9. Общо уравнение на права в равнина. Ваимно положение на $\frac{24}{360}$ прави. Отрезово и жиартово уравнение.

Нека в равнина λ е фоиксирана афинна координатна систена K = 0 е $\frac{1}{16}$ и g е празволна права b λ .

Върху g избиране една тогка $M_0(x_0, y_0)$ g и един нен тлев вектор $p(p_1, p_2)$. Тогава тотка M(x, y) е от g тотно тогава, когато векторите p и M_0M са колинеарни, f е. минейно зависими, което е изпълнено тогно тогава, когато детерминонтата от координатите им е нгла:

($M_0M(x-x_0,y-y_0)$) $M_0M(x-x_0,y-y_0)$) $M_0M(x-x_0,y-y_0)$ Полагаме $p_2=a$, $p_1=b$ и $p_2x_0+p_1y_0=c$ (т.е. p(-b,a))

Тогава уровнението $p_1(x_0)$ $p_2(x_0)$ $p_1(x_0)$ $p_1(x_0)$ $p_1(x_0)$ $p_2(x_0)$ $p_1(x_0)$ $p_2(x_0)$ $p_1(x_0)$ $p_2(x_0)$ $p_1(x_0)$ $p_1(x_0)$ $p_2(x_0)$ $p_1(x_0)$ $p_2(x_0)$ $p_2(x_0)$ $p_1(x_0)$ $p_1(x_0)$ $p_1(x_0)$ $p_2(x_0)$ $p_1(x_0)$ $p_1(x_0)$ $p_2(x_0)$ $p_1(x_0)$ $p_1(x_0)$

Ом $\vec{p} \neq \vec{o}$ следва, те коардинатите му не са едновременно нума, \vec{o} т.е. тислата а и \vec{b} не са едновременно нума, \vec{o} е. \vec{o} \vec{o} + \vec{b} \vec{o} е. \vec{o} 1. От горните разсъндения следва, те 1.) Всяка права \vec{o} има уравнение от вида (2), \vec{o} т.е. общо уравнение. Обратно, ще поканнем, те 2.) Всяко уравнение от вида (2) с \vec{o} \vec{o} + \vec{b} е общо уровнение на тогно една трава. Нека \vec{b} \vec{o} о (\vec{o} \vec

Ако $M_1(x_1, y_1)$ е тогка от g, $M_1 + M_0$, а $\vec{q}(q_1, q_2)$ е нену- q_1 лев вектор, комнеарен c g, $\vec{q} + \vec{p}$, то g има общо уравнение (4) $a_1x + b_1y + c_1 = 0$, $a_1 = p_2$, $b_1 = -p_1$... (вит (1)).

От \vec{q} , $II\vec{p} \Rightarrow \vec{J} \lambda \neq 0$: $\vec{q} = \lambda \vec{p} \Rightarrow q_1 = \lambda p_1$ и $q_2 = \lambda p_2$.

Следователно $a_1 = \lambda a$ $b_1 = \lambda b$. От $M_0 \ge g \Rightarrow a_1x_0 + b_1y_0 + c_1 = 0$ $\Rightarrow c_1 = -(a_1x_0 + b_1y_0) = -\lambda(ax_0 + by_0) = \lambda c$ $\Rightarrow a_1 = \lambda a$, $b_1 = \lambda b$, $c_1 = \lambda c$ Обратно. Нека g и g, c прави c общи уравнения съответно g: ax + by + c = 0 и g: $a_1x + b_1y + c_1 = 0$, $a_1x_0 + a_1x_0 + a_$

Следователно правите дид, съвпадат.

С това доказажне следнота

Теорема. Спрямо афинна координатна система K=0еге?

всяка права д има уравнение от вида

ах + by + c = 0,

къдемо $a^2 + b^2 \neq 0$ и векторъм (-b,a) е коминеарен с д.

Вве уравнения от този вид са уравнения на една и съща права тотно тогава, когато коефициентите им са пропорационални.

Правите д: ax + by + c = 0 и $g_1: a_1x + b_1y + c_1 = 0$ са успоредни тотно тогава, когато $p_1(-b_1, a_1)$ $H p_1(-b, a_1)$ и нямат обща тотка, т.е. $g(1)g_1 \iff f(1) + g_1 = g_1$.

Правите g: ax + by + c = 0 и $g_1: a_1x + b_1y + c_1 = 0$ са преситанци се тогно тогава, когато векторите $\vec{p}(-b, a)$ и $\vec{p}(-b, p_1)$ не са колинеарни, \vec{t} . е. за никое $\lambda \neq 0$ не е изпълнено $\alpha = \lambda a$ и $b_1 = \lambda b$. Имаме \vec{p} $\#\vec{p}_1 \iff \vec{p}$ и \vec{p}_1 са линейно независими $c = \lambda a$ и $a = \lambda a$ и a

Нека правата д с общо уравнение д: ax + by + c = 0 да пресита ординатната ос, т.е. д НОу. Както е ясно от по-горе, това е изпълнено точно точава, когато $b \neq 0$. Точава уравнението на д може да се запили е като $g: y = -\frac{a}{b}x - \frac{c}{b}$ или (g) g: y = kx + n.

Последното уравнение се нарита декартово уравнение на g.

Нека сега K = 0 е декартовото си уравнение (g), (g) у (g) д (g) д

където φ е ориентирания тъгъл $\#(\vec{\ell}_1,\vec{p}_e)$.

Следователно $k=\frac{\sin \varphi}{\cos \varphi}=tg\,\varphi$.

Тислото k не зависи ет избора на посоката върху дпарадне следното. Другият единитен вектор, коминеарен с g е векторът $-\vec{p}_e\left(-\frac{1}{V_{1+k^2}},-\frac{k}{V_{1+k^2}}\right)$. Ако φ^* е оргиентираният ътъл $\#(\vec{e}_i,-\vec{p}_e)$.

То $tg\,\varphi^*=\frac{\sin \varphi^*}{\cos \varphi^*}=k=tg\,\varphi$. Последното се забемзва и от факте, $te\,\varphi^*=\varphi\pm t\bar{t}$.

Това тисло $te\,\varphi^*=\psi\pm t\bar{t}$.

Това тисло $te\,\varphi^*=\psi$ и обрита всло в коефолумент на правата $te\,\varphi^*=\psi$ и от $te\,\varphi^*=\psi$ и