Insper

Transferência de Calor e Mecânica dos Sólidos

Introdução.

Métodos computacionais em engenharia.

Objetivo da aula

Ao final da aula você deverá ser capaz de:

- Descrever aspectos gerais da disciplina.
- Avaliar o erro na solução usando procedimentos iterativos.

Identificar os fluxos de energia, identificar e expressar por relações matemáticas as forças envolvidas em um sólido, formular e resolver computacionalmente modelos matemáticos.

Tustos

Biblioteca Virtual

- 1. Meriam, J. L., Kraige, L. G., Bolton, J. N. (2022). Mecânica para Engenharia: Estática, 9th Edition.
- 2. Beer, F. P., Dewolf, J. T., Jr., E. J., al., e. (2013). Estática e Mecânica dos Materiais.
- 3. Incropera Fundamentos de Transferência de Calor e de Massa, 8th Edition.
- 4. Moran, M. J., Shapiro, H. N., Munson, B. R., Dewitt, D. P. (2005). Introdução à Engenharia de Sistemas Térmicos.
- 5. Chapra, S. C., Canale, R. P. (2016). Métodos numéricos para engenharia, 7th Edition.
- 6. Filho, A. A. (2009). Elementos Finitos A Base da Tecnologia CAE, 6th Edition.

Avaliação do aprendizado

Para ser considerado aprovado na disciplina, o aluno deve ter um mínimo de 75% de frequência e:

1- Apresentar Média das Avaliações (MA) igual ou maior que 4,0. 2 - Apresentar conceito mínimo C nas APS's.

3 -Apresentar Média Final (MF) igual ou maior que 5,0.

O(a) aluno(a) que ao final do semestre cumprir o critério 3 mas não cumprir o critério de aprovação 1 ou 2 será considerado(a) reprovado(a) na disciplina com Média Final igual à menor nota obtida no critério que não foi atingido.

Em caso de **avaliação remota** (Blackboard) o aluno poderá passar por uma avaliação adicional na forma de uma interpelação oral para validação do resultado apresentado na prova.

Avaliação do aprendizado

- 1- Apresentar Média das Avaliações (MA) igual ou maior que 4,0.
- O(a) aluno(a) que não apresentar Média das Avaliações (MA) igual ou maior que 4,0 terá a oportunidade de realizar, ao final do semestre em data definida pelo(a) professor(a), a Prova Delta, desde que não tenha que realizar a prova substitutiva. A Prova Delta não altera a nota obtida nas avaliações, servirá apenas como liberação de conceito para aprovação. Para isso o(a) aluno(a) deverá obter uma nota igual ou maior que 5,0. A prova Delta poderá abordar todos os temas discutidos ao longo do semestre.

- 2 Apresentar conceito mínimo C nas APS's.
- O(a) aluno(a) que não apresentar mínimo
 C em alguma das APS's terá a
 oportunidade de realizar, em data
 definida pelo(a) professor(a), a APSDelta.
 A APSDelta não altera a nota obtida na
 APS anterior, servirá apenas como
 liberação de conceito para aprovação.
 Para isso o(a) aluno(a) deverá obter no
 mínimo o conceito C na APSDelta. O tema
 e a forma de entrega da APSDelta
 (individual ou em grupo) serão definidos
 pelo professor.

Como estudar? Algumas orientações...

Você consegue explicar os principais conceitos ou técnicas que aprendeu para um colega?

Um passo para você aprender é ser capaz de explicar o que sabe com suas próprias palavras. Se você tiver dificuldade para explicar o que aprendeu, é porque ainda não construiu o raciocínio adequado.

Em caso de dúvidas ou caso deseje receber ou dar *feedback* **procure o professor** durante o horário de atendimento.

Algumas orientações...

- Engajamento: Para um bom desempenho no curso é importante que o aluno:
 - Participe ativamente e de forma construtiva nas aulas, respondendo e fazendo perguntas que contribuam para uma melhor compreensão do tema e para o seu desenvolvimento no curso.
 - Faça as leituras indicadas e procure resolver as situações problema indicadas nas aulas, atendimento e atividades extras.
 - Empenhe-se na produção de trabalhos de qualidade, respeitando os valores éticos e que atendam aos objetivos da disciplina.

Modelagem matemática e os problemas de engenharia

Computer-Aided

Design (CAD)

Projeto (CAD)

O conhecimento e o entendimento do problema físico são prérequisitos para a implementação efetiva de qualquer ferramenta computacional.

Fonte: Chapra (2012), Çengel (2009)

Aproximações e fontes de erro

Usamos o termo "erro" para representar tanto a inacurácia quanto a imprecisão para a previsão de um método numérico.

Modelo matemático Erros de aproximação do modelo Os erros associados tanto aos cálculos quanto às medidas podem ser caracterizados com relação à sua acurácia e precisão.

Fonte: Chapra (2012)

Parâmetros e dados

Erros de representação dos dados

Modelo numérico

Erros de Truncamento

(Aproximações para representar procedimentos matemáticos exatos) Aumento da acurácia

(a)
(b)
(c)
(d)

Operações e cálculo da solução

Erros de arredondamento

(Quantidade limitada de algoritmos significativos são usados para representar números exatos) A figura indica previsões de uma técnica numérica em relação ao valor verdadeiro indicado no centro de (a), (b), (c) e (d).

Definição de erro

OBS: O erro absoluto não leva em conta a ordem de grandeza do valor que está sendo examinado.

Em muitas situações o valor verdadeiro pode não ser conhecido. Nesse caso usamos a melhor estimativa possível do valor verdadeiro.

Algoritmos computacionais para cálculos iterativos

Alguns métodos numéricos usam uma abordagem iterativa para calcular as respostas.

Para saber mais...

Leitura prévia: Chapra - Seções 1.1, 3.2

Leitura complementar: Chapra – Seções 2.1.1, 3.2, 3.3 e 3.3.1

Próxima aula

Métodos numéricos e computacionais em engenharia.

• Interpolação numérica, Integração e diferenciação numérica.

Leitura prévia: Chapra - Seções 4.1, 4.1.3, 18.1, 21.1, 22.1.

Leitura complementar: Chapra – Seções 18.2, 18.3, 21.2, 21.3, 22.4, 23.1, 23.5.

Bibliografia

- MUNSON, B. R.; MORAN, M. J.; SHAPIRO, H. N., Introdução à Engenharia de Sistemas Térmicos, ^a ed., LTC, 2005, ISBN 584102
- CHAPRA, Steven C.; CANALE, Raymond P., Métodos numéricos para Engenharia., 7ª ed., AMGH, 2016, ISBN 9788580555684
- INCROPERA, F. P.; WITT, D. P., Fundamentos de Transferência de Calor e Massa, 6ª ed., LTC, 2008
- ÇENGEL, Yunus, A. e Afshin J. Ghajar. Transferência de calor e massa: uma abordagem prática, (4th edição). Grupo A, 2009.

Insper

www.insper.edu.br