Wichtige mathematische Befehle

Ausgabe	Befehl
$a \cdot b$	a \cdot b
x^{12}	x^{12}
n_{ij}	n_{ij}
\sqrt{y}	\sqrt{y}
$\sqrt[5]{x^2}$	\sqrt[5]{x^2}
$\frac{x}{y}$	\frac{x}{y}
$\frac{x}{y}$	\dfrac{x}{y}
$x \le 1; \ y \ge 1$	x \leq 1; y \geq 1
$0 \neq 1$	0 \neq 1
$x \approx 3$	x \approx 3
$(a+b)^2$	(a+b)^2
$\left(\frac{x^2}{3y}\right)^5$	$\left(\frac{x^2}{3y} \right)^5$
\overrightarrow{AB}	\vec{AB}
$\begin{pmatrix} 3 \\ 4 \end{pmatrix}$	\Vek{3}{4}{}
$\begin{pmatrix} x \\ y \\ z \end{pmatrix}$	\Vek{x}{y}{z}

Ausgabe	Befehl
$\mathbb{N},\mathbb{Z},\mathbb{Q},\mathbb{R},\mathbb{C}$	\mathbb{N}, \mathbb{Z},
$x \in \mathbb{R}$	x \in \mathbb{R}
$x \notin \mathbb{R}$	x \notin \mathbb{R}
$\mathbb{N}\subset\mathbb{Z}\subseteq\mathbb{Q}$	$\label{local_nathbb} $$ \mathbb{N}\simeq \mathbb{Q}$$
$\mathbb{N}\cap(\mathbb{P}\cup\mathbb{Z})$	$\label{local_part} $$ \mathbf{N} \simeq (\mathbb{P} \subset \mathbb{Z}) $$$
$\sin(x), \cos(x), \tan(x)$	$\sin(x), \cos(x), \tan(x)$
$lpha,eta,\gamma,\pi$	\alpha, \beta, \gamma, \pi
$\sum_{x=0}^{\infty} a_n$	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$\prod_{i=1}^{n} x_i^2$	$\prod\limits_{i=1}^{n}{x_i^2}$
$\int_{a}^{b} x^{2} dx$	$\left[a\right]^{b} x^2 dx$
$\lim_{x \to \infty} \frac{1}{x} = 0$	$\label{lim:limits_{x \to \inf y} frac_{1}_{x}=0} $$ \lim \lim_{x \to \infty} x \to \inf y. $$ infty} $$$
$\log_2 8 = 3$	\log_2 8=3
\rightarrow , \leftarrow	\rightarrow, \leftarrow
\Rightarrow , \Leftarrow	\Rightarrow, \Leftarrow
$x = 2, \ y = 2$	x=2, ~ y=2
x = 2, y = 2	x=2, y=2

x=2, \qquad y=2

 $x = 2, \qquad y = 2$