Alternating direction method of multiplier: a powerful tool for difficult optimization problems

Xin Liu (liuxin@lsec.cc.ac.cn)

State Key Laboratory of Scientific and Engineering Computing Academy of Mathematics and Systems Science, Chinese Academy of Sciences

Brief Introduction

Philosophy of ADMM

An ancient strategy: divide and conquer Mathematical view: split and alternate Optimization model description

$$\min_{x \in \Omega} f(x) \text{ s.t. } c(x) = 0,$$

with a splitting structure:

- $\bullet \ x := (x_1, x_2, ..., x_p)$
- $\bullet \{x \mid x \in \Omega\} = \bigcap_{i=1}^{p} \{x \mid x_i \in \Omega_i\}$
- * Split variables are connected by equality constraints.

Algorithm Framework

Augmented Lagrangian function (Henstenes 1969, Powell 1969, Rockafellar 1973)

$$\mathcal{L}_{\beta}(x,\lambda) = f(x) - \lambda^{\mathrm{T}} c(x) + \frac{\beta}{2} ||c(x)||_2^2.$$

Alternating direction method of multiplier (AD-MM) (Glowinski-Marocco 1975, Gabay-Mercier 1976, p=2,...)

$$\begin{cases} x_1^{k+1} \leftarrow \arg\min_{\boldsymbol{\mathcal{L}}_{\beta}}(\boldsymbol{x}_1, x_2^k, ..., x_p^k, \lambda^k); \\ x_1 \in \Omega_1 \\ x_2^{k+1} \leftarrow \arg\min_{\boldsymbol{\mathcal{L}}_{\beta}}(x_1^{k+1}, \boldsymbol{x}_2, x_3^k, ..., x_p^k, \lambda^k); \\ x_2 \in \Omega_2 \\ \dots \\ x_p^{k+1} \leftarrow \arg\min_{\boldsymbol{\mathcal{L}}_{\beta}}(x_1^{k+1}, ..., x_{p-1}^{k+1}, \boldsymbol{x}_p, \lambda^k); \\ x_p \in \Omega_p \\ \lambda^{k+1} \leftarrow \lambda^k - \tau \beta c(x_1^{k+1}, ..., x_p^{k+1}). \end{cases}$$

Convergence

Existent results – based on strict conditions

- Two blocks, joint convexity, separability (Gabay-Mercier 1976)
- Multi-blocks, joint convexity, separability
- variant versions (He-Yuan et al., Goldfarb-Ma, ...)
- strongly convexity (Luo, 2012)
- Global linear convergence rate
 - linear programming (Eckstein-Bertsekas, 1990)
- strongly convexity, Lipschitz gradient (Deng-Yin)

Nonconvex and nonseparable case (Yang-L.-Zhang) [1]

- Some pioneering results on the local convergence and linear local convergence rate
- Milder restriction on the optimization model: the second order sufficiency at the solution

References

- [1] J. Yang, X. Liu and Y. Zhang.: A Class of Stationary Iterative Method for Saddle Point Problems: Convergence and Extension, finished
- [2] Z. Wen, C. Yang, X. Liu and S. Marchesini: Alternating Direction Methods for Classical and Ptychographic Phase Retrieval, accepted by Inverse Problem
- [3] Z. Wen, X. Peng, X. Liu, X. Bai and X. Sun: Asset Allocation under the Basel Accord Risk Measures, finished
- [4] Y. Zhang: An Alternating Direction Algorithm for Nonnegative Matrix Factorization, Rice technical report, 2010.

Acknowledgements

Research supported in part by NSFC grant 11101409 and 10831006, and the National Center for Mathematics and Interdisciplinary Sciences, CAS.

Ptychographic Phase Retrieval

- Details refer to (Wen-Yang-L.-Marchesini, 2012) [2]
- Background: X-ray diffractive imaging, transmission electron microscopy
- Mathematical problem: given $|\mathcal{F}(Q_i\psi)|$ for $i=1,\ldots,k$, can we recover ψ ?
- Optimization model: nonconvex, nonsmooth

$$\min_{\hat{\psi} \in \mathbb{C}^n} \sum_{i=1}^k \frac{1}{2} \left| \left| |\mathcal{F}Q_i \hat{\psi}| - b_i \right| \right|_2^2.$$

Splitting reformulation: $\min_{\hat{\psi} \in \mathbb{C}^n, \mathbf{z} \in \mathbb{C}^m \times \mathbf{k}} \sum_{i=1}^k \frac{1}{2} |||\mathbf{z}_i| - b_i||_2^2 \text{ s.t. } \mathbf{z}_i = \mathcal{F}Q_i\hat{\psi}, \quad i = 1, ..., k.$

Augmented Lagrangian: $\mathcal{L}_{\beta}(z_i, \psi, y_i) = \sum_{i=1}^k \left(\frac{1}{2} ||\mathbf{z}_i| - b_i||_2^2 + y_i^* (\mathcal{F}Q_i\psi - \mathbf{z}_i) + \frac{\beta}{2} ||\mathcal{F}Q_i\psi - \mathbf{z}_i||_2^2 \right)$.

Updating z: $(z_i^+)_{(l)} = \begin{cases} \frac{|(s_i)_{(l)}| + (b_i)_{(l)}}{(1+\beta)|(s_i)_{(l)}|} (s_i)_{(l)}, & \text{if } (s_i)_{(l)} \neq 0 \text{ and } (b_i)_{(l)} > 0; \\ \pm \frac{(b_i)_{(l)}}{1+\beta}, & \text{if } (s_i)_{(l)} = 0 \text{ and } (b_i)_{(l)} > 0; \\ 0, & \text{otherwise,} \end{cases}$ where $s_i = y_i + \beta \mathcal{F} Q_i \psi$, i = 1, ..., k. (closed-form formula)

Updating ψ : $\psi^+ = \frac{1}{\beta} \left(\sum_{i=1}^k Q_i^* Q_i \right)^{-1} \sum_{i=1}^k Q_i^* \mathcal{F}^* \left(\beta z_i^+ - y_i \right)$. (solving linear system)

Updating Lagrangian multiplier $y: y_i^{j+1} = y_i^j + \tau \beta (\mathcal{F}Q_i\psi^{j+1} - z_i^{j+1}), \quad i = 1, \ldots, k.$

Portfolio Optimization

- Details refer to (Peng-Wen-L.-Bai-Sun) [3]
- Value at risk: $\operatorname{VaR}_{\alpha}(X) \triangleq -\inf_{x \in \mathbb{R}} x \text{ s.t. } \operatorname{P}(X > x) \leq 1 \alpha = -\inf_{x \in \mathbb{R}} x \text{ s.t. } \operatorname{F}_{X}(x) > \alpha.$
- Optimization model: combinatorial objective

$$\min_{u \in \mathcal{U}_{r_0}} (-\tilde{R}u)_{(p)},$$

where $\mathcal{U}_{r_0} = \{ u \in \mathbb{R}^d \mid \mu^{\mathrm{T}} u \geq r_0, \mathbf{1}^{\mathrm{T}} u = 1, u \geq 0 \};$ $(\cdot)_{(p)}$ refers to the p-th smallest component of a vector.

Splitting reformulation: $\min_{u \in \mathcal{U}_{r_0}, x \in \mathbb{R}^n} x_{(p)}$ s.t. x + Ru = 0.

Augmented Lagrangian: $\mathcal{L}_{\beta}(x, u, \lambda) := \mathbf{x}_{(p)} - \lambda^{\mathrm{T}}(\mathbf{x} + \tilde{R}u) + \frac{\beta}{2} \|\mathbf{x} + \tilde{R}u\|^2$.

Updating x: $x_{(i)} = \begin{cases} \gamma_{i^*}, & \text{if } i^* \leq i \leq p; \\ v_i, & \text{otherwise,} \end{cases}$ where $v^{(j)} = -\left(\tilde{R}u^{(j)} + \frac{1}{\beta}\lambda^{(j)}\right), \gamma_i = \frac{\beta \sum_{j=i}^p v_j - 1}{\beta(p-i+1)}$

 $i^* := \max\{i \mid i \leq p, \ v_{i-1} < \gamma_i\} \text{ after sorting } v_1 \leq v_2 \leq \ldots \leq v_n. \text{ (closed-form formula)}$ $\lim_{n \to \infty} u^{(j+1)} = \arg\min_{n \to \infty} \frac{1}{2} u^\top \tilde{R}^\top \tilde{R} u + b^\top u \text{ where } b = \tilde{R}^\top (\frac{1}{2} \lambda^{(j)} + \frac{r^{(j+1)}}{r^{(j+1)}}) \text{ (solving OP)}$

Updating u: $u^{(j+1)} = \arg\min_{u \in \mathcal{U}_{r_0}} \frac{1}{2} u^{\top} \tilde{R}^{\top} \tilde{R} u + b^{\top} u$, where $b = \tilde{R}^{\top} (\frac{1}{\beta} \lambda^{(j)} + x^{(j+1)})$ (solving QP) Updating Lagrangian multiplier λ : $\lambda^{(j+1)} = \lambda^{(j)} + \beta(x^{(j+1)} + \tilde{R} u^{(j+1)})$.

Structure Enforcing Matrix Factorization

- Principal component analysis (PCA) with structures: given dataset $A \in \mathbb{R}^{m \times n}$, find W, H with $k \ll n$ columns so that $A \approx WH^{\mathrm{T}} \Leftrightarrow \mathbf{a}_{j} \approx \mathbf{w}_{1}h_{j1} + \mathbf{w}_{2}h_{j2} + \cdots + \mathbf{w}_{k}h_{jk}$. with prior information on decomposition pattern (W, H)
- Optimization model: nonconvex, combinatorial constraints

$$\min_{W \in \mathbb{R}^{m \times k}, \ H \in \mathbb{R}^{n \times k}} \|A - WH^{\mathrm{T}}\|_{\mathrm{F}}^{2} \text{ s.t. } W \in \mathbb{T}_{1}, \ H \in \mathbb{T}_{2},$$

where \mathbb{T}_1 , \mathbb{T}_2 can be $\{X \mid X^TX = I\}$, or $\{X \mid X \geq 0\}$ (nonnegative matrix factorization, (Zhang, 2010) [4]), or any other matrix sets allowing 'easy projection'.

- Splitting reformulation: $\min_{W, H, S_1, S_2} ||A WH^T||_F^2$ s.t. $W = S_1 \in \mathbb{T}_1, H = S_2 \in \mathbb{T}_2$.
- Augmented Lagrangian: $\mathcal{L}_{(\beta_1, \beta_2)}(W, H, S_1, S_2, \Lambda) = \|A WH^{\mathrm{T}}\|_{\mathrm{F}}^2 \Lambda_1 \bullet (W S_1) \Lambda_2 \bullet (H S_2) + \frac{\beta_1}{2} \cdot \|W S_1\|_{\mathrm{F}}^2 + \frac{\beta_2}{2} \cdot \|H S_2\|_{\mathrm{F}}^2.$
- $\bullet \begin{cases}
 W^{k+1} \leftarrow \arg\min_{W} \mathcal{L}_{(\beta_{1}, \beta_{2})}(W, H^{k}, S_{1}^{k}, S_{2}^{k}, \Lambda^{k}); \\
 H^{k+1} \leftarrow \arg\min_{H} \mathcal{L}_{(\beta_{1}, \beta_{2})}(W^{k+1}, H, S_{1}^{k}, S_{2}^{k}, \Lambda^{k}); \\
 S_{i}^{k+1} \leftarrow \operatorname{Proj}_{\mathbb{T}_{i}}(V_{i}^{k+1} \Lambda_{i}^{k}/\beta_{i}); & \operatorname{Here}, i = 1, 2; \\
 \Lambda_{i}^{k+1} \leftarrow \Lambda_{i}^{k} \beta_{i}(V_{i}^{k+1} S_{i}^{k+1}). & V_{1} = W, V_{2} = H.
 \end{cases}$

