Отчёт по лабораторной работе №1

Дисциплина: Информационная безопасность

Выполнил: Танрибергенов Эльдар

Содержание

1	Цель работы	5
2	Задания	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	8
5	Выводы	24
Список литературы		25

Список иллюстраций

4.1	Создание ВМ: имя и тип ОС	8
4.2	Создание ВМ: размер основной памяти и кол-во процессоров	9
4.3	Создание ВМ: конфигурация и размер жёсткого диска	9
4.4	Создание ВМ: добавление образа ОС в привод оптических дисков .	10
4.5	Запуск ВМ	11
4.6	Настройка установки ОС: выбор языка интерфейса	12
4.7	Настройка установки ОС: добавление русского языка в раскладку	
	клавиатуры	13
4.8	Настройка установки ОС: базовое окружение и дополнение	14
4.9	Настройка установки ОС: отключение KDUMP	14
4.10	Настройка установки ОС: включение сетевого соединения и имя узла	15
4.11	Настройка установки ОС: пароль для root	15
4.12	Настройка установки ОС: пароль для пользователя с правами адми-	
	нистратора	16
4.13	Установка ОС	16
4.14	Перезапуск ОС	17
4.15	Проверка автоотключения оптического диска после установки ОС	17
	Вход в систему	18
4.17	Подключение образа диска дополнений гостевой ОС	19
4.18	Подключение образа диска дополнений гостевой ОС: установка	
	необходимых компонентов	20
4.19	Имя хоста	20
4.20	Версия ядра Linux	21
4.21	Частота процессора	21
4.22	Модель процессора	21
4.23	Объём доступной оперативной памяти	21
4.24	Тип обнаруженного гипервизора	21
4.25	Тип файловой системы корневого раздела	22
4.26	Последовательность монтирования файловых систем	22
4.27	Репозиторий git	22

Список таблиц

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов. А также создание репозитория на Github для отчётности.

2 Задания

- 1. Установить ОС на виртуальную машину
- 2. Получить информацию о системе в терминале
- 3. Создать репозиторий на github
- 4. Ответить на контрольные вопросы.

3 Теоретическое введение

Лабораторная работа подразумевает установку на виртуальную машину VirtualBox операционной системы Linux (дистрибутив Rocky). При выполнении работы следует придерживаться следующих правил именования: имя виртуальной машины, имя хоста вашей виртуальной машины, пользователь внутри виртуальной машины должны совпадать с логином студента, выполняющего лабораторную работу.

4 Выполнение лабораторной работы

- 1. Установка ОС на виртуальную машину
- 1.1. Создал новую виртуальную машину. Для этого в VirtualBox выбрал Машина->Создать. Указал имя виртуальной машины логин в дисплейном классе, тип операционной системы Linux, RedHat.

Рис. 4.1: Создание ВМ: имя и тип ОС

1.2. Указал размер основной памяти виртуальной машины: память - 6 ГБ, процессоров - 4.

Рис. 4.2: Создание ВМ: размер основной памяти и кол-во процессоров

1.3. Задал конфигурацию жёсткого диска— загрузочный, VDI (BirtualBox Disk Image), динамический виртуальный диск. Задал размер диска— 45 ГБ.

Рис. 4.3: Создание ВМ: конфигурация и размер жёсткого диска

1.4. Выберал в VirtualBox для виртуальной машины Настройки->Носители. Добавил новый привод оптических дисков и выберал образ операционной системы.

Рис. 4.4: Создание ВМ: добавление образа ОС в привод оптических дисков

1.5. Запустил виртуальную машину, выбрал English в качестве языка интерфейса и перешёл к настройкам установки операционной системы.

Рис. 4.5: Запуск ВМ

Рис. 4.6: Настройка установки ОС: выбор языка интерфейса

1.6. Скорректировал часовой пояс, в раскладку клавиатуры добавил русский язык, но в качестве языка по умолчанию указал английский язык.

Рис. 4.7: Настройка установки ОС: добавление русского языка в раскладку клавиатуры

 $1.7.\ B$ разделе выбора программ указал в качестве базового окружения — Server with GUI , а в качестве дополнения — Development Tools.

Рис. 4.8: Настройка установки ОС: базовое окружение и дополнение

1.8. Отключил KDUMP.

Рис. 4.9: Настройка установки ОС: отключение КDUMP

1.9. Включил сетевое соединение и в качестве имени узла указал etanribergenov.localdomain.

Рис. 4.10: Настройка установки ОС: включение сетевого соединения и имя узла

1.10. Установил пароль для root и пользователя с правами администратора.

Рис. 4.11: Настройка установки ОС: пароль для гоот

Рис. 4.12: Настройка установки ОС: пароль для пользователя с правами администратора

1.11. После завершения установки операционной системы корректно перезапустил виртуальную машину и принял условия лицензии.

Рис. 4.13: Установка ОС

```
Rocky Linux (4.18.0-553.e18_10.x86_64) 8.10 (Green Obsidian)

Rocky Linux (0-rescue-44d892bd6f1e4aed899fd4b50ab84f9e) 8.10 (Green Obsi→

Use the ↑ and ↓ keys to change the selection.

Press 'e' to edit the selected item, or 'c' for a command prompt.
```

Рис. 4.14: Перезапуск ОС

1.12. В VirtualBox оптический диск отключился автоматически.

Рис. 4.15: Проверка автоотключения оптического диска после установки ОС

1.13. Вошёл в ОС под заданной при установке учётной записью.

Рис. 4.16: Вход в систему

В меню "Устройства виртуальной машины" подключил образ диска дополнений гостевой ОС.

Рис. 4.17: Подключение образа диска дополнений гостевой ОС

```
VirtualBox Guest Additions installation
 2
File Edit View Search Terminal Help
Verifying archive integrity... 100% MD5 checksums are OK. All good.
Uncompressing VirtualBox 7.0.20 Guest Additions for Linux 100% VirtualBox Guest Additions installer
Copying additional installer modules ...
Installing additional modules ..
VirtualBox Guest Additions: Starting.
VirtualBox Guest Additions: Setting up modules
VirtualBox Guest Additions: Building the VirtualBox Guest Additions kernel
modules. This may take a while.
VirtualBox Guest Additions: To build modules for other installed kernels, run
VirtualBox Guest Additions:
                               /sbin/rcvboxadd quicksetup <version>
VirtualBox Guest Additions: or
VirtualBox Guest Additions: /sbin/rcvboxadd quicksetup all
VirtualBox Guest Additions: Building the modules for kernel
4.18.0-553.el8 10.x86_64.
```

Рис. 4.18: Подключение образа диска дополнений гостевой ОС: установка необходимых компонентов

После этого перезагрузил ВМ.

1.14. Проверил имя хоста (его я задал при настройке установки).

Рис. 4.19: Имя хоста

- 2. Получение информации о системе в терминале.
- 2.1. В окне терминала проанализировал последовательность загрузки системы, выполнив команду dmesg. При помощи неё и поиска получил информацию. Использована команда dmesg | grep -i "то, что ищем".

2.1.1. Версия ядра Linux.

```
etanribergenov@etanribergenov:~ x

File Edit View Search Terminal Help

[etanribergenov@etanribergenov ~]$ dmesg | grep -i "Linux version"

[ 0.000000] Linux version 4.18.0-553.el8_10.x86_64 (mockbuild@iad1-prod-build001.bld.equ.rockylinux.org) (gcc version 8.5.0 20210514 (Red Hat 8.5.0-22) (GCC)) #1 SMP Fri May 24 13:05:10 UTC 2024

[etanribergenov@etanribergenov ~]$
```

Рис. 4.20: Версия ядра Linux

2.1.2. Частота процессора.

```
[etanribergenov@etanribergenov ~]$ dmesg | grep -i "Mhz processor" [ 0.000000] tsc: Detected 3293.810 MHz processor [etanribergenov@etanribergenov ~]$
```

Рис. 4.21: Частота процессора

2.1.3. Модель процессора.

```
[etanribergenov@etanribergenov ~]$ dmesg | grep -i "CPU0"
[ 0.109286] smpboot: CPU0: AMD Ryzen 5 5600H with Radeon Graphics (family: 0x19, model: 0x50, stepping: 0x0)
[etanribergenov@etanribergenov ~]$ ■
```

Рис. 4.22: Модель процессора

2.1.4. Объём доступной оперативной памяти.

```
0.000000] Memory: 3630760K/6291000K available (14339K kernel code, 5957K rwdata, 8568K rodata, 2820K init, 13792K bss, 270240K reserved, 0K cma-reserved)
```

Рис. 4.23: Объём доступной оперативной памяти

2.1.5. Тип обнаруженного гипервизора.

Рис. 4.24: Тип обнаруженного гипервизора

2.1.6. Тип файловой системы корневого раздела.

```
etanribergenov@etanribergenov:~

File Edit View Search Terminal Help

[etanribergenov@etanribergenov ~]$ dmesg | grep -i "filesystem"

[ 2.017390] XFS (dm-0): Mounting V5 Filesystem

[ 3.353890] XFS (sda1): Mounting V5 Filesystem

[etanribergenov@etanribergenov ~]$
```

Рис. 4.25: Тип файловой системы корневого раздела

2.1.7. Последовательность монтирования файловых систем.

```
[etanribergenov@etanribergenov ~]$
[etanribergenov@etanribergenov ~]$ dmesg | grep -i "mount"
[    0.001000] Mount-cache hash table entries: 16384 (order: 5, 131072 bytes, vmalloc)
[    0.001000] Mountpoint-cache hash table entries: 16384 (order: 5, 131072 bytes, vmalloc)
[    2.017390] XFS (dm-0): Mounting V5 Filesystem
[    2.027576] XFS (dm-0): Ending clean mount
[    3.353890] XFS (sda1): Mounting V5 Filesystem
[    3.55790] XFS (sda1): Ending clean mount
```

Рис. 4.26: Последовательность монтирования файловых систем

- 3. Создание репозитория на Github
- 3.1. Создал репозиторий git при помощи шаблона.

Рис. 4.27: Репозиторий git

- 4. Ответы на вопросы
- 5. Логин и пароль.

- 6. Команды терминала: -? для получения справки по команде; cd для перемещения по файловой системе; ls для просмотра содержимого каталога; du для определения объёма каталога; mkdir(для каталога), touch(для файла) / rm для создания / удаления каталогов / файлов; chmod для задания определённых прав на файл / каталог; history для просмотра истории команд.
- 7. Файловая система порядок, определяющий способ организации, хранения и именования данных на носителях информации в компьютерах. Основная функция файловой системы обеспечить удобный доступ к хранящейся информации пользователю. Благодаря файловой системе пользователи могут легко находить, открывать, редактировать и сохранять файлы на своём устройстве.
- 8. При помощи команд df/mount.
- 9. При помощи команды kill.

5 Выводы

В результате лабораторной работы я приобрёл практические навыки установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

Список литературы