Homework 2

Total points: 5

1 (2pt) This problem provides a numerical example of encryption using a one-round version of DES. Suppose both the key and the output of the initial p-box are:

1010 1101 0101 0110 1100 1001 1101 1010 1001 0001 1011 1011 0001 1001 1011 1010

a. Derive k1, the first round subkey

1010 1101 0101 0110 1100 1001 1101 1010 1001 0001 1011 1011 0001 1001 1011 1010

57	49	41	33	25	17	09	01
58	50	42	34	26	18	10	02
59	51	43	35	27	19	11	03
60	52	44	36	63	55	47	39
31	23	15	07	62	54	46	38
30	22	14	06	61	53	45	37
29	21	13	05	28	20	12	04

After parity drop and permutation:

L R
1011 1101 0000 1110 1010 0001 1111 1010 1010 0000 0011 1110 1101 1010

Both parts are shifted to the left by 1 bit:

0111 1010 0001 1101 0100 0011 1111 0101 0100 0000 0111 1101 1011 0101

After going through the compression P-box:

14	17	11	24	01	05	03	28
15	06	21	10	23	19	12	04
26	08	16	07	27	20	13	02
41	52	31	37	47	55	30	40
51	45	33	48	44	49	39	56
34	53	46	42	50	36	29	32

K1 = 1001 0111 0000 1011 1011 1011 0100 0010 1101 1101 1011 0001 (9 7 0 B B B 4 2 D D D 1)

b. Derive L0, R0

L0 = 1010 1101 0101 0110 1100 1001 1101 1010 R0 = 1001 0001 1011 1011 0001 1001 1011 1010

c. Expand R0 to get E[R0] using the Expansion P-box

d. Calculate A = E[R0] XOR K1

 $E[R0] \oplus K1$

= 1101 1101 0011 0110 0100 1101 1100 1101 1110 0000 0100 0100

= DD364D CDE044

e. Group the 48-bit result of (d) into sets of 6 bits and get the corresponding S-box substitutions

1101 1101 0011 0110 0100 1101 1100 1101 1110 0000 0100 0100

Formatted to groups of 6 bits:

1101 S1	.11	010 S2	0011	0110 S3		00110 S4)1	110011 S5	1 01	1110 S6	000	0001 S7		00		
					4				8				12			
\mathbf{s}_1	14	4 15	13	1 4	2 14	15	11	8	3 10	10	6	12	5	9	0	7 8
	4 15	1 12	14 8	8 2	13 4	6	2	11 7	15 5	12 11	9	7 14	3 10	10 0	5	0 13
	15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10
s_2	3 0 13	13 14 8	7 10	7 11 1	15 10 3	4 15	13	1 2	5	0 8 6	12 7	10 6 12	6 9 0	3 5	11 2 14	5 15 9
	10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8
S_3	13 13	7	0 4	9	3 8	4 15	3	10	2	8	5 2	14 12	12	11	15	7
	1	10	13	0	6	9	8	7	4	15	14	- 3	11	5	2	12
\mathbf{s}_4	7	13	11	5	6	15	0	3	4	7	2	12	11	12	14	15
	10 3	15	9	6	10	11	.7 :13	13 8	15	4	3 5	14 11	12	7	8	14
85	2 14	12	4 2	12	7 4	10 7	11 13	6	8	5	3 15	15 10	13	9	14 8	9
	4 11	2 8	112	11 7	10	13 14	7 2	8 13	15 6	9 15	12 0	5 9	6 10	3 4	0 5	14 3
86	12	1 15	10	15 2	9	2 12	6	8 5	0	13	3 13	4	14	7	5	11 8
	9	14	15	5	2 9	8 5	12	3	7	0	4	10	1 6	13	11 8	6
	4	11	2	14	15	0	8	13	3	12	9	7	5	10	6	.1
87	13	4	11	7	12	9	7	10 14	14 10	3 15	6	12 8	0	15	9	6 2
	6	11	13	8	.1	4	10	7	9	5	0	15	14	2	3	12
\mathbf{s}_8	13	15	13	8	10	15	7	4	10	5	6	11	0	14	9	2
	2	11	14	7	9 4	12	14 8	13	15	12	10 9	13	1.5 3	5	6	8

110111à S1à714 = 011111110

010011 à S2 à 0 = 0000

```
011001 \text{ à S3 à } 12 = 1100
```

001101 à S4 à 0 = 0000

110011 à S5 à F = 1111

0111110 à S6 à 11 = 1011

000001 àS7 à 13 = 1101

000100 à S8 à8 = 1000

f. Concatenate the results of (e) to get a 32-bit results, B

B = 1110 0000 1100 0000 1111 1011 1101 1000 (70C0 FBD8)

g. Apply the permutation to get P(B)

The straight P-box:

16	07	20	21	29	12	28	17
01	07 15 08 13	23	26	05	18	31	17 10 09 25
02	08	24	14	32	27	03	09
19	13	30	06	22	11	04	25

$$A = 8 \quad 12 \quad 16 \quad 20 \quad 24 \quad 28 \quad 32$$

$$B = 1110 0000 \quad 1100 \quad 0000 \quad 0110 \quad 1011 \quad 1101 \quad 1000$$

 $P(B) = 0011\ 1011\ 1011\ 0101\ 1010\ 0011\ 1000\ 0001$

h. Calculate R1 = P(B) XOR L0

 $P(B) \bigoplus L0$

= 0011 1011 1011 0101 1010 0011 1000 0001

1010 1101 0101 0110 1100 1001 1101 1010

 $= \quad 1001 \quad 0110 \ 1110 \ 0011 \ 0110 \ 1010 \ 0101 \ 1011$

= 96E3 6A5C

i. Write down the output of the first round.

Homework 2

9 1 D D 1 9 D A 9 6 E 3 6 A 5 C

- 2.(1pt) For the group $G = \langle Z_{26}^*, x \rangle$
- a. Find the order of the group

$$Z_{26}$$
* = {1, 3, 5, 7, 9, 11,15,17,19, 21, 23, 25}

There are 12 elements in the group, so the order of the group is 12

b. Find the order of each element in the group

```
1^{0}=1

ord(1) = 1

3^{0}=1

3^{1}=3

3^{2}=9

3^{3}=9*3 \mod 26 = 1

ord(3) = 3

5^{0}=1

5^{1}=5

5^{2}=25

5^{3}=25*5 \mod 26 = 21

5^{4}=21*5 \mod 26 = 1

ord(5) = 4
```

```
7^0= 1

7^1= 7

7^2= 7*7 mod 26 = 23

7^3= 23*7 mod 26 = 5

7^4= 5*7 mod 26 = 9

7^5= 9*7 mod 26 = 11

7^6= 11*7 mod 26 = 25

7^7= 25*7 mod 26 = 19

7^8= 19*7 mod 26 = 3

7^9= 3*7 mod 26 = 21

7^{10}= 21*7 mod 26 = 17

7^{11}= 17*7 mod 26 = 15
```

$$7^{12}$$
= 15*7 mod 26 = 1
Ord(7) = 12

$$9^{0} = 1$$

 $9^{1} = 9$
 $9^{2} = 9*9 \mod 26 = 3$
 $9^{3} = 3*9 \mod 26 = 1$
 $Ord(9) = 3$

$$11^0 = 1$$

 $11^1 = 11$
 $11^2 = 11 * 11 \mod 26 = 17$
 $11^3 = 17*11 \mod 26 = 5$
 $11^4 = 5*11 \mod 26 = 3$
 $11^5 = 3*11 \mod 26 = 7$
 $11^6 = 7*11 \mod 26 = 25$
 $11^7 = 25*11 \mod 26 = 15$
 $11^8 = 15*11 \mod 26 = 9$
 $11^9 = 9*11 \mod 26 = 21$
 $11^{10} = 21*11 \mod 26 = 23$
 $11^{11} = 23*11 \mod 26 = 19$
 $11^{12} = 19*11 \mod 26 = 1$
 $Ord(11) = 12$

$$15^0 = 1$$

 $15^1 = 15$
 $15^2 = 15 * 15 \mod 26 = 17$
 $15^3 = 17 * 15 \mod 26 = 21$
 $15^4 = 21 * 15 \mod 26 = 3$
 $15^5 = 3 * 15 \mod 26 = 19$
 $15^6 = 19 * 15 \mod 26 = 25$
 $15^7 = 25 * 15 \mod 26 = 11$
 $15^8 = 11 * 15 \mod 26 = 9$
 $15^9 = 9 * 15 \mod 26 = 5$
 $15^{10} = 5 * 15 \mod 26 = 23$
 $15^{11} = 23 * 15 \mod 26 = 7$
 $15^{12} = 7 * 15 \mod 26 = 1$

6 of 9

$$Ord(15) = 12$$

$$17^0 = 1$$

$$17^1 = 17$$

$$17^2 = 17 * 17 \mod 26 = 3$$

$$17^3 = 3*17 \mod 26 = 25$$

$$17^4 = 25*17 \mod 26 = 9$$

$$17^5 = 9*17 \mod 26 = 23$$

$$17^6 = 23*17 \mod 26 = 1$$

$$Ord(17) = 6$$

$$19^0 = 1$$

$$19^{1} = 19$$

$$19^2 = 19 * 19 \mod 26 = 23$$

$$19^3 = 23*19 \mod 26 = 21$$

$$19^4 = 21*19 \mod 26 = 9$$

$$19^5 = 9*19 \mod 26 = 15$$

$$19^6 = 15*19 \mod 26 = 25$$

$$19^7 = 25*19 \mod 26 = 7$$

$$19^8 = 7*19 \mod 26 = 3$$

$$19^9 = 3*19 \mod 26 = 5$$

$$19^{10} = 5*19 \mod 26 = 17$$

$$19^{11} = 17*19 \mod 26 = 11$$

$$19^{12} = 11*19 \mod 26 = 1$$

$$Ord(19) = 12$$

$$21^0 = 1$$

$$21^1 = 21$$

$$21^2 = 21 * 21 \mod 26 = 25$$

$$21^3 = 25*21 \mod 26 = 5$$

$$21^4 = 5*21 \mod 26 = 1$$

$$Ord(21) = 4$$

$$23^0 = 1$$

$$23^{1}=23$$

$$23^2 = 23 * 23 \mod 26 = 9$$

$$23^3 = 9*23 \mod 26 = 25$$

$$23^4 = 25*23 \mod 26 = 3$$

$$23^5 = 3*23 \mod 26 = 17$$

$$23^6 = 17*23 \mod 26 = 1$$

Ord(19) = 6

$$25^0 = 1$$

 $25^1 = 25$
 $25^2 = 25 * 25 \mod 26 = 1$
Ord(25) = 2

c. Is the group is a cyclic group? Prove your answer and find the generator(s) if the answer is yes.

Yes. The generators are: 7,11,15,19

3(2pt) Using the irreducible polynomial $f(x) = x^5 + x^4 + x^3 + x^2 + 1$ to

a) generate the elements of the field $GF(2^5)$

0	0	0	0	00000
$\mathbf{g^0}$	\mathbf{g}^{0}	g^0	g^0	00001
$\mathbf{g^1}$	g ⁰ g ¹ g ² g ³ g ⁴ g ⁵	g^1	g^1	00010
\mathbf{g}^2	g^2	\mathbf{g}^2	g^2	00100
\mathbf{g}^3	g^3	g^3	g^3	01000
\mathbf{g}^{4}	g^4	g^4	g^4	10000
g ⁵	g^5	g ⁴ g ⁵	$g^4 + g^3 + g^2 + 1$	11101
g ⁶	g (g ⁵)	$g(g^4+g^3+g^2+1)$	$g^{2} + g+1$ $g^{3} + g^{2} + g$ $g^{4} + g^{3} + g^{2}$	00111
$\mathbf{g^7}$	$g(g^6)$	$g(g^2+g+1)$	$g^3 + g^2 + g$	01110
g ⁸	$g(g^7)$	$g(g^{3} + g^{2} + g)$ $g(g^{4} + g^{3} + g^{2})$	$g^4 + g^3 + g^2$	11100
g ⁹	$g(g^8)$	$g(g^4+g^3+g^2)$	$g^2 + 1$ $g^3 + g$	00101
g ¹⁰	$g(g^9)$	$g(g^2+1)$	$g^3 + g$	01010
g ¹¹	g (g ¹⁰)	$g(g^3+g)$	$g^4 + g^2$	10100
g ¹²	$g(g^{10})$ $g(g^{11})$	$g(g^3 + g)$ $g(g^4 + g^2)$	$g^4 + g^2$ $g^4 + g^2 + 1$	10101
g ¹³	$g(g^{12})$	$g(g^4+g^2+1)$	$g^4 + g^2 + g + 1$	10111
g ¹⁴	$g(g^{13})$ $g(g^{14})$	$g(g^{4} + g^{2} + g + 1)$ $g(g^{4} + g + 1)$	$g^4 + g+1$ $g^4 + g^3 + g+1$	10011
g ¹⁵	g (g ¹⁴)	$g\left(g^4+g+1\right)$	$g^4 + g^3 + g + 1$	11011
g ¹⁶	$g(g^{15})$	$g(g^4+g^3+g+1)$	$g^3 + g + 1$	01011
g ¹⁷	$g(g^{16})$	$g\left(g^3+g+1\right)$	$g^4 + g^2 + g$	10110
g ¹⁸	$\sigma(\sigma^{17})$	$g(g^4+g^2+g)$	$g^4 + 1$	10001
g ⁰ g ¹ g ² g ³ g ⁴ g ⁵ g ⁶ g ⁷ g ⁸ g ⁹ g ¹⁰ g ¹¹ g ¹² g ¹³ g ¹⁴ g ¹⁵ g ¹⁶ g ¹⁷ g ¹⁸ g ¹⁹ g ²⁰ g ²¹ g ²² g ²³ g ²⁴	$g(g^{18})$	$g(g^4+1)$	$g^{4} + g^{2} + g$ $g^{4} + 1$ $g^{4} + g^{3} + g^{2} + g + 1$	11111
g ²⁰	$g(g^{19})$	$g(g^4+g^3+g^2+g+1)$	g + 1	00011
g ²¹	$\sigma(\sigma^{20})$	g (g + 1)	$g + 1$ $g^{2} + g$ $g^{3} + g^{2}$ $g^{4} + g^{3}$ $g^{3} + g^{2} + 1$	00110
g ²²	$g(g^{21})$	$g(g^2+g)$	$g^3 + g^2$	01100
g ²³	$\begin{array}{c} g\left(g^{22}\right) \\ g\left(g^{23}\right) \end{array}$	$g(g^3 + g^2)$ $g(g^4 + g^3)$	$g^4 + g^3$	11000
g ²⁴	$g(g^{23})$	$g\left(g^4+g^3\right)$	$g^3 + g^2 + 1$	01101
g ²⁵	g (g ²⁴)	$g(g^3+g^2+1)$	$g^4 + g^3 + g$	11010

g ²⁶	$g(g^{25})$	$g(g^4+g^3+g)$	$g^3 + 1$	01001
g^{27}	$g(g^{26})$	$g(g^3+1)$	$g^4 + g$	10010
g ²⁸	$g(g^{27})$	$g(g^4+g)$	$g^4 + g^3 + 1$	11001
	$g(g^{28})$	$g(g^4+g^3+1)$	$g^3 + g^2 + g + 1$	01111
	$g(g^{29})$	$g(g^3+g^2+g+1)$	$g^4 + g^3 + g^2 + g$	11110

b) based on the results of a), calculate the followings in $GF(2^5)$

b.1)
$$(x^4 - x + 1)^{-1}$$

 $x^4 - x + 1 = x^4 + x + 1 = 10011 = g^{14}$
 $(x^4 - x + 1)^{-1} = g^{-14} \mod 31 = g^{17} = 10110 = x^4 + x^2 + x$
b.2) $(x^3 - x + 1) * (x^4 + x^2 - x + 1)$
 $x^3 - x + 1 = 01011 = g^{16}$
 $x^4 + x^2 - x + 1 = 10111 = g^{13}$
 $g^{16} \times g^{13} = g^{29}$
so, $(x^3 - x + 1) * (x^4 + x^2 - x + 1) = x^3 + x^2 + x + 1$
b.3) $(x^4 - x^3 + 1) / (x^2 + x + 1)$
 $x^4 - x^3 + 1 = 11001 = g^{28}$
 $x^2 + x + 1 = 00111 = g^6$
 $(x^4 - x^3 + 1) / (x^2 + x + 1) = g^{28} / g^6 = g^{22} = 01100 = x^3 + x^2$