Termination and Logical Relations

Solomon Aduol Maina

December 1st 2016

Goal

Use logical relations to prove termination of (call-by-name) Simply Typed Lambda Calculus, System ${\bf T}$ and System ${\bf F}$.

The Simply Typed Lambda Calculus

The syntax of the Simply Typed Lambda Calculus is given by the following grammar:

$$\textit{Typ } \tau ::= \textit{nat} \mid \tau_1 \longrightarrow \tau_2$$

$$\textit{Exp } e ::= x \mid 0 \mid \textbf{S}(e) \mid \lambda(x : \tau).e \mid e_1 e_2$$

Statics of the Simply Typed Lambda Calculus

The typing rules of the simply Typed Lambda Calculus are as follows:

$$\begin{array}{ccc} \hline \Gamma,x:\tau\vdash x:\tau & \mathsf{Typ\text{-}Var} \\ \hline \hline \Gamma\vdash 0:nat & \mathsf{Typ\text{-}Zero} \\ \hline \hline \Gamma\vdash 0:nat & \mathsf{Typ\text{-}Succ} \\ \hline \hline \hline \Gamma\vdash e:nat & \mathsf{Typ\text{-}Succ} \\ \hline \hline \hline \Gamma\vdash \lambda(x:\tau_1\vdash e:\tau_2 & \mathsf{Typ\text{-}Lam} \\ \hline \hline \Gamma\vdash \lambda(x:\tau_1).e:\tau_1\longrightarrow \tau_2 & \mathsf{Tpp\text{-}Lam} \\ \hline \hline \hline \Gamma\vdash e_1:\tau_1\longrightarrow \tau_2 & \Gamma\vdash e_2:\tau_2 \\ \hline \hline \Gamma\vdash e_1e_2:\tau_2 & \mathsf{Typ\text{-}App} \\ \hline \end{array}$$

Dynamics of the Simply Typed Lambda Calculus

The closed values of T are defined by the following rules:

$$\begin{array}{c|c} \hline 0 \ \textbf{Val} & \text{Val-Zero} \\ \hline \hline & e \ \textbf{Val} \\ \hline \hline & \textbf{S}(e) \ \textbf{Val} & \text{Val-Succ} \\ \hline \hline & \lambda(x:\tau).e \ \textbf{Val} & \text{Val-Lam} \\ \hline \end{array}$$

The transition rules for **T** are as follows:

$$\begin{array}{ccc} & e \longmapsto e' \\ \hline \mathbf{S}(e) \longmapsto \mathbf{S}(e') & \mathsf{Step\text{-}Succ} \\ \\ & \frac{e_1 \longmapsto e_1'}{e_1 \ e_2 \longmapsto e_1' \ e_2} & \mathsf{Step\text{-}App} \\ \hline \\ \hline & (\lambda(x:\tau).e_1) \ e_2 \longmapsto e_1[x::=e_2] & \mathsf{Step\text{-}Lam} \end{array}$$

Some Key Lemmata

Proposition (Progress)

If \vdash e: τ then either e is a value or there exists an e' such that e \longmapsto e'.

Proposition (Preservation)

If $\vdash e : \tau$ and $e \longmapsto e'$ then $\vdash e' : \tau$.

Proposition (Canonical Forms)

If $\vdash v : \tau$ and v is a value, then e = 0 or $e = \mathbf{S}(v')$ with v' a value if $\tau = \mathsf{nat}$, and $v = \lambda(x : \tau_1)$.e if $\tau = \tau_1 \longrightarrow \tau_2$.

First Attempt at Termination Proof

We try to prove the following using the obvious strategy:

Proposition

If $\vdash e : \tau$ then there exists a value v such that $e \mapsto^* v$.

Proof. The proof proceeds by induction over the derivation \vdash e : au

First Attempt at Termination Proof

We try to prove the following using the obvious strategy:

Proposition

If $\vdash e : \tau$ then there exists a value v such that $e \mapsto^* v$.

Proof. The proof proceeds by induction over the derivation $\vdash e : \tau$

(Case Typ-Var)

$$\overline{x : \tau \vdash x : \tau}$$
 Typ-Var

Does not apply since context is not empty.

First Attempt at Termination Proof

We try to prove the following using the obvious strategy:

Proposition

If $\vdash e : \tau$ then there exists a value v such that $e \mapsto^* v$.

Proof. The proof proceeds by induction over the derivation $\vdash e : \tau$

• (Case Typ-Var)

$$\frac{}{x:\tau \vdash x:\tau}$$
 Typ-Var

Does not apply since context is not empty.

(Case Typ-Zero)

$$\frac{}{\vdash 0 \cdot nat}$$
 Typ-Zero

0 is already a value.

• (Case Typ-Succ)

$$\frac{\vdash e : nat}{\vdash S(e) : nat}$$
 Typ-Succ

By the induction hypothesis $e \mapsto^* v$ with v a value, so $\mathbf{S}(e) \mapsto^* \mathbf{S}(v)$ which is a value.

(Case Typ-Succ)

$$\frac{\vdash e : nat}{\vdash \mathbf{S}(e) : nat}$$
 Typ-Succ

By the induction hypothesis $e \mapsto^* v$ with v a value, so $\mathbf{S}(e) \mapsto^* \mathbf{S}(v)$ which is a value.

(Case Typ-App)

$$\frac{\vdash e_1 : \tau_1 \longrightarrow \tau_2 \qquad \vdash e_2 : \tau_2}{\vdash e_1 \ e_2 : \tau_2} \qquad \mathsf{Typ-App}$$

By the induction hypothesis there exists a value f such that $e_1 \mapsto^* f$. By canonical forms, $f = \lambda(x : \tau_1).e'$, hence by the Step-App rule,

$$e_1 \ e_2 \longmapsto^* (\lambda(x : \tau_1).e') \ e_2 \longmapsto e'[x := e_2]$$

(Case Typ-Succ)

$$\frac{\vdash e : nat}{\vdash S(e) : nat}$$
 Typ-Succ

By the induction hypothesis $e \mapsto^* v$ with v a value, so $\mathbf{S}(e) \mapsto^* \mathbf{S}(v)$ which is a value.

(Case Typ-App)

$$\frac{\vdash e_1 : \tau_1 \longrightarrow \tau_2 \qquad \vdash e_2 : \tau_2}{\vdash e_1 \ e_2 : \tau_2} \qquad \mathsf{Typ-App}$$

By the induction hypothesis there exists a value f such that $e_1 \mapsto^* f$. By canonical forms, $f = \lambda(x : \tau_1).e'$, hence by the Step-App rule,

$$e_1 \ e_2 \longmapsto^* (\lambda(x : \tau_1).e') \ e_2 \longmapsto e'[x := e_2]$$

We are stuck because we don't know anything about e'!

Logical Relations As a Proof Technique

We (try to) define a unary relation \mathcal{R}_{τ} over expressions of a closed type τ such that if $e \in \mathcal{R}_{\tau}$ then there exists a value v such that $e \longmapsto^* v$. This relation should satisfy the property that if $e \in \mathcal{R}_{\tau_1 \longrightarrow \tau_2}$ and $e' \in \mathcal{R}_{\tau_1}$, then $(e \ e') \in \mathcal{R}_{\tau_2}$. We then show that if $\vdash e : \tau$, then $e \in \mathcal{R}_{\tau}$, so there exists a value v such that $e \longmapsto^* v$.

Logical Relations As a Proof Technique

We (try to) define a unary relation \mathcal{R}_{τ} over expressions of a closed type τ such that if $e \in \mathcal{R}_{\tau}$ then there exists a value v such that $e \longmapsto^* v$. This relation should satisfy the property that if $e \in \mathcal{R}_{\tau_1 \longrightarrow \tau_2}$ and $e' \in \mathcal{R}_{\tau_1}$, then $(e \ e') \in \mathcal{R}_{\tau_2}$. We then show that if $\vdash e : \tau$, then $e \in \mathcal{R}_{\tau}$, so there exists a value v such that $e \longmapsto^* v$.

Definition

We define a unary relation \mathcal{R}_{τ} on closed expressions of the type τ by the following rules: if e is a closed expression, then $e \in \mathcal{R}_{\tau}$ if and only if

- **1** if $\tau = nat$, then there exists a value v such that $e \mapsto^* v$, and
- ② if $\tau = \tau_1 \longrightarrow \tau_2$, then
 - there exists a v such that $e \mapsto^* v$, and
 - ullet if $e'\in\mathcal{R}_{ au_1}$, then $(e\ e')\in\mathcal{R}_{ au_2}$

Proposition

If \vdash $e : \tau$, then $e \in \mathcal{R}_{\tau}$.

Proof. Assume that $\vdash e : \tau$. The proof proceeds by induction over the derivation $\vdash e : \tau$.

Proposition

If \vdash $e : \tau$, then $e \in \mathcal{R}_{\tau}$.

Proof. Assume that $\vdash e : \tau$. The proof proceeds by induction over the derivation $\vdash e : \tau$.

(Case Typ-Var)

$$\overline{x : \tau \vdash x : \tau}$$
 Typ-Var

Does not apply since context is not empty.

Proposition

If \vdash $e : \tau$, then $e \in \mathcal{R}_{\tau}$.

Proof. Assume that $\vdash e : \tau$. The proof proceeds by induction over the derivation $\vdash e : \tau$.

(Case Typ-Var)

$$\overline{x : \tau \vdash x : \tau}$$
 Typ-Var

Does not apply since context is not empty.

(Case Typ-Zero)

$$\frac{}{\vdash 0 \cdot nat}$$
 Typ-Zero

0 is already a value so $0 \in \mathcal{R}_{nat}$.

• (Case Typ-Succ)

$$\frac{\vdash e : nat}{\vdash S(e) : nat}$$
 Typ-Succ

By the induction hypothesis $e \in \mathcal{R}_{nat}$ so $e \longmapsto^* v$ with v a value, so $\mathbf{S}(e) \longmapsto^* \mathbf{S}(v)$ which is a value, so $\mathbf{S}(e) \in \mathcal{R}_{nat}$.

(Case Typ-Succ)

$$\frac{\vdash e : nat}{\vdash S(e) : nat}$$
 Typ-Succ

By the induction hypothesis $e \in \mathcal{R}_{nat}$ so $e \longmapsto^* v$ with v a value, so $\mathbf{S}(e) \longmapsto^* \mathbf{S}(v)$ which is a value, so $\mathbf{S}(e) \in \mathcal{R}_{nat}$.

(Case Typ-App)

$$\frac{\vdash e : \tau_1 \longrightarrow \tau_2 \qquad \vdash e' : \tau_1}{\vdash e \ e' : \tau_2} \qquad \mathsf{Typ-App}$$

By the induction hypothesis $e \in \mathcal{R}_{\tau_1 \longrightarrow \tau_2}$ and $e' \in \mathcal{R}_{\tau_1}$, so $(e \ e') \in \mathcal{R}_{\tau_2}$.

• (Case Typ-Lam)

$$\frac{x: \tau_1 \vdash e: \tau_2}{\vdash \lambda(x: \tau_1).e: \tau_1 \longrightarrow \tau_2} \quad \mathsf{Typ-Lam}$$

 $\lambda(x:\tau_1).e$ is already a value. . .

(Case Typ-Lam)

$$\frac{x: \tau_1 \vdash e: \tau_2}{\vdash \lambda(x: \tau_1).e: \tau_1 \longrightarrow \tau_2} \quad \mathsf{Typ-Lam}$$

 $\lambda(x:\tau_1).e$ is already a value...

Induction hypothesis does not apply to e since e is not closed, so we are stuck. However e[x := e'] is closed . . .

(Case Typ-Lam)

$$\frac{x: \tau_1 \vdash e: \tau_2}{\vdash \lambda(x: \tau_1).e: \tau_1 \longrightarrow \tau_2} \quad \mathsf{Typ-Lam}$$

 $\lambda(x:\tau_1).e$ is already a value...

Induction hypothesis does not apply to e since e is not closed, so we are stuck. However e[x := e'] is closed . . .

We need to define \mathcal{R}_{τ} for open terms by applying closing substitutions.

Extending the Relation

Notation

Let γ be a function from a finite set $\{x_1, \ldots, x_n\}$ of expression variables to closed expressions. Let e be an arbitary expression. Then

$$\hat{\gamma}(e) = e[(x_1, \ldots, x_n) := (\gamma(x_1), \ldots, \gamma(x_n))]$$

Extending the Relation

Notation

Let γ be a function from a finite set $\{x_1, \ldots, x_n\}$ of expression variables to closed expressions. Let e be an arbitary expression. Then

$$\hat{\gamma}(e) = e[(x_1, \ldots, x_n) := (\gamma(x_1), \ldots, \gamma(x_n))]$$

Definition

Let e be an (arbitary) expression, τ a type and $\Gamma = \{x_1 : \tau_1, \ldots, x_n : \tau_n\}$ a context. Then $e \in \mathcal{S}(\Gamma, \tau)$ if and only if when γ is a function from $\{x_1, \ldots, x_n\}$ to closed expressions such that $\gamma(x_i) : \tau_i$ and $\gamma(x_i) \in \mathcal{R}_{\tau_i}$, then $\hat{\gamma}(e) \in \mathcal{R}_{\tau}$

Corollary

If $e \in \mathcal{S}(\varnothing, \tau)$, then e there exists a value v such that $e \longmapsto^* v$.

Proposition

If $\Gamma \vdash e : \tau$ *then* $e \in \mathcal{S}(\Gamma, \tau)$.

Proof. Assume that $\Gamma \vdash e : \tau$ with $\Gamma = \{x_1 : \tau_1, \ldots, x_n : \tau_n\}$ a context. Let γ be a function from $\{x_1, \ldots, x_n\}$ to closed expressions such that $\gamma(x_i) : \tau_i$ and $\gamma(x_i) \in \mathcal{R}_{\tau_i}$. The proof proceeds by induction on the derivation $\Gamma \vdash e : \tau$.

Proposition

If $\Gamma \vdash e : \tau$ *then* $e \in \mathcal{S}(\Gamma, \tau)$.

Proof. Assume that $\Gamma \vdash e : \tau$ with $\Gamma = \{x_1 : \tau_1, \dots, x_n : \tau_n\}$ a context. Let γ be a function from $\{x_1, \dots, x_n\}$ to closed expressions such that $\gamma(x_i) : \tau_i$ and $\gamma(x_i) \in \mathcal{R}_{\tau_i}$. The proof proceeds by induction on the derivation $\Gamma \vdash e : \tau$.

(Case Typ-Var)

$$\Gamma', x : \tau \vdash x : \tau$$
 Typ-Var

Then $x = x_i$ for some $1 \le i \le n$, so $\hat{\gamma}(x) = \gamma(x_i)$ which is in \mathcal{R}_{τ_i} by the definition of γ , so $x \in \mathcal{S}(\Gamma, \tau)$.

• (Case Typ-Zero) $\cfrac{\Gamma \vdash 0 : nat}{\Gamma \vdash 0 : nat} \quad \text{Typ-Zero}$ Then $\hat{\gamma}(0) = 0$ which is in \mathcal{R}_{nat} so $0 \in \mathcal{S}(\Gamma, \tau)$.

(Case Typ-Zero)

$$\overline{\Gamma \vdash 0 : nat}$$
 Typ-Zero

Then $\hat{\gamma}(0) = 0$ which is in \mathcal{R}_{nat} so $0 \in \mathcal{S}(\Gamma, \tau)$.

(Case Typ-Succ)

$$\frac{\Gamma \vdash e : nat}{\Gamma \vdash \mathbf{S}(e) : nat} \qquad \mathsf{Typ\text{-}Succ}$$

Then $\hat{\gamma}(\mathbf{S}(e)) = \mathbf{S}(\hat{\gamma}(e))$. By the induction hypothesis, $e \in \mathcal{S}(\Gamma, nat)$, so $\hat{\gamma}(e) \in \mathcal{R}_{nat}$, so $\hat{\gamma}(e) \longmapsto^* v$ with v a value, so $\mathbf{S}(\hat{\gamma}(e)) \longmapsto^* \mathbf{S}(v)$ which is a value so $\mathbf{S}(\hat{\gamma}(e)) \in \mathcal{R}_{nat}$, so $\mathbf{S}(e) \in \mathcal{S}(\Gamma, nat)$.

(Case Typ-App)

$$\frac{\Gamma \vdash e_1 : \tau_1 \longrightarrow \tau_2 \qquad \Gamma \vdash e_2 : \tau_1}{\Gamma \vdash e_1 \ e_2 : \tau_2} \qquad \mathsf{Typ-App}$$

Then $\hat{\gamma}(e_1 \ e_2) = (\hat{\gamma}(e_1)) \ (\hat{\gamma}(e_2))$. By the induction hypothesis, $e_1 \in \mathcal{S}(\Gamma, \tau_1 \longrightarrow \tau_2)$ and $e_2 \in \mathcal{S}(\Gamma, \tau_1)$, so $\hat{\gamma}(e_1) \in \mathcal{R}_{\tau_1 \longrightarrow \tau_2}$ and $\hat{\gamma}(e_2) \in \mathcal{R}_{\tau_1}$, so $(\hat{\gamma}(e_1)) \ (\hat{\gamma}(e_2)) \in \mathcal{R}_{\tau_2}$, so $(e_1 \ e_2) \in \mathcal{S}(\Gamma, \tau)$.

• (Case Typ-Lam)

$$\frac{\Gamma, x : \tau_1 \vdash e : \tau_2}{\Gamma \vdash \lambda(x : \tau_1).e : \tau_1 \longrightarrow \tau_2} \quad \mathsf{Typ\text{-Lam}}$$

Assume without loss of generality that x is not in Γ since otherwise we can rename x to satisfy this condition. Then $\hat{\gamma}(\lambda(x:\tau_1).e) = \lambda(x:\tau_1).\hat{\gamma}(e)$ which is a value. Assume that $e' \in \mathcal{R}_{\tau_1}$. Let $\theta = \gamma \otimes [x \mapsto e']$. By the induction hypothesis, $e \in \mathcal{S}((\Gamma, x:\tau_1), \tau_2)$, so $\hat{\theta}(e) \in \mathcal{R}_{\tau_2}$. Now

$$(\lambda(x:\tau_1).\hat{\gamma}(e))\ e'\longmapsto \hat{\gamma}(e)[x:=e']=\hat{\theta}(e)$$

which is $\in \mathcal{R}_{\tau_2} \dots$

(Case Typ-Lam)

$$\frac{\Gamma, x : \tau_1 \vdash e : \tau_2}{\Gamma \vdash \lambda(x : \tau_1).e : \tau_1 \longrightarrow \tau_2} \quad \mathsf{Typ\text{-Lam}}$$

Assume without loss of generality that x is not in Γ since otherwise we can rename x to satisfy this condition. Then $\hat{\gamma}(\lambda(x:\tau_1).e) = \lambda(x:\tau_1).\hat{\gamma}(e)$ which is a value. Assume that $e' \in \mathcal{R}_{\tau_1}$. Let $\theta = \gamma \otimes [x \mapsto e']$. By the induction hypothesis, $e \in \mathcal{S}((\Gamma, x:\tau_1), \tau_2)$, so $\hat{\theta}(e) \in \mathcal{R}_{\tau_2}$. Now

$$(\lambda(x:\tau_1).\hat{\gamma}(e))\ e'\longmapsto \hat{\gamma}(e)[x:=e']=\hat{\theta}(e)$$

which is $\in \mathcal{R}_{ au_2} \dots$

but
$$(\lambda(x:\tau_1).\hat{\gamma}(e))$$
 e' is not equal to $\hat{\theta}(e)$!

so we cannot conclude that $(\lambda(x:\tau_1).\hat{\gamma}(e))$ $e' \in \mathcal{R}_{\tau_2}$. We need to prove that \mathcal{R}_{τ} is closed under converse evaluation for any τ .

A Final Piece

Proposition

Assume that $\vdash e : \tau$ and $\vdash e' : \tau$. Assume that $e \longmapsto e'$. If $e' \in \mathcal{R}_{\tau}$, then $e \in \mathcal{R}_{\tau}$.

Proof. The proof proceeds by induction over the type τ .

• (Case $\tau = nat$) Since $e' \in \mathcal{R}_{nat}$, then there exists a value v such that $e' \longmapsto^* v$, thus $e \longmapsto^* v$ as $e \longmapsto e'$ by assumption, so $e \in \mathcal{R}_{nat}$.

A Final Piece

Proposition

Assume that $\vdash e : \tau$ and $\vdash e' : \tau$. Assume that $e \longmapsto e'$. If $e' \in \mathcal{R}_{\tau}$, then $e \in \mathcal{R}_{\tau}$.

Proof. The proof proceeds by induction over the type τ .

- (Case $\tau = nat$) Since $e' \in \mathcal{R}_{nat}$, then there exists a value v such that $e' \longmapsto^* v$, thus $e \longmapsto^* v$ as $e \longmapsto e'$ by assumption, so $e \in \mathcal{R}_{nat}$.
- ② (Case $\tau = \tau_1 \longrightarrow \tau_2$) Since $e' \in \mathcal{R}_{\tau_1 \longrightarrow \tau_2}$, then there exists a value v such that $e' \longmapsto^* v$, thus $e \longmapsto^* v$ as $e \longmapsto e'$ by assumption. Now assume that $e_1 \in \mathcal{R}_{\tau_1}$. Then $(e \ e_1) \longmapsto (e' \ e_1)$. (This is why we use call-by-name!) Since $e' \in \mathcal{R}_{\tau_1 \longrightarrow \tau_2}$, then $(e' \ e_1) \in \mathcal{R}_{\tau_2}$. By the induction hypothesis, $(e \ e_1) \in \mathcal{R}_{\tau_2}$, thus $e \in \mathcal{R}_{\tau_1 \longrightarrow \tau_2}$. This completes the proof.

Completing the Termination Proof

(Case Typ-Lam)

$$\frac{\Gamma, x : \tau_1 \vdash e : \tau_2}{\Gamma \vdash \lambda(x : \tau_1).e : \tau_1 \longrightarrow \tau_2} \quad \mathsf{Typ-Lam}$$

Assume without loss of generality that x is not in Γ since otherwise we can rename x to satisfy this condition. Then $\hat{\gamma}(\lambda(x:\tau_1).e) = \lambda(x:\tau_1).\hat{\gamma}(e)$ which is a value. Assume that $e' \in \mathcal{R}_{\tau_1}$. Let $\theta = \gamma \otimes [x \mapsto e']$. By the induction hypothesis, $e \in \mathcal{S}((\Gamma, x:\tau_1), \tau_2)$, so $\hat{\theta}(e) \in \mathcal{R}_{\tau_2}$. Now

$$(\lambda(x:\tau_1).\hat{\gamma}(e))\ e'\longmapsto \hat{\gamma}(e)[x:=e']=\hat{\theta}(e)$$

which is in $\in \mathcal{R}_{\tau_2} \dots$

Completing the Termination Proof

(Case Typ-Lam)

$$\frac{\Gamma, x : \tau_1 \vdash e : \tau_2}{\Gamma \vdash \lambda(x : \tau_1).e : \tau_1 \longrightarrow \tau_2} \quad \mathsf{Typ-Lam}$$

Assume without loss of generality that x is not in Γ since otherwise we can rename x to satisfy this condition. Then $\hat{\gamma}(\lambda(x:\tau_1).e) = \lambda(x:\tau_1).\hat{\gamma}(e)$ which is a value. Assume that $e' \in \mathcal{R}_{\tau_1}$. Let $\theta = \gamma \otimes [x \mapsto e']$. By the induction hypothesis, $e \in \mathcal{S}((\Gamma, x:\tau_1), \tau_2)$, so $\hat{\theta}(e) \in \mathcal{R}_{\tau_2}$. Now

$$(\lambda(x:\tau_1).\hat{\gamma}(e))\ e'\longmapsto \hat{\gamma}(e)[x:=e']=\hat{\theta}(e)$$

which is in $\in \mathcal{R}_{\tau_2} \dots$ so $(\lambda(x:\tau_1).\hat{\gamma}(e))$ $e' \in \mathcal{R}_{\tau_2}$ as \mathcal{R}_{τ_2} is closed under converse evaluation. Therefore $\hat{\gamma}(\lambda(x:\tau_1).e) \in \mathcal{R}_{\tau_1 \longrightarrow \tau_2}$. This completes the proof.

System **T**

System **T** is an extension of the Simply Typed Lambda Calculus.

Typ
$$\tau$$
 ::= nat $\mid \tau_1 \longrightarrow \tau_2$
Exp e ::= $x \mid 0 \mid \mathbf{S}(e) \mid \lambda(x : \tau).e \mid e_1 \mid e_2 \mid \mathbf{Prec}(e_1, e_2)(e)$

We add the typing rule

$$\frac{\Gamma \vdash e : \textit{nat} \qquad \Gamma \vdash e_0 : \tau \qquad \Gamma \vdash e_1 : \textit{nat} \longrightarrow (\tau \longrightarrow \tau)}{\Gamma \vdash \textbf{Prec}(e_0, e_1)(e) : \tau} \, \mathsf{PR}$$

System **T**

We also add the following transition rules:

$$\frac{e \longmapsto e'}{\mathsf{Prec}(e_0, e_1)(e) \longmapsto \mathsf{Prec}(e_0, e_1)(e')} \quad \mathsf{Step-Prec-1}$$

$$\frac{\mathsf{Prec}(e_0, e_1)(0) \longmapsto e_0}{\mathsf{Prec}(e_0, e_1)(\mathsf{S}(e)) \longmapsto (e_1 \ e) \ (\mathsf{Prec}(e_0, e_1)(e))} \quad \mathsf{Step-Prec-3}$$

Suffices to prove the PR case. Uses an inner induction.

(Case PR)

$$\frac{\Gamma \vdash e : \mathit{nat} \qquad \Gamma \vdash e_0 : \tau \qquad \Gamma \vdash e_1 : \mathit{nat} \longrightarrow (\tau \longrightarrow \tau)}{\Gamma \vdash \mathsf{Prec}(e_0, e_1)(e) : \tau} \, \mathsf{PR}$$

Then $\hat{\gamma}(\operatorname{Prec}(e_0, e_1)(e)) = \operatorname{Prec}(\hat{\gamma}(e_0), \hat{\gamma}(e_1))(\hat{\gamma}(e))$. By the induction hypothesis, $e \in \mathcal{S}(\Gamma, nat)$, $e_0 \in \mathcal{S}(\Gamma, \tau)$ and $e_1 \in \mathcal{S}(nat \longrightarrow (\tau \longrightarrow \tau))$, so $\hat{\gamma}(e) \in \mathcal{R}_{nat}$, $\hat{\gamma}(e_0) \in \mathcal{R}_{\tau}$ and $\hat{\gamma}(e_1) \in \mathcal{R}_{nat \longrightarrow (\tau \longrightarrow \tau)}$. Therefore, there exists a value v such that $\hat{\gamma}(e) \in \mathcal{R}_{nat} \longmapsto^* v$, so

$$\operatorname{\mathsf{Prec}}(\hat{\gamma}(e_0),\hat{\gamma}(e_1))(\hat{\gamma}(e)) \longmapsto^* \operatorname{\mathsf{Prec}}(\hat{\gamma}(e_0),\hat{\gamma}(e_1))(v) \dots$$

Suffices to prove the PR case. Uses an inner induction.

(Case PR)

$$\frac{\Gamma \vdash e : \textit{nat} \qquad \Gamma \vdash e_0 : \tau \qquad \Gamma \vdash e_1 : \textit{nat} \longrightarrow (\tau \longrightarrow \tau)}{\Gamma \vdash \textbf{Prec}(e_0, e_1)(e) : \tau} \, \mathsf{PR}$$

Then $\hat{\gamma}(\operatorname{Prec}(e_0, e_1)(e)) = \operatorname{Prec}(\hat{\gamma}(e_0), \hat{\gamma}(e_1))(\hat{\gamma}(e))$. By the induction hypothesis, $e \in \mathcal{S}(\Gamma, nat)$, $e_0 \in \mathcal{S}(\Gamma, \tau)$ and $e_1 \in \mathcal{S}(nat \longrightarrow (\tau \longrightarrow \tau))$, so $\hat{\gamma}(e) \in \mathcal{R}_{nat}$, $\hat{\gamma}(e_0) \in \mathcal{R}_{\tau}$ and $\hat{\gamma}(e_1) \in \mathcal{R}_{nat \longrightarrow (\tau \longrightarrow \tau)}$. Therefore, there exists a value v such that $\hat{\gamma}(e) \in \mathcal{R}_{nat} \longmapsto^* v$, so

$$\operatorname{\mathsf{Prec}}(\hat{\gamma}(e_0), \hat{\gamma}(e_1))(\hat{\gamma}(e)) \longmapsto^* \operatorname{\mathsf{Prec}}(\hat{\gamma}(e_0), \hat{\gamma}(e_1))(v) \dots$$

We need to prove that \mathcal{R}_{τ} is closed under converse multistep evaluation!

Strengthening Converse Evaluation

Proposition

Assume that $\vdash e : \tau$ and $\vdash e' : \tau$. Assume that $e \longmapsto^* e'$. If $e' \in \mathcal{R}_{\tau}$, then $e \in \mathcal{R}_{\tau}$.

Proof. The proof proceeds by induction over the type τ .

- ① (Case $\tau = nat$) Since $e' \in \mathcal{R}_{nat}$, then there exists a value v such that $e' \longmapsto^* v$, thus $e \longmapsto^* v$ as $e \longmapsto^* e'$ by assumption, so $e \in \mathcal{R}_{nat}$.
- ② (Case $\tau = \tau_1 \longrightarrow \tau_2$) Since $e' \in \mathcal{R}_{\tau_1 \longrightarrow \tau_2}$, then there exists a value v such that $e' \longmapsto^* v$, thus $e \longmapsto^* v$ as $e \longmapsto^* e'$ by assumption. Now assume that $e_1 \in \mathcal{R}_{\tau_1}$. Then $(e \ e_1) \longmapsto^* (e' \ e_1)$. Since $e' \in \mathcal{R}_{\tau_2}$, then $(e' \ e_1) \in \mathcal{R}_{\tau_2}$. By the induction hypothesis, $(e \ e_1) \in \mathcal{R}_{\tau_2}$, thus $e \in \mathcal{R}_{\tau_1 \longrightarrow \tau_2}$. This completes the proof.

• (Case PR)

$$\frac{\Gamma \vdash e : \textit{nat} \qquad \Gamma \vdash e_0 : \tau \qquad \Gamma \vdash e_1 : \textit{nat} \longrightarrow (\tau \longrightarrow \tau)}{\Gamma \vdash \mathsf{Prec}(e_0, e_1)(e) : \tau} \, \mathsf{PR}$$

Then $\hat{\gamma}(\operatorname{Prec}(e_0,e_1)(e)) = \operatorname{Prec}(\hat{\gamma}(e_0),\hat{\gamma}(e_1))(\hat{\gamma}(e))$. By the induction hypothesis, $e \in \mathcal{S}(\Gamma,nat)$, $e_0 \in \mathcal{S}(\Gamma,\tau)$ and $e_1 \in \mathcal{S}(nat \longrightarrow (\tau \longrightarrow \tau))$, so $\hat{\gamma}(e) \in \mathcal{R}_{nat}$, $\hat{\gamma}(e_0) \in \mathcal{R}_{\tau}$ and $\hat{\gamma}(e_1) \in \mathcal{R}_{nat \longrightarrow (\tau \longrightarrow \tau)}$. Therefore, there exists a value v such that $\hat{\gamma}(e) \in \mathcal{R}_{nat} \longmapsto^* v$, so

$$\mathsf{Prec}(\hat{\gamma}(e_0),\hat{\gamma}(e_1))(\hat{\gamma}(e)) \longmapsto^* \mathsf{Prec}(\hat{\gamma}(e_0),\hat{\gamma}(e_1))(\nu)$$

(Case PR)

$$\frac{\Gamma \vdash e : \textit{nat} \qquad \Gamma \vdash e_0 : \tau \qquad \Gamma \vdash e_1 : \textit{nat} \longrightarrow (\tau \longrightarrow \tau)}{\Gamma \vdash \mathsf{Prec}(e_0, e_1)(e) : \tau} \, \mathsf{PR}$$

Then $\hat{\gamma}(\operatorname{Prec}(e_0,e_1)(e)) = \operatorname{Prec}(\hat{\gamma}(e_0),\hat{\gamma}(e_1))(\hat{\gamma}(e))$. By the induction hypothesis, $e \in \mathcal{S}(\Gamma,nat)$, $e_0 \in \mathcal{S}(\Gamma,\tau)$ and $e_1 \in \mathcal{S}(nat \longrightarrow (\tau \longrightarrow \tau))$, so $\hat{\gamma}(e) \in \mathcal{R}_{nat}$, $\hat{\gamma}(e_0) \in \mathcal{R}_{\tau}$ and $\hat{\gamma}(e_1) \in \mathcal{R}_{nat \longrightarrow (\tau \longrightarrow \tau)}$. Therefore, there exists a value v such that $\hat{\gamma}(e) \in \mathcal{R}_{nat} \longmapsto^* v$, so

$$\operatorname{\mathsf{Prec}}(\hat{\gamma}(e_0), \hat{\gamma}(e_1))(\hat{\gamma}(e)) \longmapsto^* \operatorname{\mathsf{Prec}}(\hat{\gamma}(e_0), \hat{\gamma}(e_1))(v)$$

By canonical forms, v=0 or $v=\mathbf{S}(e')$ with e' a value. So if we can show that $\mathbf{Prec}(\hat{\gamma}(e_0),\hat{\gamma}(e_1))(v)\in\mathcal{R}_{\tau}$, then we can conclude that $\mathbf{Prec}(\hat{\gamma}(e_0),\hat{\gamma}(e_1))(\hat{\gamma}(e))$ since \mathcal{R}_{τ} is closed under converse multistep evaluation.

We use natural number induction on v to show that $\mathbf{Prec}(\hat{\gamma}(e_0), \hat{\gamma}(e_1))(v) \in \mathcal{R}_{\tau}$.

We use natural number induction on v to show that $\mathbf{Prec}(\hat{\gamma}(e_0), \hat{\gamma}(e_1))(v) \in \mathcal{R}_{\tau}$.

• (Case v = 0) Then $\mathbf{Prec}(\hat{\gamma}(e_0), \hat{\gamma}(e_1))(v) \longmapsto \hat{\gamma}(e_0)$ which is in \mathcal{R}_{τ} , so $\mathbf{Prec}(\hat{\gamma}(e_0), \hat{\gamma}(e_1))(v) \in \mathcal{R}_{\tau}$ as \mathcal{R}_{τ} is closed under converse evaluation

We use natural number induction on v to show that $\mathbf{Prec}(\hat{\gamma}(e_0), \hat{\gamma}(e_1))(v) \in \mathcal{R}_{\tau}$.

- (Case v=0) Then $\mathbf{Prec}(\hat{\gamma}(e_0), \hat{\gamma}(e_1))(v) \longmapsto \hat{\gamma}(e_0)$ which is in \mathcal{R}_{τ} , so $\mathbf{Prec}(\hat{\gamma}(e_0), \hat{\gamma}(e_1))(v) \in \mathcal{R}_{\tau}$ as \mathcal{R}_{τ} is closed under converse evaluation
- (Case v = S(e') with e' a value) Then

$$\mathsf{Prec}(\hat{\gamma}(e_0), \hat{\gamma}(e_1))(\mathsf{S}(e')) \longmapsto ((\hat{\gamma}(e_1)) \ e') \ (\mathsf{Prec}(\hat{\gamma}(e_0), \hat{\gamma}(e_1))(e'))$$

Since e' is a value, then by the (natural number) induction hypothesis, $\mathbf{Prec}(\hat{\gamma}(e_0), \hat{\gamma}(e_1))(e') \in \mathcal{R}_{\tau}$ (this is why we evaluate fully under \mathbf{S}), and since $\hat{\gamma}(e_1) \in \mathcal{R}_{nat \longrightarrow (\tau \longrightarrow \tau)}$ and e' is a value (and hence is in \mathcal{R}_{nat}), it follows that

$$((\hat{\gamma}(e_1))\ e')\ (\mathsf{Prec}(\hat{\gamma}(e_0),\hat{\gamma}(e_1))(e')) \in \mathcal{R}_{\tau},$$

so $\operatorname{Prec}(\hat{\gamma}(e_0), \hat{\gamma}(e_1))(\mathbf{S}(e')) \in \mathcal{R}_{\tau}$ as \mathcal{R}_{τ} is closed under converse evaluation. This completes the proof.

System F

The syntax of \mathbf{F} is given by the following grammar:

$$Typ \ \tau ::= t \mid \tau \longrightarrow \tau' \mid \forall t.\tau$$
$$Exp \ e ::= x \mid \lambda(x : \tau).e \mid e \ e' \mid \Lambda t.e \mid e \ [\tau]$$

Let Δ be a set of type variables. The well-formedness of types is given by the following rules:

$$\begin{array}{c|ccccc} \hline \Delta, t \ \textbf{WF} \vdash t \ \textbf{WF} & \text{WF-Var} \\ \hline \hline \Delta \vdash \tau_1 \ \textbf{WF} & \Delta \vdash \tau_2 \ \textbf{WF} \\ \hline \Delta \vdash \tau_1 \longrightarrow \tau_2 \ \textbf{WF} & \text{WF-lam} \\ \hline \hline \Delta, t \ \textbf{WF} \vdash \tau \ \textbf{WF} \\ \hline \Delta \vdash \Delta t . \tau \ \textbf{WF} & \text{WF-Lam} \\ \hline \end{array}$$

System F

The typing rules of **F** are given by the following rules:

System F

The closed values of **F** are defined by the following rules:

$$\frac{}{\lambda(x: au).e\;\mathsf{Val}}$$
 Val-lam $\frac{}{\Lambda t.e\;\mathsf{Val}}$ Val-Lam

The dynamics of **F** are defined by the following rules:

$$\frac{e \longmapsto e'}{(e \ e_1) \longmapsto (e' \ e_1)} \quad \text{Step-app}$$

$$\frac{(\lambda(x:\tau).e) \ e' \longmapsto e[x:=e']}{(e \ [\tau]) \longmapsto (e' \ [\tau])} \quad \text{Step-App}$$

$$\frac{(\Lambda t.e) \ [\tau] \longmapsto e[t:=\tau]}{(\Lambda t.e) \ [\tau] \longmapsto e[t:=\tau]} \quad \text{Step-Lam}$$

Definition

Let e be a closed expression and τ a type. Define \mathcal{R}_{τ} by the following rules:

• if $\tau = \tau_1 \longrightarrow \tau_2$, then $e \in \mathcal{R}_{\tau}$ if and only if there exists a value v such that $e \mapsto^* v$, and if $e' \in \mathcal{R}_{\tau_1}$, then $(e \ e') \in \mathcal{R}_{\tau_2}$

Definition

Let e be a closed expression and τ a type. Define \mathcal{R}_{τ} by the following rules:

- if $\tau = \tau_1 \longrightarrow \tau_2$, then $e \in \mathcal{R}_{\tau}$ if and only if there exists a value v such that $e \mapsto^* v$, and if $e' \in \mathcal{R}_{\tau_1}$, then $(e \ e') \in \mathcal{R}_{\tau_2}$
- if $\tau = \forall t.\tau'$, then $e \in \mathcal{R}_{\tau}$ if and only if for all closed types σ , $e [\sigma] \in \mathcal{R}_{\tau'[t:=\sigma]} \dots$

Definition

Let e be a closed expression and τ a type. Define \mathcal{R}_{τ} by the following rules:

- if $\tau = \tau_1 \longrightarrow \tau_2$, then $e \in \mathcal{R}_{\tau}$ if and only if there exists a value v such that $e \mapsto^* v$, and if $e' \in \mathcal{R}_{\tau_1}$, then $(e \ e') \in \mathcal{R}_{\tau_2}$
- if $\tau = \forall t.\tau'$, then $e \in \mathcal{R}_{\tau}$ if and only if for all closed types σ , $e \ [\sigma] \in \mathcal{R}_{\tau'[t:=\sigma]} \dots$ \mathcal{R}_{τ} is not well defined since $\tau'[t:=\sigma]$ is not structurally
 - smaller than au!

Definition

Let e be a closed expression and τ a type. Define \mathcal{R}_{τ} by the following rules:

- if $\tau = \tau_1 \longrightarrow \tau_2$, then $e \in \mathcal{R}_{\tau}$ if and only if there exists a value v such that $e \mapsto^* v$, and if $e' \in \mathcal{R}_{\tau_1}$, then $(e \ e') \in \mathcal{R}_{\tau_2}$
- if $\tau = \forall t.\tau'$, then $e \in \mathcal{R}_{\tau}$ if and only if for all closed types σ , $e \ [\sigma] \in \mathcal{R}_{\tau'[t:=\sigma]} \dots$ \mathcal{R}_{τ} is not well defined since $\tau'[t:=\sigma]$ is not structurally smaller than $\tau!$

We need to define some relation \mathcal{S}_{τ} such that if $\tau = \forall t.\tau'$, then there is a property P (which we can show holds!) such that for all closed types σ , P implies that e $[\sigma] \in \mathcal{S}_{\tau'[t:=\sigma]}$

Defining a Relation for Closed expressions of System F

Definition

Let e be a closed expression and τ an (arbitrary) type. Let δ be a function from a finite set of type variables to closed types. Let η be a function from a finite set of type variables to the set of unary relations \mathcal{R}_{σ} over expressions of the closed type σ that are closed under converse evaluation. We define $\mathcal{CHT}(\delta, \eta, \tau)$ as follows:

- if $\tau = t$, then $e \in \mathcal{CHT}(\delta, \eta, \tau)$ if and only if $e \in \eta(t)$,
- ② if $\tau = \tau_1 \longrightarrow \tau_2$, then $e \in \mathcal{CHT}(\delta, \eta, \tau)$ if and only if
 - ullet there exists a value v such that $e \longmapsto^* v$, and
 - if $e_1 \in \mathcal{CHT}(\delta, \eta, \tau_1)$, then $(e \ e_1) \in \mathcal{CHT}(\delta, \eta, \tau_2)$
- \bullet if $\tau = \forall t.\tau'$, then $e \in \mathcal{CHT}(\delta, \eta, \tau)$ if and only if
 - there exists a value v such that $e \mapsto^* v$, and
 - for any closed type σ and any relation \mathcal{R}_{σ} over expressions of type σ that is closed under converse evaluation, we have

$$e [\sigma] \in \mathcal{CHT}(\delta \otimes [t \mapsto \sigma], \eta \otimes [t \mapsto \mathcal{R}_{\sigma}], \tau')$$

Two Important Lemmata

Let e,e' be closed expressions. Let τ be an (arbitary) type. Let σ be a closed type. Let \mathcal{R}_{σ} be a unary relation over expressions of type σ that is closed under converse evaluation. Let δ be a function from a set finite set of type variables to closed types. Let η be a function from a finite set of type variables to the set of unary relations \mathcal{R}_{σ} over expressions of the closed type σ that are closed under converse evaluation.

Proposition

Assume that $e \mapsto e'$ and that $e' \in \mathcal{CHT}(\delta, \eta, \tau)$. Then $e \in \mathcal{CHT}(\delta, \eta, \tau)$.

Proposition

Assume that $e \in R_{\sigma}$ if and only if $e \in \mathcal{CHT}(\delta, \eta, \sigma)$. Then $e \in \mathcal{CHT}(\delta \otimes [t \mapsto \sigma], \eta \otimes [t \mapsto R_{\sigma}], \tau)$ if and only if $e \in \mathcal{CHT}(\delta, \eta, \tau[t := \sigma])$.

Some Notation

Notation

Let δ be a function from a finite set $\{t_1, \ldots, t_n\}$ of type variables to closed types. Let τ be an (arbitary) type. Let e be an (arbitary) expression. Then

$$\hat{\delta}(t) = t[(t_1,\ldots,t_n) := (\delta(t_1),\ldots,\delta(t_n))]$$

and

$$\hat{\delta}(e) = e[(t_1, \ldots, t_n) := (\delta(t_1), \ldots, \delta(t_n))]$$

Extending the Relation

Definition

Let Δ be a set of type variables, Γ a context and τ a type. We say that $e \in \mathcal{HT}(\Delta, \Gamma, \tau)$ if and only if the following condition holds:

- \bullet if δ is a function from a finite set of type variables to closed types, and
- η is a function from a finite set of type variables to the set of unary relations \mathcal{R}_{σ} over expressions of the closed type σ that are closed under converse evaluation, and
- γ is a function from a finite set of expression variables to closed expressions such that if $(x:\tau')\in \Gamma$, then $\gamma(x):\hat{\delta}(\tau')$ and $\gamma(x)\in \mathcal{CHT}(\delta,\eta,\hat{\delta}(\tau'))$,

then
$$\hat{\gamma}(\hat{\delta}(e)) \in \mathcal{CHT}(\delta,\eta,\hat{\delta}(au))$$

Proposition

Assume that $(\Delta, \Gamma) \vdash e : \tau$. Then $e \in \mathcal{HT}(\Delta, \Gamma, \tau)$

Proposition

Assume that $(\Delta, \Gamma) \vdash e : \tau$. Then $e \in \mathcal{HT}(\Delta, \Gamma, \tau)$

Proof. Assume that $(\Delta, \Gamma) \vdash e$. Assume that

- $oldsymbol{\circ}$ δ is a function from a finite set of type variables to closed types,
- η is a function from a finite set of type variables to the set of unary relations \mathcal{R}_{σ} over expressions of the closed type σ that are closed under converse evaluation, and
- γ is a function from a finite set of expression variables to closed types such that if $(x:\tau')\in\Gamma$, $\gamma(x):\hat{\delta}(\tau')$ and $\gamma(x)\in\mathcal{CHT}(\delta,\eta,\hat{\delta}(\tau'))$

We want to show that $\hat{\gamma}(\hat{\delta}(e)) \in \mathcal{CHT}(\delta, \eta, \hat{\delta}(\tau))$. The proof proceeds by induction over the derivation $(\Delta, \Gamma) \vdash e$.

• (Case Typ-Var) $\frac{}{\left(\Delta, (\Gamma', x : \tau)\right) \vdash x : \tau} \quad \text{Typ-Var}$ Then $\hat{\gamma}(\hat{\delta}(e)) = \gamma(x)$ with $\gamma(x) \in \mathcal{CHT}(\delta, \eta, \hat{\delta}(\tau))$ by assumption, hence $x \in \mathcal{HT}(\Delta, \Gamma, \tau)$

• (Case Typ-lam)

$$\frac{\Delta \vdash \tau_1 \ \mathbf{WF} \qquad (\Delta, (\Gamma, x : \tau_1)) \vdash e : \tau_2}{(\Delta, \Gamma) \vdash \lambda(x : \tau_1).e : \tau_1 \longrightarrow \tau_2} \qquad \mathsf{Typ-lam}$$

Assume without loss of generality that $x \notin dom(\gamma)$ since we may rename x to fulfil this condition. Then $\hat{\gamma}(\hat{\delta}(\lambda(x:\tau_1).e)) = \lambda(x:\tau_1.\hat{\gamma}(\hat{\delta}(e)))$ which is already a value.

(Case Typ-lam)

$$\frac{\Delta \vdash \tau_1 \ \mathbf{WF} \qquad (\Delta, (\Gamma, x : \tau_1)) \vdash e : \tau_2}{(\Delta, \Gamma) \vdash \lambda(x : \tau_1).e : \tau_1 \longrightarrow \tau_2} \qquad \mathsf{Typ-lam}$$

Assume without loss of generality that $x \not\in dom(\gamma)$ since we may rename x to fulfil this condition. Then $\hat{\gamma}(\hat{\delta}(\lambda(x:\tau_1).e)) = \lambda(x:\tau_1.\hat{\gamma}(\hat{\delta}(e)))$ which is already a value. Now assume that $e_1 \in \mathcal{CHT}(\delta,\eta,\hat{\delta}(\tau_1))$. Let $\theta = \gamma \otimes [x \mapsto e_1]$. Observe that

$$(\lambda(x:\tau_1).\hat{\gamma}(\hat{\delta}(e))) e_1 \longmapsto (\lambda(x:\tau_1).\hat{\gamma}(\hat{\delta}(e))) e_1$$
$$= \hat{\gamma}(\hat{\delta}(e))[x:=e_1] = \hat{\theta}(\hat{\delta}(e))$$

which is in $\mathcal{CHT}(\delta, \eta, \hat{\delta}(\tau_2))$ since $e \in \mathcal{HT}(\Delta, (\Gamma, x : \tau_1), \tau_2)$ by the induction hypothesis. Since $\mathcal{CHT}(\delta, \eta, \hat{\delta}(\tau_2))$ is closed under converse evaluation, it follows that

$$(\lambda(x:\tau_1).\hat{\gamma}(\hat{\delta}(e))) e_1 \in \mathcal{CHT}(\delta,\eta,\hat{\delta}(\tau_2)), \text{ thus } \lambda(x:\tau_1).e \in \mathcal{HT}(\Delta,\Gamma,\tau_1\longrightarrow \tau_2).$$

(Case Typ-app)

$$\dfrac{(\Delta,\Gamma) dash e_1 : au_2 \longrightarrow au}{(\Delta,\Gamma) dash (e_1 \ e_2) : au} = \dfrac{(\Delta,\Gamma) dash e_2 : au_2}{(\Delta,\Gamma) dash (e_1 \ e_2) : au}$$
 Typ-app

By the induction hypothesis, $e_1 \in \mathcal{HT}(\Delta, \Gamma, \tau_1 \longrightarrow \tau_2)$ and $e_2 \in \mathcal{HT}(\Delta, \Gamma, \tau_2)$, thus $\hat{\gamma}(\hat{\delta}(e_1)) \in \mathcal{CHT}(\delta, \eta, \hat{\delta}(\tau_1))$ and $\hat{\gamma}(\hat{\delta}(e_2)) \in \mathcal{CHT}(\delta, \eta, \hat{\delta}(\tau_2))$. Consequently, $\hat{\gamma}(\hat{\delta}((e_1 \ e_2))) = (\hat{\gamma}(\hat{\delta}(e_1))) \ (\hat{\gamma}(\hat{\delta}(e_2))) \in \mathcal{CHT}(\delta, \eta, \hat{\delta}(\tau_2))$, thus $(e_1 \ e_2) \in \mathcal{HT}(\Delta, \Gamma, \tau)$.

(Case Type-Lam)

$$\frac{(\Delta \cup \{t\}, \Gamma) \vdash e : \tau}{(\Delta, \Gamma) \vdash \Lambda t.e : \forall t.\tau} \quad \mathsf{Typ-Lam}$$

Assume without loss of generality that $t \not\in dom(\delta)$ since otherwise we can rename t to fulfil this condition. Then $\hat{\gamma}(\hat{\delta}(\Lambda t.e)) = \Lambda t.\hat{\gamma}(\hat{\delta}(e))$. Now let σ be a closed type. Let \mathcal{R}_{σ} be a unary relation over expressions of type σ that is closed under converse evaluation. We want to show that

$$(\Lambda t. \hat{\gamma}(\hat{\delta}(e))) \ [\sigma] \in \mathcal{CHT}(\delta \otimes [t \mapsto \sigma], \eta \otimes [t \mapsto \mathcal{R}_{\sigma}], \tau) \quad (1)$$

(Case Typ-Lam)

$$\dfrac{(\Delta \cup \{t\}, \Gamma) \vdash e : au}{(\Delta, \Gamma) \vdash \Lambda t.e : orall t. au}$$
 Typ-Lam

Observe that $(\Lambda t. \hat{\gamma}(\hat{\delta}(e)))$ $[\sigma] \mapsto \hat{\gamma}(\hat{\delta}(e))[t := \sigma]$. Now let $\theta = \delta \otimes [t \mapsto \sigma]$. By the induction hypothesis, $e \in \mathcal{HT} \in (\Delta \cup \{t\}, \Gamma, \tau)$, thus

$$\hat{\gamma}(\hat{ heta}(e)) \in \mathcal{CHT}(\delta \otimes [t \mapsto \sigma], \eta \otimes [t \mapsto \mathcal{R}_{\sigma}], au)$$

but
$$\hat{\gamma}(\hat{ heta}(e)) = \hat{\gamma}(\hat{\delta}(e))[t := \sigma]$$
, thus

$$\hat{\gamma}(\hat{\delta}(e'))[t := \sigma] \in \mathcal{CHT}(\delta \otimes [t \mapsto \sigma], \eta \otimes [t \mapsto \mathcal{R}_{\sigma}], \tau)$$

Since $\mathcal{CHT}(\delta \otimes [t \mapsto \sigma], \eta \otimes [t \mapsto \mathcal{R}_{\sigma}], \tau)$ is closed under converse evaluation, it follows that Eq. (1) holds. Therefore, $\Delta t.e \in \mathcal{HT}(\Delta, \Gamma, \forall t.\tau)$.

(Case Type-App)

$$\frac{(\Delta,\Gamma)\vdash e:\forall t.\tau'\quad \Delta\vdash\tau\ \textbf{WF}}{(\Delta,\Gamma)\vdash e\ [\tau]:\tau'[t:=\tau]}\quad \mathsf{Typ-App}$$

Assume without loss of generality that $t \notin dom(\delta)$ since otherwise we can rename t to fulfil this condition. Then

$$\hat{\gamma}(\hat{\delta}(e[\tau])) = (\hat{\gamma}(\hat{\delta}(e)))[\hat{\delta}(\tau)]$$

and

$$\hat{\delta}(\tau'[t := \tau]) = (\hat{\delta}(\tau'))[t := \hat{\delta}(\tau)]$$

We want to show that

$$(\hat{\gamma}(\hat{\delta}(e))) [\hat{\delta}(\tau)] \in \mathcal{CHT}(\delta, \eta, (\hat{\delta}(\tau'))[t := \hat{\delta}(\tau)])$$
 (2)

(Case Type-App)

$$\frac{(\Delta,\Gamma) \vdash e : \forall t.\tau' \quad \Delta \vdash \tau \ \mathsf{WF}}{(\Delta,\Gamma) \vdash e \ [\tau] : \tau'[t := \tau]} \quad \mathsf{Typ-App}$$

Assume without loss of generality that $t \notin dom(\delta)$ since otherwise we can rename t to fulfil this condition. Then

$$\hat{\gamma}(\hat{\delta}(e[\tau])) = (\hat{\gamma}(\hat{\delta}(e)))[\hat{\delta}(\tau)]$$

and

$$\hat{\delta}(\tau'[t:=\tau]) = (\hat{\delta}(\tau'))[t:=\hat{\delta}(\tau)]$$

We want to show that

$$(\hat{\gamma}(\hat{\delta}(e))) [\hat{\delta}(\tau)] \in \mathcal{CHT}(\delta, \eta, (\hat{\delta}(\tau'))[t := \hat{\delta}(\tau)])$$
 (2)

Define a unary relation $\mathcal{R}_{\hat{\delta}(\tau)}$ on expressions k of the closed type $\hat{\delta}(\tau)$ by $k \in \mathcal{R}_{\hat{\delta}(\tau)}$ if and only if $k \in \mathcal{CHT}(\delta, \eta, \hat{\delta}(\tau))$. Since, $\mathcal{CHT}(\delta, \eta, \hat{\delta}(\tau))$ is closed under converse evaluation, it follows that $\mathcal{R}_{\hat{\delta}(\tau)}$ is closed under converse evaluation.

Recall the following lemma:

Lemma

Assume that σ is a closed type and that \mathcal{R}_{σ} is a unary relation over closed expressions of type σ that is closed under converse evaluation. Assume that $e \in \mathcal{R}_{\sigma}$ if and only if $e \in \mathcal{CHT}(\delta, \eta, \sigma)$. Then $e \in \mathcal{CHT}(\delta \otimes [t \mapsto \sigma], \eta \otimes [t \mapsto \mathcal{R}_{\sigma}], \tau)$ if and only if $e \in \mathcal{CHT}(\delta, \eta, \tau[t := \sigma])$.

Since $\mathcal{R}_{\hat{\delta}(\tau)}$ is closed under converse evaluation, it follows that

$$\begin{split} &(\hat{\gamma}(\hat{\delta}(e))) \ [\hat{\delta}(\tau)] \in \mathcal{CHT}(\delta, \eta, (\hat{\delta}(\tau'))[t := \hat{\delta}(\tau)]) \\ &\text{if and only if} \\ &(\hat{\gamma}(\hat{\delta}(e))) \ [\hat{\delta}(\tau)] \in \mathcal{CHT}(\delta \otimes [t \mapsto \hat{\delta}(\tau)], \eta \otimes [t \mapsto \mathcal{R}_{\hat{\delta}(\tau)}], \hat{\delta}(\tau')) \end{split}$$

(Case Typ-App)

$$\frac{(\Delta,\Gamma) \vdash e : \forall t.\tau' \qquad \Delta \vdash \tau \ \mathsf{WF}}{(\Delta,\Gamma) \vdash e \ [\tau] : \tau'[t := \tau]} \quad \mathsf{Typ-App}$$

By the induction hypothesis, $e \in \mathcal{HT}(\Delta, \Gamma, \forall t.\tau')$, so $\hat{\gamma}(\hat{\delta}(e)) \in \mathcal{CHT}(\delta, \eta, \forall t.\tau')$. Consequently,

$$(\hat{\gamma}(\hat{\delta}(e))) \ [\hat{\delta}(\tau)] \in \mathcal{CHT}(\delta \otimes [t \mapsto \hat{\delta}(\tau)], \eta \otimes [t \mapsto \mathcal{R}_{\hat{\delta}(\tau)}], \hat{\delta}(\tau')),$$

so

$$(\hat{\gamma}(\hat{\delta}(e))) [\hat{\delta}(\tau)] \in \mathcal{CHT}(\delta, \eta, (\hat{\delta}(\tau'))[t := \hat{\delta}(\tau)]),$$

which is what we wanted to show. Hence $e[\tau] \in \mathcal{HT}(\Delta, \Gamma, \tau'[t := \tau])$. This completes the proof.