이름		황제영	학번	201403693
구분	내용			
학습범위	마지막 조별 과제			
학습 내용	* 예제를 통한 코드 돌리기 - github에 올려져 있는 '예시 참고 문헌.pdf'에 있는 예제들 중에 선택적으로 골라서 예제로 사용하여 코드 1. pdf page7의 예제 4 테스트 - 이 문제는 이전에 테스트 했던 테스트케이스와도 유사한 모습을 보여줘서 문제없이 돌아감을 보였다. final_result =			아감을 보였다.
	$(s-\frac{1}{2})^2 + 1 \equiv$	정리하고 역변환 과정으로 들어가여	야 하는데 $s^2 + \frac{1}{4}s + \frac{5}{4}$ 가 통제	로 베어스토우에 들어가다 보니까

베어스토우를 통해 나오는 근(ROOTS)이 복소수를 포함하는 근으로 나오는 문제가 발생했다.

final_result =

 $\exp(t*(-1/8 - 1111i/1000))*(1/2 - 125i/2222) + \exp(t*(-1/8 + 1111i/1000))*(1/2 + 125i/2222)$

3. pdf page13의 예제 8 테스트

- 본 예제는 중근만 잘 처리해주면 되는 예제였기에 수월하게 작동되었다.

final_result =

exp(2*t) - 2*t - 1

4. 추가적으로 테스트 해본 예제 \rightarrow $\frac{s-3}{(s-3)(s-1)}$

- 위 예제는 본 코드에 약분을 먼저 처리해주는 코드가 없기에 이 예제가 오답이 나오지 않을까 염려되어 실행해보았다. 하지만 결과는 라플라스 역변환 코드에 도달하기 전에 (s - 3)을 약분을 하여서 1/(s - 1)이 되어 라플라스 역변환이 실행 되었고 결과는 옳게 나왔다.

final_result =

exp(t)

* 느낀점 및 보완사항

보완사항으로는 라플라스 역변환 부분을 구현해야 할 것은 물론이고 중근을 구하기 위해 반올림을 해서 잘라버리는 것도 더 좋은 방법을 찾아서 구현해주어야 할 것이다. 또 예제 2와 같이 상수를 따로 빼서 계산을 깔끔하게 해내는 과정도 구현할 수 있다면 훌륭한 코드가 될 것이다.

이번 레포트를 통해서 참고한 pdf 파일을 보고 이 과제가 얼마나 깊이 있는 문제였는지 깨달았다. 그러면서 이 코드가 문제점이 얼마나 많은지 파악하게 되었고 라플라스 역변환을 제대로 구사하려면 더 넓은 영역으로 뻗쳐가야 함을 보았다.