Universidad Nacional de Ingeniería

Facultad de Ciencias

Escuela Profesional de Matemática [Cod: CM 131 Curso: Cálculo Diferencial]

[Tema: Lógica y Demostraciones]

Ciclo 2015-I

Práctica Dirigida Nº 1

1. Considere $A = \{1, 2, 3, 4\}$. Hallar por extensión los siguientes conjuntos

a)
$$A_1 = \{x \in A : \exists y \in A \text{ tal que } x^2 + y \ge 8\}.$$

b)
$$A_2 = \{x \in A : \forall y \in A \text{ tal que } x^2 + y \ge 8\}$$

$$c \nearrow A_3 = \{x \in A : \exists ! y \in A \text{ tal que}, x^2 + y \ge 8\}.$$

2. Utilizando tablas de verdad verificar si es contingencia, tautología o contradicción?

a)
$$(p \wedge q) \rightarrow r \equiv confingential$$

- b) $\sim (p \land q) \lor r$
- c) $q \leftrightarrow (\sim p \land q)$
- d) $p \to \sim (q \wedge r)$
- e) $((p \to q) \to r) \leftrightarrow ((p \land q) \to r)$
- 3. Negar las proposiciones siguientes

a)
$$\forall x, \forall y, \exists z, (x+y) = z$$

b)
$$\forall x, y / (xy \leq 2)$$

b)
$$\forall x, y / (xy \le 2)$$

c) $\forall x, \forall y, \forall z, x + z < y$

d)
$$\exists x, \exists y/xy < 2$$

A. Construir la tabla de verdad para la siguiente proposición

$$[p \land (p \lor q)] \leftrightarrow p$$

- 5. Usando las reglas de inferencia
 - a) Demostrar mediante el método directo que se cumple con $s \to \sim h$, utilizando las siguientes premisas:

$$\begin{array}{cccc} \sim p & \wedge & q \\ h & \rightarrow & \sim t \\ (q \lor \rightarrow r) & \rightarrow & (p \rightarrow t) \\ s & \rightarrow & p \end{array}$$

b) Demostrar mediante el método indirecto que se cumple con $\sim N$, utilizando las premisas siguientes:

c) Demostrar

$$\begin{array}{cccc}
\sim A & \rightarrow & B \\
C & \rightarrow & B \\
c & \lor & \sim A \\
\sim B & \lor & D \\
\hline
\vdots & D
\end{array}$$

6. Demostrar

$$\begin{array}{ccc} p & \wedge & q \\ \hline p & \rightarrow & r \\ \hline \vdots & r & \wedge & q \end{array}$$

7. Demostrar

$$\begin{array}{cccc} p & \vee & q \\ \hline p & \rightarrow & r \\ \hline \vdots & r & \vee & q \end{array}$$

- 8. Demostrar: Sea n un natural ta que si 5n+3es par, entonces n es impar.
- 9. ¿Es cierto o falso que $\sim (p \land q) \leftrightarrow [p \lor \sim q]$ es equivalente a $\sim p \lor \sim q$. ($\neq al30$)
- 10. Pruebe que $\sim (p \leftrightarrow q) \leftrightarrow (\sim p \leftrightarrow \sim q)$ es una contradicción.
- 11. Se definen las proposiciones

$$p \, \heartsuit q \equiv \sim p \wedge q$$

$$p \triangleleft q \equiv p \lor \sim q$$

Además la proposición $\sim [(q \heartsuit p) \rightarrow (q \clubsuit r)]$ es una tautología. Determine los valores de verdad para p, q y r.

- 12. Si $A = \{1, 2, 3, ..., 10\}, B = \{x \in A : x < 3 \leftrightarrow x < 3\}$ $x \geq 6$. Determine el valor de verdad de las siguientes proposiciones:
 - a) $\forall x \in A, \exists y \in B \text{ tal que } x + y \leq 7.$
 - b) $\forall x \in A, \exists y \in B$ de modo que $x + y \in B$.
 - c) $\exists x \in A, \forall y \in B \text{ tal que } x + y \in A.$
- 13. Sean p y q dos proposiciones lógicas. Sabiendo
 - a) $\sim p \wedge q$ es contradicción.
 - b) $p \wedge q \equiv p$.

Pruebe que $p \equiv q$.

- 14. Para una proposición cualquiera p define: $V(p) = \begin{cases} 1, & \text{si p es verdadera.} \\ 0, & \text{si p es falsa.} \end{cases}$
 - a) Pruebe que

$$V(pp) = 1 - V(p).$$

$$V(p \lor q) = V(p) + V(q) - V(p)V(q).$$

b) Encuentre la formula de $V(p \to q)$.

- 15. Dados $A, B \subset E$. Pruebe que $A \subset B \Leftrightarrow A \cap B^c =$
- 16. Sean A, B subconjuntes de U. Demostrar que $(A \cap B \Leftrightarrow A \cup B = B.$
 - b) $A \subset B \Leftrightarrow A \cap B = A$.
 - c) $A \cap B = A y A \cup B = A \Leftrightarrow A = B$.
- 17. Probar que $A \cap (B C) = (A \cap B) (A \cap C)$.
- 18. Sea $A = \{1, 2, ..., 20\}, B = \{x \in A : x < 5 \leftrightarrow x \ge 1\}$ Indagar el valor de verdad de las siguientes proposiciones:
 - $g) \ \forall X \subset A \to B \cap X = \emptyset.$
 - b) $\exists X \subset A \land Y \subset B$ tal que $X \cap Y = \emptyset$. c) $\exists D \subset A$ tal que $B \cup D = A$.

 - $d) \exists X \in A / \forall y \in B, x < y.$
 - e) $\forall x \in A, \exists y \in A \text{ tal que } x y \in B.$
- 19. Demuestra poniendo un contraejemplo que las siguientes afirmaciones no son verdaderas:

- a) Todo entero mayor que 17 es el cuadrado de un número entero.
- b) Todo entero mayor que 6 es múltiplo de
- c) $100n + 1 > n^2$ para todo entero n.
- 20. Demuestra por reducción al absurdo las siguientes afirmaciones:
 - 9) $\sqrt{2}$ no es racional.
 - b) Si un x es un número racional, entonces $\pi + x$ no es racional.
- 21. Demostrar que si n^2 es múltiplo de 5, entonces n es múltiplo de 5.
- 22. Analice el valor de verdad de las proposiciones siguientes:
 - a) $\exists x \in \mathbb{R}$ tal que $\forall y \in \mathbb{R}, x^2 + y^2 = (x + y)^2$.
 - b) $\exists x \in \mathbb{R}$ de modo que 2x 4 = 4x 2.
- 23. Dados los conjuntos A y B. Sea X un conjunto con las siguientes característica
 - a) $A \subset X, B \subset X$.
 - b) si $A \subset Y, B \subset Y$, entonces $X \subset Y$.

Probar que $X = A \cup B$.

- 24. Sean $A, B \subset E$. Pruebe que $A \cap B = \emptyset \Leftrightarrow A \subset B^c$, donde B^c es el complemento del conjunto Brespecto a E.
- 25. Demostrar que $A \cup B = E \Leftrightarrow A^c \subset B$, siendo $A, B \subset E$.
- 26. Sean $A, X \subset E$ son conjuntos tales que $A \cap X =$ \emptyset y $A \cup X = E$. Pruebe que $X = A^c$.
- 27. Sean A y B dos conjuntos. Demostrar que $A \cup B \neq \emptyset$, entonces $A \neq \emptyset$ o $B \neq \emptyset$.
- 28. Sabiendo que $n \in \mathbb{Z}$. Probar que si n^2 es múltiplo de 3, entonces n es múltiplo de 3.
- 29. Probar que para todo $n \in \mathbb{N}$ se cumple $n^3 n$ siempre es múltiplo de tres.

Uni, 30 de Marzo de 2015