6 DOF explanation

1. Robot coordinate frame:

2. In order to find the position and orientation parameters, the following composition of coordinate transformation in the frame represents:

 a_i : The length distance from z_i to $z_{i+1} \, \text{measured}$ along z_i

 α_i : The twist angle between z_i and z_{i+1} measured about x_i

 d_i : The offset distance from x_i to x_{i+1} measured along z_i

 θ_i : The angle between x_i and x_{i+1} measured about z_i

3. Transformation matrix:

$$Ai = \begin{bmatrix} \textit{C}\theta i & -\textit{S}\theta i \textit{C}\alpha i & \textit{S}\theta i \textit{S}\alpha i & ai \textit{C}\theta i \\ \textit{S}\theta i & \textit{C}\theta i \textit{C}\alpha i & -\textit{C}\theta i \textit{S}\alpha i & ai \textit{S}\theta i \\ 0 & \textit{S}\alpha i & \textit{C}\alpha i & di \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

4. Forward kinematics A1 and A6:

Link	a	α	d	$oldsymbol{ heta}$
1	0	0	d1	θ1
2	0	90	0	θ2
3	a3	0	0	θ3
4	a4	0	0	θ4
5	0	90	d5	θ5
6	0	0	0	θ6

$$\mathbf{A}_{1} = \begin{bmatrix} \mathbf{C}_{1} & -\mathbf{S}_{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{S}_{1} & \mathbf{C}_{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{d}_{1} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix}$$

$$\mathbf{A}_4 = \begin{bmatrix} \mathbf{C}_4 & -\mathbf{S}_4 & 0 & \mathbf{a}_4 \mathbf{C}_4 \\ \mathbf{S}_4 & \mathbf{C}_4 & 0 & \mathbf{a}_4 \mathbf{S}_4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{A}_{2} = \begin{bmatrix} \mathbf{C}_{2} & 0 & \mathbf{S}_{2} & 0 \\ \mathbf{S}_{2} & 0 & -\mathbf{C}_{2} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{A}_{5} = \begin{bmatrix} \mathbf{C}_{5} & \mathbf{0} & -\mathbf{S}_{5} & \mathbf{0} \\ \mathbf{S}_{5} & \mathbf{0} & \mathbf{C}_{5} & \mathbf{0} \\ \mathbf{0} & -\mathbf{1} & \mathbf{0} & \mathbf{d}_{5} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix}$$

$$\mathbf{A}_3 = \begin{bmatrix} \mathbf{C}_3 & -\mathbf{S}_3 & 0 & \mathbf{a}_3 \mathbf{C}_3 \\ \mathbf{S}_3 & \mathbf{C}_3 & 0 & \mathbf{a}_3 \mathbf{S}_3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{A}_6 = \begin{bmatrix} \mathbf{C}_6 & -\mathbf{S}_6 & 0 & 0 \\ \mathbf{S}_6 & \mathbf{C}_6 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

5. Total matrix of transformation is the multiplication of matrices A1-A6. Where [p(x,y,z)] represent the position, while n(x,y,z), o(x,y,z), and a(x,y,z) represent the orientation]:

$$\begin{aligned} &A_6^0 = A_1^0 * A_2^1 * A_3^2 * A_4^3 * A_5^4 * A_6^5 \\ &= \begin{bmatrix} n_x & o_x & a_x & p_x \\ n_y & o_y & a_y & p_y \\ n_z & o_z & a_z & p_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{aligned}$$

6. Finally, to calculate position parameters, we used the following equations:

```
\begin{aligned} & \text{px} = (\text{a4*} (\cos (\text{t1}) * \cos (\text{t2}) - \sin (\text{t1}) * \sin (\text{t2})) * \cos (\text{t3}) * \cos (\text{t4})) - (\text{a4*} (\cos (\text{t1}) * \cos (\text{t2}) - \sin (\text{t1}) * \sin (\text{t2})) * \sin (\text{t3}) * \sin (\text{t4})) + \\ & ((\cos (\text{t1}) * \sin (\text{t2}) + \sin (\text{t1}) * \cos (\text{t2})) * \text{d5}) + (\text{a3*} (\cos (\text{t1}) * \cos (\text{t2}) - \sin (\text{t1}) * \sin (\text{t2})) * \cos (\text{t3})); \\ & \text{py} = (\text{a4*} (\cos (\text{t1}) * \sin (\text{t2}) + \sin (\text{t1}) * \cos (\text{t2})) * \cos (\text{t3}) * \cos (\text{t4})) - (\text{a4*} (\cos (\text{t1}) * \sin (\text{t2}) + \sin (\text{t1}) * \cos (\text{t2}) - \sin (\text{t1}) * \sin (\text{t2})) * \text{d5}) + (\text{a3*} (\cos (\text{t1}) * \sin (\text{t2}) + \sin (\text{t1}) * \cos (\text{t2})) * \cos (\text{t3})); \\ & \text{pz} = (\text{a4*} \sin (\text{t3}) * \cos (\text{t4})) - (\text{a4*} \cos (\text{t3}) * \sin (\text{t4})) + (\text{a3*} \sin (\text{t3})) + \text{d1}; \end{aligned}
```

6 DOF algorithm

6 DOF robot arm algorithm

