Parsing Top-Down

Maria Rita Di Berardini

Dipartimento di Matematica e Informatica Universitá di Camerino mariarita.diberardini@unicam.it

Parser Top-Down

- Costruiscono l'albero di derivazione dalla radice alle foglie
 - un tentativo di ottenere una derivazione leftmost della stringa in input
 - ad ogni passo espandono il non terminale più a sinistra che non ha figli
- Parser con backtracking
 - possono dover ritornare sulle proprie scelte nel momento in cui si accorgoni di non poter derivare la stringa in input
 - piuttosto inefficienti: nel caso pessimo deve operare tutte le scelta per tutti i possibili non terminali
- Parser predittivi
 - sono in grado di "indovinare" ad ogni passo la produzione che porterà alla derivazione della stringa
 - analizzano il minimo numero di simboli (tipicamente 1) necessari per prendere la scelta giusta (simboli di lookahead)

Parser predittivi

- Per ogni non terminale A con alternative $A \rightarrow \alpha_1 \mid \alpha_2 \mid \ldots \mid \alpha_n$ e per ogni simbolo di lookahead a esiste una sola alternativa di A in grado di generare stringhe che cominciano per a
- Esempio:

```
stmt → if expr then stmt else stmt
| while expr do stmt
| begin stmt_list end
```

- Parser predittivi ricorsivi
- Parser predittivi non ricorsivi (iterativi): utilizzano uno stack

Parser predittivi ricorsivi: un esempio

• Consideriamo la seguente grammatica:

```
\begin{array}{ccc} \textit{type} & \rightarrow & \textit{simple} \\ & | & \uparrow \textit{id} \\ & | & \textit{array}[\textit{simple}] \textit{ of type} \end{array}
simple → integer | char
                   | char
| num dotdot num
```

- Di cosa abbiamo bisogno per scrivere un parser predittivo ricorsivo per la grammatica data? Di una procedura che:
 - matcha con i simboli terminali (e fa scorrere il simbolo di lookahead)
 - per ogni non terminale e per ogni simbolo di lookahead riconosce quale produzione della grammatica utilizzare

La procedura type

```
procedure type;
begin
    if (lookahead is in {integer, char, num}) then
         simple(); //type \rightarrow simple
    else if (lookahead = '↑') then
         begin //type \rightarrow \uparrow id
             match(↑): match(id):
         end
    else if (lookahead = array) then
             begin //type \rightarrow array[simple] of type
                  match(array); match('['); simple(); match(']');
                  match(of); type();
              end
             else error;
end;
```

Le procedura simple e match

```
procedure simple;
begin
    if (lookahead = integer) then
        match(integer); //simple → integer
    else if (lookahead = char) then
            match(char);//simple → char
        else if (lookahead = num) then //simple → num dotdot num
                match(num); match(dotdot); match(num);
            else error;
end;
procedura match (t:token);
begin
    if (lookahead = t) then
        lookahead = next_token(); cerca il prossimo token
    else error;
end;
```

Parser predittivi non ricorsivi: struttura

Lo stack contiene simboli terminali, non terminali ed il simbolo \$

M è una tabella indicizzata da non terminali e da simboli in $\Sigma \cup \{\$\}$. Dato un non terminale A ed un simbolo a in $\Sigma \cup \{\$\}$, M[A,a] restituisce una produzione della forma $A \to \alpha$ oppure un errore. M[A,a] indica quale mossa eseguire

Il comportamento del parser dipende dal simbolo X in testa allo stack e dal corrente simbolo a in input

L'output della programma è un albero di derivazione per la stringa in input oppure un messaggio di errore

Programma di parsing

Configurazione iniziale: STACK: S (dove S è non terminale iniziale), INPUT: W (dove W è la stringa da parsare)

Il comportamento del parser dipende dal simbolo X in testa allo stack e dal simbolo corrente di input a:

- **1** Se X = a = \$: il parser termina con successo
- ② Se $X = a \neq \$$: elimina il simbolo a in testa allo stack (pop(a)) e fa avanzare il simbolo di lookahead
- § Se X è un <u>non terminale</u> consulta l'entrata M[X, a] della tabella di parsing. Abbiamo due possibili casi:
 - i. M[X, a] := X → UVW: elimina X dallo stack ed inserisce i simboli W, V e U. L'ordine di inserimento dei simboli non è casuale: il simbolo più a sinistra (in questo caso U) deve trovarsi in testa alla pila (pop(X); push(W); push(V); push(U)). Stampa la produzione X → UVW
 - ii. M[X, a] := error: il parser chiama una procedura di recovery dell'errore

4□ > 4□ > 4 = > 4 = > = 900

Un Esempio

	id	+	*	()	\$
Ε	$E \rightarrow TE'$			$E \rightarrow TE'$		
E'		$E' \rightarrow +TE'$			$E' \rightarrow \varepsilon'$	$E' o \varepsilon'$
T	$T \rightarrow FT'$			T o FT'		
T'		$T' o \varepsilon$	$T' \rightarrow *FT'$		$T' \rightarrow \varepsilon'$	T' o arepsilon'
F	$F \rightarrow id$			$F \rightarrow (E)$		

Un Esempio

stack	input	output
\$E	id + id * id \$	
\$E'T	id + id * id \$	E o TE'
\$E'T'F	id + id * id \$	T o FT'
\$E'T' id	id + id * id \$	$F \rightarrow id$
\$E'T'	+ id * id \$	
\$E'	+ id * id \$	T' o arepsilon
\$E'T +	+ id * id \$	$E' \rightarrow +TE'$
\$E'T	id * id \$	$E' \rightarrow +TE'$
\$E'T'F	id * id \$	T o FT'
\$E'T'id	id * id \$	F o id
\$E'T'	* id \$	
\$E'T'F *	* id \$	T' o *FT'
\$E'T'F	id \$	
\$E'T' id	id \$	F o id
\$E'T'	\$	
\$E'	\$	T' oarepsilon
\$'	\$	$E' \to \varepsilon$

Output

Due funzioni ausiliarie: FIRST e FOLLOW

- La funzione FIRST:
 - è definita su stringhe $\alpha \in (V \cup \Sigma)^*$
 - FIRST(α) restituisce l'insieme dei terminali con cui iniziamo stringhe derivabili da α :

$$\alpha \stackrel{*}{\Rightarrow} a\beta \text{ implica } a \in \mathsf{FIRST}(\alpha)$$

• può anche contenere la stringa ε :

$$\alpha \stackrel{*}{\Rightarrow} \varepsilon \text{ implica } \varepsilon \in \mathsf{FIRST}(\alpha)$$

Due funzioni ausiliarie: FIRST e FOLLOW

- La funzione FOLLOW:
 - è definita su non terminali della grammatica
 - FOLLOW(A) restituisce l'insieme dei terminali che compaiono immediatamente a destra di A in qualche forma sentenziale:

$$S \stackrel{*}{\Rightarrow} \alpha A a \beta$$
 implica $a \in FOLLOW(A)$

• può anche contenere il simbolo \$:

$$S \stackrel{*}{\Rightarrow} \alpha A \text{ implica } \$ \in \mathsf{FOLLOW}(A)$$

FIRST di simboli

Sia X un generico simbolo della grammatica. Calcoliamo la FIRST(X) applicando le seguenti regole finchè non è più possibile aggiungere alcun nuovo elemento

- FIRST(X) = {X} per ogni terminale $X \in \Sigma$
- Se X è un non terminale ed $X \to \varepsilon$, aggiungi ε a FIRST(X)
- Se X è un non terminale ed $X \to Y_1 Y_2 \dots Y_k$ è una produzione per X:
 - 1. aggiungi in $\mathsf{FIRST}(X)$ ogni terminale a tale che $a \in \mathsf{FIRST}(Y_j)$, con $j \in [1, k]$, ed $\varepsilon \in \mathsf{FIRST}(Y_1)$, $\mathsf{FIRST}(Y_2)$, . . . , $\mathsf{FIRST}(Y_{j-1})$
 - 2. se, per ogni $j \in [1, k]$, $\varepsilon \in \mathsf{FIRST}(Y_j)$, aggiungi ε in $\mathsf{FIRST}(X)$

◆ロト ◆部 ト ◆ 差 ト ◆ 差 ・ 釣 へ ○

FIRST di simboli

Sia X un non terminale e $X \to Y_1 Y_2 \dots Y_k$ una produzione per X. In base alle regole 1 e 2:

- lacktriangledown inizialmente, aggiungiamo a FIRST(X) ogni terminale in FIRST(Y_1)
- ② se $\varepsilon \notin \mathsf{FIRST}(Y_1)$ non aggiungiamo ulteriori elementi; al contrario, se $\varepsilon \in \mathsf{FIRST}(Y_1)$ passiamo a considerare il simbolo Y_2
- ullet aggiungiamo a FIRST(X) anche ogni terminale in FIRST(Y_2) ed iteriamo
- se $\varepsilon \notin \mathsf{FIRST}(Y_2)$...
- $oldsymbol{\circ}$ viene agginta a FIRST(X) se, per ogni $j=1,\ldots,k$, $arepsilon\in \mathsf{FIRST}(Y_j)$

Un esempio

$$E \rightarrow TE'$$
 $E' \rightarrow +TE' \mid \varepsilon$
 $T \rightarrow FT'$
 $T' \rightarrow *FT' \mid \varepsilon$
 $F \rightarrow (E) \mid id$

- Dalle produzioni $F \rightarrow (E)$ ed $F \rightarrow id$ abbiamo che FIRST $(F) = \{(, id)\}$
- Dalle produzioni $T' \to *FT$ e $T' \to \varepsilon$ abbiamo che FIRST $(T') = \{*, \varepsilon\}$
- $T \rightarrow FT'$ ed $\varepsilon \notin FIRST(F) = \{(, id)\}$ implica FIRST(T)= $FIRST(F) = \{(, id)\}$
- Dalle produzioni $E' \to +TE$ ed $E' \to \varepsilon$ abbiamo che FIRST $(E') = \{+, \varepsilon\}$
- $E \rightarrow TE'$ ed $\varepsilon \notin FIRST(T) = \{(, id)\}$ implica FIRST(E)= $FIRST(T) = \{(, id)\}$

FIRST di stringhe

Sia $\alpha = X_1 X_2 \dots X_n$ una stringa di simboli della grammatica; la FIRST(α) viene calcolato applicando le seguenti regole:

- Aggiungi a FIRST(α) tutti i simboli di FIRST(X_1) tranne ε
- Se $\varepsilon \in \mathsf{FIRST}(X_1)$, aggiungi a $\mathsf{FIRST}(\alpha)$ tutti i simboli di $\mathsf{FIRST}(X_2)$ tranne ε
- Se $\varepsilon \in \mathsf{FIRST}(X_2)$, aggiungi a $\mathsf{FIRST}(\alpha)$ tutti i simboli di $\mathsf{FIRST}(X_3)$ tranne ε

...

• Se, per ogni $j=1,\ldots,n$, $\varepsilon\in\mathsf{FIRST}(X_j)$, aggiungi ε a $\mathsf{FIRST}(\alpha)$

FOLLOW

- La funzione FOLLOW(B) è costruita a partire da quelle produzioni che contengono il non terminale B nella parte destra in base alle seguenti regole:
 - inserisci il simbolo speciale \$ in FOLLOW(S), dove S è il simbolo iniziale della grammatica
 - ② per ogni produzione della forma $A \to \alpha B \beta$, aggiungi in FOLLOW(B) ogni terminale in FIRST(β)
 - **3** per ogni produzione della forma $A \to \alpha B$ o della forma $A \to \alpha B \beta$ con $\beta \stackrel{*}{\Rightarrow} \varepsilon$, aggiungi in FOLLOW(B) ogni simbolo in FOLLOW(A)
- La seconda regola è abbastanza intuitiva; infatti, se $A \to \alpha B \beta$ è una produzione della grammatica, allora tutti i terminali con cui iniziamo stringhe derivabili da β appartengono a FOLLOW(B)
- Perchè la terza?

FOLLOW

Assumiamo che $A \to \alpha B$ sia una produzione della grammatica e sia $a \in \mathsf{FOLLOW}(\mathsf{A})$:

- Se $a \in FOLLOW(A)$ allora $S \stackrel{*}{\Rightarrow} \alpha_1 A a \beta_1$
- Applicando la produzione $A \rightarrow \alpha B$, abbiamo che

$$S \stackrel{*}{\Rightarrow} \alpha_1 A a \beta_1 \Rightarrow \alpha_1 \alpha B a \beta_1$$

- e, quindi, che a appartiene anche a FOLLOW(B)
- In maniera analoga se $A \to \alpha B \beta$ con $\beta \stackrel{*}{\Rightarrow} \varepsilon$ è una produzione della grammatica ed $a \in \mathsf{FOLLOW}(\mathsf{A})$ allora:

$$S \stackrel{*}{\Rightarrow} \alpha_1 A a \beta_1 \Rightarrow \alpha_1 \alpha B \beta a \beta_1 \Rightarrow \alpha_1 \alpha B a \beta_1$$

e, di nuovo, a appartiene anche a FOLLOW(B)

◆ロ → ◆部 → ◆ き → ◆ き → り へ ○

Un esempio

$$E \rightarrow TE'$$
 $E' \rightarrow +TE' \mid \varepsilon$

$$T \rightarrow FT'$$
 $T' \rightarrow *FT' \mid \varepsilon$

$$F \rightarrow (E) \mid id$$

- Produzioni con E a destra: F → (E).
 Applichiamo la seconda regola con β =) e
 FIRST(β) = {)}. Inoltre E è il simbolo iniziale.
 Allora FOLLOW(E) = {),\$}
- Produzioni con E' a destra: $E \to TE'$ ed $E' \to +TE'$. Dalle regola 3, tutti i simboli in FOLLOW(E) ed in FOLLOW(E') vanno aggiunti in FOLLOW(E'). Quindi, FOLLOW(E')= FOLLOW(E)= {),\$}
- Produzioni con T a destra: $E \to TE'$ ed $E' \to +TE'$ con FIRST $(E') = \{+, \varepsilon\}$. Per la regola 2, aggiungiamo in FOLLOW(T) tutti i terminali in FIRST(E') (cioè +). Per la regola 3 aggiungiamo in FOLLOW(T) tutti i simboli in FOLLOW $(E) = FOLLOW(E') = \{\}$, \$\\$. Quindi, FOLLOW $(T) = \{+, \}$ \$

Un esempio

$$E \rightarrow TE'$$
 $E' \rightarrow +TE' \mid \varepsilon$
 $T \rightarrow FT'$
 $T' \rightarrow *FT' \mid \varepsilon$
 $F \rightarrow (E) \mid id$

- La FOLLOW(T') si ottiene in maniera simile alla FOLLOW(E') perchè T' compare nelle produzioni $T \to FT$ e $T' \to *FT'$ come ultimo simbolo a destra. FOLLOW(T') = FOLLOW(T)= {+,),\$}
- produzioni con F a destra: $T \to FT'$ con FIRST $(T') = \{*, \varepsilon\}$. Inanzittutto aggiungiamo * a FOLLOW(F). Inoltre, poichè, $T' \to \varepsilon$, dobbiamo aggiungere a FOLLOW(F) tutti i simboli in FOLLOW $(T) = \{+, \}$. Quindi FOLLOW(F) $\{*, +, \}$.

Costruzione della tabella

Input: una grammatica *G*

Output: una parsing table M per la grammatica G

Metodo:

- 1. Per ogni produzione $A \rightarrow \alpha$ applica i passi 2 e 3
- 2. Per ogni terminale $a \in \mathsf{FIRST}(\alpha)$, aggiungi $A \to \alpha$ ad M(A, a)
- 3. Se $\varepsilon \in FIRST(\alpha)$ aggiungi $A \to \alpha$ ad M(A, b) per ogni terminale $b \in FOLLOW(A)$; se $\varepsilon \in FIRST(\alpha)$ ed $\$ \in FOLLOW(A)$ aggiungi $A \to \alpha$ ad M(A,\$)
- 4. Poni ogni entrata indefinita ad error

Un esempio

 $F \rightarrow TF'$

$$E' \to +TE' \mid \varepsilon$$

$$T \to FT'$$

$$T' \to *FT' \mid \varepsilon$$

$$F \to (E) \mid id$$

• FIRST(
$$E$$
) = FIRST(T) = FIRST(F)= {(, id}, FIRST(T')={*, ε } FIRST(E')={+, ε }

Consideriamo le seguenti produzioni:

- $E \rightarrow TE'$: poichè FIRST(TE') = FIRST(T) = $\{(, id)\}$, $M(E, () := M(E, id) := E \rightarrow TE'$
- $E' \rightarrow +TE'$: FIRST(+TE') = FIRST(+) = $\{+\}$ implica $M(E,+) := E' \rightarrow +TE'$
- $E' \to \varepsilon$: poichè FOLLOW $(E') = \{\}, \$\}, M(E',) := M(E', \$) := E' \to \varepsilon$

Un Esempio

	id	+	*	()	\$
Ε	$E \rightarrow TE'$			$E \rightarrow TE'$		
E'		$E' \rightarrow +TE'$			$E' \rightarrow \varepsilon'$	$E' o \varepsilon'$
T	$T \rightarrow FT'$			T o FT'		
T'		$T' o \varepsilon$	$T' \rightarrow *FT'$		$T' \rightarrow \varepsilon'$	T' o arepsilon'
F	$F \rightarrow id$			$F \rightarrow (E)$		

Grammatiche LL(1)

- Il procedimento appena descritto per la costruzione della tabella di parsing può essere applicato ad una qualsiasi grammatica contex-free
- Tuttavia, per alcune grammatiche, M può avere delle entrate indefinite (più di un valore nella stessa casella M(A,a) della tabella)
- Se G è ambigua o ricorsiva sinistra allora M avrà almeno un entrata indefinita
- Consideriamo la seguente grammatica che astrae il costrutto if-then-else

$$\begin{array}{ccc} S & \rightarrow & \mathbf{i} \ E \ \mathbf{t} \ S \ S' \ | \ \mathbf{a} \\ S' & \rightarrow & \mathbf{e} \ S \ | \ \varepsilon \\ E & \rightarrow & \mathbf{b} \end{array}$$

e le produzioni $S' \rightarrow \mathbf{e} \ S$ e $S' \rightarrow \varepsilon$

Grammatiche LL(1)

 Consideriamo la seguente grammatica che astrae il costrutto if-then-else

$$\begin{array}{ccc} S & \rightarrow & \mathbf{i} \ E \ \mathbf{t} \ S' \ | \ \mathbf{a} \\ S' & \rightarrow & \mathbf{e} \ S \ | \ \varepsilon \\ E & \rightarrow & \mathbf{b} \end{array}$$

e le produzioni $S' \rightarrow \mathbf{e} \ S \ \mathbf{e} \ S' \rightarrow \varepsilon$

- FIRST(S) = $\{i, a\}$, FIRST(S') = $\{e, \varepsilon\}$, FIRST(E) = $\{b\}$
- FOLLOW(S) = FOLLOW(S') = { \mathbf{e} , \$ \mathbf{f} }, FOLLOW(E) = { \mathbf{t} }
- FIRST(e S) = FIRST(e) = {e} implies $M(S', e) := S' \rightarrow e S$
- FIRST($\varepsilon = \{\varepsilon\}$ e FOLLOW(S') = $\{\mathbf{e},\$\}$ implicano $M(S',\mathbf{e}) := S' \to \varepsilon$

4□ > 4□ > 4□ > 4□ > 4□ > 900

Grammatiche LL(1)

- GRAMMATICHE LL(1): una grammatica si dice LL(1) se esiste una tabella per il parsing predittivo che non ha entrate multiple
- LL(1): la prima L indica che l'input viene scandito da sinistra verso destra (<u>L</u>eft); la seconda L indica che il parsing produce una derivazione leftmost della stringa; 1 è il numero di simboli di lookahead necessari