## Simulation:

At the first step I added delay transfer function to my PID controller setup :

```
numl = [1];
denoml = [1];
D=tf(numl , denoml , 'InputDelay', 0.2);

Gc = pid(Kp , Ki , Kd)
Mc = feedback(Gc*Gp*D, H)
step(Mc);
grid on
```

Then Ki and Kd values set to 0 and Kp value started to increase until reach the critical point:



After short session for finding critical point I determined to set Kp value for 250:



And determined Pcr to 5 seconds

## Calculations:

Since we have Kcr and Pcr we can use Ziegler-Nichols Table :

| Type of<br>Controller | $K_p$               | $T_{t}$               | $T_d$                |
|-----------------------|---------------------|-----------------------|----------------------|
| P                     | $0.5K_{cr}$         | ∞                     | 0                    |
| PI                    | 0.45K <sub>cr</sub> | $\frac{1}{1.2}P_{cr}$ | 0                    |
| PID                   | 0.6K <sub>cr</sub>  | 0.5P <sub>cr</sub>    | 0.125P <sub>cr</sub> |

$$Kp = 250 * 0.6 = 150$$

$$Ti = 0.5 * 5 = 2.5$$

$$Td = 0.125 * 5 = 0.625$$

## According to data we find from table our final PID Controller will be like :

