Teorías de estructura espiral

Alfonso de Lucas Iniesta, Jacobo Ruiz Morales y Luis Lucas García

Universidad de Alicante

17 de mayo de 2024

Tabla de contenidos

- Motivación
- 2 Diferentes acercamientos
- Un hecho peculiar
- Conclusiones
- Referencias

Motivación

Aproximadamente el $60\,\%$ de las galaxias son espirales. Dentro de este grupo el $10\,\%$ son de gran estructura, el $60\,\%$ de multiples brazos y el $30\,\%$ las floculentas. [5]

Pregunta

¿Cómo podemos explicar la formación de estas estructuras en las galaxias?

Figura: Una galaxia de brazos múltiples, floculenta y de gran diseño respectivamente.

Dos modelos simples

Modelo de sólido rígido

Suponiendo una velocidad angular constante como en cualquier sólido rígido podemos ver la velocidad lineal:

$$v = \omega r$$

Rotación diferencial

Suponiendo que la velocidad lineal es constante podemos tener una velocidad angular:

$$\omega = \frac{v}{r}$$

El primer modelo no forma brazos y parece ser un molinillo rígido. Esto obviamente no es una estructura espiral válida.

Simulaciones

https://github.com/luisgotsky [2]

Aun así, vemos galaxias espirales de múltiples rango de edades:

Figura: Estructura espiral de BX442 y Messier 33.

Entonces, ¿por qué seguimos viendo los brazos?

Un modelo más válido

Ondas de densidad

Actualmente, el modelo más aceptado es el de densidades de ondas, propuesto originalmente en la década de los 60 por los astrónomos Chia Chiao Lin y Frank Shu. Aunque se ha ido modificando con los años. [3].

Estas ondas son estructuras cuasiestáticas densas y que avanzan lentamente.

- Las estrellas y nubes del disco atravesarán los brazos.
- Las estrellas masivas nacerán y morirán rápidamente.
- En cambio, las estrellas más comedidas escaparán de la estructura.

Simulación con ondas de densidad

https://beltoforion.de/en/spiral_galaxy_renderer/

¿Por qué se forman estas ondas?

Tenemos varias hipótesis sobre la formación de esta onda de densidad:

Asimetría inicial

Una asimetría inicial, que genere un desbalance de masa, podría dar inicio al movimiento de la onda de densidad.

Posesión de una barra central

La barra central de algunas galaxias puede provocar una perturbación gravitacional lo suficientemente grande como para generar densidades del tipo espiral.

Interacción con otra galaxia

Si la galaxia interactúa con sus galaxias vecinas o alguna pasante, una perturbación puede cambiar la estructura de la galaxia, dando inicio a una onda de densidad.

¿Qué pasa con las Galaxias Floculentas?

Galaxias floculentas

Las simulaciones tienden a formar galaxias de Gran Diseño, aunque en el universo observamos patrones más complejos como las floculentas.

Figura: Representación artística de una galaxia floculenta.

Formación estelar autopropagada

La teoría de la formación estelar autopropagada podría explicar el origen de estos brazos enmarañados.

SPSF

La formación estelar produce supernovas y vientos solares que suscitan más formación estelar. Estas regiones más densas se ven 'apretadas' por la acción de la rotación diferencial. Y esto da lugar a una galaxia de brazos cortos y enmarañados sin simetría apreciable. [4]

Corrimiento al rojo

Es extraño observar galaxias espirales con un corrimiento al rojo z>2. [1]

Causas

Esto se puede deber a las altas temperaturas del Universo primigenio. También se baraja que nuestros instrumentos no sean lo suficientemente buenos para observar la estructura de estas galaxias.

Un caso excepcional BX442

La galaxia BX442 tiene un corrimiento al rojo de z = 2,17.

Figura: Imagen del Hubble (izquierda) y del OSIRIS (derecha).

Conclusión

Conclusiones

- Hemos utilizado distintos modelos para abordar la formación de galaxias espirales.
- Ninguna de las propuestas es definitiva.
- Esperamos cambios en el futuro que arrojen luz sobre la formación de estas estructuras.

Bibliografía

- [1] David R. Law et.al. "High velocity dispersion in a rare grand-design spiral galaxy at redshift z=2.18". En: *Nature* 487 (2012), págs. 338-340. DOI: 10.1038/11256.
- [2] Luis Lucas García. GitHub Spiral Structure. URL: https://github.com/luisgotsky (visitado 16-05-2024).
- [3] C.C. Lin, C. Yuan y Frank H. Shu. "On the Spiral Structure of Disk Galaxies. III. Comparison with Observations". En: American Physics Journal 155 (mar. de 1969), pág. 721. DOI: 10.1086/149907.
- [4] David Malin. Flocculent Spiral. URL: https://astronomy.swin.edu. au/cosmos/F/Flocculent+Spiral (visitado 09-05-2024).
- [5] Spiral Structure. URL: http://burro.cwru.edu/Academics/Astr222/Galaxies/Spiral/spiral.html (visitado 01-05-2024).