$$\frac{128}{s^8 + 3s^7 + 10s^6 + 24s^5 + 48s^4 + 96s^3 + 128s^2 + 192s^1 + 128}$$
 Also find how many poles are there in LHS, RHS and on the imaginary axis j\omega.

OR iii. Determine the stability of the system using the Routh-Hurwitz criterion 7 for the following equation-

$$\frac{20}{s^8+s^7+12s^6+22s^5+39s^4+59s^3+48s^2+38s^1+20}$$
 Also find how many poles are there in LHS, RHS and on the imaginary axis $j\omega$.

- Q.5 i. Explain the concept of root locus? Write the properties of root locus.
 - ii. Compare and contrast the performance of PI, PD, and PID controllers in 6 terms of stability, transient response, and steady-state error.
- OR iii. Sketch the root locus for the system shown in figure below 6

Q.6 Attempt any two:

- i. Describe how MATLAB facilitates system modeling in automatic control systems. What are the key functions or tools used for representing control systems mathematically?
- ii. How does MATLAB assist in stability analysis of control systems? 5
 Provide examples of stability analysis techniques available in MATLAB
- iii. Write advantages and limitations of using MATLAB in automatic control 5 system applications

Total No. of Questions: 6

Total No. of Printed Pages:4

Enrollment No.....

Faculty of Engineering End Sem Examination May-2024 RA3CO31 Automatic Control Systems

Programme: B.Tech. Branch/Specialisation: RA

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d. Assume suitable data if necessary. Notations and symbols have their usual meaning.

- Q.1 i. In an elevator system where the position of the elevator is constantly 1 monitored and adjusted based on the desired floor input, what type of control system does it represent?
 - (a) Open-loop control system
- (b) Closed-loop control system
- (c) Hybrid control system
- (d) None of these
- ii. Steady-state error in a closed-loop system refers to:
 - ASIGNI TETETS TO.
 - (a) The difference between the desired and actual output at a specific time
 - (b) The difference between the desired and actual output as time approaches infinity
 - (c) The speed at which the system responds to a change in input
 - (d) The deviation of the system's response from the desired output during transient conditions.
- iii. If the stiffness of a spring element in a translational mechanical system 1 increases, what happens to its impedance?
 - (a) Impedance increases
- (b) Impedance decreases
- (c) Impedance remains constant
- (d) Impedance becomes negative
- v. The aim of mathematical modeling in system analysis is-
 - (a) To make systems more complex
 - (b) To provide a physical representation of a system using mathematical equations
 - (c) To eliminate the need for simulations
 - (d) To make systems less predictable

P.T.O.

1

ii. Solve the block diagram shown in figure below-

OR iii. Solve the block diagram shown in figure below-

- Q.3 i. What is the transfer function H(s) of an RL (resistor-inductor) and LR 4 (inductor-resistor) circuit with a resistance R and inductance L. Also explain why RL and LR circuit called low-pass filter and high-pass filter?
 - ii. Find the transfer function G(s) for the rotational mechanical system as 6 shown below-

- OR iii. Write the differential equations for a translational mechanical system-two 6 equation of motion (spring-mass) and also find a transfer function solving these differential equations.
- Q.4 i. Explain the concept of steady-state error in control systems. Discuss how it relates to the system's response to step, ramp, and parabolic input signals

P.T.O.

7

[2]

Marking Scheme

RA3CO31 (T) Automatic Control Systems

Q.1	i.	В		1
	ii.	В		1
	iii.	A		1
	iv.	В		1
	v.	A		1
	vi.	A		1
	vii.	A		1
	viii.	В		1
	ix.	A		1
	х.	A		1
Q.2	i.	Compare and contrast the performance of the open-loop of system with the closed-loop control system		3
		the open-loop control -1 mark	.5	
		the closed loop control system -1. mark	5	
	ii.	\mathcal{E}	-1 mark -6 marks	7

	iii.	. Solve the block diagram shown in figure below		7
		block diagram reduction rule	-1 mark	
		solution step by step	-6 marks	
Q.3	i.	What is the transfer function $H(s)$ of an RL (resistor-LR (inductor-resistor) circuit with a resistance R and	,	4
		Also explain why RL and LR circuit called low-pass fi pass filter? Transfer function of RL and LR circuit		
		Reason for low and high pass filter	-2 marks	
	ii.	Find the transfer function $G(s)$ for the rotational mech as shown below	anical system	6
		Differential equation	-1 mark	
		Forces and their direction	-2 marks	
		Trasfer function determination	-3 marks	
OR	iii.	Write the differential equations for a translational mechanical system-two equation of motion (spring-mass) and also find a transfer function solving these differential equations.		6
		Differential equation	-1 mark	
		Forces and their direction	-2 marks	
		Trasfer function determination	-3 marks	
Q.4	i.	Explain the concept of steady-state error in control sys	tems Discuss	3
Q.4	1.	how it relates to the system's response to step, ramp, and parabolic input signals		-
		Explain steady-state error	-1 mark	
		Relation with different input	-2 marks	
	ii.	Determine the stability of the system using the R criterion for the following equation. Also find how m there in LHS, RHS and on the imaginary axis jω		7
		Solution	-4 marks	
		Stable or Unstable	-1 mark	
		Location of poles	-2 marks	
		Document of percent	= marks	

OR

OR	iii.	Determine the stability of the system using the Rout criterion for the following equation. Also find how many there in LHS, RHS and on the imaginary axis $j\omega$ Solution Stability or unstability Location of poles		7
Q.5	i.	Explain the concept of root locus? Write the properties of Definition root locus Properties of root locus	root locus. 1 mark 3 marks	4
	ii.	Compare and contrast the performance of PI, PD, controllers in terms of stability, transient response, and sterror. PI PD PID		6
OR	iii.	Sketch the root locus for the system shown in figure belocalculating the asymptotes Explanation with root locus sketch	ow -1 mark -5 marks	6
Q.6	i.	Describe how MATLAB facilitates system modeling in control systems. What are the key functions or tools representing control systems mathematically? Description Key functions		5

ii.	How does MATLAB assist in stability analysis of con Provide examples of stability analysis techniques MATLAB	•	5
	Description	-2 marks	
	Examples	- 3 marks	
iii.	Write advantages and limitations of using MATLAB control system applications	in automatic	5
	Advantages	-2.5 marks	
	Disadvantages	-2.5 marks	
