Домашнее задание к ЛР №2

1) Вам дан файл oscillator.m, в котором реализована симуляция колебаний дощечки массой m, расположенной на горизонтальной плоскости и прикрепленной пружиной к стене (рисунок 1). На нижнем рисунке показано положение равновесия.

Рисунок 1. Расчетная схема задачи

Необходимо реализовать функцию plot_oscillator(t, z), в которой строятся следующие графики (каждый подпункт – отдельная figure):

- а. Координаты от времени;
- b. Скорости от времени;
- с. В одном figure слева координату от времени, справа скорость от времени (subplot);
- d. В одном figure сверху координату от времени, снизу скорость от времени.

Необходимо дать корректные названия каждой figure, на графиках подписать оси, заголовок, легенду, на нескольких графиках поменять стиль линий.

В отчете представить код функции и скриншоты окон каждой figure.

2) Найти точку локального минимума функции, используя метод градиентного спуска. Для этого необходимо придерживаться следующего алгоритма:

- а. Задать лямбда-выражением функцию, заданную в задании
- b. Задать лямбда-выражением первую производную этой функции
- с. Построить график функции на отрезке [a, b] с шагом 0.05
- d. Найти шаг алгоритма оптимизации по формуле $h = -\alpha f'(x_k)$, где $\alpha = 0 \dots 1$ самостоятельно подбираемый коэффициент скорости спуска (чем он меньше тем больше шансов на схождение решения, но это влечёт увеличение итераций), x_k текущая точка (начальная на исходном этапе)
- е. Найти следующую текущую точку $x_{k+1} = x_k + h (x_0$ начальная точка, смотри вариант).
- f. Повторить пункты d и е пока $|f'(x_k)|$ не станет меньше некоторого $\varepsilon = 0.01$. Сделать защиту от бесконечного цикла (ограничить количество итераций цикла).
- g. Вывести последнюю текущую точку в командной строке и представить в отчете
- h. Построить на тех же осях, на которых построен график функции, последовательность текущих точек, начиная с начальной, в виде ломаной, соединяющей соседние точки (удобнее строить ее отрезками в цикле).

Пример такого графика (рисунок 2):

Рисунок 2. Пример метода градиентного спуска с визуализацией

Выбор варианта по следующему алгоритму:

Вставьте этот код в матлаб, замените variant_№ на ваш номер в группе и узнаете свой вариант задания.

Задания:

Вариант	Функция	Начальная точка	Отрезок
1	$x^2 - 3x + x \ln(x)$	0.15	[0.1, 2]
2	$ln(1+x^2) - sin(x)$	0.2	$[0, \pi/4]$
3	$\frac{1}{4}x^4 + x^2 - 8x + 12$	0.5	[0, 2]
4	$\frac{1}{2}x^2 - \sin x$	0.15	[0, 1]
5	$x^2 - 2x + e^{-x}$	1.8	[0.5, 2]
6	tan x - 2 sin x	0.15	$[0, \pi/4]$
7	$\sqrt{1+x^2}+e^{-2x}$	0.1	[0, 1]
8	$\frac{1}{7}x^7 - x^3 + 0.5x^2 - x$	0.2	[0, 1.6]
9	$\frac{1}{3}x^3 - 5x + x \ln x$	1.1	[1, 2.5]
10	$5x^2 - 8x^{1.25} - 20x$	3.9	[2.5, 4]