		Cre	eated with Osdag®
Company Name			20 mm bolts
Group/Team Name		Subtitle	
Designer		Job Number	
Date	11 /04 /2021	Client	

1 Input Parameters

Main Module	Shear Connection
Module	Fin Plate Connection
Connectivity	Beam-Beam
Shear Force (kN)	131.628
Axial Force (kN)	147.368

Supporting Section - Mechanical Properties

	Supporting Section - Mechanical Properties				
	Supporting S	ection	GF	ROUP4	
l	Materia	1	E 250 (Fe 410 W)A	
	Ultimate Strength	F_u (MPa)		410	
	Yield Strength, I	F_y (MPa)		250	
	Mass, m (kg/m)	328.22	$I_z \text{ (cm}^4)$	511521.0	
	Area, $A \text{ (cm}^2)$	419.0	$I_y(\mathrm{cm}^4)$	42926.0	
	D (mm)	824.0	r_z (cm)	34.9	
	B (mm)	500.0	r_y (cm)	10.12	
	t (mm)	12.0	$Z_z (\mathrm{cm}^3)$	13034.0	
	T (mm)	16.0	$Z_y \text{ (cm}^3)$	2071.0	
	Flange Slope	90	$Z_{pz} (\mathrm{cm}^3)$	7374.9	
l	$R_1 \text{ (mm)}$	20.0	$Z_{py} (\mathrm{cm}^3)$	15512.0	
	$R_2 \text{ (mm)}$	10.0			

Supported Section - Mechanical Properties

Supported Section		GROUP4-S1-		
Materia	.1	E 250 (Fe 410 W)A	
Ultimate Strength, F_u (MPa)			410	
Yield Strength,	F_y (MPa)		250	
Mass, m (kg/m)	324.0	$I_z \text{ (cm}^4)$	511521.0	
Area, $A \text{ (cm}^2)$	419.0	$I_y(\mathrm{cm}^4)$	42926.0	
D (mm)	750.0	r_z (cm)	34.9	
B (mm)	500.0	r_y (cm)	10.12	
t (mm)	12.0	$Z_z \text{ (cm}^3)$	13034.0	
T (mm)	16.0	$Z_y \text{ (cm}^3)$	2071.0	
Flange Slope	90	$Z_{pz} (\mathrm{cm}^3)$	6483.59	
$R_1 \text{ (mm)}$	20.0	$Z_{py} \ (\mathrm{cm}^3)$	15464.64	
$R_2 \text{ (mm)}$	10.0			

		Cre	ated with Osdag®
Company Name		Project Title	20 mm bolts
Group/Team Name		Subtitle	
Designer		Job Number	
Date	11 /04 /2021	Client	

Bolt Details - Input and Design Preference			
Diameter (mm)	[12, 14, 16, 18, 20]		
Property Class	[3.6,4.6,4.8,5.6,5.8,6.8,8.8,9.8,10.9,12.9]		
Type	Friction Grip Bolt		
Hole Type	Standard		
Bolt Tension	Pre-tensioned		
Slip Factor, (μ_f)	0.3		
Detailing - Design P	reference		
Edge Preparation Method	Sheared or hand flame cut		
Gap Between Members (mm)	10.0		
Are the Members Exposed to Corrosive Influences?	False		
Plate Details - Input and D	esign Preference		
Thickness (mm)	[14, 16, 18, 20]		
Material	E 250 (Fe 410 W)A		
Ultimate Strength, Fu (MPa)	410		
Yield Strength, Fy (MPa)	250		
Weld Details - Input and D	esign Preference		
Weld Type	Fillet		
Type of Weld Fabrication	Shop Weld		
Material Grade Overwrite, Fu (MPa)	410.0		

		Cre	ated with Osdag®
Company Name		Project Title	20 mm bolts
Group/Team Name		Subtitle	
Designer		Job Number	
Date	11 /04 /2021	Client	

2 Design Checks

Design Status Pass

2.1 Initial Section Check

Check	Required	Provided	Remarks
Shear Yielding Capacity (kN)	131.628	$\begin{split} V_{d_y} &= \frac{A_v f_y}{\sqrt{3} \gamma_{m0}} \\ &= \frac{700.0 \times 12.0 \times 250}{\sqrt{3} \times 1.1 \times 1000} \\ &= 1102.21 \end{split}$ [Ref. IS 800:2007, Cl.10.4.3]	Pass
Allowable Shear Capacity (kN)	131.628	$V_d = 0.6 \ V_{dy}$ = 0.6 × 1102.21 = 661.33 [Limited to low shear]	Pass
Tension Yielding Capacity (kN)	147.368	$T_{\text{dg}} = \frac{A_g f_y}{\gamma_{m0}}$ $A_g = lt = 700.0 \times 12.0$ $= \frac{8400.0 \times 250}{1.1 \times 10^3}$ $= 1909.09$ [Ref. IS 800:2007, Cl.6.2]	Pass

2.2 Load Consideration

Check	Required	Provided	Remarks
Applied Axial Force (kN	I) 147.368	147.368	

		Cre	ated with OSdag®
Company Name		Project Title	20 mm bolts
Group/Team Name		Subtitle	
Designer		Job Number	
Date	11 /04 /2021	Client	

Check	Required	Provided	Remarks
Applied Shear Force (kN)	131.628	$V_{y_{\min}} = \min(0.15V_{d_y}, 40.0)$ $= \min(0.15 \times 1102.21, 40.0)$ $= 40$ $V_u = \max(V_y, V_{y_{\min}})$ $= \max(131.628, 40)$ $= 131.628$ [Ref. IS 800:2007, Cl.10.7]	

2.3 Bolt Design

Check	Required	Provided	Remarks
Diameter (mm)		20.0	
Property Class		12.9	
Plate Thickness (mm)	$t_w = 12.0$	14.0	Pass
No. of Bolt Columns		1	Pass
No. of Bolt Rows		5	
	$p_{\min} = 2.5d$		
	$=2.5\times20.0$		
Min. Pitch Distance (mm)	= 50.0	140	Pass
	[Ref. IS 800:2007, Cl.10.2.2]		
	$p/g_{\text{max}} = \min(32t, 300)$		
	$= \min(32 \times 12.0, 300)$		
	$= \min(384.0, 300)$		
Mara Dital Distance (mara)	= 300	140	Pass
Max. Pitch Distance (mm)		140	Pass
	Where, $t = \min(14.0, 12.0)$		
	[Ref. IS 800:2007, Cl.10.2.3]		

		Cre	ated with Osdag®
Company Name		Project Title	20 mm bolts
Group/Team Name		Subtitle	
Designer		Job Number	
Date	11 /04 /2021	Client	

Check	Required	Provided	Remarks
	$p_{\min} = 2.5d$		
	$= 2.5 \times 20.0$		
Min. Gauge Distance	= 50.0	0.0	
(mm)			
	[Ref. IS 800:2007, Cl.10.2.2]		
	$p/g_{\text{max}} = \min(32t, 300)$		
	$= \min(32 \times 12.0, 300)$		
	$= \min(384.0, 300)$		
Max. Gauge Distance	= 300	0.0	
(mm)		0.0	
	Where, $t = \min(14.0, 12.0)$		
	[Ref. IS 800:2007, Cl.10.2.3]		
	$e_{\min} = 1.7d_0$		
	$= 1.7 \times 22.0$		
Min. End Distance (mm)	= 37.4	40	Pass
	[Ref. IS 800:2007, Cl.10.2.4.2]		
	$e_{\max} = 12t\varepsilon; \ \varepsilon = \sqrt{\frac{250}{f_y}}$		
	$e_1 = 12 \times 14.0 \times \sqrt{\frac{250}{250}} = 168.0$		
Max. End Distance (mm)	$e_2 = 12 \times 12.0 \times \sqrt{\frac{250}{250}} = 144.0$	40	Pass
	$e_{\text{max}} = \min(e_1, e_2) = 144.0$		
	[Ref. IS 800:2007, Cl.10.2.4.3]		
	$e'_{\min} = 1.7d_0$		
	$= 1.7 \times 22.0$		
Min. Edge Distance (mm)	= 37.4	40	Pass
	[Ref. IS 800:2007, Cl.10.2.4.2]		

		Cre	ated with Osdag®
Company Name		Project Title	20 mm bolts
Group/Team Name		Subtitle	
Designer		Job Number	
Date	11 /04 /2021	Client	

Check	Required	Provided	Remarks
Max. Edge Distance (mm)	$e'_{\text{max}} = 12t\varepsilon; \ \varepsilon = \sqrt{\frac{250}{f_y}}$ $e_1 = 12 \times 14.0 \times \sqrt{\frac{250}{250}} = 168.0$ $e_2 = 12 \times 12.0 \times \sqrt{\frac{250}{250}} = 144.0$ $e'_{\text{max}} = min(e_1, \ e_2) = 144.0$ [Ref. IS 800:2007, Cl.10.2.4.3]	40	Pass
Moment Demand (kNm)	[2001 10 00012001, 0110121.110]	$M_d = (V_u \times \text{ecc} + M_w)$ $\text{ecc} = \text{eccentricity}$ $M_w = \text{external moment acting on web}$ $= \frac{(131.63 \times 10^3 \times 50.0 + 0.0 \times 10^6)}{10^6}$ $= 6.58$	
Bolt Force Parameter(s) (mm)	l_n = length available l_n = $p (n_r - 1)$ = $140 \times (5 - 1)$ = 560 $y_{\text{max}} = l_n/2$ = $560/2$ = 280.0 $x_{\text{max}} = g(n_c - 1)/2$ = $0.0 \times (1 - 1)/2$ = 0.0		

		Cre	ated with Osdag®
Company Name		Project Title	20 mm bolts
Group/Team Name		Subtitle	
Designer		Job Number	
Date	11 /04 /2021	Client	

Check	Required	Provided	Remarks
Bolt Force (kN)	$vbv = V_u/(n_r \times n_c)$ $= \frac{131.63}{(5 \times 1)}$ $= 26.33$ $tmh = \frac{M_d \times y_{\text{max}}}{\Sigma r_i^2}$ $= \frac{6.58 \times 280.0}{196.0}$ $= 9.4$ $tmv = \frac{M_d \times x_{\text{max}}}{\Sigma r_i^2}$ $= \frac{6.58 \times 0.0}{196.0}$ $= 0.0$ $abh = \frac{A_u}{(n_r \times n_c)}$ $= \frac{147.37}{(5 \times 1)}$ $= 29.47$ $v_{\text{res}} = \sqrt{(vbv + tmv)^2 + (tmh + abh)^2}$ $= \sqrt{(26.33 + 0.0)^2 + (9.4 + 29.47)^2}$ $= 46.95$		
Slip Resistance (kN)		$V_{dsf} = \frac{\mu_f n_e K_h F_o}{\gamma_{mf}}$ Where $, F_o = 0.7 f_{ub} A_{nb}$ $V_{dsf} = \frac{0.3 \times 1 \times 1.0 \times 0.7 \times 1220.0 \times 245}{1.25 \times 10^3}$ $= 50.22$ [Ref. IS 800:2007, Cl.10.4.3]	

		Cre	ated with Osdag®
Company Name		Project Title	20 mm bolts
Group/Team Name		Subtitle	
Designer		Job Number	
Date	11 /04 /2021	Client	

Check	Required	Provided	Remarks
Long Joint Reduction Factor	if $l_j \geq 15d$ then $V_{\rm rd} = \beta_{lj} V_{\rm db}$ if $l_j < 15d$ then $V_{\rm rd} = V_{\rm db}$ where, $l_j = ((nc \text{ or } nr) - 1) \times (p \text{ or } g)$ $\beta_{lj} = 1.075 - l/(200d)$	$l_j = (n_r - 1) \times p$ = $(5 - 1) \times 140 = 560$ l = 560 $15 \times d = 15 \times 20.0 = 300.0$ since, $l_j \ge 15 \ d$ then $V_{\rm rd} = \beta_{lj} \ V_{\rm db}$	Remarks
	but $0.75 \le \beta_{lj} \le 1.0$ [Ref. IS 800:2007, Cl.10.3.3.1]	$\beta_{lj} = 1.075 - 560/(200 \times 20.0) = 0.94$ [Ref. IS 800:2007, Cl.10.3.3.1]	
Capacity (kN)	46.95	47.2	Pass

2.4 Plate Design

Check	Required	Provided	Remarks
	$0.6 \times (d_b - 2 \times t_f - 2 \times r_r)$		
	$= 0.6 \times (750.0 - 2 \times 16.0 - 2 \times 20.0)$		
Min. Plate Height (mm)	=406.8	640	Pass
	[Ref. INSDAG, Ch.5, sec.5.2.3]		
	$d_b - t_{bf} + r_{b1} - notch_h$		
Max. Plate Height (mm)	= 750.0 - 16.0 + 20.0 - 50	640	Pass
	=664.0		
	$2e_{\min} + (n_c - 1)p_{\min})$		
Min. Plate Width (mm)	$= 2 \times 37.4 + (1 - 1) \times 50.0$	90.0	Pass
	= 84.8		
Min. Plate Thickness	$t_w = 12.0$	14.0	Pass
(mm)			

		Cre	ated with Osdag®
Company Name		Project Title	20 mm bolts
Group/Team Name		Subtitle	
Designer		Job Number	
Date	11 /04 /2021	Client	

Check	Required	Provided	Remarks
Shear Yielding Capacity (kN)		$V_{d_y} = \frac{A_v f_y}{\sqrt{3}\gamma_{m0}}$ $= \frac{640 \times 14.0 \times 250}{\sqrt{3} \times 1.1 \times 1000}$ $= 1175.7$	
		[Ref. IS 800:2007, Cl.10.4.3]	
		$V_d = 0.6 \ V_{dy}$	
		$= 0.6 \times 1175.7$	
Allowable Shear Capacity (kN)	V = 131.628	=705.42	Pass
		[Limited to low shear]	
Shear Rupture Capacity (kN)		$V_{d_n} = \frac{0.75A_{v_n}f_u}{\sqrt{3}\gamma_{m1}}$ $= 1 \times \frac{(640 - (5 \times 22.0)) \times 14.0 \times 410}{\sqrt{3} \times 1.25}$ $= 2281.65$	
		[Ref. AISC, sect. J4] $V_{\text{dbl1}} = \frac{A_{\text{vg}} f_y}{\sqrt{3} \gamma_{m0}} + \frac{0.9 A_{tn} f_u}{\gamma_{m1}}$	
		$V_{\text{dbl1}} = \frac{\gamma_{\text{vg}Jy}}{\sqrt{3}\gamma_{m0}} + \frac{0.51\tau_{nJu}}{\gamma_{m1}}$	
Block Shear Capacity in		$V_{\text{dbl2}} = \frac{0.9A_{vn}f_u}{\sqrt{3}\gamma_{m1}} + \frac{A_{tg}f_y}{\gamma_{m0}}$	
Shear (kN)		$V_{\rm db} = \min(V_{db1}, \ V_{db2}) = 1222.07$	
		[Ref. IS 800:2007, Cl.6.4]	
		$V_d = \min(S_c, V_{d_n}, V_{d_b})$ = $\min(705.42, 2281.65, 1222.07)$	
Shear Capacity (kN)	131.628	=705.42	Pass
		[Ref. IS 800:2007, Cl.6.1]	

		Created with OSCIAG®	
Company Name		Project Title	20 mm bolts
Group/Team Name		Subtitle	
Designer		Job Number	
Date	11 /04 /2021	Client	

Check	Required	Provided	Remarks
		$T_{ m dg} = rac{A_g f_y}{\gamma_{m0}}$	
		γ_{m0}	
		$A_g = lt = 640 \times 14.0$	
Tension Yielding Capacity		$= \frac{8960.0 \times 250}{1.1 \times 10^3}$	
(kN)		= 2036.36	
		_ 2000.30	
		[Ref. IS 800:2007, Cl.6.2]	
		$T_{\rm dn} = \frac{0.9 A_n f_u}{\gamma_{m1}}$	
		$= \frac{1 \times 0.9 \times (640 - 5 \times 22.0) \times 14.0 \times 410}{1.00 \times 10^{-5}}$	
Tension Rupture Capacity		1.25	
(kN)		= 2554.07	
		[Ref. IS 800:2007, Cl.6.3.1]	
		$T_{\text{dbl1}} = \frac{A_{\text{vg}} f_y}{\sqrt{3} \gamma_{m0}} + \frac{0.9 A_{tn} f_u}{\gamma_{m1}}$	
		$\sqrt{S'/m0}$ $/m1$	
		0.94 f 4, f	
		$T_{\text{dbl2}} = \frac{0.9A_{vn}f_u}{\sqrt{3}\gamma_{m1}} + \frac{A_{tg}f_y}{\gamma_{m0}}$	
Block Shear Capacity in Tension (kN)		,	
Tension (KIV)		$T_{\rm db} = \min(T_{db1}, T_{db2}) = 1920.21$	
		$T_{\text{dB}} = \min(T_{ab1}, T_{ab2}) = 1020.21$	
		[Ref. IS 800:2007, Cl.6.4]	
		$T_{\rm d} = \min(T_{\rm dg}, T_{\rm dn}, T_{\rm db})$	
		$= \min(2036.36, 2554.07, 1920.21)$	
Tension Capacity (kN)	147.368	= 1920.21 $= 1920.21$	Pass
Tension Capacity (KIV)	147.300	= 1920.21	rass
		[D 410 200 200] (N - 1)	
		[Ref.IS 800:2007, Cl.6.1] $\beta_b Z_n f u$	
		$M_{dz} = \frac{\beta_b Z_p f y}{\gamma_{m0} \times 10^6}$	
		$=\frac{1.0\times1433600.0\times250}{1.1\times10^6}$	
Moment Capacity (kNm)	6.58		Pass
		= 325.82	
		[Ref. IS 800:2007, Cl.8.2.1.2]	

		Cre	eated with Osdag®
Company Name		Project Title	20 mm bolts
Group/Team Name		Subtitle	
Designer		Job Number	
Date	11 /04 /2021	Client	

Check	Required	Provided	Remarks
Interaction Ratio	≤ 1	$\frac{6.58}{325.82} + \frac{147.368}{1920.21} = 0.1$	Pass
		[Ref. IS 800:2007, Cl.10.7]	

2.5 Section Design

Check	Required	Provided	Remarks
Shear Yielding Capacity (kN)		$V_{d_y} = \frac{A_v f_y}{\sqrt{3}\gamma_{m0}}$ $= \frac{700.0 \times 12.0 \times 250}{\sqrt{3} \times 1.1 \times 1000}$ $= 1102.21$ [Ref. IS 800:2007, Cl.10.4.3]	
Allowable Shear Capacity (kN)	V = 131.628	$V_d = 0.6 \ V_{dy}$ = 0.6 \times 1102.21 = 661.33	Pass
Shear Rupture Capacity (kN)		[Limited to low shear] $V_{d_n} = \frac{0.75 A_{v_n} f_u}{\sqrt{3} \gamma_{m1}}$ $= 1 \times \frac{(700.0 - (5 \times 22.0)) \times 12.0 \times 410}{\sqrt{3} \times 1.25}$ $= 2177.1$	
Block Shear Capacity in Shear (kN)		[Ref. AISC, sect. J4] $V_{\text{dbl1}} = \frac{A_{\text{vg}} f_y}{\sqrt{3} \gamma_{m0}} + \frac{0.9 A_{tn} f_u}{\gamma_{m1}}$ $V_{\text{dbl2}} = \frac{0.9 A_{vn} f_u}{\sqrt{3} \gamma_{m1}} + \frac{A_{tg} f_y}{\gamma_{m0}}$ $V_{\text{db}} = \min(V_{db1}, V_{db2}) = 1047.48$ [Ref. IS 800:2007, Cl.6.4]	

		Created with OSCIAG®	
Company Name		Project Title	20 mm bolts
Group/Team Name		Subtitle	
Designer		Job Number	
Date	11 /04 /2021	Client	

Check	Required	Provided	Remarks
		$V_d = \min(S_c, \ V_{d_n}, \ V_{d_b})$	
		$= \min(661.33, 2177.1, 1047.48)$	
Shear Capacity (kN)	131.628	= 661.33	Pass
		[Ref. IS 800:2007, Cl.6.1]	
		$T_{ m dg} = rac{A_g f_y}{\gamma_{m0}}$	
		γ_{m0}	
		4 4 700 0 10 0	
		$A_g = lt = 700.0 \times 12.0$	
Tension Yielding Capacity (kN)		$=\frac{8400.0\times250}{1.1\times10^3}$	
(KIV)		= 1909.09	
		[Ref. IS 800:2007, Cl.6.2]	
		$T_{ m dn} = rac{0.9A_nf_u}{\gamma_{m1}}$	
)
		$= \frac{1 \times 0.9 \times (700.0 - 5 \times 22.0) \times 12.0 \times 410}{1.25}$	-
Tension Rupture Capacity (kN)		=2090.02	
(KIV)			
		[Ref. IS 800:2007, Cl.6.3.1]	
		$T_{\text{dbl1}} = \frac{A_{\text{vg}} f_y}{\sqrt{3} \gamma_{m0}} + \frac{0.9 A_{tn} f_u}{\gamma_{m1}}$	
		$\sqrt{3\gamma_{m0}}$ γ_{m1}	
		0.04 f A. f	
		$T_{\text{dbl2}} = \frac{0.9A_{vn}f_u}{\sqrt{3}\gamma_{m1}} + \frac{A_{tg}f_y}{\gamma_{m0}}$	
Block Shear Capacity in Tension (kN)		, ,,,,,,	
Tension (KIV)		$T_{\rm db} = \min(T_{db1}, T_{db2}) = 1645.89$	
		(4017 402)	
		[Ref. IS 800:2007, Cl.6.4]	
		$T_{\rm d} = \min(T_{\rm dg}, T_{\rm dn}, T_{\rm db})$	
		$= \min(1909.09, 2090.02, 1645.89)$	
Tension Capacity (kN)	147.368	=1645.89	Pass
		[Ref.IS 800:2007, Cl.6.1]	

		Created with OSCIAG®	
Company Name		Project Title	20 mm bolts
Group/Team Name		Subtitle	
Designer		Job Number	
Date	11 /04 /2021	Client	

Check	Required	Provided	Remarks
Moment Capacity (kNm)	6.58	$M_{dz} = \frac{\beta_b Z_p f y}{\gamma_{m0} \times 10^6}$ $= \frac{1.0 \times 6483590.0 \times 250}{1.1 \times 10^6}$ $= 1473.54$ [Ref. IS 800:2007, Cl.8.2.1.2]	Pass
Interaction Ratio	≤ 1	$\frac{6.58}{1473.54} + \frac{147.368}{1645.89} = 0.09$ [Ref. IS 800:2007, Cl.10.7]	Pass

2.6 Weld Design

Check	Required	Provided	Remarks
	$t_{w_{\min}}$ based on thinner part		
	$= \max(12, 12)$		
Min. Weld Size (mm)	s_{\min} based on thicker part = 5 [Ref. IS 800:2007, Table 21, Cl.10.5.2.3]	5	Pass
	Thickness of thinner part		
	$= \min(12.0, 14.0) = 12.0$		
Max. Weld Size (mm)	$s_{\text{max}} = 12$	5	Pass
	[Ref. IS 800:2007, Cl.10.5.3.1]		

		Cre	eated with OSdag®
Company Name		Project Title	20 mm bolts
Group/Team Name		Subtitle	
Designer		Job Number	
Date	11 /04 /2021	Client	

Check	Required	Provided	Remarks
Weld Strength (N/mm)	$R_{\rm w} = \sqrt{(T_{\rm wh} + A_{\rm wh})^2 + (T_{\rm wv} + V_{\rm wv})^2}$ $T_{\rm wh} = \frac{M \times y_{\rm max}}{I_{pw}} = \frac{6581400.0 \times 315.0}{41674500.0}$ $T_{\rm wv} = \frac{M \times x_{\rm max}}{I_{pw}} = \frac{6581400.0 \times 0.0}{41674500.0}$ $V_{\rm wv} = \frac{V}{l_w} = \frac{131628.0}{1260}$ $A_{\rm wh} = \frac{A}{l_w} = \frac{147368.0}{1260}$ $R_{\rm w} = \sqrt{(49.75 + 116.96)^2 + (0.0 + 104.47)^2}$ $= 196.73$	$f_w = \frac{t_t f_u}{\sqrt{3} \gamma_{mw}}$ $= \frac{3.5 \times 410}{\sqrt{3} \times 1.25}$ $= 662.8$ [Ref. IS 800:2007, Cl.10.5.7.1.1]	Pass

		Created with OSdag®	
Company Name		Project Title	20 mm bolts
Group/Team Name		Subtitle	
Designer		Job Number	
Date	11 /04 /2021	Client	

3 3D Views

4 Design Log

2021-04-11 13:30:11 - Osdag - INFO - === End Of Design ===