10

15

Disclosed is a modular fluorescence sensor having the following general formula:

FI-(CH₂)_n-N $\stackrel{\text{(CH₂)}_m-Bd_1}{>_{Sp}}$ N-(CH₂)_x-An $\stackrel{\text{(CH₂)}_y-Bd_2}{>_{(CH₂)_y-Bd_2}}$

Where Fl is a fluorophore, N is a nitrogen atom, B_{d1} and B_{d2} are independently selected binding groups, Sp is an aliphatic spacer, and An is an anchor group for attaching the sensor to solid substrates. n = 1 or 2, m = 1 or 2. The binding groups are capable of binding an analyte molecule to form a stable 1:1 complex. In a preferred embodiment, the $mathbb{B}_{d1}$ is $mathbb{R}_{1}$ -B(OH)₂ and $mathbb{B}_{d2}$ is $mathbb{R}_{2}$ -B(OH)₂. $mathbb{R}_{1}$ and $mathbb{R}_{2}$ are aliphatic or aromatic functional groups selected independently from each other and B is a boron atom. The present invention also provides methods of synthesizing a modular fluorescence sensor and its use in labeling solid substrates.

5

10

15

Disclosed is a modular fluorescence sensor having the following general formula:

Fl—
$$(CH_2)_n$$
— $N < (CH_2)_m$ — Bd_1
 $Sp < N$ — $(CH_2)_x$ — An
 $|$
 $(CH_2)_y$ — Bd_2

Where Fl is a fluorophore, N is a nitrogen atom, B_{d1} and B_{d2} are independently selected binding groups, Sp is an aliphatic spacer, and An is an anchor group for attaching the sensor to solid substrates. n = 1 or 2, m = 1 or 2. The binding groups are capable of binding an analyte molecule to form a stable 1:1 complex. In a preferred embodiment, the $mathbb{B}_{d1}$ is $mathbb{R}_{1}$ -B(OH)₂ and $mathbb{B}_{d2}$ is $mathbb{R}_{2}$ -B(OH)₂. $mathbb{R}_{1}$ and $mathbb{R}_{2}$ are aliphatic or aromatic functional groups selected independently from each other and B is a boron atom. The present invention also provides methods of synthesizing a modular fluorescence sensor and its use in labeling solid substrates.