CENG 280

Course outline

- Preliminaries: Alphabets and languages
- Regular languages
 - Regular expressions
 - Finite automata: DFA and NFA
 - Finite automata regular languages
 - Languages that are and that are not regular, Pumping lemma
 - State minimization for DFA
- Context-free languages
- Turing-machines

- Equivalence relations induced by language and automata
- MyHill-Nerode theorem
- State minimization algorithm

• FA are useful to design algorithms and recognize RL.

- FA are useful to design algorithms and recognize RL.
- Not powerful to compare the number of occurrences of symbols in a string (no writable memory)

- FA are useful to design algorithms and recognize RL.
- Not powerful to compare the number of occurrences of symbols in a string (no writable memory)
- Still a useful computation machine, and it is important to reduce the number of states for computational efficiency.

- FA are useful to design algorithms and recognize RL.
- Not powerful to compare the number of occurrences of symbols in a string (no writable memory)
- Still a useful computation machine, and it is important to reduce the number of states for computational efficiency.
- Given M with k states, can you write a machine M' with k < k' states such that M = M'?

- FA are useful to design algorithms and recognize RL.
- Not powerful to compare the number of occurrences of symbols in a string (no writable memory)
- Still a useful computation machine, and it is important to reduce the number of states for computational efficiency.
- Given M with k states, can you write a machine M' with k < k' states such that M = M'?
- How?

- FA are useful to design algorithms and recognize RL.
- Not powerful to compare the number of occurrences of symbols in a string (no writable memory)
- Still a useful computation machine, and it is important to reduce the number of states for computational efficiency.
- Given M with k states, can you write a machine M' with k < k' states such that M = M'?
- How?
 - Remove unreachable states.

- FA are useful to design algorithms and recognize RL.
- Not powerful to compare the number of occurrences of symbols in a string (no writable memory)
- Still a useful computation machine, and it is important to reduce the number of states for computational efficiency.
- Given M with k states, can you write a machine M' with k < k' states such that M = M'?
- How?
 - Remove unreachable states.
 - Merge equivalent states.

Definition (language)

Let $L\subseteq \Sigma^*$ be a language, and let $x,y\in \Sigma^*$. x and y are said to be equivalent with respect to L, if for all $z\in \Sigma^*$, $xz\in L$ iff $yz\in L$. The equivalent strings are denoted by $x\approx_L y$. Note that \approx_L is an equivalence relation.

Definition (language)

Let $L \subseteq \Sigma^*$ be a language, and let $x, y \in \Sigma^*$. x and y are said to be equivalent with respect to L, if for all $z \in \Sigma^*$, $xz \in L$ iff $yz \in L$. The equivalent strings are denoted by $x \approx_L y$. Note that \approx_L is an equivalence relation.

If $x \approx_L y$, then either $x, y \in L$ or $x, y \notin L$ (why?).

Definition (language)

Let $L \subseteq \Sigma^*$ be a language, and let $x, y \in \Sigma^*$. x and y are said to be equivalent with respect to L, if for all $z \in \Sigma^*$, $xz \in L$ iff $yz \in L$. The equivalent strings are denoted by $x \approx_L y$. Note that \approx_L is an equivalence relation.

If $x \approx_L y$, then either $x, y \in L$ or $x, y \notin L$ (why?).

If $x \approx_L y$, then appending the same string z to both of them results in two strings that are either both in L or both not in L.

Definition (language)

Let $L \subseteq \Sigma^*$ be a language, and let $x, y \in \Sigma^*$. x and y are said to be equivalent with respect to L, if for all $z \in \Sigma^*$, $xz \in L$ iff $yz \in L$. The equivalent strings are denoted by $x \approx_L y$. Note that \approx_L is an equivalence relation.

If $x \approx_L y$, then either $x, y \in L$ or $x, y \notin L$ (why?).

If $x \approx_L y$, then appending the same string z to both of them results in two strings that are either both in L or both not in L.

Example

Equivalence classes of $\mathcal{L}(a^*)$?

Definition (language)

Let $L \subseteq \Sigma^*$ be a language, and let $x, y \in \Sigma^*$. x and y are said to be equivalent with respect to L, if for all $z \in \Sigma^*$, $xz \in L$ iff $yz \in L$. The equivalent strings are denoted by $x \approx_L y$. Note that \approx_L is an equivalence relation.

If $x \approx_L y$, then either $x, y \in L$ or $x, y \notin L$ (why?).

If $x \approx_L y$, then appending the same string z to both of them results in two strings that are either both in L or both not in L.

Example

Equivalence classes of $\mathcal{L}(a^*)$?

Equivalence classes of $\mathcal{L}((ab \cup ba)^*)$?

Definition (language)

Let $L \subseteq \Sigma^*$ be a language, and let $x, y \in \Sigma^*$. x and y are said to be equivalent with respect to L, if for all $z \in \Sigma^*$, $xz \in L$ iff $yz \in L$. The equivalent strings are denoted by $x \approx_L y$. Note that \approx_L is an equivalence relation.

If $x \approx_L y$, then either $x, y \in L$ or $x, y \notin L$ (why?).

If $x \approx_L y$, then appending the same string z to both of them results in two strings that are either both in L or both not in L.

Example

Equivalence classes of $\mathcal{L}(a^*)$?

Equivalence classes of $\mathcal{L}((ab \cup ba)^*)$?

 \approx_L form a partition of Σ^*

Definition (machine)

Let $M = (K, \Sigma, \delta, s, F)$ be a deterministic finite automaton. Two strings $x, y \in \Sigma^*$ are equivalent with respect to M, denoted by $x \sim_M y$, if there exists $q \in K$ such that $(s, x) \vdash_M^* (q, e)$ and $(s, y) \vdash_M^* (q, e)$.

Definition (machine)

Let $M = (K, \Sigma, \delta, s, F)$ be a deterministic finite automaton. Two strings $x, y \in \Sigma^*$ are equivalent with respect to M, denoted by $x \sim_M y$, if there exists $q \in K$ such that $(s, x) \vdash_M^* (q, e)$ and $(s, y) \vdash_M^* (q, e)$.

Example

Consider M for $\mathcal{L}((ab \cup ba)^*)$ and $\mathcal{L}(a^*)$.

Definition (machine)

Let $M=(K,\Sigma,\delta,s,F)$ be a deterministic finite automaton. Two strings $x,y\in\Sigma^{\star}$ are equivalent with respect to M, denoted by $x\sim_{M}y$, if there exists $q\in K$ such that $(s,x)\vdash_{M}^{\star}(q,e)$ and $(s,y)\vdash_{M}^{\star}(q,e)$.

Example

Consider M for $\mathcal{L}((ab \cup ba)^*)$ and $\mathcal{L}(a^*)$.

Both of the equivalence relations are over Σ^* , and each of them form a partition of it.

6 / 11

Definition (machine)

Let $M = (K, \Sigma, \delta, s, F)$ be a deterministic finite automaton. Two strings $x, y \in \Sigma^*$ are equivalent with respect to M, denoted by $x \sim_M y$, if there exists $q \in K$ such that $(s, x) \vdash_M^* (q, e)$ and $(s, y) \vdash_M^* (q, e)$.

Example

Consider M for $\mathcal{L}((ab \cup ba)^*)$ and $\mathcal{L}(a^*)$.

Both of the equivalence relations are over Σ^* , and each of them form a partition of it.

Theorem

For any deterministic finite automaton $M = (K, \Sigma, \delta, s, F)$, and any strings $x, y \in \Sigma^*$, if $x \sim_M y$ then $x \approx_{L(M)} y$.

State Minimization CENG 280 6 / 11

\sim_M and \approx_L

Definition (refinement)

An equivalence relation \sim is a refinement of another \approx , if for all x, y, $x \sim y$ implies $x \approx y$.

State Minimization CENG 280 7 / 11

\sim_M and \approx_L

Definition (refinement)

An equivalence relation \sim is a refinement of another \approx , if for all x, y, $x \sim y$ implies $x \approx y$.

• If \sim is a refinement of \approx , then each equivalence class of \sim is contained in an equivalence class of \approx .

\sim_{M} and $pprox_{L}$

Definition (refinement)

An equivalence relation \sim is a refinement of another \approx , if for all x, y, $x \sim y$ implies $x \approx y$.

- If \sim is a refinement of \approx , then each equivalence class of \sim is contained in an equivalence class of \approx .
- In other words, each equivalence class of \approx is union of one or more equivalence classes of \sim . (example?)

\sim_{M} and $pprox_{L}$

Definition (refinement)

An equivalence relation \sim is a refinement of another \approx , if for all x, y, $x \sim y$ implies $x \approx y$.

- If \sim is a refinement of \approx , then each equivalence class of \sim is contained in an equivalence class of \approx .
- In other words, each equivalence class of \approx is union of one or more equivalence classes of \sim . (example?)
- Theorem 5 implies that \sim_M is a refinement of $\approx_{L(M)}$.

\sim_M and \approx_L

Definition (refinement)

An equivalence relation \sim is a refinement of another \approx , if for all x, y, $x \sim y$ implies $x \approx y$.

- If \sim is a refinement of \approx , then each equivalence class of \sim is contained in an equivalence class of \approx .
- In other words, each equivalence class of \approx is union of one or more equivalence classes of \sim . (example?)
- Theorem 5 implies that \sim_M is a refinement of $\approx_{L(M)}$.
- Furthermore, we can deduce that for any deterministic automaton M, the number of states any automaton \bar{M} that accepts L(M) must be at least as large as the number of equivalence classes of L(M) under $\approx_{L(M)}$.

\sim_M and \approx_L

Definition (refinement)

An equivalence relation \sim is a refinement of another \approx , if for all x, y, $x \sim y$ implies $x \approx y$.

- If \sim is a refinement of \approx , then each equivalence class of \sim is contained in an equivalence class of \approx .
- In other words, each equivalence class of \approx is union of one or more equivalence classes of \sim . (example?)
- Theorem 5 implies that \sim_M is a refinement of $\approx_{L(M)}$.
- Furthermore, we can deduce that for any deterministic automaton M, the number of states any automaton \bar{M} that accepts L(M) must be at least as large as the number of equivalence classes of L(M) under $\approx_{L(M)}$.
- Thus the number of equivalence classes of $\approx_{L(M)}$ gives a lower bound on the number of states of an automaton \bar{M} that accepts L(M).

State Minimization CENG 280 7 / 11

Definition (refinement)

An equivalence relation \sim is a refinement of another \approx , if for all x, y, $x \sim y$ implies $x \approx y$.

- If \sim is a refinement of \approx , then each equivalence class of \sim is contained in an equivalence class of \approx .
- In other words, each equivalence class of \approx is union of one or more equivalence classes of \sim . (example?)
- Theorem 5 implies that \sim_M is a refinement of $\approx_{L(M)}$.
- Furthermore, we can deduce that for any deterministic automaton M, the number of states any automaton \bar{M} that accepts L(M) must be at least as large as the number of equivalence classes of L(M) under $\approx_{L(M)}$.
- Thus the number of equivalence classes of $\approx_{L(M)}$ gives a lower bound on the number of states of an automaton \bar{M} that accepts L(M).
- Myhill-Nerode Theorem shows that this lower bound is attainable.

Theorem (Myhill-Nerode)

Let $L \subseteq \Sigma^*$ be a regular language. Then there is a deterministic finite automaton $M = (K, \Sigma, \delta, s, F)$ such that L = L(M) and |K| is the number of equivalence classes of \approx_L .

Theorem (Myhill-Nerode)

Let $L \subseteq \Sigma^*$ be a regular language. Then there is a deterministic finite automaton $M = (K, \Sigma, \delta, s, F)$ such that L = L(M) and |K| is the number of equivalence classes of \approx_L .

Constructive proof:

Theorem (Myhill-Nerode)

Let $L \subseteq \Sigma^*$ be a regular language. Then there is a deterministic finite automaton $M = (K, \Sigma, \delta, s, F)$ such that L = L(M) and |K| is the number of equivalence classes of \approx_L .

Constructive proof:

 $K = \{[x] \mid x \in \Sigma^*\}$ the set of equivalence classes under \approx_L

State Minimization CENG 280 8 / 11

Theorem (Myhill-Nerode)

Let $L \subseteq \Sigma^*$ be a regular language. Then there is a deterministic finite automaton $M = (K, \Sigma, \delta, s, F)$ such that L = L(M) and |K| is the number of equivalence classes of \approx_L .

Constructive proof:

$$\mathcal{K} = \{[x] \mid x \in \Sigma^*\}$$
 the set of equivalence classes under \approx_L $s = [e]$

8 / 11

Theorem (Myhill-Nerode)

Let $L \subseteq \Sigma^*$ be a regular language. Then there is a deterministic finite automaton $M = (K, \Sigma, \delta, s, F)$ such that L = L(M) and |K| is the number of equivalence classes of \approx_L .

Constructive proof:

$$K = \{[x] \mid x \in \Sigma^*\}$$
 the set of equivalence classes under \approx_L $s = [e]$ $F = \{[x] \mid x \in L\}$

State Minimization CENG 280 8 / 11

Theorem (Myhill-Nerode)

Let $L \subseteq \Sigma^*$ be a regular language. Then there is a deterministic finite automaton $M = (K, \Sigma, \delta, s, F)$ such that L = L(M) and |K| is the number of equivalence classes of \approx_L .

Constructive proof:

$$K = \{[x] \mid x \in \Sigma^*\}$$
 the set of equivalence classes under \approx_L $s = [e]$ $F = \{[x] \mid x \in L\}$ $\delta([x], a) = [xa]$ for any $[x] \in K$ and $a \in \Sigma$

8 / 11

Theorem (Myhill-Nerode)

Let $L \subseteq \Sigma^*$ be a regular language. Then there is a deterministic finite automaton $M = (K, \Sigma, \delta, s, F)$ such that L = L(M) and |K| is the number of equivalence classes of \approx_L .

Constructive proof:

$$K = \{[x] \mid x \in \Sigma^*\}$$
 the set of equivalence classes under \approx_L $s = [e]$ $F = \{[x] \mid x \in L\}$ $\delta([x], a) = [xa]$ for any $[x] \in K$ and $a \in \Sigma$

Example

Consider M for $\mathcal{L}((ab \cup ba)^*)$ and $\mathcal{L}(a^*)$.

Corollary

A language L is regular if and only if \approx_L has finitely many equivalence classes.

Corollary

A language L is regular if and only if \approx_L has finitely many equivalence classes.

The corollary can be used to show that a language is not regular (show that it has infinitely many equivalence classes).

MyHill-Nerode Theorem

Corollary

A language L is regular if and only if \approx_L has finitely many equivalence classes.

The corollary can be used to show that a language is not regular (show that it has infinitely many equivalence classes).

Example

Show that $L = \{a^n b^n \mid n \ge 0\}$ is not regular by using MyHill-Nerode theorem.

CENG 280

MyHill-Nerode Theorem

Corollary

A language L is regular if and only if \approx_L has finitely many equivalence classes.

The corollary can be used to show that a language is not regular (show that it has infinitely many equivalence classes).

Example

Show that $L = \{a^n b^n \mid n \ge 0\}$ is not regular by using MyHill-Nerode theorem.

For a given regular language L, the Myhill-Nerode theorem can be used to construct an automaton M recognizing L (L = L(M)) with minimal number of states. However, the construction requires writing equivalence classes of \approx_L , which is not a trivial task.

Given a deterministic automaton $M = (K, \Sigma, \delta, s, F)$, generate an automaton M' with minimal number of states satisfying L(M) = L(M'):

Given a deterministic automaton $M = (K, \Sigma, \delta, s, F)$, generate an automaton M' with minimal number of states satisfying L(M) = L(M'):

• For a deterministic automaton, define $A_M \subseteq K \times \Sigma^*$ as follows:

$$(q, w) \in A_M$$
 iff $(q, w) \vdash_M^* (f, e)$ for some $f \in F$

Given a deterministic automaton $M = (K, \Sigma, \delta, s, F)$, generate an automaton M' with minimal number of states satisfying L(M) = L(M'):

• For a deterministic automaton, define $A_M \subseteq K \times \Sigma^*$ as follows:

$$(q, w) \in A_M$$
 iff $(q, w) \vdash_M^{\star} (f, e)$ for some $f \in F$

ullet Two states $q,p\in K$ are said to be equivalent, $p\equiv q$ if

for all
$$z \in \Sigma^* : (p, z) \in A_M$$
 iff $(q, z) \in A_M$

State Minimization CENG 280 10 / 11

Given a deterministic automaton $M = (K, \Sigma, \delta, s, F)$, generate an automaton M' with minimal number of states satisfying L(M) = L(M'):

• For a deterministic automaton, define $A_M \subseteq K \times \Sigma^*$ as follows:

$$(q, w) \in A_M$$
 iff $(q, w) \vdash_M^{\star} (f, e)$ for some $f \in F$

• Two states $q, p \in K$ are said to be equivalent, $p \equiv q$ if

for all
$$z \in \Sigma^* : (p, z) \in A_M$$
 iff $(q, z) \in A_M$

• It two states are equivalent, then their equivalence classes under \sim_M is a subset of the same equivalence class under $\approx_{L(M)}$.

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

Given a deterministic automaton $M = (K, \Sigma, \delta, s, F)$, generate an automaton M' with minimal number of states satisfying L(M) = L(M'):

• For a deterministic automaton, define $A_M \subseteq K \times \Sigma^*$ as follows:

$$(q, w) \in A_M$$
 iff $(q, w) \vdash_M^{\star} (f, e)$ for some $f \in F$

• Two states $q, p \in K$ are said to be equivalent, $p \equiv q$ if

for all
$$z \in \Sigma^* : (p, z) \in A_M$$
 iff $(q, z) \in A_M$

- It two states are equivalent, then their equivalence classes under \sim_M is a subset of the same equivalence class under $\approx_{L(M)}$.
- Thus, if $p \equiv q$, they can be merged to obtain an equivalent automaton with smaller number of states.

◆ロト ◆回 ト ◆ 恵 ト ◆ 恵 ・ 夕 ○ ○

Iterative algorithm for construction of \equiv : \equiv is the limit of the sequence $\equiv_0, \equiv_1, \ldots$

State Minimization CENG 280 11 / 11

Iterative algorithm for construction of \equiv : \equiv is the limit of the sequence $\equiv_0, \equiv_1, \ldots$

• For $p, q \in K$, $q \equiv_n p$ if $(p, z) \in A_M$ iff $(q, z) \in A_M$ for each $z \in \Sigma^*$ with $|z| \leq n$.

State Minimization CENG 280 11 / 11

Iterative algorithm for construction of \equiv : \equiv is the limit of the sequence $\equiv_0, \equiv_1, \ldots$

- For $p, q \in K$, $q \equiv_n p$ if $(p, z) \in A_M$ iff $(q, z) \in A_M$ for each $z \in \Sigma^*$ with $|z| \leq n$.
- Thus $q \equiv_n p$ implies that p and q behaves the same with respect to acceptance of strings for strings up to length n.

11 / 11

Iterative algorithm for construction of \equiv : \equiv is the limit of the sequence $\equiv_0, \equiv_1, \ldots$

- For $p, q \in K$, $q \equiv_n p$ if $(p, z) \in A_M$ iff $(q, z) \in A_M$ for each $z \in \Sigma^*$ with $|z| \leq n$.
- Thus $q \equiv_n p$ implies that p and q behaves the same with respect to acceptance of strings for strings up to length n.
- $q \equiv_0 p$ if p and q are both accepting or both non-accepting (two equivalence classes under \equiv_0).

11 / 11

Iterative algorithm for construction of \equiv : \equiv is the limit of the sequence $\equiv_0, \equiv_1, \ldots$

- For $p, q \in K$, $q \equiv_n p$ if $(p, z) \in A_M$ iff $(q, z) \in A_M$ for each $z \in \Sigma^*$ with $|z| \leq n$.
- Thus $q \equiv_n p$ implies that p and q behaves the same with respect to acceptance of strings for strings up to length n.
- $q \equiv_0 p$ if p and q are both accepting or both non-accepting (two equivalence classes under \equiv_0).
- \equiv_{i+1} is a refinement of \equiv_i . Next lemma relates \equiv_n to \equiv_{n-1} .

11 / 11

Iterative algorithm for construction of \equiv : \equiv is the limit of the sequence $\equiv_0, \equiv_1, \ldots$

- For $p, q \in K$, $q \equiv_n p$ if $(p, z) \in A_M$ iff $(q, z) \in A_M$ for each $z \in \Sigma^*$ with $|z| \leq n$.
- Thus $q \equiv_n p$ implies that p and q behaves the same with respect to acceptance of strings for strings up to length n.
- $q \equiv_0 p$ if p and q are both accepting or both non-accepting (two equivalence classes under \equiv_0).
- \equiv_{i+1} is a refinement of \equiv_i . Next lemma relates \equiv_n to \equiv_{n-1} .

Lemma

For p, q and $n \ge 1$, $q \equiv_n p$ if and only if

- $\mathbf{0}$ $q \equiv_{n-1} p$ and
- ② for all $a \in \Sigma$, $\delta(q, a) \equiv_{n-1} \delta(p, a)$

11 / 11

- **1** Equivalence classes of \equiv_0 are $K \setminus F$ and K
- ② Until \equiv_n is the same as \equiv_{n-1}
- ocompute equivalence class of \equiv_n from \equiv_{n-1} (for each $a \in \Sigma$, and equivalence class [q], compute $\{\delta(q',a) \mid q' \in [q]\}$, and split the equivalence classes that intersect with this set)

State Minimization