Лабораторная работа 7

Модель М|М|1|

Клюкин Михаил Александрович

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	12
Сг	Список литературы	

Список иллюстраций

3.1	Задание переменных окружения	7
3.2	Суперблок, моделирующий поступление заявок в систему	8
3.3	Суперблок, моделирующий обработку заявок	9
3.4	Модель $M M 1 $ inf $\ldots\ldots\ldots\ldots\ldots\ldots$	10
3.5	График поступления и обработки заявок	11
3.6	График изменения размера очереди	11

Список таблиц

1 Цель работы

Смоделировать в хсоз систему массового обслуживания M|M|1| inf.

2 Задание

- 1. Реализовать модель системы массового обслуживания типа M|M|1| inf.
- 2. Построить график поступления и обработки заявок.
- 3. Построить график изменения размера очереди.

3 Выполнение лабораторной работы

Зафиксировали переменные окружения: $\lambda = 0.3, \mu = 0.35, z_0 = 6$ (рис. 3.1).

Рис. 3.1: Задание переменных окружения

Создали суперблок, моделирующий поступление заявки в систему (рис. 3.2).

Рис. 3.2: Суперблок, моделирующий поступление заявок в систему

В этом суперблоке поступившая заявка идет в синхронизатор входных и выходных данных. Заявки равномерно распределены на интервале [0; 1]. Равномерное распределение заявок преобразуется в эксопоненциальное. Заявка попадает в обработчик событий и выходит из суперблока.

Создали суперблок, моделирующий обработку заявок (рис. 3.3).

Рис. 3.3: Суперблок, моделирующий обработку заявок

Заявки берутся из очереди и обрабатываются по экспоненциальному закону. Используя суперблоки, моделирующие поступление и обработку заявок, создали модель M|M|1| inf (рис. 3.4).

Рис. 3.4: Модель M|M|1| inf

При построении модели использовались селектор, два суперблока, генератор инициирующего события, сумматор, оператор задержки, регистратор размера очереди и регистратор событий.

В результате получили график изменения размера очереди (рис. 3.6) и график поступления и обработки заявок (рис. 3.5).

Рис. 3.5: График поступления и обработки заявок

Рис. 3.6: График изменения размера очереди

4 Выводы

В результате выполнения лабораторной работы смоделировать в хсо
s систему массового обслуживания M|M|1| inf.

Список литературы