Chimie Secondaire

Indicateurs colorés usuels

Un indicateur coloré est une substance dont la couleur est caractéristique d'une propriété physique de la solution.

La couleur d'un indicateur coloré acido-basique dépend du pH de la solution.

La couleur d'un indicateur coloré d'oxydoréduction dépend du potentiel redox de la solution.

La couleur d'un indicateur coloré métallochromique dépend de la concentration en ion métallique dans la solution.

I – Indicateur coloré acido-basique :

Pour les couples acide-bases, il s'agit d'une molécule organique ayant des propriétés acides et caractérisées par pKi et dont les spectres d'absorption des formes acide et basique sont différents l'une des formes au moins absorbant le visible.

Pour observer un rapide changement de couleur au voisinage de l'équivalence du titrage, il est nécessaire que le pH à l'équivalence du titrage soit voisin du pKi de l'indicateur.

Pour un très faible volume de titrant ajouté, qui doit être de l'ordre d'une goutte, le pH doit varier d'au moins 2 unités, ce qui fait que l'indicateur coloré passe de la forme acide majoritaire à la forme basique majoritaire, d'où le changement de couleur de la solution.

indicateur	Couleur de la forme acide	Zone de virage	Couleur de la forme basique
Méthyl violet	Jaune	00,1 - 03,2	Violet
Bleu de thymol	Rouge	01,2 - 02,8	Jaune
Diméthylorange	Rouge	02,9 - 04,0	Jaune
Bleu de bromophénol	Jaune	03,0 - 04,6	Violet
Hélianthine	Rouge	03,1 - 04,4	Jaune
Vert de bromocrésol	Jaune	04,5 - 05,6	Bleu
Bleu de bromothymol	Jaune	04,5 - 05,6	Bleu
Rouge de crésol	Jaune	07,2 - 08,8	Rouge
Bleu de thymol	Jaune	08,0 - 09,6	Bleu
Phénolphtaléine	Incolore	08,0 - 10,0	Rouge
Jaune d'alizarine	Jaune	10,0 - 12,0	Rouge
Tropéoline O	Jaune	11,0 - 13,0	Rouge orangé
Acide trinitrobenzoïque	Incolore	12,0 - 13,5	Orange

Lors du dosage, le pH de la solution doit varier rapidement au voisinage de l'équivalence, ce qui exclut l'utilisation des indicateurs colorés lors des titrages de solutions diluées (inférieures à $10^{-3} \, mol.L^{-1}$), des solutions d'acide de pKa > 10 et de base de pKa < 4. Dans ces dosages, le pH varie faiblement au point de l'équivalence.

La quantité d'indicateur coloré doit être faible par rapport à la quantité initiale de l'espèce acidobasique titrée : un indicateur coloré est toujours utilisé en solution diluée. Ceci est sans conséquence sur la détection de l'équivalence, car les absorptions des formes acide et basique de l'indicateur sont importantes même à faible concentration. **Chimie** Secondaire

II – Indicateurs colorés d'oxydoréduction :

Il s'agit de molécules dont les formes oxydée et réduite sont différentes. Un tel indicateur est sensible au potentiel rédox de la solution.

Pour observer un changement de couleur de l'indicateur au voisinage de l'équivalence, il est nécessaire que le potentiel standard de l'indicateur soit voisin du potentiel de la solution. Sur quelques dixièmes de volt, l'indicateur passe ainsi de sa forme majoritaire réduite à sa forme majoritaire oxydée.

indicateur	Couleur de la forme oxydée	Potentiel	Couleur de la forme réduite
Compleye for phénanthroline	Plau pâla	1 14 1/	Dougo
Complexe fer – phénanthroline	Bleu pâle	1,14 V	Rouge
Complexe fer – dipyridyl	Bleu très pâle	1,02 V	Rouge
Acide N-phéylanthranilique	Rouge pourpre	0,89 V	Incolore
Acide diphénylaminesulfonique	Rouge violet	0,85 V	Incolore
Diphénylamine	Violet	0,76 V	Incolore
Complexe diiode – amidon	Bleu foncé	0,53 V	Incolore
Bleu de méthylène	Bleu	0,52 V	Incolore

Ces indicateurs doivent être utilisés en très faible concentration dans le milieu dans lequel ils sont introduits, sous peine de fausser le résultat du dosage effectué en reculant la détection de l'équivalence.

L'orthophénantroline a pour formule :

III - Indicateurs colorés de précipitation :

Ils indiquent la fin du titrage d'un ion en donnant avec un des ions contenus dans le milieu un précipité de couleur caractéristique.

Lorsque ce précipité supplémentaire apparaît, on considère que l'on a atteint le point équivalent du dosage.

IV - Indicateurs colorés d'absorption - Méthode de Fajans :

Dans les dosages par précipitation avec le nitrate d'argent comme solution titrante, on peut utiliser un indicateur d'absorption pour mettre en évidence l'équivalence. Un tel indicateur a la propriété d'absorber à la surface du précipité qui se forme lors du dosage, puis de se désorber au voisinage de l'équivalence en donnant avec le réactif en excès un changement de couleur qui permet de mettre en évidence de manière colorimétrique l'équivalence.

Indicateur coloré : fluorescéine (vert jaunâtre puis rouge)

Chimie Secondaire

V - Indicateurs colorés de complexométrie :

Ce sont en général de grosses molécules organiques capables de former avec les cations métalliques des complexes stables et colorés dont la couleur est différente de celle de l'indicateur libre dans le milieu réactionnel. La variation rapide de la concentration en métal au voisinage de l'équivalence peut être ainsi mise en évidence par colorimétrie.

Indicateurs colorés utilisables lors des dosages complexométriques par colorimétrie :

- Noir eriochrome T ou NET en milieu ammoniacal.
- Murexide ou purpurate d'ammonium en milieu ammoniacal (jaune au violet).