

第四章 组合逻辑电路

- § 4.1 组合逻辑电路分析和设计
- § 4.2 常用组合逻辑电路

§ 4.1.1 组合逻辑电路的分析

逻辑电路分析大致步骤:

- 1. 写出电路的逻辑表达式,运用逻辑代数化简
- 2. 列出电路的真值表
- 3. 分析电路的逻辑功能

分析下面电路的逻辑功能

1) 写出逻辑表达式

$$F = \overline{\overline{AB} \cdot \overline{\overline{A} \cdot \overline{B}}} = \overline{\overline{\overline{AB}}} + \overline{\overline{\overline{A} \cdot \overline{B}}} = AB + \overline{AB}$$

$$F = AB + \overline{AB}$$

2) 真值表

A	В	Y
0	0	1
0	1	0
1	0	0
1	1	1

3) 分析逻辑功能

输入相同输出为"1",输入相异输出为"0",

为"同或"逻辑关系

分析电路的逻辑功能

写出逻辑式:
$$Y = \overline{ACBC} = AC + B\overline{C}$$

功能:

C=1时选通A路信号 C=0时选通B路信号 选通电路

强!

分析电路的逻辑功能

$$Y_{1} = ABC + (A + B + C)(\overline{AB} + BC + AC)$$

$$= ABC + (A + B + C)(\overline{AB} \cdot \overline{BC} \cdot \overline{AC})$$

$$= ABC + (A + B + C)(\overline{A} + \overline{B})(\overline{B} + \overline{C})(\overline{A} + \overline{C})$$

$$= ABC + (A + B + C)(\overline{AC} + \overline{AB} + \overline{BC})$$

$$= ABC + ABC + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$Y_2 = AB + BC + AC$$

$$Y_1 = ABC + A\overline{BC} + \overline{ABC} + \overline{ABC} \qquad Y_2 = AB + BC + AC$$
 真值表

B

§ 4.1.2 组合逻辑电路的设计

逻辑电路设计一般步骤:

- 1. 从已知逻辑功能要求出发,列写出真值表
- 2. 写出逻辑表达式,并变换成所需形式
- 3. 画出逻辑电路图

按给定逻辑功能要求设计电路

例:设计一个三人(A、B、C)表决电路

每人有一按键,如果赞同,按键,用逻辑1表示;如不赞同,不按键,用逻辑0表示。表决结果用指示灯表示,多数赞同灯亮,用逻辑1表示;反之灯不亮为逻辑0。

- 1) 列真值表
- 2) 写出逻辑表达式

取 №"1" 列逻辑式

$$Y = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$$

A	В	C	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
1	1	1	1

最小项之和

最小项之和的逻辑表达式

$$Y = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$$

化简(用卡诺图)

$$Y = AB + BC + AC$$

最简与或逻辑表达式

3) 画出逻辑图

最简与或逻辑表达式

$$Y = AB + BC + AC$$

要求用"与非"门构成逻辑电路?

$$Y = \overline{\overline{AB} + BC + AC}$$
$$= \overline{\overline{AB} \cdot \overline{BC} \cdot \overline{AC}}$$

最简与非逻辑表达式

将最简与或表达式转化成最简与非表达式的方法:

取双非后用反演定理 化成与非与非表达式!

• 最简逻辑电路标准

- 门的个数最少
- 每个门的连线最少
- 门的种类最少

七段数码管译码显示电路的设计

设计一个可利用七段数码管将电路中BCD码表示的数用十进制数值形式显示出来

常用的显示器件---七段数码管:

半导体数码管、液晶数码管、荧光数码管

(a) Common-anode

共阳极接法

(b) Common-cathode

共阴极接法

例: 共阴极接法

a

七段译码显示电路的真值表

	输入					输出					显示	
	\underline{D}	\boldsymbol{C}	B	\boldsymbol{A}	a	b	C	d	e	f	g	
<u>a</u>	0	0	0	0	1	1	1	1	1	1	0	0
f b	0	0	0	1	0	1	1	0	0	0	0	1
I g D	0	0	1	0	1	1	0	1	1	0	1	2
	0	0	1	1	1	1	1	1	0	0	1	3
e	0	1	0	0	0	1	1	0	0	1	1	4
1	0_{-}	1	0	1	1	0	1	1	0	1	1	5
\boldsymbol{u}	0	1	1	0	1	0	1	1	1	1	1	6
	0	1	1	1	1	1	1	0	0	0	0	7
	1	0	0	0	1	1	1	1	1	1	1	8
	1	0	0	1	1	1	1	1	0	1	1	9

其它输出:无关项

	输	λ			CA
D	C	B A		а	\ BA
0	0	0	0	1	
0	0	0	1	0	00 1
0	0	1	0	1	CA as
0	0	1	1	1	01 1 1 B
0	1	0	0	0	
0	1	0	1	1	11 X X X X
0	1	1	0	1	
0	1	1	1	1	10 1 1 X X
1	0	0	0	1	
1	0	0	1	1	D

$$a = D + B + C A + \overline{C} A$$

同理可设计b, c···各段输出对应的逻辑电路

4.1 组合逻辑电路分析和设计作业

分析: 4.2, 4.3

设计: 4.4-4.7