The Hong Kong University of Science & Technology

MATH243 - Statistical Inference

Mid-term Examination - Fall 04/05

Answer ALL questions

Date: 11 Nov 2004 (Thu)

Time allowed: 1 hour 20 minutes

1. **(6 marks)** Let X_1 , X_2 be r.v.'s having the bivariate normal distribution with parameters μ_1 (mean of X_1), μ_2 (mean of X_2), σ_1 (standard deviation of X_1), σ_2 (standard deviation of X_2), ρ (correlation coefficient between X_1 and X_2). Set

$$Y_1 = \frac{X_1 - \mu_1}{\sigma_1} + \frac{X_2 - \mu_2}{\sigma_2}, \ Y_2 = \frac{X_1 - \mu_1}{\sigma_1} - \frac{X_2 - \mu_2}{\sigma_2}.$$

Find the p.d.f.'s of the r.v.'s Y_1 and Y_2 . Are they independent?

- 2. Let $X_1, ..., X_n$ be a random sample from $f(x; \lambda) = \frac{e^{-\lambda} \lambda^x}{x!}$ for x = 0, 1, 2, ...
 - (a) Find Cramer Rao lower bound for the variance of an unbiased estimator for $\frac{e^{-\lambda}\lambda^k}{k!}$ for any k = 0, 1, 2, ... (3 marks)
 - (b) Is the proportion of observations in the sample equal to k, i.e., $\frac{1}{n} \sum_{i=1}^{n} I_{\{k\}}(X_i)$, unbiased? Note that $I_{\{k\}}(x_i) = 1$ if $x_i = k$; $I_{\{k\}}(x_i) = 0$ otherwise. (2 marks)
 - (c) Find the variance of the estimator in (b). (3 marks)
 - (d) Find the sufficient statistic for λ . Hence and otherwise, find the UMVUE of $\frac{e^{-\lambda}\lambda^k}{k!}$. (5 marks).
- 3. Let $X_1, ..., X_n$ be independent r.v.'s distributed as Uniform $(\theta a, \theta + b)$, where a, b > 0 are known and $\theta \in R$.
 - (a) Find the method of moments estimator for θ . Is it unbiased? (3 marks)
 - (b) Find the variance of the estimator in (a). (2 marks)
 - (c) Find the maximum likelihood estimator for θ . (2 marks)
 - (d) Is the mid-range $Y = (Y_n b + Y_1 + a)/2$ where $Y_1 = \min(X_i)$ and $Y_n = \max(X_i)$ an unbiased estimator for θ . (4 marks)
 - (e) Find the variance of the estimator Y in (d). Is the variance of the estimator in (a) greater? (Bonus: 4 marks)

Hint:
$$f_{Y_1,Y_n(y_1,y_n)} = n(n-1)(y_n - y_1)^{n-2} / (a+b)^n$$
 for $\theta - a \le y_1 \le y_n \le \theta + b$.

***** FND *****