HANDBOOK of GRAPH GRAMMARS and COMPUTING by GRAPH TRANSFORMATION

Edited by

Grzegorz Rozenberg

Leiden University, The Netherlands

Contents

			nacement Graph Grammars			
	(J. Engelfriet, G. Rozenberg)					
	1.1	Introduction				
	1.2 From NLC to edNCE			4		
		1.2.1	Node replacement and the NLC methodology	4		
		1.2.2	Extensions and variations: the edNCE grammar	9		
		1.2.3	Graph replacement grammars	14		
		1.2.4	Bibliographical comments	15		
	1.3	Node	replacement grammars with Neighbourhood Controlled			
		Embe	dding	16		
		1.3.1	Formal definition of edNCE graph grammars	16		
		1.3.2	Leftmost derivations and derivation trees	38		
			Leftmost derivations	38		
			Derivation trees	43		
		1.3.3	Subclasses	55		
		1.3.4	Normal forms	61		
	1.4	Chara	cterizations	68		
		1.4.1	Regular path characterization	68		
		1.4.2	Logical characterization	72		
		1.4.3	Handle replacement	79		
		1.4.4	Graph expressions	81		
	1.5	Recog	nition	82		
	Refe			88		
	Hyp	eredg	e Replacement Graph Grammars	95		
	(F.]	Drewes,	, HJ. Kreowski, A. Habel)	95		
	2.1	Introd	luction	97		
	2.2		edge replacement grammars	100		
		2.2.1	Hypergraphs	102		
		2.2.2	Hyperedge replacement	104		
		2.2.3	Hyperedge replacement derivations, grammars, and lan-			
			guages	105		
		2.2.4	Bibliographic notes	109		
	2.3	A con	text-freeness lemma	111		
		2.3.1	Context freeness	111		
		2.3.2	Derivation trees	114		
		2.3.3	Bibliographic notes	115		
3	2.4	Struct	ural properties	116		
		2.4.1	A fixed-point theorem	116		

2.4.2

2.4.3

2.4.4

2.5.1 2.5.2

2.5.3

2.6.1

2.5

2.6

String-generating hyperedge replacement grammars . .

Further results and bibliographic notes

11

12

12 12

12

12

13

13

13

		2.6.2	Compatible functions
		2.6.3	Further results and bibliographic notes
	2.7	The m	nembership problem
		2.7.1	NP-completeness
		2.7.2	Two polynomial algorithms
		2.7.3	Further results and bibliographic notes
	2.8	Concl	usion
	Refe	rences	
3	_		Approaches to Graph Transformation - Part I: Basic
			and Double Pushout Approach 16
			ini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, M. Löwe) 16
	3.1		luction
	3.2		iew of the Algebraic Approaches
		3.2.1	Graphs, Productions and Derivations
		3.2.2	Independence and Parallelism
			Interleaving
			Explicit Parallelism
		3.2.3	Embedding of Derivations and Derived Productions 17
		3.2.4	Amalgamation and Distribution
			Amalgamation
			Distribution
		3.2.5	Further Problems and Results
			Semantics
			Control
			Structuring
			Analysis
			More general structures
	3.3		Transformation Based on the DPO Construction 18
	3.4		endence and Parallelism in the DPO approach 19
	3.5	Model	s of Computation in the DPO Approach 20

CONTENTS

16	3.5.1	The Concrete and Truly Concurrent Models of Compu-	0.1
	0.50		01
	3.5.2	Requirements for capturing representation independence. 20	
	3.5.3	· · · · · · · · · · · · · · · · · · ·	12
	3.5.4	1	17
3.6		dding, Amalgamation and Distribution in the	
		T T	20
	3.6.1		20
	3.6.2		24
			24
		Distribution	
3.7	Conclu		28
3.8		ndix A: On commutativity of coproducts	
3.9	Appen		32
Refer	rences		1 0
Δlσ	ebraic	Approaches to Graph Transformation - Part II: Sin-	
		ut Approach and Comparison with Double Pushout	
	roach		17
		R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner,	••
	Corradir		17
4.1		•	49
4.2	Graph	Transformation Based on the SPO Construction 25	50
	4.2.1	Graph Grammars and Derivations in the SPO Approach 25	50
	4.2.2	•	58
4.3			59
	4.3.1		60
			60
4.			64
	4.3.2	-	68
	4.3.3	•	73
4.4	Applic	<u>e</u>	78
	4.4.1		78
<u>.</u>	4.4.2	Independence and Parallelism of Conditional Derivations 28	32
A,		<u>-</u>	82
			84
4.5	Transf	formation of More General Structures in the	
38			87
	4.5.1		88
N.	4.5.2	-	92

4.5.3

4.6.1

4.6.2

4.6.3

4.6

High-Level Replacement Systems

Graphs, Productions, and Derivations

Embedding of Derivations and Derived Productions . .

29

29

29

30

30

30

30

	4.7		Amalgamation and Distribution	
	1010.	CHCCB		O O
5	The	Expr	ession of Graph Properties and Graph Transforms	1 -
	tion	ıs in N	Ionadic Second-Order Logic	31
	(B.	Cource		31
	5.1		$\mathbf{luction} \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	
	5.2	Relati	ional structures and logical languages	
		5.2.1	Structures	
		5.2.2	First-order logic	
		5.2.3	Second-order logic	
		5.2.4	Monadic second-order logic	
		5.2.5	Decidability questions	32
		5.2.6	Some tools for constructing formulas	32
		5.2.7	Transitive closure and path properties	32
		5.2.8	Monadic second-order logic without individual variables	33
		5.2.9	A worked example: the definition of square grids in MS	
			logic	33
	5.3	Repre	esentations of partial orders, graphs and hypergraphs by	
		relation	onal structures	33
		5.3.1	Partial orders	33
		5.3.2	Edge set quantifications	
		5.3.3	Hypergraphs	33
	5.4	The e	expressive powers of monadic-second order languages	34
		5.4.1	Cardinality predicates	
		5.4.2	Linearly ordered structures	34
		5.4.3	Finiteness	34
	5.5	Mona	dic second-order definable transductions	34
		5.5.1	Transductions of relational structures	34
		5.5.2	The fundamental property of definable transductions	35
		5.5.3	Comparisons of representations of partial orders, graphs	
			and hypergraphs by relational structures	35

CO	NTE	NTS		xiii	
ļ	5.6	Equati	ional sets of graphs and hypergraphs	356	
		5.6.1	Equational sets	356	
		5.6.2	Graphs with ports and VR sets of graphs	362	
		5.6.3	Hypergraphs with sources and HR sets of hypergraphs.	367	
	5.7	Induct	ive computations and recognizability	372	
		5.7.1	Inductive sets of predicates and recognizable sets	372	
		5.7.2	Inductivity of monadic second-order predicates	379	
		5.7.3	Inductively computable functions and a generalization of		
			Parikh's theorem	383	
		5.7.4	Logical characterizations of recognizability	389	
į	5.8	Forbid	den configurations	39 0	
		5.8.1	Minors	390	
		5.8.2	The structure of sets of graphs having decidable monadic		
			theories	396	
ł	Refer	ences .		397	
i	forn	Structures - A Framework For Decomposition And Transmation Of Graphs Ehrenfeucht, T. Harju, G. Rozenberg) 401			
(6.1	Introd	uction	403	
(6.2	2 2-Structures and Their Clans		404	
		6.2.1	Definition of a 2-structure	404	
		6.2.2	Clans	407	
		6.2.3	Basic properties of clans	410	
(6.3	Decom	apositions of 2-Structures	411	
		6.3.1	Prime clans	411	
		6.3.2	Quotients	412	
		6.3.3	Maximal prime clans	416	
		6.3.4	Special 2-structures	418	
		6.3.5	The clan decomposition theorem	419	
		6.3.6	The shape of a 2-structure	421	
		6.3.7	Constructions of clans and prime clans	424	
		6.3.8	Clans and sibas	427	
(6.4	Primit	ive 2-Structures	43 0	
		6.4.1	Hereditary properties	43 0	
		6.4.2	Uniformly non-primitive 2-structures	433	
(6.5	_	ar 2-structures and T-structures	434	
		6.5.1	Angular 2-structures	434	
		6.5.2	T-structures and texts	438	
(6.6	Labele	ed 2-Structures	442	

xiv CONTENTS

		6.6.1	Definition of a labeled 2-structure	442
		6.6.2	Substructures, clans and quotients	44
	6.7	Dynan	nic Labeled 2-Structures	44′
		6.7.1	Motivation	44'
		6.7.2	Group labeled 2-structures	449
		6.7.3	Dynamic labeled 2-structures	450
		6.7.4	Clans of a dynamic Δ^{δ} 2-structure	45^{4}
		6.7.5	Horizons	45
	6.8	Dynan	nic ℓ 2-structures with Variable Domains	45'
		6.8.1	Disjoint union of $\ell 2$ -structures	45
		6.8.2	Comparison with grammatical substitution	458
		6.8.3	Amalgamated union	459
	6.9	Quotie	ents and Plane Trees	460
		6.9.1	Quotients of dynamic Δ^{δ} 2-structures	460
		6.9.2	Plane trees	46
	6.10	Invaria	ants	469
		6.10.1	Introduction to invariants	469
			Free invariants	470
		6.10.3	Basic properties of free invariants	472
			Invariants on abelian groups	473
		6.10.5	Clans and invariants	476
	Refer	rences .		476
7			ned Graph Replacement Systems	479
	•	Schürr)		479
	7.1		uction	481
		7.1.1	Programmed Graph Replacement Systems in Practice .	481
		7.1.2	Programmed Graph Replacement Systems in Theory	482
		7.1.3	Contents of the Contribution	483
	7.2	~	Based Structure Replacement Systems	484
		7.2.1	Structure Schemata and Schema Consistent Structures .	485
		7.2.2	Substructures with Additional Constraints	492
		7.2.3	Schema Preserving Structure Replacement	498
		7.2.4	Summary	504
	7.3	_	mmed Structure Replacement Systems	50
		7.3.1	Requirements for Rule Controlling Programs	506
		7.3.2	Basic Control Flow Operators	
		7.3.3	Preliminary Definitions	
		7.3.4	A Fixpoint Semantics for Transactions	
		725	Summary	519

CONTENTS		
*46-		

7.4	Conte	xt-sensitive Graph Replacement Systems – Overview	519
3	7.4.1	Context-sensitive Graph Replacement Rules	520
	7.4.2	Embedding Rules and Path Expressions	523
	7.4.3	Positive and Negative Application Conditions	526
	7.4.4	Normal and Derived Attributes	527
	7.4.5	Summary	530
7.5	Progra	ammed Graph Replacement Systems – Overview	530
	7.5.1	Declarative Rule Regulation Mechanisms	532
	7.5.2	Programming with Imperative Control Structures	534
	7.5.3	Programming with Control Flow Graphs	537
	7.5.4	Summary	54 0
Refe	rences		541
Ind	ex		547

xv