is evolving) ipation + presentation	dmin: office hours? Textbooks Grading 60%
is evolving)	
	Grading 60%
+ stesentation	40%
it suggested topics	
.	
"classic" paper and	
calculations, apply	MAL 1820-1849 Bar 18 18 18 18 18 18 18 18 18 18 18 18 18
specific problem)	
wasted by His Fizza	How may be constanted works would more
sible if changes in	More intuitively, a
a / shower would be send in	fluid density along
e (show multi-media	hamia schlieren ste
ange in index of refractive	due to chance in d
armen of the control of	velocibe et
	31
	Compressibility may
many circumstance	
many circumstances,	Maret commander water
cities in the fluid	most commanly, wh
cities in the fluid	exceed the speed of
many circumstances,	exceed the speed of
that this is a state depend	most commanly, wh
	due to changes in de velocity, etc.)

fluid which is specific heats

oulli equation

(5.14)

hat compresfach number c^2 ; with

Let us now npressibility. uation (5.4),

Figure 5.9
Pressure drop vs. velocity for a perfect gas with γ = 1.40.

Review of Fluid Mech (chpt. 1 Thomson)

To find fundamental conservation laws, use Reynold's Thansport Theorem:

(stuff flowing)

"stuff" = mass, momentum, every, extropy and etc.

Mass Consenation

Fredensity V gt

 $\frac{d}{dt} \int_{V} \rho dV \approx + \int_{S} \rho \vec{u} \cdot \hat{n} dS = O \quad \text{suppose } V \text{ is fixed}$ $\int diversance + hm. \quad \rho = \rho(\vec{x}, t)$

of + p v.u + u. Vp = 0

Recall of + u.v = Dt = material derivative

De + p v·ū = 0

(Recall for incompressible flows, Df 20 => P. 4=0)

Conservation of momentum (assume inviscid for now)

dt Jv pu dv + Js pu u·nds = monentum created
(Forces!)

= Jpg dV + J-Pn ds

Ju at (pū) dv + Jv P. (pūū) dv = Jv pg dv - ĮVP dv = 3x: (pu; u;)

 $\frac{\partial}{\partial t} (\rho \vec{u}) + \rho \vec{u} \nabla \cdot \vec{u} + \vec{u} \cdot \nabla (\rho \vec{u}) = \rho \vec{g} - \nabla P$

 $\frac{D}{Dt}(\rho \bar{u}) + \rho \bar{u} \nabla \cdot \bar{u} = \rho \bar{s} - \nabla P$ $= \frac{D\bar{u}}{Dt} + \bar{u}(\frac{Df}{Dt} + \rho \nabla \cdot \bar{u}) = \rho \bar{s} - \nabla P$

p Di = - √P + pg | Fuler = Equation

Note one important difference between compressible and in compressible flows already:

V. ~ 0 (1 eq)

Fuler (3 eq) unknowns: <u>u</u>, p (4) ~ V.<u>u</u>=0 (1 eq)

Compressible Euler (3eq.) unknowns: ū, p, p!! (5!) D+ PV. u = 0 (1eq.)

Brief review of essential Hurmodynamics (Chapter 2)

A local thermodynamic state is fixed by any two thermodynamic variables. (e.s. pands; or pand T, etc.) (Equilibrium statement! Never the for transport! But we funder this.)

=> Term Project paper:

Coleman and Mizel, "Existence of Calonic equations of state in thermodynamics " J. Chem Phys. vol. 40 (1964) 1116-1125.

Lighthill "Viscosity effects in waves of finite amplitude" in Batchelor and Davies Suneys in Mechanics, Cambridge University Press (on noslip

internal energy = e = e(v,s)

enthalpy = h = h(s,p) = e + pv

First Jaw: de = dg + dw = Tds - pdv reversible = no entropy produced

: dh = de + pdv + vdp = Tds + vdp

Heat capacities: Cv = De ly Cp = OT |

Maxwell's relations (pg. 61 in Thomson

RTT for energy, entropy: $\rho \tilde{D}t(e+\frac{u^2}{z}) = diss. + \rho g.u - \nabla \cdot \tilde{g}$ heat fl

both

Clearly we need one more equation. Typically this final equation is cons. of energy (or possibly entopy).

Thermodynamics!

Acoustics - Fluid motions associated w. the propagation of sound.

Start w. fluid medium at rest. $U_0 = 0$, P_0 , P_0 Mr sound waves are small amplitude pressure fluctuations
in the media. (how small is small?

Lookup *15)

Neglect viscous dissipation; neglect heat transfer the flow is a <u>isentropic</u> (s=so)

Recall, for a pure substance, we only need two thermodynamic variables to fix the state of the system. es. Pp and S. .. p(P,s) (D)

Perturb about rest state: $\bar{u} = o + \bar{u}'$ $\rho = \rho_o + \rho' \quad P = P_o + P'$

Mass:
$$\frac{\partial \rho}{\partial t} + \rho \nabla \cdot \vec{u} + \vec{u} \cdot \nabla \rho = 0$$

small

 $\frac{\partial \rho}{\partial t} + (\rho \circ t \rho^i) \nabla \cdot \vec{u}' + \vec{u}' \nabla \rho' = 0$

2 $\frac{\partial \rho}{\partial t} + \rho \circ \nabla \cdot \vec{u} = 0$ (dropping primes)

Euler: (potp) Du' = -
$$\nabla P' + fg$$

Po Du = - ∇P (dropp. a pirimes)

po (dropp. g primes)

From (1)
$$\frac{\partial f}{\partial t} = \left(\frac{\partial f}{\partial p}\right)\frac{\partial p}{\partial t} + \left(\frac{\partial f}{\partial s}\right)_{p}\frac{\partial s}{\partial t}$$

$$\frac{1}{C_o^2} \equiv \left(\frac{\partial \rho}{\partial P}\right)_s$$

From Q
$$\frac{\partial}{\partial t} \left(\frac{\partial P}{\partial t} = -\rho_0 C_0^2 \frac{\partial u}{\partial x} \right)$$

(consider 1D)

$$\frac{\partial^2 P}{\partial t^2} = \frac{\partial^2 P}{\partial x^2}$$

Classical Wave

Equation (similarly for p and u, etc)

Solutions to the wowe equation:

f and g can be any fixed reasonable shape given by the initial condition

Show that this is a solution: (let g=0) let g=x-cot

$$\frac{\partial P}{\partial t} = \frac{\partial P}{\partial t} \frac{\partial t}{\partial t} = -c_0 \frac{\partial P}{\partial t} = -c_0 P'$$

$$\frac{\partial P}{\partial x} = P'$$
Plue into wave
eq.

$$c^2 P^4 = c^2 P''$$

Co P" = Co P" V Note: we can interpret Co

All variables: , P, p, etc. are constant for an as the speed of the

Observer traveling @ dx = Co

=> the speed of sound in any fluid is $C^2 = (\frac{\partial P}{\partial \rho})_s$

H.w. Sow is and p excuracions one also governed by

Speed of sound in an ideal gas:

For an isentropic process: Pur = const => Pp-r = const

where
$$Y = \frac{CP}{CV}$$
 (ratio of specific heats)
$$C^2 = \left(\frac{\partial P}{\partial \rho}\right)_S = Y \text{ const. } \rho^{N-1} = Y \rho^{N-1} P \rho^{-N} = \frac{YP}{\rho}$$

$$C = \sqrt{\frac{8P}{\rho}} = \sqrt{8RT}$$

$$\frac{1}{900}$$

$$8 = 1.4$$
 P = 1 atm $\approx 10^{5}$ N/m³ $p \approx 1.25$ kg/m³

⇒ Cair = 335 M/sec

Speed of sound in a liquid

Define in terms of
$$k_s = \rho(\frac{\partial P}{\partial \rho})_s = i \operatorname{senhopic}$$
 bulk

$$\frac{C^2 = k_s}{\rho}$$
modulus

Cwater = 1500 m/s

Sound waves in a moving medium?

w 1/1 / Sylve / 11

V = U±C

M<1 subsonic (M<0.3 ~ incompressible)	1 1 1 1 1 1	both upstream and downstream flow "see" the disturbance
M≈1 transonic M>1 supersonic		upstream "sees" nothing !! Pulse cannot affect upstream conditions.
In 3D		
Stationa	y fluid	
(= object moving here & velocity u)	u < c 	ch cone (propagation of information
For a stationary observer, **SUMMAN Frequency is decreased> **Module to Doppler effect.) U>C>	Zone of	
wave equations and causality	(observer cannot se	unse object) lier w. wave eq.)
t observer co	an affect things here. bic?	
Jahanhania 1 , x	affected by this	

Shock is a discontinuity in physical proportion quantities (p, p, ū, etc.) Supersonic flow past an object: High P+p Low P+p but shock becomes weaker rexpansion fan shock usawe moch lines.

m m o

expansion Mach wave