Contrôle final Analyse mathématique 3

Mars 2021

Durée: 2h

Les documents, calculatrices et téléphones sont interdits.

EXERCICE 1 (2 points):

Soit
$$D = D_f/f(x,y) = \frac{1}{\sqrt{x^2 + y^2 - 2}}$$
, $X_0 = (0, \sqrt{2})$, recopier le tableau suivant et

répondre par oui ou non :

D est un	Borné	Ouvert	Fermé	Voisinage de X_0
X_0 est un point	intérieur	extérieur	frontière	d'accumulation

EXERCICE 2 (6 points):

1) Déterminer le domaine de convergence et calculer la somme S de la série entière

$$\sum_{n>0} \frac{1}{2^n (2n)!} x^n.$$

2) Soit une solution de la forme $y(x) = \sum_{n>0} a_n x^n$ de l'équation différentielle suivante :

$$8xy''(x) + 4y'(x) - y(x) = 0, \quad y(0) = 1.$$
 (1)

a) Montrer que $(a_n)_{n\in\mathbb{N}}$ satisfait

$$\begin{cases} a_0 = 1, \\ a_n = \frac{1}{2(2n)(2n-1)} a_{n-1}, \forall n \in \mathbb{N}^*. \end{cases}$$

b) Déduire une solution de l'EDO (1) développable en série entière sur $\mathbb R$ (à identifier).

EXERCICE 3 (6 points) :

Soit la fonction $f: [-\pi, \pi] \to \mathbb{R}$, 2π –périodique paire définie par : $f(x) = e^{x+1}$ si $x \in [0, \pi]$.

- 1) Tracer le graphe de f dans l'intervalle $[-2\pi, 2\pi]$.
- 2) Montrer que

$$\forall n \geq 1, \quad \int_{0}^{\pi} e^{x+1} \cos(nx) dx = \frac{e((-1)^n e^{\pi} - 1)}{n^2 + 1}.$$

- 3) Calculer les coefficients de Fourier de f puis donner sa série de Fourier.
- 4) Développer f en série de Fourier. Jusitifier votre réponse.
- **5**) En prenant respectivement x = 0 et $x = \pi$ dans le développement trouvé dans la question 4) déduire les valeurs des sommes suivantes :

$$S_1 \doteq \sum_{n \ge 1} \frac{(-1)^n}{n^2 + 1}$$
 et $S_2 \doteq \sum_{n \ge 1} \frac{1}{n^2 + 1}$.

EXERCICE 4 (6 points) : Les parties 1 et 2 sont indépendantes.

Partie 1 : Soit la fonction f définie par :

$$f(x,y) = \begin{cases} \frac{x^3 + xy^3}{\sqrt{x^2 + y^2}} & \text{si } (x,y) \neq (0,0), \\ 0 & \text{si } (x,y) = (0,0). \end{cases}$$

- 1) Calculer $\frac{\partial f}{\partial x}(0,0)$ et $\frac{\partial f}{\partial y}(0,0)$ (si elles existent).
- 2) En utilisant la définition, étudier la différentiabilité de f en (0,0).
- 3) Déduire $\lim_{(x,y)\to(0,0)} f(x,y)$.

Partie 2 : Soit la fonction g définie par :

$$g(x,y) = \begin{cases} \frac{\sin(x^2) \cos y}{x^2 + y^2} & \text{si } (x,y) \neq (0,0), \\ 0 & \text{si } (x,y) = (0,0). \end{cases}$$

- 1) Etudier la continuité de g sur son domaine de définition.
- 2) g est elle différentiable en (0,0)? Justifiez votre réponse.

Quelques DSE:

f	D_f	DSE	R	D
J	D_j		11	D
e ^x	\mathbb{R}	$\sum_{n\geq 0} \frac{x^n}{n!}$	+∞	\mathbb{R}
cosx	\mathbb{R}	$\sum_{n \ge 0} \frac{(-1)^n x^{2n}}{(2n)!}$	+∞	\mathbb{R}
$\sin x$	\mathbb{R}	$\sum_{n\geq 0} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$	+∞	\mathbb{R}
chx	\mathbb{R}	$\sum_{n\geq 0} \frac{x^{2n}}{(2n)!}$	+∞	\mathbb{R}
shx	\mathbb{R}	$\sum_{n\geq 0} \frac{x^{2n+1}}{(2n+1)!}$	+∞	\mathbb{R}

Bon courage