

Stacked-target Charged Particle Excitation Functions

Intermediate Energy – LANL

Measurements @ LANL – Nb(p,x)

• Well-characterized monitor reaction data is a top-priority objective

• Vital for determination of fluence, energy for isotope production

Current data are deficient for E_p>30 MeV

• A stacked target measurement was run at LANSCE-IPF to help develop the ⁹³Nb(p,4n)⁹⁰Mo reaction as a new 30-200 MeV proton standard

Measurements @ LANL - Nb(p,x)

⁵⁶Ni

57Ni

Pathway for medical radionuclides: 82mRb, 86Y, 89Zr

A.S. Voyles et al., "Excitation functions for (p,x) reactions of niobium in the energy range of $E_p = 40-90$ MeV", NIM B 429 (2018) 53-74. June 2018

Measurements of 38 cross-sections for ⁹³Nb(p,x) and ^{nat}Cu(p,x)

⁶¹Cu

Measurements @ LANL - Nb(p,x)

Measurements @ LANL – Nb(p,x)

Stacked-target Charged Particle Excitation Functions

Low(er) Energy – LBNL

Stacked-target Charged Particle Excitation Functions

30 Aug 2018

^{nat}Fe(p,x)^{51,52}Mn – Novel PET imaging

Two overlapping stacks: E_p= 55→15 MeV, 25→0 MeV (120 nA@10 min, 100 nA@20 min)

- Emerging medical radionuclides
 - ⁵¹Mn (t_{1/2} = 46 min, 97% β⁺) short-lived PET tracer for metabolic studies
 - ^{52g}Mn (t_{1/2} = 5.6 d, 29% β⁺) long-lived PET tracer for neuron tracking, immune studies

¹⁴⁰La(p,6n)¹³⁴Ce - a PET analogue for ²²⁵Ac

PSA = 0.26 ng/mL

Beam Degraders

Foil Packets

Repeat N times

Beam Dump

Proton Beam

9/2015 PSA < 0.1 ng/mL

- ²²⁵Ac decay chain lacks sufficient positrons to produce a signal that can be detected by PET.
 - In order to employ PET to explore new uses of alpha emitters, positron-emitting, surrogate radionuclides will have to be developed.
 - 134 Ce/ 134 La: $t_{1/2}$ = 75.9 h / 6.67 m, 2.7 MeV β+ (62.0%)
- Cross sections un-measured and reaction modeling predictions (EMPIRE/TALYS) differ by >10x

Jon Morrell

PSA = 2.923 ng/mL

¹⁴⁰La(p,6n)¹³⁴Ce - a PET analogue for ²²⁵Ac

BERKELEY LAB

¹⁴⁰La(p,6n)¹³⁴Ce - a PET analogue for ²²⁵Ac

Major takeaways:

- Significant deviation (>20%) between Anderson & Ziegler and MCNP6/X
 - Future work: explore in depth with other stacked target data
- La metal targetry concerns:
 - Significant decomposition, outgassing post-EoB

Anderson & Ziegler Energy Assignment

MCNP6 Energy Assignment

Collaborators on this work

M.S. Basunia¹, L.A. Bernstein^{1,2}, E.R. Birnbaum³, J.W. Engle^{3,4}, S.A. Graves⁵, T. Kawano³, A.M. Lewis², E.F. Matthews², J.T. Morrell², F.M. Nortier³, A. Springer⁶, A.S. Voyles²

We gratefully acknowledge support from:

- U.S. Department of Energy, Office of Science via the Isotope Development and Production for Research and Applications subprogram in the Office of Nuclear Physics
- Lawrence Berkeley National Laboratory and the U.S. Nuclear Data Program under contract # DE-AC02-05CH11231
- U.S. Nuclear Regulatory Commission
- U.S. Department of Energy grant #DE-SC0019238 Support for Students, Postdoctoral Fellows, and Trainees to Attend the 17th International Workshop on Targetry and Target Chemistry

¹ Lawrence Berkeley National Laboratory

² University of California-Berkeley Dept. of Nuclear Engineering

³ Los Alamos National Laboratory

⁴ University of Wisconsin – Madison

⁵ University of Iowa – Department of Radiation Oncology

⁶ Karlsruhe Institute of Technology

