74HC4067; 74HCT4067

16-channel analog multiplexer/demultiplexer

Rev. 8 — 9 September 2021

Product data sheet

1. General description

The 74HC4067; 74HCT4067 is a single-pole 16-throw analog switch (SP16T) suitable for use in analog or digital 16:1 multiplexer/demultiplexer applications. The switch features four digital select inputs (S0, S1, S2 and S3), sixteen independent inputs/outputs (Yn), a common input/output (Z) and a digital enable input (\overline{E}). When \overline{E} is HIGH, the switches are turned off. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of V_{CC} .

2. Features and benefits

- Wide supply voltage range from 2.0 V to 10.0 V
- Input levels S0, S1, S2, S3 and Ē inputs:
 - For 74HC4067: CMOS level
 - For 74HCT4067: TTL level
- CMOS low power dissipation
- · High noise immunity
- Low ON resistance:
 - 80 Ω (typical) at V_{CC} = 4.5 V
 - 70 Ω (typical) at V_{CC} = 6.0 V
 - 60 Ω (typical) at V_{CC} = 9.0 V
- Complies with JEDEC standards:
 - JESD8C (2.7 V to 3.6 V)
 - JESD7A (2.0 V to 6.0 V)
- Latch-up performance exceeds 100 mA per JESD 78 Class II Level B
- ESD protection:
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
 - CDM JESD22-C101E exceeds 1000 V
- · Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C
- · Typical 'break before make' built-in

3. Applications

- Analog multiplexing and demultiplexing
- Digital multiplexing and demultiplexing
- Signal gating

4. Ordering information

Table 1. Ordering information

Type number	Package	Package							
	Temperature range	Name	Description	Version					
74HC4067D	-40 °C to +125 °C	SO24	plastic small outline package; 24 leads;	SOT137-1					
74HCT4067D			body width 7.5 mm						
74HC4067PW	-40 °C to +125 °C	TSSOP24	plastic thin shrink small outline package; 24 leads;	SOT355-1					
74HCT4067PW			body width 4.4 mm						
74HC4067BQ	-40 °C to +125 °C	DHVQFN24	plastic dual in-line compatible thermal	SOT815-1					
74HCT4067BQ			enhanced very thin quad flat package; no leads; 24 terminals; body 3.5 × 5.5 × 0.85 mm						

5. Functional diagram

6. Pinning information

6.1. Pinning

6.2. Pin description

Table 2. Pin description

Table 211 III accomption		
Symbol	Pin	Description
Z	1	common input or output
Y7, Y6, Y5, Y4, Y3, Y2, Y1, Y0, Y15, Y14, Y13, Y12, Y11, Y10, Y9, Y8	2, 3, 4, 5, 6, 7, 8, 9, 16, 17, 18, 19, 20, 21, 22, 23	independent input or output
S0, S1, S2, S3	10, 11, 14, 13	address input
GND	12	ground (0 V)
Ē	15	enable input (active LOW)
V _{CC}	24	supply voltage

7. Functional description

Table 3. Function table

 $H = HIGH \ voltage \ level; \ L = LOW \ voltage \ level; \ X = don't \ care.$

Inputs					Channel ON
E	S3	S2	S1	S0	
L	L	L	L	L	Y0 to Z
L	L	L	L	Н	Y1 to Z
L	L	L	Н	L	Y2 to Z
L	L	L	Н	Н	Y3 to Z
L	L	Н	L	L	Y4 to Z
L	L	Н	L	Н	Y5 to Z
L	L	Н	Н	L	Y6 to Z
L	L	Н	Н	Н	Y7 to Z
L	Н	L	L	L	Y8 to Z
L	Н	L	L	Н	Y9 to Z
L	Н	L	Н	L	Y10 to Z
L	Н	L	Н	Н	Y11 to Z
L	Н	Н	L	L	Y12 to Z
L	Н	Н	L	Н	Y13 to Z
L	Н	Н	Н	L	Y14 to Z
L	Н	Н	Н	Н	Y15 to Z
Н	X	X	X	X	-

8. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC}	supply voltage		[1]	-0.5	+11.0	V
I _{IK}	input clamping current	$V_{I} < -0.5 \text{ V or } V_{I} > V_{CC} + 0.5 \text{ V}$		-	±20	mA
I _{SK}	switch clamping current	V_{SW} < -0.5 V or V_{SW} > V_{CC} + 0.5 V		-	±20	mA
I _{SW}	switch current	$V_{SW} = -0.5 \text{ V to } V_{CC} + 0.5 \text{ V}$		-	±25	mA
I _{CC}	supply current			-	+50	mA
I _{GND}	ground current			-50	-	mA
T _{stg}	storage temperature			-65	+150	°C
P _{tot}	total power dissipation	T _{amb} = -40 °C to +125 °C	[2]	-	500	mW
Р	power dissipation	per switch		-	100	mW

^[1] To avoid drawing V_{CC} current out of terminal Z, when switch current flows in terminals Yn, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminal Z, no V_{CC} current will flow out of terminals Yn. In this case there is no limit for the voltage drop across the switch, but the voltages at Yn and Z may not exceed V_{CC} or GND.

^[2] For SOT137-1 (SO24) package: P_{tot} derates linearly with 16.2 mW/K above 119 °C. For SOT355-1 (TSSOP24) package: P_{tot} derates linearly with 12.4 mW/K above 110 °C. For SOT815-1 (DHVQFN24) package: P_{tot} derates linearly with 15.0 mW/K above 117 °C.

9. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	74HC4067			74HCT4067			Unit
			Min	Тур	Max	Min	Тур	Max	
V _{CC}	supply voltage		2.0	5.0	10.0	4.5	5.0	5.5	V
VI	input voltage		GND	-	V _{CC}	GND	-	V _{CC}	V
V _{SW}	switch voltage		GND	-	V _{CC}	GND	-	V _{CC}	V
Δt/ΔV	input transition rise and fall rate	V _{CC} = 2.0 V	-	-	625	-	-	-	ns
		V _{CC} = 4.5 V	-	1.67	139	-	1.67	139	ns
		V _{CC} = 6.0 V	-	-	83	-	-	-	ns
		V _{CC} = 10.0 V	-	-	31	-	-	-	ns
T _{amb}	ambient temperature		-40	+25	+125	-40	+25	+125	°C

10. Static characteristics

Table 6. R_{ON} resistance per switch for types 74HC4067 and 74HCT4067

 $V_I = V_{IH}$ or V_{IL} ; for test circuit see Fig. 8.

V_{is} is the input voltage at a Yn or Z terminal, whichever is assigned as an input.

Vos is the output voltage at a Yn or Z terminal, whichever is assigned as an output.

For 74HC4067: V_{CC} - GND = 2.0 V, 4.5 V, 6.0 V and 9.0 V.

For 74HCT4067: V_{CC} - GND = 4.5 V.

Symbol	Parameter	Conditions		25	°C	-40 °C to	+125 °C	Unit
				Тур	Max	Max (85 °C)	Max (125 °C)	
R _{ON(peak)}	ON resistance (peak)	$ \begin{array}{ c c c c c c }\hline \textbf{Typ} & \textbf{Max} & $						
		V _{CC} = 2.0 V; I _{SW} = 100 μA	[1]	-	-	-	-	Ω
		$V_{CC} = 4.5 \text{ V}; I_{SW} = 1000 \mu\text{A}$		110	180	225	270	Ω
		V _{CC} = 6.0 V; I _{SW} = 1000 μA		95	160	200	240	Ω
		V _{CC} = 9.0 V; I _{SW} = 1000 μA		75	130	165	195	Ω
R _{ON(rail)}	ON resistance (rail)	V _{is} = GND or V _{CC}						
		V_{CC} = 2.0 V; I_{SW} = 100 μ A	[1]	150	-	-	-	
		$V_{CC} = 4.5 \text{ V}; I_{SW} = 1000 \mu\text{A}$		90	160	200	240	Ω
		$V_{CC} = 6.0 \text{ V}; I_{SW} = 1000 \mu\text{A}$		80	140	175	210	Ω
		$V_{CC} = 9.0 \text{ V}; I_{SW} = 1000 \mu\text{A}$		70	120	150	180	Ω
ΔR _{ON}	ON resistance mismatch	V _{is} = V _{CC} to GND						
	between channels	V _{CC} = 2.0 V	[1]	-	-	-	-	Ω
		V _{CC} = 4.5 V		9	-	-	-	Ω
		V _{CC} = 6.0 V		8	-	-	-	Ω
		V _{CC} = 9.0 V		6	-	-	-	Ω

^[1] At supply voltages (V_{CC} - GND) approaching 2 V, the analog switch ON resistance becomes extremely non-linear. Therefore it is recommended that these devices be used to transmit digital signals only, when using these supply voltages.

Table 7. Static characteristics 74HC4067

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

 V_{is} is the input voltage at a Yn or Z terminal, whichever is assigned as an input.

 V_{os} is the output voltage at a Yn or Z terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 25	°C		_		'	
V _{IH}	HIGH-level input voltage	V _{CC} = 2.0 V	1.5	1.2	-	V
		V _{CC} = 4.5 V	3.15	2.4	-	V
	HIGH-level input voltage $ \begin{array}{c c} V_{CC} = 2.0 \text{ V} \\ \hline V_{CC} = 4.5 \text{ V} \\ \hline V_{CC} = 6.0 \text{ V} \\ \hline V_{CC} = 9.0 \text{ V} \\ \hline \\ V_{CC} = 9.0 \text{ V} \\ \hline \\ V_{CC} = 4.5 \text{ V} \\ \hline \\ V_{CC} = 4.5 \text{ V} \\ \hline \\ V_{CC} = 6.0 \text{ V} \\ \hline \\ V_{CC} = 9.0 \text{ V} \\ \hline \\ V_{CC} = 9.0 \text{ V} \\ \hline \\ V_{CC} = 9.0 \text{ V} \\ \hline \\ V_{CC} = 10.0 \text{ V} \\ \hline \\ $	V _{CC} = 6.0 V	4.2	3.2	-	V
		V _{CC} = 9.0 V	6.3	4.7	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 2.0 V	-	0.8	0.5	V
		V _{CC} = 4.5 V	-	2.1	1.35	V
		V _{CC} = 6.0 V	-	2.8	1.80	V
		V _{CC} = 9.0 V	-	4.3	2.70	V
I _I	input leakage current	V _I = V _{CC} or GND				
		V _{CC} = 6.0 V	-	-	±0.1	μΑ
		V _{CC} = 10.0 V	-	-	±0.2	μΑ
I _{S(OFF)}	OFF-state leakage current	$V_{CC} = 10.0 \text{ V}; V_{I} = V_{IH} \text{ or } V_{IL};$ $ V_{SW} = V_{CC} - \text{GND}; \text{ see } Fig. 10$				
		per channel	-	-	±0.1	μΑ
		all channels	-	-	±0.8	μA
I _{S(ON)}	ON-state leakage current	$V_{CC} = 10.0 \text{ V}; V_I = V_{IH} \text{ or } V_{IL};$ $ V_{SW} = V_{CC} - \text{GND}; \text{ see } \frac{\text{Fig. } 11}{\text{Fig. } 11}$	-	-	±0.8	μΑ
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $V_{is} = GND$ or V_{CC} ; $V_{os} = V_{CC}$ or GND				
		V _{CC} = 6.0 V	-	-	8.0	μΑ
		V _{CC} = 10.0 V	-	-	16.0	μA
Cı	input capacitance		-	3.5	-	pF

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = -4	0 °C to +85 °C					
V _{IH}	HIGH-level input voltage	V _{CC} = 2.0 V	1.5	-	-	V
		V _{CC} = 4.5 V	3.15	-	-	V
		V _{CC} = 6.0 V	4.2	-	-	V
		V _{CC} = 9.0 V	6.3	-	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 2.0 V	-	-	0.50	V
		V _{CC} = 4.5 V	-	-	1.35	V
		V _{CC} = 6.0 V	-	-	1.80	V
		V _{CC} = 9.0 V	-	-	2.70	V
ı	input leakage current	V _I = V _{CC} or GND				
		V _{CC} = 6.0 V	-	-	- - - 0.50 1.35 1.80	μΑ
		V _{CC} = 10.0 V	-	-	±2.0	μΑ
I _{S(OFF)}	OFF-state leakage current	$V_{CC} = 10.0 \text{ V}; V_{I} = V_{IH} \text{ or } V_{IL};$ $ V_{SW} = V_{CC} - \text{GND}; \text{ see } \frac{\text{Fig. } 10}{\text{Im}}$				
		per channel		-	±1.0	μA
		all channels	-	-	±8.0	μΑ
I _{S(ON)}	ON-state leakage current	$V_{CC} = 10.0 \text{ V}; V_{I} = V_{IH} \text{ or } V_{IL};$ $ V_{SW} = V_{CC} - \text{GND}; \text{ see } \frac{\text{Fig. } 11}{\text{Fig. } 11}$	-	-	±8.0	μA
lcc	supply current	$V_1 = V_{CC}$ or GND; $V_{is} = GND$ or V_{CC} ; $V_{os} = V_{CC}$ or GND				
		V _{CC} = 6.0 V	-	-	160	μΑ
		V _{CC} = 10.0 V	-	-	160	μA
T _{amb} = -4	0 °C to +125 °C	,			'	'
V _{IH}	HIGH-level input voltage	V _{CC} = 2.0 V	1.5	-	-	V
		V _{CC} = 4.5 V	3.15	-	-	V
		V _{CC} = 6.0 V	4.2	-	-	V
		V _{CC} = 9.0 V	6.3	-	- 0.50 1.35 1.80 2.70 ±1.0 ±2.0 ±1.0 ±8.0 160 0.50 1.35 1.80 2.70 ±1.0 ±2.0	V
V _{IL}	LOW-level input voltage	V _{CC} = 2.0 V	-	-	0.50	V
		V _{CC} = 4.5 V	-	-	0.50 1.35 1.80 2.70 ±1.0 ±2.0 ±1.0 ±8.0 160 0.50 1.35 1.80 2.70 ±1.0 ±2.0	V
		V _{CC} = 6.0 V	-	-	1.80	V
		V _{CC} = 9.0 V	-	-	2.70	V
ı	input leakage current	V _I = V _{CC} or GND				
		V _{CC} = 6.0 V	-	-	±1.0	μA
		V _{CC} = 10.0 V	-	-	±2.0	μA
S(OFF)	OFF-state leakage current	$V_{CC} = 10.0 \text{ V}; V_I = V_{IH} \text{ or } V_{IL};$ $ V_{SW} = V_{CC} - \text{GND}; \text{ see } \frac{\text{Fig. } 10}{\text{IV}}$				
		per channel	-	-	±1.0	μΑ
		all channels	-	-	±8.0	μA
S(ON)	ON-state leakage current	$V_{CC} = 10.0 \text{ V}; V_I = V_{IH} \text{ or } V_{IL};$ $ V_{SW} = V_{CC} - \text{GND}; \text{ see } Fig. 11$	-	-	±8.0	μA
I _{cc}	supply current	$V_I = V_{CC}$ or GND; $V_{is} = GND$ or V_{CC} ; $V_{os} = V_{CC}$ or GND				
		V _{CC} = 6.0 V	-	-	160	μA
		V _{CC} = 10.0 V	-	-	320	μA

Table 8. Static characteristics 74HCT4067

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

 V_{is} is the input voltage at a Yn or Z terminal, whichever is assigned as an input.

 V_{os} is the output voltage at a Yn or Z terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 25	°C				1	_
V _{IH}	HIGH-level input voltage	V _{CC} = 4.5 V to 5.5 V	2.0	1.6	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 4.5 V to 5.5 V	-	1.2	0.8	V
I _I	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$	-	-	±0.1	μA
I _{S(OFF)}	OFF-state leakage current	V_{CC} = 5.5 V; V_I = V_{IH} or V_{IL} ; $ V_{SW} $ = V_{CC} - GND; see Fig. 10				
		per channel	-	-	±0.1	μΑ
		all channels	-	-	±0.8	μΑ
I _{S(ON)}	ON-state leakage current	V_{CC} = 5.5 V; V_I = V_{IH} or V_{IL} ; $ V_{SW} $ = V_{CC} - GND; see Fig. 11	-	-	±0.8	μΑ
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $V_{is} = GND$ or V_{CC} ; $V_{os} = V_{CC}$ or GND; $V_{CC} = 4.5$ V to 5.5 V	-	-	8.0	μΑ
ΔI _{CC}	additional supply current	per input pin; $V_I = V_{CC}$ - 2.1 V; other inputs at V_{CC} or GND; V_{CC} = 4.5 V to 5.5 V				
		pin E	-	60	216	μΑ
		pin Sn	-	50	180	μΑ
Cı	input capacitance		-	3.5	-	pF
T _{amb} = -40	°C to +85 °C					'
V _{IH}	HIGH-level input voltage	V _{CC} = 4.5 V to 5.5 V	2.0	-	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 4.5 V to 5.5 V	-	-	0.8	V
l _l	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$	-	-	±1.0	μΑ
I _{S(OFF)}	OFF-state leakage current	V_{CC} = 5.5 V; V_I = V_{IH} or V_{IL} ; $ V_{SW} $ = V_{CC} - GND; see Fig. 10				
		per channel	-	-	±1.0	μΑ
		all channels	-	-	±8.0	μΑ
I _{S(ON)}	ON-state leakage current	V_{CC} = 5.5 V; V_I = V_{IH} or V_{IL} ; $ V_{SW} $ = V_{CC} - GND; see Fig. 11	-	-	±8.0	μΑ
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $V_{is} = GND$ or V_{CC} ; $V_{os} = V_{CC}$ or GND; $V_{CC} = 4.5$ V to 5.5 V	-	-	80.0	μΑ
ΔI _{CC}	additional supply current	per input pin; $V_I = V_{CC}$ - 2.1 V; other inputs at V_{CC} or GND; V_{CC} = 4.5 V to 5.5 V				
		pin E	-	-	270	μΑ
		pin Sn	-	-	225	μA

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = -40	°C to +125 °C		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
V _{IH}	HIGH-level input voltage	V _{CC} = 4.5 V to 5.5 V	2.0	-	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 4.5 V to 5.5 V	-	-	0.8	V
I _I	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$	-	-	±1.0	μΑ
I _{S(OFF)}	OFF-state leakage current	V_{CC} = 5.5 V; V_{I} = V_{IH} or V_{IL} ; $ V_{SW} $ = V_{CC} - GND; see Fig. 10				
		per channel	-	-	±1.0	μΑ
		all channels	-	-	±8.0	μΑ
I _{S(ON)}	ON-state leakage current	V_{CC} = 5.5 V; V_I = V_{IH} or V_{IL} ; $ V_{SW} $ = V_{CC} - GND; see Fig. 11	-	-	±8.0	μA
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $V_{is} = GND$ or V_{CC} ; $V_{os} = V_{CC}$ or GND; $V_{CC} = 4.5$ V to 5.5 V	-	-	160	μA
ΔI _{CC}	additional supply current	per input pin; $V_I = V_{CC}$ - 2.1 V; other inputs at V_{CC} or GND; V_{CC} = 4.5 V to 5.5 V				
		pin E	-	-	294	μΑ
		pin Sn	-	-	245	μΑ

 $V_{is} = V_{CC}$ and $V_{os} = GND$ $V_{is} = GND$ and $V_{os} = V_{CC}$

Fig. 10. Test circuit for measuring OFF-state leakage current

 $V_{is} = V_{CC}$ and $V_{os} =$ open $V_{is} =$ GND and $V_{os} =$ open

Fig. 11. Test circuit for measuring ON-state leakage current

11. Dynamic characteristics

Table 9. Dynamic characteristics 74HC4067

GND = 0 V; $t_r = t_f = 6$ ns; $C_L = 50$ pF unless specified otherwise; for test circuit see Fig. 14.

 V_{is} is the input voltage at a Yn or Z terminal, whichever is assigned as an input.

 V_{os} is the output voltage at a Yn or Z terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions		25	°C	-40 °C to +125 °C		Unit
				Тур	Max	Max (85 °C)	Max (125 °C)	
pd	propagation delay	Yn to Z; see Fig. 12	[1] [2]					
		V _{CC} = 2.0 V		25	75	95	110	ns
		V _{CC} = 4.5 V		9	15	19	22	ns
		V _{CC} = 6.0 V		7	13	16	19	ns
		V _{CC} = 9.0 V		5	9	11	14	ns
		Z to Yn						
		V _{CC} = 2.0 V		18	60	75	90	ns
		V _{CC} = 4.5 V		6	12	15	18	ns
		V _{CC} = 6.0 V		5	10	13	15	ns
		V _{CC} = 9.0 V		4	8	10	15 12 375 75	ns
off	turn-off time	E to Yn; see Fig. 13	[3]					
		V _{CC} = 2.0 V		74	250	315	375	ns
		V _{CC} = 4.5 V		27	50	63		ns
		V _{CC} = 5.0 V; C _L = 15 pF		27	-	-	-	ns
		V _{CC} = 6.0 V		22	43	54	64	ns
		V _{CC} = 9.0 V		20	38	48	57	ns
		Sn to Yn						
		V _{CC} = 2.0 V		83	250	315	375	ns
		V _{CC} = 4.5 V		30	50	63	75	ns
		$V_{CC} = 5.0 \text{ V}; C_L = 15 \text{ pF}$		29	-	-	-	ns
		V _{CC} = 6.0 V		24	43	54	64	ns
		V _{CC} = 9.0 V		21	38	48	57	ns
		E to Z						
		V _{CC} = 2.0 V		85	275	345	415	ns
		V _{CC} = 4.5 V		31	55	69	83	ns
		V _{CC} = 6.0 V		25	47	59	71	ns
		V _{CC} = 9.0 V		24	42	53	63	ns
		Sn to Z						
		V _{CC} = 2.0 V		94	290	365	435	ns
		V _{CC} = 4.5 V		34	58	73	87	ns
		V _{CC} = 6.0 V		27	47	62	74	ns
		V _{CC} = 9.0 V		25	45	56	68	ns

Symbol	Parameter	Conditions	25	°C	-40 °C to	+125 °C	Unit
			Тур	Max	Max (85 °C)	Max (125 °C)	
t _{on}	turn-on time	Ē to Yn; see Fig. 13 [4]					
		V _{CC} = 2.0 V	80	275	345	415	ns
		V _{CC} = 4.5 V	29	55	69	83	ns
		V _{CC} = 5.0 V; C _L = 15 pF	26	-	-	-	ns
		V _{CC} = 6.0 V	23	47	59	71	ns
		V _{CC} = 9.0 V	17	42	53	63	ns
		Sn to Yn					
		V _{CC} = 2.0 V	88	300	375	450	ns
		V _{CC} = 4.5 V	32	60	75	90	ns
		V _{CC} = 5.0 V; C _L = 15 pF	29	-	-	-	ns
		V _{CC} = 6.0 V	26	51	64	77	ns
		V _{CC} = 9.0 V	18	45	56	68	ns
		E to Z					
		V _{CC} = 2.0 V	85	275	345	415	ns
		V _{CC} = 4.5 V	31	55	69	83	ns
		V _{CC} = 6.0 V	25	47	59	71	ns
		V _{CC} = 9.0 V	18	42	53	63	ns
		Sn to Z					
		V _{CC} = 2.0 V	94	300	375	450	ns
		V _{CC} = 4.5 V	34	60	75	90	ns
		V _{CC} = 6.0 V	27	51	64	77	ns
		V _{CC} = 9.0 V	19	45	56	68	ns
C _{PD}	power dissipation capacitance	per switch; $V_I = GND$ to V_{CC} [5]	29	-	-	-	pF

$$P_D = C_{PD} x V_{CC}^2 x f_i + \sum \{(C_L + C_{sw}) x V_{CC}^2 x f_o\}$$
 where:

f_i = input frequency in MHz;

$$\begin{split} &f_o = \text{output frequency in MHz;} \\ &\sum \{(C_L + C_{sw}) \text{ x V}_{CC} \,^2 \text{ x f}_o\} = \text{sum of outputs;} \end{split}$$

C_L = output load capacitance in pF;

C_{sw} = switch capacitance in pF;

V_{CC} = supply voltage in V.

 t_{pd} is the same as t_{PHL} and t_{PLH} . Due to higher Z terminal capacitance (16 switches versus 1) the delay figures to the Z terminal are higher than those to the Y terminal.

^[3] t_{on} is the same as t_{PHZ} and t_{PLZ} .

 ^[4] t_{off} is the same as t_{PZH and} t_{PZL}.
 [5] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

Table 10. Dynamic characteristics 74HCT4067

GND = 0 V; $t_r = t_f = 6$ ns; $C_L = 50$ pF unless specified otherwise; for test circuit see Fig. 14.

*V*_{is} is the input voltage at a Yn or Z terminal, whichever is assigned as an input.

 V_{os} is the output voltage at a Yn or Z terminal, whichever is assigned as an output.

Symbol	Parameter	rameter Conditions		25	°C	-40 °C to	-40 °C to +125 °C		
				Тур	Max	Max (85 °C)	Max (125 °C)		
t _{pd}	propagation delay	Yn to Z; see Fig. 12	[1] [2]						
		V _{CC} = 4.5 V		9	15	19	22	ns	
		Z to Yn							
		V _{CC} = 4.5 V		6	12	15	18	ns	
t _{off}	turn-off time	E to Yn; see Fig. 13	[3]						
		V _{CC} = 4.5 V		26	55	69	83	ns	
		V _{CC} = 5.0 V; C _L = 15 pF		26	-	-	-	ns	
		Sn to Yn							
		V _{CC} = 4.5 V		31	55	69	83	ns	
		V _{CC} = 5.0 V; C _L = 15 pF		30	-	-	-	ns	
		E to Z							
		V _{CC} = 4.5 V		30	60	75	90	ns	
		Sn to Z							
		V _{CC} = 4.5 V		35	60	75	90	ns	
t _{on}	turn-on time	E to Yn; see Fig. 13	[4]						
		V _{CC} = 4.5 V		32	60	75	90	ns	
		V _{CC} = 5.0 V; C _L = 15 pF		32	-	-	-	ns	
		Sn to Yn							
		V _{CC} = 4.5 V		35	60	75	90	ns	
		V _{CC} = 5.0 V; C _L = 15 pF		33	-	-	-	ns	
		E to Z							
		V _{CC} = 4.5 V		38	65	81	98	ns	
		Sn to Z							
		V _{CC} = 4.5 V		38	65	81	98	ns	
C _{PD}	power dissipation capacitance	per switch; V _I = GND to (V _{CC} - 1.5 V)	[5]	29	-	-	-	pF	

- t_{pd} is the same as t_{PHL} and t_{PLH} . Due to higher Z terminal capacitance (16 switches versus 1) the delay figures to the Z terminal are higher than those to the Y terminal.
- t_{on} is the same as t_{PHZ} and t_{PLZ} . [3]
- [4] t_{off} is the same as t_{PZH and} t_{PZL}.
 [5] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum \{(C_L + C_{sw}) \times V_{CC}^2 \times f_o\}$ where:

 f_i = input frequency in MHz;

f_o = output frequency in MHz;

 $\sum \{(C_L + C_{sw}) \times V_{CC}^2 \times f_o\} = \text{sum of outputs};$

C_L = output load capacitance in pF;

C_{sw} = switch capacitance in pF;

V_{CC} = supply voltage in V.

11.1. Waveforms and test circuit

Table 11. Measurement points

Туре	V _I	V _M
74HC4067	V _{CC}	0.5V _{CC}
74HCT4067	3.0 V	1.3 V

15 / 25

Test data is given in Table 12.

Definitions test circuit:

 R_T = Termination resistance should be equal to output impedance Z_0 of the pulse generator.

 C_L = Load capacitance including jig and probe capacitance.

 R_L = Load resistance.

S1 = Test selection switch.

Fig. 14. Test circuit for measuring switching times

Table 12. Test data

Test	Input					Output		
	Control E	Address Sn	Switch Yn (Z)	t _r , t _f	Switch Z (Yn)			
	V _I [1]	V _I [1]	V _{is}		CL	R _L		
t _{PHL} , t _{PLH}	GND	GND or V _{CC}	GND to V _{CC}	6 ns	50 pF	-	open	
t _{PHZ} , t _{PZH}	GND to V _{CC}	GND to V _{CC}	V _{CC}	6 ns	50 pF, 15 pF	1 kΩ	GND	
t _{PLZ} , t _{PZL}	GND to V _{CC}	GND to V _{CC}	GND	6 ns	50 pF, 15 pF	1 kΩ	V _{CC}	

[1] For 74HCT4067: maximum input voltage $V_I = 3.0 \text{ V}$.

12. Additional dynamic characteristics

Table 13. Additional dynamic characteristics

Recommended conditions and typical values; GND = 0 V.

 V_{is} is the input voltage at a Yn or Z terminal, whichever is assigned as an input.

 V_{os} is the output voltage at a Yn or Z terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions		25 °C		Unit
			Min	Тур	Max	
THD	total harmonic distortion	$R_L = 10 \text{ k}\Omega; C_L = 50 \text{ pF}; \text{ see } \frac{\text{Fig. } 15}{}$				
		f _i = 1 kHz				
		$V_{CC} = 4.5 \text{ V}; V_{is(p-p)} = 4.0 \text{ V}$	-	0.04	-	%
		V _{CC} = 9.0 V; V _{is(p-p)} = 8.0 V	-	0.02	-	%
		f _i = 10 kHz				
		V _{CC} = 4.5 V; V _{is(p-p)} = 4.0 V	-	0.12	-	%
		$V_{CC} = 9.0 \text{ V}; V_{is(p-p)} = 8.0 \text{ V}$	-	0.06	-	%
α_{iso}	isolation (OFF-state)	$R_L = 600 \Omega$; $C_L = 50 pF$; see Fig. 16 [1]				
		V _{CC} = 4.5 V	-	-50	-	dB
		V _{CC} = 9.0 V	-	-50	-	dB
f _(-3dB)	-3 dB frequency response	$R_L = 50 \Omega$; $C_L = 10 pF$; see <u>Fig. 17</u> [2]				
		V _{CC} = 4.5 V	-	90	-	MHz
		V _{CC} = 9.0 V	-	100	-	MHz
C _{sw}	switch capacitance	independent pins Y	-	5	-	pF
		common pin Z	-	45	-	pF

- Adjust input voltage V_{is} to 0 dBm level (0 dBm = 1 mW into 600 Ω).
- Adjust input voltage V_{is} to 0 dBm level at V_{os} for f_i = 1 MHz (0 dBm = 1 mW into 50 Ω). After set-up, f_i is increased to obtain a reading of -3 dB at Vos.

a. Isolation (OFF-state)

b. Test circuit

 V_{CC} = 4.5 V; GND = 0 V; R_L = 600 $\Omega;$ R_{source} = 1 $k\Omega.$

Fig. 16. Isolation (OFF-state) as a function of frequency

18 / 25

a. Typical -3 dB frequency response

b. Test circuit

 V_{CC} = 4.5 V; GND = 0 V; R_L = 50 Ω ; R_{source} = 1 k Ω .

Fig. 17. -3 dB frequency response

Product data sheet

13. Package outline

SO24: plastic small outline package; 24 leads; body width 7.5 mm

SOT137-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	z ⁽¹⁾	θ
mm	2.65	0.3 0.1	2.45 2.25	0.25	0.49 0.36	0.32 0.23	15.6 15.2	7.6 7.4	1.27	10.65 10.00	1.4	1.1 0.4	1.1 1.0	0.25	0.25	0.1	0.9 0.4	8°
inches	0.1	0.012 0.004	0.096 0.089	0.01	0.019 0.014	0.013 0.009	0.61 0.60	0.30 0.29	0.05	0.419 0.394	0.055	0.043 0.016	0.043 0.039	0.01	0.01	0.004	0.035 0.016	0°

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT137-1	075E05	MS-013				99-12-27 03-02-19

Fig. 18. Package outline SOT137-1 (SO24)

TSSOP24: plastic thin shrink small outline package; 24 leads; body width 4.4 mm

SOT355-1

OUTLINE		REFERENCES			EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT355-1		MO-153				99-12-27 03-02-19	

Fig. 19. Package outline SOT355-1 (TSSOP24)

DHVQFN24: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 24 terminals; body $3.5 \times 5.5 \times 0.85$ mm

SOT815-1

Fig. 20. Package outline SOT815-1 (DHVQFN24)

14. Abbreviations

Table 14. Abbreviations

Acronym	Description
CDM	Charged Device Model
CMOS	Complementary Metal-Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model
MM	Machine Model
TTL	Transistor-Transistor Logic

15. Revision history

Table 15. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74HC_HCT4067 v.8	20210909	Product data sheet	-	74HC_HCT4067 v.7
Modifications:	Type numbers	74HC4067DB and 74HCT406	7DB (SOT340-1/SS	OP24) removed.
74HC_HCT4067 v.7	20200602	Product data sheet	-	74HC_HCT4067 v.6
Modifications:	Nexperia. Legal texts have Section 2 upda	his data sheet has been redes we been adapted to the new co ated. ng values for P _{tot} total power o	mpany name where	appropriate.
74HC_HCT4067 v.6	20150522	Product data sheet	-	74HC_HCT4067 v.5
Modifications:		74HC4067N and 74HCT4067 Figure note $V_{is} = 0 \text{ V to } (V_{CC}-G)$,	
74HC_HCT4067 v.5	20111213	Product data sheet	-	74HC_HCT4067 v.4
Modifications:	 Legal pages up 	odated.		
74HC_HCT4067 v.4	20110518	Product data sheet	-	74HC_HCT4067 v.3
74HC_HCT4067 v.3	20071015	Product data sheet	-	74HC_HCT4067_CNV v.2
74HC_HCT4067_CNV v.2	19970901	Product specification	-	-

16. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at https://www.nexperia.com.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal

16-channel analog multiplexer/demultiplexer

injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by sustained.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Contents

1. General description	1
2. Features and benefits	1
3. Applications	1
4. Ordering information	2
5. Functional diagram	
6. Pinning information	5
6.1. Pinning	5
6.2. Pin description	
7. Functional description	
8. Limiting values	
Recommended operating conditions	
10. Static characteristics	
11. Dynamic characteristics	12
11.1. Waveforms and test circuit	
12. Additional dynamic characteristics	17
13. Package outline	
14. Abbreviations	
15. Revision history	
16. Legal information	
· · · - · · · · · · · · · · · · · · · ·	

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 9 September 2021

[©] Nexperia B.V. 2021. All rights reserved

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Nexperia:

74HCT4067PW 74HCT4067DB 74HC4067PW 74HC4067DB 74HC4067BQ,118 74HCT4067BQ,118

74HC4067D,652 74HC4067DB,112 74HC4067DB,118 74HC4067D,653 74HC4067N,652 74HC4067PW,112

74HC4067PW,118 74HCT4067D,112 74HCT4067DB,112 74HCT4067DB,118 74HCT4067D,118

74HCT4067PW,112 74HCT4067PW,118