Introducción a los algoritmos

Informática I Centro Regional Universitario Córdoba UNDEF

6 de abril de 2021

¿Qué son los algoritmos?

Según la RAE

Conjunto ordenado y finito de operaciones que permite hallar la solución a un problema.

Según Deitel

Es el procedimiento para resolver un problema en términos de las acciones a ejecutar y el órden en el cual se llevan a cabo dichas acciones.

¿Cómo está compuesto un algoritmo?

- Entrada
- Procesamiento
- Salida

Preparar una taza de té

• Entrada: agua, saquito de té, taza

Salida: té caliente

Procedimiento:

Inicio del algoritmo

Poner el agua fría dentro de la pava

Preparar una taza de té

- Entrada: agua, saquito de té, taza
- Salida: té caliente
- Procedimiento:

- Poner el agua fría dentro de la pava
- Encender el fuego

Preparar una taza de té

- Entrada: agua, saquito de té, taza
- Salida: té caliente
- Procedimiento:

- Poner el agua fría dentro de la pava
- Encender el fuego
- Poner la pava sobre el fuego

Preparar una taza de té

- Entrada: agua, saquito de té, taza
- Salida: té caliente
- Procedimiento:

- Poner el agua fría dentro de la pava
- Encender el fuego
- Poner la pava sobre el fuego
- Esperar que el agua se caliente

Preparar una taza de té

- Entrada: agua, saquito de té, taza
- Salida: té caliente
- Procedimiento:

- Poner el agua fría dentro de la pava
- Encender el fuego
- Poner la pava sobre el fuego
- Esperar que el agua se caliente
- Poner el saquito de té en la taza

Preparar una taza de té

- Entrada: agua, saquito de té, taza
- Salida: té caliente
- Procedimiento:

- Poner el agua fría dentro de la pava
- Encender el fuego
- Poner la pava sobre el fuego
- Esperar que el agua se caliente
- Poner el saquito de té en la taza
- Agregar el agua caliente

Preparar una taza de té

- Entrada: agua, saquito de té, taza
- Salida: té caliente
- Procedimiento:

- Poner el agua fría dentro de la pava
- Encender el fuego
- Poner la pava sobre el fuego
- Esperar que el agua se caliente
- Poner el saquito de té en la taza
- Agregar el agua caliente
- Apagar el fuego

Preparar una taza de té

- Entrada: agua, saquito de té, taza
- Salida: té caliente
- Procedimiento:

- Poner el agua fría dentro de la pava
- Encender el fuego
- Poner la pava sobre el fuego
- Esperar que el agua se caliente
- Poner el saquito de té en la taza
- Agregar el agua caliente
- Apagar el fuego
- Esperar un minuto

Preparar una taza de té

- Entrada: agua, saquito de té, taza
- Salida: té caliente
- Procedimiento:

Inicio del algoritmo

- Poner el agua fría dentro de la pava
- Encender el fuego
- Poner la pava sobre el fuego
- Esperar que el agua se caliente
- Poner el saquito de té en la taza
- Agregar el agua caliente
- Apagar el fuego
- Esperar un minuto

Fin del algoritmo

Calcular la distancia recorrida por un móvil que se movió en MRUV

$$x(t) = V_0 t + \frac{1}{2} a t^2 \tag{1}$$

- Entrada: velocidad inicial, tiempo recorrido, aceleración
- Salida: distancia recorrida
- Procedimiento:

Inicio del algoritmo

• Ingresar la velocidad inicial del movil

Calcular la distancia recorrida por un móvil que se movió en MRUV

$$x(t) = V_0 t + \frac{1}{2} a t^2 \tag{1}$$

- Entrada: velocidad inicial, tiempo recorrido, aceleración
- Salida: distancia recorrida
- Procedimiento:

- Ingresar la velocidad inicial del movil
- Ingresar el tiempo de desplazamiento

Calcular la distancia recorrida por un móvil que se movió en MRUV

$$x(t) = V_0 t + \frac{1}{2} a t^2 \tag{1}$$

- Entrada: velocidad inicial, tiempo recorrido, aceleración
- Salida: distancia recorrida
- Procedimiento:

- Ingresar la velocidad inicial del movil
- Ingresar el tiempo de desplazamiento
- Ingresar la aceleración

Calcular la distancia recorrida por un móvil que se movió en MRUV

$$x(t) = V_0 t + \frac{1}{2} a t^2 \tag{1}$$

- Entrada: velocidad inicial, tiempo recorrido, aceleración
- Salida: distancia recorrida
- Procedimiento:

- Ingresar la velocidad inicial del movil
- Ingresar el tiempo de desplazamiento
- Ingresar la aceleración
- Aplicar la fórmula 1

Calcular la distancia recorrida por un móvil que se movió en MRUV

$$x(t) = V_0 t + \frac{1}{2} a t^2 \tag{1}$$

- Entrada: velocidad inicial, tiempo recorrido, aceleración
- Salida: distancia recorrida
- Procedimiento:

- Ingresar la velocidad inicial del movil
- Ingresar el tiempo de desplazamiento
- Ingresar la aceleración
- Aplicar la fórmula 1
- Informar la distancia

Calcular la distancia recorrida por un móvil que se movió en MRUV

$$x(t) = V_0 t + \frac{1}{2} a t^2 \tag{1}$$

- Entrada: velocidad inicial, tiempo recorrido, aceleración
- Salida: distancia recorrida
- Procedimiento:

Inicio del algoritmo

- Ingresar la velocidad inicial del movil
- Ingresar el tiempo de desplazamiento
- Ingresar la aceleración
- Aplicar la fórmula 1
- Informar la distancia

Fin del algoritmo

Definición

El pseudocódigo es un lenguaje artificial e informal que ayuda a los programadores a desarrollar y probar algoritmos.

Ejemplo para calcular el volumen de una esfera

Inicio del algoritmo

• Imprimir: Ingrese el radio de la esfera

Definición

El pseudocódigo es un lenguaje artificial e informal que ayuda a los programadores a desarrollar y probar algoritmos.

Ejemplo para calcular el volumen de una esfera

- Imprimir: Ingrese el radio de la esfera
- Leer: radio

Definición

El pseudocódigo es un lenguaje artificial e informal que ayuda a los programadores a desarrollar y probar algoritmos.

Ejemplo para calcular el volumen de una esfera

- Imprimir: Ingrese el radio de la esfera
- Leer: radio
- $V_{esfera} = \frac{4}{3}\pi r^3$

Definición

El pseudocódigo es un lenguaje artificial e informal que ayuda a los programadores a desarrollar y probar algoritmos.

Ejemplo para calcular el volumen de una esfera

- Imprimir: Ingrese el radio de la esfera
- Leer: radio
- $V_{esfera} = \frac{4}{3}\pi r^3$
- Imprimir: $.^{EI}$ volumen de la esfera es v_{esfera} "

Definición

El pseudocódigo es un lenguaje artificial e informal que ayuda a los programadores a desarrollar y probar algoritmos.

Ejemplo para calcular el volumen de una esfera

Inicio del algoritmo

- Imprimir: Ingrese el radio de la esfera
- Leer: radio
- $V_{esfera} = \frac{4}{3}\pi r^3$
- Imprimir: .^{EI} volumen de la esfera es *v_{esfera}*"

Fin del algoritmo

 Es la representación gráfica de un algoritmo

Figura: Diagrama de flujo para el cálculo del volumen de una esfera

- Es la representación gráfica de un algoritmo
- Se dibujan mediante símbolos de propósito especial: rectángulos, rombos, óvalos y círculos entre otros

Figura: Diagrama de flujo para el cálculo del volumen de una esfera

- Es la representación gráfica de un algoritmo
- Se dibujan mediante símbolos de propósito especial: rectángulos, rombos, óvalos y círculos entre otros
- Estos símbolos se conectan mediante flechas llamadas líneas de flujo

Figura: Diagrama de flujo para el cálculo del volumen de una esfera

- Es la representación gráfica de un algoritmo
- Se dibujan mediante símbolos de propósito especial: rectángulos, rombos, óvalos y círculos entre otros
- Estos símbolos se conectan mediante flechas llamadas líneas de flujo
- Tienen un solo punto de inicio y fin.

Figura: Diagrama de flujo para el cálculo del volumen de una esfera

Prueba de escritorio

Es una herramienta útil para entender que hace un determinado algoritmo o programa ya que esta es una ejecución a mano de nuestro algoritmo llevando el registro de los valores que cada variable tendrán.

Ejemplo para el cálculo del desplazamiento de un móvil visto anteriormente:

Ingreso velocidad inicial: $v_o = 10[m/s]$

Ingreso tiempo: t = 30[s]

Ingreso de la aceleración: $a = 10[m/s^2]$

Cálculo de: $x(t) = 10[m/s] * 30[s] + \frac{1}{2}10[m/s^2] * 30^2[m/s]^2$

• ¿Qué es un algoritmo?

- ¿Qué es un algoritmo?
- ¿Cómo está compuesto?

- ¿Qué es un algoritmo?
- ¿Cómo está compuesto?
- ¿Qué formas hay de representarlo?

- ¿Qué es un algoritmo?
- ¿Cómo está compuesto?
- ¿Qué formas hay de representarlo?

- ¿Qué es un algoritmo?
- ¿Cómo está compuesto?
- ¿Qué formas hay de representarlo?
 - Diagrama de flujo

- ¿Qué es un algoritmo?
- ¿Cómo está compuesto?
- ¿Qué formas hay de representarlo?
 - Diagrama de flujo
 - Pseudocódigo

- ¿Qué es un algoritmo?
- ¿Cómo está compuesto?
- ¿Qué formas hay de representarlo?
 - Diagrama de flujo
 - Pseudocódigo
- ¿Cómo probamos un algoritmo?

Tipos de datos en C

El lenguaje de programación C es **fuertemente tipado**, es decir que cada vez que se necesite declarar u operar con una variable, se debe definir y tener presente el tipo de la misma.

Nota: ver los tipos de datos Unsigned

Tipo de dato	Descripción	Rango
short	Valor entero de 2 bytes	-2^{16} a $2^{16}-1$
int	Valor entero de 4 bytes	-2^{32} a $2^{32}-1$
long	Valor entero de 8 bytes	-2^{64} a $2^{64}-1$
char	Caracteres ASCII	$-128 \; a \; 127$
float	Valor decimal de 4 bytes	$3.4 imes 10^{-38} \text{ a } 3.4 imes 10^{-38}$
double	Valor decimal de 8 bytes	$1.7 imes 10^{-308}$ a $1.7 imes 10^{-308}$
bool	Valor binario	True o False
void	Tipo de dato nulo	
string	Cadena de char	

Cuadro: Tipos de datos en C

Entrada y salida de datos I

Para imprimir por pantalla o ingresar datos a un programa en C, se debe informar **expresamente** el tipo de dato que se espera imprimir y/o recibir. Esto se realiza mediante el uso de **especificadores de formato**.

Tipo de dato	Especificador de formato	
short	%hd	
int	%d	
long	%Ii	
char	% <i>c</i>	
float	% <i>f</i>	
double	%If	

Cuadro: Especificadores de formato en C

Entrada y salida de datos II

Scanf

Es una función de la librería de entrada/salida de C que permite tomar información desde el teclado.

Sintaxis: scanf(.especificador de formato", &variable);

Ejemplo : scanf("%d", &edad);

Printf

Es una función de la librería de entrada/salida de C que permite imprimir información por pantalla.

Sintaxis: printf(.especificador de formato", variable);

Ejemplo: printf("Su edad es: " %d , edad);

Nota: para estos ejemplos se supone que la variable se ha declarado de tipo int. Ver ejemplos siguientes.

Entrada y salida de datos III

```
#include <stdio.h>
   int main()
4
     int edad=0:
5
     float peso=0:
6
7
     printf("Ingrese su edad \n");
     scanf(" %d",&edad);
8
      printf("Ingrese su peso\n");
9
     scanf(" %f",&peso);
10
      printf("Su edad es %d y su peso %f\n",edad,peso);
11
```

Operadores en C I

Operadores de asignación:

Operador	Acción	Ejemplo	Resultado
=	Asignación básica	x = 10	x vale 10
=	Asignación producto	x = 10	x vale 100
/=	Asignación división	x/=2	x vale 50
+=	Asignación suma	x+=5	x vale 55
-=	Asignación resta	x - = 7	x vale 48

Cuadro: Operadores de asignación

Operadores en C II

Operadores aritméticos:

Operador	Acción	Ejemplo	Resultado
-	Resta	x = 12 - 3	x vale 9
+	Suma	x = 12 + 3	x vale 15
*	Multiplicación	x = 12 * 3	x vale 36
/	División	x = 12/3	x vale 4
_	Decremento	x = 12; x	x vale 11
++	Incremento	x = 12; x + +	x vale 13
%	Modulo	x = 13%2	x vale 1

Cuadro: Operadores de asignación

Precedencia de operadores

El lenguaje C evalúa las expresiones aritméticas en una secuencia precisa, por lo general son las mismas que aplicaríamos en el álgebra:

Las operaciones de multiplicación, división y módulo se resuelven primero. Si en una misma operación aparecen varias de ellas, se resuelven de izquierda a derecha

Precedencia de operadores

El lenguaje C evalúa las expresiones aritméticas en una secuencia precisa, por lo general son las mismas que aplicaríamos en el álgebra:

- Las operaciones de multiplicación, división y módulo se resuelven primero. Si en una misma operación aparecen varias de ellas, se resuelven de izquierda a derecha
- Las operaciones de suma y resta se aplican después. Si hubiese varias de estas, C separará en términos al igual que se haría en el álgebra

Precedencia de operadores

El lenguaje C evalúa las expresiones aritméticas en una secuencia precisa, por lo general son las mismas que aplicaríamos en el álgebra:

- Las operaciones de multiplicación, división y módulo se resuelven primero. Si en una misma operación aparecen varias de ellas, se resuelven de izquierda a derecha
- Las operaciones de suma y resta se aplican después. Si hubiese varias de estas, C separará en términos al igual que se haría en el álgebra
- Luego de resueltas todas las operaciones, se procede a la asignación

Precedencia de operadores: ejemplo

Ecuación de una recta en forma algebraica

$$y(x) = ax + b (2)$$

Ecuación de una recta en C

$$y = a * x + b \tag{3}$$

Precedencia de operadores

Operación a * x

Precedencia de operadores: ejemplo

Ecuación de una recta en forma algebraica

$$y(x) = ax + b (2)$$

Ecuación de una recta en C

$$y = a * x + b \tag{3}$$

Precedencia de operadores

- Operación a * x
- Operación +b

Precedencia de operadores: ejemplo

Ecuación de una recta en forma algebraica

$$y(x) = ax + b \tag{2}$$

Ecuación de una recta en C

$$y = a * x + b \tag{3}$$

Precedencia de operadores

- Operación a * x
- Operación +b
- 3 Asignación del resultado a la variable y

Precedencia de operadores: ejemplo en C

```
#include <stdio.h>
   int main()
3
      float m=0; /* Pendiente*/
 5
      float y=0; /* Variable dependiente*/
6
      float x=0; /* Variable independiente*/
7
      float b=0; /* Ordenada al origen*/
8
      printf("Ingrese el valor de la pendiente \n");
9
      scanf(" %f",&m);
10
      printf("Ingrese el valor de la ordenada al origen \n")
      scanf(" %f",&x);
11
12
      printf("Ingrese el valor de la variable indep \n");
      scanf(" %, &b);
13
      y=m*x+b; /* Operacion*/
14
15
      printf("el valor de y(\%f) = \%f \setminus n", x, y);
16
17
```