Heapsort

Heapsort

- Combines the better attributes of merge sort and insertion sort.
 - » Like merge sort, but unlike insertion sort, running time is $O(n \lg n)$.
 - » Like insertion sort, but unlike merge sort, sorts in place.
- Introduces an algorithm design technique
 - » Create data structure (*heap*) to manage information during the execution of an algorithm.
- The *heap* has other applications beside sorting.
 - » Priority Queues

Data Structure Binary Heap

- Array viewed as a nearly complete binary tree.
 - » Physically linear array.
 - » Logically binary tree, filled on all levels (except lowest.)
- Map from array elements to tree nodes and vice versa
 - \rightarrow Root A[1]
 - \rightarrow Left[i] A[2i]
 - \Rightarrow Right[i] A[2i+1]
 - \rightarrow Parent[i] $A[\lfloor i/2 \rfloor]$

- length[A] number of elements in array A.
- heap-size [A] number of elements in heap stored in A.
 - \Rightarrow heap-size[A] \leq length[A]

Heap Property (Max and Min)

- Max-Heap
 - » For every node excluding the root, value is at most that of its parent: $A[parent[i]] \ge A[i]$
- Largest element is stored at the root.
- In any subtree, no values are larger than the value stored at subtree root.
- Min-Heap
 - » For every node excluding the root, value is at least that of its parent: $A[parent[i]] \le A[i]$
- Smallest element is stored at the root.
- ◆ In any subtree, no values are smaller than the value stored at subtree root

Heaps – Example

Max-heap as an array.

Heap or Not?

Heap or Not?

89

Heap or Not?

Height

- *Height of a node in a tree*: the number of edges on the longest simple downward path from the node to a leaf.
- *Height of a tree*: the height of the root.
- Height of a heap: $\lfloor \lg n \rfloor$
 - » Basic operations on a heap run in $O(\lg n)$ time

Heaps in Sorting

- Use max-heaps for sorting.
- The array representation of max-heap is not sorted.
- Steps in sorting
 - » Convert the given array of size n to a max-heap (BuildMaxHeap)
 - » Swap the first and last elements of the array.
 - Now, the largest element is in the last position where it belongs.
 - That leaves n-1 elements to be placed in their appropriate locations.
 - However, the array of first n-1 elements is no longer a max-heap.
 - Float the element at the root down one of its subtrees so that the array remains a max-heap (MaxHeapify)
 - Repeat step 2 until the array is sorted.

Heap Characteristics

- $Height = \lfloor \lg n \rfloor$
- No. of leaves $= \lceil n/2 \rceil$
- No. of nodes of

height
$$h \leq \lceil n/2^{h+1} \rceil$$

Maintaining the heap property

 Suppose two subtrees are max-heaps, but the root violates the max-heap property.

- Fix the offending node by exchanging the value at the node with the larger of the values at its children.
 - » May lead to the subtree at the child not being a heap.
- Recursively fix the children until all of them satisfy the max-heap property.

MaxHeapify – Example

Procedure MaxHeapify

MaxHeapify(A, i)

- 1. $l \leftarrow left(i)$
- 2. $r \leftarrow \text{right}(i)$
- 3. **if** $l \le heap\text{-}size[A]$ and A[l] > A[i]
- 4. **then** $largest \leftarrow l$
- 5. **else** $largest \leftarrow i$
- 6. **if** $r \le heap\text{-}size[A]$ **and** A[r] > A[largest]
- 7. **then** $largest \leftarrow r$
- 8. **if** largest≠ i
- 9. **then** exchange $A[i] \leftrightarrow A[largest]$
- 10. *MaxHeapify*(*A*, *largest*)

Assumption:

Left(*i*) and Right(*i*) are max-heaps.

Running Time for MaxHeapify

MaxHeapify(A, i)

- 1. $l \leftarrow left(i)$
- 2. $r \leftarrow \text{right}(i)$
- 3. **if** $l \le heap\text{-}size[A]$ and A[l] > A[i]
- 4. **then** $largest \leftarrow l$
- 5. **else** $largest \leftarrow i$
- 6. if $r \le heap\text{-}size[A]$ and A[r] > A[largest]
- 7. **then** $largest \leftarrow r$
- 8. **if** $largest \neq i$
- 9. **then** exchange $A[i] \leftrightarrow A[largest]$
- 10. *MaxHeapify*(*A*, *largest*)

Time to fix node i and its children = $\Theta(1)$

PLUS

Time to fix the subtree rooted at one of *i*'s children = T(size of subree at largest)

Running Time for MaxHeapify(A, n)

- $T(n) = T(largest) + \Theta(1)$
- largest ≤ 2n/3 (worst case occurs when the last row of tree is exactly half full)
- $T(n) \le T(2n/3) + \Theta(1) \Rightarrow$ $T(n) = O(\lg n)$

• Alternately, MaxHeapify takes O(h) where h is the height of the node where MaxHeapify is applied

Building a heap

- Use *MaxHeapify* to convert an array *A* into a max-heap.
- Call MaxHeapify on each element in a bottom-up manner.

BuildMaxHeap(A)

- 1. heap- $size[A] \leftarrow length[A]$
- 2. **for** $i \leftarrow \lfloor length[A]/2 \rfloor$ **downto** 1
- 3. **do** MaxHeapify(A, i)

<u>BuildMaxHeap</u> – Example

Input Array:

BuildMaxHeap - Example

 $MaxHeapify(\lfloor 10/2 \rfloor = 5)$

Correctness of BuildMaxHeap

• Loop Invariant: At the start of each iteration of the **for** loop, each node i+1, i+2, ..., n is the root of a max-heap.

Initialization:

- » Before first iteration $i = \lfloor n/2 \rfloor$
- » Nodes $\lfloor n/2 \rfloor + 1$, $\lfloor n/2 \rfloor + 2$, ..., n are leaves and hence roots of max-heaps.

Maintenance:

- » By LI, subtrees at children of node *i* are max heaps.
- » Hence, MaxHeapify(*i*) renders node *i* a max heap root (while preserving the max heap root property of higher-numbered nodes).
- » Decrementing *i* reestablishes the loop invariant for the next iteration.
- Termination: For i = 0, All nodes i+1, i+2+...n are max heaps.

Running Time of BuildMaxHeap

Loose upper bound:

- » Cost of a MaxHeapify call \times No. of calls to MaxHeapify
- $O(\lg n) \times O(n) = O(n \lg n)$

Tighter bound:

- » Cost of a call to MaxHeapify at a node depends on the height, h, of the node -O(h).
- » Height of most nodes smaller than $\lg n$.
- » Height of nodes h ranges from 0 to $\lfloor \lg n \rfloor$.
- » No. of nodes of height h is $\lceil n/2^{h+1} \rceil$

Running Time of BuildMaxHeap

Tighter Bound for *T*(*BuildMaxHeap*)

T(*BuildMaxHeap*)

$$\begin{bmatrix}
\sum_{h=0}^{\lfloor \lg n \rfloor} \frac{n}{2^{h+1}} & O(h) \\
= O\left(n \sum_{h=0}^{\lfloor \lg n \rfloor} \frac{h}{2^{h}}\right)$$

$$= \sum_{h=0}^{\infty} \frac{h}{2^{h}} \qquad , x = 1/2 \text{ in (A.8)}$$

$$= \sum_{h=0}^{\infty} \frac{h}{2^{h}} \qquad , x = 1/2 \text{ in (A.8)}$$

$$= \sum_{h=0}^{\infty} \frac{h}{2^{h}} \qquad , x = 1/2 \text{ in (A.8)}$$

$$= \sum_{h=0}^{\infty} \frac{h}{2^{h}} \qquad , x = 1/2 \text{ in (A.8)}$$

$$= \frac{1/2}{(1-1/2)^{2}} \qquad \sum_{k=0}^{\infty} kx^{k} = \frac{x}{(1-x)^{2}}$$

$$= O(n)$$

Can build a heap from an unordered array in linear time

Heapsort

- Sort by maintaining the as yet unsorted elements as a max-heap.
- Start by building a max-heap on all elements in *A*.
 - » Maximum element is in the root, A[1].
- Move the maximum element to its correct final position.
 - » Exchange A[1] with A[n].
- Discard A[n] it is now sorted.
 - » Decrement heap-size[*A*].
- Restore the max-heap property on A[1..n-1].
 - \rightarrow Call MaxHeapify(A, 1).
- Repeat until heap-size[A] is reduced to 2.

```
HeapSort(A)
```

- 1. Build-Max-Heap(A)
- 2. **for** $i \leftarrow length[A]$ **downto** 2
- 3. **do** exchange $A[1] \leftrightarrow A[i]$
- 4. heap-size[A] $\leftarrow heap$ -size[A] -1
- 5. MaxHeapify(A, 1)

Heapsort – Example

Heapsort – Example

BuildMaxHeap(A)

- 1.heap-size $[A] \leftarrow length[A]$
- 2.**for** $i \leftarrow \lfloor length[A]/2 \rfloor$ **downto** 1
- 3. **do** MaxHeapify(A, i)

Applying BuildMaxHeap(A) heap-size[A] = 10i = 10/2 = 5 to 1

BuildMaxHeap(A)

BuildMaxHeap(A)

Now we have a max heap.

16	14	10	8	7	9	3	2	4	1
1									

Now we have a max heap.

16	14	10	8	7	9	3	2	4	1
									10

$$i = 10 \text{ to } 2$$

- 1. Build-Max-Heap(A)
- 2. **for** $i \leftarrow length[A]$ **downto** 2
- 3. **do** exchange $A[1] \leftrightarrow A[i]$
- 4. $heap\text{-}size[A] \leftarrow heap\text{-}size[A] 1$
- 5. MaxHeapify(A, 1)

Now we have a sorted array.

1	2	3	4	7	8	9	10	14	16
1	2	3	4	5	6	7	8	9	10

Algorithm Analysis

- 1. Build-Max-Heap(A)
- 2. **for** $i \leftarrow length[A]$ **downto** 2
- 3. **do** exchange $A[1] \leftrightarrow A[i]$
- 4. $heap\text{-}size[A] \leftarrow heap\text{-}size[A] 1$
- 5. MaxHeapify(A, 1)
- In-place
- Not Stable
- Build-Max-Heap takes O(n) and each of the n-1 calls to Max-Heapify takes time $O(\lg n)$.
- Therefore, $T(n) = O(n \lg n)$

Heap Procedures for Sorting

• MaxHeapify $O(\lg n)$

• BuildMaxHeap O(n)

• HeapSort $O(n \lg n)$

Priority Queue

- Popular & important application of heaps.
- Max and min priority queues.
- ◆ Maintains a *dynamic* set *S* of elements.
- ◆ Each set element has a *key* an associated value.
- Goal is to support insertion and extraction efficiently.

Applications:

- » Ready list of processes in operating systems by their priorities – the list is highly dynamic
- » In event-driven simulators to maintain the list of events to be simulated in order of their time of occurrence.

Basic Operations

- Operations on a max-priority queue:
 - » Insert(S, x) inserts the element x into the set S
 - $S \leftarrow S \cup \{x\}$.
 - » Maximum(S) returns the element of S with the largest key.
 - » Extract-Max(S) removes and returns the element of S with the largest key.
 - » Increase-Key(S, x, k) increases the value of element x's key to the new value k.
- Min-priority queue supports Insert, Minimum, Extract-Min, and Decrease-Key.
- Heap gives a good compromise between fast insertion but slow extraction and vice versa.

Heap Property (Max and Min)

- Max-Heap
 - » For every node excluding the root, value is at most that of its parent: $A[parent[i]] \ge A[i]$
- Largest element is stored at the root.
- In any subtree, no values are larger than the value stored at subtree root.
- Min-Heap
 - » For every node excluding the root, value is at least that of its parent: $A[parent[i]] \le A[i]$
- Smallest element is stored at the root.
- ◆ In any subtree, no values are smaller than the value stored at subtree root

Heap-Extract-Max(A)

Implements the Extract-Max operation.

```
    Heap-Extract-Max(A)
    1. if heap-size[A] < 1</li>
    2. then error "heap underflow"
    3. max ← A[1]
    4. A[1] ← A[heap-size[A]]
    5. heap-size[A] ← heap-size[A] - 1
    6. MaxHeapify(A, 1)
    7. return max
```

Running time : Dominated by the running time of MaxHeapify $= O(\lg n)$

Heap-Insert(A, key)

Heap-Insert(A, key)

- 1. heap- $size[A] \leftarrow heap$ -size[A] + 1
- 2. $i \leftarrow heap\text{-}size[A]$
- 4. while i > 1 and A[Parent(i)] < key
- 5. **do** $A[i] \leftarrow A[Parent(i)]$
- 6. $i \leftarrow \text{Parent}(i)$
- 7. $A[i] \leftarrow key$

Running time is $O(\lg n)$

The path traced from the new leaf to the root has length $O(\lg n)$

Heap-Increase-Key(A, i, key)

```
Heap-Increase-Key(A, i, key)

1 If key < A[i]

2 then error "new key is smaller than the current key"

3 A[i] \leftarrow key

4 while i > 1 and A[Parent[i]] < A[i]

5 do exchange A[i] \leftrightarrow A[Parent[i]]

6 i \leftarrow Parent[i]
```

```
<u>Heap-Insert(A, key)</u>
```

- 1 heap- $size[A] \leftarrow heap$ -size[A] + 1
- 2 $A[heap-size[A]] \leftarrow -\infty$
- 3 Heap-Increase-Key(A, heap-size[A], key)

Example: Heap-Insert(A, 15)

Figure 7.5 The operation of HEAP-INSERT. (a) The heap of Figure 7.4(a) before we insert a node with key 15. (b) A new leaf is added to the tree. (c) Values on the path from the new leaf to the root are copied down until a place for the key 15 is found. (d) The key 15 is inserted.

Example: Heap-Increase-Key(A, 9, 15)

