

# Egocentric Temporal Motifs and Temporal Graph Generation



A. Longa, G. Cencetti, A. Passerini and B.Lepri https://antoniolonga.github.io/ a.longa@fbk.eu

## Introduction

A decade ago, researchers had introduced the notion of network motifs for static graphs, that are recurrent and statistically significant sub-graphs of a network. In the beginning, motifs were mainly used in biology and later researchers started to use this concept in other disciplines such as applications to temporal graphs. Temporal graphs are indispensable in modelling social interactions, being a standard graph not able to capture the related temporal dynamics. The idea of our Egocentric Temporal Motifs Miner is to jump inside the network and follow the path of a specific node, finding node-dependent spatio-temporal patterns.

# **Extract Egocentic Temporal Neighborhood**









Given a temporal graph G, and a temporal gap delta T, we represent the graph as an ordered sequence of temporal aggregations.

- $\bullet$  Given an ego node E and a temporal order k (k = 2), we extract ETN from the input graph.
- ETN can be encoded in an Egocentric Temporal Neighborhood Signature (ETNS)

## From ETN to ETM

An ETN is considered Egocentic Temporal Motifs (ETM) if:

- It is over-represented with respect to a null model
- It has a minimum deviation, and
- It has a minimum frequency.

# **Definitions**

**Definition 1:** (ETM-based embedding) Given a temporal graph G and a list M of ETMs, we define EMBM(G) as the embedding of G in a vector of cardinality |M|, in which the i th element of EMBM(G) represents the number of occurrences of M[i] in G.

Given a list of ETM, the distance between two temporal graphs is then defined as the distance between their respective ETM-based embeddings.

**Definition 2:** (ETM-based distance) Given two temporal graphs G<sub>1</sub>, G<sub>2</sub> and a list M of ETMs, we define  $dist_M(G_1, G_2)$  as the cosine distance between the ETM-based embeddings of G<sub>1</sub> and G<sub>2</sub>:

$$dist_{M}(\mathcal{G}_{1},\mathcal{G}_{2}) = 1 - \frac{EMB_{M}(\mathcal{G}_{1}) \cdot EMB_{M}(\mathcal{G}_{2})}{||EMB_{M}(\mathcal{G}_{1})|| ||EMB_{M}(\mathcal{G}_{2})||}$$

where  $\cdot$  is the dot product and  $||\cdot||$  is the Euclidean norm.

## Results

|                | Workplace | Hospital | HS11 | HS12 | HS13 | PS   | DTU  |
|----------------|-----------|----------|------|------|------|------|------|
| Workplace      | 0.00      | 0.07     | 0.29 | 0.22 | 0.29 | 0.67 | 0.47 |
| Hospital       |           | 0.00     | 0.29 | 0.22 | 0.30 | 0.66 | 0.45 |
| High school 11 |           |          | 0.00 | 0.04 | 0.04 | 0.59 | 0.06 |
| High school 12 |           |          |      | 0.00 | 0.02 | 0.61 | 0.13 |
| High school 13 |           |          |      |      | 0.00 | 0.62 | 0.08 |
| Primary school |           |          |      |      |      | 0.00 | 0.62 |
| DTU blue       |           |          |      |      |      |      | 0.00 |

|       |                  | Calls |        | SMS   |        | Email |      |
|-------|------------------|-------|--------|-------|--------|-------|------|
|       |                  | DTU C | Friend | Dtu S | Friend | Email | DNC  |
| Calls | DTU C            | 0.00  | 0.37   | 0.28  | 0.26   | 0.61  | 0.66 |
|       | Friend C         |       | 0.00   | 0.34  | 0.33   | 0.59  | 0.58 |
| SMS   | Dtu S            |       |        | 0.00  | 0.06   | 0.65  | 0.64 |
|       | Friend S         |       |        |       | 0.00   | 0.65  | 0.64 |
| Email | Email            |       |        |       |        | 0.00  | 0.38 |
|       | <b>Email DNC</b> |       |        |       |        |       | 0.00 |

|             |           | Erdos Renyi |         | Scale free |      | Small world |       |
|-------------|-----------|-------------|---------|------------|------|-------------|-------|
|             |           | P 0.01      | P 0.001 | g1         | g2   | p2 k3       | p8 k3 |
| Erdos Renyi | P 0.01    | 0.00        | 0.03    | 0.07       | 0.11 | 0.37        | 0.18  |
|             | P 0.001   |             | 0.00    | 0.09       | 0.15 | 0.46        | 0.25  |
| Scale free  | <b>g1</b> |             |         | 0.00       | 0.03 | 0.39        | 0.14  |
|             | g2        |             |         |            | 0.00 | 0.30        | 0.09  |
| Small world | p2 k3     |             |         |            |      | 0.00        | 0.14  |
|             | p8 k3     |             |         |            |      |             | 0.00  |

# **Egocentric Temporal Neighborhood for Temporal Graph Generation**

#### **Growth dictionary**



#### Generate a provisional layer



#### Validate layer connections





Randomly validate half unidirectional edges



Randomly connect stubs

## ETN-Gen

- Builty a growth dictionary, using as a key ETNS with k-1 layers. The values are all possible ETNS with k layers and it's normilized frequencies.
- Starting from a graph seed, extract ETNS with k-1 layers, query the dictionary, and generate a provisional layer, repeat for each node.
- Finally, validate bidirectional edges, randomly validate half edges, and randomly connect stubs.

#### Results

Topological and dynamical similarity evaluation









