

# Upside-Down Reinforcement Learning Can Diverge in Stochastic Environments With Episodic Resets



Miroslav Štrupl<sup>1</sup>, Francesco Faccio<sup>1</sup>, Dylan R. Ashley<sup>1</sup>, Rupesh Kumar Srivastava<sup>2</sup>, Jürgen Schmidhuber<sup>1,2,3</sup>



<sup>1</sup>The Swiss AI Lab IDSIA/USI/SUPSI, Lugano, Switzerland <sup>2</sup>NNAISENSE, Lugano, Switzerland <sup>3</sup>KAUST, Thuwal, Saudi Arabia {struplm, francesco, dylan.ashley}@idsia.ch, rupesh@nnaisense.com, juergen@idsia.ch



## Summary

- Upside-Down Reinforcement Learning (UDRL) is an approach for solving RL problems that does not require value functions and uses *only* supervised learning[2, 3].
- Ghosh et al. [1] proved that Goal-Conditional Supervised Learning (GCSL)---a simplified version of UDRL---optimizes a lower bound on goal-reaching performance.
- Question: Does UDRL converge to the optimal policy in arbitrary environments?
  - Here we show that for a specific *episodic* UDRL algorithm (eUDRL, including GCSL), this is not the case, and give the causes of this limitation.
- Assumptions: finite (discrete) environments, no function approximation, unlimited number of samples.

## Background

 $\mathcal{M} = (\mathcal{S}, \mathcal{A}, p_T, \mu_0, r)$  an MDP where:

- $\mathcal{S}$ , $\mathcal{A}$  finite state and action spaces
- $p_T(s'|s,a)$  is a transition probability.
- r(s', s, a) deterministic reward function.
- $\mu_0(s)$  initial state probability.
- return  $G_t := \sum_{k=0}^{\infty} r(S_{t+1+k}, S_{t+k}, A_{t+1}),$
- policy  $\pi(a|s)$
- state/action-value functions:  $V^{\pi}(s) := \mathbb{E}_{\pi}[G_t|S_t = s;\pi],$   $Q^{\pi}(s,a) := \mathbb{E}_{\pi}[G_t|S_t = s,A_t = a;\pi].$

In UDRL the agent takes (besides the state) an extra *command* input (h, g). We will fix the command interpretation: ``reach goal g in h number of steps". Objective: Become better at fulfilling commands

action 
$$\mathcal{M}$$
-state horizon goal  $\pi(a \mid \underline{s}, \underline{h}, \underline{g})$   $\bar{s} - \bar{\mathcal{M}}$  state

**Motivation:** We extend the state space by the command to be able to view an eUDRL agent as an ordinary agent on a slightly bigger MDP  $\overline{\mathcal{M}}$ .

Command extension (CE) of an MDP  $\mathcal{M}=(\mathcal{S},\mathcal{A},p_T,r,\mu_0)$  is the MDP  $\bar{\mathcal{M}}=(\bar{\mathcal{S}},\mathcal{A},\bar{p}_T,\bar{r},\bar{\mu}_0,\rho)$ , where: (Items in this color has to be supplied in addition to  $\mathcal{M}$ )

- $\rho: \mathcal{S} \to \mathcal{G}$ -goal map,  $\mathcal{G}$ -goal set
- $\bar{\mathcal{S}}:=\mathcal{S}\times\{h\leq N\}\times\mathcal{G},$  N-max.hor.,  $\bar{\mathcal{S}}_A:=\{(s,h,g)\in\bar{\mathcal{S}}|h=0\}$ -absorbing states
- $\bar{\mu}_0(s,h,g) := \mathbb{P}(H_0 = h, G_0 = g|S_0 = s)\mu_0(s)$

$$\begin{pmatrix} s_0 \\ h \\ g \end{pmatrix} \xrightarrow{\tau: 0} \begin{pmatrix} s_1 \\ h-1 \\ g \end{pmatrix} \xrightarrow{q, p_T} \dots \begin{pmatrix} s_{h-1} \\ 1 \\ g \end{pmatrix} \xrightarrow{\eta, p_T} \frac{\pi, p_T}{\mathbf{1}_{\{\rho(s_h) = g\}}} \begin{pmatrix} s_h \\ 0 \\ g \end{pmatrix} \in \bar{\mathcal{S}}_A$$

 $\bar{p}_T$ : g-fixed, h-decreases by 1 til 0, s-evolves according to  $p_T$  for h>0;  $\bar{r}$ : non-zero just from  $h=1 \implies V^{\pi}(s,h,g)=\mathbb{P}(\rho(S_h)=g|\bar{S}_0=(s,h,g);\pi)$ .

Segment distribution  $\Sigma \sim d_\Sigma^\pi$  - analogy to the state visitation distribution, segment - a continuous chunk of the trajectory

$$\Sigma = (l(\Sigma) \quad , \ S_0^\Sigma \qquad , \ H_0^\Sigma, G_0^\Sigma, A_0^\Sigma, S_1^\Sigma, A_1^\Sigma, \ldots, \ S_{l(\Sigma)}^\Sigma \qquad \qquad \text{the last state}$$

#### eUDRL learning algorithm

eUDRL [3] starts from an initial policy  $\pi_0$  and generates a sequence of policies  $(\pi_n)$ . Each iteration consists of two steps:

- 1. a batch of episodes is generated using the current policy  $\pi_n$ ,
- 2. a new policy  $\pi_{n+1}$  is fitted to some action conditional of  $d_{\Sigma}^{\pi_n}$

$$\tau = (s_0, a_0, \dots, \overset{\downarrow}{s_t}, \overset{\downarrow}{a_t}, \dots, \overset{\downarrow}{s_{t+l(\sigma)}}, \dots, s_N)$$

$$\sigma = (\overset{\sigma}{s_0}, \overset{\sigma}{a_0}, \dots, \overset{\sigma}{s_{l(\sigma)}})$$

 $\sigma$  evidences that  $a_0^{\sigma}$  might be good for reaching  $\rho(s_{l(\sigma)}^{\sigma})$  in  $l(\sigma)(=t'-t)$  steps

$$\pi_{n+1} := \arg\max_{\pi} \mathbb{E} \log \left( \pi(a_0^{\sigma} \mid s_0^{\sigma}, \underline{l(\sigma)}, \underline{\rho(s_{l(\sigma)}^{\sigma})}) \right).$$

\* **lemma 4.1:**(eUDRL insensitivity to goal input at horizon 1) Let us have an MDP  $\mathcal{M}=(\mathcal{S},\mathcal{A},p_T,r,\mu_0)$  and its CE  $\bar{\mathcal{M}}=(\bar{\mathcal{S}},\mathcal{A},\bar{p}_T,\bar{r},\bar{\mu}_0,\rho)$ , such that there exists a state  $s\in\mathcal{S}$  and two goals  $g_0\neq g_1,\ g_0,g_1\in\mathcal{G}$  such that  $M_0:=\arg\max_{a\in\mathcal{A}}Q^*((s,1,g_0),a)$  and  $M_1:=\arg\max_{a\in\mathcal{A}}Q^*((s,1,g_1),a)$  (optimal policy supports for  $g_0,g_1$ ) have empty intersection  $M_0\cap M_1=\emptyset$ . Assume  $Q_A^{\pi_n,g_i}(s,1,a)\geq q_i(1-\delta)$  where delta  $\delta>0$  and  $q_i:=\max_a Q_A^{\pi_n,g_i}(s,1,a)$ . Then, when  $\delta<1$  (stochastic environment), the sequence  $(\pi_n)$  of policies produced by eUDRL recursion cannot tend to the optimal policy set.

## eUDRL Non-Optimality in Stochastic Environments

eUDRL Recursion Rewrite

 $\alpha \in [0.5, 1]$  -stochasticity,

 $\alpha = 1$ -deterministic  $p_T$ ,

$$\pi_{n+1} := \arg\max_{\pi} \mathbb{E} \log \left( \pi(a_0^{\sigma} \mid s_0^{\sigma}, \underline{l(\sigma)}, \underline{\rho(s_{l(\sigma)}^{\sigma})}) \right).$$

$$\pi_{n+1}(a|s, h, g) = \mathbb{P}(A_0^{\Sigma} = a|S_0^{\Sigma} = s, l(\Sigma) = h, \rho(S_{l(\Sigma)}^{\Sigma}) = g; \pi_n)$$
(3.1)

$$\propto \underbrace{\mathbb{P}(\rho(S_{l(\Sigma)}^{\Sigma}) = g | A_0^{\Sigma} = a, S_0^{\Sigma} = s, l(\Sigma) = h; \pi_n)} \cdot \underbrace{\mathbb{P}(A_0^{\Sigma} = a | S_0^{\Sigma} = s, l(\Sigma) = h; \pi_n)}_{\bullet}$$

average Q

 $Q_A^{\pi_n,g}(s,h,a)$ 

average policy

 $\pi_{A,n}(a|s,h)$ 

where

$$Q_A^{\pi_n, g}(s, h, a) = \mathbb{P}(\rho(S_h) = g | A_0 = a, S_0 = s; \pi_n)$$

$$\pi_{A, n}(a|s, h) = \sum_{h' \ge h, g' \in \mathcal{G}} \pi_n(a|h', g', s) \mathbb{P}(H_0^{\Sigma} = h', G_0^{\Sigma} = g' | S_0^{\Sigma} = s, l(\Sigma) = h; \pi_n)$$

**Problem:** "averaging" across goals g', and horizons h' is a problem. E.g.  $\pi_{A,n}$  is constant in g, everything has to be accounted in multiply by  $Q_A^{\pi_n,g}$  step. (Formally see lemma 4.1 at the bottom\*)

Ex: 
$$(a_0 \in M_0)$$
:  $\pi_{n+1}(a_0|s, 1, g) \propto \mathbb{P}(\rho(s_1) = g|A_0 = a_0, S_0 = s; \pi_n) \times \pi_{A,n}(a_0|s, 1)$ 

$$g_0 \qquad g_1 \qquad g_0 \qquad g_1$$

**Demonstration** 



• Everything is constant for iteration > 0. • RMSVE and  $\|\pi_n - \pi^*\|_{\infty}$  do not approach 0 for stochastic case ( $\alpha < 1$ ). Increasing the number of iterations or the sample size does not help! • There is no monotony in GCSL goal reaching objective  $J(\pi_n) = \sum_{\bar{s} \in \bar{\mathcal{S}}} V^{\pi_n}(\bar{s}) \bar{\mu}_0(\bar{s})$ .

#### Conclusion

- Definitions command extension and segment distribution allowed for formal investigation of eUDRL/GCSL.
- The eUDRL recursion rewrite (3.1) helps to understand causes of eUDRL/GCSL non-optimality.
- We disproved eUDRL's convergence to the optimum for quite a large class of stochastic environments in Lemma 4.1.
- The example demonstrates that there is no guarantee for monotonic improvement.
- This result applies to certain existent implementations [3, 1] that nevertheless produce useful results in practice.

#### **Acknowledgements & References**

This work was supported by the ERC Advanced Grant (no: 742870) and by the Swiss National Supercomputing Centre (CSCS, project: s1090). We also thank NVIDIA Corporation for donating a DGX-1 as part of the Pioneers of AI Research Award and to IBM for donating a Minsky machine.

- [1] D. Ghosh, A. Gupta, A. Reddy, J. Fu, C. Devin, B. Eysenbach, and S. Levine. Learning to reach goals via iterated supervised learning, 2019.
- [2] J. Schmidhuber. Reinforcement learning upside down: Don't predict rewards -- just map them to actions, 2019.
- [3] R. K. Srivastava, P. Shyam, F. Mutz, W. Jaśkowski, and J. Schmidhuber. Training agents using upside-down reinforcement learning, 2019.