AE 102: Data Analysis and Interpretation

January - April 2016 Department of Aerospace Engineering

Sample

- $X_1, X_2, ... X_n$ are independent
- \bullet with common distribution F
- Parametric inference: assume distribution F but without specifics
- Non-parametric inference

Sample mean

- Consider a population with given mean and variance
- Take a sample of *n* elements

$$\bar{X} = \frac{X_1 + \dots + X_n}{n}$$

- What is $E[\bar{X}]$?
- What is $Var(\bar{X})$?

The Central Limit Theorem

- If $X_1, X_2, ... X_n$ are iid each with μ and σ
- then for n large,
- $\sum_i X_i$ is approximately normal with mean $n\mu$ and variance $n\sigma^2$
- So how large should *n* be?

Sample Variance

$$S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}{n-1}$$

• Compute $E[S^2]$

Sample Variance

Using:

•
$$\sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} x_i^2 - n\bar{x}^2$$

•
$$E[X^2] = Var(X) + E[X]^2$$

• Show that:
$$E[S^2] = \sigma^2$$

Sampling from a Normal Population

- Population is normal with μ, σ
- How are \bar{X} , S^2 distributed?

Distribution of Sample Mean

- \bar{X} is normally distributed
- $E[\bar{X}] = \mu$
- $Var[\bar{X}] = \sigma^2/n$

Joint Distribution of mean and variance

- \bar{X} and S^2 are independent
- $(n-1)S^2/\sigma^2$ is χ^2_{n-1}

$$\sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} (x_i - \mu)^2 - n(\bar{x} - \mu)^2$$

Distribution of S^2

$$\sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma}\right)^2 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{\sigma^2} - \left[\frac{\sqrt{n}(\bar{X} - \mu)}{\sigma}\right]^2$$

- LHS: χ_n^2
- RHS, second term, χ_1^2

Corollary

• Sample of *n* items from a normal population

$$\sqrt{n}\frac{(\bar{X}-\mu)}{S}\sim t_{n-1}$$

• Recall: $\sqrt{n}Z/\sqrt{\chi_n^2}$