TÌM THAM SỐ ĐỂ HÀM SỐ ĐƠN ĐIỆU TRÊN TẬP HỢP

Câu 1. Cho hàm số $y = \frac{mx - 2m - 3}{x - m}$ với m là tham số. Gọi S là tập hợp tất cả các giá trị nguyên của m để hàm số đồng biến trên các khoảng xác định. Tìm số phần tử của S.

A. Vô số

B. 3

C. 5 Lời giải **D.** 4

Chon B

 $y' = \frac{-m^2 + 2m + 3}{(x - m)^2}$ hàm số đồng biến trên khoảng xác định khi -1 < m < 3 nên có 3 giá trị của m

Câu 2. Có tất cả bao nhiều số nguyên m để hàm số $y = \frac{(m+1)x-2}{x-m}$ đồng biến trên từng khoảng xác định của nó?

A. 1.

B. 0.

<u>C</u>. 2. Lời giải

D. 3.

TXĐ: $D = \mathbb{R} \setminus \{m\}$

$$y' = \frac{-m^2 - m + 2}{(x - m)^2}$$
.

Để hàm số đồng biến trên từng khoảng xác định của ta cần tìm m để $y' \ge 0$ trên $(-\infty; m)$ và $(m; +\infty)$ và dấu "="chỉ xảy ra tại hữu hạn điểm trên các khoảng đó

ĐK: $-m^2 - m + 2 > 0 \iff -2 < m < 1$. Vì $m \in \mathbb{Z}$ nên m = -1, 0.

Câu 3. Có bao nhiều giá trị nguyên của m để hàm số $y = \frac{x + m^2}{x + 4}$ đồng biến trên từng khoảng xác định của nó?

A. 5.

B. 3.

C. 1.

D. 2.

Lời giải

TXĐ:
$$D = \mathbb{R} \setminus \{-4\}, \ y' = \frac{4 - m^2}{(x+4)^2}.$$

Để hàm số đồng biến trên từng khoảng xác định của nó thì $4 - m^2 > 0 \Leftrightarrow -2 < m < 2$. Do đó có 3 giá trị nguyên của tham số m thỏa mãn.

Câu 4. Tìm tất cả giá trị của m để hàm số $y = \frac{x+2-m}{x+1}$ nghịch biến trên các khoảng mà nó xác định?

A. $m \le 1$.

B. $m \le -3$.

C. m < -3.

D. m < 1.

Với m=1 thì hàm số là hàm hằng $(\forall x \neq -1)$ nên không nghịch biến.

Ta có
$$y' = \frac{m-1}{(x+1)^2}, \forall x \neq -1.$$

Hàm số nghịch biến trên từng khoảng của tập xác định khi và chỉ khi y' < 0, $x \ne -1 \Leftrightarrow m < 1$.

Câu 5. Tìm tất cả các giá trị của m để hàm số $y = \frac{mx-4}{x-m}$ nghịch biến trên từng khoảng xác định của nó. $\mathbf{B.} -2 < m < 2. \qquad \mathbf{\underline{C}} \cdot \begin{bmatrix} m < -2 \\ m > 2 \end{bmatrix}. \qquad \mathbf{D.} -2 \le m \le 2.$

A. $\begin{bmatrix} m \leq -2 \\ m \geq 2 \end{bmatrix}$.

Tập xác định $D = (-\infty; m) \cup (m; +\infty)$.

Ta có $y = \frac{mx - 4}{x - m}$ $\Rightarrow y' = \frac{-m^2 + 4}{(x - m)^2}$. Vì hàm số nghịch biến trên từng khoảng xác định của nó nên $-m^2 + 4 < 0 \Leftrightarrow \begin{bmatrix} m < -2 \\ m > 2 \end{bmatrix}$. **Câu 6.** Có tất cả các giá trị nguyên của m để hàm số $y = \frac{(m-2)x-2}{mx-m-1}$ đồng biến trên mỗi khoảng xác định **D.** 3. **B.** 1. Ta có: $y' = \frac{(m-2)(-m-1)-2m}{(mx-m-1)^2} = \frac{-m^2-m+2}{(mx-m-1)^2}$ Hàm số đồng biến trên từng khoảng xác định khi $-m^2 - m + 2 > 0 \Leftrightarrow -2 < m < 1$.

Câu 7. Có bao nhiều giá trị m nguyên để hàm số $y = \frac{x+1}{x^2+x+m}$ nghịch biến trên \mathbb{R} .

D. vô số. **A.** 0. **B.** 3.

 \overrightarrow{D} . \overrightarrow{D} ĐK1. Hàm số xác đinh trên \mathbb{R}

Tức là $x^2 + x + m = 0$ vô nghiệm $\Leftrightarrow \Delta = 1 - 4m < 0 \Leftrightarrow m > \frac{1}{4}$

ĐK2.
$$y' = \frac{m - (x+1)^2}{(x^2 + x + m)^2} \le 0 \iff m \le 0$$

Vậy không có giá trị nào.

Câu 8. Có bao nhiều giá trị nguyên của tham số m để hàm số $y = \frac{x+m}{r^2+r+1}$ nghịch biến trên \mathbb{R} .

<u>**A**</u>. 0. **B.** 1. **C.** 2. Lời giải

Chon A

+ TXĐ: $D = \mathbb{R}$.

Ta có
$$y' = \frac{-x^2 - 2mx + 1 - m}{\left(x^2 + x + 1\right)^2}$$

Để hàm số đã cho nghich biến trên \mathbb{R} thì

$$y' \le 0 \ \forall x \in \mathbb{R} \Leftrightarrow -x^2 - 2mx + 1 - m \le 0 \Leftrightarrow \Delta' = m^2 + 1 - m \le 0$$

Câu 9. Cho hàm số $f(x) = \frac{mx-4}{x-m}$. Có bao nhiều giá trị nguyên của m để hàm số đã cho đồng biến trên khoảng $(0;+\infty)$?

D. 3.

A. 5. **B.** 4. **C.** 3. **D.** 2. Lời giải

Chon D

Tập xác định $D = \mathbb{R} \setminus \{m\}$.

Đạo hàm
$$f'(x) = \frac{-m^2 + 4}{(x-m)^2}$$
.

Hàm số đồng biến trên $(0;+\infty)$ khi và chỉ khi

$$f'(x) > 0 \,\forall x \in (0; +\infty) \Leftrightarrow \begin{cases} -m^2 + 4 > 0 \\ m \notin (0; +\infty) \end{cases} \Leftrightarrow \begin{cases} -2 < m < 2 \\ m \le 0 \end{cases} \Leftrightarrow -2 < m \le 0.$$

Do $m \in \mathbb{Z} \Rightarrow m = \{-1, 0\}$. Vậy có hai giá trị nguyên của m thỏa mãn đề bài.

Câu 10. Tập hợp tất cả các giá trị của m để hàm số $y = \frac{x+4}{x+m}$ đồng biến trên khoảng $(-\infty; -7)$ là

A. [4;7).

B. (4;7].

C.(4;7).

D. $(4; +\infty)$.

Lời giải

Chọn B

Tập xác định: $D = \mathbb{R} \setminus -m$.

Ta có: $y' = \frac{m-4}{(x+m)^2}$.

Hàm số đã cho đồng biến trên khoảng $(-\infty; -7) \Leftrightarrow y' > 0$, $\forall x \in (-\infty; -7) \Leftrightarrow \begin{cases} m-4 > 0 \\ -m \notin (-\infty; -7) \end{cases}$

 $\Leftrightarrow \begin{cases} m > 4 \\ -m \ge -7 \end{cases} \Leftrightarrow \begin{cases} m > 4 \\ m \le 7 \end{cases} \Leftrightarrow 4 < m \le 7 \ .$

Câu 11. Có bao nhiều giá trị nguyên của tham số m để hàm số $y = \frac{x+2}{x+3m}$ đồng biến trên khoảng $(-\infty; -6)$

<u>**A**</u>. 2

B. 6

C. Vô số

Lời giải

D. 1

Chọn A

Tập xác định: $D = (-\infty; -3m) \cup (-3m; +\infty)$.

Ta có $y' = \frac{3m-2}{\left(x+3m\right)^2}$

Hàm số đồng biến trên khoảng $(-\infty; -6) \Leftrightarrow \begin{cases} 3m-2>0 \\ -6 \le -3m \end{cases} \Leftrightarrow \begin{cases} m>\frac{2}{3} \Leftrightarrow \frac{2}{3} < m \le 2. \end{cases}$

Mà m nguyên nên $m = \{1, 2\}$.

Câu 12. Có bao nhiều giá trị nguyên của m để hàm số $y = \frac{x+1}{x+3m}$ nghịch biến trên khoảng $(6; +\infty)$?

A. 0

B. 6

<u>C</u>. 3

D. Vô số

Chọn C

Tập xác định $D = \mathbb{R} \setminus \{-3m\}$; $y' = \frac{3m-1}{(x+3m)^2}$.

Hàm số $y = \frac{x+1}{x+3m}$ nghịch biến trên khoảng (6; +\infty) khi và chỉ khi:

$$\begin{cases} y' < 0 \\ \left(6; +\infty\right) \subset D \end{cases} \Leftrightarrow \begin{cases} 3m - 1 < 0 \\ -3m \le 6 \end{cases} \Leftrightarrow \begin{cases} m < \frac{1}{3} \\ m \ge -2 \end{cases} \Leftrightarrow -2 \le m < \frac{1}{3}.$$

 $Vi \ m \in \mathbb{Z} \implies m \in \{-2; -1; 0\}.$

Câu 13. Tập hợp tất cả các giá trị của m để hàm số $y = \frac{mx-4}{x-m}$ đồng biến trên khoảng $(-1; +\infty)$ là

A. (-2;1].

B. (-2;2).

 $\mathbf{C} \cdot (-2; -1]$.

D. (-2;-1).

Lời giải

Chọn C

Đạo hàm $y' = \frac{-m^2 + 4}{\left(x - m\right)^2} > 0, \forall x \neq m$.

Câu 14. Tìm tất cả các giá trị của m để hàm số $y = \frac{mx-1}{m-4x}$ nghịch biến trên khoảng $\left(-\infty; \frac{1}{4}\right)$.

A. m > 2.

<u>B</u>. $1 \le m < 2$.

C. -2 < m < 2. D. $-2 \le m \le 2$.

Lời giải

Chon B

Tập xác định: $D = \mathbb{R} \setminus \left\{ \frac{m}{\Lambda} \right\}$.

Ta có
$$y' = \frac{m^2 - 4}{(m - 4x)^2}$$
.

Hàm số nghịch biến trên khoảng $\left(-\infty; \frac{1}{4}\right)$ khi và chỉ khi $\begin{cases} m^2 - 4 < 0 \\ \frac{m}{4} \notin \left(-\infty; \frac{1}{4}\right) \Leftrightarrow \begin{cases} -2 < m < 2 \end{cases}$

$$\Leftrightarrow \begin{cases} -2 < m < 2 \\ m \ge 1 \end{cases} \Rightarrow 1 \le m < 2.$$

Vây $1 \le m < 2$.

Câu 15. Cho hàm số $y = \frac{mx - 2m + 3}{x + m}$. Gọi S là tập hợp tất cả các giá trị nguyên của m để hàm số nghịch biến trên khoảng $(2;+\infty)$. Tìm số phần tử của S.

A. 5.

B. 3.

C. 4.

D. 1.

Lời giải

Chon C

Điều kiện xác định: $x \neq -m$.

Ta có:
$$y' = \frac{m^2 + 2m - 3}{(x+m)^2}$$
.

Để hàm số nghịch biến trên khoảng $(2; +\infty)$ thì:

$$\begin{cases} y' < 0; \forall x \in (2; +\infty) \\ x \neq -m \end{cases} \Leftrightarrow \begin{cases} m^2 + 2m - 3 < 0 \\ -m \le 2 \end{cases} \Leftrightarrow \begin{cases} -3 < m < 1 \\ m \ge -2 \end{cases} \Leftrightarrow -2 \le m < 1.$$

Vậy giá trị nguyên của m là $S = \{-2; -1; 0\}$.

Câu 16. Có bao nhiều giá trị nguyên của tham số m để hàm số $y = \frac{mx+9}{4x+m}$ nghịch biến trên khoảng (0;4)?

A. 5.

B. 11.

<u>C</u>. 6. Lời giải

D. 7.

Chon C

Điều kiện: $x \neq -\frac{m}{4}$.

Ta có:
$$y' = \frac{m^2 - 36}{(4x + m)^2}$$
.

Hàm số đã cho nghịch biến trên khoảng $(0;4) \Leftrightarrow y' < 0, \forall x \in (0;4)$

$$\Leftrightarrow \begin{cases} m^2 - 36 < 0 \\ -\frac{m}{4} \notin (0; 4) \end{cases} \Leftrightarrow \begin{cases} -6 < m < 6 \\ -\frac{m}{4} \le 0 \\ -\frac{m}{4} \ge 4 \end{cases} \Leftrightarrow \begin{cases} -6 < m < 6 \\ m \ge 0 \Leftrightarrow 0 \le m < 6. \end{cases}$$

Vì $m \in \mathbb{Z}$ nên $m \in \{0,1,2,3,4,5\}$.

Vây có 6 giá tri m thỏa mãn yêu cầu bài toán.

Câu 17. Tìm tất cả các giá trị của m sao cho hàm số $y = \frac{-mx + 3m + 4}{x - m}$ nghịch biến trên khoảng $(1; +\infty)$

A.
$$-1 < m < 4$$
. **B.** $-1 < m \le 1$.

$$\underline{\mathbf{B}}_{\bullet} - 1 < m \le 1$$

$$\mathbf{C.} \begin{bmatrix} m < -1 \\ m > 4 \end{bmatrix}.$$

$$\mathbf{D.} \ 1 \le m < 4.$$

Lời giải

$$y' = \frac{m^2 - 3m - 4}{(x - m)^2}$$

Để hàm số nghịch biến trên khoảng $(1;+\infty)$ thì $y' < 0, \forall x \in (1;+\infty)$.

$$\Leftrightarrow \begin{cases} m^2 - 3m - 4 < 0 \\ m \notin (1; +\infty) \end{cases} \Leftrightarrow \begin{cases} m \in (-1; 4) \\ m \le 1 \end{cases} \Leftrightarrow -1 < m \le 1.$$

Câu 18. Có bao nhiều giá trị nguyên của $m \in (-2020; 2020)$ sao cho hàm số $y = \frac{3x+18}{x-m}$ nghịch biến trên khoảng $(-\infty; -3)$?

A. 2020.

B. 2026.

C. 2018.

D. 2023.

Lời giải

Chon D

Điều kiện: $x \neq m$ nên $m \notin (-\infty; -3)$

$$y = \frac{3x+18}{x-m} \Rightarrow y' = \frac{-3m-18}{\left(x-m\right)^2}$$

Để hàm số $y = \frac{3x+18}{x-m}$ nghịch biến trên khoảng $(-\infty; -3)$ thì $-3m-18 < 0 \Leftrightarrow m > -6$

Vì $m \in (-2020; 2020)$ và $m \notin (-\infty; -3)$ nên $m \in [-2; 2020]$

Vây có 2023 giá tri *m* nguyên thoả mãn.

Câu 19. Có bao nhiều giá trị nguyên âm của m để hàm số $y = \frac{x+4}{2x-m}$ nghịch biến trên khoảng (-3;4).

A. Vô số.

B. 1.

Lời giải

Chon D

Tập xác định $D = \mathbb{R} \setminus \left\{ \frac{m}{2} \right\}$.

Có
$$y' = -\frac{m+8}{(2x-m)^2}$$

Hàm số nghịch biến trên $(-3;4) \Leftrightarrow y' < 0 \ \forall x \in (-3;4) \Leftrightarrow -\frac{m+8}{(2x-m)^2} < 0 \ \forall x \in (-3;4)$

$$\Leftrightarrow \begin{cases} -(m+8) < 0 \\ \frac{m}{2} \notin (-3;4) \end{cases} \Leftrightarrow \begin{cases} m > -8 \\ \frac{m}{2} \le -3 \Leftrightarrow \begin{bmatrix} -8 < m \le -6 \\ m \ge 8 \end{cases}.$$

Do m nguyên âm nên $m \in \{-7, -6\}$, gồm 2 giá trị thỏa mãn.

Câu 20. Gọi S là tập hợp các số nguyên $m \in [-2020; 2020]$ để hàm số $y = \frac{m^2x + 5}{2mx + 1}$ nghịch biến trên khoảng $(3; +\infty)$. Khi đó số phần tử của S bằng

A. 2020.

B. 9

C. 45.

Lời giải

D. 2021.

<u>C</u>họn <u>B</u>

Tập xác định: $D = \mathbb{R} \setminus \left\{ -\frac{1}{2m} \right\}$.

Ta có
$$y = \frac{m^2x + 5}{2mx + 1} \Rightarrow y' = \frac{m^2 - 10m}{(2mx + 1)^2}.$$

Để hàm số
$$y = \frac{m^2x + 5}{2mx + 1}$$
 nghịch biến trên khoảng $(3; +\infty)$ thì
$$\begin{cases} m^2 - 10m < 0 \\ -\frac{1}{2m} \notin (3; +\infty) \end{cases}$$

$$\Leftrightarrow \begin{cases} 0 < m < 10 \\ -\frac{1}{2m} \le 3 \end{cases} \Leftrightarrow \begin{cases} 0 < m < 10 \\ \frac{1+6m}{2m} \ge 0 \end{cases} \Leftrightarrow \begin{cases} 0 < m < 10 \\ m \le -\frac{1}{6} \Leftrightarrow 0 < m < 10. \end{cases}$$

Ta có
$$\begin{cases} 0 < m < 10 \\ -2020 \le m \le 2020 \end{cases} \Leftrightarrow 0 < m < 10 \xrightarrow{m \in \mathbb{Z}} m \in \left\{1; 2; 3; ...; 9\right\} \longrightarrow \text{ có } 9 \text{ phần tử.}$$

Câu 21. Có bao nhiều giá trị nguyên của tham số m thuộc đoạn [1;20] sao cho ứng với mỗi m, hàm số $y = \frac{-x^2 + 3x - m - 1}{3x - m}$ đồng biến trên khoảng (2;3)?

Δ 17

B. 14

C. 15.

D. 13.

Điều kiện: $x \neq \frac{m}{3}$.

• Ta có
$$y' = \frac{-3x^2 + 2mx + 3}{(3x - m)^2}$$
.

• Hàm số
$$y = \frac{-x^2 + 3x - m - 1}{3x - m}$$
 đồng biến trên khoảng (2;3)

$$\Leftrightarrow \frac{-3x^2 + 2mx + 3}{\left(3x - m\right)^2} \ge 0; \ \forall x \in (2;3) \Leftrightarrow \begin{cases} -3x^2 + 2mx + 3 \ge 0; \ \forall x \in (2;3) \\ \frac{m}{3} \notin (2;3) \end{cases} \tag{1}$$

• Ta có
$$(2) \Leftrightarrow \begin{bmatrix} \frac{m}{3} \ge 3 \\ \frac{m}{3} \le 2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} m \ge 9 \\ m \le 6 \end{bmatrix}$$
.

•
$$(1) \Leftrightarrow 2m \ge 3x - \frac{3}{x} = g(x), \ \forall x \in (2,3).$$

•Mà
$$g'(x) = 3 + \frac{3}{x^2} > 0$$
, $\forall x \in (2,3) \Rightarrow g(x)$ luôn đồng biến trên $(2,3)$.

• Do đó
$$2m \ge 3x - \frac{3}{x} = g(x), \ \forall x \in (2,3) \Leftrightarrow 2m \ge g(3) \Leftrightarrow 2m \ge 8 \Leftrightarrow m \ge 4$$
.

- •Kết hợp hai điều kiện ta được $\begin{bmatrix} m \ge 9 \\ 4 \le m \le 6 \end{bmatrix}$. Vì $m \in \mathbb{Z}$ nên $m \in \{4; 5; 6; 9; 10; ...; 20\}$.
- Vậy có 15 số nguyên *m* thỏa mãn.
- **Câu 22.** Có bao nhiều giá trị nguyên của tham số m để hàm số $y = \frac{x+6}{x+5m}$ nghịch biến trên khoảng $(10; +\infty)$

A. 3

B. Vô số

<u>C</u>. 4 **Lời giải** **D.** 5

Chọn C

Tập xác định $D = \mathbb{R} \setminus \{-5m\}$.

Ta có
$$y' = \frac{5m-6}{\left(x+5m\right)^2}$$
.

Hàm số nghịch biến trên $(10; +\infty)$ khi và chỉ khi $y' < 0, \forall x \in (10; +\infty) \Leftrightarrow \begin{cases} 5m - 6 < 0 \\ -5m \notin (10; +\infty) \end{cases}$

$$\Leftrightarrow \begin{cases} 5m-6<0 \\ -5m \le 10 \end{cases} \Leftrightarrow \begin{cases} m<\frac{6}{5} \\ m \ge -2 \end{cases}. \text{ Mà } m \in \mathbb{Z} \text{ nên } m \in \{-2;-1;0;1\}.$$

Câu 23. Tập hợp tất cả các giá trị của m để hàm số $y = \frac{mx-9}{x-m}$ đồng biến trên khoảng $(0; +\infty)$ là

<u>**A.**</u> (-3;0].

B. (-3;0).

C. [-3;0].

D. [-3;0)

Lời giải

Chọn A

TXĐ: $D = \mathbb{R} \setminus \{m\}$.

Ta có
$$y' = \frac{-m^2 + 9}{(x - m)^2}$$
.

Yêu cầu bài toán $\Leftrightarrow \begin{cases} -m^2 + 9 > 0 \\ m \le 0 \end{cases} \Leftrightarrow \begin{cases} -3 < m < 3 \\ m \le 0 \end{cases} \Leftrightarrow -3 < m \le 0.$

Câu 24. Có bao nhiều giá trị nguyên của tham số m thuộc đoạn [1;25] sao cho ứng với mỗi m, hàm số $y = \frac{-x^2 + 2x - m + 5}{2x - m}$ đồng biến trên khoảng (1;3).

A. 24

B. 2.

<u>C</u>. 20 . Lời giải

D. 6.

Chon C

Tập xác định: $D = \mathbb{R} \setminus \left\{ \frac{m}{2} \right\}$.

Ta có
$$y' = \frac{-2x^2 + 2mx - 10}{(2x - m)^2}$$
.

Hàm số đồng biến trên khoảng (1;3) thì $y' \ge 0, \forall x \in (1;3)$.

Xét hàm số
$$g(x) = \frac{x^2 + 5}{x}, \forall x \in [1,3].$$

Ta có
$$g'(x) = \frac{x^2 - 5}{x^2}$$
. $g'(x) = 0 \Leftrightarrow \begin{bmatrix} x = \sqrt{5} \\ x = -\sqrt{5} \end{bmatrix} (x \neq 0)$.

Bảng biến thiên

х	1		$\sqrt{5}$		3
g'(x)		_	0	+	
g(x)	6		→ _{2√5} /		14/3

Mà m là số nguyên thuộc đoạn [1;25] nên $m \in \{6;7;8;9;10;....;25\}$.

Vậy có 20 giá trị nguyên của tham số m thuộc đoạn [1;25] thỏa mãn yêu cầu bài toán.

Câu 25. Có bao nhiều giá trị nguyên của tham số m thuộc đoạn [-2;25] sao cho ứng với mỗi m, hàm số $y = \frac{x^2 + 5x - m - 1}{5x - m}$ nghịch biến trên khoảng (1;4).

A. 8.

B. 15.

C. 14. Lời giải

<u>D</u>. 6.

Chon D

Tập xác định: $D = \mathbb{R} \setminus \left\{ \frac{m}{5} \right\}$.

Ta có
$$y' = \frac{5x^2 - 2mx + 5}{(5x - m)^2}$$
.

Hàm số nghịch biến trên khoảng (1;4) thì $y' \le 0, \forall x \in (1;4)$.

tức là
$$\begin{cases} 5x^2 - 2mx + 5 \le 0, \forall x \in (1;4) \\ x \ne \frac{m}{5}, \forall x \in (1;4) \end{cases} \Leftrightarrow \begin{cases} m \ge \frac{5x^2 + 5}{2x}, \forall x \in (1;4) \left(Do \ 2x > 0, \forall x \in (1;4) \right) \\ \frac{m}{5} \le 1 \\ \frac{m}{5} \ge 4 \end{cases}.$$

Xét hàm số
$$g(x) = \frac{5x^2 + 5}{2x}, \forall x \in [1;4].$$

Ta có $g'(x) = \frac{5x^2 - 5}{2x^2} > 0, \forall x \in [1; 4]$. Hàm số đồng biến trên (1; 4).

Suy ra
$$\max_{x \in [1;4]} g(x) = g(4) = \frac{85}{8}$$
.

Khi đó, ta có
$$\begin{cases} m \ge \frac{5x^2 + 5}{2x}, \forall x \in (1;4) \\ \frac{m}{5} \le 1 \\ \frac{m}{5} \ge 4 \end{cases} \Leftrightarrow \begin{cases} m \ge \frac{85}{8} \\ m \le 5 \\ m \ge 20 \end{cases} \Leftrightarrow m \ge 20.$$

Mà m là số nguyên thuộc đoạn [-2;25] nên $m \in \{20;21;22;23;24;25\}$.

Vậy có 6 giá trị nguyên của tham số m thuộc đoạn $\left[-2;25\right]$ thỏa mãn yêu cầu bài toán.

Câu 26. Có bao nhiều giá trị nguyên của tham số m thuộc đoạn [-25;3] sao cho ứng với mỗi m, hàm số $y = \frac{-x^2 + 4x - m - 5}{4x - m}$ đồng biến trên khoảng (-3;-1).

C. 14. Lời giải

D. 16.

Chon D

Tập xác định: $D = \mathbb{R} \setminus \left\{ \frac{m}{4} \right\}$.

Ta có
$$y' = \frac{-4x^2 + 2mx + 20}{(4x - m)^2}$$
.

Hàm số đồng biến trên khoảng (-3,-1) thì $y' \ge 0, \forall x \in (-3,-1)$ tức là

$$\begin{cases}
-4x^{2} + 2mx + 20 \ge 0, \forall x \in (-3; -1) \\
x \ne \frac{m}{4}, \forall x \in (-3; -1)
\end{cases} \Leftrightarrow \begin{cases}
m \le \frac{2x^{2} - 10}{x}, \forall x \in (-3; -1) & (Do \ x < 0, \forall x \in (-3; -1)) \\
\frac{m}{4} \le -3 \\
\frac{m}{4} \ge -1
\end{cases}$$

Xét hàm số $g(x) = \frac{2x^2 - 10}{3}, \forall x \in [-3; -1].$

Ta có $g'(x) = \frac{2x^2 + 10}{x^2} > 0, \forall x \in [-3; -1]$. Suy ra hàm số đồng biến trên (-3; -1).

Suy ra
$$\underset{[-3;-1]}{Min} g(x) = g(-3) = -\frac{8}{3}$$
.

có

$$\begin{cases}
 m \le \frac{2x^2 - 10}{x}, \forall x \in (-3; -1) \\
 \frac{m}{4} \le -3 \\
 \frac{m}{4} \ge -1
\end{cases}
\Leftrightarrow
\begin{cases}
 m \le -\frac{8}{3} \\
 m \le -12 \Leftrightarrow m \in (-\infty; -12] \cup \left[-4; -\frac{8}{3}\right].
\end{cases}$$

Mà m là số nguyên thuộc đoạn [-25;3] nên $m \in \{-25;-24;-23;...;-12\} \cup \{-4;-3\}$. Vậy 16 giá trị nguyên của tham số m thuộc đoạn [-25;3] thỏa mãn yêu cầu bài toán.

Câu 27. Có bao nhiều giá trị nguyên của tham số m thuộc đoạn $\begin{bmatrix} -2024;2024 \end{bmatrix}$ sao cho ứng với mỗi m,

hàm số $y = \frac{mx - 6m + 5}{x - m}$ nghịch biến trên khoảng (2;7).

A. 1027.

B. 4045.

<u>C</u>. 4043

D. 2025.

Chọn C

Tập xác định: $D = \mathbb{R} \setminus \{m\}$.

Ta có
$$y' = \frac{-m^2 + 6m - 5}{(x - m)^2}$$
.

Hàm số nghịch biến trên khoảng (2;7) thì $y' < 0, \forall x \in (2;7)$.

tức là
$$\begin{cases} -m^2 + 6m - 5 < 0 \\ x \neq m, \forall x \in (2,7) \end{cases} \Leftrightarrow \begin{cases} \begin{bmatrix} m < 1 \\ m > 5 \\ m \le 2 \end{cases} \Leftrightarrow m \in (-\infty,1) \cup [7,+\infty). \end{cases}$$

Mà m là số nguyên thuộc đoạn $\left[-2024;2024\right]$ nên $m \in \{-2024;-2023;...;0\} \cup \{7;8;9;...;2024\}$.

Vậy có 4043 giá trị nguyên của tham số m thuộc đoạn $\left[-2024;2024\right]$ thỏa mãn yêu cầu bài toán.

D. 7.

Câu 28. Cho hàm số $f(x) = \frac{\sqrt{1-x}+1}{\sqrt{1-x}+m}$. Có bao nhiều giá trị nguyên của tham số m thuộc [-5;5] để hàm số đã cho đồng biến trên khoảng (-3;0)?

A. 4. **B.** 5. **C.** 6.

Lời giải. Đặt $t = \sqrt{1-x}$, với $x \in -3$;0 $\longrightarrow t \in 1$;2.

Hàm số trở thành $f(t) = \frac{t+1}{t+m} \longrightarrow f'(t) = \frac{m-1}{t+m^2}$.

Ta có $t' = \frac{-1}{2\sqrt{1-x}} < 0$, $\forall x \in -3;0$. Suy ra $t = \sqrt{1-x}$ **nghịch biến** trên -3;0.

Do đó YCBT $\Leftrightarrow f \ t$ nghịch biến trên 1;2 $\Leftrightarrow f' \ t < 0$, $\forall t \in 1;2$

$$\Leftrightarrow \begin{cases} m-1<0\\ t+m\neq 0 \end{cases}, \ \forall t\in \ 1;2 \ \Leftrightarrow \begin{cases} m-1<0\\ -m\neq t \end{cases}, \ \forall t\in \ 1;2 \ \Leftrightarrow \begin{cases} m-1<0\\ -m\not\in \ 1;2 \end{cases}$$

$$\Leftrightarrow \begin{cases} m-1<0 \\ -m\geq 2 \\ -m\leq 1 \end{cases} \Leftrightarrow \begin{bmatrix} -1\leq m<1 \\ m\leq -2 \end{bmatrix} \xrightarrow[m\in -5-5]{m\in\mathbb{Z}} m\in -5; -4; ...; 0 . \mathbf{Chon} \ \mathbf{C.}$$

Câu 29. Tập hợp tất cả các giá trị của m để hàm số $y = \frac{\sqrt{x^2 - 8x - 4}}{\sqrt{x^2 - 8x} + m}$ nghịch biến trên (-1;0) là

A.
$$(-\infty;4)$$
.

B.
$$(-4; -3] \cup [0; +\infty)$$
. **C.** $(-4; -3) \cup (0; +\infty)$. **D.** $(-4; +\infty)$

Lời giải

Chọn B

Đặt
$$t = \sqrt{x^2 - 8x}$$
.

Điều kiện xác định:
$$x^2 - 8x \ge 0 \Leftrightarrow \begin{bmatrix} x \le 0 \\ x \ge 8 \end{bmatrix}$$
.

Xét hàm:
$$t = \sqrt{x^2 - 8x}$$
 với $x \in (-1,0)$

Ta có:
$$t' = \frac{2x - 8}{2\sqrt{x^2 - 8x}} = \frac{x - 4}{\sqrt{x^2 - 8x}} < 0 \ \forall x \in (-1, 0)$$

Bảng biến thiên:

Từ bảng biến thiên ta thấy hàm số $t = \sqrt{x^2 - 8x}$ nghịch biến trên khoảng -1;0 và $t \in (0;3)$.

Khi đó yêu cầu bài toán $\Leftrightarrow y = \frac{t-4}{t+m}$ đồng biến (0;3)

Điều kiện xác định: $D = \mathbb{R} \setminus \{-m\}$

Ta có:
$$y' = \frac{m+4}{(t+m)^2}, \forall x \in D$$

Để hàm số đồng biến trên (0;3) thì
$$\begin{cases} y' > 0 \\ -m \not\in (0;3) \end{cases} \Leftrightarrow \begin{cases} m+4>0 \\ -m \le 0 \Leftrightarrow \begin{cases} m>-4 \\ m \ge 0 \Leftrightarrow \\ m \le -3 \end{cases} \Leftrightarrow \begin{bmatrix} -4 < m \le -3 \\ m \ge 0 \end{cases}$$

Câu 30. Hỏi có tất cả bao nhiều giá trị nguyên của tham số $m \in [-20;20]$ để hàm số $y = \frac{\sqrt{x^2 - 2x + 2} + 1}{2m - 3 - \sqrt{x^2 - 2x + 2}}$ đồng biến trên $(-\infty;1)$?

A. 21

B. 19.

C. 22.

D. 20.

Chon A

Đặt $u = \sqrt{x^2 - 2x + 2}$. Xét trên $(-\infty; 1)$ thì $u \in (1; +\infty)$

Để $(-\infty;1)$ nằm trong TXĐ của hàm số đã cho thì: $2m-3 \neq \sqrt{x^2-2x+2}$, $\forall x \in (-\infty;1)$ $\Leftrightarrow 2m-3 \leq 1 \Leftrightarrow m \leq 2$

Ta có hàm số
$$y = \frac{u+1}{2m-3-u} \longrightarrow y' = \frac{2m-2}{(2m-3-u)^2} \cdot u' = \frac{2m-2}{(2m-3-u)^2} \cdot \frac{x-1}{\sqrt{x^2-2x+2}}$$

Để hàm số đồng biến trên
$$(-\infty;1)$$
 thì $y' = \frac{2m-2}{(2m-3-u)^2} \cdot \frac{x-1}{\sqrt{x^2-2x+2}} > 0, \forall x \in (-\infty;1)$

Suy ra $2m-2 < 0 \Leftrightarrow m < 1$

Từ, suy ra m < 1, mà $m \in [-20; 20]$, $m \in \mathbb{Z} \longrightarrow m = \{-20, -19, ..., 0\}$.

Vậy có 21 giá trị *m* nguyên thỏa mãn yêu cầu.

Câu 31. Có bao nhiều giá trị nguyên $m \in (-10;10)$ để hàm số $y = \frac{1-2\sin x}{2\sin x + m}$ đồng biến trên khoảng $\left(\frac{\pi}{2};\pi\right)$

A. 18.

B. 11.

<u>C.</u> 10. *ò*ri giải **D.** 9.

Chon C

Ta có
$$y = \frac{-2\sin x + 1}{2\sin x + m} \Rightarrow y' = \frac{-2m - 2}{(2\sin x + m)} \cdot \cos x \ge 0, \forall \left(\frac{\pi}{2}; \pi\right) \Leftrightarrow \frac{2m + 2}{(2\sin x + m)} \ge 0, \forall \left(\frac{\pi}{2}; \pi\right) \Leftrightarrow \begin{cases} 2m + 2 \ge 0 \\ m \ne -2\sin x \in (-2; 0) \end{cases} \Leftrightarrow \begin{cases} m \in [-1; +\infty) \\ m \in (-\infty; -2] \cup [0; +\infty) \end{cases} \Leftrightarrow m \in [0; +\infty).$$

Do m nguyên thuộc khoảng $(-10;10) \Rightarrow m \in \{0;1;2;...;9\}$.

Vậy có 10 giá trị nguyên của tham số m thỏa.

Câu 32. Gọi S là tập tất cả các giá trị nguyên thuộc khoảng (-2020;2021) của tham số m để hàm số $y = \frac{2\cos x - 3m}{\cos x + m}$ đồng biến trên khoảng $(0;\pi)$. Số phần tử của S là

Lời giải

Chọn A

Đặt $t = \cos x$, với $x \in (0; \pi) \Rightarrow t \in (-1; 1)$, hàm số có dạng $y = \frac{2t - 3m}{t + m}$.

Hàm số $y = \frac{2\cos x - 3m}{\cos x + m}$ đồng biến trên khoảng $(0; \pi) \Leftrightarrow$ hàm số $y = \frac{2t - 3m}{t + m}$ đồng biến trên

khoảng
$$(-1;1)$$
. $\Leftrightarrow \begin{cases} y' = \frac{5m}{\left(t+m\right)^2} > 0 \\ -m \ge 1 \\ -m \le -1 \end{cases} \Leftrightarrow \begin{cases} m > 0 \\ m \le -1 \Leftrightarrow m \ge 1 \\ m \ge 1 \end{cases}$

Kết hợp $m \in (-2020; 2021)$ và $m \in \mathbb{Z} \Rightarrow m \in \{1; 2; 3; ...; 2020\}$ \Rightarrow có 2020 số nguyên m thoả mãn.

Câu 33. Có bao nhiều giá trị nguyên của m thuộc khoảng $\left(-8;8\right)$ để hàm số $y = \frac{2\sqrt{9-x^2}-m}{\sqrt{9-x^2}-m}$ đồng biến trên khoảng $\left(0;\sqrt{5}\right)$?

A. 9.

- **B.** 6.
- **C.** 8.

Lời giải

<u>D</u>. 7.

Chọn D

Đặt $\sqrt{9-x^2} = t$. Do $x \in (0; \sqrt{5}) \Rightarrow t \in (2;3)$

Hàm số đã cho trở thành: $f(t) = \frac{2t - m}{t - m}$ trên khoảng (2;3), $t \neq m$

Ta có $f'(t) = \frac{-m}{(t-m)^2}, \ \forall t \in (2,3); t \neq m$

Khi đó để hàm số đã cho đồng biến trên khoảng $(0; \sqrt{5})$ thì hàm số f(t) nghịch biến trên khoảng

$$t \in (2;3)$$
 vì $t' = \frac{-x}{\sqrt{9-x^2}} < 0, \forall x \in (0;\sqrt{5})$

$$\Rightarrow f'(t) = \frac{-m}{(t-m)^2} < 0 \,\forall t \in (2,3); t \neq m$$

$$\Rightarrow \begin{cases} \frac{-m}{\left(t-m\right)^{2}} < 0 \\ m \notin (2;3) \end{cases} \Leftrightarrow \begin{cases} -m < 0 \\ m \le 2 \Leftrightarrow \begin{cases} m > 0 \\ m \le 2 \Leftrightarrow \\ m \ge 3 \end{cases} \begin{cases} 0 < m \le 2 \\ m \ge 3 \end{cases}$$

Do m là các số nguyên thuộc khoảng (-8,8) nên $m = \{1,2,3,4,5,6,7\}$

Vậy có 7 giá trị của m để thoả mãn điều kiện bài toán.

Câu 34. Có tất cả bao nhiều số nguyên dương m để hàm $y = \frac{\cos x + 1}{10\cos x + m}$ đồng biến trên khoảng $\left(0, \frac{\pi}{2}\right)$.

<u>**A**</u>. 9.

B. 8

C. 10.

Lời giải

D. 11.

<u>C</u>họn <u>A</u>

 $\Box \text{ Dǎt } t = \cos x \left(0 < t < 1 \right) \Rightarrow y = \frac{t+1}{10t+m} \Rightarrow y' = \frac{m-10}{\left(10t+m \right)^2} t'$

 $\Box \text{ Hàm số } y = \frac{\cos x + 1}{10\cos x + m} \text{ đồng biến trên khoảng } \left(0; \frac{\pi}{2}\right) \Leftrightarrow y' = \frac{m - 10}{\left(10t + m\right)^2} . t' > 0, \ \forall x \in \left(0; \frac{\pi}{2}\right)$

. Vì trên khoảng $\left(0; \frac{\pi}{2}\right)$ hàm số $t = \cos x$ nghịch biến nên $t' < 0, \forall x \in \left(0; \frac{\pi}{2}\right)$

☐ Từ đó suy ra:

$$\begin{cases} m-10 < 0 \\ -\frac{m}{10} \notin (0;1) \end{cases} \Leftrightarrow \begin{cases} m < 10 \\ m \le -10 \Leftrightarrow \begin{bmatrix} m \le -10 \\ 0 \le m < 10 \end{cases}.$$

m nguyên dương nên $m \in \{1, 2, ..., 9\}$

Câu 35. Tìm tất cả các giá trị của m để hàm số $y = \frac{\cot x - 2}{\cot x - m}$ nghịch biến trên $\left(\frac{\pi}{4}; \frac{\pi}{2}\right)$.

A.
$$1 \le m < 2$$
.

B.
$$m > 2$$
.

D.
$$m \le 0$$
.

$$y = \frac{\cot x - 2}{\cot x - m} \Rightarrow y' = \frac{-m + 2}{\left(\cot x - m\right)^2} \cdot \frac{-1}{\sin^2 x}$$

$$D\mathring{e} \qquad h\grave{a}m \qquad s\acute{o} \qquad y = \frac{\cot x - 2}{\cot x - m} \qquad \text{nghịch} \qquad \text{biến} \qquad \text{trên} \qquad \left(\frac{\pi}{4}; \frac{\pi}{2}\right)$$

thì

$$y' < 0 \forall x \in \left(\frac{\pi}{4}; \frac{\pi}{2}\right) \Leftrightarrow \begin{cases} -m + 2 > 0 \\ m \notin (0; 1) \end{cases} \Leftrightarrow \begin{cases} m < 2 \\ m \le 0 \lor m \ge 1 \end{cases} \Leftrightarrow \begin{bmatrix} m \le 0 \\ 1 \le m < 2 \end{cases}$$

Câu 36. Có bao nhiều giá trị nguyên dương của tham số m sao cho hàm số $y = \frac{\tan x - 2}{\tan x - m}$ đồng biến trên

khoảng
$$\left(-\frac{\pi}{4};0\right)$$
?

Lời giải

Chon D

Đặt $t = \tan x$.

Do $x \in \left(-\frac{\pi}{4}; 0\right) \Rightarrow t \in (-1; 0)$ và hàm số $t = \tan x$ đồng biến trên $\left(-\frac{\pi}{4}; 0\right)$.

Khi đó: $y = \frac{t-2}{t-m}$ với $t \in (-1;0)$

$$y' = \frac{-m+2}{\left(t-m\right)^2}$$

Để hàm số đồng biến trên khoảng $\left(-\frac{\pi}{4};0\right) \Leftrightarrow \text{Hàm số } y = \frac{t-2}{t-m}$ đồng biến trên $\left(-1;0\right)$

$$\Leftrightarrow y'>0 \ \forall t\in \left(-1;0\right) \Leftrightarrow \begin{cases} -m+2>0\\ m\not\in \left(-1;0\right) \end{cases} \Leftrightarrow \begin{cases} m<2\\ m\geq 0\\ m\leq -1 \end{cases} \Leftrightarrow \begin{bmatrix} 0\leq m<2\\ m\leq -1 \end{cases}.$$

Do m là số nguyên dương $\Rightarrow m = 1$