B Betriebssysteme

- B1 Betriebssysteme: Einführung und Motivation
 - (a) wI+Tanenbaum
 - (b) Wolfinger
- B2 Prozesse: Scheduling und Betriebsmittelzuteilung
- B3 Speicherverwaltung
- B4 Dateisysteme
- B5 Ein-/Ausgabe

B "Betriebssysteme" B1: Einführung und Motivation (a)

- Aus: A. Tanenbaum:
- "Operating Systems" (Chapter 1)
 - What is an operating system
 - Architekturalternativen (WL)
 - History of operating systems
 - The operating system zoo
 - Computer hardware review
 - Operating system concepts
 - System calls
 - Operating system structure

Introduction

Banking system	Airline reservation	Web browser	
Compilers	Editors	Command interpreter	
Operating system			
Machine language			
Microarchitecture			
Physical devices			

Application programs

System programs

Hardware

A computer system consists of

- Application programs
- System programs
- Hardware

What is an Operating System

It is an extended machine

- hides the messy details which must be performed
- presents user with a virtual machine, easier to use

It is a resource manager

- each program gets time with the resource
- each program gets space on the resource

Architektur (verteilter) Systemsoftware

Rechensystem

Banksystem	Flugreservierung	Spiele	Anwendungen
Compiler	Compiler Editoren Kommandointerpreter		System-
	Betriebssystem		programme
Maschinens	Maschinensprache, Mikroprogrammierung		Hard-
	physikalische Geräte		ware

Alternative Sichtweisen eines (verteilten) Betriebssystems...

...als "erweitere / virtuelle" Maschine

Ziel: zunehmend "komfortable" Abstraktion von Systemeigenschaften

...als "Betriebsmittelverwalter"

<u>Aufgaben:</u> Allokation / Vermittlung / Verwaltung von Ressourcen – d.h. (u.a.) von Speichern, Prozessen, Geräten, Netzschnittstellen etc.

Core OS functionality

aus: Coulouris/Dollimore/Kindberg: Distributed Systems

Betriebssysteme: Systemalternativen

A) Mono-Prozessor: Microkernel-Architektur

B) Multi-Prozessor:

DOS (Distributed OS): eng gekoppeltes BS für Multi-Prozessoren und homogene Multi-Computer

NOS (Network OS): lose gekoppeltes BS für heterogene

Multi-Computer (LAN und WAN)

Middleware: zusätzliche Ebene oberhalb des NOS zur

Implementierung allgemeiner Dienste

Alternative Betriebssystem-Architekturen

A) Geschichtetes System

Bsp: THE (Dijkstra 68)

5	Operateur
4	Benutzerprogramme
3	Ein-/Ausgabeverwaltung
2	Prozesskommunikation
1	Speicherverwaltung
0	Prozessorvergabe/Multiprogrammierung

B) Virtuelle Maschine

Bsp: IBM /370 mit VMS (70er)

zentral

Virtuelle /370	Virtuelle /370 Virtuelle /370	
CMS	CMS CMS CM	
VM / 370		
/370 Hardware		

C) Client/Server-Modell

modularer Aufbau, flexibel, erweiterbar, ...

Verteilte Betriebssystemalternativen (1)

A) Netzwerk-BS:

- + Autonomie
- Transparenz

- B) Multiprocessor/ Multicomputer / Verteiltes BS:
 - + Transparenz
 - Autonomie

Verteilte Betriebssystemalternativen (2)

C) Middleware-basiertes verteiltes (Betriebs-) System:

Basis: Client/Server- (Dienste-) Kooperation auf *Anwendungs-* und *System*ebene!

Vergleich der Betriebssystemalternativen

	Distributed OS Multiprocessor	Distributed OS <i>Multicomputer</i>	Network OS	Middleware- based DS
Degree of transparency	Very high	High	Low	High
Same OS on all nodes ?	Yes	Yes	No	No
Number of copies of OS	1	N	N	N
Basis for com- munication	Shared memory	Messages	Files	Model specific
Ressource management	Global, central	Global, distributed	Per node	Per node
Scalability	No	Moderately	Yes	Varies
Openness	Closed	Closed	Open	Open

History of Operating Systems (1)

Early batch system

- bring cards to 1401
- read cards to tape
- put tape on 7094 which does computing
- put tape on 1401 which prints output

History of Operating Systems (2)

- First generation 1945 1955
 - vacuum tubes, plug boards
- Second generation 1955 1965
 - transistors, batch systems
- Third generation 1965 1980
 - ICs and multiprogramming
- Fourth generation 1980 1995
 - personal computers
- Fifth generation 1995 present
 - mobile devices

History of Operating Systems (3)

Structure of a typical FSM job (FortranMonitorSystem) – 2nd generation

History of Operating Systems (4)

Multiprogramming system

- three jobs in memory

The Operating System Zoo

- Mainframe operating systems
- Server operating systems
- Multiprocessor operating systems
- Personal computer operating systems
- Real-time operating systems
- Embedded operating systems
- Mobile operating systems
- Smart card operating systems

Operating System Concepts (1)

A process tree

- A created two child processes, B and C
- B created three child processes, D, E, and F

Operating System Concepts (2)

(a) A potential deadlock. (b) an actual deadlock.

Operating System Concepts (3)

Operating System Concepts (4)

Dynamically changing file system:

- Before mounting
 - files on floppy are inaccessible
- 2. After mounting floppy on b
 - files on floppy are part of file hierarchy

Operating System Concepts (5)

Process communication:

Two processes connected by a pipe

Operating System Structure (1)

Procedures: Simple structuring model for a monolithic system

Operating System Structure (2)

Layer	Function
5	The operator
4	User programs
3	Input/output management
2	Operator-process communication
1	Memory and drum management
0	Processor allocation and multiprogramming

Early example: Structure of the THE operating system

Operating System Structure (3)

Multiple virtual OSs: Structure of VM/370 with CMS

Operating System Structure (4)

OS Modularization: The client-server model

Operating System Structure (5)

Distribution: Client-server model in a distributed system

