Лабораторная работа **6**

Петрова Мария

НФИбд-02-21

Цель работы

• Изучить и построить модель эпидемии

Задание лабораторной работы

Вариант 21

На одном острове вспыхнула эпидемия. Известно, что из всех проживающих на острове (N=20000) в момент начала эпидемии (t=0) число заболевших людей (являющихся распространителями инфекции) I(0)=99, А число здоровых людей с иммунитетом к болезни R(0)=5. Таким образом, число людей восприимчивых к болезни, но пока здоровых, в начальный момент времени S(0)=N-I(0)-R(0).

Постройте графики изменения числа особей в каждой из трех групп. Рассмотрите, как будет протекать эпидемия в случае:

- 1) если $I(0) \leq I^*$
- 2) если $I(0) > I^*$

Справка о языках программирования

- Julia высокоуровневый высокопроизводительный свободный язык программирования с динамической типизацией, созданный для математических вычислений. Эффективен также и для написания программ общего назначения. Синтаксис языка схож с синтаксисом других математических языков (например, MATLAB и Octave), однако имеет некоторые существенные отличия. Julia написан на Си, С++ и Scheme. Имеет встроенную поддержку многопоточности и распределённых вычислений, реализованные в том числе в стандартных конструкциях.
- OpenModelica свободное открытое программное обеспечение для моделирования, симуляции, оптимизации и анализа сложных динамических систем. Основано на языке Modelica. Активно развивается Open Source Modelica Consortium, некоммерческой неправительственной организацией. Open Source Modelica Consortium является совместным проектом RISE SICS East AB и Линчёпингского университета. По своим возможностям приближается к таким вычислительным средам как Matlab Simulink, Scilab xCos, имея при этом значительно более удобное представление системы уравнений исследуемого блока.

Теоретическое введние

Рассмотрим простейшую модель эпидемии. Предположим, что некая популяция, состоящая из \$N\$ особей, (считаем, что популяция изолирована) подразделяется на три группы. Первая группа - это восприимчивые к болезни, но пока здоровые особи, обозначим их через \$S(t)\$. Вторая группа - это число инфицированных особей, которые также при этом являются распространителями инфекции, обозначим их \$I(t)\$. А третья группа, обозначающаяся через \$R(t)\$ - это здоровые особи с иммунитетом к болезни.

До того, как число заболевших не превышает критического значения \$I^*\$, считаем, что все больные изолированы и не заражают здоровых. Когда \$I(t)> I^*\$, тогда инфицирование способны заражать восприимчивых к болезни особей.

Ход выполнения лабораторной работы

```
На одном острове вспыхнула эпидемия. Известно, что из всех проживающих на острове
$(N=20000)$ в момент начала эпидемии $(t=0)$ число заболевших людей
 являющихся распространителями инфекции) \$I(0)=99\$, А число здоровых людей с иммунитетом
  болезни $R(0)=5$. Таким образом, число людей восприимчивых к болезни,
но пока здоровых, в начальный момент времени $S(0)=N-I(0)-R(0)$.
Постройте графики изменения числа особей в каждой из трех групп.
Рассмотрите, как будет протекать эпидемия в случае:
1. $I(0)\leg I^*$
2. $I(0)>I^*$
## Задачи:
Построить графики изменения числа особей в каждой из трех групп $S$, $I$, $R$. Рассмотреть, как будет протекать эпидемия в случаях:
1. $I(0)\leq I^*$
2. $I(0)>I^*$
```

Вывод

- В итоге проделанной работы мы построили графики зависимости численности особей трех групп S, I, R для случаев, когда больные изолированы и когда они могут заражать особей группы S.
 - Построение модели эпидемии на языке OpenModelica занимает значительно меньше строк, чем аналогичное построение на Julia. Кроме того, построения на языке OpenModelica проводятся относительно значения времени t по умолчанию, что упрощает нашу работу.

Вывод

В ходе выполнения лабораторной работы была изучена модель эпидемии и построена модель на языках Julia и Open Modelica.

