Lógica de Programação Lista de Exercícios – Revisão (if-else e switch-case) Profª. Juliana

- 1) Faça um programa para receber um número inteiro de segundos do usuário e imprimir a quantidade correspondente em horas, minutos e segundos.
- 2) Dados seis números inteiros representando dois intervalos de tempo (horas, minutos e segundos), faça um programa para calcular a soma e a diferença desses intervalos. O resultado deverá ser apresentado em horas, minutos e segundos.
- 3) Desenvolva um programa para simular uma Calculadora. Além das 4 operações básicas (+, -, *, /), escolha 10 funções da biblioteca **math.h** listadas na tabela abaixo. Monte um menu utilizando o comando **case** e solicite os números para os cálculos de acordo com a operação.

Função	Descrição	Argumento	Exemplos
fabs	Valor absoluto do argumento.	real	abs(-23.2) = 23.2
cos	Co-seno do argumento. Argumento em radianos	real	cos(1.0) = 0.5403
sin	Seno do argumento. Argumento em radianos	real	sin(1.0) = 0.8415
tan	Tangente do argumento. Argumento em radianos	real	Tan(1.0) = 1.5574
ехр	Exponencial do argumento (e ^x)	real	exp(1.0) = 2.718
log	Logaritmo natural do argumento	real (>0)	log(10.0) = 2.303
log10	Logaritmo base 10 do argumento	real (>0)	log(10.0) = 1
round	Arredonda para inteiro (retorna double)	real	round(3.4) = 3 round(3.5) = 4
trunc	Remove a parte fracionária do número	real	trunc(3.99) = 3
ceil	Arredonda para cima	real	ceil(3.3) = 4
floor	Arredonda para baixo	real	floor(3.8) = 3
sqrt	Raiz quadrada do argumento	real (>0)	sqrt(3.0) = 1.732
pow	Retorna o resultado de x elevado a y	real	pow(3,3) = 27
fmax(x,y)	Retorna o maior valor entre x e y	real	fmax(2,5) = 5
fmin(x,y)	Retorna o menor valor entre x e y	real	fmin(2,5) = 2

Constantes da biblioteca math.h

Simbologia	Descrição	Constante em C	Valor		
π	Pi	M_PI	3,14159265358979323846		
е	Número de Euler	M_E	2,7182818284590452354		
log₂e	Logaritmo de e na base 2	M_LOG2E	1,4426950408889634074		

4) Faça um programa que calcule e exiba a quantidade de latas de tinta necessárias e o custo para pintar tanques cilíndricos de combustível. Para o cálculo de tais informações, é necessário que o programa solicite a altura e o raio desse cilindro.

Para a construção do algoritmo, leve em consideração que:

- a) a área lateral é dada pela seguinte fórmula: 2 * PI * raio * altura do cilindro (utilize a constante da biblioteca math.h para representar o valor de PI);
- b) a área da base é PI multiplicado pelo raio do cilindro elevado ao quadrado;
- c) a área do cilindro é dada pela área da base mais a área lateral;
- d) a quantidade total de litros é dada pela área do cilindro dividido por 3 (pois cada litro de tinta rende 3m²);
- e) a quantidade de latas de tinta é dada pela quantidade total de litros dividido por 5 (pois cada lata tem 5L de tinta);
- f) o custo é dado pela quantidade de latas de tinta multiplicado por R\$ 50,00 (pois este é o custo de cada lata de tinta).
- g) Cada lata de tinta é comprada integralmente, então, arredonde a quantidade de latas para cima (utilize uma das funções da biblioteca math.h).
- 5) Considere a situação em que um cliente faz uma determinada compra em uma loja. Ao realizar o pagamento, são oferecidas as seguintes condições para pagamento:
 - Pagamento à vista 15% de desconto sobre o valor total da compra.
 - Pagamento com cheque pré-datado para 30 dias 10% de desconto sobre o valor total da compra.
 - Pagamento parcelado em 3 vezes 5% de desconto sobre o valor total da compra.
 - Pagamento parcelado em 6 vezes não tem desconto.
 - Pagamento parcelado em 12 vezes 8% de acréscimo sobre o valor total da compra.

De acordo com o valor total da compra, verifique a opção de pagamento do cliente, calcule o valor final da compra e se a escolha for por pagamento parcelado, calcule também o valor das parcelas.

Apresente ao usuário uma mensagem com o valor total da compra, o valor final da compra, a diferença entre os dois, identifique como desconto se a diferença for positiva, como juros se for negativa, mostre, também, a quantidade e o valor das parcelas.