Some Special Functions. x 20 x < 0 Domain ER. Range E [0,00) 0 $\Rightarrow x = \pm 2$ |x = 2 121-1 < 0 $|x| \leq a$ $\Rightarrow |x| \leq 1$ $-a \le x \le a$ -15861 -2 -1 0

$$[-0,72] \cup [2,0)$$

$$[-0,72] \cup [2,0)$$

$$[-2,-1] \cup [2,3]$$

$$x-3 > 0$$
 $y=|x|$
 $x > 0$
 $-x > 0$
 $x > 0$
 x

 \times . $\chi \in [3,4]$

ii)
$$|\chi| + |\chi+4| = 4$$
 $\chi \neq 0$
 $\chi = 0$

(2) Signum femelon. 27 D f(x) = sgn(x) =NZO x c O Domain & R. Range = { -1,0,1 } 8 ketch the graph of i) $f(x) = Sgn(x^2+1)$ ii) f(x) = Sgn(logex)i) x2+1 always toe

tue. K/1 W) dogen = 0 n=1 27/ - ve. 0(2() Sgn (loger) = 0 2=1 OCXCI 1 0 -1 -0 3) freatest Integer function or Step Up Junction. f(x) = [x] us the integral past of x
which is neasest to x but smaller
than x [2.93] $\begin{bmatrix} -3 \cdot 12 \end{bmatrix}$ $\begin{bmatrix} -4 \\ -3 \cdot 12 \end{bmatrix}$ [x]=n;n<x 5n+1

Fractional Past function
$$f(x) = \{x\} \text{ is the fractional past of } x$$

$$x = [x] + \{x\} \text{ o < } \{x\} < 1$$

$$\{2.9\} = 2 + 6.9$$

$$[3.4]$$

$$\{-2.9\} = 1 - \{x\}$$

$$\{-2.9\} = 1 - 0.9 = 0.1$$

Finding Range of Function. Steep 1: Find domain of f(n) Stepz a) If domain is a fronte set. then Range is set of corresponing f(x) value. b) If domain ERORR-Efenteset} i) Express x in teasons of y.
ii) then find values of y for which x is defined. c) If domain & finite interval. then find the least & greatest values for range.

eg. i) $f(x) = \frac{x}{x+2}$ ii) $f(x) = \frac{x^2}{1-[x]+x}$

i) Domain =
$$?$$
 $R - \{-2\}$

$$y = \frac{\chi}{\chi + 2y} = \chi$$

$$2y = \chi(1 - y)$$

$$\Rightarrow x = \frac{2y}{1-y}$$

$$y \neq 1.$$

$$(ii)$$
 $f(x) = \frac{\{x\}}{1+\{x\}}$ Domain $\in \mathbb{R}$

$$y = \frac{2n}{1+2n}$$

$$2n! = \frac{4}{1-3}$$

$$2n! = \frac{4}{1-3}$$

$$0 \le \{x\} < 1$$
 $0 \le \frac{y}{1-y} < 1$
 $\frac{y}{1-y} < 1 \Rightarrow y - 1 < 0$
 $\frac{y-1+y}{1-y} < 0$
 $\frac{y-1+y}{1-y} < 0$

$$\frac{(2y-1)(1-y)}{(1-y)^{2}} < 0$$

$$\frac{(2y-1)(y-1)}{(2y-1)(y-1)} > 0$$

$$\frac{y}{2} < \frac{1}{2} \quad \text{or} \quad y > 1$$

$$\frac{y}{2} < \frac{1}{2} \quad \text{or} \quad y > 1$$

$$\frac{y}{2} < \frac{1}{2} \quad \text{or} \quad y > 1$$

$$\frac{y}{2} < \frac{1}{2} \quad \text{or} \quad y > 1$$

$$\frac{y}{2} < \frac{1}{2} \quad \text{or} \quad y > 1$$

$$0 < y < 1$$

$$0 < y < 1$$

$$0 < y < 1$$

Range E [0, 1/2)

eg. i)
$$y = loge (3x^2 - 4x + 5)$$

(ii) $f(x) = \sqrt{x-1} + \sqrt{5-x}$.

iii) $f(x) = 4 + anx (bsx.$

iv) $f(x) = los (2 sinx)$

v) $f(x) = \left[\{x\} \right] = 0$

vi) $f(x) = Tan \left([x-\pi] \pi \right) = \sqrt{ann\pi}$
 $x^2 - 3x + 2$

vii) $y = \frac{x^2 - x + 1}{x^2 + x + 1}$

viii) $y = (x+2)(x-1)$
 $x(x+1)$

ix) $f(x) = log_2 (sinx - losx + 3\sqrt{2})$

x) $f(x) = log_2 (sinx - losx + 3\sqrt{2})$

i) $y = x - anx + anx +$

i) y = Domam. ER 322-421+5) 70 D < 0 a=370

$$y = \log_{e}(3x^{2} - 4x + 5)$$
 $e^{8} = 3x^{2} - 4x + 5$
 $3x^{2} - 4x + 5 - e^{8} = 0$
 $\Rightarrow 0$
 $(-4)^{2} - 4(3)(5 - e^{4}) > 0$
 $16 - 60 = 4 - 15 + 3e^{4} > 0$
 $16 - 60 = 4 - 11 > 0$
 $e^{8} > \frac{11}{3}$
 $y = 0$
 $e^{9} > \frac{11}{3}$
 $y = 0$
 $y =$

2-120 5-2 >0 271 255. Domain & [1,5] $\sqrt{\chi-1} = \sqrt{5-\chi}$ 2/2 iii) f(x)= 4 tanx losx. Domain. $\mathbb{R}-\left\{ \mathbb{R}^{n+1}\right\} = \left\{ \mathbb{R}^{n} \right\}$ = 45 mx.

= 4(-1,1)

= (-4,4)

(v) (x)=(05 (25 mx) Domain & R. [(os2, 1]

ix)
$$f(x) = \frac{A}{\sqrt{A^2+B^2}} \int_{A^2+B^2} \int_{A^2+B^2}$$

vii)
$$y = \frac{x^2 - x + 1}{x^2 + x + 1}$$
 $y = \frac{x^2 - x + 1}{x^2 + x + 1}$ $y = \frac{x^2 - x + 1}{x^2 + x + 1}$ $y = \frac{x^2 - x + 1}{x^2 + x + 1}$ $y = \frac{x^2 - x + 1}{x^2 + x + 1}$ $y = \frac{x^2 - x + 1}{x^2 + x + 1}$ $y = \frac{x^2 - x + 1}{x^2 + x + 1}$ $y = \frac{x^2 - x + 1}{x^2 + x + 1}$ $y = \frac{x^2 - x + 1}{x^2 + x + 1}$ $y = \frac{x^2 - x + 1}{x^2 + x + 1}$ $y = \frac{x^2 - x + 1}{x^2 + x + 1}$ $y = \frac{x^2 - x + 1}{x^2 + x + 1}$ $y = \frac{x^2 - x + 1}{x^2 + x + 1}$ $y = 0$ $y = 0$

$$y = (x+2)(x-1)$$

$$\pi(x+1)$$

Domain E R- 20,-13

$$y^{2} + y^{2} = x^{2} + x - 2$$

$$(y - 1)^{2} + (y - 1)^{2} + 1 = 0$$

$$(y - 1)^{2} - 4(y - 1)(2) = 0$$

$$(y - 1)^{2} + 1 = 0$$

$$(y - 1)^$$