MLBlocks: Arming FPGA architectures with Dense & Low Precision units in classic column based manner

- 6 times more 8x8 multiplier comparing to a DSP Block (two 8x8),

RS Data flow, High frequency, flexible data movement. Great for SConv, DWConv, PWConv, Matrix-Matrix Multiplication

- DPS BRAM ratio 1/1 (same as Ultrascale+ arch), Low number of intermediary outputs in practice
- Parameterized (for any budget limitation) can integrate multi precision idea
- 2- Compare with cascade paper (Prof. Nachiket)
- 3- new suggestion to use each 18KBRAM as 36bit streamer using external controler circuit (delivering 662MHz) (in cascade paper: 18bit)

UltraScale+ architecture distribution:	URAM	BRAM18	DSP48	BRAM18	DSP48	BRAM18	DSP48	
		BRAM18	DSP48	BRAM18	DSP48	BRAM18	DSP48	
	URAM	BRAM18	DSP48	BRAM18	DSP48	BRAM18	DSP48	
	URAM	BRAM18	DSP48	BRAM18	DSP48	BRAM18	DSP48	
		BRAM18	DSP48	BRAM18	DSP48	BRAM18	DSP48	
	URAM	BRAM18	DSP48	BRAM18	DSP48	BRAM18	DSP48	
	URAM	BRAM18	DSP48	BRAM18	DSP48	BRAM18	DSP48	
		BRAM18	DSP48	BRAM18	DSP48	BRAM18	DSP48	
	URAM	BRAM18	DSP48	BRAM18	DSP48	BRAM18	DSP48	
	URAM	BRAM18	DSP48	BRAM18	DSP48	BRAM18	DSP48	
		BRAM18	DSP48	BRAM18	DSP48	BRAM18	DSP48	
	URAM	BRAM18	DSP48	BRAM18	DSP48	BRAM18	DSP48	

Virtex 7 \rightarrow 28nm DSP48E1 Fmax=742MHz Virtex U \rightarrow 20nm Virtex UP \rightarrow 16nm

My amassing MLBlocks world

Dis Parallel:

1- more fan in and outs (since we are talking about small Pes it is fine)

Dis Systolic:

1- tougher scheduling, rythmic scheduling

2- prevent circuit fusions (less optimization)

$$B = B_{Seq} \times B_{par} \times B_{Sys}$$

of Physical MAC: $\times B_{par} \times B_{Sys}$ # of Input: $\times B_{par}$

of Output: $\times B_{par}$

(without internal serial to parallel)

Params = {right side indexes}

```
for param^{i}_{sch\_0}: 0 \rightarrow sch^{i}\_0

for param^{i}_{sch\_1}: 0 \rightarrow sch^{i}\_1

for param^{i}_{sch\_2}: 0 \rightarrow sch^{i}\_2

for param^{i}_{seq}: 0 \rightarrow comp\_seq^{i}

for param^{i}_{uu}: 0 \rightarrow comp\_un^{i}
```


3x3

2x3

2x3

2x3

2x3

2x3

2x3

2x3

2x3

2x3

README.n	nd		
Prima	ary Res	ults	
Size	Experiment	Computations (A,B)	A_I
DSP48		Dual8x8,27x18	
4x3	HP_all+R	8x8,8x16,16x8,24x8,8x24,16x16	6
4x3	HP_all	8x8,8x16,16x8,24x8,8x24,16x16	6
4x3	HP_most+R	8x8,8x16,16x8,24x8,16x16	6
4x3	HP_most	8x8,8x16,16x8,24x8,16x16	6
4x3	HP_semi+R	8x8,8x16,16x8,16x16	4
4x3	HP_semI	8x8,8x16,16x8,16x16	4
4x3	HP_apx+R	8x8,8x16,16x8,16x16apx	4
4x3	HP_apx	8x8,8x16,16x8,16x16apx	4
4x3	BYPASS+R	8x8+reuse	2
4x3	BYPASS	8x8	2

HP all+R

HP most+R

HP semi+R

HP_apx+R

BYPASS+R

HP most

HP_semI

HP_apx

BYPASS

HP all+R

HP all

HP most

HP semi

HP apx

BYPASS

HP apx+R

BYPASS+R

HP all

A D B D ACC D SHIFTER Area

HP

HP

HP

HP

HP

HP

HP apx

HP apx

BYPASS

BYPASS

HP

HP

HP

HP

HP

HP

HP_apx

HP_apx

BYPASS

BYPASS

HP

HP

HP

HP

HP

HP

HP apx

HP apx

BYPASS

BYPASS 3267

6 2

2

3

4 4 2

4 2 1

4 4 2

4 2 1

2 2 2

2 1 1

6 2

3 1

4 2

6

6 2

4 4 2

4 2 1

4 4 2

4 2 1

2 2 2

2 1 1

6 4 2

6 2 1

4 4 2

2 1

2 1 1

1

2

4 2

2 2 2

8x8,8x16,16x8,24x8,8x24,16x16 6

8x8,8x16,16x8,24x8,8x24,16x16 6

8x8,8x16,16x8,24x8,8x24,16x16 6

8x8.8x16.16x8.24x8.8x24.16x16 6 3 1

8x8.8x16.16x8.24x8.16x16

8x8,8x16,16x8,24x8,16x16

8x8,8x16,16x8,16x16

8x8,8x16,16x8,16x16

8x8,8x16,16x8,16x16apx

8x8,8x16,16x8,16x16apx

8x8.8x16.16x8.24x8.16x16

8x8,8x16,16x8,16x16

8x8,8x16,16x8,16x16apx

8x8,8x16,16x8,16x16apx

8x8+reuse

HP most+R 8x8,8x16,16x8,24x8,16x16

8x8+reuse

HP semI+R 8x8.8x16.16x8.16x16

8x8

7958

18340

13797

16778

13107

16232

12536

14318

10786

10721

6445

13760

10346

12641

9570

12206

9140

10686

8161

8062

4825

9246

6944

8460

6447

8173

6160

7186

5544

5440

412MHz without pipeline

MLBlobk - PEFlex

Why Dot product comparing to Systolic?

- Circuit fusion and optimisation
- Both have same unrolling factor
- Efficient pipelining rather than structured pipelines
- Register replacing and retiming
- Systolic are designed for better scaling (we are focusing on PE design which is small size)
 - If we talk for inside a PE ==> dot-product is better
 - If we explore PE-PE structure ==> Systolic manner
- Vector unit or systolic? Number of IO is much better in Systolic arrays
- My MLBlock benefit both Systolic-array and dot-product based accelerators.
 - Without using Systolic interconnections: MLBlock = a dot-product unit. Great for Supertile
 - Using interconnections: MLBlock = a column based systolic array structure Great for TPU/SeanFPT like

10 requirements

- Types:
 - Stream (Windowing) vs RAM:
 - Reasonable windowing
 - # of IOs
 - Less out
 - Maximum input

For every parameter in a given algorithm

$$P = P_{Comp_Sch} \times P_{Comp_PE}$$

$$P_{\text{Comp_Sch}} = \prod P_{\text{Sch-i}}$$

$$P_{Comp_PE} = P_{Comp_Un} \times P_{Comp_Seq}$$

IO aspect of a PE

$$P_{Comp_Un} \times P_{Comp_Seq} = P_{IO_Un} \times P_{IO_Seq}$$

P_{IO Seq}: dictate the clock cycles for fully recharge

P_{IO Seq} should be

For every parameter in a given algorithm

Required Multipliers = ΠP_{comp_PE}

$$P_{Comp_Un} \times P_{Comp_Seq} = P_{IO_Un} \times P_{IO_Seq}$$

- P_{IO_Seq}: clock cycles for fully recharge
- P_{Comp Seq}:

Extracting from for k = 0 until K do Algorithm for c = 0 until C do for y = 0 until Y do for x = 0 until X do for $f_u = 0$ until F_Y do Index W for $f_x = 0$ until F_X do $O[b][k][x][y] += I[b][c][x+f_x][y+f_y]$ В \times **W**[k][c][f_x][f_u] K Each index affect everyplace if it is used there. example: "b" is used in "O" and "I". Thus having n times unrolling "b" requires:

Mult

n

n

n

n

n

X

Fy

Fx

4) There is no effect on "W" Streaming does not affect anything.

3) as it is used for "I" in multiplication. It requires n times more Multipliers.

adition to unrolled regisres which can be relaised by the algorithm and loop orders.

Algorithm 1 CONV layer: simple seven nested loops.

1) n times more output result signals

2) n times more input signals

for b = 0 until B do

Streaming + Windowing reduces the IOs by saving them inside

(each element has the chance to be choosen). X, Fx, Y, Fy all are the candidates. Selecting one or more is acceptable. Since they are in "I", they just affect the "I" requirements. The affects of selecting a variable to be windowed is the added shift registers and in

Who can be windowed? The elements of input's or weight's indexes which includes more than one elements

For every parameter in a given algorithm

Precision

Maybe 9x9 is better than 8x8

- 1) It is Xilinx style
- 2) Fit BRAM well and URAM in a good shape (URAM's width = 72 = 8*9. So both 8 and 9 are great.
- 3)Then supporting 27x18 is available (keep in mind that Acc width is pain full. 45 bits at least).
 - 1)A size: 3
 - 2)B size: 2 x reuse
 - 3)Acc size: reuse x (at least 45)

Reusement

Reusement factor for different layers (for input act)

- 1) Standard: KKC
- 2) DW: C
- 3) PW: C
- 4) FC: C
- 5) Mat-Mat Mult: C

Which PE arch to pick?

- Highest utilisation rate.
- Power will be managed by scheduling (Stanford paper): Power analysis on PE structure is generally non significant
- Scalability
- Flexible precision
- Reusement
- Less partial outputs
- Don't trust on batch parallelism since it is not the case for embedded designs
- Limited number of multipliers

Ideas

- 1) Lop-based model → for different algorith → ASIC PE
- 2) Bench marking by Ideal PE archs(from 1) of current architectures (How well archs can implement the Ideal PEs)
- 3) How Synthetic arch can be generated?

Intel Architecture

Same as Xilinx DSP is bigger, BRAM is bigger as well

DSP 28nm:

TABLE II: Area of enhanced DSP blocks and overhead of supporting different modes compared to the baseline.

as well	DSP Block	Post-Synth. Area (μm^2)	Post-P&R Area (µm²)	Area Ratio	
	Baseline DSP Block	8404	9875	1.00	
	Add 9×9 Mult.	8368	10320	1.04	
	Add 9×9 MAC	8810	10384	1.05	
	Add 4×4 Mult.(1)-max reuse	9571	_	_	
	Add 4×4 Mult.(2)-min reuse	9104	10752	1.09	
	Add 4×4 Mult.(3)-mid reuse	8909	11651	1.18	
	Add 4×4 MAC using $C2$	9543	11887	1.20	
	Add 4×4 MAC using $C5$	9389	11108	1.12	
intel® Agilex ^T	™ F-SerieS	i	ntel® Agilex TM	i-SerieS	

	inter® rightex ribertes							######################################	
M20K	1900	2844	3792	5568	7110	11616	13272	11616	13272
DSP18x19	2300	3280	4592	8000	9020	12500	17056	12500	17056
DSP27x27	1150	1640	2296	4000	4510	6250	8528	6250	8528
ratio	1.21	1.15	1.21	1.44	1.27	1.08	1.29	1.08	1.29
DSP/M20K	0.61	0.58	0.61	0.72	0.63	0.54	0.64	0.54	0.64
BRAM18	4033								
DSP27x18	9024								
ratio DSP/M20K	2.24								

Roofline model

