Chapter 1: Introduction

Chapter 1: Introduction

- What Operating Systems Do
- Computer-System Organization
- Computer-System Architecture
- Types of Operating-System
- Operating System Operations
- Operating System Components
- Computing Environments
- Open-Source Operating Systems

Objectives

- ◆ To describe the basic organization of computer systems
- ◆ To provide a grand tour of the major components of operating systems
- ◆ To give an overview of the many types of computing environments
- ◆ To explore several open-source operating systems

How do you use a computer?

A box containing CPU, with a keyboard, a mouse and a monitor.

- What is the magic from your action of mouse clicking to really using the computer to do something?
 - Some one sits between you and the computer (same to smart phone, sensors, ipod,.....).
 - It is the manager of the computer system!
- ◆ The manager is Operating System.

compiler

assembler

text editor

database system

system and application programs

OS=F()

Operating System A program that acts as an intermediary between a user

A program that acts as an intermediary between

of a computer and the computer hardware.

What is an Operating System?

Operating system goals:

- Execute user programs and make solving user problems easier;
- Make the computer system convenient to use;
- Use the computer hardware in an efficient manner

Computer System Structure

Computer system can be divided into four components

Hardware – provides basic computing resources

▶ CPU, memory, I/O devices

Operating system

 Controls and coordinates use of hardware among various applications and users

Application programs – define the ways in which the system resources are used to solve the computing problems of the users

 Word processors, compilers, web browsers, database systems, video games

Users

People, machines, other computers

Four Components of a Computer System

Resources in computer system

Operating System Definition

- ◆ No universally accepted definition
- "Everything a vendor ships when you order an operating system" is a good approximation
 - > But varies wildly
- ◆ "The one program running at all times on the computer" is the **kernel**.
- Everything else is either
 - > a system program (ships with the operating system), or
 - > an application program.

Operating System Definition

OS is a resource allocator

- Manages all resources;
- Decides between conflicting requests for efficient and fair resource use

CPU Management

Allocating and control ling CPU

Memory Management Allocating and deallocating memory space

Device Management Allocating and control ling I/O devices

File Management In charge of file access, sharing and protection

OS is a control program

 Controls execution of programs to prevent errors and improper use of the computer

Operating System Definition (Cont)

Definition from Wikipedia

- ◆ A computer program that manages the hardware and software resources of a computer.
- ◆ At the foundation of all system software, it performs basic tasks such as controlling and allocating memory, prioritizing system requests, controlling input and output devices, facilitating networking, and managing files.

User mode and kernel mode

Dual-mode operation allows OS to protect itself and other system components(类似机构管理)

- ◆ User mode: a user mode process can only execute normal instructions, but not privileged instructions.
- Kernel mode: a kernel mode process can execute all instructions. Only OS processes should be executing in kernel mode.
 - It is also called system, privileged or supervisor mode.

User mode and kernel mode

Hardware provides a mode bit.

Provides ability to distinguish when system is running user code or kernel code

- A process running with user mode bit on is a user process.
- ◆A process running with user mode bit off is a kernel or system process.

User mode and kernel mode

If a user process executes in user mode, how can it do I/O that needs to execute privileged instructions?

- Achieved through System Calls.
- A system call is an entry port to the OS.
- A system call is actually a trap that changes from user mode to kernel mode, executes the privileged I/O command, returns from system call and reverts back to user mode to continue execution.

Computer Startup

bootstrap program is loaded at power-up or reboot

 Typically stored in ROM or EPROM, generally known as firmware

- Initializes all aspects of system
- ◆ Loads operating system kernel and starts execution

Computer-System Operation

One or more CPUs, device controllers connect through common bus providing access to shared memory

- ◆ Each device controller is in charge of a particular device type, which has a local buffer, so I/O devices and the CPU can execute concurrently;
- CPU moves data from/to main memory to/from local buffers;
- ◆ I/O is from the device to local buffer of controller;
- Device controller informs CPU that it has finished its operation by causing an interrupt;

Interrupt(OS是由中断驱动的)

- OS is itself a program and that a process is a program in execution.
 - So OS will present itself as one or more processes in the computer system.
 - When there are multiple processes executing, how can the OS control and manage them?
- The OS relies on a special alarm system, called the interrupt processing mechanism.

Interrupt

An interrupt is a signal to the CPU to tell it about the occurrence of a major event.

- > An error in calculation (illegal instruction, division by zero).
- Completion of an I/O.
- Hardware alarm.
- User-generated event (very often called a trap).
- ➤ When an interrupt occurs, there is a chance for OS to grasp the CPU and make decision and arrangement to control the system.

Interrupt

Two types of interrupts:

Maskable interrupt: interrupt that may be ignored or handled later. A lower priority interrupt is maskable.

Non-maskable interrupt: interrupt that cannot be ignored.

The CPU must handle this interrupt immediately. A non-maskable interrupt may be "over"-interrupted by another non-maskable higher priority one.

Interrupt Handling

It is possible that when an interrupt is being serviced, another interrupt may arrive.

- If the incoming new interrupt Y has a lower priority, it will wait till the first one X completes.(A)
- If the new interrupt Y has a higher priority, it will seize the CPU from the current interrupt handler X.(B)

Interrupt

Depending on the cause of interrupts, we could classify them into 3 categories.

- Program interrupt:
 - ◆ software-generated user interrupt caused either by a request or an error, e.g. illegal instruction, overflow, division by zero, memory access violation, special instruction.(called traps).
- ◆ I/O interrupt:
 - Caused by I/O related events, e.g. I/O completion or device errors.
- ◆ Timer interrupt:
 - Caused by the hardware timer of the system to handle timerelated activities.

Interrupt Handling

- After an (non-maskable) interrupt occurs, CPU will put aside the process it is executing, by saving the program counter and register values.
- It looks up an interrupt table, using the interrupt number as an index, for a procedure for execution.
- This procedure is called the interrupt handler, or interrupt service routine(ISR). It is executed in response to the interrupt to serve the interrupt.
- CPU then jumps to interrupt handler and executes it.
- After the interrupt is serviced, the CPU resumes the suspended program and returns to the next

Interrupt table ISR1 ISR2 ISR3 3 N-1 **ISRn**

Interrupt Timeline

- One can perform I/O when CPU is doing useful work.
- When I/O is completed, OS needs to put aside its current work and looks at I/O device for next I/O.
 - The event that I/O is completed causes an interrupt.
 - > The suspension (interruption) of current work to handle the event is called interrupt processing.

I/O Processing

Two methods for I/O processing Synchronous Asynchronous

Storage-Device Hierarchy

Storage systems organized in hierarchy: Speed / Cost /Volatility

Storage Structure

Main memory – only large storage media that the CPU can access directly Secondary storage – extension of main memory that provides large nonvolatile storage capacity

 Magnetic disks – rigid metal or glass platters covered with magnetic recording material

 Disk surface is logically divided into tracks, which are subdivided into sectors

◆ The disk controller determines the logical interaction between the

device and the computer

Storage Structure

◆ Electronic disk is a data storage device using integrated circuit assemblies as memory to store data persistently(such as solid-state drive (SSD) or solid-state disk。存储介质: FLASH芯片或DRAM)

Caching

Information in use copied from slower to faster storage temporarily;

注 ** 16字或 32字为 1块, 体现临近小范围

- ◆Cache是位于CPU和主存之间速度快的存储器,减少CPU等待时间,提高系统性能(小但是快);
- ◆Buffer用于存储速度不同步的设备或优先级不同的设备之间传输数据,减少实际的I/O操作次数;
- ◆main memory can be viewed as a last cache for secondary storage

Caching(命中率)

- Faster storage (cache) checked first to determine if information is there
 - If it is, information used directly from the cache (fast)
 - If not, data copied to cache and used there
- Cache smaller than storage being cached
 - Cache management important design problem
 - Cache size and replacement policy

How a Modern Computer Works

Computer-System Architecture

- Most systems use a single general-purpose processor
 - Most systems have special-purpose processors as well
- Multiprocessors systems growing in use and importance
 - Also known as parallel systems, tightly-coupled systems
 - Multiprocessors are usually for high-performance computing (HPC)

Clustered Systems

Like multiprocessor systems, but multiple systems working together

Usually sharing storage via a storage-area network (SAN)

Provides a high-availability service which survives failures

- Asymmetric clustering has one machine in hot-standby mode
- Symmetric clustering has multiple nodes running applications, monitoring each other

Some clusters are for HPC

Applications must be written to use parallelization

Types of Operating System

- Simple Batch processing system
- Multiplied Batch processing system
- ◆ Time-sharing system
- ◆ Real time system
- Parallel Systems
- Distributed system

ENIAC

1946年2月14日,第一台通用电子计算机 ENIAC (Electronic Numerical Integrator And Computer),它是图灵完全的电子计算机,能重新编程,

解决各种计算问题。

使用了18800 个真 空管,占地 1500 平方英尺,重 30 吨(约1间半教室) , ENIAC 耗电巨大 ,每次开机,整个 费城西区的电灯都 为之黯然失色。

Simple Batch processing

- Reduce setup time by batching similar jobs
- Automatic job sequencing automatically transfers control from one job to another.
- ◆ Hire an operator (User ≠ operator)
- Add a card reader
- Common systems in 60's like IBM JCL-related (job control language) systems.

Batch Processing 磁带机 卡片 打印机 卡片阅读机 IBM1 IBM7 IBM1 **401** 094 401 输入磁带 输出磁带

Memory Layout for a Simple Batch System

operating system

user program area

Simple Batch System examples

- IBM FMS(FORTRAN Monitor System), for IBM7094;
- IBM IBSYS, for IBM7090 and 7094;
- UM UMES, for IBM7094;

Types of Operating Systems

- Multiprogramming(in 70's)
 - Programs are executed in interleaved manner by the CPU.
 - CPU is given to another program when the current program is waiting for I/O.
- OS Features Needed for Multiprogramming
 - I/O routine supplied by the system
 - Memory management and protection
 - CPU scheduling
 - Allocation of devices

Multiplied Batch Processing System

- Several jobs are kept in main memory at the same time, and the CPU is multiplexed among them.
- System Parameter
 - ➤ Throughput(吞吐量)
 - ➤ Turnaround time(周转时间)

Time-sharing System

- Processes are executed in interleaved manner by the CPU.
- Same as multiprogramming, but system is interactive, so each process must get CPU without waiting for too long.

Time-sharing System

- Response time should be < 1 second</p>
- ◆ Each user has at least one program executing in memory
 ⇒process
- ◆ If several jobs ready to run at the same time ⇒ CPU scheduling
- If processes don't fit in memory, swapping moves them in and out to run
- Virtual memory allows execution of processes not completely in memory

Time-sharing System

- ◆ Key issue: in time
- How to: Time slice

Famous examples: MULTICS, UNIX

MULTICS

- MIT , Bell Lab of AT&T, DEC
- ▶ 1964-1969,PL/1

UNIX

- 1970
- Bell Lab of AT&T

*nix Operating Systems

- Unix and Linux are the most influential operating systems and form the largest installation base behind Windows.
 - They are often referred to as the *nix family.
- The first useful Unix was developed in 1970 at AT&T
 Bell Lab, written in assembly and C language.
 - C language was invented because of a need to develop Unix.

*nix Operating Systems

- Two major flavors for Unix:
 - BSD Unix developed by UC Berkeley for academic use.
 - Solaris is developed from BSD and is major Unix installation.
 - FreeBSD is also a very common Unix installation.
 - Mac OS X is designed to be POSIX-compliant.
 - Portable Operating System Interface, a standard for Unixlike OS.
 - System V by AT&T, which had led to IBM AIX.
 - Each flavor is packaged by different distributions into Linux.
 - BSD Unix is packaged under RedHat (e.g. Fedora), Novell (e.g.OpenSUSE), Ubuntu derived from Debian.

Real-time System

- Special-purpose OS
- A time-sharing system where processes have completion deadlines that must be met.
- Important in high-valued and mission critical applications.
 - Banking transactions, airline reservation, space shuttle control etc.

Real-Time System

Hard real-time systems have firm deadlines.

- Guarantees that critical tasks be completed on time
- Requires that all delays in the system be bounded
- Missing a deadline makes a process useless, e.g. examination.

Soft real-time systems have soft deadlines.

- ◆ A less restrictive type of real-time system, where a critical real-time task gets priority over other tasks, and retains that priority until it completes
- Missing a deadline reduces value of a process, e.g. assignment.

Distributed Systems

- ◆ Operated upon a collection of computers scattered (分散) across the network.
- Advanced from network operating systems.
- Need to coordinate the share of resource and execution of processes to achieve a common goal.
- Examples:
 - Client/Server system, P2P, internet computing system

Distributed Systems

- Loosely coupled system
 - each processor has its own local memory
 - processors communicate with one another through various communications lines, such as high-speed buses or telephone lines.
- Services and data are just transparent with respect to location and access (Users do not see the existence of the network.)

Distributed Systems

- Distributed OS example:
 - Data sharing via Google+ or iCloud.
- Advantages
 - Resources sharing
 - Computation speed up load sharing
 - Reliability
 - Communications

Parallel Systems

 Multiprocessor systems with more than one CPU in close communication.

 Tightly coupled system – processors share memory and a clock; communication usually takes place through the shared

memory.

Multicore

- ◆ CMP——Chip Multi-Processing芯片多处理技术,即多核处理器, 为线程并行化而设计的。
- 3 Designs of Multicore
- 1) Shared Cache

Single Die Shared Cache Shared I/O Interface

Production:
IBM POWER4/5 family
Sun UltraSPARC-IV
Fujitsu SPARC64-VI
Sun Niagara
Intel Yonah/Merom family

2) Shared I/O Interface

Production:
Intel Itanium2
AMD dual-core
Opteron

3) Shared data packet

Production:
Intel Pentium D

Parallel Systems

Advantages

- Increased throughput
- Economical
- Increased reliability
- Graceful degradation
- Fail-soft system

Parallel Systems

- Symmetric multiprocessing (SMP)
 - Each processor runs an identical copy of the operating system
 - Most modern operating systems support SMP
- Asymmetric multiprocessing
 - Each processor is assigned a specific task; master processor schedules and allocates work to slave processors.
 - More common in extremely large systems

1.54

Network Operating System

- Add the networking capability to an operating system.
 - Network communication
 - Network services
- Unix allows you to write programs to communicate with another program on another computer.
- Network OS Example:
 - Unix, Linux, Windows 8.

Embedded Operating System

What is an Embedded System?

Embedded Operating System

- ◆ According to IEEE:
 - Embedded Systems are "devices used to control, monitor, or assist(协助) the operation of equipment, machinery or plants"
- Embedded OS: Working in embedded systems
 - Special purpose system
 - Should be customized
 - Size can be cut out
 - Low energy consumption
 - Real time

- Micro sensor with Tiny OS
- UC Berkeley

Smart card OS

- Communication mode: command-response
- Reader send command to the card :
- OS: decrypt, verify and interpret;
- OS then calls application to process the command, and sends the encrypted response to the reader

Operating System Components

- Four important components within OS.
 - Processor manager
 - Memory manager
 - File manager
 - Device manager
- These components interact with one another.
 - Generic issues like protection and security
- They also interact with and are controlled by users.
 - User command interface

Protection and Security

- Other common functions needed of OS include protection and security.
- ◆ Protection(授权访问)
 - A mechanism for controlling access of processes or users to resources defined by the system.
 - Provide ways for users to specify the control and to enforce it.
- ◆ Security(防护攻击)
 - The defense of the computer system against internal and external attacks.
 - Types of attacks: worms, viruses, denial-of-service, identity theft, theft of service.
 - OS can only protect against some of the attacks(有限防护). Others should be managed by human.
 - For example, if you give away passwords easily, the OS cannot protect you, but the use of biometrics may help.

Computing Environments - Traditional

- Stand-alone general purpose machines
- But blurred as most systems interconnect with others (i.e., the Internet)
- Portals provide web access to internal systems
- Network computers (thin clients) are like Web terminals
- Mobile computers interconnect via wireless networks
- Networking becoming ubiquitous even home systems use firewalls to protect home computers from Internet attacks

Computing Environments - Mobile

- ◆ Handheld smartphones, tablets, etc
- What is the functional difference between them and a "traditional" laptop?
- Extra feature more OS features (GPS, gyroscope)
- ◆ Allows new types of apps like *augmented reality* (增强现实)
- Use IEEE 802.11 wireless, or cellular data networks for connectivity
- Leaders are Apple iOS and Google Android

Computing Environments – Distributed

- Distributed computing
 - Collection of separate, possibly heterogeneous, systems networked together
 - Network is a communications path, TCP/IP most common
 - Local Area Network (LAN)
 - Wide Area Network (WAN)
 - Metropolitan Area Network (MAN)
 - Personal Area Network (PAN)
 - Network Operating System provides features between systems across network
 - Communication scheme allows systems to exchange messages
 - Illusion of a single system

Computing Environments – Client-Server

- Client-Server Computing
 - Dumb terminals supplanted by smart PCs
 - Many systems now servers, responding to requests generated by clients
 - Compute-server system provides an interface to client to request services (i.e., database)
 - File-server system provides interface for clients to store and retrieve files

Computing Environments – Cloud Computing

- Delivers computing, storage, even apps as a service across a network
- Logical extension of virtualization because it uses virtualization as the base for it functionality.
 - Amazon EC2 has thousands of servers, millions of virtual machines, petabytes of storage available across the Internet, pay based on usage
- Many types
 - Public cloud available via Internet to anyone willing to pay
 - Private cloud run by a company for the company's own use
 - > Hybrid cloud includes both public and private cloud components
 - Software as a Service (SaaS) one or more applications available via the Internet (i.e., word processor)
 - Platform as a Service (PaaS) software stack ready for application use via the Internet (i.e., a database server)
 - Infrastructure as a Service (laas) servers or storage available over Internet (i.e., storage available for backup use)

Computing Environments – Cloud Computing

- Cloud computing environments composed of traditional OSes, plus VMMs, plus cloud management tools
 - Internet connectivity requires security like firewalls
 - Load balancers spread traffic across multiple applications

Computing Environments - Peer-to-Peer

- Another model of distributed system
- P2P does not distinguish clients and servers
 - Instead all nodes are considered peers
 - May each act as client, server or both
 - Node must join P2P network
 - Registers its service with central lookup service on network, or
 - Broadcast request for service and respond to requests for service via discovery protocol
 - Examples include Napster and Gnutella, Voice over IP (VoIP) such as Skype, (BLOCKCHEN)

Distributed Computing Paradigm

- Message passing
- Remote Procedure Call
- Client-server
- Peer-to-Peer
- Message system:
 - Point-to-point;
 - Publish/Subscribe
- Distributed objects:
 - Remote method invocation
 - Network services
 - Object Request Broker
 - Object space
 - Component Based Technologies
- Mobile agents
- Collaborative applications

Computing Environments – Real-Time Embedded Systems

- Real-time embedded systems most prevalent form of computers
 - Vary considerable, special purpose, limited purpose OS, real-time OS
 - Use expanding
- Many other special computing environments as well
 - Some have OSes, some perform tasks without an OS
- Real-time OS has well-defined fixed time constraints
 - > Processing *must* be done within constraint
 - Correct operation only if constraints met

Open-Source Operating Systems

- Operating systems made available in source-code format rather than just binary closed-source
- Counter to the copy protection and Digital Rights Management (DRM)
 movement
- ◆ Started by Free Software Foundation (FSF), which has "copyleft" GNU Public License (GPL) (GNU是一个自由的操作系统, "GNU 's Not Unix!", GPL: GNU通用公共许可证: 要求软件以源代码的形式发布,并规定任何用户能够以源代码的形式将软件复制或发布给别的用户)
- Examples include GNU/Linux and BSD UNIX (including core of Mac OS X), and many more
- ◆ Can use VMM like VMware Player (Free on Windows), Virtualbox (open source and free on many platforms http://www.virtualbox.com)
 - > Use to run guest operating systems for exploration
- "copyleft":

End of Chapter 1

