Deep Learning: Solving the detection problem

M2R ISI in Paris-Dauphine University - Master thesis defense Master internship at Image & Pervasive Access Lab (IPAL)

Anne MORVAN

14 septembre 2015

Plan

- Introduction
- Propositions
 - Building a large dataset
 - Sampling algorithm
 - Training a CNN-based classifier
- Results
 - Sampling algorithm
 - Training a CNN-based classifier
- Conclusion

- Introduction
- Propositions
 - Building a large dataset
 - Sampling algorithm
 - Training a CNN-based classifier
- Results
 - Sampling algorithm
 - Training a CNN-based classifier
- 4 Conclusion

What is the detection problem?

Pipeline

 to know how classifiy an image into the classes pedestrian presence or not : CLASSIFICATION TASK

 to know the localization within the image and even the number of instances

Issues

• DEEP learning: lack of data, overfitting, computation time

- Introduction
- Propositions
 - Building a large dataset
 - Sampling algorithm
 - Training a CNN-based classifier
- Results
 - Sampling algorithm
 - Training a CNN-based classifier
- 4 Conclusion

Collecting the data (1/2)

Ν	dataset	source	format	colour	size	nb frames	nb annots
1	Daimler	video	PNG	no	640x480	21790	56484
2	ETH	video	PNG	RGB	640x480	1804	14166
3	INRIA	holidays photos	PNG	RGB	varies	2120	1826
4	TudBrussels	video	PNG	RGB	640x480	508	1498
5	USA	video (ev. 30 frames)	PNG	RGB	640x480	8274	11504
6	MSCOCO	photos	JPG	RGB	≈ 578x484	123287	269886
7	PETA	crops	varies	RGB	≈ 72x170	19000	19000
8	CBCL	closed photos	JPG	RGB	1280x960	3547	1449
9	CVC	closed photos	PNG	RGB	640x480	593	2008
					Total	57636	377821

N	dataset	av. per frame	Person	Ignore	People	Person?	Person-fa	Total
1	Daimler	2.59	14131	40925	1428	0	0	56484
2	ETH	7.85	14166	0	0	0	0	14166
3	INRIA	0.86	1826	0	0	0	0	1826
4	TudBrussels	2.95	1498	0	0	0	0	1498
	USA	1.39	9479	0	1636	258	131	11504
5	USA train	-	5080	0	1152	92	41	6365
	USA test	-	4399	0	484	166	90	5139
6	MSCOCO	2.18	269886	0	0	0	0	269886
7	PETA	1	19000	0	0	0	0	0
8	CBCL	0.40	1449	0	0	0	0	1449
9	CVC	3.39	2008	0	0	0	0	2008
		Total	333443	40925	3064	258	131	358821

N	dataset	mean w	mean h	std w	std h	mean w/h
1	Daimler	27	54	20	40	0.51
2	ETH	51	101	32	63	0.50
3	INRIA	119	289	61	148	0.41
4	TudBrussels	28	74	14	37	0.39
5	USA	24	59	19	46	0.43
6	MSCOCO	82	133	98	131	0.64
7	PETA	72	170	22	55	0.43
8	CBCL	89	195	67	117	0.46
9	CVC	54	142	29	70	0.38

Collecting the data (2/2)

Daimler, ETH, INRIA, TudBrussels, USA, MSCOCO, PETA, CBCL, CVC

Sampling algorithm

Algorithm 1 Sampling algorithm

```
1. isPositive \leftarrow 0 \text{ or } 1
2: dataset \leftarrow rand\_dataset(isPositive)
3: if isPositive == 1 then
      class \leftarrow rand \ class(dataset)
      annot \leftarrow rand\_annot(class)
      while the constraints in parameters are not respected do
         annot \leftarrow rand\_annot(class)
      end while
      bb \leftarrow get\_bb(annot)
10: else
11:
      while we can't build a neg bb respecting the constraints in parameters do
        frame \leftarrow rand\_frame()
12.
         if frame contains no positive annotations then
13:
           bb \leftarrow create\_bb(frame)
14:
15:
         else
           bb\_list \leftarrow qetBB\_in\_frame(frame)
16:
           bb \leftarrow create\_bb(frame, bb\_list)
17:
         end if
18-
      end while
20: end if
21: return bb
```

Training a CNN-based classifier (1/2)

Model architecture

- 5 convolutional layers
- 2 fully-connected layers

Cost function: Cross entropy loss

$$E=rac{-1}{N} \ \sum_{n=1}^N \ \sum_{k=1}^K \left(p_{n_k} \ . \ log \ \hat{p_{n_k}} + (1-p_{n_k}) \ . \ log \ (1-\hat{p_{n_k}})
ight)$$

Training a CNN-based classifier (2/2)

Pre-processing and data augmentation

- normalization with mean and std pixel values for each channel, for each dataset
- mirror (proba = 0.5)
- shift (max. 10% of height or width)
- Rad
 0.26
 0.13
 0.07
 0.03
 0

 Prob
 0.1
 0.1
 0.2
 0.3
 0.3
- aspect ratio Ratio (1,1) (2,2) (1,2) (2,1)

 Prob 0.25 0.25 0.25 0.25
- hard negatives or bootstrapping (proba = 0.5 with 2001 samples)
- learning rate policy

- Introduction
- Propositions
 - Building a large dataset
 - Sampling algorithm
 - Training a CNN-based classifier
- Results
 - Sampling algorithm
 - Training a CNN-based classifier
- 4 Conclusion

Sampling algorithm

Parameters for choosing the data

- training data: USA with proba. 1
- test data: USA with proba. 1
- positive crop proba. : 0.5
- positive classes : only person
- min. dimensions : w = 5, h = 20
- no constraints on the distance from the bounds or proportions of the w or h
- h and w: two dependent normal distributions
- bounding box : 4 rectangles method with jaccard_index = 0.1

$$h \rightsquigarrow \mathcal{N}(\mu_h, \ \sigma_h^2)$$
 $w \rightsquigarrow \mathcal{N}(\mu_w, \sigma_w^2)$
 $w|h \rightsquigarrow$
 $\mathcal{N}(\mu_w + \frac{\sigma_{hw}}{\sigma_w}(h - \mu_h), \sigma_w - \frac{\sigma_{hw}^2}{\sigma_h})$

Influence of learning rate

Role of data augmentation methods (1/2)

Role of data augmentation methods (2/2)

Accuracy and ROC curve (1/2)

With all data augmentation methods + learning rate policy at the 2500-th batch

Fresh results

With all data augmentation methods + Ir policy at the 2500-th batch

With all data augmentation methods + deformation (\approx blurring)

Accuracy and ROC curve (2/2)

Haar Wavelet Features

- "A comparison of different feature extraction and classification methods. Performance of different classifiers on
- (a) PCA coefficients,
- (b) Haar wavelets, and
- (c) Local Receptive Field (LRF) features.
- (d) A performance comparison of the best classifiers
- for each feature type."

- Introduction
- Propositions
 - Building a large dataset
 - Sampling algorithm
 - Training a CNN-based classifier
- Results
 - Sampling algorithm
 - Training a CNN-based classifier
- Conclusion

Conclusion & further perspectives

Our work

- classification task (sampling algorithm + data augmentation methods + classifier)
- goal: 98% of well-classified images rate
- \bullet obtained : $\approx 93\%$ for the validation by training with the USA training set and validating on the USA test set

Perspectives

- merge more and more datasets (KITTY ...)
- perform other data augmentation methods from the elastic transformations family (perspective distorsion transformations...)
- use synthetic images
- use temporal information + motion
- define part-based models