# 第8. 2-8. 3节 正态总体均值与方差的假设检验

- 一、单个总体参数的检验
- 二、两个总体参数的检验
- 三、基于成对数据的检验(t 检验)

四、小结







# 一、单个正态总体均值与方差的检验

1.  $\sigma^2$ 为已知, 关于 $\mu$ 的检验(U 检验)

在上节中讨论过正态总 体  $N(\mu,\sigma^2)$ 

当 $\sigma^2$ 为已知时,关于 $\mu = \mu_0$ 的检验问题:

假设检验  $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$ ;

选择统计量 
$$U = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$$
,

当 $H_0$ 成立时, $U \sim N(0,1)$ 







对于给定的检验水平 α(0<α<1)

由标准正态分布分位数定义知,

$$P\left\{\left|U\right|\geq u_{\alpha/2}\right\}=\alpha$$

因此,检验的拒绝域为  $W_1 = \{|u| \ge u_{\alpha/2}\}$ ,或者记为  $W_1 = \{(x_1, x_2, \dots, x_n): |u| \ge u_{\alpha/2}\}$ 

其中<sup>u</sup>为统计量U的观测值。这种利用U统计量 来检验的方法称为U检验法。







例1 某切割机在正常工作时,切割每段金属棒的平均长度为10.5cm,标准差是0.15cm,今从一批产品中随机的抽取15段进行测量,其结果如下:

10.4 10.6 10.1 10.4 10.5 10.3 10.3 10.2

10.9 10.6 10.8 10.5 10.7 10.2 10.7

假定切割的长度X服从正态分布,且标准差没有变化,试问该机工作是否正常? ( $\alpha = 0.1$ )

解 因为 $X \sim N(\mu, \sigma^2)$ ,  $\sigma = 0.15$ , 要检验假设











$$n = 15, \quad \overline{x} = 10.48, \quad \alpha = 0.05,$$

则 
$$\frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{10.48 - 10.5}{0.15 / \sqrt{15}} = -0.516,$$

查表得  $u_{0.05} = 1.645$ ,

于是 
$$|\frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}| = 0.516 < u_{0.05} = 1.645$$

故接受 $H_0$ ,认为该机工作正常.







### 2. $\sigma^2$ 为未知, 关于 $\mu$ 的检验(t检验)

设总体 $X \sim N(\mu, \sigma^2)$ ,其中 $\mu, \sigma^2$ 未知,显著性水平为 $\alpha$ .

检验假设 $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$ .

设 $X_1, X_2, \cdots, X_n$ 为来自总体X的样本,

因为 $\sigma^2$ 未知,不能利用 $\frac{\overline{X}-\mu_0}{\sigma/\sqrt{n}}$ 来确定拒绝域.

因为 $S^2$ 是 $\sigma^2$ 的无偏估计,故用S来取代 $\sigma$ ,

即采用  $T = \frac{\bar{X} - \mu_0}{S / \sqrt{n}}$  来作为检验统计量.







#### 根据第六章§3知,

当
$$H_0$$
为真时, $\frac{\overline{X} - \mu_0}{S / \sqrt{n}} \sim t(n-1)$ ,

#### 由t分布分位数的定义知

$$P\left\{\left|\frac{\overline{X}-\mu_0}{S/\sqrt{n}}\right| \ge t_{\alpha/2}(n-1)\right\} = \alpha$$







拒绝域为
$$W_1 = \{ |t| = \left| \frac{\overline{x} - \mu_0}{s / \sqrt{n}} \right| \ge t_{\alpha/2}(n-1) \}$$

#### 上述利用 t 统计量得出的检验法称为t 检验法.

在实际中,正态总体的方差常为未知,所以 我们常用 t 检验法来检验关于正态总体均值的 检验问题.







例2 如果在例1中只假定切割的长度服从正态分布,问该机切割的金属棒的平均长度有无显著变化? ( $\alpha = 0.05$ )

解 依题意  $X \sim N(\mu, \sigma^2)$ ,  $\mu, \sigma^2$ 均为未知,

要检验假设  $H_0: \mu = 10.5$ ,  $H_1: \mu \neq 10.5$ ,

n = 15,  $\bar{x} = 10.48$ ,  $\alpha = 0.05$ , s = 0.237,

$$|t| = \left| \frac{\overline{x} - \mu_0}{s / \sqrt{n}} \right| = \left| \frac{10.48 - 10.5}{0.237 / \sqrt{15}} \right| = \mathbf{0.327},$$

查表得  $t_{\alpha/2}(n-1) = t_{0.025}(14) = 2.1448 > |t| = 0.327$ ,

故接受 H<sub>0</sub>,认为金属棒的平均长度无显著变化.







# 3. $\mu$ 为未知, 关于 $\sigma^2$ 的检验( $\chi^2$ 检验)

设总体  $X \sim N(\mu, \sigma^2), \mu, \sigma^2$ 均为未知,

 $X_1, X_2, \dots, X_n$  为来自总体 X 的样本,

要检验假设:  $H_0:\sigma^2=\sigma_0^2$ ,  $H_1:\sigma^2\neq\sigma_0^2$ ,

其中 $\sigma_0$ 为已知常数.设显著水平为 $\alpha$ ,

分析:  $S^2$  是  $\sigma^2$  的无偏估计, 当 $H_0$ 为真时,

根据第六章§3知,  $\frac{(n-1)S^2}{\sigma_0^2} \sim \chi^2(n-1)$ ,







取 
$$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$$
 作为统计量.

## 当H<sub>0</sub>为真时,由χ²分布分位数的定义知

$$P\left\{\frac{(n-1)S^{2}}{\sigma_{0}^{2}} \leq \chi_{1-\alpha/2}^{2}(n-1)\right\} = \frac{\alpha}{2},$$

$$P\left\{\frac{(n-1)S^{2}}{\sigma_{0}^{2}} \geq \chi_{\alpha/2}^{2}(n-1)\right\} = \frac{\alpha}{2},$$







#### 拒绝域为:

$$\frac{(n-1)s^2}{\sigma_0^2} \leq \chi_{1-\alpha/2}^2(n-1) \implies \frac{(n-1)s^2}{\sigma_0^2} \geq \chi_{\alpha/2}^2(n-1).$$

#### 指它们的和集







例3 某厂生产的某种型号的电池, 其寿命长期以来服从方差 $\sigma^2$ =5000 (小时<sup>2</sup>) 的正态分布, 现有一批这种电池, 从它生产情况来看, 寿命的波动性有所变化. 现随机的取26只电池, 测出其寿命的样本方差  $s^2$  =9200(小时<sup>2</sup>). 问根据这一数据能否推断这批电池的寿命的波动性较以往的有显著的变化? ( $\alpha$  = 0.02)

解 要检验假设  $H_0: \sigma^2 = 5000$ ,  $H_1: \sigma^2 \neq 5000$ , n = 26,  $\alpha = 0.02$ ,  $\sigma_0^2 = 5000$ ,

$$\chi^2_{\alpha/2}(n-1) = \chi^2_{0.01}(25) = 44.314,$$







$$\chi^2_{1-\alpha/2}(n-1) = \chi^2_{0.99}(25) = 11.524,$$

拒绝域为: 
$$\frac{(n-1)s^2}{\sigma_0^2} \le 11.524$$
, 或 $\frac{(n-1)s^2}{\sigma_0^2} \ge 44.314$ .

因为 
$$\frac{(n-1)s^2}{\sigma_0^2} = \frac{25 \times 9200}{5000} = 46 > 44.314$$
,

所以拒绝 $H_0$ ,

可认为这批电池的寿命的波动性较以往的有显著的变化.







## 二、两个正态总体均值与方差的检验

1.已知方差时两正态总体均值的检验 利用u检验法检验.

设  $X_1, X_2, \dots, X_{n_1}$  为来自正态总体  $N(\mu_1, \sigma_1^2)$  的样本, $Y_1, Y_2, \dots, Y_{n_1}$  为来自正态总体  $N(\mu_2, \sigma_2^2)$  的样本,两样本独立 又设  $\mu_1, \mu_2$ 均为未知, $\sigma_1^2, \sigma_2^2$ 已知,

需要检验假设:  $H_0: \mu_1 = \mu_2$ ,  $H_1: \mu_1 \neq \mu_2$ , 上述假设可等价的变为

$$\boldsymbol{H}_0: \mu_1 - \mu_2 = 0, \quad \boldsymbol{H}_1: \mu_1 - \mu_2 \neq 0,$$







由于
$$\overline{X} \sim N(\mu_1, \frac{\sigma_1^2}{n_1}), \overline{Y} \sim N(\mu_2, \frac{\sigma_2^2}{n_2}), 且\overline{X}, \overline{Y}独立,$$

故 
$$\overline{X} - \overline{Y} \sim N(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2})$$

取检验的统计量为

$$\boldsymbol{U} = (\overline{\boldsymbol{X}} - \overline{\boldsymbol{Y}}) / \sqrt{\frac{\sigma_1^2}{\boldsymbol{n}_1} + \frac{\sigma_2^2}{\boldsymbol{n}_2}}$$

当 $H_0$ 成立时,统计量 $U \sim N(0,1)$ 

取显著性水平为 $\alpha$ .







由标准正态分布分位数的定义知

$$P\{|(\overline{X} - \overline{Y})/\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}| \ge u_{\alpha/2}\} = \alpha$$

故拒绝域为

$$\{|(\overline{x} - \overline{y})/\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}| \ge u_{\alpha/2}\}$$







例1 卷烟厂向化验室送去 A, B两种烟草, 化验尼古丁的含量是否相同, 从A, B中各随机抽取重量相同的5例进行化验, 测得尼古丁的含量(单位:mg)分别为

A: 24 27 26 21 24

B: 27 28 23 31 26

据经验知,两种烟草的尼古丁含量均服从正态分布,且相互独立,A种的方差为5,B种的方差为8,取 $\alpha = 0.05$ ,问两种烟草的尼古丁含量是否有显著差异?

解 以X和Y分别表示A,B两种烟草的尼古丁含量,则 $X \sim N(\mu_1, \sigma_1^2)$ , $Y \sim N(\mu_2, \sigma_2^2)$ ,且X,Y独立.







#### 欲检验假设

$$H_0: \mu_1 = \mu_2, \qquad H_1: \mu_1 \neq \mu_2$$

现已知 $\sigma_1^2 = 5$ , $\sigma_2^2 = 8$ , $n_1 = n_2 = 5$ .由所给数据求得

$$\overline{x} = 24.4, \quad \overline{y} = 27$$

$$u = (\overline{x} - \overline{y}) / \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} = \frac{24.4 - 27}{\sqrt{\frac{5}{5} + \frac{8}{5}}} = -1.612$$

对 $\alpha = 0.05$ ,查正态分布表得 $u_{\alpha/2} = 1.96$ ,由于 |u| = 1.612 < 1.96,故接受原假设 $H_0$ .







#### 2.未知方差时两正态总体均值的检验

利用t检验法检验具有相同方差的两正态总体均值差的假设.

设  $X_1, X_2, \dots, X_{n_1}$  为来自正态总体  $N(\mu_1, \sigma^2)$  的样本,  $Y_1, Y_2, \dots, Y_{n_2}$  为来自正态总体  $N(\mu_2, \sigma^2)$ 的样本, 且设两样本独立. 注意两总体的方差相等.

又设 $\bar{X}$ , $\bar{Y}$ 分别是总体的样本均值, $S_1^2$ , $S_2^2$ 是样本方差, $\mu_1$ , $\mu_2$ , $\sigma^2$ 均为未知,







取显著性水平为 $\alpha$ .

检验假设 $H_0$ :  $\mu_1 = \mu_2$ ,  $H_1$ :  $\mu_1 \neq \mu_2$ 

取统计量

定理四

$$T = \frac{(\overline{X} - \overline{Y})}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}, \quad \sharp + S_w^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}.$$

当H<sub>0</sub>为真时,根据第五章§3知,

$$t \sim t(n_1 + n_2 - 2)$$
.







对给定的 $\alpha$ 由t分布的分位表可查得 $t_{\alpha/2}(n_1+n_2-2)$ .

使得
$$P\{\frac{(\overline{X}-\overline{Y})}{S_w\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}} \ge t_{\alpha/2}(n_1+n_2-2)\} = \alpha$$







#### 故拒绝域为

$$W_{1} = \left\{ \frac{\left| (\overline{x} - \overline{y}) \right|}{s_{w} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}} \ge t_{\alpha/2} (n_{1} + n_{2} - 2) \right\}$$









例2 有甲、乙两台机床加工相同的产品,从这两台机床加工的产品中随机地抽取若干件,测得产品直径(单位:mm)为

机床甲: 20.5, 19.8, 19.7, 20.4, 20.1, 20.0, 19.0, 19.9

机床乙: 19.7, 20.8, 20.5, 19.8, 19.4, 20.6, 19.2,

试比较甲、乙两台机床加工的产品直径有无显著差异?假定两台机床加工的产品直径都服从正态分布,且总体方差相等.  $(\alpha = 0.05)$ 

解 依题意,两总体 X 和 Y 分别服从正态分布  $N(\mu_1,\sigma^2)$  和  $N(\mu_2,\sigma^2)$ ,  $\mu_1,\mu_2,\sigma^2$  均为未知,







需要检验假设  $H_0: \mu_1 = \mu_2, H_1: \mu_1 \neq \mu_2$ .

$$n_1 = 8$$
,  $\bar{x} = 19.925$ ,  $s_1^2 = 0.216$ ,

$$n_2 = 7$$
,  $\overline{y} = 20.000$ ,  $s_2^2 = 0.397$ ,

查表可知  $t_{0.05}(13) = 2.160$ ,

$$|t|=|\frac{\overline{x}-\overline{y}}{s_w\sqrt{\frac{1}{8}+\frac{1}{7}}}|=0.265<2.160$$
,所以接受  $H_0$ ,

即甲、乙两台机床加工的产品直径无显著差异.







#### 3.两正态总体方差的检验

设 $X_1, X_2, \dots, X_n$ 为来自正态总体 $N(\mu_1, \sigma_1^2)$ 的样本,

 $Y_1, Y_2, \dots, Y_n$  为来自正态总体 $N(\mu_2, \sigma_2^2)$ 的样本,

且设两样本独立, 其修正样本方差为  $S_1^2$ ,  $S_2^2$ .

又设  $\mu_1, \mu_2, \sigma_1^2, \sigma_2^2$ 均为未知,

需要检验假设:  $H_0: \sigma_1^2 = \sigma_2^2$ ,  $H_1: \sigma_1^2 \neq \sigma_2^2$ ,







当
$$H_0$$
为真时, $E(S_1^2) = \sigma_1^2 = \sigma_2^2 = E(S_2^2)$ ,

当
$$H_1$$
为真时, $E(S_1^2) = \sigma_1^2 \neq \sigma_2^2 = E(S_2^2)$ ,

当 $H_1$ 为真时观察值  $\frac{S_1^2}{S_2^2}$  有偏大或偏小的趋势

故拒绝域的形式为  $\frac{{S_1}^2}{{S_2}^2} \ge k_1$ 或 $\frac{{S_1}^2}{{S_2}^2} \le k_2$ ,

此处 $k_1$ 和 $k_2$ 的值由下式确定:







$$P\left\{\frac{S_1^2}{S_2^2} \ge k_1 \cup \frac{S_1^2}{S_2^2} \le k_2\right\} = \alpha$$

为了计算方便,习惯上取

$$P\left\{\frac{S_1^2}{S_2^2} \ge k_1\right\} = \frac{\alpha}{2}, \qquad P\left\{\frac{S_1^2}{S_2^2} \le k_2\right\} = \frac{\alpha}{2}$$

#### 根据第六章§3知

当
$$H_0$$
为真时,  $\frac{S_1^2}{S_2^2} \sim F(n_1 - 1, n_2 - 1)$ .

故得 
$$k_1 = F_{\alpha/2}(n_1 - 1, n_2 - 1), k_2 = F_{1-\alpha/2}(n_1 - 1, n_2 - 1).$$







#### 检验问题的拒绝域为

$$F = \frac{S_1^2}{S_2^2} \ge F_{\alpha/2}(n_1 - 1, n_2 - 1) \vec{\boxtimes} F = \frac{S_1^2}{S_2^2} \le F_{1-\alpha/2}(n_1 - 1, n_2 - 1)$$

$$F = \frac{S_1^2}{S_2^2} \le F_{1-\alpha/2}(n_1 - 1, n_2 - 1)$$

#### 上述检验法称为F检验法.









例3 某砖厂制成两批机制红砖,抽样检查测量砖的抗折强度(公斤),得到结果如下:

第一批: 
$$n_1 = 10$$
,  $\overline{x} = 27.3$ ,  $S_1 = 6.4$ ;

第二批: 
$$n_2 = 8$$
,  $\overline{y} = 30.5$ ,  $S_2 = 3.8$ ;

己知砖的抗折强度服从正态分布,试检验:

- (1)两批红砖的抗折强度的方差是否有显著差异?
- (2)两批红砖的抗折强度的数学期望是否有显著差异? (均取 $\alpha = 0.05$ )
- 解 (1) 检验假设:  $H_0: \sigma_1^2 = \sigma_2^2$ ,  $H_1: \sigma_1^2 \neq \sigma_2^2$







用F检验法,当 $H_0$ 为真时,

统计量 
$$F = \frac{S_1^2}{S_2^2} \sim F(n_1 - 1, n_2 - 1),$$

查表知拒绝域为

$$F \ge F_{\alpha/2}(n_1-1, n_2-1)$$
  $\not \equiv F \le F_{1-\alpha/2}(n_1-1, n_2-1),$ 

$$\pm n_1 = 10, n_2 = 8, S_1^2 = 40.96, S_2^2 = 14.44,$$

$$F_{0.025}(9,7) = 4.82, \quad F_{0.975}(9,7) = \frac{1}{F_{0.025}(7,9)} = 0.283,$$







得 
$$F = \frac{40.96}{14.44} = 2.837$$
, 显然  $0.283 < 2.837 < 4.82$ ,

所以接受  $H_0$ ,认为抗折强度的方差没 有显著差异.

(2) 检验假设:  $H_0: \mu_1 = \mu_2$ ,  $H_1: \mu_1 \neq \mu_2$ 

用t检验法,当 $H_0$ 为真时,

统计量 
$$t = \frac{\overline{X} - \overline{Y}}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2),$$







$$\sharp + S_w^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}.$$

查表知拒绝域为 
$$t \geq t_{\alpha/2}(n_1+n_2-2)$$

$$\pm t_{0.025}(10+8-2) = t_{0.025}(16) = 2.1199,$$

$$S_w^2 = \frac{9 \times 40.96 + 7 \times 14.44}{16} = 29.3575, \quad S_w = 5.418,$$

得
$$|t| = \frac{|\overline{X} - \overline{Y}|}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{|27.3 - 30.5|}{5.418 \times 0.474} = 1.245 < 2.1199,$$

所以接受 $H_0$ ,认为抗折强度的期望无显著差异.







## 四、小结

本节学习的正态总体均值的假设检验有:

- 1. 单个总体均值的检验——U检验; t检验
- 2.单个正态总体方差的检验法 $--\chi^2$ 检验法;
- 3. 两个总体均值羞μーμ,的检验——U检验,t 检验;
- 4. 两个正态总体方差的检验法——F检验法;

正态总体均值、方差的检验法见下表

(显著性水平为α)







|   |                                                                                                                                                  |                                                                                                                                                        |                                                                         | Lot at 16 10 46 210 Ch 11                                                                                  |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
|   | 原假设H <sub>0</sub>                                                                                                                                | 检验统计量                                                                                                                                                  | 备择假设H <sub>1</sub>                                                      | 拒绝域                                                                                                        |
| 1 | $\mu \leq \mu_0$ $\mu \geq \mu_0$ $\mu = \mu_0$ $(\sigma^2 已知)$                                                                                  | $U = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$                                                                                                   | $\mu > \mu_0$ $\mu < \mu_0$ $\mu \neq \mu_0$                            | $u \ge u_{\alpha}$ $u \le -u_{\alpha}$ $ u  \ge u_{\alpha/2}$                                              |
| 2 | $\mu \le \mu_0$ $\mu \ge \mu_0$ $\mu = \mu_0$ $(\sigma^2 + \pi)$                                                                                 | $t = \frac{\overline{X} - \mu_0}{S_n^* / \sqrt{n}}$                                                                                                    | $\mu > \mu_0$ $\mu < \mu_0$ $\mu \neq \mu_0$                            | $t \ge t_{\alpha}(n-1)$ $t \le -t_{\alpha}(n-1)$ $ t  \ge t_{\alpha/2}(n-1)$                               |
| 3 | $\mu_{1} - \mu_{2} \leq \delta$ $\mu_{1} - \mu_{2} \geq \delta$ $\mu_{1} - \mu_{2} = \delta$ $(\sigma_{1}^{2}, \sigma_{2}^{2} 己知)$               | $U = \frac{\overline{X} - \overline{Y} - \delta}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$                                              | $\mu - \mu_0 > \delta$ $\mu - \mu_0 < \delta$ $\mu - \mu_0 \neq \delta$ | $u \ge u_{\alpha}$ $u \le -u_{\alpha}$ $ u  \ge u_{\alpha/2}$                                              |
| 4 | $\mu_{1} - \mu_{2} \leq \delta$ $\mu_{1} - \mu_{2} \geq \delta$ $\mu_{1} - \mu_{2} = \delta$ $(\sigma_{1}^{2} = \sigma_{2}^{2} = \sigma^{2} 未知)$ | $t = \frac{\overline{X - Y} - \delta}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$ $S_w^2 = \frac{(n_1 - 1)S_1^{*2} + (n_2 - 2)S_2^{*2}}{n_1 + n_2 - 2}$ | $\mu - \mu_0 > \delta$ $\mu - \mu_0 < \delta$ $\mu - \mu_0 \neq \delta$ | $t \ge t_{\alpha}(n_1 + n_2 - 2)$ $t \le -t_{\alpha}(n_1 + n_2 - 2)$ $ t  \ge t_{\alpha/2}(n_1 + n_2 - 1)$ |







#### 概率论与数理统计

|   | 原假设H <sub>0</sub>                                                                                              | 检验统计量                                                                  | 备择假设 $H_1$                                                                                   | 拒绝域                                                                                                                                                             |
|---|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | $\sigma^{2} \leq \sigma_{0}^{2}$ $\sigma^{2} \geq \sigma_{0}^{2}$ $\sigma^{2} = \sigma_{0}^{2}$ $(\mu + 2\pi)$ | $\chi^2 = \frac{(n-1)S_n^{*2}}{\sigma_0^2}$                            | $\sigma^{2} > \sigma_{0}^{2}$ $\sigma^{2} < \sigma_{0}^{2}$ $\sigma^{2} \neq \sigma_{0}^{2}$ | $\chi^{2} \ge \chi_{\alpha}^{2}(n-1)$ $\chi^{2} \le \chi_{1-\alpha}^{2}(n-1)$ $\chi^{2} \ge \chi_{\alpha/2}^{2}(n-1)$ $\chi^{2} \le \chi_{1-\alpha/2}^{2}(n-1)$ |
| 6 | $\sigma_1^2 \le \sigma_2^2$ $\sigma_1^2 \ge \sigma_2^2$ $\sigma_1^2 = \sigma_2^2$ $(\mu_1, \mu_2 未知)$          | $\boldsymbol{F} = \frac{\boldsymbol{S}_1^{*2}}{\boldsymbol{S}_2^{*2}}$ | $\sigma_1^2 > \sigma_2^2$ $\sigma_1^2 < \sigma_2^2$ $\sigma_1^2 \neq \sigma_2^2$             | $F \ge F_{\alpha}(n_1 - 1, n_2 - 1)$ $F \le F_{1-\alpha}(n_1 - 1, n_2 - 1)$ $F \ge F_{\alpha/2}(n_1 - 1, n_2 - 1)$ $F \ge F_{1-\alpha/2}(n_1 - 1, n_2 - 1)$     |
| 7 | $\mu_D \le 0$ $\mu_D \ge 0$ $\mu_D = 0$ (成对数据)                                                                 | $t = \frac{\overline{D} - 0}{S_D / \sqrt{n}}$                          | $\mu_D > 0$ $\mu_D < 0$ $\mu_D \neq 0$                                                       | $t \ge t_{\alpha}(n-1)$ $t \le -t_{\alpha}(n-1)$ $ t  \ge t_{\alpha/2}(n-1)$                                                                                    |







## 附表7.1

|   | 原假设H。                                                                                                                     | 检验统计量                                                                                                                                                       | 备择假设 $H_1$                                                              | 拒绝域                                                                                                        |
|---|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| 1 | $\mu \leq \mu_0$ $\mu \geq \mu_0$ $\mu = \mu_0$ $(\sigma^2  知)$                                                           | $Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$                                                                                                        | $\mu > \mu_0$ $\mu < \mu_0$ $\mu \neq \mu_0$                            | $z \ge z_{\alpha}$ $z \le -z_{\alpha}$ $ z  \ge z_{\alpha/2}$                                              |
| 2 | $\mu \le \mu_0$ $\mu \ge \mu_0$ $\mu = \mu_0$ $(\sigma^2 未知)$                                                             | <u>V</u> - 11                                                                                                                                               | $\mu > \mu_0$                                                           | $t \ge t_{\alpha}(n-1)$ $t \le -t_{\alpha}(n-1)$ $ t  \ge t_{\alpha/2}(n-1)$                               |
| 3 | $\mu_1 - \mu_2 \le \delta$ $\mu_1 - \mu_2 \ge \delta$ $\mu_1 - \mu_2 = \delta$ $(\sigma_1^2, \sigma_2^2 已知)$              | $t \leq -t_{\alpha}(n_1)$                                                                                                                                   | $(n_1+n_2-2)$                                                           | $z \ge z_{\alpha}$ $z \le -z_{\alpha}$ $ z  \ge z_{\alpha/2}$                                              |
| 4 | $\mu_1 - \mu_2 \le \delta$ $\mu_1 - \mu_2 \ge \delta$ $\mu_1 - \mu_2 = \delta$ $(\sigma_1^2 = \sigma_2^2 = \sigma^2 $ 末知) | $t = \frac{\overline{X} - \overline{Y} - \delta}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$ $S_w^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 2)S_2^2}{n_1 + n_2 - 2}$ | $\mu - \mu_0 > \delta$ $\mu - \mu_0 < \delta$ $\mu - \mu_0 \neq \delta$ | $t \ge t_{\alpha}(n_1 + n_2 - 2)$ $t \le -t_{\alpha}(n_1 + n_2 - 2)$ $ t  \ge t_{\alpha/2}(n_1 + n_2 - 1)$ |

## 附表7-2

|   | 原假设 $H_0$                                                                                                                                 | 检验统计量                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 备择假设 <i>H</i> <sub>1</sub>                                                       | 拒绝域                                                                                                                                                         |
|---|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | · ·                                                                                                                                       | $F_{\alpha/2}(n_1 - 1, F_{1-\alpha/2}(n_1 - 1, F_1)))))))$ |                                                                                  | $\chi^2 \ge \chi_{lpha}^2(n-1)$ $\chi^2 \le \chi_{1-lpha}^2(n-1)$ $\chi^2 \ge \chi_{lpha/2}^2(n-1)$ $\chi^2 \le \chi_{1-lpha/2}^2(n-1)$                     |
| 6 | $egin{aligned} \sigma_1^2 & \leq \sigma_2^2 \ \sigma_1^2 & \geq \sigma_2^2 \ \sigma_1^2 & = \sigma_2^2 \ (\mu_1, \mu_2 未知) \end{aligned}$ | $F = \frac{S_1^2}{S_2^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\sigma_1^2 > \sigma_2^2$ $\sigma_1^2 < \sigma_2^2$ $\sigma_1^2 \neq \sigma_2^2$ | $F \ge F_{\alpha}(n_1 - 1, n_2 - 1)$ $F \le F_{1-\alpha}(n_1 - 1, n_2 - 1)$ $F \ge F_{\alpha/2}(n_1 - 1, n_2 - 1)$ $F \le F_{1-\alpha/2}(n_1 - 1, n_2 - 1)$ |
| 7 | $ \mu_D \leq 0 $ $ \mu_D \geq 0 $ $ \mu_D = 0 $ (成对数据)                                                                                    | $t = \frac{\overline{D} - 0}{S_D / \sqrt{n}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\mu_D > 0$ $\mu_D < 0$ $\mu_D \neq 0$                                           | $t \ge t_{\alpha}(n-1)$ $t \le -t_{\alpha}(n-1)$ $ t  \ge t_{\alpha/2}(n-1)$                                                                                |







## t分布表a

$$P\{t(n) > t_{\alpha}(n)\} = \alpha$$

| n          | <i>α</i> =0.25 | 0.10   | 0.05   | 0.025   | 0.01    | 0.005   |
|------------|----------------|--------|--------|---------|---------|---------|
| 1          | 1.0000         | 3.0777 | 6.3138 | 12.7062 | 31.8207 | 63.6574 |
| 2          | 0.8165         | 1.8856 | 2.9200 | 4.3027  | 6.9646  | 9.9248  |
| 3          | 0.7649         | 1.6377 | 2.3534 | 3.1824  | 4.5407  | 5.8409  |
| 4          | 0.7407         | 1.5332 | 2.1318 | 2.7764  | 3.7469  | 4.6041  |
| 5          | 0.7267         | 1.4759 | 2.0150 | 2.5706  | 3.3649  | 4.0322  |
| 6          | 0.7176         | 1.4398 | 1.9432 | 2.4469  | 3.1427  | 3.7074  |
| 7          | 0.7111         | 1 4149 | 1 8946 | 2.3646  | 2.9980  | 3.4995  |
| 8          | 0.7064         |        | 40     | 2.3060  | 2.8965  | 3.3554  |
| 9          | 0.7027         | 2.14   | 48     | 2.2622  | 2.8214  | 3.2498  |
| 10         | 0.6998         |        |        | 2.2281  | 2.7638  | 3.1693  |
| 11         | 0.6974         | 1.3634 | 9      | 2.2010  | 2.7181  | 3.1058  |
| 12         | 0.6955         | 1.3562 | 1.7825 | 2.1788  | 2.6810  | 3.0545  |
| 13         | 0.6938         | 1.3502 | 1.7709 | 2.1604  | 2.6503  | 3.0123  |
| 14         | 0.6924         | 1.3450 | 1.7613 | 2.1448  | 2.6245  | 2.9768  |
| 15         | 0.6912         | 1.3406 | 1.7531 | 2.1315  | 2.6025  | 2.9467  |
| <u>1</u> 6 | 0.6901         | 1.3368 | 1.7459 | 2.1199  | 2.5835  | 2.9208  |







## t分布表b

$$P\{t(n) > t_{\alpha}(n)\} = \alpha$$

| n  | $\alpha$ =0.25 | 0.10   | 0.05   | 0.025   | 0.01    | 0.005   |
|----|----------------|--------|--------|---------|---------|---------|
| 1  | 1.0000         | 3.0777 | 6.3138 | 12.7062 | 31.8207 | 63.6574 |
| 2  | 0.8165         | 1.8856 | 2.9200 | 4.3027  | 6.9646  | 9.9248  |
| 3  | 0.7649         | 1.6377 | 2.3534 | 3.1824  | 4.5407  | 5.8409  |
| 4  | 0.7407         | 1.5332 | 2.1318 | 2.7764  | 3.7469  | 4.6041  |
| 5  | 0.7267         | 1.4759 | 2.0150 | 2.5706  | 3.3649  | 4.0322  |
| 6  | 0.7176         | 1.4398 | 1.9432 | 2.4469  | 3.1427  | 3.7074  |
| 7  | 0.7111         | 1.4149 | 1.8946 | 2.3646  | 2.9980  | 3.4995  |
| 8  | 0.7064         | 1 2069 | 1.8595 | 2.3060  | 2.8965  | 3.3554  |
| 9  | 4 ===          | 201    | 1.8331 | 2.2622  | 2.8214  | 3.2498  |
| 10 | 1.75           |        | 1.8125 | 2.2281  | 2.7638  | 3.1693  |
| 11 |                |        | 1.7959 | 2.2010  | 2.7181  | 3.1058  |
| 12 | 0.6955         |        | 1.7823 | 2.1788  | 2.6810  | 3.0545  |
| 13 | 0.6938         | 1.3502 | 1.7709 | 2.1604  | 2.6503  | 3.0123  |
| 14 | 0.6924         | 1.3450 | 1.7613 | 2.1448  | 2.6245  | 2.9768  |
| 15 | 0.6912         | 1.3406 | 1.7531 | 2.1315  | 2.6025  | 2.9467  |
| 16 | 0.6901         | 1.3368 | 1.7459 | 2.1199  | 2.5835  | 2.9208  |





