Heart Disease Analysis & Risk Factor Exploration

Understanding the Impact of Lifestyle and Clinical Factors on Heart Disease

Presented by : Jobina K v

<u>Introduction</u>

- This project focuses on exploring and analyzing heart disease datasets to understand the key clinical and behavioral factors associated with heart health.
- Through Exploratory Data Analysis (EDA), patterns and relationships between various features such as age, sex, BMI, cholesterol, smoking habits, and physical activity are identified.
- The goal of this analysis is to understand the factors influencing heart disease occurrence and to compare how different lifestyle and medical attributes are related to heart disease status.

Problem Statement

- Heart disease is one of the leading causes of death worldwide.
- There is a need to understand how various clinical (like cholesterol, blood pressure, and age) and behavioral (like smoking, physical activity, and BMI) factors contribute to heart disease.
- This project aims to analyze and compare these factors using two datasets to identify :
- → Key patterns and trends
- → Relationships between lifestyle and medical attributes
- → Factors commonly linked with heart disease occurrence

Proposal Solution

- We perform Exploratory Data Analysis (EDA) on two heart-related datasets one containing clinical data and another with behavioral data.
- Both datasets are combined to get a complete view of how medical and lifestyle factors work together.
- Through visualization and analysis, we aim to :
- → Identify the major clinical and behavioral factors linked to heart disease.
- → Compare how lifestyle habits and medical conditions influence heart health.
- → Provide clear insights that help in understanding overall heart disease risk.

Dataset Overview & Structure

- Clinical dataset Contains medical records such as blood pressure, cholesterol, heart rate, etc.
- Behavioral dataset Contains lifestyle information such as smoking, alcohol consumption, physical activity, and diet.
- These datasets are analyzed to identify the key medical and lifestyle factors associated with heart disease.

Behavioral Dataset

Range	⊵Index: 1000 entri∈	es, 0 to 999		
Data	Data columns (total 19 columns):			
#	Column	Non-Null Count	Dtype	
0	HeartDisease	1000 non-null	object	
1	BMI	1000 non-null	float64	
2	Smoking	1000 non-null	object	
3	AlcoholDrinking	1000 non-null	object	
4	Stroke	1000 non-null	object	
5	PhysicalHealth	1000 non-null	float64	
6	MentalHealth	1000 non-null	float64	
7	DiffWalking	1000 non-null	object	
8	Sex	1000 non-null	object	
9	AgeCategory	1000 non-null	object	
10	Race	1000 non-null	object	
11	Diabetic	1000 non-null	object	
12	PhysicalActivity	1000 non-null	object	
13	GenHealth	1000 non-null	object	
14	SleepTime	1000 non-null	float64	
15	Asthma	1000 non-null	object	
16	KidneyDisease	1000 non-null	object	
17	SkinCancer	1000 non-null	object	
18	Person_ID	1000 non-null	int64	
dtypes: float64(4), int64(1), object(14)				
memory usage: 148.6+ KB				

Clinical dataset

	Offitical dataset			
RangeIndex: 1000 entries, 0 to 999				
Data columns (total 15 columns):				
#	Column	Non-Null Count	Dtype	
Ø	age	1000 non-null	int64	
1	sex	1000 non-null	int64	
2	ср	1000 non-null	int64	
3	trestbps	1000 non-null	int64	
4	chol	1000 non-null	int64	
5	fbs	1000 non-null	int64	
6	restecg	1000 non-null	int64	
7	thalach	1000 non-null	int64	
8	exang	1000 non-null	int64	
9	oldpeak	1000 non-null	float64	
10	slope	1000 non-null	int64	
11	ca	1000 non-null	int64	
12	thal	1000 non-null	int64	
13	target	1000 non-null	int64	
14	Person_ID	1000 non-null	int64	
dtypes: float64(1), int64(14)				
memory usage: 117.3 KB				

Workflow

Tools Used

- Software: Python,Google Colab
- Libraries: pandas, matplotlib, Seaborn

<u>Implementation</u>

- Step 1 : Selected 50 individuals from both heart datasets for analysis.
- Step 2 : Checked data types, missing values, and duplicates to ensure data quality.
- Step 3: Merged the clinical and behavioral datasets using the ID column.
- Step 4 : Plotted bar charts and other visualizations to study the distribution of :
- → Age & Age Category
- → Sex
- → BMI
- → Smoking, Alcohol Drinking, Stroke
- → Physical & Mental Health
- → Heart Disease status
- Step 5 : Performed correlation and comparative analysis to examine relationships between lifestyle/clinical factors and heart disease occurrence.

Behavioral dataset info

```
RangeIndex: 1000 entries, 0 to 999
Data columns (total 19 columns):
                     Non-Null Count Dtype
     Column
    HeartDisease
                     1000 non-null
                                     object
     BMI
                     1000 non-null
                                     float64
     Smoking
                     1000 non-null
                                     object
    AlcoholDrinking
                      1000 non-null
                                     object
    Stroke
                     1000 non-null
                                     object
    PhysicalHealth
                     1000 non-null
                                     float64
    MentalHealth
                     1000 non-null float64
    DiffWalking
                     1000 non-null
                                     object
    Sex
                     1000 non-null
                                     object
    AgeCategory
                      1000 non-null
                                     object
    Race
                      1000 non-null
                                     object
 10
    Diabetic
                      1000 non-null
                                     object
    PhysicalActivity
                     1000 non-null
                                     object
    GenHealth
                     1000 non-null
                                     object
 13
    SleepTime
                     1000 non-null
                                     float64
    Asthma
                     1000 non-null
                                     object
    KidneyDisease
                     1000 non-null
                                     object
    SkinCancer
                     1000 non-null
                                     object
                     1000 non-null
                                   int64
    Person ID
dtypes: float64(4), int64(1), object(14)
memory usage: 148.6+ KB
```

Clinical dataset info

RangeIndex: 1000 entries, 0 to 999				
Data columns (total 15 columns):				
#	Column	Non-Null Count	Dtype	
Ø	age	1000 non-null	int64	
1	sex	1000 non-null	int64	
2	ср	1000 non-null	int64	
3	trestbps	1000 non-null	int64	
4	chol	1000 non-null	int64	
5	fbs	1000 non-null	int64	
6	restecg	1000 non-null	int64	
7	thalach	1000 non-null	int64	
8	exang	1000 non-null	int64	
9	oldpeak	1000 non-null	float64	
10	slope	1000 non-null	int64	
11	ca	1000 non-null	int64	
12	thal	1000 non-null	int64	
13	target	1000 non-null	int64	
14	Person_ID	1000 non-null	int64	
dtypes: float64(1), int64(14)				
memory usage: 117.3 KB				

Merged dataset info

RangeIndex: 1000 entries, 0 to 999 Data columns (total 32 columns): Column Non-Null Count Dtype HeartDisease 1000 non-null int64 BMI 1000 non-null float64 Smoking 1000 non-null int64 AlcoholDrinking 1000 non-null int64 Stroke 1000 non-null int64 1000 non-null PhysicalHealth float64 MentalHealth float64 1000 non-null DiffWalking 1000 non-null int64 Sex int64 1000 non-null AgeCategory 1000 non-null object Race 1000 non-null obiect 10 Diabetic 1000 non-null int64 PhysicalActivity 1000 non-null int64 GenHealth 1000 non-null object SleepTime 1000 non-null float64 Asthma int64 1000 non-null 16 KidnevDisease int64 1000 non-null 17 SkinCancer 1000 non-null int64 Person ID 1000 non-null int64 19 Age 1000 non-null int64 ср 1000 non-null int64 21 trestbps 1000 non-null int64 cho1 1000 non-null int64 fbs 1000 non-null int64 restecg 1000 non-null int64 thalach int64 1000 non-null exang 1000 non-null int64 oldpeak 1000 non-null float64 slope 1000 non-null int64 29 ca 1000 non-null int64 thal 1000 non-null int64 31 target 1000 non-null int64 dtypes: float64(5), int64(24), object(3) memory usage: 250.1+ KB

Data Cleaning

HeartDisease	0
ВМІ	0
Smoking	0
AlcoholDrinking	0
Stroke	0
PhysicalHealth	0
MentalHealth	0
DiffWalking	0
Sex	0
AgeCategory	0
Race	0
Diabetic	0
PhysicalActivity	0
GenHealth	0
SleepTime	0
Asthma	0
KidneyDisease	0
SkinCancer	0
Person_ID	0

Age	0
ср	0
trestbps	0
chol	0
fbs	0
restecg	0
thalach	0
exang	0
oldpeak	0
slope	0
ca	0
thal	0
target	0

```
merged_df.duplicated().sum()
np.int64(0)
```

Clinical Feature Correlation Heatmap

• The Purpose of the graph is To study how clinical health indicators (like blood pressure, cholesterol, heart rate, etc.) are related to each other and to heart disease.

- Higher thalach (maximum heart rate achieved) correlates positively with heart disease absence (r=0.42).
- Higher oldpeak (ST depression) has a negative correlation with heart disease (r=-0.43), meaning higher ST depression increases risk.
- Blood pressure (trestbps) and cholesterol show weaker correlations.

Behavioral Feature Correlation Heatmap

• The Purpose of Graph is To understand how lifestyle behaviors (like BMI, smoking, sleep, and physical activity) relate to each other and to heart disease.

- Smoking shows a mild positive correlation (r=0.11) with heart disease.
- Physical activity is negatively correlated (r=-0.11), suggesting an active lifestyle reduces heart disease risk.
- BMI and sleep time have weak correlations but still contribute cumulatively.

Sleep Time vs Heart Disease

• The Purpose of the Graph is To understand how the number of hours a person sleeps per day affects the chances of developing heart disease.

- People who sleep less than 6 hours or more than 10 hours show a higher likelihood of heart disease.
- The lowest risk appears between 7–8 hours of sleep per night.
- Both very short and very long sleep durations can negatively affect heart health.
- Balanced sleep (6–8 hours) lowers heart disease risk.
- sleeping less than 6 hours or more than 9 hours increases heart disease risk.

Physical Activity by General Health

• The Purpose of Graph is To examine how Physical Activity levels differ among people with different self-reported General Health conditions.

- People with Excellent or Very Good health have the highest physical activity levels.
- Poor general health corresponds with the lowest activity rates.
- Suggests exercise contributes to better health perception.
- regular physical activity improves overall health and significantly reduces heart disease risk.

BMI Distribution by Heart Disease Status

• The Purpose of Graph is To study how Body Mass Index (BMI) categories are distributed among people with and without heart disease.

- Overweight and Obese (Class I & II) individuals have higher heart disease counts.
- Underweight and Normal categories show lower risk.
- Suggests a positive link between higher BMI and risk of heart disease.
- overweight and obesity as major risk factors for heart diseases due to increased blood pressure.

Average Cholesterol by Age

• The Purpose of the Graph is To analyze how average cholesterol levels change with age.

- Cholesterol levels generally increase with age until mid-60s, then stabilize.
- Age 40–60 shows particularly higher cholesterol averages (>250 mg/dL).
- cholesterol increases with age, and elevated cholesterol is a leading cause of coronary heart disease.

Behavioral Risk - Smoking Rate by Age

• The Purpose of the Graph is To analyze smoking habits across different age groups and their relationship to heart disease risk.

- Smoking rates rise from early adulthood (25–35) and remain high till 70+.
- Middle-aged adults (40–70) show the highest smoking prevalence.
- long-term smoking damages blood vessels and significantly increases heart attack risk, especially in adults over 35.

Chest Pain Type and Disease Status

• The Purpose of the Graph is To explore how different types of chest pain relate to the presence of heart disease.

- People with chest pain type 0 (asymptomatic) mostly do not have heart disease.
- Chest Pain Type 0 (Typical Angina) shows the highest number of heart disease cases.
- Type 1 and 2 (Atypical/Non-anginal) have fewer cases.
- Highlights the diagnostic importance of chest pain type.

Average BMI by Heart Disease Status

 The Purpose of the Graph is To compare the average Body Mass Index (BMI) between people with and without heart disease.

- People with heart disease have slightly higher average BMI (29.5) than those without (29.0).
- Indicates a possible link between higher BMI and heart disease risk.
- Useful for identifying BMI as a behavioral risk factor.

Diabetic Rate by Age

• The Purpose of Graph is To explore how diabetes prevalence changes with age and its potential link to heart disease.

- Diabetes prevalence increases sharply after age 45 and peaks around 60–70.
- Early detection and lifestyle management are key after midlife.

Heart Disease by Gender

• The Purpose of the Graph is To show how heart disease is distributed between males and females.

- Males show higher counts of heart disease than females.
- Females have lower overall risk but rising rates after age 55.

Heart Disease Rate by General Health

• The Purpose of the Graph To analyze how individuals' self-assessed general health relates to heart disease risk.

- Those reporting Poor or Fair health have significantly higher heart disease rates.
- People with Excellent or Very Good health show the lowest risk.

Results

- Age, cholesterol, and blood pressure are key clinical risk factors.
- Age and gender also play major roles in determining heart disease likelihood.
- BMI, smoking, and physical activity are important behavioral risk factors.
- Heart disease is more common in older age groups and higher BMI categories.
- Males show slightly higher occurrence than females.
- Combined lifestyle and medical factors help understand heart disease risk.

Conclusion

- Both clinical and behavioral factors contribute to heart disease.
- Age, BMI, physical activity, and smoking are key indicators.
- Regular health checks, a balanced diet, physical activity, and controlled BMI help reduce risks.
- EDA helped visualize clear patterns for understanding heart health better.
- Insights can guide preventive measures and lifestyle decisions.

References

- Heart Disease Datasets Kaggle
- Python & Libraries Pandas, NumPy, Matplotlib, Seaborn

THANK YOU