Q1 Variations of the Two-Spiral Task

a) Original Dataset

Steps

- 1. data obtained from http://wiki.cs.brynmawr.edu/?page=TwoSpiralsProblem
 - 1. version on blackboard did not contain class identifiers
 - 2. according to the code in the original paper, this seems to be the correct format
- 2. converted spaces to tabs
- 3. processed with Pybrain (pybrain-classify.py)
 - 1. followed tutorial
 - used two binary output neurons (dataset._convertToOneOfMany(bounds=[0.,1.]))
 - 3. used ideas from Beherey et al.
 - 1. network layout: 2 hidden layers with 77 neurons each
 - 2. activation: tanh for hidden layers, linear for output
 - 3. RPROP as training algorithm, because it converges faster than back propagation

Result

- reproduce by running pybrain-classify.py
- visualization of final result not available (plot stopped responding)

- training error achieved after 5000 epochs: 0.52% (1 misclassified)

b) Self-generated dataset

${\bf Steps}$

1. generated data set using algorithm in blackboard

- 1. far denser spirals
- 2. 1920 (10x as many) data points
- 2. trained feed-forward net with same characteristics as in a) on new data

Result

 $\bullet~10$ times as many data points leads to longer training times per epoch

- faster conversion
 - zero classification errors after 598 epochs

• smoother learning curve

c) Four Spirals

Steps

1. adapted spiral generation script to generate two additional spirals (rotated 90 degrees against original ones)

2. trained feed-forward net with same characteristics as in a) (but 4 classes instead of only two) on new data

\mathbf{Result}

- $\bullet\,$ due to time constraints canceled training after 2000 epochs
 - classification error at this point: 28.42%

• up to this point promising: with enough time, the ANN should hopefully generalize

d) ANNs vs SVMs

General Discussion

- \bullet as discussed in class, SVMs can be seen as a generalisation of neural networks
 - $-\,$ with a good kernel, the spiral data can be transformed into a linearly separable form

Results

- as suggested in the background reading paper, we used radial basis function kernels
- $\bullet\,$ far lower training times than ANNs for the spiral task