Cálculo Infinitesimal 3 - 2020 - Lista 1

Prof. Flavio Dickstein.

Questão 1. Considere um fio não-homogêneo que ocupe no espaço uma curva γ parametrizada por $\alpha(t) = (\cos t, \sin t, t), t \in (0, 2\pi)$. No ponto da curva de altura z, a densidade de massa σ do fio é igual a $\sigma(z) = z$. Determine a massa total do fio.

Questão 2. Seja $F(x,y) = (y^2, x^2)$. Considere dois caminhos indo de (-1,0) a (1,0): γ_1 é um segmento de reta e γ_2 é o arco de meia circunferência, na parte superior do plano. Mostre que

$$\int_{\gamma_1} F \cdot dl \neq \int_{\gamma_2} F \cdot dl.$$

O que isto diz sobre F?

Questão 3. Seja $F(x,y)=(x^2,y^2)$. Considere os caminhos γ_1 e γ_2 da questão anterior. Escolha as normais a γ_1 e a γ_2 apontando para cima. Mostre que

$$\int_{\gamma_1} F \cdot d\eta \neq \int_{\gamma_2} F \cdot d\eta.$$

O que isto diz sobre F?

Questão 4. Seja $F(x,y) = (\cos x \sin y, \sin x \cos y)$.

- (i) Mostre que o rotacional $\nabla \times F$ é nulo. (Veremos que, nesse caso, F é um campo gradiente.)
- (ii) Calcule o potencial G de F resolvendo as equações

$$\partial_x G(x, y) = \cos x \sin y, \quad \partial_y G(x, y) = \sin x \cos y.$$
 (1)

(iii) Alternativamente, determine G calculando

$$G(x,y) = \int_{\gamma} F \cdot d\vec{l}, \qquad (2)$$

onde γ é uma curva ligando (0,0) a (x,y). (Escolha a curva mais simples possível.)

(iv) No item anterior, o que acontece se escolhermos outro ponto no lugar de (0,0)?

Questão 5.

- (i) Mostre que $F(x,y) = (ye^{xy}, xe^{xy})$ é um campo conservativo e calcule o seu potencial.
- (ii) Considere $H(x,y)=(y+ye^{xy},xe^{xy})$. Seja T o triângulo de vértices $A=(0,0),\,B=(1,0),$ C=(0,1) percorrido no sentido trigonométrico. Calcule $\oint_{\gamma} H \cdot d\vec{l}$, a circulação de H. (Simplifique as contas usando o item anterior.)

Questão 6. Seja F o campo radial de \mathbb{R}^2 dado por $F(r) = \frac{1}{r}\vec{r}$. Seja γ_R a circunferência de raio R.

- (i) Mostre que o fluxo $\int_{\gamma_R} F.d\eta$ independe de R.
- (ii) Seja p>0 e considere o campo radial F_p dado por $F_p(r)=\frac{1}{r^p}\vec{r}$. Suponha que o fluxo de F_p através da circunferência γ_R independa de R. Conclua que p=1. Explique este fato.
- (iii) Mostre que o divergente $\nabla \cdot F_p$ de F_p é nulo se e só se p=1. Explique este fato.