ELECTRONIQUE

AMPLIFICATEURS OPERATIONNELS

M.L. Hadjili

Symbole et boitier

Représentation d'un Ampli. Op.

Mode commun

Mode différentiel

Caractéristiques

- Son gain en boucle ouverte A_{bo} est très élevé, au moins 10^5 et couramment 10^6 .
- L'impédance d'entrée sur chacune de ces entrée est très élevée. Le plus souvent on la considère comme infinie, ce qui implique que les courants d'entrées sont nuls.
- L'impédance de sortie est quasiment nulle.

Paramètres d'un amplificateur

Fig. V-1: Amplificateur opérationnel

Fig. V-2 : tension de sortie et caractéristique de transfert d'un ampli-op

Comparateur

$$V_{\text{REF}} = \frac{R_2}{R_1 + R_2} (+V)$$

Exemple de Comparateur

$$V_{\text{REF}} = \frac{R_2}{R_1 + R_2} (+V) = \frac{1.0 \,\text{k}\Omega}{8.2 \,\text{k}\Omega + 1.0 \,\text{k}\Omega} (+15 \,\text{V}) = 1.63 \,\text{V}$$

Simulation d'un Comparateur

Simulation d'un Comparateur

Amplificateur inverseur

Fig. V-3: Amplificateur inverseur

$$V_e = R_1 I$$
, $V_S = -R_2 I$ D'où

$$A_{v} = \frac{v_{s}}{v_{e}} = -\frac{R_{2}}{R_{1}} \qquad v_{s} = -\frac{R_{2}}{R_{1}}v_{s}$$

Exemples d'Amplificateurs inverseurs

- Calculer le gain de chaque montage
- Simuler les montages avec LTSpice et afficher les sorties *Vout*

Amplificateur non inverseur

$$V_e = R_1 I$$

 $V_5 - V_e = R_2 I D'où$

Fig. V-4 : Amplificateur non-inverseur

$$v_s - v_e = R_2 \frac{v_e}{R_1} \implies v_s = v_e + \frac{R_2}{R_1} v_e = \left(1 + \frac{R_2}{R_1}\right) v_e$$

$$A_{v} = I + \frac{R_2}{R_1}$$

Exemples d'Amplificateurs non inverseurs

- Calculer le gain de chaque montage
- Simuler les montages avec LTSpice et afficher les sorties Vout

Montage suiveur

$$V_S = V_e$$
.

Montage sommateur inverseur

$$V_{s} = -R_{B} \left(\frac{V_{1}}{R_{1}} + \frac{V_{2}}{R_{2}} \right)$$

$$V_{e1} = R_{2} = R_{A}$$

$$V_{e2} = \frac{R_{B}}{R_{A}} (V_{1} + V_{2})$$

Exemple de sommateur inverseur

- Calculer la tension de sortie
- Simuler les montages avec LTSpice et afficher la sortie *Vout*

Exemple de sommateur inverseur

- Calculer la tension de sortie
- Simuler les montages avec LTSpice et afficher la sortie Vout

Montage sommateur non inverseur

$$v^{+} = \frac{R_{2}v_{1} + R_{1}v_{2}}{R_{1} + R_{2}} , \quad v^{-} = \frac{R_{A}}{R_{A} + R_{B}}v_{s}$$

$$\frac{R_{2}v_{1} + R_{1}v_{2}}{R_{1} + R_{2}} = \frac{R_{A}}{R_{A} + R_{B}}v_{s}$$

$$v_{e1}$$

$$v_{s} = \frac{R_{A} + R_{B}}{R_{A}(R_{1} + R_{2})} (R_{2}v_{1} + R_{1}v_{2})$$

Si $R_1 = R_2$, L'expression devient :

$$v_s = \frac{R_A + R_B}{2R_A} \left(v_I + v_2 \right)$$

Si en plus $R_A = R_B$ on obtient :

$$v_s = v_1 + v_2$$

Exemples de sommateur non inverseur

- Calculer la tension de sortie
- Simuler les montages avec LTSpice et afficher la sortie Vout

Montage soustracteur

Si
$$\frac{R_A}{R_B} = \frac{R_I}{R_2}$$
, L'expression devient :

Si en plus $R_A = R_B$ on obtient :

$$v_s = \frac{R_B}{R_A} (v_2 - v_I)$$

$$v_s = v_2 - v_1$$

Montage intégrateur

$$v_s = -\frac{1}{CR} \int v_e(t) dt$$

Exemple intégrateur

(a)

(b)

Montage dérivateur

$$v_s = -RC \frac{dv_e}{dt}$$

Exemple dérivateur

Filtre Passe-bas à base d'Ampli OP

Filtre Passe-haut à base d'Ampli OP

Exercices de simulation

Amplificateur inverseur

Filtre Passe-bas RC

