Lecture 5: Random Variable, Part III

Yi, Yung (이용)

EE210: Probability and Introductory Random Processes
KAIST EE

June 12, 2021

- (1) Derived distribution of Y = g(X) or Z = g(X, Y)
- (2) Derived distribution of Z = X + Y
- (3) Covariance: Degree of dependence between two rvs.
- (4) Correlation coefficient
- (5) Conditional expectation and law of iterative expectations
- (6) Conditional variance and law of total variance
- (7) Random number of sum of random variables

June 12, 2021 1 / 46

June 12, 2021 2 / 46

Roadmap

Derived Distribution: Y = g(X)

- (1) Derived distribution of Y = g(X) or Z = g(X, Y)
- (2) Derived distribution of Z = X + Y
- (3) Covariance: Degree of dependence between two rvs.
- (4) Correlation coefficient
- (5) Conditional expectation and law of iterative expectations
- (6) Conditional variance and law of total variance
- (7) Random number of sum of random variables

- Given the PDF of X, What is the PDF of Y = g(X)?
- Wait! Didn't we cover this topic? No. We covered just $\mathbb{E}[g(X)]$.
- Examples: Y = X, Y = X + 1, $Y = X^2$, etc.
- What are easy or difficult cases?
- Easy cases
 - Discrete
 - Linear: Y = aX + b

• Take all values of x such that g(x) = y, i.e.,

$$p_Y(y) = \mathbb{P}(g(X) = y)$$
$$= \sum_{x:g(x)=y} p_X(x)$$

$$p_Y(3) = p_X(2) + p_X(3) = 0.1 + 0.2 = 0.3$$

 $p_Y(4) = p_X(4) + p_X(5) = 0.3 + 0.4 = 0.7$

L5(1) June 12, 2021 5 / 46

If
$$a < 0$$
, $F_Y(y) = \mathbb{P}(aX + b \le y) = \mathbb{P}(X \ge \frac{y - b}{a}) = 1 - F_X(\frac{y - b}{a})$

$$\to f_Y(y) = -\frac{1}{a}f_X\left(\frac{y - b}{a}\right)$$

Therefore,

$$f_Y(y) = \frac{1}{|a|} f_X\left(\frac{y-b}{a}\right)$$

L5(1) June 12, 2021 6 /

Linear: Y = aX + b, when X is exponential

Linear: Y = aX + b, when X is normal

 $f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \ge 0 \\ 0, & \text{otherwise} \end{cases}$

$$f_Y(y) = egin{cases} rac{\lambda}{|a|} e^{-\lambda(y-b)/a}, & ext{if} \quad (y-b)/a \geq 0 \ 0, & ext{otherwise} \end{cases}$$

• If b=0 and a>0, Y is exponential with parameter $\frac{\lambda}{a}$, but generally not.

• Remember? Linear transformation preserves normality. Time to prove.

If
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
, then for $a \neq 0$ and $b, Y = aX + b \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$.

• Proof.

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2}$$

$$f_Y(y) = \frac{1}{|a|} f_X\left(\frac{y-b}{a}\right) = \frac{1}{|a|} \frac{1}{\sqrt{2\pi}} \exp\left\{-\left(\frac{y-b}{a} - \mu\right)^2 / 2\sigma^2\right\}$$
$$= \frac{1}{\sqrt{2\pi}|a|\sigma} \exp\left\{-\frac{(y-b-a\mu)^2}{2a^2\sigma^2}\right\}$$

Step 1. Find the CDF of Y:

$$F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(g(X) \le y)$$

Step 2. Differentiate: $f_Y(y) = \frac{dF_Y}{dy}(y)$

Ex1.
$$Y = X^2$$
.

$$F_Y(y) = \mathbb{P}(X^2 \le y) = \mathbb{P}(-\sqrt{y} \le X \le \sqrt{y})$$
$$= F_X(\sqrt{y}) - F_X(-\sqrt{y})$$

$$f_Y(y) = \frac{1}{2\sqrt{y}}f_X(\sqrt{y}) +$$

$$\frac{1}{2\sqrt{y}}f_X(-\sqrt{y}), \quad y \ge 0$$

Ex2. $X \sim \mathcal{U}[0, 1]$. $Y = \sqrt{X}$.

$$F_Y(y) = \mathbb{P}(\sqrt{X} \le y) = \mathbb{P}(X \le y^2) = y^2$$

$$f_Y(y) = 2y, \quad 0 < y < 1$$

Ex3.
$$X \sim \mathcal{U}[0, 2]$$
. $Y = X^3$.

$$F_Y(y) = \mathbb{P}(X^3 \le y) = \mathbb{P}(X \le \sqrt[3]{y}) = \frac{1}{2}y^{1/3}$$

$$f_Y(y) = \frac{1}{6}y^{-2/3}, \quad 0 \le y \le 8$$

When Y = g(X) is monotonic, a general formula can be drawn (see the textbook at pp 207)

Basically, follow two-step approach: (i) CDF and (ii) differentiate.

Ex1.
$$X, Y \sim \mathcal{U}[0, 1]$$
, and $X \perp \!\!\!\perp Y$. $Z = \max(X, Y)$.

*
$$\mathbb{P}(X \le z) = \mathbb{P}(Y \le z) = z, \ z \in [0, 1].$$

$$F_{Z}(z) = \mathbb{P}(\max(X, Y) \le z) = \mathbb{P}(X \le z, Y \le z)$$
$$= \mathbb{P}(X \le z)\mathbb{P}(Y \le z) = z^{2} \qquad \text{(from } X \perp \!\!\!\perp Y)$$

$$f_Z(z) = \begin{cases} 2z, & \text{if } 0 \le z \le 1 \\ 0, & \text{otherwise} \end{cases}$$

L5(1)

June 12, 2021 9 / 46

L5(1)

June 12, 2021 10 / 46

Functions of multiple rvs: Z = g(X, Y) (2)

KAIST EE

Roadmap

Basically, follow two step approach: (i) CDF and (ii) differentiate.

Ex2. $X, Y \sim \mathcal{U}[0, 1]$, and $X \perp \!\!\!\perp Y$. Z = Y/X.

$$F_Z(z) = \mathbb{P}(Y/X \le z)$$

$$= \begin{cases} z/2, & 0 \le z \le 1\\ 1 - 1/2z, & z > 1\\ 0, & \text{otherwise} \end{cases}$$

$$f_Z(z) = egin{cases} 1/2, & 0 \le z \le 1 \ 1/(2z^2), & z > 1 \ 0, & ext{otherwise} \end{cases}$$

- Depending on the value of $\boldsymbol{z},$ two cases need to be considered separately.

(Note) Sometimes, the problem is tricky, which requires careful case-by-case handing. :-)

(1) Derived distribution of Y = g(X) or Z = g(X, Y)

(2) Derived distribution of Z = X + Y

(3) Covariance: Degree of dependence between two rvs.

(4) Correlation coefficient

(5) Conditional expectation and law of iterative expectations

(6) Conditional variance and law of total variance

(7) Random number of sum of random variables

- Sum of two independent rvs
- A very basic case with many applications
- Assume that $X, Y \in \mathbb{Z}$

$$\frac{p_Z(z)}{p_Z(z)} = \mathbb{P}(X+Y=z) = \sum_{\{(x,y): x+y=z\}} \mathbb{P}(X=x, Y=y) = \sum_{x} \mathbb{P}(X=x, Y=z-x)$$

$$= \sum_{x} \mathbb{P}(X=x) \mathbb{P}(Y=z-x) = \sum_{x} p_X(x) p_Y(z-x)$$

• $p_Z(z)$ is called **convolution** of the PMFs of X and Y.

- Convolution: $p_Z(z) = \sum_x p_X(x)p_Y(z-x)$
- Interpretation for a given z:
 - (i) Flip (horizontally) the PMF of Y $(p_Y(-x))$
 - (ii) Put it underneath the PMF of X
 - (iii) Right-shift the flipped PMF by z $(p_Y(-x+z))$

L5(2) June 12, 2021 13 / 46 L5(2) June 12, 2021 14 / 46

Y = X + Y, $X \perp \!\!\!\perp Y$: Continuous

KAIST EE

Example

• Same logic as the discrete case

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) dx$$

 Youtube animation for convolution: https://www.youtube.com/ watch?v=C1N55M1VD2o For a fixed z,

• Example. $X, Y \sim \mathcal{U}[0,1]$ and $X \perp \!\!\! \perp Y$. What is the PDF of Z = X + Y? Draw the PDF of Z.

Very special, but useful case

• X and Y are normal.

Sum of two independent normal rvs

 $X \sim \mathcal{N}(\mu_x, \sigma_x^2)$ and $Y \sim \mathcal{N}(\mu_x, \sigma_x^2)$ Then, $X + Y \sim \mathcal{N}(\mu_x + \mu_y, \sigma_x^2 + \sigma_y^2)$

- Why normal rvs are used to model the sum of random noises.
- Extension. The sum of finitely many independent normals is also normal.

L5(2) June 12, 2021 17 / 46

https://www.youtube.com/watch?v=MQm6ZP1F6ms

KAIST EE

Roadmap

June 12, 2021

18 / 46

 $Y = X + Y, X \perp \!\!\!\perp Y$, Normal (2)

$$f_{Z}(z) = \int_{-\infty}^{\infty} f_{X}(x) f_{Y}(z - x) dx$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma_{x}} \exp\left\{-\frac{(x - \mu_{x})^{2}}{2\sigma_{x}^{2}}\right\} \frac{1}{\sqrt{2\pi}\sigma_{y}} \exp\left\{-\frac{(z - x - \mu_{y})^{2}}{2\sigma_{y}^{2}}\right\} dx$$

• The details of integration is a little bit tedious. :-)

$$f_Z(z) = \frac{1}{\sqrt{2\pi(\sigma_x^2 + \sigma_y^2)}} \exp\left\{-\frac{(z - \mu_x - \mu_y)^2}{2(\sigma_x^2 + \sigma_y^2)}\right\}$$

(1) Derived distribution of Y = g(X) or Z = g(X, Y)

(2) Derived distribution of Z = X + Y

(3) Covariance: Degree of dependence between two rvs

(4) Correlation coefficient

L5(2)

(5) Conditional expectation and law of iterative expectations

(6) Conditional variance and law of total variance

(7) Random number of sum of random variables

- Goal: Given two rvs X and Y, assign some number that quantifies the degree of their dependence.
 - feeling/weather, university ranking/annual salary,
- Requirements
 - R1. Increases (resp. decreases) as they become more (resp. less) dependent. 0 when they are independent.
 - **R2.** Shows the 'direction' of dependence by + and -
 - R3. Always bounded by some numbers (i.e., dimensionless metric). For example, [-1,1]
- Good engineers: Good at making good metrics
 - Metric of how our society is economically polarized
 - Cybermetrics in MLB (Major League Baseball): http://m.mlb.com/glossary/advanced-stats

E[XY]

L5(3)

• What about $\mathbb{E}[XY]$? Seems good.

 $\circ \mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y] = 0 \text{ when } X \perp \!\!\!\perp Y$

• Simple case: $\mathbb{E}[X] = \mu_X = 0$ and $\mathbb{E}[Y] = \mu_Y = 0$

• $|\mathbb{E}[XY]|$ also quantifies the amount of spread.

• Dependent: Positive (If $X \uparrow$, $Y \uparrow$) or Negative (If $X \uparrow$, $Y \downarrow$)

• More data points (thus increases) when xy > 0 (both positive or negative)

(Q) What about $\mathbb{E}[X + Y]$?

 When they are positively dependent, but have negative values?

L5(3) June 12, 2021 21 / 46

What If $\mu_X \neq 0, \mu_Y \neq 0$?

KAIST EE

Example: cov(X, Y) = 0, but not independent

June 12, 2021

22 / 46

• Solution: Centering. $X \to X - \mu_X$ and $Y \to Y - \mu_Y$

Covariance

$$cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X]) \cdot (Y - \mathbb{E}[Y])]$$

- After some algebra, $cov(X, Y) = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$
- $X \perp \!\!\!\perp Y \Longrightarrow cov(X, Y) = 0$
- $cov(X, Y) = 0 \Longrightarrow X \perp \!\!\!\perp Y$? NO.
- When cov(X, Y) = 0, we say that X and Y are uncorrelated.

- $p_{XY}(1,0) = p_{XY}(0,1) = p_{XY}(-1,0) = p_{XY}(0,-1) = 1/4$.
- $\mathbb{E}[X] = \mathbb{E}[Y] = 0$, and $\mathbb{E}[XY] = 0$. So, cov(X, Y) = 0
- Are they independent? No, because if X=1, then we should have Y=0.

$$cov(X, X) = var(X)$$

$$cov(aX + b, Y) = \mathbb{E}[(aX + b)Y] - \mathbb{E}[aX + b]\mathbb{E}[Y] = a \cdot cov(X, Y)$$

$$cov(X, Y + Z) = \mathbb{E}[X(Y + Z)] - \mathbb{E}[X]\mathbb{E}[Y + Z] = cov(X, Y) + cov(X, Z)$$

$$var[X + Y] = \mathbb{E}[(X + Y)^2] - (\mathbb{E}[X + Y])^2 = var[X] + var[Y] + 2cov(X, Y)$$

$$\operatorname{\mathsf{var}}\Bigl[\sum X_i\Bigr] = \sum \operatorname{\mathsf{var}}[X_i] + \sum_{i \neq j} \operatorname{\mathsf{cov}}(X_i, X_j)$$

• *n* people throw their hats in a box and then pick one at random

- X: number of people with their own hat
- (Q) var[X]
- Key step 1. Define a rv X_i = 1 if i selects own hat and 0 otherwise. Then, X = ∑_{i=1}ⁿ X_i.
- Key step 2. Are X_i s are independent?

L5(3)

• $X_i \sim \text{Bern}(1/n)$. Thus, $\mathbb{E}[X_i] = 1/n$ and $\text{var}[X_i] = \frac{1}{n}(1 - \frac{1}{n})$

• For $i \neq j$,

$$\begin{aligned} \text{cov}(X_i, X_j) &= \mathbb{E}[X_i X_j] - \mathbb{E}[X_i] \mathbb{E}[X_j] \\ &= \mathbb{P}(X_i = 1 \text{ and } X_j = 1) - \frac{1}{n^2} \\ &= \mathbb{P}(X_i = 1) \mathbb{P}(X_j = 1 | X_i = 1) - \frac{1}{n^2} \\ &= \frac{1}{n} \frac{1}{n-1} - \frac{1}{n^2} = \frac{1}{n^2(n-1)} \end{aligned}$$

$$var[X] = var\left[\sum X_i\right]$$

$$= \sum var[X_i] + \sum_{i \neq j} cov(X_i, X_j)$$

$$= n\frac{1}{n}(1 - \frac{1}{n}) + n(n - 1)\frac{1}{n^2(n - 1)} = 1$$

L5(3) June 12, 2021 25 / 46

June 12, 2021 26 / 46

Roadmap

KAIST EE

Bounding the metric: Correlation Coefficient

- (1) Derived distribution of Y = g(X) or Z = g(X, Y)
- (2) Derived distribution of Z = X + Y
- (3) Covariance: Degree of dependence between two rvs
- (4) Correlation coefficient
- (5) Conditional expectation and law of iterative expectations
- (6) Conditional variance and law of total variance
- (7) Random number of sum of random variables

Reqs. R1 and R2 are satisfied.
 R3. Always bounded by some numbers (dimensionless metric)

• How? Normalization, but by what?

Correlation Coefficient

$$\rho(X,Y) = \mathbb{E}\left[\frac{(X - \mu_X)}{\boxed{\sigma_X}} \cdot \frac{(Y - \mu_Y)}{\boxed{\sigma_Y}}\right] = \frac{\text{cov}(X,Y)}{\sqrt{\text{var}[X]\text{var}[Y]}}$$

- Theorem.
- 1. $-1 \le \rho \le 1$ (proof at the next slide)
- 2. $|\rho| = 1 \Leftrightarrow X \mu_X = c(Y \mu_Y)$ for some constant c (c > 0 when $\rho = 1$ and c < 0 when $\rho = -1$). In other words, linear relation, meaning VERY related.

- Cauchy-Schwarz inequality. For any rvs X and Y, $\big(\mathbb{E}(XY)\big)^2 \leq \mathbb{E}(X^2)\mathbb{E}(Y^2)$
- Proof of $-1 \le \rho \le 1$:

Let
$$\tilde{X} = X - \mathbb{E}(X)$$
 and $\tilde{Y} = Y - \mathbb{E}(Y)$. Then, $\left(\rho(X,Y)\right)^2 = \frac{\left(\mathbb{E}[\tilde{X}\tilde{Y}]\right)^2}{\mathbb{E}(\tilde{X}^2)\mathbb{E}(\tilde{Y}^2)} \leq 1$

• Proof of CSI: For any constant a,

$$0 \leq \mathbb{E}\left[(X - aY)^2 \right] = \mathbb{E}\left[X^2 - 2aXY + a^2Y^2 \right] = \mathbb{E}(X^2) - 2a\mathbb{E}(XY) + a^2\mathbb{E}(Y^2)$$

Now, choose $a = \frac{\mathbb{E}(XY)}{\mathbb{E}(Y^2)}$. Then,

$$\mathbb{E}(X^2) - 2\frac{\mathbb{E}(XY)}{\mathbb{E}(Y^2)}\mathbb{E}(XY) + \frac{(\mathbb{E}[XY])^2}{(\mathbb{E}[Y^2])^2}\mathbb{E}(Y^2) = \mathbb{E}(X^2) - \frac{(\mathbb{E}[XY])^2}{\mathbb{E}(Y^2)} \ge 0$$

 (\Rightarrow) Suppose that $|\rho|=1$. In the proof of CSI,

$$\mathbb{E}\left[\left(\tilde{X} - \frac{\mathbb{E}(\tilde{X}\tilde{Y})}{\mathbb{E}(\tilde{Y}^2)}\tilde{Y}\right)^2\right] = \mathbb{E}(\tilde{X}^2) - \frac{(\mathbb{E}[\tilde{X}\tilde{Y}])^2}{\mathbb{E}(\tilde{Y}^2)} = \mathbb{E}(\tilde{X}^2)(1 - \rho^2) = 0$$

$$ilde{X} - rac{\mathbb{E}(ilde{X} ilde{Y})}{\mathbb{E}(ilde{Y}^2)}Y = 0 \leftrightarrow ilde{X} = rac{\mathbb{E}(ilde{X} ilde{Y})}{\mathbb{E}(ilde{Y}^2)} ilde{Y} =
ho\sqrt{rac{\mathbb{E}(ilde{X}^2)}{\mathbb{E}(ilde{Y}^2)}} ilde{Y}$$

 (\Leftarrow) If $\tilde{Y} = c\tilde{X}$, then

$$\rho(X,Y) = \frac{\mathbb{E}(\tilde{X}c\tilde{X})}{\sqrt{\mathbb{E}[\tilde{X}^2]\mathbb{E}[(c\tilde{X})^2]}} = \frac{c}{|c|}$$

L5(4) June 12, 2021 29 / 46

L5(4)

June 12, 2021 30 / 46

Roadmap

KAIST EE

A Special Random Variable

- (1) Derived distribution of Y = g(X) or Z = g(X, Y)
- (2) Derived distribution of Z = X + Y
- (3) Covariance: Degree of dependence between two rvs
- (4) Correlation coefficient
- (5) Conditional expectation and law of iterative expectations
- (6) Conditional variance and law of total variance
- (7) Random number of sum of random variables

Consider a rv Y, such that

$$Y = \begin{cases} 0, & \text{w.p. } 1/4 \\ 1, & \text{w.p. } 1/4 \\ 2, & \text{w.p. } 1/2 \end{cases}$$

• If $h(y) = y^2$, then a new rv h(Y) is:

$$h(Y) = \begin{cases} 0, & \text{w.p. } 1/4\\ 1, & \text{w.p. } 1/4\\ 4, & \text{w.p. } 1/2 \end{cases}$$

• Consider other rv *X*, which, we assume, has:

$$g(y) = \mathbb{E}[X|Y = y] = \begin{cases} 3, & \text{if } y = 0 \\ 8, & \text{if } y = 1 \\ 9, & \text{if } y = 2 \end{cases}$$

• Then, a rv g(Y) is:

$$g(Y) = \begin{cases} 3, & \text{w.p. } 1/4 \\ 8, & \text{w.p. } 1/4 \\ 9, & \text{w.p. } 1/2 \end{cases}$$

- The rv g(Y) looks special, so let's give a fancy notation to it.
- What about? $X_{exp}(Y)$, $\mathbb{E}[X_Y]$, $\mathbb{E}_X[Y]$?

L5(5)

Conditional Expectation

A random variable $g(Y) = \boxed{\mathbb{E}[X|Y]}$, called conditional expectation of X given Y, takes the value $g(y) = \mathbb{E}[X|Y = y]$, if Y happens to take the value y.

- A function of Y
- A random variable
- Thus, having a distribution, expectation, variance, all the things that a random variable has.
- Often confusing because of the notation.

Expectation of Conditional Expectation

 $\mathbb{E}\big[\mathbb{E}[X|Y]\big] = \mathbb{E}[X]$, Law of iterated expectations

Proof.

$$\mathbb{E}\Big[\mathbb{E}[X|Y]\Big] = \sum_{y} \mathbb{E}[X|Y = y]p_{Y}(y)$$
$$= \mathbb{E}[X]$$

L5(5) June 12, 2021 33 / 46

June 12, 2021 34 / 4

Examples and Meaning

- Stick of length I
- Uniformly break at point Y, and break what is left uniformly at point X.
- $\mathbb{E}[X|Y = y] = y/2$
- $\mathbb{E}[X|Y] = Y/2$
- $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[Y/2] = \frac{1}{2}\frac{I}{2} = I/4$

KAIST EE

- Forecasts on sales: calculating expected value, given any available information
- X : February sales
- ullet Forecast in the beg. of the year: $\mathbb{E}[X]$
- End of Jan. new information Y = y (Jan. sales) Revised forecast: $\mathbb{E}[X|Y = y]$ Revised forecast $\neq \mathbb{E}[X]$
- Law of iterated expectations $\mathbb{E}[\text{revised forecast}] = \text{original one}$

Example: Averaging Quiz Scores by Section

- A class: n students, student i's quiz score: x_i
- Average quiz score: $m = \frac{1}{n} \sum_{i=1}^{n} x_i$
- Students: partitioned into sections A_1, \ldots, A_k and n_s : number of students in section s
- average score in section $s = m_s = \frac{1}{n_s} \sum_{i \in A_s} x_i$
- whole average: (i) taking the average m_s of each section and (ii) forming a weighted average

$$\sum_{s=1}^{k} \frac{n_s}{n} m_s = \sum_{s=1}^{k} \frac{n_s}{n} \frac{1}{n_s} \sum_{i \in A_s} x_i = \frac{1}{n} \sum_{i=1}^{n} x_i = m$$

- Understanding from $\mathbb{E}\Big[\mathbb{E}[X|Y]\Big] = \mathbb{E}[X]$
- X: score of a randomly chosen student, Y: section of a student $(\in \{1, ..., k\})$

$$m = \mathbb{E}(X) = \mathbb{E}\left[\mathbb{E}[X|Y]\right]$$
$$= \sum_{s=1}^{k} \mathbb{E}(X|Y=s)\mathbb{P}(Y=s)$$
$$= \sum_{s=1}^{k} \left(\frac{1}{n_s} \sum_{i \in A} x_i\right) \frac{n_s}{n} = \sum_{s=1}^{k} m_s \frac{n_s}{n}$$

(2) Derived distribution of Z = X + Y

(3) Covariance: Degree of dependence between two rvs

(4) Correlation coefficient

(5) Conditional expectation and law of iterative expectations

(6) Conditional variance and law of total variance

(7) Random number of sum of random variables

 $var[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$

$$g(y) = \operatorname{var}[X|Y = y] = \mathbb{E}[(X - \mathbb{E}[X|Y = y])^2|Y = y]$$

$$g(Y) = \text{var}[X|Y] = \mathbb{E}[(X - \mathbb{E}[X|Y])^2|Y]$$

Conditional Variance

A random variable g(Y) = var[X|Y] and called conditional variance of X given Y takes the value g(y) = var[X|Y = y], if Y happens to take the value y.

• A function of Y

A random variable

• Thus, having a distribution, expectation, variance, all the things that a random variable has

L5(6)

June 12, 2021 37 / 46

L5(6)

June 12, 2021 38 / 46

Expectation and Variance of $\mathbb{E}[X|Y]$ and var[X|Y]

Law of Total Variance

Law of total variance (LTV)

$$\mathsf{var}[X] = \mathbb{E}\Big[\mathsf{var}(X|Y)\Big] + \mathsf{var}[\mathbb{E}(X|Y)]$$

Proof.

$$\operatorname{\mathsf{var}}(X|Y) = \mathbb{E}[X^2|Y] - (\mathbb{E}[X|Y])^2$$

$$\mathbb{E}\Big[\operatorname{var}(X|Y)\Big] = \mathbb{E}[X^2] - \mathbb{E}\Big[\left(\mathbb{E}[X|Y]\right)^2\Big] \tag{1}$$

$$\operatorname{var}\left[\mathbb{E}(X|Y)\right] = \mathbb{E}\left[\left(\mathbb{E}[X|Y]\right)^{2}\right] - \left(\mathbb{E}\left[\mathbb{E}(X|Y)\right]\right)^{2} = \mathbb{E}\left[\left(\mathbb{E}[X|Y]\right)^{2}\right] - \left(\mathbb{E}[X]\right)^{2} \tag{2}$$

$$(1) + (2) = \mathbb{E}[X^2] + (\mathbb{E}[X])^2 = \text{var}[X]$$

- Same setting as that in page 36
- X: score of a randomly chosen student, Y: section of a student $(\in \{1, ..., k\})$
- Let's intuitively understand: $\operatorname{var}[X] = \mathbb{E}\left[\operatorname{var}(X|Y)\right] + \operatorname{var}[\mathbb{E}(X|Y)]$
- $\mathbb{E}[\mathsf{var}(X|Y)] = \sum_{k=1}^s \mathbb{P}(Y=s)\mathsf{var}(X|Y=s) = \sum_{k=1}^s \frac{n_s}{n}\mathsf{var}(X|Y=s)$
 - Weighted average of the section variances
 - average score variability within individual sections
- $var[\mathbb{E}(X|Y)]$: variability of the average of the differenct sections
 - $\mathbb{E}(X|Y=s)$: average score in section s
 - variability between sections

• Stick of length /

- Uniformly break at point Y, and break what is left uniformly at point X.
- Question. var(X)?
- LTV: $\mathsf{var}[X] = \mathbb{E}\Big[\mathsf{var}(X|Y)\Big] + \mathsf{var}[\mathbb{E}(X|Y)]$
- Fact. If a rv $X \sim \mathcal{U}[0, \theta]$, then $\text{var}(X) = \frac{\theta^2}{12}$
- Since $X \sim \mathcal{U}[0, Y]$, $var(X|Y) = \frac{Y^2}{12} \to \mathbb{E}[var[X|Y]] = \frac{1}{12} \int_0^1 \frac{1}{7} y^2 dy = \frac{f^2}{36}$
- $\mathbb{E}(X|Y) = Y/2 \to \text{var}(\mathbb{E}[X|Y]) = \frac{1}{4}\text{var}[Y] = \frac{1}{4}\frac{l^2}{12} = \frac{l^2}{48}$
- $\operatorname{var}(X) = \frac{l^2}{36} + \frac{l^2}{48} = \frac{7l^2}{144}$

L5(6)

June 12, 2021 41 / 46

L5(6)

June 12, 2021 42 / 46

Roadmap

KAIST EE

Sum of a random number of rvs

- (1) Derived distribution of Y = g(X) or Z = g(X, Y)
- (2) Derived distribution of Z = X + Y
- (3) Covariance: Degree of dependence between two rvs
- (4) Correlation coefficient
- (5) Conditional expectation and law of iterative expectations
- (6) Conditional variance and law of total variance
- (7) Random number of sum of random variables

- N: number of stores visited (random)
- X_i : money spent in store i, independent of other X_j and N, X_i s are identically distributed with $\mathbb{E}[X_i] = \mu$
- $Y = X_1 + X_2 + \dots X_N$. What are $\mathbb{E}[Y]$ and var[Y]?
- $\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|N]] = \mathbb{E}[N\mathbb{E}[X_i]] = \mathbb{E}[N]\mathbb{E}[X_i] = \mu\mathbb{E}[N]$
- $\operatorname{var}[Y] = \mathbb{E}\left[\operatorname{var}(Y|N)\right] + \operatorname{var}[\mathbb{E}(Y|N)] = \mathbb{E}[N]\operatorname{var}[X_i] + \mu^2\operatorname{var}[N]$

$$\operatorname{var}(\mathbb{E}[Y|N]) = \operatorname{var}(N\mu) = \mu^2 \operatorname{var}[N]$$

$$var[Y|N] = Nvar[X_i]$$

$$\mathbb{E}[\mathsf{var}(Y|N)] = \mathbb{E}[N\mathsf{var}[X_i]] = \mathbb{E}[N]\mathsf{var}[X_i]$$

Questions?

- 1) What are the key steps to get the derived distributions of Y = g(X) or Z = g(X, Y)?
- 2) How can we compute the distribution of Z + X + Y when X and Y are independent?
- 3) What are covariance and correlation coefficient? Why do we need them?
- 4) Please explain the concepts of conditional expectation and conditional variance.