Linear Algebra for Quantum Computing and ZX Calculus

Sam Burdick

Topological Quantum Error Correction

November 2, 2025

Agenda

- Vector spaces
- Basis vectors
- Linear maps
- Dirac notation
- ► Linear functionals and dual spaces
- Eigenstates
- Unitary matrices
- Tensor products
- The commutator
- Matrix trace
- Riesz representation theorem
- Spectral theorem

We assume existing familiarity with sets, functions, matrices, vectors, summation notation, and complex numbers.

I discovered that the library is the real school.

—Ray Bradbury

Vector spaces

Definition

V is a vector space if it is a set of vectors coupled with the addition of vectors and scalar multiplication.

Vector addition: $\mathbf{u}, \mathbf{v} \in V$ means that $\mathbf{u} + \mathbf{v} \in V$.

Scalar multiplication: $\alpha \mathbf{v} \in V$ for any $\mathbf{v} \in V, \alpha \in \mathbb{C}$.

Remark

The vector space we often use in quantum computing is \mathbb{C}^n , where n is a power of 2.

Example

$$\begin{pmatrix} 42\\1.618\\e^{i\pi/3}\\1+i \end{pmatrix} \in \mathbb{C}^4$$

Linear independence and basis vectors

Definition

Given a set of vectors $S = \{\mathbf{v}_1, \dots, \mathbf{v}_m\}$ and chosen nonzero scalars $\alpha_1, \dots, \alpha_m$, we say that S is linearly independent if

$$\sum_{k=1}^{m} \alpha_k \mathbf{v}_k = \mathbf{0},$$

where $\mathbf{0}$ is the zero vector.

Definition

If a set of vectors T can be combined in a linear fashion to produce every element of S, we say that T spans S.

Definition

Suppose V is a vector space. Then a minimum cardinality subset $\mathcal{B} \subseteq V$ that is linearly independent and spans V is a basis of V.

Linear maps

Definition

A linear map is a function $T:U\to V$, where U and V are vector spaces, such that

$$T(\textbf{u}_1+\textbf{u}_2)=T(\textbf{u}_1)+T(\textbf{u}_2)$$
 for all $\textbf{u}_1,\textbf{u}_2\in \textit{U}$

and

$$T(\alpha \mathbf{u}) = \alpha T(\mathbf{u})$$
 for all $\mathbf{u} \in U, \alpha \in \mathbb{C}$.

Example

The Hadamard gate

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

is a linear map $H: \mathbb{C}^2 \to \mathbb{C}^2$.

Dirac notation

Definition

A ket (or state vector) $|\psi\rangle$ is a vector in the vector space \mathbb{C}^n , where $\sum_{k=1}^n |\psi_k|^2 = 1$ and ψ_k is the kth element of $|\psi\rangle$.

Definition

A bra-ket $\langle \phi | \psi \rangle$ is the inner product of $| \phi \rangle$ and $| \psi \rangle$,

$$\langle \phi | \psi \rangle = \sum_{k=1}^{n} \phi_k^* \psi_k,$$

where the bra $\langle \phi |$ acts as a functional map (from a ket to a scalar; more on this later).

Example

For any quantum state $|\psi\rangle$, $\langle\psi|\psi\rangle=1$, since $\psi_k\psi_k^*=|\psi_k|^2$.

Dirac notation (cont'd)

Theorem (Cauchy-Schwarz Inequality)

For any two quantum states $|\phi\rangle$ and $|\psi\rangle$, we have $|\langle\phi|\psi\rangle|^2 \leq 1$.

Definition

A ket-bra $|\phi\rangle\langle\psi|$ is a linear map (or outer product)

$$\begin{pmatrix} \phi_1 \\ \vdots \\ \phi_n \end{pmatrix} (\psi_1^*, \dots, \psi_n^*) = \begin{pmatrix} \phi_1 \psi_1^* & \dots & \phi_1 \psi_n^* \\ \vdots & \ddots & \vdots \\ \phi_n \psi_1^* & \dots & \phi_n \psi_n^* \end{pmatrix}$$

Remark

Given a linear map A and bra $\langle \phi |$, $\langle \phi |$ A is also a bra defined by the function composition rule

$$(\langle \phi | A) | \psi \rangle = \langle \phi | (A | \psi \rangle) = \langle \phi | A | \psi \rangle$$

Linear functionals and dual spaces

Definition

A linear functional f is a mapping between elements of a vector space into a scalar field (ie, $f:V\to F$) such that

$$f(\mathbf{u} + \mathbf{v}) = f(\mathbf{u}) + f(\mathbf{v})$$

and

$$f(\alpha \mathbf{u}) = \alpha f(\mathbf{u})$$

for any $\mathbf{u}, \mathbf{v} \in V$ and $\alpha \in F$.

Definition

The dual space of a vector field V is the set of all linear functionals over V.

Remark

The bra $\langle \phi |$ is a member of the dual space of the vector space containing $|\phi\rangle$. As stated previously, the bra-ket represents the mapping of state vectors in \mathbb{C}^n into \mathbb{C} .

Eigenstates

Definition

A state vector $|\psi\rangle$ is the λ -eigenstate (or eigenvector) of a linear map U if $U|\psi\rangle=\lambda\,|\psi\rangle$ for some $\lambda\in\mathbb{C}$, where λ is said to be an eigenvalue of U.

Example

If $U|\psi\rangle=|\psi\rangle$, we say that $|\psi\rangle$ is the +1 eigenstate of U.

Exercise

Show that $|+\rangle$ is the +1 eigenstate of $X=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Solution.

$$X \ket{+} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \ket{+}.$$

Exercise

Show that $|0\rangle$ and $|1\rangle$ are the +1 and -1 eigenstates of Z respectively.

Unitary matrices

Definition

The transpose of a matrix U is denoted U^T and is obtained by systematically exchanging (i.e., swapping) the values of the rows with the values in the columns in U.

Definition

The adjoint of a matrix U is the conjugate transpose

$$U^{\dagger} = \begin{pmatrix} u_{1,1}^* & \cdots & u_{1,n}^* \\ \vdots & \ddots & \vdots \\ u_{n,1}^* & \cdots & u_{n,n}^* \end{pmatrix}^T = \begin{pmatrix} u_{1,1}^* & \cdots & u_{n,1}^* \\ \vdots & \ddots & \vdots \\ u_{1,n}^* & \cdots & u_{n,n}^* \end{pmatrix}$$

Definition

A matrix U is hermitian if it is self-adjoint, that is, $U=U^{\dagger}$. A matrix U is unitary if $UU^{\dagger}=I$.

Tensor products

Definition

For two-dimensional quantum states, we can define the tensor product between them as

$$|\phi\rangle \otimes |\psi\rangle = \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} \otimes \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} = \begin{pmatrix} \phi_1 \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} \\ \phi_2 \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} \phi_1 \psi_1 \\ \phi_1 \psi_2 \\ \phi_2 \psi_1 \\ \phi_2 \psi_2 \end{pmatrix}$$

Remark

You can take tensor products of matrices as well; the new object's dimension is the product of the dimensions of the objects multiplied, meaning that tensor products of higher-dimensional objects quickly become unmanageable to compute by hand.

The commutator

Definition

Two matrices A and B are said to commute if AB = BA.

Remark

For quantum operators A and B, (AB) $|\psi\rangle$ means "apply B first, then A, on $|\psi\rangle$."

Definition

The commutator of two matrices is defined as [A, B] = AB - BA.

Corollary

For commuting matrices, $[A, B] = \mathcal{O}$ (the zero matrix).

Exercise

Show that [X, Z] = -2iY.

Matrix trace

Definition

The trace of a matrix A is the sum of its diagonal elements; that is

$$\operatorname{tr}(A) = \sum_{k=1}^{n} A_{k,k}$$

Remark

Trace is "commutativity-preserving," meaning tr(AB) = tr(BA) for any matrices A, B.

Remark

The trace is independent of a chosen basis, meaning that if a linear map A, represented by a matrix, has a "change-of-basis" matrix P such that $B = P^{-1}AP$, then $\operatorname{tr}(A) = \operatorname{tr}(B)$.

Riesz Representation Theorem

Definition

A Hilbert space $\mathcal H$ in quantum computing is a complex inner-product space, that is, a vector space over $\mathbb C^n$ endowed with an inner product operation.

Definition

A linear map T is anti-linear if

$$T(\alpha |\psi\rangle + \beta |\psi\rangle) = \alpha^* T |\psi\rangle + \beta^* T |\psi\rangle.$$

Definition

Two vector spaces V and W are isomorphic if there exists a bijective linear map $T:V\to W$, meaning that

- (it's injective) every unique vector in V maps to a unique vector in W (that is, if $T(\mathbf{u}) = T(\mathbf{v})$ then $\mathbf{u} = \mathbf{v}$) and
- (it's surjective) that for every vector $\mathbf{w} \in W$ there exists a vector $\mathbf{v} \in V$ such that $T(\mathbf{v}) = \mathbf{w}$.

Riesz Representation Theorem (cont'd)

Definition

An isomorphism is canonical if it is defined by the intrinsic mathematical properties of the vector spaces it acts on, that is, no additional change-of-basis matrix is necessary to perform it.

Theorem (Riesz)

For any Hilbert space \mathcal{H} there exists its canonical anti-linear isomorphism between \mathcal{H} and its dual space \mathcal{H}^* .

Remark

The Riesz representation theorem is how we ensure a correspondence between bras and kets; we will often write $|\psi\rangle=(\langle\psi|)^{\dagger}$, where the Hermitian conjugate operator \dagger represents the conversion between a row and a column vector and conjugation of vector elements.

Spectral Theorem

Definition

A diagonal matrix is a matrix such that all entries outside the main diagonal are zero.

Definition

The spectrum of a matrix A is the set of all eigenvalues of A.

Theorem

If a matrix A is normal, that is, $[A, A^{\dagger}] = \mathcal{O}$, then A is unitarily diagonalizable, meaning that $A = UDU^{\dagger}$ for some unitary matrix U and a diagonal matrix D, where the diagonal values of D is the spectrum of A.

Remark

The spectral theorem tells us that, since the Pauli matrices $\{X,Y,Z\}$ are hermitian, their eigenvalues are ± 1 and their eigenvectors form a mutually orthogonal ($\langle \phi | \psi \rangle = 0$) and complete basis, justifying their use as the fundamental observables of a qubit.

