

Quem sou eu?

- Arndt von Staa
 - arndt *at* inf.puc-rio.br
 - Sala RDC 420
 - ramal DI 4333

Fev/2015

Arndt von Staa © LES/DI/PUC-Rig

Quem sou eu?

- Iniciei atividades em computação em setembro de 1962
 - CPD Centro de Processamento de Dados da PUC
- Professor desde setembro 1967
- "Sócio fundador" do Departamento de Informática
 - criado no final de 1967
 - cursos regulares com uso intensivo de computador começaram em março de 1968
 - ICC (1º. no Brasil), Cálculo Numérico (1º. ??? no Brasil)
 - Mestrado (1º. no Brasil)
- PhD em Ciência da Computação (Computer Science) pela University of Waterloo, Canadá, 1974
- Interesse de pesquisa: como *desenvolver* e *manter* software possuindo qualidade assegurada

Fev/2015

Arndt von Staa © LES/DI/PUC-Ri

10. Computador no Brasil - na PUC-Rio

- Primeiro computador no Brasil: Burroughs Datatron B-205
 - negociação iniciada em 1958
 - instalado em 1960 no CPD da PUC-Rio
 - tinha mais de 1600 válvulas eletrônicas, maioria duplo triodo
 - pesava mais de uma tonelada
 - consumia em torno de 30 KVA,
 - requeria em torno de 101.000 BTU/hora de refrigeração
 - mais ou menos 25 KVA
 - velocidade média 2,5 ms (**mili** segundo ...)
 - acessava memória em +- 1ms ou em 0,1ms
 - dependendo de como se programava
 - memória 4000 palavras de 10 dígitos decimais (BCD)
 - dá cerca de 20 kbytes
 - memória: tambor magnético
 - não tinha sistema operacional, compilador, assembler, ...
 - programação era feita em linguagem de máquina absoluta

Fev/2015

Arndt von Staa © LES/DI/PUC-Rio

10. Computador no Brasil

Fev/2015

Arndt von Staa @ LES/DI/PUC-Rio

8

10. Computador no Brasil

- Alguns trabalhos realizados no B205
 - Simulação da operação de reservatórios de usinas hidroelétricas
 - cerca de 3200 comandos em linguagem de máquina absoluta
 - Simulação do despacho de carga na rede de transmissão entre usinas e centros de consumo
 - adaptação de programa americano
 - Desenvolvimento de utilitários
 - Manutenção do hardware
 - adição de três novas instruções ao hardware
 - Programação de painel de tabuladora IBM407 a seguir
 - Cálculo estrutural da Ponte da Amizade em Foz do Iguaçu
 - Cálculo da estabilidade de barragens de terra
 - - -

Fev/2015

Arndt von Staa © LES/DI/PUC-Ric

Outros computadores instalados na PUC

- IBM 1130 (1966)
 - uma espécie de computador pessoal?
 - circuitos de baixa integração 2,2 μ s, **16k** memória, disco de **1Mbyte**
 - tinha um sistema operacional monoprogramado rudimentar: DUP
 - Fortran, Cobol, Algol, Assembler
 - utilizado para dar uma disciplina eletiva de cálculo numérico
 - alguns trabalhos realizados por mim
 - jogo da velha com aprendizado

Fev/2015

ndt von Staa © LES/DI/PUC-Ri

1º. computador usado em disciplinas obrigatórias

- IBM 7044
- Parentes
 - IBM 704
 - usado para desenvolver o 1º.
 FORTRAN
 - IBM 7040
 - IBM 7090
 - IBM 7094

Fev/2015

Arndt von Staa © LES/DI/PUC-Rio

1º. computador usado em disciplinas obrigatórias

- IBM 7044 (instalado no final de 1967)
 - circuitos de componentes discretos
 - na época o computador mais potente no país
 - velocidade em torno de 5 micro segundos
 - memória 32 k palavras de 36bits, dá cerca de 128 kbytes
 - núcleo de ferrite
 - entrada e saída (cartões, impressão) era via um IBM 1401
 - sistema operacional IBSYS monoprogramado
 - Fortran, COBOL, Macro-Assembler
 - alguns trabalhos realizados
 - alterei o sistema operacional para viabilizar o uso do computador por alunos de graduação
 - · compilador de compiladores
 - processador de expressões algébricas
 - simulador do computador PUC-007 (versão simplificada do B-205)
 - sistema de gerência acadêmica para a DAR

Fev/2015

rndt von Staa © LES/DI/PUC-Rig

10

Outros sistemas instalados na PUC

- IBM 370/165 (a partir de 1972)
- CDC
- IBM
- · Micros isolados no DI
- Micros interligados via internet
 - hoje o DI conta com mais de 700 máquinas, back bone 1 giga
- Alguns sistemas desenvolvidos
 - Formatadores de textos (IBM 360 ; IBM 370)
 - ainda não existiam Word e similares
 - Editor de projetos estruturados Mosaico
 - Meta-ambiente de engenharia de software Talisman
 - Arcabouços de apoio ao teste automatizado

- . . .

Fev/2015

Arndt von Staa © LES/DI/PUC-Ric

Por que mencionar tudo isso?

ortware

 Houve uma época em que sem raciocínio cuidadoso não se desenvolvia software capaz de funcionar corretamente

- não existiam debuggers
- compiladores eram muito lentos
 - o tempo de retorno de uma submissão (compilação, execução de testes, ...) era medido em horas quando não em dias
 - desenvolvimento baseado em tentativa e erro era garantia de projetos fracassados
- Mesmo hoje em dia desenvolvedores de sucesso fazem uso de reflexão baseada em lógica
 - ideal: técnicas formais leves

Fev/2015

Arndt von Staa © LES/DI/PUC-Ri

Objetivos da disciplina

- Habilitar o aluno a aplicar com eficácia conceitos de controle da qualidade de software
 - visando as atividades: verificação, validação e aceitação;
 - envolvendo as técnicas: inspeção, teste convencional, teste automatizado, técnicas formais leves.
- Habilitar o aluno a organizar e gerenciar o processo de controle e garantia da qualidade de software.

Fev/2015

rndt von Staa © LES/DI/PUC-Ric

Por que ...?

- Por que testar?
- Por que testes n\u00e3o conseguem identificar todos os defeitos?
- Por que dá tanto trabalho?
- Por que estudar isso?
 - qualquer criança sabe testar...
 - sabe mesmo?
 - você voaria num avião cujo software foi testado por uma criança?
 - você acreditaria num sistema de matrícula testado de forma pouco cuidadosa?
- Por que testar é desafio intelectual?

Fev/2015

Arndt von Staa © LES/DI/PUC-Rio

Problema abordado na disciplina INF1413

Como assegurar qualidade satisfatória do software?

- em primeiro lugar desenvolver e mantê-lo de modo que contenha muito poucos defeitos já desde o início
 - aproximar-se o mais possível de correto por construção
 - ideal → zero defeitos, por enquanto uma utopia
- definir precisamente o que é esperado
 - especificar
- verificar continuamente desde a primeira especificação até a descontinuação –
 - a satisfação de
 - desejos e expectativas do usuário
 - requisitos da interface humano computador
 - requisitos funcionais
 - requisitos não funcionais
 - arquitetura e projeto
 - corretude dos procedimentos (algoritmos)

Fev/2015

rndt von Staa © LES/DI/PUC-Ric

2 =

Problema abordado na disciplina INF1413

Como controlar a qualidade do software?

- saber raciocinar sobre artefatos
- saber ler e criticar construtivamente os diversos artefatos
 - inspeções
- testar de forma sistemática
 - formular casos de teste que efetivamente testem algo relevante
- automatizar os testes
- utilizar testes como técnicas de apoio ao desenvolvimento
 - estabelecer uma estratégia de teste
 - ao especificar sempre perguntar: como posso testar isso?
- utilizar instrumentos como mecanismos de apoio ao desenvolvimento e de controle continuado da execução
 - técnicas formais leves
- desenvolver visando manutenibilidade
 - subsistema de apoio à manutenção

Fev/2015

Arndt von Staa © LES/DI/PUC-Ric

Objetivo do curso, revisitado

- Espera-se que, ao concluir a disciplina INF1413, o aluno
 - esteja capacitado a usar e adaptar, de forma racional, técnicas eficazes e eficientes de controle da qualidade de software
 - entenda que assegurar a qualidade do software é uma propriedade sistêmica envolvendo, além de técnicas de controle da qualidade, o entendimento das necessidades do usuário (serviço a prestar), especificação, arquitetura, design e codificação todos realizados visando qualidade
 - esteja habilitado a aplicar os principais conceitos de controle da qualidade:
 - verificação, validação e aceitação de software
 - tenha conhecimento de como organizar e gerenciar o processo de controle e garantia da qualidade de software

Sistema: conjunto de elementos interdependentes que visam o alcance de um objetivo comum **Propriedade sistêmica**: um objetivo de um sistema

ev/2015

Arndt von Staa © LES/DI/PUC-Ric

27

Pré-requisitos esperados

- INF1301 Programação Modular ou INF1628 Programação em Ponto Grande
 - existe propositalmente uma pequena superposição com assuntos estudados em INF1301 / INF1628
- Alguma prática em programação orientada a objetos
- Saber utilizar ferramentas de desenvolvimento
 - Eclipse (Java) e/ou Visual Studio (C / C++), ou outro qualquer
 - os trabalhos que envolvam programação utilizarão C++
 - janela de linha de comando
 - "batch files", muito melhor: Lua

Fev/2015

Arndt von Staa © LES/DI/PUC-Rio

Livro texto

- Pezzè, M.; Young, M.; Teste e Análise de Software; Porto Alegre, RS: Bookman; 2008
- Cockburn, A.; Escrevendo Casos de Uso Eficazes Um Guia para Desenvolvedores de Software; São Paulo, SP: Bookman; 2005
- Notas de aula
- Enorme lista de textos complementares
 - vou utilizar material desses livros e artigos em adição ao livro texto
 - não espero que os alunos leiam todos ☺
- O documento descritivo da disciplina Apresentação da disciplina – encontra-se no site da disciplina
 - contém o plano de aulas tentativo

Fev/201!

Arndt von Staa © LES/DI/PUC-Ri

20

Critério de aprovação

Datas, horários e local das provas

e dos trabalhos podem mudar. Consultem periodicamente a

página de avisos.

- 2 provas, com consulta
 - P1: quarta 29/abril
 - P2: segunda 22/junho
- 4 trabalhos, prazos
 - T1: segunda 13/abril
 - T2: quarta 29/abril
 - T3: quarta 27/maio
 - T4: segunda 22/junho
- · Cálculo da nota final
 - G1 = (P1 * 2. + T1 + T2) / 4.
 - G2 = (P2 * 2. + T3 + T4) / 4.
 - GrauFinal = if (G2 >= 3.) then (G1 + G2) / 2. else (G1 + 3. * G2) / 4. fi

Fev/2015

Arndt von Staa © LES/DI/PUC-Rio

Plano de aulas

• O plano de aulas encontra-se no site da disciplina, no documento *Apresentação da disciplina*

Os dias em que n\u00e3o haver\u00e1 aula est\u00e3o assinalados

Fev/2015

Arndt von Staa © LES/DI/PUC-Ric

31

Critérios de correção dos trabalhos

- Levem em consideração os critérios de avaliação dos trabalhos
 - estão anexados à descrição da disciplina
- Devem ser realizados em grupo de 2 ou 3 alunos
 - procurem organizar os grupos ainda hoje!
- Devem gerar documentos, por exemplo
 - descrição de como foi feito o controle da qualidade
 - o laudo do controle
 - se for o caso, o artefato utilizado para realizar o controle
 - devem ser enviados em um único arquivo .zip
 - se o provedor de acesso n\u00e3o permitir enviar arquivos .exe ou similares, rebatizem esses arquivos adicionando um \u00edx' \u00e0 extens\u00e3o, exemplos: abc.exex , cde.batx

Fev/2015

Arndt von Staa © LES/DI/PUC-Ric

Organização

 Toda a comunicação deverá ser feita preferencialmente de forma eletrônica

- e-mail: arndt *at* inf.puc-rio.br

• Se necessário, podem me procurar na sala RDC420

Fev/2015

rndt von Staa © LES/DI/PUC-Ric

Organização

- Site da disciplina: www.inf.puc-rio.br/~inf1413
 - descrição da disciplina, plano de aulas
 - notas de aula
 - avisos diversos
 - datas das provas
 - enunciados dos trabalhos
 - software para download
 - documentos para download

Fev/2015

Arndt von Staa © LES/DI/PUC-Ric

Pontualidade inicio as aulas às 17:10 se não tiver pelo menos 3 alunos em sala, não dou aula e considero a matéria dada Eu tenho dificuldade auditiva requer um pouco de paciência por parte dos interlocutores meu entendimento do que está sendo falado depende de saber qual é o contexto do assunto falado Apesar do problema de audição, espero que sejam feitas perguntas aprendizado requer participação, mais precisamente: diálogo

