Cohomological Milnor formula and non-acyclicity classes for constructible Etale sheaves. - Ramification theory from cohomological point of view.

Joint with Tigeng Zhao

1964.10.30, in a letter to Serve, Grothendieck first mentioned the "vanishing cycles".

Question: When $H^*(X_s, \Lambda) \longrightarrow H^*(X_7, \Lambda)$ is an isomorphism? This obstruction is controlled by the vanishing cycle groups.

For $K \in \mathcal{D}^{\bullet}_{c}(X, \Lambda)$, nearly cycle $R \Psi(K, f) = \tilde{t}^{*} R J_{*} J^{*} K$ Vanishing cycle The vanishing cycle $R\Phi(K,f)\in D^b(X_{\overline{s}},\Lambda)$ sits in the distinguished triangle $X \mid_{X_{\overline{i}}} \longrightarrow R \Psi(X,f) \longrightarrow R \Phi(X,f) \xrightarrow{+1}$

when f is proper, it gives nie to a long exact sequence $H^{i}(X_{\overline{s}}, R\overline{\Phi}(K)) \longrightarrow H^{i}(X_{\overline{s}}, K) \xrightarrow{sp} H^{i}(X_{\overline{s}}, K) \longrightarrow H^{i}(X_{\overline{s}}, R\overline{\Phi}(K))$

If P(K)=0 → sp is an isom. Lu-Zheng In general, $R\Phi(K) = 0 \iff f$ is locally acyclic (hence universally by Gabber) relatively to F.

We simply say: It is ULA over 5.

For general separated morphism $f:X \longrightarrow S$, can also define ULA. condition. We omit the details, but roughly say its pull-back to local traft is ULA.

If x => s is smooth => 1 is ULA over S constant sheaf

If f how an isolated singularity at $x \in |x| \Rightarrow \Lambda$ is not ULA at x.

In general, non-ULA points of $(\frac{X}{y}, \frac{Y}{y})$ can be regarded as "Singular points" associated to ("x F).

Singular locus — non-locally acyclicity locus. = NA locus.

Invariants associated to NA points

Conjecture on Milnor formula (1973, Deligne)

Block 's conductor formula (1987, Bloch)

X: Smooth of Jim n

Y: Smooth curve

4 E | Y

X + Smooth over Y(y)

total dibrension) Cux (Ux) U[x] E CHO(X)

Wilner NAMpers

(1) If f has isolated singularity at $x \in Xy$, then district $R \Phi(\Lambda_f)_x = \deg(\operatorname{chein} \operatorname{das})$

(2) $a_y(Rf_x \Lambda) = \chi(\chi_{\overline{\eta}}) - \chi(\chi_{\overline{g}}) + S\omega(\chi_{\eta}/\eta) \stackrel{\text{Conductor transle}}{==} C-1)^n deg(\chi_{\chi_{\overline{\eta}}}(\chi_{\chi_{\overline{\eta}}}) \cap \chi_{\overline{\eta}})$

 $S_{\omega}H^{*}(X_{\overline{\eta}},\Lambda)$ $S_{\omega}G_{\omega}(\overline{\eta}/\eta)$

T. Saito: extends these two formula to $\mathcal{F} \in D^b(X_1\Lambda)$ for smooth schemes by using characteristic cycle. CCF of \mathcal{F} .

$$x \in |x|$$
 isolated char point w.r.t SSX (the singular) $x \in |x|$ isolated char point w.r.t SSX (the singular) $x \in |x|$ isolated char point $x \in |x|$ support $x \in |x|$ $x \in |x$

Today: We propose a cohomological way to Ramifiration theory.

Notation
$$\Delta := \left(\begin{array}{c} Z \hookrightarrow X \xrightarrow{f} \\ \lambda & S \end{array} \right)$$
 $X_{X/S} = Rh \Lambda$

 $F \in \mathcal{P}(\Delta) \iff F \in \mathcal{P}(X, \Lambda)$ sit is h-ULA If is f-ULA outside Z

 $Z \sim NA$ locus of F

fan object $K_Z \in \mathbb{R}^b(X, \Lambda)$, $G_z(F) \in H_z^0(X, K_Z)$ I will introduce a class $G_z(F)$ supported on Z, which is compactible with proper push-forward and pull-backs.

When Z is small, i.e,
$$H^{\circ}(Z, K_{Z/Y}) = H^{1}(Z, K_{Z/Y}) = 0$$
, then $C_{\Delta}(\mathcal{F}) \in H^{\circ}(Z, K_{Z/S})$

$$\frac{\text{Thm}(Y-\text{Zhao})}{\text{Thm}(Y-\text{Zhao})}$$

(1)
$$S' \xrightarrow{b} S$$
, get Δ' by base change , then $b_{X}^{*} C_{X}(F) = C_{1}(F')$

For
$$Z \longrightarrow Z'$$
 $X \longrightarrow X'$ with s proper, then $S_*(C_*(Y))$
 $C_*(S_*Y)$

(3) Cohomologital Milnor formula: Take

$$\Delta = \{x\} \longrightarrow X \longrightarrow Speck$$
 smooth curve $\Delta = \{x\} \longrightarrow X \longrightarrow Speck$ with chark = P>0

Then
$$C_{\Delta}(\mathcal{F}) = - \operatorname{dimtot} R \Phi_{\bar{x}}(\mathcal{F}, f)$$

$$H^{\circ}(x, \Lambda) = \Lambda$$

(4) Cohomological conductor formula: (with chark=4>0)

If
$$X \xrightarrow{f:\text{proper}} Y$$
, $Z \subseteq f^{-1}(y)$, $y \in [Y]$. Apply (2) to
$$Z \xrightarrow{y} \{y\}$$

$$\downarrow X \xrightarrow{x} Y$$

get
$$f_* \subseteq (F) = C_{Y/Y/k}(f_*F)$$

artin conductor

VASIG-PAFE

TSWXF

finite set id curve
$$Z \longrightarrow X = X$$
 $f \in D_c(A)$, i.e, f smooth on $X Z$

Then
$$G(F) = -\sum_{x \in Z} Q_x(F) \cdot [x]$$
 in $H^{\circ}(Z, Y \neq k)$

Construction of GIF

Let me first introduce a def (transversal condition)

Consider a Cartesian diagram

$$A \xrightarrow{i} B$$

$$P \downarrow \qquad \downarrow f$$

$$W \stackrel{\mathcal{S}}{\longleftrightarrow} T$$

We define a pull-back functor $S^{\Delta}: D_c^b(B, \Lambda) \longrightarrow D_c^b(A, \Lambda)$ such that

$$i^*F \otimes r^*S' \wedge \longrightarrow i^!F \longrightarrow S'F \xrightarrow{+1}$$

$$adj +o \quad i_!(i^*F \otimes r^*S' \wedge) = F \otimes i_!r^*S' \wedge \cong F \otimes f^*S_!s' \wedge$$

$$\underline{adj} \rightarrow c$$

when $S^{\Delta}F=0 \iff S$ is S-transversal. (This is related to ULA)

We call Ky the non-acydicity class of F.

For
$$\Delta = (Z \hookrightarrow X \xrightarrow{f} Y)$$
. Assume $H^{\circ}(Z, Xz/s) = H^{\prime}(Z, Xz/s) = 0$. We expect the following formula holds:

$$C_{X/S}(S) = C_{F}(f^{*}\Omega^{I,V}_{T/S}) \sqcap C_{X/F}(S) + C_{A}(S)$$
 in $H^{0}(X, X_{X/S})$
 $F = rol. d.im of g$

- (r-zhao) If Z= φ
- · (Abbes-Saito) If f= id and S= Speek
- If S = speck and Y > a smooth curve, and if Z = f in the sets of dozent position

then
$$C_{Y_{k}}(F) = G_{k}(f^{k}S_{k}^{1,V}) \prod C_{Y_{k}}(F) + G_{k}(F)$$

$$+ C_{k}(F) = G_{k}(f^{k}S_{k}^{1,V}) \prod C_{Y_{k}}(F) + G_{k}(F)$$

$$- \sum_{x \in Z} G_{k}(f^{k}S_{k}^{1,V}) \cdot [X].$$

Ideal of the proof (May assume Y=41)

I: Artin - Solveier streat on A associated with 4

$$Z \times A' \longrightarrow X \times A' \longrightarrow Y \times A' \xrightarrow{mhti} A'$$

$$Z \times P' \longrightarrow X \times P' \longrightarrow Y \times P'$$

$$here pri + O I(ft)$$

$$Surj$$

Apply pull-back property:

$$C_{XXP}(F) \in H^{\circ}(Z_{1} R Z_{1}P) = \underset{x \in Z}{\bigoplus} \Lambda$$

$$C_{XXP}(F) = C_{XXP}(F)$$

$$C_{XXP}(F) = C_{XXP}(F)$$

$$C_{XYP}(F) = C_{XYP}(F)$$

$$C_{XYP}(F) = C_{YYP}(F)$$

$$C_{YYP}(F) = C_{YYP}(F)$$

Now we apply our - thm to confirm moj case of Saito's conjective

They oure the same in Ho(x, Xxxs).

Thm True for projective smooth (if assume resolution of singularity,)

proof prove that they all satisfies a Milnor formula and a fibration formula, then
prove by induction.