СЈ

2 0 2 3

# CJ THE MARKET 고 객 예 측 모 델 링

쓰 리 라 찹 │ 김지은, 김채원, 이현준, 천예은

# CONTENTS

/ 01 / 02 / 03 / 04 / 05 분석배경및개요 탐색적데이터분석 데이터전처리 모델링 결론

-분석목적및필요성

- 스토리보드

- -공통특성
- -target 값분석
- -임직원/비임직원분석
- -공통특성분석

- -이상치처리
- -피처엔지니어링

-데이터검증방법

-결론

- -머신러닝모델링
- -딥러닝모델링
- -모델시각화

# 분석배경및개요

- · 분석 목적 및 필요성
- · 스토리보드



# 분석 목적 및 필요성



- CJ 더마켓 프라임 회원 여부를 예측함으로써 다양한 비즈니스 인사이트 도출
- 고객의 구매 성향 파악을 위한 EDA 진행



## 스토리보드



# 탐색적 데이터 분석

- ・공통특성
- · target 값분석
- · 임직원/비임직원 분석
- ・공통특성분석



## 공통 특성

#### 공통 특성에 따라 컬럼 분류

- ・ 3가지 특성(상품 정보, 주문 정보, 고객 정보) 추출
- · 컬럼 별 특성에 따라 target을 제외한 7가지 컬럼을 3가지 관점으로 분류
- · 프라임회원 여부 결정에 영향을 미치는 요인들을 기준으로 이후 EDA 과정을 진행



| 컬럼 분류 표 |                                            |
|---------|--------------------------------------------|
| 상품 정보   | product_name, net_order_qty, net_order_amt |
| 고객 정보   | gender, age_grp                            |
| 주문 정보   | scd, order_date                            |
|         |                                            |



# target 값 분석

### 임직원 / 비임직원 target 값 분석

임직원의 프라임 회원 비율



· 임직원의 경우, 프라임 회원의 비율이 더 높음



ㆍ비임직원의 경우, 프라임 회원의 비율이 소폭 더 높음



프라임 회원 비율이 비교적 균형을 이루므로 임직원, 비임직원의 데이터셋이 **불균형 하지 않다**고 판단



## 임직원 데이터셋 분석

### 임직원 데이터셋 분석 – gender



ㆍ임직원의 성비는 약 6:4로 남성이 여성보다 많음



ㆍ임직원 중 프라임 회원의 성비는 약 6:4로 남성이 여성보다 많음



· 임직원 중 일반회원의 성비는 약 5.5:4.5로 큰 차이가 없음



임직원 중 프라임 회원의 주요 성별은 남성임을 확인



# 임직원 데이터셋 분석

### 임직원 데이터셋 분석 – age\_grp





임직원 중 프라임 회원의 연령대는 30, 40대가 70%를 이루었으며, 30대 남성이 가장 많았음



# 비임직원 데이터셋 분석

### 비임직원 데이터셋 분석 - gender



비임직원 중 prime 회원의 성비



비임직원 중 일반 회원의 성비



· 비임직원 중 프라임 회원의 성비는 약 7:3으로 여성이 남성보다 많음

ㆍ비임직원 중 일반회원의 성비는 약 7.5:2.5로 여성이 남성보다 많음

· 비임직원의 성비는 약 7:3으로 여성이 남성보다 많음



비임직원 중 프라임 회원의 주요 성별은 여성임을 확인



# 비임직원 데이터셋 분석

### 비임직원 데이터셋 분석 - age\_grp





비임직원 중 프라임 회원의 연령대는 40대가 51% 를 이루었으며, 40대 여성이 가장 많았음



## 임직원/비임직원 분석

│ 임직원 데이터셋 EDA 결과

**임직원** 중 프라임 회원의 **연령대는 30, 40대가 70%**를 이루었으며, **30대 남성**이 가장 많았음

30대 남성 > 40대 남성 > 30대 여성 > 40대 여성 순

- · CJ 제일제당 인적 자원 현황 기준, 임직원 남성의 비율이 7:3 정도로 높음
- ・ 이마트몰 모바일 쇼핑 이용 통계에 따르면, 30대~40대의 비율이 가장 높음
- 비임직원 데이터셋 EDA 결과

비임직원 중 프라임 회원의 연령대는 40대가 51% 를 이루었으며, 40대 여성이 가장 많았음

40대 여성 > 30대 여성 > 40대 남성 > 50대 여성 순

- ・ 50대의 모바일 쇼핑 비중 상승률이 가파름
- ・이마트몰 모바일 쇼핑 이용 통계에 따르면, 30대~40대의 비율이 가장 높음



## 공통 특성 분석



#### 1. 상품 정보 종합 관점

#### product\_name

• 전체 : 3113

· 임직원 : 2553

· 비임직원 : 1878

#### net\_order\_qty

· 임직원 : 88, 138 등의 이상치 존재

· 비임직원 : 180, 198 등의 이상치 존재

#### net\_order\_amt

· 임직원 / 비임직원간 큰 차이가 존재하지 않음

임직원의 경우, **[임직원] 상품이 존재**하기 때문에 상품 수 차이가 존재하는 것으로 추정

net\_order\_qty 컬럼의 경우, 이상치 처리 필요



## 공통 특성 분석



#### 2. 구매 정보 종합 관점

#### scd

- · 전체 : 10653
- · 임직원 : 4713
- · 비임직원 : 5940

#### order\_date

- ㆍ전체 : 1일 주문이 가장 많고, 13~17일에는 주문이 증가 추세를 보임
- ㆍ임직원 : 1, 16, 15, 14, 17일 순으로 주문이 많음을 확인
- · 비임직원 : 26, 1, 27, 16, 29일 순으로 주문이 많음을 확인



임직원과 비교하여, **비임직원의 주문건수가 더 많음**을 확인

**임직원**의 경우, **1일과 설 연휴 일주일 전**의 주문량이 많고, **비임직원**은 **1일과 월말**에 주문이 많음

# 데이터 전처리

- 이상치 처리
- · 피처 엔지니어링



### ⋄ 03. 데이터 전처리

# 이상치 처리

#### 이상치 처리

- · EDA를 통해 이상치가 의심되는 net\_order\_qty의 피처를 확인함
- · Boxplot EDA를 통해 이상치 자세히 확인





```
employee['net_order_qty'] = employee['net_order_qty'].apply(lambda \times : 50 if \times >= 60 else \times)
non_employee['net_order_qty'] = non_employee['net_order_qty'].apply(lambda \times : 50 if \times >= 55 else \times)
```

- ㆍ구매수량이 1~3개로 치우쳐진 데이터
- · 정성적인 방법을 사용할 경우, 데이터 손실 문제가 발생할 위험이 존재
- ・ 따라서 데이터의 분포를 극단적으로 벗어난 값들에 대해 일정 범위 내 최댓값으로 변환함



### 🗫 03. 데이터 전처리

# 피처 엔지니어링

### ■ 공통 특성에 따른 피처 생성

| 상품 정보                                                                                                                                                                                                                                                                                                                                     | 고객 정보                                                                                                                                                     | 주문 정보                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| product_name, net_order_qty, net_order_amt                                                                                                                                                                                                                                                                                                | gender, age_grp                                                                                                                                           | scd, order_date                                                                                                                                        |
| <ul> <li>amt_per_qty: 구매 상품의 개당 가격</li> <li>top5: 매출 높은 5가지 상품 구매 여부</li> <li>bottom5: 매출 낮은 5가지 상품 구매 여부</li> <li>product_newyear: 설날 상품 구매 여부</li> <li>product_qty_max: 상품별 구매 개수의 최댓값</li> <li>net_order_amt_max_min: 상품별 구매 금액의 max-min</li> <li>qty_x_amt: 상품 개수 x 상품 가격</li> <li>cnt_order_mean: 구매품목수 x 구매 상품 개당 가격의 평균</li> </ul> | · age_qty_mean: 나이별 상품 수량의 평균<br>· age_qty_max: 나이별 상품 수량의 최댓값<br>· age_amt_mean: 나이별 상품 가격의 평균<br>· age_amt_max: 나이별 상품 가격의 최댓값<br>· gender+age: 성별 + 나이 | · day: 날짜<br>· day_label: 주차<br>· order_weekend: 주말 구매 여부<br>· holiday: 공휴일 구매 여부<br>· holiday_prev7d: 공휴일 일주일 전 구매 여부<br>· week for 10: 월 초중말(10일 단위) |



컬럼별 특성에 따라 3가지 관점(상품 정보, 고객 정보, 주문 정보)으로 분류한 후, 피처 생성



# 피처 엔지니어링

### Feature importance top 5



#### < Top 3 >

- 1. buy\_product\_cnt : 1인당 구매수량(scd별)
- 2. amt\_per\_qty\_mean : 구매상품의 개당 가격의 평균
- 3. net\_order\_amt : 상품 가격



공통점: Top3 모두 **상품 정보**와 관련된 피처



3가지 정보 중 **상품 정보에 가장 민감**하며, 특히 **수치형 변수**가 중요도에 많은 영향을 끼침



### 🗫 03. 데이터 전처리

# 피처 엔지니어링

### 구매자의 특성에 따른 product\_name의 세분화



| 구매자의 특성에 따른 product |               |                        |
|---------------------|---------------|------------------------|
| 1                   | brand         | 브랜드 표기 상품 구매 여부        |
| 2                   | 비비고           | 비비고 상품 구매 여부           |
| 3                   | 햇반            | 햇반 상품 구매 여부            |
| 4                   | 스팸            | 스팸 상품 구매 여부            |
| 5                   | 고메            | 고메 상품 구매 여부            |
| 6                   | 삼호            | 삼호 상품 구매 여부            |
| 7                   | 백설            | 백설 상품 구매 여부            |
| 8                   | head_employee | [임직원] 상품 구매 여부         |
| 9                   | 1box          | 1box 상품 구매 여부          |
| 10                  | Water         | (아이시스, 삼다수, 에비앙) 구매 여부 |
| 11                  | 닭가슴살          | 닭가슴살 구매 여부             |
| 12                  | Oil           | Oil 상품 구매 여부           |
| 13                  | mandu         | 만두 상품 구매 여부            |
| 14                  | hotdog        | 핫도그 상품 구매 여부           |

| 15 | soup          | 국, 탕, 찌개 상품 구매 여부    |
|----|---------------|----------------------|
| 16 | bab           | 볶음, 주먹, 비빔밥 상품 구매 여부 |
| 17 | fried         | 튀김 상품 구매 여부          |
| 18 | seaweed       | 김 상품 구매 여부           |
| 19 | auto_delivery | 자동배송 top10           |



|    | 원본 피처         |                               |                               |                 |                |
|----|---------------|-------------------------------|-------------------------------|-----------------|----------------|
| 1  | scd           | age_qty_sum                   | order_amt_max                 | product_newyear | order_qty_sum  |
| 2  | product_name  | age_qty_mean                  | order_amt_min                 | whether_rice    | order_qty_mean |
| 3  | net_order_qty | age_qty_max                   | order_amt_std                 | 비비고             | order_qty_max  |
| 4  | net_order_amt | age_qty_std                   | order_amt_lam                 | 햇반              | order_qty_std  |
| 5  | gender        | age_qty_lam                   | order_amt_max_x_order_qty_max | 스팸              | order_qty_lam  |
| 6  | age_grp       | age_amt_sum                   | amt_x_qty                     | 고메              | top5           |
| 7  | order_date    | age_amt_mean                  | net_order_amt_max-min         | 삼호              | order_weekend  |
| 8  |               | age_amt_max                   | amt_per_qty                   | 백설              | holiday        |
| 9  |               | age_amt_min                   | amt_per_qty_mean              | brand           | holiday_prev7d |
| 10 |               | age_amt_std                   | product_amt_mean              | 1box            | week for 10    |
| 11 |               | age_amt_lam                   | product_qty_max               | water           | soup           |
| 12 |               | age_order_mean x age_qty_mean | buy_product_cnt               | 닭가슴살            | bab            |
| 13 |               | age+gender                    | day                           | oil             | fried          |
| 14 |               | order_amt_sum                 | day_label                     | mandu           | kim            |
| 15 |               | order_amt_mean                | bottom5                       | hotdog          | auto_delivery  |

# 모델링

- ·데이터검증방법
- · 머신러닝 모델링
- · 딥러닝 모델링
- · 모델 시각화



# 데이터 검증 방법

### Data Split

- · Model Tuning으로 인한 과적합 방지 및 정확한 검증을 위해 Validation Dataset 구성
- · Validation dataset의 size는 0.3으로 설정

| 70%   | 30%              |        |
|-------|------------------|--------|
| Train | —— Validation —— | Test — |

#### Stratified-Kfold를 통한 교차검증

- · 분류 문제(O과 1로 예측)에 적합
- ㆍ데이터 레이블 분포의 균형성 회복
- · 임직원 dataset의 프라임회원 여부 비율은 약 6:4



# 머신러닝 모델링

Random Forest

| Dataset(임직원) | F1_Score |
|--------------|----------|
| train        | 0.845    |
| validation   | 0.866    |

| Dataset(비임직원) | F1_Score |
|---------------|----------|
| train         | 0.759    |
| validation    | 0.791    |

Why Forest Model?
· overfitting 예방 및 정확도 향상

· classification 모델에서 유용

LightGBM

| Dataset(임직원) | F1_Score |
|--------------|----------|
| train        | 0.873    |
| validation   | 0.874    |

| Dataset(비임직원) | F1_Score |
|---------------|----------|
| train         | 0.788    |
| validation    | 0.794    |

CatBoost

| Dataset(임직원) | F1_Score |
|--------------|----------|
| train        | 0.878    |
| validation   | 0.885    |

| Dataset(비임직원) | F1_Score |
|---------------|----------|
| train         | 0.799    |
| validation    | 0.819    |

#### Why Boosting Model?

- ・weight 조정 가능
- · 불균형 데이터에서 좋은 성능



# 딥러닝 모델링



| Dataset(임직원) | F1_Score |
|--------------|----------|
| train        | 0.743    |
| validation   | 0.709    |

| Dataset(비임직원) | F1_Score |
|---------------|----------|
| train         | 0.669    |
| validation    | 0.649    |

#### Why TabNet?

- · 학습 수행 시, 어떠한 feature에 집중할지를 모델이 스스로 결정
- 편향이 개입될 여지가 줄어듦



Predicted output (whether the income level >\$50k)

- · Transformer와 Tree 구조를 결합한 딥러닝 모델
- ㆍ정형 데이터를 처리하는 데 사용될 수 있는 최초의 딥러닝 모델



## 모델 시각화







- · 3가지 모델에 대한 Feature Importance를 확인한 결과, <mark>상품정보</mark>와 관련된 피처들의 중요도가 높게 다루어지는 것을 확인함
- 모든 모델들의 Top3 피처는 'amt\_per\_qty\_mean', 'buy\_product\_cnt', 'net\_order\_amt'로 동일함

결론



## 결론

#### 변수 측면

- · 모델들의 Feature Importance를 통해 알 수 있듯이, 상품 정보는 프라임 회원 예측에 중대한 영향을 미친다.
- ㆍ구매 수량이 증가하고 구매 가격이 높아질수록 프라임 회원일 가능성이 높아짐을 알 수 있다.
- ㆍ따라서, 상품 정보를 기반으로 의미 있는 피처를 적절히 생성한다면, 프라임 회원 여부를 예측하는데 효과적일 것이다.
- · 분석 결과에 따르면, 평균 개당 구매 가격이 낮은 소비자가 프라임 회원인 경향성을 보인다.
- · 즉 프라임 회원들은 다양한 할인 혜택을 받기 때문에, 평균 개당 구매 가격이 일반 회원에 비해 낮음을 확인할 수 있다.
- · 비임직원의 경우, 프라임 회원 중 40대 여성의 비율이 가장 높았으며, 일반회원 역시 40대 여성의 비율이 높았다.
- ㆍ즉 프라임 회원으로 전환 가능한 주요 타겟은 40대 여성이 될 것이다.



# 결론

#### 모델 측면

- · 보다 나은 성능을 위해서는 경량화 된 모델을 선택하는 것이 좋다.
- ㆍ 피처의 개수를 줄이거나 모델 구성을 단순화하여 과적합을 줄이는 방향으로 진행하는 것이 좋을 것으로 판단된다.
- ㆍ이를 통해 지금보다 가벼운 모델을 구축한다면, 예측 성능을 향상시키는데 효과적일 것으로 보인다.

# THANK YOU

김지은 - kimje1101@naver.com

김채원 - clkimcw@gmail.com

이현준 - dlguswns522@naver.com

천예은 - tpdk9556@naver.com