## **Section A**

Answer all questions in the spaces provided.

1 Calcium fluoride occurs naturally as the mineral fluorite, a very hard crystalline solid that is almost insoluble in water and is used as a gemstone.

Tables 1 and 2 contain thermodynamic data.

Table 1

| Process                                    | ∆H <sup>⇔</sup> / kJ mol <sup>−1</sup> |
|--------------------------------------------|----------------------------------------|
| Ca(s) → Ca(g)                              | +193                                   |
| $Ca(g) \rightarrow Ca^{+}(g) + e^{-}$      | +590                                   |
| $Ca^{+}(g) \rightarrow Ca^{2+}(g) + e^{-}$ | +1150                                  |
| $F_2(g) \rightarrow 2F(g)$                 | +158                                   |
| $F(g) + e^- \rightarrow F^-(g)$            | -348                                   |

Table 2

| Name of enthalpy change                               | ∆ <i>H</i> <sup>⇔</sup> / kJ mol <sup>–1</sup> |
|-------------------------------------------------------|------------------------------------------------|
| Enthalpy of lattice dissociation for calcium fluoride | +2602                                          |
| Enthalpy of lattice dissociation for calcium chloride | +2237                                          |
| Enthalpy of hydration for F <sup>-</sup> ions         | -506                                           |
| Enthalpy of hydration for Cl <sup>-</sup> ions        | -364                                           |
| Enthalpy of hydration for Ca <sup>2+</sup> ions       | -1650                                          |

| 1 (a) | Write an equation, including state symbols, for the process that occurs wher calcium fluoride lattice dissociates and for which the enthalpy change is equ lattice enthalpy. |          |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|       |                                                                                                                                                                              | (1 mark) |



| 1 (b) (i)   | Define the term standard enthalpy of formation.                                                                                                          |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |                                                                                                                                                          |
|             |                                                                                                                                                          |
|             |                                                                                                                                                          |
|             |                                                                                                                                                          |
|             |                                                                                                                                                          |
|             | (2 marks)                                                                                                                                                |
|             | (3 marks) (Extra space)                                                                                                                                  |
|             |                                                                                                                                                          |
|             |                                                                                                                                                          |
|             |                                                                                                                                                          |
|             |                                                                                                                                                          |
| 1 (b) (ii)  | Write an equation, including state symbols, for the process that has an enthalpy change equal to the standard enthalpy of formation of calcium fluoride. |
|             |                                                                                                                                                          |
|             | (1 mark)                                                                                                                                                 |
| 1 (b) (iii) | Use data from the <b>Tables 1</b> and <b>2</b> to calculate the standard enthalpy of formation for calcium fluoride.                                     |
|             |                                                                                                                                                          |
|             |                                                                                                                                                          |
|             |                                                                                                                                                          |
|             |                                                                                                                                                          |
|             |                                                                                                                                                          |
|             | (3 marks)                                                                                                                                                |
|             | (Extra space)                                                                                                                                            |
|             |                                                                                                                                                          |
|             |                                                                                                                                                          |
|             |                                                                                                                                                          |
|             |                                                                                                                                                          |
|             | Question 1 continues on the next page                                                                                                                    |

Turn over ▶



| 1 (c)      |        | Explain why the enthalpy of lattice dissociation for calcium fluoride is greater than that for calcium chloride.                                                                               |
|------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |        |                                                                                                                                                                                                |
|            |        |                                                                                                                                                                                                |
|            |        |                                                                                                                                                                                                |
|            |        | (2 marks)                                                                                                                                                                                      |
| 1 (        | d)     | Calcium chloride dissolves in water. After a certain amount has dissolved, a saturated solution is formed and the following equilibrium is established.                                        |
|            |        | $CaCl_2(s)$ $\longrightarrow$ $Ca^{2+}(aq) + 2Cl^-(aq)$                                                                                                                                        |
| 1 (        | d) (i) | Using data from Table 2, calculate the enthalpy change for this reaction.                                                                                                                      |
|            |        |                                                                                                                                                                                                |
|            |        |                                                                                                                                                                                                |
|            |        |                                                                                                                                                                                                |
|            |        |                                                                                                                                                                                                |
|            |        |                                                                                                                                                                                                |
|            |        | (2 marks)                                                                                                                                                                                      |
| 1 (d) (ii) |        | Predict whether raising the temperature will increase, decrease or have no effect on the amount of solid calcium chloride that can dissolve in a fixed mass of water. Explain your prediction. |
|            |        | (If you have been unable to obtain an answer to part <b>(d)</b> (i), you may assume that the enthalpy change = $-60 \text{ kJ mol}^{-1}$ . This is <b>not</b> the correct answer.)             |
|            |        | Effect on amount of solid that can dissolve                                                                                                                                                    |
|            |        | Explanation                                                                                                                                                                                    |
|            |        |                                                                                                                                                                                                |
|            |        |                                                                                                                                                                                                |
|            |        | (3 marks)                                                                                                                                                                                      |
|            |        |                                                                                                                                                                                                |



| 1 (e) | Calcium fluoride crystals absorb ultra-violet light. Some of the energy gained is given out as visible light. The name of this process, fluorescence, comes from the name of the mineral, fluorite. |    |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|       | Use your knowledge of the equation $\Delta E = hv$ to suggest what happens to the electrons in fluorite when ultra-violet light is absorbed and when visible light is given out.                    |    |
|       |                                                                                                                                                                                                     |    |
|       |                                                                                                                                                                                                     |    |
|       |                                                                                                                                                                                                     |    |
|       | (2 marks)                                                                                                                                                                                           |    |
|       | (Extra space)                                                                                                                                                                                       |    |
|       |                                                                                                                                                                                                     | 17 |

Turn over for the next question

Turn over ▶

