Dynamic programming

Optimal binary search tree

Optimal binary search tree

Balanced but not optimal

Query probability

Key

Optimal binary search tree

Node costs in a BST

Různé algoritmy mají různou složitost: O(n), Ω(n²), Θ(n·log₂(n)), ...

Cost of balanced search tree

key	probab. <i>p_k</i>	depth d_k	$p_{k} \cdot d_{k}$
Ann	0.03	4	0.03 · 4 = 0.12
Ben	0.08	3	$0.08 \cdot 3 = 0.24$
Cole	0.12	4	$0.12 \cdot 4 = 0.48$
Dana	0.01	2	$0.01 \cdot 2 = 0.02$
Edna	0.04	4	0.04 · 4 = 0.16
Fred	0.05	3	$0.05 \cdot 3 = 0.15$
Gene	0.22	4	$0.22 \cdot 4 = 0.88$
Hugo	0.04	1	0.04 · 1 = 0.04
Irma	0.06	4	0.06 · 4 = 0.24
Jack	0.05	3	$0.05 \cdot 3 = 0.15$
Ken	0.15	4	$0.15 \cdot 4 = 0.60$
Lea	0.09	2	$0.09 \cdot 2 = 0.18$
Mark	0.02	4	$0.02 \cdot 4 = 0.08$
Nick	0.03	3	$0.03 \cdot 3 = 0.09$
Orrie	0.01	4	0.01 · 4 = 0.04
			Total cost: 3.47

Total cost = avg. no. of tests in all operatios Find.

Optimal binary search tree

Optimal BST with specific query probabilities

Cost of optimal BST

key	probab. <i>p_k</i>	depth d _k	$p_k \cdot d_k$		
Ann	0.03	4	0.03 · 4 = 0.12		
Ben	0.08	3	$0.08 \cdot 3 = 0.24$		
Cole	0.12	2	$0.12 \cdot 2 = 0.24$		
Dana	0.01	5	0.01 · 5 = 0.05		
Edna	0.04	4	0.04 · 4 = 0.16		
Fred	0.05	3	$0.05 \cdot 3 = 0.15$		
Gene	0.22	1	0.22 · 1 = 0.22		
Hugo	0.04	4	0.04 · 4 = 0.16		
Irma	0.06	3	$0.06 \cdot 3 = 0.18$		
Jack	0.05	4	$0.05 \cdot 4 = 0.20$		
Ken	0.15	2	$0.15 \cdot 2 = 0.30$		
Lea	0.09	3	$0.09 \cdot 3 = 0.27$		
Mark	0.02	5	$0.02 \cdot 5 = 0.10$		
Nick	0.03	4	$0.03 \cdot 4 = 0.12$		
Orrie	0.01	5	$0.01 \cdot 5 = 0.05$		
Total cost 2.56					
Speedup 3.47 : 2.56 = 1 : 0.74					

Různé algoritmy mají různou složitost: O(n), $\Omega(n^2)$, $\Theta(n \cdot log_2(n))$, ...

Computing the cost of optimal BST

Recursive idea

$$cost = C_{1k} + \sum_{i=L}^{k-1} p_i + C_{2k} + \sum_{i=k+1}^{R} p_i + p_k$$

Computing the cost of optimal BST

Small optimal subtrees

Surely, there exists an optimal subtree containing keys with indices ranging from L to R.

Subtree size = no. of nodes = L - R+1

In total, there are N * (N+1)/2 different optimal subtrees.

Minimizing the cost of optimal BST

Idea of recursive solution:

- 1. Assumption: All smaller optimal subtrees are known.
- 2. Try all possibilities: k = L, L+1, L+2, ..., R

3. Register the index k, which minimizes the cost expressed as

$$C_{1k} + \sum_{i=1}^{k-1} p_i + C_{2k} + \sum_{i=k+1}^{R} p_i + p_k$$

4. The key with index k is the root of the optimal subtree.

Minimizing the cost of optimal BST

C(L,R) Cost of optimal subtree containing keys with indices: L, L+1, L+2, ..., R-1, R

$$C(L,R) = \min_{L \le k \le R} \{ C(L, k-1) + \sum_{i=L}^{k-1} p_i + C(k+1,R) + \sum_{i=k+1}^{R} p_i + p_k \} =$$

=
$$\min_{L \le k \le R} \{ C(L, k-1) + C(k+1,R) + \sum_{i=L}^{R} p_i \} =$$

(*) =
$$\min_{L \le k \le R} \{ C(L, k-1) + C(k+1,R) \} + \sum_{i=L}^{R} p_i$$

The value minimizing (*) is the index of the root of the optimal subtree

Data structures for computing optimal BST

Costs of optimal subtrees

array C[L][R] $(L \le R)$

Roots of optimal subtrees array roots [L][R] (L ≤ R)

Různé algoritmy mají různou složitost: O(n), $\Omega(n^2)$, $\Theta(n \cdot \log_2(n))$, ...

The cost of a particular optimal subtree

Různé algoritmy mají různou složitost: O(n), $\Omega(n^2)$, $\Theta(n \cdot \log_2(n))$, ...

Dynamic programming strategy

- First process the smallest subtrees, then the bigger ones, then still more bigger ones, etc...

Computing arrays of costs and roots

```
def optimalTree( Prob, N ):
  Costs = [[0]*N for i in range(N)]
 Roots = [[0]*N for i in range(N)]
  # size = 1, main diagonal
  for i in range(N):
    Costs[i][i] = Prob[i]; Roots[i][i] = i
  # size > 1, diagonals above main diagonal
  for size in range(1, N):
   L = 1; R = size
   while R < N:
      Costs[L][R] =
           min(Costs[L][k-1] + Costs[k+1][R], k = L..R)
      roots[L][R] = 'k minimizing previous line'
      Costs[L][R] += sum(Costs[L:R+1])
      L += 1; R += 1
   return Costs, Roots
```

Building optimal BST using the array of subtree roots

```
# standard BST insert
def buildTree( Tree, L, R, Roots, Nodes ):
    if R < L: return
    rootindex = Roots[L][R]
    # standard BST insert
    # nodes in Nodes have to be sorted in increasing
    # order of their key values
    Tree.insert( Nodes[rootindex].key )
    buildTree( Tree, L, rootindex-1, Roots, Nodes )
    buildTree( Tree, rootindex+1, R, Roots, Nodes )
}</pre>
```

Roots of optimal subtrees

Tree and array correspondence

Costs of optimal subtrees

```
8-H
                                              9-I 10-J 11-K 12-L 13-M 14-N 15-O
           2-B
      1-A
                     4-D
                          5-E
                               6-F
                                     7-G
 1-A 0.03 0.14 0.37 0.39 0.48 0.63 1.17 1.26 1.42 1.57 2.02 2.29 2.37 2.51 2.56
          0.08 0.28 0.30 0.39 0.54 1.06 1.14 1.30 1.45 1.90 2.17 2.25 2.39 2.44
 2-B
               0.12 0.14 0.23 0.38 0.82 0.90 1.06 1.21 1.66 1.93 2.01 2.15 2.20
 3-C
                    0.01 0.06 0.16 0.48 0.56 0.72 0.87 1.32 1.59 1.67 1.81 1.86
 4-D
                          0.04 0.13 0.44 0.52 0.68 0.83 1.28 1.55 1.63 1.77 1.82
 5-E
 6-F
                               0.05 0.32 0.40 0.56 0.71 1.16 1.43 1.51 1.63 1.67
 7-G
                                    0.22 0.30 0.46 0.61 1.06 1.31 1.37 1.48 1.52
                                         0.04 0.14 0.24 0.54 0.72 0.78 0.89 0.93
 8-H
 9-I
                                              0.06 0.16 0.42 0.60 0.66 0.77 0.81
                                                   0.05 0.25 0.43 0.49 0.60 0.64
10-J
11-K
                                                        0.15 0.33 0.39 0.50 0.54
12-L
                                                             0.09 0.13 0.21 0.24
13-M
                                                                  0.02 0.07 0.09
14-N
                                                                        0.03 0.05
15-0
                 0
                                                                     0
                                                                          0
                                                                            0.01
```

Dynamic programming

Longest common subsequence (LCS)

Two sequences

A: CBEADDEA

|A| = 8

B:

DECDBDA

|B| = 7

Common subsequence

A: CBEADDEA

B: DECDBDA

C: CDA

|C| = 3

Longest common subsequence (LCS)

A: CBEADDEA

B: DECDBDA

C: EDDA

|C| = 4

 A_n : $(a_1, a_2, ..., a_n)$

 B_m : $(b_1, b_2, ..., b_m)$

 C_k : $(c_1, c_2, ..., c_k)$

 $C_k = LCS(A_n, B_m)$

1 2 3 4 5 6 7 8

A₈: CBEADDEA

B₇: DECDBDA

 C_4 : E D D A

Recursive rules:

$$(a_n = b_m) = (c_k = a_n = b_m) \& (C_{k-1} = LCS (A_{n-1}, B_{m-1}))$$

1 2 3 4 5 6 7 8

A₈: CBEADDEA

B₇: DECDBDA

C₄: EDDA

1 2 3 4 5 6 7 8

A₇: CBEADDE&

B₆: DECDBDA

C₃: EDDA

$$(a_n != b_m) \& (c_k != a_n) ==> (C_k = LCS (A_{n-1}, B_m))$$

1 2 3 4 5 6 7 8

 A_7 : | C B E A D D E

B₆: DECDBD

C₃: E D D

1 2 3 4 5 6 7 8

A₆: CBEADDE

B₆: DECDBD

C₃: E D D

$$(a_n != b_m) \& (c_k != b_m) ==> (C_k = LCS (A_n, B_{m-1}))$$

1 2 3 4 5 6 7 8

A₅: CBEAD

B₅: DECDB

C₂: E D

1 2 3 4 5 6 7 8

A₅: CBEAD

B₄: DECDB

 C_2 : E D

Recursive function c(m, n) computes LCS length

$$C(n,m) = \begin{cases} 0 & n = 0 \text{ or } m = 0 \\ C(n-1, m-1) + 1 & n > 0, m > 0, a_n = b_m \\ max\{ C(n-1, m), C(n, m-1) \} & n > 0, m > 0, a_n \neq b_m \end{cases}$$

Dynamic programming strategy

```
C[n][m]

for a in range(1, n+1):

for b in range(1, m+1):

C[a][b] = ....
}
```

Construction of 2D LCS array

```
def findLCS():
  for a in range( 1, n+1 ):
    for b in range( 1, m+1 ):
      if A[a] == B[b]:
         C[a][b] = C[a-1][b-1]+1
         arrows[a][b] = DIAG 
      else:
        if C[a-1][b] > C[a][b-1]:
            C[a][b] = C[a-1][b];
            arrows[a][b] = UP f
        else:
           C[a][b] = C[a][b-1];
           arrows[a][b] = LEFT ←
```

LCS array for

"CBEADDEA" and "DECDBDA"

Různé algoritmy mají různou složitost: O(n), Ω(n²), Θ(n·log₂(n)), ...

LSC printout -- recursively:)