Доклад

Симметричные криптосистемы

Ле Тиен Винь

Содержание

І.Цель работы	. 1
II Определение и основные принципы	. 1
III. Классификация симметричных криптосистем	. 1
IV. Блочные шифры: DES, AES, Blowfish	. 2
V. Преимущества и недостатки симметричных криптосистем	. 2
VI. Алгоритмы аутентификации и целостности данных	. 2
VII. Стандарты и протоколы симметричного шифрования	. 2
VIII. Перспективы развития симметричной криптографии	. 3
IX. Вывод	. 3

І.Цель работы

Симметричное шифрование — это один из самых распространенных и эффективных методов защиты информации. Он основан на использовании одного и того же ключа для шифрования и дешифрования данных.

II Определение и основные принципы

- Симметричное шифрование использует один секретный ключ для шифрования и дешифрования данных. Этот ключ должен быть известен как отправителю, так и получателю.
- Конфиденциальность: Обеспечение секретности данных, чтобы только авторизованные лица могли их прочитать.
- Целостность: Гарантирование, что данные не были изменены во время передачи или хранения.
- Аутентификация: Подтверждение личности отправителя и получателя данных.

III. Классификация симметричных криптосистем

- Симметричные криптосистемы делятся на две основные категории: блочные шифры и поточные шифры.
- Обрабатывают данные блоками фиксированного размера.

• Обрабатывают данные по одному биту или байту за раз.

IV. Блочные шифры: DES, AES, Blowfish

- DES: Один из первых широко используемых блочных шифров, но в настоящее время считается небезопасным.
- AES: Стандартный алгоритм шифрования, который используется в различных приложениях.
- Blowfish: Быстрый и эффективный алгоритм, который часто используется в программах и системах безопасности.

V. Преимущества и недостатки симметричных криптосистем

- Симметричные криптосистемы обладают как преимуществами, так и недостатками.
- Преимущества: Высокая скорость шифрования и дешифрования, Простая реализация
- Недостатки: Сложность управления ключами, Риск компрометации ключа

VI. Алгоритмы аутентификации и целостности данных

Алгоритмы аутентификации и целостности данных дополняют симметричное шифрование, - HMAC: Используется для проверки целостности данных и аутентификации сообщения. - CMAC: Алгоритм аутентификации сообщений, используемый в стандарте AES. - GCM: Режим аутентифицированного шифрования, который обеспечивает как конфиденциальность, так и целостность данных.

VII. Стандарты и протоколы симметричного шифрования

Симметричное шифрование стандартизировано для обеспечения безопасности. - AES: Стандартный алгоритм симметричного шифрования, который используется во множестве приложений. - DES: Один из первых стандартов шифрования, который уже считается небезопасным. - RC4: Популярный поточный шифр, который используется в различных протоколах.

VIII. Перспективы развития симметричной криптографии

- Разработка алгоритмов, которые будут устойчивы к атакам квантовых компьютеров.
- Появление новых алгоритмов с более высокой скоростью и надежностью. Развитие более эффективных и безопасных методов управления секретными ключами.

IX. Вывод

Симметричное шифрование — один из самых популярных и эффективных методов защиты информации.