Бройни системи

Преобразуване от една бройна система в друга

Учителски екип

Обучение за ИТ кариера

https://it-kariera.mon.bg/e-learning/

https://github.com/BG-IT-Edu/School-Programming/tree/main/Courses/Applied-Programmer/Programming-Fundamentals

Съдържание

- 1. Десетична бройна система
- 2. Двоична бройна система
- 3. Шестнадесетична бройна система

Десетична бройна система

- Десетични числа (основа 10)
 - Представяни, чрез 10 цифри:

Всяка позиция представлява умножение по 10:

```
■ 401 = 4*10^2 + 0*10^1 + 1*10^0 = 400 + 1

■ 130 = 1*10^2 + 3*10^1 + 0*10^0 = 100 + 30

■ 9786 = 9*10^3 + 7*10^2 + 8*10^1 + 6*10^0 = 9*1000 + 7*100 + 8*10 + 6*1
```

Двоична бройна система

- Двоичните числа се преставят като последователност от битове
 - Най-малката единица информация 0 или 1
 - Битовете лесно се представят в електрониката

Двоична бройна система

- Двоични числа (основа 2)
 - Представя се с 2 цифри: 0 and 1
- Всяка позиция преставлява умножение по 2:

■
$$101_b$$
 = $1*2^2 + 0*2^1 + 1*2^0 = 100_b + 1_b =$
= $4+1=5$
■ 110_b = $1*2^2 + 1*2^1 + 0*2^0 = 100_b + 10_b =$
= $4+2=6$
■ 110101_b = $1*2^5 + 1*2^4 + 0*2^3 + 1*2^2 + 0*2^1 + 1*2^0 =$
= $32 + 16 + 4 + 1 = 53$

Двоична бройна система

 Умножаваме всяка цифра по основата 2 на съответния степенен показател:

Преобразуване от десетична в двоична бройна система

Делим на две и прибавяме в обратен ред остатъците:

$$500/2 = 250 (0)$$
 $250/2 = 125 (0)$
 $125/2 = 62 (1) \longrightarrow 500_d = 111110100_b$
 $62/2 = 31 (0)$
 $31/2 = 15 (1)$
 $15/2 = 7 (1)$
 $7/2 = 3 (1)$
 $3/2 = 1 (1)$
 $1/2 = 0 (1)$

Примери за двоични числа

Шестнадесетична бройна система

- Шестнадесетични числа (основа 16)
 - Представяни чрез 16 цифри:
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E и F
- В програмирането обикновено се ползва префикс 0x

```
0 \rightarrow 0 \times 0 4 \rightarrow 0 \times 4 8 \rightarrow 0 \times 8 12 \rightarrow 0 \times C

1 \rightarrow 0 \times 1 5 \rightarrow 0 \times 5 9 \rightarrow 0 \times 9 13 \rightarrow 0 \times D

2 \rightarrow 0 \times 2 6 \rightarrow 0 \times 6 10 \rightarrow 0 \times A 14 \rightarrow 0 \times E

3 \rightarrow 0 \times 3 7 \rightarrow 0 \times 7 11 \rightarrow 0 \times B 15 \rightarrow 0 \times F
```

Преобразуване на числа от шестнадесетична към десетична БС

 Умножаваме всяка цифра по основата на съответния степенен показател:

```
\blacksquare 1F4_{\text{hex}} = 1*16^2 + 15*16^1 + 4*16^0 =
         = 1*256 + 15*16 + 4*1 =
         = 500_{d}
-FF_{hex} = 15*16^1 + 15*16^0 = 240 + 15 =
         = 255_{d}
-1D_{\text{hex}} = 1*16^1 + 13*16^0 = 16 + 13 =
        = 29_{d}
```


Преобразуване на числа от десетична към шестнадесетична БС

Делим на 16 и прибавяме остатъците в обратен ред

Преобразуване на числа от шестнадесетична в двоична БС

- Лесно преобразуване на двоично число в шестнадесетично
 - Всяка шестнадесетична цифра отговаря на 4 двоични цифри:
 - Работи двупосочно

0x0 =	0000	8x0	=	1000
0x1 =	0001	0x9	=	1001
0x2 =	0010	Ax ₀		1010
0x3 =	0011	0xB	=	1011
0x4 =	0100	0xC	=	1100
0x5 =	0101	0xD	=	1101
0x6 =	0110	0xE	=	1110
0x7 =	0111	0xF		1111

Обобщение

- Бройни системи
 - Двоична, десетична, шестнадесетична
 - Числата се използват за броене, за количествена мярка и имат различен запис в различните позиционни бройни системи
 - Имат един и същи смисъл представляват един и същи брой, едно и също количество

Бройни системи

https://github.com/BG-IT-Edu/School-Programming/tree/main/Courses/Applied-Programmer/Programming-Fundamentals

Министерство на образованието и науката (МОН)

 Настоящият курс (презентации, примери, задачи, упражнения и др.) е разработен за нуждите на Национална програма "Обучение за ИТ кариера" на МОН за подготовка по професия "Приложен програмист"

 Курсът е базиран на учебно съдържание и методика, предоставени от фондация "Софтуерен университет" и се разпространява под свободен лиценз СС-ВҮ-NС-SA

