Міністерство освіти і науки України Львівський національний університет імені Івана Франка Кафедра радіофізики та комп'ютерних технологій

Звіт

про виконання

лабораторної роботи № 4

"Моделювання проекту в САПРQuartus II"

Виконала

студентка групи ФЕІ - 41

Литвин Віра

Перевірив

доц. Рабик В.Г.

Мета роботи:

вивчення засобів моделювання проектів на основі програмованих логічних інтегральних схем в середовищіQuartus II;

реалізація конкретних цифрових схем та їх моделювання; експериментальна перевірка їх роботи на ПЛІСГРGA Cyclone III лабораторного стендуDE0.

Варіант роботи - 1.

Завдання:

- 1. За допомогою САПР Quartus II реалізувати схему логічної функції, приведеної в табл. 4.1. $F(x_2, x_1) = \neg x_2 \neg x_1 + x_2 x_1$ на основі логічних елементів 2АБО НІ. Виконати моделювання в часовій області отриманої схеми в САПР Quartus II. Перевірити роботу спроєктованого пристрою на лабораторному стенді DE0. Для цього сконфігурувати ПЛІС FPGA Cyclone III. До входів отриманого пристрою підключити перемикачі, а до виходу світлодіод. Входи X2, X1 підключити відповідно до SW[1], SW[0]. Вихід пристрою Y підключити до світлодіоду LEDG[2].
- 2. З допомогою САПР Quartus II реалізувати схему мажоритарного елементу на три входи на основі логічних елементів 3I-НЕ. Виконати часовій роботі. моделювання отриманої схеми В Перевірити лабораторному стенді DE0. мажоритарного елемента на сконфігурувати ПЛІС FPGA Cyclone III. До входів отриманого пристрою підключити перемикачі, а до виходу - світлодіод. Входи ХЗ, Х2, Х1 підключити відповідно до SW[2], SW[1], SW[0]. Вихід пристрою У підключити до світлодіоду LEDG[2].

Виконання роботи:

- 1. Створюємо теку для зберігання файлів проекту та новий проект.
- 2. Отримуємо з таблиці логічну функцію відповідно до варіанту. $F(x_2 \ , x_1) = \neg x_2 \neg x_1 + x_2 x_1$
- 3. За допомогою закону де Моргана та його наслідків спрощуємо отриману логічну функцію з метою виключення логічного множення. $F(x_2,x_1) = \neg(x_2+x_1) + \neg(\neg x_2+\neg x_1)$
 - 4. Запишемо табличку істинності для отриманого виразу.

X_1	X_2	$\neg X_1$	$\neg X_2$	$\neg(X_1+X_2)$	$\neg(\neg X_1 + \neg X_2)$	F
0	0	1	1	1	0	1
1	0	0	1	0	0	0
0	1	1	0	0	0	0
1	1	9	0	0	1	1

5. Складаємо схему відповідно до отриманої логічної функції Компілюємо проект.

6. Проводимо конфігурацію ПЛІС FPGA Cyclone III. Повторно компілюємо проект.

Node Name		Direction	Location	I/O Bank	VREF Group
•	F	Output	PIN_J3	1	B1_N1
	X1	Input	PIN_J6	1	B1_N0
	X2	Input	PIN_H5	1	B1_N0
	< <new node="">></new>				

7. Виконаємо моделювання в часовій області отриманої схеми в САПР Quartus II.

- 8. Як можна побачити, виходячи із значення **F** часової діаграми, результати моделювання такі ж, як результуючі значення з побудованої таблички істинності.
 - 9. Складемо табличку істинності для мажоритарного елемента.

X_1	X_2	X_3	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

10. На основі таблички запишемо логічну функцію в ДДНФ.

$$F = \neg X_3 X_2 X_1 + X_3 \neg X_2 X_1 + X_3 X_2 \neg X_1 + X_3 X_2 X_1$$

11. Проведемо мінімізацію за допомогою карти Карно.

	$\neg X_2 \neg X_1$	$\neg X_2 X_1$	X_2X_1	$X_2 \neg X_1$
X_3		1	1	1
$\neg X_3$			1	

$$F = X_3 X_1 + X_3 X_2 + X_2 X_1$$

12. Застосуємо до отриманої логічної функції закон де Моргана.

$$F = \neg(\neg(X_3X_1) \neg(X_3X_2) \neg(X_2X_1))$$

13. Складаємо схему мажоритарного елемента. Компілюємо проект.

14. Проводимо під'єднання до виводів ПЛІС. Повторно компілюємо.

•	OUT	Output	PIN_F1	1	B1_N0
	X1	Input	PIN_F2	1	B1_N0
	X2	Input	PIN_F3	1	B1_N0
	X3	Input	PIN_F5	1	B1_N0
	< <new node="">></new>				

15. Проводимо моделювання в часовій області.

16. Як бачимо з рисунку, вихід схеми співпадає зі значенням Y в таблиці істинності для мажоритарного елемента.

Висновок: Під час виконання лабораторної роботи було розроблено схему цифрового пристрою у відповідності з варіантом, а також реалізовано цифрову модель мажоритарного елемента на базі 3І-НЕ елементів. Розглянуто процес моделювання у часовій області для вищезгаданих цифрових пристроїв у САПР Quartus II.