Constructing a Neuron using Column Generation

Julian Yarkony

Experian Data Lab San Diego CA julian.e.yarkony@gmail.com

Abstract

We consider the problem of describing neurons in single neuron images. To do this we map the problem to a problem of constructing a lineage to one

1 Formulation

1.1 Tracks

- We describe the set of detections as \mathcal{D} which we index with d.
- We describe the set of tracks as \mathcal{P} which we index with p.
- We use $X \in \{0,1\}^{|\mathcal{D} \times \mathcal{P}|}$ to denote a mapping of detections to tracks where $X_{dp} = 1$ indicates that track d is associated with track p.
- A track consists of as sequence of sub-tracks each of k detections where k is a user defined hyper-parameter that trades off model complexity and efficiency of inference.
- We use $\bar{X} \in \{0,1\}^{|\mathcal{D} \times \mathcal{P}|}$ to denote a mapping of detections to tracks where $X_{dp} = 1$ indicates that track d is associated with track p and detection d is not in the first k-1 detections on the track.

1.2 Sub-Tracks

- We define the set of subtracks as S which we index with s. A given subtrack has elements $\{s_1, s_2, s_3...s_k\}$ ordered in time from earliest to latest.
- We use $F \in \{0,1\}^{|\mathcal{D}|\times|\mathcal{S}|}$ which we index by d,s respectively. We set $F_{ds}=1$ if and only if detection d is in subtrack s.
- We use $F^- \in \{0,1\}^{|\mathcal{D}| \times |\mathcal{S}|}$ which we index by d,s respectively. We set $F_{ds}=1$ if and only if detection d is the final detection on subtrack s.
- We define a mapping of tracks to subtracks using a matrix $S^0 \in \{0,1\}^{|\mathcal{S}| \times |\mathcal{P}|}$. We use $S^0_{sp} = 1$ to indicate that track p contains subtrack s as neither the start nor the end.
- In order to describe the first subtrack on a track we use matrix $S^+ \in \{0,1\}^{|\mathcal{S}| \times |\mathcal{P}|}$ which we index with s,p where $S^+_{sp}=1$ if and only if subtrack s is the first subtrack on track p
- In order to describe the first subtrack on a track we use matrix $S^- \in \{0,1\}^{|\mathcal{S}| \times |\mathcal{P}|}$ which we index with s,p where $S^+_{sp}=1$ if and only if subtrack s is the first subtrack on track p
- The subtracks in the sequence that describes a track overlap eachother. Hence if a sub-tracks s_1 is succeeded by another subtrack s_2 on a given track then the final k-1 elements on s_1 are the same as the earliest k-1 elements in s_2
- We use $Q \in \{0,1\}^{|\mathcal{S}| \times |\mathcal{S}|}$ which we index by s_1, s_2 respectively. We set $Q_{s_1 s_2} = 1$ if and only if subtrack s_1 can succeed s_2 .

1.3 Costs

We associate tracks with costs with costs usign the following noattion. We use $\Theta \in \mathbb{R}^{\mathcal{P}}$ which we index by p to associate tracks with costs. We use Θ_p to associate track p with a cost.

- We use $\theta \in \mathbb{R}^{|\mathcal{S}|,3}$ which we index by s/[+,-,0] respectively.
- We use θ_{s+} to denote the cost of starting a track at subtrack s.
- We use θ_{s-} to denote the cost of terminating a track at subtrack s.
- ullet We use $heta_{s0}$ to denote the cost of including a subtrack s in a track as neither the start nor the end .

We assocaite a track with cost with cost Θ_p as follows.

$$\Theta_p = \sum_{s \in S} S_{sp}^+ \theta_{s+} + S_{sp}^- \theta_{s-} + S_{sp}^0 \theta_{s0}$$
 (1)

1.4 Collection of Tracks

We describe a collection of tracks that describe a neuron using a vector $\gamma \in \{0,1\}^{|\mathcal{P}|}$ which we index with p. We set $\gamma_p = 1$ if and only if track p is incuded in the neuron.

We use Γ to describe the set of all possible neurons. This a subset of $\gamma \in \{0,1\}^{|\mathcal{P}|}$ The cost associated with a nueron described by γ is defined by the sum of the tracks that compose it. The selection of the lowest cost neuron is thuse written below

$$\min_{\gamma \in \Gamma} \sum_{p} \gamma_p \Theta_p \tag{2}$$

1.5 Feasibility

We assume that the soma is defined by a subtrack s_0 which is a special subtrack that initializes the neuron

A track is included or not included : $\gamma_p \in \{0, 1\}$

No two tracks can continue through a given detection

$$\sum_{p} \gamma_p \hat{X}_{dp} \le 1 \quad \forall d \tag{3}$$

A detetion can not be part of more than two tracks. This blocks succession in close proximity.

$$\sum_{p} \gamma_p X_{dp} \le 2 \quad \forall d \tag{4}$$

A track can not split off a subtrack unless that sub-track is already on a track.

$$\sum_{p} \sum_{s} Q_{ss_1} S_{s_1 p}^+ \gamma_p \le \sum_{p} S_{sp}^0 \gamma_p \tag{5}$$

If a track terminates at a given detection then no detections can start off it. A strong penalty for ending a track early negates the need for this. Since this strong penalty has been described I ignore this constraint in the document.

$$\sum_{p} \gamma_{p} \sum_{s} (F_{ds} - F_{ds}^{-}) \le (1 - \sum_{p} \gamma_{p} \sum_{s} S_{p}^{-} F_{ds}^{-}) \tag{6}$$

2 LP relaxation

$$\min_{\substack{\gamma \ge 0 \\ \sum_{p} \gamma_{p} \dot{X}_{dp} \le 1 \\ \sum_{p} \gamma_{p} X_{dp} \le 2 \\ \sum_{p} \sum_{s} Q_{ss_{1}} S_{s_{1p}}^{+} \gamma_{p} \le \sum_{p} S_{sp}^{0} \gamma_{p}}} \sum_{p} \gamma_{p} \Theta_{p} \tag{7}$$

We now take the dual form of this. We use lagragne multiplers $\lambda^1 \in \mathbb{R}^{|\mathcal{D}|}_{0+}, \lambda^2 \in \mathbb{R}^{|\mathcal{D}|}_{0+}, \lambda^3 \in \mathbb{R}^{|\mathcal{S}|}_{0+}$ to resprese nnteh constraints above in dual form.

$$\max_{\substack{\lambda^1 \ge 0\\ \lambda^2 \ge 0\\ \lambda^3 > 0}} -\sum_d (\lambda_d^1 + 2\lambda_d^2) \tag{8}$$

$$\Theta_p + \sum_{d} \hat{X}_{dp} \lambda_d^1 + \sum_{d} X_{dp} \lambda_d^2 - \sum_{s} (S_{sp}^0) \lambda_s^3 + \sum_{s_1} \lambda_{s_1}^3 \sum_{s_2} Q_{s_1 s_2} S_{s_2 p}^+ \ge 0$$
 (9)

Finding the most violated constraint is a dynamic program. Many constraints can be generated at once.

3 augmenting

To make things easier I susepct adding the following will help. We will make its multiplier slightly less

$$\sum_{p} \gamma_{p}(X_{dp} - \hat{X}_{dp}) \le \sum_{p} \gamma_{p} \hat{X}_{dp} \forall d \notin s_{0}$$
(10)

This is a weaker constarint that that imposed by λ^3 but can be expressed in addition. It has thebenifit that it operates on a small number of variables \mathcal{D} not \mathcal{S} . We express it with multipliers $\lambda^4 \in \mathbb{R}^{|\mathcal{D}|}$

$$\max_{\substack{\lambda^1 \ge 0 \\ \lambda^2 \ge 0 \\ \lambda^3 \ge 0}} - \sum_{d} (\lambda_d^1 + 2\lambda_d^2)$$

$$\Theta_{p} + \sum_{d} \hat{X}_{dp} \lambda_{d}^{1} + \sum_{d} X_{dp} \lambda_{d}^{2} - \sum_{s} (S_{sp}^{0}) \lambda_{s}^{3} + \sum_{s_{1}} \lambda_{s_{1}}^{3} \sum_{s_{2}} Q_{s_{1}s_{2}} S_{s_{2}p}^{+} + \sum_{d \notin s_{0}} \lambda_{d}^{4} (X_{dp} - 2\hat{X}_{dp}) \ge 0$$

$$(12)$$

4 Dyanmic form

Finiding the most violated constraint is a dynamic program.

$$\min_{p} \Theta_{p} + \sum_{d} \hat{X}_{dp} \lambda_{d}^{1} + \sum_{d} X_{dp} \lambda_{d}^{2} - \sum_{s} (S_{sp}^{0}) \lambda_{s}^{3} + \sum_{s_{1}} \lambda_{s_{1}}^{3} \sum_{s_{2}} Q_{s_{1}s_{2}} S_{s_{2}p}^{+} + \sum_{d \notin s_{0}} \lambda_{d}^{4} (X_{dp} - 2\hat{X}_{dp})$$

$$\tag{13}$$

We now plug in for Θ_p

$$\min_{p} \sum_{s \in \mathcal{S}} S_{sp}^{+} \theta_{s+} + S_{sp}^{-} \theta_{s-} + S_{sp}^{0} \theta_{s0}
+ \sum_{d} \hat{X}_{dp} \lambda_{d}^{1} + \sum_{d} X_{dp} \lambda_{d}^{2} - \sum_{s} (S_{sp}^{0}) \lambda_{s}^{3} + \sum_{s_{1}} \lambda_{s_{1}}^{3} \sum_{s_{2}} Q_{s_{1}s_{2}} S_{s_{2}p}^{+} + \sum_{d \notin s_{0}} \lambda_{d}^{4} (X_{dp} - 2\hat{X}_{dp})$$
(14)

The lowest cost track terminating at s_2 can be written as follows.

Let ℓ_{0s} be the cost to start and end a track at subtrack s. Let $\ell_{s_1s_2}$ be of the lowest cost track ending ins s_2 with s_1 as its penultimate subtrack.

$$\ell_{0s} = \theta_s^- + \theta_s^+ - \lambda_s^3 + \sum_d F_{ds}(\lambda_d^4 + \lambda_d^2) + \sum_d F_{ds}^-(\lambda_d^1 - 2\lambda_d^2) + \sum_{s_1} \lambda_{s_1}^3 Q_{s_1s}$$
 (15)

$$\ell_{\hat{s}s} = \ell_{\hat{s}} - \theta_{\hat{s}}^{-} + \theta_{\hat{s}}^{0} + \theta_{s}^{-} - \lambda_{s}^{3} + \sum_{d} F_{ds}(\lambda_{d}^{4} + \lambda_{d}^{2}) + \sum_{d} F_{ds}^{-}(\lambda_{d}^{1} - 2\lambda_{d}^{2}) +$$
(16)