Reinforcement Learning Study Notes

Pei-Yuan Wu

July 8, 2024

- $\llbracket m,n \rrbracket$ indicates the collection of intervals between m and n. We slightly abuse notation and let [K] denote the set $\{0,1,2,...,K-1\}$ for an integer K.

Chapter 1

Discounted Markov Decision Process

1.1 Markov Decision Process Basics

In reinforcement learning, the interactions between the agent and the environment are often described by a discounted Markov Decision Process (MDP) $M = (S, A, P, r, \gamma, \mu)$, specified by:

- A state space \mathcal{S} . For mathematical convenience, we assume that \mathcal{S} is finite or countably infinite.
- An action space \mathcal{A} . For mathematical convenience, we assume that \mathcal{A} is finite. ¹
- A transition function $P: \mathcal{S} \times \mathcal{A} \to \Delta(S)$, where $\Delta(S)$ is the space of probability distributions over \mathcal{S} (i.e., the probability simplex). P(s'|s,a) is the probability of transitioning into state s' upon taking action a in state s. We use $P_{s,a}$ to denote the vector $P(\cdot|s,a)$.
- A reward function $r: \mathcal{S} \times \mathcal{A} \to [0,1]$. r(s,a) is the immediate reward associated with taking action a in state s.
- A discount factor $\gamma \in [0,1)$, which defines a horizon for the problem.
- An initial state distribution $\mu \in \Delta(S)$, which specifies how the initial state s_0 is generated.

1.1.1 The objectives, policies, and values

Policies. In a given MDP $M = (S, A, P, r, \gamma, \mu)$, the agent interacts with the environment according to the following protocol: the agent starts at some state $s_0 \sim \mu$; at each time step t = 0, 1, 2, ..., the agent takes an action $a_t \in A$, obtains the immediate reward $r_t = r(s_t, a_t)$, and observes the next state s_{t+1} sampled according to $s_{t+1} \sim P(\cdot|s_t, a_t)$. The interaction record at time t,

$$\tau_t = (s_0, a_0, r_0, s_1, \cdots, s_t)$$

is called a trajectory (up to time t), which includes the observed state at time t. We often denote $\tau = \tau_{\infty}$ unless otherwise specified.

In the most general setting, a policy specifies a decision-making strategy in which the agent chooses actions adaptively based on the history of observations; precisely, a policy is a (possibly randomized) mapping from a trajectory to an action, i.e., $\pi: \mathcal{H} \to \Delta(\mathcal{A})$ where \mathcal{H} is the set of all possible trajectories (of all lengths) and $\Delta(\mathcal{A})$ is the space of probability distributions over \mathcal{A} . A stationary

¹Some content in this manuscript may be applicable to the more general case where \mathcal{A} is countable infinite, which will be specified in blue-colored text.

policy $\pi: \mathcal{S} \to \Delta(\mathcal{A})$ specifies a decision-making strategy in which the agent chooses actions based only on the current state, i.e., $a_t \sim \pi(\cdot|s_t)$. A deterministic, stationary policy is of the form $\pi: \mathcal{S} \to \mathcal{A}$.

Values. We now define values for (general) policies. For a fixed policy and a starting state $s_0 = s$, we define the value function $V_M^{\pi}: \mathcal{S} \to \mathbb{R}$ as the discounted sum of future rewards

$$V_M^{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \middle| \pi, s_0 = s\right],$$

where expectation is with respect to the randomness of the trajectory, that is, the randomness in state transitions and the stochasticity of π . Here, since r(s,a) is bounded between 0 and 1, we have $0 \le V_M^{\pi}(s) \le 1/(1-\gamma)$.

Similarly, the action-value (or Q-value) function $Q_M^{\pi}: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ is defined as

$$Q_M^{\pi}(s, a) = \mathbb{E}\left[\left.\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t)\right| \pi, s_0 = s, a_0 = a\right],$$

and $Q_M^{\pi}(s, a)$ is also bounded by $1/(1-\gamma)$.

Goal: Given a state s, the goal of the agent is to find a policy π that maximizes the value, i.e., the optimization problem the agent seeks to solve is

$$\max_{\pi} V_M^{\pi}(s) \tag{1.1.1}$$

where the max is over all (possibly non-stationary and randomized) policies.

We drop the dependence on M and write V^{π} when it is clear from context.

1.1.2 Bellman consistency equations for stationary policies

Stationary policies satisfy the following consistency conditions:

Lemma 1.1.1. Suppose that π is a stationary policy. Then V^{π} and Q^{π} satisfy the following Bellman consistency equations: for all $s \in \mathcal{S}$, $a \in \mathcal{A}$,

$$V^{\pi}(s) = \mathbb{E}_{a \sim \pi(\cdot|s)}[Q^{\pi}(s, a)]$$
$$Q^{\pi}(s, a) = r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)}[V^{\pi}(s')].$$

Proof. Trivial.

It is helpful to view V^{π} as vector of length |S| and Q^{π} and r as vectors of length $|S| \cdot |\mathcal{A}|$. We overload notation and let P also refer to a matrix of size $(|S| \cdot |\mathcal{A}|) \times |S|$ where the entry $P_{(s,a),s'}$ is equal to P(s'|s,a). We also will define P^{π} to be the transition matrix on state-action pairs induced by a stationary policy π , specifically:

$$P^{\pi}_{(s,a),(s',a')} := P(s'|s,a)\pi(a'|s').$$

²If either |S| or $|\mathcal{A}|$ is countably infinite, a more rigorous statement is to regard V^{π} as a vector in $\ell^{\infty}(S)$, and Q^{π} and r as vectors in $\ell^{\infty}(S \times \mathcal{A})$, and $P \in \mathcal{B}(\ell^{\infty}(S), \ell^{\infty}(S \times \mathcal{A}))$ for which $[Px]_{(s,a)} = \mathbb{E}_{s' \sim P(\cdot|s,a)}[[x]_{s'}]$.

In particular, for deterministic policies we have

$$P_{(s,a),(s',a')}^{\pi} = \begin{cases} P(s'|s,a) & \text{if } a' = \pi(s') \\ 0 & \text{if } a' \neq \pi(s') \end{cases}$$

With this notation, it is straightforward to verify:

$$Q^{\pi} = r + \gamma P V^{\pi}$$
$$Q^{\pi} = r + \gamma P^{\pi} Q^{\pi}.$$

Definition 1.1.2. The Bellman operator for a policy π is denoted as \mathbb{B}^{π} : $\ell^{\infty}(\mathcal{S} \times \mathcal{A}) \to \ell^{\infty}(\mathcal{S} \times \mathcal{A})$, $\mathbb{B}^{\pi} O := r + \gamma P^{\pi} O$.

Corollary 1.1.3. We have that

$$Q^{\pi} = (I - \gamma P^{\pi})^{-1} r = \lim_{n \to \infty} \sum_{k=0}^{n} \gamma^{k} (P^{\pi})^{k} r$$
 (1.1.2)

where I is the identity matrix.

Proof. Note that $P^{\pi} \in \mathcal{B}(X)$ for which $X = \ell^{\infty}(\mathcal{S} \times \mathcal{A})$ is a Banach space, and that $||P^{\pi}|| \leq 1$. Define $\Lambda_n = \sum_{k=0}^n \gamma^k (P^{\pi})^k$ for $n \in \mathbb{N}$, then $(\Lambda_n)_{n=1}^{\infty}$ is a Cauchy sequence in Banach space $\mathcal{B}(X)$, so there exists $\Lambda = \lim_{n \to \infty} \Lambda_n \in \mathcal{B}(X)$. Note that for each $x \in X$,

$$\Lambda(I - \gamma P^{\pi})x = \lim_{n \to \infty} \Lambda_n(I - \gamma P^{\pi})x = \lim_{n \to \infty} (I - \gamma^{n+1}(P^{\pi})^{n+1})x = x$$
$$(I - \gamma P^{\pi})\Lambda x = (I - \gamma P^{\pi})\lim_{n \to \infty} \Lambda_n x = \lim_{n \to \infty} (I - \gamma P^{\pi})\Lambda_n x = \lim_{n \to \infty} (I - \gamma^{n+1}(P^{\pi})^{n+1})x = x$$

Hence $(I - \gamma P^{\pi})^{-1}$ exists and equals Λ .

Corollary 1.1.4. We have that

$$[(1-\gamma)(I-\gamma P^{\pi})^{-1}]_{(s,a),(s',a')} = (1-\gamma)\sum_{k=0}^{\infty} \gamma^k \mathbb{P}[s_k = s', a_k = a' | \pi, s_0 = s, a_0 = a]$$

so we can view the (s, a)-th row of this matrix as an induced distribution over states and actions when following π after starting with $s_0 = s$ and $a_0 = a$.

Proof. Following the discussion in Corollary.1.1.3, define $e_{(s',a')} \in X$ and $e_{(s,a)}^* \in X^*$ as

$$e_{(s',a')}(\hat{s},\hat{a}) = \begin{cases} 1 & \text{if } \hat{s} = s', \hat{a} = a' \\ 0 & \text{otherwise} \end{cases}, \quad e^*_{(s,a)} : x \mapsto [x]_{(s,a)}$$

The result then follows by

$$[(I - \gamma P^{\pi})^{-1}]_{(s,a),(s',a')} = \langle \Lambda e_{(s',a')}, e_{(s,a)}^* \rangle = \lim_{n \to \infty} \langle \Lambda_n e_{(s',a')}, e_{(s,a)}^* \rangle = \lim_{n \to \infty} \sum_{k=0}^n \gamma^k \langle (P^{\pi})^k e_{(s',a')}, e_{(s,a)}^* \rangle$$
$$= \lim_{n \to \infty} \sum_{k=0}^n \gamma^k \mathbb{P}[s_k = s', a_k = a' | \pi, s_0 = s, a_0 = a].$$

1.1.3 Bellman optimality equations

A remarkable and convenient property of MDPs is that there exists a stationary and deterministic policy that simultaneously maximizes $V^{\pi}(s)$ for all $s \in \mathcal{S}$. This is formalized in the following theorem:

Theorem 1.1.5. Let Π be the set of all non-stationary and randomized policies. Define:

$$V^*(s) := \sup_{\pi \in \Pi} V^{\pi}(s)$$
$$Q^*(s, a) := \sup_{\pi \in \Pi} Q^{\pi}(s, a)$$

which is finite since $V^{\pi}(s)$ and $Q^{\pi}(s,a)$ are bounded between 0 and $1/(1-\gamma)$.

There exists a stationary and deterministic policy π such that for all $s \in \mathcal{S}$ and $a \in \mathcal{A}$,

$$V^{\pi}(s) = V^*(s)$$
$$Q^{\pi}(s, a) = Q^*(s, a).$$

We refer to such a π as an optimal policy.

Proof. First, let us show that conditioned on $(s_0, a_0, r_0, s_1) = (s, a, r, s')$, the maximum future discounted value, from time 1 onwards, is not a function of s, a, r. Specifically,

$$\sup_{\pi \in \Pi} \mathbb{E} \left[\sum_{t=1}^{\infty} \gamma^t r(s_t, a_t) \middle| \pi, (s_0, a_0, r_0, s_1) = (s, a, r, s') \right] = \gamma V^*(s')$$

For any policy π , define an "offset" policy $\pi_{(s,a,r)}$, which is the policy that chooses actions on a trajectory τ according to the same distribution that π chooses actions on the trajectory (s,a,r,τ) . By the Markov property, we have that

$$\mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \middle| \pi, (s_{0}, a_{0}, r_{0}, s_{1}) = (s, a, r, s')\right] = \gamma \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \middle| \pi_{(s, a, r)}, s_{0} = s'\right] = \gamma V^{\pi_{(s, a, r)}}(s').$$

Hence, due to $\{\pi_{(s,a,r)}: \pi \in \Pi\} = \Pi$, we have

$$\sup_{\pi \in \Pi} \mathbb{E} \left[\sum_{t=1}^{\infty} \gamma^t r(s_t, a_t) \middle| \pi, (s_0, a_0, r_0, s_1) = (s, a, r, s') \right] = \gamma \sup_{\pi \in \Pi} V^{\pi(s, a, r)}(s') = \gamma \sup_{\pi \in \Pi} V^{\pi}(s') = \gamma V^*(s')$$

as desired. We now show the deterministic and stationary policy

$$\pi^*(s) \in \operatorname*{arg\,max}_{a \in \mathcal{A}} \left(r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} [V^*(s')] \right) \tag{1.1.3}$$

is an optimal strategy. To see this, note that

$$\begin{split} V^*(s_0) &= \sup_{\pi \in \Pi} \mathbb{E} \left[\left. r(s_0, a_0) + \sum_{t=1}^{\infty} \gamma^t r(s_t, a_t) \right| \pi \right] \\ &= \sup_{\pi \in \Pi} \mathbb{E} \left[\left. r(s_0, a_0) + \mathbb{E} \left[\sum_{t=1}^{\infty} \gamma^t r(s_t, a_t) \right| \pi, (s_0, a_0, r_0, s_1) \right] \right| \pi \right] \\ &\leq \sup_{\pi \in \Pi} \mathbb{E} \left[\left. r(s_0, a_0) + \sup_{\pi' \in \Pi} \mathbb{E} \left[\sum_{t=1}^{\infty} \gamma^t r(s_t, a_t) \right| \pi', (s_0, a_0, r_0, s_1) \right] \right| \pi \right] \\ &= \sup_{\pi \in \Pi} \mathbb{E} \left[\left. r(s_0, a_0) + \gamma V^*(s_1) \right| \pi \right] = \mathbb{E} \left[\left. r(s_0, a_0) + \gamma V^*(s_1) \right| \pi^* \right] \end{split}$$

where the last equality follows from the definition of π^* . Now, by recursion,

$$V^*(s_0) \le \mathbb{E}\left[r(s_0, a_0) + \gamma V^*(s_1) | \pi^*\right] \le \mathbb{E}\left[r(s_0, a_0) + \gamma r(s_1, a_1) + \gamma^2 V^*(s_2) | \pi^*\right] \le \dots \le V^{\pi^*}(s_0)$$

where the last inequality follows by applying the dominated convergence theorem to the following fact

$$\lim_{n \to \infty} \sum_{t=0}^{T-1} \gamma^t r(s_t, a_t) + \gamma^T V^*(s_T) = \sum_{t=0}^{\infty} \gamma^t r(s_t, a_t).$$

Since $V^{\pi^*}(s) \leq \sup_{\pi \in \Pi} V^{\pi}(s) = V^*(s)$, we have that $V^{\pi^*} = V^*$ as desired. Analogously, note that

$$Q^{*}(s_{0}, a_{0}) = \sup_{\pi \in \Pi} \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \middle| \pi, (s_{0}, a_{0}) \right]$$

$$= r(s_{0}, a_{0}) + \sup_{\pi \in \Pi} \mathbb{E} \left[\sum_{t=1}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \middle| \pi, (s_{0}, a_{0}) \right]$$

$$= r(s_{0}, a_{0}) + \sup_{\pi \in \Pi} \mathbb{E}_{s_{1} \sim P(\cdot | s_{0}, a_{0})} \left[\mathbb{E} \left[\sum_{t=1}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \middle| \pi, (s_{0}, a_{0}, r_{0}, s_{1}) \right] \right]$$

$$\leq r(s_{0}, a_{0}) + \mathbb{E}_{s_{1} \sim P(\cdot | s_{0}, a_{0})} \left[\sup_{\pi \in \Pi} \mathbb{E} \left[\sum_{t=1}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \middle| \pi, (s_{0}, a_{0}, r_{0}, s_{1}) \right] \right]$$

$$= r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s_{1} \sim P(\cdot | s_{0}, a_{0})} \left[V^{*}(s_{1}) \right] = r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s_{1} \sim P(\cdot | s_{0}, a_{0})} \left[V^{*}(s_{1}) \right] = r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s_{1} \sim P(\cdot | s_{0}, a_{0})} \left[V^{*}(s_{1}) \right] = Q^{\pi^{*}}(s_{0}, a_{0}).$$

Since $Q^{\pi^*}(s,a) \leq \sup_{\pi \in \Pi} Q^{\pi}(s,a) = Q^*(s,a)$, we have that $Q^{\pi^*} = Q^*$ as desired.

Let us say a vector $Q \in \ell^{\infty}(\mathcal{S} \times \mathcal{A})$ satisfies the Bellman optimality equations if

$$Q(s, a) = r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} \left[\max_{a' \in \mathcal{A}} Q(s', a') \right].$$

This shows that we may restrict ourselves to using stationary and deterministic policies without any loss in performance. Theorem.1.1.8, also due to [Bellman, 1956], gives a precise characterization of the optimal value function.

Definition 1.1.6. The Bellman optimality operator $\mathbb{T}: \ell^{\infty}(\mathcal{S} \times \mathcal{A}) \to \ell^{\infty}(\mathcal{S} \times \mathcal{A})$ is defined as

$$\mathbb{T}Q := r + \gamma PV_Q \quad where \quad V_Q(s) := \max_{a \in \mathcal{A}} Q(s, a).$$

This allows us to rewrite the Bellman optimality equation in the concise form $Q = \mathbb{T}Q$, namely Q is a fixed point of the operator \mathbb{T} .

Notation 1.1.7. We denote π_Q as the greedy policy with respect to a vector $Q \in \ell^{\infty}(\mathcal{S} \times \mathcal{A})$, i.e.,

$$\pi_Q(s) := \underset{a \in \mathcal{A}}{\operatorname{arg\,max}} Q(s, a)$$

where ties are broken in some arbitrary (and deterministic) manner.

Theorem 1.1.8 (Bellman Optimality Equations). For any $Q \in \ell^{\infty}(\mathcal{S} \times \mathcal{A})$, we have that $Q = Q^*$ iff Q satisfies the Bellman optimality equations. Furthermore, the stationary and deterministic policy π_{Q^*} is an optimal policy.

Proof. We first show sufficiency, i.e., that Q^* (the state-action value of an optimal policy) satisfies $Q^* = \mathbb{T}Q^*$. Let π^* be a stationary and deterministic policy defined by (1.1.3). It follows by Theorem.1.1.5 that π^* is optimal, so

$$Q^*(s, a) = Q^{\pi^*}(s, a) = r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)}[V^{\pi^*}(s')] = r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)}[V^*(s')]$$

Hence $\pi^*(s) \in \arg\max_{a \in \mathcal{A}} Q^*(s, a)$. This leads to

$$V^*(s) = V^{\pi^*}(s) = Q^{\pi^*}(s, \pi^*(s)) = Q^*(s, \pi^*(s)) = \max_{a \in A} Q^*(s, a)$$

Combining the previous two equations yields $Q^* = \mathbb{T}Q^*$ and proves sufficiency.

For the converse, suppose $Q = \mathbb{T}Q$ for some $Q \in \ell^{\infty}(\mathcal{S} \times \mathcal{A})$. Let $\pi = \pi_Q$, since $Q = r + \gamma P^{\pi}Q$, so

$$Q = (I - \gamma P^{\pi})^{-1} r = Q^{\pi}$$

For any other deterministic and stationary policy π' :

$$Q - Q^{\pi'} = Q^{\pi} - Q^{\pi'} = Q^{\pi} - (I - \gamma P^{\pi'})^{-1} r = (I - \gamma P^{\pi'})^{-1} ((I - \gamma P^{\pi'}) - (I - \gamma P^{\pi})) Q^{\pi}$$
$$= \gamma (I - \gamma P^{\pi'})^{-1} (P^{\pi} - P^{\pi'}) Q^{\pi}.$$

Recall that $(I - \gamma P^{\pi'})^{-1}$ is a matrix with all non-negative entries (cf. Corollary.1.1.4), so it suffices to show $[(P^{\pi} - P^{\pi'})Q^{\pi}]_{(s,a)} \ge 0$, which follows by

$$[(P^{\pi} - P^{\pi'})Q^{\pi}]_{(s,a)} = \mathbb{E}_{s' \sim P(\cdot | s,a)}[Q^{\pi}(s', \pi(s')) - Q^{\pi}(s', \pi'(s'))] \ge 0$$

where the last step uses that π is the greedy policy with respect to $Q = Q^{\pi}$. Thus we have that $Q \geq Q^{\pi'}$ for all deterministic and stationary policy π' , which shows $Q = Q^*$ following Theorem.1.1.5. This completes the proof.

1.1.4 Adventages and The Performance Difference Lemma

Throughout, we will overload notation where, for a distribution μ over \mathcal{S} , we write:

$$V^{\pi}(\mu) = \mathbb{E}_{s \sim \mu}[V^{\pi}(s)].$$

The adventage $A^{\pi}(s, a)$ of a policy π is defined as

$$A^{\pi}(s, a) := Q^{\pi}(s, a) - V^{\pi}(s).$$

Note that

$$A^*(s,a) := A^{\pi^*}(s,a) \le 0$$

for all state-action pairs.

Define the discounted state visitation distribution $d_{s_0}^{\pi}$ as:

$$d_{s_0}^{\pi}(s) = (1 - \gamma) \sum_{t=0}^{\infty} \gamma^t \mathbb{P}(s_t = s | \pi, s_0)$$

where $\mathbb{P}(s_t = s | \pi, s_0)$ is the state visitation probability, under π starting at state s_0 . We also write

$$d^{\pi}_{\mu}(s) = \mathbb{E}_{s_0 \sim \mu}[d^{\pi}_{s_0}(s)]$$

for a distribution μ over S.

Lemma 1.1.9 (The performance difference lemma). For all stationary policies π , π' and distributions μ over S,

$$V^{\pi}(\mu) - V^{\pi'}(\mu) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^{\pi}_{\mu}} \mathbb{E}_{a \sim \pi(\cdot|s)} [A^{\pi'}(s, a)]$$

Proof. Let $\mathbb{P}(\tau|\pi, s_0)$ denote the probability of observing a trajectory τ when starting in state s_0 and following the policy π . Then

$$V^{\pi}(s_{0}) - V^{\pi'}(s_{0}) = \mathbb{E}_{\tau \sim \mathbb{P}(\cdot | \pi, s_{0})} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \right] - V^{\pi'}(s_{0})$$

$$= \mathbb{E}_{\tau \sim \mathbb{P}(\cdot | \pi, s_{0})} \left[\sum_{t=0}^{\infty} \gamma^{t} \left(r(s_{t}, a_{t}) + \gamma V^{\pi'}(s_{t+1}) - V^{\pi'}(s_{t}) \right) \right]$$

$$= \mathbb{E}_{\tau \sim \mathbb{P}(\cdot | \pi, s_{0})} \left[\sum_{t=0}^{\infty} \gamma^{t} \left(Q^{\pi'}(s_{t}, a_{t}) - V^{\pi'}(s_{t}) \right) \right]$$

$$= \mathbb{E}_{\tau \sim \mathbb{P}(\cdot | \pi, s_{0})} \left[\sum_{t=0}^{\infty} \gamma^{t} A^{\pi'}(s_{t}, a_{t}) \right] = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_{0}}^{\pi}} \mathbb{E}_{a \sim \pi(\cdot | s)} [A^{\pi'}(s, a)].$$

1.2 Iterative Methods

Planning referes to the problem of computing π_M^* given the MDP specification $M = (\mathcal{S}, \mathcal{A}, P, r, \gamma)$. This section reviews classical planning algorithms that compute Q^* .

1.2.1 Value Iteration

A simple algorithm is to iteratively apply the fixed point mapping: stating at some Q, we iteratively apply the Bellman optimality operator \mathbb{T} :

$$Q \leftarrow \mathbb{T}Q$$
,

This algorithm is referred to as *Q-value iteration*.

Lemma 1.2.1 (contraction). For any two vectors $Q, Q' \in \ell^{\infty}(\mathcal{S} \times \mathcal{A})$,

$$\|\mathbb{T}Q - \mathbb{T}Q'\|_{\infty} \le \gamma \|Q - Q'\|_{\infty}$$

Proof. First, let us show that for all $s \in \mathcal{S}$, $|V_Q(s) - V_{Q'}(s)| \le \max_{a \in \mathcal{A}} |Q(s, a) - Q'(s, a)|$. Assume $V_Q(s) \ge V_{Q'}(s)$ (the other direction is symmetric), and let a be the greedy action for Q at s. Then

$$|V_Q(s) - V_{Q'}(s)| = Q(s, a) - \max_{a' \in \mathcal{A}} Q'(s, a') \le Q(s, a) - Q'(s, a) \le \max_{a \in \mathcal{A}} |Q(s, a) - Q'(s, a)|.$$

The claim then follows by

$$||\mathbb{T}Q - \mathbb{T}Q'||_{\infty} = \gamma ||P(V_Q - V_{Q'})||_{\infty} \le \gamma ||V_Q - V_{Q'}||_{\infty} \le \gamma ||Q - Q'||_{\infty}.$$

The following result bounds the sub-optimality of the greedy policy itself, based on the error in Q-value function.

Lemma 1.2.2 (Q-Error Amplification). For any vector $Q \in \ell^{\infty}(S \times A)$,

$$V^{\pi_Q} \ge V^* - \frac{2\|Q - Q^*\|_{\infty}}{1 - \gamma} \mathbf{1}$$

where 1 denotes the vector of all ones.

Proof. Fix state s and let $a = \pi_Q(s)$. Let $\pi^* = \pi_{Q^*}$ be an optimal policy (cf. Theorem.1.1.3), we have:

$$\begin{split} V^*(s) - V^{\pi_Q}(s) &= Q^*(s, \pi^*(s)) - Q^{\pi_Q}(s, a) = (Q^*(s, \pi^*(s)) - Q^*(s, a)) + (Q^*(s, a) - Q^{\pi_Q}(s, a)) \\ &= (Q^*(s, \pi^*(s)) - Q(s, \pi^*(s))) + (Q(s, \pi^*(s)) - Q(s, a)) + (Q(s, a) - Q^*(s, a)) \\ &+ \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} [V^*(s') - V^{\pi_Q}(s')] \\ &\leq 2\|Q - Q^*\|_{\infty} + \gamma \|V^* - V^{\pi_Q}\|_{\infty} \end{split}$$

The claim then follows by

$$||V^* - V^{\pi_Q}||_{\infty} \le 2||Q - Q^*||_{\infty} + \gamma ||V^* - V^{\pi_Q}||_{\infty}.$$

Theorem 1.2.3 (Q-value iteration convergence). Set $0 \le Q^{(0)} \le 1/(1-\gamma)$. For k = 0, 1, ..., suppose:

$$Q^{(k+1)} = \mathbb{T}Q^{(k)}$$

Let
$$\pi^{(k)} = \pi_{Q^{(k)}}$$
. For $k \ge \frac{\log \frac{2}{(1-\gamma)^2 \epsilon}}{\log(1/\gamma)} \le \frac{1}{1-\gamma} \log \frac{2}{(1-\gamma)^2 \epsilon}$,

$$V^{\pi^{(k)}} > V^* - \epsilon \mathbf{1}.$$

Proof. Since Q^* is a fixed point of \mathbb{T} , Lemma.1.2.1 gives

$$||Q^{(k)} - Q^*||_{\infty} = ||\mathbb{T}^k Q^{(0)} - \mathbb{T}^k Q^*||_{\infty} \le \gamma^k ||Q^{(0)} - Q^*||_{\infty} \le \frac{\gamma^k}{1 - \gamma}.$$

The proof is completed with our choice of k and using Lemma.1.2.2.

1.2.2 Policy Iteration

The policy iteration algorithm starts from an arbitrary policy π_0 , and repeat the following iterative procedure: for k = 0, 1, 2, ...

- 1. Policy evaluation. Compute Q^{π_k} .
- 2. Policy improvement. Update the policy:

$$\pi_{k+1} = \pi_{Q^{\pi_k}}$$

In each iteration, we compute the Q-value function of π_k , using the analytical form given in (1.1.2), and update the policy to be greedy with respect to this new Q-value. The first step is often called *policy evaluation*, and the second step is often called *policy improvement*.

Lemma 1.2.4. We have that:

- 1. $Q^{\pi_{k+1}} \ge \mathbb{T}Q^{\pi_k} \ge Q^{\pi_k}$.
- 2. $||Q^{\pi_{k+1}} Q^*||_{\infty} \le \gamma ||Q^{\pi_k} Q^*||_{\infty}$

Proof. First we show that $\mathbb{T}Q^{\pi_k} \geq Q^{\pi_k}$ as follows:

$$\mathbb{T}Q^{\pi_{k}}(s, a) = r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} \left[\max_{a' \in \mathcal{A}} Q^{\pi_{k}}(s', a') \right] \\
\geq r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} \left[\mathbb{E}_{a' \sim \pi_{k}(\cdot | s')} \left[Q^{\pi_{k}}(s', a') \right] \right] = Q^{\pi_{k}}(s, a).$$

Next let us prove that $Q^{\pi_{k+1}} \geq \mathbb{T}Q^{\pi_k}$. First, let us see that $Q^{\pi_{k+1}} \geq Q^{\pi_k}$:

$$Q^{\pi_k} = r + \gamma P^{\pi_k} Q^{\pi_k} \le r + \gamma P^{\pi_{k+1}} Q^{\pi_k} \le \dots \le \sum_{t=0}^{\infty} \gamma^t (P^{\pi_{k+1}})^t r = Q^{\pi_{k+1}},$$

where we have used that π_{k+1} is the greedy policy with respect to Q^{π_k} in the first inequality and recursion in the second inequality. Using this,

$$Q^{\pi_{k+1}} = r + \gamma P^{\pi_{k+1}} Q^{\pi_{k+1}} \ge r + \gamma P^{\pi_{k+1}} Q^{\pi_k} = r + \gamma P V_{Q^{\pi_k}} = \mathbb{T} Q^{\pi_k}$$