练习题

- 1. 设A是5阶方阵,且r(A) = 3,则线性空间 $W = \{x \mid Ax = 0\}$ 的维数为____.
- 3. 从 R^2 的基 $\alpha_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ 到基 $\beta_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\beta_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ 过渡矩阵为

4. 在R4中, 求下述齐次线性方程组的解空间的维数和基

$$\begin{cases} 3x_1 + 2x_2 - 5x_3 + 4x_4 = 0 \\ 3x_1 - x_2 + 3x_3 - 3x_4 = 0 \\ 3x_1 + 5x_2 - 13x_3 + 11x_4 = 0 \end{cases}$$

- 5. 已知 $\alpha_1, \alpha_2, \alpha_3$ 是3维向量空间 R^3 的一组基,向量组 $\beta_1, \beta_2, \beta_3$ 满足 $\beta_1 + \beta_3 = \alpha_1 + \alpha_2 + \alpha_3$, $\beta_1 + \beta_2 = \alpha_2 + \alpha_3$, $\beta_2 + \beta_3 = \alpha_1 + \alpha_3$,
 - 证明: β₁,β₂,β₃是一组基;
 - (2) 求由β₁,β₂,β₃到α₁,α₂,α₃的过渡矩阵;
 - (3) 求向量 $\alpha = \alpha_1 + 2\alpha_2 \alpha_3$ 关于基 $\beta_1, \beta_2, \beta_3$ 的坐标.

- 6. 已知 3阶矩阵 A有 3维向量 x满足 $A^3x = 3Ax A^2x$,且向量组 x, Ax, A^2x 线性无关 .记 $P = (x, Ax, A^2x)$, 求 3阶矩阵 B, 使 AP = PB.
- 7. 设 $k_1\alpha + k_2\beta + k_3\gamma = 0$, 且 $k_1k_3 \neq 0$, 证明: $L(\alpha,\beta) = L(\beta,\gamma)$.