PREDICTION OF TOMORROW'S RAINFALL USING BAYESIAN NETWORK

CSE516 - Probabilistic Graphical Model

TABLE OF CONTENTS

BACKGROUND

Weather plays an important role in daily life

- Probabilistic Graphical Model can solve rain prediction problem easily
- BBN is an intuitive knowledge representation for handling uncertainty

The main object of these networks is trying to understand the structure of causality relations.

BACKGROUND

 Mathematically Belief network should contain variable X= {X1,X2,....,XN} of a Directed Acyclic Graph and probabilities can be calculated by the formula (X1,....,XN) =

$$(X_1, ..., X_N) = \prod_{i=1}^N P(X_i/Parents(X_i))$$

 Here Parents(Xi) are the parents of Xi in a network. Further we can calculate the joint distribution and conditional probabilities indicated by the network. Bayesian belief network can be used as representation tool for the decision making under uncertainty.

MOTIVATION

- Social and Economic systems also depend on the weather forecast
- The weather requires wind, direction, speed, air pressure, date, location, etc.

 We will use a Bayesian network that will reduce the complexity and we will make inferences easily

CONTRIBUTION

- Used the Australian data of rain and related parameters of the last ten years.
- We have implemented the Bayesian Network.
- We have predicted tomorrow's rain.
- We are using fewer resources to predict tomorrow's rainfall and get reasonable accuracy as compared to other expensive methods and technologies.

METHODOLOGY

Data and its preprocessing

- We are using Australian data to predict tomorrow's rainfall. This data has a total of 23 variables.
- Here We are using only 11 variables to predict the rain.
- All variable data of different ranges are converted into the different states as high as 1, moderate as 2, low as 2, or high as 1 and low as 2.

Variables that we have used

- Season
- Mintmp
- Maxtmp
- Sunshine
- Humidity
- Pressure

- Cloud
- Wind Speed
- Evaporation
- Rainfall
- Rain Tommorow

ANALYTICAL OVERWIEW

- With the help of these 11 nodes, we make 2 different Bayesian network
 - a. Manual constructed bayesian network
 - b. Automatically generated bayesian network

MANUAL CONSTRUCTED BAYESIAN NETWORK

- Identify the relevant node and structure dependencies between different nodes.
- Tomorrow's rain is directly or indirectly dependent on present-day atmospheric phenomena.
- Only doing Parameter learning to Find CPT.
- Do variable elimination to find the probability of tomorrow's rain.

AUTOMATICALLY GENERATED BAYESIAN NETWORK

- Do Structure learning on 11 nodes of data
- Get the Bayesian network from structure learning
- Use Hill climbed algorithm for structure learning
- Do parameter learning to get CPT
- Use the bayesian estimator for parameter learning
- Use the variable elimination to get the probability of the given query.

PARAMETER LEARNING

- Parameter learning is the process of quantifying the conditional probability between nodes
- we use the Bayesian estimator for this model.
- The Bayesian estimator is maximize the posterior probability.

STRUCTURE LEARNING

- Structure learning is the process of finding the Bayesian network.
- we use Hill climb K2 algorithm for finding the dependencies between various nodes.
- Hill climb is a greedy algorithm to find the bayesian network.

HILL CLIMB

- It is a local search Algorithm
- It works for a greedy approach
- It includes changes in the state
- It reduces space complexity.
- It is also known as the Heuristic search

Variable Elimination

- It is an efficient method for deriving inferences rather than joint distribution.
- Final conditional probability can be calculated in two ways.
- For our bayesian network, we calculated rain tomorrow with evidence as Evaporation, WindGustSpeed.

RESULTS AND INTERFERENCE

Model -1

Model - 2

Hand made

• HC - K2 score

• 11 nodes

• 11 nodes

Pygame

Python

Baysiannetwork

variable elimination

Models	Accuracy
Model - 1	0.7872
Model - 2	0.7916
Model - 3	0.8172

Probability of tomorrow Rain

Model - 3

- HC K2 score
- 20 nodes

Evidences

Understand networks

CONCLUSION

- We are using 11 nodes but increasing the number of nodes can increase the accuracy of the prediction of rainfall
- We can increase the parameter to increase the accuracy
- For scope of improvement, Is rain very high or low or moderate that can be determined.
- We can use more RSMAX2(General 2 phase Restricted Maximizatio) and H2PC (Hybrid HPC)

THANK YOU