Gramatici LR(k)

- analizoare LR(k)
 - analiza sintactica ascendenta
 - secv. de intrare este citita de la stanga spre dreapta
 - se folosesc derivari de dreapta

metoda: deplasare - reducere

Analiza sintactica ascendenta

Exemplu:

Cum "arata" analiza sintactica ascendenta pentru gramatica:

$$S \rightarrow AB$$
 (1)

$$A \rightarrow a$$
 (2)

$$B \rightarrow b$$
 (3)

si intrarea: ab?

Gramatica LR(K)

Analizoarele sintactice LR(k) lucreaza cu gramatica imbogatita:

$$G' = (N \cup \{S'\}, \Sigma, P \cup \{S' -> S\}, S')$$

(S' \neq N)

pentru a evita ca simbolul de start sa apara in membrul drept al unei reguli de productie.

Gramatica LR(K)

O gramatica $G = (N, \Sigma, P, S)$ este de tip LR(k) pentru k>=0

ddaca din:

$$-S' = *>_{dr} \alpha A w \Longrightarrow_{dr} \alpha \beta w$$

$$-S' = *>_{dr} \gamma B x \Longrightarrow_{dr} \alpha \beta y$$

$$-FIRST_k(w) = FIRST_k(y)$$

rezulta ca:

$$-A = B$$

$$-x = y$$

$$-\alpha = \gamma$$

Gramatici LR(K) - terminologie

Prefix viabil

Fie: $S = *>_{dr} \alpha A w =>_{dr} \alpha \beta w$

Orice prefix al lui $\alpha\beta$ se numeste prefix viabil

Element de analiza LR(k)

se defineste ca fiind: $[A \rightarrow \alpha.\beta, u]$

unde $A \rightarrow \alpha \beta \in P$ si $u \in \Sigma^k$

u-predictie

Element de analiza valid

 $[A \rightarrow \alpha.\beta, u]$ valid pentru prefixul viabil γα daca:

$$-S = *_{dr} \gamma A w = _{dr} \gamma \alpha \beta w$$

- u = FIRST_k(w)

Analizor sintactic LR(K)

Vom studia:

- LR(0)
- SLR
- LR(1)
- LALR

<u>Pasi in analiza LR(k)</u>:

- gramatica imbogatita
- constructia colectiei canonice
- constructia tabelului de analiza
- analiza: → automat

Vom lucra astfel:

la multimea cuv. de analizat se adauga la sfarsit \$

\$ - marcator de sfarsit de cuvant

Colectia canonica LR(K)

 $C = \{I_i - \text{elementele de analiza pentru un prefix viabil}\}$

- in I₀ avem un prim element de analiza
- am cel putin un element in I_j (pentru fiecare) => adaug altele: functia Closure
- am o multime I_j (pentru fiecare) => construiesc multimile goto(I_i ,X)

Observatie: I_i corespunde unei stari a automatului

Notatie: \mathcal{E} – multimea elementelor de analiza

Constructia colectiei canonice LR(k)

 $C = \{I_i\text{-elementele de analiza pentru un prefix viabil}\}$ in I_0 avem: $[S' \rightarrow .S, ...]$

- $I_0 = Closure([S' \rightarrow .S, ...])$
- $C = \{ I_0 \}$
- repeta

pentru toti I_i din C, $X \in (N \cup \Sigma)$ executa

$$C = C \cup goto(I_i,X)$$

sf. pentru

pana cand C nu se mai modifica

$$K=0:$$
 LR(0)

Gramatica imbogatita

- se adauga S'
 - nou simbol de start
 - $-S' \rightarrow S$

Colectia canonica:

- In I_0 avem: [S' \rightarrow .S]
- •

Functia Closure

LR(0)

- Closure: $Part(\mathcal{E}) \rightarrow Part(\mathcal{E})$
- Fie: $e \in \mathcal{E}$

daca $e = [A \rightarrow \alpha . B\beta]$

atunci $\forall B \rightarrow \delta \in P: [B \rightarrow .\delta] \in Closure(e)$

Functia goto LR(0)

- $goto : Part(\mathcal{E}) \times (N \cup \Sigma) \rightarrow Part(\mathcal{E})$
- $goto(I,X) = Closure(\{[A \rightarrow \alpha X.\beta] \mid [A \rightarrow \alpha.X\beta] \in I\})$

Tabelul de analiza LR(0)

		goto N U Σ
${ m I}_0$	actiune	
	deplasare	
$ m I_1$	(s)	
•	reducere	
	(nr. r.p.)	
	acceptare	
	(acc)	
	eroare	

Tabelul de analiza LR(0)

$$T(I_i, actiune) =$$

s (shift, deplasare)

daca: $[A \rightarrow \alpha.\beta] \in I_i$, $\beta \ll \epsilon$

si: $T(I_i, X) = I_i$, daca $I_i = goto(I_i, X)$

L (reducere cu r.p. nr. L)

daca $[A \rightarrow \alpha.] \in I_i$

 $A \rightarrow \alpha \in P$: regula de prod. cu numarul L

 $si: T(I_i, X)$ nu se completeaza

- acc daca: $[S' \rightarrow S.] \in I_i$

Toate celelalte cazuri se considera eroare.

Automatul LR(0) – model matematic

• configuratie:

```
(\alpha,\beta,\Pi)
```

(stiva_de_lucru, banda_de_intrare, banda_de_iesire)

• pe stiva: prefixe viabile, stari ale analizorului

- config. initiala: $(\$0, w\$, \varepsilon)$
- config. finala: $(\$0S I_{acc}, \$, \Pi)$

Automatul LR(0) – model matematic

Tranzitii

deplasare:

$$(\$ \gamma s_k, a_i...a_n\$, \Pi) \vdash (\$ \gamma s_k a_i s_m, a_{i+1}...a_n\$, \Pi)$$

daca: $T(s_k, actiune) = s \text{ si } T(s_k, a_i) = s_m$

reducere:

(\$
$$\gamma \ s_{p-1} X_p s_p ... \ X_k s_k, \ a_i ... a_n \$, \Pi$$
) | — (\$ $\gamma s_{p-1} A \ s_m, \ a_i ... a_n \$, L\Pi$)

daca: T(s_k , action) = L

si: $A \to X_p ... \ X_k - r.p. \ cu \ nr. \ L$

T(s_{p-1} , actiune) = s

T(s_{p-1} , A) = s_m

- acceptare: $(\$ \text{ OS } s_{acc}, \$, \Pi)$ acc.
- eroare: orice alta situatie

Gramatica LR(0)

O gramatica este LR(0) ddaca tabelul de analiza nu contine conflicte.

Gramatica data prin urmatoarele r.p. este LR(0)?

 $S \rightarrow Ax$

 $S \rightarrow By$

 $A \rightarrow a$

 $B \rightarrow a$

K=1: SLR, LR(1), LALR

Analiza sintactica SLR

- SLR = Simple LR
- element de analiza SLR:

$$[A \rightarrow \alpha.\beta, u]$$

 $u = FOLLOW_1(A)$
 $|u| = 1$

 SLR tine cont de predictie numai pentru reducere

constructia colectiei canonice (~LR(0))

$$-[A \rightarrow \alpha.\beta, u], u = FOLLOW_1(A)$$

Analiza sintactica SLR

- constructia tabelului de analiza SLR
 - actiunea de reducere depinde de predictia u
 - =>reducerea va avea o coloana pentru fiecare $a \in \Sigma$

tabelul: linii: elementele colectiei canonice

coloane: N U Σ U {\$}

celula: s_{stare},r_{nr.r.p}, acc

• analizorul ~ analizorul pt. LR(0)

automat: configuratii si tranzitii

Analiza sintactica SLR

In tabelul de analiza SLR vom avea:

actiune: reducere + deplasare (goto)
$$X \in \Sigma \cup \{\$\} \qquad X \in N \cup \Sigma$$

linii: elementele colectiei canonice

coloane: N U Σ U {\$}

Gramatica SLR

O gramatica este SLR ddaca tabelul de analiza nu contine conflicte.

Gramatica data prin urmatoarele r.p. este SLR?

$$S \rightarrow A$$

1

$$S \rightarrow xb$$

2

$$A \rightarrow aAb$$

3

$$A \rightarrow B$$

4

$$B \rightarrow x$$

5

• Gramatica data prin urmatoarele r.p. este SLR?

$S \rightarrow A$	1
$S \rightarrow xb$	2
$A \rightarrow aAb$	3
$A \rightarrow B$	4
$B \rightarrow x$	5

Analizor sintactic LR(1)

- imbogatirea gramaticii
- constructia colectiei canonice element de analiza LR(1):
 - $-[A\rightarrow\alpha.\beta, u], |u|=1$
- constructia tabelului de analiza
- analiza: automat

Colectia canonica LR(1)

• elem. initial

$$[S' \rightarrow .S, \$]$$

• Closure

$$[A \rightarrow \alpha.B\beta, a] => [B \rightarrow .\gamma, b] \in \textit{Closure}([A \rightarrow \alpha.B\beta, a])$$

$$B \rightarrow \gamma \qquad \forall b \in FIRST_1(\beta a)$$

• goto

$$goto(I,X) =$$

Closure (
$$\{[A \rightarrow \alpha X.\beta, a] \mid [A \rightarrow \alpha.X\beta, a] \in I \}$$
)

Tabelul LR(1)

	stare	shift + reduce NUΣU\$
	I_0	
(I _{acc})	I_1	
	I_2	
	•	

Construirea tab. de analiza LR(1)

- $[A \rightarrow \alpha.X\beta,b] \in I_i$: $goto(I_i,X) = I_j <= functia goto action(I_i,X) = sj$
- $[A \rightarrow \alpha, a] \in I_i$ action $(I_i, a) = rL$ $L nr. \ reg. \ de \ productie: A \rightarrow \alpha$ A <> S'
- $[S' \rightarrow S., \$] \in I_i$ action $(I_i,\$) = acc$

Obs: o gram. este LR(...) daca tabelul de analiza nu contine conflicte; si reciproc

Analizorul LR(1)

pe baza tabelului de analiza

 \rightarrow similar LR(0), SLR

Analizor sintactic LALR

•
$$[\underline{A \rightarrow \alpha.\beta}, a]$$
 nucleu

- colectia canonica LR(1)
- fuzioneaza elementele de analiza cu nuclee identice si care nu creeaza conflicte
- predictia: reuniunea predictiilor

tabelul LALR & analiza: similar LR(1)

LR (1 –uri)

• Conflict:

[
$$A \rightarrow \alpha_1.a\alpha_2$$
 , u]

[B $\rightarrow \beta_1$., a]

deplasare-reducere

$$[A \rightarrow \alpha_1, a]$$

[B $\rightarrow \beta_1$., a]

reducere-reducere

Vezi si resursa bibliografica:

S. MOTOGNA

Metode de proiectare a compilatoarelor, 2006