

Art of Problem Solving

1993 Iran MO (3rd Round)

National Math Olympiad (3rd Round) 1993

- Prove that there exist infinitely many positive integers which can't be represented as sum of less than 10 odd positive integers' perfect squares.
- In the figure below, area of triangles AOD, DOC, and AOB is given. Find the area of triangle OEF in terms of area of these three triangles.

4	Prove that there exists a subset S of positive integers such that we can represent each positive integer as difference of two elements of S in exactly one way.
5	In a convex quadrilateral $ABCD$, diagonals AC and BD are equal. We construct four equilateral triangles with centers O_1, O_2, O_3, O_4 on the sides sides AB, BC, CD, DA outside of this quadrilateral, respectively. Show that $O_1O_3 \perp O_2O_4$.
6	Let $x_1, x_2,, x_{12}$ be twelve real numbers such that for each $1 \le i \le 12$, we have $ x_i \ge 1$. Let $I = [a, b]$ be an interval such that $b - a \le 2$. Prove that number of the numbers of the form $t = \sum_{i=1}^{12} r_i x_i$, where $r_i = \pm 1$, which lie inside the interval I , is less than 1000.

www.artofproblemsolving.com/community/c3483

Contributors: Amir Hossein