RM2020哨兵视觉协议 v3.0

by ThunderDoge 更新到2020-4-15

链路层配置

1位起始位 8位数据位 0奇偶校验位 1停止位 波特率460800

应用层协议

协议数据结构 总长度18位

帧首	功能字	数据	和检验	帧尾
0XFF	1位	14位	1位	0X0D

说明: **和检验为其他位(包括帧头帧尾)的和&0XFF**,数据位为使用 **memcpy**直接进行的数据拷贝,取出时应使用相同方式。

视觉发: //0x01开始

1. 控制云台相对角度, 功能字0x01

帧首	功能字	pitch	yaw	云台转 动模式	射击模式	补零	和检验	帧尾
0XFF	0x01	float	float	uint8_t	uint8_t	4 位	1 位	0X0D

2. 控制云台绝对角度,功能数字0x02

帧首	功能字	pitch	yaw	云台转 动模式	射击模式	补零	和检验	帧尾
0XFF	0x02	float	float	uint8_t	uint8_t	4 位	1 位	0X0D

3. 射击,功能字0x03

帧首	功能字	射速	射频	射击模 式	补零	和检验	帧尾
0XFF	0x03	float	uint8_t	uint8_t	8位	1位	0X0D

下面是**哨兵移动指令**。请注意:【一般移动(底盘控制、底盘控制路程、哨兵底盘控制路程,速度限制)】、【闪避】、【撞柱】是互斥的,发送互斥的命令会覆盖之前的命令,并执行新的命令。除了【撞柱】的开始撞柱阶段,它允许覆盖命令,但只能执行完撞柱之后才能执行下一个。

4. 底盘控制速度,功能字0x04

帧首	功能字	V_x	V_y	补零	和检验	帧尾
0XFF	0x04	float	float	6位	1位	0X0D

5. 底盘控制路程,功能字0x05

帧首	功能字	P_x	P_y	补零	和检验	帧尾
0XFF	0x05	float	float	6位	1位	0X0D

6. 哨兵底盘控制路程,速度限制,功能0x06

帧首	功能字	相对位置	速度限制	补零	和检验	帧尾
0XFF	0x06	float	float	6位	1位	0X0D

7. 新增闪避:命令哨兵进行闪避。功能字0x07

【闪避】相当于是,哨兵随机的选取轨道上的一系列位置,进行【底盘控制路程】的操作,此过程可选【允许/不允许】消耗缓冲能量。

此模式启用需要连续发送,发送间隔小于100ms。停发自动停用。

启用中会不停进行闪避,直至缓冲能量耗尽。闪避过程任意时刻可取消。

8. 新增撞柱: 命令哨兵进行撞柱。功能字0x08

发送一次启动撞柱。哨兵会先航行到撞柱预备位置(此阶段可以取消),然后开始撞柱(此阶段不可取消)。撞柱状态。

9. 新增查询/修改某PID参数。功能字0X10

请注意小主机只能查看/设定自己的串口直接连接的云台的参数。

1. 查询

帧首	功能字	需查询PID编号	补零	和检验	帧尾
0XFF	0X07	uint8_t 取值见 下		1位	0X0D

返回值

功能字	需查询PID编号	P	I	D
0X07	uint8_t 取值见下	float P	float I	float D

2. 修改

帧首	功能字	需修改 PID编 号	P	I	D	补零	和检验	1
0XFF	0X08	uint8_t 取值见 下	float P	float	float D		1 位	(

返回值

功能字	需查询PID编号	P	I	D
0X07	uint8_t 取值见下	float P	float I	float D

PID编号表

PID名	编号
云台PITCH位置环	1
云台PITCH速度环	2
云台YAW位置环	3
云台YAW速度环	4

电控发: //0x11开始

1. 云台状态,功能字0x11,目前间隔5MS发一帧

帧首	功能字	控制模式	pitch	yaw	射速	补零	和检验	帧尾
0XFF	0x11	uint8_t	float	float	float	1 位	1 位	0X0D

2. 更新 底盘信息,功能字0x13,与云台状态一起发

帧首	功能字	控制模式	到柱	绝对 位置	动作状态	补零	和检验
0XFF	0x12	uint8_t	unsigned char	float	unsigned char	9 位	1 位

动作状态指示: 0=一般运动; 1=闪避; 2=撞柱预备; 3=撞柱已开始

3. 日志系统,功能字0x12,有异常的时候才会发。(目前未实现)

帧首	功能字	异常 编号	具体内容	和校验	帧尾	日志内容
0XFF	0x12	int8_t 0x01	补零	1 位	0X0D	Dbus 离线
0XFF	0x12	int8_t 0x02	补零	1 位	0X0D	CAN1 离线
0XFF	0x12	int8_t 0x03	补零	1 位	0X0D	CAN2 离线

帧首	功能字	异常 编号	具体内容	和校验	帧尾	日志内容
OXFF	0x12	int8_t 0x04	int16_t CAN1电机 离线数据 int16_t CAN2电机离线数据	1 位	0X0D	具体 离线 电机 检测
0XFF	0x12	int8_t 0x05	补零	1 位	0X0D	云台 失联
0XFF	0x12	int8_t 0x06	补零	1 位	0X0D	底盘 失联
0XFF	0x12	int8_t 0x07	补零	1 位	0X0D	裁判 系统 失联
0XFF	0x12	int8_t 0x08	补零	1 位	0X0D	设备 自主 重启

电控发:裁判系统信息 //0x21开始

【裁判系统触发发送】指裁判系统来消息之后电控会立刻用中断程序,发送给视觉

信息类型	功能字	数据类型	注释	发送时机
机器人状态血量	0x21	uint16_t remain_HP		裁判 系统 发 发 (10Hz
蓝方机器人血量数据	0x22	uint16_t[7]=蓝方[1,2,3,4,5,7,基 地]血量		1Hz
红方机器人血量数据	0x23	uint16_t[7]=红放[1,2,3,4,5,7,基 地]血量		1Hz

信息类型	功能字	数据类型	注释	发送 时机
实时功率和枪口热量数据	0x24	float chassis_power,uint16_t chassis_power_buffer,uint16_t shooter_heat0		裁判 系统 发 送 50hz
机器人增益	0x25	uint8_t power_rune_buff	bit 0: 机器 人血量补血 状态 bit 1: 枪口 热量冷却加速 bit 2: 机器 人防御机器 bit 3: 机路 bit 3: 机成	裁判 系统 触发
伤害状态	0x26	uint8_t armor_id : 4; uint8_t hurt_type : 4;uint16_t remain_HP	hurt_type:0= 装甲伤害;1= 模块掉线;2= 超子弹初 速;3=超枪口 热量;4=超底 盘功率;5=装 甲撞击扣血	裁判 系统 发送

信息类型	功能字	数据类型	注释	发送 时机
子弹剩余数目	0x28	uint16_t bullet_remaining_num;		1Hz
交互数据接收信息	0x31	保留备用		