9/24/2015 Coursera

Feedback — Interview Questions: Mergesort

Help Center

You submitted this homework on **Thu 24 Sep 2015 10:56 PM EDT**. You will be able to view your score after the deadline passes.

These interview questions are for your own enrichment and are not assessed. If you click the *Submit Answers* button, you will get a hint.

Question 1

Merging with smaller auxiliary array. Suppose that the subarray a[0] to a[N-1] is sorted and the subarray a[N] to a[2*N-1] is sorted. How can you merge the two subarrays so that a[0] to a[2*N-1] is sorted using an auxiliary array of size N (instead of 2N)?

Your Answer	Score	Explanation
Total	0.00 / 0.00	

Question Explanation

Hint: copy only the left half into the auxiliary array.

Question 2

Counting inversions. An *inversion* in an array $a[\]$ is a pair of entries a[i] and a[j] such that i < j but a[i] > a[j]. Given an array, design a linearithmic algorithm to count the number of inversions.

Your Answer	Score	Explanation
Total	0.00 / 0.00	

Question Explanation

Hint: count while mergesorting.

9/24/2015 Coursera

Question 3

Shuffling a linked list. Given a singly-linked list containing N items, rearrange the items uniformly at random. Your algorithm should consume a logarithmic (or constant) amount of extra memory and run in time proportional to $N \log N$ in the worst case.

Your Answer	Score	Explanation
Total	0.00 / 0.00	

Question Explanation

Hint: design a linear-time subroutine that can take two uniformly shuffled linked lists of sizes N_1 and N_2 and combined them into a uniformly shuffled linked lists of size $N_1 + N_2$.