## Lenguaje matemático, conjuntos y números

**Pregunta 1** (2 puntos)(0,75+0,75+0,5)

Se definen las aplicaciones f y g mediante:

$$f: \mathbb{N}^2 \longrightarrow \mathbb{N}$$
$$(n,m) \longmapsto f(n,m) = mn$$

$$g: \mathbb{N} \longrightarrow \mathbb{N}^2$$
  
 $n \longmapsto g(n) = (n, (n+1)^2)$ 

- a) Determine razonadamente si f es inyectiva o sobreyectiva.
- b) Determine razonadamente si g es inyectiva o sobreyectiva.
- c) Determine  $f \circ g$  y  $g \circ f$ .

**Solución:** a) f no es inyectiva pues por ejemplo, f(1,6) = f(2,3) = 6 y sin embargo  $(1,6) \neq (2,3)$ . f es sobreyectiva pues para todo  $p \in \mathbb{N}$  existe  $(n,m) \in \mathbb{N}^2$  tal que f(n,m) = p. Basta tomar (n,m) = (p,1).

b) g es inyectiva pues si g(n) = g(n') entonces  $(n, (n+1)^2) = (n', (n'+1)^2)$  y por tanto, n = n'. g no es sobreyectiva, por ejemplo, para  $(1, 2) \in \mathbb{N}^2$  no existe ningún n tal que g(n) = (1, 2) pues de  $(n, (n+1)^2) = (1, 2)$  se obtiene n = 1 y 4 = 2.

c)

$$f \circ g: \mathbb{N} \longrightarrow \mathbb{N}$$
  
 $n \longmapsto f(g(n)) = f(n, (n+1)^2) = n(n+1)^2$ 

$$g \circ f: \mathbb{N}^2 \longrightarrow \mathbb{N}^2$$
  
 $(n,m) \longmapsto q(f(n,m)) = q(mn) = (mn, (mn+1)^2)$ 

Pregunta 2 (3 puntos)

Se define en  $\mathbb{N}^*$  la relación  $\ll$  dada por:

$$a \ll b$$
 si y sólo si existe  $n \in \mathbb{N}^*$  tal que  $b = a^n$ 

- a) Demuestre que  $\ll$  es una relación de orden parcial en  $\mathbb{N}^*$ .
- b) Si  $A = \{2, 4, 8\}$ , estudie la existencia, y en su caso explicítelos, de cotas superiores e inferiores, supremo e ínfimo, máximo y mínimo, maximales y minimales del conjunto A.

**Solución:** a) Veamos que  $\ll$  es una relación de orden parcial en  $\mathbb{N}^*$ .

Es reflexiva pues  $a \ll a$  para todo  $a \in \mathbb{N}^*$ . Basta tomar n = 1.

Es antisimétrica: sean  $a, b \in \mathbb{N}^*$  tales que  $a \ll b$  y  $b \ll a$ . Existen  $n, m \in \mathbb{N}^*$  tales que  $b = a^n$  y  $a = b^m$ . Por tanto,  $a = b^m = (a^n)^m = a^{nm}$  y en consecuencia, a = 1 o nm = 1. Si nm = 1 entonces n = m = 1 (pues  $n, m \in \mathbb{N}^*$ ) y por tanto a = b. Si a = 1 entonces  $b = 1^n = 1$ , y también, se deduce que a = b.

Es transitiva: sean  $a, b, c \in \mathbb{N}^*$  tales que  $a \ll b$  y  $b \ll c$ . Existen  $n, m \in \mathbb{N}^*$  tales que  $b = a^n$  y  $c = b^m$ . En consecuencia,  $c = b^m = (a^n)^m = a^{nm}$ . Por tanto,  $a \ll c$ .

Es orden parcial. Por ejemplo, no se cumple que  $2 \ll 3$  y tampoco  $3 \ll 2$ . Veamos que  $f(A \cap f^{-1}(B)) = f(A) \cap B$ .

b) Observemos que  $A=\{2,2^2,2^3\}$ . Las cotas superiores de un elemento a son todos los elementos de la forma  $a^n$  con  $n\in\mathbb{N}^*$ , por tanto, las cotas superiores de A es el conjunto de las cotas superiores comunes a todos los elementos de A, es decir a la intersección de los conjuntos  $\{2^n\mid n\in\mathbb{N}^*\}, \{2^{2n}\mid n\in\mathbb{N}^*\}, \{2^{3n}\mid n\in\mathbb{N}^*\}$ . Se obtiene que el conjunto de cotas superiores de A es  $\{2^{6n}\mid n\in\mathbb{N}^*\}$ . El supremo de A es la menor (para el orden  $\ll$ ) de las cotas superiores que en este caso es  $2^6$ . El conjunto A no tiene máximo pues el supremo de A no es un elemento de A. En A, tanto 4 como 8 son elementos maximales de A pues no existen elementos en A, p y q, tales que  $4 \ll p$  y  $p \neq 4$  o  $8 \ll q$  y  $q \neq 8$ .

Las cotas inferiores de A se limitan al conjunto unitario  $\{2\}$ . En este caso como  $2 \in A$ , resulta que  $2 = \inf(A) = \min(A)$  y además 2 es el único elemento minimal.

## Pregunta 3 (2 puntos)

Se define por recurrencia la sucesión  $u_n$  mediante:  $u_0 = 0$  y  $u_{n+1} = \sqrt{\frac{1+u_n}{2}} \ \forall n \in \mathbb{N}$ . Demuestre por inducción que  $\forall n \in \mathbb{N}^*$  se cumple:

$$\frac{1}{\sqrt{2}} \le u_n \le 1$$

**Solución:** i) Las desigualdades  $\frac{1}{\sqrt{2}} \le u_n \le 1$  son ciertas para n=1 pues  $u_1=\sqrt{\frac{1+u_0}{2}}=\frac{1}{\sqrt{2}}$  y por tanto  $\frac{1}{\sqrt{2}} \le u_1 \le 1$ .

ii) Supongamos que las desigualdades  $\frac{1}{\sqrt{2}} \le u_n \le 1$  son ciertas para n. Teniendo en cuenta la expresión de  $u_{n+1} = \sqrt{\frac{1+u_n}{2}}$  y las desigualdades anteriores se tiene que

$$\frac{1+\frac{1}{\sqrt{2}}}{2} \le \frac{1+u_n}{2} \le \frac{1+1}{2} = 1.$$

Aplicando por un lado que  $\sqrt{a} \le \sqrt{b}$  si  $0 \le a \le b$  y por otro lado que  $0 \le \frac{1}{2} \le \frac{1 + \frac{1}{\sqrt{2}}}{2}$  se obtiene

$$\sqrt{\frac{1}{2}} \le \sqrt{\frac{1+u_n}{2}} \le \sqrt{\frac{1+1}{2}} = 1$$
.

En consecuencia,  $\frac{1}{\sqrt{2}} \le u_{n+1} \le 1$ .

## Pregunta 4 (3 puntos)

Sea  $f: \mathbb{C} \longrightarrow \mathbb{C}$  la aplicación definida mediante  $f(z) = z^3 - 2z^2 + 16$ . Se pide:

- a) Calcule f(-2), deduzca una factorización de f(z) y resuelva la ecuación f(z)=0.
- b) Sean los números complejos  $z_0=-2,\; z_1=2(1+i)$  y  $z_2=2(1-i).$

Calcule el módulo y el argumento de los números  $z_0$ ,  $z_1$ ,  $z_2$  y  $\omega = \frac{z_0 z_1^2}{z_2^3}$ .

c) Represente en el plano complejo los puntos  $M_0$ ,  $M_1$  y  $M_2$  cuyos afijos son respectivamente  $z_0$ ,  $z_1$  y  $z_2$ . Demuestre que el triángulo de vértices  $M_0$ ,  $M_1$  y  $M_2$  es isósceles pero no es equilátero.

**Solución:** a) f(-2) = -8 - 8 + 16 = 0 y por tanto z + 2, es un factor de f(z), es decir

$$f(z) = (z+2)(z^2 + \alpha z + \beta)$$

Desarrollando se obtiene  $z^3 - 2z^2 + 16 = z^3 + (\alpha + 2)z^2 + (\beta + 2\alpha)z + 2\beta$ . Igualando coeficientes de los términos de mismo grado resulta,  $\alpha = -4$  y  $\beta = 8$ . Por tanto:

$$f(z) = (z+2)(z^2 - 4z + 8)$$

Resolvemos la ecuación  $z^2 - 4z + 8 = 0$ . El discriminante de la ecuación es  $\Delta = 16 - 32 = -16$ . En consecuencia, las soluciones son:

 $z_1 = \frac{4+4i}{2} = 2+2i$  y  $z_2 = \frac{4-4i}{2} = 2-2i$ 

Por tanto las soluciones de la ecuación son  $z_0 = -2$ ,  $z_1 = 2(1+i)$  y  $z_2 = 2(1-i)$ .

b) Por un lado,  $z_0=-2=2_\pi$ . A su vez  $|z_1|=|z_2|=\sqrt{2+4}=\sqrt{8}=2\sqrt{2}$  y por tanto

$$z_1 = 2(1+i) = 2\sqrt{2}\left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i\right) = (2\sqrt{2})_{\pi/4}$$

$$z_2 = 2(1-i) = 2\sqrt{2}\left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i\right) = (2\sqrt{2})_{7\pi/4}$$

Finalmente,

$$\begin{aligned} |\omega| &= \frac{|z_0| \, |z_1|^2}{|z_2|^3} = \frac{2 \cdot 8}{8 \cdot 2\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \\ \arg \omega &= \arg z_0 + 2\arg z_1 - 3\arg z_2 = \pi + 2\pi/4 + 3\pi/4 = 9\pi/4 = \pi/4 \, [\mod 2\pi] \end{aligned}$$

c)



Calculamos la longitud de los lados del triángulo:

Longitud del lado  $M_0M_1$ ;  $|z_1 - z_0| = |4 + 2i| = \sqrt{16 + 4} = \sqrt{20}$ .

Longitud del lado  $M_0M_2$ ;  $|z_2 - z_0| = |4 - 2i| = \sqrt{16 + 4} = \sqrt{20}$ .

Longitud del lado  $M_1M_2$ ;  $|z_2 - z_1| = |-4i| = \sqrt{16} = 4$ 

Por tanto, el triángulo de vértices  $M_0$ ,  $M_1$  y  $M_2$  es isósceles pero no es equilátero.