

Katedra za računarsku tehniku i informatiku

PERFORMANSE RAČUNARSKIH SISTEMA

Školska 2008/2009 godina

Nastavnici

- Predavanja: prof. Jelica Protić,
 - 2 časa nedeljno,
 - e-pošta: jeca@sezampro.yu
- Vežbe: Đorđe Jevđić,
 - 2 časa nedeljno
 - e-pošta: jevdjic@etf.rs
 - konsultacije po dogovoru
 - stranica predmeta: http://rti.etf.rs/rti/prs

Logistika

- - Ispit: pismeni + domaći zadatak
 - Broj poena se formira po formuli:

$$P=max\{ I, 0.7*I+0.3*D\}$$

gde je I – broj poena osvojen na ispitu

D – broj poena osvojen na domaćem zadatku

Skala ocena

Literatura

- Materijali sa predavanja i vežbi
- Jain Raj The Art of Computer Systems Performance Analysis Techniques for Experimental Design, Measurements Simulation and Modeling

Sadržaj

- - 1. Uvod
 - 2. Performanse procesora
 - 3. Performanse operativne memorije (iskorišćenje)
 - 4. Performanse operativne memorije (brzina)
 - Performanse diskova
 - 6. Optičko memorisanje
 - 7. Performanse magnetnih traka
 - 8. Modelovanje performansi računarskih sistema

Sadržaj

- - 9. Poasonov proces (Simeon Denis Poisson, 1781-1840)
 - 10. Neeksponencijalni modeli (SMO sa neeksponencijalnim raspodelama)
 - 11. Paralelni serveri teorijska razmatranja i modeli
 - 12. Zatvorene mreže (definicija i analiza performansi)
 - 13. Otvorene mreže SMO
 - 14. Interaktivni sistemi
 - Operaciona analiza Operacioni modeli računarskih sistema

Cilj izučavanja arhitekture računara i operativnih sistema jeste poboljšanje performansi računarskih sistema. Računar modeliramo kao dinamički sistem

Sistema

- 1. Performanse komponenti:
- procesora
- memorijskih organizacija
- ulazno-izlaznih uređaja
 - o diskova, traka
 - o **štampača**
 - o monitora...

- 2. Performanse sistema osnovne teorije:
- teorija redova čekanja
- teorija sistema masovnog opsluživanja
- analiza performansi paketne obrade
- analiza interaktivnih sistema
- 3. Metodologije analize performansi:
- analitički modeli
- simulacioni modeli
- merenja

Oblasti primene

	Oblasti primi	5110	=		
Projektovanje	Izbor	Upravljanje radom			
Računarskih	Računarskih	Računarskih			
Sistema	Sistema	Sistema			
***	*	**	Stohastički modeli	Analitičke	Т
**	*	***	Operacioni modeli	tehnike	е
**	*	***	Specijalizovani računarski simulatori	Simulacione	h
**	*	**	Simulatori opšte namene	tehnike	n
-	**	***	Prirodna opterećenja	Merenja i merne	i
-	***	**	Veštačka opterećenja	tehnike	k
Predviđanje	Poređenje	Poboljšanje			е
performansi	performansi	performansi			

Problemi

- - Najpre se vrši modelovanje, pa onda simulacija
 - Stohastički modeli važe na beskonačnom vremenskom intervalu (slučajni brojevi, raspodele).
 - Operacioni modeli su razvijeni specijalno za računarske sisteme. Važe u konačnom intervalu vremena, uz blaže uslove nego kod stohastičkih modela (učestanost, proporcije,...).
 - Simulatori opšte namene GPSS (General Purpose Simulation Systems).
 - Veštačka opterećenja zasnovano na GSB (generator slučajnih brojeva).
 - U principu se toleriše do 5% greške, mada se dozvoljava i do 40% za specijalne primene.

2. Performanse Procesora

Performanse zavise od arhitekture procesora.

Osnovni elementi arhitekture:

1. Registri

- 1.1 univerzalni (opšte namene)
- 1.2 registri podataka
- 1.3 registri za pokazivače na podatke
- 1.4 indeksni registri

- - -

2. Performanse Procesora

2. Mašinske instrukcije

- 2.1 broj i tip adresa po instrukciji
- 2.2 načini adresiranja
- 2.3 skup mašinskih instrukcija
- 2.4 fizički format instrukcija

2. Performanse Procesora

3. Numerička tačnost predstavljanja brojeva (celi, realni, ...)

4. Brzina procesora

- Na brzinu sa aspekta korisnika utiče mnogo faktora
- Merilo: vreme trajanja prosečne instrukcije
- Kakve su te instrukcije, šta je moguće uraditi jednom instrukcijom - > važno je sa aspekta problema koji programer treba da reši

2.1 Dužina programa u zavisnosti od adresnosti

- Posmatramo m-adresni procesor
- Lk(m)- dužina programa izražena u broju mašinskih instrukcija.
- Računanje izraza sa k argumenata zavisno od broja memorijskih adresa
- 0-adresni radi sa 2 operanda na vrhu steka i rezultat ostane na vrhu steka
- 1-adresni ostavlja rezultat u akumulatoru
- 2-adresni ostavlja rezultat na mestu jednog operanda (MM) ili u akumulatoru (MMA)
- 3-adresni direktno radimo sa 3 memorijske lokacije

2.2 Merenje frekvencije pojave pojedinih inst.

Problem broja adresa po instrukciji:

		Formati instrukcija			
m	0	0	R	RR	RRR
	1	M(A)	MR(A)	MRR	1
	2	MM(A)	MMR	-	-
	3	MMM	-	-	-
		0	1	2	3
		r			

M-memorija, R-registar, A-Acc akumulator, sa zagradom opcija npr. M i M(A)

m - broj memorijskih adresa, r-broj registarskih operanada

0 - nema ni *m* ni *r*, R-jedna registarska adresa, RR-dve registarske adrese...

- M-jedna memorijska adresa, A-akumulator, MR-jedna memorijska adresa i jedna registarski operand
- MRR-jedna memorijska i dve registarske adrese
- MMM-tri memorijske adrese

2.2 Merenje frekvencije pojave pojedinih inst.

Statička frekvencija pojava naredbe – koliko se puta pojavljuje određena naredba u kodu (prosto prebrojavanje instrukcija u kodu)

Dinamička frekvencija pojava naredbe - ono sto se stvarno izvrši (to se meri)

Posmatraćemo prvo statičku frekvenciju tipičnog programa – smatramo da tipičan program ima mnogo naredbi dodele vrednosti

2.2 Merenje frekvencije pojave pojedinih inst.

- Opšti oblik naredbe dodele vrednosti:
 M_k:=M_{k-1}* M_{k-2} * ... * M₂ * M₁ opšti oblik aritmetičkog izraza (* je neka operacija)
- U programima ima 67% dodela vrednosti kod dinamičke frekvencije -Knuth 1971., kod statičkih frekvencija ima 41%-51% -Knuth 1975.(FORTRAN)
- Merili razni naučnici: Robinson, Torsun, Al Jarral, Elshoff, Kuck, Strehendt...
- Uopšte: 35%-50% svih instrukcija u programu predstavljaju dodele vrednosti.

2.2 Robinson & Torsun - raspodela

k(broj operanada)	Pk
2	0.43
3	0.3
4	0.12
5+ (5 ili vise)	0.15
	2 3 4

$$P5=P6=P7=0.05 \rightarrow P5^{+}=P5+P6+P7=0.15$$

Prosečna (očekivana) dužina instrukcije dodele vrednosti:

$$k = 2 \cdot P2 + 3 \cdot P3 + 4 \cdot P4 + 5 \cdot P5 + 6 \cdot P6 + 7 \cdot P7 = 3.14$$

2.1 Dužina programa u zavisnosti od adresnosti

- broj mašinskih naredbi za izračunavanje izraza M_k
- $\mathbf{M_k} = \mathbf{M_1}^* \mathbf{M_2}^* \mathbf{M_3} \dots ^* \mathbf{M_{k-1}}$ u zavisnosti od adresnosti:

m=0 (format 0)	m=1 (format MA)	m=2 (format MMA)	m=3 (format MMM)
PUSH M1	A=M1	A=M1*M2	T=M1*M2
PUSH M2	A=A*M2	A=A*M3	T=T*M3
*	A=A*M3	A=A*M4	T=T*M4
PUSH M3			
*	A=A*Mk-1	A=A*Mk-1	T=T*Mk-2
POP Mk	Mk=A{store}	Mk=A {store}	Mk=T*Mk-1
2k-2	k	k-1	k-2

←Ukupan broj instrukcija Lk(m)

2.1 Dužina programa u zavisnosti od adresnosti

Matematičko očekivanje – L(m)=Pk*Lk sr.

7
$$L(m) = \sum Pk \cdot Lk(m) \qquad L(m) \ 4.28 \quad 3.14 \quad 2.14 \quad 1.57$$

$$k = 2 \qquad \qquad L(0) \quad L(1) \quad L(2) \quad L(3)$$

$$\begin{array}{ll} L(1) = k \approx \pi & L(0) = 1.36 \cdot k \approx (e/2)^* \pi \\ L(2) = 0.68 \, \cdot \, k \approx (e/4)^* \pi & L(3) = 0.5 \, \cdot k \approx \pi/2 \end{array}$$

- Hoćemo da napišemo program koji dinamički prati rada procesora. Legenda:
- I instrukcija
- TIR trap interrupt routine
- Ukoliko je T=1 (trap bit), posle svake instrukcije se skače na TIR
- NA način adresiranja
- KOP kod operacije
- TI trap interrupt interni procesorski prekid

- Ako postoji konačan broj tipova naredbi i načina adresiranja:
- $\mathbf{C_i}$ kodovi (svih) operacija: $\mathbf{C_1}$, $\mathbf{C_2}$, ..., $\mathbf{C_k}$
- A_k načini adresiranja: A₁, A₂, ..., A_k
- f_{ij} broj (frekvencija) pojava kombinacija (Ci,Aj)
- t_{ij} vreme izvršavanja instrukcija za svaku kombinaciju (Ci,Aj)
- T_{run} ukupno vreme izvršavanja nekog programa
- F − ukupna broj izvrsenih instrukcija

2.3 Brzina procesora i vreme smese instrukcija T_{mix}

$$T_{\text{run}} = \sum_{i=1}^{n} \sum_{j=1}^{k} f_{ij} \cdot t_{ij}$$

Vreme izvršavanja	T_{run}
Ukupan broj instrukcija	F

■ T_{mix} - vreme smese instrukcija (*instruction mix time*):

$$T_{mix} = T_{run} / F = \sum_{i=1}^{n} \sum_{j=1}^{k} p_{ij} \cdot t_{ij}$$

$$p_{ij} = f_{ij} / F$$

- Procesor se smatra bržim što je kraće vreme smese.
- Brzina procesora:

$$V_p = 1/T_{mix} = F/T_{run}$$
 [instruction per sec]
(izražava se u broju instrukcija u jedinici vremena)= 10 $^3/T_{mix}$ [KOPS]= = 10 $^6/T_{mix}$ [MIPS]

KOPS – kilo operacija u sekundi, MIPS – million instr. per second

$$V_p = 1 / (\sum_{i=1}^n \sum_{j=1}^k p_{ij} \cdot t_{ij})$$

2.4 Kritike - 'backronym'

- Meaningless Indication of Processor Speed
- Meaningless Information on Performanse for Salespeople
- Meaningless Information about processor Speed
- KIPS ili KOPS (10³)
- MIPS (10⁶)
- VAX 11/780 je bio 1 MIPS mašina
- GIPS giga instructions per second (10⁹)
- kMIPS negde se koristi kilo mega
- zMIPS –koristio IBM za servere zSeries

2.3 Brzina procesora i vreme smese instrukcija T_{mix}

MIPS pojedinih procesora - Intel			
godina	procesor	frekvencija	MIPS
1978	8086	5 MHz	0.33
1982	80286	8 MHz	1.2
1988	80386DX	25 MHz	8.5
1999	Pentium III	500 MHz	1,354
2003	Pentium 4	3.2 GHz	9,726
	Extreme Edition		
2006	Intel Core 2 Extreme	3.33 GHz	57,063
	QX6700		

 MIPS-ovi mogu da se porede kod procesora sa istim n i k, istom adresnošću i pod uslovom da se izvršava isti merni program