

# $a \equiv b \pmod{m}$ means

#### Remainder mod: a mod m

L14: Modular Arithmetic -- ANSWERS

 $a \mod m$  is the integer in  $\{0, ..., m-1\}$  which is the remainder when a is divided by m

#### Modular Equivalence: $a \equiv b \pmod{m}$

- a and b have the same remainder when divided by m
- a b is a multiple of m
- There is an integer k such that a = b + km

**Definitions of mod** 

 $a \equiv b \pmod{m}$  means  $a \mod m = b \mod m$ 

Relating the two mods

# Warm Up Exercises (36)+4)nod 7 = 4

1. (a)  $8 \mod 5 = 3$  (b)  $(25 \mod 7)^2 = (4)^2 = 16$ 

2. 
$$T/F$$
  $27 \equiv 32 \pmod{5}$   
 $T/F$   $27 \equiv 2 \pmod{5}$   
 $T/F$   $27 \equiv 2 \pmod{5}$   
 $T/F$   $27 \equiv -3 \pmod{5}$   
 $T/F$   $28 \equiv 1 \pmod{9}$ 

3. Find 3 numbers, including at least one negative number, that are equivalent to 30 (mod 9):

$$21 \equiv 3 \equiv -6 \equiv -24 \equiv 129 \equiv 30 \pmod{9}$$
, for example

### Summary: Algebra vs. Modular Arithmetic

|                             | Algebra                                                      | Modular Arithmetic                                           |
|-----------------------------|--------------------------------------------------------------|--------------------------------------------------------------|
| Domain                      | real numbers                                                 | integers                                                     |
| We care about               | Equality ex: x = y                                           | Equivalence with respect to a modulus m ex: x ≡ y (mod m)    |
| How many unique numbers?    | Infinitely many ex: -153.21, 76, $\sqrt{2}$                  | The are only unique numbers in mod m are: $0,1,,m-1$         |
| Valid arithmetic operations | + : addition - : subtraction × : multiplication ÷ : division | + : addition - : subtraction × : multiplication  NO DIVISION |

Proof:  $a=b+mk_1$ ,  $c=d+mk_2$   $a+c=b+d+mck_1+k_2$ 

a = b (mod m)

c =d (mod m)

atc = btd Cmodin

2-c = b-d (mod m)

ac = bd Lmod m

 $\phi \check{\diamond}$ 

## Mod, tricks" Exercises

1. Find the value of  $(592)^4(1033)^2 \mod 5$ 

 $(592)^4(1033)^2 \equiv (2)^4(3)^2 \pmod{5}$  $\equiv 16 \cdot 9 \pmod{5}$  $\equiv 1.4 \pmod{5}$  $\equiv 4 \pmod{5}$ 

Using the "same remainder" definition of modular equivalence, the above equivalence gives us  $(592)^4(1033)^2 \mod 5 = 4 \mod 5 = 4$ .

Find the last digit of 3<sup>100</sup>

The last digit of any integer is the same as its value mod 10.

$$\begin{array}{c} \ln \bmod 10, \\ 3^{100} \equiv (3^2)^{50} \pmod {10} \\ \equiv 9^{50} \pmod {10} \\ \equiv (-1)^{50} \pmod {10} \\ \equiv 1 \pmod {10} \end{array}$$

So  $3^{100} \mod 10 = 1 \mod 10 = 1$ . Thus the last digit of  $3^{100}$  is 1. 12

Proof: a = b + mk,  $c = d + m(dk_1 + bk_2 + mk_1)$ 

### Exercise 3: Modular Exponentiation

Find the value of  $5^{20}$  mod 27

#### Solution:

In mod 27.

- We can find  $5^{20} \equiv (5^{10})^2$
- Similarly,  $5^{10} \equiv (5^5)^2$

■ And 
$$5^5 \equiv (5^2)^2 \cdot 5 \equiv (25)^2 \cdot 5$$
  
 $\equiv (-2)^2 \cdot 5 \equiv 4 \cdot 5 \equiv 20$ 

• This gives  $5^{10} \equiv (5^5)^2 \equiv 20^2$ 

$$\equiv (-7)^2 \equiv 49 \equiv 22$$

■ Finally,  $5^{20} \equiv (5^{10})^2 \equiv 22^2$  $\equiv (-5)^2 \equiv 25 \pmod{27}$ 

So,  $5^{20} \mod 27 = 25$ .

14

## Exercise 5: Last Digit

## Find the last digit of $(38475393)^{324334}$

#### **Solution:**

Use mod 10 to find the last digit.

$$(38475393)^{324334} \equiv (3)^{324334} \qquad (mod \ 10)$$

$$\equiv (3^2)^{324334/2} \qquad (mod \ 10)$$

$$\equiv (9)^{324334/2} \qquad (mod \ 10)$$

$$\equiv (-1)^{324334/2} \qquad (mod \ 10)$$

$$\equiv (-1)^{some\_even\_power} \qquad (mod \ 10)$$

$$\equiv 1 \qquad (mod \ 10)$$

Thus the last digit of  $(38475393)^{324334}$  is 1.

### Exercise 4: Divisible by 7

Prove that  $2^n + 6 \cdot 9^n$  is divisible by 7 for any n

#### Solution

Translating into the language of mod,

"x is divisible by 7" means  $x \equiv 0 \pmod{7}$ .

In mod 7.

$$2^{n} + 6 \cdot 9^{n} \equiv 2^{n} + (-1) \cdot 2^{n} \pmod{7}$$
$$\equiv 2^{n} - 2^{n} \pmod{7}$$
$$\equiv 0 \pmod{7}$$

Thus,  $2^n + 6 \cdot 9^n$  is divisible by 7.

16

## Exercise 6: Divisible by 11

A number is called a *palindrome* if it is the same when written backwards. E.g. 37173, 854458, 2222 are all palindromes.

Show that any 6-digit palindrome is divisible by 11.

**Solution:** A 6-digit palindrome N has the form abccba, where a, b, c are digits. We want to show that  $N \equiv 0 \pmod{11}$ .

We can write N as:

$$N = a10^5 + b10^4 + c10^3 + c10^2 + b10^1 + a$$
  
=  $a(10^5 + 1) + b(10^4 + 10) + c(10^3 + 10^2)$   
=  $a(10^5 + 1) + 10b(10^3 + 1) + 100c(10 + 1)$ 

In mod 11,  $10^x \equiv -1$  whenever x is odd. So in mod 11,

$$N \equiv a(10^5 + 1) + 10b(10^3 + 1) + 100c(10 + 1)$$
 (mod 11)

$$\equiv a\left((-1)^5 + 1\right) + 10b\left((-1)^3 + 1\right) + 100c(-1 + 1) \pmod{11}$$

$$\equiv a \cdot 0 + b \cdot 0 + c \cdot 0 \tag{mod 11}$$

$$\equiv 0 \pmod{11}$$

Thus, any 6-digit palindrome is divisible by 11.

## Attempts: Modular Exponentiation

- Compute 5<sup>8</sup> mod 27
  - Method 1:  $5^8 = 390625$ 
    - Now who wants to reduce 390625 mod 27?
  - Method 2:  $5^{i+1} \equiv 5^i \cdot 5$ 
    - $5^2 \equiv 25$   $5^3 \equiv 5^2 \cdot 5 \equiv 25 \cdot 5 \equiv -2 \cdot 5 \equiv -10 \equiv 17$  $5^4 \equiv 5^3 \cdot 5 \equiv -10 \cdot 5 \equiv -50 \equiv 4$  ... ...
    - $5^8 \equiv 16 \pmod{27}$
  - Method 3:  $5^{2i} \equiv (5^i)^2$

Winner! Fewest calcs

- $5^2 \equiv 25$
- $5^4 \equiv (5^2)^2 \equiv 25^2 \equiv (-2)^2 \equiv 4$
- $5^8 \equiv (5^4)^2 \equiv 4^2 \equiv 16 \pmod{27}$

# (One) Reason why doing mod n is goo

How large is  $m^a$  where a is 300 digit number (so  $a \approx 10^{300}$ )? Suppose m > 10. Then  $m^a$  has more than  $10^{300}$  digits

Claim: number of atoms in known universe is at most 10<sup>82</sup>
So cannot even write this number down even if we can store 1 bit per atom!!

Why? Number of atoms in 1 Kilo of matter about 10<sup>28</sup>.

A typical star (like our Sun) weights about 10<sup>30</sup> Kilos
A typical Galaxy has about 100 billion (10<sup>11</sup>) stars
(Known) Universe has about 2 trillion (<10<sup>13</sup>) galaxies

## Computation time of naïve exponentiation

## Fast Modular Exponentiation Algorithn

- Computing  $x^n \mod m$  has 2 cases:
  - Case 1: n is even, n = 2k
    - $x^n \equiv (x^k)^2 \pmod{m}$
  - Case 2: n is odd, n = 2k + 1
    - $x^n \equiv (x^k)^2 \cdot x \pmod{m}$
- Keep breaking down exponent as above, until the exponent is 1

Computing  $m^a$  naively will need  $\approx 10^{300}$  multiplications  $(m \times m \times m \dots a \text{ times})$ 

#### Let us try to estimate the time.

- Fastest current supercomputer: Frontier (Oak ridge National labs)
- Peak speed: 10<sup>3</sup> petaflops (10<sup>18</sup> floating pt operations per sec).
- Suppose (optimistically) each multiplication takes 1 flop.
- 1 year has about 31.5 million seconds (say <10<sup>8</sup> seconds)
- Age of universe 15 billion years (say <10<sup>11</sup> years)

Hence, can do only  $10^{37}$  multiplications even on fastest supercomputer in 100 billion yrs.

Fast exponentiation needs at most 1024 multiplications (number of bits of *a*) Can do in a microsecond even on your cellphone! Smart algorithms are good!