EC551: Lab Assignment #1

I) Half –Adder

1) Verilog Module File – Add_half_0_dealy.v

```
module Add_half_0_delay(sum, c_out, a, b);
input a, b;
output c_out, sum;
xor (sum, a, b);
and (c_out, a, b);
endmodule
```

2) Verilog Test Fixture File – t_Add_half.v

```
module t_Add_half();

// Inputs
wire sum, c_out;
reg a, b;

Add_half_0_delay M1(sum, c_out, a, b); //UUT

initial begin
#10 a = 0; b = 0;
#10 b = 1;
#10 a = 1;
#10 b = 0;
end
```

endmodule

3) ISIM Waveforms

Instead of Circling I used blue lines for easier clarity. First blue line = 1 and so on.

```
1<sup>st</sup> Line: A=0, B=0, A+B=0, Sum is zero, C\_out is zero 2<sup>nd</sup> Line: A=0, B=1, A+B=1, Sum is one, C\_out is zero 3<sup>rd</sup> Line: A=1, B=1, A+B=2, Sum is zero, C\_out is one 4<sup>th</sup> Line: A=1, B=0, A+B=1, Sum is one, C\_out is zero
```

4) RTL Schematic

5) Place & Route Report- At End of Document

II) Full-Adder

1) Verilog Module File – Full_add.v

```
module Full_add( sum, c_out, a, b, c_in);
output sum, c_out;
input a, b, c_in;
wire partial_c_out1, partial_c_out2, partial_sum;
Add_half_0_delay M1(partial_sum, partial_c_out1, a, b);
Add_half_0_delay M2(sum, partial_c_out2, c_in, partial_sum);
or(c_out, partial_c_out1, partial_c_out2);
endmodule
```

2) Verilog Test Fixture File – t_add_full.v

```
module t_add_full();
wire sum, c_out;
reg a, b,c_in;
```

```
Full_add F2(sum, c_out, a, b, c_in); //UUT
```

```
initial begin

#10 a = 0; b = 0; c_in = 0;

#10 b = 1;

#10 c_in = 1;

#10 a = 1;

#10 b = 0;

#10 c_in = 0;

#10 a = 0;

end

endmodule
```

3) ISIM Waveforms

1st Line: A=0, B=0, $C_i=0$, $A+B+C_i=0$, Sum is zero, C_out is zero 2nd Line: A=0, B=1, $C_i=1$, $A+B+C_i=2$, Sum is zero, C_out is one 3rd Line: A=1, B=1, $C_i=1$, $A+B+C_i=3$, Sum is one, C_out is one 4th Line: A=1, B=0, $C_i=1$, $A+B+C_i=2$, Sum is zero, C_out is one

4) RTL Schematic

5) Place & Route Report- At End of Document

6) User Constraints File

PlanAhead Generated physical constraints

```
NET "a" LOC = C4;

NET "b" LOC = D9;

NET "c_in" LOC = B8;

NET "c_out" LOC = U16;

NET "sum" LOC = V16;

# PlanAhead Generated IO constraints

NET "a" IOSTANDARD = LVCMOS25;

NET "c_out" DRIVE = 12;
```

III) Multiplier From Figure 5A

1) **Verilog Module File** – multi_5A.v

```
module multi_5A(c_out, sum, mk_out, qj_out, mk, qj, c_in, ppi);
    output mk_out, qj_out, sum, c_out;
    input qj, mk, c_in, ppi;
    wire or_out;

and (or_out, qj, mk);
    and (mk_out, mk, mk);
    and (qj_out, qj, qj);

Full_add F1(sum, c_out, or_out, ppi, c_in);
endmodule
```

2) **Verilog Test Fixture File** – test_multi_5A.v

```
module test_multi_5A();
        reg mk;
        reg qj;
        reg c_in;
        reg ppi;
        wire c_out;
        wire sum;
        wire mk_out;
        wire qj_out;
        multi_5A uut (
                 .c_out(c_out),
                 .sum(sum),
                 .mk_out(mk_out),
                 .qj_out(qj_out),
                 .mk(mk),
                  .qj(qj),
                 .c_in(c_in),
                 .ppi(ppi)
        );
```

```
initial begin  \begin{array}{l} \#10 \ mk = 0; \ qj = 0; \ c\_in = \!\! 0; \ ppi = 0; \\ \#10 \ ppi = 1; \\ \#10 \ qj = 1; \\ \#10 \ c\_in = 1; \\ \#10 \ mk = 1; \\ \#10 \ ppi = 0; \\ \#10 \ qj = 0; \\ \#10 \ c\_in = 0; \\ \#10 \ mk = 0; \\ \end{array}
```

endmodule

3) ISIM Waveforms

mk_out and qj_out should always equal mk and qj respectively, sum and c_out are the outputs of a full adder with inputs of ppi and (qj and mk)

1st Line: $\mathbf{ppi}=0$, $\mathbf{c_in}=0$, $\mathbf{qj}=0$, $\mathbf{mk}=0$, $(\mathbf{qj} \text{ and } \mathbf{mk}) + \mathbf{ppi} = 0$, \mathbf{Sum} is zero, $\mathbf{C_out}$ is zero, $\mathbf{mk_out}$ is zero, $\mathbf{qj_out}$ is zero

 2^{nd} Line: **ppi**=1, **c_in**=0, **qj**=1, **mk** = 0, **(qj and mk)** + **ppi** = 1, **Sum** is one, **C_out** is zero, **mk_out** is zero, **qj_out** is one

 3^{rd} Line: **ppi**=1, **c_in**=1, **qj**=1, **mk** = 1, (**qj** and **mk**) + **ppi** = 2, Sum is one, **C_out** is 1, **mk_out** is 1, **qj_out** is 1

 4^{th} Line: **ppi**=0, **c_in**=1, **qj**=0, **mk** = 1, (**qj** and **mk**) + **ppi** = 1, **Sum** is one, **C_out** is zero, **mk_out** is 1, **qj_out** is 0

4) RTL Schematic

5) Place & Route Report- At End of Document

IV) Multiplier From Figure 5B

1) Verilog Module File - mulit_5b.v

```
\label{eq:module multi_5b(c_out, sum, mk_out, q0_out, q1_out, mk, q0, q1, c_in, mk1);} \\ \text{output mk_out, q0_out, q1_out, sum, c_out;} \\ \text{input q0, q1, mk, mk1, c_in;} \\ \text{wire or_out, or_out2;} \\ \\ \text{and (or_out, q1, mk);} \\ \text{and (or_out2, q0, mk1);} \\ \\ \text{and (mk_out, mk, mk);} \\ \text{and (q0_out, q0, q0);} \\ \text{and (q1_out, q1, q1);} \\ \\ \text{Full_add F1(sum, c_out, or_out, or_out2, c_in);} \\ \\ \text{endmodule} \\ \\
```

2) **Verliog Test Fixture File** – test_multi_5b.v

```
module test_multi_5b;

// Inputs
reg mk;
reg q0;
reg q1;
reg c_in;
reg mk1;

// Outputs
wire c_out;
```

```
wire sum;
         wire mk out;
         wire q0_out;
         wire q1_out;
         // Instantiate the Unit Under Test (UUT)
         multi_5b uut (
                   .c_out(c_out),
                   .sum(sum),
                   .mk_out(mk_out),
                   .q0_out(q0_out),
                   .q1_out(q1_out),
                   .mk(mk),
                   .q0(q0),
                   .q1(q1),
                   .c_{in}(c_{in}),
                   .mk1(mk1)
         initial begin
                   #10 \text{ mk} = 0; q0 = 0; q1 = 0; c_{in} = 0; mk1 = 0;
                   #10 \text{ mk1} = 1;
                   #10 q0 = 1;
                   #10 q1 = 1;
                   #10 c_in = 1;
                   #10 \text{ mk} = 1:
                   #10 \text{ mk1} = 0;
                   #10 q0 = 0;
                   #10 q1 = 0;
                   #10 c_in = 0;
                   #10 \text{ mk} = 0;
         end
endmodule
```

3) ISIM Waveforms

 mk_out , $q1_out$ and $q0_out$ should always equal mk and q1 and q0 respectively, sum and c_out are the outputs of a full adder with inputs of ppi and (qj and mk)

 1^{st} Line: c_in=0, q0=0, q1=0, mk = 0, mk1 = 0, (q1 and mk) + (q0 and mk1) = 0, Sum is zero, C_out is zero, mk_out is zero, q0_out is zero, q1_out is zero

 2^{nd} Line: $\mathbf{c_in}=0$, $\mathbf{q0}=1$, $\mathbf{q1}=1$, $\mathbf{mk}=0$, $\mathbf{mk1}=1$, $(\mathbf{q1}$ and $\mathbf{mk})+(\mathbf{q0}$ and $\mathbf{mk1})=1$, Sum is one, C_out is zero, $\mathbf{mk_out}$ is zero, $\mathbf{q0_out}$ is one, $\mathbf{q1_out}$ is one

 3^{rd} Line: $\mathbf{c_in}=1$, $\mathbf{q0}=1$, $\mathbf{q1}=1$, $\mathbf{mk}=0$, $\mathbf{mk1}=0$, $(\mathbf{q1}$ and $\mathbf{mk})+(\mathbf{q0}$ and $\mathbf{mk1})=2$, Sum is zero, C_out is one, $\mathbf{mk_out}$ is one, $\mathbf{q0_out}$ is one, $\mathbf{q1_out}$ is one

 4^{th} Line: $c_in=1$, q0=1, q1=1, mk=0, mk1=1, (q1 and mk)+(q0 and mk1)=1, Sum is one, C_out is one, mk_out is one, $q0_out$ is one, $q1_out$ is one

4) RTL Schematic

5) Place & Route Report- At End of Document

V) 4 x 4 Multiplier Structural

module multi_4by4_struct(p,m,q);

1) Verilog Module File- mulit_4by4_struct.v

```
input [3:0] q;
input [3:0] m;
output [7:0] p;
wire c_out1, c_out2, c_out3, c_out4, c_out5, c_out6, c_out7, c_out8, c_out9, c_out10, c_out11;
wire p_out1, p_out2, p_out3, p_out4, p_out5, p_out6, p_out7, p_out8, p_out9;
wire diag_1, diag_2, diag_3, diag_4, diag_5, diag_6, diag_7, diag_8, diag_9, diag_10, diag_11, diag_12;
wire q_prop1, q_prop2, q_prop3, q_prop4, q_prop5, q_prop6, q_prop7, q_prop8;
wire q1_out1, q1_out2, q1_out3, q1_out4, q0out1, q0out2, q0out3, q0out4;
```

```
and (p[0], m[0], q[0]);
//first row
multi_5b B11(c_out1, p[1], diag_1, q0out1, q1_out1, m[0], q[0], q[1], 1'b0, m[1]);
multi_5b B12(c_out2, p_out1, diag_2, q0out2, q1_out2, m[1], q0out1, q1_out1, c_out1, m[2]);
multi_5b B13(c_out3, p_out2, diag_3, q0out3, q1_out3, m[2], q0out2, q1_out2, c_out2, m[3]);
multi_5b B14(c_out4, p_out3, diag_4, q0out4, q1_out4, m[3], q0out3, q1_out3, c_out3, 1b0);
//second row
multi_5A A21(c_out5, p[2], diag_5, q_prop1, diag_1, q[2], 1'b0, p_out1);
multi_5A A22(c_out6, p_out4, diag_6, q_prop2, diag_2, q_prop1, c_out5, p_out2);
multi_5A A23(c_out7, p_out5, diag_7, q_prop3, diag_3, q_prop2, c_out6, p_out3);
multi_5A A24(c_out8, p_out6, diag_8, q_prop4, diag_4, q_prop3, c_out7, c_out4);
//thrid row row
multi_5A A31(c_out9, p[3], diag_9, q_prop5, diag_5, q[3], 1'b0, p_out4);
multi_5A A32(c_out10, p[4], diag_10, q_prop6, diag_6, q_prop5, c_out9, p_out5);
multi_5A A33(c_out11, p[5], diag_11, q_prop7, diag_7, q_prop6, c_out10, p_out6);
multi_5A A34(p[7], p[6], diag_12, q_prop8, diag_5, q_prop7, c_out4, c_out8);
endmodule
            2) Verilog Test Fixture File – test multi 4by4 struct
                 module test_multi_4by4_struct;
                          reg [3:0] m;
                          reg [3:0] q;
                         // Outputs
                          wire [7:0] p;
                          multi 4by4 struct uut (
                                  .p(p),
                                  .m(m),
                                  .q(q)
                          );
                                  initial begin
                                  m = 4'b0000;
                                  q = 4'b0000;
                                  #100;
                                  m = 4'b0001;
                                  q = 4'b0000;
                                  #100;
                                  m = 4'b0011;
```

q = 4'b0010; #100;

endmodule

3) ISIM Waveforms

end

Name	Value	0 ns	200 ns	400 ns	600 ns
▶ 😽 p[7:0]	00100000	00000000	00000110		00100000
▶ 📷 m[3:0]	1000	0000 0001	0011		1000
▶ 등 q[3:0]	0100	0000	0010		0100

 1^{st} Line: 0 * 0 = 0 2^{nd} Line: 0 * 1 = 0 3^{rd} Line: 2 * 3 = 6 4^{th} Line: 4 * 8 = 32

4) RTL Schematic

5) Place & Route Report- At End of Document

VI) 4 x 4 Multiplier Behavioral

1) **Verlog Module File** – mulit_4by4_behav.v

```
\label{eq:module multi_4by4_behav(p,m,q);} \\ input [3:0] \ q; \\ input [3:0] \ m; \\ output [7:0] \ p; \\ \\ assign \ p = q \ ^* \ m; \\ endmodule
```

2) **Verliog Test Fixture File** – test_mulit_4by4_behav.v

```
module test_multi_4by4_behav;
        // Inputs
        reg [3:0] m;
        reg [3:0] q;
        // Outputs
        wire [7:0] p;
        // Instantiate the Unit Under Test (UUT)
        multi_4by4_behav uut (
                 .p(p),
                 .m(m),
                 .q(q)
        );
        initial begin
                 m = 4'b0000;
                 q = 4'b0000;
                 #100;
                 m = 4'b0001;
                 q = 4'b0000;
                 #100;
                 m = 4'b0011;
                 q = 4'b0010;
                 #100;
                 m = 4'b1000;
                 q = 4'b0100;
        end
endmodule
```

3) ISIM Waveforms

Name	Value	0 ns	200 ns	400 ns	600 ns
▶ 😽 p[7:0]	00100000	00000000	00000110		00100000
▶ 📷 m[3:0]	1000	0000 0001	0011		1000
▶ ■ q[3:0]	0100	0000	0010		0100

 1^{st} Line: 0 * 0 = 0 2^{nd} Line: 0 * 1 = 0 3^{rd} Line: 2 * 3 = 6 4^{th} Line: 4 * 8 = 32

4) RTL Schematic

5) Place & Route Report- At End of Document

VII) N x N Multiplier with N as parameter

1) Verilog Module File – multi_NbyN_behav.v

```
\begin{split} & module \ multi\_NbyN\_behav(p,m,q); \\ & parameter \ N=4; \\ & input \ [(N-1):0] \ q; \\ & input \ [(N-1):0] \ m; \\ & output \ [(2*N-1):0] \ p; \\ & assign \ p=q\ *\ m; \\ & endmodule \end{split}
```

2) Verilog Test Fixture File – test_multi_NbyN_behav.v

```
module test_multi_NbyN_behav;
    // Inputs
    reg [7:0] m;
    reg [7:0] q;
    // Outputs
    wire [15:0] p;
    // Instantiate the Unit Under Test (UUT)
    multi_NbyN_behav #(8) uut (
            .p(p),
            .m(m),
            .q(q)
    );
    initial begin
            m = 8'b00000000;
            q = 8'b00000000;
            m = 8'b00000001;
            q = 8'b00000000;
            #100;
            m = 8'b00000011;
            q = 8'b00000010;
            #100;
            m = 8'b00001000;
            q = 8'b00000100;
            #100;
            m = 8'b00001000;
            q = 8'b00010000;
    end
```

3) ISIM Waveforms

endmodule

Name	Value		, ,	100 ns	 200 ns	300 ns		400 ns	500	ns
p[15:	128		0		6	K	32		12	
▶ 😽 m[7:0	8	0		1	3	\leftarrow		8		
▶ 😽 q[7:0	16		0		2	\leftarrow	4		16	

 1^{st} Line: 0 * 0 = 0 2^{nd} Line: 0 * 1 = 0 3^{rd} Line: 2 * 3 = 6 4^{th} Line: 16 * 8 = 128

4) RTL schematic

5) Place & Route Report- At End of Document

Questions:

The behavioral implementation of the multiplier used 16 slices of logic while the structural implementation only used one.

The structural implementation of the multiplier has a maximum pin delay of 11.4 ns.

Overall the structural multiplier is better(less logic, faster) but requires more effort and detail in coding.

Timing Report:

Copyright (c) 1995-2011 Xilinx, Inc. All rights reserved.

 $\label{lem:c:xilinx} $$C:\times 13.3\times SE_DS\ISE\bin\nt64\unwrapped\tree.exe-intstyle is e-v 3-s 3-n 3-fastpaths-xml Full_add.twx Full_add.ncd-o Full_add.twr Full_add.pcf-ucf Full_add.ucf$

Design file: Full_add.ncd
Physical constraint file: Full_add.pcf

Device,package,speed: xc6slx16,csg324,C,-3 (PRODUCTION 1.20 2011-10-03)

Report level: verbose report

Environment Variable Effect

NONE No environment variables were set

INFO:Timing:2698 - No timing constraints found, doing default enumeration. INFO:Timing:2752 - To get complete path coverage, use the unconstrained paths

option. All paths that are not constrained will be reported in the unconstrained paths section(s) of the report.

INFO:Timing:3339 - The clock-to-out numbers in this timing report are based on a 50 Ohm transmission line loading model. For the details of this model, and for more information on accounting for different loading conditions, please see the device datasheet.

Data Sheet report:

All values displayed in nanoseconds (ns)

Pad to Pad

Source Pad |Destination Pad| Delay |

	+	
a	c_out	11.410
a	sum	11.777
b	c_out	10.531
b	sum	10.898
c_in	c_out	10.431
c_in	sum	10.798

Analysis completed Fri Sep 28 13:54:26 2012

Trace Settings:

Trace Settings

Peak Memory Usage: 213 MB

Place & Route Report Half Adder

Release 13.3 par O.76xd (nt64)

Copyright (c) 1995-2011 Xilinx, Inc. All rights reserved.

ECE-PHO115-01:: Fri Sep 28 13:07:27 2012

par -w -intstyle ise -ol high -mt off Add_half_0_delay_map.ncd Add_half_0_delay.ncd Add_half_0_delay.pcf

Constraints file: Add_half_0_delay.pcf.

Loading device for application Rf_Device from file '6slx16.nph' in environment C:\Xilinx\13.3\ISE_DS\ISE\.

"Add_half_0_delay" is an NCD, version 3.2, device xc6slx16, package csg324, speed - 3

Initializing temperature to 85.000 Celsius. (default - Range: 0.000 to 85.000 Celsius) Initializing voltage to 1.140 Volts. (default - Range: 1.140 to 1.260 Volts)

INFO:Par:282 - No user timing constraints were detected or you have set the option to ignore timing constraints ("par

-x"). Place and Route will run in "Performance Evaluation Mode" to automatically improve the performance of all

internal clocks in this design. Because there are not defined timing requirements, a timing score will not be

reported in the PAR report in this mode. The PAR timing summary will list the performance achieved for each clock.

Note: For the fastest runtime, set the effort level to "std". For best performance, set the effort level to "high".

Device speed data version: "PRODUCTION 1.20 2011-10-03".

Device Utilization Summary:

Slice Logic Utilization:

Number of Slice Registers: 0 out of 18,224 0% Number of Slice LUTs: 1 out of 9,112 1% Number used as logic: 1 out of 9,112 1%

Number using O6 output only: 0 Number using O5 output only: 0 Number using O5 and O6: 1 Number used as ROM: 0

Number used as Memory: 0 out of 2,176 0%

Slice Logic Distribution:

Number of occupied Slices: 1 out of 2,278 1% Number of MUXCYs used: 0 out of 4,556 0%

Number of LUT Flip Flop pairs used: 1

Number with an unused Flip Flop: 1 out of 1 100% Number with an unused LUT: 0 out of 1 0% Number of fully used LUT-FF pairs: 0 out of 1 0%

Number of slice register sites lost

to control set restrictions: 0 out of 18,224 0%

A LUT Flip Flop pair for this architecture represents one LUT paired with one Flip Flop within a slice. A control set is a unique combination of clock, reset, set, and enable signals for a registered element. The Slice Logic Distribution report is not meaningful if the design is over-mapped for a non-slice resource or if Placement fails.

IO Utilization:

Number of bonded IOBs: 4 out of 232 1%

Specific Feature Utilization:

Number of RAMB16BWERs: 0 out of 32 0% Number of RAMB8BWERs: 0 out of 64 0% Number of BUFIO2/BUFIO2_2CLKs: 0 out of 32 0% 0% Number of BUFIO2FB/BUFIO2FB 2CLKs: 0 out of 32 Number of BUFG/BUFGMUXs: 0 out of 16 0% Number of DCM/DCM CLKGENs: 0 out of 4 0% 0 out of 248 0% Number of ILOGIC2/ISERDES2s:

Number of IODELAY2/IODRP2/IODRP2_MCBs: 0 out of 248 0%

Number of OLOGIC2/OSERDES2s: 0 out of 248 0% Number of BSCANs: 0 out of 4 0% Number of BUFHs: 0 out of 128 0% Number of BUFPLLs: 0 out of 0% 8 Number of BUFPLL MCBs: 0 out of 4 0% Number of DSP48A1s: 0 out of 32 0% Number of ICAPs: 0 out of 1 0% Number of MCBs: 0 out of 2 0% Number of PCILOGICSEs: 0 out of 2 0% 2 0% Number of PLL ADVs: 0 out of Number of PMVs: 0 out of 1 0% Number of STARTUPs: 0 out of 1 0% Number of SUSPEND SYNCs: 0 out of 1 0%

Overall effort level (-ol): High Router effort level (-rl): High

Starting initial Timing Analysis. REAL time: 5 secs Finished initial Timing Analysis. REAL time: 5 secs

Starting Router

Phase 1:5 unrouted; REAL time: 5 secs

Phase 2:5 unrouted; REAL time: 5 secs

Phase 3:0 unrouted; REAL time: 5 secs

Phase 4:0 unrouted; (Par is working to improve performance) REAL time: 6 secs

Updating file: Add_half_0_delay.ncd with current fully routed design.

Phase 5:0 unrouted; (Par is working to improve performance) REAL time: 7 secs

Phase 6:0 unrouted; (Par is working to improve performance) REAL time: 7 secs

Phase 7:0 unrouted; (Par is working to improve performance) REAL time: 7 secs

Phase 8:0 unrouted; (Par is working to improve performance) REAL time: 7 secs

Phase 9:0 unrouted; (Par is working to improve performance) REAL time: 7 secs

Phase 10: 0 unrouted; (Par is working to improve performance) REAL time: 7 secs

Total REAL time to Router completion: 7 secs Total CPU time to Router completion: 5 secs

Partition Implementation Status

No Partitions were found in this design.

Generating "PAR" statistics.

INFO:Par:459 - The Clock Report is not displayed in the non timing-driven mode.

Timing Score: 0 (Setup: 0, Hold: 0)

Generating Pad Report.

All signals are completely routed.

Total REAL time to PAR completion: 18 secs Total CPU time to PAR completion: 7 secs

Peak Memory Usage: 303 MB

Placer: Placement generated during map. Routing: Completed - No errors found.

Number of error messages: 0 Number of warning messages: 0 Number of info messages: 2

Writing design to file Add_half_0_delay.ncd

PAR done!

Place & Route Report Full Adder

Copyright (c) 1995-2011 Xilinx, Inc. All rights reserved.

ECE-PHO115-01:: Fri Sep 28 13:30:19 2012

par -w -intstyle ise -ol high -mt off Full_add_map.ncd Full_add.ncd Full_add.pcf

Constraints file: Full_add.pcf.

Loading device for application Rf_Device from file '6slx16.nph' in environment C:\Xilinx\13.3\ISE_DS\ISE\.

"Full_add" is an NCD, version 3.2, device xc6slx16, package csg324, speed -3

Initializing temperature to 85.000 Celsius. (default - Range: 0.000 to 85.000 Celsius) Initializing voltage to 1.140 Volts. (default - Range: 1.140 to 1.260 Volts)

INFO:Par:282 - No user timing constraints were detected or you have set the option to ignore timing constraints ("par

-x"). Place and Route will run in "Performance Evaluation Mode" to automatically improve the performance of all

internal clocks in this design. Because there are not defined timing requirements, a timing score will not be

reported in the PAR report in this mode. The PAR timing summary will list the performance achieved for each clock.

Note: For the fastest runtime, set the effort level to "std". For best performance, set the effort level to "high".

Device speed data version: "PRODUCTION 1.20 2011-10-03".

Device Utilization Summary:

Slice Logic Utilization:

Number of Slice Registers: 0 out of 18,224 0% Number of Slice LUTs: 1 out of 9,112 1% Number used as logic: 1 out of 9,112 1%

Number using O6 output only: 0 Number using O5 output only: 0 Number using O5 and O6: 1 Number used as ROM: 0

Number used as Memory: 0 out of 2,176 0%

Slice Logic Distribution:

Number of occupied Slices: 1 out of 2,278 1% Number of MUXCYs used: 0 out of 4,556 0%

Number of LUT Flip Flop pairs used: 1

Number with an unused Flip Flop: 1 out of 1 100% Number with an unused LUT: 0 out of 1 0% Number of fully used LUT-FF pairs: 0 out of 1 0%

Number of slice register sites lost

to control set restrictions: 0 out of 18,224 0%

A LUT Flip Flop pair for this architecture represents one LUT paired with one Flip Flop within a slice. A control set is a unique combination of clock, reset, set, and enable signals for a registered element. The Slice Logic Distribution report is not meaningful if the design is over-mapped for a non-slice resource or if Placement fails.

IO Utilization:

Number of bonded IOBs: 5 out of 232 2%

Specific Feature Utilization:

Number of RAMB16BWERs: 0 out of 32 0% Number of RAMB8BWERs: 0 out of 64 0% Number of BUFIO2/BUFIO2_2CLKs: 0 out of 32 0% Number of BUFIO2FB/BUFIO2FB_2CLKs: 0 out of 32 0% Number of BUFG/BUFGMUXs: 0 out of 16 0% Number of DCM/DCM_CLKGENs: 0 out of 0% Number of ILOGIC2/ISERDES2s: 0 out of 248 0%

Number of IODELAY2/IODRP2/IODRP2_MCBs: 0 out of 248 0%

Number of OLOGIC2/OSERDES2s: 0 out of 248 0%

Number of BSCANs: 0 out of 4 0% Number of BUFHs: 0 out of 128 0% 0% Number of BUFPLLs: 0 out of 8 Number of BUFPLL MCBs: 0 out of 4 0% Number of DSP48A1s: 0 out of 32 0% Number of ICAPs: 0 out of 1 0% Number of MCBs: 0 out of 0% Number of PCILOGICSEs: 2 0%

Number of PCILOGICSEs: 0 out of 2 0% Number of PLL_ADVs: 0 out of 2 0% Number of PMVs: 0 out of 1 0% Number of STARTUPs: 0 out of 1 0% Number of SUSPEND SYNCs: 0 out of 1 0%

Overall effort level (-ol): High Router effort level (-rl): High

Starting initial Timing Analysis. REAL time: 5 secs Finished initial Timing Analysis. REAL time: 5 secs

Starting Router

Phase 1:6 unrouted; REAL time: 5 secs

Phase 2:6 unrouted; REAL time: 5 secs

Phase 3:0 unrouted; REAL time: 5 secs

Phase 4:0 unrouted; (Par is working to improve performance) REAL time: 6 secs

Updating file: Full_add.ncd with current fully routed design.

Phase 5:0 unrouted; (Par is working to improve performance) REAL time: 6 secs

Phase 6:0 unrouted; (Par is working to improve performance) REAL time: 6 secs

Phase 7:0 unrouted; (Par is working to improve performance) REAL time: 6 secs

Phase 8:0 unrouted; (Par is working to improve performance) REAL time: 6 secs

Phase 9:0 unrouted; (Par is working to improve performance) REAL time: 6 secs

Phase 10:0 unrouted; (Par is working to improve performance) REAL time: 6 secs

Total REAL time to Router completion: 6 secs Total CPU time to Router completion: 5 secs

Partition Implementation Status

No Partitions were found in this design.

Generating "PAR" statistics.

INFO:Par:459 - The Clock Report is not displayed in the non timing-driven mode.

Timing Score: 0 (Setup: 0, Hold: 0)

Generating Pad Report.

All signals are completely routed.

Total REAL time to PAR completion: 16 secs Total CPU time to PAR completion: 6 secs Peak Memory Usage: 305 MB

Placer: Placement generated during map. Routing: Completed - No errors found.

Number of error messages: 0 Number of warning messages: 0 Number of info messages: 2

Writing design to file Full_add.ncd

PAR done!

Place & Route Report multiplier figure 5A

Copyright (c) 1995-2011 Xilinx, Inc. All rights reserved.

ECE-PHO115-01:: Fri Sep 28 14:18:26 2012

par -w -intstyle ise -ol high -mt off multi_5A_map.ncd multi_5A.ncd multi_5A.pcf

Constraints file: multi_5A.pcf.

Loading device for application Rf_Device from file '6slx16.nph' in environment C:\Xilinx\13.3\ISE_DS\ISE\.

"multi_5A" is an NCD, version 3.2, device xc6slx16, package csg324, speed -3

Initializing temperature to 85.000 Celsius. (default - Range: 0.000 to 85.000 Celsius) Initializing voltage to 1.140 Volts. (default - Range: 1.140 to 1.260 Volts)

INFO:Par:282 - No user timing constraints were detected or you have set the option to ignore timing constraints ("par

-x"). Place and Route will run in "Performance Evaluation Mode" to automatically improve the performance of all

internal clocks in this design. Because there are not defined timing requirements, a timing score will not be

reported in the PAR report in this mode. The PAR timing summary will list the performance achieved for each clock.

Note: For the fastest runtime, set the effort level to "std". For best performance, set the effort level to "high".

Device speed data version: "PRODUCTION 1.20 2011-10-03".

Device Utilization Summary:

Slice Logic Utilization:

Number of Slice Registers: 0 out of 18,224 0%

Number of Slice LUTs: 1 out of 9,112 1%

Number used as logic: 1 out of 9,112 1%

Number using O6 output only: 0

Number using O6 output only: 0
Number using O5 output only: 0
Number using O5 and O6: 1
Number used as ROM: 0

Number used as Memory: 0 out of 2,176 0%

Slice Logic Distribution:

Number of occupied Slices: 1 out of 2,278 1% Number of MUXCYs used: 0 out of 4,556 0%

Number of LUT Flip Flop pairs used: 1

Number with an unused Flip Flop: 1 out of 1 100% Number with an unused LUT: 0 out of 1 0% Number of fully used LUT-FF pairs: 0 out of 1 0%

Number of slice register sites lost

to control set restrictions: 0 out of 18,224 0%

A LUT Flip Flop pair for this architecture represents one LUT paired with one Flip Flop within a slice. A control set is a unique combination of clock, reset, set, and enable signals for a registered element. The Slice Logic Distribution report is not meaningful if the design is over-mapped for a non-slice resource or if Placement fails.

IO Utilization:

Number of bonded IOBs: 8 out of 232 3%

Specific Feature Utilization:

32 0% Number of RAMB16BWERs: 0 out of 0 out of Number of RAMB8BWERs: 64 0% Number of BUFIO2/BUFIO2 2CLKs: 0 out of 32 0% Number of BUFIO2FB/BUFIO2FB_2CLKs: 0 out of 32 0% Number of BUFG/BUFGMUXs: 0 out of 16 0% Number of DCM/DCM CLKGENs: 0 out of 4 0% Number of ILOGIC2/ISERDES2s: 0 out of 248 0%

Number of IODELAY2/IODRP2/IODRP2_MCBs: 0 out of 248 0%

Number of OLOGIC2/OSERDES2s: 0 out of 248 0%

Number of BSCANs: 0 out of 4 0% 128 Number of BUFHs: 0 out of 0% Number of BUFPLLs: 0 out of 8 0% 4 0% Number of BUFPLL MCBs: 0 out of 0% Number of DSP48A1s: 0 out of 32 Number of ICAPs: 0 out of 0% 1 Number of MCBs: 0 out of 0% 2 Number of PCILOGICSEs: 0 out of 2 0% Number of PLL_ADVs: 0 out of 2 0% Number of PMVs: 0 out of 1 0% Number of STARTUPs: 0 out of 1 0% Number of SUSPEND_SYNCs: 0 out of 1 0%

Overall effort level (-ol): High Router effort level (-rl): High

Starting initial Timing Analysis. REAL time: 5 secs Finished initial Timing Analysis. REAL time: 5 secs

Starting Router

Phase 1:9 unrouted; REAL time: 5 secs

Phase 2:9 unrouted; REAL time: 5 secs

Phase 3:10 unrouted; REAL time: 5 secs

Phase 4:10 unrouted; (Par is working to improve performance) REAL time: 6 secs

Updating file: multi_5A.ncd with current fully routed design.

Phase 5:0 unrouted; (Par is working to improve performance) REAL time: 6 secs

Phase 6:0 unrouted; (Par is working to improve performance) REAL time: 6 secs

Phase 7:0 unrouted; (Par is working to improve performance) REAL time: 6 secs

Phase 8:0 unrouted; (Par is working to improve performance) REAL time: 6 secs

Phase 9:0 unrouted; (Par is working to improve performance) REAL time: 6 secs

Phase 10: 0 unrouted; (Par is working to improve performance) REAL time: 6 secs

Total REAL time to Router completion: 6 secs Total CPU time to Router completion: 5 secs

Partition Implementation Status

_

No Partitions were found in this design.

Generating "PAR" statistics.

INFO:Par:459 - The Clock Report is not displayed in the non timing-driven mode.

Timing Score: 0 (Setup: 0, Hold: 0)

Generating Pad Report.

All signals are completely routed.

Total REAL time to PAR completion: 20 secs Total CPU time to PAR completion: 7 secs

Peak Memory Usage: 305 MB

Placer: Placement generated during map. Routing: Completed - No errors found.

Number of error messages: 0 Number of warning messages: 0 Number of info messages: 2

Writing design to file multi_5A.ncd

PAR done!

Place & Route Report multiplier figure 5b

Copyright (c) 1995-2011 Xilinx, Inc. All rights reserved.

ECE-PHO115-01:: Fri Sep 28 14:40:11 2012

par -w -intstyle ise -ol high -mt off multi_5b_map.ncd multi_5b.ncd multi_5b.pcf

Constraints file: multi_5b.pcf.

Loading device for application Rf_Device from file '6slx16.nph' in environment $C:\Xilinx\13.3\ISE_DS\ISE\$.

"multi_5b" is an NCD, version 3.2, device xc6slx16, package csg324, speed -3

Initializing temperature to 85.000 Celsius. (default - Range: 0.000 to 85.000 Celsius) Initializing voltage to 1.140 Volts. (default - Range: 1.140 to 1.260 Volts)

INFO:Par:282 - No user timing constraints were detected or you have set the option to ignore timing constraints ("par

-x"). Place and Route will run in "Performance Evaluation Mode" to automatically improve the performance of all

internal clocks in this design. Because there are not defined timing requirements, a timing score will not be

reported in the PAR report in this mode. The PAR timing summary will list the performance achieved for each clock.

Note: For the fastest runtime, set the effort level to "std". For best performance, set the effort level to "high".

Device speed data version: "PRODUCTION 1.20 2011-10-03".

Device Utilization Summary:

Slice Logic Utilization:

Number of Slice Registers: 0 out of 18,224 0% Number of Slice LUTs: 1 out of 9,112 1% Number used as logic: 1 out of 9,112 1%

Number using O6 output only: 0 Number using O5 output only: 0 Number using O5 and O6: 1 Number used as ROM:

Number used as Memory: 0 out of 2,176 0%

Slice Logic Distribution:

Number of occupied Slices: 1 out of 2,278 1% Nummber of MUXCYs used: 0 out of 4,556 0%

Number of LUT Flip Flop pairs used:

1 Number with an unused Flip Flop: 1 out of 1 100% Number with an unused LUT: 0 out of 1 0% Number of fully used LUT-FF pairs: 0 out of 1 0%

Number of slice register sites lost

to control set restrictions: 0 out of 18,224 0% A LUT Flip Flop pair for this architecture represents one LUT paired with one Flip Flop within a slice. A control set is a unique combination of clock, reset, set, and enable signals for a registered element. The Slice Logic Distribution report is not meaningful if the design is over-mapped for a non-slice resource or if Placement fails.

IO Utilization:

Number of bonded IOBs: 10 out of 232 4%

Specific Feature Utilization:

Number of RAMB16BWERs: 0 out of 32 Number of RAMB8BWERs: 0 out of 64 0% Number of BUFIO2/BUFIO2 2CLKs: 0 out of 32 0% Number of BUFIO2FB/BUFIO2FB 2CLKs: 0 out of 32 0% Number of BUFG/BUFGMUXs: 0 out of 16 0% Number of DCM/DCM CLKGENs: 0 out of 4 0% Number of ILOGIC2/ISERDES2s: 0 out of 248 0%

Number of IODELAY2/IODRP2/IODRP2_MCBs: 0 out of 248 0%

Number of OLOGIC2/OSERDES2s: 0 out of 248 0%

Number of BSCANs: 0 out of 4 0% Number of BUFHs: 0 out of 128 0% Number of BUFPLLs: 0 out of 8 0% Number of BUFPLL_MCBs: 0 out of 4 0% Number of DSP48A1s: 32 0% 0 out of Number of ICAPs: 0 out of 1 0% Number of MCBs: 0 out of 0% 2 Number of PCILOGICSEs: 0 out of 2 0% Number of PLL ADVs: 0 out of 2 0% 1 0% Number of PMVs: 0 out of Number of STARTUPs: 0 out of 1 0% Number of SUSPEND_SYNCs: 0 out of 1 0%

Overall effort level (-ol): High Router effort level (-rl): High

Starting initial Timing Analysis. REAL time: 5 secs Finished initial Timing Analysis. REAL time: 5 secs

Starting Router

Phase 1:11 unrouted; REAL time: 5 secs

Phase 2:11 unrouted; REAL time: 5 secs

Phase 3:2 unrouted; REAL time: 5 secs

Phase 4: 2 unrouted; (Par is working to improve performance) REAL time: 6 secs

Updating file: multi_5b.ncd with current fully routed design.

Phase 5:0 unrouted; (Par is working to improve performance) REAL time: 6 secs

Phase 6:0 unrouted; (Par is working to improve performance) REAL time: 6 secs

Phase 7:0 unrouted; (Par is working to improve performance) REAL time: 6 secs

Phase 8:0 unrouted; (Par is working to improve performance) REAL time: 6 secs

Phase 9:0 unrouted; (Par is working to improve performance) REAL time: 6 secs

Phase 10: 0 unrouted; (Par is working to improve performance) REAL time: 6 secs

Total REAL time to Router completion: 6 secs Total CPU time to Router completion: 5 secs

Partition Implementation Status

No Partitions were found in this design.

Generating "PAR" statistics.

INFO:Par:459 - The Clock Report is not displayed in the non timing-driven mode.

Timing Score: 0 (Setup: 0, Hold: 0)

Generating Pad Report.

All signals are completely routed.

Total REAL time to PAR completion: 19 secs Total CPU time to PAR completion: 7 secs

Peak Memory Usage: 305 MB

Placer: Placement generated during map. Routing: Completed - No errors found.

Number of error messages: 0 Number of warning messages: 0 Number of info messages: 2

Writing design to file multi_5b.ncd

PAR done!

Place & Route Report 4x4 Structural Multiplier

Release 13.3 par O.76xd (nt64)

Copyright (c) 1995-2011 Xilinx, Inc. All rights reserved.

ECE-PHO115-01:: Fri Sep 28 13:53:57 2012

par -w -intstyle ise -ol high -mt off Full_add_map.ncd Full_add.ncd Full_add.pcf

Constraints file: Full_add.pcf.

Loading device for application Rf_Device from file '6slx16.nph' in environment

 $C:\Xilinx\13.3\ISE_DS\ISE\$.

"Full_add" is an NCD, version 3.2, device xc6slx16, package csg324, speed -3

Initializing temperature to 85.000 Celsius. (default - Range: 0.000 to 85.000 Celsius) Initializing voltage to 1.140 Volts. (default - Range: 1.140 to 1.260 Volts)

INFO:Par:282 - No user timing constraints were detected or you have set the option to ignore timing constraints ("par

-x"). Place and Route will run in "Performance Evaluation Mode" to automatically improve the performance of all

internal clocks in this design. Because there are not defined timing requirements, a timing score will not be

reported in the PAR report in this mode. The PAR timing summary will list the performance achieved for each clock.

Note: For the fastest runtime, set the effort level to "std". For best performance, set the effort level to "high".

Device speed data version: "PRODUCTION 1.20 2011-10-03".

Device Utilization Summary:

Slice Logic Utilization:

Number of Slice Registers: 0 out of 18,224 0%
Number of Slice LUTs: 1 out of 9,112 1%
Number used as logic: 1 out of 9,112 1%
Number using O6 output only: 0
Number using O5 output only: 0

Number using O5 and O6: 1
Number used as ROM: 0

Number used as Memory: 0 out of 2,176 0%

Slice Logic Distribution:

Number of occupied Slices: 1 out of 2,278 1% Number of MUXCYs used: 0 out of 4,556 0%

Number of LUT Flip Flop pairs used: 1

Number with an unused Flip Flop: 1 out of 1 100% Number with an unused LUT: 0 out of 1 0% Number of fully used LUT-FF pairs: 0 out of 1 0%

Number of slice register sites lost

to control set restrictions: 0 out of 18,224 0%

A LUT Flip Flop pair for this architecture represents one LUT paired with one Flip Flop within a slice. A control set is a unique combination of clock, reset, set, and enable signals for a registered element. The Slice Logic Distribution report is not meaningful if the design is over-mapped for a non-slice resource or if Placement fails.

IO Utilization:

Number of bonded IOBs: 5 out of 232 2% Number of LOCed IOBs: 5 out of 5 100%

Specific Feature Utilization:

Number of RAMB16BWERs: 0 out of 32 0%

Number of RAMB8BWERs: 0 out of 64 0%

Number of BUFIO2/BUFIO2_2CLKs: 0 out of 32 0%

Number of BUFIO2FB/BUFIO2FB_2CLKs: 0 out of 32 0%

Number of BUFG/BUFGMUXS: 0 out of 16 0%

Number of BUFG/BUFGMUXs: 0 out of 16 0% Number of DCM/DCM_CLKGENs: 0 out of 4 0% Number of ILOGIC2/ISERDES2s: 0 out of 248 0%

Number of IODELAY2/IODRP2/IODRP2_MCBs: 0 out of 248 0%

Number of OLOGIC2/OSERDES2s: 0 out of 248 0%

4 0% Number of BSCANs: 0 out of Number of BUFHs: 0 out of 128 0% Number of BUFPLLs: 0 out of 8 0% 4 0% Number of BUFPLL MCBs: 0 out of Number of DSP48A1s: 0 out of 0% 32 1 0% Number of ICAPs: 0 out of Number of MCBs: 0 out of 2 0% Number of PCILOGICSEs: 0 out of 2 0% Number of PLL_ADVs: 0 out of 2 0% Number of PMVs: 0 out of 1 0% Number of STARTUPs: 0 out of 1 0% Number of SUSPEND_SYNCs: 0 out of 1 0%

Overall effort level (-ol): High Router effort level (-rl): High

Starting initial Timing Analysis. REAL time: 5 secs Finished initial Timing Analysis. REAL time: 5 secs

Starting Router

Phase 1:6 unrouted; REAL time: 5 secs

Phase 2:6 unrouted; REAL time: 5 secs

Phase 3: 4 unrouted; REAL time: 5 secs

Phase 4:4 unrouted; (Par is working to improve performance) REAL time: 6 secs

Updating file: Full_add.ncd with current fully routed design.

Phase 5:0 unrouted; (Par is working to improve performance) REAL time: 6 secs

Phase 6:0 unrouted; (Par is working to improve performance) REAL time: 6 secs

Phase 7:0 unrouted; (Par is working to improve performance) REAL time: 6 secs

Phase 8:0 unrouted; (Par is working to improve performance) REAL time: 6 secs

Phase 9:0 unrouted; (Par is working to improve performance) REAL time: 6 secs

Phase 10: 0 unrouted; (Par is working to improve performance) REAL time: 6 secs

Total REAL time to Router completion: 6 secs Total CPU time to Router completion: 5 secs

Partition Implementation Status

No Partitions were found in this design.

Generating "PAR" statistics.

INFO:Par:459 - The Clock Report is not displayed in the non timing-driven mode.

Timing Score: 0 (Setup: 0, Hold: 0)

Generating Pad Report.

All signals are completely routed.

Total REAL time to PAR completion: 18 secs Total CPU time to PAR completion: 7 secs

Peak Memory Usage: 305 MB

Placer: Placement generated during map. Routing: Completed - No errors found.

Number of error messages: 0 Number of warning messages: 0 Number of info messages: 2

Writing design to file Full_add.ncd

PAR done!

Place & Route Report 4x4 Behavioral Multiplier

Release 13.3 par O.76xd (nt64)

Copyright (c) 1995-2011 Xilinx, Inc. All rights reserved.

ECE-PHO115-08:: Tue Oct 02 14:41:57 2012

par -w -intstyle ise -ol high -mt off multi_4by4_behav_map.ncd multi_4by4_behav.ncd multi_4by4_behav.pcf

Constraints file: multi_4by4_behav.pcf.

Loading device for application Rf_Device from file '6slx16.nph' in environment

C:\Xilinx\13.3\ISE DS\ISE\.

"multi_4by4_behav" is an NCD, version 3.2, device xc6slx16, package csg324, speed -3

Initializing temperature to 85.000 Celsius. (default - Range: 0.000 to 85.000 Celsius) Initializing voltage to 1.140 Volts. (default - Range: 1.140 to 1.260 Volts)

INFO:Par:282 - No user timing constraints were detected or you have set the option to ignore timing constraints ("par

-x"). Place and Route will run in "Performance Evaluation Mode" to automatically improve the performance of all

internal clocks in this design. Because there are not defined timing requirements, a timing score will not be

reported in the PAR report in this mode. The PAR timing summary will list the performance achieved for each clock.

Note: For the fastest runtime, set the effort level to "std". For best performance, set the effort level to "high".

Device speed data version: "PRODUCTION 1.20 2011-10-03".

Device Utilization Summary:

Slice Logic Utilization:

Number of Slice Registers:0 out of 18,224 0%Number of Slice LUTs:16 out of 9,112 1%Number used as logic:16 out of 9,112 1%

Number using O6 output only: 15
Number using O5 output only: 0
Number using O5 and O6: 1
Number used as ROM: 0

Number used as Memory: 0 out of 2,176 0%

Slice Logic Distribution:

Number of occupied Slices: 7 out of 2,278 1% Number of MUXCYs used: 8 out of 4,556 1%

Number of LUT Flip Flop pairs used: 16

Number with an unused Flip Flop: 16 out of 16 100% Number with an unused LUT: 0 out of 16 0% Number of fully used LUT-FF pairs: 0 out of 16 0%

Number of slice register sites lost

to control set restrictions: 0 out of 18,224 0%

A LUT Flip Flop pair for this architecture represents one LUT paired with one Flip Flop within a slice. A control set is a unique combination of clock, reset, set, and enable signals for a registered element. The Slice Logic Distribution report is not meaningful if the design is over-mapped for a non-slice resource or if Placement fails.

IO Utilization:

Number of bonded IOBs: 16 out of 232 6%

Specific Feature Utilization:

Number of RAMB16BWERs: 0 out of 32 0% Number of RAMB8BWERs: 0 out of 64 0% Number of BUFIO2/BUFIO2 2CLKs: 0 out of 32 0% Number of BUFIO2FB/BUFIO2FB 2CLKs: 0 out of 32 0% Number of BUFG/BUFGMUXs: 0 out of 16 0% Number of DCM/DCM_CLKGENs: 0 out of 4 0% 0 out of Number of ILOGIC2/ISERDES2s: 248 0%

Number of IODELAY2/IODRP2/IODRP2_MCBs: 0 out of 248 0%

Number of OLOGIC2/OSERDES2s: 0 out of 248 0%

Number of BSCANs: 0 out of 4 0% Number of BUFHs: 0 out of 128 0% Number of BUFPLLs: 0 out of 8 0% Number of BUFPLL MCBs: 0 out of 4 0% Number of DSP48A1s: 0 out of 32 0% Number of ICAPs: 0 out of 1 0% Number of MCBs: 0 out of 2 0% Number of PCILOGICSEs: 0 out of 2 0% Number of PLL ADVs: 0 out of 2 0% Number of PMVs: 0 out of 1 0% 1 0% Number of STARTUPs: 0 out of Number of SUSPEND_SYNCs: 0 out of 1 0%

Overall effort level (-ol): High Router effort level (-rl): High

Starting initial Timing Analysis. REAL time: 5 secs Finished initial Timing Analysis. REAL time: 5 secs

Starting Router

Phase 1:97 unrouted; REAL time: 5 secs

Phase 2:97 unrouted; REAL time: 5 secs

Phase 3:59 unrouted; REAL time: 5 secs

Phase 4:59 unrouted; (Par is working to improve performance) REAL time: 6 secs

Updating file: multi_4by4_behav.ncd with current fully routed design.

Phase 5:0 unrouted; (Par is working to improve performance) REAL time: 7 secs

Phase 6:0 unrouted; (Par is working to improve performance) REAL time: 7 secs

Phase 7:0 unrouted; (Par is working to improve performance) REAL time: 7 secs

Phase 8:0 unrouted; (Par is working to improve performance) REAL time: 7 secs

Phase 9:0 unrouted; (Par is working to improve performance) REAL time: 7 secs

Phase 10: 0 unrouted; (Par is working to improve performance) REAL time: 7 secs

Total REAL time to Router completion: 7 secs Total CPU time to Router completion: 5 secs

Partition Implementation Status

No Partitions were found in this design.

Generating "PAR" statistics.

INFO:Par:459 - The Clock Report is not displayed in the non timing-driven mode.

Timing Score: 0 (Setup: 0, Hold: 0)

Generating Pad Report.

All signals are completely routed.

Total REAL time to PAR completion: 20 secs Total CPU time to PAR completion: 6 secs

Peak Memory Usage: 308 MB

Placer: Placement generated during map. Routing: Completed - No errors found.

Number of error messages: 0 Number of warning messages: 0 Number of info messages: 2

Writing design to file multi_4by4_behav.ncd

PAR done!

Place & Route Report NxN Muliplier

Release 13.3 par O.76xd (nt64) Copyright (c) 1995-2011 Xilinx, Inc. All rights reserved.

ECE-PHO115-08:: Tue Oct 02 14:58:21 2012

par -w -intstyle ise -ol high -mt off multi_NbyN_behav_map.ncd multi_NbyN_behav.ncd multi_NbyN_behav.pcf

Constraints file: multi_NbyN_behav.pcf.

Loading device for application Rf_Device from file '6slx16.nph' in environment C:\Xilinx\13.3\ISE_DS\ISE\.

"multi_NbyN_behav" is an NCD, version 3.2, device xc6slx16, package csg324, speed -3

Initializing temperature to 85.000 Celsius. (default - Range: 0.000 to 85.000 Celsius) Initializing voltage to 1.140 Volts. (default - Range: 1.140 to 1.260 Volts)

INFO:Par:282 - No user timing constraints were detected or you have set the option to ignore timing constraints ("par

-x"). Place and Route will run in "Performance Evaluation Mode" to automatically improve the performance of all

internal clocks in this design. Because there are not defined timing requirements, a timing score will not be

reported in the PAR report in this mode. The PAR timing summary will list the performance achieved for each clock.

Note: For the fastest runtime, set the effort level to "std". For best performance, set the effort level to "high".

Device speed data version: "PRODUCTION 1.20 2011-10-03".

Device Utilization Summary:

Slice Logic Utilization:

Number of Slice Registers: 0 out of 18,224 0% Number of Slice LUTs: 16 out of 9,112 1% Number used as logic: 16 out of 9,112 1%

Number using O6 output only: 15 Number using O5 output only: 0 Number using O5 and O6: 1 Number used as ROM:

Number used as Memory: 0 out of 2,176 0%

Slice Logic Distribution:

Number of occupied Slices: 7 out of 2,278 1% Nummber of MUXCYs used: 8 out of 4,556 1%

Number of LUT Flip Flop pairs used: 16

Number with an unused Flip Flop: 16 out of 16 100% Number with an unused LUT: 0 out of 16 0% Number of fully used LUT-FF pairs: 0 out of 16 0%

Number of slice register sites lost

to control set restrictions: 0 out of 18,224 0%

A LUT Flip Flop pair for this architecture represents one LUT paired with one Flip Flop within a slice. A control set is a unique combination of clock, reset, set, and enable signals for a registered element. The Slice Logic Distribution report is not meaningful if the design is over-mapped for a non-slice resource or if Placement fails.

IO Utilization:

Number of bonded IOBs: 16 out of 232 6%

Specific Feature Utilization:

Number of RAMB16BWERs: 0 out of 32 0% Number of RAMB8BWERs: 0 out of 64 0% Number of BUFIO2/BUFIO2 2CLKs: 32 0% 0 out of Number of BUFIO2FB/BUFIO2FB 2CLKs: 0 out of 32 0% Number of BUFG/BUFGMUXs: 0 out of 16 0% Number of DCM/DCM CLKGENs: 0 out of 4 0% Number of ILOGIC2/ISERDES2s: 0 out of 248 0%

Number of IODELAY2/IODRP2/IODRP2 MCBs: 0 out of 248 0%

Number of OLOGIC2/OSERDES2s: 0 out of 248

Number of BSCANs: 0 out of 4 0% 128 Number of BUFHs: 0 out of 0% Number of BUFPLLs: 0 out of 0% 4 0% Number of BUFPLL MCBs: 0 out of Number of DSP48A1s: 0 out of 32 0% Number of ICAPs: 0 out of 1 0% Number of MCBs: 0 out of 2 0% Number of PCILOGICSEs: 0 out of 2 0% Number of PLL_ADVs: 0 out of 2 0% 1 0% Number of PMVs: 0 out of

Number of STARTUPs: 0 out of 0% 0%

Number of SUSPEND_SYNCs: 0 out of 1 Overall effort level (-ol): High Router effort level (-rl): High

Starting initial Timing Analysis. REAL time: 5 secs Finished initial Timing Analysis. REAL time: 5 secs

Starting Router

Phase 1:97 unrouted; REAL time: 5 secs

Phase 2:97 unrouted; REAL time: 5 secs

Phase 3:59 unrouted; REAL time: 5 secs

Phase 4:59 unrouted; (Par is working to improve performance) REAL time: 6 secs

Updating file: multi_NbyN_behav.ncd with current fully routed design.

Phase 5:0 unrouted; (Par is working to improve performance) REAL time: 6 secs

Phase 6:0 unrouted; (Par is working to improve performance) REAL time: 6 secs

Phase 7:0 unrouted; (Par is working to improve performance) REAL time: 6 secs

Phase 8:0 unrouted; (Par is working to improve performance) REAL time: 6 secs

Phase 9:0 unrouted; (Par is working to improve performance) REAL time: 6 secs

Phase 10: 0 unrouted; (Par is working to improve performance) REAL time: 6 secs

Total REAL time to Router completion: 6 secs Total CPU time to Router completion: 5 secs

Partition Implementation Status

No Partitions were found in this design.

Generating "PAR" statistics.

INFO:Par:459 - The Clock Report is not displayed in the non timing-driven mode.

Timing Score: 0 (Setup: 0, Hold: 0)

Generating Pad Report.

All signals are completely routed.

Total REAL time to PAR completion: 20 secs Total CPU time to PAR completion: 7 secs

Peak Memory Usage: 307 MB

Placer: Placement generated during map.

Routing: Completed - No errors found.

Number of error messages: 0 Number of warning messages: 0 Number of info messages: 2

Writing design to file multi_NbyN_behav.ncd

PAR done!