OPTICAL RECORDING MEDIUM AND ITS PRODUCTION

Publication number: JP3005929 Publication date: 1991-01-11

Inventor: SEKIYA MASAHIKO; CHIBA KIYOSHI

Applicant: TEIJIN LTD

Classification:

- international: G11B7/24; G11B11/10; G11B7/24; G11B11/00; (IPC1-

7): G11B7/24

- european:

Application number: JP19890137382 19890601 Priority number(s): JP19890137382 19890601

Report a data error here

Abstract of JP3005929

PURPOSE:To improve performances of the medium and durability by constituting a transparent dielectric layer of amorphous tantalum oxynitride. CONSTITUTION:An amorphous tantalum oxynitride layer is formed as a transparent dielectric layer. Since amorphous tantalum oxynitride does not scatter laser light, the noise level can be reduced. The Ta oxynitride layer has lower inner stress, 1/2 - 1/5 of that of Ta oxide, and shows no crack or peeling in an environmental test at high temp. and high humidity. Moreover, the layer is almost free from pin holes. Thus, recording/reproducing property and durability of the magneto-optical recording medium can be largely improved.

Data supplied from the esp@cenet database - Worldwide

◎ 公開特許公報(A) 平3-5929

Sint.Cl. 5

識別記号

庁内整理番号

❸公開 平成3年(1991)1月11日

G 11 B 7/24

B 8120-5D

審査請求 未請求 請求項の数 6 (全10頁)

60発明の名称 光記録媒体及びその製造方法

②特 願 平1-137382

20出 願 平1(1989)6月1日

@発 明 者 関 谷 昌 彦 東京都日野市旭が丘4丁目3番2号 帝人株式会社東京研

究センター内

@発 明 者 千 葉 東京都日野市旭が丘4丁目3番2号 帝人株式会社東京研

究センター内

而出 題 人 帝 人 株 式 会 社 大阪府大阪市中央区南本町1丁目6番7号

四代 理 人 弁理士 前田 純博

明細書

1. 発明の名称

光記録媒体及びその製造方法

2. 特許請求の範囲

- 1. 保護膜又は/及び光干沙層として透明誘電体層を有する光記録媒体において、前記透明誘電体層が、非晶質のタンタル(Ta) 窒酸化物であることを特徴とする光記録媒体。
- 2. 前記タンタル窒酸化物が、さらに1a又は/ 及びSaを含む請求項第1項記載の光記録媒体。
- 3. Ag、Cu、Au、Al、Si、Ti、Cr、Ta、Zr、Re、Nbからなる群より選ばれた少くとも1種の元素を用いた金属膜を保護層又は/及び反射層として具備した請求項第1項又は第2項記載の光記録媒体。
- 4. 前記タンタル窒酸化物の窒素含有率が1~45atX である請求項第1項~第3項記載のいずれかの光記録媒体。
- 5. 前記タンタル窒酸化物の酸素含有率が27~

71at% である請求項第1項~第4項記載のいずれかの光記録媒体。

- 6. 請求項第1項~第5項記載のいずれかの光記録媒体の製造方法において、前記タンタル窒酸化物層を、Taの酸化物、若しくはIn又は/及びSaを含むTaの酸化物をターゲットとし、不活性ガスに窒素を含有させた反応性ガスよりなる窒素雰囲気下のスパッタリングより形成することを特徴とする光記録媒体の製造方法。
- 3. 発明の詳細な説明

[利用分野]

本発明は、レーザー等の光により情報の記録・再生・消去等を行う光記録媒体に関する。更に詳細には、保護層又は/及び光干渉層として透明誘 電体層を有する光記録媒体に関する。

[従来技術]

光記録媒体は、高密度・大容量の情報記録媒体 として種々の研究が行われている。特に簡敬の書 換可能な光磁気記録媒体は応用分野が広く、種々 の材料・システムが発表されており、その実用化 が待望されている。

上述の光磁気記録材料としては、例えば特開昭52-31703号公報記載のTbPe、特開昭58-73746号公報記載のTbPeCo、DyPeCo等、既に多くの提案がある。しかし、これらの光磁気記録媒体の実用化は、記録・再生特性及び耐久性のより一層の向上が必要と言われている。この解決策として、光干沙層兼保護層として透明誘電体層を設け、光干渉効果、すなわち光の多重反射を利用してRerr回転効果、すなわち光の多重反射を利用してRerr回転効果、すなわち光の多重反射を利用してRerr回転効果、すなわち光の多重反射を利用してRerr回転効果、すなわち光の多重反射を利用してRerr回転効果、すなわち光の多重反射を利用してRerr回転効果、すなわると同時に、基板側から記録層への酸素等の劣化を引き起こす可能性を持つがスの拡散を防止することが提案されている。

ところで、これらの中で耐環境性に秀れているといわれるSi, N.、、AINなどについて検討したところ、その製膜速度が遅いこと、また、膜中ヒズミが大きく、特にプラスチック基板上に多層膜を形成した場合、環境試験によりグループに沿っ

ビンホール等の欠陥の発生を抑え媒体全体の耐久 性を向上せしめることを第2の目的とする。

[発明の構成・作用]

上述の目的は、以下の本発明により達成される。 すなわち本発明は、保護層又は/及び光干渉層と して透明誘電体層を有する光記録媒体において、 前記透明誘電体層が非晶質のタンタル(Ta) 窒酸 化物であることを特徴とする光記録媒体である。

た剥離等が生じる問題があり、耐酸化性とは別の面で耐久性での問題があることがわかった。また、カー回転角向上についても、いずれも屈折率が2.0程度であるために、光の多重反射を利用しても0.5~0.1℃程度にまで増大するのが限界であり、各種仕様に対応し得ない問題もある。従って実用化面からかかる諸点、特にカー回転角の向上、耐久性の向上の両面でより一層の改善が望まれている。

[発明の目的]

本発明はかかる現状に鑑みなされたもので、透明誘電体層を改良して、媒体性能が高く耐久性の良い光記録媒体を提供することを目的とするものである。すなわち、具体的には前記記録媒体の場合にはで、光干が効果を高め、例えば光磁気記録媒体の場合には、カー回転角を増大し、媒体性能をアップすることを第1の目的とする。また、該透明誘電体層を内部応力が小さく、また接着性がよいものとすることにより特に媒体の割れ、剥離を防止し、同時に

来のTa酸化物は結晶質であるために、信号の記録 ・再生を行う際、結晶粒界によるレーザー光の散 乱が起こり、ノイズレベルが上昇してしまうが、 本発明によるTa窒酸化物は非晶質であるためにレ ーザー光の散乱はなく、ノイズレベルを低減でき ることがわかった。また、Ta窒酸化物は、従来の Ta酸化物に比べ内部応力を1/2 ~1/5 に低減でき るため、高温高温の耐環境性試験における亀裂・ 剥離の発生がなく、またピンホールもほとんど発 生しないことがわかった。さらに透湿率を測定し たところ、Ta窒酸化物においては、10-5g · mm/ ff・day という、従来のSis Na、AIN等の透明。 誘電体では得られないような低い値になることが わかった。これは外部から侵入する酸素・水分等 のガスによる記録層の劣化を防ぐ上で有効である。 その上、このTa窒酸化物は屈折率に関しては、窒 素含有量に対する依存性が小さく、広い範囲にわ たって2.2~2.3 という高い値が得られることが わかった。但し、窒素量が少ないと膜が褐色に着 色してじまうため、信号の記録・再生時にレーザ

一光の吸収が起こる。これを避けるためには窒素 含有量を少くとも 1 at% 以上に設定することが好 ましい。逆に、窒素量が多い場合には、屈折率、 膜の透明性については問題ないが、透明基板、特 に透明高分子基板との密着性が低下し、高温・高 湿耐環境性試験における亀裂・剥離が発生し易く なる。従って、窒素含有量は45at%以下が好まし い。この透明基板との密着性をより高めるために は、上述の『a窒酸化物中に、さらにlu又は/及び Saを含有させることが有効であることがわかった。 この場合、密着性向上のためにはla又は/及びSa の含有量は少くとも 1 atX 以上であれば十分であ ることを見出した。ところで、このla、SaはTa窒 酸化物中にはTaと同様la又は/及びSuの窒酸化物 の形で含まれるが、このIa、Saの酸化物の屈折率 は2.0 程度と小さいためにTa窒酸化物中へのこれ ら元素の多量の添加は膜全体としての屈折率を低 下させてしまう。記録媒体としての大きな光干渉 効果、具体的には光磁気記録のカー回転角向上効 果及びレーザー光の閉じ込め効果等を得たい場合

には、透明誘電体膜の屈折率は2.0 以上、より好ましくは2.1 以上必要と言われており、かかる光干渉層として用いる場合には、1a又は/及びSaの含有量は25at%以下、より好ましくは15at%以下である。

なお、以上の本発明の単なる、もしくはla又は /及びSaを添加したTa窒酸化物には、上記のTa、 la、Sa、O、N以外の元素も不純物オーダーで含まれてよいことは言うまでもない。

前記本発明のTa窒酸化物膜の製造方法としては、公知の真空蒸着法、スパッタリング法等のPVD法、あるいはCVD法なと種々の薄膜形成法が適用できる。しかし、光記録媒体として高温高温耐環境性試験で剥離を生じない充分な耐久性を得るためには、特に高分子基板との密着性が大きい条件で作製することが好ましい。このためにはスパッタリング法が好ましい。中でもTa酸化物のターゲットを用い、ArとMの混合ガスでの反応性スパッタリング法が異常放電等が少なく安定運転面、生産性面で好ましい。

ところで本発明の光記録媒体は、前述の通り前記Ta窒酸化物を保護層又は/及び光干渉層としたものであり、その他の構成については特に限定されないことは本発明の趣旨から明らかである。例えば、光反射記録層、相変化光記録層、光磁気記録層等公知の各種光記録方式の光記録媒体に適用できる。

しかし、前述の本発明のTa望酸化物の特性、特に大きな光干渉効果並びに良好な耐透湿性が得られる点から、特に光磁気記録媒体に有利に適用できる。なお、光磁気記録媒体としては公知の以下のものが挙げられる。

すなわち、光磁気記録層としては、光磁気効果により記録・再生できるもの、具体的には膜面に垂直な方向に磁化容易方向を有し、任意の反転磁区を作ることにより光磁気効果に基いて情報の記録・再生が可能な磁性金属薄膜であればよく、例えばTbPe、TbPeCo、GdTbPe、GdPeCo、NdDyPeCo、NdDyTbPeCo、NdPe、PrPe、CePe等の希上類元素と 選移金属元素との非晶質合金膜、あるいはガーネ

ット膜等各種公知のものが適用できる。また/ れらの磁性金属薄膜のうちの2種以上を2 1種であっても構成元素の組成の異な変換にである。 であるは、透移層膜構成の記録層になりにあるようになりである。 特に、透りに変ができる。 特に、変形をではないないではない。 は、変形をできる。 特に、変形をできるができる。 特に、変形をできるができるができる。 特に、変形をできるができるができるができる。 特に、変形をあるができるができるができるができるができるができるができるができるがである。 場合による光干が効果で、媒体のの転ををの発った。 大きののようなでは、からによいは、 大きののようなでは、 大きののよりによるができたがである。 は、変形をはいるのは、 大きののようなでは、 大きののようなでは、 大きののようなでは、 大きによるができたができたができたができた。 は、ないてもないできたができたができた。 は、ないてもないできたができる。

透明基板の材料としては、ボリカーボネート樹脂、アクリル樹脂、エボキシ樹脂、4ーメチルーペンテン樹脂などまたそれらの共重合体等の高分子樹脂、もしくはガラスなどが適用できる。中でも機械強度、耐候性、耐熱性、透湿性の点でボリカーボネート樹脂が好ましい。

ところで、本発明のTa窒酸化物は前述の通り基板との密着性、膜の内部応力、透湿性等の面面で優れた特性を有しており、かかるポリカーボネート樹脂等の透明高分子基板を用いた光磁気記録膜との間に、Agにおいて複合酸化物膜と光磁気記録膜との間に、Agになる群はので、Ai、Si、Ti、Cr、Ta、2r、Re、Nbからなる群膜を設けることが耐酸化性、耐透湿性の面より好ましい。この金属薄膜を設けることが耐酸化性、耐透湿性の面よりがましい。この金属薄膜を設けることが耐酸化性、耐透湿性の面がありがある。という点から20人以下が好ましい。

このように本発明は、高分子基板上に前述のTa 窒酸化物よりなる透明誘電体層、上述の透明金属 保護層、光磁気記録層をこの順序で具備した構成 の光磁気記録媒体においてその効果は顕著である。

なお、本発明は、以上説明した光磁気記録媒体 を基本として、その他公知の通り光磁気記録層の 基板と反対側に裏面保護層、又は透明誘電体層を

小さい物質、すなわちTi、Cr、Ta、Re又はこれらの合金からなる金属膜が好ましく、さらに反射層を兼ねる場合には反射膜としての機能を損なわないようAg、Co、Ao、AI又はこれらの合金中にTi、Cr、Ta、Zr、Reのうち1種以上の金属を添加した金属膜が特に好ましい。以上の反射層及びその干渉層を含む無機保護層は、公知の真空蒸着法、スパッタリング法等のPVD法等で作製できる。

更に、裏面保護層として有機物保護層を用いることができる。かかる有機物保護層としては公知の各種感光性樹脂等が適用でき、コーティング法等により形成できる。なお、有機保護層が記録層に振機保護層と組み合わせ、無機保護層が記録層に接するように配置して用いることが好ましい。裏面保護層は少くとも記録層の側面まで被獲するように設けるのが好ましい。

なお、上述の各種保護層は、光磁気記録媒体以外の例えば相変化型等の光記録媒体にも適用できることはその特性等から明らかである。

介して又は介さず保護を兼ねた反射層を設けた構成、更にはこれらの構成の媒体に平板又は同じ媒体を貼り合わせた構成等、全てに適用できる。

この裏面保護層又は/及び反射層の干渉層に用いる透明誘電体としては、膜表面から光磁気記録層への酸素やBOの侵入を防ぐために亀裂やピンホールの少ない物質が好ましく、AIN、MgF2、ZaS、CeF3、AIF3・3 NaF、Si3 Na、SiQ、SiQ、Zr2 Q3、Ia2 Q3、SaQなどの窒化物、弗化物、酸化物、又はこれらの混合体などが適用できる。

特に、本発明の前述のTa窒酸化物は、耐久性試験による剥離・亀裂を生じないという理由から、かかる保護層又は/及び干渉層としても適したもので、本発明はかかる構成も含むものである。また裏面保護層又は/及び反射層として金属保護層を用いる場合には、Ag、Cu、Au、Ai、Si、Ti、Cr、Ta、Zr、Re、Nb又はこれらの合金などからなる金属膜が適用できるが、記録時レーザービームスポットからの熱拡散を少なくするために熱伝導度の

上述の本発明の効果は以下の通りである。

前述の通り、透明プラスチック基板を用い、膜 面反射によるカー回転角を大きくするため、基板 と光磁気記録層との間に透明誘電体層を設けた代 表的構成の光磁気ディスクにおいて、誘電体膜と して代表的な従来例のSiO、AIN、Si, N. SIOS等を用いた場合、これらの媒体のカー回転角 は0.5~ 0.7°であり、誘電体層における光の多 重反射の効果によるカー回転角の向上がまだ十分 とは言えない。これは、上記各誘電体の屈折率が 1.9~2.0程度と小さいためであると考えられる。 さらに、これら従来の誘電体を用いた光磁気ディ スクを高温高温又は/及びヒートサイクルにより 耐久性試験を行うと、ディスクに亀裂がはいり、 光磁気特性が急激に劣化することが観察された。 これは主にアラスチック基板界面での誘電体膜の 剥離に起因する.

これに対して、透明誘電体層に前述のTa壁酸化物を用いた本発明の前述の代表的構成の光磁気ディスクではカー回転角を0.8~1.0°と大幅に増

大させることができると同時に前述の耐久性試験においてもプラスチック基板との界面での劣化による剥離や亀裂が生じない。これは該Ta窒酸化物の屈折率が2.1~2.3と大きく、更にポリカーボネート基板等の有機高分子樹脂基板との親和性が大きいことによるものと考えられる。このように本発明により媒体性能が向上すると共に、通常の環境下での長期安定性ならびにヒートサイクル、ヒートショックに対する耐久性も向上する。

更に、媒体の記録・再生・消去の際に生じるノイズの原因として、従来の結晶構造の誘電体膜ではその結晶粒界に起因する光の散乱、記録ビットの乱れが挙げられるが、上述のTa壁酸化物は非晶質であり、かかる散乱、乱れはほとんどなく、前述の従来例の光磁気ディスクに比べ、記録・再生時のノイズが低減できることがわかった。

以上の本発明の作用効果は、光磁気記録媒体に限られることはなく、相変化型、反射型等、公知の光記録媒体においても同様に奏し得るものであることは明らかである。よって本発明は広く光記

ターゲットとしては直径100mm、厚さ5mmの円盤のTa2 Os 焼結体を用い、必要に応じてこの上に1m2 Os又は/及びSmOsの酸化物焼結体のチップ(直径5mm×厚さ1mmの円盤)を適宜、適当数配置した。放電電力100m、放電周波数13.56MHzで高周波スパッタリングを行い、Ar/N・混合ガスなかのN・分圧を調整することにより、表1の膜組成の個に示すところの組成をもつTa窒酸化物膜を約1000A堆積し、表1の各実施例のサンプルを得た。

まず、Siウェハーに堆積したサンブルを用いて、 波長830am の光に対する薄膜の屈折率を求めた。 測定装置としては、W溝尻光学工業所製、自動エ リプソメーターDHA-OLT を用いた。その結果を表 1の屈折率の欄に示す。

次に、薄板ガラス上に堆積したサンプルを用いて、薄膜の内部応力を求めた。測定にはTENCOR INSTRUMENTS 製、触針式表面和さ計alpha-step 200 を用い、触針により2mmの長さを走査したときのそり量を測定し、内部応力 σを求めた。その結果を表1の内部応力の欄に示す。

録媒体に適用できるものである。このように本発明は光記録媒体、中でも特に光磁気記録媒体の耐久性を含めた特性向上に大きな寄与をなすものである。

以下、本発明を、実施例を用いて説明する。

[実施例1~13、比較例1~3]

以下のようにして基板上に透明誘電体膜を作成 し、その特性を評価した。

直径130mm、厚さ1.2mmの円盤で、1.6 μm ピッチのグループを有するボリカーボネート樹脂 (PC)のディスク基板、Siウェハー(10mm×10mmの正方形)、スライドガラス(長さ76mm×幅26mm×厚さ1mm)、薄板ガラス(直径18mm×厚さ0.1mmの円盤)の各基板を3ターゲットの高周波マグネトロンスパッタ装置(アネルバ㈱製SPF-430H型)の真空槽内に固定し、4×10-7Torrになるまで排気する。

次にAr/NA混合ガスを真空槽内に導入し、圧力 5 m TorrになるようにAr/NAガス流量を調整した。

また、スライドガラス上に堆積したサンブルを用い、結晶状態の測定を行った。測定には理学電機(機製、強力×線回折装置HIGHPOWER UNIT HODEL D-3Pを用いた。結果を表1の結晶状態の欄に示す。

さらに、PCディスク基板上に堆積したサンプルを用い、薄膜とPC基板との密替性の測定を行った。セキスイ社製、セロハン粘着テープJIS 21522 を薄膜の表面に貼り着け、基板面に対して水平な方向にセロテープを引きはがしたときの薄膜の剥離の状態を目視、及び顕微鏡で観察した。結果を表1の密着性の欄に示す。この欄で用いた記号の意味は次の通りである。

- ◎:密着性良好で、全く剥離なし
- 〇:顕微鏡観察で、グループ2~3本分程度の 剥離が認められる。
- ×:膜が全面的に剥離

また、比較のため、従来例のTa2 Os 、ZaS、 AINの薄膜を以下のように作成し評価した。

実施例1~13と全く同様にして、PCディスク基板、SIウェハー、スライドガラス、薄板ガラ

スの各基板を用意し、これらを 3 ターゲットの高 周波マグネトロンスパッタ装置(アネルバ㈱製、 SPP-430H型)の真空槽内に固定し 4 × 10⁻⁷Torrに なるまで排気する。

次いで、ターゲットとしてTaz Os 、ZaS 、 AIN の各焼結体を夫々用い、スパッタリングガスをそれぞれのターゲットについて記載順にAr/Ot 、 Ar/Ntとする以外は実施例1~13 と全く同じ用にして表1の比較例の各サンプルを作成し、屈折率、内部応力 σ 、結晶状態の測定を行った。結果を表1に示す。

以上の実施例1~13、比較例1~3より、本発明によるTa窒酸化物は、窒素の添加により、その内部応力が1/2~1/5 に低減できると共に、N含有量によらず、広い範囲で2.05~2.35の高い屈折率が得られることがわかった。これは製造上、スパッタリングガス中のM分圧の変化に対して屈折率のマージンが広いということを意味している。なお、Ta含有量が10at%以上では2.1 以上の高い屈折率が得られることがわかる。また、本発明に

ることがわかった。従って、記録・再生時のレーザー光の結晶粒界による散乱や、ビット形成時の熱伝導の不均一性によるビット形状の乱れが小さいなど、媒体ノイズの低減をする効果をもつと考えられる。薄膜とPC基板との密着性に関しては、Ta窒酸化物であっても、従来のTa2 Os、 ZaS、AINと比べれば密着性は向上できるが、更に密着性を高めるためには、Ia又は/及びSaを含むTa窒酸化物を用いることが好ましい。
以上の点より、本発明によるTa窒酸化物を光磁

よるTa窒酸化物は繋ぐべきことに非晶質状態とな

以上の点より、本発明によるTa窒酸化物を光磁気記録媒体の誘電体層として用いれば、レーザー光の閉じ込め効果が向上し、記録感度の向上、CNRの向上が実現されると考えられる。また、内部応力が低減されたことにより、高温高温耐環境性試験における剥離・亀裂等の欠陥の発生を抑える効果が期待できる。

以上の実施例1~13のTa窒酸化物を光干渉層 又は/及び保護層とした光磁気ディスクを作成し、 本発明の効果を確認した。

表 1

MNo.	膜組成	屈折率	内部応力の	結晶	密着
	(at %)		(x10°	状態	性
1			day/cal)		
実施例1	Ta28O71N1	2. 35	2. 0	非品質	0
" 2	Ta28062N10	2. 30	2. 7	"	0
<i>"</i> 3	Ta28042N30	2. 28	2. 8	"	0
" 4	Ta28O27N45	2. 27	3. 5	n	0
<i>n</i> 5	Ta27 01 O27 N45	2. 27	3. 5	Ħ	0
<i>"</i> 6	Ta181010O27N45	2. 20	3. 3	"	0
" 7	Tass1015O27N45	2. 15	3. 0	"	0
" 8	Tas 1025 O 27 N 45	2. 08	2. 8	"	0
<i>11</i> 9	Ta27Sa1 O27N45	2. 27	3. 6	'n	0
" 10	Ta185010O27N45	2. 21	3. i	"	©
# 11	Ta13S015O27N45	2. 13	3. 1	n	0
" 12	Tas S025O27N45	2. 05	2. 6	p	0
n 13	Tas 1813S012O27N45	2. 07	2. 8	n	•
比較例1	Taz Os (化学量論比)	2. 30	10.0	格品質	×
<i>n</i> 2	ZaS (")	2. 30	11. 0	y,	×
<i>n</i> 3	AIN (")	2.00	9. 0	,,	×

[実施例14~26、比較例4~6]

以下のようにして、第1図に示す構成の光磁気 ディスクを作成し評価した。図において1は基板、 2は誘電体、3は透明金属薄膜層、4は記録層、 5は裏面保護層である。

直径130mm、厚さ1.2mmの円盤で、1.6 μm ピッチのグループを有するポリカーボネート樹脂 (PC)のディスク基板1を3ターゲットの高周波マグネトロンスパッタ装置(アネルバ㈱製SPP-430H型)の真空槽内に固定し、4×10⁻⁷Torrになるまで排気する。なお、膜形成において基板1は15rpm で回転させた。

次に前述の実施例1~13と同じようにして表2の各実施例の租成のTa窒酸化物からなる透明誘電体層2を形成した。すなわちターゲットとしては直径100mm、厚さ5mmの円盤状のTa2Os 焼結体を用い、租成が表2の膜租成の個に示したようになるよう、ターゲット上にla2Os 又は/及びSaOcのチップを適宜必要数配置した。そして真空槽内にAr/No混合ガスを導入し、圧力5m Torrに

なるようにAr/NA混合ガスの流量を調整した。次いで放電電力100%、放電周波数13.56MHzで高周波スパッタリングを行い、誘電体層2として表2の各実施例に示すところの組成の窒酸化物膜を約700 A堆積した。

続いて透明金属薄膜層3としてターゲットをAIの円盤上にReのチップ(5×5×1㎝)を配置したものに変え、スパッタリングガスをAr/Ngより純Ar(5N)とする以外は上述と同様の放電条件でAlsoReio合金膜(添数字は組成(原子%)を示す)を約15A堆積した。

次に光磁気記録層4としてターゲットをTb2s Pees-Coa 合金(添数字は租成(原子%)を示す)の円盤に変え、AIRe合金膜と同様の放電条件でTb2sPees-Coa 合金膜を約400 人堆積した。

さらに、裏面保護暦5として反射層を兼ねてターゲットをAI上にReチップを配置したものに戻し、上述と同様の放電条件でAlsoReso合金膜を約500 A堆積した。

以上の順序で表2の各実施例の組成のTa窒酸化

湿雰囲気下に1000時間放置した。その後カー回転 角及び記録時最適レーザーパワー、CNR、ノイ ズレベルを測定したところ、放置前の測定結果と 比較して全く変化は見られなかった。また媒体面 のピンホールや剥離・亀裂等の欠陥の発生は全く 見られなかった。

また、比較のため、以下のようにして従来例の Ta2 Os、 ZaS、AINを誘電体層とした以外は実 施例14~26と全く同じの第1図に示す構成の 光磁気記録媒体を作成し評価した。

直径130mm、厚さ1.2mmの円盤で、1.6 μm ピッチのグループを有するボリカーボネート樹脂 (PC)のディスク基板を、実施例14~26で用いたものと全く同じスパッタ装置中に全く同じ 条件で固定した。

誘電体層2のTa2 O 5 又は20S又はAINは、ターゲットとしてTa2 O 5 又は20S又はAINの焼結体を用い、スパッタリングガスは、それぞれのターゲットについて記載順にAr/O、純Ar(5N)、Ar/Nとして100 Aの厚さに形成し、それ以外の各

物を透明誘電体層とし、その他は同じ構成の第1 図に示すところの積層構成の光磁気ディスク(実 施例14~26)を得た。

この光磁気ディスクのカー回転角の測定結果 (レーザー波長入:633am)を表2のカー回転角の 間に示す。次にこのディスクのCNRを測定した。 測定には光磁気記録再生装置 (ナカミチのHS-1000 Type II)を用い、ディスクを1800rp II で回転させ、 半径30m II の位置で記録・再生・消去を行った。 信号の再生は1.2m II のレーザーパワーで行った。 記録時の最適レーザーパワーは、信号なる値に決定した。 信号の周波数は2.0 HHz とした。各媒体の最適レーザーパワーを表2の記録パワーの 間に示す。 尚、記録・消去の際の印加磁界は500 0e (エルステッド)である。 ノイズレベルは1 m II を基準とした絶対レベルを示す dB III の単位で表示した。

これらのディスクの面を観察したところ、ピンホールや剥離、亀裂等の欠陥は観察されなかった。 次にこれらのディスクを80℃、85%RH の高温高

層は実施例14~26と全く同じ条件でスパッタリングを行い、誘電体層が Ta_2O_5 又は Z_1S 又はAINで、その他の構成は実施例14~26と全く同じ構成の光磁気ディスク(比較例4~6)を作成した。

得られた比較例の光磁気ディスクについて実施例14~26と同様に、カー回転角、記録パワー、CNR、ノイズレベルの測定を行った。結果を表2の放置前の比較例の欄に示す。

また、このディスク面を観察したところ、ピンホールや剥離・亀裂等の欠陥は観察されなかった。

次にこの光磁気ディスクを80℃、85%RH 高温高温雰囲気下に1000時間放置した。その後のカー回転角及び記録時最適レーザーパワー、CNR、ノイズレベルを測定した。結果を表2の放置後の比較例の間に示す。放置前に比べカー回転角、記録感度、CNR、ノイズレベルともに劣化していることがわかる。また、そのディスク面にはピンホールの発生が見られた。

表 2

•	:	表 2			
BONO.	膜 組 成	カー	123 £	CNR	ノイズ
	(at X)	回転	角パワー		レベル
		8k(*)	(Fa)	(dB)	(dBm)
夹拢例14	TazeO71N1	0. 98	4.3	54.8	-60.1
n 15	Ta20062N10	0.90) 4.5	54. 3	-59.5
u 16	Ta28O42N30	0. 89	4.6	53. 7	-59.0
n 17	Ta20O27N45	0. 8	5.0	53. 5	-58.3
n 18	Taz7101 O27N45	0. 86	4.6	53. 5	-58.5
<i>"</i> 19	Ta18 1810 027 N45	0.84	4.8	52. 9	-57. 9
# 20	$Ta_{13}Ia_{15}O_{27}N_{45}$	0.81	5.0	52. 8	-51.7
-# 21	Ta, 1825 O27 N45	0.79	5. 4	52. 3	-57.1
# 22	Ta27501 O27N45	0. 89	4.7	53. 3	-58.6
n 23	Ta105010O27N45	0.84	4.8	53. 1	-58.3
<i>"</i> 24	Ta15S015O27N45	0.80	4.9	52. 6	-57.7
<i>n</i> 25	Tas Sa25O27N45	0.71	5.3	52.5	-57. 5
# 26	Ta, 101,5812O27	Nas 0.71	5.5	52.8	-57.8
放置前			1		
比較例4	Ta ₂ O ₃ (化学量	企比) 0.8 9	4.5	53. 0	-57.5
<i>"</i> 5	ZaS (#) 0. 90	4.4	52.8	-57.0
<i>"</i> 6	AIN ("	} 0.7	7.0	51.0	-55.0
放置後		1			1
比較例4	Ta ₂ O ₅ (#) 0.81	5.1	51. 5	-56.0
» 5	In S (#	} 0.80	4.9	51.0	-56. 2
<i>"</i> 6	AIN ("	} 0.64	7.6	49. 5	-53.9

約1000人堆積した。

次にスパッタリングガスをAr/Mから純Ar(5N)に変え、ターゲットとしては、Nds DyisTba Peco Coiz (派数字は原子%)の組成をもつ合金ターゲットを用い、上述と同様の放電条件で、ターゲットを交換してスパッタリングを行い、第2図に示すところの光磁気記録層4として、Nds DyisTba PecoCoiz合金膜を200 人の膜厚で堆積させた。

再びターゲットを誘電体層2の窒酸化物膜を形成したTa27la1 O72の焼結体ターゲットに戻し、誘電体層2と同じ条件で、誘電体層2と同じ窒酸化物のTalaONからなる裏面誘電体層5を約500人推積した。

最後に、ターゲットをAI上にBeのチップ(5mm か×1mmの円盤)を配置したものに変え、記録層 4と全く同じ条件で、反射層の金属層6として AlsoBeio膜(添数字は原子%)を約500 A 堆積し、第2図の積層構成の光磁気ディスクを得た。このディスクについて実施例14~26と同様に、カー回転角、記録パワー、CNR、ノイズレベルの

[実施例27]

以下のようにして、第2図に示す構成の光磁気 ディスクを作成し評価した。第2図において、1、 2、4は第1図と同じで、6は裏面保護層の干渉 層を兼ねた裏面誘電体層、7は裏面保護層の反射 層を兼ねた金属層である。

直径130mm、厚さ1.2mmの円盤で、1.6 μm ピッチのグループを有するボリカーボネート樹脂 (PC)のディスク基板を、実施例14~26で用いたものと全く同じスパッタ装置中に全く同じ 条件で固定した。

先ず誘電体層2として窒素含有Ta酸化物膜を以下のようにして形成した。Ar/N。混合ガスを導入し、圧力5m TorrになるようにAr/N。混合ガスの流量を調整した。ターゲットとしては直径100mm、厚さ5mmの円盤で、組成がTazzlan Ozz (添数字は原子%)の焼結体ターゲットを用いた。放電電力100m、放電周波数13.56mmで高周波スパッタリングを行い、誘電体層2として、Tazzlan Ozz Nas (添数字は原子%)なる組成の壁酸化物膜を

測定を行った。測定結果はカー回転角が1.05度、 記録パワーが4.5 mm、CNRが54.74B、ノイズレ ベルが-60.0 dBm であった。またこのディスク面 を観察したところ、ピンホールや剥離・亀裂等の 欠陥は観察されなかった。

[実施例28]

以下のようにして、交換結合2層膜を光磁気記録層とした第3図に示すところの光磁気記録媒体を作成し評価した。第3図において、1、2、5は第1図と同じで、4a、4bは交換結合した光磁気記録層である。

直径130mm 、厚さ1.2mm の円盤で、1.6 μ 5 ピ

・ッチのグループを有するボリカーボネート樹脂 (PC)のディスク基板1を実施例14~27で 用いたものと全く同じスパッタ装置中に全く同じ 条件で固定した。

先ず、誘電体層2としてTa窒酸化物膜を以下のようにして形成した。Ar/N混合ガスを真空槽内に導入し、圧力5m TorrになるようにAr/N混合ガスの流量を調整した。ターゲットとしては直径100mm、厚さ5mmの円盤で、租成がTazzla、Ozz(添数字は原子%)の焼結体ターゲットを用いた。放電電力100m、放電周波数13.56mHzで高周波スパッタリングを行い、誘電体層2としてTazzla、Ozz N 45 (添数字は原子%)なる租成の窒酸化物膜を約700 A堆積した。

次に、スパッタリングガスをAr/Nbから純Arに変え、ターゲットとしてGdz4Fes6Cozo、Tb23Fes9Cos(添数字は原子%)の合金ターゲット、及びCu上にTiのチップ(5×5×1mm)を配置したものの3種を用い、上述の誘電体層2と同様の放電条件で、ターゲットを交換してスパッタリングを

にノイズレベルの低減された光磁気記録媒体を実現できることがわかった。これは実施例1~13で示した如く、上記Ta窒酸化物により誘電体層の屈折率が増大し、これによって光干渉効果、具体的にはレーザー光の閉じ込め効果が向上し、カー回転角、記録感度、CNRの向上を実現できることが確認された。

また、本実施例14~28の透明誘電体層は実施例1~13に示すごとく非晶質状態である。このため結晶状態のTa2 Os、ZaS、AIN等の膜に比べ、記録・再生時のレーザー光の結晶粒界による散乱やビット形成時の熱伝導の不均一性によるビット形状の乱れが少なく、ノイズレベルの低減が実現されている。

また、実施例5~13に示したように、fa壁酸化物に更にfa又は/及びSaを添加することにより、PC基板と誘電体膜との密養性は、一層向上できることがわかった。更に、実施例14~28のfa 登酸化物膜は、実施例1~13で示した如く、比較例のfa20s、ZaS、AINに比べ、内部応力が

行い、第3図に示すところのGdz4PessCo2o合金からなる第1の記録層4a、Tb23Fs9Co8合金からなる第2の記録層4b、並びにCussTis (添数字は原子%)からなる反射層を兼ねた裏面保護層5を、順にそれぞれ150 A、250 A、500 Aの膜厚で堆積させた。ここで、光磁気記録層4aと4bは交換結合状態をとっている。

実施例14~27と同様にカー回転角、記録パワー、CNR、ノイズレベルの測定を行った。測定結果は、カー回転角が1.20度、記録パワーが4.7mm、CNRが57.0 dB、ノイズレベルが-60.2 dBa であった。

本実施例1~28及び比較例1~6より、本発明によるTa窒酸化物、もしくは更にIa又は/及びSaを含むTa窒酸化物薄膜を誘電体層として用いることにより、その特性から期待される通りカー回転角、記録感度、CNR及び耐久性の向上、並び

1/2 ~1/4 に低下している。これらの理由により、 高温高湿下での加速劣化試験を行っても、膜の内 部応力や、PC基板との密着力の不足による剥離 ・亀裂が全く発生せず、耐久性向上に大きな効果 を奏することがわかった。

以上、本発明は光記録媒体、特に光磁気記録媒体の記録再生特性並びに耐久性を大きく向上させるものであることは明らかである。

4. 図面の簡単な説明

第1図は実施例14~26及び比較例4~6の、 第2図は実施例27の、第3図は実施例28の各 光磁気ディスクの積層構成の説明図である。

1: 基板、2: 誘電体層、3: 金属薄膜層、

4 , 4a , 4b : 記録層、5 , 6 , 7 : 裏面保護層

特許出願人 帝人株式会社代理人弁理士 前 田 純 博

