EE 599 Spring 2020 Homework 2

Name: Pengmiao Zhang

ID: 7865959675

Github Repo: https://github.com/pengmiao-usc/EE-599_PengmiaoZhang_7865959675

1. Barrel Shifter

1.1. 16 elements

1.1.1.Waveforms

The array value and shift value are given randomly.

IN is the input bus, INO_arr is an array decoded from the bus. OUTn_arr is the shift output of every layer, also the input of the register at the end of this layer. The final output is the output of the final register, which is a bus with 127 bits instead of an array.

(1) pipeline

(2) detail values

1.1.2.Schematics

1.1.2.1. Big Picture

1.1.2.2. A Layer

1.1.2.3. A MUX

1.1.3. Synthesis

1.1.4.Resource Report

Slice LUTs: 2% used.

Name	Used
∨ N Barrel_Shifter	256
genblk1[0].Layer (Layer)	128
genblk1[1].Layer (Layer_parameterized0)	64
genblk1[2].Layer (Layer_parameterized1)	64

Slice Registers: 2% used.

1.1.5.Timing Report

Design Timing Summary

Setup		Hold		Pulse Width		
Worst Negative Slack (WNS):	3.609 ns	Worst Hold Slack (WHS):	0.127 ns	Worst Pulse Width Slack (WPWS):	2.000 ns	
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns	
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	
Total Number of Endpoints:	387	Total Number of Endpoints:	387	Total Number of Endpoints:	519	

1.2. 64 elements

1.2.1.Schematics

1.2.1.1. Big Picture

1.2.1.2. A layer

1.2.2.Synthesis

- (1.) Big Picture and Layer See next page please.
- (2.) MUX

1	Ħ	
Big Picture:		
	-0-	

A layer:

1.2.3.Resource Report

Hierarchy	Name	^ 1	Slice LUTs	Slice Registers	Bonded	BUFGCTRL
Summary			(14400)	(28800)	IOB (54)	(32)
√ Slice Logic	∨ Barrel_Shifter		1538	3091	1031	1
∨ Slice LUTs (11%)	> genblk1[0].Layer (Layer)		512	520	0	0
∨ LUT as Memory (<1%)	> genblk1[1].Layer (Layer_parameterized0)		256	517	0	0
LUT as Shift Register	> genblk1[2].Layer (Layer_parameterized1)		257	516	0	0
LUT as Logic (11%)	> genblk1[3].Layer (Layer_parameterized2)		257	513	0	0
→ Slice Registers (11%)	> genblk1[4].Layer (Layer_parameterized3)		256	513	0	0
Register as Flip Flop (11%)	genblk1 [5].Layer (Layer_parameterized4)		0	512	0	0
Memory						
DSP						
√ IO and GT Specific						
Bonded IOB (>100%)						
· Clocking						
BUFGCTRL (3%)						

1.2.4.Timing Report

Design Timing Summary

Setup		Hold		Pulse Width	
Worst Negative Slack (WNS):	3.565 ns	Worst Hold Slack (WHS):	0.059 ns	Worst Pulse Width Slack (WPWS):	1.646 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	2573	Total Number of Endpoints:	2573	Total Number of Endpoints:	3094

2. Systolic Array for Dense Matrix-Matrix Multiplication

2.1. 16 X 16 Matrices

2.1.1. Waveforms

A_mat is the input matrix, B_mat is the output matrix. In_a_pe is the input value from A_mat for each PE, in_b_pe is the input value from B_mat for each PE. Out_c_pe is the output value of the result of matrix multiplication at each PE, each represent a result element.

2.1.1.1. Pipeline

2.1.1.2. Details

(1) The start of computation

(2) During computation

(3) The last element calculation complete:

2.1.2.Schematics

2.1.2.1. Big Picture

2.1.2.2. PE

Several flags are designed to start the computation for each PE, which is useful for avoiding random values accumulation before valid values come. The core part of a PE is shown in the red block.

2.1.3.Synthesis

2.1.4. Resource Report

Slice LUT: 64% used

Name	Used
∨ N Systolic_Array	9216
genblk2[0].genblk1[0].PE_i (PE)	75
genblk2[1].genblk1[0].PE_i (PE_111)	62
genblk2[2].genblk1[0].PE_i (PE_127)	62
genblk2[3].genblk1[0].PE_i (PE_143)	62
genblk2[4].genblk1[0].PE_i (PE_159)	62
genblk2[5].genblk1[0].PE_i (PE_175)	62
genblk2[6].genblk1[0].PE_i (PE_191)	62
genblk2[7].genblk1[0].PE_i (PE_207)	62
genblk2[8].genblk1[0].PE_i (PE_223)	62
genblk2[9].genblk1[0].PE_i (PE_239)	62
genblk2[10].genblk1[0].PE_i (PE_15)	62
genblk2[11].genblk1[0].PE_i (PE_31)	62
genblk2[12].genblk1[0].PE_i (PE_47)	62
genblk2[13].genblk1[0].PE_i (PE_63)	62
genblk2[14].genblk1[0].PE_i (PE_79)	62
genblk2[0].genblk1[1].PE_i (PE_6)	44
genblk2[0].genblk1[2].PE_i (PE_7)	44
genblk2[0].genblk1[3].PE_i (PE_8)	44
genblk2[0].genblk1[4].PE_i (PE_9)	44
genblk2[0].genblk1[5].PE_i (PE_10)	44
—	

Slice Registers: 1% used

Name	Used
√ N Systolic_Array	8448
genblk2[0].genblk1[0].PE_i (PE)	34
genblk2[0].genblk1[1].PE_i (PE_6)	34
genblk2[0].genblk1[2].PE_i (PE_7)	34
genblk2[0].genblk1[3].PE_i (PE_8)	34
genblk2[0].genblk1[4].PE_i (PE_9)	34
genblk2[0].genblk1[5].PE_i (PE_10)	34
genblk2[0].genblk1[6].PE_i (PE_11)	34
genblk2[0].genblk1[7].PE_i (PE_12)	34
genblk2[0].genblk1[8].PE_i (PE_13)	34
genblk2[0].genblk1[9].PE_i (PE_14)	34
genblk2[0].genblk1[10].PE_i (PE_0)	34
genblk2[0].genblk1[11].PE_i (PE_1)	34
genblk2[0].genblk1[12].PE_i (PE_2)	34

2.1.5. Timing Report

Design Timing Summary

Setup		Hold		Pulse Width		
Worst Negative Slack (WNS):	3.284 ns	Worst Hold Slack (WHS):	0.145 ns	Worst Pulse Width Slack (WPWS):	1.728 ns	
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns	
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	
Total Number of Endpoints:	6912	Total Number of Endpoints:	6912	Total Number of Endpoints:	4097	

2.1.6.Power Report

All user specified timing constraints are met.

Summary

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power:

Design Power Budget:

Not Specified

Not Specified

N/A

Junction Temperature:

Thermal Margin:

Effective 0JA:

3.917 W

N/A

29.8°C (2.5 W)

Power supplied to off-chip devices: 0 W
Confidence level: Low

<u>Launch Power Constraint Advisor</u> to find and fix invalid switching activity

2.2. 32 X 32 Matrices

2.2.1.Schematics

2.2.1.1. Big Picture

See next page please.

2.2.1.2. PE

2.2.2.Synthesis

See next page please.

2.2.3.Resource Report

2.2.4.Timing Report

Design Timing Summary Setup Hold Pulse Width Worst Negative Slack (WNS): 3.284 ns Worst Hold Slack (WHS): 0.145 ns Worst Pulse Width Slack (WPWS): 1.728 ns Total Negative Slack (TNS): 0.000 ns Total Hold Slack (THS): 0.000 ns Total Pulse Width Negative Slack (TPWS): 0.000 ns Number of Failing Endpoints: 0 Number of Failing Endpoints: 0 Number of Failing Endpoints: 0 16897 Total Number of Endpoints: 30208 Total Number of Endpoints: 30208 Total Number of Endpoints: All user specified timing constraints are met.

2.2.5.Power Report

Summary

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 15.709 W (Junction temp exceeded!)

Design Power Budget: Not Specified

Power Budget Margin: N/A

Junction Temperature: 125.0°C

Thermal Margin: -106.2°C (-8.8 W)

Effective ⊕JA: 11.5°C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

Launch Power Constraint Advisor to find and fix

invalid switching activity

