Aufgabe 1

Wenn man für die α -Reduktion $\lambda x.t \xrightarrow{\alpha} \lambda y.\$_y^x t$ auf die Bedingung $y \notin \mathsf{Var}(t)$ verzichtet, kann eine solche Reduktion die Semantik verändern. Geben Sie dafür ein Beispiel an.

Die α -Konversion funktioniert nur, wenn die Variable noch nicht verwendet wird ($y \notin Var(t)$). Wenn man auf diese Eigenschaft verzichtet kann man genauso gut auch gleich das Gegenteil fordern: $y \in Var(t)$. Beispiel:

$$\lambda x.xy \xrightarrow{\alpha} \lambda y.yy$$

Aufgabe 2

Wenn man für die β -Reduktion

$$(\lambda x.t)s \xrightarrow{\beta} \$_s^x t$$

auf die Forderung $\operatorname{Fr}(s) \cap \operatorname{Geb}(t) = \emptyset$ verzichtet, kann eine solche Reduktion die Semantik verändern. Geben Sie dafür ein Beispiel an.

Aufgabe 3

Konstruieren Sie einen λ -Ausdruck t, der keine Normalform besitzt und dessen Reduktion zu immer größeren Ausdrücken führt.

Für das ungetypte Lambdakalkül müsste folgendes funktionieren:

$$(\lambda x.xxx)(\lambda x.xxx)$$

$$\Rightarrow (\lambda x.xxx)(\lambda x.xxx)(\lambda x.xxx)$$

Aufgabe 4

Schreiben Sie je einen getypten λ -Ausdruck für folgende Aufgaben:

a) Eine symmetrische Funktion soll dreifach auf ein Argument angewendet werden.

$$\lambda fx.f(f(f(x)))$$
 $[D \to D] \to D \to D$

b) Gegeben sei eine Liste der Länge 4 von Elementen des Typs D und eine Funktion vom Typ $[D \to D]$, berechne die Anwendung dieser Funktion auf alle Listenelemente.

$$\lambda L g. \langle g(\pi_1 L); g(\pi_2 L); g(\pi_3 L); g(\pi_4 L) \rangle$$

$$[D] \to [D \to D] \to [D]$$

c) Beschreibe den uncurry-Operator im getypten λ -Kalkül, der angewendet auf eine Funktion vom Typ $[D_1 o [D_2 o D_3]]$ eine Funktion des Typs $[(D_1 imes D_2) o D_3]$ liefert, wobei für alle f, a und b

$$(uncurry f) < a,b> = f a b$$

gelten soll.

$$\lambda f.\lambda T.(f(\pi_1 T)(\pi_2 T))$$
 $[D_1 \to [D_2 \to D_3] \to [(D_1 \times D_2) \to D_3]$