

Tema 6. Distribución Multinomial

Percepción (PER)

Curso 2017/2018

Departamento de Sistemas Informáticos y Computación

- 1 Introducción y motivación ⊳ 3
- 2 Definición de la distribución multinomial > 5
- 3 Clasificador multinomial ▷ 9
- 4 Entrenamiento por máxima verosimilitud (MV) ▷ 12
- 5 Suavizado ▷ 14

- 1 Introducción y motivación ▷ 3
 - 2 Definición de la distribución multinomial > 5
 - 3 Clasificador multinomial ▷ 9
 - 4 Entrenamiento por máxima verosimilitud (MV) ▷ 12
 - 5 Suavizado ▷ 14

Distribución multinomial: motivación

Algunas tareas de RF representan objetos como vectores de cuentas

Ejemplo: Texto representado como *bag-of-words*

Idea: usar la *distribución multinomial* para modelizar la condicional $p({m x}|c)$

- 1 Introducción y motivación ⊳ 3
- 2 Definición de la distribución multinomial ▷ 5
 - 3 Clasificador multinomial ▷ 9
 - 4 Entrenamiento por máxima verosimilitud (MV) ▷ 12
 - 5 Suavizado ▷ 14

Definición: distribución multinomial

Sea una población $\mathcal{Y} = \{y_1, \dots, y_n\}$ con $y_i \in \{1, \dots, D\}$,

Sean las proporciones p_d de los tipos de elemento $\{1,\ldots,D\}$ dadas por:

$$p = (p_1, \dots, p_D)^t \in [0, 1]^D$$
 con $\sum_{d=1}^D p_d = 1$

Sea una secuencia de N elementos formada por extracción aleatoria con reemplazo desde $\mathcal Y$

$$w_1^N = w_1 \, w_2 \, \cdots \, w_N$$

Número de secuencias distintas de longitud N:

$$VR_{D,N} = D^N$$

Definición: distribución multinomial

Asumiendo independencia entre elementos:

$$p(w_1^N) = p_{w_1} p_{w_2} \cdots p_{w_N}$$

No depende del orden de los elementos, sino de su número de ocurrencias:

- x_d : el número de ocurrencias del elemento d en w_1^N
- $x = (x_1, \dots, x_D)^t$: vector de ocurrencias (número de ocurrencias de cada elemento en w_1^N)

$$p(w_1^N) = p_1^{x_1} \cdots p_D^{x_D} = \prod_{d=1}^D p_d^{x_d}$$

El número de secuencias diferentes con el mismo vector de ocurrencias es un coeficiente multinomial:

$$\binom{N}{\boldsymbol{x}} = \binom{N}{x_1, \dots, x_D} = \frac{N!}{x_1! \cdots x_D!}$$

Definición: distribución multinomial

Distribución multinomial: se define sobre el espacio de vectores de ocurrencias

La probabilidad de x es la suma de probabilidades de todas las secuencias con vector de ocurrencias x:

$$p(\boldsymbol{x}) = {N \choose \boldsymbol{x}} \prod_{d=1}^{D} p_d^{x_d}$$

p(x) es una f.d. multinomial:

- *D*-dimensional
- Longitud $N = \sum_{d=1}^{D} x_d$
- Prototipo p

De ahora en adelante, usaremos $x_+ = N$.

- 1 Introducción y motivación ⊳ 3
- 2 Definición de la distribución multinomial > 5
- 3 Clasificador multinomial ▷ 9
 - 4 Entrenamiento por máxima verosimilitud (MV) ▷ 12
 - 5 Suavizado ▷ 14

Clasificador multinomial

Clasificador multinomial: clasificador de Bayes donde la f.d. condicional $p(\boldsymbol{x}|c)$ es una multinomial

$$p(\boldsymbol{x} \mid c) \sim Mult_D(x_+, \boldsymbol{p}_c), \quad c = 1, \dots, C.$$

Por tanto:

$$c^*(\boldsymbol{x}) = \underset{c=1,...,C}{\operatorname{argmax}} \log P(c) + \log p(x \mid c)$$

$$= \underset{c=1,...,C}{\operatorname{argmax}} \log P(c) + \log \frac{x_{+}!}{x_{1}! \cdots x_{D}!} \prod_{d=1}^{D} p_{cd}^{x_{d}}$$

$$= \underset{c=1,...,C}{\operatorname{argmax}} \log P(c) + \log \frac{x_{+}!}{x_{1}! \cdots x_{D}!} + \sum_{d=1}^{D} x_{d} \log p_{cd}$$

Clasificador multinomial

Eliminando el término independiente de c:

$$c^*(x) = \underset{c=1,...,C}{\operatorname{argmax}} \log P(c) + \sum_{d=1}^{D} x_d \log p_{cd}$$

Expresando el sumatorio en forma de producto escalar:

$$c^*(\boldsymbol{x}) = \underset{c=1,...,C}{\operatorname{argmax}} (\log \boldsymbol{p}_c)^t \boldsymbol{x} + \log P(c)$$

En forma de clasificador lineal:

$$c^*(\boldsymbol{x}) = \underset{c=1,...,C}{\operatorname{argmax}} \ g_c(\boldsymbol{x}) = \underset{c=1,...,C}{\operatorname{argmax}} \ \boldsymbol{w}_c^t \boldsymbol{x} + w_{c0}$$

Con:

$$\boldsymbol{w}_c = \log \boldsymbol{p}_c$$
 $w_{c0} = \log P(c)$

- 1 Introducción y motivación ⊳ 3
- 2 Definición de la distribución multinomial > 5
- 3 Clasificador multinomial ▷ 9
- 4 Entrenamiento por máxima verosimilitud (MV) ▷ 12
 - 5 Suavizado ▷ 14

Entrenamiento por máxima verosimilitud

Sean N muestras de entrenamiento aleatoriamente extraídas de C distribuciones multinomiales independientes:

$$\{(\boldsymbol{x}_n,c_n)\}_{n=1}^N$$
 i.i.d. $p(\boldsymbol{x},c)=P(c)\,p(\boldsymbol{x}|c), \quad p(\boldsymbol{x}|c)\sim Mult_D(x_+,\boldsymbol{p}_c)$

Conjunto de parámetros a estimar Θ :

- Probabilidades a priori: $P(1) \dots, P(C)$
- lacktriangle Prototipos de las multinomiales para cada clase c: $m{p}_c$, $c=1,\ldots,C$

Por criterio de máxima verosimilitud (MV), se estima Θ como:

$$\hat{P}(c) = \frac{N_c}{N} \qquad \hat{\boldsymbol{p}}_c = \frac{1}{\sum_{\substack{n: c_n = c \\ d = 1}} \sum_{\substack{n: c_n = c \\ d = 1}} \boldsymbol{x}_{nd}} \sum_{\substack{n: c_n = c \\ d = 1}} \boldsymbol{x}_n \qquad c = 1, \dots, C$$

- 1 Introducción y motivación ⊳ 3
- 2 Definición de la distribución multinomial > 5
- 3 Clasificador multinomial ▷ 9
- 4 Entrenamiento por máxima verosimilitud (MV) ▷ 12
- 5 Suavizado ▷ 14

Suavizado de la distribución multinomial

Laplace: suma una constante $\epsilon > 0$ a cada parámetro y renormaliza

Descuento Absoluto (DA):

- 1. Descuenta una constante $\epsilon>0$ (pequeña) a cada parámetro mayor que cero
- 2. Distribuir la probabilidad descontada según una distribución generalizada:
 - Entre todos los parámetros nulos (backing-off)
 - Entre todos los parámetros (interpolación)

