#flo #inclass

1 | so, capacitors.

is there a charge on the terminals of the battery?

yes! but not much. very small surface areas, very far away from eachother

1.0.1 | why resistors?

used to control things, and components behave like resistors

1.0.2 | what doesnt behave like resistors?

batterys, diodes, motors? ect. and capacitors, but those don't exist yet

```
title: capacitors something designed to store a significant amount of charge
```

how do you do this? spread it over a big surface area represeted as two equal len lines

surface area comes from it being wrapped

net charge is zero! but it stores charge because the charges are separated kinda like a very small battery **capacitors are not like a bucket**. they are like a water balloon, in the sense that the more voltage you put across it, the more charge flows until it pops, of course

```
C: capacitance
$C = \frac{Q}{V}$
```

coulomb per volt is a Farad after Faraday Q is on positive side

$$C = \kappa \epsilon_0 \frac{A}{d}$$

A = area of each plate d = separation between plates ϵ_0 = some constant, $8.85*10^{-12}~\kappa$ = dielectric constant of the material between the plates for air, it's 1. else, for insulators it's between 2 - 4

if you have a material which can get polarized, like the paper we had early on, then it will draw addition opposite charges! and now the charge is a lil bigger then when u just had air

that extra charge is the $\kappa!$ typically 1-4.

title: dialtectic

insulator that polzarisis

turns out, most capacitors are not symetrical! can't connect an arbitrary side

LED: longer goes to positive