

Cálculo I - Segundo Semestre — Exame da Época Normal - 1ª Chamada

31 de Maio de 2007

Duração: 2h30m

Justifique todas as respostas e indique os cálculos efectuados.

50 Pontos 1. Considere a função f definida por

$$f(x) = \begin{cases} \arctan(\ln x) & \text{se} \quad x > 1\\ 0 & \text{se} \quad x = 1\\ \frac{x^2}{1-x} & \text{se} \quad x < 1 \end{cases}$$

- (a) Estude f quanto à continuidade em x = 1.
- (b) A função f é diferenciável em x = 1? Justifique.
- (c) Determine a função inversa da restrição de f ao intervalo $]1, +\infty[$.

25 Pontos 2. Considere a função F definida em $\mathbb R$ por $F(x)=\int_1^{x^3}\mathrm e^{-t}\sqrt{1+t^2}dt$. Prove que F é monótona crescente em $\mathbb R$.

25 Pontos 3. Mostre que a equação $x^2 - x \sin x - \cos x = 0$ tem duas e só duas soluções em $[-\pi, \pi]$.

50 Pontos

- 4. Considere a função f definida por $f(x) = \frac{1}{x \ln x}$.
 - (a) Determine a primitiva de f que se anula no ponto $x=e^2$.
 - (b) Calcule o valor da área da região do plano situada entre x=e e $x=e^3$ e limitada pelo eixo das abcissas e pelo gráfico de f.
 - (c) Determine a natureza do integral impróprio $\int_e^{+\infty} \frac{1}{x \ln x} \, dx$ e, em caso de convergência, indique o seu valor.

50 Pontos 5. Calcule os seguintes integrais indefinidos:

(a)
$$\int \frac{x}{\sqrt{1+x^2}} dx$$

(b)
$$\int \frac{x-2}{x(1+x^2)} dx$$