Pattern Recognition

HW3: Ensemble Methods

Part 1, Coding

Question 1

Gini of data is 0.4628099173553719 Entropy of data is 0.9456603046006401

Question 2

Question 2.1

Accuracy of clf_depth3: 0.9370629370629371 Accuracy of clf_depth10: 0.9300699300699301

Question 2.2

Accuracy of clf_gini: 0.9370629370629371 Accuracy of clf_entropy: 0.951048951048951

Question 3

Question 4

Question 4.1

Accuracy of clf_10tree: 0.972027972027972 Accuracy of clf_100tree: 0.9440559440559441

Question 4.2

Accuracy of clf_random_features: 0.951048951048951 Accuracy of clf_all_features: 0.965034965034965

Part 2, Questions

Question 1

Let
$$W = W_n^{(m)}$$
 and $I = I(y_m(x_n) \neq t_n)$
Let $\frac{\partial E}{\partial \alpha_m} = 0$
 $\left(\frac{1}{2} \ln e \cdot e^{\frac{\alpha_m}{2}} - (-\frac{1}{2}) \ln e \cdot e^{-\frac{\alpha_m}{2}}\right) \sum WI + (-\frac{1}{2}) \ln e \cdot e^{-\frac{\alpha_m}{2}} \sum W = 0$
 $\left(e^{\frac{\alpha_m}{2}} + e^{-\frac{\alpha_m}{2}}\right) \sum WI - e^{-\frac{\alpha_m}{2}} \sum W = 0$
 $e^{\frac{\alpha_m}{2}} \sum WI = e^{-\frac{\alpha_m}{2}} (\sum W - \sum WI)$
 $e^{\alpha_m} = \frac{\sum W - \sum WI}{\sum WI}$
 $A_m = \ln \left(\frac{\sum W - \sum WI}{\sum WI}\right) = \ln \left(\frac{1 - \frac{\sum WI}{\sum W}}{\sum W}\right)$
Therefore, $A_m = \ln \left(\frac{1 - \frac{\sum W}{\sum W}}{\sum W}\right)$

Question 2

		Cı	C 2
model A	predict Ci	300	100
	predict Cz	100	3 0 D
modeB	predict Ci	200	0
	predict Cz	200	400

Misclassifications:

So both misclassification rates are the same

model A

$$Q_{1}(T) = -\frac{3}{4} \ln \left(\frac{3}{4}\right) - \frac{1}{4} \ln \left(\frac{1}{4}\right)$$

$$Q_{2}(T) = -\frac{1}{4} \ln \left(\frac{1}{4}\right) - \frac{3}{4} \ln \left(\frac{3}{4}\right)$$

$$C_{A}(T) = Q_{1}(T) + \lambda |T| + Q_{2}(T) + \lambda |T|$$

$$= 1.12467 + 2\lambda |T|$$

model B

$$Q_{1}(T) = -1 \text{ In } 1 - 0$$

$$Q_{2}(T) = -\frac{1}{3} \text{ In } (\frac{1}{3}) - \frac{2}{3} \text{ In } (\frac{2}{3})$$

$$C_{B}(T) = 0.6365 | + 2 \lambda | T |$$

Clearly,
$$C_B(T) < C_A(T)$$

Question 3

Sum of square error
$$E = \sum_{n=1}^{N} (t - t_n)^2$$

E is minimized when
$$\frac{dE}{dt} = 0$$

$$\frac{dE}{dt} = d \sum_{n=1}^{N} (t - t_n)^2 \frac{1}{dt} = 0$$

$$\int_{n=1}^{N} (t^{2} - 2tt_{n} + t_{n}^{2}) \frac{1}{dt} = \sum_{n=1}^{N} 2t - \sum_{n=1}^{N} 2t_{n} = 0$$

$$Nt - \sum_{n=1}^{N} t_n = 0$$

$$t = \frac{\sum_{n=1}^{N} t_n}{N}$$

Where
$$\frac{\sum_{n=1}^{N} t_n}{N}$$
 is the mean of $\{t_n\}_{n=1\sim N}$