Reading notes

Linfan

This document contains all notes taken while reading materials (e.g., textbooks, literature) in preparation for the capstone project. Black text are information consolidated from the readings; blue text are notes (proofs, explanations); red text are questions.

Contents

1	Theory of Ordinary Differential Equations (Coddington Levinson)		
	1.1	Chapt	ter 11: Algebraic properties of linear boundary-value problems on a finite interval
			Introduction
		1.1.2	Boundary form formula
\mathbf{T}	od	o list	
	Wł Is t	ny the (- the direc	$(-1)^n$?

1 Theory of Ordinary Differential Equations (Coddington Levinson)

1.1 Chapter 11: Algebraic properties of linear boundary-value problems on a finite interval

1.1.1 Introduction

Definition 1.1.1. Let L be the linear differential operator of oder $n \ (n \ge 1)$ defined by

$$Lx = p_0 x^{(n)} + p_1 x^{(n-1)} + \dots + p_{n-1} x' + p_n x$$

where the p_k are complex-valued functions of class C^{n-k} on a closed bounded interval [a,b] (i.e., derivatives $p_k, p'_k, \ldots, p_k^{(n-k)}$ exist on [a,b] and are continuous) and $p_0(t) \neq 0$ on [a,b].

Definition 1.1.2. Homogeneous boundary conditions refer to a set of equations/constraints of the type

$$\sum_{k=1}^{n} (M_{jk} x^{(k-1)}(a) + N_{jk} x^{(k-1)}(b)) = 0 \quad (j = 1, \dots, m)$$
(1.1.1)

where M_{jk}, N_{jk} are complex constants.

Definition 1.1.3. A homogeneous boundary-value problem concerns finding the solutions of

$$Lx = 0$$

on [a, b] which satisfy some homogeneous boundary conditions defined above.

Definition 1.1.4. For any homogeneous boundary value problem, an **adjoint problem** refers to the problem of finding the solutions of

$$L^+x := (-1)^n (\bar{p}_0 x)^{(n)} + (-1)^{n-1} (\bar{p}_1 x)^{(n-1)} + \dots + \bar{p}_n x = 0$$

on [a, b] which satisfy some homogeneous boundary conditions "complementary" to the conditions associated with the solutions of Lx = 0.

Theorem 1.1.5. (Green's formula) For $u, v \in C^n$ on [a, b],

$$\int_{t_1}^{t_2} (Lu)\bar{v} \, dt - \int_{t_1}^{t_2} u(L^{+}v) \, dt = [uv](t_2) - [uv](t_1)$$
(1.1.2)

where $a \le t_1 < t_2 \le b$ and [uv](t) is the form in $(u, u', \ldots, u^{(n-1)})$ and $(v, v', \ldots, v^{(n-1)})$ given by

$$[uv](t) = \sum_{m=1}^{n} \sum_{j+k=m-1} (-1)^{i} u^{(k)}(t) (p_{n-m}\bar{v})^{(j)}(t).$$

Remark 1.1.6. Alternatively, [uv](t) can be written as (checked for n=2)

$$[uv](t) = \sum_{j,k=1}^{n} B_{jk}(t)u^{(k-1)}(t)\bar{v}^{(j-1)}(t)$$
(1.1.3)

where B_{jk} are the j, k-entry of the $n \times n$ matrix

$$B(t) = \begin{bmatrix} B_{11} & B_{12} & \cdots & p_0(t) \\ \vdots & \vdots & \cdots & -p_0(t) & 0 \\ (-1)^{n-1}p_0(t) & 0 & \cdots & 0 & 0. \end{bmatrix}$$

Since B(t) is square with $\det B(t) = (p_0(t))^n$ where $p_0(t) \neq 0$ on [a, b] (as in the definition of L), B(t) is nonsingular/invertible for $t \in [a, b]$.

Definition 1.1.7. For vectors $f = (f_1, \ldots, f_k), g = (g_1, \ldots, g_k),$ define the product

$$f \cdot g := \sum_{i=1}^{k} f_i \bar{g}_i.$$

Definition 1.1.8. A **semibilinear form** is a complex-valued function S defined for pairs of vectors $f = (f_1, \ldots, f_k), g = (g_1, \ldots, g_k)$ satisfying

$$S(\alpha f + \beta g, h) = \alpha S(f, h) + \beta S(g, h)$$

$$S(f, \alpha g + \beta h) = \bar{\alpha}S(f, g) + \bar{\beta}S(f, h)$$

for any complex numbers α, β and vectors f, g, h.

Note that S is linear in the first argument but not the second one. If S were bilinear, it would be linear in each argument.

Remark 1.1.9. If

$$S = \begin{bmatrix} s_{11} & \cdots & s_{1k} \\ \vdots & & \vdots \\ s_{k1} & \cdots & s_{kk} \end{bmatrix},$$

then $Sf \cdot g$ is a semibilinear form

$$S(f,g) := Sf \cdot g$$

$$= \begin{bmatrix} s_{11} & \cdots & s_{1k} \\ \vdots & & \vdots \\ s_{k1} & \cdots & s_{kk} \end{bmatrix} \begin{bmatrix} f_1 \\ \vdots \\ f_k \end{bmatrix} \cdot \begin{bmatrix} g_1 \\ \vdots \\ g_k \end{bmatrix}$$

$$= \begin{bmatrix} \sum_{j=1}^k s_{1j} f_j \\ \vdots \\ \sum_{j=1}^k s_{kj} f_j \end{bmatrix} \cdot \begin{bmatrix} g_1 \\ \vdots \\ g_k \end{bmatrix}$$

$$= \sum_{i=1}^k \left(\sum_{j=1}^k s_{ij} f_j \right) \bar{g}_i$$

$$= \sum_{i,j=1}^k s_{ij} f_i \bar{g}_i.$$

$$(1.1.4)$$

Indeed:

$$S(\alpha f + \beta g, h) = \sum_{i,j=1}^{k} s_{ij} (\alpha f_j + \beta g_j) \bar{h}_i$$

$$= \alpha \sum_{i,j=1}^{k} s_{ij} f_j \bar{h}_i + \beta \sum_{i,j=1}^{k} g_j \bar{h}_i$$

$$= \alpha S f \cdot h + \beta S g \cdot h$$

$$= \alpha S (f, h) + \beta S (g, h).$$

Similarly,

$$S(f, \alpha g + \beta h) = \sum_{i,j=1}^{k} s_{ij} f_j(\alpha g_i + \beta h_i)$$

$$= \bar{\alpha} \sum_{i,j=1}^{k} s_{ij} f_j \bar{g}_i + \bar{\beta} \sum_{i,j=1}^{k} f_j \bar{h}_i$$
$$= \bar{\alpha} S f \cdot g + \bar{\beta} S f \cdot h$$
$$= \bar{\alpha} S (f,g) + \bar{\beta} S (f,h).$$

Remark 1.1.10. Under a similar matrix framework, we see that [uv](t) is a semibilinear form with matrix B(t): Let $\vec{u} = (u, u', \dots, u^{(n-1)})$ and $\vec{v} = (v, v', \dots, v^{(n-1)})$. Then we have

$$[uv](t) = \sum_{j,k=1}^{n} B_{jk}(t)u^{(k-1)}(t)\bar{v}^{(j-1)}(t) \quad \text{(by (1.1.3))}$$

$$= \sum_{i,j=1}^{n} (B_{ij}u^{(j-1)}\bar{v}^{(i-1)})(t)$$

$$= (B\vec{u} \cdot \vec{v})(t)$$

$$= \mathcal{S}(\vec{u}, \vec{v})(t).$$

With this notation, we can rewrite the right hand side of Green's formula as a semibilinear form below:

$$[uv](t_2) - [uv](t_1) = \sum_{j,k=1}^{n} B_{jk}(t_2)u^{(k-1)}(t_2)\bar{v}^{(j-1)}(t_2) - \sum_{j,k=1}^{n} B_{jk}(t_2)u^{(k-1)}(t_1)\bar{v}^{(j-1)}(t_1)$$

$$= B(t_2)\bar{u}(t_2) \cdot \bar{v}(t_2) - B(t_1)\bar{u}(t_1) \cdot \bar{v}(t_1)$$

$$= \begin{bmatrix} B_{11}(t_2) & \cdots & B_{1n}(t_2) \\ \vdots & & \vdots \\ B_{n1}(t_2) & \cdots & B_{nn}(t_2) \end{bmatrix} \begin{bmatrix} u(t_2) \\ \vdots \\ u^{(n-1)}(t_2) \end{bmatrix} \cdot \begin{bmatrix} \bar{v}(t_2) \\ \vdots \\ \bar{v}^{(n-1)}(t_2) \end{bmatrix} - \begin{bmatrix} B_{11}(t_1) & \cdots & B_{1n}(t_1) \\ \vdots & & \vdots \\ B_{n1}(t_1) & \cdots & B_{nn}(t_1) \end{bmatrix} \begin{bmatrix} u(t_1) \\ \vdots \\ u^{(n-1)}(t_1) \end{bmatrix} \cdot \begin{bmatrix} \bar{v}(t_1) \\ \vdots \\ \bar{v}^{(n-1)}(t_1) \end{bmatrix}$$

$$= \begin{bmatrix} -B_{11}(t_1) & \cdots & -B_{1n}(t_1) \\ \vdots & & \vdots \\ -B_{n1}(t_1) & \cdots & -B_{nn}(t_1) \end{bmatrix} \begin{bmatrix} u(t_1) \\ \vdots \\ u^{(n-1)}(t_1) \end{bmatrix} \cdot \begin{bmatrix} \bar{v}(t_1) \\ \vdots \\ \bar{v}^{(n-1)}(t_1) \end{bmatrix} + \begin{bmatrix} B_{11}(t_2) & \cdots & B_{1n}(t_2) \\ \vdots & & \vdots \\ B_{n1}(t_2) & \cdots & B_{nn}(t_2) \end{bmatrix} \begin{bmatrix} u(t_2) \\ \vdots \\ u^{(n-1)}(t_2) \end{bmatrix} \cdot \begin{bmatrix} \bar{v}(t_2) \\ \vdots \\ \bar{v}^{(n-1)}(t_2) \end{bmatrix}$$

$$= \begin{bmatrix} -B_{11}(t_1) & \cdots & -B_{nn}(t_1) & 0 & \cdots & 0 \\ 0 & \cdots & 0 & B_{11}(t_2) & \cdots & B_{1n}(t_2) \\ \vdots & & \vdots & \vdots \\ 0 & \cdots & 0 & B_{11}(t_2) & \cdots & B_{1n}(t_2) \end{bmatrix} \cdot \begin{bmatrix} \bar{v}(t_1) \\ \vdots \\ \bar{v}^{(n-1)}(t_1) \\ \vdots \\ \bar{v}^{(n-1)}(t_2) \end{bmatrix} \cdot \begin{bmatrix} \bar{v}(t_1) \\ \bar{v}(t_2) \\ \vdots \\ \bar{v}^{(n-1)}(t_2) \end{bmatrix} \cdot \begin{bmatrix} \bar{v}(t_1) \\ \bar{v}(t_2) \\ \vdots \\ \bar{v}^{(n-1)}(t_2) \end{bmatrix} \cdot \begin{bmatrix} \bar{v}(t_1) \\ \bar{v}(t_2) \\ \vdots \\ \bar{v}^{(n-1)}(t_2) \end{bmatrix} \cdot \begin{bmatrix} \bar{v}(t_1) \\ \bar{v}(t_2) \\ \vdots \\ \bar{v}^{(n-1)}(t_2) \end{bmatrix} \cdot \begin{bmatrix} \bar{v}(t_1) \\ \bar{v}(t_2) \\ \vdots \\ \bar{v}^{(n-1)}(t_2) \end{bmatrix} \cdot \begin{bmatrix} \bar{v}(t_1) \\ \bar{v}(t_2) \\ \vdots \\ \bar{v}^{(n-1)}(t_2) \end{bmatrix} \cdot \begin{bmatrix} \bar{v}(t_1) \\ \bar{v}(t_2) \\ \vdots \\ \bar{v}^{(n-1)}(t_2) \end{bmatrix} \cdot \begin{bmatrix} \bar{v}(t_1) \\ \bar{v}(t_2) \\ \vdots \\ \bar{v}^{(n-1)}(t_2) \end{bmatrix} \cdot \begin{bmatrix} \bar{v}(t_1) \\ \bar{v}(t_2) \\ \vdots \\ \bar{v}^{(n-1)}(t_2) \end{bmatrix} \cdot \begin{bmatrix} \bar{v}(t_1) \\ \bar{v}(t_2) \\ \vdots \\ \bar{v}^{(n-1)}(t_2) \end{bmatrix} \cdot \begin{bmatrix} \bar{v}(t_1) \\ \bar{v}(t_2) \\ \vdots \\ \bar{v}^{(n-1)}(t_2) \end{bmatrix} \cdot \begin{bmatrix} \bar{v}(t_1) \\ \bar{v}(t_2) \\ \vdots \\ \bar{v}^{(n-1)}(t_1) \end{bmatrix} \cdot \begin{bmatrix} \bar{v}(t_1) \\ \bar{v}(t_2) \\$$

Since $\det \hat{B} = (-1)^n \det B(t_1) \det B(t_2)$, \hat{B} is nonsingular for $t_1, t_2 \in [a, b]$ (since B(t) is nonsingular for $t \in [a, b]$, as shown before).

Why the $(-1)^n$?

1.1.2 Boundary form formula

Definition 1.1.11. Given any set of 2mn complex constants M_{ij}, N_{ij} (i = 1, ..., m; j = 1, ..., n), define m boundary operators (boundary forms) $U_1, ..., U_m$ for functions x on [a, b], for which $x^{(j)}$ (j = 1, ..., n-1) exists at a and b, by

$$U_{i}x = \sum_{j=1}^{n} (M_{ij}x^{(j-1)}(a) + N_{ij}x^{(j-1)}(b)) \quad (i = 1, \dots, m)$$
(1.1.6)

 U_i are linearly independent if the only set of complex constants c_1, \ldots, c_m for which

$$\sum_{i=1}^{m} c_i U_i x = 0$$

for all $x \in C^{n-1}$ on [a, b] is $c_1 = c_2 = \cdots = c_m = 0$.

Remark 1.1.12. Note that for $\alpha, \beta \in \mathbb{C}$ and $x_1, x_2 \in C^{n-1}$ on [a, b],

$$U_{i}(\alpha x_{1} + \beta x_{2}) = \sum_{j=1}^{n} (M_{ij}(\alpha x_{1} + \beta x_{2})^{(j-1)}(a) + N_{ij}(\alpha x_{1} + \beta x_{2})^{(j-1)}(b))$$

$$= \alpha \sum_{j=1}^{n} (M_{ij}x_{1}^{(j-1)}(a) + N_{ij}x_{1}^{(j-1)}(b)) + \beta \sum_{j=1}^{n} (M_{ij}x_{2}^{(j-1)}(a) + N_{ij}x_{2}^{(j-1)}(b)) \quad \text{(by linearity of derivatives)}$$

$$= \alpha U_{i}x_{1} + \beta U_{i}x_{2}.$$

So U_i are linear operators.

Remark 1.1.13. To describe (1.1.6) with matrices, define

$$\xi := \begin{bmatrix} x \\ x' \\ \vdots \\ x^{(n-1)} \end{bmatrix}; \quad U := \begin{bmatrix} U_1 \\ U_2 \\ \vdots \\ U_m \end{bmatrix}; \quad M := \begin{bmatrix} M_{11} & \cdots & M_{1n} \\ \vdots & & \vdots \\ M_{m1} & \cdots & M_{mn} \end{bmatrix}; \quad N := \begin{bmatrix} N_{11} & \cdots & N_{1n} \\ \vdots & & \vdots \\ N_{m1} & \cdots & N_{mn} \end{bmatrix}.$$

Then (1.1.6) can be written as

$$Ux = M\xi(a) + N\xi(b).$$

Indeed:

$$M\xi(a) + N\xi(b) = \begin{bmatrix} M_{11} & \cdots & M_{1n} \\ \vdots & & \vdots \\ M_{m1} & \cdots & M_{mn} \end{bmatrix} \begin{bmatrix} x(a) \\ x'(a) \\ \vdots \\ x^{(n-1)}(a) \end{bmatrix} + \begin{bmatrix} N_{11} & \cdots & N_{1n} \\ \vdots & & \vdots \\ N_{m1} & \cdots & N_{mn} \end{bmatrix} \begin{bmatrix} x(b) \\ x'(b) \\ \vdots \\ x^{(n-1)}(b) \end{bmatrix}$$

$$= \begin{bmatrix} \sum_{j=1}^{n} M_{1j}x^{(j-1)}(a) \\ \vdots \\ \sum_{j=1}^{n} M_{mj}x^{(j-1)}(a) \end{bmatrix} + \begin{bmatrix} \sum_{j=1}^{n} N_{1j}x^{(j-1)}(b) \\ \vdots \\ \sum_{j=1}^{n} N_{mj}x^{(j-1)}(b) \end{bmatrix}$$

$$= \begin{bmatrix} \sum_{j=1}^{n} (M_{1j}x^{(j-1)}(a) + N_{1j}x^{(j-1)}(b)) \\ \vdots \\ \sum_{j=1}^{n} (M_{mj}x^{(j-1)}(a) + N_{mj}x^{(j-1)}(b)) \end{bmatrix}$$

$$= \begin{bmatrix} U_{1}x \\ \vdots \\ U_{m}x \end{bmatrix} = \begin{bmatrix} U_{1} \\ U_{2} \\ \vdots \\ U_{m} \end{bmatrix} x = Ux.$$

Define the $m \times 2n$ matrix

$$(M:N) := \begin{bmatrix} M_{11} & \cdots & M_{1n} & N_{11} & \cdots & N_{1n} \\ \vdots & & \vdots & \vdots & & \vdots \\ M_{m1} & \cdots & M_{mn} & N_{m1} & \cdots & N_{mn} \end{bmatrix}.$$

Then U_1, \ldots, U_m are linearly independent if and only if $\operatorname{rank}(M:N) = m$, or equivalently, $\operatorname{rank}(U) = m$. Recall that the rank of a matrix is the largest number of linearly independent rows or columns in it. For a matrix $A_{m \times n}$, $\operatorname{rank}(A) \leq \min\{m, n\}$ and $\operatorname{rank}(A) = \operatorname{rank}(A^T)$.

Ux can be written as

$$Ux = \begin{bmatrix} \sum_{j=1}^{n} (M_{1j}x^{(j-1)}(a) + N_{1j}x^{(j-1)}(b)) \\ \vdots \\ \sum_{j=1}^{n} (M_{mj}x^{(j-1)}(a) + N_{mj}x^{(j-1)}(b)) \end{bmatrix}$$

$$= \begin{bmatrix} M_{11} & \cdots & M_{1n} & N_{11} & \cdots & N_{1n} \\ \vdots & \vdots & \vdots & & \vdots \\ M_{m1} & \cdots & M_{mn} & N_{m1} & \cdots & N_{mn} \end{bmatrix} \begin{bmatrix} x(a) \\ \vdots \\ x^{(n-1)}(a) \\ x(b) \\ \vdots \\ x^{(n-1)}(b) \end{bmatrix}$$

$$= (M:N) \begin{bmatrix} \xi(a) \\ \xi(b) \end{bmatrix}.$$

Definition 1.1.14. If $U = (U_1, \ldots, U_m)$ is any boundary form with rank(U) = m and $U_c = (U_{m+1}, \ldots, U_{2n})$ any form with rank $(U_c) = 2n - m$ such that (U_1, \ldots, U_{2n}) has rank 2n, then U and U_c are **complementary boundary forms**. "Adjoining" U_{m+1}, \ldots, U_{2n} to U_1, \ldots, U_m is equivalent to imbedding the matrix (M:N) in a $2n \times 2n$ nonsingular matrix (recall that for square matrices, nonsingular \iff full rank).

We wish to describe the right hand side of Green's formula (1.1.2) as a linear combination of a boundary form U and a complementary form U_c . To do so, we consider the following results about the semibilinear form (1.1.4).

Definition 1.1.15. For a matrix $A = (a_{ij})$, its **adjoint** is defined as the conjugate transpose $A^* = (\bar{a}_{ij})$.

Proposition 1.1.16. In the context of the semibilinear form (1.1.4), we have

$$Sf \cdot g = f \cdot S^*g. \tag{1.1.7}$$

Proof.

$$Sf \cdot g = \sum_{i,j=1}^{k} s_{ij} f_{j} \bar{g}_{i} \quad \text{(by (1.1.4))};$$

$$f \cdot S^{*}g = \begin{bmatrix} f_{1} \\ \vdots \\ f_{k} \end{bmatrix} \cdot \begin{bmatrix} \bar{s}_{11} & \cdots & \bar{s}_{k1} \\ \vdots & & \vdots \\ \bar{s}_{1k} & \cdots & \bar{s}_{kk} \end{bmatrix} \begin{bmatrix} g_{1} \\ \vdots \\ g_{k} \end{bmatrix}$$

$$= \begin{bmatrix} f_{1} \\ \vdots \\ f_{k} \end{bmatrix} \cdot \begin{bmatrix} \sum_{j=1}^{k} \bar{s}_{j1} g_{j} \\ \vdots \\ \sum_{j=1}^{k} \bar{s}_{jk} g_{j} \end{bmatrix}$$

$$= \sum_{i=1}^{k} f_{i} \cdot \overline{\left(\sum_{j=1}^{k} \bar{s}_{ji} g_{j}\right)}$$

$$= \sum_{i=1}^{k} f_i \cdot \left(\sum_{j=1}^{k} s_{ji} \bar{g}_j \right)$$
$$= \sum_{i,j=1}^{k} s_{ji} f_i \bar{g}_j = Sf \cdot g.$$

Proposition 1.1.17. Let S be the semibilinear form associated with a nonsingular matrix S. Suppose $\bar{f} := Ff$ where F is a nonsingular matrix. Then there exists a unique nonsingular matrix G such that if $\bar{g} = Gg$, then $S(f,g) = \bar{f} \cdot \bar{g}$ for all f,g.

Proof. Let $G := (SF^{-1})^*$, then

$$S(f,g) = Sf \cdot g$$

$$= S(F^{-1}F)f \cdot g$$

$$= SF^{-1}(Ff) \cdot g$$

$$= SF^{-1}\bar{f} \cdot g$$

$$= \bar{f} \cdot (SF^{-1})^*g \quad \text{(by (1.1.7))}$$

$$= \bar{f} \cdot G * g$$

$$= \bar{f} \cdot \bar{g}.$$

To see that G is nonsingular, note that $\det G = \det((\overline{SF^{-1}})^T) = \det(\overline{SF^{-1}}) = \overline{\det(SF^{-1})} = \overline{\det(S)\det(F)^{-1}} \neq 0$ since S, F are nonsingular.

Proposition 1.1.18. Suppose S is associated with the unit matrix E, i.e., $S(f,g) = f \cdot g$. Let F be a nonsingular matrix such that the first j $(1 \le j < k)$ components of $\bar{f} = Ff$ are the same as those of f. Then the unique nonsingular matrix G such that $\bar{g} = Gg$ and $\bar{f} \cdot \bar{g} = f \cdot g$ (as in Proposition 1.1.17) is such that the last k - j components of \bar{g} are linear combinations of the last k - j components of g with nonsingular coefficient matrix.

Proof. We note that for the condition on F to hold, F must have the form

$$\begin{bmatrix} E_j & 0_+ \\ F_+ & F_{k-j} \end{bmatrix}_{k \times k}$$

where E_j is the $j \times j$ identity matrix, 0_+ is the $j \times (k-j)$ zero matrix, F_+ is a $(k-j) \times j$ matrix, and F_{k-j} a $(k-j) \times (k-j)$ matrix. Let G be the unique nonsingular matrix in Proposition 1.1.17. Write G as

$$\begin{bmatrix} G_j & G_- \\ G_- & G_{k-j} \end{bmatrix}_{k \times k}$$

where $G_j, G_-, G_=, G_{k-j}$ are $j \times j, j \times (k-j), (k-j) \times j, (k-j) \times (k-j)$ matrices, respectively. By the definition of G,

$$f \cdot g = F f \cdot G g = \bar{f} \cdot G g = G^* \bar{f} \cdot g = G^* F f \cdot g$$

(where the third equality follows from a reverse application of (1.1.7) with \bar{f} as f, G^* as S) which implies

$$G^*F = E_k$$
.

Since

$$G^*F = \begin{bmatrix} G_j^* & G_{=}^* \\ G_{-}^* & G_{k-j}^* \end{bmatrix} \begin{bmatrix} E_j & 0_+ \\ F_+ & F_{k-j} \end{bmatrix}$$

$$= \begin{bmatrix} G_j^* + G_{=}^* F_+ & G_{=}^* F_{k-j} \\ G_{-}^* + G_{k-j}^* F_+ & G_{k-j}^* F_{k-j} \end{bmatrix}$$

$$= \begin{bmatrix} E_j & 0_{j \times (k-j)} \\ 0_{(k-j) \times j} & E_{k-j} \end{bmatrix}.$$

Thus, $G_{=}^*F_{k-j}=0_+$, the $j\times (k-j)$ zero matrix. But $\det F=\det(E_j)\cdot\det(F_{k-j})\neq 0$, so $\det F_{k-j}\neq 0$ and we must have $G_{=}^*=0_+$, i.e., $G_{=}=0_{(k-j)\times j}$. Thus, G is upper-triangular, and so $\det G=\det G_j\cdot\det G_{k-j}\neq 0$, which implies $\det G_{k-j}\neq 0$ and G_{k-j} is nonsingular. Hence,

$$\bar{g} = Gg = \begin{bmatrix} G_j & G_- \\ 0_{(k-j)\times j} & G_{k-j} \end{bmatrix} \begin{bmatrix} g_1 \\ \vdots \\ g_k \end{bmatrix}$$

where G_{k-j} is the nonsingular coefficient matrix such that

$$\begin{bmatrix} \bar{g}_{j-1} \\ \vdots \\ \bar{g}_k \end{bmatrix} = G_{k-j} \begin{bmatrix} g_{j-1} \\ \vdots \\ g_k \end{bmatrix}.$$

Theorem 1.1.19. (Boundary-form formula) Given any boundary form U of rank m (Definition 1.1.11), and any complementary form U_c (Definition 1.1.14), there exist unique boundary forms U_c^+ , U^+ of rank m and 2n-m, respectively, such that

$$[xy](b) - [xy](a) = Ux \cdot U_c^+ y + U_c x \cdot U^+ y.$$
(1.1.8)

If \tilde{U}_c is any other complementary form to U, and \tilde{U}_c^+ , \tilde{U}^+ the corresponding forms of rank m and 2n-m, then

$$\tilde{U}^+ u = C^* U^+ u$$

for some nonsingular matrix C.

Proof. Recall from (1.1.5) that the left hand side of (1.1.8) can be considered as a semibilinear form $S(f,g) = \hat{B}f \cdot g$ for vectors

$$f = \begin{bmatrix} x(a) \\ \vdots \\ x^{(n-1)}(a) \\ x(b) \\ \vdots \\ x^{(n-1)}(b) \end{bmatrix}, g = \begin{bmatrix} y(a) \\ \vdots \\ y^{(n-1)}(a) \\ y(b) \\ \vdots \\ y^{(n-1)}(b) \end{bmatrix}$$

with the nonsingular matrix

$$\hat{B} = \begin{bmatrix} -B(a) & 0_n \\ 0_n & B(b) \end{bmatrix}.$$

Recall from Remark 1.1.13 that

$$Ux = M\xi(a) + N\xi(b) = (M:N) \begin{bmatrix} \xi(a) \\ \xi(b) \end{bmatrix}$$

for M, N, ξ are as defined there. With the definition of f, we have $f = \begin{bmatrix} \xi(a) \\ \xi(b) \end{bmatrix}$ and thus

$$Ux = (M:N)f.$$

By Definition 1.1.14, $U_c x = (\tilde{M} : \tilde{N}) f$ for two appropriate matrices \tilde{M}, \tilde{N} for which

$$H = \begin{bmatrix} M & N \\ \tilde{M} & \tilde{N} \end{bmatrix}_{2n \times 2n}$$

has rank 2n. Thus,

$$\begin{bmatrix} Ux \\ U_cx \end{bmatrix} = \begin{bmatrix} (M:N)f \\ (\tilde{M}:\tilde{N})f \end{bmatrix} = \begin{bmatrix} M & N \\ \tilde{M} & \tilde{N} \end{bmatrix} f = Hf.$$

By Proposition 1.1.17, there exists a unique $2n \times 2n$ nonsingular matrix J such that $\mathcal{S}(f,g) = Hf \cdot Jg$. Let U^+, U^+_c be such that

$$Jg = \begin{bmatrix} U_c^+ y \\ U^+ y \end{bmatrix},$$

then (1.1.8) holds since

$$[xy](b) - [xy](a) = \mathcal{S}(f,g) = Hf \cdot Jg = \begin{bmatrix} Ux \\ U_cx \end{bmatrix} \cdot \begin{bmatrix} U_c^+y \\ U^+y \end{bmatrix} = Ux \cdot U_c^+y + U_cx \cdot U^+y.$$

Is the direction correct? e.g., from the existence of construct U^+ and U_c^+ .