Departamento de Matemática da Universidade de Aveiro

Cálculo I - agr. 4 2020/21

2.º teste - turma TP4B-3

- Duração: 1h15
- Todos os raciocínios devem ser convenientemente justificados e todas as respostas devem ser cuidadosamente redigidas.

• Este teste termina com a palavra FIM e a indicação da cotação das questões.

- 1. Calcula as primitivas das seguintes funções:

 - (a) $x^2 \ln \sqrt{x}$; (b) $\frac{x^3 + 2x^2 + 4}{x^4 + 4x^2}$; (c) $\frac{e^{\sqrt[3]{x} + 1}}{\sqrt[3]{x^2}}$.

Sugestão: Na alínea (a) utiliza primitivação por partes e na alínea (c) faz uma mudança de variável.

- 2. Seja \mathcal{A} a região de equações $1 \leq y \leq \frac{3}{x} \frac{2}{x^2}$ no semiplano $x \geq 0$.
 - (a) Calcula os pontos de interseção do gráfico de $y = \frac{3}{x} \frac{2}{x^2}$ e da reta y = 1. Nota: Para efeitos da resolução da alínea seguinte informa-se que a solução é (1,1) e (2,1), mas nenhuma cotação terás na presente alínea se apenas verificares que estes pontos satisfazem as duas equações.
 - (b) Calcula a área da região A.
- 3. (a) Sejam $f \in g$ duas funções definidas em [a, b], com a < b. Diz, justificando, sobre cada uma das implicações i e ii em baixo, se ela é verdadeira ou falsa:
 - i. se f + g é integrável, então f e g são ambas integráveis;
 - ii. se f + g e f são integráveis, então g é integrável.
 - (b) Apresenta um exemplo de função não integrável $f:[a,b]\to\mathbb{R}$ tal que f^2 seja integrável.

FIM

Cotação:

1. 10; 2. 7; 3. 3.