Feature Engineering

- Features and Feature Engineering
 - **Features**: information that describes a problem at hand and is potentially useful for prediction/problem solving
 - Feature Engineering: design and process for Al applications
 - o Process:
 - understanding the properties of the task and how they may interact with the strengths and limitations of the chosen model
 - design a set of features
 - run experiments and analyse the results on a validation dataset
 - change the feature set
 - go to step 2
- Feature Explosion
 - o Initial features: an expression of prior knowledge
 - Features combinations
 - Problem: Storage Cost; Irrelevant, Redundant or even harmful features; Large number of required training samples; Dysfunctional distance functions
 - o Benefits of small features set
- Tackling Feature Explosion
 - o Feature selection: greedy method
 - Reduce the original feature by throwing out some redundant features
 - Greedy heuristic search for feature selection (**sequential feature selection**)
 - Forward selection: add one feature each step
 - **Backward selection**: remove one feature each step
 - **Evaluate method**: information theory; prediction accuracy
 - Stop criterion
 - Three typical methods:
 - Wrapper methods

highly accurate, computationally expensive, risk of over fitting

Filter methods

fast and simple; not as accurate as wrappers

Examples: correlation-based filters (Pearson correlation, Information gain)

Embedded method

similar to wrappers but less computationally expensive; less possible to over fitting

Example: classification and regression trees

- Regularization: (introducing penalty for complexity -> reduce features)
 - Ridge regression (2-order)
 - Lasso regression (1-order)

Unsupervised Learning

- 1. What is clustering
 - o group the points into some number of clusters
 - o members of a cluster are close /similar to each other
 - o members if different clusters are dissimilar
 - It is hard for clustering high dimension data.
 - o Distance measurements:
 - Cosine similarity and distance

$$ext{similarity} = \cos(heta) = rac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\|_2 \|\mathbf{B}\|_2} = rac{\sum\limits_{i=1}^n A_i B_i}{\sqrt{\sum\limits_{i=1}^n A_i^2} \sqrt{\sum\limits_{i=1}^n B_i^2}}$$

$$D_C(A,~B)=1-S_C(A,~B)$$
 or $distance=rac{cos^{-1}(similarity)}{\pi}$

Jaccard similarity and distance (Two sets A and B)

$$J(A,B)=rac{|A\cap B|}{|A\cup B|}=rac{|A\cap B|}{|A|+|B|-|A\cap B|}$$
 , $0\leq J(A,B)\leq 1$ $d_J(A,B)=1-J(A,B)=rac{|A\cup B|-|A\cap B|}{|A\cup B|}.$

- Euclidean distance
- 2. Hierarchical clustering (Repeatedly combine, two nearest clusters)
 - o represent a cluster of mangy points: centroid (average of its points)
 - how to determine "nearness" of clusters: **distance of centroids** (and other criterion)
 - when to stop. number criterion, distance criterion
 - o Additionally, in the non-Euclidean space
- 3. k-means clustering (scan quickly)
- 4. The BFR algorithm Extension of k-means to large data
 - assumes that clusters are normally distributed a centroid in an Euclidean space

Select initial k centroids by some approach:

- 1. random selection
- 2. samll random sample and cluster optimally
- 3. take sample one by one, each as far from the previously slected points as possible
- o 3 set of points which we keep track of
 - Discard set (DS): points close enough to a centroid to be summarized
 - Compression set (CS): group of points are close together but not close to any existing centroid
 - Retained set (RS): isolated points waiting to be assigned to a compression set

"Galaxies" Picture

- Summarizing sets of points
 - the number of points: N
 - lacksquare the vector SUM: $SUM_i=i^{th}$ component of SUM
 - lacktriangledown the vector SUMSQ: $SUMSQ_i = ext{sum}$ of squares of i^{th} component
 - lacktriangledown represent cluster: $(d, SUM_i, (SUMSQ_i/N) (SUM_i/N)^2$
- Actual clustering
- 1. Find those points that are "sufficiently close" to a cluster centroid and add those points to that cluster and the DS
- 2. Use any main-memory clustering algorithm to cluster the remaining points and the old RS
- 3. DS set: Adjust statistics of the clusters to account for the new points (Ns,SUMS,SUMSQs)
- 4. Consider merging compressed sets in the CS
- 5. If this is the last round, merge all compressed sets in the CS and all RS points into their nearest cluster

Mahalanobis Distance to decide whether to put a new point into a cluster (and discard) Combine 2 CS sub-clusters if the combined variance is below some threshold.

5. The CURE algorithm

- 0. Pick a random sample of points that fit in main memory
- 1. Clustering: group nearest points/clusters
- 2. Pick representative points:

For each cluster, pick a sample of points, as dispersed as possible

From the sample, pick representatives by moving them (say) 20% toward the centroid of the cluster

- 3. Now, rescan the whole dataset and visit each point p in the data set
- 4. Find the closest representative to p and assign it to representative's cluster
- 6. Spectral clustering

Markov Decision Process

1. Basic concepts

- \circ receive current state state S_t and reward R_t from the environment
- \circ Take action A_t
- \circ Environment changes to S_{t+1} and R_{t+1}
- o Objective of interaction: maximise total reward
- o **Objective if learning**: find out such actions from the information collected during interaction
- Learn a policy (a mapping from states to actions)
- A_t affects $S_{t+1}, S_{t+2}, S_{t+3}, \ldots$ and $R_t + 1, R_{t+2}, R_{t+3}, \ldots$ all R_{t+k} contribute to the cumulative reward starting from time t.
- o Reinforcement Learning vs Supervised Learning
 - RL: learn a policy; SL: learn a classifier
 - No teachers in RL; Feedbacks in SL is instant
 - ...
- 2. Markov decision process
 - o MDP: M=<S, A, P, R> S: set of all possible states; A: set of all possible actions
 - $\circ \ \mathbb{P}(S_{t+1}|S_1,\ldots,S_t,A_1,\ldots,A_t) = \mathbb{P}(S_{t+1}|S_t,A_t)$ the future only correlate with present state
 - \circ P: transition probability $p(s,a,s^{'})=\mathbb{P}(S_{t+1}=s^{'}|S_{t}=s,A_{t}=a)$
 - o R: immediate reward function; R: S->R; R: S*A -> R; R: S*A*S -> R

- o Policy: describe the behaviour of agent
 - Deterministic policy (Discrete): $(\pi(s) = a$: instructs the agent to take action a at state s)
 - Stochastic policy (Continue): π is a conditional distribution over actions given states

o Cumulative reward

- total amount of reward rather than just a single-step
- discounted cumulative reward: $G_t = R_{t+1} + \gamma R_{t+2} + \ldots = \sum_{k=1}^{\infty} \gamma^{k-1} R_{t+k}$
- $\gamma \in (0,1)$ $\gamma \to 1$ far-sighted; $\gamma \to 0$ myopic
- Value functions (maximise expected cumulative reward)
 - state Value functions (v^{π}) : $v^{\pi}(s) := E[G_t | \pi, S_t = s]$
 - lacksquare action Value functions ($oldsymbol{q^\pi}$): $q^\pi(s,a):=E[G_t|\pi,S_t=s,A_t=a]$

o Bellman equation

for state value function:

$$egin{aligned} v^\pi &= E[G_t | \pi, S_t = s] \ &= E[R_{t+1} + \gamma G_{t+1} | \pi, S_t = s] \ &= E[R_{t+1} + \gamma v^\pi (S_{t+1}) | \pi, S_t = s] \end{aligned}$$

since the transition probability is $p(s,\pi(s),s')$

$$v^{\pi}(s) = \sum_{s^{'} \in S} p(s, \pi(s), s^{'}) (R(s, \pi(s), s^{'}) + \gamma v^{\pi}(s^{'}))$$

for stochastic $\pi(a|s)$

$$v^{\pi}(s) = \sum_{a \in A} \pi(a|s) \sum_{s^{'} \in S} p(s, \pi(s), s^{'}) (R(s, \pi(s), s^{'}) + \gamma v^{\pi}(s^{'}))$$

for action value function:

$$egin{aligned} q^{\pi}(s,a) &= E[G_t | \pi, S_t = s, A_t = a] \ &= E[R_{t+1} + \gamma G_{t+1} | \pi, S_t = s, A_t = a] \ &= E[R_{t+1} + \gamma v^{\pi}(S_{t+1}) | \pi, S_t = s, A_t = a] \end{aligned}$$

since action at the current step is always a regardless of π in $q^{\pi}(s,a)$

$$q^{\pi}(s,a) = \sum_{s^{'} \in S} p(s,a,s^{'}) (R(s,a,s^{'}) + \gamma v^{\pi}(s^{'}))$$

compare

$$\left\{egin{aligned} v^{\pi}(s) &= \sum_{a \in A} \pi(a|s) \sum_{s^{'} \in S} p(s,\pi(s),s^{'}) (R(s,\pi(s),s^{'}) + \gamma v^{\pi}(s^{'})) \ q^{\pi}(s,a) &= \sum_{s^{'} \in S} p(s,a,s^{'}) (R(s,a,s^{'}) + \gamma v^{\pi}(s^{'})) \end{aligned}
ight.$$

we have

$$v^\pi(s) = \sum_{a \in A} \pi(a|s) q^\pi(s,a)$$

thus,

$$egin{aligned} q^{\pi}(s,a) &= \sum_{s^{'} \in S} p(s,a,s^{'}) (R(s,a,s^{'}) + \gamma v^{\pi}(s^{'})) \ &= \sum_{s^{'} \in S} p(s,a,s^{'}) (R(s,a,s^{'}) + \gamma \sum_{a^{'} \in A} \pi(a^{'}|s^{'}) q^{\pi}(s^{'},a^{'}))) \ &= \sum_{s^{'} \in S} p(s,a,s^{'}) (R(s,a,s^{'}) + \gamma q^{\pi}(s^{'},\pi(s^{'}))) \end{aligned}$$

3. Planning in MDPs

- o Optimality
 - optimal state value function: $v^*(s) = max_\pi v^\pi(s)$
 - lacksquare optimal action value function: $q^*(s,a) = max_\pi q^\pi(s,a)$
 - optimal policy have the highest expected cumulative reward at any state
- Solve Bellman equation
 - Policy iteration algorithm

Policy iteration (PI) algorithm

- (0) start from arbitrary π
- (1) solve q^{π}
- (2) improve π by $\pi(s) \leftarrow \operatorname{argmax}_{a \in \mathcal{A}} q^{\pi}(s, a)$
- (3) goto (1) until π converges
- Value iteration algorithm

Value iteration (VI) algorithm

- (0) start from random v (can be wrong values like all 0!)
- (1) update all v(s) by $v(s) \leftarrow \max_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} \mathcal{P}(s, a, s') \left(\mathcal{R}(s, a, s') + \gamma v(s') \right)$
- (2) goto (1) until v converges
- 4. Extensions to MDPs
 - o POMDPs: <S, A, O, P,R, W> O: set of all observations; W: an observation probability function
 - o continue MDPs
 - o Semi-MDPs
 - o Decentralised POMDPs

Reinforcement Learning

what if the agent does not have such full knowledge

- 1. Model-based RL (Estimate during interaction)
 - \circ $\hat{M} := \langle \hat{S}, \hat{A}, \hat{P}, \hat{R} \rangle$
 - \hat{S} , \hat{A} set of all **visited** states and actions

- \hat{R} : estimated transition probabilities
 - $\hat{R}(s,a,s^{'}) = R_{s,a,s^{'}}/N_{s,a,s^{'}}$
 - $lackbox{ } R_{s,a,s'}$ be the sum of rewards received at transition (s, a, s') in the whole interaction history
 - $N_{s,a,s'}$ be the number of transition (s, a, s')occurred
- \hat{P} : estimated immediate rewards
 - $\hat{P}(s,a,s^{'}) = N_{s,a,s^{'}}/N_{s,a}$
 - $N_{s,a}$ be the number of 'taking action a at state s' in the whole interaction history
 - $N_{s.a.s'}$ be the number of transition (s, a, s') occurred

0

- (Vanilla) model-based RL algorithm
 - (0) Start with an arbitrary policy π and an estimated MDP \widehat{M}
 - (1) Interact with the environment using π , record transitions and rewards
 - (2) Update estimated MDP \widehat{M}
 - (3) Compute the optimal policy $\hat{\pi}^*$ of \hat{M} using PI/VI, update $\pi \leftarrow \hat{\pi}^*$
 - (4) Goto (1) until π converges

0

- 2. Exploration vs exploitation in RL trade off
 - Exploration: deliberately take actions that are not (seemingly) "optimal" according to the current knowledge
 - ϵ -greedy: choose a random action with probability ϵ ; choose the 'optimal' action with $1-\epsilon$
 - ullet often set small values like 0.03, 0.01, 0.003 or even smaller
 - R-MAX: Assume $q(s, a) = R_{max}$, unless α has been taken at least m times at s
 - R-MAX forces the agent to try every possible actions many times before making any conclusion
 - o Exploitation: gain more information in the hope of discovering better policies
- 3. Model-free RL
 - o Monte-Carlo methods
 - Monte-Carlo value estimation:

$$N(s) \leftarrow N(s) + 1$$
 $\hat{G}(s) \leftarrow \hat{G}(s) + G_t$ $\hat{v}^{\pi}(s) \leftarrow \hat{G}(s)/N(s)$

 G_t is the actual cumulative reward $G_t = R_{t+1} + \gamma Rt + 2 + \cdots + \gamma^k R_{t+k+1} + \ldots$

MC reinforcement learning

Monte-Carlo reinforcement learning

- (0) Start with arbitrary policy π
- (1) Interact with the environment, record all cumulative rewards
- (2) Update \hat{v}^{π} or \hat{q}^{π} with the MC value estimation algorithm
- (3) Improve π by argmaxing \hat{v}^{π} or \hat{q}^{π}
- (4) Goto (1) until π converges

Incremental version of MC estimation

$$\hat{v}^\pi(S_t) \leftarrow \hat{v}^\pi(S_t) + rac{1}{N(S_t)}(G_t - \hat{v}^\pi(S_t)) \ \hat{v}^\pi(S_t) \leftarrow \hat{v}^\pi(S_t) + lpha(G_t - \hat{v}^\pi(S_t)) \ \ 0 < lpha < 1$$

lpha is the update rate

Temporal difference terminology

$$egin{aligned} \hat{v}^{\pi}(S_t) \leftarrow \hat{v}^{\pi}(S_t) + lpha(G_t - \hat{v}^{\pi}(S_t)) \ G_t = R_{t+1} + \gamma \hat{v}^{\pi}(S_{t+1}) \ \hat{v}^{\pi}(S_t) \leftarrow \hat{v}^{\pi}(S_t) + lpha(R_{t+1} + \gamma \hat{v}^{\pi}(S_{t+1}) - \hat{v}^{\pi}(S_t)) \end{aligned}$$

- lacksquare "TD target": $R_{t+1} + \gamma \hat{v}^\pi(S_{t+1})$
- lacksquare "TD error": $R_{t+1} + \gamma \hat{v}^\pi(S_{t+1}) \hat{v}^\pi(S_t)$

(Vanilla) temporal difference RL

- (0) Start with an arbitrary policy π
- (1) Execute $A_t \leftarrow \pi(S_t)$, get R_{t+1} and S_{t+1}
- (2) Update $\hat{v}^{\pi}(S_t)$ or $\hat{q}^{\pi}(S_t, A_t)$ with TD estimation
- (3) Improve $\pi(S_{t+1})$ by argmaxing $\hat{v}^{\pi}(S_{t+1})$ or $\hat{q}^{\pi}(S_{t+1},a)$
- (4) Goto (1) until π converges
- o MC vs TD
 - MC: unbiased, but usually has a higher variance
 - TD: biased, but usually has a lower variance
- o Other version of TD algorithms
 - Sarsa algorithm

Initialize Q(s,a) arbitrarily
Repeat (for each episode):
Initialize sChoose a from s using policy derived from Q (e.g., ε -greedy)
Repeat (for each step of episode):
Take action a, observe r, s'Choose a' from s' using policy derived from Q (e.g., ε -greedy) $Q(s,a) \leftarrow Q(s,a) + \alpha \big[r + \gamma Q(s',a') - Q(s,a) \big]$ $s \leftarrow s'; \ a \leftarrow a';$ until s is terminal

Q-learning algorithm

4. Issues with terminology (details in slides)

Fuzzy Logic

- 1. Introduction details in slides
- 2. Fuzzy Sets anf Membership Functions
 - o fuzzy set: fundamental to mathematics. Example: "tall man" is a fuzzy set
 - Membership Function: the degree of an element of universe X belong to a fuzzy set.
 - $\mu_A(x) = 1$ if x is totally in A;
 - $\mu_A(x) = 0$ if x is not in A;
 - $0 < \mu_A(x) < 1$ if x is partly in A;
 - o Example:

5 Fuzzy Set: Very Short, Short, Medium, Tall, Very Tall
Membership Function: curve in the coordinate system

3. Fuzzy Linguistic Variables

o example of FLV:

■ Colour: red, blue, green,...

■ age: young, middle-aged, old, very-old,

■ size: small, big, very big, ...

o representation of hedges in fuzzy logic

Representation of hedges in fuzzy logic

Hedge	Mathematical Expression	Graphical Representation
A little	$\left[\mu_A(x)\right]^{1.3}$	
Slightly	$[\mu_A(x)]^{1.7}$	
Very	$[\mu_A(x)]^2$	
Extremely	$[\mu_A(x)]^3$	

Representation of hedges in fuzzy logic (continued)

Hedge	Mathematical Expression	Graphical Representation
Very very	$\left[\mu_A(x)\right]^4$	
More or less	$\sqrt{\mu_A(x)}$	
Somewhat	$\sqrt{\mu_A(x)}$	
Indeed	$2 \left[\mu_{A}(x) \right]^{2}$ if $0 \le \mu_{A} \le 0.5$ $1 - 2 \left[1 - \mu_{A}(x) \right]^{2}$ if $0.5 < \mu_{A} \le 1$	

20

Assume a Fuzzy set:
$$A=\mu_A(x_i)/x_i+\ldots\ldots+\mu_A(x_n)/x_n$$

- o Operations
 - lacksquare Complement: $\mu_{ar{A}}(x)=1-\mu_A(x)$
 - **Containment**: all elements have the smaller membership value compare to another fuzzy set
 - $lacksquare Insertion: \mu_{A\cap B}(x)=min[\mu_A(x),\mu_B(x)]=\mu_B(x)\cap\mu_B(x)$
 - $lacksquare Union: \mu_{A\cup B}(x)=max[\mu_A(x),\mu_B(x)]=\mu_B(x)\cup\mu_B(x)$

Operations of Crisp Set and Fuzzy Set

o Properties

- Equality: $\mu_A(x) = \mu_B(x), \forall x \in X$
- Inclusion: $\mu_A(x) \leq \mu_B(x), \forall x \in X$
- lacksquare Cardinality: $card_A = \mu_A(x_1) + \mu_A(x_2) + \ldots + \mu_A(x_n) = \sum_{\mu_A} (x_i)$
- lacksquare Empty Fuzzy Set: $\mu_A(x)=0, orall x\in X$
- $lacksquare Alpha-cut: A_lpha=\{\mu_A(x)\geq lpha, orall x\in X\}$
- **Fuzzy Set Normality** : a fuzzy sunset is normal if there exits at least one element $\mu_A(x)=1$
- $lacksquare Height: height(A) = max_x(\mu_A(x))$
- Core: $core(A) = \{x | \mu_A(x) = 1 \text{ and } x \in X\}$
- $lacksquare Support: supp(A) = \{x | \mu_A(x) > 0 \ and \ x \in X\}$

5. Fuzzy Rules

- o If Then.... (FLV are used in fuzzy rules)
- Example: If height is tall, Then weight is heavy.

6. Fuzzy Inference System

- o Step1: Input Fuzzification
- Step2: Fuzzy Rules Evaluation
- o Step3: Calculate Membership
- o Step4: Activate Fuzzy Rules
- Step5: Compute Decision Function
- o Step6: Compute Final Decision

Specific Example could see slides

7. Summary