

Part 5: Eigenvalue Problems

W11C2 Lecture 18 (Mar 20)

5.1 Introduction

Let $\Omega \subset \mathbb{R}^n$ be a bounded domain. Consider the heat and wave equations with variable coefficients.

$$r(x)u_t =
abla \cdot (p(x)
abla u) - q(x)u$$
 (Eq. 1)

$$r(x)u_{tt} =
abla \cdot (p(x)
abla u) - q(x)u$$
 (Eq. 2)

where $r(x)>0, p(x)>0, q(x)\in\mathbb{R}$ are smooth functions.

The boundary conditions are

$$arac{\partial u}{\partial n}+bu=0,\quad x\in\partial\Omega$$
 (Eq. 3)

where a, b are real constants with $a^2 + b^2 > 0$.

Suppose we look for special solutions of the form, for some $\lambda \geq 0$:

- $u(x,t)=\phi(x)e^{-\lambda t}$ for **(1)** decay component
- $u(x,t)=\phi e^{\pm i\sqrt{\lambda}t}$ for **(2)** plane waves

We get $L\phi(x)=abla\cdot(p(x)
abla u)+q(x)u=\lambda r(x)\phi\quad x\in\Omega$ (Eq. 4)

The boundary conditions become $a rac{\partial \phi}{\partial n} + b \phi = 0$.

Def. (4) is an eigenvalue problem for the differential operator L. If $\phi(x)$ is a nonzero solution for some $\lambda \in \mathbb{C}$, we call ϕ an eigenfunction, and λ the corresponding eigenvalue.

Ex 1. (Bessel's equation of order $n \geq 0$):

$$x^2y'' + xy' + (x^2 - n^2)y = 0, \quad x > 0$$

The solutions are Bessel's function of the 1st kind:

 $J_n(x) \approx c_n x^n$ for $x \sim 0$ and $J_n(x) \to 0$ as $x \to \infty$. Oscillatory with infinitely many roots.

Let
$$L_n y = -(xy')' + rac{n^2}{x} y$$
 , so $L_n J_n = x J_n$.

Let α_{nk} be the kth positive zero of $J_n(x)$.

$$\phi_k(x) = J_n(rac{lpha_{nk}}{a}x)$$
 satisfies:

$$egin{cases} L_n\phi_k=\lambda_kx\phi, & \lambda_k=(rac{lpha_{nk}}{a})^2\ \phi_k(0)=0,\phi_k(a)=0 \end{cases}$$

For this eigenvalue problem, the coefficient functions are:

$$p(x)=x, q(x)=rac{n^2}{x}, r(x)=x.$$

Basic properties of eigenvalue problem (4):

a. L is self-adjoint with respect to the inner product:

$$f(f,g)=\int_{\Omega}f(x)\overline{g(x)}\,dx,\|f\|_{L^{2}(\Omega)}=(f,f)^{rac{1}{2}}$$

Claim: (Lf,g)=(f,Lg) if both f and g satisfy the BC. As a consequence, all eigenvalues are real.

Proof: If $L\phi = \lambda \phi$, then:

$$\lambda(\phi,\phi)=(\lambda\phi,\phi)=(L\phi,\phi)=(\phi,L\phi)=(\phi,\lambda\phi)=\bar{\lambda}(\phi,\phi)\implies\lambda\in\mathbb{R}$$

Remarks:

- i. Consider a matrix A that is symmetric $(a_{ij}=a_{ji})$ and self-adjoint $(a_{ij}=\overline{a_{ji}})$. Then all eigenvalues are real, and defining inner product as $(x,y)=x\cdot \bar{y}$, we have (Ax,y)=(x,Ay).
- ii. Since $L\mathrm{Re}(\phi)=\mathrm{Re}(L\phi)=\lambda r\mathrm{Re}(\phi)$, we may assume that ϕ is real valued.
- b. All eigenvalues form an infinite sequence:

$$\lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \cdots, \quad \lambda_j o \infty ext{ as } j o \infty$$

The <u>eigenspace</u> of an eigenvalue λ is $E_{\lambda}=\{\phi:L\phi=\lambda r\phi\}$, the set of all eigenfunctions of λ . We call $\dim E_{\lambda}$ the multiplicity of λ . It is always finite. We repeat each eigenvalue according to its multiplicity.

c. Eigenfunctions of different eigenvalues are orthogonal in another inner product:

$$\lambda_j
eq \lambda_k \implies (\!(\phi_j,\phi_k)\!)_r \coloneqq \int_{\Omega} \phi_j \overline{\phi_k} r(x) \, dx = 0$$

Note
$$c_1(f,f) \leq ((f,f))_r \leq c_2(f,f) \, \forall f$$
 for some $0 < c_1 < c_2$ if $\min r(x) > 0$.

We may and will normalize ϕ_i such that:

$$(\!(\phi_j,\phi_k)\!)_r = egin{cases} 1 & j=k \ 0 & j
eq k \end{cases}$$

If $\dim E_{\lambda} > 1$, we may use the Gram-Schmidt method to choose an orthonormal set of eigenfunctions from E_{λ} .

d. The eigenfunctions are complete, meaning any $u \in L^2(\Omega)$ can be written as

$$u(x) = \sum_{j=1}^\infty c_j \phi_j(x), \quad c_j = (\!(u,\phi_j)\!)_r$$

in the sense that $\lim_{N o\infty} \lVert u(x) - \sum_{j=1}^N c_j \phi_j
Vert_{L^2(\Omega)} = 0$

e. If $q(x)\geq 0, ab\geq 0$, then all $\lambda_j\geq 0$. $\lambda_1=0\iff q(x)\equiv 0, ab=0$ (ϕ_1 is constant in this case).

The proof of properties (b) and (d) are beyond this course. We show (a), (c), and (e).

Proof of (a):

$$egin{aligned} (Lu,v)-(u,Lv)&=\int_{\Omega}[(-
abla\cdot(p
abla u)+arphi)ar{v}-u(-
abla\cdot(p
ablaar{v})+arphiar{v})]\,dx\ &=\int_{\partial\Omega}
abla\cdot(-par{v}
abla u+up
ablaar{v}]\,dx\ &=\int_{\partial\Omega}p(ar{v}rac{\partial u}{\partial n}-urac{\partialar{v}}{\partial n})dS_x \end{aligned}$$

If a=0, then u=v=0, and if $a\neq 0$, then we have $\bar{v}(-\frac{b}{a}u)-u(-\frac{b}{a}\bar{v})=0$. Hence, (Lu,v)-(u,Lv)=0 so (Lu,v)=(u,Lv).

Proof of (c):

If $L\phi_i=\lambda_i r\phi_i, L\phi_k=\lambda_k r\phi_k, \lambda_j
eq \lambda_k$, and they satisfy the BC, we have

$$egin{aligned} 0 &= (L\phi_j,\phi_k) - (\phi_j,L\phi_k) \ &= (\lambda_j r \phi_j,\lambda_k) - (\phi_j,\lambda_k r \phi_k) \ &= (\lambda_j - \lambda_k) (r \phi_j,\phi_k) \end{aligned}$$

and so
$$((\phi_i, \phi_k))_r = 0$$
.

Proof of (e):

$$egin{aligned} (u,Lu) &= \int_{\Omega} u [-
abla \cdot (p
abla ar{u}) + qar{u}] \, dx \ &= \int_{\Omega} -
abla \cdot [up
abla ar{u}] + p |
abla u|^2 + q |u|^2 \, dx \ &= \int_{\Omega} (p |
abla u|^2 + q |u|^2) \, dx - \int_{\partial\Omega} p u rac{\partial ar{u}}{\partial n} \, dS \end{aligned}$$

Using the BC, on $\partial\Omega$, we have $urac{\partial ar u}{\partial n}=-b_1|u|^2$ where $b_1=egin{cases} 0 & ext{if }a=0 \ rac{b}{a} & ext{if }a
eq0 \end{cases}$. Hence,

$$(u,Lu)=\int_{\Omega}(p|
abla u|^2+q|u|^2)\,dx+b_1\int_{\partial\Omega}p|u|^2\,dS$$
 (Eq. 5)

Note that
$$\operatorname{sgn} b_1 = \operatorname{sgn} ab = egin{cases} 0 & ab = 0 \\ 1 & ab > 0 \\ -1 & ab < 0 \end{cases}$$

If λ_k is an eigenvalue with eigenfunction ϕ_k , then:

$$\lambda_k = \lambda_k (\!(\phi_k,\phi_k)\!)_r = (\phi_k,\lambda_k r \phi_k) = (\phi_k,L\phi_k)$$
 (Eq. 6)

For the first eigenvalue λ_1 , by **(5)**,

$$\lambda_1=\int_\Omega (p|
abla\phi_1|^2+q\phi_1^2)\,dx+b_1\int_\Omega p\phi_1^2\,dS\geq 0$$
 if $q(x)\geq 0$ and $b_1\geq 0.$

$$\lambda_1=0$$
 only if $q(x)\equiv 0, b_1=0, \phi_1=\mathrm{const}$, which proves (e).

W12C1 Lecture 19 (Mar 25)

5.2 Variational Principle for Eigenvalues and Rayleigh Quotient

Part 5: Eigenvalue Problems

In this section we only consider real-valued functions and the special cases:

$$(a,b) = egin{cases} (0,1) & u|_{\partial\Omega} = 0 & ext{Dirichlet BC} \ (1,0) & rac{\partial u}{\partial n}|_{\partial\Omega} = 0 & ext{Neumann BC} \end{cases}$$

Then $b_1 = 0$ in **(5)**.

Def. For $Lu = -\nabla \cdot (p\nabla u) + qu$, let the energy be

$$E(u) = \int_{\Omega} (p |
abla u|^2 + q u^2) \, dx$$

Then **(5)** under Dirichlet/Neumann BC (ab=0) becomes (u,Lu)=E(u).

Suppose u is any (nice) function satisfying the BC (D/N). By completeness of eigen-functions,

$$u(x) = \sum_{j=1}^{\infty} c_j \phi_j(x)$$
 (Eq. 7)

$$((u,u))_r=((\sum_j c_j\phi_j,\sum_k c_k\phi_k))_r=\sum_{j,k}c_jc_k\underbrace{((\phi_j,\phi_k))_r}_{\delta_{jk}}=\sum_j c_j^2$$
 (Eq. 8)

$$E(u)=(u,Lu)=\sum_{j,k}c_jc_k(\phi_j,L\phi_k)=\sum_{j,k}c_jc_k(\phi_j,\lambda_kr\phi_k)=\sum_{j,k}c_jc_k\lambda_k\underbrace{((\phi_j,\phi_k))_r}_{\delta_{jk}}=\sum_jc_j^2\lambda_j$$
 (Eq.

9)

Since
$$\lambda_j \geq \lambda_1$$
, for all j , $E(u) \geq \lambda_1 \sum_j c_j^2 = \lambda_1 (\!(u,u)\!)_r \implies \lambda_1 \leq \frac{E(u)}{(\!(u,u)\!)_r}$.

Equality is achieved when all $c_j=0$ for all $\lambda_j>\lambda_1$, then $u\in E_{\lambda_1}$.

Thm 1. (First eigenvalue). The lowest eigenvalue of L with D/N BC is

$$\lambda_1 = \min_{u
eq 0 ext{ satisfies BC}} rac{E(u)}{(\!(u,u)\!)_r}$$
 (Eq. 10)

Remarks:

- i. The quantity $\frac{E(u)}{(\!(u,u)\!)_r}$ is called the Rayleigh quotient.
- ii. This formula can be used to find lower and upper bounds of λ_1 (see Ex. 2).
- iii. Alternatively, $\lambda_1 = \lambda_1^* \coloneqq \min_{(\!(v,v)\!)_r = 1} E(v)$

Proof:

Clearly
$$\lambda_1 \leq \lambda_1^*$$
. To show $\lambda_1 \geq \lambda_1^*$ for all $u \neq 0$, when $((u,u))_r \neq 1$, let $v = \frac{u}{((u,u))_r^{1/2}}$ then $((v,v))_r = 1$, $E(v) = \frac{E(u)}{((u,u))_r}$.

9

Ex 2. Let $0<\varepsilon<1$. Find an upper bound for the lowest eigenvalue (with $r\equiv 1$) of $L=-\frac{d^2}{dx^2}+\varepsilon x$ on [0,1] with 0-BC at x=0,1.

We have $\Omega=(0,1)$, p(x)=1, q(x)=arepsilon x, $r(x)\equiv 1$, hence $(\!(u,u)\!)_r=(u,u).$

By **Thm 1** and $r\equiv 1$, we have

$$\lambda_1 \leq rac{E(u)}{(u,u)} = rac{\int_0^1 u_x^2 + arepsilon x u^2 \, dx}{\int_0^1 u^2 \, dx}$$
 for any $u
eq 0$ satisfying the BC.

First try:
$$u(x)=x(1-x)$$
, so $(u,u)=\int_0^1 x^2(1-x)^2\,dx=\int_0^1 x^2-2x^3+x^4\,dx=[\frac{1}{3}x^3-\frac{1}{2}x^4+\frac{1}{5}x^5]_0^1=\frac{1}{30}.$

$$egin{aligned} E(u) &= \int_0^1 (1-2x)^2 + arepsilon x (x-x^2)^2 \, dx \ &= \int_0^1 1 - 4x + 4x^2 + arepsilon (x^3 - 2x^4 + x^5) \, dx \ &= [x - 2x^2 + rac{4}{3}x^4 + arepsilon (rac{x^4}{4} - rac{2x^5}{5} + rac{x^6}{6})]_0^1 \ &= rac{1}{3} + rac{arepsilon}{60} \end{aligned}$$

Hence
$$\lambda_1 \leq rac{rac{1}{3} + rac{arepsilon}{60}}{rac{1}{30}} = 10 + rac{arepsilon}{2}.$$

Second try, when $\varepsilon \ll 1$:

For $\varepsilon=0$, eigenfunctions of $L_0=-\frac{d^2}{dx^2}$ are $\phi_k(x)=\sin(k\pi x), k\in\mathbb{N}$ with eigenvalues $\lambda_k=k^2\pi^2$. Let's try $u(x)=\phi_1(x)=\sin(\pi x)$, so $(u,u)=\int_0^1\sin^2(\pi x)\,dx=\frac{1}{2}$.

$$E(u) = \int_0^1 (\pi \cos(\pi x))^2 + \varepsilon x \sin^2(\pi x) dx$$

= $\frac{1}{2}\pi^2 + \varepsilon \int_0^1 x \sin^2(\pi x) dx$
= $\frac{1}{2}\pi^2 + \frac{\varepsilon}{4}$

Hence
$$\lambda_1 \leq rac{rac{1}{2}\pi^2 + rac{arepsilon}{4}}{rac{1}{2}} = \pi^2 + rac{arepsilon}{2}$$
 which is better since $\pi^2 < 10$.

We also have a lower bound for λ_1 :

$$\lambda_1=\minrac{E(u)}{(u,u)}\geq\minrac{\int_0^1u_x^2\,dx}{(u,u)}=\lambda_1 ext{ of }L_0=\pi^2.$$

Higher eigenvalues

Suppose u is a function in Ω satisfying the BC, and

$$(\!(u,\phi_j)\!)_r=0,\quad j=1,2,\ldots,n-1$$

Then
$$c_1=c_2=\ldots=c_{n-1}=0.$$
 By **(7)** - **(9)**,

$$u = \sum_{j=n}^{\infty} c_j \phi_j(x)$$
 and $(\!(u,u)\!)_r = \sum_{j=n}^{\infty} c_j^2$.

$$E(u)=\sum_{j=n}^\infty \lambda_j c_j^2 \geq \lambda_n \sum_{j=n}^\infty c_j^2 = \lambda_n (\!(u,u)\!)_r$$
, so $\lambda_n \leq rac{E(u)}{(\!(u,u)\!)_r}$

with equality only if $c_j=0$ for all j with $\lambda_j\geq \lambda_n \implies u\in E_{\lambda_n}.$

Thm 2. (Higher eigenvalues) The nth eigenvalue of the operator L with D/N BC is

$$\lambda_n=\min_{u ext{ satisfies BC},(\!(u,\phi_j)\!)_r=0 ext{ for } j\leq n-1} rac{E(u)}{(\!(u,u)\!)_r}$$
 (Eq. 11)

Remarks:

- i. For general BC $arac{\partial u}{\partial n}+bu=0$, if $ab\geq 0$, we can add $b_1\int_{\partial\Omega}|u|^2\,dS$ to E(u) and define E(u) = (u, Lu) = RHS of (5).
- ii. In **Thm 2**, λ_n is given inductively, which is not convenient since we need to first know $\phi_1,\ldots,\phi_{n-1}.$

Thm 3. (Courant max-min principle)

$$\lambda_n=\max_{f_1,\dots,f_{n-1}}[\min_{u\in\mathcal{A},(\!(u,f_j)\!)_r=0\ \mathrm{for}\ j\leq n-1}rac{E(u)}{(\!(u,u)\!)_r}]$$
 (Eq. 12)

where $u \in \mathcal{A}$ means u satisfies the boundary conditions.

Ex 3. Consider the matrix $A=rac{1}{2}egin{bmatrix} 3 & -1 & 0 \ -1 & 3 & 0 \ 0 & 0 & 6 \end{bmatrix}$

$$\lambda_1=1, \phi_1=rac{1}{\sqrt{2}}{1\choose 0}$$

$$\lambda_2=2,\phi_2=rac{1}{\sqrt{2}}{rac{1}{0}\choose{0}}$$

$$\lambda_3=3,\phi_3=\left(egin{smallmatrix}0\0\1\end{smallmatrix}
ight)$$

Define $(x,y) = x \cdot y$, then

$$\lambda_1 = \min_{x
eq 0} rac{Ax \cdot x}{|x|^2}$$

$$\lambda_2 = \min_{0
eq x \perp \phi_1} rac{Ax \cdot x}{|x|^2} = \max_y \min_{0
eq x \perp y} rac{Ax \cdot x}{|x|^2}$$

$$\lambda_3 = \min_{0
eq x \perp \phi_1, \phi_2} rac{Ax \cdot x}{|x|^2} = \max_{y_1, y_2} \min_{0
eq x \perp y_1, y_2} rac{Ax \cdot x}{|x|^2}$$

Proof of Thm 3:

Let λ_n^* denote the max-min value in **Thm 3**. Clearly $\lambda_n \leq \lambda_n^*$ by taking $f_j = \phi_j$.

To show $\lambda_n \geq \lambda_n^*$, let f_1, \dots, f_{n-1} be any functions on Ω satisfying the BC.

We now look for nonzero (a_1,\ldots,a_n) such that

$$u(x) = \sum_{j=1}^n a_j \phi_j(x) \perp f_1, \dots, f_{n-1}$$

$$0 = (\!(u,f_k)\!)_r = \sum_{j=1}^n a_j (\!(\phi_j,f_k)\!)_r, \quad k=1,\ldots,n-1.$$

a system of n-1 linear equations for n variables.

By matrix algebra from MATH 221, such a system as at least one set of nonzero solutions.

For this u,

$$E(u) = (u, Lu) = \sum_{j=1}^{n} \lambda_{j} a_{j}^{2} \leq \lambda_{n} \sum_{j=1}^{n} a_{j}^{2} = \lambda_{n} ((u, u))_{r}.$$

Hence,
$$\min_{(u,f_j)=0, j \leq n-1} rac{E(u)}{((u,u))_r} \leq \lambda_n$$
.

Hence, $\lambda_n^* = \max[\text{above expression}] \leq \lambda_n$.

Remark:

The min-max principle is also valid. $\lambda_n = \min_{f_1,\dots,f_n}[\max_{u\in \operatorname{span}\{f_1,\dots,f_n\}}rac{E(u)}{((u.u))}]$

W12C2 Lecture 20 (Mar 27)

We revisit the Euler-Lagrange equations.

Denote
$$M(u)=(\!(u,u)\!)_r=\int_\Omega u^2 r(x)\,dx.$$

From **Thm 1** and its remark,
$$\lambda_1=\min_{0
eq u\in\mathcal{A}}rac{E(u)}{M(u)}=\min_{u\in\mathcal{A},M(u)=1}E(u)$$

The 2nd form is constrained minimization. Hence, u satisfies the E-L equation, for some μ :

$$\begin{split} E'(u) &= \mu M'(u) \text{ where } E' = \frac{\delta E}{\delta u}. \\ &\frac{d}{d\varepsilon}\big|_{\varepsilon=0} M(u+\varepsilon h) = \frac{d}{d\varepsilon}\big|_{\varepsilon=0} \int_{\Omega} (u+\varepsilon h)^2 r(x) \, dx = \int_{\Omega} 2uhr \, dx \implies M'(u) = 2ur. \\ &\frac{d}{d\varepsilon}\big|_{\varepsilon=0} E(u+\varepsilon h) = \frac{d}{d\varepsilon}\big|_{\varepsilon=0} \int_{\Omega} p(\nabla |u+\varepsilon h|^2) + q|u+\varepsilon h|^2 \, dx \\ &= \int_{\Omega} 2p\nabla u \cdot \nabla h + 2quh \, dx \end{split}$$

The E-L equation becomes $2Lu=\mu(2ur)\implies Lu=\mu ru, \mu=\lambda_1.$

 $= \int_{\Omega} (2Lu)h \, dx \implies E'(u) = 2Lu$

We can also compute via the 1st form:

$$0 = \tfrac{d}{d\varepsilon}\big|_{\varepsilon=0} \tfrac{E(u+\varepsilon h)}{M(u+\varepsilon h)} = \tfrac{E'(u)M(u)-E(u)M'(u)}{M^2(u)} = \tfrac{2LuM(u)-E(u)2ru}{M^2(u)} \text{, so } Lu = \lambda ru \text{ with } \lambda = \tfrac{E(u)}{M(u)} = \lambda_1.$$

For higher eigenvalues λ_n , by **Thm 2**,

$$\lambda_n = \min_{0
eq u \in \mathcal{A}, (\!(u,\phi_j)\!)_r = 0, j \leq n-1} rac{E(u)}{M(u)} = \min_{u \in \mathcal{A}, (\!(u,\phi_j)\!)_r = 0, j \leq n-1, M(u) = 1} E(u)$$

Recall extrema under multiple constraints:

If extrema of $f(x), x \in \mathbb{R}^n$, subject to constraints $g_1(x) = 0, \cdots, g_m(x) = 0$, $1 \leq m < n$, happens at x_0 and $\{
abla g_1(x_0), \ldots,
abla g_m(x_0)\}$ are linearly independent, then

$$abla f(x_0) = \mu_1
abla g_1(x_0) + \dots + \mu_m
abla g_m(x_0)$$
 for some Lagrange multipliers μ_1, \dots, μ_m ,

igwedge **Ex 4.** Let $f=x+2y+3z, g_1=x^2+z^2-1, g_2=y^2+z^2-1.$ Minimize f subject to the constraints $g_1 = g_2 = 0$.

By Lagrange multipliers:

$$abla f=(1,2,3)=\lambda
abla g_1+\mu
abla g_2=\lambda(2x,0,2z)+\mu(0,2y,2z)$$

We have five equations: $1 = 2\lambda x, 2 = 2\mu y, 3 = 2(\lambda + \mu)z, g_1 = 0, g_2 = 0.$

Five equations, five unknowns. The solution is $ec{x}_{\pm}=\pmrac{1}{\sqrt{13}}(2,2,3).$

We have
$$f(ec{x}_\pm)=\pmrac{1}{\sqrt{13}}(2+4+9)=\pmrac{15}{\sqrt{13}}\implies \min_{g_1=g_2=0}f=-rac{15}{\sqrt{13}}$$

The same is true for functionals. By the 2nd form of λ_{n_I}

$$E'(u) = \mu_1 M_1'(u) + \dots + \mu_{n-1} M_{n-1}'(u) + \mu_n M'(u)$$

where
$$M_j(u) = (\!(u,\phi_j)\!)_r = \int_\Omega u \phi_j r(x) \, dx, \quad 1 \leq j < n.$$

$$rac{d}{darepsilon}ig|_{arepsilon=0}M_j(u+arepsilon h)=\int_\Omega h\phi_j r\,dx$$
 so $M_j{}'(u)=r\phi_j.$

E-L equation becomes $2Lu = \mu_1 r \phi_1 + \cdots + \mu_{n-1} r \phi_{n-1} + \mu_n 2ru$.

For
$$j=1,\ldots,n-1$$
, compute $(2Lu,\phi_i)$:

$$(2Lu,\phi_i)=(2u,L\phi_i)=(2u,\lambda_ir\phi_i)=0$$
 because $(r\phi_k,\phi_i)=\delta_{ki} \implies (ru,\phi_i)=0.$

Hence
$$\mu_i = 0$$
 for $j = 1, \dots, n-1$ and $Lu = \mu_n ru$ so $\mu_n = \lambda_n$.

5.3 Eigenvalue Bounds by Comparison

In this section we consider Dirichlet BC only. We will obtain bounds of eigenvalues λ_n of Lu=abla . $(p(x)\nabla u)+q(x)u$ with weight r(x) in Ω , by comparing it with another simpler eigenvalue problem.

Comparison in coefficients

Suppose the coefficients satisfy: $0 < p_{\min} \le p(x) \le p_{\max}$, $q_{\min} \le q(x) \le q_{\max}$, $0 < r_{\min} \le r(x) \le r_{\max}$ for $x\in\Omega$.

Denote by $\lambda_{n,\min}$ the n-th eigenvalue of

$$egin{cases} -
abla \cdot p_{\min}
abla \phi + q_{\min} \phi = \lambda_{n,\min} r_{\max} \phi & x \in \Omega \ \phi = 0 & x \in \partial \Omega \end{cases}$$

and by $\lambda_{n \text{ max}}$ the n-th eigenvalue of

$$egin{cases} -
abla \cdot p_{ ext{max}}
abla \phi + q_{ ext{max}}\phi = \lambda_{n, ext{max}}r_{ ext{min}}\phi & x \in \Omega \ \phi = 0 & x \in \partial\Omega \end{cases}$$

Thm 4. $\lambda_{n,\min} \leq \lambda_n \leq \lambda_{n,\max}$

Proof:

For any admissible u.

$$E(u)=\int_\Omega p|
abla u|^2+q|u|^2\,dx\leq \int_\Omega p_{ ext{max}}|
abla u|^2+q_{ ext{max}}|u|^2\,dx=:E_{ ext{max}}(u)$$

$$(\!(u,u)\!)_r = \int_\Omega u^2 r\, dx \geq \int_\Omega u^2 r_{\min} dx =: (\!(u,u)\!)_{r_{\min}}$$

so that
$$rac{E(u)}{(\!(u,u)_r} \leq rac{E_{\max}(u)}{(\!(u,u))_{r_{\min}}}.$$

Also note that for any admissible f_1, \ldots, f_{n-1} ,

$$(\!(u,f_j)\!)_r=0\iff (\!(u, ilde f_j)\!)_{r_{\min}}=0$$
 where $ilde f_j(x)=rac{r(x)}{r_{\min}}f_j(x)$ is also admissible.

By the min-max principle (Thm 3, not Thm 2),

$$egin{aligned} \lambda_n &= \max_{f_1,\dots,f_{n-1}\in\mathcal{A}} \min_{u\in\mathcal{A},((u,f_j))_r=0} rac{E(u)}{((u,u))_r} \ &= \max_{ ilde{f}_1,\dots, ilde{f}_{n-1}\in\mathcal{A}} \min_{u\in\mathcal{A},((u, ilde{f}_j))_{r_{\min}}=0} rac{E(u)}{((u,u))_r} \ &\leq \max_{ ilde{f}_1,\dots, ilde{f}_{n-1}\in\mathcal{A}} \min_{u\in\mathcal{A},((u, ilde{f}_j))_{r_{\min}}=0} rac{E_{\max}(u)}{((u,u))_{r_{\min}}} = \lambda_{n,\max} \end{aligned}$$

By the same argument, $\lambda_n \geq \lambda_{n,\min}$.

Remark: it is hard to prove Thm 4 using Thm 2.

Ex 5. Find the upper and lower bounds for the n-th eigenvalue of

$$L=-\Delta+arepsilon|x|^2$$
 in $\Omega=(0,1)^2\subset\mathbb{R}^2$ with zero BC. Here $arepsilon\geq 0$ and $x=(x_1,x_2).$

We have
$$p(x)=1, q(x)=arepsilon|x|^2, r(x)=1.$$

$$0 \le q(x) \le 2\varepsilon = q(1,1).$$

So λ_n is sandwiched between the n-th Dirichlet eigenvalue of $L_0=-\Delta$ and $L_{2\varepsilon}=-\Delta+2\varepsilon$, i.e. $\mu_n \le \lambda_n \le \mu_n + 2arepsilon, n \in \mathbb{N}$, where $\mu_1 \le \mu_2 \le \mu_3 \le \dots$ is a reordering of $\{\lambda_{k,j} = (k^2 + 2)\}$ $(j^2)\pi^2, \quad k,j\in \mathbb{N}\}=\{2\pi^2,5\pi^2,5\pi^2,8\pi^2,\ldots\}$ counting multiplicity and $\lambda_{k,j}$ are eigenvalues of L_0 with eigenfunction

$$\phi_{k,j}(x) = \sin(k\pi x_1)\sin(j\pi x_2)$$

W13C1 Lecture

Comparison in domains

Let coefficients p,q,r be defined in Ω . We now specify the domain dependence and denote by $\lambda_n(\Omega)$ the nth eigenvalue of $L = -\nabla \cdot (p\nabla u) + qu$ in Ω with weight r(x) and Dirichlet BC.

Thm 5. If $\tilde{\Omega}\subset\Omega$ is a subdomain, then $\lambda_n(\tilde{\Omega})\geq\lambda_n(\Omega)\quad \forall n\in\mathbb{N}$, the larger set has smaller eigenvalues.

Proof:

We use the max-min principle (**Thm 3**). Denote by $\mathcal{A}(\Omega)$ the set of admissible functions in Ω . $u \in$ $\mathcal{A}(\Omega) \implies u|_{\partial\Omega} = 0.$

Fix any $f_1, \ldots, f_{n-1} \in \mathcal{A}(\Omega)$.

For any $u\in \mathcal{A}(\tilde{\Omega})$ in $\tilde{\Omega}\subset \Omega$ with $((u,f_j))_{r,\tilde{\Omega}}=0, \quad j=1,\ldots,n-1,$ consider its extension

$$\hat{u}(x) = egin{cases} u(x) & x \in ilde{\Omega} \ 0 & x
otin ilde{\Omega} \end{cases}$$

Then $\hat{u} \in \mathcal{A}(\Omega)$ and it satisfies:

•
$$((\hat{u},f_j))_{r,\Omega}=0, \quad j=1,\ldots,n-1$$

•
$$E_{\Omega}(\hat{u})=E_{ ilde{\Omega}}(u)$$

•
$$((\hat{u},\hat{u}))_{r,\Omega} = ((u,u))_{r,\tilde{\Omega}}$$

So

min

$$\widehat{u} \in \mathcal{A}(\Omega)$$
 $\widehat{u} \in \mathcal{A}(\Omega)$
 \widehat

Remark:

For the admissible set $\mathcal{A}(\Omega)$, it is better to choose the Sobolev space:

 $\mathcal{A}(\Omega)=H^1_0(\Omega)$ (1: # of derivatives, 0: boundary conditions)

$$\mathcal{A}(\Omega)=\{f\in L^2(\Omega):
abla f\in L^2(\Omega), f|_{\partial\Omega}=0\}$$

where ∇ is a weak (distributional) derivative. This is the set of square integrable functions with square integrable weak derivatives and 0-BC.

It has better properties than $\mathcal{A}_1(\Omega)=\{u\in C^2(\overline{\Omega}):u|_{\partial\Omega}=0\}.$

- One property: if $ilde{\Omega}\subset\Omega$ and $u\in H^1_0(ilde{\Omega})$, then the extension

$$\hat{u}(x) = egin{cases} x & x \in ilde{\Omega} \ 0 & x \in \Omega
otin ilde{\Omega} \end{cases}$$

is in $H^1_0(\Omega)$. This is not true for $\mathcal{A}_1(\Omega)$.

- Another property: any bounded sequence in $H^1_0(\Omega)$ has a subsequence that converges in $H^1_0(\Omega)$.

Ex 6. Let
$$ilde{\Omega}=(-1,1)\subset\Omega=(-2,2).$$

$$u(x)=1-x^2\in H^1_0(-1,1).$$

$$\hat{u}(x) = egin{cases} 1 - x^2 & |x| < 1 \ 0 & 1 < |x| < 2 \end{cases}$$

Note that $\hat{u}(x) \in H^1_0(-2,2)$ but $\hat{u}(x)
otin C^1(-2,2).$

Exercise:

Find the weak derivative u'(x) in (-2,2) and verify it is a distributional derivative by definition.