REAL ANALYSIS: DEFINITIONS AND THEOREMS

JINCHENG WANG

jc-wang@sjtu.edu.cn

- 1 Measure Theory
- 2 Lebesgue Integral
- 3 Differentiation and Integral
- 4 Hilbert Space: An Introduction
- 4.1 L^2 space

Proposition 4.1.1 The Space $L^2(\mathbb{R}^d)$ has the following properties:

- (i) $L^2(\mathbb{R}^d)$ is a vector space.
- (ii) $f(x)\overline{g(x)}$ is integrable whenever $f,g\in L^2(\mathbb{R}^d)$, and the Cauchy-Schwarz inequality holds: $|(f,g)|\leq ||f||\ ||g||$.
- (iii) If $g \in L^2(\mathbb{R}^d)$ is fixed, the map $f \mapsto (f,g)$ is linear in f, and also $(f,g) = \overline{(g,f)}$.
- (iv) The triangle inequality holds: $||f + g|| \le ||f|| + ||g||$

Theorem 4.1.2 The space $L^2(\mathbb{R}^d)$ is complete in its metric.

Theorem 4.1.3 The space $L^2(\mathbb{R}^d)$ is **separable**, int the sense that there exists a countable collection $\{f_k\}$ of elements in $L^2(\mathbb{R}^d)$ such that their linear combinations are dense in $L^2(\mathbb{R}^d)$

4.2 Hilbert space

Definition 4.2.1 A set \mathcal{H} is a **Hilbert Space** if it satisfies the following:

(i) \mathcal{H} is a vector space over \mathbb{C} (or \mathbb{R}).

- (ii) \mathcal{H} is equipped with an inner product (\cdot, \cdot) , so that
 - 1. $f \mapsto (f,g)$ is linear on \mathcal{H} for every fixed $g \in \mathcal{H}$
 - **2.** $(f,g) = \overline{(g,f)}$
 - **3.** $(f, f) \geq 0$ for all $f \in \mathcal{H}$

We let $||f|| = (f, f)^{1/2}$.

- (iii) ||f|| = 0 if and only if f = 0.
- (iv) The Cauchy-Schwarz and triangle inequalities hold

$$|(f,g)| \le ||f|| \, ||g|| \quad and \quad ||f+g|| \le ||f|| + ||g||$$

- (v) \mathcal{H} is complete in the metric d(f,g) = ||f g||.
- (vi) \mathcal{H} is separable.

Definition 4.2.2 (Orthogonality) Two element f and g in a Hilbert space \mathcal{H} with inner product (\cdot, \cdot) are **orthogonal** or **perpendicular** if (f, g) = 0, and we write $f \perp g$.

Proposition 4.2.3 If $f \perp g$, then $||f + g||^2 = ||f||^2 + ||g||^2$.

Proposition 4.2.4 If $\{e_k\}_{k=1}^{\infty}$ is orthonormal, and $f = \sum a_k e_k \in \mathcal{H}$ where the sum is finite, then

$$||f||^2 = \sum |a_k|^2.$$

Theorem 4.2.5 The following properties of an orthonormal set $\{e_k\}_{k=1}^{\infty}$ are equivalent.

- (i) Finite linear combinations of elements in $\{e_k\}$ are dense in \mathcal{H} .
- (ii) If $f \in \mathcal{H}$ and $(f, e_j) = 0$ for all j, then f = 0.
- (iii) If $f \in \mathcal{H}$, and $S_N(f) = \sum_{k=1}^N a_k e_k$, where $a_k = (f, e_k)$, then $S_N(f) \to f$ as $N \to \infty$ in the norm
- (iv) If $a_k = (f, e_k)$, then $||f||^2 = \sum_{k=1}^{\infty} |a_k|^2$

Theorem 4.2.6 Any Hilbert space has an orthonormal basis.

Definition 4.2.7 Give two Hilbert spaces \mathcal{H} and \mathcal{H}' with respective inner products $(\cdot, \cdot)_{\mathcal{H}}$ and $(\cdot, \cdot)_{\mathcal{H}'}$. A mapping $U : \mathcal{H} \to \mathcal{H}'$ between these space is called **unitary** if:

- (i) U is linear, that is, $U(\alpha f + \beta g) = \alpha U(f) + \beta U(g)$.
- (ii) U is a bijection.

(iii) $||Uf||_{\mathcal{H}'} = ||f||_{\mathcal{H}}$ for all $f \in \mathcal{H}$

Corollary 4.2.8 Any two infinte-dimesional Hilbert spaces are unitarily equivalent.

Corollary 4.2.9 Any two finite-dimensional Hilbert spaces are unitarily equivalent if and only if they have the same dimension.

Definition 4.2.10 Pre-Hilbert space is a space \mathcal{H}_0 that satisfies all the defining properties of a Hilbert space except (v).

Proposition 4.2.11 Suppose we are given a pre-Hilbert space \mathcal{H}_0 with inner product $(\cdot, \cdot)_0$. Then we can find a Hilbert space \mathcal{H} with inner product (\cdot, \cdot) such that

- (i) $\mathcal{H}_0 \subset \mathcal{H}$.
- (ii) $(f,g)_0 = (f,g)$ whenever $f,g \in \mathcal{H}_0$.
- (iii) \mathcal{H}_0 is dense in \mathcal{H} .

4.3 Fourier series and Fatou's theorem

Theorem 4.3.1 Suppose f is integrable on $[-\pi, \pi]$.

- (i) If $a_n = 0$ for all n, then f(x) = 0 for a.e. x.
- (ii) $\sum_{n=-\infty}^{\infty} a_n r^{|n|} e^{inx}$ tends to f(x) for a.e. x, as $r \to 1$, r < 1.

In the theorem above, a_n is the n-th Fourier coefficient of f

$$a_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx} dx$$

Theorem 4.3.2 Suppose $f \in L^2([-\pi, \pi])$. Then:

(i) We have Parseval's relation

$$\sum_{n=-\infty}^{\infty} |a_n|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)| dx$$

- (ii) The mapping $f \mapsto \{a_n\}$ is a unitary correspondence between $L^2([-\pi, \pi])$ and $l^2(\mathbb{Z})$.
- (iii) The Fourier series of f converges to f in the L^2 -norm, that is,

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x) - S_N(f)(x)|^2 dx \to 0 \quad as \ N \to \infty$$

where $S_N(f) = \sum_{|n| \le N} a_n e^{inx}$.

Definition 4.3.3 If F is a function defined in the unit disc \mathbb{D} , we say that F has a radial limit at the point $-\pi \leq \theta \leq \pi$ on the circle, if the limit

$$\lim_{r<1,\ r\to1} F(re^{i\theta})$$

exists.

Theorem 4.3.4 A bounded holomorphic function $F(re^{i\theta})$ on the unit disc has radial limits at almost every θ .

Definition 4.3.5 We define the **Hardy Space** $H^2(\mathbb{D})$ to consist of all holomorphic functions F on the unit disc \mathbb{D} that satisfy

$$\sup_{0 < r < 1} \frac{1}{2\pi} \int_{-\pi}^{\pi} |F(re^{i\theta})|^2 d\theta < \infty$$

we also define the "norm" for functions F in this class, $||F||_{H^2(\mathbb{D})}$, to be the square root of the above quantity.

4.4 Closed subspaces and orthogonal projections

Definition 4.4.1 A linear subspace S of \mathcal{H} is a subset of \mathcal{H} that satisfies $\alpha f + \beta g \in S$ whenever $f, g \in S$ and α , β are scalars. The subspace S is **closed** if whenever $\{f_n\} \subset S$ converges to some $f \in \mathcal{H}$, then f also belongs to S.

Lemma 4.4.2 Suppose S is a closed subspace of \mathcal{H} and $f \in \mathcal{H}$. Then:

(i) There exists a (unique) element $g_0 \in \mathcal{S}$ which is closest to f, in the sense that

$$||f - g_0|| = \inf_{g \in \mathcal{S}} ||f - g||$$

(ii) The element $f - g_0$ is perpendicular to S, that is,

$$(f - g_0, g) = 0$$
 for all $g \in \mathcal{S}$

Definition 4.4.3 If S is a subspace of a Hilbert space \mathcal{H} , we define the orthogonal complement of S by

$$\mathcal{S}^{\perp} = \{ f \in \mathcal{H} : (f, g) = 0 \text{ for all } g \in \mathcal{S} \}$$

Proposition 4.4.4 If S is a closed subspace of a Hilbert space H, then

$$\mathcal{H} = \mathcal{S} \bigoplus \mathcal{S}^{\perp}$$

Definition 4.4.5 The mapping $P_{\mathcal{S}}$ is called the orthogonal projection onto \mathcal{S} and satisfies the following simple properties:

- (i) $f \mapsto P_{\mathcal{S}}(f)$ is linear.
- (ii) $P_{\mathcal{S}}(f) = f$ whenever $f \in \mathcal{S}$.
- (iii) $P_{\mathcal{S}}(f) = 0$ whenever $f \in \mathcal{S}^{\perp}$.
- (iv) $||P_{\mathcal{S}}(f)|| \leq ||f||$ for all $f \in \mathcal{H}$.

4.5 Linear transformation

Definition 4.5.1 Suppose \mathcal{H}_1 and \mathcal{H}_2 are two Hilbert spaces. Amapping $T: \mathcal{H}_1 \to \mathcal{H}_2$ is a linear transformation (also called linear operator or operator) if

$$T(af + bg) = aT(f) + bT(g)$$
 for all scalars a, b and $f, g \in \mathcal{H}_1$

We can also say that a linear operator $T: \mathcal{H}_1 \to \mathcal{H}_2$ us bounded if there exists M > 0 so that

$$||T(f)||_{\mathcal{H}_2} \leq M||f||_{\mathcal{H}_1}$$

The norm of T is denoted by $||T||_{\mathcal{H}_1 \to \mathcal{H}_2}$ and defined by

$$||T|| = \inf M$$

Lemma 4.5.2 $||T|| = \sup\{|(Tf,g)| : ||f|| \le 1, ||g|| \le 1\}$, where of course $f \in \mathcal{H}_1$ and $g \in \mathcal{H}_2$.

Definition 4.5.3 A linear transformation T is continuous if $T(f_n) \to T(f)$ whenever $f_n \to f$.

Proposition 4.5.4 A linear operator $T: \mathcal{H}_1 \to \mathcal{H}_2$ is bounded if and only if it is continuous.

Definition 4.5.5 A linear functional l is a linear transformation from Hilbert space \mathcal{H} to the underlying field of scalars, which we may assume to be the complex numbers,

$$l:\mathcal{H}\to\mathbb{C}$$

Definition 4.5.6 Let l be a continuous linear functional on a Hilbert space \mathcal{H} . Then, there exists a unique $g \in \mathcal{H}$ such that

$$l(f) = (f, g)$$
 for all $f \in \mathcal{H}$

Moreover, ||l|| = ||g||

Proposition 4.5.7 Let $T: \mathcal{H} \to \mathcal{H}$ be a bounded linear transformation. There exists a unique bounded linear transformation T^* on \mathcal{H} so that:

(i)
$$(Tf,g) = (f,T^*,g)$$
.

(ii)
$$||T|| = ||T^*||$$
.

(iii)
$$(T^*)^* = T$$

The linear operator $T^*: \mathcal{H} \to \mathcal{H}$ satisfting the above conditions is called the **adjoint** of T.

Definition 4.5.8 Suppose $\{\varphi_k\}_{k=1}^{\infty}$ is an orthonormal basis of \mathcal{H} . Then, a linear transformation $T: \mathcal{H} \to \mathcal{H}$ is said to be diagonized with respect to the basis $\{\varphi_k\}$ If

$$T(\varphi_k) = \lambda_k \varphi_k, \quad where \ \lambda_k \in \mathbb{C} \ for \ all \ k.$$

References