

PCT

WELTOORGANISATION FÜR GEISTIGES EIGENTUM

Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICH NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation ⁶ : C01G 1/00, C01B 13/14, C01G 25/02, C01F 7/02		A1	(11) Internationale Veröffentlichungsnummer: WO 96/34829
			(43) Internationales Veröffentlichungsdatum: 7. November 1996 (07.11.96)
(21) Internationales Aktenzeichen: PCT/EP96/01756		(81) Bestimmungsstaaten: JP, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(22) Internationales Anmeldedatum: 26. April 1996 (26.04.96)		Veröffentlicht <i>Mit internationalem Recherchenbericht.</i>	
(30) Prioritätsdaten: 195 15 820.2 29. April 1995 (29.04.95) DE			
(71) Anmelder (<i>für alle Bestimmungsstaaten ausser US</i>): INSTITUT FÜR NEUE MATERIALIEN GEMEINNÜTZIGE GMBH [DE/DE]; Universität des Saarlandes, Gebäude 43, Im Stadtwald, D-66123 Saarbrücken (DE).			
(72) Erfinder; und (75) Erfinder/Anmelder (<i>nur für US</i>): BURGARD, Detlef [DE/DE]; Karl-Janssen-Strasse 17, D-66333 Völklingen (DE). NASS, Rüdiger [DE/DE]; Weiherstrasse 7, D-66292 Riegelsberg (DE). SCHMIDT, Helmut [DE/DE]; Im Königsfeld 29, D-66130 Saarbrücken (DE).			
(74) Anwalt: BARZ, Peter, Kaiserplatz 2, D-80803 München (DE).			
(54) Title: PROCESS FOR PRODUCING WEAKLY AGGLOMERATED NANOSCALAR PARTICLES			
(54) Bezeichnung: VERFAHREN ZUR HERSTELLUNG SCHWACH AGGLOMERIERTER NANOSKALIGER TEILCHEN			
(57) Abstract			
A process for producing weakly agglomerated, compacted and/or crystallised nanoscalar particles is characterised in that either (a) a suspension containing amorphous or partially crystalline, nanoscalar particles is prepared in the usual way from precursors of the nanoscalar particles in a solvent that is unable or hardly able to dissolve the particles and in the presence of at least one surface-blocking substance, or (b) an already prepared powder of amorphous or partially crystalline nanoscalar particles is suspended in the solvent described in (a) in the presence of the surface-blocking substance described in (a), or (c) a sol containing amorphous or partially crystalline nanoscalar particles is suspended in the solvent described in (a) in the presence of the surface-blocking substance described in (a). The thus produced suspension is then processed in conditions that cause the nanoscalar particles to be compacted and/or to crystallise.			
(57) Zusammenfassung			
Beschrieben wird ein Verfahren zur Herstellung schwach agglomerierter, verdichteter und/oder kristallisierte nanoskalige Teilchen, das dadurch gekennzeichnet ist, daß entweder (a) eine amorphe oder teilkristalline nanoskalige Teilchen enthaltende Suspension in üblicher Weise aus Precursoren für die nanoskaligen Teilchen hergestellt wird, wobei die Herstellung in einem Lösungsmittel, das für die Teilchen kein oder nur ein geringes Lösungsvermögen besitzt, und in Gegenwart mindestens einer oberflächenblockierenden Substanz durchgeführt wird, oder (b) ein bereits gebildetes Pulver aus amorphen oder teilkristallinen nanoskaligen Teilchen in Gegenwart der unter (a) angegebenen mindestens einer oberflächenblockierenden Substanz in dem unter (a) angegebenen Lösungsmittel suspendiert wird, oder (c) ein amorphe oder teilkristalline nanoskalige Teilchen enthaltendes Sol in Gegenwart der unter (a) angegebenem mindestens einen oberflächenblockierenden Substanz in dem unter (a) angegebenen Lösungsmittel suspendiert wird; und die so hergestellte Suspension Bedingungen unterzogen wird, die zu einer Verdichtung und/oder Kristallisation der nanoskaligen Teilchen führen.			

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AM	Armenien	GB	Vereinigtes Königreich	MX	Mexiko
AT	Österreich	GE	Georgien	NE	Niger
AU	Australien	GN	Guinea	NL	Niederlande
BB	Barbados	GR	Griechenland	NO	Norwegen
BE	Belgien	HU	Ungarn	NZ	Neuseeland
BF	Burkina Faso	IE	Irland	PL	Polen
BG	Bulgarien	IT	Italien	PT	Portugal
BJ	Benin	JP	Japan	RO	Rumänien
BR	Brasilien	KE	Kenya	RU	Russische Föderation
BY	Belarus	KG	Kirgisistan	SD	Sudan
CA	Kanada	KP	Demokratische Volksrepublik Korea	SE	Schweden
CF	Zentrale Afrikanische Republik	KR	Republik Korea	SG	Singapur
CG	Kongo	KZ	Kasachstan	SI	Slowenien
CH	Schweiz	LI	Liechtenstein	SK	Slowakei
CI	Côte d'Ivoire	LK	Sri Lanka	SN	Senegal
CM	Kamerun	LR	Liberia	SZ	Swasiland
CN	China	LK	Litauen	TD	Tschad
CS	Tschechoslowakei	LU	Luxemburg	TG	Togo
CZ	Tschechische Republik	LV	Lettland	TJ	Tadschikistan
DE	Deutschland	MC	Monaco	TT	Trinidad und Tobago
DK	Dänemark	MD	Republik Moldau	UA	Ukraine
EE	Estland	MG	Madagaskar	UG	Uganda
ES	Spanien	ML	Mali	US	Vereinigte Staaten von Amerika
FI	Finnland	MN	Mongolei	UZ	Usbekistan
FR	Frankreich	MR	Mauretanien	VN	Vietnam
GA	Gabon	MW	Malawi		

VERFAHREN ZUR HERSTELLUNG SCHWACH AGGLOMERIERTER NANOSKALIGER TEILCHEN

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung schwach agglomerierter, verdichteter und/oder kristallisierter nanoskaliger Teilchen.

Verfahren zur Herstellung von Pulvern mit Primärteilchengrößen unter 100 nm (nanoskalige Pulver) sind in den letzten Jahren auf ein zunehmendes Interesse gestoßen, da diese Pulver das Potential besitzen, auf ihrer Grundlage völlig neue Werkstoffe wie z.B. Keramiken oder Komposite zu entwickeln. Ähnlich wie bei den heute schon verfügbaren sub- μm -Pulvern (Teilchendurchmesser von 0,1 bis 1 μm) werden auch an nanoskalige Pulver hohe Qualitätsanforderungen gestellt, die aber je nach Material und Anwendung unterschiedlich sind. Für keramische Pulver sind z.B. folgende Kriterien von Bedeutung:

- hohe chemische Reinheit
- Phasenbestand
- Pulverdichte
- Kristallinität
- Teilchengrößeverteilung und Teilchenmorphologie
- spezifische Oberfläche
- Agglomerationszustand.

Insbesondere der zuletzt genannte Punkt ist für die Nutzung von nanoskaligen Pulvern in pulvermetallurgischen Verarbeitungs- und Fertigungsprozessen von großer Bedeutung. In der Regel sollen die Pulverteilchen eine möglichst hohe Dichte aufweisen und/oder kristalline Strukturen besitzen. Die zwangsläufig vorliegenden Agglomerate sollten so beschaffen sein, daß sie bei der Verarbeitung wieder auf ihre Primärteilchengröße zerteilt werden können. Nur unter diesen Voraussetzungen kann das Potential nanoskaliger Pulver optimal genutzt werden. Dies bedeutet, daß weiche Agglomerate benötigt werden. Es sind somit Teilchen erforderlich, die es zulassen, den

Agglomerationszustand zwischen Nanoteilchen einzustellen. Dies kann direkt bei der Synthese oder in einem nachgeschalteten Prozeß erfolgen.

5 Zur Herstellung nanoskaliger (keramischer) Pulver werden in der Literatur physikalische und chemische Verfahren beschrieben. Die physikalischen Verfahren werden in drei Kategorien eingeteilt, nämlich in vacuum-, gas-phase- und condensed-phase-Synthesen. Deren Anwendbarkeit ist jedoch durch den
10 geringen Stoffumsatz auf die Darstellung kleiner Pulvermengen beschränkt.

Wachsende Bedeutung kommt bei der Pulversynthese Verfahren unter Einbeziehung chemischer Reaktionen zu, wie z.B. der
15 Hydrothermalsynthese, Fällungsreaktionen, der Flammenhydrolyse, der Plasmasynthese, dem Sol-Gel-Prozeß oder Emulsionsverfahren.

Bei der Hydrothermalsynthese wird unter erhöhtem Druck und
20 erhöhten Temperaturen (oberhalb der kritischen Daten des Lösungsmittels) aus anorganischen Salzen über Fällungsreaktionen das entsprechende Oxid, Oxidhydrat oder Hydroxid gebildet. Durch Einstellung der optimalen Reaktionsparameter (pH-Wert, Art und Konzentration der Ausgangsverbindungen, Druck, Temperatur) können dabei Kristallitgrößen von ca. 20 nm erreicht
25 werden. Nachteilig wirkt sich dabei jedoch die Bildung von nicht mehr auflösabaren Agglomeraten aus. Diese Agglomerate entstehen dadurch, daß an der Teilchenoberfläche vorhandene Metall-OH-Gruppen beim Trocknen und Kalzinieren des Pulvers
30 Kondensationsreaktionen eingehen. Da die Agglomeratbildung in der Regel nicht reversibel ist, kann das Potential dieser Technik zur Zeit nur mit Einschränkungen genutzt werden.

Die Flammenhydrolyse ist ein Standardverfahren zur Aerosilherstellung. Sie liefert hohe Pulverausbeuten und ist auf viele Stoffsysteme anwendbar. Dabei werden flüchtige Verbindungen wie z.B. SiCl_4 , TiCl_4 oder ZrCl_4 in einer Wasserstoff-Sauer-

stoff-Flamme zu feinsten Oxidteilchen umgesetzt. Zwar lassen sich Oxidpulver mit Teilchengrößen zwischen 5 und 50 nm mit Hilfe der Flammenhydrolyse herstellen, doch ist ein Nachteil dieses Verfahrens die starke Agglomeratbildung, da die Kohäsion zwischen den Teilchen mit abnehmender Teilchengröße stark zunimmt. Eine Redispersierung dieser Pulver auf ihre Primärteilchengröße ist meist nicht oder nur zu einem geringen Teil möglich.

- 10 Über die Plasmaythesen lassen sich neben oxidischen Pulvern auch Nitride und Carbide herstellen. Dabei werden z.B. in einem induktiven Plasma Metallpulver oder geeignete Metallverbindungen verdampft und mit Ammoniak zur Herstellung von Nitriden bzw. mit Methan für Carbide zur Reaktion gebracht.
- 15 Durch dieses Verfahren lassen sich hochreine, feinste sphärische Pulver herstellen und bei optimaler Einstellung der Reaktionsparameter liefert es Teilchen mit Durchmessern von etwa 5 nm, die zwar agglomeriert sind, aber nur wenige Festkörperbrücken zwischen den Teilchen aufweisen. Allerdings handelt es sich dabei um ein technisch sehr aufwendiges Verfahren, das mit einem hohen apparativen Aufwand verbunden ist.
- 20

Ein weiteres Verfahren stellt der Sol-Gel-Prozeß dar. Hierbei wird durch Hydrolyse und Kondensation geeigneter Ausgangsverbindungen wie z.B. reaktiver Metallalkoholate in einem Lösungsmittel ein Sol (lösliche Oligomere oder Polymere oder kolloidale Lösung) hergestellt. Im weiteren Reaktionsverlauf bildet sich ein Gel (Festkörper), das durch thermische Nachbehandlung in ein kristallines Pulver überführt werden kann. Bei Einstellung bestimmter Parameter ist es möglich, die Reaktion so zu steuern, daß Sole mit Teilchengrößen weit unterhalb 50 nm erzeugt werden können. Ein Nachteil dieses Verfahrens ist, daß amorphe Materialien anfallen, die über eine thermische Nachbehandlung in ein kristallines Produkt überführt werden müssen. Dabei kommt es aufgrund der hohen OH-Gruppen-dichte an den Teilchenoberfläche über Kondensationsreaktionen zur Halsbildung zwischen den Teilchen (Aggregation = harte

Agglomerate), die eine Zerteilung der Pulver auf die Primärteilchengröße bei der Verarbeitung unmöglich macht.

Einen relativ neuen Weg zur Präzipitation feinster keramischer Pulver beschreitet die Emulsionstechnik. Dabei wird eine wässrige Phase in Form feinster Tröpfchen in einer mit Wasser nicht mischbaren Flüssigkeit dispergiert. Die Tröpfchengröße sowie die Stabilität der Emulsionen sind von vielen Faktoren abhängig, die aber für Pulversynthesen bisher erst ansatzweise untersucht wurden.

Voraussetzung für die Bildung von Pulvern bei der Emulsionstechnik ist, daß die dispergierte wässrige Phase durch geeignete chemische Reaktionen wie Fällungs- oder Kondensationsreaktionen in eine feste Phase überführt werden kann. Eine wesentliche Rolle bei der Emulsionsbildung spielen oberflächenaktive Substanzen (Emulgatoren), mit deren Hilfe eine Salzlösung zu feinsten Tröpfchen in einem Kohlenwasserstoff emulgiert werden kann. Die so emulgierten Wassertröpfchen können als submikroskopische Minireaktoren aufgefaßt werden, die die gleichen Eigenschaften wie makroskopische Lösungen aufweisen. Die Auffällung der Metallhydroxide bzw. -oxide kann über eine Erhöhung des pH-Wertes erfolgen. Dies wird z.B. durch Einleiten von Ammoniakgas in die Emulsion oder durch den Zusatz organischer Basen, die im Dispergiermedium löslich sein müssen, erreicht. Zur Überführung der flüssigen in eine feste Phase wird das Wasser durch azeotrope Destillation entfernt. Dadurch werden die gebildeten Teilchen verdichtet. Eine Agglomeration der Teilchen wird durch das Vorhandensein der Emulgatoren, die die reaktiven Oberflächen abschirmen, weitgehend verhindert.

Über Emulsionen können zwar qualitativ hochwertige nanoskalige Pulver hergestellt werden, die Volumenausbeute bei solchen Emulsionsverfahren ist aber häufig gering, so daß diese Verfahren zur Pulverherstellung technisch nicht ausgenutzt werden. Ein entscheidender Grund für die geringe Volumenausbeute bei Emulsionsverfahren liegt darin, daß bei Emulsionen immer

in Zweiphasensystemen gearbeitet wird, wobei die Precursoren aber nur über eine Phase eingebracht werden.

Wie oben gezeigt, gibt es eine Vielzahl von Synthesevarianten für sehr feine Pulver. Ein ungeklärtes Problem stellt aber die Agglomerationskontrolle, insbesondere bei der Verdichtung und/oder Kristallisation von nanoskaligen Teilchen (Durchmesser 1 - 100 nm) dar.

10 Aufgabe der vorliegenden Erfindung war somit die Bereitstellung nanoskaliger, schwach agglomerierter Pulver mit hoher Teilchendichte und/oder kristalliner Struktur.

15 Erfindungsgemäß wird diese Aufgabe gelöst durch ein Verfahren zur Herstellung schwach agglomerierter, verdichteter und/oder kristallisierter nanoskaliger Teilchen, bei dem entweder

20 (a) eine amorphe oder teilkristalline nanoskalige Teilchen enthaltende Suspension in üblicher Weise aus Precursoren für die nanoskaligen Teilchen hergestellt wird, wobei die Herstellung in einem Lösungsmittel, das für die Teilchen kein oder nur ein geringes Lösungsvermögen besitzt, und in Gegenwart mindestens einer oberflächenblockierenden Substanz durchgeführt wird, oder

25 (b) ein bereits gebildetes Pulver aus amorphen oder teilkristallinen nanoskaligen Teilchen in Gegenwart der unter (a) angegebenen mindestens einen oberflächenblockierenden Substanz in dem unter (a) angegebenen Lösungsmittel suspendiert wird, oder

30 (c) ein amorphe oder teilkristalline nanoskalige Teilchen enthaltendes Sol in Gegenwart der unter (a) angegebenen mindestens einen oberflächenblockierenden Substanz in dem unter (a) angegebenen Lösungsmittel suspendiert wird; und

die so hergestellte Suspension Bedingungen unterzogen wird, die zu einer Verdichtung und/oder Kristallisation der nanoskaligen Teilchen führen.

5 Vorzugsweise handelt es sich bei den nanoskaligen Teilchen um Oxid(hydrat)-, Sulfid-, Selenid-, Tellurid- und/oder Phosphid-Teilchen, besonders bevorzugt um Oxid(hydrat)-Teilchen.

10 Die Oxid(hydrat)e sind vorzugsweise solche, die sich zur Herstellung von Glas oder Keramik eignen. Insbesondere werden sie aus Oxid(hydraten) von Haupt- und Nebengruppenmetallen wie z.B. Mg, Ca, Sr, Ba, Al, Si, Sn, Pb, Bi, Ti, Zr, V, Mn, Nb, Ta, Cr, Mo, W, Fe, Co, Ru, Cu, Zn, Ce und Y ausgewählt. Besonders bevorzugt sind solche von Ba, Al, Ti, Zr, Fe, Y, Sc, Ru, 15 Zn und Pb.

20 Bevorzugte Beispiele für Oxide dieser Elemente sind Al_2O_3 , Fe_2O_3 , ZrO_2 , TiO_2 , Y_2O_3 , $\text{Y}_2\text{O}_3/\text{ZrO}_2$, $\text{Pb}(\text{ZrTi})\text{O}_3$ (PZT), BaTiO_3 , BaRuO_3 , ZnO und $\text{Sc}_2\text{O}_3/\text{ZrO}_2$.

25 Bei der obigen Variante (a) geht man vorzugsweise so vor, daß man aus einer Lösung oder einem Sol, die bzw. das mindestens ein als Oxid(hydrat) ausfällbares Element enthält, das mindestens eine Oxid(hydrat) in Gegenwart einer oberflächenblockierenden Substanz durch Änderung des pH-Wertes und/oder durch Wasserzugabe ausfällt.

30 Die Lösung oder das Sol, die bzw. das das mindestens eine als Oxid(hydrat) ausfällbare Element enthält, kann sowohl wäßrig als auch nicht-wäßrig (organisch) sein. Als nicht-wäßrige Lösungsmittel werden diejenigen bevorzugt, die mit Wasser gut mischbar sind, wie z.B. ein- und mehrwertige Alkohole wie z.B. Methanol, Ethanol, n- und i-Propanol, Ethylenglykol, Propylenglykol, Diethylenglykol und Glycerin, Ketone wie Aceton und Butanon, Ester wie Essigsäureethylester, Amide wie Dimethylformamid und Dimethylacetamid und Sulfoxide wie Di-

methylsulfoxid. Besonders bevorzugte organische Lösungsmittel zur Verwendung in dieser Variante sind aliphatische Alkohole, insbesondere diejenigen mit 1 bis 3 Kohlenstoffatomen.

- 5 Wenn es sich bei der verwendeten Ausgangslösung um eine wässrige Lösung handelt, enthält diese mindestens ein Element, das durch Änderung des pH-Wertes als Oxid(hydrat) ausfällbar ist, in gelöster Form. Nicht-wässrige Lösungen können auch Elemente in ihrer gelösten Form enthalten, die ohne pH-Wert-Änderung 10 (z.B. nur durch Wasserzugabe) ausgefällt werden können.

In wässrigen Ausgangslösungen liegt das als Oxid(hydrat) ausfällbare Element bevorzugt in Form eines hydrolysierbaren Salzes vor, in nicht-wässrigen Lösungen bevorzugt als hydrolysierbare metallorganische Verbindung. Die Konzentrationen sind 15 in allen Fällen nach oben durch die Löslichkeit der jeweiligen Verbindung im eingesetzten Lösungsmittel beschränkt. Nach unten sollte die Konzentration aus wirtschaftlichen Gründen 20 10 Gew.-% (bezogen auf die eingesetzte hydrolysierbare Verbindung) nicht unterschreiten.

Bei der Verwendung von Salzlösungen werden bevorzugt solche Salze eingesetzt, die thermisch leicht entfernbare oder zersetzbare Gegenionen aufweisen. Besonders geeignet sind deshalb 25 Nitrate oder Salze von Carbonsäuren (z.B. Formiate, Acetate und Propionate) sowie Ammoniumsalze.

Neben solchen einfachen Salzlösungen können auch wässrige Sole eingesetzt werden, die z.B. hergestellt werden können, indem 30 ein Metallalkoxid, das in beispielsweise einem kurzkettigen Alkohol (z.B. einem C₁-C₃-Alkohol) gelöst ist, durch Wasserzugabe hydrolysiert wird. Es können jedoch auch käufliche Sole wie z.B. Wasserglas eingesetzt werden. Diese Sole können auch 35 als Ausgangsmaterialien für die obige Variante (c) dienen. Als Lösungsmittel zur Herstellung der Suspensionen gemäß den Varianten (a) bis (c) kommen allgemein alle diejenigen in

- Frage, die die zu bildenden bzw. bereits vorhandenen Teilchen nicht lösen bzw. nur in vernachlässigbarem Ausmaß anlösen. Diese Eigenschaft hängt selbstverständlich von der Natur der anwesenden Teilchen ab. Allgemein sind konkrete Beispiele für einsetzbare Lösungsmittel Wasser, Alkohole, Glykole, Amine, Amide, aliphatische, cycloaliphatische und aromatische Kohlenwasserstoffe, die gegebenenfalls substituiert - insbesondere halogeniert (bevorzugt chloriert) - sein können, und geeignete Mischungen dieser Lösungsmittel. Selbstverständlich ist es insbesondere bei der obigen Variante (a) auch möglich, nach der in-situ-Erzeugung der nanoskaligen Teilchen das Lösungsmittel gegen ein für die Verdichtung und/oder Kristallisation günstigeres ganz oder teilweise auszutauschen (z.B. durch Verdampfen und Zugabe des neuen Lösungsmittels). Dies kann insbesondere dann von Vorteil sein, wenn die Suspension erhöhten Temperaturen und gegebenenfalls erhöhten Drücken unterhalb den kritischen Daten des Lösungsmittels ausgesetzt werden soll, wie dies unten näher beschrieben wird.
- Als oberflächenblockierende Substanzen können alle Verbindungen eingesetzt werden, die eine chemische Bindung bzw. eine starke Wechselwirkung mit der Oberfläche der Teilchen eingehen können. Beispiele für chemisch gebundene Oberflächenblocker sind die herkömmlichen Komplexbildner wie z.B. (Poly)carbonsäuren, Poly-, insbesondere Diamine, β -Dicarbonylverbindungen wie β -Diketone und β -Carbonylcabonsäuren sowie Aminosäuren. Andere Beispiele für oberflächenblockierende Substanzen sind langketige Alkohole (vorzugsweise mit 8 bis 30 und insbesondere mit 8 bis 15 Kohlenstoffatomen), Cellulose-Derivate und nichtionische Tenside. Nichtionische Tenside, gegebenenfalls in Kombination mit anderen oberflächenblockierenden Substanzen, werden erfindungsgemäß als oberflächenblockierende Substanzen bevorzugt, insbesondere in Variante (a).
- Konkrete Beispiele für erfindungsgemäß einsetzbare nichtionische Tenside sind Sorbitanester von Fettsäuren (wie z.B. die unter dem Warenzeichen Span^(R) vertriebenen), Polyethylenoxid-

derivate dieser Sorbitanester (z.B. die unter dem Warenzeichen Tween^(R) vertriebenen), Fettsäurepolyglykolester (z.B. diejenigen aus der Emulsogen^(R)-Reihe) sowie Tenside, die unter den Warenzeichen Brij^(R), Arlacel^(R), Emulan^(R) und Marlovet^(R) usw. auf dem Markt sind. Diese Aufzählung stellt jedoch nur eine kleine Auswahl aus den erfindungsgemäß einsetzbaren nichtionischen Tensiden dar.

Im erfindungsgemäßen Verfahren kann jedoch auch mehr als eine oberflächenblockierende Substanz eingesetzt werden, z.B. eine Mischung von mindestens zwei nichtionischen Tensiden. Außerdem ist es z.B. möglich, eine Mischung von einen oder mehreren nichtionischen Tensiden mit mindestens einem längerkettigen aliphatischen Alkohol (mit vorzugsweise 8 bis 15 Kohlenstoffatomen wie z.B. Octanol, Decanol, Undecanol, Dodecanol, Tridecanol und Pentadecanol) zu verwenden. Besonders bevorzugt wird eine Mischung aus zwei nichtionischen Tensiden bzw. eine Mischung aus einem Tensid und einem längerkettigen aliphatischen Alkohol eingesetzt. Bei der Verwendung von Tensidmischungen hat es sich als günstig erwiesen, solche Tenside einzusetzen, die insbesondere in ihren hydrophoben Anteilen gleiche oder ähnliche Strukturmerkmale aufweisen, wie z.B. das Paar Tween^(R) 80/Emulsogen^(R) OG, in dem der hydrophobe Anteil in beiden Fällen von einer Ölsäureeinheit abgeleitet ist.

Im erfindungsgemäßen Verfahren beträgt die Gesamtkonzentration der eingesetzten oberflächenblockierenden Substanzen vorzugsweise 2 bis 30, insbesondere 2 bis 20 und besonders bevorzugt 5 bis 10 Gew.-%, bezogen auf den zu bildenden bzw. bereits vorhandenen Feststoff.

Die erfindungsgemäß eingesetzten oberflächenblockierenden Substanzen haben die Aufgabe, die gebildeten Teilchen während der Fällung an ihrer Oberfläche zu modifizieren und zu passivieren. Ohne an eine bestimmte Theorie gebunden werden zu wollen, wird angenommen, daß die oberflächenblockierenden

Substanzen mit den Teilchenoberflächen in Wechselwirkung treten und so eine thermodynamische Stabilisierung der Oberfläche bewirken. Die freie Reaktionsenthalpie der Wechselwirkungsreaktion kompensiert die durch ein Teilchenwachstum stattfindende Abnahme der freien Oberflächenenthalpie. Dadurch wird ein unkontrolliertes Teilchenwachstum unterdrückt und es entstehen Teilchen mit einer sehr einheitlichen Teilchengrößenverteilung. Darüber hinaus stabilisiert diese Oberflächenmodifizierung die Teilchen durch Ausbildung einer sphärischen Barriere gegen Agglomeration. Dies kann sich auch beim Kalzinieren der isolierten Teilchen im Ofen positiv auswirken, da sich viele der einsetzbaren oberflächenblockierenden Substanzen erst bei Temperaturen über 400°C vollständig zersetzen und bei diesen Temperaturen die Desaktivierung der Teilchenoberflächen durch Abspaltung von H₂O schon weit fortgeschritten ist, was eine Agglomeration der Teilchen verhindern oder zumindest minimieren kann. Wird die Kristallisation und/oder Verdichtung der Teilchen direkt in der Suspension bei höheren Temperaturen und Drücken unterhalb der kritischen Daten des Lösungsmittels durchgeführt, so zeigt sich, daß kristalline Teilchen agglomeratfrei erhalten werden können, da die oberflächenmodifizierende Schicht um die Teilchen herum vollständig erhalten bleibt.

Die in Variante (a) des erfindungsgemäßen Verfahrens insbesondere im Falle von Oxid(hydrat)en gegebenenfalls erforderliche Änderung des pH-Wertes bzw. die Einstellung des zur Fällung benötigten pH-Wertes kann prinzipiell durch Einsatz jeder basischen oder sauren Verbindung erreicht werden, die im jeweiligen Lösungsmittel löslich ist. Bevorzugt werden solche Verbindungen eingesetzt, die gegebenenfalls durch eine thermische Behandlung der gebildeten Teilchen leicht wieder entfernt werden können. Für eine pH-Wert-Erhöhung kommen daher z.B. Ammoniak (als Lösung oder gasförmig) oder organische Basen wie Amine oder quaternäre Ammoniumsalze in Frage, während sich zur Absenkung des pH-Wertes besonders HNO₃ und kurzkettige Carbon-

säuren (vorzugsweise mit 1 - 3 Kohlenstoffatomen wie Ameisen-, Essig- oder Propionsäure) eignen.

Bei der Herstellung nanoskaliger Teilchen aus Salzlösungen bzw. Solen besteht ein besonders bevorzugtes Verfahren zur Änderung des pH-Wertes im Einsatz von sauren oder basischen (organischen oder anorganischen) Ionenaustauscherharzen. Eine Änderung des pH-Wertes wird in diesem Fall erreicht, indem die in der Salzlösung befindlichen Gegenionen der zu fällenden Elemente mit Hilfe der Ionenaustauscherharze durch H^+ bzw. OH^- ersetzt werden. Dieses Verfahren hat den Vorteil, daß in der die nanoskaligen Teilchen enthaltenden Suspension nach der Fällung keine Fremdsalze vorliegen, die entfernt werden müssen. Praktisch läßt sich ein solcher Austausch z.B. durchführen, indem man die zu fällende Salzlösung (oder das Sol) in der auch die entsprechende oberflächenblockierende Substanz gelöst ist, über eine Ionenaustauschersäule leitet, wobei die Verweilzeit der Lösung in der Säule so bemessen ist, daß der Austausch und die Fällung im wesentlichen vollständig sind. Eine andere Möglichkeit besteht darin, die entsprechende Salzlösung (oder das Sol) mit der etwa stöchiometrischen Menge Ionenaustauscherharz zu rühren und nach vollständigem Austausch abzutrennen. Erfindungsgemäß können alle im Handel erhältlichen Ionenaustauscherharze eingesetzt werden, wobei jedoch organische Harze bevorzugt werden.

Die konkrete Ausfällungsreaktion kann auf vielfältige Art und Weise erfolgen, abhängig auch davon, ob zur Ausfällung eine pH-Wert-Änderung oder eine Wasserzugabe erfolgen soll.

Besonders bevorzugt werden zur Ausfällung jedoch zwei Varianten. Bei der ersten Variante wird der Lösung oder dem Sol, die bzw. das z.B. das mindestens eine als Oxid(hydrat) ausfällbare Element und die mindestens eine oberflächenblockierende Substanz (gelöst oder emulgiert) enthält, mindestens eine saure oder basische Substanz und/oder Wasser zugesetzt.

Bei der zweiten besonders bevorzugten Variante wird die Lösung oder das Sol die bzw. das das mindestens eine als Oxid(hydrat) ausfällbare Element enthält einer wäßrigen Lösung von zur Ausfällung geeignetem pH-Wert, die die mindestens eine oberflächenblockierende Substanz enthält, zugegeben (z.B. zuge-tropft).

Nachdem die Suspension von nanoskaligen Teilchen nach einer der obigen Varianten (a) bis (c) hergestellt wurde, wird sie erfindungsgemäß Bedingungen unterzogen, die zu einer Verdichtung und/oder Kristallisation der nanoskaligen Teilchen führen.

Vorzugsweise wird die Suspension zu diesem Zweck (vorzugsweise für mehrere (z.B. 1 bis 24 Stunden) einer erhöhten Temperatur und gegebenenfalls einem erhöhten Druck ausgesetzt. Besonders bevorzugt erfolgt diese Behandlung unterhalb der kritischen Daten des anwesenden Lösungsmittels. Die erhöhten Temperaturen müssen selbstverständlich auch gewährleisten, daß sich die oberflächenblockierende Substanz und das Lösungsmittel nicht oder nur unwesentlich zersetzen.

Unter erhöhter Temperatur wird hierbei insbesondere eine Temperatur zwischen etwa 150 und 350°C und unter erhöhtem Druck ein solcher zwischen etwa 10 und 100 bar verstanden. Beispielsweise wird die die nanoskaligen Teilchen enthaltende Suspension, die gemäß den Varianten (a) bis (c) hergestellt wurde, vorzugsweise ohne weitere Vorbehandlung in einen Druckbehälter gegeben und bei entsprechendem Druck und entsprechender Temperatur behandelt. Die zur Verdichtung bzw. Kristallisation der jeweiligen Teilchen erforderlichen Parameter (Druck, Temperatur, Behandlungsdauer) können durch entsprechende Reihenversuche ohne weiteres ermittelt werden.

Aus der nach dem erfindungsgemäßen Verfahren hergestellten Suspension können die verdichteten bzw. kristallisierten Teil-

chen durch Entfernung der flüssigen Phase bzw. des Lösungsmittels (z.B. durch Filtration und/oder Destillation) isoliert werden. Anschließend können sie (vorzugsweise bei erhöhten Temperaturen) getrocknet und gegebenenfalls kalziniert werden.

5

Es ist auch möglich, die erfindungsgemäß erhaltenen verdichten und/oder kristallisierten Teilchen vor dem Trocknen bzw. vor dem Kalzinieren anderen auf diesem Gebiet üblichen Verfahren zu unterziehen. Beispielsweise kann die oberflächenblockierende Substanz von der Oberfläche der Teilchen entfernt und gegebenenfalls durch eine oberflächenmodifizierende Substanz ersetzt werden.

10

Zur Entfernung der oberflächenblockierenden Substanz kann man die Teilchen z.B. waschen, einer chemischen Reaktion zwecks Zerstörung der oberflächenmodifizierenden Substanz und/oder einer Dialyse unterziehen.

15

Die Oberflächenmodifizierung von nanoskaligen Teilchen (z.B. mit Carbonsäuren, Aminen etc.) ist in der Literatur bereits ausführlich beschrieben und muß hier nicht weiter erläutert werden.

20

Mit Hilfe des erfindungsgemäßen Verfahrens können nanokristalline, schwach agglomerierte, verdichtete und/oder kristallisierte Teilchen (Größen üblicherweise zwischen 5 und 20 nm) erhalten werden.

25

Die erfindungsgemäß zugänglichen nanoskaligen Pulver lassen sich in üblicher Weise weiterverarbeiten, indem man sie z.B. durch Pressen oder andere Formgebungsverfahren (Schlicker-(druck)guß, Extrusion, Siebdruck, Foliengießen, usw.) mit anschließendem Sintern in Formkörper oder Schichten umwandelt, oder vorzugsweise durch Gießen zu Folien mit einer Dichte von vorzugsweise $\leq 20 \mu\text{m}$ verarbeitet. Die erfindungsgemäß hergestellten Pulver zeichnen sich aufgrund ihrer geringen Teil-

30

35

chengröße und ihrer guten Dispergierfähigkeit durch eine sehr hohe Sinteraktivität aus.

5 Die folgenden Beispiele veranschaulichen die vorliegende Erfindung, ohne deren Umfang zu beschränken.

BEISPIEL 1

10 Eine Mischung von 12,4 g $\text{Y}(\text{NO}_3)_3 \cdot 4 \text{H}_2\text{O}$ und 255 g Zirkonium-n-propylat wurde in 64 ml Ethanol gelöst. Die resultierende Lösung wurde unter Rühren zu 320 ml einer wässrigen, ammoniakalischen Lösung ($\text{pH} = 12$), die jeweils 2,1 g Emulsogen^(R) OG und Tween^(R) 80 enthielt, getropft. Nach beendeter Zugabe wurde die gebildete Suspension in einem Röhrautoklaven bei 250°C und 70 bar 15 3 Stunden lang nachbehandelt. Anschließend wurde das Lösungsmittel abdestilliert. Auf diese Weise konnten nanokristalline, agglomeratfreie Teilchen (kubisches, mit 8 Mol-% Y stabilisiertes ZrO_2 mit einer durchschnittlichen Größe von 7 nm erhalten werden.

20

BEISPIEL 2

25 Eine Lösung von 25 g $\text{Al}(\text{NO}_3)_3$ in 200 ml H_2O wurde einer wässrigen, ammoniakalischen Lösung, die jeweils 0,21 g Tween^(R) 80 und Octanol enthielt, bei 80°C unter Rühren zugetropft. Nach beendeter Zugabe wurde die gebildete Suspension 24 Stunden bei 80°C gealtert. Anschließend wurde das Lösungsmittel abdestilliert und das so erhaltene Pulver wurde bei 1050°C 5 Minuten lang kalziniert. Auf diese Weise wurde nanokristallines, re-dispergierbares $\alpha\text{-Al}_2\text{O}_3$ mit Teilchengrößen zwischen 40 und 60 nm erhalten.

30

BEISPIEL 3

35 55 g einer Lösung von 70% Zirkonium-n-propoxid in Propanol (Fluka) wurden in 400 ml Ethanol gelöst, worauf eine Mischung

aus 11 ml HNO₃ (65 Gew.-%) und 12,5 ml Wasser zugetropft wurde. Daraufhin wurde das Lösungsmittel bei 50°C und 200 mbar entfernt. Nach Zugabe von 237 ml Wasser, in dem 2 g Y(NO₃)₃ gelöst waren, entstand ein Sol, das 10 Gew.-% Zr-Salz enthielt. Die Konzentration an Y-Salz betrug ca. 5 Mol-%, bezogen auf Zr.

Das so erhaltene Sol wurde mit jeweils 0,5 g Emulsogen^(R) OG und Tween^(R) 80 versetzt. Durch Einleiten von Ammoniakgas in das Sol wurde der pH-Wert erhöht und der Feststoff ausgefällt. Anschließend wurde die Suspension in einem Röhrautoklaven bei 250°C und 70 bar 3 Stunden lang hydrothermal nachbehandelt. Nach Abdestillieren des Lösungsmittels wurde nanokristallines, redispersierbares 5-Y-ZrO₂ mit Teilchengrößen zwischen 5 und 10 nm erhalten.

BEISPIEL 4

Eine Lösung von 150 g 70% Zirkonium-n-propoxid in Propanol (Fluka) und 7,3 g Sc(NO₃)₃.6 H₂O wurden in 400 g Ethanol gelöst. Diese Lösung wurde unter Rühren zu 500 ml einer Lösung von jeweils 5 g Emulsogen^(R) OG und Tween^(R) 80 (pH = 12) getropft. Nach beendeter Zugabe wurde die so gebildete Suspension in einem Röhrautoklaven einer Behandlung bei erhöhtem Druck und erhöhte Temperatur (250°C, 65 bar, 3 h) unterzogen. Nach Abdestillieren des Lösungsmittels wurde kubisches, redispersierbares 8-Sc-ZrO₂ mit Teilchengrößen zwischen 5 und 10 nm erhalten.

PATENTANSPRÜCHE

1. Verfahren zur Herstellung schwach agglomerierter, verdichteter und/oder kristallisierter nanoskaliger Teilchen, dadurch gekennzeichnet, daß entweder

5

(a) eine amorphe oder teilkristalline nanoskalige Teilchen enthaltende Suspension in üblicher Weise aus Precursoren für die nanoskaligen Teilchen hergestellt wird, wobei die Herstellung in einem Lösungsmittel, das für die Teilchen kein oder nur ein geringes Lösungsvermögen besitzt, und in Gegenwart mindestens einer oberflächenblockierenden Substanz durchgeführt wird, oder

10

(b) ein bereits gebildetes Pulver aus amorphen oder teilkristallinen nanoskaligen Teilchen in Gegenwart der unter (a) angegebenen mindestens einer oberflächenblockierenden Substanz in dem unter (a) angegebenen Lösungsmittel suspendiert wird, oder

15

(c) ein amorphe oder teilkristalline nanoskalige Teilchen enthaltendes Sol in Gegenwart der unter (a) angegebenen mindestens einer oberflächenblockierenden Substanz in dem unter (a) angegebenen Lösungsmittel suspendiert wird; und

20

25

die so hergestellte Suspension Bedingungen unterzogen wird, die zu einer Verdichtung und/oder Kristallisation der nanoskaligen Teilchen führen.

30

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß es sich bei den nanoskaligen Teilchen um Oxid(hydrat)-, Sulfid-, Selenid-, Tellurid- und/oder Phosphid-Teilchen, insbesondere um Oxid(hydrat)-Teilchen handelt.

35

3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß es sich bei den Oxid(hydrat)-Teilchen um solche von Elementen handelt, die sich zur Herstellung von Glas und/oder Keramik eignen.
5
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die Elemente, die sich zur Herstellung von Glas und/oder Keramik eignen, ausgewählt sind aus Haupt- und Nebengruppenmetallen und insbesondere aus mindestens einem von Ba, Al, Ti, Zr, Fe, Y, Sc, Ru, Zn und Pb.
10
5. Verfahren nach irgendeinem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß in Variante (a) eine nanoskalige Oxid(hydrat)-Teilchen enthaltende Suspension hergestellt wird, indem man aus einer Lösung oder einem Sol, die bzw. das mindestens ein als Oxid(hydrat) ausfällbares Element enthält, das mindestens eine Oxid(hydrat) in Gegenwart mindestens einer oberflächenblockierenden Substanz durch Änderung des pH-Wertes und/oder durch Wasserzugabe ausfällt.
15
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß es sich bei der das als Oxid(hydrat) ausfällbare Element enthaltenden Lösung um eine wäßrige Lösung und/oder eine Lösung in mindestens einem mit Wasser mischbaren organischen Lösungsmittel, insbesondere einem aliphatischen Alkohol mit 1 bis 3 Kohlenstoffatomen, handelt.
20
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß das als Oxid(hydrat) ausfällbare Element im Falle einer wäßrigen Lösung als hydrolysierbares Salz und im Falle einer organischen Lösung als hydrolysierbare metallorganische Verbindung vorliegt.
25
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß es sich bei dem hydrolysierbaren Salz um ein Nitrat, ein
30
- 35

Salz einer Carbonsäure, vorzugsweise einer C₁-C₃-Carbonsäure, oder um ein Ammoniumsalz handelt.

9. Verfahren nach irgendeinem der Ansprüche 5 bis 8, dadurch gekennzeichnet, daß die Einstellung der zur Ausfällung des Oxid(hydrat)s erforderlichen pH-Wertes mit Hilfe von Ammoniak, organischen Aminen und/oder quaternären Ammoniumsalzen bzw. HNO₃ und/oder kurzkettigen Carbonsäuren oder mit Hilfe von sauren oder basischen Ionenaustauschern erfolgt.
5
10. Verfahren nach irgendeinem der Ansprüche 5 bis 9, dadurch gekennzeichnet, daß die Ausfällung des Oxid(hydrat)s bewirkt wird, indem entweder
15
 - (a) der Lösung oder dem Sol, die bzw. das das mindestens eine als Oxid(hydrat) ausfällbare Element und die mindestens eine oberflächenblockierende Substanz enthält, mindestens eine saure oder basische Substanz und/oder Wasser zugesetzt wird; oder
20
 - (b) die Lösung oder das Sol, die bzw. das das mindestens eine als Oxid(hydrat) ausfällbare Element enthält, einer wäßrigen Lösung von zur Ausfällung geeignetem pH-Wert, die die mindestens eine oberflächenblockierende Substanz enthält, zugegeben wird.
25
11. Verfahren nach irgendeinem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß das Lösungsmittel, das für die Teilchen kein oder nur ein geringes Lösungsvermögen besitzt, aus Wasser, Alkoholen, Glykolen, Aminen, aliphatischen, cycloaliphatischen und aromatischen, gegebenenfalls substituierten, insbesondere halogenierten, Kohlenwasserstoffen und Mischungen davon ausgewählt wird.
30
- 35

12. Verfahren nach irgendeinem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die oberflächenblockierende Substanz aus nichtionischen Tensiden, Cellulosederivaten, längerkettigen Alkoholen, Carbonsäuren, Aminen, Aminosäuren, β -Dicarbonylverbindungen, Polyvinylalkoholen und Mischungen davon ausgewählt wird.
- 5
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß die nichtionischen Tenside aus Sorbitanestern von Fettsäuren, Polyethylenoxidderivaten dieser Sorbitanester und Fettsäureglykolestern ausgewählt werden.
- 10
14. Verfahren nach irgendeinem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß es sich bei den Bedingungen, die zu einer Verdichtung und/oder Kristallisation der nanoskaligen Teilchen führen, um erhöhte Temperaturen und gegebenenfalls erhöhten Druck handelt.
- 15
20
15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß die Temperatur- und Druckbedingungen so gewählt werden, daß sie unter den kritischen Daten des eingesetzten Lösungsmittels liegen.
- 25
16. Verfahren nach irgendeinem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß es zusätzlich die Entfernung der oberflächenblockierenden Substanz am Ende des Verfahrens und gegebenenfalls eine anschließende Oberflächenmodifizierung der so erhaltenen Teilchen umfaßt.
- 30
17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, daß die Entfernung der oberflächenblockierenden Substanz Waschen, chemische Reaktion und/oder Dialyse einschließt.
- 35
18. Schwach agglomerierte, verdichtete und/oder kristallisierte nanoskalige Teilchen, erhältlich nach dem Verfahren gemäß irgendeinem der Ansprüche 1 bis 17.

20

19. Verwendung der Teilchen nach Anspruch 18 zur Herstellung von vorzugsweise keramischen Formkörpern, Schichten, Folien und Kompositmaterialien.
- 5 20. Verwendung nach Anspruch 19 zur Herstellung dünner Folien mit einer Dicke von $\leq 20 \mu\text{m}$, vorzugsweise durch einen Gieß-Prozeß.

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 96/01756

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 6 C01G1/00 C01B13/14 C01G25/02 C01F7/02

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 6 C01G C01B C01F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO,A,93 21127 (INST NEUE MATERIALIEN GEMEINNU ;NASS RUEDIGER (DE); SCHMIDT HELMUT) 28 October 1993 see the whole document ---	1-4,11, 12,16, 19,20
A	EP,A,0 253 552 (CORNING GLASS WORKS) 20 January 1988 see the whole document ---	1-11
A	GB,A,2 168 334 (SOUTH AFRICAN INVENTIONS) 18 June 1986 see the whole document ---	1-7
		-/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

2

Date of the actual completion of the international search

31 July 1996

Date of mailing of the international search report

19.08.96

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentaan 2
NL - 2280 HV Rijswijk
Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+ 31-70) 340-3016

Authorized officer

LIBBERECHT, E

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 96/01756

C(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, vol. 1, no. 3, 1994, DORDRECHT NL, pages 233-240, XP000442436 M. CHATRY ET AL: "the role of complexing ligands in the formation of non-aggregated nanoparticles of zirconia" see the whole document --- JOURNAL OF MATERIALS SCIENCE, vol. 26, no. 9, 1 May 1991, pages 2353-2358, XP000218029 LEROT L ET AL: "CHEMICAL CONTROL IN PRECIPITATION OF SPHERICAL ZIRCONIA PARTICLES" see the whole document -----	1-17
A		1-17

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 96/01756

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO-A-9321127	28-10-93	DE-A-	4212633	21-10-93
		EP-A-	0636111	01-02-95
		JP-T-	7505359	15-06-95
-----	-----	-----	-----	-----
EP-A-0253552	20-01-88	US-A-	4778671	18-10-88
		AU-B-	607146	28-02-91
		AU-B-	7530187	21-01-88
		CA-A-	1275783	06-11-90
		JP-A-	63025205	02-02-88
-----	-----	-----	-----	-----
GB-A-2168334	18-06-86	AU-B-	5071285	19-06-86
-----	-----	-----	-----	-----

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP 96/01756

A. KLASSEIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
 IPK 6 C01G1/00 C01B13/14 C01G25/02 C01F7/02

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprästoff (Klassifikationssystem und Klassifikationsymbole)
 IPK 6 C01G C01B C01F

Recherchierte aber nicht zum Mindestprästoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	WO,A,93 21127 (INST NEUE MATERIALIEN GEMEINNU ;NASS RUEDIGER (DE); SCHMIDT HELMUT) 28.Oktober 1993 siehe das ganze Dokument ---	1-4,11, 12,16, 19,20
A	EP,A,0 253 552 (CORNING GLASS WORKS) 20.Januar 1988 siehe das ganze Dokument ---	1-11
A	GB,A,2 168 334 (SOUTH AFRICAN INVENTIONS) 18.Juni 1986 siehe das ganze Dokument ---	1-7

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen :

'A' Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

'E' älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist

'L' Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

'O' Veröffentlichung, die sich auf eine mündliche Offenbarung,

'P' Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

'T' Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

'X' Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfindenscher Tätigkeit beruhend betrachtet werden

'Y' Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfindenscher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

'&' Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Anmeldedatum des internationalen Recherchenberichts

31.Juli 1996

19.08.96

Name und Postanschrift der Internationale Recherchenbehörde

Europäisches Patentamt, P.B. 5818 Patentaan 2
NL - 2280 HV Rijswijk
Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl.
Fax (+ 31-70) 340-3016

Bevollmächtigter Bediensteter

LIBBERECHT, E

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP 96/01756

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN		
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	<p>JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, Bd. 1, Nr. 3, 1994, DORDRECHT NL, Seiten 233-240, XP000442436</p> <p>M. CHATRY ET AL: "the role of complexing ligands in the formation of non-aggregated nanoparticles of zirconia" siehe das ganze Dokument</p> <p>---</p>	1-17
A	<p>JOURNAL OF MATERIALS SCIENCE, Bd. 26, Nr. 9, 1.Mai 1991, Seiten 2353-2358, XP000218029</p> <p>LEROT L ET AL: "CHEMICAL CONTROL IN PRECIPITATION OF SPHERICAL ZIRCONIA PARTICLES" siehe das ganze Dokument</p> <p>-----</p>	1-17

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP 96/01756

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
WO-A-9321127	28-10-93	DE-A-	4212633	21-10-93
		EP-A-	0636111	01-02-95
		JP-T-	7505359	15-06-95
-----	-----	-----	-----	-----
EP-A-0253552	20-01-88	US-A-	4778671	18-10-88
		AU-B-	607146	28-02-91
		AU-B-	7530187	21-01-88
		CA-A-	1275783	06-11-90
		JP-A-	63025205	02-02-88
-----	-----	-----	-----	-----
GB-A-2168334	18-06-86	AU-B-	5071285	19-06-86
-----	-----	-----	-----	-----