A CNN (CONVOLUTIONAL **NEURAL NETWORK)** MODEL PREDICTING DIFFERENT TYPES OF THYROID CANCER

INTRODUCTION

- The model detects three types of thyroid cancer using convolutional neural network that works with ultrasound images data we used
- The types of the thyroid cancer that the model predict is: Follicular Thyroid cancer(FTC), Medullary Thyroid Cancer(MTC), Papillary Thyroid cancer(PTC)
- We used 298 ultra sound labelled images (FTC-100, MTC-99, PTC-99) to train the model which is split to 80%(238) for training and 20% (60) for validation test
- ▶ The link of the data set used is here below:

https://huggingface.co/datasets/FangDai/Thyroid_Ultrasound_Images

MODEL ARCHITECTURE

- ▶ Step 1: To Load the Dataset: We used a public dataset from Hugging Face with thyroid ultrasound images. We logged in with our Hugging Face token to access. Then Loaded all the images and Split them into 80% for training and 20% for testing
- Step 2: Preparing the Images: Converted images to color (RGB). Resized them to 224x224 pixels (same size). Divided pixel values by 255 so the values are between 0 and 1 (normalization).
- Step 3: Converting Data for Tensor Flow: We changed the dataset format to Tensor Flow so that we could use it for training the model.

MODEL ARCHITECTURE(continuation)

- Step 4: Building the Model: we created a simple CNN (Convolutional Neural Network) with 3 layers that learn image features. And a final layer that predict one of the 3 cancer types.
- 1. Conv2D Layer 1 Function: Learns basic features (edges, color changes).
- 2. Conv2D Layer 2 Function: Learns more complex features (shapes, corners).
- 3. Conv2D Layer 3 Function: Learns high-level features (tumor structure, texture).
- Each of these is followed by a pooling layer: max_pooling2d, max_pooling2d_1, and global_average_pooling2d respectively.

MODEL ARCHITECTURE(continuation)

- MaxPooling2D: Reduces the spatial size of the image while keeping important features. This helps speed up learning and reduce noise.
- GlobalAveragePooling2D: Greatly reduces the number of parameters by averaging each feature map, which helps prevent overfitting.
- ▶ The final layer is Dense layer with softmax activation. This layer has 3 neurons (one for each class: FTC, MTC, and PTC) and uses the softmax activation function to output a probability distribution across the 3 classes. The class with the highest probability is the predicted class.

MODEL ARCHITECTURE(continuation)

- Step 5: Training the Model, we trained the model on the training data. We used: Early stopping (to stop training if it stops improving). Model saving (to keep the best version). Learning rate control (to slow down learning if needed).
- Step 6: Testing the Model After training: we tested the model on the 20% validation set, we checked how many images it predicted correctly. We printed a report showing how good the predictions were and we printed a confusion matrix to see where it made mistakes.

PREDICTION RESULT

▶ The results the model predicted out of the 20% for the validation set is here below:

- Predicted FTC: 18 images were correctly classified as FTC, 3 were wrongly predicted as MTC, 1 was wrongly predicted as PTC.
- Predicted MTC: 15 correctly classified as MTC, 1 wrongly classified as FTC.
- Predicted PTC: All 22 were correctly classified. No errors here.

MODEL PERFORMANCE METRICS

- Precision: Of the samples predicted as a certain class, how many were actually correct? High precision means few false positives.
- Recall: Of the actual instances of a class, how many were correctly predicted? High recall means few false negatives.
- ► F1-Score : Harmonic mean of precision and recall. Balances both false positives and false negatives.
- Support: The number of true instances for each class in the test set
- Macro Avg (treats all classes equally)
- Weighted Avg (accounts for class imbalance)
- Overall Performance: Accuracy: 0.92 → The model correctly classified 92% of all 60 validation set.

Classific	atio	n Report: precision	recall	f1-score	support
1	FTC	0.95	0.82	0.88	22
j	MTC	0.83	0.94	0.88	16
Ì	PTC	0.96	1.00	0.98	22
accur	асу			0.92	60
macro	avg	0.91	0.92	0.91	60
weighted	avg	0.92	0.92	0.92	60