

Desafio Eletrônica Regional Sudeste 2022 Equipe Mud Runner – Número: 16 CEFET/RJ

DATA: 30/09/2022

Pág.: 1/3

INTRODUÇÃO

O grupo Velhos e Fanáticos contratou a equipe Mud Runner para análise os dados coletados em pista, através de sensores instalados no veículo, com o objetivo de analisar o desempenho do piloto e melhorar sua performance na pista.

1. OBJETIVO

Nesse contexto, serão determinados o comprimento da pista, tempo de cada volta, a velocidade máxima e média de cada volta e fatores que influenciaram no desempenho da pilotagem. A partir do tratamento e da análise dos dados fornecidos, serão sugeridos pontos de melhoria para o piloto.

2. METODOLOGIA

Tratou-se os dados no IDE Jupyter Notebook, usando Python e as bibliotecas Pandas, matplotlib e numpy. Inicialmente, definiu-se os limites da pista em função dos dados obtidos pelo GPS. Com isso, definiu-se o ponto de largada e calculou-se as demais informações de interesse. Em seguida, os dados foram novamente tratados e exportados, desta vez para a plataforma Power BI da Microsoft, permitindo uma análise mais visual dos dados.

O Jupyter Notebook com o código e os comentários, assim como o relatório Power BI podem ser encontrados neste link da pasta de arquivos do relatório.

2.1 PONTO DE LARGADA E DELIMITAÇÃO DE CURVAS

O ponto de partida da pista foi arbitrado a partir de coordenadas geográficas arbitradas. A regra foi aplicada para todas as voltas. A coordenada foi arbitrada a partir da análise do gráfico posição longitudinal x posição latitudinal de todos os conjuntos de dados e inspirado na pista Palm Beach International Raceway.

Definiu-se que cada volta se inicia e termina no primeiro instante de tempo em que a posição latitudinal aproximada para 4 casas decimais é igual a 26.9216. Simultaneamente, a posição longitudinal aproximada para 4 casas decimais deve ser menor que -80.3056. Além disso, foram delimitadas 15 curvas para fins de comparação do desempenho do piloto nas 10 voltas.

2.2 TEMPOS DE VOLTAS

Para cada conjunto de dados, o primeiro momento na largada tempo representa o início da primeira volta e o último momento na largada o fim da última volta. Selecionou-se essa referência para selecionar apenas os dados coletados durante as voltas do piloto. Nota-se que os dados após o fim da última volta são referentes a volta do piloto para o box que, nessas circunstâncias, não cruza mais a linha de chegada.

2.3 VELOCIDADE ABSOLUTA MÉDIA, MÁXIMA, TEMPO DAS VOLTAS E DISTÂNCIA PERCORRIDA

Apenas os dados inseridos nos momentos das voltas foram analisados. A volta para o box e qualquer momento antes do piloto cruzar a largada foram descartados. Com o uso da biblioteca pandas, selecionou-se os dados de interesse, calculando a velocidade média, máxima e o momento de início e fim de cada volta. A partir desses dados, calculou-se o tempo de cada volta e a distância percorrida.

Formalmente, o comprimento da pista é calculado pela média do comprimento dos limites internos e externos da pista. Ao se comparar o maior valor encontrado (3121m) com o comprimento oficial da pista (3200m), encontra-se um erro aproximado de 2,5%. Essa diferença é coerente pois o piloto busca se manter próximo dos limites internos, para que as voltas sejam mais rápidas.

3. CONCLUSÃO

As análises foram feitas separando as pistas em seções que englobassem um conjunto de curvas. A melhor volta do piloto foi a 9ª (95,100s), também sendo melhor volta para cada seção analisada. Analisou-se as voltas em função dos seguintes parâmetros: velocidade horizontal, ângulo do volante, acionamento do pedal de aceleração (%), taxa de variação e ângulo de guinada do carro. A comparação é entre o melhor desempenho naquela seção (usualmente na 9ª volta) e o pior desempenho.

3.1 SEÇÃO 1 – CURVAS 2 A 5

Em relação a seção 1, obtendo o comparativo com a curva 2, o piloto manteve o volante estabilizado no início da curva; ao atingir o meio do setor, esterçou para a direita e manteve uma maior velocidade horizontal; no final da curva houve maior oscilação do volante e a velocidade foi maior. Com isso, em relação a essa seção o piloto deve acelerar mais o carro na saída da curva 2.

3.2 SEÇÃO 2 - CURVAS 6 A 10

Na seção 2, foi identificado um esterçamento consideravelmente oscilatório durante todo o setor, aceleração maior durante o setor; aceleração prematura e durante mais tempo na saída do setor. Assim, o piloto deve acelerar no início e manter a aceleração na saída do setor, aumentando a velocidade para o próximo.

3.3 SEÇÃO 3 - CURVAS 11 A 15

Já na seção 3, o piloto esterçou mais o volante na entrada do setor, não acelerou e esterçou mais o volante durante a curva 11; acelerou consideravelmente mais durante a curva 12; esterçou mais o volante durante a curva 13 e 14. Portanto, o piloto não deve acelerar na curva 11, permitindo assim, alinhar melhor o veículo para a curva 12, podendo assim acelerar mais durante o resto do setor.

3.4 DASHBOARD

A análise de performance do piloto foi pautada nos gráficos do dashboard abaixo, que pode ser consultado no relatório de Power BI disponível neste link da pasta de arquivos do relatório.

VELHOS E FANÁTICOS Curva Volta 3,11 Mil **(** 96,10 32,35 \mathcal{O}_{2} 60,55 Todos Tempo Total (Segundos) Distância Percorrida (m) Velocidade Horizontal Média (m/s Velocidade Horizontal Máxima (m/s) Ângulo de Guinada e Taxa de Variação do Ângulo de Guinada no Tempo Seção da Pista ● Ângulo de Guinada ● Tx de Var, do Ângulo de Guinada Angulo de Guinada -20 -200 Ângulo do Volante, Velocidade e Acionamento do Pedal de Aceleração na Seção no Tempo ento do Pedal do Acelerador Angulo do Volante 100 100 -50 -100