### Basic Trigonometric Identities and Equations

August 29, 2022

#### Trigonometric Identities

```
Quotient Identities \tan\theta = \frac{\sin\theta}{\cos\theta} \quad \cot\theta = \frac{\cos\theta}{\sin\theta} Reciprocal Identities \sin\theta = \frac{1}{\csc\theta} \quad \cos\theta = \frac{1}{\sec\theta} \quad \tan\theta = \frac{1}{\cot\theta} Pythagorean Identities \sin^2\theta + \cos^2\theta = 1 \quad \tan^2\theta + 1 = \sec^2\theta \quad \cot^2\theta + 1 = \csc^2\theta \sin^2\theta = 1 - \cos^2\theta \quad \tan^2\theta + 1 = \sec^2\theta \quad \cot^2\theta = \csc^2\theta - 1 \cos^2\theta = 1 - \sin^2\theta
```

Do you remember the Unit Circle?

▶ What is the equation for the unit circle?

Do you remember the Unit Circle?

▶ What is the equation for the unit circle?

$$x^2 + y^2 = 1$$

Do you remember the Unit Circle?

▶ What is the equation for the unit circle?

$$x^2 + y^2 = 1$$

What does x = ? What does y = ? (in terms of trig functions)



Do you remember the Unit Circle?

▶ What is the equation for the unit circle?

$$x^2 + y^2 = 1$$

What does x = ? What does y = ? (in terms of trig functions)

$$\sin^2\theta + \cos^2\theta = 1$$

# Using the identities you now know, find the trig value.

1) If 
$$\cos \theta = \frac{3}{4}$$
 , find  $\sec \theta$ 

2) If 
$$\cos\theta = \frac{3}{5}$$
 , find  $\csc\theta$ 

# Using the identities you now know, find the trig value.

1) If 
$$\cos\theta = \frac{3}{4}$$
 , find  $\sec\theta$ 

2) If 
$$\cos\theta = \frac{3}{5}$$
 , find  $\csc\theta$ 

$$\sec \theta = \frac{1}{\cos \theta} = \frac{1}{\frac{3}{4}} = \frac{4}{3}$$

# Using the identities you now know, find the trig value.

1) If 
$$\cos\theta = \frac{3}{4}$$
 , find  $\sec\theta$ 

$$\sec \theta = \frac{1}{\cos \theta} = \frac{1}{\frac{3}{4}} = \frac{4}{3}$$

2) If 
$$\cos \theta = \frac{3}{5}$$
, find  $\csc \theta$ 

$$\begin{split} \sin^2\theta + \cos^2\theta &= 1\\ \sin^2\theta + (\frac{3}{5})^2 &= 1\\ \sin^2\theta &= \frac{25}{25} - \frac{9}{25}\\ \sqrt{\sin^2\theta} &= \sqrt{\frac{16}{25}}\\ \sin\theta &= \pm \frac{4}{5}\\ \csc\theta &= \frac{1}{\sin\theta} = \frac{1}{\pm \frac{4}{5}} = \pm \frac{5}{4} \end{split}$$

### Simplify each expression.

| $\frac{\csc \theta}{\cot \theta}$ | cos x csc x tan x | $\cos x \cot x + \sin x$ |
|-----------------------------------|-------------------|--------------------------|
| $\cot \theta$                     |                   |                          |

# Simplify each expression.

 $\frac{\csc\theta}{\cot\theta}$ 

 $\cos x \csc x \tan x$ 

 $\cos x \cot x + \sin x$ 

```
\frac{\frac{\frac{1}{\sin \theta}}{\frac{\cos \theta}{\sin \theta}}}{\frac{1}{\sin \theta}} \cdot \frac{\frac{1}{\sin \theta}}{\cos \theta} = \sec \theta
```

## Simplify each expression.

$$\frac{\csc\theta}{\cot\theta}$$

$$\cos x \csc x \tan x$$

$$\cos x \cot x + \sin x$$

$$\frac{\frac{\frac{1}{\sin \theta}}{\frac{\cos \theta}{\sin \theta}}}{\frac{1}{\sin \theta}} \cdot \frac{\sin \theta}{\cos \theta}$$

$$\frac{1}{\cos \theta} = \sec \theta$$

$$= \cos x \left(\frac{1}{\sin x}\right) \left(\frac{\sin x}{\cos x}\right)$$
$$= 1$$

$$\cos x \left(\frac{\cos x}{\sin x}\right) + \sin x$$

$$\frac{\cos^2 x}{\sin x} + \frac{\sin^2 x}{\sin x}$$

$$\frac{\cos^2 x + \sin^2 x}{\sin x}$$

$$\frac{1}{\sin x} = \csc x$$

#### **Practice**

| $\sec \theta \cot \theta \sin \theta$ | $\sin^2 \theta (\csc^2 \theta - 1)$ | $\cot \theta \sin \theta$ | $rac{1-\sin^2	heta}{1+\cot^2	heta}$ |
|---------------------------------------|-------------------------------------|---------------------------|--------------------------------------|
| 1                                     | $\cos^2 \theta$                     | $\cos \theta$             | $\sin^2\theta\cos^2\theta$           |
| $(1-\cos\theta)(1+\sec\theta)$        | $\cot^2 	heta (1 + 	an^2 	heta)$    | $\cos \theta \csc \theta$ | $rac{1+	an^2	heta}{1+\cot^2	heta}$  |

#### **Practice**

| $\sec \theta \cot \theta \sin \theta$ | $\sin^2 \theta (\csc^2 \theta - 1)$ | $\cot \theta \sin \theta$ | $\frac{1-\sin^2 	heta}{1+\cot^2 	heta}$ |
|---------------------------------------|-------------------------------------|---------------------------|-----------------------------------------|
| 1                                     | $\cos^2 \theta$                     | $\cos \theta$             | $\sin^2 \theta \cos^2 \theta$           |
| $(1-\cos\theta)(1+\sec\theta)$        | $\cot^2 \theta (1 + \tan^2 \theta)$ | $\cos \theta \csc \theta$ | $\frac{1+\tan^2\theta}{1+\cot^2\theta}$ |
| $\sec \theta - \cos \theta$           | $\csc^2 \theta$                     | $\cot 	heta$              | $\tan^2 \theta$                         |