Задача А. Подстроки

Имя входного файла: substr.in
Имя выходного файла: substr.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Дано K строк из маленьких латинских букв. Требуется найти их наибольшую общую подстроку.

Формат входных данных

В первой строке число K ($1\leqslant K\leqslant 10$). В следующих K строках — собственно K строк (длины строк от 1 до $10\,000$).

Формат выходных данных

Наибольшая общая подстрока.

substr.in	substr.out
3	cab
abacaba	
mycabarchive	
acabistrue	

Задача В. Поиск цикла

Имя входного файла: cycle.in
Имя выходного файла: cycle.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 64 мегабайта

Дан ориентированный невзвешенный граф. Необходимо определить есть ли в нём циклы, и если есть, то вывести любой из них.

Формат входных данных

В первой строке входного файла находятся два натуральных числа N и M ($1 \le N \le 100\,000$, $M \le 100\,000$) — количество вершин и рёбер в графе соответственно. Далее в M строках перечислены рёбра графа. Каждое ребро задаётся парой чисел — номерами начальной и конечной вершин соответственно.

Формат выходных данных

Если в графе нет цикла, то вывести «NO», иначе — «YES» и затем перечислить все вершины в порядке обхода цикла.

cycle.in	cycle.out
2 2	YES
1 2	1 2
2 1	
2 2	NO
1 2	
1 2	

Задача С. Сеть

Имя входного файла: network.in Имя выходного файла: network.out Ограничение по времени: 1.3 секунды Ограничение по памяти: 256 мегабайт

В компьютерной сети вашей фирмы n компьютеров. В последнее время свитч, к которому они подключены, сильно барахлит, и потому не любые два компьютера могут связаться друг с другом. Кроме того, если компьютер a обменивается информацией с компьютером b, то никакие другие компьютеры не могут в это время обмениваться информацией ни с a, ни с b. Вам необходимо вычислить максимальное количество компьютеров, которые могут одновременно участвовать в процессе обмена информацией.

Формат входных данных

В первой строке файла задано число n ($1 \le n \le 18$). Далее идут n строк по n символов, причём j-й символ i-й строки равен 'Y', если i-й и j-й компьютеры могут обмениваться информацией, иначе он равен 'N'. Верно, что i-й символ i-й строки всегда равен 'N' и, кроме того, матрица символов симметрична.

Формат выходных данных

Выведите максимальное количество компьютеров, которые могут одновременно участвовать в процессе обмена информацией.

network.in	network.out
5	4
NYYYY	
YNNNN	
YNNNY	
YNNNY	
YNYYN	

Задача D. Скобочная последовательность

Имя входного файла:num2brackets2.inИмя выходного файла:num2brackets2.out

Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Вам даны числа N и K. Выведите K-ю в лексикографическом порядке правильную скобочную последовательность с N парами скобок двух типов, считая что символы упорядочены следующим образом: «(» < «)» < «[» < «]».

Последовательности занумерованы, начиная с 0.

Формат входных данных

На вход подаются два целых неотрицательных числа N и K, $1 \leqslant N \leqslant 20$. Гарантируется, что K строго меньше количества всех таких последовательностей.

Формат выходных данных

Выведите ответ на задачу.

num2brackets2.in	num2brackets2.out
4 100	([])()[]

Задача Е. Окна

Имя входного файла: windows.in Имя выходного файла: windows.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

На экране расположены прямоугольные окна, каким-то образом перекрывающиеся (со сторонами, параллельными осям координат). Вам необходимо найти точку, которая покрыта наибольшим числом из них.

Формат входных данных

В первой строке входного файла записано число окон n ($1 \le n \le 50\,000$). Следующие n строк содержат координаты окон $x_{(1,i)}$ $y_{(1,i)}$ $x_{(2,i)}$ $y_{(2,i)}$, где ($x_{(1,i)},y_{(1,i)}$) — координаты левого верхнего угла i-го окна, а ($x_{(2,i)},y_{(2,i)}$) — правого нижнего (на экране компьютера y растет сверху вниз, а x — слева направо). Все координаты — целые числа, по модулю не превосходящие 10^6 .

Формат выходных данных

В первой строке выходного файла выведите максимальное число окон, покрывающих какую-либо из точек в данной конфигурации. Во второй строке выведите два целых числа, разделенных пробелом — координаты точки, покрытой максимальным числом окон. Окна считаются замкнутыми, т. е. покрывающими свои граничные точки.

windows.in	windows.out
2	2
0 0 3 3	1 3
1 1 4 4	
1	1
0 0 1 1	0 1
4	4
0 0 1 1	1 1
0 1 1 2	
1 0 2 1	
1 1 2 2	
5	5
0 0 1 1	1 1
0 1 1 2	
0 0 2 2	
1 0 2 1	
1 1 2 2	