中国科学技术大学 2024年秋季学期 (数学分析(B1) 期中考试试题参考解答)

一、(24分)求下面的极限:

1.
$$\lim_{x \to 1} \left(\frac{2}{x-1} - \frac{x+3}{x^2-1} \right);$$

2.
$$\lim_{x \to 0} \frac{\sqrt{1+x^2}-1}{1-\cos x};$$

3.
$$\lim_{n\to\infty} n(\sqrt[n]{\mathrm{e}} - 1);$$

4.
$$\lim_{x \to +\infty} \left(1 + \frac{1}{1+x} \right)^{\frac{1}{\ln(1+\frac{1}{x})}}$$

解

1.
$$\lim_{x \to 1} \left(\frac{2}{x-1} - \frac{x+3}{x^2-1} \right) = \lim_{x \to 1} \left(\frac{2x+2}{x^2-1} - \frac{x+3}{x^2-1} \right) = \lim_{x \to 1} \frac{x-1}{x^2-1} = \lim_{x \to 1} \frac{1}{x+1} = \frac{1}{2}.$$

$$2. \quad \lim_{x \to 0} \frac{\sqrt{1+x^2}-1}{1-\cos x} = \lim_{x \to 0} \frac{x^2}{(1-\cos x)(\sqrt{1+x^2}+1)} = \lim_{x \to 0} \frac{x^2}{\frac{1}{2}x^2(\sqrt{1+x^2}+1)} = 1.$$

3.
$$\lim_{n \to \infty} n(\sqrt[n]{e} - 1) = \lim_{n \to \infty} \frac{e^{\frac{1}{n}} - 1}{\frac{1}{n}} = \lim_{x \to 0^+} \frac{e^x - 1}{x} = 1.$$

4.
$$\lim_{x \to +\infty} \left(1 + \frac{1}{1+x} \right)^{\frac{1}{\ln(1+\frac{1}{x})}} = \lim_{x \to +\infty} \left(1 + \frac{1}{1+x} \right)^{(1+x)\frac{1}{(1+x)\ln(1+\frac{1}{x})}}$$
$$= \lim_{x \to +\infty} \left(1 + \frac{1}{1+x} \right)^{(1+x)\frac{x}{1+x}} = e$$

二、(24 分) 求函数 f(x) 的导数:

$$1. \quad f(x) = \frac{\ln x}{2 + \sin x};$$

2.
$$f(x) = x^5 5^x$$
;

3.
$$f(x) = \begin{cases} \ln(1+x), & -1 < x < 0 \\ e^x - 1, & x \ge 0 \end{cases}$$
;

4.
$$f(x)$$
 是 $y = (x^2 + 1)e^x$ 的反函数.

解

1.
$$\left(\frac{\ln x}{2 + \sin x}\right)' = \frac{2 + \sin x - x(\cos x)\ln x}{x(2 + \sin x)^2};$$

2.
$$(x^55^x)' = 5x^45^x + x^55^x \ln 5 = x^45^{x+1} + x^55^x \ln 5;$$

3.
$$f'(x) = \begin{cases} \frac{1}{1+x}, & -1 < x < 0 \\ e^x, & x \ge 0 \end{cases}$$
;

4.
$$f'(x) = \frac{1}{(f(x)+1)^2 e^{f(x)}} = \frac{f^2(x)+1}{x(f(x)+1)^2}$$
.

三、(10 分) 求参数方程 $\begin{cases} x = \cos t + t \sin t \\ y = \sin t - t \cos t \end{cases}$ 所表示的曲线在 $t = \frac{\pi}{4}$ 处的切线方程,并求 $\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}$.

解 因为

$$dx = (-\sin t + \sin t + t\cos t) dt = t\cos t dt$$
$$dy = (\cos t - \cos t + t\sin t) dt = t\sin t dt,$$

所以 $\frac{dy}{dx} = \frac{\sin t}{\cos t} = \tan t$. 在 $t = \frac{\pi}{4}$ 处, 有 $x = \frac{\sqrt{2}}{2}(1 + \frac{\pi}{4})$, $y = \frac{\sqrt{2}}{2}(1 - \frac{\pi}{4})$, $\frac{dy}{dx} = 1$. 故, 在 $t = \frac{\pi}{4}$ 处的切线方程为

$$y = x - \frac{\pi\sqrt{2}}{4}.$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}\frac{\mathrm{d}y}{\mathrm{d}x}}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} = \frac{\mathrm{d}\tan t}{\mathrm{d}t} \cdot \frac{1}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{1}{\cos^2 t} \cdot \frac{1}{t\cos t} = \frac{1}{t\cos^3 t}.$$

四、(10 分) 问函数 $f(x) = e^{10|x-2|-x^2}$ 是否最大值? 如果有, 请求出最大值.

解 显然 f(x) 连续且 $\lim_{x\to\infty} f(x) = 0$, $f(0) = e^{20} > 0$. 因此 f(x) 有最大值. 因为

$$f(x) = \begin{cases} e^{10(x-2)-x^2}, & x \ge 2 \\ e^{10(2-x)-x^2}, & x < 2, \end{cases} \qquad f'(x) = \begin{cases} e^{10(x-2)-x^2}(10-2x), & x > 2 \\ e^{10(2-x)-x^2}(-10-2x), & x < 2, \end{cases}$$

所以 f(x) 有两个驻点 x = 5, x = -5. 由于 $f(2) = e^{-4}$, $f(5) = e^{5}$, $f(-5) = e^{45}$. 故, f(x) 在 x = -5 取最大值 e^{45} .

五、
$$(8 分)$$
 设 $f(x) = \frac{1}{1+x+x^2}$. 求 $f^{(3n+2)}(0)$.

解 因为 $(x^3-1)f(x)=x-1$, 所以根据 Leibniz 公式, 有

$$\sum_{k=0}^{n} \binom{n}{k} (x^3 - 1)^{(k)} f^{(n-k)}(x) = 0, \ n = 2, 3, \dots.$$

由此

$$(x^{3}-1)f^{(n)}(x) + 3nx^{2}f^{(n-1)}(x) + 3n(n-1)xf^{(n-2)}(x) + n(n-1)(n-2)f^{(n-3)}(x) = 0.$$

在 x = 0 点,有

$$f^{(n)}(0) + n(n-1)(n-2)f^{(n-3)}(0) = 0.$$

易知 f(0) = 1, f'(0) = -1, f''(0) = 0. 故, 由上面的递推公式, 可得

$$f^{(3n)}(0) = (-1)^n (3n)!,$$

$$f^{(3n+1)}(0) = (-1)^{n+1} (3n+1)!,$$

$$f^{(3n+2)}(0) = 0.$$

六、(8 分) 设 a_1, \dots, a_n 是 n 个实数, 满足

$$|a_1 \sin x + a_2 \sin 2x + \dots + a_n \sin nx| \leq |\sin x| \ (\forall x \in \mathbb{R}).$$

求证: $|a_1 + 2a_2 + \dots + na_n| \leq 1$.

证明 由条件得

$$\left| a_1 \frac{\sin x}{x} + a_2 \frac{\sin 2x}{x} + \dots + a_n \frac{\sin nx}{x} \right| \leqslant \left| \frac{\sin x}{x} \right| \quad (x \neq 0).$$

注意到 $\lim_{x\to 0} \frac{\sin kx}{x} = k$. 在上面的不等式中让 $x\to 0$, 即得

$$|a_1 + 2a_2 + \dots + na_n| \leqslant 1.$$

七、(8 分) 设 $a_1 > 0$, $a_{n+1} = a_n + \frac{1}{a_n}$ $(n = 1, 2, \cdots)$. 求 $\lim_{n \to \infty} \frac{a_n}{\sqrt{n}}$.

由递推公式可知 $a_n > 0$, 因此 $\{a_n\}$ 是严格递增的数列. 若 $\{a_n\}$ 有界, 则 $\{a_n\}$ 收敛到一个正数 a,因而 $a_{n+1}-a_n\to 0$. 但由递推公式 $\frac{1}{a}=\lim_{n\to\infty}\frac{1}{a_n}=\frac{1}{n}$ $\lim_{n\to\infty} (a_{n+1}-a_n)=0$. 这是矛盾的. 故, a_n 严格递增发散到 $+\infty$. 由递推公式

$$a_{n+1}^2 = a_n^2 + 2 + \frac{1}{a_n^2}.$$

由 Stolz 定理,

$$\lim_{n \to \infty} \frac{a_n^2}{n} = \lim_{n \to \infty} \frac{a_{n+1}^2 - a_n^2}{n+1-n} = \lim_{n \to \infty} \left(2 + \frac{1}{a_n^2}\right) = 2.$$

故, $\lim_{n\to\infty}\frac{a_n}{\sqrt{n}}=\sqrt{2}$.

八、 $(8 \, \mathcal{G})$ 设 f(x) 在 [0,1] 上非负且可导, f(0) = 1, $f(1) = \frac{1}{\sqrt{3}}$. 求证: 存在 $\xi \in (0,1)$ 满足 $f^3(\xi) + f'(\xi) = 0$.

证明 若 f(x) 在 (0,1) 中有零点 x_0 , 则 x_0 是 f(x) 在区间内部的最小值点, 因 而 $f(x_0) = f'(x_0) = 0$. 此时取 ξ 为 x_0 即可.

若 f(x) 在 (0,1) 中无零点, 则 f(x) > 0. 令 $g(x) = -\frac{1}{2f^2(x)} + x$. 则 g(x) 在 [0,1]可导, 且有 $g(0)=g(1)=-\frac{1}{2}$. 根据微分中值定理, 存在 $\xi\in(0,1)$ 使得 $g'(\xi)=0$, 即,

$$\frac{f'(\xi)}{f^3(\xi)} + 1 = 0.$$

故, $f^3(\xi) + f'(\xi) = 0$.