A slit of width 0.16 mm is illuminated by a light of wavelength 5600 A°. Find the half angular width of the central maximum.

Data
$$\frac{1}{6}$$
 $\alpha = 0.016 \text{ Cm}$, $\Lambda = 5000 \times 10^{8} \text{ cm}$, $N = 1$

Pormula $\frac{1}{6}$ $\alpha = 1$
 $\alpha = 0.016 \text{ Cm}$, $\Lambda = 5000 \times 10^{8} \text{ cm}$, $\Lambda = 1$
 $\alpha = 0.016 \text{ Cm}$, $\Lambda = 5000 \times 10^{8} \text{ cm}$, $\Lambda = 1$
 $\alpha = 0.016 \text{ Cm}$, $\Lambda = 5000 \times 10^{8} \text{ cm}$, $\Lambda = 1$
 $\alpha = 0.016 \text{ Cm}$, $\Lambda = 5000 \times 10^{8} \text{ cm}$, $\Lambda = 1$
 $\alpha = 0.016 \text{ Cm}$, $\Lambda = 5000 \times 10^{8} \text{ cm}$, $\Lambda = 1$
 $\alpha = 0.016 \text{ Cm}$, $\Lambda = 5000 \times 10^{8} \text{ cm}$, $\Lambda = 1$
 $\alpha = 0.016 \text{ Cm}$, $\Lambda = 5000 \times 10^{8} \text{ cm}$, $\Lambda = 1$
 $\alpha = 0.016 \text{ Cm}$, $\Lambda = 5000 \times 10^{8} \text{ cm}$, $\Lambda = 1$
 $\alpha = 0.016 \text{ Cm}$, $\Lambda = 1000 \times 10^{8} \text{ cm}$, $\Lambda = 1000 \times 10$

A slit of variable width is illuminated by red light of $\lambda = 6500$ A°. At what width of the slit, the first minimum will fall at $\theta = 30^{\circ}$?

formula p>

A light of wavelength 5×10^{-5} cm is incident normally on the plane transmission grating of width 3 cm and having 15000 lines. Find the angle of diffraction in the first order.

$$0 = Si'n'' \left(\frac{\lambda}{a + b}\right) = Si'n'' \left(\frac{5 \times 10^{5}}{3} \times 15000\right)$$

-- --

A parallel beam of sodium light is allowed to be incident normally on a plane grating having 4250 lines per cm and a second order spectral line is observed to be deviated through 30°. Calculate the wavelength of the spectral line.

Data
$$\stackrel{\bullet}{\bullet}$$
 $0=30^{\circ}$.

 $a+b=4250$
 $h=2$.

Formula $\stackrel{\bullet}{\bullet}$ $(a+b) \sin 0 = h\lambda$

Solution $\stackrel{\bullet}{\bullet}$ $(a+b) \sin 0 = h\lambda$

Lut $h=2$
 $(a+b) \sin 0 = 2\lambda$
 $\lambda = (a+b) \sin 0$

Substituting $\lambda = \frac{1}{4260} \times \frac{1}{2} \times \frac{1}{2}$
 $\lambda = 5.886 \times 10^{-5} \text{ cm}$
 $\lambda = 5886 \text{ Å}$.

A grating has 6000 lines/cm. Find the angular separation of two yellow lines of mercury of wavelengths 5770 A° and 5791 A° in the second order.

Data
$$\stackrel{2}{\leftarrow}$$
 atb = $\frac{1}{coo}$ cm.

 $\lambda = 5770 \text{ X} 10^{-8} \text{ cm}$
 $\lambda z = 5701 \text{ X} 10^{-8} \text{ cm}$
 $\lambda z = 5701 \text{ X} 10^{-8} \text{ cm}$
 $\lambda z = 5701 \text{ X} 10^{-8} \text{ cm}$
 $\lambda z = 5701 \text{ X} 10^{-8} \text{ cm}$
 $\lambda z = 5701 \text{ X} 10^{-8} \text{ cm}$
 $\lambda z = 5701 \text{ X} 10^{-8} \text{ cm}$
 $\lambda z = 5701 \text{ X} 10^{-8} \text{ cm}$
 $\lambda z = 5701 \text{ X} 10^{-8} \text{ cm}$
 $\lambda z = 5701 \text{ X} 10^{-8} \text{ cm}$
 $\lambda z = 5701 \text{ cm}$

grating having 5000 lines per cm?

$$a+b = \frac{1}{5000} cm$$

formula => (a+b) si'n0 = u/

Solution =

Take, si'no=1.

ath = ux

5000 = NX 6000 X/6

N=3-3

The highest order 12 4=3.

Monochromatic light from He-Ne laser source (λ =6328A9 is incident normally on a diffraction grating having 6000 lines/cm. find the angle at which one would observe second order maximum.

for
$$h=1$$
, $01 = s1'u^{-1} \left(\frac{1 \times 628.8 \times 10^{-7}}{1.66 \times 10^{-4}} \right) = 22-31^{\circ}$.

The angular separation of two stars is 1.5 seconds. Find the minimum aperture of a telescope objective, if the two stars are to be distinguished as separate, given $\lambda = 5700 \, A^{\circ}$.

formula &>

$$d0=1-22\frac{\lambda}{d}$$

aperture, d= 1.221

The objective of a telescope has a diagram of 40 inches. Calculate the smallest angular separately two stars that may be resolved by it. Mean wavelength two stars $\lambda = 5600 \, \text{A}^{\circ}$.

d0 = 6.724 x 107 radians.

de is the smallest Angular Separation

between the stort can be resolved by the telescope.

