1.3.4 数值算法推导

接下来我们推导 Hulu 论文中求解 (1.13) 的数值算法,对数学不感兴趣的读者可以跳过。给定矩阵 A,算法总共花费 $\mathcal{O}(nk^2)$ 时间选出 k 个物品。因为 A_S 是对称正定矩阵,所以它存在 Cholesky 分解 $A_S = LL^{\top}$,这里的 L 是大小为 $|S| \times |S|$ 的下三角矩阵。下三角矩阵的意思是对角线以上的元素都为零。矩阵 $A_{S \cup \{i\}}$ 比 A_S 多了一行和一列,记作:

$$\mathbf{A}_{\mathcal{S}\cup\{i\}} = \begin{bmatrix} \mathbf{A}_{\mathcal{S}} & \mathbf{a}_i \\ \mathbf{a}_i^{\top} & a_{ii} \end{bmatrix}. \tag{1.14}$$

上式中的 \boldsymbol{a}_i 的元素是 $\boldsymbol{v}_i^{\top} \boldsymbol{v}_j$, $\forall j \in \mathcal{S}$, $\overrightarrow{a}_{ii} = \boldsymbol{v}_i^{\top} \boldsymbol{v}_i = 1$ 。矩阵 $\boldsymbol{A}_{\mathcal{S} \cup \{i\}}$ 的 Cholesky 分解可以写作:

$$\mathbf{A}_{\mathcal{S}\cup\{i\}} = \begin{bmatrix} \mathbf{L} & \mathbf{0} \\ \mathbf{c}_i^{\mathsf{T}} & d_i \end{bmatrix} \begin{bmatrix} \mathbf{L} & \mathbf{0} \\ \mathbf{c}_i^{\mathsf{T}} & d_i \end{bmatrix}^{\mathsf{T}}, \tag{1.15}$$

其中 c_i 和 d_i 是未知的。由公式 (1.16) 和 (1.15) 可得:

$$m{A}_{\mathcal{S} \cup \{i\}} \ = \ \left[egin{array}{cc} m{A}_{\mathcal{S}} & m{a}_i \ m{a}_i^ op & 1 \end{array}
ight] \ = \ \left[egin{array}{cc} m{L}m{L}^ op & m{L}m{c}_i \ m{c}_i^ op m{c}_i + d_i^2 \end{array}
ight].$$

我们得到两个公式:

$$\mathbf{a}_i = \mathbf{L}\mathbf{c}_i \qquad \text{fil} \qquad 1 = \mathbf{c}_i^T \mathbf{c}_i + d_i^2.$$

L 和 a_i 是已知的,L 是上一轮算出的 Cholesky 分解, a_i 包含矩阵 A 的元素。我们需要求出未知的 c_i 和 d_i 。由于 L 是下三角矩阵,只需要 $\mathcal{O}(|\mathcal{S}|^2)$ 的浮点数运算即可求出 $c_i = L^{-1}a_i$ 。然后就可以算出 $d_i^2 = 1 - c_i^{\mathsf{T}}c_i$ 。有了 d_i ,我们就能快速求出 $\det(A_{\mathcal{S} \cup \{i\}})$ 。由下三角矩阵和行列式的定义可知:

$$\det \left(\left[egin{array}{cc} oldsymbol{L} & oldsymbol{0} \ oldsymbol{c}_i^ op & d_i \end{array}
ight]
ight) \ = \ \det(oldsymbol{L}) imes d_i.$$

由于 det(XY) = det(X) det(Y), 我们得到

$$\det \begin{pmatrix} \boldsymbol{A}_{\mathcal{S} \cup \{i\}} \end{pmatrix} \ = \ \det \left(\left[\begin{array}{cc} \boldsymbol{L} & \boldsymbol{0} \\ \boldsymbol{c}^{Ti} & d_i \end{array} \right] \left[\begin{array}{cc} \boldsymbol{L} & \boldsymbol{0} \\ \boldsymbol{c}_i^\top & d_i \end{array} \right]^\top \right) \ = \ \det(\boldsymbol{L})^2 \times d_i^2.$$

贪心算法的公式 (1.13) 可以等价写作:

$$\underset{i \in \mathcal{R}}{\operatorname{argmax}} \ \theta \cdot \operatorname{reward}_{i} + (1 - \theta) \cdot \Big(\log \det(\mathbf{L})^{2} + \log d_{i}^{2} \Big).$$

由于L与i无关,上面的公式可以等价写作

$$\underset{i \in \mathcal{R}}{\operatorname{argmax}} \ \theta \cdot \operatorname{reward}_{i} + (1 - \theta) \cdot \log d_{i}^{2}. \tag{1.16}$$

这样我们就推导出了求解 k-DPP 的贪心算法:

- 1. 输入: n 个物品的向量表征 $v_1, \dots, v_n \in \mathbb{R}^d$ 和分数 reward₁, ..., reward_n。
- 2. 计算 $n \times n$ 的相似度矩阵 \boldsymbol{A} ,它的第 (i,j) 个元素等于 $a_{ij} = \boldsymbol{v}_i^T \boldsymbol{v}_j$ 。时间复杂度为 $\mathcal{O}(n^2d)$ 。
- 3. 选中 reward 分数最高的物品,记作 i。初始化集合 $S = \{i\}$ 和 1×1 的矩阵 L = [1]。(由于 $a_{ii} = \boldsymbol{v}_i^{\top} \boldsymbol{v}_i = 1$,此时 $\boldsymbol{A}_S = [a_{ii}] = \boldsymbol{L}\boldsymbol{L}^{\top}$ 。)
- 4. 做循环, 从 t = 1 到 k 1:
 - (a). 对于每一个 $i \in \mathcal{R}$:
 - I. 行向量 $[a_i^T, 1]$ 是矩阵 $A_{S \cup \{i\}}$ 的最后一行。
 - II. 求解线性方程组 $a_i = Lc_i$, 得到 c_i 。时间复杂度为 $\mathcal{O}(|\mathcal{S}|^2)$ 。
 - III. 计算 $d_i^2 = 1 \mathbf{c}_i^T \mathbf{c}_i$ 。
 - (b). \vec{x} \vec{m} (1.16): $i^* = \operatorname{argmax}_{i \in \mathcal{R}} \theta \cdot \operatorname{reward}_i + (1 \theta) \cdot \log d_i^2$.
 - (c). 更新集合 $\mathcal{S} \leftarrow \mathcal{S} \cup \{i^*\}$ 。
 - (d). 更新下三角矩阵:

$$m{L} \overset{22}{\leftarrow} \left[egin{array}{cc} m{L} & m{0} \ m{c}^{Ti^\star} & d_{i^\star} \end{array}
ight].$$

5. 返回集合 S, 其中包含 k 个物品。

该算法总时间复杂度为 $\mathcal{O}(n^2d+nk^3)$ 。如果进一步优化线性方程组 $\mathbf{a}_i = \mathbf{L}\mathbf{c}_i$ 的求解,那 么总时间复杂度可以降低到 $\mathcal{O}(n^2d+nk^2)$ 。原理是在第 t 轮循环中,利用第 t-1 轮对 $\mathbf{a}_i = \mathbf{L}\mathbf{c}_i$ 的求解。这里的数学有点复杂,就不展开介绍了。