Formal Proofs in Cryptography

Somitra Sanadhya

February 1, 2025

Part-1: Perfect Security

Perfect Security

- ▶ In cryptography, a cryptosystem is said to have perfect security if an adversary gains no additional information about the plaintext after observing the ciphertext.
- Contents of this part:
 - Different definitions of perfect security
 - Equivalence of these definitions
 - ► A practical issue in using a perfectly secure encryption scheme

Notation and Cryptosystem Components

- \blacktriangleright Let $\mathcal K$ denote the set of keys.
- \blacktriangleright Let \mathcal{M} denote the set of messages (plaintexts).
- ▶ Let C denote the set of ciphertexts.
- ▶ $E_k : \mathcal{M} \to \mathcal{C}$ is the encryption function using key k.
- ▶ $D_k : C \to M$ is the decryption function using key k.

Assumption: Encryption is done with a randomly selected key k from K according to some probability distribution.

Definition 1: Ciphertext Distribution Independence

Definition

A cryptosystem is said to be **perfectly secure** if for all messages $m_1, m_2 \in \mathcal{M}$ and for all ciphertexts $c \in \mathcal{C}$:

$$P(C = c \mid M = m_1) = P(C = c \mid M = m_2).$$

- ► This definition states that the probability of obtaining any ciphertext *c* is independent of the original message *m*.
- Thus, observing the ciphertext provides no clue as to which message was encrypted.

Definition 2: Shannon's Definition

Definition

A cryptosystem achieves perfect security if:

$$P(M = m \mid C = c) = P(M = m)$$
 for all $m \in \mathcal{M}$ and $c \in \mathcal{C}$.

- ▶ This definition implies that the a-posteriori probability of any message *m*, given the ciphertext *c*, is the same as the a-priori probability of *m*.
- In other words, the ciphertext c does not change our beliefs about the likelihood of any message.

Definition 3: Key-Message Relation

Definition

For every plaintext m and every ciphertext c, there exists a key k such that:

$$E_k(m)=c.$$

- This ensures that no matter what message and ciphertext are chosen, there is always a key that could have produced c from m.
- ► It highlights that the encryption process does not favor any particular plaintext-ciphertext pairing.

Proof: Equivalence of Definition 1 and Definition 2

Goal: Show that the condition

$$P(C = c \mid M = m_1) = P(C = c \mid M = m_2) \quad \forall m_1, m_2 \in \mathcal{M}, c \in \mathcal{C},$$
 is equivalent to Shannon's definition:

$$P(M = m \mid C = c) = P(M = m) \quad \forall m \in \mathcal{M}, c \in \mathcal{C}.$$

Proof:

Assume: $P(M \mid C) = P(M)$. By Bayes' theorem:

$$P(M = m \mid C = c) = \frac{P(C = c \mid M = m)P(M = m)}{P(C = c)}.$$

Setting $P(M = m \mid C = c) = P(M = m)$ gives:

$$\frac{P(C=c \mid M=m)P(M=m)}{P(C=c)} = P(M=m)$$

$$\implies$$
 $P(C = c \mid M = m) = P(C = c).$

► This shows that the ciphertext distribution is independent of the message.

... contd.

► Conversely, if $P(C = c \mid M = m) = P(C = c)$ holds, then by applying Bayes' theorem in reverse, we obtain:

$$P(M = m \mid C = c) = \frac{P(C = c)P(M = m)}{P(C = c)} = P(M = m).$$

▶ This proves the equivalence of definitions 1 and 2.

Proof: Key-Message Relation and Perfect Security

- ► The key-message relation (every message-ciphertext pair can be produced by some key) ensures that there is no bias in the encryption process.
- ▶ This condition guarantees that for any given m and c, the probability $P(C = c \mid M = m)$ is the same because the set of keys that map m to c does not depend on m.
- ▶ Hence, if this condition is met, it is another way of stating that $P(C = c \mid M = m)$ is independent of m, which is equivalent to the other definitions of perfect security.

Practical problem in using Perfect Security

Theorem

For any perfectly secure encryption scheme,

$$|K| \ge |M|$$

i.e. the keyspace should be larger than the message space.

- We will prove this statement by contrapositive (i.e. to prove $A \Rightarrow B$ we show that $\neg B \Rightarrow \neg A$.
- ▶ Assume that |K| < |M|, and we have a ciphertext $c \in C$.
- ▶ Construct the set $X = \{ \forall k \in K, Dec(k, c) \}$, i.e. decrypt c with all possible keys.
- ▶ Clearly $|X| \le |K|$. But we already had |K| < |M|. This means there exists a message $m_0 \notin X$, and another message $m_1 \in X$.
- ▶ Hence $Pr[C = c | M = m_0] = 0$, but $Pr[C = c | M = m_1] \neq 0$.
- Hence the scheme can't be perfectly secure.

OTP

- OTP : One Time Pad encryption scheme.
- $M = K = C = \{0, 1\}^n$
- ► KeyGen: generate a key $k \in K$ uniformly at random. That is, for any key k, we have that $\Pr[K = k] = \frac{1}{2^n}$.
- ightharpoonup Enc(k, m) = m \oplus k
- ightharpoonup $Dec(k,c)=c\oplus k$

OTP is perfectly secure

Theorem

OTP is a perfectly secure encryption scheme.

Proof.

Left as an exercise.

Summary and Conclusion

- We have reviewed multiple definitions of perfect security:
 - 1. Independence of ciphertext distribution from the plaintext.
 - 2. Shannon's definition: $P(M \mid C) = P(M)$.
 - 3. Key-message relation: For any m and c, there is a key k such that $E_k(m) = c$.
- We provided formal proofs demonstrating the equivalence of these definitions.
- Perfect security requires key space to be larger than message space, i.e. to send an n-bit message, the communicating parties will need to share a secret key of size $\geq n$ bits.
- While the One-Time Pad is a classic example of a system with perfect security, practical constraints usually prevent its widespread use.

Part-2: Pre-requisites for the proofs that follow

Contents

- In this part, we discuss the following
 - Negligible functions
 - Computational Security
 - Proving security or insecurity of a cryptographic scheme
 - Reduction proofs

Negligible Functions: Motivation

- ► In cryptography, we are interested in the security of systems against adversaries.
- We say an adversary is efficient if it runs in polynomial time.
- Security is defined in an asymptotic sense, where an adversary's advantage should vanish as the security parameter n increases.

Definition of Negligible Functions

Definition

A function $\mu : \mathbb{N} \to \mathbb{R}^+$ is **negligible** if for every positive polynomial p(n) there exists an $n_0 \in \mathbb{N}$ such that

$$\mu(n)<rac{1}{p(n)} \quad ext{for all } n\geq n_0.$$

- ▶ Informally, a function is negligible if it decreases faster than the inverse of any polynomial (beyond some threshold n_0).
- ► Try to compare this definition with asymptotic runtime definition for algorithms that you may have already studied.

Why do we define negligible functions this way?

- We permit "efficient" adversaries, i.e. adversaries who are allowed to run in time poly(n) where n is the security parameter.
- ▶ If the adversary is able to "break" a scheme with probability *p*, then, potentially, she can increase her probability of breaking the scheme by running the attack algorithm *poly(n)* times.
- Hence, we want that the probability of breaking the scheme should be such that even if it is multiplied by a polynomial in n, it still remains negligible.
- The following two statements are left as exercises for you. If $\epsilon_1(n)$ and $\epsilon_2(n)$ are two negligible functions then
 - 1. $\epsilon_1(n) + \epsilon_2(n)$ is also negligible.
 - 2. $\epsilon_1(n) \times \epsilon_2(n)$ is also negligible.

Negligible Functions

 $\mu(n) = 2^{-n}$ is negligible because for any polynomial p(n), there exists n_0 such that

$$2^{-n}<\frac{1}{p(n)}\quad\text{for all }n\geq n_0.$$

 $\mu(n) = n^{-c}$ for some constant c > 0 is **not** negligible because it only decays polynomially.

Computational Security

- Consider the following two attacks against an encryption scheme:
 - 1. Given a $c \in C$, the adversary \mathcal{A} runs Dec(k,c) for all keys $k \in K$. Assuming that \mathcal{A} has the ability to identify which is the correct plaintext (e.g. by the syntax of the message), \mathcal{A} wins with probability 1 in breaking the scheme. Effort required is 2^n if the key size is n bits.
 - 2. \mathcal{A} guesses the secret key and finds the correct message by decerypting the ciphertext with that key. Success probability in this case = $1/2^n$ but runtime = 1.
- We would like to consider the cases in between these two extremes.
- We will restrict \mathcal{A} to run their attack algorithm in time poly(n) only. And then we would like their success probability of breaking the scheme to be $\epsilon(n)$, which should be negligible in security parameter n.
- ▶ This setting is called the "computational security" model.

Proving security or insecurity of a cryptographic scheme

- ▶ If a scheme is insecure then showing one attack against it is enough.
- ► If a scheme is secure that absence of certain attacks is not enough. We need to "formally" prove the security of the scheme.
- ▶ Usually, we will follow the "reduction proof" approach to prove the security of various schemes.

What is a Reduction Proof?

- ▶ A reduction proof is a technique used to demonstrate that breaking a cryptographic scheme is at least as hard as solving a well-known hard problem.
- ► The idea is to show that if an adversary can break the scheme with non-negligible advantage, then we can construct an algorithm that solves the hard problem with non-negligible probability.

Basic Structure of a Reduction Proof

- 1. **Assumption:** Assume there exists an adversary A that breaks the cryptosystem with non-negligible advantage.
- 2. **Construction:** Build a new algorithm $\mathcal B$ that uses $\mathcal A$ as a subroutine.
- 3. **Contradiction:** Show that \mathcal{B} solves a known hard problem with non-negligible probability, contradicting its assumed hardness.

Example: Reduction in the Context of IND-CPA Security

- ▶ IND-CPA Security: A scheme is IND-CPA secure if no polynomial-time adversary can distinguish encryptions of any two chosen plaintexts with non-negligible advantage.
- ▶ **Reduction Idea:** Suppose there exists an adversary \mathcal{A} that achieves a non-negligible advantage $\epsilon(n)$ in breaking the scheme.
- **Constructing** \mathcal{B} : We use \mathcal{A} to build an algorithm \mathcal{B} that can, for example, solve a hard problem.

Reduction Proof Outline

Step 1: Setup

▶ Given an instance of a hard problem (e.g., PRG instance), algorithm $\mathcal B$ prepares the input for the adversary $\mathcal A$ by simulating the cryptosystem.

Step 2: Interaction with A

- \triangleright \mathcal{B} runs \mathcal{A} on this simulated environment.
- $ightharpoonup \mathcal{A}$ outputs a guess or decision.

Step 3: Conclusion

- Based on A's output and some additional computation, B decides whether the original instance was from the hard problem's distribution or not.
- ▶ The non-negligible advantage of \mathcal{A} translates to a non-negligible advantage for \mathcal{B} , thus contradicting the hardness assumption.

Formalizing the Advantage

Adversary's Advantage

The advantage $\epsilon(n)$ of an adversary \mathcal{A} is defined as:

$$\epsilon(n) = \left| \mathsf{Pr}[\mathcal{A} \; \mathsf{wins}] - \frac{1}{2} \right|.$$

- ▶ For a secure scheme, we require that $\epsilon(n)$ is a negligible function.
- ▶ A reduction shows that if $\epsilon(n)$ were non-negligible, then one could solve a hard problem with probability at least $\epsilon(n)$, leading to a contradiction.

Putting It All Together

- ► Negligible functions quantify what it means for an adversary's advantage to be insignificant.
- Reduction proofs allow us to leverage the assumed hardness of computational problems to argue the security of cryptographic schemes.
- ► The common theme is that any non-negligible advantage in breaking the scheme leads to a contradiction with established hardness assumptions.

Part-3: PRG

Contents

- In this part, we will cover the following:
 - Formal definition of a PRG
 - ► Formal definition of an IND-CPA secure encryption scheme
 - Using PRG to construct an IND-CPA secure encrytion scheme. To prove that the scheme is secure, we will show a reduction proof.
 - Finally, we will show some examples of constructing secure and insecure PRG's from a given secure PRG.

What is a Pseudorandom Generator?

- A pseudorandom generator (PRG) is a deterministic polynomial-time algorithm G that takes a short, uniformly random seed s and outputs a longer string G(s).
- ▶ Formally, if $s \in \{0,1\}^n$ then:

$$G: \{0,1\}^n \to \{0,1\}^{\ell(n)},$$

where $\ell(n) > n$.

The output of G is *indistinguishable* from a truly random string of length $\ell(n)$ by any polynomial-time algorithm.

Properties of a PRG

- **Expansion:** The function *G* stretches a short seed into a longer string.
- **Pseudorandomness:** For any polynomial-time distinguisher D, the difference in probability between D distinguishing G(s) and a truly random string is negligible:

$$\left| \Pr_{s \leftarrow \{0,1\}^n} [D(G(s)) = 1] - \Pr_{r \leftarrow \{0,1\}^{\ell(n)}} [D(r) = 1] \right| < \mathsf{negl}(n).$$

The Encryption Scheme

Setup: Let $G: \{0,1\}^n \to \{0,1\}^{\ell(n)}$ be a PRG.

Key Generation:

▶ The secret key k is chosen uniformly at random from $\{0,1\}^n$.

Encryption:

To encrypt a message $m \in \{0,1\}^{\ell(n)}$: $c = m \oplus G(k)$,

where \oplus denotes bitwise XOR.

Decryption:

Given c and key k, $m = c \oplus G(k)$.

Correctness of the Scheme

▶ The decryption recovers the original message because:

$$c \oplus G(k) = (m \oplus G(k)) \oplus G(k) = m \oplus (G(k) \oplus G(k)) = m \oplus 0 = m.$$

▶ Thus, the scheme is correct.

Security Notion: IND-CPA

- We wish to prove that the encryption scheme is IND-CPA secure, meaning that no efficient adversary can distinguish the encryptions of two messages of their choice.
- ▶ In the IND-CPA experiment, the adversary chooses two messages $m_0, m_1 \in \{0,1\}^{\ell(n)}$. A random bit b is chosen, and the challenge ciphertext is:

$$c = m_b \oplus G(k)$$
.

▶ The adversary then outputs a guess b' for b. The scheme is secure if the adversary's advantage

$$\epsilon(n) = \left| \mathsf{Pr}[b' = b] - \frac{1}{2} \right|$$

is negligible.

Reduction to the PRG Security

- ► We will now use the "reduction proof" paradigm that we studied in the previous part.
- ► The setup will be as follows:
 - We want to prove that (Security of PRG) ⇒ (Secure encryption scheme). That is, the scheme is secure if the construction uses a PRG.
 - ► To achieve this, we will assume that we have an adversary A who can break the security of the encryption scheme.
 - ► Then we will show that this A can be used as a subroutine to construct an adversary B which breaks the security of the PRG itself.
 - ▶ This will prove that the scheme is secure if it uses a PRG.

Reduction to the PRG Security ... contd.

- Assume there exists an adversary \mathcal{A} that can distinguish encryptions with a non-negligible advantage $\epsilon(n)$. (i.e. breaks the security of the encryption scheme).
- ▶ We construct a distinguisher \mathcal{D} that uses \mathcal{A} to distinguish the output of G from truly random strings. (i.e. breaks the security of the PRG)
- ▶ The distinguisher \mathcal{D} is given a string w of length $\ell(n)$ which is either G(k) for a random k or a truly random string.
- ${\mathcal D}$ will call ${\mathcal A}$ as a subroutine. But ${\mathcal A}$ works for an encryption scheme, not a PRG. Therefore, ${\mathcal D}$ will setup an instance of an encryption scheme first, and then use ${\mathcal A}$ internally.

Constructing the Distinguisher ${\cal D}$

- 1. \mathcal{D} receives $w \in \{0,1\}^{\ell(n)}$.
- 2. \mathcal{D} chooses two messages $m_0, m_1 \in \{0, 1\}^{\ell(n)}$ (these can be chosen arbitrarily).
- 3. It then simulates the IND-CPA challenger by computing:

$$c = m_b \oplus w$$
,

where $b \in \{0,1\}$ is chosen uniformly at random.

- 4. \mathcal{D} gives c, m_0, m_1 to the adversary \mathcal{A} and receives a guess b'.
- 5. If b' = b, then \mathcal{D} outputs 1 (i.e., it believes w was pseudorandom); otherwise, it outputs 0 (believing that w was random).

Analysis of \mathcal{D}

▶ Case 1: w = G(k) for some random key k. In this case, $c = m_b \oplus G(k)$ is a valid encryption of m_b . Hence, by the assumption on \mathcal{A} :

$$\Pr[\mathcal{D} \text{ outputs } 1] = \Pr[b' = b] = \frac{1}{2} + \epsilon(n).$$

▶ Case 2: w is truly random. In this case, c is independent of m_b (since w is uniform). Therefore, no matter what \mathcal{A} does:

$$\Pr[\mathcal{D} \text{ outputs } 1] = \frac{1}{2}.$$

Conclusion: \mathcal{D} distinguishes between G(k) and a truly random string with advantage $\epsilon(n)$, which is non-negligible. This contradicts the security of the PRG.

Conclusion

- We constructed an encryption scheme based on a PRG where the ciphertext is computed as $c = m \oplus G(k)$.
- ▶ Under the assumption that *G* is a secure PRG, the encryption scheme is IND-CPA secure.
- ► The proof uses a reduction: any adversary breaking the encryption scheme would imply a distinguisher for the PRG, contradicting its assumed pseudorandomness.

Example 1: Iterative Expansion

- ▶ Construction: Given a $G: \{0,1\}^n \to \{0,1\}^{2n}$, construct $G_1: \{0,1\}^n \to \{0,1\}^{3n}$ by iterating G.
- ▶ **Idea:** Use the output of *G* to generate a new seed and concatenate the outputs.

Procedure:

- 1. Let $s_0 \in \{0,1\}^n$.
- 2. Compute $G(s_0) = x_0 || x_1 \text{ where } x_0, x_1 \in \{0, 1\}^n$.
- 3. Compute $G(x_1) = x_3 \| x_4 \text{ where } x_3, x_4 \in \{0, 1\}^n$.
- 4. Output $G_1(s) = x_0 ||x_3|| x_4$.
- ▶ **Security:** Under the assumption that *G* is secure, the concatenated output is indistinguishable from random.
- ► Formal proof is given after a few slides. First, we would like to develop some intuition about the PRG's.

Example 2: XOR of Two Independent PRG Outputs

- ▶ Construction: Define $G_2(s_1, s_2) = G(s_1) \oplus G(s_2)$, where s_1 and s_2 are independent seeds.
- ▶ **Idea:** The XOR of two independent pseudorandom strings is pseudorandom.
- Security Argument:
 - Since both $G(s_1)$ and $G(s_2)$ are indistinguishable from random, their XOR is also indistinguishable from a random string.
 - Any efficient distinguisher for G_2 would contradict the security of G.

Example 3: Concatenating with a Constant

- ▶ **Construction:** Define $H_1(s) = G(s) || 0^{\ell(n)}$ (concatenate G(s) with a fixed string of zeros).
- **▶** Problem:
 - ▶ The constant portion $0^{\ell(n)}$ is easily identifiable and not random.
 - A distinguisher can check whether the last $\ell(n)$ bits are all zeros, which occurs with probability 1 in $H_1(s)$ but with negligible probability for a truly random string.
- **Conclusion:** H_1 is insecure as a PRG.

Example 4: Repeating the Output

- ▶ Construction: Define $H_2(s) = G(s) \| G(s)$ (concatenate the same PRG output twice).
- **▶** Problem:
 - ▶ The repetition in $H_2(s)$ creates a structural pattern.
 - A distinguisher can check if the first half of the output is identical to the second half. For $H_2(s)$ this check always passes, while for a truly random string it passes only with negligible probability.
- **Conclusion:** H_2 is insecure since the redundancy is easily exploitable.

Part-4: The hybrid argument

What is a Hybrid Argument?

- ▶ A **hybrid argument** is a proof technique used to show that two distributions (or cryptographic games) are indistinguishable.
- ► The idea is to define a series of intermediate distributions (hybrids) between the real and ideal distributions.
- ▶ If each consecutive pair of hybrids is indistinguishable, then the first and the last are also indistinguishable.

How to Construct Hybrid Distributions

- ▶ Identify the original distribution/game H_0 and the target (ideal) distribution/game H_k .
- ▶ Define a sequence of hybrids $H_0, H_1, ..., H_k$ such that:

$$H_0 \approx H_1 \approx \cdots \approx H_k$$
.

Prove that for each i the difference between H_i and H_{i+1} is negligible or zero.

Example: PRG-Based Encryption Scheme

- ► Consider an encryption scheme based on a pseudorandom generator (PRG) *G*.
- Let the encryption of a message *m* be:

$$c = m \oplus G(k),$$

where k is a secret key.

- ► To prove IND-CPA security, we can use a hybrid argument:
 - ▶ H_0 : $c = m \oplus G(k)$ (real encryption).
 - ▶ H_1 : $c = m \oplus r$ where r is chosen uniformly at random.
- ▶ If G(k) is indistinguishable from random, then $H_0 \approx H_1$. Since $m \oplus r$ is also uniformly random (for fixed m), the scheme is secure.

Analysis and Transitivity of Indistinguishability

The hybrid argument relies on the transitivity of indistinguishability:

If
$$H_0\approx H_1$$
 and $H_1\approx H_2, \ then \ H_0\approx H_2.$

- By breaking a complex proof into smaller hybrid steps, we can focus on proving that each small change is undetectable.
- ► The overall security follows from the fact that a polynomial-time adversary cannot distinguish between the endpoints of the hybrid sequence.

Summary

- ► The hybrid argument is a powerful and versatile technique in cryptographic proofs.
- ▶ It simplifies the task of proving indistinguishability by bridging the gap between two distributions through intermediate steps.
- ➤ This technique is widely used in security proofs for encryption schemes, digital signatures, and other cryptographic primitives.

Coming back to Example 1: The iterative PRG

Given

A secure pseudorandom generator $G: \{0,1\}^n \to \{0,1\}^{2n}$. For any seed $s \in \{0,1\}^n$, write:

$$G(s) = x_1 || x_2,$$

where $x_1, x_2 \in \{0, 1\}^n$.

Further Computation

Compute:

$$G(x_2) = x_3 || x_4$$
, with $x_3, x_4 \in \{0, 1\}^n$.

Definition of G_1

Define the 3*n*-bit PRG:

$$G_1(s) = x_1 \|x_3\| x_4.$$

Security Goal

- We wish to show that if G is a secure PRG, then the function $G_1: \{0,1\}^n \to \{0,1\}^{3n}$ is also a secure PRG.
- ▶ That is, for any polynomial-time distinguisher A, the advantage in distinguishing $G_1(s)$ from a uniformly random string in $\{0,1\}^{3n}$ is negligible.

Overview of the Hybrid Argument

- ► We define three hybrids:
 - ▶ H_0 : The real output $G_1(s) = x_1 ||x_3|| x_4$.
 - ▶ H₁: Replace x_1 by a uniform random string $r_1 \in \{0,1\}^n$; output $r_1 ||x_3|| x_4$.
 - ▶ H₂: Replace $x_3 || x_4$ by a uniform random string $r_2 \in \{0, 1\}^{2n}$; output $r_1 || r_2$.
- ▶ Finally, note that H_2 is distributed uniformly over $\{0,1\}^{3n}$.

Hybrid H₀ and H₁

- We take H_0 as the real construction and H_2 as a construction which produces uniformly random strings.
- $ightharpoonup H_0$: $G_1(s) = x_1 ||x_3|| x_4$, where

$$G(s) = x_1 || x_2$$
 and $G(x_2) = x_3 || x_4$.

▶ H₁: Replace x_1 with a uniformly random $r_1 \in \{0,1\}^n$ but keep x_3 and x_4 as before:

$$H_1 = r_1 ||x_3|| x_4.$$

▶ **Claim:** No PPT distinguisher can distinguish H_0 from H_1 with non-negligible advantage, otherwise we could break the pseudorandomness of the first n-bit block of G(s).

Hybrid H₁ and H₂

- ▶ H_1 : $r_1||x_3||x_4$, where r_1 is uniformly random and $x_3||x_4 = G(x_2)$ is pseudorandom.
- ▶ H₂: Replace $x_3 || x_4$ with a uniformly random string $r_2 \in \{0, 1\}^{2n}$:

$$\mathsf{H}_2=r_1\|r_2.$$

▶ Claim: If there were a distinguisher that could distinguish H_1 from H_2 with non-negligible advantage, then we could break the security of G on input x_2 .

Concluding the Hybrid Argument

By the transitivity of indistinguishability:

$$H_0 \approx H_1$$
 and $H_1 \approx H_2$.

- ▶ Since H_2 is uniformly distributed in $\{0,1\}^{3n}$, it follows that the output of $G_1(s)$ is indistinguishable from uniform.
- ▶ Therefore, G_1 is a secure PRG.
- Now, we formalize this intuition into a formal proof by filling the missing details about the adversary.

Reduction: From a Distinguisher for G_1 to a Breaker for G

- Suppose there exists a PPT distinguisher \mathcal{A} with non-negligible advantage $\epsilon(n)$ in distinguishing $G_1(s)$ from a uniform string in $\{0,1\}^{3n}$.
- We construct a PPT algorithm \mathcal{B} that breaks the pseudorandomness of G by distinguishing either:
 - 1. The first *n* bits x_1 in $G(s) = x_1 || x_2$, or
 - 2. The output $G(x_2) = x_3 || x_4$.
- \triangleright \mathcal{B} uses \mathcal{A} as a subroutine in the corresponding hybrid transition.

Case 1: If A distinguishes H_0 from H_1 , then B distinguishes the first block x_1 of G(s) from uniform.

Case 2: If A distinguishes H_1 from H_2 , then B distinguishes the output $G(x_2)$ from uniform.

Conclusion of the Reduction Proof

- ▶ In either case, a non-negligible advantage for \mathcal{A} would yield a non-negligible advantage for \mathcal{B} in breaking the security of G.
- ▶ Since G is assumed secure, such a PPT algorithm A cannot exist.
- ▶ Therefore, G_1 is a secure PRG.

Summary and Final Remarks

- ▶ We constructed a 3*n*-bit PRG $G_1(s) = x_1 ||x_3|| x_4$ using two calls to a secure PRG G.
- ▶ A hybrid argument was employed, replacing portions of the output with truly random bits step by step.
- ▶ The reduction shows that any advantage in distinguishing *G*₁ from uniform implies an advantage against *G*, contradicting its security.
- Hence, G₁ is secure.

Part-5: The security of PRF based encryption

Encryption Scheme Overview

- ▶ **Setup:** Let $f: \mathcal{K} \times \mathcal{R} \to \{0,1\}^n$ be a secure pseudorandom function (PRF).
- **Encryption:** To encrypt a message $m \in \{0,1\}^n$:
 - ▶ Choose a random $r \in \mathcal{R}$ (with \mathcal{R} typically $\{0,1\}^n$).
 - ► Compute $c = f(k, r) \oplus m$.
 - Output ciphertext (r, c).
- **Decryption:** Given ciphertext (r, c) and key k:
 - Recover $m = c \oplus f(k, r)$.

IND-CPA Security

- ► The goal is to prove that the above encryption scheme is IND-CPA secure.
- ► Informally, no polynomial-time adversary can distinguish between the encryptions of any two chosen messages.
- ▶ We will prove that if *f* is a secure PRF, then the encryption scheme is IND-CPA secure.

Hybrid Argument Overview

- ▶ We use a hybrid argument to bridge the real encryption scheme with an ideal scheme that is perfectly secure.
- ▶ The key idea is to replace the PRF $f(k, \cdot)$ with a truly random function.
- ▶ If an adversary could distinguish the real scheme from the ideal one, then we could build a distinguisher for the PRF.

Hybrid Definitions

Hybrid₀: The real encryption scheme.

$$\operatorname{Enc}_k(m) = (r, f(k, r) \oplus m)$$

▶ Hybrid₁: Replace $f(k, \cdot)$ with a truly random function $F(\cdot)$. Thus, the encryption becomes:

$$Enc'(m) = (r, F(r) \oplus m).$$

Indistinguishability Between Hybrids

- ▶ By the security of the PRF f, no PPT distinguisher can tell apart $f(k, \cdot)$ from a truly random function $F(\cdot)$.
- Hence, the outputs in Hybrid₀ and Hybrid₁ are indistinguishable.
- Formally, if there exists an adversary \mathcal{A} that can distinguish between these two hybrids with non-negligible advantage, then we can construct a distinguisher for the PRF f.

Security of the Ideal Scheme

► Consider Hybrid₁:

$$(r, F(r) \oplus m)$$
.

- Given that F is a truly random function and r is uniformly random:
 - ightharpoonup F(r) is uniformly random.
 - ▶ $F(r) \oplus m$ is a one-time pad encryption of m.
- ► Therefore, Hybrid₁ provides perfect secrecy (i.e., it is IND-CPA secure).

Concluding the Hybrid Argument

We have:

$$\mathsf{Hybrid}_0 \approx \mathsf{Hybrid}_1$$

and Hybrid₁ is perfectly secure.

- Thus, the real encryption scheme is IND-CPA secure.
- ▶ If an adversary A were to break the encryption scheme, then it would also break the PRF security of f, contradicting the assumption that f is a secure PRF.

Summary

We defined an encryption scheme using a PRF f as:

$$E_k(m) = (r, f(k,r) \oplus m).$$

- ► The proof uses a hybrid argument, replacing *f* with a truly random function.
- The ideal scheme is equivalent to a one-time pad encryption, which is perfectly secure.
- Hence, the security of the PRF implies the IND-CPA security of the encryption scheme.

Further Reading

► Jonathan Katz and Yehuda Lindell, *Introduction to Modern Cryptography*.