What is claimed is:

5

10

15

20

25

1. A liquid crystal display device comprising:

a liquid crystal panel having a plurality of scanning lines/ and a plurality of signal lines;

a standard voltage generating circuit providing a plurality of standard voltages;

a vertical driver that scans the scanning lines of said liquid crystal pane one after another;

a horizontal driver that receives the plurality of standard voltages provided from said standard voltage generating circuit and supply gradation voltage to the signal lines of said liquid crystal panel; and

a control circuit that creates gradation data by inverting a polarity of input data for each horizontal synchronization cycle and controls the horizontal drivers so as to apply standard voltage corresponding to said\gradation data to the liquid crystal panel;

wherein a gradation- γ correction voltage relation used by said control circuit for gradation display is symmetrical with respect to a point in a center between a top gradation step and a bottom gradation step.

- 2. The liquid crystal display device according to claim 1, wherein said gradation- γ correction voltage relation is represented with a straight line and said horizontal drivers apply γ correction voltage to said liquid crystal panel in response to the input gradation data to meet the relation.
- 3. The liquid crystal display device according to claim 1, wherein said gradation- γ correction voltage relation is

represented with a non-straight line and said horizontal drivers apply γ correction voltage to said liquid crystal panel in response to the input gradation data to meet the relation.

- 4. The liquid crystal display device according to claim 3, wherein said non-straight line is a curved line or a polygonal line.
 - 5. The liquid crystal display device according to claim 1, wherein said input data is digital data and said control circuit creates polarity-inverted gradation data by inverting each bit in said digital data.
 - 6. The liquid crystal display device according to claim 1, wherein said standard voltage generating circuit has a ladder resistance and said gradation- γ correction voltage relation is determined by setting the resistance values of said ladder resistance.
 - 7. A driving method of a liquid crystal display device comprising the steps of:

supplying a plurality of standard voltages to a horizontal driver of a liquid crystal panel; and

scanning said liquid crystal panel with a vertical driver by inverting a polarity of input data for each line for displaying gradation;

wherein a gradation- γ correction voltage relation used in displaying gradation is symmetrical with respect to a point in a center between a top gradation step and a bottom gradation step.

8. The driving method of a liquid crystal display device according to claim 7, wherein said gradation- γ correction voltage relation is represented with a straight line and said horizontal

10

15

20

25

drivers apply γ correction voltage to said liquid crystal panel in response to the input gradation data to meet the relation.

- 9. The driving method of a liquid crystal display device according to claim 7, wherein said gradation- γ correction voltage relation is represented with a non-straight line and said horizontal drivers apply γ correction voltage to said liquid crystal panel in response to the input gradation data to meet the relation.
- 10. The driving method of a liquid crystal display device
 10 according to claim 9, wherein said non-straight line is a curved
 line or a polygonal line.