1 Motivation

2 Inhalte, Prämaße, Elementarintegrale

Präring Inhalt

Prämaß

 ${\it Maßerzeugende Funktion}$

Verteilungsfunktion

 $\mathcal{R}(\mathscr{S})$

Ring

Nicht-negative elementare Funktionen $\varepsilon^+(\mathscr{S})$

Elementarintegrale

 I_{μ}

Satz: Fortsetzung eines Inhalts

Satz: Charakterisierung von Prämaßen oder Beppo Levi für das Elementarintegral

3 Maßräume und Wahrscheinlichkeitsräume

 σ -Algebra Messraum Maßraum und Maß Wahrscheinlichkeitsmaß und -raum von $\mathcal M$ erzeugte σ -Algebra

Satz: Maßfortsetzungssatz, Caratheordory $+ \mathbf{Beweis}$

endliches/ σ -endliches Prämaß

Satz: Maßeindeutigkeitssatz und Folgerung Satz: Charakterisierung der W-Maße auf $\mathscr{B}(\mathbb{R})$

Dynkin-System Dynkin Lemma

4 Einige wichtige Verteilungen

Binomial(n,p)-Verteilung Binomialapproximation der hypergeometrischen Verteilung Dichte von P_F Wahrscheinlichkeitsmaße auf $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$ also:

- Gleichverteilung
- Exponential verteilung
- Nomalverteilung und Standardnormalverteilung

5 Unabhängigkeit

(a) Unabhängigkeit von Ereignissen und bedingte Wahrscheinlichkeiten Unabhängigkeit zweier Ereignisse/Familie von Ereignissen Bedingte Wahrscheinlichkeit Formel der totalen Wahrscheinlichkeit Bayes-Formel

(b) Unabhängigkeit von σ -Algebren Definition Unabhängigkeit von σ -Algebren

6 Zufallsvariablen

Messbare Abbildungen/Zufallsvariablen \mathbb{R}^D -wertige Zva, numerische Zva Satz: Abbildung \mathcal{A}/\mathcal{A}' -messbar Verteilung von X

von X erzeugte σ -Algebra

Unabhängigkeit von Zufallsvariablen Satz: Äquivalenz für Unabhängigkeit

7 Maßintegrale und Erwartungswerte

(a) Konstruktion des Maßintegrals

Approximierende Folge Maßintegral μ -integrierbar μ -quasi-integrierbar Erwartungswert Einige wichtige Eigenschaften des Maßintegrals

(b) Konvergenzsätze und \mathcal{L}^p -Räume

Satz: Integration und Nullmengen Satz: Beppo-Levi + **Beweis**

 μ -fast sicher Lemma von Fatou Satz: Lebesque $\mathcal{L}^p(\Omega, \mathcal{A}, \mu)$

(c) Integration bzgl Produktmaßen

Satz: Fubini

8 Methoden zur Berechnung von Maßintegralen u. Erwartungswerten

Satz: Partielle Integration

Satz: Methode zur Berechnung des Erwartungswertes einer Zva

Maße mit Dichten Definition

9 Varianz, Co-Varianz und Faltung

 Varianz, Covarianz, Korrelation, n-tes Absolut
moment, n-tes Moment Identitäten (Linearität etc) zu Varianz, Covarianz, Erwartungswerten Satz: Bienaymé
 Faltung

10 Konvergenz von Zufallsvariablen

Konvergenz in Wahrscheinlichkeit

Fast sichere Konvergenz Konvergenz im p-ten Mittel

Satz: Über eine Implikation zwischen den Konvergenzbegriffen + **Beweis** von (i)

nach (ii) nach (iv)

Satz: Borel-Cantelli + **Beweis**

Satz: Äquivalenz mit Teilfolgen und mit Cauchy-Kriterium + **Beweis**

Markov-Ungleichung und Tschebyscheff-Ungleichung

Satz: Alle Implikationen des Kapitels +Beweis ausführlich

Konvergenz von Reihen unabhängiger Zva:

Satz: Lévy

Satz: Zwei-Reihenkriterium

11 Die Gesetze der großen Zahlen

 $\label{eq:motivation} \begin{tabular}{ll} Motivation \\ Definition erfüllt starkes/schwaches GGZ \\ Schwaches GGZ + hinreichende Bedingungen + {\bf Beweis} \\ Kronecker \\ Starkes GGZ + {\bf Beweis} \\ Beispiele!!! \\ \end{tabular}$

12 Konvergenz von Wahrscheinlichkeitsmaßen

Schwache Konvergenz Wesentliche Konvergenz

Satz: Portmanteau Theorem +Beweis

Satz: Helly Bray (+Beweis)

Satz: Implikation von Konvergenz von Zva auf separablem Raum

relativ kompakt

straff Prohorov

13 Charakteristische Funktionen

Definition Char. Funktion Satz: Umkehrformel Satz: Stetigkeitssatz, Levy

14 Zentraler Grenzwertsatz von Lindeberg-Levy

Satz: Lindeberg Levy +**Beweis**

Beispiel Monte-Carlo

15 Multivariate Normalverteilung

16 Der Kolmogorovsche Erweiterungssatz