

Introductio

L'utilisatio du Deep Learning

Horizons potentiellement intéressantes à explorer

Validation des mesures d'irradiance par Deep Learning

Suivi Hebdomadaire du stage

Sommaire

L'utilisation du Deep Learning

Horizons potentiellement intéressantes à explorer

1 Introduction

- Généralités sur le cadre de travail
- Description des outils utilisés (Capteurs et Marqueurs)
- 2 L'utilisation du Deep Learning
 - Description du jeu de données
 - Sorties attendues par le modèle de classification binaire
- 3 Horizons potentiellement intéressantes à explorer
 - Modèle de mélange gaussien

- Généralités sur
- le cadre de travail
- Description des outils utilisés (Capteurs et Marqueurs)

à explorer

Cadre de travail

- Mesurer la quantité de rayonnenment solaires (en $W.h/m^2$) à l'aide d'un capteur.
- Maximiser la quantité d'energie absorbée : Ne pas fausser les mesures obtenues.
 - Forme d'un capteur optimal : Pyranomètre.

Figure – Pyranomètre

C - --- : --

Introductio

L'utilisation du Deep

- Description du jeu de données
- Sorties attendues par le modèle de classification binaire

Horizons po tentiellemen intéressante à explorer

Comment positionner le capteur?

- Le positionnement du capteur dans l'espace 3-D est crucial
 - Meilleur angle d'inclinaison : Entre 30° et 35°

Types de capteurs

Sommane

L'utilisatio du Deep Learning

- Description du jeu de données

- Sorties attendues par le modèle de classification binaire

Horizons po tentiellemen intéressante à explorer

Certains types de capteurs :

- GHI (Global Horizontal Irradiance)
- **GTI** (Global Tilted Irradiance)
- Soleye (Provenant des données satéllitaires)

GTI est de loin le meilleur. En revanche, **GHI** et **Soleye** offrent une alternative plus ou moins fiable.

 Comment identifier si un capteur donne des mesures acceptables?

Sommaire

Introduction

L'utilisation du Deep

- Description du jeu de données
- Sorties attendues par le modèle de classification binaire

Horizons potentiellemen intéressantes à explorer

Graphes des irradiances

Figure - Givres

Marqueurs automatiques

Sommaire

L'utilisation du Deep

- Description du jeu de données

- Sorties attendues par le modèle de classification binaire

Horizons potentiellemen intéressantes à explorer

Mode d'emploiement des marqueurs :

- Un marqueur automatique est un outil algorithmique permettant d'alerter l'utilisateur sur les mesures suspectes.
- L'utilisateur ensuite validera ou non ce marqueur.

Côté Deep Learning

Sommaire

L'utilisatio du Deep

- Description du ieu de données

- Sorties attendues par le modèle de classification binaire

Horizons po tentiellemer intéressante à explorer

Objectif:

- Se débarasser complètement des marqueurs qui augmentent avec l'augmentation des campagnes.
- Les remplacer par un modèle de classification binaire, qui visera à classifier si nos mesures d'irradiance sont bonnes ou pas.

Jeu de données :

• Date et heure | Mesure d'irradiance | Température.

Sorties:

• Mesures flaguées | Date et heure.

Modèle de mélange gaussien

données à l'aide du modèle de mélange gaussien.

Description de ce modèle :

- Description du jeu de données

- Sorties attendues par le modèle de classification binaire

 On suppose, chaque point des données est représenté par une combinaison linéaire de gaussiennes (à paramètres non connus).

Nettoyage des données : Détection d'anomalies dans les

Autrement dit, la densité de probabilité de toute donnée X, est donnée par

$$f(X \mid (\mu_i, \Sigma_i)_{i=1,\dots k}) = \sum_{i=1}^K \alpha_i \, \mathcal{N}(X \mid (\mu_i, \Sigma_i)_{i=1,\dots k})$$

• Chercher les données X où $f(X \mid (\mu_i, \Sigma_i)_{i=1,\dots,k}) < \epsilon$