2017-2018

Fiche 5 : Suites et séries de fonctions

Exercice 1 (Inversion des limites)

Montrer et discuter l'inversion des limites :

- a) $\forall n \in \mathbb{N}$, $\lim_{m \to +\infty} \frac{m}{n} = +\infty$, mais $\forall m \in \mathbb{N}$, $\lim_{n \to +\infty} \frac{m}{n} = 0$.
- **b)** $\forall a \in \mathbb{R}_+, \lim_{x \to +\infty} ae^{-x} = 0, \text{ mais } \forall x \in \mathbb{R}_+, \lim_{a \to +\infty} ae^{-x} = +\infty.$
- c) $\forall n \in \mathbb{N}$, $\lim_{x \to 1^-} x^n = 1$, mais $\forall x \in [0, 1[$, $\lim_{n \to +\infty} x^n = 0$.
- **d)** $\forall n \in \mathbb{N}$, $\lim_{x \to 1^+} x^n = 1$, mais $\forall x \in]1, +\infty[$, $\lim_{n \to +\infty} x^n = +\infty$.
- e) $\forall n \in \mathbb{N}$, $\lim_{x \to 1^-} \sum_{k=0}^{2n} (-x)^k = 0$, mais $\forall x \in [0, 1[, \sum_{k=0}^{\infty} (-x)^k = \frac{1}{1+x}]$.

Exercice 2 (L'exponentiel)

- a) Étudier la convergence de la suite $\frac{x^n}{n!}$ (où $\frac{x^0}{0!} = 1, \forall x \in \mathbb{R}$).
- **b)** Étudier la convergence de la série $\sum_{n\geqslant 0} \frac{x^n}{n!}$.
- c) Montrer que $f(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ vérifie f'(x) = f(x) sur tout intervalle borné.
- d) Conclusion?

Exercice 3 (Non interversion limite-dérivée)

- a) Étudier la convergence de la suite $f_n(x) = nxe^{-nx}$ sur \mathbb{R}_+ .
- **b)** Comparer $\lim_{n\to\infty} f'_n(x)$ et $(\lim_{n\to\infty} f_n(x))'$.
- c) Étudier la convergence de la série $\sum f_n$.

Exercice 4 (Suite dépendant d'un paramètre)

Soit $\alpha \in \mathbb{R}$ et $f_n(x) = n^{\alpha} x (1-x)^n$ pour $x \in [0,1]$.

- a) Trouver la limite simple des fonctions f_n .
- **b)** Y a-t-il convergence uniforme?

Exercice 5 (Non interversion limite-intégrale)

Soit $f_n(x) = n \cos^n x \sin x$.

- a) Chercher la limite simple, f, des fonctions f_n .
- **b)** Vérifier que $\int_{t=0}^{\pi/2} f(t) dt \neq \lim_{n\to\infty} \int_{t=0}^{\pi/2} f_n(t) dt$.

Exercice 6

Soit $f: \mathbb{R}_+ \to \mathbb{R}$ continue, non identiquement nulle, telle que f(0) = 0 et $f(x) \to 0$ lorsque $x \to +\infty$. On pose $f_n(x) = f(nx)$ et $g_n(x) = f\left(\frac{x}{n}\right)$.

- a) Donner un exemple de fonction f.
- b) Montrer que f_n et g_n convergent simplement vers la fonction nulle, et que la convergence n'est pas uniforme sur \mathbb{R}_+ .
- c) Si $\int_{t=0}^{+\infty} f(t) dt$ converge, chercher $\lim_{n\to\infty} \int_{t=0}^{+\infty} f_n(t) dt$ et $\lim_{n\to\infty} \int_{t=0}^{+\infty} g_n(t) dt$.

Exercice 7

- a) Étudier la convergence simple, uniforme, de la série de fonctions $\sum_{n\geq 0} ne^{-nx}$.
- b) Déterminer le domaine maximal de définition de $f(x) = \sum_{n=0}^{\infty} ne^{-nx}$.
- c) Calculer f(x) lorsque la série converge (intégrer terme à terme).

Exercice 8

Soit
$$f(x) = \sum_{n=0}^{\infty} \frac{1}{x(x+1)\dots(x+n)}$$
.

- a) Établir l'existence et la continuité de f sur \mathbb{R}^{+*} .
- **b)** Calculer f(x+1) en fonction de f(x).
- c) Tracer la courbe de f.