Supervised learning pipelines

DESIGNING MACHINE LEARNING WORKFLOWS IN PYTHON

Dr. Chris AnagnostopoulosHonorary Associate Professor

Labeled data

- Feature variables (shorthand: X)
- Labels or class (shorthand: y)

```
credit_scoring.head(4)
```

```
checking_status duration ...
                                     foreign_worker class
              ' < 0 '
0
                                                      good
                                                 yes
       '0<=X<200'
                           48
                                                       bad
                                                 yes
    'no checking'
                           12
                                                      good
                                                 yes
3
              ' < 0 '
                           42
                                                      good
                                                 yes
```

Feature engineering

- Most classifiers expect numeric features
- Need to convert string columns to numbers

Preprocess using LabelEncoder from sklearn.preprocessing:

```
le = LabelEncoder()
le.fit_transform(credit_scoring['checking_status'])[:4]
```

```
array([1, 0, 3, 1])
```

Model fitting

- .fit(features, labels)
- .predict(features)

```
features, labels = credit_scoring.drop('class', 1), credit_scoring['class']
model_nb = GaussianNB()
model_nb.fit(features, labels)
model_nb.predict(features.head(5))
```

```
['good' 'bad' 'good' 'bad' 'good']
```

60% accuracy on first 5 examples.

Model selection

- .fit() optimizes the parameters of the given model
- What about other models?

AdaBoostClassifier outperforms GaussianNB on first five data points:

```
model_ab = AdaBoostClassifier()
model_ab.fit(features, labels)
model_ab.predict(features.head(5))
numpy.array(labels[0:5])
```

```
['good' 'bad' 'good' 'good' 'bad']
['good' 'bad' 'good' 'good' 'bad']
```

Performance assessment

Larger sample sizes \Rightarrow better accuracy estimates:

```
from sklearn.metrics import accuracy_score
accuracy_score(labels, model_nb.predict(features)) # naive bayes
```

0.706

```
accuracy_score(labels, model_ab.predict(features)) # adaboost
```

0.802

What is wrong with this calculation?

Overfitting and data splitting

Overfitting: a model will always perform better on the data it was trained on than on unseen data.

Train on X_train, y_train, assess accuracy on X_test, y_test:

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
GaussianNB().fit(X_train, y_train).predict(X_test)
```


So, what is this course about?

- 1. Scalable ways to tune your pipeline.
- 2. Making sure your predictions are relevant by involving domain experts.
- 3. Making sure your model continues to perform well over time.
- 4. Fitting models when you don't have enough labels.

Could you have prevented the mortgage crisis?

DESIGNING MACHINE LEARNING WORKFLOWS IN PYTHON

Model complexity and overfitting

DESIGNING MACHINE LEARNING WORKFLOWS IN PYTHON

Dr. Chris AnagnostopoulosHonorary Associate Professor

What is model complexity?

RandomForestClassifier() takes additional arguments, like max_depth:

help(RandomForestClassifier)

```
Help on class RandomForestClassifier in module sklearn.ensemble.forest:
...
| max_depth : integer or None, optional (default=None)
| The maximum depth of the tree. If None, then nodes are expanded until
| all leaves are pure or until all leaves contain less than
| min_samples_split samples.
```



```
m2 = RandomForestClassifier(
    max_depth=2)
m2.fit(X_train, y_train)
m2.estimators_[0]
```

```
m4 = RandomForestClassifier(
    max_depth=4)
m4.fit(X_train, y_train)
m4.estimators_[0]
```


Cross-validation

Assess accuracy using cross_val_score():

```
from sklearn.model_selection import cross_val_score
cross_val_score(RandomForestClassifier(), X, y)
```

```
array([0.7218 , 0.7682, 0.7866])
```

```
numpy.mean(cross_val_score(RandomForestClassifier(), X, y))
```

0.7589

Tuning model complexity

Tune the tree depth using GridSearchCV():

```
from sklearn.model_selection import GridSearchCV
param_grid = {'max_depth':[5,10,20]}
grid = GridSearchCV(RandomForestClassifier(), param_grid)
grid.fit(X,y)
grid._best_params
```

```
{'max_depth': 10}
```


More complex is not always better!

DESIGNING MACHINE LEARNING WORKFLOWS IN PYTHON

Feature engineering and overfitting

DESIGNING MACHINE LEARNING WORKFLOWS IN PYTHON

Dr. Chris AnagnostopoulosHonorary Associate Professor

Feature extraction from non-tabular data

arrhythmias.head()

	age	sex	height	weight	• • •	chV6_TwaveAmp	chV6_QRSA	chV6_QRSTA	class
0	75	0	190	80		2.9	23.3	49.4	0
1	56	1	165	64	• • •	2.1	20.4	38.8	0
2	54	0	172	95	• • •	3.4	12.3	49.0	0
3	55	0	175	94	• • •	2.6	34.6	61.6	1
4	75	0	190	80	• • •	3.9	25.4	62.8	0

Label encoding for categorical variables

```
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
```

Label encoding for categorical variables

One hot encoding for categorical variables

```
pd.get_dummies(credit_scoring['purpose']).iloc[1]
```

```
purpose_business
                                    0
purpose_buy_domestic_appliance
purpose_buy_furniture_equipment
                                   0
purpose_buy_new_car
                                   0
purpose_buy_radio_tv
purpose_buy_used_car
                                    0
purpose_education
                                    0
purpose_other
                                   0
purpose_repairs
                                   0
purpose_retraining
                                    0
```


Keyword encoding for categorical variables

	appliance	business	buy	Cá	ar	repairs	retraining	g t	v used
0	0	0	1	0	• • •	0	0	1	0
1	0	0	1	0	• • •	0	0	1	0
2	0	0	0	0	• • •	0	0	0	0
3	0	0	1	0	•••	0	0	0	0

Dimensionality and feature engineering

Categorical variables in credit:

- Label encoding: 1 column.
- One-hot encoding: 10 columns.
- Keyword encoding: 15 columns.

ECG features in arrhythmias:

Over 250 features

Feature selection

```
from np.random import uniform
fakes = pd.DataFrame(
    uniform(low=0.0, high=1.0, size=n * 100).reshape(X.shape[0], 100),
    columns=['fake_' + str(j) for j in range(100)]
)
X_with_fakes = pd.concat([X, fakes], 1)
```

Feature selection

```
from sklearn.feature_selection import chi2, SelectKBest
sk = SelectKBest(chi2, k=20)
which_selected = sk.fit(X_with_fakes, y).get_support()
X_with_fakes.columns[which_selected]
```

Tradeoffs everywhere!

DESIGNING MACHINE LEARNING WORKFLOWS IN PYTHON

