ESc201: Introduction to Electronics

DC Power Supply

Amit Verma
Dept. of Electrical Engineering
IIT Kanpur

Recap: Diode Models

$$i_D = I_S \times \{ \exp(\frac{v_d}{V_T}) - 1 \}$$

Accuracy

Half vs Full wave Rectifier

Diode Currents in Full wave Rectifier

$$i_{D\max} \cong \omega C \times \sqrt{2V_r V_M} + \frac{V_M}{R_L}$$

$$i_{D\max} = \frac{V_M}{R_L} \left[1 + \pi \sqrt{\frac{2V_M}{V_r}} \right]$$

Peak Inverse Voltage

$$V_m + V_D + V_m - V_\gamma = 0$$

$$V_D = -\left(2V_m - V_{\gamma}\right)$$

$$PIV = 2V_m - V_{\gamma}$$

Bridge Rectifier

Power supply using full wave Bridge Rectifier

$$PIV = V_0 + V_{\gamma} = V_m - V_{\gamma}$$

Full wave Rectifier

$$PIV = 2V_m - V_{\gamma}$$

Bridge Rectifier

$$PIV = V_m - V_{\gamma}$$

Zener Diode

A diode specially designed to operate in reverse bias and in 'breakdown' region

Model

Example

Given
$$V_Z = 5.6V$$

$$r_Z = 0\Omega$$

Find a value for R such that the current through the diode is limited to 3mA

$$I = \frac{V_{\mathit{PS}} - V_{\mathit{Z}}}{R}$$

$$R = \frac{V_{PS} - V_{Z}}{I} = \frac{10V - 5.6V}{3mA} = 1.47k\Omega$$

Zener diode: Important Characteristics

Voltage Reference Circuit

Power supply with regulator

Zener diode as Voltage Regulator

Voltage Reference Circuit

Design Problem: Determine R_i and zener diode specifications such that output voltage is +12 V and ratio of maximum to minimum zener current is 10. The input voltage may vary between 18 to 15.5V. $R_i = 108 \ \Omega$.

Design Equations

$$P_{Z \max} = V_Z I_{Z \max}$$

$$I_i = \frac{V_{PS} - V_Z}{R_i} = I_Z + I_L$$

$$I_Z = \frac{V_{PS} - V_Z}{R_i} - I_L$$

$$I_{Z\max} = \frac{V_{PS\max} - V_{Z}}{R_{i}} - I_{L}$$

$$I_{Z\min} = \frac{V_{PS\min} - V_{Z}}{R_{i}} - I_{L}$$

$$\frac{I_{z\max}}{I_{z\min}} \cong 10$$

$$R_{i} = \frac{V_{PS \min} - 0.1V_{PS \max} - 0.9V_{Z}}{0.9I_{L}}$$

Design Problem contd.: Determine R_i and zener diode specifications such that output voltage is +12V and ratio of maximum to minimum zener current is 10. The input voltage may vary between 18 to 15.5V. $R_i = 108 \Omega$.

$$I_L = \frac{V_L}{R_L} = \frac{12}{108} = \frac{1}{9}$$

$$R_{i} = \frac{V_{PS \min} - 0.1V_{PS \max} - 0.9V_{Z}}{0.9I_{L}}$$

$$= \frac{15.5 - 0.1*18 - 0.9*12}{0.9(1/9)}$$

$$= \frac{15.5 - 1.8 - 10.8}{0.1} = \frac{2.9}{0.1} = 29\Omega$$

$$I_{Z \max} = \frac{V_{PS \max} - V_{Z}}{R_{i}} - I_{L}$$

$$= \frac{18 - 12}{29} - \frac{1}{9} = \frac{6}{29} - \frac{1}{9} = 0.096A$$

$$I_{Z\min} = \frac{V_{PS\min} - V_{Z}}{R_{i}} - I_{L}$$

$$= \frac{15.5 - 12}{29} - \frac{1}{9} = \frac{3.5}{29} - \frac{1}{9}$$

$$= 0.0096 \quad A$$

$$P_{Z \max} = V_{Z}I_{Z \max}$$

= 12*0.096 = 1.152 W 23

Amplifiers

Objective

1. Learn ideal Transistor characteristics required for Voltage Amplification

2. Learn to build amplifiers using elements which have non-ideal characteristics.

1. Class tomorrow 10/09/2022 (Working Wednesday)

2. Tutorial Attendance