Table of Contents

The results are exactly same with Bloomberg and Dr. K's Final Excel	
1d shows where to short or long and profits: also scatter them in a graph	4
3d where we can choose best sigma and length combinations	l:

The results are exactly same with Bloomberg and Dr. K's Final Excel

```
% 2 refers the user wants simple moving average
% 1.9 = sigma
% 30= length
% 0.94 = lambda
[profits1,cumulativeprofit1,short_prices1,long_prices1]=...
bollingerband1d(2,1.9,30,0.94)
% If we play with numbers
[profits2,cumulativeprofit2,short_prices2,long_prices2]= ...
bollingerband1d(2,2.5,60,0.94)
% 1 refers the user wants exponentially weighted moving average
% 1.9 = sigma
% 30= length
% 0.94 = lambda
   [profits3,cumulativeprofit3,short_prices3,long_prices3]=...
      bollingerband1d(1,1.9,30,0.94)
% If we play with numbers
   [profits4,cumulativeprofit4,short_prices4,long_prices4]=...
      bollingerband1d(1,2.5,60,0.94)
% We can play with numbers till morning. But what if we create a for
% which will show us the best numbers?????
% first number 2 refers simple moving average
% 1.9= where the sigma starts
  30= where the length starts
  0.94=lambda
[cumulativeprofit5]=bollingerband3d(2,1.9,30,0.94)
% First number 1 refers exponentially weighted moving average
% 1.9= where the sigma starts
  30= where the length starts
  0.94=lambda
[cumulativeprofit6]=bollingerband3d(1,1.9,30,0.94)
```

1d shows where to short or long and profits: also scatter them in a graph

```
function [profits,cumulativeprofit,short prices,long prices]=...
   bollingerbandld(ExpWeighOrSimp, sigma, lengthh, lambda)
   %ExpWeighOrSimp=1 exponential weighted moving average
   %ExpWeighOrSimp=2 simple moving average
load('price.mat');
endpoint=size(price,1);
if ExpWeighOrSimp==1 %finding Ewma if the user wants exponential mov.
avrq.
   weight=zeros(endpoint,1);
   for i=1:lengthh
        weight(lengthh+1-i,1)=(1-lambda)*lambda^(i-1);
   end
   stds=price.*weight;
    ewma(lengthh+1,1)=sum(stds(1:30));
    for i=lengthh+2:endpoint
        ewma(i,1)=(lambda*ewma(i-1,1))+((1-lambda)*price(i-1,1));
    end
end
     for i=1:endpoint-lengthh %Finding upper bounds and lower bounds
         if ExpWeighOrSimp==1
              lbb(lengthh+i,1)=ewma(lengthh+i,1)-(sigma*(std(price...
                  (i+1:i+lengthh)*((lengthh-1)^0.5))/
((lengthh-0)^0.5)));
         ubb(lengthh+i,1)=ewma(lengthh+i,1)+(sigma*(std(price...
             (i+1:i+lengthh)*((lengthh-1)^0.5))/((lengthh-0)^0.5)));
         else
         lbb(lengthh+i,1)=mean(price(i+1:i+lengthh))-(sigma*(std...
             (price(i+1:i+lengthh)*((lengthh-1)^0.5))/
((lengthh-0)^0.5)));
         ubb(lengthh+i,1)=mean(price(i+1:i+lengthh))+(sigma*(std...
             (price(i+1:i+lengthh)*((lengthh-1)^0.5))/
((lengthh-0)^0.5)));
         if price(lengthh+i,1)<lbb(lengthh+i,1) %find where short or
 long
             long(lengthh+i,1)=1;
         else
             long(lengthh+i,1)=0;
         if price(lengthh+i,1)> ubb(lengthh+i,1)
             short(lengthh+i,1)=1;
             short(lengthh+i,1)=0;
         end
```

```
totalmoney=100000000;
     next_long=find(long~=0, 1, 'first');
     next short=find(short~=0, 1, 'first');
     profit(next_long,1) = (price(next_short,1)-price(next_long,1))...
         *round(totalmoney/price(next_short,1),0);
     totalmoney=100000000+sum(profit);
     numberoflong=1;
     numberofshort=1;
     for a=1:1000% Just a big number to make sure that covers all the
 array
       if i~=endpoint
         for i= next_long:endpoint
             if short(i,1)==1
                 next_short=i;
                 numberofshort=numberofshort+1;
                 break
             end
         end
         if i~=endpoint
             profit(next short,1) = -1* ((price(next long,1)-price...
                 (next_short,1))*round(totalmoney/
price(next_long,1),0));
             totalmoney=100000000+sum(profit);
         end
         for i= next_short:endpoint
             if long(i,1)==1
                 next long=i;
                 numberoflong=numberoflong+1;
                 break
             end
         end
         if i~=endpoint
             profit(next long,1)= (price(next short,1)-price...
                 (next_long,1))*round(totalmoney/
price(next_short,1),0);
             totalmoney=100000000+sum(profit);
         end
       end
     end
     %Find MTM to cover the last trade
     if mod(numberoflong+numberofshort,2)==1
         if next_short>next_long
             profit(endpoint,1) = (price(next short,1)-price...
                 (endpoint,1))*round(totalmoney/
price(next_short,1),0);
         end
         if next long>next short
             profit(endpoint,1) = -1* ((price(next_long,1)-price...
```

end

```
(endpoint,1))*round(totalmoney/
price(next long,1),0));
         end
     end
     totalmoney=100000000+sum(profit);
     cumulativeprofit= sum(profit);
     [x,y,profits]=find(profit);
     first_long=find(long~=0, 1, 'first');
     first_short=find(short~=0, 1, 'first');
     shortprices=zeros(endpoint,1);
     longprices=zeros(endpoint,1);
     shortprices(first short,1) = price(first short,1);
      for j=1:2:(numberoflong+numberofshort)
      longprices(x(j),1)=price(x(j));
      end
      for j=2:2:(numberoflong+numberofshort)
          shortprices(x(j),1)=price(x(j));
      end
% this step is only for using scatter in the graph( there must be an
 easy
% way but this way tought me many other things.
[s1,s2,short_prices]=find(shortprices);
position1=zeros(endpoint,1);
sizet1=size(s1,1);
      for i=1:sizet1
      position1(s1(i),1)=s1(i);
 [11,12,long_prices]=find(longprices);
position2=zeros(endpoint,1);
sizet2=size(l1,1);
      for i=1:sizet2
      position2(11(i),1)=11(i);
figure
plot(price)
hold on
plot(ubb)
hold on
plot(lbb)
hold on
scatter(position1, shortprices, 'filled', 'd')
hold on
scatter(position2,longprices,'filled','d')
legend('closeprice','ubb','lbb','shortprices','longprices')
if ExpWeighOrSimp==2
title('Simple Moving Average')
    title('Exponentially Weighted Moving Average')
end
      My results are checked in Bloomberg and all the results are
 correct..
```

end

```
profits1 =
   1.0e+07 *
    0.5379
    0.8259
   -3.4053
    0.7207
    0.0602
   -0.0831
   -4.2299
    0.2514
   -1.3877
   0.5111
   -1.3521
   -0.0222
    0.0473
    0.2758
    0.1766
    0.2911
   -0.3885
    0.1583
    0.8070
    0.0094
    0.4240
    0.1949
    0.4226
    0.5670
   -0.2616
    0.4133
    0.7626
    0.6139
    0.2583
    0.4922
    0.6633
    0.1227
   -1.6754
cumulativeprofit1 =
  -3.1981e+07
short_prices1 =
   63.3530
   64.6430
```

91.6220

90.1210 141.7760 212.3920 285.3300 310.9640 319.9350 378.6190 277.0400 257.5120 260.1650 294.6230 278.9100 286.8900 266.0000 long_prices1 = 59.9450 84.0140 90.9860 134.1580 183.8330 287.9360 279.7750 290.9940 358.5570 276.3580 246.1640 232.9100 272.7380 254.2420 268.5300 262.1500 318.5700 profits2 = 1.0e+07 * -9.6939 0.0581 -0.3041 0.0091 0.0094 0.0079 0.0122 0.0119 -0.0098

cumulativeprofit2 =

-9.8993e+07

short_prices2 =

64.6430

151.4660

319.9350

304.0650

292.6400

long_prices2 =

127.3070

277.9330

276.3580

261.2610

318.5700

profits3 =

1.0e+07 *

-3.8031

0.4586

0.6990

1.6436

-2.7464

0.5219

-2.3311

0.5088

-1.6179

0.0419

0.1142

0.4467 0.4181

0.6580

-0.6051

0.2466

1.2570

-0.0146

0.6312

0.3009

0.6524

0.6524

0.8754 -0.2790

0.7743

1.0933

0.7964

0.6454

0.6454

-1.7361

short_prices3 = 61.7600 91.5570 100.2530 141.7760 212.3920 285.3300 310.9640 319.9350 378.6190 275.6760 257.5120 260.1650 294.6230 278.9100 278.6000 long_prices3 = 85.2480 81.9410 130.8520 190.5670 281.7920 275.6760 277.9330 358.5570 276.3580 246.1640 232.9100 268.8510 258.2310 262.1500 318.5700 profits4 = 1.0e+08 * -3.4601 -0.2466 0.1291

cumulativeprofit3 =

3.6491e+06

cumulativeprofit4 =

-3.5776e+08

short_prices4 =

61.9620

304.0650

long_prices4 =

276.3580

318.5700

3d where we can choose best sigma and length combinations

```
function [cumulativeprofit]=bollingerband3d...
    (ExpWeighOrSimp, sigma, lengthh, lambda) %
load('price.mat');
endpoint=size(price,1);
lbb=zeros(endpoint,1);
short=zeros(endpoint,1);
long=zeros(endpoint,1);
profit=zeros(10000,100);
profitss=zeros(100,100);
if ExpWeighOrSimp==1 %it is whether Exponentially Weighted or Simple
    weight=zeros(endpoint,1);
    for i=1:lengthh
        weight(lengthh+1-i,1)=(1-lambda)*lambda^(i-1);
    end
    stds=price.*weight;
    ewma(lengthh+1,1)=sum(stds(1:30));
    for i=lengthh+2:endpoint
```

```
ewma(i,1) = (lambda*ewma(i-1,1)) + ((1-lambda)*price(i-1,1));
    end
end
 for lengthh=30:90
   for sigma=1.9:0.1:3
     for i=1:endpoint-lengthh
         if ExpWeighOrSimp==2
             lbb(lengthh+i,1)=mean(price(i+1:i+lengthh))-
(sigma*(std...
                 (price(i+1:i+lengthh)*...
                 ((lengthh-1)^0.5))/((lengthh-0)^0.5)));
             ubb(lengthh+i,1)=mean(price(i+1:i+lengthh))+(sigma*...
                 (std(price(i+1:i+lengthh)*...
                 ((lengthh-1)^0.5))/((lengthh-0)^0.5));
         else
         lbb(lengthh+i,1)=ewma(lengthh+i,1)-(sigma*(std(price...
             (i+1:i+lengthh)*((lengthh-1)^0.5))/((lengthh-0)^0.5)));
         ubb(lengthh+i,1)=ewma(lengthh+i,1)+(sigma*(std(price...
             (i+1:i+lengthh)*((lengthh-1)^0.5))/((lengthh-0)^0.5)));
         end
         if price(lengthh+i,1)<lbb(lengthh+i,1)</pre>
             long(lengthh+i,1)=1;
         else
             long(lengthh+i,1)=0;
         end
         if price(lengthh+i,1)> ubb(lengthh+i,1)
             short(lengthh+i,1)=1;
         else
             short(lengthh+i,1)=0;
         end
     end
     totalmoney(lengthh-29)=1000000000;
     next long=find(long~=0, 1, 'first');
     next_short=find(short~=0, 1, 'first');
     profit(next_long,lengthh-29) = (price(next_short,1)-price...
         (next_long,1))*round(totalmoney(lengthh-29)/
price(next_short,1),0);
     totalmoney(lengthh-29)=100000000+sum(profit(:,lengthh-29));
     numberoflong=1;
     numberofshort=1;
     for a=1:1000% Just a big number to make sure that covers all the
array
       if i~=endpoint
         for i= next_long:endpoint
             if short(i,1)==1
                 next_short=i;
                 numberofshort=numberofshort+1;
                 break
             end
```

```
end
         if i~=endpoint
             profit(next_short,lengthh-29)= -1*
 ((price(next long,1)...
                 -price(next_short,1))*round(totalmoney(lengthh-29)...
                 /price(next_long,1),0));
 totalmoney(lengthh-29)=100000000+sum(profit(:,lengthh-29));
         end
         for i= next short:endpoint
             if long(i,1)==1
                 next_long=i;
                 numberoflong=numberoflong+1;
                 break
             end
         end
         if i~=endpoint
             profit(next_long,lengthh-29) = (price(next_short,1) -
price...
                 (next_long,1))*round(totalmoney(lengthh-29)/...
                 price(next_short,1),0);
 totalmoney(lengthh-29)=100000000+sum(profit(:,lengthh-29));
         end
       end
     end
     %Find MTM to cover the last trade
     if mod(numberoflong+numberofshort,2)==1
         if next short>next long
             profit(endpoint,lengthh-29) = (price(next_short,1) -
price...
                 (endpoint,1))*round(totalmoney(lengthh-29)/...
                 price(next_short,1),0);
         end
         if next long>next short
             profit(endpoint,lengthh-29) = -1* ((price(next_long,1)-
price...
                 (endpoint,1))*round(totalmoney(lengthh-29)/...
                 price(next_long,1),0));
         end
     end
     totalmoney(lengthh-29,(sigma*10)-18)=100000000+sum(profit...
         (:,lengthh-29));
     cumulativeprofit(lengthh-29,(sigma*10)-18)=
 sum(profit(:,lengthh-29));
     [x,y,profits]=find(profit(:,lengthh-29));
   end
 end
figure
surf(cumulativeprofit)
```

```
shading interp
colormap(pink)
legend('cumulative profit')
xlabel('sigma from 1.9 to 3 by 0.1 increase')
ylabel('moving average length from 30 to 90 by 1 increse')
zlabel('cumulativeprofit at the end ( include MtM last trade)')
if ExpWeighOrSimp==2
    title('Simple Moving Average')
else
    title('Exponentially Weighted Moving Average')
end
end
cumulativeprofit5 =
   1.0e+09 *
  Columns 1 through 7
   -0.0320
               0.0169
                         0.0246
                                    0.0741
                                              0.0328
                                                         0.0553
                                                                    0.2524
   -0.0433
               0.0111
                         0.0833
                                   -0.0297
                                              0.1368
                                                         0.0609
                                                                    0.1459
   -0.0199
               0.0210
                         0.0172
                                    0.0556
                                              0.0437
                                                         0.0577
                                                                   -0.1487
   -0.0106
                                             -0.2066
                                                                   -0.1762
              0.0238
                         0.0679
                                   -0.0011
                                                         0.0562
    0.0024
              0.1010
                        -0.1952
                                   -0.1005
                                             -0.1361
                                                        -0.1819
                                                                   -0.1106
    0.0188
              0.0642
                        -0.0409
                                   -0.1274
                                              0.0939
                                                        -0.1752
                                                                   0.1132
    0.0119
              0.0297
                        -0.1210
                                    0.1783
                                             -0.1766
                                                         0.2091
                                                                   -0.3224
    0.0270
              0.0938
                        -0.1188
                                    0.2753
                                             -0.1043
                                                        -0.1614
                                                                   -0.1062
    0.0281
              0.1230
                        -0.1835
                                    0.4880
                                             -0.1481
                                                         0.6242
                                                                   -0.4250
    0.0461
              0.0965
                        -0.1984
                                   -0.1350
                                             -0.1112
                                                        -0.2256
                                                                   -0.0511
    0.0642
              0.1870
                        -0.1531
                                   -0.1326
                                             -0.0132
                                                        -0.2594
                                                                   -0.0901
    0.0278
              0.1993
                        -0.1467
                                   -0.1531
                                              0.0138
                                                        -0.1479
                                                                    0.0064
    0.0426
              0.1652
                        -0.1829
                                    0.7861
                                             -0.2173
                                                         1.2056
                                                                   -0.6155
    0.0126
              0.1316
                        -0.1838
                                    0.3521
                                             -0.1562
                                                         0.1967
                                                                   -0.1215
    0.0017
             -0.1177
                         0.1049
                                   -0.0542
                                              0.1959
                                                        -0.0192
                                                                   -0.1228
   -0.0862
              0.0264
                        -0.0684
                                   -0.0769
                                              0.0226
                                                        -0.1190
                                                                   -0.1128
   -0.0830
              0.0368
                        -0.0591
                                   -0.1632
                                             -0.1173
                                                        -0.1522
                                                                   -0.1189
   -0.0859
                        -0.0389
                                             -0.0878
              0.0244
                                   -0.1548
                                                        -0.1780
                                                                   -0.1010
   -0.0847
              0.0179
                        -0.0365
                                   -0.1492
                                             -0.0782
                                                        -0.2174
                                                                   -0.0783
   -0.0848
              0.0213
                        -0.0990
                                    0.0079
                                             -0.1512
                                                        -0.1206
                                                                   -0.2159
   -0.0848
              0.0531
                        -0.1299
                                    0.0658
                                             -0.1122
                                                        -0.1350
                                                                   -0.1465
   -0.0823
              0.0470
                        -0.1088
                                    0.0433
                                             -0.1327
                                                        -0.0054
                                                                   -0.1284
   -0.0794
              0.0452
                        -0.1036
                                    0.0041
                                             -0.0381
                                                        -0.0208
                                                                   -0.1362
   -0.0793
              0.0081
                        -0.1049
                                    0.0109
                                             -0.0191
                                                        -0.1558
                                                                   -0.1004
   -0.0772
              -0.1129
                        -0.1082
                                   -0.1466
                                             -0.1893
                                                        -0.0672
                                                                   -0.1956
   -0.0771
             -0.1054
                        -0.0853
                                   -0.1263
                                             -0.1561
                                                        -0.0846
                                                                   -0.1585
   -0.0685
             -0.1025
                        -0.0516
                                   -0.1161
                                             -0.0974
                                                        -0.0976
                                                                   -0.0758
   -0.0682
             -0.1037
                        -0.0497
                                   -0.1395
                                             -0.0617
                                                        -0.1156
                                                                   -0.2307
                         0.0976
                                    0.1095
                                                                    0.1773
   -0.0490
              0.0153
                                              0.2209
                                                        -0.1859
   -0.0491
              0.0635
                         0.0775
                                    0.2661
                                              0.1560
                                                        -0.2379
                                                                    0.2458
   -0.0491
              0.0735
                         0.1008
                                    0.2393
                                              0.1643
                                                        -0.3414
                                                                    0.2162
   -0.0484
                         0.0256
                                    0.2703
                                             -0.2947
                                                         0.3720
                                                                   -0.5297
              0.0823
                        -0.0497
                                                         0.6123
   -0.0468
              0.0810
                                    0.4337
                                             -0.2108
                                                                   -0.1247
```

-0.0476	0.0832	0.0045	0.4697	-0.3135	-0.1630	-0.4247
-0.0458	0.1785	0.0962	-0.2320	-0.1288	-0.4377	-0.3663
-0.0169	0.1461	0.1856	-0.2225	-0.1471	-0.4298	-0.3595
-0.0160	0.1546	0.2601	-0.3392	-0.1774	-0.6324	-0.3104
-0.0200	0.1692	-0.1904	0.6476	-0.0953	1.5090	-0.3750
-0.0188	-0.1585	0.1591	-0.3765	-0.1083	-0.5855	-0.1644
-0.0166	-0.1610	0.1795	-0.2876	-0.1199	-0.4391	-0.9631
-0.0826	0.1465	-0.0245	0.5829	-0.2227	1.3258	-1.0776
-0.0822	0.0837	-0.0136	0.3037	0.1084	-0.3700	-0.1171
-0.0835	0.0951	-0.0802	0.3142	-0.0817	-0.2554	-0.2916
-0.0835	0.1001	-0.0594	0.3198	-0.0727	-0.2914	-0.2599
-0.0829	0.0980	-0.0466	0.3372	-0.0404	-0.2813	-0.3146
-0.0855	0.0499	-0.0685	0.2441	-0.0948	-0.2515	-0.1439
-0.0855	0.0613	-0.0317	0.2769	-0.2129	0.4561	-1.0670
-0.0888	0.0562	-0.0877	0.2220	-0.1163	0.4775	-0.8526
-0.0875	0.0821	-0.0031	0.2910	-0.1327	0.5339	-0.1144
-0.0844	0.0805	-0.0156	0.2852	-0.1308	0.5425	-0.0681
-0.0816	0.1058	-0.0766	0.3652	-0.1660	0.4796	-0.1436
-0.0813	0.1039	-0.0767	0.3493	-0.1633	0.4632	-0.1379
-0.0813	0.1081	-0.1089	-0.1026	-0.1603	-0.2542	-0.6089
-0.0813	0.0356	-0.2427	-0.1728	-0.1198	-0.3202	-0.9485
-0.0994	-0.0949	-0.1010	-0.1010	-0.1224	-0.2479	-0.8680
-0.0993	-0.0950	-0.1000	-0.0904	-0.1244	-0.2282	-0.8458
-0.0993	-0.0950	-0.0992	-0.1232	-0.0944	-0.1112	-0.6426
-0.0995	-0.0950	-0.0992	-0.1229	-0.2466	-0.0925	-0.8648
-0.0996	-0.1002	-0.0999	-0.1225	-0.2465	-0.0917	-0.8637
-0.0994	-0.0999	-0.0991	-0.1232	-0.2410	-0.0930	-0.8562
-0.0994	-0.1000	-0.1185	-0.2230	-0.1375	-0.2867	-0.9426
Columns 8	through 12	?				

C°

0.1778	-0.3011	-0.0711	-0.2036	-0.0914
0.4174	0.0266	-0.1402	-0.0866	-0.1046
0.1758	0.0512	-0.0583	-0.1196	-0.0911
-0.0313	-0.0778	-0.0958	-0.0891	-0.1121
-0.1999	-0.3035	-0.1878	-0.1771	-0.0456
-0.0963	-0.0617	-0.0161	-0.1833	-0.0241
-0.1188	-0.2976	0.0412	-0.8922	0.6755
-0.2053	-0.2511	-0.3370	-0.0065	-1.0121
0.5417	0.2136	1.0482	1.1134	1.1363
-0.2010	-0.1179	-0.3220	-0.8586	-0.9048
-0.2898	-0.1794	-0.5839	-1.8037	-2.0086
-0.2293	-0.0893	-0.3250	-0.8867	-0.9276
0.7056	0.2319	0.2937	0.2170	0.2595
0.0786	-0.1030	-0.2526	-0.3295	-0.3585
-0.1123	-0.2047	-0.5261	-0.7250	-0.7909
-0.2189	-0.1394	-0.5723	-0.7802	-0.7822
-0.2498	-0.1550	-0.3446	-0.9485	-1.0028
-0.2628	-0.1184	-0.5926	-0.6444	-0.6586
-0.1966	-0.0867	-0.4981	-0.5401	-0.5374
-0.1285	-0.5592	-0.5755	-0.7610	-0.7431
-0.1366	-0.8247	-1.6045	-1.6353	-1.5878
-0.0033	-0.7740	-1.2633	-1.2628	-1.1696
-0.0309	-0.8590	-1.4114	-1.4109	-1.3027

-0.2054	-1.0622	-1.6227	-1.6180	-1.6175
-0.0283	-0.9161	-0.9168	-0.9167	-0.9167
-0.0563	-0.8866	-0.8872	-0.8871	-0.8871
-0.0925	-0.7762	-0.7768	-0.7767	-0.7767
-0.9243	-2.3047	-2.4425	-2.4501	-2.4511
-0.5156	-1.2340	-1.3052	-1.3091	-1.3096
-0.4719	-0.9973	-1.9685	-1.9654	-1.9649
-0.6906	-1.3573	-1.5013	-1.5034	-1.5034
-0.5665	-1.0128	-0.9920	-0.9918	-0.9917
0.4390	0.5210	0.6924	0.6760	0.6761
-1.0730	-1.1766	-1.4640	-1.4350	-1.4350
-1.4196	-1.8448	-2.0287	-1.9665	-1.9644
-1.3892	-1.8037	-1.9831	-1.9224	-1.9203
-1.8840	-2.4588	-2.7038	-2.6196	-2.6167
1.2118	1.6361	1.6048	1.6053	1.6052
-1.5954	-1.8403	-1.7917	-1.7906	-1.7903
-1.2192	-1.3287	-1.2884	-1.2870	-1.2867
0.0702	0.1934	0.1930	0.1936	0.1936
-1.2033	-1.1975	-1.1993	-1.1993	-1.1993
-1.2968	-1.2860	-1.2874	-1.2874	-1.2874
-1.3060	-1.2952	-1.2967	-1.2967	-1.2967
-0.8965	-0.9000	-0.9003	-0.9003	-0.9003
-0.8154	-0.8185	-0.8187	-0.8187	-0.8187
-0.1084	-0.1038	-0.1035	-0.1035	-0.1034
0.0962	0.1008	0.1011	0.1012	0.1012
-0.1322	-0.1339	-0.1340	-0.1340	-0.1340
-0.0859	-0.0875	-0.0877	-0.0877	-0.0877
-0.1869	-0.1911	-0.1915	-0.1915	-0.1915
-0.1539	-0.1554	-0.1555	-0.1555	-0.1555
-0.6079	-0.6078	-0.6078	-0.6078	-0.6078
-0.7418	-0.7215	-0.7196	-0.7194	-0.7194
-0.6853	-0.6673	-0.6656	-0.6654	-0.6654
-0.6696	-0.6523	-0.6506	-0.6504	-0.6504
-0.5214	-0.5095	-0.5083	-0.5082	-0.5082
-0.6922	-0.6752	-0.6736	-0.6734	-0.6734
-0.6914	-0.6744	-0.6728	-0.6726	-0.6726
-0.6856	-0.6688	-0.6672	-0.6670	-0.6670
-0.7403	-0.7204	-0.7185	-0.7183	-0.7183

cumulativeprofit6 =

1.0e+10 *

Columns 1 through 7

0.0004	0.0046	0.0045	0.0098	-0.0118	0.0222	-0.0593
0.0013	0.0015	0.0103	0.0099	0.0436	-0.0164	0.0035
0.0013	0.0025	0.0142	0.0377	0.0976	-0.1776	0.4750
-0.0030	0.0033	0.0168	0.0697	-0.0648	0.0736	-0.2982
-0.0003	-0.0136	0.0231	-0.0293	0.0647	0.0142	0.0078
-0.0083	0.0073	-0.0173	0.0321	-0.0442	0.0485	-0.2156
-0.0082	0.0126	-0.0238	0.0792	-0.0572	0.2289	-0.5372
-0.0077	0.0134	-0.0255	-0.0248	-0.0052	-0.0554	0.1079

-0.0075	0.0132	-0.0437	0.0001	-0.0772	0.1422	-0.4501
-0.0075	0.0132	-0.0380	0.0782	-0.1056	0.3887	-0.9413
-0.0073	0.0122	-0.0364	0.0582	-0.1114	0.1117	-0.0351
-0.0075	0.0120	-0.0261	0.0582	-0.1051	0.2136	0.0331
-0.0075	0.0132	-0.0201	0.0091	-0.1031	0.2130	-0.0339
-0.0080		-0.0337	0.0449			-0.0339
	0.0101			-0.0383	0.0357	
-0.0079	-0.0114	-0.0036	-0.0185	-0.0012	-0.0348	-0.0646
-0.0088	-0.0103	-0.0069	-0.0125	-0.0049	-0.0189	-0.0428
-0.0088	-0.0101	-0.0069	-0.0123	-0.0049	-0.0184	-0.0546
-0.0090	-0.0103	-0.0071	-0.0124	-0.0059	-0.0172	-0.0547
-0.0090	-0.0103	-0.0068	-0.0123	-0.0057	-0.0132	-0.0522
-0.0090	-0.0103	-0.0076	-0.0110	-0.0074	-0.0153	-0.0538
-0.0073	-0.0112	-0.0055	-0.0115	-0.0044	-0.0145	-0.0507
-0.0071	-0.0116	-0.0054	-0.0110	-0.0055	-0.0144	-0.0514
-0.0076	-0.0104	-0.0063	-0.0095	-0.0065	-0.0104	-0.0496
-0.0076	-0.0103	-0.0065	-0.0100	-0.0071	-0.0115	-0.0512
-0.0075	-0.0102	-0.0069	-0.0098	-0.0078	-0.0116	-0.0515
-0.0079	-0.0095	-0.0066	-0.0089	-0.0082	-0.0105	-0.0505
-0.0078	-0.0095	-0.0070	-0.0096	-0.0085	-0.0111	-0.0514
-0.0076	0.0001	-0.0083	-0.0012	-0.0064	-0.0067	-0.0435
-0.0076	0.0006	-0.0083	-0.0007	-0.0060	-0.0038	-0.0386
-0.0077	-0.0001	-0.0092	-0.0013	-0.0067	-0.0036	-0.0341
-0.0077	-0.0088	-0.0071	-0.0089	-0.0078	-0.0080	-0.0440
-0.0077	-0.0088	-0.0071	-0.0087	-0.0079	-0.0090	-0.0453
-0.0077	-0.0088	-0.0071	-0.0099	-0.0100	-0.0112	-0.0509
-0.0074	-0.0099	-0.0075	-0.0089	-0.0071	-0.0093	-0.0457
-0.0073	-0.0101	-0.0061	-0.0097	-0.0059	-0.0079	-0.0441
-0.0073	-0.0104	-0.0060	-0.0097	-0.0050	0.0003	0.0018
-0.0073	-0.0104	-0.0090	-0.0099	-0.0086	-0.0072	-0.0113
-0.0085	-0.0005	-0.0116	-0.0110	-0.0172	-0.0239	-0.0398
-0.0085	-0.0001	-0.0097	0.0030	0.0157	0.0326	0.0504
-0.0085	-0.0001	-0.0097	0.0030	0.0157	0.0326	-0.0372
-0.0087	-0.0021	-0.0143	0.0005	0.0111	0.0257	-0.0325
-0.0087	-0.0021	-0.0143	0.0005	0.0111	-0.0243	0.0488
-0.0091	-0.0021	-0.0157	0.0003	0.0111	-0.0253	0.0499
-0.0091	-0.0021	-0.0157	0.0010	0.0125	0.0282	-0.0354
	0.00021		0.0010	0.0125		
-0.0089		-0.0093			0.0332	-0.0386
-0.0087	0.0020	-0.0128	0.0053	0.0203	0.0408	-0.0437
-0.0087	-0.0001	-0.0097	0.0035	0.0084	0.0353	-0.0410
-0.0087	-0.0001	-0.0097	0.0035	0.0168	0.0305	-0.0373
-0.0087	-0.0031	-0.0106	-0.0008	0.0028	0.0117	-0.0247
-0.0087	-0.0031	-0.0110	-0.0010	0.0090	0.0231	-0.0325
-0.0087	-0.0031	-0.0110	-0.0010	-0.0091	0.0024	-0.0338
-0.0087	-0.0013	-0.0107	-0.0010	-0.0092	-0.0154	-0.0527
-0.0086	-0.0009	-0.0120	0.0041	-0.0116	-0.0104	-0.0469
-0.0084	0.0006	-0.0078	-0.0097	-0.0106	-0.0222	-0.0588
-0.0084	0.0006	-0.0078	-0.0114	-0.0161	-0.0227	-0.0599
-0.0084	0.0006	-0.0096	-0.0101	-0.0097	-0.0096	-0.0459
-0.0085	-0.0008	-0.0178	-0.0121	-0.0182	-0.0274	-0.0647
-0.0101	-0.0108	-0.0101	-0.0100	-0.0101	-0.0101	-0.0465
-0.0101	-0.0108	-0.0101	-0.0100	-0.0101	-0.0101	-0.0465
-0.0101	-0.0108	-0.0101	-0.0100	-0.0101	-0.0101	-0.0465
-0.0101	-0.0108	-0.0101	-0.0100	-0.0101	-0.0465	-0.0467

0.1716	-0.4146	0.7900	-0.2038	-0.2333
-0.0783	0.1219	-0.2987	-0.3041	-0.3024
-1.1548	2.1574	-0.7247	-0.7042	-0.6900
0.6146	-1.2705	-1.4544	-1.3843	-1.3828
0.0371	-0.0425	-0.0760	-0.0733	-0.0731
0.3890	-0.9290	0.5415	-1.6202	-1.9833
1.1141	-2.4309	-2.2828	-3.2889	-3.1835
-0.2395	-0.0206	-0.0653	-0.0640	-0.0641
-0.0776	-0.1321	-0.1411	-0.1364	-0.1366
0.0489	0.0011	-0.0048	-0.0053	-0.0053
-0.0484	-0.0792	-0.0850	-0.0823	-0.0825
0.0483	0.0177	0.0173	0.0175	0.0174
-0.0411	-0.0769	-0.0825	-0.0827	-0.0827
-0.0152	-0.0484	-0.0488	-0.0520	-0.0521
-0.0677	-0.0907	-0.1423	-0.1538	-0.1541
-0.0456	-0.0724	-0.1195	-0.1291	-0.1293
-0.0559	-0.0816	-0.1307	-0.1318	-0.1417
-0.0559	-0.0816	-0.1307	-0.1318	-0.1418
-0.0533	-0.0795	-0.1281	-0.1291	-0.1388
-0.0551	-0.0450	-0.0848	-0.0855	-0.0917
-0.0519	-0.0425	-0.0817	-0.0824	-0.0883
-0.0526	-0.0677	-0.0917	-0.0925	-0.0991
-0.0506	-0.0650	-0.0893	-0.0901	-0.0966
-0.0658	-0.0716	-0.0935	-0.1013	-0.1014
-0.0663	-0.0720	-0.0987	-0.0992	-0.0992
-0.0648	-0.0704	-0.0989	-0.1001	-0.1005
-0.0660	-0.0717	-0.1000	-0.1012	-0.1016
-0.0553	-0.0601	-0.0614	-0.0890	-0.0894
-0.0487	-0.0527	-0.0539	-0.0823	-Inf
-0.0426	-0.0762	-0.0765	-0.0765	-Inf
-0.0442	-0.0442	-0.0442	-0.0442	-Inf
-0.0455	-0.0455	-0.0456	-0.0456	-Inf
-0.0512	-0.0512	-0.0512	-0.0512	-Inf
-0.0460	-0.0460	-0.0460	-0.0460	-0.0460
-0.0444	-0.0444	-0.0444	-0.0444	-0.0444
-0.0340	-0.0342	-0.0342	-0.0342	-0.0342
-0.0478	-0.0480	-0.0481	-0.0481	-0.0481
-0.0779	-0.0782	-0.0782	-0.0782	-0.0782
0.0173	0.0171	0.0171	0.0171	0.0171
0.0021	0.0024	0.0024	0.0024	0.0024
-0.0062	-0.0061	-0.0061	-0.0061	-0.0061
-0.1139	-0.0081	-0.0075	-0.0074	-0.0074
-0.1074	-0.0075	-0.0069	-0.0069	-0.0068
0.0922	-0.0273	-0.0280	-0.0281	-0.0281
0.1050	-0.0244	-0.0252	-0.0253	-0.0253
0.1249	-0.0198	-0.0207	-0.0208	-0.0208
0.1120	-0.0196	-0.0204	-0.0205	-0.0205
0.0986	-0.1955	0.0280	0.0293	0.0294
0.0485	-0.0340	-0.0346	-0.0346	-0.0346
-0.0063	-0.0061	-0.0061	-0.0061	-0.0061
-0.0340	-0.0341	-0.0341	-0.0341	-0.0341
-0.0530	-0.0530	-0.0530	-0.0530	-0.0530

-0.0472	-0.0472	-0.0472	-0.0472	-0.0472
-0.0590	-0.0591	-0.0591	-0.0591	-0.0591
-0.0601	-0.0601	-0.0601	-0.0601	-0.0601
-0.0462	-0.0462	-0.0462	-0.0462	-0.0462
-0.0650	-0.0650	-0.0650	-0.0650	-0.0650
-0.0468	-0.0468	-0.0468	-0.0468	-0.0468
-0.0468	-0.0468	-0.0468	-0.0468	-0.0468
-0.0468	-0.0468	-0.0468	-0.0468	-0.0468
-0.0467	-0.0467	-0.0467	-0.0467	-0.0467

 $\begin{array}{c} 0 \\ 0 \\ \text{sigma from 1.9 to 3 by 0.1 increase} \\ \text{moving average length from 30 to 90 by 1 increse} \end{array}$

sigma from 1.9 to 3 by 0.1 increase moving average length from 30 to 90 by 1 increse

Published with MATLAB® R2018b