Deep Learning 101

3주차

12기 이두형 12기 임효진

Curriculum

1주차: 딥러닝 소개 및 기초 (XOR문제, 퍼셉트론, 활성화 함수 등)

2주차 : Multi-layer Neural Network (Loss Function, Gradient Descending, Backpropagation, MNIST practice, Optimization)

3주차 : CNN 소개 및 기초 (Convolution, Padding, Stride, Pooling등 기초 개념 소개)

4주차: CNN 실습 (세션 후 조별 과제 부여)

5주차 : RNN, LSTM, GRU

6주차 : seq2seq, 실습 (세션 후 조별 과제 부여)

7주차 : 조별 과제 발표

Gradient Descending

- Batch Gradient Descent
- Stochastic Gradient Descent
- Mini-Batch Gradient Descent

Multi-Layer Perceptron

Back Propagation

Back Propagation

• Optimizer

Weight Initialization

Xavier Initialization

$$W \sim Unif\left(-\sqrt{\frac{6}{n_{in}+n_{out}}},+\sqrt{\frac{6}{n_{in}+n_{out}}}\right)$$

$$W \sim N(0, \left(\sqrt{\frac{2}{n_{in} + n_{out}}}\right)^2)$$

He Initialization

$$W \sim Unif\left(-\sqrt{\frac{6}{n_{in}}}, +\sqrt{\frac{6}{n_{in}}}\right)$$

$$W \sim N(0, \left(\sqrt{\frac{2}{n_{in}}}\right)^2)$$

• Batch Normalizatioin & Dropout

Dropout: A Simple Way to Prevent Neural Networks from Overfitting [Srivastava et al. 2014]

(b) After applying dropout.

Week3

Multi-Layer Perceptron

Problem

Multi-Layer Perceptron

Problem

Convolution

Padding

	_													
1 0 3 2	2 1 0 3	3 2 1 0	0 3 2 1	*	2 0 1	0 1 0	1 2 2	monantal@b-	15 16 6 15	+	3	www.com/jb-	18	19 18
입력 데이터				필터							편향		출력	데이터

Padding

(4, 4)

입력 데이터(패딩: 1)

(3, 3)

필타

(4, 4)

출력 네이터

Stride

Stride:1 Stride:2

Feature map size

$$OW = \frac{W + 2P - FW}{S} + 1$$

 $OH = \frac{H + 2P - FH}{S} + 1$

Parameter

Channel

63 55

18 51

3-Dimensional Convolution

Pooling

Deep Learning

LeNet

그림 7-27 LeNet의 구성[20]

AlexNet

그림 7-28 AlexNet의 구성[21]

Alex net Structure

1st Convolution Layer

1st Pooling Layer

2nd Convolution Layer

KU-BIG

2nd Pooling Layer

Flatten

Fully Connected Layer

- Hyper-Parameter
- Convolutional layers : 필터 개수, 필터 크기, stride 값, zero-padding
- Pooling Layer: Pooling 방식, Pool 크기, Pool stride 값
- Fully-Connected Layers : 넓이 (width)
- 활성함수 : ReLU, SoftMax, Sigmoid
- Loss Function:
- Optimizer: SGD, AdaGrad, Momentum, Adam + learning rate
- Random Initialization : Gaussian or uniform

1d CNN

Dogs vs cats

• practice

