1. Redes Neuronales y Aprendizaje Profundo

Redes Neuronales Artificiales (RNA): Imitan el funcionamiento del cerebro humano, compuestas por capas de neuronas de entrada, ocultas y de salida. Cada conexión entre neuronas tiene un peso asociado, y el valor de salida de cada neurona depende de una función de activación.

Aprendizaje Profundo: Se refiere a redes neuronales con múltiples capas ocultas, capaces de aprender representaciones complejas de los datos. Cada capa aprende conceptos más abstractos a medida que se profundiza en la red.

2. Redes Neuronales Convolucionales (CNN)

Convolución: Operación matemática que aplica un filtro (kernel) sobre una imagen para extraer características. El filtro se desliza sobre la imagen, realizando multiplicaciones elemento a elemento.

Pooling: Reduce la dimensionalidad de la imagen, conservando las características más importantes. Ayuda a reducir el número de parámetros y cálculos en la red.

Flatten: Convierte la salida de la convolución (una matriz 3D) en un vector unidimensional para ser procesado por capas fully connected.

Transfer Learning: Técnica que permite reutilizar pesos preentrenados en una red neuronal para una nueva tarea, evitando entrenar desde cero. Es útil cuando se tienen conjuntos de datos pequeños.

3. Arquitecturas de CNN

- VGG: Arquitectura profunda con bloques de convolución y pooling, seguidos de capas fully connected. Tiene un gran número de parámetros, lo que la hace computacionalmente costosa.
- ResNet: Introduce conexiones residuales que permiten entrenar redes muy profundas (hasta 152 capas) sin que los gradientes se desvanezcan. Es eficiente en términos de parámetros y ha logrado altas precisiones en tareas de clasificación.
- DenseNet: Utiliza conexiones densas entre capas, a través de Bloques Denso, donde conectamos todas las capas directamente entre sí. Para preservar la naturaleza de avance, cada capa obtiene entradas adicionales de todas las capas anteriores y pasa sus propios mapas de características a todas las capas posteriores.

4. Aumento de Datos

Data Augmentation: Técnica para aumentar el tamaño del conjunto de datos aplicando transformaciones a las imágenes, como rotaciones, traslaciones, cambios de color e inserción de ruido. Esto ayuda a evitar el sobreajuste (overfitting) y mejora la generalización del modelo.

Técnicas Comunes: Incluyen voltear, rotar, trasladar, recortar y modificar el espacio de color. Estas técnicas son especialmente útiles en dominios como la medicina, donde los datos pueden ser escasos.

5. Aplicaciones y Consideraciones

Aplicaciones en Salud: Las CNN y técnicas de aumento de datos son especialmente útiles en el análisis de imágenes médicas, donde los datos pueden ser limitados y las etiquetas deben conservarse durante las transformaciones.

Desafíos: El entrenamiento de redes profundas requiere grandes cantidades de datos y recursos computacionales. Además, la implementación de MLOps puede ser compleja debido a la interdisciplinariedad de los equipos y las dependencias entre los componentes del sistema.