GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA	Microbiologia General

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Tercer Semestre	6034	68

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Que el alumno adquiera los conocimientos fundamentales para diferenciar a cada uno de los grupos de microorganismos; entendiendo sus formas de vida, actividades y características morfológicas, fisiológicas y nutricionales. Además, conocer los factores que afectan el crecimiento de los grupos microbianos y el efecto benéfico o perjudicial que ejercen sobre el medio ambiente y otros organismos

TEMAS Y SUBTEMAS

1. Introducción

- 1.1 Definición de conceptos básicos.
- 1.2 Definición, importancia y alcance de la Microbiología.
- 1.3 Campos de aplicación de la Microbiología y relación con otras áreas.
- 1.4 Desarrollo histórico de la Microbiología.
- 1.5 Características de los sistemas biológicos.
- 1.6 Características de células procariotas y eucariotas.
- 1.7 Características generales de los grupos microbianos.
- 1.8 Distribución en la naturaleza de los microorganismos.
- 1.9 Características generales que permiten clasificarlos e identificarlos.
- 1.10Sistemas de clasificación.
- 1.11Taxonomía

2. Microscopía y cuantificación microbiana

- 2.1 Clasificación de los microscopios dependiendo del sistema de amplificación: ópticos y electrónicos.
- 2.2 Poder de resolución, amplificación y apertura numérica.
- 2.3 Características y fundamentos de microscopios ópticos: campo luminoso, campo oscuro, luz, u. v., fluorescencia y contraste de fase.
- 2.4 Características y fundamento de los microscopios electrónicos: transmisión electrónica y de barrido.
- 2.5 Preparación de muestras para examen microscópico.
- 2.6 Técnicas de tinción: tipos, fundamentos y usos.
- 2.7 Técnicas para cuantificar microorganismos: cuenta celular, masa celular y actividad celular
- 2.8 Características generales y criterios a considerar para seleccionar una técnica de análisis microbiológico.
- 2.9 Curva de crecimiento de los microorganismos: fases lag, log, estacionaria y muerte

3. El medio ambiente de los microorganismos

- 3.1 Clasificación de los factores que influyen en el desarrollo microbiano: intrínsecos y extrínsecos.
- 3.2 Nutrientes disponibles: fuentes y ejemplos.
- 3.3 Ph y acidez: clasificación, mecanismo de acción y efectos.
- 3.4 Potencial óxido-reductor: definición, clasificación, técnicas de cultivo de anaerobios y efectos
- 3.5 Actividad acuosa: definición, clasificación y efectos.

- 3.6 Temperatura: clasificación y efectos.
- 3.7 Medios de cultivo: tipos y ejemplos

4. Bacterias

4.1 Morfología de las bacterias: forma, tamaño y tipo de agrupación.

- 4.2 Estructura de las bacterias: flagelos, vellos, cápsula, pared, membrana, citoplasma, material genético v esporas.
- 4.3 El péptido glucano: definición, importancia y síntesis.

4.4 Reproducción y desarrollo.

- 4.5 Clasificación: Manual bacteriológico de Bergey
- 4.6 Diferencias básicas entre bacterias G+ y G -.
- 4.7 Sistemas de cultivo: axénicos, continuos y sincronizados.
- 4.8 Efectos benéficos y perjudiciales

5. Hongos filamentosos y levaduras

- 5.1 Importancia de los hongos.
- 5.2 Clasificación de los hongos.
- 5.3 Características generales.
- 5.4 Estructura de los hongos filamentosos y levaduras.
- 5.5 Esporas sexuales y asexuales.
- 5.6 Mecanismos de reproducción.
- 5.7 Fisiología.
- 5.8 Estudio e identificación: características macro y microscópicas.
- 5.9 Efectos benéficos y perjudiciales de los hongos más importantes

6. Algas, protozoarios y virus

6.1 Las algas: características generales; tipos de pigmentos; reproducción; criterios de clasificación; cianobacterias; líquenes; ejemplos; y efectos.

6.2 Los protozoarios: características generales; clasificación; ecología; reproducción; importancia: ejemplos y efectos.

6.3 Los virus: características generales; clasificación; morfología, importancia; ejemplos y efectos

7. Nutrición y metabolismo microbiano

7.1 Introducción; definición de nutrición y metabolismo.

- 7.2 Fuentes de materiales de construcción y energía: carbono, nitrógeno, fósforo, azufre y micronutrientes.
- 7.3 Síntesis y degradación de componentes.
- 7.4 Metabolitos secundarios.
- 7.5 Mecanismos de obtención de energía

8. Ecología microbiana

- 8.1 Hábitat de los grupos microbianos.
- 8.2 Microorganismos del suelo.
- 8.3 Microorganismos del agua.
- 8.4 Microorganismos del aire.
- 8.5 Importancia de los microorganismos ambientales en la sanidad

9. Genética microbiana

- 9.1 Características del material genético de los microorganismos.
- 9.2 Estudio de los genes como criterios de identificación y clasificación: hibridación y PCR
- 9.3 Las mutaciones: definición y tipos (espontáneas e inducidas).
- 9.4 Ejemplos e importancia de microorganismos mutados.
- 9.5 Conjugación y recombinación genética: características, ejemplos e importancia

10. Mecanismos de control microbiano

10.1Importancia del control microbiano.

- antiséptico, antibióticos y desinfección, 10.2Definiciones esterilización, sanitización, antimicrobiano.
- 10.3Factores que influyen en la acción antimicrobiana
- 10.4Principales efectos y mecanismos de acción de los agentes.

10.5 Sistemas de control físicos y químicos

10.6Métodos de análisis para evaluar los sistemas de control

ACTIVIDADES DE APRENDIZAJE

Exposición del profesor con apoyo de proyector, equipo de cómputo, modelos

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

3 Exámenes parciales

50%

1 Examen final ordinario

25%

Laboratorio

25%

El alumno que no apruebe las prácticas de laboratorio, no tendrá derecho a la calificación final ordinaria

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL, AÑO Y N° DE EDICIÓN)

Libros Básicos:

El desarrollo de la Microbiología, Collard, Patrick John. España: Reverte, 1985 P.

Fundamental Food Microbiology, Ray, Bibek. USA: CRC PRESS, 1996.

Microbiología de los Alimentos, Frazier, W. C. España: Editorial Acribia, S.A.

Microbiología de los Alimentos, Frazier, W. C. Westhoff D. C. España: Editorial Acribia, 1993.

Microbiología de los Alimentos: Fundamentos Ecológicos para garantizar y comprobar la inocuidad y la

Calidad de los Alimentos, Mossel, D. A. A. Moreno Garcia B. España: Editorial Acribia, 1986.

Libros de Consulta:

Microbiología. Pelcazar, M. Reid, R. y Chane, E. Ed. McGraw-Hill, México.

Microbiología. Brock, T.D., Madgan, M. T. Ed. Prentice Hall Hispanoamericana. Sexta Edición.

Microbiología. Burdon, W. . Publicaciones culturales S.A. México 1980.

R: Tratado de Microbiología. Davis, B.D. y Dulbecco, Ed. Salvat, México 1989.

Microbiología, Stanier, Roger Y. Doudoroff Michael, Adelberg Edward A. España: Ediciones Aguilar, 1981

PERFIL PROFESIONAL DEL DOCENTE

Licenciado en Microbiología con Maestría en Microbiología y Doctorado en Tecnología de Alimentos ó Microbiología.

EMPERAL MEDITOR