Statistique bayésienne avec R Exercice Capture-Mark-Recapture

Julien JACQUES

Nous allons refaire l'analyse présentée dans la section 9.2 du livre suivant http://sirs.agrocampus-ouest.fr/bayes_V2/index.html

Les données sont

- y1 : nombre de poissons piégés
- y2+y3 : poissons capturés non relachés
- y4=y1-(y2+y3) : nombre de poissons marqués et relachés
- y5 : nombre de poissons marqués recapturés
- y6 : nombre de poissons non marqués recapturés

Years	y_1	y_2	y_3	y_4	y_5	y_6
$\frac{1984}{1984}$	$\frac{g_1}{167}$	$\frac{g_2}{10}$	$\frac{95}{3}$	$\frac{94}{154}$	$\frac{95}{12}$	$\frac{90}{10}$
		_				_
1985	264	37	11	216	21	4
1986	130	28	9	93	5	4
1987	16	3	1	12	2	22
1988	226	35	8	183	12	0
1989	235	31	5	199	56	0
1990	15	4	4	7	2	15
1991	44	0	0	44	23	1
1992	31	10	1	20	4	5
1993	100	17	2	81	4	3
1994	32	12	2	18	1	4
1995	109	6	1	102	39	7
1996	70	13	2	55	25	57
1997	56	19	3	34	12	3
1998	34	3	1	30	6	30
1999	154	5	1	148	13	22
2000	53	0	0	53	4	33

On suppose que

$$y_1 \sim \mathcal{B}(n,p)$$

où:

- n est la taille de la population, que l'on cherche à connaître
- p est l'efficacité de piègeage

Le modèle proposé est le suivant

Analyse bayesienne

Commençons par charger les données

On commence par définir les données

puis on définit les initialisations et les modèles

Puis on lance les itérations MCMC

```
update(m1,10000,progress.bar="none")
mcmc1 <- coda.samples(m1, variable.names = c("pi1", "nu"), n.iter = 10000,progress.bar="none")</pre>
```

On vérifie que les chaines ont bien convergées.

```
gelman.diag(mcmc1)
```

Potential scale reduction factors:

```
##
##
           Point est. Upper C.I.
## nu[1]
                  1.00
                             1.00
## nu[2]
                  1.00
                             1.00
## nu[3]
                  1.01
                             1.02
## nu[4]
                  1.01
                             1.02
## nu[5]
                  1.03
                             1.04
## nu[6]
                  1.00
                             1.00
## nu[7]
                  1.01
                             1.03
## nu[8]
                  1.00
                             1.00
```

```
## nu[9]
                  1.00
                              1.01
## nu[10]
                  1.03
                              1.09
## nu[11]
                  1.06
                              1.17
## nu[12]
                  1.00
                              1.00
## nu[13]
                  1.00
                              1.01
## nu[14]
                  1.00
                              1.01
## nu[15]
                  1.03
                              1.06
## nu[16]
                  1.01
                              1.06
## nu[17]
                  1.00
                              1.00
## pi1[1]
                  1.00
                              1.00
## pi1[2]
                  1.00
                              1.00
## pi1[3]
                  1.01
                              1.03
## pi1[4]
                  1.00
                              1.00
## pi1[5]
                  1.02
                              1.02
## pi1[6]
                  1.00
                              1.00
## pi1[7]
                  1.00
                              1.01
## pi1[8]
                  1.00
                              1.00
## pi1[9]
                  1.00
                              1.00
## pi1[10]
                  1.01
                              1.05
## pi1[11]
                  1.02
                              1.11
## pi1[12]
                  1.00
                              1.00
## pi1[13]
                  1.00
                              1.00
                  1.00
## pi1[14]
                              1.01
## pi1[15]
                  1.00
                              1.02
                  1.01
                              1.05
## pi1[16]
## pi1[17]
                  1.00
                              1.00
##
## Multivariate psrf
##
## 1.06
```

#autocorr.plot(mcmc1[[1]])

Regardons les estimations

summary(mcmc1)

```
##
## Iterations = 11001:21000
## Thinning interval = 1
## Number of chains = 2
## Sample size per chain = 10000
##
## 1. Empirical mean and standard deviation for each variable,
##
      plus standard error of the mean:
##
##
                          SD Naive SE Time-series SE
               Mean
## nu[1]
           281.5555 42.59505 3.012e-01
                                             1.7616141
## nu[2]
           306.4671 21.17493 1.497e-01
                                             0.7053783
## nu[3]
           197.2722 36.12763 2.555e-01
                                             1.5825260
## nu[4]
           142.7585 57.00217 4.031e-01
                                             3.3419959
## nu[5]
           235.3233 12.24693 8.660e-02
                                             0.4770473
## nu[6]
           236.9981 2.86824 2.028e-02
                                             0.0567668
## nu[7]
            98.5517 43.16853 3.052e-01
                                             2.2452298
## nu[8]
            47.1339 2.35003 1.662e-02
                                             0.0369538
```

```
## nu[9]
            69.8650 25.18757 1.781e-01
                                             1.1341165
## nu[10]
           159.3364 37.88944 2.679e-01
                                             1.8810645
## nu[11]
            94.8060 44.95386 3.179e-01
                                             2.6594901
## nu[12]
           129.6122 6.73887 4.765e-02
                                             0.1144670
## nu[13]
           205.2638 24.63974 1.742e-01
                                             0.6664333
## nu[14]
            68.0461 6.75032 4.773e-02
                                             0.1454915
## nu[15]
           182.4066 51.11214 3.614e-01
                                             2.4528618
## nu[16]
           356.1538 59.61130 4.215e-01
                                             2.6242054
## nu[17]
           308.1931 78.75334 5.569e-01
                                             4.1393316
## pi1[1]
             0.6050
                    0.08775 6.205e-04
                                             0.0034012
## pi1[2]
             0.8637
                     0.05915 4.183e-04
                                             0.0019393
             0.6781
                     0.11497 8.130e-04
## pi1[3]
                                             0.0048639
## pi1[4]
             0.1343
                     0.05512 3.897e-04
                                             0.0020914
## pi1[5]
             0.9597
                     0.04617 3.265e-04
                                             0.0017839
             0.9886
                     0.01371 9.695e-05
## pi1[6]
                                             0.0002644
## pi1[7]
             0.1863
                     0.08181 5.785e-04
                                             0.0032272
## pi1[8]
             0.9228
                     0.05560 3.932e-04
                                             0.0008092
## pi1[9]
             0.4894
                     0.14614 1.033e-03
                                             0.0054959
## pi1[10]
             0.6567
                     0.13497 9.544e-04
                                             0.0061553
## pi1[11]
             0.4043
                     0.15802 1.117e-03
                                             0.0071064
## pi1[12]
             0.8398
                     0.05212 3.686e-04
                                             0.0008450
             0.3478
                     0.05149 3.641e-04
## pi1[13]
                                             0.0011042
             0.8237
## pi1[14]
                     0.08334 5.893e-04
                                             0.0016652
             0.2030
## pi1[15]
                     0.05899 4.171e-04
                                             0.0022201
## pi1[16]
             0.4440
                     0.07294 5.158e-04
                                             0.0028414
## pi1[17]
             0.1848 0.04894 3.461e-04
                                             0.0020030
##
## 2. Quantiles for each variable:
##
##
                2.5%
                            25%
                                     50%
                                              75%
                                                     97.5%
## nu[1]
           220.00000 251.00000 274.0000 304.0000 385.0250
## nu[2]
           277.00000 291.00000 302.0000 317.0000 359.0000
## nu[3]
           148.00000 171.00000 190.0000 217.0000 284.0000
## nu[4]
            71.00000 104.00000 130.0000 168.0000 292.0000
## nu[5]
           226.00000 227.00000 231.0000 239.0000 268.0000
## nu[6]
           235.00000 235.00000 236.0000 238.0000 245.0000
## nu[7]
            46.00000 67.00000 88.0000 118.0000 212.0000
## nu[8]
            45.00000 45.00000
                                 46.0000 48.0000 53.0000
## nu[9]
            42.00000 53.00000
                                 63.0000 80.0000 136.0000
## nu[10]
           112.00000 132.00000 151.0000 177.0000 257.0000
## nu[11]
            45.00000 63.00000 83.0000 113.0000 216.0250
## nu[12]
           119.00000 125.00000 129.0000 133.0000 145.0000
## nu[13]
           166.00000 188.00000 202.0000 219.0000 262.0000
## nu[14]
            60.00000 63.00000 66.0000 71.0000 85.0000
## nu[15]
           113.00000 146.00000 174.0000 208.0000 305.0000
## nu[16]
           268.00000 314.00000 346.5000 388.0000 503.0000
## nu[17]
           193.00000 253.00000 295.0000 349.0000 509.0000
## pi1[1]
             0.42701
                        0.54633
                                  0.6074
                                           0.6657
                                                     0.7712
## pi1[2]
             0.72779
                        0.82815
                                  0.8719
                                           0.9073
                                                     0.9567
## pi1[3]
             0.45165
                        0.59446
                                  0.6824
                                           0.7637
                                                     0.8844
## pi1[4]
             0.04999
                       0.09373
                                  0.1267
                                           0.1660
                                                     0.2638
## pi1[5]
             0.83407
                       0.94308
                                  0.9758
                                           0.9927
                                                     0.9999
## pi1[6]
             0.95082
                       0.98415
                                  0.9933
                                           0.9981
                                                     1.0000
## pi1[7]
             0.06463
                       0.12460
                                  0.1739
                                           0.2354
                                                     0.3751
```

```
## pi1[8]
             0.78469
                        0.89379
                                  0.9354
                                            0.9648
                                                     0.9928
## pi1[9]
             0.21671
                                  0.4892
                        0.38301
                                           0.5945
                                                     0.7725
## pi1[10]
             0.38407
                        0.56289
                                  0.6619
                                            0.7562
                                                     0.8994
## pi1[11]
             0.14443
                        0.28148
                                  0.3902
                                            0.5160
                                                     0.7305
## pi1[12]
             0.72669
                        0.80663
                                  0.8442
                                            0.8776
                                                     0.9282
## pi1[13]
             0.25081
                        0.31229
                                  0.3469
                                           0.3816
                                                     0.4517
## pi1[14]
             0.63277
                        0.77305
                                  0.8351
                                            0.8863
                                                     0.9514
## pi1[15]
             0.10404
                        0.16009
                                  0.1970
                                            0.2403
                                                     0.3324
## pi1[16]
             0.30053
                        0.39431
                                  0.4438
                                            0.4938
                                                     0.5869
## pi1[17]
             0.10042
                        0.15002
                                  0.1806
                                            0.2155
                                                     0.2914
X=as.matrix(mcmc1[[1]])
boxplot(X[,1:17],main='taille de la population',xaxt = "n")
axis(side =1, at=1:17, labels = 1984:2000, las=3)
```

taille de la population

boxplot(X[,18:34],main='efficacité du piégeage',xaxt = "n")
axis(side =1, at=1:17, labels = 1984:2000, las=3)

efficacité du piégeage

