TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH TRUNG BÌNH (5-6 ĐIỂM)

Dạng 1. Xác định giá trị lớn nhất – giá trị nhỏ nhất của hàm số thông qua đồ thị, bảng biến thiên

• Giá trị lớn nhất của hàm số f(x) trên đoạn [a;b]

Hàm số f(x) liên tục trên đoạn [a;b] và $f'(x_i) = 0, x_i \in [a;b]$. Khi đó giá trị lớn nhất của hàm số f(x) là $M = \max\{f(a), f(b), f(x_i)\}$

• Giá trị nhỏ nhất của hàm số f(x) trên đoạn [a;b]

Hàm số f(x) liên tục trên đoạn [a;b] và $f'(x_i) = 0, x_i \in [a;b]$. Khi đó giá trị nhỏ nhất của hàm số f(x) là $m = Min\{f(a), f(b), f(x_i)\}$

- Hàm số y = f(x) đồng biến trên đoạn [a;b] thì $\underset{[a;b]}{\mathit{Max}} f(x) = f(b); \underset{[a;b]}{\mathit{Min}} f(x) = f(a)$
- Hàm số y = f(x) nghịch biến trên đoạn [a;b] thì $\underset{[a;b]}{\textit{Max}} f(x) = f(a); \underset{[a;b]}{\textit{Min}} f(x) = f(b)$
- **Câu 1. (Đề Tham Khảo 2019)** Cho hàm số y = f(x) liên tục trên đoạn [-1;3] và có đồ thị như hình vẽ bên. Gọi M và m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số đã cho trên đoạn [-1;3]. Giá trị của M-m bằng

A. 1

B. 4

C. 5 Lời giải **D**. 0

Chọn C

Dựa và đồ thị suy ra M = f(3) = 3; m = f(2) = -2Vây M - m = 5

Câu 2. (Đề Minh Họa 2017) Cho hàm số y = f(x) xác định, liên tục trên \mathbb{R} và có bảng biến thiên:

x	-∞		0		1		+∞
<i>y</i> '		+		-	0	+	
y	-8	/	70~	\	≥ -1∕		7 +∞

Khẳng định nào sau đây là khẳng định đúng?

- A. Hàm số có giá trị cực tiểu bằng 1.
- **B.** Hàm số có giá trị lớn nhất bằng 0 và giá trị nhỏ nhất bằng -1.

NGUYỄN BẢO VƯƠNG - 0946798489

C. Hàm số đạt cực đại tại x = 0 và đạt cực tiểu tại x = 1.

D. Hàm số có đúng một cực trị.

Lời giải

Chọn C

Đáp án A sai vì hàm số có 2 điểm cực trị.

Đáp án B sai vì hàm số có giá trị cực tiểu y = -1 khi x = 0.

Đáp án C sai vì hàm số không có GTLN và GTNN trên \mathbb{R} .

Đáp án D đúng vì hàm số đạt cực đại tại x = 0 và đạt cực tiểu tại x = 1.

Câu 3. Cho hàm số y = f(x) liên tục trên đoạn [-1;1] và có đồ thị như hình vẽ.

Gọi M và m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số đã cho trên đoạn [-1;1]. Giá trị của M-m bằng

A. 0.

B. 1.

C. 2.

D. 3.

Lời giải

Từ đồ thị ta thấy M = 1, m = 0 nên M - m = 1.

Câu 4. Cho hàm số y = f(x) liên tục trên [-3;2] và có bảng biến thiên như sau. Gọi M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) trên đoạn [-1;2]. Tính M+m.

<u>**A**</u>. 3.

B. 2.

C. 1.

D. 4.

Lời giải

Trên đoạn [-1;2] ta có giá trị lớn nhất M=3 khi x=-1 và giá trị nhỏ nhất m=0 khi x=0. Khi đó M+m=3+0=3.

Câu 5. (Chuyên Lương Thế Vinh Đồng Nai 2019) Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R} có đồ thị như hình vẽ bên. Tìm giá trị nhỏ nhất m và giá trị lớn nhất M của hàm số y = f(x) trên đoạn [-2;2].

A.
$$m = -5$$
; $M = -1$. **B.** $m = -2$; $M = 2$.

B.
$$m = -2$$
; $M = 2$.

C.
$$m = -1; M = 0$$
. **D.** $m = -5; M = 0$.

D.
$$m = -5: M = 0$$
.

Lời giải

Nhìn vào đồ thị ta thấy:

$$M = \max_{[-2,2]} f(x) = -1$$
 khi $x = -1$ hoặc $x = 2$.

$$m = \min_{[-2,2]} f(x) = -5$$
 khi $x = -2$ hoặc $x = 1$.

(THPT Ba Đình 2019) Xét hàm số y = f(x) với $x \in [-1; 5]$ có bảng biến thiên như sau: Câu 6.

x	-1	0		2		5
<i>y</i> '	+	0	-	0	+	
y	3	* 4 *		0		+∞

Khẳng định nào sau đây là đúng

- **<u>A</u>**. Hàm số đã cho không tồn taị GTLN trên đoạn [-1;5]
- **B.** Hàm số đã cho đạt GTNN tại x = -1 và x = 2 trên đoạn $\begin{bmatrix} -1 \\ 5 \end{bmatrix}$
- C. Hàm số đã cho đạt GTNN tại x = -1 và đạt GTLN tại x = 5 trên đoạn $\begin{bmatrix} -1,5 \end{bmatrix}$
- **D.** Hàm số đã cho đạt GTNN tại x = 0 trên đoạn [-1; 5]

Lời giải

- **A.** Đúng. Vì $\lim_{x\to 5^-} y = +\infty$ nên hàm số không có GTLN trên đoạn [-1;5].
- **B.** Sai. Hàm số đã cho chỉ đạt GTNN tại x = 2 trên đoạn [-1;5].
- C. Sai. Hàm số đã cho chỉ đạt GTNN tại x = 2 trên đoạn $\begin{bmatrix} -1;5 \end{bmatrix}$ và $\lim_{x \to 5} y = +\infty$.
- **D.** Sai. Hàm số đã cho chỉ đạt GTNN tại x = 2 trên đoạn $\begin{bmatrix} -1,5 \end{bmatrix}$.

(Chuyên Lê Thánh Tông 2019) Cho hàm số y = f(x) liên tục trên \mathbb{R} , có bảng biến thiên như Câu 7. hình sau:

Trong các mênh đề sau, mênh đề nào sai?

A. Hàm số có hai điểm cực tri.

NGUYĚN BẢO VƯƠNG - 0946798489

- **B.** Hàm số có giá trị lớn nhất bằng 2 và giá trị nhỏ nhất bằng -3.
- C. Đồ thi hàm số có đúng một đường tiêm cân.
- **D.** Hàm số nghịch biến trên mỗi khoảng $(-\infty; -1)$, $(2; +\infty)$.

Lời giải

Dựa vào BBT ta thấy hàm số không có GTLN, GTNN.

(Chuyên Nguyễn Tất Thành Yên Bái 2019) Cho hàm số y = f(x) liên tục và có bảng biến thiên Câu 8. trên đoạn [-1;3] như hình vẽ bên. Khẳng định nào sau đây **đúng**?

A.
$$\max_{[-1;3]} f(x) = f(0)$$
.

B.
$$\max_{[-1:3]} f(x) = f(3)$$
.

B.
$$\max_{[-1;3]} f(x) = f(3)$$
. **C.** $\max_{[-1;3]} f(x) = f(2)$. **D.** $\max_{[-1;3]} f(x) = f(-1)$.

D.
$$\max_{[-1:3]} f(x) = f(-1)$$

Nhìn vào bảng biến thiên ta thấy $\max_{[-1:3]} f(x) = f(0)$.

(VTED 2019) Cho hàm số f(x) liên tục trên [-1;5] và có đồ thị trên đoạn [-1;5] như hình vẽ Câu 9. bên dưới. Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x) trên đoạn [-1;5] bằng

A. -1

B. 4

<u>C</u>. 1 Lời giải **D.** 2

Từ đồ thị ta thấy: $\begin{cases} M = \max_{[-1;5]} f(x) = 3 \\ n = \min_{[-1,5]} f(x) = -2 \end{cases} \Rightarrow M + n = 1.$

Câu 10. (THPT Yên Mỹ Hưng Yên 2019) Cho hàm số y = f(x) xác định, liên tục trên $\left| -1, \frac{5}{2} \right|$ và có đồ thị là đường cong như hình vẽ.

Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số f(x) trên $\left|-1,\frac{5}{2}\right|$ là:

A.
$$M = 4, m = 1$$

B.
$$M = 4, m = -1$$

B.
$$M = 4, m = -1$$
 C. $M = \frac{7}{2}, m = -1$ **D.** $M = \frac{7}{2}, m = 1$

D.
$$M = \frac{7}{2}, m = \frac{1}{2}$$

Lời giải

Chọn B

Dựa vào đồ thị M=4, m=-1.

(THPT Nghĩa Hưng Nam Định 2019) Cho hàm số y = f(x) có đồ thị như hình vẽ. Giá trị lớn Câu 11. nhất của hàm số f(x) trên đoạn [0;2] là:

A.
$$\max_{[0:2]} f(x) = 2$$
.

A.
$$\max_{[0;2]} f(x) = 2$$
. **B.** $\max_{[0;2]} f(x) = \sqrt{2}$.
C. $\max_{[0;2]} f(x) = 4$. **D.** $\max_{[0;2]} f(x) = 0$.

$$\underline{\mathbf{C}}$$
. $\underset{[0:2]}{\text{Max}} f(x) = 4$

D.
$$\max_{[0;2]} f(x) = 0$$

Lời giải

Chon C

Dựa vào đồ thị ta thấy trên đoạn [0;2] hàm số f(x) có giá trị lớn nhất bằng 4 khi $x=\sqrt{2}$ Suy ra $\underset{[0;2]}{Max} f(x) = 4$

(Sở Bắc Giang 2019) Cho hàm số y = f(x) liên tục trên đoạn [-1;3] và có đồ thị như hình vẽ Câu 12. bên. Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn [-1;3]. Giá trị của M + m là

A. 2

B. −6

C. −5 Lời giải

<u>**D**</u>. −2

Dựa vào đồ thị ta thấy GTLN của hàm số trên đoạn [-1;3] là M=2 đạt được tại x=-1 và GTNN của hàm số số trên đoạn [-1;3] là m = -4 đạt được tại x = 2

$$\Rightarrow M + m = 2 + (-4) = -2$$

(Sở Hà Nội 2019) Cho hàm số y = f(x) có bảng biến thiên trên [-5;7) như sau Câu 13.

x	-5		1		7
y'		-	0	+	
\overline{y}	6		~ ₂ /		- ⁹

Mệnh đề nào dưới đây đúng?

A.
$$\min_{[-5;7]} f(x) = 6$$
.

B.
$$\min_{x \in S(T)} f(x) = 2$$

B.
$$\min_{[-5;7)} f(x) = 2$$
. **C.** $\max_{[-5;7)} f(x) = 9$. **D.** $\max_{[-5;7)} f(x) = 6$.

D.
$$\max_{[-5;7)} f(x) = 6$$
.

Dựa vào bảng biến thiên trên [-5,7], ta có: $\underset{[-5,7)}{\text{Min}} f(x) = f(1) = 2$.

Câu 14. Cho hàm số f(x) liên tục trên đoạn [0;3] và có đồ thị như hình vẽ bên. Gọi M và m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số đã cho trên [0;3]. Giá trị của M+m bằng?

A. 5.

B. 3.

C. 2.

D. 1.

Lời giải

Dựa vào hình vẽ ta có: M = 3, m = -2 nên M + m = 1.

Câu 15. (Chuyên Lê Quý Đôn Điện Biên 2019) Cho hàm số y = f(x) liên tục trên đoạn [-2;6] và có đồ thị như hình vẽ bên dưới.

Gọi M và m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số đã cho trên đoạn [-2;6]. Giá trị của M-m bằng

Lời giải

Từ đồ thị suy ra $-4 \le f(x) \le 5 \ \forall x \in [-2, 6]; f(1) = -4; f(4) = 5$

$$\Rightarrow \begin{cases} M = 5 \\ m = -4 \end{cases} \Rightarrow M - m = 9.$$

Câu 16. (VTED 2019) Cho hàm số y = f(x) liên tục và có đồ thị trên đoạn [-2;4] như hình vẽ bên. Tổng giá trị lớn nhất và nhỏ nhất của hàm số y = f(x) trên đoạn [-2;4] bằng

A. 5

B. 3

C. 0 Lời giải **D.** -2

Chọn B

Dựa vào đồ thị hàm số ta có

$$m = \underset{x \in [-2;4]}{Min} f(x) = -4, M = \underset{x \in [-2;4]}{Max} f(x) = 7$$

Khi đó M + m = 3

Câu 17. (THPT Ngô Sĩ Liên Bắc Giang 2019) Cho hàm số y = f(x) có bảng xét dấu đạo hàm như sau:

Mệnh đề nào sau đây đúng

A.
$$\max_{(-1:1]} f(x) = f(0)$$

B.
$$\max_{(0,+\infty)} f(x) = f(1)$$

A.
$$\max_{(-1;1]} f(x) = f(0)$$
 B. $\max_{(0;+\infty)} f(x) = f(1)$ **C.** $\min_{(-\infty;-1)} f(x) = f(-1)$ **D.** $\min_{(-1;+\infty)} f(x) = f(0)$

Lời giải

Chọn B

Dạng 2. Xác định giá trị lớn nhất – giá trị nhỏ nhất của hàm số trên đoạn

 \Box **Bwớc 1**: Hàm số đã cho y = f(x) xác định và liên tục trên đoạn [a;b].

Tìm các điểm $x_1, x_2, ..., x_n$ trên khoảng (a;b), tại đó f'(x) = 0 hoặc f'(x) không xác định.

- $\ \, \square \, \, \underline{\textit{Bw\'{o}c 2}} \colon \mathsf{T\'{i}nh} \, \, f\left(a\right), f\left(x_1\right), f\left(x_2\right), \ldots, f\left(x_n\right), f\left(b\right).$
- □ Bước 3: Khi đó:

 $\max_{\left[a,b\right]}f\left(x\right) = \max\left\{f\left(x_{_{1}}\right),f\left(x_{_{2}}\right),...,f\left(x_{_{n}}\right),f\left(a\right),f\left(b\right)\right\}.$

 $\min_{\left[a,b\right]}f\left(x\right)=\min\left\{f\left(x_{_{1}}\right),f\left(x_{_{2}}\right),...,f\left(x_{_{n}}\right),f\left(a\right),f\left(b\right)\right\}.$

(Đề Minh Họa 2020 Lần 1) Giá trị lớn nhất của hàm số $f(x) = -x^4 + 12x^2 + 1$ trên đoạn Câu 1. [-1;2]bằng:

A. 1.

- **B.** 37.
- <u>C</u>. 33.

Lời giải

D. 12.

Chon C

$$f(x) = -x^4 + 12x^2 + 1$$
 liên tục trên $[-1;2]$ và $f'(x) = -4x^3 + 24x^2 = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = \sqrt{6} \end{bmatrix}$ (L) $x = -\sqrt{6}$ (L)

Ta có:

$$f(-1) = 12; f(2) = 33; f(0) = 1$$

Vậy, giá trị lớn nhất của hàm số $f(x) = -x^4 + 12x^2 + 1$ trên đoạn [-1; 2] bằng 33 tại x = 2

(Đề Tham Khảo 2020 Lần 2) Giá trị nhỏ nhất của hàm số $f(x) = x^4 - 10x^2 + 2$ trên đoạn [-1;2]Câu 2. bằng

A. 2.

- **B.** −23.
- <u>C</u>. –22.
- **D.** -7.

Lời giải

Chọn C

Hàm số đã cho liên tục trên đoạn [-1;2].

Ta có:
$$f'(x) = 4x^3 - 20x$$
, $f'(x) = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = \pm\sqrt{5} \end{bmatrix}$.

Xét hàm số trên đoạn [-1;2] có: f(-1) = -7; f(0) = 2; f(2) = -22.

Vậy
$$\min_{x \in [-1;2]} f(x) = -22$$
.

Câu 3. (**Mã 101 - 2020 Lần 1**) Giá trị nhỏ nhất của hàm số $f(x) = x^3 - 24x$ trên đoạn [2;19] bằng

A.
$$32\sqrt{2}$$
.

C.
$$-32\sqrt{2}$$
.

Lời giải

<u>C</u>họn <u>C</u>.

Ta có
$$f'(x) = 3x^2 - 24 = 0 \Leftrightarrow \begin{bmatrix} x = 2\sqrt{2} \in [2;19] \\ x = -2\sqrt{2} \notin [2;19] \end{bmatrix}$$

$$f(2) = 2^3 - 24.2 = -40$$
; $f(2\sqrt{2}) = (2\sqrt{2})^3 - 24.2\sqrt{2} = -32\sqrt{2}$; $f(19) = 19^3 - 24.19 = 6403$.

Vậy **g**iá trị nhỏ nhất của hàm số $f(x) = x^3 - 24x$ trên đoạn [2;19] bằng $-32\sqrt{2}$.

Câu 4. (**Mã 102 - 2020 Lần 1**) Giá trị nhỏ nhất của hàm số $f(x) = x^3 - 21x$ trên đoạn [2;19] bằng

B.
$$-14\sqrt{7}$$
.

C.
$$14\sqrt{7}$$
.

Lời giải

Chọn B

Trên đoạn [2;19], ta có:
$$y' = 3x^2 - 21 \Rightarrow y' = 0 \Leftrightarrow \begin{bmatrix} x = -\sqrt{7} \notin [2;19] \\ x = \sqrt{7} \in [2;19] \end{bmatrix}$$
.

Ta có:
$$y(2) = -34$$
; $y(\sqrt{7}) = -14\sqrt{7}$; $y(19) = 6460$. Vậy $m = -14\sqrt{7}$.

Câu 5. (**Mã 103 - 2020 Lần 1**) Giá trị nhỏ nhất của hàm số $f(x) = x^3 - 30x$ trên đoạn [2;19] bằng

A.
$$20\sqrt{10}$$
.

C.
$$-20\sqrt{10}$$
.

Lời giải

Chọn C

Ta có
$$f'(x) = 3x^2 - 30 \Rightarrow f'(x) = 0 \Leftrightarrow 3x^2 - 30 = 0 \Leftrightarrow \begin{bmatrix} x = \sqrt{10} & (n) \\ x = -\sqrt{10} & (l) \end{bmatrix}$$
.

Khi đó
$$f(2) = -52$$
; $f(\sqrt{10}) = -20\sqrt{10}$ và $f(19) = 6289$.

Vậy
$$\min_{x \in [2;19]} f(x) = f(\sqrt{10}) = -20\sqrt{10}$$

Câu 6. (**Mã 104 - 2020 Lần 1**) Giá trị nhỏ nhất của hàm số $f(x) = x^3 - 33x$ trên đoạn [2;19] bằng

B.
$$-22\sqrt{11}$$
.

D.
$$22\sqrt{11}$$
.

Lời giải

<u>C</u>họn <u>B</u>

Ta có
$$f'(x) = 3x^2 - 33 = 0 \Leftrightarrow \begin{bmatrix} x = \sqrt{11} \in [2;19] \\ x = -\sqrt{11} \notin [2;19] \end{bmatrix}$$
.

Khi đó ta có
$$f(2) = -58$$
, $f(\sqrt{11}) = -22\sqrt{11}$, $f(19) = 6232$. Vậy $f_{\min} = f(\sqrt{11}) = -22\sqrt{11}$.

NGUYỄN BẢO VƯƠNG - 0946798489

Câu 7. (**Mã 101 – 2020 Lần 2**) Giá trị nhỏ nhất của hàm số $f(x) = x^4 - 10x^2 - 4$ trên [0;9] bằng

A.
$$-28$$
.

B.
$$-4$$
.

Lời giải

Chọn D

Hàm số y = f(x) liên tục trên [0;9].

Có
$$f'(x) = 4x^3 - 20x$$
, $f'(x) = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = \sqrt{5} \\ x = -\sqrt{5} \notin [0;9] \end{bmatrix}$

Ta có
$$f(0) = -4$$
, $f(\sqrt{5}) = -29$, $f(9) = 5747$

Do đó
$$\min_{[0;9]} f(x) = f(\sqrt{5}) = -29$$
.

Câu 8. (**Mã 102 - 2020 Lần 2**) Giá trị nhỏ nhất của hàm số $f(x) = x^4 - 12x^2 - 4$ trên đoạn [0,9] bằng

Lời giải

Chọn B

Ta có:
$$f'(x) = 4x^3 - 24x$$
; $f'(x) = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = \pm\sqrt{6} \end{bmatrix}$

Tính được: f(0) = -4; f(9) = 5585 và $f(\sqrt{6}) = -40$.

Suy ra $\min_{[0,9]} f(x) = -40$.

Câu 9. (**Mã 103 - 2020 Lần 2**) Giá trị nhỏ nhất của hàm số $f(x) = x^4 - 10x^2 - 2$ trên đoạn [0,9] bằng

$$A. -2.$$

Lời giải

<u>C</u>họn <u>D</u>

Ta có
$$f'(x) = 4x^3 - 20x$$

$$f'(x) = 0 \Leftrightarrow 4x^3 - 20x = 0 \Leftrightarrow \begin{bmatrix} x = 0 \notin (0,9) \\ x = \sqrt{5} \in (0,9) \\ x = -\sqrt{5} \notin (0,9) \end{bmatrix}$$

$$f(0) = -2$$
; $f(\sqrt{5}) = -27$; $f(9) = 5749$.

Vậy
$$\min_{[0,9]} f(x) = -27$$
.

Câu 10. (**Mã 104 - 2020 Lần 2**) Giá trị nhỏ nhất của hàm số $f(x) = x^4 - 12x^2 - 1$ trên đoạn [0,9] bằng

B.
$$-1$$
.

Lời giải

<u>C</u>họn <u>D</u>

Ta có
$$f'(x) = 4x^3 - 24x$$
.

$$f'(x) = 0 \Leftrightarrow 4x^3 - 24x = 0 \Leftrightarrow \begin{bmatrix} x = 0 \in [0; 9] \\ x = \sqrt{6} \in [0; 9] \\ x = -\sqrt{6} \notin [0; 9] \end{bmatrix}.$$

$$f(0) = -1$$
, $f(\sqrt{6}) = -37$, $f(9) = 5588$

(**Mã 102 - 2019**) Giá trị nhỏ nhất của hàm số $f(x) = x^3 - 3x + 2$ trên đoạn [-3;3] bằng Câu 11.

D. 4.

Lời giải

Chon B

Cách 1: Mode 7 $f(x) = x^3 - 3x + 2$.

Start -3

end3step 1

 \Rightarrow Chon B

Cách 2: $f'(x) = 3x^2 - 3$. $f'(x) = 0 \Leftrightarrow x = \pm 1 \in [-3;3]$.

$$f(-3) = -16$$
; $f(-1) = 4$; $f(1) = 0$; $f(3) = 20$.

 \Rightarrow Giá tri nhỏ nhất là -16.

(**Mã 110 2017**) Tìm giá trị lớn nhất M của hàm số $y = x^4 - 2x^2 + 3$ trên đoạn $\left[0; \sqrt{3}\right]$. Câu 12.

A.
$$M = 6$$

B.
$$M = 1$$

C.
$$M = 9$$

D.
$$M = 8\sqrt{3}$$

Lời giải

Chọn A

Ta có: $y' = 4x^3 - 4x = 4x(x^2 - 1)$

$$y' = 0 \Leftrightarrow 4x(x^2 - 1) = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = 1 \\ x = -1(l) \end{bmatrix}$$

Ta có:
$$y(0)=3$$
; $y(1)=2$; $y(\sqrt{3})=6$

Vậy giá trị lớn nhất của hàm số $y = x^4 - 2x^2 + 3$ trên đoạn $\left[0; \sqrt{3}\right]$ là $M = y\left(\sqrt{3}\right) = 6$

(Đề Minh Họa 2017) Tìm giá trị nhỏ nhất của hàm số $y = \frac{x^2 + 3}{x - 1}$ trên đoạn [2;4]. Câu 13.

A.
$$\min_{[2;4]} y = -3$$

A.
$$\min_{[2;4]} y = -3$$
 B. $\min_{[2;4]} y = \frac{19}{3}$ **C.** $\min_{[2;4]} y = 6$ **D.** $\min_{[2;4]} y = -2$

C.
$$\min_{[2;4]} y = 6$$

D.
$$\min_{[2;4]} y = -2$$

Lời giải

Chon C

Tập xác định: $D = \mathbb{R} \setminus \{1\}$

Hàm số $y = \frac{x^2 + 3}{x + 1}$ xác định và liên tục trên đoạn [2;4]

Ta có $y' = \frac{x^2 - 2x - 3}{(x - 1)^2}$; $y' = 0 \Leftrightarrow x^2 - 2x - 3 = 0 \Leftrightarrow x = 3 \text{ hoặc } x = -1 \text{ (loại)}$

Suy ra y(2) = 7; y(3) = 6; $y(4) = \frac{19}{3}$. Vậy $\min_{[2;4]} y = 6$ tại x = 3.

(Mã 103 - 2019) Giá trị lớn nhất của hàm số $f(x) = x^3 - 3x$ trên đoạn [-3;3] bằng

Lời giải

Chon B

Ta có
$$y' = 3x^2 - 3 = 0 \Leftrightarrow x = \pm 1$$

 $f(-3) = -18$; $f(-1) = 2$; $f(1) = -2$; $f(3) = 18$.

(Mã 104 2018) Giá trị lớn nhất của hàm số $y = x^4 - x^2 + 13$ trên đoạn [-1;2] bằng Câu 15.

B.
$$\frac{51}{4}$$

Lời giải

Chon D

$$y = f(x) = x^4 - x^2 + 13$$

$$y' = 4x^3 - 2x$$

$$4x^{3} - 2x = 0 \Leftrightarrow \begin{bmatrix} x = 0 \in [-1; 2] \\ x = -\frac{1}{\sqrt{2}} \in [-1; 2] \\ x = \frac{1}{\sqrt{2}} \in [-1; 2] \end{bmatrix}$$

$$f(-1) = 13; f(2) = 25; f(0) = 13; f\left(-\frac{1}{\sqrt{2}}\right) = \frac{51}{4}; f\left(\frac{1}{\sqrt{2}}\right) = \frac{51}{4}$$

Giá trị lớn nhất của hàm số $y = x^4 - x^2 + 13$ trên đoạn [-1;2] bằng 25.

(Mã 104 2017) Tìm giá trị nhỏ nhất m của hàm số $y = x^2 + \frac{2}{x}$ trên đoạn $\left| \frac{1}{2}; 2 \right|$. Câu 16.

A.
$$m = 5$$

B.
$$m = 3$$

C.
$$m = \frac{17}{4}$$

D.
$$m = 10$$

Lời giải

Chon B

Đặt
$$y = f(x) = x^2 + \frac{2}{x}$$
.

Ta có
$$y' = 2x - \frac{2}{x^2} = \frac{2x^3 - 2}{x^2}, \ y' = 0 \Rightarrow x = 1 \in \left[\frac{1}{2}; 2\right].$$

Khi đó
$$f(1) = 3, f(\frac{1}{2}) = \frac{17}{4}, f(2) = 5.$$

Vậy
$$m = \min_{\begin{bmatrix} \frac{1}{2} \\ 2 \end{bmatrix}} f(x) = f(1) = 3$$
.

(Chuyên Bắc Ninh 2018) Tìm tập giá trị của hàm số $y = \sqrt{x-1} + \sqrt{9-x}$

A.
$$T = [1; 9]$$
.

B.
$$T = \begin{bmatrix} 2\sqrt{2}; 4 \end{bmatrix}$$
. **C.** $T = \begin{bmatrix} 1; 9 \end{bmatrix}$. **D.** $T = \begin{bmatrix} 0; 2\sqrt{2} \end{bmatrix}$.

C.
$$T = (1; 9)$$

D.
$$T = [0; 2\sqrt{2}].$$

Lời giải

Tập xác định: D = [1; 9]

$$y' = \frac{1}{2\sqrt{x-1}} - \frac{1}{2\sqrt{9-x}} = 0 \Leftrightarrow \sqrt{9-x} = \sqrt{x-1} \Leftrightarrow \begin{cases} x \ge 1 \\ 9-x = x-1 \end{cases} \Leftrightarrow x = 5.$$

$$f(1) = f(9) = 2\sqrt{2}$$
; $f(5) = 4$

Vậy tập giá trị là $T = \begin{bmatrix} 2\sqrt{2}; 4 \end{bmatrix}$.

(**Mã 123 2017**) Tìm giá trị nhỏ nhất m của hàm số $y = x^3 - 7x^2 + 11x - 2$ trên đoạn [0 ;2]. Câu 18.

A.
$$m = 3$$

B.
$$m = 0$$

C.
$$m = -2$$

D.
$$m = 11$$

Lời giải

Chon C

Xét hàm số trên đoạn [0;2]. Ta có $y' = 3x^2 - 14x + 11$ suy ra $y' = 0 \Leftrightarrow x = 1$

Tính
$$f(0) = -2$$
; $f(1) = 3$, $f(2) = 0$. Suy ra $\min_{[0;2]} f(x) = f(0) = -2 = m$.

(**Mã 101 2018**) Giá trị lớn nhất của hàm số $y = x^4 - 4x^2 + 9$ trên đoạn [-2;3] bằng Câu 19.

Lời giải

Chọn D

$$y' = 4x^3 - 8x$$
; $y' = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = \pm\sqrt{2} \end{bmatrix}$.

Ta có
$$y(-2) = 9$$
; $y(3) = 54$; $y(0) = 9$; $y(\pm\sqrt{2}) = 5$.

Vậy
$$\max_{[-2;3]} y = 54$$
.

(Đề Tham Khảo 2018) Giá trị lớn nhất của hàm số $f(x) = x^4 - 4x^2 + 5$ trêm đoạn [-2;3] bằng Câu 20.

Lời giải

C. 5

Chọn B

$$f'(x) = 4x^3 - 8x = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = \pm\sqrt{2} \end{bmatrix};$$

$$f(0) = 5; f(\pm\sqrt{2}) = 1; f(-2) = 5; f(3) = 50$$

Vậy
$$\max_{[-2;3]} y = 50$$

(**Mã 105 2017**) Tìm giá trị nhỏ nhất m của hàm số $y = x^4 - x^2 + 13$ trên đoạn $\begin{bmatrix} -2;3 \end{bmatrix}$. Câu 21.

A.
$$m = 13$$

B.
$$m = \frac{51}{4}$$

C.
$$m = \frac{51}{2}$$
 D. $m = \frac{49}{4}$

D.
$$m = \frac{49}{4}$$

Lời giải

Chon B

$$y' = 4x^3 - 2x; \ y' = 0 \Leftrightarrow \begin{bmatrix} x = 0 \in [-2;3] \\ x = \pm \frac{1}{\sqrt{2}} \in [-2;3] \end{cases};$$

Tính
$$y(-2) = 25$$
, $y(3) = 85$, $y(0) = 13$, $y(\pm \frac{1}{\sqrt{2}}) = \frac{51}{4} = 12,75$;

Kết luận: giá trị nhỏ nhất m của hàm số là $m = \frac{51}{4}$.

Câu 22. (Mã 104 2019) Giá trị nhỏ nhất của hàm số $f(x) = x^3 - 3x$ trên đoạn $\begin{bmatrix} -3;3 \end{bmatrix}$ bằng

A. −18.

B. -2

C. 2.

D. 18

Lời giải

 $\underline{\mathbf{C}}$ họn $\underline{\mathbf{A}}$

Ta có
$$f'(x) == 3x^2 - 3 = 0 \Leftrightarrow \begin{bmatrix} x = 1 \\ x = -1 \end{bmatrix}$$
.

Mà
$$f(-3) = -18$$
; $f(-1) = 2$; $f(1) = -2$; $f(3) = 18$.

Vậy giá trị nhỏ nhất của hàm số $f(x) = x^3 - 3x$ trên đoạn [-3,3] bằng -18.

Câu 23. (**Mã 103 2018**) Giá trị nhỏ nhất của hàm số $y = x^3 + 3x^2$ trên đoạn [-4; -1] bằng

A. −16

B. 0

C. 4

D. -4

Lời giải

Chọn A

Ta có
$$y' = 3x^2 + 6x$$
; $y' = 0 \Rightarrow 3x^2 + 6x = 0 \Leftrightarrow \begin{bmatrix} x = 0 & \notin [-4; -1] \\ x = -2 & \in [-4; -1] \end{bmatrix}$.

Khi đó
$$y(-4) = -16$$
; $y(-2) = 4$; $y(-1) = 2$.

Nên $\min_{[-4;-1]} y = -16$.

Câu 24. (**Mã 102 2018**) Giá trị nhỏ nhất của hàm số $y = x^3 + 2x^2 - 7x$ trên đoạn [0;4] bằng

A. –259

B. 68

C. 0

D. –4

Lời giải

<u>C</u>họn <u>D</u>

TXĐ $D = \mathbb{R}$.

Hàm số liên tục trên đoạn [0;4].

Ta có $y' = 3x^2 + 4x - 7$

$$y' = 0 \Leftrightarrow \begin{bmatrix} x = 1 \in [0; 4] \\ x = -\frac{7}{3} \notin [0; 4] \end{bmatrix}$$

$$y(0) = 0; y(1) = -4; y(4) = 68.$$

Vậy $\min_{[0;4]} y = -4$.

Câu 25. (**Mã 101 - 2019**) Giá trị lớn nhất của hàm số $f(x) = x^3 - 3x + 2$ trên đoạn [-3;3] là

A. 4.

B. -16.

C. 20.

D. 0.

Lời giải

<u>C</u>họn <u>C</u>

 $f(x) = x^3 - 3x + 2$ tập xác định \mathbb{R} .

$$f'(x) = 0 \Leftrightarrow 3x^2 - 3 = 0 \Leftrightarrow x = \pm 1 \in [-3,3].$$

$$f(1) = 0; f(-1) = 4; f(3) = 20; f(-3) = -16.$$

Từ đó suy ra $\max_{[-3:3]} f(x) = f(3) = 20$.

(SGD Nam Định) Giá trị nhỏ nhất của hàm số $y = x^2 + \frac{2}{x}$ trên đoạn [2;3] bằng

A.
$$\frac{15}{2}$$
.

C.
$$\frac{29}{3}$$
.

D. 3.

Lời giải

Chọn B

+ Ta có hàm số $y = f(x) = x^2 + \frac{2}{x}$ xác định và liên tục trên [2;3].

+
$$y' = f'(x) = 2x - \frac{2}{x^2}$$
; $f'(x) = 0 \Leftrightarrow x = 1 \notin [2;3]$ mà $f(2) = 5$, $f(3) = \frac{29}{3}$.

+ Vậy $\min_{[2;3]} y = 5$ tại x = 2.

(Sở Quảng Trị 2019) Tìm giá trị lớn nhất M của hàm số $y = \frac{3x-1}{x-3}$ trên đoạn [0;2]Câu 27.

$$\underline{\mathbf{A}}$$
. $M = \frac{1}{3}$.

B. $M = -\frac{1}{3}$. **C.** M = 5. **D.** M = -5

C.
$$M = 5$$

Chọn A

Trên đoạn [0;2] ta luôn có $y' = -\frac{8}{(x-3)^2} < 0 \ \forall x \in (0;2)$ (đạo hàm vô nghiệm trên (0;2))

Vì
$$y(0) = \frac{1}{3}, y(2) = -5$$
 nên $M = \max_{[0;2]} y = \frac{1}{3}$.

(Sở Nam Định-2019) Giá trị lớn nhất của hàm số $y = \sqrt{4 - x^2}$ là Câu 28.

B. 0.

D. 1.

Lời giải

Chọn A

• Tập xác định: $D = \begin{bmatrix} -2; 2 \end{bmatrix}$

• Ta có:
$$y' = \frac{-x}{\sqrt{4-x^2}} \implies y' = 0 \iff x = 0 \in (-2,2)$$

• Ta có:
$$\begin{cases} y(-2) = y(2) = 0 \\ y(0) = 2 \end{cases} \Rightarrow \max_{[-2;2]} y = 2.$$

(Chuyên Bắc Ninh 2018) Tìm giá trị nhỏ nhất của hàm số $y = \sin^2 x - 4\sin x - 5$. Câu 29.

A. −20.

B. -8.

 $\mathbf{C.} - 9.$

D. 0.

Đặt $t = \sin x, t \in [-1;1]$. Xét $f(t) = t^2 - 4t - 5, t \in [-1;1]$.

$$f'(t) = 2t - 4 = 0 \Leftrightarrow t = 2 \notin [-1;1].$$

$$f(1) = -8, f(-1) = 0.$$

Ta thấy $\min_{[-1:1]} f(t) = f(1) = -8$. Vậy giá trị nhỏ nhất của hàm số là -8.

(THPT Hoa Lur A 2018) Gọi m, M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số Câu 30. $f(x) = \frac{1}{2}x - \sqrt{x+1}$ trên đoạn [0,3]. Tính tổng S = 2m + 3M.

NGUYĒN BẢO VƯƠNG - 0946798489

A.
$$S = -\frac{7}{2}$$
. **B.** $S = -\frac{3}{2}$. **C.** -3 .

B.
$$S = -\frac{3}{2}$$
.

D.
$$S = 4$$
.

Ta có:
$$f'(x) = \frac{1}{2} - \frac{1}{2\sqrt{x+1}} = \frac{\sqrt{x+1}-1}{2\sqrt{x+1}}$$
, cho $f'(x) = 0 \Rightarrow \sqrt{x+1} = 1 \Leftrightarrow x = 0 \in [0;3]$.

Khi đó:
$$f(0) = -1$$
, $f(3) = -\frac{1}{2}$ nên $m = -1$ và $M = -\frac{1}{2}$.

Vậy
$$S = 2m + 3M = -\frac{7}{2}$$
.

(Chuyên ĐHSPHN - 2018) Tìm giá trị lớn nhất của hàm số $f(x) = \sin x + \cos 2x$ trên $[0; \pi]$ là

$$\underline{\mathbf{A}} \cdot \frac{9}{8}$$

B.
$$\frac{5}{4}$$
.

D. 1.

Lời giải

$$f(x) = \sin x + \cos 2x = \sin x + 1 - 2\sin^2 x$$

Đặt
$$\sin x = t \ (0 \le t \le 1)$$

$$f(t) = -2t^2 + t + 1$$
, $f'(t) = -4t + 1$

$$f'(t) = 0 \Leftrightarrow t = \frac{1}{4}$$

$$f(0)=1, f(1)=0, f(\frac{1}{4})=\frac{9}{8}$$

Vậy
$$\max_{[0;1]} f(x) = \frac{9}{8}$$
.

(THPT Hà Huy Tập - 2018) Giá trị lớn nhất của hàm số $y = 2\cos x - \frac{4}{3}\cos^3 x$ trên $[0;\pi]$.

A.
$$\max_{[0;\pi]} y = \frac{2}{3}$$

B.
$$\max_{[0;\pi]} y = \frac{10}{3}$$
.

A.
$$\max_{[0;\pi]} y = \frac{2}{3}$$
. **B.** $\max_{[0;\pi]} y = \frac{10}{3}$. **C.** $\max_{[0;\pi]} y = \frac{2\sqrt{2}}{3}$. **D.** $\max_{[0;\pi]} y = 0$.

D.
$$\max_{[0;\pi]} y = 0$$

Lời giải

Đặt: $t = \cos x \Rightarrow t \in [-1;1] \Rightarrow y = 2t - \frac{4}{3}t^3$.

$$y' = 2 - 4t^2 \ y' = 0 \Leftrightarrow \begin{bmatrix} x = \frac{-1}{\sqrt{2}} \in [-1;1] \\ x = \frac{1}{\sqrt{2}} \in [-1;1] \end{bmatrix}$$

Tính:
$$y(-1) = \frac{-2}{3}$$
, $y(\frac{-1}{\sqrt{2}}) = \frac{-2\sqrt{2}}{3}$, $y(\frac{1}{\sqrt{2}}) = \frac{2\sqrt{2}}{3}$, $y(1) = \frac{2}{3}$.

Vậy:
$$\max_{[0;\pi]} y = \frac{2\sqrt{2}}{3}$$
.

Câu 33. Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y = \frac{3\sin x + 2}{\sin x + 1}$ trên đoạn

$$\left[0; \frac{\pi}{2}\right]$$
. Khi đó giá trị của $M^2 + m^2$ là

A.
$$\frac{31}{2}$$
.

B.
$$\frac{11}{2}$$
.

C.
$$\frac{41}{4}$$

D.
$$\frac{61}{4}$$
.

Lời giải

Chon C

Dăt $t = \sin x$, $t \in [0;1]$.

Xét hàm $f(t) = \frac{3t+2}{t+1}$ liên tục trên đoạn [0;1] có $f'(t) = \frac{1}{(t+1)^2} > 0, t \in [0;1].$

Suy ra hàm số đồng biến trên [0;1].

$$\Rightarrow M = \max_{[0:1]} f(t) = f(1) = \frac{5}{2} \text{ và } m = \min_{[0:1]} f(t) = f(0) = 2.$$

Khi đó
$$M^2 + m^2 = \left(\frac{5}{2}\right)^2 + 2^2 = \frac{41}{4}$$
.

(THPT Can Lộc - Hà Tĩnh - 2018) Cho hàm số $y = \frac{\sin x + 1}{\sin^2 x + \sin x + 1}$. Gọi M là giá trị lớn nhất Câu 34. và m là giá trị nhỏ nhất của hàm số đã cho. Chọn mệnh đề **đúng**

A.
$$M = m + \frac{3}{2}$$
. **B.** $M = \frac{3}{2}m$.

B.
$$M = \frac{3}{2}m$$

$$\underline{\mathbf{C}}.\ M=m+1.$$

D.
$$M = m + \frac{2}{3}$$
.

Đặt $\sin x = t$, $\left(-1 \le t \le 1\right)$ ta được $y = \frac{t+1}{t^2+t+1}$.

Xét hàm số $y = \frac{t+1}{t^2+t+1}$ trên đoạn [-1;1] ta có $y' = \frac{-t^2-2t}{\left(t^2+t+1\right)^2}$.

Giải phương trình $y' = 0 \Leftrightarrow -t^2 - 2t = 0 \Leftrightarrow \begin{bmatrix} t = 0 & (t/m) \\ t = -2 & (loại) \end{bmatrix}$.

Vì
$$y(-1) = 0$$
; $y(0) = 1$; $y(1) = \frac{2}{3}$ nên

$$\max_{[-1;1]} y = y(0) = 1 \Rightarrow M = 1; \min_{[-1;1]} y = y(-1) = 0 \Rightarrow m = 0.$$

Vậy
$$M = m + 1$$
.

Dạng 3. Xác định giá trị lớn nhất – giá trị nhỏ nhất của hàm số trên khoảng (a;b)

- \square Buốc 1: Tính đạo hàm f'(x).
- \Box <u>Bước 2:</u> Tìm tất cả các nghiệm $x_i \in (a;b)$ của phương trình f'(x) = 0 và tất cả các điểm $\alpha_i \in (a;b)$ làm cho f'(x) không xác đinh.
- $\label{eq:bounds} \square \ \underline{\textit{Bu\'oc 3.}} \ \mathsf{T\'{inh}} \ A = \lim_{x \to a^+} f(x) \,, \ B = \lim_{x \to b^-} f(x) \,, \ f(x_{_i}) \,, \ f(\alpha_{_i}) \,.$
- \square <u>Bước 4.</u> So sánh các giá trị tính được và kết luận $M = \max_{(a,b)} f(x)$, $m = \min_{(a,b)} f(x)$.

Nếu giá tri lớn nhất (nhỏ nhất) là A hoặc B thì ta kết luân không có giá tri lớn nhất (nhỏ nhất).

(Đề Tham Khảo 2017) Tính giá trị nhỏ nhất của hàm số $y = 3x + \frac{4}{x^2}$ trên khoảng $(0; +\infty)$.

A.
$$\min_{(0;+\infty)} y = \frac{33}{5}$$

B.
$$\min_{(0:+\infty)} y = 2\sqrt[3]{9}$$

B.
$$\min_{(0;+\infty)} y = 2\sqrt[3]{9}$$
 C. $\min_{(0;+\infty)} y = 3\sqrt[3]{9}$

D.
$$\min_{(0:+\infty)} y = 7$$

Lời giải

Chọn C

Cách 1:

$$y = 3x + \frac{4}{x^2} = \frac{3x}{2} + \frac{3x}{2} + \frac{4}{x^2} \ge 3\sqrt[3]{\frac{3x}{2} \cdot \frac{3x}{2} \cdot \frac{4}{x^2}} = 3\sqrt[3]{9}$$

Dấu "=" xảy ra khi
$$\frac{3x}{2} = \frac{4}{x^2} \Leftrightarrow x = \sqrt[3]{\frac{8}{3}}$$
.

Vậy
$$\min_{(0;+\infty)} y = 3\sqrt[3]{9}$$

Cách 2:

Xét hàm số $y = 3x + \frac{4}{r^2}$ trên khoảng $(0; +\infty)$

Ta có
$$y = 3x + \frac{4}{x^2} \Rightarrow y' = 3 - \frac{8}{x^3}$$

Cho
$$y' = 0 \Leftrightarrow \frac{8}{x^3} = 3 \Leftrightarrow x^3 = \frac{8}{3} \Leftrightarrow x = \sqrt[3]{\frac{8}{3}}$$

$$\Rightarrow \min_{(0;+\infty)} y = y \left(\sqrt[3]{\frac{8}{3}} \right) = 3\sqrt[3]{9}$$

Gọi m là giá trị nhỏ nhất của hàm số $y = x - 1 + \frac{4}{x - 1}$ trên khoảng $(1; +\infty)$. Tìm m? Câu 2.

A.
$$m = 5$$
.

$$\mathbf{\underline{B}}$$
. $m=4$.

C.
$$m = 2$$
.

D.
$$m = 3$$
.

Lời giải

Chon B

Tập xác định $D = R \setminus \{1\}$.

$$y' = \frac{x^2 - 2x - 3}{(x - 1)^2}, y' = 0 \Leftrightarrow \begin{bmatrix} x = -1 \\ x = 3 \end{bmatrix}.$$

Bảng biến thiên:

$$\Rightarrow m = \min_{(1;+\infty)} y = 4 \text{ khi } x = 3$$

- **Câu 3.** (THPT Minh Châu Hưng Yên 2019) Giá trị nhỏ nhất của hàm số $y = x 5 + \frac{1}{x}$ trên khoảng $(0; +\infty)$ bằng bao nhiêu?
 - **A.** 0

- **B.** −1
- <u>C</u>. –3
- **D.** −2

Lời giải

Chọn C

Áp dụng bất đẳng thức Cô – si ta có:

$$y = x + \frac{1}{x} - 5 \ge 2\sqrt{x \cdot \frac{1}{x}} - 5 = -3$$

Dấu bằng xảy ra khi $x = \frac{1}{x} \Leftrightarrow x^2 = 1 \Leftrightarrow x = 1 \text{ (vì } x > 0 \text{)}.$

Vậy
$$\min_{(0;+\infty)} y = -3$$

- **Câu 4.** (Chuyên Lương Thế Vinh Đồng Nai 2019) Gọi m là giá trị nhỏ nhất của hàm số $y = x + \frac{4}{x}$ trên khoảng $(0; +\infty)$. Tìm m
 - $\underline{\mathbf{A}}$. m=4.
- **B.** m = 2.
- **C.** m = 1.
- **D.** m = 3.

Lời giải

$$y' = 1 - \frac{4}{x^2}$$

$$y' = 0 \Leftrightarrow x = \pm 2; \quad x = 2 \in (0; +\infty).$$

Bảng biến thiên:

Suy ra giá trị nhỏ nhất của hàm số bằng $y(2) = 4 \Rightarrow m = 4$.

- **Câu 5.** (Chuyên Bắc Giang 2019) Giá trị nhỏ nhất của hàm số $f(x) = x + \frac{1}{x}$ trên nửa khoảng $[2; +\infty)$ là:
 - **A.** 2

 $\underline{\mathbf{B}}$. $\frac{5}{2}$

C. 0

D. $\frac{7}{2}$

Lời giải

Chọn B

Áp dụng bất đẳng thức Cô-si, ta được: $f(x) = x + \frac{1}{x} = \frac{3x}{4} + \frac{x}{4} + \frac{1}{x} \ge \frac{3.2}{4} + 2\sqrt{\frac{x}{4} \cdot \frac{1}{x}} = \frac{5}{2}$.

Dấu bằng xảy ra khi x = 2.

- **Câu 6.** Gọi m là giá trị nhỏ nhất của hàm số $y = x + \frac{4}{x}$ trên khoảng $(0; +\infty)$. Tìm m.
 - **A.** m = 3.
- **B.** m = 4.
- **C.** m = 2.
- **D.** m = 1.

Lời giải

NGUYỄN <mark>BẢO</mark> VƯƠNG - 0946798489

Chọn B

Cách 1:

Hàm số $y = x + \frac{4}{x}$ liên tục và xác định trên $(0; +\infty)$.

Ta có
$$y' = 1 - \frac{4}{x^2} = \frac{x^2 - 4}{x^2} \Rightarrow y' = 0 \Leftrightarrow \begin{bmatrix} x = 2 \in (0; +\infty) \\ x = -2 \notin (0; +\infty) \end{bmatrix}$$
.

Bảng biến thiên

Vậy giá trị nhỏ nhất là m = 4 khi x = 2.

Cách 2:

Với $x \in (0; +\infty) \Rightarrow x; \frac{4}{x} > 0$. Áp dụng bất đẳng thức Cô si ta có: $x + \frac{4}{x} \ge 2\sqrt{x \cdot \frac{4}{x}} = 4$.

Dấu bằng xảy ra khi và chỉ khi $\begin{cases} x > 0 \\ x = \frac{4}{x} \Leftrightarrow x = 2. \text{ Vậy } m = 4 \text{ khi } x = 2. \end{cases}$

Câu 7. Giá trị nhỏ nhất của hàm số $y = \sqrt{4-x} + \sqrt{3}$ trên tập xác định của nó là

A.
$$2 + \sqrt{3}$$
.

B.
$$2\sqrt{3}$$
.

Lời giải

<u>C</u>họn <u>D</u>

Tập xác định của hàm số là: $D = (-\infty, 4]$.

Ta có
$$y' = \frac{-1}{2\sqrt{4-x}} < 0, \forall x \in D$$

Bảng biến thiên

Từ bảng biến thiên suy ra $\min_{(-\infty;4]} y = \sqrt{3}$ khi x = 4. Vậy chọn D.

Câu 8. Với giá trị nào của x thì hàm số $y = x^2 + \frac{1}{x}$ đạt giá trị nhỏ nhất trên khoảng $(0; +\infty)$?

A.
$$\frac{3}{\sqrt[3]{4}}$$

B.
$$\frac{1}{\sqrt{2}}$$
.

D.
$$\frac{1}{\sqrt[3]{2}}$$
.

Chọn D

TXD: $D = \mathbb{R} \setminus \{0\}$.

$$y' = 2x - \frac{1}{x^2}, \ y' = 0 \Leftrightarrow x = \frac{1}{\sqrt[3]{2}}.$$

Dựa vào BBT thì $x = \frac{1}{\sqrt[3]{2}}$ hàm số đạt giá trị nhỏ nhất trên $(0; +\infty)$.

Câu 9. Giá trị nhỏ nhất của hàm số $y = x + \frac{2}{x} - \left(1 + \sqrt{2}\right)^2$ trên khoảng $(0; +\infty)$

A. không tồn tại.

 \mathbf{B} . -3.

C. $-1 + \sqrt{2}$

D. 0.

Lời giải

$\underline{\mathbf{C}}$ họn $\underline{\mathbf{B}}$

Hàm số xác định và liên tục trên khoảng $(0; +\infty)$.

$$y' = 1 - \frac{2}{x^2} = \frac{x^2 - 2}{x^2}.$$

$$y' = 0 \Leftrightarrow \begin{bmatrix} x = \sqrt{2} \\ x = -\sqrt{2} \end{bmatrix}.$$

Bảng biến thiên:

Vậy
$$\min_{(0;+\infty)} y = f(\sqrt{2}) = -3.$$

Câu 10. Cho hàm số $f(x) = \frac{\sqrt{x^2 - 1}}{x - 2}$ với x thuộc $D = (-\infty; -1] \cup \left[1; \frac{3}{2}\right]$. Mệnh đề nào dưới đây đúng?

$$\underline{\mathbf{A}}$$
. $\max_{D} f(x) = 0$; $\min_{D} f(x) = -\sqrt{5}$.

B. $\max_{D} f(x) = 0$; không tồn tại $\min_{D} f(x)$.

C.
$$\max_{D} f(x) = 0; \min_{D} f(x) = -1$$
.

D. $\min_{x} f(x) = 0$; không tồn tại $\max_{x} f(x)$.

Lời giải

Chọn A

Hàm số xác định và liên tục trên $D = (-\infty; -1] \cup \left[1; \frac{3}{2}\right]$.

$$f'(x) = \frac{-2x+1}{(x-2)^2 \sqrt{x^2-1}}; \ f'(x) = 0 \Leftrightarrow x = \frac{1}{2} \notin D$$

Vậy $\max_{D} f(x) = 0$; $\min_{D} f(x) = -\sqrt{5}$.

Câu 11. (Cụm liên trường Hải Phòng 2019) Mệnh đề nào sau đây là đúng về hàm số $y = \frac{x+1}{\sqrt{x^2+5}}$ trên

tập xác định của nó.

- A. Hàm số không có giá trị lớn nhất và không có giá trị nhỏ nhất.
- B. Hàm số không có giá trị lớn nhất và có giá trị nhỏ nhất.
- C. Hàm số có giá trị lớn nhất và giá trị nhỏ nhất.
- **D.** Hàm số có giá trị lớn nhất và không có giá trị nhỏ nhất.

Lời giải

Chon D

Tập xác đinh: $D = \mathbb{R}$.

$$y' = \frac{\sqrt{x^2 + 5} - (x + 1)\frac{2x}{2\sqrt{x^2 + 5}}}{x^2 + 5} = \frac{x^2 + 5 - x^2 - x}{\sqrt{x^2 + 5} (x^2 + 5)} = \frac{5 - x}{\sqrt{x^2 + 5} (x^2 + 5)}.$$

$$y' = 0 \Leftrightarrow \frac{5-x}{\sqrt{x^2+5}(x^2+5)} = 0 \Leftrightarrow 5-x = 0 \Leftrightarrow x = 5.$$

Bảng biến thiên:

Từ bảng biến thiên có $\max_{\mathbb{R}} y = y(5) = \frac{\sqrt{30}}{5}$ khi x = 5.

Hàm số $y = \frac{x+1}{\sqrt{x^2+5}}$ không có giá trị nhỏ nhất.

Vậy hàm số có giá trị lớn nhất và không có giá trị nhỏ nhất.

BẠN HỌC THAM KHẢO THÊM DẠNG CÂU KHÁC TẠI

Thttps://drive.google.com/drive/folders/15DX-hbY5paR0iUmcs4RU1DkA1-7QpKIG?usp=sharing

Theo dõi Fanpage: Nguyễn Bảo Vương Fhttps://www.facebook.com/tracnghiemtoanthpt489/

Hoặc Facebook: Nguyễn Vương 🏲 https://www.facebook.com/phong.baovuong

Tham gia ngay: Nhóm Nguyễn Bào Vương (TÀI LIỆU TOÁN) Thực https://www.facebook.com/groups/703546230477890/

Án sub kênh Youtube: Nguyễn Vương

* https://www.youtube.com/channel/UCQ4u2J5gIEI1iRUbT3nwJfA?view as=subscriber

Tải nhiều tài liệu hơn tại: http://diendangiaovientoan.vn/

ĐỂ NHẬN TÀI LIỆU SỚM NHẤT NHÉ!

Agyjet Bio Vitotile