Федеральное государственное автономное образовательное учреждение высшего образования Национальный исследовательский университет ИТМО

Факультет программной инженерии и компьютерной техники

Вычислительная математика
Лабораторная работа №6
Вариант № 1

Выполнил: студент группы Р3208, Васильев Н. А.

Преподаватель: Машина Е.А.

Текст задания

Численное решение обыкновенных дифференциальных уравнений.

Цель работы

Решить задачу Коши для обыкновенных дифференциальных уравнений численными методами.

Описание метода, расчётные формулы

$$Y(x_{i} + h) = Y(x_{i}) + Y'(x_{i}) \cdot h + O(h^{2})$$

$$y_{i+1} = y_{i} + hf(x_{i}, y_{i})$$

$$y_{1} = y_{0} + hf(x_{0}, y_{0})$$

$$y_{n} = y_{n-1} + hf(x_{n-1}, y_{n-1})$$

$$y'(x_{i}) = \lim_{\Delta x} \frac{\Delta y(x_{i})}{\Delta x} = \lim_{x_{i+1} \to x_{i}} \frac{y(x_{i+1}) - y(x_{i})}{x_{i+1} - x_{k}} = \lim_{h \to 0} \frac{y_{i+1} - y_{i}}{h} \approx \frac{y_{i+1} - y_{i}}{h}$$

$$y_{i+1} = y_{i} + \frac{1}{6}(k_{1} + 2k_{2} + 2k_{3} + k_{4}),$$

$$k_{1} = h \cdot f(x_{i}, y_{i})$$

$$k_{2} = h \cdot f(x_{i} + \frac{h}{2}, y_{i} + \frac{k_{1}}{2})$$

$$k_{3} = h \cdot f(x_{i} + \frac{h}{2}, y_{i} + \frac{k_{2}}{2})$$

$$k_{4} = h \cdot f(x_{i} + h, y_{i} + k_{3})$$

$$\Delta f_{i} = f_{i} - 2f_{i-1} + f_{i-2}$$

$$\Delta^{3} f_{i} = f_{i} - 3f_{i-1} + 3f_{i-2} - f_{i-3}$$

$$y_{i+1} = y_i + hf_i + \frac{h^2}{2}\Delta f_i + \frac{5h^3}{12}\Delta^2 f_i + \frac{3h^4}{8}\Delta^3 f_i$$

Листинг программы

```
import math
from examples import ODU
class Calculation:
    def __init__(self, equation, initial, start, finish, h, accuracy):
        self.equation = equation
        self.initial = initial
        self.start = start
        self.finish = finish
        self.h = h
        self.accuracy = accuracy
    def euler(self):
        x = self.start
        y = self.initial
        results = [(0, x, y, self.equation(x, y))]
        n = int((self.finish - self.start) / self.h)
        for i in range(1, n + 1):
            y += self.h * self.equation(x, y)
            x = self.start + i * self.h
            results.append((i, x, y, self.equation(x, y)))
        return results
    def runge_kutt(self):
        n = int((self.finish - self.start) / self.h)
        x = self.start
        y = self.initial
        k1 = self.h * self.equation(x, y)
        k2 = self.h * self.equation(x + self.h / 2, y + k1 / 2)
        k3 = self.h * self.equation(x + self.h / 2, y + k2 / 2)
        k4 = self.h * self.equation(x + self.h, y + k3)
        results = [(0, x, y, k1, k2, k3, k4)]
        for i in range(1, n + 1):
            k1 = self.h * self.equation(x, y)
            k2 = self.h * self.equation(x + self.h / 2, y + k1 / 2)
            k3 = self.h * self.equation(x + self.h / 2, y + k2 / 2)
            k4 = self.h * self.equation(x + self.h, y + k3)
            results.append((i, x + self.h, y + (k1 + 2 * k2 + 2 * k3 + k4) /
6, k1, k2, k3, k4))
            y += (k1 + 2 * k2 + 2 * k3 + k4) / 6
            x += self.h
        return results
    def adams(self):
        n = int((self.finish - self.start) / self.h)
        x_vals = [self.start + i * self.h for i in range(n + 1)]
```

```
y_vals = [0.0] * (n + 1)
        rk = self.runge_kutt()
        for i in range(4):
            _, xi, yi, *_ = rk[i]
            x_vals[i] = xi
            y_vals[i] = yi
        for i in range(3, n):
            f0 = self.equation(x_vals[i], y_vals[i])
            f1 = self.equation(x_vals[i - 1], y_vals[i - 1])
            f2 = self.equation(x_vals[i - 2], y_vals[i - 2])
            f3 = self.equation(x_vals[i - 3], y_vals[i - 3])
            y_vals[i + 1] = (
                    y_vals[i]
                    + self.h * (55 * f0 - 59 * f1 + 37 * f2 - 9 * f3) / 24
            )
        results = []
        for i in range(n + 1):
            fxy = self.equation(x_vals[i], y_vals[i])
            results.append((i, x_vals[i], y_vals[i], fxy))
        return results
    def exact_solution(self, x):
        if self.equation.__code__.co_code == ODU[0].__code__.co_code:
            return -math.exp(x) / (x * math.exp(x) - (
                    self.start * math.exp(self.start) * self.initial +
math.exp(self.start)) / self.initial)
        elif self.equation.__code__.co_code == ODU[1].__code__.co_code:
            return (math.exp(self.start) * self.initial + (-self.start ** 2 +
2 * self.start - 2) * math.exp(
                self.start)) / (math.exp(x)) + x ** 2 - 2 * x + 2
        elif self.equation.__code__.co_code == ODU[2].__code__.co_code:
            return (2 * math.exp(self.start) * self.initial - math.exp(2 *
self.start)) / (2 * math.exp(x)) + (
                        math.exp(x) / 2)
        else:
            raise NotImplementedError("Точное решение не определено для этого
уравнения.")
    def error_adams_vs_exact(self):
        adams_results = self.adams()
        return max(abs(self.exact_solution(x) - y) for (_, x, y, *_rest) in
adams_results)
    def error_runge_rule_euler(self):
        def method(step):
            calc = Calculation(self.equation, self.initial, self.start,
self.finish, step, self.accuracy)
            return calc.euler()
        coarse = method(self.h)
```

```
fine = method(self.h / 2)
        errors = [
           abs(y1 - y2)
           for (_, x1, y1, *_), (_, x2, y2, *_) in zip(coarse, fine[::2])
           if abs(x1 - x2) < 1e-8
        ]
        return max(errors) / (2 ** 1 - 1)
    def error_runge_rule_rk4(self):
        def method(step):
           calc = Calculation(self.equation, self.initial, self.start,
self.finish, step, self.accuracy)
           return calc.runge_kutt()
        coarse = method(self.h)
        fine = method(self.h / 2)
        errors = [
           abs(y1 - y2)
           for (_, x1, y1, *_), (_, x2, y2, *_) in zip(coarse, fine[::2])
           if abs(x1 - x2) < 1e-8
        return max(errors) / (2 ** 4 - 1)
Примеры и результаты работы программы
Пример 1: Функция ln(x) на интервале [1; 4], разбиение на 10 точек, точка интерполяции
Начальный y_0=y(x_0): -1
Начальную границу интервала: 1
Конечную границу интервала: 1.5
Шаг: 0.1
Точность: 0.01
Решение методом Эйлера:
_____
| i | x | y | f(x, y) |
_____
0 | 1.000000 | -1.000000 | 1.000000 |
| 1 | 1.100000 | -0.900000 | 0.801000 |
```

```
| 2 | 1.200000 | -0.819900 | 0.659019 |

| 3 | 1.300000 | -0.753998 | 0.553582 |

| 4 | 1.400000 | -0.698640 | 0.472795 |

| 5 | 1.500000 | -0.651360 | 0.409316 |
```

Погрешность метода Эйлера (правило Рунге): 0.008266163763751444

Решение методом Рунге-Кутта 4-го порядка:

	i		X		y		k1		k2		k3		k4						
	0		1.0	0000	00	-1.0	00000	0	.1000	000	0.0	9001	12	0.09)1463		0.08	2489	
	1		1.1	0000	00	-0.9	09093	0	.1000	000	0.0	9001	12	0.09	1463		0.08	2489	
	2		1.2	0000	00	-0.8	33337	0	.0826	545	0.0	7512	24	0.07	6154		0.06	9339	
	3		1.3	0000	00	-0.7	69234	0	.0694	145	0.0	6364	10	0.06	4395		0.05	9098	
	4		1.4	0000	00	-0.7	14289	0	.0591	173	0.0	5459	99	0.05	5166		0.05	0968	
	5		1.5	0000	00	-0.6	66670	0	.0510)21	0.0	4735	54	0.04	7790		0.04	4405	

Погрешность метода Рунге-Кутта (правило Рунге):

2.339298935079744e-07

Решение методом Адамса:

i x y (corrector)	f(x,y)	
0 1.000000 -1.000000	1.000000	
1 1.100000 -0.909093	0.826453	
2 1.200000 -0.833337	0.694454	
3 1.300000 -0.769234	0.591725	
4 1.400000 -0.714439	0.510577	
5 1.500000 -0.666828	0.444821	

Погрешность метода Адамса (сравнение с точным решением): 0.00016150509790202605

Пример 2: $y' = x^2 - y$ Начальный $y_0 = y(x_0)$: 1

Начальную границу интервала: 3

Конечную границу интервала: 6

Шаг: 0.2

Точность: 0.01

Решение методом Эйлера:								
i x y f(x, y)								
0 3.000000 1.000000 8.000000								
1 3.200000 2.600000 7.640000								
2 3.400000 4.128000 7.432000								
3 3.600000 5.614400 7.345600								
4 3.800000 7.083520 7.356480								
5 4.000000 8.554816 7.445184								
6 4.200000 10.043853 7.596147								
7 4.400000 11.563082 7.796918								
8 4.600000 13.122466 8.037534								
9 4.800000 14.729973 8.310027								
10 5.000000 16.391978 8.608022								
11 5.200000 18.113582 8.926418								
12 5.400000 19.898866 9.261134								
13 5.600000 21.751093 9.608907								

| 14 | 5.800000 | 23.672874 | 9.967126 | | 15 | 6.000000 | 25.666299 | 10.333701 | Погрешность метода Эйлера (правило Рунге): 0.06837509666421937 Решение методом Рунге-Кутта 4-го порядка: _____ | i | x | y | k1 | k2 | k3 | k4 | 0 | 3.000000 | 1.000000 | 1.600000 | 1.562000 | 1.565800 | 1.534840 | | 1 | 3.200000 | 2.565073 | 1.600000 | 1.562000 | 1.565800 | 1.534840 | ------| 2 | 3.400000 | 4.078715 | 1.534985 | 1.511487 | 1.513837 | 1.496218 | | 3 | 3.600000 | 5.564749 | 1.496257 | 1.484631 | 1.485794 | 1.479098 | | 4 | 3.800000 | 7.042682 | 1.479050 | 1.477145 | 1.477336 | 1.479583 | | 5 | 4.000000 | 8.528482 | 1.479464 | 1.485517 | 1.484912 | 1.494481 | -----| 6 | 4.200000 | 10.035226 | 1.494304 | 1.506873 | 1.505616 | 1.521180 | | 7 | 4.400000 | 11.573618 | 1.520955 | 1.538859 | 1.537069 | 1.557541 | | 8 | 4.600000 | 13.152423 | 1.557276 | 1.579549 | 1.577322 | 1.601812 | -----

9 | 4.800000 | 14.778816 | 1.601515 | 1.627364 | 1.624779 | 1.652560 |

10	5.000000	16.458674	1.652237	1.681013	1.678135	1.708610
11	5.200000	18.196805	1.708265	1.739439	1.736321	1.769001
12	5.400000	19.997148	1.768639	1.801775	1.798462	1.832947
13	5.600000	21.862928	1.832570	1.867313	1.863839	1.899803
14	5.800000	23.796784	1.899414	1.935473	1.931867	1.969041
15	6.000000	25.800877	1.968643	2.005779	2.002065	2.040230

Погрешность метода Рунге-Кутта (правило Рунге):

1.5995649121691712e-06

Решение методом Адамса:

i	x	y (corrector)	f(x,y)
0	3.000000	1.000000	8.000000
1	3.200000	2.565073	7.674927
2	3.400000	4.078715	7.481285
3	3.600000	5.564749	7.395251
4	3.800000	7.042376	7.397624
5	4.000000	8.528066	7.471934

6 4.200000 10.034643	•		
7 4.400000 11.573021		7.786979	
8 4.600000 13.151777		8.008223	
9 4.800000 14.778205		8.261795	
10 5.000000 16.458068		8.541932	
11 5.200000 18.196249		8.843751	
12 5.400000 19.996622		9.163378	
13 5.600000 21.862454			
14 5.800000 23.796347			
15 6.000000 25.800488			

Погрешность метода Адамса (сравнение с точным решением): 0.0006366995496520644

Вывод

В ходе лабораторной работы были реализованы и сравнены три численных метода решения задачи Коши для ОДУ с заданным начальным условием.