RACAH PARAMETER

M. Sc.: CC – 3 (Inorganic Chemistry)

Dr. Naresh Kumar

Prof. of Chemistry
Dept. of Chemistry
B. N. Mandal University, Madhepura

Racah Parameter

- Racah Parameter is the energy gap between two spectroscopic terms due to e-e repulsion.
- ➤ It is denoted by B & C.
- Energy gap between two spectroscopic terms of same multiplicity like ³F, ³P or ⁴F, ⁴P etc is expressed by B.
- Energy gap between two spectroscopic term of different multiplicity like ³P, ¹D or ⁴F, ²D, ³G etc is expressed by B & C.
- > Racah parameters after Giulio Racah, who first described them.
- ➤It describes the repulsion energy associated with an electronic term.
- \triangleright the interelectronic repulsion of a ³P term is A + 7B,
- >³F term is A 8B,
- > 1D = A 3B + 2C
- ► Difference between ${}^{3}F \& {}^{3}P = (A+7B) (A-8B) = 15B$.
- Similarly difference between ${}^{3}F \& {}^{1}D = (A-8B) (A-3B+2C) = 5B+2C$

Racah Inter-electronic Repulsion Parameters (B, C)

When ligand approaches to the free metal ion than e-e repulsion is decreased & hence energy gap becomes low & resulting gap also decreased in complex compound i.e. B free ion is greater than B complex.

Reason of Racah Parameter

When an <u>atom</u> has more than one <u>electron</u> there will be some <u>electrostatic</u> repulsion between those electrons. The amount of repulsion varies from atom to atom, depending upon the number and <u>spin</u> of the electrons and its energy level of the <u>orbitals</u> they occupy.

Electronic State & in ground & Excited State

Triple degeneracy of a d^2 ion's ${}^3T_{2g}$ ground state due to three possible sites for hole in t_{2g} level

Singly degenerate ${}^3\mathrm{T}_{2\mathrm{g}}$ ground state. Only one possible arrangement for three electrons in $t_{2\mathrm{g}}$ level

Triple degenerate ground state for d^7 Three possible sites for hole in t_{2g} level

Singly degenerate ${}^{3}\text{T}_{2g}$ ground state. Only one possible arrangement for six t_{2g} electrons.

Configuration	Term symbols
d^1, d^9	$2_{ m D}$
\mathbf{d}^2 , \mathbf{d}^8	³ F, ³ P, ¹ G, ¹ D, ¹ S
d^3 , d^7	⁴ F, ⁴ P, ² H, ² G, ² F, ² D ₂ , ² P
$\mathbf{d^4},\mathbf{d^6}$	⁵ D, ³ H, ³ G, ³ F ₂ , ³ D, ³ P ₂ , ¹ I, ¹ G ₂ , ¹ D ₂ , ¹ S ₂
_d 5	⁶ S, ⁴ G, ⁴ D, ⁴ P, ² I, ² H, ² G ₂ , ² F ₂ , ² D ₃ , ² P, ² S

Repulsion also occurs between the terms of same spin multiplicity & gives different energy level. The total repulsion can be expressed in terms of three parameters A, B and C.

Nephelauxetic Effect/

Electron cloud expension/Nephelauxetic Parameter

- ➤It is electron repulsion found in complexes due to e-e repulsion.
- ►It is denoted by ß (Nephelauxetic parameter)
- ➤ It is expressed by
- $\triangleright \beta$ is always less than 1
- It means B complex is less than B free ion.
- It means energy gap between two terms in free ion is greater than that of its complex form.
- ➤ i.e. e-e repulsion between two electrons in free ion is greater than its complex.
- ➤ When ligand approaches to the free ion than e-e repulsion is decreased & hence nephelauxetic parameter is decreased.
- ➤ It determines covalent character in complex compound.

