

ESCUELA SUPERIOR DE CÓMPUTO Segundo Examen Parcial de Cálculo

Nombre:		
Grupo:	 Fecha:	Calificación:

- 1) Usar la definición de derivada para calcular la derivada de $y = \frac{x-5}{x+3}$ 0.5 pto
- 2) Usar la regla de la cadena para encontrar la derivada $\frac{dy}{dx}$ si $y = 10^u + \ln|u|$ y $u = sen(x) arc \cos(x)$.
- 3) Derivar implícitamente $senh(y^3) e^{xy} 5^y = 0$ 1 pts
- 4) Utilizando el método de Newton encontrar al menos una de las raíces de la siguiente función: $f(x) = tg(x) 2e^x$ 1 pto
- 5) Calcular el siguiente límite por L'Hôpital : $\lim_{x\to 0} \left[\frac{1}{sen^2(x)} \frac{1}{x^2} \right]$ 1 pto
- 6) Hallar dominio, rango, los puntos máximos, mínimos relativos y de inflexión de $y = \frac{1}{2}x sen(x)$. Bosquejar su gráfica. 2 pts
- 7) Hallar la derivada de $y = e^{arcshx}Ln(x)^x$ 2 pts
- 8) Uno de los extremos de una escalera de 15 m se apoya contra una pared vertical levantada en un piso horizontal. Supóngase que se empuje el pie de la escalera alejándola de la pared a razón de 0.9 m por minuto. a) ¿Con qué velocidad baja la extremidad superior de la escalera cuando su pie dista 4 m de la pared? . b) ¿Cuándo se moverán con la misma velocidad las dos extremidades de la escalera? c) ¿Cuándo baja la extremidad superior de la escalera a razón de 1.2 m por minuto? 2 pts