CS 83: Computer Vision Winter 2024

Quiz 1 — 01/11/2024

Prof. Pediredla Student: Amittai Siavava

Credit Statement

I discussed solution ideas with:

- 1. Ivy (Aiwei) Zhang
- 2. Angelic McPherson
- **3.** Lin Shi (Q2 convolution vs. correlation)

However, all the typed work is my own, with reference to class notes especially on convolutions and correlations.

Problem 1.

The continuous convolution of two functions f(x) and g(x) is given as

$$[f * g](x) = \int_{-\infty}^{+\infty} f(y) g(x - y) dy.$$

(i) Prove that the convolution of two functions is commutative, i.e., changing the order of operands produces the same result.

$$[f * g] = [g * f]$$

Hint: Perform integration by substitution.

By definition,

$$[f * g](x) = \int_{-\infty}^{+\infty} f(y) g(x - y) dy$$

Let u=x-y, then du=-dy and y=x-u. Furthermore, when $y=-\infty$, $u=x-(-\infty)\approx +\infty$, and when $y=+\infty$, $u=x-(+\infty)\approx -\infty$.

$$[f * g](x) = \int_{+\infty}^{-\infty} f(x - u) g(u) (-du)$$

$$= -\int_{+\infty}^{-\infty} f(x - u) g(u) du$$

$$= \int_{-\infty}^{+\infty} f(x - u) g(u) du$$

$$= \int_{-\infty}^{+\infty} g(u) f(x - u) du$$

$$= [g * f](x)$$

(ii) Prove that the convolution operand is also associative, i.e., rearranging the parentheses on two or more occurrences of the convolution operator produces the same result:

$$[f * g] * h = f * [g * h]$$

Hint: Be careful with variables. Understand which variable should be integrated, and why.

By definition,

$$[\varphi * \zeta](x) = \int_{-\infty}^{+\infty} \varphi(y) \, \zeta(x - y) \, dy.$$

Plugging in [f * g] for φ and h for ζ , we get:

$$([f * g] * h)(x) = \int_{-\infty}^{+\infty} [f * g](y) h(x - y) dy$$

Let us expand [f * g](y):

$$= \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} f(z) g(y-z) dz \right) h(x-y) dy$$
$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(z) g(y-z) h(x-y) dz dy$$

Rearranging the integrals:

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(z) g(y-z) h(x-y) dy dz$$
$$= \int_{-\infty}^{+\infty} f(z) \left(\int_{-\infty}^{+\infty} g(y-z) h(x-y) dy \right) dz$$

To simplify the inner integral, substitute u = y - z, then du = dy and y = z + u.

$$= \int_{-\infty}^{+\infty} f(z) \left(\int_{-\infty}^{+\infty} g(u) h(x - (z + u)) du \right) dz$$

$$= \int_{-\infty}^{+\infty} f(z) \left(\int_{-\infty}^{+\infty} g(u) h((x - z) - u) du \right) dz$$

$$= \int_{-\infty}^{+\infty} f(z) \left[g * h \right] (x - z) dz$$

$$= \left[f * \left[g * h \right] \right] (x)$$

Problem 2.

In class, we talked about finite-difference approximation to the derivative of the univariate function f(x). Using Taylor polynomial approximations of f(x + h) and f(x - h), we can easily show that

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + O(h^2),$$

so that the derivative can be approximated by convolving a discrete version of f(x) — a vector of values $(..., f(x_o - \Delta), f(x_o), f(x_o + \Delta), ...)$ with kernel (1/2, 0, -1/2). This is termed a central difference because its interval is symmetric about a sample point.

(i) Derive a higher order central-difference approximation to f'(x) such that the truncation error tends to zero as h^4 instead of h^2 . *Hint*: consider Taylor polynomial approximations of $f(x\pm 2h)$ in addition to $f(x\pm h)$. (7 points)

Taylor Polynomial Approximation of $f(x + \varepsilon)$:

$$f(x+\varepsilon) = f(x) + \varepsilon f'(x) + \frac{\varepsilon^2}{2!}f''(x) + \frac{\varepsilon^3}{3!}f'''(x) + \frac{\varepsilon^4}{4!}f^{(4)}(x) + \frac{\varepsilon^5}{5!}f^{(5)}(x) + \dots$$

Once we fix x, we can treat f(x), f'(x), f''(x), etc. as constants. To simplify the equations, let's replace f''(x) and higher order derivatives and their corresponding coefficients with $c_i = \frac{f^{(i)}(x)}{i!}$:

$$f(x+\varepsilon) = f(x) + f'(x)\varepsilon + c_2\varepsilon^2 + c_3\varepsilon^3 + c_4\varepsilon^4 + c_5\varepsilon^5 + \dots$$

Plugging in h, 2h, -h, and -2h, respectively:

$$f(x+h) = f(x) + f'(x)h + c_2h^2 + c_3h^3 + c_4h^4 + c_5h^5 + \dots$$

$$f(x+2h) = f(x) + 2f'(x)h + 4c_2h^2 + 8c_3h^3 + 16c_4h^4 + 32c_5h^5 + \dots$$

$$f(x-h) = f(x) - f'(x)h + c_2h^2 - c_3h^3 + c_4h^4 - c_5h^5 + \dots$$

$$f(x-2h) = f(x) - 2f'(x)h + 4c_2h^2 - 8c_3h^3 + 16c_4h^4 - 32c_5h^5 + \dots$$

Then the estimations for f'(x) using h and 2h are:

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} - \left[c_2h^2 + c_4h^4 + c_6h^6 + \dots\right]. \tag{2.1}$$

$$f'(x) = \frac{f(x+2h) - f(x-2h)}{4h} - \left[4c_2h^2 + 16c_4h^4 + 64c_6h^6 + \dots\right]$$
(2.2)

We can eliminate the h^2 term in f'(x) by subtracting 2.2 from 4 times 2.1:

$$3f'(x) = 4 \left[\frac{f(x+h) - f(x-h)}{2h} \right] - \left[\frac{f(x+2h) - f(x-2h)}{4h} \right] - \left[(4h^2 - 4h^2) + O(h^4) \right]$$

$$3f'(x) = \frac{8[f(x+h) - f(x-h)] - [f(x+2h) - f(x-2h)]}{4h} + O(h^4)$$

$$f'(x) = \frac{-f(x+2h) + 8f(x+h) - 8f(x-h) + f(x-2h)}{12h} + O(h^4)$$

$$f'(x) = \frac{-1}{12h}f(x+2h) + \frac{2}{3h}f(x+h) + 0f(x) + \frac{-2}{3h}f(x-h) + \frac{1}{12h}f(x-2h) + O(h^4)$$

We get a Taylor approximation of f'(x) with a truncation error of $\mathcal{O}(h^4)$.

(ii) What is the corresponding convolution (not correlation!) kernel? (3 points)

The *convolution* kernel picks up the coefficients starting from the positive boundary, x + 2h, and steps down to the negative boundary, x - 2h:

$$\left[-\frac{1}{12}, \quad \frac{2}{3}, \quad 0, \quad -\frac{2}{3}, \quad \frac{1}{12} \right].$$