Расстояние от гиперэллипса до точки

Гиперэллипс – фигура, задаваемая уравнением:

$$\left|\frac{x}{a}\right|^n + \left|\frac{y}{b}\right|^n = 1, \quad n \ge 2. \tag{1}$$

Гиперцилиндры длиной 1 м, a=0.15, b=0.3. Слева направо n=2.1, 2.8, 5, 30.

Параметрическое уравнение $\frac{1}{4}$ гиперэллипса ($x, y \ge 0$):

$$x = \cos(t) \left(\frac{\cos^n t}{a^n} + \frac{\sin^n t}{b^n} \right)^{-1/n}, \quad y = \sin(t) \left(\frac{\cos^n t}{a^n} + \frac{\sin^n t}{b^n} \right)^{-1/n}, \quad n \ge 2, \quad t \in [0, \pi/2].$$
 (2)

Из уравнения (1) берутся частные производные, подставляются x, y из уравнения (2), после выполнения преобразований получается параметрическое уравнение вектора-перпендикуляра:

$$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right); \quad \vec{N} = \left(\frac{\cos^{n-1} t}{a^n}, \frac{\sin^{n-1} t}{b^n}\right). \tag{3}$$

"Угол" на интервале $t \in [0, \pi/2]$ - это точка $[a \cdot 2^{-1/n}, b \cdot 2^{-1/n}]$, в которой $t = \arctan(b/a), N = (1/a, 1/b)$.

Найти точку P_0 на гиперэллипсе, ближайшую к заданной точке P_1 .

Используется формула – расстояние d от прямой, заданной точкой P_0 и вектором N, до точки P_1 :

$$d = \frac{(\vec{P}_1 - \vec{P}_0) \cdot \vec{N}^{\perp}}{\|\vec{N}\|} = \frac{(P_{1x} - P_{0x})N_y - (P_{1y} - P_{0y})N_x}{\sqrt{N_x^2 + N_y^2}}.$$
 (4)

Подставляются x, y из уравнения (2), N из уравнения (3), после упрощения получается расстояние от точки P_1 до прямой:

$$d = \left[P_{1x} \frac{\sin^{n-1}}{b^n} - P_{1y} \frac{\cos^{n-1}}{a^n} - \left(\frac{\cos^n t}{a^n} + \frac{\sin^n t}{b^n} \right)^{-1/n} \left(\frac{\cos t \sin^{n-1} t}{b^n} - \frac{\sin t \cos^{n-1} t}{a^n} \right) \right] / \sqrt{\frac{\cos^{2n-2} t}{a^{2n}} + \frac{\sin^{2n-2} t}{b^{2n}}} . \quad (5)$$

Это – трансцендентная функция одного переменного. Расстояние d приравнивается к нулю и уравнение решается численным методом.

Свойства функции

- Знаки компонентов P_1 равны знакам компонентов P_0 . Параметризация (2) определена на интервале $t \in [0, \pi/2]$, что соответствует $P_{1x} \ge 0$, $P_{1y} \ge 0$. Перед вычислениями P_1 переносится в этот квадрант, а после нахождения P_0 компонентам присваивается соответствующий знак.
- Функция непрерывна, на границах интервала $[0, \pi/2]$ значения имеют разные знаки, поэтому уравнение имеет решение для любой точки $P_{1,y} > 0$, $P_{1,y} > 0$.
- При нахождении P_1 внутри гиперэллипса возможны более 1 корня функции (5). На одном из интервалов $t \in [0, \arctan(b/a)] \lor t \in [\arctan(b/a), \pi/2]$ существует строго 1 корень, и он соответствует минимальному расстоянию между P_1 и P_0 . Доказательство в приложении [].
- Функция непрерывно дифференциируема на интервале $t \in [0, \pi/2]$. Производная функции:

$$\begin{split} \frac{d}{dt} &= - \mathrm{len}^{-3} (n-1) \left(\frac{\sin t \cos^{2n-3} t}{a^{2n}} - \frac{\cos t \sin^{2n-3} t}{b^{2n}} \right) \left(\left(P_{1x} - r_0^{-1/n} \cos t \right) \frac{\sin^{n-1} t}{b^n} - \left(P_{1y} - r_0^{-1/n} \sin t \right) \frac{\cos^{n-1} t}{a^n} \right) \\ &+ - \mathrm{len}^{-1} (n-1) \left(P_{1x} \cos t \frac{\sin^{n-2} t}{b^n} + P_{1y} \sin t \frac{\cos^{n-2} t}{a^n} \right) \\ &- - - r_0^{-1/n-1} \left(\left((n-1) \sin^2 t - 1 \right) \frac{\cos^{2n-2} t}{a^{2n}} + \left((n-1) \cos^2 t - 1 \right) \frac{\sin^{2n-2} t}{b^{2n}} + (n-1) \left(\cos^4 t + \sin^4 t \right) \frac{\cos^{n-2} t \sin^{n-2} t}{a^n b^n} \right), \quad \text{где} \end{split}$$

Применение численного метода

Применен метод Ньютона, комбинированный с методом бисекции. Этот алгоритм всегда дает результат, если задан интервал, в котором находится корень, и на границах интервала значения функции имеют разные знаки. В случаях, если при очередной итерации i методом Ньютона возникает одно из условий:

- Производная равна нулю;
- Очередная аппроксимация x_i оказывается за пределами установленного интервала;
- Происходит неконвергенция или дивергенция $|f(x_i)| \ge |f(x_{i-1})|$;

проводится итерация методом бисекции, для чего выполняются 0 - 2 дополнительных вызова функции для определения знаков на границах интервала.

Чтобы установить начальное значение t_0 и интервал, вычисляется dC − расстояние от P_1 до прямой, определенной точкой – "углом" и вектором – перпендикуляром в "угле".

$$\begin{cases} t_0 = P_{1\,y} \cdot \arctan(b/a) / (P_{1\,y} + |dC|), & t \in [0\,,\arctan(b/a)] & \text{если}\, P_1\,\text{справа от прямой,} \\ t_0 = \arctan(b/a) + (\pi/2 - \arctan(b/a)) \cdot |dC| / (P_{1\,x} + |dC|), & t \in [\arctan(b/a), \pi/2] & \text{если иначе} \,. \end{cases}$$

Критерий завершения работы численного метода

Задаваемое максимальное значение ошибки $\varepsilon = |f(x_i)|$ для формулы (5) - это длина d. На большом расстоянии от P_1 до гиперэллипса, в связи с ограниченной точностью чисел, задаваемое значение может оказаться недостижимым. Также для работы прикладного приложения будет более адекватна оценка ошибки, выраженная в угле t. Поэтому значение функции и производной делится на расстояние от P_1 до P_0 , если это расстояние превышает 1.

Измерения

Измерялось количество вычислений функции fnCalls, необходимых для достижения результата с заданной точностью $\varepsilon=10^{-12}$. Для каждого измерения при помощи генератора псевдослучайных чисел было сформировано 10^3 гиперэллипсов и для каждого вычислялось расстояние до 10^3 точек.

Параметры	fnCalls
$n=24$, a,b=12, $ P_{1x} $, $ P_{1y} < 3$	4.35
$n=24$, a,b=12, $ P_{1x} $, $ P_{1y} < 10^8$	5.39
$n=24$, $a=1$, $b=1520$, $ P_{1x} < 2$, $ P_{1y} < 2b$	7.07

$n=24$, $a=1$, $b=1520$, $ P_{1x} $, $ P_{1y} < 10^8$	7.18
$ n=10, a,b=12, P_{1x} , P_{1y} < 3$	5.49
$n=10$, $a=1$, $b=1520$, $ P_{1x} < 2$, $ P_{1y} < 2b$	7.97
$n=50$, a,b=12, $ P_{1x} $, $ P_{1y} < 3$	6.17