

Corso di Architetture degli Elaboratori Prof. Andrea Sterbini

Programma delle videolezioni:

1. Introduzione al corso. Cenni storici. Architettura di Von Neumann a programma	
memorizzato e struttura della CPU IAS.	[1]
2. Le istruzioni, operandi, indirizzamento, confronto tra architettura CISC ed architettura	[+]
RISC. [2.1-2.6, 2.10, Appendi	ice B1
3. ASM: Strutture di controllo. Esempi.	[2.7]
<u> •</u>	[2.14]
5. ASM: Salvataggio dei dati su stack, definizione e chiamata delle funzioni. Esempi.	[2.8]
6. ASM: Funzioni ricorsive. Esempi.	[2.0]
7. ASM: Esercizi.	
	1-4.3]
9. Realizzazione della CPU MIPS ad un colpo di clock. Realizzazione di Branch e Jump.	_
10. ES: Esercizi sulla CPU MIPS ad un colpo di clock.	[4.4]
11. Le 5 fasi dell'istruzione MIPS. Pipeline ed hazard sui dati e sul controllo.	[4.5]
12. Progetto della pipeline RISC senza forwarding.	[4.6]
13. Risoluzione degli hazard sui dati e realizzazione hardware del forwarding.	[4.7]
14. Control hazard e branch prediction. Spostamento del branch alla fase ID.	[4.8]
15. Gestione delle eccezioni e delle interruzioni. Parallelizzazione statica e dinamica. Esem	_
	-4.10]
16. ES: Esercizi su pipeline ed hazard.	4.10]
17. Memorie cache. Esempi. [5.1-5.2	5 5]
18. Memorie cache multilivello. Esempi e prestazioni.	[5.3]
19. Memoria virtuale e supporto hardware, TLB.	[5.4]
20. Parallelismo e gerarchia di memoria. Coerenza delle cache e protocolli di <i>snooping</i> . [5.]	
21. ES: Esercizi sulla cache e sulla memoria virtuale.	/ -3. 0]
21. E.S. ESCICIZI Suna Cache e Suna memoria virtuare.	

NOTA: per ogni videolezione è indicato il capitolo del libro consigliato a cui si riferisce.