

Aprendizado por Reforço

Processos de Decisão de Markov (parte 3)

- "Resolver uma tarefa de aprendizado por reforço significa, de forma geral, encontrar uma política que obtenha uma grande recompensa no longo prazo". (Sutton e Barto, 2018)
- Conceitos principais:
 - Valores de estado ótimos
 - Políticas ótimas
- Ferramenta-chave:
 - Equação de otimalidade de Bellman
- Cronograma
 - O que nós já vimos: Equação de Bellman (<u>para uma dada política</u>)
 - O que nós veremos hoje: Equação de otimalidade de Bellman (para política ótima)
 - O que nós vermos nas próximas aulas: algoritmos (para resolver a equação de otimalidade de Bellman)

Como melhorar políticas?

Como melhorar políticas?

Valores de estado (equação de Bellman)

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \left[\sum_{r} p(r|s,a)r + \gamma \sum_{s'} p(s'|s,a)v_{\pi}(s') \right]$$

$$v_{\pi}(s_1) = ?$$

$$v_{\pi}(s_2) = ?$$

$$v_{\pi}(s_3) = ?$$

$$v_{\pi}(s_4) = ?$$

Como melhorar políticas?

Valores de estado (equação de Bellman)

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \left[\sum_{r} p(r|s,a)r + \gamma \sum_{s'} p(s'|s,a)v_{\pi}(s') \right]$$

$$v_{\pi}(s_1) = -1 + \gamma v_{\pi}(s_2)$$

$$v_{\pi}(s_2) = 1 + \gamma v_{\pi}(s_4)$$

$$v_{\pi}(s_3) = 1 + \gamma v_{\pi}(s_4)$$

$$v_{\pi}(s_4) = 1 + \gamma v_{\pi}(s_4)$$

Para
$$\gamma = 0.9$$
:

$$v_{\pi}(s_1) = 8$$

$$v_{\pi}(s_2) = 10$$

$$v_{\pi}(s_3) = 10$$

$$v_{\pi}(s_4) = 10$$

Como melhorar políticas?

*Valores de ação (equação de Bellman) para o estado s*₁

$$q_{\pi}(s, a) = \sum_{r} p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a)v_{\pi}(s')$$

$$q_{\pi}(s_1, a_1) = ?$$

$$q_{\pi}(s_1, a_2) = ?$$

$$q_{\pi}(s_1, a_3) = ?$$

$$q_{\pi}(s_1, a_4) = ?$$

$$q_{\pi}(s_1, a_5) = ?$$

Como melhorar políticas?

*Valores de ação (equação de Bellman) para o estado s*₁

$$q_{\pi}(s, a) = \sum_{r} p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a)v_{\pi}(s')$$

$$q_{\pi}(s_1, a_1) = -1 + \gamma v_{\pi}(s_1) = 6.2$$

$$q_{\pi}(s_1, a_2) = -1 + \gamma v_{\pi}(s_2) = 8$$

$$q_{\pi}(s_1, a_3) = 0 + \gamma v_{\pi}(s_3) = 9$$

$$q_{\pi}(s_1, a_4) = -1 + \gamma v_{\pi}(s_1) = 6.2$$

$$q_{\pi}(s_1, a_5) = 0 + \gamma v_{\pi}(s_1) = 7.2$$

Para
$$\gamma = 0.9$$
:

$$v_{\pi}(s_1) = 8$$

$$v_{\pi}(s_2) = 10$$

$$v_{\pi}(s_3) = 10$$

$$v_{\pi}(s_4) = 10$$

Como melhorar políticas?

*Valores de ação (equação de Bellman) para o estado s*₁

$$q_{\pi}(s, a) = \sum_{r} p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a)v_{\pi}(s')$$

$$q_{\pi}(s_1, a_1) = -1 + \gamma v_{\pi}(s_1) = 6.2$$

$$q_{\pi}(s_1, a_2) = -1 + \gamma v_{\pi}(s_2) = 8$$

$$|q_{\pi}(s_1, a_3) = 0 + \gamma v_{\pi}(s_3) = 9|$$

$$q_{\pi}(s_1, a_4) = -1 + \gamma v_{\pi}(s_1) = 6.2$$

$$q_{\pi}(s_1, a_5) = 0 + \gamma v_{\pi}(s_1) = 7.2$$

$$q_{\pi}(s_1, a_3) \ge q_{\pi}(s_1, a_i),$$

$$para\ todo\ i \ne 3$$

Podemos atualizar a política para executar a ação a_3 no estado s_1 !

Atualizar a política para executar a ação com maior valor de ação melhora a política. Essa é a ideia subjacente de muitos algoritmos de aprendizado por reforço.

- Valores de estado definem uma ordem parcial entre as políticas:
 - Comparação de políticas: π_1 é melhor do que π_2 se

$$v_{\pi_1}(s) \ge v_{\pi_2}(s)$$
, para todo $s \in \mathcal{S}$

• Uma política π^* ótima satisfaz:

$$v_{\pi^*}(s) \ge v_{\pi}(s)$$
, para todo $s \in S$ e política π

Valor de estado ótimo

$$v_{\pi^*}(s) = v^* = \max_{\pi} v_{\pi}(s)$$

- Questões fundamentais sobre políticas ótimas
 - Existência: a política ótima existe?
 - Unicidade: se existir, a política ótima é única?
 - Estocasticidade: a política ótima é estocástica ou determinística?
 - Algoritmo: como calcular valores ótimos de estado e obter a política ótima?

• Equação de Bellman (forma escalar)

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \left[\sum_{r} p(r|s,a)r + \gamma \sum_{s'} p(s'|s,a)v_{\pi}(s') \right]$$

Equação de otimalidade de Bellman (forma escalar)

$$v(s) = \max_{\pi(s) \in \Pi(s)} \sum_{a} \pi(a|s) \left[\sum_{r} p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a)v(s') \right]$$
$$v(s) = \max_{\pi(s) \in \Pi(s)} \sum_{a} \pi(a|s)q(s, a), \quad s \in \mathcal{S}$$

- Onde
 - $q(s,a) = \sum_r p(r|s,a)r + \gamma \sum_{s'} p(s'|s,a)v(s')$
 - $\pi(s)$: política para o estado s
 - $\Pi(s)$: conjunto de todas as possíveis políticas para s

• Equação de Bellman (forma escalar)

- Onde
 - $q(s,a) = \sum_r p(r|s,a)r + \gamma \sum_{s'} p(s'|s,a)v(s')$
 - $\pi(s)$: política para o estado s
 - $\Pi(s)$: conjunto de todas as possíveis políticas para s

Equação de otimalidade de Bellman (forma escalar)

$$v(s) = \max_{\pi(s) \in \Pi(s)} \sum_{a} \pi(a|s) q(s,a), \qquad s \in S$$

• Resolvendo para π

Como
$$\sum_{a} \pi(a|s) = 1$$
, Então:

$$\sum_{a} \pi(a|s)q(s,a) \le \sum_{a} \pi(a|s) \max_{a \in \mathcal{A}} q(s,a) = \max_{a \in \mathcal{A}} q(s,a)$$

$$\sum_{a} \pi(a|s)q(s,a) = \sum_{a} \pi(a|s) \max_{a \in \mathcal{A}} q(s,a) \qquad se \quad \pi(a|s) = \begin{cases} 1, & a = a^* \\ 0, & a \neq a^* \end{cases} \quad onde \ a^* = \underset{a}{\operatorname{argmax}} q(s,a)$$

• A política ótima é aquela que seleciona a ação que tem o maior valor de q(s,a).

- Questões fundamentais a equação de otimalidade de Bellman
 - Existência: Essa equação tem solução?
 - Unicidade: Se existir, a solução é única?
 - Algoritmo: Como resolver essa equação?
 - Otimalidade: Qual a relação da solução com políticas ótimas?

Equação de otimalidade de Bellman na forma matricial

 $v = f(v) \triangleq \max_{\pi \in \Pi} (r_{\pi} + \gamma P_{\pi} v)$

 $v \in \mathbb{R}^{|\mathcal{S}|}$

$$[r_{\pi}]_{s} \triangleq \sum_{a \in \mathcal{A}} \pi(a|s) \sum_{r \in \mathcal{R}} p(r|s,a)r$$

$$[P_{\pi}]_{s,s'} = p(s'|s) \triangleq \sum_{a \in \mathcal{A}} \pi(a|s)p(s'|s,a)$$

- O operador $\max_{\pi \in \Pi}$ é aplicado "elemento a elemento"
- Resolver v = f(v) para encontrar o ponto fixo que representa os valores de estado ótimos

Onde

- Teorema do ponto fixo
 - O que é um ponto fixo?
 - Seja uma função f(x), onde $x \in \mathbb{R}^d$ e $f: \mathbb{R}^d \to \mathbb{R}^d$. Um ponto x^* é chamado um ponto fixo se

$$f(x^*) = x^*$$

- Isto é, x^* é mapeado para si mesmo.
- O que é uma função contrativa?
 - A função f é uma função contrativa se existir $\gamma \in (0,1)$ tal que

$$||f(x_1) - f(x_2)|| \le \gamma ||x_1 - x_2||$$

para qualquer $x_1, x_2 \in \mathbb{R}^d$. ($\|\cdot\|$ representa uma norma vetorial ou matricial)

Solução

única

Teorema do ponto fixo

- Para qualquer equação da forma x = f(x), em que x e f(x) são vetores reais, se f é um mapeamento de contração, então as seguintes propriedades valem:
 - Existência: Existe um ponto fixo x^* que satisfaz $f(x^*) = x^*$.
 - Unicidade: Esse ponto fixo x^* é único.
 - Algoritmo: o processo iterativo a seguir pode ser utilizado para encontrar a solução

$$x_{k+1} = f(x_k)$$
 Convergência

para k=0,1,2,... Então, $x_k\to x^*$ à medida que $k\to\infty$ para qualquer valor inicial x_0 .

• No contexto da equação de otimalidade de Bellman, f(v) é um mapeamento de contração. Para qualquer $v_1,v_2\in\mathbb{R}^{|\mathcal{S}|}$:

$$|| f(v_1) - f(v_2) ||_{\infty} \le \gamma || v_1 - v_2 ||_{\infty}$$

 $\gamma \in (0,1)$: taxa de desconto

 $\|\cdot\|_{\infty}$: norma ℓ_{∞} (valor absoluto máximo dos elementos do vetor)

• Podemos aplicar diretamente o teorema do ponto fixo para analisar a equação de otimalidade de Bellman.

- Resolvendo a equação de otimalidade de Bellman para Encontrar v^* e π^* .
 - ullet Se v^st é uma solução para a equação de otimalidade de Bellman, então v^st satisfaz

$$v^* = \max_{\pi \in \Pi} (r_{\pi} + \gamma P_{\pi} v^*)$$

- v^* é um ponto fixo de f(v) ($v^* = f(v^*)$), então:
 - Existência de v^* : a solução para a equação de otimalidade de Bellman sempre existe.
 - Unicidade de v^* : a solução v^* para a equação de otimalidade de Bellman é sempre única.
 - Algoritmo (**iteração de valor**): O valor de v^* pode ser encontrado por um algoritmo iterativo

$$v_{k+1} = f(v_k) = \max_{\pi \in \Pi} (r_{\pi} + \gamma P_{\pi} v_k), \qquad k = 0, 1, 2, ...$$

O valor de v_k converge para v^* quando $k \to \infty$, dado qualquer palpite inicial v_0 .

- Resolvendo a equação de otimalidade de Bellman para Encontrar v^* e π^* .
 - Após obter v^* Podemos extrair a política ótima π^* :

$$\pi^* = \operatorname*{argmax}(r_{\pi} + \gamma P_{\pi} v^*)$$

• Relação entre a equação de otimalidade de Bellman e a equação de Bellman:

$$v^* = v_{\pi^*} = r_{\pi^*} + \gamma P_{\pi^*} v^*$$

• A equação de otimalidade de Bellman é um caso especial da equação de Bellman cuja política é π^* .

- Otimalidade de v^* e π^*
 - A solução v^* é o valor de estado ótimo, e π^* é uma política ótima. Isto é, para qualquer política π , vale:

$$v^* = v_{\pi^*} \ge v_{\pi}$$

em que v_{π} é o valor de estado da política π , e \geq denota comparação elemento a elemento.

- Política gulosa ótima
 - Para cada $s \in S$, a política gulosa determinística

$$\pi^*(a|s) = \begin{cases} 1, & a = a^*(s) \\ 0, & a \neq a^*(s) \end{cases}$$

é uma política ótima para resolver a equação de otimalidade de Bellman. Onde,

$$a^*(s) = \operatorname*{argmax}_{a} q^*(s, a)$$

Valor de ação ótimo:

$$q^*(s,a) = \sum_{r \in \mathcal{R}} p(r|s,a)r + \gamma \sum_{s' \in \mathcal{S}} p(s'|s,a)v^*(s')$$

• Busca as ações com maior $q^*(s,a)$.

- Política ótima π^*
 - Unicidade de π^* : Embora v^* seja único, π^* pode não ser.
 - Estocasticidade de π^* : Uma política ótima pode ser estocástica ou determinística. No entanto, é certo que sempre existe ao menos uma política ótima determinística.

Política ótima determinística

Política ótima estocástica

• Equação de otimalidade de Bellman

$$v(s) = \max_{\pi(s) \in \Pi(s)} \sum_{a} \pi(a|s) \left[\sum_{r} p(r|s,a)r + \gamma \sum_{s'} p(s'|s,a)v(s') \right]$$

• Quais parâmetros determinam v^* e π^* ?

• Equação de otimalidade de Bellman

$$v(s) = \max_{\pi(s) \in \Pi(s)} \sum_{a} \pi(a|s) \left[\sum_{r} p(r|s,a)r + \gamma \sum_{s'} p(s'|s,a)v(s') \right]$$

- Quais parâmetros determinam v^* e π^* ?
 - Recompensas imediata (r)
 - Taxa de desconto (γ)
 - Modelo do ambiente (p(r|s,a), p(s'|s,a))

• Fatores que influenciam políticas ótima: impacto da taxa de desconto (γ) .

	1	2	3	4	5
1	5.8	5.6	6.2	6.5	5.8
2	6.5	7.2	8.0	7.2	6.5
3	7.2	8.0	10.0	8.0	7.2
4	8.0	10.0	10.0	10.0	8.0
5	7.2	9.0	10.0	9.0	8.1

$$r_{boundary} = r_{forbidden} = -1$$
 $r_{target} = 1$
 $\gamma = ?$

1 0.0 0.0 0.0 0.0 0	.0
2 0.0 0.0 0.0 0.0 0	.1
3 0.0 0.0 2.0 0.1 0	.1
4 0.0 2.0 2.0 0	.2
5 0.0 1.0 2.0 1.0 0	.5

$$r_{boundary} = r_{forbidden} = -1$$
 $r_{target} = 1$
 $\gamma = ?$

• Fatores que influenciam políticas ótima: impacto da taxa de desconto (γ).

	1	2	3	4	5
1	5.8	5.6	6.2	6.5	5.8
2	6.5	7.2	8.0	7.2	6.5
3	7.2	8.0	10.0	8.0	7.2
4	8.0	10.0	10.0	10.0	8.0
5	7.2	9.0	10.0	9.0	8.1

$$r_{boundary} = r_{forbidden} = -1$$
 $r_{target} = 1$
 $\gamma = 0.9$

	1	2	3	4	5
1	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	0.0	0.0	0.1
3	0.0	0.0	2.0	0.1	0.1
4	0.0	2.0	2.0	2.0	0.2
5	0.0	1.0	2.0	1.0	0.5

$$r_{boundary} = r_{forbidden} = -1$$
 $r_{target} = 1$
 $\gamma = 0.5$

• Fatores que influenciam políticas ótima: impacto da taxa de desconto (γ).

	1	2	3	4	5
1	5.8	5.6	6.2	6.5	5.8
2	6.5	7.2	8.0	7.2	6.5
3	7.2	8.0	10.0	8.0	7.2
4	8.0	10.0	10.0	10.0	8.0
5	7.2	9.0	10.0	9.0	8.1

$$r_{boundary} = r_{forbidden} = -1$$
 $r_{target} = 1$
 $\gamma = 0.9$

	1	2	3	4	5
1	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	0.0	0.0	0.0
3	0.0	0.0	1.0	0.0	0.0
4	0.0	1.0	1.0	1.0	0.0
5	0.0	0.0	1.0	0.0	0.0

$$r_{boundary} = r_{forbidden} = -1$$
 $r_{target} = 1$
 $\gamma = 0.0$

- Fatores que influenciam políticas ótima: impacto da taxa de desconto (γ).
 - Alterar γ pode tornar a política mais "corajosa" (se γ for alto) ou mais "cautelosa" (se γ baixo).
 - Distribuição espacial dos valores de estado
 - Os estados mais próximos do alvo têm valores de estado mais altos, enquanto os mais distantes têm valores mais baixos.
 - Pode ser explicado pela taxa de desconto: se um estado precisa de mais passos para chegar ao alvo, seu valor de estado diminui devido ao desconto.

• Fatores que influenciam políticas ótima: impacto da recompensas imediata (r).

	1	2	3	4	5
1	5.8	5.6	6.2	6.5	5.8
2	6.5	7.2	8.0	7.2	6.5
3	7.2	8.0	10.0	8.0	7.2
4	8.0	10.0	10.0	10.0	8.0
5	7.2	9.0	10.0	9.0	8.1

$$r_{boundary} = -1$$
 $r_{forbidden} = ?$
 $r_{target} = 1$
 $\gamma = 0.9$

• Fatores que influenciam políticas ótima: impacto da recompensas imediata (r).

	1	2	3	4	5
1	5.8	5.6	6.2	6.5	5.8
2	6.5	7.2	8.0	7.2	6.5
3	7.2	8.0	10.0	8.0	7.2
4	8.0	10.0	10.0	10.0	8.0
5	7.2	9.0	10.0	9.0	8.1

	1	2	3	4	5
1	3.5	3.9	4.3	4.8	5.3
2	3.1	3.5	4.8	5.3	5.9
3	2.8	2.5	10.0	5.9	6.6
4	2.5	10.0	10.0	10.0	7.3
5	2.3	9.0	10.0	9.0	8.1

$$r_{boundary} = -1$$
 $r_{forbidden} = -10$
 $r_{target} = 1$
 $\gamma = 0.9$

- Fatores que influenciam políticas ótima: impacto da recompensas imediata (r).
 - Punir mais fortemente (recompensa negativa maior) desencoraja certas ações.

Mas cuidado!!!

- Mudar as recompensas nem sempre leva a políticas ótimas diferentes.
- As políticas ótimas são invariantes a transformações afins das recompensas:
 - Considere um processo de decisão de Markov cujo valor de estado ótimo v^* satisfaz

$$v^* = \max_{\pi \in \Pi} (r_\pi + \gamma P_\pi v^*)$$

Se todas as recompensa $r \in \mathbb{R}$ forem modificadas por uma transformação afim para $\alpha r + \beta$, onde $\alpha, \beta \in R$ e $\alpha > 0$, então o valor de estado ótimo correspondente v' também será uma transformação afim de v^* :

$$v' = \alpha v^* + \frac{\beta}{1 - \gamma} \mathbf{1}$$

onde $\gamma \in (0,1)$ é a taxa de desconto e $\mathbf{1} = [1, ..., 1]^{\mathsf{T}}$.

• Consequentemente, a política ótima derivada de v' é invariável em relação à transformação afim dos valores de recompensa!

- Acelerando o Alcance ao Objetivo
 - $r_{other} = 0$ não é uma punição. Será que a política ótima faria desvios desnecessários antes de chegar ao alvo?

 $r_{boundary} = -1$ $r_{forbidden} = -1$ $r_{target} = 1$ $r_{other} = 0$

Política ótima

Política não ótima

- Acelerando o Alcance ao Objetivo
 - Considerando apenas recompensas imediatas, o desvio não teria problema, pois não envolve recompensas negativas imediatas.
 - Considerando o retorno descontado, o desvio passa a importar.
 - Política ótima:

$$retorno = 1 + \gamma 1 + \gamma^2 1 + \dots = \frac{1}{1 - \gamma} = 10, \qquad (\gamma = 0.9)$$

Política não ótima

$$retorno = 0 + \gamma 0 + \gamma^2 1 + \gamma^3 1 + \dots = \frac{\gamma^2}{1 - \gamma} = 8.1, \qquad (\gamma = 0.9)$$

• Mesmo com recompensas "0" para passos intermediários, a taxa de desconto (γ) faz a política evitar caminhos longos (quanto menor a trajetória, maior o retorno).

Conceitos:

- valores de estado ótimos
- políticas ótimas: seus valores de estado são maiores ou iguais aos valores de qualquer outra política
- Equação de otimalidade de Bellman
 - Equação não linear com propriedade de contração (existência e unicidade de v^*).
 - Soluções correspondem tanto aos valores de estado ótimos quanto às políticas ótimas.
 - Base para algoritmos de aprendizado por reforço.

Referências

- Shiyu Zhao. Mathematical Foundations of Reinforcement Learning. Springer Singapore, 2025. [capítulo 3]
 - disponível em: https://github.com/MathFoundationRL/Book-Mathematical-Foundation-of-Reinforcement-Learning
- Richard S. Sutton e Andrew G. Barto. An Introduction Reinforcement Learning, Bradford Book, 2018. [capítulo 3]
 - disponível em: http://incompleteideas.net/book/the-book-2nd.html

Slides construídos com base nos livros supracitados, os quais estão disponibilizados publicamente pelos seus respectivos autores.