Modular Arithmetic

CS 2800: Discrete Structures, Fall 2014

Sid Chaudhuri

Follow-up exercise

Read up on Euclid's Algorithm for finding the Greatest Common Divisor of two natural numbers

Congruence (modulo *m*)

• Informally: Two integers are *congruent* modulo a natural number m if and only if they have the same remainder upon division by m

Congruence (modulo *m*)

• Informally: Two integers are *congruent* modulo a natural number m if and only if they have the same remainder upon division by m

Congruence (modulo *m*)

• Informally: Two integers are *congruent* modulo a natural number m if and only if they have the same remainder upon division by m

E.g.
$$3 \equiv 7 \pmod{2}$$

 $9 \equiv 99 \pmod{10}$
 $11^{999} \equiv 1 \pmod{10}$

$4am \equiv 4pm \pmod{12h}$ $4pm \text{ Nov } 12 \equiv 4pm \text{ Nov } 13 \pmod{24h}$

$1:25 \equiv 10:25 \pmod{60 \text{ mins}}$

$300m \equiv 9900m \text{ (modulo } 400)$

$300m \equiv 9900m \pmod{400}$

Discards absolute information (days, hours, laps...)!

The formal definition

• Let $a, b \in \mathbb{Z}$, $m \in \mathbb{N}$. a and b are said to be congruent modulo m, written $a \equiv b \pmod{m}$, if and only if a - b is divisible by m

- ... i.e. iff $m \mid a b$
- ... i.e. iff there is some integer k such that a b = km

The formal definition

- Doesn't include zero

- Let $a, b \in \mathbb{Z}$, $m \in \mathbb{N}$. a and b are said to be congruent modulo m, written $a \equiv b \pmod{m}$, if and only if a b is divisible by m
 - ... i.e. iff $m \mid a b$
 - ... i.e. iff there is some integer k such that a b = km

The formal definition

- Doesn't include zero

- Let $a, b \in \mathbb{Z}$, $m \in \mathbb{N}$. a and b are said to be congruent modulo m, written $a \equiv b \pmod{m}$, if and only if a b is divisible by m
 - ... i.e. iff $m \mid a b$
 - ... i.e. iff there is some integer k such that a b = km

- Note: this does \underline{not} directly say a and b have the same remainder upon division by m
 - That is a *consequence* of the definition

• Claim: $a \equiv b \pmod{m}$ iff $a \mod m = b \mod m$

- Claim: $a \equiv b \pmod{m}$ iff $a \mod m = b \mod m$
- Proof:

```
(\Leftarrow)
```

Given: $a \mod m = b \mod m$

- Claim: $a \equiv b \pmod{m}$ iff $a \mod m = b \mod m$
- Proof:

 (\Leftarrow)

Given: $a \mod m = b \mod m$

 \Rightarrow $\exists q_1, q_2, r$ such that $a = q_1 m + r$, $b = q_2 m + r$

- Claim: $a \equiv b \pmod{m}$ iff $a \mod m = b \mod m$
- Proof:

$$(\Leftarrow)$$

Given: $a \mod m = b \mod m$

 \Rightarrow $\exists q_1, q_2, r \text{ such that } a = q_1 m + r, b = q_2 m + r$

$$\Rightarrow a - b = q_1 m - q_2 m = m(q_1 - q_2)$$

- Claim: $a \equiv b \pmod{m}$ iff $a \mod m = b \mod m$
- Proof:

$$(\Leftarrow)$$

Given: $a \mod m = b \mod m$

$$\Rightarrow$$
 $\exists q_1, q_2, r \text{ such that } a = q_1 m + r, b = q_2 m + r$

$$\Rightarrow a - b = q_1 m - q_2 m = m(q_1 - q_2)$$

$$\Rightarrow m \mid a - b$$

- Claim: $a \equiv b \pmod{m}$ iff $a \mod m = b \mod m$
- Proof:

$$(\Leftarrow)$$

Given: $a \mod m = b \mod m$

 \Rightarrow $\exists q_1, q_2, r \text{ such that } a = q_1 m + r, b = q_2 m + r$

$$\Rightarrow a - b = q_1 m - q_2 m = m(q_1 - q_2)$$

$$\Rightarrow m \mid a - b$$

$$\Rightarrow a \equiv b \pmod{m}$$

• Proof: (\Longrightarrow) Given: $a \equiv b \pmod{m}$

• Proof: (\Rightarrow) Given: $a \equiv b \pmod{m}$

Let $a = q_1 m + r_1$, $b = q_2 m + r_2$, where $0 \le r_1, r_2 < m$

Division Algorithm!

• Proof: (\Rightarrow) Given: $a \equiv b \pmod{m}$

Let $a = q_1 m + r_1$, $b = q_2 m + r_2$, where $0 \le r_1$, $r_2 < m$

Division Algorithm!

• Proof: (\Rightarrow) Given: $a \equiv b \pmod{m}$

Let
$$a = q_1 m + r_1$$
, $b = q_2 m + r_2$, where $0 \le r_1$, $r_2 < m$

$$m \mid a - b$$

$$\Rightarrow m \mid q_1 m + r_1 - q_2 m - r_2$$

Division Algorithm!

• Proof: (\Rightarrow) Given: $a \equiv b \pmod{m}$

Let
$$a = q_1 m + r_1$$
, $b = q_2 m + r_2$, where $0 \le r_1$, $r_2 < m$

$$m \mid a - b$$

$$\Rightarrow m \mid q_1 m + r_1 - q_2 m - r_2$$

$$\Rightarrow m \mid r_1 - r_2$$

Division Algorithm!

• Proof: (\Rightarrow) Given: $a \equiv b \pmod{m}$

Let
$$a = q_1 m + r_1$$
, $b = q_2 m + r_2$, where $0 \le r_1$, $r_2 < m$ $m \mid a - b$

$$\Rightarrow m \mid q_1 m + r_1 - q_2 m - r_2$$

$$\Rightarrow m \mid r_1 - r_2$$

Exercise: Prove that

If alb and alc, then al(b - c)

• Proof: (\Rightarrow) Given: $a \equiv b \pmod{m}$ Let $a = q_1 m + r_1$, $b = q_2 m + r_2$, where $0 \le r_1, r_2 < m$ $m \mid a - b$ $\Rightarrow m \mid q_1 m + r_1 - q_2 m - r_2$ Exercise: Prove that

If all and alc, then al(b - c)

But $-(m-1) \le r_1, r_2 \le (m-1)$

Division Algorithm! • Proof: (\Rightarrow) Given: $a \equiv b \pmod{m}$ Let $a = q_1 m + r_1$, $b = q_2 m + r_2$, where $0 \le r_1, r_2 \le m$ $m \mid a - b$ Exercise: Prove that $\Rightarrow m \mid q_1 m + r_1 - q_2 m - r_2$ If alb and alc, then al(b - c) $\Rightarrow m \mid r_1 - r_2$ But $-(m-1) \le r_1, r_2 \le (m-1)$ $\Rightarrow r_1 - r_2 = 0$

Division Algorithm!

• Proof: (\Rightarrow) Given: $a \equiv b \pmod{m}$

Let
$$a=q_1m+r_1,\ b=q_2m+r_2$$
, where $0\leq r_1,r_2\leq m$
$$m\mid a-b$$

$$\Rightarrow m\mid q_1m+r_1-q_2m-r_2$$
 Exercise: Prove that

$$\Rightarrow m \mid r_1 - r_2$$
If all and alc, then al(b - c)

But
$$-(m-1) \le r_1, r_2 \le (m-1)$$

$$\Rightarrow r_1 - r_2 = 0$$

$$\Rightarrow r_1 = r_2$$

Division Algorithm!

• Proof: (\Longrightarrow) Given: $a \equiv b \pmod{m}$

Let
$$a = q_1 m + r_1$$
, $b = q_2 m + r_2$, where $0 \le r_1$, $r_2 < m$ $m \mid a - b$

$$\Rightarrow m \mid q_1 m + r_1 - q_2 m - r_2$$

Exercise: Prove that

If alb and alc, then al(b - c)

$$\Rightarrow m \mid r_1 - r_2$$

But
$$-(m-1) \le r_1, r_2 \le (m-1)$$

$$\Rightarrow r_1 - r_2 = 0$$

$$\Rightarrow r_1 = r_2$$

$$\Rightarrow a \mod m = b \mod m$$

Properties of congruence

• If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then

$$-a+c \equiv b+d \pmod{m}$$

$$-ac \equiv bd \pmod{m}$$

E.g.
$$11 \equiv 1 \pmod{10} \implies 11^{999} \equiv 1^{999} \equiv 1 \pmod{10}$$

$$9 \equiv -1 \pmod{10} \implies 9^{999} \equiv (-1)^{999} \pmod{10}$$

$$7^{999} \equiv 49^{499}.7 \equiv (-1)^{499}.7 \equiv -7 \equiv 3 \pmod{10}$$

$$a \equiv b \pmod{m}, c \equiv d \pmod{m}$$

 $\Rightarrow a + c \equiv b + d \pmod{m}$

$$a \equiv b \pmod{m}, c \equiv d \pmod{m}$$

 $\Rightarrow a + c \equiv b + d \pmod{m}$

Proof: $a \equiv b \pmod{m}$, $c \equiv d \pmod{m}$

$$a \equiv b \pmod{m}, c \equiv d \pmod{m}$$

 $\Rightarrow a + c \equiv b + d \pmod{m}$

Proof:
$$a \equiv b \pmod{m}$$
, $c \equiv d \pmod{m}$
 $\Rightarrow m \mid a - b \text{ and } m \mid c - d$

$$a \equiv b \pmod{m}, c \equiv d \pmod{m}$$

 $\Rightarrow a + c \equiv b + d \pmod{m}$

Proof: $a \equiv b \pmod{m}$, $c \equiv d \pmod{m}$

- $\Rightarrow m \mid a b \text{ and } m \mid c d$
- $\Rightarrow m \mid ((a-b)+(c-d))$

$$a \equiv b \pmod{m}, c \equiv d \pmod{m}$$

 $\Rightarrow a + c \equiv b + d \pmod{m}$

Proof:
$$a \equiv b \pmod{m}$$
, $c \equiv d \pmod{m}$
 $\Rightarrow m \mid a - b \text{ and } m \mid c - d$ Exercise: Prove that $\Rightarrow m \mid ((a - b) + (c - d))$ If alb and alc, then al(b + c)

$$a \equiv b \pmod{m}, c \equiv d \pmod{m}$$

 $\Rightarrow a + c \equiv b + d \pmod{m}$

Proof:
$$a \equiv b \pmod{m}$$
, $c \equiv d \pmod{m}$

$$\Rightarrow m \mid a - b \text{ and } m \mid c - d$$

$$\Rightarrow m \mid ((a-b)+(c-d)) \checkmark$$

$$\Rightarrow m \mid ((a+c)-(b+d))$$

Exercise: Prove that

if alb and alc, then al(b+c)

$$a \equiv b \pmod{m}, c \equiv d \pmod{m}$$

 $\Rightarrow a + c \equiv b + d \pmod{m}$

Proof:
$$a \equiv b \pmod{m}$$
, $c \equiv d \pmod{m}$

$$\Rightarrow m \mid a - b \text{ and } m \mid c - d$$

$$\Rightarrow m \mid ((a-b)+(c-d)) \checkmark$$

$$\Rightarrow m \mid ((a+c)-(b+d))$$

$$\Rightarrow a + c \equiv b + d \pmod{m}$$

Exercise: Prove that

If alb and alc, then al(b+c)

$$a \equiv b \pmod{m}, c \equiv d \pmod{m}$$

 $\Rightarrow ac \equiv bd \pmod{m}$

$$a \equiv b \pmod{m}, c \equiv d \pmod{m}$$

 $\Rightarrow ac \equiv bd \pmod{m}$

Proof: $a \equiv b \pmod{m}$, $c \equiv d \pmod{m}$

$$a \equiv b \pmod{m}, c \equiv d \pmod{m}$$

 $\Rightarrow ac \equiv bd \pmod{m}$

Proof:
$$a \equiv b \pmod{m}$$
, $c \equiv d \pmod{m}$

 \Rightarrow $\exists r, r'$ such that

$$a = q_1 m + r$$
 $b = q_2 m + r$
 $c = q'_1 m + r'$ $d = q'_2 m + r'$

$$a \equiv b \pmod{m}, c \equiv d \pmod{m}$$

 $\Rightarrow ac \equiv bd \pmod{m}$

Proof:
$$a \equiv b \pmod{m}, c \equiv d \pmod{m}$$
 we proved congruence $\Rightarrow \exists r, r' \text{ such that}$ $\Rightarrow \exists r, r' \text{ su$

$$a \equiv b \pmod{m}, c \equiv d \pmod{m}$$

 $\Rightarrow ac \equiv bd \pmod{m}$

Proof:
$$a \equiv b \pmod{m}$$
, $c \equiv d \pmod{m}$ we proved congruence $\Rightarrow \exists r, r' \text{ such that}$ $\Leftrightarrow \text{same remainder}$ $a = q_1 m + r$ $b = q_2 m + r$ $c = q'_1 m + r'$ $d = q'_2 m + r'$ $\Rightarrow ac = q_1 m \cdot q'_1 m + q_1 m \cdot r' + q'_1 m \cdot r + rr'$ $bd = q_2 m \cdot q'_2 m + q_2 m \cdot r' + q'_2 m \cdot r + rr'$

$$a \equiv b \pmod{m}, c \equiv d \pmod{m}$$

 $\Rightarrow ac \equiv bd \pmod{m}$

Proof:
$$a \equiv b \pmod{m}$$
, $c \equiv d \pmod{m}$
 $\Rightarrow \exists r, r' \text{ such that}$
 $\Rightarrow a = q_1 m + r$
 $\Rightarrow a = q'_1 m + r'$
 $\Rightarrow ac = q'_1 m + r'$
 $\Rightarrow ac = q_1 m \cdot q'_1 m + q_1 m \cdot r' + q'_1 m \cdot r + rr'$
 $\Rightarrow ac \equiv bd \pmod{m}$
 $\Rightarrow ac \equiv bd \pmod{m}$

$$a \equiv b \pmod{m}, c \equiv d \pmod{m}$$

 $\Rightarrow ac \equiv bd \pmod{m}$

Proof:
$$a \equiv b \pmod{m}$$
, $c \equiv d \pmod{m}$

we proved congruence

$$\Rightarrow \exists r, r' \text{ such that }$$

⇔ same remainder

$$a = q_1 m + r$$
 $b = q_2 m + r$
 $c = q'_1 m + r'$ $d = q'_2 m + r'$

$$\Rightarrow ac = q_1 m \cdot q'_1 m + q_1 m \cdot r' + q'_1 m \cdot r + rr'$$

$$bd = q_2 m \cdot q'_2 m + q_2 m \cdot r' + q'_2 m \cdot r + rr'$$

$$\Rightarrow ac \equiv bd \pmod{m}$$

Note: But rr' is <u>not</u> in general the remainder (since it can be \geq m)