Operating Systems

24. Virtualization

Paul Krzyzanowski

Rutgers University

Spring 2015

Virtualization inside the OS

Memory virtualization

- Process feels like it has its own address space
- Created by MMU, configured by OS

Storage virtualization

- Logical view of disks "connected" to a machine
- External pool of storage

CPU/Machine virtualization

- Each process feels like it has its own CPU
- Created by OS preemption and scheduler

Storage Virtualization

Logical Volume Management

- Physical disk
 - Divided into one or more Physical Volumes

- Logical partitions Volume Groups
 - Created by combining Physical Volumes
 - May span multiple physical disks
 - Can be resized
 - Each can hold a file system

Mapping Logical to Physical data

 Storage on physical volumes is divided into clusters (misnamed extents): fixed-size chunks

 Logical volume defined and managed by mapping of logical extents to physical extents

Logical Volume Manager (LVM) takes care of this mapping

LVM Linear Mapping

Concatenate multiple physical disks to create a larger disk

LVM Striped Mapping

Groups from alternate physical volumes mapped to a logical volume. *N* physical extents per stripe. Improve bandwidth of file transfers

Advantages

- Logical disks can be resized while mounted
 - Some file systems (e.g., ext3 on Linux or NTFS) support dynamic resizing
- Data can be relocated from one disk to another
- Improved performance (through disk striping)
- Improved redundancy (disk mirroring)
- Snapshots
 - Save the state of the volume at some point in time.
 - Allow backups to proceed while the file system is being modified

Storage Virtualization

- Dissociate knowledge of physical disks
 - The computer system does not manage physical disks
- Software between the computer and the disks manages the view of storage
- Virtualization software translates read-block / write-block requests for logical devices to read-block / write-block requests for physical devices

Storage Virtualization

- Logical view of disks "connected" to a machine
- Separate logical view from physical storage
- External pool of storage

Virtual CPUs (sort of)

What time-sharing operating systems give us

- Each process feels like it has its own CPU & memory
 - But cannot execute privileged instructions
 (e.g., modify the MMU or the interval timer, halt the processor, access I/O)
- Illusion created by OS preemption, scheduler, and MMU
- User software has to "ask the OS" to do system-related functions.

Process Virtual Machines

- CPU interpreter running as a process
- Pseudo-machine with interpreted instructions
 - 1966: O-code for BCPL
 - 1973: P-code for Pascal
 - 1995: Java Virtual Machine (JIT compilation added)
 - 2002: Microsoft .NET CLR (pre-compilation)
 - 2003: QEMU (dynamic binary translation)
 - 2008: Dalvik VM for Android
 - 2014: Android Runtime (ART) ahead of time compilation
- Advantage: run anywhere, sandboxing capability
- No ability to even pretend to access the system hardware
 - Just function calls to access system functions
 - Or "generic" hardware

Machine Virtualization

Normally all hardware and I/O managed by one operating system

- Machine virtualization
 - Abstract (virtualize) control of hardware and I/O from the OS
 - Partition a physical computer to act like several real machines
 - Manipulate memory mappings
 - Set system timers
 - Access devices
 - Migrate an entire OS & its applications from one machine to another

• 1972: IBM System 370

Machine Virtualization

An OS is just a bunch of code!

- Privileged vs. unprivileged instructions
- Regular applications use unprivileged instructions
 - Easy to virtualize

- If regular applications execute privileged instructions, they trap
- VM catches the trap and emulates the instruction
 - Trap & Emulate

Hypervisor

- Hypervisor: Program in charge of virtualization
 - Aka Virtual Machine Monitor
 - Provides the illusion that the OS has full access to the hardware
 - Arbitrates access to physical resources
 - Presents a set of virtual device interfaces to each host

Hypervisor

Application or Guest OS runs until:

- Privileged instruction traps
- System interrupts
- Exceptions (page faults)
- Explicit call: VMCALL (Intel) or VMMCALL (AMD)

The End