

Olimpiada Națională de Matematică Etapa Națională, Târgu Mureș, 3 aprilie 2024

${\bf CLASA}$ a ${\bf X}$ -a – soluții și bareme

Problema 1. Rezolvați în mulțimea numerelor reale ecuația

$$3^{\log_5(5x-10)} - 2 = 5^{-1 + \log_3 x}.$$

Soluție. Observăm că ecuația are soluțiile $x_1=3$ și $x_2=27$; arătăm că ea nu mai are șa alte soluții
Continuarea B. Din condiția de existență a logaritmilor avem $x>2$. Observăm că funcția $f:(2,\infty)\to (0,\infty),\ f(x)=3^{\log_5(5x-10)}$ este inversabilă, având inversa $f^{-1}(x)=\frac{5^{\log_3 x}+10}{5}$ iar ecuația din enunț devine $f(x)=f^{-1}(x)$
Problema 2. Considerăm pentagonul inscriptibil $ABCDE$ în care $AB = BC = CD$ și centrul de greutate al pentagonului coincide cu centrul cercului circumscris. Arătați că pentagonul $ABCDE$ este regulat. Centrul de greutate al unui pentagon este punctul din planul pentagonului al cărui vector de poziție este egal cu media aritmetică a vectorilor de poziție ai vârfurilor.
Soluție. Considerăm un reper ortonormat cu centrul în centrul O al cercului C circumscris pentagonului $ABCDE$, cu unitatea de lungime egală cu raza cercului C și cu axa reală mediatoarea segmentului BC . Fie z_X afixul punctului X în acest reper. Deoarece $AB = BC = CD$, avem $\angle AOB = \angle BOC = \angle COD = 2\alpha \in \left(0, \frac{2\pi}{3}\right)$. Reiescă afixele vârfurilor pentagonului sunt $z_A = \cos 3\alpha + i \sin 3\alpha$, $z_B = \cos \alpha + i \sin \alpha$, $z_C = \cos \alpha - i \sin \alpha$, $z_D = \cos 3\alpha - i \sin 3\alpha$ și $z_E = \cos \beta + i \sin \beta$, cu $\beta \in (3\alpha, 2\pi - 3\alpha)$

Cum $0 < \alpha < 4\alpha < \frac{4\pi}{3}$, deducem $4\alpha = \pi - \alpha$, deci $\alpha = \frac{\pi}{5}$ de unde $\angle AOB = \angle BOC = \alpha$ Altă soluție. Considerăm un reper ortonormat cu centrul în centrul O al cercului C circumscris pentagonului ABCDE, cu unitatea de lungime egală cu raza cercului \mathcal{C} și cu axa reală OA. Fie z_X afixul punctului X în acest reper. Deoarece AB = BC = CD, avem $\angle AOB = \angle BOC = \angle COD$. Reiese că afixele vârfurilor pentagonului sunt $z_A=1,\ z_B=z,\ z_C=z^2,\ z_D=z^3$ și $z_E=w,\ {\rm cu}\ z=\cos\alpha+i\sin\alpha,$ Dacă centrul de greutate al pentagonului coincide cu O, atunci $z_A + z_B + z_C + z_D + z_E = 0$, de unde obținem $1 + z + z^2 + z^3 + w = 0$**1p Problema 3.** Fie numărul natural $n \ge 2$ și \mathcal{F} mulțimea funcțiilor $f: \{1, 2, \ldots, n\} \rightarrow$ $\{1, 2, ..., n\}$ pentru care $f(k) \le f(k+1) \le f(k) + 1$, pentru orice $k \in \{1, 2, ..., n-1\}$. a) Determinați cardinalul mulțimii \mathcal{F} . b) Determinați numărul total al punctelor fixe ale funcțiilor din \mathcal{F} . Un punct fix al functiei f este un număr $x \in \{1, 2, ..., n\}$ astfel încât f(x) = x. Soluție. a) Numărăm funcțiile din \mathcal{F} cu $f(1)=k, k=\overline{1,n}$. Asociem fiecărui $i=\overline{2,n}$ numărul $f(i) - f(i-1) \in \{0,1\}$, cu restricția că pot fi cel mult n-k de 1. Această asociere este bijectivă, iar posibilitățile de a alege numerele 0 și 1 ca mai sus sunt în număr de $C_{n-1}^0 + C_{n-1}^1 + \ldots + C_{n-1}^{n-k} \text{ (sunt posibilitățile de a plasa } 0, 1, 2, \ldots, n-k \text{ de } 1) \ldots \mathbf{1p}$ Rezultă $|\mathcal{F}| = \sum_{k=1}^n (C_{n-1}^0 + C_{n-1}^1 + \ldots + C_{n-1}^{n-k}) = \sum_{p=0}^{n-1} (n-p)C_{n-1}^p = n \cdot 2^{n-1} - (n-p)C_{n-1}^p$ b) Numărăm de câte ori apare punctul fix k la funcțiile din \mathcal{F} , $k = \overline{1,n}$ (același punct fix poate apărea la mai multe funcții). Asociem fiecărei funcții pentru care f(k) = k numerele Deoarece aceste numere pot fi alese fără restricții, există 2^{n-1} posibilități, deci fiecare punct fix apare la 2^{n-1} funcții, iar $\sum_{f \in \mathcal{F}} |\operatorname{Fix}(f)| = n \cdot 2^{n-1} \dots 2^{n-1} \dots 2^{n-1}$ Altă soluție. Notăm cu \mathcal{F}_n mulțimea din enunț, cu $k_n = |\mathcal{F}_n|$ și cu $s_n = \sum_{f \in \mathcal{F}_n} |\operatorname{Fix}(f)|$. Pentru n=2 avem $k_2=3$ și $s_2=4$. a) Observăm că dacă $f \in \mathcal{F}_{n+1}$ și $f(n) \leq n$, atunci restricția lui f la $\{1, 2, \ldots, n\}$ este o funcție din \mathcal{F}_n . Reciproc, orice funcție din \mathcal{F}_n poate fi extinsă la una din \mathcal{F}_{n+1} în două moduri, deoarece $f(n+1) \in \{f(n), f(n)+1\}$**1p** Pentru cazul f(n) = n + 1 avem f(n + 1) = n + 1 și apoi, parcurgând valorile f(n - 1)1), $f(n-2), \ldots, f(1)$, observăm că la fiecare pas f(k+1) - f(k) poate fi 0 sau 1, deci putem construi f în 2^{n-1} moduri. Așadar, avem recurența $k_{n+1}=2k_n+2^{n-1}$, iar cum $k_2=3$, obținem $k_n = (n+1) \cdot 2^{n-2}$ 2p

b) Fie $a_i(n)$ numărul funcțiilor $f \in \mathcal{F}_n$ pentru care $i \in \text{Fix}(f)$. Atunci avem $s_n = a_1(n) + a_2(n) + \ldots + a_n(n)$.

Fie $f \in \mathcal{F}_{n+1}$ o funcție pentru care f(k) = k, pentru $k \leq n$. Atunci, folosind relația din ipoteză, avem:

$$f(n) \le f(n-1) + 1 \le \ldots \le f(k) + (n-k) = n.$$

Așadar, restricția lui f la $\{1, 2, ..., n\}$ este o funcție din \mathcal{F}_n , adică f se obține dintr-o funcție din \mathcal{F}_n , căreia îi este adăugată valoarea f(n+1). Dar, cum $f(n) \leq n$, valoarea lui f(n+1) poate fi aleasă în două moduri, ceea ce implică $a_k(n+1) = 2a_k(n)$, pentru orice $k \leq n ... 2p$

Pentru a determina $a_{n+1}(n+1)$, observăm că f(n+1) = n+1, iar parcurgând valorile $f(n), f(n-1), \ldots, f(1)$, observăm că la fiecare pas f(k+1) - f(k) este 0 sau 1, adică f se poate construi în 2^n moduri. Așadar, $a_{n+1}(n+1) = 2^n \ldots 1$

De aici avem recurența $s_{n+1}=2s_n+2^n$, iar cum $s_2=4$, obținem $s_n=n\cdot 2^{n-1}\ldots 1$

a) Din cele de mai sus deducem

$$|\mathcal{F}| = 3 + \sum_{k=1}^{n-2} (n - k + 3) \cdot 2^{n-k+2} = 3 + \sum_{k=1}^{n-2} 2^{n-k} + \sum_{k=1}^{n-2} (n - k - 1) 2^{n-k-2} = \sum_{k=0}^{n-1} 2^k + \sum_{k=0}^{n-3} (k+1) 2^k = 2^n - 1 + (n-1) \cdot 2^{n-2} - 2^{n-1} + 1 = (n+1) \cdot 2^{n-2} \dots \mathbf{2p}$$

b) În mod similar, deducem:

$$\sum_{f \in \mathcal{F}} |\text{Fix}(f)| = 3n - 2 + \sum_{k=1}^{n-2} k(n-k+3) \cdot 2^{n-k+2} = n \cdot 2^{n-1} \qquad \dots \mathbf{2p}$$

Problema 4. Considerăm un număr natural $n \geq 3$, mulțimea $S = \{1, 2, 3, ..., n\}$ și mulțimea \mathcal{F} a funcțiilor de la S la S. Vom spune că o mulțime $\mathcal{G} \subset \mathcal{F}$ este generatoare pentru mulțimea $\mathcal{H} \subset \mathcal{F}$ dacă orice funcție din \mathcal{H} se poate reprezenta ca o compunere de funcții din \mathcal{G} .

- a) Fie funcțiile $a: S \to S$, a(n-1) = n, a(n) = n-1 și a(k) = k pentru $k \in S \setminus \{n-1, n\}$ și $b: S \to S$, b(n) = 1 și b(k) = k+1 pentru $k \in S \setminus \{n\}$. Arătați că $\{a,b\}$ este o mulțime generatoare pentru mulțimea \mathcal{B} a funcțiilor bijective din \mathcal{F} .
- b) Demonstrați că numărul minim de elemente pe care le are o mulțime generatoare a lui ${\mathcal F}$ este 3.

Soluție. Vom nota cu fg funcția $f \circ g$ (unde $f, g \in \mathcal{F}$) și cu (i_1, i_2, \ldots, i_p) funcția $f : S \to S$ dată de $f(i_j) = i_{j+1}, j = \overline{1, p-1}, f(i_p) = i_1$ și f(x) = x pentru $x \neq i_1, \ldots, i_p$ (unde i_1, \ldots, i_p sunt $p \geq 2$ elemente distincte din S).

a) Raționăm prin inducție după n. Pentru n = 3, $\mathcal{B} = \{a, a^2, b, b^2, ab, ba\}$.

b) Arătăm că, dacă \mathcal{G} este o mulțime generatoare pentru \mathcal{F} , atunci $|\mathcal{G}| \geqslant 3$.

Dacă \mathcal{G} are cel mult două elemente f, g, atunci:

- \bullet dacă f și g sunt bijective, atunci $\mathcal G$ nu poate genera decât funcții bijective;
- \bullet dacă f și g nu sunt bijective, atunci ele nu sunt surjective, deci \mathcal{G} nu poate genera decât funcții nesurjective;
- dacă (de exemplu) f este bijectivă și g nu este bijectivă, atunci funcțiile bijective generate de \mathcal{G} sunt f^n , $n \in \mathbb{N}^*$. În acest caz \mathcal{G} nu poate genera atât a cât și b, deoarece $ab \neq ba$, pe când $f^m f^p = f^p f^m, \forall m, p \in \mathbb{N}^*$2p

Dovedim că orice $f \in \mathcal{F}$ se scrie ca o compunere de a, b, c prin inducție descendentă, după numărul de elemente din imaginea lui f. Dacă $|\operatorname{Im} f| = n$, atunci f este bijectivă și folosim a).