Задача 1. Как перелётным птицам проще лететь: по ветру или против ветра? (в каком смысле «проще» следует понять самостоятельно)

Задача 2. Астрономы считают, что все галактики разлетаются прямолинейно по направлениям от нашей со скоростями, пропорциональными расстояниям до них. Означает ли это, что наша галактика — центр вселенной?

Задача 3. Крючок безмена заменили на более тяжёлый и одновременно параллельно сдвинули вниз шкалу, так чтобы нуль совпал с новым положением стрелки. Будет ли безмен после этого правильно измерять вес?

Определение 1. Векторным пространством \mathbb{R}^n называется множество всевозможных наборов (x_1, \dots, x_n) действительный чисел вместе с операциями сложения $(x_1, \dots, x_n) + (y_1, \dots, y_n) = (x_1 + y_1, \dots, x_n + y_n)$ и умножения на числа $\lambda (x_1, \dots, x_n) = (\lambda x_1, \dots, \lambda x_n)$.

Определение 2. Отображение $\mathbb{R}^m \overset{f}{\longmapsto} \mathbb{R}^n$ называется линейным, если для всех векторов $x \in \mathbb{R}^m$, $y \in \mathbb{R}^m$ и всех чисел $\lambda, \mu \in \mathbb{R}$ выполняется равенство $f(\lambda x + \mu y) = \lambda f(x) + \mu f(y)$. Отображение $\mathbb{R}^m \overset{g}{\longmapsto} \mathbb{R}^n$ называется аффинным, если существует $a \in \mathbb{R}^m$, такое что отображение $x \longmapsto g(x+a) - g(a)$ линейно. Будем опускать лишние скобки в выражении $f((x_1, \dots, x_m))$ и писать просто $f(x_1, \dots, x_m)$. Например, будем писать f(x) вместо f(x) для $x \in \mathbb{R}^1$, f(x,y) вместо f((x,y)) для $(x,y) \in \mathbb{R}^2$.

Задача 4. Являются ли следующие отображения аффинными или линейными?:

- a) $f: \mathbb{R}^1 \to \mathbb{R}^1$, f(x) = (0); 6) $f: \mathbb{R}^1 \to \mathbb{R}^1$, $f(x) = (x^2 + 1)$; B) $f: \mathbb{R}^1 \to \mathbb{R}^2$, f(x) = (57x, 179x + 57);
- $f: \mathbb{R}^2 \to \mathbb{R}^1, f(x_1, x_2) = -3(x_1 x_2);$ д) $f: \mathbb{R}^2 \to \mathbb{R}^2, f(x_1, x_2) = (x_2 x_1 1, x_1);$
- e) $f: \mathbb{R}^2 \to \mathbb{R}^3$, $f(x_1, x_2) = (x_1, x_1 + x_2 + 1, x_1^2 + x_2^2)$?

Задача 5. Изменим в определении аффинного отображения фразу «существует $a \in \mathbb{R}^m$ » на фразу «для любого $a \in \mathbb{R}^m$ ». Будет ли новое определение эквивалентно исходному?

Задача 6. На плоскости фиксированы три точки: O, A и B. Нарисуйте множество точек $\lambda \overrightarrow{OA} + \mu \overrightarrow{OB}$ при **a)** $\lambda + \mu = 1$; **б)** $\lambda, \mu > 0$.

Задача 7. Пусть линейное отображения $\mathbb{R}^2 \stackrel{f}{\longmapsto} \mathbb{R}^2$ переводит базисные векторы $e_1 = (1,0)$ и $e_2 = (0,1)$ в векторы (a,c) и (b,d) соответственно. Куда оно переведёт вектор (x,y)?

Задача 8. Опишите все линейные и все аффинные отображения

a)
$$\mathbb{R}^n \to \mathbb{R}^1$$

6)
$$\mathbb{R}^1 \to \mathbb{R}^n$$

$$\mathbf{B}) \ \mathbb{R}^2 \to \mathbb{R}^2$$

r)
$$\mathbb{R}^n \to \mathbb{R}^m$$

Задача 9. Докажите, что множество всех линейных отображений $f: \mathbb{R}^n \to \mathbb{R}^m$ образует коммутативную группу по сложению (то есть сложение коммутативно, ассоциативно и имеет обратный элемент).

Задача 10. Пусть задано некоторое биективное отображение $f \colon \mathbb{R}^m \to \mathbb{R}^m$. Известно, что точка в \mathbb{R}^m движется равномерно и прямолинейно тогда и только тогда, когда её образ движется равномерно и прямолинейно. Докажите, что преобразование f аффинно.

Задача 11. Докажите, что в классической механике преобразование координат между инерциальными системами отсчёта аффинно.

Определение 3. Набор векторов $\{v_1,\ldots,v_n\}\subset\mathbb{R}^m$ называется базисом, если для любого вектора $w\in\mathbb{R}^m$ найдётся единственный набор чисел $\{\lambda_1,\ldots,\lambda_n\}$ (который называется координатами вектора w в этом базисе) такой, что $w=\lambda v_1+\ldots+\lambda_n v_n.$

Задача 12. а) Опишите все базисы в \mathbb{R}^1 ; б) Докажите, что в любом базисе в \mathbb{R}^2 ровно два вектора. в)* Докажете, что в любом базисе в \mathbb{R}^m ровно m векторов.

1	2	3	4 a	4 6	4 B	4 Г	4 Д	4 e	5	6 a	6 6	7	8 a	8 6	8 B	8 Г	9	10	11	12 a	12 6	12 B