Statystyka w finansach i ubezpieczeniach Sprawozdanie 3

Justyna Niedźwiedzka 229877 10 lutego 2021

Część 1

W tej części sprawozdania wygenerujemy punktowy proces znakowany, w którym punkty i znaki są niezależne. Punkty na odcinku $[0, t_0]$ generowane są zgodnie z procesem Poissona, natomiast znaki generowane są z rozkładu wykładniczego $\mathcal{E}(\theta)$. Rozpatrzymy dwa sposoby generowania punktów:

- (a) proces Poissona o stałej intensywności λ ,
- (b) proces Poissona o intensywności $\lambda(t) = \alpha \beta t^{\beta-1}$.

Punktowy proces znakowany jest procesem stochastycznym złożonym z procesu punktowego T_1, T_2, \ldots i związanych z nim marek (znaków) X_1, X_2, \ldots , tzn. jest procesem postaci $(T_1, X_1), (T_2, X_2), \ldots$

- (a) Punktowy proces znakowany o stałej intensywności λ . W przypadku stałej intensywności korzystamy z następującego algorytmu:
 - 1. Generujemy pojedynczą obserwację N z rozkładu Poissona $\mathcal{P}(t_0\lambda)$. Odpowiada ona za liczbę skoków.
 - 2. Losujemy N obserwacji z rozkładu jednostajnego na odcinku $[0, t_0]$.
 - 3. Sortujemy obserwacje.
 - 4. Generujemy N obserwacji z rozkładu wykładniczego $\mathcal{E}(\theta)$.
 - 5. Wyznaczamy skumulowana sume dla każdej obserwacji. Odpowiada ona za znaki.

Poniżej przedstawiono funkcję generującą punktowy proces znakowany o stałej intensywności λ .

```
marked_process_a <- function(t0, lambda, theta){
  N <- rpois(1, t0*lambda)
  process <- sort(runif(N, 0, t0))
  signs <- cumsum(rexp(n = length(process), rate = theta))
  return(list(process, signs))
}</pre>
```

Rozpatrzymy przypadek, gdy $t_0=10,\ \lambda=1$ oraz $\theta=2$. Zilustrujemy wygenerowaną realizację procesu na wykresie.

Punktowy proces znakowany

Rysunek 1: Punktowy proces znakowany o stałej intensywności λ dla $t_0=10,\,\lambda=1,\,\theta=2$

(b) Punktowy proces znakowany o intensywności $\lambda(t) = \alpha \beta t^{\beta-1}$.

Teraz rozpatrzymy przypadek, gdy punktowy proces znakowany ma intensywność daną przez $\lambda(t)=\alpha\beta t^{\beta-1}.$

Niech $\Lambda(t) = \int_0^t \lambda(u) du$. Po obliczeniu całki otrzymujemy $\Lambda(t) = \alpha t^{\beta}$. Wyznaczamy też funkcję odwrotną i otrzymujemy $\Lambda^{-1}(t) = \left(\frac{t}{\alpha}\right)^{\frac{1}{\beta}}$.

Poniżej przedstawiono zaimplementowane funkcje $\Lambda(t)$ oraz $\Lambda^{-1}(t)$. Będą one potrzebne do wygenerowania procesu o zmiennej intensywności.

```
lambda <- function(t0, alpha, beta) {
    return(alpha*t0^(beta))
}

lambda_inverse <- function(alpha, beta) {
    funkcja <- function(t) {
        return((t/alpha)^(1/beta))
        }
    }
}</pre>
```

W celu wygenerowania punktowego procesu znakowanego o intensywności $\lambda(t) = \alpha \beta t^{\beta-1}$ korzystamy z następującego algorytmu:

- 1. Generujemy pojedynczą obserwację N z rozkładu Poissona $\mathcal{P}(\Lambda(t_0))$. Odpowiada ona za liczbę skoków.
- 2. Losujemy N obserwacji z rozkładu jednostajnego na odcinku $[0, \Lambda(t_0)]$.
- 3. Sortujemy obserwacje.
- 4. Generujemy N obserwacji z rozkładu wykładniczego $\mathcal{E}(\theta)$.
- 5. Wyznaczamy skumulowaną sumę dla każdej obserwacji. Odpowiada ona za znaki.

Poniżej przedstawiono funkcję generującą punktowy proces znakowany o intensywności $\lambda(t)=\alpha\beta t^{\beta-1}$.

```
marked_process_b <- function(t0, alpha, beta, theta){
  N <- rpois(1, lambda(t0, alpha, beta))
  sorted <- sort(runif(N, 0, lambda(t0, alpha, beta)))
  process <- lapply(sorted, lambda_inverse(alpha, beta))
  signs <- cumsum(rexp(n = length(process), rate = theta))
  return(list(process, signs))
}</pre>
```

W tym przypadku także rozpatrujemy parametry $t_0=10,\,\lambda=1$ oraz $\theta=2.$ Wygenerowaną realizację procesu przedstawiono na poniższym wykresie.

Punktowy proces znakowany

Rysunek 2: Punktowy proces znakowany o intensywności $\lambda(t)=\alpha\beta t^{\beta-1}$ dla $t_0=10,\,\lambda=1,\,\theta=2$

W obu sposobach generowania punktów procesy są rosnące i zawarte w przedziale [0, 10].

Część 2

W tej części zbadamy jakość aproksymacji złożonego rozkładu Poissona rozkładem normalnym oraz własności przedziałów predykcyjnych skonstruowanych w oparciu o aproksymację złożonego rozkładu Poissona rozkładem normalnym i estymatory nieznanych parametrów.

Zadanie 1

Niech X_i , $i=1,2,\ldots$ będą niezależnymi zmiennymi losowymi z rozkładu logarytmicznonormalnego $\mathcal{LN}(\mu,\sigma^2)$ a N ma rozkład Poissona $\mathcal{P}(\lambda)$.

Poniżej przedstawiono zaimplementowaną funkcję, która dla zadanych wartości parametrów μ , σ , λ oraz zadanego poziomu istotności α wyznacza przedział (a,b) taki, że

$$P\left(\sum_{i=1}^{N} X_i \in (a,b)\right) \approx 1 - \alpha.$$

Końce przedziału ufności (a, b) wyznaczamy ze wzorów:

$$a = \lambda \mathbb{E}(X_1) + z(\alpha_1) \sqrt{\lambda \mathbb{E}(X_1^2)},$$

$$b = \lambda \mathbb{E}(X_1) + z(1 - \alpha_2) \sqrt{\lambda \mathbb{E}(X_1^2)},$$

gdzie z(q) oznacza kwantyl rzędu q standardowego rozkładu normalnego $\mathcal{N}(0,1)$.

We wszystkich poniższych analizach będziemy rozpatrywać przypadek, gdy $\alpha_1 = \alpha_2$. Oczywiście $\alpha = \alpha_1 + \alpha_2$.

```
confidence_interval <- function(mi, sigma, lambda, alpha) {
    repeat {
        N <- rpois(1, lambda)
        if (N != 0)
            break
        }
        X <- rlnorm(N, meanlog = mi, sdlog = sigma)
        Sn <- sum(X)
        EX <- exp(mi + 1/2*sigma^2)
        VarX <- (exp(sigma^2) - 1)*exp(2*mi + sigma^2)
        EX2 <- VarX + EX^2
        a <- lambda*EX + qnorm(alpha/2)*sqrt(lambda*EX2)
        b <- lambda*EX + qnorm(1 - alpha/2)*sqrt(lambda*EX2)
        return(c(Sn, a, b))
}</pre>
```

Funkcja ta zwraca wartość $S_N = \sum_{i=1}^N X_i$ oraz końce przedziału ufności (a, b).

Poniżej przedstawiono funkcję, która dla wybranych wartości parametrów μ , σ , λ , α oraz liczby powtórzeń M szacuje prawdopodobieństwo pokrycia wartości $S_N = \sum_{i=1}^N X_i$ przez przedział (a,b). Funkcja zwraca średnią wartość $\bar{S_N} = \frac{1}{N} \sum_{i=1}^N X_i$, końce przedziału ufności (a,b) oraz prawdopodobieństwo pokrycia.

```
coverage_probability <- function(mi, sigma, lambda, alpha, M) {
    Sn <- c()
    a <- c()
    b <- c()
    for (i in 1:M) {
        conf_int <- confidence_interval(mi, sigma, lambda, alpha)
        Sn[i] <- conf_int[1]
        a <- conf_int[2]
        b <- conf_int[3]
    }
    logical <- between(Sn, left = a, right = b)
    prob <- sum(logical)/M
    return(c(mean(Sn), a, b, prob))
}</pre>
```

Najpierw ustalamy parametry $\mu=1,~\sigma=0.5,~\lambda=10,~\alpha=0.05$ i rozpatrujemy przypadki, gdy M=100,~M=1000 oraz M=10000.

Wyniki w zależności od parametru M przedstawiono w tabeli 1.

Tabela 1: Średnia S_N , końce przedziału ufności (a,b) oraz prawdopodobieństwo pokrycia w zależności od ilości powtórzeń M

	$\bar{S_N} = \frac{1}{N} \sum_{i=1}^N X_i$	a	b	prawdopodobieństwo pokrycia
M = 100	32.285442	9.169196	52.435141	0.960000
M = 1000	30.764061	9.169196	52.435141	0.957000
M = 10000	30.817272	9.169196	52.435141	0.953500

Możemy zauważyć, że im większe M, tym prawdopodobieństwo pokrycia jest bliższe $1-\alpha=0.95.$

Teraz przeprowadzimy analizę w przypadku, gdy ustalone są parametry $\mu=1,\,\sigma=0.5,$ $\alpha=0.05,\,M=1000,$ a parametr λ jest zmienny. Rozpatrujemy $\lambda=20,\,\lambda=30,\,\lambda=40$ oraz $\lambda=100.$

Wyniki w zależności od parametru λ przedstawiono w tabeli 2.

Tabela 2: Średnia S_N , końce przedziału ufności (a,b) oraz prawdopodobieństwo pokrycia w zależności od parametru λ

	$\bar{S_N} = \frac{1}{N} \sum_{i=1}^N X_i$	a	b	prawdopodobieństwo pokrycia
$\lambda = 20$	61.91463	31.01069	92.19798	0.96000
$\lambda = 40$	122.21623	79.94273	166.47462	0.96300
$\lambda = 100$	307.1704	239.6122	376.4311	0.95200

Rozważymy jeszcze przypadek, gdy parametr α jest zmienny, a pozostałe parametry są ustalone i wynoszą $\mu=1,\,\sigma=0.5,\,\lambda=10,\,M=1000.$ Rozpatrujemy $\alpha=0.005,\,\alpha=0.01$ oraz $\alpha=0.1.$

Wyniki w zależności od parametru α przedstawiono w tabeli 3.

Tabela 3: Šrednia S_N , końce przedziału ufności (a,b) oraz prawdopodobieństwo pokrycia w zależności od parametru α

	$\bar{S_N} = \frac{1}{N} \sum_{i=1}^N X_i$	a	b	prawdopodobieństwo pokrycia
$\alpha = 0.005$	30.3259016	-0.1802802	61.7846172	0.99500
$\alpha = 0.01$	30.582389	2.371624	59.232713	0.99100
$\alpha = 0.1$	30.61544	12.64721	48.95713	0.90000

Zarówno w przypadku zmiennego parametru λ jak i α otrzymane prawdopodobieństwa pokrycia są bliskie wartości $1-\alpha$. Możemy zauważyć, że wraz ze wzrostem λ szerokość przedziałów ufności rośnie, natomiast im większy parametr α , tym mniejsza szerokość przedziałów ufności.

Zadanie 2

Niech X_i , $i=1,2,\ldots$ będą niezależnymi zmiennymi losowymi z rozkładu logarytmicznonormalnego $\mathcal{LN}(\mu,\sigma^2)$ oraz N ma rozkład Poissona $\mathcal{P}(\lambda)$. Przyjmując, że wartości parametrów nie są znane, napiszemy program, który na podstawie realizacji zmiennej losowej N oraz realizacji zmiennych X_1,\ldots,X_N będzie wyznaczał przedział (a',b') taki, że

$$P\left(\sum_{i=1}^{N'} X_i' \in (a', b')\right) \approx 1 - \alpha,$$

gdzie N', X'_i są zmiennymi losowymi o rozkładach odpowiednio jak N i X_i .

```
confidence_interval2 <- function(mi, sigma, lambda, alpha) {</pre>
  repeat{
    N <- rpois(1, lambda)
    if (N != 0)
      break
 X <- rlnorm(N, meanlog = mi, sdlog = sigma)
 mi_est <- mean(log(X))</pre>
  if (length(X) == 1){
    sigma_est <- 0
    } else {
    sigma_est <- sd(log(X))</pre>
  lambda_est <- mean(N)</pre>
  EX <- exp(mi_est + 1/2*sigma_est^2)
 VarX <- (exp(sigma_est^2) - 1)*exp(2*mi_est + sigma_est^2)</pre>
  EX2 <- VarX + EX^2
  repeat{
    N_prim <- rpois(1, lambda_est)</pre>
    if (N_prim != 0)
      break
 X_prim <- rlnorm(N_prim, meanlog = mi_est, sdlog = sigma_est)</pre>
  Sn_prim <- sum(X_prim)</pre>
  a_prim <- lambda_est*EX + qnorm(alpha/2)*sqrt(lambda_est*EX2)
  b_prim <- lambda_est*EX + qnorm(1 - alpha/2)*sqrt(lambda_est*EX2)</pre>
  return(c(Sn_prim, a_prim, b_prim, mi_est, sigma_est, lambda_est))
```

Powyższa funkcja zwraca wartość $S'_{N'} = \sum_{i=1}^{N'} X'_i$, końce przedziału ufności (a',b') oraz estymowane parametry μ , σ i λ . Estymując nieznane parametry korzystamy ze związku rozkładu logarytmiczno-normalnego z rozkładem normalnym, tzn. jeśli zmienna losowa X ma rozkład $\mathcal{LN}(\mu,\sigma^2)$, to zmienna losowa $Y = \ln X$ ma rozkład $\mathcal{N}(\mu,\sigma^2)$.

Zaimplementowano też funkcję, która dla wybranych wartości parametrów μ , σ , λ , α oraz liczby powtórzeń M szacuje prawdopodobieństwo pokrycia wartości $S'_{N'} = \sum\limits_{i=1}^{N'} X'_i$ przez przedział (a',b'). Funkcja zwraca średnią wartość $S^{\bar{l}}_{N'} = \frac{1}{N'} \sum\limits_{i=1}^{N'} X'_i$, końce przedziału ufności (a',b') oraz prawdopodobieństwo pokrycia.

```
coverage_probability2 <- function(mi, sigma, lambda, alpha, M) {</pre>
  Sn_prim <- c()
  logical <- c()</pre>
  a_prim <- c()
  b_prim <- c()
  for(i in (1:M)){
    conf_int <- confidence_interval2(mi, sigma, lambda, alpha)</pre>
    a_prim <- conf_int[2]</pre>
    b_prim <- conf_int[3]</pre>
    mi_est <- conf_int[4]</pre>
    sigma_est <- conf_int[5]</pre>
    lambda_est <- conf_int[6]</pre>
    repeat{
      N_prim <- rpois(1, lambda_est)</pre>
      if (N_prim != 0)
         break
    X_prim <- rlnorm(N_prim, meanlog = mi_est, sdlog = sigma_est)</pre>
    Sn_prim[i] <- sum(X_prim)</pre>
    logical[i] <- between(Sn_prim[i], left = a_prim, right = b_prim)</pre>
  prob <- sum(logical)/M</pre>
  return(c(mean(Sn_prim), a_prim, b_prim, prob))
```

Najpierw przeprowadzimy analizę w zależności od parametru M i przy ustalonych $\mu=1$, $\sigma=0.5,~\lambda=10$ oraz $\alpha=0.05.$ Będziemy rozpatrywać M=100,~M=1000 i M=10000.

Wyniki w zależności od parametru M przedstawiono w tabeli 4.

Tabela 4: Średnia $S'_{N'}$, końce przedziału ufności (a',b') oraz prawdopodobieństwo pokrycia w zależności od ilości powtórzeń M

	$S_{N'}^{\bar{\prime}} = \frac{1}{N'} \sum_{i=1}^{N'} X_i'$		b'	prawdopodobieństwo pokrycia	
M = 100	29.771690	8.703794	58.161674	0.97000	
M = 1000	31.390354	6.057107	46.519413	0.95200	
M = 10000	31.14648	13.24067	62.42405	0.95290	

Ogólnie im większy parametr M, tym prawdopodobieństwo pokrycia powinno być bliższe wartości $1-\alpha=0.95$. Tutaj w przypadku M=10000 otrzymaliśmy wynik gorszy niż dla M=1000, ale różnica jest niewielka. Jest to spowodowane tym, jakie próby $X_i',\ i=1,\ldots,N'$ zostały wygenerowane.

Rozpatrzymy jeszcze prawdopodobieństwo pokrycia w zależności od parametru λ przy ustalonych $\mu=1,~\sigma=0.5,~\alpha=0.05,~M=1000.$ Rozważamy przypadki $\lambda=20,~\lambda=40$ oraz $\lambda=100.$

Wyniki w zależności od parametru λ przedstawiono w tabeli 5.

Tabela 5: Średnia $S'_{N'}$, końce przedziału ufności (a',b') oraz prawdopodobieństwo pokrycia w zależności od parametru λ

	$S'_{N'} = \sum_{i=1}^{N'} X'_i$	a'	b'	prawdopodobieństwo pokrycia
$\lambda = 20$	62.57872	32.23622	101.77715	0.94500
$\lambda = 40$	123.55027	93.06567	189.85150	0.95600
$\lambda = 100$	310.9025	238.4033	372.7215	0.94700

Tutaj także widzimy, że w przypadku zmiennego parametru λ prawdopodobieństwo pokrycia jest bliskie wartości $1-\alpha=0.95$. Różnica jest tylko w końcach przedziałów ufności oraz ich szerokościach. Możemy zauważyć, że szerokość przedziału ufności rośnie wraz ze wzrostem parametru λ .

Część 3

Zadanie 1

Wiemy, że składka netto kontraktu stop-loss jest równa

$$H(R) = E(R) = \int_{d}^{\infty} (1 - F_{S_n}(s)) ds,$$

gdzie F_{S_n} jest dystrybuantą rozkładu S_n . Dla ryzyka wykładniczego, czyli gdy $S_n \sim \mathcal{E}(\lambda)$ mamy

$$H(R) = \int_{d}^{\infty} e^{-\lambda s} ds = \frac{1}{\lambda} e^{-\lambda d}.$$

Przyjmując, że λ jest nieznane, zaproponujemy oszacowanie punktowe i przedziałowe (na poziomie ufności w przybliżeniu $1-\alpha$) wartości H(R) na podstawie m realizacji $s_n^{(1)}, \ldots, s_n^{(m)}$ zmiennych losowych $S_n^{(1)}, \ldots, S_n^{(m)}$.

Oszacowanie punktowe wartości H(R) wyznaczymy korzystając z faktu, że estymatorem parametru $\frac{1}{\lambda}$ jest średnia z próby m realizacji $s_n^{(1)}, \ldots, s_n^{(m)}$ zmiennych losowych $S_n^{(1)}, \ldots, S_n^{(m)}$, ponieważ $S_n \sim \mathcal{E}(\lambda)$. W oszacowaniu przedziałowym skorzystamy z metody delta.

Twierdzenie 1 (Metoda delta) Niech (X_n) będzie ciągiem zmiennych losowych i niech (c_n) będzie ciągiem liczbowym rozbieżnym do ∞ . Przypuśćmy, że istnieją zmienna losowa V i liczba rzeczywista a takie, że

$$c_n(X_n-a) \xrightarrow{D} V.$$

Jeśli funkcja $g: \mathbb{R} \to \mathbb{R}$ jest różniczkowalna w punkcie a i $g'(a) \neq 0$, to

$$c_n[g(X_n) - g(a)] \xrightarrow{D} g'(a) \cdot V.$$

W naszym przypadku

$$\sqrt{n}[X_n - \theta] \xrightarrow{D} \mathcal{N}(0, \sigma^2),$$

$$\sqrt{n}[g(X_n) - g(\theta)] \xrightarrow{D} \mathcal{N}(0, \sigma^2 \cdot [g'(\theta)]^2).$$

Średnia w rozkładzie wykładniczym wynosi $\frac{1}{\lambda}.$ Oznaczmy $\theta=\frac{1}{\lambda}.$

$$g(\lambda) = \frac{1}{\lambda} e^{-\lambda d},$$

$$g(\theta) = \theta e^{\frac{-d}{\theta}},$$

$$g'(\theta) = e^{\frac{-d}{\theta}} (1 + \frac{d}{\theta}) \neq 0,$$

zatem spełnione są założenia Twierdzenia (1).

Estymatorem parametru θ jest średnia, więc

$$\hat{\theta} = \bar{X}_n \sim \mathcal{AN}(\theta, \frac{1}{n}\theta^2).$$

Korzystając z Twierdzenia (1)

$$g(\bar{X}_n) \sim \mathcal{AN}(g(\theta), \frac{1}{n}\theta^2 \cdot [g'(\theta)]^2).$$

Końce przedziału ufności wyznaczymy przekształcając poniższe wyrażenie

$$P\left(z_{\frac{\alpha}{2}} \leqslant \frac{g(\bar{X}_n) - g(\theta)}{\sqrt{\frac{1}{n}\theta^2 \cdot [g'(\theta)]^2}} \leqslant z_{1-\frac{\alpha}{2}}\right) \approx 1 - \alpha.$$

Zastępując θ przez \bar{X}_n otrzymujemy ostatecznie

$$P\left(g(\bar{X}_n) - \frac{z_{1-\frac{\alpha}{2}} \cdot \bar{X}_n \cdot |g'(\bar{X}_n)|}{\sqrt{n}} \leqslant g(\theta) \leqslant g(\bar{X}_n) - \frac{z_{\frac{\alpha}{2}} \cdot \bar{X}_n \cdot |g'(\bar{X}_n)|}{\sqrt{n}}\right) \approx 1 - \alpha.$$

Zatem końce przedziału ufności (a, b) są postaci

$$a = g(\bar{X}_n) - \frac{z_{1-\frac{\alpha}{2}} \cdot \bar{X}_n \cdot |g'(\bar{X}_n)|}{\sqrt{n}},$$
$$b = g(\bar{X}_n) - \frac{z_{\frac{\alpha}{2}} \cdot \bar{X}_n \cdot |g'(\bar{X}_n)|}{\sqrt{n}}.$$

Poniżej przedstawiono funkcję, która szacuje punktowo i przedziałowo wartości H(R).

```
confidence_interval3 <- function(alpha, lambda, d, m){
  Sm <- rexp(m, rate = lambda)
  mean <- mean(Sm)
  g <- mean*exp(-d/mean)
  g_prim <- exp(-d/mean)*(1+d/mean)
  a <- max(0, g - (qnorm(1-alpha/2)*mean*abs(g_prim))/sqrt(m))
  b <- g - (qnorm(alpha/2)*mean*abs(g_prim))/sqrt(m)
  return(c(g, a, b))
}</pre>
```

Zadanie 2

Oszacujemy teraz prawdopodobieństwa pokrycia nieznanej wartości H(R) przez zaproponowany przedział ufności. Przeprowadzimy symulacje z parametrami $\lambda=d=1, m=30.$ W tym celu skorzystamy z zaimplementowanej funkcji. Zwraca ona rzeczywistą wartość, średnią estymowaną punktowo wartość, końce przedziału ufności (a,b) oraz prawdopodobieństwo pokrycia.

```
coverage_probability3 <- function(alpha, lambda, d, m, M) {
   real_value <- exp(-d/lambda)*lambda
   g <- c()
   logical <- c()
   for(i in (1:M)) {
      conf_int <- confidence_interval3(alpha, lambda, d, m)
      a <- conf_int[2]
      b <- conf_int[3]
      g[i] <- conf_int[1]
      logical[i] <- between(real_value, left = a, right = b)
      }
   prob <- sum(logical)/M
   return(c(real_value, mean(g), a, b, prob))
}</pre>
```

Najpierw przeprowadzimy analizę w zależności od parametru M i ustalonego α , a później ustalimy M i będziemy zmieniać poziom istotności.

Wyniki w zależności od parametru M przedstawiono w tabeli 6. Przyjmujemy $\alpha = 0.05$.

Tabela 6: Wartość rzeczywista, estymator punktowy, końce przedziału ufności (a,b) oraz prawdopodobieństwo pokrycia w zależności od ilości powtórzeń M

	wart. rzecz.	est. punktowy	a	b	prawd. pokrycia
M = 100	0.36787944	0.36811900	0.04359571	0.40937512	0.9100
M = 1000	0.36787944	0.37125520	0.12778770	0.70630590	0.9140
M = 10000	0.36787944	0.37424011	0.04094325	0.39840125	0.9162

Wyniki w zależności od poziomu istotności α przedstawiono w tabeli 7. Przyjmujemy M=1000.

Tabela 7: Wartość rzeczywista, estymator punktowy, końce przedziału ufności (a,b) oraz prawdopodobieństwo pokrycia w zależności od parametru α

	wart. rzecz.	est. punktowy	a	b	prawd. pokrycia
$\alpha = 0.005$	0.36787944	0.37834773	0.00024183	0.81379771	0.9630
$\alpha = 0.01$	0.36787944	0.36780123	0.00241309	0.59235984	0.9490
$\alpha = 0.1$	0.36787944	0.37804614	0.07636011	0.39028418	0.8690

W przypadku zmiennego parametru M, im większa jest jego wartość, tym estymator punktowy jest bliższy wartości rzeczywistej. Prawdopodobieństwo pokrycia rośnie wraz ze wzrostem M, jednak odbiega minimalnie od wartości $1-\alpha=0.05$. Analizując tabelę 7 możemy zauważyć, że oszacowanie estymatora punktowego nie zależy proporcjonalnie od parametru α , bowiem dla $\alpha=0.01$ otrzymujemy wynik najbliższy wartości rzeczywistej. Widzimy także, że szerokość przedziału ufności maleje wraz ze wzrostem parametru α . Prawdopodobieństwo pokrycia w każdym przypadku wynosi nieco mniej niż $1-\alpha$.