Intégration et Probabilités

ENS Paris, 2023/2024

Benoît Laslier laslier@dma.ens.fr

TD5: Intégrales à paramètres, théorèmes de Fubini

Exercice 1. [Une première utilisation de Fubini] Soit (E, \mathcal{A}, μ) un espace mesuré, la mesure μ étant supposée σ -finie. Soit f mesurable positive.

- 1. Montrer que $\int_E f d\mu = \int_0^{+\infty} \mu(f > t) dt$.
- 2. Plus généralement montrer que si $g: \mathbb{R}_+ \to \mathbb{R}_+$ est croissante de classe \mathcal{C}^1 et vérifie g(0) = 0 alors $\int_E g \circ f \, d\mu = \int_0^\infty g'(t) \mu(f > t) \, dt$.

Exercice 2. [Lemme de Scheffé] Soit (f_n) une suite de fonctions mesurables positives de (E, \mathcal{A}) dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ telle que :

- $\lim_{n\to\infty} f_n(x) = f(x)$ pour μ -presque tout $x \in E$,
- $-\lim_{n\to\infty} \int f_n d\mu = \int f d\mu < \infty.$
- 1. Montrer que $\lim_{n\to\infty} \int (f-f_n)_+ d\mu = 0$.
- 2. En déduire que $\lim_{n\to\infty} \int |f_n f| d\mu = 0$.
- 3. Pour $k \in \mathbb{N}$, on pose $Z_k = \int_{\mathbb{R}} \frac{1}{(1+t^2/k)^k} dt$ et $f_k(t) = \frac{1}{Z_k(1+t^2/k)^k}$.
 - (a) Montrer que $Z_k = \sqrt{k} A_k$, où $A_k = \int \frac{dt}{(1+t^2)^k} dt$.
 - (b) Montrer que $A_{k+1} = \frac{2k-1}{2k} A_k$. En déduire un équivalent de A_k lorsque $k \to \infty$.
 - (c) Conclure que f_k converge dans L^1 vers la densité de la loi normale sur \mathbb{R} .

Exercice 3. [Calculs]

- 1. Soit f la fonction définie sur $[0,1]^2$ par $f(x,y) = \frac{x^2-y^2}{(x^2+y^2)^2} \mathbf{1}_{(x,y)\neq(0,0)}$. Comparez les valeurs de $\int_0^1 \mathrm{d}x \int_0^1 \mathrm{d}y f(x,y)$ et $\int_0^1 \mathrm{d}y \int_0^1 \mathrm{d}x f(x,y)$.
- 2. En considérant l'intégrale $\int_{\mathbb{R}^2_+} \frac{1}{(1+y)(1+x^2y)} dx dy$, calculer $\int_0^{+\infty} \frac{\ln(x)}{x^2-1} dx$.
- 3. En remarquant que $x^{-1}\sin(x)=\int_0^1\cos(xy)\mathrm{d}y$, calculer pour tout t>0 l'intégrale suivante

$$\int_0^{+\infty} x^{-1} \sin(x) e^{-tx} dx .$$

Exercice 4. [Intégrales à paramètre] Soit $f:[0,\infty)\to[0,\infty)$ une fonction mesurable pour les tribus boréliennes associées. On pose $F:x\in[0,\infty)\mapsto\int_0^\infty\frac{\arctan(xf(t))}{1+t^2}dt$.

- 1. Montrer que F est continue.
- 2. Calculer la limite de F(x) quand $x \to \infty$.
- 3. Montrer que F est dérivable sur $]0, \infty[$.
- 4. Donner une condition nécessaire et suffisante sur f pour que F soit dérivable en 0.

Exercice 5. Soit \mathcal{A} une tribu sur \mathbb{R} et soit μ une mesure de probabilité sur $(\mathbb{R}, \mathcal{A})$. Soient f et g deux fonctions $(\mathbb{R}, \mathcal{A}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ mesurables et monotones de même sens. On suppose de plus que les fonctions f, g et fg sont dans $L^1(\mathbb{R}, \mathcal{A}, \mu)$. Montrer que

$$\int_{\mathbb{R}} f g d\mu \ge \int_{\mathbb{R}} f d\mu \int_{\mathbb{R}} g d\mu.$$

Indication : on pourra considérer la fonction F(x,y) = (f(x) - f(y))(g(x) - g(y)).

Exercice 6. Soit $f:(\mathbb{R},\mathcal{B}(\mathbb{R}))\to(\mathbb{R},\mathcal{B}(\mathbb{R}))$ une fonction intégrable pour la mesure de Lebesgue et soit $\alpha>0$. Montrer que pour presque tout $x\in\mathbb{R}$, $\lim_{n\to\infty}n^{-\alpha}f(nx)=0$. On pourra considérer les ensembles

$$A_{\eta,n} = \{x \in \mathbb{R} : n^{-\alpha} | f(nx) | > \eta \}, \quad n \ge 1, \quad \eta > 0.$$

Exercice 7. Soient E et F deux ensembles, soit \mathcal{A} une tribu sur E et \mathcal{B} une tribu sur F. Montrer que les sections d'un ensemble mesurable pour la tribu produit sont mesurables. Autrement dit, si $C \in \mathcal{A} \otimes \mathcal{B}$ alors $C^y := \{x \in E : (x,y) \in C\} \in \mathcal{A}$ pour tout $y \in F$ et $C_x := \{y \in F : (x,y) \in C\} \in \mathcal{B}$ pour tout $x \in E$.

Exercice 8. [Convolution] Pour f, g deux fonctions boréliennes positives, on pose

$$f * g : x \in \mathbb{R} \mapsto \int f(y)g(x-y)dy.$$

- 1. Montrer que si f et g sont intégrables par rapport à la mesure de Lebesgue, alors f*g est intégrable par rapport à la mesure de Lebesgue.
- 2. Soit $A \in \mathcal{B}(\mathbb{R})$ tel que $0 < \lambda(A) < \infty$. Montrer que si $(\mathbb{1}_A * \mathbb{1}_{-A})(x) > 0$ alors il existe $y, z \in A$ tels que x = y z.
- 3. Soit $a \ge 0$, montrer que $\{x \in \mathbb{R} : f * g(x) \le a\}$ est fermé. En déduire qu'il existe $\delta > 0$ tel que pour tout $x \in [-\delta, \delta]$, il existe $y \in A$ tel que $x + y \in A$.
- 4. On pose $F = \{x_a, a \in \mathbb{R}/\mathbb{Q}\}$, où x_a est un représentant de $a \in \mathbb{R}/\mathbb{Q}$ dans l'intervalle [0, 1]. En observant que $\{q + F, q \in \mathbb{Q}\}$ est une partition dénombrable de \mathbb{R} , montrer que F ne peut être mesurable.
- 5. Montrer que si $A \cap (q + F) \in \overline{\mathcal{B}}(\mathbb{R})$ pour tout $q \in \mathbb{Q}$, alors il existe $q_0 \in \mathbb{Q}$ tel que $\lambda(A \cap (q_0 + F)) > 0$.
- 6. En conclure que si A est de mesure de Lebesgue positive, alors il existe un ensemble $B \subset A$ tel que $B \notin \overline{\mathcal{B}}(\mathbb{R})$.