Sprawozdanie Metody numeryczne 2

4. Aproksymacja średniokwadratowa

Temat 19:

Aproksymacja trygonometryczna ciągła w przedziale $[0,2\pi]$. Całkowanie złożoną formułą Simpsona. Tablicowanie funkcji, przybliżenia i błędu w m punktach przedziału $[0,2\pi]$ oraz obliczenie błędu średniokwadratowego w tych punktach.

Opis problemu:

Dla danej ciągłej, okresowej funkcji f(x) o okresie równym $\frac{2\pi}{k}$, gdzie $k \in \mathbb{N}$, określonej na przedziale $[0, 2\pi]$ wyznaczamy funkcję aproksymującą $f^*(x) = a_0 + \sum_{i=1}^n (a_i \cdot \cos(i \cdot x) + b_i \cdot \sin(i \cdot x))$.

Opis metody:

• Do wyliczenia współczynników $f^*(x)$ używamy funkcji approximation(f, n), która wylicza współczynniki do a_n , b_n , korzystając ze wzorów:

$$a_0 = \frac{\int_0^{2\pi} f(x)}{2\pi}, \quad a_i = \frac{\int_0^{2\pi} (f(x) \cdot \cos(i \cdot x))}{\pi}, \quad b_i = \frac{\int_0^{2\pi} (f(x) \cdot \sin(i \cdot x))}{\pi}.$$

- Funkcja zwraca wektor $v = [a_0, a_1, b_1, ..., a_n, b_n].$
- Całki obliczamy przy pomocy funkcji compositeSimpson(f, a, b, n), podając n = 10n, która korzysta ze złożonej kwadratury Simpsona, zakładając, że podane n jest parzyste: $\int_a^b f(x)dx \approx \frac{b-a}{3n} \sum_{j=1}^{n/2} [f(x_{2j-2}) + 4f(x_{2j-1}) + f(x_{2j})].$
- Do wyliczenia wektora wartości $f^*(x)$, gdzie x jest poziomym wektorem punktów używamy funkcji apxValue(v,x):
 - Tworzymy macierz $w = \begin{bmatrix} 1, ..., 1 \\ \cos(x) \\ \sin(x) \\ \vdots \\ \cos(ix) \\ \sin(ix) \end{bmatrix}$, o wysokości równej długości wektora

współczynników v i szerokości równej długości wektora x.

- ightharpoonup Tworzymy wektor $f = v \cdot w$.
- \triangleright Zwracamy wektor f.

Przykłady i wnioski:

Skrypt przyklad wykonuje tablicowanie $f, f^*, f - f^*$ w m równoodległych punktach przedziału $[0,2\pi]$, oblicza błąd średniokwadratowy w tych punktach i rysuje wykresy funkcji f, f^* dla pięciu różnych funkcji f.

Dla n = 2

Zauważmy, że $2 \cdot \sin(x) \cdot \cos(x) = \sin(2x)$, więc funkcja ta powinna być aproksymowana dokładnie dla $n \ge 2$ i stale równa 0 dla mniejszych n, co widać na powyższych wykresach.

Dla n = 5

Dla n = 200

Podsumowując, aproksymacja ta ma problem z funkcjami o nieciągłych pochodnych, ale poza tym działa bardzo dobrze – już dla n=200 funkcja wykonuje się w $\sim 0.05s$, a błąd średniokwadratowy jest rzędu 10^{-14} .