SEMAINE DU 22/01 AU 26/01

1 Cours

Arithmétique

Division dans \mathbb{Z} Relation de divisibilité. Opérations sur la divisibilité. Relation de congruence. Opérations sur la congruence. Division euclidienne.

Diviseurs et multiples communs PGCD : définition, existence et unicité d'un pgcd positif. Opérations sur le pgcd. Algorithme d'Euclide. Théorème de Bézout. Algorithme d'Euclide étendu. Nombres premiers entre eux. Théorème de Bézout (équivalence). Théorème de Gauss. Si a|n et b|n avec $a \land b = 1$, alors ab|n. Si $a \land n = 1$ et $b \land n = 1$, alors $ab \land n = 1$. PPCM : définition, existence et unicité d'un ppcm positif. Relation $(a \lor b)(a \land b) = |ab|$. Opérations sur le ppcm.

Nombres premiers Définition. Lemme d'Euclide. Tout entier n > 1 admet un diviseur premier. Infinité des nombres premiers.

2 Méthodes à maîtriser

- ▶ Se ramener à des entiers premiers entre eux en factorisant par le pgcd.
- ▶ Résoudre des équations diophantiennes linéaires i.e. du type ax + by = c avec $a, b, c \in \mathbb{Z}$ et x, y des inconnues entières.
- ► Caractériser le reste d'une division euclidienne par une relation de congruence.
- ▶ Montrer que deux entiers positifs sont égaux en montrant qu'ils se divisent l'un l'autre
- ▶ Savoir montrer que deux entiers sont premiers entre eux en exhibant une relation de Bézout.
- ► Résoudre un système de deux congruences du type $\begin{cases} x \equiv a[m] \\ x \equiv b[n] \end{cases}$

3 Questions de cours

- ightharpoonup Résoudre une équation diophantienne du type ax + by = c au choix de l'examinateur.
- ▶ Montrer que tout sous-groupe de $(\mathbb{Z}, +)$ est de la forme $\mathfrak{a}\mathbb{Z}$ avec $\mathfrak{a} \in \mathbb{Z}$.
- ▶ Démontrer le petit théorème de Fermat : si p est un nombre premier, alors pour tout $x \in \mathbb{Z}$, $x^p \equiv x[p]$.
- $\blacktriangleright \ \ \text{R\'esoudre un syst\`eme de congruences} \begin{cases} x \equiv \alpha[m] \\ x \equiv b[n] \end{cases} \ \ \text{d'inconnue} \ x \in \mathbb{Z} \ \text{au choix de l'examinateur.}$
- ▶ Soit α et r deux entiers supérieurs ou égaux à 2. Montrer que si $\alpha^r 1$ est premier, alors $\alpha = 2$ et r est premier.