Nam	e:	•••••	•••••		•••••	
Roll	No. :	· · · · · ·	•••••	•••••	•••••	
Invig	jilato	r's Si	gnature :	•••••	•••••	
	•		CS/MCA	/SEM-	3/MCA-303/2013-14	
			201			
			INTELLIGENT	SYS		
Time	Allo	tted :	3 Hours		Full Marks : 70	
		Th	e figures in the margi	n indica	te full marks.	
Ca	ndide	ates (are required to give th as far as		vers in their own words able.	
			GROUF	P – A		
			(Multiple Choice 7	ype Qu	nestions)	
1.	. Choose the correct alternatives for the following: $10 \times 1 = 10$ i) An algorithm that gives optimal solution is					
		a)	Hill climbing	b)	BFS	
		c)	Blind search	d)	A *	
	ii)	Wh	ich one is blind searc	h ?		
		a)	DFS	b)	A* search	
		c)	Best first search	d)	AO * search.	
	iii)	Acc	ording to Modus Pone	ens rule	P and $P \rightarrow Q$ infer	
		a)	P	b)	g	
		c)	¬ P	d)	¬. g .	
312	8				[Turn over	

CS/MCA/SEM-3/MCA-303/2013-14

iv)	Iterative deepening search procedure is							
	a) optimal with respect to time consumption							
	b)	b) optimal with respect to space consumption						
	c)	both (a) & (b)						
	d)	none of these.						
v)	Whi	ch of the following is tar	atolog	gy?				
	a)	$(P \wedge Q) \wedge \neg Q$	b)	$(P \land Q) \rightarrow P$				
	c)	$P \wedge \neg Q$	d)	None of these.				
vi)		nplexity of BFS in a nching factor b is	tree	having depth d and				
	a)	$O(b^d)$	b)	$O(a^b)$				
	c)	O(b+d)	d)	None of these.				
vii)	Which is not a pure AI game?							
	a)	Ludo	b)	Snakes and ladder				
	c)	Tic-tac-toe	d)	Chess.				
viii)	Sko	lem function is used in						
	a)	unification algorithm						
	b)	natural deduction						
	c)	conversion to clausal f	orm					
•	d)	none of these.						
ix)	Frai	me is a collection of						
	a)	slots	b)	filler				
•	c) '	resolution	d)	knowledge.				
3		2						

- x) $\exists y [\neg \forall \times P(x) \rightarrow Q(y)]$ is equivalent to
 - a) $\exists y [\exists \times P(x) \rightarrow Q(y)]$
 - b) $\forall y [\neg \exists \times P(x) \vee Q(y)]$
 - c) $\exists y [\neg \exists x \neg P(x) \lor Q(y)]$
 - d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

- $3 \times 5 = 15$
- 2. What are the different knowledge representation mechanisms?
- 3. Give predicate logic statement to describe the following:
 - i) The boy is either mad or fool
 - ii) Computers can never be intelligent
 - iii) Children hate all those who hate animals.
- 4. Explain that Breadth First Search is a special case of Uniform Cost Search, which in turn, is a special case of Best First Search.
- 5. Prove the admissibility and completeness of A^* .
- 6. State the Modus Ponen rule with example. Differentiate between forward and backward rules with example.

3128

3

[Turn over

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

 $3\times15=45$

- 7. a) How do you evaluate the search strategies?
 - b) Compare the depth first search and breadth first search with respect to the advantages and disadvantages.
 - c) Formulate Wolf-Cabbage-Goat-Farmer problem and explain the problem by using a state space.

$$2 + (2 + 2) + (4 + 5)$$

8. Suppose that you have this search space like that:

State	Next	Cost
A	В	4
Α	С	1
В	D	3
В	E	8
С	C	0
С	D	2
С	F	6
D	С	2
D	E	4
E	G	2
F	G	8

3

- a) Draw a state space from the given table.
- b) Assume that initial state is A and goal state is G. Show how these search strategies would create a search tree to find a path from initial to goal state.
 - * Breadth first search
 - * Depth first search
 - * Uniform cost search
 - * A* search

At each step of the search algorithm show which node algorithm is being expanded, and the content of fringe. Also report the eventual solution found by each algorithm and the solution cost. 3 + 3 + 3 + 3

- 9. a) The game of NIM is played like that: Two players alternate in removing one. Two or three coins from a stack initially containing five coins. The player who picks up the last coin loses.
 - i) Draw the full game tree.
 - ii) Show that the player who has the second move can always win. 7 + 3
 - b) How does α - β pruning procedure improve search procedure?

- 10. a) What is Bayes' theorem?
 - b) Write a PROLOG or LISP program to search an element in a list.

2

- c) What are different forms of learning? Discuss the explanation-based learning. 2+3
- d) Consider the Bayesian network with 3 Boolean random variables:

Compute the following quantities:

- i) $P(\sim B, C \mid A)$
- ii) $P(A \mid \sim B, C)$

11.	Write short notes	on any three of the following:	3 × 5
-----	-------------------	--------------------------------	-------

- a) Semantic net
- b) Hill climbing strategy
- c) Agent
- d) Different passing techniques in natural language processing
- e) N queens' problem.