Отчет о выполненой лабораторной работе 1.4.2

Антон Хмельницкий, Б01-306

September 28, 2023

Изучение экспериментальных погрешностей на примере физического маятника

1 Аннотация

Цель работы:

- 1. На примере измерения периода свободных колебаний физического маятника познакомиться систематическими и случайными погрешностями, прямыми и косвенными измерениями;
- 2. Проверить справедливость формулы для периода колебаний физического маятника и определить значение ускорения свободного падения;
- 3. Убедиться в справедливости теоремы Гюйгенса об обратимости точек опоры и центра качания маятника;
- 4. Оценить погрешность прямых и косвенных измерений и конечного результата.

Оборудование: металлический стержень с опорной призмой; дополнительный груз; закреплённая на стене консоль; подставка с острой гранью для определения цента масс маятника; электронный секундомер; электронный счётчик колебаний; линейки металлические различной длины; штангенциркуль; электронные весы;

2 Теоретические сведения

Физическим маятником называют твёрдое тело, способное совершать колебания в вертикальной плоскости, будучи подвешено за одну из своих точек в поле тяжести. Основное отличие физического маятника от математического в том, что маятник не является точечным объектом, а представляет собой совокупность жёстко связанных точечных масс. В данной работе в качестве такого маятника

2.1 Момент инерции для стержня

Для динамики движения точечной массы m под действием силы F вдоль некоторой прямой справедливо уравнение Ньютона:

$$F=rac{dp}{dt},$$
 где $p=mv$ - импульс, v - скорость тела.

При вращательном движении момент относительно оси вращения M = Fr, тогда уравнение Ньютона преобразуем:

$$Fr=rac{d(m(\omega r)\cdot r)}{dt}\longrightarrow M=rac{dL}{dt},$$
где $L=m\omega r^2$

Вводится обозначение $J=mr^2$ - момент инерции точечного тела. $L=J\omega$ - момент импльса(вращательный импульс). Получаем уравнение:

$$M = J \frac{d\omega}{dt}$$

В случае твердого тела состоящего из совокупности материальных точек, вращающихся вокруг одной оси момент импульса вычисляется как:

$$J = \sum_{i}^{N} m_{i} r_{i}^{2}, \;$$
где r_{i} - расстояние от m_{i} точки до оси вращения

Из курса механики момент инерции тонкого стержня массой m и длиной l, вращающегося вокруг оси, проходящей через центр масс, равен:

$$J_c = \frac{ml^2}{12}$$

А момент инерции стержня, подвешенного на расстоянии a от центра масс, может быть вычислен по теореме Гюйгенса–Штейнера:

$$J = \frac{ml^2}{12} + ma^2$$

2.2 Общая формула физического маятника

Маятник подвешен в точке O на расстоянии a до центра масс C (рис.1). Общая формула для периода колебаний произвольного физического маятника:

$$T=2\pi\sqrt{\frac{J}{mga}}$$

А для стержня длиной l, подвешенного на расстоянии a от центра, получаем:

$$T = 2\pi \sqrt{\frac{\frac{l^2}{12} + a^2}{ga}}$$

Для математического маятника будет:

$$T = 2\pi \sqrt{\frac{l}{g}}$$

Определим так называемую приведённую длину физического маятника. Смысл этой длины в том, что физический маятник длиной l, подвешенный в точке a, имеет тот же период малых колебаний, что и математический маятник длиной $l_{\rm np}$:

$$l_{\rm np} = a + \frac{l^2}{12a}$$

Теорема Гюйгенса: Рассмотрим точку $O^{'}$, отстоящую от точки опоры O на расстояние $l_{\rm пр}$ вдоль стержня (эту точку иногда называют центром качания физического маятника). Оказывается, если маятник подвесить за точку $O^{'}$, то период его качания не изменится. Иными словами, точка опоры и центр качания маятника взаимно обратимы.

Рис. 1. Физический маятник

Рисунок 1: Схема включения счетчика

2.3 Затухающие колебания

Амплитуду колебаний следует считать медленно убывающей функцией времени: A(t).

Относительную убыль амплитуды за одно колебание $\gamma=|\frac{\delta A}{A}|$ называют декрементом затухания.

Получаем экспненциальную зависимость амплитуды колебаний от времени:

$$A(t) = A_0 \cdot e^{-\gamma t}$$

Таким образом, величина $au_k = rac{1}{\gamma}$ — это время, за которое амплитуда колебаний падает в e раз.

В теории колебаний принято использовать безразмерную характеристику затухания, называемую добротностью колебательной системы:

 $Q = \pi \frac{\tau_k}{T}$

2.4 Погрешность при измерении периода колебаний

В работе использовался электронный секундомер и электронный счетчик, поэтому $\sigma_t^{\text{сист}} = 0,01$ с определяется по последнему разряду прибора.

Случайную погрешность вычислим по формуле среднеквадратического отклонения:

$$\sigma_t^{\text{случ}} = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (t_i - \bar{t})^2} = 0,0006$$

Полная погрешность:

$$\sigma_t^{\text{полн}} = \sqrt{(\sigma_t^{\text{сист}})^2 + (\sigma_t^{\text{случ}})^2} = 0,01002 \approx 0,01$$

Из измеренных данных получаем $\overline{T}\approx 1,526, \sigma_t^{\text{полн}}=0,01, \sigma_T=\frac{\sigma_t}{n}$ и $\varepsilon_T=\frac{\sigma_T}{T}<10^{-3}(0,1\%)$ условие точности. Получаем:

$$n>rac{\sigma_t}{\overline{T}arepsilon_T}pprox 6,55\longrightarrow n=7$$
 - достаточно для точности меньше $0,1\%$

№ опыта	Полное время t	Число колебаний n	Период T=t/n
1	30,53	20	1,5265
2	30,55	20	1,5275
3	30,52	20	1,526
4	30,54	20	1,527

Таблица 1: Данные для определения достаточного п числа колебаний для минимальной погрешности

2.5 Особенности маятника с перемещаемым грузом

Если на стержень насадить груз, то момент инерции маятника, а значит и период его колебаний, будет зависеть от положения груза относительно оси качания. В качестве подвижного груза в работе используется металлический цилиндр или «чечевица».

Поскольку размер груза мал по сравнению с длиной стержня, его можно считать закреплённой на стержне точечной массой. Обозначим за у расстояние от точки подвеса О до центра масс груза. Тогда момент инерции маятника будет равен:

$$J = J_0 + m_{\text{r}} y^2 = \frac{m_0 l^2}{12} + m_0 a^2 + m_{\text{r}} y^2, (m_0 = m_{\text{ct}})$$

Пусть $x_{\rm u0}$ — расстояние от точки подвеса (острия призмы) до центра масс маятника без груза. Тогда центр масс маятника с грузом $x_{\rm u}$ находится в точке:

$$x_{ exttt{i}}=rac{m_0x_{ exttt{i}0}+m_{ ext{\tiny \Gamma}}y}{M},$$
 где $M=m_0+m_{ exttt{\tiny \Gamma}}$ - полная масса маятника

Отсюда y будет равен:

$$y = \frac{Mx_{\mathbf{u}} - m_0 x_{\mathbf{u}0}}{m_{\mathbf{r}}}$$

Из обще формулы периода колебаний:

$$T = 2\pi \sqrt{\frac{J_0 + m_{\rm r} y^2}{g M x_{\rm q}}} = 2\pi \sqrt{\frac{\frac{m_0 l^2}{12} + m_0 a^2 + m_{\rm r} y^2}{g M x_{\rm q}}}$$

2.6 Поправка для призмы

В предыдущем пункте не было учета, что точка опоры - призма не материальная точка, поэтому сама имеет момент инерции, тогда для поправки преобразуем формулы для центра масс и соответственно:

$$x_{\text{II}} = \frac{m_0 x_{\text{II}0} + m_{\text{r}} y}{M} = \frac{(m_{\text{ct}} + m_{\text{II}p}) x_{\text{II}0} + m_{\text{r}} y}{m_{\text{ct}} + m_{\text{II}p} + m_{\text{r}}},$$

где $x_{
m ц0}$ - центр массы "призма + стержень" и $M=m_0+m_{
m cr}+m_{
m пp}$

Заметим, что призма назодится близко к оси вращения, поэтому $J_{\rm np}$ не будет влиять на погрешность в том же порядке как наличие у призмы массы $m_{\rm np}$, поэтому в итоге получаем:

$$y = \frac{Mx_{\text{II}} - m_0 x_{\text{II}0}}{m_{\text{r}}} = \frac{Mx_{\text{II}} - (m_{\text{CT}} + m_{\text{IIp}})x_{\text{II}0}}{m_{\text{r}}}$$

$$T = 2\pi \sqrt{\frac{\frac{(m_{\text{CT}} + m_{\text{IIp}})l^2}{12} + (m_{\text{CT}} + m_{\text{IIp}})a^2 + m_{\text{r}}y^2}{g(m_{\text{CT}} + m_{\text{IIp}} + m_{\text{rp}})x_{\text{II}}}}$$

$$T = 2\pi \sqrt{\frac{\frac{(m_{\text{CT}} + m_{\text{IIp}})l^2}{12} + (m_{\text{CT}} + m_{\text{IIp}})a^2 + m_{\text{r}}y^2}{g((m_{\text{CT}} + m_{\text{IIp}})a + m_{\text{r}}y)}}}$$

$$T = 2\pi \sqrt{\frac{\frac{(m_{\text{CT}} + m_{\text{IIp}})l^2}{12} + \frac{(m_{\text{CT}} + m_{\text{IIp}})a + m_{\text{r}}y}{m_{\text{r}}}}{g(\frac{(m_{\text{CT}} + m_{\text{IIp}})l^2}{m_{\text{r}}} + \frac{(m_{\text{CT}} + m_{\text{IIp}})}{m_{\text{r}}}a^2 + y^2}}{g(\frac{(m_{\text{CT}} + m_{\text{IIp}})l^2}{m_{\text{r}}}a + y)}}$$

Рис. 3. Маятник с дополнительным грузом

Рисунок 2: Схема включения счетчика

Пусть $\beta = \frac{m_{\text{пр}} + m_{\text{ст}}}{m_{\text{r}}} \approx 3,02 \pm 0,0005,$ тогда T будет равен:

$$T = 2\pi \sqrt{\frac{\frac{\beta l^2}{12} + \beta a^2 + y^2}{g(\beta a + y)}}$$

Тогда наиболее точная формула вычисления g(T) будет:

$$g = \frac{4\pi^2 \left(\frac{(m_{\text{cr}} + m_{\text{пр}})l^2}{12} + (m_{\text{cr}} + m_{\text{пр}})a^2 + m_{\text{r}}y^2\right)}{T^2 (m_{\text{r}} + m_{\text{cr}} + m_{\text{пр}})x_{\text{ц}}}$$
$$g = \frac{4\pi^2 \left(\frac{\beta l^2}{12} + \beta a^2 + y^2\right)}{T^2 (1 + \beta)x_{\text{ц}}}$$

Отсюда видно, что если построить зависимость величины $u=T^2x_{\rm II}$ от $v=y^2$, то график должен иметь вид прямой линии. По её наклону можно определить ускорение свободного падения g, а по вертикальному смещению — момент инерции J_0 маятника.

3 Характеристики приборов и их погрешности

Длина стержня, <i>l</i>	100,1 см	Погрешность штангенциркуля 0,1 мм
Центр масс пустого стержня, x_{cr}	50,2 см	Погрешность линейки 0,5 мм
Центр массы "призмы $+$ стержень" отн. О, $a=x_{\rm ц0}$	27,4 см	Погрешность линейки 0,5 мм
$Macca$ стержня, m_{ct}	868,2 г	Погрешность весов по паспорту 0,5 г
$Macca$ доп груза, m_{rp}	314 г	Погрешность весов по паспорту 0,5 г
$Macca$ призмы, m_{np}	79,6 г	Погрешность весов по паспорту 0,5 г
Достаточное число колебаний, п	7	Погрешность < 0,1% по выкладке выше

Таблица 2: Данные для определения достаточного п числа колебаний для минимальной погрешности

4 Расчет данных

4.1 Полученные данные

Центр масс системы, $x_{\rm ц}$, см	Время колебаний, t , с	Число колебаний, п
37,4	11,05	7
35,8	10,8	7
34,9	10,68	7
33,5	10,47	7
32,8	10,37	7
32,2	10,29	7
31,4	10,2	7
30,6	10,12	7
29,8	10,08	7
29,2	10,02	7

Таблица 3: Данные о колебаниях полученные с экспериментальной установки

4.2 Расчет всех значений

С помощью данных, полученных с установки рассчитаем все параметры пользуясь формулами из теории, все данные были переведены в м,с:

№ оп.	Ц.м. системы, $x_{\rm ц}$	Время, t	Колебания, п	Период, Т	Ц.м. груза, у	Ускорение свободного падения, д
1	0,374	11,05	7	1,579	0,676	9,851
2	0,358	10,80	7	1,543	0,612	9,820
3	0,349	10,68	7	1,526	0,575	9,782
4	0,335	10,47	7	1,496	0,519	9,797
5	0,328	10,37	7	1,481	0,491	9,813
6	0,322	10,29	7	1,470	0,467	9,826
7	0,314	10,20	7	1,457	0,435	9,828
8	0,306	10,12	7	1,446	0,403	9,832
9	0,298	10,08	7	1,440	0,370	9,782
10	0,292	10,02	7	1,431	0,346	9,819

Таблица 4: Рассчитанные значения на основе собранных данных

Расчет приведенной длины 4.3

Для полученных значений рассчитаем приведенную длину по формуле измененной для учета призмы:

$$l_{
m np} = rac{rac{(m_{
m cr} + m_{
m np})l^2}{12} + (m_{
m cr} + m_{
m np})a^2 + m_{
m r}y^2}{(m_{
m cr} + m_{
m np} + m_{
m rp})x_{
m n}}$$

Тогда период колебаний математического маятника $T_{\rm np}$ будет равен:

$$T_{\rm np} = 2\pi \sqrt{\frac{l_{\rm np}}{g}}$$

Видно, что погрешность $\varepsilon_T < 0,3\%$, что можно считать равенством с учетом погрешности измерений.

l_{np}	$T_{\rm np}$	T_0	σ_T	$\varepsilon_T = \frac{\sigma_T}{T}$
0,622411	1,578549	1,578571	0,000022	0,001406662
0,592691	1,540400	1,542857	0,002457	0,159487371
0,577367	1,520356	1,525714	0,005358	0,352437885
0,555754	1,491630	1,495714	0,004085	0,273846285
0,546058	1,478559	1,481429	0,002869	0,194070497
0,538384	1,468133	1,470000	0,001867	0,127153512
0,529129	1,455460	1,457143	0,001683	0,115605978
0,521072	1,444336	1,445714	0,001378	0,095431668
0,514308	1,434931	1,440000	0,005069	0,353274731
0,510147	1,429115	1,431429	0,002313	0,161868082

Таблица 5: Сравнение периодов колебаний мат. маятника с $l_{
m np}$ и физического маятника

Расчет затуханий

Отдельно измерим затухания малых колебаний, для этой установки: полученные значения при уменьшении

амплитуды с $\alpha_0=10^\circ$ до $\alpha_{\rm K}=5^\circ$ (в два раза) за T=459,8с за n=301 колебаний. Тогда из соотношений из теории $e^{-\gamma t}=\frac{1}{2},$ получаем $\tau_{\rm 3at}=\frac{1}{\gamma}=\frac{nT}{ln(2)}\approx 55,5$ ч и добротность $Q=\frac{\pi n}{ln(2)}\approx 1364$

5 Обработка результатов

5.1Погрешность ускорения свободного падения

$$g=rac{4\pi^2(rac{eta l^2}{12}+eta a^2+y^2)}{T^2(1+eta)x_{ ext{\tiny II}}},$$
 где $eta=rac{m_{ ext{\tiny IIP}}+m_{ ext{\tiny CT}}}{m_{ ext{\tiny E}}}pprox 3,02\pm0,0005$

По данным таблицы 4 рассчитаем среднее для g и погрешность:

Среднее значение:
$$\overline{g} = \frac{1}{10} \sum_{i=1}^{10} g_i \approx 9,815$$

Среднеквадратическое отклонение:
$$\sigma_g = \sqrt{\frac{1}{10}\sum_{i=1}^{10}(g_i-\overline{g})^2} \approx 0,021$$

Погрешность среднего значения(случайная): $\sigma_g^{\text{случ}} = \frac{\sigma_g}{\sqrt{10}} \approx 0,00665$

Систематическая погрешность:
$$\sigma_g^{\text{сист}} = g \sqrt{\left(\frac{dg}{dT}\right)^2 \sigma_T^2 + \left(\frac{dg}{dT}\right)^2 \sigma_T^2 + \left(\frac{dg}{dx_{\text{II}}}\right)^2 \sigma_{x_{\text{II}}}^2 + \left(\frac{dg}{dy}\right)^2 \sigma_y^2 + \left(\frac{dg}{d\beta}\right)^2 \sigma_\beta^2 + \dots} \approx 0,14$$

Полная погрешность:
$$\sigma_g^{\text{полн}} = \sqrt{\sigma_{\text{сист}}^2 + \sigma_{\text{случ}}^2} \approx 0,14$$

Получаем $g = 9,815 \pm 0,14 \frac{M}{c^2} (\varepsilon_g = 1,4\%)$

Рисунок 3: Зависимость периода колебаний T(y) от положения ц.м. груза y

5.2 Зависимость периода колебаний от положения груза

Построим график зависимости периода колебаний T(y) от положения груза y:

$$T=2\pi\sqrt{rac{eta l^2}{12}+eta a^2+y^2}{g\left(eta a+y
ight)},$$
 где $eta=rac{m_{
m np}+m_{
m cr}}{m_{
m r}}pprox 3,02\pm0,0005$

Рассчитаем минимум, сделаем замену $k=2\pi\sqrt{\frac{1}{g}}\approx 2, b=\frac{\beta l^2}{12}+\beta a^2\approx 0,4787, h=\beta a\approx 0,827,$ получаем формулу:

$$T = k\sqrt{\frac{b+y^2}{h+y}}$$

Найдем минимум взяв производную и приравняв ее к нулю, получим:

$$y_{\text{\tiny MMH}} = -h + \sqrt{h^2 - b} \approx 0,247$$

5.3 Зависимость u(v)

Пусть
$$u=T^2x_{\rm II}$$
, а $v=y^2$, тогда пусть $k=\frac{4\pi^2}{g(\beta+1)}\approx 0,997,$ $b=\frac{4\pi^2}{g(\beta+1)}\left(\frac{\beta l^2}{12}+\beta a^2\right)\approx 0,477,$ получаем $u(v)=kx+b$ - линейная зависимость

Данные полученные с помощью аппроксимации: k = 0,997, b = 0,48

Рисунок 4: Зависимость u(v)

Рассчитаем k и b по методу наименьших квадратов:

$$k = \frac{\langle vu \rangle - \langle v \rangle \langle u \rangle}{\langle v^2 \rangle - \langle v \rangle^2} \approx 1,048, b = \langle u \rangle - k \langle v \rangle \approx 0,466$$

Отсюда найдем g:

$$g = \frac{4\pi^2}{k(\beta+1)} \approx 9,854$$

Рассчитаем погрешность $u=T^2x_{\rm H}$ и $v=y^2$:

$$\varepsilon_u = \sqrt{\left(2\frac{\sigma_T}{T}\right)^2 + \left(\frac{\sigma_{x_{\text{II}}}}{x_{\text{II}}}\right)^2} \approx 0,013$$
$$\varepsilon_v = \frac{2\sigma_y}{y} \approx 0,0015$$

Рассчитаем случайную погрешность k и b:

$$\begin{split} \sigma_k^{\text{случ}} &= \sqrt{\frac{1}{N-2} \left(\frac{\langle u^2 \rangle - \langle u \rangle^2}{\langle v^2 \rangle - \langle v \rangle^2} - k^2 \right)} \approx 0,0003 \\ \sigma_b^{\text{случ}} &= \sigma_k^{\text{случ}} \sqrt{\langle v^2 \rangle} \approx 8 \cdot 10^5 \end{split}$$

Вычислим систематическую погрешность k и b:

$$\sigma_k^{\text{cuct}} = k\sqrt{(\varepsilon_v)^2 + (\varepsilon_u)^2} \approx 0,013$$

$$\sigma_b^{\text{cuct}} = b\sqrt{(\varepsilon_v)^2 + (\varepsilon_u)^2} \approx 0,0063$$

Полная погрешность:

$$\sigma_k^{\text{полн}} = k\sqrt{(\varepsilon_v)^2 + (\varepsilon_u)^2} \approx 0,013$$

$$\sigma_b^{\text{полн}} = b\sqrt{(\varepsilon_v)^2 + (\varepsilon_u)^2} \approx 0,0063$$

Тогда $k=0,997\pm0,013(\varepsilon_k=1,31\%)$ и $b=0,48\pm0,0063(\varepsilon_b=1,31\%)$.

Тогда:

$$g_k = \frac{4\pi^2}{k(\beta+1)} \approx 9,85$$

$$\sigma_{gk} = g\sqrt{(\varepsilon k)^2 + (\varepsilon_\beta)^2} \approx 0,128(\varepsilon_{gk} = 1,3\%)$$

$$g_b = b = \frac{4\pi^2}{g(\beta+1)} \left(\frac{\beta l^2}{12} + \beta a^2\right) \approx 9,85$$

$$\sigma_{gb} = g\sqrt{(\varepsilon b)^2 + (\varepsilon_\beta)^2} \approx 0,128(\varepsilon_{gb} = 1,3\%)$$

Итого:

$$g_k = 9,85 \pm 0,128 \frac{M}{c^2} (\varepsilon_{gk} = 1,3\%)$$
$$g_b = 9,85 \pm 0,128 \frac{M}{c^2} (\varepsilon_{gb} = 1,3\%)$$

6 Выводы

В ходе работы мы получили значения ускорения свободного падения 2 способами:

- $g_k = 9.85 \pm 0.128 \frac{M}{C^2} (\varepsilon_{gk} = 1.3\%)$
- $g_b = 9.85 \pm 0.128 \frac{M}{c^2} (\varepsilon_{gb} = 1.3\%)$
- $g = 9,815 \pm 0,14 \frac{M}{c^2} (\varepsilon_g = 1,4\%)$

Сравнивая их, получаем что усредненный ответ будет точнее, но при этом в методе МНК меньшее влияние оказывает случайная погрешность. При этом на полную погрешность все равно влияет по большей части систематическая погрешность, а именно неточность измерения экспериментатором центра масс системы и конечное число измерений секундомером времени колебаний.

Полученными данными мы подтвердили теорию для периода колебания физического маятника и подтвердили теорему Гюйгенса экспериментально.