

VI. Országos Magyar Matematikaolimpia XXXIII. EMMV

országos szakasz, Nagybánya, 2024. február 26–29.

VII. osztály

1. feladat (10 pont). Az x, y, z szigorúan pozitív racionális számok esetén fennállnak az

$$\frac{x}{y+z} = \frac{y}{x+z} = \frac{z}{x+y}$$

egyenlőségek. Mutasd ki, hogy

a)
$$\sqrt{\frac{x+y}{x+2y+3z} + \frac{y+z}{y+2z+3x} + \frac{z+x}{z+2x+3y}} \in \mathbb{Q};$$

b)
$$\sqrt{\frac{xy}{z(2x-y)} + \frac{yz}{x(2y-z)} + \frac{zx}{y(2z-x)}} \in \mathbb{R} \setminus \mathbb{Q}.$$

Zákány Mónika, Nagybánya

Megoldás. Hivatalból

(1 pont)

a) Az $\frac{x}{y+z} = \frac{y}{x+z} = \frac{z}{x+y}$ egyenlőségekből az aránypárok származtatási tulajdonságát használva (számlálókat hozzáadjuk a nevezőkhöz) kapjuk, hogy

$$\frac{x}{x + (y + z)} = \frac{y}{y + (x + z)} = \frac{z}{z + (x + y)},$$
 (2 pont)

ahonnan adódik, hogy x = y = z.

(1 pont)

Innen

$$\sqrt{\frac{x+y}{x+2y+3z} + \frac{y+z}{y+2z+3x} + \frac{z+x}{z+2x+3y}} = \sqrt{\frac{2x}{6x} + \frac{2x}{6x} + \frac{2x}{6x}} = \sqrt{\frac{1}{3} + \frac{1}{3} + \frac{1}{3}} = \sqrt{1} = 1 \in \mathbb{Q}.$$
(2 pont)

b) Felhasználva, hogy x = y = z kapjuk:

$$\sqrt{\frac{xy}{z(2x-y)} + \frac{yz}{x(2y-z)} + \frac{zx}{y(2z-x)}} = \sqrt{\frac{x \cdot x}{x(2x-x)} + \frac{x \cdot x}{x(2x-x)} + \frac{x \cdot x}{x(2x-x)}} =$$
(2 pont)

$$= \sqrt{\frac{x^2}{x^2} + \frac{x^2}{x^2} + \frac{x^2}{x^2}} = \sqrt{1 + 1 + 1} = \sqrt{3} \in \mathbb{R} \setminus \mathbb{Q}.$$
 (2 pont)

2. feladat (10 pont). Határozd meg azokat az \overline{abc} alakú háromjegyű természetes számokat, amelyekre egyidőben teljesül, hogy $\sqrt{\overline{a,b(bc)} + \overline{b,c(ca)} + \overline{c,a(ab)}} \in \mathbb{Q}$, illetve az a számjegy a 2b és 3c számok számtani közepe! Az a, b és c számjegyek nem feltétlen különbözőek.

Papp Ilonka, Brassó Spier Tünde, Arad Megoldás. Hivatalból (1 pont)

Átalakítjuk az $\overline{a,b(bc)}$ számot:

$$\overline{a,b(bc)} = a + \frac{\overline{bbc} - b}{990} = \frac{990a + 109b + c}{990}.$$
 (1 pont)

Hasonlóan átalakítva a $\overline{b,c(ca)}$ és $\overline{c,a(ab)}$ tizedes számokat kapjuk, hogy

$$\overline{b,c(ca)} = \frac{990b + 109c + a}{990}$$
 és $\overline{c,a(ab)} = \frac{990c + 109a + b}{990}$.

Tehát a három szám összege:

$$S = \frac{1}{990} \left(990a + 109b + c + 990b + 109c + a + 990c + 109a + b \right) = \frac{1100(a+b+c)}{990} = \frac{10 \cdot (a+b+c)}{9}.$$
(2 pont)

Ekkor

$$\sqrt{S} = \sqrt{\frac{10 \cdot (a+b+c)}{9}} \in \mathbb{Q} \iff a+b+c = 10p^2,$$

ahol $p \in \mathbb{N}$. (1 pont)

Figyelembe véve, hogy a, b, c számjegyek és $a \neq 0$, következik, hogy

$$1 \le a + b + c \le 27.$$

Az $a+b+c=10p^2$ és $1 \le a+b+c \le 27$ alapján p=1, tehát

$$a+b+c=10. (1 pont)$$

Mivel a feltétel szerint $a = \frac{2b + 3c}{2}$, ezért

$$\frac{2b+3c}{2} + b + c = 10 \iff 4b + 5c = 20.$$
 (1 pont)

Észrevesszük, hogy 5c és 20 is osztható 5-tel és (4,5)=1, ezért b osztható 5-tel. Innen b=0 vagy b=5. (1 pont)

I. eset. Ha
$$b=0$$
, akkor $c=4$ és $a=6$, így $\overline{abc}=604$. (1 pont)

II. eset. Ha
$$b=5$$
, akkor $c=0$ és $a=5$, így $\overline{abc}=550$. (1 pont)

Összegezve, a keresett \overline{abc} alakú számok a 604 és 550.

3. feladat (10 pont). Egy baráti társaságban vívók, úszók és távugrók vannak. Minden személy csak egy sportot űz. Közülük egy vívó megállapítja, hogy az úszók és távugrók összesen hétszer annyian vannak, mint az ő vívó barátai. Egy úszó úgy számolja, hogy a vívók és távugrók összesen háromszor annyian vannak, mint az ő úszó barátai. Egy távugró pedig azt állítja, hogy az ő távugró barátai annyian vannak, mint a vívók és úszók összesen.

Hány vívó, hány úszó és hány távugró van a baráti társaságban?

Simon József, Csíkszereda

Megoldás. Hivatalból (1 pont)

Jelöljük a vívók számát v-vel, az úszók számát u-val és a távugrók számát pedig t-vel.

A távugrónak a távugró-barátai (t-1)-en vannak, mivel ő nem számolódik bele a saját barátai közé, így állítása szerint

$$u + v = t - 1 \iff t = u + v + 1, \tag{1 pont}$$

vagyis a távugrók eggyel többen vannak, mint az úszók és a vívók összesen.

Az úszónak az úszó-barátai (u-1)-en vannak, így állítása szerint

$$v + t = 3 \cdot (u - 1). \tag{1 pont}$$
$$3(u - 1)$$

A távugrók számát behelyettesítve kapjuk, hogy

$$v + (u + v + 1) = 3 \cdot (u - 1) \iff 2v + u + 1 = 3u - 3 \iff 2v + 1 = 2u - 3 \iff 2v + 4 = 2u \iff v + 2 = u,$$
 (2 pont)

vagyis az úszók kettővel többen vannak, mint a vívók. Innen kapjuk, hogy a távugrók száma

$$t = u + v + 1 = (v + 2) + v + 1 = 2v + 3.$$
 (1 pont)

A vívónak a vívó-barátai (v-1)-en vannak, így állítása szerint

$$u + t = 7 \cdot (v - 1). \tag{1 pont}$$

Az úszók és vívók, illetve távugrók és vívók száma közötti összefüggéseket használva a vívók számára a következő összefüggést kapjuk:

$$(v+2) + (2v+3) = 7 \cdot (v-1) \iff 3v+5 = 7v-7 \iff 12 = 4v \iff 3 = v,$$
 (1 pont)

tehát 3 vívó van.

Az úszók száma
$$u = v + 2 = 3 + 2 = 5$$
, (1 pont)

és a távugrók száma
$$t = 2v + 3 = 2 \cdot 3 + 3 = 9.$$
 (1 pont)

- **4. feladat** (10 pont). Az A csúcsában derékszögű ABC háromszög BM és CN szögfelezői az I pontban metszik egymást, $M \in AC$, $N \in AB$. Legyenek P és Q az M, illetve N pontokból a BC oldalra húzott merőlegesek talppontjai. Továbbá legyen D az MQ szakasz felezőpontja, és E az I pont BC egyenes szerinti szimmetrikusa.
- a) Igazold, hogy I az APQ háromszög köréírt körének középpontja!
- b) Igazold, hogy $ID \perp BC!$
- c) Igazold, hogy IPEQ négyzet!

Mátyás Mátyás, Sepsiszentgyörgy

Megoldás. Hivatalból (1 pont)

a) A BM félegyenes az \widehat{ABC} szögfelezője, tehát $\widehat{ABM} \equiv \widehat{CBM}$. Mivel $\widehat{BAM} = \widehat{BPM} = 90^\circ$, $\widehat{ABM} = \widehat{PBM}$, MB pedig közös oldal, következik, hogy $ABM_{\triangle} \equiv PBM_{\triangle}$ (derékszögű háromszögek átfogó-hegyesszög kongruencia esete alapján). Ezért $AM \equiv PM$ és $\widehat{AMB} \equiv \widehat{PMB}$. Az $AM \equiv PM$, $\widehat{AMI} \equiv \widehat{PMI}$, MI közös oldal állítások alapján $AMI_{\triangle} \equiv PMI_{\triangle}$ (oldal-szög-oldal kongruencia eset), tehát

$$AI \equiv PI. \tag{1}$$

(1 pont)

A CN félegyenes az \widehat{ACB} szögfelezője, azaz $\widehat{ACN} \equiv \widehat{BCN}$. A $\widehat{CAN} = \widehat{CQN} = 90^{\circ}$, $\widehat{ACN} \equiv \widehat{QCN}$, NC közös oldal állításokból (a derékszögű háromszögek átfogó-hegyesszög kongruencia esete alapján) kapjuk, hogy $ACN_{\triangle} \equiv QCN_{\triangle}$, amiből következik, hogy $AN \equiv QN$ és $\widehat{ANC} \equiv \widehat{QNC}$. Mivel $AN \equiv QN$, $\widehat{ANI} \equiv \widehat{QNI}$, NI közös oldal, ezért $ANI_{\triangle} \equiv QNI_{\triangle}$ (oldal-szög-oldal kongruencia eset alapján), tehát

$$AI \equiv QI. \tag{2}$$

(1 pont)

Az (1) és (2) összefüggésekből kapjuk, hogy

$$AI \equiv PI \equiv QI,$$

tehát I az APQ háromszög köréírt körének középpontja.

(1 pont)

b) Legyen O a PQ szakasz felezőpontja. Az IPQ egyenlő szárú háromszögben az IO oldalfelező egyben magasság is, vagyis

$$IO \perp BC$$
. (3)

(1 pont)

Az MPQ háromszögben DO középvonal, ezért $DO \parallel MP$, de mivel $MP \perp BC$, következik, hogy

$$DO \perp BC$$
 (4)

(1 **pont**)

A (3) és (4) összefüggésekből következik, hogy I, D, O pontok kollineárisak és $ID \perp BC$. (1 pont)

c) Tudva, hogy E az I pont BC egyenes szerinti szimmetrikusa, és O az I pontból a BC egyenesre húzott merőleges talppontja, kapjuk, hogy $IE \perp BC$, $O \in IE$, $IO \equiv EO$. Az IPEQ négyszög átlói felezik egymást és merőlegesek egymásra, tehát IPEQ rombusz. (1 pont)

Az ABC háromszögben AI szögfelező, vagyis $\widehat{IAN}=\frac{\widehat{BAC}}{2}=45^\circ$. Az ANI és QNI háromszögek kongruenciájából kapjuk, hogy $\widehat{IAN}\equiv \widehat{IQN}$, ezért $\widehat{IQN}=45^\circ$. De

$$\widehat{PQI} = \widehat{PQN} - \widehat{IQN} = 90^{\circ} - 45^{\circ} = 45^{\circ}.$$

Az
$$IPQ$$
 egyenlő szárú háromszögben $\widehat{PIQ} = 180^{\circ} - 2\widehat{PQI} = 90^{\circ}$. (1 pont)

Az
$$IPEQ$$
 rombuszban $\widehat{PIQ} = 90^{\circ}$, tehát $IPEQ$ négyzet. (1 pont)

5/5