MOV attack on discrete logarithm problem for elliptic curves over finite fields

Veljko Vranić

Elliptic curves and cryptography course byblos94@gmail.com

January 27, 2024

Overview

Problem statement

Pairing intro

MOV Attack

Problem

The problem of finding value $k \in \mathbb{Z}$, such that $a = b^k$, for elements a, b in some group G, is called a discrete logarithm problem.

In the world of elliptic curves, we know that its points with rational coordinates form a group. In that setup, the problem is formulated as trying to find value $k \in \mathbb{Z}$ such that P = kQ for P, Q points on an elliptic curve.

For practical purposes, algorithms on elliptic curves are always considered over finite fields, instead of \mathbb{Q} . In this specific case, the DLP problem will be considered over a finite field \mathbb{F}_p , where p is a prime number.

Two similar problems

DLP for
$$\mathbb{F}_{p^n}$$

If $a, b \in \mathbb{F}_{p^n}$ and $b = a^k$
find k .

DLP for
$$E/\mathbb{F}_p$$

If $P,Q\in E/\mathbb{F}_p$ and $Q=kP$
find k .

Two similar problems

DLP for
$$\mathbb{F}_{p^n}$$

If $a, b \in \mathbb{F}_{p^n}$ and $b = a^k$
find k .

Computationally easy (Index calculus)

DLP for
$$E/\mathbb{F}_p$$

If $P,Q\in E/\mathbb{F}_p$ and $Q=kP$
find k .

Computationally hard (Baby step, Giant step)

Weil pairing

Given elliptic curve E/\mathbb{Q} and integer $m \geq 1$ $e_m : E[m] \times E[m] \mapsto$ m-th roots of unity (Weil pairing).

Such that:

• Billiear $e_m(P+T,Q)=e_m(P,Q)e_m(T,Q)$

Weil pairing

Given elliptic curve E/\mathbb{Q} and integer $m \geq 1$ $e_m : E[m] \times E[m] \mapsto$ m-th roots of unity (Weil pairing).

Such that:

- Billiear $e_m(P+T,Q)=e_m(P,Q)e_m(T,Q)$
- Alternating $e_m(P,Q) = e_m(Q,P)^{-1}$

Weil pairing

Given elliptic curve E/\mathbb{Q} and integer $m \geq 1$ $e_m : E[m] \times E[m] \mapsto$ m-th roots of unity (Weil pairing).

Such that:

- Billiear $e_m(P+T,Q)=e_m(P,Q)e_m(T,Q)$
- Alternating $e_m(P,Q) = e_m(Q,P)^{-1}$
- Non-degenerate $(\forall Q)e_m(P,Q)=1\iff P=0$

Roots of unity and finite fields

Langrange's theorem - group theory

For any finite field \mathbb{F}_{p^k} , where p is prime and $k\in\mathbb{N}$, if element $a\in\mathbb{F}_{p^k}\setminus\{0\}$, then $a^{p^k-1}=1$.

Roots of unity and finite fields

Langrange's theorem - group theory

For any finite field \mathbb{F}_{p^k} , where p is prime and $k\in\mathbb{N}$, if element $a\in\mathbb{F}_{p^k}\setminus\{0\}$, then $a^{p^k-1}=1$.

Corollary

 $(p^k-1)st$ roots of unity is a subset of \mathbb{F}_{p^k} , where p is prime and $k \in \mathbb{N}$.

Roots of unity and finite fields

Langrange's theorem - group theory

For any finite field \mathbb{F}_{p^k} , where p is prime and $k \in \mathbb{N}$, if element $a \in \mathbb{F}_{p^k} \setminus \{0\}$, then $a^{p^k-1} = 1$.

Corollary

 $(p^k-1)st$ roots of unity is a subset of \mathbb{F}_{p^k} , where p is prime and $k\in\mathbb{N}$.

Weil pairing for finite fields

Elliptic curve E/\mathbb{F}_p and integer $m\geq 1$

 $e_m: E[m] imes E[m] \mapsto \mathbb{F}_{p^k}$, for sufficiently large k such that $m|p^k-1$ and

BAN properties are satisfied.

MOV attack - idea

The MOV attack is named after Menezes, Okamoto, and Vanstone.

MOV attack - idea

The MOV attack is named after Menezes, Okamoto, and Vanstone.

DLP for
$$\mathbb{F}_{p^n}$$

If $a, b \in \mathbb{F}_{p^n}$ and $b = a^k$
find k .

DLP for
$$E/\mathbb{F}_p$$

If $P, Q \in E/\mathbb{F}_p$ and $Q = kP$
find k .

MOV attack

Problem:

Elliptic curve E/\mathbb{F}_p , points $P, Q \in E(\mathbb{F}_p)$. Let N be the order of point P, such that (N, p) = 1. Find k, such that P = kQ.

1 Pick random point $T \in E[m]$, such that P, T generates E[m]

MOV attack

Problem:

Elliptic curve E/\mathbb{F}_p , points $P, Q \in E(\mathbb{F}_p)$. Let N be the order of point P, such that (N, p) = 1. Find k, such that P = kQ.

- **1** Pick random point $T \in E[m]$, such that P, T generates E[m]
- Compute

$$\zeta_1 = e_N(P,T) \in \mathbb{F}_{p^m}$$

$$\zeta_2 = e_N(Q,T) \in \mathbb{F}_{p^m}$$

for *m* sufficiently big.

MOV attack

Problem:

Elliptic curve E/\mathbb{F}_p , points $P, Q \in E(\mathbb{F}_p)$. Let N be the order of point P, such that (N, p) = 1. Find k, such that P = kQ.

- **1** Pick random point $T \in E[m]$, such that P, T generates E[m]
- Compute

$$\zeta_1=e_N(P,T)\in\mathbb{F}_{p^m}$$

$$\zeta_2 = e_N(Q,T) \in \mathbb{F}_{p^m}$$

for *m* sufficiently big.

1 This reduces the problem to solving for k in \mathbb{F}_{p^m}

$$\zeta_2 = e_N(Q, T) = e_N(kP, T) = e_N(P, T)^k = \zeta_1^k$$

Problem:

Elliptic curve $y^2 = x^3 - x$ over E/\mathbb{F}_{29} and P(17,13), Q(17,16). Find k, such that P = kQ. Order of P is 4.

• Checking (N, p) = (4, 29) = 1.

Problem:

Elliptic curve $y^2 = x^3 - x$ over E/\mathbb{F}_{29} and P(17,13), Q(17,16). Find k, such that P = kQ. Order of P is 4.

• Checking (N, p) = (4, 29) = 1. \checkmark

Problem:

Elliptic curve $y^2 = x^3 - x$ over E/\mathbb{F}_{29} and P(17,13), Q(17,16). Find k, such that P = kQ. Order of P is 4.

- Checking (N, p) = (4, 29) = 1. \checkmark
- Choosing a random point T from E[N], such that points P and T generate E[N]. One such point is T(12,11).

Problem:

Elliptic curve $y^2 = x^3 - x$ over E/\mathbb{F}_{29} and P(17,13), Q(17,16). Find k, such that P = kQ. Order of P is 4.

- Checking (N, p) = (4, 29) = 1. \checkmark
- Choosing a random point T from E[N], such that points P and T generate E[N]. One such point is T(12,11).
- Calculating $\zeta_1=e_4(P,T)=28$ and $\zeta_2=e_4(Q,T)=28$ Both are elements of \mathbb{F}_{29}

MOV attack - numeric example continued

• Solving $\zeta_2 = \zeta_1^k$ in \mathbb{F}_{29}

$$\frac{\zeta_1}{\zeta_2} = \frac{e_4(P, T)}{e_4(Q, T)} = e_4(P - Q, T) = e_4(P - kP, T) = e_4(P, T)^{(1-k)} = \zeta_1^k$$
$$1 = \frac{28}{28} = 28^{1-k} = -1^{(1-k)}$$

MOV attack - numeric example continued

• Solving $\zeta_2 = \zeta_1^k$ in \mathbb{F}_{20}

$$\frac{\zeta_1}{\zeta_2} = \frac{e_4(P, T)}{e_4(Q, T)} = e_4(P - Q, T) = e_4(P - kP, T) = e_4(P, T)^{(1-k)} = \zeta_1^k$$
$$1 = \frac{28}{28} = 28^{1-k} = -1^{(1-k)}$$

This is possible only if k is odd and since Q = kP and $4P = \infty$, the only options are k=1 or k=3. As $P\neq Q$, we conclude that k=3.

MOV attack - conclusion

Even though this attack is theoretically significant, in practice the value m could be large, in which case the discrete log problem in the group $\mathbb{F}_{p^m}^*$ is just as hard as the original discrete log problem in $E(\mathbb{F}_p)$.

MOV attack - conclusion

Even though this attack is theoretically significant, in practice the value m could be large, in which case the discrete log problem in the group $\mathbb{F}_{p^m}^*$ is just as hard as the original discrete log problem in $E(\mathbb{F}_p)$.

However, the attack forced cryptographers to pay attention while choosing elliptic curves and avoid certain types of them (supersingular elliptic curves) that are vulnerable to this attack.

The End