VOI-aware Monte Carlo Sampling in Trees

David Tolpin, Solomon Eyal Shimony
Department of Computer Science,
Ben-Gurion University of the Negev, Beer Sheva, Israel
{tolpin,shimony}@cs.bgu.ac.il

December 4, 2011

Abstract

Upper bounds for the VOI are provided for pure exploration in the Multi-armed Bandit Problem. Sampling policies based on the upper bounds are suggested. Empirical evaluation of the policies is provided on random problems as well as on the Go game.

1 Introduction and Definitions

Taking a sequence of samples in order to minimize the regret of a decision based on the samples is abstracted by the *Multi-armed Bandit Problem*. In the Multi-armed Bandit problem we have a set of K arms. Each arm can be pulled multiple times. When the ith arm is pulled, a random reward X_i from an unknown stationary distribution is returned. The reward is bounded between 0 and 1.

The simple regret of a sampling policy for the Multi-armed Bandit Problem is the expected difference between the best expected reward μ_* and the expected reward μ_j of the arm with the best sample mean $\overline{X}_j = \max_i \overline{X}_i$:

$$\mathbb{E}[R] = \sum_{j=1}^{K} \Delta_j \Pr(\overline{X}_j = \max_i \overline{X}_i)$$
 (1)

where $\Delta_j = \mu_* - \mu_j$. Strategies that minimize the simple regret are called pure exploration strategies [1]. Principles of rational metareasoning [4] suggest that at each step the arm with the great value of information (VOI) must be pulled, and the sampling must be stopped and a decision must be made when no arm has positive VOI.

To estimate the VOI of pulling an arm, either a certain distribution of the rewards should be assumed (and updated based on observed rewards), or a distribution-independent bound on the VOI can be used as the VOI estimate. In this paper, we use *concentration inequalities* to derive distribution-independent bounds on the VOI.

2 Some Concentration Inequalities

Let X_1, \ldots, X_n be i.i.d. random variables with values from $[0,1], X = \frac{1}{n} \sum_{i=1}^n X_i$. Then

Hoeffding's inequality [2]:

$$\Pr(X - \mathbb{E}[X] \ge a) \le \exp(-2na^2) \tag{2}$$

Empirical Bernstein's inequality [3]: 1

$$\Pr(X - \mathbb{E}[X] \ge a) \le 2 \exp\left(-\frac{na^2}{\frac{14}{3}\frac{n}{n-1}a + 2\overline{\sigma}_n^2}\right)$$

$$\le 2 \exp\left(-\frac{na^2}{10a + 2\overline{\sigma}_n^2}\right)$$
(3)

where sample variance $\overline{\sigma}_n^2$ is

$$\overline{\sigma}_n^2 = \frac{1}{n(n-1)} \sum_{1 \le i < j \le n} (X_i - X_j)^2$$
 (4)

Bounds (2, 3) are symmetrical around the mean. Bound (3) is tighter than (2) for small a and $\overline{\sigma}_n^2$.

3 Upper Bounds on Value of Information

Theorem 1. The intrinsic value of perfect information Λ_i^p about the ith arm is bounded from above as

$$\Lambda_{i}^{p} \leq \begin{cases} \Pr(\mathbb{E}[X_{i}] \leq \overline{X}_{\beta}) \overline{X}_{\beta} & if \ i = \alpha \\ \Pr(\mathbb{E}[X_{i}] \geq \overline{X}_{\alpha}) (1 - \overline{X}_{\alpha}) & otherwise \end{cases}$$
 (5)

Theorem 2. The blinkered estimate Λ_i^b of intrinsic value of information of sampling the ith arm for the remaining budget of N samples is bounded from above as

$$\Lambda_{i}^{b} \leq \begin{cases} \Pr(\overline{X}_{i}' \leq \overline{X}_{\beta}) \overline{X}_{\beta} \frac{N}{N+n_{i}} < \Pr(\overline{X}_{i}' \leq \overline{X}_{\beta}) \overline{X}_{\beta} \frac{N}{n_{i}} & if \ i = \alpha \\ \Pr(\overline{X}_{i}' \geq \overline{X}_{\alpha}) (1 - \overline{X}_{\alpha}) \frac{N}{N+n_{i}} < \Pr(\overline{X}_{i}' \geq \overline{X}_{\alpha}) (1 - \overline{X}_{\alpha}) \frac{N}{n_{i}} & otherwise \end{cases}$$
(6)

where \overline{X}'_i is the sample mean of the ith arm after N more samples.

The probabilities in equations (5, 6) can be bounded from above using concentration inequalities. In particular, Lemma 1 is based on the Hoeffding inequality (2):

Lemma 1. The probabilities in equations (5, 6) are bounded from above as

$$\Pr(\mathbb{E}[X_i] \leq \overline{X}_{\beta} | i = \alpha) \leq \exp(-2(\overline{X}_i - \overline{X}_{\beta})^2 n_i)
\Pr(\mathbb{E}[X_i] \geq \overline{X}_{\alpha} | i \neq \alpha) \leq \exp(-2(\overline{X}_{\alpha} - \overline{X}_i)^2 n_i)
\Pr(X_i' \leq \overline{X}_{\beta} | i = \alpha) \leq 2 \exp\left(-\frac{(\overline{X}_i - \overline{X}_{\beta})^2 n_i}{2}\right)
\Pr(X_i' \geq \overline{X}_{\alpha} | i \neq \alpha) \leq 2 \exp\left(-\frac{(\overline{X}_{\alpha} - \overline{X}_i)^2 n_i}{2}\right)$$
(7)

Better bounds can be obtained through tighter estimates on the probabilities, for example, based on the empirical Bernstein inequality (3) or through a more careful application of the Hoeffding inequality (Appendix B).

Figure 1: Winning rate: UCT against VCT

Figure 2: Winning rate: UCT against ECT

4 Empirical Evaluation

5 VOI-based Sampling Control

5.1 Selection Criterion

Following the principles of rational metareasoning, an arm with the highest upper bound $\hat{\Lambda}$ on the perfect value of information should be pulled at each step. This way, arms known to have a low VOI would be pulled less frequently.

5.2 Termination Condition

The upper bounds (??, ??) decrease exponentially with the number of pulls n. When the upper bound of the VOI for all arms becomes lower than a threshold λ , which can be chosen based on resource constraints, the sampling should be stopped, and an arm should be chosen.

¹see Appendix A for derivation

Figure 3: Winning rate: UCT against BCT

Figure 4: Best winning rate comparison

5.3 Sample Redistribution in Trees

UCT forwards samples to the next search stage when the winner at the current state is known with high confidence. VOI-based termination condition can be used to stop the sampling in the current state early and save the remaining samples for re-use in a later search state.

A Empirical Bernstein Inequality

Theorem 4 in [3] states that

$$\Pr\left(\mathbb{E}[X] - \overline{X}_n \ge \sqrt{\frac{2\overline{\sigma}_n^2 \ln 2/\delta}{n}} + \frac{7 \ln 2/\delta}{3(n-1)}\right) \le \delta,$$

Therefore

$$\Pr\left(\mathbb{E}[X] - \overline{X}_n \ge \sqrt{\left(\frac{7\ln 2/\delta}{3(n-1)}\right)^2 + \frac{2\overline{\sigma}_n^2 \ln 2/\delta}{n}} + \frac{7\ln 2/\delta}{3(n-1)}\right) \le \delta.$$

 $a=\sqrt{\left(\frac{7\ln2/\delta}{3(n-1)}\right)^2+\frac{2\overline{\sigma}_n^2\ln2/\delta}{n}}+\frac{7\ln2/\delta}{3(n-1)}$ is a root of square equation

$$a^{2} - a \frac{14 \ln 2/\delta}{3(n-1)} - \frac{2\overline{\sigma}_{n}^{2} \ln 2/\delta}{n} = 0$$

which, solved for $\delta \triangleq \Pr(\mathbb{E}[X] - \overline{X}_n \ge a)$, gives

$$\Pr(\mathbb{E}[X] - \overline{X}_n \ge a) \le 2 \exp\left(-\frac{na^2}{\frac{14}{3}\frac{n}{n-1}a + 2\overline{\sigma}_n^2}\right)$$

Other derivations, giving slightly different results, are possible.

B Better Hoeffding-Based Bound on Value of Perfect Information

The bound can be supposedly be improved by selecting a midpoint $0 < \gamma < \overline{X}_{\beta}$ and computing the bound as the sum of two parts:

- $\overline{X}_{\beta} \gamma$ multiplied by the probability that $\mu_{\alpha} \leq \overline{X}_{\beta}$;
- \overline{X}_{β} multiplied by the probability that $\mu_{\alpha} \leq \gamma$.

$$V_{\overline{X}=\overline{X}_{\alpha}} \leq (\overline{X}_{\beta} - \gamma) \exp\left(-2n(\overline{X}_{\alpha} - \overline{X}_{\beta})^{2}\right) + \overline{X}_{\beta} \exp\left(-2n(\overline{X}_{\alpha} - \gamma)^{2}\right)$$

The minimum of V^* is achieved when $\frac{dV^*}{d\gamma} = 0$, that is, when γ is the root of the following equation:

$$4\overline{X}_{\beta}n(\overline{X}_{\alpha} - \gamma) = \exp\left(-2n\left(\frac{\overline{X}_{\alpha} - \overline{X}_{\beta}}{\overline{X}_{\alpha} - \gamma}\right)^{2}\right)$$

If a root in the interval $0 \le \gamma \le \beta$ exists, then the number of samples is bounded as

$$n \le \frac{1}{4\overline{X}_{\beta}(\overline{X}_{\alpha} - \overline{X}_{\beta})}$$

by observing that the right-hand side is at most 1 (a negative power), and the left-hand side is at least $4\overline{X}_{\beta}n(\overline{X}_{\alpha}-\overline{X}_{\beta})$. So, the bound can supposedly be improved for smaller values of n. The improvement is more significant when the current best and second-best sample means are close.

The derivation for the other case (sampling an item that can be better than the current best) is obtained by substitution $1 - \overline{X}$, $1 - \overline{X}_{\alpha}$, $1 - \gamma$ instead of \overline{X}_{α} , \overline{X}_{β} , γ :

$$V_{\overline{X} \neq \overline{X}_{\alpha}} \leq (\gamma - \overline{X}_{\alpha}) \exp\left(-2n(\overline{X}_{\alpha} - \overline{X})^{2}\right) + (1 - \overline{X}_{\alpha}) \exp\left(-2n(\gamma - \overline{X})^{2}\right)$$

The anticipated influence of the improved VOI estimate would be that the selected item will be a less discovered one and further from the current best or second-best.

A closed-form solution for γ cannot be obtained, but given $\overline{X}_{\alpha}, \overline{X}_{\beta}, n$, the value of γ can be efficiently computed. It should be determined empirically whether the improved estimate has justified influence on the performance of the algorithm.

References

- [1] Sébastien Bubeck, Rémi Munos, and Gilles Stoltz. Pure exploration in finitely-armed and continuous-armed bandits. *Theor. Comput. Sci.*, 412(19):1832–1852, 2011.
- [2] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. *Journal of the American Statistical Association*, 58(301):pp. 13–30, 1963.
- [3] Andreas Maurer and Massimiliano Pontil. Empirical bernstein bounds and sample-variance penalization. In *COLT*, 2009.
- [4] Stuart Russell and Eric Wefald. Do the right thing: studies in limited rationality. MIT Press, Cambridge, MA, USA, 1991.