Definizione 1. Sia $f: A \to B$ una funzione. La funzione f si dice BIETTI-VA o BIGETTIVA se è sia iniettiva che suriettiva, cioè

$$\forall b \in B, \exists ! a \in A \quad \text{t.c.} \quad f(a) = b$$

Esempio 1. Si consideri la funzione

$$f: \mathbb{R} \to \mathbb{R}$$
 tale che $f(x) = x^5 - 4 \quad \forall x \in \mathbb{R}$

fè biettiva??

La risposta è SI poichè f è sia iniettiva che suriettiva. Infatti: $\forall x,y \in \mathbb{R} \text{ se } f(x) = f(y) \implies x^5 - 4 = y^5 - 4 \implies x^5 = y^5 \implies x = y,$ quindi f è iniettiva; inoltre $\forall y \in \mathbb{R} \text{ se } f(x) = y \implies x^5 - 4 = y \implies x^5 = y + 4 \implies x = \sqrt[5]{y+4}$ e tale x appartiene ad \mathbb{R} , comunque si scelga $y \in \mathbb{R}$. Quindi f è anche suriettiva.

Esempio 2. Si consideri la funzione

$$f \colon \mathbb{Z} \to \mathbb{N}$$
 tale che $f(n) = n^2 \quad \forall n \in \mathbb{Z}$

fè biettiva??

Osserviamo che f è non iniettiva, infatti se si considerano gli interi n=2 e n'=-2, pur essendo diversi, le loro immagini, mediante f, coincidono. Quindi la funzione f NON è biettiva, poichè per esserlo dovrebbe essere sia iniettiva che suriettiva.

Definizione 2. Siano $f: A \to B$ e $g: B \to C$ due funzioni. Si chiama FUN-ZIONE COMPOSIZIONE di f e g, si indica con $g \circ f$ (si legge g cerchietto f), la funzione

$$g \circ f \colon A \to C$$
 tale che $\forall a \in A, (g \circ f)(a) = g(f(a)),$

cioè

$$A \xrightarrow{f} B \xrightarrow{g} C$$

$$a \mapsto f(a) \mapsto g(f(a))$$

Osservazione 1. Come si evince dalla definizione precedente, affinchè esita la funzione composta $g \circ f$ è fondamentale che l'insieme di arrivo di f (funzione che si trova scritta più a destra, cioè quella che viene applicata per prima) coincida con l'insieme di partenza di g (funzione più a sinistra).

Questa è la regola generale per stabilire se, assegnate due funzioni f e g esiste la loro funzione composizione $g \circ f$

Osservazione 2. Se esiste la funzione $g \circ f$, come si evince dalla definizione, $g \circ f$ ha come insieme di partenza l'insieme di partenza di f e come insieme di arrivo quello della funzione g.

Osservazione 3. Come segue dalla definizione, assegnate due funzioni $f \in g$ è ben diverso determinare, se è possibile, $g \circ f \in f \circ g$.

Nell'ipotesi che esistano entrambe le funzioni composizioni, in generale si ha $g \circ f \neq f \circ g$. Spesso questo si esprime dicendo che l'operazione di composizione \circ , in generale, non è commutativa.

Esempio 3. Si considerino le seguenti funzioni:

$$f: \mathbb{N} \to \mathbb{N}$$
 tale che $f(n) = n^2 \quad \forall n \in \mathbb{N}$
 $q: \mathbb{N} \to \mathbb{N}$ tale che $f(t) = t + 2 \quad \forall t \in \mathbb{N}$

Esiste $g \circ f$? La risposta è SI poichè l'insieme di arrivo di f coincide con l'insieme di partenza di g.

Esiste $f \circ g$? La risposta è SI poichè l'insieme di arrivo di g coincide con l'insieme di partenza di f.

Osservato ciò, tenendo conto dell' Osservazione 2 e della Definizione 2, si ha

$$g \circ f \colon \mathbb{N} \to \mathbb{N}$$
 tale che $\forall n \in \mathbb{N}$
$$(g \circ f)(n) = g(f(n)) = g(n^2) = n^2 + 2$$

е

$$f \circ g \colon \mathbb{N} \to \mathbb{N}$$
 tale che $\forall n \in \mathbb{N}$
 $(f \circ g)(n) = f(g(n)) = f(n+2) = (n+2)^2$

Osserviamo che $g \circ f \neq f \circ g$

Esempio 4. Si considerino le seguenti funzioni:

$$h \colon \mathbb{N} \to \mathbb{Q}^*$$
 tale che $h(n) = \frac{n}{3} + 1 \quad \forall n \in \mathbb{N}$

$$f \colon \mathbb{Q}^* \to \mathbb{Q} \quad \text{tale che} \quad f(q) = \frac{1}{q} \quad \forall q \in \mathbb{Q}^*$$

Esiste $h \circ f$? La risposta è NO poichè l'insieme di arrivo di f non coincide con l'insieme di partenza di h.

Esiste $f \circ h$? SI, perchè l'insieme di arrivo di h è uguale all'insieme di partenza di f. In tal caso si ha:

$$f\circ h\colon \mathbb{N}\to \mathbb{Q}$$
 tale che $\forall n\in \mathbb{N}$
$$(f\circ h)(n)=f(h(n))=f(\frac{n}{3}+1)=\frac{1}{\frac{n}{3}+1}=\frac{3}{n+3}$$