Circuits linéaires du 1èr ordre

#chapitre3 #signal

Echelon de tension

$$e(t) = egin{cases} 0 ext{ si } t < 0 \ E ext{ si } t > 0 \end{cases}$$

Réponse indicielle et régime libre

Entre:

Grandeur qu'on commande.

Sortie:

Grandeur qu'on mesure.

Réponse indicielle :

Evolution temporelle de la sortie lorsque l'entrée est un échelon.

Régime libre :

C'est l'évolution lorsque l'entrée est nulle.

Circuit R-C Série

Entre : tension e(t), GBF source de tension idéal

Sortie : tension $u_c(t)$

Etablissement de l'équation différentielle

Loi de mailles : $e(t) = u_R + u_c$

Loi d'Ohm : U = Ri(t)

Condensateur : $i(t) = c \frac{du(t)}{dt}$

$$e(t) = u_R + u_c$$

$$\Leftrightarrow e(t) = Ri(t) + u_c$$

$$\Leftrightarrow e(t) = RC \frac{du_c}{dt} + u_c$$

$$\Leftrightarrow rac{du_c(t)}{dt} + rac{u_c(t)}{RC} = rac{e(t)}{RC}$$

Soit au=RC

$$oxed{rac{du_c(t)}{dt} + rac{u_c}{ au} = rac{E}{ au}}$$

Résolution de l'équation différentielle

On a toujours continuité de la tension aux bornes d'un condensateur.

$$u_c(t) = E(1-e^{-rac{t}{ au}})$$

Régime transitoires et permanents

Régime permanent

La sortie est constante. Correspond a la solution de particulière de l'équation différentielle associée au système.

Régime Transitoire

La sortie évolue de l'état initial vers le régime permanent. Il correspond a la solution de l'équation homogène.

Temps de réponse

- ullet Pente à l'origine : $\dfrac{du_c(0)}{dt}=\dfrac{E}{ au}$
- $u_c(au) = 0,63E$
- 5% : t=3 au
- régime permanent : 5τ

Aspect énergétique

$$egin{aligned} E_R &= rac{CE^2}{2} \ E_{gen} &= CE^2 \ P_{gen}(t) &= P_R(t) + P_C(t) \end{aligned}$$

Régime libre

On s'intéresse aux circuit lorsque l'on cesse tout activité extérieur.

•
$$e(t) = egin{cases} E ext{ si } t < 0 \\ 0 ext{ si } t > 0 \end{cases}$$

•
$$\frac{du_c}{dt} + \frac{u_c}{\tau} = 0$$

•
$$u_c(t)=Ee^{-\frac{t}{ au}}$$

Temps de réponse

- Pente a l'origine : $\frac{du_c(0)}{dt} = -\frac{E}{ au}$
- $u_c(\tau) = 0,37\tau$
- $u_c(t)=0,01E\Rightarrow t=4,6 aupprox 5 au$

Etude du circuit RL série

Entre : tension e(t), GBF source de tension idéal

Sortie : intensité i(t)

Equation différentielle

$$rac{di(t)}{dt}+rac{1}{ au}i(t)=rac{1}{ au}rac{e(t)}{R}$$
 Avec $au=rac{L}{R}$

Réponse indicielle

Le courant traversant une bobine est toujours continue.

$$i(t)=rac{E}{R}(1-e^{rac{t}{ au}})$$

Régime libre

$$i(t)=rac{E}{R}e^{-rac{t}{ au}}$$