

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Topología I Examen XI

Los Del DGIIM, losdeldgiim.github.io

Jesús Muñoz Velasco

Granada, 2024-2025

Asignatura Topología I.

Curso Académico 2024-25.

Grado Doble Grado en Ingeniería Informática y Matemáticas.

Grupo Único.

Profesor Antonio Alarcón.

Descripción Segundo Parcial.

Fecha 13 de diciembre de 2024.

Duración 90 minutos.

Ejercicio 1 (3 puntos). Dados espacios topológicos (X, \mathcal{T}) e (Y, \mathcal{T}') , demuestra que la proyección

$$\pi_Y:(X,Y,\mathcal{T}\times\mathcal{T}')$$

es continua y abierta. Da un ejemplo que demuestre que, en general, no es cerrada.

Ejercicio 2 (3 puntos). Sea (X, \mathcal{T}) un espacio tologógico y supongamos que para todo espacio topológico (Y, \mathcal{T}') se tiene que toda aplicación $f: (X, \mathcal{T}) \to (Y, \mathcal{T}')$ es continua. Demuestra que \mathcal{T} es la topología discreta.

Ejercicio 3 (4 puntos). En la circunferencia $\mathbb{S}^1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\} \subset \mathbb{R}^2$ consideramos la topología $\mathcal{T}_u|_{\mathbb{S}^1}$ inducida por la topología usual \mathcal{T}_u de \mathbb{R}^2 .

1. Sea R la relación de equivalencia en \mathbb{S}^1 dada por

$$(x,y)R(x',y') \iff x=x'.$$

Demuestra que el espacio topológico cociente $(\mathbb{S}^1/R, \mathcal{T}_u|_{\mathbb{S}^1}/R)$ es homeomorfo a $([-1,1], \mathcal{T}_u|_{[-1,1]})$, donde $\mathcal{T}_u|_{[-1,1]}$ es la topología en el intervalo $[-1,1] \subset \mathbb{R}$ inducida por la topología usual \mathcal{T}_u de \mathbb{R} .

2. Sea R' la relación de equivalencia en \mathbb{S}^1 dada por

$$(x,y)R'(x',y') \iff (x,y) = (x',y') \text{ o } x = x' \neq 0.$$

Demuestra que los espacios topológicos cociente (\mathbb{S}^1/R , $\mathcal{T}_u|_{\mathbb{S}^1}/R$) y (\mathbb{S}^1/R' , $\mathcal{T}_u|_{\mathbb{S}^1}/R'$) no son homeomorfos, donde R es la relación de equivalencia del apartado anterior.