Test without Fault Model

- Introduction
- Boolean Tests without Fault Model
 - Toggle Test
 - Design Verification
 - Exhaustive Test
 - Pseudo Exhaustive Test (PET)
 - Individual Output Verification
 - Segment Verification
 - Path sensitization
 - MUX Insertion
- Conclusion

Some examples in this PPT are from McCluskey's original lecture notes @Stanford University

Review: Pseudo Exhaustive Test

- Idea
 - Do not need exhaustive test for whole circuit
 - Test each circuit partition exhaustively
- Two categories:
 - 1. Individual Output Verification (IOV)
 - Exhaustive test of each output
 - * Last video

- 2. Segment Verification
 - Exhaustive test of each segment
 - * This video

Segment Verification [McCluskey 81]

- Idea: Partition circuit, test each segment exhaustively
- Example: Partitioned into 4 segments: A, B, C, D

Path Sensitization (1) - Test A

- Sensitize to F2: Set Z to 1
- 8 test patterns

	U	٧	W	Χ	Υ	Z	g	F,	F ₂
1			0	0	0	1	1		1
2			0	0	1	1	1		1
3			0	1	0	1	1		1
4			0	1	1	1	0		0
5			1	0	0	1	1		1
6			1	0	1	1	1		1
7			1	1	0	1	1		1
8			1	1	1	1	1		1

Path Sensitization (2) - Test B

Add two extra patterns

U۷	WXY	Z	g	F ₁	F ₂
	000	1	1		4
	000		1		
	010	1	1		1
	011	1	0		0
	100		1		1
	101 110	1 1	1		1
	111	1	1		
	444				
	111 011	O	0		0

Path Sensitization (3) - Test C

- Sensitized to F1
- No extra pattern needed

UV	WXY	Z	g	F ₁	F ₂
	000	1	1		1
	001	1	1		1
	010	1	1		1
1+1+1+1+1+1+1+1+1	011	1	0		0
00	100	1	1	0	1
01	101	1	1	1	1
10	110	1	1	1	1
1	111	1	1	1	1
	111	0	1		0
	011	0	0		0

Path Sensitization (4) - Test D

- No extra pattern needed
- Total 10 patterns

UV	WXY	Z	g	F	F ₂
	000	1	1		1
	001	1	1		1
	010	1	1		1
00	011	1	0	0	0
00	100	1	1	0	1
01	101	1	1	1	1
10	110	1	1	1	1
11	111	1	1	1	1
	111	0	1		0
11	011	0	0	0	0

Quiz

Q: Exhaustive test length is 2⁷=128.
Find minimum SV test for this circuit.
Test length =?
(Hint: ABCD 4 partitions.)

	а	b	С	е	f	g	h	i	j
1	0	0	0	0					
2	0	0	0	1					
3	0	0	1	0					
4	0	0	1	1					
5	0	1	0	0					
6	0	1	0	1					
7	0	1	1	0					
8	0	1	1	1					
9	1	0	0	0					
10	1	0	0	1					
11	1	0	1	0					
12	1	0	1	1					
13	1	1	0	0					
14	1	1	0	1					
15	1	1	1	0					
16	1	1	1	1					
17									
18									
19									
20									

Test without Fault Model

- Introduction
- Boolean Tests without Fault Model
 - Toggle Test
 - Design Verification
 - Exhaustive Test
 - Pseudo Exhaustive Test (PET)
 - Individual Output Verification
 - Segment Verification
 - Path sensitization
 - MUX Insertion
- Conclusions

McCluskey and his collection of hats

Any Simpler Method?

MUX Insertion

- Partition into 3 segments: A, B, C
- Area overhead: 3 test signals, 2 MUX
- Fully control and observe each segment

Test A

• 8 test patterns

	U	٧	W	X	Υ	Z	g	t	C ₁	C ₂
1			0	0	0		1		0	0
2			0	0	1		1		0	0
3			0	1	0		1		0	0
4			0	1	1		0		0	0
5			1	0	0		1		0	0
6			1	0	1		1		0	0
7			1	1	0		1		0	0
8			1	1	1		1		0	0
9										
10										
11										
12										
13										
14										
15										
16										
17										
18										
19										
20										

Test B

add 8 test patterns

	U	V	W	X	Υ	Z	g	t	C ₁	C_2
1			0	0	0		1		0	0
2			0	0	1		1		0	0
3			0	1	0		1		0	0
4			0	1	1		0		0	0
5			1	0	0		1		0	0
6			1	0	1		1		0	0
7			1	1	0		1		0	0
8			1	1	1		1		0	0
9	0	0						0	1	
10	0	0						1	1	
11	0	1						0	1	
12	0	1						1	1	
13	1	0						0	1	
14	1	0						1	1	
15	1	1						0	1	
16	1	1						1	1	
17										
18										
19										
20										

Test C

- add 4 test patterns
- totally test length = 20

	U	V	W	X	Υ	Z	g	t	C ₁	C ₂
1			0	0	0		1		0	0
2			0	0	1		1		0	0
3			0	1	0		1		0	0
4			0	1	1		0		0	0
5			1	0	0		1		0	0
6			1	0	1		1		0	0
7			1	1	0		1		0	0
8			1	1	1		1		0	0
9	0	0						0	1	
10	0	0						1	1	
11	0	1						0	1	
12	0	1						1	1	
13	1	0						0	1	
14	1	0						1	1	
15	1	1						0	1	
16	1	1						1	1	
17						0		0	1	1
18						0		1	1	1
19						1		0	1	1
20						1		1	1	1

Conclusion

- Exhaustive test = 64
- PET Individual Output Verification = 32
- PET Segment Verification
 - Path sensitization = 10
 - MUX = 20

Summary

- Pseudo Exhaustive Test (PET)
 - Individual Output Verification
 - * Test each output exhaustively
 - Segment Verification
 - Test each segment exhaustively
- Two SV techniques
 - Path sensitization
 - Sensitize by test pattern
 - No hardware but difficult to find test
 - ② MUX Insertion
 - Add MUX to control/observe
 - Need hardware but easier to find test

McCluskey and his collection of hats

PET effectively reduce test length. Good for BIST

FFT

• Q: Can we do better than 20 ?

	U	٧	W	X	Υ	Z	g	t	C ₁	C_2
1			0	0	0		1		0	0
2			0	0	1		1		0	0
3			0	1	0		1		0	0
4			0	1	1		0		0	0
5			1	0	0		1		0	0
6			1	0	1		1		0	0
7			1	1	0		1		0	0
8			1	1	1		1		0	0
9	0	0						0	1	
10	0	0						1	1	
11	0	1						0	1	
12	0	1						1	1	
13	1	0						0	1	
14	1	0						1	1	
15	1	1						0	1	
16	1	1						1	1	
17						0		0	1	1
18						0		1	1	1
19						1		0	1	1
20						1		1	1	1

References

- [Hennie 64] F.C. Hennie "Fault detection experiments for sequential circuits", Symposium on switching and automata theory, 1964.
- [Kime 66] C. R. Kime, "An organization for checking experiments on sequential circuits, IEEE Trans. Electron," Comput. EC-U, 113-115, 1966.
- [McCluskey 81] E.J. McCluskey, S. Bozorgui-Nesbat, "Design for autonomous test", IEEE Trans. on Ckt. and System, Volume: 28, Issue: 11, Nov 1981.
- [McCluskey 84] E.J. McCluskey, "Verification Testing A Pseudo exhaustive Test Technique," IEEE Trans. On Computers, C-33(6), pp541-546, 1984.
- [Moore 56] E. F. Moore, "Gedanken experiments on sequential machines," in Automata Studies. Princeton, 1956.
- [Friedman 71] A. D. Friedman, P. R. Menon, Fault detection in digital circuits, Prentice-Hall, 1971.

Exercise

Show PET test for this circuit

