Devoir maison 2.

À rendre le lundi 26 septembre 2022

Exercice 1

On souhaite déterminer l'ensemble ${\mathcal E}$ des fonctions f dérivables sur ${\mathbb R}$ telles que :

$$f(0) = -4$$
 et $\underbrace{\forall x \in \mathbb{R}, \ f(-x)f'(x) = 1}_{\text{propriété notée (*)}}$

- 1°) Question préliminaire : Soit $a \in \mathbb{R}$. Rappeler quelles sont les solutions sur \mathbb{R} de l'équation différentielle (F_a) : y' = ay.
- **2**°) Soit $f \in \mathcal{E}$. On pose : $\forall x \in \mathbb{R}, g(x) = f(-x)f(x)$.
 - a) Montrer que g est constante sur \mathbb{R} .
 - b) En déduire qu'il existe un réel a que l'on déterminera tel que f est solution de l'équation (F_a) .
 - c) En déduire l'expression de f.
- 3°) Déterminer l'ensemble \mathcal{E} .

Exercice 2

Soit $n \in \mathbb{N}^*$. On s'intéresse à l'équation

$$(E_n)$$
: $\cos^n x + \sin^n x = 1$

- $\mathbf{1}^{\circ}$) Résoudre (E_1) .
- 2°) Résoudre (E_2) .
- **3**°) On suppose que $n \geq 3$.
 - a) Soit $x \in \mathbb{R}$. Montrer que si $0 < |\cos x| < 1$ alors $|\cos^n x + \sin^n x| < 1$.
 - b) En déduire les solutions de (E_n) .