證券分析之計量化技術指標 ~2019輔仁大學股票投資模擬競賽~

王冠倫12

國立臺灣大學

民國 108年10月23日

¹電子信箱: polyphonicared@gmail.com

²個人網站:https://www.csie.ntu.edu.tw/~d06922002/

自我介紹

- 研究興趣:
 - 時間序列模型
 - 仿真建模
 - 投資組合選取
- 主要應用:
 - 多資産即時交易
 - 尋找資産間長期均衡
 - 建構可控風險投資組合
- 目前議題:
 - 共整合檢定
 - 結構性變動分析
 - 均值回復機率之估計

柴比雪夫的啓示

柴比雪夫不等式[33]

任意給定 $r \in \mathbb{N}$, r > 0,令一隨機變數 X_t 且其 E[|X|'] 存在。那麼,對於任意的 $c \in \mathbb{R}$ 與 $\epsilon > 0$,我們有

$$\Pr[|X-c| \ge \epsilon] \le \frac{\mathsf{E}[|X-c|']}{\epsilon'}.$$

柴比雪夫不等式 (r = 2, c = E[X])

令有一隨機變數 X_t 其變異數有限 ($Var[X] < \infty$),則對於任意的 $\epsilon > 0$,我們有

$$\Pr[|X - \mathsf{E}[X]| \ge \epsilon] \le \frac{\mathsf{Var}[X]}{\epsilon^2}.$$

比較同策略僅持倉差異 (1/2)

- 單位時間下期望報酬為 μ ,變異數為 σ^2 。
- 總時間為 T , 持倉時間 $\Delta t_1, \ldots, \Delta t_N$ 。
- 每次報酬 X₁,...,X_N:
 - 報酬期望值 $\Delta t_1 \mu, \ldots, \Delta t_N \mu$
 - 變異數 $\Delta t_1^2 \sigma^2, \ldots, \Delta t_N^2 \sigma^2$
- 均時報酬:
 - 平均單位時間報酬 $\mu^* \equiv \sum_{n=1}^N X_n/T$
 - 平均單位時間報酬期望值 $E[\mu^*] = \mu$
 - ullet 平均單位時間報酬變異數 $\mathrm{Var}[\mu^*] = \sigma^2 \sum_{n=1}^N \Delta t_n^2 / T^2$

比較同策略僅持倉差異 (2/2)

考慮持倉時間均等,則柴比雪夫告訴我們如下:

$$\Pr\left[\left|\frac{\sum_{n=1}^{N} X_n}{T} - \mu\right| \ge \epsilon\right] \le \frac{\sigma^2 \sum_{n=1}^{N} \Delta t_n^2}{T^2 \epsilon^2} = \frac{\sigma^2}{N \epsilon^2}.$$

考慮兩策略X與Y,且 $N_X > N_Y$,則策略Y的平均報酬較不具有參考性。

同時,我猜測這場比賽如果參加者夠多,則第一名可能是持有期 間較長者或是風險較高者。

風險與報酬的兑換性

Figure: 風險與報酬

夏普比率比較好?

- 夏普比率 (Sharpe ratio) 為一種常見的績效衡量方式,且考慮風險與報酬的兑換性 [5]。
 - 定義為每單位總波動下的超額報酬,即 $S \equiv \bar{R}/\sigma$ 。
- 藉由基本定價方程 (basic pricing equation) 可推論出夏普比率,意味著夏普比率應適合套用於具有特定效用函數的個人之上[8]。
- 股權溢價之謎 (equity premium puzzle) 的實證顯示夏普比率 仍然有問題 [34]。
 - 風險-報酬的兑換率於風險較高時有較好的兑換比。
- 未考慮持有期間長短差異。

股票市場的困難點 (1/2)

- 非線性 (non-linear) 與非平穩 (non-stationary) [4]
- 政治事件、市場新聞、營收報告及國際事件等等 [50]
- 效率市場假説 (efficient market hypothesis) [5]
 - 弱式 (weak-form)
 - 股價充分反映了過去所有的歷史訊息,包括各種已發生的交易資訊,如過去的成交價、交易量或短期利率水準等。
 - 半强式 (semistrong-form)
 - 股價已反映所有與公司前景有關的即時公開訊息。
 - 强式 (strong-form)
 - 股價已反映所有與公司有關的訊息,甚至包括內線交易。
- 相對優勢交易規則 (relative strength trading rules) 無效 [21]

股票市場的困難點 (2/2)

西元 2000 年時,全球頂尖學術期刊《Fiance》甚至對於技術分析 有如下評論[32]:

> 關於基本面分析與技術分析之不同, 如同天文學與占星術的差異一般。

It has been argued that the difference between fundamental analysis and technical analysis is not unlike the difference between astronomy and astrology.

References

股票市場的希望

- 基本面分析在半强式下仍然有效 [35, 41]。
- 技術分析具有輔助效果 [6, 18, 32, 45]。
- 部分技術分析有效。
 - 如,動量交易 (momentum trading)[1]。
- 嘗試跨領域結合。
 - 用類神經網路 (neural networks) 改善技術分析 [9]。
 - 類神經網路適合小範圍數據處理[11,50]。
 - 總體經濟學 (macroeconomic) 數據預測方法與技術分析結 合 [39]。
 - 市場互動技術分析 (Intermarket Technical Analysis) [36, 37]。
 - 以某個市場的資訊分析另一個市場的狀況。

策略類型的差異

策略	時效	滑價	獲利	獲利趨勢	風險
均值	無	低	低	穩定	低
趨勢	有	高	高	下降	高

Table: 均值回復策略 (mean-reverting strategies) vs. 趨勢型策略 (trend trading strategies) [55]

應用原則[52]

Chebyshev

- 選擇適當的技術指標
- 建立各種技術指標買賣紀錄
- 時常檢視各種技術指標的使用結果
- 擬定投資策略及資金管理模式
- 定期評估投資績效

常見判斷依據 [52]

- 技術指標交叉點
- 技術指標上下限值的範圍
- 技術指標走勢圖

技術指標分類-描述與刻度

	長期	中期	短期
價格	MACD, SAR,	BIAS, DMI, RSI,	當日分時走勢圖、
	AR, BR, MA	TOWER, MTM,	3-6∃BIAS, KD,
		OSC, Qstick, CMO,	WMS%R, Kinder%R,
		CCI	Stoch, RSI, CDP
交易量	逆時鐘曲線、	VR, OBV, VAM,	VR, OBV, VAMA,
	成交量移動平均線	EOM, FI, VK	EOM, FI, VK
時間	股市週期循環	?	?
市場寬幅	?	ADL, ADR, PSY,	OBOS
		ARMS Index, MT,	
		TO	
其他	?	融資融券餘額表	委託成交筆數(分)、
			張數及成交值表、
			當日沖銷比例

Table: 技術指標分類 [52]

技術指標分類-方法與技術 [16]

• 方法 (methodology)

Chebyshev

- 支援系統 (decision's support trading system) [7, 12, 46]
- 計算技術 (computational technique) [56]
- 圖表型態 (chart patterns) [40, 42]
- 技術 (operational tools)
 - 隨機線 (stochastic line) [4, 30]
 - 相對强弱指標 (relative strength index) [22, 30, 46]
 - 基因演算法 (genetic algorithm) [7, 9, 12, 38]
 - 加强增强學習 (evolutionary reinforcement learning) [2, 48]
 - 統計分析 (statistical analysis)
 - 移動平均 (moving averages) [47, 49]
 - 計量經濟學模型 (econometric models) [25, 43, 53]
 - 類神經網路 (neural network) [9, 11, 50, 57]

技術分析前提與調整 (1/6)

布林通道 (Bollinger Bands, BBands) [54]

令一投資組合 A 價格 $Price_A(t)$,定義簡單移動平均

$$\mathsf{MA}(t; N) \equiv rac{1}{N} \sum_{t_0 = t - N + 1}^t \mathsf{Price}_\mathsf{A}(t)$$

與其於時間 t 時,近 N 筆之樣本變異數序列為 $\sigma_N^2(t)$ 。在給定了簡單移動平均線樣本數 N (觀察範圍) 與標準差數量 K (軌道寬度) 下,BBands 可定義三條軌道 (線) 如下:

$$\mathsf{middleBB}(t) \equiv \mathsf{MA}(t; N)$$

$$lowerBB(t) \equiv middleBB(t) - K\sigma_N^2(t)$$

upperBB(t)
$$\equiv$$
 middleBB(t) + $K\sigma_N^2(t)$.

技術分析前提與調整 (2/6)

Figure: 布林通道 [24]

技術分析前提與調整 (3/6)

布林通道 (Bollinger Bands, BBands) [54] –續

- 證券於時間 t 之股價分布有一隨機分佈 D(t), 而三條軌道則 提供一個參考範圍。
- 該 D(t)應為對稱分佈,或其通常股價範圍應為該二軌道之間,而於兩軌道區間外則為罕見事件。

分析與調整 [54]

- lowerBB(t) 與 upperBB(t) 一起向上(或向下) 調整是可行的(兩軌道調整幅度並不一定相等)。
- 認為分佈不對稱,可對單一軌道或多個軌道進行修改。
- middleBB(t)與 $\sigma_N^2(t)$ 可以替換。

技術分析前提與調整 (4/6)

布林通道 (Bollinger Bands, BBands) [54] –續

- $Price_A(t_0) \ge upperBB(t_0) \implies Price_A(t_1) \le middleBB(t_1)$
- $Price_A(t_0) \leq IowerBB(t_0) \implies Price_A(t_1) \geq middleBB(t_1)$

分析與調整

Chebyshev

- 有限時間均值回復
 - 再增加一個上下軌進行停損
 - 藉由計量經濟學模型預測回復時間
- 無法有效加碼進場
- 均值趨勢影響獲利

技術分析前提與調整 (5/6)

注意事項

- 估計參數
 - 以報酬為目標可能導致交易過長或曝險過高等
- 回測與未來上線使用獨立
 - 布林通道未描述跨時間變化
- 直接使用效果差
 - 不如買進持有 [28]
 - 比移動平均差 [29]
 - 反過來交易效果卻意外地不錯(因單一標的多為趨勢)[28]

References

技術分析前提與調整 (6/6)

- 所有的方法都有自己前提
- 以方法的意圖著手修改與改良
- 必要時使用其他領域技術解釋
- 需具體描述投資人需求
 - 不是每一種投資人都適用一樣的技術分析

進化

Chebyshev

- 參數藉由類神經網路優化
- 跨時間變化藉由計量經濟學模型描述
- 均值回復前提藉由建構投資組合完成

常見缺點真的是缺點?

常見缺點 [52]

- 技術指標間常矛盾
 - 不同指標前提不同自然會矛盾。
- 資料過期
 - 估計需求樣本,以防使用過久以前的資料。
- 説服力低
 - 使用統計分析評估可信度,如多重檢定方法。
- 歷史不一定重演
 - 考慮使用具有時間序列的方法,如傳統的計量經濟學。

上市股價分佈 (1/2)

40 30 20 10 20

Pairs

•••000000000

(a) 全體股價分佈

(b) 150 元以下股價分佈

Figure: 民國107年股價分佈

上市股價分佈 (2/2)

						95%	
價格	1.71	8.13	10.08	26.24	94.65	147.43	3940.2

(a) 價格分位表

							50萬
分位	10%	38%	73%	90%	97%	98%	100%

(b) 投資分位表

Table: 分位表

Pairs ••000000000

組合的好處

- 讓風險成為可控
- 特定組合方法可有效避免市場風險 (market neutral)
- 特定市場甚至可以達成零本金 (money neutral)
- 達成現有交易策略的前提
- 對投資人偏好客製化投資組合(下頁圖)

Pairs

0000000000

投資流程 (1/3)

Figure: 投資流程圖 [14]

Pairs 0000000000

投資流程 (2/3)

Figure: 投資流程圖 [14]

Pairs 0000000000

投資流程 (3/3)

Figure: 投資流程圖 [5]

Pairs

0000000000

組合範例

考慮單因子如下

$$price_A(t) = \beta_{A0} + \beta_{A1}factor(t) + \epsilon_A(t)$$

 $price_B(t) = \beta_{B0} + \beta_{B1}factor(t) + \epsilon_B(t)$

顯然存在組合消除因子

$$\begin{aligned} \text{price}_{\mathsf{C}}(t) &\equiv \beta_{\mathsf{B}1} \text{price}_{\mathsf{A}}(t) - \beta_{\mathsf{A}1} \text{price}_{\mathsf{B}}(t) \\ &= \left(\beta_{\mathsf{A}0} \beta_{\mathsf{B}1} - \beta_{\mathsf{A}1} \beta_{\mathsf{B}0}\right) + \left(\beta_{\mathsf{B}1} \epsilon_{\mathsf{A}}(t) - \beta_{\mathsf{A}1} \epsilon_{\mathsf{B}}(t)\right) \end{aligned}$$

28/45

Pairs

配對交易的類型[26]

Chebyshev

- 距離 (distance) [13, 17]
- 共整合 (co-integration) [44, 51]
- 時間序列 (time series) [10, 15]
- 隨機控制 (stochastic control) [23, 31]
- 機器學習 (machine learning) 與綜合預測 (combined forecasts) [19, 20]
- 耦合(copula)[27, 44]
- 主成分分析 (principal components analysis) [3]

Pairs

00000000000

Figure: 共整合+布林通道

策略的測試

以組合各種模型測試現有策略,用以了解該策略不適用的場合。

- 迴歸: $y(t) = X(t)\beta + \epsilon(t)$
- 平滑移動迴歸: $y(t) = X(t)(t\beta/T) + \epsilon(t)$
- 向量自我迴歸: $y(t) = \mu(t) + \sum_{i=1}^{p} A_i y_{t-1} + \epsilon(t)$ • $\nu(t) = 0, \nu, \nu_1 + \nu_2 t, \dots$
- 結構性變動: $\begin{cases} y(t) = f_1(t) + \epsilon(t), & t \leq t_* \\ v(t) = f_2(t) + \epsilon(t), & t > t_* \end{cases}$

Pairs

0000000000

Pairs

0000000000

測試範例

以測試 共整合+布林通道 於具趨勢的自我迴歸上為例。

- 以向量錯誤修正模型估計自我迴歸係數
- 加入趨勢項於向量自我迴歸模型之中
- 隨機生成股價
- 拿現有策略應用並觀察報酬
 - 若有淨利,則適用所加入之趨勢。
 - 若有虧損,則不是用該情況。
 - 詢問該情形出現時,是否有對應的處理方式。
 - 如,即時停損或替換執行新的策略。

References (1/13)

- [1] Asness, C. S., Moskowitz, T. J., and Pedersen, L. H. (2013). Value and momentum everywhere. *The Journal of Finance*, 68(3):929–985.
- [2] Austin, M. P., Bates, G., Dempster 3, M. A. H., Leemans, V., and Williams, S. N. (2004). Adaptive systems for foreign exchange trading. *Quantitative Finance*, 4(4):37–45.
- [3] Avellaneda, M. and Lee, J.-H. (2010). Statistical arbitrage in the US equities market. *Quantitative Finance*, 10(7):761–782.
- [4] Bisoi, R. and Dash, P. (2014). A hybrid evolutionary dynamic neural network for stock market trend analysis and prediction using unscented Kalman filter. Applied Soft Computing, 19:41–56.
- [5] Bodie, Z., Kane, A., and Markus, A. J. (2012). Essentials of Investments. McGraw-Hill/Irwin, 9 edition.

References (2/13)

- [6] Brock, W., Lakonishok, J., and LeBaron, B. (1992). Simple technical trading rules and the stochastic properties of stock returns. *The Journal of Finance*, 47(5):1731–1764.
- [7] Chavarnakul, T. and Enke, D. (2009). A hybrid stock trading system for intelligent technical analysis-based equivolume charting. *Neurocomputing*, 72(16-18):3517–3528.
- [8] Cochrane, J. H. (2001). Asset Pricing. Princenton, Princeton, NJ, US.
- [9] Creamer, G. (2012). Model calibration and automated trading agent for Euro futures. *Quantitative Finance*, 12(4):531–545.
- [10] Cummins, M. and Bucca, A. (2012). Quantitative spread trading on crude oil and refined products markets. *Quantitative Finance*, 12(12):1857–1875.

References (3/13)

- [11] de Oliveira, F. A., Nobre, C. N., and Zárate, L. E. (2013). Applying Artificial Neural Networks to prediction of stock price and improvement of the directional prediction index - Case study of PETR4, Petrobras, Brazil. Expert Systems with Applications, 40(18):7596–7606.
- [12] Dempster, M. and Jones, C. (2001). A real-time adaptive trading system using genetic programming. *Quantitative Finance*, 1(4):397–413.
- [13] Do, B. and Faff, R. (2010). Does simple pairs trading still work? *Financial Analysts Journal*, 66(4):83–95.
- [14] Du, J.-L. (2007). Investment. Wealth, Taipei, TW.
- [15] Elliott, R. J., Van Der Hoek, J., and Malcolm, W. P. (2005). Pairs trading. *Quantitative Finance*, 5(3):271–276.

References (4/13)

- [16] Farias Nazário, R. T., e Silva, J. L., Sobreiro, V. A., and Kimura, H. (2017). A literature review of technical analysis on stock markets. The Quarterly Review of Economics and Finance, 66:115–126.
- [17] Gatev, E., Goetzmann, W. N., and Rouwenhorst, K. G. (2006).
 Pairs trading: performance of a relative-value arbitrage rule. *Review of Financial Studies*, 19(3):797–827.
- [18] Gunasekarage, A. and Power, D. M. (2001). The profitability of moving average trading rules in South Asian stock markets. *Emerging Markets Review*, 2(1):17–33.
- [19] Huck, N. (2009). Pairs selection and outranking: An application to the S&P 100 index. European Journal of Operational Research, 196(2):819–825.

References (5/13)

- [20] Huck, N. (2010). Pairs trading and outranking: the multi-step-ahead forecasting case. European Journal of Operational Research, 207(3):1702–1716.
- [21] Jensen, M. C. and Beningto, G. A. (1970). Random walks and technical theories: Some additional evidence. *Journal of Finance*, 25(2):469–482.
- [22] Junqué de Fortuny, E., De Smedt, T., Martens, D., and Daelemans, W. (2014). Evaluating and understanding text-based stock price prediction models. *Information Processing & Management*, 50(2):426–441.
- [23] Jurek, J. W. and Yang, H. (2007). Dynamic portfolio selection in arbitrage. SSRN Electronic Journal.

References (6/13)

- [24] Kabasinskas, A. and Macys, U. (2010). Calibration of Bollinger bands parameters for trading strategy development in the Baltic stock market. *Inzinerine Ekonomika-Engineering Economics*, 21(3):244–254.
- [25] Kazem, A., Sharifi, E., Hussain, F. K., Saberi, M., and Hussain, O. K. (2013). Support vector regression with chaos-based firefly algorithm for stock market price forecasting. *Applied Soft Computing*, 13(2):947–958.
- [26] Krauss, C. (2017). Statistical arbitrage pairs trading strategies: review and outlook. *Journal of Economic Surveys*, 31(2):513–545.
- [27] Krauss, C., Do, X. A., and Huck, N. (2017). Deep neural networks, gradient-boosted trees, random forests: statistical arbitrage on the S&P 500. European Journal of Operational Research, 259(2):689–702.

References (7/13)

- [28] Lento, C., Gradojevic, N., and Wright, C. S. (2007). Investment information content in Bollinger Bands? Applied Financial Economics Letters, 3(4):263–267.
- [29] Leung, J. M.-J. and Chong, T. T.-L. (2003). An empirical comparison of moving average envelopes and Bollinger Bands. Applied Economics Letters, 10(6):339–341.
- [30] Lin, X., Yang, Z., and Song, Y. (2011). Intelligent stock trading system based on improved technical analysis and Echo State Network. Expert Systems with Applications, 38(9):11347–11354.
- [31] Liu, J. and Timmermann, A. (2013). Optimal convergence trade strategies. *Review of Financial Studies*, 26(4):1048–1086.

References (8/13)

- [32] Lo, A. W., Mamaysky, H., and Wang, J. (2000). Foundations of technical analysis: computational algorithms, statistical inference, and empirical implementation. *The Journal of Finance*, 55(4):1705–1765.
- [33] Lütkepohl, H. (2005). *New Introduction to Multiple Time Series Analysis*. Springer, Berlin.
- [34] Mehra, R. (2003). The equity premium: why is it a puzzle? *Financial Analysts Journal*, 59(1):54–69.
- [35] Metghalchi, M., Chang, Y.-H., and Marcucci, J. (2008). Is the Swedish stock market efficient? Evidence from some simple trading rules. *International Review of Financial Analysis*, 17(3):475–490.
- [36] Murphy, J. J. (1991). Intermarket Technical Analysis: Trading Strategies for the Global Stock, Bond, Commodity, and Currency Markets. Wiley, New York, US.

References (9/13)

- [37] Murphy, J. J. (2011). *Intermarket Analysis: Profiting from Global Market Relationships*. Wiley, New York, US.
- [38] Neely, C. J. (2003). Risk-adjusted, ex ante, optimal technical trading rules in equity markets. *International Review of Economics & Finance*, 12(1):69–87.
- [39] Neely, C. J., Rapach, D. E., Tu, J., and Zhou, G. (2014).
 Forecasting the equity risk premium: the role of technical indicators.
 Management Science, 60(7):1772–1791.
- [40] Omrane, W. B. and Oppens, H. V. (2006). The performance analysis of chart patterns: Monte Carlo simulation and evidence from the euro/dollar foreign exchange market. *Empirical Economics*, 30(4):947–971.

References (10/13)

- [41] Oppenheimer, H. R. and Schlarbaum, G. G. (1981). Investing with Ben Graham: an ex ante test of the efficient markets hypothesis. *The Journal of Financial and Quantitative Analysis*, 16(3):341.
- [42] Osler, C. L. and Chang, P. H. K. (1995). Head and shoulders: not just a Flaky pattern. Technical report, Federal Reserve Bank of New York, New York, US.
- [43] Pérez-cruz, F., Afonso-rodríguez, J. A., and Giner, J. (2003). Estimating GARCH models using support vector machines. *Quantitative Finance*, 3(3):163–172.
- [44] Rad, H., Low, R. K. Y., and Faff, R. (2016). The profitability of pairs trading strategies: distance, cointegration and copula methods. *Quantitative Finance*, 16(10):1541–1558.

References (11/13)

- [45] Ratner, M. and Leal, R. P. (1999). Tests of technical trading strategies in the emerging equity markets of Latin America and Asia. *Journal of Banking & Finance*, 23(12):1887–1905.
- [46] Rodríguez-González, A., García-Crespo, Á., Colomo-Palacios, R., Guldrís Iglesias, F., and Gómez-Berbís, J. M. (2011). CAST: Using neural networks to improve trading systems based on technical analysis by means of the RSI financial indicator. *Expert Systems with Applications*, 38(9):11489–11500.
- [47] Shynkevich, A. (2012). Performance of technical analysis in growth and small cap segments of the US equity market. *Journal of Banking & Finance*, 36(1):193–208.

References (12/13)

- [48] Tan, Z., Quek, C., and Cheng, P. Y. (2011). Stock trading with cycles: A financial application of ANFIS and reinforcement learning. *Expert Systems with Applications*, 38(5):4741–4755.
- [49] Taylor, N. (2014). The rise and fall of technical trading rule success. *Journal of Banking & Finance*, 40:286–302.
- [50] Ticknor, J. L. (2013). A Bayesian regularized artificial neural network for stock market forecasting. Expert Systems with Applications, 40(14):5501–5506.
- [51] Vidyamurthy, G. (2004). Pairs Trading: Quantitative Methods and Analysis. Wiley, Hoboken, NJ.
- [52] Wang, K.-L. (2015). Introduction to Securities Analysis (III) Technical Index. [PDF files].

References (13/13)

- [53] Wang, K.-L. (2017). Multivariate Pairs Trading with Structural Change Detections in Cointegrated Relationships (Master Thesis). National Chiao Tung University.
- [54] Wang, K.-L. (2019a). PFA320: Final Exam. [PDF files].
- [55] Wang, K.-L. (2019b). PFA320: Investments, lesson 1, notes. [PDF files].
- [56] Warburton, A. and Zhang, Z. G. (2006). A simple computational model for analyzing the properties of stop-loss, take-profit, and price breakout trading strategies. *Computers & Operations Research*, 33(1):32–42.
- [57] Zhang, G., Eddy Patuwo, B., and Y. Hu, M. (1998). Forecasting with artificial neural networks:. *International Journal of Forecasting*, 14(1):35–62.