

Manual de Instruções

Localização indoor ATECH

Controle do Documento

Histórico de revisões

Data	Autor	Versão	Resumo da atividade
18/11/202	Sarah Ribeiro	1.0	<descrever foi<br="" o="" que="">atualizado nesta versão > Exemplo: Criação do documento Exemplo: Atualização da seção 2.7</descrever>

Índice

1. Introdução	3
1.1. Solução	3
1.2. Arquitetura da Solução	3
2. Componentes e Recursos	4
2.1. Componentes de hardware	4
2.2. Componentes externos	4
2.3. Requisitos de conectividade	4
3. Guia de Montagem	5
4. Guia de Instalação	6
5. Guia de Configuração	7
6. Guia de Operação	8
7. Troubleshooting	9
8. Créditos	10

1. Introdução

1.1. Solução (sprint 3)

A solução proposta é um protótipo de Internet das Coisas (IOT) que tem como objetivo identificar ativos em um ambiente indoor. A solução é composta por dois itens principais: tags e beacons. Os beacons serão posicionados em posições chaves dentro do ambiente e as tags serão utilizadas nos objetos que precisam ser localizados. Com base na posição da tag em relação a cada beacon será possível identificar a localização do objeto no ambiente, que poderá ser visualizada através de um aplicativo web.

1.2. Arquitetura da Solução (sprint 3)

Beacons enviam para a Tag a sua distância em relação a ela; Tag junta essas informações e envia para o servidor através do roteador; Informação armazenada no Banco de dados; Aplicação Web indicando a posição da Tag através de um mapa;

Dispositivos utilizados:

Beacon (ESP32-s3): utilizado como ponto de referência para que a tag consiga ser localizada. Irão enviar para a tag a distância em que eles se encontram dela.

Tag (ESP32-s3): colocado no item a ser localizado. Também é um microcontrolador que reunirá todas as informações de distância recebidas dos beacons e as enviará via roteador para o nosso servidor. Nas tags também serão acoplados buzzers e LED's para que seja mais simples a localização do item pelo usuário. Além disso, um acelerômetro e um sensor de temperatura também estarão unidos à tag. O primeiro para que possamos detectar quando o ativo estiver em movimento e o segundo para que possamos impedir um superaquecimento da placa.

Banco de Dados: armazenará as informações que virão da Tag e poderão ser acessadas através da aplicação web.

Interface para o usuário: Será uma aplicação web, desenvolvida com o propósito de ser a interface de controle e uso para localizar as tags. Por meio da API e do protocolo http iremos acessar as informações do banco de dados e externalizá-las para o usuário.

2. Componentes e Recursos

(sprint 3)

2.1. Componentes de hardware

Componente	Fornecedor	Detalhes Técnicos	Link
Esp32 → s3	Loja online - Savarati	wifi / bluetooth , Dual USB - C	link
Resistores	Loja online - <u>Savarati</u>	220 Ohms	link
Acelerômetro	Loja online - <u>Savarati</u>	Acelerômetro e Giroscópio 3 Eixos 6 DOF - MPU6050	link
Buzzer	Loja online - <u>Savarati</u>	3,3/5 V	<u>link</u>
LED RGB	Loja online - <u>Savarati</u>	Modelo: KY-016 RGB	link

		Catodo Comum Marca: OEM	
Potenciômetro	Loja online - <u>Savarati</u>	Linear de 1M (1000000Ω)	link
Jumpers	Loja online - <u>Savarati</u>	Fêmea/Fêmea e Macho/Fêmea	link

2.2. Componentes externos

Componente Externo	Função
Dispositivo com acesso web: Computador/Tablet/Disp. Mobile	Acessar a aplicação Web que disponibilizará a localização da Tag.
mongoDB	Banco de Dados utilizado

Arduino IDE	Aplicação responsável para enviar o código para o ESP32

2.3. Requisitos de conectividade

Ambiente de programação: Arduino IDE

Rede: Wifi

Protocolo de rede: http

Banco de dados: MongoDB

Linguagem: C++

Exemplo de uso de imagem em coluna única:

Figura 1: use sempre uma legenda e mencione o número da figura no corpo do texto. Cuidado para que detalhes da imagem não fiquem ilegíveis, como na imagem.

3. Guia de Montagem

(sprint 3)

Para montagem de nossa solução é necessária muita atenção nos itens a serem utilizados e na forma como são conectados.

Materiais necessários:

Passo 1: Conecte sua placa ESP32S3 na protoboard.

Passo 2: Conecte um Led e um botão na protoboard.

Passo 3: Conecte qualquer lado do resistor de 220Ω na perna positiva do led.

Passo 4: Conecte os fios terra (GND) assim como demonstrado na imagem ao lado.

Passo 5: Conecte os fios restantes nas portas: 4 para o resistor do Led; 21 para o botão e os ligue como na imagem.

Passo 6: Por meio da porta USB indicada, insira o código recebido do Iniciator e do Responder para cada microcontrolador, respectivamente.

Passo 7: Conecte os microcontroladores em power banks.

4. Guia de Instalação

Utilize fotografias, prints de tela e/ou desenhos técnicos para ilustrar o processo de configuração.

(sprint 4)

Descreva passo-a-passo como instalar os dispositivos loT no espaço físico adequado, conectando-os à rede, de acordo com o que foi levantado com seu parceiro de negócios.

Não deixe de especificar propriedades, limites e alcances dos dispositivos em relação ao espaço destinado.

Especifique também como instalar softwares nos dispositivos.

Utilize fotografias, prints de tela e/ou desenhos técnicos para ilustrar o processo de instalação.

5. Guia de Configuração

(sprint 4)

Descreva passo-a-passo como configurar os dispositivos loT utilizando os equipamentos devidos (ex. smartphone/computador acessando o servidor embarcado ou a página na nuvem).

6. Guia de Operação

(sprint 5)

Descreva os fluxos de operação entre interface e dispositivos IoT. Indique o funcionamento das telas, como fazer leituras dos dados dos sensores, como disparar ações através dos atuadores, como reconhecer estados do sistema.

Indique também informações relacionadas à imprecisão das eventuais localizações, e como o usuário deve contornar tais situações.

Utilize fotografias, prints de tela e/ou desenhos técnicos para ilustrar os processos de operação.

7. Troubleshooting

(sprint 5)

Liste as situações de falha mais comuns da sua solução (tais como falta de conectividade, falta de bateria, componente inoperante etc.) e indique ações para solução desses problemas.

#	Problema	Possível solução
1		
2		
3		
4		
5		

8. Créditos

(sprint 5)

Seção livre para você atribuir créditos à sua equipe e respectivas responsabilidades