Exemplo AG

Prof. Juan Moisés Mauricio Villanueva jmauricio@cear.ufpb.br
www.cear.ufpb.br/juan

Estrutura do Algoritmo Genético

```
Algoritmo genético
Inicio
  t = 0
  inicializar P(t)
  avaliar P(t)
   while (não cumpre a condição) fazer
        t = t + 1
       selecionar P(t) de P(t-1)
       reprodução P(t)
       avaliar P(t)
   fim
fim
```

Estrutura do Algoritmo Genético

Componentes do AG:

- Representação/Codificação dos indivíduos
- População inicial
- Função de avaliação (fitness)
- Operador de Seleção
- Reprodução- operadores genéticos
 - Cruzamento
 - Mutação

1. Representação de Indivíduos

- Cada indivíduo "cromossoma" representa um candidato potencial do problema
- Os indivíduos são codificados usando números binários de tamanho fixo.

Indivíduo

1001010101001

"B" bits

2. População Inicial

 A população inicial é um conjunto de indivíduos gerados aleatoriamente.

3. Seleção

- Consiste em escolher alguns indivíduos da população para criar descendentes.
- o objetivo da seleção consiste em privilegiar os indivíduos melhor adaptados, para criar descendentes.

4. Operadores Genéticos

- O processo de reprodução gerará novos indivíduos da população selecionada.
- Os operadores genéticos representam uma fonte de diversidade e variabilidade
 - Cruzamento
 - Mutação

4. Operadores Genéticos

Cruzamento

- Combina dois indivíduos intercambiando suas informações genéticas
- A probabilidade do cruzamento se denomina taxa de cruzamento que varia entre 0,5 a 1.

4. Operadores Genéticos

Mutação

- Introduze novas combinações genéticas nos indivíduos.
- A probabilidade de mutação se denominada taxa de mutação que usualmente são valores pequenos 0.01, 0.02

Exemplo de Implementação do AG

Minimizar a Função f=x² para -10≤x≤10

Exemplo de Implementação do AG

 Em problemas de Optimização, minimizar uma função f, é equivalente a maximizar uma função do tipo:

$$\min f(x) = \max\{C - f(x)\}\$$

• Em que: C é uma constante

$$\min f(x) = \max\{\frac{1}{C + f(x)}\}\$$

Usando AG para resolver o problema

```
Algoritmo genético
Inicio
  t = 0
  inicializar P(t)
  avaliar P(t)
   while (não cumpre a condição) fazer
        t = t + 1
       selecionar P(t) de P(t-1)
       reprodução P(t)
       avaliar P(t)
   fim
fim
```

AG para Problemas de Optimização

- Inicialmente se deve identificar:
 - 1. O intervalo de variação da variável x

$$a \le x \le b$$

2. Construir a função de fitness:

$$\max\{C-f\} = \max\{C-x^2\}$$

$$fitness = C - x^2$$

AG para Problemas de Optimização

3. Se deve definir a precisão com a qual será representada a variável x:

AG para Problemas de Optimização

4. O mapeamento da representação Binaria a Decimal é dada por:

$$x = a + bin2dec(10101...001).\frac{b-a}{2^{Bits}-1}$$

Representação Decimal Representação Binaria

bin2dec = Função que retorna um número inteiro a partir de uma entrada binaria Exemplo

bin2dec(0101) = 5

Representação dos Indivíduos

Para uma precisão de 3 casas decimais (N = 3),

$$14.28 \le Bits$$
$$B = 15$$

População Inicial

Conjunto de Indivíduos criados Aleatoriamente

$$P = egin{bmatrix} Individuo 1 \ Individuo 2 \ ... \ Individuo L \end{bmatrix} = egin{bmatrix} 1010101011100101 \ 00101010101010000 \ ... \ 010101000111101 \end{bmatrix}$$

"L" indivíduos

População Inicial

• Para uma população inicial de tamanho L=10:

```
3.9854
                                                                            0
                                                                                  0
                                                                                         0
                                                                                                      0
                                           0
                                                 0
                                                                     0
                                                                                                             1
 5.3661
-1.2693
                                    0
                                                                                  0
                                                                                         0
                                                                                                0
                                                                                                      0
                                                                                                             0
 3.3580
                       0
                                                 0
                                                               0
                                                                                                      0
                                    0
 7.7960
                                                                                                      0
                                                                                                             0
-6.0765
                                                                                                      0
                                                                                                             0
-5.7164
                                                                                                             0
 5.6804
                                                 0
                                                                                                             0
 9.7772
                                                                                                             0
 5.6767
                             0
                                    0
                                           1
                                                 0
                                                        0
                                                               0
                                                                     1
                                                                            0
                                                                                  1
                                                                                         0
                                                                                                1
                                                                                                      0
                                                                                                             0
```


População Representação Binaria

Avaliação (fitness)

Cada indivíduo terá associada sua função de fitness:

$$P = \begin{bmatrix} Individuo 1 \\ Individuo 2 \\ ... \\ Individuo L \end{bmatrix} \qquad \begin{array}{c} fitness 1 \\ fitness 2 \\ ... \\ fitness L \end{bmatrix}$$

$$fitness(i) = C - x_i^2$$

Avaliação (fitness)

Indivíduo: x

$$fitness(i) = 100 - x_i^2$$

Probabilidade de Seleção

$$\text{Prob}(i) = \frac{fitness(i)}{F}$$

$$F = \sum_{i=1}^{L} fitness(i)$$

Método de Seleção - Roleta

ProbSelecao =

$$Prob(i) = \frac{fitness(i)}{F}$$

Seleção: Cálculo da Probabilidade Acumulativa

0.1290 0.2382 0.3891 0.5252 0.5854 0.6821 0.7854 0.8893 0.8960 1.0000

Probabilidade Acumulada

Usando a Probabilidade Acumulada

Geração de um Número Aleatório "r"

=>>> Selecionar o quarto elemento

Gera-se "L=10" números aleatórios na matriz "r"

		0.1290
ProbSelecao =		0.1092
		0.1509
		0.1361
	_	0.0602
		0.0967
		0.1033
		0.1039
		0.0068
		0.1040

	0.1290
	0.2382
	0.3891
	0.5252
α –	0.5854
q =	0.6821
	0.7854
	0.8893
	0.8960
	1.0000

ProbSelecao =	0.1290	q =	0.1290		0.4173
	0.1092		0.2382		0.0497
	0.1509		0.3891		0.9027
	0.1361		0.5252		0.9448
	0.0602		0.5854	r =	0.4909
	0.0967		0.6821		0.4893
	0.1033		0.7854		0.3377
	0.1039		0.8893		0.9001
	0.0068		0.8960		0.3692
	0.1040		1.0000		0.1112

Gera-se L Hull	icios aicatorios				
ProbSelecao =	0.1290	q =	0.1290	0.4173	
	0.1092		0.2382	0.0497	
	0.1509		0.3891	0.9027	
	0.1361		0.5252	0.9448	
	0.0602		0.5854	r = 0.4909	
	0.0967		0.6821	0.4893	
	0.1033		0.7854	0.3377	
	0.1039			0.8893	0.9001
	0.0068		0.8960	0.3692	
	0.1040		1.0000	0.1112	

Gera-se L Hull	ieros areatorios				
ProbSelecao =	0.1290	q =	0.1290		0.4173
	0.1092		0.2382		0.0497
	0.1509		0.3891		0.902)
	0.1361		0.5252		0.9448
	0.0602		0.5854	r/	0.4909
	0.0967		0.6821		0.4893
	0.1033		0.7854		0.3377
	0.1039		0.8893		0.9001
	0.0068		0.8960		0.3692
	0.1040		1.0000		0.1112

Gera se e mai		•		
ProbSelecao =	0.1290	q =	0.1290	0.4173
	0.1092		0.2382	0.0497
	0.1509		0.3891	0.9027
	0.1361		0.5252	0.9448
	0.0602		0.5854	r = 0.4909
	0.0967		0.6821	0.4893
	0.1033		0.7854	0.3377
	0.1039		0.8893	0.9001
	0.0068		0.8960	0.3692
	0.1040		1.0000	0.1112

ProbSelecao =	0.1290	0.1290	0.4173
	0.1092	0.2382	0.0497
	0.1509	0.3891	0.9027
	0.1361	0.5252	0.9448
	_ 0.0602	0.5854	-0.4909
	0.0967	q = 0.6821	0.4893
	0.1033	0.7854	0.3377
	0.1039	0.8893	0.9001
	0.0068	0.8960	0.3692
	0.1040	1.0000	0.1112

ProbSelecao =	0.1290		0.1290	0.4173
	0.1092		0.2382	0.0497
	0.1509		0.3891	0.9027
	0.1361		0.5252	0.9448
	0.0602		0.5854	0.4909
	0.0967	d =	0.6821	0.4893
	0.1033		0.7854	0.3377
	0.1039		0.8893	0.9001
	0.0068		0.8960	0.3692
	0.1040		1.0000	0.1112

ProbSelecao =	0.1290		0.1290	0.4173
	0.1092		0.2382	0.0497
	0.1509		0.3891	0.9027
	0.1361		0.5252	0.9448
	0.0602		0.5854	0.4909
	0.0967	d =	0.6821	0.4893
	0.1033		0.7854	0.3377
	0.1039		0.8893	0.9001
	0.0068		0.8960	0.3692
	0.1040		1.0000	0.1112

• Gera-se L num	neros aleatorios			
ProbSelecao =	0.1290 0.1092 0.1509 0.1361 0.0602 0.0967 0.1033 0.1039 0.0068 0.1040	q =	0.1290 0.2382 0.3891 0.5252 0.5854 0.6821 0.7854 0.8893 0.8960	$ 0.4173 \\ 0.0497 \\ 0.9027 \\ 0.9448 \\ 0.4909 \\ 0.4893 \\ 0.3377 \\ 0.9001 \\ 0.3692 \\ 0.1112 $

Seleção: Método da Roleta

Gera-se "L" números aleatórios

Seleção: Método da Roleta

Índice dos indivíduos selecionados

4

1

10

10

4

4

3

10

3

1

3.3580

3.9854

5.6767

5.6767

3.3580

3.3580

-1.2693

5.6767

-1.2693

3.9854

Indivíduos Selecionados 88.7242

84.1165

67.7745

67.7745

88.7242

fitness =

88.7242

98.3890

67.7745

98.3890

84.1165

Fitness

Seleção: Matriz P com os indivíduos selecionados

3.3580	1	0	1	0	1	0	1	0	1	1	1	1	1	0	1
3.9854	1	0	1	1	0	0	1	1	0	0	0	0	0	0	1
5.6767	1	1	0	0	1	0	0	0	1	0	1	0	1	0	0
5.6767	1	1	0	0	1	0	0	0	1	0	1	0	1	0	0
x = 3.3580	P = 1	0	1	0	1	0	1	0	1	1	1	1	1	0	1
3.3580	1	0	1	0	1	0	1	0	1	1	1	1	1	0	1
-1.2693	0	1	1	0	1	1	1	1	1	1	0	0	0	0	0
5.6767	1	1	0	0	1	0	0	0	1	0	1	0	1	0	0
-1.2693	0	1	1	0	1	1	1	1	1	1	0	0	0	0	0
3.9854	1	0	1	1	0	0	1	1	0	0	0	0	0	0	1

Codificação dos Indivíduos Selecionados

Seleção: Método de Torneio

Para os pares (X1,X2) e (X3,X4), com valores de fitness conhecidos

```
X1 -  fitness1 = 20 X2 -  fitness2 = 34
```


- Se define uma probabilidade de cruzamento Pc=0.7
- Em seguida, se realiza a geração de 10 números aleatórios (r)
- Finalmente, se verifica que posições (índices) atendem a condição r≤Pc, caso satisfeita a condição o individuo poderá ser usado na operação de cruzamento (neste caso os índices 2, 3, 4, 5, 6, 9, 10).

• Selecionando o primeiro par para cruzamento, com índices das linhas 2 e 3

0.7803	1	0	1	0	1	0	1	0	1	1	1	1	1	0	1
0.3897	1	0	1	1	0	0	1	1	0	0	0	0	0	0	1
0.2417	1	1	0	0	1	0	0	0	1	0	1	0	1	0	0
0.4039	1	1	0	0	1	0	0	0	1	0	1	0	1	0	0
r = 0.0965	P = 1	0	1	0	1	0	1	0	1	1	1	1	1	0	1
0.1320	1	0	1	0	1	0	1	0	1	1	1	1	1	0	1
0.9421	0	1	1	0	1	1	1	1	1	1	0	0	0	0	0
0.9561	1	1	0	0	1	0	0	0	1	0	1	0	1	0	0
0.5752	0	1	1	0	1	1	1	1	1	1	0	0	0	0	0
0.0598	1	0	1	1	0	0	1	1	0	0	0	0	0	0	1

- Determinar aleatoriamente o ponto de cruzamento. Neste caso deverá ser gerado um número aleatório interior no intervalo de 1 a 14.
- Para o ponto de cruzamento igual a 5

 Após o cruzamento as linhas com índices 2 e 3 intercambiaram informações por meio da troca de bits

	1	2	2 3	4	5	<u>,</u>									
		1	1	1	\ (
0.7803	1	0	1	0	1	0	1	0	1	1	1	1	1	0	1
0.3897	1	0	1	1	0	0	0	0	1	0	1	0	1	0	0
0.2417	1	1	0	0	1	0	1	1	0	0	0	0	0	0	1
0.4039	1	1	0	0	1	0	0	0	1	0	1	0	1	0	0
r = 0.0965	P = 1	0	1	0	1	0	1	0	1	1	1	1	1	0	1
0.1320	1	0	1	0	1	0	1	0	1	1	1	1	1	0	1
0.9421	0	1	1	0	1	1	1	1	1	1	0	0	0	0	0
0.9561	1	1	0	0	1	0	0	0	1	0	1	0	1	0	0
0.5752	0	1	1	0	1	1	1	1	1	1	0	0	0	0	0
0.0598	1	0	1	1	0	0	1	1	0	0	0	0	0	0	1

- Este procedimento será repetido para os pares com linhas (4, 5) e (6, 9)
- Finalmente tem-se uma nova população modificada com o operador de cruzamento.

3.3580	1	0	1	0	1	0	1	0	1	1	1	1	1	0	1
3.9854	1	0	1	1	0	0	1	1	0	0	0	0	0	0	1
5.6767	1	1	0	0	1	0	0	0	1	0	1	0	1	0	0
5.6767	1	1	0	0	1	0	0	0	1	0	1	0	1	0	0
x = 3.3580	P = 1	0	1	0	1	0	1	0	1	1	1	1	1	0	1
3.3580	1	0	1	0	1	0	1	0	1	1	1	1	1	0	1
-1.2693	0	1	1	0	1	1	1	1	1	1	0	0	0	0	0
5.6767	1	1	0	0	1	0	0	0	1	0	1	0	1	0	0
-1.2693	0	1	1	0	1	1	1	1	1	1	0	0	0	0	0
3.9854	1	0	1	1	0	0	1	1	0	0	0	0	0	0	1

3.3580	1	0	1	0	1	0	1	0	1	1	1	1	1	0	1
3.8017	1	0	1	1	0	0	0	0	1	0	1	0	1	0	0
5.6767	1	1	0	0	1	0	0	0	1	0	1	0	1	0	0
5.8629	_ 1	1	0	0	1	0	1	1	0	0	0	0	1	0	1
x = 3.3555	P = 1	0	1	0	1	0	1	0	1	1	1	1	0	0	1
3.3580	1	0	1	0	1	0	1	0	1	1	1	1	1	0	1
-1.2693	0	1	1	0	1	1	1	1	1	1	0	0	0	0	0
5.6767	1	1	0	0	1	0	0	0	1	0	1	0	1	0	0
-1.2693	0	1	1	0	1	1	1	1	1	1	0	0	0	0	0
3.9854	1	0	1	1	0	0	1	1	0	0	0	0	0	0	1

Operador de Mutação

- Se define uma probabilidade de mutação Pm=0.01
- Em seguida, se realiza a geração uma matriz de 10x15 contendo números aleatórios (r). Este tamanho corresponde ao tamanho da matriz binaria da população P.
- Em seguida, para cada número aleatório se verifica se cumpre a condição r≤Pm, caso satisfeita a condição, o elemento da matriz P é permutado de 0 para 1 ou vice-versa.

0.8034	0.9841	0.7379	0.5391	0.6692	0.4283	0.2653	0.2607	0.4709	0.8200	0.2665	0.9577	0.8444	0.4243	0.1527
0.0605	0.1672	0.2691	0.6981	0.1904	0.4820	0.8244	0.5944	0.6959	0.7184	0.1537	0.2407	0.3445	0.4609	0.3411
0.3993	0.1062	0.4228	0.6665	0.3689	0.1206	0.9827	0.0225	0.6999	0.9686	0.2810	0.6761	0.7805	0.7702	0.6074
0.5269	0.3724	0.5479	0.1781	0.4607	0.5895	0.7302	0.4253	0.6385	0.5313	0.4401	0.2891	0.6753	0.3225	0.1917
r = 0.4168	0.1981	0.9427	0.1280	0.9816	0.2262	0.3439	0.3127	0.0336	0.3251	0.5271	0.6718	0.0067	0.7847	0.7384
0.6569	0.4897	0.4177	0.9991	0.1564	0.3846	0.5841	0.1615	0.0688	0.1056	0.4574	0.6951	0.6022	0.4714	0.2428
0.6280	0.3395	0.9831	0.1711	0.8555	0.5830	0.1078	0.1788	0.3196	0.6110	0.8754	0.0680	0.3868	0.0358	0.9174
0.2920	0.9516	0.3015	0.0326	0.6448	0.2518	0.9063	0.4229	0.5309	0.7788	0.5181	0.2548	0.9160	0.1759	0.2691
0.4317	0.9203	0.7011	0.5612	0.3763	0.2904	0.8797	0.0942	0.6544	0.4235	0.9436	0.2240	0.0012	0.7218	0.7655
0.0155	0.0527	0.6663	0.8819	0.1909	0.6171	0.8178	0.5985	0.4076	0.0908	0.6377	0.6678	0.4624	0.4735	0.1887

Os elementos da matriz r, com índices (5,13) e (9,13) sofrerão mutação

Operador de Mutação

Mutação

1	0	1	0	1	0	1	0	1	1	1	1	1	0	1
	. 0	1	U	1	U		U	1		1	1		U	1
1	0	1	1	0	0	0	0	1	0	1		1	0	0
1	1	0	0	1	0	0	0	1	0	1	0	1	0	0
1	1	0	0	1	0	1	1	0	0	0	0	1	0	1
P = 1	0	1	0	1	0	1	0	1	1	1	1	1	0	1
1	0	1	0	1	0	1	0	1	1	1	1	1	0	1
0	1	1	0	1	1	1	1	1	1	0	0	0	0	0
1	. 1	0	0	1	0	0	0	1	0	1	0	1	0	0
0	1	1	0	1	1	1	1	1	1	0	0	1	0	0
1	0	1	1	0	0	1	1	0	0	0	0	0	0	1

Processo de Evolução para 1 geração

	População Inicial	Seleção	Cruzamento	Mutação
Indivíduos	3.9854 5.3661 -1.2693 3.3580 7.7960 -6.0765 -5.7164 5.6804 9.7772 5.6767	3.3580 3.9854 5.6767 5.6767 3.3580 3.3580 -1.2693 5.6767 -1.2693 3.9854	3.3580 3.8017 5.6767 5.8629 3.3555 3.3580 -1.2693 5.6767 -1.2693 3.9854	3.3580 3.8017 5.6767 5.8629 3.3580 3.3580 -1.2693 5.6767 -1.2668 3.9854
fitness	84.1165 71.2053 98.3890 88.7242 39.2231 63.0757 67.3225 67.7329 4.4061 67.7745	88.7242 84.1165 67.7745 98.3890 67.7745 98.3890 84.1165		88.7242 85.5471 67.7745 65.6263 88.7242 88.7242 98.3890 67.7745 98.3952 84.1165

Comparação do melhor indivíduo na população inicial com o melhor indivíduo após a mutação

	População Inicial	Seleção	Cruzamento	Mutação
Indivíduos	3.9854 5.3661 -1.2693 Melhor 3.3580 7.7960 Solução -6.0765 -5.7164 5.6804 9.7772 5.6767	3.3580 3.9854 5.6767 5.6767 3.3580 3.3580 -1.2693 5.6767 -1.2693 3.9854	3.3580 3.8017 5.6767 5.8629 3.3555 3.3580 -1.2693 5.6767 -1.2693 3.9854	3.3580 3.8017 5.6767 5.8629 3.3580 3.3580 -1.2693 5.6767 -1.2668 3.9854 Melhor solução
fitness	84.1165 71.2053 98.3890 88.7242 39.2231 63.0757 67.3225 67.7329 4.4061 67.7745	88.7242 84.1165 67.7745 67.7745 88.7242 88.7242 98.3890 67.7745 98.3890 84.1165	Neste passo não é necessário avaliar o fitness	88.7242 85.5471 67.7745 65.6263 88.7242 88.7242 98.3890 67.7745 98.3952 84.1165

Elitismo: Substituição do melhor pelo pior

Elitismo: Substituição do melhor pelo pior

	População		Mutação		Elitismo
	Inicial				
Melhor	3.9854		3.3580		3.9854
	5.3661		3.8017		5.3661
solução			5.6767		-1.2693
	3.3580	Elitismo	5.8629		3.3580
Indivíduos	7.7960		3.3580		7.7960
	-6.0765		3.3580		-6.0765
	-5.716, 5.6804	·	-1.2693 5.6767		-5.7164
	9.7772	Diam	-1.2668	Mallaga	5.6804
	5.6767	Pior	3.9854	Melhor	-1.2668
	3.0707	solução	3.3034	solução	5.6767
	84.1165		88.7242		84.1165
	71.2053		85.5471		71.2053
	98.3890		67.7745		98.3890
	88.7242		65.6263		88.7242
f:tooo	39.2231		88.7242		39.2231
fitness	63.0757		88.7242		63.0757
	67.3225		98.3890		67.3225
	67.7329		67.7745		67.7329
	4.4061		98.3952		98.3952
	67.7745		84.1165		67.7745

Elitismo: Substituição do melhor pelo pior

	População Inicial	Mutação	Atualização da População com melhores indivíduos	
Melhor solução Indivíduos	3.9854 5.3661 -1.2693 3.3580 7.7960 -6.0765 -5.716 5.6804 9.7772 5.6767 Pior solução	3.3580 3.8017 5.6767 5.8629 3.3580 3.3580 -1.2693 5.6767 -1.2668 3.9854 Melhor solução	3.9854 5.3661 -1.2693 3.3580 7.7960 -6.0765 -5.7164 5.6804 -1.2668 5.6767	Geração t+1
fitness	84.1165 71.2053 98.3890 88.7242 39.2231 63.0757 67.3225 67.7329 4.4061 67.7745	88.7242 85.5471 67.7745 65.6263 88.7242 88.7242 98.3890 67.7745 98.3952 84.1165	84.1165 71.2053 98.3890 88.7242 39.2231 63.0757 67.3225 67.7329 98.3952 67.7745	

Busca Direcionada das Soluções

Processo de Evolução vs #Gerações

Para 40 Gerações:

Solução: x = -9.1556e-04 y = f(x) = 8.3824e-07 fitness=100

Processo de Evolução vs #Gerações

Para 40 Gerações:

Solução: x = 3.0519e-04 y=f(x) = 9.3138-08 fitness=100

Conclusões e Observações

- O processo de evolução de um AG realiza a busca em um espaço de soluções potenciais para o problema (População).
- Os AGs são mais robustos, devido a que existe uma direção ótima no processo de busca da solução.
- Os AGs mantem populações de soluções potenciais intercambiando informações.
- Os AGs não garantem uma solução GLOBAL, entretanto a solução obtida pode se encontrar próxima da global (solução local).

Conclusões e Observações

- A velocidade de convergência do AGs dependerá dos parâmetros de configuração, tais como: Tamanho da população, probabilidade de cruzamento Pc, probabilidade de mutação Pm, e operação de elitismo.
- Para sair de um estagio de estagnação poderia se implementar um operador de mutação com probabilidade Pm aumentando em função ao número de gerações.
- Observa-se que para cada nova execução do AGs a solução obtida tem variações assim como sua curva de convergência.