Zadanie 21.

Wiązka zadań Szybkie podnoszenie do potęgi

W algorytmach szybkiego potęgowania można wykorzystać binarną reprezentację wykładnika dla obliczenia wartości x^k , gdzie k jest liczbą naturalną, $k \neq 0$, zaś x jest liczbą rzeczywistą. Przyjmijmy, że binarnym rozwinięciem wykładnika k jest ciąg $(k_n k_{n-1} k_{n-2} \dots k_2 k_1 k_0)_2$.

Jedna z metod wyznaczania x^k polega na obliczaniu potęg liczby x dla wykładników o binarnych reprezentacjach:

$$k_n$$
,
 $k_n k_{n-1}$,
 $k_n k_{n-1} k_{n-2}$,
...,
 $k_n k_{n-1} k_{n-2} \dots k_1$,
 $k_n k_{n-1} k_{n-2} \dots k_1 k_0$,

Inaczej mówiąc, uwzględniamy coraz dłuższe fragmenty ciągu $(k_nk_{n-1}k_{n-2} \dots k_2k_1k_0)_2$. W pierwszym kroku przyjmujemy, że wynik jest równy x, gdyż $k_n=1$. Znając wartość x do potęgi o binarnym zapisie $(k_nk_{n-1}k_{n-2} \dots k_i)_2$, możemy łatwo wyliczyć x do potęgi o binarnym zapisie $(k_nk_{n-1}k_{n-2} \dots k_ik_{i-1})_2$: podnosimy dotychczasowy wynik do kwadratu (do czego wystarczy jedno mnożenie). Jeśli $k_{i-1}=1$, dodatkowo mnożymy uzyskany wynik przez x.

Przykład

Niech $k = 13 = (1101)_2$. Kolejne wyznaczane w naszym algorytmie potęgi to:

$$x^{1}$$
, $x^{3} = x^{2}x$, $x^{6} = (x^{3})^{2}$, $x^{13} = (x^{6})^{2}x$,

zaś liczba wykonanych mnożeń jest równa 5 (zauważ, że aby obliczyć x^3 , musisz najpierw obliczyć x^2 , a aby obliczyć x^2 , musisz wykonać jedno mnożenie: $x^2 = x \cdot x$).

21.1.

Korzystając z przedstawienia wykładnika w postaci binarnej, podaj kolejne potęgi liczby x wyznaczane powyższą metodą przy obliczaniu x^{38} .

21.2. Uzupełnij tabelkę. Oblicz, ile mnożeń wykonywanych jest dla kolejnych wykładników.

k	reprezentacja binarna k	liczba mnożeń
4	100	2
5	101	3
6		
7		
8		
15		
16		
22		
32		

21.3.

W wybranej przez siebie notacji (lista kroków, pseudokod, język programowania) napisz algorytm, który dla zadanej binarnej reprezentacji liczby naturalnej k, $k \neq 0$, oraz rzeczywistej liczby x oblicza wartość x^k zgodnie z metodą opisaną na początku zadania.

Specyfikacja

Dane:

x — liczba rzeczywista,

n — liczba całkowita nieujemna,

 $k_n k_{n-1} k_{n-2} \dots k_1 k_0$ — ciąg tworzący binarną reprezentację wykładnika k, Wynik:

liczba rzeczywista $p = x^k = \underbrace{x \cdot x \cdot \dots \cdot x}_{k \ razy}$

Publikacja opracowana przez zespół koordynowany przez **Renatę Świrko** działający w ramach projektu *Budowa banków zadań* realizowanego przez Centralną Komisję Egzaminacyjną pod kierunkiem Janiny Grzegorek.

Autorzy

dr Lech Duraj dr Ewa Kołczyk Agata Kordas-Łata dr Beata Laszkiewicz Michał Malarski dr Rafał Nowak Rita Pluta Dorota Roman-Jurdzińska

Komentatorzy

prof. dr hab. Krzysztof Diks prof. dr hab. Krzysztof Loryś Romualda Laskowska Joanna Śmigielska

Opracowanie redakcyjne

Jakub Pochrybniak

Redaktor naczelny

Julia Konkołowicz-Pniewska

Zbiory zadań opracowano w ramach projektu Budowa banków zadań,
Działanie 3.2 Rozwój systemu egzaminów zewnętrznych,
Priorytet III Wysoka jakość systemu oświaty,
Program Operacyjny Kapitał Ludzki

