Prüfungsteilnehmer	Prüfungstermin	Einzelprüfungsnummer
Kennzahl:Kennwort:Arbeitsplatz-Nr.:	2007	46113
Erste Staatsprüfu	ng für ein Lehramt an d — Prüfungsaufgaben -	
Fach: Informatik	(Unterrichtsfach)	
Einzelprüfung: Theoretisch	ne Informatik	
Anzahl der gestellten Themer	(Aufgaben): 2	
Anzahl der Druckseiten dieser	r Vorlage: 4	

Bitte wenden!

Thema Nr. 1

Sämtliche Teilaufgaben sind zu bearbeiten!

Aufgabe 1:

(Automatentheorie)

Gegeben seien die Sprachen

$$L_1 = \{(ab)^i c d^j : i, j \in \mathbb{N}\},$$

$$L_2 = \{a^i b^j c^i d^j : i, j \in \mathbb{N}\},$$

$$L_3 = \{a^i b^j (cd)^j : i, j \in \mathbb{N}\}.$$

Für welche Sprache existiert ein endlicher Automat, der diese erkennt? Falls es einen solchen Automaten gibt, geben Sie ihn an! Andernfalls begründen Sie die Nichtexistenz!

Aufgabe 2:

(Formale Sprachen)

Zeigen Sie, dass kontextfreie Sprachen nicht abgeschlossen bzgl. der Durchschnittsbildung sind! Betrachten Sie hierzu

$$L_1 = \{a^n b^n c^m : n, m \in \mathbb{N}\}\$$

 $L_2 = \{a^m b^n c^n : n, m \in \mathbb{N}\}\$

Zeigen Sie, dass L_1 und L_2 kontextfrei sind, nicht aber $L_1 \cap L_2$ (Pumping Lemma).

Aufgabe 3:

(Berechenbarkeit und Komplexität)

Gegeben sei die Sprache $L = \{a^n \ b \ c^n : n \in \mathbb{N}\}.$

- a) Geben Sie ein Turing-Programm an, das für jedes $w \in \{a, b, c\}^*$ entscheidet, ob $w \in L$ gilt oder nicht. Beschreiben Sie jeden Schritt im Detail!
- b) Welche Komplexität besitzt der Algorithmus?

Thema Nr. 2

Sämtliche Teilaufgaben sind zu bearbeiten!

Aufgabe 1:

(Automatentheorie)

Gegeben sei der folgende nichtdeterministische Automat N.

- a) Geben Sie einen regulären Ausdruck für die von N erkannte Sprache an!
- b) Wandeln Sie N in einen deterministischen endlichen Automaten D um! Gehen Sie dabei systematisch vor und beschreiben Sie jeden der Schritte!

Aufgabe 2:

(Formale Sprache)

Hinweis:

Eine Chomsky-Normalform ist eine kontextfreie Grammatik G mit $\epsilon \notin L(G)$, welche nur Regeln der Form

$$\begin{array}{c} A \to BC \\ bzw. \ A \to a \end{array}$$

besitzt.

(A, B, C Variablen; a Terminsymbol)

- a) Beweisen Sie: Wenn eine Grammatik G in Chomsky-Normalform ist, dann wird ein Wort w der Sprache L(G) in genau 2|w|-1 Ableitungsschritten erzeugt.
- b) Gegeben sei die folgende Grammatik für aussagenlogische Konjunktionen, die nur die Aussagenvariablen "A" und "B" enthalten.

$$Conj \rightarrow Lit \mid Lit' \land' Conj$$

 $Lit \rightarrow Term \mid ' \neg' Term$
 $Term \rightarrow' A' \mid 'B'$

Beispiele, die mit dieser Grammatik generiert werden können, sind:

$$\begin{array}{ccc}
\neg A \\
B \\
A \land \neg B \\
A \land B \land A \land B
\end{array}$$

Wandeln Sie diese Grammatik in Chomsky-Normalform um!

Aufgabe 3:

(Berechenbarkeit)

- a) Definieren Sie den Begriff "rekursiv aufzählbar" für Sprache $A \subseteq \sum^*!$
- b) Zeigen Sie: Sind die Sprachen A und B rekursiv aufzählbar, so auch $A \cup B$ und $A \times B$.

Aufgabe 4:

(Komplexität)

Der folgende Algorithmus (in Java) sortiert eine Reihung von ganzen Zahlen.

```
public static void selectionSort(int data[]) {
   for (int i = 0; i < (data.length-1); i++) {
      // Finde das Minimum
      int minIndex = i;
      for (int j = i + 1; j < data.length; j++) {
         if (data[j] < data[minIndex]) {
            minIndex = j;
      }
    }
}
// Vertausche aktuelles Datum und Minimum
   int tmp = data[i];
   data[i] = data[minIndex];
   data[minIndex] = tmp;
}</pre>
```

Welche Zeitkomplexität hat selectionSort? Berechnen Sie genau die Anzahl der benötigten Vergleiche und folgern Sie daraus die Komplexität in O-Notation!