

Taller 2 de Topología

1. La **topología euclidiana** (o topología estándar) sobre \mathbb{R} se define como

$$\mathcal{T}_E := \{ U \subseteq \mathbb{R} : \text{para cada } x \in U \text{ existe } \epsilon > 0 \text{ tal que } (x - \epsilon, x + \epsilon) \subseteq U \}.$$

- a) Pruebe que \mathcal{T}_E es una topología sobre \mathbb{R} .
- b) Pruebe que el intervalo (a, b) para $a, b \in \mathbb{R}$ es un abierto en \mathcal{T}_E .
- 2. Sobre $A=\{a,\ b,\ c,\ d,\ e\}$ definimos la colección $\mathcal{S}=\{\{a,b\},\{b,c,d\},\{c,d,e\}\}$
 - a) Muestre que S es una subbase para una topología sobre A.
 - b) Halle la topología \mathcal{T} sobre A generada por \mathcal{S} .
 - c) Halle la colección \mathcal{C} de los cerrados en (A, \mathcal{T}) .
 - d) Para el subconjunto $Y = \{a, c, e\}$ de A, halle la topología del subespacio \mathcal{T}_Y .
- 3. Sobre \mathbb{R} definamos la colección

$$\mathcal{T} = \{\varnothing, \mathbb{R}\} \cup \{(-n, n) : n \in \mathbb{Z}\}$$

- a) Muestre que \mathcal{T} es una topología sobre \mathbb{R} .
- b) Describa la colección \mathcal{C} de los cerrados en $(\mathbb{R}, \mathcal{T})$.
- c) Halle la topología de subespacio $\mathcal{T}_{\mathbb{N}}$.
- d) Para los espacios topologicos $(\mathbb{R}, \mathcal{T})$ y $(\mathbb{N}, \mathcal{T}_{\mathbb{N}})$ describa una base para la topología sobre $\mathbb{R} \times \mathbb{N}$.
- 4. Por cada $x \in R$ definimos los conjuntos

$$B_x = \{x \times y : y \in \mathbb{R}\} = \{x\} \times \mathbb{R}$$

- a) Muestre que $\mathcal{B} = \{B_x : x \in \mathbb{R} \text{ es una base para una topología en } \mathbb{R}^2.$
- b) Describa la topología \mathcal{T} generada por \mathcal{B} .
- c) Describa la colección $\mathcal C$ de los cerrados en $(\mathbb R,\mathcal T)$.
- 5. La **topología de Zariski** en \mathbb{R}^n es la topología generada por la base

$$\mathcal{B}_Z = \{X_f : f \text{ es un polinomio en } n \text{ variables}\}, \text{ donde } X_f = \{a \in \mathbb{R}^n : f(a) \neq 0\}.$$

- a) Probar que la topología de Zariski en $\mathbb R$ coincide con la topología del complemento finito.
- b) Pruebe que la topología de Zariski en \mathbb{R}^2 no es el producto de la topología de Zariski en \mathbb{R} con si misma.

- 6. Si $Y \subset X$ es un subconjunto cerrado de X y A es un subconjunto cerrado de Y en la topología de subespacio de Y, entonces A es cerrado en X.
- 7. Denote por \mathbb{R}_f el conjunto de los números reales con la topología del complemento finito y \mathbb{R}_u el conjunto de los números reales con la topología usal. Describa una base para la topología producto en $\mathbb{R}_f \times \mathbb{R}_u$.
- 8. Pruebe que la topología de \mathbb{Z} como subespacio de \mathbb{R} , con la topología del complemento finito, es la topología del complemento finito.
- 9. Sea X un espacio topológico cuya topología es la discreta. Describa todos los subconjuntos de X cuya topología de subespacio es la topología trivial.
- 10. Un espacio topológico X se dice **irreducible** si no se puede expresar en la forma $X = A \cup B$ con $A \neq X$, $B \neq X$, ambos cerrados y no vacíos. Muestre que si X es infinito entonces X con la topología del complemento finito es un espacio topológico irreducible. Muestre que hay espacios topológicos **reducibles** (es decir, que no son irreducibles) con la topología del complemento contable.
- 11. Muestre que si X es un espacio topológico irreducible, entonces cada subconjunto abierto de X es irreducible con la topología de subespacio.
- 12. Muestre que si A es cerrado en X y B es cerrado en Y entonces $A \times B$ es cerrado en $X \times Y$. **Ayuda:** $(X \times Y) \setminus (A \times B) = ((X \setminus A) \times Y) \cup (X \times (Y \setminus B))$.