Exercise 6.5.

- 1) When any of Alice's or Bob's spin operators acts on a product state, the result is a product state
- 2) Show that in a product state, the expectation of any component of $\vec{\sigma}$ or $\vec{\tau}$ is the same as it would be in the individual spin states.

Solution.

1) Let $|AB\rangle$ be a product state and let $\sigma_w = \sigma_x$ or σ_y or σ_z . Then $|A'| \equiv \sigma_w |A|$ is another of Alice's states. Thus

$$\sigma_{\mathbf{w}} | \mathbf{A} \mathbf{B} \rangle = (\sigma_{\mathbf{w}} \otimes \mathbf{I}) (|\mathbf{A}| \otimes |\mathbf{B}|) = \sigma_{\mathbf{w}} |\mathbf{A}| \otimes \mathbf{I} |\mathbf{B}| = \mathbf{A} \cdot \otimes |\mathbf{B}| = |\mathbf{A} \cdot \mathbf{B}|$$

is a product state, and similarly for Bob.

2) In part 1, if |A| is normalized (i.e., a unit vector) then so is |A| since $\det \sigma_w = -1$ (whether $\sigma_w = \sigma_x$, σ_y , or σ_z). If, in addition, $|B\rangle$ is normalized, then so is $|AB\rangle$:

First we have to define what we mean for $|AB\rangle$ to be a unit vector. We would want it to satisfy $\left(\left\langle \left(AB\right)^*\right|\right)\left(\left|AB\right\rangle\right)=1$. Since A and B cannot be co-mingled, we must define $\left\langle \left(AB\right)^*\right|=\left\langle A^*B^*\right|$. Since $|A\rangle$ and $|B\rangle$ are normalized, $\left\langle A^*\right|A\rangle=1=\left\langle B^*\left|B\right\rangle$. Hence $\left\langle A^*B^*\right|AB\rangle=\left\langle A^*\left|A\right\rangle\left\langle B^*\right|B\rangle=1$ if we define $\left\langle CD\left|AB\right\rangle\equiv\left\langle C\left|D\right\rangle\left\langle A\left|B\right\rangle\right|$ for any $\left\langle CD\right|$.

Since both |A| and |AB| are normalized, then equation (4.14) in the book is valid:

where the first $\sigma_{\rm w}$ is in the product state and the final $\sigma_{\rm w}$ is in Alice's spin state.

Of course, the proof for τ is similar.