网络技术与应用实验报告

物联网工程 2211999 邢清画

一、实验名称

实验1:局域网组网——仿真环境下的交换式以太网组网和VLAN配置

二、实验要求

- (1)在仿真环境下进行单交换机以太网组网,测试网络的连通性。
- (2)在仿真环境下利用终端方式对交换机进行配置。
- (3)在单台交换机中划分VLAN,测试同-VLAN中主机的连通性和不同VLAN中主机的连通性,并对现象讲行分析。
- (4)在仿真环境下组建多集线器,多交换机混合式网络。划分跨越交换机的VLAN,测试同-VLAN中主机的连通性和不同VLAN中主机的连通性,并对现象进行分析。
- (5)在仿真环境的"模拟"方式中观察数据包在混合式以太网、虚拟局域网中的传递过程,并进行分析。
- (6)学习仿真环境提供的简化配置方式。

三、实验准备

Cisco Packet Tracer

Cisco Packet Tracer 是一款由思科公司开发的网络模拟软件,旨在帮助学习者、教育者和网络工程师进行网络设备的仿真、配置和测试。它提供了丰富的虚拟网络环境,使用户能够在无实际设备的情况下进行网络拓扑设计、配置交换机、路由器、防火墙等网络设备,并测试不同协议(如TCP/IP、OSPF、EIGRP、BGP等)的运行效果。

该工具的主要功能包括:

- 网络设备的配置和管理
- 模拟真实网络环境中的数据包流动
- 支持多种路由协议和网络层协议的实验
- 设备交互和连接的动态可视化

四、实验过程

4.1 在仿真环境下进行单交换机以太网组网并测试网络的连通性

在Cisco Packet Tracer中模拟组建单交换机以太网:

PCO,PC1,PC2对应的本机ip,子网掩码,默认路由ip在设备下方展示。

没有设置vlan的情况下,所有都处在默认的vlan1下,因此,三个PC之间应该可以相互ping通,下面为测试PC1 (192.168.0.2) 分别ping PC0 (192.168.0.1) 和PC2 (192.168.0.3) 的结果:

结果显示,可以ping通,同样测试了剩余的ping方式,均可以ping通(图片只展示了一组,不在此赘述)

4.2 在仿真环境下利用终端方式对交换机进行配置

配置串口连接的参数,设置为9600波特、8个数据位、1个停止位(默认),点击OK

我们知道,一个交换机下可以有多个vlan,在这里我们将PC0设置为vlan2,将PC1、PC2设置为vlan3

在终端输入代码进行vlan进行设置

```
Switch>enable
Switch#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config) #vlan 2
Switch(config-vlan) #exit
Switch(config-vlan) #exit
Switch(config-vlan) #exit
Switch(config-if) #switchport mode access
Switch(config-if) #switchport access vlan 2
Switch(config-if) #switchport access vlan 2
Switch(config-if) #exit
Switch(config-if) #switchport mode access
Switch(config-if) #switchport mode access
Switch(config-if) #switchport access vlan 3
Switch(config-if) #switchport access vlan 3
Switch(config-if) #switchport mode access
Switch(config-if) #switchport mode access
Switch(config-if) #switchport access vlan 3
```

检查设置成功

4.3 在单台交换机中划分VLAN,测试同一VLAN中主机的连通性和不同VLAN中主机的连通性。

使用PC1 (192.168.0.2) 分别ping PC0 (192.168.0.1) 和PC2 (192.168.0.3)

```
C:\>ping 192.168.0.1
Pinging 192.168.0.1 with 32 bytes of data:

Request timed out.

Ping statistics for 192.168.0.1:
    Packets: Sent = 2, Received = 0, Lost = 2 (100% loss),

Control-C
^C
C:\>ping 192.168.0.3
Pinging 192.168.0.3 with 32 bytes of data:

Reply from 192.168.0.3: bytes=32 time<1ms TTL=128
Ping statistics for 192.168.0.3:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms</pre>
```

由于PC1和PC0分别在vlan3,vlan2下,不能ping通;由于PC1和PC2都在vlan3下,可以ping通。

这是因为虚拟局域网之间是相互隔离的,尽管它们都位于同一台交换机中,但一个交换机下可有多个VLAN,它们的广播域是完全分开的。VLAN 的这种隔离性确保了不同 VLAN 之间的网络流量不会相互干扰,因此,不同 VLAN 下的主机无法通过简单的网络请求(如 ping)直接通信。

4.4 在仿真环境下组建多集线器、多交换机混合式网络。

划分跨越交换机的VLAN,测试同一VLAN中主机的连通性和不同VLAN中主机的连通性。

首先设置PC0-PC8的本机ip,子网掩码,默认路由ip,如图所示(从192.168.0.1-192.168.0.8——对应)

通过终端来设置VLAN,为了体现集线器和交换机的特点:同一交换机下可以有多个VLAN,同一集线器下的VLAN相同,按表格所示进行设置:

PC	IPv4 Address	VLAN
PC1	192.168.0.1	vlan 1
PC2	192.168.0.2	vlan 2
PC3	192.168.0.3	vlan 2
PC4	192.168.0.4	vlan 2
PC5	192.168.0.5	vlan 1
PC6	192.168.0.6	vlan 2
PC7	192.168.0.7	vlan 2
PC8	192.168.0.8	vlan 2

```
Switch>enable
Switch#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config) #vlan 2
Switch (config-vlan) #exit
Switch (config-vlan) #exit
Switch(config) #interface fa0/2
Switch(config-if) #switchport mode access
Switch(config-if) #switchport access vlan 2
Switch (config-if) #exit
Switch(config)#interface fa0/3
Switch(config-if) #switchport mode access
Switch(config-if) #switchport access vlan 2
Switch(config-if) #exit
Switch(config)#
Switch(config)#interface fa0/5
Switch(config-if) #switchport mode access
Switch(config-if) #switchport access vlan 2
Switch (config-if) #exit
                                                           Ó
                                                       2960-241
                     Device Name: Switch0
                     Custom Device Model: 2960 IOS15
                     Hostname: Switch
                                          Link
                                                 VLAN
                                                        IP Address
                                                                            MAC Address
                     FastEthernet0/1
                                                                            00D0.BCC3.BC01
                                           Uр
                     FastEthernet0/2
                                                  2
                                                                            00D0.BCC3.BC02
                                          Uр
                     FastEthernet0/3
                                                  2
                                                                            00D0.BCC3.BC03
                                          Up
                      FastEthernet0/4
                                          Uр
                                                  1
                                                                            00D0.BCC3.BC04
                                                                            00D0.BCC3.BC05
                     FastEthernet0/5
                                           Uр
                      FastEthernet0/6
                                           Down
                                                                            00D0.BCC3.BC06
                     FastEthernet0/7
                                          Down
                                                 1
                                                                            00D0.BCC3.BC07
                      FastEthernet0/8
                                          Down
                                                                            00D0.BCC3.BC08
          PC-PT
                      FastEthernet0/9
                                                                            00D0.BCC3.BC09
                                          Down
                     FactEthernot0/10
                                                                            UUDU BCC3 BCUV
Switch>enable
Switch#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config) #vlan 2
Switch (config-vlan) #exit
Switch(config) #interface fa0/2
CDP-4-NATIVE_VLAN_MISMATCH: Native VLAN mismatch discovered on FastEthernet0/5 (1), with Switch
FastEthernet0/5 (2).
Switch(config-if) #switchport mode access
Switch(config-if) #switchport access vlan 2
Switch(config-if)#exit
Switch(config)#
%CDP-4-NATIVE_VLAN_MISMATCH: Native VLAN mismatch discovered on FastEthernet0/5 (1), with Switch
FastEthernet0/5 (2).
vlan 2
Switch(config-vlan)#interface fa0/5
Switch(config-if) #switchport mode access
Switch(config-if) #switchport access vlan 2
Switch(config-if) #exit
Switch(config)#interface fa0/3
Switch(config-if) #switchport mode access
Switch(config-if) #switchport access vlan 2
Switch (config-if) #exit
             296 Device Name: Switch1
                 Custom Device Model: 2960 IOS15
                 Hostname: Switch
                 Port
                                        Link
                                               VLAN
                                                       IP Address
                                                                           MAC Address
                FastEthernet0/1
                                        Uр
                                                                            0002.16DC.6801
                FastEthernet0/2
                                               2
                                                                            0002.16DC.6802
                                       Up
                FastEthernet0/3
                                       Uр
                                               2
                                                                            0002.16DC.6803
                 FastEthernet0/4
                                                                            0002.16DC.6804
                                        Uр
                 FastEthernet0/5
                                        αU
                                                                            0002.16DC.6805
                FastEthernet0/6
                                       Down
                                               1
                                                                            0002.16DC.6806
                 FastEthernet0/7
                                        Down
                                                                            0002.16DC.6807
                 FastEthernet0/8
                                       Down
                                               1
                                                                            0002.16DC.6808
                 FastEthernet0/9
                                                                            0002.16DC.6809
                                       Down
                                               1
     PC-PT
                FastEthernet0/10
                                       Down
                                               1
                                                                            0002.16DC.680A
```

1. 使用PC1 (192.168.0.1) ping PC5 (192.168.0.5) 和PC6 (192.168.0.6):

```
C:\ping 192.168.0.5

Pinging 192.168.0.5 with 32 bytes of data:

Reply from 192.168.0.5: bytes=32 time<1ms TTL=128

Ping statistics for 192.168.0.5:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 0ms, Average = 0ms

C:\ping 192.168.0.6

Pinging 192.168.0.6 with 32 bytes of data:

Request timed out.
Request timed out.
```

PC1和PC5在同一vlan可以连通,和PC6在不同vlan不能连通。

2. 使用PC4 (192.168.0.4) ping PC8 (192.168.0.8):

```
Cisco Packet Tracer PC Command Line 1.0

C:\>ping 192.168.0.8

Pinging 192.168.0.8 with 32 bytes of data:

Reply from 192.168.0.8: bytes=32 time=10ms TTL=128
Reply from 192.168.0.8: bytes=32 time<1ms TTL=128

Ping statistics for 192.168.0.8:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 10ms, Average = 2ms
```

PC4和PC8在同一vlan可以连通(检验集线器)。

3. 使用PC2 (192.168.0.2) ping PC7 (192.168.0.7):

PC2和PC7在同一vlan可以连通。

- 4.5 在仿真环境的"模拟"方式中观察数据包在混合式以太网、虚拟局域网中的传递过程
 - 1. 从PC2 (VLAN2)发送至PC6 (VLAN2)

PC2将数据包发送给交换机0

交换机0将数据包发给集线器Hub0和交换机1

集线器Hub0将数据包发给PC3和PC4但被没被接收,交换机1将数据包发给集线器Hub1和PC6

集线器Hub1将数据包发给PC7和PC8但被没被接收,PC6回复数据给交换机1

交换机1回复数据给交换机0

交换机0回复数据给PC2

PC2数据包传递到PC6过程如下:

PC2和PC6 在一个VLAN里,直接沿着PC2——switch0——switch1——PC6的路径发送数据包。

2. PC2数据包传递到PC5过程如下

Simulation Panel				
Event L	ist			
Vis.	Time(sec)	Last Device	At Device	Type
	0.000		PC2	ICMP
	0.000		PC2	ARP
	0.001	PC2	Switch0	ARP
	0.002	Switch0	Hub0	ARP
	0.002	Switch0	Switch1	ARP
	0.003	Hub0	PC3	ARP
	0.003	Hub0	PC4	ARP
	0.003	Switch1	PC6	ARP
	0.003	Switch1	Hub1	ARP
	0.004	Hub1	PC7	ARP
	0.004	Hub1	PC8	■ ARP
Vis	sible 0.652		Switch0	STP

PC2和 PC5不在一个VLAN中,交换机只会把数据包发给同在一个VLAN的主机,接收到数据包的主机如果不是目标主机不会接收数据包。

4.6 学习仿真环境提供的简化配置方式

简化方式主要是通过图形界面(GUI)和快速设置模式(Easy Setup)进行配置,简化了步骤和界面,适合初学者和需要快速搭建网络的用户

具体方式:

- **图形用户界面** (GUI) 配置:
 - 。 用户通过点击设备图标,进入配置页面进行操作。
 - 。 在设备的"配置"选项卡下,可以通过勾选和下拉菜单等方式,配置设备的接口、路由协议、IP地址等基本功能。
 - 。 不需要使用命令行,操作更加直观。
- 快速设置模式 (Easy Setup):
 - o Packet Tracer 提供的快速设置选项,让用户可以快速为设备配置诸如设备名称、IP地址、默认网关、子网掩码等常见参数。
 - 。 适合初学者在不熟悉命令行的情况下,快速搭建一个基本的网络拓扑。

非简化方式,即通过命令行接口(CLI,Command Line Interface)进行配置,适合有网络基础、对 Cisco 网络设备操作更熟悉的用户。它可以实现更细粒度的控制和更高级的配置功能。

具体方式:

- 命令行接口 (CLI) 配置:
 - o 用户需要通过设备的命令行界面,使用 Cisco 的 IOS 命令手动输入各项配置命令。
 - 包括路由、交换、访问控制列表(ACL)、安全性和设备管理等高级功能,都可以通过命令行精确配置。
 - 。 例如,使用 enable 、 configure terminal 进入设备配置模式,配置 IP 地址、子网、路由协议、访问控制等。

五、实验总结

本次实验通过在仿真环境中对多台交换机与VLAN的配置与联动操作,验证了同一VLAN内的设备可以实现互相通信,而不同VLAN间的设备由于网络隔离的缘故无法直接通信。实验过程中涵盖了单交换机VLAN划分、多交换机之间的VLAN跨越通信测试,以及数据包传输的详细分析。通过Packet Tracer的仿真平台,清晰地展示了数据包在不同拓扑结构中的传输路径,并进一步加深了对网络隔离与分段的理解。