

EE141-Spring 2010 Digital Integrated Circuits

Lecture 7
Wires

EECS141

Lecture #7

1

Administrativia

- □ No lab next week
- □ Midterm on Fr Febr 19 6:30-8pm in 2060 Valley
- □ Review Session: TBA (most likely on Th)

Class Material

- □ Last lecture
 - Optimizing complex logic
- □ Today's lecture
 - Applying what we learned on memory decoders
- □ Reading (Ch 6.2, 12.1,12.3)

EECS141 Lecture #7

Logical Effort

$$t_{pgate} = t_{inv} (p\gamma + LE \times f)$$

Measure everything in units of t_{inv} (divide by t_{inv}):

p – intrinsic delay ($k\gamma_g$) - gate parameter $\neq f(W)$ LE – logical effort (k) – gate parameter $\neq f(W)$ f – electrical effort (effective fanout)

Normalize everything to an inverter:

$$LE_{inv} = 1$$
, $p_{inv} = \gamma$

Method of Logical Effort

- \Box Compute the path effort: PE = $(\Pi LE)BF$
- \Box Find the best number of stages $N \sim \log_4 PE$
- \Box Compute the effective fanout/stage EF = PE^{1/N}
- □ Sketch the path with this number of stages
- □ Work either from either end, find sizes: $C_{in} = C_{out}^* LE/EF$

Reference: Sutherland, Sproull, Harris, "Logical Effort, Morgan-Kaufmann 1999.

EECS141 Lecture #7

Example – 8-Input AND

LE=10/3 1 LE=2 5/3 LE=4/3 5/3 4/3 1 $\Pi LE=10/3$ $\Pi LE=80/27$ P=8+1 P=4+2 P=2+2+2+1

Add Branching Effort

Branching effort:

$$b = \frac{C_{on-path} + C_{off-path}}{C_{on-path}}$$

EECS141 Lecture #7

Branching Example 1

Introduce new kind of effort to account for branching:

• Branching Effort:
$$b = \frac{C_{\text{on-path}} + C_{\text{off-path}}}{C_{\text{on-path}}}$$

• Path Branching Effort: $B = \prod b_i$

Now we can compute the path effort:

• Path Effort: $PE = \prod LE \cdot FO \cdot B$

Branching Example 2

Select gate sizes y and z to minimize delay from A to B

Logical Effort: $LE = (4/3)^3$

Electrical Effort: $FO = C_{out}/C_{in} = 9$

Branching Effort: $B = 2 \cdot 3 = 6$

Path Effort: $PE = \prod LE \cdot FO \cdot B = 128$

Best Stage Effort: $SE = PE^{1/3} \approx 5$

Delay: D = 3.5 + 3.2 = 21

 $z = \frac{9C \cdot (4/3)}{5} = 2.4C$

Work backward for sizes:

 $y = \frac{32 \cdot (4/3)}{5} = 1.9C$

EECS141 Lecture #7

Method of Logical Effort

- \Box Compute the path effort: PE = $(\Pi LE)BF$
- □ Find the best number of stages $N \sim \log_4 PE$
- \Box Compute the effective fanout/stage EF = PE^{1/N}
- □ Sketch the path with this number of stages
- □ Work either from either end, find sizes: $C_{in} = C_{out}^* LE/EF$

Reference: Sutherland, Sproull, Harris, "Logical Effort, Morgan-Kaufmann 1999.

Impact of Interconnect Parasitics

- □ Interconnect and its parasitics can affect all of the metrics we care about
 - Cost, reliability, performance, power consumption
- □ Parasitics associated with interconnect:
 - Capacitance
 - Resistance
 - Inductance

Permittivity

Material	ε_r
Free space	1
Aerogels	~1.5
Polyimides (organic)	3-4
Silicon dioxide	3.9
Glass-epoxy (PC board)	5
Silicon Nitride (Si ₃ N ₄)	7.5
Alumina (package)	9.5
Silicon	11.7

Capacitive coupling and noise EECS141 Lecture #7 22

Coupling Capacitance and Delay

Wiring Capacitances (0.25 µm CMOS)								
		Field	Active	Poly	All	Al2	Al3	Al4
-	Poly	88	aF/mm2					
		. 54	af/mm					
	Al1	30	41	57				
_		40	47	54				
ص ا	Al2	13	15	17	36			
rop plate		25	27	29	45			
٩	Al3	8.9	9.4	10	15	41		
م _		18	19	20	27	49		
	Al4	6.5	6.8	7	8.9	15	35	
_		14	15	15	18	27	45	
	Al5	5.2	5.4	5.4	6.6	9.1	14	38
_		12	12	12	14	19	27	52
EECS141 Lecture #7 25				25				

Interconnect Resistance

Material	ρ (Ω-m)
Silver (Ag)	1.6×10^{-8}
Copper (Cu)	1.7×10^{-8}
Gold (Au)	2.2×10^{-8}
Aluminum (Al)	2.7×10^{-8}
Tungsten (W)	5.5×10^{-8}

EECS141 Lecture #7 29

Dealing with Resistance

- □ Use Better Interconnect Materials
 - e.g. copper, silicides
- □ More Interconnect Layers
 - reduce average wire-length
- □ Selective Technology Scaling
 - (More later)

<u>EECS141</u> <u>Lecture #7</u> 30

Sheet Resistance

Material	Sheet Resistance (Ω/□)
n- or p-well diffusion	1000 - 1500
n^+ , p^+ diffusion	50 – 150
n^+ , p^+ diffusion with silicide	3 – 5
n^+ , p^+ polysilicon	150 – 200
n^+ , p^+ polysilicon with silicide	4 – 5
Aluminum	0.05 - 0.1

The Distributed RC-line

- · Analysis method:
 - · Break the wire up into segments of length dx
 - Each segment has resistance (r dx) and capacitance (c dx)

EECS141 Lecture #7 35

The Distributed RC-line

$$V_{in} \xrightarrow{r dx} \xrightarrow{r dx} V_{i-1} \xrightarrow{r dx} V_{i} \xrightarrow{r dx} V_{i+1} \xrightarrow{r dx} V_{out}$$

$$\downarrow c dx \qquad \downarrow c dx \qquad \downarrow c dx \qquad \downarrow c dx$$

$$I_{C} = c\Delta L \frac{\partial V}{\partial t} = \frac{\left(V_{i-1} - V_{i}\right) - \left(V_{i} - V_{i+1}\right)}{r\Delta L} \longrightarrow \boxed{rc \frac{\partial V}{\partial t} = \frac{\partial^{2} V}{\partial x^{2}}}$$

$$\tau = \frac{L^2}{2}rc$$

Wire Model

Model the wire with N equal-length segments:

$$\tau_{DN} = \left(\frac{L}{N}\right)^{2} (rc + 2rc + \dots + Nrc) = (rcL^{2}) \frac{N(N+1)}{2N^{2}} = RC \frac{N+1}{2N}$$

For large values of N:

$$\tau_{DN} = \frac{RC}{2} = \frac{rcL^2}{2}$$

EECS141

Lecture #7

37

RC-Models

Voltage Range	Lumped RC- network	Distributed RC-network
0→50% (t _p)	0.69 RC	0.38 RC
0→63% (7)	RC	0.5 RC
10%→90% (t _r)	2.2 RC	0.9 RC

Step Response of Lumped and Distributed RC Networks: Points of Interest.

EECS141

Lecture #7

38

Driving an RC-line

$$\tau_D = R_s C_w + \frac{R_w C_w}{2} = R_s C_w + 0.5 r_w c_w L^2$$

$$t_p = 0.69R_s C_w + 0.38R_w C_w$$