Gandaki University

Manju Subedi

Bachelor of Information Technology BSM 102

Exercise on Infinite Series

- 1. Find the sum of the series $\sum_{n=0}^{\infty} x^n$, where |x| < 1
- 2. Consider the series $\sum_{n=0}^{\infty} \frac{n}{(n+1)!}$ (a) Find the partial sums s_1, s_2, s_3, s_4 , Do you recognize the denominators? Use the patterns to guess a formuls for s_n
 - b) Show that the given infinite series is convergent and find its sum.
- 3. Determine whether the series is covergent or divergent. If it is convergent, find its sum.

(a)
$$\sum_{n=1}^{\infty} \frac{3^n + 2^n}{6^n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{2^{n-1}} - \frac{2}{3^{n-1}}$$

(c)
$$\sum_{n=1}^{\infty} 3^{-n} 8^{n+1}$$

(d)
$$\sum_{n=1}^{\infty} \frac{-3^{n-1}}{4^n}$$

(e)
$$\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1}$$

(f)
$$\sum_{n=1}^{\infty} \frac{1}{e^{2n}}$$

4. Determine if the following series is convergent or divergent

$$a) \quad \sum_{n=0}^{\infty} \frac{n+2}{2n+7}$$

b)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n^2 + 1}$$

a)
$$\sum_{n=0}^{\infty} \frac{n+2}{2n+7}$$
 b) $\sum_{n=0}^{\infty} \frac{(-1)^n}{n^2+1}$ c) $\sum_{n=1}^{\infty} \frac{9^n}{(-2)^{n+1}n}$

d)
$$\sum_{n=0}^{\infty} \frac{(\pi + \pi i)^{2n+1}}{(2n+1)!}$$
 e) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{2n}}$ f) $\sum_{n=0}^{\infty} \frac{(-1)^n (1+i)^{2n}}{(2n)!}$

e)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{2n}}$$

f)
$$\sum_{n=0}^{\infty} \frac{(-1)^n (1+i)^{2n}}{(2n)!}$$

g)
$$\sum_{n=1}^{\infty} \frac{(3i)^n n}{n^n}$$

h)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

g)
$$\sum_{n=1}^{\infty} \frac{(3i)^n n!}{n^n}$$
 h) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ i) $\sum_{n=0}^{\infty} \frac{n+i}{3n^2+2i}$

1

j)
$$\sum_{n=0}^{\infty} \frac{(20+30i)^n}{n!}$$
 k) $\sum_{n=2}^{\infty} \frac{(-i)^n}{\ln n}$ l) $\sum_{n=1}^{\infty} n^2 \left(\frac{1}{4}\right)^n$

k)
$$\sum_{n=2}^{\infty} \frac{(-i)^n}{\ln n}$$

1)
$$\sum_{n=1}^{\infty} n^2 \left(\frac{1}{4}\right)^n$$

$$m) \quad \sum_{n=0}^{\infty} \frac{i^n}{n^2 - i}$$

$$n) \qquad \sum_{n=1}^{\infty} \left(\frac{n-1}{2n+3} \right)^{n}$$

m)
$$\sum_{n=0}^{\infty} \frac{i^n}{n^2 - i}$$
 n) $\sum_{n=1}^{\infty} \left(\frac{n-1}{2n+3}\right)^n$ o) $\sum_{n=1}^{\infty} \left(\frac{2n^2 - 1}{n^2 + 3}\right)^n$

p)
$$\sum_{n=1}^{\infty} \frac{(\ln n)^{2n}}{n^n}$$
 q) $\sum_{n=1}^{\infty} \frac{n}{2^n}$

$$\sum_{n=1}^{\infty} \frac{n}{2^n}$$

- 5. Find the center, radius and interval of convergence of the power series
 - (a) $\sum_{n=1}^{\infty} 2^n (z-1)^n$
 - (b) $\sum_{n=1}^{\infty} \frac{(z-2i)^n}{5^n}$

 - (c) $\sum_{n=1}^{\infty} \frac{(z-2i)^n}{n^n}$ (d) $\sum_{n=1}^{\infty} \frac{(-1)^n n}{8^n} z^n$
 - (e) $\sum_{n=1}^{\infty} \frac{n^n}{n!} (z \pi i)^n$
 - (f) $\sum_{n=1}^{\infty} \frac{(z-2i)^n}{n^n}$
 - (g) $\sum_{n=0}^{\infty} \frac{n+1}{(2n+1)!} (z-2)^n$
 - (h) $\sum_{n=0}^{\infty} \frac{n(n-1)}{2^n} (z+i)^{2n}$