcentagem for menor ou iqual ao valor definido */
  if (Porcento <= Valor Critico) {</pre>
   /* Imprime a frase no monitor serial */
    Serial.println("Umidade baixa!");
   /* Acende o LED Vermelho */
   digitalWrite(pino LED Vermelho, HIGH);
   /* Apaga o LED Verde */
   digitalWrite(pino LED Verde, LOW);
  } /* End if */
```

```
/* Se não... */
else {
    /* Imprime a frase no monitor serial */
    Serial.println("Umidade Adequada...");
    /* Acende o LED Verde */
    digitalWrite(pino_LED_Verde, HIGH);
    /* Apaga o LED Vermelho */
    digitalWrite(pino_LED_Vermelho, LOW);
} /* End else */
    /* Aguarda 1 segundo para reinicializar a nova leitura */
    delay (1000);
}/* End Loop */
```

A seguir, compile o programa pressionando o botão **Verificar** para examinar se não há erros de sintaxe. Estando o código correto, o próximo passo é realizar a transferência do programa para o Arduino, pressionando o botão **Carregar**.

Após a transferência do programa para o Arduino, iniciará a leitura dos dados do sensor. Para verificar o nível de umidade do solo, insira a ponta do sensor na terra. Caso o solo esteja com umidade abaixo de 45%, o LED vermelho acenderá. Se a umidade for superior, acenderá o LED verde. Ao detectar o solo seco, pelo LED vermelho, adicione, lentamente, água na terra até que a umidade atinja o nível ideal, indicado pelo acendimento do LED verde.

Que tal adicionar um Display LCD para mostrar os valores obtidos do sensor de umidade do solo?

O projeto não funcionar, atente-se a alguns dos possíveis erros:

- **a.** Verifique se os Jumpers estão na mesma coluna dos terminais dos componentes, fazendo assim as conexões;
- **b.** Verifique se os Jumpers estão ligados aos pinos corretos no Arduino;
- c. Verifique se os LEDs estão conectados corretamente e não invertidos;

3. Feedback e Finalização (15min):

- **a.** Confira, compartilhando seu projeto com os demais colegas, se o objetivo foi alcançado.
- **b.** Analise seu projeto desenvolvido, de modo a atender aos requisitos para funcionamento do sensor de umidade.
 - c. Reflita se as seguintes situações ocorreram:
 - i. Colaboração e Cooperação: você e os membros de sua equipe interagiram entre si, compartilhando ideias que promoveram a aprendizagem e o desenvolvimento deste projeto?
 - **ii.** Pensamento Crítico e Resolução de Problemas: você conseguiu identificar os problemas, analisar informações e tomar decisões de modo a contribuir para o projeto desenvolvido?
- **d.** Reúna todos os componentes utilizados nesta aula e os organize novamente, junto aos demais, no kit de robótica.

Videotutorial

Com o intuito de auxiliar na montagem e na programação desta aula, apresentamos um videotutorial, disponível em:

https://rebrand.ly/a12robotica2

Acesse, também, pelo QRCode:

