Clase teórica 7 Jerarquía espacio-temporal

La clase NPI

Una visión aún más detallada de NP:

- Asumiendo P ≠ NP, se prueba que además de P y NPC, NP incluye una tercera clase de lenguajes: NPI.
- Los lenguajes de NPI no son ni tan fáciles como los de P ni tan difíciles como los de NPC.

- La existencia de NPI, asumiendo P ≠ NP, se basa en el **Teorema de Ladner**, de 1975.
- Idea general: si L₁ ∈ NPC, entonces existe un lenguaje L₂ ∈ P, tal que L₃ = L₁ ∩ L₂ ∈ NP (P U NPC).

- Por ejemplo: dado SAT, existe un lenguaje L de fórmulas booleanas en P, tal que SAT restringido a las fórmulas de L es un lenguaje de NPI (no es NP-completo ni está en P).
- A diferencia de lo que sucede en NPC, en NPI podría haber lenguajes dispersos.
- También podría haber lenguajes L₁ y L₂ incomparables, es decir que no cumplan L₁≤P L₂ ni L₂≤P L₁.

El problema de los grafos isomorfos (candidato a estar en NPI)

ISO = $\{(G_1, G_2) \mid G_1 y G_2 \text{ son grafos isomorfos, es decir son idénticos salvo por el nombre de sus arcos}\}$

ISO está en NP

los certificados suscintos son permutaciones de V (ejercicio)

ISO no estaría en P

en el peor caso hay que probar con todas las permutaciones de V (ejercicio)

ISO no estaría en NPC

no se ha encontrado un lenguaje NP-completo L tal que L ≤_P ISO

El problema de la factorización (otro candidato a estar en NPI)

Dado N, hay que encontrar todos sus divisores primos. P.ej, $180 = 2^2 \times 3^2 \times 5$.

$$\begin{array}{c|c}
 & 180 & 2^2 \times 3^2 \times 5 \\
\hline
 & M & 2^2 \times 3^2 \times 5 \\
\end{array}$$

Llevado a un problema de decisión tiene la siguiente forma:

FACT =
$$\{(N, M_1, M_2) \mid N \text{ tiene un divisor primo entre } M_1 y M_2\}$$

- Como la sospecha es que no está en P, se lo usa para encriptar mensajes:
 Dado un número N muy grande,
 si N = N₁ x N₂, y N₁ y N₂ son números primos de tamaño similar,
 resulta muy difícil obtener N₁ y N₂ conociendo solamente N.
- En base a esto, un esquema de seguridad habitual consiste en encriptar mensajes con N (que conoce todo el mundo), y desencriptarlos con N₁ y N₂ (qué sólo conoce el receptor)

mensaje encriptado (sistema RSA)

se encripta con N clave pública se desencripta con N_1 y N_2 clave privada

- Si se probase que FACT está en P, habría que reemplazar dicho esquema de seguridad.
- En 1994, P. Shor encontró un algoritmo cuántico que factoriza los números en tiempo poly(n).
 ¿Será que efectivamente lo cuántico acelera exponencialmente los algoritmos clásicos?
 ¿O Será que la factorización está en P?

Ultima visión de la jerarquía temporal

Jerarquía de lenguajes (de menor a mayor dificultad)

- 1) P
- 2) (NP ∩ CO-NP) P
- 3) NPI CO-NP
- 4) NPC
- 5) CO-NPI NP
- 6) CO-NPC

ISO sería más fácil que SAT

FACT sería más fácil que ISO

Introducción a la complejidad espacial

- Se consideran MT tales que la cinta de entrada es de sólo lectura. El resto son cintas de trabajo.
- Una MT ocupa **espacio S(n)** sii en todas sus cintas de trabajo (no cuenta la cinta de entrada) ocupa **a lo sumo S(n) celdas**, siendo n como siempre el tamaño de las cadenas de entrada.
- La cinta de entrada de sólo lectura permite espacios menores que O(n).

- Una MT M que ocupa espacio S(n) puede no parar, pero dada M, existe una MT M' equivalente que ocupa espacio S(n) y para siempre.
 - P.ej., una MT con 1 cinta de entrada de sólo lectura y 1 cinta de trabajo entra en loop luego de: $(n+2).S(n).|Q|.|\Sigma|^{S(n)} = O(c^{S(n)})$ pasos. Tener en cuenta entonces que: espacio S(n) implica tiempo $O(c^{S(n)})$.

 Un lenguaje L pertenece a la clase SPACE(S(n)) sii existe una MT que decide L en espacio O(S(n)).

cinta de entrada

Espacio S(n)

Ejemplo. El lenguaje de los palíndromos o "capicúas".

 $L = \{wcw^R \mid w \text{ tiene cero o más símbolos } a \text{ y b, y } w^R \text{ es la cadena inversa de w} \}$. P.ej., abbbcbbba está en L.

L se puede decidir en espacio O(n) (ejercicio). Pero en realidad alcanza con espacio $O(\log_2 n)$. Una MT M que decide L en espacio $O(\log_2 n)$, usando codificación binaria, se comporta de la siguiente manera:

- Hacer i = 1 en la cinta 1.
- 2. Hacer j = n en la cinta 2, con n = |w|. Si j es par, rechazar.
- 3. Copiar el símbolo i de w en la cinta 3.
- 4. Copiar el símbolo j de w en la cinta 4.
- Si i = j : si los símbolos son c, aceptar, si no, rechazar.
 Si i ≠ j : si los símbolos no son igualmente a o b, rechazar.
- 6. Hacer i = i + 1 en la cinta 1.
- 7. Hacer j = j 1 en la cinta 2.
- 8. Volver al paso 3.

_	Ejemplo (1ra iteración)		E
_	a b b b c b b b a	_	
1_	i = 1	1	
2_	j = 9	2	
3	а	3	
4	а	4	
	·		

	a b b b c b b b a
1 1	i = 2
2	j = 8
3	b
4	b

La MT M ocupa el espacio de los contadores i y j, que en binario miden **O(log₂n)**, **más 2 celdas** para alojar a los símbolos que se van comparando en cada iteración.

Así, $L \in SPACE(log_2n)$. A esta clase también se la llama LOGSPACE.

	Ejemplo (última iteración) a b b b c b b b a
1	i = 5
2	j = 5
3	С
4	С

Jerarquía espacial

- LOGSPACE es la clase de los lenguajes aceptados en espacio O(log₂n)
- PSPACE es la clase de los lenguajes aceptados en espacio poly(n)
- EXPSPACE es la clase de los lenguajes aceptados en espacio exp(n)
- Por lo dicho antes: espacio S(n) implica tiempo O(c^{S(n)}), con c constante
 Así, si en particular una MT M ocupa espacio log₂n, entonces M tarda tiempo O(c^{log₂n})
 Y como c^{log₂n} = n^{log₂c} = poly(n), queda: LOGSPACE ⊆ P

Los problemas tratables en espacio son los que pertenecen a la clase LOGSPACE Existe una clase NLOGSPACE (homóloga a la clase NP), también incluida en P.

Tiempo T(n) implica espacio T(n). ¿Por quié? Espacio S(n) implica tiempo $O(c^{S(n)})$, para alguna constante c.

Ejemplo. El lenguaje QSAT.

QSAT = $\{\phi \mid \phi \text{ es una fórmula booleana con cuantificadores, no tiene variables libres, y es verdadera}\}$.

- Por ejemplo, $\phi_1 = \exists x \exists y \exists z : x \land y \land z$, es verdadera $\phi_2 = \forall x \forall y \forall z : x \land y \land z$, es falsa
- QSAT pertenece a PSPACE. La prueba se basa en la construcción de una función recursiva Eval. La idea de la recursión es la siguiente (usamos como ejemplo la fórmula φ₂):

Eval(F) = F La MT correspondiente <u>reutiliza</u> espacio, característica esencial en la complejidad espacial

La cantidad de cuantificadores más la cantidad de conectivos de φ es a lo sumo $|\varphi| = n$. Así, tanto la profundidad de la pila como el espacio ocupado en cada instancia miden O(n).

Por lo tanto, Eval consume espacio O(n²). ¿QSAT pertenece a P? ¿Pertenece a NP? ¿Pertenece a CO-NP?

Jerarquía espacio-temporal

- QSAT está entre los lenguajes más difíciles de PSPACE.
- En efecto, QSAT es PSPACE-completo, todos los lenguajes de PSPACE se reducen polinomialmente a QSAT.
- QSAT es una instancia de un problema más general:
 la búsqueda de una estrategia ganadora en una competencia entre dos jugadores J₁ y J₂ (ajedrez, damas, go, hexágono, geografía, etc.):

¿Existe una jugada 1 de J_1 tal que para toda jugada 1 de J_2 existe una jugada 2 de J_1 tal que para toda jugada 2 de J_2 existe una jugada 3 de J_1 tal que para toda jugada 3 de J_2 ... el jugador J_1 gana?

$$\mathbf{\phi} = [\exists \mathbf{x}_1 \forall \mathbf{x}_2 \exists \mathbf{x}_3 \forall \mathbf{x}_4 \exists \mathbf{x}_5 \forall \mathbf{x}_6 \dots \forall (\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_5, \mathbf{x}_6, \dots)]$$

En el caso particular de QSAT se puede plantear que ∃ busca que φ sea verdadera y ∀ que φ sea falsa. Anexo de la clase teórica 7

Jerarquía espacio-temporal

Jerarquías temporales con varios modelos de ejecución

Clase práctica 7 Jerarquía espacio-temporal

Una forma alternativa para probar pertenencia a la clase NP

- Una manera alternativa de probar que un lenguaje L está en NP es utilizando MTN (MT no determinísticas).
- Se define alternativamente que L ∈ NP sii existe una MTN que acepta L en tiempo poly(n).
- Una MTN se ejecuta en tiempo poly(n) sii todas sus computaciones ejecutan poly(n) pasos.
- Por ejemplo, la siguiente MTN M decide SAT en tiempo poly(n).
 Dada una entrada φ, M hace:
- 1. Si φ no es una fórmula correcta, rechaza: **O(n)**
- 2. Genera no determinísticamente una asignación A: O(n)
- 3. Acepta sii A satisface φ: O(n²)

Por lo tanto, en total M hace **O(n²) pasos**

Todas las computaciones de M tardan tiempo poly(n)

Es decir, en lugar de construir una MTD (MT determinística) que recibe un certificado x, se construye una MTN (MT no determinística) que directamente genera el certificado.