4) CRECIMIENTO MICROBIANO Y CONTROL

4.1 CONDICIONES AMBIENTALES QUE DETERMINAN EL CRECIMIENTO MICROBIANO:

1.- nutrientes

2.- agua

3.- presión osmótica

4.- temperatura

5.- pH

6.- oxígeno

Crecimiento del individuo

Ciclo celular

Crecimiento poblacional

Conteo de microorganismos (Métodos de cuantificación)

Cuantificación de viables

Cuantificación de totales

NUTRIENTES:

Aportan los elementos constitutivos de las biomoléculas de los microorganismos, además de proporcionar a muchos de ellos la energía para sus procesos metabólicos.

La disponibilidad de los nutrientes incide en la presencia de microorganismos, quienes los usaran para alimentarse. También depende de las enzimas que tengan las células para que puedan aprovechar el alimento.

AGUA:

Es un agente solvente de muchas biomoléculas polares y de sustancias inorgánicas. Permite funcionamiento de la membrana para el paso de solutos entre el exterior-interior-exterior, además es el ambiente en donde la mayoría de las enzimas realizan su actividad catalítica.

Disponibilidad del agua: Actividad del agua (a_w) : relación entre la presión de vapor del aire en equilibrio con una sustancia o solución y la presión de vapor del agua, a la misma temperatura tomando como referencia el agua pura. Sus valores se encuentran entre 0 y 1 y afecta la ósmosis celular.

ACTIVIDAD DEL AGUA:

a _w	material	ejemplo de microorganismo
1.000	agua pura	Caulobacter sp, Spirillum sp
0.995	sangre humana	Streptococcus sp, Escherichia sp
0.980	agua marina	Pseudomonas sp, Vibrio sp
0.950	pan	Bacilos Gram positivos
0.900	jarabe de arce, jamón	Cocos Gram positivos
0.850	chorizo	Levaduras
0.800	pasteles de frutas, mermeladas	Hongos filamentosos
0.750	pescado salado	Halobacterium sp, Halococcus sp
0.700	cereales, caramelos, frutos secos	Hongos xerófilos

PRESIÓN OSMÓTICA

La actividad del agua (a_w) afecta directamente a la presión osmótica, en función del movimiento del agua a través de la membrana de acuerdo a la concentración de solutos adentro y afuera de la célula.

Efecto hipotónico: cuando la concentración de solutos es menor afuera que dentro de la célula, entra agua para equilibrarlos. La célula puede aumentar de volumen hasta reventarse. Es la plasmóptisis.

Efecto hipertónico: sí la concentración de solutos es mayor afuera que dentro de la célula, sale agua para nivelar la concentración.

La célula puede disminuir su volumen hasta colapsarse. Se presenta la plasmólisis.

PRESIÓN OSMÓTICA (cont.)

Los organismos pueden clasificarse de acuerdo a sus requerimientos o resistencia a la concentración de solutos.

Solutos en general: Osmotolerancia Osmófilo

❖ Sales en particular: Halotolerante Halófilo

Halófilo **Halotolerante** La presión osmótica afecta Halófilo extremo Staphylococcus función de membrana, actividad Vibrio cholerae Halobacterium aureus salanarium de enzimas y funcionalidad de proteínas. Crecimiento No halófilo ni halotolerante Escherichia coli Concentración de soluto

Los procesos metabólicos liberan energía en forma de calor, aunque muchos microorganismos requieren una temperatura ambiental para poder realizar su metabolismo.

Doctorio III	Temperaturas de desarrollo en °C			
Bacteria	Mínimo	Óptimo	Máximo	
Pseudomonas fluorescens	4	25-30	40	
Staphyloccoccus aureus	6.5	30-37	46	
Acidiothiobacillus thiooxidans	10	28-30	37	
Micrococcus luteus	10	30	45	
Lactobacillus plantarum	15	30-35	45	
Corynebacterium diphteriae	15	37	40	
Streptococcus thermophilus	20	40-45	50	
Thermoactinomyces vulgaris	27-30	60	65-70	
Neisseria gonorrhoeae	30	35-36	38.5	
Thermus aquaticus	40	70-72	79	

Todos los
microorganismos
tienen una
temperatura
óptima de
crecimiento y
temperaturas
mínimas y
máximas de
desarrollo.

Ejemplos de microorganismos según temperaturas cardinales.

También se pueden clasificar en grupos fisiológicos de acuerdo a la necesidad de

Velocidad de crecimiento

Puede acelerar o retrasar la actividad enzimática, lo que incide directamente en el metabolismo del microorganismo. Sin embargo si la temperatura es excesiva puede afectar estructuras y moléculas hasta su desnaturalización irreversible o

calcinación.

Las reacciones enzimáticas tienen lugar a la máxima velocidad posible Las reacciones enzimáticas tienen lugar a velocidades en Óptimo constante aumento Mínimo Máximo Temperatura (°C)

La membrana se gelifica, el transporte a través de ella es tan lento que no hay crecimiento

Desnaturalización protéica, colapso de la membrana, lisis térmica

pH:

La acidez o alcalinidad del ambiente en donde desarrollan los microorganismos es importante para la función celular, sobre todo por la actividad enzimática, que es muy sensible a las variaciones de pH. Los microorganismos que crecen en un intervalo de pH determinado, han desarrollado proteínas que funcionan en ese intervalo.

	Límites de pH para el desarrollo			
Bacteria	Límite inferior	Óptimo	Límite superior	
Acidiothiobacillus thiooxidans	0.5	2.0-3.5	6.0	
Acetobacter aceti	4.0-4.5	5.4-6.3	7.0-8.0	
Staphyloccoccus aureus	4.2	7.0-7.5	9.3	
Azotobacter sp	5.5	7.0-7.5	8.5	
Chlorobium limicola	6.0	6.8	7.8	
Thermus aquaticus	6.0	7.5-7.8	9.5	

pH:		0	Suelos y aguas volcánicas	BOOK	OH-TOPE
Pueden afectar la velocione hasta lograr la desnaturali			Fluidos gástricos, jugo de limón	10 ⁻¹	10 ⁻¹³
o irreversible de las proteír	nas.	2	Drenaje de mina ácida, Vinagre	10-2	10 ⁻¹²
	aumenta acidez	3	Ruibarbo Melocotón	10 ⁻³	10 ⁻¹¹
acidófilos		4	Suelo, Tomates	10-4	10 ⁻¹⁰
		5	Queso americano, col	10 ⁻⁵	10 ⁻⁹
рН		6	Guisantes, Maíz, salmón, camarones	10 ⁻⁶	10 ⁻⁸
citoplasmático	neutr	o 7	agua pura	10 ⁻⁷	10 ⁻⁷
		8	agua de mar	10 ⁻⁸	10 ⁻⁶
		9	suelos naturales muy alcalinos	10 ⁻⁹	10 ⁻⁵
alcalófilos		10	solución de jabón	10-10	10-4
	aumenta alcalinidad	11	amoniaco casero	10 ⁻¹¹	10 ⁻³
		12	solución saturada de lima	10 ⁻¹²	10-2
FACULTAD DE	QUÍMICA•	13 U N A M	OFP Edwards Parille Fasi	10 ⁻¹³	10
	*	14	QFB. Eduardo Bonilla Espinosa	10 ⁻¹⁴	12 1

OXÍGENO:

La presencia de oxígeno es importante para los microorganismos, ya sea porque muchos lo necesitan para su respiración o porque es tóxico para otros.

Para promover el crecimiento de los microorganismos en el laboratorio es importante conocer sus requerimientos de oxígeno.

Grupo	Req. de O ₂	Metabolismo	Ejemplo
Aerobios			
Obligados	Si	aeróbico	Micrococcus Iuteus
Facultativos SI/NO		facultativo (oxid/ferm)	Escherichia coli
Microaerófilos Si, bajo		aeróbico	Streptococcus volutans
Anaerobios			
Aerotolerantes	No	fermentación	Streptococcus pyogenes
Estrictos	Letal	fermentación	Methanobacterium
Estrictos Letal		anaeróbico (S ⁰	formicicum
		aceptor)	Thermococcus aquaticus

OXÍGENO:

Según el desarrollo se determinará las condiciones del requerimiento de oxígeno. El medio ideal para determinar estas condiciones evitaría la difusión del oxígeno.

Los organismos aerobios cuentan con enzimas para degradar formas tóxicas del oxígeno, procedentes de su respiración, como:

la catalasa (
$$H_2O_2 + H_2O_2 \rightarrow 2H_2O + O_2$$
).
la peroxidasa ($H_2O_2 + NADH + H^+ \rightarrow 2H_2O + NAD^+$)
la superóxido dismutasa ($O_2^- + O_2^- + 2H^+ \rightarrow H_2O_2 + O_2$)
Algunos microaerófilos usan Mn^{2+} y proteínas

Los anaerobios no tienen estas enzimas, para algunos el oxígeno es letal ya que es un agente oxidante que actúa sobre su metabolismos. Los anaerobios aerotolerantes poseen sistemas enzimáticos que no son afectados por el oxígeno.

4.2 CRECIMIENTO CELULAR Y DE POBLACIONES MICROORGANISMOS UNICELULARES Y FILAMENTOSOS.

crecimiento del individuo: Los microorganismos dan origen a otros organismos. Es el ciclo que comprende desde que nace la célula hasta que da origen a otra. El tiempo que tarda una célula en completar su ciclo vital se llama tiempo de reproducción o generación individual.

MICROORGANISMOS UNICELULARES: Para las bacterias, levaduras, protozoarios y algas unicelulares se puede determinar su crecimiento individual y poblacional al tomar referencia datos como la biomasa obtenida (la masa celular producida por el crecimiento del microorganismo)

crecimiento poblacional: Para facilitar el estudio de los microorganismos, muchas veces se estudian como poblaciones. En este caso el tiempo de generación poblacional se define como el tiempo en que una población tarda en duplicarse.

MICROORGANISMOS PLURICELULARES: En el caso de hongos filamentosos o mohos sólo es posible determinar su crecimiento poblacionalmente, debido a que las estructuras celulares se mezclan y es imposible decir en que punto termina un individuo y donde comienza otro.

4.3 CURVA DE CRECIMIENTO MICROBIANA: FASES Y CARACTERÍSTICAS. CINÉTICA DE CRECIMIENTO. TIPOS DE CULTIVOS IN VITRO.

La representación gráfica del crecimiento microbiano se denomina **curva de crecimiento**. En ella se representa el desarrollo celular por etapas de las células viables, puede representarse también las células totales.

Se estudian en cultivos estáticos, en lote o batch (cultivos en los que no se reponen los nutrientes ni se elimina el exceso de células formadas). Se establecen cuatro etapas en las curvas de crecimiento:

a) fase lag, b) fase log, c) fase estacionaria, d) fase de muerte

En cultivos continuos no se presentan las cuatro etapas.

Cultivos sincrónicos

Son aquellos en los que las células se encuentran en la misma etapa de crecimiento y han sincronizado su desarrollo.

CULTIVO ESTÁTICO

QUIMIÓSTATO

Líquido con células y medio de cultivo

FASES DE CRECIMIENTO (1 fuente de C en cultivo en lote)

FASES DE CRECIMIENTO (2 fuentes de C en cultivo en lote)

FASES DE CRECIMIENTO (cultivo contínuo en quimióstato)

Condiciones que modifican las curvas de crecimiento, o curvas de crecimiento según condiciones de cultivo.

Crecimiento en cultivo estático o en lote,
con una sola fuente de carbono.

Crecimiento en cultivo estático o en lote con dos o más fuentes de carbono.

Curva normal con sus cuatro etapas.

Efecto diáuxico. Curva con dos fases lag, dos fase log, casi dos fases estacionarias y una fase de muerte.

Crecimiento en cultivo continuo, generalmente con una fuente de carbono.

La curva puede presentar una fase lag, y una fase log teóricamente infinita.

4.4 ESTRATEGIAS PARA LA MEDICIÓN DEL CRECIMIENTO MICROBIANO.

CONTEO DE MICROORGANISMOS TOTALES

Determinación del número de microorganismos presentes en un volumen de muestra. En estas técnicas no se distingue entre microorganismos vivos (viables) o muertos, por lo que el resultado es un total de las células presentes.

De lo métodos más comúnmente empleados tenemos:

- Nefeleometría, Turbidimetría o Densitometría
- Determinación de proteína producida
- Cámara de Petroff-Hauser
- Método de Breed
- Contadores electrónicos

Nefelometría, Turbidimetría, Densitometría

Instrumento ajustado para leer 100% de transmitancia Iuminosa

no inoculado

agua o cultivo de bacterias

en caldo, en lugar del tubo

que se ilustra en A

Las lecturas en el instrumento serán menores que el 100%. Cuanto más turbia sea la solución, más baja será la lectura

Determinación de proteína producida

El aparato hace la determinación y reporta el resultado. En función de la cantidad de proteína en muestra se calcula el total de microorganismos.

Este puede indicarse para que sea por mL, dL u otra medida.

Cámara de Petroff-Hauser

La muestra se añade aquí; con cuidado para que no se derrame. El espacio entre cubre y porta es de 0.02 mm. La rejilla tiene 25 cuadros grandes, un área de 1 mm² y un volumen de 0.02 mm³

Observación microscópica: se cuentan todas las células en un cuadro grande; 12 células (en la práctica se cuentan varios cuadro y se halla la media)

Los cálculos se realizan en función de los cuadros contados y el volumen de 0.02 mm³.

_			
Promed	liar W	arine i	cuadros:
1 1011100	iiai v	unos i	cuauros.

Cuadro mo 12

14

Prom = 12 mo

Calcular para el área total:

1 cuadro - 12 mo

25 cuadros - X

X = (12*25)/1 = 300 mo

Calcular por mL:

Sí hay 300 células en el área y el área

contiene 0.02 mm³ tenemos:

0.02 mm³ - 300 mo

1000 mm³ - Y

Y = (1000*300)/0.02

 $Y = 1.5X10^7 \text{ mo/mL}$

Sumar varios cuadros:

Cuadro mo 12 14

10 Suma = 36 mo

Calcular para el área total:

3 cuadros - 36 mo 25 cuadros - X

X = (36*25)/3 = 300 mo

Recordar que:

 $1 \text{ mL} = 1 \text{ cm}^3 = 1000 \text{ mm}^3$

Método de Breed

extendido de la muestra a partir de un volumen conocido (ejemplo 10µL)

delimitación del área

calibración del objetivo (establecer el diámetro del campo) (ejemplo 150µm de diámetro)

Diámetro del campo:

D campo = πr^2

 $= 3.1416*(75 \mu m)^2$

 $= 17671.5 \mu m^2$

 $= 1.7672 \times 10^{-4} \text{ cm}^2$

Calcular para el área total:

2 cm²

 $X = (20*2)/1.7672x10^{-4}$

Calcular para el área total:

 $7.0688x10^{-4} \text{ cm}^2 - 80 \text{ mo}$ 2 cm^2

 $X = (80*2)/7.0688 \times 10^{-4}$

 $X = 2.2635 \times 10^5 \text{ mo}$

Conteo de microorganismos en diferentes lugares del área. Cálculos (área total, volumen de muestra, área contada)

 $1.7672 \times 10^{-4} \text{ cm}^2 - 20 \text{ mo}$

 $X = 2.2635 \times 10^5 \text{ mo}$

[1111]1111]1111]1111]

Calcular para volumen total:

 $2.2635x10^{5} \text{ mo} - 10 \,\mu\text{L}$ - 1000 uL

Y=(2.2635x10⁵*1000)/10

Y= 2.2635x105*100

 $Y = 2.2635 \times 10^7 \text{ mo/mL}$

Promediar varios campos:

Campo	mo	
1	20	
2	22	
3	18	
4	20	Prom = 20 mo

Contar varios campos y sumar:

Suma de 4 campos = 80 mo

Contadores electrónicos

CONTEO DE MICROORGANISMOS VIABLES

Determinación del número de microorganismos presentes en un volumen de muestra que en ese momento se encuentran vivos o viables, es decir están llevando a cabo su metabolismo, por lo que las células muertas no se toman en cuentan para los resultados.

De lo métodos más comúnmente empleados tenemos:

- Dilución y vertido en placa
- Método de extensión superficial
- Método de la gota o Miles y Misra
- Por filtro de membrana
- Número más probable
- Métodos de determinación metabólica

Dilución y vertido en placa

10-3	10-4	10 ⁻⁵	10-6
650	60	5	0
800	550	680	5
1345	146	15	2
2600	248	26	3

y 250 UFC por placa es el intervalo aceptado para hacer el cálculo

Método de extensión superficial

El cálculo se hace en función del volumen agregado:

En el ejemplo tenemos 19UFC por 0.1 mL, por lo tanto tendríamos 190 UFC/mL. Si se hace a partir de una dilución se deberá tomar en cuenta para reportar el valor final.

Método de la gota o Miles y Misra

Después de incubar se determina el número de colonias que crecieron y se hace el cálculo para reportar las UFC por mL

Tomando el ejemplo tenemos que:

Sí la muestra fue de una dilución 1/100 tendríamos: 150 UFC*100 UFC/mL 1.5x10⁴ UFC/mL

Por filtro de membrana

En este caso se contabilizan las UFC y se reportan directamente por el volumen filtrado. Ejemplos:

Si se filtraron 200 mL de muestra y crecieron 15 UFC se reporta:

15 UFC/200mL

Si se filtraron 100 mL de muestra y crecieron 8 UFC se reporta:

8 UFC/100mL

Retención de Microorganismos por tamaño de partícula y carga.

a) Nuceloporo

b) Celulosa regenerada

c) Acetato de celulosa

a) Membrana estéril

b) Uso en embudo

c) Retención

d) Membrana incubada

Número más probable

Es importante verificar la tabla y metodología que se siguen, ya que cada tabla está calculada y ajustada a un determinado proceso.

Ejemplos: la tabla de Cochran y la de diluciones decimales.

Tubos con medio nutritivo (5 tubos por serie)	Número de tubos positivos por serie
	5
	3
	1

Combinación de positivos	Índice de NMP/100 mL	Bajo	Alto
5-2-0	50	20	170
5-2-1	70	30	210
5-2-2	90	40	250
5-3-0	80	30	250
5-3-1	110	40	300
5-3-2	140	60	360

Métodos de determinación metabólica

1 ml de azul de metileno + 9 mL de la leche

Reducción del azul de metileno

Este test se utiliza para determinar la calidad de la leche a través de la actividad reductora de las bacterias. Mientras mayor sea el número de bacterias presentes en la leche, mayor será el consumo de oxígeno por respiración y consecuentemente mayor la decoloración del azul de metileno.

Sobre la base del tiempo de decoloración, la leche puede clasificarse en:

Incubar a 37°C y ver decoloración

a) Excelente :	sin decolorar después de 8 horas.	
b) Buena :	se decolora entre 8 y 6 horas.	
c) Regular :	se decolora entre 6 y 2 horas.	
d) Pobre :	se decolora en menos de 2 horas.	
e) Pésima :	se decolora en menos de 1 hora.	

4.5 ESTRATEGIAS FÍSICAS Y QUÍMICAS PARA EL CONTROL DEL CRECIMIENTO MICROBIANO.

Esterilización: Es la eliminación de cualquier forma de vida de un objeto, superficie o medio. Es un término absoluto ya que la presencia de una o varias células en un ambiente acaba con la esterilidad. Se pueden utilizar diversos métodos para lograrla.

4.5 ESTRATEGIAS FÍSICAS Y QUÍMICAS PARA EL PER CONTROL DEL CRECIMIENTO MICROBIANO.

Disminución o reducción de la carga microbiana: Se baja la cantidad de microorganismos y quedan algunos vivos, puede presentarse en:

Pasteurización: Proceso térmico que se aplica a alimentos para disminuir la cantidad de microorganismos.

Asepsia: Proceso de disminuir la carga microbiana de una superficie corporal para evitar que causen problemas al realizar un procedimiento.

Desinfección: Proceso para disminuir la carga microbiana de superficies inertes.

CONTROL DEL CRECIMIENTO MICROBIANO.

Los microorganismos requieren de condiciones adecuadas para su crecimiento. Cada especie tiene ciertos parámetros, fuera de los cuales su metabolismo se hace más lento o simplemente muere al cambiar alguna condición.

Las formas más comunes de limitar y eliminar a microorganismos son:

Temperatura: por debajo de la temperatura mínima se inactivan o desnaturalizando las biomoléculas al superar la temperatura máxima.

pH: que las variaciones inciden en la actividad enzimática.

Agentes químicos: evitan el desarrollo de microorganismos o los eliminan totalmente.

AGENTES FÍSICOS

Efecto General	Actúa sobre
Desnaturalización de proteínas (calor, pH)	Proteínas estructurales y enzimas, también puede afectar a otros polímeros (carbohidratos, lípidos, ácidos nucleicos)
Precipitación y desnaturalización por concentración de solutos	Proteínas estructurales y enzimas, carbohidratos y ácido nucleico
Radiaciones Ultravioleta	Generalmente afecta ácidos nucleicos, aunque puede dañar otras estructuras
Radiaciones ionizantes (rayos X y gamma)	Puede generar radicales libres que atacan las biomoléculas, puede causar mutaciones o daños severos a la función celular

Aplicación de agentes físicos en el control de microorganismos

Método	Uso recomendado	Limitaciones	
Autoclave The state of the sta	Esterilización de instru- mentos, lienzos, utensilios y bandejas de tratamiento, medios y otros líquidos termorresistentes	, · · ·	
Vapor fluyente o agua hirviendo	Destrucción de patógenos no formadores de espora, ropa, vajillas	, ,	
Horno	Para esterilizar materiales impermeables o que se dañan con la humedad	Destruye los materiales que no soportan altas temperaturas mucho tiempo	
Incineración	Objetos contaminados desechables	El incinerador debe poder quemar cargas grandes de manera rápida y efectiva	

Aplicación de agentes físicos en el control de microorganismos

Método	Uso recomendado	Limitaciones
Luz ultravioleta	Control de infecciones transmitidas por el aire, desinfección de superficies	Debe ser absorbida para ser efectiva
Radiaciones ionizantes	Esterilización de material quirúrgico sensible al calor, otros materiales médicos	Caro y requiere instalaciones costosas y específicas para su uso
Filtros de membrana	Esterilizar líquidos sensibles al calor	Los líquidos deben estar libres de partículas suspendidas
Filtros de fibra de vidrio	Desinfección del aire	Son costosos y requieren ser reemplazados constantemente
Lavado	Limpieza de manos, piel, objetos	Reduce la microbiota por arrastre

CARACTERÍSTICAS DE LOS AGENTES QUÍMICOS

En la aplicación de cualquier agente químico que elimine a los microorganismos, se deben considerar los siguientes aspectos (no todos se cumplen):

- 01. Actividad antimicrobiana
- 02.Solubilidad
- 03.Estabilidad
- 04. No ser tóxico al hombre u otras especies de interés
- 05.Homogeneidad
- 06. No reaccionar con materiales orgánicos
- 07. Debe ser tóxico en condiciones normales de temperatura
- 08. Capacidad de penetración
- 09.No debe corroer ni teñir
- 10. Propiedades desodorantes o no tener olor desagradable
- 11. Tener propiedades detergentes
- 12.Disponibilidad

AGENTES QUÍMICOS EN GENERAL

Efecto	o General	Actúa sobre
	Agentes químicos Oxidación o reducción (NaClO)	Oxida o reduce moléculas importantes de la célula, daña membrana o pared celular.
AGENTES QUÍMICOS	Otros agentes químicos 01.Fenol y compuestos fenólicos 02.Alcoholes 03.Halógenos 04.Metales pesados y sus compuestos 05.Colorantes 06.Detergentes 07.Compuestos cuaternarios de amonio 08.Ácidos y álcalis 09.Glutaraldehído 10.Quimioestabilizadores gaseosos	Evitan el paso de sustancias, afectan transporte de electrones, etc.

AGENTES QUÍMICOS. Acción particular

Agente Químico	Uso	Limitaciones
01) Fenol y compuestos	Desinfección general	Acción microbiocida limitada, irritante y corrosivo
02) Alcoholes	Antisépticos	Solo antisépticos
03) Yodo	Asepsia de piel y desinfección de agua	Irritante de membranas mucosas
04) Cloro	Desinfección de agua y superficies	Se inactivas con material orgánico, actúa a pH 1
05) Nitrato de plata	Tratamiento de Quemaduras	Posible irritación
06) Violeta de genciana	Asepsia de mucosas	Limitada a la zona, colorea tejidos
07) Cuaternarios de amonio	Asepsia de piel, desinfección de mesas	No mata esporas
08) Ácido acético	Conservación de alimentos	Materia inanimada
09) Glutaraldehído	Esterilización de instrumentos, fumigación	Estabilidad limitada
10) Formaldehídos	Esterilización de instrumentos, fumigación	Penetración pobre, corrosivo
10) β-propionolactona	Esterilización de instrumentos, fumigación	No tiene gran poder de penetración
10) Óxido de etileno	Esterilización de instrumentos y material de plástico	Inflamable y potencialmente explosivo

AGENTES QUÍMICOS EN GENERAL

Efecto	General Control of the Control of th	Actúa sobre
ÓTICOS	Acción sobre el metabolismo	Actúan sobre síntesis de proteínas al atacar ribosomas, afecta actividad enzimática, ser señuelos falsos de otras sustancias.
	Acción sobre estructuras ya	
ANTI	elaboradas	Daña la estructura de moléculas como el peptidoglucano en pared celular.

MICROORGANISMOS PRODUCTORES DE ANTIBIÓTICOS

Antibiótico	Obtenido de	Espectro primario	Modo de acción
Ampicilina	Penicillium sp	G(+) y (-)	Inhibe síntesis de pared celular
Anfotericina B	Streptomyces sp	Micosis	Interfiere con función de membrana
Bacitracina	Bacillus sp	Gram (+)	Inhibe síntesis de pared celular
Cloramfenicol	S venezuelae	Amplio espectro	Inhibe síntesis de proteínas
Clorotetraciclina	S. aureifaciens	Amplio espectro	Inhibe síntesis de proteínas
Kanamicina	S kanomyceticus	Mycobacterium	Induce síntesis de proteínas anormales
Novobiocina	S griseus	Gram (+)	Inhibe polimerización de ADN
Polimixina B	B. polymixina	Gram (-)	Deterioro de pared celular
Nistatina	S. noursei	Candida intestinal, hongos	Daño a la membrana celular

Lugares de acción de algunos agentes quimioterapéuticos en células eucariotes (antifúngicos).

Lugares de acción de algunos agentes quimioterapéuticos en células procariotes.

AGENTES QUIMIOTERAPÉUTICOS: espectro de companion de acción sobre los microorganismos y otros agentes

causantes de enfermedad

EJEMPLOS DE ANTIBIÓTICOS Y SU ESTRUCTURA

Tetraciclina Demeclociclina

Ampicilina (Trihidratada)

Cefalexina

MECANISMOS DE RESISTENCIA BACTERIANA A LOS ANTIBIÓTICOS

Mecanismo	Ejemplo de Antibiótico	Base genética de la resistencia	Ejemplo de microorganismos
Permeabilidad reducida	Penicilinas	Cromosómica	Pseudomonas aeruginosa, Bacterias entéricas
Inactivación del antibiótico	Penicilina	Plasmídica, cromosómica	Staphylococcus aureus, Bacterias entéricas, Neisseria gonorrhoeae
	Cloranfenicol	Plasmídica, cromosómica	Staphylococcus aureus, Bacterias entéricas
	Aminoglicósidos	Plasmídica	Staphylococcus aureus
Alteración de la diana	Eritromicina, Rifampicina, Estreptomicina, Norfloxacina	Cromosómica	Staphylococcus aureus Bacterias entéricas Bacterias entéricas Bacterias entéricas, Staphylococcus aureus
Desarrollo de una vía bioquímica resistente	Sulfonamidas	Cromosómica	Bacterias entéricas, Staphylococcus aureus
Bombas de expulsión (eflujo)	Tetraciclinas Cloranfenicol	Plasmídica, cromosómica	Bacterias entéricas, Staphylococcus aureus, Bacillus subtilis

Resistencia a los antibióticos por permeabilidad reducida

Resistencia a los antibióticos por inactivación

Resistencia a los antibióticos por alteración de diana

Resistencia a los antibióticos por vía bioquímica resistente

Resistencia a los antibióticos por bomba de expulsión (eflujo)

TÉCNICAS DE ESTERILIZACIÓN A NIVEL INDUSTRIAL

Por los grandes volúmenes de material y productos en la industria se requieren sistemas especiales de esterilización.

Como ejemplos de algunos procesos de esterilización se encuentran los siguientes:

- a) Potabilización, desionización y esterilización de agua.
- b) Autoclaves hospitalarios e industriales
- c) Uso de gases (óxido de etileno)
- d) Radiaciones gamma

Como aplicación de estos métodos tenemos

- a) Esterilización de fermentadores
- b) Esterilización de conservas y alimentos

PLANTAS Y EQUPO PARA LA ESTERILIZACIÓN DE AGUA

Potabilización. Ha recibido tratamiento para ser utilizada en el consumo humano, la carga microbiana es baja y se logra mediante filtración a través de arenas y agregando sustancias químicas como cloro u ozono.

Desionización. Usando columnas de polímeros se eliminan las iones presentes en el agua, y posteriormente seguir un proceso de esterilización.

Esterilización. Muchas veces aunque el agua puede esterilizarse en autoclave, puede obtenerse estéril mediante filtros, después de pasar por varios procesos para disminuir la cantidad de materia que puede obstruir los filtros.

AUTOCLAVES

El proceso de esterilización por calor húmedo en autoclave se aplica con las mismas condiciones (121°C durante 15-20 minutos), aunque en ciertos casos puede aumentarse el tiempo (1 hora o más)

El diseño de este equipo toma en cuenta los grandes volúmenes de material y equipo.

AUTOCLAVES HOSPITALARIOS

Pueden tener una altura de 2 o 2.5 m y cuentan la mayoría con doble compuerta, una de entrada y otra de salida del material. Además de estos se pueden tener autoclaves más pequeños.

Por procedimiento los hospitales deben contar con dos aparatos, uno para preparar material estéril y otro para esterilizar el material contaminado que se genera en los procedimientos médicos.

AUTOCLAVES INDUSTRIALES

Grandes unidades que pueden medir mas de tres metros de diámetro y 15 metros de largo, en ellos se coloca el material que se va a esterilizar, generalmente son de un solo uso ya que lo que se esteriliza en ellos se termina de empacar y se distribuye.

HORNO

Equipo que por calor seco carboniza la materia orgánica y destruye a los microorganismos. Se aplica en material limpio y seco, o productos que pueden ser sensible a la humedad, o que sean impermeables. Se esteriliza a 180°C durante una hora o a 160°C en dos horas.

CONTROLES DEL PROCESO DE ESTERILIZACIÓN

En horno y autoclave se utilizan indicadores que verifican y controlar el proceso de esterilización, se tienen dos tipos:

a) El químico, consiste en reactivos químicos preparados para que cambien de color al alcanzar 120°C, con lo que se establece que el aparato esteriliza adecuadamente. No se debe confundir con la cinta testigo, que sólo indica que el material fue sometido al calor.

b) El biológico, generalmente se emplean esporas de bacilos Gram positivos, que se inactivan al llegar a temperaturas por encima de 120°C, estas esporas están en un medio de cultivo o éste se agrega después en condiciones asépticas. Se utilizan esporas de *Geobacillus stearothermophilus* y *Bacillus subtilis*. Se pueden aplicar en ambos procesos, aunque *G. stearothermophilus* se usa para calor húmedo y *B. subtilis* en calor seco.

INCINERADOR

Equipo e instalaciones que combustión destruyen materia orgánica y otros materiales, hasta reducirlo a compuestos y sustancias no tóxicas. Se requieren sistemas que alcancen temperaturas de más de 700°C

USO DE GASES (ÓXIDO DE ETILENO)

Los aparatos son de diversos tamaños de acuerdo a la cantidad de material a esterilizar. En el aparto se coloca el material en la cámara y posteriormente se somete al proceso de esterilización gaseosa. Por otro lugar se introduce el recipiente con el gas o los reactivos para generarlo.

Se utiliza para material plástico termolábil como jeringas y agujas, cajas petri, etcétera.

RADIACIONES GAMA

Esterilización que requiere de instalaciones especiales por el blindaje de concreto, acero y plomo que debe tener la cámara de esterilización. Se utiliza Cobalto 60 como elemento radiactivo.

Los materiales se colocan en recipientes y contenedores que los llevarán a la cámara de irradiación. El proceso de transporte de material puede ser semiautomático o, automático pero sólo el material entra a la cámara por un sistema sin fin que introduce los contenedores por un lado y saca el material ya estéril por otro.

FERMENTADORES

Los fermentadores son contenedores en donde un microorganismo se utiliza para la producción de metabolitos (biosíntesis)

Fermentadores pequeños (1L, 5L, 10L) utilizados para investigación pueden desmontarse y esterilizarse en autoclave, pero en el caso de fermentadores de 500L y hasta 400,000L son unidades fijas, por lo que se esterilizan mediante la inyección de vapor para dejar el sistema estéril.

En este caso es necesario este tipo de esterilización debido a que el uso de gases, por ejemplo, no garantizaría su correcta eliminación y afectaría al desarrollo del microorganismo.

PRODUCCIÓN EN FERMENTADORES

Tamaños del fermentador (litros)	Producto
1, 000 a 20,000	Enzimas para diagnóstico, sustancias para biología molecular.
40,000 a 80,000	Algunas enzimas, antibióticos
100,000 a 150,000	Penicilina, antibióticos aminoglicósidos, proteasas, amilasas, transformación de esteroides, aminoácidos.
200,000 a 500,000	Aminoácidos (ac. glutámico).

FUENTES DE CONTAMINACIÓN 4.6 MICROBIOLÓGICA EN DIVERSOS AMBIENTES.

Al ser los microorganismos ubicuos, se pueden encontrar en cualquier lugar. En muchas ocasiones las condiciones del entorno pueden funcionar como barreras de contención.

Sin embargo puede fallar y permitir el paso de microorganismos que no se encuentran normalmente en ese ambiente o de ese ambiente moverse a otro lugar.

Microbiota normal

Son el conjunto de microorganismos presentes en un ambiente y que normalmente se desarrollan en él.

CONTAMINACIÓN MICROBIOLÓGICA:

La presencia de microorganismos no deseados en ciertos ambientes se considera contaminación microbiológica.

Se puede presentar en ambientes estériles, donde la presencia de cualquier microorganismos es contaminación, hasta la presencia de una especie diferente de toda la microbiota de un lugar.

Por ejemplo en el intestino humano se encuentran muchos microorganismos como *Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris, Proteus mirabilis, Bacteroides fragilis, Fusobacterium* sp, *Bifidobacterium* sp, *Clostridium perfringens* entre otros; la presencia de especies de *Salmonella, Shigella, Vibrio* se consideran contaminantes del intestino y son agentes patógenos.

CONTAMINACIÓN MICROBIOLÓGICA:

Otro ejemplo es la producción de quesos, donde la presencia de *Staphylococcus aureus* afecta al producto.

También el cambio de lugar habitual puede determinar la contaminación.

Cualquier microorganismo que penetre por una herida puede causar una infección.

Proteus vulgaris es parte de la microbiota normal del intestino y contaminante en el tracto urinario, causa infecciones en vías urinarias.

TIPOS Y FUENTES DE CONTAMINACIÓN MICROBIOLÓGICA.

AÉREA: Los microorganismos presentes en el polvo al ser llevados por corrientes de aire pueden depositarse en cualquier superficie o medio.

Tolvaneras.

Movimiento de muebles y objetos.

Los residuos de animales y humanos al secarse pueden ser llevados por corrientes de aire.

El flush en el inodoro, por la fuerza del flujo de agua se nebulizan pequeñas gotas con microorganismos.

También este efecto flush presenta cuando al estornudar o toser la persona proyecta diminutas gotas en las que van los microorganismos.

TIERRA Y SUELOS: El polvo del suelo contiene muchos microorganismos que pueden causar infecciones al contaminar a una persona o dañar un producto.

Por la diversidad de vida presente en los suelos, es posible que tengamos contaminación microbiológica si se pone en contacto el suelo o tierra con algún objeto limpio.

También se puede potencializar la cantidad de microorganismos patógenos si se tienen filtraciones de agua de drenaje en los suelos.

Otros entornos ecológicos pueden verse afectados por ciertas condiciones ambientales, cambiando la microbiota "sana" autóctona por otros microorganismos que pueden causar problemas en el entorno.

LÍQUIDOS: Aguas de drenaje pueden contaminar productos o alimentos, además de personas y animales.

Las descargas de drenaje en ríos y mares alteran la flora normal, también por mezclarse aguas de desecho con agua potable.

Aunque el agua pueda parecer pura o limpia, es posible que tenga microorganismos que causen problemas, aunque no sean patógenos pueden descomponer fácilmente los alimentos causando problemas diarréicos (por ejemplo la enterotoxina de *Staphylococcus aureus*) al ser consumidos o simplemente su sabor y aspecto ya no es apetecible al consumidor.

especies POR ORGANISMOS: Las de microorganismos presentes en plantas, animales o personas pueden pasar a otros organismo materiales diversos.

Hay enfermedades que requieren un vector biológico para cerrar su ciclo infeccioso y causar enfermedad.

Mosquito - Plasmodium vivax

Pulga – Yersinia pestis

Chinche Besucona – *Tripanosoma cruzi*

Mosca doméstica – patógenos de vías digestivas y otros microorganismos

04.7) MONITOREO PARA CONTROL MICROBIOLÓGICO 💽

Parte de las labores del microbiólogo es el determinar la presencia y tipo de microorganismos que se encuentran en un lugar o proceso, ya sea para verificar la producción del metabolito de interés o la presencia de contaminantes.

En muchas industrias es importante la rapidez con la que se pueda determinar el crecimiento microbiano, usando técnicas convencionales y técnicas rápidas.

Para producción de cerveza, es importante saber si la levadura está creciendo al ritmo de producción y si no se encuentra algún otro microorganismo contaminante que afecte el proceso.

O la elaboración de solución salina isotónica estéril, que por sus características el control y monitoreo es severo, debido a que este producto será introducido directamente al torrente sanguíneo, con lo que la presencia de cualquier tipo de microorganismo es indeseable.

Contaminación a nivel industrial

- De insumos
- Del proceso
- Del producto
- Durante el almacenamiento

Contaminación en Hospitales

- Material no estéril
- Contaminación cruzada por fomites
- Contaminación aérea

MÉTODOS CONVENCIONALES

Los más empleados son las técnicas de cuantificación de viables, su inconvenientes radica en que las pruebas pueden llevarse uno o dos días para tener resultados. La certeza sobre la identificación del microorganismo encontrado es muy alta.

Técnica	Tiempo para el resultado	Observaciones
Dilución y vertido en placa	de 24 horas	Si la muestra está muy diluida pueden no ser detectados, adecuar el medio de cultivo al microorganismo buscado.
Número más probable	18 a 24 horas	Según el método se hacen diluciones, adecuar el medio al microorganismo buscado.
Filtración	18-24 horas	Se requieren muestras diluidas, adecuar el medio al microorganismo buscado.
Muestreo con medios (cualitativo)	18 a 24 horas	Verificar la toma de muestra y los medios usados.

MÉTODOS RÁPIDOS:

Bologia

Tienen el mismo principio que los métodos convencionales, logran una ventaja la mayoría porque son miniaturizados y no se requiere mucho tiempo para tener resultados, algunos de ello pueden leerse a 8 horas de realizada la prueba.

Técnica	Tiempo para el resultado	Observaciones
Petrifilm	8 a 16 horas	Es un medio de cultivo, que al agregar una suspensión del problema hidrata los componentes y permite el desarrollo.
Sistemas API (o similares)	12 a 18 horas 34 a 48 horas desde el aislamiento.	Sirve para identificar al microorganismo, para realizar esta prueba es necesario un asilamiento previo.
PCR (polimerase chain of Reaction)	2 a 4 horas	Permite la identificación de cadenas de ADN de microorganismos, lo que permite la identificación rápida, en algunos casos puede hacer la determinación de mezclas diferenciando a los microorganismos. Es un método caro.

