「MATLAB/Simulink による制御工学入門 (2020 年 1 月 28 日 第 1 版第 1 刷発行)」 の正誤表です.

正誤表

該当箇所	誤	正
p. 16 の問題 1.7 (1)	において、 $F_i(t)$ を $f(t)$, $f_{ m s}(t)$, $f_{ m d}(t)$ により表せ.	において、 $F_i(t)$ を $f_2(t)$ 、 $f_s(t)$ 、 $f_d(t)$ により表せ.
p. 63	M ファイル "hurwitz.m" の実行結果 (問題 3.3 (1)) >> sysP = tf([1 10],[1 2 3 10]); ↓ >> [numP denP] = tfdata(sysP,'v'); ↓ >> hurwitz ↓ "hurwitz.m" の実行 H = 2 10 0 1 3 0 0 2 10 H2 = -4 安定ではない> 条件 B" を満足しない	M ファイル "hurwitz.m" の実行結果 (問題 3.3 (1)) >> sysP = tf([1 10],[1 1 4 30]); → >> [numP denP] = tfdata(sysP,'v'); → >> hurwitz → "hurwitz.m" の実行 H = 1 30 0 1 4 0 0 1 30 H2 = -26 安定ではない> 条件 A を満足するが、条件 B" を満足しない
p. 76 の図 4.12	横軸の目盛: $0, 1, 2, 3, 4, 5$ $1.5 \qquad M = 0.75 \qquad M = 1$ $M = 1.25 \qquad M = 1.5$ $M = 0.5 \qquad M = 0.25$ $0.5 \qquad t \text{ [s]}$ 図 4.12	横軸の目盛: $0, 2, 4, 6, 8, 10$ 1.5 $M = 0.75$ $M = 1$ $M = 1.25$ $M = 0.5$ $M = 0.25$ $M = 0.25$ $M = 0.4$
p. 76 の図 4.13	横軸の目盛: $0, 1, 2, 3, 4, 5$ $\begin{array}{c} 1.5 \\ c = 0.5 \\ c = 1 \\ \hline \\ 0.5 \\ 0 \\ \hline \\ 0 \\ \hline \\ 1 \\ \hline \\ 2 \\ c = 2.5 \\ \hline \\ 2 \\ c = 2.5 \\ \hline \\ 2 \\ 3 \\ 4 \\ 5 \\ \hline \\ \boxed{\mathbb{Z}} \ 4.13 \\ \end{array}$	横軸の目盛: 0, 2, 4, 6, 8, 10 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1

正誤表

該当箇所	誤	正
p. 76 の図 4.14	横軸の目盛:0, 1, 2, 3, 4, 5	横軸の目盛:0,2,4,6,8,10
	1.5 $k = 0.75$ $k = 1$ $k = 1.25$ 0.5 $k = 1.5$ $k = 1.75$ 0 1 2 3 4 5	1.5 $k = 0.75$ $k = 1$ $k = 1.25$ 0.5 $k = 1.5$ $k = 1.5$ $k = 1.75$ 0 2 4 6 8 10 t [s]
	k = 1.75 $k = 1.5$ $k = 1.25$ $k = 1$ $k = 0.75$ 0 0 1 2 3 4 5	k = 1.75 $k = 1.5$ $k = 1.25$ $k = 1$ $k = 0.75$ 0 0 2 4 6 8 10
	図 4.14	☑ 4.14
p. 117 の (6.31) 式	$C_3(s) = \frac{6}{s^2 + 4s + 6} = \cdots$	$C_{\rm ff}(s) = \frac{6}{s^2 + 4s + 6} = \cdots$
p. 138 の図 7.2 (a)	横軸の目盛: 0, 0.5, 1, 1.5, 2 1.5 1 0.5 1 (t) 0.5 1 -1.5 0 0.5 1 1.5 2 図 7.2 (a)	横軸の目盛: 0, 50, 100, 150, 200 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1
p. 138 の図 7.2 (b)	横軸の目盛:0, 50, 100, 150, 200	横軸の目盛:0,0.5,1,1.5,2
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	図 7.2 (b)	図 7.2 (b)

正誤表

該当箇所	誤	正
p. 143 の表 7.1	右下から 2 つ目:-71.565	右下から 2 つ目: -75.964
p. 165 の例 8.2	実際,特性多項式は	実際,特性多項式は
	$\Delta(s) = (s+4)(s-1) - s + 6$ $= (s+1)(s+2)$ (8.9) であるので、特性方程式 $\Delta(s) = 0$ の解は負の実数 $s = -1$, -2 となり、フィードバック制御系は安定となる.	$\Delta(s) = (s+4)(s-1) - s + 6$ $= s^2 + 2s + 2$ (8.9) であるので、特性方程式 $\Delta(s) = 0$ の解は負の実数 $s = -1 \pm j$ となり、フィードバック制御系は安定となる.
p. 250 の問題 4.4 (1) の解答	$\zeta = \frac{\xi}{\omega_{\rm n}} \simeq 0.4.5595$	$\zeta = \frac{\xi}{\omega_{\rm n}} \simeq 0.45595$