01-08-2020-shift-2-1-15

1

AI24BTECH11011 - Himani Gourishetty

- 1) Let A and B be two events such that the probability that exactly one of them occurs is $\frac{2}{5}$ and the probability that A or B occurs is $\frac{1}{2}$, then the probability of both of them occur together is (january 2020) a) 0.10 b) 0.20 c) 0.01 d) 0.02 2) Let S be the set of all real roots of the equation, $3^x(3^x-1)+2=|3^x-1|+|3^x-2|$. Then S: (january 2020) a) is a singleton. b) is an empty set. c) contains at least four elements. d) contains exactly two elements.
- 3) The mean and variance of 20 observations are found to be 10 and 4, respectively. On rechecking, it was found that an observation 9 was incorrect and the correct observation was 11. Then the correct variance is: (january 2020)
 - a) 4.01
 - b) 3.99
 - c) 3.98
 - d) 4.02
- 4) Let $\mathbf{a} = \hat{i} 2\hat{j} + \hat{k}$, $\mathbf{b} = \hat{i} \hat{j} + \hat{k}$ be two vectors. If \mathbf{c} is a vector such that $\mathbf{b} \times \mathbf{c} = \mathbf{b} \times \mathbf{a}$ and $\mathbf{a} \cdot \mathbf{b} = 0$ then **c.b** is equal to: (january 2020)
 - a) $\frac{1}{2}$ b) $\frac{-3}{2}$ c) $\frac{-1}{2}$ d) -1
- 5) Let $f:(1,3)\to\mathbb{R}$ be a function defined by $f(x)=\frac{x\lfloor x\rfloor}{x^2+1}$, where $\lfloor x\rfloor$ denotes the greatest integer $\leq x$. Then the range of f is: (january 2020)

 - a) $(\frac{2}{5}, \frac{3}{5}] \cup (\frac{3}{4}, \frac{4}{5})$ b) $(\frac{2}{5}, \frac{4}{5}]$ c) $(\frac{3}{5}, \frac{4}{5})$ d) $(\frac{2}{5}, \frac{1}{2}) \cup (\frac{3}{5}, \frac{4}{5}]$
- 6) If α and β be the coefficients of x^4 and x^2 respectively in the expansion of $\left(x + \sqrt{x^2 1}\right)^6$ $(x-\sqrt{x^2-1})^6$, then: (january 2020)
 - a) $\alpha + \beta = -30$
 - b) $\alpha \beta = -132$
 - c) $\alpha + \beta = 60$
 - d) $\alpha \beta = 60$
- 7) If a hyperbola passes through the point (10, 16) and it has vertices at $(\pm 6, 0)$, then the equation of the normal at **P** is: (january 2020)

- a) 3x + 4y = 94
- b) x + 2y = 42
- c) 2x + 5y = 100
- d) x + 3y = 58
- 8) $\lim_{x\to 0} \frac{\int_0^x t \sin(10t)dt}{x}$ is equal to: (january 2020)
 - a) 0

 - b) $\frac{1}{10}$ c) $\frac{-1}{10}$ d) $\frac{-1}{5}$
- 9) If a line, y = mx + c is a tangent to the circle, $(x 3)^2 + y^2 = 1$ and it is perpendicular to a line L_1 , where L_1 is the tangent to the circle, $x^2 + y^2 = 1$ at the point $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$; then: (january 2020)
 - a) $c^2 + 7c + 6 = 0$
 - b) $c^2 6c + 7 = 0$
 - c) $c^2 7c + 6 = 0$
 - d) $c^2 + 6c + 7 = 0$
- 10) Let $\alpha = \frac{(-1+i\sqrt{3})}{2}$. If $\alpha = (1+\alpha)\sum_{k=0}^{100}a^{2k}$ and $b = \sum_{k=0}^{100}a^{3k}$, then a and b are the roots of the quadratic (january 2020)
 - a) $x^2 + 101x + 100 = 0$ b) $x^2 + 102x + 101 = 0$

 - c) $x^2 102x + 101 = 0$
 - d) $x^2 101x + 100 = 0$
- 11) The mirror image of the point (1,2,3) in a plane is $\left(\frac{-7}{3},\frac{-4}{3},\frac{-1}{3}\right)$. Which of the following points lies (january 2020) on this plane?
 - a) (1, -1, 1)
 - b) (-1, -1, 1)
 - c) (1, 1, 1)
 - d) (-1, -1, -1)
- 12) The length of the perpendicular from the origin, on the normal to the curve, $x^2 + 2xy 3y^2 = 0$ at the point (2,2) is (january 2020)
 - a) 2
 - b) $2\sqrt{2}$
 - c) $4\sqrt{2}$
 - d) $\sqrt{2}$
- 13) Which of the following statements is a tautology?

(january 2020)

- a) $\neg (p \land \neg q) \rightarrow (p \lor q)$
- b) $(\neg p \lor \neg q) \to (p \land q)$
- c) $p \land (\neg q) \rightarrow (p \land q)$
- d) $\neg (p \lor \neg q) \to (p \lor q)$
- 14) If $I = \int_{1}^{2} \frac{dx}{\sqrt{2x^{3} 9x^{2} + 12x + 4}}$, then: a) $\frac{1}{6} < I^{2} < \frac{1}{2}$ b) $\frac{1}{8} < I^{2} < \frac{1}{4}$ c) $\frac{1}{9} < I^{2} < \frac{1}{8}$ d) $\frac{1}{16} < I^{2} < \frac{1}{9}$ (january 2020)
- 15) If $A = \begin{pmatrix} 2 & 2 \\ 9 & 4 \end{pmatrix}$ and $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, then $10A^{-1}$ is equal to: (january 2020)
 - a) 6I-A

- b) A-6Ic) 4I-Ad) A-4I