

7-Axis, High Performance Integrated 6-Axis Inertial and Barometric Pressure Sensor

GENERAL DESCRIPTION

The 7-Axis ICM-20789 is an integrated 6-axis inertial device that combines a 3-axis gyroscope, 3-axis accelerometer, and an ultra-low noise MEMS capacitive pressure sensor in a 24-pin LGA package. This unique 7-Axis device offers performance of discrete components in a single small footprint for tracking rotational and linear motion as well as pressure differences with an accuracy of ± 1 Pa, an accuracy enabling altitude measurement differentials as small as 8.5 cm.

The pressure sensor's MEMS capacitive architecture provides the industry's lowest noise at the lowest power, high sensor throughput, and temperature coefficient offset of $\pm 0.5 \, \text{Pa}/^{\circ}\text{C}$. The pressure sensor's combination of high accuracy elevation measurements, low power, and temperature stability complemented by the motion tracking 6-axis inertial sensor in a small footprint, make it ideal for a wide range of motion tracking applications.

The embedded 6-axis MotionTracking device combines a 3-axis gyroscope, 3-axis accelerometer, and a Digital Motion Processor™ (DMP). An available large 4 kB FIFO reduces traffic on the serial bus interface, and power consumption through burst sensor data transmission. The Gyroscope has programmable FSR of ±250 dps, ±500 dps, ±1000 dps and ±2000 dps. The Accelerometer FSR is programmable to ±2g, ±4g, ±8g and ±16g

ICM-20789 has 16-bit ADC for the 6-axis inertial sensor and 24-bit ADC for the pressure Sensor, programmable digital filters, two temperature sensors — one each in 6-axis Inertial and Pressure sensor. The device features an operating voltage of 1.8V. Communication port includes I²C at 400 kHz (6-axis and Pressure) and 8 MHz SPI (6-axis only). The package is 4x4x1.365 mm 24-pin to minimize board area requirements.

BLOCK DIAGRAM

APPLICATIONS

- Drones and Flying Toys
- Motion-based gaming controllers
- Virtual Reality headsets and controllers
- Indoor/Outdoor Navigation (dead-reckoning, floor/elevator/step detection)

FEATURES

- Pressure operating range: 30 to 110 kPa
- Noise and current consumption
 - o 3.2 Pa @ 1.3 μA (LP mode)
 - 0.8 Pa @ 5.2 μA (LN mode)
 - 0.4 Pa @ 10.4 μA (ULN mode)
- Pressure Sensor Relative Accuracy: ±1 Pa for any 10 hPa change over 950 hPa-1050 hPa at 25°C
- Pressure Sensor Absolute Accuracy: ±1 hPa over 950 hPa-1050 hPa, 0°C to 65°C
- Pressure Sensor Temperature Coefficient Offset:
 ±0.5 Pa/°C over 25°C to 45°C at 100 kPa
- Gyroscope programmable FSR of ±250 dps, ±500 dps, ±1000 dps, and ±2000 dps
- Accelerometer with Programmable FSR of ±2g, ±4g, ±8g, and ±16g
- Large 4 kB FIFO reduces traffic on the serial bus interface
- EIS FSYNC support
- User-programmable interrupts
- Wake-on-motion interrupt for low power operation of applications processor
- Host interface: 400 kHz Fast Mode I²C & 8 MHz SPI (see datasheet for ICM-20689)
- Digital-output temperature sensor (x2)
- Nominal VDD operation at 1.8V
- RoHS and Green compliant

ORDERING INFORMATION

PART	TEMP RANGE	PACKAGE
ICM-20789†	-40°C to +85°C	24-Pin LGA

[†]Denotes RoHS and Green-Compliant Package

TABLE OF CONTENTS

	Gene	ral Description	1
	Block	Diagram	1
	Appli	cations	1
	Featu	ires	1
	Orde	ring Information	1
1	Intro	duction	8
	1.1	Purpose and Scope	8
	1.2	Product Overview	8
	1.3	Applications	8
2	Featu	ıres	9
	2.1	Gyroscope Features	9
	2.2	Accelerometer Features	9
	2.3	Pressure sensor Features	9
	2.4	Additional Features	9
	2.5	Motion Processing	9
3	Electr	rical Characteristics	10
	3.1	Gyroscope Specifications	10
	3.2	Accelerometer Specifications	11
	3.3	Pressure Sensor Specifications	12
	3.4	Electrical Specifications	13
	3.5	I ² C Timing Characterization	15
	3.6	Absolute Maximum Ratings	17
4	Appli	cations Information	18
	4.1	Pin Out Diagram and Signal Description	18
	4.2	Typical Operating Circuit	19
	4.3	Bill of Materials for External Components	22
	4.4	Block Diagram	23
	4.5	Overview	24
	4.6	Three-Axis MEMS Gyroscope with 16-bit ADCs and Signal Conditioning	25
	4.7	Three-Axis MEMS Accelerometer with 16-bit ADCs and Signal Conditioning	25
	4.8	Digital Motion Processor	25
	4.9	Pressure Sensor	25
	4.10	I ² C Serial Communications Interface	25
	4.11	Self-Test	26
	4.12	Clocking	27
	4.13	Sensor Data Registers	27
	4.14	FIFO	27
	4.15	Interrupts	27
	4.16	Digital-Output Temperature Sensor	27

	4.17	Bias and LDOs	27
	4.18	Charge Pump	27
	4.19	Standard Power Modes – Update the power modes	28
5	Progr	ammable Interrupts	29
	5.1	Per Axis Wake-on-Motion Interrupt	29
6	Digita	ıl Interface	30
	6.1	I ² C Serial Interface	30
	6.2	I ² C Interface	30
	6.3	I ² C Communications Protocol (6-Axis only. For pressure please see chapter 10)	30
	6.4	I ² C Terms	32
7	Serial	Interface Considerations	34
	7.1	ICM-20789 Supported Interfaces	34
8	Regis	ter Map	35
9	Regis	ter Descriptions	37
	9.1	Registers Descriptions	37
	9.2	Registers 0 to 2 – Self-Test Registers	37
	9.3	Registers 13 to 15	37
	9.4	Register 19 – Gyro Offset Adjustment Register	37
	9.5	Register 20 – Gyro Offset Adjustment Register	37
	9.6	Register 21 – Gyro Offset Adjustment Register	38
	9.7	Register 22 – Gyro Offset Adjustment Register	38
	9.8	Register 23 – Gyro Offset Adjustment Register	38
	9.9	Register 24 – Gyro Offset Adjustment Register	
	9.10	Register 25 – Sample Rate Divider	38
	9.11	Register 26 – Configuration	39
	9.12	Register 27 – Gyroscope Configuration	39
	9.13	Register 28 – Accelerometer Configuration	40
	9.14	Register 29 – Accelerometer Configuration 2	40
	9.15	Register 30 – Low Power Mode Configuration	
	9.16	Register 32 – Wake on Motion Threshold	42
	9.17	Register 33 – Wake on Motion Threshold	
	9.18	Register 34 – Wake on Motion Threshold	42
	9.19	Register 35 – FIFO Enable	43
	9.20	Register 55 – Interrupt/Bypass Pin Configuration	
	9.21	Register 56 – Interrupt Enable	
	9.22	Register 57 – DMP Interrupt Status	
	9.23	Register 58 – Interrupt Status	
	9.24	Register 59 – Accelerometer Measurements	
	9.25	Register 60 – Accelerometer Measurements	
	9.26	Register 61 – Accelerometer Measurements	45

	9.27	Register 62 – Accelerometer Measurements	45
	9.28	Register 63 – Accelerometer Measurements	45
	9.29	Register 64 – Accelerometer Measurements	45
	9.30	Register 65 – Temperature Measurement	45
	9.31	Register 66 – Temperature Measurement	45
	9.32	Register 67 – Gyroscope Measurement	45
	9.33	Register 68 – Gyroscope Measurement	46
	9.34	Register 69 – Gyroscope Measurement	46
	9.35	Register 70 – Gyroscope Measurement	46
	9.36	Register 71 – Gyroscope Measurement	46
	9.37	Register 72 – Gyroscope Measurement	46
	9.38	Register 104 – Signal Path Reset	46
	9.39	Register 105 – Accelerometer Intelligence Control	47
	9.40	Register 106 – User Control	47
	9.41	Register 107 – Power Management 1	48
	9.42	Register 108 – Power Management 2	48
	9.43	Register 114 – FIFO Count Registers	48
	9.44	Register 115 – FIFO Count Registers	49
	9.45	Register 116 – FIFO Read Write	49
	9.46	Register 117 – Who Am I	49
	9.47	Register 119 – Accelerometer Offset Register	49
	9.48	Register 120 – Accelerometer Offset Register	50
	9.49	Register 122 – Accelerometer Offset Register	50
	9.50	Register 123 – Accelerometer Offset Register	50
	9.51	Register 125 – Accelerometer Offset Register	50
	9.52	Register 126 – Accelerometer Offset Register	50
10	I ² C Ope	eration And Communication	51
	10.1	Power-Up and Communication Start	51
	10.2	Measurement Commands	51
	10.3	Starting a Measurement	51
	10.4	Sensor Behavior during Measurement	51
	10.5	Readout of Measurement Results	51
	10.6	Soft Reset	52
	10.7	Readout of ID Register	52
	10.8	Checksum Calculation	52
	10.9	Conversion of Signal Output	52
	10.10	Readout of Calibration Parameters	53
	10.11	Sample Code: Example C Syntax	54
	10.12	Sample Code: Conversion Formula (Example Python Syntax)	56
	10.13	Sample Code: Using Conversion Formula (Example Python Syntax)	57

	10.14	Communication Data Sequences	.57
11	Assemb	ly	. 58
	11.1	Orientation of Axes	.58
	11.2	Implementation and Usage Recommendations	.58
	11.3	Package Dimensions	.59
12	Part Nur	mber Package Marking	. 61
13	Orderin	g Guide	. 62
14	Referen	ce	. 63
15	Revision	History	. 64

LIST OF FIGURES

Figure 1. I ² C Bus Timing Diagram	16
Figure 2. Pin out Diagram for ICM-20789	
Figure 3. I ² C Communication – 1.8V Supply Schematic	19
Figure 4. I ² C Communication MCU Interface at 3V or 1.8V Schematic	
Figure 5. SPI Communication for Gyro/Accel; I ² C for Pressure Schematic	21
Figure 6. SPI Communication for Gyro/Accel; I ² C Pressure; MCU Digital Interface: 1.8V Schematic	21
Figure 7. SPI Communication for Gyro/Accel; I ² C for Pressure; MCU Digital Interface: 3.0V Schematic	22
Figure 8. ICM-20789 Block Diagram (I ² C interface)	23
Figure 9. ICM-20789 Block Diagram (SPI/ I ² C interface)	
Figure 10. ICM-20789 Solution Using I ² C Interface	
Figure 11. START and STOP Conditions	
Figure 12. Acknowledge on the I ² C Bus	
Figure 13. Complete I ² C Data Transfer	31
Figure 14. I/O Levels and Connections	34
Figure 15. Communication Sequence for starting a measurement and reading measurement results	57
Figure 16. Orientation of Axes of Sensitivity and Polarity of Rotation	58
Figure 17. Package Dimensions	
Figure 18. ICM-20789 recommended PCB land pattern	
Figure 19. Part Number Package Marking	

LIST OF TABLES

Table 1. Gyroscope Specifications	
Table 2. Accelerometer Specifications	
Table 3. Operation Ranges	
Table 4. Operation Modes	
Table 5. Pressure Sensor Specifications	12
Table 6. Temperature Sensor Specifications	13
Table 7. D.C. Electrical Characteristics	
Table 8. A.C. Electrical Characteristics (6-Axis)	14
Table 9. Electrical Characteristics (Pressure sensor)	
Table 10. Other Electrical Specifications	
Table 11. I ² C Timing Characteristics	
Table 12. Absolute Maximum Ratings (6-Axis)	
Table 13. Absolute Maximum Ratings (pressure sensor)	17
Table 14. Signal Descriptions	18
Table 15. Bill of Materials	22
Table 16. Standard Power Modes for ICM-20789	28
Table 17. Table of Interrupt Sources	29
Table 18. Serial Interface	30
Table 19. I ² C Term SPI Interface	
Table 20. Register Map	36
Table 21. Gyroscope and Temperature Sensor (Filtered according to the value of DLPF_CFG and FCHOICE_B)	
Table 22. Accelerometer Data Rates and Bandwidths (Low Noise Mode)	40
Table 23. Accelerometer Data Rates and Bandwidths (Low Power Mode)	41
Table 24. Example Configurations for Gyroscope Low Power Mode	42
Table 25. ICM-20789 I ² C Device Address	51
Table 26. Measurement Commands	51
Table 27. Soft Reset Command	52
Table 28. Readout Command of ID Register	52
Table 29. Structure of the 16-bit ID	52
Table 30. ICM-20789 I ² C CRC Properties	52
Table 31. Package Dimensions Table	59

1 INTRODUCTION

1.1 PURPOSE AND SCOPE

This document is a product specification, providing a description, specifications, and design related information on the ICM-20789, a 6-axis inertial and pressure sensor device. The device is packaged in a 4 mm x 4 mm x 1.365 mm 24-pin LGA package.

1.2 PRODUCT OVERVIEW

The ICM-20789 is a 6-axis inertial sensor, 3-axis gyroscope and a 3-axis accelerometer, ultra-low noise MEMS capacitive barometric pressure sensor in a 4 mm x 4 mm x 1.365 mm (24-pin LGA) package. It features a 4 KB FIFO that can lower the traffic on the serial bus interface.

The digital output barometric pressure sensor is based on an ultra-low noise innovative MEMS capacitive technology that can measure pressure differences with an accuracy of ± 1 Pa, an accuracy enabling altitude measurement differentials as small as 8.5 cm without the penalty of increased power consumption or reduced sensor throughput. The capacitive pressure sensor has a ± 1 hPa absolute accuracy over its full range of 300 hPa -1100 hPa. The pressure sensor offers industry leading temperature stability of the pressure sensor with a temperature coefficient offset of ± 0.5 Pa/°C, embedded temperature sensor and 400 kHz I²C bus for communication.

The gyroscope has a programmable full-scale range of ± 250 dps, ± 500 dps, ± 1000 dps, and ± 2000 dps. The accelerometer has a user-programmable full-scale range of $\pm 2g$, $\pm 4g$, $\pm 8g$, and $\pm 16g$. Factory-calibrated initial sensitivity of both sensors reduces production-line calibration requirements. Other features include on-chip 16-bit ADCs, programmable digital filters, another embedded temperature sensor, and programmable interrupts. The device features I²C serial interface to access its registers at 400 kHz as well as at 8 MHz SPI.

By leveraging its patented and volume-proven CMOS-MEMS fabrication platform, which integrates MEMS wafers with companion CMOS electronics through wafer-level bonding, TDK-InvenSense has driven the package size down to a footprint and thickness of 4 mm x 4 mm x 1.365 mm (24-pin LGA), to provide an integrated high-performance package. The device provides high robustness by supporting 10,000*q* shock reliability.

1.3 APPLICATIONS

- Drones and Flying Toys
- Motion-based gaming controllers
- Virtual Reality Headsets & Controllers
- Indoor/Outdoor Navigation (dead-reckoning, floor/elevation/step detection)

Document Number: DS-000169 Page 8 of 65

2 FEATURES

2.1 GYROSCOPE FEATURES

- Digital-output X-, Y-, and Z-axis angular rate sensors (gyroscopes) with a user-programmable full-scale range of ±250 dps, ±500 dps, ±1000 dps, and ±2000 dps and integrated 16-bit ADCs
- Digitally-programmable low-pass filter
- Low-power gyroscope operation
- Factory calibrated sensitivity scale factor
- Self-test

2.2 ACCELEROMETER FEATURES

- Digital-output X-, Y-, and Z-axis accelerometer with a programmable full scale range of ±2g, ±4g, ±8g, and ±16g and integrated 16-bit ADCs
- User-programmable interrupts
- Wake-on-motion interrupt for low power operation of applications processor
- Self-test

2.3 PRESSURE SENSOR FEATURES

- Pressure operating range: 30 kPa to 110 kPa
- 4 operating modes to optimize noise and power, 3 example modes:
 - 3.2 Pa @ 1.3 μA (LP mode)
 - o 0.8 Pa @ 5.2 μA (LN mode)
 - 0.4 Pa @ 10.4 μA (ULN mode)
- Relative accuracy: ±1 Pa for any 10 hPa change over 950 hPa-1050 hPa at 25°C
- Absolute accuracy: ±1 hPa over 950 hPa-1050 hPa, 0°C to 65°C
- Temperature Coefficient Offset: ±0.5 Pa/°C over 25°C to 45°C at 100 kPa
- I²C at 400 kHz
- Temperature sensor accuracy: ±0.4°C

2.4 ADDITIONAL FEATURES

- Minimal cross-axis sensitivity between the accelerometer and gyroscope axes
- 4 kB FIFO buffer enables the applications processor to read the data in bursts
- Digital-output temperature sensor
- User-programmable digital filters for gyroscope, accelerometer, and temp sensor
- 10,000*g* shock tolerant
- 400 kHz Fast Mode I²C for communicating with all registers
- RoHS and Green compliant

2.5 MOTION PROCESSING

- Internal Digital Motion Processing™ (DMP™) engine supports advanced MotionProcessing and low power functions
- DMP operation is possible in low-power gyroscope and low-power accelerometer modes

3 **ELECTRICAL CHARACTERISTICS**

3.1 GYROSCOPE SPECIFICATIONS

Typical Operating Circuit Figure 3, VDD = 1.8V, VDDIO = 1.8V, T_A =25°C, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES	
GYROSCOPE SENSITIVITY							
Full-Scale Range	FS_SEL=0		±250		dps	3	
	FS_SEL=1		±500		dps	3	
	FS_SEL=2		±1000		dps	3	
	FS_SEL=3		±2000		dps	3	
Gyroscope ADC Word Length			16		bits	3	
Sensitivity Scale Factor	FS_SEL=0		131		LSB/(dps)	3	
	FS_SEL=1		65.5		LSB/(dps)	3	
	FS_SEL=2		32.8		LSB/(dps)	3	
	FS_SEL=3		16.4		LSB/(dps)	3	
Sensitivity Scale Factor Tolerance	Component-Level, 25°C		±2		%	2	
Sensitivity Scale Factor Variation Over Temperature	-40°C to +85°C		±1.5		%	1	
Nonlinearity	Best fit straight line; 25°C		±0.1		%	1	
Cross-Axis Sensitivity			±2		%	1	
	ZERO-RATE OUTPUT (ZRO	0)					
Initial ZRO Tolerance	Component-Level, 25°C		±5		dps	2	
ZRO Variation Over Temperature	-40°C to +85°C		±0.05		dps/°C	1	
	GYROSCOPE NOISE PERFORMANCE	(FS SEL=0)					
Noise Spectral Density		Ì -	0.006		dps/vHz	1	
Gyroscope Mechanical Frequencies		25	27	29	kHz	2	
Low Pass Filter Response	Programmable Range	5		250	Hz	3	
Gyroscope Start-Up Time	From Sleep mode		35		ms	1	
Output Data Rate	Standard (duty-cycled) mode	3.91		500	Hz	1	
Ostpat Bata Nate	Low-Noise (active) mode	4		8000	Hz	1	

Table 1. Gyroscope Specifications

- 1. Derived from validation or characterization of parts, not guaranteed in production.
- 2. Tested in production.
- 3. Guaranteed by design.

3.2 ACCELEROMETER SPECIFICATIONS

Typical Operating Circuit Figure 3, VDD = 1.8V, VDDIO = 1.8V, T_A=25°C, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
ACCELEROMETER SENSITIVITY						
	AFS_SEL=0		±2		g	3
	AFS_SEL=1		±4		g	3
Full-Scale Range	AFS_SEL=2		±8		g	3
	AFS_SEL=3		±16		g	3
ADC Word Length	Output in two's complement format		16		bits	3
	AFS_SEL=0		16,384		LSB/g	3
Canaiki iku Caala Faakan	AFS_SEL=1		8,192		LSB/g	3
Sensitivity Scale Factor	AFS_SEL=2		4,096		LSB/g	3
	AFS_SEL=3		2,048		LSB/g	3
Sensitivity Initial Tolerance	Component-Level, 25°C		±2		%	2
Sensitivity Change vs. Temperature	-40°C to +85°C		±1		%	1
Nonlinearity	Best Fit Straight Line		±0.5		%	1
Cross-Axis Sensitivity			±2		%	1
	ZERO-G OUTPUT					
Offset Initial Tolerance	Component-Level, 25°C		±80		m <i>g</i>	2
Zero-G Level Change vs. Temperature	-5°C to +85°C		±0.75		m <i>g</i> /°C	1
	NOISE PERFORMANCI					
Noise Spectral Density			150		μ <i>g/</i> √Hz	1
Low Pass Filter Response	Programmable Range	5		218	Hz	3
Intelligence Function Increment			4		mg/LSB	3
Accelerometer Startup Time	From Sleep mode		20		ms	1
Acceleronieter Startup Time	From Cold Start, 1 ms V _{DD} ramp		30		ms	1
Output Data Rate	Standard (duty-cycled) mode	0.24		500	Hz	1
- Carpar Sata Nate	Low-Noise (active) mode	4		4000	Hz	

Table 2. Accelerometer Specifications

- ${\bf 1.} \qquad {\bf Derived \ from \ validation \ or \ characterization \ of \ parts, \ not \ guaranteed \ in \ production.}$
- 2. Tested in production.
- 3. Guaranteed by design.

3.3 PRESSURE SENSOR SPECIFICATIONS

Typical Operating Circuit Figure 3, VDD = 1.8V, VDDIO = 1.8V, TA=25°C, unless otherwise noted.

OPERATION RANGE	PRESSURE (kPa)	TEMPERATURE (°C)	
Normal	70 to 110	0 to 65	
Extended	30 to 110	0 to 65	
Maximum	25 to 115	-40 to 85	

Table 3. Operation Ranges

PRESSURE	CONDITIONS	Sensor Mode	TYP	MAX	UNITS	NOTES
PARAMETER						
	Time between sending last	Low Power (LP)	1.6	1.8		1
	bit of measurement	Normal (N)	5.6	6.3		1
Conversion Time	command, and sensor data	Low Noise (LN)	20.8	23.8	ms	1
	ready for measurement	Ultra Low Noise (ULN)	83.2	94.5	-	1
		Low Power (LP)	1.3			
Commont	1 Hz ODR	Normal (N)	2.6			
Current		Low Noise (LN)	5.2		μΑ	
Consumption		Ultra Low Noise (ULN)	10.4			
		Low Power (LP)	3.2			
Duoseuro DMC	W 1516 B 4001B T	Normal	1.6			
Pressure RMS Noise	Valid for P = 100 kPa, T = 25°C, and U = 1.8V	Low Noise (LN)	0.8		Pa	
	25 C, and 0 – 1.6V	Ultra Low Noise (ULN)	0.4			

Table 4. Operation Modes

Notes:

1. Guaranteed by design.

PARAMETER	CONDITIONS	TYP	UNITS	NOTES
Absolute Accuracy	Normal range	±1	hPa	1
	Extended range	±1.5		1
Relative Accuracy	Any step ≤ 1 kPa, 25 °C	±1	Pa	
	Any step ≤ 10 kPa, 25 °C	±3	га	
Long-term drift	Extended range	±1	hPa/v	
During 1 year	Exterioed range	-1	TIF a/ y	
Solder drift		1.5	hPa	1, 2
Temperature coefficient offset	P = 100 kPa	±0.5	Pa/°C	
	25°C 45°C	±0.5	ra/ C	
Resolution	Maximum range	0.01	Pa	

Table 5. Pressure Sensor Specifications

- 1. Absolute accuracy may be improved through One Point Calibration
- 2. Sensor accuracy post Solder reflow may be improved through One Point Calibration

Temperature PARAMETER	CONDITIONS	TYP	MAX	UNITS	NOTES
Absolute Accuracy	Extended range	±0.4		°	
Repeatability	Extended range	±0.1		ပ္	
Resolution	Maximum range	0.01		°C	
Long-term drift	Normal range	< 0.04		°C/y	

Table 6. Temperature Sensor Specifications

3.4 ELECTRICAL SPECIFICATIONS

D.C. Electrical Characteristics

Typical Operating Circuit Figure 3, VDD = 1.8V, VDDIO = 1.8V, T_A=25°C, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS	NOTES			
	SUPPLY VOLTAGES								
VDD (For 6-axis MEMS)		1.71	1.8	3.45	V	1			
VDDIO (Pressure Sensor VDD and Chip I/O)		1.71	1.8	1.98	V	1			
	SUPPLY CURRENTS & BOOT TIME								
Normal Mode	7-axis Gyroscope + Accelerometer + Pressure		3.0		mA	1			
	3-axis Gyroscope		2.6		mA	1			
	3-axis Accelerometer, 4 kHz ODR		390		μΑ	1			
	Pressure Sensor		1.1		μΑ	1			
Accelerometer Low -Power Mode	100 Hz ODR, 1x averaging		57		μΑ	2			
Gyroscope Low-Power Mode	100 Hz ODR, 1x averaging		1.6		mA	2			
6-Axis Low-Power Mode (Gyroscope Low- Power Mode; Accelerometer Low-Noise Mode)	100 Hz ODR, 1x averaging		1.9		mA	2			
Full-Chip Sleep Mode			6		μΑ	1			
TEMPERATURE RANGE									
Specified Temperature Range	Performance parameters are not applicable beyond Specified Temperature Range	-40		+85	°C	1			

Table 7. D.C. Electrical Characteristics

- 1. Derived from validation or characterization of parts, not guaranteed in production.
- 2. Based on simulation.

A.C. Electrical Characteristics

Typical Operating Circuit Figure 3, VDD = 1.8V, VDDIO = 1.8V, T_A=25°C, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES			
SUPPLIES									
Supply Ramp Time (T _{RAMP})	Monotonic ramp. Ramp rate is 10% to 90% of the final value	0.01		100	ms	1			
	TEMPERAT	URE SENSOR							
Operating Range	Ambient	-40		85	°C	1			
Room Temperature Offset	25°C		0		°C	1			
Sensitivity	Untrimmed		0.003		°C/LSB	1			
	POWER-	ON RESET							
Supply Ramp Time (T _{RAMP}) (6-Axis)	Valid power-on RESET	0.01		100	ms	1			
Start-up time for register read/write	From power-up		11	100	ms	1			
(6-Axis)	From sleep			5	ms	1			
Power-up time (pressure sensor)	After hard reset (Vdd>Vpor		170		μs	1			
Soft reset time (Pressure sensor)	After soft reset		170		μs	a			
I ² C ADDRESS	AD0 = 0 AD0 = 1		1101000 1101001						
V _{IH} , High-Level Input Voltage	DIGITAL INPU	TS (FSYNC, AD0) 0.7*VDDIO			V	T			
V _{IL} , Low-Level Input Voltage		0.7 VDDIO		0.3*VDDIO	V	1			
C _I , Input Capacitance			< 10	0.5 40010	pF	1			
a, input supuoitanes	DIGITAL O		110		P ₁				
V _{OH} , High- Level Output Voltage	$R_{LOAD} = 1 M\Omega;$	0.9*VDDIO			V	T			
V _{OL1} , Low-Level Output Voltage	$R_{LOAD} = 1 M\Omega;$	0.5 10010		0.1*VDDIO		1			
V _{OLINT} , INT Low-Level Output Voltage	OPEN = 1, 0.3 mA sink			0.1	V	1			
OLIMI) 2010 2010 appear a comp	Current			0.1	•	1			
Output Leakage Current	OPEN = 1		100		nA	1			
t _{INT} , INT Pulse Width	LATCH_INT_EN = 0		50		μs	1			
	12C 1/O (SCL, SDA)							
V _{IL} , Low-Level Input Voltage	. 31/01	-0.5 V		0.3*VDDIO	V				
V _{IH} , High-Level Input Voltage		0.7*VDDIO		VDDIO + 0. 5 V	V	1			
V _{hys} , Hysteresis			0.1*VDDIO		V	1			
V _{OL} , Low-Level Output Voltage	3 mA sink current	0		0.4	V				
I _{OL} , Low-Level Output Current	V _{OL} = 0.4 V		3		mA	1			
	V _{OL} = 0.6 V		6		mA				
Output Leakage Current			100		nA				
$t_{\text{of}}\text{, Output Fall Time from }V_{\text{IHmax}}$ to V_{ILmax}	C _b bus capacitance in pf	20+0.1C _b		300	ns				

Table 8. A.C. Electrical Characteristics (6-Axis)

Notes:

1. Guaranteed by design

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS	COMMENTS
Supply voltage	V _{DD}		1.71	1.8	1.89	V	
Power-up/down level	V_{POR}	Static power supply	1.0	1.25	1.5	V	
		Idle state	-	1.0	2.5	μΑ	
		Measurement	-	210	300	μΑ	Current consumption while sensor is measuring.
Supply current	I _{DD}	Average	-	1.3	-	μΑ	Current consumption in continuous operation @ 1 Hz ODR in LP Mode
			-	5.2	-	μА	Current consumption in continuous operation @1 Hz ODR in LN Mode
Low level input voltage	V _{IL}		0	-	0.3 V _{DD}	V	
High level input voltage	V _{IH}		0.7 V _{DD}	-	V_{DD}	V	
Low level output voltage	V _{OL}	0 < IOL < 3 mA	-	-	0.2 V _{DD}	V	
Output Sink Current		V _{OL} = 0.4V	3.1	4.1	-	mA	
	I _{OL}	V _{OL} = 0.6V	3.5	4.5	-	mA	

Table 9. Electrical Characteristics (Pressure sensor)

Other Electrical Specifications

Typical Operating Circuit Figure 3, VDD = 1.8V, VDDIO = 1.8V, T_A=25°C, unless otherwise noted.

PARAMETER CONDITIONS		MIN	TYP	MAX	UNITS	NOTES
SERIAL INTERFACE						
12C Operating Fraguency	All registers, Fast-mode			400	kHz	1
I ² C Operating Frequency	All registers, Standard-mode			100	kHz	1

Table 10. Other Electrical Specifications

Notes:

 ${\bf 1.} \qquad {\bf Derived \ from \ validation \ or \ characterization \ of \ parts, \ not \ guaranteed \ in \ production.}$

3.5 I²C TIMING CHARACTERIZATION

Typical Operating Circuit Figure 3, VDD = 1.8V, VDDIO = 1.8V, T_A=25°C, unless otherwise noted.

PARAMETERS	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
I ² C TIMING	I ² C FAST-MODE					
f _{SCL} , SCL Clock Frequency				400	kHz	1
t _{HD.STA} , (Repeated) START Condition Hold Time		0.6			μs	1
t _{LOW} , SCL Low Period		1.3			μs	1
t _{HIGH} , SCL High Period		0.6			μs	1
t _{SU.STA} , Repeated START Condition Setup Time		0.6			μs	1
t _{HD.DAT} , SDA Data Hold Time		0			μs	1
t _{SU.DAT} , SDA Data Setup Time		100			ns	1
t _r , SDA and SCL Rise Time	C _b bus cap. from 10 to 400 pF	20+0.1C _b		300	ns	1
t _f , SDA and SCL Fall Time	C _b bus cap. from 10 to 400 pF	20+0.1C _b		300	ns	1
t _{SU.STO} , STOP Condition Setup Time		0.6			μs	1
t _{BUF} , Bus Free Time Between STOP and START Condition		1.3			μs	1
C _b , Capacitive Load for each Bus Line			< 400		pF	1

Document Number: DS-000169 Page 15 of 65

Revision: 1.4

PARAMETERS	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
I ² C TIMING	I ² C FAST-MODE					
t _{VD.DAT} , Data Valid Time				0.9	μs	1
t _{VD.ACK} , Data Valid Acknowledge Time				0.9	μs	1

Table 11. I²C Timing Characteristics

Notes:

1. Based on characterization of 5 parts over temperature and voltage as mounted on evaluation board or in sockets

Figure 1. I²C Bus Timing Diagram

3.6 ABSOLUTE MAXIMUM RATINGS

Stress above those listed as "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to the absolute maximum ratings conditions for extended periods may affect device reliability.

PARAMETER	RATING
Supply Voltage, VDD (for 6-axis MEMS)	-0.5V to 4V
Supply Voltage, VDDIO (for Pressure Sensor VDD and I/O)	-0.5V to 2.16V
REGOUT	-0.5V to 2V
Input Voltage Level (AD0, FSYNC, SCL, SDA)	-0.5V to VDD + 0.5V
Acceleration (Any Axis, unpowered)	10,000 <i>g</i> for 0.2 ms
Operating Temperature Range	-40°C to 85°C
Storage Temperature Range	-40°C to 125°C
Electrostatic Discharge (ESD) Protection	2 kV (HBM); 250V (MM)
Latch-up	JEDEC Class II (2),125°C ±100 mA

Table 12. Absolute Maximum Ratings (6-Axis)

PARAMETER	RATING
Supply voltage, VDD	-0.3V to 2.16V
Supply Voltage, SCL & SDA	-0.3V to VDD + 0.3V
Operating temperature range	-40°C to +85°C
Storage temperature range	-40°C to 125°C
ESD HBM	1.0 kV
ESD CDM	250V
Latch up, JESD78 Class II, 85°C	100 mA
Overpressure	>600 kPa

Table 13. Absolute Maximum Ratings (pressure sensor)

4 APPLICATIONS INFORMATION

4.1 PIN OUT DIAGRAM AND SIGNAL DESCRIPTION

PIN NUMBER	PIN NAME	PIN DESCRIPTION
6	PR_DA	I ² C interface data pin for Pressure Sensor access
7	PR_CL	I ² C interface clock pin for Pressure Sensor access
8	VDDIO	Digital I/O supply voltage
9	AD0/SDO	I ² C slave address LSB (AD0); SPI serial data output (SDO)
10	REGOUT	Regulator filter capacitor connection
11	FSYNC	Frame synchronization digital input. Connect to GND if unused.
12	INT	Interrupt digital output (totem pole or open-drain)
13	VDD	Power supply voltage
18	GND	Power supply ground
22	nCS	SPI chip select
23	SCL/SCLK	I ² C serial clock (SCL); SPI serial clock (SCLK)
24	SDA/SDI	I ² C serial data (SDA); SPI serial data input (SDI)
1, 19, 20, 21	NC	No Connect
2, 3, 4, 5, 14, 15, 16, 17	GND/VDD/NC	Connect to: GND or VDD or No Connection

Table 14. Signal Descriptions

- 1. VDD and VDDIO cannot be shorted if VDD > 1.98V
- 2. VDD & VDDIO should not violate operating range specifications as mentioned in Section 3.4

Top View – LGA Package 24-pin, 4mm x 4mm x 1.365mm

Orientation of Axes of Sensitivity and Polarity of Rotation

Figure 2. Pin out Diagram for ICM-20789

4.2 TYPICAL OPERATING CIRCUIT

I²C Communication – 1.8V Supply Schematic

I2C device address:

- Gyro/Accel = 0x68 (AD0=L, pin-9)
- Gyro/Accel = 0x69 (AD0=H, pin-9)
- Pressure sensor = 0x63

ICM-20789 Register Setting:

- Bypass = enable
- Master I2C = disable

Figure 3. I²C Communication – 1.8V Supply Schematic

I²C Communication MCU Interface at 3V or 1.8V Schematic

Figure 4. I²C Communication MCU Interface at 3V or 1.8V Schematic

SPI Communication for Gyro/Accel; I²C for Pressure Schematic

Figure 5. SPI Communication for Gyro/Accel; I²C for Pressure Schematic

SPI Communication for Gyro/Accel; I²C Pressure; MCU Digital Interface: 1.8V Schematic

Figure 6. SPI Communication for Gyro/Accel; I²C Pressure; MCU Digital Interface: 1.8V Schematic

SPI Communication for Gyro/Accel; I²C for Pressure; MCU Digital Interface: 3.0V Schematic

Figure 7. SPI Communication for Gyro/Accel; I²C for Pressure; MCU Digital Interface: 3.0V Schematic

Note: I^2C lines are open drain and pullup resistors (e.g. 10 $k\Omega)$ are required.

4.3 BILL OF MATERIALS FOR EXTERNAL COMPONENTS

COMPONENT	LABEL	SPECIFICATION	QUANTITY
REGOUT Capacitor	C1	X7R, 0.1 μF ±10%	1
VDD Bypass Capacitors	C2	X7R, 0.1 μF ±10%	1
	C4	X7R, 2.2 μF ±10%	1
VDDIO Bypass Capacitor	C3	X7R, 10 nF ±10%	1

Table 15. Bill of Materials

4.4 BLOCK DIAGRAM

Figure 8. ICM-20789 Block Diagram (I²C interface)

Figure 9. ICM-20789 Block Diagram (SPI/I²C interface)

4.5 OVERVIEW

The ICM-20789 is comprised of the following key blocks and functions:

- Three-axis MEMS rate gyroscope sensor with 16-bit ADCs and signal conditioning
- Three-axis MEMS accelerometer sensor with 16-bit ADCs and signal conditioning
- Digital Motion Processor (DMP) engine
- I²C serial communications interfaces
- Self-Test
- Clocking
- Sensor Data Registers
- FIFO
- Interrupts
- Digital-Output Temperature Sensor
- Bias and LDOs
- Charge Pump
- Standard Power Modes
- Pressure Sensor

4.6 THREE-AXIS MEMS GYROSCOPE WITH 16-BIT ADCS AND SIGNAL CONDITIONING

The ICM-20789 consists of three independent vibratory MEMS rate gyroscopes, which detect rotation about the X-, Y-, and Z- Axes. When the gyros are rotated about any of the sense axes, the Coriolis Effect causes a vibration that is detected by a capacitive pickoff. The resulting signal is amplified, demodulated, and filtered to produce a voltage that is proportional to the angular rate. This voltage is digitized using individual on-chip 16-bit Analog-to-Digital Converters (ADCs) to sample each axis. The full-scale range of the gyro sensors may be digitally programmed to ±250, ±500, ±1000, or ±2000 degrees/sec (dps). The ADC sample rate is programmable from 8,000 samples/sec, to 3.9 samples/sec, and user-selectable low-pass filters enable a wide range of cut-off frequencies.

4.7 THREE-AXIS MEMS ACCELEROMETER WITH 16-BIT ADCS AND SIGNAL CONDITIONING

The ICM-20789's 3-Axis accelerometer uses separate proof masses for each axis. Acceleration along a particular axis induces displacement on the corresponding proof mass, and capacitive sensors detect the displacement differentially. The ICM-20789's architecture reduces the accelerometers' susceptibility to fabrication variations as well as to thermal drift. When the device is placed on a flat surface, it will measure 0g on the X- and Y-axes and +1g on the Z-axis. The accelerometers' scale factor is calibrated at the factory and is nominally independent of supply voltage. Each sensor has a dedicated sigma-delta ADC for providing digital outputs. The full-scale range of the digital output can be adjusted to $\pm 2g$, $\pm 4g$, $\pm 8g$, or $\pm 16g$.

4.8 DIGITAL MOTION PROCESSOR

The embedded Digital Motion Processor (DMP) offloads computation of motion processing algorithms from the host processor. The DMP acquires data from the accelerometer and gyroscope, processes the data, and the results can be read from the FIFO. The DMP has access to one of the external pins, which can be used for generating interrupts. The purpose of the DMP is to offload both timing requirements and processing power from the host processor. Typically, motion processing algorithms should be run at a high rate, often around 200 Hz to provide accurate results with low latency. This is required even if the application updates at a much lower rate; for example, a low power user interface may update as slowly as 5 Hz, but the motion processing should still run at 200 Hz. The DMP can be used to minimize power, simplify timing, simplify the software architecture, and save valuable MIPS on the host processor for use in applications. DMP operation is possible in low-power gyroscope and low-power accelerometer modes.

4.9 PRESSURE SENSOR

The pressure sensor is a capacitive pressure sensor, and has a membrane over a sealed cavity at a reference pressure. External pressure changes relative to the sealed cavity pressure cause the membrane to deflect. The membrane and the floor of the cavity form a capacitor where the capacitance changes in response to changes in external pressure. The capacitance measurement is converted to a voltage proportional to the external pressure by the on-chip electronics. An external algorithm is used to compensate for temperature effects on the pressure accuracy.

4.10 I²C SERIAL COMMUNICATIONS INTERFACE

The ICM-20789 communicates to a system processor using a I^2C serial interface. The ICM-20789 always acts as a slave when communicating to the system processor. The LSB of the I^2C slave address is set by pin 9 (AD0).

Document Number: DS-000169 Page 25 of 65

Revision: 1.4

ICM-20789 Solution Using I²C Interface

Recommended operation mode is described in Figure 10, with the system processor being an I²C master to the ICM-20789.

Figure 10. ICM-20789 Solution Using I²C Interface

Note: I^2C lines are open drain and pullup resistors (e.g. 10 k Ω) are required.

Accessing Pressure Sensor Data

Pressure sensor data can be accessed in the following mode:

• Bypass Mode: Set register INT_PIN_CFG (Address: 55 (Decimal); 37 (Hex)) bit 1 to value 1 and I2C_MST_EN bit is '0' (Address: 106 (Decimal); 6A (Hex). Pressure sensor data can then be accessed using the procedure described in Section 10.

4.11 SELF-TEST

Self-test allows for the testing of the mechanical and electrical portions of the sensors. The self-test for each measurement axis can be activated by means of the gyroscope and accelerometer self-test registers (registers 27 and 28).

When the self-test is activated, the electronics cause the sensors to be actuated and produce an output signal. The output signal is used to observe the self-test response.

The self-test response is defined as follows:

SELF-TEST RESPONSE = SENSOR OUTPUT WITH SELF-TEST ENABLED - SENSOR OUTPUT WITH SELF-TEST DISABLED

When the value of the self-test response is within the specified min/max limits of the product specification, the part has passed self-test. When the self-test response exceeds the min/max values, the part is deemed to have failed self-test. It is recommended to use TDK-InvenSense MotionApps software for executing self-test.

Document Number: DS-000169 Page 26 of 65

4.12 CLOCKING

The ICM-20789 has a flexible clocking scheme, allowing a variety of internal clock sources to be used for the internal synchronous circuitry. This synchronous circuitry includes the signal conditioning and ADCs, the DMP, and various control circuits and registers. An on-chip PLL provides flexibility in the allowable inputs for generating this clock.

Allowable internal sources for generating the internal clock are:

- a) An internal relaxation oscillator
- b) Auto-select between internal relaxation oscillator and gyroscope MEMS oscillator to use the best available source

The only setting supporting specified performance in all modes is option b). It is recommended that option b) be used.

4.13 SENSOR DATA REGISTERS

The sensor data registers contain the latest gyroscope, accelerometer, and temperature measurement data. They are read-only registers, and are accessed via the serial interface. Data from these registers may be read anytime.

4.14 FIFO

The ICM-20789 contains a 4 kB FIFO register that is accessible via the Serial Interface. The FIFO configuration register determines which data is written into the FIFO. Possible choices include gyro data, accelerometer data, temperature readings, and FSYNC input. A FIFO counter keeps track of how many bytes of valid data are contained in the FIFO. The FIFO register supports burst reads. The interrupt function may be used to determine when new data is available.

The ICM-20789 allows FIFO read in low-power accelerometer mode.

4.15 INTERRUPTS

Interrupt functionality is configured via the Interrupt Configuration register. Items that are configurable include the INT pin configuration, the interrupt latching and clearing method, and triggers for the interrupt. Items that can trigger an interrupt are (1) Clock generator locked to new reference oscillator (used when switching clock sources); (2) new data is available to be read (from the FIFO and Data registers); (3) accelerometer event interrupts; (4) DMP; (5) FIFO overflow. The interrupt status can be read from the Interrupt Status register.

4.16 DIGITAL-OUTPUT TEMPERATURE SENSOR

An on-chip temperature sensor and ADC are used to measure the 6-axis motion die temperature. Another on-chip temperature sensor is present in the pressure sensor die. The readings from the ADC can be read from the FIFO or the Sensor Data registers.

4.17 BIAS AND LDOS

The bias and LDO section generates the internal supply and the reference voltages and currents required by the ICM-20789. Its two inputs are an unregulated VDD and a VDDIO logic reference supply voltage. The LDO output is bypassed by a capacitor at REGOUT. For further details on the capacitor, please refer to the Bill of Materials for External Components.

4.18 CHARGE PUMP

An on-chip charge pump generates the high voltage required for the MEMS oscillator.

Document Number: DS-000169 Page 27 of 65

4.19 STANDARD POWER MODES – UPDATE THE POWER MODES

The following table lists the user-accessible power modes for ICM-20789.

MODE	NAME	GYRO	ACCEL	DMP	PRESSURE
1	Sleep Mode	Off	Off	Off	Off
2	Standby Mode	Drive On	Off	Off	Off
3	Accelerometer Low-Power Mode	Off	Duty-Cycled	On or Off	On or Off
4	Accelerometer Low-Noise Mode	Off	On	On or Off	On or Off
5	Gyroscope Low-Power Mode	Duty-Cycled	Off	On or Off	On or Off
6	Gyroscope Low-Noise Mode	On	Off	On or Off	On or Off
7	6-Axis Low-Noise Mode	On	On	On or Off	On or Off
8	6-Axis Low-Power Mode	Duty-Cycled	On	On or Off	On or Off
9	Pressure sensor Low Noise Mode	On	On	On or Off	On
10	Pressure Sensor Low Power Mode	Duty-Cycled	On	On or Off	On

Table 16. Standard Power Modes for ICM-20789

5 PROGRAMMABLE INTERRUPTS

The ICM-20789 has a programmable interrupt system which can generate an interrupt signal on the INT pin. Status flags indicate the source of an interrupt. Interrupt sources may be enabled and disabled individually.

INTERRUPT NAME	MODULE
Motion Detection	Motion
FIFO Overflow	FIFO
Data Ready	Sensor Registers
DMP	DMP

Table 17. Table of Interrupt Sources

5.1 PER AXIS WAKE-ON-MOTION INTERRUPT

The ICM-20789 provides motion detection capability. A qualifying motion sample is one where the high passed sample from any axis has an absolute value exceeding a user-programmable threshold. The following steps explain how to configure the Wake-on-Motion Interrupt.

Step 1: Ensure that Accelerometer is running

- In PWR_MGMT_1 register (0x6B) set CYCLE = 0, SLEEP = 0, and GYRO_STANDBY = 0
- In PWR_MGMT_2 register (0x6C) set DISABLE_XA = DISABLE_YA = DISABLE_ZA = 0, and DISABLE_XG = DISABLE_YG =
 DISABLE ZG = 1

Step 2: Accelerometer Configuration

1. In ACCEL_CONFIG2 register (0x1D) set ACCEL_FCHOICE_B = 0 and A_DLPF_CFG [2:0] = 1 (b001)

Step 3: Enable Motion Interrupt

2. In INT_ENABLE register (0x38) set WOM_X_INT_EN = WOM_Y_INT_EN = WOM_Z_INT_EN = 1 to enable motion interrupt per axis.

Step 4: Set Motion Threshold

3. Set the motion threshold in ACCEL WOM X THR (0x20), ACCEL WOM Y THR (0x21), ACCEL WOM Z THR (0x22)

Step 5: Enable Accelerometer Hardware Intelligence

4. In ACCEL_INTEL_CTRL register (0x69) set ACCEL_INTEL_EN = ACCEL_INTEL_MODE = 1; Ensure that bit 0 is set to 0.

Step 6: Set Frequency of Wake-Up

5. In SMPLRT_DIV register (0x19) set SMPLRT_DIV [7:0] = 3.9 Hz - 500 Hz

Step 7: Enable Cycle Mode (Accelerometer Low-Power Mode)

6. In PWR_MGMT_1 register (0x6B) set CYCLE = 1

Page 30 of 65

6 **DIGITAL INTERFACE**

6.1 I²C SERIAL INTERFACE

The internal registers and memory of the ICM-20789 can be accessed using either I²C at 400 kHz.

PIN NUMBER	PIN NAME	PIN DESCRIPTION
9	AD0	I ² C Slave Address LSB (AD0)
23	SCL	I ² C serial clock (SCL)
24	SDA	I ² C serial data (SDA)

Table 18. Serial Interface

6.2 I²C INTERFACE

 I^2C is a two-wire interface comprised of the signals serial data (SDA) and serial clock (SCL). In general, the lines are open-drain and bidirectional. In a generalized I^2C interface implementation, attached devices can be a master or a slave. The master device puts the slave address on the bus, and the slave device with the matching address acknowledges the master.

The ICM-20789 always operates as a slave device when communicating to the system processor, which thus acts as the master. SDA and SCL lines typically need pull-up resistors to VDDIO. The maximum bus speed is 400 kHz.

The slave address of the ICM-20789 is b110100X which is 7 bits long. The LSB bit of the 7-bit address is determined by the logic level on pin AD0. This allows two ICM-20789s to be connected to the same I²C bus. When used in this configuration, the address of one of the devices should be b1101000 (pin AD0 is logic low) and the address of the other should be b1101001 (pin AD0 is logic high).

6.3 I²C COMMUNICATIONS PROTOCOL (6-AXIS ONLY. FOR PRESSURE PLEASE SEE CHAPTER 10)

START (S) and STOP (P) Conditions

Communication on the I²C bus starts when the master puts the START condition (S) on the bus, which is defined as a HIGH-to-LOW transition of the SDA line while SCL line is HIGH (see figure below). The bus is considered to be busy until the master puts a STOP condition (P) on the bus, which is defined as a LOW to HIGH transition on the SDA line while SCL is HIGH (see Figure 11).

Additionally, the bus remains busy if a repeated START (Sr) is generated instead of a STOP condition.

Figure 11. START and STOP Conditions

Data Format / Acknowledge

I²C data bytes are defined to be 8 bits long. There is no restriction to the number of bytes transmitted per data transfer. Each byte transferred must be followed by an acknowledge (ACK) signal. The clock for the acknowledge signal is generated by the master, while the receiver generates the actual acknowledge signal by pulling down SDA and holding it low during the HIGH portion of the acknowledge clock pulse.

If a slave is busy and cannot transmit or receive another byte of data until some other task has been performed, it can hold SCL LOW, thus forcing the master into a wait state. Normal data transfer resumes when the slave is ready, and releases the clock line (refer to the following figure).

Figure 12. Acknowledge on the I²C Bus

Communications

After beginning communications with the START condition (S), the master sends a 7-bit slave address followed by an 8th bit, the read/write bit. The read/write bit indicates whether the master is receiving data from or is writing to the slave device. Then, the master releases the SDA line and waits for the acknowledge signal (ACK) from the slave device. Each byte transferred must be followed by an acknowledge bit. To acknowledge, the slave device pulls the SDA line LOW and keeps it LOW for the high period of the SCL line. Data transmission is always terminated by the master with a STOP condition (P), thus freeing the communications line. However, the master can generate a repeated START condition (Sr), and address another slave without first generating a STOP condition (P). A LOW to HIGH transition on the SDA line while SCL is HIGH defines the stop condition. All SDA changes should take place when SCL is low, with the exception of start and stop conditions.

Figure 13. Complete I²C Data Transfer

To write the internal ICM-20789 registers, the master transmits the start condition (S), followed by the I²C address and the write bit (0). At the 9th clock cycle (when the clock is high), the ICM-20789 acknowledges the transfer. Then the master puts the register address (RA) on the bus. After the ICM-20789 acknowledges the reception of the register address, the master puts the register data onto the bus. This is followed by the ACK signal, and data transfer may be concluded by the stop condition (P). To write multiple bytes after the last ACK signal, the master can continue outputting data rather than transmitting a stop signal. In this case, the ICM-20789 automatically increments the register address and loads the data to the appropriate register. The following figures show single and two-byte write sequences.

Single-Byte Write Sequence

Master	S	AD+W		RA		DATA		Р
Slave			ACK		ACK		ACK	

Burst Write Sequence

Master	S	AD+W		RA		DATA		DATA		Р
Slave			ACK		ACK		ACK		ACK	

To read the internal ICM-20789 registers, the master sends a start condition, followed by the I²C address and a write bit, and then the register address that is going to be read. Upon receiving the ACK signal from the ICM-20789, the master transmits a start signal followed by the slave address and read bit. As a result, the ICM-20789 sends an ACK signal and the data. The communication ends with a not acknowledge (NACK) signal and a stop bit from master. The NACK condition is defined such that the SDA line remains high at the 9th clock cycle. The following figures show single and two-byte read sequences.

Single-Byte Read Sequence

Master	S	AD+W		RA		S	AD+R			NACK	Р
Slave			ACK		ACK			ACK	DATA		

Burst Read Sequence

Master	S	AD+W		RA		S	AD+R			ACK		NACK	Р
Slave			ACK		ACK			ACK	DATA		DATA		

6.4 I²C TERMS

SIGNAL	DESCRIPTION
S	Start Condition: SDA goes from high to low while SCL is high
AD	Slave I ² C address
W	Write bit (0)
R	Read bit (1)
ACK	Acknowledge: SDA line is low while the SCL line is high at the 9th clock cycle
NACK	Not-Acknowledge: SDA line stays high at the 9 th clock cycle
RA	ICM-20789 internal register address
DATA	Transmit or received data
Р	Stop condition: SDA going from low to high while SCL is high

Table 19. I²C Term SPI Interface

SPI is a 4-wire synchronous serial interface that uses two control lines and two data lines. The ICM-20789 always operates as a Slave device during standard Master-Slave SPI operation (6-Axis only).

With respect to the Master, the Serial Clock output (SPC), the Serial Data Output (SDO) and the Serial Data Input (SDI) are shared among the Slave devices. Each SPI slave device requires its own Chip Select (CS) line from the master.

CS goes low (active) at the start of transmission and goes back high (inactive) at the end. Only one CS line is active at a time, ensuring that only one slave is selected at any given time. The CS lines of the non-selected slave devices are held high, causing their SDO lines to remain in a high-impedance (high-z) state so that they do not interfere with any active devices.

Document Number: DS-000169 Page 32 of 65

SPI Operational Features

- 1. Data is delivered MSB first and LSB last
- 2. Data is latched on the rising edge of SPC
- 3. Data should be transitioned on the falling edge of SPC
- 4. The maximum frequency of SPC is 8 MHz
- 5. SPI read and write operations are completed in 16 or more clock cycles (two or more bytes). The first byte contains the SPI Address, and the following byte(s) contain(s) the SPI data. The first bit of the first byte contains the Read/Write bit and indicates the Read (1) or Write (0) operation. The following 7 bits contain the Register Address. In cases of multiplebyte Read/Writes, data is two or more bytes:

SPI Address format

MSB							LSB
R/W	A6	A5	A4	А3	A2	A1	Α0

SPI Data format

MSB							LSB
D7	D6	D5	D4	D3	D2	D1	D0

6. Supports Single or Burst Read/Writes.

7 SERIAL INTERFACE CONSIDERATIONS

7.1 ICM-20789 SUPPORTED INTERFACES

The ICM-20789 supports I²C communications on its serial interface. The ICM-20789's I/O logic levels are set to be VDDIO.

Figure 14 depicts a sample circuit of ICM-20789. It shows the relevant logic levels and voltage connections.

Figure 14. I/O Levels and Connections

8 REGISTER MAP

Addr. (Dec)	Addr (Hex)	Register Names	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
0	00	SELF_TEST X GYRO				XG_ST_	DATA[7:0]						
1	01	SELF_TEST Y GYRO				YG_ST_	DATA[7:0]						
2	02	SELF_TEST Z GYRO				ZG_ST_	DATA[7:0]						
13	0D	SELF_TEST4(X ACCEL)				XA_ST_	DATA[7:0]						
14	0E	SELF_TEST5(Y ACCEL)				YA_ST_	DATA[7:0]						
15	OF	SELF_TEST6(Z ACCEL)				ZA_ST_	DATA[7:0]						
19	13	XG_OFFS_USRH				X_OFFS_	_USR[15:8]						
20	14	XG_OFFS_USRL				X_OFFS	_USR[7:0]						
21	15	YG_OFFS_USRH		Y_OFFS_USR[15:8]									
22	16	YG_OFFS_USRL		Y_OFFS_USR[7:0]									
23	17	ZG_OFFS_USRH				Z_OFFS_	_USR[15:8]						
24	18	ZG_OFFS_USRL				Z_OFFS	_USR[7:0]						
25	19	SMPLRT_DIV				SMPLRT	Γ_DIV[7:0]						
26	1A	CONFIG	FIFO_COUN T_REC	FIFO_MODE		EXT_SYNC_SET[2:0]			DLPF_CFG[2:0]				
27	1B	GYRO CONFIG	XGYRO_STE N	YGYRO_STEN	ZGYRO_STEN	GYRO_FS	_SEL[1:0]	-	FCHOIC	CE_B[1:0]			
28	1C	ACCEL_CONFIG	AX_ST_EN	AY_ST_EN	AZ_ST_EN	ACCEL_FS	_SEL[4:3]	-	-	-			
29	1D	ACCEL_CONFIG2	FIFO	FIFO_SIZE[1:0] DEC2_CFG[5:4] ACCEL_FCHOICE A_DLPF_CFG[2:0]									
30	1E	LP_MODE_CTRL	GYRO_CYCL E	GYRO_CYCL GYRO_AVGCFG[2:0] LDCSC_CLKSE[2[2:0]									
32	20	ACCEL_WOM_X_T HR		WOM_X_THRESHOLD[7:0]									
33	21	ACCEL_WOM_Y_T HR				WOM_Y_TH	IRESHOLD[7:0]						
34	22	ACCEL_WOM_Z_T HR				WOM_Z_TH	IRESHOLD[7:0]						
35	23	FIFO_EN	TEMP_OUT	GYRO_XOUT	GYRO_YOUT	GYRO_ZOUT	ACCEL_XYZ_OU T	-	-	-			
55	37	INT_PIN_CFG	ACTL	OPEN	LATCH_INT_EN	INT_ANYRD_2CLE AR	ACTL_FSYNC	FSYNC_INT_MOD E_EN	BYPASS_EN	-			
56	38	INT_ENABLE	WOM_X_IN T_EN	WOM_Y_INT_EN	WOM_Z_INT_EN	FIFO_OVERFLOW _EN	-	GDRIVE_RDY_EN	DMP_INT_EN	RAW_RDY_EN			
57	39	DMP_INT_STATUS	-	FIFO_WM_INT			DMP_I	NT [5:0]					
58	3A	INT_STATUS	WOM_X_IN T	WOM_Y_INT	WOM_Z_INT	FIFO_OVERFLOW _INT	-	GDRIVE_RDY_INT	DMP_INT	RAW_DATA_RDY _INT			
59	3B	ACCEL_XOUT_H			ACCEL_XOU	T_H [15:8]							
60	3C	ACCEL_XOUT_L			ACCEL_XOU	T_L[7:0]							
61	3D	ACCEL_YOUT_H			ACCEL_YOU	T_H[15:8]							
62	3E	ACCEL_YOUT_L			ACCEL_YOU	IT_L[7:0]							
63	3F	ACCEL_ZOUT_H			ACCEL_ZOL	JT_H[15:8]							
64	40	ACCEL_ZOUT_L			ACCEL_ZOI	JT_L[7:0]							
65	41	TEMP_OUT_H			TEMP_OUT	r_H[15:8]							
66	42	TEMP_OUT_L			TEMP_OU	T_L[7:0]							
67	43	GYRO_XOUT_H			GYRO_XOU	T_H[15:8]							
68	44	GYRO_XOUT_L		GYRO_XOUT_L[7:0]									
69	45	GYRO_YOUT_H		GYRO_YOUT_H[15:8]									
70	46	GYRO_YOUT_L		GYRO_YOUT_L[7:0]									
71	47	GYRO_ZOUT_H		GYRO_ZOUT_H[15:8]									
72	48	GYRO_ZOUT_L		GYRO_ZOUT_L[7:0]									
104	68	SIGNAL_PATH_RES ET	-	GYRO_RST ACCEL_RST TEMP_I									
105	69	ACCEL_INTEL_CTRL	ACCEL_INTE L_EN	ACCEL_INTEL_MO DE	-	-	-	-	-	-			

Addr. (Dec)	Addr (Hex)	Register Names	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
106	6A	USER_CTRL	DMP_EN	FIFO_EN	-	I2C_IF_DIS	DMP_RST	FIFO_RST	-	SIG_COND_RST			
107	6B	PWR_MGMT_1	DEVICE_RES ET	SLEEP	ACCEL_CYCLE	GYRO_STANDBY	TEMP_DIS		CLKSEL[2:0]				
108	6C	PWR_MGMT_2	LP_DIS	_DIS DMP_LP_DIS DISABLE_XA DISABLE_YA DISABLE_ZA DISABLE_XG DISABLE_YG DISABLE_ZG									
114	72	FIFO_COUNTH		FIFO_COUNTH[12:8]									
115	73	FIFO_COUNTL		FIFO_COUNTL[7:0]									
116	74	FIFO_R_W		FIFO_R_W[7:0]									
117	75	WHO_AM_I				WHO_A	AM_I[7:0]						
119	77	XA_OFFS_H				XA_OF	SH[14:7]						
120	78	XA_OFFS_L				XA_	OFFSL[6:0]			-			
122	7A	YA_OFFS_H				YA_OFI	SH[14:7]						
123	7B	YA_OFFS_L		YA_OFFSL[6:0] -									
125	7D	ZA_OFFS_H		ZA_OFFSH[14:7]									
126	7E	ZA_OFFS_L		ZA_OFFSL[6:0] -									

Table 20. Register Map

Note: Register Names ending in _H and _L contain the high and low bytes, respectively, of an internal register value.

In the detailed register tables that follow, register names are in capital letters, while register values are in capital letters and italicized. For example, the ACCEL_XOUT_H register (Register 59) contains the 8 most significant bits, ACCEL_XOUT[15:8], of the 16-bit X-Axis accelerometer measurement, ACCEL_XOUT.

The reset value is 0x00 for all registers other than the registers below, also the self-test registers contain pre-programmed values and will not be 0x00 after reset.

- Register 107 (0x40) Power Management 1
- Register 117 (0x03) WHO_AM_I for ICM-20789

9 REGISTER DESCRIPTIONS

This section describes the function and contents of each register within the ICM-20789.

Note: The device will come up in sleep mode upon power-up.

9.1 REGISTERS DESCRIPTIONS

Reset values are "0" for all registers, unless otherwise specified

9.2 REGISTERS 0 TO 2 – SELF-TEST REGISTERS

Register Name: SELF_TEST X GYRO, SELF_TEST Y GYRO, SELF_TEST Z GYRO

Type: USR/CFG

Register Address: 0, 1, 2 (Decimal); 00, 01, 02 (Hex)

REGISTER	BIT	NAME	FUNCTION		
SELF_TEST X GYRO	[7:0] XG_ST_DATA		The value in this register indicates the self-test output generated during manufacturing tests. This value is to be used to check against subsequent self-test outputs performed by the end user.		
SELF_TEST Y GYRO	[7:0]	YG_ST_DATA	The value in this register indicates the self-test output generated during manufacturing tests. This value is to be used to check against subsequent self-test outputs performed by the end user.		
SELF_TEST Z GYRO	[7:0]	ZG_ST_DATA	The value in this register indicates the self-test output generated during manufacturing tests. This value is to be used to check against subsequent self-test outputs performed by the end user.		

9.3 REGISTERS 13 TO 15

Register Name: SELF_TEST4(X ACCEL), SELF_TEST5(Y ACCEL), SELF_TEST6(Z ACCEL)

Register Type: USR/CFG

Register Address: 13, 14, 15 (Decimal); 0D, 0E, 0F (Hex)

REGISTER	BIT	NAME	FUNCTION
SELF_TEST4(X ACCEL)	[7:0]	XA_ST_DATA[7:0]	Contains self-test data for the X Accelerometer
SELF_TEST5(Y ACCEL)	[7:0]	YA_ST_DATA[7:0]	Contains self-test data for the Y Accelerometer
SELF_TEST6(Z ACCEL)	[7:0]	ZA_ST_DATA[7:0]	Contains self-test data for the Z Accelerometer

9.4 REGISTER 19 – GYRO OFFSET ADJUSTMENT REGISTER

Register Name: XG_OFFS_USRH

Register Type: USR

Register Address: 19 (Decimal); 13 (Hex)

BIT	NAME	FUNCTION
[7:0]	X_OFFS_USR[15:8]	Bits 15 to 8 of the 16-bit offset of X gyroscope (2's complement). This register is used to remove DC bias from the sensor output. The value in this register is added to the gyroscope sensor value before going into the sensor register.

9.5 REGISTER 20 – GYRO OFFSET ADJUSTMENT REGISTER

Register Name: XG_OFFS_USRL

Register Type: USR

Register Address: 20 (Decimal); 14 (Hex)

BIT	NAME	FUNCTION
[7:0]	X_OFFS_USR[7:0]	Bits 7 to 0 of the 16-bit offset of X gyroscope (2's complement). This register is used to
		remove DC bias from the sensor output. The value in this register is added to the gyroscope
		sensor value before going into the sensor register.

9.6 REGISTER 21 – GYRO OFFSET ADJUSTMENT REGISTER

Register Name: YG_OFFS_USRH

Register Type: USR

Register Address: 21 (Decimal); 15 (Hex)

INTBIT	NAME	FUNCTION
[7:0]	Y_OFFS_USR[15:8]	Bits 15 to 8 of the 16-bit offset of Y gyroscope (2's complement). This register is used to remove DC bias from the sensor output. The value in this register is added to the gyroscope sensor value before going into the sensor register.

9.7 REGISTER 22 – GYRO OFFSET ADJUSTMENT REGISTER

Register Name: YG_OFFS_USRL

Register Type: USR

Register Address: 22 (Decimal); 16 (Hex)

BIT	NAME	FUNCTION		
[7:0]	Y_OFFS_USR[7:0]	Bits 7 to 0 of the 16-bit offset of Y gyroscope (2's complement). This register is used to remove DC bias from the sensor output. The value in this register is added to the gyroscope sensor value before going into the sensor register.		

9.8 REGISTER 23 – GYRO OFFSET ADJUSTMENT REGISTER

Register Name: ZG_OFFS_USRH

Register Type: USR

Register Address: 23 (Decimal); 17 (Hex)

BIT	NAME	FUNCTION		
[7:0]	Z_OFFS_USR[15:8]	Bits 15 to 8 of the 16-bit offset of Z gyroscope (2's complement). This register is used to remove DC bias from the sensor output. The value in this register is added to the gyroscope sensor value before going into the sensor register.		

9.9 REGISTER 24 – GYRO OFFSET ADJUSTMENT REGISTER

Register Name: ZG_OFFS_USRL

Register Type: USR

Register Address: 24 (Decimal); 18 (Hex)

BIT	NAME	FUNCTION		
[7:0]	Z_OFFS_USR[7:0]	Bits 7 to 0 of the 16-bit offset of Z gyroscope (2's complement). This register is used to remove DC bias from the sensor output. The value in this register is added to the gyroscope sensor value before going into the sensor register.		

9.10 REGISTER 25 – SAMPLE RATE DIVIDER.

Register Name: SMPLRT_DIV

Register Type: USR

Register Address: 25 (Decimal); 19 (Hex)

U	, , ,	•
BIT	NAME	FUNCTION
[7:0]	SMPLRT_DIV[7:0]	Divides the internal sample rate (see register CONFIG (0x1A)) to generate the sample rate that controls sensor data output rate, FIFO sample rate. Note: This register is only effective when FCHOICE_B register bits are 2'b00, and (0 < DLPF_CFG < 7). This is the update rate of the sensor register: SAMPLE_RATE = INTERNAL_SAMPLE_RATE / (1 + SMPLRT_DIV) Where INTERNAL_SAMPLE_RATE = 1 kHz

9.11 REGISTER 26 - CONFIGURATION

Register Name: CONFIG Register Type: USR

Register Address: 26 (Decimal); 1A (Hex)

BIT	NAME	FUNCTION			
[7]	FIFO_COUNT_REC	Always set to 0.			
[6]	FIFO_MODE	When set to '1', when the fifo is full, additional writes will not be written to fifo. When set to '0', when the fifo is full, additional writes will be written to the fifo, replacing the oldest data.			
[5:3]	EXT_SYNC_SET[2:0]	Enables the FSYNC pin data to be sampled. EXT_SYNC_SET FSYNC bit location 0 function disabled 1 TEMP_OUT_L[0] 2 GYRO_XOUT_L[0] 3 GYRO_YOUT_L[0] 4 GYRO_ZOUT_L[0] 5 ACCEL_XOUT_L[0] 6 ACCEL_YOUT_L[0] 7 ACCEL_ZOUT_L[0]			
[2:0]	DLPF_CFG[2:0]	For the DLPF to be used, FCHOICE_B[1:0] is 2'b00. See the table below.			

The DLPF is configured by *DLPF_CFG*, when *FCHOICE_B* [1:0] = 2b'00. The gyroscope and temperature sensor are filtered according to the value of *DLPF_CFG* and *FCHOICE_B* as shown in Table 21.

FCHOICE_B		DI DE CEC	Gyroscope			Temperature Sensor
<1>	<0>	DLPF_CFG	3-dB BW (Hz)	Noise BW (Hz)		3-dB BW (Hz)
Х	1	Х	8173	8595.1		4000
1	0	Х	3281	3451.0		4000
0	0	0	250	306.6		4000
0	0	1	176	177.0		188
0	0	2	92	108.6		98
0	0	3	41	59.0		42
0	0	4	20	30.5		20
0	0	5	10	15.6		10
0	0	6	5	8.0		5
0	0	7	3281	3451.0		4000

Table 21. Gyroscope and Temperature Sensor (Filtered according to the value of DLPF_CFG and FCHOICE_B)

9.12 REGISTER 27 - GYROSCOPE CONFIGURATION

Register Name: GYRO CONFIG

Register Type: USR

Register Address: 27 (Decimal); 1B (Hex)

BIT	NAME	FUNCTION	
[7]	XGYRO_STEN	X Gyro self-test.	
[6]	YGYRO_STEN	Y Gyro self-test.	
[5]	ZGYRO_STEN	Z Gyro self-test.	
[4:3]	GYRO_FS_SEL[1:0]	Gyro Full Scale Select: $00 = \pm 250 \text{ dps}$ $01 = \pm 500 \text{ dps}$ $10 = \pm 1000 \text{ dps}$ $11 = \pm 2000 \text{ dps}$	
[2]	-	Reserved.	
[1:0]	FCHOICE_B[1:0]	NOTE: Register is Fchoice_b (inverted version of Fchoice)	

9.13 REGISTER 28 – ACCELEROMETER CONFIGURATION

Register Name: ACCEL_CONFIG

Register Type: USR

Register Address: 28 (Decimal); 1C (Hex)

BIT	NAME	FUNCTION
[7]	AX_ST_EN	X Accel self-test.
[6]	AY_ST_EN	Y Accel self-test.
[5]	AZ_ST_EN	Z Accel self-test.
[4:3]	ACCEL_FS_SEL[1:0]	Accel Full Scale Select: ±2g (00), ±4g (01), ±8g (10), ±16g (11)
[2:0]	-	Reserved.

9.14 REGISTER 29 - ACCELEROMETER CONFIGURATION 2

Register Name: ACCEL_CONFIG2

Register Type: USR

Register Address: 29 (Decimal); 1D (Hex)

BIT	NAME	FUNCTION
		Fifo size control:
		0=512bytes,
[7:6]	FIFO SIZE[1:0]	1=1 KB,
[7.0]	1110_3122[1:0]	2=2 KB,
		3=4 KB
		NOTE: After the fifo size has been changed, the fifo should be reset.
		Controls the number of samples averaged in the accel
		decimator 2:
[5:4]	DEC2_CFG	0 = average 4 samples
[5.4]		1 = average 8 samples
		2 = average 16 samples
		3 = average 32 samples
		Used to bypass DLPF as shown in Table 22
[3]	ACCEL_FCHOICE_B	NOTE: This register contains accel_fchoice_b (the inverted version
		of accel_fchoice as described in Table 22.
[2:0]	A DLPF CFG	Accelerometer low pass filter setting as shown in Table 22
[2.0]	A_DLFF_CFG	below.

		Accelerometer
ACCEL_FCHOICE_B	A_DLPF_CFG	3-dB BW (Hz)
1	Х	1046.0
0	0	218.1
0	1	218.1
0	2	99.0
0	3	44.8
0	4	21.2
0	5	10.2
0	6	5.1
0	7	420.0

Table 22. Accelerometer Data Rates and Bandwidths (Low Noise Mode)

Notes:

- 1. The data rate out of the DLPF filter block can be further reduced by a factor of 1/(1+SMPLRT_DIV), where SMPLRT_DIV is an 8-bit integer.
- 2. Data should be sampled at or above sample rate; SMPLRT_DIV is only used for1 kHz internal sampling.

In the low-power mode of operation, the accelerometer is duty-cycled. For each ODR, there are several bandwidth settings corresponding to different numbers of averages per measurement cycle of the Dec1 output.

ACCEL_FCHOICE_B		1	0	0	0	0	
A_DLPF_C	Х	7	7	7	7		
DEC2_CF	G	Х	0	1	2	3	
Average	es	1x	4x	8x	16x	32x	
Ton (ms	s)	1.084	1.84	2.84	4.84	8.84	
Noise BW	(Hz)	1100.0	441.6	235.4	121.3	61.5	
Noise (mg) TYP based on 150 μg/√Hz		8.3	5.3	3.8	2.8	2.0	
SMPLRT_DIV	SMPLRT_DIV ODR (Hz)		Current Consumption (μA) TYP				
255	3.9	8.4	9.4	10.8	13.6	19.2	
127	7.8	9.8	11.9	14.7	20.3	31.4	
63	15.6	12.8	17.0	22.5	33.7	55.9	
31	31.3	18.7	27.1	38.2	60.4	104.9	
15	62.5	30.4	47.2	69.4	113.9	202.8	
7	125.0	57.4	87.5	132.0	220.9	N/A	
	3 250.0 100.9 168.1 257.0		N.	/ A			
3	250.0	100.9	168.1	257.0	IN,	/A	

Table 23. Accelerometer Data Rates and Bandwidths (Low Power Mode)

- Gyros ON: When at least one axis of the Gyro is ON, then the ODR is determined by the gyro_fchoice and dlpf_cfg.
- Gyro OFF and normal Accel mode: When all the axes of Gyro are turned off and in normal Accel mode, then the ODR is determined by accel fchoice and dlpf cfg.
- Low power Accel mode: In low power Accel mode, the ODR is determined by Accel fchoice and dec2 cfg

9.15 REGISTER 30 – LOW POWER MODE CONFIGURATION

Register Name: LP MODE CTRL

Register Type: USR

Register Address: 30 (Decimal); 1E (Hex)

BIT	NAME	FUNCTION
[7]	GYRO_CYCLE	Enable gyro duty cycling.
[6:4]	GYRO_AVGCFG[2:0]	Averaging filter configuration for gyro duty cycling.
[3:0]	LPOSC CLKSEL[3:0]	Reserved.

To operate in gyroscope low-power mode or 6-axis low-power mode, GYRO_CYCLE should be set to '1.' Gyroscope filter configuration is determined by G_AVGCFG[2:0] that sets the averaging filter configuration. It is not dependent on DLPF_CFG[2:0].

Table 24 shows some example configurations for gyroscope low power mode.

FCHOICE	В	0	0	0	0	0	0	0	0
G_AVGCFG		0	1	2	3	4	5	6	7
Average	es	1x	2x	4x	8x	16x	32x	64x	128x
Ton (ms	5)	1.73	2.23	3.23	5.23	9.23	17.23	33.23	65.23
Noise BW	(Hz)	650.8	407.1	224.2	117.4	60.2	30.6	15.6	8.0
	Noise (dps) TYP based on 0.006 dps/√Hz		0.12	0.09	0.07	0.05	0.03	0.02	0.02
SMPLRT_DIV	ODR (Hz)			Cur	rent Consum	ption (mA) T	/P		
255	3.9	1.3	1.3	1.3	1.3	1.4	1.4	1.5	1.8
99	10.0	1.3	1.3	1.4	1.4	1.5	1.6	1.9	2.5
64	15.4	1.4	1.4	1.4	1.5	1.6	1.8	2.2	N/A
32	30.3	1.4	1.4	1.5	1.6	1.8	2.2	N	/ A
19	50.0	1.5	1.5	1.6	1.8	2.1	2.8	N/	A
9	100.0	1.6	1.7	1.9	2.2	3.0		N/A	
7	125.0	1.7	1.8	2.0	2.5		N/	′ A	
4	200.0	1.9	2.1	2.5			N/A		
3	250.0	2.1	2.3	2.7			IN/A		
2	333.3	2.3	2.6		N/A				
1	500.0	2.9				N/A			

Table 24. Example Configurations for Gyroscope Low Power Mode

9.16 REGISTER 32 - WAKE ON MOTION THRESHOLD

Register Name: ACCEL_WOM_X_THR

Register Type: USR

Register Address: 32 (Decimal); 20 (Hex)

BIT	NAME	FUNCTION
[7:0]	WOM_X_Threshold	Accel WOM threshold for x-axis.

9.17 REGISTER 33 – WAKE ON MOTION THRESHOLD

Register Name: ACCEL_WOM_Y_THR

Register Type: USR

Register Address: 33 (Decimal); 21 (Hex)

BIT	NAME	FUNCTION
[7:0]	WOM_Y_Threshold	Accel WOM threshold for y-axis.

9.18 REGISTER 34 – WAKE ON MOTION THRESHOLD

Register Name: ACCEL_WOM_Z_THR

Register Type: USR

Register Address: 34 (Decimal); 22 (Hex)

	BIT	NAME	FUNCTION
ĺ	[7:0]	WOM Z Threshold	Accel WOM threshold for z-axis.

9.19 REGISTER 35 - FIFO ENABLE

FIFO enable takes effect during the idle state of the sequence controller.

Register Name: FIFO_EN Register Type: USR

Register Address: 35 (Decimal); 23 (Hex)

BIT	NAME	FUNCTION
[7]	TEMP_OUT	1 – Write TEMP_OUT_H and TEMP_OUT_L to the FIFO at the sample rate; If enabled, buffering of data occurs even if data path is in standby. 0 – Function is disabled.
[6]	GYRO_XOUT	1 – Write GYRO_XOUT_H and GYRO_XOUT_L to the FIFO at the sample rate; If enabled, buffering of data occurs even if data path is in standby. 0 – Function is disabled.
[5]	GYRO_YOUT	1 – Write GYRO_YOUT_H and GYRO_YOUT_L to the FIFO at the sample rate; If enabled, buffering of data occurs even if data path is in standby. 0 – Function is disabled. NOTE: Enabling any one of the bits corresponding to the Gyros or Temp data paths, data is buffered into the FIFO even though that data path is not enabled.
[4]	GYRO_ZOUT	1 – Write GYRO_ZOUT_H and GYRO_ZOUT_L to the FIFO at the sample rate; If enabled, buffering of data occurs even if data path is in standby. 0 – Function is disabled.
[3]	ACCEL_XYZ_OUT	1 – Write ACCEL_XOUT_H, ACCEL_XOUT_L, ACCEL_YOUT_H, ACCEL_YOUT_L, ACCEL_ZOUT_H, and ACCEL_ZOUT_L to the FIFO at the sample rate; 0 – Function is disabled.
[2]	-	Reserved.
[1]	-	Reserved.
[0]	-	Reserved.

9.20 REGISTER 55 – INTERRUPT/BYPASS PIN CONFIGURATION

Register Name: INT_PIN_CFG

Register Type: USR

Register Address: 55 (Decimal); 37 (Hex)

BIT	NAME	FUNCTION
[7]	ACTL	1 – The logic level for INT pin is active low.
[/]	ACIL	0 – The logic level for INT pin is active high.
[6]	OPEN	1 – INT pin is configured as open drain.
[O]	OFLIN	0 – INT pin is configured as push-pull.
[5]	LATCH INT EN	1 – INT pin level held until interrupt status is cleared.
[5]	LATCH_INT_EN	0 – INT pin indicates interrupt pulse's is width 50 μs.
[4]	INT_ANYRD_2CLEAR	1 – Interrupt status is cleared if any read operation is performed.
[4]		0 – Interrupt status is cleared only by reading INT_STATUS register.
[3]	ACTL_FSYNC	1 – The logic level for the FSYNC pin as an interrupt is active low.
[5]		0 – The logic level for the FSYNC pin as an interrupt is active high.
	FSYNC_INT_MODE_EN	1 – This enables the FSYNC pin to be used as an interrupt. A transition to the active level
[2]		described by the ACTL_FSYNC bit will cause an interrupt. The status of the interrupt is
[2]		read in the I ² C Master Status register PASS_THROUGH bit.
		0 – This disables the FSYNC pin from causing an interrupt.
[1]	BYPASS_EN	When asserted, will go into 'bypass mode' where the I ² C master interface is disabled.
[0]	-	Reserved.

9.21 REGISTER 56 - INTERRUPT ENABLE

Register Name: INT_ENABLE

Register Type: USR

Register Address: 56 (Decimal); 38 (Hex)

BIT	NAME	FUNCTION
[7]	WOM_X_INT_EN	1 – Enable wake on motion interrupt on accel X-axis
[6]	WOM_Y_INT_EN	1 – Enable wake on motion interrupt on accel Y-axis,
[5]	WOM_Z_INT_EN	1 – Enable wake on motion interrupt on accel Z-axis
[4]	FIFO_OVERFLOW_EN	1 – Enable interrupt for FIFO overflow to propagate to interrupt pin.0 – Function is disabled.
[3]	-	Reserved
[2]	GDRIVE_RDY_EN	1 – Enable gyro drive rdy interrupt to propagate to interrupt pin. 0 – Function is disabled.
[1]	DMP_INT_EN	1 – Enable DMP interrupt to propagate to interrupt pin. 0 – Function is disabled.
[0]	RAW_RDY_EN	1 – Enable Raw Sensor Data Ready interrupt to propagate to interrupt pin. 0 – Function is disabled.

9.22 REGISTER 57 – DMP INTERRUPT STATUS

Register Name: DMP_INT_STATUS

Register Type: USR

Register Address: 57 (Decimal); 39 (Hex)

BIT	NAME	FUNCTION
[6]	FIFO_WM_INT	Reserved.
[5:0]	DMP_INT	DMP Interrupt Status.

9.23 REGISTER 58 - INTERRUPT STATUS

Register Name: INT_STATUS

Register Type: USR

Register Address: 58 (Decimal); 3A (Hex)

BIT	NAME	FUNCTION
[7]	WOM_X_INT	Wake on motion interrupt triggered on x-axis.
[6]	WOM_Y_INT	Wake on motion interrupt triggered on y-axis.
[5]	WOM_Z_INT	Wake on motion interrupt triggered on z-axis.
[4]	FIFO_OVERFLOW_INT	1 – FIFO Overflow interrupt occurred. Note that the oldest data is has been dropped from the FIFO.
[3]	-	Reserved.
[2]	GDRIVE_RDY_INT	1 – Indicates that the gyro drive has been enabled and is ready.
[1]	DMP_INT	1 – The DMP has generated an Interrupt.
[0]	RAW_DATA_RDY_INT	1 – Sensor Register Raw Data sensors are updated and Ready to be read.

9.24 REGISTER 59 – ACCELEROMETER MEASUREMENTS

Register Name: ACCEL_XOUT_H

Register Type: USR

Register Address: 59 (Decimal); 3B (Hex)

BIT	NAME	FUNCTION
[7:0]	ACCEL_XOUT_H [15:8]	High byte of accelerometer x-axis data.

9.25 REGISTER 60 – ACCELEROMETER MEASUREMENTS

Register Name: ACCEL_XOUT_L

Register Type: USR

Register Address: 60 (Decimal); 3C (Hex)

BIT	NAME	FUNCTION
[7:0]	ACCEL_XOUT_L [7:0]	Low byte of accelerometer x-axis data.

9.26 REGISTER 61 – ACCELEROMETER MEASUREMENTS

Register Name: ACCEL_YOUT_H

Register Type: USR

Register Address: 61 (Decimal); 3D (Hex)

BIT	NAME	FUNCTION
[7:0]	ACCEL_YOUT_H [15:8]	High byte of accelerometer y-axis data.

9.27 REGISTER 62 – ACCELEROMETER MEASUREMENTS

Register Name: ACCEL YOUT L

Register Type: USR

Register Address: 62 (Decimal); 3E (Hex)

BIT	NAME	FUNCTION
[7:0]	ACCEL_YOUT_L [7:0]	Low byte of accelerometer y-axis data.

9.28 REGISTER 63 – ACCELEROMETER MEASUREMENTS

Register Name: ACCEL_ZOUT_H

Register Type: USR

Register Address: 63 (Decimal); 3F (Hex)

BIT	NAME	FUNCTION
[7:0]	ACCEL_ZOUT_H [15:8]	High byte of accelerometer z-axis data.

9.29 REGISTER 64 – ACCELEROMETER MEASUREMENTS

Register Name: ACCEL_ZOUT_L

Register Type: USR

Register Address: 64 (Decimal); 40 (Hex)

BIT	NAME	FUNCTION
[7:0]	ACCEL ZOUT L [7:0]	Low byte of accelerometer z-axis data.

9.30 REGISTER 65 - TEMPERATURE MEASUREMENT

Register Name: TEMP_OUT_H

Register Type: USR

Register Address: 65 (Decimal); 41 (Hex)

BIT	NAME	FUNCTION
[7:0]	TEMP_OUT_H[15:8]	High byte of the temperature sensor output.

9.31 REGISTER 66 – TEMPERATURE MEASUREMENT

Register Name: TEMP_OUT_L

Register Type: USR

Register Address: 66 (Decimal); 42 (Hex)

BIT	NAME	FUNCTION
[7:0]	TEMP_OUT_L[7:0]	Low byte of the temperature sensor output.

9.32 REGISTER 67 - GYROSCOPE MEASUREMENT

Register Name: GYRO_XOUT_H

Register Type: USR

Register Address: 67 (Decimal); 43 (Hex)

BIT	NAME	FUNCTION
[7:0]	GYRO XOUT H[15:8]	High byte of the x-axis gyroscope output.

9.33 REGISTER 68 – GYROSCOPE MEASUREMENT

Register Name: GYRO_XOUT_L

Register Type: USR

Register Address: 68 (Decimal); 44 (Hex)

BIT	NAME	FUNCTION
[7:0]	GYRO_XOUT_L[7:0]	Low byte of the x-axis gyroscope output.

9.34 REGISTER 69 – GYROSCOPE MEASUREMENT

Register Name: GYRO_YOUT_H

Register Type: USR

Register Address: 69 (Decimal); 45 (Hex)

BIT	NAME	FUNCTION
[7:0]	GYRO_YOUT_H[15:8]	High byte of the y-axis gyroscope output.

9.35 REGISTER 70 – GYROSCOPE MEASUREMENT

Register Name: GYRO_YOUT_L

Register Type: USR

Register Address: 70 (Decimal); 46 (Hex)

BIT	NAME	FUNCTION
[7:0]	GYRO_YOUT_L[7:0]	Low byte of the y-axis gyroscope output.

9.36 REGISTER 71 – GYROSCOPE MEASUREMENT

Register Name: GYRO_ZOUT_H

Register Type: USR

Register Address: 71 (Decimal); 47 (Hex)

BIT	NAME	FUNCTION
[7:0]	GYRO ZOUT H[15:8]	High byte of the z-axis gyroscope output.

9.37 REGISTER 72 – GYROSCOPE MEASUREMENT

Register Name: GYRO_ZOUT_L

Register Type: USR

Register Address: 72 (Decimal); 48 (Hex)

BIT	NAME	FUNCTION
[7:0]	GYRO ZOUT L[7:0]	Low byte of the z-axis gyroscope output.

9.38 REGISTER 104 - SIGNAL PATH RESET

Register Name: SIGNAL_PATH_RESET

Register Type: USR/CFG

Register Address: 104 (Decimal); 68 (Hex)

BIT	NAME	FUNCTION
[7:3]	-	Reserved.
[2]	GYRO RST	Reset gyro digital signal path.
[2]	GTKO_K31	Note : Sensor registers are not cleared. Use SIG_COND_RST to clear sensor registers.
[1]	ACCEL_RST	Reset accel digital signal path.
[1]		Note : Sensor registers are not cleared. Use SIG_COND_RST to clear sensor registers.
[0]	TEMP_RST	Reset temp digital signal path.
[0]		Note : Sensor registers are not cleared. Use SIG_COND_RST to clear sensor registers.

9.39 REGISTER 105 – ACCELEROMETER INTELLIGENCE CONTROL

Register Name: ACCEL_INTEL_CTRL

Register Type: USR/CFG

Register Address: 105 (Decimal); 69 (Hex)

BIT	NAME	FUNCTION
[7]	ACCEL_INTEL_EN	Enable the WOM logic.
		This bit defines
[6]	ACCEL_INTEL_MODE	1 = compare the current sample with the previous sample.
		0 = initial sample is stored; all future samples are compared to the initial sample.
[5:4]	-	Reserved.
[3:2]	-	Reserved.
1	-	Reserved.
0	-	Reserved.

9.40 REGISTER 106 - USER CONTROL

Register Name: USER_CTRL Register Type: USR/CFG

Register Address: 106 (Decimal); 6A (Hex)

BIT	NAME	FUNCTION
[7]	DMP_EN	 1 – Enable DMP operation mode. 0 – Freeze DMP processing after DMP Done (finish) with current processing sample. NOTE: DMP will run when enabled, even if all sensors are disabled, except when the sample rate is set to 8 kHz.
[6]	FIFO_EN	 1 – Enable FIFO operation mode. 0 – Disable FIFO access from serial interface. To disable FIFO writes by dma, use FIFO_EN register. To disable possible FIFO writes from dmp, disable the dmp.
[5]	-	Reserved.
[4]	I2C_IF_DIS	1 – Reset I ² C Slave module.
[3]	DMP_RST	1 – Reset DMP module. Reset is asynchronous. This bit auto clears after one clock cycle.
[2]	FIFO_RST	1 – Reset FIFO module. Reset is asynchronous. This bit auto clears after one clock cycle.
[1]	-	Reserved.
[0]	SIG_COND_RST	1 – Reset all gyro digital signal path, accel digital signal path, and temp digital signal path. This bit also clears all the sensor registers. SIG_COND_RST is a pulse of one clk8M wide.

9.41 REGISTER 107 - POWER MANAGEMENT 1

Register Name: PWR_MGMT_1

Register Type: USR/CFG

Register Address: 107 (Decimal); 6B (Hex)

BIT	NAME	FUNCTION
[7]	DEVICE_RESET	1 – Reset the internal registers and restores the default settings. The bit automatically clears to 0 once the reset is done.
[6]	SLEEP	1 – The chip is set to sleep mode. Note: The default value is 1; the chip comes up in Sleep mode
[5]	ACCEL_CYCLE	When set to 1, and SLEEP and STANDBY are not set to 1, the chip will cycle between sleep and taking a single accelerometer sample at a rate determined by SMPLRT_DIV Note : When all accelerometer axes are disabled via PWR_MGMT_2 register bits and cycle is enabled, the chip will wake up at the rate determined by the respective registers above, but will not take any samples.
[4]	GYRO_STANDBY	When set, the gyro drive and pll circuitry are enabled, but the sense paths are disabled. This is a low power mode that allows quick enabling of the gyros.
[3]	TEMP_DIS	When set to 1, this bit disables the temperature sensor.
[2:0]	CLKSEL[2:0]	Code Clock Source O Internal 20 MHz oscillator 1 Auto selects the best available clock source – PLL if ready, else use the Internal oscillator 2 Auto selects the best available clock source – PLL if ready, else use the Internal oscillator 3 Auto selects the best available clock source – PLL if ready, else use the Internal oscillator 4 Auto selects the best available clock source – PLL if ready, else use the Internal oscillator 5 Auto selects the best available clock source – PLL if ready, else use the Internal oscillator 6 Internal 20 MHz oscillator 7 Stops the clock and keeps timing generator in reset

9.42 REGISTER 108 - POWER MANAGEMENT 2

Register Name: PWR_MGMT_2

Register Type: USR/CFG

Register Address: 108 (Decimal); 6C (Hex)

BIT	NAME	FUNCTION
[7]	LP_DIS	Low power disable bit. When cleared the system will enter sleep when gyro is disabled and accel is off while duty cycling.
[6]	DMP_LP_DIS	When cleared DMP will execute in low power accel mode. When set DMP will not execute in low power accel mode.
[5]	DISABLE_XA	1 – X accelerometer is disabled. 0 – X accelerometer is on.
[4]	DISABLE_YA	1 – Y accelerometer is disabled. 0 – Y accelerometer is on.
[3]	DISABLE_ZA	1 – Z accelerometer is disabled. 0 – Z accelerometer is on.
[2]	DISABLE_XG	1 – X gyro is disabled. 0 – X gyro is on.
[1]	DISABLE_YG	1 – Y gyro is disabled. 0 – Y gyro is on.
[0]	DISABLE_ZG	1 – Z gyro is disabled. 0 – Z gyro is on.

9.43 REGISTER 114 - FIFO COUNT REGISTERS

Register Name: FIFO_COUNTH Register Type: USR/CFG

Register Address: 114 (Decimal); 72 (Hex)

BIT	NAME	FUNCTION
[7:5]	NOT IMPLEMENTED	Hard coded to '000'.
[4.0]	4:0] FIFO_COUNTH[12:8]	High Bits, count indicates the number of written bytes in the FIFO.
[4.0]		Reading this byte latches the data for both FIFO_COUNTH, and FIFO_COUNTL.

9.44 REGISTER 115 – FIFO COUNT REGISTERS

Register Name: FIFO_COUNTL Register Type: USR/CFG

Register Address: 115 (Decimal); 73 (Hex)

BIT	NAME	FUNCTION
[7:0]	FIFO COUNTL[7:0]	Low Bits, count indicates the number of written bytes in the FIFO.
[7.0]	FIFO_COUNTL[7.0]	NOTE: Must read FIFO_COUNTH to latch new data for both FIFO_COUNTH and FIFO_COUNTL.

9.45 REGISTER 116 - FIFO READ WRITE

Register Name: FIFO_R_W Register Type: USR/CFG

Register Address: 116 (Decimal); 74 (Hex)

BIT	NAME	FUNCTION
[7:0]	FIFO_R_W[7:0]	Read/Write command provides Read or Write operation for the FIFO.

Description:

This register is used to read and write data from the FIFO buffer.

Data is written to the FIFO in order of register number (from lowest to highest). If all the FIFO enable flags (see below) are enabled, the contents of registers 59 through 72 will be written in order at the Sample Rate.

The contents of the sensor data registers (Registers 59 to 72) are written into the FIFO buffer when their corresponding FIFO enable flags are set to 1 in FIFO_EN (Register 35).

If the FIFO buffer has overflowed, the status bit FIFO_OFLOW_INT is automatically set to 1. This bit is located in INT_STATUS (Register 58). When the FIFO buffer has overflowed, the oldest data will be lost and new data will be written to the FIFO unless register 26 CONFIG, bit[6] FIFO_MODE = 1.

If the FIFO buffer is empty, reading register FIFO_DATA will return a unique value of 0xFF until new data is available. Normal data is precluded from ever indicating 0xFF, so 0xFF gives a trustworthy indication of FIFO empty.

9.46 REGISTER 117 - WHO AM I

Register Name: WHOAMI Register Type: USR/CFG

Register Address: 117 (Decimal); 75 (Hex)

BIT	NAME	FUNCTION	
[7:0]	WHOAMI	Register to indicate to user which device is being accessed.	

This register is used to verify the identity of the device. The contents of WHOAMI is an 8-bit device ID.

9.47 REGISTER 119 – ACCELEROMETER OFFSET REGISTER

Register Name: XA_OFFS_H

Register Type: CFG

Register Address: 119 (Decimal); 77 (Hex)

BIT	NAME	FUNCTION	
[7:0]	I XA ()FFSHI14·/I	Upper bits of the X accelerometer offset cancellation. ±16g Offset cancellation in all Full-	
		Scale modes, 15 bit 0.98-mg steps.	

Document Number: DS-000169

Page 49 of 65

9.48 REGISTER 120 – ACCELEROMETER OFFSET REGISTER

Register Name: XA_OFFS_L

Register Type: CFG

Register Address: 120 (Decimal); 78 (Hex)

BIT	NAME	FUNCTION	
[7:1]	XA_OFFSL[6:0]	Lower bits of the X accelerometer offset cancellation. ±16g Offset cancellation in all Full-Scale modes, 15 bit 0.98-mg steps	
[0]	-	Reserved.	

9.49 REGISTER 122 – ACCELEROMETER OFFSET REGISTER

Register Name: YA_OFFS_H

Register Type: CFG

Register Address: 122 (Decimal); 7A (Hex)

BIT	NAME	FUNCTION	
[7:0]	YA OFFSH[14:7]	Upper bits of the Y accelerometer offset cancellation. ±16g Offset cancellation in all Full-	
[7.0]	1A_OFF3H[14.7]	Scale modes, 15 bit 0.98-mg steps.	

9.50 REGISTER 123 – ACCELEROMETER OFFSET REGISTER

Register Name: YA_OFFS_L

Register Type: CFG

Register Address: 123 (Decimal); 7B (Hex)

BIT	NAME	FUNCTION	
[7:1]	YA_OFFSL[6:0]	Lower bits of the Y accelerometer offset cancellation. ±16g Offset cancellation in all Full-Scale modes, 15 bit 0.98-mg steps.	
[0]	-	Reserved.	

9.51 REGISTER 125 – ACCELEROMETER OFFSET REGISTER

Register Name: ZA_OFFS_H

Register Type: CFG

Register Address: 125 (Decimal); 7D (Hex)

BIT	NAME	FUNCTION	
[7:0]	ZA_OFFSH[14:7]	Upper bits of the Z accelerometer offset cancellation. ±16g Offset cancellation in all	
		Scale modes, 15 bit 0.98-mg steps.	

9.52 REGISTER 126 – ACCELEROMETER OFFSET REGISTER

Register Name: ZA_OFFS_L

Register Type: CFG

Register Address: 126 (Decimal); 7E (Hex)

BIT	NAME	FUNCTION	
[7:1]	ZA_OFFSL[6:0]	Lower bits of the Z accelerometer offset cancellation. ±16g Offset cancellation in all Full-Scale modes, 15 bit 0.98-mg steps.	
[0]	-	Reserved.	

10 I²C OPERATION AND COMMUNICATION

All commands and memory locations of the ICM-20789 are mapped to a 16-bit address space which can be accessed via the I²C protocol.

ICM-20789	Bin.	Dec.	Hex.
I ² C Address	110'0011	99	0x63

Table 25. ICM-20789 I2C Device Address

10.1 POWER-UP AND COMMUNICATION START

Upon VDD reaching the power-up voltage level VPOR, the ICM-20789 enters idle state after a duration of tPU. In idle state, the ICM-20789 is ready to receive commands from the master (microcontroller).

Each transmission sequence begins with START condition (S) and ends with an (optional) STOP condition (P) as described in the I²C-bus specification. Whenever the sensor is powered up, but not performing a measurement or communicating, it automatically enters idle state for energy saving.

10.2 MEASUREMENT COMMANDS

The ICM-20789 provides the possibility to define the sensor behavior during measurement as well as the transmission sequence of measurement results. These characteristics are defined by the appropriate measurement command (see Table 26). Each measurement command triggers both a temperature *and* a pressure measurement.

OPERATION MODE	TRANSMIT T FIRST	TRANSMIT P FIRST
Low Power (LP)	0x609C	0x401A
Normal (N)	0x6825	0x48A3
Low Noise (LN)	0x70DF	0x5059
Ultra-Low Noise (ULN)	0x7866	0x58E0

Table 26. Measurement Commands

10.3 STARTING A MEASUREMENT

A measurement communication sequence consists of a START condition followed by the I^2C header with the 7-bit I^2C device address and a write bit (write W: '0', 8-bit word including I^2C header: 0xC6). The sensor indicates the proper reception of a byte by pulling the SDA pin low (ACK bit) after the falling edge of the 8th SCL clock. Then the sensor is ready to receive a 16-bit measurement command. Again, the ICM-20789 acknowledges the proper reception of each byte with ACK condition.

With the acknowledgement of the measurement command, the ICM-20789 starts measuring pressure and temperature.

10.4 SENSOR BEHAVIOR DURING MEASUREMENT

In general, the sensor does not respond to any I²C activity during measurement, i.e. I²C read and write headers are not acknowledged (NACK).

10.5 READOUT OF MEASUREMENT RESULTS

After a measurement command has been issued and the sensor has completed the measurement, the master can read the measurement results by sending a START condition followed by an I²C read header (8-bit word including I²C header: 0xC7). The sensor will acknowledge the reception of the read header and send the measured data in the specified order to the master. The MSB of the corresponding data is always transmitted first. Temperature data is transmitted in two 8-bit words and pressure data is transmitted in four 8-bit words. Regarding the pressure data, only the first three words MMSB, MLSB and LMSB contain information about the ADC pressure value. Therefore, for retrieving the ADC pressure value, LLSB must be disregarded:

 $p_{dout} = \text{MMSB} \ll 16 \mid \text{MLSB} \ll 8 \mid \text{LMSB}.$

Two bytes of data are always followed by one byte CRC checksum, for calculation see the Checksum Calculation section. Each byte must be acknowledged by the microcontroller with an ACK condition for the sensor to continue sending data. If the ICM-20789 does not receive an ACK from the master after any byte of data, it will not continue sending data.

Document Number: DS-000169 Page 51 of 65

Whether the sensor sends out pressure or temperature data first depends on the measurement command that was sent to the sensor to initiate the measurement. To save time, the I²C master can abort the read transfer with a NACK condition after any data byte if it is not interested in subsequent data, e.g. the CRC byte or the second measurement result.

10.6 SOFT RESET

The ICM-20789 provides a soft reset mechanism that forces the system into a well-defined state without removing the power supply. If the system is in idle state (i.e. if no measurement is in progress) the soft reset command will be accepted by ICM-20789. This triggers the sensor to reset all internal state machines and reload calibration data from the memory.

Command	Hex Code	Binary Code
Soft reset	0x805D	1000'0000'0101'1101

Table 27. Soft Reset Command

10.7 READOUT OF ID REGISTER

The ICM-20789 has an ID register which contains a specific product code. The readout of the ID register can be used to verify the presence of the sensor and proper communication. The command to read the ID register is shown in Table 28.

Command	Hex Code	Binary Code
Read ID Register	0xEFC8	1110′1111′1100′1000

Table 28. Readout Command of ID Register

It needs to be sent to the ICM-20789 after an I²C write header. After the ICM-20789 has acknowledged the proper reception of the command, the master can send an I²C read header and the ICM-20789 will submit the 16-bit ID followed by 8 bits of CRC. The structure of the ID is described in Table 29.

Table 29. Structure of the 16-bit ID

Bits 15:6 of the ID contain unspecified information (marked as "x"), which may vary from sensor to sensor, while bits 5:0 contain the ICM-20789-specific product code.

10.8 CHECKSUM CALCULATION

The 8-bit CRC checksum transmitted after each data word is generated by a CRC algorithm with the properties displayed in Table 30. The CRC covers the contents of the two previously transmitted data bytes.

Property	Value
Name	CRC-8
Width	8 bits
Polynomial	$0x31(x^8 + x^5 + x^4 + 1)$
Initialization	0xFF
Reflect input	false
Reflect output	false
Final XOR	0x00
Examples	CRC(0x00) = 0xAC
	CRC(0xBEEF) = 0x92

Table 30. ICM-20789 I²C CRC Properties

10.9 CONVERSION OF SIGNAL OUTPUT

Pressure measurement data is always transferred as 4 8-bit words; temperature measurement data is always transferred as two 8-bit words. Please see Readout of Measurement Results for more details.

Document Number: DS-000169 Page 52 of 65

Temperature measurement values t_dout are linearized by the ICM-20789 and must be calculated to °C by the user via the following formula:

$$T = -45^{\circ}C + (175^{\circ}C / 2^{16}) \times t_{dout}$$

For retrieving physical pressure values in Pa the following conversion formula has to be used:

$$P = A + B / (C + p_{dout})$$

where p_{dout} is the sensor's raw pressure output. The converted output is compensated for temperature effects via the temperature dependent functions A, B and C. Besides the raw temperature output t_dout , the calculation of A, B and C requires to access calibration parameters OTP0, OTP1, OTP2, OTP3 stored in the OTP of the sensor.

Full sample code for calculating physical pressure values is given in the Sample Code section. The general workflow of the conversion is done by:

- 1) Import class Invensense pressure conversion
- 2) Read out values OTP0, ..., OTP3 and save to c1, ..., c4
- 3) Create object *name* for an individual sensor with parameter values c1, ..., c4 name = Invensense_pressure_conversion ([c1,c2,c3,c4])
- 4) Get raw pressure p_dout and temperature t_dout data from the sensor as described in chapter Readout of Measurement Results.
- 5) Call function get_pressure: name.get_pressure(p_dout, t_dout)

The Sample Code section gives an example of this workflow.

10.10 READOUT OF CALIBRATION PARAMETERS

For converting raw pressure data to physical values, four calibration parameters must be retrieved from the OTP of the sensor.

Set up of OTP read:

- 1) Send I²C write header 0xC6
- 2) Send command 0xC595 (move pointer in address register)
- 3) Send address parameter together with its CRC 0x00669C

Steps 1) - 3) can be done on many platforms by a single I^2C write of the value 0xC59500669C.

Read out parameters:

Repeat the following procedure 4 times:

- a. Send I²C write header 0xC6
- b. Send command 0xC7F7 (incremental readout of OTP)
- c. Send I²C read header 0xC7
- d. Read 3Byte (2Byte of data and 1Byte of CRC)
- e. Decode data as 16-bit big endian signed integer and store result into n-th calibration parameter cn.

Steps a) to d) can be done on many platforms by a single write 0xC7F7 to the chip address followed by a single read of 3 Byte from the chip slave device address.

Document Number: DS-000169

Page 53 of 65

10.11 SAMPLE CODE: EXAMPLE C SYNTAX

```
/* data structure to hold pressure sensor related parameters */
   typedef struct inv_invpres
struct inv_invpres_serif serif;
uint32_t min_delay_us;
uint8_t pressure_en;
uint8 t temperature en;
    float sensor_constants[4]; // OTP values
   float p_Pa_calib[3];
   float LUT_lower;
   float LUT_upper;
   float quadr_factor;
   float offst_factor;
   } inv_invpres_t;
   int inv_invpres_init(struct inv_invpres * s)
      short otp[4];
      read_otp_from_i2c(s, otp);
    init_base(s, otp);
      return 0;
   }
   int read_otp_from_i2c(struct inv_invpres * s, short *out)
      unsigned char data_write[10];
      unsigned char data_read[10] = {0};
      int status;
      int i;
      // OTP Read mode
      data_write[0] = 0xC5;
      data_write[1] = 0x95;
      data_write[2] = 0x00;
      data_write[3] = 0x66;
      data write[4] = 0x9C;
      status = inv_invpres_serif_write_reg(&s->serif, ICC_ADDR_PRS, data_write, 5);
      if (status)
          return status;
      // Read OTP values
      for (i = 0; i < 4; i++) {
          data_write[0] = 0xC7;
          data_write[1] = 0xF7;
          status = inv_invpres_serif_write_reg(&s->serif, ICC_ADDR_PRS, data_write, 2);
          if (status)
             return status;
          status = inv_invpres_serif_read_reg(&s->serif, ICC_ADDR_PRS, data_read, 3);
          if (status)
             return status;
          out[i] = data_read[0]<<8 | data_read[1];</pre>
      return 0;
   }
   void init_base(struct inv_invpres * s, short *otp)
      int i;
      for(i = 0; i < 4; i++)
         s->sensor_constants[i] = (float)otp[i];
      s - p_Pa_calib[0] = 45000.0;
      s->p_Pa_calib[1] = 80000.0;
```



```
s->p_Pa_calib[2] = 105000.0;
   s->LUT_lower = 3.5 * (1<<20);
   s->LUT_upper = 11.5 * (1<<20);
   s->quadr_factor = 1 / 16777216.0;
   s->offst factor = 2048.0;
}
// p_LSB -- Raw pressure data from sensor
// T_LSB -- Raw temperature data from sensor
int inv invpres process data(struct inv invpres * s, int p LSB, int T LSB,
                                                    float * pressure, float * temperature)
{
   float t;
   float s1,s2,s3;
   float in[3];
   float out[3];
   float A,B,C;
   t = (float)(T LSB - 32768);
   s1 = s->LUT_lower + (float)(s->sensor_constants[0] * t * t) * s->quadr_factor;
   s2 = s->offst_factor * s->sensor_constants[3] + (float)(s->sensor_constants[1] * t * t) * s->quadr_factor;
   s3 = s->LUT_upper + (float)(s->sensor_constants[2] * t * t) * s->quadr_factor;
   in[0] = s1;
   in[1] = s2;
   in[2] = s3;
   calculate_conversion_constants(s, s->p_Pa_calib, in, out);
   A = out[0];
   B = out[1];
   C = out[2];
   *pressure = A + B / (C + p_LSB);
   *temperature = -45.f + 175.f/65536.f * T_LSB;
   return 0;
}
// p_Pa -- List of 3 values corresponding to applied pressure in Pa
// p_LUT -- List of 3 values corresponding to the measured p_LUT values at the applied pressures.
void calculate_conversion_constants(struct inv_invpres * s, float *p_Pa,
                                                                     float *p_LUT, float *out)
   float A.B.C:
   C = (p\_LUT[0] * p\_LUT[1] * (p\_Pa[0] - p\_Pa[1]) +
      p_LUT[1] * p_LUT[2] * (p_Pa[1] - p_Pa[2]) +
      p_LUT[2] * p_LUT[0] * (p_Pa[2] - p_Pa[0])) /
      (p_LUT[2] * (p_Pa[0] - p_Pa[1]) +
      p_LUT[0] * (p_Pa[1] - p_Pa[2]) +
      p_LUT[1] * (p_Pa[2] - p_Pa[0]));
   A = (p_{Q}[0] * p_{LUT}[0] - p_{Q}[1] * p_{LUT}[1] - (p_{Q}[1] - p_{Q}[0]) * C) / (p_{LUT}[0] - p_{LUT}[1]);
   B = (p\_Pa[0] - A) * (p\_LUT[0] + C);
   out[0] = A;
   out[1] = B;
   out[2] = C;
```


10.12 SAMPLE CODE: CONVERSION FORMULA (EXAMPLE PYTHON SYNTAX)

```
class Invensense_pressur_Conversion:
    """ Class for conversion of the pressure and temperature output of the Invensense sensor"""
    def __init__(self, sensor_constants):
    """ Initialize customer formula
        Arguments:
        sensor_constants -- list of 4 integers: [c1, c2, c3, c4]
"""
        self.sensor_constants = sensor_constants
        # configuration for Pressure Samples
        self.p_Pa_calib = [45000.0, 80000.0, 105000.0]
        self.LUT_lower = 3.5 * (2**20)
        self.LUT_upper = 11.5 * (2**20)
        self.quadr_factor = 1 / 16777216.0
        self.offst factor = 2048.0
    def calculate_conversion_constants(self, p_Pa, p_LUT):
    """ calculate temperature dependent constants
        Arguments:
        p_Pa -- List of 3 values corresponding to applied pressure in Pa
        p_LUT -- List of 3 values corresponding to the measured p_LUT values at the applied pressures.
        return [A, B, C]
    def get_pressure(self, p_LSB, T_LSB):
          "" Convert an output from a calibrated sensor to a pressure in Pa.
        Arguments:
        p_LSB -- Raw pressure data from sensor
        T_LSB -- Raw temperature data from sensor """
        t = T_LSB - 32768.0
        s1 = self.LUT_lower + float(self.sensor_constants[0] * t * t) * self.quadr_factor
        s2 = self.offst_factor * self.sensor_constants[3] + float(self.sensor_constants[1] * t * t) * self.quadr_factor
s3 = self.LUT_upper + float(self.sensor_constants[2] * t * t) * self.quadr_factor
        A, B, C = self.calculate_conversion_constants(self.p_Pa_calib, [s1, s2, s3])
        return A + B / (C + p_LSB)
[end of the pseudocode]
```


10.13 SAMPLE CODE: USING CONVERSION FORMULA (EXAMPLE PYTHON SYNTAX)

```
def read_otp_from_i2c():
   # TODO: implement read from I2C
   # refer to data sheet for I2C commands to read OTP
   return 1000, 2000, 3000, 4000
def read_raw_pressure_temp_from_i2c():
   # TODO: implement read from I2C
   \mbox{\# refer to data sheet for I2C commands to read pressure and temperature}
   return 8000000, 32000
# Sample code to read
from Invensense_pressure_conversion import Invensense_pressure_conversion
# -- initialization
c1, c2, c3, c4 = read_otp_from_i2c()
conversion = Invensense pressure conversion([c1, c2, c3, c4])
# -- read raw pressure and temp data, calculate pressure
p, T = read_raw_pressure_temp_from_i2c()
pressure = conversion.get_pressure(p, T)
print 'Pressure: %f' % pressure
[end of the pseudocode]
```

10.14 COMMUNICATION DATA SEQUENCES

Figure 15. Communication Sequence for starting a measurement and reading measurement results

11 ASSEMBLY

This section provides general guidelines for assembling TDK-InvenSense Micro Electro-Mechanical Systems (MEMS) gyros packaged in LGA package.

11.1 ORIENTATION OF AXES

The diagram below shows the orientation of the axes of sensitivity and the polarity of rotation. Note the pin 1 identifier (•) in Figure 16.

Figure 16. Orientation of Axes of Sensitivity and Polarity of Rotation

11.2 IMPLEMENTATION AND USAGE RECOMMENDATIONS

Soldering

When soldering, use the standard soldering profile IPC/JEDEC J-STD-020 with peak temperatures of 260°C. ICM-20789 may exhibit a pressure offset after soldering, some settling time may be required depending on soldering properties, PCB properties, and ambient conditions.

The ICM-20789 is an open cavity package, it is mandatory to use no-clean solder paste and no board wash should be applied. The ICM-20789 should be limited to a single reflow and no rework is recommended.

Chemical Exposure and Sensor Protection

The ICM-20789 is an open cavity package and therefore should not be exposed to particulates or liquids. If any type of protective coating must be applied to the circuit board, the sensor must be protected during the coating process.

Revision: 1.4

11.3 PACKAGE DIMENSIONS

24 Lead LGA (4 mm x 4 mm x 1.365 mm) NiPdAu Lead-frame finish

Figure 17. Package Dimensions

	DIMENSIONS IN MILLIMETERS		
SYMBOLS	MIN	NOM	MAX
A	1.265	1.365	1.465
А3		1.185 REF.	
b	0.20	0.25	0.30
C		0.18 REF.	
D	3.90	4.00	4.10
E	3.90	4.00	4.10
e		0.50	
L	0.35	0.45	0.55
L1	0.025	0.075	0.125
L3	0.325	0.375	0.425

Table 31. Package Dimensions Table

Figure 18 shows the recommended PCB land pattern for ICM-20789.

Figure 18. ICM-20789 recommended PCB land pattern

12 PART NUMBER PACKAGE MARKING

The part number package marking for ICM-20789 devices is summarized below:

PART NUMBER	PART NUMBER PACKAGE MARKING	
ICM-20789	IC2789	

Figure 19. Part Number Package Marking

13 ORDERING GUIDE

PART	TEMP RANGE	PACKAGE	QUANTITY	PACKAGING
ICM-20789†	-40°C to +85°C	24-Pin LGA	3,000	13" Tape and Reel

[†]Denotes RoHS and Green-Compliant Package

14 REFERENCE

Please refer to "InvenSense MEMS Handling Application Note (AN-IVS-0002A-00)" for the following information:

- Manufacturing Recommendations
 - Assembly Guidelines and Recommendations
 - o PCB Design Guidelines and Recommendations
 - o MEMS Handling Instructions
 - o ESD Considerations
 - o Reflow Specification
 - o Storage Specifications
 - o Package Marking Specification
 - o Tape & Reel Specification
 - o Reel & Pizza Box Label
 - o Packaging
 - o Representative Shipping Carton Label
- Compliance
 - o Environmental Compliance
 - o DRC Compliance
 - o Compliance Declaration Disclaimer

15 REVISION HISTORY

REVISION DATE	REVISION	DESCRIPTION
06/05/17	1.0	Initial Release
08/28/2017	1.1	Updated part marking
10/04/17	1.2	Updated performance specifications, added handling instructions
10/31/17	1.3	Updated Ordering Guide, Clarified Pin Connections as NC, GND, or VDD
01/30/18	1.4	Updated Sample Code: Example C Syntax

This information furnished by InvenSense, Inc. ("InvenSense") is believed to be accurate and reliable. However, no responsibility is assumed by InvenSense for its use, or for any infringements of patents or other rights of third parties that may result from its use. Specifications are subject to change without notice. InvenSense reserves the right to make changes to this product, including its circuits and software, in order to improve its design and/or performance, without prior notice. InvenSense makes no warranties, neither expressed nor implied, regarding the information and specifications contained in this document. InvenSense assumes no responsibility for any claims or damages arising from information contained in this document, or from the use of products and services detailed therein. This includes, but is not limited to, claims or damages based on the infringement of patents, copyrights, mask work and/or other intellectual property rights.

Certain intellectual property owned by InvenSense and described in this document is patent protected. No license is granted by implication or otherwise under any patent or patent rights of InvenSense. This publication supersedes and replaces all information previously supplied. Trademarks that are registered trademarks are the property of their respective companies. InvenSense sensors should not be used or sold in the development, storage, production or utilization of any conventional or mass-destructive weapons or for any other weapons or life threatening applications, as well as in any other life critical applications such as medical equipment, transportation, aerospace and nuclear instruments, undersea equipment, power plant equipment, disaster prevention and crime prevention equipment.

©2017 InvenSense. All rights reserved. InvenSense, MotionTracking, MotionProcessing, MotionProcessor, MotionFusion, MotionApps, DMP, AAR, and the InvenSense logo are trademarks of InvenSense, Inc. The TDK logo is a trademark of TDK Corporation. Other company and product names may be trademarks of the respective companies with which they are associated.

©2017—2018 InvenSense. All rights reserved.

Document Number: DS-000169 Page 65 of 65

Revision: 1.4