Sl231b: Matrix Computations

Lecture 12: Computations of QR Factorization

Yue Qiu

qiuyue@shanghaitech.edu.cn

School of Information Science and Technology ShanghaiTech University

Oct. 26, 2021

MIT Lab, Yue Qiu

QR Factorization

One of the Top 10 Algorithms in the 20th Century¹

Given a rectangular matrix $A \in \mathbb{R}^{m \times n}$. A can be factorized into the form

$$\mathsf{A} = \mathsf{Q}\mathsf{R}$$

where

- $ightharpoonup Q \in \mathbb{R}^{m \times m}$ is an orthogonal matrix
- $ightharpoonup R \in \mathbb{R}^{m \times n}$ is upper-triangular

Reduced QR Factorization

For m > n, the reduced QR factorization given by

- $ightharpoonup Q \in \mathbb{R}^{m \times n}$ has orthonormal columns
- $ightharpoonup R \in \mathbb{R}^{n \times n}$ is upper-triangular
- also called 'economic' QR factorization in some cases

Reflection Matrices

ightharpoonup a matrix $H \in \mathbb{R}^{m \times m}$ is called a reflection matrix if

$$H = I - 2P$$

where P is an orthogonal projector.

▶ interpretation: denote $P^{\perp} = I - P$, and observe

$$x = Px + P^{\perp}x, \qquad Hx = -Px + P^{\perp}x.$$

The vector Hx is a reflected version of x, with $\mathcal{R}(\mathsf{P}^\perp)$ being the "mirror"

▶ a reflection matrix is orthogonal:

$$H^TH = (I - 2P)(I - 2P) = I - 4P + 4P^2 = I - 4P + 4P = I$$

MIT Lab, Yue Qiu

Householder Reflection

▶ Problem: given $x \in \mathbb{R}^m$, find an orthogonal $H \in \mathbb{R}^{m \times m}$ such that

$$\mathsf{Hx} = egin{bmatrix} eta \ 0 \end{bmatrix} = eta \mathsf{e}_1, \qquad \mathsf{for some} \ eta \in \mathbb{R}.$$

Figure 1: Householder reflection

Householder Reflection

▶ Householder reflection: let $v \in \mathbb{R}^m$, $v \neq 0$. Let

$$H = I - \frac{2}{\|v\|_2^2} v v^T,$$

which is a reflection matrix with $P = vv^T/\|v\|_2^2$

▶ it can be verified that (try)

$$v = x \mp ||x||_2 e_1 \implies Hx = \pm ||x||_2 e_1;$$

the sign above may be determined to be the one that maximizes $\|v\|_2$, for the sake of numerical stability (why?)

- $v = x + ||x||_2 e_1$ if $x_1 > 0$
- $v = x ||x||_2 e_1$ if $x_1 < 0$

Here, x_1 denotes the first entry of x.

Householder QR

▶ let $H_1 \in \mathbb{R}^{m \times m}$ be the Householder reflection w.r.t. a_1 . Transform A as

$$A^{(1)} = H_1 A = \begin{bmatrix} \times & \times & \dots & \times \\ 0 & \times & \dots & \times \\ \vdots & \vdots & & \vdots \\ 0 & \times & \dots & \times \end{bmatrix}$$

▶ let $\tilde{H}_2 \in \mathbb{R}^{(m-1)\times (m-1)}$ be the Householder reflection w.r.t. $A_{2:m,2}^{(1)}$ (marked red above). Transform $A^{(1)}$ as

$$A^{(2)} = \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & \tilde{H}_2 \end{bmatrix}}_{=H_2} A^{(1)} = \begin{bmatrix} \times & \times & \dots & \times \\ 0 & \tilde{H}_2 A^{(1)}_{2:m,2:n} \end{bmatrix} = \begin{bmatrix} \times & \times & \times & \dots & \times \\ 0 & \times & \times & \dots & \times \\ \vdots & 0 & \times & \dots & \times \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & \times & \dots & \times \end{bmatrix}$$

by repeatedly applying the trick above, we can transform A as the desired R

Householder QR

end

$$\mathsf{A}^{(0)} = \mathsf{A}$$
 for $k=1,\ldots,n-1$
$$\mathsf{A}^{(k)} = \mathsf{H}_k \mathsf{A}^{(k-1)} \text{, where}$$

$$\mathsf{H}_k = \begin{bmatrix} \mathsf{I}_{k-1} & \mathsf{0} \\ \mathsf{0} & \tilde{\mathsf{H}}_k \end{bmatrix},$$

 I_k is the $k \times k$ identity matrix; \tilde{H}_k is the Householder reflection of $A_{k:m,k}^{(k-1)}$

- ► H_k introduces zeros under the diagonal of the k-th column
- ► the above procedure results in

$$A^{(n)} = H_n \cdots H_2 H_1 A$$
, $A^{(n)}$ taking an upper triangular form

- \blacktriangleright by letting R = A⁽ⁿ⁾, Q = $(H_n \cdots H_2 H_1)^T$, we obtain the full QR
- ▶ a popularly used method for QR decomposition

MIT Lab, Yue Qiu

Applying the Householder Matrix: HA

$$\mathsf{H}\mathsf{A} = (\mathsf{I} - \beta \mathsf{v}\mathsf{v}^\mathsf{T})\mathsf{A} = \mathsf{A} - (\beta \mathsf{v})(\mathsf{v}^\mathsf{T}\mathsf{A})$$

- \blacktriangleright takes $\mathcal{O}(4mn)$ flops, rather than $\mathcal{O}(m^2n)$
- only acts on a submatrix of A as the process goes
- ▶ takes $\mathcal{O}(2mn^2 \frac{2}{3}n^3)$ flops to obtain R (m > n). What for m < n?

Computations of Q

Recall $Q = (H_n \cdots H_2 H_1)^T = H_1 H_2 \cdots H_n$, with $H_k = I - \beta_k v^{(k)} (v^{(k)})^T$ and

$$\mathbf{v}^{(k)} = \begin{bmatrix} 0 & \cdots & 0 & \mathbf{v}_k^{(k)} & \mathbf{v}_{k+1}^{(k)} & \cdots & \mathbf{v}_m^{(k)} \end{bmatrix}^T$$

By letting $Q_{n+1} = I$, and executing $Q_k = H_k Q_{k+1}$ for k = n : -1 : 1, we obtain $Q = Q_1$

- efficiently computations by applying Householder matrix
- ► takes $\mathcal{O}(4m^2n 4mn^2 + \frac{4}{3}n^3)$ flops (m > n), what for m < n?

MIT Lab. Yue Qiu Oct. 26, 2021

Rotation Matrix

Example: Let

$$J = \begin{bmatrix} c & s \\ -s & c \end{bmatrix}$$

where $c = \cos(\theta)$, $s = \sin(\theta)$ for some θ . Consider y = Jx:

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} c & s \\ -s & c \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} cx_1 + sx_2 \\ -sx_1 + cx_2 \end{bmatrix}.$$

It can be verified that

- J is orthogonal;
- $y_2 = 0$ if $\theta = \arctan(x_2/x_1)$, or if

$$c = \frac{x_1}{\sqrt{x_1^2 + x_2^2}}, \quad s = \frac{x_2}{\sqrt{x_1^2 + x_2^2}}.$$

Givens Rotations

Givens rotations:

$$J(i,k,\theta) = \begin{bmatrix} i & k \\ c & s \\ & l \\ & -s & c \\ & & l \end{bmatrix}$$

where $c = \cos(\theta)$, $s = \sin(\theta)$.

- $J(i, k, \theta)$ is orthogonal
 - let $y = J(i, k, \theta)x$. It holds that

$$y_j = \begin{cases} cx_i + sx_k, & j = i \\ -sx_i + cx_k, & j = k \\ x_j, & j \neq i, k \end{cases}$$

• y_k is forced to zero if we choose $\theta = \tan^{-1}(x_k/x_i)$.

Givens QR

Example: consider a 4 × 3 matrix.

where B $\stackrel{J}{\rightarrow}$ C means B = JC; $J_{i,k} = J(i,k,\theta)$, with θ chosen to zero out the *k*th entry in the *i*th column vector of the matrix transformed by $J_{i,k}$.

MIT Lab, Yue Qiu SI281b: Matrix Computations; Shanghal Tech SI Oct. 26, 2021

Givens QR

▶ Givens QR: assume $m \ge n$. Perform a sequence of Givens rotations to annihilate the lower triangular parts of A to obtain

$$\underbrace{\left(J_{m,n}\dots J_{n+2,n}J_{n+1,n}\right)\dots\left(J_{2m}\dots J_{24}J_{23}\right)\left(J_{1m}\dots J_{13}J_{12}\right)}_{Q^T}A=R$$

where R takes the upper triangular form, and Q is orthogonal.

 \blacktriangleright applying Givens rotations $J_{i,k}A$ only updates the i,k row of A, i.e.,

$$A([i,j],:) = \begin{bmatrix} c & s \\ -s & c \end{bmatrix} A([i,j],:)$$

- ▶ takes $\mathcal{O}(3mn^2 n^3)$ flops to get R, what for Q?
- can be faster than Householder QR if A has certain sparse structures and we exploit them

Solving Full Rank Least Squares

$$x_{LS} = \arg\min \|b - Ax\|_2^2$$

Using orthogonal projection

- ightharpoonup solving Ax = Pb to obtain x_{LS}
 - A has orthonormal basis {q₁, q₂, · · · , q_n} (can be computed using QR factorization),

$$x_{LS} = R^{-1}Q^{T}b$$
 (reduced QR)

• using $P = A(A^TA)^{-1}A^T$,

$$(A^TA)x_{LS} = A^Tb$$
 (normal equation)

Using optimality condition

$$f(x) = \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2^2$$

$$\nabla f(\mathbf{x}) = 0 \Longrightarrow \mathbf{x}_{LS} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b},$$

Rank-deficient LS, cf. [Golub-van Loan 13]

MIT Lab. Yue Qiu

Pseudoinverse

In the real field $\mathbb R$

For $A \in \mathbb{R}^{m \times n}$, the pseudoinverse of A denoted by $A^+ \in \mathbb{R}^{n \times m}$ satisfying the Moore–Penrose conditions²

- 1. $AA^{\dagger}A = A$
- 2. $A^{\dagger}AA^{\dagger}=A^{\dagger}$
- 3. $(AA^{\dagger})^T = AA^{\dagger}$
- 4. $(A^{\dagger}A)^T = A^{\dagger}A$

When A has full rank and m > n

- $A^{\dagger} = (A^T A)^{-1} A^T$
 - In terms of reduced QR factorization of A

$$A^{\dagger} = (A^{T}A)^{-1}A^{T} = R^{-1}Q^{T}$$

MIT Lab, Yue Qiu SI231b: Matrix Computations, Shanghai Tech Oct. 26, 2021

Readings

You are supposed to read

► Lloyd N. Trefethen and David Bau III. *Numerical Linear Algebra*, SIAM, 1997.

Lecture 6, 8, 11

► Gene H. Golub and Charles F. Van Loan. *Matrix Computations*, Johns Hopkins University Press, 2013.

Chapter 5.1 - 5.3