

概述

FM7021 是一款內置高精度电压检测电路和延时电路,适用于 2 节串联锂离子/锂聚合物可再充电电池的保护 IC。此 IC 适合于对 2 节串联可再充电锂离子/锂聚合物电池的过充电、过放电、过电流、负载短路进行保护。

应用领域

- 2 节串联锂离子可再充电电池组
- ▶ 2 节串联锂聚合物可再充电电池组

封装形式

➤ SOT23-6

产品特点

(1) 高精度电压检测电路

▶ 过充电检测电压 VCUn (n=1, 2) 4.28V 精度 ±25mV

▶ 过充电释放电压 VCRn (n=1, 2) 4.08V 精度 ±50mV

▶ 过放电检测电压 VDLn (n=1, 2) 2.90V 精度 ±80mV

→ 过放电释放电压 VDRn(n=1, 2) 3.00V 精度 ±100mV

▶ 放电过流检测电压 0.20V 精度 ±30mV

▶ 充电过流检测电压 -0.17V 精度 ±50mV

▶ 负载短路检测电压 1.00V 精度 ±0.40V

(2) 各延迟时间由内部电路设置(不需外接电容)

▶ 过充电检测延迟时间

典型值 1.0s

▶ 过放电检测延迟时间

典型值 110ms

▶ 放电过流检测延迟时间

典型值 10ms

> 充电过流检测延迟时间

典型值 7.0ms

▶ 负载短路检测延迟时间

典型值 250μs

(3) 低耗电流

▶ 工作模式

典型值 4.0μA (VDD=7.8V)

▶ 低耗电模式

典型值 1.9μA (VDD=4.0V)

(4)连接充电器的端子采用高耐压设计(CS端子和OC端子,绝对最大额定值是25V):

(5) 允许向 0V 电池充电功能;

(6) 小型封装: SOT-23-6:

产品参数

> >>							
参数	过充电 检测电压	过充电 释放电压	过放电 检测电压	过放电 释放电压	放电过流 检测电压	充电过流 检测电压	向0V电池充电功能
型号	V_{CUn}	V _{CRn}	V_{DLn}	V_{DRn}	V_{DIP}	V_{CIP}	V_{0CH}
FM7021CB	4.28±0.025V	4.08±0.05V	2.90±0.08V	3.00±0.1V	200±30mV	-170±50mV	允许
FM7021DB	4.28±0.025V	4.08±0.05V	2.25±0.08V	2.95±0.1V	200±30mV	-170±50mV	允许
FM7021NB	4.28±0.025V	4.08±0.05V	2.80±0.08V	3.00±0.1V	200±30mV	-170±50mV	允许
FM7021HB	4.40±0.025V	4.18±0.05V	3.00±0.08V	3.10±0.1V	200±30mV	-170±50mV	允许
FM7021LB	4.225±0.025V	4.10±0.05V	2.50±0.08V	3.00±0.1V	200±30mV	-170±50mV	允许

典型应用电路

管脚说明

序号	符号	说明
1	OD	放电控制用MOSFET门极连接端子
2	OC	充电控制用MOSFET门极连接端子
3	CS	过电流检测输入端子,充电器检测端子
4	VC	电池1负极、电池2正极连接端子
5	VDD	正电源输入端子,电池1正极连接端子
6	VSS	接地端,负电源输入端子,电池2负极连接端子

元器件

标记	器件名称	用途	最小值	典型值	最大值	说明
R1	电阻	限流、稳定VDD、加强ESD	100Ω	330Ω	470Ω	*1
R2	电阻	限流、稳定VC、加强ESD	100Ω	330Ω	470Ω	*1
R3	电阻	限流	1 kΩ	2kΩ	4kΩ	*2
C1	电容	滤波,稳定VDD	0.01µF	0.1μF	1.0μF	*3
C2	电容	滤波,稳定VDD	0.01μF	0.1μF	1.0μF	*3
M1	N-MOSFET	放电控制	-	-	-	*4
M2	N-MOSFET	充电控制		-	-	*5

- *1、R1或R2连接过大电阻,由于芯片消耗的电流会在R1或R2上产生压降,影响检测电压精度。当充电器反接时,电流从充电器流向IC,若R1或R2过大有可能导致VDD-VSS端子间电压超过绝对最大额定值的情况发生。
- *2、R3连接过大电阻,当连接高电压充电器时,有可能导致不能切断充电电流的情况发生。但为控制充电器反接时的电流,请尽可能选取较大的阻值。
- *3、C1和C2有稳定VDD电压的作用,请不要连接0.01μF以下的电容。
- *4、使用MOSFET的阈值电压在过放电检测电压以上时,可能导致在过放电保护之前停止放电。
- *5、门极和源极之间耐压在充电器电压以下时,N-MOSFET有可能被损坏。

功能框图

绝对最大额定值(VSS=0V, Ta=25℃, 除非特别说明)

项目	符号	规格	单位
VDD 和 VSS 之间输入电压	$V_{ m DD}$	VSS-0.3~VSS+10	V
OC 输出端子电压	V _{OC}	VDD-25~VDD+0.3	V
OD 输出端子电压	V_{OD}	VSS-0.3~VDD+0.3	V
CS 输入端子电压	V _{CS}	VDD-25~VDD+0.3	V
工作温度范围	T_{OP}	-40~+85	°C
储存温度范围	Tst	-40~+125	°C
容许功耗	P_D	250	mW

注意: 绝对最大额定值是指无论在任何条件下都不能超过的额定值。一旦超过此额定值,有可能造成产品劣化等物理性损伤。

电气特性 (除特殊说明外: T_A=25℃)

项目	符号	条件	最小值	典型值	最大值	单位	
输入电压							
VDD-VSS工作电压	V _{DSOP1}	_	1.5	_	10	V	
VDD-CS工作电压	V _{DSOP2}	_	1.5	_	25	V	
		消耗电流					
工作电流	I_{DD}	VDD=7.8V	_	4.0	8.0	uA	
待机电流	I_{PD}	VDD=4.0V		1.9		uA	
		检测电压					
过充电检测电压 (n=1,2)	V _{CUn}		VCUn -0.025	VCUn	VCUn +0.025	V	
过充电释放电压(n=1,2)	V _{CRn}	. 1	VCRn -0.05	VCRn	VCRn +0.05	V	
过放电检测电压(n=1,2)	V _{DLn}	\	VDLn -0.08	VDLn	VDLn +0.08	V	
过放电释放电压(n=1,2)	V _{DRn}	<u> </u>	VDRn -0.10	VDRn	VDRn +0.10	V	
充电过流检测电压	V_{CIP}	_	VCIP -50	VCIP	VCIP +50	mV	
放电过流检测电压	V _{DIP}	_	VDIP -30	VDIP	VDIP +30	mV	
负载短路检测电压	V_{SIP}	_	0.6	1.0	1.4	V	
		延迟时间					
过充电检测延迟时间	Toc	V1=3.5V,V2=3.5V→4.5V	0.7	1.0	1.3	S	
过放电检测延迟时间	Tod	V1=3.5V,V2=3.5V→2.0V	70	110	150	ms	
放电过流检测延迟时间	T_{DIP}	V1=V2=3.5V, VCS=0→0.25V	6	10	14	ms	
充电过流检测延迟时间	T_{CIP}	V1=V2=3.5V, VCS=0→-0.25V	4	7	10	ms	
负载短路检测延迟时间	T _{SIP}	V1=V2=3.5V, VCS=0→2.0V	150	250	400	μs	
控制端子输出电压							
OD端子输出高电压	V_{DH}	_	VDD-0.1	VDD-0.02		V	
OD端子输出低电压	V_{DL}	_		0.2	0.5	V	
OC端子输出高电压	V_{CH}	_	VDD-0.1	VDD-0.02		V	
OC端子输出低电压	V_{CL}	_	_	0.2	0.5	V	
向0V电池充电的功能(允许或禁止)							
充电器起始电压(允许向0V电池充电功能)	V _{0CH}	允许向0V电池充电功能	1.2	_	_	V	
电池电压(禁止向0V电池充电功能)	V_{0IN}	禁止向0V电池充电功能	_	_	0.5	V	

工作说明

▶ 正常工作状态

FM7021持续检测连接在VDD与VC端子之间电池1的电压、连接在VC与VSS端子之间电池2的电压,以及CS与VSS端子之间的电压差,来控制充电和放电。当电池1和电池2的电压都在过放电检测电压(VDLn)以上并在过充电检测电压(VCUn)以下,且CS端子电压在充电过流检测电压(VCIP)以上并在放电过流检测电压(VDIP)以下时,FM7021的OC和OD端子都输出高电平,使充电控制用MOSFET和放电控制用MOSFET同时导通,这个状态称为"正常工作状态"。此状态下,充电和放电都可以自由进行。

▶ 过充电状态

正常工作状态下的电池,在充电过程中,连接在VDD与VC端子之间电池1的电压或连接在VC与VSS端子之间电池2的电压,超过过充电检测电压(VCUn),并且这种状态持续的时间超过过充电检测延迟时间(TOC)时,FM7021的OC端子输出电压由高电平变为低电平,关闭充电控制用的MOSFET(OC端子),停止充电,这个状态称为"过充电状态"。

过充电状态在如下两种情况下可以释放,OC端子输出电压由低电平变为高电平,使充电控制用MOSFET导通。

- (1) 由于电池"自放电"使电池1和电池2的电压都降低到过充电释放电压(VCRn)以下,并且这种状态持续时间超过过充电释放延迟时间(TOCR)。
- (2) 通过负载使电池放电(注意,此时虽然M2关闭,但由于其体内二极管的存在,使放电回路仍然存在),当电池1和电池2的电压低于过充电检测电压(VCUn),CS端电压超过放电过流检测电压(VDIP) ,并且这种状态持续时间超过过充电释放延迟时间(TOCR),(在M2管导通以前,CS端电压将比VSS端高一个二极管的导通压降)。

FM7021恢复到正常状态以后,充电控制用的MOSFET(OC端子)将输出高电平,并且回到导通状态。

▶ 过放电状态

正常工作状态下的电池,在放电过程中,连接在VDD与VC端子之间电池1的电压或连接在VC与VSS端子之间电池2的电压,降低到过放电检测电压(VDLn)以下,并且这种状态持续的时间超过过放电检测延迟时间(TOD)时,FM7021的OD端子输出电压由高电平变为低电平,关闭放电控制用的MOSFET(OD端子),停止放电,这个状态称为"过放电状态"。

过放电状态在以下两种情况下可以释放,OD端子输出电压由低电平变为高电平,使放电控制用MOSFET导通。

- (1)连接充电器,若电池1或电池2电压仍低于放电检测电压(VDLn),此时放电控制用的MOSFET(OD端子)输出仍是低电平,M1处于关闭状态,充电器可通过放电控制N-MOS管M1的体内二极管形成一个充电回路,使电池电压升高;若此时继续对电池充电,当电池1和电池2电压都超过过放电检测电压(VDLn)时,FM7021才能从过放电状态恢复到正常工作状态。
- (2) 不连接充电器,由于电池去掉负载后"自升压"使电池1和电池2的电压都升高到过放电释放电压(VDRn)以上,并且这种状态持续时间超过过放电释放延迟时间(TODR),FM7021恢复到正常工作状态。

▶ 放电过流状态(放电过流检测功能和负载短路检测功能)

正常工作状态下,FM7021通过负载对电池进行放电,CS端子电压将随着放电电流的增加而升高,如果放电电流增加使CS端子电压超过放电过流检测电压(VDIP),低于负载短路检测电压(VSIP),并且这种状态持续的时间超过放电过流检测延迟时间(TDIP),则OD端子输出电压由高电平变为低电平,关闭放电控制用的MOSFET(OD端子),停止放电,这个状态称为"放电过流状态"。

而一旦CS端子电压超过负载短路检测电压(VSIP),并且这种状态持续的时间超过负载短路检测延迟时间(TSIP),则OD端子输出电压也由高电平变为低电平,关闭放电控制用的MOSFET(OD端子),停止放电,这个状态称为"负载短路状态"。

如果FM7021处于放电过流/负载短路状态下,此时的OD端子输出电压由高电平变为低电平,关闭放电控制用的MOSFET(OD端子),停止放电,同时CS端子将通过内部电阻连接到VSS,放电负载去掉后,CS端电平则变为VSS端电平。

在放电过流/负载短路状态下,当CS端电压由高降低至低于放电过流检测电压(VDIP),并且这种状态持续时间超过放电过流释放延迟时间(TDIPR),FM7021恢复正常状态。因此,在放电过流/负载短路状态下,当所有的放电负载去掉后,FM7021才能够"自恢复"。

▶ 充电过流状态

正常工作状态下的电池,在充电过程中,CS端子电压将随着充电电流的增加而下降。如果充电电流增加使CS端子电压低于充电过流检测电压(VCIP),并且这种状态持续的时间超过充电过流检测延迟时间(TCIP),FM7021使OC端子输出电压由高电平变为低电平,关闭充电控制用的MOSFET(OC端子),停止充电,这个状态称为"充电过流状态"。

进入充电过流检测状态后,如果断开充电器使CS端子电压高于充电过流检测电压(VCIP),并且这种状态持续的时间超过充电过流检测释放延迟时间(TCIPR),充电过流状态被解除,恢复到正常工作状态。

▶ 0V电池充电允许

对于0V电池充电允许的电路,如果使用充电器对电池充电,使FM7021电路的VDD端相对CS端的电压大于0V充电允许阈值时,其充电控制端OC将被连接到VDD端。若该电压能够使外接充电控制N-MOS管M2导通,则通过放电控制N-MOS管M1的体内二极管可以形成一个充电回路,使电池电压升高;当电池电压升高至使VDD端电压超过过电压放电保护阈值VOD时,FM7021将回到正常状态,同时放电控制端OD输出高电平,使外接放电控制N-MOS管处于导通状态。

封装信息

➤ SOT23-6

か ロ.	毫米					
符号	最小值	典型值	最大值			
A	-	1.19	1.24			
A1	-	0.05	0.09			
A2	1.05	1.10	1.15			
A3	0.31	0.35	0.41			
b	0.35	0.40	0.45			
c	0.12	0.17	0.22			
D	2.85	2.90	2.95			
Е	2.80	2.90	3.00			
E1	1.55	1.60	1.65			
e	0.95BSC					
L	0.37	0.45	0.53			
L1	L1					
θ	0°	2°	8°			