扫地才子的随笔

——点集拓扑学

扫地才子

2023年3月15日

前言

开坑时间:2021.8.31.

需要知道的知识: 微积分, 一点点集合论, 会抽象代数更好, 不会也无所谓

参考数目:Munkres《拓扑学》,Armstrong 《基础拓扑学》,尤承业《基础拓扑学讲义》

参考的最多的是 Munkres, 文章脉络按尤承业来的, 做了一些微调, 因为尤承业是我的课本。

很羡慕 Armstrong 写书的那种畅快流畅的感觉。

很可惜,每次觉得这个学科稍稍入门,就已经期末了,如果以后不做相 关方面的研究,估计不会再更新代数拓扑了

> 扫地才子 2023 年 3 月 15 日

目录

第一章	拓扑空间的基本概念	1
1.1	从度量说起	1
1.2	拓扑空间	4
1.3	拓扑的基	7
1.4	拓扑空间基本概念	8
1.5	连续映射	10
1.6	习题	11
第二章	拓扑空间的基本性质	12
2.1	分离公理与可数公理	12
2.2	三个定理	13
2.3	紧致性	13
2.4	连通性	15
2.5	道路连通的	17
2.6	习题	18
第三章	商空间与闭曲面	19
3.1	商空间与商映射	19

第一章 拓扑空间的基本概念

不介绍基础知识了.

1.1 从度量说起

定义 1.1.1. 设 X 为非空集合, $\rho: X \times X \to \mathbb{R}$ 是一个函数, 如果对任意的 $x,y,z \in X$ 有:

- $\rho(x,y) \ge 0$ 并且 $\rho(x,y) = 0 \Leftrightarrow x = y, \forall x, y \in X$
- $\rho(x,y) = \rho(y,x)$
- $\rho(x,y) \le \rho(x,z) + \rho(y,z) \forall x,y,z \in X$

 ϕ 为 X 上的一个度量或距离, ϕ (X, ρ) 为一个度量空间或距离空间

定义 1.1.2. 球形邻域 设 (X, ρ) 为一个度量空间, 实数 $\epsilon > 0$, 称

$$B(x,\epsilon) = \{y \in X | \rho(x,y) < \epsilon\}$$

为度量空间 X 中以 x 为中心, 以 ϵ 为半径的球形邻域

定理 1.1.3. 两个球形邻域的交可以表示为若干个球形邻域的并.

证明:

设 $B(x_1, \epsilon_1), B(x_2, \epsilon_2)$ 为度量空间 (X, ρ) 中的两个球形邻域

如果 $B(x_1, \epsilon_1), B(x_2, \epsilon_2)$ 不相交,那么可以认为这两个球形邻域的交可以表示为 0 个球形邻域的并

所以只需要考察 $B(x_1, \epsilon_1), B(x_2, \epsilon_2)$ 交集不为空的情况

任取
$$y \in B(x_1, \epsilon_1) \cap B(x_2, \epsilon_2)$$
 令

$$\epsilon = \min(\epsilon_1 - \rho(x_1, y), \epsilon_2 - \rho(x_2, y))$$

我们断言 $B(y,\epsilon) \subset (B(x_1,\epsilon_1) \cap B(x_2,\epsilon_2))$

事实上, 任取 $z \in B(y, \epsilon)$, 则有 $\rho(y, z) < \epsilon \le \epsilon_1 - \rho(x_1, y)$

进而
$$\rho(x_1, z) \leq \rho(x_1, y) + \rho(y, z) < \epsilon_1$$

故
$$z \in B(x_1, \epsilon_1)$$

这样我们就证明了 $B(y,\epsilon) \subset B(x_1,\epsilon_1)$

同理可证 $B(y,\epsilon) \subset B(x_2,\epsilon_2)$

即得 $B(y,\epsilon) \subset (B(x_1,\epsilon_1) \cap B(x_2,\epsilon_2))$

进而

$$\bigcup_{\substack{y \in B(x_1,\epsilon_1) \cap B(x_2,\epsilon_2)}} \{y\} \subset \bigcup_{\substack{y \in B(x_1,\epsilon_1) \cap B(x_2,\epsilon_2)}} B(y,\epsilon) \subset (B(x_1,\epsilon_1) \cap B(x_2,\epsilon_2))$$

 With

$$\bigcup_{y \in B(x_1, \epsilon_1) \cap B(x_2, \epsilon_2)} B(y, \epsilon) = B(x_1, \epsilon_1) \cap B(x_2, \epsilon_2)$$

定义 1.1.4. 开集 设 (X, ρ) 为一个度量空间, $A \subset X$, 如果对于 X 中任何一个点 x, 只要 $x \in A$, 那么都存在 x 的球形邻域 $B(x, \epsilon)$, 使得

$$x \in B(x, \epsilon) \subset A$$

成立, 则称 A 为度量空间 (X, ρ) 中的一个开集

定理 1.1.5. 在度量空间中, 球形邻域是开集

设 $B(x,\epsilon)$ 是度量空间 (X,ρ) 中的一个球形邻域 任取 $y \in B(x,\epsilon)$, 定义 $\epsilon_1 = \epsilon - \rho(x,y)$ 则对于任意的 $z \in B(y,\epsilon_1)$, 我们有

$$\rho(y,z) < \epsilon_1 = \epsilon - \rho(x,y)$$

进而有 $\rho(x,z) \le \rho(x,y) + \rho(y,z) < \epsilon$

所以 $z \in epsilon$

我们就证明了 $B(y, \epsilon_1) \subset B(x, \epsilon)$

故 $B(x,\epsilon)$ 是 (X,ρ) 中的开集

定理 1.1.6. 度量空间的一个集合为开集当且仅当它可以表示为若干个球形 邻域的并

设 (X, ρ) 是一个度量空间,A 是 X 的一个子集

必要性: 假设 $A \in X$ 中的一个开集,则由开集的定义,对于任意的 $x \in A$,必定存在一个球形邻域 $B(x,\epsilon)$ 使得

 $x \in B(x,\epsilon) \subset A$, 因此, 我们就有

$$A = \bigcup_{x \in A} \{x\} \subset \bigcup_{x \in A} B(x, \epsilon) \subset A$$

即有 $A = \bigcup_{x \in A} B(x, \epsilon)$

充分性: 假设 $A = \bigcup B(y, \epsilon)$

任取 $x \in A$, 则 $x \in \bigcup B(y, \epsilon)$

那么必定存在一个球形邻域 $B(y_x, \epsilon_x)$ 使得 $x \in B(y_x, \epsilon_x) \subset A$

由开集的定义,集合 A 是一个开集

定理 1.1.7. 设度量空间 (X, ρ) 中所有的开集做成的集合为 T, 则集合 T 满足下面的性质:

- $\varnothing, X \in \mathcal{T}$
- 有限多个 T 中成员的交仍是 T 中的成员
- 任意多个 T 中的成员的并仍是 T 中的成员

先证明 (1): 首先 Ø 必是开集, 这是由于 Ø 中不含 X 中任何点, 故开集的条件为假, 故 Ø 是开集

由度量空间的定义, 显然 X 是开集

再证明 (3): 去若干个开集,由开集的定义,每一个开集都是若干个球形 邻域的并,因而这些开集的并最终也是若干个球形邻域的并,故这些开集的并是开集

最后证明 (2) 有限多个开集的并, 总可以由两两开集的交得到, 因而只要证两个开集的交是开集即可.

设 U,V 是 X 的两个开集, 有开集的定义 U,V 总可以表示为:

$$U = \bigcup_{x \in U} B(x, \epsilon_x), V = \bigcup_{y \in V} B(y, \epsilon_y), \mathbb{M}$$

$$U \cap V = (\bigcup_{x \in U} B(x, \epsilon_x)) \cap (\bigcup_{y \in V} B(y, \epsilon_y))$$
$$= \bigcup_{x \in U, y \in V} (B(x, \epsilon_x) \cap B(y, \epsilon_y))$$

 $(B(x, \epsilon_x) \cap B(y, \epsilon_y))$ 为开集

由 (3) 可知 $U \cap V$ 是开集

定理 1.1.8. 柯西不等式

$$(\sum_{k=1}^{n} a_k b_k)^2 \le \sum_{k=1}^{n} a_k^2 \sum_{k=1}^{n} b_k^2$$

或者

$$\sum_{k=1}^{n} a_k b_k \le \left(\sum_{k=1}^{n} a_k^2\right)^{\frac{1}{2}} \left(\sum_{k=1}^{n} b_k^2\right)^{\frac{1}{2}}$$

等号成立的条件是向量 $(a_1, a_2, \dots, a_n), (b_1, b_2, \dots, b_n)$ 线性相关

1.2 拓扑空间

函数在 x_0 点连续

定义 1.2.1. 1. 如果序列 $\{x_n\}$ 收敛到 x_0 , 则序列 $\{f(x_n)\}$ 收敛到 $f(x_0)$

- 2. 对于任意正数 $\varepsilon > 0$, 总可以找到 $\delta > 0$, 使得当 $|x-x_0| < \delta$ 时, $|f(x)-f(x_0)| < \varepsilon$
- 3. 若 V 是包含 $f(x_0)$ 的开集,则存在包含 x_0 的开集 U,使得 $f(U) \subset V$ 定义 1.2.2. 拓扑空间 X 为集合,T 为 X 的一个子集族,如果满足以下三条:
 - $\varnothing, X \in \mathcal{T}$
 - 对于任意有限个 $A_1, A_2, \cdots, A_n \in \mathcal{T}$, 必有 $A_1 \cap A_2 \cap \cdots \cap A_n \in \mathcal{T}$
 - 任取 $\{A_{\alpha}\}_{{\alpha}\in\Lambda}, \bigcup_{{\alpha}\in\Lambda}A_{\alpha}\in\mathcal{T}$

称 T 为 X 上的一个拓扑, 称 T 中的元素为 (X,T) 中的开集

例 1.2.3. 以一个十分简单的集合为例: $X = \{a, b, c\}$

$$\mathcal{T}_1 = \{\emptyset, X, \{a\}\}$$
 是否为一个拓扑?
是的。

首先满足空集和全集在 万 内.

其次
$$\varnothing \cap X = \varnothing \in \mathcal{T}, \varnothing \cap \{a\} = \varnothing \in \mathcal{T}, X \cap \{a\} = \{a\} \in \mathcal{T}$$
 最后 $\varnothing \cup X = X \in \mathcal{T}, \varnothing \cup \{a\} = \{a\} \in \mathcal{T}, X \cup \{a\} = X \in \mathcal{T}$ 满足拓扑的三条性质, 故 \mathcal{T} 确实是一个拓扑

拓扑结构为什么这么定义?

拓扑结构将某个空间中的一些集合挑出来构成集族, 并强行定义为开集, 拓扑内的集合都为开集.

这个开集的定义需要和我们熟知的开集是自洽的,以我们熟知的欧氏空间中的开集为例

任意个集合的并封闭在拓扑内, 回到我们熟知的欧氏空间, 拓扑取为欧式空间内的所有开集, 任意开集的并确实还是开集, 封闭在拓扑结构内, 但有些开集的交却未必还是开集, 反例很容易给出, $\bigcap_{i=1}^{+\infty} (0, 1 + \frac{1}{n})$

例 1.2.4. 当然, 很容易想到一个简单的拓扑 $\{\emptyset, X\}$, 只有空集和全集, 容易验证这确实是一个拓扑. 这个结构最为简单的拓扑我们称为平庸拓扑或者密着拓扑.

相对的, 由最简单的拓扑就会有最复杂的拓扑, X 的所有子集也是一个拓扑, 我们称之为离散拓扑.

例 1.2.5. 设 X 是一个集合, T_f 是使得 X-U 是有限集, 或者是使得 X-U 等于 X 的那些 X 的子集 U 的全体. 那么 T_f 为一个拓扑.

接下来挨个验证即可.

- 1. Ø, X 确实在 T_f 中
- 2. 要证明 $\bigcap_{i=1}^n U_i$ 在 \mathcal{T}_f 中, 即证明 $X \bigcap_{i=1}^n U_i = \bigcup_{i=1}^n (X U_i)$ 为有限集, 事实上每个 $X U_i$ 都是有限集, 有限并依旧是有限集
- 3. 要证明 $\bigcup_{\alpha \in \Lambda} U_{\alpha}$ 在 \mathcal{T}_f 中,即证明 $X \bigcup_{\alpha \in \Lambda} U_{\alpha} = \bigcap_{\alpha \in \Lambda} (X U_{\alpha})$,任意有限集的交也为有限集

例 1.2.6. 设 X 是不可数无穷集合, $\tau_c = \{A^c | A \in X \text{ 的可数子集} \} \cup \{\emptyset\}$,则 τ_c 也是 X 的拓扑, 称为余可数拓扑

定义 1.2.7. 设 T 和 T' 是给定集合 X 上的两个拓扑, 如果 $T' \supset T$, 则称 T' 细于 T. 若 $T' \supset T$ 则称 T' 严格细于 T.

当然, 这是个直观的定义

定义函数 $f: X \to Y, X$ 上的拓扑结构为离散拓扑, 那么该函数一定是连续的.

定义 1.2.8. 子空间拓扑 规定 A 的子集族 $\tau_A := \{U \cap A | U \in \tau\}$, 称为 τ 导出的 A 上子空间拓扑

该定义为自洽的, 可验证子空间拓扑确实为拓扑

定理 1.2.9. 设 X 是拓扑空间, $C \subset A \subset X$, 则 C 是 A 的闭集当且仅当 C 是 A 与 X 的一个闭集之交集.

1.3 拓扑的基

定义 1.3.1. 如果 X 是一个集合,X 的某拓扑的一个基是 X 的子集的一个族 $\mathcal{B}($ 其成员称为基元素),满足条件:

- 对于每一个 $x \in X$, 至少存在一个包含 x 的基元素 B
- 若x属于两个基元素 B_1 和 B_2 的交,则存在包含 x的一个基元素 B_3 , 使得 $B_3 \subset B_1 \cap B_2$

如果 \mathcal{B} 满足以上两个条件, 我们定义由 \mathcal{B} 生成的拓扑 \mathcal{T} , 如下: 如果 对于每一个 $x \in U$, 存在一个基元素 $B \in \mathcal{B}$, 使得 $x \in B$ 并且 $B \subset U$, 那么 X 的子集 U 称为 X 的开集 (\mathbb{P}) 即是 \mathcal{T} 的一个元素)

引理 1.3.2. 设 X 是一个集合, \mathcal{B} 是 X 的一个拓扑基, 则 τ 等于 \mathcal{B} 中所有可能元素的并

还记得我在看 Munkres 的拓扑学的时候,译者特意标注这句话极易被误解,哪怕是英文原版也是如此,更精确的说法应该如下

$$\tau = \{ \bigcup_{B \in \mathcal{B}'} B | B' \subset \mathcal{B} \}$$

引理 1.3.3. 设 β 和 β' 分别是 X 的拓扑 T 和 T' 的基,则下列条件等价

- (1).T' 细于 T
- (2). 对于每一个 $x \in X$ 以及包含 x 的每一个基元素 $B \in \mathcal{B}$, 存在一个基元素 $B' \subset \mathcal{B}'$, 使得 $x \in B' \subset B$

定义 1.3.4. 乘积拓扑 设 X 和 Y 是两个拓扑空间, $X \times Y$ 上的乘积拓扑是以族 B 为基的拓扑,其中 B 是所有形如 $U \times V$ 的集合的族,U 和 V 分别是 X 和 Y 的开子集.

定理 1.3.5. 若 \mathcal{B} 是 \mathcal{X} 的拓扑的一个基 \mathcal{C} 是 \mathcal{Y} 的拓扑的一个基,则族

$$\mathcal{D} = \{B \times C | B \in \mathcal{B}$$
并且 $C \in \mathcal{C}\}$

是 $X \times Y$ 的拓扑的一个基

1.4 拓扑空间基本概念

定义 1.4.1. 开集 拓扑内的为开集

定义 1.4.2. 闭集 余集在拓扑内的为闭集

根据开集的定义,以及 DeMorgan,可以导出一个显然的定理

定理 1.4.3. 设 X 是一个拓扑空间, 则下述结论成立:

- (1). Ø和 X 都是闭集
- (2). 闭集的任意交都是闭集
- (3). 闭集的有限并都是闭的

由子空间拓扑定义可以得到

定理 1.4.4. 设 Y 是 X 的一个子空间, 集合 A 是 Y 的一个闭集当且仅当 A 是 X 中一个闭集与 Y 的交.

这就导致了, 有的时候集合 A 是子空间 Y 的闭集, 但却不是大空间 X 的闭集.

下述定理情况除外:

定理 1.4.5. 设 Y 是 X 的一个子空间, 若 A 是 Y 的一个闭集并且 Y 是 X 的一个闭集, 则 A 是 X 的一个闭集.

结合简单的例子来看, 该定理相当直观

定义 1.4.6. 内点, 邻域 设 A 是拓扑空间 X 的一个子集, 点 $x \in A$ 如果存在开集 U, 使得 $x \in U \subset A$, 则称 x 是 A 的一个内点, A 是 x 的一个邻域.

Munkres 的书把邻域定义为包含点 x 的开集, 而这里的定义为包含这个开集的集合称为邻域, 很显然后者包括前者, 但定义相对来说更别扭.

定义 1.4.7. 内部 A 的内部定义为包含于 A 的所有开集的并,记作 IntA 或者 \dot{A} , 内部也是所有内点的集合

定义 1.4.8. 闭包 A 的闭包定义为包含 A 的所有闭集的交. 记作 \bar{A}

可类似的给出子空间闭包的定理

定理 1.4.9. 设 Y 是 X 的一个子空间,A 是 Y 的一个子集, \bar{A} 表示 A 在 X 中的闭包, 那么 A 在 Y 中的闭包等于 $\bar{A} \cap Y$

引出一个熟知的概念.A.B 集合相交指的是 $A \cap B$ 不是空集

定理 1.4.10. 设 A 是拓扑空间 X 的一个子集

- $(1).x \in \overline{A}$ 当且仅当每一个包含 x 的开集 U 与 A 相交
- (2). 假定 X 的拓扑是由一个基给出, 则 $x \in \overline{A}$ 当且仅当含有 x 的每一个基元素 B 与 A 相交

我其实还没有对这个定理有一个直观的理解.

定义 1.4.11. 极限点 若 A 是拓扑空间 X 的一个子集,x 是 X 的一个点,如果 x 的任意一个邻域与 A 的交含有异于 x 的点,我们称 x 为 A 的一个极限点.

在分析中更为人熟知的闭包的定义

定理 1.4.12. 设 A 是拓扑空间 X 的子集,A' 是 A 所有极限点的集合,则 $\bar{A} = A \cup A'$

由闭包这个概念还可以引出另一个闭集的判定方法.

定理 1.4.13. $\bar{A} = A \Leftrightarrow A$ 是闭集

定义 1.4.14. 设拓扑空间 (X,τ) , 序列 $x_n \to x$, 如果对任意的 x 的邻域 $T,\exists N,n>N,x_n\in T$

1.5 连续映射

回忆分析中函数连续的定义, 对于 $\forall \epsilon > 0, \exists \delta, |x - x_0| < \delta, |f(x) - f(x_0) < \epsilon|$

即,一个函数: $X \to Y$,Y 中的任意一个开集,都对应了 X 中的一个原像,这个原像为开集

定理 1.5.1. 连续 从 X 到 Y 的映射是连续的, 当且仅当 Y 的每一个开集在 X 内的原像是 X 的开集

定理 1.5.2. 连续映射的复合为连续映射

定义 1.5.3. 同胚 设 X 和 Y 都是拓扑空间, $f: X \to Y$ 是一个一一映射, 如果函数 f 和它的反函数 $f^{-1}: Y \to X$ 都连续, 那么称 f 是一个同胚

定义 1.5.4. 拓扑嵌入 设 $f: X \to Y$ 是一个连续的单射,X 和 Y 是两个拓扑空间,用 Z 表示像集 f(X),把它看成 Y 的一个子空间.那么由限制 f 的 陪域得到的函数 $f': X \to Z$ 就是一一映射,若 f' 正好是 X 与 Z 之间的一个同胚,则称映射 $f: X \to Y$ 是一个拓扑嵌入,或者称为 X 到 Y 中的一个嵌入

定理 1.5.5. 粘接引理 设 $X = A \cup B$ 并且 A 和 B 都是 X 中的闭集, $f: A \to Y$ 与 $g: B \to Y$ 都是连续函数,若对于任意 $x \in A \cap B$ 有 f(x) = g(x),则 f 和 g 可以组成一个连续函数 $h: X \to Y$,它定义为: 当 $x \in A$ 时, h(x) = f(x),当 $x \in B$ 时, h(x) = g(x)

例 1.5.6. 设映射 $f: X \to Y$, 若 X 为离散拓扑空间, 则该映射一定连续. 若 Y 是离散拓扑空间, 则 f 一定是连续的.

1.6 习题

例 1.6.1. 找出 $X = \{a, b\}$ 上的所有拓扑

例 1.6.2. 证明 $\tau = \{(-\infty, a) | -\infty \le a \le +\infty\}$ 是 R 上的一个拓扑

例 1.6.3. 设 $\{x_n\}$ 是 (R,τ_c) 中一序列,则 $x_n \to x \Leftrightarrow \exists N, n > N, x_n = x$

例 1.6.4. 设 $f: X \to Y$ 是一个双射, 则 f 为开映射 $\Leftrightarrow f$ 为闭映射 \Leftrightarrow 闭集像的补集是开集

例 1.6.5. A,B 分别为 X,Y 的闭集, 证明 $A \times B$ 是 $X \times Y$ 的闭集

例 1.6.6. 设 R 的子集族 $\mathcal{B} = \{[a,b)|a < b\}$, 证明: 在 $(R,\bar{\mathcal{B}})$ 中集合 [a,b) 既开又闭

例 1.6.7. 记 $X \times X$ 的对角子集 $\Delta = \{(x.x)|x \in X\}$ 证明: 当 Δ 是 $X \times X$ 的闭集时,X 为 T_2 空间

第二章 拓扑空间的基本性质

2.1 分离公理与可数公理

 T_1 公理: 任何两个不同点 x 与 y,x 有邻域不含 y,y 有邻域不含 x

 T_2 公理: 任何两个不同点有不相交的邻域, 满足 T_2 公理的空间被称为 Hausdorff 空间

T3 公理: 任意一点与不含它的任一闭集有不相交的邻域.

T₄ 公理: 任意两个不相交的闭集有不相交的邻域.

定理 2.1.1. X 满足 T_1 公理当且仅当 X 的有限子集是闭集

定理 2.1.2. 若 X 满足 T_1 公理, $A \subset X$, 点 x 是 A 的聚点, 则 x 的任一邻域与 A 的交是无穷集

定理 2.1.3. Hausdorff 空间中, 一个序列不会收敛到两个以上的点

定理 2.1.4. 1. 满足 T_3 公理 \Leftrightarrow 任意点 x 和它的开邻域 W, 存在 x 的开邻域 U, 使得 $\bar{U} \subset W$

定义 2.1.5. 邻域基 设 $x \in X$, 把 x 的所有邻域的集合称为 x 的的邻域系,记作 $\mathcal{N}.\mathcal{N}$ 的一个子集 \mathcal{U} 称为 x 的一个邻域基,如果 x 的每个邻域至少包含 \mathcal{U} 中的一个成员.

其实我到现在都不是很明白这是个什么东西 C_1 公理任一点都有可数的邻域基

 C_2 公理有可数的拓扑基

定理 2.1.6. Lindelof 定理 若拓扑空间 X 满足 C_2, T_3 公理. 则它也满足 T_4 公理

2.2 三个定理

我一点都看不懂这三个定理,但这并不影响我学之后的内容,Armstrong和 Munkres 的书也并非将这些内容放在了这个地方

定理 2.2.1. Urysohn 引理 如果拓扑空间 X 满足 T_4 公理, 则对于 X 的任意两个不相交闭集 A 和 B, 存在 X 上的连续函数 f, 它在 A 和 B 上分别取值为 0 和 1

定理 2.2.2. Tietze 扩张定理 如果 X 满足 T_4 公理, 则定义在 X 闭子集 F 上的连续函数可以连续的扩张到 X 上

定义 2.2.3. 拓扑空间可度量化当且仅当存在从 X 到一个度量空间的嵌入 映射

定理 2.2.4. Urysohn 度量化定理 拓扑空间 X 如果满足 T_1, T_4 和 C_2 公理,则 X 可以嵌入到 Hilbert 空间 E^{ω} 中

2.3 紧致性

写在最前面, 列紧性的定义

定义 2.3.1. 列紧 拓扑空间被称为列紧的如果它的每个序列都有收敛的子序列 (即有极限点)

人们早已注意到实直线上的闭区间 [a,b] 具有一种特性,这种特性对于证明极大值定理和一致有界定理起着至关重的作用,但在任意拓扑空间表述这种性质,人们却不得而知.

起初,人们以为这种性质指的是 [a,b] 中任何一个无穷子集都有极限点,并且将其尊称为"紧致性",后来数学家发现这种说法并没有触及到问题的本质.

于是才有了如今紧致性的表达,紧致性可理解为有界闭集的推广.

定义 2.3.2. 开覆盖 设 A 是空间 X 的一个子集族, 如果 A 的成员之并等于 X, 则称 A 覆盖 X, 或者称 A 是 X 的一个覆盖. 如果 A 的每一个成员都是 X 的开子集, 则称它为 X 的一个开覆盖.

定义 2.3.3. 紧致性 若 X 的任何一个开覆盖 A, 包含着一个可以覆盖 X 的有限子族, 则称空间 X 是紧致的

事实上,这是很苛刻的,在一维欧氏空间中,只有有界闭集才满足这个性质,哪怕是有界开集都不满足.

例如区间 (0,1] 不是紧致的. 因为存在这样一个开覆盖 $\mathcal{A} = \{(\frac{1}{n},1] | n \in \mathbb{Z}_+\}, \bigcup_{n=1}^{+\infty} (\frac{1}{n},1] = (0,1]$,但这可数个开覆盖只要去掉一个,就不能覆盖整个区间了.

因此可见紧致性是一个非常强的性质,即便是完美如欧氏空间,也并非 紧致.

对于欧氏空间来说,紧致和列紧是等价的

定理 2.3.4. 紧致 C_1 空间是列紧的

定理 2.3.5. 紧致空间的每一个闭子集都是紧致的

这个定理仿佛是在说废话.

定理 2.3.6. Hausdorff 空间的每一个紧致子空间都是闭的.

定理 2.3.7. 紧致空间的连续像是紧致的

定理 2.3.8. 设 $f: X \to Y$ 是一个连续的一一映射, 若 X 是紧致的, 并且 Y 是 Hausdorff 的, 则 f 是一个同胚

定理 2.3.9. Bolzano-Weierstrass 紧致空间的无穷子集必有极限点

定理 2.3.10. 若 X 和 Y 都紧致, 则 $X \times Y$ 是紧致的

但紧致性太强了,有一些性质十分良好的空间也不能满足紧致性,因此引出局部紧的概念

定义 2.3.11. 局部紧 拓扑空间 X 称为局部紧的, 如果 $\forall x \in X$ 都有紧致的 邻域

2.4 连通性

相比于紧致性, 连通性可要比紧致性直观得多

定义 2.4.1. 连通性 拓扑空间 X 是连通的, 假如当它能分解成为两个非空 子集的并集 $A\cup B$ 时, 则 $\bar{A}\cap B\neq\varnothing$ 或 $A\cap \bar{B}=\varnothing$

例 2.4.2. 实数轴是连通空间

例 2.4.3. 实数轴上的非空子集为连通, 当且仅当它是一个区间

定理 2.4.4. 对于空间 X, 下列条件是等价的:

- X 连通
- X 内同时为开集和闭集的子集只有 X 与空集
- X不能表示为两个不相交的非空开集的并集
- 不存在连续满映射从 X 到一个多于一点的离散拓扑空间.

太重要了, 顺时针证明一遍.

设 X 连通, 则设 A 为 X 既开又闭的子集, 若 B=X-A, 则 B 也是既开又闭的, 这就得到了

 $\bar{A} \cap B = A \cap \bar{B} = A \cap B = \emptyset$

但 X 为连通的, 所以 A 和 B 之一必为空集, 即证明了 $(1) \rightarrow (2)$

下证
$$(2) \rightarrow (3)$$

若 X 可以表示为两个非空开集的并, 即 $X = A \cup B, A \cap B = \emptyset$, 这说 明 X - A = B 为闭集, 那么 B 既为开集又为闭集, 则有 B = X 或空集

下证
$$(3) \rightarrow (4)$$

设 Y 为离散拓扑空间, 有题目知至少两点, 则 Y 可以表示为两个不相 交非空开集的并, $Y = U \cup V$, 因为离散拓扑空间, 每一个集合都是开集

根据满映射以及连续映射开集的原像是开集, 则 $X = f^{-1}(U) \cup f^{-1}(V)$, 但这与 (3) 矛盾

下证
$$(4) \rightarrow (1)$$

假设非连通, 那么 X 可以表示为 $A\cap B$, 其中 A 和 B 非空, 并满足, $\bar{A}\cap B=A\cap \bar{B}=\varnothing$

这是 A,B 都是开集定义 X 到实数轴子空间-1,1 的映射 f

$$f(x) = \begin{cases} -1 & x \in A \\ 1 & x \in B \end{cases}$$

容易看出 X 为连续满映射, 矛盾.

定理 2.4.5. 设 X 为拓扑空间,Z 为 X 的子集, 若 Z 连通, 并且在 X 内稠密,则 X 连通.

定理 2.4.6. 设 F 是空间 X 内的一组子集, 他们的并集是整个 X, 若 F 的 每一个成员都是连通的, 并且 F 的任意两个成员在 X 内都不是相互分离的, 则 X 连通.

定理 2.4.7. 连通性也是可乘的

定义 2.4.8. 连通分支 拓扑空间 X 的一个子集称为连通分支, 如果它是连通的. 并且不是 X 的其他连通分支的子集

可以看出, 这是个针对不连通空间 (如双曲线) 的一个概念, 因为如果是连通空间, 那么它的连通分支只能是它自己.

定理 2.4.9. X 的每个非空连通子集包含在唯一的一个连通分支中

定理 2.4.10. 连通分支是闭集

定义 2.4.11. 拓扑空间 X 称为局部连通的, 如果 $\forall x \in X, x$ 的所有连通邻域构成 x 的邻域基

定理 2.4.12. 局部连通空间的连通分支是开集

2.5 道路连通的

道路连通是一个比连通更加宽泛的概念.

定义 2.5.1. 道路 设 X 是拓扑空间, 从单位闭区间 I = [0,1] 到 X 的一个连续映射 $a: I \to X$ 称为 X 上的一条道路. 把点 a(0) 和 a(1) 分布称为 a 的起点和终点, 统称为端点

定义 2.5.2. 一条道路 $a:I\to X$ 的逆也是 X 上的道路, 记作 \bar{a} , 规定为 $\bar{a}=a(1-t), \forall t\in I$

定义 2.5.3. 空间是道路连通的, 假如它的任意两点可以用一条道路连接

定理 2.5.4. 连通空间是道路连通的

定理 2.5.5. 欧氏空间的连通开集是道路连通的

定理 2.5.6. 道路连通的连续像也是道路连通的.

定义 2.5.7. 道路连通分支 拓扑空间在等价关系 下分成的等价类称为 X 的 道路分支, 简称道路分支.

等价关系: 若点x与y可用X上的道路连结, 则说x与y相关

定义 2.5.8. 局部道路连通的 拓扑空间 X 称为局部道路连通的, 如果 $\forall x \in X, x$ 的道路连通的邻域构成 x 的邻域基

2.6 习题

- 例 2.6.1. 紧致度量空间是可分的, 从而为 C_2 的
- 例 2.6.2. 假设 $A \subset E^2$, A^c 为可数集, 证明 A 为道路连通的
- 例 2.6.3. 若 $f:S^1 \to E$ 连续, 则 f 不是单的, 也不是满的

第三章 商空间与闭曲面

3.1 商空间与商映射

定义 3.1.1. 商集 一般地, 一个集合 X 上如果有等价关系,相应的等价类集合记作 X/,称 X 关于 的商集.

把 X 上的点对应到它所在的等价类,得到映射 $p:X\to X/$ 称为粘合映射.

如何理解商集, 可参考抽象代数中模 m 剩余类.

商集为何表示成 X/,事实上,写成这样似乎会更好理解一些 $\overset{X}{=}$,对比 模 5 的生育了, $X/5=\frac{X}{=}$,

X 这个空间被"5"这个等价关系分成了五类, 即整除, 余 1, 余 2, 余 3, 余 4. 也就是说, 按"5"这个关系, 把空间分成了"平行"的五个超平面

商集, 天然给与了一个性质很好的分类

定义 3.1.2. 设 (X,τ) 是拓扑空间, 是集合 X 上的一个等价关系, 规定商集 X/ 上的子集族

$$\tilde{\tau} := \{ V \subset X / \mid p^{-1}(V) \in \tau \}$$

则 $\tilde{\tau}$ 是 X/ 上的一个拓扑, 称为 τ 在 下的商拓扑, 称 $(X/,\tilde{\tau})$ 是 (X,τ) 关于 的商空间

定理 3.1.3. 设 X,Y 是两个拓扑空间,是 X 上的一个等价关系, $g:X/\to Y$ 是一映射,则 g 连续当且仅当 $g\circ p$ 连续

定义 3.1.4. 商映射 设 X 和 Y 是拓扑空间, 映射 $f: X \to Y$ 称为是商映射, 如果

- f 连续
- f是满射
- 设 $B \subset Y$, 如果 $f^{-1}(B)$ 是 X 的开集, 则 B 是 Y 的开集

定理 3.1.5. 连续满映射 $f:X\to Y$ 如果还是开映射或闭映射, 则它是商映射

定理 3.1.6. 如果 X 紧致,Y 是 Hausdorff 空间,则连续满映射 $f: X \to Y$ 一定是商映射

定理 3.1.7. 商映射的复合也是商映射