CPSC 661: Sampling Algorithms in ML

Andre Wibisono

March 10, 2021

Yale University

Last time

- I. Classical theory of sampling
 - Reversible Markov chain
 - Spectral gap ⇔ Conductance
 - Mixing time bound via s-conductance
 - Metropolis-Hastings algorithm: MRW and MALA
 - Mixing time: $\tilde{O}(n^2\kappa^2)$ for MRW, $\tilde{O}(n^2\kappa)$ for MALA

Today: Optimization and dynamics

A universal language for describing and achieving goal

1. Computer Science: Greedy algorithms

Modeling:

- engineering (performance, cost)
- economics (utility, reward)
- biology (food, reproduction)
- psychology (happiness?)

- ...

2. **Machine Learning:** Learning from data as optimization of objective function which encodes the goal

- Large-scale, high-dimensional, noisy data
- Classical models ⇒ convex objectives
- Neural networks, variational inference ⇒ non-convex
- Some hidden convexity via parameterization, manifold

- 3. Can come from randomness (statistical physics)
 - As temperature \rightarrow 0, ensemble \rightarrow ground state (lowest energy)
 - Annealing: Optimization via sampling from zero-noise distribution

4. **Physics:** Newton's Law: Force = mass \times acceleration

$$m\ddot{X}_t = -\nabla U(X_t)$$

• Conserves energy (Hamiltonian): $\mathcal{H} = \frac{m}{2} ||\dot{X}_t||^2 + U(X_t)$

eg.
$$U(x) = \frac{1}{2} ||x||^2$$

Hamiltonian flow:
$$x_t = V_t$$

$$v_t = -\frac{1}{m} x_t$$

4. **Physics:** Newton's Law: Force = mass \times acceleration

$$m\ddot{X}_t = -\nabla U(X_t)$$

• Conserves energy (Hamiltonian): $\mathcal{H} = \frac{m}{2} ||\dot{X}_t||^2 + U(X_t)$ (t, x)

Principle of least action: Curve minimizes action ,

$$A = \int_{t_0}^{t_1} \mathcal{L}(X_t, \dot{X}_t) dt$$
 (to, X)

where
$$\mathcal{L}(X_t, \dot{X}_t) = \frac{m}{2} ||\dot{X}_t||^2 - U(X_t)$$
 is the Lagrangian s.t. $X_t = X_t$

- Captures intrinsic geometry, covariant representation
- Governs all physics: Electromagnetism, relativity, quantum, ...

- 5. Randomness: Random walk, Brownian motion
 - Pure exploration, no objective

- 5. Randomness: Random walk, Brownian motion
 - Pure exploration, no objective
 - This is maximizing *entropy* (a measure of randomness)
 - * Entropy increases along Brownian motion
 - * Brownian motion (heat flow) is gradient flow of —entropy
 - Also in discrete space: Random walk on graph

Exercise: What is *not* optimization?

Given a space \mathcal{X} and an objective function $f: \mathcal{X} \to \mathbb{R}$

Want to find minimizer

$$x^* = \arg\min_{x \in \mathcal{X}} f(x)$$

Given a space \mathcal{X} and an objective function $f: \mathcal{X} \to \mathbb{R}$

Want to find minimizer

$$x^* = \arg\min_{x \in \mathcal{X}} f(x)$$

- Or find \tilde{x} such that $f(\tilde{x}) f(x^*) \le \epsilon$ or $d(\tilde{x}, x^*) \le \epsilon$
- In the worst case can be NP-hard (exponential time)
- With some structures (e.g. convexity) we can solve efficiently
- For now $\mathcal{X} = \mathbb{R}^n$, but also for manifold

Dynamics

A **dynamics** on \mathbb{R}^n is determined by a vector field $\phi \colon \mathbb{R}^n \to \mathbb{R}^n$

From any $X_0 \in \mathbb{R}^n$, generate a *flow* $(X_t)_{t \ge 0}$ following:

$$\dot{X}_t = \phi(X_t)$$

Dynamics

A **dynamics** on \mathbb{R}^n is determined by a vector field $\phi \colon \mathbb{R}^n \to \mathbb{R}^n$

From any $X_0 \in \mathbb{R}^n$, generate a flow $(X_t)_{t \geq 0}$ following:

$$\dot{X}_t = \phi(X_t)$$
 (*)

• What does this mean? For small dt: $X_{t+dt} = X_t + \phi(X_t) dt + O(\mathcal{K}^2)$ (in discrete time many implementations, different performance)

• Chain rule:
$$\nabla f(\mathbf{x}) = \left(\frac{\partial f(\mathbf{x})}{\partial x_t}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_n}\right)$$

$$\frac{d}{dt} f(X_t) = \langle \nabla f(X_t), \dot{X}_t \rangle \stackrel{\text{(*)}}{=} \langle \nabla f(X_t), \phi(X_t) \rangle$$

$$f(\mathbf{x}_t) \in \mathbb{R}$$

$$\mathbf{X}_t \in \mathbb{R}^n$$

Dynamics for Optimization

$$\min_{x \in \mathbb{R}^n} f(x)$$

1. Gradient flow:

$$\dot{X}_t = -\nabla f(X_t)$$

2. Heavy ball / accelerated gradient flow: (Polyak, Nesterov, ...)

$$\ddot{X}_t + \gamma \dot{X}_t + \nabla f(X_t) = 0$$

9

Gradient flow

$$\frac{d}{dt}X_{t} = \dot{X}_{t} = -\nabla f(X_{t})$$
(in time)

- First-order dynamics
- Greedy:

$$-\nabla f(x) = \underset{\text{ve } \mathbb{R}^n}{\text{prin}} \left\{ \left\langle \nabla f(x), V \right\rangle + \frac{1}{2} \|V\|^2 \right\}$$

• Descent method:

$$\frac{d}{dt}f(X_t) = \langle \nabla f(x_t), \hat{X}_t \rangle$$

$$= - || \nabla f(x_t)||^2$$

$$\leq 0$$

Gradient flow

$$\dot{X}_t = -\nabla f(X_t)$$

- First-order dynamics
- Greedy:

$$-\nabla f(X_t) = \arg\min_{v \in \mathbb{R}^n} \left\{ \langle \nabla f(X_t), v \rangle + \frac{1}{2} \|v\|^2 \right\}$$

Descent method:

$$\frac{d}{dt}f(X_t) = \langle \nabla f(X_t), \dot{X}_t \rangle = -\|\nabla f(X_t)\|^2 \le 0$$

Example: Quadratic

$$x = \mathbb{R}^n$$
Let $f(x) = \frac{1}{2}x^{\top}Ax$ for some $A \succeq 0$
 $\nabla f(x) = Ax$

Gradient flow:

$$\dot{X}_t = -AX_t$$
 $\Rightarrow x_t = e^{-At} x_0$

matrix

exponential

$$e^{At} = I + tA + \frac{t^2}{2!}A^2 + \frac{t^3}{3!}A^3 + \dots$$

• far
$$n=1$$
: $Xt \in \mathbb{R}$, $A \ge 0$
 $\dot{X}_t = -AXt \iff \frac{d}{dt} \log Xt = \frac{\dot{X}_t}{Xt} = -A$

note: in general, any A EIRⁿxn con be wriften A = Asyon + Aant Where Asym = Asym and April = - April and $f(x) = \frac{1}{2} x^T A x$ = 1 x (Asym + Acnt) x = + XTAsym X because $x^T A_{ant} x = 0$

Example: Quadratic

Let
$$f(x) = \frac{1}{2}x^{\top}Ax$$
 for some $A \succeq 0$

Gradient flow:

where x^* is the projection of X_0 to the kernel of A

Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable and $x^* = \arg\min_{x \in \mathbb{R}^n} f(x)$

1. f is α -strongly convex if

$$(\nabla f(x) - \nabla f(y))^{\top}(x - y) \ge \alpha \|x - y\|^{2}$$

$$\Leftrightarrow \nabla^{2} f(x) \succeq \alpha I$$

$$\Leftrightarrow \forall \text{ vere: } \forall^{T} \nabla^{2} f(x) \lor \Rightarrow \forall^{T} (AI) \lor = A \|v\|^{2}$$

d=0: f is weakly convex

Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable and $x^* = \arg\min_{x \in \mathbb{R}^n} f(x)$

1. f is α -strongly convex if

$$(\nabla f(x) - \nabla f(y))^{\top} (x - y) \ge \alpha ||x - y||^2$$

$$\Leftrightarrow \nabla^2 f(x) \ge \alpha I$$

2. f is α -gradient dominated if

$$\|\nabla f(x)\|^2 \ge 2\alpha (f(x) - f(x^*))$$

(also known as Polyak-Łojaciewicz inequality)

Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable and $x^* = \arg\min_{x \in \mathbb{R}^n} f(x)$

1. f is α -strongly convex if

$$(\nabla f(x) - \nabla f(y))^{\top} (x - y) \ge \alpha ||x - y||^2$$

$$\Leftrightarrow \nabla^2 f(x) \ge \alpha I$$

2. f is α -gradient dominated if

$$\|\nabla f(x)\|^2 \ge 2\alpha (f(x) - f(x^*))$$

(also known as Polyak-Łojaciewicz inequality)

3. f has α -sufficient growth if

$$f(x) - f(x^*) \ge \frac{\alpha}{2} ||x - x^*||^2$$

Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable and $x^* = \arg\min_{x \in \mathbb{R}^n} f(x)$

1. f is α -strongly convex if

$$(\nabla f(x) - \nabla f(y))^{\top} (x - y) \ge \alpha ||x - y||^2$$

$$\Leftrightarrow \nabla^2 f(x) \ge \alpha I$$

2. f is α -gradient dominated if

$$\|\nabla f(x)\|^2 \ge 2\alpha (f(x) - f(x^*))$$

(also known as Polyak-Łojaciewicz inequality)

3. f has α -sufficient growth if

$$f(x) - f(x^*) \ge \frac{\alpha}{2} ||x - x^*||^2$$

Theorem: $(1) \Rightarrow (2) \Rightarrow (3)$

Example: Quadratic

Let
$$f(x) = \frac{1}{2}x^{\top}Ax$$
 for some $A \succeq 0$

If A has eigenvalues $\lambda_1 \geq \cdots \geq \lambda_m > 0 = \lambda_{m+1} = \cdots = \lambda_n$, then:

- 1. f is strongly convex with $\alpha = \lambda_n = 0$ $\ll_{sc} = \lambda_{min}(\nabla^2 f(x)) = \lambda_{min}(A)$
- 2. f is gradient dominated with $\alpha = \lambda_m > 0$
- 3. f has sufficient growth with $\alpha = \lambda_m > 0$

Convergence Rates

Theorem

1. If f is α -strongly convex, then gradient flow has exponential contraction: For $\dot{X}_t = -\nabla f(X_t)$, $\dot{Y}_t = -\nabla f(Y_t)$,

$$||X_t - Y_t||^2 \le e^{-2\alpha t} ||X_0 - Y_0||^2$$

2. If f is α -gradient dominated, then along gradient flow:

$$\frac{d}{2} \|X_t - X^*\|^2 \le f(X_t) - f(X^*) \le e^{-2\alpha t} (f(X_0) - f(X^*))$$

3. If f is convex and has α -sufficient growth, along gradient flow:

$$||X_t - x^*||^2 \le e^{-\alpha t} ||X_0 - x^*||^2$$

Proof

1. Consider
$$\dot{x}_t = -\nabla f(x_t)$$
 $\dot{Y}_t = -\nabla f(Y_t)$
 $\dot{Y}_t = -\nabla f(Y_t)$

Compute: $\frac{d}{dt} \| X_t - Y_t\|^2 = 2 \langle X_t - Y_t, \dot{X}_t - \dot{Y}_t \rangle$

$$= -2 \langle X_t - Y_t, \nabla f(X_t) - \nabla f(Y_t) \rangle$$

$$= -2 \langle X_t - Y_t, \nabla f(X_t) - \nabla f(Y_t) \rangle$$

$$= -2 \langle X_t - Y_t, \nabla f(X_t) - \nabla f(Y_t) \rangle$$

$$= -2 \langle X_t - Y_t, \nabla f(X_t) - \nabla f(Y_t) \rangle$$

$$= -2 \langle X_t - Y_t, \nabla f(X_t) - \nabla f(Y_t) \rangle$$

$$= -2 \langle X_t - Y_t, \nabla f(X_t) - \nabla f(Y_t) \rangle$$

$$= -2 \langle X_t - Y_t, \nabla f(X_t) - \nabla f(Y_t) \rangle$$

$$= -2 \langle X_t - Y_t, \nabla f(X_t) - \nabla f(Y_t) \rangle$$

$$= -2 \langle X_t - Y_t, \nabla f(X_t) - \nabla f(Y_t) \rangle$$

$$= -2 \langle X_t - Y_t, \nabla f(X_t) - \nabla f(Y_t) \rangle$$

$$= -2 \langle X_t - Y_t, \nabla f(X_t) - \nabla f(Y_t) \rangle$$

$$= -2 \langle X_t - Y_t, \nabla f(X_t) - \nabla f(Y_t) \rangle$$

$$= -2 \langle X_t - Y_t, \nabla f(X_t) - \nabla f(Y_t) \rangle$$

$$= -2 \langle X_t - Y_t, \nabla f(X_t) - \nabla f(Y_t) \rangle$$

$$= -2 \langle X_t - Y_t, \nabla f(X_t) - \nabla f(Y_t) \rangle$$

$$= -2 \langle X_t - Y_t, \nabla f(X_t) - \nabla f(Y_t) \rangle$$

$$= -2 \langle X_t - Y_t, \nabla f(X_t) - \nabla f(Y_t) \rangle$$

$$= -2 \langle X_t - Y_t, \nabla f(X_t) - \nabla f(Y_t) \rangle$$

$$= -2 \langle X_t - Y_t, \nabla f(X_t) - \nabla f(Y_t) \rangle$$

$$= -2 \langle X_t - Y_t, \nabla f(X_t) - \nabla f(Y_t) \rangle$$

$$= -2 \langle X_t - Y_t, \nabla f(X_t) - \nabla f(Y_t) \rangle$$

$$= -2 \langle X_t - Y_t, \nabla f(X_t) - \nabla f(Y_t) \rangle$$

$$= -2 \langle X_t - Y_t, \nabla f(X_t) - \nabla f(Y_t) \rangle$$

$$= -2 \langle X_t - Y_t, \nabla f(X_t) - \nabla f(Y_t) \rangle$$

$$= -2 \langle X_t - Y_t, \nabla f(X_t) - \nabla f(Y_t) \rangle$$

$$= -2 \langle X_t - Y_t, \nabla f(X_t) - \nabla f(Y_t) \rangle$$

$$= -2 \langle X_t - Y_t, \nabla f(X_t) - \nabla f(Y_t) \rangle$$

$$= -2 \langle X_t - Y_t, \nabla f(X_t) - \nabla f(Y_t) \rangle$$

$$= -2 \langle X_t - Y_t, \nabla f(X_t) - \nabla f(Y_t) \rangle$$

$$= -2 \langle X_t - Y_t, \nabla f(X_t) - \nabla f(Y_t) \rangle$$

$$= -2 \langle X_t - Y_t, \nabla f(X_t) - \nabla f(Y_t) \rangle$$

$$= -2 \langle X_t - Y_t, \nabla f(X_t) - \nabla f(Y_t) \rangle$$

$$= -2 \langle X_t - Y_t, \nabla f(X_t) - \nabla f(X_t) \rangle$$

$$= -2 \langle X_t - Y_t, \nabla f(X_t) - \nabla f(X_t) \rangle$$

$$= -2 \langle X_t - Y_t, \nabla f(X_t) - \nabla f(X_t) \rangle$$

$$= -2 \langle X_t - Y_t, \nabla f(X_t) - \nabla f(X_t) \rangle$$

$$= -2 \langle X_t - Y_t, \nabla f(X_t) - \nabla f(X_t) \rangle$$

$$= -2 \langle X_t - Y_t, \nabla f(X_t) - \nabla f(X_t) \rangle$$

$$= -2 \langle X_t - Y_t, \nabla f(X_t) - \nabla f(X_t) \rangle$$

$$= -2 \langle X_t - Y_t, \nabla f(X_t) - \nabla f(X_t) \rangle$$

$$= -2 \langle X_t - Y_t, \nabla f(X_t) - \nabla f(X_t) \rangle$$

$$= -2 \langle X_t - Y_t, \nabla f(X_t) - \nabla f(X_t) \rangle$$

$$= -2 \langle X_t - Y_t, \nabla f(X_t) - \nabla f(X_t) \rangle$$

$$= -2 \langle X_t - Y_t, \nabla f(X_t) - \nabla f(X_t) \rangle$$

$$= -2 \langle X_t - Y_t, \nabla f(X_t) - \nabla f(X_t) \rangle$$

$$= -2 \langle X$$

2. Compute:

$$\frac{d}{dt} \left(f(X_{t}) - f(X_{t}^{k}) \right) = \left\langle \nabla f(X_{t}), X_{t} \right\rangle$$

$$= - ||\nabla f(X_{t})||^{2} \quad \text{since } X_{t} = - \nabla f(X_{t}^{k})$$

$$\leq -2\alpha \left(f(X_{t}^{k}) - f(X_{t}^{k}) \right) \quad \text{by gread-dominated}$$

then we are done (by Georwall inequality):

$$f(x_e) - f(x^n) \leq e^{-2\alpha t} (f(x_o) - f(x^n))$$

3. Compute

$$\frac{d}{dt} \| x_{\epsilon} - x^{*} \|^{2} = 2 \langle x_{\epsilon} - x^{*}, \dot{x}_{\epsilon} \rangle$$

$$= -2 \langle x_{\epsilon} - x^{*}, \nabla f(x_{\epsilon}) \rangle$$

$$\leq -2 (f(x_{\epsilon}) - f(x^{*})) \quad \text{by convexity of } f$$

$$\leq -\alpha \| x_{\epsilon} - x^{*} \|^{2}$$

$$\Rightarrow$$
 then $\|X_t - x^*\|^2 \le e^{-\alpha t} \|X_0 - x^*\|^2$

Optimization references

- Boyd and Vandenberghe, Convex Optimization, Cambridge University
 Press, 2004, available at https://web.stanford.edu/~boyd/cvxbook
- Nesterov, Lectures on Convex Optimization, Springer, 2004
- Nocedal and Wright, Numerical Optimization, Springer, 2006
- Vishnoi, Algorithms for Convex Optimization, available at https://convex-optimization.github.io
 CPSC 463: Algorithms for Continuous Optimization, Fall 2021
- Recht, Optimization, Big Data Bootcamp at Simons Institute, 2013, https://simons.berkeley.edu/talks/ben-recht-2013-09-04
- Boyd, Convex Optimization, Lecture videos for EE 364A at Stanford,
 2008, https://www.youtube.com/watch?v=McLq1hEq3UY