Introducción a la Programación Algoritmos y Estructuras de Datos I

Primer cuatrimestre de 2023

Introducción a la especificación de problemas

1

Habíamos visto...

Objetivo: Aprender a programar en lenguajes funcionales y en lenguajes imperativos.

- Especificar problemas.
 - Describirlos en un lenguaje semiformal.
- ► Pensar algoritmos para resolver los problemas.
 - En esta materia nos concentramos en programas para tratamiento de secuencias principalmente.
- ► Empezar a Razonar acerca de estos algoritmos y programas.
 - Veremos conceptos de testing.
 - Veremos nociones de complejidad.

Y también hablamos de...

Lógica proposicional y lógica trivaluada

Convención: Dado que nuestros tipos de datos siempre tendrán como valor posible el indefinido o \perp , en general, asumiremos que estamos utilizando la lógica trivaluada por default.

Es decir, salvo en los casos dónde se indique lo contrario:

- ightharpoonup \wedge podrá ser interpretado como \wedge directamente
- ▶ y así con todos los operadores vistos.

Problemas y Especificaciones

Inicialmente los problemas resolveremos con una computadora serán planteados como funciones. Es decir:

- ▶ Dados ciertos datos de entrada, obtendremos un resultado
- ► Más adelante en la materia, extenderemos el tipo de problemas que podemos resolver...

Definición (Especificación) de un problema

```
problema nombre(parámetros) : tipo de dato del resultado {
   requiere etiqueta: { condiciones sobre los parámetros de entrada }
   asegura etiqueta: { condiciones sobre los parámetros de salida }
}
```

- ▶ *nombre*: nombre que le damos al problema
 - será resuelto por una función con ese mismo nombre
- parámetros: lista de parámetros separada por comas, donde cada parámetro contiene:
 - Nombre del parámetro
 - Tipo de datos del parámetro
- tipo de dato del resultado: tipo de dato del resultado del problema (inicialmente especificaremos funciones)
 - En los asegura, podremos referenciar el valor devuelto con el nombre de res
- etiquetas: son nombres opcionales que nos servirán para nombrar declarativamente a las condiciones de los requiere o aseguras.

Definición (Especificación) de un problema

► Sobre los requiere

- Describen todas las condiciones y posibles valores o casuísticas de los parámetros de entrada.
- Puede haber más de un requiere (recomendamos una condición por renglón). Se asume que valen todos juntos (es una conjunción).
- Evitar contradicciones (un requiere no debería contradecir a otro).

► Sobre los asegura

- Describen todas las condiciones y posibles valores o casuísticas de los parámetros de salida y entrada/salida en función de los parámetros de entrada.
- Puede haber más de un asegura (recomendamos una condición por renglón). Se asume que valen todos juntos (es una conjunción).
- Evitar contradicciones (un asegura no debería contradecir a otro).

7

¿Cómo contradicciones?

```
problema soyContradictorio(x:\mathbb{Z}): \mathbb{Z}{ requiere esMayor: \{x>0\} requiere esMenor: \{x<0\} asegura esElSiguiente: \{res+1=x\} asegura esElAnterior: \{res-1=x\} }
```

Ejemplos

```
problema raizCuadrada(x : \mathbb{R}) : \mathbb{R} {
   requiere: \{x \ge 0\}
   asegura: \{res * res = x \land res \ge 0\}
problema sumar(x : \mathbb{Z}, y : \mathbb{Z}) : \mathbb{Z}  {
   requiere: { True}
   asegura: \{res = x + y\}
problema restar(x : \mathbb{Z}, y : \mathbb{Z}) : \mathbb{Z}  {
   requiere: { True}
   asegura: \{res = x - y\}
problema cualquieramayor(x : \mathbb{Z}) : \mathbb{Z}  {
   requiere: { True}
   asegura: \{res > x\}
```

¿Por qué nuestro lenguaje será semiformal?: Ejemplos

```
problema raizCuadrada(x : \mathbb{R}) : \mathbb{R} {
   requiere: \{x \text{ debe ser mayor o igual que } 0\}
   asegura: { res debe ser mayor o igual que 0}
   asegura: { res elevado al cuadrado será x}
problema sumar(x : \mathbb{Z}, y : \mathbb{Z}) : \mathbb{Z}  {
   requiere: \{-\}
   asegura: \{res \text{ es la suma de } x \text{ e } y\}
problema restar(x : \mathbb{Z}, y : \mathbb{Z}) : \mathbb{Z}  {
   requiere: {Siempre cumplen}
   asegura: \{res \text{ es la resta de } x \text{ menos } y\}
problema cualquieramayor(x : \mathbb{Z}) : \mathbb{Z} {
   requiere: {Vale para cualquier valor posible de x}
   asegura: { res debe tener cualquier valor mayor a x }
```

El contrato

- ▶ Contrato: El programador escribe un programa P tal que si el usuario suministra datos que hacen verdadera la precondición, entonces P termina en una cantidad finita de pasos retornando un valor que hace verdadera la postcondición.
- ► El programa *P* es correcto para la especificación dada por la precondición y la postcondición exactamente cuando se cumple el contrato.
- Si el usuario no cumple la precondición y P se cuelga o no cumple la poscondición...
 - ¿El usuario tiene derecho a quejarse?
 - ► ; Se cumple el contrato?
- ► Si el usuario cumple la precondición y *P* se cuelga o no cumple la poscondición...
 - ▶ ¿El usuario tiene derecho a quejarse?
 - ¿Se cumple el contrato?

Interpretando una especificación

```
problema raizCuadrada(x : R) : R {
    requiere: {x debe ser mayor o igual que 0}
    asegura: {res debe ser mayor o igual que 0}
    asegura: {res elevado al cuadrado será x}
}
```

- ► ¿Qué significa esta especificación?
- Se especifica que si el programa raizCuadrada se comienza a ejecutar en un estado que cumple $x \ge 0$, entonces el programa **termina** y el estado final cumple res * res = x y $res \ge 0$.

Otro ejemplo

Dados dos enteros dividendo y divisor, obtener el cociente entero entre ellos.

```
 \begin{array}{l} \text{problema } \textit{cociente}(\textit{dividendo}: \mathbb{Z}, \textit{divisor}: \mathbb{Z}): \mathbb{Z} \ \{ \\ \text{requiere: } \{\textit{divisor} > 0\} \\ \text{asegura: } \{\textit{res}*\textit{divisor} \leq \textit{dividendo}\} \\ \text{asegura: } \{(\textit{res}+1)*\textit{divisor} > \textit{dividendo}\} \\ \} \end{array}
```

Qué sucede si ejecutamos con ...

- ightharpoonup dividendo = 1 y divisor = 0?
- dividendo = -4 y divisor = -2, y obtenemos res = 2?
- ▶ dividendo = -4 y divisor = -2, y obtenemos res = 0?
- ▶ dividendo = 4 y divisor = -2, y el programa no termina?

Problemas comunes de las especificaciones

- ► ¿Qué sucede si especifico de menos?
- ▶ ¿Qué sucede si especifico de más?

Sobre-especificación

- Consiste en dar una postcondición más restrictiva de la que se necesita, o bien dar una precondición más laxa.
- Limita los posibles algoritmos que resuelven el problema, porque impone más condiciones para la salida, o amplía los datos de entrada.

```
    ► Ejemplo:
        problema distinto(x : Z) : Z {
            requiere: {True}
            asegura: {res = x + 1}
        }
        ... en lugar de:
        problema distinto(x : Z) : Z{
            requiere: {True}
            asegura: {res ≠ x}
        }
    }
```

Sub-especificación

- Consiste en dar una precondición más restrictiva de lo realmente necesario, o bien una postcondición más débil de la que se necesita.
- ▶ Deja afuera datos de entrada o ignora condiciones necesarias para la salida (permite soluciones no deseadas).
- ► Ejemplo:

```
problema distinto(x: \mathbb{Z}): \mathbb{Z}\{ requiere: \{x>0\} asegura: \{res \neq x\} \} ... en vez de: problema distinto(x: \mathbb{Z}): \mathbb{Z}\{ requiere: \{True\} asegura: \{res \neq x\} \}
```

Tipos de datos

- Un tipo de datos es un conjunto de valores (el conjunto base del tipo) provisto de una serie de operaciones que involucran a esos valores.
- ▶ Para hablar de un elemento de un tipo T en nuestro lenguaje, escribimos un término o expresión
 - ► Variable de tipo *T* (ejemplos: *x*, *y*, *z*, etc)
 - ► Constante de tipo T (ejemplos: 1, -1, $\frac{1}{5}$, 'a', etc)
 - Función (operación) aplicada a otros términos (del tipo T o de otro tipo)
- ► Todos los tipos tienen un elemento distinguido: ⊥ o Indef

Tipos de datos de nuestro lenguaje de especificación

- Básicos
 - ► Enteros (ℤ)
 - ► Reales (ℝ)
 - ► Booleanos (Bool)
 - Caracteres (Char)
- ► Enumerados
- ▶ Uplas
- Secuencias

Tipo \mathbb{Z} (números enteros)

- Su conjunto base son los números enteros.
- ightharpoonup Constantes: 0 ; 1 ; -1 ; 2 ; -2 ; ...
- ► Operaciones aritméticas:
 - ightharpoonup a + b (suma); a b (resta); abs(a) (valor absoluto)
 - ► a * b (multiplicación); a div b (división entera);
 - ightharpoonup a mod b (resto de dividir a a por b), a^b o pot(a,b) (potencia)
 - ▶ a / b (división, da un valor de R)
- ▶ Fórmulas que comparan términos de tipo Z:
 - ▶ a < b (menor)</p>
 - $ightharpoonup a \le b$ o $a \le b$ (menor o igual)
 - ightharpoonup a > b (mayor)
 - $ightharpoonup a \ge b$ o a >= b (mayor o igual)
 - $ightharpoonup a = b ext{ (iguales)}$
 - ightharpoonup a
 eq b (distintos)

Tipo \mathbb{R} (números reales)

- Su conjunto base son los números reales.
- $lackbox{\ }$ Constantes: 0 ; 1 ; -7 ; 81 ; $7{,}4552$; $\pi\dots$
- ► Operaciones aritméticas:
 - Suma, resta y producto (pero no div y mod)
 - ▶ a/b (división)
 - $ightharpoonup \log_b(a)$ (logaritmo)
 - Funciones trigonométricas
- ► Fórmulas que comparan términos de tipo R:
 - ightharpoonup a < b (menor)
 - $ightharpoonup a \le b$ o $a \le b$ (menor o igual)
 - ightharpoonup a > b (mayor)
 - $ightharpoonup a \ge b$ o a >= b (mayor o igual)
 - $ightharpoonup a = b ext{ (iguales)}$
 - ightharpoonup a
 eq b (distintos)

Tipo Bool (valor de verdad)

- ▶ Su conjunto base es $\mathbb{B} = \{ true, false \}$.
- ► Conectivos lógicos: !, &&, ||, con la semántica bi-valuada estándar.
- Fórmulas que comparan términos de tipo Bool:
 - ► a = b
 - ightharpoonup a
 eq b (se puese escribir a ! = b)

Tipo Char (caracteres)

- Sus elementos son las letras, dígitos y símbolos.
- Constantes: 'a', 'b', 'c',..., 'z',..., 'A', 'B', 'C',..., 'Z',..., '0', '1', '2',..., '9' (en el orden dado por el estándar ASCII).
- ► Función ord, que numera los caracteres, con las siguientes propiedades:
 - ightharpoonup ord('a') + 1 = ord('b')
 - ightharpoonup ord('A') + 1 = ord('B')
 - ightharpoonup ord('1') + 1 = ord('2')
- ► Función char, de modo tal que si c es cualquier char entonces char(ord(c)) = c.
- Las comparaciones entre caracteres son comparaciones entre sus órdenes, de modo tal que a < b es equivalente a ord(a) < ord(b).

Tipos enumerados

Cantidad finita de elementos.
 Cada uno, denotado por una constante.

```
enum Nombre { constantes }
```

- ► Nombre (del tipo): tiene que ser nuevo.
- ► Constantes: nombres nuevos separados por comas.
- Convención: todos en mayúsculas.
- ▶ ord(a) da la posición del elemento en la definición (empezando de 0).
- ▶ Inversa: se usa el nombre del tipo funciona como inversa de ord.

Ejemplo de tipo enumerado

```
Definimos el tipo Día así:
enum Día {
    LUN, MAR, MIER, JUE, VIE, SAB, DOM
}
```

Valen:

- ightharpoonup ord(LUN) = 0
- ightharpoonup Día(2) = MIE
- ► JUE < VIE

Tipo upla (o tupla)

- ▶ Uplas, de dos o más elementos, cada uno de cualquier tipo.
- ▶ $T_0 \times T_1 \times \cdots \times T_k$: Tipo de las k-uplas de elementos de tipos T_0 , T_1 , ... T_k , respectivamente, donde k es fijo.
- ► Ejemplos:
 - $ightharpoonup \mathbb{Z} imes \mathbb{Z}$ son los pares ordenados de enteros.
 - Z × Char × Bool son las triplas ordenadas con un entero, luego un carácter y luego un valor booleano.
- ▶ nésimo: $(a_0, \ldots, a_k)_m$ es el valor a_m en caso de que $0 \le m \le k$. Si no, está indefinido.
- ► Ejemplos:
 - $(7,5)_0 = 7$
 - $(a', DOM, 78)_2 = 78$

Secuencias

- ► Secuencia: Varios elementos del mismo tipo *T*, posiblemente repetidos, ubicados en un cierto orden.
- $seq\langle T \rangle$ es el tipo de las secuencias cuyos elementos son de tipo T.
- ► *T* es un tipo arbitrario.
 - ► Hay secuencias de Z, de Bool, de Días, de 5-uplas;
 - ▶ también hay secuencias de secuencias de T;
 - etcétera.

Secuencias. Notación

- Una forma de escribir un elemento de tipo seq\(\(T\)\) es escribir términos de tipo \(T\) separados por comas, entre \(\lambda...\rangle\).
 - \blacktriangleright $\langle 1, 2, 3, 4, 1, 0 \rangle$ es una secuencia de \mathbb{Z} .
- ► La secuencia vacía se escribe ⟨⟩, cualquiera sea el tipo de los elementos de la secuencia.
- Se puede formar secuencias de elementos de cualquier tipo.
 - ▶ Como $seq\langle \mathbb{Z} \rangle$ es un tipo, podemos armar secuencias de $seq\langle \mathbb{Z} \rangle$ (secuencias de secuencias de \mathbb{Z} , o sea $seq\langle seq\langle \mathbb{Z} \rangle \rangle$).

Secuencias bien formadas

Indicar si las siguientes secuencias están bien formadas. Si están bien formadas, indicar su tipo ($seq\langle \mathbb{Z}\rangle, etc...$)

- $ightharpoonup \langle 1,2,3,4,5 \rangle$? Bien Formada. Tipa como $seq\langle \mathbb{Z} \rangle$ y $seq\langle \mathbb{R} \rangle$
- $ightharpoonup \langle 1,2,3,4,\frac{1}{0}\rangle$? No está bien formada porque uno de sus componentes está indefinido
- $ightharpoonup \langle 'a',2,3,4,5 \rangle$? No está bien formada porque no es homogénea (*Char* y \mathbb{Z})
- $ightharpoonup \langle 'H', 'o', 'l', 'a' \rangle$? Bien Formada. Tipa como $seq\langle Char \rangle$
- ► \(\langle true, false, true, true \rangle?\) Bien Formada. Tipa como \(seq \langle Bool \rangle
 \)
- $ightharpoonup \langle \frac{2}{5}, \pi, e \rangle$? Bien Formada. Tipa como $seq\langle \mathbb{R} \rangle$
- ▶ $\langle \rangle$? Bien formada. Tipa como cualquier secuencia $seq\langle X\rangle$ donde X es un tipo válido.

Funciones sobre secuencias

Longitud

- ▶ Longitud: $length(a : seq\langle T \rangle) : \mathbb{Z}$
 - ▶ Representa la longitud de la secuencia a.
 - Notación: length(a) se puede escribir como |a| o como a.length.
- ► Ejemplos:
 - $|\langle\rangle|=0$
 - $|\langle H', o', I', a' \rangle| = 4$
 - $\qquad \qquad |\langle 1,1,2\rangle|=3$

I-ésimo elemento

- ▶ Indexación: $seq\langle T \rangle [i : \mathbb{Z}] : T$
 - ▶ Requiere $0 \le i < |a|$.
 - Es el elemento en la *i*-ésima posición de *a*.
 - La primera posición es la 0.
 - ► Notación: *a*[*i*].
 - ▶ Si no vale $0 \le i < |a|$ se indefine.
- ► Ejemplos:

 - ('H','o','I','a')[2] = 'I'
 - $\langle 'H', 'o', 'I', 'a' \rangle [3] = 'a'$
 - $ightharpoonup \langle 1, 1, 1, 1 \rangle [0] = 1$
 - $ightharpoonup \langle \rangle[0] = \bot$ (Indefinido)
 - $\qquad \qquad \langle 1,1,1,1\rangle [7] = \bot \text{ (Indefinido)}$

Pertenece

- ▶ Pertenece: $pertenece(x : T, s : seq\langle T \rangle) : Bool$
 - Es **true** sí y solo sí x es elemento de s.
 - Notación: pertenece(x, s) se puede escribir como $x \in s$.
- ► Ejemplos:
 - ► $(1, MAR) \in \langle (1, LUN), (2, MAR), (3, JUE), (1, MAR) \rangle$? true
 - $ightharpoonup (1, MAR) \in \langle (1, LUN), (2, MAR), (3, JUE), (3, MAR) \rangle$? false

Igualdad

Dos secuencias s_0 y s_1 (notación $s_0=s_1$) son iguales si y sólo si

- ► Tienen la misma cantidad de elementos
- ▶ Dada una posición, el elemento contenido en la secuencia s_0 es igual al elemento contenido en la secuencia s_1 .

Ejemplos:

- $ightharpoonup \langle 1, 2, 3, 4 \rangle = \langle 1, 2, 3, 4 \rangle$? Sí
- $ightharpoonup \langle \rangle = \langle \rangle$? Sí
- $ightharpoonup \langle 4,4,4 \rangle = \langle 4,4,4 \rangle$? Sí
- $ightharpoonup \langle 1, 2, 3, 4, 5 \rangle = \langle 1, 2, 3, 4 \rangle$? No
- $ightharpoonup \langle 1, 2, 3, 4, 5 \rangle = \langle 1, 2, 4, 5, 6 \rangle$? No
- $ightharpoonup \langle 1,2,3,5,4 \rangle = \langle 1,2,3,4,5 \rangle$? No

Cabeza o Head

- ightharpoonup Cabeza: $head(a:seq\langle T\rangle):T$
 - Requiere |a| > 0.
 - Es el primer elemento de la secuencia a.
 - Es equivalente a la expresión a[0].
 - ightharpoonup Si no vale |a| > 0 se indefine.
- ► Ejemplos:
 - ► head(('H', 'o', 'I', 'a')) = 'H'
 - $head(\langle 1, 1, 1, 1 \rangle) = 1$
 - ▶ $head(\langle \rangle) = \bot$ (Indefinido)

Cola o Tail

- ightharpoonup Cola: $tail(a:seq\langle T\rangle):seq\langle T\rangle$
 - Requiere |a| > 0.
 - Es la secuencia resultante de eliminar su primer elemento.
 - ▶ Si no vale |a| > 0 se indefine.
- ► Ejemplos:

 - ightharpoonup tail($\langle \rangle$) = \bot (Indefinido)

Agregar al principio o addFirst

- ▶ Agregar cabeza: $addFirst(t : T, a : seq\langle T \rangle) : seq\langle T \rangle$
 - Es una secuencia con los elementos de a, agregándole t como primer elemento.
 - Es una función que no se indefine
- ► Ejemplos:

 - ▶ $addFirst(5, \langle 1, 1, 1, 1 \rangle) = \langle 5, 1, 1, 1, 1 \rangle$

Concatenación o concat

- ► Concatenación: $concat(a : seq\langle T \rangle, b : seq\langle T \rangle) : seq\langle T \rangle$
 - Es una secuencia con los elementos de a, seguidos de los de b.
 - Notación: concat(a, b) se puede escribir a ++ b.
- ► Ejemplos:
 - $\qquad \qquad \mathsf{concat}(\langle'\mathsf{H}', o'\rangle, \langle'\mathsf{I}', a'\rangle) = \langle'\mathsf{H}', o', \mathsf{I}', a'\rangle$
 - ightharpoonup concat($\langle 1, 2 \rangle, \langle 3, 4 \rangle$) = $\langle 1, 2, 3, 4 \rangle$
 - ightharpoonup concat($\langle \rangle, \langle \rangle$) = $\langle \rangle$
 - ightharpoonup concat($\langle 2, 3 \rangle, \langle \rangle$) = $\langle 2, 3 \rangle$
 - ightharpoonup concat($\langle \rangle, \langle 5, 7 \rangle$) = $\langle 5, 7 \rangle$

Funciones con secuencias

Subsecuencia o subseq

- ▶ Subsecuencia: $subseq(a : seq\langle T \rangle, d, h : \mathbb{Z}) : seq\langle T \rangle$
 - Es una sublista de a en las posiciones entre d (inclusive) y h (exclusive).
 - ▶ Cuando $0 \le d = h \le |a|$, retorna la secuencia vacía.
 - ▶ Cuando no se cumple $0 \le d \le h \le |a|$, se indefine!

► Ejemplos:

- \blacktriangleright subseq($\langle 'H', 'o', 'I', 'a' \rangle, 0, 1$) = $\langle 'H' \rangle$
- subseq(('H', 'o', 'I', 'a'), 0, 4) = ('H', 'o', 'I', 'a')
- \blacktriangleright subseq($\langle 'H', 'o', 'I', 'a' \rangle, 2, 2$) = $\langle \rangle$
- ▶ $subseq(\langle 'H', 'o', 'I', 'a' \rangle, -1, 3) = \bot$
- ightharpoonup subseq($\langle 'H', 'o', 'I', 'a' \rangle, 0, 10$) = \bot
- $subseq(\langle 'H', 'o', 'l', 'a' \rangle, 3, 1) = \bot$

Funciones con secuencias

- ► Cambiar una posición: $setAt(a : seq\langle T \rangle, i : \mathbb{Z}, val : T) : seq\langle T \rangle$
 - ▶ Requiere $0 \le i < |a|$
 - Es una secuencia igual a a, pero con valor val en la posición i.
- ► Ejemplos:
 - $> setAt(\langle'H','o','I','a'\rangle,0,'X') = \langle'X','o','I','a'\rangle$
 - $\blacktriangleright setAt(\langle'H','o','I','a'\rangle,3,'A') = \langle'H','o','I','A'\rangle$
 - $setAt(\langle \rangle, 0, 5) = \bot$ (Indefinido)

Operaciones sobre secuencias

```
ightharpoonup length(a: seg(T)): \mathbb{Z} (notación |a|)

ightharpoonup pertenece(x : T, s : seg(T)) : Bool (notación x \in s)
▶ indexación: seg\langle T \rangle [i : \mathbb{Z}] : T

ightharpoonup igualdad: seg\langle T \rangle = seg\langle T \rangle
\blacktriangleright head(a: seg\langle T \rangle): T

ightharpoonup tail(a: seg\langle T \rangle): seg\langle T \rangle

ightharpoonup addFirst(t : T, a : seg\langle T \rangle) : seg\langle T \rangle

ightharpoonup concat(a: seq\langle T \rangle, b: seq\langle T \rangle): seq\langle T \rangle (notación a++b)

ightharpoonup subseq(a: seq\langle T \rangle, d, h: \mathbb{Z}): \langle T \rangle

ightharpoonup setAt(a: seg\langle T \rangle, i: \mathbb{Z}, val: T): seg\langle T \rangle
```

Predicados

- Asignan un nombre a una expresión.
- ► Facilitan la lectura y la escritura de especificaciones.
- ► Modularizan la especificación.

```
pred p(argumentos)\{f\}
```

p es el nombre del puede usarse en el resto de la especificación en lugar de la formula f.

Ejemplos de Predicados

```
▶ pred esPar(n : \mathbb{Z}){ (n mod 2) = 0 }
   pred esImpar(n : \mathbb{Z})\{ \neg (esPar(n)) \}
▶ pred esFinde(d : Dia)\{d = SAB \lor d = DOM\}
   Otra forma:
   pred esFinde2(d : Día){d > VIE}
▶ pred tieneUnCinco(s : seq(\mathbb{Z})){Alguno de los elementos de s es un 5}
   Otra forma:
   pred tieneUnCinco(s : seq\langle \mathbb{Z} \rangle) \{ (\exists e : \mathbb{Z}) | e = 5 \land e \in s \}
   Otra forma:
   pred tieneUnCinco(s : seq(\mathbb{Z}))\{(\exists i : \mathbb{Z}) \ 0 \le i < |s| \land s[i] = 5\}
```

Ejemplos de Predicados

▶ pred $todosImpares(s : seq\langle \mathbb{Z} \rangle)$ {Todos los elementos de s son impares}

Otra forma:

```
pred todosImpares(s : seq\langle \mathbb{Z} \rangle)\{(\forall i : \mathbb{Z}) | i \notin s \lor esImpar(i)\}
```

Otra forma:

```
\mathsf{pred}\ \mathit{todosImpares}(s:\mathit{seq}\langle\mathbb{Z}\rangle)\{(\forall i:\mathbb{Z})\ 0\leq i<|s|\rightarrow \mathit{esImpar}(s[i])\}
```

Expresiones condicionales

Función que elige entre dos elementos del mismo tipo, según una fórmula lógica (guarda)

- ▶ si la guarda es verdadera, elige el primero
- ► si no, elige el segundo

Por ejemplo

▶ expresión que devuelve el máximo entre dos elementos:

```
problema maximoEntreDos(a: \mathbb{Z}, b: \mathbb{Z}): \mathbb{Z} \ \{ asegura: \{res = IfThenElseFi\langle \mathbb{Z}\rangle (a>b, a, b)\} \}
```

cuando los argumentos se deducen del contexto, se puede escribir directamente

```
problema maximoEntreDos(a: \mathbb{Z}, b: \mathbb{Z}) : \mathbb{Z} \ \{ \ asegura: \{res = if \ a > b \ then \ a \ else \ b \ fi \} \ \} problema maximoEntreDos(a: \mathbb{Z}, b: \mathbb{Z}) : \mathbb{Z} \ \{ \ asegura: \{res = es \ el \ mayor \ entre \ a \ y \ b \ \} \ \}
```

Expresiones condicionales

Función que elige entre dos elementos del mismo tipo, según una fórmula lógica (guarda)

- ▶ si la guarda es verdadera, elige el primero
- ► si no, elige el segundo

Por ejemplo

lacktriangle expresión que dado x un número entero, devuelve 1/x si $x \neq 0$ y 0 sino

```
problema unoSobre(x : \mathbb{Z}) : \mathbb{R} \ \{ asegura: \{res = \text{if } x \neq 0 \text{ then } 1/x \text{ else } 0 \text{ fi} \}
```

Ejemplo (semiformal)

- Ejemplo: Crear un predicado esPrimo que sea Verdadero si y sólo si el número n es un número primo.
- pred esPrimo(n: Z) { n es mayor que 1 y sólo divisible por sí mismo y la unidad }
- Ejemplo: Especificar el problema de, dado un número mayor a 1, indicar si el número es un número primo.

```
▶ problema primo(n : Z) : Bool {
    requiere: {n > 1}
    asegura: {res = true \leftrightarrow esPrimo(n)}
}
```

Ejemplo

Ejemplo: Crear un predicado esPrimo que sea Verdadero si y sólo si el número n es un número primo.

```
▶ pred esPrimo(n: \mathbb{Z}) {
n > 1 \ \land \ (\forall n': \mathbb{Z})(1 < n' < n \rightarrow n \bmod n' \neq 0)
}
```

- **Observación:** x mod y se indefine si y = 0.
- Ejemplo: Especificar el problema de, dado un número mayor a 1, indicar si el número es un número primo.

```
▶ problema primo(n : \mathbb{Z}) : \mathsf{Bool} \ \{ requiere: \{n > 1\} asegura: \{res = true \leftrightarrow \mathsf{esPrimo}(n)\} \}
```

Modularizacion

Partiendo un problema en problemas mas chicos

Dadas dos secuencias, queremos saber si uno es una una permutación de la otra secuencia:

¿Cuándo será una secuencia permutación de la otra?

- ► Tienen los mismos elementos
- ► Cada elemento aparece la misma cantidad de veces en ambas secuencias

```
problema esPermutacion(s1, s2 : seq\langle T \rangle): Bool { asegura: \{res = true \leftrightarrow ((\forall e : T)(cantidadDeApariciones(s1, e) = cantidadDeApariciones(s2, e)))\} }
```

Pero... falta algo...

 $^{^{1}}$ mismos elementos y misma cantidad por cada elemento, en un orden potencialmente distinto

Modularizacion

Partiendo un problema en problemas mas chicos

Ahora, tenemos que especificar el problema cantidadDeApariciones

¿Cómo podemos saber la cantidad de apariciones de un elemento en una lista?

- Podríamos sumar 1 por cada posición donde el elemento en dicha posición es el que buscamos!
- ► Las operaciones de Sumatorias y Productorias también podemos usarlos

```
problema cantidadDeApariciones(s:seq\langle T\rangle,e:T):\mathbb{Z} { asegura \{res = \sum_{i=0}^{|s|-1} (\text{if } s[i] = e \text{ then } 1 \text{ else } 0 \text{ fi})\} }
```

Recapitulando

Partiendo un problema en problemas mas chicos

Dadas dos secuencias, queremos saber si uno es una una permutación¹ de la otra secuencia:

```
problema esPermutacion(s1, s2: seq\langle T \rangle): Bool { asegura: \{res = true \leftrightarrow ((\forall e: T)(cantidadDeApariciones(s1, e) = cantidadDeApariciones(s2, e)))\}}

Donde...

problema cantidadDeApariciones(s: seq\langle T \rangle, e: T): \mathbb{Z} { asegura: \{res = \sum_{i=0}^{|s|-1} (\text{if } s[i] = e \text{ then } 1 \text{ else } 0 \text{ fi})\}}
```

Y así podemos modularizar y descomponer nuestro problemas, partiendolos en problemas más chicos. Y también los podremos reutilizar!

 $^{^{1}}$ mismos elementos y misma cantidad por cada elemento, en un orden potencialmente distinto

Modularización

O partir el problema en problemas más chicos...

Los conceptos de modularización y encapsulamiento siempre estarán relacionados con los principios de diseño de software. La estrategia se puede resumir en:

- Descomponer un problema grande en problemas más pequeños (y sencillos)
- ► Componerlos y obtener la solución al problema original

Esto favocere muchos aspectos de calidad como:

- La reutilización (una función auxiliar puede ser utilizada en muchos contextos)
- Es más facil probar algo chico que algo grande (si cada parte cumple su función correctamente, es más probable que todas juntas también lo haga)
- ► La declaratividad (es más facil entender al ojo humano)

Modularización

Top Down versus Bottom Up

También es aplicable a la especificación de problemas:


```
problema esPermutacion(s1, s2: seq\langle T \rangle): Bool { asegura: \{res = true \leftrightarrow ((\forall e: T)(cantidadDeApariciones(s1, e) = cantidadDeApariciones(s2, e)))\} } problema cantidadDeApariciones(s: seq\langle T \rangle, e: T): \mathbb{Z} { asegura: \{res = \sum_{i=0}^{|s|-1} (\text{if } s[i] = e \text{ then } 1 \text{ else } 0 \text{ fi})\} }
```

¿Lo encaramos Top Down o Bottom Up?