

Прогнозирование конечных свойств новых материалов (композиционных материалов)

Семина Юлия Васильевна

Постановка задачи

1 Разведочный анализ набора данных

Изучение методов для решения поставленной задачи

Применение методов в разработке и обучении моделей

4 Разработка пользовательского приложения

5 Выгрузка в удаленный репозиторий

Исходный набор данных:

X_bp.xlsx
- данные о
параметрах
базальтопластика
(1024x11)

X_nup.xlsx
- данные о
компоновке композитов
(1041x4)

memory usage: 111.9 KB

Out[]: (1023, 13)

Разведочный анализ данных

Объединение по типу INNER

```
In []: # οδъεдинение датасетов

df = X_bp.join(X_nup, how='inner')

df.shape
```

Информация о типах данных

```
df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1023 entries, 0 to 1022
Data columns (total 13 columns):
    Column
                                         Non-Null Count Dtype
                                          -----
    Соотношение матрица-наполнитель
                                         1023 non-null
                                                         float64
    Плотность, кг/м3
                                         1023 non-null
                                                         float64
                                         1023 non-null
                                                         float64
    модуль упругости, ГПа
    Количество отвердителя, м.%
                                         1023 non-null
                                                         float64
    Содержание эпоксидных групп,%_2
                                         1023 non-null
                                                         float64
    Температура вспышки, С_2
                                         1023 non-null
                                                         float64
    Поверхностная плотность, г/м2
                                         1023 non-null
                                                         float64
   Модуль упругости при растяжении, ГПа 1023 non-null
                                                         float64
                                                         float64
    Прочность при растяжении, МПа
                                         1023 non-null
                                                         float64
    Потребление смолы, г/м2
                                         1023 non-null
                                         1023 non-null
                                                         int64
10 Угол нашивки, град
11 Шаг нашивки
                                         1023 non-null
                                                         float64
12 Плотность нашивки
                                         1023 non-null
                                                         float64
dtypes: float64(12), int64(1)
```

Описательная статистика данных

	count	mean	std	min	25%	50%	75%	max
Соотношение матрица-наполнитель	1023.0000	2.9304	0.9132	0.3894	2.3179	2.9069	3.5527	5.5917
Плотность, кг/м3	1023.0000	1975.7349	73.7292	1731.7646	1924.1555	1977.6217	2021.3744	2207.7735
модуль упругости, ГПа	1023.0000	739.9232	330.2316	2.4369	500.0475	739.6643	961.8125	1911.5365
Количество отвердителя, м.%	1023.0000	110.5708	28.2959	17.7403	92,4435	110.5648	129.7304	198.9532
Содержание эпоксидных групп,%_2	1023.0000	22.2444	2.4063	14.2550	20.6080	22.2307	23.9619	33.0000
Температура вспышки, С_2	1023.0000	285.8822	40.9433	100.0000	259.0665	285.8968	313.0021	413.2734
Поверхностная плотность, г/м2	1023.0000	482.7318	281.3147	0.6037	266.8166	451.8644	693.2250	1399.5424
Модуль упругости при растяжении, ГПа	1023.0000	73.3286	3.1190	64.0541	71.2450	73.2688	75.3566	82.6821
Прочность при растяжении, МПа	1023.0000	2466.9228	485.6280	1036.8566	2135.8504	2459.5245	2767.1931	3848.4367
Потребление смолы, г/м2	1023.0000	218.4231	59.7359	33.8030	179.6275	219.1989	257.4817	414.5906
Угол нашивки, град	1023.0000	0.4917	0.5002	0.0000	0.0000	0.0000	1.0000	1.0000
Шаг нашивки	1023.0000	6.8992	2.5635	0.0000	5.0800	6.9161	8.5863	14.4405
Плотность нашивки	1023.0000	57.1539	12.3510	0.0000	49.7992	57.3419	64.9450	103.9889

Пропусков: 0, Дубликатов 0.

Графическое распределение данных

Поиск выбросов. Очистка данных

Методом трех сигм найдено выбросов: 24

Методом межквартильных расстояний найдено выбросов: 93

```
In []:
    # Υ∂απιμπω βωβροςω μεπο∂ομ 3-x сигμ
    outliers = pd.DataFrame(index=df.index)
    for column in df:
        zscore = (df[column] - df[column].mean()) / df[column].std()
        outliers[column] = (zscore.abs() > 3)
    df = df[outliers.sum(axis=1)==0]
    df.shape
Out[]: (1000, 13)
```

При разведочном анализе выявлено:

- пропусков 0, дубликатов 0;
- 1000х13 после удаления выбросов;
- корреляция между признаками близка к 0.

```
# получим количество уникальных значений в каждом столбце
 df.nunique()
Соотношение матрица-наполнитель
                                         994
Плотность, кг/м3
                                         993
модуль упругости, ГПа
                                         999
Количество отвердителя, м.%
                                         983
Содержание эпоксидных групп,% 2
                                         983
Температура вспышки, С 2
                                         982
Поверхностная плотность, г/м2
                                         984
Модуль упругости при растяжении, ГПа
                                         984
Прочность при растяжении, МПа
                                         984
Потребление смолы, г/м2
                                         983
Угол нашивки, град
Шаг нашивки
Плотность нашивки
                                         967
dtype: int64
```


Препроцессинг данных

- 1 Выделение признаков и целевых переменных X, у
- 2 Разделение данных на тренировочную и тестовую выборки 70/30%

3 Препроцессинг данных – стандартизация

```
1 # препроцессинг входных переменных
2 scaler = StandardScaler()
3 scaled2 = ColumnTransformer(transformers=[('scaler', scaler, x2_columns)])
4 x2_train = scaled2.fit_transform(x2_train_raw)
5 x2_test = scaled2.transform(x2_test_raw)

[] 1 # массивы y_train и y_test принимают исходные значения
2 y2_train = y2_train['Прочность при растяжении, МПа'].values
3 y2_test = y2_test['Прочность при растяжении, МПа'].values
```


Разработка и обучение модели

Модель предсказания Модуля упругости при растяжении, ГПа

Метрики модели в результате подбора гиперпараметров кросс-валидации

DecisionTreeRegressor (crite-
rion='absolute_error',
max_depth=1, max_features=4,
random_state=38, splitter='ran-
dom')

Точность на тренировочных и тестовых данных

Данные	R2	RMSE	MAE	MAPE	max_error
Модуль упругости, train	0.006730	-3.023163	-2.410568	-0.032922	-9.400634
Модуль упругости, test	-0.008675	-3.300236	-2.665111	-0.036518	-8.782905

Decision Tree

Разработка и обучение модели

Модель предсказания Прочности при растяжении, МПа

Метрики модели в результате подбора гиперпараметров кросс-валидации

GradientBoostingRegressor (max_depth=6, max_fea- tures=1, n_estimators=1, random_state=3128)	-0.018646	484.82637	- 379.50171	0.168228	1269.36172
GradientBoostingRegressor (loss='absolute_error', max_depth=5, max_fea- tures=1, n_estimators=1, random_state=3128)	-0.021328	- 485.48386	- 380.46830	0.168037	- 1268.91142

Точность на тренировочных и тестовых данных

Данные	R2	RMSE	MAE	MAPE	max_error
Прочность при растяжении, train	0.033631	477.8012	374.10805	0.165670	1415.5576
Прочность при растяжении, test	0.00914	483.0871	389.41809	0.16625	1372.9174

Gradient Boosting

Нейронная сеть для рекомендаций Соотношение матрица-наполнитель

	R2	RMSE	MAE	MAPE	max_error
Соотношение матрица- наполнитель, тренировочный	-0.002767	0.923670	0.741881	0.330315	2.613384
Соотношение матрица- наполнитель, тестовый	-0.000423	0.874308	0.695222	0.296718	2.479797

Разработка приложения

Интеграция модели нейросети из TensorFlow. Python. Flask. Jinja

Спасибо за внимание!

github.com/maaliskuussa

do.bmstu.ru

