

8 BIT PISO SHIFT REGISTER

- HIGH SPEED
- $f_{MAX} = 57 \text{ MHz} (TYP.) AT V_{CC} = 5 \text{ V}$
- LOW POWER DISSIPATION $I_{CC} = 4 \mu A \text{ (MAX.)} \text{ AT } I_{A} = 25 \text{ °C}$
- HIGH NOISE IMMUNITY

 VNIH = VNIL = 28 % VCC (MIN.)
- OUTPUT DRIVE CAPABILITY 10 LSTTL LOADS
- SYMMETRICAL OUTPUT IMPEDANCE ||OH| = |OL| = 4 mA (MIN.)
- BALANCED PROPAGATION DELAYS

 tplh = tphl
- WIDE OPERATING VOLTAGE RANGE V_{CC} (OPR) = 2 V TO 6 V
- PIN AND FUNCTION COMPATIBLE WITH 54/74LS166

DESCRIPTION

The M54/74HC166 is a high speed C²MOS 8 BIT PISO SHIFT REGISTER fabricated in silicon gate C²MOS technology. It has the same high speed performance of LSTTL combined with true CMOS low power consumption.

It consists of parallel or serial inputs and a serial-out 8-bit shift register with gated clock inputs and an overriding clear input. The parallel-in or serial-in modes are controlled by the SHIFT/LOAD input. When the SHIFT/LOAD input is held high, the serial data input is enabled and the eight flip-flops perform serial shifting with each clock pulse. When held low, the parallel data inputs are enabled and synchronous loading occurs on the next clock pulse. Clocking is accomplished on the low-to-high level edge of the clock pulse. The CLOCK-INHIBIT input should be changed to the high only while the CLOCK input is held high. A direct clear input overrides all other inputs, including the clock, and sets all flip-flops to zero. Functional details are shown in the truth table and the timing chart.

All inputs are equipped with protection circuits against static discharge and transient excess voltage.

October 1992 1/13

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1	SI	Serial Data Inputs
2, 3, 4, 5, 10, 11, 12, 14	A to H	Parallel Data Inputs
6	CK INH	Clock Enable Input (Active LOW)
7	CK	Clock Input (LOW to HIGH edge-triggered)
9	CLEAR	Asyncronous Master reset Input (Active LOW)
13	Q _H	Serial Output from the Last Stage
15	S/L	Parallel Enable Input (Active LOW)
8	GND	Ground (0V)
16	Vcc	Positive Supply Voltage

IEC LOGIC SYMBOL

TRUTH TABLE

		INTERNAL OUTPUTS		OUTPUTS					
CLEAR	SHIFT/LOAD	CLOCK INH	CLOCK	SERIAL IN	PARALLEL A·························	QA	QB	QH	
L	Х	Х	X	Х	Х	L	L	L	
L	X	Х		Х	X		NO CH	HANGE	
Н	L	L		Х	ah	а	b	h	
Н	Н	L		Н	Х	Η	QAn	QGn	
Н	Н	L		L	Х	Ш	QAn	QGn	
Н	Х	Н	X	Х	X		NO CH	IANGE	

X: Don't Care

a·······h: The level of steady state input voltage at inputs a trough H respectively

LOGIC DIAGRAM

TIMING CHART

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	-0.5 to +7	V
VI	DC Input Voltage	-0.5 to V _{CC} + 0.5	٧
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
lıĸ	DC Input Diode Current	± 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
lo	DC Output Source Sink Current Per Output Pin	± 25	mA
Icc or I _{GND}	DC V _{CC} or Ground Current	± 50	mA
P_{D}	Power Dissipation	500 (*)	mW
T _{stg}	Storage Temperature	-65 to +150	O°
TL	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied. (*) 500 mW: \cong 65 °C derate to 300 mW by 10mW/°C: 65 °C to 85 °C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Value	Unit
V_{CC}	Supply Voltage		2 to 6	V
V_{I}	Input Voltage		0 to V _{CC}	V
Vo	Output Voltage		0 to V _{CC}	٧
T _{op}	Operating Temperature: M54HC Series M74HC Series		-55 to +125 -40 to +85	ဂိဂိ
t _r , t _f	Input Rise and Fall Time	$V_{CC} = 2 V$	0 to 1000	ns
		V _{CC} = 4.5 V	0 to 500	
		$V_{CC} = 6 V$	0 to 400	

DC SPECIFICATIONS

		Test Conditions			Value							
Symbol	Parameter	Vcc (V)			T _A = 25 °C 54HC and 74HC			1	85 °C HC	-55 to 125 °C 54HC		Unit
		(•)			Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V_{IH}	High Level Input	2.0			1.5			1.5		1.5		
	Voltage	4.5			3.15			3.15		3.15		V
		6.0			4.2			4.2		4.2		
V_{IL}	Low Level Input	2.0	0				0.5		0.5		0.5	
	Voltage	4.5					1.35		1.35		1.35	V
		6.0					1.8		1.8		1.8	
V_{OH}	High Level	2.0	V _I =		1.9	2.0		1.9		1.9		
	Output Voltage	4.5	VI =	I _O =-20 μA	4.4	4.5		4.4		4.4		
		6.0	or		5.9	6.0		5.9		5.9		V
		4.5	VIL	I _O =-4.0 mA	4.18	4.31		4.13		4.10		
		6.0		I _O =-5.2 mA	5.68	5.8		5.63		5.60		
V_{OL}	Low Level Output	2.0	V _I =			0.0	0.1		0.1		0.1	
	Voltage	4.5	VI =	I _O = 20 μA		0.0	0.1		0.1		0.1	
		6.0	or			0.0	0.1		0.1		0.1	V
		4.5	VıL	I _O = 4.0 mA		0.17	0.26		0.33		0.40	
		6.0		I _O = 5.2 mA		0.18	0.26		0.33		0.40	
lı	Input Leakage Current	6.0	Vı = '	Vcc or GND	_		±0.1		±1		±1	μА
Icc	Quiescent Supply Current	6.0	V _I = '	V _{CC} or GND			4		40		80	μА

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_f = t_f = 6 \text{ ns}$)

		Tes	st Conditions				Value				
Symbol	Parameter	V _{CC}		1	_A = 25 ^o C and 7			85 °C HC	I .	125 °C HC	Unit
		(v)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{TLH}	Output Transition	2.0			30	75		95		110	
t _{THL}	Time	4.5			8	15		19		22	ns
		6.0			7	13		16		19	
t _{PLH}	Propagation	2.0			70	150		190		225	
t _{PHL}	Delay Time	4.5			20	30		38		45	ns
	(CLOCK - QH)	6.0			16	26		32		38	
t _{PHL}	Propagation	2.0			60	135		170		205	
	Delay Time	4.5			18	27		34		41	ns
	(CLEAR - QH)	6.0			14	23		29		35	
f _{MAX}	Maximum Clock	2.0		6.2	14		5.0		4.2		
	Frequency	4.5		31	50		25		21		MHz
		6.0		37	63		30		25		
t _{W(H)}	Minimum Pulse	2.0			28	75		95		110	
t _{W(L)}	Width	4.5			6	15		19		22	ns
	(CLOCK)	6.0			5	13		16		19	
t _{W(L)}	Minimum Pulse	2.0			28	75		95		110	
,	<u>Width</u>	4.5			6	15		19		22	ns
	(CLEAR)	6.0			5	13		16		19	
ts	Minimum Set-up	2.0			20	75		95		110	
	Time	4.5			4	15		19		22	ns
	(SI, PI)	6.0			3	13		16		19	
t _s	Minimum Set-up	2.0			25	75		95		110	
	Tim <u>e</u>	4.5			5	15		19		22	ns
	(S/L)	6.0			3	13		16		19	
th	Minimum Hold	2.0				0		0		0	
	Time	4.5				0		0		0	ns
		6.0				0		0		0	
t _{REM}	Minimum	2.0			12	50		65		75	
	Removal Time	4.5			3	10		13		15	ns
		6.0			3	9		11		13	
C _{IN}	Input Capacitance				5	10		10		10	pF
C _{PD} (*)	Power Dissipation Capacitance				60						pF

^(*) C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC}(opr) = C_{PD} \bullet V_{CC} \bullet f_{IN} + I_{CC}$

SWITCHING CHARACTERISTICS TEST WAVEFORM

TEST CIRCUIT I_{CC} (Opr.)

Plastic DIP16 (0.25) MECHANICAL DATA

DIM.		mm			inch		
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
a1	0.51			0.020			
В	0.77		1.65	0.030		0.065	
b		0.5			0.020		
b1		0.25			0.010		
D			20			0.787	
E		8.5			0.335		
е		2.54			0.100		
e3		17.78			0.700		
F			7.1			0.280	
I			5.1			0.201	
L		3.3			0.130		
Z			1.27			0.050	

Ceramic DIP16/1 MECHANICAL DATA

DIM.		mm			inch	
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			20			0.787
В			7			0.276
D		3.3			0.130	
Е	0.38			0.015		
e3		17.78			0.700	
F	2.29		2.79	0.090		0.110
G	0.4		0.55	0.016		0.022
Н	1.17		1.52	0.046		0.060
L	0.22		0.31	0.009		0.012
М	0.51		1.27	0.020		0.050
N			10.3			0.406
Р	7.8		8.05	0.307		0.317
Q			5.08			0.200

SO16 (Narrow) MECHANICAL DATA

DIM.		mm			inch	
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			1.75			0.068
a1	0.1		0.2	0.004		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1			45°	(typ.)		
D	9.8		10	0.385		0.393
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.62			0.024
S			8° (ı	max.)		

PLCC20 MECHANICAL DATA

DIM.		mm		inch				
Diiii.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А	9.78		10.03	0.385		0.395		
В	8.89		9.04	0.350		0.356		
D	4.2		4.57	0.165		0.180		
d1		2.54			0.100			
d2		0.56			0.022			
E	7.37		8.38	0.290		0.330		
е		1.27			0.050			
e3		5.08			0.200			
F		0.38			0.015			
G			0.101			0.004		
М		1.27			0.050			
M1		1.14			0.045			

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

