BASIC ALGEBRA FORMULAS

Arithmetic Operations

$$a(b+c) = ab + ac, \qquad \frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$
$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}, \qquad \frac{a/b}{c/d} = \frac{a}{b} \cdot \frac{d}{c}$$

Laws of Signs

$$-(-a) = a, \qquad \frac{-a}{b} = -\frac{a}{b} = \frac{a}{-b}$$

Zero Division by zero is not defined.

If
$$a \neq 0$$
: $\frac{0}{a} = 0$, $a^0 = 1$, $0^a = 0$
For any number a : $a \cdot 0 = 0 \cdot a = 0$

Laws of Exponents

$$a^{m}a^{n}=a^{m+n}, \qquad (ab)^{m}=a^{m}b^{m}, \qquad (a^{m})^{n}=a^{mn}, \qquad a^{m/n}=\sqrt[n]{a^{m}}=\left(\sqrt[n]{a}\right)^{m}$$
 If $a\neq 0$,
$$\frac{a^{m}}{a^{n}}=a^{m-n}, \qquad a^{0}=1, \qquad a^{-m}=\frac{1}{a^{m}}.$$

The Binomial Theorem For any positive integer n,

$$(a + b)^{n} = a^{n} + na^{n-1}b + \frac{n(n-1)}{1 \cdot 2}a^{n-2}b^{2} + \frac{n(n-1)(n-2)}{1 \cdot 2 \cdot 3}a^{n-3}b^{3} + \dots + nab^{n-1} + b^{n}.$$

For instance,

$$(a + b)^2 = a^2 + 2ab + b^2,$$
 $(a - b)^2 = a^2 - 2ab + b^2$
 $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3,$ $(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3.$

Factoring the Difference of Like Integer Powers, n > 1

$$a^{n} - b^{n} = (a - b)(a^{n-1} + a^{n-2}b + a^{n-3}b^{2} + \cdots + ab^{n-2} + b^{n-1})$$

For instance,

$$a^{2} - b^{2} = (a - b)(a + b),$$

$$a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2}),$$

$$a^{4} - b^{4} = (a - b)(a^{3} + a^{2}b + ab^{2} + b^{3}).$$

Completing the Square If $a \neq 0$,

$$ax^2 + bx + c = au^2 + C$$
 $\left(u = x + (b/2a), C = c - \frac{b^2}{4a}\right)$

The Quadratic Formula If $a \neq 0$ and $ax^2 + bx + c = 0$, then

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

GEOMETRY FORMULAS

A = area, B = area of base, C = circumference, S = lateral area or surface area, V = volume

Triangle

$$A = \frac{1}{2}bh$$

Parallelogram

Similar Triangles

Trapezoid

Circle

Pythagorean Theorem

 $a^2 + b^2 = c^2$

Any Cylinder or Prism with Parallel Bases

Right Circular Cylinder

 $V = \pi r^2 h$ $S = 2\pi rh$ = Area of side

Any Cone or Pyramid

Right Circular Cone

$$V = \frac{1}{3}\pi r^2 h$$

$$S = \pi r s = \text{Area of side}$$

Sphere

$$V = \frac{4}{3} \pi r^3, S = 4\pi r^2$$

LIMITS

General Laws

If L, M, c, and k are real numbers and

$$\lim_{x \to c} f(x) = L$$
 and $\lim_{x \to c} g(x) = M$, then

Sum Rule:
$$\lim (f(x) + g(x)) = L + M$$

Difference Rule:
$$\lim (f(x) - g(x)) = L - M$$

Product Rule:
$$\lim_{x \to a} (f(x) \cdot g(x)) = L \cdot M$$

Constant Multiple Rule:
$$\lim_{x \to a} (k \cdot f(x)) = k \cdot L$$

Quotient Rule:
$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{M}, \quad M \neq 0$$

The Sandwich Theorem

If $g(x) \le f(x) \le h(x)$ in an open interval containing c, except possibly at x = c, and if

$$\lim_{x \to c} g(x) = \lim_{x \to c} h(x) = L,$$

then
$$\lim_{x\to c} f(x) = L$$
.

Inequalities

If $f(x) \le g(x)$ in an open interval containing c, except possibly at x = c, and both limits exist, then

$$\lim_{x \to c} f(x) \le \lim_{x \to c} g(x).$$

Continuity

If g is continuous at L and $\lim_{x\to c} f(x) = L$, then

$$\lim_{x \to c} g(f(x)) = g(L).$$

Specific Formulas

If
$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$$
, then

$$\lim_{x \to c} P(x) = P(c) = a_n c^n + a_{n-1} c^{n-1} + \dots + a_0.$$

If P(x) and Q(x) are polynomials and $Q(c) \neq 0$, then

$$\lim_{x \to c} \frac{P(x)}{Q(x)} = \frac{P(c)}{Q(c)}.$$

If f(x) is continuous at x = c, then

$$\lim_{x \to c} f(x) = f(c).$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \quad \text{and} \quad \lim_{x \to 0} \frac{1 - \cos x}{x} = 0$$

L'Hôpital's Rule

If f(a) = g(a) = 0, both f' and g' exist in an open interval I containing a, and $g'(x) \neq 0$ on I if $x \neq a$, then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)},$$

assuming the limit on the right side exists.

DIFFERENTIATION RULES

General Formulas

Assume u and v are differentiable functions of x.

Constant:
$$\frac{d}{dx}(c) = 0$$

Sum:
$$\frac{d}{dx}(u+v) = \frac{du}{dx} + \frac{dv}{dx}$$

Difference:
$$\frac{d}{dx}(u-v) = \frac{du}{dx} - \frac{dv}{dx}$$

Constant Multiple:
$$\frac{d}{dx}(cu) = c\frac{du}{dx}$$

Product:
$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$

Quotient:
$$\frac{d}{dx} \left(\frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$

Power:
$$\frac{d}{dx}x^n = nx^{n-1}$$

Chain Rule:
$$\frac{d}{dx}(f(g(x))) = f'(g(x)) \cdot g'(x)$$

Trigonometric Functions

$$\frac{d}{dx}(\sin x) = \cos x$$
 $\frac{d}{dx}(\cos x) = -\sin x$

$$\frac{d}{dx}(\tan x) = \sec^2 x$$
 $\frac{d}{dx}(\sec x) = \sec x \tan x$

$$\frac{d}{dx}(\cot x) = -\csc^2 x$$
 $\frac{d}{dx}(\csc x) = -\csc x \cot x$

Exponential and Logarithmic Functions

$$\frac{d}{dx}e^x = e^x \qquad \qquad \frac{d}{dx}\ln x = \frac{1}{x}$$

$$\frac{d}{dx}a^{x} = a^{x} \ln a \qquad \frac{d}{dx}(\log_{a} x) = \frac{1}{x \ln a}$$

Inverse Trigonometric Functions

$$\frac{d}{dx}(\sin^{-1} x) = \frac{1}{\sqrt{1 - x^2}} \qquad \frac{d}{dx}(\cos^{-1} x) = -\frac{1}{\sqrt{1 - x^2}}$$

$$\frac{d}{dx}(\tan^{-1} x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(\sec^{-1} x) = \frac{1}{|x|\sqrt{x^2-1}}$$

$$\frac{d}{dx}(\cot^{-1}x) = -\frac{1}{1+x^2} \qquad \frac{d}{dx}(\csc^{-1}x) = -\frac{1}{|x|\sqrt{x^2-1}}$$

Hyperbolic Functions

$$\frac{d}{dx}(\sinh x) = \cosh x$$
 $\frac{d}{dx}(\cosh x) = \sinh x$

$$\frac{d}{dx}(\tanh x) = \operatorname{sech}^2 x$$
 $\frac{d}{dx}(\operatorname{sech} x) = -\operatorname{sech} x \tanh x$

$$\frac{d}{dx}(\coth x) = -\operatorname{csch}^2 x \qquad \frac{d}{dx}(\operatorname{csch} x) = -\operatorname{csch} x \coth x$$

Inverse Hyperbolic Functions

$$\frac{d}{dx}(\sinh^{-1} x) = \frac{1}{\sqrt{1+x^2}} \frac{d}{dx}(\cosh^{-1} x) = \frac{1}{\sqrt{x^2-1}}$$

$$\frac{d}{dx}(\tanh^{-1}x) = \frac{1}{1-x^2}$$
 $\frac{d}{dx}(\operatorname{sech}^{-1}x) = -\frac{1}{x\sqrt{1-x^2}}$

$$\frac{d}{dx}(\coth^{-1} x) = \frac{1}{1 - x^2} \qquad \frac{d}{dx}(\operatorname{csch}^{-1} x) = -\frac{1}{|x|\sqrt{1 + x^2}}$$

Parametric Equations

If x = f(t) and y = g(t) are differentiable, then

$$y' = \frac{dy}{dx} = \frac{dy/dt}{dx/dt}$$
 and $\frac{d^2y}{dx^2} = \frac{dy'/dt}{dx/dt}$.

INTEGRATION RULES

General Formulas

Zero:
$$\int_{-\infty}^{a} f(x) \, dx = 0$$

Order of Integration:
$$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$$

Constant Multiples:
$$\int_{a}^{b} kf(x) dx = k \int_{a}^{b} f(x) dx$$
 (Any number k)

$$\int_{a}^{b} -f(x) \, dx = -\int_{a}^{b} f(x) \, dx \qquad (k = -1)$$

Sums and Differences:
$$\int_a^b (f(x) \pm g(x)) dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx$$

Additivity:
$$\int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx = \int_{a}^{c} f(x) dx$$

Max-Min Inequality: If max f and min f are the maximum and minimum values of f on [a, b], then

$$\min f \cdot (b - a) \le \int_a^b f(x) \, dx \le \max f \cdot (b - a).$$

Domination:
$$f(x) \ge g(x)$$
 on $[a, b]$ implies $\int_a^b f(x) dx \ge \int_a^b g(x) dx$

$$f(x) \ge 0$$
 on $[a, b]$ implies $\int_a^b f(x) dx \ge 0$

The Fundamental Theorem of Calculus

Part 1 If f is continuous on [a, b], then $F(x) = \int_a^x f(t) dt$ is continuous on [a, b] and differentiable on (a, b) and its derivative is f(x):

$$F'(x) = \frac{d}{dx} \int_{a}^{x} f(t) dt = f(x).$$

Part 2 If f is continuous at every point of [a, b] and F is any antiderivative of f on [a, b], then

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

Substitution in Definite Integrals

$$\int_{a}^{b} f(g(x)) \cdot g'(x) dx = \int_{a(a)}^{g(b)} f(u) du$$

Integration by Parts

$$\int_{a}^{b} f(x)g'(x) \, dx = f(x)g(x) \bigg]_{a}^{b} - \int_{a}^{b} f'(x)g(x) \, dx$$