Diagrams Package In Python

A sophisticated approach to creating diagrams

Bhavika Sewpal

August 11, 2022

Motivation

- ► Faster than methods that involve manually inserting and editing images
- Automatic alignment of icons and arrows
- Consistency of icons
- Easy to make updates
- Easy to monitor changes in the diagrams
- ► Can be included as part of a project in a github repository as python code

Purpose

- Diagrams let you draw the cloud system architecture in Python code
- Diagrams currently supports main major providers including:
 - AWS
 - Azure
 - ▶ GCP
 - Kubernetes
 - Saas

Requirements

- ▶ Diagrams require Python 3.6 or higher
- ► It uses Graphviz an open source graph visualization software to render the diagrams

Concepts

100

- ▶ Diagrams has 4 concepts:
 - Diagrams
 - Nodes
 - Clusters
 - Edges

Diagrams

- ▶ Diagram represents a global diagram context
- ▶ A diagram context is created with the Diagram class

```
from diagrams import Diagram
from diagrams.k8s.compute import Pod
with Diagram("Simple Diagram", show=False):
    Pod("pod instance")
```

Diagrams (cont.)

Nodes

- ▶ A node represents a single system component
- ► A node consists of three parts:
 - a provider
 - a resource type
 - a name

from diagrams.aws.compute import EC2

In the above example, aws is the provider, compute is the resource type and EC2 is the name

Nodes - Data Flow

- >> : Connects node in left to right direction
- << : Connects node in right to left direction</p>
- : : Undirected

```
from diagrams import Diagram
from diagrams.aws.compute import EC2
from diagrams.aws.database import RDS
from diagrams.aws.network import ELB
with Diagram("Group Data Flow", show=False, direction="TB"):
    ELB("lb") >> [EC2("worker1"),
                  EC2("worker2"),
                  EC2("worker3").
                  EC2("worker4"),
                  EC2("worker5")] >> RDS("events")
```

Nodes - Data Flow (cont.)

Clusters

100

- Cluster allows you to group nodes in an isolated group
- Clusters can be nested as well

```
from diagrams import Cluster, Diagram
from diagrams.aws.compute import ECS
from diagrams.aws.database import RDS
from diagrams.aws.network import Route53
with Diagram("Simple Web Service with DB Cluster", show=False):
    dns = Route53("dns")
    web = ECS("service")
    with Cluster("DB Cluster"):
        db_primary = RDS("primary")
        db_primary - [RDS("replica1"),RDS("replica2")]
    dns >> web >> db_primary
```

Clusters (cont.)

Simple Web Service with DB Cluster

Edges

- ▶ An edge represents a linkage between nodes with some additional properties
- ► An edge object contains three attributes:
 - label
 - color
 - style (example: dashed, dotted, bold)

Simplified Diagram for BlobCSI System

100

- Diagram showing the links between Kubeflow Notebooks, PVCs, PVs and Azure Containers
- blobcsi_kubeflow_pvc_pv_azure.py
- This diagram illustrates that:
 - clusters can be nested
 - nodes can be joined across clusters
 - the edges can be labelled and formatted

Simplified Diagram for BlobCSI System (cont.)

Questions?

