

UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA

DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO

O Problema da Visita de Polígonos

Gabriel Freire Ushijima

São Paulo, SP 24 de setembro de 2025

1 Introdução

Este relatório descreve a implementação e os resultados obtidos na resolução do problema da visita de polígonos, usando como base o paper de Mitchell [1] que descreve algoritmos para o caso sem e com restrições. Buscamos apresentar uma abordagem mais prática e detalhada para o problema, sem um foco tão grande na análise teórica.

2 O Problema de Visita de Polígonos Irrestrito

Vamos tomar como base a implementação do algoritmo de Mitchell para o problema irrestrito que fizemos em *Python*. O código pode ser encontrado no arquivo TouringPolygons/problem1.py.

2.1 Definições e Notação

Considere o seguinte problema: dados dois pontos $s,t \in \mathbb{R}^2$ e uma sequência de polígonos convexos disjuntos P_1,P_2,\ldots,P_k , encontrar o caminho de menor comprimento que se inicia em s, termina em t e toca cada polígono P_i em pelo menos um ponto, podendo atravessá-los.

A figura ao lado ilustra um exemplo de entrada e a solução ótima para o problema para um caso com 3 polígonos. Temos s como o ponto verde, t como o ponto vermelho e os polígonos P_1, P_2 e P_3 como o triângulo azul, o trapézio laranja e o pentágono verde, respectivamente. O caminho mínimo é representado pela linha roxa.

Retomando o paper, definimos um i-path até p como um caminho mínimo que começa em s, encosta em cada um dos polígonos P_1, P_2, \ldots, P_i e termina em p. Note que nosso objetivo é encontrar um k-path até t. Enquanto não vamos entrar em detalhes, todo i-path é único.

A função central desse algoritmo será a função Query(p,i), que recebe um ponto p e um índice i e retorna o penúltimo ponto q do i-path até p (ou seja, o ponto ime-

Figura 1: Caminho mínimo para um caso de 3 polígonos.

diatamente anterior a p nesse caminho). Note que a resposta do problema pode ser obtida chamando Query(t, k).

Primeiramente, vamos descrever procedimentos auxiliares que serão úteis para a implementação da função Query. Finalmente, vamos descrever como respoder consultas usando esses procedimentos. Por enquanto, vamos assumir que sabemos como respoder as consultas.

2.2 Particionando o Plano

O primeiro passo do algoritmo é, para cada polígono P_i , criar uma partição S_i do plano. Essa partição tem 3 tipos de regiões, Regiões de Vértice, Regiões de Aresta e Regiões de Atravessa. Essa partição é usada para responder consultas, uma vez que o comportamento da função Query(p,i) depende de qual região p pertence.

2.2.1 Representado as Partições

Primeiramente, note que as regiões de vértice são todas diversos 'cones' associados à vértices do polígono P_i , mais formalmente, cada região de vértices é a região do plano delimitada por duas semiretas que partem de um vértice v de P_i . Por esse motivo, pensamos em cada região de vértice como uma tripla (v, d_1, d_2) respresentando o vértice, a direção da primeira semi-reta e a direção da segunda semi-reta. Também é importante ressaltar que a ordem das retas importa, assim consideramos que a região é o conjunto atingido por um movimento anti-horário a partir de d_1 até d_2 .

A seguir, as regiões de aresta são todas diversas 'faixas' associadas às arestas do polígono P_i , mais formalmente, cada região de aresta é a região do plano delimitada por duas semi-retas que partem dos extremos de uma aresta e de P_i e a prórpia aresta e. Por esse motivo, pensamos em cada região de aresta como uma quádrupla (u, v, d_1, d_2) respresentando os dois extremos u e v da aresta,

a direção da primeira semi-reta e a direção da segunda semi-reta. Aqui a ordem também importa, assim consideramos que a região é o conjunto atingido por um movimento anti-horário a partir de u e d_1 até v e d_2 .

Finalmente, podemos dizer que as regiões de atravessa são todas as outras regiões do plano, ou seja, o complemento das regiões de vértice e aresta. Note que há exatamente uma região de atravessa.

2.2.2 Construindo as Partições

Primeiramente, a partir da figura, note que nem todo vértice e nem toda aresta de P_i geram uma região na partição S_i . Dizemos que uma aresta que gera uma região é uma aresta visível, assim, nosso primeiro passo é encontrar todas as arestas visíveis de P_i .

Figura 2: Partição do plano para cada poígono do exemplo anterior.

Para deteminar se uma aresta e é visível, simplesmente calculamos p = Query(m, i) onde m é o ponto médio de e e verificamos se \overline{pm} atravessa P_i . Se o segmento atravessa P_i , então e não é visível, caso contrário, e é visível.

Uma vez que temos todas as arestas visíveis, podemos construir as regiões de vértice e de aresta. Para cada vértice v de P_i , calculamos p =Query(v, i) e consideramos a direção de d = v - p. Se a aresta anterior a v (no sentido anti-horário) é visível, então d_1 será a reflexão de d em relação à aresta anterior, caso contrário, d_1 será a mesma direção de d. Similarmente, se a aresta posterior a v é visível, então d_2 será a reflexão de d em relação à aresta posterior, caso contrário, d_2 será a mesma direção de d. Assim, criamos a região de vértice $(v, d_1, d_2).$

Dessa forma, sabemos todas as regiões de vértice. Agora para cada aresta visível e=(u,v) de P_i , temos que d_1 será a segunda direção da região de vértice associada a u e d_2

será a primeira direção da região de vértice associada a v. Assim, criamos a região de aresta (u, v, d_1, d_2) .

Finalmente, não é necessário criar a região de atravessa, uma vez que sabemos que um ponto pertence a ela se ele não pertence a nenhuma outra região.

2.3 Respondendo Consultas

Agora que sabemos como construir as partições S_i , podemos descrever como usá-las para responder consultas $\operatorname{Query}(p,i)$. O procedimento utilizado é recursivo, assim, primeiro definimos o caso base, que é $\operatorname{Query}(p,0)=s$, uma vez que um 0-path não precisa tocar em nenhum polígono, assim, o menor caminho é uma linha reta de s até p.

Para i>0, primeiramente determinamos a região R de S_i que contém p. Descrevemos acima como representar cada região e a partir dela é fácil determinar à qual um ponto p pertence. Também é importante ressaltar que p sempre pertence a exatamente uma região. Agora vamos analisar os 3 casos possíveis para R:

- Região de Vértice: Seja $R = (v, d_1, d_2)$. Nesse caso, o *i*-path até p é deve passar pelo vértice v, tocando o polígono P_i . Assim, temos que Query(p, i) = v.
- Região de Aresta: Seja $R = (u, v, d_1, d_2)$. Nesse caso, o *i*-path até p deve passar por algum ponto q da aresta e = (u, v), tocando o polígono P_i . Para calcular q, primeiro determinamos

q' = Query(p', i - 1), onde p' é a reflexão de p em relação à aresta e. Agora, dizemos que q é a interseção entre $\overline{q'p'}$ e a aresta e. Finalmente, respondemos Query(p, i) = q.

• Região de Atravessa: Seja R a região de atravessa. Nesse caso, o i-path até p automaticamente atravessa o polígono P_i em algum ponto. Portanto, podemos simplesmente responder Query(p,i) = Query(p,i-1).

2.4 Calculando o Caminho Mínimo

Uma vez que sabemos como responder consultas, calcular o caminho final é muito simples. Basta calcular $q_k = \text{Query}(t, k)$, então $q_{k-1} = \text{Query}(q_k, k-1)$ e assim por diante, até $q_0 = s$. Assim, o caminho mínimo é simplesmente a sequência s, q_1, \ldots, q_k, t .

3 O Problema de Visita de Polígonos Geral

Vamos tomar como base a implementação do algoritmo de Mitchell para o problema restrito que fizemos em *Python*. O código pode ser encontrado no arquivo TouringPolygons/problem2.py.

3.1 Definições e Notação

O problema segue de forma similar ao anterior, mas agora também recebemos como entrada 'cercas' F_0, \ldots, F_k tais que para todo $0 \le i \le k$ vale que o polígono P_i e P_{i+1} estão contidos em F_i , para tal, consideramos $P_0 = \{s\}$ e $P_{k+1} = \{t\}$. Nosso objetivo é encontrar o caminho de menor comprimento que se inicia em s, termina em t, toca cada polígono P_i em pelo menos um ponto e nunca sai da cerca F_i no seu caminho entre P_i e P_{i+1} .

Dizemos que um caminho π de a até b respeita as cercas F_i, \ldots, F_j se π toca todos os polígonos P_{i+1}, \ldots, P_j e para cada $i \leq l < j$, o trecho de π entre P_l e P_{l+1} está contido em F_l . Ademais, definimos um i-path até p como um caminho mínimo de s até p que respeita as cercas F_0, \ldots, F_i . Note que nosso objetivo é encontrar um k-path até t.

A função central desse algoritmo continua sendo Query, no entanto, dessa vez vamos adicionar um novo parâmetro, assim, a função Query(p,i,j) recebe um ponto p e dois índices i e j e retorna o penúltimo ponto q do menor caminho até p que parte de s, toca todos os polígonos P_1, \ldots, P_i e respeita as cercas F_0, \ldots, F_j .

Primeiramente, é essencial que $i \leq j$, ademais, se i = j então Query(p, i, j) é simplesmente o penúltimo ponto do i-path até p. Adicionamos o parâmetro j para o caso em que queremos um i-path, mas p está fora da cerca F_i um caso que aparece naturalmente na recursão do algoritmo. Por enquanto, vamos assumir que sabemos como respoder as consultas.

3.2 Caminhos Restritos

Outra função extremamente importante para a implementação desse algoritmo é a função Fenced (p_1, p_2, i, j) que retorna o menor caminho de p_1 até p_2 que respeita as cercas F_i, \ldots, F_j . Note que se i = j, então Fenced (p_1, p_2, i, j) é simplemente o segmento $\overline{p_1p_2}$ se ele estiver contido em F_i e não existe caso contrário. Assim, vamos assumir que i < j.

Referências

[1] Moshe Dror, Alon Efrat, Anna Lubiw, and Joseph S. B. Mitchell, *Touring a sequence of polygons*, STOC '03 (2003), 473 –482.