## Projective texture mapping - Interpolació en espai projectiu

## October 24, 2013

Quan s'utilitza projective texture mapping, cal interpolar les coordenades de textura en espai projectiu, o el que és el mateix, fer la divisió de perspectiva **després** d'interpolar les coordenades, no abans.

Per simplificar aquest exemple, farem aquestes suposicions:

- 1. En comptes de generar coordenades de textura (s,t) dins l'interval [0,1], generarem unes coordenades de textura que anomenarem (u,v) dins l'interval [-1,1]. No hi ha cap pèrdua de generalitat perquè (s,t) = 0.5(u,v)+(0.5,0.5).
- 2. No hi ha transformació de modelat.
- 3. El projector de diapositives està a l'origen de coordenades, mirant en direcció de les Z negatives. Per tant, la viewing transform del projector és la identitat.

**Projecció d'un punt P arbitrari** Sigui P un punt qualsevol de l'escena. Per calcular les coordenades de textura de P, que anomenarem  $P_u$  i  $P_v$ , cal projectar el punt P d'acord amb les matrius del projector. Tenint en compte les suposicions anteriors, els passos per calcular  $P_u$  són (el cas de  $P_v$  és perfectament simètric):

- 1.  $P^{clip} = M_{proj}P$ , on  $M_{proj}$  és la matriu de projecció associada al projector; hem assumit que no hi ha modeling transform i que la viewing transform del projector és la identitat.
- 2.  $P^{ndc} = P^{clip}/P_w^{clip}$  (divisió de perspectiva)
- 3.  $P_u = P_x^{ndc}$ ; l'escalat i la translació només caldrien per calcular (s,t), no pas per (u,v)

Observeu que no hi ha cap interpolació.

Anem a expressar  $P_u$  en funció de les coordenades originals de P. Per simplificar, assumirem que  $M_{proj}$  és la matriu que genera gluPerspective. Suposant un aspect ratio = 1,  $M_{proj}$  és de la forma

$$M_{proj} = \left[ egin{array}{cccc} k & 0 & 0 & 0 \ 0 & k & 0 & 0 \ 0 & 0 & ? & ? \ 0 & 0 & -1 & 0 \end{array} 
ight]$$

on  $k=\cot\frac{fov}{2}$  és una constant que depèn del fov del projector, i els elements amb "?" no son rellevants per aquest exemple.

Per tant, la coordenada  $P_u$  d'un punt P arbitrari es pot calcular, en aquest cas, com:

1. 
$$P^{clip} = M_{proj}P = (kP_x, kP_y, ?, -P_z)$$

2. 
$$P^{ndc}=(-k\frac{P_x}{P_z},-k\frac{P_y}{P_z},?)$$
 (divisió de perspectiva)

3. 
$$P_u = -k \frac{P_x}{P_z}$$

Imaginem ara un segment de determinat pels seus vèrtexs A i B, i un punt arbitrari C dins el segment definit per A i B. Volem calcular les coordenades de textura al punt C.



Primera opció: projectar directament el punt  ${\bf C}$  Una forma de calcular la coordenada u que li correspon a C és

$$C_u = -k \frac{C_x}{C_z} \tag{1}$$

Aquesta fòrmula és perfectament implementable en un FS, fent servir un varying per que al FS li arrivin les coordenades del punt.

Interpolació Si les distàncies relatives de C als punts A i B són  $\alpha$  i  $(1 - \alpha)$ , llavors  $C = (1 - \alpha)A + \alpha B$  (interpolació lineal entre A i B), o si ho preferiu,  $C = A + \alpha(B - A)$ , i per tant, una forma alternativa i perfectament correcta de calcular  $C_u$  és, aplicant directament l'Eqüació 1,

$$C_u = -k \frac{(1-\alpha)A_x + \alpha B_x}{(1-\alpha)A_z + \alpha B_z} \tag{2}$$

Aquesta darrera eqüació té l'avantatge d'expressar  $C_u$  en funció de A, B, i  $\alpha$ .

Segona opció: interpolar (u,v) després de la div de perspectiva (incorrecta!) La interpolació lineal de  $u_A$ i  $u_B$ , que anomenarem u' dóna un resultat diferent a  $C_u$ :

$$u' = (1 - \alpha)A_u + \alpha B_u = (1 - \alpha)(-k\frac{A_x}{A_z}) + \alpha(-k\frac{B_x}{B_z}) = -k\frac{(1 - \alpha)A_xB_z + \alpha B_xA_z}{A_zB_z}$$
(3)

Com a exercici, podeu comprovar que  $C_u / u'$  és en general diferent de 1; altrament, podeu provar per exemple amb A = (1,1,1), B = (2,2,10), i C = 0.5(A+B) i veure que surten valors diferents.

La responsable és la divisió de perspectiva del projector, que fa que les coordenades de textura (u,v) no es s'hagin d'interpolar linialment. Per tant, l'eqüació 3 no permet calcular correctament les coordenades de textura.

Tercera opció: interpolar en espai projectiu (correcte) Anem a demostrar que el següent procediment per calcular  $P_u$  és vàlid. Observeu que la divisió de perspectiva la farem al final, després d'interpolar les coordenades de textura, la qual cosa implica treballar amb coordenades de textura homogènies (u, v, q):

- 1.  $A_u = kA_x$ ,  $A_q = -A_z$  (igual que abans però hem tret la divisió de perspectiva)
- $2. B_u = kB_x, B_q = -B_z$
- 3. Ara interpolem linealment la u,  $(1-\alpha)A_u + \alpha B_u = (1-\alpha)kA_x + \alpha kB_x$ ,
- 4. Interpolem linealment la q<br/>, $(1-\alpha)A_q+\alpha B_q=\text{-}((1-\alpha)A_z+\alpha B_z)$
- 5. Finalment, fem la divisió de perspectiva, dividint la u per la q<br/>:  $u_C = -k \frac{(1-\alpha)A_x + \alpha B_x}{(1-\alpha)A_z + \alpha B_z}$

Observeu que hem arribat al mateix resultat de l'Eqüació 2, per tant el procediment és vàlid. A banda de ser eficient, aquesta tercera opció està soportada pel pipeline fix i per tant és usable sense shaders.