Aprendizaje profundo

ENTRENAMIENTO DE REDES NEURONALES PROFUNDAS

Gibran Fuentes-Pineda Septiembre-Octubre 2021

Preprocesamiento de datos

Preprocesamiento

· Re-escalado

$$\mathbf{x}' = \frac{\mathbf{x} - min(\mathbf{x})}{max(\mathbf{x}) - min(\mathbf{x})}$$

Estandarización

$$\mathbf{x}' = \frac{\mathbf{x} - \bar{\mathbf{x}}}{\sigma}$$

Magnitud unitaria

$$x' = \frac{x}{\|x\|}$$

Preprocesamiento: imágenes

· Radio uniforme

Imagen tomada de Nikhil B. Image Data Pre-Processing for Neural Networks, 2017.

Preprocesamiento: imágenes

- · Radio uniforme
- · Escalado de valores de pixeles

Imagen tomada de presentación de Yubei Chen. Part I: Manifold Learning, 2018.

Preprocesamiento: audio

Filtrado

Imagen del usuario SpinningSpark de Wikipedia (entrada Filter (signal processing)). CC BY-SA 3.0

Preprocesamiento: audio

- Filtrado
- · Espectograma

Preprocesamiento: texto como bolsas

- · Bolsas de palabras
 - Stopwords
 - Stemming
 - · Quitar caracteres

Preprocesamiento: representaciones distribuidas

· Encajes de palabra

Imagen tomada de McCormick, Word2Vec Tutorial - The Skip-Gram Model, 2016.

Preprocesamiento: palabras como vectores densos

- · Encajes de palabra
- · Word2Vec

Imagen tomada de Tutubalina y Nikolenko. Demographic Prediction Based on User Reviews about Medications, 2017.

Preprocesamiento: video

- · Preprocesamiento por marco
- · Muestreo de marcos (por ej., uniforme o por movimiento)
- · Flujo de movimiento

 $Imagen \ to mada \ de \ https://www.commonlounge.com/discussion/1c2eaa85265f47a3a0a8ff1ac5fbce51$

Sobreajuste y cómo atacarlo

Sobreajuste y complejidad

Subajuste

Sobreajuste

Ajuste normal

Regularización en redes neuronales

- Estrategias para disminuir sobreajuste en redes neuronales
 - · Penalización de función de error (o función de pérdida)
 - · Adición de ruido a entradas, salidas y/o parámetros
 - Ensambles
 - · Paro temprano
 - · Aprendizaje de múltiples tareas
 - Dropout
 - Acrecentamiento de datos (data augmentation)
 - · Normalización por lotes
 - Versiones estocásticas del descenso por gradiente y variantes

Penalizando pesos y sesgos con norma ℓ_1 y ℓ_2

• Norma ℓ_1

$$\hat{\mathcal{L}}(\boldsymbol{\theta}) = \mathcal{L}(\boldsymbol{\theta}) + \frac{\lambda}{2} \|\boldsymbol{\theta}\|_1$$

• Norma ℓ_2

$$\hat{\mathcal{L}}(\boldsymbol{\theta}) = \mathcal{L}(\boldsymbol{\theta}) + \frac{\lambda}{2} \|\boldsymbol{\theta}\|_2^2$$

Paro temprano

- Detiene el entrenamiento si la pérdida o métrica de validación no aumenta después de varios pasos
- Usualmente se elige el modelo con mejor desempeño en el conjunto de validación

Imagen tomada de https://deeplearning4j.org/earlystopping

Aprendizaje de múltiples tareas

 Tener una representación genérica compartida entre múltiples tareas relacionadas

Imagen tomada de Goodfellow et al. Deep Learning, 2016

Dropout (desactivación)

 Desactiva neuronas de forma aleatoria ¹ para evitar co-adaptación

Imagen tomada de Srivastava et al. Dropout: A Simple Way to Prevent Neural Networks from Overfitting, 2014

¹Probabilidad es típicamente 0.5

Dropout en entrenamiento

· La salida de la *i-*ésima neurona está dada por

$$z_i^{\{\ell+1\}} = \mathbf{w}_i^{\{\ell+1\}} \widetilde{\mathbf{y}}^{\{\ell\}} + b_i^{\{\ell+1\}}$$

$$y_i^{\{\ell+1\}} = \phi(z_i^{\{\ell+1\}})$$

donde $\widetilde{\mathbf{y}}$ es una máscara binaria sobre las salidas de las neuronas con 1s para las activas y 0s para las inactivas

$$r_j \sim ext{Bernoulli(P)}$$
 $\widetilde{\mathbf{y}}^{\{\ell\}} = \mathbf{r}^{\{\ell\}} * \mathbf{y}^{\{\ell\}}$

• *P* es un hiperparámetro que indica la probabilidad de que una neurona se mantenga activa

Dropout como ensamble

 Puede verse como entrenar simultáneamente múltiples redes eliminando neuronas de una red base

Dropout en inferencia

 En vez de promediar las salidas de todas las redes entrenadas, se obtiene la salida de una sola red con los pesos y sesgos (θ = {W, b}) escalados

$$\boldsymbol{\theta}_{\mathsf{inferencia}} = P \cdot \boldsymbol{\theta}$$

• De esta forma se combinan 2ⁿ redes en una sola

Imagen tomada de Srivastava et al. Dropout: A Simple Way to Prevent Neural Networks from Overfitting, 2014

Activaciones con Dropout

Imagen tomada de Srivastava et al. Dropout: A Simple Way to Prevent Neural Networks from Overfitting, 2014

· Traslación

 $Imagen\ to mada\ de\ https://people.gnome.org/~mathieu/libart/libart-affine-transformation-matrices.html$

- · Traslación
- · Rescalado

Imagen tomada de https://people.gnome.org/~mathieu/libart/libart-affine-transformation-matrices.html

- Traslación
- Rescalado
- · Giro

 $Imagen\ to mada\ de\ https://people.gnome.org/~mathieu/libart/libart-affine-transformation-matrices.html$

- Traslación
- Rescalado
- Giro
- Rotación

Imagen tomada de https://people.gnome.org/~mathieu/libart/libart-affine-transformation-matrices.html

- Traslación
- Rescalado
- Giro
- Rotación
- Deformación de corte

Imagen del usuario de Wikipedia Cmglee (entrada Affine transformation). CC BY-SA 3.0

Acrecentamiento de imágenes: ejemplos

Imagen tomada de Dieleman. Classifying plankton with deep neural networks, 2015.

Acrecentamiento de audio

· Ruido aditivo

Imagen tomada de Peyre. Signal and Image Noise Models, 2008

Acrecentamiento de audio

- · Ruido aditivo
- · Enmascaramiento del espectograma

Imagen tomada de https://ai.googleblog.com/2019/04/specaugment-new-data-augmentation.html

Acrecentamiento en texto

Símbolos

- · Insertar/cambiar/quitar símbolos aleatoriamente
- · Simular errores de teclado
- · Simular errores de OCR

Palabra

- Cambiar/quitar palabras aleatoriamente o con algún modelo de lenguaje o bolsa de palabras
- Cambiar palabras por sinónimos
- · Cambiar palabras de acuerdo a errores de escritura

Desvanecimiento y explosión del gradiente

Explosión y desvanecimiento del gradiente

 Problemas con el desvanecimiento y explosión de respuestas (hacia adelante) y gradientes (hacia atrás)

Imagen tomada de He et al. Deep Residual Learning for Image Recognition, 2015

Explosión y desvanecimiento del gradiente: 2 capas ocultas

- Gradientes de primeras capas se vuelven muy pequeños si la red es muy profunda
- · Muy lento actualizar pesos de estas capas

Tomado de http://neuralnetworksanddeeplearning.com/chap5.html

Explosión y desvanecimiento del gradiente: 3 capas ocultas

- Gradientes de primeras capas se vuelven muy pequeños si la red es muy profunda
- · Muy lento actualizar pesos de estas capas

Tomado de http://neuralnetworksanddeeplearning.com/chap5.html

Explosión y desvanecimiento del gradiente: 4 capas ocultas

- Gradientes de primeras capas se vuelven muy pequeños si la red es muy profunda
- · Muy lento actualizar pesos de estas capas

Tomado de http://neuralnetworksanddeeplearning.com/chap5.html

Explosión y desvanecimiento del gradiente: mitigación

- · Recorte de gradientes (gradient clipping)
- Emplear funciones de activación no saturadas en capas ocultas
- · Incorporar conexiones residuales a la red
- · Inicializar pesos y sesgos con heurísticas apropiadas
- Emplear normalización por lotes

Gradient clipping

- · Estrategia para evitar la explosión del gradiente
- La idea general es limitar la magnitud de los valores de los gradientes.
- · Por ej.

Si
$$\|\nabla \mathcal{L}(\boldsymbol{\theta})\| > \eta$$
, entonces $\frac{\eta \cdot \nabla \mathcal{L}(\boldsymbol{\theta})}{\|\nabla \mathcal{L}(\boldsymbol{\theta})\|}$

donde η es un umbral de la norma.

Funciones de activación saturadas

Funciones de activación no saturadas (1)

Funciones de activación no saturadas (2)

Explosión y desvanecimiento del gradiente: conexiones residuales

· Agregando conexiones residuales en la arquitectura

Imagen tomada de He et al. Deep Residual Learning for Image Recognition, 2015

Imagen de Kevin Murphy, tomada de Probabilistic Machine Learning: An Introduction,

2021

Explosión y desvanecimiento del gradiente: inicialización (1)

- Números aleatorios de distribución gaussiana con media 0 y varianza 0.01.
 - · Funciona en redes pequeñas
 - · Para redes profundas activaciones tienden a volverse 0
- Números aleatorios de distribución gaussiana con media 0 y varianza 1
 - Genera saturación de las neuronas y gradientes se vuelven
 0

Explosión y desvanecimiento del gradiente: inicialización (2)

- · Para una capa con n_e entradas y n_s salidas
 - · Uniforme de Glorot y Bengio (2010)

$$\boldsymbol{\theta} \sim \mathcal{U}\left[-\sqrt{\frac{6}{n_e + n_s}}, \sqrt{\frac{6}{n_e + n_s}}\right]$$

Normal de Glorot y Bengio (2010)

$$\boldsymbol{\theta} \sim \mathcal{N}\left(0, \frac{2}{n_e + n_s}\right)$$

· Normal de He et al. (2015)

$$\boldsymbol{\theta} \sim \mathcal{N}\left(0, \frac{2}{n_e}\right)$$

Normalización

El problema del desplazamiento covariable interno

- Cambio en distribución de activaciones por cambio en parámetros durante entrenamiento
- · Hace más lento el aprendizaje

Imagen tomada de Raza et al. EWMA model based shift-detection methods for detecting covariate shifts in non-stationary environments, 2015

Normalización por lotes

- Converge más rápido si entradas tienen media 0, varianza 1 y no están correlacionadas
 - 1. Media y varianza del lote

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}^{\{i\}}$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^{m} (\mathbf{x}^{\{i\}} - \mu_{\mathcal{B}}))^2$$

2. Normalización

$$\hat{\mathbf{x}}^{\{i\}} \leftarrow \frac{\mathbf{x}^{\{i\}} - \boldsymbol{\mu}_{\mathcal{B}}}{\sqrt{\boldsymbol{\sigma}_{\mathcal{B}}^2 + \epsilon}}$$

3. Escalado y desplazamiento

$$\mathbf{y}^{\{i\}} \leftarrow \boldsymbol{\gamma} \odot \hat{\mathbf{x}}^{\{i\}} + \boldsymbol{\beta}$$

donde \odot es el producto de Hadamard (elemento a elemento), ϵ es un valor pequeño y m es el tamaño del

Entrenamiento e inferencia con normalización por lotes

- 1. Normalizar la red con mini-lote
- 2. Entrenar la red con retro-propagación
- Transformar estadísticos del lote a estadísticos de población

Beneficios de normalización por lotes

- · Acelera el entrenamiento
- · Permite tasas de aprendizaje más grandes
- · Facilita la inicialización de pesos
- Hace posible usar funciones de activación saturadas (por ej. sigmoide)
- · Actúa como un tipo de regularizador
- · Facilita la creación de redes profundas

Normalización por capas (1)

- Estima los estadísticos sobre las neuronas de la misma capa ℓ

$$\mu^{\{\ell\}} = \frac{1}{H} \cdot \sum_{i=1}^{H} a_i^{\{\ell\}}$$

$$\sigma^{\{\ell\}} = \sqrt{\frac{1}{H} \cdot \sum_{i=1}^{H} \left(a_i^{\{\ell\}} - \mu^{\{\ell\}} \right)^2}$$

donde H es el número de neuronas en la capa.

• Todas las neuronas de la capa ℓ se normalizan usando la misma $\mu^{\{\ell\}}$ y $\sigma^{\{\ell\}}$, pero diferentes ejemplos tienen diferentes estadísticos.

Normalización por capas (2)

 Al igual que la normalización por lotes, se agrega un desplazamiento y escalado adaptable

$$\hat{a}^{(i)} = \frac{\gamma}{\sigma^{(i)}} \odot (\mathbf{a}^{(i)} - \mu^{(i)}) + \boldsymbol{\beta}$$

donde γ y β son parámetros que se entrenan.

 La normalización por capas realiza la misma operación tanto en entrenamiento como en prueba

Optimizadores: descenso por gradiente y variantes

Problema de optimización

 Usualmente el aprendizaje en redes neuronales se formula como un problema de optimización

$$\boldsymbol{\hat{\theta}} \leftarrow \argmin_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta})$$

donde $\mathcal{L}(\theta): \mathbb{R}^d \to \mathbb{R}$ es una función escalar, conocida como función de pérdida, costo o error, la cual depende de los d parámetros $\theta = \{W, b\} \in \mathbb{R}^d$ de la red

- Al punto $\hat{m{ heta}}$ con el valor mínimo de la función de pérdida se le conoce como mínimo global

Conjuntos convexos

• Un conjunto C es convexo si, para cualquier par de puntos $x, y \in C$, tenemos que

$$\lambda \cdot x + (1 - \lambda) \cdot y \in \mathcal{C}, \forall \lambda \in [0, 1]$$

Figura de Zhang et al., tomada de Dive into Deep Learning, 2021.

Intersección de conjuntos convexos

• Si C_1 y C_2 son dos conjuntos convexos, entonces el conjunto $C_1 \cap C_2$ es también convexo.

Figura de Zhang et al., tomada de Dive into Deep Learning, 2021.

Unión de conjuntos convexos

• Si C_1 y C_2 son dos conjuntos convexos, entonces el conjunto $C_1 \cup C_2$ es no convexo.

Figura de Zhang et al., tomada de Dive into Deep Learning, 2021.

Funciones convexas

- Una función $f:\mathcal{C}\to\mathbb{R}$ es convexa si su epigrafo es un conjunto convexo.
- El epigrafo de una función *f* es el conjutno de puntos que se encuentra encima de ella

$$epi(f) = \{(x, \mu) : x \in \mathbb{R}^d, \mu \in \mathbb{R}, f(x) \le \mu\} \subseteq \mathbb{R}^{d+1}$$

• Dado un conjunto convexo \mathcal{C} , una función es convexa si para cualquier par de puntos $x,y\in\mathcal{C}$

$$\lambda \cdot f(x) + (1 - \lambda) \cdot f(y) \ge f(\lambda \cdot x + (1 - \lambda) \cdot f(y))$$

Propiedades de funciones convexas

- Mínimos locales son mínimos globales
- Una función $f: \mathbb{R} \to \mathbb{R}$ doblemente diferenciable
 - Es convexa si $\frac{d^2f(x)}{dx^2} \ge 0$
 - Es estrictamente convexa si $\frac{d^2f(x)}{dx^2} > 0$
 - Es fuertemente convexa con parámetro m si $\frac{d^2f(x)}{dx^2} \ge m > 0$
- Una función $f: \mathbb{R}^d \to \mathbb{R}$ doblemente diferenciable
 - Es convexa si el hessiano de f es semidefinido positivo
 - Es estrictamente convexa si el hessiano de *f* es definido positivo
 - \cdot Es fuertemente convexa con parámetro m si

$$(\nabla f(\mathbf{x}) - \nabla f(\mathbf{y}))^{\top}(\mathbf{x} - \mathbf{y}) \ge m \cdot \|\mathbf{x} - \mathbf{y}\|_{2}^{2}$$

Mínimos locales

- Las funciones de pérdida en redes neuronales multicapa usualmente son no convexas y encontrar siempre el mínimo global es intratable
- En algunos casos se busca garantizar que al menos se encuentre un mínimo local, esto es, un punto θ^* cuyo valor sea menor o igual que el de todos sus vecinos

Puntos silla

· Pueden existir varios puntos silla

Promedio móvil ponderado exponencialmente (PMPE)

· Definido por

$$e^{[t+1]} = \beta \cdot e^{[t]} + (1-\beta) \cdot s^{[t]}$$
 donde $s^{[t]}$ y $e^{[t]}$ son el valor y el PMPE en el tiempo t

· Expandiendo

$$e^{[1]} = s^{[1]}$$

$$e^{[2]} = \beta \cdot e^{[2]} + (1 - \beta) \cdot s^{[1]}$$

$$e^{[3]} = \beta \cdot e^{[3]} + (1 - \beta) \cdot s^{[2]}$$

$$\vdots = \vdots$$

$$e^{[n]} = \beta \cdot e^{[n]} + (1 - \beta) \cdot s^{[n-1]}$$

Promedio móvil ponderado exponencialmente (PMPE)

Recordando el descenso por gradiente estocástico

 Actualiza iterativamente los parámetros con base en los gradientes de la función de pérdida

$$\boldsymbol{\theta}^{[t+1]} = \boldsymbol{\theta}^{[t]} - \alpha \nabla \mathcal{L}(\boldsymbol{\theta}^{[t]})$$

donde

$$\nabla \mathcal{L}(\boldsymbol{\theta}^{[t]}) = \left[\frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}_0^{[t]}}, \cdots, \frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}_d^{[t]}}\right]$$

• El descenso por gradiente estocástico (SGD) aproxima $\nabla \mathcal{L}(\boldsymbol{\theta}^{[t]})$ con un minilote de ejemplos de entrenamiento

Sensibilidad a tasa de aprendizaje lpha

Programación de la tasa de aprendizaje

- · Se va ajustando la tasa de aprendizaje con el tiempo
- Estrategias
 - Constante por periodos
 - · Declive polinomial
 - · Declive exponencial
 - Cíclico

Imagen tomada de K. Murphy. Probabilistic Machine Learning, 2022.

SGD con momento

 Introduce término de velocidad a la actualización (acumula declive)

$$\begin{aligned} \mathbf{m}^{[t+1]} &= \mu \cdot \mathbf{m}^{[t]} - \alpha \cdot \nabla \mathcal{L}(\boldsymbol{\theta}) \\ \boldsymbol{\theta}^{[t+1]} &= \boldsymbol{\theta}^{[t]} + \mathbf{m}^{[t+1]} \end{aligned}$$

· Momento de Nesterov

$$\mathbf{m}^{[t+1]} = \mu \cdot \mathbf{m}^{[t]} - \alpha \cdot \nabla \mathcal{L}(\boldsymbol{\theta}^{[t]} + \mu \cdot \mathbf{m}^{[t]})$$
$$\boldsymbol{\theta}^{[t+1]} = \boldsymbol{\theta}^{[t]} + \mathbf{m}^{[t+1]}$$

RMSProp

 Actualiza los parámetros a partir de los promedios móviles ponderados de los gradientes al cuadrado (segundo momento de los gradientes)

$$\mathbf{v}^{[t+1]} = \beta \cdot \mathbf{v}^{[t]} + (1 - \beta) \cdot \left[\nabla \mathcal{L}(\boldsymbol{\theta}^{[t]}) \right]^{2}$$
$$\boldsymbol{\theta}^{[t+1]} = \boldsymbol{\theta}^{[t]} - \frac{\alpha}{\sqrt{\mathbf{v}^{[t+1]} + \epsilon}} \odot \nabla \mathcal{L}(\boldsymbol{\theta}^{[t]})$$

donde ⊙ denota el producto de Hadamard

Optimizador Adam (1)

 Se estima el primer (la media) y segundo (la varianza no centrada) momentos de los gradientes

$$\mathbf{m}^{[t+1]} = \beta_1 \cdot \mathbf{m}^{[t]} + (1 - \beta_1) \cdot \nabla \mathcal{L}(\boldsymbol{\theta}^{[t]})$$
$$\mathbf{v}^{[t+1]} = \beta_2 \cdot \mathbf{v}^{[t]} + (1 - \beta_2) \cdot \left[\nabla \mathcal{L}(\boldsymbol{\theta}^{[t]})\right]^2$$

 Debido a que estas estimaciones están sesgadas hacia 0 (se inicializan con 0), se realiza una corrección

$$\hat{\mathbf{m}}^{[t+1]} = \frac{\mathbf{m}^{[t+1]}}{1 - \beta_1^{t+1}}$$

$$\hat{\mathbf{v}}^{[t+1]} = \frac{\mathbf{v}^{[t+1]}}{1 - \beta_2^{t+1}}$$

donde β_1^{t+1} y β_2^{t+1} son los factores de ponderación $\beta_1,\beta_2\in[0,1)$ elevados a la potencia t+1

Optimizador Adam (2)

 Para actualizar los parámetros se usan las estimaciones de los momentos de los gradientes en el tiempo t

$$\boldsymbol{\theta}^{[t+1]} = \boldsymbol{\theta}^{[t]} - \frac{\alpha}{\sqrt{\hat{\mathbf{y}}^{[t+1]}} + \epsilon} \cdot \hat{\mathbf{m}}^{[t+1]}$$

Promediando los parámetros (1)

 Stochastic Weight Averaging (SWA) promedia los pesos y sesgos de las actualizaciones realizadas al entrenar una red usando una programación de la tasa de aprendizaje modificada

 $Imagen\ to mada\ de\ https://pytorch.org/blog/pytorch-1.6-now-includes-stochastic-weight-averaging/.$

Promediando los parámetros (2)

- SWA es similar a *Polyak-Ruppert averaging*² pero usa una tasa de aprendizaje cíclica o un tasa grande constante y un promedio regular, en lugar de una tasa que decae y el promedio móvil exponencialmente ponderado.
- Ha mostrado mejorar el rendimiento de modelos entrenados en diferentes aplicaciones, agregando muy poco costo computacional

²Propuesto de forma independiente por B. Polyak y D. Ruppert.