Logic and Computer Design Fundamentals Chapter 7 – Registers and Register Transfer

Yueming Wang (王跃明)

ymingwang@zju.edu.cn 2014

College of Computer Science, Zhejiang University Qiushi Academy for Advanced Studies, Zhejiang University

Overview

- Part 1 Registers, Microoperations and **Implementations**
 - Registers and load enable
 - Register transfer operations
 - Microoperations arithmetic, logic, and shift
 - Microoperations on a single register
 - Multiplexer-based transfers
 - Shift registers
- Part 2 Counters, Register Cells, Buses, & Serial **Operations**
- Part 3 Control of Register Transfers

Registers

- Register a collection of binary storage elements
- In theory, a register is sequential logic which can be defined by a state table
- More often, think of a register as storing a vector of binary values
- Frequently used to perform simple data storage and data movement and processing operations

Example: 2-bit Register

How many states are there?

How many input combinations?
Output combinations?

What is the output function?

What is the next state function?

Moore or Mealy? State Table:

ace function.			
Current	Next State	Output	
State	A1(t+1) A0(t+1)	(=A1 A0)	
	For In1 In0 =		
A1 A0	00 01 10 11	Y1 Y0	
0 0	00 01 10 11	0 0	
0 1	00 01 10 11	0 1	
1 0	00 01 10 11	1 0	
1 1	00 01 10 11	1 1	

In 1

In0

What are the quantities above for an n-bit register?

 $\mathbf{A1}$

 $\mathbf{A0}$

D

Y1

 $\mathbf{Y0}$

Register Design Models

- Due to the large numbers of states and input combinations as *n* becomes large, the state diagram/state table model is not feasible!
- What are methods we can use to design registers?
 - Add predefined combinational circuits to registers
 - Example: To count up, connect the register flip-flops to an incrementer
 - Design individual cells using the state diagram/state table model and combine them into a register
 - A 1-bit cell has just two states
 - Output is usually the state variable

Register Storage

Expectations:

- A register can store information for multiple clock cycles
- To "store" or "load" information should be controlled by a signal

Reality:

- A D flip-flop register loads information on every clock cycle
- Realizing expectations:
 - Use a signal to block the clock to the register,
 - Use a signal to control feedback of the output of the register back to its inputs, or
 - Use other SR or JK flip-flops, that for (0,0) applied, store their state
- Load is a frequent name for the signal that controls register storage and loading
 - Load = 1: Load the values on the data inputs
 - Load = 0: Store the values in the register

Registers with Clock Gating

- The *Load* signal enables the clock signal to pass through if 1 and prevents the clock signal from passing through if 0.
- **Example:** For Positive Edge-Triggered or Negative Pulse Master-Slave Flip-flop:

What is the problem?

Gated Clock = Clock + Load

Clock Skew of gated clocks with respect to clock or each other

Registers with Load-Controlled Feedback

- A more reliable way to selectively load a register:
 - Run the clock continuously, and
 - Selectively use a load control to change the register contents.
- **Example: 2-bit register** with Load Control: 2-to-1 Multiplexers For Load = 0, loads register contents (hold current values) For Load = 1, Loadloads input values **In1**-(load new values) Hardware more complex than clock gating, but free of timing problems In₀ Clock Chapter 7 - Part 1

Register Transfer Operations

- Register Transfer Operations The movement and processing of data stored in registers
- Three basic components:
 - set of registers
 - operations
 - control of operations
- Elementary Operations load, count, shift, add, bitwise "OR", etc.
 - Elementary operations called *microoperations*

Register Notation

- Letters and numbers denotes a register (ex. R2, PC, IR)
- Parentheses () denotes a range of register bits (ex. R1(1), PC(7:0), PC(L))
- Arrow (←) denotes data transfer (ex. R1 ← R2, PC(L) ← R0)
- Comma separates parallel operations
- Brackets [] Specifies a memory address (ex. R0 ← M[AR], R3 ← M[PC])

Conditional Transfer

If (K1 = 1) then $(R2 \leftarrow R1)$ Ky is shortened to

 $K1: (R2 \leftarrow R1)$

where K1 is a control variable specifying a conditional execution of the microoperation.

Microoperations

Logical Groupings:

- Transfer move data from one register to another
- Arithmetic perform arithmetic on data in registers
- Logic manipulate data or use bitwise logical operations
- Shift shift data in registers

Arithmetic operations

- + Addition
- Subtraction
- * Multiplication
- / Division

Logical operations

- v Logical OR
- **A Logical AND**
- **①** Logical Exclusive OR
- Not

Example Microoperations

 Add the content of R1 to the content of R2 and place the result in R1.

$$R1 \leftarrow R1 + R2$$

 Multiply the content of R1 by the content of R6 and place the result in PC.

$$PC \leftarrow R1 * R6$$

Exclusive OR the content of R1 with the content of R2 and place the result in R1.

$$R1 \leftarrow R1 \oplus R2$$

Example Microoperations (Continued)

- Take the 1's Complement of the contents of R2 and place it in the PC.
- PC ← R2
- On condition K1 OR K2, the content of R1 is Logic bitwise Ored with the content of R3 and the result placed in R1.
- (K1 + K2): $R1 \leftarrow R1 \vee R3$
- NOTE: "+" (as in $K_1 + K_2$) and means "OR." In R1 \leftarrow R1 + R3, + means "plus."

RTL, VHDL, Verilog Symbols for Register Transfers

Operation	Text RTL	VHDL	Verilog
Combinational Assignment =		<= (concurrent)	assign = (nonblocking)
Register Transfer	\leftarrow	<= (concurrent)	<= (nonblocking)
Addition	+	+	+
Subtraction	_	_	_
Bitwise AND	\wedge	and	&
Bitwise OR	\vee	or	
Bitwise XOR	\oplus	xor	٨
Bitwise NOT	_	not	~
Shift left (logical)	sl	sll	<<
Shift right (logical)	sr	srl	>>
Vectors/Registers	A(3:0)	A(3 downto 0)	A[3:0]
Concatenation		&	{ ,}

Control Expressions

- The <u>control expression</u> for an operation appears to the left of the operation and is separated from it by a colon
- Control expressions specify the <u>logical condition</u> for the operation to occur
- Control expression values of:
 - Logic "1" -- the operation occurs.
 - Logic "0" -- the operation is does not occur.

Example:

 \overline{X} K1: R1 \leftarrow R1 + R2

 $X K1 : R1 \leftarrow R1 + \overline{R2} + 1$

- Variable K1 enables the add or subtract operation.
- If X = 0, then $\overline{X} = 1$ so $\overline{X} K1 = 1$, activating the addition of R1 and R2.
- If X = 1, then X K1 = 1, activating the addition of R1 and the two's complement of R2.

Arithmetic Microoperations

From	Symbolic Designation	Description
	$R0 \leftarrow R1 + R2$	Addition
7-3:	$R0 \leftarrow \overline{R1}$	Ones Complement
	$R0 \leftarrow \overline{R1} + 1$	Two's Complement
	$R0 \leftarrow R2 + \overline{R1} + 1$	R2 minus R1 (2's Comp)
	$R1 \leftarrow R1 + 1$	Increment (count up)
	R1 ← R1 – 1	Decrement (count down)

- Note that any register may be specified for source 1, source 2, or destination.
- These simple microoperations operate on the whole word

Logical Microoperations

From Table 7-4:

Symbolic	Description
Designation	
$R0 \leftarrow \overline{R1}$	Bitwise NOT
$R0 \leftarrow R1 \vee R2$	Bitwise OR (sets bits)
R0 ← R1 ^ R2	Bitwise AND (clears bits)
R0 ← R1 ⊕ R2	Bitwise EXOR (complements bits)

Logical Microoperations (continued)

- Let R1 = 10101010, and R2 = 11110000
- Then after the operation, R0 becomes:

R0	Operation
01010101	$R0 \leftarrow \overline{R1}$
11111010	R0 ← R1 ∨ R2
10100000	R0 ← R1 ^ R2
01011010	$R0 \leftarrow R1 \oplus R2$

Shift Microoperations

- From Table 7-5:
- Let R2 = 11001001
- Then after the operation, R1 becomes:

Symbolic Designation	Description
R1 ← sl R2	Shift Left
R1 ← sr R2	Shift Right

R1	Operation
10010010	R1 ← sl R2
01100100	R1 ← sr R2

- Note: These shifts "zero fill". Sometimes a separate flip-flop is used to provide the data shifted in, or to "catch" the data shifted out.
- Other shifts are possible (rotates, arithmetic) (see Chapter 10).

Register Transfer Structures

- **Multiplexer-Based Transfers** Multiple inputs are selected by a multiplexer dedicated to the register
- Bus-Based Transfers Multiple inputs are selected by a shared multiplexer driving a bus that feeds inputs to multiple registers
- Three-State Bus Multiple inputs are selected by 3-state drivers with outputs connected to a bus that feeds multiple registers
- Other Transfer Structures Use multiple multiplexers, multiple buses, and combinations of all the above

Multiplexer-Based Transfers

• Multiplexers connected to register inputs produce flexible transfer structures (Note: Clocks are omitted for clarity)
If (K1 = 1) then R0←R1) else if(K2=1) then (R0←R2)

The transfers are: K1: R0 ← R1

Multiplexer and Bus-Based Transfers for Multiple Registers

- Multiplexer dedicated to each register
- Shared transfer paths for registers
 - A shared transfer object is a called a *bus* (Plural: *buses*)
- Bus implementation using:
 - multiplexers
 - three-state nodes and drivers
- In most cases, the number of bits is the length of the receiving register

Dedicated MUX-Based Transfers

- Multiplexer connected to each register input produces a very flexible transfer structure =>
- Characterize the simultaneous transfers possible with this structure.
- 18 gate inputs per bit plus 3 shared inverters with total of 3 inputs

Multiplexer Bus

- A single bus driven by a multiplexer lowers cost, but limits the available transfers =>
- Simultaneous transfers with different sources in a single clock cycle are impossible
- 9n gates => 4n gates
- Connection: 6n=>3n
- 9 gate inputs per bit + shared decoder with 8 inputs

Three-State Bus

- The 3-input MUX can be replaced by a 3-state node (bus) and 3-state buffers.
- Cost is further reduced, but transfers are limited
- 3 gate inputs per bit
- Other advantages?

Shift Registers

- Shift Registers move data laterally within the register toward its MSB or LSB position
- In the simplest case, the shift register is simply a set of D flip-flops connected in a row like this:

- Data input, In, is called a serial input or the shift right input.
- Data output, Out, is often called the serial output.
- The vector (A, B, C, Out) is called the *parallel output*.

Shift Registers (continued)

- The behavior of the serial shift register is given in the listing on the lower right
- T0 is the register state just before the first clock pulse occurs
- T1 is after the first pulse and before the second.
- Initially unknown states are denoted by "?"
- Complete the last three rows of the table

CP	In	A	В	C	Out
T0	0	?	?	?	?
T1	1	0	?	?	?
T2	1	1	0	?	?
T3	0	1	1	0	?
T4	1				
T5	1				
T6	1				

Parallel Load Shift Registers

- By adding a mux between each shift register stage, data can be shifted or loaded
- If SHIFT is low, **SHIFT** A and B are **CP** replaced by the data on D_A and D_B lines, else data shifts right on each clock.

IN

By adding more bits, we can make n-bit parallel load shift registers.

B

Parallel Load Shift Registers

A parallel load shift register with an added "hold" operation that stores data:

Shift Registers with Additional Functions

- By placing a 4-input multiplexer in front of each D flip-flop in a shift register, we can implement a circuit with shifts right, shifts left, parallel load, hold.
- Shift registers can also be designed to shift more than a single bit position right or left
- Shift registers can be designed to shift a variable number of bit positions specified by a variable called a shift amount.

Overview

- Part 1 Registers, Microoperations and **Implementations**
- Part 2 Counters, register cells, buses, & serial operations
 - Microoperations on single register (continued)
 - Counters
 - Register cell design
 - Serial transfers and microoperations
- Part 3 Control of Register Transfers

Counters

Counters are sequential circuits which "count" through a specific state sequence. They can count up, count down, or count through other fixed sequences. Two distinct types are in common usage:

Ripple Counters

- Clock connected to the flip-flop clock input on the LSB bit flipflop
- For all other bits, a flip-flop output is connected to the clock input, thus circuit is not truly synchronous!
- Output change is delayed more for each bit toward the MSB.
- Resurgent because of low power consumption

Synchronous Counters

- Clock is directly connected to the flip-flop clock inputs
- Logic is used to implement the desired state sequencing

Ripple Counter

How does it work?

 When there is a positive edge on the clock input of A, A complements

• The clock input for flipflop B is the complemented output of flip-flop A

 When flip A changes from 1 to 0, there is a positive edge on the clock input of B causing B to complement

Clock

Ripple Counter (continued)

The arrows show the cause-effect relation- CP ship from the prior slide =>

- The corresponding **sequence of states =>** $(B,A) = (0,0), (0,1), (1,0), (1,1), (0,0), (0,1), \dots$
- Each additional bit, C, D, ...behaves like bit B, changing half as frequently as the bit before it.
- For 3 bits: (C,B,A) = (0,0,0), (0,0,1), (0,1,0), (0,1,1), $(1,0,0), (1,0,1), (1,1,0), (1,1,1), (0,0,0), \dots$

Ripple Counter (continued)

- These circuits are called ripple counters because each edge sensitive transition (positive in the example) causes a change in the next flip-flop's state.
- The changes "ripple" upward through the chain of flip-flops, i. e., each transition occurs after a clock-to-output delay from the stage before.
- To see this effect in detail look at the waveforms on the next slide.

Ripple Counter (continued)

• Starting with C = B = A = 1, equivalent to (C,B,A) = 7 base 10, the next clock increments the count to (C,B,A) = 0 base 10. In fine timing detail: t_{PHL}

 The clock to output delay t_{PHL} causes an increasing delay from clock edge for each stage transition.

Thus, the count "ripples" from least to most significant bit.

• For n bits, total worst case C delay is $n t_{PHL}$.

Synchronous Counters

To eliminate the "ripple" effects, use a common clock for each flip-flop and a combinational circuit to generate the next state.

For an up-counter, use an incrementer =>

Synchronous Counters (continued)

- Internal details => Incrementer -
- Internal Logic
 - XOR complements each bit
 - AND chain causes complement of a bit if all bits toward LSB from it equal 1
- Count Enable
 - Forces all outputs of AND chain to 0 to "hold" the state
- Carry Out
 - Added as part of incrementer
 - Connect to Count Enable of additional 4-bit counters to form larger counters

Synchronous Counters (continued)

Carry chain

- series of AND gates through which the carry "ripples"
- Yields long path delays
- Called serial gating
- Replace AND carry chain with ANDs => in parallel
 - Reduces path delays
 - Called parallel gating
 - Like carry lookahead
 - Lookahead can be used on COs and ENs to prevent long paths in large counters
- Symbol for Synchronous Counter Symbol

CTR 4

 Q_0 Q_1

CO

EN

Chapter 7 - Part 2

Other Counters

See text for:

- Down Counter counts downward instead of upward
- Up-Down Counter counts up or down depending on value a control input such as Up/Down
- Parallel Load Counter Has parallel load of values available depending on control input such as Load
- Divide-by-n (Modulo n) Counter
 - Count is remainder of division by n; n may not be a power of 2 or
 - Count is arbitrary sequence of n states specifically designed state-by-state
 - Includes modulo 10 which is the BCD counter

Counter with Parallel Load

Load

Count

- Add path for input data
 - enabled for Load = 1
- Add logic to:
 - disable count logic for Load = 1
 - disable feedback from outputs for Load = 1
 - enable count logic for Load = 0 and Count = 1
- The resulting function table:

Load	Count	Action		
0	0	Hold Stored Value		
0	1	Count Up Stored Value		
1	X	Load D		

Design Example: Synchronous BCD

- Use the sequential logic model to design a synchronous **BCD** counter with **D** flip-flops
- State Table =>
- Input combinations 1010 through 1111 are don't cares

Current State	Next State				
Q8 Q4 Q2 Q1	Q8 Q4 Q2 Q1				
0 0 0 0	0 0 0 1				
0 0 0 1	0 0 1 0				
0 0 1 0	0 0 1 1				
0 0 1 1	0 1 0 0				
0 1 0 0	0 1 0 1				
0 1 0 1	0 1 1 0				
0 1 1 0	0 1 1 1				
0 1 1 1	1 0 0 0				
1 0 0 0	1 0 0 1				
1 0 0 1	0 0 0 0				

Synchronous BCD (continued)

Use K-Maps to two-level optimize the next state equations and manipulate into forms containing XOR gates:

$$D1 = Q1$$

$$D2 = Q2 \oplus (Q1\overline{Q8})$$

$$D4 = Q4 \oplus (Q1Q2)$$

$$D8 = Q8 \oplus (Q1Q8 + Q1Q2Q4)$$

- The logic diagram can be draw from these equations
 - An asynchronous or synchronous reset should be added
- What happens if the counter is perturbed by a power disturbance or other interference and it enters a state other than 0000 through 1001?

Synchronous BCD (continued)

 Find the actual values of the six next states for the don't care combinations from the equations

 Find the overall state diagram to assess behavior for the don't care states (states in decimal)

						•	
Present State			Next State				
Q8	Q 4	Q2	Q1	Q8	Q 4	Q2	Q 1
1	0	1	0	1	0	1	1
1	0	1	1	0	1	1	0
1	1	0	0	1	1	0	1
1	1	0	1	0	1	0	0
1	1	1	0	1	1	1	1
1	1	1	1	0	0	1	0

Synchronous BCD (continued)

- For the BCD counter design, if an invalid state is entered, return to a valid state occurs within two clock cycles
- Is this adequate? If not:
 - Is a signal needed that indicates that an invalid state has been entered? What is the equation for such a signal?
 - Does the design need to be modified to return from an invalid state to a valid state in one clock cycle?
 - Does the design need to be modified to return from a invalid state to a specific state (such as 0)?
- The action to be taken depends on:
 - the application of the circuit
 - design group policy
- See pages 244 of the text.

Counting Modulo N

- The following techniques use an *n*-bit binary counter with asynchronous or synchronous clear and/or parallel load:
 - Detect a terminal count of N in a Modulo-N count sequence to asynchronously Clear the count to 0 or asynchronously Load in value 0 (These lead to counts which are present for only a very short time and can fail to work for some timing conditions!)
 - Detect a terminal count of N 1 in a Modulo-N count sequence to Clear the count synchronously to 0
 - Detect a terminal count of N 1 in a Modulo-N count sequence to synchronously Load in value 0
 - Detect a terminal count and use Load to preset a count of the terminal count value minus (N - 1)
- Alternatively, custom design a modulo N counter as done for **BCD**

Counting Modulo 7: Detect 7 and Asynchronously Clear

 A synchronous 4-bit binary counter with an asynchronous Clear is used to make a Modulo

7 counter.

Use the Clear feature to detect the count 7 and clear the count to 0. This gives a count of 0, 1, 2, 3, 4, 5, 6, 7(short)0, 1, 2, 3, 4, 5, 6, 7(short)0, etc.

DON'T DO THIS! Existence of state ve long enough to reliably reset all flip-flops to 0. Referred to as a "suicide" counter! (Count "7" is "killed," but the designer's job may be dead as well!)

Counting Modulo 7: Synchronously Load on Terminal Count of 6

- A synchronous 4-bit binary counter with a synchronous load and an asynchronous clear is used to make a Modulo 7 counter
- Use the Load feature to detect the count "6" and load in "zero". This gives a count of 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, ...
- Using don't cares for states above 0110, detection of 6 can be done with Load = Q4 Q2

Counting Modulo 6: Synchronously Preset 9 on Reset and Load 9 on Terminal Count 14

- A synchronous, 4-bit binary counter with a synchronous Load is to be used to make a Modulo 6 counter.
- Use the Load feature to preset the count to 9 on Reset and detection of Resetcount 14.

- This gives a count of 9, 10, 11, 12, 13, 14, 9, 10, 11, 12, 13, 14, 9, ...
- If the terminal count is 15 detection is usually built in as Carry Out (CO)

Register Cell Design

- Assume that a register consists of identical cells
- Then register design can be approached as follows:
 - Design representative cell for the register
 - Connect copies of the cell together to form the register
 - Applying appropriate "boundary conditions" to cells that need to be different and contract if appropriate
- Register cell design is the first step of the above process

Register Specifications

- A register
- Data inputs to the register
- Control input combinations to the register
 - Example 1: Not encoded
 - Control inputs: Load, Shift, Add
 - At most, one of Load, Shift, Add is 1 for any clock cycle (0,0,0), (1,0,0), (0,1,0), (0,0,1)
 - Example 2: Encoded
 - Control inputs: S1, S0
 - All possible binary combinations on S1, S0 (0,0),(0,1),(1,0),(1,1)

Register Specifications

- A set of register functions (typically specified as register transfers)
 - Example:

Load: $A \leftarrow B$

Shift: $A \leftarrow sr B$

Add: $A \leftarrow A + B$

- A hold state specification
 - Example:
 - Control inputs: Load, Shift, Add
 - If all control inputs are 0, hold the current register state

Multiplexer Approach

 Uses an n-input multiplexer with a variety of transfer sources and functions

Example 1: Register Cell Design

- Register A (m-bits) Specification:
 - Data input: B
 - Control inputs (CX, CY)
 - Control input combinations (0,0), (0,1) (1,0)
 - Register transfers:
 - CX: $A \leftarrow B \lor A$
 - CY : $A \leftarrow B \oplus A$
 - Hold state: (0,0)

Example 1: Register Cell Design (continued)

Load Control

$$Load = CX + CY$$

Control signal and the next state:

$$S1 = CX$$

$$S0 = CY$$

$$D0 = A_i$$

$$D1 = A_i \leftarrow B_i \oplus A_i$$

$$D2 = A_i \leftarrow B_i \lor A_i$$

$$CX = 1$$

Sequential Circuit Design Approach

- Find a state diagram or state table
 - Note that there are only two states with the state assignment equal to the register cell output value
- Use the design procedure in Chapter 5 to complete the cell design
- For optimization:
 - Use K-maps for up to 4 to 6 variables
 - Otherwise, use computer-aided or manual optimization

Example 1 Again

State Table:

	Hold	Ai v	/ Bi	Ai⊕Bi		
	$\mathbf{CX} = 0$	$\mathbf{CX} = 1$	$\mathbf{CX} = 1$	$\mathbf{CY} = 1$	CY = 1	
$\mathbf{A_i}$	$\mathbf{CY} = 0$	$\mathbf{B_i} = 0$	$B_i = 1$	$\mathbf{B_i} = 0$	$B_i = 1$	
0	0	0	1	0	1	
1	1	1	1	1	0	

- Four variables give a total of 16 state table entries
- By using:
 - Combinations of variable names and values
 - Don't care conditions (for CX = CY = 1)

only 10 entries are required to represent the 16 entries

Example 1 Again (continued)

K-map - Use variable ordering CX, CY, A_i B_i and assume a D flip-flop

Example 1 Again (continued)

The resulting SOP equation: $D_i = CX B_i + CY A_i B_i + A_i B_i + CY A_i$

Using factoring and DeMorgan's law: $D_i = CX B_i + \overline{A}_i (CY B_i) + A_i (\overline{CY B}_i)$

$$D_{i} = CX B_{i} + A_{i} \oplus (CY B_{i})$$

The gate input cost per cell = ?

The gate input cost per cell for the previous version is:

> Per cell: ? Shared decoder logic: ?

- Cost gain by sequential design > 5 per cell
- Also, no Enable on the flip-flop makes it cost less

Serial Transfers and Microoperations

Serial Transfers

- Used for "narrow" transfer paths
- Example 1: Telephone or cable line
 - Parallel-to-Serial conversion at source
 - Serial-to-Parallel conversion at destination
- Example 2: Initialization and Capture of the contents of many flip-flops for test purposes
 - Add shift function to all flip-flops and form large shift register
 - Use shifting for simultaneous Initialization and Capture operations
- Serial microoperations
 - Example 1: Addition
 - Example 2: Error-Correction for CDs

Serial Microoperations

- By using two shift registers for operands, a full adder, and a flip flop (for the carry), we can add two numbers serially, starting at the least significant bit.
- Serial addition is a low cost way to add large numbers of operands, since a "tree" of full adder cells can be made to any depth, and each new level doubles the number of operands.
- Other operations can be performed serially as well, such as parity generation/checking or more complex error-check codes.
- Shifting a binary number <u>left</u> is equivalent to <u>multiplying by</u>
- Shifting a binary number <u>right</u> is equivalent to <u>dividing by 2</u>.

Serial Adder

The circuit shown uses two shift registers for operands A(3:0) Seria and B(3:0).

A full adder, and one more flip flop (for the carry) is used to compute the sum.

 The result is stored in the A register and the final carry in the flip-flop

With the operands and the result in shift registers, a tree of full adders can be used to add a large number of operands. Used as a common digital signal processing technique.

Assignments

- 7-6、7-12、7-15、7-16、7-17、
- **7-20**, 7-24, 7-30