## Regression Analysis I

Hüseyin Taştan<sup>1</sup>

<sup>1</sup>Department of Economics Ph.D. Program - Advanced Econometrics Yildiz Technical University

September 24, 2013

3

### Linear Regression Model

Using matrix notation:

$$oldsymbol{y} = \left[egin{array}{c} y_1 \ y_2 \ dots \ y_n \end{array}
ight], \; oldsymbol{X} = \left[egin{array}{ccc} 1 & x_{12} & \dots & x_{1k} \ 1 & x_{22} & \dots & x_{2k} \ dots & dots & \ddots & dots \ 1 & x_{n2} & \dots & x_{nk} \end{array}
ight], \; oldsymbol{eta} = \left[egin{array}{c} eta_1 \ eta_2 \ dots \ eta_k \end{array}
ight], \; oldsymbol{u} = \left[egin{array}{c} u_1 \ u_2 \ dots \ u_n \end{array}
ight]$$

and rewrite

$$\underbrace{oldsymbol{y}}_{n imes 1} = \underbrace{oldsymbol{X}}_{n imes k} \underbrace{oldsymbol{\beta}}_{k imes 1} + \underbrace{oldsymbol{u}}_{n imes 1}$$

2

## Linear Regression Model

$$y_i = \beta_1 + \beta_2 x_{i2} + \beta_3 x_{i3} + \ldots + \beta_k x_{ik} + u_i, \quad i = 1, \ldots, n$$

where  $y_i$  is ith observation on the dependent variable and  $x_{ij}$ ,  $j=1,\ldots,k$ , is the ith observation on th jth explanatory variable, and  $u_i$  is the ith random error term. There are k unknown parameters and n equations which can also be written as:

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_{12} & \dots & x_{1k} \\ 1 & x_{22} & \dots & x_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n2} & \dots & x_{nk} \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{bmatrix} + \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$

4

## Linear Regression Model

Equivalent notation: denote ith observation by

$$\boldsymbol{x}_i = \begin{bmatrix} 1 & x_{i2} & x_{i3} & \dots & x_{ik} \end{bmatrix}^{\top}$$

Using this notation CLRM becomes

$$y_i = \boldsymbol{x}_i^{\top} \boldsymbol{\beta} + u_i, \quad i = 1, \dots, n$$

5

### Classical Regression Model



Figure 1: Population Regression Function

7

## Ordinary Least Squares (OLS) Estimator

Sample Regression Function (SRF):

$$oldsymbol{y} = oldsymbol{X} \hat{oldsymbol{eta}} + oldsymbol{\hat{u}}$$

 $\hat{\boldsymbol{\beta}}$   $k \times 1$ : OLS estimator  $\hat{\boldsymbol{u}}$  ise  $n \times 1$ : residuals

OLS principle: minimize sum of squared residuals:

$$\hat{\boldsymbol{\beta}} = \operatorname*{arg\,min}_{\boldsymbol{b}} SSR(\boldsymbol{b})$$

where

$$SSR(\hat{\boldsymbol{\beta}}) = \sum_{i=1}^{n} \hat{u}_i^2 = \hat{\boldsymbol{u}}^{\top} \hat{\boldsymbol{u}}$$

6

### Linear Regression Model

$$\underbrace{\boldsymbol{y}}_{n\times 1} = \underbrace{\boldsymbol{X}}_{n\times k} \underbrace{\boldsymbol{\beta}}_{k\times 1} + \underbrace{\boldsymbol{u}}_{n\times 1}$$

Assumptions of the CLRM (X variables assumed to be stochastic, not fixed in repeated samples)

- 1. Linearity in parameters:  $y = X\beta + u$
- 2.  ${\sf rank}({\pmb X})={\sf k},$  (no perfect multicollinearity, columns of X are linearly independent)
- 3.  $\mathsf{E}[u|X] = \mathbf{0}_{n \times 1}$ , (zero conditional mean for the errors)
- 4. Var  $[u|X] = \mathsf{E}\left(uu^{\top}\right) = \sigma^2 I_n$ , (no heteroskedasticity, no autocorrelation)
- 5.  $u|X \sim N(\mathbf{0}, \sigma^2 \mathbf{I}_n)$ , (errors follow multivariate normal distribution)

Adding the last assumption the model is called Classical Normal Linear Regression Model.

8

### **OLS Estimator**

$$SSR(\hat{\boldsymbol{\beta}}) = \sum_{i=1}^{n} \hat{u}_i^2 = \sum_{i=1}^{n} \left( y_i - \boldsymbol{x}_i^{\top} \hat{\boldsymbol{\beta}} \right)^2$$

Using the first notation

$$\min_{\hat{\boldsymbol{\beta}}} SSR(\hat{\boldsymbol{\beta}}) = \hat{\boldsymbol{u}}^{\top} \hat{\boldsymbol{u}}$$

or the second notation:

$$\min_{\hat{oldsymbol{eta}}} SSR(\hat{oldsymbol{eta}}) = \sum_{i=1}^n \left(y_i - oldsymbol{x}_i^{ op} \hat{oldsymbol{eta}}
ight)^2$$

From the first notation expanding SSR we get:

$$SSR(\hat{\boldsymbol{\beta}}) = \hat{\boldsymbol{u}}^{\top} \hat{\boldsymbol{u}}$$

$$= (\boldsymbol{y} - \boldsymbol{X} \hat{\boldsymbol{\beta}})^{\top} (\boldsymbol{y} - \boldsymbol{X} \hat{\boldsymbol{\beta}})$$

$$= \boldsymbol{y}^{\top} \boldsymbol{y} - 2\hat{\boldsymbol{\beta}}^{\top} \boldsymbol{X}^{\top} \boldsymbol{y} + \hat{\boldsymbol{\beta}}^{\top} \boldsymbol{X}^{\top} \boldsymbol{X} \hat{\boldsymbol{\beta}}$$

#### **OLS** Estimator

We need to evaluate the first derivative of SSR w.r.t.  $\hat{\beta}$ . Note that the second term is a linear combination and the last is a quadratic form. In general, for a  $k \times 1$  vector z, and  $k \times n$  matrix A, and  $k \times k$  matrix B, we have:

$$rac{\partial (oldsymbol{z}^{ op}oldsymbol{A})}{\partial oldsymbol{z}} = oldsymbol{A},$$

and

$$\frac{\partial (\boldsymbol{z}^{\top}\boldsymbol{B}\boldsymbol{z})}{\partial \boldsymbol{z}} = 2\boldsymbol{B}\boldsymbol{z}$$

11

#### **OLS** Estimator

Now take the derivative of  $z^{\top}Bz$  wrt z vector.

$$egin{array}{lll} oldsymbol{z}^{ op} oldsymbol{B} oldsymbol{z} &=& \left[ \begin{array}{cc} z_1 & z_2 \end{array} \right] \left[ \begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array} \right] \left[ \begin{array}{cc} z_1 \\ z_2 \end{array} \right] \ &=& \left[ \begin{array}{cc} z_2^2 + 2z_1z_2 + 2z_2^2 \end{array} \end{array}$$

1st derivatives:

$$\frac{\partial(\boldsymbol{z}^{\top}\boldsymbol{B}\boldsymbol{z})}{\partial\boldsymbol{z}} = \begin{bmatrix} \frac{\partial(\boldsymbol{z}^{\top}\boldsymbol{B}\boldsymbol{z})}{\partial z_{1}} \\ \frac{\partial(\boldsymbol{z}^{\top}\boldsymbol{B}\boldsymbol{z})}{\partial z_{2}} \end{bmatrix} \\
= \begin{bmatrix} 4z_{1} + 2z_{2} \\ 2z_{1} + 4z_{2} \end{bmatrix} \\
= 2\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} z_{1} \\ z_{2} \end{bmatrix} = 2\boldsymbol{B}\boldsymbol{z}$$

10

#### **OLS** Estimator

For example, let  $z = [\begin{array}{cc} z_1 & z_2 \end{array}]$  and

$$m{A} = \left[ egin{array}{ccc} 0 & 1 & -2 \\ 1 & 2 & 0 \end{array} 
ight], \quad m{B} = \left[ egin{array}{ccc} 2 & 1 \\ 1 & 2 \end{array} 
ight]$$

$$oldsymbol{z}^{ op}oldsymbol{A} = egin{bmatrix} z_1 & z_2 \end{bmatrix} egin{bmatrix} 0 & 1 & -2 \ 1 & 2 & 0 \end{bmatrix} = egin{bmatrix} z_2 & z_1 + 2z_2 & -2z_1 \end{bmatrix}$$

First derivatives wrt  $z_1$  and  $z_2$ :

$$\frac{\partial(\boldsymbol{z}^{\top}\boldsymbol{A})}{\partial z_{1}} = \begin{bmatrix} \ 0 & 1 & -2 \ \end{bmatrix} \text{ and } \frac{\partial(\boldsymbol{z}^{\top}\boldsymbol{A})}{\partial z_{2}} = \begin{bmatrix} \ 1 & 2 & 0 \ \end{bmatrix}$$

Collecting in a vector

$$\frac{\partial(\boldsymbol{z}^{\top}\boldsymbol{A})}{\partial\boldsymbol{z}} = = \begin{bmatrix} \frac{\partial(\boldsymbol{z}^{\top}\boldsymbol{A})}{\partial z_{1}} \\ \frac{\partial(\boldsymbol{z}^{\top}\boldsymbol{A})}{\partial z_{2}} \end{bmatrix} \\
= \begin{bmatrix} 0 & 1 & -2 \\ 1 & 2 & 0 \end{bmatrix} = \boldsymbol{A}$$

12

#### **OLS** Estimator

Back to SSR:

$$SSR(\hat{\boldsymbol{\beta}}) = \boldsymbol{y}^{\top} \boldsymbol{y} - 2\hat{\boldsymbol{\beta}}^{\top} \boldsymbol{X}^{\top} \boldsymbol{y} + \hat{\boldsymbol{\beta}}^{\top} \boldsymbol{X}^{\top} \boldsymbol{X} \hat{\boldsymbol{\beta}}$$

Hint:  $\hat{oldsymbol{eta}} = oldsymbol{z}$ ,  $oldsymbol{X}^{ op} oldsymbol{y} = oldsymbol{A}$  ve  $oldsymbol{X}^{ op} oldsymbol{X} = oldsymbol{B}$ 

OLS FOC:

$$\frac{\partial SSR(\hat{\boldsymbol{\beta}})}{\partial \hat{\boldsymbol{\beta}}} = -2\boldsymbol{X}^{\top}\boldsymbol{y} + 2\boldsymbol{X}^{\top}\boldsymbol{X}\hat{\boldsymbol{\beta}} = \boldsymbol{0}_k$$

Normal equations:

$$oldsymbol{X}^ op oldsymbol{X} \hat{oldsymbol{eta}} = oldsymbol{X}^ op oldsymbol{y}$$

Using the second CLRM assumption:

$$rank(\boldsymbol{X}) = rank(\boldsymbol{X}^{\top}\boldsymbol{X}) = k$$

we can find the inverse of  $X^{\top}X$ . Multiplying both sides of normal equations by  $(X^{\top}X)^{-1}$  OLS estimator is

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}$$

#### **OLS** Estimator

Using the second notation:

$$\min_{\hat{\boldsymbol{\beta}}} SSR(\hat{\boldsymbol{\beta}}) = \sum_{i=1}^{n} \left( y_i - \boldsymbol{x}_i^{\top} \hat{\boldsymbol{\beta}} \right)^2$$

In this case FOC:

$$\frac{\partial SSR(\hat{\boldsymbol{\beta}})}{\partial \hat{\boldsymbol{\beta}}} = -2\sum_{i=1}^{n} \boldsymbol{x}_i \left( y_i - \boldsymbol{x}_i^{\top} \hat{\boldsymbol{\beta}} \right) = \boldsymbol{0}_k$$

and normal equations

$$\left(\sum_{i=1}^n oldsymbol{x}_i oldsymbol{x}_i^ op
ight) \hat{oldsymbol{eta}} = \sum_{i=1}^n oldsymbol{x}_i y_i$$

OLS estimator can be written as:

$$\hat{oldsymbol{eta}} = \left(\sum_{i=1}^n oldsymbol{x}_i oldsymbol{x}_i^{ op} \right)^{-1} \sum_{i=1}^n oldsymbol{x}_i y_i$$

$$\equiv (oldsymbol{X}^{ op} oldsymbol{X})^{-1} oldsymbol{X}^{ op} oldsymbol{u}$$

15

### **OLS Estimator**

Summing these matrices

This matrix is square, symmetric and positive definite. Similarly,

$$egin{array}{lll} \sum_{i=1}^n oldsymbol{x}_i y_i &=& \sum_{i=1}^n egin{bmatrix} 1 \ x_{i2} \ dots \ x_{ik} \end{bmatrix} y_i = egin{bmatrix} \sum y_i \ \sum x_{i2} y_i \ dots \ \sum x_{ik} y_i \end{bmatrix} \ &=& oldsymbol{X}^ op oldsymbol{y} \end{array}$$

14

#### **OLS** Estimator

 $k \times k$  matrix  $\boldsymbol{x}_i \boldsymbol{x}_i^{\top}$  has the following elements:

$$m{x}_im{x}_i^ op = \left[egin{array}{c} 1 \ x_{i2} \ dots \ x_{ik} \end{array}
ight] \left[egin{array}{cccc} 1 & x_{i2} & \dots & x_{ik} \end{array}
ight]$$

$$= \begin{bmatrix} 1 & x_{i2} & x_{i3} & \dots & x_{ik} \\ x_{i2} & x_{i2}^2 & x_{i2}x_{i3} & \dots & x_{i2}x_{ik} \\ x_{i3} & x_{i3}x_{i2} & x_{i3}^2 & \dots & x_{i3}x_{ik} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{ik} & x_{ik}x_{i2} & x_{ik}x_{i3} & \dots & x_{ik}^2 \end{bmatrix}$$

We have a sequence of n matrices defined analogously.



Figure 2 : Sample Regression Function (solid line is population regression function)

17

#### **OLS** Estimator

#### Example

Consider the following model where there are no explanatory variables:

$$y_i = \beta_1 + u_i, \quad i = 1, \dots, n$$

Now  $\boldsymbol{X}$  matrix only has a column of ones  $(n \times 1)$  which is denoted by  $\boldsymbol{\imath}$ :

$$i = \begin{bmatrix} 1 & 1 & \dots & 1 \end{bmatrix}^{\top} = X$$

Now the OLS estimator of  $\beta_1$ :

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{y} = (\boldsymbol{\imath}^{\top}\boldsymbol{\imath})^{-1}\boldsymbol{\imath}^{\top}\boldsymbol{y}$$

19

### **OLS Estimation**

#### Example

One dummy variable and an intercept model:

$$y_i = \delta_0 + \delta_1 D_i + u_i, \quad i = 1, \dots, n$$

Data consist of 5 observations for simplicity:

$$m{y} = \left[egin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array}
ight], \quad D_i = \left\{egin{array}{c} 1, & ext{if } y_i \leq 3; \\ 0, & ext{otherwise.} \end{array} 
ight. \Leftrightarrow m{D} = \left[egin{array}{c} 1 \\ 1 \\ 0 \\ 0 \end{array}
ight]$$

Design matrix

$$\boldsymbol{X} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 0 \\ 1 & 0 \end{bmatrix}$$

Parameter vector:  $\hat{\boldsymbol{\beta}} = \begin{bmatrix} \hat{\delta}_0 & \hat{\delta}_1 \end{bmatrix}^{\top}$  Find the OLS solution.

#### **OLS** Estimator

Example (cont.d)

Note that

$$oldsymbol{\imath}^ opoldsymbol{\imath}=\left[\begin{array}{cccc} 1 & 1 & \dots & 1\end{array}\right]\left[egin{array}{c} 1 \\ 1 \\ \vdots \\ 1\end{array}\right]=n$$

and

$$oldsymbol{\imath}^{ op}oldsymbol{y} = \left[ egin{array}{cccc} 1 & 1 & \dots & 1 \end{array} 
ight] \left[ egin{array}{c} y_1 \ y_2 \ dots \ y_n \end{array} 
ight] = \sum_{i=1}^n y_i$$

OLS estimator is simply

$$\beta_1 = n^{-1} \sum_{i=1}^n y_i \equiv \bar{y}$$

the arithmetic mean.

20

#### **OLS** Estimation

Example (cont.d)

$$\boldsymbol{X}^{\top}\boldsymbol{X} = \left[ \begin{array}{cccc} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 \end{array} \right] \left[ \begin{array}{cccc} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 0 \\ 1 & 0 \end{array} \right] = \left[ \begin{array}{cccc} 5 & 3 \\ 3 & 3 \end{array} \right]$$

$$(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1} = \begin{bmatrix} 1/2 & -1/2 \\ -1/2 & 5/6 \end{bmatrix}, \quad \boldsymbol{X}^{\top}\boldsymbol{y} = \begin{bmatrix} \sum y_i \\ \sum y_i D_i \end{bmatrix} = \begin{bmatrix} 15 \\ 6 \end{bmatrix}$$

$$\hat{\boldsymbol{\beta}} = \left[ \begin{array}{cc} 1/2 & -1/2 \\ -1/2 & 5/6 \end{array} \right] \left[ \begin{array}{c} 15 \\ 6 \end{array} \right] = \left[ \begin{array}{c} 4.5 \\ -2.5 \end{array} \right]$$

Sample regression function:

$$\hat{y}_i = 4.5 - 2.5D_i$$

In this simple example, the intercept is simply the arithmetic mean of the base group (y is greater than 3) ((4+5)/2=4.5). The arithmetic mean of the other group is 2. The parameter estimate on D is simply the difference between these group means (-2.5).

#### **OLS** Estimation

Example (cont.d)

Fitted values and residuals:

$$\hat{m{y}} = m{X}\hat{m{eta}} = \left[egin{array}{ccc} 1 & 1 \\ 1 & 1 \\ 1 & 0 \\ 1 & 0 \end{array}
ight] \left[egin{array}{c} 4.5 \\ -2.5 \end{array}
ight] = \left[egin{array}{c} 2 \\ 2 \\ 4.5 \\ 4.5 \end{array}
ight],$$

$$\hat{m{u}} = m{y} - \hat{m{y}} = egin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix} - egin{bmatrix} 2 \\ 2 \\ 4.5 \\ 4.5 \end{bmatrix} = egin{bmatrix} -1 \\ 0 \\ 1 \\ -0.5 \\ 0.5 \end{bmatrix}$$

23

#### **OLS** Estimation

Example

Adding an intercept into the previous model we get:

$$y_i = \beta_0 + \gamma_0 D_{i1} + \delta_0 D_{i2} + u_i, \quad i = 1, \dots, n$$

$$m{X} = \left[ egin{array}{cccc} 1 & 1 & 0 \ 1 & 1 & 0 \ 1 & 1 & 0 \ 1 & 0 & 1 \ 1 & 0 & 1 \ \end{array} 
ight]$$

Obviously, the columns of X are not linearly independent: rank(X) < 3. Another way of seeing this:

$$m{X}^{ op}m{X} = \left[ egin{array}{ccc} 5 & 3 & 2 \ 3 & 3 & 0 \ 2 & 0 & 2 \end{array} 
ight], \quad \mid m{X}^{ op}m{X} \mid = 0$$

Again this matrix is **not full rank**.

#### **OLS** Estimation

Now the same example without the intercept:

$$y_i = \gamma_0 D_{i1} + \delta_0 D_{i2} + u_i, \quad i = 1, \dots, n$$

Now  $\boldsymbol{X}$  matrix and inner product matrix:

$$\boldsymbol{X} = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}, \quad \boldsymbol{X}^{\top} \boldsymbol{X} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$$

$$(oldsymbol{X}^{ op}oldsymbol{X})^{-1} = \left[ egin{array}{cc} 1/3 & 0 \ 0 & 1/2 \end{array} 
ight], \quad oldsymbol{X}^{ op}oldsymbol{y} = \left[ egin{array}{cc} \sum y_i D_{i1} \ \sum y_i D_{i2} \end{array} 
ight] = \left[ egin{array}{cc} 6 \ 9 \end{array} 
ight].$$

**OLS** estimates

$$\hat{\boldsymbol{\beta}} = \begin{bmatrix} \hat{\gamma}_0 \\ \hat{\delta}_0 \end{bmatrix} = \begin{bmatrix} 1/3 & 0 \\ 0 & 1/2 \end{bmatrix} \begin{bmatrix} 6 \\ 9 \end{bmatrix} = \begin{bmatrix} 2 \\ 4.5 \end{bmatrix}$$

Fitted regression equation:

$$\hat{y}_i = 2D_{i1} + 4.5D_{i2}$$

24

#### Exercise

Single explanatory variable and a constant term:

$$y_i = \beta_1 + \beta_2 x_i + u_i, \quad i = 1, \dots, n$$

using matrix framework show that

$$\hat{\beta}_1 = \frac{\sum x_i^2 \sum y_i - \sum x_i \sum y_i x_i}{n \sum x_i^2 - (\sum x_i)^2}$$

$$\hat{\beta}_2 = \frac{n \sum y_i x_i - \sum x_i \sum y_i}{n \sum x_i^2 - (\sum x_i)^2}$$

- ▶ Let us focus on numerical properties of OLS estimates.
- ► These properties are always valid regardless of the data generating process and related assumptions.
- ▶ In contrast, statistical properties, such as unbiasedness, efficiency, consistency, asymptotic normality etc, all depend on the validity of certain assumptions.
- ► To understand the geometry of OLS let us review basic concepts in Euclidean geometry.
- ▶ n-vector is defined as a column vector with n elements which can also be represented by a  $n \times 1$  matrix.
- ightharpoonup Euclidean space in n dimensions is denoted with  $\mathbb{E}^n$ .
- ▶ The set of *n*-vectors can also be denoted by  $\mathbb{R}^n$  (real line,  $\mathbb{R}$ ).
- ▶ The difference is that wider set of operations are defined on  $\mathbb{E}^n$ .

27

## Review of Euclidean Geometry

Let  $x,y\in\mathbb{E}^n$ , then the inner product is defined as

$$oldsymbol{x}^ op oldsymbol{y} \equiv oldsymbol{y}^ op oldsymbol{x}$$

which is obviously commutative.

▶ The length of any vector is defined as

$$\|oldsymbol{x}\| = \sqrt{oldsymbol{x}^ op oldsymbol{x}} \equiv \left(\sum_{i=1}^n x_i^2
ight)^{1/2}$$

Applying this to the case n=2 one can see the length of the vector is just the hypotenuse formed by the coordinates of vector x (see Figure 3).

26

### Review of Euclidean Geometry

Figure 3 displays  $\boldsymbol{x} = [x_1 \ x_2]^{\top} \in \mathbb{E}^2$  which is also known as the Cartesian coordinates.



Figure 3: A vector x in 2-dim space

What is the length of x?

### Review of Euclidean Geometry

Addition: Let  $x,y\in\mathbb{E}^2$ , then

$$m{x} + m{y} = egin{bmatrix} x_1 \\ x_2 \end{bmatrix} + egin{bmatrix} y_1 \\ y_2 \end{bmatrix} = egin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \end{bmatrix}$$



Figure 4: Addition of two vectors

## Review of Euclidean Geometry

Multiplication by a scalar is shown in Figure 5



Figure 5: Multiplication by a scalar

Let  $\alpha$  be any scalar, then the length of  ${\boldsymbol x}$  is

$$\|\alpha \boldsymbol{x}\| = |\alpha| \sqrt{\boldsymbol{x}^{\top} \boldsymbol{x}} = |\alpha| \|\boldsymbol{x}\|$$

31

## Review of Euclidean Geometry



Figure 6: The Angle between two vectors

Note in Figure 6: line OB represents z, the length of AB is  $\sin \theta$ , the length of OA is  $\cos \theta$ . What is the scalar product of w and z?

$$\boldsymbol{w}^{\top} \boldsymbol{z} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} = \cos \theta$$

This result only holds for vectors of length 1.

30

### Review of Euclidean Geometry

ightharpoonup Let us consider two vectors w and z both of length 1:

$$oldsymbol{w} = egin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \|oldsymbol{z}\| = 1$$

which is represented by a horizontal line in Figure 6.

- ightharpoonup We know the length of z is 1 but what are the coordinates?
- ▶ Obviously from elementary trigonometry we have

$$z_1 = \cos \theta, \quad z_2 = \sin \theta$$

► From Pythagoras' Theorem

$$z_1^2 + z_2^2 \equiv ||z||^2 = \cos^2 \theta + \sin^2 \theta = 1$$

32

## Review of Euclidean Geometry

More generally, let

$$\boldsymbol{x} = \alpha \boldsymbol{w}, \ \boldsymbol{y} = \gamma \boldsymbol{z}, \ \alpha > 0, \ \gamma > 0$$

The lengths are

$$\|\boldsymbol{x}\| = \alpha, \|\boldsymbol{y}\| = \gamma$$

Thus,

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \boldsymbol{x}^{\top} \boldsymbol{y} = \alpha \gamma \boldsymbol{w}^{\top} \boldsymbol{z}$$

Because x is parallel to w, and y is parallel to z, the angle between x and y is the same as that between w and z, ie,  $\theta$ . Therefore.

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \|\boldsymbol{x}\| \|\boldsymbol{y}\| \cos \theta$$

Cosine of the angle between two vectors measures how close two vectors are in terms of their directions.

### Review of Euclidean Geometry

Recall

$$-1 \leq \cos \theta \leq 1$$

and if  $\theta$  is measured in radians we have

$$\cos 0 = 1$$
,  $\cos(\pi/2) = 0$ ,  $\cos \pi = -1$ 

- ▶ Thus,  $\cos \theta = 1$  for vectors that are parallel, 0 for vectors that are right angles (90°) to each other, and -1 for vectors that point in directly opposite directions.
- ▶ If the angle is  $\pi/2$  (in radians) or  $90^{\circ}$  (in degrees) then the inner product is zero:

$$\boldsymbol{x}^{\top}\boldsymbol{y} = 0.$$

▶ This kind of vectors are said to be **orthogonal**.

35

## Geometry of OLS

▶ In the regression model

$$\underbrace{\boldsymbol{y}}_{n\times 1} = \underbrace{\boldsymbol{X}}_{n\times k} \underbrace{\boldsymbol{\beta}}_{k\times 1} + \underbrace{\boldsymbol{u}}_{n\times 1}$$

the dependent variable and each column of X can be thought of as vectors in  $\mathbb{E}^n$ .

- ▶ Further, the elements of n-vector can be thought of as the coordinates of a point in  $\mathbb{E}^n$ .
- Note that there are three vectors in the regression model: y,  $X\beta$  and u.
- ▶ A **subspace** of  $\mathbb{E}^n$  can be defined in terms of a set of **basis** vectors.
- ightharpoonup We are particularly interested in subspaces defined by the columns of X as the basis.
- ▶ There are k basis vectors in X:  $x_1, x_2, \ldots, x_k$ . The subspace associated with these basis vectors is denoted S(X) or  $S(x_1, x_2, \ldots, x_k)$ .

34

### Review of Euclidean Geometry

From

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \|\boldsymbol{x}\| \|\boldsymbol{y}\| \cos \theta$$

and

$$-1 \le \cos \theta \le 1$$

we have

Definition (Cauchy-Schwartz inequality)

$$\|oldsymbol{x}^{ op}oldsymbol{y}\| \leq \|oldsymbol{x}\| \|oldsymbol{y}\|$$

This says that the inner product can never be greater than the product of the lengths of vectors. If x and y parallel to each other the inequality becomes the equality.

36

## Geometry of OLS

▶ The subspace  $S(x_1, x_2, ..., x_k)$  consists of every vector that can be formed as a linear combination of  $x_1, x_2, ..., x_k$ . This can be formally defined as follows

$$\mathcal{S}(oldsymbol{x}_1,oldsymbol{x}_2,\ldots,oldsymbol{x}_k) \equiv \left\{oldsymbol{z} \in \mathbb{E}^n: \; \sum_{i=1}^k b_i oldsymbol{x}_1, \;\; b_i \in \mathbb{R}
ight\}.$$

This is called subspace spanned by  $x_1, x_2, \dots, x_k$  or the column space of X.

▶ The **orthogonal complement** of S(X), denoted  $S^{\perp}(X)$ , is the set of all vectors w in  $\mathbb{E}^n$  that are orthogonal to everything in S(X). This implies that for every z in S(X),  $w^{\top}z = 0$ :

$$\mathcal{S}^{\perp}(oldsymbol{X}) \equiv \left\{ oldsymbol{w} \in \mathbb{E}^n: \ oldsymbol{w}^{ op} oldsymbol{z} = 0 
ight\}.$$

▶ If the dimension of S(X) is k then the dimension of  $S^{\perp}(X)$  is n-k. Figure 7 shows the case where n=2, k=1.



Figure 7: Span of X and its orthogonal complement (n = 2, k = 1)

39

# Geometry of OLS

- ► Figure 9 represents linear regression model geometrically.
- The horizontal direction is chosen for the vector  $X\beta$ , and y and u are shown in the plane. Notice that u the error vector, is not orthogonal to  $X\beta$ .
- In order for the OLS estimator to be defined the square matrix  $\boldsymbol{X}^{\top}\boldsymbol{X}$  must be invertible, ie nonsingular (full rank). This is another way of saying that the columns of  $\boldsymbol{X}$  must be linearly independent.  $\boldsymbol{x}_j$  is said to be linearly dependent if we can write it as a linear combination of other vectors in  $\boldsymbol{X}$ :

$$x_j = \sum_{i \neq j} c_i \mathbf{x}_i$$

Or,

$$Xb = 0_n$$

lacktriangleright If this is the case then premultiplying by  $oldsymbol{X}^ op$ 

$$X^{\top}Xb = 0.$$

implying that  $\boldsymbol{X}^{\top}\boldsymbol{X}$  cannot be inverted.

▶ If the k columns of X are not linearly independent then they will span a subspace of dimension less than k. This is called the rank of X. 3

# Geometry of OLS



Figure 8: 2-dimensional subspace

Figure 8 displays a 2-dimensional subspace.

40

## Geometry of OLS



Figure 9: Geometry of linear regression model

- ▶ Note that every  $X\beta$  belongs to S(X), span of X.
- The vector  $X\hat{\beta}$  constructed using the OLS estimator  $\hat{\beta}$  belongs to this subspace.  $\hat{\beta}$  was obtained by solving the system of equations represented by

$$oldsymbol{X}^{ op}(oldsymbol{y} - oldsymbol{X}\hat{oldsymbol{eta}}) = oldsymbol{0}$$

The *i*th element is

$$oldsymbol{x}_i^ op(oldsymbol{y}-oldsymbol{X}\hat{oldsymbol{eta}}) = \langle oldsymbol{x}_i^ op, oldsymbol{y}-oldsymbol{X}\hat{oldsymbol{eta}}
angle$$

- ▶ The vector  $y X\hat{\beta}$  is orthogonal to all of the regressors.
- ▶ In other words the residual vector,  $\hat{u}$ , is orthogonal to all the regressors. This is depicted in Figure 10.

43

## Geometry of OLS

- ▶ Adding a third dimension we obtain Figure 11.
- ▶ There are two regressors  $x_1$  and  $x_2$  which together span the horizontal plane labeled  $\mathcal{S}(x_1,x_2)$ . The shortest distance from y to the horizontal plane is obtained by dropping a perpendicular. Minimizing SSR accomplishes this.
- ▶ Using Pythagoras' theorem we can write

$$\|m{y}\|^2 = \|m{X}\hat{m{eta}}\|^2 + \|\hat{m{u}}\|^2$$

or

$$oldsymbol{y}^{ op}oldsymbol{y} = \hat{oldsymbol{eta}}^{ op}oldsymbol{X}^{ op}oldsymbol{X}\hat{oldsymbol{eta}} + (oldsymbol{y} - oldsymbol{X}\hat{oldsymbol{eta}})^{ op}(oldsymbol{y} - oldsymbol{X}\hat{oldsymbol{eta}})$$

i.e.

$$TSS = ESS + SSR$$

TSS = Total Sum of Squares; ESS = Explained Sum of Square; SSR = Residual Sum of Squares

42

## Geometry of OLS



Figure 10: Residuals and fitted values

Residual vector is orthogonal to all of the regressors:

$$oldsymbol{X}^{ op}(oldsymbol{y}-oldsymbol{X}\hat{oldsymbol{eta}})=oldsymbol{0}$$

44

## Geometry of OLS



Figure 11: y projected on two regressors

- When we estimate a linear regression model we implicitly map the regressand y into a vector of fitted values  $X\hat{\beta}$  and a vector of residuals  $\hat{u} = y X\hat{\beta}$ .
- ▶ These mappings are examples of **orthogonal projections**.
- ▶ A **projection** is a mapping that takes each point  $\mathbb{E}^n$  into a point in a subspace of  $\mathbb{E}^n$  while leaving all points in that subspace unchanged.
- ▶ An **orthogonal projection** maps any point into the point of the subspace that is closest to it.

47

## Geometry of OLS

Note that

$$egin{aligned} oldsymbol{P} oldsymbol{X} &= oldsymbol{X}, & oldsymbol{M} oldsymbol{X} &= oldsymbol{O}, & oldsymbol{P} oldsymbol{P} &= oldsymbol{P}, & oldsymbol{M} oldsymbol{M} &= oldsymbol{M}, \\ oldsymbol{P} &+ oldsymbol{M} &= oldsymbol{I}, & oldsymbol{P} oldsymbol{P} &= oldsymbol{P}, & oldsymbol{M} oldsymbol{M} &= oldsymbol{M}, \\ oldsymbol{P} &+ oldsymbol{M} &= oldsymbol{I}, & oldsymbol{P} oldsymbol{P} &= oldsymbol{P}, & oldsymbol{M} oldsymbol{M} &= oldsymbol{M}, \\ oldsymbol{P} &+ oldsymbol{M} &= oldsymbol{I}, & oldsymbol{P} oldsymbol{P} &= oldsymbol{P}, & oldsymbol{M} oldsymbol{M} &= oldsymbol{M}, \\ oldsymbol{P} &+ oldsymbol{M} &= oldsymbol{I}, & oldsymbol{P} oldsymbol{P} &= oldsymbol{P}, & oldsymbol{M} oldsymbol{M} &= oldsymbol{M}, \\ oldsymbol{P} &+ oldsymbol{M} &= oldsymbol{I}, & oldsymbol{P} oldsymbol{P} &= oldsymbol{P}, & oldsymbol{M} oldsymbol{M} &= oldsymbol{M}, \\ oldsymbol{P} &+ oldsymbol{M} &= oldsymbol{M}, & oldsymbol{P} &= oldsymbol{P}, & oldsymbol{M} oldsymbol{M} &= oldsymbol{M}, \\ oldsymbol{P} &+ oldsymbol{M} &= oldsymbol{M}, & oldsymbol{M} &= oldsymbol{M}, & oldsymbol{M} &= oldsymbol{M}, \\ oldsymbol{M} &= oldsymbol{M}, & oldsymbol{M} &= oldsymbol{M}, & oldsymbol{M} &= oldsymbol{M}, \\ oldsymbol{M} &= oldsymbol{M}, & oldsymbol{M} &= oldsymbol{M}, & oldsymbol{M} &= oldsymbol{M}, \\ oldsymbol{M} &= oldsymbol{M}, & oldsymbol{M} &= oldsymbol{M}, & oldsymbol{M}, & oldsymbol{M} &= oldsymbol{M}, \\ oldsymbol{M} &= oldsymbol{M}, & oldsymbol{M} &= oldsymbol{M}, & oldsymbol{M} &= oldsymbol{M}, \\ oldsymbol{M} &= oldsymbol{M}, & oldsymbol{M}, & oldsymbol{M} &= oldsymbol{M}, & oldsymbol{M}, \\ oldsymbol{M} &= oldsymbol{M}, & oldsymbol{M}, &$$

lackbox Both P and M are symmetric and idempotent matrices. Orthogonal decomposition can be written as

$$y = Py + My$$

which can be represented by a right-angled triangle where y is the hypotenuse and Py and My are the other two sides.

▶ Using Pythagoras' theorem

$$oldsymbol{y}^{ op}oldsymbol{y} = \hat{oldsymbol{eta}}^{ op}oldsymbol{X}^{ op}oldsymbol{X}\hat{oldsymbol{eta}} + (oldsymbol{y} - oldsymbol{X}\hat{oldsymbol{eta}})^{ op}(oldsymbol{y} - oldsymbol{X}\hat{oldsymbol{eta}})$$

i.e.

$$TSS = ESS + SSR$$

46

### Geometry of OLS

- ► An orthogonal projection onto a given subspace can be performed by premultiplying the vector to be projected by a suitable **projection matrix**.
- ► In OLS

$$\boldsymbol{P} = \boldsymbol{X} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top}$$
$$\boldsymbol{M} = \boldsymbol{I} - \boldsymbol{P} = \boldsymbol{I} - \boldsymbol{X} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top}$$

Obviously,

$$\hat{oldsymbol{eta}} = (oldsymbol{X}^ op oldsymbol{X})^{-1} oldsymbol{X}^ op oldsymbol{y}$$
  $oldsymbol{X}\hat{oldsymbol{eta}} = oldsymbol{X}(oldsymbol{X}^ op oldsymbol{X})^{-1} oldsymbol{X}^ op oldsymbol{y} = oldsymbol{P}oldsymbol{y}$ 

 ${m P}$  projects onto  ${\mathcal S}({m X})$  and when applied to  ${m y}$ , yields the fitted values.

 $\blacktriangleright$  Similarly, when y is premultiplied by M it yields residuals:

$$oldsymbol{M}oldsymbol{y} = \left(oldsymbol{I} - oldsymbol{X}(oldsymbol{X}^ op oldsymbol{X})^{-1}oldsymbol{X}^ op
ight)oldsymbol{y} = oldsymbol{y} - oldsymbol{P}oldsymbol{y} = oldsymbol{y} - oldsymbol{X}\hat{oldsymbol{eta}} = \hat{oldsymbol{u}}$$

48

## Coefficient of Determination, $R^2$

▶ The decomposition TSS = ESS + SSR can be written as

$$\|y\|^2 = \|Py\|^2 + \|My\|^2.$$

▶ Using this we can define uncentered  $R^2$ 

$$R_u^2 = \frac{ESS}{TSS} = \frac{\|\mathbf{P}\mathbf{y}\|^2}{\|\mathbf{y}\|^2} = 1 - \frac{\|\mathbf{M}\mathbf{y}\|^2}{\|\mathbf{y}\|^2} = 1 - \frac{SSR}{TSS} = \cos^2 \theta$$

where  $\theta$  is the angle between y and Py.

▶ However,  $R_u^2$  is not invariant to the changes in units of measurement. Instead centered  $R^2$  is more widely used:

$$R^2 = \frac{\|{m P}{M}_i {m y}\|^2}{\|{m M}_i {m y}\|^2}$$

where

$$oldsymbol{M}_{\imath} = oldsymbol{I} - oldsymbol{P}_{\imath} = oldsymbol{I} - oldsymbol{\imath} (oldsymbol{\imath}^{ op} oldsymbol{\imath})^{-1} oldsymbol{\imath}^{ op}$$

where  $\imath$  is n-vector of ones. Premultiplying  $\pmb{y}$  by  $\pmb{M}_i$  we obtain deviations from arithmetic mean. Since  $-1 \le \cos \theta \le 1$  we have  $0 \le R^2 \le 1$ . Regression equation must contain a constant term.

**4**0

### Decomposition of *y*



Figure 12: Decomposition of  $y_i$ . Note that  $e_i$  is the ith residual (see Greene, p.40)

51

# Adjusted R-Squared: $\bar{R}^2$

▶ Recall the definition of  $R^2$ :

$$R^2 = 1 - \frac{SSR}{TSS}$$

ightharpoonup Dividing the numerator and denominator by n:

$$R^2 = 1 - \frac{SSR/n}{TSS/n} = 1 - \frac{\sigma_u^2}{\sigma_y^2}$$

▶ Since TSS/n and SSR/n are biased estimators of respective population variances we will instead use:

$$\frac{TSS}{n-1}$$
,  $\frac{SSR}{n-k}$ 

50

## Goodness-of-Fit: R-Squared

- ▶ The coefficient of determination,  $R^2$ , is simply an estimate of "how much variation in y is explained by  $x_1, x_2, \ldots, x_k$  in the population".
- ightharpoonup A low  $\mathbb{R}^2$  value does not automatically imply that the classical assumptions fail.
- As the number of explanatory variables (k) increases,  $R^2$  always increases (it never decreases). Thus,  $R^2$  has a limited role in choosing between alternative models.
- ▶ The relative change in the R-squared when variables added to an equation may be very helpful (e.g. F-statistic for exclusion restrictions depends on the difference in  $R^2$ s).

52

# Adjusted R-Squared: $\bar{R}^2$

ightharpoonup Adjusted R-squared is defined as

$$\bar{R}^2 = 1 - \frac{SSR/(n-k)}{TSS/(n-1)} = 1 - (1 - R^2) \frac{n-1}{n-k} = 1 - \frac{(n-1)\mathbf{y}^{\top} \mathbf{M}_X \mathbf{y}}{(n-k)\mathbf{y}^{\top} \mathbf{M}_1 \mathbf{y}}$$

- Adjusted  $R^2$ , or R-bar squared may increase or decrease when a new variable is added to the regression. Recall that, in contrast,  $R^2$  never decreases.
- ▶ The reason is that when a new variable is added, while SSR decreases, the degrees of freedom (n-k) also decreases.
- ▶ Basically, it imposes a penalty for adding additional variables to a model. SSR/(n-k) can go up or down.
- When a new x variable is added, R-bar square increases if, and only if, the t statistic on the new variable is greater than one in absolute value.
- Extension: when a group of x variables is added,  $\bar{R}^2$  increases if, and only if, the F statistic for joint significance of the new variables is greater than 1.

## Frisch-Waugh-Lovell (FWL) Theorem

▶ Rewrite the model by grouping regressors:

$$oldsymbol{y} = oldsymbol{X}_1oldsymbol{eta}_1 + oldsymbol{X}_2oldsymbol{eta}_2 + oldsymbol{u}, \ \ oldsymbol{X} = oldsymbol{igl( oldsymbol{X}_1 igr)}_{n imes k_1} \stackrel{.}{:} oldsymbol{X}_2igr)$$

Define

$$m{M}_1 = m{I} - m{X}_1 (m{X}_1^{ op} m{X}_1)^{-1} m{X}_1^{ op}$$

- $lackbox{ } M_1y$  gives the residuals from the regression of y on  $X_1$
- $lackbox{ } M_1 X_2$  gives the residuals from the regression of  $X_2$  on  $X_1$
- FWL theorem states that  $\hat{oldsymbol{eta}}_2$  can be obtained by regressing  $oldsymbol{M}_1oldsymbol{y}$  on  $oldsymbol{M}_1oldsymbol{X}_2$

$$oldsymbol{M}_1oldsymbol{y} = oldsymbol{M}_1oldsymbol{X}_2oldsymbol{eta}_2 + oldsymbol{u}_2$$

▶ The effect of  $X_1$  is partialed out

55

#### Influential Observations

- ▶ OLS parameter estimators are just a weighted average of the elements of the vector *y*.
- lackbox Defining the ith row  $(oldsymbol{X}^ op oldsymbol{X})^{-1} oldsymbol{X}^ op$  as  $oldsymbol{c}_i$  we see that

$$\hat{\beta}_i = c_i y$$

As may be obvious from this relationship some of the observations may have much more influence than the other observations. This may be seen in Figure 11.

54

## Linear Transformations of Regressors

- ▶ What happens to OLS estimates, fitted values and residuals when take a linear transformation of explanatory variables?
- ▶ Let A be any nonsingular  $k \times k$  matrix of constants and

$$ilde{m{X}} = m{X}m{A}$$

$$oldsymbol{y} = ilde{oldsymbol{X}}oldsymbol{eta} + oldsymbol{u}$$

▶ It can be shown that

$$\tilde{\boldsymbol{X}}(\tilde{\boldsymbol{X}}^{ op}\tilde{\boldsymbol{X}})^{-1}\tilde{\boldsymbol{X}}^{ op} = \boldsymbol{X}(\boldsymbol{X}^{ op}\boldsymbol{X})^{-1}\boldsymbol{X}^{ op} = \boldsymbol{P}$$

- ► Thus the fitted values and residuals will remain the same, whereas OLS estimates will change.
- Residuals and fitted values are invariant under nonsingular transformations of the explanatory variables (eg consider changing units of measurement).

56

#### Influential Observations



Figure 13: An influential observation

### Influential Observations

- ▶ Influential observations can be diagnosed by inspection the diagonal elements of the projection matrix *P*, which is sometimes called the **hat matrix**. These observations are called high leverage or leverage points.
- ▶ The *i*th diagonal element is usually denoted  $h_i$ . Sum of these elements is just the trace of P:

$$\sum_{i=1}^{n} h_i = tr(\boldsymbol{P}) = tr(\boldsymbol{X}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}) = tr((\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{X})$$

$$= tr(\mathbf{I}_k) = k$$

where we used the property of trace:

$$tr(ABC) = tr(CAB) = tr(BCA).$$

Average of  $h_i$  is just k/n. If the elements of  $h_i$  are close to their average value then no observations has very much leverage (balanced design). If some of  $h_i$  are much larger than k/n then they may be influential observations (unbalanced design).

