Insurance Dataset

Linear Regression

Problem Statement: To find how charges are varying based on the selected features.

In [1]:

- 1 # importing the necessary libraries
- 2 **import** numpy as np
- 3 import pandas as pd
- 4 import matplotlib.pyplot as plt
- 5 **import** seaborn **as** sns

Out[2]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520
1333	50	male	30.970	3	no	northwest	10600.54830
1334	18	female	31.920	0	no	northeast	2205.98080
1335	18	female	36.850	0	no	southeast	1629.83350
1336	21	female	25.800	0	no	southwest	2007.94500
1337	61	female	29.070	0	yes	northwest	29141.36030

1338 rows × 7 columns

Out[3]:

		age	sex	bmi	children	smoker	region	charges
,	0	19	female	27.900	0	yes	southwest	16884.92400
	1	18	male	33.770	1	no	southeast	1725.55230
	2	28	male	33.000	3	no	southeast	4449.46200
	3	33	male	22.705	0	no	northwest	21984.47061
	4	32	male	28.880	0	no	northwest	3866.85520

In [4]: 1 df.tail()

Out[4]:

	age	sex	bmi	children	smoker	region	charges
1333	50	male	30.97	3	no	northwest	10600.5483
1334	18	female	31.92	0	no	northeast	2205.9808
1335	18	female	36.85	0	no	southeast	1629.8335
1336	21	female	25.80	0	no	southwest	2007.9450
1337	61	female	29.07	0	yes	northwest	29141.3603

In [5]:

1 df.describe()

Out[5]:

	age	bmi	children	charges
count	1338.000000	1338.000000	1338.000000	1338.000000
mean	39.207025	30.663397	1.094918	13270.422265
std	14.049960	6.098187	1.205493	12110.011237
min	18.000000	15.960000	0.000000	1121.873900
25%	27.000000	26.296250	0.000000	4740.287150
50%	39.000000	30.400000	1.000000	9382.033000
75%	51.000000	34.693750	2.000000	16639.912515
max	64.000000	53.130000	5.000000	63770.428010

In [6]:

1 df.shape

Out[6]: (1338, 7)

```
In [7]:
         1 df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 1338 entries, 0 to 1337
        Data columns (total 7 columns):
                      Non-Null Count Dtype
            Column
            ____
                      _____
         0
             age
                      1338 non-null
                                      int64
                      1338 non-null
                                      object
             sex
                      1338 non-null
                                      float64
         2
             bmi
            children 1338 non-null
                                      int64
            smoker
                      1338 non-null
                                      object
                      1338 non-null
            region
                                      object
             charges 1338 non-null
                                     float64
        dtypes: float64(2), int64(2), object(3)
        memory usage: 73.3+ KB
In [8]:
         1 df['sex'].value counts()
Out[8]: sex
        male
                 676
        female
                  662
        Name: count, dtype: int64
```

```
In [9]: 1 convert={"sex":{"female":1,"male":2}}
df=df.replace(convert)
df
```

Out[9]:

	age	sex	bmi	children	smoker	region	charges
0	19	1	27.900	0	yes	southwest	16884.92400
1	18	2	33.770	1	no	southeast	1725.55230
2	28	2	33.000	3	no	southeast	4449.46200
3	33	2	22.705	0	no	northwest	21984.47061
4	32	2	28.880	0	no	northwest	3866.85520
1333	50	2	30.970	3	no	northwest	10600.54830
1334	18	1	31.920	0	no	northeast	2205.98080
1335	18	1	36.850	0	no	southeast	1629.83350
1336	21	1	25.800	0	no	southwest	2007.94500
1337	61	1	29.070	0	yes	northwest	29141.36030

```
In [10]: 1 convert={'smoker':{'yes':1,'no':2}}
2 df=df.replace(convert)
3 df
```

Out[10]:

	age	sex	bmi	children	smoker	region	charges
0	19	1	27.900	0	1	southwest	16884.92400
1	18	2	33.770	1	2	southeast	1725.55230
2	28	2	33.000	3	2	southeast	4449.46200
3	33	2	22.705	0	2	northwest	21984.47061
4	32	2	28.880	0	2	northwest	3866.85520
1333	50	2	30.970	3	2	northwest	10600.54830
1334	18	1	31.920	0	2	northeast	2205.98080
1335	18	1	36.850	0	2	southeast	1629.83350
1336	21	1	25.800	0	2	southwest	2007.94500
1337	61	1	29.070	0	1	northwest	29141.36030

```
In [11]: 1 df=df.drop('region',axis=1)
In [12]: 1 df=df.drop('children',axis=1)
In [13]: 1 features=df.columns[0:2]
```

```
1 target=df.columns[-1]
In [14]:
In [15]:
           1 from sklearn.model selection import train test split
           2 from sklearn.linear model import LinearRegression
In [16]:
           1 x=np.array(df[features])
           2 y=np.array(df[target])
In [17]:
           1 x train, x test, y train, y test=train test split(x,y,test size=0.7)
           2 regr=LinearRegression()
           3 regr.fit(x train,y train)
             print(regr.score(x train,y train))
         0.10934585685325382
In [18]:
           1 print(regr.intercept )
         317.7620065058163
           1 coeff df=pd.DataFrame(regr.coef )
In [19]:
           2 coeff df
Out[19]:
             255.553361
          1 1178.226540
```

Conclusion

The accuracy for this Dataset is very low while using LinearRegression. Accuracy = 0.0835

Ridge Regression

```
In [20]: 1 from sklearn.linear_model import Ridge,Lasso,RidgeCV

In [21]: 1 ridgeReg = Ridge(alpha=10)
2 ridgeReg.fit(x_train,y_train)
3 train_score_ridge = ridgeReg.score(x_train,y_train)
4 test_score_ridge = ridgeReg.score(x_test,y_test)
5 print('\nRidge Model\n')
7 print('Train score for ridge model is {}'.format(train_score_ridge))
8 print('Test score for ridge model is{}'.format(test_score_ridge))
```

Ridge Model

Train score for ridge model is 0.10932328710163086 Test score for ridge model is 0.06876009932822547

```
In [22]:
1  plt.figure(figsize = (10,10))
2  plt.plot(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker='*',markersize=6,color='red',label=r'Ridge;$\)
3  plt.plot(features,regr.coef_,alpha=0.4,linestyle='none',marker='o',markersize=7,color='green',label='Linear Regr
4  plt.xticks(rotation=90)
5  plt.legend()
6  plt.show()
```


Conclusion

For Ridge Regression also the Accuracy value is very low.

Train score for ridge model is 0.08393600452093364

Test score for ridge model is 0.09723547364784435

Logostic Regression

Problem Statement: To find smokers count based on the features - sex, age.

```
In [23]:
```

- import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns
 from skleapp model selection import
- 5 from sklearn.model_selection import train_test_split
- 6 **from** sklearn.linear_model **import** LogisticRegression

Out[24]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520
1333	50	male	30.970	3	no	northwest	10600.54830
1334	18	female	31.920	0	no	northeast	2205.98080
1335	18	female	36.850	0	no	southeast	1629.83350
1336	21	female	25.800	0	no	southwest	2007.94500
1337	61	female	29.070	0	yes	northwest	29141.36030

- In [25]: 1 features=df.columns[0:3]
- In [26]: 1 target=df.columns[-3]
- In [27]: 1 from sklearn.datasets import load_digits
 2 digits=load_digits()

0.9523052464228935

Conclusion

Using Logistic Regression score is little high compared to Linear Regression. So, further process continued in Logistic Regression. Accuracy = 0.9523052464228935

Decision Tree

```
In [31]: 1 imp
```

- 1 import numpy as np
- 2 import pandas as pd
- 3 import seaborn as sns
- 4 import matplotlib.pyplot as plt
- 5 from sklearn.model_selection import train_test_split
- 6 **from** sklearn.tree **import** DecisionTreeClassifier

In [32]:

- 1 df=pd.read_csv(r"C:\Users\yoshitha lakshmi\OneDrive\Desktop\python\insurance.csv")
- 2 df

Out[32]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520
1333	50	male	30.970	3	no	northwest	10600.54830
1334	18	female	31.920	0	no	northeast	2205.98080
1335	18	female	36.850	0	no	southeast	1629.83350
1336	21	female	25.800	0	no	southwest	2007.94500
1337	61	female	29.070	0	yes	northwest	29141.36030

```
1 df['sex'].value_counts()
In [33]:
Out[33]: sex
         male
                   676
         female
                   662
         Name: count, dtype: int64
In [34]:
          1 df['bmi'].value_counts()
Out[34]: bmi
         32.300
                   13
         28.310
                    9
         30.495
                    8
         30.875
                    8
         31.350
                    8
         46.200
                    1
         23.800
                    1
         44.770
                    1
         32.120
                    1
         30.970
                    1
         Name: count, Length: 548, dtype: int64
```

```
In [35]: 1 convert={'sex':{'female':0,'male':1}}
2 df=df.replace(convert)
3 df
```

Out[35]:

	age	sex	bmi	children	smoker	region	charges
0	19	0	27.900	0	yes	southwest	16884.92400
1	18	1	33.770	1	no	southeast	1725.55230
2	28	1	33.000	3	no	southeast	4449.46200
3	33	1	22.705	0	no	northwest	21984.47061
4	32	1	28.880	0	no	northwest	3866.85520
1333	50	1	30.970	3	no	northwest	10600.54830
1334	18	0	31.920	0	no	northeast	2205.98080
1335	18	0	36.850	0	no	southeast	1629.83350
1336	21	0	25.800	0	no	southwest	2007.94500
1337	61	0	29.070	0	yes	northwest	29141.36030

```
In [37]: 1 X_train,x_test,y_train,y_test=train_test_split(all_inputs,all_classes,test_size=0.7)
```

Random Forest

In [42]:

1 df=pd.read_csv(r"C:\Users\yoshitha lakshmi\OneDrive\Desktop\python\insurance.csv")

2 df

Out[42]:

		age	sex	bmi	children	smoker	region	charges
	0	19	female	27.900	0	yes	southwest	16884.92400
	1	18	male	33.770	1	no	southeast	1725.55230
	2	28	male	33.000	3	no	southeast	4449.46200
	3	33	male	22.705	0	no	northwest	21984.47061
	4	32	male	28.880	0	no	northwest	3866.85520
1	1333	50	male	30.970	3	no	northwest	10600.54830
1	1334	18	female	31.920	0	no	northeast	2205.98080
1	335	18	female	36.850	0	no	southeast	1629.83350
1	336	21	female	25.800	0	no	southwest	2007.94500
1	1337	61	female	29.070	0	yes	northwest	29141.36030

```
In [43]:
          1 df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1338 entries, 0 to 1337
         Data columns (total 7 columns):
                       Non-Null Count Dtype
             Column
             -----
                       _____
          0
             age
                       1338 non-null
                                      int64
                       1338 non-null
                                      object
              sex
                       1338 non-null
                                      float64
          2
             bmi
             children 1338 non-null
                                      int64
             smoker
                       1338 non-null
                                      object
                       1338 non-null
             region
                                      object
             charges 1338 non-null
                                      float64
         dtypes: float64(2), int64(2), object(3)
         memory usage: 73.3+ KB
In [44]:
          1 x=df.drop('smoker',axis=1)
          2 y=df['smoker']
```

```
In [45]: 1 convert={'sex':{'female':0,'male':1}}
2 df=df.replace(convert)
3 df
```

Out[45]:

	age	sex	bmi	children	smoker	region	charges
0	19	0	27.900	0	yes	southwest	16884.92400
1	18	1	33.770	1	no	southeast	1725.55230
2	28	1	33.000	3	no	southeast	4449.46200
3	33	1	22.705	0	no	northwest	21984.47061
4	32	1	28.880	0	no	northwest	3866.85520
1333	50	1	30.970	3	no	northwest	10600.54830
1334	18	0	31.920	0	no	northeast	2205.98080
1335	18	0	36.850	0	no	southeast	1629.83350
1336	21	0	25.800	0	no	southwest	2007.94500
1337	61	0	29.070	0	yes	northwest	29141.36030

1338 rows × 7 columns

```
In [46]: 1 | from sklearn.ensemble import RandomForestClassifier
```

2 rfc=RandomForestClassifier()

3 rfc.fit(X_train,y_train)

Out[46]:

```
▼ RandomForestClassifier
RandomForestClassifier()
```

```
In [47]:
           1 score=rfc.score(x_test,y_test)
           2 print(score)
         0.7385272145144077
In [48]:
           1 params={'max_depth':[2,3,5,10,20],
                     'min samples leaf':[5,10,20,50,100,200],
           3
                     'n estimators':[10,25,30,50,100,200]}
In [49]:
           1 from sklearn.model selection import GridSearchCV
           grid search=GridSearchCV(estimator=rfc,param grid=params,cv=2,scoring="accuracy")
           3 grid search.fit(X train,y train)
Out[49]:
                      GridSearchCV
           ▶ estimator: RandomForestClassifier
                ▶ RandomForestClassifier
In [50]:
           1 grid_search.best_score_
Out[50]: 0.7780597014925373
In [51]:
           1 rf best=grid search.best estimator
```

```
In [52]:
                        1 from sklearn.tree import plot tree
                        2 from sklearn.tree import DecisionTreeClassifier
                        3 plt.figure(figsize=(80,40))
                        4 plot tree(rf best.estimators [5], feature names=x.columns, class names=['Yes', 'No'], filled=True)
Out[52]: [Text(0.5, 0.8333333333333334, 'age <= 49.5\ngini = 0.394\nsamples = 254\nvalue = [293, 108]\nclass = Yes'),
                       Text(0.25, 0.5, 'sex <= 0.5 \cdot = 0.418 \cdot = 180 \cdot = [208, 88] \cdot = Yes'),
                       Text(0.125, 0.16666666666666666, 'gini = 0.35\nsamples = 79\nvalue = [99, 29]\nclass = Yes'),
                       Text(0.75, 0.5, 'age <= 62.5 \cdot 10^{-2} = 62.5 \cdot
                       Text(0.625, 0.166666666666666666, 'gini = 0.268\nsamples = 66\nvalue = [79, 15]\nclass = Yes'),
                       age <= 49.5
                                                                                                                                qini = 0.394
                                                                                                                            samples = 254
                                                                                                                      value = [293, 108]
                                                                                                                                  class = Yes
                                                                                                                                                                                               age <= 62.5
                                                                   sex <= 0.5
                                                                 gini = 0.418
                                                                                                                                                                                               gini = 0.308
                                                             samples = 180
                                                                                                                                                                                              samples = 74
                                                         value = [208, 88]
                                                                                                                                                                                          value = [85, 20]
                                                                   class = Yes
                                                                                                                                                                                                  class = Yes
                                   gini = 0.35
                                                                                                 gini = 0.456
                                                                                                                                                                gini = 0.268
                                                                                                                                                                                                                               gini = 0.496
                               samples = 79
                                                                                            samples = 101
                                                                                                                                                             samples = 66
                                                                                                                                                                                                                               samples = 8
                           value = [99, 29]
                                                                                        value = [109, 59]
                                                                                                                                                          value = [79, 15]
                                                                                                                                                                                                                             value = [6, 5]
                                   class = Yes
                                                                                                  class = Yes
                                                                                                                                                                  class = Yes
                                                                                                                                                                                                                                 class = Yes
```

```
In [53]: 1 imp_df=pd.DataFrame({"varname":X_train.columns,"Imp":rf_best.feature_importances_})
2 imp_df.sort_values(by="Imp",ascending=False)
```

Out[53]:

	varname	Imp		
0	age	0.798067		
1	sex	0.201933		

Coclusion

For both Decision Tree and Random Forest

Based on our Problem Statement we classified data and build using Random Forest.

Exploratory Data Analysis

```
In [54]: 1 sns.pairplot(df)
```

Out[54]: <seaborn.axisgrid.PairGrid at 0x1caa19f5420>

In [55]: 1 sns.displot(df['smoker'])

Out[55]: <seaborn.axisgrid.FacetGrid at 0x1cabaa07c40>


```
In [56]: 1 sns.displot(df['charges'])
```

Out[56]: <seaborn.axisgrid.FacetGrid at 0x1cabaa953c0>

Conclusion

Using Exploratory Analysis, the relation between features has discovered.

```
In [57]: 1 import pickle
In [58]: 1 df="prediction"
    pickle.dump(rfc,open(df,'wb'))
In []: 1
```