

Curso: Engenharia de Software PERÍODO LETIVO: 2019/1 DISCIPLINA: Estrutura de Dados 2 Código: 103209 CARGA HORÁRIA: 60 horas **CRÉDITOS:** 04 **PROFESSOR:** Bruno Ribas TURMA: В

PLANO DE ENSINO

1 Ementa do Programa

- Estruturas não-lineares. Árvores. Tabelas hash. Grafos
- Filas de prioridade. Heap
- Algoritmos de ordenação avançados O(n log n), O(n)
- Algoritmos de manipulação e análise de grafos
- Aplicações

2 Horário das aulas e atendimento

AULAS:

{segunda, sexta}-feira, das 8:00 às 9:50 hrs, sala FGA-I3

ATENDIMENTO:

{segunda, sexta}-feira, das 10:00 às 12:00, sala 19

EMAIL:

bruno.ribas _EM_unb.br

PÁGINA:

www.brunoribas.com.br

3 Método

Aula expositiva, quadro branco, listas de exercícios.

4 Critérios de Avaliação

- A avaliação será baseada nas notas de três provas, dois trabalhos e listas de exercício, denotados respectivamente por P₁,P₂, T₁, T₂, L.
- Será aplicada uma prova de reposição ao final do semestre ao aluno que necessite faltar uma das três provas, desde que seja justificada previamente ao professor e seja coerente com aspectos legais que justifiquem a ausência.
- As provas serão realizadas sem consulta.
- Qualquer tentativa de fraude nas provas ou no trabalho implicará em média do semestre ZERO para todos os envolvidos, sem prejuízo de outras sanções.
- As listas de exercícios serão divulgadas ao longo do semestre corrente.
- Após a disponibilização da L_i , os alunos terão prazo combinado em sala para entrega da lista.
- A nota da lista será atribuída de acordo com a quantidade de exercícios feitos. Os alunos que fizerem todos os exercícios de todas as listas receberão nota máxima, os outro receberão notas proporcionais.

4.1 Menção Final

As notas do curso serão calculadas conforme a equação abaixo.

$$M_F = \frac{P_1 + 2 * P_2 + 3 * P_3}{6} * 0, 6 + \frac{T_1 + T_2}{2} * 0, 3 + L * 0, 1$$

4.2 Critérios de aprovação

Obterá aprovação no curso o aluno que cumprir todas as exigências listadas abaixo:

- 1. $M_F \ge 5$; e
- 2. Presença em 75% ou mais das aulas.

Por fim, a menção final do curso é dada de acordo com a tabela abaixo:

$ m M_{F}$	Menção	Descrição
0,0	SR	Sem rendimento
de 1 a 29	II	Inferior
de 30 a 49	MI	Médio Inferior
de 50 a 69	MM	Médio
de 70 a 89	MS	Médio Superior
90 ou maior	SS	Superior

5 Cronograma

O cronograma apresentado a seguir é tentativo, estando seu conteúdo sujeito a alterações.

Dia	Conteúdo
Semanas {1,2,3,4,5}	Ordenação e Hash
9/09	Prova 1
Semanas {5,6,7,8,9}	Árvores
11/10	Prova 2
Semanas {10,11,12,13,14,15,17}	Grafos
22/11	Prova 3
06/12	Prova repositiva para casos justificados

6 Bibliografia

LITERATURA PRINCIPAL

DROZDEK, Adam. Estruturas de Dados e Algoritmos em C++, 1st ed. Thomson, 2002.

LAFORE, R. Estruturas de Dados e Algoritmos em Java, 1a. ed. Ciência Moderna, 2005.

CORMEN, Thomas H.; LEISERSON, Charles E.; RIVEST, Ronald L.; STEIN, Cli or. Algoritmos: Teoria e Prática. 2a.edição, Campus.

LITERATURA AUXILIAR

- (eBrary) CORMEN, Thomas H.; LEISERSON, Charles E.; RIVEST, Ronald L. Introduction to Algorithms. MIT Press, 2014.
- (eBrary) MEHLHORN, K; SANDERS, P. Algorithms and Data Structures: The Basic ToolBox, 1st. ed. Springer, 2008.
- (open access) HALIM, Steve S; HALIM, Felix. Competitive Programming, 1st ed, Lulu, 2010.
- (eBrary) STEPHENS, Rod. Essential Algorithms: A Pratical Approach to Computer Algorithms. John Wiley Sons, 2013.
- (open access) AHO, A. V.; ULLMAN, J. D. Foundations of Computer Science: C Edition (Principles of Computer Science Series), 1st ed., W. H. Freeman, 1994.