Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа №4 по дисциплине «Вычислительная математика»

Вариант 4

Выполнил: Студент группы Р3212 Данько Савелий Максимович Преподаватель: Цель лабораторной работы: найти функцию, являющуюся наилучшим приближением заданной табличной функции по методу наименьших квадратов.

Вычислительная реализация задачи

Функция:

$$y = \frac{15x}{x^4 + 4}$$

 $x \in [-4; 0], h = 0.4$

1) Сформировать таблицу табулирования заданной функции на указанном интервале

Х	$y = \frac{15x}{x^4 + 4}$
-4.0	-0.2307
-3.6	-0.3140
-3.2	-0.4409
-2.8	-0.6415
-2.4	-0.9683
-2.0	-1.4999
-1.6	-2.2741
-1.2	-2.9636
-0.8	-2.7213
-0.4	-1.4904
-0.0	Ø

Линейная аппроксимация:

Линейная аппроксимация

Рассмотрим в качестве эмпирической формулы линейную функцию:

$$\varphi(x,a,b) = ax + b$$

Сумма квадратов отклонений запишется следующим образом:

$$S = S(a,b) = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} [\varphi(x_i) - y_i]^2 = \sum_{i=1}^{n} (ax_i + b - y_i)^2 \to min$$

Для нахождения a и b необходимо найти минимум функции S(a,b).

Необходимое условие существования минимума для функции S:

$$\begin{cases} \frac{\partial S}{\partial a} = 0 \\ \frac{\partial S}{\partial b} = 0 \end{cases}$$
 или
$$\begin{cases} 2\sum_{i=1}^{n} (ax_i + b - y_i)x_i = 0 \\ 2\sum_{i=1}^{n} (ax_i + b - y_i) = 0 \end{cases}$$

Введем обозначения:

$$SX = \sum_{i=1}^{n} x_i$$
, $SXX = \sum_{i=1}^{n} x_i^2$, $SY = \sum_{i=1}^{n} y_i$, $SXY = \sum_{i=1}^{n} x_i y_i$ Получим систему уравнений для нахождения параметров a и b :

$$\begin{cases} aSXX + bSX = SXY \\ aSX + bn = SY \end{cases}$$

$$SX = -22$$

$$SXX = 61.6$$

$$SY = -13.5447$$

$$SXY = 20.55208$$

$$\begin{cases} aSSX + bSX = SXY \\ aSX + bn = SY \end{cases}$$

$$\left\{ egin{aligned} a61.6 - b22 &= -20.55208 \ -a22 + b11 &= -13.5447 \end{aligned}
ight.$$

$$\int a = -0.371439$$

$$b = -1.97421$$

$$\varphi(x) = -0.371439x - 1.97421$$

х	$\varphi(x)$
-4.0	-0.4885
-3.6	-0.6370
-3.2	-0.7856
-2.8	-0.9342
-2.4	-1.0828
-2.0	-1.2313
-1.6	-1.3799
-1.2	-1.5285
-0.8	-1.6771
-0.4	-1.8256
-0.0	-1. 9742

Среднеквадратическое отклонение:

 $\delta = 0.6725$

Квадратичная аппроксимация:

КВАДРАТИЧНАЯ АППРОКСИМАЦИЯ

Рассмотрим в качестве эмпирической формулы квадратичную функцию:

$$\varphi(x, a_0, a_1, a_2) = a_0 + a_1 x + a_2 x^2$$

Сумма квадратов отклонений запишется следующим образом:

$$S = S(a_0, a_1, a_2) = \sum_{i=1}^{n} (a_0 + a_1 x_i + a_2 x_i^2 - y_i)^2 \rightarrow min$$

Приравниваем к нулю частные производные S по неизвестным параметрам, получаем систему линейных уравнений:

$$\begin{cases} \frac{\partial S}{\partial a_0} = 2\sum_{i=1}^n a_2 x_i^2 + a_1 x_i + a_0 - y_i = 0\\ \frac{\partial S}{\partial a_1} = 2\sum_{i=1}^n (a_2 x_i^2 + a_1 x_i + a_0 - y_i) x_i = 0\\ \frac{\partial S}{\partial a_2} = 2\sum_{i=1}^n (a_2 x_i^2 + a_1 x_i + a_0 - y_i) x_i^2 = 0 \end{cases}$$

$$\begin{cases} \frac{\partial S}{\partial a_0} = 2\sum_{i=1}^n a_2 x_i^2 + a_1 x_i + a_0 - y_i = 0 \\ \frac{\partial S}{\partial a_1} = 2\sum_{i=1}^n (a_2 x_i^2 + a_1 x_i + a_0 - y_i) x_i = 0 \\ \frac{\partial S}{\partial a_2} = 2\sum_{i=1}^n (a_2 x_i^2 + a_1 x_i + a_0 - y_i) x_i^2 = 0 \end{cases}$$

$$\begin{cases} a_0 n + a_1 \sum_{i=1}^n x_i + a_2 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n y_i \\ a_0 \sum_{i=1}^n x_i + a_1 \sum_{i=1}^n x_i^2 + a_2 \sum_{i=1}^n x_i^3 = \sum_{i=1}^n x_i y_i \\ a_0 \sum_{i=1}^n x_i^2 + a_1 \sum_{i=1}^n x_i^3 + a_2 \sum_{i=1}^n x_i^4 = \sum_{i=1}^n x_i^2 y_i \end{cases}$$

$$SX = -22$$

 $SXX = 61.6$
 $SXXX = -193.6$
 $SXXXX = 648.5248$
 $SY = -13.5447$
 $SXY = 20.55208$
 $SXXY = -40.9512$

$$\begin{cases} 11a - 22b + 61.6c = -13.5447 \\ -22a + 61.6b - 193.6c = 20.55208 \\ 61.6a - 193.6b + 648.5248c = -40.9512 \end{cases}$$

$$\begin{cases} a = -1.01816 \\ b = 1.22199 \\ c = 0.398357 \end{cases}$$

$$\varphi(x) = 0.398357x^{2} + 1.22199x - 1.01816$$

х	$\varphi(x)$
-4.0	0.4676
-3.6	-0.2546
-3.2	-0.8494
-2.8	-1.3166
-2.4	-1.6564
-2.0	-1.8687
-1.6	-1.9536
-1.2	-1.9109
-0.8	-1.7408
-0.4	-1.4432
-0.0	-1. 01816

Среднеквадратическое отклонение:

 $\delta = 0.6243$

Вывод:

Среднеквадратическое отклонение для квадратичной аппроксимации оказалось меньше, чем для линейной (0.6243 против 0.6725), что свидетельствует о более точном приближении исходных данных квадратичной функцией. Таким образом, квадратичная аппроксимация обеспечивает лучшее соответствие данным по сравнению с линейной.