Aula 2 Sincronização e Replicação

Prof. Rafael Guimarães FAESA

Sincronização em Sistemas Distribuídos

- Vimos o funcionamento do NTP
- Nem sempre é possível sincronizar todos os nós do sistema com NTP
 - Nós podem não estar no mesmo domínio
- Geralmente não é necessário sincronizar relógios, apenas saber que evento ocorreu antes
 - Relógios lógicos de Lamport, por exemplo

Alguns casos de uso

• Dois jogadores atiram em um adversário

– Quem atirou primeiro? Quem ganha ponto?

- Proposto em 1978, é basicamente um contador em software, que não tem qualquer relação com um relógio físico
 - Se dois processos interagem entre si, só é necessário saber a ordem de ocorrência dos eventos
 - Se não interagem, não é necessário haver sincronização

- Causalidade
 - Se a e b são eventos em um mesmo processo e a ocorre antes de b, então a → b
 - Se um processo envia uma mensagem m para outro processo, o evento envia(m) ocorre antes do recebe(m): b → c
 - Se $\mathbf{a} \rightarrow \mathbf{b}$ e $\mathbf{b} \rightarrow \mathbf{c}$, então $\mathbf{a} \rightarrow \mathbf{c}$ (transitividade)

- Cada processo mantém seu próprio relógio (Li) e faz a marcação temporal de seus eventos
 - Li é incrementado antes de cada evento local gerado pelo próprio processo
 - Quando o processo envia uma mensagem, ele anexa o valor de Li como timestamp de m
 - Ao receber uma mensagem, o processo faz Li= max(Li, t) + 1
 - t é o timestamp da mensagem recebida

- L1, L2 e L3 começam com zero
- P1 anexa t = L1 = 2 na mensagem m1
- P2, ao receber m1, faz L2 = max(0,2) + 1 = 3

Exemplo de uso de relógios lógicos

- Banco possui base de dados replicada e distribuída
 - Cliente realiza operação em base de dados mais próxima
- Cliente possui um saldo de R\$ 10.000,00 e deposita R\$ 1.000,00. Ao mesmo tempo, o saldo é corrigido em 1%.
 - Saldo na réplica 1: R\$ 11.110,00
 - Saldo na réplica 2: R\$ 11.100,00

Exemplo de uso de relógios lógicos

- Banco possui base de dados replicada e distribuída
 - Cliente realiza operação em base de dados mais próxima
- Cliente possui um saldo de R\$ 10.000,00 e deposita R\$ 1.000,00. Ao mesmo tempo, o saldo é corrigido em 1%.
 - Saldo na réplica 1: R\$ 11.110,00
 - Saldo na réplica 2: R\$ 11.100,00

Exemplo de uso de relógios lógicos

- Nesse caso, o processo Pi envia mensagem com seu *timestamp* para todos os demais processos
- Toda mensagem recebida por um processo é armazenada em uma fila ordenada pelo timestamp da mensagem
 - O processo envia ACK para todos os demais
- Processo encaminha mensagem p/ aplicação se:
 - A mensagem estiver no início da fila
 - For confirmada pelos demais processos

Replicação

- A sincronização de eventos é importante e tem papel fundamental para permitir a replicação de informações/recursos
 - Base de dados distribuída do exemplo
- A replicação visa combater a ocorrência de defeitos
 - Mascara falhas!

Replicação

- A replicação tem por objetivo aumentar a disponibilidade de um sistema
- Pode ser de 3 tipos:
 - Replicação passiva (primário-backup)
 - Replicação ativa
 - Replicação semiativa (líde-seguidores)

Replicação passiva (primário-backup)

 São criados um ou mais backups de um componente primário, com objetivo de substituí-lo em caso de falha

Propagação instantânea de estado, onde

primário recebe requisições, executa, atualiza estado dos backups e retorna resultado

Replicação passiva (primário-backup)

- Em caso de falha do primário, um backup é escolhido para assumir seu lugar
- Mecanismo de log-checkpoint pode ser usado para otimizar funcionamento
 - Primário recebe requisição, processa, armazena em log e responde ao cliente
 - Periodicamente backup verifica se algo novo no log (alguma transação além do que ele já processou: seu checkpoint)
 - Bastante utilizado em bancos de dados

Replicação ativa

- Um grupo de réplicas recebe a requisição de um cliente
- Todas as réplicas processam a requisição e enviam resposta ao cliente
- O cliente elege resposta
 - Primeira?
 - Voto por maioria?

Replicação semiativa (líder-seguidores)

- Um componente (líder) possui uma ou mais réplicas (seguidores)
- Cada requisição é enviada ao líder que a repassa aos seguidores
- Apenas o líder responde a cliente escolhendo a resposta mais confiável

