A CATALOGUE OF 1849 STARS WITH PROPER MOTIONS EXCEEDING 0.'5 ANNUALLY

WILLEM J. LUYTEN

PRINTED WITH FINANCIAL ASSISTANCE FROM THE JOHN SIMON GUGGENHEIM MEMORIAL FOUNDATION

THE LUND PRESS
MINNEAPOLIS, MINNESOTA
1955

INTRODUCTION

In 1923 when I published a catalogue giving data on all stars with proper motions exceeding 0.5 annually, a total of 749 such stars were included. Wolf had then completed a large part of his survey of the northern hemisphere and Innes had similarly finished his program in the southern hemisphere. Shortly after this time Ross began his analysis of Yerkes plates and added some 170 stars with motions over 0.5, mostly in the northern hemisphere, while my own survey, made on the unique collection of Harvard plates taken with the Bruce telescope, has added another 830 such stars.

All of these studies have been terminated. No other survey is now in progress; that of the Lick and Palomar plates will probably not be begun for at least another decade and will certainly not be completed for several more. Now would seem an opportune time, therefore, to publish a new catalogue of all stars with motions larger than 0.15 annually.

In addition to making the Bruce survey, I have searched the literature on the subject and hope that the present catalogue is reasonably complete. General Catalogue values have been used whenever possible; for other stars, a weighted mean was obtained from all catalogue values known. Virtually all stars in the southern hemisphere and nearly half of those in the northern hemisphere have been measured at Minnesota. In the vast majority of cases there was no difficulty in deciding whether the motion was larger or smaller than 0.15 annually. In the few doubtful cases I have generally preferred to include rather than reject, if only for the reason that it is much easier to delete a star from a catalogue than to add it.

One of the most vexing questions is that of how to list the components of double and multiple stars. I have followed the rule that all components that could be seen separately on our plates have been listed separately.

Spectra have been given whenever known. Colors have been determined either at Tucson or at Cordoba for virtually all stars found at Minnesota. There are, however, still a considerable number of Wolf and Ross stars for which no spectral classes or colors have been published.

All magnitudes given are photographic, largely because for more than half the stars in the catalogue no other magnitudes are known.

A brief description of the several columns of the catalogue follows:

Column 1 gives the serial number, for which the abbreviation LFT (for five-tenths) is proposed; Column 2 gives the designation; here I have followed the rule of first using the Bayer letters for the few very bright stars, then the B. D. numbers for stars north of -23° and the Cordoba numbers for stars wouth of that limit. For fainter stars the Wolf, Ross, and Luyten numbers have been used. Since unfortunately neither Hertzsprung nor Innes numbered their proper motion stars, my own Bruce designations have been assigned to these stars whenever possible. For some other stars Greenwich Astrographic Catalogue or Selected Area reference numbers have been used, and a few stars have been left undesignated rather than be assigned some strange, invented numbers or letters. Columns 3 and 4 give the position for 1950;

Columns 5 and 6 give the galactic coordinates taken from Ohlsson's tables, referred to the Galactic Pole at 12 40 +28 (1900);

Columns 7 and 8 give the photographic magnitude and the spectral class or color class when known; Columns 9, 10, and 11 give the total proper motion and its direction in the equatorial and galactic systems, respectively;

Column 12 gives the authority for the proper motion. A few rare references have been given in full; for the rest the following abbreviations have been used:

C Cape H Hertzsprung R Ross
F Furuhjelm I Innes VM VanMaanen
G Greenwich L Luyten W Wolf

Notes, principally giving double star data, appear at the end of the catalogue.

I am greatly indebted to the John Simon Guggenheim Foundation for a subvention which has made possible the publication of this catalogue; to the Graduate School of the University of Minnesota and the Office of Naval Research for continued financial support for the research from which resulted the discovery of nearly all the stars found at Minnesota; to the National Science Foundation for making possible the determination of colors for many of these stars; to the Harvard College Observatory and its former director, Dr. Harlow Shapley, for the loan of its plates which have accounted for nearly half the material in this catalogue; to Dr. Edwin F. Carpenter of the University of Arizona for his permission to use the 36-inch Steward telescope for the determination of colors; to Drs. Enrique Gaviola, Ricardo Platzeck, and Jorge Sahade, successively directors of the Cordoba Observatory, for their permission to have plates taken with the 60-inch telescope for similar determination of colors; to Miss Jean Hackett for her continued help in the compilation of this catalogue and her painstaking scrutiny of the data before their final acceptance; and to Miss Louise Jenkins for her valuable advice in editing the manuscript and preparing it for publication.

Minneapolis, Minneaota 16 September 1955

LFT	Designation	R. A. (1950) Dec.	1 b	m	Sp.	μ	θ	ø	Authority
1	L 505-1	0 ^h 00 ^m 2 -34 ^o 30'	321 ⁰ -78 ⁰	15.0	a-f	0. 76	168 ⁰	292 ^C	L
2	L 122-81	0 00.2 -63 40	278 -53	14.3	m	0.70	221		
3	L 362-29	0 02.2 -40 58	299 -74	14. 5				25	Ļ
4	+33 4828		80 -27	7.0	m F8	1.66	157	302	L CO 44
5	-37 15492	0 02.5 -37 36	307 -77	10.0		0.76	82	92	GC 44
		0 02.0 -0. 00	301 - 11	10.0	М3	6.08	113	250	GC 49
6*	+44 4548	0 02.6 +45 33	83 -16	11.3	M1	0.89	100	100	F
7	-68 2378	0 02.8 -68 05	275 -50	9.5	K0	0. 55	100	109	_
8	+45 4408A	0 03.0 +45 32	83 -16	10.1	K6	0. 55	199	5	I, L, Ci
3 *	+45 4408B		83 -16	10. 1	K7	0.89	100 100	109 109	GC 71 GC 72
10	L 169-'0	0 03.5 -61 21	278 -56	15.6	m	0. 53	87		
		• • • • • • • • • • • • • • • • • • • •	2.0 -00	10.0	ш	0. 55	01	252	L
11*	·49 14337	0 03.7 -49 21	285 -67	6.4	G0	0. 56	94	251	GC 92
12	L 86-21	0 03.7 -66 07	276 -51	14.8	m	0.58	162	328	I, L
13	-21 6537	0 04.3 -21 23	33 _70	11. 1	G 5	0.50	212	284	L
14	-27 16	0 06.4 -27 24	0 -82	12.6	m	0.67	79	164	L
15*	β Cas	0 06.5 +58 52	0 -82 85 - 3	2. 6	F4	0.56	109	117	GC 147
							200		00 11.
16		0 06.5 -25 24	14 -82	13. 1	m	0.50	88	160	L
17		$0\ 06.7 + 8\ 46$	75 -52	14.4	K 4	1.10	191	204	L
18	-39 31	0 09.1 -39 30	298 -76	9.9	m	0.72	97	245	L
19*		0 10.5 +69 04	87 + 7	13.7	M 6	0.79	112	119	Nechvile
20	L 1082-25	$0\ 10.8 + 7\ 44$	76 -54	13.8	m	0.50	227	239	L
••									
21	L 434-10	0 12.8 -35 28	307 -80	15. 2	m	0.96	98	237	L
22	L 722-22	0 12.9 -16 25	57 -77	12.8	m	0.84	134	164	L
23	L 1154-29		79 -48	13. 5	M5	0.69	62	72	L
24	L 86-66	0 13.3 -68 16	274 -49	13. 2	m	0.62	104	274	L
25*	L 86-67	0 13.3 -68 16	274 -49	15. 4	\mathbf{m}	0.62	104	274	L
26	L 1226-9	0 10 7 .40 05							
27÷			81 -42	12.8	m	1.02	137	146	L
28		0 13.7 +19 35	81 -42	14. 2	m	1.02	137	146	L
29		0 14.4 +40 40	84 -22	10.3	M0	0. 55	80	86	Ci
30		0 14.7 +28 54	83 -33	13.0		0.75	55	62	R, L
00	11 134-3	0 15.2 -11 02	67 -72	14.7	m	1.04	182	202	L
31*	÷43 44A	0 15.5 +43 44	85 -18	9. 5	M3	2.89	82	88	CO 250
32*		0 15.6 +43 44	85 -18	12.7	M5e	2.89	82	88	GC 358 ADS
33		0 16.7 -20 11	51 -81	13.8	m	0.55	101	138	L
34		0 17.1 -28 25	351 -84	14.7	m	1.39	192	288	L
35*		0 17.1 -28 25	351 -84	15. 2	m	1. 39	192	288	L
					_	2.00	100	200	
36		0 17.5 -65 10	274 -52	4.8	F8	2.06	56	227	GC 401
		0 18.9 -46 00	282 -71	11.6	M1	0.80	176	340	I, L, C
38		0 20.6 -52 47	278 -65	10.5	K0	0.50		334	I, L
39		0 20.7 -51 10	279 -66	13.0	m	0.54	91	259	L,C
40	-27 108	0 21.9 -27 18	5 -85	9.0	K3	0.67	83	167	GC 479
	** **								
41		0 22.3 -51 19	278 -67	7.6	G0	0.62	116	285	GC 484
42		0 22.8 +22 38	84 -39	15. 2	m	0.51	205	211	L
43		0 23.2 -77 32	271 -40	3. 5	G0	2. 25	82	256	GC 503
44 45		0 24.4 -55 41	275 -62	14.6	a	0. 58	214	26	L
45	L 866-29	0 25.4 - 6 44	78 -68	13.0	m	0.91	164	175	L
4 6	L 867-16	0 26.2 - 6 54	70 00						_
47		0 29.0 +66 58	79 -69	14.0	m	0.86		214	L
48*		0 29.0 +66 58	88 - 5	11.8	M2	1.76		100	G, Ci
49		0 29.9 -63 22	88 + 5 272 -54	14.0	M4	1.76		100	G, Ci
50*		0 31.3 -35 16	288 -82	11.1	m Co	0. 53		275	L, Alden
		- JA. 0 -30 10	200 -02	7.3	G0	0. 51	136	349	GC 668

LFT	Designation	R. A. (1950) Dec.	l b	m	Sp.	μ	θ	ø	Authority
51	L 651-75	0 ^h 31 ^m 7 -23 ^o 20'	60 ⁰ -85 ⁰	14.6	n	0. 63	85 ⁰	114 ⁰	L
52	-64 12	0 32.8 -63 58	272 -53	10. 1	G5	1.09	122	298	L
53	L 1155-32			13.0	m	0.50	232	235	L
54	-10 109	0 33.4 - 9 45	86 -50 82 -72	12.6	m	0.60	198	205	L
55*	-25 225	0 34.8 -25 03	55 -87	6.7	K0	1.38	90	123	GC 741
56*	-37 205	0 34.9 -37 34	279 -80	7. 5	G0	0.53	94	264	GC 743
57	W 1056		88 -32	11.7	М3	1.54	88	91	W,L
58	+ 2 84	$0\ 36.6 + 2\ 51$	87 -59 89 -42	3.1	G2	0.81	70	73	GC 773
59	+20 85	0 36.9 +21 00	89 -42	6.7	K 1	0.59	232	235	GC 778
60	+ 9 73	0 37.2 +10 24	88 -52	11.0	K 5	0. 55	110	113	Ci
61	-44 170	0 37.5 -44 32	273 -73	12.8	m	0.53	116	292	L
62	-24 263	0 38.0 -24 04	74 -86 89 -22	7. 2	K0	0.72	117	133	GC 799
63	+39 154			8.3	K3	0.75	153	154	GC 800
64	-60 118	0 38.1 -59 44	271 -58	6.3	G0	6.97	63	241	GC 801
65	L 651-57	0 39.0 -22 38	81 -85	15. 1	g:	0.60	232	241	L
66		0 39.3 -35 38	275 -82	14. 2	k	0.77	82	257	L
67	L 219-53	0 39.8 -52 39	271 -65	13.3	m	0.70	118	297	I, L
68	L 1012-34		89 -62	15.7	m	0.51	76	77	L
69	L 363-38	0 41.2 -41 33	271 -76	14. 0	m	0.78	223	42	L
70	+ 1 131	0 42.5 + 1 31	0 -61	9.4	K 5	0.56	184	184	GC 896
71	-66 38	0 42.5 -65 55	270 -52	7. 2	G 5	0.76	169	349	GC 897
72	L 507-13	0 43.6 -31 05	265 -86	14.0	m	0.51	117	301	L
73	+ 4 123	045.8 + 501	90 -58	6.7	K 2	1.37	147	147	GC 959
74	η Cas A	0 46.1 +57 33	90 - 5	4. 0	F8	1. 22	115	115	GC 962
75*	η Cas B	0 46.1 +57 33	90 - 5	8.7	K 5	1. 22	115	115	ADS
76*	W 28	0 46.5 + 5 09	90 -58	12 9	DF	2.98	155	155	W.VM
77	-23 315	0 46.9 -23 29	104 -96	8. 0	G7	0.53	78	64	GC 986
78	L 123-30	0 47.3 -61 18	269 -56	13.6	m	1.11	94	276	L
79	L 171-3	0 47.7 -54 50	268 -63	14.0	m	0.52	33	216	L
80	W 33	0 48.3 +58 02	91 - 4	12. 5	M2	1. 58	73	72	W, Ci
81	-23 332	0 49.1 -23 11	110 -85	9.6	К5	0.70	115	99	L, Ci
82	-31 325	0 50.6 -30 38	239 -87	7.8	G5	0.62	86	298	GC 1058
83	L 220-27	0 51.9 -50 52	267 -67	13.5	m	0.58	80	265	L
84	L 580-23	0 53.2 -26 17	149 -88	15. 2	m	0.57	96	39	L
85	+68 60	0 53.7 +68 47	91 + 6	10.3	K6	0.72	107	104	GC 1119
86	-62 39	0 55.1 -62 31	267 -55	11.8	K5	1.06	81	266	L
87	W 40	0 55.4 +62 32	91 + 1	15.0		0.79	33:		W
88	-28 302	0 55.9 -28 08	190 -87	12. 5	m	1.30	10	6	L
89	L 508-49	0 56.2 -31 43	234 -85	14.6	\mathbf{m}	0.62	13	351	L
90	W 44	0 58.2 +61 06	92 - 1	12. 1	M2	0.90	16 ;	162	W, Ci
91	L 868-3	0 58.3 - 4 44	100 -67	14.6	m	1.36	. 0	61	L
92	W 1506	0 58.5 +28 46	109 -32	15.8		0.58	15	45	₩
93	+70 68b	0 59.0 +71 25	91 + 9	10.7	M3	1.76	1)3	99	R,Ci
94	+61 195	0 59.4 +62 04	92 0	11.0	M1	0.77	32	78 79	Ci w
95*	W 47	0 59.4 +62 04	92 0	15. 1	M7	0.77	32	78	w
96	-10 216	0 59.5 -10 07	104 -72	11.6	K 5	0.52	203	191	L
97	L 87-68	1 00.2 -67 55	267 -50	15. 1	m	0. 95	97	283	L
98	L 1229-11A	1 00.5 +19 50	96 -42	12.4	m	0.64	89	84	L
99*	L 1229-11B	1 00.5 - 19 50	96 -42	14.3	m	0.64	89	84	L
100	-46 293	1 01.5 -46 03	260 -71	11.8	К3	1.71	188	21	L

THE STATES OF TH

LFT	Designation	R. A. (1950) Dec.	l b	m	Sp.	ıi	θ	ø	Authority
101*	L 435-6	1 ^h 01.7 -34 ⁰ 56	240°-81°	10.6	g	0. 67	112 ⁰	322 ⁰	L
102	-40 239	1 02.4 -39 45	252 -77	8. 5	G0	0.56	197	38	I, L, C
103	L 436-65	1 02.8 -39 17	251 -78	14.7	m	0.81	164	5	Ĺ
104	+63 137	1 03.7 +63 40	92 + 2	10.2	K8	1.55	79	75	Ci
105	W 1508	1 03.9 +29 31	80 -32	15. 5		0. ა6	`5	105	W
105	-51 273	1 04.6 -51 15	252 -66	9.5	K0	0.53	97	289	GC 1351
107	μ Cas	1 04.9 +54 41	93 - 7	5.7	G 5	3.75	115	110	GC 1360
108	+22 176A	1 04.9 +22 42	97 -39	9.8	K6	0.50	169	163	GC 1361
109*	+22 176B	1 04.9 +22 42	97 -39	15.2	77.0	0.50	169	163 102	VM
110	₩ 56	1 05.0 +63 15	86 + 1	12. 7	K 2	1.04	94	102	W, Ci
111	R 322	1 05.0 +33 56	96 -28	14.7		1.52	58	62	R
112	L 581-85	1 05.8 -29 05	196 -84	14.7	m	0.69	99	356	L
113	R 323	1 06.1 +31 10	81 -32	15.5		0.50	88	97	R
114	+16 120	1 06.1 +17 00	78 -45	11. 2	M0	0.57	187	198	L, Ci
115	+60 170	1 06.5 +61 17	85 + 1	8. 5	F8	0.62	84	93	GC 1392
116	L 51-47	1 07.6 -72 28	257 -45	13.6	m	0.72	55	243	I, L
117	-68 47	1 08.4 -67 43	256 -50	11.2	k:	0.71	33	222	L
118	L 725-32	1 10.0 -17 17	123 -78	13. 1	M5e	1.33	62	32	L
119	ν Phe	1 12.9 -45 48	254 -71	5.5	G0	0.69	73	274	GC 1510
120	-16 214	1 15.1 -15 45	124 -76	10.8	K0	0.53	146	115	L, Ci
121	L 581-28	1 15.1 -26 18	170 -82	15.0	m	0.54	142	65	L
122	W 1516	1 15.3 +15 56	80 -47	13.6	DC	0.65	180	189	W, L
123	L 797-26	1 15.8 -13 09	120 -73	12. 2	m	0.71	166	139	L
124	- 1 167A	1 16.1 - 1 08	108 -62	9.0	K 0	0.51	121	165	GC 1582
125*	- 1 167B	1 16.1 - 1 08	103 -62	12.0	m	0.51	121	105	ADS
126	- 9 256	1 16.5 - 9 12	115 -70	9.5	G0	0.50	203	180	GC 1586
127	R 9	1 17.6 +57 04	87 - 6	11.9		0.57	317	322	R, Ci
128	+30 206A	1 18.6 +31 05	99 -31	9.4	K 4	0.50	99	89	Ci
129*	+30 206B	1 18.6 +31 05	99 -31	15. 2		6.50	99	89	VM
130	-42 469	1 19.2 -41 55	244 -74	11.5	K 5	1.33	110	321	L,C
131	+17 197	1 19.6 +13 25	102 -44	8.5	G2	0.54	91	98	GC 1648
132	+17 202	1 22.2 +18 15	103 -43	10.2	K 4	0.58	107	95	GC 1702
133	L 581-26	1 23.0 -26 14	173 -81	14.9	f	0.51	160	82	L
134	L 581-91	1 23.4 -29 26	194 -81	15. 2	m	0.58	100	1	L
135	+20 226	1 26.3 +21 28	103 -40	8.8	K 4	0.50	113	100	GC, 1790
136	W 1523	1 29.9 +20 44	105 -40	14.5		0.51	120	106	w
137	L 52-100	1 30.2 -73 36	265 -44	14.5	\mathbf{m}	0.55	70	265	L
138	-22 526	1 30.3 -22 09	155 -78	12.3	m	1.06	212	152	L
139	-61 282	1 34.4 -61 19	259 -55	10. 1	F1	C. 63	186	27	L
140	R 10	1 35.1 +56 59	97 - 5	14. 2	M5	0.51	208	197	R
141	-49 451	1 35.2 -49 27	248 -66	11.9	m	0.53	74	284	L,C
142	L 870-2	1 35.5 - 5 16	121 -64	13.0	DA	0.67	121	94	L
143	L 654-14	1 35.7 -21 24	155 -76	12.8	\mathbf{m}	0.81	143	83	L
144	L 726-8A	1 36.4 -18 13	145 -74	14. 2	M6e	3.36	80	30	و
145*	L 726-8B	1 36.4 -18 13	145 -74	14. 7	M6e	3.36	80	30	L
146	+27 262	1 36.8 +27 51	103 -34	8.6	G6	0.53	73	59	GC 2003
147	R 11	1 36.8 +55 14	93 - 6	15.9		0.78	130	118	R
148	+65 145	1 37.9 +66 40	96 + 5	8.3	G7	0.73	109	97	GC 2029
149	-31 682	1 38.2 -30 59	199 -77	12.8	m	0.59	119	18	L
150	+41 328	1 38.7 +42 22	101 -19	5. 4	F9	C. 83	100	87	GC 2050

THE THE PARTY OF T

LFT	Designation	R. A. (1950) Dec.	l b	m	Sp.	μ	θ	φ	Authority
151	-68 74	1 ^h 39 ^m 7 -67 ^o 55	262 ⁰ -49 ⁰	8.0	F8	0. 57	147 ⁰	3470	L
152*	L 88-69	1 39.7 -67 56	262 -49	13.5	m	0.57	147	347	Ĺ
153	+19 279	1 39.8 +20 02	108 -40	5. 9	G 6	0.73	204	187	GC 2080
154	-18 287		146 -74	8.0	G0	0.53	83	32	GC 2081
1.55	+63 229		96 + 2	9. 2	K8	٠١, 70	214	201	Ci
⊾ 56	W 1065	1 40.3 +16 54	109 -43	13.0		0.50	143	125	W, L, Ci
157	-42 594	1 40.7 -42 27	235 -71	12.9	m	0.66	102	325	L,C
158	L 83-59	1 41.6 -67 32	261 -49	14.7	k	1.05	198	39	L, C
159	τ Cet	1 41.7 -16 12	143 -72	4. 1	G 4	1.92	297	250	GC 2123
160	W 1530	1 42.5 +16 06	110 -44	16.0	•	0.78	240	222	W
161	L 510-39	1 42.8 -32 20	203 -76	13. 9	m	0.65	73	323	L
162	+63 238		97 + 2	6.3	K0	0.64	113	100	GC 2161
163		1 44.1 - 8 54	131 -66	14.8	m	0.50	124	89	L
164	L 223-3	1 48,3 -49 51	245 -65	14.6	m	0.50	100	316	L
165	G +73 857		95 +12	10.7		0. 58	106	91	Ğ
166	R 555	1 49.3 -11 03	136 -67	12. 4	M4	0.80	135	95	R, L
167	L 367-80	1 50, 2 -43 57	234 -68	14. 2	m	0.54	49	275	L [´]
168	-23 693	1 50.4 -22 41	166 -73	10.2	0M	0.83	90	22	GC 2280
169*	χ Eri	1 54.0 -51 51	166 -73 246 -62	4.5	G 4	0.73	66	282	GC 2339
170	L 439-12	1 54.5 -36 29	215 -72	13.8	m	0.72	38	333	L
171	L 1159-16	1 57.4 +12 51	116 -45	13. 7	m	2.04	149	124	L
172	-41 552	1 58.4 -40 58	225 -69	7.7	G0	0.61	134	10	GC 2436
173	W 110	$2\ 00.0 + 5\ 29$	122 -52	13.2	K 5	. 43	106	78	W
174	-21 368	2 01.1 -21 28	165 -71	12.3	m	0.51	210	144	L
175	L 1159-19	2 01.9 +12 36	118 -45	14.5	k:	0.56	102	76	L
176	G +79 958	2 02.2 +80 00	93 +18	12. 4		0.56	118	100	G
177	-18 359	2 02.6 -17 54	156 -69	11.6	MO	1. 29	97	39	L
178*	L 583-52	2 03.1 -28 19	186 -72	14.3	m	0. 55	36	309	L
179	-28 657	2 03.1 -28 20	186 -72	12. 4	m	0.55	36	309	L
180	-30 737	2 03.6 -30 25	193 -72	12.7	m	0.52	285	192	٠
181	+44 422	2 03.7 +44 57	105 -16	11.0	К 5	0.51	149	129	F
182	L 89-27	2 05.9 -63 49	258 -49	13.5	\mathbf{m}	1.79	77	286	I, L
183	-17 400	2 06.7 -16 38	155 -68	11.7	k-m	0.54	81	24	L
184	R 17	2 07.1 +35 13	109 -24	15. 4		0.74	202	182	R
185	L 728-1	2 07.3 -14 36	151 -65	13. 6	m	0.62	122	70	L
186	-51 532	2 08.4 -51 04	241 -62	7.0	G 5	2. 20	73	296	GC 2610
187	+ 2 348	$2\ 10.0 + 3\ 24$	127 -52	11.0	M4	2.59	223	190	W, Ci
188	L 125-51	2 10.1 -63 28	254 -52	13.5	m	0.79	242	94	L
189	L 728-16	2 10.4 -17 56	159 -68	11.9	m	0.51	66	5	L
190	W 125	2 11.0 +15 45	119 -42	14.4	K 1	1.08	110	84	W
191	L 584-7	2 11.5 -25 43	179 -70	13.6	m	0.83	159	80	L
192	+66 191	2 11.6 +67 27	98 + 6	8.4	K 4	0.62	120	101	GC 2686
193	-32 828	2 11.6 -32 15	199 -70	11.6	m	0.94	127	30	L
194	- 1 306	2 12.1 - 1 26	133 -56	8.8	F۶	1.00	95	58	GC 2694
195	L 52-112	2 12.4 -74 00	262 -42	13.6	m	0.58	57	275	L
196	W 127	2 12.7 + 7 16	125 -49	13.6		0. 53	138	107	W, Ci
197	L 800-18	2 13.4 -12 54	149 -64	14.0	m	0.56	66	15	L
198*	δ Tri	2 14.0 +34 00	111 -25	5. 4	G 0	1.18	102	80	GC 2733
199*	L 512-15	2 14.3 -31 12	195 -70	13.6	m	0.71	68	334	L
200	-31 909	2 14.4 -31 13	195 -70	12.9	m	0.71	68	334	L

THE AND ASSESSED AND ASSESSED ASSESSED ASSESSED ASSESSED AND ASSESSED ASSES

LFT	Designation	R. A. (1950) Dec.	l b	m	Sp.	μ	θ	ф	Authority
201	L 1592-1	2 ^h 14 ^m 9 +44 ⁰ 03	107°-15°	15.0		0. 52	103 °	84 ⁰	L
202	+ 1 410	2 15, 4 + 1 31	131 -53	6. 3	F3	0. 53	44	9	GC 2770
203	-54 487	2 15.7 -54 14	244 -58	12.6	m	0.61	51	273	L
204	R 19	2 15.9 +35 08	111 -24	14.5	M4	0.83	122	100	R
205	L 440-15	2 15.9 -35 51	208 -69	12.7	k	0.50	52	307	L
206*	L 440-14	2 15.9 -35 50	208 -69	14.0	m	0.50	52	307	L
20?	-26 828	2 16.7 -26 11	181 -69	7.0	G 5	0.50	334	254	GC 2794
208	L 440.30	2 16.9 -37 01	211 -68	13.3	m	1.47	69	321	L
209	L 89-33	2 17.0 -67 11	257 -48	16.0	m	0.62	90	302	L
210	+70 169	2 18.5 +70 57	98 +10	9.6	K 6	0.59	104	83	GC 2826
211	-31 943	2 19.2 -31 08	195 -69	9.7	K0	0. 57	78	345	C, L, Ci
212	L 657-32	2 26.4 -20 15	168 -65	14.5	m	0.69	63	356	L
213×	-20 465	2 26.9 -20 12	168 -65	9.8	K 2	0.67	67	C	L
214	R 21	2 27.7 +57 09	104 - 2	15.0	M5	1. 20	92	69	R
215	L 1305-10	2 30.8 +24 43	119 -31	14.8	M6	0.68	176	148	L
316	+ 4 415	2 32.1 + 5 14	133 -48	11. 1	K4	0.69	207	170	Ci
217	+ 6 398A	2 33.3 + 6 39	132 -47	6.8	K3	2.32	51	14	GC 3121
218*	+ 6 398B	2 33.5 + 6 38	132 -47	13.3	M4	2.32	51	14	VM
219	+30 421	2 35.5 +30 36	117 -26	7.7	G0	0.62	232	205	GC 3164
220	L 11-19	2 37.6 -81 51	265 -35	14. 5	m	0. 50	89	302	L
221	L 513-23	2 37.7 -34 19	202 -64	14.5	m	1.73	162	65	L
222	-30 990	2 38.5 -30 21	193 -65	8.6	F9	0.60	80	352	GC 3231
223	L 442-72	2 41.0 -39 07	212 -63	15. 1	m	0.50	103	359	L
224	R 556	2 41.3 +25 20	121 -30	12. 2	M4	0.95	114	84	R, L, Ci
225	W 1132	2 41.4 - 9 01	152 -56	12.0	M2	1.0:	125	73	W, C
226	-46 790	2 41.8 -46 39	227 -60	9.9	K0	0.51	173	55	GC 3302
227	L 175-74	2 42.6 -58 17	244 -53	14.8	m	0.60	235	103	L
228	L 127-64	2 43.4 -62 10	248 -50	16. 1	m	0.56	95	320	L
229	L 513-27	2 46.1 -30 55	194 -63	13.9	m	0.64	152	63	L
230	L 89-75	2 46.5 -69 07	255 -45	12.8	m	0.60	188	49	L
231	+15 395	2 47.8 +15 31	129 -37	10. 1	K6	0.52	139	104	GC 3497
232*	+45 669	2 48.3 +45 47	112 -12	9.9	G3	0.5 8	123	95	GC 3416
233	-53 570	2 48.7 -53 20	236 -55	11. 5	k	0.53	347	223	I, L
234	+33 529	2 48.9 +34 13	118 -21	10.8	K6	1.38	135	105	W, Ci
235	L 586-19	2 49.5 -26 13	184 -62	14.5	m	0.82	179	100	L
236	L 514-12	2 50.3 -34 25	202 -62	15.7	m	0. 58	89	354	L
237	L 127-97	2 51.1 -63 55		12. 4	\mathbf{m}			284	L
238	-36 1091	2 52.0 -36 06	205 -61	9.5	K 5	0.53	107	9	I, L, Ci
239*	L 442-13	2 52.0 -36 07	205 -61	13.8	m	0.53	107	9	L
240	R 364	2 52.7 +55 14	108 - 3	11.8	M1	0.85	123	95	R,L
241*	R 365	2 52.7 +55 14	108 - 3	13.4	М3	0.85	123	95	R,L
242	R 791	2 54.7 +10 36	134 -40	13.7	M5	1.91	101	62	R
243	L 802-6	2 55.8 -13 05	162 -55	13.9	m	0.70	25	326	L
244	L 442-25	2 55.8 -36 50	206 -60	13.4	k	0. 56	60	322	L
245	L 54-5	2 55.8 -70 34	255 -43	14. 0	a	067	98	321	L.
246	R 331	2 55.9 +36 25	118 - 19	13. 7	_	0.65	108	77	F
247	L 586-41	2 56.3 -29 15	191 -61	14.4	k	0.50	183	98	F
248	-11 578	2 57.5 -11 31	160 -55	11.5	G 5	0.50	161	103	L
249	R 367	2 57.6 +57 55	107 0	13.6	M3	0.54	158	129	R
250	+ 5 435	2 57.9 + 5 47	139 -45	9. 1	K 1	80.0	106	63	GC 3612

nomental de la completa del la completa de la completa del la completa de la completa del la compl

AND THE STATE OF T

LFT	Designation	R. A. (1950) Dec.	1 b	m	Sp.	μ	Ø	ø	Authority
251	€ F.,	2 ^h 59 ^m 5 -28 ⁰ 17	189 ⁰ -60 ⁰	6.6	G 5	0. 50	1470	64 ⁰	GC 3641
252	+61 bab \	3 00.0 +61 31	106 + 3	7.4	G 2	1.00	133	103	GC 3648
25 *	+61 513B	3 00.5 +61 33	106 + 3 106 + 3	13. 3		1.00	133	103	VM
254	R 341	3 92.6 +50 53	111 - 5	14. 2		0.90	126	96	R
255	+ 1 543	3 03.8 + 1 48	145 -45	i0. 1	M0	0.95	159	113	Ci
200	T 1 033	3 00.0 4 1 40	140 - 10	10. 1		0.00			. .
256	ι Per	3 05.4 +49 25	112 - 6	4.6	G1	1. 26	94	63	GC 3740
257	+25 495	3 05.5 +26 09	126 - 26	8.4	F 2	0.82	194	159	GC 3741
253	L 127-42	3 05.6 -61 18	244 - 49	13. 1	m	0.61	194	67	L
259	2 121 12	3 06.2 +45 34	114 -10	11 7	M2	0.53	232	201	F
260	L 443-59	3 09.5 -38 58	210 -58	14 8	m	0.82	98	0	L
		• • • • • • • • • • • • • • • • • • • •							
261*	: For	3 09.9 -29 11	191 -58	1.4	F٤	0.72	27	304	GC 3831
282	¥ +3	3 10.4 +18 40	ين2 −°	15.4	K8	1.68	130	91	W, L
3	.,	3 10.4 -38 17	208 - 53	12 0	m	1.42	59	322	L
264	- 8 32		140 -39	8.7	K 1	0.57	135	92	GC 3874
265	" 10A	3 12, 4 +57 59	109 + 1	12.9	M2	0.61	120	88	R, Ci
265*	R 370B	3 12.4 ~57 59	109 + 1	13. 1	M2	0.61	120	88	R, Ci
267	L 227-58	3 13.0 -51 .7	231 -53	1.3. 4	m	0.62	57	302	L
26 8	W 1324		120 -16	11.8	K 5	1.36	156	122	W
269	R 371	3 14.6 +60 26	108 - 3	14. 2		0.55	109	76	R
270	L 1307-8	3 14.7 +25 05	128 -26	13.3	m	0.36	116	79	L
271	+37 748	3 14.8 +38 05	120 -15 130 -27	11.8	M2	0.78	142	108	w
272	R 373			14.6	G 5	0.62	136	98	R, L
273	-85 33	3 16.0 -84 44	266 -32	11. 2	m	0.61	70	293	L
274	+33 622	3 16.5 +33 26	123 - 19	10.6	K 2	0.72	145	110	L,Ci
275*	ζ ₁ Ret	3 16.7 -62 46	245 -47	6. 0	G0	1.48	64	298	GC 3966
	-								
276	ζ, Ret	3 17.1 -62 42 3 17.9 -43 16 3 18 8 -33 37	245 -47	5.7	G0	1.48	64	298	GC 3975
277	-43 1028	3 17.9 -43 16	217 -55	5.0	G 7	3. 14	76	333	GC 4000
278	-33 1180	3 18.8 -33 37	200 -56	12.0	ĸ	0.52	1.82	93	L
279	R 571	3 20.5 - 8 48	161 -48	13.0		0.54	73	15	R
280	W 156	3 21.2 +43 49	118 -10	15.0		0.52	130	95	W
									_
281		3 21.5 -17 29	173 -52	13.9	m	0.76	130	33	L
282	- 5 642	3 22.5 - 5 32	157 -46	9. 2	K 3	0.80	198	143	GC 4076
283	R 34	3 25.5 +37 13	122 -15	12. 0	K 4	1.58	135	99	R
284		3 25.6 -19 59		9.7	K8	9.62	57	347	GC 4128
285	+66 268	3 26.3 +66 37	105 + 9	10.3	G 2	1.63	131	96	Ci
000		0 00 7 07 00	100 54	10)	24	0.80	63	343	L
286		3 26.7 -27 32	190 -54	13. 3	DA M3	0.80		343	L
287*	L 587-77B	3 26.7 -27 32	190 -54	15.4		1.41		126	
288	R 585	3 27.5 +33 54	125 -17	14. 1	K4		163		R CC 4200
289	κ Ret	3 28.5 -63 07	244 -46	5.0	F 5	0.52	44 44	281	GC 4200
290*	L 128-37	3 28.5 -63 07	244 -46	11. 4	m	0.52	44	281	L
901	e E-i	2 20 6 0 20	164 -46	4. 9	К1	0.98	271	212	GC 4244
291	€ Eri	3 30.6 - 9 38			M2	1.06	80	43	W 4211
292	W 194	3 32.4 +41 33 3 32.6 -31 14	121 -10 196 -53	13. 8 11. 8	K 2	0.50	186	102	L
293 204	-31 1454		190 - 53 224 - 51	9.9	K 5	0.50	51	305	C,L
294	-48 1011 1 272 50	3 33.4 -48 36 3 34.2 -44 40		9. 9 14. 8	m v 2	0.83	113	12	L L
295	L 372-58	3 39.4 -44 40	218 -52	17.0	ш	0.03	110	16	,
296	- 0 572	3 34.3 + 0 15	153 -40	5. 1	F9	0. 53	206	154	GC 4313
297	L 372-18	3 34.4 -41 09	212 -52	14.3	m	0.53	207	110	I, L
298	R 578	3 35.8 -11 37	166 -46	14.6	M2	3.06	152	91	R,L
299	W 204	3 36.6 +25 20	132 -22	13.0		0.69	149	1(0	w w
300*	W 205	3 36.7 +25 20	132 -22	13. 3		0.69	149	1C5	w
500	** 200	J 00. 1 THE 20		0					

				•	_		0	ø	Authority
LFT	Designation	R. A. (1950) Dec.	1 b	m	Sp.	μ	θ	•	Additional
		3 ^h 37 ^m 8 - 3 ^o 22	158°-42°	7.1	F8	0.73	107 ⁰	52 ⁰	GC 4384
301	- 3 592	3 37.8 - 3 22 3 38.0 -69 07	251 -41	13.4	m	0.60	-	156	L
302	L 91-140	3 39.7 +12 23	143 -31	14.0		1.44		109	W
303	W 1057 5 Eri	3 40.9 - 9 56	166 -45	4.7	K0	0.75	343	282	GC 4450
30 4 305	-51 887	3 41.6 -50 48	227 -49	7.4	F8	0.50	15	268	GC 4469
303	-01 00.					1 05	155	111	W
306	W 219	3 41.7 +18 19	138 -27	15. 1	DF	1. 25 1. 37	154	115	GC 4519
307	+41 750A	3 43.6 +41 17	123 - 9	9.7 10.4	G8 K3	1.37	154	115	ADS
308*	+41 750B	3 43.6 +41 17	123 - 9 168 -44	13.7	m	0.58	73	11	L
309	L 805-8	3 44.3 -11 25 3 44.7 -23 24	184 -49	4.7	F3	0. 55	197	123	GC 4547
310	~23 1565	3 44.1 -23 21	101 - 10						
311	R 588	3 45.4 + 2 38	153 -37	12.0	M1	0. 53	226	174	R, L
312	-64 133	3 46.7 -64 30	245 -43	9.2	G0	0.50	52	294	L
313	+ 0 659	347.0 + 113	155 -37	10.6	K 1	0.66	158	105 73	L,Ci L
314	L 229-25	3 48.4 -51 12	227 -48	15.5	m	0.66 0.67	179 20	284	GC: 4652
315	-42 1269	3 48.9 -42 43	214 -50	9.7	K 2	0.01	20	201	40 2002
			150 -34	14. 2		0, 56	133	82	R
316	R 589	3 49.2 + 6 10	141 -26	15. 5		0.99	155	109	W
317	W 227	3 49.8 +16 52 3 50.2 -46 05	219 -48	15. 2	g	0.51	115	15	L
318	L 301-33 +60 762	3 50.7 +61 01	111 + 7	9.0	К1	0.52	119	79	GC 4684
319 320	-37 1501	3 51.5 -37 11	206 -50	12.8	k	1. 14	199	110	L
320	-51 1001						^	201	Ci
321	- 7 699	3 52.2 - 6 59	165 -41	10.3	K6	0.54	0 143	301 103	R, Ci
322	R 23	3 52.9 +53 26	116 + 1	12.3	M0 K5	C. 53 O. 63	146	103	GC 4766
323	+75 154	3 54.8 +76 02	101 +18	9. 3 14. 9	V 9	0.72	152	111	R
324	R 25	3 56.5 +50 58	118 - 1 136 -19	14. 0	M5	0.82	85	42	W, R, Ci
325	W 1322	3 56.8 +25 58	130 -19	14.0	2120	0.00			
	0.4 700	3 59.9 +35 09	129 -12	9.3	K0	2. 20	128	85	GC 4849
326	+34 796 -57 8 0 6	4 00.7 -57 21	235 -44	8.5	F5	0.56	42	294	GC 4867
327 328	L 36-61	4 01.3 -78 47	260 -35	17.7	m	0.50	51	287	L D.C:
329	+32 719	4 02.9 +32 50	131 -13	10.9	K 4	1.09	142	98 105	R, Ci L, Ci
330	-21 784	4 04.6 -20 53	183 -44	10.6	K 5	0.78	176	163	11,01
			404 40	11 6	M2	0.60	78	34	R, Ci
331	R 587	4 05.4 +33 30	131 -12 229 -45	11. 6 12. 3		1. 20	60		I, L
332	L 229-91	4 07.7 -53 32	$\frac{229 - 43}{118 + 2}$	15.0		0.90	207		Ŕ
333	R 28	4 09.2 +52 30 4 09.3 -53 41	229 -44	15.0		2. 53	198	95	L
334	L 230-188 R 29	4 09.4 +50 25	120 0	15. 5		0.60	243	200	R
335	R 25	1 00.1 100 ==					••	007	T
336	L 230-205	4 11.4 -54 00	230 -44	14.8		0.83			L GC 5108
337	+21 607	4 11.6 +22 14	141 -19	10.7	_	0.54 4.08			GC 5138
3384	o, Eri A	4 13.0 - 7 44	168 -36	5.3		4.08			GC 5140
339	° 2 Eri A ° 2 Eri B	4 13.1 - 7 44	168 -36 168 -36	9.8 12.3					ADS
340	o2 Eri C	4 13.1 - 7 44	100 -30	12.0	2.200	.,			
		4 14.4 +23 21	140 -18	12. 1	K3	0.56	124		R, Ci
341		4 14.7 -53 26	229 -44	8. 3		0.86			GC 5176
342 343		4 15.1 -26 10	191 -43	13. 4		0.62			L Dodal
344		4 15.5 +75 02	103 +18	13.7		0.73			Radel.
345		4 16.6 -49 11	223 -44	14.7	7 m.	0.50	, 4	4 267	L
	-		***	11 /	7 M 3	0. 59	16'	7 121	R
346		4 16.7 +36 23	131 - 8			0. 5			
347		4 17.6 +37 23	130 - 8 234 -42			0.86			
348		4 17.8 -57 23 4 19.6 -48 46				0.5		6 80	L
349		4 21.2 -57 33				0.5		8 104	L
350	L 178-49	7 61.6 -01 00							

LFT	Designation	R. A. (1950) Dec.	ì b	m	Sp.	μ	θ	ø	Authority
351	L 879-6A	4 ^h 23. ^m 1 - 6 ^o 58'	169°-34°	16.0	m	1.00	148 ⁰	87 ⁰	L
352*	L 879-6B	4 23.1 - 6 58	169 -34	16.6	m	1.00	148	87	L
353	L 374-6	4 23.4 -40 09	210 -43	14.9	m	0.68	183	96	Ĺ
354	L 591-6	4 26.5 -25 14	191 -40	13. 5	m	0.50	191	120	Ĺ
355	R 594	4 27.0 +39 46	130 - 5	15. 1	M6	0.53	180	133	R
356	L 879-1	4 28.7 - 5 25	168 -32	14.8	m	0.56	207	147	L
357	L 302-104	4 28.8 -48 41	222 -42	15. 4	m	0.51	148	54	L
358	R 31	4 30.2 +50 30	122 + 3	14.8	K 2	0.50	96	48	R,L
359	L 447-16	4 30.8 -39 08	209 -42	13.0	m	1.02	44	319	L
360	L 375-2	4 31.0 -39 52	210 -42	13.5	m	1.00	166	80	L
361	+55 900	4 31.9 +55 20	119 + 6	9.3	K 4	0.64	115	67	L, Ci
362	+52 857	4 33.7 +52 48	121 + 5	9.7	K9	0.54	149	101	L,Ci
363	L 879-2	4 34.0 - 6 17	170 -31	15.3	m	0.53	140	79	L
364*	L 879-3	4 34.0 - 6 17	170 -31	16. 2	a-f	0.53	140	79	L
365	L 591-70	4 34.9 -29 09	196 -40	15. 2	m	0.54	72	356	L
366	R 398	4 35.2 + 8 03	157 -24	13.7		0.56	183	128	R
367	L 879-14	4 35.4 - 8 53	173 -32	13.9	f-g	1.49	171	109	L
368	L 1742-1	4 37.9 +57 38	118 + 8	12.5	m	0.50	185	135	L
369	-65 253	4 37.9 -65 33	243 -38	10. 1	G0	1.49	28	283	I, L
370	+41 931	4 38.1 +42 02	129 - 2	7.9	G2	0.69	127	78	GC 5692
371	R 600	4 38.5 +22 49	145 -14	13.9	K 1	0.68	148	97	R, Ci
372	+18 683	4 40.0 +18 53	148 -16	11.2	M3	1.27	146	94	R, L
373	L 807-20	4 42.8 -11 55	177 -32	14. 5	Di	0.67	82	18	L
374	-50 1492	4 44.4 -50 10	224 -40	8, 5	G 5	0. 58	233	141	GC 5824
375	+45 992	4 48.0 +45 45	128 + 2	7.5	F9	0.56	146	95	GC 5897
376	L 376-1	4 48.1 -39 59	211 -39	13.1	k	0.51	34	310	L
377	L 736-30	4 51.5 -17 50	184 -32	12.5	m	0.78	145	77	L
378	L 1671-8	4 52.2 +45 25	129 + 2	13.6	К3	0.58	135	8.	L
379	+34 927	4 54.7 +34 12	138 - 4	8.7	G8	0.60	108	56	Ci
380	L 1743-7	4 54.8 - 31 00	124 + 6	12.6	m	0.61	124	72	L
381	L 131-6	4 55.3 -61 14	238 -37	13.5	m	1.10	123	25	L
382	- 5 1123	4 58. + - 5 49	172 -26	7. 2	K0	1. 22	153	91	GC 6120
383	+52 911	4 59.1 +53 08	123 + 8	11.2	M1	1.96	140	87	L
384*	L 736-43	5 00.1 -19 35	177 -31	12.6	ķ	0.66	129	60	L, Bhask.
385*	L 736-49	5 C1.1 -17 26	175 -30	13. ĉ	k-m	0.52	200	133	L
386	-56 1071	5 01.3 -53 10	231 -37	7. ô	G0	9.62	354	261	GC 6180
387*	L 179-10		231 -37		m		354	261	L
388*	+18 779	5 04.5 +18 35	15! -12	5. 5	G 1	0.54	88	33	GC 5255
389	L 593-17	5 04.5 -29 31	199 -33	14.6	Di:	0.61	43	329	L
390	+50 1128	5 04.9 +50 48	126 + 7	11. 3	m	0. 58	123	69	L
391	L 737-9	5 06.3 -18 12	186 -29	12. 1	m	1. 49	160	92	L, Bhask.
392	R 388	5 96.4 +15 25	155 -13	13.7		0.59	173	117	R
393	L 232-29	5 07.1 -53 06	227 -36	13 💠	M2	1. 16	27	297	L
394	- 9 1094	5 09.5 - 9 09	177 -25	9.0	K0	0. 57	186	123	Ci
395	-44 1905	5 09.7 -45 00	217 -35	10.0	K8	8.73	131	47	GC 6369
396	+19 869	5 09.9 +19 41	152 - 10	10.5	K 5	0.75	150	94	Ci
397	+44 1142A	5 11.3 +44 30	131 + 4	11.5	K3	0.65	179	124	L, Ci
398*	+44 1142B	5 11.3 +44 30	131 + 4	15. 2		0.65	179	124	VM
399	-59 1024	5 12.2 -59 42	235 -35	9.7	G0	1.03	61	328	L
400	R 795	5 13.1 +23 03	149 - 7	14. 2		0.51	141	85	R

LFT	Designation	R. A. (1950) Dec.	l b	m	Sp.	μ	θ	¢	Authority
401	L 521-2	5 ^h 13 ^m 8 -31 ^o 21	201 ⁰ -32 ⁰	13.3	m	o. 56	63 ⁰	348 ⁰	L
402	SA 10-342	5 14.2 +60 28	118 +14	15. 5	K3	0.51	158	101	Radcl.
403*	λ Aur	5 15.6 +49 03	135 + 3	5. 2	G٥	0.85	141	86	GC 6494
404	- 3 1061A	5 16.7 - 3 08	173 -20	9.7	K 2	0.74	80	19	GC 6513
405*	- 3 1061B	5 16.7 - 3 08	175 -20	13.7	74.5	0.74	89	19	ADS
400	- 3 10015	3 10.1 - 3 00	110 -20			····	•••		
406	L 57-44	5 16.8 -72 18	250 -33	13.6	r ₄	0.83	355	255	L
407	L 233-30	5 16.9 -53 43	228 -34	13.1	k	0.52	154	66	L
403	L 31-84	5 19.6 -78 19	257 -31	13.6	m	1.12	175	72	L
409	R 65	5 19.9 +33 09	142 - 1	12.9	Ki	0.74	145	89	R
410		5 25.1 +36 01	140 + 2	11.8		0.53	131	75	
							400	404	_
411	R 41	5 25.3 + 9 38	162 -12	14 2	M5	0.89	192	134	R
412	- 3 1110	5 26.0 - 3 32	174 -18	9.7	K6	0.86	202	140	GC 6757
413	L 1026-1	$5\ 26.2 + 2\ 48$	168 -16	13.8	m	0.50	135	75	L
414	R 406	5 26.5 +32 04	143 0	13.7		0.90	193	136	R
415	W 1450	5 27.4 - 3 28	174 -18	13.6	M5	0.56	214	152	W,L
416	- 3 1123	5 28.9 - 3 41	175 -18	9.1	M1	2. 24	160	98	GC 6836
417	- 0 981	5 29.2 + 0 04	171 -16	9. 1	G 5	0.52	158	97	Ci
418	L 882-115	5 31.0 - 9 10	186 -20	12.7	m	0.50	72	9	L
419	-23 2865	5 32.7 -23 31	194 -26	9.7	K3	0.56	142	73	L, Ci
		5 32.7 -23 31 5 34.3 ÷51 25	128 +12	9.0	K2	0.54	281	221	GC 6976
420	+51 1094	5 54.5 451 25	120 +12	7.0	11.2	9. 01	201	221	40 00.0
421	-46 1936A	5 36.8 -46 08	219 -31	8.3	G 5	0.50	196	116	GC 7048
422*	-46 1936B	5 36.8 -46 08	219 -31	11.0	К3	0.50	196	116	GC 7049
423	+53 934	5 37.3 +53 28	126 +13	7.0	K 0	0.52	179	119	GC 7064
424*	+53 935	5 37.4 +53 28	126 +13	11.2	M1	0.52	179	119	VM
425	R 47	5 39.3 +12 31	161 - 8	12.7	M4	2.54	127	68	R
120	1. 1.	0 00.0 .12 01							
426	R 48	5 39.5 + 7 23	166 -11	12.1	K 4	0.50	221	161	R, Ci
427	+ 2 1041	540.2 + 241	170 -12	9.9	K 4	0.54	161	100	Ci
428	+62 780	5 41.0 +62 15	118 +18	10.8		6.83	166	103	L
429	π Men	5 41.1 -80 31	259 -30	6.3	G 5	1.10	15	277	GC 7161
430	R 49	5 42.2 + 9 14	164 - 9	12.3	F8	0.60	170	111	R
									00 5100
431	+37 1312	5 42.6 +37 16	141 + 6	8, 1	Ki	0.70	136	77	GC 7199
432	W 237	5 43.2 +44 07	135 + 9	14.0	M5	0.67	235	175	W
433	-70 340	5 45.2 -"0 12	248 -31	8.3	G 0	1.30	345	253	I, L
434	-36 2458	5 45.9 -36 21	209 -27	11.6	M 3	0.69	98	24	L
435	L 1171-122	5 48.0 +10 57	164 - 7	15. 5	k:	0.67	120	60	L
436	\$ T.on	5 49.2 -20 53	193 -21	4.9	К0	0.68	160	93	GC 7362
	δ Lep	5 50, 2 +24 16	153 -21	12. 2	M1	0.61	163	104	R, Ci
437	R 59	5 51.5 -55 07	230 -30	13.3	m	0.68	207	124	L
438	L 235-35	5 51.9 + 2 09	173 -10	10.0	K 2	0.66	174	113	AN 5788
439	+ 2 1085	5 53.0 -50 23	225 -29	7.6	K0	0.57	8	288	GC 7462
440	-50 1977	5 55.0 -50 25	223 -23	1.0	11.0	0.01	Ů	200	00 7100
441*	+13 1036	5 53.2 +13 56	162 - 4	7. 1	G3	0.61	140	80	GC 7469
442	-63 218	5 53.7 -63 06	239 -30	5.6	K 3	0.56	14	288	GC 7477
443	L 1813-21	5 56.6 +59 38	121 +18	13.5	m	0.91	193	128	L
444*	-31 2902	5 58.5 -31 02	204 -23	8.9	K3	0.57	314	244	L, Alb
445	G +82 1111	5 59.7 +82 08	9\$ +26	11.6	M3	1.30	175	101	G
	004	1 50 0 45 40	100 .10	18 4		0.60	105	122	wr
446	W 261	5 59.8 +47 49	133 +13	15.4	C 1	0.60	185	72	W,L
447	+19 1185A	6 00.3 +19 23	158 0	9.7	G1	0.91	132		L,Ci
448*	+19 1185B	6 00.3 +19 23	158 0	13.9	K3	0.91	132	72	L,Ci
449	R 60	6 00.8 +26 10	152 + 3	15. 1	M5	0.78	137	77	R
450	L 1813-10	6 00.9 +60 51	120 +19	15. 4	m	0.85	157	90	L

LFT	Designation	R. A. (1950) Dec.		m	Sp.	μ	θ	ø	Authori
451 452	L 181-1 R 413	6 ^h 03. ^m 4 -55 ⁰ 18' 6 03.9 + 4 33	230 ⁰ -28 ⁰ 172 - 7	12.7 11.7	k K4	0.76 0.80	65 ⁰ 166	345 ⁰	I, L R, Ci
45 3 454	-59 1224 R 62	6 05.4 -59 30	235 -28	9.0	G 5	0.74	194	112	L
455	L 524-9	6 06.0 +26 35 6 06.2 -32 16	152 + 5 206 -22	14.9 14.6	M3 m	0.71 0.69	265 91	204 21	R L
456 457	R 414 W 1058	6 07.0 - 8 57	184 -12	13.2	M2	0.59	89	26	R,L
458 *	+10 1032	6 07.7 +25 58 6 08.2 +10 22	153 + 5 167 - 3	13.5 11.5	M4	0.60 2.94	160 175	99 114	W, Ci
459	-21 1377	6 08.5 -21 50	196 -17	9.9	K8	0.72	188	122	R, L, Ci L, Ci
460	L 380-78	6 09.4 -43 25	218 -24	13. 4	k	0.73	9	296	L
461 462	L 95-2 +47 1276	6 10.7 -65 11 6 13.0 +47 05	242 -28 134 +15	12. 2 10. 6	k G8	0.78 0.51	166 174	82 100	I,L
463	R 417	6 17.0 - 6 37	183 - 9	14.0	M5	0.63	189	109 127	W,L R,L
464 4 65	-22 3005 L 182-70	6 19.8 -22 43 6 20.1 -59 50	198 -15 236 -27	12. 4 15. 2	k m	0.67 0.57	290 160	^^5 1	L L
466	L 812-11	6 20.3 -12 50	189 -11	13. 3	g	0.88	140	77	L
467 468	R 64 L 668-50	6 21.7 +23 29 6 22.0 -25 12	157 + 6 $201 - 16$	14. 4 14. 6	M7	0.77	133	71	R, L
469	-42 2503	6 22.9 -42 50	217 -22	14.6 7.6	m G4	0. 58 0. 77	352 353	286 282	CC 830
470	L 597-30	6 23.4 -26 47	202 - 16	14. 5	k	0.54	187	131	L
471 472	+27 1124 L 1533-1	6 26.0 +27 03 6 26.2 +35 57	154 + 9 146 +13	9. 4 11. 4	K 2 K 3	0. 50 0. 53	208 136	145 71	GC 839
473*	R 614	6 26.8 - 2 46	181 - 5	12.8	M7e	1.00	131	71 69	H, L R
474 475	- 1 1265 L 59-3	6 29.0 - 1 32 6 32.7 -69 56	179 - 4 247 -27	10. 5 14. 0	K2 m	0.50 0.69	219 17	157 296	Ci L
476	L 182-44	6 33.2 -\$8 39	235 -24	13. 2	m	0.87	332	256	Ն
477 478	+17 1320 L 1317-90	6 34.4 +17 36 6 35.3 +22 24	163 + 6 $159 + 9$	11. 1 5. 0	M1	0.84	293	230	Cı
479	+79 212	6 37.7 +79 37	102 -27	6.0	m F6	0. 64 ე. 62	198 188	135 106	L GC 871
480	G +72 3338	6 38.6 +71 58	110 +26	12.3	MO	0. 56	190	111	G,L
401* 482	L 1750-12 L 1815-3	6 40.8 +51 11 6 42.0 +61 51	132 +21 121 +24	13.6 14.6	M5	0.88	178	106	L
483		6 42.5 +58 41	124 +23	11.3	g-k	0. 52 0. 56	151 175	76 101	L L
484 485*	+32 1398A +32 1398B	6 42.9 +32 36 6 42.9 +32 36	151 +14 151 +14	9.8 12.9	K 2 M1	0.51 0.51	277 277	211 21i	Ci Ci
486*	α СМa	6 42.9 5 39	195 - 8	. 1.5	A 0	1. 32	204	141	GC 883
487	L 1534-1	6 44.3 +37 36	146 +16	11.4	DA	0.95	191	123	H, L
488 489	+60 1003 L 886-1	6 45.3 +60 23 6 46.5 - 4 55	123 +24 185 ~ 1	11. 1 13. 3	m g-k	0.52 0.50	26 120	310 58	L
490	+47 1355	6 47.8 +47 27	137 +21	10. 2	K 8	0.76	198	127	L L
491	L 886-23	6 48.1 - 9 34	189 - 3	13. 2	m	0.51	202	140	L
492 493	L 886-20 L 1815-5	6 48.6 - 9 06 6 49.4 +60 58	189 - 2 122 +25	14. 8 13. 3	k m	0. 58 1. 13	202	140	L
494 495*	- 5 1844A - 5 1844B	6 49.9 - 5 07 6 49.9 - 5 08	185 - 1 185 - 1	8. 0 12. 2	K 4 M2	0. 54 0. 54	150 270 270	73 208 208	L GC 9000 GC,L
496	-28 3554	6 51.6 -28 28	206 -11	6.6	G3	0.54	148		
497	W 294	6 51.7 +33 20	150 +16	11.6	M3	0. 32	246	84 173	GC 9038 W, Ci
498 499	+ 1 1600 -56 1692	6 54.0 ± 1 14 6 55.0 -56 53	180 + 3 234 -21	8. 7. ÷	G5 F8	0. 57 0. 60	181 358	119 287	GC 911
500	L 1863-2	6 55.8 +66 57	116 +27	15. 7	m	0.52	180	100	GC 9139 L
		•				J. UL	200	100	<u>.</u>

							•		Authomiter
LFT	Designation	R. A. (1950) Dec.	l b	m	Sp.	μ	в	ø	Authority
		6 ^h 56 ^m 1 - 0 ^o 24	182°+ 3°	10. 1	G0	0.72	149 ⁰	87 ⁰	Ci
501	- 0 1520	6 56.1 - U 24 C 56.2 44.14	222 -17	12. 4	M5	1.13	264	193	I, L.
502*	-44 3045	6 56.3 -44 14 6 57.0 -10 12	191 - 2	15.0	k-m			116	L
503	L 814-1 +48 1469	6 57.8 +48 27	136 +23	9.3	K3	0.71	129	56	GC 9218
504 505	R 612	6 59.0 + 6 30	177 + 6	12.7	G6	0.50	180	118	R
303	10 012	• • • • • • • • • • • • • • • • • • • •					1.40	60	L
506	L 1750-5	6 59.6 +52 47	132 +24	14.7	m	1, 12	143 185	68 123	L
507	L 886-6	6 59.6 - 6 23	188 + 1	16.1	DA G2	0.82 0.84	169	102	GC 9292
508	+29 1441	7 00.3 +29 25	155 +17	6.3 12.8	M5	0.80	188	126	R, L
509	R 54	7 02.0 -10 25 7 02.9 -38 30	191 - 1 217 -13	13.4	k	1. 21	191	37	L
510*	L 455-111	1 02.5 -30 30	22. 20						_
511	-57 1633	7 05.6 -57 25	235 -20	11, 2	f-g	0.68	352	283	L
512	R 986	7 06.6 +38 38	147 +21	13.3	M5	1. 12	208	138	R GC 9462
513	+21 1528	7 07.1 +21 20	164 +15	7.3	G7	0.51	198 304	133 243	R, L
514	-14 1750	7 08.6 -14 21	195 - 1	11.0	m G6	0. 50 0. 79	359	293	GC 9547
515	-49 2676	7 10.2 -49 21	227 -16	8.3	Go	U. 13	505	300	
	- 015 90	7 11.3 -13 22	195 0	15.5	k-m	1. 27	155	94	L
516	L 815-20 L 96-2	7 11.3 -67 01	245 -23	12.3	m	0.68	175	104	I, L
517 518	L 239-39	7 11.8 -52 16	230 -17	13.6	k	0.93	344	277	L
519	-63 295	7 12.6 -63 16	241 -21	11.8	K 5	0.66	334	264	L GC 9640
520	-12 1871	7 13.6 -12 58	195 + 1	8.2	F9	6.53	290	229	GC 9040
			229 -15	7.8	K 1	0. 59	357	293	GC 2723
521*	-46 3046	7 16.1 -46 54	153 +21	11.5	M1	0. 56	134	64	H, Ci
522	+33 1505	7 16.3 +32 57 7 18.9 -15 15	198 + 1	11.4	F4	0.56	144	83	L
523	L 743-3 -12 1914	7 19.2 -12 34	195 + 2	10.9	К3	0.52	352	291	R,L
524 525	L 15-8ò	7 21.6 -82 56	262 -26	13.6	m	0.67	351	276	L
323	D 10-00						454	00	•
526	L 455-129	7 22.2 -39 13	219 -10	14.8	f:	0.86 3.76	154 171	92 109	L L
527	+ 5 1668	7 24.7 + 5 29	180 +12	11.7	M5 K0	0.60	144	71	R, L
52 8	R 988	7 25.0 +38 05	148 ±24 201 ± 1	14, 4 14. 4	k-m	0.63	3	303	L, _
529	L 744-10	7 26.0 -18 42 7 29.1 -44 18	201 + 1	12. 5	k.	0.50	344	282	L
530	-44 3484	1 29.1 -41 10	DD4 - X1						
531	L 456-27	7 30.4 -36 00	217 - 7	14. 1	k	9. 53	206	145	L
532	L 1608-2	7 31.9 +46 27	140 +28	15. 2		3.62	130	52	L
533	L 384-24	7 32.1 -42 47	223 - 10	13.9	DA	0.66	5 141	304 81	L R,L
534	R 390	7 32.5 -10 16	195 + 6	11.5		0.62 6.53	328	267	I,L,C
535	-45 3283	7 32.9 -45 10	225 -11	11. 2	rs	0. 25	0.00		-,,-
500	D 234	7 34.8 +28 25	159 +23	15.6	M4	0.54	132	62	R
536 537	R 394 +37 1748	7 34.9 ÷36 51	150 +26	11.7		0.86	174		H,R
538	L 240-16	7 34.9 -51 49	232 -14	13. 2		0.61	42		L
539	L 1977-54	7 36.0 +75 08	107 +30	14. 3		0.51	189		L L
540	L 672-19	7 36.5 -21 06	205 ÷ 2	13.7	m	0.70	136	11	L
		E 00 E . E 01	181 +14	c. 9	F3	1. 25	2 14	152	GC 10277
541		7 36.7 + 5 21 7 37.5 +72 57	109 +30	14.0		1. 23			L
542		7 38.1 -17 17	202 + 4	12.9		1.28		58	L
543		7 38.1 -17 17	202 + 4	17.€		1. 26			L
544 ⁴ 545		7 41.4 -45 03	226 -10	5. 9	G4	0.57	187	127	GC 10402
0.0	<u></u>				n 10.4	0.69	176	101	GC 10412
546		7 41.5 +39 41	148 +28			0.69			R
547		7 42.1 + 3 41	184 ±15 160 +25			0.63			·
548	· · · · · · · · · · · · · · · · · · ·	7 42.3 +28 09 7 43.7 -34 04	217 - 4			1. 69			
549 550		7 44.7 +53 48	132 +31			0. 56	194	110	Ci
JJU	, ,,,,,,,,								

LFT	Designation	R.A. (1950) Dec.	l b	m	Sp.	μ	θ	Ļ	Authority
551	R 391	7 ^h 44.8 -13 ^o 47	200°+ 7°	12.7	M1	υ. 51	169 ⁰	110 ⁰	R, L
552	W 1421	7 45, 2 +20 30	168 +23	12.7	M2	1.60	127	60	W, L, Ci
553	L 961-1	7 49.4 + 0 08	188 +15	15. 2	m	J. 78	159	99	L
554	+31 1684	7 50.4 +30 46	158 +27	8.8	F8	1.97	158	86	GC 10650
555	L 97-12	7 52.8 -67 38	247 -19	15.0	f-g	2.65	135	72	L
556*	L 601-78	7 52.9 -29 12	214 0	14.9	k	0. 59	147	90	L
557	L 1536-23	7 54.2 +40 11	148 +31	11.4	K 2	0.59	190	112	F,L
558	L 313-6	7 55.5 -45 30	228 - 8	13.6	m	0.66	342	284	L
55 9	+21 1731	7 56.6 +20 59	168 +25	9.6	K0	G. 58	162	94	GC 10795
560	-59 1773	7 56.8 -60 10	241 -15	δ. 1	F8	9. 53	77	17	GC 10804
561*	-59 1774	7 56.9 -60 10	241 -15	12.0	k	0.53	77	17	GC, I, L
562	+29 1664	7 57.4 +29 22	16u +28	7.5	G7	1. 18	187	115	GC 10821
563	-39 3869	7 58.3 -39 53	223 - 4	11.6	K 5	0.86	143	87	I.
564	L 185-57	7 59.8 -57 21	238 -13	16. 2	Œ	0.50	139	80	i.
565	+72 395	8 02.7 ~72 05	110 +32	8.5	G0	0.50	204	105	GC 10972
566	-29 5555	8 05.0 -29 15	215 + 2	7.5	G2	0.51	136	80	GC 11023
567	+32 1695	8 08.5 +32 37	157 +31	7.6	G 4	0.81	215	141	GC 11121
568	L 242-66	8 08.7 -52 50	235 -10	12.4	m	0.81	319	263	I, L
569	R 619	8 09, 2 + 9 02	181 +23	14. 2	M 6	5.40	167	104	R
570	L 15-97	8 10.2 -83 06	263 -25	14. 5	m	0.69	305	242	L
571	L €74-15	9 10.5 -21 23	209 + 8	13.8	m	0.73	175	119	L
572*	-13 2439	8 10.7 -13 45	203 +12	11.3	K7	0. 55	206	149	L
573	L 530-33	8 11.6 -32 19	219 + 2	14. 5	m	0. 50	318	263	L
574	+73 407	8 14.5 +73 35	108 +33	9.6	KI	V. 57	212	110	GC 11373
575	L 34-16	8 14.9 -76 00	256 -22	13 3	k-m	0.64	329	269	I,
576	+31 1781	8 15.1 +30 46	159 +33	9.6	K6	0.87	200	125	GC 11297
577	L 530-128	8 15.5 -34 17	220 + 1	13.7	m	ა. 59	154	109	L
578	+54 1216	8 15.6 +54 16	131 +36	9.9	E.S	0.66	182	92	L _, Ci
579	-12 2449	8 16.0 412 27	202 +14	6.7	G8	1.02	165	108	GC 11325
580	+66 550	8 21.0 +56 38	116 +35	10. 2	K 5	0. 53	179	79	GC 11451
581	L 186-67	8 21.6 -57 18	240 -11	15. 2	k-m	0.60	321	266	L
582*	L 186-66	8 21.6 -57 18	240 -11	16.8	m	0.60	321	265	L
583	+33 1694	8 22. 1 +32 47	158 +34	11.1	K. 2	0.67	177	101	F, Ci
58 4	L 1251-11	8 25.3 +20 19	172 +31	13.7	<u>m</u>	0.57	203	134	L
585		8 25.4 +35 13	155 +36	12. 2	MO	1. 10	246	168	McCormick
586	L 1819-2	8 25.6 +61 34	122 +36	11.8	面	0.85	150	52	L
587	L 387-102	8 25.7 -44 50	230 - 3	13, 8	m	0.56	343	290	L
588	+46 1405	8 26.0 +46 05	141 +37	11.3	K6	C. 54	216	130	Ci, L
589	L 186-160	8 26.0 -59 24	242 -12	16.0	m	G. 77	2	308	L
596	L 963-22	8 2?. 2 - 1 34	194 +22	13. 5	k-m	6.96	155	96	L
591	-31 6229	8 30.9 -31 20	198 +22	7. 1	G8	1.35	304	246	GC 11723
592	L 1866-6	8 31.2 +68 14	114 +35	13.3	k:	1.02	236	132	L
593	+67 552	8 33.0 +67 30	115 +36	10.7	Ж 9	1.04	270	166	L, Ci
594	+42 1899	8 32. 2 +41 56	147 +38	3.6	КЗ	0.66	200	116	Ċŗ
595	L 1978-24	8 32.4 +76 00	105 +33	13.6	m	0. პა	207	98	L
596	+12 1888	8 37.1 +11 42	182 +31	9.0	K 1	0.52	191	137	GC 11884
597	-15 2546	£ 38, 6 -16 10	209 +16	9.7	F4	3.62	142	88	L,Cı
598	L 675-81	8 38.8 -23 19	215 +12	13. 2	Ð	0.91	332	280	L _
599	W 329	8 59.2 +44 43	144 +39	14. 3		0.63	85	357	W,L
600	-32 5613	8 39.6 -32 48	222 + 6	11.8	DA	1.69	?21	270	L

LFT	Designat.on	R. A. (1950) Dec.	l b	m	Sp.	μ	θ	•	Authority
601*	+10 1857AB	8 ^h 40.0 + 9 ^o 45	185 ⁰ +31 ⁰	10.5	K7	0. 67	160 ⁰	97 ⁰	Ci
602*	+10 1857C	8 40.1 + 9 45	185 +31	14.6	M5	0.67	160	97	VM
603	+42 1922	8 41.9 +41 52	147 +40	9.3	K3	0.71	203	117	GC 12024
604	+ 7 2031	8 45.8 + 6 40	189 +30	11.5	K6	0.55	149	88	Ci
605	+37 1912	8 46.2 +36 43	154 +40	11.8	MO	0.56	202	120	H
200	5		400 04						
606	R 583	8 47.8 + 7 49	188 +31	12.0	G 5	0.64	155	93	R, Ci
607	- 4 2468	8 47.9 - 5 21	201 +24	9.7	G 5	0.55	192	136	L
808	R 622	8 48.9 +18 19	176 +36	13.3	*** **	0.89	263	194	R, L
609 610*	+28 1660A +28 1660B	8 49.6 +28 31	164 +39 164 +39	7.1	K0	0.54	244	168	GC 12244
010-	+20 100015	3 49.6 +28 31	104 +39	14.5	M5	0. 54	244	168	VM
611	L 1867-18	8 50.0 +63 45	119 +39	15. 2	ķ	0.60	175	69	L
612	+71 482A	8 50.7 +70 59	110 +36	10.1	K8	1.40	255	144	GC 12268
613*	+71 482B	8 50.7 .70 59	110 +36	19. 2	Кb	1.40	255	144	GC 12269
614	L 820-19A	8 51.6 -12 56	208 +21	13.5	M3	0.62	144	91	L
615*	L 820-19B	8 51.6 -12 56	206 +21	13.9		0.62	144	91	L
616	+ 2 2098	8 53.6 + 1 46	195 +29	16. 8	MO	1. 10	174	15	R, Ci
61%	L 63-18	8 55.3 -71 25	254 -17	15.8	m	0. 53	334	284	L, OI
618	G +71 4803	8 55.6 +70 53	110 +37	11.7	K 3	0.51	168	56	Ē
619	+21 1949	8 55.6 +20 46	175 ÷38	1C. 3	K4	0.68	103	33	Ci
620	ι UMa A	8 55.8 +48 14	139 +42	3. 3	A 5	0.50	241	147	GC 12407
621*		8 55.8 +48 14	139 +42	10.8	MI	6.50	241	147	ADS
622	G +78 3159	8 56.1 +78 43	101 +33	12.8	G 9	0.58	193	7€	G, L
623	- 3 2525	8 56.6 - 3 50	201 +27	16. 2	r4	0.79	138	82	L,Ci
824	- 5 2678	8 56.6 - 6 11	293 +26	11.8	G	0. 53	154	39	Į.
625*	L 532-21	8 57.0 -31 02	223 +10	15.0	k	1.08	140	92	L
626	L 1684-5	8 57.3 +45 48	140 +42	15. 2	m	0.75	214	121	L
627*	+42 1956	8 57.4 +41 59	147 +43	4.3	F2	0.51	240	152	GC 12434
628	L 316-67	8 57.9 -47 16	236 0	14.4	m	0.83	323	276	I, L
629	+25 2037	9 02.8 +25 30	169 +41	12.5		0.50	224	150	Óxf, Ci
630	L 1867-20	9 02.9 +63 58	113 +40	14.0	m	1.00	219	110	L
631	L 1253-4	9 02.9 +18 50	178 +39	13.7	m	0.60	170	101	L
632	-14 2757	9 06.1 -14 56	212 +22	7.8	G1	0.57	249	198	GC 12620
633	+15 2003	9 09.6 +15 12	182 +39	7. 9	G6	0. 57	295	229	GC 12693
634	+53 1329	9 11.0 +52 54	132 +44	9. 1	MO	1.68	248	147	GC 12727
635*	+53 1321	9 11.0 +52 54	132 +44	9.2	M0	1.68	248	147	GC 12728
636*	+77 361	9 11.8 +77 28	102 +35	11.4	K 4	1.06	268	148	G, L, Ci
637*	+29 1383	9 14.9 +26 47							GC 12815
638	L 140-119	9 15.4 -61 53	248 - 9	14.0	m	0.91	314	270	L L
639	L 188-9		244 - 4	16. 2	m	0.50	190	146	L
640	L 35-12	9 17.5 -77 37	260 -20	14. 9	m:	1.04	138	92	L
•••	- 00					2.01	100		_
641	+40 2197	9 19.3 ~40 25	149 +47	8.8	K 3	0.50	224	134	GC 12917
642	-31 7195	9 20.2 -31 57	228 +13	9.7	K 1	0.66	293	249	L,C
643	-59 2351	9 20.5 -60 05	247 - 7	11.3	F16	0.87	282	239	L
644	L 99-35	9 20.7 -66 17	251 -11	14.4	m	0.53	300	256	L
545	L 461-53	9 22.3 -36 51	231 +10	14.6	100	0.84	154	111	L
646	-12 2889	9 22.6 -12 45	213 +27	10.7	K 2	0.86	133	84	R, L
647	R 83	9 22 8 +18 54	180 +44	14.4	M2	0.59	232	163	R, L
648	R 436	2 22.9 - 7 07	208 +31	13.8	K 5	0.85	130	79	R, L
649	R 438	9 23.4 - 7 58	£16 +30	14.0	k	0.50	184	133	R,L
659	-80 328	9 25.8 -80 21	262 -21	11.0	f	1. 25	9	324	L

THE TRAITS OF BRITE FARE AND AREA OF AN AREA FROM A BEST FOR THE FOR THE FOREST FOR THE FOREST AND AN AREA OF BRITE FOREST AND AND A STATE OF A

II TERIO DE LO CONTRACIONARIO DE CONTRACIONARIO

LFT	Designation	R. A. (1950) Dec.	ì b	m	Sp.	μ	θ	¢	Authority
651	R 439	9 ^h 26. ^m 4 - 7 ^o 08	2090+310	13. 2	M4	0.71	191 ⁰	140 ⁰	R,L
652	+ 6 2182	9 27.4 + 5 52	196 +39	8.8	K 4	0.52	282	223	L, Ci
653	L 1038-28	9 28.2 + 0 33	202 +36	13.6	m	0.77	229	174	L,
654	R 84	9 28.7 +20 31	178 +45	13.5	M4	0.78	175	104	R
655	+36 1970	9 28.9 +36 34	155 +48	11.6	M1	0.55	203	115	H, Ci
000	430 1310	J 20.0 TOO 01	100 (10						,
656*	-12 2918	9 28.9 -13 16	215 +27	11.8	M4	0.75	88	40	R,L
657	-46 5238	9 29.1 -47 09	239 + 3	9.6	K 2	0.52	137	96	I, C, L, Ci
658*	θ UMa	9 29.5 +51 54	132 +47	3.7	F8	1.09	240	135	GC 13157
659*	+36 1979	9 32.7 +36 02	156 +49	6. 1	K0	0.75	250	162	GC 13242
660	L 966-17	9 33.9 - 2 36	206 +34	14.5	k	0.80	212	159	L
661	L 678-39	9 33.9 -21 25	222 +23	12.7	k	1. 10	172	127	L
662	L 1038-6	9 34.5 + 2 32	201 +38	12.6	m	0.62	152	97	L
663	R 90	9 35.5 +22 15	176 +47	14.8	M1	0.84	268	195	R
664	L 1038-3	9 35.9 4 2 55	200 +39	13.4	ni	0.80	189	133	L
665	-38 5760	9 36.6 -39 08	235 +10	11.6	k	0.54	132	91	L
									_
666	-40 5404	9 37.9 -40 50	236 + 9	12. 4	m	0.65	305	265	L
667	R 92	9 38.2 +22 16	177 +48	15.7	M 6	0.65	130	57	R, L
668	L 1038-14	9 38.2 + 1 15	203 +39	10.9	A 5	0.54	160	106	L
669	G +70 4336	9 38.4 +70 17	109 +41	11.6	М3	0.72	244	121	G, L
670	R 85	9 38.5 +13 27	189 +45	12. 1	M 2	0.78	266	202	₽, Ci
				10.0	3.64	0.75	044	101	C T
671*	G +70 4337	9 38.7 +70 17	109 +41	12 3	M4	0.72	244	121	G, L VM
672		9 39.1 -56 14	126 +47	14.2	M 3	0.92	235	126	
673	L 1542-26	9 40.2 +35 26	157 +51	12. 5	77.4	0.51	232	140	L GC 13402
674	+43 1953	9 40.3 +42 56	145 +50	9.2	K 4	0.83	177 245	80 201	GC 13402 L
675	L 750-79	9 40.4 -19 00	221 +26	13.4	m	C. 51	443	24.	L
ene	R 93	9 41.2 +27 12	170 +50	12. 5		0. 55	260	182	R,L
676		9 41.4 -63 25	251 - 8	14.8	m	0.50	88	49	L L
677 678	L 140-289 L 750-42	9 41.6 -17 35	220 +27	14.7	m	1.43	280	235	L
679*	G +76 3952	9 41.7 +76 18	102 +37	12. 1	M2	0.98	174	46	R, L
680	L 100-115	9 42.0 -68 41	255 -12	15. 2	m	1. 11	357	317	L
000	D 100-110	0 15.0 00 12	200						
681	L 750-52	9 42.6 -18 00	221 +27	14.3	k	1. 58	263	219	L
682	-45 5378	9 42.6 -45 32	240 + 6	11.8	M2	0.74	217	3.78	I, L, C
683	L 1820-21	9 44.5 +60 30	120 +46	13.5	M2	0.86	257	140	L
684	+14 2151	9 46.2 +13 59	190 +47	8.7	A 8	0.88	154	90	GC 13512
685	-11 2741	9 48.7 -12 04	217 +32	11.4	M2	1.79	143	189	GC 13557
686	L 1869-10	9 49.0 +\$0 30	119 +46	13. 1	g:	0.53	221	103	L
687	-42 5678	9 49.1 -43 15	240 + 9						I, L,C
688	+63 869	9 52.7 +63 03	116 ∔45	10.5	M1	0.69	209	88	L,Ci
689	-58 2884	9 53.0 -58 30	249 - 3	10.4		0.60		281	L
690	-45 5627	9 56.6 -46 10	242 + 7	12. 3	M5	0.69	;35	99	I, L
			400 54	10.0		1 10	224	1 477	W Ci
691	W 335	9 57.9 +32 34	162 +54	12.0	M1	1. 18 0. 68	234 230	147 144	W, Ci GC 13763
692		9 58.1 +32 10		6. 2 9. 2	G4 K0	0.50	203	87	Ci
693*	+56 1421	9 58.3 +55 51	125 +49	12.8	M4	1. 27	302	264	L
694	L 535-3	9 59.1 -30 10	233 +20		M2	i. 51	203	95	L
695	+ 48 1829	9 59.3 +48 26	135 +52	11.8	ML	1. 51	200	30	-
696	+50 1725	10 08.3 +49 42	132 +53	7.9	K8	1.45	249	137	GC 13987
697	L 1761-5	10 09.1 +57 18	121 +50	13.3	m	0. 69	211	90	L
698	L 968-22	10 09.5 - 2 25	213 :42	12.6	m	0.80	143	95	L
686 020	-17 3088	10 08.8 -16 23	227 +31	11.8	m	0. 52	270	231	L L
700	W 388	10 10.5 +13 13	194 +52	15.0		0.84	130	68	w
100	H 200	AU AUI U TAU AU	45	-4.4					

LFT	Designation	R. A. (1950) Dec.	l b	m	Sp.	μ	θ	φ	Authority
701	+10 2122	10 ^h 10 ^m 6 + 9 ^o 52'	200°+51°	11.3	K3	0. 65	183 ⁰	129 ⁰	L,Ci
702	+53 1395	10 10.8 +52 46	128 +52	10.6	K8	0.75	174	57	Ci
703	L 464-6	10 10.9 -35 30	238 +17	14.6	m	0. 53	293	258	L
704	L 1617-23	10 11.5 +44 10	140 +56	15. 2	m	0.99	228	121	Ĺ
705	-84 102	10 11.8 -84 51	246 -23	9.3	G5	0.65	304	269	L
103	-04 102	10 11.0 -04 71	240 -23	3. 3	GJ	0.00	304	203	.
706	R 445	10 12.7 - 9 25	220 +38	12.8	K3	0. 56	251	208	R,L
707	L 320-124	10 12.9 -46 55	245 + 8	14.8	k	1. 12	292	259	L [']
708	L 17-47	10 13.1 -82 38	265 -22	12.4	k	0.54	303	269	L
709	L 824-28	10 14.4 -11 42	223 +37	12.7	k	0.73	214	172	L
710	- 0 2326	10 18.3 - 1 12	214 +45	10.6	K0	0.68	254	207	L, Ci
									•
711	L 190-266	10 20.6 -59 55	253 - 2	11.6	m	0. 57	140	109	L
712*	L 190-265	10 20.6 -59 53	253 - 2	13. 5	\mathbf{m}	0. 57	140	109	L
713	- 9 3070	10 22.8 - 9 58	223 +39	12.0	K0	0.72	278	237	L
714	L 320-380	10 23.6 -49 40	248 + 7	13.6	k-m	0. 57	283	253	L
715	L 753-28	10 23.7 -17 43	229 +34	12.7	k	0. 58	292	255	L
716	- 5 3063	10 24.2 - 6 14	220 +42	10.8	K 5	0.60	181	138	L
717	- 5 3003 +49 1961A	10 24.2 - 6 14	132 +56	6.9	G2	0.90	174	58	GC 14357
718*	+49 1961B	10 25.0 +49 03	132 +56	13.6	G Z	0.90	174	58	VM
719	+ 1 2447	10 26.4 + 1 07	213 +48	11. 1	М3	0.96	219	171	Ci
720	+60 1266	10 20.4 + 1 07	116 +50	10.4	K5	0. 50	237	108	L, Hamburg
120	+00 1200	10 21.4 +00 01	110 +30	10. 4	V 2	0. 52	231	100	L, namour g
721	+46 1635	10 28.5 +45 48	137 +58	10. 1	MO	0.80	225	112	L,Ci
722	L 249-17	10 28.8 -51 03	250 + 6	13.7	g-k	0. 59	245	216	L
723	L 1912-9	10 32.3 +69 43	105 +44	13.0	m	1.80	250	112	L
724	R 99	10 32.7 + 7 48	207 +53	13.3	K1	0. 57	152	99	R, L
725	L 1113-55	10 33.5 + 5 23	210 +52	13.6	M 6	0.68	280	230	L
726*	-11 2918	10 34.0 -11 58	227 +40	6. 2	F6	0.72	159	122	GC 14582
727	G +76 4182	10 34.6 +76 26	100 +39	11.5	K4	0. 72	237	95	G, L
728	L 1545-48	10 35.8 +35 45	155 +62	13. 2	m	0. 50	303	206	L L
729			224 +44	12. 8		0.68	261	221	L
730	L 897-16 L 753-40	10 37.3 - 6 39 10 38.0 -19 06	234 +34	14. 4	m	0.65	261	227	L
130	T 199-40	10 36.0 -19 00	204 +C4	14. 4	m	0.03	201	221	ь
731*	L 753-39	10 38.0 -19 06	234 +34	15. 2	m	0.65	261	227	L
732	L 1545-14	10 39.0 +37 50	151 +62	14.0	m	1. 54	264	162	L
733	L 1329-42	10 42.2 +23 51	181 +62	14. 3	m	0.65	247	172	L
734	L 143-23	10 42.7 -60 58	256 - 2	15. 3	m	1.65	348	322	L
735	L 485-1	10 43.3 -35 06	244 +21	13.9	m	0.96	293	265	L
736	-18 3019	10 43.5 -18 50	235 +35	12.9	m	1.94	252	219	L
737	L 143-22	10 43.8 -60 33					112		L
		10 44.7 +28 41	230 - 1 171 +64	10.7		0. 83	165	80	
738	+29 2091	10 44. (+28 41 10 46. 0 -29 52	242 +26	14.6	F8	0. 53	276	247	Ci L
739	L 610-128			15.0	m	1. 24	212	112	L
740	L 1545-74	10 47.0 +35 50	155 +64	13.0	m	1. 24	212	112	L
741	R 106	10 47.3 +56 43	117 +55	13. 5	G6	0. 50	150	18	R, Ci
742*	W 358	1048.5+706	212 +56	12.9	M4	1. 18	225	176	W,L
743	+21 2247	10 48.8 +20 33	189 +63	8.4	F3	0. 55	210	143	GC 14925
444		10 49.1 +14 16	201 +69	14. 2	M4	1.07	280	221	Hubble
745	- 1 2457	10 50.1 - 1 48	223 +50	10.7	K8	0.75	206	166	L
740	19 2040	10 50 0 14 00	999 . 40	10.0	V E	0 50	220	107	•
746	-13 3242 B 107	10 50.9 -14 06	233 +40	12.0	K 5	0. 50 0. 56	230	197	L
747	R 107	10 52.9 +56 18	117 +55	13.8	M2	0.56	273	139	R
748 749	L 898-42	10 53.1 - 9 06	230 +45	14.8	m	0. 52	326 291	291 257	L
750	L 250-10 W 359	10 53.5 -51 54	253 + 7	13.6	m M8	0.60 4.71	281 235	257 187	L
. 30	# 303	1054.1+720	214 +57	15. 7	=1 0	7. 11	ಒು	187	W,L

LFT	Designation	R. A. (1950) Dec.	l b	m	Sp.	μ	θ	ф	Authority
751	+42 2163	10 ^h 54 ^m 2 +42 ⁰ 10	139 ⁰ +64 ⁰	10.5	K 3	0.79	247 ⁰	132 ⁰	Ci
752	+70 639	10 54.5 +69 52	103 +45	11.5	K8	0.€4	274	129	Ci
753	L 898-25	10 55.2 - 7 15	229 +47	14.4	DA	0.80	275	239	L
754	L 682-41	10 55.6 -22 51	240 +33	14. 2	m	0, 50	225	197	L
755	L 754-33	10 56.8 -18 12	238 +37	14. 5	m	0.58	241	211	L
756*	+36 2147	11 00.7 +36 18	152 +67	8.9	M2	4.78	187	83	GC 15183
757	+44 2051A	11 03.0 +43 47	135 ·64	10. 2	M2	4. 53	295	175	GC 15252
758*	+44 2051B	11 03.0 +43 47	135 +64	16.0	M8	4. 53	295	175	VM
759	L 1187-43	11 03.1 +10 31	211 +61	14.0	m	0.94	140	90	L
760	R 108	11 03.3 +53 29	118 +58	15. 8	K6.	0.77	227	92	R
761	W 362	11 04.8 + 1 53	224 +55	14. 5		0.67	146	106	W
762	-30 8970	11 05.0 -30 32	246 +27	11.4	K 4	C. 5C	137	113	L
763	-29 8875	11 05.5 -29 54	246 +28	7. 1	G1	0 54	254	.330	GC 15311
764	-23 9765	11 07.2 -24 19	244 +32	12. 3	m	0.92	236	211	L
765	L 1403-12	11 07.6 +29 15	170 +69	14. 3	m	0.99	243	∡5 5	L
766	W 364	11 07.6 - 2 30	229 +52	13. 2	K 2	0.50	162	127	W,L
767	+31 2240A	11 08.3 +30 43	166 +69	9.5	M0	0.62	110	18	GC 15366
768*	+31 2240B	11 08.3 +30 43	166 +69	11.6	M2	0.62	110	18	ADS
769	L 66-82	11 08.4 -74 21	264 -13	16.0	m	0.68	305	284	L
770	W 365	11 08.5 + 6 43	219 +59	11.6	G 2	0.82	230	186	W, Ci
771	F 31A	11 08.6 +45 42	133 +65	12.9	M3	0.75	234	108	F
772*	F 31B	11 08.6 +45 42	133 +65	13. 2	M 3	0.75	234	108	F
773	-10 3216	11 08.8 -10 41	236 +45	10.7	K 5	1.09	307	277	L
774	-14 3277	11 08.8 -14 42	239 +42	10.6	K 5	0.92	129	101	L,Ci
775	L 395-13	11 09.1 -40 48	252 +18	13.8	k	1. 25	264	242	L
776	+36 2165	11 10.1 +36 01	152 +69	16. 1	F4	0, 52	166	60	R
777	W 368	11 10.4 +13 12	209 +64	16.0		0.65	118	66	W,L
778	L 1259-11	11 12.7 +19 44	196 +68	15.0	m	0. 50	160	96	L
779	-17 3336	11 12.9 -17 50	242 +40	11. 2	K8	9.76	166	140	L
780*	-17 3337	11 12.9 -17 50	242 +40	11.6	K8	0.76	166	140	L
781*	L 755-50	11 12.9 -17 50	242 +40	15.0	M 5	0.76	166	140	L
782	₩ 373	$11 \ 13.6 + 8 \ 17$	220 +61	14.0		9.75	263	220	W, L
783*	L 395-109	11 14.1 -43 46	254 +16	15.0	k	0.51	268	248	L
784	L 192-72	11 14.2 -57 17	258 + 3	12.8	m	2.72	295	276	I, L
785	L 611-67	11 14.3 -27 40	247 +31	14.8	m	0.94	212	189	L
786	+22 2340	11 14.5 +21 36	192 +69	10. 1	G5	0.55	205	136	Ci
787	L 395-108	11 14.5 -43 49	254 +16	14.8	k	0.51	268	248	L
788	- 1 2505	11 14.8 - 1 43	231 +54	10.6	M0	0.57	270	236	W, L, Ci
789	L 1259-59	11 15.1 +17 32	202 +67	14.7	m	0.88	266	207	L
790	ξ UMa A	11 15.5 +31 49	162 +71	4. 9	F9	0.73	216	120	GC 15537
791*	ξ UMa B	11 15.5 +31 49	162 +71	5. 4	G0	0.73	216	120	ADS
792	L 971-14	11 15.8 - 2 58	232 +53	14.9	DC:	0.54	293	260	L
793	- 4 3049	11 15.8 - 4 47	234 +51	8. 3	K0	0.80	101	69	GC 15546
794	L 1403-36	11 15.9 +27 24	176 +71	14.7	m	0.72	245	161	L
795	+66 717	11 17.5 +66 07	103 +50	10.6	M1	2.95	273	123	GC 15579
796	L 1115-12	11 19.1 + 6 28	223 +61	15.0	m	1.76	205	164	L
797	÷15 2325	11 19.8 +14 44	210 +67	11. 1	K0	0.50	270	218	W, L, Radcl.
798	W 386	11 21.3 + 8 50	221 +63	12. 4	M2	1.00	279	236	w, L
799	L 755-53	11 21.5 -18 04	244 +40	14.7	m	0.61	265	241	L
800	R 627	11 21.8 +21 39	194 +71	13.9	DA	1.00	271	203	R,L

LFT	Designation	R. A. (1950) Dec.	l b	m	Sp.	μ	θ	φ	Authority
001	C .70 2015A	11 ^h 22 ^m 0 +78 ^o 33	95 ⁰ +39 ⁰	13. 0	М3	0. 68	253 ⁰	96 ⁰	G, L
801	G +78 3815A	11 22.0 +78 33	95 +39	13.7	M4	0.68	253	96	G, L
802*	G +78 3815B			9.0	K8	0.52	278	260	I, L, Ci
803*	-60 3532	11 22.5 -61 22	260 - 1		V 0		17G	136	W, L
804	W 391	11 23.0 + 1 15	231 +57	14. 2	15.0	0.52			
805	+ 3 2502	11 24.2 + 3 17	229 +59	7. 5	K0	0.74	284	249	GC 15705
*808	+ 3 2503	11 24.2 + 3 17	229 +59	8.6	K 5	0.74	284	249	GC 15706
807	R 109	11 24.5 +59 51	107 +55	12. 4		0. 53	213	65	R, Ci
808	W 395	11 24.5 +12 09	217 +66	15. 2		0. 52	290	243	W,L
809	L 1332-29	11 24.9 +23 07	190 +72	14. 5	m	0.63	215	144	L
810	L 900-43	11 25.5 - 8 53	240 +49	13. 4	m	0.97	148	121	L
811	R 110A	11 25.8 +57 01	110 +58	15. 5	M5	0.70	130	343	R
812*	R 110B	11 25.8 +57 01	110 +58	15. 9	M5	0.70	130	343	R
813	W 397	11 25.9 + 7 50	224 +63	11.4	K8	1. 22	192	152	W,L
814	W 398	11 26.5 +10 27	220 +65	13. 0	110	0.99	300	257	w'
	L 1332-49	11 28.1 +21 47	195 +72	14.6	m	0.51	308	241	Ľ
815	1, 1332-45	11 20.1 721 71	133 +12	14.0	ш,	0.02			
816	-56 3980	11 28.4 -56 52	260 + 4	10. 2	k	0.56	272	256	I, L
817	R 111	11 28.6 +59 28	107 +56	14. 2	K 3	0.68	158	8	R
818	G +77 4245	11 29.1 +76 57	95 +40	11.8	G0	9.60	171	12	G
819	L 1044-35	11 29.1 + 2 30	232 +59	13.8	m	0.76	228	195	L
820	+23 2359	11 29.2 +22 56	193 +73	11.7	M1	0.58	268	199	R,L
020	+20 2003	11 20.0 +22 00							
821	L 396-7	11 29.4 -40 47	255 +19	12. 4	m	0.71	290	273	L
822		11 32.0 +40 26	134 +71	11.3		0.64	223	97	F
823	-32 8179	11 32.1 -32 34	253 +27	7. 1	K 1	1.07	320	303	GC 15873
824	-23 10062	11 32.2 -23 36	250 +36	12.6	\mathbf{m}	0.64	247	228	L
825	-31 9113	11 33.0 -32 14	253 +28	11. 1	M2	0.83	185	1 6 8	L,C
826	SA 55-33	11 33.5 +29 07	170 +75	15. 0	K3	0.88	161	69	Radel.
827	+40 2442	11 34.0 +39 28	136 +71	11. 4	K4	0.59	133	8	Ci
828	R 114	11 34.0 +13 50	218 +69	14. 3	G5	0.53	209	154	R
829	- 47 7000	11 35.3 -48 21	258 +12	11. 9	k	0.52	252	237	L,C
830	R 910	11 35.9 + 3 30	234 +60	12. 1	**	0.66	252	220	R,L
030	K 910	11 33.5 + 3 30	234 +00						-
831	+45 1947A	11 36.1 +45 23	123 +68	6.9	G 1	0.59	272	134	GC 15976
832*	+45 1947B	11 36.1 +45 23	123 +68	9.3	K 3	0. 59	272	134	ADS
833	L 396-10	11 36.1 -41 06	257 +19	14.7	k	0.95	275	259	L
834	R 451	11 37.6 +67 36	100 +49	13.7	K4	3.20	174	16	R
835	-43 7138	11 38.6 -44 08	258 +17	9. 3	K 5	0.71	287	272	GC 16041
836	R 1003	11 39.2 +43 01	126 +70	14. 5		0. 53	255	121	R
837	+ 5 2529	11 39.2 + 5 25	232 +62	11. 1	K8	0. 52	156	122	R
838	L 1405-28	11 39.4 +27 03	180 +76	12. 7	M3	1.01	142	60	L
	-51 5974	11 40.9 -51 33	260 +10	11. 3	K O	0.87	128	114	L,C
839		11 41.3 + 2 17	237 +69	14.6	m	0.54	110	81	L,R
840	L 1044-38	11 41.3 + 2 11	231 709	14.0	ш	0.01	110	01	2,10
641	L 1405-25	11 42.1 +27 13	181 +77	15.8	m	0.68	184	100	L
842	+26 2251	11 42.1 +25 50	185 +77	10.9	F8	0. 52	266	188	L
843	+48 1964	11 42.9 +47 57	116 +67	8. 5	G1	9.66	243	98	GC 16123
844	L 145-141	11 42.9 -64 34	264 - 3	12. 5	a	2.68	97	84	I, L
845	L 68-144	11 43.6 -73 56	266 -12	16. 3	m	0.81	341	328	L
846	+51 1696	11 44.1 +51 10	112 +64	10. 2	G0	1.02	240	91	L
847	L 829-26	11 44.1 -13 44	249 +46	13. 4	L3	1.09	136	117	L
848	-39 7301	11 44.1 -40 14	258 +21	5. 5	G 4	1. 59	284	270	GC 16149
849	G +79 3888	11 44.3 +78 57	94 +38	12. 3	115	0.87	57	253	G
850	-65 1143A	11 44.6 -65 29	264 - 4	12. 4	m	0.50	254	241	I, L

LFT	Designation	R. A. (1950) Dec.	l b	m	Sp.	μ	θ	ø	Authority
851*	-65 1143B	11 ^h 44 ^m 6 -65 ⁰ 29	264°- 4°	12.6	m	0. 50	254 ⁰	241 ⁰	I, L
852	R 128	11 45.3 + 1 06	240 +60	12.6	M5	1.38	153	127	R, L
853	β Leo	11 46.5 +14 51	222 +72	2. 3	A 2	0. 52	256	213	GC 16189
854	β Vir	11 48.1 + 2 03	241 + 6	2. 3 4. 2	F8	0.32	110	84	
	+38 2285		-						GC 16215
855	+30 2200	11 50.1 +38 05	133 +75	7.0	G 5	7.04	145	15	GC 16253
856	L 1405-19	11 50.1 +27 49	177 +79	13. 1	G5	0.94	247	160	L,R
857	L 541-21	11 50.7 -31 07	257 +30	14. 9	m	1.09	263	250	L
858	L 991-10	11 50.8 - 7 06	248 +53	13.7	m	0. 54	196	177	L
f 59	R 119	11 51.6 +10 08	233 +68	14.0	ш	0. 76	173	140	
860*		11 51.8 -34 06							R, L
800-	L 541-154	11 31.0 -34 00	258 +27	15.0	m	0.76	275	263	L
861	L 469-10	11 52.3 -35 39	259 +25	14.6	m	0. 52	154	142	L
862	R 129	11 52.7 + 1 15	244 +61	13.3	M2	0.68	273	250	R, L
863	L 469-75	11 53.3 -37 59	259 +24	13.6	k	0.71	116	104	L
864	R 122	11 55.1 +12 08	232 +71	12.9	M2	0.70	290	256	R,L
865	-26 8883	11 55.5 -27 25	257 +34	8.3	K6	1. 26	240	228	GC 16365
005	-20 0003	11 30.0 -2: 25	4J1 TJT	0. 3	K 0	1. 20	240	220	GC 10303
866	-41 6879	11 56.1 -41 38	261 +20	9.9	G 5	0.83	248	237	I, L, C
867	R 452	11 56.8 +68 04	96 +49	13.5	G 4	0.50	254	89	Ŕ,Ġ
868	- 9 3413	11 58.2 -10 10	253 +50	6.3	G 5	0.50	166	151	GC 16421
869	R 920	11 58.7 - 1 27	248 +59	11.8	m	0.50	29-1	275	R,L
870	W 1426	11 58.8 +23 13	202 +79	14. 1	K 7	0.63	185	122	w
		11 00,0 ,00 10							
871	+43 2182	12 00.0 +43 22	116 +72	7.8	G9	0.63	215	67	GC 16453
872	L 1405-9	12 00.0 +28 52	171 +81	15. 1	M4	0.78	270	176	Radel, L
873	R 943	12 00.2 +36 54	132 +77	15.0		1. 10	205	72	R
874*	L 757-79	12 01.2 -16 15	256 +45	12. 3	k	0. 58	137	124	Ĺ
875	L 541-90	12 01. 4 -32 45	260 +29	15. 1	m	0.72	277	266	ī.
•••	_	10 011 1 00 10	200 .20	20. 2	•••	0	•••	200	_
876	+ 4 2568	12 01.5 + 3 38	246 +63	9.8	G 2	0.61	173	152	GC 16483
877	L 469-72	12 02.0 -37 59	261 +23	13.4	k	0.70	108	98	L
878	- 0 2532	12 02.7 - 1 14	250 +60	9.3	G8	0.52	276	258	GC 1651.3
879	L 686-47	12 02.9 -24 23	259 +37	14.3	m	0.50	268	257	L
880	R 689	12 03. 2 +69 49	95 +47	14.9	M6	0. 59	258	91	R
881	W 406	12 05.9 - 0 14	251 +61	12. 2	M0	0.95	266	250	W, L
882	W 1435	12 07.1 + 8 40	244 +69	14.7	M4	0.80	272	249	w
883*	- 2 3481	12 09.9 - 2 49	255 +58	7.9	G6	0.72	304	290	GC 16674
884	+11 2439	12 10.7 +11 06	244 +72	8.3	G2	0.61	177	154	GC 16688
885	W 1438	12 11.0 +16 59	234 +77	13.3	M2	0.67	226	193	W,R
									•
886	L 326-11	12 11.0 -45 23	264 +16	13.5	k	0.68	236	229	L
887	L 145-70	12 11.4 -62 23	266 - 1	14. 2	k-m	0.58	286	279	L
888	- 9 3468	12 12.5 -10 01	258 +52	6.5	F8	1.02	178	167	GC 16731
889	L 1190-3	12 13.3 +14 44	241 +75	15.4	M5	0.64	123	96	Radel, L
890	W 1439	12 13.4 +21 38	221 +81	15.0		0.83	275	228	w
891	L 1046-18A	12 14.3 + 3 14	253 +65	14.7	m	0.70	292	277	L
892*	L 1046-18B	12 14.3 + 3 14	253 +65	14.9	а	0.70	292	277	L
893	W 1440	12 14.8 +21 20	224 +81	12.8		0.74	175	132	W
894	R 917	12 15.4 +46 52	103 +70	13.5		0.70	267	104	R
895	L 1190-34	12 16.6 +11 23	248 +73	15. 5	m	1. 28	279	259	L
896	+29 2279	12 17.1 +28 39	178 +84	12.0	M2	0.64	276	172	L,Ci
897	L 1118-46	12 17.1 +26 35	254 +68	14.8		0.74	171	156	L,CI
898	+42 2296	12 19. 3 + 7 02	254 +66 106 +74	19.8	m M0	0. 14	158	357	Ci
899	-				MIO				
	W 409	12 20.0 +25 27	202 +84	12.6	1-	0.72	256	191	W,L
900	L 614-137	12 20.2 -28 22	264 -33	14.8	k	0.60	154	148	L

· · · · · · · · ·	у		2						.7	•					15						7	NT	T.												70		10	,,,			55											
	Authority	L	GC 16882	R	K,L T.	_	Ci	L	GC 16957	L		L	R. L. Ci	L	GC 17025	L 1.025	L	Ci	L,Ci	W,L	GC 17197	W	GC 1712?	₩, ₽	I, L, C	w	T T	L.C				I, L	I, L	τ.	GC 17270	ADS	L CC 17209	GC 11909	R	L	•	L 11333	•		₩	Ci	W					
	φ	241 ⁰	283	133	147 248	- 10	116	258	258	235		335	261	228	203	236	236	221	259	254	237	268	122	440	184	220	263	270				292	311	270	269	269	269	232	78	308		273	005		273	98	273					
	θ	246 ⁰	288	305	153 253	200	274	263	259	246		339	266	232	210	242	242	231	263	264	240	276	292	230	186	225	265	272				293	312	271	271	271	270	202	257	308		272	00.		270	280	270					
	μ	0, 79	0.79	0.73	2.52 0.54	0.01	0.63	0.98	0.65	0.56		1.17	0.50	1. 24	0.67	0. 59	0.59	0.84	0. 50	0.51	0.61	1.87	0,76	J. 3 4	0.71	0.59	0.84	1.02				0.95	1.04	0.50	0. 57	0.57	0.69	U. U!	6.70	0.57		0.52	۰		0.90	0.56	0.64					
	Sp.	k	K0	M4	M4	•••	F6	k	CU E	k		k-m	G 5	k-m	GS	m	m	M1	K 3	m	G 5	M4e	G0	MY	M1		m —	733 27				K 5	k	k m	F0	F0	k-m	Gü		f 1-		m		m M5		G0						
	m	14.7	7.4	12.9	12.4	. 0. 0	8.7	13.7	67	14.9		15.7	10.5	15. 2	9.6	14.0	15.0	11. 2	10.6	14. 0	8. 1	14. 2	4.7	14.4	12.7	15.0	12, 8	14.5				10.9	13.7	13 A	3.9	4. 0	15. 4	0.4	12. 5	17.4		14.0	10.0		14. 5	7.9	13. 5					
	1 b	266 ⁰ +16 ⁰	268 - 5	94 +53	264 +44 265 ±28	200 120	110 +78	264 +38	201 +14 267 ±14	258 +67		268 - 9	264 ±45	268 + 6	262 ±50	263 +57	263 +57	259 +71	266 +48	259 +74	269 - 6	261 +71	99 +76	202 +12	268 +16	263 +69	269 -14	269 +11				270 -15	269 +19	260 . 6	268 +61	268 +61	270 - 9	62+ UIA	91 +71	270 -17		271 +59	074 5:		273 +72	89 +56	273 +72				21	- L
	1950) Dec.	5 -46 ⁰ 21	5 -67 21	8 +64 18	1 -17 56 2 22 42	0 -00 10	4 +38 35	2 -24 19	4 -46 33 2 40 30	4 + 5 29		6 -71 13	8 -16 39	9 -55 43	9 - 3 N2	3 - 5 11	3 - 5 11	9 + 9 06	4 -14 22	6 +12 28	7 -68 29	0 + 9 17	4 +41 38	0 +10 AP	3 -45 39	4 + 7 02	6 -78 41	9 - 4 00 3 -51 44	• • • • • •				1 -43 18	0 58 94		1 - 1 11		U -31 40								8 +61 39	1 + 9 45					
	P., A.	12 ^h 20	12 20	12 20	12 2	12 2	12 2	12 2	12 2	12 2		12 2	12 2	12 2	10 0	12 2	12 2	12 2	12 3	12 3	12 3	12 3	12 3	12 3	1.2 3	12 3	12, 3	2 3 12 3					12 3	10 2		12 3		12 4								12 4	12 4					
	Designation	L 326-61	-66 1212	R 690	R 695	D 042-00	+ 39 2519	L 686-44	-46 7414 49 7456	L 1119-61		L 68-28	-16 3469	L 194-11	_ 2 2522	L 903-4A	L 903-4B	+ 9 2636	-13 3557	W 422	-68 1095	W 424	β CVn	+10 2 44 3	-45 7872	W 429	L 38-15	-51 6859				-77 568	L 399-68	T 104 22	194-33 Y Vir A	γ Vir B	L 68-30	-01 0004	R 991	L 38-80		L 976-35			W 438	+62 1257	₩ 439	200				
	LFT	901	902	903	904	500	906	907	502	910		911	912	915	016	917	918*	919	920	921	922	923*	924	925	926	927	928	929 930				934	935	036		938*	939	340	941	942		945		_	948	949	950					
Alterior															,	1		į			f i			•																						ŧ			<i>,</i>			1
LFT Designation R. A. (1950) Dec. 1 b m Sp. μ θ φ Authority 901 L 326-61 12 ^h 20 ^m .5 -46 ⁰ 21 266 ⁰ +16 ⁰ 14.7 k 0.79 246 ⁰ 241 ⁰ L 902 -66 1212 12 20.5 -67 21 268 - 5 7.4 K0 0.79 288 283 GC 16882 903 R 690 12 20.8 +64 18 94 +53 12.9 M4 0.73 305 133 R 904 R 695 12 22.1 -17 56 264 +44 12.4 M4 2.52 153 147 R,L 905 L 542-80 12 22.3 -33 43 265 +28 !3.6 m 0.54 253 248 L 906 + 39 2519 12 22.4 +38 35 110 +78 8.7 F6 0.63 274 116 Ci 907 L 686-44 12 23.2 -24 19 264 +38 13.7 k 0.98 263 258 L 908 -48 7414 12 23.4 -48 35 267 +14 12.0 g 0.60 259 255 I, L, C 909 -48 7426 12 24.2 -48 38 267 +14 6.7 G0 0.65 262 258 GC 16957 910 L 1119-61 12 25.4 + 5 29 258 +67 14.9 k 0.56 246 235 L 911 L 68-28 12 25.6 -71 13 268 - 9 15.7 k-m 1.17 339 335 L 912* L 68-27 12 25.6 -71 13 268 - 9 17.7 k-m 1.17 339 335 L 913 -16 3469 12 25.8 -16 39 764 +45 10.5 G5 0.50 266 261 R. L. Ci	901 L 326-61	902 -66 1212 12 20.5 -67 21 268 - 5 7.4 K0 0.79 288 283 GC 16882 903 R 690 12 20.8 +64 18 94 +53 12.9 M4 0.73 305 133 R 904 R 695 12 22.1 -17 56 264 +44 12.4 M4 2.52 153 147 R,L 905 L 542-80 12 22.3 -33 43 265 +28 13.6 m 0.54 253 248 L 906 + 39 2519 12 22.4 +38 35 110 +78 8.7 F6 0.63 274 116 Ci 907 L 686-44 12 23.2 -24 19 264 +38 13.7 k 0.98 263 258 L 908 -48 7414 12 23.4 -48 35 267 +14 12.0 g 0.60 259 255 I,L,C 909 -48 7426 12 24.2 -48 38 267 +14 6.7 G0 0.65 262 258 GC 16957 910 L 1119-61 12 25.4 + 5 29 258 +67 14.9 k 0.56 246 235 L 911 L 68-28 12 25.6 -71 13 268 - 9 15.7 k-m 1.17 339 335 L 912* L 68-27 12 25.6 -71 13 268 - 9 17.7 k-m 1.17 339 335 L 913 -16 3469 12 25.8 -16 39 264 +45 10.5 G5 0.50 266 261 R.L.Ci	903 R 690 12 20.8 +64 18 94 +53 12.9 M4 0.73 305 133 R 904 R 695 12 22.1 -17 56 264 +44 12.4 M4 2.52 153 147 R,L 905 L 542-80 12 22.3 -33 43 265 +28 !3.6 m 0.54 253 248 L 906 + 39 2519 12 22.4 +38 35 110 +78 8.7 F6 0.63 274 116 Ci 907 L 686-44 12 23.2 -24 19 264 +38 13.7 k 0.98 263 258 L 908 -48 7414 12 23.4 -48 35 267 +14 12.0 g 0.60 259 255 I,L,C 909 -48 7426 12 24.2 -48 38 267 +14 6.7 G0 0.65 262 258 GC 16957 910 L 1119-61 12 25.4 +5 29 258 +67 14.9 k 0.56 246 235 L 911 L 68-28 12 25.6 -71 13 268 - 9 15.7 k-m 1.17 339 335 L 912* L 68-27 12 25.6 -71 13 268 - 9 17.7 k-m 1.17 339 335 L 913 -16 3469 12 25.8 -16 39 364 +45 10.5 G5 0.50 266 261 R.L.Ci	904 R 695	906 + 39 2519	906 + 39 2519	907 L 686-44 12 23.2 -24 19 264 +38 13.7 k 0.98 263 258 L 908 -48 7414 12 23.4 -48 35 267 +14 12.0 g 0.60 259 255 I,L,C 909 -48 7426 12 24.2 -48 38 267 +14 6.7 G0 0.65 262 258 GC 16957 910 L 1119-61 12 25.4 + 5 29 258 +67 14.9 k 0.56 246 235 L 911 L 68-28 12 25.6 -71 13 268 - 9 15.7 k-m 1.17 339 335 L 912* L 68-27 12 25.6 -71 13 268 - 9 17.7 k-m 1.17 339 335 L 913 -16 3469 12 25.8 -16 39 364 +45 10.5 G5 0.50 266 261 R.L.Ci	908 -48 7414 12 23.4 -48 35 267 +14 12.0 g 0.60 259 255 1, L, C 909 -48 7426 12 24.2 -48 38 267 +14 6.7 G0 0.65 262 258 GC 16957 910 L 1119-61 12 25.4 + 5 29 258 +67 14.9 k 0.56 246 235 L 911 L 68-28 12 25.6 -71 13 268 - 9 15.7 k-m 1.17 339 335 L 912* L 68-27 12 25.6 -71 13 268 - 9 17.7 k-m 1.17 339 335 L 913 -16 3469 12 25.8 -16 39 364 +45 10.5 G5 0.50 266 261 R.L.Ci	910 L 1119-61 12 25.4 + 5 29 258 +67 14.9 k 0.56 246 235 L 911 L 68-28 12 25.6 -71 13 268 - 9 15.7 k-m 1.17 339 335 L 912* L 68-27 12 25.6 -71 13 268 - 9 17.7 k-m 1.17 339 335 L 913 -16 3469 12 25.8 -16 39 364 +45 10.5 G5 0.50 266 261 R.L.Ci	911 L 68-28 12 25.6 -71 13 268 - 9 15.7 k-m 1.17 339 335 L 912* L 68-27 12 25.6 -71 13 268 - 9 17.7 k-m 1.17 339 335 L 913 -16 3469 12 25.8 -16 39 364 +45 10.5 G5 0.50 266 261 R.L.Ci	911 L 68-28 12 25.6 -71 13 268 - 9 15.7 k-m 1.17 339 335 L 912* L 68-27 12 25.6 -71 13 268 - 9 17.7 k-m 1.17 339 335 L 913 -16 3469 12 25.8 -16 39 C64 +45 10.5 G5 0.50 266 261 R.L.Ci	912* L 68-27			915 L 194-11 12 26.9 -55 43 268 + 6 15.2 k-m 1.24 232 228 L	915 L 194-11 12 26.9 -55 43 268 + 6 15.2 k-m 1.24 232 228 L	915 L 194-11 12 26.9 -55 43 268 + 6 15.2 k-m 1.24 232 228 L 916 - 2 3528 12 27.2 - 3 03 262 +59 9.6 G5 0.67 210 203 GC 17025 917 L 903-4A 12 27.3 - 5 11 263 +57 14.0 m 0.59 242 236 L	915 L 194-11 12 26.9 -55 43 268 + 6 15.2 k-m 1.24 232 228 L 916 - 2 3528 12 27.2 - 3 03 262 +59 9.6 G5 0.67 210 203 GC 17025 917 L 903-4A 12 27.3 - 5 11 263 +57 14.0 m 0.59 242 236 L 918* L 903-4B 12 27.3 - 5 11 263 +57 15.0 m 0.59 242 236 L	915 L 194-11 12 26.9 -55 43 268 + 6 15.2 k-m 1.24 232 228 L 916 - 2 3528 12 27.2 - 3 03 262 +59 9.6 G5 0.67 210 203 GC 17025 917 L 903-4A 12 27.3 - 5 11 263 +57 14.0 m 0.59 242 236 L 918* L 903-4B 12 27.3 - 5 11 263 +57 15.0 m 0.59 242 236 L 919 + 9 2636 12 28.9 + 9 06 259 +71 11.2 M1 0.84 231 221 Ci	915 L 194-11 12 26.9 -55 43 268 + 6 15.2 k-m 1.24 232 228 L 916 - 2 3528 12 27.2 - 3 03 262 +59 9.6 G5 0.67 210 203 GC 17025 917 L 903-4A 12 27.3 - 5 11 263 +57 14.0 m 0.59 242 236 L 918* L 903-4B 12 27.3 - 5 11 263 +57 15.0 m 0.59 242 236 L 919 + 9 2636 12 28.9 + 9 06 259 +71 11.2 M1 0.84 231 221 Ci 920 -13 3557 12 30.4 -14 22 266 +48 10.6 K3 0.50 263 259 L Ci	915 L 194-11 12 26.9 -55 43 268 + 6 15.2 k-m 1.24 232 228 L 916 - 2 3528 12 27.2 - 3 03 262 +59 9.6 G5 0.67 210 203 GC 17025 917 L 903-4A 12 27.3 - 5 11 263 +57 14.0 m 0.59 242 236 L 918* L 903-4B 12 27.3 - 5 11 263 +57 15.0 m 0.59 242 236 L 919 + 9 2636 12 28.9 + 9 06 259 +71 11.2 M1 0.84 231 221 Ci 920 -13 3557 12 30.4 -14 22 266 +48 10.6 K3 0.50 263 259 L.Ci 921 W 422 12 30.6 +12 28 259 +74 14.0 m 0.51 264 254 W.L	915 L 194-11 12 26.9 -55 43 268 + 6 15.2 k-m 1.24 232 228 L 916 - 2 3528 12 27.2 - 3 03 262 +59 9.6 G5 0.67 210 203 GC 17025 917 L 903-4A 12 27.3 - 5 11 263 +57 14.0 m 0.59 242 236 L 918* L 903-4B 12 27.3 - 5 11 263 +57 15.0 m 0.59 242 236 L 919 + 9 2636 12 28.9 + 9 06 259 +71 11.2 M1 0.84 231 221 Ci 920 -13 3557 12 30.4 -14 22 266 +48 10.6 K3 0.50 263 259 L Ci 921 W 422 12 30.6 +12 28 259 +74 14.0 m 0.51 264 254 W, L 922 -68 1095 12 30.7 -68 29 269 - 6 8.1 G5 0.61 240 237 GC 17107	915 L 194-11 12 26.9 -55 43 268 + 6 15.2 k-m 1.24 232 228 L 916 - 2 3528 12 27.2 - 3 03 262 +59 9.6 G5 0.67 210 203 GC 17025 917 L 903-4A 12 27.3 - 5 11 263 +57 14.0 m 0.59 242 236 L 918* L 903-4B 12 27.3 - 5 11 263 +57 15.0 m 0.59 242 236 L 919 + 9 2636 12 28.9 + 9 06 259 +71 11.2 M1 0.84 231 221 Ci 920 -13 3557 12 30.4 -14 22 266 +48 10.6 K3 0.50 263 259 L Ci 921 W 422 12 30.6 +12 28 259 +74 14.0 m 0.51 264 254 W, L 922 -68 1095 12 30.7 -68 29 269 - 6 8.1 G5 0.61 240 237 GC 17107 923* W 424 12 31.0 + 9 17 261 +71 14.2 M4e 1.87 276 268 W	915 L 194-11 12 26.9 -55 43 268 + 6 15.2 k-m 1.24 232 228 L 916 - 2 3528 12 27.2 - 3 03 262 +59 9.6 G5 0.67 210 203 GC 17025 917 L 903-4A 12 27.3 - 5 11 263 +57 14.0 m 0.59 242 236 L 918* L 903-4B 12 27.3 - 5 11 263 +57 15.0 m 0.59 242 236 L 919 + 9 2636 12 28.9 + 9 06 259 +71 11.2 M1 0.84 231 221 Ci 920 -13 3557 12 30.4 -14 22 266 +48 10.6 K3 0.50 263 259 L/Ci 921 W 422 12 30.6 +12 28 259 +74 14.0 m 0.51 264 254 W,L 922 -68 1095 12 30.7 -68 29 269 - 6 8.1 G5 0.61 240 227 GC 17107 923* W 424 12 31.0 + 9 17 261 +71 14.2 M4e 1.87 276 268 W 924 \$CVn 12 31.4 +41 38 99 +76 4.7 G0 0.76 292 122 GC 17127	915 L 194-11 12 26.9 -55 43 268 + 6 15.2 k-m 1.24 232 228 L 916 - 2 3528 12 27.2 - 3 03 262 +59 9.6 G5 0.67 210 203 GC 17025 917 L 903-4A 12 27.3 - 5 11 263 +57 14.0 m 0.59 242 236 L 918* L 903-4B 12 27.3 - 5 11 263 +57 15.0 m 0.59 242 236 L 919 + 9 2636 12 28.9 + 9 06 259 +71 11.2 M1 0.84 231 221 Ci 920 -13 3557 12 30.4 -14 22 266 +48 10.6 K3 0.50 263 259 L Ci 921 W 422 12 30.6 +12 28 259 +74 14.0 m 0.51 264 254 W, L 922 -68 1095 12 30.7 -68 29 269 - 6 8.1 G5 0.61 240 237 GC 17107 923* W 424 12 31.0 + 9 17 261 +71 14.2 M4e 1.87 276 268 W 924 β CVn 12 31.4 +41 38 99 +76 4.7 G0 0.76 292 122 GC 17127 925 +10 2443 12 32.6 +10 06 262 +72 12.4 M4 0.54 236 228 W, L	915 L 194-11 12 26.9 -55 43 268 + 6 15.2 k-m 1.24 232 228 L 916 - 2 3528 12 27.2 - 3 03 262 +59 9.6 G5 0.67 210 203 GC 17025 917 L 903-4A 12 27.3 - 5 11 263 +57 14.0 m 0.59 242 236 L 918* L 903-4B 12 27.3 - 5 11 263 +57 15.0 m 0.59 242 236 L 919 + 9 2636 12 28.9 + 9 06 259 +71 11.2 M1 0.84 231 221 Ci 920 -13 3557 12 30.4 -14 22 266 +48 10.6 K3 0.50 263 259 L Ci 921 W 422 12 30.6 +12 28 259 +74 14.0 m 0.51 264 254 W, L 922 -68 1095 12 30.7 -68 29 269 - 6 8.1 G5 0.61 240 227 GC 17197 923* W 424 12 31.0 + 9 17 261 +71 14.2 M4e 1.87 276 268 W 924 β CVn 12 31.4 +41 38 99 +76 4.7 G0 0.76 292 122 GC 17127 925 +10 2443 12 32.6 +10 06 262 +72 12.4 M4 0.54 236 228 W, L 926 -45 7872 12 33.3 -45 39 268 +16 12.7 M1 0.71 186 164 I, L, C	915 L 194-11 12 26.9 -55 43 268 + 6 15.2 k-m 1.24 232 228 L 916 - 2 3528 12 27.2 - 3 03 262 +59 9.6 G5 0.67 210 203 GC 17025 917 L 903-4A 12 27.3 - 5 11 263 +57 14.0 m 0.59 242 236 L 918* L 903-4B 12 27.3 - 5 11 263 +57 15.0 m 0.59 242 236 L 919 + 9 2636 12 28.9 + 9 06 259 +71 11.2 M1 0.84 231 221 Ci 920 -13 3557 12 30.4 -14 22 266 +48 10.6 K3 0.50 263 259 L.Ci 921 W 422 12 30.6 +12 28 259 +74 14.0 m 0.51 264 254 W, L 922 -68 1095 12 30.7 -68 29 269 - 6 8.1 G5 0.61 240 227 GC 17107 923* W 424 12 31.0 + 9 17 261 +71 14.2 M4e 1.87 276 268 W 924 \$\beta \text{CVn}\$ 12 31.4 +41 38 99 +76 4.7 G0 0.76 292 122 GC 17127 925 +10 2443 12 32.6 +10 06 262 +72 12.4 M4 0.54 236 228 W, L 926 -45 7872 12 33.3 -45 39 268 +16 12.7 M1 0.71 186 164 I, L, C 927 W 429 12 33.4 + 7 02 263 +99 15.0 0.59 225 220 W	915 L 194-11 12 26.9 -55 43 268 + 6 15.2 k-m 1.24 232 228 L 916 - 2 3528 12 27.2 - 3 03 262 +59 9.6 G5 0.67 210 203 GC 17025 917 L 903-4A 12 27.3 - 5 11 263 +57 14.0 m 0.59 242 236 L 918* L 903-4B 12 27.3 - 5 11 263 +57 15.0 m 0.59 242 236 L 919 + 9 2636 12 28.9 + 9 06 259 +71 11.2 M1 0.84 231 221 Ci 920 -13 3557 12 30.4 -14 22 266 +48 10.6 K3 0.50 263 259 L Ci 921 W 422 12 30.6 +12 28 259 +74 14.0 m 0.51 264 254 W, L 922 -68 1095 12 30.7 -68 29 269 - 6 8.1 G5 0.61 240 227 GC 17107 923* W 424 12 31.0 + 9 17 261 +71 14.2 M4e 1.87 276 268 W 924 β CVn 12 31.4 +41 38 99 +76 4.7 G0 0.76 292 122 GC 17127 925 +10 2443 12 32.6 +10 06 262 +72 12.4 M4 0.54 236 228 W, L 926 -45 7872 24 33.3 -45 39 268 +16 12.7 M1 0.71 186 184 I, L, C 927 W 429 12 33.4 + 7 02 263 +69 15.0 0.59 225 220 W 928 L 38-15 12 33.6 -76 41 269 -74 12.8 m 0.84 265 263 L	915 L 194-11 12 26.9 -55 43 268 + 6 15.2 k-m 1.24 232 228 L 916 - 2 3528 12 27.2 - 3 03 262 +59 9.6 G5 0.67 210 203 GC 17025 917 L 903-4A 12 27.3 - 5 11 263 +57 14.0 m 0.59 242 236 L 918* L 903-4B 12 27.3 - 5 11 263 +57 15.0 m 0.59 242 236 L 919 + 9 2636 12 28.9 + 9 06 259 +71 11.2 M1 0.84 231 221 Ci 920 -13 3557 12 30.4 -14 22 266 +48 10.6 K3 0.50 263 259 L.Ci 921 W 422 12 30.6 +12 28 259 +74 14.0 m 0.51 264 254 W,L 922 -68 1095 12 30.7 -68 29 269 -6 8.1 G5 0.61 240 227 GC 17197 923* W 424 12 31.0 + 9 17 261 +71 14.2 M4e 1.87 276 268 W 924 β CVn 12 31.4 +41 38 99 +76 4.7 G0 0.76 292 122 GC 17127 925 +10 2443 12 32.6 +10 06 262 +72 12.4 M4 0.54 236 228 W,L 926 -45 7872 1.2 33.3 -45 39 268 +16 12.7 M1 0.71 186 164 I,L,C 927 W 429 12 33.4 + 7 02 263 +69 15.0 0.59 225 220 W 928 L 38-15 12 33.6 -76 41 269 -14 12.8 m 0.84 265 263 L 929 L 975-27 2 33.9 -4 06 266 +58 14.5 m 0.50 252 249 L 950 -51 6859 12 35.5 14 269 +11 11.4 g 1.02 272 270 L.C	915 L 194-11 12 26.9 -55 43 268 + 6 15.2 k-m 1.24 232 228 L 916 - 2 3528 12 27.2 - 3 03 262 +59 9.6 G5 0.67 210 203 GC 17025 917 L 903-4A 12 27.3 - 5 11 263 +57 14.0 m 0.59 242 236 L 918* L 903-4B 12 27.3 - 5 11 263 +57 15.0 m 0.59 242 236 L 919 + 9 2636 12 28.9 + 9 06 259 +71 11.2 M1 0.84 231 221 Ci 920 -13 3557 12 30.4 -14 22 266 +48 10.6 K3 0.50 263 259 L.Ci 921 W 422 12 30.6 +12 28 259 +74 14.0 m 0.51 264 254 W,L 922 -68 1095 12 30.7 -68 29 269 -6 8.1 G5 0.61 240 227 GC 17107 923* W 424 12 31.0 + 9 17 261 +71 14.2 M4e 1.87 276 268 W 924 \(\beta\) CVn 12 31.4 +41 38 99 +76 4.7 G0 0.76 292 122 GC 17127 925 +10 2443 12 32.6 +10 06 262 +72 12.4 M4 0.54 236 228 W,L 926 -45 7872 2.2 33.3 -45 39 268 +16 12.7 M1 0.71 186 184 I,L,C 927 W 429 12 33.4 + 7 02 263 +69 15.0 0.59 225 220 W 928 L 38-15 12 33.6 -76 41 269 -14 12.8 m 0.84 265 263 L 929 L 975-27 2 33.9 -4 06 266 +58 14.5 m 0.50 272 272 270 L,C	931 L 327-186 12 36.1 -49 33 269 +13 14.0 a 0.57 257 255 L	932 L 471-42 12 36.2 -38 05 268 +24 14.2 m 1.48 207 205 J	932 L 471-42 12 36.2 -38 95 268 +24 14.2 m 1.48 207 205 J. 933 W 433 12 36.5 +11 58 265 +74 12.7 143 1.16 259 254 W,L	932 L 471-42 12 36.2 -38 05 268 +24 14.2 m 1.48 207 205 J. 933 W 433 12 36.5 +11 58 265 +74 12.7 143 1.16 259 254 W,L 934 -77 568 12 36.8 -77 35 270 -15 10.9 K5 0.95 293 292 I,L	932 L 471-42 12 36.2 -38 05 268 +24 14.2 m 1.48 207 205 L 933 W 433 12 36.5 +11 58 265 +74 12.7 143 1.16 259 254 W,L 934 -77 568 12 36.8 -77 35 270 -15 10.9 K5 0.95 293 292 I,L 935 L 399-68 12 38.1 -43 18 269 +19 13.7 k 1.04 312 311 I,L	932 L 471-42 12 36.2 -38 05 268 +24 14.2 m 1.48 207 205 L 933 W 433 12 36.5 +11 58 265 +74 12.7 143 1.16 259 254 W, L 934 -77 568 12 36.8 -77 35 270 -15 10.9 K 5 0.95 293 292 I, L 935 L 399-68 12 38.1 -43 18 269 +19 13.7 k 1.04 312 311 I, L 936 L 194-33 12 38.8 -56 24 269 + 6 13.8 k-m 0.50 271 270 L	932 L 471-42 12 36.2 -38 05 268 +24 14.2 m 1.48 207 205 L 933 W 433 12 36.5 +11 58 265 +74 12.7 143 1.16 259 254 W, L 934 -77 568 12 36.8 -77 35 270 -15 10.9 K5 0.95 293 292 I, L 935 L 399-68 12 38.1 -43 18 269 +19 13.7 k 1.04 312 311 I, L 936 L 194-33 12 38.8 -56 24 269 + 6 13.8 k-m 0.50 271 270 L 937 y Vir A 12 39.1 - 1 11 268 +61 3.9 F0 0.57 271 269 GC 17270 938* y Vir B 12 39.1 - 1 11 268 +61 4.0 F0 0.57 271 269 ADS	932 L 471-42 12 36.2 -38 05 268 +24 14.2 m 1.48 207 205 L 933 W 433 12 36.5 +11 58 265 +74 12.7 143 1.16 259 254 W, L 934 -77 568 12 36.8 -77 35 270 -15 10.9 K5 0.95 293 292 I, L 935 L 399-68 12 38.1 -43 18 269 +19 13.7 k 1.04 312 311 I, L 936 L 194-33 12 38.8 -56 24 269 +6 13.8 k-m 0.50 271 270 L 937 y Vir A 12 39.1 - 1 11 268 +61 3.9 F0 0.57 271 269 GC 17270 938* y Vir B 12 39.1 - 1 11 268 +61 4.0 F0 0.57 271 269 ADS 939 L 68-30 12 39.3 -71 21 270 - 9 15.4 k-m 0.69 270 269 L	932 L 471-42 12 36.2 -38 05 268 +24 14.2 m 1.48 207 205 L 933 W 433 12 36.5 +11 58 265 +74 12.7 143 1.16 259 254 W, L 934 -77 568 12 36.8 -77 35 270 -15 10.9 K5 0.95 293 292 I, L 935 L 399-68 12 38.1 -43 18 269 +19 13.7 k 1.04 312 311 I, L 936 L 194-33 12 38.8 -56 24 269 +6 13.8 k-m 0.50 271 270 L 937 y Vir A 12 39.1 - 1 11 268 +61 3.9 F0 0.57 271 269 GC 17270 938* y Vir B 12 39.1 - 1 11 268 +61 4.0 F0 0.57 271 269 ADS	932 L 471-42 12 36.2 -38 05 268 +24 14.2 m 1.48 207 205 L 933 W 433 12 36.5 +11 58 265 +74 12.7 143 1.16 259 254 W, L 934 -77 568 12 36.8 -77 35 270 -15 10.9 K5 0.95 293 292 I, L 935 L 399-68 12 38.1 -43 18 269 +19 13.7 k 1.04 312 311 I, L 936 L 194-33 12 38.8 -56 24 269 + 6 13.8 k-m 0.50 271 270 L 937 Y Vir A 12 39.1 - 1 11 268 +61 3.9 F0 0.57 271 269 GC 17270 938* Y Vir B 12 39.1 - 1 11 268 +61 4.0 F0 0.57 271 269 ADS 939 L 68-30 12 39.3 -71 21 270 - 9 15.4 k-m 0.69 270 269 L 940 -37 8082 12 41.0 -37 26 270 +25 8.4 G5 0.67 252 252 GC 17308	932 L 471-42 12 36.2 -38 05 268 +24 14.2 m 1.48 207 205 L 933 W 433 12 36.5 +11 58 265 +74 12.7 143 1.16 259 254 W, L 934 -77 568 12 36.8 -77 35 270 -15 10.9 K5 0.95 293 292 I, L 935 L 399-68 12 38.1 -43 18 269 +19 13.7 k 1.04 312 311 I, L 936 L 194-33 12 38.8 -56 24 269 + 6 13.8 k-m 0.50 271 270 L 937 Y Vir A 12 39.1 - 1 11 268 +61 3.9 F0 0.57 271 269 GC 17270 938* Y Vir B 12 39.1 - 1 11 268 +61 4.0 F0 0.57 271 269 ADS 939 L 68-30 12 39.3 -71 21 270 - 9 15.4 k-m 0.69 270 269 L 940 -37 8082 12 41.0 -37 26 270 +25 8.4 G5 0.67 252 252 GC 17308 941 R 991 12 41.1 +46 56 91 +71 12.5 0.70 257 78 R 942 L 38-80 12 41.3 -79 53 270 -17 17.4 f 0.57 308 308 L	932 L 471-42 12 36.2 -38 05 268 +24 14.2 m 1.48 207 205 L 933 W 433 12 36.5 +11 58 265 +74 12.7 M3 1.16 259 254 W, L 934 -77 568 12 36.8 -77 35 270 -15 10.9 K5 0.95 293 292 I, L 935 L 399-68 12 38.1 -43 18 269 +19 13.7 k 1.04 312 311 I, L 936 L 194-33 12 38.8 -56 24 269 +6 13.8 k-m 0.50 271 270 L 937 y Vir A 12 39.1 - 1 11 268 +61 3.9 F0 0.57 271 269 GC 17270 938* y Vir B 12 39.1 - 1 11 268 +61 4.0 F0 0.57 271 269 ADS 939 L 68-30 12 39.3 -71 21 270 - 9 15.4 k-m 0.69 270 269 L 940 -37 8082 12 41.0 -37 26 270 +25 8.4 G5 0.67 252 252 GC 17308 941 R 991 12 41.1 +46 56 91 +71 12.5 0.70 257 78 R 942 L 38-80 12 41.3 -79 53 270 -17 17.4 f 0.57 308 308 L 943 R 704 12 42.2 -15 06 270 +47 13.0 k 0.50 244 244 R, L	932 L 471-42 12 36.2 -38 05 268 +24 14.2 m 1.48 207 205 L 933 W 433 12 36.5 +11 58 265 +74 12.7 143 1.16 259 254 W, L 934 -77 568 12 36.8 -77 35 270 -15 10.9 K5 0.95 293 292 I, L 935 L 399-68 12 38.1 -43 18 269 +19 13.7 k 1.04 312 311 I, L 936 L 194-33 12 38.8 -56 24 269 + 6 13.8 k-m 0.50 271 270 L 937 y Vir A 12 39.1 - 1 11 268 +61 3.9 F0 0.57 271 269 GC 17270 938* y Vir B 12 39.1 - 1 11 268 +61 4.0 F0 0.57 271 269 ADS 939 L 68-30 12 39.3 -71 21 270 - 9 15.4 k-m 0.69 270 269 L 940 -37 8082 12 41.0 -37 26 270 +25 8.4 G5 0.67 252 252 GC 17308 941 R 991 12 41.1 +46 56 91 +71 12.5 0.70 257 78 R 942 L 38-80 12 41.3 -79 53 270 -17 17.4 f 0.57 308 308 L 943 R 704 12 42.2 -15 06 270 +47 13.0 k 0.50 244 244 R, L 944 +10 2468 12 43.8 + 9 49 270 +72 6.9 K1 0.53 149 149 GC 17355	932 L 471-42 12 36.2 -38 05 268 +24 14.2 m 1.48 207 205 L 933 W 433 12 36.5 +11 58 265 +74 12.7 M3 1.16 259 254 W, L 934 -77 568 12 36.8 -77 35 270 -15 10.9 K5 0.95 293 292 I, L 935 L 399-68 12 38.1 -43 18 269 +19 13.7 k 1.04 312 311 I, L 936 L 194-33 12 38.8 -56 24 269 + 6 13.8 k-m 0.50 271 270 L 937 Y Vir A 12 39.1 - 1 11 268 +61 3.9 F0 0.57 271 269 GC 17270 938* Y Vir B 12 39.1 - 1 11 268 +61 4.0 F0 0.57 271 269 ADS 939 L 68-30 12 39.3 -71 21 270 - 9 15.4 k-m 0.69 270 269 L 940 -37 8082 12 41.0 -37 26 270 +25 8.4 G5 0.67 252 252 GC 17308 941 R 991 12 41.1 +46 56 91 +71 12.5 0.70 257 78 R 942 L 38-80 12 41.3 -79 53 270 -17 17.4 f 0.57 308 308 L 943 R 704 12 42.2 -15 06 270 +47 13.0 k 0.50 244 244 R, L 944 +10 2468 12 43.8 + 9 49 270 +72 6.9 K1 0.53 149 149 GC 17355 945 L 976-35 12 44.6 - 3 18 271 +59 14.0 m 0.52 272 273 L	932 L 471-42 12 36.2 -38 05 268 +24 14.2 m 1.48 207 205 L 933 W 433 12 36.5 +11 58 265 +74 12.7 M3 1.16 259 254 W, L 934 -77 568 12 36.8 -77 35 270 -15 10.9 K5 0.95 293 292 I, L 935 L 399-68 12 38.1 -43 18 269 +19 13.7 k 1.04 312 311 I, L 936 L 194-33 12 38.8 -56 24 269 +6 13.8 k-m 0.50 271 270 L 937	932 L 471-42 12 36.2 -38 05 268 +24 14.2 m 1.48 207 205 L 933 W 433 12 36.5 +11 58 265 +74 12.7 M3 1.16 259 254 W, L 934 -77 568 12 36.8 -77 35 270 -15 10.9 K5 0.95 293 292 I, L 935 L 399-68 12 38.1 -43 18 269 +19 13.7 k 1.04 312 311 I, L 936 L 194-33 12 38.8 -56 24 269 +6 13.8 k-m 0.50 271 270 L 937 y Vir A 12 39.1 - 1 11 268 +61 3.9 F0 0.57 271 269 GC 17270 938* y Vir B 12 39.1 - 1 11 268 +61 4.0 F0 0.57 271 269 ADS 939 L 68-30 12 39.3 -71 21 270 - 9 15.4 k-m 0.69 270 269 L 940 -37 8082 12 41.0 -37 26 270 +25 8.4 G5 0.67 252 252 GC 17308 941 R 991 12 41.1 +46 56 91 +71 12.5 0.70 257 78 R 942 L 38-80 12 41.3 -79 53 270 -17 17.4 f 0.57 308 308 L 943 R 704 12 42.2 -15 06 270 +47 13.0 k 0.50 244 244 R, L 944 +10 2468 12 43.8 + 9 49 270 +72 6.9 K1 0.53 149 149 GC 17355 945 L 976-35 12 44.6 - 3 18 271 +59 14.0 m 0.52 272 273 L 946 L 904-82 12 45.2 - 8 19 271 +54 13.2 m 0.51 224 225 L 947 W 437 12 45.6 +10 02 273 +72 12.7 M5 1.03 244 247 W	932 L 471-42 12 36.2 -38 05 268 +24 14.2 m 1.48 207 205 L 933 W 433 12 36.5 +11 58 265 +74 12.7 113 1.16 259 254 W, L 934 -77 568 12 36.8 -77 35 270 -15 10.9 K5 0.95 293 292 I, L 935 L 399-68 12 38.1 -43 18 269 +19 13.7 k 1.04 312 311 I, L 936 L 194-33 12 38.8 -56 24 269 +6 13.8 k-m 0.50 271 270 L 937 y Vir A 12 39.1 - 1 11 268 +61 3.9 F0 0.57 271 269 GC 17270 938* y Vir B 12 39.1 - 1 11 268 +61 4.0 F0 0.57 271 269 GC 17270 938* y Vir B 12 39.3 -71 21 270 - 9 15.4 k-m 0.69 270 269 L 940 -37 8082 12 41.0 -37 26 270 +25 8.4 G5 0.67 252 252 GC 17308 941 R 991 12 41.1 +46 56 91 +71 12.5 0.70 257 78 R 942 L 38-80 12 41.3 -79 53 270 -17 17.4 f 0.57 308 308 L 943 R 704 12 42.2 -15 06 270 +47 13.0 k 0.50 244 244 R, L 944 +10 2468 12 43.8 +9 49 270 +72 6.9 K1 0.53 149 149 GC 17355 945 L 976-35 12 44.6 - 3 18 271 +59 14.0 m 0.52 272 273 L 946 L 904-82 12 45.6 +10 02 273 +72 14.5 0.90 270 273 W	932 L 471-42 12 36.2 -38 05 268 +24 14.2 m 1.48 207 205 L 933 W 433 12 36.5 +11 58 265 +74 12.7 113 1.16 259 254 W, L 934 -77 568 12 36.8 -77 35 270 -15 10.9 K5 0.95 293 292 I, L 935 L 399-68 12 38.1 -43 18 269 +19 13.7 k 1.04 312 311 I, L 936 L 194-33 12 38.8 -56 24 269 +6 13.8 k-m 0.50 271 270 L 937	932 L 471-42 12 36. 2 -38 05 268 +24 14. 2 m 1. 48 207 205 L 933 W 433 12 36. 5 +11 58 265 +74 12. 7 143 1. 16 259 254 W, L 934 -77 568 12 36. 8 -77 35 270 -15 10. 9 K5 0. 95 293 292 I, L 935 L 399-68 12 38. 1 -43 18 269 +19 13. 7 k 1. 04 312 311 I, L 936 L 194-33 12 38. 8 -56 24 269 +6 13. 8 k-m 0. 50 271 270 L 937 y Vir A 12 39. 1 - 1 11 268 +61 3. 9 F0 0. 57 271 269 GC 17270 938* y Vir B 12 39. 1 - 1 11 268 +61 4. 0 F0 0. 57 271 269 ADS 939 L 68-30 12 39. 3 -71 21 270 - 9 15. 4 k-m 0. 69 270 269 L 940 -37 8082 12 41. 0 -37 26 270 +25 8. 4 G5 0. 67 252 252 GC 17308 941 R 991 12 41. 1 +46 56 91 +71 12. 5 0. 70 257 78 R 942 L 38-80 12 41. 3 -79 53 270 -17 17. 4 f 0. 57 308 308 L 943 R 704 12 42. 2 -15 06 270 +72 6. 9 K1 0. 53 149 149 GC 17355 945 L 976-35 12 44. 6 - 3 18 271 +59 14. 0 m 0. 52 272 273 L 946 L 904-82 12 45. 2 - 8 19 271 +54 13. 2 m 0. 51 224 225 L 947 W 437 12 45. 6 +10 02 273 +72 14. 5 0. 90 270 273 W 949 +62 1257 12 46. 8 +61 39 89 +56 7. 9 G0 0. 56 280 98 Ci	932 L 471-42 12 36. 2 -38 05 268 +24 14. 2 m 1. 48 207 205 L 933 W 433 12 36. 5 +11 58 265 +74 12. 7 143 1. 16 259 254 W, L 934 -77 568 12 36. 8 -77 35 270 -15 10. 9 K5 0. 95 293 292 I, L 935 L 399-68 12 38. 1 -43 18 269 +19 13. 7 k 1. 04 312 311 I, L 936 L 194-33 12 38. 8 -56 24 269 +6 13. 8 k-m 0. 50 271 270 L 937 y Vir A 12 39. 1 - 1 11 268 +61 3. 9 F0 0. 57 271 269 GC 17270 938* y Vir B 12 39. 1 - 1 11 268 +61 4. 0 F0 0. 57 271 269 ADS 939 L 68-30 12 39. 3 -71 21 270 - 9 15. 4 k-m 0. 69 270 269 L 940 -37 8082 12 41. 0 -37 26 270 +25 8. 4 G5 0. 67 252 252 GC 17308 941 R 991 12 41. 1 +46 56 91 +71 12. 5 0. 70 257 78 R 942 L 38-80 12 41. 3 -79 53 270 -17 17. 4 f 0. 57 308 308 L 943 R 704 12 42. 2 -15 06 270 +72 6. 9 K1 0. 53 149 149 GC 17355 945 L 976-35 12 44. 6 - 3 18 271 +59 14. 0 m 0. 52 272 273 L 946 L 904-82 12 45. 2 - 8 19 271 +54 13. 2 m 0. 51 224 225 L 947 W 437 12 45. 6 +10 02 273 +72 14. 5 0. 90 270 273 W 949 +62 1257 12 46. 8 +61 39 89 +56 7. 9 G0 0. 56 280 98 Ci	932 L 471-42 12 36.2 -38 05 268 +24 14.2 m 1.48 207 205 L 933 W 433 12 36.5 +11 58 265 +74 12.7 143 1.16 259 254 W, L 934 -77 568 12 36.8 -77 35 270 -15 10.9 K5 0.95 293 292 1, L 935 L 399-68 12 38.1 -43 18 269 +19 13.7 k 1.04 312 311 I, L 936 L 194-33 12 38.8 -56 24 269 +6 13.8 k-m 0.50 271 270 L 937	932 L 471-42 12 36.2 -38 05 268 +24 14.2 m 1.48 207 205 L 933 W 433 12 36.5 +11 58 265 +74 12.7 lt3 1.16 259 254 W, L 934 -77 568 12 36.8 -77 35 270 -15 10.9 K5 0.95 293 292 1, L 935 L 399-68 12 38.1 -43 18 269 +19 13.7 k 1.04 312 311 I, L 936 L 194-33 12 38.8 -56 24 269 +6 13.8 k-m 0.50 271 270 L 937

LFT	Designation	R. A. (1950) Dec.	l b	m	Sp.	μ	θ	φ	Authority
951	+ 2 2585	12h47m2 + 1°28'	273°+64°	8.7	G6	0. 66	186 ⁰	188 ⁰	GC 17416
952	-16 3543	12 47.7 -17 07	272 +45	11.4	k	0.50	316	318	L, Ci
953	-55 4825	12 49.4 -56 17	271 + 6	9. 2	G0	0.72	251	253	I, L, Ci
954*	-17 3723	12 50.6 -18 14	273 +44	8.7	F6	0.86	158	160	GC 17484
955	L 1408-5	12 51.1 +30 15	53 +87	14. 4	m	0.52	281	63	L
956	L 1264-57	12 54.0 +16 01	.282 +78	14. 5	K 4	1. 42	200	212	L
957	L 328-24	12 54.8 -46 18	272 +16	15.3	m	0.78	234	237	L
958*	- 9 3595	12 56.5 - 9 34	275 +53	8.7	K0	0. 54	283	288	GC 17617
959	L 1048-25	$12\ 56.8 + 0\ 06$	278 +62	13.4	m	0.51	158	165	L
960	W 457	12 57.7 + 3 46	∆79 +66	16.0	DC	1. 05	210	218	W
961	- 1 2754	12 57.8 - 2 25	278 +60	10.9	K 2	0.74	271	278	L,Ci
962*	W 461	12 58.2 + 5 59	281 +68	14.7	M6e	0.97	285	294	W,L
963	L 117-101	12 58.2 -62 55	272 - 1	12. 3	m	0.55	221	224	L
964	+13 2618	12 58.3 +12 39	285 +74	11.6		0.71	268	281	W,L
965	-26 9470	12 58.3 -27 06	274 +35	8.7	F9	0. 55	244	248	GC 17670
966	-51 "244	13 02.1 -52 09	273 +10	10. 2	K 5	1.13	225	229	I, L, C
967	L 1408-25	13 04.6 +28 C8	6 +85	15. 3	m	0.50	223	317	L
968	-4C 7705	13 05.8 -41 23	275 +21	10.7	G 5	0.54	264	270	GC 17803
969	+ 6 269?	13 06.3 + 5 29	285 +67	7. 8	G3	0.69	173	186	GC 17811
970	L 472-66	13 66.4 -39 52	275 +22	14. 4	m	1. 20	143	149	L
971	L 1264-69	13 06.5 +16 38	298 +77	14.6	m	0.54	248	273	L
972	I. 345-73	13 06.8 -34 35	276 +27	14. 1	k	0. 53	260	266	L
973	L 400-38	13 06.9 -41 54	275 +21	14.8	\mathbf{m}	0.77	177	183	L
974	L 1337-30	13 07.6 +22 46	320 ∻82	13.8	k	1. 13	232	279	L
975	+68 714	13 08.7 +67 46	86 +50	9.9	K 1	0.72	266	77	GC 17853
976	+10 2519A	13 08.9 + 9 53	290 +71	9. 1	G0	0.58	297	315	GC 17860
977*	+10 2519B	13 08.9 + 9 53	290 +71	13.6	MO	C. 58	297	315	L
978	β Com	13 09.5 +28 08	5 +84	4.6	G0	1. 19	318	50	GC 17874
979	L 545-51	13 09.5 -33 22	276 +28	13.4	k	0.50	252	259	L
980	+18 2700	13 09.9 +17 47	304 +78	8. 1	F7	0.58	265	299	GC 17881
981	L 1337-43	13 10.7 +20 26	313 +80	14. 4	m.	0.62	284	324	L
982	L 545-29	13 10.8 -32 11	277 ÷30	15. 1	k	0.55	261	268	L
983	L 977-51	13 11.9 - 3 50	283 +58	13.7	g	0.58	288	300	L
984	L 69-70	13 12.2 -72 52	272 -11	14.9	r.	0.50	250	256	L
985	L 195-186	13 12.9 -55 01	274 + 7	14.7	m	0.52	256	263	L
986	L 1192-95	13 13.0 +16 31	303 +77	15. 4	m	0.67	165	195	L
987	L 1409-15	13 14.2 +28 08	5 +83		m	0.75			_
988	+17 2611A	13 14.4 +17 17	307 +77	7. 2	K 3	0.69	113	147	GC 17981
989*	+17 2611B	13 14.4 +17 17	307 +77	11.^	M2	0.69	113	147	ADS
990	-17 3813	13 15.8 -18 02	281 +44	5. 🗸	G6	1. 52	225	235	GC 1800?
991	R 464	13 16.3 - 2 49	287 +59	12. 3	K4	0.63	253	258	R, L
992	+35 2436A	13 17.2 +35 23	49 +79	10.9	MO	0.89	153	287	GC 18029
993*	+35 2436B	13 17.3 +35 23	49 +79	13.4	M3	0.89	153	287	GC
994	L 473-1	13 17.3 -35 08	278 +26	14. 2	m	0.95	242	250	L CC 19051
995	+ 4 2729	13 18.2 + 4 23	292 +65	9.9	К3	0. 54	289	308	GC 18051
996	+35 2439	13 18.6 +34 33	44 +79	11.0		0.56	121	250	R
997	-38 8457	13 19.0 -39 04	278 ÷23	9.4	F5	0.72	276	285	L
998	L 257-41	13 20.6 -51 21	276 +10	15.7	m	0.53	210		r L
999	R 1020	13 20.7 +24 44	343 +81	14. 4		1.07	216		R, L
1000	L 617-35	13 20.8 -25 40	280 +36	14.6	m	0. 57	255	265	L

LFT	Designation	R. A. (1950) Dec.	1 b	m	Sp.	μ	θ	φ	Authority
1001*	+29 2405	13 ^h 21 ^m 2 +29 ^o 30	13 ⁰ +81 ⁰	10. 1	M0	0. 51	300°	40 ⁰	GC 18119
	W 482	13 21.2 -13 47	284 +47	12.6	m	0.72	238	251	W, L
1002	R 1011	13 23.0 +32 32	31 +80	12.7		0.76	285	40	R
1003		13 23.0 -51 26	276 +10	15.0	a	0.50	268	277	L
1004	L 257-47	13 23.1 -28 07	281 +34	12. 4	m	0.50	257	269	Ĺ
1005*	-27 9225	13 23.1 -20 01	201 101	10. 1		••••			
1000	T 546 05	13 24.6 -30 56	280 +30	1.7	m	0.60	255	267	L
1006	L 546-85	13 25.8 - 2 08	291 +58	12.4	M4	0.50	160	179	R, L
1007	R 486A	13 25.8 - 2 08	291 +58	15 2	M5	0.50	160	179	R, L
*8001	R 486B	13 26.0 +14 03	308 +73	5.8	G 5	0.63	202	236	GC 18212
1009	+14 2621	13 26.9 +11 43	305 +71	13.5	M5	1. 24	165	196	L
1010	L 1194-26	13 20.3 +11 43	000 111	10.0	1.1.0				
1011	T 057 54	13 27.3 -51 48	277 +10	15. 1	m	0.67	236	246	L
1011	L 257-54	13 27.4 +10 38	304 +70	10.5	M2	1, 25	135	165	R, L
1012	±11 2576	13 27.5 - 8 27	288 +52	14.9	M6	1. 21	247	263	R,L
1013	R 476	13 27.7 - 8 21	288 +52	12. 2	DA	1. 17	249	265	w, L
1014	- 7 3632	13 28.0 -32 24	281 +30	12.9	k	0.66	239	250	L
1015	L 546-157	13 20.0 -32 24	201 400	10.0		0,00			_
****	1 0000	13 29.1 - 2 04	292 +58	8.0	G7	0.87	287	307	GC 18284
1016	- 1 2832	13 30.2 -42 27	279 +19	12. 2	k	0.53	281	292	L,C
1017	-42 8521	13 30.2 -42 21	346 +79	14.7	к3	0.94	252	323	L,R
1018	L 1338-3		274 - 6	16. 3	m	0.79	248	258	L
1019	L 106-69	13 30.5 -67 39	280 +23	8.6	G0	0.57	133	145	Ī, L
1020	-38 8635	13 31.5 -38 38	200 +23	0.0	GU	0.0.	100		
		10 71 6 97 15	283 +34	10.6	K0	0. 56	252	265	L, Ci
1021	-26 9804	13 31.6 -27 15	66 +68	11.8	K3	0.72	140	288	Van Rhyn
1022	+47 2072	13 33.4 +47 50	300 +63	15.5	DC	3.87	253	279	W,L
1023	W 489	13 34.4 + 3 58		10.7	ьс	0.87	246	276	Ci
1024	+ 8 2735	13 34.5 + 8 02	304 +67 275 - 6	16. 1	a	0.54	263	274	L .
1025	L 106-73	13 34.6 -67 49	213 - 0	10. 1	a	0.01	200		-
		13 37.5 - 3 57	295 +55	10.9	K 5	0.60	322	344	L, Ci
1026	- 3 3508		285 +36	14. 1	f:	0.71	236	251	L,
1027	L 690-58	13 38.1 -24 21	59 +70	13.7	٠.	1.05	257	38	Ř
1028	R 1026	13 38.2 +44 02	28 +76	13. 6		0.76	182	293	R
1029	R 1015	13 40.5 +33 33	304 +63	12.5		0.50	240	270	w
1030	W 496	13 41.7 + 5 08	304 +03	12. 0		0.00	2.0	2.0	••
	40 0000	10 40 0 .10 04	328 +73	10.9	К9	1.90	167	219	GC 18587
1031	+18 2776	13 42.6 +18 04 13 42.7 +51 56	69 +63	13.7	M	0.77	270	59	R
1032*			27 +76	13.7	141	0. 56	260	10	R
1033	R 1018	13 42.7 +33 26 13 43.2 +15 10	320 +71	9.9	М2	2.30	129	174	GC 18602
1034	+15 2620	13 43.2 +13 10	289 +42	13.3	m	0.58	208	226	L
1035	L 762-51	13 43.2 -11 43	205 +12	13. 5	***	0.00			_
	- 0000	13 44.5 + 6 36	308 +64	6.8	G0	0. 53	257	290	GC 18625
1036	+ 7 2690	13 44.8 - 5 53	296 +53	11.2		0.63	215	238	L, Ci
1037	- 5 3763	13 45.0 + 6 33	308 +64	11.0	MO	0.53	257	290	GC, W
	+ 7 2692	13 46.0 -35 27	284 +25	6.9	F8	0.55	251	267	GC 18652
1039		13 46.0 -35 27	284 +25	11.5	m	0.55	251	267	I, L
1040	-35 9019B	13 40.0 -33 21	204 723	11. 5	111	0.00			-, -
	01 0701	13 47.1 -21 51	289 +38	9.7	K 5	1.80	253	271	L, Ci
1041			319 +69	15.7	m	0. 58	215		L
1042		13 47.8 +12 49 13 48.0 -53 17	280 + 8	14.6	m	0.56	139	153	L L
1043		13 48.0 -53 17	279 + 4	9. 2	G0	0.57	222		I, L
1044			288 +36	7.0		0.65	242		GC 18713
1045	-23 11329	13 48.6 -24 08	200 730	1.0	3.0	Ų. UU			
	ro 0000	13 49.5 -50 40	281 +10	8. 2	G 5	0.62	264	279	GC 1873?
1046			282 +14	9.4		0.50			I, L, C
1047		13 50.9 -46 18 13 51.1 +13 12	321 +68	1; 3		0.70			Ci. L
1048		13 51.1 +13 12	291 +39	14.3		0. 58			L
1049		13 51.2 -20 01	79 +50	12.8		0.57			Ī
1050	 •	13 31.4 +03 41	13 730	12.0	1112	J	200		-

LFT	Designation	R. A. (1950) Dec.	l b	m	Sp.	μ	θ	φ	Authority
1051	L 259-146	13 ^h 54 ^m 0 -54 ^o 39	280°+ 6°	16.0	k	0. 70	215 ⁰	231 ⁰	L
1052	-33 9467	13 55.7 -33 45	287 +26	8.9	G3	0.55	237	255	GC 18888
1053	R 837	13 55.9 +12 48	322 +67	13. 2		0.84	347	33	R, L
1054	L 1051-31	13 55.9 + 1 08	307 +58	14.0	m	0. 38	228	260	L
1055	L 1051-35	13 56.2 + 0 10	306 +57	14.7	m	0.54	224	255	L
1056	L 763-63	13 58.6 -19 35	293 +40	14.7	m	0.59	253	274	L
1057	+34 2476	13 57.0 +34 06	26 +73	10.6	8 A	0.54	161	267	H
1058	R 494	13 57.1 +25 29	354 +73	11.7	K. 5	0.60	262	338	R, Oxf
1059	-31 10833	13 58.1 -31 34	288 +28	12. 5	m	0.68	279	298	L
1060	R 1027	13 58.3 +47 54	59 +65	13. 7	K 4	1.45	232	9	R
1061	- 1 2892	13 58.5 - 2 26	304 +54	11.3	K 5	0.99	308	338	L
1062	R 838	13 59.3 + 9 10	318 +64	12.3	G 5	0.88	164	206	R
1063	L 691-8	13 59.8 -20 45	293 +38	15.0	m	0.64	125	147	L
1064	L 691-74	14 00.0 -24 18	291 +35	13.8	m	0.53	321	342	L
1065	+47 2112A	14 00.5 +46 35	56 +66	10.8	M2	0.60	94	228	Ci
1066*	+47 2112B	14 00.5 +46 35	56 +66	10.8	M2	0.60	94	228	McCormick
1067	W 530	14 01.0 +20 06	341 +70	15. 5		0.51	170	233	W
1068	θ Cen	14 03.7 -36 07	288 +24	3. 3	G9	0.74	225	245	GC 19033
1069	-60 5077	14 04.5 -61 16	280 - 1	10.2	G5	0.74	216	234	L
1070	-30 11195	14 06.6 -30 41	290 ~28	12. 7	m	0. 52	244	265	L
1071	-13 3834	14 07.7 -13 41	299 +44	11.0	G0	0.50	215	241	W,R,L
1072	G +76 4935	14 08.2 +76 05	85 +41	12.9	M1	0.53	314	108	^
1073	+81 465	14 09.2 ÷80 51	86 +36	11.3	M0	0.58	164	319	Ci
1074	+30 2490	14 09.2 +30 19	13 +71	11.4	K 6	0. 50:	259	351	R, L
1075	L 1124-63	14 09.6 + 7 21	319 +61	12.9	k	0.78	2 6 5	308	L
1076	L 930-2	14 09.7 - 0 21	310 +55	14. 3	m	0.74	290	325	L
1077	L 149-51	14 09.8 -61 53	280 - 2	14.0	m	0.72	224	243	L
1078	L 836-86	14 10.0 -13 26	300 +44	15. 1	m	0.75	239	266	Hubble, L
1079	R 845	14 10.4 -11 48	301 +45	14.8	M 6	0.79	236	264	R, L
1080	R. 496	14 11.7 +28 34	7 +70	13.9		0.60	196	283	R
1081	L 980-43	14 12.1 - 3 03	308 +52	15. 2	k	0.93	247	281	L
1082	L 1052-3	14 13.1 ÷ 4 54	317 +59	15. 7	m	1.12	227	268	L
1083	R 992	14 13.4 +45 15	50 +65	12.9		1.0:	255	21	R
1084	a Boo	14 13.4 +19 2.	343 +67	1. 2	K0	2. 28	209	274	GC 19242
1085	L 1484-43	14 15.0 +3: 56	17 +70	14. 4	m	0. 59	256	352	L
1086	L 260-53	14 15.2 -52 10	284 + 8	15.0	g	1, 11	249	269	L
1087	L 1240-56	14 15, 4 +21 12	348 +68	14.7		0.08			L
1088	-58 5564	14 15.5 -59 09	282 + 1	3.0	K0	0.96	209	229	GC 19292
1089*	-25 10271	14 16.2 -25 36	295 +32	6. 2	F4	C. 51	313		GC 19303
1090	W 534	14 16.7 - 7 04	306 +49	14. 5	M4	1. 36	232	264	W,L
1091	L 1557-1	14 17.0 +38 52	35 +67	13.5	m	0.78	251	3	L
1092	- 4 3665A	14 17.0 - 4 55	308 +50	8.8	K 1	0.67	257	290	GC 19326
10934		14 17.0 - 4 55	308 +50	16.0	M6	0.67	257		GC
1094	R 848	14 17.8 9 22	304 +46	14. 4	M5	1. 13	214		R, L
1095	-39 8857	14 18.3 -40 10	289 +19	10.3	K 1	0.55	259	281	L
1096	L 980-5	14 18.8 - 0 52	313 +53	14. 1	m	0.64	165		T,
1097	L 71-10	14 19.5 -71 35	277 -11	16. 4	M:	0.53	241		L CC 19374
1098	+30 2512	14 19.8 +29 52	11 +69	9.8	MO	0.73	245 248		GC 19374
1099	R 849	14 19.9 - 7 03	307 +48	13.5	m	0.64 0.50	263		R, L L
1100	L 1268-19	14 20.7 +18 13	342 +66	14. 2	m	v. 50	203	323	,

n de de la company de la compa

THE THE SECOND S

LFT	Designation	R. A. (1950) Dec.	l b	m	Sp.	μ	θ	φ	Authority
1101	+ 1 2920	14 ^h 20 ^m 7 + 1 ^o 28	316 ⁰ +55 ⁰	6.8	G3	0. 53	155 ⁰	195 ⁰	GC 19397
1102	L 1268-3	14 21.4 +21 14	349 +87	14.3	m	0.69	268	337	L
1103	L 1124-13	14 22.5 + 9 06	326 +60	12.5	m	0.57	72	120	L
1104	+21 2649	14 23.3 +20 49	C48 +66	8.5	G0	0.66	160	228	L
1105	+24 2733A	14 23.4 +23 51	356 +67	10.8	M1	1.38	145	220	GC 19463
1106*	+24 2733B	14 23.5 +23 51	356 +67	11.1	M2	1.38	145	220	GC 19465
1107		14 23.9 +53 34	61 +58	13.6	K 1	0.52	213	347	Hubble
1108	+24 2735	14 25.7 +24 05	356 +66	12. 2	M0	0.50:	281	356	L,Ci
1109	-46 9361	14 26.0 -46 43	268 +11	11.9	K 4	0.75	238	261	I, L, C
1110	α Cen C	14 26.3 -62 28	282 - 2	13. 2	Me	3.85	282	304	I, L
1111	+16 2658	14 27.3 +15 44	339 +63	12.3	M3	1.71	322	21	R,L
1112	- 7 3856	14 28.3 - 8 25	309 +46	11.2	MO	1.25	260	295	L, Ci
1113	W 1478	14 28.4 -12 02	306 +43	13.4	M4	0.52	225	258	W, L
1114	+ 36 2590	14 28.8 +35 40	26 +66	10.3	K 5	0.51	290 232	32 259	L, Ci
1115	-27 9894	14 29.7 -28 01	287 +29	11.9	m	0. 55	232	209	L
1116	L 1197-7	14 30.3 +14 01	337 +61	15.3	m	0.59	164	221	L
1117	- 9 3964	14 30.9 - 9 42	309 +44	12.6	m	0.57	205	239	L
1118	+10 2703A	14 31.1 + 9 34	330 +59	9.7	K 2	0.54	162	213	GC 19632
1119*	+10 2703B	14 31.2 + 9 34	330 +59	14.6	m	0. 54	162	213	VM, L
1120	-11 3759	14 31.6 -12 18	307 +42	12.8	M4	0.69	334	367	W, L
1121	L 1197-32	14 31.9 +12 48	335 +60	12.6	k-m	0. 52	290	345	L
1122	L 1197-81	14 32.8 +10 13	331 +58	14.8	m	0.61	237	289	L
1123	+34 2541	14 32.9 +33 58	21 +65	19. 7	K 9	0.76	287	24	Ci
1124	-11 3770	14 34.3 -12 06	308 +42	6.6	F 5	0.95	292	326	GC 19695
1125	W 536	14 35.6 - 0 37	318 +51	13.6	К3	0. 56	269	310	W, L
1126	L 981-57	14 35.9 - 3 01	316 +49	14.5	m	0.63	173	213	L
1127	z Cen A	14 36.2 -60 38	283 - 1	0.8	G2	3.69	281	306	GC 19728
1128*		14 36.2 -60 38	283 - 1	2.9	K 3	3.69	281	308	GC
1129	L 198-35	14 36.4 -56 41	285 + 2	13.4	k	0.50	125	150	I, L
1130	-56 5542	14 37.8 -56 48	285 + 2	8. 1	G5	0.50	132	158	I, L, Ci
1131	R 51	14 38.4 +31 43	16 +65	12.7	K 5	0.85	171	262	R, L
1132	₩ 537	14 39.6 + 2 09	322 +52	16.0		0. 56	159	204	W, L
1133	R 993	14 39.8 +41 45	38 +62	14.4	K 3	0.68	227	338	R
1134	+ 6 2932	14 40.9 + 6 02	328 +54	11.1	G3	0.87	270	319	W, L
1135	L 837-19	14 41.4 -11 40	310 +41	12.9	g:	0.50	259	294	L
1136	-49 9033	14 41.8 -49 42	289 + 8	9.4	K O	0.78	241	267	C, L, Ci
1137	L 477-3	14 43.4 -35 09	296 +21	11.7	g:	0.52	245	273	L
1138	+17 2785	14 44.1 +16 43	345 +60	10.4	K 6	0.94	188	251	GC 19890
1139	R 499	14 44.5 -12 31	310 +40	13.5	m	0.51	248	284	R, L
1140	R 994	14 44.7 +17 18	346 +60	12. 5		0. 59	270	334	R
1141	L 982-36	14 45.3 - 2 58	319 +47	14.8	m	0.66	308	349	L
1142	-25 10553A	14 46.7 -25 53	302 +29	13. 1	m	1. 22	261	292	L
1143*		14 46.7 -25 53	302 +29	13. 2	m	1. 22	261	292 261	L
1144	L 108-35	14 47.2 -66 06	282 - 7	16.1	m ve	0.50	234		L CC 10068
1145	+ 7 2850	14 47.9 + 7 01	331 +54	10. 5	K 6	0.61	262	313	GC 19968
1146	L 1126-68	14 48.4 + 7 46	332 +54	15. 3	DA	0.94	243	295	L
1147	₩ 553	14 48.7 - 1 20	320 +48	15. 5	m	0.66	229	273	W, L
1148	L 406-55	14 48.7 -40 59	294 +15	14.5	k	0. 54	245	274	L
1149	-23 11940	14 48.8 -24 06	303 +30	ა. 9	K 5	1.02	245	277	GC 19986
1150	W 554	14 49.7 + 5 36	329 +52	12. 5		0. 55	215	264	₩

ENVISOREMENTAL PRODUCTION OF A CONTRACT OF A

LFT	Designation	R. A. (1950) Dec.	1 b	m	Б р.	μ	в	¢	Authority
1151	L 838-24	14 ^h 50. 6 -11 ⁰ 23	312 ⁰ +40 ⁰	13. 4	m	0. 53	222 ⁰	259 ⁰	L
1152	R 501	14 50.7 -15 35	310 +37	15. 3	WO	0.56	154	190	R,L
1153	+19 2881	14 51, 1 +19 21	351 +59	6. 7	K1	0.50	295	3	GC 20037
1154	+23 2751	14 51.5 +23 33	3!i9 +61	9.9	K6	0.84	271	346	GC 20049
1155*	R 52	14 51.7 +23 46	0 +61	12.7	M5	0.75	280	255	R
1156	G +72 6399	14 52.2 +71 53	77 +43	12. 2	K8	0.92	245	24	G
1157	L 1198-67	14 52.4 +10 09	336 +55	12.0	m	0.51	216	271	Ļ
1158	R 1041	14 52.5 +35 47	25 +61	14.5		0.90	174	271	R
1159	+54 1716	14 53.8 +53 52	56 +55	9.0	K 3	1.08	296	60	GC 20090
1160*	-20 4123	14 54.5 -21 11	307 +32	9. 4	M2	1.98	149	184	GC 20111
1161	-20 4125	14 54.5 -21 11	307 +32	7.0	K 5	1.98	149	184	GC 20113
1162	R 53	14 55.6 +31 34	16 +61	12. 0	K 5	1.40	213	302	R, L
1163*	-21 4009	14 57.0 -21 48	307 +31	8.8	F 2	0.75	229	264	GC 20175
1164	L 1126-79	1458.8 + 722	334 +52	14.5	m	0.53	262	315	R, L
1165	L 1343-1	14 59.4 +24 14	1 +59	12.8	m	0. 51	232	307	L
1166	L 1126-25	15 09.7 ÷ 8 53	336 +52	13.0	K0	0. 50	178	233	R, L
1167	R 1044	15 01.0 + 3 57	330 +50	13.3	m	1.14	309	359	R, L
?168 *		15 02.5 + 5 50	333 +50	12. 2	Κô	0.73	250	302	L
1169	L 478-53	15 03.1 -37 13	289 +17	12.8	K 5	1.11	201	233	L
1170	R 1051	15 03.3 +60 35	64 +50	12. 5		0.70	283	51	R
1171	+25 2874	15 05.3 +25 07	3 +58	11. 4	K8	1.01	299	16	GC 20348
1172	+ 9 3001	15 05.4 + 9 04	338 +51	8.9	F9	0.51	264	320	GC 20352
1173	+32 2547	15 05.6 +32 34	18 :59	9.9	F8	0. 51	199	288	Ci
1174	L 767-42	15 06.5 -19 47	310 +31	12. 2	k	0. 52	240	277	L
1175	+24 2834	15 06.9 +24 12	2 +58	11.0		0. 55	290	5	L, Hamburg
1176	R 1047	15 07.1 + 3 20	331 +48	12. 5		0,70	309	0	R
1177	-15 4042	15 07.5 -16 08	213 +34	9.8	G6	3, 68	196	235	GC 20394
11'.'8*		15 07.5 -16 13	313 +34	10.5	K0	3.68	196	235	GC 20393
1179	R 996	15 09.2 +15 57	351 +55	15.0		0, 60	197	262	R
1180	L 1271-41	15 02.8 +18 09	352 +55	15.0	m	0.68	215	282	L
1101	я 1038	15 10.1 + 6 14	335 +49	12, 7		0.96	207	261	R
1182*	L 695-15	15 16.2 -21 47	310 +29	12. 0	K 2	0.70	262	299	L
1183	+19 2939A	15 10.5 +19 28	354 +55	7.5	G 5	0.66	295	4	GC 20457
1184*		15 10.5 +19 28	354 +55	8. 4	G5	0.56	295	4	GC 20458
1165*	- 0 2944	15 11.3 - 1 10	327 44	7.7	G8	1.37	259	307	GC 20475
1185	- 3 3746	15 11 4 - 3 37	325 +43	11.0	M0	0.78	281	328	W,L
1187	1. 551-27	15 11.8 -31 39	303 +21	15.0	k	0.89	216		L
1188	L 767-30	15 12.1 -18 26	312 +31	12.2	f	0.51	222	261	L
1189	L 1271-15	15 13.4 +19 24	354 +54	14.6	m	0.91	172	241	L
1190	-18 4031	15 13.8 -18 25	313 +31	11.6	773	0.5 <i>1</i>	131	170	L
1191	L 839-21	15 16.4 -12 33	318 +35	14.2	m	0.72	255	297	L
1192	L 1487-51	15 16.6 .31 49	17 +56	15. 3	m	0.79	217		L
1163		15 16.8 + 1 57	332 +45	5.6	F6	0,64	145	195	GC 20591
1194		15 16.8 + 1 57	332 +45	10.8	K 4	0.64	145		ADS
1195	- 7 4003	15 16.8 - 7 31	323 +39	12. 3	£ 5	1, 25	266	311	W, L
1196	+26 2677A	15 16.0 +25 52	6 +56	8.7	G 4	0.59	257		GC 20592
1197		15 16.9 +25 52	6 +56	14.4		0. 59	257		VM.
1598		15 17.5 -48 39	295 ÷ 6	13.8		0.50	260		I, L W, L
1199		15 18.2 -12 58	317 +35	12, 2		0.70 1.64	244 260		GC 20635
1200	-47 9919	15 15.4 -48 08	295 → 5	6. 2	G٥	1.04	2170	637	G(20000

MANIMENTER CONTRACTOR CONTRACTOR

The companies of the contract of the contract

LFT	Designation	R. A. (1950) Dec.	l b	m	Sp.	μ	e	φ	Authority
1^01	L 623-94	15 ^h 19 ^m 2 -27 ^o 39	307°+23°	14. 5	k	0. 73	38 ⁰	75 ⁰	L
1202	+ 1 3071	15 20.2 + 1 36	332 +44	9.8	K 4	0.52	223	274	GC 20682
1202	R 508	15 21.6 +17 40	353 +52	15. 4	M6	1. 24	197	264	R, L
1203	-26 10870	15 23.0 -26 33	309 +23	10.7	K0	0.78	268	306	L
1205	L 72-79	15 23.4 -73 43	281 -15	12.9	n	0.64	252	288	_ L
1203	D 12-13	10 20. 1 -10 10	201 -10	10.0	**	0.01			_
1206	R 510	15 26.0 +16 53	353 +51	14.6	K 5	0.90	264	330	R,L
1207	L 624-20	15 28.6 -26 44	310 +22	14.9	m	0.57	225	264	L L
1207	-40 9712	15 29.0 -41 04	301 +11	11.1	M4	1.55	229	266	ī, L, C
		15 32.3 +14 27	350 +49	15. 4	147-1	0.77	264	328	r, -, -
1209	R 512	15 32.3 +14 27	356 +50	13. 6	M4	1. 20	264	332	R,L
1210	R 513	10 00.1 711 00	330 +30	10.0	112-1	1. 20	201		, -
1011#	7 1070 01	15 33.1 +17 53	356 +50	16.0	M 6	1. 20	264	332	L
1211*	L 1272-21 L 480-69	15 33.5 -37 43	303 +13	13.8	k	J. 88	202	240	Ĩ.
1212	L 1344-37	15 33.6 +22 20	2 +51	13.8	m	0.72	263	336	Ĺ
1213		15 34.3 -13 56	320 +31	13.8	M6	0.81	217	261	R, L
1214	R 802		315 +26	12.0	m	0.58	185	227	L L
1215	L 696-19	15 35.1 -21 08	313 +20	12.0	ш	0. 50	100	221	_
1016	T 901 19	15 35.7 -54 58	293 - 1	15. 2	k-m	1. 14	190	227	I, L
1216	L 201-12		288 - 7	15. 5	m m	0.52	218	255	L
1217	L 152-91	15 36.7 -63 34	317 +26	12.6	м5	2. 24	244	267	L
1218	L 768-119	15 39.5 -19 17	309 +18	13.7	MIJ	0.52	223	263	L
1219	L 552-4	15 40.2 -30 45			E 4	1. 19	254	301	GC 21124
1220	-10 4149	15 40.4 -10 46	324 +32	7.6	F4	1. 19	234	301	GC 21124
1001	z 000 00	15 40 5 00 05	217 .06	14.0	1-	1 14	195	238	L
1221	L 696-92	15 40.5 -20 05	317 +26	14.0	k 1-	1. 14 0. 55	200	246	R,L
1222	R 804	15 42.6 -13 40	322 +30	13.4	k			263	I,L,C
1223	-46 10351	15 43.0 -47 05	299 + 5	12.4	MO	0.57	224 247	203 286	
1224	L 201-97	15 44.0 -58 02	292 - 4	14.3	m	0.57		2°3	I, L R, Edinburgh
1225	G +76 5308	15 44.4 +76 12	78 +37	13. 0	M4	1. 25	135	2 '3	R, Edilloui gii
4000	10 1010	- 15 44 4 10 06	200 .20	10 4	K 2	0. 53	222	268	L
1226	-13 4246	15 44.4 -13 26	322 +29	12.4			239	287	L
1227	L 841-9	15 44.7 -10 45	326 +31	12.6	m	0.52	239 320	47	Ĺ
1228	L 1489-5	15 47.7 +34 59	22 -50	15. 2	m	0. 97 0. 77	35	131	GC 21340
1229	χ Her	15 50.9 +42 35	34 +49	5. 2	F7		195	259	GC 21347
1230	+13 3024	15 50.9 +13 21	352 +44	6.7	F9	0. 58	199	233	GC 2133:
4004	D 000	45 51 0 .04 SE	00 .50	19.0	M2e	0. 58	152	238	R.L
1231	R 806	15 51.2 +34 55	22 +50	12.9			152	238	•
1232⇒		15 51.2 +34 55	22 +50	14.5	m	0.58		223	L L
1233	L 153-43	15 52.7 -61 19	291 - 7	16.6	m	0.79	182 167	233	GC 21498
1234	γ Ser	15 54.1 +15 49	355 +44	4.3	F 5	1.33	180	238	W 21490
1235	W 611	15 54.8 + 5 17	343 +39	14.8	MG	1.48	100	230	**
		15 54 0 · 5 10	949 .90	10 1	M4	1.48	180	238	w
	W 612	15 54.8 + 5 18	343 +39	16. 1				-	GC 21461
	+28 2503	15 56.5 +27 53					238	285	GC 21495
1238	-16 4196	15 57.5 -16 23	323 +25	5.9	F7	0.75	254	237	L 2.433
1239	L 553-179	15 57.5 -34 35	309 +12	15. 2	m m	0.95			
1240	W 624	15 59.0 + 5 32	343 :38	13.7	F8	0.51	230	288	w
		45 50 4 00 05	00 40	F 0	~ ^	0.00	105	279	GC 21527
1241	ρ CrB	15 59.1 +33 27	20 +48	5.9	G0	0.80	195		
1242	R 808	15 59.6 +36 57	25 +48	14. 4	DA.	0.57	157	253	R,L
1243	L 1346-53	16 00.7 +20 45	2 +45	14. 2	M4	i. 57	213	239	L L
1244	+42 2667	16 01.6 +42 24	34 +47	10.3	F 3	0.51	213	306 207	R, Ci
1245	+25 3020	16 C2. C +25 23	9 +45	7.7	G3	0.85	322	397	GC 21599
		40 00 - 44	000 0	10 0	•.	0.00	010	956	T
1246	L 153-57	16 02.5 -61 22	292 - 8	16.5	k	0.65	213	256	L CC 21622
1247	+39 2947	16 03.2 +39 17	28 +47 28 +47	7.6	G3	0.57	275	4	GC 21623
1248	+39 2950	16 04.7 +38 46		9.4	K3	0.60	156	245	GC 21663
1249	+35 2774	16 04.8 +34 47	22 +47	11.6	K 8	0.63	155	240	H, L
1250	L 1418-30	16 05.2 +26 59	11 +45	15.0	m	0.60	141	217	L

LFT	Designation	R. A. (1950) Dec.	l b	m	Sp.	μ	8	ø	Authority
1051	+ 6 3169	16 ^h 06.7 + 6 ^o 31	346°+37°	6.7	G8	0. 73	162 ⁰	222°	GC 21724
1251		16 68.0 -70 01	286 -14	15.0	k-m	0.63	204	249	L
1252	L 74-208	16 08.8 -40 40	307 + 7	14.6	n	0.50	208	252	L
1253	L 410-15	10 00.0 -40 40	346 ÷36	12.5	K 2	0.69	210	269	L
1254	1, 1130-91	16 09.8 + 5 39		8.0	G5	1.53	211	255	I, L, Ci
1255	-57 6303	16 09.9 -57 25	285 - 5	0.0	G 3	1. 55	211	200	1, 2, 01
		40 44 0 45 01	07 . 40	14.9		0.54	330	64	R
1256	R 522	16 11.9 +45 31	37 +46	14. 2	_		232	278	L
1257	L 628-41	15 11.4 -28 22	316 +15	14. 2	g	0.50			
1258	L 1274-3	16 12.5 +19 13	2 +42	15. 2	m	2.00	279	348	L
1259	- 7 4242	16 12.9 - 8 14	332 +28	6.1	G1	0.56	156	208	GC 21864
1260*	+ 7 3125	$16\ 13.5 + 7\ 30$	348 +36	9.6	K 5	0.50	161	221	L
									24.0
1261	+55 1823	16 15 9 +55 15	51 + 4 3	11.5	M1	0.50	167	270	McCormick
1262	-70 1402	16 15.9 -71 10	285 -15	11.0	G0	0.65	330	277	L
1263	+67 935A	16 16.6 +57 22	66 +39	9.8	K7	0.52	279	31	GC 21948
1264*		16 16.6 +7.7 23	66 +39	12.0	M 3	0.52	279	31	G
1265	-47 10664	16 16.6 -48 06	302 0	10.3	K 2	0.88	208	253	I,L,C
1200									
1266	-37 10765A	16 16.8 -37 26	310 + 8	12.0	M3	1. 22	325	11	L
1267*		16 16.8 -37 26	310 + 8	16.0	M 7	1.22	325	11	L
	R 528	16 17.9 -17 31	326 +21	12.3	K 4	0.53	215	265	R,L
1268	L 338-152	16 19.1 -48 32	392 0	13.6	M3	0.75	232	277	I, L
1269		16 20.1 -24 35	320 +16	11.2	k	0.76	207	255	Ŕ,L
1279	-24 12077	10 20.1 -24 33	320 410	11.0	**	0			,
4024	T 000 40	16 20.8 -46 36	304 + 1	13.9	m	0.90	215	261	L
1271	L 339-42		323 +17	12.0	K 5	0.67	242	291	L, Ci
1272	-21 4352	16 22.2 -21 49		11.7	M3	1. 23	111	206	Groningen
1273	L ¹ 707-1	16 22.6 +48 29	41 +43			1. 16	173	240	L
1274	L 1274-23	16 23.0 +15 49	359 +38	15.7	m			238	GC 22151
1275	- 3 3203	16 26.1 + 3 22	პ 4 5 +31	10.0	K0	0.54	179	230	GC 22131
						0 50	050	220	L
1276	L 1491-54	16 26.6 +32 04	19 +42	14.4	m	0.50	250	329	
1277	+18 3182A	16 26.7 +18 31	2 +38	9.1	K 2	0.51	320	28	GC 22166
1278*	+18 3182B	16 26.7 +18 31	2 +38	9.1	K 2	0.51	320	28	ADS
1279		16 26.8 +44 47		12. 1	G 5	0.75	200	291	F
1280	R 640	16 26.8 436 52	26 +43	13.5	DA	0.87	328	52	R, L
									_
1281	L 411-46	16 27.0 -41 59	308 + 3	15. 1	a:	0. 58	222	269	<u>:</u> .
1282	L 843-53	16 27.2 -14 33	329 +21	14. 1	k	0. 57	250	302	L
1283	-12 4523	16 27.5 -12 31	331 +22	11.4	M5	1. 18	182	234	W, L
1284	+ 4 3195	16 28.0 + 4 18	347 +32	7.8	F7	1.47	198	257	GC 22190
1285	-38 11019	16 28.1 -38 54	310 + 5	8.4	G9	0.53	231	279	GC 22196
1200									
1286	-63 1211	16 28.5 -63 44	292 -11	8.8	G0	0.50	250	298	I,GC 22206
	L 1419-17	16 28.9 +27 25	14 +40	12.8	m	0, 51	232	277	L
1288	L 1491-47	16 30.8 +32 31	20 +41	12.9	m	9, 50	219	301	L
1289		16 30.8 -53 28	300 - 5	13.6	m	0.68	196	244	L
1290		16 32.2 - 4 %	S40 +26	9.8	G5	0.82	191		L,Ci
1250	- 3 3300	20 00.0							·
1201	L 339-106	16 32.5 -49 11	303 - 2	14.0	ĸ	0. 59	185	233	L
1291		16 35.6 -30 44	317 +10	13.8		1. 18	224		L
1292		16 33.4 - 15 04	330 +20	11.8		0. 58	255		L
1293			342 +27	6.9	KO	0.55			GC 22321
1294		16 33.7 - 2 13	310 + 3	9.9		0.54			L,C
1295	-40 10550	16 34.2 -40 48	310 + 3	3. 3	KU	0.01	220	2.0	2,0
	04 0055	40 04 0 . (4 40	10 .40	10.6	K 5	0.59	144	222	Ci
1296		16 34.8 +51 13	19 +40			0.59			L
1297		16 37.3 -45 54	306 - 1	14.4	-				I, L
1258		16 38.0 -43 53	308 + 1	12.8		0.81			GC 22464
1299		16 39.4 +31 42	19 +39	3.6		0.51			
1300	L 74-113	16 42.3 -72 54	286 -18	13.0	m	0.69	338	281	L

TO THE CONTINUES OF THE PROPERTY OF THE PROPER

LFT	Designation	R. A. (1950) Dec.	1 b	m	Sp.	μ	θ	ф	Authority
1301	+58 883	16 ^h 42 ^m 7 +68 ⁰ 11	6ა ⁰ +37 ⁰	8.4	G7	0. 51	326 ⁰	72 ⁰	GC 22540
1302	L 1276-44	16 44.0 +16 34	2 +34	13. 2	m.	0.60	218	285	L 22540
1303	€ Sco	16 46.9 -34 12	316 + 5	3. 4	G9	0.67	247	298	GC 22640
1304	L 154-163	16 47.0 -64 22	293 -13	12. 4	g	0.53	258	310	
1305	L 55€-48	16 47.5 -32 45	318 + 6	16. 0	8 2	0.51	193	244	L L
			010 1 0	10. 0	•	0. 51	133	677	L
1306	L 42-65	16 49.7 -79 49	280 -22	14.6	m	٥. 50	213	269	L
1307	+ 0 3593	16 50.5 + 0 05	346 +24	7.7	G9	1.67	206	265	GC 22728
1308	L 203-139	16 50.9 -57 46	299 - 10	14.0	k	0. 59			
1309	R 644	16 52.0 +11 59	358 ÷30	12.4			218	270	L
1310*	- 8 4352	16 52.8 - 8 15	339 +20	10.4	K7	0.65	302	6	R
	0 1000	10 02.0 - 0 13	333 +20	10. 4	M 4	1. 19	222	278	GC 22805
1311*	₩ 629	16 52.8 - 8 15	339 +20	13. 2	346	1 10	000	950	
1312	L 988-42	16 54.4 - 4 17	342 +22		M6	1. 19	222	278	w
1313	+25 3173	16 56. 2 +25 50		14. 1	k	0.76	123	181	L
1314	+47 2420	17 01. 2 +47 08	14 +34	11. 1	M2	0.54	192	265	L,Ci
1315	L 1277-81		40 +37	7.2	G9	0.85	8	95	GC 23011
1010	D 1211-01	17 02.2 +17 02	5 +30	13. 3	\mathbf{m}	1. 12	175	242	L
1316	- 4 4225	17 00 4 4 50	0.40 40						
	- 4 4225 - 4 4226	17 02.4 - 4 59	343 +19	8.9	K6	1.46	220	278	GC 23043
		17 02.5 - 5 00	343 +19	11. 3	M1	1.46	220	278	GC, L
1318	R 863	17 05.1 +21 37	9 +31	13. 1	M3	0. 57	276	343	R
1319	-60 6576 D. 864	17 05.7 -60 41	287 -13	8. 5	G 5	0. 55	4	59	L
1320	R 864	17 06.7 +25 46	15 +32	12.9		0. 57	218	290	R
1201	771 040	45 40 4 -0 4							
1321	W 646	17 08.1 +39 14	30 +35	15.0		0.80	180	260	W
1322	-46 11288	17 08.7 -46 29	309 - 5	10. 3	G8	0.70	186	240	I, L, C
1323	R 1059	17 09.2 +60 41	57 +36	13. 5		0.68	191	286	Ŕ
1324*	L 989-20	17 09.3 - 1 48	347 +20	13. 1	g-k	0 . 58	227	286	L
1325	L 917-4	17 10.1 - 5 04	344 +18	12.8	k	0.66	165	223	L
1326	+45 2505A	17 10.7 +45 46	38 +35	10.7	M 3	1. 58	172	256	F
1327*	+45 2505B	17 10.7 +45 46	38 +35	11.9	M3	1.58	172	256	F
1328	L 917-26	17 11.1 - 8 22	342 +16	12.6	k	0.62	224	282	L
1329	+42 2810	27 11.5 +42 24	34 +34	11. 3	MO	1.07	251	333	Cí
1330	-26 12026A	17 12.3 -26 32	326 + 6	6.4	K 2	1. 24	203	258	GC 23273
1331*	-26 12026B	17 12.3 -25 32	326 + 6	6.4	K 2	1.24	203	258	GC 23274
1332*	-26 12036	17 13.1 -26 29	326 + 6	7.7	K 5	1.24	203	258	GC 23298
1333	L 413-156	17 15.1 -43 23	313 - 5	14.6	g	1.06	226	281	L
1334	-46 11379A	17 15.3 -46 35	310 - 7	6.7	K0	1.00	78	133	GC 23353
1335*	-46 11370B	17 15.3 -46 35	310 - 7	9.6	M0	1.00	78	133	GC
44									
	-34 11626AB	17 15.5 -34 56	320 0	7.0	K 3	1. 19	96	151	GC 23362
	-34 11626C	17 15.6 -34 56	320 0	11.3	m	1. 19	92	151	GC, L
1338	-75 967	17 15.7 -75 18	284 -22	7. 5	G0	0.99	258	319	GC 23366
1339	W 672A	17 16.2 + 201	351 +20	14.3	DA	0.52	234	295	W,L
1340*	W 672B	17 16.2 + 2 01	351 +20	15. 5	M 3	0.52	234	295	W,L
									•
1341	F 48	17 18.3 +41 47	33 +33	12.4	M3	0.87	161	241	F
1342	W 692	17 18.3 +36 43	27 +32	15.0		0.62	188	265	₩
1343	L 341-45	17 18.4 -46 01	311 - 7	15.0	k	0.75	192	248	L
1344*	+32 2896	17 18.8 +32 32	23 +31	6 C	G 2	1.05	173	249	GC 23446
1345	L 557-68	17 20.6 -32 13	323 + 1	12.8	m	0.62	195	351	L
1346	L 21-3	17 20.8 -80 07	280 -24	13.5	<i>E</i> 3	0.69	317	21	L:
1347	L 341-114	17 23.1 -47 09	310 - 8	14.8	g	0.72	229	286	Ţ.
1348	+ 2 3312	17 23.3 + 2 10	353 +18	8.9	K6	1.33	206	267	GC 23592
1349	L 156-46	17 23.5 -62 24	296 -15	15. 1	m	0. 99	198	258	
1350	L 630-44	17 24.0 -25 07	329 + 4	15. 5	k	0.64	140	196	L L
			J-0 F 1	20.0	-	U. UT	140	: 50	ı

THE PROPERTY OF THE PARTY OF TH

LFT	Designation	R. A. (1950) Dec.	l b	נדי	Sp.	μ	θ	ø	Authority
1551	-46 12540	17 ^h 24 ^m 8 -46 ^o 50	3110- 80	11.2	M4	1. 04	147 ⁰	204 ⁰	I,L,C
1352	+67 1014	17 25.2 +67 21	64 +34	7.0	K.1	0.53	270	6	GC 23651
1353	L 156-111	17 28.3 -64 19	295 -17	16.1	m	0.61	191	252	L
1354	L 75-65	17 28.3 -72 40	288 -21	15. 2	រារ	0.51	192	255	Ĺ
1355	ደ 858	17 30.5 -15 47	337 + 8	14.4	k	0.62	212	270	R, L
									,
1356	L 1278-23	17 31.5 +18 45	9 +24	14 5	k	0.69	175	242	L
1357	+ 6 3455	$17 \ 52.3 + 6 \ 02$	357 +18	8.9	F8	0.60	314	376	GC 23827
1358	-44 11909	17 33.5 -44 16	314 - 8	12.2	m	1.16	217	275	I, L
1359	L 702-43	17 33.9 -22 18	332 + 4	16.5	f:	0.57	185	243	Ĺ
1350*	+61 1678AB	17 34.5 +61 55	58 +32	5.8	GO	0.57	154	244	GC 23874
1361*		17 35.0 +61 43	58 - 32	11. 2	MO	0.57	154	244	VM
1362	-27 11772	17 35.3 -27 10	328 + 1	11.9		0.50	246	304	R,L
1363	L 1278-24	17 35.6 +18 35	10 +23	11.2	M1	1.35	43	110	L,Ci
1364	+68 946	17 36.7 +68 23	65 +32	10.7	M5	1.31	201	294	GC 23926
1365	+37 2926	17 37.9 +37 13	29 +28	9. 1	F8	0.98	212	287	GC 23962
1900	T 414 100	15 00 0 41 00	010 0			0.50	-0-	05.4	_
1366	L 414-103	17 39.3 -41 00	317 - 7	14.5	k	0.53	195	254	L
1367	W 1471	17 39.5 - 8 48	335 +10	14.8	k	0.96	241	301	W, L
1368	L 774-22	17 39.9 -16 37	338 + 6	13.8	g	0.70	191	250	L
1369	R 133	17 40.5 -18 29	336 + 5	13.0	M2	0.57	196	254	R, L
1370	÷21 3198	17 41.1 +21 38	14 +23	8. 1	G8	0.66	192	260	GC 24055
1371	+43 2796	17 42.4 +43 25	37 +29	11.8	М3	0. 59	182	260	Ci
1372	L 205-128	17 42.4 -57 16	303 -15	12.9	m	1.72	219	281	
1373	E 1050-84	17 44.2 +24 41	17 +23	14. 4	m	0.61	328	36	I, L L
1374	μ Her A	17 44.5 +27 45	20 +24	4. 2	G 4	0.81	203	273	GC 24138
1375*	u Her BC	17 44.5 +27 45	20 +24	11. 2	M3	0.81	203	273	
10.0	μ nei bc	11 77.3 761 73	20 +24	11. 2	MI	0.01	203	213	GC, ADS
1376	-33 12476	17 44.7 -34 00	323 - 5	7.9	G8	0.60	202	261	GC 24146
1377	+ 4 3509	17 45.3 - 4 58	357 +15	19.0	K0	0.60	248	310	Ci
1378	L 205-83	17 46.9 -56 33	304 -16	13.6	m	1. 25	238	300	L
1379	L 1351-12		16 +22	14.5	m	0. 57	323	31	ī
	L 487-64	17 49.5 -33 15	320 - 7	12.7	F8	0.71	246	306	L L
									-
1381	L 559-195	17 49.6 -34 37	324 - 5	14.8	k	0.61	225	285	L
1382	L 44-84	17 52.7 -77 41	283 -24	15.7	m	0.87	201	272	L
1383	L 775-44	17 53.1 -16 24	340 + 3	11.4	G	0.60	181	241	L
1384	L 205-5 5	17 54.8 -56 05	304 -1G	16.3	m	0.73	212	276	L
1385*	+ 4 3561	17 55, 4 + 4 24	358 +13	11.3	345	10.27	356	58	Barnard
1000	00 15000								
1385	-30 15026	17 55.7 -30 09	328 - 5	10.8	G0	0.64	166	226	L,C
	-13 4807	17 55.9 -13 04							L,Ci
1388	+26 3151	18 00.5 +26 19	19 +21	7.6	K0	0.71	147	215	GC 24570
1389	- 3 4233	18 02.6 - 3 60	353 < 7	11. 1	M1	0.62	112	173	L
1390	70 Oph A	18 02.9 + 2 31	358 +10	5. 3	K 1	1. 13	167	229	GC 24641
1391*	70 Oph B	18 02.9 + 2 31	250 .10		vc	1 10	107	200	CC
1392	L 44-116	18 04.4 -79 12	358 +10	7. 1 16. 2	K 6	1. 13	167	229	GC
1393			282 -25		m	0.65	216	290	L
1393	L 205-80	18 04.7 -56 32	305 -18	16.5	m	0.54	181	247	L
	L 44-60	18 06.6 -77 08 18 07.2 +20 00	284 -25	16.8	m v 1	0.74	200	274	L
1395	W 816	10 01.2 +20 00	14 +17	14. 5	К1	0.53	223	299	W,L
1396	+38 3095	18 08.0 +38 27	33 +23	7. 1	К2	0 57	213	285	GC 24778
1397	+ 5 3640	18 10.1 + 5 25	1 + 9	11.0		0.84	224	286	R
1398	L 1136-37	18 11.4 + 8 12	4 +11	14.7	f-g	0.52	257	320	L
1399	W 830	18 11.6 +21 05	16 +16	15. 5	- 6	0.50	210	276	w
1400	L 44-59	18 12.1 ~77 04	284 -25	15.6	m	0.62	204	279	L.
				•			-		

CANTERNAMENTALISMENTAL

THE THE PROPERTY OF THE PROPER

LFT	Designation	R. A. (1950)	Dec.	1	b	m	Sp.	μ	θ	φ	Authority
1401	L 560-83	18 ^h 12 ^m 3 -33 ⁰	0 ₄₃ '	326 ⁰	_ 90	15. 0	m	0.62	204 ⁰	267 ⁰	L
1402	W 834	18 13.5 +20		15		14.7	K 5	0.02	209	274	
1403	+13 3578	18 13.7 +13			+13	11.5	m	0.50	172	236	W, L
1404	L 1064-75	18 13.9 + 1		358		13.6	M5	0.73	213	275	L L
1405	L 1064-2	$18\ 14.5 + 4$			+ 8	14.6	G 5	0.57	177	239	Ĺ
							••	0.01	2	203	
1406	W 843	18 15.8 +23	17	18	+16	15. 2		0.50	267	333	W, L
1407	L 920-7	18 16.7 - 5	47	352	+ 3	14.0	m	0.54	140	202	Ľ,
1408	L 992-15	18 18.5 - 1	04	356	+ 5	14.7	k	1.08	208	270	_ L
1409	η Ser	18 18.7 - 2	55	355	+ 4	4. 2	G8	0.89	218	280	GC 25046
1410	L 560-68	18 19.5 -33	23	328	-11	14. 2	k	0.51	156	219	L
1411	D 100	10 10 0			_						
1411 1412*	R 136	18 19.8 + 6			+ 8	14.0	M4	1. 20	293	355	R
1413*	L 920-2 χ Dra	18 21.1 - 5		353		12. 4	k	0.50	145	207	L
1414	L 77-43	18 22.0 +72		70		4. 1	F5	0.64	125	209	GC 25122
1415	+ 8 3689	18 22.4 -71 18 23.8 + 8		291		16. 2	m	0.51	205	230	L
1110	+ 0 3003	10 23.0 + 0	40	ο.	+ 8	8.6	G2	0. 53	202	265	L,Ci
1416*	+ 8 3692	18 24.0 + 8	36	5 -	+ 8	9. 3	G7	0.53	202	265	L,Ci
1417	W 1463	18 30.8 - 6	56	352 -	- 1	13.6	K 6	0.66	192	254	W, L
1418	+22 3406	18 31.2 +22	17	19 -		9.9	K 5	0. 50:	203	268	L,Ci
1419	W 1465	18 33.1 - 8	18	351 -	- 2	15.3	K 4	1. 26	230	292	W, L
1420	L 561-88	18 33.7 -32	34	330 -	-13	14. 1	g:	0.54	218	283	L L
	48.0540						-				
1421	+45 2743	18 33.9 +45		41 -		11.3	M1	0. 56	54	125	Ci
1422	L 993-1	18 36.7 + 0		359 -		11.5	g:	0. 50	201	263	L
1423 1424	W 1466	18 37.6 -10		350 -		12.8	M0	0.56	197	259	W,L
1425	-13 5069	18 38.2 -13		348 -		11.3	M	0.66	185	247	R,L
LAZJ	+31 3330A	18 39.0 +31	30	28 -	+15	10. 1	K 4	0.83	173	239	L
1426*	+31 3330B	18 39.0 +31	30	28 -	+15	13. 2		0.83	173	239	L
1427	W 851	18 39.1 + 0		0 -		13. 3	K 4	1.96	176	238	W,L
1428	L 273-106	18 39.1 -54	39	308 -		14.6	m	0. 50	198	270	L L
1429	-40 12743	18 40.2 -40	06	323 -	-17	11.1	K 5	0.51	189	25?	L,C
1430	L 561-14	18 41.3 -30	17	332 -	- 13	14. 4	g:	0. 53	235	300	L'
1431	+59 1915A	10 10 0 50	••								
1432*	+59 1915B	18 42.2 +59		56 -		10.4	M4	2. 28	324	39	GC 25648
1433	L 158-46	18 42. 2 +59 18 44. 2 -61		56 +		11.3	Mt	2. 28	324	39	GC 25649
1434	L 207-41			301 -		14.6	m	0.54	198	274	L
1435	L 994-58	18 45.4 -57 18 46.3 - 2		306 - 358 -		14.7	m	0.67	251	325	L
2.00	2 331-00	10 40.3 - 2	30	330 -	. 2	14. 3	k-m	1. 12	236	298	L
1436	+17 3729	18 46.7 +17	23	13 4	+ 7	10. 4	M1	0.59	226	289	GC 25783
1437	R 154	18 46.7 -23	53	339 -	-12	12.4	M6	0.74			R, L
1438	L 159-20	18 47.6 -60		302 -	-24	15. 2	m	0.70	300	16	L
1439	L 207-33	18 48.5 -57	10	306 -	-24	13.4	k-m	0.80	198	273	Ĺ
1440	R 160	18 49.7 +16	31	15 +	٠ 6	11.4	MO	0.55	207	270	R, L
1441*	L 489-58	18 50.3 -38	40	205	10	10.5					_
1442	-48 12818	18 55. 2 -48		325 - 316 -		13. 7 12. 8	k	1.00	162	230	L
1443	+ 5 3993	18 55.6 + 5		7		10.7	M4 M0	0. 50 1. 24	164	237	I, L, C
1444	+18 3911	18 58.5 +19		19 4		10.6	G 4	0,63	190	252	GC 26042
1445	L 850-62	19 00.6 -13		350 -		15.7	M5	0.75	204 229	266	GC 26124
				-	10	10. 1	1110	J. 7J	663	292	Shapley, L
1446	G +70 8247	19 00.7 +70	34	68 +		12.9	DA	0.52	12	87	G
1447 1448	-20 5385 + 7 3967	19 01.0 -20		343 -		10.5	G3	0.74	199	264	GC 26204
1449	+ 7 3967 R 730	19 04.6 + 7		9 -		10. 2	K6	0.84	205	267	GC 26316
1450*	R 731	19 05.0 +20		20 +		12. 3	M2	0. 58	237	299	R, L
		19 05.1 +20	40	20 4	5	12. 3	M2	0. 58	237	299	R, L

LFT	Designation	R. A. (1950) Dec.	l b	m	Sp.	μ	θ	ø	Authority
1451*	L 1499-28	19 ^h 05 ^m 6 +32 ^o 26	32 ⁰ +10 ⁰	12.9	M3	1. 65	48 ⁰	111 ⁰	L,Ci
1452	R 727	19 06.6 -14 50	349 -12	13.3	K	0.50	162	226	R, L
1453	-47 12773	19 07.1 -47 13	318 -24	10.9	K6	0.63	185	259	I,L,C
1454	L 1283-23	19 07.6 +17 35	18 + 3	15.0	m	0.81	239	300	L
1455	W 1062	19 09.6 + 2 49	6 - 5	12.7	M4	1.80	100	162	w
1456	L 491-42	19 09.7 -39 07	326 -22	12. 5	m	0. 50	106	177	L
1457	L 1211-37	19 10.1 +11 33	13 - 1	16.0	m	0.53	201	262	L
1458	L 22-69	19 10.1 -82 37	278 -28	14. 4	m	1. 25	167	258	L
1459	+49 2959A	19 10.8 +49 46	48 +17	7. 2	G 5	0.66	342	48	GC 26477
1460*	+49 2959B	19 10.8 +49 46	48 +17	7.4	G5	0.66	342	48	GC 26476
1461	- 0 3676	19 10.8 - 0 40	3 - 7	9.6	F 5	0.54	217	275	L,Ci
1462	L 419-114	19 12.2 -42 28	323 -23	15.0	k	0.52	96	169	L
1463	R 733	19 12.5 +19 13	20 + 2	13.0		0.74	308	9	R, L
1464*		19 12.5 +19 13	20 + 2	14. 4		0.74	308	9	R, L
1465	+ 1 3942	19 12.5 + 2 04	5 - 5	11.0		0.56	44	106	Ci
1466	+ 4 4048A	19 14.6 + 5 07	8 - 5	10.4	M0	1.46	203	264	W,L
1467*	+ 4 4048B		8 - 5	19.4	k-m	1.46	203	264	vBs
1468	L 491-30	19 16.6 -37 07	328 -23	14. 1	g:	0.55	170	241	L
1469	L 347-14	19 17.1 -45 37	320 -25	13.7	M7	2.93	168	243	L
1470	+41 3306	19 17.3 +41 34	41 +12	9.5	K 1	0.66	175	238	Ci
1471	L 1355-129	19 19.6 +20 49	23 + 2	14.9	m	1.74	215	276	L
1472	L 1139-93	19 19.7 + 6 57	10 - 5	14. 2	m	0.87	239	300	L
1473	R 163	19 19.8 +28 34	29 + 5	13. 2	M1	0.89	74	135	R,L
1474	-45 13178	19 20.2 -45 09	321 -26	10. 2	F6	0.81	185	260	I, L, C
1475	+33 3433	19 20.5 +33 47	34 + 8	11.0	K 5	0.72	9	70	L,Ci
1476	-22 13916	19 21.7 -22 08	344 -18	11.9	K 4	0.50	207	274	L
1477	+11 3833	19 22.6 +11 50	15 - 3	5.9	G7	0.96	48	109	GC 26809
1478	+24 3737	19 23.4 +24 49	27 + 3	6.6	F6	0.66	196	257	GC 26825
1479	+49 3009	19 25.0 +49 21	49 +14	10. 1	K 2	9.83	33	96	Ci
1480	+35 3659	19 29.1 ÷36 03	37 + 7	11. 1	F 1	0.54	183	244	H, L
1481	-28 15936	19 29.6 -28 07	339 -22	7.7	G6	0.75	175	245	GC 26975
1482	L 160-102	19 30.2 -62 57	301 -3C	13.8	m	0.50	228	314	L
1483	+58 1929	19 30.3 +58 29	58 +18	7.8	K 3	C. 66	233	298	GC 26996
1484	+32 3474	19 31.6 +33 05	35 + 5	7.1	G 1	0.51	294	354	GC 27027
1485	+ 4 4157	19 32.2 + 4 27	10 - 9	11.0	MO	0. 59	58	119	L,Ci
1486	σ Dra	19 32.5 +69 35	68 +22	5. 5	G8	1.81	162	330	GC 27050
1487	W 1108	19 33.7 +53 08	53 +15	13. 5		0.54	24	27	w
1488	L 780-118	19 36.9 -18 20	349 -20	15. 0	m	0.52	195	261	L
1489	L 1063-21	19 39.3 + 3 05	9 -11	13.8	m	0.50	214	275	L
1490	L 79-24	19 41.8 -71 12	291 -31	15. 3	III:	0.66	177	271	L
1491*		19 43.8 +27 02	31 0	13.8	M4	1.34	183	241	R
1492	+31 3767A	19 44.4 +31 54	35 + 2	11.4	M1	0.63	131	189	L,Cı
1493*		19 44.4 +31 54	35 + 2	12. 5	M2	0.63	131	189	L
1494	L 160-100	19 45.1 -62 57	300 -31	17.4	m	0.64	229	310	L
1495	-59 7305	19 46.6 -59 18	305 -32	12.6	g	0. 55	192	280	L
1496	L 853-29	19 46.8 -11 25	357 -19	14.0	k-m	0.56	230	294	L
1497	L 277-66	19 47.8 -51 02	315 -31	17.5	m	0.84	192	275	L
1498	L 1501-39	19 48.1 +32 28	36 + 2	13.6	m	0.50	60	118	L
1499	α Aql	19 48.3 + 8 44	15 -10	1.0	A 4	0.66	54	113	GC 27470
1500	L 349-68	19 50.3 -47 54	319 -31	14.0	M4	1.06	187	269	I, L

LFT	Designation	R. A. (1950) Dec.	1 b	m	Sp.	μ	θ	φ	Authority
	•	19 ^h 50 ^m 7 -48 ⁰ 40	318 ⁰ -31 ⁰	16.0		0. 57	190 ⁰	272 ⁰	L
1501	L 349-79			16.2	m				L
1502	L 1501-91	19 53.3 +30 22	35 0	13.7	m	0.76	214	271	
1503	L 997-21	19 54.0 - 1 09	8 -16	13.7	DA	0.84	213	274	L
1504	-12 5594	19 54.6 -12 41	356 -21	10.1	K8	0.54	190	255	L, Ci
1505	W 1122	19 54.9 +51 08	53 +11	12.6	M2	0.55	47	106	W,R
1506	L 781-64	19 54.9 -16 37	353 -23	14.7	m	0.54	238	304	L
1507	L 1429-65	19 58.4 +27 19	33 - 2	14.8	m	0.65	188	245	L
	-50 12780	19 58.8 -50 11	316 -33	10. 1	K 2	0.51	134	219	C,L
1508	L 115-21	19 59.2 -65 44	297 -33	13. 1	m	0.85	174	269	I, L
1509		19 59.2 -65 44	297 -33	14.4	m	0.85	174	269	Í, L
1510*	L 115-22	19 33.2 -03 11	251 -00	2 2.					
1511	+15 4026	20 00.3 +15 28	23 - 9	7.7	G7	0.61	195	253	GC 27783
1512	-67 2385	20 00.6 -67 27	295 -33	6.7	G 5	1.08	129	225	GC 27793
1513	L 349-18	20 00.8 -45 48	321 -33	13.6	m	0.59	272	354	I, L
1514*	+29 3872B	20 01.4 +29 44	35 - 2	16.5	M 6	0.86	128	184	VM
1515	+29 3872A	20 01.6 +29 46	35 - 2	6.6	G8	0.86	128	184	GC 27820
					** 0	1 05	000	284	GC 27828
1516	+22 3908	20 01.8 +23 13	30 - 5	8.0	K 3	1.37	228		
1517	+16 4121	20 01.9 +16 56	24 - 9	6. 2	G 1	0.58	224	281	GC 27835
1518	L 277-231	20 03.3 -54 30	311 -34	16. 3	m	0.54	161	249	L
1519	W 1129	20 03.4 +51 05	53 +10	14. 5		0.65	33	90	W or orone
1520	δ Pav	20 03.8 -66 19	296 -33	4. 3	G 4	1.64	134	230	GC 27886
1501	TT 1120	20 04.0 +54 19	56 +11	12.8	К8	1. 50	236	293	W,R
1521	W 1130	20 C4. 5 +35 50	40 + 2	6.3	G8	0.50	208	264	GĆ 27904
1522	+35 3959	20 04.5 -19 33	350 - 26	12. 5	k	0.67	215	283	L
1523	L 781-32		337 -30	12.9	m	0.79	158	232	L
1524	L 565-62	20 04.6 -31 54	337 -30	13.3	m	C. 79	158	232	L
1525*	L 565-63	20 04.6 -31 54	331 -30	13. 3	111	0. 13	130	202	2
1526	L 1142-73	20 05.6 + 7 19	17 -14	12. 5	k	0.50	222	281	L
1527	D 1110-10	20 06.9 +57 01	59 +12	14. 2	K 2	0.50	185	242	L
1528	-20 5833	20 07.4 -20 39	350 -27	11.4	K8	0.56	230	299	L
1529	-36 13940A	20 07.9 -36 14	333 -32	6. 5	K 5	1.63	164	241	GC 27992
1530*		20 07.9 -36 14	333 -32	13.0	M5	1.63	164	241	SDS
1000	-00 100 102	20 0111							
1531	+15 4074	20 08.8 +16 02	25 -11	8.3	K 2	0. 58	314	11	GC 28012
1532	-45 13677	20 10.3 -45 19	322 -34	9.3	K8	0.78	100	183	GC 23057
1533	L 210-14	20 10.4 -54 58	310 -35	14. 4	\mathbf{m}	0.51	134	224	L
1534	L 1142-88	20 11.6 + 6 32	17 -16	13.7	m	0.62	204	262	L
1535	-27 14659	20 12.2 -27 11	343 -31	6.7	K 5	1. 26	98	170	GC 28104
		00 10 4 .00 05	77 +22	10. 1	K8	0. 52	11	72	GC 28117
1536	+76 785	20 12.4 +77 05		12. 0	k	0.69	191	247	L.
	L 1286-57	20 12.7 +18 19	27 -10 309 -36	17. 2		0.64	192	284	Ĺ
1538	L 210-68	20 15.4 -56 29			m	0.55	57	114	GC 28252
1539	+66 1281	20 17.0 +66 42	68 +16	6.2			144	238	L L
1540	L 210-160	20 18.3 -58 31	306 - 36	16. 2	a	0.51	144	230	ь
1541	-58 7734	20 18.6 -58 26	306 -36	12. 3	m	0.83	115	210	I, L
1542	L 926-16	20 18.7 - 6 36	5 -24	13. 1		0, 53	158	220	Ĺ
	L 278-22	20 20.1 -51 12	315 -36	14. 2		0.61	140		L
1543		20 20.6 -21 31	350 -31	8.8		1. 21	153		GC 28350
1544		20 21.6 -76 50	284 -33	15.7		1, 42	154		L
1545	L 46-96	ZU ZI.C -10 30	207 -00	10. 1	111		~~ .	_ 	_
1546	L 210-70	20 22.7 -56 35	308 -37	14. 2		1. 27	162		L
1547		20 23.8 + 9 19	20 -17	9. 2		0.55	170		L, Ci
1548		20 24.5 -27 53	324 -34	13. 3		0.89	193		L
1549		20 24.6 -31 02	339 -35	7.3		0. 53	182		GC 28444
1550		20 24.9 +58 24	61 +11	15. 5		0.51	5	59	W

LFT	Designation	R. A. (1950) Dec.	1 b	m	Sp	μ	θ	φ	Authority
1551	R 188	20 ^h 29 ^m 5 +38 ^o 22	45°- 1°	15. 2	Mô	0. 75	18 ⁰	70°	R.L
1552	G +65 6955	20 29.8 +65 15	67 +15	12.0	M3	0. 53	58	112	G
1553	L 1143-46	20 30.2 + 5 40	18 -21	13.0	k	0.68	211	268	L
1554	W 1346	20 32.2 +24 54	35 0	11. 4	DA.	0.66	217	270	W,L
1555	-60 7508	20 35.9 -60 43	303 -38	5.7	F6	0.64	152	252	GC 28730
		20 00.0 00 10	000 -00	0. •	10	0.01	102	LUL	GC 20130
1556*	+ 4 4510	20 37.1 + 4 48	18 -23	9.4	K6	9.86	84	141	GC 28771
1557	-24 16193	20 37.2 -23 57	349 -35	7.0	G7	ซี. 67	47	119	GC 28778
1558*	+75 752		76 +20	8.6	G4p	0,65	32	87	GC 28174
1559	L 23-30	20 38.1 -81 53	278 -31	13, 2	m	0, 33 0, 73	137	250	L L
1560	-22 5504	20 38.7 -22 29	350 -35	11.5	K0	0.83	125	196	L
						0.00	100	100	_
1561.	-53 8617	20 38.7 -52 52	313 -39	11.0	K5	1.68	178	2-2	I,L
156 4*	-19 5899	20 40.0 -19 04	355 -34	11.6	M1	1. 10	144	213	R, L
156.₹	R 766		44 - 5	13. 1	K7	0. 59	200	251	R, L
1564	W 1084	20 41.8 +55 08	60 + 7	16.8	M7	1.87	24	71	w
1565	+19 4499	20 42.1 +19 35	32 -15	11.6	K6	0.57	179	231	L, Ci
									2,01
1566	L 279-66	20 42.5 -52 03	313 -40	14.0	m	0.70	193	177	L
1567	-47 13548	20 42.9 -47 20	320 -40	13. 4	k-m	0.50	180	271	L,C
1568		20 43.2 +44 19	52 0	11.7	M3	0.50	58	108	F, C
1569	L 1143-61	20 43.4 +10 07	24 -21	15. 4	k	0.57	197	252	Ĺ
1570	η Сер	20 44.3 +61 39	65 +11	4.4	G8	0,82	6	56	GC 28962
	•					.,	•	•••	
1571	L 80-129	20 44.3 -73 24	287 -35	14. 2	k	0.50	259	9	L
1572		20 44.7 -79 30	281 -33	13. 2	m	1. 20	146	260	ī.
1573	+10 4379	20 44.9 +10 42	25 -21	10.8	m	0.60	173	227	Ĺ
1574	R 258	20 47.0 +15 55	30 -18	14. 5		0.55	206	259	R, L
1575	G +70 9012	20 47.2 +70 47	73 +17	11.9	K6	0.63	33	84	G
							•		_
1576	+52 2815	20 49.1 +52 42	59 + 5	10.6	K 5	0.54	63	112	R
1577	- 3 5059		14 -30	11.6	K 4	0.74	240	299	W,L
1578	L 163-8	20 51.8 -60 07	303 -40	13.0	m	0.62	116	219	L'
1579	-74 889	20 52.1 +74 35	76 +19	8. 7	G3	0.69	36	87	GC 29166
1589	+61 2068	20 52.4 +61 59	66 +17	10.0	M2	0.77	180	229	Ci
1581	+12 4499	20 52.7 +12 58	28 -21	10. 1		0.66	54	107	Ci
1582	L 856-54A	20 52.7 -14 15	2 -35	14. 5	M5	1.48	107	173	L
1583*	L 856-54B	20 52.7 -14 15	2 -35	16. 2		1.48	107	173	L
1584	W 1100	20 53.8 +56 21	62 ÷ 7	16.0		0. 56	222	270	W
1585	R 193	20 54.1 - 5 03	11 -31	13.3	M4	0.82	105	165	R, L
			_						
1586	W 896	20 54.1 -10 37	6 -34	12.9	M3	1. 15	185	248	W,L
	-44 14214	20 54.4 -44 19	324 -42	7. 1		1. 10	209	299	GC 29225
1588	W. 1373		36 -16	13. 5	M3	0.92	97	147	W
1589	-70 1800	20 55.3 -69 46	291 -37	7. 5	G 5	0. 53	122	233	GC 29253
1590	W 901	20 56.7 + 3 22	20 -27	12.5	K8	1.11	1£0	216	W
15014	·								
1591*	F 54	20 58.1 +39 53	50 - 5	11.5	M3e	0.67	112	159	F, L
1592			11 -33	12.0	M3	0. 52	204	265	W, L
1593	-47 13670	20 59.5 -46 54	320 -43	13.0	K 2	0.50	151	244	L,C
1594	L 211-59	20 59.5 -57 09	307 -41	13.9	g	0.51	318	61	L
1595	L 280-19	20 59.7 -50 34	315 -43	14. 5	m	0. 50	142	239	L
1596	L 568-10	21 00.0 -30 32	343 -42	14.9	_	0 50	104	969	
1597		21 00.0 -30 32 21 02.2 -17 06		14.2	m M2	0.52	184	262	L
1598			359 -38 6 -36	12.4	M3	2.30	206	274	R, L
1599		21 02. 9 +19 24	0 - 30 25 10	14.8 12.6	k-m	0. 54 0. 60	122	186 257	L
1600		21 02.9 + 6 53	24 -27	10.0	m K6	0. 57	207 172	257 226	L CC 20447
2000	A 1117	MI UE.U T U UU	LT *L!	10.0	V O	0. 31	112	220	GC 29447

LFT	Designation	R. A. (1950) Dec.	l b	m	Sp.	μ	θ	φ	Authority
1601*	-73 1547A	21 ^h 04 ^m 2 -73 ^o 22	287 ⁰ -36 ⁰	6.3	G0	0.54	128 ⁰	243 ⁰	GC 29489
1602*		21 04.2 -73 22	287 -36	14.5		0.54	128	243	SDS
1603	-47 13695	21 04.3 -47 30	319 -44	11. 2	G8	0.58	200	295	L,C
1604	61 Cyg A	21 04.7 +38 30	50 - 6	6. 2	K 6	5. 20	52	98	GC 29509
1605*	61 Cyg B	21 04.7 +38 30	50 - 6	7. 2	K9	5. 20	52	98	GC
1606	L 164-48	21 04.9 -61 12	301 -41	16. 3	m	0.54	138	245	L
1607	W 918	21 06.4 -13 29	4 -38	12. 2	M3	2.06	159	224	W,L
1608	W 1106	21 06.8 +59 34	66 + 8	14. 4	M1	2.14	206	252	W
1609		21 07.0 +46 57	56 - 1	11.4	K 3	0.51	116	162	AN 5406
1610	-44 14334	21 08.5 -43 48	324 -45	12.8	M1	0.71	164	258	I, L
1611	+73 925	21 08.8 +73 30	76 +17	9.9	K 2	0.51	220	267	GC 29609
1612	L 117-94	21 09.0 -67 25	293 -39	16. 2	m	0.50	165	278	L
1613	R 825	21 09.1 +33 19	47 -11	12.7		0.50	72	118	R, L
1614	+17 4519	21 09.7 +17 32	35 -22	7.6	Ł.Ť	0.90	187	236	GC 29631
1615	L 1289-154	21 09.9 +17 22	35 -22	14. 4	m	0.63	236	285	VM, L
1616	R 770	21 10.7 -19 32	357 -41	12.7	K 4	1. 10	192	262	R,L
1617	-39 14192	21 14.3 -39 04	331 -46	7.9	M1	3.46	251	340	GC 29761
1618	-61 6571	21 14.8 -61 3?	300 -42	7. 2	G0	0.64	132	242	GC 29770
1619	L 569-13	21 15.6 -30 07	344 -45	15. 5	k	ე. 59	212	292	L
1620	-26 15541A	21 16.9 -26 34	349 -44	7.3	G 5	C. 65	237	313	GC 29832
1621*	-26 15541B	21 16.9 -26 34	349 -44	11.0	K 4	0.65	237	313	SDS
1622	L 164-108	21 16.9 -62 40	299 -42	15.6	m	0. 57	192	304	L
1623	R 197	21 17.0 +52 12	61 + 2	13.7	K 3	0. 57	225	268	R
1624	-20 6185	21 17.4 -20 03	358 -42	10.4	K 6	0.75	194	264	GC 29850
1625	L 164-41	21 17.6 -61 04	301 -42	15. 0	m	0.61	178	288	L
1626	L 164-57	21 19.2 -61 28	300 -42	15.7	m	0.75	135	246	L
1627	L 353-143	21 20.9 -46 55	320 -46	13.9	m	0.73	97	195	L
1628	L 1217-38	21 21.9 +13 05	33 -27	14.3	k	0.52	221	270	L
1629	L 425-180	21 22.2 -44 40	323 -47	14.9	m	0.62	238	334	L
1630	γ Pav	21 22.3 -65 36	295 -41	4.7	F6	0.80	6	121	GC 29979
1631	-56 8316	21 23.3 -56 21	307 -45	9.6	G 5	0.67	78	186	I, L
1632	R 778	$21 \ 25.4 + 7 \ 06$	28 -31	14. 2		0.76	207	259	R
1633	L 642-3	21 26.3 -25 06	352 -46	14. 1	k	0.64	162	237	L
1634	R 775	21 27.1 +17 25	38 -25	11.9	M5	1.06	69	116	R,L
1633	-13 5945	21 27.3 -12 44	8 -42	10. 4	K 5	1.06	105	169	GC 30098
1636	L 425-35	21 27.5 -40 55	328 -48	14. 3	m	1.72	144	237	L
1637	+45 3561	21 27.8 +45 40		8.8		0.55			Ci
1638*	W 921	21 27.9 - 7 20	14 -40	14. 7	M0	0.61	191	251	W,L
1639	W 922	21 28.6 -10 01	11 -41	13. 3	M5e	1. 19	93	154	W,L
1640	-49 13515	21 30.3 -49 13	316 -47	10. 4	М3	0.81	185	287	L,C
1641	W 923	21 31.3 - 7 04	15 -40	14.9	K 2	0.51	170	230	W, L
1642	-50 13411	21 31.5 -50 01	315 -47	8.8	G 5	0.59	259	2	GC 30193
1643	L 164-103	2i 31.6 -62 38	298 -43	16. 3	k	0.52	166	281	L
1644	W 926	21 33.2 +51 18	63 - 1	13. 5		0.52	70	110	w
1645	L 1074-1	21 34.1 + 5 07	28 -34	16.0	m	0. 56	102	153	L
1646	- 2 5588	21 35.6 - 2 32	21 -39	10. 2	K 2	0.53	240	296	L,Ci
1647	L 570-29	21 35.6 -33 53	339 -50	13.6	m	1. 18	117		L
1648	L 714-88	21 36.1 -24 23	354 -48	14. 6	M5	1. 21	124	198	L
1649	G +82 3818	21 36.7 +82 49	84 +23	12.6	DA	0.64	29	72	G
1650	W 932	21 37.6 +47 25	61 - 4	15. 5		0.51	220	260	w

LFT	Designation-	R. A. (1950) Dec.	l b	m	Sp.	μ	θ	φ	Authority
1651	L 1578-49	21 ^h 38 ^m 2 +36 ^o 59	54 ⁰ -12 ⁶	12.8	m	0. 52	231 ⁰	272 ⁰	L
1652*	R 200	21 38.3 +53 54	65 : 1	14. 2	M3	0.6C	64	103	R
1653	R 201	21 38.8 +53 46	85 + 1	16.0	M4	0.55	75	114	R
1654	R 206	21 39.4 -12 22	10 -45	14. 3	M2	0.69	175	238	R, L
1655	L 1363-3	21 40.5 +20 45	43 -24	13.6	DF	0.66	201	245	L
7000	E 2900-0	21 10.0 100 10	10 -21	20.0	-	••••			_
1656	·24 4460	21 42.0 +25 07	46 -22	10.3	G9	0.63	216	258	L, Ci
1657*	-58 8156	21 42.9 -57 54	303 -47	11.8	M	0.37	174	288	I, L
1658	-30 0100	21 43.0 +44 05	59 - 7	11.9		0.64	192	231	F
1659	L 1903-36	21 43.8 - 3 06	22 -41	14.4	m	0.66	96	151	Ī.
1660	W 940	21 44.0 - 0 23	25 - 39	14. 5	m	0.91	124	160	w,L
1000	# 510	21 11.0 - 0 20	50 50		_				,
1661	W 944	21 45.2 +46 23	61 - 5	15.0		0.64	100	138	W
1662	L 165-102	21 45.7 -63 21	296 -44	15.6	m	0.55	32	152	L
1653*	L 498-43	21 .6.1 -38 04	333 -52	13. 1	m	0.68	109	201	L
1664	W 945	21 .16.6 +50 00	63 - 3	15.0	_	0.85	64	102	w
1665	+ 5 4874	21 46.6 + 5 30	31 -36	9.6	K 4	0.54	95	144	Ci
1003	T 5 7017	21 10.0 + 0 00	01 -00	0.0			•		
1666	L 355-62	21 51.6 -47 14	319 -52	13.6	m	0.50	222	326	L
1667	L 333-02	21 51.0 -41 14	58 -10	11.7	K8	0.53	136	174	F
1668	L 355-29	21 52.8 -45 53	319 -52	15. 4	m	0.93	158	262	Ĺ
1669	W 1567		63 - 5	14.7	K5	0.70	214	250	w
1670	W 1143	21 53.0 +32 24	53 - 18	11.6	G2	0.77	81	119	w, H, L
1010	W 1145	21 33.0 +32 24	33 -10	11.0	G Z	0. 11	01	110	₩,11,2
1071	T 010 75	21 55.3 -58 12	302 -48	15. 5	m	0.90	95	213	L
1671	L 213-75	21 55.8 -60 00	300 -47	11.4	k	0.87	96	216	Ĺ
1672	-60 7821		52 - 20	7. 1	F6	0.54	225	263	GC 30757
1673	+29 4550		37 -35	11. 2	K0	0.53	175	220	Ci
1674	+ 9 4955	21 59.2 -19 44	3 - 52	13. 3	m	0.92	88	158	L
1675	L 715-89	21 39.2 -19 44	3 - 32	13. 3	111	0.32	00	100	~
1070	L 499-56	21 59.5 -37 20	334 -55	13. 4	m	0.82	105	198	L
1676		21 59.6 -57 90	303 -49	5.9	K 5	4.69	123	241	GC 30817
1677	€ Ind		303 -49	10.5	M0	G. 55	245	295	Ci
1678	+ 0 4810		282 -38	15. 3	a-f	0.51	279	51	L
1679	L 48-15		287 -42	12.0		0.62	97	226	L
1680	L 118-273	22 00.0 -79 10	201 -42	12.0	m	0.02	31	220	L
1001+	7 110 070	22 00.0 -70 10	287 -42	15. 5	m	0.62	97	226	L
	L 118-272	22 00.0 -10 10	311 -52	13. 4	m	0.57	148	259	ī
1682	L 283-3	22 00.1 -30 33	331 -55	14.0	m	0.75	130	226	L
1683	L 499-75		33 -41	15.5	ш	0.66	130	178	w
1684	W 990	22 04.3 -79 11	278 -36	12. 0	m	0.56	143	278	L L
1685	-79 878	22 04.3 -15 11	210 -30	12.0	ш	0. 50	110	2.0	_
1686	+52 3112	22 04.9 +52 53	67 - 2	8.9	K O	0. 59	238	272	GC 30939
1687	W 1328A	22 06.7 - 8 08	20 -48	13.9	M0	C. 68	177	234	W,L
		22 06.7 - 8 08	20 - 48	15.5	1110	0.68	177	234	VM
1686~ 1689	- 5 5715	22 07.1 - 4 52	24 -47	11. 4	M4	1.02	91	145	W,L
1690	- 22 4567	22 02. 2 +22 33	49 -27	10. 2	K 4	n. 59	265	303	GC 31027
1090	-22 4301	22 00.7 722 33	73 -21	10. 2	17. 1		200	000	00 020-1
1691	R 271	22 09.1 +18 10	46 -31	11.5	M4	0. 52	52	92	R
	+17 4708	22 09.1 +17 51	46 -31	9.6	F 2	0.55	88	128	R, C.
1642		22 10.1 + 8 29	39 - 39	13. 1	M3	0.73	170	214	w
1693 1694*	W 1014 W 1556	22 10.1 + 8 29	12 -53	14. 2	w	0. 50	234	308	w, L
			7 -54	14. 6	ķ	0. 38	113	190	L L
1695	L 788-37	22 11.0 -17 55	1 -34	17.0	•	0.00		200	~
1606	-41 14804	22 11.6 -41 37	326 - 56	6.9	G 1	0.97	145	247	GC 31100
1696	-41 14804 W 1332	22 11.8 - 41 57	20 - 50	12.0	K 2	0.62	187	254	W,L
1697	W 1332 L 1436-11	22 12.3 +27 36	20 - 30 54 - 24	12. 0	m	0.55	336	12	L, E
1698			21 - 50	14.7	M6	0. 55	240	297	W,L
1699	W 1561	22 14.7 - 9 02	21 -50	15. 5	M7	0. 55	240	297	L L
1700*	L 932-39	22 14.7 - 9 02	£1 -90	10. 0	W7 (0. 55	270	201	-

THE STATE OF SHIPS OF STATES AND STATES AND

LFT	Designation	R. A. (1950) Dec.	l b	m	Sp.	μ	θ	φ	Authority
1701	+12 4797	22 ^h 14.8 +12 ^o 39'	43 ⁰ -36 ⁰	7. 5	G 2	0. 85	83 ⁰	124 ⁰	GC 31171
		22 15.0 -53 52	305 -52	5. 9	F7	0.79	148	267	GC 31178
1703	-54 9222 L 572-28	22 15.7 -31 11	345 -58	14. 3	m	0.83	179	266	L
1704	-42 15867	22 16.2 -41 37	325 -57	12.8	k-m	0. 57	102	205	Ī, L
1705	L 119-34	22 16.2 -65 43	291 -46	14.8	a	0.65	161	291	Ĺ
1706	L 716-108	22 17.7 -24 36 22 17.8 -42 33	357 -57	15. 0	m	1.05	156	232	L
1707	ī. 428-26	22 17.8 -42 33	323 -57	12. 4	k-m	0. 55	120	225	I, L
1708	W 1210	42 10. J +49 32	56 -23	13.8	K 3	0.69	188	222	W, L
1709	-51 13248	22 19.4 -51 03	309 -54	9.7	G 5	1.08	177	295	GC 31267
1710	-57 8545	22 20.2 -57 28	300 -51	12. 2	k	0.68	118	243	I, L
	ν Ind	22 20.4 -72 30 22 20.5 -17 51		5.9	G0	1. 45	118	254	GC 31284
1712	L 788-34	22 20.5 -17 51	9 -56	14. 4	m	0.81	160	227	L
1713	L 83-62	22 29.6 -72 39	283 -41	16.6	m	0.50	163	299	L
1714	L 356-105	22 21.9 -48 07	313 -56	13.8	m	0.77	144	258	L
1715	L 716-21	22 29.6 -72 39 22 21.9 -48 07 22 23.4 -21 04	4 -58	13. 7	m	0.77	218	289	L
1716	L 356-83	22 23.7 -47 37			m	0.57	238	352	L
1717			37 -45	15. 2	m	0.65	230	275	L
1718	W 1037	22 26.2 + 5 15 22 26.3 +57 27	40 -43 72 0	15. 3	K4	1.68	164	207	W,L
1719			72 0	11.4	M4	0.86	246	275	Ci Ci
1720*	+56 2783B	22 25.3 +57 27	12 0	12.8	M 6	0.86	246	275	Ci
1721	-30 19175			9.0	K6	0.83	165	251	GC 31403
1722	L 933-1	22 29.6 - 4 57 22 30.5 + 9 07	30 -51	13.8	m	0.66	128	179	L
1723	+ 8 4887	22 30.5 + 9 07	44 -41	11.7	MO	0. 55	74	114	L
1724*			11 - 4	11. 3	M1	1.47	90	119	Ci, R
1725*	+53 2911C	22 30.6 +53 31	71 - 4	15		1.47	90	119	Ci, R
1726	- 1 4323	22 33.6 - 1 06	35 -49	11.5	K8	0.55	173	219	L,Ci
1727	L 119-44	22 34, 4 -66 05	288 -47		m	0.70	120	256	L
1728	L 119-21	22 34.9 -65 38	289 -47	12.8	k-m	0.84	102	238	I, L
1729	L 789-6	22 35.7 -15 36	16 -58	14.3	M7	3.25	46	108	L
1730	+ 9 5076	22 36.2 +10 17	47 -41	10.8	k	0. 59	205	243	L
1731	L 357-25	22 38.0 -45 59	315 -59	14. 1	m	0.50	131	247	L
1732	L 119-213	22 38.2 -69 24	285 -45	17. 3	m	0.77	159	299	Ļ
1733	L 1293-88	22 40.1 +17 24	53 -36	13. 2	m	1. 22	62	96	L
1734	R 288	22 42.3 - 2 36		12. 0	G8	0.75	17.2	158	R,L
1735	ξ Peg A	22 44.2 +11 55	50 -41	4. 7	F3	0, 55	1.55	190	GC 31778
	ξ Peg B	22 44.2 +11 55	50 -41	13. 1	M1	0, 55	155	190	ADS
		22 44.7 +44 05	69 -13		M5e	0.86		263	F
1738	L 501-38	22 45.5 -37 02	332 -64	13. 4	m	0.79	111	213	L
1739	L 1509-40	22 45.6 +31 35	63 -25	14.6	m	0.50	69	97	L
1740	L 1509-37	22 48.3 +34 35	65 -22	13.9	m	0.87	72	99	L
1741	Oxf +31 70565	22 49.6 +31 29	63 -25	13.3	МЗе	0.52	95	123	McCormick, L
1742	+30 4824	22 49.7 +31 29	63 -25	11.3	K7	0.50	220	247	L,Ci
1743	σ Peg A	22 49.9 + 9 34	50 -44	5.6	F5	0.52	85	120	GC 31899
1744*	σ Peg B	22 50.0 + 9 38	50 -44	14.8	M4	0.52	85	120	VM
1745	-15 6290	22 50.6 -14 30	21 -61	11.7	М5	1. 11	123	182	R,L
1746	R 237	22 51.1 +27 30	62 -29	12.0	G8	0.55	98	126	R,L
1747	L 49-19	22 52.3 -75 42	280 -40	12.6	k	1.44	226	14	L
1748	R 226	22 52.6 +60 44	77 + 1	14.7	M4	0.67	261	285	R
1749	- 8 5980	22 53.2 - 8 05	32 -57	9.3	G 3	0. 57	97	146	L,Ci
1750	L 167-14	22 53.4 -60 18	292 -53	15. 4	m	1.06	210	348	L

LFT	Designation	R. A. (1950) Dec.	l b	m	Sp.	μ	θ	φ	Authority
1751	+15 4733	22 ^h 54 ^m 3 +16 ^o 18	56 ⁰ -39 ⁰	10.0	M2	1. 06	253 ⁰	284 ⁰	R,L
1752	+68 1345	22 57.0 +68 45	81 + 8	9.6	K0	0.66	63	86	GC 32040
1753	L 49-6	22 57.1 -74 48	279 -41	14.5	m	0.70	237	26	L
1754	-23 17699	22 57.6 -22 48	6 -66	8.8	K8	0.91	274	347	GC 32054
1755	R 781	22 58.5 -18 52	15 -65	13.3	k	0.60	108	173	R,L
1756	-55 9220	22 58.5 -54 46	298 -57	13. 2	g	0.54	125	259	I, L
1757	L 1223-49	23 01.7 +10 37	53 -45	13.4	m	0.54	82	114	L
1758	-36 15693	23 02.6 -36 09	332 -67	8.6	M2	6.90	79	184	GC 32159
1759	+67 1498	23 03.1 +68 09	81 + 8	8.2	G5	0.62	75	97	GC 32173
1760	L 1006-12	23 03.2 - 2 26	42 -55	14.0	k	0.67	108	149	L
1761	L 647-83	23 05.0 -28 11	357 -68	13.5	m	0.66	97	182	L
1762	- 3 5577	23 06.6 - 2 32	43 - 56	9.7	K 2	0.63	99	139	GC 32241
1763	- 0 4470	23 07.0 + 0 28	47 -54	10.9	G2	1.29	189	226	Ci
1764	L 167-160	23 07.4 -63 58	236 -51	13.0	m	0.50	94	240	L
1765	-26 16501	23 07.5 -26 13	359 -69	12. 4	k-m	0.69	89	170	L
1766	L .31-76	23 08.1 -19 28	16 -67	14.4	m	1.40	179	244	L
1767	+56 2966	23 10.9 +56 54	78 - 3	6.4	K 4	2.09	82	102	GC 32329
1768	L 26-104	23 10.9 -75 00	278 -41	14.0	m	0.64	92	245	L
1769	-63 1596	23 11.0 -62 58	286 -52	6.7	G0	0.63	132	278	GC 32333
1770	+38 4955	23 11.3 +39 09	69 -24	11. 2	F8	0. 57	129	151	R
1771	- 9 6149	23 11.5 - 9 12	36 -62	8.7	Ŧ5	0.55	92	138	GC 32342
	- 9 6150	23 11.5 - 9 12	36 -62	10.0	G2	0. 55	92	138	GC 32343
1773	L 10-21	23 11.6 -81 38	274 -35	11.6	ķ-m	0.52	82	237	L
1774	L 863-30	23 13.2 -12 38	31 -64	14.5	m	0.5 6	118	169	L
1775*	-67 2593	23 14.1 -67 12	283 -48	10. 2	K0	0. 52	139	289	I, L
1776	-67 2594	23 14.2 -67 11	283 -48	10.0	K0	0.52	139	289	GC 32400
1777*	-14 6437	23 14.5 -14 06	29 -65	8.8	A 8	1. 29	203	256	GC 32412
1778	γ Psc	23 14.6 + 3 01	52 -53	4.8	G6	0.76	88	121	GC 32415
1779	L 359-91	23 15.0 -48 34	303 -63	14.9	m	0.70	158	291	L
1780	L 575-15	23 15.6 -30 44	346 -71	15. 0	m	0.95	153	246	L
1781	L 1007-70	23 16.9 - 3 44	46 -58	14.7	k	0.52	153	191	L
1782	L 84-12	23 17.1 -71 22	280 -45	14.5	k-m	0.51	120	273	L
1783	+28 4562	23 17.5 +28 36	68 -39	9.9	K 3	0.75	95	117	GC 32481
1784	L 863-33	23 17.5 -12 59	32 -65	15. 2	m	0.67	87	138	L
1785	L 1295-31	23 19.1 +17 03	63 -41	13. 5	m	1.48	200	224	L
1786	+43 4445	23 19.2 +43 49	74 -16	8. 1	K1	0.67	71	90	GC 32520
1787	-11 6064	23 20.5 -11 03	37 -65	9.2	K 1	0.60		111	
1788	+33 4707	23 22.8 +34 01	72 -25	10.5	КC	0.77	206	225	L, Hamburg
1789	W 1038	23 23.3 + 0 41	53 -56	13.9		0.67	135	167	W
1790	R 291	23 23.4 +24 15	68 -35	15. 4	K 5	0.64	89	111	R
1791	Oxf +28 68304	23 23.5 +28 55	69 -30	12. 2	K3	0.57	125	145	Oxf, L
1792	L 26-87	23 23.8 -78 19	275 -39	14.7	m	0. 58	96	253	L
1793	L 1223-62	23 23.9 +11 52	62 -46	14.4	m	0.70	70	96	L
1794	L 1223-60	23 24.5 +12 39	62 -45	14.6	m	0.87	88	113	L
1795	L 432-34	23 25.3 -40 44	316 -69	14.8	12	0. ⊅6	133	256	L
1796	L 360-67	23 26.8 -47 04	302 -66	14.4	m	0.67	111	247	L
1797	R 674	23 27.8 +18 13	66 -41	13. 1	K 4	0.80	133	156	R
1798	+58 2605	23 28.9 +58 53	81 - 2	7.8	K1	1.10	84		GC 32707
1799	+19 5116A	23 29.3 19 40	58 -39 68 -39	12. 1	M4	0.52	89	109 109	McCormick McCormick
18004	+19 5116B	23 29.3 +19 40	68 -39	14. 4	M 6	0. 52	89	103	MICCOI MICK

LFT	Designation	R. A. (1950) Dec.	l b	m	Sp.	μ	θ	ф	Authority
1801	L 168-15	23 ^h 31. ^m 6 -60 ^o 35'	285°-55°	14. 1	m	0. 53	136 ⁰	288 ⁰	L
1802	W 1039		56 -58	12.4	M4	1.41	229	259	W,L
1803	L 360-66	23 32.2 -47 14	300 -66	13.9	m	0. 52	127	266	L L
1804	+30 4982A		73 -29	7.4	G0	0. 52	65	83	GC 32800
1805*	+30 4982B								
1000-	+30 4302D	23 32.9 +30 44	73 -29	14.8	M4	0.60	65	83	VM
1806	W 1533	23 33.2 + 3 35	59 -54	15.3	M2	0.50	100	127	w
1807	2000	23 33.3 +41 42	76 -19	11.9	MO	0.72	76	92	F
1808	+17 4946	23 33.5 +18 19	68 -41	8.4	G 5	0.72	73	93	GC 32816
1809	L 504-27	23 34.1 -36 45	324 -73	15. 2		1. 12	88	205	
1810	W 1040	23 34.1 - 30 45	57 -57	14.2	m M5	1. 12	90	118	L W
1010	W 1040	20 04.2 + 0 04	31 -31	14. 2	MO	1. 23	90	110	w
1811	L 120-191	23 35.4 -69 22	279 -47	14.8	m	0.90	98	256	L
1812	L 576-26	23 36.0 -31 27	342 -75	13.5		0.69	171	272	ĩ.
1813	-73 1672	23 36.7 -72 59	276 -44	8.4	K O	0.75	170	330	GC 32863
1814	ι Psc	23 37.4 + 5 21	62 -54	4.6	F6	0. 13	140	164	GC 32879
1815	L 360-13	23 38.4 -45 14	302 -68	14.5		0. 71	103	242	
1019	г 200-12	23 36.4 -45 14	302 -00	14. 5	m	0. 71	103	242	L
1816	R 248	23 39.5 +43 56	78 -17	13.8	М6	1.82	176	191	R
1817	-24 17814	23 40.4 -24 23	11 -75	12.9	m	2. 55	149	222	L
	L 720-88	23 40.4 -24 23	11 -76	13.5	m	2. 55	149	222	L
1819	+57 2787	23 41.0 +57 48	82 - 4	7.6	G 1	0.62	38	51	
1820		23 41.1 - 8 11							GC 32947
1820	- 8 6177	23 41.1 - 8 11	50 -66	10.4	G 4	0.60	105	140	L,Ci
1821	G +64 8806	23 41.5 +64 28	83 + 3	12.0		0.54	86	99	G, R, Ci
1822	+28 4634	23 42.6 +29 17	75 -31	9.9	K 2	0.95	89	105	GC 32973
1823*	-42 16457	23 43.9 -41 51	307 -71	7.5	A 3	0.90	163	298	GC 32998
1824	L 288-117	23 43.9 -50 59	292 -64	15. 5	m	0.50	205	35-±	L
1825	L 865-56		42 -71	14.5	m	0.60	137	180	L
	,								_
1826	R 249		80 -12	13.5	M1	0.58	96	109	R
1827	L 649-24	23 46.0 -27 57	354 -77	13.8	\mathbf{m}	0.64	245	333	L
1828	+ 1 4774	23 46.6 + 2 08	64 -57	10.4	M2	1.37	134	157	GC 33053
1829	÷ 2 4723	23 47.5 + 2 36	64 -57	9.1	G7	0.50	71	94	GC 33070
1830		23 48.8 +19 50	73 -41	17.0	M5	0.89	99	115	Mayall
1831	-62 1464	23 49.6 -61 41	281 -55	10.2	кο	0.76	165	325	L
1832	L 865-33	23 51.1 -12 38	49 -71			0. 70			
1833	L 793-57		33 -75	15.0	m		187	224	L
				14.0	g	0.75	169	221	L
1834	L 433-62		303 -72	14.4	m	0.53	109	249	L
1835	L 577-72	23 51.5 -33 33	329 -78	14.5	a	0.50	217	331	L
1836*	L 577-71	23 51.5 -33 33	329 -78	15.0	m	0.50	217	331	L
	L 505-42	23 51.8 -36 49	316 -75			0.68		307	L
1838	+27 4642	23 52.5 +28 21	77 -33	8. 2	G8	0.57	86	99	GC 33168
1839	- 6 6318	23 53.1 - 6 24	59 -66	12. 2	m	0.56	232	259	L
1840	+45 4378	23 56.1 +46 27	82 -15	10.9	MO	0.56	93	104	GC 33249
1040	710 1010	20 00.1 +10 51	02 -13	10.5	MIO	0. 30	33	107	GC 35245
1841	-17 6856	23 56.9 -17 13	42 -75	9.5	G 5	1.18	32	135	L,Ci
1842		23 56.9 -20 19	33 -77	8. 1	G6	0.59	120	173	GC 33265
1843	+49 4301	23 57.1 +49 51	82 -12	10. C		0.59	103	113	R.
1844	L 577-87	23 57.3 -34 23	323 -78	13.5	m	0.94	131	252	L
1845	R 675	23 58.1 +17 42	75 -43	11.5		0.53	110	124	R
1846	L 505-21	23 59.2 -35 45	316 -78	14.0	m	0. 51	92	221	L
1847		23 59. 4 +25 45	78 -35	11.8	K3	0.31	208	220	Oxf, R
1848*		23 59.6 +26 49	78 -34	6.3	G1	1.30	140	152	GC 33334
1849	L 362-81	23 59.6 -43 25	296 -72	12.8	DA	0.90	138	286	
1043	T 205-01	20 03.0 -40 20	230 -12	12.0	אע	U. 3U	190	200	I,C,L

NOTES

```
Comp to 8/9, 2540 328"
                                                444
                                                       Triple, AB 9.0-9.4 vis. 2800 0:4:
       With 8 ADS 48, 160° 5"
                                                         AB-C 8.6-8.7 vis, 700 1"5
 11
       Bailay 130, 11.7 vis, 1760 5"
                                                448
                                                       Comp to 447, 2240 7"
 15
       ADS 107 optical, sp bin P = 27d
                                                       11.7-13.7, 150 1:0
                                                458
 19
       12.6-12.0 vis, 3190 0.7
                                                473
                                                       Binary, P = 1675
 25
       Comp to 24, 2880 48"
                                                       11.8-14.3 vis, 1"8 sep
                                                481
 27
       Comp to 26, 60° 25"
                                                485
                                                       Comp to 484, 1010 31"
 31
       Spectroscopic binary
                                                486
                                                       ADS 5423, 8.4 DF, orbit
       With 31 ADS 248, 600 38"
 32
                                                495
                                                       Comp to 494, 177º 58"
 35
       Comp to 34, 3220 9"
                                                502
                                                       Double, 1.15 sep
 48
       With 47 \text{ ADS } 433 = 440, 990 2^{-1}
                                                510
                                                       14.0-14.2, 3000 3"
 50
       6.6-8.6 vis £1, 1660 6"
                                                521
                                                       I 7, 7.9-9.0 vis. 2100 1"
 55
       ADS 520, 7.4-7.5, orbit
                                                541
                                                       ADS 6251, 0.9-11, orbit
 56
       I 705, 7.7-7.9, 100° 0"2
                                                       Comp to 543, 2760 21"
                                                544
 75
       With 74 ADS 671, orbat
                                                556
                                                       15.4-15.9, 290° 0''8
 76
       VanMaanen 2
                                                561
                                                       Comp to 560, 750 61".
 95
       Comp to 94, 770 284"
                                                         ft star 10-13 vis, 2680 2"
99
       Comp to 98, 230 3"
                                                572
                                                       ADS 6664, 9.0-10.0 vis. orbit
101
       CPD -350110
                                                582
                                                       Comp to 581, 60 7"
       Comp to 108, 349 10"
                                                       9.6-13.0 vis, 2" sep
Comp to 601, 96° 115"
109
                                                601
       With 124 ADS 1057, 2090 27:5
125
                                                602
       Comp to 128, 2910 11"
129
                                                       Comp to 609, 129º 85"
                                                610
145
       Comp to 144, orbit, flare star
                                                       With 612 ADS 7067, 520 4"
                                                613
       Comp to 151, 2120 22"
152
                                                       Comp to 614, 73° 1"9
                                                615
                                                       With 620 ADS 7114, AB 120 7",
169
       3.7-11.0 vis, 1970 5"8
                                                621
178
       Comp to 179, 130 58"
                                                         BC orbit
198
       Spectroscopic binary, P = 9^{d}9
                                                       16 vis, 250° 6"
                                                625
                                                       4.3-6.3 vis, 370 0.60
199
       Comp to 200, 3120 105"
                                                627
206
       Comp to 205, 85 43"
                                                635
                                                       Comp to 634, 760 19"
       Rossiter 2280, 9-11 vis, 3460 0.5
213
                                                636
                                                       12.0-12.3, orbit
218
       Comp to 217, 109º 185"
                                                637
                                                       7.3-8.2 vis, orbit
                                                       12.5-12.6, 59^{\circ} 0.60, P = 1730^{\circ}
232
       ADS 2173, 9.0-10.5 vis, 2460 3.3
                                                656
233
       Comp to 238, 186° 37"
                                                658
                                                       ADS 7420, 3.3-13.7 vis, 75° 5"
241
       Comp to 240, nf 18"
                                                659
                                                       ADS 7441, 5.5-14.5 vis, 320 2"
253
       Comp to 252, 650 266"
                                                671
                                                       Comp to 669, 77° 89"
261
       ADS 2402, 4.0-7.0 vis. 900 0.8
                                                679
                                                       Invisible companion, P = 460d
266
       Comp to 265, 390 4"
                                                693
                                                       Comp 14.5, 1"5 sep
                                                       Comp to 711, 230 12" Comp to 717, 150 5"
275
       Comp to 276, 2220 310"
                                                712
       Comp to 286, 226° 8"
287
                                                718
       Comp to 289, 1270 54"
290
                                                726
                                                       Comp 10.5 vis, optical
       Comp to 299, 610 63"
300
                                                731
                                                       Comp to 730, 1579 14"
308
       With 307 ANJ 2757, 509 814
                                                742
                                                       Invisible companion, P = 378
338
       With 359/340 ADS 3093, 1050 82",
                                                756
                                                       Binary, P = 7470 a = 4.5
        orbit for close pair
                                                         or invisible companion, P = 14 mos.
352
       Comp to 351, 289° 3".0
                                                758
                                                       Comp to 757, 1330 28", flare star
364
       Comp to 363, 3210 711
                                                768
                                                       With 767 ADS 8083, 2650 35"
384
       11.0-14.5 vis, 740 10"
                                                772
                                                       Comp to 771, 70° 4"
       Optical comp 15.0, 3479 11" (1930)
385
                                                780
                                                       Comp to 779, 819 19"
       Comp to 386, 1240 78"
387
                                                       Comp to 779, 320° 83"
                                                781
388
       ADS 3701, 6.2-6.3, orbit
                                                783
                                                       Comp to 787, 3180 357"
308
       Comp to 397, 2680 2:7
                                                791
                                                       With 790 ADS 8119, orbit,
403
       ADS 3886, optical
                                                         both components are sp bin
105
       With 404 ADS 3900, 400 4"
                                                802
                                                       Comp to 801, 3270 74"
122
       Comp to 421, 670 5%5
                                                803
                                                       Brisbane 5, 7.6-9.2 vis, orbit
424
       Comp to 423, 70° 97"
                                                808
                                                       Comp to 805, 150° 29"
441
       AD? 4519, optical
                                                812
                                                       Comp to 811, 5' sep
```

```
Comp to 1339, 1400 13"
                                             13±0
       With 831 ADS 8250, 2560 10", 3p bin
832
                                                      ADS 10488, optical
ADS 10660, 5.8-11.2, orbit
       Comp to 850, 124° 17"
                                             1344
851
                                             1360
       16 vis, 20" sep
038
                                                      Comp to 1350, 1620 740.
       11.5-13.5 vis, 320° 0.8
                                             1361
874
                                                      With 1374 ADS 10786, A-BC 2430 33",
                                              1375
       Faint companion, 5° 2"
883
                                                       BC 11.2 M3, 11.5 M3, orbit
       Comp to 891, 180° 3"
892
                                              1380
                                                      CPD -3807124
       Comp to 911, 1080 15"
912
                                                      Unresolved binary
                                              1385
       Comp to 917, 65° 7"
                                                      AL'S 10938, 9.2-10.5 vis, 1900 0"5
918
                                              1387
       14.9-15.0, 1400 1:0
923
                                                      With 1396 ADS 11046, orbit
                                              1391
       With 937 ADS 9630, orbit
938
                                                      16 vie, 50° 5°, 15.5 vis, 230° 20°
                                              1412
       8.5-12.5 vis, 3390 2"
954
                                                      Spectroscopic binary, P = 281d
                                              1413
       8.3-13.5 vis, 3280 1"4
863
                                                       Comp to 1415, 1740 610"
                                              1416
        Spectroscopic binary
962
                                                       Comp to 1425, 1570 9"
                                              1426
        Comp to 976, 1770 82"
977
                                                       With 1431 ADS 11632, 1550 17"
                                              1432
        With 988 ADS 8841, 1100 4"
989
                                                       16 vis. 12" sep
                                              1441
        With 992 ADS 8861, 1220 17:5
993
                                                       Comp to 1449, 1120 115"
        ADS 8887, 10.8-11.0 both M0, 00 077 1459
1001
                                                       17 Lyrae C, 13.5-13.9, 80° 0"3
        Fossibly common motion with -2709236; 1451
1005
                                                       With 1459, ADS 12169, 2120 9"
                                               1460
         if so, \mu = 0.48
                                                       Count to 1463, 1780 45"
                                               1464
        Comp to 1007, 10" sep
1008
                                                       Comp to 1466, 150° 74"
        14.2-14.7. 330 1:3
                                               1467
1032
                                                       12.6-13.7 vis, 1450 0"5
Comp to 1492, 1350 2"2
                                               1491
        11.7-12.2, 0:1 sep
1037
        Comp to 1036, 1110 486"
                                               1493
1038
                                                       Comp to 1509, 2840 16"
                                               1510
        Comp to 1039, 3540 12"
1040
                                                       Comp to 1515, 2343 178"
        Comp to G +6604140, ortical
                                               1514
1050
                                                       Comp to 1524, 1260 41"
                                               1525
        Comp to 1065, 100 3"0
1066
                                                       Comp to 1529, 1260 8"
                                               1530
        5.9-13 vis, 1880 3"
1089
                                                       8.3-9.3 vis, 3130 3.7
                                               1556
        Comp to 1092, 1070 15"
1093
                                                        VW cep, W UM2 star, P = 0028
         Comp to 1105, 740 46"
                                               1558
1106
                                                        10-14 vis, 2400 ?"
         Comp to 1118, 860 72"
                                               1562
11:9
                                                        Comp to 1582, 2" sep
                                               1583
         Binary with 1127, orbit
1128
                                                        10.2-12.1 vis, 82º 0.93
                                               1591
         Comp to 1142, 2450 27"
1143
                                                        6.4-6.7 vis, close
         13.1-13.7, P = 20^7 a = 0.9
                                               1601
1155
                                                        Comp to :601, 1360 8"
                                               1602
         Comp to 1161, 2980 21"
1160
                                                        With 1604 ADS 14636, orbit
                                                1605
         Invisible companion, P = 1300d
 1163
                                                        Comp to 1620, 2500 4"
                                                1621
         Binary, P = 700d?
 1168
                                                        15.0-15.7, 115 sep
         Comp to 1177, 1810 301
                                                1638
 1178
                                                        13-16 vis, 2" sep
                                                1652
         CPD -2105912
 1182
                                                        Finsen 283, 12.5-12.6, orbit
                                                1657
         Witn 1183 ADS 9535, 100 24"
 1184
                                                        12-14 vin. 1100 2"
                                                1863
         ADS 9544, 8.4-8.5, a = 0.1, rapid
 1185
                                                        Comp to 1680, 1460 13"
                                                1681
         With 1193 ADS 9584, 360 11"
 1194
                                                        Comp to 1687, 2350 1"9
         Comp to 1196, 185° 4'
                                                1688
 1197
                                                        μ tery uncertain
                                                1694
         Comp to 1213, 60 19"
 1211
                                                         Comp to 1639, 2030 7"
                                                1790
         Comp to 1231, 1740 26"
 1332
                                                        5.4-10.5 vis, 30° 2"
         Comp to 1235, 26° 57"
                                                1702
 1236
                                                         8.1-6.2 vis, 0"1 sep
          ADS 9982, 9.5-9 8 vis, orbit
                                                1711
 1230
                                                         With 1719 ADS 15972, orbit
          Comp to 1263, 130 62.4
                                                1720
 1,'64
                                                         12.3-12.1, 2260 076
                                                1724
          Comp to 1266, 2280 8"6
 1267
                                                         Comp to 1724, 10' sep
                                                1725
          With 1277 ADS 10075, orbit
 1278
                                                         With 1735 ADS 16261, 1070 12"
                                                1736
          ADS 10157, 2.0-7.3 vis, orbit
 1299
                                                         Comp to 1743 200 248"
                                                1744
          10.0-10.2 vis crbit
 1310
                                                         Comp to 1771, 1790 25"
          Comp to 1319, 3150 72"
                                                1772
 1311
                                                         Comp to 1776, 1980 71"
          Comp to 1310, 1460 185"
                                                1775
 1317
                                                         9.0-9.2 vis, 47° 0"6
                                                1777
          13.8-13.9. 3GO 0:5
  1324
                                                         Comp to 1799, 1830 3:5, flare star
                                                 1900
          Comp to 1326, orhit
  1327
                                                         Comp to 1904, 1100 8"
                                                 1800
          Comp to 1330, 1730 5"1
  1331
                                                         Comp to 1817, 1540 94
          Corny to 1330, 740 737"
                                                 1818
  1332
                                                         Cluster-type variable
                                                 1823
          With 1334, 41 Arac, orbit
  1335
                                                         Comp to 1835, 3590 T'
                                                 1836
          7.3 K3, 8.9 K4, orbit
  1336
                                                         ADS 17175, orbit
          Comp to 1336, 1340 33"
                                                 1848
  1337
```

The state of the s