

Maestría en Inteligencia Artificial Aplicada

Materia: Ciencia y analítica de datos

Profesor: Jobish Vallikavungal Devassia

Semana 4: Data Analysis with Python (IBM): Módulo 1

Integrante:

• Norma de los Ángeles García López - A01228278

Fecha de entrega: 11 de octubre del 2022

MÓDULO 1

Introduction to Data Analysis with Python

Problem: Estimate how much money can Tom get from the car?

Some Hypothesis questions

Estimate used car prices

How can we help Tom determine the best price for his car?

- Is there data on the prices of other cars and their characteristics?
- What features of cars affect their prices?
 - Color? Brand? Horsepower? Something else?
- Asking the right questions in terms of data

22

Atributos del dataset

No.	Attribute name	attribute range	No.	Attribute name	attribute range
1	symboling	-3, -2, -1, 0, 1, 2, 3.	14	curb-weight	continuous from 1488 to 4066.
2	normalized-losses	continuous from 65 to 256.	us from 65 to 256. 15 engine-type		dohc, dohcv, I, ohc, ohcf, ohcv, rotor.
3	make	audi, bmw, etc.	16	num-of-cylinders	eight, five, four, six, three, twelve, two.
4	fuel-type	diesel, gas.	17	engine-size	continuous from 61 to 326.
5	aspiration	std, turbo.	18	fuel-system	1bbl, 2bbl, 4bbl, idi, mfi, mpfi, spdi, spfi.
6	num-of-doors	four, two.	19	bore	continuous from 2.54 to 3.94.
7	body-style	hardtop, wagon, etc.	20	stroke	continuous from 2.07 to 4.17.
8	drive-wheels	4wd, fwd, rwd.	21	compression-ratio	continuous from 7 to 23.
9	engine-location	front, rear.	22	horsepower	continuous from 48 to 288.
10	wheel-base	continuous from 86.6 120.9.	23	peak-rpm	continuous from 4150 to 6600.
11	length	continuous from 141.1 to 208.1.	24	city-mpg	continuous from 13 to 49.
12	width	continuous from 60.3 to 72.3.	25	highway-mpg	continuous from 16 to 54.
13	height	continuous from 47.8 to 59.8.	26	price	continuous from 5118 to 45400.

This is our target value, or label, in other

Target (Label)

The target value is "price" which is the one that we are going to try to estimate with out model, the other variables are the predictors

Python Packages for Data Science

A Python library is a collection of functions and methods that allow you to perform lots of actions without writing any code. The libraries usually contain built-in modules providing different functionalities, which you can use directly.

Scientifics Computing Libraries in Python

Data visualization Methods

Using data visualization methods is the best way to communicate with others, showing them meaningful results of analysis. These libraries enable you to create graphs, charts and maps.

Algorithmic Libraries in Python

With Machine Learning algorithms, we're able to develop a model using our dataset, and obtain predictions.

Importing and Exporting Data in Python

Data acquisition is a process of loading and reading data into notebook from various sources. To read any data using Python's pandas package, there are two important factors to consider:

Format is the way data is encoded. We can usually tell different encoding schemes by looking at the ending of the file name. Some common encodings are csv, json, xlsx, hdf and so forth.

The (file) path tells us where the data is stored. Usually it is stored either on the computer we are using, or online on the internet.

```
Importing a CSV into Python
import pandas as pd

url = "https://archive.ics.uci.edu/ml/machine-learningdatabases/autos/imports-85.data"

df = pd.read_csv(url)
```

Importing a CSV without a header

```
import pandas as pd

url = "https://archive.ics.uci.edu/ml/machine-learning-databases/autos/imports-
85.data"

df = pd.read_csv(url, header = None)
```


0

Printing the dataframe in Python

- df prints the entire dataframe (not recommended for large datasets)
- df.head(n) to show the first n rows of data frame.
- df.tail(n) shows the bottom n rows of data frame.

df.head()													Hea								
Ī	0	1	2	3	4	5	6	7	8	9		16	17	18	19	20	21	22	23	24	25
0	3	?	alfa-romero	gas	std	two	convertible	rwd	front	88.6		130	mpfi	3.47	2.68	9.0	111	5000	21	27	13495
1	3	?	alfa-romero	gas	std	two	convertible	rwd	front	88.6		130	mpfi	3.47	2.68	9.0	111	5000	21	27	16500
2	1	?	alfa-romero	gas	std	two	hatchback	rwd	front	94.5		152	mpfi	2.68	3.47	9.0	154	5000	19	26	16500
3	2	164	audi	gas	std	four	sedan	fwd	front	99.8		109	mpfi	3.19	3.40	10.0	102	5500	24	30	13950
4	2	164	audi	gas	std	four	sedan	4wd	front	99.4		136	mpfi	3.19	3.40	8.0	115	5500	18	22	17450

23

Adding headers

Replace default header (by df.columns = headers)

headers = ["symboling", "normalized-losses", "make", "fuel-type", "aspiration", "num-of-doors", "body-style", "drive-wheels", "engine-location", "wheel-base", "length", "width", "height", "curb-weight", "engine-type", "num-of-cylinders", "engine-size", "fuel-system", "bore", "stroke", "compression-ratio", "horsepower", "peak-rpm", "city-mpg", "highway-mpg", "price"]

df.columns=headers

df.head(5)

Exporting a Pandas dataframe to CSV

Preserve progress anytime by saving modified dataset using

```
path="C:\Windows\...\ automobile.csv"

df.to csv(path)
```

an importing and exporting Data in Python vz

Exporting to different formats in Python

Data Format	Read	Save
csv	pd.read_csv()	df.to_csv()
json	pd.read_json()	df.to_json()
Excel	pd.read_excel()	df.to_excel()
sql	pd.read_sql()	df.to_sql()

→ Getting Started Analyzing Data in Python

Basic insights from the data

- Understand your data before you begin any analysis
- Should check:
 - Data Types
 - Data Distribution
- Locate potential issues with the data

Basic Insights of Dataset - Data Types

Pandas Type	Native Python Type	Description				
object	string	numbers and strings				
int64	int	Numeric characters				
float64	float	Numeric characters with decimals				
datetime64, timedelta[ns]	N/A (but see the <u>datetime</u> module in Python's standard library)	time data.				

Why check data types?

- potential info and type mismatch
- · compatibility with python methods

When the "dtype" method is applied to the data set, the datatype of each column is returned in a Series. A good data scientist's intuition tells us that most of the data types make sense. The make of cars, for example, are names, so this information should be of type object.

Basic Insights of Dataset - Data Types

In pandas, we use dataframe.dtypes to check data types

df.dtypes

Now we would like to check the statistical summary of each column to learn about the distribution of data in each column. The statistical metrics can tell the data scientist if there are mathematical issues that may exist, such as extreme outliers and large deviations. The data scientist may have to address these issues later. To get the quick statistics, we use the describe method. It returns the number of terms in the column as "count", average column value as "mean", column standard deviation as "std", the maximum and minimum values, as well as the boundary of each of the quartiles.

dataframe.describe(include="all")

 Provides full summary statistics df.describe(include="all")

	symboling	normalized- losses	make	fuel- type	aspiration	num- of- doors	body- style	drive- wheels	engine- location	wheel- base		engine- size	fuel- system	bore	stroke
count	205.000000	205	205	205	205	205	205	205	205	205.000000		205.000000	205	205	205
unique	NaN	52	22	2	2	3	5	3	2	NaN		NaN	8	39	37
top	NaN	?	toyota	gas	std	four	sedan	fwd	front	NaN		NaN	mpfi	3.62	3.40
freq	NaN	41	32	185	168	114	96	120	202	NaN		NaN	94	23	20
mean	0.834146	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	98.756585		126.907317	NaN	NaN	NaN
std	1.245307	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	6.021776		41.642693	NaN	NaN	NaN
min	-2.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	86.600000		61.000000	NaN	NaN	NaN
25%	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	94.500000	***	97.000000	NaN	NaN	NaN
50%	1.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	97.000000		120.000000	NaN	NaN	NaN
75%	2.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	102.400000		141.000000	NaN	NaN	NaN
max	3.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	120.900000		326.000000	NaN	NaN	NaN

> WinThis

"Unique" is the number of distinct objects in the column, "top" is the most frequently occurring object, and "freq" is the number of times the top object appears in the column. Some values in the table are shown here as "NaN", which stands for "not a number". This is because that particular statistical metric cannot be calculated for that specific column data type.

Basic Insights of Dataset - Info

Another method you can use to check your dataset is the dataframe.info function. This function shows the top 30 rows and bottom 30 rows of the dataframe.

Graded Review Questions

		,
Question 5		
1/1 punto (calificado)		
What command do you use to get the data type of each row of the dataframe df?		
• df.dtypes		
O df.head()		
O df.tail()		
*	Guardar	
Enviar Ha realizado 1 de 2 intentos		
✓ Correcto (1/1 punto)	_	
Question 6		
1/1 punto (calificado)		
How do you get a statistical summary of a dataframe df ?		
<pre>df.describe()</pre>		
O df.head()		
O df.tail()		
•	Guardar	
Enviar Ha realizado 1 de 2 intentos		
✓ Correcto (1/1 punto)		
Question 7		
1/1 punto (calificado)		
If you use the method describe() without changing any of the arguments, you will get a statistical summ	ary of all the	e columns of type "object".
False		
O True		
~		
Enviar Ha realizado 1 de 1 intento		

→ PROGRESO

✓ Correcto (1/1 punto)

Productos de pago de Colab - Cancelar contratos