XỬ LÝ TÍN HIỆU SỐ

Tuần 6

Giảng viên: Lê Ngọc Thúy

Nội dung

CHƯƠNG 3: BIẾN ĐỔI FOURIER

- ☐ Biến đổi Fourier
- ☐ Biến đổi Fourier ngược
- ☐ Tính chất của biến đổi Fourier
- ☐ Úng dụng của biến đổi Fourier
- ☐ Hệ thống trong miền tần số

✓ Biến đổi Fourier: biểu diễn tín hiệu dựa trên các tín hiệu hình sin => biểu diễn trong miền tần số

$$X(\omega) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$$

$$FT[x(n)] = X(\omega)$$

Biến đổi Fourier

Sự tồn tại của biến đổi Fourier

✓ Điều kiện tồn tại của biến đổi Fourier là:

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

$$\left| X \! \left(e^{j \omega} \right) \right| = \left| \sum_{n = -\infty}^{\infty} \! x \! \left[n \right] \! e^{-j \omega n} \right| \leq \sum_{n = -\infty}^{\infty} \! \left| x \! \left[n \right] \! \left| e^{-j \omega n} \right| = \sum_{n = -\infty}^{\infty} \! \left| x \! \left[n \right] \right| < \infty$$

 \checkmark Phổ của tín hiệu (spectrum): X(ω)

- \checkmark Phổ biên độ $|X(\omega)|$
- ✓ Phổ pha $\varphi(\omega) = \arg[X(\omega)]$

Ví dụ:

Vẽ phổ tín hiệu (phần thực & phần ảo), phổ biên độ, phổ pha của biến đổi Fourier sau:

$$X(\omega) = \frac{1}{1 - ae^{-j\omega}}, \quad -1 < a < 1$$

Biến đổi Fourier và biến đổi Z

$$X(\omega) = X(Z)\big|_{Z=e^{j\omega}} = \sum_{n=-\infty}^{\infty} x(n).Z^{-n}\big|_{Z=e^{j\omega}} = \sum_{n=-\infty}^{\infty} x(n).e^{-j\omega n}$$

Biến đổi Fourier ngược

Biến đổi Fourier ngược (IFT)

✓ Biến đổi Fourier ngược (IFT):

$$x(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega \qquad IFT[X(\omega)] = x(n)$$

Ví dụ

Tìm biến đổi Fourier ngược đối với phổ như sau:

$$X(\omega) = \begin{cases} 1, & |\omega| \le \omega_c \\ 0, & |\omega_c| < |\omega| \le \pi \end{cases}$$

Tính chất của biến đổi Fourier

Các tính chất của biến đổi Fourier

TT	Tính chất	Miền n	Miền ω
1	Định nghĩa	$x(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega x} d\omega$	$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$
2	Tuyến tính	$ax_1(n) + bx_2(n)$; (a, b: hằng số)	$aX_1(e^{j\omega})+bX_2(e^{j\omega})$
3	Trễ trong miền thời gian n	$x(n-n_0)$	$e^{-j\omega \epsilon_0}X\left(e^{j\omega} ight)$
4	Tính đối xứng	x(n) là thực (tính chất đối xứng)	$X^{*}\left(e^{j\omega}\right) = X\left(e^{-j\omega}\right)$ $\operatorname{Re}\left[X\left(e^{j\omega}\right)\right] = \operatorname{Re}\left[X\left(e^{-j\omega}\right)\right]$
4			$-\operatorname{Im}\left[X(e^{j\omega})\right] = \operatorname{Im}\left[X(e^{-j\omega})\right]$ $\left X(e^{j\omega})\right = \left X(e^{-j\omega})\right $
			$\arg\left[X(e^{j\omega})\right] = -\arg\left[X(e^{-j\omega})\right]$
	Tính đối xứng	x*(n)	$X^*(e^{-j\omega})$
		x(-n)	$X(e^{-j\omega})$
5	Tích chập trong miền n	$x_{i}(n)^{*}x_{2}(n)$	$X_{\scriptscriptstyle 1}\!\left(e^{{\scriptscriptstyle j}\omega}\right)\!X_{\scriptscriptstyle 2}\!\left(e^{{\scriptscriptstyle j}\omega}\right)$

Các tính chất của biến đổi Fourier

TT	Tính chất	Miền n	Miền ω
6	Tích chập trong miền tần số	$x_1(n).x_2(n)$	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X_1 \left(e^{j(\omega - \omega')} \right) . X_2 \left(e^{j\omega'} \right) d\omega'$
7	Vi phân trong miền tần số	nx(n)	$j\frac{dX(e^{j\omega})}{d\omega}$
8	Dịch tần số	$e^{j\omega_0n}x(n)$	$X\left[e^{j(\omega-\omega_0)}\right]$
9	Tính chất điều chế	$x(n)\cos\omega_0 n$	$\frac{1}{2}X\left[e^{j(\omega-\omega_0)}\right] + \frac{1}{2}X\left[e^{j(\omega-\omega_0)}\right]$
10	Định lý Weiner Khinchine	$\sum_{n=-\infty}^{\infty} x_1(n).x_2^*(n)$	$\frac{1}{2} \int_{-\pi}^{\pi} X_1(e^{j\omega}) . X_2^*(e^{j\omega}) d\omega$
11	Quan hệ Parseval	Quan hệ Parseval $\sum_{n=-\infty}^{\infty} x(n) ^2$	$\frac{1}{2}\int_{-\pi}^{\pi}\left X\left(e^{j\omega}\right)\right ^{2}d\omega$

Ứng dụng của biến đổi Fourier Trong phân tích tín hiệu

Úng dụng của biến đổi Fourier

• Lọc bỏ nhiễu trong phân tích hình ảnh:

Ứng dụng của biến đổi Fourier

- Nhận dạng tiếng nói
- Loại bỏ nhiễu trong tiếng nói
- Loại bỏ nhiệu trong truyền thông vô tuyến

•

Tổng kết

- ☐ Biến đổi Fourier
- ☐ Biến đổi Fourier ngược
- ☐ Tính chất của biến đổi Fourier
- ☐ Úng dụng của biến đổi Fourier
- □ Bài tập: 2.1 2.7 (2.8 2.15)