Proyecto Final BAses de Datos

Jose Francisco Ugalde Vivo Neftali Escamilla Jaimes

January 2021

1 introduction

We will create a database that looks simple and pleasing to the eye. Our main objective is to optimize inventory management based on the sale and acquisition of merchandise, additionally will get better management of the profits obtained from sales,

2 Work Plan

Different activities are assigned to be carried out by the team members:

3 Data Dictionaries

We will proceed to carry out the last step before creating the script in mysql, which is to make our data dictionaries, one for each table, a data dictionary is used to specify the name of the field, data type, length, if it is a primary key or foreign and also if the field will allow null values.

Field	Data Type	Length	pk	Fk	null	Auto_increment	
id_category	int		yes	No	no	yes	
name	varchar	50	no	No	no	no	

Table 1: Data

Field	Data Type	Lenght	pk	fk	null	Auto_increment	
id_supplier	Int		yes	no	no	si	
contact_name	varchar	50	no	no	no	no	
contact_phone	varchar	20	no	no	no	no	

Table 2: Suppliers

Field	Data Type	Length	pk	fk	null	Auto_increment	
bar_code	varchar	20	si	no	no	no	
id_category	int		no	yes	no	no	
branch	varchar	30	no	no	no	no	
price	float		no	no	no	no	
exis_sell	Int		no	no	no	no	
exis_cellar	Int		no	no	no	no	
id_provider	int		no	yes	no	no	
description	text		no	no	no	no	

Table 3: Products

Field	Data Type		Length	pk	fk	null	Auto_increment
id_client	int			yes	no	no	yes
name	varchar		50	no	no	no	no
a_paternal	varchar		50	no	no	no	no
a_maternal		varchar	50	no	no	no	no
adress		varchar	100	no	no	no ("sd")	no
email		varchar	100	no	no	no	no

Table 4: Clientes

Field	Data Type	Length	pk	fk	null	Auto_increment	
id_employee	int		yes	no	no	yes	
Username	varchar	50	yes	no	no	No	
password	varchar	20	yes	no	no	no	

Table 5: Phone number

FIELD	Data Type		Length	pk	fk	null	Auto_increment
id_sale	Int			yes	no	no	yes
date	Date			no	no	no	no
hour	Date			no	no	no	no
total		float		no	no	no	No
id_employe		int		no	yes	no	No

Table 6: Sales

Field	Data Type		Length	pk	fk	null	Auto_increment
id_has	int			yes	no	No	yes
id_sell	int			no	no	no	No
bar_code	varchar		20	no	yes	no	No
Product_exist		int		no	no	no	no

Table 7: HAS

Field	Data Type		Lenght	pk	fk	null	Auto_increment
id_appears	int			yes	no	no	yes
bar_code	varchar		20	no	yes	no	No
Product_exist		int		no	no	no	no

Table 8: Appears

4 Code

Once we have our data dictionaries ready, we will proceed with those specifications to make the script in the database manager, in this case the manager that we will use will be the mysql server.

hline The script is as follows:

```
create database stationery;
use stationery;
create table categories
  category_id int auto_increment primary key,
  name varchar (50) not null
);
create table providers
  vendor_id int auto_increment primary key,
  contact_name varchar (50) not null,
  contact_phone varchar (20) not null
);
create table products
  bar_code varchar (20) primary key,
  id_category int not null,
  flag varchar (30) not null,
  description text not null,
  float price not null,
  exis_venta int not null,
```

```
exis_winery int not null,
 provider_id int not null,
  constraint foreign key (category_id) references categories (category_id),
  constraint foreign key (vendor_id) references vendors (vendor_id)
create table clients
  client_id int auto_increment primary key,
 name varchar (50) not null,
  apaternal varchar (50) not null,
 parent varchar (50) not null,
  address varchar (100) default 'sd'
);
create table phones
 phone_id int auto_increment primary key,
 client_id int not null,
 phone varchar (20) not null,
  constraint foreign key (customer_id) references customers (customer_id)
);
create table employees
  employee_id int auto_increment primary key,
 username varchar (50) not null,
 password varchar (20) not null
);
create table sales
  sales_id int auto_increment primary key,
 date date not null,
 time time not null,
 total float not null,
  employee_id int not null,
  constraint foreign key (employee_id) references employees (employee_id)
);
create table has
  id_has int auto_increment primary key,
  sale_id int not null,
 bar_code varchar (20) not null,
 quantityPro int not null,
  constraint foreign key (sales_id) references sales (sales_id),
  constraint foreign key (barcode) references products (barcode)
);
create table appears
```

```
id_appears int auto_increment primary key,
section_id int not null,
bar_code varchar (20) not null,
quantityPro int not null,
constraint foreign key (item_id) references item (item_id),
constraint foreign key (barcode) references products (barcode)
);
```

5 Diagrama

