Fundamentals of Cryptography Homework 3

周书予

2000013060@stu.pku.edu.cn

October 5, 2022

Problem 1

 $\mathsf{Dec}(k,(r,c)) = F_k^{-1}(c) \oplus r.$

Denote $\Pi = (\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$ as the encryption scheme mentioned in the problem, and $\widetilde{\Pi} = (\widetilde{\mathsf{Gen}}, \widetilde{\mathsf{Enc}}, \widetilde{\mathsf{Dec}})$ exactly the same as Π , except that a truely random permutation f is used in place of F_k .

The proof is divided into two parts:

• In the first part we prove that for any PPT adversary \mathcal{A} , there is some negligible function $\varepsilon(n)$ such that

$$\left| \Pr \left[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1 \right] - \Pr \left[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\tilde{\Pi}}(n) = 1 \right] \right| < \varepsilon(n) \tag{1}$$

• In the second part we show that for any PPT adversary \mathcal{A} ,

$$\Pr\left[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\tilde{\Pi}}(n) = 1\right] \leqslant \frac{1}{2} + \frac{2q(n)}{2^n} \tag{2}$$

for some polynomial q(n).

When finished the proof of the two parts mentioned above, one can see that obviously $\Pr\left[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n)=1\right]\leqslant \frac{1}{2}+\frac{q(n)}{2^n}+\varepsilon(n)$, which means Π is secure under CPA attack.

Proof of eq. (1)

For any PPT adversary \mathcal{A} , a PPT distinguisher \mathcal{D} can be built, which has access to an oracle $\mathcal{O}: \{0,1\}^n \to \{0,1\}^n$ (here it refers to F_k or f) and interacts with \mathcal{A} like this:

- 1. when \mathcal{A} queries the ciphertext for message $m \in \{0,1\}^n$, choose uniformly random $r \in \{0,1\}^n$ and return $(r, \mathcal{O}(r \oplus m))$.
- 2. when \mathcal{A} outputs m_0 and m_1 , choose a random bit $b \in \{0,1\}$ and uniformly random $r \in \{0,1\}^n$, then return $(r, \mathcal{O}(r \oplus m_b))$.
- 3. continue answering \mathcal{A} 's queries until \mathcal{A} outputs a bit b', then output $\mathbb{1}[b=b']$.

It is easy to see that

$$\begin{split} &\Pr\left[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1\right] = \Pr_{k \leftarrow \{0,1\}^n}\left[\mathcal{D}^{F_k}(1^n) = 1\right] \\ &\Pr\left[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\tilde{\Pi}}(n) = 1\right] = \Pr_{f \leftarrow \mathsf{Perm}_n}\left[\mathcal{D}^f(1^n) = 1\right] \end{split}$$

where Perm_n denotes the collection of all permutations over $\{0,1\}^n$.

Since F is a PRP, by definition we know that

$$\left| \Pr_{k \leftarrow \{0,1\}^n} \left[\mathcal{D}^{F_k}(1^n) = 1 \right] - \Pr_{f \leftarrow \mathsf{Perm}_n} \left[\mathcal{D}^f(1^n) = 1 \right] \right| < \varepsilon(n)$$

for some negligible $\varepsilon(n)$, so eq. (1) is proved as desired.

Proof of eq. (2)

Notice that \mathcal{A} runs in polynomial time, so it can only queries the ciphertext for polynomially many m, say, q(n). Whenever \mathcal{A} queries m it obtains $f(r \oplus m)$ where r is known to \mathcal{A} and chosen uniformly random. That is, each query gives \mathcal{A} a pair (x, f(x)) which is a point value of f, where $x = r \oplus m$ is chosen uniformly random.

When \mathcal{A} outputs m_0, m_1 and receives $(r^*, f(r^* \oplus m_b))$, it checks out all the recordings from the interaction, and if the point value for $r^* \oplus m_0$ or $r^* \oplus m_1$ is found, it can break the encryption scheme with 100% confidence, otherwise it learns nothing about $f(r^* \oplus m_0)$ and $f(r^* \oplus m_1)$, and probability of outputing the correct answer is exactly 1/2.

The probability that the point value for $r^* \oplus m_0$ or $r^* \oplus m_1$ can be found equals to the probability of finding out two specific items among 2^n during q(n) times of random choosing, which by union bound is not greater than $2q(n)/2^n$. Thus,

$$\Pr\left[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\tilde{\Pi}}(n) = 1\right] \leqslant \frac{2q(n)}{2^n} \cdot 1 + \left(1 - \frac{2q(n)}{2^n}\right) \cdot \frac{1}{2} = \frac{1}{2} + \frac{2q(n)}{2^n}$$

Problem 2

Part A: F' is a PRF

First we show that for any PPT distinguisher \mathcal{D} ,

$$\left| \Pr_{k \leftarrow \{0,1\}^n} \left[\mathcal{D}^{g \circ F_k}(1^n) \right] - \Pr_{f \leftarrow \mathsf{Func}_n} \left[\mathcal{D}^{g \circ f}(1^n) \right] \right| < \mathsf{negl}(n) \tag{3}$$

(here $f_1 \circ f_2$ denotes the composition of function f_1 and f_2 .)

This can be done by constructing another distinguisher \mathcal{D}' , which always queries the same message m as \mathcal{D} does except that the oracle used here is F_k or f instead of $g \circ F_k$ or $g \circ f$, and outputs the same as \mathcal{D} does.

It is easy to see that

$$\Pr_{k \leftarrow \{0,1\}^n} \left[\mathcal{D}^{g \circ F_k}(1^n) \right] = \Pr_{k \leftarrow \{0,1\}^n} \left[\mathcal{D}'^{F_k}(1^n) \right]$$
$$\Pr_{f \leftarrow \mathsf{Func}_n} \left[\mathcal{D}^{g \circ f}(1^n) \right] = \Pr_{f \leftarrow \mathsf{Func}_n} \left[\mathcal{D}'^f(1^n) \right]$$

Since F is a PRF, from its definition it is clear to see that eq. (3) can be proved.

Then we can show that for any PPT distinguisher \mathcal{D} ,

$$\left| \Pr_{f \leftarrow \mathsf{Func}_n} \left[\mathcal{D}^{g \circ f}(1^n) \right] - \Pr_{h \leftarrow \mathsf{Func}_{n,2n}} \left[\mathcal{D}^h(1^n) \right] \right| < \mathsf{negl}(n) \tag{4}$$

(here $\mathsf{Func}_{n,2n}$ is defined as $\{h:\{0,1\}^n \to \{0,1\}^{2n}\}.$)

This can be done by using hybird argument: assume \mathcal{D} interacts with oracle for p(n) rounds and, WLOG, we assume \mathcal{D} never queries for the same x for encryption (that is obviously suboptimal). Based on \mathcal{D} , distinguisher \mathcal{D}' can be built, which on input $r \in \{0,1\}^{2n}$ works as follows:

- randomly sample t from $\{1, 2, \dots, p(n)\}$, and randomly fix some $f \leftarrow \mathsf{Func}_n$ and $h \leftarrow \mathsf{Func}_{n,2n}$. (f and h do not need to be fully stored.)
- interact with \mathcal{D} . Whenever queried with x in round i, return $\begin{cases} g(f(x)), & i < t \\ r, & i = t. \\ h(x), & i > t \end{cases}$
- output the same as \mathcal{D} does.

From this construction we know that

$$\begin{aligned} \Pr_{s \leftarrow \{0,1\}^n} \left[\mathcal{D}'(g(s)) = 1 \right] - \Pr_{r \leftarrow \{0,1\}^{2n}} \left[\mathcal{D}'(r) = 1 \right] \\ &= \frac{1}{p(n)} \left(\Pr_{f \leftarrow \mathsf{Func}_n} \left[\mathcal{D}^{g \circ f}(1^n) \right] - \Pr_{h \leftarrow \mathsf{Func}_{n,2n}} \left[\mathcal{D}^h(1^n) \right] \right) \end{aligned}$$

Since g is a PRG, both sides of the equation are negligible, and eq. (4) is proved as desired. From eq. (3) and eq. (4) one can draw that

$$\left| \Pr_{k \leftarrow \{0,1\}^n} \left[\mathcal{D}^{g \circ F_k}(1^n) \right] - \Pr_{h \leftarrow \mathsf{Func}_{n,2n}} \left[\mathcal{D}^h(1^n) \right] \right| < \mathsf{negl}(n) \tag{5}$$

which suggests that $F_k' = g \circ F_k$ is a PRF.

Part B: F' may not be a PRF

Let g be a PRG which drops its first bit of input. It is easy to see that such PRG exists.

Then for any $x \in \{0,1\}^{n-1}$, $F'_k(0||x) = F_k(g(0||x)) = F_k(g(1||x)) = F'_k(1||x)$, which suggests that F'_k is not that "random" and can be easily distinguished from a truely random function.

Problem 3

Part A: F' may not be a strong PRP

Part B: F' is a PRF

Problem 4