

Academic – Graduate Studies and Research Division SECOND SEMESTER 2021-2022

(COURSE HANDOUT PART II)

Date: JAN-2022

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : CS G520

Course Title : Advanced Data Mining
Instructor-in-Charge : Jabez Christopher

Course Description & Scope:

Advanced Data Mining is a specialization course of Data Mining. Topics covered go beyond conventional record data mining to mining complex data structures and complex data: Tree/graph, biological data, web/text data, stream data, spatiotemporal data, time series data, high-dimensional data high-dimensional data clustering, and mining social networking sites. Mining data from multiple relations (Multi-relational Data Mining). Privacy preserving Data Mining. Distributed computing solutions for data intensive data mining. A substantial portion of the course will focus on research projects, where students will study and work on a well-defined research problem. The course also deals with applications such as mining social networking sites, bioinformatics and medical informatics.

Objectives of the Course:

- To expose key research areas in data mining.
- Emphasize on the design and implementation of efficient and optimized algorithms for data mining.
- Emphasize the use of WEKA, MATLAB and R to implement Data preprocessing and Data Mining tasks.
- To improve research and presentation quality thereby enable students to comprehend and critically analyze data mining research.

Text Book

TB: Aggarwal, Charu C. **Data mining: the textbook**. Springer, 2015.

Reference books

- 1. R1: Hadzic F., Tan H. & Dillon T. S. "Mining data with Complex Structures" Springer, 2011
- 2. R2: Han J. & Kamber M., "*Data Mining: Concepts and Techniques*", Morgan Kaufmann Publishers, Second Edition, 2006
- 3. R3: Tan P. N., Steinbach M & Kumar V. "Introduction to Data Mining" Pearson Education, 2006
- 4. R4: Mitsa, Theophano. Temporal data mining. Chapman and Hall/CRC, 2010.
- 5. R5: Chowriappa, Pradeep, and Sumeet Dua. **Data mining for bioinformatics**. CRC Press, 2012.
- 6. R6: Dunham, Margaret H. Data mining: Introductory and advanced topics. Pearson Education India, 2006.
- 7. R7: Ross, T. J. (2005). **Fuzzy logic with engineering applications**. John Wiley & Sons.

Reading Material: Research papers and other reading material will be provided on the course website.

[RM 01] Bradley, Paul S., Usama M. Fayyad, and Olvi L. Mangasarian. "Mathematical programming for data mining: Formulations and challenges." INFORMS Journal on Computing 11, no. 3 (1999): 217-238.

[RM 02] Mangasarian, Olvi L. "Mathematical programming in data mining." Data mining and knowledge discovery 1, no. 2 (1997): 183-201

Course Plan:

Lecture No.	Learning objectives	Topics to be covered	Reference		
1	To understand the objectives of the course	Introduction to the course & Lab Topics			
2,3	To refresh the basics of	Overview of Knowledge Discovery	R2 Ch 1, 2, 3; TB Ch 1 [RM 01]		
4-8	KDD and Data Mining tasks.	Overview of Data Mining	R2 Ch 6, 8, 10; [RM 02]		
9,10		Statistics for Data Mining			
		WEB DATA MINING			
11-20	To concentrate on use of Data Mining techniques to Web and Social Networks, and understand their their use in Web analytics, user profiling and personalization.	Social Network Analysis: Preliminaries and Properties	TB Ch. 19		
	BIOLOGICAL DATA MINING				
20-23	To enable students to find patterns and statistical dependencies in large biological databases and to gain an understanding of the underlying system from	 Data Transformations Normalization Techniques for Gene Expression Analysis. Data Preprocessing of Mass Spectrometry Data Data Preprocessing for Genomic Sequence Data Ontologies in Bioinformatics 	R5 Ch. 5		
	which the data were obtained. To use computational biology & data mining	 Applications of Classification & Clustering in Bioinformatics. Distance Metric in Gene Expressions for Coexpressed Genes Gene Expression Clustering Using Mutual 	R5 Ch. 6		

	1						
	tasks to analyze vast experimental data generated by high- throughput technologies, and thereby enables the generation of new	 Information Distance Measure Gene Expression Data Clustering Using a Local Shape-Based Clustering Fuzzy k-Means Clustering on Gene Expression Temporal Data Mining in Medicine and Bioinformatics 					
	hypotheses.	CDATIAL DATA MINING					
	SPATIAL DATA MINING						
24-25	To understand the characteristics of Spatial data and the need for mining Spatial data	Mining with Contextual Spatial Attributes. Trajectory Mining Trajectory Pattern Mining Trajectory Clustering Trajectory Outlier Detection Trajectory Classification Applications in Remote Sensing	TB Ch.16				
	TEMPORAL DATA MINING						
27-28	To study how to investigate temporal data and understand models and methods for representation.	Temporal Data Similarity Computation, Representation, and Summarization Temporal Data Types and Preprocessing Temporal Data Preprocessing Time Series Similarity Measures Time Series Summarization Methods Temporal Event Representation Temporal Knowledge Representation in Case-Based Reasoning Systems	R4 Ch. 2				
29-31		Forecasting Model and Error Measures Event Prediction Time Series Forecasting	R4 Ch. 4 TB Ch. 14				
	RECENT TRENDS						
32-36	To understand the use of Optimization techniques to catalyze the performance of Algorithms and parameter-tuning.	Optimization Algorithms for Data Mining Lagrangian Methods Gradient Descent Algorithm Simulated Annealing Evolutionary Algorithms (GA) Swarm Intelligence Algorithms • Particle Swarm Optimization • Ant Colony Optimization	Research articles (to be decided)				
37-40	To understand how to handle uncertainty in decision-making systems by incorporating fuzzy logic and FIS	Soft Computing Approaches for Data Mining Handling Uncertainty in Data Resolving Uncertainty using Fuzzy Logic Fuzzy Inference Systems Evolving Fuzzy Systems	R7 Ch 1, 4, Class notes & Research articles (to be decided)				
41, 42		RESEARCH GAPS & FUTURE DIRECTIONS					

Evaluation Scheme:

Component	Duration	Weightage (%)	Date & Time	Nature of Component
Mid-Semester Test	90 min	25	As per Timetable	Open Book
Project — 1 Study Project		20	TBA*	Open Book
Lab Project – II Design/Simulation		15	TBA	Open Book
Comprehensive Exam	120 min	40	As per Timetable	Closed Book

*Will be evaluated before mid-semester test

For Comprehensive exam and Mid-semester Test, the mode (offline/online) and the duration are subject to changes as decided by the AUGSD/Timetable division in future.

Consultation Hours: Link will be put up on CMS.

Make-up Policy: No makeups will be provided for assignments and projects. Make-up request may be considered only for cases - where hospitalization of the student is done and, on submission of discharge note issued by the hospital authorities, after thorough scrutiny.

Notices: All the notices concerning this course will be displayed on the CMS or Emails.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

INSTRUCTOR-IN-CHARGE CS G520

