Wstęp do spintroniki - tranzystor spinowy.

Marta Wleklińska

16 lipca 2025

1 Wstęp

W ćwiczeniu analizowano nanourządzenia spintroniki. Ponownie korzystano z pakietu Kwant, którym po zdefiniowaniu układu, mogliśmy badać jego parametry: np. relacje dyspersji w obecnościach różnych pól magnetycznych, konduktancje, transmitancje.

2 Wyniki

2.1 Precesja spinu w zewnętrznym polu magnetycznym

W pierwszym ćwiczeniu badaliśmy precesję spinu w zewnętrznym polu magnetycznym. Rozpatrywany układ był nanodrutem 2D o długości L i szerokości W. Na rysunku 1 została przedstawiona relacja dyspersji takiego układu. W kolejnym

Rysunek 1: Relacja dyspersji E(k) dla B=0

kroku wprowadziliśmy pole magnetyczne - skierowane dla kolejnych kierunków x,y,z. Na rysunku 2 zostały zapisane ponownie relacje dyspersji przy przyłożonym polu. W porównaniu do rysunku 1 obserwujemy dla każdego z rysunków 2a, 2b, 2c więcej modów. Obserwujemy rozszczepienie Zeemana, które nie zależy od kierunku przyłożenia pola (dla każdego x,y,z) relacja dyspersji ma ten sam kształt.

Następnie ustaliliśmy pole $\mathbf{B}=(0\ 0\ B_z)$ i wyznaczyliśmy zależność konduktancji w funkcji energii na rysunku 3. Przez pojawianie się kolejnych modów przez rozszczepienie Zeemana (rys. 2c) schodki konduktancji $2e^2/h$.

W kolejnej modyfikacji układu wprowadziliśmy pole ${\bf B}=(0~B_u~B_z)$. Wartość $B_z=0.1~{\sf T}$ jest ustalona podczas gdy

Rysunek 2: Relacje dyspersji E(k) dla ((a)) $\mathbf{B} = (B\ 0\ 0)$, ((b)) $\mathbf{B} = (0\ B\ 0)$, ((c)) $\mathbf{B} = (0\ 0\ B)$, przy $b = 1\ \mathsf{T}$

Rysunek 3: Konduktancja w funkcji energii padającego elektronu dla $B_z=1\ {\sf T}$

wartość B_y przykładaliśmy dla kolejnych wartości $B_y \in [0,1]$ T. Dodatkowo było ono przyłożone w obszarze [0.2,0.8] L. Wyznaczyliśmy zatem wartość współczynników transmitancji dla różnych kombinacji przejść (up-down, up-up, down-up, down-down). Współczynniki transmisji w funkcji B_y zostały przedstawione na rysunku 4. Przez precesję spinu zauważamy

Rysunek 4: Zależne od spinu współczynniki transmisji w funkcji pola magnetycznego B_y przy $B_z=1~{\sf T}$ oraz $E=5~{\sf meV}$

naprzemiennie minima i maksima współczynników transmisji. Dla takiego układu ustaliliśmy dodatkowo $B_y=0.6~{\rm T}$ oraz zbadaliśmy gęstość ładunku o spinie up, down, co zostało przedstawione na rysunku 5. Ponownie obserwujemy precesję.

Rysunek 5: Rozkład gestości elektronów o spinie (a) up i (b) down

Następnie badamy gęstość spinu s_x, s_y, s_z , co zostało zapisane na rysunku 6. Gęstości spinów i gęstości elektronów o odpowiednich spinach to nie to samo, co potwierdzają wyniki.

2.2 Tranzystor spinowy oparty na ferromagnetycznych paskach

W kolejnym układzie badaliśmy wpływ pola zewnętrznego $\mathbf{B}_{\mathrm{ext}}$ oraz helikalnego $\mathbf{B}_h = B_h \left[\sin \left(\frac{2\pi (x-x_0)}{a} \right) \ 0 \ \cos \left(\frac{2\pi (x-x_0)}{a} \right) \right]$. W pierwszym przypadku wyzerowaliśmy wartości $\mathbf{B}_{\mathrm{ext}} = (0 \ 0 \ B_{\mathrm{ext}} = 0)$. Ponownie - wyznaczyliśmy dla takiego układu relację dyspersji, co zostało zapisane na rysunku 7. Zauważamy rozszczepienie Zeemana, które widać szczególnie przy przybliżeniu na rysunku 7b. W kolejnej modyfikacji, badaliśmy wpływ pola B_{ext} zmieniając go przy $B_{\mathrm{ext}} \in [0,0.1]$ T. Przyjęliśmy wartość energii jako połowę spinowo rozszczepionego stanu podstawowego i zapisywaliśmy konduktancję dla danej wartości. Zależność konduktancji od wartości pola B_{ext} została przedstawiona na rysunku 8. Zauważamy wartość

(a) (b)

(c)

Rysunek 6: Rozkład gęstości spinów s_x, s_y, s_z w nanodrucie przy $B_y = 0.6$ T, $B_z = 0.1$ T, E = 5 meV

Rysunek 7: Relacja dyspersji E(k) przy $B_{\mathrm{ext}}=0$

Rysunek 8: Wykres konduktancji w funkcji zewnętrznego pola magnetycznego $B_{\rm ext}$ przy E=0.004 eV

konduktancji na poziomie 1 przy małych i dużych wartościach $B_{\rm ext}$. Obserwujemy jednak nagły spadek konduktancji przy $B_{\rm ext} \sim 0.05$ mT, które jest równe wartości B_h .

2.3 Tranzystor spinowy oparty na oddziaływaniu spin-orbita

Ostatni układ jaki został analizowany był tranzystor spinowy oparty na oddziaływaniu spin-orbita. Zatem zamiast przykładania pola magnetycznego w tranzystorach (co by zwiększyło jego rozmiar), chcieliśmy sterować spinem poprzez oddziaływanie spin-orbita typu Rashby. Parametrem opisującym własności transportowe będzie α . W pierwszej kolejności wyznaczyliśmy relację dyspersji, co zostało przedstawione na rysunku 9. Obserwujemy przesunięte paraboliczne relacje w

Rysunek 9: Relacje dyspersji E(k) w kanale z uwzględnieniem oddziaływania spin-orbita

kierunku dodatnich i ujemnych k. Następnie badaliśmy konduktancję w funkcji padającego elektronu - rys. 10. Zauważamy kolejne schodki konduktancji.

W kolejnej części wyznaczyliśmy współczynniki transmisji dla różnych kombinacji przejść elektronu w funkcji parametru α . Przyjęliśmy oddziaływanie spin-orbita w obszarze 0.2, 0.8 L. Wyniki zostały zapisane na rysunku 11. Ponownie

Rysunek 10: Konduktancja w funkcji energii padającego elektronu

Rysunek 11: Zależne od spinu współczynniki transmisji w funkcji parametru α przy E=5 meV

występują oscylacyjny charakter krzywych. Wyraźnie widać, że dla niektórych wartości α elektron zmienia spin na przeciwny.

Analizowaliśmy konduktancje $G, G^{\rm up}, G^{\rm down}$ dla różnych wartościach polaryzacji kontaktów $P=\{0.2,0.4,1.\}$. Wyniki zostały zapisane na rysunku 12. Dla wartości α odpowiadającej całkowitemu obrotowi spinu, zapisaliśmy gęstość

Rysunek 12: Zależna od spinu konduktancja oraz konduktancja całkowita funkcji parametru α przy E=5 meV dla (a) P=1; (b) P=0.2, (c) P=0.4

elektronu 13 oraz gęstość spinu 14. Wyraźnie zauważamy zmianę spinu w środku układu.

Rysunek 13: Zależna od spinu gęstość ładunku w nanourządzeniu przy $E=5\,$ meV (a) spin up (b) spin down

Rysunek 14: Gęstość spinu w nanourządzeniu przy E=5 meV (a) s_x , (b) s_y , (c) s_z

3 Podsumowanie

W ćwiczeniu zdefiniowaliśmy układy nanourządzeń spintroniki za pomocą biblioteki kwant. Badaliśmy także parametry charakteryzujące układ, jak relacje dyspersji, konduktancje i wpływ na te wartości przy przyłożonych polach magnetycznych.