Exercices corrigés supplémentaires.

Propriétés des relations binaires - Division euclidienne et diviseurs d'un entier.

Exercice 1: On considère les deux relations binaires suivantes dans l'ensemble $A=\{1,2,3\}$:

$$\mathcal{R} = \{(1,1), (1,2), (1,3), (3,3)\}$$

$$\mathcal{T} = \{(1,1), (1,2), (2,2), (2,3)\}$$

- Représenter chaque relation par un diagramme sagittal.
 Les questions suivantes ont pour but d'étudier des propriétés de ces relations. Les tableaux donnés seront à compléter jusqu'à ce qu'on puisse conclure, éventuellement dès qu'un contreexemple apparaît.
- 2. Compléter les tableaux ci-dessous avec V (vrai) ou F (faux). Conclure pour chacune des relations.

$$\begin{array}{c|c}
x & x\mathcal{R}x \\
\hline
1 & \\
2 & \\
\hline
3 & \\
\end{array}$$

\boldsymbol{x}	$x\mathcal{T}x$
1	
2	
3	

3. Compléter les tableaux ci-dessous avec V (vrai) ou F (faux) en-dessous de $x\mathcal{R}y$, de $y\mathcal{R}x$ puis du connecteur \rightarrow . Conclure pour chacune des relations si elle est symétrique ou pas.

	ı	D		D
x	y	$x\mathcal{R}y$	\rightarrow	$y\mathcal{R}x$
1	1			
1	2			
1	3			
2	1			
2	2			
2	3			
3	1			
3	2			
3	3			

x	y	xTy	\rightarrow	yTx
1	1			
1	2			
1	3			
2	1			
2	2			
2	3			
3	1			
3	2			
3	3			

4. Compléter les tableaux ci-dessous avec V (vrai) ou F (faux) de la même façon que précédemment en ne reportant dans les trois colonnes à gauche, que les triplets (x, y, z) tels que xRy et yRz soient à Vrai pour le premier tableau, et xTy et yTz soient à Vrai pour le deuxième. Ecrire alors Vrai ou Faux en-dessous de xRz, respectivement xTz, puis en-dessous du connecteur →.

Conclure pour chacune des relations si elle est transitive ou pas.

\boldsymbol{x}	y	z	$(x\mathcal{R}y)$	ET	$y\mathcal{R}z)$	\rightarrow	xRz
1	1	1					
1	1	2					

	\boldsymbol{x}	y	z	(xTy)	ET	yTz)	\rightarrow	xTz
	1	1	1					
	1	1	2					
Ī								

5. Compléter les tableaux ci-dessous avec V (vrai) ou F (faux) comme précédemment. Conclure pour chacune des relations si elle est antisymétrique ou pas.

\boldsymbol{x}	y	$x\mathcal{R}y$	ET	$y\mathcal{R}x$	\rightarrow	x = y
1	1					
1	2					
1	3					
2	1					
2	2					
2	3					
3	1					
3	2					
3	3					

\boldsymbol{x}	y	$x\mathcal{T}y$	ET	yTx	\rightarrow	x = y
1	1					
1	2					
1	3					
2	1					
2	2					
2	3					
3	1					
3	2					
3	3					

Exercice 2:

- 1. Décomposer en produit de facteurs premiers l'entier 150. En déduire le nombre de diviseurs positifs qu'il possède.
- 2. Déterminer l'ensemble des diviseurs positifs de 150.

Correction

Exercice 1: On considère les deux relations binaires suivantes dans l'ensemble $A = \{1, 2, 3\}$:

$$\mathcal{R} = \{(1,1), (1,2), (1,3), (3,3)\}$$

$$\mathcal{T} = \{(1,1), (1,2), (2,2), (2,3)\}$$

1. Représenter chaque relation par un diagramme sagittal.

Solution:

Les questions suivantes ont pour but d'étudier des propriétés de ces relations. Les tableaux donnés seront à compléter jusqu'à ce qu'on puisse conclure, éventuellement dès qu'un contre exemple apparaît.

2. Compléter les tableaux ci-dessous avec V (vrai) ou F (faux). Conclure pour chacune des relations.

\boldsymbol{x}	$x\mathcal{R}x$
1	V
2	F
3	

\boldsymbol{x}	$x\mathcal{T}x$
1	V
2	V
3	F

 \mathcal{R} n'est pas réflexive car $2\mathcal{R}2$.

 \mathcal{T} n'est pas réflexive car $3\mathcal{R}3$

Remarque : il n'est pas nécessaire de compléter le tableau entièrement lorsque l'on rencontre un contre-exemple.

3. Compléter les tableaux ci-dessous avec V (vrai) ou F (faux). Conclure pour chacune des relations si elle est symétrique ou pas.

\boldsymbol{x}	y	xRy	\rightarrow	$y\mathcal{R}x$
1	1	V	V	V
1	2	V	F	F
1	3			
2	1			
2	2			
2	3			
3	1			
3	2			
3	3			

\boldsymbol{x}	y	$x\mathcal{T}y$	\rightarrow	yTx
1	1	V	V	V
1	2	V	F	F
1	3			
2	1			
2	2			
2	3			
3	1			
3	2			
3	3			

 \mathcal{R} n'est pas symétrique car $1\mathcal{R}2$ mais $2\mathcal{R}1$.

 \mathcal{T} n'est pas symétrique car $1\mathcal{T}2$ mais $2\mathcal{T}1$.

4. Compléter les tableaux ci-dessous avec V (vrai) ou F (faux). Conclure pour chacune des relations si elle est transitive ou pas.

\boldsymbol{x}	y	z	$(x\mathcal{R}y)$	ET	$y\mathcal{R}z)$	\rightarrow	xRz
1	1	1		V		V	V
1	1	2		V		V	V
1	1	3		V		V	V
3	3	3		V		V	V

\boldsymbol{x}	y	z	(xTy)	ET	yTz)	\rightarrow	xTz
1	1	1		V		V	V
1	1	2		V		V	V
1	2	2		V		V	V
1	2	3		V		F	F

 \mathcal{R} est transitive car $\forall x, y, z \in A$, si $x\mathcal{R}y$ et $y\mathcal{R}z$ alors $x\mathcal{R}z$.

 \mathcal{T} n'est pas transitive car $1\mathcal{T}2$ et $2\mathcal{T}3$ mais $1\mathcal{T}3$.

5. Compléter les tableaux ci-dessous avec V (vrai) ou F (faux). Conclure pour chacune des relations si elle est antisymétrique ou pas.

x	y	$x\mathcal{R}y$	ET	$y\mathcal{R}x$	\rightarrow	x = y
1	1		V		V	V
1	2		F			
1	3		F			
2	1		F			
2	2		F			
2	3		F			
3	1		F			
3	2		F			
3	3		V		V	V

\boldsymbol{x}	y	$x\mathcal{T}y$	ET	yTx	\rightarrow	x = y
1	1		V		V	V
1	2		F			
1	3		F			
2	1		F			
2	2		V		V	V
2	3		F			
3	1		F			
3	2		F			
3	3		F			

 \mathcal{R} est antisymétrique car $\forall x, y \in A$, si $x\mathcal{R}y$ et $y\mathcal{R}x$ alors x = y.

 \mathcal{T} est antisymétrique car $\forall x, y \in A$, si $x\mathcal{T}y$ et $y\mathcal{T}x$ alors x = y.

Exercice 2:

1. Décomposition en produit de facteurs premiers de l'entier 150 :

Ainsi $150 = 2 \times 3 \times 5^2$.

Le nombre de diviseurs positifs de 150 est donc (1+1)(1+1)(1+2) = 12.

2. Déterminons l'ensemble des diviseurs positifs de 150.

Pour cela développons le produit $P = (1+2)(1+3)(1+5+5^2)$.

$$P = (1+2+3+2\times3)(1+5+5^2) = 1+5+5^2+$$

$$2+2\times5+2\times5^2+$$

$$3+3\times5+3\times5^2+$$

$$2\times3+2\times3\times5+2\times3\times5^2$$

Alors $\mathcal{D}_{\mathbb{I}\mathbb{N}}(150) = \{1, 2, 3, 5, 6, 10, 15, 25, 30, 50, 75, 150\}.$