Лекция 6: Градиент по Стратегии

Артём Сорокин | 07 Декабря

Что мы хотим получить при помощи обучения с подкреплением:

$$heta^* = ext{argmax}_{ heta} \, \mathbb{E}_{ au \sim p_{ heta}(au)} \left[\sum_t \gamma^t r_t
ight]$$

where:

- ullet параметры стратегии
- $p_{ heta}(au)$ вероятностное распределение по траекториям в среде, которые генерирует стратегия $oldsymbol{\pi}_{ heta}$
- $[\sum_t \gamma^t r_t]$ кумулятивная дисконтированная награда за эпизод / доход с первого шага.

$$heta^* = ext{argmax}_{ heta} \, \mathbb{E}_{ au \sim p_{ heta}(au)} \left[\sum_t \gamma^t r_t
ight]$$

$$egin{aligned} J(heta) \ heta^* = ext{argmax}_{ heta} & \mathbb{E}_{ au \sim p_{ heta}(au)} \left[\sum_t \gamma^t r_t
ight] \end{aligned}$$

Целевая функция
$$J(heta)$$
 $heta^* = ext{argmax}_{ heta} \mathbb{E}_{ au \sim p_{ heta}(au)} igg[\sum_t \gamma^t r_t igg]$

Задача:

Мы бы хотели найти градиент нашей целевой функции по параметрам стратегии π_{θ} , которая генерирует траектории

Градиент по Стретегии

Чтобы максимизировать средний ожидаемый доход:

$$J(heta) = \mathbb{E}_{ au \sim p_{ heta}(au)}[r(au)] = \int p_{ heta}(au) r(au) d au$$

Найдем:

$$abla_{ heta}J(heta)=\int
abla_{ heta}p_{ heta}(au)r(au)d au$$

Градиент по Стретегии

Чтобы максимизировать средний ожидаемый доход:

$$J(heta) = \mathbb{E}_{ au \sim p_{ heta}(au)}[r(au)] = \int p_{ heta}(au) r(au) d au$$

Найдем:

$$abla_{ heta}J(heta)=\int
abla_{ heta}p_{ heta}(au)r(au)d au$$

Log-derivative trick:

$$abla_{ heta} p_{ heta}(au) = p_{ heta}(au) rac{
abla_{ heta} p_{ heta}(au)}{p_{ heta}(au)} = p_{ heta}(au)
abla_{ heta} log \, p_{ heta}(au)$$

Градиент по Стретегии

Чтобы максимизировать средний ожидаемый доход:

$$J(heta) = \mathbb{E}_{ au \sim p_{ heta}(au)}[r(au)] = \int p_{ heta}(au) r(au) d au$$

Найдем:

$$egin{aligned}
abla_{ heta} J(heta) &= \int
abla_{ heta} p_{ heta}(au) r(au) d au \ &= \int p_{ heta}(au)
abla_{ heta} \log p_{ heta}(au) r(au) d au = \mathbb{E}_{ au \sim p_{ heta}(au)} igg[
abla_{ heta} \log p_{ heta}(au) r(au) igg] \end{aligned}$$

Log-derivative trick:

$$abla_{ heta} p_{ heta}(au) = p_{ heta}(au) rac{
abla_{ heta} p_{ heta}(au)}{p_{ heta}(au)} = p_{ heta}(au)
abla_{ heta} \log p_{ heta}(au)$$

Максимизируем средний ожидаемый доход:

$$J(heta) = \mathbb{E}_{ au \sim p_{ heta}(au)}[r(au)]$$

$$abla_{ heta} J(heta) = \mathbb{E}_{ au \sim p_{ heta}(au)} igg[
abla_{ heta} log \, p_{ heta}(au) r(au) igg]$$

Максимизируем средний ожидаемый доход:

$$J(heta) = \mathbb{E}_{ au \sim p_{ heta}(au)}[r(au)]$$

Градиент по θ :

$$abla_{ heta} J(heta) = \mathbb{E}_{ au \sim p_{ heta}(au)} igg[
abla_{ heta} log \, p_{ heta}(au) r(au) igg]$$

Распишем $p_{\theta}(\tau)$:

$$p_{ heta}(au) = p_{ heta}(s_0, a_0, ..., s_T, a_T) = p(s_0) \prod_{t=0}^T \pi_{ heta}(a_t|s_t) p(s_{t+1}|a_t, s_t)$$

Максимизируем средний ожидаемый доход:

$$J(heta) = \mathbb{E}_{ au \sim p_{ heta}(au)}[r(au)]$$

Градиент по θ :

$$abla_{ heta} J(heta) = \mathbb{E}_{ au \sim p_{ heta}(au)} igg[
abla_{ heta} log \, p_{ heta}(au) r(au) igg]$$

Распишем $p_{\theta}(\tau)$:

$$p_{ heta}(au) = p_{ heta}(s_0, a_0, ..., s_T, a_T) = p(s_0) \prod_{t=0}^T \pi_{ heta}(a_t|s_t) p(s_{t+1}|a_t, s_t)$$

Возьмем логарифм:

$$log \, p_{ heta}(au) = log \, p(s_0) + \sum_{t=0}^T [log \, \pi_{ heta}(a_t|s_t) + log \, p(s_{t+1}|a_t,s_t)]$$

Максимизируем средний ожидаемый доход:

$$J(heta) = \mathbb{E}_{ au \sim p_{ heta}(au)}[r(au)]$$

$$oxed{
abla}_{ heta} J(heta) = \mathbb{E}_{ au \sim p_{ heta}(au)} egin{bmatrix}
abla_{ heta} log \, p_{ heta}(au) r(au) \end{bmatrix}$$

$$log \, p(s_0) + \sum_{t=0}^{T} [log \, \pi_{ heta}(a_t|s_t) + log \, p(s_{t+1}|a_t,s_t)]$$

Максимизируем средний ожидаемый доход:

$$J(heta) = \mathbb{E}_{ au \sim p_{ heta}(au)}[r(au)]$$

$$abla_{ heta} J(heta) = \mathbb{E}_{ au \sim p_{ heta}(au)} igg[
abla_{ heta} log \, p_{ heta}(au) r(au) igg]$$

$$egin{aligned} egin{aligned} iggta_{ heta} \left[log\,p(s_0) + \sum\limits_{t=0}^T [log\,\pi_{ heta}(a_t|s_t) + log\,p(s_{t+1}|a_t,s_t)]
ight] \end{aligned}$$

Максимизируем средний ожидаемый доход:

$$J(heta) = \mathbb{E}_{ au \sim p_{ heta}(au)}[r(au)]$$

$$egin{aligned}
abla_{ heta} J(heta) &= \mathbb{E}_{ au \sim p_{ heta}(au)} \left[
abla_{ heta} \, log \, p_{ heta}(au) r(au)
ight] \end{aligned}$$

$$egin{aligned}
abla_{ heta} \left[log p(s_0) + \sum_{t=0}^{T} [log \, \pi_{ heta}(a_t|s_t) + log \, p(s_{t+1}|a_t,s_t)]
ight] \end{aligned}$$

Максимизируем средний ожидаемый доход:

$$J(heta) = \mathbb{E}_{ au \sim p_{ heta}(au)}[r(au)]$$

Градиент по θ :

$$egin{aligned}
abla_{ heta} J(heta) &= \mathbb{E}_{ au \sim p_{ heta}(au)} \left[
abla_{ heta} \, log \, p_{ heta}(au) r(au)
ight] \end{aligned}$$

$$egin{aligned}
abla_{ heta} \left[log p(s_0) + \sum_{t=0}^{T} [log \, \pi_{ heta}(a_t|s_t) + log \, p(s_{t+1}|a_t,s_t)]
ight] \end{aligned}$$

Градиент по Стратегии:

$$abla_{ heta}J(heta) = \mathbb{E}_{ au\sim p_{ heta}(au)}\left[\sum_{t=0}^{T}
abla_{ heta}\log\pi_{ heta}(a_{t}|s_{t})r(au)
ight]$$

Мы не знаем реального значения мат. ожидания

здесь:
$$abla_{ heta} J(heta) = \mathbb{E}_{ au \sim p_{ heta}(au)} \left[
abla_{ heta} \log p_{ heta}(au) r(au)
ight]$$

Мы не знаем реального значения мат. ожидания

здесь:
$$abla_{ heta} J(heta) = \mathbb{E}_{ au \sim p_{ heta}(au)} \left[
abla_{ heta} \log p_{ heta}(au) r(au)
ight]$$

Как всегда можем оценить его используя сэмплирование:

Мы не знаем реального значения мат. ожидания

здесь:
$$abla_{ heta} J(heta) = \mathbb{E}_{ au \sim p_{ heta}(au)} \left[
abla_{ heta} \log p_{ heta}(au) r(au)
ight]$$

Как всегда можем оценить его используя сэмплирование:

$$egin{aligned}
abla_{ heta} J(heta) &pprox rac{1}{N} \sum_{m{i}=1}^N \left[\sum_{t=0}^T
abla_{ heta} \log \pi_{ heta}(a_{m{i},t}|s_{m{i},t}) r(au_{m{i}})
ight] \end{aligned}$$

Мы не знаем реального значения мат. ожидания

здесь:
$$abla_{ heta} J(heta) = \mathbb{E}_{ au \sim p_{ heta}(au)} \left[
abla_{ heta} \log p_{ heta}(au) r(au)
ight]$$

Как всегда можем оценить его используя сэмплирование:

$$egin{aligned}
abla_{ heta} J(heta) &pprox rac{1}{N} \sum_{i=1}^{N} \left[\sum_{t=0}^{T}
abla_{ heta} \log \pi_{ heta}(a_{i,t}|s_{i,t}) r(au_{i})
ight] \ &= rac{1}{N} \sum_{i=1}^{N} \left[\left(\sum_{t=0}^{T}
abla_{ heta} \log \pi_{ heta}(a_{i,t}|s_{i,t})
ight) \left(\sum_{t=0}^{T} r_{i,t}
ight)
ight] \end{aligned}$$

Алгоритм REINFORCE

Оцениваем Градиент по стратегии:

$$egin{aligned}
abla_{ heta} J(heta) &pprox rac{1}{N} \sum_{i=1}^{N} \left[\left(\sum_{t=0}^{T}
abla_{ heta} \log \pi_{ heta}(a_{i,t}|s_{i,t})
ight) \left(\sum_{t=0}^{T} r_{i,t}
ight)
ight] dt \end{aligned}$$

Обновляем параметры стратегии:

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$$

- 1. Сэмплируем і эпизодов $\{ au^i\}$ стратегией $\pi_{ heta}$
- 2. Оцениваем градиент по стратегии $\pi_{ heta}$ на эпизодах $\{ au^i\}$
- 3. Обновляем параметры стратегии
- 4. Переходим к пункту 1

REINFORCE это on-policy алгоритм

REINFORCE оценивает градиент по стратегии (Policy Gradient):

$$abla_{ heta} J(heta) = \mathbb{E}_{ au \sim p_{ heta}(au)} igg[
abla_{ heta} log \, p_{ heta}(au) r(au) igg]$$

- 1. Сэмплируем і эпизодов $\{ au^i\}$ стратегией $\pi_{ heta}$
- 2. Оцениваем градиент по стратегии $\pi_{ heta}$ на эпизодах $\{ au^i\}$
- 3. Обновляем параметры стратегии
- 4. Переходим к пункту 1

REINFORCE это on-policy алгоритм

REINFORCE оценивает градиент по стратегии (Policy Gradient):

$$abla_{ heta}J(heta) = \mathbb{E}_{ au\sim p_{ heta}(au)}igg[
abla_{ heta} log \, p_{ heta}(au) r(au)igg]$$

Для оценки градиента по параметрам heta нужно собирать сэмплы при помощи $\pi_{ heta}!$

- 1. Сэмплируем і эпизодов $\{ au^i\}$ стратегией $\pi_{ heta}$
- 2. Оцениваем градиент по стратегии $\pi_{ heta}$ на эпизодах $\{ au^i\}$
- 3. Обновляем параметры стратегии
- 4. Переходим к пункту 1

REINFORCE это on-policy алгоритм

REINFORCE оценивает градиент по стратегии (Policy Gradient):

$$abla_{ heta} J(heta) = \mathbb{E}_{ au \sim p_{ heta}(au)} igg[
abla_{ heta} log \, p_{ heta}(au) r(au) igg]$$

Для оценки градиента по параметрам heta нужно собирать сэмплы при помощи $oldsymbol{\pi}_{oldsymbol{ heta}}!$

On-policy алгоритмы:

- После обновления параметров сэмплы собранные со старыми параметрами становятся бесполезны.
- Алгоритмы на основе PG требуют много сэмплов!

- 1. Сэмплируем і эпизодов $\{ au^i\}$ стратегией $\pi_{ heta}$
- 2. Оцениваем градиент по стратегии $\pi_{ heta}$ на эпизодах $\{ au^i\}$
- 3. Обновляем параметры стратегии
- 4. Переходим к пункту 1

Представим, что учим стратегию по экспертным траекториями при помощи обучения с учителем:

Стратегия в
$$s_t$$
: $\pi_{ heta}(*|s_t) = \overline{y} = egin{bmatrix} 0.2 \ 0.7 \ 0.1 \end{bmatrix}$ Ground Truth из датасета в s_t : $y = egin{bmatrix} 1 \ 0 \ 0 \end{bmatrix}$

Представим, что учим стратегию по экспертным траекториями при помощи обучения с учителем:

Используем Cross Entropy-loss для каждого перехода (s_t, a_t, s_{t+1}) в датасете :

$$H(\overline{y},y_t) = rac{1}{|C|} \sum_{j}^{|C|} -y_j \, log \, \overline{y}_j = -log \, \overline{y}_{a_t} rac{1}{|C|}$$

Стратегия в
$$s_t$$
: $\pi_{ heta}(*|s_t) = \overline{y} = egin{bmatrix} 0.7 \\ 0.1 \end{bmatrix}$ Ground Truth из датасета в s_t : $y = egin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$

Представим, что учим стратегию по экспертным траекториями при помощи обучения с учителем:

Используем Cross Entropy-loss для каждого перехода (s_t, a_t, s_{t+1}) в датасете :

$$H(\overline{y},y_t) = rac{1}{|C|} \sum_{j}^{|C|} -y_j \, log \, \overline{y}_j = -log \, \overline{y}_{a_t} rac{1}{|C|}$$

Представим, что учим стратегию по экспертным траекториями при помощи обучения с учителем:

Используем Cross Entropy-loss для каждого перехода (s_t, a_t, s_{t+1}) в датасете :

$$egin{align} H(\overline{y}, y_t) &= rac{1}{|C|} \sum_{j}^{|C|} -y_j \, log \, \overline{y}_j = -log \, \overline{y}_{a_t} rac{1}{|C|} \ &= -log \, \pi_{ heta}(a_t|s_t) \, oldsymbol{c} \end{cases}$$

Градиент при клонировании поведения (Behaviour Clonning):

$$abla_{ heta}J_{BC}(heta)=\mathbb{E}_{ au\sim D}\left[\sum_{t=0}^{T}
abla_{ heta}-log\,\pi_{ heta}(a_t|s_t)\,oldsymbol{c}
ight]$$
 Цель минимизировать $J_{BC}(heta)$

Градиент при клонировании поведения (Behaviour Clonning):

$$abla_{ heta}J_{BC}(heta)=\mathbb{E}_{ au\sim D}\left[\sum_{t=0}^{T}
abla_{ heta}-log\,\pi_{ heta}(a_t|s_t)\,oldsymbol{c}
ight]$$
 Цель минимизировать $J_{BC}(heta)$

Градиент по стратегии:

$$abla_{ heta}J(heta)=\mathbb{E}_{ au\sim p_{ heta}(au)}\left[\sum_{t=0}^{T}
abla_{ heta}\log\pi_{ heta}(a_t|s_t)m{r}(au)
ight]$$
 Цель максимизировать $J(heta)$

Градиент при клонировании поведения (Behaviour Clonning):

$$abla_{ heta}J_{BC}(heta)=\mathbb{E}_{ au\sim m{D}}\left[\sum_{t=0}^{T}
abla_{ heta}\log\pi_{ heta}(a_t|s_t)\,m{c}
ight]$$
 Цель максимизировать $-J_{BC}(heta)$

Градиент по стратегии:

$$abla_{ heta}J(heta)=\mathbb{E}_{ au\sim p_{ heta}(au)}\left[\sum_{t=0}^{T}
abla_{ heta}\log\pi_{ heta}(a_t|s_t)m{r}(au)
ight]$$
 Цель максимизировать $J(heta)$

Градиент при клонировании поведения (Behaviour Clonning):

$$abla_{ heta}J_{BC}(heta)=\mathbb{E}_{ au\sim D}\left[\sum_{t=0}^{T}
abla_{ heta}\log\pi_{ heta}(a_t|s_t)\,oldsymbol{c}
ight]$$
 Цель максимизировать $-J_{BC}(heta)$

ВС учит модель выбирать теже действия что и эксперт!

Градиент по стратегии:

$$abla_{ heta}J(heta)=\mathbb{E}_{ au\sim p_{ heta}(au)}\left[\sum_{t=0}^{T}
abla_{ heta}\log\pi_{ heta}(a_{t}|s_{t})m{r}(au)
ight]$$
 Цель максимизировать $J(heta)$

Градиент при клонировании поведения (Behaviour Clonning):

$$abla_{ heta}J_{BC}(heta)=\mathbb{E}_{ au\sim D}\left[\sum_{t=0}^{T}
abla_{ heta}\log\pi_{ heta}(a_t|s_t)\,oldsymbol{c}
ight]$$
 Цель максимизировать $-J_{BC}(heta)$

ВС учит модель выбирать теже действия что и эксперт!

Градиент по стратегии:

$$abla_{ heta}J(heta)=\mathbb{E}_{ au\sim p_{ heta}(au)}\left[\sum_{t=0}^{T}
abla_{ heta}\log\pi_{ heta}(a_t|s_t)m{r}(au)
ight]$$
 Цель максимизировать $J(heta)$

PG учит модель выбирать действия ведущие к высоким наградам за эпизод!

Основная Идея Градиента по Стратегии

Градиент по стратегии:

$$egin{aligned}
abla_{ heta} J(heta) &= \mathbb{E}_{ au \sim p_{ heta}(au)} \left[\sum_{t=0}^{T}
abla_{ heta} \log \pi_{ heta}(a_t|s_t) r(au)
ight] \end{aligned}$$

PG учит стратегию выбирать действия ведущие к высокому доходу за эпизод!

Проблемы Градиенты по Стратегии

Проблема: высокая дисперсия!

$$abla_{ heta}J(heta) = \mathbb{E}_{ au \sim p_{ heta}(au)} \left[\sum_{t=0}^{T}
abla_{ heta} \log \pi_{ heta}(a_t|s_t) r(au)
ight]$$

$$abla_{ heta}J(heta)pprox rac{1}{N}\sum_{i=1}^{N}\left[\sum_{t=0}^{T}
abla_{ heta}\log\pi_{ heta}(a_{i,t}|s_{i,t})\left(\sum_{t'=0}^{T}oldsymbol{\gamma^{t'}}oldsymbol{r_{i,t'}}
ight)
ight]$$
 выглядит подозрительно!

$$abla_{ heta}J(heta)pprox rac{1}{N}\sum_{i=1}^{N}\left[\sum_{t=0}^{T}
abla_{ heta}\log\pi_{ heta}(a_{i,t}|s_{i,t})\left(\sum_{t'=0}^{T}oldsymbol{\gamma^{t'}}oldsymbol{r_{i,t'}}
ight)
ight]$$
 выглядит подозрительно!

 Π ринцип причинности: действие на шаге $oldsymbol{t}$ не может повлиять на награду за шаг $oldsymbol{t}'$ если $oldsymbol{t}' < oldsymbol{t}$

$$abla_{ heta}J(heta)pprox rac{1}{N}\sum_{i=1}^{N}\left[\sum_{t=0}^{T}
abla_{ heta}\log\pi_{ heta}(a_{i,t}|s_{i,t})igg(\sum_{t'=0}^{T}\gamma^{t'}r_{i,t'}
ight)
ight]$$
 выглядит подозрительно!

$$egin{aligned}
abla_{ heta} J(heta) &pprox rac{1}{N} \sum_{i=1}^{N} \left[\sum_{t=0}^{T}
abla_{ heta} \log \pi_{ heta}(a_{i,t}|s_{i,t}) \left(\sum_{t'=t}^{T} \gamma^{t'} r_{i,t'}
ight)
ight] \end{aligned}$$

$$abla_{ heta}J(heta)pprox rac{1}{N}\sum_{i=1}^{N}\left[\sum_{t=0}^{T}
abla_{ heta}\log\pi_{ heta}(a_{i,t}|s_{i,t})igg(\sum_{t'=0}^{T}m{\gamma^{t'}r_{i,t'}}igg)
ight]$$
 выглядит подозрительно!

Принцип причинности: действие на шаге $oldsymbol{t}$ не может повлиять на награду за шаг $oldsymbol{t}'$ если $oldsymbol{t}' < oldsymbol{t}$

$$egin{aligned}
abla_{ heta} J(heta) &pprox rac{1}{N} \sum_{i=1}^{N} \left[\sum_{t=0}^{T}
abla_{ heta} \log \pi_{ heta}(a_{i,t}|s_{i,t}) \left(\sum_{t'=t}^{T} \gamma^{t'} r_{i,t'}
ight)
ight] \end{aligned}$$

Последние действия становятся менее значимыми!

$$abla_{ heta}J(heta)pprox rac{1}{N}\sum_{i=1}^{N}\left[\sum_{t=0}^{T}
abla_{ heta}\log\pi_{ heta}(a_{i,t}|s_{i,t})igg(\sum_{t'=0}^{T}m{\gamma^{t'}r_{i,t'}}igg)
ight]$$
 выглядит подозрительно!

Принцип причинности: действие на шаге $oldsymbol{t}$ не может повлиять на награду за шаг $oldsymbol{t}'$ если $oldsymbol{t}' < oldsymbol{t}$

$$egin{aligned}
abla_{ heta} J(heta) &pprox rac{1}{N} \sum_{i=1}^{N} \left[\sum_{t=0}^{T}
abla_{ heta} \log \pi_{ heta}(a_{i,t}|s_{i,t}) igg(rac{m{\gamma^t}}{m{t'}=m{t}} \, m{\gamma^{t'}}^{-m{t}} r_{i,t'} igg)
ight] \ &m{\epsilon} = 0 \end{aligned}$$

Последние действия становятся менее значимыми!

$$abla_{ heta}J(heta)pprox rac{1}{N}\sum_{i=1}^{N}\left[\sum_{t=0}^{T}
abla_{ heta}\log\pi_{ heta}(a_{i,t}|s_{i,t})igg(\sum_{t'=0}^{T}m{\gamma^{t'}r_{i,t'}}igg)
ight]$$
 выглядит подозрительно!

Принцип причинности: действие на шаге $oldsymbol{t}$ не может повлиять на награду за шаг $oldsymbol{t}'$ если $oldsymbol{t}' < oldsymbol{t}$

$$egin{aligned}
abla_{ heta} J(heta) &pprox rac{1}{N} \sum_{i=1}^{N} \left[\sum_{t=0}^{T}
abla_{ heta} \log \pi_{ heta}(a_{i,t}|s_{i,t}) igg(rac{m{\gamma^t}}{m{t'}=m{t}} \, m{\gamma^{t'}}^{-m{t}} r_{i,t'} igg)
ight] \end{aligned}$$

Финальная Версия:

Последние действия становятся менее значимыми!

$$egin{aligned}
abla_{ heta} J(heta) &pprox rac{1}{N} \sum_{i=1}^N \left[\sum_{t=0}^T
abla_{ heta} \log \pi_{ heta}(a_{i,t}|s_{i,t}) \left(\sum_{t'=t}^T \gamma^{t'-t} r_{i,t'}
ight)
ight] \end{aligned}$$

Обновляем стратегию пропорционально доходу $\tau(r)$:

$$abla_{ heta} J(heta) = \mathbb{E}_{ au \sim p_{ heta}(au)} igg[
abla_{ heta} log \, p_{ heta}(au) r(au) igg]$$

где:
$$b = \mathbb{E}_{ au \sim p_{ heta}(au)}[r(au)]$$

Обновляем стратегию пропорционально тому на сколько au(r) лучше чем средний доход:

$$egin{aligned}
abla_{ heta} J(heta) &= \mathbb{E}_{ au \sim p_{ heta}(au)} igg[
abla_{ heta} log \, p_{ heta}(au) (r(au) - oldsymbol{b}) igg] \end{aligned}$$

где:
$$b = \mathbb{E}_{ au \sim p_{ heta}(au)}[r(au)]$$

Обновляем стратегию пропорционально тому на сколько au(r) лучше чем средний доход:

$$abla_{ heta} J(heta) = \mathbb{E}_{ au \sim p_{ heta}(au)} igg[
abla_{ heta} log \, p_{ heta}(au) (r(au) - {\color{red} b}) igg]$$

где:
$$b = \mathbb{E}_{ au \sim p_{ heta}(au)}[r(au)]$$

Вычитание бейзлайна дает несмещенную оценку (и часто работает лучше):

Обновляем стратегию пропорционально тому на сколько au(r) лучше чем средний доход:

$$egin{aligned}
abla_{ heta} J(heta) &= \mathbb{E}_{ au \sim p_{ heta}(au)} igg[
abla_{ heta} log \, p_{ heta}(au) (r(au) - oldsymbol{b}) igg] \end{aligned}$$

где:
$$b = \mathbb{E}_{ au \sim p_{ heta}(au)}[r(au)]$$

Вычитание бейзлайна дает несмещенную оценку (и часто работает лучше):

$$egin{aligned} \mathbb{E}[
abla_{ heta} \, log \, p_{ heta}(au) b] &= \int p_{ heta}(au) \,
abla_{ heta} \, log \, p_{ heta}(au) \, b \, d au = \int \, b \,
abla_{ heta} \, p_{ heta}(au) \, d au = \ &= b \,
abla_{ heta} \, \int \, p_{ heta}(au) \, d au = b \,
abla_{ heta} \, 1 = 0 \end{aligned}$$

В методах на основе функций ценности (DQN, Q-learning, SARSA, и тд.) мы использовали ϵ -жданую стратегию, чтобы агент исследовал новые варианты в среде

В методах на основе функций ценности (DQN, Q-learning, SARSA, и тд.) мы использовали ϵ -жданую стратегию, чтобы агент исследовал новые варианты в среде

В методах с явным представлением стратегии агента, можно использовать более гибкий вариант:

В методах на основе функций ценности (DQN, Q-learning, SARSA, и тд.) мы использовали ϵ -жданую стратегию, чтобы агент исследовал новые варианты в среде

В методах с явным представлением стратегии агента, можно использовать более гибкий вариант:

Регуляризация энтропии стратегии агента:

$$H(\pi_{ heta}(\cdot|s_t)) = -\sum_{a \in A} \pi_{ heta}(a|s_t) log \, \pi_{ heta}(a|s_t)$$

В методах на основе функций ценности (DQN, Q-learning, SARSA, и тд.) мы использовали ϵ -жданую стратегию, чтобы агент исследовал новые варианты в среде

В методах с явным представлением стратегии агента, можно использовать более гибкий вариант:

Регуляризация энтропии стратегии агента:

$$H(\pi_{ heta}(\cdot|s_t)) = -\sum_{a \in A} \pi_{ heta}(a|s_t) log \, \pi_{ heta}(a|s_t)$$

Добавление к функции потерь $-H(\pi_{\theta})$:

- поощряет агента действовать более случайно
- накладывает менее строгие ограничения чем ϵ -жадная стратегия

Финальная версия REINFORCE с "учетом причинности" и бейзлайном:

$$egin{aligned}
abla_{ heta} J(heta) &pprox rac{1}{N} \sum_{i=1}^N \left[\sum_{t=0}^T
abla_{ heta} \log \pi_{ heta}(a_{i,t}|s_{i,t}) igg(\sum_{t'=t}^T \gamma^{t'-t} r_{i,t'} - b igg)
ight] , \end{aligned}$$

Финальная версия REINFORCE с "учетом причинности" и бейзлайном:

$$abla_{ heta}J(heta)pproxrac{1}{N}\sum_{i=1}^{N}\left[\sum_{t=0}^{T}
abla_{ heta}\log\pi_{ heta}(a_{i,t}|s_{i,t})\left(\sum_{t'=t}^{T}\gamma^{t'-t}r_{i,t'}-b
ight)
ight]$$
 Что это?

Финальная версия REINFORCE с "учетом причинности" и бейзлайном:

$$abla_{ heta}J(heta)pproxrac{1}{N}\sum_{i=1}^{N}\left[\sum_{t=0}^{T}
abla_{ heta}\log\pi_{ heta}(a_{i,t}|s_{i,t})\left(\sum_{t'=t}^{T}\gamma^{t'-t}r_{i,t'}-b
ight)
ight]$$
 Что это?

Вспоминаем Функции ценности:

$$Q_\pi(s,a) = \mathbb{E}_\pi[\sum_{k=0}^\infty \gamma^k r_{t+k+1} | S_t = s, A_t = a]$$

$$V_\pi(s) = \mathbb{E}_\pi[\sum_{k=0}^\infty \gamma^k r_{t+k+1} | S_t = s]$$

Финальная версия REINFORCE с "учетом причинности" и бейзлайном:

$$abla_{ heta} J(heta) pprox rac{1}{N} \sum_{i=1}^{N} \left[\sum_{t=0}^{T}
abla_{ heta} \log \pi_{ heta}(a_{i,t}|s_{i,t}) \left(\sum_{t'=t}^{T} \gamma^{t'-t} r_{i,t'} - b
ight)
ight]$$

Оценка $Q_{\pi_{\theta}}(s_{i,t},a_{i,t})$ по одному сэмплу

Вспоминаем Функции ценности:

$$Q_\pi(s,a) = \mathbb{E}_\pi[\sum_{k=0}^\infty \gamma^k r_{t+k+1} | S_t = s, A_t = a]$$

$$V_\pi(s) = \mathbb{E}_\pi[\sum_{k=0}^\infty \gamma^k r_{t+k+1} | S_t = s]$$

Совместим Градиент по стратегии и Функции Ценности!

$$egin{aligned}
abla_{ heta} J(heta) &pprox rac{1}{N} \sum_{i=1}^N \left[\sum_{t=0}^T
abla_{ heta} \log \pi_{ heta}(a_{i,t}|s_{i,t}) igg(oldsymbol{Q}_{\pi_{ heta}}(s_{i,t},a_{i,t}) - b igg)
ight] . \end{aligned}$$

Совместим Градиент по стратегии и Функции Ценности!

$$egin{aligned}
abla_{ heta} J(heta) &pprox rac{1}{N} \sum_{i=1}^{N} \left[\sum_{t=0}^{T}
abla_{ heta} \log \pi_{ heta}(a_{i,t}|s_{i,t}) igg(oldsymbol{Q}_{\pi_{ heta}}(oldsymbol{s}_{i,t},a_{i,t}) - b igg)
ight] \end{aligned}$$

дисперсия меньше чем у оценки по одному сэмплу

Совместим Градиент по стратегии и Функции Ценности!

$$egin{aligned}
abla_{ heta} J(heta) &pprox rac{1}{N} \sum_{i=1}^{N} \left[\sum_{t=0}^{T}
abla_{ heta} \log \pi_{ heta}(a_{i,t}|s_{i,t}) igg(oldsymbol{Q}_{\pi_{ heta}}(s_{i,t},a_{i,t}) - b igg)
ight] \end{aligned}$$

дисперсия меньше чем у оценки по одному сэмплу

Вспомним про бейзлайн:

Совместим Градиент по стратегии и Функции Ценности!

$$egin{aligned}
abla_{ heta} J(heta) &pprox rac{1}{N} \sum_{i=1}^{N} \left[\sum_{t=0}^{T}
abla_{ heta} \log \pi_{ heta}(a_{i,t}|s_{i,t}) igg(oldsymbol{Q_{\pi_{ heta}}(s_{i,t},a_{i,t})} - b igg)
ight] \end{aligned}$$

дисперсия меньше чем у оценки по одному сэмплу

Вспомним про бейзлайн:

$$b = \mathbb{E}_{ au \sim \pi_ heta}[r(au)] =$$

Совместим Градиент по стратегии и Функции Ценности!

$$egin{aligned}
abla_{ heta} J(heta) &pprox rac{1}{N} \sum_{i=1}^{N} \left[\sum_{t=0}^{T}
abla_{ heta} \log \pi_{ heta}(a_{i,t}|s_{i,t}) igg(oldsymbol{Q}_{\pi_{ heta}}(oldsymbol{s}_{i,t},a_{i,t}) - b igg)
ight] \end{aligned}$$

дисперсия меньше чем у оценки по одному сэмплу

Вспомним про бейзлайн:

$$b = \mathbb{E}_{ au \sim \pi_ heta}[r(au)] =$$

Тут тоже стоит учесть причинность....

Совместим Градиент по стратегии и Функции Ценности!

$$egin{aligned}
abla_{ heta} J(heta) &pprox rac{1}{N} \sum_{i=1}^{N} \left[\sum_{t=0}^{T}
abla_{ heta} \log \pi_{ heta}(a_{i,t}|s_{i,t}) igg(oldsymbol{Q}_{\pi_{ heta}}(oldsymbol{s}_{i,t},a_{i,t}) - b igg)
ight] \end{aligned}$$

дисперсия меньше чем у оценки по одному сэмплу

Вспомним про бейзлайн:

$$b=\mathbb{E}_{ au\sim\pi_ heta}[r(au)]=\mathbb{E}_{a\sim\pi_ heta(a|s)}[Q_{\pi_ heta}(s,a)]=$$

Тут тоже стоит учесть причинность....

Совместим Градиент по стратегии и Функции Ценности!

$$egin{aligned}
abla_{ heta} J(heta) &pprox rac{1}{N} \sum_{i=1}^{N} \left[\sum_{t=0}^{T}
abla_{ heta} \log \pi_{ heta}(a_{i,t}|s_{i,t}) igg(oldsymbol{Q}_{\pi_{ heta}}(oldsymbol{s}_{i,t},a_{i,t}) - b igg)
ight] \end{aligned}$$

дисперсия меньше чем у оценки по одному сэмплу

Вспомним про бейзлайн:

$$b = \mathbb{E}_{ au \sim \pi_ heta}[r(au)] = \mathbb{E}_{a \sim \pi_ heta(a|s)}[Q_{\pi_ heta}(s,a)] = V_{\pi_ heta}(s)$$

Тут тоже стоит учесть причинность....

Совместим Градиент по стратегии и Функции Ценности!

$$egin{aligned}
abla_{ heta} J(heta) &pprox rac{1}{N} \sum_{i=1}^{N} \left[\sum_{t=0}^{T}
abla_{ heta} \log \pi_{ heta}(a_{i,t}|s_{i,t}) igg(oldsymbol{Q}_{\pi_{ heta}}(oldsymbol{s}_{i,t},a_{i,t}) - V_{\pi_{ heta}}(oldsymbol{s}_{i,t}) igg)
ight] . \end{aligned}$$

Совместим Градиент по стратегии и Функции Ценности!

$$egin{aligned}
abla_{ heta} J(heta) &pprox rac{1}{N} \sum_{i=1}^N \left[\sum_{t=0}^T
abla_{ heta} \log \pi_{ heta}(a_{i,t}|s_{i,t}) igg(Q_{\pi_{ heta}}(s_{i,t},a_{i,t}) - V_{\pi_{ heta}}(s_{i,t}) igg)
ight] dt \end{aligned}$$

Функция приемущества / Advantage Function:

$$A(a,s) = Q_{\pi_{ heta}}(s,a) - V_{\pi_{ heta}}(s)$$

Совместим Градиент по стратегии и Функции Ценности!

$$egin{aligned}
abla_{ heta} J(heta) &pprox rac{1}{N} \sum_{i=1}^N \left[\sum_{t=0}^T
abla_{ heta} \log \pi_{ heta}(a_{i,t}|s_{i,t}) igg(oldsymbol{Q}_{\pi_{ heta}}(s_{i,t},a_{i,t}) - V_{\pi_{ heta}}(s_{i,t}) igg)
ight] , \end{aligned}$$

Функция приемущества / Advantage Function:

$$A(a,s) = Q_{\pi_{ heta}}(s,a) - V_{\pi_{ heta}}(s)$$

на сколько $oldsymbol{a_t}$ лучше чем обычное поведение стратегии

Совместим Градиент по стратегии и Функции Ценности!

$$egin{aligned}
abla_{ heta} J(heta) &pprox rac{1}{N} \sum_{i=1}^{N} \left[\sum_{t=0}^{T}
abla_{ heta} \log \pi_{ heta}(a_{i,t}|s_{i,t}) igg(A_{\pi_{ heta}}(s_{i,t},a_{i,t}) igg)
ight] \end{aligned}$$

Функция приемущества / Advantage Function:

$$A(a,s) = Q_{\pi_{ heta}}(s,a) - V_{\pi_{ heta}}(s)$$

на сколько $oldsymbol{a_t}$ лучше чем обычное поведение стратегии

Совместим Градиент по стратегии и Функции Ценности!

$$egin{aligned}
abla_{ heta} J(heta) &pprox rac{1}{N} \sum_{i=1}^{N} \left[\sum_{t=0}^{T}
abla_{ heta} \log \pi_{ heta}(a_{i,t}|s_{i,t}) igg(A_{\pi_{ heta}}(s_{i,t},a_{i,t}) igg)
ight] \end{aligned}$$

Функция приемущества / Advantage Function:

$$A(a,s) = Q_{\pi_{ heta}}(s,a) - V_{\pi_{ heta}}(s)$$

на сколько a_t лучше чем обычное поведение стратегии

Легче учить только одну функцию!

Совместим Градиент по стратегии и Функции Ценности!

$$egin{aligned}
abla_{ heta} J(heta) &pprox rac{1}{N} \sum_{i=1}^{N} \left[\sum_{t=0}^{T}
abla_{ heta} \log \pi_{ heta}(a_{i,t}|s_{i,t}) igg(A_{\pi_{ heta}}(oldsymbol{s}_{i,t},a_{i,t}) igg)
ight] \end{aligned}$$

Функция приемущества / Advantage Function:

$$A(a,s) = Q_{\pi_{ heta}}(s,a) - V_{\pi_{ heta}}(s)$$

 $A(a,s)=Q_{\pi_{ heta}}(s,a)-V_{\pi_{ heta}}(s)$ на сколько a_t лучше чем обычное поведение стратегии

Легче учить только одну функцию! ...но можно сделать еще лучше:

Совместим Градиент по стратегии и Функции Ценности!

$$egin{aligned}
abla_{ heta} J(heta) &pprox rac{1}{N} \sum_{i=1}^{N} \left[\sum_{t=0}^{T}
abla_{ heta} \log \pi_{ heta}(a_{i,t}|s_{i,t}) igg(A_{\pi_{ heta}}(s_{i,t},a_{i,t}) igg)
ight] \end{aligned}$$

Функция приемущества / Advantage Function:

$$A(a,s) = Q_{\pi_{ heta}}(s,a) - V_{\pi_{ heta}}(s)$$

 $A(a,s)=Q_{\pi_a}(s,a)-V_{\pi_a}(s)$ на сколько a_t лучше чем обычное поведение стратегии

Легче учить только одну функцию! ...но можно сделать еще лучше:

$$A(a,s) = \mathbb{E}_{s' \sim p(s'|a,s)}[r(s,a) + E_{a' \sim \pi_{ heta}(s'|s')}[Q_{\pi_{ heta}}(a',s')] - V_{\pi_{ heta}}(s_t)$$

Совместим Градиент по стратегии и Функции Ценности!

$$egin{aligned}
abla_{ heta} J(heta) &pprox rac{1}{N} \sum_{i=1}^{N} \left[\sum_{t=0}^{T}
abla_{ heta} \log \pi_{ heta}(a_{i,t}|s_{i,t}) igg(A_{\pi_{ heta}}(s_{i,t},a_{i,t}) igg)
ight] \end{aligned}$$

Функция приемущества / Advantage Function:

$$A(a,s) = Q_{\pi_{ heta}}(s,a) - V_{\pi_{ heta}}(s)$$

 $A(a,s)=Q_{\pi_a}(s,a)-V_{\pi_a}(s)$ на сколько a_t лучше чем обычное поведение стратегии

Легче учить только одну функцию! ...но можно сделать еще лучше:

$$egin{aligned} A(a,s) &= \mathbb{E}_{s' \sim p(s'|a,s)}[r(s,a) + E_{a' \sim \pi_{ heta}(s'|s')}[Q_{\pi_{ heta}}(a',s')] - V_{\pi_{ heta}}(s_t) \ &= r(s,a) + \mathbb{E}_{s' \sim p(s'|a,s)}[V_{\pi_{ heta}}(s')] - V_{\pi_{ heta}}(s) \end{aligned}$$

Совместим Градиент по стратегии и Функции Ценности!

$$egin{aligned}
abla_{ heta} J(heta) &pprox rac{1}{N} \sum_{i=1}^{N} \left[\sum_{t=0}^{T}
abla_{ heta} \log \pi_{ heta}(a_{i,t}|s_{i,t}) igg(A_{\pi_{ heta}}(s_{i,t},a_{i,t}) igg)
ight] \end{aligned}$$

Функция приемущества / Advantage Function:

$$A(a,s) = Q_{\pi_ heta}(s,a) - V_{\pi_ heta}(s)$$

 $A(a,s)=Q_{\pi_a}(s,a)-V_{\pi_a}(s)$ на сколько a_t лучше чем обычное поведение стратегии

Легче учить только одну функцию! ...но можно сделать еще лучше:

$$egin{aligned} A(a,s) &= \mathbb{E}_{s'\sim p(s'|a,s)}[r(s,a) + E_{a'\sim \pi_{ heta}(s'|s')}[Q_{\pi_{ heta}}(a',s')] - V_{\pi_{ heta}}(s_t) \ &= r(s,a) + \mathbb{E}_{s'\sim p(s'|a,s)}[V_{\pi_{ heta}}(s')] - V_{\pi_{ heta}}(s) \end{aligned}$$

апроксимируем это значение при помощи одного сэмпла

Advantage Actor-Critic: A2C

Совместим Градиент по стратегии и Функции Ценности!

$$egin{aligned}
abla_{ heta} J(heta) &pprox rac{1}{N} \sum_{i=1}^{N} \left[\sum_{t=0}^{T}
abla_{ heta} \log \pi_{ heta}(a_{i,t}|s_{i,t}) igg(A_{\pi_{ heta}}(oldsymbol{s}_{i,t},a_{i,t}) igg)
ight] \end{aligned}$$

Функция приемущества:

$$A_{\pi_{ heta}}(a_t,s_t)pprox r_t + V_{\pi_{ heta}}(s_{t+1}) - V_{\pi_{ heta}}(s_t)$$

Выучить V-функцию легче, т.к. она зависит от меньшего числа аргументов

Advantage Actor-Critic: A2C

Совместим Градиент по стратегии и Функции Ценности!

$$egin{aligned}
abla_{ heta} J(heta) &pprox rac{1}{N} \sum_{i=1}^{N} \left[\sum_{t=0}^{T}
abla_{ heta} \log \pi_{ heta}(a_{i,t}|s_{i,t}) igg(A_{\pi_{ heta}}(s_{i,t},a_{i,t}) igg)
ight] \end{aligned}$$

Функция приемущества:

на сколько $oldsymbol{a_t}$ лучше чем обычное поведение стратегии

$$A_{\pi_{ heta}}(a_t,s_t)pprox r_t + V_{\pi_{ heta}}(s_{t+1}) - V_{\pi_{ heta}}(s_t)$$

Выучить V-функцию легче, т.к. она зависит от меньшего числа аргументов

А2С: Обучение

- ullet Сэмплируем $\{ au\}$ при помощи $\pi_{ heta}(a_t|s_t)$
- Policy Improvement шаг:
 - Учим испольнителя при помощи градиента по стратегии:

$$egin{aligned}
abla_{ heta} J(heta) &pprox rac{1}{N} \sum_{i=1}^N \left[\sum_{t=0}^T
abla_{ heta} \log \pi_{ heta}(a_{i,t}|s_{i,t}) A_{\pi_{ heta}}(s_{i,t},a_{i,t})
ight] \end{aligned}$$

- Policy Evaluation шаг:
 - Учим Критика через MSE (по аналогии с DQN)

$$abla_{\phi}L(\phi)pprox rac{1}{N}\sum_{i=1}^{N}\left[\sum_{t=0}^{T}
abla_{\phi}\left\|(r_{t}+\gamma V_{\hat{\phi}}(s_{t+1}))-V_{\phi}(s_{t})
ight\|^{2}
ight]$$

Policy Iteration напоминалка:

А2С: Обучение

- ullet Сэмплируем $\{ au\}$ при помощи $\pi_{ heta}(a_t|s_t)$
- Policy Improvement шаг:
 - Учим испольнителя при помощи градиента по стратегии:

$$egin{aligned}
abla_{ heta} J(heta) &pprox rac{1}{N} \sum_{i=1}^N \left[\sum_{t=0}^T
abla_{ heta} \log \pi_{ heta}(a_{i,t}|s_{i,t}) A_{\pi_{ heta}}(s_{i,t},a_{i,t})
ight] \end{aligned}$$

- Policy Evaluation шаг:
 - Учим Критика через MSE (по аналогии с DQN)

$$egin{aligned}
abla_{\phi}L(\phi) &pprox rac{1}{N} \sum_{i=1}^{N} \left[\sum_{t=0}^{T}
abla_{\phi} \left\| (r_t + \gamma V_{\hat{\phi}}(s_{t+1})) - V_{\phi}(s_t)
ight\|^2
ight] \end{aligned}$$

 ϕ : свой набор параметров

Policy Iteration напоминалка:

А2С: Обучение

- ullet Сэмплируем $\{ au\}$ при помощи $\pi_{ heta}(a_t|s_t)$
- Policy Improvement шаг:
 - Учим испольнителя при помощи градиента по стратегии:

$$egin{aligned}
abla_{ heta} J(heta) &pprox rac{1}{N} \sum_{i=1}^N \left[\sum_{t=0}^T
abla_{ heta} \log \pi_{ heta}(a_{i,t}|s_{i,t}) A_{\pi_{ heta}}(s_{i,t},a_{i,t})
ight] \end{aligned}$$

- Policy Evaluation шаг:
 - Учим Критика через MSE (по аналогии с DQN)

$$egin{aligned}
abla_{\phi}L(\phi) &pprox rac{1}{N} \sum_{i=1}^{N} \left[\sum_{t=0}^{T}
abla_{\phi} \left\| (r_t + \gamma V_{\hat{\phi}}(s_{t+1})) - V_{\phi}(s_t)
ight\|^2
ight] \end{aligned}$$

 ϕ : свой набор параметров

B DQN была Target Network, тут просто не проводим градиенты.

Policy Iteration напоминалка:

Детали реализации: Арихтектура А2С

Не можем использовать Replay Memory, но нам нужно декоррелировать сэмплы

Не можем использовать Replay Memory, но нам нужно декоррелировать сэмплы

Answer: Учим на нескольких средах

одновременно!

Не можем использовать Replay Memory, но нам нужно декоррелировать сэмплы

Answer: Учим на нескольких средах одновременно!

Не можем использовать Replay Memory, но нам нужно декоррелировать сэмплы

Answer: Учим на нескольких средах одновременно!

Взаимодествие с каждой средой и обучение происходит асинхронно

Каждый рабочий:

- Получает параметры модели из единого сервера параметров
- Генерирует траектории
- Считает Градиенты
- Отправляет градиенты обратно в сервер параметров

Взаимодествие с каждой средой и обучение происходит асинхронно

Взаимодествие с каждой средой и обучение происходит асинхронно

Приемущества:

• Работает быстрее (реальное время обучения)

Взаимодествие с каждой средой и обучение происходит асинхронно

Приемущества:

• Работает быстрее (реальное время обучения)

Недостатки:

- Для N асинхронных рабочих нужно хранить N+1 копий параметров модели
- Проблема протухших градиентов

Синхронный параллельный А2С

Эту версию обычно называют А2С... снова...

Решение проблем АЗС:

- Пусть все среды работают параллельно
- Среды синхронизируются после каждого шага
- Можно выбирать действия используя только одну копию параметров
- Обновляем парметры каждые t шагов в среде/средах

synchronized parallel actor-critic

asynchronous parallel actor-critic

Синхронный параллельный А2С

Эту версию обычно называют А2С... снова...

Приемущества:

- Достаточно хранить только один набор параметров
- Стабильнее АЗС
 - нет протухших градиентов

synchronized parallel actor-critic

Недостатки:

- Немного медленнее, чем АЗС
 - Число взаимодействий со средой в еденицу времени

asynchronous parallel actor-critic

А3С/А2С Результаты:

Method	Training Time	Mean	Median
DQN	8 days on GPU	121.9%	47.5%
Gorila	4 days, 100 machines	215.2%	71.3%
D-DQN	8 days on GPU	332.9%	110.9%
Dueling D-DQN	8 days on GPU	343.8%	117.1%
Prioritized DQN	8 days on GPU	463.6%	127.6%
A3C, FF	1 day on CPU	344.1%	68.2%
A3C, FF	4 days on CPU	496.8%	116.6%
A3C, LSTM	4 days on CPU	623.0%	112.6%

Table 1. Mean and median human-normalized scores on 57 Atari games using the human starts evaluation metric. Supplementary

Спасибо за Внимание!