CS4047: Neural Nets (aNNs)

By Derek Rodriguez

Origin of Perceptron

- Neurons produce electrical signals if certain chemical reactions happen inside them.
- Chemical reactions caused by signals coming from other neurons producing a synapse.
- Perceptrons are "digital neurons" that produce output based on input.

<u>Perceptrons</u>

Source:https://ka-perseus-images.s3.amazonaws.com/b404bfc9d6246ff3475f6fd2b34fbb7374fc4873.png

Basics of a Perceptron

Symbol	Meaning	
X	An input value	
g()	Function applied to h	
h	h = weighted avg. + bias	
у	Output of g(h)	
N	Amt. of inputs	
W	A weight in the weighted avg.	

g() can be any function, just needs to have a derivative.

$$h = \sum_{n=1}^{N} (w_n x_n) + b_{ias}$$

Think of this as a fixed "threshold" for how hard it is to fire

Multi-layer aNN

2015 Exam Problem

		Destination	
	V	1	2
Source	1	1	-1
	2	0	1
	W	1	2
Source	1	-1	0
	2	0	1

Given that we want y1=0 and y2=1, find all v and w after one iteration of back prop.

Deciphering variables

Symbol	Meaning	
X	input perceptron	
У	output perceptron	
Z	hidden perceptron	
g ()	Function applied to h	
h	h = weighted avg. + bias	
У	output perceptron	
i	source index	
j	destination index	
V	weight into hidden layer	
W	weight into output layer	

- For every perceptron, <u>bias is 1</u>
- For this problem, g() does nothing, i.e. g(h) = h
- For clarity, weights from input have renamed to v
- Final output of perceptron is named after perceptron
- Input perceptrons just push input values forward
- i and j don't appear explicitly, but we'll use them later for writing formulas.
- To make life easy, we never differentiate the bias

Solution Strategy

- 1.Perform one iteration of forward prop to get current values.
- 2.Calculate output "change factor" for each perceptron (Δ) .
- 3. Calculate changes to weights for output layer new w.
- 4.Use "change factor" from output layer to calculate "change factor" in hidden layer (δ) .
- 5. Perform step 2 for hidden layer to get new v.

Step 1 Part 1: Forward Prop for z

Step 1 Part 2: Forward Prop for y

Input formula for y perceptron

$$h_{yj} = \sum_{i=1}^{2} (wijzi) + bias$$

$$h_{y_1} = w_{11}z_1 + w_{21}z_2 + bias = (-1*2) + (0*0) + 1 = -1$$

$$h_{y_2} = W_{12}Z_1 + W_{22}Z_2 + bias = (0*2) + (1*0) + 1 = 1$$

This is roughly the same as the previous step

Step 2: Calculating \Deltas

·Let's call current output ŷ and desired value y

Recall from question:

•
$$y_1 = 0$$
• $y_2 = 1$

•
$$y_2 = 1$$

$$\hat{\mathbf{y}}_1 = -1$$

$$\Delta_1 = y_1 - \hat{y}_1 = 0 - (-1) = 1$$

 $\Delta_2 = y_2 - \hat{y}_2 = 1 - 1 = 0$

Step 3: update y perceptrons

•Let's call the new weight $w_{ij}^{(1)}$ and the old weight $w_{ij}^{(0)}$

$$W_{ij}^{(1)} = W_{ij}^{(0)} + \eta \Delta_{j} Z_{i}$$

$$W_{11}^{(1)} = W_{11}^{(0)} + \eta \Delta_{1} Z_{1} = -1 + 0.1 * 1 * 1 = -0.9$$

$$W_{12}^{(1)} = W_{12}^{(0)} + \eta \Delta_{2} Z_{1} = 0 + 0.1 * 0 * 1 = 0$$

$$W_{21}^{(1)} = W_{21}^{(0)} + \eta \Delta_{1} Z_{2} = 0 + 0.1 * 1 * 3 = 0.3$$

$$W_{22}^{(1)} = W_{22}^{(0)} + \eta \Delta_{2} Z_{2} = 1 + 0.1 * 0 * 3 = 1$$

Step 4: Calculating Ss

-This to calculate δ we use Δ and w

Recall:

- $\Delta_1 = 1$ $\Delta_2 = 0$

$$\delta_1 = \Delta_1 W_{11} + \Delta_1 W_{12} = 1 \times -1 + 2 \times 0 = \underline{1}$$

 $\delta_2 = \Delta_2 W_{21} + \Delta_2 W_{22} = 0 \times 0 + 0 \times 1 = \underline{0}$

Step 5: update z perceptrons

•This is the same as step 3 but with v and δ instead of w and Δ .

$$V_{ij}^{(1)} = V_{ij}^{(0)} + \eta \delta_{j} X_{i}$$

$$V_{11}^{(1)} = V_{11}^{(0)} + \eta \delta_{1} X_{1} = -1 + 0.1 * 1 * 1 = -0.9$$

$$V_{12}^{(1)} = V_{12}^{(0)} + \eta \delta_{2} X_{1} = 0 + 0.1 * 0 * 1 = 0$$

$$V_{21}^{(1)} = V_{21}^{(0)} + \eta \delta_{1} X_{2} = -1 + 0.1 * 1 * 0 = -0.9$$

$$V_{22}^{(1)} = V_{22}^{(0)} + \eta \delta_{2} X_{2} = 1 + 0.1 * 0 * 0 = 1$$

And you're done!

The goal was to get the vand w, which are now on slides 13 and 11.