Bootstrap aggregated sparse FPCA for classification

Hyunsung Kim

Febrary 14, 2020

Department of Statistics Chung-Ang University

Simulation

- Probability-enhanced effective dimension reduction for classifying sparse functional data(Yao et al.)
- 700 curves are generated with 200 training set and 500 test set.
- Bagged classifers are obtained from 100 bootstrap resamples.
- We consider the following 2 cases.
 - Dense
 - Sparse

Sparse Simulation Results

Table 1: The average classification error with standard error in percentage from 100 Monte Carlo repetitions for sparse data (Model II)

	Logistic	SVM	SVM			Naive
Method	Regression	(Linear)	(Gaussian)	LDA	QDA	Bayes
Single	16.7 (2.33)	16.8 (2.20)	17.5 (2.76)	16.6 (2.30)	17.8 (2.56)	18.4 (2.66)
Majority vote	15.6 (1.95)	15.9 (1.87)	16.2 (2.28)	15.8 (1.96)	16.5 (2.14)	17.3 (2.42)
OOB weight	16.0 (2.02)	16.2 (1.94)	16.6 (2.28)	16.1 (1.98)	16.9 (2.09)	17.7 (2.43)

Sparse Simulation Results

Table 2: The average classification error with standard error in percentage from 100 Monte Carlo repetitions for sparse data (Model IV)

	Logistic	SVM	SVM			Naive
Method	Regression	(Linear)	(Gaussian)	LDA	QDA	Bayes
Single	12.8 (2.41)	12.8 (2.40)	13.3 (2.65)	12.8 (2.40)	13.8 (2.56)	14.8 (2.74)
Majority vote	11.2 (1.84)	11.1 (1.89)	11.5 (1.98)	11.2 (1.85)	11.9 (2.03)	13.3 (2.36)
OOB weight	11.6 (1.86)	11.5 (1.90)	12.0 (1.96)	11.6 (1.86)	12.3 (2.06)	13.6 (2.35)