MATE 5201: Tarea 4

Due on 8 de octubre

Prof. Alejandro Velez, C41, 8 de octubre

Sergio Rodriguez

Problem 1

(6 puntos) – Demuestre que un espacio metrico (X,d) es conexo si y solo si los unicos subconjuntos E abiertos y cerrados de X son $E = \emptyset$ y E = X.

Prueba:

 (\Longrightarrow)

Suponga que (X,d) es conexo. Note que $x\in\emptyset\Longrightarrow\exists r\in\mathbb{R}$ tal que $B(x;r)\in X\Longrightarrow\emptyset$ es abierto y $\emptyset^{\mathbb{C}}=X$ es cerrado. Tambien $x\in\emptyset\Longrightarrow U_r(x)\setminus\{x\}\cap X\neq\emptyset\Longrightarrow\emptyset$ es cerrado y $\emptyset^{\mathbb{C}}=X$ es abierto. Entonces, solo falta probar que estos subconjuntos son los unicos que son abiertos y cerrados. Haremos esto por contrareciproco.

Suponga que $E \subsetneq X$ con $E \neq \emptyset$ es abierto y cerrado. Es claro que $E^{\mathbb{C}} \neq \emptyset$, $E \cup E^{\mathbb{C}} = X$, y $E \cap E^{\mathbb{C}} = \emptyset$. Como E es cerrado, tenemos que $E = \overline{E} \Longrightarrow \overline{E} \cap E^{\mathbb{C}} = \emptyset$. Similarmente, como E es abierto, $E^{\mathbb{C}}$ es cerrado, lo que implica que $E^{\mathbb{C}} = \overline{E^{\mathbb{C}}} \Longrightarrow E \cap \overline{E^{\mathbb{C}}} = \emptyset$.

 $\div E$ y $E^{\mathbb{C}}$ estan separados $\Longrightarrow X$ no es conexo.

 (\Leftarrow)

Por contrareciproco, suponga que X no es conexo, entonces $\exists A, B \subseteq X$ con $A, B \neq \emptyset, A, B \neq X$, y $A \cup B = X$ tal que $\overline{A} \cap B = \emptyset$ y $A \cap \overline{B} = \emptyset$. Note que $A \cup B = X$ y A y B son disjuntos, lo que implica que los conjuntos son complementos en X. Entonces llame E := A y $E^{\mathbb{C}} := B$.

Tome x punto limite de E y note que $x \notin E^{\mathbb{C}}$ ($\because x \in E^{\mathbb{C}} \Longrightarrow x \in \overline{E} \cap E^{\mathbb{C}} \cancel{\times}$) $\Longrightarrow x \in E \Longrightarrow E$ es cerrado. Similarmente, tome x punto limite de $E^{\mathbb{C}}$ y note que $x \notin E \Longrightarrow x \in E^{\mathbb{C}} \Longrightarrow E^{\mathbb{C}}$ es cerrado $\Longrightarrow E$ es abierto.

 $\therefore \exists E \subseteq X \text{ con } E \neq \emptyset \text{ y } E \neq X \text{ abierto y cerrado.}$

MEP

Problem 2

(4 puntos) – $Si E \subseteq \mathbb{R}^n$ es convexo, pruebe que E es conexo.

Prueba:

Por contrareciproco, suponga que E no es conexo, entonces $\exists A, B \subseteq E$ con $A, B \neq \emptyset, A, B \neq E$, y $A \cup B = E$ tal que $\overline{A} \cap B = \emptyset$. Fije $a \in A \subseteq E$, y $b \in B \subseteq E$. Ahora, sean:

$$\begin{split} L_A &\coloneqq \{\lambda \in [0,1] \mid \lambda a + (1-\lambda)b \in A\}, y \\ L_B &\coloneqq \{\lambda \in [0,1] \mid \lambda a + (1-\lambda)b \in B\}. \end{split} \tag{1}$$

Note que ambos L_A y L_B son subconjuntos de \mathbb{R} , $1 \in L_A \Longrightarrow L_A \neq \emptyset$, $0 \in L_B \Longrightarrow L_B \neq \emptyset$, y ambos L_A y L_B estan claramente acotados por 0 y 1. Entonces, por la propiedad de la cota superior minima y la propiedad de la cota inferior maxima de los numeros reales, tenemos que $\exists \alpha, \beta \in \mathbb{R}$ tal que $\alpha = \sup(L_A)$ y $\beta = \inf(L_B)$.

Es claro que $\alpha \ge 0$ y $\beta \le 1$. Pero ahora note que $\alpha < \beta$, porque si $\alpha \ge \beta$, entonces $\exists \lambda$ tal que $\lambda a + (1 - \lambda)b \in A \cap B$, lo que contradice que E no es conexo. Entonces, podemos usar la densidad en los

reales para conseguir $\lambda \in [0,1]$ tal que $\alpha < \lambda < \beta$. Pero esto implica que $\lambda a + (1-\lambda)b \notin A$, por definicion de α , y $\lambda a + (1-\lambda)b \notin B$, por definicion de β . Entonces, encontramos un $\lambda \in [0,1]$ tal que $\lambda a + (1-\lambda)b \notin E$.

E no es convexo.

MEP

Problem 3

(6 puntos) – Suponga que $0 < x_1 < 1$, y defina la sucesion recursiva: $x_{n+1} \coloneqq 1 - \sqrt{1-x_n}$. Demuestre que $\{x_n\}$ es decreciente, con $\lim_{n \to \infty} x_n = 0$. Luego pruebe que $\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = \frac{1}{2}$.

Prueba:

Sabemos que $0 < x_1 < 1$. Ahora suponga que $0 < x_k < 1$, entonces:

$$\begin{aligned} &0 < 1 - x_k < 1 \\ &\Longrightarrow 0 < \sqrt{1 - x_k} < 1 \\ &\Longrightarrow 0 < 1 - \sqrt{1 - x_k} < 1 \\ &\Longrightarrow 0 < x_{k+1} < 1 \end{aligned} \tag{2}$$

Entonces, por induccion, $0 < x_n < 1 \ \forall n \in \mathbb{N}$. Ahora, note que si $0 < \alpha < 1$, entonces:

$$0 < 1 - \alpha < 1$$

$$\Rightarrow \alpha(1 - \alpha) > 0$$

$$\Rightarrow \alpha - \alpha^{2} > 0$$

$$\Rightarrow \alpha > \alpha^{2}$$

$$\Rightarrow \sqrt{\alpha} > \alpha$$
(3)

Usando esto:

$$\begin{split} &\sqrt{1-x_n} > 1-x_n \\ \Longrightarrow &-\sqrt{1-x_n} < -1+x_n \\ \Longrightarrow &1-\sqrt{1-x_n} < x_n \\ \Longrightarrow &x_{n+1} < x_n \end{split} \tag{4}$$

x: $\{x_n\}$ es decreciente.

Como $\{x_n\}$ es decreciente y acotada inferiormente, sabemos que $\exists L \geq 0$ tal que $\lim_{n \to \infty} x_n = L$. Ahora note que:

$$\begin{aligned} x_{n+1} &= 1 - \sqrt{1 - x_n} \\ \Rightarrow \lim_{n \to \infty} x_{n+1} &= \lim_{n \to \infty} \left(1 - \sqrt{1 - x_n} \right) \\ \Rightarrow L &= 1 - \sqrt{1 - L} \\ \Rightarrow L - 1 &= -\sqrt{1 - L} \\ \Rightarrow L^2 - 2L + 1 &= 1 - L \\ \Rightarrow L^2 - L &= 0 \\ \Rightarrow L(L - 1) &= 0 \\ \Rightarrow L &= 0 \lor L = 1 \end{aligned} \tag{5}$$

Pero sabemos que $L \neq 1$.

$$\therefore \lim_{n \to \infty} x_n = 0$$

MEP

Problem 4

(4 puntos) – Sean $\{x_n\}, \{y_n\}$ sucesiones en un espacio metrico (X,d), tales que $x_n \to x$ y $y_n \to y$ en X. Demuestre que $\lim_{n \to \infty} d(x_n,y_n) = d(x,y)$.

Prueba:

Fije $\varepsilon>0$. Entonces $\exists N_x,N_y\in\mathbb{N}$ tal que $n>N_x\Longrightarrow d(x_n,x)<\frac{\varepsilon}{2}$ y $n>N_y\Longrightarrow d(y_n,y)<\frac{\varepsilon}{2}$. Entonces, $\forall n>N:=\max\{N_x,N_y\}$, tenemos que:

$$\begin{split} d(x_n,y_n) & \leq d(x_n,x) + d(x,y_n) \\ & \leq d(x_n,x) + d(x,y) + d(y,y_n) \\ & < \frac{\varepsilon}{2} + d(x,y) + \frac{\varepsilon}{2} = d(x,y) + \varepsilon \\ & \Longrightarrow d(x_n,y_n) - d(x,y) < \varepsilon \\ & \Longrightarrow |d(x_n,y_n) - d(x,y)| < \varepsilon \end{split}$$

 $\lim_{n\to\infty}d(x_n,y_n)=d(x,y)$

MEP

Problem 5

(5 puntos) – En (X, d), si $E \subseteq X$ es completo, pruebe que E es cerrado.

Prueba:

Por contrareciproco, suponga que E no es cerrado. Entonces $\exists x \in E' \setminus E$. Ademas, E es infinito, porque todo subconjunto finito de un espacio metrico es cerrado. Tambien, $E^0 \neq \emptyset$, porque si lo fuera, E estaria compuesto exclusivamente de puntos aislados, lo que implicaria que $E' = \emptyset$. Pero entonces $E' = \emptyset \subseteq E$. X

Tome $x_1 \in E^0$ y note que $E^0 \subseteq E \land x \notin E \Longrightarrow x_1 \neq x \Longrightarrow d(x_1,x) > 0$. Entonces, $\exists x_2 \in E^0$ tal que $d(x_2,x) = \frac{1}{2}d(x_1,x) > 0$. Haciendo esto recursivamente, podemos definir $x_n \coloneqq \alpha \in E^0$ con $d(\alpha,x) = \frac{1}{2}d(x_{n-1},x)$. Note que $\{x_n\} \subseteq E^0 \subseteq E$.

Note que $d(x_1,x)=\frac{d(x_1,x)}{1}=\frac{d(x_1,x)}{2^0}=\frac{d(x_1,x)}{2^{1-1}}$ y si $d(x_k,x)=\frac{d(x_1,x)}{2^{k-1}}$, entonces $d(x_{k+1})=\frac{1}{2}d(x_k,x)=\frac{1}{2}\frac{d(x_1,x)}{2^{k-1}}=\frac{d(x_1,x)}{2^{(k+1)-1}}$. Por lo tanto, por induccion, $d(x_n,x)=\frac{d(x_1,x)}{2^{n-1}}$.

Fije $\varepsilon>0$. Considere $N\coloneqq\lceil\log_2(d(x_1,x)\cdot\varepsilon)\rceil+1\in\mathbb{N}$. En el caso donde $\log_2(d(x_1,x)\cdot\varepsilon)\in\mathbb{N}$, tenemos que:

$$d(x_N,x) = \frac{d(x_1,x)}{2^{N-1}} = \frac{d(x_1,x)}{2^{\log_2(d(x_1,x)\cdot\varepsilon)+1-1}} = \frac{d(x_1,x)}{d(x_1,x)\cdot\varepsilon} = \frac{1}{\varepsilon} < \varepsilon \tag{7}$$

Y como $n>N\Longrightarrow \frac{d(x_1,x)}{2^{n-1}}<\frac{d(x_1,x)}{2^{N-1}},$ la desigualdad (3) se mantiene para n>N. Por lo tanto, $\lim_{n\to\infty}x_n=x\notin E.$

Fije $\varepsilon>0.$ Como $\lim_{n\to\infty}x_n=x, \exists N', N''\in\mathbb{N}$ tal que

$$n>N' \ \land \ m>N'' \Longrightarrow d(x_n,x)<\frac{\varepsilon}{2} \ \land \ d(x_m,x)<\frac{\varepsilon}{2} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular}$$

Entonces:

$$m,n>N\coloneqq \max\{N',N''\} \Longrightarrow d(x_n,x_m) \leq d(x_n,x) + d(x,x_m) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \tag{9}$$

Por lo tanto, $\{x_n\} \subseteq E$ es de Cauchy.

Entonces construimos una sucesion de Cauchy $\{x_n\}$ en E que no converge en E.

 $\therefore E$ no es completo.

MEP

Problem 6

(4 puntos) – Demuestre que $\overline{\mathbb{Q}} = \mathbb{R}$ de la siguiente forma: dado $x \in \mathbb{R}$, demuestre que existe una sucesion $\{x_n\} \subseteq \mathbb{Q}$ tal que $x_n \to x$.

Prueba:

Para cada $n\in\mathbb{N}$, considere el intervalo $\left(\frac{nx-1}{n},\frac{nx+1}{n}\right)$. Como el intervalo (nx-1,nx+1) contiene al menos un entero, podemos escoger $m_n\in\mathbb{Z}$ tal que $\frac{nx-1}{n}<\frac{m_n}{n}<\frac{nx+1}{n}$. Entonces definamos $x_n:=\frac{m_n}{n}\in\mathbb{Q}$.

Ahora, fije $\varepsilon > 0$. Entonces, por la propiedad arquimideana, podemos encontrar $N \in \mathbb{N}$ tal que $\frac{1}{N} < \varepsilon$, y entonces es claro que $n > N \Longrightarrow \frac{1}{n} < \varepsilon$. Pero sabemos que:

$$\begin{split} &\frac{nx-1}{n} < x_n < \frac{nx+1}{n} \\ &\Longrightarrow x - \frac{1}{n} < x_n < x + \frac{1}{n} \\ &\Longrightarrow x - \varepsilon < x_n < x + \varepsilon \\ &\Longrightarrow |x_n - x| < \varepsilon \end{split} \tag{10}$$

$$\lim_{n \to \infty} x_n = x \Longrightarrow \overline{\mathbb{Q}} = \mathbb{R}$$

MEP

Problem 7

 $\text{ (4 puntos)} - \textit{Sea} \ \{x_n\} \ \textit{sucesion en} \ (X,d), \ \textit{y sea} \ E_n \coloneqq \big\{x_n, x_{n+1}, x_{n+2}, \ldots \big\}. \ \textit{Demuestre que} \ \{x_n\} \ \textit{es sucesion de Cauchy si y solamente si} \ \lim_{n \to \infty} \text{diam}(E_n) = 0.$

Prueba:

 (\Longrightarrow)

Fije $\varepsilon>0$. Como $\{x_n\}$ es de Cauchy, $\exists N\in\mathbb{N}$ tal que $m,n>N\Longrightarrow d(x_m,x_n)<\frac{\varepsilon}{2}$. Esto implica que $\frac{\varepsilon}{2}$ es una cota superior para $D_n:=\{d(x,y)\mid x,y\in E_n\}\subseteq\mathbb{R}$. Claramente, $D_n\neq\emptyset$, entonces $\exists \sup(D_n)\in\mathbb{R}$. Note que, por definicion, $\sup(D_n)\leq\frac{\varepsilon}{2}\Longrightarrow \sup(D_n)<\varepsilon$. Pero:

$$\sup(D_n) = \operatorname{diam}(E_n)$$

$$\Longrightarrow \operatorname{diam}(E_n) < \varepsilon$$

$$\Longrightarrow |\operatorname{diam}(E_n) - 0| < \varepsilon$$
(11)

 $\therefore \lim_{n\to\infty} \mathrm{diam}(E_n) = 0.$

(⇐=)

Fije $\varepsilon>0$. Como $\lim_{n\to\infty} \mathrm{diam}(E_n)=0$, tenemos que $\exists N'\in\mathbb{N}$ tal que:

$$N > N' \Longrightarrow |\operatorname{diam}(E_N) - 0| < \varepsilon$$

$$\Longrightarrow \operatorname{diam}(E_N) < \varepsilon$$
(12)

Pero diam $(E_N) = \sup\{d(x,y) \mid x,y \in E_N\} \Longrightarrow d(x_m,x_n) < \varepsilon \ \forall m,n > N.$

 $\therefore \{x_n\}$ es de Cauchy.

MEP

Problem 8

(8 puntos) – Sea $\{x_n\}$ una sucesion de numeros reales, y definamos:

$$y_n := \frac{1}{n} \sum_{j=1}^n x_j, \qquad z_n := \frac{x_n}{n}.$$
 (13)

(a) - (4 puntos) – Si $x_n \to x$ en \mathbb{R} , demuestre que $y_n \to x$.

Prueba:

Note que:

$$y_n = \frac{1}{n} \sum_{j=1}^n x_j = \frac{1}{n} \sum_{j=1}^n x + \frac{1}{n} \sum_{j=1}^n (x_j - x)$$
(14)

Ahora sean $A_n \coloneqq \frac{1}{n} \sum_{j=1}^n x$ y $B_n \coloneqq \frac{1}{n} \sum_{j=1}^n \left(x_j - x \right)$, y note que $\lim_{n \to \infty} y_n = \lim_{n \to \infty} A_n + \lim_{n \to \infty} B_n$.

Es claro que $\lim_{n\to\infty}A_n=x$. Ahora trabajaremos con B_n . Fije $\varepsilon>0$, entonces $\exists N\in\mathbb{N}$ tal que $|x_n-x|<\varepsilon$. Entonces:

$$B_n = \frac{1}{n} \sum_{j=1}^{N} (x_j - x) + \frac{1}{n} \sum_{j=N+1}^{n} (x_j - x)$$
(15)

Sean $C_n \coloneqq \frac{1}{n} \sum_{j=1}^N \left(x_j - x\right)$ y $D_n \coloneqq \frac{1}{n} \sum_{j=N+1}^n \left(x_j - x\right)$, y note que $\lim_{n \to \infty} B_n = \lim_{n \to \infty} C_n + \lim_{n \to \infty} D_n$.

Note que, usando la propiedad arquimideana, $\exists M \in \mathbb{N}$ tal que $C_n < \frac{N \cdot M}{n} \to 0$. Por lo tanto, $\lim_{n \to \infty} C_n = 0$. Para D_n , tenemos que:

$$D_n < \frac{1}{n} \sum_{i=N+1}^n \varepsilon = \frac{n-N}{n} \cdot \varepsilon < \varepsilon \tag{16}$$

Entonces $\lim_{n \to \infty} D_n = 0 \Longrightarrow \lim_{n \to \infty} B_n = 0 + 0 = 0 \Longrightarrow \lim_{n \to \infty} y_n = x + 0.$

 $\div \lim_{n \to \infty} y_n = x$

MEP

(b) - (4 puntos) – Si $\left(x_{n+1}-x_n\right) \to x$ en \mathbb{R} , pruebe que $z_n \to x$.

Prueba:

MEP

Problem 9

(5 puntos) – Sean $\{x_n\}$ y $\{y_n\}$ dos sucesiones de Cauchy en (X,d), y definamos $\beta_n \coloneqq d(x_n,y_n)$. Pruebe que $\{\beta_n\}$ converge en \mathbb{R} .

Prueba:

Fije $\varepsilon>0$. Entonces $\exists N_x,N_y\in\mathbb{N}$ tales que $m,n>N_x\Longrightarrow d(x_m,x_n)<\frac{\varepsilon}{2}$ y $m,n>N_y\Longrightarrow d(y_m,y_n)<\frac{\varepsilon}{2}$. Ahora, note que $\forall m,n>N\coloneqq\max\{N_x,N_y\}$, tenemos que:

$$\begin{split} d(x_m,y_m) &\leq d(x_m,x_n) + d(x_n,y_m) \\ &\leq d(x_m,x_n) + d(x_n,y_n) + d(y_n,y_m) \\ &< \frac{\varepsilon}{2} + d(x_n,y_n) + \frac{\varepsilon}{2} = \varepsilon + d(x_n,y_n) \\ \Longrightarrow d(x_m,y_m) - d(x_n,y_n) < \varepsilon \Longrightarrow |\beta_m - \beta_n| < \varepsilon \end{split} \tag{17}$$

Entonces $\{\beta_n\}$ es de Cauchy, pero $\{\beta_n\}\subseteq \mathbb{R}$ y \mathbb{R} es completo.

 $\therefore \{\beta_n\} \text{ converge.}$

MEP

Problem 10

(4 puntos) – Considere la sucesion $\{a_n\}$ definida como sigue:

$$a_1 = 0;$$
 $a_{2n} = \frac{a_{2n-1}}{2};$ $a_{2n+1} = \frac{1}{2} + a_{2n};$ $(n \in \mathbb{N}).$ (18)

Calcule $\limsup_{n\to\infty} a_n \ y \liminf_{n\to\infty} a_n$.

Prueba:

MEP

Problem 11

(4 puntos) – Si $\{x_n\}$ es una sucesion acotada en \mathbb{R} , demuestre que:

$$\lim \sup_{n \to \infty} (-x_n) = - \lim \inf_{n \to \infty} (x_n) \qquad \qquad \lim \inf_{n \to \infty} (-x_n) = - \lim \sup_{n \to \infty} (x_n) \tag{19}$$

Prueba:

Primero probaremos un resultado auxiliar. Suponga que $E\subseteq\mathbb{R}$ es acotado y no-vacio, y $-E:=\{-x\mid x\in E\}$. Entonces sabemos que -E tambien es acotado y no-vacio. Entonces $\sup(-E)\in\mathbb{R}$. Ahora, note que:

$$\alpha := \sup(-E) \Longrightarrow \alpha \ge -x \qquad \forall x \in E$$

$$\Longrightarrow -\alpha \le x \qquad \forall x \in E$$

$$\Longrightarrow -\alpha \text{ es una cota inferior para } E.$$
(20)

Ademas, como $\alpha \coloneqq \sup(-E)$, sabemos que $x \in \mathbb{R}$ con $x \le \alpha \Longrightarrow \exists y \in -E$ tal que $x \le y \le \alpha$. Entonces, sea $\lambda \in \mathbb{R}$ con $\lambda \ge -\alpha$, entonces:

$$-\lambda \le \alpha \Longrightarrow \exists x \in E \text{ tal que} - \lambda \le -x \le \alpha$$

$$\Longrightarrow \lambda \ge x \ge -\alpha$$

$$\Longrightarrow -\alpha = \inf(E)$$

$$\Longrightarrow -\sup(-E) = \inf(E)$$
(21)

$$\therefore \sup(-E) = -\inf(E)$$

Similarmente, si $\alpha := \inf(-E)$, entonces:

$$\alpha \le -x \ \forall x \in E \Longrightarrow -\alpha \ge x \ \forall x \in E$$

$$\Longrightarrow -\alpha \text{ es una cota superior para } E.$$
(22)

Y si $\lambda \in \mathbb{R}$ tiene $\lambda \leq -\alpha$, entonces:

$$-\lambda \ge \alpha \Longrightarrow \exists x \in E \text{ tal que} - \lambda \ge -x \ge \alpha$$

$$\Longrightarrow \lambda \le x \le -\alpha$$

$$\Longrightarrow -\alpha = \sup(E)$$

$$\Longrightarrow -\inf(-E) = \sup(E)$$
(23)

$$\therefore \inf(-E) = -\sup(E)$$

Ahora, como tenemos que $\{x_n\}\subseteq\mathbb{R}$ es acotada y no-vacia, usando estos resultados, tenemos que:

$$\begin{split} & \limsup_{n \to \infty} (-x_n) = \inf_{n \in \mathbb{N}} \Bigl\{ \sup \{-x_k \mid k \ge n\}_n \Bigr\} \\ & = \inf_{n \in \mathbb{N}} \Bigl\{ -\inf \{x_k \mid k \ge n\}_n \Bigr\} \\ & = -\sup_{n \in \mathbb{N}} \Bigl\{ \inf \{x_k \mid k \ge n\}_n \Bigr\} \\ & = -\liminf_{n \to \infty} (x_n) \end{split} \tag{24}$$

Y, similarmente:

$$\begin{split} & \lim_{n \to \infty} \inf(-x_n) = \sup_{n \in \mathbb{N}} \left\{ \inf\{-x_k \mid k > n\}_n \right\} \\ & = \sup_{n \in \mathbb{N}} \left\{ -\sup\{x_k \mid k \geq n\}_n \right\} \\ & = -\inf_{n \in \mathbb{N}} \left\{ \sup\{x_k \mid k \geq n\}_n \right\} \\ & = -\lim_{n \to \infty} \sup(x_n) \end{split} \tag{25}$$

MEP