Activite - Clustering

March 30, 2018

1 Activité - Réalisez un clustering

1.1 Déclaration des packages

```
In [1]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt

from scipy.cluster.hierarchy import dendrogram, linkage, fcluster
```

1.2 Importation des données

1.3 Vérification de la cohérence des données source

```
In [3]: # Vérification de la cohérence des données
    print('Taille du dataset : {}'.format(mnist.data.shape))
    print('Taille des prédictions : {}'.format(mnist.target.shape))
    print('Nombre de valeurs uniques prédites : {}'.format(np.unique(mnist.target)))

# Restriction du dataset à une occurence sur 50 (soit 1400 individus)

X = mnist.data[::50, :]
    y = mnist.target[::50]

# Essai avec un élément particulier
    sample_idx = 162
    sample_image = np.reshape(X[sample_idx, :], (28, 28))
    plt.imshow(sample_image, cmap='binary')

print(y[sample_idx])
```

```
Taille du dataset : (70000, 784)
Taille des prédictions : (70000,)
Nombre de valeurs uniques prédites : [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
1.0
```


1.4 Essai avec un algorithme de classification hiérarchique


```
In [7]: # Détermination des groupes
        groupes_cah = fcluster(Z,t=10500,criterion='distance')
        # Création du tableau de données
        df = pd.DataFrame({'population': y, 'groupe': groupes_cah-1})
        df["Delta"] = df["population"] - df["groupe"]
        # Calcul du taux de pertinence de classification
        df["Deltas"] = [1 if data == 0 else 0 for data in df["Delta"]]
        taux_classification_correcte = df["Deltas"].mean()*100
        print('Le tauw de pertinence de la classification est de : {} % '.format(round(taux_classification))
Le tauw de pertinence de la classification est de : 19.64 %
In []: # Le taux de pertinence est plutôt médiocre
        # On essaie néanloins d'afficher les résultats
In [8]: # Affichage des points en fonction de leur valeur d'origine et de leur groupe
        plt.scatter(df.population,df.groupe,color='green')
        plt.plot([0,9],[0,9],color='red',linestyle='--')
        plt.show()
```



```
In []: # On constate que les résultats sont éparpillés alors qu'une bonne classification aura
        # autour de la droite bissectrice ( Valeur Origine = Valeur Classifiée )
        # Nénmoins on ne dispose pas des effectifs de chaque point et il peut s'agir d'outlier
        # Il faut donc vérifier si les grandes classes d'effectif ne sont pas dispersées autou
In [9]: # Calcul des effectis de chaque paire (valeur origine , valeur classifiée )
        df["Taille"] = df["Deltas"]
        Resultats = np.zeros((10,10))
        for ligne in df.iterrows():
            index_ligne = ligne[0]
            valeur_origine = int(ligne[1]["population"])
            valeur_groupe = int(ligne[1]["groupe"])
            Resultats[valeur_origine,valeur_groupe] += 1
        print(Resultats)
[[113.
             12.
                   0.
                         3.
                              0.
                                         2.
                                              3.
                                                   0.]
         6.
                                   0.
 0.
         0.
              1.
                         1.
                             37. 117.
                                                   1.]
                    0.
                                         1.
                                              0.
 2.
         1.
             22.
                  94.
                         4.
                              0.
                                   0.
                                        13.
                                              1.
                                                   2.]
 0.
                   5.
                              0.
                                         4.
                                                   1.]
        40.
             90.
                         0.
                                              4.
                                                  42.]
 0.
         0.
              0.
                   2.
                         2.
                              0.
                                   0.
                                        69.
                                             20.
    0.
 Γ
        33.
             23.
                   0.
                         0.
                              0.
                                   0.
                                         4.
                                             66.
                                                   1.7
 4.
         0.
              1.
                   0.130.
                              0.
                                   0.
                                         1.
                                              1.
                                                   0.]
 0.
         0.
              2.
                   0.
                         0.
                              0.
                                              7. 125.]
                                   1.
                                        11.
```

```
28.
             35.
                   2.
                        0.
                             0.
                                            64.
                                                  3.]
 [ 0.
                                  1.
                                       4.
                                                58.]]
   0.
         1.
              1.
                   0.
                        0.
                             0.
                                  0.
                                       71.
                                             7.
In [ ]: # Ce que confirmele graphique à bulle suivant :
In [10]: # Assignation à chaque point de son effectif de classe
         for ligne in df.iterrows():
             index_ligne = ligne[0]
             valeur_origine = int(ligne[1]["population"])
             valeur_groupe = int(ligne[1]["groupe"])
             df.iloc[index_ligne,4] = Resultats[valeur_origine,valeur_groupe]
             #for (x,y), value in np.ndenumerate(Resultats):
             #df["Taille"][ = Resultats[x,y]
         # Représentation du graphique à bulles
         plt.scatter(df.population, df.groupe, s=df.Taille*1, alpha=0.5)
         plt.plot([0,9],[0,9],color='red',linewidth=2,linestyle='--')
         plt.show()
```


In []: ## Néanmoins, on constate qu'il y a bien des points de convergence des données
Le fait que ces point de convergence ne soient pas distribués autour de la bissectr
que notre numérotation des labels des clusters prédits est incorrecte par rapport à
Si la claase est numérotée 3, elle ne correspond pas forcément à un groupement repr

C'est une erreur de notre part et nous sommes partis sur une mauvaise hypthèse avec

```
## Celle-ci n'est pas adaptée à notre besoin de représentation des données
## Essayons donc d'autres algorithmes de clustering non supervisés
```

1.5 Essai avec un algorithme de classification du K-mean

1.5.1 Préparation des datasets

```
In [12]: # Création de la liste des couleurs pour différencier les différents clusters
         listeCouleurs = ['red',
                          'green',
                          'purple',
                          'yellow',
                          'pink',
                          'cyan',
                          'tomato',
                          'grey',
                          'goldenrod',
                          'darkkhaki']
         # Initialisation de la matrice de représentation des points
         coordonnees = np.zeros((y.shape[0],2))
         # Sur le modèle des BoxPlot à nuage de points
         # On ajoute un bruit aléatoire à chacun des points
         # Pour pouvoir les différencier sur un plan euclidien
         for (x), value in np.ndenumerate(y):
             coordonnees[x][0] = random.random() + value
             coordonnees[x][1] = random.random() * 10
         # Intégration dans un DataFrame
         coordonneesPoints = pd.DataFrame(coordonnees,columns=['Abscisse','Ordonnee'])
```

1.5.2 Réalisation de la classification K-means

```
In [14]: # Calcul des scores
         print('Le score de la classification K-mean est de {}'.format(round(KM.score(X,y),2))
         print ('Le différentiel moyen par point de la classification K-mean est de {}.'.format
Le score de la classification K-mean est de -3565864779.05
Le différentiel moyen par point de la classification K-mean est de -155.46.
1.5.3 Construction de la légende (une couleur par cluster)
In [15]: # Définition de la légende des clusters affichés
         print('-----'Légende des clusters représentés -----')
         for (x),value in np.ndenumerate(np.array(listeCouleurs)):
             print('Le cluster {} est représentée par la couleur {}.'.format(x[0]+1,value))
------ Légende des clusters représentés ------ Légende des clusters représentés
Le cluster 1 est représentée par la couleur red.
Le cluster 2 est représentée par la couleur green.
Le cluster 3 est représentée par la couleur purple.
Le cluster 4 est représentée par la couleur yellow.
Le cluster 5 est représentée par la couleur pink.
Le cluster 6 est représentée par la couleur cyan.
Le cluster 7 est représentée par la couleur tomato.
Le cluster 8 est représentée par la couleur grey.
Le cluster 9 est représentée par la couleur goldenrod.
Le cluster 10 est représentée par la couleur darkkhaki.
1.5.4 Affichage des points colorés par leur cluster d'affectation
In [16]: # Afichage sous forme de nuage de points
         plt.scatter(coordonneesPoints.Abscisse,
                     coordonneesPoints.Ordonnee,
                     color=coordonneesPoints.Couleur)
         # Séparation de chaque catégorie de chiffre
         for numero in range(1,10):
             plt.plot([numero, numero], [0, 10],
                      color='black',
                      linestyle='--',
                      linewidth=2)
         # Définition des légendes
         plt.title("Représentation des points colorés selon leur cluster")
         axes = plt.gca()
         axes = axes.set(xlabel='Nr du chiffre représentée par l\'image du point',
                         ylabel='Bruit aléatoire pour différencier les points')
         pl.xticks(range(0,11))
```

plt.show()

1.6 Autre essai de classification avec le clustering par K-Mean ++

```
print('-----Légende des clusters représentés -----')
        for (x),value in np.ndenumerate(np.array(listeCouleurs)):
            print('Le cluster {} est représentée par la couleur {}.'.format(x[0]+1,value))
        # Afichage sous forme de nuage de points
        plt.scatter(coordonneesPoints.Abscisse,
                    coordonneesPoints.Ordonnee.
                    color=coordonneesPoints.Couleur)
        # Séparation de chaque catégorie de chiffre
        for numero in range(1,10):
            plt.plot([numero, numero], [0, 10],
                     color='black',
                     linestyle='--',
                     linewidth=2)
        # Définition des légendes
        plt.title("Représentation des points colorés selon leur cluster")
        axes = plt.gca()
        axes = axes.set(xlabel='Nr du chiffre représentée par l\'image du point',
                        ylabel='Bruit aléatoire pour différencier les points')
        pl.xticks(range(0,11))
        plt.show()
----- Légende des clusters représentés ------
Le cluster 1 est représentée par la couleur red.
Le cluster 2 est représentée par la couleur green.
Le cluster 3 est représentée par la couleur purple.
Le cluster 4 est représentée par la couleur yellow.
Le cluster 5 est représentée par la couleur pink.
Le cluster 6 est représentée par la couleur cyan.
Le cluster 7 est représentée par la couleur tomato.
Le cluster 8 est représentée par la couleur grey.
Le cluster 9 est représentée par la couleur goldenrod.
Le cluster 10 est représentée par la couleur darkkhaki.
```


1.7 Visualisation du clustering en 2 dimensions avec TSNE

 $X = (X - x_min) / (x_max - x_min)$

plt.figure(figsize=(15, 15))

```
ax = plt.subplot(111)
             if hasattr(offsetbox, 'AnnotationBbox'):
                 shown_images = np.array([[1., 1.]])
                 for i in range(data.shape[0]):
                     dist = np.sum((X[i] - shown_images) ** 2, 1)
                     if np.min(dist) < 2e-3:</pre>
                         continue
                     shown_images = np.r_[shown_images, [X[i]]]
                     props=dict(boxstyle='round', edgecolor='white')
                     imagebox = offsetbox.AnnotationBbox(offsetbox.OffsetImage(images[i], cmap
                     ax.add_artist(imagebox)
             if title is not None:
                 plt.title(title)
In [22]: # On exécute une heuristique de type t-Stochastic Neighbour Embedding
         X_tsne = TSNE(n_components=2).fit_transform(data)
         # On affiche les résultats retournés par l'heuristique TSNE
         plot_embedding(X_tsne, "Affichage des images des chiffres scannés")
         plt.show()
```


On affiche les nouveaux résultats retournés par l'heuristique TSNE - PCA plot_embedding(X_tsne, "Affichage des images des chiffres scannés - version PCA init" plt.show()

In []: ## C'est mieux !!
 ## On distingue bien désormais des zones de classification homogène sur notre représen

1.8 Evaluation de la qualité de la classification avec K-mean++

```
In [28]: from sklearn import preprocessing
    from sklearn import decomposition
    from sklearn import linear_model

# Restriction du dataset à une occurence sur 500
X = mnist.data[::50, :]
y = mnist.target[::50]

# Réalisation de la classificattion par K-means
```

```
KM = KMeans(n_clusters=10)
KM.fit(X)
# On réalise une analyse en composantes principales
# pour pouvoir représenter nos points dans un espace en 2 dimensions
# Standardisation des données
std_scale = preprocessing.StandardScaler().fit(X)
X_scaled = std_scale.transform(X)
# Calcul des deux premières composantes principales
pca = decomposition.PCA(n_components=2)
pca.fit(X_scaled)
# On projette les points sur les 2 axes des composantes principales
Dimensions = pca.transform(X_scaled)
# Intégration dans un DataFrame
coordonneesPoints = pd.DataFrame(Dimensions,columns=['Abscisse','Ordonnee'])
# On rajoute legrouped'origine (chiffre représenté) de chaque point
coordonneesPoints['Groupe'] = y
# Représentation des points projetés sur les 2 dimensions des composantes principales
# Définition des légendes
plt.title("Représentation des points projetés sur les 2 premiers axes de l'ACP")
axes = plt.gca()
axes = axes.set(xlabel='Première composante principale',
                ylabel='Seconde composante principale')
# On affiche la représentation
plt.scatter(coordonneesPoints.Abscisse,coordonneesPoints.Ordonnee,c=coordonneesPoints
plt.colorbar()
plt.show()
```

C:\Users\monne\Anaconda3\lib\site-packages\sklearn\utils\validation.py:475: DataConversionWarn
warnings.warn(msg, DataConversionWarning)

In []: ## On constante bien une nette séparation de notre plan euclidien entre chiffre s'appr ## et chiffres se rapprochant de 9 vers la gauche In [29]: # On représente désormais chaque point avec ses coordonnées après ACP # Avec comme libellé, le chiffre représenté # Et en nuance de gris le numéro du cluster que la classification K-Man lui a affecté # Ajustement des limites des axes plt.xlim([-0.5, 1]) plt.ylim([-0.751, 1]) plt.title('Représentation des points avec libellé du chiffre colorisé par son cluster axes = plt.gca() axes = axes.set(xlabel='Première composante principale', ylabel='Seconde composante principale') # Détermination dulibellé et de la couleur de chaque point for ligne in range(0,Dimensions.shape[0]): plt.text(Dimensions[ligne][0]/25, Dimensions[ligne][1]/25, str('%d' % y[ligne]),

color=plt.cm.Set2(KM.labels_[ligne]/10.),

fontsize=10

plt.show()

)

Représentation des points avec libellé du chiffre colorisé par son cluster d'appartenance

1.9 Estimation de la qualité de la classification au sein de chaque groupe

```
In []: ## On va s'intéresser à la variance intra-groupe pour vérifier la pertinence des class
        ## Si cette variance est faible et s'approche de O, alors c'est qu'au sein d'un même g
        ## un même numéro de cluster est attribué à chacun des points
        ## ce qui est sysnonyme d'une classification de bonne qualité...
In [31]: # Réalisation de la classificattion par K-means
         KM = KMeans(n_clusters=10,init='k-means++')
         KM.fit(X)
         labels = KM.labels_
         # Initialisation de la matrice de représentation des points
         coordonnees = np.zeros((y.shape[0],1))
         # Sur le modèle des BoxPlot à nuage de points
         # On ajoute un bruit aléatoire à chacun des points
         # Pour pouvoir les différencier sur un plan euclidien
         for (x), value in np.ndenumerate(y):
             \#coordonnees[x][0] = x[0]
             coordonnees[x][0] = value
```

```
# Intégration dans un DataFrame
         coordonneesPoints = pd.DataFrame(coordonnees,columns=['Groupe'])
         #coordonneesPoints.drop(['Numero'],axis=1)
         # On affecte les classes prédites dans le DataFrame
         coordonneesPoints["Classification"] = labels
         # On va utiliser legroupe d'origine comme nouvel index de nos données
         ClassementGroupe = coordonneesPoints.set_index('Groupe')
         # On va désormais calculer la variabilité des affectations cluster au sein de chaque
         \# Cette dispersion doit être faible si la classification est homogène et donc pertine
         print('Variance des affectations de clusters par groupe : ')
         print(ClassementGroupe.var(axis=0,level='Groupe'))
         print('Ecart-type des affectations de clusters par groupe : ')
         print(ClassementGroupe.std(axis=0,level='Groupe'))
Variance des affectations de clusters par groupe :
        Classification
Groupe
              3.968825
0.0
1.0
              0.607272
2.0
              4.926077
3.0
              3.134421
4.0
              4.422664
5.0
              6.578178
6.0
              2.077179
7.0
              5.972981
8.0
              5.173465
9.0
              5.653073
Ecart-type des affectations de clusters par groupe :
        Classification
Groupe
0.0
              1.992191
1.0
              0.779277
2.0
              2.219477
3.0
              1.770430
4.0
              2.103013
5.0
              2.564796
6.0
              1.441242
7.0
              2.443968
8.0
              2.274525
9.0
              2.377619
In [32]: abscisse = []
         ordonnee = []
```

Variabilité des affectations de cluster au sein de chaque classe

plt.show()

In []: ## On constate ainsi que les chiffres 0, 1, 3, 6 obtiennent les meilleurs classificati
car elles sont plus homogènes en raison de leur moindre variabilité...
Néanmoins, aucun groupe n'a une intra-variance proche de 0, ce qui montre que la cl

1.10 Estimation des scores de la classification

In [34]: # Calcul des scores

```
print('Le score de la classification K-mean est de {}'.format(round(KM.score(X,y),2))
         print ('Le différentiel moyen par point de la classification K-mean est de {}.'.format
Le score de la classification K-mean est de -3557746099.61
Le différentiel moyen par point de la classification K-mean est de -1.21.
In []: ## Le score cumulé est plutôt important mais il s'agit du cumul des distances separant
        ## qui lui a été affecté au sein de son cluster de classification
        ## Si on rapporte cette somme à la valeur médiane potentielle (256/2) multiplé par le
        ## On obtient une distance différentielle moyenne de 1.21...
        ## C'est un résultat intéressant mais qui peut sans doute être challengé!!!
1.11 Optionnel: Réalisation d'une classification par clustering pardensité
In [37]: from sklearn.cluster import DBSCAN
         from sklearn.preprocessing import StandardScaler
         X = StandardScaler().fit_transform(X)
         # Lancement de la classification DBSCAN
         db = DBSCAN(eps=100000, min_samples=5).fit(X)
         labels = db.labels_
         # Nombre de clusters (si celui-ci est égalà -1, il est considéré comme du bruit)
         n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
         print('Nombre de clusters : %d' % n_clusters_)
C:\Users\monne\Anaconda3\lib\site-packages\sklearn\utils\validation.py:475: DataConversionWarn
  warnings.warn(msg, DataConversionWarning)
Nombre de clusters : 1
```

In [38]: ## Quelque soit la configuration du paramètre Epsilon ou du paramètre des N-voisins

On obtient pas un résultat dépassant le cluster unique englobant toutes les donnée ## La structure des données source (matrice de pixels 28*28) n'est sans doute pas ada