Розпізнавання образів. Методи кластеризації

Метрики в sklearn

Внутрішні
Silhouette Coefficient Davies-Bouldin Index Calinski-Harabasz Index * Dunn Index

Еталонна матриця відношень

Фактична матриця відношень

Точність і повнота

$$precision = \frac{TP}{TP + FP}$$

$$recall = \frac{TP}{TP + FN}$$

$$F_{eta} = rac{(eta^2+1)\cdot P\cdot R}{eta^2\cdot P + R}$$

- Recall здатність
 алгоритму виявляти
 даний клас взагалі, а
 Рrecision здатність
 відрізняти цей клас від
 інших класів.
 - F-міра

Adjusted Rand index

$$Rand = \frac{TP + FN}{TP + TN + FP + FN}$$

$$Jaccard = \frac{TP}{TP + TN + FP}$$

$$\widehat{ARI} = \underbrace{\frac{\sum_{ij} \binom{n_{ij}}{2} - [\sum_{i} \binom{a_{i}}{2} \sum_{j} \binom{b_{j}}{2}] / \binom{n}{2}}{\frac{1}{2} [\sum_{i} \binom{a_{i}}{2} + \sum_{j} \binom{b_{j}}{2}] - [\sum_{i} \binom{a_{i}}{2} \sum_{j} \binom{b_{j}}{2}] / \binom{n}{2}}}_{\text{Max Index}}}_{\text{Expected Index}}$$

$$= \underbrace{\frac{\sum_{i} \binom{a_{i}}{2} + \sum_{j} \binom{b_{j}}{2}}{\sum_{i} \binom{a_{i}}{2} + \sum_{j} \binom{b_{j}}{2}} / \binom{n}{2}}_{\text{Max Index}}$$

$$= \underbrace{\frac{\sum_{i} \binom{a_{i}}{2} + \sum_{j} \binom{b_{j}}{2}}{N_{i}} - \sum_{i} \binom{a_{i}}{2} \sum_{j} \binom{b_{j}}{2}} / \binom{n}{2}}_{\text{Max Index}}$$

$$= \underbrace{\frac{\sum_{i} \binom{a_{i}}{2} + \sum_{j} \binom{b_{j}}{2}}{N_{i}} - \sum_{i} \binom{a_{i}}{2} + \sum_{j} \binom{b_{j}}{2}} / \binom{n}{2}}_{\text{Expected Index}}$$

$$= \underbrace{\frac{\sum_{i} \binom{a_{i}}{2} + \sum_{j} \binom{b_{j}}{2}} - \sum_{i} \binom{a_{i}}{2} + \sum_{j} \binom{b_{j}}{2}} / \binom{n}{2}}_{\text{Expected Index}}$$

$$= \underbrace{\frac{\sum_{i} \binom{a_{i}}{2} + \sum_{j} \binom{b_{j}}{2}} - \sum_{i} \binom{a_{i}}{2} + \sum_{j} \binom{b_{j}}{2}} / \binom{n}{2}}_{\text{Expected Index}}$$

$$= \underbrace{\frac{\sum_{i} \binom{a_{i}}{2} + \sum_{j} \binom{b_{j}}{2}} - \sum_{i} \binom{a_{i}}{2} + \sum_{j} \binom{b_{j}}{2}} / \binom{n}{2}}_{\text{Expected Index}}$$

$$= \underbrace{\frac{\sum_{i} \binom{a_{i}}{2} + \sum_{j} \binom{a_{i}}{2}} - \sum_{j} \binom{a_{i}}{2} + \sum_{j} \binom{b_{j}}{2}} / \binom{n}{2}}_{\text{Expected Index}}$$

$$= \underbrace{\frac{\sum_{i} \binom{a_{i}}{2} + \sum_{j} \binom{a_{i}}{2}} - \sum_{j} \binom{a_{i}}{2}} - \sum_{j} \binom{a_{i}}{2}} / \binom{n}{2}}_{\text{Expected Index}}$$

$$= \underbrace{\frac{\sum_{i} \binom{a_{i}}{2} + \sum_{j} \binom{a_{i}}{2}} - \sum_{$$

Homogeneity, Completeness, V-measure

де $H(C|K)\epsilon$ умовною ентропією класів з урахуванням

присвоєння кластеру і задається як:

$$h = 1 - \frac{H(C|K)}{H(C)} \qquad H(C|K) = -\sum_{c=1}^{|C|} \sum_{k=1}^{|K|} \frac{n_{c,k}}{n} \cdot \log\left(\frac{n_{c,k}}{n_k}\right)$$

$$c=1-rac{H(K|C)}{H(K)}$$
 і $H(C) arepsilon$ ентропією класів і задається:

$$H(C) = -\sum_{c=1}^{|C|} \frac{n_c}{n} \cdot \log \left(\frac{n_c}{n}\right)$$

$$v = \frac{(1 + \beta) \times \text{homogeneity} \times \text{completeness}}{(\beta \times \text{homogeneity} + \text{completeness})}$$

n загальна кількість елементів, n_c і n_k кількість елементів що відповідно належать класу с і кластеру k, i, нарешті п кількість зразків з класу с призначених кластеру к.

Mutual Information based scores

 Оцінює узгодженість між встановленими мітками класів та спрогнозованими. ↑ ¹

Використовує наступні поняття:

$$H(U) = -\sum_{i=1}^{|U|} P(i) \log(P(i))$$
 де $P(i) = |U_i|/N$ - це ймовірність того, що об'єкт вибраний навмання U потрапляє в клас U_i .

Так само для
$$V$$
 $H(V) = -\sum_{j=1}^{|V|} P'(j) \log(P'(j))$

$$MI(U, V) = \sum_{i=1}^{|U|} \sum_{j=1}^{|V|} P(i, j) \log \left(\frac{P(i, j)}{P(i)P'(j)} \right)$$

де $P(i,j) = |U_i \cap V_j|/N$ це ймовірність того, що об'єкт, вибраний навмання, потрапляє в обидва класи U_i і V_j .

Fowlkes-Mallows Index

Індекс Фоулкса – Малловса

$$FMI = \frac{TP}{\sqrt{(TP + FP)(TP + FN)}}$$

 FMI індекс - це середнє геометричне значення точності (precision) та повноти (recall)

Dunn Index

$$D = rac{\min_{1 \leq i < j \leq n} d(i,j)}{\max_{1 \leq k \leq n} d'(k)}$$

Silhouette Coefficient
• Значення силуету показує, наскільки об'єкт схожий на свій кластер в порівнянні з іншими кластерами.

Silhouette analysis for KMeans clustering on sample data with n clusters = 4

Silhouette Coefficient

- а: Середня відстань між точкою та усіма іншими точками того самого класу.
- **b** : Середня відстань між точкою та усіма іншими точками в наступному найближчому кластері.

$$s = \frac{b - a}{max(a, b)}$$

 Коефіцієнт силуету для множини елементів рахується як середнє значення коефіцієнта силуету для кожного елементу. Text NATALIASHOVGUN288 to 37607 once to join

Який висновок ви можете зробити виходячи з такого значення силуету

замале число кластерів

> красива картинка

велике число кластерів

Silhouette analysis for KMeans clustering on sample data with n_c lusters = 5

Алгоритм к-середніх

- Нехай m фіксоване число кластерів. Знайти таку функцію кластеризації $f: \Theta \rightarrow Y$, |Y| = m, щоб $Q^{(3)}(f) \rightarrow$ min.
- 1. Виділяються деякі зразки з навчальної вибірки початкові центри кластерів с⁽⁰⁾1....с ⁽⁰⁾m, к=0
- 2. Вся навчальна вибірка розбивається на m кластерів за методом найбі кластери х(к)1....х(к)m
- 3. Розраховуємо нові центри
- 4. Перевіряємо умову зупинки центри кластерів не змінюються, інакше на крок 2

Fuzzy c means

Hard Clustering

Soft Clustering

$$0 < u_{ij} < 1, \sum u_{ij} = 1$$

$$E = \sum_{i=1}^{K} \sum_{j=1}^{p} u_{ij}^{m} \left\| c_{i} - x_{j} \right\|^{2},$$

$$LE = \sum_{i=1}^{K} \sum_{j=1}^{N} u_{ij}^{m} \left\| c_{i} - x_{j} \right\|^{2} + \sum_{j=1}^{p} \lambda_{j} \left(\sum_{i=1}^{K} u_{ij} - 1 \right)$$

$$c_{i} = \frac{\sum_{j=1}^{p} u_{ij}^{m} x_{j}}{\sum_{j=1}^{p} u_{ij}^{m}}$$
(1)
$$u_{ij} = \frac{1}{\sum_{k=1}^{K} \left(\frac{d_{ij}^{2}}{d_{kj}^{2}}\right)^{\frac{1}{m-1}}}$$
(2)

- Ініціалізувати значення u_{ії} є (0,1), з виконанням вимоги ∑u_{ії}=1
 Визначити К центрів згідно формули 1.
- Вирахувати помилку Е. Якщо значення виявиться менше встановленої межі чи зміна цього значення в порівнянні з попередньою ітерацією мала, то зупинити алгоритм. Останні значення центрів і є шуканими.
- 4. Вирахувати нові значення и_{іі} згідно формули 2, та перейти до пункту 2.

k-medoids

Алгоритм PAM (Partitioning Around Medoids), заснований на виборі к об'єктів, які є характерними точками відповідного кластера. Таким чином, кластерам зіставляються належні їм об'єкти, звані медоїдами, на підставі яких розподіляються інші об'єкти за принципом найбільшої схожості.

PAM складається з двох фаз: BUILD і SWAP.

$$E = \sum_{j=1}^n \min_{1 \leq l \leq k} \rho(x_{m_l}, x_{o_j})$$

Процедура зміни множини медоїдів повторюється, поки є можливість поліпшення значення цільової функції.

- Якість можно оцінити методом силуету
- Він більш стійкий до шуму та викидів у порівнянні з ксередніх, оскільки мінімізує суму попарних відмінностей.
- Медоїд можна визначити як об'єкт кластера, середня відмінність якого від усіх об'єктів кластера мінімальна, тобто це найбільш центральна точка кластера.

sklearn_extra.cluster.KMedoids

В якості центру кластеру в к-медоїд використовують

False

Алгоритм виділення зв'язних

компонент

Вибірка представляється у вигляді графа:

- вершини графа об'єкти хі;
- ребра пари об'єктів з відстанню ρіј = ρ (хі, хј) ≤ R.

Алгоритм:

повторювати

- 1: видалити всі ребра (і, ј), для яких ріј> R;
- 2: К: = число зв'язних компонент;
- 3: якщо K < K1 то зменшити R;
- 4: якщо K> K2 то збільшити R; поки K ¢ [K1, K2]

MinCut = {(3,5),(4,2)}

Ієрархічна кластеризація

Ієрархічна кластеризація

```
1: спочатку всі кластери одноелементні:
t := 1; Ct = \{x1\}, \dots, \{x\ell\};
R(\{xi\}, \{xj\}) := \rho(xi, xj);
2: для всіх t = 2, . . . , ℓ (t номер ітерації):
3: знайти в С, два найближчі кластери:
                                 (U, V) := \arg \min_{U \neq V} R(U, V);
                                 R_t := R(U, V);
4: об'єднати їх в один кластер:
W := U \cup V:
C_{+} := C_{+-1} \cup \{W\} \setminus \{U,V\};
5: для всіх S ∈ Ct
6: вирахувати R(W, S) за формулою Ланса-Вільямса;
```


sklearn.cluster.AgglomerativeClustering

Text NATALIASHOVGUN288 to 37607 once to join

Який параметр на вашу думку найсильніше впливатиме на ієрархічну кластеризацію

кількість кластерів

метрика відстані

етрика оцінки якості кластеризації

Відстань R(W, S) між кластерами $W = U \cup V$ і S, через відстані R(U, S), R(V, S), R(U,V):

$$R(U \cup V, S) = \alpha_U \cdot R(U, S) +$$

$$+ \alpha_V \cdot R(V, S) +$$

$$+ \beta \cdot R(U, V) +$$

$$+ \gamma \cdot |R(U, S) - R(V, S)|,$$

де α_U , α_V , β , γ — числові параметри

1. Відстань найближчого сусіда :

$$R^{6}(W,S) = \min_{w \in W, s \in S} \rho(w,s);$$

$$\alpha_{U} = \alpha_{V} = \frac{1}{2}, \quad \beta = 0, \quad \gamma = -\frac{1}{2}.$$

$$R^{A}(W,S) = \max_{w \in W, s \in S} \rho(w,s);$$

$$\alpha_{U} = \alpha_{V} = \frac{1}{2}, \quad \beta = 0, \quad \gamma = \frac{1}{2}.$$

3. Групова середня відстань :

$$R^{r}(W,S) = \frac{1}{|W||S|} \sum_{w \in W} \sum_{s \in S} \rho(w,s);$$

$$\alpha_{U} = \frac{|U|}{|W|}, \quad \alpha_{V} = \frac{|V|}{|W|}, \quad \beta = \gamma = 0.$$

4. Відстань між центрами :

$$R^{\mathsf{u}}(W,S) = \rho^{2} \left(\sum_{w \in W} \frac{w}{|W|}, \sum_{s \in S} \frac{s}{|S|} \right);$$

$$\alpha_{U} = \frac{|U|}{|W|}, \ \alpha_{V} = \frac{|V|}{|W|},$$

$$\beta = -\alpha_{U}\alpha_{V}, \ \gamma = 0.$$

5. Відстань Уорда :

$$\begin{split} R^{y}(W,S) &= \frac{|S||W|}{|S|+|W|} \, \rho^2 \Big(\sum_{w \in W} \frac{w}{|W|}, \sum_{s \in S} \frac{s}{|S|} \Big); \\ \alpha_U &= \frac{|S|+|U|}{|S|+|W|}, \ \alpha_V &= \frac{|S|+|V|}{|S|+|W|}, \ \beta = \frac{-|S|}{|S|+|W|}, \ \gamma = 0. \end{split}$$

Алгоритм кластеризації DBSCAN

Об'єкт x ∈ U, його ε-околиця Uε (x) = u ∈ U: $\rho(x, u) ≤ ε$

- Core Point | Uε (x) | > M.
- Border Point
- Noise Point

n = Neighbourhood m = 4

DBSCAN

sklearn.cluster.DBSCAN

Affinity Propagation

- Метрика "схожості", визначається тим, що s (хі, хј)> s (хі, хк) якщо спостереження хі більше схоже на спостереження хј ніж на хк.
- Матриця r(i, k) буде описувати, наскільки добре k-те спостереження підходить для того, щоб бути "прикладом для наслідування" для i-того спостереження щодо всіх інших потенційних "прикладів« (responsibility).
- Матриця a(i, k) буде описувати, наскільки правильним було б для ітого спостереження вибрати k-те в якості такого "прикладу« (availability).

Affinity Propagation

Поки не досягнуте максимальне значення ітерацій, повторювати послідовне коригування матриць S, R, A. На початку R=0, A=0.

$$r_{i,k} \leftarrow s_(x_i, x_k) - \max_{k'
eq k} \left\{ a_{i,k'} + s(x_i, x_k')
ight\}$$

$$a_{i,k} \leftarrow \min \left(0, r_{k,k} + \sum_{i'
otin \{i,k\}} \max(0, r_{i',k})
ight), \quad i
eq k$$

$$egin{aligned} a_{k,k} \leftarrow \sum_{i'
eq k} \max(0, r_{i',k}) \ & \ r_{t+1}(i,k) = \lambda \cdot r_t(i,k) + (1-\lambda) \cdot r_{t+1}(i,k) \ & \ a_{t+1}(i,k) = \lambda \cdot a_t(i,k) + (1-\lambda) \cdot a_{t+1}(i,k) \end{aligned}$$

Sending responsibilities

Data point i

Sending availabilities

Data point i

Це загальний метод знаходження оцінок функції правдоподібності в моделях з прихованими змінними, який з суміші розподілів дозволяє будувати (наближати) складні імовірнісні розподіли.

E-Step. Оцінюються відсутні змінні у наборі даних.

М-Крок. Максимізуються параметри моделі за наявних даних.

$$pdf(x_i) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x_i-\mu)^2/2\sigma^2}$$

$$P(x_1, x_2, x_3, ..., x_{100} | \underline{\mu_a, \sigma_a^2, \mu_b, \sigma_b^2}, \underline{\text{cluster assignments for 100 points}})$$

$$\underline{\theta_1} \qquad \underline{\theta_2}$$

$$P(x_{new} | \underline{\mu_a, \sigma_a^2, \mu_b, \sigma_b^2})$$

$$\underline{\theta_1} \qquad \underline{\theta_2}$$

- На початку ми випадковим чином задаємо параметри θ_i ($\mu a, \sigma a^2, \mu b, \sigma b^2$). Робимо присвоєння P (θ_2) для кожної точки вибірки даних. Обчислюємо ймовірність належності x_i до певного кластера. Потім на основі цього розподілу P (θ_2) ми оптимізуємо очікувану логарифмічну ймовірність спостереження x присвоєння кластеру (θ_i). Отже, ми фіксуємо θ_i і виводимо θ_2 . Тоді ми оптимізуємо θ_i з фіксованим θ_2 . Повторюємо ітерації.
- E-Step. Оцінюємо очікуване значення для кожної прихованої змінної.
- М-Крок. Оптимізуємо параметри розподілу, використовуючи максимальну ймовірність.

E-step

$$P(x_i|b) = \frac{1}{\sigma_b \sqrt{2\pi}} e^{-(x-\mu_b)^2/2\sigma_b^2}$$

$$b_i = P(b|x_i) = \frac{P(x_i|b)P(b)}{P(x_i|b)P(b) + P(x_i|a)P(a)}$$
(for every data point)
$$a_i = P(a|x_i) = 1 - b_i$$

$$P(b) = \frac{b_1 + b_2 + \dots + b_n}{n}$$

$$P(a) = 1 - P(b)$$

Waiting time vs Eruption time Old Faithful geyser (Note: 1) (Note:

M-step

$$\mu_b = \frac{b_1 x_1 + b_2 x_2 + \dots + b_n x_n}{b_1 + b_n + \dots + b_n}$$

$$\sigma_b^2 = \frac{b_1 (x_1 - \mu_b)^2 + \dots + b_1 (x_n - \mu_b)^2}{b_1 + b_2 + \dots + b_n}$$

$$\mu_a = \frac{a_1 x_1 + a_2 x_2 + \dots + a_n x_n}{b_1 + a_n + \dots + a_n}$$

$$\sigma_a^2 = \frac{a_1 (x_1 - \mu_a)^2 + \dots + a_1 (x_n - \mu_a)^2}{a_1 + a_2 + \dots + a_n}$$

a.k.a.
$$\arg \max_{\theta_t} p(x \mid \theta_t) = \sum_{\theta_2} p(x, \theta_2 \mid \theta_1)$$

$$\theta_t = \{\mu_b, \sigma_a, \mu_b, \sigma_b\}$$

Кластеризація за допомогою ЕМ-алгоритму

Нехай кластер характеризується гаусівським розподілом, с параметрами w_y –ймовірності кластерів, µ_y –середнє, g – приховані змінні.

обрати початкове наближення для всіх кластерів у ∈ Y

$$\mathbf{W}_{\mathbf{y}}:=\mathbf{1}/|\mathbf{Y}|;$$
 $\mathbf{\mu}_{\mathbf{y}}\,\sigma_{yj}^2:=\frac{1}{\ell|\mathbf{Y}|}\sum_{i=1}^\ell (f_j(x_i)-\mu_{yj})^2,\;\;j=1,\ldots,n;\;$ КИ;

2: повторювати

3: Е-крок
$$g_{iy} := \frac{w_y p_y(x_i)}{\sum_{z \in Y} w_z p_z(x_i)}, \ y \in Y, \ i = 1, \dots, \ell;$$

4: М-крок (maximization):

$$w_y := \frac{1}{\ell} \sum_{i=1}^{\epsilon} g_{iy}, y \in Y;$$

 $\mu_{yj} := \frac{1}{\ell w_y} \sum_{i=1}^{\ell} g_{iy} f_j(x_i), y \in Y, j = 1, ..., n;$
 $\sigma_{yj}^2 := \frac{1}{\ell w_y} \sum_{i=1}^{\ell} g_{iy} (f_j(x_i) - \mu_{yj})^2, y \in Y, j = 1, ..., n;$

Співставити об'єкти і кластери за байєсівським правилом:

$$y_i := \underset{y \in Y}{\operatorname{arg \, max}} g_{iy}, \ i = 1, \dots, \ell;$$

6: поки уі не припинять змінюватися

Mean Shift

$$K(x_i-x)=e^{-c||x_i-x||^2}$$

$$m(x) = rac{\sum_{x_i \in N(x)} K(x_i - x) x_i}{\sum_{x_i \in N(x)} K(x_i - x)}$$

$$x_i^{t+1} = m(x_i^t)$$

Mean Shift

$$\sum_i K(x-x_i) = \sum_i k\left(rac{\|x-x_i\|^2}{h^2}
ight)$$

Чи відомий вам SVM?

Так

Hi