221900180田永铭数理逻辑作业2

Problem 证明命题(5选3)

Solution

1.证明:

必要性: 若 $\emptyset \models \alpha$,则在任意真值指派下都能够满足 \emptyset 的条件,这是因为 \emptyset 里面本身就没有条件。由语义蕴涵的意义知道能推出 α ,所以 α 在任何的情况下都成立,所以 α 是重言式,必要性成立;

充分性: 若 α 是重言式,则任何一个真值指派下, α 都成立, \emptyset 中没有任何结构,所以在这种空的指派下, α 也必然成立,所以 $\emptyset \models \alpha$ 成立,充分性成立。

证毕!

2.证明:

假设对于使得 Γ 中每个wff都成真的结构,则 $:: \Gamma \models \alpha$, $:: \alpha$ 成立; $:: \Gamma \models \beta$, $:: \alpha \to \beta$ 成立; 又由假言推理规则,知 β 成立。由此知道 $\Gamma \models \beta$,所以原命题成立。

证毕!

3.证明:

定义: 若 Γ 的任意有限子集均可满足,则称其为有限可满足的。 证明分为两步:

(1) 保持有限可满足性质的前提下将 Γ 扩展到最大;

(2) 利用最大的该集合找出满足要求的真值指派

(1) 首先构造一个集合 Δ :由于命题集合可数,表达式集合可数,所以我们先设 α_1,α_2,\dots 是wff的一个枚举。令 $\Delta_0=\Gamma$,

 $\Delta_{n+1} = \Delta n \cup \alpha_{n+1}$,如果加上后仍有限可满足;

$$\Delta_{n+1} = \Delta n \cup
eg lpha_{n+1}$$
 其它情况

这种方法下能保持每个 Δ_n 都是有限可满足的,这很显然。记 Δ_n 的极限为 $\Delta=\cup_n\Delta_n$.它有性质: (1) $\Gamma\in\Delta$ (2)对于 \forall 合适公式 α ,要么属于 Δ , 要么不属 (3) Δ 是有限可满足的

(2) 定义一个由所有命题符号组成的集合上的真值指派 v: 对任意的命题符号 A,v(A)=T iff $A\in \Delta$.则对于任何wff, v 满足 ϕ iff $\phi\in \Delta$. 这等价是由以上的三个性质保证.又因为 $\Gamma\in \Delta$, 所以真值指派 v 一定可以满足 Γ 的每个wff。

证毕!

4.证明:

采用**反证法**: 假设在 $\Gamma \subseteq \Delta$ 和 $\Gamma \models \alpha$ 成立的情况下, $\Delta \models \alpha$ 不成立,即 Δ 中的wff在某一真值指派 v 下不能使得 α 成立,又因为 $\Gamma \subseteq \Delta$,所以 任何一个wff要么在 Δ 中不在 Γ 中,要么同在两者之中或同不在两者之中,我们只关心同在两者之中的,给这些公式与 v 一样的真值指派,则 Γ 中的这些wff一定不能推出 α ,这与前提 $\Gamma \models \alpha$ 矛盾. 故假设不成立,原结论成立. **证毕!**

5.证明:

因为 $\Gamma \models \alpha$,所以对于任何使得 Γ 中的每个公式为真的一种真值指派, α 也为真。因为 $\Delta \cup \alpha \models \beta$,所以对于任何使得 $\Delta \cup \alpha$ 中的每个公式为真的结一种真值指派, β 也为真。 故若我们考虑使得 $\Gamma \cup \Delta$ 中的每个公式为真的真值指派,因为它满足了 Γ 中的所有公式以及 $\Delta \cup \alpha$ 中的所有公式,所以有 β 为真,所以 $\Gamma \cup \Delta \models \beta$ 成立.

证毕!