

January 2006 6690 Decision D2 Mark Scheme

Question Number	Scheme	Marks
1)	To maximize, subtract all entrés from n >, 278 e.g. [11 6 2 17] 14 7 0 15 11 5 3 15 17 9 4 21	m, Ai (2)
	Reduce rows \[\begin{pmatrix} 9 & 4 & 0 & 15 \\ 14 & 7 & 0 & 15 \\ 8 & 2 & 0 & 12 \\ 13 & 5 & 0 & 17 \end{pmatrix} \] \[\begin{pmatrix} 1 & 2 & 0 & 3 \\ 6 & 5 & 0 & 3 \\ 0 & 0 & 0 & 0 \\ 5 & 3 & 0 & 5 \end{pmatrix} \]	m, AYAIJ (3)
	min element = 1 $\begin{bmatrix} 0 & 1 & 0 & 2 \\ 5 & 4 & 0 & 2 \\ 0 & 0 & 1 & 0 \\ 4 & 2 & 0 & 4 \end{bmatrix}$	mi AJAIJ (3)
	min class = 1 min class = 2 min class = 2 min class = 2 $ \begin{bmatrix} 0 & 0 & 0 & 1 \\ 5 & 3 & 0 & 1 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 3 & 0 \\ 2 & 0 & 0 & 2 \end{bmatrix} $ then $ \begin{bmatrix} min \\ min \\ element \end{bmatrix} $ optimal	m : AIV AIV (3)
	[0 0 1 1] 4 2 0 0 1 0 3 0 3 0 0 2] Optimal So A - H H B - P or S C - S I D - I P Optimal (both £ 1077)	m 1 A 1 (2)
	optimal (both £ 1077)	[13]

		1		
Question Number			Scheme	Marks
2) eg.	stage state Ach	n Dest	· Lalue	
, ,	1 /2 2	0	200 + 200 = 400 *	m A 1
	(sept) 1 3	0	200 + 100 = 300 +/	
	0 4	0	200 = 200 *	
-	2 / 2 5	2 ,	200 +200 +500 +400 = 1300	
	(Aug) 4	1	200 + 200 + 300 = 700	
,	3	0	200+200 +200 = 600 +	m)
	1 5	·1 *	200 + 100 + 500 + 300 = 1100	AIV
	L L	0	200 + 100 + 200 = 500 #	(4)
	0 5	0	200 4 540 +240 = 900 *	
	3 (July 2 5	0	210+200 +500+900 = 1800 #	MIAIN
	4 2 3	2	200 +200 + 1800 = 2200 +	
	(June) 1 4	2	200 + 100 + 1800 = 2100 +	AI/
	0, 5	2	200 +500 + 1800 = 2500 *	
	5 0 5	2	200 + 500 + 2200 = 2900	:
	(may 4	1	260 +2100 = 2300 *	mı
	3	6	200 + 2500 = 2700	$Ai\lambda$ (5)
	3 70			
		1 1	July August September	MIAIN
	production schedule 4	4	5 5 4	
	cat	£ 2300		A1/(3)
				12
			^	
			•	
	•			

ſ			
	3)	Let X_{ij} be the number of units transported from; to j , in 1000 litres where $i \in \{F, G, H\}$ and $j \in \{S, 7, U\}$	β2,1,0 (2)
		minimise $C = 23 \times_{fs} + 31 \times_{ft} + 46 \times_{fu} + 35 \times_{gs} + 38 \times_{gt} + 51 \times_{gu} + 46 \times_{fu} + 51 \times_{ft} + 63 \times_{fu}$	β1 β1 (2)
		Subject to $x_{fs} + x_{f\ell} + x_{f\alpha} \in 540$	
		$X_{gs} + X_{gE} + X_{gu} \leq 789$ $X_{hs} + X_{hE} + X_{hu} \leq 673$	m, Al
		$X_{fs} + X_{gs} + X_{hs} \leq 257$ $X_{ft} + X_{gt} + X_{ht} \leq 348$ accept = here	AI
		Xfu + Xgu + 16hu = 412	(3)
			B, (1)
		Accept introduction of a dummy demand methods.	

4) (a)	Adds zeros for costs in third column Adds 14 as the demand value	B1 (2)
(6)	The total supply is greater than the total demand	B2,1,0 (2)
(c)	The solution would thereise be deservate	B1 (1)
(d)		m, A,
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1 A1 (4)
	B B B 13-0 B=8 C 9-0 3+0 Entering squar BJ Exiting squar BJ Exiting squar BJ Exiting squar BJ	mi Air (z)
	OB Q $IAJ = 12 - 0 - 8 = 4$ OB S $IAk = 15 - 0 - 13 = 2$ $IBk = 17 - 0 - 13 = 4$ $ICL = 0 + 4 - 0 = 4$ $ICL = 0 + 4 - 0 = 4$ $ICL = 0 + 4 - 0 = 4$	MI AIN AIN AIN (5)
		16]

5) (a)	Ras minimums {-2,-1,-4,-2} row maximin = -1 column maximums {1,3,3,3} column minimum = 1	m) Aı
	Since 1 = -1 not stable	A1 (3)
(b)	Row 2 dominates Row 3 Column 1 dominates Column 4	B1 (2)
(c)		BI
	$\begin{pmatrix} -2 & 1 & 3 \\ -1 & 3 & 2 \\ 1 & -2 & -1 \end{pmatrix} \xrightarrow{e5} \begin{pmatrix} 1 & 4 & 6 \\ 2 & 6 & 5 \\ 4 & 1 & 2 \end{pmatrix}$	m1 (2)
	e.g. maximize P=V	mı Aı
	Subject to $V - p_1 - 2p_2 - 4p_3 \le 0$ $V - 4p_1 - 6p_2 - p_3 \le 0$ $V - 6p_1 - 5p_2 - 2p_3 \le 0$	A 4537271/0
	P, + P2 + P3 ± 1 V, P, P2, P3, >>0	(6)
	eg Let $x_i = \frac{p_i}{v}$: $\frac{1}{v} = x_1 + x_2 + x_3$	mı
	min. mine P = X, + X2 + X3	AI
	Subject to X, + 2 X2 + 4 X3 71	
	$4x, + 6xz + x_3 > 1$	A 453525163
	6x, + 5x, + 2x, > 0	(6)
-	+ other equitalest method.	13

6) (a	84 77 R.M.S.T. A B 77 P. M.S.T. B 23 P.	m, A,
	length of RMST = 459 : love bound = 459 + 53 + 83 = 595 km (delate c) Best love bound is 595 km, by detetring c	AI mi AiV
(1)	Add 167 to AF and FA 137 to CH and HC 136 to DF and FD 145 to D6 and G0	(5) B4,3,2,1,6 (4)
(c)	C D E F M A B G C 53 49 100 115 52 84 222 92 Upper bound, stating of C = 767 km	mi A,
	:. Best upper bound is 707 starting of F	B15(4)