#### VIRTUAL REALITY

**Haptics** 

**Course 2024/2025** 

#### Overview

- 1. Definitions
- 2. The sense of touch
- 3. Haptic perception
- 4. Tactile simulation
- 5. Haptic devices
- 6. Haptic rendering
- 7. Applications

#### **Definitions**

#### Tactile

 Pertaining to sensory information derived from cutaneous inputs (i.e., via skin receptors)

#### Kinesthetic

 Pertaining to sensory information from proprioceptors concerning limb movement and orientation of body parts

#### Haptic

 Pertaining to sensory information derived from both tactile and kinesthetic receptors, typically involves active touch

### **Definitions**

#### Haptic interface

 A user interface permitting human to have haptic interaction with real or virtual environments

#### Haptic device

An interaction device actively producing haptic feedback

### The sense of touch

- Touch: feeling caused when the skin receives a mechanical, heating, chemical or electrical stimulus
  - Thermoreceptors: they respond to the heating changes
  - Mecanoreceptors: they respond to a mechanical action (force, vibration, sliding)
  - Nocioreceptors: they transmit pain/ache



### The sense of touch (II)

- Sensorial accomodation: it quantifies the variation on time of the electrical discharge number generated by a certain receiver in response to a stimulus.
  - slow accomodation
  - fast accomodation (glasses, gloves)

### The sense of touch (III)

- Spatial resolution: The reception field is defined as the area where a stimulus can excite the receiver (between 1-2 mm<sup>2</sup> and 45 mm<sup>2</sup>)
  - it depends of the body part (lower leg and leg around 45 mm², while hand fingers between 1 and 2 mm²)
  - directly related with how big is the area of the brain that interpret the stimulus (higher spatial resolution, bigger area in the brain)

# The sense of touch (IV)



# The sense of touch (V)





The little man inside the brain

### The sense of touch (VI)

- Time resolution: minimum time needed to be able to distinguish between two consecutive successes
  - aproximately around 5ms, much shorter than the one of the view, 25ms ("hand is much faster than eye")
  - But in order to recognize the order the stimuli have been produced it requires 20 ms aprox.
  - Welch & Warren (1986): response to a touching stimulus = 0.11 s, but to recognize braille code response = 0.87-1.56 s

### The sense of touch (VII)

- Propioception: sense in charge of inform of the position the body parts have
- Cinestesia: feeling that gives information of their movement
  - the resolution is mesured in grades and indicates the difference of angle which is non perceived as a change of position in a body join (the hip has the biggest precision, while the foot fingers the smallest)

### The sense of touch (VIII)

#### Passive touch:

 feeling when an object touch the skin (only stimulates the cutaneous receivers, non owned movement).

#### Active touch:

- feeling produced when we touch in an active form an object (push buttons, slide over surfaces, ...)
  - · active better to identify objects by touching

### The sense of touch (IX)

- Touch is not an absolute sense
  - Several factors affect the touch sensitivity:
    - Age
    - Sex
    - Individual differences
    - Attention, fatigue, mood, stress
    - Diseases, disabilities
    - Training
- ⇒ Scalability is an important factor in tactile interfaces!

## Haptic perception

- Haptic perception integrates somatosensory information in recognizing objects
  - Touch mediates material properties (e.g., texture, hardness & temperature)
  - Proprioception provides spatial and motor information (e.g., object geometry & hand position)



- The perceived frequency of the grating depends on
  - The physical frequency of stimulation, and
  - 2) Information about how fast the finger is being moved across a surface 14

# Haptic perception (II)

- Vision vs. touch simplified:
  - Vision more capable of providing geometric information & general picture
  - Touch more effective in providing material information & fine surface details
- Different strategies for touching
  - Active touch (focus on the object properties)
  - Passive touch (focus on the sensation experienced)

## Haptic perception (III)

- "The great cookie-cutter experiment" by Gibson (1962)
  - Experimenter pushes a cookie cutter onto participant's palm
    - ⇒ 49% correct identification
  - Participant actively feels cookie cutter with the palm
    - ⇒ 95% correct identification
- Demonstrated that active exploration is essential in our ability to perceive objects in the physical world

# Haptic perception (IV)

- Exploratory procedures defined by Lederman & Klatzky(1987)
  - These stereotypical ways of touching enhance the relevant perceptual information

Lateral Motion
Texture

Hardness

Pressure

Enclosure Global shape/Volume

Contour Following Shape

Static Contact Temperature



Unsupported Holding
Weight





#### Tactile simulation

- The tactile sense can be stimulated using a variety of different methods
- These methods include:
  - Skin deformation
  - Vibration
  - Electric stimulation
  - Skin stretch
  - Friction (micro skin-stretch)
  - Temperature

## Tactile simulation (II)

- There are several different technologies used in tactile interfaces
  - Vibrating motors
  - Linear motors
  - Solenoids
  - Piezoelectric actuators
  - Pneumatic systems
  - ... whatever causes an effect can be used
- Possible actuator configurations
  - Single element
  - Multiple elements (an array/matrix)

## Tactile simulation (III)

#### Vibrating motors:

- How they work:
  - Applies motion either directly to the skin or through mediating structure
  - Provide relatively small-amplitude vibration (linear or rotary)
  - Used singly or in arrays
- Most common types
  - DC-motors with an eccentric rotating mass
  - Voice coils





# Tactile simulation (IV)

#### Vibrating motors:

- Advantages:
  - Simple, existing technology
  - Relatively inexpensive
  - Easily powered and controlled
  - Quite small power consumption
- Disadvantages:
  - Not very expressive feedback
  - Vibration can sometimes be irritating
  - Can be hard to miniaturize efficiently



## Tactile simulation (V)

#### Linear motors:

- How they work:
  - Pins in an array are actuated independently
  - The actuated pins contact the surface of the skin

#### – Advantages:

- Simple, readily available
- Continuously positionable, fast movement
- Versatile: static pressure, vibration, shapes

#### – Disadvantages:

- Very difficult to pack tightly
- Relatively expensive (several motors per device)



# Tactile simulation (VI)

#### Piezoelectric actuators:

- How they work:
  - Single or multilayer ceramic elements
  - An element expands/bends when voltage is applied
  - Multiple layers can be used to amplify the effect

#### - Properties:

- Very large forces but small motions
- One element typically around 0.2-1.0 mm thick
- Resolution for frequencies ~0.01 Hz







## Tactile simulation (VII)

#### Piezoelectric actuators:

- Advantages:
  - Usually small in size
  - Potentially inexpensive in large volumes
  - High frequency and static modes
  - Very fast response time
  - Low power consumption

#### – Disadvantages:

- Dynamics: small displacements require accurate amplification
- High driving voltage

### Tactile simulation (VIII)

#### Pneumatic systems:

- Three possible output modes based on skin indentation (and vibration)
  - Suction
  - Air-pressure
  - Vortices
- How it works:
  - Technologies: fillable air-pockets, air jets, suction holes
  - Vibratory rates: typically 20-300 Hz
  - Static pressure with sealed pockets

# Tactile simulation (IX)

#### Pneumatic systems: suction

- Draws air from a suction hole creating an illusion that the skin is pushed
  - Very low spatial resolution (only appropriate for the palm)
- Two basic patterns of stimulation (large holes and small holes)
  - Need for regulation of air pressure (= lots of equipment)





# Tactile simulation (X)

- Pneumatic systems: air-pressure
  - DataGlove
    - Bandwidth of 5 Hz, amplitude & frequency modulated
  - Teletact II
    - 29+1 air pockets (40 tubes to control the air-pressure)
    - Object slippage (fingers) + force feedback (palm)





ACM SIGCHI-2024 - AirPush

# Tactile simulation (XI)

- Pneumatic systems: vortices
  - Emits a ring of air called a vortex that can be felt in mid-air
    - Controlling a flexible nozzle allows for directed sensations
    - Operating distance of roughly one meter



AIREAL (Sodhi et al. 2013)



## Tactile simulation (XII)

#### Pneumatic systems:

- Advantages:
  - Pressure can be more appropriate for some applications than pins or vibrating motors
  - Can mimic skin-slip (with multiple inflated pockets)
  - Vortices can enable mid-air interaction
- Disadvantages:
  - Not really portable, can be very noisy
  - Difficult to display sharp edges or discontinuities

### Tactile simulation (XIII)

#### Requirements:

- The most used contact element is the hand
- We need the force range a user can produce and feel (values between 16N and 102N, different for man/woman)
- We have to distinguish between the maximum force for a short time or a continued force

## Tactile simulation (XIV)

- Sensitive bandwidth: frequence to what the touching stimuli is noticed, propioceptives and cinestetics
- Active bandwidth: velocity with which one can respond to the stimuli
  - the sensitive is much higher than the active
  - for the human finger, the active is between 1 and 16 Hz while the sensitive is between 30 Hz and 10 kHz
  - ⇒ having a frequency of 1000 Hz we can simulate all the touching efects

### Haptic devices

- Different classifications:
  - Sense-oriented:
    - Tactile
    - Kinesthetic
    - Hybrid
  - DOFs achieved

### Haptic devices (sense oriented)



Haptic Interfaces

**Tactile Devices** 

Stimulate skin to create contact sensations



**Hybrid Devices** 

Attempt to combine tactile and kinesthetic feedback





Apply forces to guide or inhibit body movement

### Haptic devices (sense oriented) (II)

Tactile devices:



### Haptic devices (sense oriented) (III)

Tactile devices:



### Haptic devices (sense oriented) (IV)

- Tactile devices: challenges
  - stimulation density needs to be high
  - high complexity and weight diminishes portability,
  - practicality, generality
  - passive touch does not feel natural
  - tactile device design is difficult!

### Haptic devices (sense oriented) (V)

Kinesthetic devices:



### Haptic devices (sense oriented) (VI)

#### Ungrounded Kinesthetic Devices













#### Haptic devices (sense oriented) (VII)

- Kinesthetic devices: challenges
  - competing goals of high stiffness and low mass
  - force feedback feels soft
  - point-based interactions are overly simple
  - devices of sufficient quality are expensive
  - limited workspace size and actuation power
  - usually constrained to sit at a desk

### Haptic devices (sense oriented) (VIII)

#### • Hybrid devices:



Provancher, Kuchenbecker, Niemeyer, & Cutkosky (2003-4)





Kontarinis & Howe (1995)



Chen & Marcus (1995)

Webster, Murphy, & Okamura (2004)





Howe (1995)

## Haptic devices (sense oriented) (IX)

#### Hybrid devices:











Kuchenbecker, Ferguson, Kutzer, Moses, and Okamura (2008)

## Haptic devices (sense oriented) (X)

Hybrid devices (exoskeleton gloves):

VRGluv (2017)

https://www.youtube.com/watch?v=dVJhTsp5ilM



Haptx (2018)

https://youtu.be/0WQw4GmFGVg



## Haptic devices (sense oriented) (XI)

- Hybrid devices: challenges
  - all of the above!
  - weight is especially disadvantageous
  - synchronization between force and tactile
  - tradeoff between complexity and functionality
  - need for clever innovations

#### Haptic devices (DOFs achieved)

#### Examples of 1-DOF devices

- 1.Steering Wheels
- 2. Hard Driving (Atari)
- 3.Ultimate Per4mer (SC&T2)







### Haptic devices (DOFs achieved) (II)

#### Examples of 2-DOF devices

- 1.Pen-Based Force Display (Hannaford, U. Wash)
- 2.MouseCAT/PenCAT(Hayward, Haptic Tech., Canada)
- 3.Feel-It Mouse (Immersion)
- 4.Force FX (CH Products)
- 5.Sidewinder Force Feedback Pro (Microsoft)







### Haptic devices (DOFs achieved) (III)

#### Examples of 3-DOF devices

- 1.GeomaticTouch (formerly SensablePhantom Omni)
- 2.Omega (Force Dimension)
- 3. Novint Falcon
- 4.Impulse engine (Immersion)









### Haptic devices (DOFs achieved) (IV)

#### Examples of 6-DOF devices

- 1. PHANTOM Premium
- 2. Delta (Force Dimension)







## Haptic rendering

- Haptic rendering is the process of computing and generating forces in response to interactions with virtual objects, based on the position of the device
- Haptic rendering of an object can be seen as pushing the device out of the object whenever it tries to move inside it
- The human sense of touch is sensitive enough to require a processing speed of at least 1000 Hz in terms of haptic rendering

# Haptic rendering (II)

- The further inside the object you move, the greater the force pushing you out
- This makes the surface feel solid



## Haptic rendering (III)

- 1000 Hz is necessary so that the system does not suffer from disturbing oscillations
- Many haptic devices run their control loop at 1000 Hz
- Stable and fast processing is needed when running haptic software
- Haptic real-time loop (~1000 Hz)
  - Necessary due to the high sensitivity of human touch
  - Not necessary to look at every object in the scene 1000 times per second
- Visual scene-graph loop (~60 Hz)
  - Looks at every object in the scene and generates surface instances that are rendered at 1000 Hz

# Haptic rendering (IV)



- The real-time "surface" is a parametric surface
- This means that it can be curved to closely match the real surface curvature locally
- The finger is the actual position of the haptic device

# Haptic rendering (V)



- The real-time "surface" has a 2D coordinate space
- Allows programmers to define haptic surface effects as a function of position and penetration depth

# Haptic rendering (VI)

- 3-DOF haptic devices are rendered in programming APIs using a spherical "proxy"
- The proxy stays on the surface of objects
- Maintained in such a way that it is at the closest point on the surface of an object to the haptic device



# Haptic rendering (VII)

#### 3-DOF haptics:

- Output: 3D force → 3DOF haptics
- Limited to applications where point-object interaction is enough
  - Haptic visualization of data
  - Painting and sculpting, some medical applications



# Haptic rendering (VIII)

#### 6-DOF haptics:

- Output: 3D force + 3D torque
- For applications related to manipulation
  - Assembly and maintenance oriented design
  - Removal of parts from complex structures
- Typical problem: peg-in-thehole



# Haptic rendering (IX)

#### Two types of interactions:

- 1. Point-based haptic interactions
  - Only end point of device, or haptic interface point (HIP), interacts with virtual object
  - When moved, collision detection algorithm checks to see if the end point is inside the virtual object
  - Depth calculated as distance between HIP and closest surface point
- 2. Ray-based haptic interactions
  - Probe of haptic device modeled as a line-segment
  - Can touch multiple objects simultaneously when the line touches them

## **Applications**

- Medicine:
  - Surgery simulation
  - Tele-medicine
  - Training
  - Patient rehabilitation pacients for neurologic problems
- Mechanical design:
  - Pieces assembling
- Entertainment:
  - Paint in 3D
  - Characters animation
- Scientífic:
  - Geophysical data analysis
  - Molecular manipulation

# Applications (II)

 Haptic modeling and visualization of, for example, different tissues

 No need to use paid volunteers or dead bodies in training



https://www.youtube.com/watch?v=h0xA8HtWgI4

## Applications (III)

- Especially useful for training of minimally invasive procedures
  - E.g., laparoscopic operations & needle insertation
  - Provide realistic training
- Also applications for carrying out remote surgeries have been developed
  - The best surgeons can perform many similar operations with less fatigue



# Applications (IV)

- Bimanual haptic interaction can be simulated in training
  - Ullrich et al., 2011

Coles et al., 2011
 <a href="https://www.youtube.com/watch?v=aFafx7m-Xxs">https://www.youtube.com/watch?v=aFafx7m-Xxs</a>





# Applications (V)

- For example, supporting weak muscles or removing tremble
- Assisting forces can be reduced gradually once muscle strength increases



# Applications (VI)

 Surgical robotics (da Vinci Surgical System)







# Applications (VII)

- Using Phantom Omni force feedback devices for virtual sculpting of 3D objects
  - The object surface can be felt already during modelling
- Objects can be 3D printed lateron to get a physical version





## Presence Improvement

- Spring-Damper Hands:
  - Virtual hands driven by the Haptic Workstation that can collide a virtual object without penetrating into it
  - simplifies the computation of force feedback, and offers a better user experience in term of presence





https://www.youtube.com/watch?v=dYXPCiSLMI8

#### Other Videos

- Physics effects (2009)
   <a href="http://www.youtube.com/watch?v=ruZVjXgaptE">http://www.youtube.com/watch?v=ruZVjXgaptE</a>
- Teleoperation (haptic + robot) (2008)
   <a href="http://www.youtube.com/watch?v=970mckgfOio&feature=related">http://www.youtube.com/watch?v=970mckgfOio&feature=related</a>
- SenseGraphics 3D (2008)
   <a href="http://www.youtube.com/watch?v=nZBrH2g5NCc">http://www.youtube.com/watch?v=nZBrH2g5NCc</a>

#### VIRTUAL REALITY

**Haptics** 

**Course 2024/2025**