

National College of Ireland

MSc Data Analytics

Execution and Examination of Statistical Methodologies

Anand Basant Haritwal
MSC in Data analytics
National College of Ireland
Dublin-1
Student Id- x19174489@student@ncirl.ie

Lecturer

Tony Delaney 28 April 2020

Contents

Abstract	3
Part A- Logistic Regression	
PRESENTING THE RESULTS FROM LOGISTIC REGRESSION	7
Part B – ANOVA	7
PRESENTING THE RESULTS FROM ONE WAY ANOVA WITH POST-HOC TESTS	9
Part C- Fundamentals of Statistics	10
CHI SQUARE TESTING	10
PRESENTING THE RESULTS FOR CHI SQUARE TESTS	11
Independent sample t- tests	12
PRESENTING THE RESULTS FOR INDEPENDENCE SAMPLE T-TESTS	12

Abstract

Logistics Regression is used to predict outcomes of categorical variables. In this report total life satisfaction of a person is predicted as satisfied with life or unsatisfied. ANOVA testing is done to compare means of two or more groups. In this report, financial stability of different age groups is compared and evaluated, to find is there a significant difference in their financial stability. Chi square testing is used as it is a non-parametric testing. The amount of time spend on watching television, by different genders is analyzed. Independence T test is used to compare average score of two different groups. The testing was done to find is there a significant difference in GPA score of males and females.

Part A-Logistic Regression

• Introduction

Logistic regression is a predictive technique used to assess the impact of a set of predictors on a dependent variable (categorical). It helps to test models and predict categorical results with binary, nominal or ordinal values. Binary logistic is used when the Predicted variable has only two outcomes like Yes or No. The plan is to find whether the person is satisfied in life or not given various factors like gender, age, financial stability and all.

• Research question

What components predict the likelihood that person would be overall satisfied in life?

• Data set Explanation

The data was downloaded from Euro-Stat (eurosats, n.d.). The data set contains following variables. The variables 2 to 6 are independent variables and 7 is dependent or predicted variable.

The satisfaction rating for variables 4,5,6 and 7 (range 1-10, 1-least satisfied and 10-most satisfied)

Serial number	Independent variable	Description
1	Year	The year of survey
2	Age	The age group of the person
3	Gender	Male or Female
4	Financial satisfaction	The rating of how financially satisfied the person is
5	Job satisfaction	The rating of how satisfied the person is with his job
6	Personal relationships	The rating of how satisfied the person is with his
	_	personal relationship
7	Overall life satisfaction	Overall life satisfaction rating

• Principal Component Analysis

PCA is used to transform the original number of variances into a smaller set of linear combinations, while retaining all the variance of the variables.

1. Suitability of data for PCA- Two main issues to consider is sample size and strength of relationship among variables. The table below shows KMO value of 0.718, higher than 0.6 and Bartlett's test sig value of 0.00. Factor analysis is appropriate.

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Me	asure of Sampling Adequacy.	.718
Bartlett's Test of	Approx. Chi-Square	1619.224
Sphericity	df	15
	Sig.	.000

2. Factor Extraction- it is used to find the least number of factors that can be used to properly represent the relationship within variables. The top 3 variables can explain 85% of the variance alone with eigen values above 1.

Total Variance Explained

		Initial Eigenvalu	ies	Extraction	n Sums of Square	ed Loadings	Rotation Sums of Squared Loadings ^a
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total
1	2.908	48.458	48.458	2.908	48.458	48.458	2.896
2	1.175	19.582	68.040	1.175	19.582	68.040	1.217
3	1.003	16.711	84.751	1.003	16.711	84.751	1.018
4	.447	7.457	92.209				
5	.271	4.516	96.725				
6	.196	3.275	100.000				

Extraction Method: Principal Component Analysis.

a. When components are correlated, sums of squared loadings cannot be added to obtain a total variance.

Figure 2

3. Factor rotation and interpretation- factors are rotated either orthogonally or obliquely. This does not affect the underlying solution. The scree plot gives first 2 variables to explain majority of the variance. The elbow rule suggests that top 2 variables are sufficient enough to explain whole data set. But as the variables are less in our data set we will be taking all the variables for prediction.

Figure 3

Data set analysis

1. <u>Missing values</u>- There were no missing values. A total of 650 cases were observed.

Logistic Regression

Case Processing Summary

Unweighted Case	Unweighted Cases ^a		Percent
Selected Cases Included in Analysis		650	100.0
	Missing Cases	0	.0
	Total	650	100.0
Unselected Case	s	0	.0
Total		650	100.0

a. If weight is in effect, see classification table for the total number of cases.

2. <u>Coding of response</u>- It is used to convert continuous variables to categorical values. For the project three variables were converted. The steps followed to convert in SPSS were TRANSFORM>>>>VISUAL BINNING>>>>Variable to BIN>>>>Make cut-points

Variables	Old value	New value
Age	16-24 years	1
	24-34 years	2
	35-49 years	3
	50-64 years	4
	65-74 years	5
Gender	F	1
	M	2
Overall	<=7.4	0
satisfaction	7.5+	1

Categorical Variables Codings

Dependent Variable Encoding

Original Value	Internal Value
<= 7.4	0
7.5+	1

			er coding			
		Frequency	(1)	(2)	(3)	(4)
AGE_NUM	16-24	135	.000	.000	.000	.000
	25-34	136	1.000	.000	.000	.000
	35-49	136	.000	1.000	.000	.000
	50-64	136	.000	.000	1.000	.000
	65-74	107	.000	.000	.000	1.000
SEX_NUM	F	319	.000			
	М	331	1.000			

Figure 4

• Assumptions

1. Sample size-

The problem with small sample is repetability. The results obtain cannot be repeated with other samples.

Formula: N > 50+8m (where m=no. of Independent variable). For this project the sample size is 350. This assumption is satisfied for our sample.

2. <u>Multicolinearity</u>- Collinearity statistics were used to analyse the multicollinearity. The output below shows no multicollinearity present as the Tolerance value is high and VIF value is low.

Coefficients^a

Collinearity Statistics

Model		Tolerance	VIF
1	SEX_NUM	.976	1.025
	AGE_NUM	.852	1.174
	financial	.376	2.662
	Job	.350	2.853
	Personal relationships	.480	2.085

a. Dependent Variable: overall life satisfaction

Figure 5

3. <u>Outliners</u>- The outliners may severly affect the Goodness of fit of the model. It is important to check for outliners. The outliners are identified by examining the residuals.

	Casewise List ^b							
Case	Selected Status ^a	Observed	Predicted	Predicted Group	Tem Resid	nporary Varia ZResid	ble SResid	
17	S	<**	.965	7	965	-5.256	-2.601	
62	S	7**	.110	<	.890	2.845	2.125	
83	S	7**	.098	<	.902	3.041	2.185	
122	S	<**	.997	7	997	-16.895	-3.367	
135	S	<**	.955	7	955	-4.596	-2.504	
160	S	<**	.861	7	861	-2.488	-2.010	
219	S	7**	.056	<	.944	4.112	2.424	
451	s	7**	.139	<	.861	2.486	2.027	
478	S	7**	.008	<	.992	11.358	3.124	
548	S	7**	.025	<	.975	6.226	2.724	
618	S	7**	.015	<	.985	8.105	2.906	

a. S = Selected, U = Unselected cases, and ** = Misclassified cases.

b. Cases with studentized residuals greater than 2.000 are listed.

Figure 6

• Estimation of logistic regression model

 $\label{eq:model_predicted} Model \ zero: The \ model \ without \ any \ independent \ variable \ predicted \ 52.3\% \ times \ correct \ result.$ $E(y) = e^{-58.124 + 3.756 (finance) + 1.92 (job) + 2089 (relationship)} / 1 + e^{-58.124 + 3.756 (finance) + 1.92 (job) + 2089 (relationship)}$

Block 0: Beginning Block

	Clas	sificatio	n Table ^{a,b}		
				Predicted	
			Overall life s	Percentage	
	Observed		<= 7.4	7.5+	Correct
Step 0	Step 0 Overall life satisfaction	<= 7.4	340	0	100.0
		7.5+	310	0	.0
	Overall Percentage				52.3
a. Co	nstant is included in the m	nodel.			
b. The	e cut value is .500				

Figure 7

PRESENTING THE RESULTS FROM LOGISTIC REGRESSION

Direct logistic regression was performed to assess the impact various factors have on Overall life satisfaction of a person. The model contained five independent variables (age, gender, financial, job, relationship satisfactions). The full model containing all predictors was statistically significant, Chi square (8, N=650) = 633.216, p < .001, indicating that the model was able to distinguish between people who are satisfied in life with people who are not. The model as a whole explained between 62.2% (Cox and Snell R square) and 83.1% (Nagelkerke R squared) of the variance in life satisfaction, and correctly classified 92.2% of the cases. The table below shows that all variables except gender made a unique statistically significant contribution to the model. The strongest predictor of life satisfaction was financial satisfaction, recording an odds ratio of 42.767. this indicated people who are financially satisfied were over 42.8 times more likely to report overall life satisfaction then those who are not financially satisfied. The odds ratio of age group five that is people over 65 has a value 0.001 which is less then 1 indicating for every year increase in age people are 0.001 more likely to report not satisfied with overall life.

							odds ratio	95% C.I.fo	r EXP(B)
		В	S.E.	Wald	df	Sig.(p value)	Exp(B)	Lower	Upper
Step 1ª	SEX_NUM(1)	335	.321	1.088	1	.297	.715	.381	1.343
	AGE_NUM			73.968	4	.000			
	AGE_NUM(1)	-2.169	.523	17.214	1	.000	.114	.041	.318
	AGE_NUM(2)	-3.122	.571	29.863	1	.000	.044	.014	.135
	AGE_NUM(3)	-4.933	.695	50.434	1	.000	.007	.002	.028
	AGE_NUM(4)	-6.723	.855	61.778	1	.000	.001	.000	.006
	financial	3.756	.408	84.901	1	.000	42.767	19.237	95.074
	Job	1.920	.547	12.320	1	.000	6.821	2.335	19.928
	Personal relationships	2.891	.579	24.923	1	.000	18.010	5.789	56.031
	Constant	-58.124	6.732	74.555	1	.000	.000		

Part B - ANOVA

• Introduction

Analysis of variance is used in comparing mean score of of more then two groups. In this project Oneway ANOVA is used. It involves one independent variable with many different levels. It compares the variance between different groups. In this project financial satisfaction score of different age categories are compared.

• Research question

Is there a statistical difference in financial satisfaction score for different age groups?

- Null hypothesis- The mean financial score of all the age groups are the same
- Alternate hypothesis- the mean financial score of all age groups are different
- Level of significance- in this project alpha value of 0.05 is used
- <u>Data set explanation-</u>The data was downloaded from Euro-Stat (eurosats, n.d.). The data set contains following variables.
 - 1. One Categorical Independent variable AGE with five distinct categories

Variables	Old value	New value
Age	16-24 years	1
	24-34 years	2
	35-49 years 3	
	50-64 years	4
	65-74 years	5

2. One continuous dependent variable – Financial score (range of 1 to 10)

• Data set Analysis-

1. <u>Missing values</u>- There are no missing values. The total cases were 680 divided into equal value of 136 each. Hence it is fine if homogeneity of variance assumption is ignored.

Descriptives

	financial								
						95% Confiden Me			
		N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
١	1.0 (16-24)	136	6.349	.8913	.0764	6.197	6.500	3.7	7.8
	2.0(25-34)	136	6.197	.7905	.0678	6.063	6.331	3.9	7.4
	3.0(35-49)	136	6.074	.9268	.0795	5.917	6.231	3.9	7.5
	4.0(50-64)	136	6.039	1.1124	.0954	5.850	6.228	3.6	8.0
	5.0(65-74)	136	6.350	1.2297	.1054	6.141	6.559	3.2	8.5
	Total	680	6.202	1.0084	.0387	6.126	6.278	3.2	8.5

Figure 8

• Assumption-

- 1. <u>Level of measurement</u>- The dependent variable is a qualitative value at interval level this assumption is met.
- 2. **Random sampling-** The scores obtained are from a random sample.
- 3. <u>Independence of observation</u>- The variables are independent of each other as the ages are not overlapping.
- 4. **Normal distribution** The sample is large hence normality is not checked for the variables.
- 5. **Homogeneity of variance** This assumption is not met by our data set. As the levene's test for equality of variance has a p value of 0.00 which is less then 0.05. we used welch-brown test for significance. P value for the same is 0.027 which is less then 0.05 hence it is significant. Post hoc test for Games-Howell is used as we violated the levene's test.

Test of Homogeneity of Variances

		Levene Statistic	df1	df2	Sig.
financial	Based on Mean	10.499	4	675	.000
	Based on Median	10.375	4	675	.000
	Based on Median and with adjusted df	10.375	4	635.019	.000
	Based on trimmed mean	10.560	4	675	.000

Robust Tests of Equality of Means

financial				
	Statistic ^a	df1	df2	Sig.
Welch	2.772	4	335.563	.027
Brown-Forsythe	2.918	4	611.892	.021
a. Asymptotical	ly F distribute	ed.		

Figure 9

• Estimation of result

ANOVA										
financial										
	Sum of Squares	df	Mean Square	F	Sig.					
Between Groups	11.736	4	2.934	2.918	.021					
Within Groups	678.762	675	1.006							
Total	690.498	679								

Figure 10

<u>The significance value of 0.021 is less than 0.05</u> hence the test is significant means the sample provided gives evidence <u>to reject null hypothesis</u> and say that there is a significant difference in the mean financial score of various groups. To obtain which groups have statistically significant difference Games-Howell Post hoc test is done.

Eta= SOS between groups / total SOS

= 11.736/690.498 = 0.027

PRESENTING THE RESULTS FROM ONE WAY ANOVA WITH POST-HOC TESTS

A one way between group analysis of variance was conducted to explore impact of age on financial score, as measured by Europa stat (in range of 1-10). Participants were divided into five groups (Group 1: 16-24 years; Group 2: 25-34 years; Group 3: 35-49 years; Group 4: 50-64 years; Group 5: 65-74 years). There was a statistically significant difference at the p < 0.05 level in financial score for the five-age group: F(4,675) = 2.918, p = 0.02. Despite reaching statistical significance, the actual difference in mean scores between the groups was quite small. The effect size calculated using eta squared was 0.027. Post-hoc comparisons using Games-Howell test indicated that the mean score for Group 1 (M=6.35, SD=0.89) was significantly different from Group 4 (M=6.03, SD=1.11). Overall there was no highly significant difference between groups. The mean

plot below shows the mean comparisons of each group.

Post Hoc Tests

Multiple Comparisons

Dependent Variable: financial Games-Howell

		Mean Difference (I-			95% Confide	ence Interval
(I) age	(J) age	J)	Std. Error	Sig.	Lower Bound	Upper Bound
1	2	.1515	.1022	.575	129	.432
	3	.2743	.1103	.096	029	.577
	4	.3096	.1222	.087	026	.645
	5	0015	.1302	1.000	359	.356
2	1	1515	.1022	.575	432	.129
	3	.1228	.1045	.765	164	.410
	4	.1581	.1170	.660	164	.480
	5	1529	.1254	.740	498	.192
3	1	2743	.1103	.096	577	.029
3	2	1228	.1045	.765	410	.164
	4	.0353	.1242	.999	306	.376
	5	2757	.1320	.228	639	.087
4	1	3096	.1222	.087	645	.026
	2	1581	.1170	.660	480	.164
	3	0353	.1242	.999	376	.306
	5	3110	.1422	.188	702	.079
5	1	.0015	.1302	1.000	356	.359
	2	.1529	.1254	.740	192	.498
	3	.2757	.1320	.228	087	.639
	4	.3110	.1422	.188	079	.702

Means Plots

Part C- Fundamentals of Statistics

CHI SQUARE TESTING

• Introduction

Chi square testing is used to explore relationship between two categorical variables. It is a non-parametric method of hypothesis testing. In this project it is used to find relationship between gender and sitcoms watched on TV.

• Research question

Is the proportion of females that watch sitcoms the same as the proportion of males?

- Null hypothesis- The number of males and females watching sitcoms are same.
- Alternate hypothesis- The number of males and females watching sitcoms are different
- **Level of significance** in this project alpha value of 0.05 is used
- Data set- the data set was given on moddle it contains 18 variables and 50 student data.

- Variables- in this report the following variables are used
 - i) One Categorical variable GENDER (MALE AND FEMALE)
 - ii) Second categorical variable of tvsitcoms- Do they watch sitcom or no (0-NO and 1-YES)

• Assumptions-

- i) Random samples- Yes, the samples are taken randomly
- ii) Independent observation each student has unique response indicating no repeaters.
- iii) Unbiased and mutually exclusive- assumption met
- iv) Lowest expected frequency in any cell should be more then or equal to 5

Chi-Square Tests

	Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	11.063 ^a	1	.001		
Continuity Correction ^b	9.188	1	.002		
Likelihood Ratio	11.831	1	.001		
Fisher's Exact Test				.001	.001
Linear-by-Linear Association	10.841	1	.001		
N of Valid Cases	50				

- a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 8.64.
- b. Computed only for a 2x2 table

• Estimation of the output:

<u>Crosstabulations-</u> 87.5% females watches sitcoms and 12.5% doesn't. But only 42.3% males' watches sitcoms while 57.7% doesn't. overall 64% of the population watches sitcoms.

gender of student * television shows-sitcoms Crosstabulation

			television sho		
			no	yes	Total
gender of student	males	males Count % within gender of student		11	26
				42.3%	100.0%
		Adjusted Residual	3.3	-3.3	
	females	Count	3	21	24
	females	% within gender of student	12.5%	87.5%	100.0%
		Adjusted Residual	-3.3	3.3	
Total		Count	18	32	50
		% within gender of student	36.0%	64.0%	100.0%

- ii) <u>Chi square test</u>- In this project continuity correction i.e. yate's correction to compensate for the overestimate of chi square is done as we are using 2*2 table for computation.
- iii) <u>Effect size-</u> Phi value of 0.47 indicates near to good association between gender and sitcoms watched.

• Result

The chi square value is significant hence for the given sample we reject the null hypothesis. The alternate hypothesis is accepted. The conclusion is, there is a significant difference in the proportion of females and males watching sitcoms and more proportion of female student watches sitcoms then male.

PRESENTING THE RESULTS FOR CHI SQUARE TESTS

A chi square test for independence (with yate's continuity correction) indicates significant association between students' gender and sitcoms watched, $x^2(1, n=50) = 9.19$, p = 0.002, phi = 0.47.

Independent sample t- tests

• Introduction

It is used to compare mean score of 2 different groups of people or conditions.

• Research question

Is there a significant difference in the mean GPA score for males and females?

- Null hypothesis- The Mean GPA score for male and female students are same.
- Alternate hypothesis- The Mean GPA score for male and female students are different.
- Level of significance- in this project alpha value of 0.05 is used
- <u>Data set-</u> the data set was given on moddle it contains 18 variables and 50 student data.
- Variables- in this report the following variables are used
 - (1) One Categorical variable GENDER (MALE AND FEMALE)
 - (2) Second continuous variable of currgpa The students current GPA score.

Assumptions-

The basic assumptions are same as Chi square test. Additional assumptions were met and listed below.

- i) **Normal distribution** The sample size is above 30 and hence this assumption can be ignored.
- ii) Equality of variance- Levene's test for equality of variance has a sig value of 0.546 which is > then 0.05 hence this assumption is met for the data set used.

Group Statistics

•		gender of student	N	Mean	Std. Deviation	Std. Error Mean
	student's current gpa	males	26	3.023	.3983	.0781
		females	24	3.333	.3171	.0647

• Estimation of the output:

Since the sig (2-tailed value) 0.004 is less the 0.05 there is a significant difference in the mean scores of GPAs for male and female students. For the given sample the null hypothesis is rejected, and alternate hypothesis is accepted.

ETA squared calculation

$$t^2/t^2 + (N1 + N2 - 2)$$

= $(-3.03)^2/(-3.03)^2 + (26+24-2)$

= 0.161

The above value is greater than 0.14 hence large effect.

PRESENTING THE RESULTS FOR INDEPENDENCE SAMPLE T-TESTS

An independence sample t-test was conducted to compare the GPA score for male and female students. There is a significant difference in scores for males (M = 3.023, SD = 0.3983) and females (M = 3.333, SD = 0.3171); t (48) = -3.03, p = 0.004, two-tailed. The magnitude of the difference in the means (mean difference = -0.3103, 95% CI: -0.5161 to -0.1044) was huge (eta squared = 0.161).

Independent Samples Test

		Levene's Test for Equality of Variances I-test for Equality of Mean						of Means	S		
							Mean	Std. Error	95% Confidence Interval of the Difference		
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper	
student's current gpa	Equal variances assumed	.370	.546	-3.030	48	.004	3103	.1024	5161	1044	
	Equal variances not assumed			-3.058	47.023	.004	3103	.1015	5143	1062	