Maciej Byczko	Prowadzący:	Numer ćwiczenia	
Bartosz Matysiak dr inż. Jacek Mazurkiew		2	
PN 10:50 TP	Temat ćwiczenia:	Ocena:	
	Układy Kombinacyjne	0 0011611	
Grupa:	Data wykonania:		
В	10 Października 2021		

Spis treści

1	Zad	nie 1	2
	1.1	Polecenie	. 2
	1.2	Rozwiązanie	. 2
		1.2.1 Schemat układu	
		1.2.2 Kod VHDL	. 2
		1.2.3 Symulacja	
2	Zad	nie 2	3
	2.1	Polecenie	. 3
	2.2	Rozwiązanie	. 3
		2.2.1 Wyprowadzenie	. 3
		2.2.2 Tabela prawdy	. 4
		2.2.3 Siatka Karnaugh	. 4
		2.2.4 Schemat układu	. 5
		2.2.5 Kod VHDL	. 5
		2.2.6 Symulacja	. 6
;	Zad	nie 3	6
	3.1	Polecenie	. 6
	3.2	Rozwiązanie	. 7
		3.2.1 Tabela Prawdy	
		3.2.2 Siatki Karnaugh	
		3.2.3 Schemat układu	
		3.2.4 Kod VHDL	
		3.9.5 Symulagia	

1 Zadanie 1

1.1 Polecenie

Wykonać dowolną bramkę - funktor: 2 wejścia, 1 wyjście

1.2 Rozwiązanie

1.2.1 Schemat układu

1.2.2 Kod VHDL

```
LIBRARY ieee;
  USE ieee.std_logic_1164.ALL;
  USE ieee.numeric_std.ALL;
  LIBRARY UNISIM;
  USE UNISIM. Vcomponents. ALL;
  ENTITY schematic_zad1_schematic_zad1_sch_tb IS
  END schematic zad1 schematic zad1 sch tb;
  ARCHITECTURE behavioral OF schematic_zad1_schematic_zad1_sch_tb IS
     COMPONENT schematic zad1
10
      PORT(
              IN 1
                    : IN
                           STD LOGIC;
11
                     : IN
              IN_2
                           STD_LOGIC;
12
              OUT 1:
                       OUT STD_LOGIC);
      END COMPONENT;
14
15
      SIGNAL IN 1
                    : STD LOGIC;
16
                    : STD_LOGIC;
      SIGNAL IN_2
17
      SIGNAL OUT_1:
                       STD_LOGIC;
18
19
  BEGIN
20
21
      UUT: schematic_zad1 PORT MAP(
22
       IN 1 \Rightarrow IN 1,
23
       IN_2 \implies IN_2,
24
       OUT_1 \implies OUT_1
25
      );
26
  IN_1 = '0', '1' \text{ after } 100 \text{ ns},
                                      '0' after 300 ns;
  IN 2 <= '0',
                 '1' after 200 ns,
                                     '0' after 400 ns;
30
  END;
```

1.2.3 Symulacja

2 Zadanie 2

2.1 Polecenie

Implementacja funkcji logicznej $G(w, x, y, z) = \prod (0, 2, 3, 4, 6, 7, 9, 11, 12, 13, 15)$

2.2 Rozwiązanie

2.2.1 Wyprowadzenie

$$G(w, x, y, z) = \prod (0, 2, 3, 4, 6, 7, 9, 11, 12, 13, 15)$$

$$= \sum (1, 5, 8, 10, 14) = \sum (0001, 0101, 1000, 1010, 1110)$$

$$= \overline{w} \overline{y} z + \overline{w} x \overline{y} z + w \overline{x} y \overline{z} + w x y \overline{z}$$

$$= \overline{w} \overline{y} z (\overline{x} + x) + w \overline{z} (\overline{x} \overline{y} + \overline{x} y + x y)$$

$$= \overline{w} \overline{y} z + w \overline{z} (\overline{x} (\overline{y} + y) + x y)$$

$$= \overline{w} \overline{y} z + w \overline{z} (\overline{x} + x y)$$

$$= \overline{w} \overline{y} z + w \overline{z} ((\overline{x} + x)(\overline{x} + y))$$

$$= \overline{w} \overline{y} z + w \overline{z} ((\overline{x} + y))$$

$$= \overline{w} \overline{y} z + w \overline{z} ((\overline{x} + y))$$

$$= \overline{w} \overline{y} z + w \overline{z} z + w \overline{z} y$$

$$(9)$$

2.2.2 Tabela prawdy

Kod dziesiętny	W	X	У	Z	G
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	0
3	0	0	1	1	0
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	0
7	0	1	1	1	0
8	1	0	0	0	1
9	1	0	0	1	0
10	1	0	1	0	1
11	1	0	1	1	0
12	1	1	0	0	0
13	1	1	0	1	0
14	1	1	1	0	1
15	1	1	1	1	0

2.2.3 Siatka Karnaugh

Rysunek 1: $G_{wxyz} = w\overline{x}\overline{z} + \overline{w}\overline{y}z + wy\overline{z}$

2.2.4 Schemat układu

2.2.5 Kod VHDL

```
LIBRARY ieee;
  USE ieee.std_logic_1164.ALL;
  USE ieee.numeric std.ALL;
  LIBRARY UNISIM;
  USE UNISIM. Vcomponents. ALL;
  ENTITY schematic_zad2_schematic_zad2_sch_tb_IS
  END schematic zad2 schematic zad2 sch tb;
  ARCHITECTURE behavioral OF schematic_zad2_schematic_zad2_sch_tb IS
     COMPONENT schematic_zad2
10
             w : IN
                      STD_LOGIC;
     PORT(
11
             x : IN
                      STD LOGIC;
12
             y : IN
                      STD_LOGIC;
13
             : IN STD_LOGIC;
14
                       : OUT STD_LOGIC);
             G_{wxyz}
15
     END COMPONENT;
16
      SIGNAL w : STD\_LOGIC := '0';
18
     SIGNAL x : STD LOGIC := '0';
19
     SIGNAL y : STD\_LOGIC := '0';
20
    SIGNAL z
              : STD\_LOGIC := '0';
21
     SIGNAL G_wxyz : STD_LOGIC;
22
23
  BEGIN
24
     UUT: schematic_zad2 PORT MAP(
26
       w \implies w,
27
```

```
x \implies x,
28
        y \implies y \;,
29
         z \implies z,
30
        G_wxyz \implies G_wxyz
31
32
33
        w <= not w after 800ns;
34
        x \le not x after 400 ns;
35
        y \ll not y after 200 ns;
       z \ll not z after 100 ns;
37
   END;
```

2.2.6 Symulacja

3 Zadanie 3

3.1 Polecenie

Implementacja układu translatora kodu 4-bit kod NKB na 4-bit kod Aikena

3.2 Rozwiązanie

3.2.1 Tabela Prawdy

Kod dziesiętny	NKB				Kod Aikena			
	W	X	у	z	W	X	у	z
0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	1
2	0	0	1	0	0	0	1	0
3	0	0	1	1	0	0	1	1
4	0	1	0	0	0	1	0	0
5	0	1	0	1	1	0	1	1
6	0	1	1	0	1	1	0	0
7	0	1	1	1	1	1	0	1
8	1	0	0	0	1	1	1	0
9	1	0	0	1	1	1	1	1
10	1	0	1	0	-	-	-	-
11	1	0	1	1	-	-	-	-
12	1	1	0	0	-	-	-	-
13	1	1	0	1	_	-	-	-
14	1	1	1	0	_	-	-	_
15	1	1	1	1	_	-	-	-

3.2.2 Siatki Karnaugh

$$x_A = x\overline{z} + xy + w$$

		yz					
		00	01	11	10		
wx	00	0	1	1	0		
	01	0	1	1	0		
	11	-	-	-	-		
	10	0	1	-	-		

$$y_A = \overline{x}y + x\overline{y}z + w$$

 $z_A = z$

3.2.3 Schemat układu

$3.2.4 \mod VHDL$

```
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;
LIBRARY UNISIM;
USE UNISIM.Vcomponents.ALL;
ENTITY NKB_to_Aiken_schematic_NKB_to_Aiken_schematic_sch_tb_IS
```

```
END NKB_to_Aiken_schematic_NKB_to_Aiken_schematic_sch_tb;
   ARCHITECTURE behavioral OF
          NKB_to_Aiken_schematic_NKB_to_Aiken_schematic_sch_tb_IS
9
10
      COMPONENT NKB_to_Aiken_schematic
11
                  : IN
                          STD_LOGIC;
      PORT(X_3
12
       X 2 : IN
                   STD LOGIC;
13
              X_1 : IN
                          STD_LOGIC;
14
              X_0 : IN
                          STD_LOGIC;
              Y 3: OUT STD LOGIC;
              Y_2 : OUT STD_LOGIC;
17
              Y_1 : OUT STD_LOGIC;
              Y 0 : OUT STD LOGIC);
19
      END COMPONENT;
20
21
      SIGNAL X_3: STD_LOGIC := '0';
22
      SIGNAL X 2 : STD LOGIC := '0';
23
      SIGNAL X_1 : STD_LOGIC := '0';
24
      SIGNAL X_0 : STD_LOGIC := '0';
25
      SIGNAL Y_3 : STD_LOGIC;
26
      SIGNAL Y_2 : STD_LOGIC;
27
      SIGNAL Y_1 : STD_LOGIC;
28
      SIGNAL Y_0 : STD_LOGIC;
30
  BEGIN
31
32
      UUT: NKB_to_Aiken_schematic PORT MAP(
33
       X_3 => X_3,
34
       X_2 => X_2,
35
       X_1 => X_1,
       X_0 => X_0,
37
       Y \ 3 \implies Y \ 3,
38
       Y 2 \implies Y 2,
39
       Y_1 => Y_1,
40
       Y = Y = 0
41
      );
42
       X_3 \le not X_3 \text{ after } 800 ns;
       X = 2 \ll not X = after = 400 ns;
45
       X_1 \le not X_1 \text{ after } 200 ns;
46
       X_0 \le not X_0 after 100 ns;
47
48
  END;
```

3.2.5 Symulacja

