Shannon's Expansion

Shannon's Expansion Theorem

• Any Boolean function $f(w_1, w_2, ..., w_n)$ can be written in the form

$$f(w_1, w_2, ..., w_n) = w'_1 \cdot f(0, w_2, ..., w_n) + w_1 \cdot f(1, w_2, ..., w_n)$$

Any of the n variables can be used.

Proof

It suffices to prove the theorem holds for all possible values of one of the variables.

Since this is a binary function each variable can only be 1 or 0.

Therefore we need only look at two cases.

Proof

Let w_1 = 0, then $f(w_1, w_2, ..., w_n) = 1 \cdot f(0, w_2, ..., w_n) + 0 \cdot f(1, w_2, ..., w_n)$ $= f(0, w_2, ..., w_n)$ Let w_1 = 1, then $f(w_1, w_2, ..., w_n) = 0 \cdot f(0, w_2, ..., w_n) + 1 \cdot f(0, w_2, ..., w_n)$ $= f(1, w_2, ..., w_n)$

The proof holds for any arbitrary x.

Example: 3 input majority circuit

Given f(a, b, c) = ab+ac+bc

а	b	С	f	
0	0	0	0]
0	0	1	0	a'
0	1	0	0	
0	1	1	1	
1	0	0	0]
1	0	1	1	
1	1	0	1	- a
1	1	1	1]

а	f	
0	bc	
1	b + c	

Shannon's Expansion Theorem

Given f(a, b, c) = ab+ac+bc Expanding this function in terms of a gives

$$f = a'(0 \cdot b + 0 \cdot c + bc) + a(1 \cdot b + 1 \cdot c + bc)$$
$$f = a'(bc) + a(b + c)$$

Example: 3 input XOR

а	b	С	f	
0	0	0	0	<u> </u>
0	0	1	1	- a'
0	1	0	1	
0	1	1	0	
1	0	0	1	٦
1	0	1	0	
1	1	0	0	⊢ a
1	1	1	1	

а	f
0	b XOR c
1	(b XOR c)'

Example: 3 input XOR

x	У	Z	f	
0	0	0	0	\int_{-z}
0	0	1	1	
0	1	0	1	z'
0	1	1	0	
1	0	0	1	\
1	0	1	0	\ \ \ z'
1	1	0	0] _
1	1	1	1	Z

ху	f
00	Z
01	z'
10	z'
11	Z

Shannon's Expansion Theorem

3 input XOR function

$$f = a \oplus b \oplus c$$

= $a'(0 \oplus b \oplus c) + a(1 \oplus b \oplus c)$
= $a'(b \oplus c) + a(b \oplus c)'$

Example

$$f = a'c + bc'$$

Expansion on a
 $f = a'(b + c) + a(bc')$
Expansion on b
 $f = b'(a'c) + b(a' + c')$

Expansion on c

f = c'(b) + c(a')

The point?
Some expansions are more efficient than others.

More problems

f = a'c' + ab + ac

Implement using a 2-to-1 multiplexer and any other necessary gates.

Implement the same function using a 4-to-1 multiplexer.

(a) Using a 2-to-1 multiplexer

(b) Using a 4-to-1 multiplexer