CHALMERS, GÖTEBORGS UNIVERSITET

EXAM for COMPUTATIONAL BIOLOGY A

COURSE CODES: FFR 110, FIM740GU, PhD

Time: June 8, 2018, at $08^{30} - 12^{30}$

Place: Johanneberg

Teachers: Kristian Gustafsson, 070-050 2211 (mobile), visits once around 10⁰⁰

Allowed material: Mathematics Handbook for Science and Engineering

Not allowed: any other written material, calculator

Maximum score on this exam: 12 points (need 5 points to pass).

Maximum score for homework problems: 18 points (need 7 points to pass).

CTH \geq 15 grade 3; \geq 20 grade 4; \geq 25 grade 5,

GU \geq 15 grade G; \geq 23 grade VG.

- 1. Short questions [3 points] For each of the following questions give a concise answer within a few lines per question.
 - a) Explain what a period-doubling bifurcation is. In what kind of biological models do you find them?
 - b) The Lotka-Volterra model is given by

$$\dot{N} = N(a - bP)$$

$$\dot{P} = P(cN - d)$$

where a, b, c, and d are positive constants. Discuss the limitations of this model and how it can be improved.

- c) Explain the difference between stochastic and deterministic growth models. Under which circumstances is it better to use a stochastic model?
- d) In the law of diffusion for Brownian motion the mean-square displacement is given by $\langle (x-x_0)^2 \rangle = 2Dt$. Discuss whether the diffusion constant D increases, decreases, or remains unchanged upon an increase of the system temperature, or upon an increase of the particle size.
- e) Explain what a travelling wave is.

f) A simple model for disease spreading is the SIR model

$$\dot{S} = -rSI$$

$$\dot{I} = rSI - \alpha I$$

$$\dot{R} = \alpha I$$

Explain what it means to have an epidemic in this model.

- g) Can the SIR model describe an endemic disease, i.e. a disease with a non-zero number of infectives in the long run? If not, suggest a model that may describe an endemic.
- h) Explain how one can use linear filters to remove linear trends in a time series.
- 2. Discrete model for harvesting [2.5 points] Consider the following discrete model for a population of density u_{τ} at discrete times $\tau = 0, 1, 2, ...$

$$u_{\tau+1} = \frac{bu_{\tau}^2}{1 + u_{\tau}^2} - Eu_{\tau} \,,$$

with b > 2 and E > 0.

- a) Interpret the two terms on the right-hand side from the viewpoint of a model that describes regular harvesting of the population. Does the population show a linear growth rate? What is the stability of the steady state u=0?
- b) Show that there exists a threshold $E_{\rm m}$ such that when $E > E_{\rm m}$ no harvest can be obtained in the long run.
- c) Determine the bifurcation that is obtained when E passes $E_{\rm m}$, for example by sketching a cobweb plot.
- d) For $0 < E < E_{\rm m}$, the model only has positive stable steady states u between two positive values $u_- < u^* < u_+$. Find analytical expressions for u_- and u_+ . Hint: To simplify the calculation, it may be useful to sketch a cobweb plot.

3. Hypercycles [2.5 points] One example of a so called *hypercycle* for n molecules with concentrations $x_i(t)$, with i = 1, 2, ..., n is given by

$$\dot{x}_i = x_i \left(x_{i-1} - \sum_{j=1}^n x_j x_{j-1} \right) . \tag{1}$$

Assume periodic indices so that $x_0(t) = x_n(t)$ and assume $x_i(t) > 0$ for all i.

- a) Consider the case n=2 in Eq. (1). Derive the explicit equations for \dot{x}_1 and \dot{x}_2 in terms of x_1 and x_2 .
- b) Determine all relevant fixed points and their stability for n=2.
- c) Determine the long-term fate for all relevant initial conditions when n=2. Hint: To come to a definite conclusion, it may simplify to change to the coordinates $x_{\pm}=x_1\pm x_2$.
- d) Now consider a general value of n. What is the long-term fate of the sum $N = \sum_{i=1}^{n} x_i$?
- e) Explain the effect of the two terms $x_i x_{i-1}$ and $-x_i \sum_{j=1}^n x_j x_{j-1}$ in Eq. (1). Explain how the hypercycle may model molecules that are connected in a cyclic, autocatalytic manner.
- **4. Turing instability [2 points]** Consider the following reaction-diffusion equation in one spatial dimension for two reactants $N_1(x,t)$ and $N_2(x,t)$:

$$\frac{\partial N_1}{\partial t} = k_1 - k_2 + k_4 \frac{N_1}{N_2} + D_1 \frac{\partial^2 N_1}{\partial x^2}
\frac{\partial N_2}{\partial t} = k_4 N_1^2 - k_3 N_2 + D_2 \frac{\partial^2 N_2}{\partial x^2}$$
(2)

- a) Discuss a mechanism which may cause the reaction-diffusion system in Eq. (2) to form spatial patterns if $D_2 > D_1$.
- b) Make Eq. (2) dimensionless by introduction of suitable dimensionless variables u, v, x', t' such that the dimensionless reaction-diffusion system becomes

$$\frac{\partial u}{\partial t'} = \alpha + \frac{u}{v} + d \frac{\partial^2 u}{\partial x'^2}
\frac{\partial v}{\partial t'} = u^2 - v + \frac{\partial^2 v}{\partial x'^2}$$
(3)

What are the expressions for α and d?

c) Find the condition on α for which the homogeneous steady state of Eq. (3) is stable.

Let $\delta u(x,t) \equiv u(x,t) - u^*$ and $\delta v(x,t) \equiv v(x,t) - v^*$ be small perturbations from the homogeneous steady state. In the lectures we showed that the ansatz

$$\begin{pmatrix} \delta u \\ \delta v \end{pmatrix} = e^{\lambda t + ik_x} \begin{pmatrix} \delta u_0 \\ \delta v_0 \end{pmatrix}$$

in Eq. (3) with small δu and δv gives rise to the following equation:

$$0 = [\lambda - \mathbb{K}] \begin{pmatrix} \delta u_0 \\ \delta v_0 \end{pmatrix}, \text{ where } \mathbb{K} = \mathbb{J}(u^*, v^*) - k^2 \begin{pmatrix} d & 0 \\ 0 & 1 \end{pmatrix}.$$

Here J is the Jacobian of the homogeneous system.

- d) Assume that $\alpha = 1/2$. Analytically find the bifurcation point $d_{\rm c}(k_{\rm c})$ for which space-dependent perturbations first become unstable, i.e. for $d > d_{\rm c}$ all space-dependent perturbations are stable and for $d < d_{\rm c}$ at least one wave number $k_{\rm c}$ corresponds to unstable perturbations.
- **5. Kuramoto model [2 points]** Consider a large number N of coupled oscillators with phases $\theta_1, \theta_2, \dots \theta_N$ with the following time evolution

$$\dot{\theta}_i = \omega_i + \frac{K}{N} \sum_{j=1}^N \sin(\theta_j - \theta_i) \,. \tag{4}$$

a) Introduce the order parameters r(t) and $\psi(t)$

$$re^{\mathrm{i}\psi} = \frac{1}{N} \sum_{j=1}^{N} e^{\mathrm{i}\theta_j} \tag{5}$$

and show that Eq. (4) can be written on the following form

$$\dot{\theta}_i = \omega_i + Kr\sin(\psi - \theta_i).$$

- b) Give interpretations of the order parameters r and ψ in subtask a). Illustrate the distribution of oscillators when $r \approx 0$ and $r \approx 1$.
- c) Consider the limit where $K \to \infty$ and assume that 0 < r < 1 initially. What is the long term fate of the Kuramoto model in this limit? Which value does r approach?
- d) What does it mean to do a mean field analysis of the Kuramoto model? What can the results of the mean-field analysis be used for?