Category Theory

- A Journey from Concretization to Abstraction -

Ji, Yong-Hyeon

A document presented for the Category Theory

Department of Information Security, Cryptology, and Mathematics College of Science and Technology Kookmin University

April 25, 2024

Contents

1	None	e	3
	1.1	Example: Application in \mathbb{R}^2	7
	1.2	Category Definitions	9
		1.2.1 Matrices over Commutative Rings	9
		1.2.2 Determinant Functor	9
	1.3	Properties and Transformations	9
		1.3.1 Functor Properties	9
		1.3.2 Natural Transformations	10
	1.4	Conclusion	10

Chapter 1

None

Example 1.1 (Determinant).

[Two Categories]

- 1. Category of Commutative Rings (CRing)
 - **− Objects**: Commutative rings *R*, *S*, ...
 - **Morphisms**: Ring homomorphisms ϕ : R → S
- 2. Category of Groups (Grp)
 - Objects: Groups
 - Morphisms: Group homomorphisms

[**Two Functors**] Note that GL_n represents the functor, while GL_n denotes the group.

- 1. General Linear Group Functor ($GL_n : CRing \rightarrow Grp$)
 - On Objects:

$$R \mapsto GL_n(R)$$

Maps a ring R to the general linear group $GL_n(R)$, which consists of all $n \times n$ invertible matrices over R.

– On Morphisms: Let $GL_n(\phi)$: $GL_n(R)$ → $GL_n(S)$.

$$\phi \mapsto \mathbf{GL}_n(\phi)$$

It preserves invertibility.

- 2. Unit Functor (U : CRing \rightarrow Grp)
 - On Objects:

$$R \mapsto R^{\times}$$

- On Morphisms: Let $U(\phi): R^{\times} \to S^{\times}$.

$$\phi \mapsto \mathbf{U}(\phi)$$

It preserves the unit property.

• [Natural Transformation: Determinant] The determinant

$$\det_R : GL_n(R) \to R^{\times}$$

is a natural transformation between two functors, GL_n and U.

- On Objects: $\eta_R : GL_n(R) \to R^{\times}$
- Naturality Condition: The following diagram commutes:

Example 1.2. Consider
$$\mathbb{Z}$$
 and $GL_2(\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{Z}) : ad - bc \neq 0 \right\}$.

[Two Categories]

- 1. Category of Commutative Rings (CRing)
 - **Object**: Commutative ring $(\mathbb{Z}, +, \times)$
 - **Morphism**: Ring homomorphism $\phi: \mathbb{Z} \to \mathbb{Z}$
- 2. Category of Groups (Grp)
 - **Objects**: Groups ($GL_2(\mathbb{Z})$, *) and (\mathbb{Z}^{\times} , ×). Here '*' denotes matrix multiplication. Note that

$$\mathbb{Z}^{\times} = \{1, -1\}.$$

- Morphisms: Group homomorphisms

$$\sigma: GL_2(\mathbb{Z}) \to GL_2(\mathbb{Z})$$
 and $\tau: \mathbb{Z}^{\times} \to \mathbb{Z}^{\times}$.

Note that $\tau : \{\pm 1\} \rightarrow \{\pm 1\}$

[**Two Functors**] Note that GL_2 represents the functor, while GL_2 denotes the group.

- 1. General Linear Group Functor ($GL_2 : CRing \rightarrow Grp$)
 - On Object:

$$\mathbb{Z} \mapsto GL_2(\mathbb{Z})$$

- On Morphism:

$$\phi \mapsto \sigma = \mathbf{GL}_2(\phi)$$

It preserves invertibility.

- 2. Unit Functor (U : CRing \rightarrow Grp)
 - On Object:

$$\mathbb{Z} \mapsto \mathbb{Z}^{\times} = \{\pm 1\}$$

- On Morphism:

$$\phi \mapsto \tau = \mathbf{U}(\phi)$$

It preserves the unit property.

• [Natural Transformation: Determinant] The determinant

$$\det_{\mathbb{Z}} : GL_2(\mathbb{Z}) \longrightarrow \mathbb{Z}^{\times} = \{\pm 1\}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \longmapsto ad - bc = \det_{\mathbb{Z}} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

is a natural transformation between two functors, GL_2 and U.

- Naturality Condition: The following diagram commutes:

$$GL_{2}(\mathbb{Z}) \xrightarrow{\eta_{\mathbb{Z}} = \det_{\mathbb{Z}}} \mathbb{Z}^{\times}$$

$$\downarrow \sigma = GL_{2}(\phi) \qquad \qquad \downarrow \tau = U(\phi)$$

$$GL_{n}(\mathbb{Z}) \xrightarrow{\eta_{\mathbb{Z}} = \det_{\mathbb{Z}}} \mathbb{Z}^{\times}$$

$$\begin{array}{ccc}
R & GL_n(R) & \xrightarrow{\eta_R = \det_R} & R^{\times} \\
\downarrow & & \downarrow & \downarrow & \downarrow \\
GL_n(\phi) & & \downarrow & \downarrow & \downarrow \\
S & GL_n(S) & \xrightarrow{\eta_S = \det_S} & S^{\times}
\end{array}$$

$$\begin{array}{ccc}
\mathbb{Z} & GL_2(\mathbb{Z}) & \xrightarrow{\det_{\mathbb{Z}}} & \mathbb{Z}^{\times} \\
\phi & & & \downarrow \sigma = GL_2(\phi) & & \downarrow \tau = U(\phi) \\
\mathbb{Z} & GL_2(\mathbb{Z}) & \xrightarrow{\det_{\mathbb{Z}}} & \mathbb{Z}^{\times}
\end{array}$$

Definition 1.1 (Vector Space and Dual Space).

- Let *V* be a finite-dimensional *vector space* over field \mathbb{K} . That is, $V = K^n$.
- The *dual space* V^* of V consists of all linear functionals on V. That is,

$$V^* = \{ \phi : V \to \mathbb{R} \mid \phi \text{ is linear} \}.$$

Definition 1.2 (Double Dual Space). The *double dual space* V^{**} of a vector space V is defined as the dual of the dual space, i.e., $V^{**} = (V^*)^*$. For each $\psi \in V^{**}$, ψ is a functional acting on elements of V^* .

Natural Isomorphism Between V and V^{**}

Theorem 1.1 (Canonical Isomorphism). For every finite-dimensional vector space V, there is a canonical isomorphism $\eta_V: V \to V^{**}$ defined by

$$\eta_V(v)(\phi) = \phi(v),$$

for every $v \in V$ and $\phi \in V^*$. This map is a natural isomorphism, meaning it commutes with all linear transformations.

Definition 1.3 (Induced Map on Dual and Double Dual Spaces). For a linear transformation $T: V \to W$ between vector spaces, the induced map on the dual space, $T^*: W^* \to V^*$, is defined by

$$T^*(\phi) = \phi \circ T$$
,

where $\phi \in W^*$. Similarly, the induced map on the double dual space, $T^{**}: V^{**} \to W^{**}$, is defined by

$$T^{**}(\psi) = \psi \circ T^*,$$

where $\psi \in V^{**}$.

1.1 Example: Application in \mathbb{R}^2

Example 1.3 (Matrix Transformation and Double Dual). Consider the vector space $V = \mathbb{R}^2$, and let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be represented by the matrix

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

We compute the induced maps T^* and T^{**} and verify the natural transformation property with η_V .

Action of *T* and η_V : If $\mathbf{v} = (1, 1)$, then

$$T(\mathbf{v}) = A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 7 \end{bmatrix}.$$

The action of $\eta_{\mathbb{R}^2}$ and ϕ defined by $\phi(\mathbf{v}) = 3v_1 - 2v_2$ gives

$$\eta_{\mathbb{R}^2}((1,1))(\phi) = 1 \text{ and } \eta_{\mathbb{R}^2}((3,7))(\phi) = 3 \times 3 - 2 \times 7 = -5.$$

Verification of Commutativity: To confirm the natural transformation property, we need to show

$$T^{**}(\eta_{\mathbb{R}^2}(\mathbf{v})) = \eta_{\mathbb{R}^2}(T(\mathbf{v})).$$

For $\mathbf{v} = (1,1)$, the calculations show that both sides of the equation represent consistent transformations via the isomorphism $\eta_{\mathbb{R}^2}$, proving the natural transformation.

Example 1.4.

[Category]

- 1. Category of Finite Vector Spaces (FinVect_K)
 - Objects:
 - * Vector space $V = K^n$ over a field K
 - * Dual Space $V^* = \{ \phi \in K^V : \phi \text{ is linear transformation} \}.$
 - Morphisms:
 - * Linear Transformation $T: V(=K^n) \to W(=K^m)$
 - * Dual Transformation $T^*: W^* \to V^*$ defined by

$$T^*f := f \circ T$$
 for all $f \in W *$.

Sometimes we denote $V^* := \mathcal{L}(V, K)$. Note that

- · $(T^*f)\mathbf{v} = f(T\mathbf{v})$ for all $\mathbf{v} \in V$;
- $\cdot f \in W^* \implies T^* f \in V^*;$
- · T^* is linear.

[Functor]

- 1. **Dual Space Functor** (\mathcal{D} : FinVect_K \rightarrow FinVect_K)
 - On Objects:

$$V \mapsto V^* = \mathcal{D}(V)$$

Maps a vector space V to the dual space V^* , which which consists of all linear functionals from V to K.

- On Morphisms:

$$T \mapsto T^* = \mathcal{D}(T)$$

• [Natural Transformation: Determinant] The determinant

$$\det_R: GL_n(R) \to R^{\times}$$

is a natural transformation between two functors, GL_n and U.

Figure 1.1: Visualization of Vector Space, Dual Space, Double Dual Space, Linear Transformation, Dual Transformation, and Double Transformation

1.2 Category Definitions

1.2.1 Matrices over Commutative Rings

Define the category **Mat_n_(CRing)** where:

- Objects are $n \times n$ matrices over any commutative ring R.
- Morphisms are ring homomorphisms applied element-wise to matrices.

1.2.2 Determinant Functor

The functor **Det**: $Mat_n(CRing) \rightarrow Grp$ is defined by:

- On Objects: Mapping *A* to the group formed under multiplication by det(*A*).
- On Morphisms: If $f: R \to S$ is a ring homomorphism, then det(f(A)) = f(det(A)), maintaining the structure of group morphisms.

1.3 Properties and Transformations

1.3.1 Functor Properties

The determinant functor preserves:

- Composition: det(AB) = det(A) det(B)
- Identities: det(I) = 1, where I is the identity matrix.

1.3.2 Natural Transformations

Consider a transformation scaling each element of matrix A by a unit u in R. The determinant changes as:

$$\tau_A : \det(A) \mapsto u^n \det(A)$$

where n is the matrix dimension, reflecting the multiplicative scaling in the group.

1.4 Conclusion

Through the lens of category theory, the determinant integrates the algebraic structures of commutative rings and groups, enhancing our understanding of its invariant and multiplicative properties.