Devoir maison 3.

À rendre le lundi 8 novembre 2021

Exercice 1

Le but de l'exercice est de démontrer que $\frac{1}{\pi} \operatorname{Arccos}\left(\frac{1}{3}\right) \notin \mathbb{Q}$.

Nous allons raisonner par l'absurde. On note $\alpha = \frac{1}{\pi} \operatorname{Arccos} \left(\frac{1}{3} \right)$.

On suppose que $\alpha \in \mathbb{Q}$ *i.e.* α est un nombre rationnel.

- 1°) Montrer que $e^{i\alpha\pi} = \frac{1+2i\sqrt{2}}{3}$.
- **2°)** En déduire que : $\exists q \in \mathbb{N}^*, (1 + 2i\sqrt{2})^q = 3^q$.
- **3°)** Montrer, par récurrence, que : $\forall n \in \mathbb{N}^*, \exists (a_n, b_n) \in \mathbb{Z}^2, (1 + 2i\sqrt{2})^n = a_n + ib_n\sqrt{2}.$ On sera amené, lors de la résolution, à exprimer a_{n+1} et b_{n+1} en fonction de a_n et b_n .
- **4°)** On pose, pour tout $n \in \mathbb{N}^*$, $u_n = a_n b_n$. Exprimer, pour tout $n \in \mathbb{N}^*$, u_{n+1} en fonction de u_n et de b_n uniquement.
- 5°) En déduire que pour tout $n \in \mathbb{N}^*$, u_n n'est pas divisible par 3.
- 6°) Conclure.

Exercice 2

Soit n un entier supérieur ou égal à 2. On considère l'équation (E) suivante sur \mathbb{C} :

$$(E): (z^2+1)^n - (z-i)^{2n} = 0.$$

Les deux questions sont indépendantes.

- 1°) À l'aide du module, montrer que si z est une solution de (E) différente de i, alors $z \in \mathbb{R}$.
- 2°) Résoudre (E); on vérifiera que les solutions différentes de i sont bien réelles.