

Distributed Interlocking

Formal distributed protocol development for reservation of railway subsections

Paulius Stankaitis, Alexei Iliasov, Tsutomu Kobayashi, Yamine Ait-Ameur, Alexander Romanovsky, Fuyuki, Ishikawa

Newcastle University, UK
National Institute of Informatics, Japan
INPT-ENSEEIHT, France

School of Computing

Distributed Interlocking Concept and Problems

SAF₁ | A resource will not be allocated to different agents at the same time. SAF₂ | An agent will not be allocated a subset of its requested resources. LIV₁ | An agent must be eventually allocated requested set of resources. LIV₂ | Resource allocation must be guaranteed in the presence of message delays.

Figure: High-level systems safety and liveness requirements

2-Stage Distributed Interlocking Protocol

	r ₀	r ₁	r ₂	r ₃	
dl ₀	0	0	0	0	
	1	1	1	1	
dl ₁	2	2	2	2	dl_2
dl ₃	3	3	3	3	
	4	4	4	4	dl₄
	5	5	5	5	

Figure: Each dl_n only belongs to a single agent. Multiple distributed lanes can have the same index, but they cannot overlap (e.g. dl₁ and dl₂). Request pools are non compact structures.

Formal Distributed Interlocking Protocol Modelling and Verification

Figure: Multifaceted modelling and verification framework

Model	No. of POs	Aut. Discharged	Int. Discharged
context c ₀	0	0	0
context mes.	9	9	0
machine m ₀	12	12	0
machine m₁	23	21	2
machine m ₂	59	43	16
machine m ₃	43	32	11
machine m ₄	103	57	46
Total	249	174	75

Table: Event-B protocol model proof statistics

Summary

- Formally developed using Event-B mod. language.
- Subtle deadlock scenarios were discovered with the ProB model checker.
- Correctness and deadlock freedom was proved by discharging proof obligations.
- Stage 1 was probabilistically simulated with PRISM model checker.
- Stage 1's performance was stochastically assessed.