<u>Proposition</u> 1.11. Let A be the generator of a positive, stable semigroup $(T(t))_{t\geq 0}$ on a Banach lattice E . Let $F(\cdot)$ be a locally integrable function from \mathbb{R}_+ into E . If there are $G(\cdot)\in C_O(\mathbb{R}_+,\mathbb{R}_+)$, $f_O\in \operatorname{im} A$ and $g_O\in \operatorname{im} A_+$ such that $|F(s)-f_O|\leq G(s)g_O$ for every $s\geq 0$, then every mild solution $u(\cdot)$ of (1.6) converges as $t\to\infty$ and $\lim_{t\to\infty} u(t)=-h$ where $h\in D(A)$ with $Ah=-f_O$.

Proof. Recall that every solution of (1.6) satisfies

(1.7)
$$u(t) = T(t)f + \int_0^t T(t-s)f_0 ds + \int_0^t T(t-s)(F(s) - f_0) ds$$
.

By the stability of the semigroup and $f \in D(A)$, the first term converges to zero as $t + \infty$. Since $f_O \in \text{im } A$, the second term converges to $h := \int_0^\infty T(s) f_O \, ds \in \text{im } A$ (A-IV,Thm.1.16) and $Ah = -f_O$. Define $H(s) := F(s) - f_O = H_+(s) - H_-(s)$. We have to show that $\int_0^t T(t-s) H_\pm(s) \, ds + 0$ as $t \to \infty$. Again, the assumption $g_O \in \text{im } A$ is equivalent to the existence of $\int_0^\infty T(t) g_O \, dt$. Choose

- (i) a constant M such that
 - $0 \le H_{\pm}(s) \le H_{+}(s) + H_{-}(s) = |H(s)| \le G(s)g_{0} \le Mg_{0}$
- (ii) a constant t' such that $\left\|\int_{t}^{\infty}$, $T(s)g_{O} ds\right\| \leq \varepsilon/(2M)$ and $G(s) \leq \varepsilon/2 \left\|\int_{0}^{\infty} T(s)g_{O} ds\right\|$ for every $s \geq t'$.

Then, for t > 2t',

$$\begin{split} 0 & \leq \int_{0}^{t} T(t) H_{\pm}(s) \ ds \leq \int_{0}^{t} T(t) G(s) g_{o} \ ds \\ & = \int_{0}^{t'} T(t) G(s) g_{o} \ ds + \int_{t}^{t} T(t) G(s) g_{o} \ ds \\ & \leq M \int_{t-t'}^{t} T(t) g_{o} \ ds + \varepsilon/2 \ \left\| \int_{0}^{\infty} T(t) g_{o} \ ds \right\|^{-1} \int_{0}^{t-t'} T(t) g_{o} \ ds \\ & \leq M \int_{t'}^{t} T(t) g_{o} \ ds + \varepsilon/2 \ \left\| \int_{0}^{\infty} T(t) g_{o} \ ds \right\|^{-1} \int_{0}^{\infty} T(t) g_{o} \ ds \ . \end{split}$$
 Hence
$$\left\| \int_{0}^{t} T(t) H_{\pm}(s) \ ds \right\| \leq \varepsilon \quad \text{for every } t > 2t' \ .$$

We conclude with a result similar to the previous proposition. Instead of uniform stability we now require s(A) < 0 while the assumption on the forcing term is weaker than in Prop.1.11.

<u>Proposition</u> 1.12. Let $(T(t))_{t\geq 0}$ be a positive semigroup with s(A) < 0. Assume that the forcing term F has values in D(A), that it is continuous with respect to the graph norm and that $f_O := \|.\|_A - \lim_{t \to \infty} F(t)$ exists. Then for every solution $u(\cdot)$ of (1.6) we have $\lim_{t \to \infty} u(t) = -A^{-1}f_O$.

(Note, that the assumptions imply that (1.6) has a unique strong solution, see [Pazy (1983), Thm.4.2.4].)