Lecture16: Amplifier

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Why amplifiers?

- Signal amplification
 - Usually, signals are "weak." (in the μ V or mV range)
 - It is too small for reliable processing.
 - If the signal magnitude is made larger, processing is much easier.

Voltage gain

Voltage gain

- For example, a voltage amplifier amplifies the input voltage signal.
 Its output is also a voltage.
- When $V_{in}(t) = V_{DC,in} + v_{in}(t)$, ideally,we want to have $V_{out}(t) = V_{DC,out} + A_v v_{in}(t)$.
- A_v is the voltage gain. (Of course, it is a unitless quantity.)
- How can we have a voltage-voltage relation?
 - Combining a transistor and a resistor!

Transistor turned off

- Note that $V_{out} = V_{DD} I_D R$.
 - But, the transistor is not turned on. $(I_D \approx 0)$
 - The transconductance(g_m) is zero.
 - A small increase in V_G does not change I_D .
 - The circuit generates no output signal.

This is a solution.

- The following circuit shows a revised circuit.
 - Assume that $V_{G,DC} > V_{TH}$.
 - It has a meaningful value of g_m .
 - Then, how can we generate $V_{G,DC}$, for example? Use of a separate battery can be a way. $V_{G,DC}$ + •-small-signal

Simple biasing (1/3)

- A better way to provide the gate voltage
 - The gate bias voltage is

$$V_{GS} = \frac{R_2}{R_1 + R_2} V_{DD}$$
 (Razavi 17.10)

The drain current is

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left(\frac{R_2}{R_1 + R_2} V_{DD} - V_{TH} \right)^2$$
 (Razavi 17.12)

Simple biasing (2/3)

How to apply the small-signal input

Simple biasing (3/3)

Common-source amplifer

The source terminal is the reference.

- The output voltage is
$$V_{out} = V_{DD} - I_D R_D$$
.
$$V_{out}(t) = V_{DD} - \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left(V_{G,DC} + v_{in}(t) - V_{TH} \right)^2 R_D$$

$$V_{DD} = V_{DD} - \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left(V_{G,DC} + v_{in}(t) - V_{TH} \right)^2 R_D$$

$$V_{DD} = V_{D,DC} + v_{out}(t)$$

Small-signal model

- Let's draw its small-signal model together!
 - A transistor small-signal model is introduced.
 - Resistors → resistors
 - Ground → AC ground

Homework#7

- Due: 09:00, May 8 (Wed)
- Solve following problems of the 2018 <u>final</u> exam.
 - P1
 - P2
 - P3
- Solve following problems of the 2017 <u>final</u> exam.
 - P22
 - P23
 - P24
 - P25

Gain

- Now, calculate the v_{out} .
 - KCL for the v_{out} node gives

$$v_{out} = -g_m(R_D||r_0)v_{in}$$

