7 – Simultaneous Localization and Mapping

Advanced Methods for Mapping and Self-localization in Robotics (MPC-MAP)

Course supervisor: Ing. Lukáš Kopečný, Ph.D.

Adam Ligocki

Brno University of Technology 2021

Robotics and Al

Profile

Ing. Adam Ligocki, Ph.D.

Position: Research Staff

Research: Data Fusion

Room: SE1.102

Background:

- Artificial Intelligence
- Neural Networks
- Software Development

Web: https://www.vut.cz/lide/adam-ligocki-154791

Simultaneous Localization and Mapping (SLAM)

Localization:

Collision Avoidance

Orientation

Navigation

Mapping:

Exploring Unknown Environment

Mission Planning

known environment

Mission Planning

Simultaneous Localization and Mapping - SLAM

Mapping – Building model of the surrounding environment

Localization – Estimating robot's pose

SLAM – Build a model of the environment and estimate self position in it at the same time

Map Example:

 X_n ... Pose

 L_n ... Landmark

 \mathbb{Z}_n ... Measurement

Simultaneous Localization and Mapping - SLAM

Given:

 x_0 ... initial position

 u_t ... robot's control

 z_t ... robot's observation

Wanted:

 $x_{1:T}$... trajectory (vector of poses)

m ... Map

Data are corrupted by errors -> not able to estimate *x* and *m* precisely.

Generic SLAM Usage Examples:

Vacuum cleaners UGV, UAV mining, space, sea explorations AR (mobile phones), VR headsets

Full vs. Online SLAM

Full SLAM

 $p(x_{1:t}, m | z_{1:t}, u_{1:t})$

Online SLAM

 $p(x_t, m | z_{1t}, u_{1t}) = \int \int \dots \int p(x_{1t}, m | z_{1t}, u_{1t}) dx_1 dx_2 \dots dx_{t-1}$

Simultaneous Localization and Mapping - SLAM

Why is SLAM Hard?

Robot's path and map of the environment are both unknown

Map and pose estimation correlate – one observation of single stage affects entire SLAM solution

Human SLAM vs Machine SLAM

Human SLAM

Brain evolved in way, it is good in solving highly abstract tasks, like:

Complex pattern matching

Extracting feature points (remember important marks in the environment)

Constructing topological representation of the environment (building map in our head)

Human perception has **high uncertainty**.

Machine SLAM

Very fast and precise calculations and measurements

Limited computational power

Fast, but very specialized pattern matching and feature point extraction

Localization and "Mapping" on Mars - Ingenuity

Visual Odometry Technique

Sensory Equipment:

IMU: Bosch Sensortec BMI-160

Camera: Omnivision OV7251

Laser rangefinder: Garmin Lidar-Lite-V3

NO GNSS
NO radio navigation

Navigation Principle:

Detecting FAST featurepoints in images.

Matching featurepoints between images.

Considering the motion of the featurepoints between the images robot estimates the change of the position.

Combined with IMU data.

https://www.therobotreport.com/ingenuityhelicopter-state-estimation-localization/

Taxonomy of SLAM

Volumetric vs Featured

models full env models only important points of the env

Topological vs Geometric

models struct. of models exact geometry important points of the env.

Known vs Unknown Data Association

Static vs Dynamic Environment

Active vs Passive SLAM

Robot takes its own Robot is controlled decisions how to by other entity build a map

Single Robot vs Swarm SLAM

Bayes Filter

Bayes Filter is **generic mathematical framework** to estimate inner states of the system (world).

Prediction:

$$\overline{bel}(x_t) = \int p(x_t|u_t, x_{t-1}) bel(x_{t-1}) dx_{t-1}$$

Correction:

$$bel(x_t) = \eta p(z_t|x_t) \overline{bel}(x_t)$$

Observation Model

Most Common Paradigmas in SLAM

	Kalman Filter	Particle Filter	Graph Based
Approaches:	Kalman Filter Extended Kalman Filter Unscented Kalman Filter Information Filter Sparse Extended Information Filter	Particle Filter	Least Squares
SLAMs:	EKF SLAM SEIF SLAM	FAST SLAM Grid-based SLAM with PF	Least Squares SLAM

Information Filter, Sparse Extended Information Filter (SEIF)

Kalman vs Information Filter

- Kalman is cheap for states update, but very expensive for states correction (matrix inversion)
- Information filter is a different implementation of the bayes filter, that makes states update
 expensive, but states correction is very cheap

$$\mu_{t-1} = \Omega_{t-1}^{-1} \varepsilon_{t-1}$$

$$\Sigma = \Omega^{-1}$$
 $\Omega = \Sigma^{-1}$ Ω ... Information matrix $\overline{\Omega}_t = (G_t \Omega_{t-1}^{-1} G_t^T + R_t)^{-1}$

$$\mu = \Omega^{-1} \epsilon$$
 $\epsilon = \sum^{-1} \mu$ ϵ ... Information vector $\overline{\mu}_t = g(u_t, \mu_{t-1})$

 Information matrix is usually very sparse (majority of components are 0 or close to 0).
 It allows to ignore them and make matrix multiplication and inversion very fast

$$\overline{\varepsilon}_t = \overline{\Omega}_t \overline{\mu}_t$$

$$\Omega_t = \overline{\Omega}_t + H_t^T Q_t^{-1} H_t$$

$$\varepsilon_t = \overline{\varepsilon}_t + H_t^T Q_t^{-1} (z_t - h(\overline{\mu}_t) + H_t \overline{\mu}_t)$$

Unscented Kalman Filter

Kalman Filter – linear models EKF – linearization via Taylor expansion

Unscented Kalman Filter (UKF) – applying non-linear transformation on gaussian variable.

- Based on state vector and covariance matrix generate "sigma points"
- Apply non linear transformation on sigma points
- Recover state vector and covariance matrix from transformed sigma points

Extended Kalman Filter SLAM (EKF SLAM)

Extended Kalman Filter SLAM (EKF SLAM)

Basic principle:

Using the Extended Kalman Filter (EKF) to model the robot's pose and pose of all observerd landmarks.

$$\overline{\mu}_t = g(u_t, \mu_{t-1})$$

$$\overline{\Sigma}_t = G_t \sum_{t-1} G_t^T + R_t$$

$$K_t = \overline{\sum}_t H_t^T (H_t \ \overline{\sum}_t H_t^T + Q_t)^{-1}$$

$$\mu_t = \overline{\mu_t} + K_t (z_t - h(\overline{\mu_t}))$$

$$\sum_t = (I - K_t H_t \overline{\sum}_t)$$

Handy overview available at:

https://www.iri.upc.edu/people/jsola/JoanSola/objectes/curs_S_LAM/SLAM2D/SLAM%20course.pdf

http://gopalmenon.github.io/Raspberri-Pi-GoPiGo-Robot-EKF-SLAM-Manuscript/images/EssSlam.png

Extended Kalman Filter SLAM (EKF SLAM)

$$\mu = \begin{bmatrix} \mathbf{x}_{robot} \\ \mathbf{y}_{robot} \\ \mathbf{\theta}_{robot} \\ \mathbf{m}_{1x} \\ \mathbf{m}_{1y} \\ \dots \\ \mathbf{m}_{nx} \\ \mathbf{m}_{ny} \end{bmatrix} \qquad \boldsymbol{\Sigma} = \begin{bmatrix} \boldsymbol{\Sigma}_{xr,xr} & \boldsymbol{\Sigma}_{xn,yr} & \dots & \boldsymbol{\Sigma}_{xn,m1y} \\ \boldsymbol{\Sigma}_{yr,xr} & \boldsymbol{\Sigma}_{yr,yr} & \dots & \dots \\ \dots & \dots & \dots & \dots \\ \boldsymbol{\Sigma}_{m1yr,xr} & \dots & \dots & \boldsymbol{\Sigma}_{m1y,m1y} \end{bmatrix}$$

Motion Model

$$\overline{bel}(x_t) = \int p(x_t|u_t, x_{t-1}) bel(x_{t-1}) dx_{t-1}$$

$$bel(x_t) = \eta p(z_t|x_t) \overline{bel}(x_t)$$

Observation Model

Extended Kalman Filter $(\mu_{t-1}, \sum_{t-1}, \mu_{t-1}, z_t)$

$$\overline{\mu}_t = g(u_t, \mu_{t-1})$$
 Prediction
$$\overline{\Sigma}_t = G_t \sum_{t-1} G_t^T + R_t$$

$$K_{t} = \overline{\sum}_{t} H_{t}^{T} (H_{t} \overline{\sum}_{t} H_{t}^{T} + Q_{t})^{-1}$$

$$\mu_{t} = \overline{\mu_{t}} + K_{t} (z_{t} - h(\overline{\mu_{t}})) \quad \text{Correction}$$

$$\sum_{t} = (I - K_{t} H_{t} \overline{\sum}_{t})$$

return
$$\mu_t$$
, \sum_t

EKF SLAM – Filter Cycle Phases

- 1) Motion Prediction
- 2) Measurement Prediction
- 3) Measurement
- 4) Data Association
- 5) Correction

Extended Kalman Filter $(\mu_{t-1}, \sum_{t-1}, \mu_{t-1}, z_t)$

$$\overline{\mu_t} = g(u_t, \mu_{t-1})$$

$$\overline{\Sigma}_t = G_t \sum_{t-1} G_t^T + R_t$$

$$K_{t} = \overline{\sum}_{t} H_{t}^{T} (H_{t} \overline{\sum}_{t} H_{t}^{T} + Q_{t})^{-1}$$

$$\mu_{t} = \overline{\mu_{t}} + K_{t} (\mathbf{z}_{t} - h(\overline{\mu_{t}}))$$

$$\sum_{t} = (I - K_{t} H_{t} \overline{\sum}_{t})$$

return μ_t , \sum_t

EKF SLAM Phases: Motion Preiction (State Prediction)

$$\mu = \begin{bmatrix} x_{robot} \\ y_{robot} \\ \theta_{robot} \\ m_{1x} \\ m_{1y} \\ \dots \\ m_{nx} \\ m_{ny} \end{bmatrix}$$

$$\boldsymbol{\Sigma} = \begin{bmatrix} \boldsymbol{\Sigma}_{\boldsymbol{x}\boldsymbol{n},\boldsymbol{x}\boldsymbol{r}} & \boldsymbol{\Sigma}_{\boldsymbol{x}\boldsymbol{n},\boldsymbol{y}\boldsymbol{r}} & \dots & \boldsymbol{\Sigma}_{\boldsymbol{x}\boldsymbol{n},\boldsymbol{m}\boldsymbol{n}\boldsymbol{y}} \\ \boldsymbol{\Sigma}_{\boldsymbol{y}\boldsymbol{n},\boldsymbol{x}\boldsymbol{r}} & \boldsymbol{\Sigma}_{\boldsymbol{y}\boldsymbol{r},\boldsymbol{y}\boldsymbol{r}} & \dots & \dots \\ \dots & \dots & \dots & \dots \\ \boldsymbol{\Sigma}_{\boldsymbol{m}\boldsymbol{n}\boldsymbol{y}\boldsymbol{r},\boldsymbol{x}\boldsymbol{r}} & \dots & \boldsymbol{\Sigma}_{\boldsymbol{m}\boldsymbol{n}\boldsymbol{y},\boldsymbol{m}\boldsymbol{n}\boldsymbol{y}} \end{bmatrix}$$

EKF SLAM Phases: Predict Measurement

$$\mu = \begin{bmatrix} x_{robot} \\ y_{robot} \\ \theta_{robot} \\ m_{1x} \\ m_{1y} \\ \dots \\ m_{nx} \\ m_{ny} \end{bmatrix}$$

$$\boldsymbol{\Sigma} = \begin{bmatrix} \boldsymbol{\Sigma}_{xr,xr} & \boldsymbol{\Sigma}_{xr,yr} & \dots & \boldsymbol{\Sigma}_{xr,mny} \\ \boldsymbol{\Sigma}_{yr,xr} & \boldsymbol{\Sigma}_{yr,yr} & \dots & \dots \\ \dots & \dots & \dots & \dots \\ \boldsymbol{\Sigma}_{mnyr,xr} & \dots & \dots & \boldsymbol{\Sigma}_{mny,mny} \end{bmatrix}$$

EKF SLAM Phases: Measurement

$$\mu = \begin{bmatrix} x_{robot} \\ y_{robot} \\ \theta_{robot} \\ m_{1x} \\ m_{1y} \\ \dots \\ m_{nx} \\ m_{ny} \end{bmatrix}$$

$$\boldsymbol{\Sigma} = \begin{bmatrix} \boldsymbol{\Sigma}_{xr,xr} & \boldsymbol{\Sigma}_{xr,yr} & \dots & \boldsymbol{\Sigma}_{xr,mny} \\ \boldsymbol{\Sigma}_{yr,xr} & \boldsymbol{\Sigma}_{yr,yr} & \dots & \dots \\ \dots & \dots & \dots & \dots \\ \boldsymbol{\Sigma}_{mnyr,xr} & \dots & \dots & \boldsymbol{\Sigma}_{mny,mny} \end{bmatrix}$$

EKF SLAM Phases: Correction

$$\mu = egin{bmatrix} x_{robot} \ y_{robot} \ heta_{robot} \ heta_{robot} \ m_{1x} \ m_{1y} \ heta_{mnx} \ m_{ny} \end{bmatrix}$$

$$\Sigma = egin{bmatrix} \Sigma_{xr,xr} & \Sigma_{xr,yr} & ... & \Sigma_{xr,mny} \ \Sigma_{yr,xr} & \Sigma_{yr,yr} & ... & ... \ ... & ... & ... & ... \ \Sigma_{mnyr,xr} & ... & ... & \Sigma_{mny,mny} \end{bmatrix}$$

Robotic setup for our example:

- Platform moving in 2D
- Velocity based motion model
- Observation of point landmarks
- Range-bearing sensor
- Known data association
- Known number of landmarks

Τ

EKF SLAM - Initialization

- The robot takes it's original position as a origin of the entire map
- Robot know its position with absolute certancy
- Robot know nothing about landmarks
- Robot does not know any relation between itself, lendmarks, and relation between landmarks
- μ and Σ dims: 3 + 2 * num_of_landmarks

num_of_landmarks -> N

$$\mathbf{\mu} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ ... \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{\Sigma} = \begin{bmatrix} 0 & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \infty & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & \infty \end{bmatrix}$$

- 1) Motion Prediction
- 2) Measurement Prediction
- 3) Measurement
- 4) Data Association
- 5) Correction

Extended Kalman Filter $(\mu_{t-1}, \sum_{t-1}, \mu_{t-1}, z_t)$

$$\overline{\mu_t} = g(u_t, \mu_{t-1})$$

$$\overline{\Sigma}_t = G_t \, \Sigma_{t-1} G_t^T + R_t$$

$$K_{t} = \overline{\sum}_{t} H_{t}^{T} (H_{t} \overline{\sum}_{t} H_{t}^{T} + Q_{t})^{-1}$$

$$\mu_{t} = \overline{\mu_{t}} + K_{t} (\mathbf{z_{t}} - h(\overline{\mu_{t}}))$$

$$\sum_{t} = (I - K_{t} H_{t} \overline{\sum}_{t})$$

return
$$\mu_t$$
, \sum_t

EKF SLAM - Motion Model

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} v * \cos(\theta) \\ v * \sin(\theta) \\ \omega \end{bmatrix} * \Delta t$$

$$\begin{bmatrix} x' \\ y' \\ \theta' \end{bmatrix} = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix} + \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix} + \begin{bmatrix} v * \cos(\theta) \\ v * \sin(\theta) \\ \omega \end{bmatrix} * \Delta t$$

$$\overline{\mu_t} = \begin{bmatrix} x' \\ y' \\ \theta' \end{bmatrix} = g(\boldsymbol{u_t}, \mu_{t-1}) = \begin{bmatrix} x + v * \cos(\theta) * \Delta t \\ y + v * \sin(\theta) * \Delta t \\ \theta + \omega * \Delta t \end{bmatrix}$$

$$\overline{\mu_{t}} = \begin{bmatrix} x' \\ y' \\ \theta' \end{bmatrix} = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix} + F * \begin{bmatrix} v * \cos(\theta) \\ v * \sin(\theta) \\ \omega \end{bmatrix} * \Delta t = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ \dots & \dots & \dots \\ 0 & 0 & 0 \end{bmatrix} * \begin{bmatrix} v * \cos(\theta) \\ v * \sin(\theta) \\ \omega \end{bmatrix} * \Delta t$$

- 1) Motion Prediction
- 2) Measurement Prediction
- 3) Measurement
- 4) Data Association
- 5) Correction

Extended Kalman Filter $(\mu_{t-1}, \sum_{t-1}, \mu_{t-1}, z_t)$

$$\overline{\mu_t} = g(u_t, \mu_{t-1})$$

$$\overline{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + R_t$$

$$K_{t} = \overline{\sum}_{t} H_{t}^{T} (H_{t} \overline{\sum}_{t} H_{t}^{T} + Q_{t})^{-1}$$

$$\mu_{t} = \overline{\mu_{t}} + K_{t} (\mathbf{z_{t}} - h(\overline{\mu_{t}}))$$

$$\sum_{t} = (I - K_{t} H_{t} \overline{\sum}_{t})$$

return
$$\mu_t$$
, \sum_t

EKF SLAM – Jacobian of Motion

Function $g(u_t, \mu_{t-1})$ affects only robot's states, not the landmarks

$$\overline{\Sigma}_t = G_t \, \Sigma_{t-1} G_t^T + R_t$$

$$G_t = \begin{bmatrix} G_t^r & \mathbf{0} \\ \mathbf{0} & I \end{bmatrix} \qquad \qquad G_t^r \to 3x3$$

$$I \to 2N \times 2N$$

$$\boldsymbol{G}_{t}^{r} = \frac{\delta}{\delta(x, y, \theta)} [g(u_{t}, \mu_{t-1})] = \frac{\delta}{\delta(x, y, \theta)} \left(\begin{bmatrix} x \\ y \\ \theta \end{bmatrix} + \begin{bmatrix} v * \cos(\theta) \\ v * \sin(\theta) \\ \omega \end{bmatrix} * \Delta t \right)$$

$$G_t^r = I + \begin{bmatrix} 0 & 0 & -v * \sin(\theta) * \Delta t \\ 0 & 0 & v * \cos(\theta) * \Delta t \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -v * \sin(\theta) * \Delta t \\ 0 & 1 & v * \cos(\theta) * \Delta t \\ 0 & 0 & 1 \end{bmatrix}$$

 R_t ... User defined matrix of motion uncertancy, usually diagonal matrix

EKF SLAM – Update Covariance

$$\overline{\Sigma}_t = G_t \sum_{t-1} G_t^T + R_t$$

$$\overline{\Sigma}_t = \begin{bmatrix} \boldsymbol{G}_t^r & \mathbf{0} \\ \mathbf{0} & \boldsymbol{I} \end{bmatrix} \begin{bmatrix} \Sigma_{xx} & \Sigma_{xm} \\ \Sigma_{mx} & \Sigma_{mm} \end{bmatrix} \begin{bmatrix} (\boldsymbol{G}_t^r)^T & \mathbf{0} \\ \mathbf{0} & \boldsymbol{I} \end{bmatrix} + \boldsymbol{R}_t$$

$$\overline{\Sigma}_t = \begin{bmatrix} \boldsymbol{G}_t^r \Sigma_{xx} (\boldsymbol{G}_t^r)^T & \boldsymbol{G}_t^r \Sigma_{xm} \\ (\boldsymbol{G}_t^r \Sigma_{xm})^T & \Sigma_{mm} \end{bmatrix} + \boldsymbol{R}_t$$

 $R_t\,$... User defined matrix of motion uncertancy, usually diagonal matrix (robot pose covariance only)

Updating covariance affects only robot's pose uncertainty and robot-landmark pose covariance.

Landmarks' pose uncertainty and landmark-landmark pose covariance stays unchanged.

EKF SLAM - Correction

Assumptions:

Known data association Range-bearing sensor

Components:

 $\overline{\mu_t}$... predicted states

 z_t ... measurement

 $h(\overline{\mu_t})$... predicted measurement

 H_t ... measurement Jacobian

 K_t ... Kalman gain

 Q_t ... measurement noise

 μ_t ... corrected states

 \sum_{t} ... corrected covariance

Extended Kalman Filter $(\mu_{t-1}, \sum_{t-1}, \mu_{t-1}, z_t)$

$$\overline{\mu_t} = g(u_t, \mu_{t-1})$$

$$\overline{\Sigma}_t = G_t \, \Sigma_{t-1} G_t^T + R_t$$

$$K_t = \overline{\sum}_t H_t^T (H_t \ \overline{\sum}_t H_t^T + Q_t)^{-1}$$

$$\mu_t = \overline{\mu_t} + K_t (\mathbf{z_t} - h(\overline{\mu_t}))$$

$$\sum_{t} = (I - K_{t} H_{t} \overline{\sum}_{t})$$

return μ_t , \sum_t

EKF SLAM – Range-bearing sensor model

$$z_i = [r_i \quad \phi_i]^T \qquad \begin{bmatrix} \mu_{ix} \\ \mu_{iy} \end{bmatrix} = \begin{bmatrix} \mu_x \\ \mu_y \end{bmatrix} + \begin{bmatrix} r_i * \cos(\phi_i + \mu_\theta) \\ r_i * \sin(\phi_i + \mu_\theta) \end{bmatrix}$$
 Landmark's Robot's pose measurement

$$\delta = \begin{bmatrix} \delta_x \\ \delta_y \end{bmatrix} = \begin{bmatrix} \mu_{ix} - \mu_x \\ \mu_{iy} - \mu_y \end{bmatrix} \qquad q = \delta^T \delta$$

$$h_i(\bar{\mu}_t) = \begin{bmatrix} \sqrt{q} \\ atan2(\delta_y, \delta_x) - \mu_\theta \end{bmatrix} = \bar{z}_i$$

EKF SLAM - Measurement Jacobian

$$h_i(\bar{\mu}_t) = \begin{bmatrix} \sqrt{q} \\ atan2(\delta_y, \delta_x) - \mu_\theta \end{bmatrix} = \bar{z}_i$$

$$H_{i-low} = \frac{\delta h(\overline{\mu}_t)}{\delta \overline{\mu}_t} = \begin{bmatrix} \frac{\delta \sqrt{q}}{\delta x} & \frac{\delta \sqrt{q}}{\delta y} & \dots \\ \frac{\delta atan2(\dots)}{\delta x} & \frac{\delta atan2(\dots)}{\delta y} & \dots \end{bmatrix}$$

$$H_{i-low} = \frac{1}{q} \begin{bmatrix} -\sqrt{q}\delta_{x} & -\sqrt{q}\delta_{y} & 0 & \sqrt{q}\delta_{x} & \sqrt{q}\delta_{y} \\ \delta_{y} & -\delta_{x} & -q & -\delta_{y} & \delta_{x} \end{bmatrix}$$

$$H_{i} = H_{i-low} * F$$

$$(x, y, \theta, \mu_{ix}, \mu_{iy})$$

$$F = \begin{bmatrix} 1 & 0 & 0 & 0 & \dots & 0 & 0 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & 0 & \dots & 0 & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & 0 & \dots & 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & 0 & \dots & 0 & 0 & 1 & 0 & \dots & 0 \end{bmatrix}$$

EKF SLAM - Implementation

Implementation tips:

Always normalize the angular components between π and $-\pi$

F matrix is not necessary – it is just helps to understand topic

Landmarks association: usually nearest neighbour

Extended Kalman Filter $(\mu_{t-1}, \sum_{t-1}, \mu_{t-1}, z_t)$

$$\overline{\mu_t} = g(u_t, \mu_{t-1})$$

$$\overline{\Sigma}_t = G_t \, \Sigma_{t-1} G_t^T + R_t$$

$$K_t = \overline{\sum}_t H_t^T (H_t \ \overline{\sum}_t H_t^T + Q_t)^{-1}$$

$$\mu_t = \overline{\mu_t} + K_t(\mathbf{z_t} - h(\overline{\mu_t}))$$

$$\sum_{t} = (I - K_{t} H_{t} \overline{\sum}_{t})$$

return
$$\mu_t$$
, \sum_t

EKF SLAM – Loop Closure

- Loop closing allows distributing low uncertainty through the map
- Helps to reduce cumulated positioning error by creating relations between observations with high and low error
- Wrong loop closure assumption leads to map divergence

Elasmar, S.R.A.G., 2012. Information-theoretic environment modeling for mobile robot localization.

Τ

EKF SLAM – Covariance Matrix

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} 1 & 3/5 \\ 3/5 & 2 \end{bmatrix}$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.$$

$$\Sigma = U\Lambda U^T = \begin{bmatrix} u_1 & u_2 \\ u_1 & u_2 \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} u_1 & u_1 \\ u_2 & u_2 \end{bmatrix}$$

- [1] https://en.wikipedia.org/wiki/Multivariate_normal_distribution
- [2] https://www.youtube.com/watch?v=eho8xH3E6mE

EKF SLAM – Covariance Matrix

Covariance matrix

- Algorithm converges for linear Gaussian cases
- Diverges for large non-linearities
- Unimodal states estimation
- Works for small up to mid-size scenes
- Used for short term estimations (visual odometry)
- Complexity: computational $O(n^2)$, memory $O(n^2)$

EKF SLAM - Example

https://github.com/adamek727/EKF-SLAM-Example

FastSLAM

FastSLAM

- Combination of Particle Filter and Kalman Filter
- FastSLAM keeps large number of particles. Each particle represents entire map.
- Each particle uses multiple Kalman Filters to represent previously observer landmarks
- The better particle corresponds with current observation, the higher chance it has to survive
- Each particle represents different hypotesis, how the world looks like
- Lower complexity compared to Kalman Filter $\operatorname{KF} : O(m^2)$

FastSLAM: $O(n \log(m))$, n ... no of particles m ... no of landmarks

FastSLAM - Sensor Update

[Thrun, Probabilistic Robotics, https://slideplayer.com/slide/10143612/]

Least Squares (Graph) SLAM

Least Squares (Graph) SLAM

SLAM is based on building graph and numerical optimization

- Graph Nodes
 - List of robot poses
 - Important parts of the map
- Graph Edges Relation between nodes
 - Odometry
 - Environment observations (measurements)

$$\bar{e}_i(x) = z_i - f_i(x)$$

$$e_i(x) = \bar{e}_i(x)^T \Omega^{-1} \bar{e}_i(x)$$

$$x^* = \operatorname*{argmin}_{x} \sum_{i} e_i(x)$$

Graph SLAM allows to create hierarchical strutures

http://www2.informatik.uni-freiburg.de/~stachnis/pdf/grisetti10titsmag.pdf

Gao, H., Zhang, X., Wen, J., Yuan, J. and Fang, Y., 2018. Autonomous indoor exploration via polygon map construction and graph-based SLAM using directional endpoint features.

SLAM Comparison

	KF	EKF	SEIF	PF	Graph
Complexity	n^2	n^2	const	M lon(n) *	edges-related
Assumpt. Dist.	gauss	gauss	gauss	pose: any landmrk: gauss	gauss + outlayers
Linearization	all linear	once	once	no needed	re-linearization**
Flexibility	medium	medium	medium	good	good
Large Scalse SLAM	bad	bad	ok	ok	good

^{* ...} M – number of particles; N – number of landmarks

^{** ...} closer to ground truth solution -> better linearization

Adam Ligocki

adam.ligocki@vutbr.cz

Brno University of Technology
Faculty of Electrical Engineering and Communication
Department of Control and Instrumentation

