Q1) 12	2 points (2 p	oints each)						
Arrange the following (Use ">" or "<" to show decreasing and increasing order, respectively. If two								
option	s have the sa							
a)	Decreasing	ecreasing order of wavelength of a photon for the following transitions in a H atom (assume all						
	given transi	itions are possible	e):					
	2s to 3p	3d to 2p	1s to 3p	2p to 1s	3d to 1s			
b)	Increasing	boiling point:						
	Hexane;	2,3-dimethyll	outane; 2-1	methylpropane;	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	OH		
c)	Decreasing	number delocali	zed electroi	ns				
	Benzene	O ₃		CO ₂	HCOO-			
d)	Increasing	number of unpai	red electror	ns				
	Mo ²⁺	Zn ²⁺		Fe ³⁺	Zr^{2+}			
e)	Decreasing	g size						
	Cs ⁺	Sr ²⁺		I ⁻	Mg^{2+}			
f)	Increasing	number of valen	ce electrons	5				
	F	In		Mn	Ru			
	Chem110 Fi	nal Exam		Fall 2019		Page 2 of 20		

	structure of H ₃ PO ₃ in both of which all of the atoms have						
	formal charge, but each have <u>different molecular geometry</u> at the central atom (P).						
	· · · · · · · · · · · · · · · · · · ·						
	metry around phosphorous atom for both the Lewis						
structures. 8 points							
Structure 1:	Structure 2:						
Molecular Geometry around P:	Molecular Geometry around P:						
b) Are these Lewis structures resonance stru	uctures of each other? Why or why not? 1 points						
,	, , ,						

Fall 2019

Page 3 of 20

Chem110 Final Exam

	$\mathbf{IE_1}$	IE_2	IE ₃	IE4	element are	IE ₆	IE ₇	IE ₈
X	1314	3388	5296	7467	10987	13320	71320	84070
What is	element X?	Briefly exp	plain your	reasoning.	3 points			
Using th	e ionization	energy va	lues given	above, calo	culate the <u>lo</u>	west frequ	uency (3 si	ig. figures)
photon t	hat can rem	ove an elec	tron from	the ground	state atom	X? Show o	calculations	s. 5 points

Chem110 Final Exam Fall 2019 Page 4 of 20

l) 11	1 points
a)	A photon of wavelength 300 nm strikes an electron in a metal. The work function of the metal i $3.5 \times 10^{-19} \text{J}$. What is the velocity (ms ⁻¹ ; 2 significant figures) of the electron ejected, assuming it was initially at rest? Show calculations. 7 points
b)	Without doing any calculations, predict the change (increase, decrease, or no change) for the
	following, if the wavelength of the photon was changed to 200 nm. 4 points
	1. Work function of the metal:
	2. Velocity of the electron:
	3. Number of electrons ejected:

For the indicated atoms (denoted with an arrow), (i) to (iv), answer the following questions. Lone pairs are **not** indicated in the structure. All atoms have formal charge of 0.

a) (2 points) Describe the orbitals involved in all bonds formed by C(i). Designate sigma and pi bonds.

b) For (ii)

1. **(1 point)** Indicate the <u>molecular geometry</u> at O:

2. (1 point) Circle the one value that best describes the C-O-H bond angle.

$$>109.5^{\circ}$$
 to $<120^{\circ}$

c) For (iii)

1. (1 points) Indicate the <u>hybridization</u> at C(iii):

2. (3 points) Consider x as the bond axis, how many p_x - p_x and p_y - p_y pi bonds does (iii) have?

$$p_x$$
- p_x pi bonds = p_y - p_y pi bonds = p_y

d) For (iv)

1. (1 point) Indicate the molecular geometry at (iv):

2. (1 point) Circle the one value that best describes the H-N-C bond angle.

$$>90^{\circ}$$
 to $<109.5^{\circ}$

$$>109.5^{\circ}$$
 to $<120^{\circ}$

$$>120^{\circ}$$
 to <180

00.1	
a)	Draw the molecular orbital (MO) diagram for N_2 (valence orbitals only). Label all the atomic and molecular orbitals (No need to show contribution/dotted lines from atomic orbitals). What is the bond order for N_2 ? 6 points
b)	Based on MO diagrams only, predict which of the following has the higher ionization energy
	(IE) in each case, and why? 4 points
	1. Higher IE: N_2 or N_2^{2-}
	2. Higher IE: C ₂ or C ₂ ² -
	2. Higher II. C ₂ of C ₂

Q7) 11 points

- a) Carbon can form bonds with itself as well as other elements. 5 points
 - i. In addition to the halogens, what 5 other atoms most *commonly* bond to carbon in organic compounds? (symbols or names are accepted)
 - ii. Which of those 5 atoms in part *i* are heteroatoms?
 - iii. From the 5 atoms in part i, which elements are more electronegative than carbon?
 - iv. From the 5 atoms in part *i*, which elements are less electronegative than carbon?
- b) Circle and name the type of functional groups in each compound below. Specify if each is primary, secondary, or tertiary. **6 points**

Q8) 17 points

a) Draw the following structures in the space provided. 3 points

2-pentyne	trans-but-2-ene	1,4-dimethylcyclohexane

b) Circle any problems with the structures drawn below and draw the *corrected* structures as carbon skeletons. **6 points**

Question 8 continued on next page

c) Provide the correct IUPAC names for the following structures. If necessary, specify cis vs trans.

6 points

d) Taking the iodo as your reference, indicate the position of the other substituents as ortho, meta, para.

2 points

Br	Group	ortho, meta, para
FOH		
H ₃ C CI	fluoro	
	bromo	
	hydroxyl	
	methyl	

Q9) 12 points

a) Circle all the chiral centres in the structures below. 3 points

b) Give each molecule the appropriate stereochemical assignment (R vs S). Explain the steps you use to assign R vs S. 6 points

c) Draw the Newman projection of the molecule below in the box provided, from the perspective

indicated. 3 points

Page 11 of 20

Q10) 11 points

a) What is the definition of a nucleophile? 1 point

b) Circle the stronger nucleophile in each pair, and explain why it is a stronger nucleophile. 6 points

Nucleophiles	Reason
H ₂ O vs OH ⁻	
Br vs F	
NH ₂ - vs NH ₃	
CH ₃ - vs NH ₂ -	

c) Label each reaction event below with either the bonding-breaking type or the specific reaction type.

Choose the type that **best** describes the reaction event drawn. **4 points**

Choices: substitution, addition, elimination, rearrangement, heterolytic cleavage, homolytic cleavage

Reaction scheme	Reaction type (one best choice)
O + $-NH_2$ O + $-OH$	
: CI	
+ HCN → OH CN	
H_CI	

Q11) Draw the products of the reactions (carbon skeleton). 8 points

012	10	points

a) Draw a reaction energy diagram for a concerted, exothermic reaction. Include all the necessary labels.

5 points

b) Complete the S_N2 reaction below. If there is a key intermediate or transition state, be sure to draw this and label if it is a transition state or an intermediate. Draw the curved arrows to show the movement of electrons (making and breaking bonds). **5 points**

Q13) 8 points

a) What is the coordination number of the complex and oxidation state of the transition metal in the following coordination complexes? **6 points**

Coordination complex	Oxidation state	Coordination
		number
Co(en) ₂ Cl ₂]OH		
Br, NH ₃ H ₃ N Br		
etraamminebromochloroplatinum(IV)	
chloride		

b) In $[Cr(OH)_6]^{3-}$, is the chromium ion diamagnetic or paramagnetic? Show the electron configuration to explain why chromium is either diamagnetic or paramagnetic. **2 points**

Q14) 8 points

a) Provide the systematic name for the following two coordination compounds. 2 points

$$\mathsf{K}_{4} \left[\begin{matrix} \mathsf{CN} \\ \mathsf{NC} & \mathsf{CN} \\ \mathsf{CN} \end{matrix} \right]$$

$$[\mathsf{Zn}(\mathsf{H}_{2}\mathsf{O})\mathsf{Cl}(\mathsf{en})_{2}]\mathsf{Br}$$

b) If any of the following complexes can exist as isomers, state the type of isomerism and draw the structures. **6 points**

[Zn(en)F ₂]	[Zn(H ₂ O)(NH ₃)FCl]	[PtCl ₂ Br ₂] ²⁻ (square planar)

i.		ii.
Coordination	Maximum absorbance	
complex	λ	$[Ti(NH_3)_6]^{3+}$
$[Fe(A)_6]^{3+}$	700 nm	$[\mathrm{Ti}\mathrm{F}_{6}]^{3-}$
$[{\rm Ti}({\rm A})_6]^{3+}$	510 nm	$[\mathrm{Ti}(\mathrm{CN})_6]^{3-}$
$[Cr(B)_6]^{3-}$	400 nm	$[Ti(H_2O)_6]^{3+}$
$[Fe(B)_6]^{3-}$	305 nm	
) Why is the +2 ox	xidation state so common am	ong transition elements? 1 point
) How does the va	riation in atomic size across	a transition series contrast with the variation across
) How does the va	riation in atomic size across	a transition series contrast with the variation across y explain why there is a difference for the transition
) How does the va	riation in atomic size across	a transition series contrast with the variation across

Q15) 5 points