Электродинамика и распространение радиоволн

Семинар 12

Русов Юрий Сергеевич

- 1. Изучить ошибки в расчетах предыдущего семинара.
- 2. Изучить примеры решения задач.
- 3. Решить предлагаемые задачи, используя исходные данные для своего варианта. Вариант задания определяется следующими параметрами: М номер группы (1 для РЛ1-41, 2 для РЛ1-42, 3 для РЛ1-43, 4 для РЛ1-44, 5 для РЛ1-49, 6 для РЛ6-41, 7 для РЛ6-49), N порядковый номер студента в списке группы.
- Завершить выполнение Домашнего задания №2.
 Задание доступно по ссылкам в личных кабинетах (в названии файла указаны потоки РЛ1 и РЛ6). Срок сдачи 12 неделя.

Работа над ошибками

решении задачи об определении При распространяющихся волн в волноводе у некоторых получалось выполнение условия распространения при сочетании индексов m=1, n=1. Так как критические длины для волн E_{mn} и H_{mn} в прямоугольном волноводе совпадают, то выполнение условия распространения при ненулевых индексах m и n означает, что в прямоугольном волноводе могут распространяться оба типа волн E_{mn} и H_{mn} . Т.е. выполнение условия распространения при сочетании индексов m=1, n=1 означает, что могут распространяться волны E_{11} и H_{11} . При хотя бы одном нулевом индексе соответствующая типа Е в прямоугольном волноводе не существует (см. лекции).

Задача 1. Определить предельную и допустимую рабочую мощность в прямоугольном волноводе с поперечным сечением axb, работающем на волне основного типа на частоте f, если волновод заполнен воздухом.

Решение.

Предельной мощностью называется наибольшая мощность, которую можно передать по волноводу без электрического пробоя.

Основным типом волны в прямоугольном волноводе является волна H_{10} . Для нее предельная мощность в режиме бегущей волны определяется формулой

$$P_{\text{пред.б.в}} = \frac{E_{\text{пред.}}^2}{4Z_a} ab \sqrt{1 - \left(\frac{\lambda}{2a}\right)^2}.$$

Рассчитывается длина волны в среде, заполняющей волновод

$$\lambda = \frac{v}{f} = \frac{1}{f\sqrt{\epsilon\epsilon_0 \mu \mu_0}}.$$

Для воздуха относительная диэлектрическая проницаемость ε=1 и относительная магнитная проницаемость μ=1. С учетом этого длина волны в среде, заполняющей волновод определяется по формуле

$$\lambda = \frac{1}{f\sqrt{\varepsilon_0\mu_0}}.$$

Для воздуха при нормальном атмосферном давлении и нормальной ионизации предельная напряженность электрического поля равна 30 кВ/см.

После подстановки этих данных в формулу для предельной мощности рассчитывается значение предельной мощности.

Допустимая рабочая мощность рассчитывается с учетом наличия отраженной волны, запаса электрической прочности и неоднородностей, которые концентрируют электрическое поле. Вычислим минимальное рекомендуемое значение допустимой рабочей мощности

$$P_{\text{ДОП}} = \frac{1}{5} P_{\text{пред.б.в.}}$$

Задача 2. Круглый волновод диаметром 2a заполнен диэлектриком с относительной диэлектрической проницаемостью ε, относительной магнитной проницаемостью µ=1 и тангенсом угла электрических потерь $tg\delta_{\mathfrak{I}}$. Стенки волновода изготовлены немагнитного металла с удельной проводимостью σ. В волноводе распространяется волна основного типа с частотой колебаний f. Определить погонное затухание в волноводе и потери на длине z. Потери выразить в децибелах.

Решение.

Затухание волн в волноводах зависит от потерь в металлических стенках и в материале, заполняющем волновод. Коэффициент ослабления волны в волноводе складывается из двух составляющих, вызванных потерями в металлических стенках и в диэлектрике

$$\alpha_{\text{общ}} = \alpha_{\text{M}} + \alpha_{\text{Д}}$$
.

Основным типом волны в круглом волноводе является волна типа H₁₁. Для нее критическая длина волны равна

$$\lambda_{\text{KP}} = 3,41a$$
.

Коэффициент ослабления за счет потерь в металлических стенках для волны основного типа определяется по формуле для волн типа H_{nm} в круглом волноводе в предположении, что волновод заполнен вакуумом или воздухом

$$\alpha_{\scriptscriptstyle M} = \frac{R_{\scriptscriptstyle S}}{Z_c a \sqrt{1 - \left(\frac{\lambda_0}{\lambda_{\scriptscriptstyle KP}}\right)^2}} \left[\left(\frac{\lambda_0}{\lambda_{\scriptscriptstyle KP}}\right)^2 + \frac{m^2}{B_{nm}^2 - m^2} \right].$$

Подставляются значения m=1, n=1.

Вычисляем длину волны в вакууме

$$\lambda_0 = \frac{1}{f\sqrt{\varepsilon_0\mu_0}}.$$

Для диэлектрика с малыми потерями (tg δ_9 <<1) характеристическое сопротивление среды и длину волны в среде, заполняющей волновод, приближенно можно определить как и для диэлектрика без потерь

$$\lambda = \frac{\lambda_0}{\sqrt{\varepsilon \mu}} .$$

$$Z_{\rm c} = \sqrt{\frac{\mu\mu_0}{\epsilon\epsilon_0}}$$
.

Волновод заполнен диэлектриком, поэтому в формулу для $\alpha_{_{M}}$ вместо длины волны в вакууме $\lambda_{_{0}}$ подставляется длина волны в неограниченной среде, заполняющей волновод.

$$\alpha_{\scriptscriptstyle M} = \frac{R_{\scriptscriptstyle S}}{Z_{\scriptscriptstyle C} a \, \sqrt{1 - \left(\frac{\lambda}{\lambda_{\scriptscriptstyle KP}}\right)^2}} \left[\left(\frac{\lambda}{\lambda_{\scriptscriptstyle KP}}\right)^2 + \frac{m^2}{B_{nm}^2 - m^2} \right].$$

 B_{nm} – корень первой производной функции Бесселя.

 $R_s = \sqrt{\frac{\omega \mu_a}{2\sigma}}$ — поверхностное сопротивление металла, из которого изготовлены стенки волновода. По условию задачи это немагнитный материал, значит $\mu_a = \mu_0$. Вычисляем значение R_s .

Корни A_{nm} функций Бесселя $J_n(x)$

n	m=0	m=1	m=2
1	2.405	3.832	5.135
2	5.520	7.016	8.417
3	8.654	10.714	11.620

Корни B_{nm} первой производной функций Бесселя $J'_n(x)$

n	m=0	m=1	m=2
1	3.832	1.841	3.052
2	7.016	5.335	6.705
3	10.174	8.536	9.965

Из таблицы берем значение B_{11} = 1,841.

Подставляем численные данные в формулу для $\alpha_{\sf m}$.

Коэффициент ослабления для волн типов E и H за счет потерь в диэлектрике для немагнитных диэлектриков с малыми потерями (при μ =1 и $tg\delta_9$ <<1) рассчитывается по формуле

$$\alpha_{\rm M} \approx \frac{\pi \, \varepsilon \, tg \delta_{\rm B}}{\lambda_0 \, \sqrt{1 - \frac{1}{\varepsilon} \left(\frac{\lambda_0}{\lambda_{\rm KP}}\right)^2}}$$

Здесь $\lambda_0 -$ длина волны в вакууме

Ослабление напряженности электрического и магнитного полей при распространении электромагнитной волны в волноводе с потерями определяется выражениями

$$E_m(z) = E_m(0)e^{-\alpha z},$$

$$H_m(z) = H_m(0)e^{-\alpha z}.$$

Здесь
$$\alpha = \alpha_{\text{общ}} = \alpha_{\text{м}} + \alpha_{\text{д}}$$
.

Мощность, переносимая электромагнитной волной, определяется через интегрирование среднего значения вектора Пойнтинга по поперечному сечению волновода, а значение вектора Пойнтинга определяется через векторное произведение векторов Е и Н, поэтому ослабление мощности электромагнитной волны при распространении в волноводе с потерями определяется выражением

$$P(z) = P(0)e^{-2\alpha z}.$$

Если взять натуральный логарифм отношения напряженности электрического поля на входе в волновод к напряженности на выходе при длине отрезка волновода 1 м, то

$$\ln \frac{E_m(0)}{E_m(1)} = \ln \frac{E_m(0)}{E_m(0)e^{-\alpha z}} = \ln e^{-\alpha z} = \alpha$$

Полученная величина, численно равная коэффициенту ослабления, выражается в неперах на метр (Нп/м) и называется погонным затуханием.

Потери в радиотехнике чаще выражают в децибелах. Децибел (дБ) – это одна десятая от единицы отношения Бел.

Вносимые волноводом потери в дБ на длине волновода z выражаются через отношение мощности на входе к мощности на выходе волновода следующим образом

$$L [дБ] = 10 \log_{10} \frac{P_{\text{вх}}}{P_{\text{вых}}} = 10 \log_{10} \frac{P(0)}{P(z)} = 10 \log_{10} e^{2\alpha z}$$

Вносимые потери в дБ на длине 1 м (погонное затухание в дБ)

$$L_1$$
 [дБ] = $10 \log_{10} \frac{P(0)}{P(1)} = 10 \log_{10} e^{2\alpha} = 20\alpha \log_{10} e \approx 8,686\alpha$.

Вносимые волноводом потери в дБ на длине волновода z $L\left[\text{дБ} \right] = 10 \log_{10} e^{2\alpha z} = \text{z} \cdot 10 \log_{10} e^{2\alpha} = z \ L_1$

Задание для самостоятельного решения

- 1. Решить задачу 1 при значениях f=37-0,1М ГГц, a=7,2 мм, b=3,4 мм,
- 2. Решить задачу 2 при значениях *a*=8 мм,

f=14+0,1N ГГц.

 $\varepsilon = 2 + 0.1 M.$

 $tg\delta_{9}$ =0,0005.

 $\sigma = 5.7*10^7 \text{ CM/M}^{-1}$

Литература

Основная литература по дисциплине

- 1. Голубева Н.С., Митрохин В.Н. Основы радиоэлектроники сверхвысоких частот: учеб. пособие для вузов. М.: Изд-во МГТУ им. Н.Э. Баумана, 2006. 486 с. ISBN 5-7038-2740-Х. Режим доступа: http://ebooks.bmstu.ru/catalog/205/book1163.html
- 2. Кугушев А.М., Голубева Н.С., Митрохин В.Н. Основы радиоэлектроники. Электродинамика и распространение радиоволн. Учеб. пособие для вузов. М.: Изд-во МГТУ им. Н.Э. Баумана, 2001. 368 с.

Дополнительные учебные материалы

- 1. Сборник задач по курсу «Электродинамика и распространение радиоволн»: учеб. пособие / Баскаков С.И., Карташев В.Г., Лобов Г.Д., Филатова Е.А., Штыков В.В.; Под ред. С.И. Баскакова. М.: Высшая школа, 1981. 208 с.
- 2. Баскаков С.И. Электродинамика и распространение радиоволн. М.: Высшая школа, 1992. 416 с.