МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Пермский государственный национальный исследовательский университет»

Механико-математический факультет Кафедра фундаментальной математики

Курсовая работа на тему:

Алгебраические кривые

по дисциплине "Обыкновенные дифференциальные уравнения"

Направление 01.03.01 Математика

Выполнил студент группы ММ/О ММТ-2021 НБ — Ляховой Д.С. Научный руководитель кандидат — Волочков А.А. физико-математических наук, доцент кафедры фундаментальной математики

Содержание

1	Схемы Грассмана	2
	1.1 Функторы Грассмана	2
2	Дополнение	3
Cı	писок источников	5

Глава 1

Схемы Грассмана

1.1 Функторы Грассмана

Определение 1.1.1. Пусть $r, n \in N$. Для любой k-алгебры A определим $\mathcal{G}r_{n,r}(A)$ как множество таких подмодулей S A-модуля A^{r+n} , что

- 1. S выделяется прямым слагаемым в A^{r+n} , то есть $A^{r+n} = S \oplus T$ для некоторого подмодуля T в A^{r+n} (в частности, в силу 2.0.2, S проективный A-модуль);
- 2. A-модуль S имеет ранг r.

Для любого морфизма $\phi: A \longrightarrow B$ пусть $S \in \mathcal{G}r_{n,r}(A)$ и $S^B \in \mathcal{G}r_{n,r}(B)$ (в силу 2.0.6). Тогда построим естественное отображение $\mathcal{G}r_{n,r}(\phi): \mathcal{G}r_{n,r}(A) \longrightarrow \mathcal{G}r_{n,r}(B)$ определим как $S \mapsto S^B$.

Докажем, что $\mathcal{G}r_{n,r}-k$ -функтор.

 \mathcal{A} оказательство. Пусть $A \xrightarrow{\alpha} B \xrightarrow{\beta} C$ – морфизмы k-алгебр. Покажем, что $\mathcal{G}r_{n,r}(\beta\alpha) = \mathcal{G}r_{n,r}(\beta)\mathcal{G}r_{n,r}(\alpha)$. Пусть $S \in \mathcal{G}r_{n,r}(A)$.

$$(\mathcal{G}r_{n,r}(\beta)\mathcal{G}r_{n,r}(\alpha))(S) = \mathcal{G}r_{n,r}(\beta)(\mathcal{G}r_{n,r}(\alpha)(S)) =$$

$$\mathcal{G}r_{n,r}(\beta)(\langle \alpha(S) \rangle_{B}) = \langle \beta(\langle \alpha(S) \rangle_{B}) \rangle_{C} = \langle \langle (\beta\alpha)(S) \rangle_{B} \rangle_{C} =$$

$$\langle (\beta\alpha)(S) \rangle_{C} = \mathcal{G}r_{n,r}(\beta\alpha)(S)$$

Мы доказали, что $\mathcal{G}r_{n,r}-k$ -функтор.

Глава 2

Дополнение

Определение 2.0.1. Модуль P над кольцом R называется проективным, если для любого эпиморфизма $f: N \twoheadrightarrow M$ R-модулей и любого морфизма $g: P \longrightarrow M$ существует такой морфизм $h: P \longrightarrow N$, что коммутативна диаграмма

$$P \xrightarrow{g} M$$

Теорема 2.0.2. Модуль проективен тогда и только тогда, когда он является прямым слагаемым некоторого свободного модуля.

Теорема 2.0.3. Проективный модуль над локальным кольцом свободен.

Теорема 2.0.4. Пусть R – коммутативное кольцо, \mathfrak{p} – простой идеал в R. Если M – проективный R-модуль, то $M_{\mathfrak{p}}$ – свободный $R_{\mathfrak{p}}$ -модуль.

Определение 2.0.5. Проективный модуль M над коммутативным кольцом R имеет ранг $r \in \mathbb{Z}_{\geq 0}$, если для любого простого идеала \mathfrak{p} кольца R свободный $R_{\mathfrak{p}}$ -модуль $M_{\mathfrak{p}}$ имеет (свободный) ранг r.

Лемма 2.0.6. Пусть $\phi: A \longrightarrow B$ – морфизм k-алгебр, $n \in \mathbb{Z}_{\geq 0}$, S, T – подмодули A-модуля $A^n, A^n = S \oplus T$. Тогда выполняются следующие утверждения:

1. Существует такой изоморфизм В-модулей

$$\psi: (B \otimes_A S) \oplus (B \otimes_A T) \longrightarrow B^n$$
,

что для всех $b \in B$, $s \in S$, $t \in T$

$$(b \otimes_A s, b \otimes_A t) \stackrel{\psi}{\mapsto} b(s+t).$$

2.

$$\psi((B \otimes_A S) \times \{0\}) = S^B$$

$$\psi(\{0\} \times (B \otimes_A B)) = T^B$$

$$B^n = (A^n)^B = S^B \oplus T^B$$

3. Ранг проективного B-модуля S^B равен рангу проективного A-модуля S. (2.0.5)

Список Источников

- 1. Волочков А.А. Схемы. // А.А.Волочков Пермь, 2023. 233 стр. 126-127.
- 2. Волочков А.А. Схемы. // А.А.Волочков Пермь, 2023. 233 стр. 230.