From Bisimulation to Simulation, Coarsest Partition Problems

Bisimulazione massima

Si può dimostrare che la relazione \equiv_b , data dai nodi tra i quali esiste una qualche bisimulazione, è una relazione di equivalenza, ed è la massima bisimulazione.

Proposizione 3.3

- Dato un grafo $G(N,\to,\Sigma)$ dove Σ è una partizione stabile rispetto a \to , la relazione $R_\Sigma(a,b)$ valida se a e b appartengono allo stesso blocco di Σ è una bisimulazione
 - o il primo punto della definizione è banale
 - \circ suppongo che valga $R_{\Sigma}(a,b)$. Allora a,b stanno nello stesso blocco α . Suppongo che esista un nodo $a \to c$.
 - se $c \in \beta$ con $\beta \neq \alpha$, per la stabilità della partizione si ha che per ogni nodo nel blocco α deve esistere un ramo verso un nodo del blocco β (perchè l'intersezione tra $\alpha \in \mathbb{R}^{-1}$ (β) è non vuota, considerando il ramo $a \to c$). Quindi esite un ramo $b \to d$ per un $d \in \beta$. Allora $R_{\Sigma}(c,d)$ (appartengono allo stesso blocco β).
 - se $c\in \alpha$, si può fare lo stesso ragionamento applicato sopra? Dipende dalla definizione di stabilità: vale anche se $\alpha=\beta$?
 - $\circ~$ lo stesso argomento può essere applicato per un ramo b o d
- Dato un grafo $G(N,\to)$ ed una bisimulazione R (che sia anche una relazione di equivalenza), la partizione indotta da R è stabile rispetto a \to . Per partizione indotta si intende che i blocchi sono formati dai nodi per cui vale R(a,b). Infatti suppongo di avere due nodi a,b di un blocco α . Suppongo che esista un ramo $a\to c$ con $c\in\beta\neq\alpha$. Allora per definizione di bisimulazione deve esistere un nodo $d\in\beta$ (perchè R(c,d)) ed esiste il ramo $b\to d$. Questo ragionamento vale per qualsiasi nodo $b\in\alpha$, quindi $\alpha\subset \to^{-1}(\beta)$ a patto che esista il primo ramo $a\to c$.

Se non esiste nessun ramo $a \to c$ per qualche $c \notin \alpha$, allora $\alpha \cap \to^{-1} (\beta) = \emptyset$.

Nota: il richiedere nel secondo punto che la bisimulazione R sia una relazione di equivalenza non fa perdere generalità, in quanto data una bisimulazione r, la sua chiusura transitiva, riflessiva e simmetrica è ancora una bisimulazione.

Bisimulazione e insiemi non ben fondati

Dato un grafo $G(N,\to,\Sigma)$ ed una bisimulazione R, è possibile trovare un grafo $G'(N',\to')$ con $N\subset N'$, $\to\subset\to'$, per cui vale R(a,b) su $G\Longleftrightarrow R(a,b)$ su G' (non si considera il primo punto della definizione di bisimulazione).

Allora la definizione più "astratta" (senza partizione) di bisimulazione è abbastanza generale da inglobare tutte le bisimulazioni con partizione.

Rango di un nodo

$$rank(a) = egin{cases} 0 & ext{se a \`e una foglia in } G \ -\infty & ext{se } C(a) \`e ext{ una foglia in } G^{SCC} ext{ e a non \`e una foglia in } G \ \max egin{cases} 1 + rank(c) ext{se } C(a)
ightarrow^{SCC} C(c) \land c \in WF(G) \ rank(c) ext{se } C(a)
ightarrow^{SCC} C(c) \land c \notin WF(G) \end{cases} \quad orall c \in G(a)$$

Dove C(a) è il sottografo strongly connected in cui è contenuto a.

Due proprietà importanti del rango lo rendono interessante dal punto di vista della bisimulazione:

- $a \equiv_b b \implies rank(a) = rank(b)$
- Se \equiv_b è stata computata per tutti i nodi con rango < i, allora può essere computata anche per i nodi con rango = i

Grafo quoziente rispetto alla bisimulazione \equiv_b

Sia G(N,
ightarrow,l) un grafo. Il grafo quoziente G/\equiv_b è definito come

$$egin{cases} N_{\equiv_b} = N/\equiv_b \ [a]_b
ightarrow_{\equiv_b} [c]_b \iff \exists \ c_1: (c_1 \in [c]_b \wedge a
ightarrow c_1) \ l_{\equiv_b}([a]_b) = l(a) \end{cases}$$

Proposizione 3.10

Sia $G(N,\to,l)$ un grafo. Allora il grafo G/\equiv_b è il **minor grafo** in bisimulazione con G. Abbiamo rimpiazzato i nodi di G con le classi di equivalenza della bisimulazione.