EKONOMETRIKA KEUANGAN TUGAS 3

Kelompok 2

Janice Kusuma - 6161901012

Joice Ivana – 6161901013

Vania Juliana - 6161901062

Ivan Hartana- 6161901119

PROGRAM STUDI MATEMATIKA
FAKULTAS TEKNOLOGI INFORMASI DAN SAINS
OKTOBER 2020

Berikut disajikan data mengenai variabel Konsumsi (Y), Gaji (X_1) , Pendapatan Hasil Pertanian (X_2) , dan Pendapatan Hasil Perkebunan (X_3) .

			Pendapatan	Pendapatan
No	Konsumsi	Gaji	Hasil	Hasil
			Pertanian	Perkebunan
1	62,80	43,41	17,10	4,31
2	65,00	46,44	18,65	5,11
3	63,90	44,35	17,09	4,45
4	67,50	47,82	19,28	4,82
5	71,30	51,02	23,24	6,01
6	76,60	58,71	28,11	7,03
7	86,30	87,69	30,29	7,67
8	95,70	76,73	28,26	8,09
9	98,30	75,91	27,91	7,23
10	100,30	77,62	32,30	8,08
11	103,20	78,01	31,39	7,98
12	108,90	83,57	35,61	8,91
13	108,50	90,59	37,58	9,45
14	111,40	95,47	35,17	8,89

Tabel 4.2 Data Konsumsi, Gaji, Pendapatan Hasil Pertanian, dan Pendapatan Hasil Perkebunan

A. Analisis Regresi Linier Berganda Pada Data Tabel 4.2

a. Model Regresi

Dependent Variable: KONSUMSI

Method: Least Squares Date: 10/15/20 Time: 20:09

Sample: 1 14

Included observations: 14

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	17.54317	6.833985	2.567049	0.0280
GAJI PENDAPATAN_HASIL_PERTANIAN	0.360214 0.274222	0.278767 1.507516	1.292169 0.181903	0.2254 0.8593
PENDAPATAN_HASIL_PERKEBUN	5.350411	6.473546	0.826504	0.4278
R-squared	0.922815	5 Mean dependent var		87.12143
Adjusted R-squared	0.899659	S.D. dependent var		18.64313
S.E. of regression	5.905506	Akaike info criterion		6.624604
Sum squared resid	348.7500	Schwarz criter	ion	6.807191
Log likelihood	-42.37222	Hannan-Quinn criter.		6.607702
F-statistic	39.85294	Durbin-Watso	n stat	1.102637
Prob(F-statistic)	0.000007			

$$Y = 17.54317 + 0.360214 * X_1 + 0.274222 * X_2 + 5.350411 * X_3$$

Dari model regresi diatas, dapat diambil kesimpulan bahwa:

- Setiap penambahan 1 satuan gaji, dapat menaikkan tingkat konsumsi sebanyak 0.360214 satuan
- Setiap penambahan 1 satuan pendapatan hasil pertanian, dapat menaikkan tingkat konsumsi sebanyak 0.274222 satuan
- Setiap penambahan 1 satuan pendapatan hasil perkebunan, dapat menaikkan tingkat konsumsi sebanyak 5.350411 satuan

b. Uji Kecocokan Model

1) Hipotesis

H0: Model tidak cocok

H1: Model cocok

2) Taraf Signifikansi

$$\alpha = 5\% = 0.05$$

3) Statistik Uji

Prob(F-statistic) = 0.000007

4) Kriteria Penolakan

Tolak H0 jika nilai Prob(F-statistic) $< \alpha$

5) Kesimpulan

H0 ditolak karena nilai Prob(F-statistic) = $0.000007 < \alpha = 0.05$ Dengan demikian dapat disimpulkan bahwa model yang digunakan telah cocok.

c. Uji Individual (Uji T) Untuk Variabel Gaji (X₁)

1) Hipotesis

 $H0: \beta_1 = 0$ (Penambahan Gaji tidak berpengaruh signifikan terhadap Konsumsi)

H1 : $\beta_1 \neq 0$ (Penambahan Gaji berpengaruh signifikan terhadap Konsumsi)

2) Taraf Signifikansi

$$\alpha = 5\% = 0.05$$

3) Statistik Uji

$$Prob = 0.2254$$

4) Kriteria Penolakan

Tolak H0 jika nilai Prob $< \alpha$

5) Kesimpulan

H0 diterima karena nilai Prob = $0.2254 > \alpha = 0.05$

Dengan demikian dapat disimpulkan bahwa penambahan Gaji tidak berpengaruh signifikan terhadap Konsumsi.

d. Uji Individual (Uji T) Untuk Variabel Pendapatan Hasil Pertanian (X_2)

1) Hipotesis

H0 : $\beta_2 = 0$ (Penambahan Pendapatan Hasil Pertanian tidak berpengaruh signifikan terhadap Konsumsi)

H1 : $\beta_2 \neq 0$ (Penambahan Pendapatan Hasil Pertanian berpengaruh signifikan terhadap Konsumsi)

2) Taraf Signifikansi

$$\alpha = 5\% = 0.05$$

3) Statistik Uji

$$Prob = 0.8593$$

4) Kriteria Penolakan

Tolak H0 jika nilai Prob $< \alpha$

5) Kesimpulan

H0 diterima karena nilai Prob = $0.8593 > \alpha = 0.05$

Dengan demikian dapat disimpulkan bahwa penambahan Pendapatan Hasil Pertanian tidak berpengaruh signifikan terhadap Konsumsi.

e. Uji Individual (Uji T) Untuk Variabel Pendapatan Hasil Perkebunan (X₃)

1) Hipotesis

H0 : $\beta_3 = 0$ (Penambahan Pendapatan Hasil Perkebunan tidak berpengaruh signifikan terhadap Konsumsi)

H1 : $\beta_3 \neq 0$ (Penambahan Pendapatan Hasil Perkebunan berpengaruh signifikan terhadap Konsumsi)

2) Taraf Signifikansi

$$\alpha = 5\% = 0.05$$

3) Statistik Uji

$$Prob = 0.4278$$

4) Kriteria Penolakan

Tolak H0 jika nilai Prob $< \alpha$

5) Kesimpulan

H0 diterima karena nilai Prob = $0.4278 > \alpha = 0.05$

Dengan demikian dapat disimpulkan bahwa penambahan Pendapatan Hasil Perkebunan tidak berpengaruh signifikan terhadap Konsumsi.

f. $R^2 \operatorname{dan} \overline{R}^2$

Berdasarkan output pada gambar, nilai R^2 adalah 0.922815 dibulatkan menjadi 0.9228. Dengan demikian dapat disimpulkan bahwa banyaknya konsumsi dipengaruhi oleh banyaknya gaji sebanyak 92%. Sedangkan sisanya dipengaruhi oleh faktor lain yang belum masuk di dalam model. Pada kasus ini, nilai Adjusted R-squared adalah 0.899659.

Normalitas

Hasil Analisis:

1) Hipotesis

H0: Residual berdistribusi normal

H1: Residual tidak berdistribusi normal

2) Taraf Signifikansi

$$\alpha = 5\% = 0.05$$

3) Statistik Uji

Probability = 0.373774

4) Kriteria Penolakan

Tolak H0 jika nilai Probability $< \alpha$

5) Kesimpulan

H0 gagal ditolak karena nilai Probability = $0.373774 > \alpha = 0.05$

Dengan demikian dapat disimpulkan bahwa residual berdistribusi normal atau asumsi normalitas terpenuhi.

Linieritas

Ramsey RESET Test Equation: UNTITLED

Omitted Variables: Squares of fitted values

Specification: KONSUMSI C GAJI PENDAPATAN_HASIL_PERTANIAN

PENDAPATAN_HASIL_PERKEBUNAN

	Value	df	Probability
t-statistic	0.473777	9	0.6469
F-statistic	0.224465	(1, 9)	0.6469
Likelihood ratio	0.344885	1	0.5570
F-test summary:			
	Sum of Sq.	df	Mean Squares
Test SSR	8.486362	1	8.486362
Restricted SSR	348.7500	10	34.87500
Unrestricted SSR	340.2636	9	37.80707
LR test summary:			
	Value		_
Restricted LogL	-42.37222		
Unrestricted LogL	-42.19978		

Berdasarkan output yang ada di atas, dapat disimpulkan bahwa asumsi linieritas terpenuhi karena Probability pada F-statistic = $0.6469 > \alpha = 0.05$

Autokorelasi

Uji gejala Autokorelasi dengan Uji Breush-Godfrey nampak bahwa nilai Prob Chi-square(2) = 0.0488, yaitu lebih kecil dari α = 0.05. Dengan demikian dapat disimpulkan bahwa terdapat gejala autokorelasi.

Homogenitas varian

Heteroskedasticity Test: Glejser Null hypothesis: Homoskedasticity

F-statistic Obs*R-squared	3.538728	Prob. F(3,10) Prob. Chi-Square(3)	0.3840 0.3158 0.4506
Scaled explained SS	2.639360	Prob. Chi-Square(3)	0.4506

Test Equation:

Dependent Variable: ARESID Method: Least Squares Date: 10/17/20 Time: 21:59

Sample: 1 14

Included observations: 14

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C GAJI PENDAPATAN_HASIL_PERTANIAN	1.946549 0.173216 0.805875	3.638921 0.148436 0.802714	0.534925 1.166940 1.003939	0.6044 0.2703 0.3391
PENDAPATAN_HASIL_PERKEBUN	-4.548225	3.446997	-1.319475	0.2164
R-squared	0.252766	Mean dependent var		3.931748
Adjusted R-squared	0.028596	S.D. dependent var		3.190478
S.E. of regression	3.144530	Akaike info criterion		5.364162
Sum squared resid	98.88067	Schwarz crite	rion	5.546750
Log likelihood	-33.54913	Hannan-Quin	in criter.	5.347260
F-statistic	1.127564	Durbin-Watso	on stat	1.239427
Prob(F-statistic)	0.383955			

Nilai Prob. untuk Gaji (X_1) adalah $0.2703 > \alpha = 0.05$. Nilai Prob. untuk Pendapatan Hasil Pertanian (X_2) adalah $0.3391 > \alpha = 0.05$. Nilai Prob. untuk Pendapatan Hasil Perkebunan (X_3) adalah $0.2164 > \alpha = 0.05$. Maka dalam kasus ini asumsi homogenitas varian terpenuhi.

Multikolinieritas

Pada uji F diputuskan untuk menolak H0 (Prob(F-statistic) = $0.000007 < \alpha = 0.05$), dengan demikian dapat disimpulkan bahwa minimal ada satu parameter regresi yang signifikan atau model cocok. Di sisi lain nilai R^2 sangat besar yaitu 0.923 (> 0.7), sehingga terdapat gejala multikolinieritas

Correlation						
	GAJI PENDAPATAN_HASIL_PERTANIAN PENDAPATAN_HASIL_PERKEBUNAN KONSUMSI					
GAJI	1.000000	0.943112	0.949901	0.941868		
PENDAPATAN_HASIL_PERTANIAN	0.943112	1.000000	0.988077	0.946282		
PENDAPATAN_HASIL_PERKEBUNAN	0.949901	0.988077	1.000000	0.953525		
KONSUMSI	0.941868	0.946282	0.953525	1.000000		

- Nilai korelasi antara Gaji (X₁) dan Pendapatan Hasil Pertanian (X₂) adalah sebesar 0.943112, lebih besar dibandingkan dengan korelasi antara Gaji (X₁) dan Konsumsi (Y) sebesar 0.941868.
- Nilai korelasi antara Gaji (X_1) dan Pendapatan Hasil Pertanian (X_2) adalah sebesar 0.943112, lebih besar dibandingkan korelasi antara Pendapatan Hasil Pertanian (X_2) dan Konsumsi (Y) sebesar 0.946282.
- Nilai korelasi antara Gaji (X_1) dan Pendapatan Hasil Perkebunan (X_3) adalah sebesar 0.949901, lebih besar dibandingkan korelasi antara Gaji (X_1) dan Konsumsi (Y) sebesar 0.941868
- Nilai korelasi antara Gaji (X_1) dan Pendapatan Hasil Perkebunan (X_3) adalah sebesar 0.949901, lebih kecil dibandingkan korelasi antara Pendapatan Hasil Perkebunan (X_3) dan Konsumsi (Y) sebesar 0.953525.
- Nilai korelasi antara Pendapatan Hasil Pertanian (X_2) dan Pendapatan Hasil Perkebunan (X_3) adalah sebesar 0.988077, lebih besar dibandingkan korelasi antara Pendapatan Hasil Pertanian (X_2) dan Konsumsi (Y) sebesar 0.946282.
- Nilai korelasi antara Pendapatan Hasil Pertanian (X_2) dan Pendapatan Hasil Perkebunan (X_3) adalah sebesar 0.988077, lebih besar dibandingkan korelasi antara Pendapatan Hasil Perkebunan (X_3) dan Konsumsi (Y) sebesar 0.953525

Kesimpulan:

- Meskipun terdapat korelasi antar variabel independen yang lebih kecil daripada korelasi antara variabel independen dan variabel dependen, dalam kasus ini masih ada korelasi antar variabel independen yang lebih besar daripada korelasi antara variabel independen dan variabel dependen.
- Maka dalam kasus ini muncul gejala kolinieritas.

B. Apakah Terdapat Masalah Multikolinieritas

Ya, dalam kasus ini terdapat masalah Kolinieritas. Jika dilihat berdasarkan Uji T dari ketiga variabel, semuanya menunjuk pada Variabel X_i tidak ada pengaruh dengan Y, tetapi nilai R-square yang yang didapat melebihi0.7, kemudian dilakukan pengecekkan Variance Inflation Factor (VIF) dan hasil yang didapatkan adalah> 10. Maka dapat dipastikan pada kasus ini terdapat masalah Kolinieritas.

C. Jika Terdapat Masalah Multikolinieritas, Carilah Penyelesaiannya

Variance Inflation Factors Date: 10/15/20 Time: 20:37

Sample: 1 14

Included observations: 14

Variable	Coefficient	Uncentered	Centered
	Variance	VIF	VIF
C	46.70335	18.74830	NA
GAJI	0.077711	156.2012	10.32852
PENDAPATAN_HASI	2.272605	721.7108	42.56510
PENDAPATAN_HASI	41.90680	872.9876	48.16542

Dari gambar diatas dapat disimpulkan terdapat multikolinieritas karena nilai VIF > 10. Sehingga kita bisa memakai regresi stepwise, dengan mengeluarkan satu atau lebih variabel.

• Menghilangkan variabel Gaji (X_1)

Dependent Variable: KONSUMSI

Method: Least Squares Date: 10/16/20 Time: 21:10

Sample: 114

Included observations: 14

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C PENDAPATAN_HASIL_PERTANIAN PENDAPATAN_HASIL_PERKEBUN	16.52907 0.457851 8.297493	6.992376 1.545814 6.240174	2.363870 0.296187 1.329689	0.0376 0.7726 0.2105
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.909927 0.893551 6.082619 406.9807 -43.45310 55.56186 0.000002	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	87.12143 18.64313 6.636157 6.773098 6.623481 1.206792

Variance Inflation Factors Date: 10/16/20 Time: 21:11

Sample: 1 14

Included observations: 14

Variable	Coefficient	Uncentered	Centered
	Variance	VIF	VIF
C	48.89332	18.50105	NA
PENDAPATAN_HASI	2.389541	715.2975	42.18685
PENDAPATAN_HASI	38.93977	764.6275	42.18685

Gambar diatas bila variabel Gaji (X_1) dihilangkan. Saat variabel gaji (X_1) dihilangkan, nilai dari VIF nya masih melebihi 10 dan nilai R-squarednya adalah 0.909927 > 0.7,sehingga variabel Gaji bukan penyebab dari gejala Multikolinieritas.

• Menghilangkan variabel Pendapatan Hasil Pertanian(X_2)

Dependent Variable: KONSUMSI

Method: Least Squares Date: 10/16/20 Time: 21:13

Sample: 1 14

Included observations: 14

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C GAJI PENDAPATAN_HASIL_PERKEBUN	17.38131 0.364995 6.395367	6.471154 0.265048 2.850206	2.685967 1.377088 2.243826	0.0212 0.1959 0.0464
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.922560 0.908480 5.639987 349.9039 -42.39535 65.52235 0.000001	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	87.12143 18.64313 6.485050 6.621991 6.472373 1.082600

Variance Inflation Factors Date: 10/16/20 Time: 21:14

Sample: 1 14

Included observations: 14

Variable	Coefficient Variance	Uncentered VIF	Centered VIF
С	41.87584	18.43043	NA
GAJI	0.070250	154.8131	10.23673
PENDAPATAN_HASI	8.123677	185.5386	10.23673

Gambar diatas untuk variabel Pendapatan Hasil Pertanian (X_2) yang dihilangkan. Saat variabel Pendapatan Hasil Pertanian (X_2) dihilangkan, nilai VIF nya masih melebihi 10 dan nilai dari R-squarednya masih bernilai 0.922560 > 0.7. Sehingga variabel Pendapatan Hasil Pertanian bukan menjadi penyebab dari munculnya gejala Multikolinieritas.

• Menghilangkan Variabel Pendapatan Hasil Perkebunan (X_3)

Dependent Variable: KONSUMSI

Method: Least Squares Date: 10/16/20 Time: 21:16

Sample: 1 14

Included observations: 14

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	19.28947	6.404864	3.011691	0.0118
GAJI	0.441388	0.257108	1.716745	0.1140
PENDAPATAN_HASIL_PERTANIAN	1.379885	0.684901	2.014724	0.0690
R-squared	0.917542	Mean dependent var		87.12143
Adjusted R-squared	0.902550	S.D. dependent var		18.64313
S.E. of regression	5.819820	Akaike info criterion		6.547825
Sum squared resid	372.5734	Schwarz criterion		6.684766
Log likelihood	-42.83478	Hannan-Quinn criter.		6.535149
F-statistic	61.20096	Durbin-Watso	n stat	1.286657
Prob(F-statistic)	0.000001			

Variance Inflation Factors Date: 10/16/20 Time: 21:16

Sample: 1 14

Included observations: 14

Variable	Coefficient	Uncentered	Centered
	Variance	VIF	VIF
C	41.02228	16.95621	NA
GAJI	0.066104	136.8126	9.046483
PENDAPATAN_HASI	0.469089	153.3873	9.046483

Gambar diatas bila variabel Pendapatan Hasil Perkebunan (X_3) dihilangkan. Meskipun nilai VIF sudah kurang dari 10, tetapi nilai R-squarednya masih bernilai 0.917542 > 0.7, maka kita tidak dapat menyimpulkan bahwa penyebab Multikolinieritasnya adalah variabel Pendapatan Hasil Perkebunan (X_3) .

Karena hasil dari ketiga percobaan diatas gagal, maka akan dicoba untuk menambakan data pada tabel 4.2 untuk menghilangkan Multikolinieritas.

Tabel data baru setelah dilakukan penambahan data adalah:

			Pendapatan	Pendapatan
No	Konsumsi	Gaji	Hasil	Hasil
			Pertanian	Perkebunan
1	62,80	43,41	17,10	4,31

2	65,00	46,44	18,65	5,11
3	63,90	44,35	17,09	4,45
4	67,50	47,82	19,28	4,82
5	71,30	51,02	23,24	6,01
6	76,60	58,71	28,11	7,03
7	86,30	87,69	30,29	7,67
8	95,70	76,73	28,26	8,09
9	98,30	75,91	27,91	7,23
10	100,30	77,62	32,30	8,08
11	103,20	78,01	31,39	7,98
12	108,90	83,57	35,61	8,91
13	108,50	90,59	37,58	9,45
14	111,40	95,47	35,17	8,89
15	50,00	97,52	29,50	8
16	45,00	32	30,00	9
17	65,00	87,54	36,50	7,5
18	70,00	50	28,00	8,00
19	60	45	39,07	5,65
20	63,00	93,00	52,89	9,00

Berdasarkan tabel diatas, dilakukan kembali pengecekkan Uji T pada tiap variabel $(X_1, X_2, \operatorname{dan} X_3)$, lalu pengecekkan pada R-squarednya, serta pada VIF nya.

Dependent Variable: KONSUMSI Method: Least Squares Date: 10/18/20 Time: 21:05 Sample: 1 20

Included observations: 20

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	36.53644	18.84732	1.938548	0.0704
GAJI	0.531287	0.266647	1.992473	0.0637
PENDAPATAN_HASIL_PERTANIAN	-0.947575	0.722258	-1.311962	0.2080
PENDAPATAN_HASIL_PERKEBUN	4.716480	4.012011	1.175590	0.2570
R-squared	0.378039	Mean depend	dent var	78.63500
Adjusted R-squared	0.261421	S.D. depende	ent var	20.93864
S.E. of regression	17.99479	Akaike info cr	iterion	8.794898
Sum squared resid	5181.001	Schwarz crite	rion	8.994045
Log likelihood	-83.94898	Hannan-Quin	in criter.	8.833774
F-statistic	3.241695	Durbin-Watso	on stat	1.164801
Prob(F-statistic)	0.049879			

Variance Inflation Factors Date: 10/18/20 Time: 21:05

Sample: 120

Included observations: 20

Variable	Coefficient Variance	Uncentered VIF	Centered VIF
С	355.2214	21.93994	NA
GAJI	0.071101	22.28034	1.902429
PENDAPATAN_HASI	0.521657	31.06873	2.269800
PENDAPATAN_HASI	16.09623	54.91177	2.525906

Dari hasil yang didapatkan, semua variabel sudah memenuhi kriteria $Prob > \alpha$ yang berarti tidak berpengaruh signifikan pada Konsumsi (Y). Kemudian nilai dari R-squarednya juga 0.378039 dimana sudah lebih kecil dari 0.7. Lalu untuk tes terakhir yaitu menggunakan VIF, nilai VIF dari ketiga variabel sudah dibawah 10. Berarti sudah tidak terdapat kasus Multikolinieritas.

Dari kasus Multikolinieritas, dapat dipilih berbagai cara untuk mengatasinya. Pada kasus ini cara yang digunakan adalah penambahan data pada data awal.

Dengan demikian, persamaan barunya adalah:

$$Y = 36.53644 + 0.531287 * X_1 + (-0.947575 * X_{2}) + 4.716480 * X_3$$