

Chapter 1: Introduction

Instructor: Yi-Ju Tseng, PhD

Department of Computer Science, NYCU

Database System Concepts, 7th Ed.

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

You Will Be Able to...

- Describe what are databases and database systems.
- Explain why we need database.
- List some basic ideas and components in a database.
 - Data models
 - Database languages
 - Database engine

Outline

- Database-System Applications
- Data Models
- Database Languages
- Database Design & Engine

3 basic components

DATABASE-SYSTEM APPLICATIONS

Database-System Applications

multiple users/applications

Collection of interrelated data

Set of programs to access the data

Database and Database system

- A database is an organized collection of data stored and accessed electronically.
 - Collection of interrelated data
 - Highly valuable
 - Relatively large
 - Accessed by multiple users/applications, at the same time

Database and Database system

- A database system (or DBMS, database management system) is a complex software system whose task is to manage a large, complex collection of data (=database).
 - Set of programs to access the data
 - An environment that is both convenient and efficient to use

Database Applications Examples

- Universities: registration, grades, ... and others
- Enterprise Information
 - Sales: customers, products, purchases
 - Accounting: payments, receipts, assets
 - Human Resources: Information about employees, salaries, payroll taxes.
- Manufacturing: management of production, inventory, orders, supply chain.
- Banking and finance
 - Credit card transactions
 - Finance: sales and purchases of financial instruments (e.g., stocks and bonds; storing real-time market data

FYR -

University Database Example

- Data consists of information about:
 - Students You
 - Instructors Me
 - Classes DB 101
- Application program examples:
 - Add new students, instructors, and courses
 - Register students for courses
 - Assign grades to students, compute GPA and generate transcripts

Purpose of Database Systems

What if

You store the data directly in the file systems.......

- Data redundancy and inconsistency
 - Data is stored in multiple file formats resulting in duplication of information in different files
- Difficulty in accessing data
 - Need to write a new program to carry out each new task
- Data isolation
 - Multiple files and formats
- Integrity problems
 - Integrity constraints (e.g., account balance > 0) become "buried" in program code rather than being stated explicitly
 - Hard to add new constraints or change existing ones

Purpose of Database Systems (Cont.)

Atomicity of updates

- Failures may leave database in an inconsistent state with partial updates carried out
 - Ex: Transfer of funds from one account to another should either complete or not happen at all
 - -100 from A and +100 to B

Concurrent access by multiple users

- Uncontrolled concurrent accesses can lead to inconsistencies
 - Ex: Two people reading a balance (100) and updating it by withdrawing money (-100 each) at the same time

Security problems

Hard to provide user access to some, but not all, data

Database systems offer solutions to all the above problems

Purpose of Database Systems (Cont.)

 A major purpose of a database system is to provide users with an abstract view of the data.

Data abstraction

- Hide the complexity of data structures to represent data in the database from users through several levels of data abstraction.
- !?!?

Levels of Data Abstraction

An architecture for a database system

Quick Wrap-up

- Describe what are databases and database systems.
- Explain why we need database.

multiple users/applications

Collection of interrelated data

Set of programs to access the data

You Will Be Able to...Recap!

- Describe what are databases and database systems.
- Explain why we need database.
 - Provide users with an abstract view of the data.
 - Solve potential issues:
 - Data redundancy and inconsistency
 - Difficulty in accessing data
 - Data isolation
 - Integrity problems
 - Atomicity of updates
 - Concurrent access by multiple users
 - Security problems

You Will Be Able to...

- Describe what are databases and database systems.
- Explain why we need database.
- List some basic ideas and components in a database.
 - Data models
 - Database languages
 - Database engine

DATA MODELS

Data Models

- Data models A collection of tools for describing:
 - Data
 - Data relationships
 - Data semantics
 - Data constraints

Relational model

- Entity-Relationship data model (mainly for database design)
- Object-based data models (Object-oriented and Objectrelational)
- Semi-structured data model (XML)
- Other older models:
 - Network model
 - Hierarchical model

Relational Model (Ch 2&6)

Data models -

A collection of tools for describing:

Rows

Data

Data relationships Data semantics

Data constraints

All the data is stored in various tables.

ID	name	dept_name	salary	
22222	Einstein	Physics	95000	•
12121	Wu	Finance	90000	
32343	El Said	History	60000	
45565	Katz	Comp. Sci.	75000	
98345	Kim	Elec. Eng.	80000	/
76766	Crick	Biology	72000	
10101	Srinivasan	Comp. Sci.	65000	
58583	Califieri	History	62000	
83821	Brandt	Comp. Sci.	92000	•
15151	Mozart	Music	40000	
33456	Gold	Physics	87000	
76543	Singh	Finance	80000	

(a) The instructor table

Turing Award 1981

A Sample Relational Database

ID	name	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Comp. Sci.	75000
98345	Kim	Elec. Eng.	80000
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000

(a) The *instructor* table

dept_name	building	budget
Comp. Sci.	Taylor	100000
Biology	Watson	90000
Elec. Eng.	Taylor	85000
Music	Packard	80000
Finance	Painter	120000
History	Painter	50000
Physics	Watson	<i>7</i> 0000

(b) The department table

Instances and Schemas

int a = 5;

- Similar to types (= Schema) and variables (= Instance) in programming languages
- Schema
 - Logical schema the overall logical structure of the database
 - Ex: database consists of information about instructors and departments in a university and the relationship between them
 - Physical schema the overall physical structure of the database
- Instance the actual content of the database at a particular point in time

Data models -

A collection of tools for describing:

Data

Data relationships

Data semantics

Data constraints

ID	пате	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Comp. Sci.	<i>7</i> 5000
98345	Kim	Elec. Eng.	80000
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000

(a) The *instructor* table

dept_name	building	budget
Comp. Sci.	Taylor	100000
Biology	Watson	90000
Elec. Eng.	Taylor	85000
Music	Packard	80000
Finance	Painter	120000
History	Painter	50000
Physics	Watson	70000

3 mins Quiz!

Please take the quiz on the E3 system

List some basic ideas and components in a database.

Data models

Database languages

Database engine

DDL and DML

DATABASE LANGUAGE

Data Definition Language (DDL)

Specification notation for defining the database schema

```
Example: create table instructor (

ID char(5),

name varchar(20),

dept_name varchar(20),

salary numeric(8,2))
```

- DDL compiler generates a set of table templates stored in a data dictionary
- Data dictionary contains metadata (i.e., data about data)
 - Database schema
 - Integrity constraints
 - Primary key (ID uniquely identifies instructors)
 - Authorization
 - Who can access what

Data Manipulation Language (DML)

- Language for accessing and updating the data organized by the appropriate data model
- There are basically two types of data-manipulation language
 - Procedural DML
 - require a user to specify what data are needed and how to get those data.
 - Declarative DML easier to learn and use
 - require a user to specify what data are needed without specifying how to get those data.
- The portion of a DML that involves information retrieval is called a query language.

SQL Query Language (Ch 3&4&5)

- SQL can be DDL or Declarative DML (query language)
- Example to find all instructors in Comp. Sci. dept (DML)

- SQL does not support actions such as input from users, output to displays, or communication over the network.
- Applications generally access databases through one of
 - Such computations and actions must be written in a host language, such as Java or Python, with embedded SQL queries that access the data in the database.
 - Application program interface (API, e.g., ODBC/JDBC)
 which allow SQL queries to be sent to a database

List some basic ideas and components in a database.

Data models

Database languages

Database engine

DATABASE DESIGN AND ENGINE

Database Design (Ch 7&13)

The process of designing the general structure of the database:

- Logical Design (Ch7) Deciding on the database schema.
 Database design requires that we find a "good" collection of relation schemas.
 - The logical relationships among the objects
- Physical Design (Ch13) Deciding on the physical layout of the database
 - The most effective way of storing and retrieving the objects

Like data abstraction

Database Engine

- The functional components of a database system can be divided into
 - The storage manager
 - Ch 12&13
 - The query processor
 - Ch 15&16

Storage Manager (Ch 12&13)

- A program module that provides the interface between the low-level data stored in the database and the application programs and queries submitted to the system.
- The storage manager is responsible to the following tasks:
 - Interaction with the OS file manager
 - Efficient storing, retrieving and updating of data
- The storage manager components include:
 - File manager (Ch12&13)
 - Buffer manager (Ch12&13)
 - Transaction manager (Ch17)
 - Authorization and integrity manager

Storage Manager (Ch 12&13, Cont.)

- The storage manager implements several data structures as part of the physical system implementation:
 - Data files
 - store the database itself
 - Data dictionary
 - stores metadata about the structure of the database
 - in particular the schema of the database.
 - Indices (Ch14)
 - provide fast access to data items.
 - A database index provides pointers to those data items that hold a particular value.

indices

data dictionary

statistical data

disk storage

Transaction Management (Ch 17)

- A transaction is a collection of operations that performs a single logical function in a database application
- Transaction-management component ensures that the database remains in a consistent (correct) state despite system failures (e.g., power failures and operating system crashes) and transaction failures.
 - Ex: Transfer of funds from one account to another should either complete or not happen at all
 - -100 from A and +100 to B
- Concurrency-control manager controls the interaction among the concurrent transactions, to ensure the consistency of the database.
 - Ex: Two people reading a balance (100) and updating it by withdrawing money (100 each) at the same time

Query Processor (Ch 14&15&16)

The query processor components include:

compiler and linker DML queries DDL interpreter application program object code Query evaluation engine query processor

- DDL interpreter
 - interprets DDL statements and records the definitions in the data dictionary.

DML compiler

- translates DML statements in a query language into an evaluation plan consisting of low-level instructions that the query evaluation engine understands.
- performs query optimization; that is, it picks the lowest cost evaluation plan from among the various alternatives.

Query evaluation engine

executes low-level instructions generated by the DML compiler.

Query Processing (Ch 14&15&16)

- 1. Parsing and translation
- 2. Optimization

You Will Be Able to...Recap!

- Describe what are databases and database systems.
- Explain why we need database.
- List some basic ideas and components in a database.
 - Data models
 - Relational model (Ch 2&6)
 - Database languages (Ch 3&4&5)
 - DDL
 - DML
 - Database engine
 - Design (Ch 7)
 - Storage manager (Ch 12&13)
 - Query processor (Ch 14&15&16)

3 mins Quiz!

Please take the quiz on the E3 system

Questions?