RWTH Aachen University

Instructor: Prof. Dr. Semih Çaycı

Teaching Assistant: Johannes Müller, M.Sc.

Mathematical Foundations of Deep Learning (11.80020) Assignment 0 (Voluntary exercises)

Reminder. For a real random variable X we call (if existent)

$$\varphi_X(\lambda) := \log \mathbb{E}[e^{\lambda X}]$$
 and $\widetilde{\varphi}_X(\lambda) := \log \mathbb{E}[e^{\lambda(X - \mathbb{E}X)}]$

the logarithmic moment generating function or shortly log-moment generating function and the centered logarithmic moment generating function or shortly centered log-moment generating function, respectively. Note that $\varphi_X, \widetilde{\varphi}_X \colon \mathbb{R} \to \mathbb{R}_{>0} \cup \{+\infty\}$ and we denote their domains by

$$dom(\varphi_X) := \{\lambda \in \mathbb{R} : \varphi_X(\lambda) < \infty\} = dom(\widetilde{\varphi}_X) := \{\lambda \in \mathbb{R} : \widetilde{\varphi}_X(\lambda) < \infty\}.$$

We call

$$\varphi_X^{\star}(\lambda) \coloneqq \sup_{\lambda > 0} \{\lambda t - \varphi_X(\lambda)\} \quad \text{and } \widetilde{\varphi}_X^{\star}(\lambda) \coloneqq \sup_{\lambda > 0} \{\lambda t - \widetilde{\varphi}_X(\lambda)\}$$

the Cramer transform of φ_X and $\widetilde{\varphi}_X$, respectively. We call

$$\varphi_X^*(\lambda) \coloneqq \sup_{\lambda \in \mathbb{R}} \{\lambda t - \varphi_X(\lambda)\} \quad \text{and } \widetilde{\varphi}_X^*(\lambda) \coloneqq \sup_{\lambda \in \mathbb{R}} \{\lambda t - \widetilde{\varphi}_X(\lambda)\}$$

the Legendre transform (or Legendre-Fenchel transform or convex conjugate) of φ_X and $\widetilde{\varphi}_X$, respectively. We call a real random variable sub-Gaussian with parameter σ^2 (or shortly σ^2 -sub-Gaussian) if $\widetilde{\varphi}_X(\lambda) \leq \frac{\sigma^2 \lambda^2}{2}$ for all $\lambda \in \mathbb{R}$.

Finally, recall Hölder's inequality. For this consider $p, q \in [1, \infty]$ such that $\frac{1}{p} + \frac{1}{q} = 1$, where $\frac{1}{\infty} := 0$. For two real random variables X and Y it holds that

$$\mathbb{E}[|XY|] \le \mathbb{E}[|X|^p]^{\frac{1}{p}} \cdot \mathbb{E}[|Y|^q]^{\frac{1}{q}}.$$

- Q1. (Logarithmic moment generating function of a Gaussian) Compute the centered and non centered log-moment generating function and their Legendre transforms of a Gaussian random variable $X \sim \mathcal{N}(\mu, \sigma^2)$ with mean μ and variance σ^2 .
- **Q2.** (Stability of sub-Gaussianity) Let X_1 and X_2 be sub-Gaussian with parameters σ_1^2 and σ_2^2 , respectively.
 - (a) Show that αX_1 is sub-Gaussian with parameter $\alpha^2 \sigma_1^2$ for a constant $\alpha \in \mathbb{R}$.
 - (b) If X_1 and X_2 are independent, show that $X_1 + X_2$ is sub-Gaussian with parameter $\sigma_1^2 + \sigma_2^2$.
 - (c) Show that in general (without assuming independence), the random variable $X_1 + X_2$ is sub-Gaussian with parameter $2(\sigma_1^2 + \sigma_2^2)$. Next, show that $X_1 + X_2$ is sub-Gaussian with parameter $(\sigma_1 + \sigma_2)^2$, which improves the result. *Hint:* Use Cauchy-Schwarz and Hoelder's inequality respectively.

- Q3. (Properties of logarithmic moment generating functions) For this exercise you can assume $\mathbb{E}X = 0$, but the statements hold in general.
 - (a) Convexity. Show that φ_X and $\widetilde{\varphi}_X$ are convex functions. Hint: Hölder's inequality
 - (b) Semi-continuity. Show that φ_X and $\widetilde{\varphi}_X$ lower semi-continuous, i.e., if $\lambda_n \to \lambda$ for $n \to \infty$ then

$$\liminf_{n\to\infty} \varphi_X(\lambda_n) \geq \varphi_X(\lambda) \quad \text{and } \liminf_{n\to\infty} \widetilde{\varphi}_X(\lambda_n) \geq \widetilde{\varphi}_X(\lambda).$$

Hint: Fatou's lemma

- (c) Smoothness. Show that φ_X and $\widetilde{\varphi}_X$ are smooth, i.e., infinitely many times continuously differentiable, function on their domains. *Hint:* It suffices to show that e^{φ_X} and $e^{\widetilde{\varphi}}$ are smooth for which you can use the dominated convergence theorem.
- (d) Derivatives. Show that

$$\varphi_X'(\lambda) = \frac{\mathbb{E}[Xe^{\lambda X}]}{M(\lambda)} \quad \text{and } \widetilde{\varphi}_X'(\lambda) = \frac{\mathbb{E}[Xe^{\lambda(X - \mathbb{E}X)}]}{\widetilde{M}(\lambda)},$$

where $M(\lambda) := \mathbb{E}[e^{\lambda X}] = e^{\varphi_X(\lambda)}$ and $\widetilde{M}(\lambda) := \mathbb{E}[e^{\lambda(X - \mathbb{E}X)}] = e^{\widetilde{\varphi}_X(\lambda)}$ denote the expontial and centered exponential moments of X.

- (e) Existence of moments. Assume that $\varphi_X(\lambda) < \infty$ or $\widetilde{\varphi}_X(\lambda) < \infty$ for all $\lambda \in (-\varepsilon, \varepsilon)$ for some $\varepsilon > 0$. Show that all moments exist, i.e., $\mathbb{E}[|X|^k] < \infty$ for all $k \in \mathbb{N}$.
- (f) Cramer transform equals Legendre transform. Show that

$$\widetilde{\varphi}_X^{\star}(\lambda) = \sup_{\lambda > 0} \{\lambda t - \widetilde{\varphi}_X(\lambda)\} = \sup_{\lambda \in \mathbb{R}} \{\lambda t - \widetilde{\varphi}_X(\lambda)\} = \widetilde{\varphi}_X^{*}(\lambda) \quad \text{for all } t \geq 0.$$