

ANTESPA

И НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА

БАЗОВЫЙ И УГЛУБЛЁННЫЙ УРОВНИ

Часть 2 ЗАДАЧНИК

ANTESPA

И НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА

11 класс

В двух частях **Часть 2**

Задачник

для учащихся общеобразовательных организаций (базовый и углублённый уровни)

Под редакцией А. Г. Мордковича

Рекомендовано Министерством образования и науки Российской Федерации

2-е издание, стереотипное

Москва 2014

УДК 373.167.1:[512+517] ББК 22.14я721+22.161я721.6 М79

Авторы:

А. Г. Мордкович, Л. О. Денищева, Л. И. Звавич, Т. А. Корешкова, Т. Н. Мишустина, А. Р. Рязановский, П. В. Семенов

Математика: алгебра и начала математического анали-М79 за, геометрия. Алгебра и начала математического анализа. 11 класс. В 2 ч. Ч. 2. Задачник для учащихся общеобразовательных организаций (базовый и углублённый уровни) / [А. Г. Мордкович и др.]; под ред. А. Г. Мордковича. — 2-е изд., стер. — М.: Мнемозина, 2014. — 264 с.: ил.

ISBN 978-5-346-03200-7

Задачник является второй частью комплекта из двух книг, предназначенных для изучения курса алгебры и начал математического анализа в 11-м классе с углублённой подготовкой по математике (первая часть — учебник).

УДК 373.167.1:[512+517] ББК 22.14я721+22.161я721.6

Учебное излание

Мордкович Александр Григорьевич, Денищева Лариса Олеговна, Звавич Леонид Исаакович и др.

МАТЕМАТИКА:

алгебра и начала математического анализа, геометрия АЛГЕБРА И НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА

> 11 класс В двух частях Часть 2 ЗАЛАЧНИК

для учащихся общеобразовательных организаций (базовый и углублённый уровни)

Формат $60\times90^1/_{16}$. Бумага офсетная № 1. Гарнитура «Школьная». Печать офсетная. Усл. печ. л. 16,5. Тираж 20 000 экз. Заказ № 5155

Издательство «Мнемозина». 105043, Москва, ул. 6-я Парковая, 29 б. Тел.: 8 (499) 367 5418, 367 6781. E-mail: ioc@mnemozina.ru www.mnemozina.ru

ИНТЕРНЕТ-магазин. Тел.: 8 (495) 783 8284, 783 8286. www.shop.mnemozina.ru

Отпечатано в ОАО «Первая Образцовая типография», филиал «Ульяновский Дом Печати». 432980, г. Ульяновск, ул. Гончарова, 14.

- © «Мнемозина», 2013
- © «Мнемозина», 2014
- © Оформление. «Мнемозина», 2014 Все права защищены

ISBN 978-5-346-03198-7 (общ.) ISBN 978-5-346-03200-7 (ч. 2)

Предисловие для учителя

Учебно-методический комплект * для изучения курса алгебры и начал математического анализа в 11-м классе на базовом и углубленном уровнях, выпускаемый издательством «Мнемозина», соответствует требованиям ФГОС среднего общего образования (2012 г.). Комплект состоит из следующих книг:

Программы. Математика. 5—6 классы. Алгебра. 7—9 классы. Алгебра и начала математического анализа. 10—11 классы / авт.-сост. И. И. Зубарева, А. Г. Мордкович;

- А. Г. Мордкович, П. В. Семенов. Математика: алгебра и начала математического анализа, геометрия. 11 класс. Алгебра и начала математического анализа. В 2 ч. Ч. 1. Учебник (базовый и углубленный уровни);
- А. Г. Мордкович и др. Математика: алгебра и начала математического анализа, геометрия. 11 класс. Алгебра и начала математического анализа. В 2 ч. Ч. 2. Задачник (базовый и углубленный уровни);
- А. Г. Мордкович, П. В. Семенов. Алгебра и начала математического анализа. 11 класс. Методическое пособие для учителя (углубленный уровень);
- В. И. Глизбург. Алгебра и начала математического анализа. 11 класс. Контрольные работы (базовый уровень, углубленный уровень) / под ред. А. Г. Мордковича;
- Л. А. Александрова. Алгебра и начала математического анализа. 11 класс (базовый уровень, углубленный уровень). Самостоятельные работы / под ред. А. Г. Мордковича.

У вас в руках третья книга комплекта — задачник. Наличие отдельного задачника позволило авторам выстроить полноценную по объему и по содержанию систему упражнений, достаточную для работы в классе, дома, а также для организации повторения. В каждом параграфе представлены упражнения трех уровней сложности: простые, средние (слева от номера такого упражнения помещен значок ○) и трудные (значок ●). Нумерация упражнений своя в каждом параграфе. Ко всем средним и трудным заданиям в конце книги приведены ответы.

Число заданий в каждом номере — одно, два или четыре. Все они в пределах конкретного номера однотипны, поэтому советуем вам разбирать в классе пункт а) (или пункты а) и б)), а на дом задавать пункт б) (или соответственно пункты в) и г)).

Количество упражнений в задачнике таково, что его должно хватить при работе с учащимися профильных классов различной математической направленности: при четырех, пяти или шести часах в неделю на изучение курса алгебры и начал математического анализа. В раздел «Дополнительные задачи» включены задания с нестандартными формулировками, идеи которых навеяны материалами ЕГЭ по математике. Нумерация заданий в этом дополнительном разделе двойная: первые цифры указывают, к какому параграфу относится задание, а вторые — продолжают нумерацию упомянутого параграфа.

Авторы

^{*}Более подробную информацию об УМК можно получить на сайтах www.mnemozina.ru и www.ziimag.narod.ru

Задачи на повторение

П.1. Определите знак выражения:

a)
$$\sin \frac{\pi}{7} \cos \frac{2\pi}{5} \cos \frac{7\pi}{4} \sin \frac{8\pi}{5}$$
;

6)
$$\cos \frac{27\pi}{5} \sin \frac{32\pi}{11} \cos \frac{50\pi}{9} \sin \frac{22\pi}{7}$$
;

B)
$$\sin\frac{\pi}{6}\cos\frac{4\pi}{7}\cos\frac{3\pi}{5}\sin\frac{9\pi}{5}$$
;

r)
$$\sin \frac{35\pi}{3} \cos \frac{21\pi}{8} \sin \frac{18\pi}{5} \sin \frac{17\pi}{7}$$
.

П.2. Запишите числа в порядке возрастания:

a)
$$\sin \frac{\pi}{3}$$
; $\sin \frac{7\pi}{5}$; $\sin \frac{2\pi}{5}$; $\sin \frac{6\pi}{7}$;

6)
$$\cos \frac{\pi}{4}$$
; $\cos \frac{5\pi}{7}$; $\cos \frac{9\pi}{5}$; $\cos \frac{3\pi}{8}$;

B)
$$\cos \frac{11\pi}{9}$$
; $\cos \frac{\pi}{8}$; $\cos \frac{2\pi}{5}$; $\cos \frac{16\pi}{9}$;

r)
$$\sin \frac{2\pi}{5}$$
; $\sin \frac{13\pi}{8}$; $\sin \frac{4\pi}{7}$; $\sin \frac{12\pi}{11}$.

Π .3. Найдите значения $\cos t$, $\operatorname{tg} t$, $\operatorname{ctg} t$, если:

a)
$$\sin t = \frac{8}{17}, \ t \in \left(\frac{\pi}{2}; \pi\right);$$

6)
$$\sin t = -\frac{7}{25}, \ t \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right);$$

B)
$$\sin t = \frac{9}{41}, \ t \in \left(\frac{\pi}{2}; \frac{3\pi}{2}\right);$$

r)
$$\sin t = -\frac{35}{37}, \ t \in \left(\pi; \frac{3\pi}{2}\right).$$

Π .4. Найдите значения $\sin t$, $\cos t$, $\cot t$, если:

a)
$$tg t = -\frac{5}{12}, t \in \left(\frac{3\pi}{2}; 2\pi\right);$$

6)
$$tg \ t = -\frac{12}{35}, \ t \in \left(\frac{\pi}{2}; \frac{3\pi}{2}\right);$$

B)
$$tg \ t = \frac{9}{40}, \ t \in \left(\pi; \ \frac{3\pi}{2}\right);$$

r) tg
$$t = -\frac{24}{7}$$
, $t \in (0; \pi)$.

П.5. Вычислите:

a)
$$\sin t + \cos t$$
, если $\sin t \cdot \cos t = 0.22$;

б)
$$\sin t \cdot \cos t$$
, если $\sin t + \cos t = 0.4$.

П.6. Упростите выражение:

a)
$$\frac{\cos\left(\frac{3\pi}{2}-t\right)}{\cos(\pi+t)}\cdot \operatorname{tg}\left(\frac{\pi}{2}-t\right);$$

6)
$$\frac{\cos(90^{\circ} + \alpha) \operatorname{tg}(270^{\circ} + \alpha)}{\cos(180^{\circ} - \alpha) \sin(90^{\circ} - \alpha)};$$

B)
$$\frac{\sin(180^{\circ} + \alpha)\sin(270^{\circ} - \alpha)}{\cos(90^{\circ} + \alpha)} \cdot \text{ctg}(270^{\circ} + \alpha);$$

r)
$$\frac{\sin(\pi + t)\cos\left(\frac{\pi}{2} - t\right)}{\cos\left(\frac{3\pi}{2} + t\right)\operatorname{tg}(\pi - t)}.$$

П.7. Найдите значение выражения:

a)
$$(\cos 35^{\circ} + \cos 85^{\circ})(\cos 275^{\circ} + \cos 325^{\circ}) +$$

+
$$(\cos 5^{\circ} + \cos 125^{\circ})(\cos 355^{\circ} - \cos 415^{\circ});$$

6)
$$\sin 6^{\circ} + \cos 6^{\circ} \cdot \operatorname{tg} 42^{\circ}$$
;

B)
$$tg 23^{\circ} \cdot tg 293^{\circ} + \sin 52^{\circ} \cdot \sin 128^{\circ} - \sin 322^{\circ} \cdot \sin 142^{\circ}$$
;

$$\Gamma) \ \frac{(1 - 2\sin^2 13^\circ) \cdot \cos 64^\circ}{2\cos^2 19^\circ - 1}.$$

$$\textbf{П.8. Упростите выражение } \frac{\sqrt{2}\cos\alpha - 2\cos\left(\frac{\pi}{4} - \alpha\right)}{2\sin\left(\frac{\pi}{6} + \alpha\right) - \sqrt{3}\sin\alpha} + \sqrt{2}\operatorname{tg}\alpha.$$

$$\textbf{\Pi.9.} \ \, \textbf{Докажите тождество} \ \, \frac{1 \, + \, \cos\alpha}{\sin\alpha} \Bigg(1 \, + \, \frac{\big(1 \, - \, \cos\alpha \big)^2}{\sin^2\alpha} \, \Bigg) = \frac{2}{\sin\alpha}.$$

П.10. Преобразуйте выражение
$$\sin\frac{5\alpha}{2}\,\cos\frac{\alpha}{2}-\sin3\alpha\,\cos\frac{\pi}{3}-\frac{1}{4}$$
 в произведение и найдите его значение при $\alpha=\frac{\pi}{4}$.

П.11. Вычислите:

a)
$$\sin\left(\arccos 0 - \arctan\sqrt{3} - \arcsin\left(-\frac{1}{2}\right)\right)$$
;

6)
$$\cos\left(\arccos\left(-1\right) + \arcsin\left(-\frac{\sqrt{3}}{2}\right) + \arccos\sqrt{3}\right)$$
;

B)
$$\operatorname{tg}\left(\operatorname{arcctg}\left(-1\right) - \operatorname{arccos}\left(-\frac{\sqrt{3}}{2}\right) + \operatorname{arcsin}\frac{\sqrt{3}}{2}\right)$$
;

r)
$$\sin(\arccos(-1) - \arcsin 1 + \arccos 0)$$
.

Решите уравнение:

$$\Pi.12. \ a) \ 2\sin x \cos x - 2\sin x - \cos x + 1 = 0;$$

6)
$$2\sin x - \sqrt{3} \operatorname{tg} x - 2\sqrt{3} \cos x + 3 = 0$$
;

B)
$$2\cos x - \cot x - 2\sin x + 1 = 0$$
;

r)
$$2\sin x \cos x + \sqrt{2}\cos x - \sqrt{2}\sin x - 1 = 0$$
.

II.13. a)
$$2\cos^2 x - 3\cos x + 1 = 0$$
;

6)
$$4\sin^2\frac{x}{2} + 8\cos\frac{x}{2} - 7 = 0$$
;

B)
$$4\sin^2 x - 2\cos^2 x - \sin x = 0$$
;

r)
$$2\sin^2 3x - 7\sin 3x - 4 = 0$$
.

Решите уравнение:

$$\Pi.14.$$
 a) $3\cos^2 x - 2\sin 2x + \sin^2 x = 0$;

6)
$$1 + 7\cos^2 x = 3\sin 2x$$
;

B)
$$5\sin^2 x + 5\sin x \cos x = 3$$
;

$$\Gamma) \frac{1}{\cos x} + \sin x = 7\cos x.$$

II.15. a)
$$\frac{|\sin x|}{\sin x} = 1 - \cos 2x$$
; 6) $\frac{\cos x}{|\cos x|} = 1 - \sin 2x$.

$$\Pi$$
.16. a) Найдите корни уравнения $\cos 2x + (\sin x + \cos x)^2 \operatorname{tg} x =$

$$= \operatorname{tg} x (\operatorname{tg} x + 1)$$
, принадлежащие отрезку $\left[-\frac{7\pi}{4}; \frac{\pi}{4} \right]$.

б) Найдите корни уравнения
$$\sin\left(\frac{\pi}{4}-4x\right)\cos\left(\frac{\pi}{4}-x\right)+$$
 $+\sin^2\frac{5x}{2}=0$, принадлежащие отрезку $\left[-\pi;\ \pi\right]$.

П.17. Найдите наименьший положительный корень уравнения
$$\cos x \cos 2x = \cos 3x$$
.

П.18. Постройте график функции и перечислите ее свойства:

a)
$$y = 2\sin^2 x;$$
 B) $y = \frac{\cos x}{|\cos x|} \cdot x^2, x \in \left(-\frac{3\pi}{2}; \frac{3\pi}{2}\right);$

6)
$$y = \frac{2\sin|x|}{\sin x} + x;$$
 r) $y = \frac{1}{2}\cos^2 2x.$

П.19. Найдите производную функции:

a)
$$y = 2x^3 - 3\sqrt{x} + 2x$$
;

6)
$$y = 2\sin^3 x - 3 \log 4x - 4$$
;

B)
$$y = 3\cos^2 x - \cot \frac{x}{9} + 5$$
;

$$\Gamma) \ \ y = \frac{1}{4}x^4 - 5x^2 + 2\sqrt{2x+5}.$$

П.20. Найдите значение производной функции y = f(x) в точке x_0 , если:

a)
$$f(x) = \frac{x^2 - 1}{x - 2} - \frac{1}{3}x^3$$
, $x_0 = -1$;

6)
$$f(x) = 4\cos 2x - \cot \frac{x}{2}, \ x_0 = \frac{\pi}{3};$$

B)
$$f(x) = 2\sin\frac{x}{2} + \cos 3x$$
, $x_0 = \frac{\pi}{2}$;

r)
$$f(x) = \frac{3x^3 - 1}{x + 1} + \frac{1}{4}x^4$$
, $x_0 = -2$.

- П.21. Известно, что значение производной функции $y=f^3(x)$ в точке x=2 равно 27, а значение производной функции $y=\frac{1}{f(x)}$ в точке x=2 равно -1. Найдите f'(2).
- П.22. Решите уравнение f'(x) + f(x) = 0, если $f(x) = 2x^2 + 3x + 2$.
- **П.23.** Найдите наибольшее целочисленное решение неравенства f(x) f'(x) < 0, если $f(x) = 3x^2 + 18x + 8$.
- **П.24.** Докажите, что любая касательная к графику функции $y = \frac{3x+2}{3x-2} 12$ образует тупой угол с осью абсцисс.
- **П.25.** Определите абсциссы точек, в которых касательная к графику функции $y = x^3 + 4x^2 3x 1$ образует тупой угол с положительным направлением оси x.
- **П.26.** В какой точке графика функции $y = x^3 + 5x^2 + 6x + 8$ касательная образует с осью x угол, равный 135° ?
- **П.27.** Составьте уравнение касательной к графику функции y = f(x) в точке x_0 , если:

a)
$$f(x) = 3x^2 - 5x + 12$$
, $x_0 = 1$;

6)
$$f(x) = \frac{x^3 + x}{x^2 - 1}, x_0 = 2;$$

B)
$$f(x) = \frac{\sqrt{2x^2 + 1}}{x^3}$$
, $x_0 = -2$;

r)
$$f(x) = 3 - \frac{2}{\pi} \sin \pi x - \sqrt{x}, \quad x_0 = 1.$$

- **П.28.** На графике функции $y = \frac{2x-1}{2x+1}$ найдите точки, касательные в которых параллельны прямой y = 4x + 5.
- **П.29.** Напишите уравнение касательной к графику функции $y = 2x^2$, которая параллельна секущей, проходящей через точки графика с абсциссами x = -1 и x = 2.

- **П.30.** При каком значении a прямая y = ax 7 касается параболы $y = 2x^2 5x + 1$?
- **П.31.** Докажите, что функция $y = \frac{x^2 3}{x 1}$ возрастает на любом промежутке области определения.
- **П.32.** Найдите промежутки монотонности и экстремумы функции $y = x^3 + 5x^2 8x + 4$.
- П.33. Исследуйте функцию и постройте ее график:

a)
$$y = \frac{3x - x^2}{x^2 - 3x + 4}$$
;

6)
$$y = (x + 1)^2(x + 2)$$
.

§ 1. Многочлены от одной переменной

1.1. По данному стандартному виду многочлена f(x) определите его степень, выпишите набор всех его коэффициентов и найдите значение многочлена в данных точках:

a)
$$f(x) = 3x^4 - 2x^2 + x - 10$$
 B TOURAX -2; -1; 0;

$$6) f(x) = -x^5 + 3x^4 - x^3 + x$$
 в точках -1; 1; 2.

1.2. Запишите в стандартном виде произвольный многочлен степени n, если:

a)
$$n = 0$$
; B) $n = 1$;

6)
$$n = 3$$
; $r) n = 4$.

1.3. Запишите в стандартном виде произвольный приведенный многочлен степени *n*, если:

a)
$$n = 0$$
; B) $n = 1$;

б)
$$n = 2$$
; r) $n = 3$.

Запишите многочлен в стандартном виде:

1.4. a)
$$(x + 1)(x - 1)(x - 2)$$
;

6)
$$(x + 1)^2(x - 2) - (x + 1)(x - 2)^2$$
;

B)
$$(2x + 1)(2x - 1)^2$$
;

$$\Gamma) (2x+1)(2x-1)^2 + (1-2x)^3.$$

O1.5. a)
$$(x^2 - 3x + 2)^2 - (x^2 - x)^2$$
;

6)
$$(x + 1)(x^7 - x^6 + ... - x^2 + x - 1)$$
;

B)
$$(2-x)^3+(x-1)^3$$
;

$$\Gamma) (x^5 - x^4 + x^3 - x^2 + x - 1)(x^5 + x^4 + x^3 + x^2 + x + 1).$$

Запишите многочлен в стандартном виде:

- 1.6. a) $(x^2 3x + 1)(x^2 3x 3)$;
 - 6) $(x^3 + 2x 3)(x^3 2x + 3)$;
 - B) $(x^3 3x 7)(x^2 + 7x 1)$;
 - $\Gamma) (x^4 3x^2 3x + 3)(x^3 + x^2 x).$
- O1.7. a) $(1 + x + x^2 + x^3)^2$; 6) $(1 x + x^2 x^3 + x^4)^2$.
 - 1.8. Какие из следующих утверждений верны:
 - а) сумма многочленов степени n есть многочлен степени не выше n;
 - б) разность многочленов степени n есть многочлен степени n;
 - в) произведение многочленов степени n есть многочлен степени не выше n:
 - г) произведение двух многочленов степени n есть многочлен степени 2n?
- O1.9. Пусть $f(x) = x^2 x + 1$ и $\varphi(x) = 2x + 1$; найдите: а) $f^2(x)$; б) $f^3(x)$; в) $f(x) - \varphi^3(x)$; г) $(2f(x) - x\varphi(x))^2$.
- О1.10. При каких значениях параметра а:
 - а) коэффициент при x^2 в стандартном виде многочлена $(x^2 3x + a)(x^2 ax + 2)$ равен 0;
 - б) коэффициент при x^3 в стандартном виде многочлена $(x^2-(a-1)x+a)(x^2+a^2x+2a)$ равен 7?
- O1.11. В многочлене p(x) выполнили замену переменной x = y + a и получили многочлен $p_1(y) = p(y + a)$. При каких значениях параметра a многочлен $p_1(y)$ не содержит члена степени n, если:
 - a) $p(x) = 2x^2 + 3x 6$, n = 1;
 - 6) $p(x) = 2x^3 + 3x^2 x + 1$, n = 2;
 - B) p(x) = (7 4x)(3x 5), n = 1;
 - $p(x) = (2x^2 + 3x)(x 1), n = 2$
- O1.12. а) Докажите, что свободный член многочлена p(x) равен значению этого многочлена в точке x = 0.
 - б) Докажите, что сумма всех коэффициентов стандартного вида многочлена p(x) равна p(1).

•1.13. Определите степень, старший коэффициент и свободный член многочлена p(x):

a)
$$p(x) = (3x^2 - x + 1)^{17} + (x^3 + 5x + 1)^{11}$$
;

6)
$$p(x) = (x^6 - 2x + 64)^3 - (x^9 + x^8 - 512)^2$$
;

B)
$$p(x) = (81x^4 - 36x^2 + 4)^5 - (9x^2 - 2)^{10} + (x - 1)^{13}$$
;

r)
$$p(x) = (x^2 - x + 1)(x^2 + x + 1)(x^4 - x^2 + 1)(x^8 - x^4 - 1) + (x - 1)^{16}$$
.

O1.14. Заполните таблицу, считая, что f(x) и g(x) многочлены:

Степень f(x)	Степень g(x)	Степень $f(x) + g(x)$	Степень $f(x) \cdot g(x)$	Степень f ³ (x)
5	3			
	7			21
	4		7	
		2		9
		4	14	

- O1.15. Докажите, что:
 - а) сумма всех коэффициентов при четных степенях многочлена f(x), записанного в стандартном виде, равна 0.5(f(1) + f(-1));
 - б) сумма всех коэффициентов при нечетных степенях многочлена f(x), записанного в стандартном виде, равна 0.5(f(1) f(-1)).
- О1.16. Для многочлена p(x) найдите степень, свободный член, старший коэффициент, сумму всех коэффициентов, сумму всех коэффициентов при четных степенях переменной, сумму всех коэффициентов при нечетных степенях переменной:

a)
$$p(x) = (x + 1)^{17} - (x - 1)^{17}$$
;

6)
$$p(x) = (x^2 + x - 2)^{35}(x^2 - 3x - 4)^{15} - (x - 1)^2(x^3 + x + 2)^{65}$$
.

 ${\tt O1.17.}$ При каких значениях параметра a многочлен

$$(a^2-4)x^4-2x^3+(2a-1)x-4$$
 будет:

- а) приведенным многочленом;
- б) многочленом четвертой степени;
- в) многочленом третьей степени;
- г) принимать одинаковые значения в точках x = 1 и x = -1?

- O1.18. Найдите все значения параметров a и b, при которых многочлены p(x) и q(x) тождественно равны:
 - a) p(x) = 2ax (a + b), q(x) = 4x + (3a b 8);
 - 6) $p(x) = 2x^2 + x (a + b)x + 2b a$, $q(x) = -ax + 2(x^2 b) + (1 b)(x^2 + 2x)$.
- O1.19. Найдите все значения параметра a, при которых многочлен $(a^2-1)x^4-2x^3+(2a-1)x-7$ будет:
 - а) тождественно равен многочлену $8x^4 2x^3 (a 8)x 4 a$;
 - б) тождественно равен многочлену $-2x^3 (2 3a)x a^2 6$.
- **•1.20.** Пусть p(x) многочлен степени k и при всех значениях x справедливо равенство p(-x) = p(x). Докажите, что:
 - а) k четное натуральное число или нуль;
 - б) коэффициенты многочлена p(x) при нечетных степенях x равны нулю.
- **•1.21.** Пусть p(x) многочлен степени k и при всех значениях x справедливо равенство p(-x) = -p(x). Докажите, что:
 - а) k нечетное натуральное число;
 - б) коэффициенты многочлена p(x) при четных степенях x равны нулю.
 - 1.22. Выполните деление «уголком»:
 - a) $x^3 2x^2 + 3x 5$ Ha $x^2 3x 1$;
 - б) $2x^5 3x^3 x + 2$ на x 2;
 - B) $x^3 + 2x^2 + x + 3$ Ha $2x^2 3x 4$;
 - г) $6x^4 2x + 3$ на 2x + 3.
 - 1.23. а) Выпишите все приведенные многочлены, являющиеся делителями многочлена $3(x-1)^2(x+5)$.
 - б) Выпишите все приведенные многочлены третьей степени, являющиеся делителями многочлена $x^2(2x+3)(x+5)^3$.
 - 1.24. а) Докажите, что многочлен $p(x) = x^3 + 5x^2 + 3x 1$ делится без остатка на многочлен $q(x) = 2x^2 + 8x 2$.
 - б) Докажите, что многочлен $t(x) = -5x^2 + 4x 4$ является делителем многочлена $l(x) = 5x^4 9x^3 2x^2 + 4x 8$.

- O1.25. При каких значениях параметров a и b:
 - а) многочлен $p(x) = x^4 3x^3 + 3x^2 + ax + b$ делится без остатка на многочлен $t(x) = x^2 3x + 2$;
 - б) многочлен $p(x) = x^4 2x^3 + ax + 2$ делится без остатка на многочлен $t(x) = x^2 + x + b$?
 - **1.26.** Для многочленов f(x) и p(x) найдите многочлены q(x) и r(x) такие, что $f(x) = p(x) \cdot q(x) + r(x)$ и либо степень r(x) меньше степени p(x), либо r(x) является нуль-многочленом:

f(x)	p(x)
$3x^4 - 2x^3 + 7x - 3$	x^2-3x-2
x^2-3x-2	$3x^4-2x^3+7x-3$
$12x^7 - 3x^5 + 6x^4 - 9x^2 + 33$	$4x^7 - x^5 + 2x^4 - 3x^2 + 11$
$4x^7 - x^5 + 2x^4 - 3x^2 + 11$	$12x^7 - 3x^5 + 6x^4 - 9x^2 + 33$
$x^4 - 7x^3 + 6x^2 - 5x - 19$	x-1
$x^4 - 7x^3 + 6x^2 - 5x - 19$	x + 1
$x^4 - 7x^3 + 6x^2 - 5x - 19$	$\tilde{7}x-7$
$x^3 - 5x + 3$	3x-1
$3x^5 - 2x^4 + 3x^3 - 7x^2 + 2x - 1$	3x-1

- O1.27. а) Пусть многочлен $ax^3 + bx^2 + cx + d$ тождественно равен многочлену $a(x x_1)(x x_2)(x x_3)$. Выразите коэффициенты a, b, c и d через числа x_1 , x_2 , x_3 .
 - б) Пусть многочлен $x^4+ax^3+bx^2+cx+d$ тождественно равен многочлену $(x-x_1)(x-x_2)(x-x_3)(x-x_4)$. Выразите коэффициенты a,b,c и d через числа x_1,x_2,x_3,x_4 .
 - 1.28. Используя схему Горнера, выполните деление многочлена f(x) на двучлен x-a и заполните таблицу:

f(x)	a	Частное	Остаток $(f(a))$
$x^5 - 2x^4 + 3x^3 - 7x^2 + 2x - 1$	2		
$2x^4 + 7x^2 - 21x - 30$	-1		
$x^7 - 2x^4 + 27x + 3$	-2		
$3x^5 + 5x^4 + 11x^2 + 2x$	1		

- **1.29.** Найдите остаток от деления многочлена f(x) на двучлен (x-a) и значение f(x) в точке x=a:
 - a) $f(x) = x^3 4x^2 + 3x + 11$, a = -3;
 - 6) $f(x) = x^7 + 3x^6 x^3 12x^2 + 1$, a = -2;
 - B) $f(x) = 3x^4 x^2 + x 31$, a = 2;
 - r) $f(x) = 2x^6 3x^5 + 2x^3 4x^2 2x + 100$, a = -1.
- O1.30. Докажите, что остаток от деления многочлена f(x) на двучлен $(kx-p),\ k\neq 0$, равен значению этого многочлена в точке $x=\frac{p}{k}.$
 - 1.31. Используя схему Горнера, найдите все такие значения параметра a, при которых для многочлена $p(x) = x^7$
 - $-2x^6+3x^5-x^3+x^2-5x+a$ выполняется условие:
 - a) p(1) = 0; 6) p(-1) = 0; B) p(2) = 0; P) p(-3) = 5.
 - **1.32.** Используя схему Горнера, докажите, что число a является корнем многочлена p(x):
 - a) $p(x) = 2x^4 3x^3 + x 10$, a = 2;
 - 6) $p(x) = 2x^3 + x^2 7x 6$, a = -1.5.
 - 1.33. Используя схему Горнера, найдите все такие значения параметра a, при которых число x_0 является корнем многочлена $p(x) = x^4 3x^3 + x^2 + ax 1$:
 - a) $x_0 = 1$; 6) $x_0 = -3$; B) $x_0 = 2$; r) $x_0 = 0.5$.
- O1.34. Докажите утверждение: при любом натуральном значении n многочлен $p(x) = 2x^n + 4x^{n-1} 2^{n+2}$ делится на (x-2) без остатка. Используя это утверждение, докажите, что:
 - a) $(2 \cdot 5^n + 4 \cdot 5^{n-1} 2^{n+2}) \vdots 3;$
 - 6) $(2 \cdot 9^n + 4 \cdot 9^{n-1} 2^{n+2}) \div 7;$
 - B) $(2 \cdot 7^{100} + 28 \cdot 7^{98} 2^{102}) \div 5;$
 - $\Gamma) \left(2(n+3)^n+4(n+3)^{n-1}-2^{n+2}\right) \stackrel{?}{:} (n+1).$

- ullet1.35. Найдите значения параметра a, при которых многочлен имеет ровно три различных корня:
 - a) 3(x+5)(x-7)(x+1)(x-a):
 - 6) $(ax^2 + 5x + 1)(x^2 x 2)$:
 - B) $(x^2 (a + 1)x + a)(x^2 x a)$:
 - Γ) $(3x^2 + x a)(2x + a)$.
- ●1.36. При каких значениях параметра а заданный многочлен имеет кратные корни:
 - a) (2x + 5)(3x 1)(x a)(x 2a):
 - 6) $(x^2 (3a 2)x 6a)(x^2 (5a + 3)x + a)(x 2)$?
- О1.37. Найдите действительные корни многочлена:

 - a) $3x^4 5x^2 + 2$; 6) $x^5 + 3x^4 3x^3 x^2 3x + 3$.
- 01.38. Докажите, что многочлен не имеет действительных корней:
 - a) $x^6 5x^3 + 7$: 6) $x^4 x + 2$.
- О1.39. В данное предложение вместо многоточия вставьте один из пропущенных оборотов: «необходимо», «достаточно» или «необходимо и достаточно»; докажите полученное утвер
 - а) для того чтобы многочлен f(x) с целыми коэффициентами делился без остатка на двучлен $x - x_0, x_0 \in \mathbb{Z}, x_0 \neq 0, ...,$ чтобы его свободный член делился без остатка на x_0 ;
 - б) для того чтобы свободный член многочлена f(x) с целыми коэффициентами делился без остатка на целое число $x_0 \neq 0, \ldots$, чтобы x_0 был корнем многочлена f(x).
- О1.40. Найдите целые корни многочлена; в ответе укажите множество целых корней многочлена и кратность всех его целых корней, если эти кратности больше 1:
 - a) $x^3 4x^2 + x + 6$:
 - $6) x^4 + 5x^2 6$:
 - B) $x^4 2x^3 6x^2 + 5x + 2$:
 - $\Gamma (x^6 + x^5 10x^4 12x^3 + 19x^2 + 35x + 14.$

O1.41. Для некоторого приведенного многочлена p(x) указаны его степень и все его корни с учетом их кратностей. Требуется записать в таблице разложение p(x) на множители:

	Степень много- члена	Корни крат- ности 1	Корни крат- ности 2	Корни крат- ности 3	Корни крат- ности 4	Разложение многочлена
a)	7	1; -3; 5			2	
б)	12	0;	-2; 3	$\sqrt{3}$	0,7	
в)	8		9	π; -0,3		
г)	5		2	-3		

- О1.42. Разложите многочлен на линейные множители:
 - a) $x^5 4x^4 + 14x^2 17x + 6$;
 - 6) $x^5 x^4 5x^3 + x^2 + 8x + 4$;
 - B) $x^4 6x^3 + 13x^2 12x + 4$:
 - $\Gamma) x^8 x^7 5x^6 + 3x^5 + 9x^4 3x^3 7x^2 + x + 2.$
- O1.43. а) Найдите многочлен p(x) второй степени, если p(0) = -1, p(1) = 2, p(2) = 3.
 - б) Найдите приведенный многочлен p(x) второй степени, если p(-2) = 3, p(-2,5) = 8.
- O1.44. а) Найдите приведенный многочлен p(x) третьей степени, если p(0) = 1, p(1) = 2, p(2) = 3.
 - б) Найдите приведенный многочлен p(x) третьей степени, если p(0) = p(1) = p(4) = 0.
- O1.45. Пусть p(x) многочлен третьей степени; p(1) = p(2) == p(3) = 0. Докажите, что:
 - a) $p(4) \neq 0$;
- B) p(1,5) + p(2,5) = 0;
- 6) $p(7) \neq p(-3)$;
- Γ) p(5) = 4p(4).
- \bigcirc 1.46. Докажите, что у данного многочлена p(x) нет рациональных корней:
 - a) $p(x) = 7x^{15} 13$; 6) $p(x) = 3x^7 + 1$.
- ●1.47. При каких значениях b и c многочлен $f(x) = x^4 + 8x^3 + 6x^2 + 6$ $+ bx^2 + cx + 1$ имеет два корня, каждый из которых второй кратности? Для каждой пары таких значений b и cнайдите корни многочлена.

- **1.48.** При каких целых значениях a, b и c многочлен $f(x) = x^4 + 1$ $+ ax^3 + bx^2 + cx + 2$ имеет целый корень кратности 3? Для каждой тройки таких значений a, b и c найдите корни многочлена f(x).
- **ullet1.49.** Докажите, что все корни многочлена g(x) являются корнями многочлена f(x):

	g(x)	f(x)
a)	x^2-7x-1	$x^5 - 7x^4 - 5x^2 - 15x - 2$
б)	$x^3 - 5x^2 + 2x - 3$	$x^5 - 12x^4 + 36x^3 - 12x^2 + 19x + 3$

§ 2. Многочлены от нескольких переменных

Разложите многочлен на множители:

- **2.1.** a) $x^2 xy^3 + y^2 x^3y$:
 - 6) x(x-2y) + y(x-2y);
 - B) $x(x-y) + 3xy 3y^2$:
 - $r) x^2 + 6xy + 5y(6y + x).$
- 02.2. a) $x^2 3xy + 2y^2$;
 - 6) $7x^2 + 5xy 12y^2$:
 - B) $5x^2 8xy + 3y^2$;
 - Γ) $7x^2 + 18xy + 8y^2$.
- $\bigcirc 2.3.$ a) $x^2 + (1 + y)x + y$;
 - $6)2x^2 7xy + 5y^2 3x + 3y$;
 - B) $4x^2 y^2 8x + 4y$;
 - r) $3x^2 xy 24y^2 + 5x 15y$.
- O2.4. a) $(x^7 + x) (y^7 + y)$; B) $(x^5 x) (y^5 y)$;

6) $x^4 + 4u^4$:

- Γ) $16x^4 + u^4$.
- **2.5.** a) $(x + y + z)^3 x^3 y^3 z^3$;
 - 6) (x + y + z)(xy + yz + zx) xyz;
 - B) $x(u+z)^2 + u(z+x)^2 + z(x+y)^2 4xyz$;
 - Γ) $(x + y + z)^4 (y + z)^4 (z + x)^4 (x + y)^4 + (x + y)^4 + (y + z)^4 + (y + z)$ $+ x^4 + u^4 + z^4$.

- **•2.6.** а) Докажите, что многочлен $(y^2 z^2)x + (z^2 x^2)y + (x^2 y^2)z$ не обращается в нуль ни при каких попарно различных значениях переменных x, y, z.
 - б) Многочлен $x^3 + px + q$ обращается в нуль при $x = \alpha$, при $x = \beta$ и при $x = \gamma$. Докажите, что $\alpha + \beta + \gamma = 0$.
- O2.7. a) Докажите, что сумма $17^{11} + 5^{11}$ делится без остатка на 22.
 - б) Докажите, что разность $13^9 7^9$ делится без остатка на 6.
- O2.8. Докажите, что многочлен:
 - а) $x^7 3x^3y^4 + 6xy^6 4y^7$ делится без остатка на многочлен x y;
 - б) $x^{13} + 7x^{10}y^3 11x^3y^{10} 17y^{13}$ делится без остатка на многочлен x + y.
- **О2.9.** Пусть x + y = -3, а xy = -5. Найдите значение выражения:
 - a) $x^2 + y^2$; B) $x^4 + y^4$;
 - 6) $x^3 + y^3$; r) $x^2y^7 + x^7y^2$.
- **©2.10.** Пусть x + y = -7, а xy = -1. Найдите значение выражения:

a)
$$\frac{|x-y|}{xy^2+x^2y}+2\cdot\left|\frac{x}{y}-\frac{y}{x}\right|;$$

6)
$$\frac{\left|x^4-y^4\right|}{xy^3+x^3y}+\left|\frac{x^2}{y^2}-\frac{y^2}{x^2}\right|$$
.

Запишите многочлен в стандартном виде:

- **2.11.** a) $(2x-y-3)^2 + (x-3y-1)^2$;
 - 6) $(x-y-2z-1)^2+(2x+y+z-3)^2$;
 - B) $(5x y 2)^2 + 2(3x y 1)^2$;
 - r) $(x-3y+z-2)^2-3(2x+y-z+1)$.
- O2.12. a) $(x + y + 2)^3 + x(2x + y 1)^2$;
 - 6) $(2x y z)^3 3xy(2x + 3y z)$.

2.13. Найдите отношение
$$\frac{f(kx; ky)}{f(x; y)}$$
, если:

a)
$$f(x; y) = 2x^2 + 5xy - 7y^2$$
;

6)
$$f(x; y) = x^4 + 12x^3y - 7x^2y^2 + 2xy^3 - 2y^4;$$

B)
$$f(x; y) = (3x - 5y)^3 + 2x(x + y)^2 - 7y^2(2x - y);$$

$$\Gamma f(x; y) = (x + y)^6 + (5x^2 - 4y^2)^3 - 7(x^3 - y^3)^2 + x^3y^3.$$

2.14. Пусть y = 3x. Упростите выражение:

a)
$$\frac{y^2 - 5xy - 3x^2}{2u^2 + xu + 2x^2}$$
;

$$6) \frac{x^2y^3 + 2y^2x^3}{x^5 + y^5}.$$

O2.15. Найдите все пары f(x; y) действительных чисел x и y, для которых верно заданное равенство; изобразите множество всех найденных пар на координатной плоскости:

a)
$$\frac{2y-3x}{4y+5x} = 6;$$

B)
$$\frac{x^2 + x(2+y) + 2y}{x+y} = 2;$$

6)
$$\frac{x^2 + x(2+y) + 2y}{x+y} = x^2;$$
 r) $\frac{x^3 + x^2y - 3x - 3y}{y+x} = 1.$

r)
$$\frac{x^3 + x^2y - 3x - 3y}{y + x} = 1.$$

Решите уравнение относительно х:

2.16. a)
$$x^2 - 5xy + 4y^2 = 0$$
;

$$6) \ 5x^2 + 27xy + 10y^2 = 0.$$

O2.17. a)
$$4x^3 + 5x^2y + xy^2 = 0$$
;

$$6) x^3 + 6x^2y + 11xy^2 + 6y^3 = 0.$$

Постройте график уравнения:

$$02.18. a) x^2 - 9y^2 = 0;$$

B)
$$5x^2 - xy - 4y^2 = 0$$
;

$$\vec{b}$$
) $x^2 + xy = 0$:

r)
$$x^2y + 3xy^2 + 2y^3 = 0$$
.

$$\bigcirc$$
2.19. a) $(2x + y - 5)^2 - (x + y - 3)^2 = 0$;

6)
$$(2x + y - 5)^2 + (x + y - 3)^2 = 0$$
.

O2.20. a)
$$x^2 + y^2 = 16$$
;

$$6) x^2 + y^2 - 6x + 4y = 12;$$

B)
$$x^2 + y^2 + 4x + 2y = 4$$
;

r)
$$4(x^2 + y^2) + 12x + 20y + 34 = 0$$
.

Постройте график уравнения:

$$02.21.$$
 a) $xy = 2;$

B)
$$x(y + 3) = 2;$$

$$6)(x-2)y=2;$$

r)
$$(x + 2)(y + 1) = 2$$
.

2.22. a)
$$(x-2)^2 + (y-3)^2 = 9$$
; B) $(|x|-2)^2 + (y-3)^2 = 9$;

B)
$$(|x| - 2)^2 + (y - 3)^2 = 9$$
;

6)
$$(x-2)^2 + (|y|-3)^2 = 9$$
; r) $(|x|-2)^2 + (|y|-3)^2 = 9$.

$$\Gamma) (|x| - 2)^2 + (|y| - 3)^2 = 9$$

2.23. a)
$$(x - 3)(y - 2) = 1$$
;

B)
$$(x-3)(|y|-2)=1$$
;

$$5)(|x|-3)(y-2)=1;$$

6)
$$(|x|-3)(y-2)=1$$
; r) $(|x|-3)(|y|-2)=1$.

02.24. Найдите целочисленные решения системы уравнений:

a)
$$\begin{cases} 2x^2 + xy + 9y^2 = 12, \\ |x + 2y| + 2x = 5; \end{cases}$$
 $\begin{cases} x^2 + xy + 2y^2 = 2, \\ 3x - |2x - y| = 0. \end{cases}$

$$\begin{cases} x^2 + xy + 2y^2 = 2 \\ 3x - |2x - y| = 0. \end{cases}$$

Решите систему уравнений:

O2.25. a)
$$\begin{cases} x^2 - xy - 2y^2 = 0, \\ x^2 + y^2 = 20. \end{cases}$$

6)
$$\begin{cases} x^2 + 3xy + 9y^2 = 12, \\ x^2 + 3xy + 2y^2 = 0. \end{cases}$$

O2.26. a)
$$\begin{cases} x^2 + 3xy + 2y^2 = 0, \\ 2x^2 + xy = 25; \end{cases}$$

B)
$$\begin{cases} 2x^2 + xy - 3y^2 = 0, \\ x^2 - y^2 + xy = 4; \end{cases}$$

6)
$$\begin{cases} x^2 + xy - 3y^2 = -23, \\ x^2 - y^2 - 2xy = -14; \end{cases}$$
 r)
$$\begin{cases} x^2 + 3xy = 7, \\ y^2 + xy = 6. \end{cases}$$

$$\begin{cases} x^2 + 3xy = 7, \\ y^2 + xy = 6. \end{cases}$$

2.27. a)
$$\begin{cases} x^2 + 4|x|y - 3y^2 = 2, \\ x^2 - |x|y + 5y^2 = 5; \end{cases}$$
 6)
$$\begin{cases} 3x^2 - y^2 = 11, \\ x^2 + 2|x| \cdot |y| - y^2 = 7. \end{cases}$$

6)
$$\begin{cases} 3x^2 - y^2 = 11, \\ x^2 + 2|x| \cdot |y| - y^2 = 7. \end{cases}$$

•2.28. a)
$$\begin{cases} x^2 + x(y-1) - 2(y-1)^2 = 0, \\ x^2 + xy + y = 1; \end{cases}$$

6)
$$\begin{cases} x^2 + x(y-1) + (y-1)^2 = 3, \\ x^2 + y^2 = 2y + 1. \end{cases}$$

Решите систему уравнений:

O2.29. a)
$$\begin{cases} \frac{5}{x^2 - xy} + \frac{4}{y^2 - xy} = \frac{13}{6}, \\ \frac{8}{x^2 - xy} - \frac{1}{y^2 - xy} = 1; \end{cases}$$

$$6) \begin{cases} \frac{1}{2x^2 + 6xy} + \frac{3}{4y^2 - 4xy} = \frac{25}{14}, \\ \frac{3}{4x^2 + 12xy} - \frac{1}{2y^2 - 2xy} = -\frac{4}{7}. \end{cases}$$

O2.30. a)
$$\begin{cases} x^2y - 4y^3 = 0, \\ x + 2y^2 = 12; \end{cases}$$

6)
$$\begin{cases} x^3 + 3x^2y = xy^2 + 3y^3, \\ x^2 + xy = 50. \end{cases}$$

O2.31. a)
$$\begin{cases} x^3 + xy^2 = 5, \\ y^3 + x^2y = 10; \end{cases}$$

6)
$$\begin{cases} x^3 - y^3 = 7, \\ x^3 - y^3 = 9 - x^2 y + x y^2. \end{cases}$$

Решите симметрическую систему уравнений:

O2.32. a)
$$\begin{cases} x + y = 5, \\ x^2 + y^2 = 13; \end{cases}$$

$$\begin{cases} x + y + xy = 5, \\ xy(x + y) = 6; \end{cases}$$

6)
$$\begin{cases} xy - 3x - 3y = -9, \\ x^2 + y^2 - 5x - 5y = -10; \end{cases}$$
 r)
$$\begin{cases} xy - 7x - 7y = -9, \\ x^2 + y^2 + 11(x + y) = 16. \end{cases}$$

r)
$$\begin{cases} xy - 7x - 7y = -9, \\ x^2 + y^2 + 11(x + y) = 16 \end{cases}$$

O2.33. a)
$$\begin{cases} x^2 + xy + y^2 = 3, \\ xy(x^2 + y^2) = 2; \end{cases}$$

B)
$$\begin{cases} x^2 + y^2 = 5, \\ x^4 + y^4 = 13. \end{cases}$$

6)
$$\begin{cases} \frac{1}{x} + \frac{1}{y} = 5, \\ \frac{1}{x^2} + \frac{1}{y^2} = 13; \end{cases}$$

r)
$$\begin{cases} x + y + \frac{1}{x} + \frac{1}{y} = 4, \\ xy(x + y) = 2. \end{cases}$$

●2.34. Решите систему уравнений:

a)
$$\begin{cases} |x - y| + xy = x + y, \\ x^2 + y^2 - x - y = 2; \end{cases}$$

6)
$$\begin{cases} |x-y|+x+y=3xy, \\ x^2+y^2-xy=3. \end{cases}$$

ullet2.35. При каких значениях параметра a система имеет нечетное число решений:

a)
$$\begin{cases} x^2 + xy + y^2 = 3a^2, \\ xy(x+y) = 2; \end{cases}$$
 6)
$$\begin{cases} xy - 3x - 3y = -5, \\ x^2 + y^2 - 5x - 5y = a? \end{cases}$$

Решите уравнение:

O2.36. a)
$$(x^2 + 3y^2 - 7)^2 + \sqrt{3 - xy - y^2} = 0$$
;

6)
$$(5x + y - 6)^2 + (3x - y - 2)^4 = 0$$
.

2.37. a)
$$9x^2 + 12xy + 5y^2 - 6y + 9 = 0$$
;

6)
$$26x^2 + 10y^2 - 30xy + 6x + 10y + 34 = 0$$
.

2.38. a)
$$(x + 2y)^2 + 2|x - y + 3| = y - x - 3$$
;

6)
$$(5x-2y-7)^2+4|3x-2y-5|=3x-2y-5$$
.

●2.39. Найдите все тройки чисел, удовлетворяющих уравнению:

a)
$$(x - y + 1)^2 + (x + 2y - z)^2 + 5y^2 = 0$$
;

6)
$$x^2 + y^2 + z^2 - xy - yz - zx = 0$$
.

●2.40. Найдите наименьшее значение выражения:

a)
$$x^2 + 4y^2 - 4xy + 3$$
;

a)
$$x^2 + 4y^2 - 4xy + 3$$
; 6) $x^2 + 4xy + 5y^2 + 2y + 7$.

●2.41. Найдите наибольшее значение выражения:

a)
$$-x^2 - 40y^2 + 10xy + 3$$
;

6)
$$-x^2 - 4xy - 10y^2 + 14y + 12$$
.

 \bigcirc 2.42. Найдите наименьшее значение выражения f(x; y) при заданном дополнительном условии:

a)
$$f(x; y) = x^2 + 4y^2 - 4xy + 3x - y + 6$$
, $x + y = 1$;

6)
$$f(x; y) = 2x^2 + y^2 - 4xy + 3x - y + 6$$
, $x - 2y = 4$.

•2.43. Докажите, что многочлен принимает положительные значения при любых действительных значениях переменных:

a)
$$3x^2 - 11xy + 47y^2 + 2$$
;

6)
$$(2x + 3y + 5)^2 + (x + 2y + 3)^2 + (3x - 7y + 1)^4$$
;

B)
$$3x^2 - 2xy + y^2 - 6x - 2y + 11$$
;

r)
$$x^2 + y^2 + z^2 + 2xy + 2yz + 2zx + 3$$
.

§ 3. Уравнения высших степеней

Решите уравнение:

O3.1. a)
$$x^3 - 3x^2 - 4x = 0$$
:

$$6) x^4 + 11x^3 - x^2 = 0;$$

B)
$$3x^3 - 8x^2 + 14x = 0$$
;

$$\Gamma) (2x-3)^3 - (2x-3)^2 = 12x-18.$$

$$03.2.$$
 a) $(2x-1)^4 - x^2 = 0$:

$$6) x^4 - 4x^3 + 4x^2 = (7x + 1)^2;$$

B)
$$(8x + 3)^2 - x^4 = 8x^2 + 16$$
;

$$\Gamma) x^4 - x^2 + 2x = 1.$$

O3.3. a)
$$x^3 - 3x^2 - x + 3 = 0$$
:

6)
$$x^8 + 11x^5 - 32x^3 - 352 = 0$$
;

B)
$$5x^3 - 15x^2 - x + 3 = 0$$
;

$$\Gamma) x^3 - 2x^2 + x = (x^2 - 2x + 1)^2.$$

O3.4. Найдите все значения параметра a, при каждом из которых данное число p является корнем данного уравнения; для каждого найденного значения a решите данное уравнение:

a)
$$x^3 + 3x^2 - 7x + a = 0$$
, $p = 2$;

6)
$$x^3 - ax^2 - 5x + 4 = 0$$
, $p = 1$;

B)
$$2x^3 - 5x^2 + ax - 4 = 0$$
, $p = -1$;

r)
$$ax^3 - 3x^2 - 5x - a^2 = 0$$
, $p = -1$.

ОЗ.5. Найдите целые корни уравнения:

a)
$$x^3 + 3x^2 - 5x - 4 = 0$$
;

$$6) x^4 - 3x^3 + 4x^2 - 9x + 3 = 0;$$

B)
$$x^4 + 2x^3 - 5x^2 - 4x + 6 = 0$$
:

$$\Gamma) x^5 - x^4 - 5x^3 + 5x^2 + 4x - 4 = 0.$$

•3.6. Найдите рациональные корни уравнения:

a)
$$2x^3 + 7x^2 + 5x + 1 = 0$$
;

6)
$$2x^4 + 7x^3 - 3x^2 - 5x - 1 = 0$$
;

B)
$$27x^3 + 9x^2 + 3x - 3 = 0$$
;

$$\Gamma) 16x^4 + 16x^3 - 48x^2 + 28x - 5 = 0.$$

Решите уравнение:

O3.7. a)
$$x^3 - 4x^2 + x + 6 = 0$$
;

6)
$$x^4 + 5x^3 + 4x^2 - 24x - 24 = 0$$
;

B)
$$x^3 + 9x^2 + 23x + 15 = 0$$
;

$$\Gamma(x+1)(x^2+2)+(x+2)(x^2+1)=2.$$

O3.8. a)
$$10x^3 - 3x^2 - 2x + 1 = 0$$
;

$$6) \ 4x^3 - 3x - 1 = 0;$$

B)
$$4x^3 + 6x^2 + 4x + 1 = 0$$
;

$$\Gamma) 38x^3 + 7x^2 - 8x - 1 = 0.$$

O3.9. a)
$$16x^3 - 28x^2 + 4x + 3 = 0$$
;

6)
$$6x^3 - 13x^2 + 9x - 2 = 0$$
;

B)
$$6x^3 + x^2 + 3x + 2 = 0$$
:

$$\Gamma) 4x^3 + 2x^2 - 8x + 3 = 0.$$

- O3.10. a) На основании того, что число $\sqrt{2}$ является корнем уравнения $x^2-2=0$, докажите, что $\sqrt{2}$ иррациональное число.
 - б) Проверив, что $\sqrt{3}-\sqrt{2}$ является корнем уравнения $x^4-10x^2+1=0$, докажите, что $\sqrt{3}-\sqrt{2}$ иррациональное число.
- O3.11. Найдите все целые значения параметра a, при каждом из которых многочлен p(x) имеет хотя бы один целый корень; для каждого найденного значения a определите число различных целых корней многочлена p(x):

a)
$$p(x) = x^3 - 3x^2 + ax - 1$$
;

6)
$$p(x) = x^4 + ax^2 - (2a + 3)x - 7$$
.

©3.12. Найдите все значения параметра a, при каждом из которых многочлен p(x) имеет два целых корня:

a)
$$p(x) = ax^2 + 3x + 2a^2 - 3$$
;

6)
$$p(x) = ax^2 - 5x + 4a^2 - 10$$
.

ullet3.13. Найдите все значения параметров a и b, при каждом из которых многочлен p(x) имеет три различных целых корня:

a)
$$p(x) = x^3 + ax^2 + bx + 2$$
;

6)
$$p(x) = bx^3 + ax^2 + x + 2$$
.

Решите уравнение:

- **3.14.** a) $x^4 3x^2 + 2 = 0$; B) $x^4 7x^2 + 3 = 0$;

$$6) x^4 - 9x^2 - 10 = 0;$$

- $\Gamma) x^4 12.3x^2 + 45 = 0.$
- $03.15. a) x^6 4x^3 + 3 = 0$

$$6) (2-x)^6 + 9(2-x)^3 + 8 = 0;$$

- B) $x^6 7x^3 8 = 0$:
- r) $(2-x-x^2)^6-14.7(2-x-x^2)^3+57=0$.
- O3.16. Найдите значение выражения $x^2 + \frac{1}{x^2}$, если:

a)
$$x + \frac{1}{r} = 3;$$

B)
$$x + \frac{1}{x} = t;$$

6)
$$x - \frac{1}{x} = 5$$
;

$$\Gamma) x - \frac{1}{n} = t.$$

O3.17. Найдите значение выражения $9x^2 + \frac{4}{x^2}$, если:

a)
$$3x + \frac{2}{x} = -5$$
;

B)
$$3x + \frac{2}{r} = t$$
;

6)
$$3x - \frac{2}{x} = -5$$
;

$$r) 3x - \frac{2}{x} = t.$$

O3.18. Найдите значение выражения $x^3 + \frac{1}{x^3}$, если:

a)
$$x + \frac{1}{x} = -3;$$

$$6) x + \frac{1}{x} = t.$$

ОЗ.19. Решите уравнение:

a)
$$2\left(x+\frac{1}{x}\right)^2+x+\frac{1}{x}-10=0;$$

6)
$$2\left(x-\frac{1}{x}\right)^2+x+\frac{1}{x}-2=0;$$

B)
$$2x^2 + \frac{2}{x^2} + x + \frac{1}{x} - 6 = 0$$
;

$$\mathbf{r}) \ 2x^4 + x^3 - 6x^2 + x + 2 = 0.$$

Решите уравнение:

O3.20. a)
$$\left(2x+\frac{1}{x}\right)^2+2x+\frac{1}{x}-12=0;$$

6)
$$\left(2x-\frac{1}{x}\right)^2+2x+\frac{1}{x}-4=0$$
.

O3.21. a)
$$\left(3x-\frac{2}{x}\right)^2+3x-\frac{2}{x}-2=0;$$

6)
$$9x^2 + \frac{4}{r^2} + 3x - \frac{2}{x} - 14 = 0$$
;

B)
$$9x^4 + 3x^3 - 14x^2 - 2x + 4 = 0$$
;

r)
$$9x^4 - 3x^3 - 14x^2 + 2x + 4 = 0$$
.

4. 3.22. a)
$$x^4 - x^3 - 4x^2 - x + 1 = 0$$
:

6)
$$9x^4 - 9x^3 + 10x^2 - 3x + 1 = 0$$
;

B)
$$2x^4 - 7x^3 + 10x^2 - 7x + 2 = 0$$
;

r)
$$25x^4 - 50x^3 + 14x^2 + 10x + 1 = 0$$
.

O3.23. a) Пусть
$$x^2 + 5x + 4 = 17$$
.

Вычислите (x + 1)(x + 2)(x + 3)(x + 4).

б) Решите уравнение
$$(x + 1)(x + 2)(x + 3)(x + 4) = 360$$
.

Решите уравнение:

O3.24. a)
$$4(x^2 - x)^2 + 9x^2 = 9x - 2$$
;

6)
$$(2x^2 - x + 1)^2 - 4x^2 = 1 - 2x$$
.

43.25. a)
$$(x^2 - 7x + 13)^2 - (x - 3)(x - 4) = 1$$
;

6)
$$(x^2 - 2x - 1)^2 + 3(x - 1)^2 = 16$$
;

B)
$$(x-2)(x+1)(x+4)(x+7)=63$$
;

$$\Gamma (x^2 - 2x - 8)(x^2 - 8x + 7) = 63.$$

3.26. a)
$$(2x + 3)^2 - 3(2x + 3)(7x - 5) + 2(7x - 5)^2 = 0$$
;

6)
$$(3x-2)^2-3(3x-2)(7-5x)+2(5x-7)^2=0$$
;

B)
$$(x^2 - x + 3)^2 - 3(x^2 - x + 3)(10x - 1) + 2(10x - 1)^2 = 0$$
;

r)
$$(2x^2 - x - 6)^2 - 3(2x^2 - x - 6)(x^2 + 10x - 6) +$$

$$+ 2(x^2 + 10x - 6)^2 = 0.$$

Решите уравнение:

3.27. a)
$$2y^4 - y^2(y-2) - 3(y-2)^2 = 0$$
;

6)
$$(x^2 + 6x - 9)^2 + x(x^2 + 4x - 9) = 0$$
:

B)
$$(t^2 + 2t)^2 - (t + 2)(2t^2 - t) = 6(2t - 1)^2$$
;

r)
$$(x^2 - 6x + 6)^2 - x^3 + 4x^2 - 6x = 0$$
.

43.28. a)
$$(x + 2)^4 + x^4 = 82$$
;
6) $(5x - 3)^4 + (5x - 1)^4 = 82$;

B)
$$(x+3)^4 + (x-1)^4 = 32$$
;

r)
$$(5x + 3)^4 + (5x - 1)^4 = 32$$
.

O3.29. a)
$$3x^4 - 5x^2 + 2 = 0$$
:

$$6) 7x^8 + 3x^4 - 10 = 0;$$

B)
$$x^5 + 3x^4 - 3x^3 - x^2 - 3x + 3 = 0$$
;

r)
$$(2x^2 - 3x + 1)^2 - 5(2x^2 - 3x + 1)(x^2 + x + 3) + 4(x^2 + x + 3)^2 = 0$$
.

a)
$$x^6 - x^5 + 2 = 0$$
; 6) $x^{14} - x + 3 = 0$.

©3.31. Найдите, если это возможно, такие целые числа
$$a$$
, b , c и d , что для всех значений x выполняется равенство:

a)
$$x^4 + x^3 - 4x^2 - x + 1 = (x^2 + ax + b)(x^2 + cx + d)$$
;

6)
$$x^4 + x^2 - 4x - 3 = (x^2 + ax + b)(x^2 + cx + d)$$
;

B)
$$x^4 - 5x^2 + 6x - 5 = (x^2 + ax + b)(x^2 + cx + d)$$
;

r)
$$x^4 - 5x - 6 = (x^2 + ax + b)(x^2 + cx + d)$$
.

a)
$$x^4 + x^3 - 4x^2 - x + 1 = 0$$
;

$$6) x^4 + x^2 - 4x - 3 = 0;$$

B)
$$x^4 - 5x^2 - 6x - 5 = 0$$
;

r)
$$x^4 - 5x - 6 = 0$$
.

O3.33. Используя свойство монотонности функции, докажите, что уравнение имеет единственный корень, и найдите этот корень:

a)
$$x^3 = 10 - x$$
:
6) $x^5 + 3x^3 = 11\sqrt{2} - x$.

•3.34. Докажите, что если функция y = f(x) выпукла вверх (вниз) на R, то уравнение f(x) = ax + b имеет не более двух корней, и решите уравнение.

a)
$$x^4 = 15x - 14$$
; 6) $x^{10} = 1023x - 1022$.

Степени и корни. Степенные функции

§ 4. Понятие корня *п*-й степени из действительного числа

4.1. Докажите, что верно равенство:

a)
$$\sqrt{361} = 19$$
; B) $\sqrt[3]{343} = 7$:

B)
$$\sqrt[3]{343} = 7$$

6)
$$\sqrt[6]{\frac{1}{64}} = \frac{1}{2}$$

6)
$$\sqrt[6]{\frac{1}{64}} = \frac{1}{2}$$
; $\sqrt[6]{\frac{32}{243}} = \frac{2}{3}$.

4.2. Имеет ли смысл выражение:

a)
$$\sqrt[5]{(-3)^3}$$

6)
$$\sqrt[8]{(-2)^5}$$

B)
$$\sqrt[10]{(-7)^2}$$
;

a)
$$\sqrt[5]{(-3)^3}$$
; 6) $\sqrt[8]{(-2)^5}$; B) $\sqrt[10]{(-7)^2}$; r) $\sqrt[3]{(-5)^2}$?

4.3. Объясните, почему неверно равенство:

a)
$$\sqrt{25} = -5$$

a)
$$\sqrt{25} = -5$$
; b) $-\sqrt[3]{-8} = -2$;

6)
$$\sqrt[6]{-64} = -2;$$

6)
$$\sqrt[6]{-64} = -2$$
; r) $\sqrt[4]{625} = -25$.

4.4. Найдите ошибку в рассуждениях:

a)
$$2 = \sqrt[4]{16} = \sqrt[4]{(2)^4} = \sqrt[4]{(-2)^4} = -2;$$

6)
$$5 = \sqrt[6]{15 \ 625} = \sqrt[6]{(5)^6} = \sqrt[6]{(-5)^6} = -5$$
.

О4.5. Верно ли равенство:

a)
$$\sqrt{7-4\sqrt{3}} = 2-\sqrt{3}$$
; B) $\sqrt{7-4\sqrt{3}} = \sqrt{3}-2$;

B)
$$\sqrt{7-4\sqrt{3}} = \sqrt{3}-2;$$

6)
$$\sqrt{14-6\sqrt{5}} = \sqrt{5}-3$$

6)
$$\sqrt{14-6\sqrt{5}} = \sqrt{5}-3;$$
 r) $\sqrt{15-6\sqrt{6}} = 3-\sqrt{6}$?

- 4.6. Вычислите:
 - a) $\sqrt[4]{16}$; 6) $\sqrt[5]{32}$; B) $\sqrt[4]{81}$; r) $\sqrt[3]{64}$.

Вычислите:

4.7. a)
$$\sqrt[9]{512}$$
; b) $\sqrt[4]{\frac{16}{625}}$; b) $\sqrt[3]{1331}$; r) $\sqrt[4]{\frac{81}{256}}$.

6)
$$\sqrt[4]{\frac{16}{625}}$$
;

r)
$$\sqrt[4]{\frac{81}{256}}$$

4.8. a)
$$\sqrt[3]{0,125}$$
; 6) $\sqrt[4]{0,0081}$; B) $\sqrt[4]{0,0625}$; r) $\sqrt[3]{0,027}$.

B)
$$\sqrt[4]{0.0625}$$

c)
$$\sqrt[3]{0,027}$$

O4.9. a)
$$\sqrt[4]{5\frac{1}{16}}$$
; 6) $\sqrt[3]{3\frac{3}{8}}$; B) $\sqrt[4]{7\frac{58}{81}}$; r) $\sqrt[5]{7\frac{19}{32}}$.

6)
$$\sqrt[3]{3\frac{3}{8}}$$

B)
$$\sqrt[4]{7\frac{58}{91}}$$

$$r) \sqrt[5]{7\frac{19}{32}}$$

4.10. a)
$$\sqrt[7]{-128}$$
; 6) $\sqrt[3]{-\frac{1}{8}}$; b) $\sqrt[3]{-64}$; r) $\sqrt[5]{-\frac{1}{32}}$.

6)
$$\sqrt[3]{-\frac{1}{8}}$$

r)
$$\sqrt[5]{-\frac{1}{32}}$$

4.11. a)
$$-2\sqrt[4]{81}$$
; 6) $-3\sqrt[3]{-64}$; B) $-5\sqrt[4]{16}$; r) $-4\sqrt[5]{-32}$.

в)
$$-5\sqrt[4]{16}$$

$$r) -4\sqrt[5]{-32}$$

4.12. a)
$$\sqrt[5]{32} + \sqrt[3]{-8}$$
:

B)
$$\sqrt[4]{625} - \sqrt[3]{-125}$$
;

6)
$$3\sqrt[4]{16} - 4\sqrt[3]{27}$$
:

6)
$$3\sqrt[4]{16} - 4\sqrt[3]{27}$$
; r) $12 - 6\sqrt[3]{0,125}$.

4.13. Найдите такое число a, чтобы выполнялось равенство:

a)
$$\sqrt[3]{a} = -4$$
:

6)
$$\sqrt[6]{-a} = \frac{2}{3}$$

$$B) \sqrt[4]{-a} = 2$$

a)
$$\sqrt[3]{a} = -4$$
; 6) $\sqrt[6]{-a} = \frac{2}{3}$; B) $\sqrt[4]{-a} = 2$; r) $\sqrt[5]{a} = 1\frac{1}{2}$.

 $\bigcirc 4.14$. Подберите показатель корня n так, чтобы выполнялось равенство:

a)
$$\sqrt[n]{117\ 649} = 7;$$
 B) $\sqrt[n]{46\ 656} = 6;$

B)
$$\sqrt[n]{46.656} = 6$$

6)
$$\sqrt[n]{-12\frac{209}{243}} = -1\frac{2}{3}$$
; r) $\sqrt[n]{3\frac{13}{81}} = 1\frac{1}{3}$.

r)
$$\sqrt[n]{3\frac{13}{81}} = 1\frac{1}{3}$$

О4.15. Определите знак разности:

a)
$$\sqrt[3]{15} - \sqrt[4]{90}$$
;

B)
$$\sqrt[5]{40} - \sqrt[3]{50}$$
;

6)
$$3 - \sqrt[7]{150}$$
:

r)
$$\sqrt[4]{300} - 5$$
.

О4.16. Между какими соседними целыми числами расположено число:

a)
$$\sqrt{5}$$
;

б)
$$\sqrt[3]{-19}$$
; в) $\sqrt[4]{52}$; г) $\sqrt[5]{-670}$?

4.17. Решите уравнение:

a)
$$x^3 = 125$$
;

a)
$$x^3 = 125$$
; 6) $x^7 = \frac{1}{128}$; B) $x^5 = 32$; r) $x^9 = 1$.

B)
$$x^5 = 32$$
;

$$\mathbf{r}) x^9 = 1.$$

Решите уравнение:

4.18. a)
$$x^4 = 17$$
;

6)
$$x^4 = -16$$
; B) $x^6 = 11$; F) $x^8 = -3$.

$$x^6 = 11;$$

$$r) x^8 = -3.$$

4.19. a)
$$x^3 + 8 = 0$$
;

6)
$$3x^8 - 9 = 0$$
:

B)
$$x^4 - 19 = 0$$
;
r) $5x^{10} + 6 = 0$.

$$F(x) = 0$$

4.20. a)
$$\sqrt[3]{x-5} = -3$$
;

B)
$$\sqrt[5]{2x+8} = -1;$$

6)
$$\sqrt[4]{4-5x} = -2;$$

$$\Gamma) \sqrt[3]{7 - 4x} = 4.$$

O4.21. a)
$$\sqrt[3]{x^2 - 9x - 19} = -3;$$
 B) $\sqrt[7]{2x^2 + 6x - 57} = -1;$

$$8) \sqrt[7]{2x^2 + 6x - 57} = -1$$

6)
$$\sqrt[4]{x^2 - 10x + 25} = 2$$
: r) $\sqrt[6]{x^2 + 7x + 13} = 1$.

$$\Gamma) \sqrt[6]{x^2 + 7x + 13} = 1$$

$$04.22.$$
 a) $0.02x^6 - 1.28 = 0;$

$$B) 0,3x^9 - 2,4 = 0;$$

6)
$$-\frac{3}{4}x^8 + 18\frac{3}{4} = 0$$
;

$$r) \frac{1}{8}x^4 - 2 = 0.$$

О4.23. Расположите числа в порядке возрастания:

a) 2,
$$\sqrt[3]{5}$$
, $\sqrt[4]{17}$;

B) 3,
$$\sqrt[5]{40}$$
, $\sqrt[3]{7}$;

6)
$$\sqrt[3]{75}$$
, 4, $\sqrt[5]{1000}$;

г) 2,
$$\sqrt[6]{60}$$
, $\sqrt[4]{20}$.

О4.24. Расположите числа в порядке убывания:

a)
$$-1$$
, $\sqrt[3]{-5}$, $\sqrt[4]{0,1}$;

B)
$$-2, \sqrt[5]{-1,5}, \sqrt[3]{-9};$$

6)
$$0, \sqrt[3]{-0.25}, \sqrt[5]{-29};$$

r) 1,
$$\sqrt[3]{2}$$
, $\sqrt[3]{-2}$.

О4.25. Расположите числа в порядке возрастания:

a)
$$\frac{\pi}{2}$$
, $\sqrt[5]{-12}$, 2, $\sqrt[6]{70}$;

B)
$$\sqrt{2\pi}$$
, $\frac{\pi}{3}$, $\sqrt[3]{-2}$, 2,5;

6)
$$\frac{3}{\pi}$$
, $\sqrt[7]{\pi}$, 1, $\sqrt[5]{-\pi}$;

r)
$$2\pi$$
, $\sqrt[5]{-0.5}$, 0 , $\sqrt[3]{200}$.

§ 5. Функции $y = \sqrt[n]{x}$, их свойства и графики

Постройте график функции:

5.1. a)
$$y = \sqrt[3]{x}$$
; b) $y = \sqrt[6]{x}$; b) $y = \sqrt[4]{x}$; r) $y = \sqrt[5]{x}$.

$$6) y = \sqrt[6]{x}$$

B)
$$y = \sqrt[4]{x}$$

$$\mathbf{r}) \ y = \sqrt[5]{x}.$$

5.2. a)
$$y = 2\sqrt[3]{x}$$
;

B)
$$y = -\frac{1}{2}\sqrt[3]{x}$$
;

6)
$$y = -\frac{1}{3}\sqrt[6]{x}$$
;

$$r) y = 3\sqrt[4]{x}.$$

Постройте график функции:

O5.3. a)
$$y = \sqrt[3]{-x}$$
;

$$\mathbf{B}) \ y = 2\sqrt{-x};$$

6)
$$y = -4\sqrt[4]{-x}$$
;

r)
$$y = -\frac{1}{2}\sqrt[5]{-x}$$
.

O5.4. a)
$$y = \sqrt[3]{-2x}$$
;

B)
$$y = \sqrt[4]{-6x}$$
;

6)
$$y = \sqrt[6]{-\frac{1}{2}x};$$

$$\Gamma) y = \sqrt[5]{-\frac{1}{4}x}.$$

O5.5. a)
$$y = \sqrt[4]{x+1}$$
;

B)
$$y = \sqrt[7]{x-3}$$
;

6)
$$y = \sqrt[3]{x} - 4$$
;

r)
$$y = \sqrt[4]{x} + \frac{1}{2}$$
.

O5.6. a)
$$y = \sqrt{x+2} - 3$$
;

B)
$$y = \sqrt[4]{x+1} + 3$$
;

6)
$$y = \sqrt[3]{x-1} + 2$$
;

r)
$$y = \sqrt[5]{x-4} - 4$$
.

O5.7. a)
$$y = 2 - 5 \cdot \sqrt[3]{x - 5}$$
;

B)
$$y = 4 - 2 \cdot \sqrt[4]{9 - x}$$
;

6)
$$y = 4 \cdot \sqrt[5]{2x + 4} - 1$$
; r) $y = 3 \cdot \sqrt[3]{3x - 6} + 1$.

r)
$$y = 3 \cdot \sqrt[3]{3x - 6} + 1$$
.

O5.8. a)
$$y = \sqrt{\frac{x^2 - x - 2}{x - 2}};$$

B)
$$y = \sqrt[4]{\frac{x^2 + 7x + 12}{x + 3}};$$

6)
$$y = \sqrt[3]{\frac{x^2 - 5x + 4}{x - 4}};$$
 $y = \sqrt[5]{\frac{x^2 - x - 6}{x - 3}}.$

$$r) \ y = \sqrt[5]{\frac{x^2 - x - 6}{x - 3}}$$

•5.9. a)
$$y = \sqrt{\frac{3x^2 - 8x - 3}{x - 3} - 2x}$$
;

6)
$$y = \sqrt[4]{\frac{3x^2 - 2x - 1}{1 - x} - \frac{4x^2 - 6x - 4}{2 - x}}$$
.

Найдите область определения функции:

5.10. a)
$$y = \sqrt[4]{2x-4}$$
;

B)
$$y = \sqrt[6]{3x - 9}$$
;

6)
$$y = \sqrt[8]{2 - 3x}$$
;

r)
$$y = \sqrt[12]{1 - 5x}$$
.

5.11. a)
$$y = \sqrt[3]{x^2 + 5}$$
;

B)
$$y = \sqrt[9]{6x - 7}$$
;

6)
$$y = \sqrt[7]{x^3 - 1}$$
;

r)
$$y = \sqrt[5]{2x+1}$$
.

Найдите область определения функции:

O5.12. a)
$$y = \sqrt{5x+8} + \sqrt[4]{2x-4}$$
; B) $y = \sqrt[10]{3x-12} - \sqrt[4]{2x-1}$;

6)
$$y = \sqrt[6]{2x+1} - \sqrt[8]{5-10x}$$
; $y = \sqrt{8-16x} + \sqrt[12]{10x+20}$.

O5.13. a)
$$y = \sqrt{x^2 + 4x - 12}$$
; B) $y = \sqrt{x^2 - 8x + 12}$;

6)
$$y = \sqrt[12]{15 - x^2 - 2x}$$
; $y = \sqrt[6]{4 - x^2 - 3x}$.

O5.14. a)
$$y = \sqrt[4]{\frac{x-8}{3x+5}}$$
; B) $y = \sqrt[3]{\frac{12-5x}{7-2x}}$;

6)
$$y = \sqrt[5]{\frac{1+9x}{4+3x}}$$
; $y = \sqrt[6]{\frac{3-7x}{2x+9}}$.

O5.15. a)
$$y = \sqrt{25 - x^2} + \sqrt[8]{x^2 - 1}$$
;

6)
$$y = \sqrt[6]{x^2 - 6x + 5} - \sqrt{x^2 - 3x}$$
;

B)
$$y = \sqrt[12]{x^2 - 9} - \sqrt[10]{16 - x^2}$$
;

$$v = \sqrt[12]{15 - 2x - x^2} + \sqrt{x^2 + 6x + 8}$$

O5.16. a)
$$y = \sqrt[4]{\frac{2x-5}{4x+8}} + \frac{\sqrt{x^2+2x-3}}{x-3}$$
;

6)
$$y = \frac{\sqrt{x^2 - 5x}}{2x + 2} - \sqrt{\frac{2x + 2}{x - 4}}$$
.

•5.17. a)
$$y = \sqrt[4]{\frac{10x^3 - 21x^2 + 4}{x^2 - 4x - 21}};$$

6)
$$y = \sqrt[6]{4x^2 + 11.5x - 1.5} - \sqrt{x^3 - x^2 - 10x - 8}$$

B)
$$y = \sqrt[8]{\frac{x^3 - 12x + 16}{x^2 - 2x - 15}};$$

r)
$$y = \frac{\sqrt[4]{-x^3 + 5x^2 - 8x + 4}}{\sqrt{x^2 - 9|x| + 18}}$$
.

●5.18. Найдите область определения функции:

a)
$$y = \sqrt[6]{x^3 - 6x^2 + 11x - 6} + \sqrt{6x^3 + 17x^2 + 6x - 8}$$
;

6)
$$y = \sqrt[4]{\frac{2x^3 - 3x^2 - 3x + 2}{x^3 - 9x^2 + 20x - 12}}$$
;

B)
$$y = \sqrt[6]{2x^3 - 11x^2 + 18x - 9} - \sqrt[4]{\frac{1}{4x^3 - 11x^2 + 6.5x - 1}};$$

r)
$$y = \sqrt[8]{\frac{6x^3 + 11x^2 - 19x + 6}{x^3 - 8,25x^2 + 14x - 3}}$$
.

- **5.19.** Найдите наибольшее и наименьшее значения функции $y = \sqrt[4]{x}$:
 - а) на отрезке [0: 1]:
- в) на отрезке [5; 16];
- б) на полуинтервале [1; 3);
 - г) на луче [16; $+\infty$).
- **5.20.** Найдите наибольшее и наименьшее значения функции $u = \sqrt[5]{x}$:
 - а) на отрезке [-1; 1];
- в) на отрезке [-32; 32];

- б) на луче ($-\infty$; 1];
- г) на луче $[2; +\infty)$.
- О5.21. Найдите наименьшее значение функции:

a)
$$y = \sqrt[4]{x^2 - 6x + 8}$$
;

6)
$$y = \sqrt[6]{x^2 + 6x + 13}$$
.

Найдите область значений функции:

O5.22. a)
$$y = \sqrt[4]{x+1}$$
;

B)
$$y = \sqrt[7]{x+3}$$
;

6)
$$u = \sqrt[5]{x-2}$$
:

$$u = \sqrt[6]{x-4}$$

O5.23. a)
$$y = 2 + \sqrt[4]{x}$$
;

B)
$$y = \sqrt[6]{x} - 3$$
;

6)
$$y = \sqrt[5]{x} - 3$$
;

$$u = 2 + \sqrt[3]{x}$$

O5.24. a)
$$y = \sqrt[3]{x^2 - 8}$$
;

6)
$$y = \sqrt[5]{32 - 2x^2}$$
.

O5.25. a)
$$y = \sqrt{35 + 2x - x^2}$$
;

B)
$$y = \sqrt[4]{12 - 4x - x^2}$$
;

6)
$$y = \sqrt[6]{2x^2 - 4x - 1}$$
;

$$r) y = \sqrt[8]{x^2 + 2x + 3}.$$

●5.26. Найдите, если это возможно, наименьшее и (или) наибольшее целое число, принадлежащее области значений функции:

a)
$$y = \sqrt[4]{16 + 4x - 4x^2}$$
;

B)
$$y = \sqrt[6]{3x^2 - 6x - 4}$$
;

6)
$$y = \sqrt[5]{x^2 - 4x + 35}$$
;

$$\Gamma) \ \ y = \sqrt[3]{1 - x^2 + 6x}.$$

Решите графически уравнение:

O5.27. a)
$$\sqrt{x} = -x$$
;

B)
$$\sqrt[4]{x} = 2 - x$$
;

a)
$$\sqrt{x} = -x;$$

6) $\sqrt[3]{x} = 7 - 6x;$

$$\Gamma) \sqrt[5]{x} = -x^2.$$

O5.28. a)
$$\sqrt{2x} = \frac{1}{x-1} + 1;$$
 B) $\sqrt[4]{x} = 3 - 2x^3;$ 6) $\sqrt[3]{x} + 2x + 3 = 0;$ F) $\sqrt{3x} - 2 = \frac{2}{x-1}.$

B)
$$\sqrt[4]{x} = 3 - 2x^3$$
:

6)
$$\sqrt[3]{x} + 2x + 3 = 0$$

$$\Gamma$$
) $\sqrt{3x} - 2 = \frac{2}{r - 1}$

●5.29. Решите неравенство:

a)
$$\sqrt[4]{x+9} > x-5$$

$$8) \sqrt{-r} \leq r + 6$$

6)
$$2\sqrt[5]{x} \ge 5 - 3x$$
:

a)
$$\sqrt[4]{x+9} > x-5;$$
 B) $\sqrt{-x} \le x+6;$ 6) $2\sqrt[5]{x} \ge 5-3x;$ r) $\sqrt[3]{x-7} < 3x+1.$

Определите число решений системы уравнений:

O5.30. a)
$$\begin{cases} y = \sqrt[4]{x}, \\ 2x - 3y = 6; \end{cases}$$

B)
$$\begin{cases} y = \sqrt[5]{x}, \\ 6 - 2x - 3y = 0 \end{cases}$$

$$\begin{cases} y = \sqrt[3]{x}, \\ 3y - 4x = 0; \end{cases}$$

$$\begin{cases} y = \sqrt[6]{x}, \\ 5 + x - 2y = 0 \end{cases}$$

Облении системы уравнении:

О5.30. a)
$$\begin{cases} y = \sqrt[4]{x}, \\ 2x - 3y = 6; \end{cases}$$
B)
$$\begin{cases} y = \sqrt[5]{x}, \\ 6 - 2x - 3y = 0; \end{cases}$$
6)
$$\begin{cases} y = \sqrt[3]{x}, \\ 3y - 4x = 0; \end{cases}$$
1)
$$\begin{cases} y = \sqrt[6]{x}, \\ 5 + x - 2y = 0. \end{cases}$$
1)
$$\begin{cases} y = \sqrt[6]{x}, \\ y = x^2 - 2x - 8; \end{cases}$$
1)
$$\begin{cases} y = 2\sqrt[3]{x}, \\ y = 10x - 16 - x^2; \end{cases}$$
2)
$$\begin{cases} y = \sqrt[6]{x}, \\ y = 2x^4 - 5; \end{cases}$$
3)
$$\begin{cases} y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \\ y = 10x - 16 - x^2; \end{cases}$$
3)
$$\begin{cases} y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \\ y = 10x - 16 - x^2; \end{cases}$$
3)
$$\begin{cases} y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \end{cases}$$
4)
$$\begin{cases} y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \end{cases}$$
5)
$$\begin{cases} y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \end{cases}$$
6)
$$\begin{cases} y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \end{cases}$$
6)
$$\begin{cases} y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \end{cases}$$
7)
$$\begin{cases} y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \end{cases}$$
8)
$$\begin{cases} y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \end{cases}$$
8)
$$\begin{cases} y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \end{cases}$$
8)
$$\begin{cases} y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \end{cases}$$
9)
$$\begin{cases} y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \end{cases}$$
1)
$$\begin{cases} y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \end{cases}$$
1)
$$\begin{cases} y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \end{cases}$$
2)
$$\begin{cases} y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \end{cases}$$
3)
$$\begin{cases} y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \end{cases}$$
4)
$$\begin{cases} y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \end{cases}$$
5)
$$\begin{cases} y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \end{cases}$$
6)
$$\begin{cases} y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \end{cases}$$
8)
$$\begin{cases} y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \end{cases}$$
9)
$$\begin{cases} y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \end{cases}$$
9)
$$\begin{cases} y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \end{cases}$$
9)
$$\begin{cases} y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \end{cases}$$
9)
$$\begin{cases} y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \end{cases}$$
1)
$$\begin{cases} y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \end{cases}$$
1)
$$\begin{cases} y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \end{cases}$$
1)
$$\begin{cases} y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \end{cases}$$
2)
$$\begin{cases} y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \end{cases}$$
3)
$$\begin{cases} y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \end{cases}$$
4)
$$\begin{cases} y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \end{cases}$$
3)
$$\begin{cases} y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \end{cases}$$
4)
$$\begin{cases} y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \end{cases}$$
5)
$$\begin{cases} y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \end{cases}$$
7)
$$\begin{cases} y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \end{cases}$$
8)
$$\begin{cases} y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \end{cases}$$
9)
$$\begin{cases} y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \end{cases}$$
9)
$$\begin{cases} y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \end{cases}$$
9)
$$\begin{cases} y = \sqrt[6]{x}, \\ y = \sqrt[6]{x}, \end{cases}$$

$$\begin{cases} y = 2\sqrt[3]{x}, \\ y = 10x - 16 - x^2; \end{cases}$$

$$\begin{cases} y = \sqrt[5]{x}, \\ y = 2x^4 - 5; \end{cases}$$

r)
$$\begin{cases} y = \sqrt[4]{x}, \\ y = (x+3)^6 - 1. \end{cases}$$

О5.32. Постройте и прочитайте график функции:

a)
$$y = \begin{cases} 2x^2, & \text{если } x < 1, \\ \frac{4}{x} + 1, & \text{если } x > 1 \end{cases}$$

Построите и прочитаите график
a)
$$y = \begin{cases} 2x^2, & \text{если } x < 1, \\ \sqrt[4]{x} + 1, & \text{если } x \geqslant 1; \end{cases}$$
6) $y = \begin{cases} \sqrt[5]{x} + 1, & \text{если } x < 0, \\ 2x^2 + 1, & \text{если } x \geqslant 0; \end{cases}$
B) $y = \begin{cases} \frac{3}{x}, & \text{если } x < 0, \\ 2\sqrt[3]{x}, & \text{если } x \geqslant 0; \end{cases}$

$$y = \begin{cases} 2\cos x, & \text{если } x < 0, \\ 2-\sqrt[3]{x}, & \text{если } x \geqslant 0. \end{cases}$$

в)
$$y = \begin{cases} \frac{3}{x}, & \text{если } x < 0, \\ \frac{3}{x}, & \text{если } x < 0, \end{cases}$$

$$\mathbf{r}) \ y = \begin{cases} 2\cos x, \ \mathbf{echh} \ x < 0, \end{cases}$$

О5.33. Постройте и прочитайте график функции:

a)
$$y=egin{cases} \sqrt[7]{x}, & \text{если } x\leqslant -1, \ -x^2, & \text{если } -1< x\leqslant 1, \ x-2, & \text{если } x>1; \end{cases}$$

б)
$$y = \begin{cases} 3(x+1)^2, & \text{если } -2 \leqslant x \leqslant -1, \\ -2x-2, & \text{если } -1 < x < 0, \\ \sqrt[6]{x}, & \text{если } x \geqslant 0. \end{cases}$$

●5.34. Исследуйте функцию и постройте ее график:

a)
$$y = \sqrt{4x^2 + 4x - 3}$$
; B) $y = \sqrt{2x^2 - x - 3}$;

B)
$$y = \sqrt{2x^2 - x - 3}$$

6)
$$y = \sqrt{2 + 3x - 2x^2}$$
; $y = \sqrt{4 - 11x - 3x^2}$.

r)
$$y = \sqrt{4 - 11x - 3x^2}$$

§ 6. Свойства корня n-й степени

Найдите значение числового выражения:

6.1. a)
$$\sqrt[4]{16 \cdot 0,0001}$$
;

B)
$$\sqrt[5]{0,00032 \cdot 243}$$
;

6)
$$\sqrt[5]{243 \cdot \frac{1}{32}}$$
;

r)
$$\sqrt[5]{7\frac{19}{32}}$$
.

6.2. a)
$$\sqrt[5]{48 \cdot 162}$$
; 6) $\sqrt[4]{\frac{16}{0,0625}}$; B) $\sqrt[4]{54 \cdot 24}$; r) $\sqrt[6]{\frac{16}{0,25}}$.

r)
$$\sqrt[6]{\frac{16}{0,25}}$$

6)
$$\frac{\sqrt[5]{3}}{\sqrt[5]{96}}$$
;

B)
$$\sqrt{20}\cdot\sqrt{5}$$
;

$$\Gamma$$
) $\frac{\sqrt[4]{1024}}{\sqrt[4]{4}}$

6.4. a)
$$\sqrt[4]{32 \cdot 3} \cdot \sqrt[4]{8 \cdot 27}$$
;

6)
$$\sqrt[5]{2^5 \cdot 7^2} \cdot \sqrt[5]{7^3}$$
.

Упростите выражение, считая, что все переменные принимают только положительные значения:

6.5. a)
$$\sqrt{a^2b^4}$$
;

б)
$$\sqrt[3]{a^3b^6}$$
;

B)
$$\sqrt[4]{a^4b^8}$$
;

r)
$$\sqrt[5]{a^5b^{15}}$$
.

6.6. a)
$$\sqrt{\frac{49a^4}{169b^2}}$$
; 6) $\sqrt[4]{\frac{16a^4b^8}{c^{12}}}$; B) $\sqrt[3]{\frac{27a^6}{64b^3}}$; r) $\sqrt[5]{\frac{32a^5b^{10}}{243c^{15}}}$.

6)
$$\sqrt[4]{\frac{16a^4b^8}{c^{12}}}$$

B)
$$\sqrt[3]{\frac{27a^6}{64b^3}}$$
;

$$\Gamma) \sqrt[5]{\frac{32a^5b^{10}}{243c^{15}}}.$$

Упростите выражение, считая, что все переменные принимают только положительные значения:

6.7. a)
$$\sqrt[5]{1024x^{10}y^5z^{15}}$$
;

B)
$$\sqrt[4]{0,0081a^{12}b^4c^{20}}$$
;

$$6) \sqrt[3]{\frac{343m^{12}}{64n^3p^{15}}};$$

$$\Gamma) \sqrt[4]{\frac{16r^{16}s^{12}}{81p^{24}q^4}}.$$

Возведите в степень:

6.8. a)
$$\left(\sqrt[n]{a}\right)^n$$
; 6) $\left(b \cdot \sqrt[n]{\frac{1}{b}}\right)^{2n}$; B) $\left(\sqrt[p]{b}\right)^p$; r) $\left(\frac{1}{b}\sqrt[p]{b}\right)^{2p}$.

6.9. a)
$$(\sqrt[3]{3a})^9$$
;

в)
$$\left(5a\cdot\sqrt[3]{a}\right)^2$$
;

6)
$$(-5 \cdot \sqrt[3]{a^2})^2$$
;

r)
$$(2\sqrt[3]{-3a^2})^5$$
.

O6.10. a)
$$\sqrt[4]{6+2\sqrt{5}} \cdot \sqrt[4]{6-2\sqrt{5}}$$
; B) $\sqrt[3]{8-\sqrt{37}} \cdot \sqrt[3]{8+\sqrt{37}}$;

B)
$$\sqrt[3]{8} - \sqrt{37} \cdot \sqrt[3]{8} + \sqrt{37}$$

6)
$$\sqrt[5]{6-2\sqrt{17}} \cdot \sqrt[5]{6+2\sqrt{17}}$$
; r) $\sqrt[3]{\sqrt{17}+3} \cdot \sqrt[3]{\sqrt{17}-3}$.

r)
$$\sqrt[3]{\sqrt{17} + 3} \cdot \sqrt[3]{\sqrt{17} - 3}$$
.

O6.11. a)
$$\sqrt{3} \cdot \sqrt[3]{-3} \cdot \sqrt{27} \cdot \sqrt[3]{9} - \frac{\sqrt[5]{-64}}{\sqrt[5]{2}};$$

6)
$$\sqrt[3]{-5} \cdot \sqrt{8} \cdot \sqrt[3]{25} \cdot \sqrt{32} + \frac{\sqrt[5]{-729}}{\sqrt[5]{3}}$$
.

O6.12. a)
$$\sqrt[4]{3^3 \cdot 4^2} \cdot \sqrt[4]{4^6 \cdot 3^5}$$
; b) $\sqrt[6]{5^{10}} \cdot \sqrt[6]{2^{12} \cdot 5^2}$;

B)
$$\sqrt[6]{5^{10}} \cdot \sqrt[6]{2^{12} \cdot 5^2}$$
;

6)
$$\sqrt[3]{7^2 \cdot 2} \cdot \sqrt[3]{7^4 \cdot 2^2}$$
:

$${\bf r)}\ \sqrt[5]{6^2 \cdot 3^7} \cdot \sqrt[5]{6^3 \cdot 3^3}.$$

•6.13. a)
$$\sqrt[3]{100 + 51\sqrt{3}} - \sqrt{4 - 2\sqrt{3}}$$
;

6)
$$\sqrt{9-4\sqrt{5}} - \sqrt[3]{16+8\sqrt{5}}$$
;

B)
$$\sqrt[3]{37 + 30\sqrt{3}} + \sqrt{61 - 28\sqrt{3}}$$
;

r)
$$\sqrt{17-12\sqrt{2}} + \sqrt[3]{99+70\sqrt{2}}$$
.

•6.14. a)
$$\sqrt[3]{26-15\sqrt{3}} + \sqrt[3]{26+15\sqrt{3}}$$
;

6)
$$\sqrt[3]{29\sqrt{2}-45}-\sqrt[3]{45+29\sqrt{2}}$$
;

B)
$$\sqrt[3]{38-17\sqrt{5}}+\sqrt[3]{17\sqrt{5}+38}$$
;

r)
$$\sqrt[3]{170 + 78\sqrt{3}} - \sqrt[3]{78\sqrt{3} - 170}$$
.

Приведите радикалы к одинаковому показателю корня:

6.15. a)
$$\sqrt[3]{2}$$
 и $\sqrt[6]{3}$;

в) 4/7 и 12/8:

г) ³/3 и ⁵/2.

6.16. a)
$$\sqrt{3}$$
; $\sqrt[3]{4}$ и $\sqrt[6]{7}$;

в) $\sqrt{6}$: $\sqrt[4]{17}$ и $\sqrt[8]{40}$:

б)
$$\sqrt{2}$$
; $\sqrt[3]{3}$ и $\sqrt[4]{4}$;

r) ⁵√3; ³√2 и ¹⁵√100.

О6.17. Сравните числа:

а)
$$\sqrt[4]{26}$$
 и $\sqrt{5}$;

в) ³/7 и ⁵/47:

б)
$$\sqrt[3]{5}$$
 и $\sqrt{3}$;

 Γ) $-\sqrt[4]{4}$ $M - \sqrt[3]{3}$.

Преобразуйте заданное выражение к виду $\sqrt[n]{A}$:

0.16. a)
$$\sqrt{2} \cdot \sqrt[3]{2}$$
;

6.18. a) $\sqrt{2} \cdot \sqrt[4]{2}$: 6) $\sqrt{2} \cdot \sqrt[3]{3}$: B) $\sqrt[3]{3} \cdot \sqrt[6]{3}$; r) $\sqrt[4]{2} \cdot \sqrt[6]{3}$.

O6.19. a)
$$\sqrt[4]{3b^3} \cdot \sqrt{3b}$$
; B) $\sqrt{a} \cdot \sqrt[6]{a^5}$; 6) $\sqrt{2a} \cdot \sqrt[6]{4a^5}$; r) $\sqrt[3]{y} \cdot \sqrt[6]{3y^3}$

$$\sqrt{2a}$$
 $\sqrt{6/4a5}$

r) $\sqrt[3]{y} \cdot \sqrt[6]{3y^3}$.

O6.20. a)
$$\sqrt[3]{ab} + \sqrt[6]{4ab}$$
; B) $\sqrt[6]{5ab^2} + \sqrt[3]{5a^3b^4}$;

6)
$$\sqrt[5]{a^4b^3}$$
 · $\sqrt[10]{a^5b^2}$;

 Γ) $\sqrt[8]{6xz} \cdot \sqrt[6]{xz^5}$.

$$\bigcirc$$
6.21. a) $\sqrt[4]{a^3}$: \sqrt{a} ;

a)
$$\sqrt[4]{a^3} : \sqrt{a};$$
 B) $\sqrt[6]{a^5} : \sqrt[4]{a};$ 6) $\sqrt[12]{a^2b^3} : \sqrt[6]{ab^4};$ r) $\sqrt[4]{a^3b^5} : \sqrt[5]{a}$

 $r) \sqrt[4]{a^3b^5} : \sqrt[5]{ab}$

O6.22. a)
$$\sqrt[6]{xy^2z^3}$$
 $\sqrt[12]{x^3y^2z}$; B) $\sqrt[4]{a^2bc^5}$ $\sqrt[5]{a^3b^5c^2}$;

6)
$$\sqrt[3]{s^4 p^3 t^5}$$
 : $\sqrt[15]{st^2}$; r) $\sqrt[9]{k^4 l^3 m^6}$: $\sqrt[3]{l^6 m}$.

6.23. a)
$$\sqrt{5}$$
; 6) $\sqrt[3]{\sqrt[5]{4}}$; B) $\sqrt[3]{\sqrt{2}}$; r) $\sqrt{\sqrt[3]{4}}$.

6.24. a)
$$\sqrt[3]{x}$$
; 6) $\sqrt[3]{a^3}$; B) $\sqrt[5]{\sqrt[3]{a^{10}}}$; r) $\sqrt[5]{\sqrt[3]{ab}}$.

О6.25. Внесите переменные под знак корня:

a)
$$ad^2 \sqrt[4]{-ad^2}$$
;

B) $-mn^3 \sqrt[6]{-mn}$;

6)
$$-p^3q\sqrt[8]{p^2q}$$
; $r) xy\sqrt[4]{x^2y^3}$.

О6.26. Вынесите переменные из-под знака корня:

a)
$$\sqrt[4]{a^6b^9} - \sqrt[4]{-a^7b^5}$$
;

a) $\sqrt[4]{a^6b^9} - \sqrt[4]{-a^7b^5}$; 6) $\sqrt[6]{-l^7m^{12}} + \sqrt[4]{-l^4m^{15}}$.

Решите уравнение:

O6.27. a)
$$\frac{1}{2}\sqrt[3]{5x} + 13 + \frac{\sqrt[3]{5x}}{5} = 2\sqrt[3]{5x}$$
;

6)
$$\sqrt[4]{2x} + \sqrt[4]{32x} + \sqrt[4]{162x} = 6$$
.

O6.28. a)
$$\sqrt[3]{x} - 2\sqrt[6]{x} = 0$$
; B) $\sqrt[6]{x} + 2\sqrt[3]{x} - 1 = 0$;

B)
$$\sqrt[6]{x} + 2\sqrt[3]{x} - 1 = 0$$

6)
$$\sqrt{x} - 5\sqrt[4]{x} + 6 = 0$$
; r) $\sqrt[4]{x} + 2\sqrt[8]{x} - 3 = 0$.

$$r) \sqrt[4]{x} + 2\sqrt[8]{x} - 3 = 0.$$

$$\bigcirc 6.29$$
. Докажите, что $2f(x) = f(128x)$, если $f(x) = \sqrt[7]{x}$.

$$\bigcirc 6.30$$
. Докажите, что $2f(x) = f(32x)$, если $f(x) = 2\sqrt[5]{x}$.

Об.31. Докажите, что
$$2\sqrt{f(x)} = g(64x)$$
, если $f(x) = \sqrt[3]{x}$, $g(x) = \sqrt[6]{x}$.

Об.32. Постройте график функции:

a)
$$y = \sqrt[4]{(x-2)^4}$$

a)
$$y = \sqrt[4]{(x-2)^4}$$
; B) $y = \sqrt[3]{(x+1)^3}$;

6)
$$y = \sqrt[5]{(2-x)^5}$$
; $y = \sqrt[6]{(3-x)^6}$.

r)
$$y = \sqrt[6]{(3-x)^6}$$

§ 7. Преобразование выражений, содержащих радикалы

Вынесите множитель из-под знака корня:

7.1. a)
$$\sqrt{20}$$
; 6) $\sqrt{147}$; B) $\sqrt{108}$; Γ) $\sqrt{245}$.

б)
$$\sqrt{147}$$

B)
$$\sqrt{108}$$
:

$$\Gamma$$
) $\sqrt{245}$

7.2. a)
$$\sqrt[3]{24}$$
; 6) $\sqrt[3]{54}$; B) $\sqrt[3]{256}$; Γ) $\sqrt[3]{375}$.

B)
$$\sqrt[3]{256}$$

7.3. a)
$$\sqrt[4]{80}$$
; 6) $\sqrt[4]{160}$; B) $\sqrt[4]{405}$; r) $\sqrt[4]{486}$.

B)
$$\sqrt[4]{405}$$

Вынесите множитель из-под знака корня, считая, что переменные принимают только неотрицательные значения:

7.4. a)
$$\sqrt{x^3}$$
;

6)
$$\sqrt[3]{a^4}$$
;

в)
$$\sqrt[5]{m^7}$$

B)
$$\sqrt[5]{m^7}$$
; Γ) $\sqrt[4]{n^{13}}$.

7.5. a)
$$\sqrt{25a^3}$$
; 6) $\sqrt[4]{405a^5}$; B) $\sqrt[3]{24x^3}$; r) $\sqrt[5]{160m^{10}}$.

б)
$$\sqrt[4]{405a^5}$$

B)
$$\sqrt[3]{24x^3}$$
;

$$\Gamma$$
) $\sqrt[5]{160m^{10}}$

7.6. a)
$$\sqrt{75t^4r^3}$$
;

B)
$$\sqrt[3]{250x^4y^7}$$
;

6)
$$\sqrt[4]{256a^9b^{13}}$$
;

$$\Gamma$$
) $\sqrt[5]{320m^{11}n^{15}}$.

07.7. Вынесите множитель из-под знака корня, считая, что переменные принимают только неотрицательные значения:

a)
$$\frac{2}{3a}\sqrt{72a^3b}$$
;

B)
$$\frac{3}{x}\sqrt{\frac{a^5x^2}{18}}$$
;

$$6) \ \frac{x^2}{b} \sqrt[3]{\frac{72a^4b^3}{343x^3}}$$

6)
$$\frac{x^2}{b}\sqrt[3]{\frac{72a^4b^3}{343x^3}}$$
; r) $3mn \cdot \sqrt[4]{\frac{80x^3}{243m^5n^9}}$.

Вынесите множитель из-под знака корня, считая, что переменные могут принимать как положительные, так и отрицательные значения:

7.8. a)
$$\sqrt{a^2b}$$
; 6) $\sqrt[3]{a^3b}$;

б)
$$\sqrt[3]{a^3b}$$
;

B)
$$\sqrt[4]{a^4b}$$
;

$$\Gamma$$
) $\sqrt{a^5b}$.

7.9. a)
$$\sqrt{50a^3}$$
; 6) $\sqrt[6]{256c^8}$; B) $\sqrt{25x^2}$; r) $\sqrt[4]{162a^8}$.

6)
$$\sqrt[6]{256c^8}$$

B)
$$\sqrt{25x^2}$$

r)
$$\sqrt[4]{162a^8}$$

7.10. a)
$$\sqrt[4]{-162t^4r^5}$$
; B) $\sqrt{128a^6b^9}$;

B)
$$\sqrt{128a^6b^9}$$

б)
$$\sqrt[3]{625x^5y^6}$$

6)
$$\sqrt[3]{625x^5y^6}$$
; r) $\sqrt[5]{-64m^6n^{16}}$.

O7.11. a)
$$\frac{3}{4a^2} \sqrt[4]{256a^7b^3}$$
; 6) $\frac{5}{c} \sqrt[3]{-\frac{c^5d^8}{15625}}$.

$$6) \ \frac{5}{c} \sqrt[3]{-\frac{c^5 d^8}{15 \ 625}}$$

Внесите множитель под знак корня:

7.12. a)
$$2\sqrt{5}$$
; 6) $5\sqrt{2}$; B) $5\sqrt{3}$;

б)
$$5\sqrt{2}$$

B)
$$5\sqrt{3}$$

$$\mathbf{r)} \ \ 7 \cdot \sqrt{\frac{2}{7}}.$$

7.13. a)
$$2 \cdot \sqrt[3]{3}$$
; 6) $6 \cdot \sqrt[3]{1\frac{1}{9}}$; B) $3 \cdot \sqrt[3]{2}$; r) $3 \cdot \sqrt[4]{2\frac{5}{27}}$.

6)
$$6 \cdot \sqrt[3]{1\frac{1}{9}};$$

r)
$$3 \cdot \sqrt[4]{2\frac{5}{27}}$$

7.14. a)
$$\frac{2}{3} \cdot \sqrt{3}$$
; 6) $\frac{1}{2} \cdot \sqrt[3]{12}$; B) $1\frac{2}{5} \cdot \sqrt{3\frac{4}{7}}$; r) $0.2 \cdot \sqrt[3]{25}$.

6)
$$\frac{1}{3} \cdot \sqrt[3]{12}$$

B)
$$1\frac{2}{5} \cdot \sqrt{3\frac{4}{7}}$$

r)
$$0,2 \cdot \sqrt[3]{25}$$
.

7.15. Внесите множитель под знак корня, считая, что переменные принимают только неотрицательные значения:

a)
$$7a^2 \cdot \sqrt{ab}$$
:

a)
$$7a^2 \cdot \sqrt{ab}$$
; 6) $5ab^2 \cdot \sqrt[3]{a^2b}$; B) $5x \cdot \sqrt{2x}$; P) $2m \cdot \sqrt[3]{3m^2}$.

B)
$$5x \cdot \sqrt{2x}$$
;

$$\Gamma) \ 2m \cdot \sqrt[3]{3m^2}.$$

07.16. Преобразуйте заданное выражение к виду $\sqrt[n]{A}$:

a)
$$\sqrt[4]{2\sqrt[3]{2m^4n^8}}$$
; B) $\sqrt[5]{4\sqrt[3]{k^2l^5}}$;

B)
$$\sqrt[5]{4\sqrt[3]{k^2l^5}}$$

6)
$$\sqrt{y\sqrt[5]{9x^4y^2}}$$
;

г)
$$\sqrt[7]{q\sqrt[5]{2p^3q}}$$

Преобразуйте заданное выражение к виду $\sqrt[n]{A}$:

O7.17. a)
$$\sqrt[5]{2\sqrt[3]{2\sqrt{2}}}$$
;

B)
$$\sqrt{3\sqrt[4]{3\sqrt[3]{3}}}$$
;

6)
$$\sqrt[4]{\frac{4}{3}\sqrt[3]{\frac{4}{4}\sqrt{\frac{4}{3}}}};$$

$$\Gamma) \quad \sqrt[3]{\frac{2}{3}} \sqrt[3]{\frac{3}{2}} \sqrt{\frac{2}{3}} \,.$$

07.18. a)
$$\sqrt[9]{-\sqrt[5]{-a^{25}}}$$
;

B)
$$\sqrt[3]{-2a^2b \cdot \sqrt[4]{5a^3}}$$
;

$$6) \quad \sqrt{\frac{m-n}{m+n}} \sqrt{\frac{m+n}{m-n}}$$

6)
$$\sqrt{\frac{m-n}{m+n}\sqrt{\frac{m+n}{m-n}}};$$
 Γ) $\sqrt[5]{(x-y)\sqrt[3]{\frac{1}{y-x}}}.$

O7.19. a)
$$\sqrt[3]{a\sqrt[3]{a}\sqrt[3]{a}} + \sqrt[27]{a^{14}}$$
;

$$\text{B)} \quad \sqrt{x\sqrt{x\sqrt{x\sqrt{x}}}} : \sqrt[16]{x^{11}};$$

6)
$$\sqrt{\frac{x}{y}\sqrt{\frac{y}{x}\sqrt[3]{x}}} \cdot \sqrt[3]{\frac{y}{x}}$$

6)
$$\sqrt{\frac{x}{y}\sqrt{\frac{y}{x}\sqrt[3]{x}}}$$
 $\sqrt[3]{\frac{y}{x}}$; $\sqrt{2m\sqrt[3]{\frac{1}{4m^2}\sqrt{\frac{n}{m}}}}$: $\sqrt[12]{nm}$.

Упростите выражение:

O7.20. a)
$$\sqrt[3]{24} - \sqrt[3]{3}$$
;

B)
$$2\sqrt[5]{64} + \sqrt[5]{486}$$
;

6)
$$2\sqrt[7]{3} + \sqrt[7]{384}$$
;

$$r) \sqrt[4]{512} - \sqrt[4]{2}$$
.

O7.21. a)
$$\sqrt{50} - \sqrt[3]{3} - 6\sqrt{2} + \sqrt[3]{24} + \sqrt{8}$$
;

6)
$$6\sqrt[4]{x} + \sqrt{xy} - \sqrt{9xy} - \sqrt[8]{x^2} + \frac{7}{x}\sqrt{x^3y}$$
.

Выполните лействия:

7.22. a)
$$(\sqrt[3]{m} - 2\sqrt[3]{n})(\sqrt[3]{m} + 2\sqrt[3]{n})$$
;

6)
$$(\sqrt[3]{5} - \sqrt{3})(\sqrt{3} + \sqrt[3]{5});$$

B)
$$(a-\sqrt{b})(a+\sqrt{b})$$
;

r)
$$(\sqrt[3]{4} + 2\sqrt{2})(2\sqrt{2} - \sqrt[3]{4})$$
.

7.23. a)
$$(\sqrt{x} + \sqrt{y})(x - \sqrt{xy} + y)$$
;

6)
$$(3 + \sqrt[4]{a})(9 - 3\sqrt[4]{a} + \sqrt{a})$$
;

B)
$$(2\sqrt{p} + \sqrt{q})(4p - 2\sqrt{pq} + q);$$

r)
$$(\sqrt[3]{a} + \sqrt[6]{ab} + \sqrt[3]{b})(\sqrt[6]{a} - \sqrt[6]{b}).$$

Выполните действия:

7.24. a)
$$(\sqrt[3]{m} - 2\sqrt[3]{n})^2$$
;

B)
$$\left(a^2-\sqrt{a}\right)^2$$
;

6)
$$(\sqrt[3]{5} - \sqrt{3})^2$$
:

$$\Gamma$$
) $(\sqrt[3]{4} + 2\sqrt{2})^2$.

7.25. a)
$$(a-b):(\sqrt{a}-\sqrt{b});$$

B)
$$(m-n): (\sqrt[3]{m}-\sqrt[3]{n});$$

б)
$$(k+l):\left(\sqrt[3]{k}+\sqrt[3]{l}\right);$$

6)
$$(k+l): (\sqrt[3]{k} + \sqrt[3]{l});$$
 $\Gamma(x-4y): (\sqrt{x} + 2\sqrt{y}).$

Разложите на множители:

07.26. a)
$$\sqrt{2x} - \sqrt{3y} + \sqrt{2y} - \sqrt{3x}$$
;

6)
$$\sqrt[3]{4x^2} + \sqrt[4]{2} \cdot \sqrt[3]{x^2} - \sqrt[3]{4}\sqrt[4]{y^3} - \sqrt[4]{2y^3}$$
;

B)
$$\sqrt[3]{a^4} + \sqrt[3]{ab^3} - \sqrt[3]{a^3b} - \sqrt[3]{b^4}$$
;

$$\Gamma) \ b\sqrt{a} \ - \ ab \ + \sqrt{ab} \ - \ ab\sqrt{b} \ .$$

O7.27. a)
$$\sqrt[4]{m} - \sqrt[8]{m} - 6$$
:

B)
$$\sqrt[5]{a} + 7\sqrt[10]{a} + 12$$
;

6)
$$\sqrt{m} + 5\sqrt[4]{m} + 6$$
;

$$r) 2\sqrt[3]{x} - \sqrt[6]{x} - 1.$$

Сократите дроби, считая, что переменные принима: неотрицательные значения:

7.28. a)
$$\frac{\sqrt{10b} - \sqrt{15}}{\sqrt{15b} - \sqrt{5}}$$
;

B)
$$\frac{\sqrt[4]{14} + \sqrt[4]{21k}}{\sqrt[4]{7k} - \sqrt[4]{14}}$$
;

6)
$$\frac{\sqrt[3]{x^2} - \sqrt[3]{xy}}{\sqrt[3]{x} - \sqrt[3]{xy}};$$

$$\Gamma$$
) $\frac{\sqrt[4]{a^2} - \sqrt[4]{ad}}{\sqrt[4]{3a} - \sqrt[4]{a^2d}}$.

7.29. a)
$$\frac{\sqrt{a} - 2 \cdot \sqrt[4]{a} \cdot \sqrt[3]{b} + \sqrt[3]{b^2}}{\sqrt[4]{a} - \sqrt[3]{b}};$$

B)
$$\frac{\sqrt[4]{a} + \sqrt{b}}{\sqrt{a} + 2\sqrt[4]{ab^2} + b};$$

$$6) \ \frac{\sqrt[3]{m} + 2\sqrt[3]{n}}{4\sqrt[3]{n^2} + 4\sqrt[3]{mn} + \sqrt[3]{m^2}};$$

$$\Gamma) \ \frac{\sqrt{b} \ + \ 2a\sqrt[4]{a^2b} \ + \ a^3}{a\sqrt{a} \ + \ \sqrt[4]{b}}.$$

7.30. a)
$$\frac{\sqrt{a} - \sqrt[3]{b^2}}{\sqrt[4]{a} - \sqrt[3]{h}}$$
;

$$B) \frac{\sqrt{b}-a^3}{a\sqrt{a}+\sqrt[4]{b}};$$

6)
$$\frac{\sqrt[5]{x^9}-1}{\sqrt[5]{x^3}-1}$$
;

$$\Gamma) \frac{\sqrt{a} - b\sqrt{b}}{\sqrt[6]{a} - \sqrt{b}}.$$

7.31. Сократите дроби, считая, что переменные принимают неотрицательные значения:

a)
$$\frac{6\sqrt[3]{x^2} + \sqrt[3]{x} - 1}{2\sqrt[3]{x^2} + \sqrt[3]{x}}$$
;

6)
$$\frac{3\sqrt{x}-5\sqrt[4]{x}-2}{9\sqrt{x}-1}$$
.

О7.32. Сравните числа:

a)
$$-\sqrt[5]{2} \cdot \sqrt[4]{10}$$
 и $-\sqrt[4]{\sqrt[5]{99}}$; в) $\sqrt[4]{3}$ и $\sqrt[8]{6\sqrt{2}}$;

в)
$$\sqrt[4]{3}$$
 и $\sqrt[8]{6\sqrt{2}}$

б)
$$\sqrt{2\sqrt[3]{3}}$$
 и $\sqrt[3]{5}$;

$$\Gamma$$
) $-\sqrt{2 \cdot \sqrt[3]{6}}$ и $-\sqrt[3]{5\sqrt{2}}$.

Расположите числа в порядке возрастания:

O7.33. a)
$$\sqrt{3}$$
; $\sqrt[3]{4}$ и $\sqrt[6]{18}$;

г)
$$\sqrt[3]{4}$$
; $\sqrt[4]{5}$ и $\sqrt[6]{12}$.

O7.34. a)
$$\sqrt{3\sqrt[3]{4}}$$
; $\sqrt[3]{5\sqrt{3}}$ u $\sqrt[6]{100}$; b) $\sqrt[5]{3\sqrt[3]{5}}$; $\sqrt[3]{3}$ u $\sqrt[3]{2\sqrt[5]{3}}$;

в)
$$\sqrt[5]{3\sqrt[3]{5}}$$
; $\sqrt[3]{3}$ и $\sqrt[3]{2\sqrt[5]{3}}$

б)
$$\sqrt[5]{4}$$
; $\sqrt[6]{3\sqrt[5]{3}}$ и $\sqrt[10]{25}$;

г)
$${}^{16}\sqrt{64}$$
; ${}^{48}\sqrt{7}\sqrt{7}$ и ${}^{4}\sqrt{2}\sqrt{1,25}$.

Освободитесь от иррациональности в знаменателе дроби:

7.35. a)
$$\frac{1}{3\sqrt{2}}$$
; 6) $\frac{3}{2\sqrt[3]{9}}$; b) $\frac{8}{\sqrt[5]{16}}$; r) $\frac{12}{7\sqrt[6]{243}}$.

$$6) \frac{3}{2\sqrt[3]{9}}$$

B)
$$\frac{8}{\sqrt[5]{16}}$$
;

$$\Gamma$$
) $\frac{12}{7\sqrt[6]{243}}$

7.36. a)
$$\frac{7}{\sqrt{5} + 2\sqrt{3}}$$
; 6) $\frac{2}{6 - 3\sqrt{2}}$; B) $\frac{17}{3\sqrt{2} + 1}$; r) $\frac{9}{\sqrt{7} - 2}$.

6)
$$\frac{2}{6-3\sqrt{2}}$$
;

B)
$$\frac{17}{3\sqrt{2}+1}$$
;

$$\Gamma) \frac{9}{\sqrt{7}-2}$$

O7.37. a)
$$\frac{10}{\sqrt[3]{12} - \sqrt[3]{7}}$$
; 6) $\frac{11}{\sqrt[3]{5} + \sqrt[3]{6}}$; B) $\frac{4}{\sqrt[3]{3} + \sqrt[3]{9}}$; r) $\frac{3}{\sqrt[3]{15} - \sqrt[3]{6}}$

б)
$$\frac{11}{\sqrt[3]{5} + \sqrt[3]{6}}$$
;

B)
$$\frac{4}{\sqrt[3]{3} + \sqrt[3]{0}}$$
;

r)
$$\frac{3}{\sqrt[3]{15} - \sqrt[3]{6}}$$
.

O7.38. a)
$$\frac{1}{\sqrt{a} + \sqrt{b} + \sqrt{c}}$$
;

$$6) \ \frac{1}{\sqrt{2}-\sqrt{3}+\sqrt{5}}.$$

O7.39. a)
$$\frac{2}{\sqrt[3]{25} - \sqrt[3]{15} + \sqrt[3]{9}}$$
;

B)
$$\frac{-10}{\sqrt[3]{4} + \sqrt[3]{14} + \sqrt[3]{49}};$$

6)
$$\frac{9}{\sqrt[3]{16} + \sqrt[3]{8} + \sqrt[3]{4}};$$

$$\text{F) } \frac{5}{\sqrt[3]{36} - \sqrt[3]{24} + \sqrt[3]{16}}.$$

O7.40. a)
$$\frac{3}{\sqrt{15} + \sqrt{10} - \sqrt{6} - 2}$$
; 6) $\frac{6}{\sqrt{10} - \sqrt{6} + 5 - \sqrt{15}}$.

6)
$$\frac{6}{\sqrt{10}-\sqrt{6}+5-\sqrt{15}}$$
.

●7.41. Освободитесь от иррациональности в знаменателе дроби:

a)
$$\frac{1}{\sqrt[4]{3} + \sqrt[3]{4}}$$
; 6) $\frac{2}{\sqrt[12]{5} + \sqrt[12]{3}}$; B) $\frac{1}{\sqrt[3]{5} + \sqrt[4]{2}}$; r) $\frac{1}{\sqrt[12]{4} - \sqrt[12]{2}}$.

●7.42. Вычислите:

a)
$$\left(\frac{4}{\sqrt{7} - \sqrt{3}} + \frac{5}{\sqrt{12} + \sqrt{7}}\right)^2$$
;
6) $\frac{2}{\sqrt{3} + 1} + \frac{2}{\sqrt{5} + \sqrt{3}} + \frac{2}{\sqrt{7} + \sqrt{5}} + \dots + \frac{2}{\sqrt{23} + \sqrt{21}} + \frac{2}{\sqrt{25} + \sqrt{23}}$.

●7.43. Избавьтесь от иррациональности в знаменателе дроби

$$\frac{1}{\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{a_1}+\sqrt{b_1}+\sqrt{c_1}},$$
 если известно, что $\frac{a}{a_1}=\frac{b}{b_1}=\frac{c}{c_1}.$

Найдите значение выражения:

O7.44. a)
$$\frac{4-3\sqrt{2}}{(\sqrt[4]{2}-\sqrt[4]{8})^2}$$
; B) $\frac{(\sqrt[4]{24}+\sqrt[4]{6})^2}{4\sqrt{3}+3\sqrt{6}}$;

6)
$$\frac{\left(\sqrt[3]{9} + \sqrt{3}\right)^2}{\sqrt[3]{3} + 2\sqrt[6]{3} + 1}$$
; r) $\frac{1 - 2\sqrt[4]{5} + \sqrt{5}}{\left(\sqrt{3} - \sqrt[4]{45}\right)^2}$.

•7.45. a)
$$\sqrt[4]{17 + \sqrt{288}}$$
; 6) $\sqrt[4]{28 - 16\sqrt{3}}$.

07.46. Выполните действия:

a)
$$(1 + \sqrt{a})(1 + \sqrt[4]{a})(1 - \sqrt[4]{a});$$

6)
$$(\sqrt[3]{9a^2x} - 2\sqrt[3]{3abx} + \sqrt[3]{b^2x}) : (\sqrt[3]{3a} - \sqrt[3]{b});$$

B)
$$\left(\sqrt{m} + \sqrt{n}\right)\left(\sqrt[4]{m} - \sqrt[4]{n}\right)\left(\sqrt[4]{m} + \sqrt[4]{n}\right);$$

$$\Gamma) \left(\sqrt[3]{16x^2} - \sqrt[3]{25y^2} \right) : \left(\sqrt[3]{4x} - \sqrt[3]{5y} \right).$$

07.47. Упростите выражение:

a)
$$\frac{\sqrt{ab} \cdot \sqrt[4]{a}}{(a+b) \cdot \sqrt[4]{\frac{b^2}{a}}} - \frac{a^2 + b^2}{a^2 - b^2};$$

6)
$$\frac{\left(\sqrt[4]{m} + \sqrt[4]{n}\right)^2 + \left(\sqrt[4]{m} - \sqrt[4]{n}\right)^2}{2(m-n)} : \frac{1}{\sqrt{m^3} - \sqrt{n^3}} - 3\sqrt{mn}.$$

07.48. Упростите выражение:

a)
$$\left(\frac{\sqrt[4]{ab} - \sqrt{ab}}{1 - \sqrt{ab}} + \frac{1 - \sqrt[4]{ab}}{\sqrt[4]{ab}}\right)$$
: $\frac{\sqrt[4]{ab}}{1 + \sqrt[4]{a^3b^3}} - \frac{1 - \sqrt[4]{ab} - \sqrt{ab}}{\sqrt{ab}}$;

6)
$$a\sqrt[3]{a\sqrt{3ab}-2a\sqrt{ab}}$$
 $\cdot \sqrt[6]{a^3b(7+4\sqrt{3})}$.

07.49. Решите уравнение:

a)
$$\frac{x\sqrt[3]{x}-1}{\sqrt[3]{x^2}-1} - \frac{\sqrt[3]{x^2}-1}{\sqrt[3]{x}+1} = 4;$$
 6) $\frac{x+8}{\sqrt[3]{x}+2} + \frac{\sqrt[3]{x^2}-25}{\sqrt[3]{x}+5} = 5.$

Проверьте равенство:

●7.50. a)
$$\sqrt[3]{26+15\sqrt{3}}(2-\sqrt{3})=1;$$
 6) $\frac{2\sqrt[3]{2}}{1+\sqrt{3}}=\frac{\sqrt[3]{20+12\sqrt{3}}}{2+\sqrt{3}}.$

•7.51. a)
$$\sqrt[3]{5\sqrt{2}+7} - \sqrt[3]{5\sqrt{2}-7} = 2$$
;

6)
$$\sqrt[3]{6+\sqrt{\frac{847}{27}}}+\sqrt[3]{6-\sqrt{\frac{847}{27}}}=3$$
.

●7.52. Вычислите:

a)
$$\frac{x^2 - 2x\sqrt{3} + 3 - \sqrt[4]{4}}{x - \sqrt{3}}$$
 при $x = \sqrt{3} - \sqrt[3]{2}$;

6)
$$\frac{1+2x}{1+\sqrt{1+2x}} + \frac{1-2x}{1-\sqrt{1-2x}}$$
 при $x = \frac{\sqrt{3}}{4}$.

●7.53. Докажите тождество:

a)
$$\sqrt[4]{6a(5+2\sqrt{6})} \cdot \sqrt{3\sqrt{2a}-2\sqrt{3a}} = \sqrt{6a}$$
;

6)
$$\frac{\sqrt[3]{\sqrt{5}-\sqrt{3}}\cdot\sqrt[6]{8}+2\sqrt{15}-\sqrt[3]{a}}{\sqrt[3]{\sqrt{20}}+\sqrt{12}\cdot\sqrt[6]{8}-2\sqrt{15}-2\sqrt[3]{2a}+\sqrt[3]{a^2}}=\frac{\sqrt[3]{a^2}+\sqrt[3]{2a}+\sqrt[3]{4}}{2-a}.$$

§ 8. Понятие степени с любым рациональным

8.1. Имеет ли смысл выражение:

a)
$$5^{-\frac{4}{3}}$$

6)
$$(-16)^{\frac{2}{3}}$$
;

B)
$$23^{-\frac{3}{2}}$$
;

a)
$$5^{-\frac{4}{3}}$$
; 6) $(-16)^{\frac{2}{3}}$; b) $23^{-\frac{3}{2}}$; r) $(-25)^{-\frac{1}{2}}$?

Представьте степень с дробным показателем в виде корня:

8.2. a)
$$5^{\frac{2}{3}}$$
; 6) $3^{\frac{1}{2}}$; B) $6^{\frac{3}{8}}$; r) $4^{\frac{3}{4}}$.

6)
$$3^{3\frac{1}{2}}$$
:

B)
$$6^{\frac{3}{8}}$$
;

r)
$$4^{3\frac{1}{4}}$$

8.3. a)
$$c^{\frac{3}{4}}$$
; 6) $p^{5\frac{1}{2}}$; B) $x^{\frac{3}{4}}$; r) $y^{2\frac{2}{3}}$.

6)
$$p^{5\frac{1}{2}}$$

B)
$$x^{\frac{3}{4}}$$
;

r)
$$y^{2\frac{2}{3}}$$

8.4. a)
$$0.2^{0.5}$$
; 6) $t^{0.8}$;

б)
$$t^{0,8}$$
:

B)
$$b^{1,5}$$
;

B)
$$b^{1,5}$$
; r) $8.5^{0,6}$.

8.5. a)
$$(2a)^{\frac{1}{3}}$$
; 6) $3(x-y)^{\frac{2}{3}}$; B) $(2b)^{\frac{1}{4}}$; r) $3(a+b)^{\frac{3}{4}}$.

6)
$$3(x-y)^{\frac{2}{3}}$$

в)
$$(2b)^{\frac{1}{4}}$$

r)
$$3(a+b)^{\frac{3}{4}}$$

Представьте заданное выражение в виде степени с рациональным показателем:

8.6. a)
$$\sqrt[5]{b^4}$$
; 6) $\sqrt[3]{a^2}$; B) $\sqrt[11]{c^2}$; $\sqrt[1]{b}$

б)
$$\sqrt[3]{a^2}$$
;

B)
$$\sqrt[11]{c^2}$$

г)
$$\sqrt[5]{a}$$
.

8.7. a)
$$\sqrt{b^{-1}}$$
; 6) $\frac{1}{\sqrt[4]{a^{-3}}}$; B) $\sqrt[12]{b^{-5}}$; r) $\frac{1}{\sqrt[3]{a^{-2}}}$.

$$6) \frac{1}{\sqrt[4]{x^{-3}}};$$

B)
$$\sqrt[12]{b^{-5}}$$
;

$$\Gamma$$
) $\frac{1}{\sqrt[3]{a^{-2}}}$

Вычислите:

8.8. a)
$$49^{\frac{1}{2}}$$
; 6) $1000^{\frac{1}{3}}$; B) $27^{\frac{1}{3}}$; r) $25^{\frac{1}{2}}$.

6)
$$1000^{\frac{1}{3}}$$

B)
$$27^{\frac{1}{3}}$$

r)
$$25^{\frac{1}{2}}$$

6)
$$0.16^{1\frac{1}{2}}$$

$$\mathbf{B}) \left(3\frac{3}{8}\right)^{\frac{4}{3}}$$

r)
$$0,001^{\frac{2}{3}}$$
.

8.10. a)
$$(27 \cdot 3^{-4})^2$$
; B) $16 \cdot (2^{-3})^2$;

B)
$$16 \cdot (2^{-3})^2$$
;

6)
$$\frac{6^{-4} \cdot 6^{-9}}{6^{-12}}$$
; r) $\frac{7^{-7} \cdot 7^{-8}}{7^{-13}}$.

$$r) \; \frac{7^{-7} \; \cdot \; 7^{-8}}{7^{-13}}$$

8.11. a)
$$\frac{5^4 \cdot 49^{-3}}{7^{-7} \cdot 25^3}$$
; 6) $\frac{81^{12} \cdot 10^{-7}}{10^{-5} \cdot 27^{17}}$.

$$\text{ 6) } \frac{81^{12} \cdot 10^{-7}}{10^{-5} \cdot 27^{17}}$$

6)
$$8^{-\frac{1}{3}}$$
:

B)
$$32^{-\frac{1}{5}}$$

r)
$$16^{-\frac{1}{4}}$$
.

Вычислите:

O8.13. a)
$$10^{\frac{2}{5}} \cdot 10^{\frac{1}{2}} \cdot 10^{0.1};$$
 b) $7^{-\frac{4}{3}} \cdot 7^{\frac{1}{12}} \cdot 7^{-\frac{3}{4}};$

6)
$$4^{0.7} \cdot 2^{-0.6} \cdot 8^{0.4}$$
:

p)
$$25^{0,3} \cdot 5^{1,4} \cdot 625^{0,25}$$

O8.14. a)
$$4^{0,4} \cdot 2^{-0,4} : 2^{-0,6};$$
 b) $4^{\frac{1}{3}} \cdot 2^{1\frac{2}{3}} : 4^{-\frac{1}{3}};$

B)
$$4^{\frac{1}{3}} \cdot 2^{1^{\frac{2}{3}}} \cdot 4^{-\frac{1}{3}}$$

6)
$$3 \cdot 9^{0,4} : \sqrt[5]{3^{-1}};$$

6)
$$3 \cdot 9^{0,4} : \sqrt[5]{3^{-1}};$$
 r) $8^{-\frac{1}{3}} \cdot 16^{\frac{1}{3}} : \sqrt[3]{2}$

08.15. a)
$$(27 \cdot 64)^{\frac{1}{3}}$$
;

B)
$$\left(\frac{1}{36}\cdot 0,04\right)^{\frac{1}{2}};$$

6)
$$\left(\frac{1}{16} \cdot 81^{-1}\right)^{-\frac{1}{4}}$$
; r) $\left(5^{-3} \cdot \frac{1}{64}\right)^{-\frac{1}{3}}$.

r)
$$\left(5^{-3} \cdot \frac{1}{64}\right)^{-\frac{1}{3}}$$

Q8.16. a)
$$\left(\frac{1}{4}\right)^{\frac{1}{2}} \cdot 25^{\frac{1}{2}} - 81^{\frac{1}{2}} \cdot 125^{-\frac{1}{3}};$$

6)
$$49^{-\frac{1}{2}} \cdot \left(\frac{1}{7}\right)^{-2} + 2^{-1} \cdot (-2)^{-2};$$

B)
$$216^{-\frac{1}{3}} \cdot \left(\frac{1}{6}\right)^{-2} - 5^{-1} \cdot \left(\frac{1}{25}\right)^{-\frac{1}{2}};$$

r)
$$\left(\frac{1}{4}\right)^{-\frac{1}{2}} \cdot 16^{\frac{1}{2}} - 2^{-1} \cdot \left(\frac{1}{25}\right)^{-\frac{1}{2}} \cdot 8^{-\frac{1}{3}}$$
.

O8.17. a)
$$\left(\left(\frac{1}{25} \right)^{-\frac{1}{2}} \cdot 7^{-1} - \left(\frac{1}{8} \right)^{-\frac{1}{3}} \cdot 2^{-3} \right) : 49^{-\frac{1}{2}};$$

6)
$$\frac{8^{\frac{1}{3}} \cdot 25^{\frac{1}{2}} - 2^{-1}}{64^{\frac{1}{4}} \cdot 2^{\frac{1}{2}}}.$$

08.18. Найдите значение выражения:

a)
$$\frac{x^{\frac{5}{6}} + x^{\frac{1}{3}}}{x^{\frac{5}{6}} - x^{\frac{1}{3}}}$$
 mpu $x = 1,44$;

6)
$$\frac{m^{\frac{2}{3}}-2,25}{m^{\frac{1}{3}}+1.5}$$
 при $m=8$.

О8.19. Найдите значение выражения:

a)
$$\frac{2t^{\frac{1}{2}}}{t-4} - \frac{1}{t^{\frac{1}{2}}-2}$$
 при $t=9$;

б)
$$\frac{2}{y^{\frac{1}{4}} + 3} - \frac{2}{y^{\frac{1}{4}} - 3}$$
 при $y = 100$.

Упростите выражение:

8.20. a)
$$b^{-\frac{1}{3}} \cdot b^{\frac{1}{2}}$$
; 6) $y^{-\frac{5}{6}} : y^{\frac{1}{3}}$; B) $a^{\frac{2}{3}} \cdot a^{-\frac{1}{6}}$; r) $z^{\frac{1}{5}} : z^{-\frac{1}{2}}$.

8.21. a)
$$\left(b^{\frac{1}{2}}\right)^{\frac{1}{3}}$$
; 6) $\left(8x^{-1\frac{1}{2}}\right)^{\frac{2}{3}}$; B) $\left(a^{\frac{3}{2}}\right)^{\frac{4}{3}}$; r) $\left(81x^{-4}\right)^{-\frac{3}{4}}$.

8.22. a)
$$x^{\frac{1}{2}} \cdot \sqrt{x}$$
; 6) $y^{\frac{7}{3}} : \sqrt[3]{y^2}$; B) $z^{\frac{3}{4}} \cdot \sqrt[4]{z}$; r) $\sqrt[4]{c^3} : c^{\frac{1}{4}}$.

O8.23. a)
$$(a^{0,4})^{\frac{1}{2}} \cdot a^{0,8};$$
 B) $\left(x^{\frac{3}{4}}\right)^{\frac{4}{5}} \cdot x^{1,4};$

6)
$$(c^{10})^{-1}:(c^{-1,2})^{\frac{3}{4}};$$
 r) $(b^{0,8})^{-\frac{3}{4}}:(b^{-\frac{2}{5}})^{-1,5}.$

8.24. a)
$$\frac{x^{-\frac{2}{3}} \cdot x^{\frac{5}{3}}}{x^{\frac{3}{5}}};$$
 6) $\frac{y^{\frac{6}{7}} \cdot \left(y^{-\frac{1}{2}}\right)^2}{\left(y^{\frac{4}{7}}\right)^{-2}};$ B) $\frac{\left(c^{-\frac{2}{3}}\right)^{-4}}{c^{\frac{1}{6}} \cdot c^{\frac{1}{2}}};$ r) $\left(\frac{a^{\frac{1}{2}} \cdot b^{\frac{3}{5}}}{a^{\frac{1}{4}} \cdot b^{\frac{2}{5}}}\right)^{20}$.

O8.25. a)
$$\left(\left(c^{-\frac{3}{7}}\cdot y^{-0,4}\right)^3\cdot c^{\frac{3}{7}}\cdot y^{0,2}\right)^{-1};$$
 6) $\left(p^{-1}q^{\frac{5}{4}}\left(p^{-\frac{2}{7}}\cdot q^{\frac{1}{14}}\right)^{3,5}\right)^{-1}.$

Представьте выражение в виде суммы:

8.26. a)
$$\left(x^{\frac{1}{2}} - y^{\frac{1}{2}}\right) \cdot x^{\frac{1}{2}}y^{\frac{1}{2}};$$
 b) $b^{\frac{1}{3}}c^{\frac{1}{4}}\left(b^{\frac{2}{3}} + c^{\frac{3}{4}}\right);$

6)
$$a^{\frac{2}{3}}b^{\frac{2}{3}}(a^{\frac{1}{3}}+b^{\frac{1}{3}});$$
 r) $x^{\frac{1}{2}}y^{\frac{1}{2}}(x^{\frac{1}{2}}-y^{\frac{3}{2}}).$

8.27. a)
$$\left(m^{\frac{1}{2}} + n^{\frac{1}{2}}\right)^2$$
; B) $\left(1 - b^{\frac{1}{2}}\right)^2$; F) $\left(a^{\frac{1}{2}} + 2b^{\frac{1}{2}}\right)^2$.

8.28. Выполните умножение:

a)
$$(x^{\frac{1}{3}} + 3)(x^{\frac{1}{3}} - 3);$$

6)
$$\left(a^{\frac{1}{2}} + b^{\frac{1}{2}}\right)\left(a - a^{\frac{1}{2}}b^{\frac{1}{2}} + b\right)$$
;

B)
$$(d^{\frac{1}{2}} - 1)(d^{\frac{1}{2}} + 1);$$

r)
$$\left(p^{\frac{1}{3}}-q^{\frac{1}{3}}\right)\left(p^{\frac{2}{3}}+(pq)^{\frac{1}{3}}+q^{\frac{2}{3}}\right)$$
.

Сократите дробь:

8.29. a)
$$\frac{4 \cdot 3^{\frac{1}{2}}}{\frac{1}{3^{\frac{1}{2}}-3}}$$
; 6) $\frac{a^{\frac{1}{2}}-b^{\frac{1}{2}}}{a-b}$; B) $\frac{x+x^{\frac{1}{2}}}{2x}$; r) $\frac{p^{\frac{1}{2}}-5}{p-25}$.

8.30. a)
$$\frac{c + c^{\frac{1}{2}}d^{\frac{1}{2}} + d}{c^{\frac{3}{2}} - d^{\frac{3}{2}}};$$
 6) $\frac{m + n}{c^{\frac{3}{2}} - m^{\frac{1}{3}}n^{\frac{1}{3}} + n^{\frac{3}{3}}}.$

Упростите выражение:

08.31. a)
$$\left(1+c^{\frac{1}{2}}\right)^2-2c^{\frac{1}{2}}$$
;

B)
$$\left(x^{\frac{1}{2}}-y^{\frac{1}{2}}\right)^2+2x^{\frac{1}{2}}y^{\frac{1}{2}};$$

6)
$$\left(m^{\frac{1}{4}} - m^{\frac{1}{3}}\right)^2 + 2m^{\frac{7}{12}}$$
:

$$\Gamma) \sqrt{b} + \sqrt{c} - \left(b^{\frac{1}{4}} + c^{\frac{1}{4}}\right)^2.$$

08.32. a)
$$\left(a^{\frac{1}{3}} + b^{\frac{1}{3}}\right)^2 - \left(a^{\frac{1}{3}} - b^{\frac{1}{3}}\right)^2$$
; 6) $\left(a^{\frac{3}{2}} + 5a^{\frac{1}{2}}\right)^2 - 10a^2$.

6)
$$\left(a^{\frac{3}{2}} + 5a^{\frac{1}{2}}\right)^2 - 10a^2$$
.

08.33. a)
$$\left(x^{\frac{1}{4}} + 1\right)\left(x^{\frac{1}{4}} - 1\right)\left(x^{\frac{1}{2}} + 1\right)$$
;

6)
$$\left(k^{\frac{1}{4}} + l^{\frac{1}{4}}\right)\left(k^{\frac{1}{8}} + l^{\frac{1}{8}}\right)\left(k^{\frac{1}{8}} - l^{\frac{1}{8}}\right)$$

O8.34. a)
$$\frac{a-b}{a^{\frac{1}{2}}-b^{\frac{1}{2}}} - \frac{a^{\frac{3}{2}}-b^{\frac{3}{2}}}{a-b};$$
 6) $\frac{\sqrt{x}}{x^{\frac{1}{2}}+y^{\frac{1}{2}}} + \frac{\sqrt{y}}{x^{\frac{1}{2}}-y^{\frac{1}{2}}}.$

Упростите выражение:

O8.35. a)
$$\frac{a^{\frac{3}{2}} - b^{\frac{3}{2}}}{a^{\frac{1}{2}} + b^{\frac{1}{2}}} \cdot \frac{a - b}{a + a^{\frac{1}{2}b^{\frac{1}{2}} + b}} + 2a^{\frac{1}{2}b^{\frac{1}{2}}};$$

$$\textbf{6)} \left(\frac{q^{\frac{1}{2}}}{p - p^{\frac{1}{2}}q^{\frac{1}{2}}} + \frac{p^{\frac{1}{2}}}{q - p^{\frac{1}{2}}q^{\frac{1}{2}}} \right) \cdot \frac{pq^{\frac{1}{2}} + p^{\frac{1}{2}}q}{p - q}.$$

08.36. a)
$$\frac{a^{\frac{1}{2}} + b^{\frac{1}{2}}}{a^{\frac{1}{2}}} - \frac{a^{\frac{1}{2}}}{a^{\frac{1}{2}} - b^{\frac{1}{2}}} + \frac{b}{a - a^{\frac{1}{2}b^{\frac{1}{2}}}};$$

6)
$$\frac{2a^{-\frac{1}{3}}}{a^{\frac{2}{3}} - 3a^{-\frac{1}{3}}} - \frac{a^{\frac{2}{3}}}{a^{\frac{5}{3}} - a^{\frac{2}{3}}} - \frac{a+1}{a^2 - 4a + 3}.$$

●8.37. а) Упростите выражение и найдите его значение при $x = \frac{1}{9}$:

$$\frac{x^{\frac{5}{2}}-x^{-\frac{1}{2}}}{(x+1)(x^2+1)}-\left(x-\frac{x^3}{1+x^2}\right)^{-\frac{1}{2}}\cdot\frac{x^2\sqrt{\left(1+x^2\right)^{-1}}-\sqrt{1+x^2}}{1+x^2}.$$

б) Упростите выражение и найдите его значение при $a=\sqrt{0,027}\,,\;x=rac{1}{27}\,;$

$$\left(\frac{x^{\frac{2}{3}}-a^{\frac{4}{3}}}{x+2x^{\frac{2}{3}}a^{\frac{2}{3}}+a^{\frac{4}{3}}x^{\frac{1}{3}}}+\frac{x^{\frac{1}{3}}-4a^{\frac{4}{3}}}{a^{\frac{4}{3}}-x^{\frac{2}{3}}}-\frac{a^{\frac{4}{3}}-2x}{x-a^{\frac{4}{3}}x^{\frac{1}{3}}}-2\right)\cdot\frac{x^{\frac{2}{3}}-a^{\frac{4}{3}}}{6a^{\frac{2}{3}}-2}.$$

§ 9. Степенные функции, их свойства и графики

9.1. Постройте график функции:

a)
$$y = x^{10}$$
; 6) $y = x^{\frac{1}{4}}$; B) $y = x^{-\frac{1}{2}}$; r) $y = x^{-4}$.

9.2. Постройте и сравните графики функций:

a)
$$y = \sqrt[3]{x}$$
 и $y = x^{\frac{1}{3}}$; 6) $y = \sqrt[4]{x}$ и $y = x^{\frac{1}{4}}$.

- 9.3. Вычислите:
 - a) f(4), если $f(x) = x^{\frac{5}{2}}$;
 - б) f(1), если $f(x) = x^{-\frac{4}{3}}$;
 - в) f(0), если $f(x) = x^{\frac{6}{7}}$;
 - r) f(8), если $f(x) = x^{-\frac{2}{3}}$.
- 9.4. Исследуйте степенную функцию на четность:
 - a) $y = x^{10}$; 6) $y = x^{-\frac{1}{3}}$; B) $y = x^{-15}$; r) $y = x^{\frac{4}{3}}$.
- 9.5. Исследуйте степенную функцию на ограниченность:
 - a) $u = x^8$: 6) $u = x^{-\frac{3}{4}}$; B) $u = x^{-5}$; $v = x^{\frac{2}{5}}$
- 9.6. Исследуйте степенную функцию на монотонность:
 - a) $y = x^{12}$; 6) $y = x^{-\frac{1}{6}}$; B) $y = x^{-11}$; $y = x^{\frac{1}{7}}$.
- 9.7. Найдите наименьшее и наибольшее значения функции $u = r^{\frac{1}{4}}$.
 - а) на отрезке [0; 1];
- в) на интервале (2; 3);
 - б) на луче $[1; +\infty)$;
- г) на полуинтервале (5; 16].
- 9.8. Найдите наименьшее и наибольшее значения функции $u=x^{\frac{5}{2}}$:
- а) на луче $[0; +\infty);$ в) на отрезке [1; 2]; б) на полуинтервале [1; 3); г) на полуинтервале [6; 8].
- 9.9. Найдите наименьшее и наибольшее значения функции $u=x^{-\frac{2}{3}}$

- а) на отрезке [1; 8]; в) на луче [1; $+\infty$); б) на интервале: (3; 5); г) на полуинтервале (0; 1].
- 9.10. Постройте график функции:
 - a) $y = (x + 2)^{\frac{1}{2}}$; B) $y = (x 1)^{-\frac{2}{3}}$;
 - 6) $y = x^{\frac{7}{2}} 3$; $y = x^{-\frac{1}{3}} + 4$.

Постройте график функции:

O9.11. a)
$$y = (x + 3)^{\frac{1}{6}} - 1;$$
 B) $y = (x + 6)^{\frac{7}{4}} + 2;$

B)
$$y = (x+6)^{\frac{7}{4}} + 2$$

6)
$$y = (x-2)^{-\frac{1}{9}} + 5;$$
 $y = (x-3)^{\frac{1}{2}} - 1.$

r)
$$y = (x-3)^{\frac{1}{2}} - 1$$

O9.12. a)
$$y = 2x^{\frac{1}{3}}$$
;

$$6) \ y = -x^{-\frac{3}{5}}$$

O9.12. a)
$$y = 2x^{\frac{1}{3}}$$
; 6) $y = -x^{-\frac{3}{5}}$; b) $y = \frac{1}{2}x^{\frac{3}{2}}$; r) $y = -2x^{\frac{1}{4}}$.

O9.13. a)
$$y = 2(x-1)^{\frac{2}{3}} - 2;$$
 B) $y = -(x+2)^{\frac{3}{2}} + 1;$

B)
$$u = -(x+2)^{\frac{3}{2}} + 1$$

6)
$$y = -\frac{1}{4\sqrt{1 + 2}} + 2;$$

6)
$$y = -\frac{1}{\sqrt[4]{r+4}} + 2$$
; r) $y = \frac{2}{\sqrt[3]{r-3}} - 4$.

09.14. Решите графически уравнение:

a)
$$x^{\frac{1}{2}} = 6 - x$$
; 6) $x^{\frac{3}{2}} = \frac{1}{x^2}$; B) $x^{\frac{1}{4}} = x^3$; r) $x^{\frac{2}{3}} = x - 4$.

09.15. Решите графически систему уравнений:

a)
$$\begin{cases} y = x^{\frac{5}{2}}, \\ y = 1. \end{cases}$$

$$\begin{cases} y = x^{\frac{1}{6}}, \\ y = |x| \end{cases}$$

$$\begin{cases} y = x^{-\frac{1}{3}}, \\ - & \end{cases}$$

6)
$$\begin{cases} y = x^{-\frac{1}{3}}, & \\ y = \sqrt{x}; & \end{cases}$$

$$\begin{cases} y = x^{-\frac{2}{3}}, \\ 2x - y - 1 = 0. \end{cases}$$

09.16. Определите число решений системы уравнений:

a)
$$\begin{cases} y = x^{-\frac{8}{5}}, \\ y = x^2 - 4x + 1; \end{cases}$$
B)
$$\begin{cases} y = x^{-\frac{5}{3}}, \\ y = 2x^2; \end{cases}$$
6)
$$\begin{cases} y = x^{\frac{1}{9}}, \\ y = 2x + 3; \end{cases}$$
r)
$$\begin{cases} y = x^{\frac{2}{7}}, \\ y = (x + 2)^3. \end{cases}$$

$$y = x^{-3},$$

$$y = 2x^2.$$

$$\begin{cases} y = x^{\frac{1}{9}}, \\ y = 2x + 3. \end{cases}$$

$$\begin{cases}
 y = x^{\frac{2}{7}}, \\
 y = (x+2)^3.
 \end{cases}$$

09.17. Постройте и прочитайте график функции:

$$\int x$$
, если $x < 0$,

$$x^{\frac{5}{3}}, \text{ если } x \geqslant 0;$$

а)
$$y = \begin{cases} x, & \text{если } x < 0, \\ \frac{5}{x^3}, & \text{если } x \ge 0; \end{cases}$$
 б) $y = \begin{cases} |x|, & \text{если } x < 1, \\ \frac{1}{x^3}, & \text{если } x \ge 1. \end{cases}$

Постройте и прочитайте график функции:

О9.18. а)
$$y = \begin{cases} \frac{1}{x}, & \text{если } x < 0, \\ x^{-\frac{1}{2}}, & \text{если } x > 0; \end{cases}$$
 6) $y = \begin{cases} x^2 - 2x, & \text{если } -1 \le x \le 2, \\ 2(x - 2)^{0.75}, & \text{если } 2 < x \le 3. \end{cases}$

О9.19. а)
$$y = \begin{cases} x^2, \text{ если } x \leq 0, \\ x^{\frac{2}{3}}, \text{ если } 0 < x \leq 1; \\ \frac{1}{x}, \text{ если } x > 1; \end{cases}$$

б)
$$y=egin{array}{l} 2,\ {\rm ec}{\rm m}{\rm i}\ x<-1,\ 2x^2,\ {\rm ec}{\rm m}{\rm i}\ -1\leqslant x\leqslant 0;\ x^{\frac{3}{2}},\ {\rm ec}{\rm m}{\rm i}\ x>0. \end{array}$$

09.20. Решите графически неравенство:

a)
$$x^{\frac{1}{2}} < 6 - x$$
; 6) $x^{\frac{3}{2}} \ge x^{-2}$; B) $x^{-\frac{1}{4}} \le x^3$; r) $x^{\frac{2}{3}} > x - 4$.

 $\bigcirc 9.21$. Известно, что $f(x) = x^{\frac{1}{4}}$. Найдите:

a)
$$f(16x)$$
; 6) $f(81x^4)$; B) $f(\frac{1}{81}x)$; r) $f(x^{-8})$.

 \bigcirc 9.22. Известно, что $f(x) = x^{-\frac{2}{3}}$. Найдите:

a)
$$f(8x^3)$$
; 6) $f(x^{-6})$; B) $f(\frac{1}{27}x)$; r) $f(x^{12})$.

O9.23. a) Известно, что $f(x) = x^{\frac{1}{4}}$, $g(x) = x^{-2}$. Докажите, что $f(16x^8) = 2(g(x)^{-1})$.

б) Известно, что
$$f(x) = x^{\frac{2}{3}}$$
, $g(x) = x^{-3}$. Докажите, что $f(27x^9) = 9(g(x))^{-2}$.

9.24. Найдите производную заданной функции:

a)
$$y = x^8$$
; 6) $y = \sqrt[4]{x^5}$; B) $y = x^{-4}$; r) $y = x^{\frac{7}{2}}$.

Найдите производную заданной функции:

9.25. a)
$$y = \frac{1}{\sqrt{x}}$$
; 6) $y = \frac{1}{x^{\frac{3}{5}}}$; b) $y = \frac{1}{\sqrt[3]{x}}$; r) $y = \frac{1}{x^{\frac{5}{3}}}$.

9.26. a)
$$y = x\sqrt{x}$$
; b) $y = \frac{x^2}{\sqrt{x}}$; b) $y = \frac{\sqrt[3]{x}}{x}$; r) $y = x^2 \cdot \sqrt[3]{x}$.

9.27. a)
$$y = 2x^4 + x\sqrt{x}$$
; b) $y = x^5 - \frac{1}{\sqrt{x}}$;

6)
$$y = \frac{2}{\sqrt[3]{x}} + 3x^6 - 1;$$
 $y = x^3 - 7x\sqrt[5]{x}.$

9.28. a)
$$y = \left(\frac{2}{x} - 1\right)(x - x^{-1});$$

6)
$$y = (3x^3 - 7x + 5)(\sqrt{x} + 3);$$

B)
$$y = (7\sqrt[3]{x} + 5)(x^5 - 7x^3 + 1);$$

r)
$$y = \left(2x^9 + x^{-\frac{1}{3}}\right)(5-2x)$$
.

9.30. a)
$$y = \frac{5x^3 - 3x^2 + 15x - 7}{x\sqrt{x}}$$
;

6)
$$y = (\sqrt[3]{x^{-1}} - 2x)(2 \sin 2x + \cos x);$$

B)
$$y = \frac{7x^8 - 5x^4 + 12x - \sqrt{x} - 2}{\sqrt[3]{x}};$$

r)
$$y = \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right) \cdot \operatorname{tg}(3x - 5).$$

9.31. a)
$$y = \frac{x^2 - 1}{\sqrt{x} + 1}$$
; b) $y = \frac{x^3 - 1}{\sqrt{x} - 1}$;

O9.32. a)
$$y = \sqrt[3]{\lg 2x}$$
; B) $y = \frac{1}{(2\sin x + 3\cos x)^{-\frac{3}{4}}}$;

6)
$$y = (\sqrt{3x-1} + \operatorname{ctg} 2x)^{0.4}$$
; r) $y = \sin(x^5 + 2\sqrt[3]{x} - 5)$.

- \bigcirc 09.33. Найдите значение производной функции y=g(x) в заданной точке x_0 :
 - a) $g(x) = x^3 3\sqrt{x}, x_0 = 1;$
 - 6) $g(x) = \sqrt[3]{3x-1}$, $x_0 = \frac{2}{3}$;
 - B) $g(x) = x^{-1} + x^{-2}, x_0 = 1;$
 - r) $g(x) = \frac{1}{3}(5 2x)^{-3}, x_0 = 2.$
- **О9.34.** Найдите угловой коэффициент касательной к графику функции y = f(x) в точке с абсциссой x_0 :
 - a) $f(x) = 4 x^{-\frac{3}{4}}, x_0 = 1;$
 - 6) $f(x) = 12x^{-\frac{1}{2}} x$, $x_0 = 9$;
 - B) $f(x) = 2x^{\frac{2}{3}} 1$, $x_0 = 8$;
 - r) $f(x) = x^{-3} + 6\sqrt{x}, x_0 = 1.$
- **О9.35.** Найдите скорость изменения функции y = h(x) в точке с абсциссой x_0 :
 - a) $h(x) = x^{\frac{1}{3}} (1 3x)^{-1}, x_0 = 0;$
 - 6) $h(x) = \sqrt[4]{2 \sin 2x}, x_0 = \frac{\pi}{12}$;
 - B) $h(x) = (3 x^{-1})^2, x_0 = -1;$
 - r) $h(x) = \frac{\cos(x^{18} 3\sqrt[3]{x^7} + 0.25\pi + \pi x)}{\pi}, x_0 = 0.$
- \bigcirc 9.36. Решите уравнение g'(x) = 0, если:
 - a) $g(x) = 2\sqrt{x} x$;
 - 6) $g(x) = \frac{2}{3}x^{\frac{3}{2}} \frac{12}{5}x^{\frac{5}{4}} + 2x;$
 - B) $g(x) = \frac{3}{4}x^{\frac{4}{3}} 2x;$
 - r) $g(x) = \frac{3}{4}x^{\frac{4}{3}} \frac{6}{7}x^{\frac{7}{6}} 2x$.

 $\bigcirc 9.37$. Решите неравенство f'(x) > 0, если:

a)
$$f(x) = \frac{3}{5}x^{\frac{5}{3}} + \frac{3}{2}x^{\frac{4}{3}}$$
;

a)
$$f(x) = \frac{3}{5}x^{\frac{5}{3}} + \frac{3}{2}x^{\frac{4}{3}};$$
 6) $f(x) = 0, 4x^{\frac{5}{4}} - \frac{8}{3}x^{\frac{3}{4}}.$

09.38. Найдите угол, образованный касательной к графику функции y = g(x) в точке с абсциссой x_0 с положительным направлением оси абсцисс:

a)
$$g(x) = \frac{2}{3}\sqrt{4-3x}$$
, $x_0 = \frac{1}{3}$;

6)
$$g(x) = -3(\sqrt{2} + x)^{-\frac{1}{3}}, x_0 = 1 - \sqrt{2}.$$

О9.39. Напишите уравнение касательной к графику функции y = f(x) в точке с абсциссой x = a:

a)
$$y = \sqrt[3]{3x-1}$$
, $a = 3$

a)
$$y = \sqrt[3]{3x-1}$$
, $a = 3$; B) $y = (2x+5)^{-\frac{1}{2}}$, $a = 2$;

6)
$$y = \sqrt[3]{2 \sin x}, a = \frac{\pi}{6}$$

6)
$$y = \sqrt[3]{2 \sin x}$$
, $a = \frac{\pi}{6}$; $p = \frac{1}{\sqrt{2 \cos x}}$, $a = \frac{\pi}{3}$.

09.40. Проведите касательную к графику функции y = f(x), параллельную заданной прямой y = kx + m:

a)
$$f(x) = 4\sqrt[4]{x}, y = x - 2$$

a)
$$f(x) = 4\sqrt[4]{x}$$
, $y = x - 2$; 6) $f(x) = \frac{1}{x^3}$, $y = 5 - 3x$.

99.41. Проведите касательную к графику функции y = f(x) из данной точки M:

a)
$$f(x) = \sqrt{x}$$
, $M(0; 1)$;

a)
$$f(x) = \sqrt{x}$$
, $M(0; 1)$; 6) $f(x) = x^{\frac{3}{2}} + 4$, $M(0; 0)$.

- ●9.42. а) Составьте уравнение той касательной к графику функции $y = x^{\frac{2}{3}} + \frac{2}{3}$, которая отсекает от осей координат треугольник площадью 0,75.
 - б) Составьте уравнение той касательной к графику функции $y = x\sqrt[3]{x}$, которая отсекает от осей координат треугольник площадью $\frac{1}{24}$.
- О9.43. Исследуйте функцию на монотонность и экстремумы:

$$\text{ f) } y = \frac{3}{2}x^{\frac{2}{3}} - x.$$

99.44. Исследуйте функцию y = f(x) на монотонность и экстремум и постройте ее график:

a)
$$y = \sqrt{x} - x$$
;

$$y = \frac{1}{\sqrt{x}} + \sqrt{x};$$

$$6) y = \frac{\sqrt{x-1}}{r};$$

$$\Gamma) \quad y = x\sqrt{x+2}.$$

●9.45. Постройте график уравнения:

a)
$$(3y + x)^3 = 27x$$
;

6)
$$(x + y)^3 = x^2$$
.

●9.46. Используя свойство монотонности функции, решите уравнение:

a)
$$2x^5 + x^3 + 5x - 80 = \sqrt[3]{14 - 3x}$$
;

6)
$$\sqrt[4]{10+3x} = 74-x^5-3x^3-8x$$
.

О9.47. Найдите наименьшее и наибольшее значения заданной функции на заданном промежутке:

a)
$$y = \frac{2}{3}x\sqrt{x} - 2x$$
, [1; 9];

a)
$$y = \frac{2}{3}x\sqrt{x} - 2x$$
, [1; 9]; B) $y = \frac{2}{3}x\sqrt{x} - 2x$, (1; 9);

6)
$$y = \frac{3}{2}x^{\frac{2}{3}} - x$$
, (0; 8); $y = \frac{3}{2}x^{\frac{2}{3}} - x$, [0; 8].

$$\text{r) } y = \frac{3}{2}x^{\frac{2}{3}} - x, [0; 8].$$

●9.48. На графике функции $y = x^{-\frac{2}{3}} - \frac{1}{2}x$ выбирают произволь-

ную точку M и соединяют с началом координат O. Строят прямоугольник, диагональю которого является отрезок OM, а две стороны расположены на осях координат. Найдите наименьшее значение периметра такого прямоугольника.

§ 10. Извлечение корней из комплексных чисел

О 10.1. Вычислите:

6)
$$\frac{-i(3+i)}{7}$$
;

a)
$$\frac{3+7i}{3-i}$$
; 6) $\frac{-i(3+i)}{7-i}$; B) $\frac{(2+3i)(4-i)}{i(1-7i)}$; Γ) $\frac{i^5+i^4+i}{(3+i)^2}$.

$$\Gamma$$
) $\frac{i^5 + i^4 + i^3}{(3 + i)^2}$

O10.2. Решите уравнение относительно $n \ (n \in \mathbf{Z})$:

a)
$$i^7 + i^n = 0$$
:

B)
$$i^{-12} + i^{-13} + i^9 + i^n = 2$$
;

6)
$$i^9 + i^n = 1 + i$$
; Γ) $i^{2005} + i^n = 1 - i$.

$$i^{2005} + i^n = 1 - i.$$

- \bigcirc 10.3. Найдите наименьшее натуральное значение n, при кото
 - а) число $(4+3i)^n$ лежит вне круга радиуса 100 с центром в начале координат:
 - б) число $(1-2i)^n$ лежит вне круга радиуса 1000 с центром в начале координат;
 - в) число $(i-2)^n$ лежит вне круга радиуса 10n с центром в начале координат;
 - г) число $(1+3i)^n$ лежит вне круга радиуса $5n^2$ с центром в начале координат.

Расположите комплексные числа $z_1,\ z_2,\ z_3,\ z_4$ в порядке возрастания их аргументов:

O10.4. a)
$$z_1 = i$$
, $z_2 = i^2$, $z_3 = i^3$, $z_4 = i^4$;

6)
$$z_1 = i^{-1}$$
, $z_2 = i^{-2}$, $z_3 = i^{-3}$, $z_4 = i^{-4}$.

•10.5. a)
$$z_1 = \sqrt{3} - 2 + i(\pi - 4)$$
,

$$z_2 = \sqrt{5} - 2 + i(\pi^2 - 9),$$

$$z_2 = \sqrt[4]{17} - \sqrt[5]{31} + i(1 - 2^{0,2}),$$

$$z_4 = \sqrt[10]{1000} - \sqrt[9]{600} + i(3^{\frac{2}{3}} - 4^{\frac{2}{5}});$$

6)
$$z_1 = \sin 200^{\circ} + i \cos 170^{\circ}$$
,

$$z_2 = \sin 250^\circ + i \cos 70^\circ,$$

$$z_3 = \cos 440^\circ + i \cos 460^\circ$$
,

$$z_4 = \text{tg } 185^\circ + i \arccos 0.9.$$

- О10.6. Изобразите на комплексной плоскости множество всех комплексных чисел г, для которых выполняется заданное неравенство:
 - a) $\text{Re}\bar{z} > 3$; 6) $\text{Im}\bar{z} \geq 5$; B) $\text{Re}\bar{z} > \text{Im}\bar{z}$; C) $\text{Re}\bar{z} \leq \text{Im}\bar{z}$.

- O10.7. Пусть $z = \cos 8^{\circ} + i \sin 8^{\circ}$. Найдите наименьшее натуральное значение n, для которого:
 - а) z^n принадлежит третьей координатной четверти комплексной плоскости:
 - б) $(\bar{z})^n$ принадлежит третьей координатной четверти;
 - в) z^n принадлежит четвертой координатной четверти;
 - г) $(\overline{z})^n$ принадлежит первой координатной четверти.
- **О10.8.** Решите уравнение:

a)
$$z^2 - 10z + 29 = 0$$

a)
$$z^2 - 10z + 29 = 0$$
; B) $z^2 + 30z + 241 = 0$;

$$6) iz^2 - 10z - 29i = 0;$$

r)
$$z^2 + 30iz + 31 = 0$$
.

О10.9. Вычислите:

a)
$$(\cos 20^{\circ} + i \sin 20^{\circ})^{9}$$
; B) $(\cos 3^{\circ} - i \sin 3^{\circ})^{-40}$;

B)
$$(\cos 3^{\circ} - i \sin 3^{\circ})^{-40}$$

6)
$$(\cos 20^{\circ} + i \sin 20^{\circ})^{-3}$$
; r) $(\cos 5^{\circ} - i \sin 5^{\circ})^{24}$.

r)
$$(\cos 5^{\circ} - i \sin 5^{\circ})^{24}$$

- \bigcirc 10.10. Пусть $\{z, z^2, z^3, ..., z^n, z^{n+1}, ...\}$ геометрическая прогрессия со знаменателем $z = \cos 0.1\pi - i \sin 0.1\pi$.
 - а) Укажите наименьшее натуральное значение n, при котором z^n лежит в третьей координатной четверти комплексной плоскости (не на координатных осях).
 - б) Укажите наименьшее натуральное значение n, при котором z^n лежит во второй координатной четверти (не на координатных осях).
 - в) Сколько в этой прогрессии различных чисел?
 - г) Найдите сумму этих различных чисел.

Вычислите корни (в алгебраической форме), изобразите их на комплексной плоскости; найдите сумму и произведение вычисленных корней:

O10.11. a)
$$\sqrt{i}$$
; 6) $\sqrt{-i}$; B) $\sqrt{1-i}$; r) $\sqrt{i-10}$.

6)
$$\sqrt{-i}$$
:

B)
$$\sqrt{1-i}$$
;

r)
$$\sqrt{i-10}$$

O10.12. a)
$$\sqrt[3]{8}$$
; 6) $\sqrt[3]{-27}$; B) $\sqrt[3]{i}$; r) $\sqrt[3]{-64i}$.

B)
$$\sqrt[3]{i}$$

O10.13. a)
$$\sqrt[4]{1}$$
; 6) $\sqrt[4]{-1}$.

- О10.14. Вычислите и изобразите на комплексной плоскости:

- a) $\sqrt[6]{1}$; 6) $\sqrt[6]{-1}$; B) $(\sqrt[6]{1})^2$; r) $(\sqrt[6]{-1})^3$.

- О10.15. Запишите в тригонометрической форме тот из корней $\sqrt[6]{z}$, который принадлежит:
 - а) первой четверти; z = -i;
 - б) второй четверти; $z = 0.5(i \sqrt{3});$
 - в) второй четверти; z = 8i;
 - г) третьей четверти; $z = -13.5(i + \sqrt{3})$.
- •10.16. а) Запишите в тригонометрической форме и изобразите на комплексной плоскости все значения $\sqrt[5]{1}$.
 - б) Докажите тождество $z^5 1 = (z 1)(z^4 + z^3 + z^2 + z + 1)$; подберите действительные числа A < B так, чтобы выполнялось тождество $z^4 + z^3 + z^2 + z + 1 = (z^2 + 4z + 1)(z^2 + Bz + 1)$.
 - в) Используя результаты пунктов а) и б), вычислите $\cos 72^\circ$ и $\sin 72^\circ$.
 - г) Найдите сторону a_5 правильного пятиугольника, вписанного в единичную окружность, и сторону a_{10} правильного десятиугольника, вписанного в единичную окружность.
- O10.17. Составьте (если возможно) приведенный многочлен третьей степени с действительными коэффициентами, корнями которого являются числа:
 - a) $z_1 = 1$, $z_2 = 2 i$, $z_3 = 2 + i$;
 - 6) $z_1 = 0$, $z_2 = 3 + 2i$, $z_3 = 3 2i$;
 - B) $z_1 = 1$, $z_2 = 2 i$, $z_3 = 2 + 2i$;
 - r) $z_1 = i$, $z_2 = 2i$, $z_3 = 3i$.
- O10.18. а) Составьте приведенный многочлен третьей степени с действительными коэффициентами, корнями которого являются числа $z_1=-5,\ z_{2,3}=4\pm 3i.$
 - б) Найдите числа $z_1 + z_2 + z_3$, $z_1z_2 + z_2z_3 + z_3z_1$, $z_1z_2z_3$ и сравните их с коэффициентами многочлена из пункта а).
- •10.19. а) Для многочлена $z^3 + az^2 + bz + c$ и его корней z_1, z_2, z_3 докажите, что выполняются следующие соотношения (теорема Виета):
 - $z_1 + z_2 + z_3 = -a$, $z_1z_2 + z_2z_3 + z_3z_1 = b$, $z_1z_2z_3 = -c$.
 - б) Сформулируйте и докажите теорему Виета для приведенного многочлена четвертой степени.

О10.20. Составьте (если возможно) приведенный многочлен четвертой степени с действительными коэффициентами, корнями которого являются числа:

a)
$$z_1 = i$$
, $z_2 = i - 1$, $z_3 = -i$, $z_4 = -(1 + i)$;

6)
$$z_1 = 2 + i$$
, $z_2 = i - 2$, $z_3 = 2 - i$, $z_4 = -(2 + i)$;

B)
$$z_1 = 4 + 3i$$
, $z_2 = 4 - 3i$, $z_3 = z_4 = 2$;

r)
$$z_1 = -1 - 8i$$
, $z_2 = 8i$, $z_3 = z_4 = -10$.

Решите уравнение и изобразите его корни на комплексной плоскости:

O10.21. a)
$$z^3 - 2z^2 + z - 2 = 0$$
; B) $z^3 + 3z^2 + z - 5 = 0$;

6)
$$z^3 + 3z^2 + 5z + 15 = 0$$
; r) $z^3 + 4z^2 - 50z + 100 = 0$.

$$\bigcirc 10.22$$
. a) $z^4 - 1 = 0$;

6)
$$z^4 - 3z^3 + 6z^2 - 12z + 8 = 0$$
;

$$B) z^4 - 5z^2 - 36 = 0;$$

$$\Gamma) z^4 - 5z^3 + 7z^2 - 5z + 6 = 0.$$

§ 11. Показательная функция, ее свойства и график

Найдите значение выражения:

11.1. a)
$$2^{5,3} \cdot 2^{-0,3}$$
:

6)
$$7^{-\frac{1}{2}} \cdot 7^{3,5}$$
:

B)
$$3^{6,8} \cdot 3^{-5,8}$$

$$\Gamma\left(\frac{3}{4}\right)^{3,7} \cdot \left(\frac{3}{4}\right)^{-0,7}.$$

11.2. a)
$$(\sqrt{5})^{3.6} \cdot (\sqrt{5})^{-1.6}$$
;

B)
$$(\sqrt{7})^{-0.2} \cdot (\sqrt{7})^{-3.8}$$
;

6)
$$(\sqrt[3]{2})^{4,7} \cdot (\sqrt[3]{2})^{-1,7}$$
;

r)
$$(\sqrt[5]{3})^{-\frac{1}{3}} \cdot (\sqrt[5]{3})^{\frac{31}{3}}$$
.

11.3. a)
$$4^{3,5}:4^3$$
:

B)
$$8^{2\frac{1}{3}} \cdot 8^2$$
:

6)
$$\left(\frac{1}{2}\right)^{-6,3}$$
: $\left(\frac{1}{2}\right)^{-2,3}$;

r)
$$\left(\frac{2}{3}\right)^{2,4}$$
 : $\left(\frac{2}{3}\right)^{-0,6}$.

11.4. a)
$$\left(\sqrt{0,6}\right)^{2,7}$$
 : $\left(\sqrt{0,6}\right)^{0,7}$; b) $\left(\sqrt[5]{\frac{1}{3}}\right)^{6,3}$: $\left(\sqrt[5]{\frac{1}{3}}\right)^{-3,7}$;

B)
$$\left(\sqrt[5]{\frac{1}{3}}\right)^{6,3}:\left(\sqrt[5]{\frac{1}{3}}\right)^{-3,7};$$

6)
$$\left(\sqrt{1,2}\right)^{4,2}:\left(\sqrt{1,2}\right)^{0,2};$$

$$_{\Gamma)}\left(\sqrt[3]{\frac{2}{7}}\right)^{5,9}:\left(\sqrt[3]{\frac{2}{7}}\right)^{2,9}.$$

11.5. a)
$$\left(2^{\frac{1}{3}}\right)^{6}$$
; 6) $\left(\left(\frac{1}{7}\right)^{2}\right)^{\frac{1}{2}}$; B) $\left(3^{\frac{3}{2}}\right)^{2}$; r) $\left(\left(\frac{3}{4}\right)^{\frac{1}{3}}\right)^{-3}$.

B)
$$\left(3^{\frac{3}{2}}\right)^2$$
; r) $\left(\left(\frac{3}{4}\right)^{\frac{1}{3}}\right)^{-3}$.

Найдите значение выражения:

11.6. a)
$$(2^{-3})^2 \cdot 2^5$$
;

B)
$$(3^{2,7})^3:3^{5,1}$$
;

6)
$$\left(\left(\frac{2}{3}\right)^{4,1}\right)^6:\left(\frac{2}{3}\right)^{20,6};$$
 \qquad r) $\left(\left(\frac{2}{3}\right)^{-3}\right)^2\cdot\left(\frac{2}{3}\right)^5.$

r)
$$\left(\left(\frac{2}{3}\right)^{-3}\right)^2 \cdot \left(\frac{2}{3}\right)^5$$
.

11.7. a)
$$\sqrt[4]{8} \cdot 2^{0.5} : 2^{1.25}$$
;

B)
$$\sqrt[3]{81} \cdot 3^{2,6} : 3^{1,6};$$

6)
$$\sqrt[4]{10000} \cdot \sqrt{100} : 10^3$$
; r) $\sqrt[4]{16} \cdot \sqrt[3]{128} : 2^3$.

r)
$$\sqrt[4]{16} \cdot \sqrt[3]{128} : 2^3$$

Среди заданных функций укажите те, которые являются показательными:

11.8. a)
$$y = 3^x$$
; 6) $y = x^3$; B) $y = x^{\frac{5}{3}}$; $y = (\sqrt{3})^x$.

6)
$$y = x^3$$
:

B)
$$u = x^{\frac{5}{3}}$$

$$\Gamma$$
) $y = \left(\sqrt{3}\right)^x$

11.9. a)
$$y = \pi^x$$
; 6) $y = x^{\pi}$; B) $y = (\sqrt{x})^5$; r) $y = \left(\frac{1}{\sqrt{5}}\right)^x$.

$$\mathbf{B}) \ y = \left(\sqrt{x}\right)^5$$

$$\mathbf{r}) \ \ y \ = \left(\frac{1}{\sqrt{5}}\right)$$

11.10. Найдите значение показательной функции $y = a^x$ при заданных значениях х:

a)
$$y = 7^x$$
, $x_1 = 3$, $x_2 = -1$, $x_3 = \frac{1}{2}$;

6)
$$y = \left(\frac{1}{2}\right)^x$$
, $x_1 = \frac{3}{2}$, $x_2 = 1$, $x_3 = -\frac{1}{2}$;

B)
$$y = (\sqrt{3})^x$$
, $x_1 = 0$, $x_2 = 4$, $x_3 = 5$;

r)
$$y = \left(\frac{4}{9}\right)^x$$
, $x_1 = -\frac{3}{2}$, $x_2 = -1$, $x_3 = 2.5$.

11.11. Найдите значение аргумента x, при котором функция $y = 2^x$ принимает заданное значение:

б)
$$8\sqrt{2}$$
;

B)
$$\frac{1}{\sqrt{2}}$$
; r) $\frac{1}{32\sqrt{2}}$.

11.12. Найдите значение аргумента x, при котором функция

$$y = \left(\frac{1}{5}\right)^x$$
 принимает заданное значение:

a)
$$\frac{1}{25}$$
;

a)
$$\frac{1}{25}$$
; 6) $\frac{1}{25\sqrt{5}}$; B) 125; r) $625\sqrt{5}$.

r)
$$625\sqrt{5}$$

Схематично изобразите график показательной функции:

11.13. a)
$$y = (\sqrt{2})^x$$
;

B)
$$y = (\sqrt{7})^x$$
;

6)
$$y = \left(\frac{1}{\pi}\right)^x$$
;

r)
$$y = \left(\frac{1}{\sqrt{6}}\right)^x$$
.

11.14. a)
$$y = \pi^x$$
;

B)
$$y = \left(\sqrt{\pi}\right)^x$$
;

6)
$$y = (4 - \pi)^x$$
;

$$\Gamma) y = \left(\frac{1}{4-\pi}\right)^x.$$

O11.15. a)
$$(\sqrt{8} - \sqrt{2})^x$$
;

B)
$$(\sqrt{5} - \sqrt[3]{5})^x$$
:

6)
$$y = (\sqrt[3]{24} - \sqrt[3]{4})^x$$
;

r)
$$y = (\sqrt[5]{32,1} - \sqrt{3})^x$$
.

11.16. В одной системе координат схематично изобразите графики функций:

a)
$$y = 3^x$$
, $y = 8^x$;

6)
$$y = \left(\frac{3}{4}\right)^x$$
, $y = \left(\frac{1}{2}\right)^x$;

B)
$$y = (\sqrt{7})^x$$
, $y = 5^x$, $y = (\sqrt{8})^x$;

r)
$$y = \left(\frac{1}{\sqrt{2}}\right)^{x}$$
, $y = \left(\frac{1}{2}\right)^{x}$, $y = \left(\frac{1}{8}\right)^{x}$.

11.17. Сравните значения 3^{x_1} и 3^{x_2} , если:

a)
$$x_1 = \frac{1}{3}, x_2 = \frac{2}{3}$$

a)
$$x_1 = \frac{1}{3}$$
, $x_2 = \frac{2}{3}$; B) $x_1 = \frac{4}{5}$, $x_2 = \frac{3}{5}$;

6)
$$x_1 = \frac{1}{2}$$
, $x_2 = -\frac{1}{2}$; r) $x_1 = 1$, $x_2 = -\frac{3}{2}$.

$$r) x_1 = 1, x_2 = -\frac{3}{2}$$

11.18. Определите, какое из чисел, 5^{x_1} или 5^{x_2} , больше, если:

a)
$$x_1 = \frac{2}{3}$$
, $x_2 = \frac{4}{5}$; B) $x_1 = \frac{3}{5}$, $x_2 = \frac{4}{7}$;

B)
$$x_1 = \frac{3}{5}, x_2 = \frac{4}{7};$$

6)
$$x_1 = -\frac{7}{3}$$
, $x_2 = -\frac{6}{5}$; r) $x_1 = -\frac{3}{8}$, $x_2 = -\frac{11}{9}$.

r)
$$x_1 = -\frac{3}{8}$$
, $x_2 = -\frac{11}{9}$

11.19. Сравните значения $(\sqrt{3})^{\alpha}$ и $(\sqrt{3})^{\beta}$, если:

a)
$$\alpha = 0.3, \ \beta = \frac{1}{4};$$

B)
$$\alpha = 1,9, \beta = 2,1;$$

6)
$$\alpha = -\frac{1}{3}$$
, $\beta = -0.4$; r) $\alpha = 3.1$, $\beta = \sqrt{10}$.

$$\alpha = 3,1, \beta = \sqrt{10}$$

11.20. Сравните значения $(0,6)^{x_1}$ и $(0,6)^{x_2}$, если:

a)
$$x_1 = 0, 2, x_2 = \frac{1}{3};$$

B)
$$x_1 = -4,1, x_2 = -5;$$

6)
$$x_1 = \sqrt{5}, x_2 = 2.5;$$

r)
$$x_1 = -6.5, x_2 = 0.1.$$

11.21. Определите, какое из чисел $-\left(\frac{3}{7}\right)^{x_1}$ или $\left(\frac{3}{7}\right)^{x_2}$ — больше,

a)
$$x_1 = \frac{2}{3}, x_2 = \frac{3}{5};$$

B)
$$x_1 = \frac{5}{7}, x_2 = \frac{3}{11};$$

6)
$$x_1 = -\frac{6}{7}$$
, $x_2 = -\frac{10}{11}$;

r)
$$x_1 = -1, 6, x_2 = -3.$$

11.22. Сравните числа:

a)
$$1,3^{34}$$
 и $1,3^{40}$;

в)
$$12,1^{\sqrt{3}}$$
 и $12,1^{\sqrt{5}}$;

б)
$$\left(\frac{7}{9}\right)^{16,2}$$
 и $\left(\frac{7}{9}\right)^{-3}$;

г)
$$(0,65)^{-\sqrt{2}}$$
 и $(0,65)^{\frac{1}{2}}$.

Расположите числа в порядке возрастания:

O11.23. a) $2^{\frac{1}{3}}$; $2^{-\frac{1}{2}}$; $2^{\sqrt{3}}$; $2^{-\sqrt{2}}$; 2^{14} ; 1:

6)
$$0.3^9$$
; 1; $0.3^{-\sqrt{5}}$; $0.3^{\frac{1}{2}}$; 0.3^{-9} ; $0.3^{\frac{1}{3}}$.

O11.24. a) $(\sqrt{3})^{\frac{2}{3}}$; $(\sqrt{3})^{-\sqrt{2}}$; $(\sqrt{3})^{1.2}$; 1; $(\sqrt{3})^{\sqrt{2}}$; $(\sqrt{3})^{\sqrt{3}}$;

6)
$$(\sqrt[3]{3} - \sqrt[3]{2})^{0.3}$$
; $(\sqrt[3]{3} - \sqrt[3]{2})^{0}$; $(\sqrt[3]{3} - \sqrt[3]{2})^{-0.2}$.

O11.25. a) $\left(\frac{1}{\sqrt{5}}\right)^{\frac{3}{6}}$; $\left(\frac{1}{\sqrt{5}}\right)^{-0.2}$; $\left(\frac{1}{\sqrt{5}}\right)^{\frac{2}{3}}$; $\left(\frac{1}{\sqrt{5}}\right)^{\frac{1}{6}}$; $\left(\frac{1}{\sqrt{5}}\right)^{1.3}$; $\left(\frac{1}{\sqrt{5}}\right)^{-2.1}$;

6)
$$\left(\frac{1}{\sqrt[3]{2}} - \frac{1}{\sqrt{2}}\right)^{0.1}$$
; $\left(\frac{1}{\sqrt[3]{2}} - \frac{1}{\sqrt{2}}\right)^{-0.5}$; $\left(\frac{1}{\sqrt[3]{2}} - \frac{1}{\sqrt{2}}\right)^{-3.4}$.

Исследуйте функцию на монотонность:

11.26. a)
$$y = (\sqrt{3})^x$$
;

B)
$$y = 21^x$$
;

6)
$$y = 0,3^x$$
;

$$\mathbf{r)} \ \ y \ = \left(\frac{4}{\sqrt{19}}\right)^{x}.$$

11.27. a)
$$y = 2^{-x}$$
; 6) $y = \left(\frac{2}{9}\right)^{-x}$; B) $y = 17^{-x}$; r) $y = \left(\frac{1}{13}\right)^{-x}$.

O11.28. a)
$$y = (\sqrt{12} - \sqrt{3})^x$$
;

B)
$$y = (\sqrt[3]{27} - \sqrt{8})^x$$
;

6)
$$y = (\sqrt{75} - \sqrt{5})^x$$
;

r)
$$y = (\sqrt{98} - \sqrt[3]{64})^x$$

11.29. a)
$$y = -3 \cdot 12^x$$
;

B)
$$y = -9 \cdot \left(\frac{3}{4}\right)^{x}$$
;

6)
$$y = \frac{1}{(0.5)^x + 1}$$
;

r)
$$y = -\frac{3}{4+2^x}$$
.

O11.30. a)
$$y = 2^{-x+1}$$
;

B)
$$y = \frac{1}{2^{-x+1}};$$

6)
$$u = 5^{-2x} + 4$$
;

$$\mathbf{r}) \ y = 10^{-3x} - 2.$$

11.31. Укажите, какие из заданных функций ограничены снизу:

a)
$$y = 4x - 1;$$

B)
$$y = -3x^2 + 8$$
;

6)
$$y = 18^x$$
;

$$\mathbf{r)} \ \ y \ = \left(\frac{4}{11}\right)^{x}.$$

11.32. Укажите, какие из данных функций не ограничены сверху:

a)
$$y = -3x^2 + 1$$
;

B)
$$y = (7,2)^x$$
;

6)
$$y = (0,6)^x$$
;

$$\Gamma$$
) $y = \cos x$.

11.33. Найдите наибольшее и наименьшее значения заданной функции на заданном промежутке:

a)
$$y = 2^x$$
, [1; 4];

B)
$$y = \left(\frac{1}{3}\right)^{x}$$
, $[0; 4]$;

6)
$$y = \left(\frac{1}{3}\right)^x$$
, $\begin{bmatrix} -4; -2 \end{bmatrix}$;

r)
$$y = 2^x$$
, $[-4; 2]$.

Найдите наибольшее и наименьшее значения заданной функции на заданном промежутке:

11.34. a)
$$y = (\sqrt{2})^x$$
, $(-\infty; 4]$; B) $y = (\sqrt[3]{5})^x$, $[0; +\infty)$;

6)
$$y = \left(\frac{1}{\sqrt{3}}\right)^x$$
, $\left(-\infty; 2\right]$; r) $y = \left(\frac{1}{\sqrt{7}}\right)^x$, $\left[-2; +\infty\right)$.

O11.35. a)
$$y = 3^{x-1} + 8, [-3; 1];$$

6)
$$y = 5 \cdot \left(\frac{3}{5}\right)^x + 4, [-1; 2];$$

B)
$$y = 7^{x-2} + 9, [0; 2];$$

r)
$$y = 4 \cdot \left(\frac{1}{2}\right)^x + 13, \left[-2; 3\right].$$

O11.36. a)
$$y = 32 \cdot 2^{x-6} - 5$$
, $[-1; 2]$;

6)
$$y = 8 \cdot \left(\frac{1}{2}\right)^{x-4} + 10, \quad [-2; 3];$$

B)
$$y = 27 \cdot 3^{-x-2} + 4$$
, [1; 3];

r)
$$y = 125 \cdot 5^{-x-4} - 12$$
, $[-2; 0]$.

11.37. На каком отрезке функция $y = 2^x$ принимает:

- а) наибольшее значение, равное 32, и наименьшее, равное $\frac{1}{2}$;
- б) наибольшее значение, равное $\frac{1}{8}$, и наименьшее, равное $\frac{1}{128}$?

11.38. На каком отрезке функция $y = \left(\frac{1}{3}\right)^x$ принимает:

- а) наибольшее значение, равное 81, и наименьшее, равное $\frac{1}{27}$;
- б) наибольшее значение, равное $\frac{1}{\sqrt{3}}$, и наибольшее, рав-

HOE
$$\frac{1}{\sqrt[7]{9}}$$
?

O11.39. Докажите, что для функции y = f(x), где $f(x) = 2^x$, выполняется равенство:

a)
$$f(x_1) \cdot f(x_2) = f(x_1 + x_2);$$

6)
$$f(x + 1) \cdot f(2x) = 2f^3(x)$$
:

B)
$$f(-2x) = \frac{1}{f^2(x)}$$
;

$$f(\cos^2 x) = \sqrt{2f(\cos 2x)}.$$

O11.40. Докажите, что для функции y = f(x), где $f(x) = \left(\frac{1}{3}\right)^2$,

выполняется равенство:

a)
$$f(x_1) \cdot f(x_2) = f(x_1 + x_2);$$

6)
$$f(x-1) \cdot f(3x) = 3f^4(x)$$
;

B)
$$f(-5x) = \frac{1}{f^5(x)}$$
;

$$r) f(\sin^2 x) = \frac{1}{\sqrt{3f(\cos 2x)}}.$$

Найдите область определения функции:

11.41. a)
$$y = 4^{x^2-1}$$
;

B)
$$y = \left(\frac{3}{8}\right)^{-x^2+2}$$
;

6)
$$y = 7^{\frac{1}{x}}$$
;

r)
$$y = 9,1^{\frac{1}{x-1}}$$
.

11.42. a)
$$y = \frac{1}{2^x - 1}$$
;

B)
$$y = \frac{x}{3^x - 9}$$
;

6)
$$y = \frac{x+2}{0.5^x-2}$$
;

r)
$$y = \frac{2x+1}{\left(\frac{1}{3}\right)^x - 27}$$
.

11.43. a)
$$y = \frac{x+1}{\sqrt{3^x}-27}$$
;

B)
$$y = \frac{3^x + 3}{3^{2x} - 9};$$

6)
$$y = \frac{2x+4}{\sqrt{0.6^x-0.36}};$$
 r) $y = \frac{\sqrt{5^x-5}}{5^x-25}.$

r)
$$y = \frac{\sqrt{5^x} - 5}{5^x - 25}$$

Найдите область значений функции:

O11.44. a)
$$y = 3 \cdot 2^x$$
;

B)
$$y = \frac{1}{2} \cdot 7^x$$
;

$$6) y = 14 \cdot \left(\frac{1}{2}\right)^x;$$

$$\mathbf{r)} \ y = \frac{4}{3} \cdot \left(\frac{1}{2}\right)^{x}.$$

O11.45. a)
$$y = 3^x + 1$$
;

B)
$$y = 17^x - 2$$
;

6)
$$y = \left(\frac{7}{9}\right)^x + 6;$$

r)
$$y = \left(\frac{2}{5}\right)^x - 8$$
.

O11.46. a)
$$y = \frac{0.5^{2x} - 16}{0.5^x - 4}$$
;

B)
$$y = \frac{2.5^{2x} - 25}{2.5^x + 5}$$
;

$$6) \ \ y = \frac{2^{3x} - 27}{2^{2x} + 3 \cdot 2^{x} + 9};$$

$$\mathbf{r}) \ \ y = \frac{4^{3x} + 125}{4^{2x} - 5 \cdot 4^{x} + 25}.$$

O11.47. a)
$$y = \frac{0.5^x - 9}{\sqrt{0.5^x} + 3}$$
;

B)
$$y = \frac{1,21^x - 4}{\sqrt{1,21^x} - 2};$$

6)
$$y = \frac{216^x - 8}{36^x + 2 \cdot 6^x + 4}$$
;

$$\mathbf{r)} \ \ y \ = \frac{64^x + 1}{16^x - 4^x + 1}.$$

Постройте график функции:

11.48. a)
$$y = 2^x + 1$$
;

B)
$$y = 4^x - 1$$
;

6)
$$y = \left(\frac{1}{3}\right)^x - 2;$$

r)
$$y = (0,1)^x + 2$$
.

11.49. a)
$$y = 5^{x+1}$$
;

B)
$$y = 3^{x-2}$$
;

6)
$$y = \left(\frac{3}{4}\right)^{x-2}$$
;

r)
$$y = \left(\frac{2}{3}\right)^{x+0,5}$$
.

O11.50. a)
$$y = 2^{x-1} + 3$$
;

B)
$$y = 3^{x+1} - 2$$
;

6)
$$y = \left(\frac{1}{3}\right)^{x+2} + 4;$$

r)
$$y = \left(\frac{4}{5}\right)^{x-1} - 3$$
.

O11.51. Дана функция
$$y=f(x)$$
, где $f(x)=egin{cases} 2^x , \ \text{если} \ x\geqslant 0, \ 3x+1, \ \text{если} \ x<0. \end{cases}$

- а) Вычислите f(-3); f(-2,5); f(0); f(2); f(3,5).
- б) Постройте и прочитайте график функции y = f(x).

О11.52. Дана функция
$$y = f(x)$$
, где $f(x) = \begin{cases} 4^x, & \text{если } x < 1, \\ -x^2 + 1, & \text{если } x \ge 1. \end{cases}$

- а) Вычислите f(-3); f(-2,5); f(0); f(1); f(2).
- б) Постройте и прочитайте график функции y = f(x).

O11.53. Дана функция
$$y=f(x)$$
, где $f(x)=\begin{cases} \left(\frac{1}{2}\right)^x, & \text{если } x<0, \\ \sqrt{x}+1, & \text{если } x\geqslant 0. \end{cases}$

- а) Вычислите f(-5); f(-2,5); f(0); f(4); f(1,69).
- б) Постройте и прочитайте график функции y = f(x).

O11.54. Дана функция
$$y=f(x)$$
, где $f(x)=\begin{cases} \left(\frac{1}{4}\right)^x, & \text{если } x\leqslant 0,\\ \cos x, & \text{если } x>0. \end{cases}$

а) Вычислите
$$f(-3); \ f(-2); \ f\left(-\frac{3}{2}\right); \ f(0); \ f\left(\frac{\pi}{4}\right); \ f\left(\frac{3}{2}\pi\right).$$

б) Постройте и прочитайте график функции y = f(x).

О11.55. Постройте график функции:

a)
$$y = \begin{cases} 4^x, & \text{если } x < 0, \\ \cos x, & \text{если } 0 \le x < \pi, \\ x - \pi - 1, & \text{если } x \ge \pi; \end{cases}$$

$$\begin{cases} \sin x, & \text{если } x \le -\frac{\pi}{2}, \\ x + \frac{\pi}{2} - 1, & \text{если } -\frac{\pi}{2} < x \le 0, \\ \left(\frac{1}{3}\right)^x, & \text{если } x > 0. \end{cases}$$

Постройте график функции:

O11.56. a)
$$y = 2^{|x|}$$
; 6) $y = \left(\frac{1}{3}\right)^{|x-1|}$; B) $y = 4^{|x|}$; F) $y = 0, 2^{|x+2|}$.

O11.57. a)
$$y = |2^x - 4|$$
;

6)
$$y = |9 - 3^x|$$

●11.58. a)
$$y = |2^x + 1| + |1 - 2^x|$$
; 6) $y = |0.5^x + 1| - |1 - 0.5^x|$.

6)
$$y = |0.5^x + 1| - |1 - 0.5^x|$$
.

Решите уравнение:

11.59. a)
$$2^{3x} = 128$$
; 6) $6^{3x} = 216$; B) $3^{2x} = \frac{1}{27}$; r) $\left(\frac{1}{7}\right)^{5x} = \frac{1}{343}$.

O11.60. a)
$$(\sqrt{2})^{x+2} = \frac{1}{2}$$
;

B)
$$(\sqrt[3]{5})^{6x-1} = \sqrt[6]{5}$$
;

6)
$$(\sqrt{3})^{-2x+9} = \frac{1}{\sqrt{3}};$$
 r) $(\sqrt[5]{4})^{-9x-6} = \sqrt[3]{4}.$

r)
$$(\sqrt[5]{4})^{-9x-6} = \sqrt[3]{4}$$

O11.61. a)
$$3^x = 4 - x$$
;

$$\mathbf{B}) \ \mathbf{5}^{x} = \mathbf{6} - x;$$

6)
$$\left(\frac{1}{2}\right)^x = x + 3;$$
 r) $\left(\frac{1}{7}\right)^x = x + 8.$

$$\Gamma)\left(\frac{1}{7}\right)^{x}=x+8.$$

$$011.62. a) 2^x = -2x + 8;$$

B)
$$3^x = -x + 1;$$

$$6) \left(\frac{1}{3}\right)^x = x + 11;$$

r)
$$(0,2)^x = x + 6$$
.

O11.63. a)
$$2^x = \frac{2}{x}$$
; 6) $\left(\frac{1}{4}\right)^x = -\frac{4}{x}$; B) $5^x = \frac{5}{x}$; r) $\left(\frac{1}{8}\right)^x = -\frac{8}{x}$.

O11.64. a)
$$3^x + 1 = \frac{4}{x}$$
;

6)
$$3^x + 3 = \frac{24}{x}$$
.

O11.65. a)
$$5^{x-1} = \frac{1}{x}$$
;

B)
$$\left(\frac{1}{2}\right)^{x+3} = -\frac{4}{x+2};$$

6)
$$3^{x+2} = \frac{27}{x}$$
;

$$\Gamma\left(\frac{1}{4}\right)^{x-1}=\frac{1}{2x}.$$

О11.66. Решите уравнение:

a)
$$2^x - 1 = \sqrt{x}$$
;

B)
$$3^x - 1 = -\sqrt{x}$$
;

$$6) \left(\frac{1}{4}\right)^x = \sqrt{x} + 1;$$

$$r) \left(\frac{1}{3}\right)^x = \sqrt{x} - \frac{2}{3}.$$

Решите неравенство:

11.67. a)
$$4^x \le 64$$
; 6) $\left(\frac{1}{2}\right)^x > \frac{1}{8}$; B) $5^x \ge 25$; r) $\left(\frac{2}{3}\right)^x < \frac{8}{27}$.

11.68. a)
$$\left(\frac{1}{3}\right)^x > 81;$$

$$\mathbf{B}) \left(\frac{2}{7}\right)^{x} \leqslant \frac{343}{8};$$

6)
$$15^x < \frac{1}{225}$$
;

r)
$$2^x > \frac{1}{256}$$
.

O11.69. a)
$$(3\sqrt{3})^x \ge \sqrt{3}$$
;

B)
$$(9\sqrt[3]{9})^x \leq 3\sqrt{3}$$
;

6)
$$(4\sqrt[3]{4})^x \le \sqrt[3]{4}$$
;

г)
$$(8\sqrt[5]{4})^x \geqslant \sqrt[3]{32}$$
.

При каких значениях аргумента график заданной показательной функции расположен выше графика заданной линейной функции:

O11.70. a)
$$y = 3^x$$
, $y = -x + 1$;

B)
$$y = 5^x$$
, $y = -2x + 1$;

6)
$$y = 0.5^x$$
, $y = 2x + 1$;

r)
$$y = \left(\frac{1}{3}\right)^x$$
, $y = x + 1$?

O11.71. a)
$$y = 2^x$$
, $y = x - 2$;

B)
$$y = (\sqrt{2})^x$$
, $y = x - 4$;

6)
$$y = \left(\frac{2}{5}\right)^x$$
, $y = x + 1$;

6)
$$y = \left(\frac{2}{5}\right)^x$$
, $y = x + 1$; $y = \left(\frac{3}{7}\right)^x$, $y = -x - 2$?

O11.72. При каких значениях x график заданной показательной функции расположен ниже графика заданной линейной функции:

a)
$$y = 2^x$$
, $y = -\frac{3}{2}x - 1$;

a)
$$y = 2^x$$
, $y = -\frac{3}{2}x - 1$; B) $y = \left(\frac{1}{5}\right)^x$, $y = 3x + 1$;

6)
$$y = \left(\frac{1}{2}\right)^x$$
, $y = -x - 2$; r) $y = 3^x$, $y = -2x + 5$?

r)
$$y = 3^x$$
, $y = -2x + 5$?

O11.73. a)
$$3^x \ge 4 - x$$
;

B)
$$5^x < 6 - x$$
;

6)
$$\left(\frac{1}{2}\right)^{x} \le x + 3;$$
 r) $\left(\frac{1}{7}\right)^{x} > x + 8.$

$$(1)\left(\frac{1}{7}\right)^x>x+8.$$

O11.74. a)
$$2^x \ge \frac{2}{x}$$
; 6) $\left(\frac{1}{4}\right)^x < -\frac{4}{x}$; B) $5^x \le \frac{5}{x}$; r) $\left(\frac{1}{8}\right)^x > -\frac{8}{x}$.

B)
$$5^x \leqslant \frac{5}{x}$$
; r) $\left(\frac{1}{8}\right)^x > -\frac{8}{x}$

11.75. a)
$$2^x + 1 \ge \cos x$$
;

$$\mathrm{B)}\left(\frac{1}{3}\right)^{x}+1<\sin x;$$

$$\Gamma) \ 3^{|x|} \leq \cos 2x$$

11.76. a)
$$|x-1| \ge 2.5^x$$
;

B)
$$2^x \leq |x-3|$$
;

6)
$$|2x-1| \leq 3,1^x$$
;

6)
$$|2x-1| \le 3.1^x$$
; r) $\left(\frac{1}{3}\right)^x \ge |x+4|$.

•11.77. a)
$$2^x - 1 \ge \sqrt{x}$$
;

B)
$$3^x - 1 \ge -\sqrt{x}$$
;

6)
$$\left(\frac{1}{4}\right)^x \leq \sqrt{x} + 1;$$

6)
$$\left(\frac{1}{4}\right)^x \leq \sqrt{x} + 1;$$
 r) $\left(\frac{1}{3}\right)^x \geq \sqrt{x} + 1.$

- •11.78. а) Найдите наибольшее целочисленное значение функции $y = 10^{\sin 2x \cos 3x + \cos 2x \sin 3x + 0.5}$
 - б) Сколько целых чисел принадлежит области значений функции $y = 30 \cdot 3^{\cos 2,5x \cos 3,5x + \sin 2,5x \sin 3,5x - 2}$?

§ 12. Показательные уравнения

12.1. Решите уравнение:

a)
$$4^x = \frac{1}{16}$$
;

B)
$$\left(\frac{1}{6}\right)^x = 36;$$

6)
$$7^x = \frac{1}{343}$$
;

r)
$$0,2^x = 0,00032$$
.

12.2. a)
$$10^x = \sqrt[4]{1000}$$
;

B)
$$0.3^x = \sqrt[4]{0.0081}$$
;

6)
$$5^x = \frac{1}{\sqrt[3]{25}}$$
;

$$\mathbf{r)} \left(\frac{1}{5}\right)^{x} = 25\sqrt{5}.$$

12.3. a)
$$0.3^x = \frac{1000}{27}$$
;

B)
$$0.7^x = \frac{1000}{343}$$
;

6)
$$\left(\frac{4}{5}\right)^{x} = \frac{25}{16}$$
;

$$\Gamma\left(\frac{3}{2}\right)^{x}=\frac{16}{81}.$$

12.4. a)
$$2^{x+1} = 4$$
;

B)
$$0.4^{4-5x} = 0.16\sqrt{0.4}$$

6)
$$5^{3x-1} = 0.2$$
;

$$\Gamma\left(\frac{1}{2}\right)^{2-x} = 8\sqrt{2}.$$

O12.5. a)
$$3^{-1-x} = \left(\frac{1}{3}\right)^{2x+3}$$
;

B)
$$\left(\frac{1}{6}\right)^{4x-7} = 6^{x-3};$$

6)
$$6^{2x-8} = 216^x$$
;

$$\Gamma \left(\frac{2}{3}\right)^{8x+1} = 1,5^{2x-3}.$$

O12.6. a)
$$3^{x^2-4.5} \cdot \sqrt{3} = \frac{1}{27}$$
;

B)
$$\sqrt{2^{-1}} \cdot 2^{x^2-7.5} = \frac{1}{128};$$

6)
$$0.5^{x^2-5.5} \cdot \sqrt{0.5} = 32;$$

r)
$$0.1^{x^2-0.5} \cdot \sqrt{0.1} = 0.001$$
.

O12.7. a)
$$2^x \cdot \left(\frac{3}{2}\right)^x = \frac{1}{9};$$

B)
$$5^x \cdot 2^x = 0,1^{-3}$$
;

6)
$$\left(\frac{1}{5}\right)^x \cdot 3^x = \sqrt{\frac{27}{125}};$$

$$\mathbf{r)} \ \ \mathbf{0,3^x} \ \cdot \ \mathbf{3^x} = \sqrt[3]{\mathbf{0,81}}.$$

O12.8. a)
$$(\sqrt{12})^x \cdot (\sqrt{3})^x = \frac{1}{6}$$
;

B)
$$(\sqrt[3]{3})^{2x} \cdot (\sqrt[3]{9})^{2x} = 243$$

6)
$$\left(\frac{\sqrt{10}}{3}\right)^{3x^2-3} = 0.81^{-2x}$$
;

6)
$$\left(\frac{\sqrt{10}}{3}\right)^{3x^2-3} = 0.81^{-2x};$$
 r) $\left(\frac{\sqrt[4]{2}}{\sqrt{3}}\right)^{x^2-4} = 20.25^{x+1}.$

O12.9. a)
$$\sqrt{625} \cdot \sqrt{5^{14x-9}} = \sqrt[6]{125 \cdot 5^{6x-12}};$$

6)
$$\sqrt[3]{0,2} \cdot \sqrt{0,2^{2x-\frac{1}{3}}} = \sqrt[3]{0,04^{-3x+6}}$$
.

O12.10. a)
$$\frac{3^{x^2}}{9^x} = 27;$$

$$B) \frac{7^{x^2}}{49^{3x}} = 7^7;$$

6)
$$\frac{2^{x^2}}{4^x} = 4^4$$
;

$$r) \frac{2^{2x^2}}{4^{3x}} = 4^4.$$

O12.11. a)
$$3^{x+1} \cdot 5^x = 675$$
;

$$B) 5 \cdot 2^{3x} \cdot 3^x = 2880;$$

6)
$$4^{x+2} \cdot 3^{x+1} = 576$$
;

r)
$$2^{2x+1} \cdot 5^x = 16000$$
.

O12.12. a)
$$27^{\sqrt{x-1}} = \sqrt{9^{x+1}}$$
;

B)
$$3^x \cdot \left(\frac{1}{3}\right)^{\sqrt{x+1}} = 243;$$

6)
$$2^{\sqrt{13-x^2}} = \sqrt{2} \cdot \sqrt{32}$$
;

6)
$$2^{\sqrt{13-x^2}} = \sqrt{2} \cdot \sqrt{32};$$
 r) $(0,1^{\sqrt{x+1}})^{\sqrt{x+6}} = \frac{1}{10^6}.$

O12.13. a)
$$2^x = 3^x$$
; 6) $25^x = 7^{2x}$; B) $\left(\frac{1}{3}\right)^{2x} = 8^x$; r) $\left(\frac{1}{4}\right)^x = \left(\frac{1}{5}\right)^x$.

O12.14. a)
$$3^x \cdot 7^{x+2} = 49 \cdot 4^x$$
; B) $2^{x+1} \cdot 5^{x+3} = 250 \cdot 9^x$;

$$\mathbf{B}) \ 2^{x+1} \cdot 5^{x+3} = 250 \cdot 9^x;$$

6)
$$6^{2x+4} = 2^{8+x} \cdot 3^{3x}$$
:

6)
$$6^{2x+4} = 2^{8+x} \cdot 3^{3x}$$
; r) $35^{4x+2} = 5^{3x+4} \cdot 7^{5x}$.

O12.15. a)
$$2^{4x+2} \cdot 5^{-3x-1} = 6.25 \cdot 2^{x+1}$$
; 6) $3^{5x-1} \cdot 7^{2x-2} = 3^{3x+1}$.

6)
$$3^{5x-1} \cdot 7^{2x-2} = 3^{3x+1}$$
.

O12.16. a)
$$4(\sqrt{5}-2)^{x-12}=\left(\frac{2}{\sqrt{5}+2}\right)^{x-12}$$
;

6)
$$9(3-\sqrt{8})^{2x+1}=\left(\frac{3}{3+\sqrt{8}}\right)^{2x+1}$$
.

O12.17. a)
$$3^x - 3^{x+3} = -78;$$
 B) $2 \cdot \left(\frac{1}{7}\right)^{3x+7} - 7 \cdot \left(\frac{1}{7}\right)^{3x+8} = 49;$

6)
$$5^{2x-1} - 5^{2x-3} = 4.8;$$
 r) $\left(\frac{1}{3}\right)^{5x-1} + \left(\frac{1}{3}\right)^{5x} = \frac{4}{9}.$

O12.18. a)
$$7^{2x+1} + 7^{2x+2} + 7^{2x+3} = 57$$
;

6)
$$2^{4x-1} + 2^{4x-2} - 2^{4x-3} = 160$$
:

B)
$$100 \cdot 0.3^{4x+2} - 0.09^{2x} + 5 \cdot 0.0081^{x} = 13;$$

r)
$$\left(\frac{1}{16}\right)^{x+0.25} + \left(\frac{1}{4}\right)^{2x+1} - \left(\frac{1}{2}\right)^{4x+3} = \frac{5}{4}$$
.

O12.19. a)
$$2^{3x} - 6 \cdot 2^{2x} + 12 \cdot 2^x - 8 = 0$$
;

6)
$$\left(\frac{1}{2}\right)^{3x} - 12 \cdot \left(\frac{1}{2}\right)^{2x} + 48 \cdot \left(\frac{1}{2}\right)^{x} - 64 = 0;$$

B)
$$5^x + 6 \cdot (\sqrt[3]{25})^x + 12 \cdot (\sqrt[3]{5})^x + 8 = 343$$
;

r)
$$2^x + 3 \cdot (\sqrt[3]{4})^x + 3 \cdot (\sqrt[3]{2})^x + 1 = 27$$
.

O12.20. a)
$$(3^{2x} - 1) \cdot (3^{4x} + 3^{2x} + 1) = 26$$
;

6)
$$(5^{2x} + 1) \cdot (5^{4x} - 5^{2x} + 1) = 126;$$

B)
$$((\sqrt{7})^x - 1) \cdot (7^x + (\sqrt{7})^x + 1) = 342;$$

r)
$$((\sqrt[3]{11})^x + 1) \cdot ((\sqrt[3]{121})^x - (\sqrt[3]{11})^x + 1) = 122.$$

O12.21. a)
$$2^{2x} - 6 \cdot 2^x + 8 = 0;$$
 B) $\left(\frac{1}{6}\right)^{2x} - 5 \cdot \left(\frac{1}{6}\right)^x - 6 = 0;$

6)
$$3^{2x} - 6 \cdot 3^x - 27 = 0$$
; r) $\left(\frac{1}{6}\right)^{2x} + 5 \cdot \left(\frac{1}{6}\right)^x - 6 = 0$.

O12.22. a)
$$2 \cdot 4^x - 5 \cdot 2^x + 2 = 0$$
;

6)
$$3 \cdot 9^x - 10 \cdot 3^x + 3 = 0$$
;

B)
$$4 \cdot \left(\frac{1}{16}\right)^x + 15 \cdot \left(\frac{1}{4}\right)^x - 4 = 0;$$

r)
$$(0,25)^x + 1,5(0,5)^x - 1 = 0$$
.

O12.23. a)
$$4 \cdot \left(\frac{1}{16}\right)^x - 17 \cdot \left(\frac{1}{4}\right)^x + 4 = 0;$$

6)
$$0.01^x + 9.9 \cdot (0.1)^x - 1 = 0;$$

B)
$$3 \cdot \left(\frac{4}{9}\right)^x + 7 \cdot \left(\frac{2}{3}\right)^x - 6 = 0;$$

r)
$$5 \cdot \left(\frac{4}{25}\right)^x + 23 \cdot \left(\frac{2}{5}\right)^x - 10 = 0.$$

O12.24. a)
$$2^{2x+1} - 5 \cdot 2^x - 88 = 0$$
;

6)
$$\left(\frac{1}{2}\right)^{2x} - \left(\frac{1}{2}\right)^{x-2} - 32 = 0;$$

B)
$$5^{2x+1} - 26 \cdot 5^x + 5 = 0$$
;

r)
$$\left(\frac{1}{3}\right)^{2x} + \left(\frac{1}{3}\right)^{x-2} - 162 = 0.$$

O12.25. a)
$$(\sqrt{7})^{2x+2} - 50 \cdot (\sqrt{7})^x + 7 = 0$$
;

6)
$$(\sqrt{6})^{2x+2} - 37 \cdot (\sqrt{6})^x + 6 = 0.$$

O12.26. a)
$$3^{x-1} - \left(\frac{1}{3}\right)^{3-x} = \sqrt{\frac{1}{9^{4-x}}} + 207;$$

6)
$$\sqrt[4]{16^{x+1}} + 188 = 8 \cdot 2^x - 0.5^{3-x}$$
.

O12.27. a)
$$2^{x^2+2x-6}-2^{7-2x-x^2}=3.5;$$

$$6) \ 3^{2x^2+x} = 26 + 3^{3-x-2x^2}.$$

●12.28. a)
$$(19 - 6\sqrt{10})^x + 6 \cdot (\sqrt{10} - 3)^x - 1 = 0;$$

6) $(\sqrt{10} - 3)^{4x} - 6 \cdot (19 - 6\sqrt{10})^x - 1 = 0.$

●12.29. a)
$$(2-\sqrt{3})^x + (2+\sqrt{3})^x - 4 = 0;$$

6) $(3-2\sqrt{2})^x + (3+2\sqrt{2})^x - 6 = 0.$

12.30. a)
$$3^{3x+1} - 4 \cdot 9^x = 17 \cdot 3^x - 6$$
;

6)
$$32 \cdot 8^{x-1} + 3 \cdot (4^x + 2^x) = 1$$
.

O12.31. a)
$$32^x + 4^{x+1} = 5 \cdot 2^{-x}$$
:

6)
$$5 \cdot 125^x - 26 \cdot 5^x + 5^{1-x} = 0$$
.

O12.32. a)
$$\frac{1}{3^x + 2} = \frac{1}{3^{x+1}};$$
 b) $\frac{1}{5^x + 4} = \frac{1}{5^{x+1}};$

6)
$$\frac{5}{12^x + 143} = \frac{5}{12^{x+2}};$$
 r) $\frac{8}{11^x + 120} = \frac{8}{11^{x+2}}$

O12.33. a)
$$\frac{2^{x} + 1}{2^{x+2} - 2} = 1;$$
 b) $\frac{3^{x+1} - 1}{3^{x} + 4} = 2;$ 6) $\frac{5^{4x-1} + 3}{5^{4x} - 2} = 2;$ r) $\frac{7^{2x} - 1}{7^{2x-1} + 1} = 3.$

O12.34. a)
$$18^x - 8 \cdot 6^x - 9 \cdot 2^x = 0$$
;

6)
$$12^x - 6^{x+1} + 8 \cdot 3^x = 0$$
.

O12.35. a)
$$24 \cdot 3^{2x^2-3x-2} - 2 \cdot 3^{2x^2-3x} + 3^{2x^2-3x-1} = 9$$
;

6)
$$5 \cdot 2^{x^2 + 5x + 7} + 2^{x^2 + 5x + 9} - 2^{x^2 + 5x + 10} = 2$$
.

12.36. a)
$$5^{2x^2-1} - 3 \cdot 5^{(x+1)(x+2)} = 2 \cdot 5^{6(x+1)}$$
:

6)
$$3^{2x^2-1} - 3^{(x-1)(x+5)} = 2 \cdot 3^{8(x-1)}$$
.

O12.37. a)
$$3 \cdot 2^{2x} + 6^x - 2 \cdot 3^{2x} = 0$$
;

6)
$$2 \cdot 2^{2x} - 3 \cdot 10^x - 5 \cdot 5^{2x} = 0$$
;

B)
$$3^{2x+1} - 4 \cdot 21^x - 7 \cdot 7^{2x} = 0$$
:

$$\Gamma) \ 5 \cdot 3^{2x} + 7 \cdot 15^x - 6 \cdot 25^x = 0.$$

- ●12.38. Решите уравнение:
 - a) $9^x + 6^x = 2^{2x+1}$:
 - 6) $25^{2x+6} + 16 \cdot 4^{2x+4} = 20 \cdot 10^{2x+5}$.
- O12.39. При каких значениях параметра a уравнение имеет корни:
 - a) $2^x = a$;
- B) $\sqrt[3]{3^x} = -a;$
- 6) $8^{3x+1} = a + 3;$
- $\mathbf{r)} \left(\frac{1}{2}\right)^{x} = a^{2}?$
- \circ 12.40. При каких значениях параметра a уравнение не имеет корней:
 - a) $48 \cdot 4^{x} + 27 = a + a \cdot 4^{x+2}$;
 - $6) 9^x + 2a \cdot 3^{x+1} + 9 = 0?$
- •12.41. а) При каких значениях параметра a уравнение $9^x + 3^x + a^2 14a = 0$ имеет единственный корень? б) При каких значениях параметра a уравнение
 - $4^{x} 3 \cdot 2^{x} + a^{2} 4a = 0$ имеет два корня?
- •12.42. При каких значениях параметра m уравнение $x^2 (2^m 1)x 3(4^{m-1} 2^{m-2}) = 0$ имеет единственный корень?
- •12.43. При каких значениях параметра a уравнение $|3^x a| + |3^x + a| = 2$ имеет бесконечно много корней?

Решите систему уравнений:

O12.44. a) $\begin{cases} 2^{x+y} = 16, \\ 3^y = 27^x; \end{cases}$

- B) $\begin{cases} 5^{2x-y} = 125, \\ 4^{x-y} = 4; \end{cases}$
- 6) $\begin{cases} 0.5^{3x} \cdot 0.5^{y} = 0.5, \\ 2^{3x} \cdot 2^{-y} = 32; \end{cases}$
- r) $\begin{cases} 0.6^{x+y} \cdot 0.6^x = 0.6, \\ 10^x \cdot 10^y = (0.01)^{-1}. \end{cases}$
- O12.45. a) $\begin{cases} \left(\sqrt{3}\right)^{x+2y} = \sqrt{3} \cdot \sqrt{27}, \\ 0,1^{x} \cdot 10^{3y} = 10; \end{cases}$
- $\begin{cases} \left(\sqrt{5}\right)^{2x+y} = \sqrt{\frac{1}{5}} \cdot \sqrt{5}, \\ \left(\frac{1}{5}\right)^{x} \cdot 5^{y} = 125; \end{cases}$
- 6) $\begin{cases} 27^{y} \cdot 3^{x} = 1, \\ \left(\frac{1}{2}\right)^{x} \cdot 4^{y} = 2; \end{cases}$
- r) $\begin{cases} 5^{y} \cdot 25^{x} = 625, \\ \left(\frac{1}{3}\right)^{x} \cdot 9^{y} = \frac{1}{27}. \end{cases}$

Решите систему уравнений:

O12.46. a)
$$\begin{cases} \sqrt{3^{x-1}} \cdot \sqrt{9^y} = 27, \\ 2^{2x+y} : 2^x = 64; \end{cases}$$
 6)
$$\begin{cases} \sqrt{6^{x-2y}} : \sqrt{6^x} = \frac{1}{6}, \\ \left(\frac{1}{3}\right)^{2x-y} : 3^{x-2y} = \frac{1}{3}. \end{cases}$$

O12.47. a)
$$\begin{cases} 2^{2x} + 2^x \cdot y = 10, \\ y^2 + y \cdot 2^x = 15; \end{cases}$$
 6)
$$\begin{cases} 7^{2x} - 7^x \cdot y = 28, \\ y^2 - y \cdot 7^x = -12. \end{cases}$$

§ 13. Показательные неравенства

Решите неравенство:

13.1. a)
$$2^x \ge 4$$
; 6) $2^x < \frac{1}{2}$; B) $2^x \le 8$; r) $2^x > \frac{1}{16}$.

13.2. a)
$$3^x \le 81$$
; b) $5^x > 125$;

6)
$$\left(\frac{1}{3}\right)^x > \frac{1}{27}$$
; r) $(0,2)^x \le 0.04$.

13.3. a)
$$3^{2x-4} \le 27;$$
 B) $5^{4x+2} \ge 125;$

6)
$$\left(\frac{2}{3}\right)^{3x+6} > \frac{4}{9}$$
; r) $(0,1)^{5x-9} < 0.001$.

13.4. a)
$$7^{2x-9} > 7^{3x-6}$$
; B) $9^{x-1} \ge 9^{-2x+8}$;

6)
$$0.5^{4x+3} \ge 0.5^{6x-1};$$
 r) $\left(\frac{7}{11}\right)^{-3x-0.5} \le \left(\frac{7}{11}\right)^{x+1.5}.$

O13.5. a)
$$4^{5x-1} > 16^{3x+2}$$
; B) $11^{-7x+1} \le 121^{-2x-10}$;

6)
$$\left(\frac{1}{7}\right)^{-3x+1} \ge \left(\frac{1}{49}\right)^{x+3}$$
; r) $0.09^{5x-1} < 0.3^{x+7}$.

6)
$$\left(\frac{7}{12}\right)^{-2x+3} > \left(\frac{12}{7}\right)^{3+2x};$$
 r) $\left(\frac{5}{3}\right)^{2x-8} < \left(\frac{9}{25}\right)^{-x+3}.$

O13.7. a)
$$2\sqrt{2} \cdot 2^{x-3} \geqslant \frac{1}{2}$$
;

B)
$$\left(\frac{1}{7}\right)^{3x+4} \cdot 7\sqrt{7} < \frac{1}{7};$$

6)
$$\sqrt[3]{125} \cdot \sqrt{5} \le 5 \cdot \left(\frac{1}{5}\right)^{2x-1}$$
;

r)
$$0.25 \cdot \left(\frac{1}{4}\right)^{10-x} > 4\sqrt{64}$$
.

O13.8. a)
$$7^{x^2-5x} < \left(\frac{1}{7}\right)^6$$
;

B)
$$11^{2x^2+3x} \leq 121$$
;

6)
$$0.6^{x^2-x} \ge \left(\frac{3}{5}\right)^6$$
;

r)
$$0.3^{x^2-10x} > \left(3\frac{1}{3}\right)^{24}$$
.

O13.9. a)
$$\sqrt{2^{-1}} \cdot \sqrt{2^{x^2-7.5}} \ge 2^{-7}$$
;

B)
$$14^{x^2+x} \le 196$$
;

6)
$$0.9^{x^2-4x} < \left(\frac{10}{9}\right)^3$$
;

$$\Gamma\left(\frac{1}{\sqrt{3}}\right)^{3x^2-13x}>9.$$

O13.10. a)
$$2^x \cdot 3^x \ge 36^x \cdot \sqrt{6}$$
;

B)
$$3^x \cdot 5^x \leq 225^x \cdot \sqrt{15}$$
;

6)
$$\left(\frac{1}{3}\right)^x \cdot 4^x < \left(\frac{16}{9}\right)^{x-1};$$

$$\Gamma) \left(\frac{2}{11}\right)^{x} \cdot 3^{x} > \left(\frac{36}{121}\right)^{2x+3}.$$

O13.11. a)
$$4^x \cdot \left(\frac{3}{8}\right)^x \le 2,25;$$

B)
$$5^x \cdot \left(\frac{2}{15}\right)^x \ge \frac{4}{9}$$
;

6)
$$9^x \cdot \left(\frac{1}{18}\right)^x > 0.25$$
;

r)
$$3^x \cdot \left(\frac{1}{12}\right)^x < 0.0625$$
.

O13.12. a)
$$\sqrt[x]{3} \cdot \sqrt[x]{2} \geqslant \frac{\sqrt{6}}{36}$$
;

B)
$$\sqrt[5]{2} \cdot \sqrt[5]{5} \geqslant \sqrt[4]{10}$$
;

6)
$$\sqrt[x]{0,1} \cdot \sqrt[x]{0,4} \ge 0,0016;$$

$$\Gamma) \sqrt[x]{\frac{1}{9}} \cdot \sqrt[x]{2} \leqslant \frac{\sqrt[15]{4}}{\sqrt[15]{81}}.$$

O13.13. a)
$$5^{x-1} \cdot 2^{x+2} > 8 \cdot 10^{x^2-3x+2}$$
;

6)
$$3^{2x+1} \cdot 2^{2x-3} < 81 \cdot 6^{1-2x^2}$$
.

O13.14. a)
$$19^{\frac{2x-3}{x+2}} \ge 1$$
;

B)
$$37^{\frac{5x-9}{x+6}} \le 1$$
;

6)
$$0.36^{\frac{7x+1}{2-x}} < 1;$$

$$\Gamma \left(\frac{29}{30}\right)^{\frac{9x-18}{6-x}} > 1.$$

O13.15. a)
$$5^{\frac{x}{x+3}} \le 5$$
;

B)
$$17^{\frac{2}{x-8}} \ge 17$$
;

$$6) \left(\frac{4}{9}\right)^{\frac{2x-1}{3x+5}} > \frac{4}{9};$$

r)
$$(0,21)^{\frac{3x+4}{x-8}} < 0,21$$
.

O13.16. a)
$$3^{\frac{x-4}{x}}$$
 $< \frac{1}{27}$;

B)
$$8^{\frac{2-x}{x}-2} > \frac{1}{64}$$
;

6)
$$\left(\frac{8}{9}\right)^{\frac{6x-1}{x}} \geqslant \frac{81}{64};$$

$$r) \left(\frac{6}{11}\right)^{\frac{5x+1}{x}\frac{1}{4}} \leqslant \frac{121}{36}.$$

O13.17. a)
$$3^{\sqrt{x^2-5x+6}} \ge 1$$
;

B)
$$9^{\sqrt{5+4x-x^2}} \ge 1$$
;

6)
$$0.4^{\sqrt{4x^2-13x+3}} \le 1;$$

$$\mathbf{r}) \left(\frac{4}{5}\right)^{\sqrt{6+x-x^2}} \leq 1.$$

O13.18. a)
$$2^{|x-3|} \geqslant \sqrt[4]{2}$$
;

$$\mathrm{B)}\left(\frac{1}{4}\right)^{|x|\cdot(x-1)}\geqslant\frac{1}{16};$$

6)
$$5^{|x+9|} \leq \sqrt[3]{25}$$
;

$$\Gamma) (0,3)^{|x^2-1|} \leq 0.027.$$

O13.19. a)
$$\left(\frac{1}{2}\right)^{|x|} < \left(\frac{1}{4}\right)^{|x+8|};$$

B)
$$(\sqrt{3})^{2|x|} \leqslant 3^{|-x+9|};$$

6)
$$(0,2)^{|-x|} > (0,04)^{|x-9|};$$
 r) $(\sqrt{5})^{-3|x|} \geqslant 5^{-|9x-1|}$

$$\Gamma) \ \left(\sqrt{5}\right)^{-3|x|} \, \geqslant \, 5^{-|9x-1|}.$$

О13.20. Сколько натуральных чисел являются решениями неравенства:

a)
$$8^{-2x+8} > 512$$
;

B)
$$2^{5x-7} \leq 16$$
;

6)
$$\left(\frac{1}{9}\right)^{8x-23} \geqslant \frac{1}{81}$$
;

$$\Gamma) \ 0,1^{4x-5} > 0,001?$$

- О13.21. Найдите наибольшее целочисленное решение неравенства (если оно существует):
 - a) $2.5^{2x+3} \le 6.25$:
- B) $1,1^{5x-3} < 1,21;$
- $6) \left(\frac{2}{5}\right)^{x-9} \geqslant \frac{8}{125};$
- r) $0.7^{9x+4} > 0.49$.
- О13.22. Сколько целочисленных решений имеет неравенство:
 - a) $5^{x^2-2x} \le 125$:
- B) $2^{-x^2+8x} > 128$;
- $6) \left(\frac{1}{7}\right)^{2x^2-3x} \geqslant \frac{1}{49};$
- r) $(0,3)^{x^2-x} > 0.09$?

O13.23. a) $3^x < 5^x$;

 $\mathrm{B)}\left(\frac{12}{13}\right)^{\mathrm{x}}\leqslant 12^{\mathrm{x}};$

 $6) 6^x \geqslant 2^x;$

- Γ) $0,6^x > 3^x$.
- O13.24. a) $2^x + 2^{x+2} \le 20$;
- B) $\left(\frac{1}{5}\right)^{3x+4} + \left(\frac{1}{5}\right)^{3x+5} > 6;$
- 6) $3^{2x-1} 3^{2x-3} < \frac{8}{2}$;
- $\Gamma) \ \ 0.3^{6x-1} 0.3^{6x} \ \geqslant \ 0.7.$
- O13.25. a) $7^{2x+1} + 7^{2x+2} + 7^{2x+3} \ge 57$;
 - 6) $2^{4x-1} + 2^{4x-2} 2^{4x-3} \le 160$;
 - B) $100 \cdot 0.3^{4x+2} 0.09^{2x} + 5 \cdot 0.0081^{x} < 13;$
 - r) $\left(\frac{1}{16}\right)^{x+0.25} + \left(\frac{1}{4}\right)^{2x+1} \left(\frac{1}{2}\right)^{4x+3} \leqslant \frac{5}{4}$.
- O13.26. a) $2^{2x+1} 3^{2x+1} < 3^{2x} 7 \cdot 2^{2x}$; 6) $3^{x+1} + 3^{x+2} + 2 \cdot 3^x > 2 \cdot 7^{2x+1}$.
- O13.27. a) $3^{2x} 4 \cdot 3^x + 3 \le 0$; B) $0.2^{2x} 1.2 \cdot 0.2^x + 0.2 > 0$;

 - 6) $5^{2x} + 4 \cdot 5^x 5 \ge 0$; r) $\left(\frac{1}{7}\right)^{-1} + 6 \cdot \left(\frac{1}{7}\right)^{-1} 7 < 0$.

O13.28. a)
$$\frac{5}{12^x + 143} \ge \frac{5}{12^{x+2}};$$
 B) $\frac{8}{11^x + 120} \le \frac{8}{11^{x+2}};$

6)
$$\frac{16^x + 42}{16^x} \le 22$$
; r) $\frac{5^x + 15}{5^x} < 4$.

O13.29. a)
$$3^{3x} - 3^{2x+1} + 3^{x+1} - 1 \ge 0$$
;

6)
$$\left(\frac{1}{2}\right)^{3x} - 9 \cdot \left(\frac{1}{2}\right)^{2x} + 27 \cdot \left(\frac{1}{2}\right)^{x} - 27 < 0;$$

B)
$$2^{3x} + 15 \cdot 2^{2x} + 75 \cdot 2^{x} + 125 \le 0$$
;

r)
$$0.1^{3x} - 3 \cdot 0.01^x + 3 \cdot 0.1^x - 1 > 0$$
.

O13.30. a)
$$(3^x - 1)(3^{2x} + 3^x + 1) \le 0$$
;

6)
$$(7^x + 1)(7^{2x} - 7^x + 1) \ge 0$$
;

B)
$$(0,2^x - 0,2)(0,04^x + 0,2^{x+1} + 0,04) < 0$$
;

r)
$$\left(\left(\frac{2}{3} \right)^x - \frac{9}{4} \right) \cdot \left(\left(\frac{4}{9} \right)^x + \left(\frac{2}{3} \right)^{x-2} + \frac{81}{16} \right) > 0.$$

O13.31. a)
$$2^{2x+1} - 5 \cdot 2^x + 2 \ge 0$$
;

6)
$$3^{2x+1} - 10 \cdot 3^x + 3 < 0$$
;

B)
$$\left(\frac{1}{4}\right)^{2x-1} + 15 \cdot \left(\frac{1}{4}\right)^x - 4 < 0;$$

r)
$$(0.5)^{2x-1} + 3 \cdot (0.5)^x - 2 \ge 0$$
.

O13.32. a)
$$2^{6x-10} - 9 \cdot 2^{3x-5} + 8 \le 0$$
;

6)
$$5^{2x+1} - 5^{x+2} \le 5^x - 5$$
;

B)
$$3^{8x+6} - 10 \cdot 3^{4x+3} + 9 \ge 0$$
;

r)
$$3^{2x+2} - 3^{x+4} < 3^x - 9$$
.

O13.33. a)
$$5^x - 30 \cdot (\sqrt{5})^x + 125 \ge 0$$
;

6)
$$0.2^x - 1.2 \cdot (\sqrt{0.2})^x + 0.2 \le 0$$

B)
$$3^{x+1} - 28 \cdot (\sqrt{3})^x + 9 \le 0$$
;

r)
$$7^{x+1} - 50 \cdot (\sqrt{7})^x + 7 \ge 0$$
.

$$013.34. a) 5^x \leq -x + 6;$$

$$6) \left(\frac{1}{4}\right)^x > 3x + 1;$$

B)
$$\left(\frac{1}{2}\right)^x < 0.5x + 5;$$

$$\Gamma) \ 3^x \geqslant -x + 4.$$

O13.35. a)
$$2^{2-x} > 2x - 3$$
;

O13.36. a)
$$\left(\frac{1}{3}\right)^{x-1} \ge x^2$$
;

6)
$$3^{3-2x} \leq 2x + 1$$
.

O13.37. a)
$$\frac{1}{x} \le (4,5)^{x-1}$$
;

6)
$$\frac{5}{x} \geqslant 3^{x-1} + 4$$
.

•13.38. a)
$$x \cdot 2^x < 8$$
;

6)
$$x \cdot (0,5)^x \ge -8$$
.

•13.39. a)
$$2x + 2 - x^2 \ge 3^{x^2 - 2x + 2}$$
;

6)
$$2^{x^2-4x+5} \ge 4x-2-x^2$$
.

6) $x^2 + 6x + 9 \ge (0,1)^{x+2}$.

Решите систему неравенств:

O13.40. a)
$$\begin{cases} 2^{x+1} > 4, \\ 7^{3x-10} < 49; \end{cases}$$

B)
$$\begin{cases} 0.4^{-x+3} < 0.16, \\ 0.1^{x^2+1} > 0.01; \end{cases}$$

6)
$$\begin{cases} \left(\frac{1}{2}\right)^{4x+2,5} > \sqrt{2}, \\ 10^{x^2-1} > 1000; \end{cases}$$

r)
$$\begin{cases} \sqrt{5} \cdot 5^{2x-0,5} \geqslant 1, \\ 0,2^{6-9x} \leqslant 125. \end{cases}$$

O13.41. a)
$$\begin{cases} 3^{2x+1} \geqslant 9, \\ 0.5^{x-1} \leqslant 2; \end{cases}$$

$$\mathbf{B}) \begin{cases} \left(\sqrt{3}\right)^{6x-2} \geqslant \frac{1}{81}, \\ (0,2)^{3x+1} \leqslant 5^{x-1}; \end{cases}$$

6)
$$\begin{cases} (0,3)^{-4x+1} \leqslant \frac{100}{9}, \\ 10^{2x+4} \geqslant 1; \end{cases}$$

r)
$$\begin{cases} \left(\sqrt{2}\right)^{-3x-1} \leq 2\sqrt{2}, \\ \left(\sqrt{0,4}\right)^{4x-2} > 0.16. \end{cases}$$

О13.42. Решите неравенство:

a)
$$\frac{x^2+4x+4}{3^x-27} \ge 0;$$

B)
$$\frac{25-0.2^x}{4x^2-4x+1} \le 0;$$

$$6) \ \frac{0.2^x - 0.008}{x^2 - 10x + 25} < 0;$$

$$\Gamma) \frac{x^2 + 6x + 9}{2^x - 4} > 0.$$

●13.43. a)
$$(x-6)(5^{x-6}-25) < 0$$
; 6) $(2x+1)(3^{3-x}-9) > 0$.

$$6) (2x + 1)(3^{3-x} - 9) > 0$$

•13.44. a)
$$\frac{x^2-2}{2^x-8} < 0$$
;

6)
$$\frac{x^2-5}{5^x-125} \ge 0.$$

13.45. a)
$$(2^x - 8)(3^x - 81) < 0$$
;

6)
$$\left(3^{x+2}-\frac{1}{27}\right)(5^{3-2x}-0.2) \geq 0.$$

ullet13.46. а) При каких значениях параметра a неравенство

$$9^x - 4(a-1) \cdot 3^x + a > 1$$
 выполняется для любого значения x ?

б) При каких значениях параметра а неравенство

$$4^{x} - (a - 3) \cdot 2^{x+1} + 2a + 2 < 0$$
 не имеет решений?

§ 14. Понятие логарифма

Докажите, что верно равенство:

14.1. a)
$$\log_2 8 = 3$$
;

B)
$$\log_{\frac{1}{2}} \frac{1}{16} = 4;$$

6)
$$\log_3 \frac{1}{9} = -2$$

6)
$$\log_3 \frac{1}{9} = -2;$$
 r) $\log_{\frac{1}{5}} 625 = -4.$

14.2. a)
$$\log_2 2 = 1$$
; B) $\log_{0.1} 0.1 = 1$;

B)
$$\log_{0.1} 0.1 = 1$$

6)
$$\log_2 4\sqrt{2} = 2.5;$$

6)
$$\log_2 4\sqrt{2} = 2.5$$
; r) $\lg 100\sqrt[5]{10} = 2.2$.

Вычислите:

14.3. a)
$$\log_2 2^4$$
; 6) $\log_{\frac{1}{2}} \left(\frac{1}{3}\right)^{-7}$; B) $\log_8 8^{-3}$; r) $\log_{0,1} (0,1)^5$.

14.4. a)
$$\log_3 \frac{1}{27}$$
;

6)
$$\log_{0,1} 0,0001$$
; r) $\log_{\frac{1}{4}} 81$.

14.5. a)
$$\log_{\sqrt{7}}$$
 49;

B)
$$\log_{\frac{1}{15}} 225 \sqrt[3]{15}$$
;

6)
$$\log_{\sqrt{2}}(2\sqrt{8});$$
 r) $\log_{\frac{3}{2}}\frac{64}{729}.$

r)
$$\log_{\frac{3}{2}} \frac{64}{729}$$

14.6. a)
$$\log_{\sqrt{2}} 1$$
; 6) $\log_{0.5} \frac{1}{4\sqrt{2}}$; B) $\log_{\sqrt{3}} 81\sqrt{3}$; r) $\lg \frac{1}{\sqrt[3]{10}}$.

14.7. a)
$$\log_{\frac{1}{7}} \frac{1}{49}$$
; 6) $\log_{6} \frac{36}{\sqrt{6}}$; B) $\log_{0,2} \frac{25}{\sqrt{5}}$; r) $\log_{0,1} 10\sqrt{1000}$.

O14.8. a)
$$\log_3 \frac{3^7 \cdot 3^{-2.7}}{(3^{-0.3})^4}$$
; B) $\log_2 \frac{2^{9.5} \cdot 2^{-0.7}}{(2^{-0.2})^4}$;

6)
$$\log_5 \frac{5^{\sqrt{3}} \cdot 5^{2-\sqrt{3}}}{(5^{\sqrt{3}})^2 \cdot 5}$$
; r) $\log_6 \frac{6^{\sqrt{2}-1} \cdot 6^{\sqrt{2}+1}}{(6^{\sqrt{2}-3})^2}$.

O14.9. a)
$$\log_2(\sqrt{3}-1)(\sqrt{3}+1)$$
;

6)
$$\log_5 (\sqrt[3]{6} - 1)(\sqrt[3]{36} + \sqrt[3]{6} + 1)$$
;

B)
$$\log_{0.2} (\sqrt{32} + \sqrt{7})(\sqrt{32} - \sqrt{7});$$

r)
$$\log_7 (\sqrt[3]{5} + \sqrt[3]{2})(\sqrt[3]{25} - \sqrt[3]{10} + \sqrt[3]{4})$$
.

O14.10. a)
$$\log_{65} \frac{2^{18} + 1}{2^{12} - 2^6 + 1}$$
; 6) $\log_5 \frac{3^9 - 8}{3^6 + 2 \cdot 3^3 + 4}$.

O14.11. a)
$$\log_2 \log_5 \frac{10\sqrt{5}}{7\sqrt{5} - \sqrt{125}}$$
; 6) $\log_6 \log_2 \frac{2^{6.4} \cdot 2^{-0.2}}{(2^{0.1})^2}$.

14.12. a)
$$3^{\log_3 8}$$
; 6) $4^{\log_4 23}$; B) $12^{\log_{12} 1,3}$; r) $\left(\frac{1}{4}\right)^{\log_{17} 7}$.

O14.13. a)
$$2^{3 + \log_2 9}$$
; 6) $7^{1 + \log_7 4}$; B) $\left(\frac{1}{6}\right)^{2 + \log_1 20}$; r) $\left(\sqrt{7}\right)^{4 + \log_7 0.5}$.

O14.14. a)
$$13^{\log_{13}4-2}$$
; 6) $0.5^{\log_{0.5}4-1}$; B) $2.2^{\log_{2.2}5-2}$; r) $10^{\log_{5}-0.5}$.

O14.15. a)
$$8^{2 \log_8 3}$$
;

6)
$$6^{-3\log_6 2}$$
;

O14.15. a)
$$8^{2 \log_8 3}$$
; 6) $6^{-3 \log_6 2}$; B) $3^{4 \log_3 2}$; r) $5^{-2 \log_5 3}$.

O14.16. a)
$$4 \cdot 125^{1 - \log_{125} 8}$$
;

6)
$$3 \cdot 4^{3 - \log_4 24}$$
:

B)
$$7 \cdot 0.5^{2 - \log_{0.5} 35}$$
;
r) $100 \cdot 0.3^{3 - \log_{0.3} 27}$.

O14.17. a)
$$(\sqrt{2})^{\log_2 72} + 2^{\log_5 25};$$
 b) $(\sqrt{5})^{\log_5 16} - 2^{\log_4 2};$

$$(\sqrt{5})^{\log_5 16} - 2^{\log_4 2}$$

6)
$$\left(\sqrt{3}\right)^{\log_3 12} - 12^{\log_3 9}$$
; r) $\left(\sqrt{7}\right)^{\log_7 2} + 16^{\log_9 3}$.

$$\Gamma$$
) $(\sqrt{7})^{\log_7 2} + 16^{\log_9 3}$

14.18. a)
$$\lg x = 1$$
;

$$B) lg x = -4;$$

6)
$$\log_{0,027} x = \frac{2}{3}$$
;

r)
$$\log_{0.25} x = \frac{3}{2}$$
.

14.19. a)
$$\log_4 x = -\frac{1}{2}$$
;

B)
$$\log_{32} x = -\frac{4}{5}$$
;

6)
$$\log_{0,125} x = -\frac{2}{3}$$
;

r)
$$\log_{0.01} x = -\frac{3}{2}$$
.

14.20. a)
$$\log_x 4 = 2$$
;

B)
$$\log_{x} 125 = 3$$
;

6)
$$\log_x \frac{1}{27} = -3;$$

r)
$$\log_x \frac{1}{16} = -4$$
.

14.21. a)
$$\log_x 3 = \frac{1}{2}$$
;

$$\mathrm{B)} \; \log_x 7 = \frac{1}{3};$$

6)
$$\log_x 4 = -\frac{1}{2}$$
;

6)
$$\log_x 4 = -\frac{1}{2}$$
; r) $\log_x 8 = -\frac{1}{3}$.

14.22. a)
$$2^x = 9$$
; 6) $12^x =$

14.22. a)
$$2^x = 9$$
; 6) $12^x = 7$; B) $\left(\frac{1}{3}\right)^x = 4$; r) $0, 2^x = 6$.

O14.23. a)
$$3^{x+1} = 14$$
;

B)
$$\left(\frac{2}{7}\right)^{3-x} = 11;$$

$$6) \ 4^{5x-4} = 10;$$

r)
$$(\sqrt{5})^{8-9x} = 6$$
.

O14.24. a)
$$2^{x^2+1} = 7$$
;

B)
$$0,1^{x^2-2}=3;$$

6)
$$9^{0.5x^2} = 2$$
;

r)
$$\left(\frac{1}{8}\right)^{\frac{1}{3}x^2+1} = 0,1.$$

$$014.25. a) 4^x - 5 \cdot 2^x = -6;$$

$$9^x - 7 \cdot 3^x = -12;$$

6)
$$16^x = 6 \cdot 4^x - 5$$
:

B)
$$9^x - 7 \cdot 3^x = -12$$
;
F) $-9 \cdot 7^x + 14 = -49^x$.

O14.26. a)
$$9^{x+1} + 6 = 189 \cdot 3^{x-2}$$
; B) $4^{x+1} + 5 = 24 \cdot 2^{x-1}$;

$$\mathbf{B}) \ 4^{x+1} + 5 = 24 \cdot 2^{x-1};$$

6)
$$25^{x+1} + 3 = 100 \cdot 5^{x-1}$$
;

6)
$$25^{x+1} + 3 = 100 \cdot 5^{x-1}$$
; r) $\left(\frac{1}{4}\right)^{x+1} + 3 = \left(\frac{1}{2}\right)^{x-1}$.

Решите неравенство:

$$\bigcap 14.97 \text{ a) } 9^x > 0$$
 6) 19^x

O14.27. a)
$$2^x \ge 9$$
; 6) $12^x \le 7$; B) $\left(\frac{1}{3}\right)^x < 4$; r) $(0,2)^x > 5$.

O14.28. a)
$$3^{x+1} \le 14$$
;

B)
$$\left(\frac{2}{7}\right)^{3-x} > 11;$$

6)
$$5^{5x-4} \ge 10$$
;

r)
$$(\sqrt{5})^{8-9x} < 6$$
.

$$\bigcirc 14.29.$$
 a) $4^x - 5 \cdot 2^x \ge -6;$

B)
$$9^x - 7 \cdot 3^x < -12$$
;

6)
$$16^x \le 6 \cdot 4^x - 5$$
;

$$\Gamma) \ 9 \cdot 7^x + 14 > -49^x.$$

ullet14.30. Решите уравнение с параметром a:

a)
$$4^x - 2^x + a = a \cdot 2^x$$
:

6)
$$9^x - (2a + 1) \cdot 3^x + a^2 + a - 2 = 0$$
.

●14.31. Постройте график функции:

a)
$$y = \log_x x^2$$
; 6) $y = 2^{\log_2 x}$; B) $y = x^{\log_x 2}$; P) $y = \log_x \frac{1}{x}$.

§ 15. Логарифмическая функция, ее свойства и график

15.1. Какие из указанных функций являются логарифмическими:

a)
$$y = \log_2 4 + x$$
;

B)
$$y = \log_{0.5} x - \log_4 2$$
;

$$6) y = \log_3 \pi - 3x;$$

$$\Gamma$$
) $y = \log_{0.2} \pi + 9x$?

- 15.2. Найдите значение логарифмической функции $y = \log_2 x$ в указанных точках:
 - 6) 3^{-3} : B) 3^{18} : r) $3^{-1,7}$.

Найдите значение логарифмической функции $y = \log_2 x$ в указанных точках:

- **15.3.** a) $x_1 = 4$, $x_2 = 8$, $x_3 = 16$;
 - 6) $x_1 = \frac{1}{2}$, $x_2 = \frac{1}{4}$, $x_3 = \frac{1}{16}$;
 - B) $x_1 = 32$, $x_2 = 128$, $x_2 = 2$;
 - r) $x_1 = \frac{1}{8}$, $x_2 = \frac{1}{32}$, $x_3 = \frac{1}{128}$.
- **15.4.** a) $x_1 = \sqrt{2}, x_2 = \sqrt[5]{8}$;
- B) $x_1 = \sqrt[3]{32}$, $x_2 = 16\sqrt[9]{128}$;
- 6) $x_1 = \frac{2}{\sqrt{2}}$, $x_2 = \frac{4}{\sqrt{2}}$; r) $x_1 = \frac{4}{\sqrt{32}}$, $x_2 = \frac{2}{\sqrt{128}}$.
- 15.5. Постройте (схематично) график функции:
 - a) $y = \log_2 x$; 6) $y = \log_{\frac{1}{2}} x$; B) $y = \lg x$; r) $y = \log_{\frac{1}{2}} x$.

- 15.6. В одной системе координат изобразите графики функций:

 - a) $y = \log_2 x$, $y = \log_9 x$; B) $y = \log_5 x$, $y = \log_3 x$;

 - 6) $y = \log_{\frac{1}{2}} x$, $y = \log_{\frac{1}{2}} x$; r) $y = \log_{\frac{2}{2}} x$, $y = \log_{\frac{4}{2}} x$.

Найдите область определения функции:

- **15.7.** a) $y = \log_6 (4x 1)$;
- B) $y = \log_9 (8x + 9);$
- 6) $y = \log_{\frac{1}{2}} (7 2x);$
- r) $y = \log_{0,3} (2 3x)$.
- O15.8. a) $y = \log_5 (x^2 5x + 6)$;
 - 6) $y = \log_{\frac{2}{5}}(-x^2 5x + 14);$
 - B) $y = \log_0 (x^2 13x + 12)$;
 - r) $y = \log_{0.2} (-x^2 + 8x + 9)$.

О15.9. Найдите область определения функции:

a)
$$y = \log_{8.1} (2^{x^2 - 5x + 7} - 2);$$

a)
$$y = \log_{8,1} (2^{x^2 - 5x + 7} - 2);$$
 B) $y = \log_{0,6} \frac{2^{x^2 - 5x + 7} - 2}{x};$

6)
$$y = \log_2(\log_{0.1} x);$$

$$\Gamma$$
) $y = \log_{0.2} (\log_3 x)$.

O15.10. Дано: $f(x) = \log_2 x$. Докажите, что выполняется следующее соотношение:

$$a) f(2^x) = x;$$

6)
$$f(4^x) + f(8^x) = 5x$$
.

O15.11. Дано: $f(x) = \log_{\frac{1}{2}} x$. Докажите, что выполняется следующее соотношение:

a)
$$f\left(\left(\frac{1}{3}\right)^{2x+1}\right) = 2x + 1;$$

6)
$$f\left(\left(\frac{1}{9}\right)^x\right) - f\left(\left(\frac{1}{27}\right)^{x-1}\right) = 3 - x.$$

Сравните числа:

в)
$$\log_9 \sqrt{15}$$
 и $\log_9 13$;

6)
$$\log_{\frac{2}{3}} 0.8$$
 и $\log_{\frac{1}{2}} 1$; г) $\log_{\frac{1}{12}} \frac{1}{7}$ и $\log_{\frac{1}{12}} \frac{2}{3}$.

г)
$$\log_{\frac{1}{12}} \frac{1}{7}$$
 и $\log_{\frac{1}{12}} \frac{2}{3}$

15.13. a) $\log_2 \frac{2^{3,5} \cdot 2^{-7}}{(2^6)^{-1}}$ u $\log_2 (4\sqrt{2})$;

б)
$$\log_{0,1} \frac{10^{-2.3} \cdot 10^{4.1}}{(10^3)^{-2}}$$
 и $\log_{0,1} \left(10\sqrt[3]{10}\right)$.

Сравните с единицей число:

15.14. a) $\log_3 41$; 6) $\log_{2,3} 0.1$; B) $\log_{\frac{1}{2}} 2.6$; r) $\log_{\sqrt{7}} 0.4$.

15.15. a)
$$\log_6(\sqrt[3]{9} - \sqrt[3]{3})(\sqrt[3]{81} + \sqrt[3]{27} + \sqrt[3]{9});$$

6)
$$\lg (\sqrt[3]{9} + 1)(\sqrt[3]{81} - \sqrt[3]{9} + 1).$$

- 15.16. Исследуйте функцию на монотонность:
 - a) $y = \log_{2.6} x$;

 $\mathbf{B}) \ y = \log_{\mathbb{R}} x;$

 $6) y = \log_{\frac{3}{4}} x;$

- Γ) $y = \log_{0.2} x$.
- О15.17. Расположите числа в порядке возрастания:
 - a) $\log_2 0.7$, $\log_2 2.6$, $\log_2 0.1$, $\log_2 \frac{1}{6}$, $\log_2 3.7$;
 - 6) $\log_{0.3} 17$, $\log_{0.3} 2.7$, $\log_{0.3} \frac{1}{2}$, $\log_{0.3} 3$, $\log_{0.3} \frac{2}{3}$.

Найдите наибольшее и наименьшее значения функции на заданном отрезке:

- **15.18.** a) $y = \log_3 x, \left[\frac{1}{3}; 9\right];$
- B) $y = \lg x$, [1; 1000];
- 6) $y = \log_{\frac{1}{2}} x$, $\left| \frac{1}{8} \right|$;
 - r) $y = \log_2 x, \left[\frac{8}{27}; \frac{81}{16} \right].$
- **15.19.** a) $y = \log_5 x$, $\left[\frac{1}{125}; 25\right]$; B) $y = \log_6 x$, $\left[\frac{1}{216}; 36\right]$;

 - 6) $y = \log_{\frac{1}{2}} x$, $\left[\frac{16}{25}; \frac{25}{16} \right]$; r) $y = \log_{\frac{1}{2}} x$, $\left[\frac{8}{343}; \frac{343}{8} \right]$.
- **15.20.** а) На каком промежутке функция $y = \log_3 x$ принимает наибольшее значение, равное 4, и наименьшее, равное
 - б) На каком промежутке функция $y = \log_{0.5} x$ принимает наибольшее значение, равное -1, и наименьшее, равное -3?
- О15.21. Найдите наибольшее значение функции:
 - a) $y = \log_{1}(x^{2} + \pi);$
- B) $y = \log_{0.1}(x^2 + 1);$
- 6) $y = \log_{0.3}(x^2 4x + 5);$ r) $y = \log_{\frac{1}{2}}(x^2 18x + 90).$

015.22. Найдите наименьшее значение функции:

a)
$$y = \log_2(x^2 + 128)$$
;

a)
$$y = \log_2(x^2 + 128);$$
 B) $y = \log_3(x^2 - 4x + 13);$

6)
$$y = \log_{\frac{1}{2}}(32 - x^2)$$

6)
$$y = \log_{\frac{1}{2}}(32 - x^2);$$
 r) $y = \log_{0,2}(5\sqrt[4]{125} - x^2).$

О15.23. Найдите наибольшее значение функции на заданном промежутке:

a)
$$y = \log_2 \frac{1}{2^x + 3}$$
, [0; 4];

6)
$$y = \log_{0.5} \frac{1}{2^x - 3}$$
, (2; 3];

B)
$$y = \log_3 \frac{1}{3^x + 6}$$
, [1; 7];

r)
$$y = \log_{0.2} \frac{1}{5^x - 24}$$
, [2; 3].

Найдите область значений функции:

15.24. a)
$$y = \log_3(x + 1)$$
;

$$B) y = \log_2 x - 4;$$

6)
$$y = \log_{0.1}(2x + 4)$$
;

r)
$$y = \log_{0.5}(-x) + 90$$
.

15.25. a)
$$y = \log_2 2^x$$
;

B)
$$y = \log_2\left(\frac{1}{2}\right)^x$$
;

6)
$$y = 3^{\log_3 x}$$
;

$$r) y = 0.9^{\log_{0.9} x}.$$

$$015.26. a) y = 5^{\log_5 x + 2};$$

B)
$$y = 3^{1 - \log_3 x}$$
;

$$6) \ \ y = 0.1^{\log_{0.1} x^2};$$

$$r) y = 12^{\log_{12} x^3}.$$

O15.27. a)
$$y = \log_{\frac{1}{\pi}}(x^2 + \pi);$$

B)
$$y = \log_{0,1}(x^2 + 1)$$
;

$$6) y = \log_{0,3}(x^2 - 4x + 5);$$

6)
$$y = \log_{0.3}(x^2 - 4x + 5);$$
 r) $y = \log_{\frac{1}{3}}(x^2 - 18x + 90).$

O15.28. a)
$$y = \log_2(x^2 + 128)$$
;

B)
$$y = \log_3(x^2 - 4x + 13)$$
;

6)
$$y = \log_{\frac{1}{2}}(32 - x^2)$$

6)
$$y = \log_{\frac{1}{2}}(32 - x^2);$$
 r) $y = \log_{0,2}(5\sqrt[4]{125} - x^2).$

Решите графически уравнение:

O15.29. a)
$$\log_2 x = -x + 1$$
;

$$B) \log_0 x = -x + 1;$$

6)
$$\log_{\frac{1}{3}} x = 2x - 2;$$
 r) $\log_{\frac{3}{7}} x = 4x - 4.$

$$\log_{\frac{3}{7}}x=4x-4$$

$$O15.30.$$
 a) $\log_3 x = 4 - x$;

$$B) \log_5 x = 6 - x;$$

6)
$$\log_{\frac{1}{2}} x = x + \frac{1}{2}$$
;

6)
$$\log_{\frac{1}{2}} x = x + \frac{1}{2}$$
; r) $\log_{\frac{1}{2}} x = x + \frac{2}{3}$.

O15.31. a)
$$x + 2 = \log_{8} x$$
;

B)
$$3x + 7 = \log_7 x$$
;

6)
$$\log_{\frac{1}{3}} x = -2x - 5;$$

6)
$$\log_{\frac{1}{2}} x = -2x - 5;$$
 r) $\log_{\frac{2}{2}} x = -5x - 6.$

Решите неравенство:

15.32. a)
$$\log_6 x \ge 2$$
;

B)
$$\log_9 x \leq \frac{1}{2}$$
;

6)
$$\log_{0,1} x > 3$$
;

r)
$$\log_4 x < 3$$
.

15.33. a)
$$\log_0 x \leq -1$$
;

B)
$$\log_5 x \ge -2$$
;

6)
$$\log_{\frac{1}{3}} x < -4;$$

r)
$$\log_{0,2} x > -3$$
.

Постройте график функции:

15.34. a)
$$y = 2 + \log_3 x$$
;

$$y = -3 + \log_4 x;$$

6)
$$y = -1 + \log_{\frac{1}{3}} x$$
; r) $y = 0.5 + \log_{0.1} x$.

$$y = 0.5 + \log_{0.1} x.$$

15.35. a)
$$y = 3 \log_4 x$$
;

$$\mathbf{B}) \ y = 5 \log_8 x;$$

6)
$$y = 2 \log_{\frac{1}{3}} x;$$

r)
$$y = \frac{1}{2} \log_{0.5} x$$
.

15.36. a)
$$y = -2 \log_7 x$$
;

B)
$$y = -0.5 \log_2 x$$
;

6)
$$y = -4 \log_{\frac{1}{6}} x$$
; r) $y = -\log_{\frac{2}{3}} x$.

$$\mathbf{r}) \ y = -\log_{\frac{2}{3}} x$$

15.37. a)
$$y = \log_2(x + 4)$$
; B) $y = \log_5(x - 1)$;

$$y = \log_5(x-1);$$

6)
$$y = \log_{\frac{1}{5}}(x-3);$$
 $y = \log_{0,3}(x+5).$

r)
$$y = \log_{0.3}(x + 5)$$

Постройте график функции:

O15.38. a)
$$y = \log_3(x+1) - 3;$$
 B) $y = \log_5(x-1) + 2;$

B)
$$y = \log_5(x-1) + 2$$
;

6)
$$y = \log_{0.2}(x-2) + 1$$
;

6)
$$y = \log_{0,2}(x-2) + 1$$
; $y = \log_{0,5}(x+2) - 1$.

O15.39. a)
$$y = \lg (5 - x);$$

B)
$$y = \log_{0.5} (1 - x)$$
;

6)
$$y = \log_{\frac{1}{2}}(2x - 4);$$

B)
$$y = \log_{0.5}(1 - x);$$

F) $y = \log_3(3x + 6).$

О15.40. Дана функция
$$y = f(x)$$
, где $f(x) = \begin{cases} -3x + 3, \text{ если } x \leq 1, \\ \log_{\frac{1}{3}} x, \text{ если } x > 1. \end{cases}$

- а) Вычислите f(-8), f(-6), f(0), f(3), f(9).
- б) Постройте и прочитайте график функции.

О15.41. Постройте и прочитайте график функции:

a)
$$y = \begin{cases} -4x + 4, & \text{если } x < 1, \\ \log_2 x, & \text{если } x \ge 1; \end{cases}$$

6)
$$y = \begin{cases} -(x-4)^2, & \text{если } x < 5, \\ \log_{0.2} x, & \text{если } x \ge 5; \end{cases}$$

в)
$$y = \begin{cases} \log_2 x, & \text{если } 0 < x < 2, \\ \left(\frac{1}{2}\right)^x, & \text{если } x \geqslant 2; \end{cases}$$

r)
$$y = \begin{cases} \frac{1}{x}, & \text{если } x < 0, \\ \log_{\sqrt{2}} x, & \text{если } x > 0. \end{cases}$$

Постройте график функции:

O15.42. a)
$$y = \log_2 |x|$$
;

B)
$$y = \log_{\frac{1}{3}}(1 + |x|);$$

6)
$$y = \left| \log_{\frac{1}{2}} (1 + x) \right|$$
; r) $y = \left| \log_{3} (-x) \right|$.

$$\mathbf{r}) \ y = \big| \log_3(-x) \big|.$$

•15.43. a)
$$y = |1 - \log_2|x - 1|$$
; 6) $y = |\log_{1.5}|2 - x| - 2|$.

6)
$$y = \left| \log_{1,5} \left| 2 - x \right| - 2 \right|$$

•15.44. a)
$$y = |\log_2 x - 1| + |\log_2 x + 1|$$
;

6)
$$y = |\log_3 x + 1| - |\log_3 x - 1|$$
.

- $\bigcirc 15.45$. При каких значениях x график заданной логарифмической функции расположен выше графика заданной линейной функции:

 - a) $y = \log_2 x$, y = -x + 1; B) $y = \log_{\frac{1}{7}} x$, y = 7x;
 - 6) $y = \log_{0.5} x$, y = x 1; r) $y = \log_2 x$, y = -3x?
- $\bigcirc 15.46$. При каких значениях x график заданной логарифмической функции расположен ниже графика заданной линейной функции:
 - a) $y = \log_{A}(x 1), y = -x + 2;$
 - 6) $y = \log_{\frac{1}{2}}(x + 4)$, y = -3x 2?

- O15.47. a) $\log_2 x \ge -x + 1$;
- B) $\log_0 x \leq -x + 1$;
- 6) $\log_{\frac{3}{7}} x > 4x 4;$
- r) $\log_{\frac{1}{2}} x < 2x 2$.

- 015.48. a) $\log_3 x \leq 4 x$;
- B) $\log_{\varepsilon} x \geq 6 x$:
- 6) $\log_{\frac{1}{2}} x < x + \frac{1}{2};$
- $\Gamma) \log_{\frac{1}{2}} x > x + \frac{z}{3}.$

O15.49. a) $\log_2 x \ge \frac{2}{r}$;

B) $\log_2(-x) \leq \frac{-2}{r}$;

6) $\log_3 x \leq \frac{3}{x}$;

- r) $\log_3(-x) \geqslant \frac{-3}{x}$.
- **O15.50.** a) $\log_{\frac{1}{2}}\left(x-\frac{1}{2}\right) > x^2$;
- B) $\log_{0.3} x \leq x^2 1$;
- 6) $\lg x + 1 \le -x^2 + 2$:
- r) $\lg(-x) \ge -x^2 + 1$.

§ 16. Свойства логарифмов

Вычислите:

16.1. a) $\log_6 2 + \log_6 3$;

B) $\log_{26} 2 + \log_{26} 13$;

6) $\lg 25 + \lg 4$;

- r) $\log_{12} 4 + \log_{19} 36$.
- **16.2.** a) $\log_{144} 3 + \log_{144} 4$;
- B) $\log_{216} 2 + \log_{216} 3$;

6) $\log_{\frac{1}{6}} 4 + \log_{\frac{1}{6}} 2;$

r) $\log_{\frac{1}{12}} 4 + \log_{\frac{1}{12}} 36$.

16.3. a)
$$\log_3 7 - \log_3 \frac{7}{9}$$
;

B) $\log_2 15 - \log_2 30$;

6)
$$\log_{\frac{1}{2}} 28 - \log_{\frac{1}{2}}^{9} 7;$$

r) $\log_{0,2} 40 - \log_{0,2} 8$.

16.4. a)
$$\log_{\sqrt{3}} 6 - \log_{\sqrt{3}} 2\sqrt{3}$$
;

B) $\log_{\frac{2}{3}} 32 - \log_{\frac{2}{3}} 243;$

б)
$$\log_{\sqrt{2}} 7\sqrt{2} - \log_{\sqrt{2}} 14;$$

r) $\log_{0.1} 0.003 - \log_{0.1} 0.03$.

16.5. a)
$$\log_{\sqrt{2}} 2$$
; 6) $\log_{\frac{1}{2}} \frac{1}{4\sqrt{2}}$; B) $\log_{3\sqrt{2}} 18$; r) $\log \frac{1}{100\sqrt{10}}$.

16.6. a)
$$(3 \lg 2 - \lg 24) : (\lg 3 + \lg 27);$$

6) $(\log_3 2 + 3\log_3 0.25) : (\log_3 28 - \log_3 7).$

O16.7. a)
$$\log_{\frac{1}{2}} 4 \cdot \log_{3} 9 : \log_{4} \frac{1}{4}$$
;

6)
$$\log_{\sqrt{3}} 3\sqrt{3} : \log_{\frac{1}{7}} \sqrt{49} \cdot \log_{5} \sqrt{5};$$

B)
$$\log_3 81 : \log_{0.5} 2 \cdot \log_5 125$$
;

r)
$$\log_{\sqrt{5}} 5\sqrt{5} \cdot \log_{0.3} \sqrt{0.3} : \lg 10\sqrt{0.1}$$
.

O16.8. a)
$$\log_{\frac{1}{2}} 16 \cdot \log_{5} \frac{\sqrt[3]{5}}{25} : 3^{\log_{3} 2};$$

6)
$$\log_3 27 : \log_{\frac{1}{2}} 4 \cdot \log_7 \sqrt[3]{49};$$

B)
$$\log_{\frac{1}{3}} 9 \cdot \log_{2} \frac{\sqrt[3]{2}}{8} : 7^{2 \log_{7} 2};$$

r)
$$\log_6 \frac{1}{6\sqrt{216}} \cdot \log_{0,3} \frac{1}{0,09} \cdot \lg 10 \sqrt{0,1}$$
.

O16.9. a)
$$\frac{\log_7 25}{\log_7 5}$$
; 6) $\frac{\log_{\frac{1}{2}} 9}{\log_{\frac{1}{2}} 27}$; B) $\frac{\log_4 36}{\log_4 6}$; r) $\frac{\log_{0.3} 32}{\log_{0.3} 64}$.

O16.10. a)
$$\sqrt{5}(\log_3 36 - \log_3 4 + 5^{\log_5 8})^{0.5 \log 5}$$
;

6)
$$\frac{2}{11}(\log_{12}3 + \log_{12}4 + 7^{\log_74})^{2\log_511}$$
.

O16.11. a)
$$\sqrt[3]{81^{\log_9 6} - 7^{\log_7 9}}$$
; 6) $\sqrt[4]{36^{\log_6 5} - 5^{\log_5 9}}$.

б)
$$\sqrt[4]{36^{\log_6 5} - 5^{\log_5 9}}$$

6)
$$5^{\log_5 16-1}$$
;

B)
$$3^{1+\log_3 8}$$

r)
$$8^{\log_8 3 - 2}$$

O16.13. a)
$$2^{3 \log_2 4}$$
; 6) $\left(\frac{1}{2}\right)^{2 \log_{\frac{1}{2}} 7}$; B) $5^{2 \log_5 3}$; r) $(0,3)^{3 \log_{0.3} 6}$.

$$\text{ 6) } \left(\frac{1}{2}\right)^{2 \log_{\frac{1}{2}} 7};$$

B)
$$5^{2 \log_5 3}$$

$$\Gamma$$
) $(0,3)^{3 \log_{0,3} 6}$

$$\text{ f) } \left(\frac{1}{9}\right)^{\log_{\frac{1}{3}}13};$$

$$\Gamma \left(\frac{1}{16}\right)^{\log_{\frac{1}{2}}5}$$

O16.15. a)
$$36^{\frac{1}{2}\log_6 18}$$
; 6) $64^{\frac{1}{4}\log_8 25}$; b) $121^{\frac{1}{2}\log_{11} 35}$; r) $25^{\frac{1}{4}\log_5 9}$.

$$6) \ 64^{\frac{1}{4}\log_8 25}$$

B)
$$121^{\frac{1}{2}\log_{11}35}$$

r)
$$25^{\frac{1}{4}\log_5 9}$$
.

O16.16. a)
$$\left(\frac{1}{4}\right)^{1+0.5\log_{\frac{1}{2}}14}$$
; b) $\left(\frac{1}{9}\right)^{1+\frac{1}{2}\log_{\frac{1}{3}}18}$;

$$\mathbf{B}) \left(\frac{1}{9}\right)^{1+\frac{1}{2}\log_{\frac{1}{3}}^{16}}$$

6)
$$25^{1-0.5 \log_5 11}$$
;

$$\mathbf{r)} \ \ \mathbf{49}^{1-0.5 \log_7 14}.$$

O16.17. a)
$$\frac{\frac{1}{2} \log_3 64 - 2 \log_3 2}{\log_2 2};$$

O16.17. a)
$$\frac{\frac{1}{2} \log_3 64 - 2 \log_3 2}{\log_3 2}$$
; B) $\frac{2 \log_{0.5} 2 + \log_{0.5} \sqrt{10}}{\log_{0.5} 10 - \log_{0.5} \sqrt{10} + \log_{0.5} 4}$;

6)
$$\frac{\log_6 12 + 2\log_6 2}{\frac{1}{3}\log_6 27 + 4\log_6 2};$$
 r) $\frac{\log_{0.3} 16}{\log_{0.3} 15 - \log_{0.3} 30}.$

$$\Gamma) \ \frac{\log_{_{0,3}} 16}{\log_{_{0,3}} 15 - \log_{_{0,3}} 30}.$$

O16.18. a)
$$\frac{\log_5^2 15 - \log_5^2 3 + 2\log_5 15 + 2\log_5 3}{\log_5 15 + \log_5 3};$$

$$6) \ \frac{3 (\log_5 15)(\log_5 9) - 2 \log_5^2 15 - \log_5^2 9}{\log_5 9 - \log_5 15};$$

B)
$$\frac{2 \log_3 12 - 4 \log_3^2 2 + \log_3^2 12 + 4 \log_3 2}{3 \log_3 12 + 6 \log_3 2};$$

$$\text{r) } \frac{5 \log_4 3 \log_4 12 - 2 \log_4^2 3 - 3 \log_4^2 12}{2 \log_4 3 - 3 \log_4 12}.$$

O16.19. a)
$$\log_{\sqrt{2}} \left(\sin \frac{\pi}{8} \right) + \log_{\sqrt{2}} \left(2 \cos \frac{\pi}{8} \right);$$

6)
$$\log_{\frac{1}{2}} \left(\cos \frac{\pi}{6} + \sin \frac{\pi}{6} \right) + \log_{\frac{1}{2}} \left(\cos \frac{\pi}{6} - \sin \frac{\pi}{6} \right);$$

B)
$$\log_{\frac{1}{2}} \left(2 \sin \frac{\pi}{12} \right) + \log_{\frac{1}{2}} \left(\cos \frac{\pi}{12} \right);$$

r)
$$\log_{\frac{\sqrt{3}}{2}} \left(\cos \frac{\pi}{12} - \sin \frac{\pi}{12} \right) + \log_{\frac{\sqrt{3}}{2}} \left(\cos \frac{\pi}{12} + \sin \frac{\pi}{12} \right)$$

O16.20. a)
$$\log_3\left(2 \operatorname{tg} \frac{\pi}{8}\right) - \log_3\left(1 - \operatorname{tg}^2 \frac{\pi}{8}\right)$$
;

6)
$$\log_{\sqrt{3}}\left(\operatorname{tg}\frac{\pi}{19}\right) + \log_{\sqrt{3}}\left(\operatorname{ctg}\frac{\pi}{19}\right);$$

B)
$$\log_{\frac{1}{3}} \left(2 \operatorname{tg} \frac{\pi}{6} \right) + \log_{\frac{1}{3}} \left(1 - \operatorname{tg}^2 \frac{\pi}{6} \right)^{-1};$$

r)
$$\log_{\frac{1}{2}} \left(tg \frac{\pi}{7} \right) + \log_{\frac{1}{2}} \left(tg \frac{5}{14} \pi \right)$$
.

Сравните числа:

б)
$$\log_{0.5} 3$$
 и $\sin 3$; г) $\lg 0.2$ и $\cos 0.2$.

●16.22. a)
$$\log_3 4$$
 и $\sqrt[4]{2}$;

б)
$$\log_2 3$$
 и $\sqrt[3]{7}$.

O16.23. а) Известно, что $\log_{0.5} 3 = a$. Найдите $\log_{0.5} 81$.

б) Известно, что $\log_6 4 = m$. Найдите $\log_6 24$.

в) Известно, что $\log_6 42 = b$. Найдите $\log_6 7$.

г) Известно, что $\log_{\frac{1}{2}} 7 = d$. Найдите $\log_{\frac{1}{2}} \frac{1}{49}$.

- O16.24. Известно, что $\log_5 3 = m$ и $\log_5 2 = n$. Выразите через m

- a) $\log_5 6$; 6) $\log_5 18$; B) $\log_5 24$; r) $\log_5 72$.
- ${\tt O16.25}.$ Известно, что $\log_{\frac{1}{2}}7=c$ и $\log_{\frac{1}{2}}3=a.$ Выразите через c и a:

 - a) $\log_{\frac{1}{2}} 21;$ 6) $\log_{\frac{1}{2}} \frac{1}{42};$ B) $\log_{\frac{1}{2}} 147;$ r) $\log_{\frac{1}{2}} \frac{49}{\sqrt{3}}.$

Найдите число x по данному его логарифму:

- **16.26.** a) $\log_2 x = \log_2 72 \log_2 9$;
 - 6) $\log_{\sqrt{7}} x = 2 \log_{\sqrt{7}} 4 \log_{\sqrt{7}} 2 + \log_{\sqrt{7}} 5$;
 - B) $\lg x = \lg \frac{1}{2} + \lg \frac{1}{125}$;
 - F) $\log_{\frac{1}{2}} x = \log_{\frac{1}{2}} \frac{7}{9} + \log_{\frac{1}{2}} 21 2 \log_{\frac{1}{2}} 7$.
- **16.27.** a) $\lg x = \lg 7 \lg 3 + \lg 8$;
 - 6) $\lg x = 2 \lg 3 + \lg 6 \frac{1}{2} \lg 9;$
 - B) $\lg x = \frac{1}{2} \lg 3 + \frac{2}{2} \lg 5 \frac{1}{2} \lg 4;$
 - r) $\lg x = -\frac{1}{2} \lg 5 + \lg \sqrt{5} + \frac{1}{4} \lg 25$.
- **16.28.** a) $\log_{0.3} x = \log_{0.3} a 2 \log_{0.3} b$;
 - 6) $\log_5 x = \log_5 c 2 \log_5 b + \log_5 a$;
 - B) $\log_{2,3} x = 4 \log_{2,3} c 3 \log_{2,3} b$;
 - r) $\log_{\frac{1}{7}} x = 3 \log_{\frac{1}{7}} a 4 \log_{\frac{1}{7}} c + \log_{\frac{1}{7}} b$.
- 16.29. Выразите $\log_n x$ через логарифмы по основанию n чисел a, b, c, если известно, что положительные числа x, a, b, с связаны соотношением:
 - a) $x = \frac{ab^2}{c}$; 6) $x = \frac{a^2c^3}{\sqrt{b}}$.

016.30. Прологарифмируйте по основанию 5:

a)
$$125a^4:b^4;$$

B)
$$\frac{25\sqrt{5}a^6b^7}{c^3}$$
;

$$\text{ 6) } \frac{625 \left(\sqrt{a}b\right)^3}{c^{\frac{1}{2}}};$$

$$\Gamma)\,\left(\frac{a^6}{\sqrt[5]{b^2}}\right)^{\!\!-3}.$$

O16.31. Положительное число b записано в стандартном виде $b = b_0 \cdot 10^n$, где $1 < b_0 < 10$ и n — целое число. Найдите десятичный логарифм числа b:

а)
$$b = 9 \cdot 10^2$$
; б) $b = 9 \cdot 10^{-3}$; в) $b = 9 \cdot 10^4$; г) $b = 9 \cdot 10^{-5}$. (Для справки: $\lg 9 \approx 0.95$.)

О16.32. Найдите десятичный логарифм числа:

а)
$$\lg 50$$
; б) $\lg 0,005$; в) $\lg 5000$; г) $\lg 0,00005$. (Для справки: $\lg 5 \approx 0.7$.)

Решите уравнение:

O16.33. a)
$$\log_4 x = \log_4 2 + \log_4 7$$
;

B)
$$\log_{0} x = \log_{0} 5 + \log_{0} 6$$
;

6)
$$\log_{\frac{1}{2}} x - \log_{\frac{1}{2}} 7 = \log_{\frac{1}{2}} 4;$$
 r) $\log_{\frac{1}{4}} x - \log_{\frac{1}{4}} 9 = \log_{\frac{1}{4}} 5.$

r)
$$\log_{\frac{1}{4}} x - \log_{\frac{1}{4}} 9 = \log_{\frac{1}{4}} 5.$$

016.34. a) $\log_6 12 + \log_6 x = \log_6 24;$

6)
$$\log_{0.5} 3 + \log_{0.5} x = \log_{0.5} 12;$$

B)
$$\log_5 13 + \log_5 x = \log_5 39$$
;

r)
$$\log_{\frac{1}{3}} 8 + \log_{\frac{1}{3}} x = \log_{\frac{1}{3}} 4$$
.

O16.35. a) $\log_2 3x = \log_2 4 + \log_2 6$;

6)
$$\log_{\sqrt{3}} \frac{x}{2} = \log_{\sqrt{3}} 6 + \log_{\sqrt{3}} 2$$
;

B)
$$\log_4 5x = \log_4 35 - \log_4 7$$
;

r)
$$\log_{\sqrt{2}} \frac{x}{3} = \log_{\sqrt{2}} 15 - \log_{\sqrt{2}} 6$$
.

$$016.36.$$
 a) $\log_{x} 8 - \log_{x} 2 = 2$;

B)
$$\log_{x} 3 + \log_{x} 9 = 3$$
;

6)
$$\log_{x} 2 + \log_{x} 8 = 4$$
;

r)
$$\log_{x} \sqrt{5} + \log_{x} 25\sqrt{5} = 3$$
.

Постройте график функции:

16.37. a)
$$y = \log_2 8x$$
;

B)
$$y = \log_3 \frac{x}{27}$$
;

$$6) y = \log_{\frac{1}{2}} 4x;$$

r)
$$y = \log_{\frac{1}{3}} \frac{x}{9}$$
.

16.38. a)
$$y = \log_2 x^3$$
;

$$B) y = \log_3 \frac{1}{x};$$

6)
$$y = \log_{\frac{1}{3}} \frac{1}{x};$$

$$r) y = \log_{\frac{1}{2}} x^3.$$

O16.39. a)
$$y = \log_2 \frac{4}{x}$$
;

$$B) y = \log_3 9x^3;$$

6)
$$y = \log_{\frac{1}{2}} \frac{x^3}{27}$$
;

$$r) y = \log_{\frac{1}{2}} \frac{8}{x}.$$

О16.40. Докажите, что при заданных условиях выполняется требуемое равенство:

a)
$$\lg \frac{a+b}{3} = \frac{1}{2}(\lg a + \lg b)$$
, если $a^2 + b^2 = 7ab$;

6)
$$\lg \frac{a+2b}{4} = \frac{1}{2}(\lg a + \lg b)$$
, если $a^2 + 4b^2 = 12ab$.

Вычислите:

O16.41. a)
$$\log_2 \frac{1}{2} + \log_4 9$$
;

B)
$$\log_{25} 9 - \log_5 3$$
;

6)
$$\log_{\sqrt{3}} 3\sqrt{2} + \log_3 \frac{1}{2}$$
; r) $\log_{16} 4 - \log_4 8$.

r)
$$\log_{16} 4 - \log_4 8$$
.

O16.42. a) $9^{\log_3 4} + \log_{\sqrt{6}} 3 \cdot \log_3 36$;

6)
$$\log_3 8 \cdot \log_2 27 - 3^{\log_9 25}$$
;

B)
$$3^{4 \log_3 2} + \log_5 \sqrt{2} \cdot \log_4 25$$
;

r)
$$10^{0.5 \, lg \, 16} + 14 \, log_3 \sqrt{2} \cdot log_4 \, 81$$
.

O16.43. a)
$$5\log_2 9 \cdot \log_3 64 + 3^{\log_6 8} \cdot 2^{\log_6 8}$$
;

6)
$$2^{4 \log_2 3 - 1} + \log_9 3 + \log_3 64 \cdot \log_4 3$$
.

•16.44. a)
$$16(\log_9 45 - 1) \cdot \log_{11} 9 \cdot \log_5 121$$
;

6)
$$\log_{15} 3 \cdot \log_{5} 3 \cdot \log_{5} 5 \cdot (1 + \log_{3} 5)$$
.

16.45. a)
$$3 \log_5 4 \cdot \log_6 5 \cdot \log_7 6 \cdot \log_8 7$$
;

6)
$$\log_2 10 \cdot \log_3 2 \cdot \log_4 3 \cdot \log_5 4 \cdot ... \cdot \log_{1000} 999$$
.

●16.46. a)
$$\frac{\log_2 56}{\log_2 2} - \frac{\log_2 7}{\log_2 2}$$
; 6) $\frac{\log_3 135}{\log_4 3} - \frac{\log_3 5}{\log_{10} 3}$.

6)
$$\frac{\log_3 135}{\log_4 3} - \frac{\log_3 5}{\log_{10} 3}$$

16.47. a)
$$(\log_4 6 + \log_6 4 + 2)(\log_4 6 - \log_{24} 6)\log_6 4 - \log_4 96$$
;

6)
$$\log_6 4 + \log_6 9 + \log_4 6 \cdot \log_{\sqrt{6}} 2 - \log_5 2 \cdot \log_2 5$$
.

O16.48. a)
$$81^{\frac{1}{\log_5 3}} + 27^{\log_9 36} + 3^{\frac{4}{\log_7 9}}$$
;

6)
$$4\sqrt{3} + 0.2^{1-\log_5 3} - 15^{0.5 + \log_{15} \frac{4}{\sqrt{5}}}$$
.

O16.49. a)
$$2^{\log_{\sqrt{3}}9 + \log_{\sqrt{2}}\sqrt{5}}$$
; 6) $3^{\log_{\sqrt{5}}5 - \log_{\sqrt{3}}\sqrt{7}}$

)
$$3^{\log_{\sqrt{5}} 5 - \log_{\sqrt{3}} \sqrt{7}}$$

Сравните числа:

в)
$$\log_3 5$$
 и $\log_5 4$;

б)
$$\log_{6} 9$$
 и $\log_{9} 8$;

г)
$$\log_{11} 14$$
 и $\log_{14} 13$

16.51. a)
$$\log_2 6$$
 и $\log_4 5$;

в)
$$\log_9 6$$
 и $\log_3 7$;

6)
$$\log_{\frac{1}{2}} 3$$
 и $\log_{\frac{1}{4}} 1,5;$ г) $\log_{\frac{1}{2}} 4$ и $\log_{\frac{1}{2}} 7.$

г)
$$\log_{\frac{1}{2}}4$$
 и $\log_{\frac{1}{2}}7$

Расположите числа в порядке возрастания:

б)
$$\log_{0.5} 0.1$$
, $\log_3 0.5$ и $\lg 1$;

в)
$$\log_7 9$$
, $\log_3 1$ и $\log_5 4$;

г)
$$\log_{0,2} 0.3$$
, $\log_7 0.6$ и $\log_2 1$.

$$O16.53$$
. a) $\log_4 0.9$, $\log_2 1$, $\log_7 3$, $\log_9 10$;

6)
$$\log_{0.5} 1$$
, $\log_{0.9} 5$, $\log_5 0.7$, $\log_{0.1} 10$;

B)
$$2^{\log_2 5}$$
, $\log_{12} 7$, $\log_{15} 7$, $\log 0.3$;

r)
$$9^{\log_3 15}$$
, $\left(\frac{1}{2}\right)^{\log_2 4}$, $\log_{\frac{1}{7}} 1$, $\log_6 7$.

- O16.54. Известно, что $\log_5 2 = b$. Найдите:

 - a) $\log_2 25$; 6) $\log_2 \frac{1}{25}$; B) $\log_2 125$; r) $\log_2 \frac{1}{625}$.
- O16.55. Известно, что $\log_2 3 = a$. Найдите:

 - a) $\log_4 9$; 6) $\log_8 18$; B) $\log_4 81$; r) $\log_8 54$.
- \bigcirc **16.56.** Известно, что $\lg 2 = a$, $\lg 3 = b$. Найдите:

 - a) $\log_4 12$; 6) $\log_6 18$; B) $\log_{0.5} 3$;
- r) $\log_{\underline{1}} 24$.
- O16.57. Известно, что $\log_2 5 = a$, $\log_2 3 = b$. Найдите:
- a) $\log_3 15$; 6) $\log_8 75$; B) $\log_{16} 45$; r) $\log_{15} 12$.
- O16.58. a) Найдите $\log_{100} 40$, если известно, что $\log_2 5 = a$.
 - б) Найдите $\log_{63} 147$, если известно, что $\log_3 7 = b$.
- ●16.59. а) Найдите $\log_3 5$, если известно, что $\log_6 2 = a$, $\log_6 5 = b$.
 - б) Найдите $\log_{35} 28$, если известно, что $\log_{14} 7 = a$, $\log_{14} 5 = b.$
- ●16.60. а) Найдите $\log_3 360$, если известно, что $\log_3 20 = a$, $\log_2 15 = b$.
 - б) Найдите $\log_{275} 60$, если известно, что $\log_{12} 5 = a$, $\log_{12} 11 = b$.

Упростите выражение:

 \bigcirc **16.61.** a) $(\log_a b + \log_b a + 2)(\log_a b - \log_{ab} b) \log_b a - 1;$

6)
$$\frac{1 - \log_a^3 b}{(\log_a b + \log_b a + 1) \log_a \frac{a}{b}}.$$

- O16.62. a) $0.2 \cdot \left(2a^{\log_2 b} + 3b^{\log_{\sqrt{2}}\sqrt{a}}\right)$;
 - 6) $\sqrt{\log_a b + \log_b a + 2} \cdot \log_a a \cdot \sqrt{\log_a^3 b}$.
- ●16.63. Докажите тождество:
 - а) $b^{\log_a c} = c^{\log_a b}$, если a, b, c положительные числа, отличные от 1;
 - б) $(m^k)^{\log_p q} = q^{\log_p m^k}$, если m, p, q, k положительные числа, отличные от 1.

O16.64. Докажите тождество:

a)
$$\log_{bk} ak = \frac{\log_b a + \log_b k}{1 + \log_b k};$$

6)
$$\frac{1}{\log_a k} + \frac{1}{\log_{a^2} k} + \frac{1}{\log_{a^2} k} + \frac{1}{\log_{a^2} k} + \frac{1}{\log_{a^2} k} = 15 \log_k a$$
.

●16.65. Найдите координаты центра симметрии графика функ-

ции
$$y = x + \lg \frac{x^2 + 2x}{x^2 + 10x + 24}$$
.

●16.66. Расположите комплексные числа в порядке возрастания их аргументов:

$$z_1 = \log_2 0.7 + i \log_{0.5} 7, \quad z_2 = \ln 10 + i \lg e,$$

$$z_3 = \ln \pi + i \ln (\pi - 3), \ z_4 = \log_3 0.3 + i \log_{0.3} 0.9.$$

(Указание.
$$-\pi < \arg z \leq \pi$$
.)

§ 17. Логарифмические уравнения

 $B) \log_{0.2} x = 2;$ r) $\log_{16} x = \frac{1}{2}$.

B) $\log_{10} \sqrt{3} = -1$;

B) $\log_{2\sqrt{2}} 16x = 4;$

 $B) \log_{\sin x} \frac{1}{2} = 1;$

r) $\log_{\sin x} \frac{3}{4} = 2$.

r) $\log_{\pi} (3x - 2\sqrt{5}) = 2$.

r) $\log_x 9 = \frac{1}{2}$.

Решите уравнение:

17.1. a)
$$\log_2 x = 3$$
;

a)
$$\log_2 x = 0$$
,

$$6) \log_7 x = -1;$$

$$6) \log_2 x = -$$

17.2. a)
$$\log_x 16 = 2;$$

6)
$$\log_x \frac{1}{8} = -3;$$

O17.3. a)
$$\log_{\sqrt{2}}(2x+1)=6$$
;

6)
$$\log_{\sqrt{3}+1}(3x + 2\sqrt{3}) = 2;$$

O17.4. a)
$$\log_{\cos x} \frac{\sqrt{3}}{2} = 1;$$

6)
$$\log_{\cos x} \frac{1}{2} = 2;$$

O17.5. a)
$$\log_{0.1}(x^2 + 4x - 20) = 0$$
;

6)
$$\log_{\frac{1}{2}}(x^2 + x - 5) = -1;$$

B)
$$\log_7(x^2 - 12x + 36) = 0$$
;

r)
$$\log_{\frac{1}{3}}(x^2 + 3x - 1) = -2.$$

105

17.6. a)
$$\log_2(3x-6) = \log_2(2x-3)$$
;

6)
$$\log_6 (14 + 4x) = \log_6 (2x + 2);$$

B)
$$\log_{\frac{1}{6}}(7x - 9) = \log_{\frac{1}{6}}x;$$

r)
$$\log_{0.2}(12x + 8) = \log_{0.2}(11x + 7)$$
.

O17.7. a)
$$\log_{\frac{1}{2}}(7x^2 - 200) = \log_{\frac{1}{2}}50x;$$

6)
$$\log_{0.3}(-x^2 + 5x + 7) = \log_{0.3}(10x - 7);$$

B)
$$\lg (x^2 - 8) = \lg (2 - 9x);$$

$$\Gamma) \log_{0.2}(-x^2 + 4x + 5) = \log_{0.2}(-x - 31).$$

O17.8. a)
$$2^{\log_2(x^2-4)} = 21;$$
 b) $9^{\log_9(x^2-5)} = 31;$

6)
$$\left(\frac{1}{2}\right)^{\log_{\frac{1}{2}}(x^2-9x+21)} = 1;$$
 r) $(0,3)^{\log_{0,2}(x^2+x-4)} = 2.$

O17.9. a)
$$3^{\log_4(-5x)} = \log_5 125;$$
 B) $\left(\frac{1}{3}\right)^{\log_{0.5}(9x-10)} = \log_9 729;$

6)
$$2^{\log_3(2x+8)} = \log_{\sqrt{3}} 9;$$
 r) $(0,2)^{\log_{0.7}(-3x+1)} = \log_2 0.5.$

O17.10. a)
$$\log_7(\log_3(\log_2 x)) = 0$$
;

6)
$$\log_{18}(\log_2(\log_3 4x)) = 0;$$

B)
$$\log_{25}(\log_3(\log_2 x)) = 0$$
;

r)
$$\log_{12}(\log_4(\log_3(x+1))) = 0$$
.

O17.11. a) Известно, что
$$f(x) = \log_3 (5x - 2)$$
. Решите уравнение $f(x) = f(3x - 1)$.

б) Известно, что
$$f(x) = \log_2(8x - 1)$$
. Решите уравнение

$$f(x) = f\left(\frac{x}{2} + 5\right).$$

в) Известно, что $f(x) = \log_{0,2}(3x - 6)$. Решите уравнение

$$f\left(\frac{1}{3}x-1\right)=f(x^2-1).$$

г) Известно, что $f(x) = \log_{1,4}(4x + 1)$. Решите уравнение

$$f\left(\frac{1}{4}x-3\right)=f(x^2-3).$$

•17.12. a)
$$\log_2(2x^3 - x^2 - 2x) = \log_2(x^3 + 2x^2 + 2x)$$
;

6)
$$\log_3(3x^3-2x^2+4x) = \log_3(2x^3+2x^2+3x-6);$$

B)
$$\log_{0.2}(x^3 + 5x^2 + 6x + 1) = \log_{0.2}(-x^3 + 2x^2 + 3x);$$

r)
$$\log_{0,4}(2x^3 + x^2 - 5x - 7) = \log_{0,4}(x^3 - 2x^2 - 2x + 7)$$
.

$$017.13.$$
 a) $\log_{x}(x+3) = \log_{x}(2x+9)$;

6)
$$\log_{x}(x^{2}-2x) = \log_{x}(3x-4);$$

B)
$$\log_{x}(x-1) = \log_{x}(2x-8);$$

r)
$$\log_{x}(x^{2}-6) = \log_{x}(-x)$$
.

O17.14. a)
$$\log_{x}(2x^2 + x - 2) = 3$$
; 6) $\log_{x-1}(12x - x^2 - 19) = 3$.

17.15. a)
$$\log_2 x = \log_2 3 + \log_2 5$$
; B) $\log_{\frac{1}{3}} 4 + \log_{\frac{1}{3}} x = \log_{\frac{1}{3}} 18$;

6)
$$\log_7 4 = \log_7 x - \log_7 9$$
; r) $\log_{0.4} 9 - \log_{0.4} x = \log_{0.4} 3$.

17.16. a)
$$2 \log_8 x = \log_8 2.5 + \log_8 10$$
;

6)
$$3\log_2\frac{1}{2} - \log_2\frac{1}{32} = \log_2 x;$$

B)
$$3\log_1 x = \log_1 9 + \log_1 3$$
;

r)
$$4 \log_{0.1}^{\overline{7}} x = \log_{0.1}^{\overline{7}} 2 + \log_{0.1}^{\overline{7}} 8$$
.

O17.17. a)
$$\log_3(x-2) + \log_3(x+2) = \log_3(2x-1)$$
;

6)
$$\log_{11}(x+4) + \log_{11}(x-7) = \log_{11}(7-x);$$

B)
$$\log_{0.6}(x+3) + \log_{0.6}(x-3) = \log_{0.6}(2x-1)$$
;

r)
$$\log_{0,4}(x + 2) + \log_{0,4}(x + 3) = \log_{0,4}(-2x)$$
.

O17.18. a)
$$\log_{23}(2x-1) - \log_{23}x = 0$$
;

6)
$$\log_{0.5}(4x-1) - \log_{0.5}(7x-3) = 1$$
;

B)
$$\log_{3.4}(x^2 - 5x + 8) - \log_{3.4}x = 0$$
;

r)
$$\log_{\frac{1}{2}}(x+9) - \log_{\frac{1}{2}}(8-3x) = 2.$$

Решите уравнение:

O17.19. a)
$$\log_2(x-3)(x+5) + \log_2\frac{x-3}{x+5} = 2;$$

6)
$$\log_3(x+3)(x+5) + \log_3\frac{x+3}{x+5} = 4$$
.

$$\bigcirc$$
17.20. a) $\lg (x-1)^3 - 3 \lg (x-3) = \lg 8;$

6)
$$\lg (x + 1)^5 - 5 \lg (x - 1) = \lg 32$$
.

O17.21. a)
$$\log_2(x^3 - 1) - \log_2(x^2 + x + 1) = 4$$
;

6)
$$\log_{0.5}(x^6 - 6x^4 + 12x^2 - 8) = -3$$
;

B)
$$\log_{0.3}(x^3 + 27) - \log_{0.3}(x^2 - 3x + 9) = -1$$
;

r)
$$\log_{5}(x^{6} + 9x^{4} + 27x^{2} + 27) = 3$$
.

O17.22. a)
$$\log_2^2 x - 4 \log_2 x + 3 = 0$$
;

6)
$$\log_4^2 x - \log_4 x - 2 = 0$$
;

B)
$$\log_{\frac{1}{4}}^2 x + 3 \log_{\frac{1}{4}} x + 2 = 0$$
;

r)
$$\log_{0.2}^2 x + \log_{0.2} x - 6 = 0$$
.

O17.23. a)
$$2 \log_{\epsilon}^{2} x + 5 \log_{\epsilon} x + 2 = 0$$
:

6)
$$3 \log_{+}^{2} x - 7 \log_{+} x + 2 = 0$$
:

B)
$$2 \log_{0.3}^2 x - 7 \log_{0.3} x - 4 = 0$$
;

r)
$$3\log_{0.5}^2 x + 5\log_{0.5} x - 2 = 0$$
.

O17.24. a)
$$\lg^2 x - \lg x + 1 = \frac{9}{\lg 10x}$$
;

6)
$$\log_3^2 x + 3 \log_3 x + 9 = \frac{37}{\log_3 \frac{x}{27}}$$

B)
$$\lg^2 x - 2 \lg x + 4 = \frac{9}{\lg 100x}$$
;

r)
$$\log_2^2 x + 7 \log_2 x + 49 = \frac{-218}{\log_2 \frac{x}{128}}$$
.

O17.25. a)
$$\lg 100x \cdot \lg x = -1$$
;

6)
$$\lg^2 10x + \lg 10x = 6 - 3 \lg \frac{1}{x}$$
;

B)
$$2 \lg x^2 - \lg^2(-x) = 4$$
;

r)
$$\lg^2 x^3 + \lg x^2 = 40$$
.

O17.26. a)
$$\frac{\log_2 x + 5}{\log_2 x - 1} + 1 = 0;$$
 B) $\frac{9 \log_{0.5} x + 14}{3 - 2 \log_{0.5} x} - 1 = 0;$

6)
$$\frac{7\log_3 x - 15}{5\log_3 x + 3} + 1 = 0;$$
 r) $\frac{-19\lg x + 20}{4 - 5\lg x} - 4 = 0.$

O17.27. a)
$$\frac{1}{\log_2 x - 3} + \frac{4}{\log_2 x + 1} = \frac{4}{\log_2^2 x - 2\log_2 x - 3}$$
;

6)
$$\frac{\log_3 x}{2\log_3 x - 6} + \frac{9}{9 - \log_2^2 x} = \frac{8}{2\log_3 x + 6}$$
;

B)
$$\frac{1}{5-4 \lg x} + \frac{4}{1+\lg x} = 3;$$

r)
$$\frac{-4}{2 \lg x - \lg^2 x} + \frac{2}{2 - \lg x} = \frac{1}{2}$$
.

O17.28. a)
$$\log_4 x + \log_{16} x + \log_2 x = 7$$
;

6)
$$\log_3 x + \log_{\sqrt{3}} x + \log_{\frac{1}{3}} x = 6$$
.

O17.29. a)
$$\log_3 x + 1 = 2 \log_x 3$$
;

B)
$$\log_7 x - 1 = 6 \log_x 7$$
;

6)
$$2 \log_x 5 - 3 = -\log_5 x$$
; r) $\log_2 x + 9 \log_x 2 = 10$.

$$\log_2 x + 9 \log_x 2 = 10.$$

O17.30. a)
$$\log_x 2 \cdot \log_{2x} 2 = \log_{4x} 2$$
; 6) $\log_4 (x+2) \cdot \log_x 2 = 1$.

6)
$$\log_4(x + 2) \cdot \log_x 2 = 1$$
.

O17.31. a)
$$\log_{0.5}^2 4x + \log_2 \frac{x^2}{8} = 8;$$

6)
$$\log_3^2 x + \log_9^2 x + \log_{27}^2 x = \frac{49}{9}$$
.

O17.32. a)
$$1 + \log_x \frac{4-x}{10} = (\lg x^2 - 1) \log_x 10;$$

6)
$$1 + 2 \log_x 2 \cdot \log_4 (10 - x) = \frac{2}{\log_4 x}$$
.

$$017.33. a) x^{\log_3 x} = 81;$$

B)
$$x^{\log_2 x} = 16$$
:

6)
$$x^{\log_{0.5} x} = \frac{1}{16}$$
;

$$r) x^{\log_{\frac{1}{3}}x} = \frac{1}{81}.$$

Решите уравнение:

O17.34. a)
$$x^{\log x-2} = 1000;$$

B)
$$x^{5 + \log_2 x} = \frac{1}{16};$$

6)
$$x^{\log_{0.5} x - 2} = 0.125$$
; r) $x^{\log_1 x - 4} = 27$.

$$x^{\log_1 x - 4} = 27$$

O17.35. a)
$$10x^{\lg x} + x^{-\lg x} = 11$$
;

O17.35. a)
$$10x^{\log x} + x^{-\log x} = 11;$$
 6) $x^{\log_2 x} + 32x^{-\log_2 x} = 3^{2 + \log_3 2}.$

O17.36. a)
$$6^{\log_6^2 x} + x^{\log_6 x} = 12$$
; 6) $10^{\log^2 x} + 9x^{\log x} = 1000$.

$$6) \ 10^{\lg^2 x} + 9x^{\lg x} = 1000$$

$$017.37.$$
 a) $\log_5(6-5^x)=1-x$;

O17.37. a)
$$\log_5(6-5^x) = 1-x$$
; 6) $\log_3(4\cdot 3^{x-1}-1) = 2x-1$.

O17.38. a)
$$\log_9(3^x + 2x - 20) = x - x \log_9 3$$
;

6)
$$0.4^{\lg^2 x - 1} = 6.25^{-2 - \lg x^2}$$
.

•17.39. a)
$$x^2 \log_{36} (5x^2 - 2x - 3) - x \log_{\frac{1}{6}} \sqrt{5x^2 - 2x - 3} = x^2 + x;$$

6)
$$x^2 \log_2 \frac{3+x}{10} - x^2 \log_{\frac{1}{2}} (2+3x) = x^2 - 4 + 2 \log_{\sqrt{2}} \frac{3x^2 + 11x + 6}{10}$$
.

Решите систему уравнений:

O17.40. a)
$$\begin{cases} \log_2(x^2 + 3x - 2) - \log_2 y = 1, \\ 3x - y = 2; \end{cases}$$

6)
$$\begin{cases} 2x + y = 7, \\ \log_3(x^2 + 4x - 3) - \log_3 y = 1. \end{cases}$$

O17.41. a)
$$\begin{cases} \log_5(x+y) = 1, \\ \log_6 x + \log_6 y = 1; \end{cases}$$

6)
$$\begin{cases} \log_{0.5}(x+2y) = \log_{0.5}(3x+y), \\ \log_7(x^2-y) = \log_7 x; \end{cases}$$

$$\begin{cases} \log_9(x-y) = \frac{1}{2}, \\ \log_{64} x - \log_{64} y = \frac{1}{3}; \end{cases}$$

r)
$$\begin{cases} \log_{\frac{1}{3}}(3x - y) = \log_{\frac{1}{3}}(x + 4), \\ \log_{9}(x^{2} + x - y) = \log_{9}x^{2}. \end{cases}$$

O17.42. a)
$$\begin{cases} 2^x \cdot 2^y = 16, \\ \log_3 x + \log_3 y = 1; \end{cases}$$
 B)
$$\begin{cases} 9^x \cdot 3^y = 81, \\ \log_2 x + \log_2 y = 1; \end{cases}$$

B)
$$\begin{cases} 9^{x} \cdot 3^{y} = 81, \\ \log_{2} x + \log_{2} y = 1; \end{cases}$$

6)
$$\begin{cases} \left(\frac{1}{3}\right)^{2x} \cdot \left(\frac{1}{3}\right)^{-y} = \frac{1}{27}, \\ \log_2 2x - \log_2 y = 2 \end{cases}$$

6)
$$\begin{cases} \left(\frac{1}{3}\right)^{2x} \cdot \left(\frac{1}{3}\right)^{-y} = \frac{1}{27}, \\ \log_2 2x - \log_2 y = 2; \end{cases}$$
 r)
$$\begin{cases} \left(\frac{1}{2}\right)^x \cdot \left(\sqrt{2}\right)^y = \log_9 3, \\ \log_4 y - \log_4 x = 1. \end{cases}$$

•17.43. Решите уравнение

$$\log_x (3x - \sqrt{18}) + \log_{x^2} (6 + x\sqrt{72} + 3x^2) = \frac{\lg 27x^2}{\lg x^2}.$$

§ 18. Логарифмические неравенства

Решите неравенство:

18.1. a)
$$\log_2 x \ge 4$$
;

B)
$$\log_2 x < \frac{1}{2}$$
;

6)
$$\log_{\frac{1}{2}} x > -3;$$

r)
$$\log_{0,1} x \leq -\frac{1}{2}$$
.

18.2. a)
$$\log_5(3x + 1) < 2$$
;

B)
$$\log_{\frac{2}{3}} \frac{x}{5} > 1$$
;

6)
$$\log_{0,5} \frac{x}{3} \ge -2;$$

r)
$$\log_{\sqrt{3}}(2x-3) < 4$$
.

18.3. a) $\log_3 x > \log_3 72 - \log_3 8$;

6)
$$3\log_{\frac{1}{7}}x < \log_{\frac{1}{7}}9 + \log_{\frac{1}{7}}3;$$

B)
$$\log_5 x - \log_5 35 \le \log_5 \frac{1}{7}$$
;

r)
$$4 \log_{0.6} x \ge \log_{0.6} 8 + \log_{0.6} 2$$
.

Решите неравенство:

O18.4. a)
$$\log_5 x > \log_5 (3x - 4);$$
 b) $\log_{\frac{1}{3}} (5x - 9) \ge \log_{\frac{1}{3}} 4x;$

6)
$$\log_{0.6}(2x-1) < \log_{0.6}x$$
; r) $\log_3(8-6x) \le \log_3 2x$.

$$018.5.$$
 a) $\log_2(5x - 9) \le \log_2(3x + 1)$;

6)
$$\log_{0,4}(12x + 2) \ge \log_{0,4}(10x + 16)$$
;

B)
$$\log_{2}(-x) > \log_{2}(4-2x);$$

r)
$$\log_{2.5}(6-x) < \log_{2.5}(4-3x)$$
.

O18.6. a)
$$\log_{\sqrt{2}-1}(7x-21) \leq \log_{\sqrt{2}-1}(21-3x);$$

6)
$$\log_{\sqrt{2}+1}(2x+7) > \log_{\sqrt{2}+1}(19-6x)$$
;

B)
$$\log_{\pi}(5x - 15) \ge \log_{\pi}(15 - 3x)$$
;

r)
$$\log_{2-\sqrt{3}}(4x+17) < \log_{2-\sqrt{3}}(25-5x)$$
.

018.7. Найдите наибольшее целое решение неравенства:

a)
$$\log_7 (6x - 9) < \log_7 (2x + 3)$$
;

6)
$$\log_{\frac{1}{5}}(2-x) \ge \log_{\frac{1}{5}}(2x+4);$$

B)
$$\lg (8x - 16) < \lg (3x + 1)$$
;

r)
$$\log_{0.4}(7-x) \ge \log_{0.4}(3x+6)$$
.

O18.8. a)
$$\log_3(x^2 + 6) < \log_3 5x$$
;

6)
$$\log_{0.6}(6x - x^2) > \log_{0.6}(-8 - x);$$

B)
$$\lg (x^2 - 8) \le \lg (2 - 9x);$$

r)
$$\log_{\sqrt{2}}(x^2 + 10x) \ge \log_{\sqrt{2}}(x - 14)$$
.

O18.9. a)
$$\log_{\pi-3} (6-x) \ge \log_{\pi-3} x^2$$
;

6)
$$\log_{\pi-2}(x^2+22) < \log_{\pi-2}13x;$$

B)
$$\log_{3-0.5\pi}(-x-6) \leq \log_{3-0.5\pi}(6-x^2);$$

r)
$$\log_{3.2-\pi}(x^2-27) > \log_{3.2-\pi}6x$$
.

O18.10. a)
$$\log_2 \frac{4-x}{x-2} \le \log_2 \frac{1}{x-2}$$
;

6)
$$\log_{0.5} \frac{7}{3x-2} > \log_{0.5} \frac{4x}{3x-2}$$
.

O18.11. a)
$$\log_8(x^2 - 7x) > 1$$
; B) $\log_2(x^2 - 6x + 24) < 4$;

$$\log_2(x^2-6x+24)<4$$

6)
$$\log_{\frac{1}{2}}(x^2 + 0.5x) \le$$

6)
$$\log_{\frac{1}{2}}(x^2 + 0.5x) \le 1;$$
 r) $\log_{\frac{1}{3}}\left(-x^2 + \frac{10}{9}x\right) \ge 2.$

O18.12. a)
$$\log_{\frac{1}{2}} \frac{3x-2}{2x-3} > -1;$$

B)
$$\log_6 \frac{7x-4}{x+2} \le 0$$
;

6)
$$\log_5(2\sqrt[3]{x^2} - 3\sqrt[3]{x}) < 1;$$
 r) $\log_{0.1}(7x^2 - x^4) > -1.$

$$\Gamma) \log_{0.1}(7x^2 - x^4) > -1.$$

О18.13. Сколько целочисленных решений имеет неравенство:

a)
$$\log_{12}(x^2 - x) \leq 1$$
;

6)
$$\log_{\frac{1}{2}}(x^2 - 10x + 9) \ge 0;$$

B)
$$\log_{9}(x^{2} - 8x) \leq 1$$
;

r)
$$\log_{0.3}(-x^2 + 7x - 5) < 0$$
?

O18.14. a)
$$\log_{\frac{1}{3}} x + \log_{\frac{1}{3}} (4 - x) > -1;$$

6)
$$\log_2(7-x) + \log_2 x \ge 1 + \log_2 3$$
;

B)
$$\lg (7 - x) + \lg x > 1$$
;

r)
$$\log_{\frac{1}{2}} x + \log_{\frac{1}{2}} (10 - x) \ge -1 + \log_{\frac{1}{2}} 4.5.$$

O18.15. a)
$$\lg (x + 3) + \lg (2x - 8) < 2 \lg x$$
;

6)
$$\log_{0.5}(3x-1) - \log_{0.5}(x-1) < \log_{0.5}(x+18) - \log_{0.5}(x+2);$$

B)
$$\log_3(2x-7) \ge 2\log_3(x+1) - \log_3(x-19)$$
;

r)
$$\log_{\frac{1}{3}}(2x+3) + \log_{\frac{1}{3}}(x-2) \ge \frac{1}{2}\log_{\frac{1}{3}}x^2 + \log_{\frac{1}{3}}(4x-9)$$
.

O18.16. a)
$$\log_2(x^2 + 2x + 4) + \log_2(x - 2) < \log_2(x^3 - x^2 + 4x - 3)$$
;

6)
$$\lg (x^3 - x^2 - x + 20) \ge \lg (x + 2) + \lg (x^2 - 2x + 4)$$
.

O18.17. a)
$$\log_2^2 x > 4 \log_2 x - 3$$
; B) $\log_2^2 x - \log_4 x \le 2$;

$$B) \log_4^2 x - \log_4 x \leq 2;$$

6)
$$\log_{\frac{1}{2}}^2 x + 3 \log_{\frac{1}{2}} x < -2;$$
 r) $\log_{0,2}^2 x \ge 6 - \log_{0,2} x.$

r)
$$\log_{0,2}^2 x \ge 6 - \log_{0,2} x$$

O18.18. a)
$$2 \log_{0.3}^2 (x+1) - 7 \log_{0.3} (x+1) - 4 \le 0$$
;

6)
$$3 \log_4^2 x - 7 \log_4 16x + 30 < 0$$
;

B)
$$3 \log_{\frac{1}{3}}^{2} (2x + 1) + 5 \log_{\frac{1}{3}} (2x + 1) - 2 > 0;$$

r)
$$\log_3^2 x + 3 \log_3 9x - 24 < 0$$
.

O18.19. a)
$$\log_2^2 x^2 - 15 \log_2 2x + 11 \le 0$$
;

6)
$$\log_{\frac{1}{3}}^2(x^2-2x+1)-7\log_{\frac{1}{3}}(x-1)+3 \le 0;$$

B)
$$2 \log_5^2 x^2 + 5 \log_5 25x - 8 \ge 0$$
;

r)
$$\log_{\frac{1}{5}}^2(x^2+2x+1)-31\log_{\frac{1}{5}}\frac{x+1}{5}+15<0.$$

O18.20. a)
$$\log_2^2 (5-x) - 2 \log_2 (5-x)^3 + 9 \le 0$$
;

6)
$$\log_{\frac{1}{2}}^{2}(4-x)+5\log_{\frac{1}{2}}(4-x)^{2}+25 \leq 0;$$

B)
$$\log_{\frac{1}{3}}^2(x-1)+3 \ge -\frac{4}{5}\log_{\frac{1}{3}}(x-1)^5$$
;

r)
$$\log_3^2(x+5) \le 0.5 \log_3(x+5)^4 + 3$$
.

O18.21. a)
$$\frac{1 - \log_4 x}{1 + 2 \log_4 x} \le \frac{1}{2}$$
;

6)
$$\frac{3\log_{0.5}x}{2-\log_{0.5}x} \ge 2\log_{0.5}x + 1;$$

B)
$$\left(\log_{\frac{1}{2}}x + 2\right)\left(2 - \log_{\frac{1}{2}}x\right) < \log_{\frac{1}{2}}\frac{x^3}{64}$$
;

$$\Gamma) \ \frac{\log_{0,2} x + 3}{\log_{-1} x - 3} \leqslant \frac{1}{3}.$$

Решите неравенство:

O18.22. a)
$$\frac{1}{\log_2 x - 4} > \frac{1}{\log_2 x}$$
; B) $\frac{4}{\lg 10x} - \frac{5}{\lg 100x} \ge 0$;

6)
$$\frac{1}{1 - \lg x} < \frac{2 \lg x - 5}{1 + \lg x};$$
 r) $2 + \frac{\log_2^2 x}{1 + \log_2 x} > \log_2 x.$

O18.23. a)
$$2\log_{\sqrt{2}} 2 + \log_{\sqrt{2}} \left(2^{x^2-1} - \frac{1}{4}\right) < \log_{\sqrt{2}} 31;$$

$$6) \ \log_{\frac{1}{\sqrt{3}}} \left(3^{x^2 - 4} - \frac{1}{9} \right) + 2 \log_{\frac{1}{\sqrt{3}}} 3 \ge \log_{\frac{1}{\sqrt{3}}} 80.$$

O18.24. a)
$$\log_{\frac{1}{3}}(13+x) < 2\log_{\frac{1}{3}}(\sqrt{x+1}+2);$$

6)
$$2\log_{12}(\sqrt{x+5}+1) < \log_{12}(x+10)$$
.

O18.25. a)
$$-\frac{1}{4} \log_{\frac{1}{\sqrt{7}}} (7x + 5) \ge \log_{49} (3x - 1);$$

6)
$$3\log_8(2x-1)-2\log_{0.25}(x+2) \le 0.5\log_{10}3$$
;

B)
$$\log_{\sqrt{5}} \sqrt{10 + x} + \log_{0,2} (2x - 4) > 0$$
;

r)
$$\frac{3}{2}\log_{7\sqrt{7}}(4x+17) - \log_7(25-5x) < \log_{\frac{1}{7}}0,5.$$

О18.26. Сколько целочисленных решений имеет неравенство:

a)
$$\log_2 \frac{1}{6-x} \le \log_{0.5} x^2$$
;

6)
$$0.25 \log_{\sqrt{3}}(x+6) \leq \log_3(6-x^2);$$

B)
$$0.5 \log_{\sqrt{2}}(x^2 - 6x + 24) \le \log_8(2x + 9)^3$$
;

r)
$$\log_3\left(-x^2 + \frac{10x}{9}\right)^{-1} + \log_{\frac{1}{3}}9 \ge 0$$
?

О18.27. Найдите наибольшее целое решение неравенства:

a)
$$2\log_5(\sqrt{12-x}+1) > \log_{\frac{1}{5}}\frac{1}{15-x}$$
;

6)
$$2\log_{0.5}\sqrt{2x+1} - \log_{0.5}(4-x) < \log_2 3^{\frac{1}{2}-\log_4 2}$$
.

018.28. Найдите наибольшее целое решение неравенства:

a)
$$\log_4(\sqrt{x}-1) + \log_{\frac{1}{4}}(\sqrt{x}+1) < \log_{\frac{1}{4}}(\sqrt{x}+2);$$

6)
$$\log_{\pi}(\sqrt[3]{x} - 5) + \log_{\frac{1}{2}}(\sqrt[3]{x} + 1) < \log_{\frac{1}{2}}\frac{1}{3} - \log_{\pi}(\sqrt[3]{x} + 1).$$

O18.29. a)
$$\log_{5x-1} 2 \leq 0$$
;

B)
$$\log_{2-3x} 5 > 0$$
;

6)
$$\log_{3r+4} 0.2 > 0$$
;

r)
$$\log_{5-x} 0.3 \le 0.$$

O18.30. a)
$$\log_{3r-1} 16 < 2$$
;

6)
$$\log_{x-2} 27 < 3$$
.

O18.31. a)
$$\log_{x} \sqrt{21-4x} > 1$$
;

6)
$$\log_x \frac{x+3}{x-1} > 1$$
.

O18.32. a)
$$\log_{x-2}(2x-3) > \log_{x-2}(24-6x);$$

6)
$$\log_{2x-1}(3x-5) < \log_{2x-1}(15-7x)$$
.

•18.33. a)
$$\log_{\cos x} \frac{\sqrt{3}}{2} \ge 1$$
;

$$B) \log_{\sin x} \frac{1}{2} \geqslant 1;$$

6)
$$\log_{\sin x} 1 \leq 2$$
;

r)
$$\log_{\cos x} \frac{1}{2} \leq 2$$
.

•18.34. a)
$$\log_{\frac{1}{2}} \log_{\frac{1}{3}} \left(\frac{1}{27} + \frac{2 \sin x}{27} \right) < -1;$$

6)
$$\log_3 \log_4 (96 + 64 \cos x) \ge 1$$
.

•18.35. a)
$$\log_{x^2-3} 729 > 3$$
;

B)
$$\log_{\frac{x-1}{2}} 0.3 > 0;$$

6)
$$\log_{10-x^2}\left(\frac{16}{5}x-x^2\right)<1;$$
 r) $\log_{4-x}(x^2-10)<2.$

r)
$$\log_{4-x}(x^2-10)<2$$
.

O18.36. a)
$$\log_2 x + 1 \ge 2 \log_x 2$$
;

6)
$$2 \log_{x} 5 - 3 \leq -\log_{5} x$$
.

18.37. a)
$$\log_4(x+12) \cdot \log_x 2 \le 1$$
;

6)
$$1 + \log_x 5 \cdot \log_7 x > \log_5 35 \cdot \log_x 5$$
.

18.38. a)
$$\log_9 x^2 + \log_3^2 (-x) < 2$$
; 6) $\log_4 x^2 + \log_2^2 (-x) > 6$.

$$6) \log_4 x^2 + \log_2^2 (-x) > 6$$

●18.39. a)
$$\log_x 2 \cdot \log_{2x} 2 \cdot \log_2 4x > 1$$
;
6) $\log_x 5 \cdot \log_{5x} 5 \cdot \log_5 625x < 1$.

Решите систему неравенств:

O18.40. a)
$$\begin{cases} \log_{0,2}(2x+3) < \log_{0,2}(x-2), \\ \log_{6}(3x-1) \le \log_{6}(9x+4); \end{cases}$$

6)
$$\begin{cases} \log_7 (6x-1) \leq \log_7 (9x+11), \\ \log_{0,5} (3-x) < \log_{0,5} (4x-1). \end{cases}$$

O18.41. a) $\begin{cases} \log_3 x^2 > \log_3 125 - \log_3 5, \\ \log_{0,2} (x-1) < 0; \end{cases}$

$$\log_{0,2}(x-1) < 0,$$

$$\log_{\frac{1}{2}} x^2 \ge \log_{\frac{1}{2}} 28 - \log_{\frac{1}{2}} 7,$$

$$\log_{3}(4x-1) > 0.$$

O18.42. a)
$$\begin{cases} \log_{0,1}(x^2 - 12) < \log_{0,1}(-x), \\ 2^{x-1} > \frac{1}{8}; \end{cases}$$

$$6) \begin{cases} 3^{x^2-5x-4} < 9, \\ \log_{\frac{\pi}{2}}(x^2+3) \ge \log_{\frac{1}{2}}4x. \end{cases}$$

O18.43. a)
$$(4x - 1) \log_2 x \ge 0$$
; 6) $(x + 2) \log_{1.5} (4 - x) \ge 0$.

O18.44. a)
$$(4x^2 - 16x + 7) \log_2(x - 3) > 0;$$
 6) $\frac{\log_{0.3}(x - 1)}{\sqrt{5x - x^2}} \le 0.$

O18.45. a)
$$\log_{0.5} \left(\log_2 \left(\log_{\frac{1}{3}} \frac{1}{x} \right) \right) > 0;$$

6)
$$\log_2\left(\log_{\frac{1}{3}}\left(\frac{3x-1}{x+1}\right)\right) > 0;$$

B)
$$\log_{0,2} \left(\log_{0,3} \left(\log_{0,4} \frac{1}{x+1} \right) \right) < 0;$$

r)
$$\log_{\frac{1}{2}} \left(\log_{8} \left(\frac{x^{2} - 2x}{x - 3} \right) \right) < 0.$$

Решите неравенство:

•18.46. a)
$$\log_{5x-4x^2}(4^{-x}) > 0$$
;

6)
$$\log_{-5x^2-6x}(6^x) > 0$$
.

•18.47. a)
$$\frac{\log_5(2x-3) - \lg(2x-3)}{\lg x - \log_{20} x} \ge \log_5 20;$$

6)
$$\frac{\log_4(2-x)-\log_6(2-x)}{\log_6 x-\log_6 x} \le \log_4 9.$$

§ 19. Дифференцирование показательной и логарифмической функций

Постройте график функции: 19.1.

a)
$$y = e^{x+4}$$
;

B)
$$y = e^{x-3}$$
;

6)
$$y = e^{-x} + 1$$
;

r)
$$y = e^{x-2} - 3$$
.

Найдите производную функции:

19.2. a)
$$f(x) = 4 - e^x$$
;

$$B) f(x) = e^x - 19;$$

6)
$$f(x) = 13e^x$$
;

$$\Gamma) f(x) = -8e^x.$$

19.3. a)
$$f(x) = x^3 e^x$$
;

$$f(x) = x^2 e^x;$$

$$f(x) = \frac{e^x}{x};$$

r)
$$f(x) = \frac{e^x}{x^3}$$
.
B) $f(x) = e^{\sqrt{x}}$:

19.4. a)
$$f(x) = e^{\sin x}$$
;

B)
$$f(x) = e^{x}$$
;

6)
$$f(x) = xe^{x^2-2x+3}$$
:

$$r) f(x) = \sqrt{e^{2x} + x}.$$

Найдите значение производной заданной функции в указанной точке x_0 :

19.5. a)
$$y = e^x + x^2$$
, $x_0 = 0$;

B)
$$y = e^x - x$$
, $x_0 = 1$;

6)
$$y = e^x(x + 1), x_0 = -1;$$

6)
$$y = e^x(x + 1)$$
, $x_0 = -1$; $y = \frac{e^x}{x + 1}$, $x_0 = 0$.

19.6. a)
$$y = e^{3x-1}$$
, $x_0 = \frac{1}{3}$;

B)
$$y = e^{4-9x}, x_0 = \frac{4}{9};$$

6)
$$y = 3e^{6+x}$$
, $x_0 = -5$;

r)
$$y = e^{0.5x-3}$$
, $x_0 = 4$.

019.7. Найдите угловой коэффициент касательной к графику функции y = f(x) в точке с абсциссой x_0 :

a)
$$f(x) = 4e^x + 3$$
, $x_0 = -2$;

6)
$$f(x) = \sqrt[3]{x} \cdot e^x$$
, $x_0 = 1$;

B)
$$f(x) = 0.1e^x - 10x$$
, $x_0 = 0$;

r)
$$f(x) = \frac{\sqrt{x}}{e^x}, x_0 = 1.$$

019.8. Найдите тангенс угла наклона касательной к графику функции y = h(x) в точке с абсциссой x_0 :

a)
$$h(x) = \left(\frac{1}{e}\right)^x$$
, $x_0 = 0$; B) $h(x) = \frac{1}{e^x} + x^5$, $x_0 = -1$;

6)
$$h(x) = e^{-x+2}$$
, $x_0 = 2$; r) $h(x) = x + e^{2x-3}$, $x_0 = 1.5$.

019.9. Найдите угол, образованный касательной к графику функции y = h(x) в точке с абсциссой x_0 с положительным направлением оси абсцисс:

a)
$$h(x) = \frac{1}{5}e^{5x-1}$$
, $x_0 = 0,2$;

6)
$$h(x) = e^{-x + \sqrt{3}}, x_0 = \sqrt{3};$$

B)
$$h(x) = \frac{1}{3}e^{1-3x}, \quad x_0 = \frac{1}{3};$$

r)
$$h(x) = e^{\frac{\sqrt{3}}{3}x-1}, x_0 = \sqrt{3}.$$

O19.10. Решите уравнение f'(x) = a, если:

a)
$$f(x) = 3e^{x+4}$$
, $a = \frac{3}{e}$;

6)
$$f(x) = 2 + \frac{1}{3}e^{-6x-13}$$
, $a = -2$;

B)
$$f(x) = 2e^{-7x+9}$$
, $a = -14$;

r)
$$f(x) = 42 - e^{0.1x-4}$$
, $a = 0.1$.

О19.11. Решите неравенство g'(x) < a, если:

a)
$$g(x) = 6 - \frac{1}{2}e^{2x-3}$$
, $a = \frac{1}{e^3}$;

6)
$$g(x) = x + e^{4x-3}$$
, $a = 5$;

B)
$$g(x) = \frac{1}{3}e^{3x+5}$$
, $a = \frac{1}{e}$;

r)
$$g(x) = e^{9x+21} - x$$
, $a = 8$.

О19.12. Напишите уравнение касательной к графику функции y = f(x) в точке с абсциссой x = a:

a)
$$y = e^x$$
, $a = 1$; B) $y =$

a)
$$y = e^x$$
, $a = 1$;
b) $y = e^x$, $a = 0$;
c) $y = e^x$, $a = 2$;
r) $y = e^x$, $a = -1$.

019.13.	Напишите	уравнение	касательной	к	графику	функции
	y = f(x) B	точке с або	ециссой $x =$	a:		

a)
$$y = e^{3x-1}$$
, $a = \frac{1}{3}$; B) $y = \frac{2}{e^x}$, $a = 0$;

B)
$$y = \frac{2}{e^x}, a = 0$$

6)
$$y = xe^{-2x+1}$$
, $a = 0.5$; r) $y = \frac{e^x}{x+1}$, $a = 0$.

r)
$$y = \frac{e^x}{x+1}$$
, $a = 0$.

019.14. Является ли заданная прямая касательной к графику заданной функции в указанной точке:

a)
$$y = 3e^2x - 3e^2$$
; $y = e^{3x-1} - e^2$; $x = 1$;

6)
$$y = x + e$$
; $y = xe^x$; $x = 0$?

О19.15. Напишите уравнение касательной к графику функции y = f(x) в точке с абсциссой x = a:

a)
$$y = xe^{2x-1}$$
, $a = \frac{1}{2}$;

6)
$$y = (2x + 1)e^{1-2x}$$
, $a = \frac{1}{2}$.

- О19.16. а) Напишите уравнение той касательной к графику функции $y = e^{2x}$, которая параллельна прямой y = 2ex - 5.
 - б) Докажите, что касательная к графику функции $y = e^{x^3 - x}$ в точке x = 1 параллельна прямой y = 2x + 3.
- 019.17. Запишите уравнение прямой, которая проходит через начало координат и является касательной к графику функции:

a)
$$y = e^{\frac{x}{2}}$$
; 6) $y = e^{\frac{x}{3}}$.

Исследуйте функцию на монотонность и найдите точки экстремума:

O19.18. a)
$$y = x^2 e^x$$
; b) $y = x$

O19.18. a)
$$y = x^2 e^x$$
; 6) $y = x e^{2x-4}$; B) $y = x^3 e^x$; r) $y = \frac{e^x}{x}$.

O19.19. a)
$$y = e^{2x} - 3e^x + x + 4$$
; 6) $y = 1 - 3x + 5e^x - e^{2x}$

6)
$$y = 1 - 3x + 5e^x - e^{2x}$$
.

019.20. Найдите наименьшее и наибольшее значения функции $y = x^2 e^x$ на заданном отрезке:

- ●19.21. При каких значениях параметра a функция $u = x^6 e^{-x}$ на интервале (a; a + 7):
 - а) имеет ровно одну точку экстремума; б) имеет ровно две точки экстремума; в) убывает; г) возрастает?
- О19.22. Постройте график функции:

a)
$$y = \ln(x - 4);$$

$$\mathbf{B}) \ y = \ln (x + 3);$$

б)
$$y = \ln ex$$

6)
$$y = \ln ex$$
; $r) y = \ln \frac{x}{e}$.

Найдите производную функции:

19.23. a)
$$y = x^2 \ln x$$
;

$$y = \frac{x}{\ln x};$$

$$6) y = \frac{\ln x}{x+1};$$

$$\Gamma) y = (x - 5) \ln x.$$

19.24. a)
$$u = e^x \ln x$$
:

$$\mathbf{B}) \ y = \sqrt[7]{x^5} \ln x;$$

$$6) y = 3 \ln x + \sin 2x;$$

$$\Gamma) y = 2\cos\frac{x}{2} - 5\ln x.$$

Найдите значение производной заданной функции в указанной точке:

19.25. a)
$$y = \ln x + x$$
, $x_0 = \frac{1}{7}$; B) $y = x^2 - \ln x$, $x_0 = 0.5$;

B)
$$y = x^2 - \ln x$$
, $x_0 = 0.5$

6)
$$y = x^3 \ln x$$
, $x_0 = e$; $y = \frac{\ln x}{x_0}$, $x_0 = 1$.

r)
$$y = \frac{\ln x}{x}, x_0 = 1$$

19.26. a)
$$y = \ln(2x + 2)$$
, $x_0 = -\frac{1}{4}$;

6)
$$y = \ln (5 - 2x), x_0 = 2;$$

B)
$$y = \ln(9 - 5x), x_0 = -2;$$

r)
$$y = -3 \ln (-x + 4)$$
, $x_0 = -5$.

Найдите производную функции:

19.27. a)
$$y = 2^x - \log_3(x - 1)$$
;

B)
$$y = 5^x - 7 \log_{\frac{1}{2}}(x + 1);$$

6)
$$y = 3^{-x} + 2 \log_{\frac{1}{2}} x;$$

r)
$$y = \left(\frac{1}{7}\right)^x + \log_5(x + 4)$$
.

19.28. a)
$$y = 7^x \ln(2x + 3)$$
;

B)
$$y = x^2 \log_{\frac{1}{2}} (3x - 1);$$

6)
$$y = \frac{\log_5(3x + 2)}{x^5}$$
;

r)
$$y = \frac{\ln(2x^2 - 1)}{3^x}$$
.

O19.29. a)
$$y = \log_{x}(x + 1)$$
;

6)
$$y = \log_{x-1} x^2$$
.

O19.30. a)
$$y = \ln\left(2x^3 - \frac{3}{x}\right)$$
;

$$B) y = \ln(2 \lg x + x);$$

6)
$$y = \ln^2(3x - 4);$$

$$r) y = \frac{1}{\sqrt[5]{\ln 2x}}.$$

- O19.31. а) Докажите, что функция $y = \sqrt{\ln x}$ удовлетворяет уравнению 2xyy' = 1.
 - б) Докажите, что функция $y = e^{\frac{1}{x}}$ удовлетворяет уравнению $y + x^2y' = 0$.
- O19.32. Составьте уравнение касательной к графику функции y = f(x) в точке с абсциссой x = a:
 - a) $f(x) = x^5 \ln x$, a = 1; B) $f(x) = -2x \ln x$, a = e;
- O19.33. Напишите уравнение той касательной к графику функции y = f(x), которая параллельна прямой y = kx + m:
 - a) $f(x) = \ln(3x + 2)$, y = x + 7;
 - 6) $f(x) = \ln(x^2 + x), y = 1.5x + 4.$
- О19.34. Запишите уравнение прямой, которая проходит через начало координат и является касательной к графику функции:
 - a) $y = \ln x$; 6) $y = \ln x^3$.
- **ullet19.35.** При каком значении параметра a:
 - а) прямая y = 3x 4 + a является касательной к графику функции $y = \ln(3x 4)$;
 - б) прямая y = 2x + 3 + a является касательной к графику функции $y = \ln(2x + 3)$?
- O19.36. Исследуйте функцию на монотонность и найдите точки экстремума:
 - a) $y = x + \ln \frac{1}{x}$; 6) $y = x^4 4 \ln x$.
- O19.37. Найдите наименьшее и наибольшее значения функции $y = x \ln x$ на заданном отрезке:
 - a) $\left[\frac{1}{e}; e\right]$; 6) $[e; e^2]$.
- O19.38. Исследуйте функцию на монотонность и найдите точки экстремума:
 - a) $y = 2 \ln x^3 5x + \frac{x^2}{2}$; 6) $y = \ln \frac{1}{x^3} + x^2 + x + 3$.

Найдите наименьшее и наибольшее значения заданной функции на заданном промежутке:

O19.39. a)
$$y = x + \ln(-x)$$
, $[-4; -0.5]$;
6) $y = x + e^{-x}$, $[-\ln 4; \ln 2]$.

O19.40. a)
$$y = 4 \cdot 2^{3x} - 27 \cdot 2^{2x} + 3 \cdot 2^{x+3}$$
, [-2; 0];
6) $y = 3^{3x} - 2 \cdot 3^{2x} + 9 \cdot 3^{x-2}$, [-1; 1].

O19.41. Найдите, если возможно, наименьшее и (или) наибольшее значение заданной функции на указанном промежутке:

a)
$$y = \ln x + x$$
; (0; 1]; 6) $y = \frac{e^x}{x}$; (0; 2).

Постройте график функции:

19.43. a)
$$y = x^2 e^x$$
; b) $y = x^3 e^x$.

19.44. a)
$$y = \ln(x^2 - 2x - 3)$$
; 6) $y = \ln(3 + 2x - x^2)$.

•19.45. На графике функции $y = x - \ln{(2x - 5)}$ выбирают произвольную точку M и соединяют с началом координат O. Строят прямоугольник, диагональю которого является отрезок OM, а две стороны расположены на осях координат. Найдите наименьшее значение периметра такого прямоугольника.

§ 20. Первообразная и неопределенный интеграл

Докажите, что функция y = F(x) является первообразной для функции y = f(x):

20.1. a)
$$F(x) = x^2 + x^3 + 3\sin x + 1$$
,

$$f(x) = 2x + 3x^2 + 3\cos x;$$

6)
$$F(x) = x^{11} + x^4 - 3 - 4\cos x$$
,

$$f(x) = 11x^{10} + 4x^3 + 4\sin x;$$

B)
$$F(x) = 7\sqrt[7]{x} + \frac{2}{\sqrt{x}}, \quad f(x) = \frac{\sqrt[14]{x^9} - 1}{x\sqrt{x}};$$

$$\Gamma) F(x) = e^{x^2 - 3x}, \quad f(x) = (2x - 3)e^{x^2 - 3x}.$$

20.2. a)
$$F(x) = -\frac{3}{x} + \frac{x^3}{3}$$
, $f(x) = \frac{3}{x^2} + x^2$;

6)
$$F(x) = \frac{4x^5 - 3x^4 + x^3 - 1}{2x}$$
,

$$f(x) = 8x^3 - 4.5x^2 + x + \frac{1}{2x^2};$$

B)
$$F(x) = \frac{5}{x} - \frac{x^5}{5}$$
, $f(x) = -\frac{5}{x^2} - x^4$;

r)
$$F(x) = \frac{5x^7 - 4x^5 + 2x}{x^2}$$
, $f(x) = 25x^4 - 12x^2 - \frac{2}{x^2}$.

20.3. a)
$$F(x) = 4\sqrt{x} + \lg x$$
, $f(x) = \frac{2}{\sqrt{x}} + \frac{1}{\cos^2 x}$;

6)
$$F(x) = 3 \cot x - \sqrt{x}$$
, $f(x) = -\frac{3}{\sin^2 x} - \frac{1}{2\sqrt{x}}$;

B)
$$F(x) = \ln(2x-1) - \frac{1}{2x-1}$$
, $f(x) = \frac{4x}{(2x-1)^2}$;

r)
$$F(x) = \frac{5}{3} \sqrt[5]{\sin^3 x}, \quad f(x) = \frac{\cos x}{\sqrt[5]{\sin^2 x}}.$$

Докажите, что функция y = F(x) является первообразной для функции y = f(x):

O20.4. a)
$$F(x) = \cos\left(4x - \frac{\pi}{9}\right) + 26$$
, $f(x) = -4\sin\left(4x - \frac{\pi}{9}\right)$;

6)
$$F(x) = \sin^3 x - 3$$
, $f(x) = 3\sin^2 x \cos x$;

B)
$$F(x) = \sqrt{x^2 + 3x} - \frac{6}{x}$$
, $f(x) = \frac{2x + 3}{2\sqrt{x^2 + 3x}} + \frac{6}{x^2}$;

r)
$$F(x) = \sqrt{5x^4 + 9x^2} + \sqrt{x}$$
, $f(x) = \frac{10x^3 + 9x}{\sqrt{5x^4 + 9x^2}} + \frac{1}{2\sqrt{x}}$.

O20.5. a)
$$F(x) = |x^2 - 1| - 3x$$
, $f(x) = 2x - 3$, $x \in (1; +\infty)$;

6)
$$F(x) = |x^2 - 1| + 8x$$
, $f(x) = -2x + 8$, $x \in (-1; 1)$;

B)
$$F(x) = |x^2 + 1| + |x - 3|$$
, $f(x) = 2x + 1$, $x \in (3; +\infty)$;

$$\Gamma) F(x) = |x^4 + 3x^2 + 1| + |x|,$$

$$f(x) = 4x^3 + 6x^2 - 1, x \in (-\infty; 0).$$

●20.6. а)
$$F(x) = \begin{cases} \frac{x^3}{3} + \frac{x^2}{2} - 4x + \frac{16}{3}, \text{ если } |x| > 2, \\ -\frac{x^3}{3} + \frac{x^2}{2} + 4x - \frac{16}{3}, \text{ если } |x| < 2, \end{cases}$$

$$f(x) = |x^2 - 4| + x;$$

б)
$$F(x) = egin{cases} rac{x^3}{3} - 3x^2 - 9x, \ ext{если} \ |x| > 3, \ -rac{x^3}{3} - 3x^2 + 9x - 36, \ ext{если} \ |x| < 3, \end{cases}$$

$$f(x) = |x^2 - 9| - 6x.$$

Установите, является ли функция y = F(x) первообразной для функции y = f(x) на промежутке X:

20.7. a)
$$F(x) = 3\cos x - x^6$$
, $f(x) = -3\sin x - 6x^5$, $X = R$;

6)
$$F(x) = -4\sin x + \frac{2}{r^3}$$
, $f(x) = 4\cos x - \frac{6}{r^2}$, $X = (0; +\infty)$;

B)
$$F(x) = 2\sqrt{x} - \frac{4}{(3x+1)^4}$$

$$f(x) = \frac{1}{\sqrt{x}} + \frac{16}{(3x+1)^5}, X = (0; +\infty);$$

r)
$$F(x) = \frac{13}{x^2} - 2\sin(4x + 5)$$
,

$$f(x) = \frac{26}{x} - 2\cos(4x + 5), X = (-\infty; 0).$$

Q20.8. a)
$$F(x) = |x|(x^3 - 4)$$
, $f(x) = -4x^3 - 4$, $X = (-\infty; 0)$;

6)
$$F(x) = |3x - 7| + |x + 2| - x^2$$
, $f(x) = -2x + 4$, $X = (3; +\infty)$.

©20.9. Установите, является ли функция y = F(x) первообразной для функции y = f(x):

a)
$$F(x) = \begin{cases} \frac{x^5}{5} + \frac{2}{3}x^3, \text{ если } x \geqslant 0, \\ -\frac{x^5}{5} - \frac{2}{3}x^3, \text{ если } x < 0, \end{cases}$$
 $f(x) = |x|(x^3 + 2x);$

6)
$$F(x) = \begin{cases} \frac{x^3}{3} + \frac{x^2}{2} - 25x + 83\frac{1}{3}, \text{ если } x < -5x \ge 5, \\ -\frac{x^3}{3} + \frac{x^2}{2} + 25x - 83\frac{1}{3}, \text{ если } |x| < 5, \end{cases}$$

$$f(x) = |x^2 - 25| + x.$$

20.10. Для функции y = f(x) найдите первообразную:

a)
$$f(x) = -\frac{1}{x^2}$$
; B) $f(x) = \frac{7}{x^2}$;

6)
$$f(x) = \frac{1}{2\sqrt{x}}$$
; r) $f(x) = \frac{6}{\sqrt{x}}$.

Для функции y = f(x) найдите первообразную:

20.11. a)
$$f(x) = x^2 + x^{16}$$
;

$$B) f(x) = x^{13} + x^{18};$$

6)
$$f(x) = \frac{1}{2\sqrt[3]{x}} - \frac{1}{x^2}$$
;

$$r) f(x) = \frac{4}{\sqrt[4]{x}} - \frac{2}{x\sqrt{x}}.$$

20.12. a)
$$f(x) = -3\sin x + 2\cos x$$
;

6)
$$f(x) = \frac{4}{\sin^2 x} - \frac{9}{\cos^2 x}$$
;

B)
$$f(x) = -4\cos x + \frac{2}{\sin^2 x}$$
;

r)
$$f(x) = -13\sin x + \frac{5}{\cos^2 x}$$
.

20.13. a)
$$f(x) = \sin\left(3x + \frac{\pi}{6}\right)$$
;

$$B) f(x) = \cos(4x - 3);$$

6)
$$f(x) = \frac{1}{2 - 5x}$$
;

r)
$$f(x) = 2^{3-\frac{x}{2}}$$
.

20.14. a)
$$f(x) = -\frac{1}{(6x+1)^2}$$
;

B)
$$f(x) = \frac{1}{(7x-3)^2}$$
;

6)
$$f(x) = \frac{1}{(8x-3)^2}$$
;

$$f(x) = -\frac{1}{(10x+2)^2}.$$

20.15. a)
$$f(x) = \frac{1}{\sqrt{7x-9}}$$
;

6)
$$f(x) = \frac{1}{\sqrt{42-3x}}$$
.

$$O20.16.$$
 a) $f(x) = \sin^2 x + \cos^2 x$;

$$B) f(x) = \sin x \cos x;$$

$$6) f(x) = 1 + tg^2 x;$$

$$f(x) = 2 + \operatorname{ct} g^2 2x.$$

O20.17. a)
$$f(x) = \sin x \cos 6x + \cos x \sin 6x$$
;

$$6) f(x) = \sin^2 5x;$$

B)
$$f(x) = \cos 6x \cos x + \sin 6x \sin x$$
;

$$\Gamma) f(x) = \sin 5x \cos x.$$

О20.18. Найдите функцию y = f(x), удовлетворяющую заданному условию (дифференциальному уравнению):

a)
$$y' = x^4 - 3x^2$$
;

B)
$$y' = x^{12} - 8x^7$$
;

6)
$$y' = \sin x + 1$$
;

$$\Gamma) \ u' = \cos x - 9.$$

O20.19. Найдите функцию y = f(x), удовлетворяющую заданному условию (дифференциальному уравнению):

a)
$$y' = \frac{13}{x^2} + x;$$
 B) $y' = \frac{4}{x^2} - 4x;$

6)
$$y' = -\frac{9}{x^2} + \sin x$$
; r) $y' = -\frac{5}{x^2} - \cos x$.

Для данной функции найдите ту первообразную, график которой проходит через данную точку M:

O20.20. a)
$$y = 3x^2 - 4x$$
, $M(2; 19)$;

6)
$$y = \frac{3}{x^2} + 1$$
, $M(-0.5; -3)$;

B)
$$y = 4x^3 + 3x^2$$
, $M(1; -12)$;

r)
$$y = 2x - \frac{5}{x^2}$$
, $M(\frac{1}{4}; 7)$.

O20.21. a)
$$y = \sin x$$
, $M(\frac{\pi}{3}; \frac{1}{4})$;

6)
$$y = \frac{5}{\cos^2 5x}, M(\frac{\pi}{4}; -1);$$

B)
$$y = \cos x$$
, $M\left(\frac{\pi}{6}; 1\right)$;

r)
$$y=\frac{1}{\sin^2\frac{x}{3}}, M\left(\frac{3\pi}{4}; 0\right)$$
.

O20.22. a)
$$y = 8 \sin \frac{x}{2} \cos \frac{x}{2}$$
, $M(\frac{\pi}{2}; 3)$;

6)
$$y = 2\cos^2\frac{x}{2} - 1$$
, $M\left(\frac{\pi}{2}; 16\right)$;

B)
$$y = \cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}$$
, $M(0; 7)$;

r)
$$y = 1 - 2\sin^2\frac{x}{2}$$
, $M(\frac{\pi}{2}; 15)$.

Для данной функции найдите ту первообразную, график которой проходит через данную точку M:

O20.23. a)
$$y = 1 + tg^2 x$$
, $M\left(\frac{\pi}{3}; 5\right)$;
6) $y = 2 + 2 ctg^2 x$, $M\left(\frac{\pi}{4}; -3\right)$;
B) $y = 3 + tg^2 x$, $M\left(-\frac{\pi}{6}; 4\right)$;
r) $y = ctg^2 x - 9$, $M\left(-\frac{\pi}{3}; -21\right)$.

$$O20.24. a) y = \sin \frac{x}{6} \cos \frac{5x}{6} + \cos \frac{x}{6} \sin \frac{5x}{6}, \quad M\left(\frac{3\pi}{4}; 21\right);$$

$$6) y = \cos \frac{x}{5} \cos \frac{4x}{5} - \sin \frac{x}{5} \sin \frac{4x}{5}, \quad M\left(\frac{5\pi}{6}; -9\right);$$

$$B) y = \sin \frac{7x}{6} \cos \frac{x}{6} - \sin \frac{x}{6} \cos \frac{7x}{6}, \quad M\left(-\frac{3\pi}{4}; 10\right);$$

$$C) y = \cos \frac{13x}{11} \cos \frac{2x}{11} + \sin \frac{13x}{11} \sin \frac{2x}{11}, \quad M\left(\frac{2\pi}{3}; -6\right).$$

Для функции y = f(x) найдите первообразную y = F(x), которая принимает данное значение в указанной точке:

O20.25. a)
$$f(x) = x^5 + 3x^2$$
, $F(0) = -16$;
6) $f(x) = 14 \sin x$, $F\left(\frac{3\pi}{2}\right) = 23$;
B) $f(x) = 10e^{5x-4}$, $F(0,8) = 5$;
r) $f(x) = \frac{1}{2-3x}$, $F\left(\frac{1}{3}\right) = 1$.

O20.26. a)
$$f(x) = -2\sin\frac{x}{2}\cos\frac{x}{2}$$
, $F\left(-\frac{2\pi}{3}\right) = -15$;
6) $f(x) = \sin x \cos 3x$, $F\left(\frac{\pi}{3}\right) = \frac{5}{12}$;
B) $f(x) = \sin^2\frac{x}{2} - \cos^2\frac{x}{2}$, $F\left(\frac{\pi}{2}\right) = 4.5$;
r) $f(x) = 4\cos\frac{x}{2}\cos\frac{3x}{2}$, $F\left(\frac{\pi}{4}\right) = \sqrt{2} + 1$.

O20.27. Для функции
$$y = f(x)$$
 найдите первообразную $y = F(x)$, которая принимает данное значение в указанной точке:

a)
$$f(x) = \frac{12}{\sqrt{3x-6}} + 1$$
, $F(5) = 4$;

6)
$$f(x) = \frac{-3}{\sqrt{5x+4}} - 8$$
, $F(1) = -12$.

Решите уравнение F(x) = 0, где y = F(x) — первообразная для функции y = f(x), если известно, что $F(x_0) = 0$:

$$020.28$$
. a) $f(x) = 3x^2 - 2x - 25$, $x_0 = 1$;

6)
$$f(x) = 3x^2 + 4x - 1$$
, $x_0 = -2$.

O20.29. a)
$$f(x) = 2 \sin 2x$$
, $x_0 = \frac{\pi}{2}$;

6)
$$f(x) = 2\cos 0.5x$$
, $x_0 = \frac{\pi}{3}$.

○20.30. Найдите ту первообразную для функции y = f(x), областью значений которой является луч $(-\infty; 4]$:

a)
$$f(x) = 7 - 6x$$
; 6) $f(x) = 3 - 2x$.

- extstyle ex
- $\bigcirc 20.32$. Найдите ту первообразную для заданной функции y=f(x), график которой касается оси x:

a)
$$f(x) = 2x + 3$$
; 6) $f(x) = 12(3x - 1)^3$.

- O20.33. Найдите ту первообразную для заданной функции y = f(x), график которой касается заданной прямой y = kx + m:

 а) f(x) = 2x, y = x + 2; б) $f(x) = 3x^3$, y = 3x + 5.
- O20.34. Некоторая первообразная функции $y=3\cos 3x+6\sin 6x$ принимает в точке $x=\frac{\pi}{2}$ значение 6. Какое значение принимает та же первообразная в точке $x=\frac{\pi}{6}$?
- O20.35. Точка движется по координатной прямой, ее скорость выражается формулой v=1+2t. Найдите закон движения, если известно, что в момент времени t=2 координата точки равнялась числу 5.
- O20.36. Скорость движения точки по координатной прямой выражается формулой $v = -4 \sin 3t$. Найдите закон движения, если известно, что в момент времени t = 0 координата точки равнялась числу 2.

- O20.37. Скорость движения точки по координатной прямой задается формулой $v=-\frac{6}{\sqrt{2t+1}}$. Найдите закон движения, если s(0)=3.
- O20.38. Ускорение движения точки по координатной прямой задается формулой $a(t) = 2(t+1)^2$. Найдите закон изменения скорости движения и закон движения, если v(0) = 1, s(0) = 1.
- •20.39. Найдите угловой коэффициент касательной к графику функции y = F(x) в точке x = a, если известно, что y = F(x) первообразная для функции y = f(x):
 - a) $f(x) = x \sin x + x^2 \cos x + 5$, a = 0;
 - 6) $f(x) = \log_2 x + \log_3 (x + 1), a = 8;$
 - B) $f(x) = \sqrt[3]{x^2 3x + 3}$, a = 20;
 - $f(x) = x^{\frac{1}{5}} (2x)^{\frac{1}{3}}, \ a = 32.$
- **©20.40.** Сравните числа F(a) и F(b), если известно, что y = F(x) первообразная для функции y = f(x):
 - a) $f(x) = x^2 \ln x$, a = 2, b = 3;
 - 6) $f(x) = \frac{x^2 6x + 8}{x^3 27}$, a = 0, b = 1;
 - B) $f(x) = \sin^3 x$, $a = \frac{7\pi}{6}$, $b = \frac{4\pi}{3}$;
 - r) $f(x) = \sqrt[5]{x^3 + 2x^2 5x 6}$, $a = \lg 1001$, $b = \log_2 7$.
- **•20.41.** Исследуйте функцию y = F(x) на монотонность и экстремумы, если известно, что она является первообразной для функции y = f(x):
 - a) $f(x) = 2x^2 + 5x 7$;
 - 6) $f(x) = \sqrt{5x 24} \cdot \lg(x^2 6x + 6);$
 - B) $f(x) = 2^{x^2 \sqrt{x} + 1}$;
 - r) $f(x) = (x^2 5x 14) \log_2 (5 2x)$.
 - 20.42. Найдите неопределенный интеграл:
 - a) $\int \left(\frac{1}{2\sqrt{x}} + 2e^x \frac{3}{x}\right) dx;$ b) $\int \left(3x^{\frac{2}{3}} \frac{4}{\sqrt[4]{x}} + x^5\right) dx;$
 - 6) $\int \left(\frac{1}{x^2} + x^2 + 3\right) dx$; r) $\int \left(5^x \frac{1}{x^2} + x^5\right) dx$.

Найдите неопределенный интеграл:

20.43. a)
$$\int (2-9x)^6 dx$$
;

B)
$$\int (7 + 5x)^{13} dx$$
;

6)
$$\int \frac{dx}{3-5x}$$
;

$$\Gamma) \int e^{0.5x+2} dx.$$

$$\bigcirc$$
20.44. a) $\int (tg^2x + 1)dx$;

B)
$$\int (\operatorname{ctg}^2 x + 1) dx;$$

6)
$$\int (\cos^2 x - \sin^2 x) dx$$
; r) $\int \sin x \cos x dx$.

$$(s) \int \sin x \cos x \, dx$$

$$\bigcirc$$
20.45. a) $\int \sin 2x \sin 6x dx$;

B)
$$\int \cos 3x \cos 5x \, dx$$
;

6)
$$\int \sin 4x \cos 3x \, dx;$$

r)
$$\int \sin 2x \cos 8x \, dx$$
.

20.46. a)
$$\int \sin^2 x \, dx$$
;

B)
$$\int \cos^2 x \, dx$$
;

6)
$$\int \sin^4 x \, dx$$
;

$$\Gamma$$
) $\int \cos^4 x \, dx$.

$$\bullet 20.47. a) \int \frac{dx}{\sin^2 x \cos^2 x};$$

$$6) \int \frac{\cos 2x \, dx}{\sin^2 x \, \cos^2 x}.$$

§ 21. Определенный интеграл

Вычислите определенный интеграл:

21.1. a)
$$\int_{-2}^{1} x^3 dx$$
; 6) $\int_{1}^{3} \frac{dx}{x^2}$; B) $\int_{-1}^{2} x^4 dx$; r) $\int_{4}^{9} \frac{dx}{\sqrt{x}}$.

$$\int_{0}^{3} \frac{dx}{x^{2}}; \quad B)$$

$$B) \int_{-1}^{2} x^4 dx;$$

$$\Gamma) \int_{4}^{9} \frac{dx}{\sqrt{x}}.$$

O21.2. a)
$$\int_{1}^{2} \left(\frac{3}{x^2} + x^2 + 2 \right) dx;$$
 B) $\int_{-2}^{-1} \left(-\frac{5}{x^2} + x^4 - 3x \right) dx;$

B)
$$\int_{-2}^{-1} \left(-\frac{5}{x^2} + x^4 - 3x \right) dx;$$

6)
$$\int_{0}^{1} \left(\frac{2}{\sqrt{x+1}} - \frac{3}{(x+1)^{2}} \right) dx;$$

6)
$$\int_0^1 \left(\frac{2}{\sqrt{x+1}} - \frac{3}{(x+1)^2} \right) dx$$
; r) $\int_0^8 \left(\frac{2}{(x-2)^2} - \frac{1}{\sqrt{x-4}} \right) dx$.

O21.3. a)
$$\int_{-1}^{1} \frac{8x^3 + 36x^2 + 54x + 27}{2x + 3} dx;$$

B)
$$\int_{0}^{2} \frac{x^{3}-27}{x^{2}+3x+9} dx;$$

6)
$$\int_{0}^{1} \frac{x^{4} - 18x^{2} + 81}{x^{2} - 6x + 9} dx;$$

$$\text{F) } \int_{1}^{2} \frac{x^{3} - 64}{x^{2} + 4x + 16} \, dx.$$

O21.4. a)
$$\int_{1}^{5} \frac{dx}{\sqrt{2x-1}}$$
; 6) $\int_{-2}^{\frac{1}{3}} \frac{2dx}{\sqrt{10-3x}}$.

Вычислите определенный интеграл:

O21.5. a)
$$\int_{1}^{2} \frac{4x^{5} - 3x^{4} + x^{3} - 1}{x^{2}} dx;$$

6)
$$\int_{0}^{1} \frac{5x^{7} - 4x^{6} + 2x}{x^{3}} dx;$$

B)
$$\int_{0}^{3} \frac{6x^{4} - 4x^{3} + 7x^{2} - 1}{x^{2}} dx;$$

$$\Gamma) \int_{-2}^{-1} \frac{3x^6 - 4x^5 - 7x^4 + 3x^2}{x^4} dx.$$

O21.6. a)
$$\int_{-1}^{0} \frac{(x^2 - 2x)(3 - 2x)}{x - 2} dx; \quad \text{B) } \int_{2}^{3} \frac{(x^2 - 3x + 2)(2 + x)}{x - 1} dx;$$

6)
$$\int_{2}^{3} \frac{(x^{2}-4)(x^{2}-1)}{x^{2}+x-2} dx;$$
 Γ) $\int_{-1}^{1} \frac{(9-x^{2})(x^{2}-16)}{x^{2}-7x+12} dx.$

O21.7. a)
$$\int_{\frac{\pi}{2}}^{\pi} \sin x dx$$
; 6) $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{dx}{\cos^2 x}$; B) $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos x dx$; r) $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{dx}{\sin^2 x}$.

O21.8. a)
$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{2}} \cos 2x \, dx;$$
 B) $\int_{\frac{\pi}{2}}^{\pi} 2 \sin \frac{x}{3} \, dx;$

6)
$$\int_{0}^{\frac{\pi}{3}} \frac{5}{\sin^{2}\left(x + \frac{\pi}{3}\right)} dx;$$
 r) $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{7}{\cos^{2}3x} dx.$

O21.9. Вычислите интеграл:

a)
$$\int_{0}^{\frac{\pi}{2}} \sin 2x \cos 3x dx;$$
 B)
$$\int_{0}^{\frac{\pi}{3}} \cos 7x \cos 5x dx;$$

6)
$$\int_{\frac{\pi}{4}}^{\pi} \cos^2 \frac{x}{2} dx;$$
 r)
$$\int_{-\pi}^{\pi} \sin^2 3x dx.$$

Вычислите интеграл:

O21.10. a)
$$\int_{0}^{\frac{3\pi}{4}} \left(6 \sin \frac{x}{3} \cos \frac{x}{3} \right) dx;$$
 B)
$$\int_{0}^{\frac{\pi}{8}} (\sin^{2} 2x - \cos^{2} 2x) dx;$$

6)
$$\int_{-\pi}^{0} \left(2 \sin^2 \frac{x}{4} - 1 \right) dx;$$
 Γ) $\int_{0}^{\frac{-3\pi}{4}} \left(1 - 2 \cos^2 \frac{x}{3} \right) dx.$

O21.11. a)
$$\int_{0}^{\frac{\pi}{4}} (1 + tg^{2} x) dx;$$
 B)
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} (ctg^{2} x + 1) dx;$$

6)
$$\int_{\frac{\pi}{3}}^{\frac{\pi}{4}} (3 - 3 \cot^2 x) dx; \qquad \qquad \Gamma) \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} (1 + 2 \tan^2 x) dx.$$

O21.12. a)
$$\int_{0}^{\pi} \left(\sin \left(\frac{\pi}{3} + x \right) \cos x - \sin x \cos \left(\frac{\pi}{3} + x \right) \right) dx;$$

6)
$$\int_{\frac{\pi}{3}}^{\frac{3\pi}{6}} \left(\cos 2x \cos \left(\frac{\pi}{3} - x\right) - \sin 2x \sin \left(\frac{\pi}{3} - x\right)\right) dx.$$

O21.13. a)
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{\sin^2\left(x - \frac{3\pi}{2}\right) \cos(2\pi - x)}{\operatorname{tg}^2\left(x - \frac{\pi}{2}\right) \cos^2\left(x - \frac{3\pi}{2}\right)} dx;$$

6)
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{ \operatorname{tg}^{2}\left(x - \frac{\pi}{2}\right) \operatorname{ctg}^{2}\left(\frac{3\pi}{2} + x\right)}{\cos^{2}\left(\pi - x\right) + \sin^{2}\left(\frac{\pi}{2} - x\right) + \cos\left(\pi + x\right) \cos\left(2\pi - x\right)} dx$$

B)
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\sin(\pi - x)}{\operatorname{tg}(\pi - x)} \cdot \frac{\operatorname{ctg}\left(\frac{\pi}{2} - x\right)}{\operatorname{tg}\left(\frac{\pi}{2} + x\right)} \cdot \frac{\cos(2\pi - x)}{\sin(-x)} dx;$$

$$\Gamma) \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\sin\left(\frac{3\pi}{2} - x\right) \operatorname{tg}(\pi - x)}{\cos^2\left(\frac{\pi}{2} - x\right) \cos(\pi + x) \operatorname{tg}\left(\frac{3\pi}{2} + x\right)} dx.$$

Вычислите интеграл:

O21.14. a)
$$\int_{0}^{4} \sqrt{x}(x+1) dx$$
; B) $\int_{2}^{11} 5 \cdot \sqrt[5]{3x-1} dx$;

B)
$$\int_{\frac{2}{3}}^{11} 5 \cdot \sqrt[5]{3x-1} \ dx;$$

$$6) \int_{0}^{0} \sqrt[3]{1-2x} \ dx$$

6)
$$\int_{1}^{0} \sqrt[3]{1-2x} \ dx$$
; r) $\int_{2}^{3} (5x-7)^{-\frac{2}{3}} dx$.

21.15. a)
$$\int_{0}^{1} e^{x} dx$$
; 6) $\int_{0}^{1} 3e^{x} dx$; B) $\int_{0}^{1} \frac{1}{2} e^{x} dx$; F) $\int_{0}^{1} -2e^{x} dx$.

B)
$$\int_{1}^{0} \frac{1}{2} e^{x} dx$$
; r)

$$\Gamma) \int_{-2}^{1} -2e^{x} dx$$

21.16. a)
$$\int_{0}^{4} e^{0.5x-1} dx$$
;

B)
$$\int_{0}^{4} e^{0.25x+1} dx$$
;

$$6) \int_{0}^{1} e^{2x+1} dx;$$

$$\Gamma) \int_{0.5}^{0} e^{-2x+2} dx.$$

O21.17. a)
$$\int_{-\infty}^{2} \frac{dx}{x}$$
;

B)
$$\int_{0}^{1} \frac{0,1}{x+1} dx;$$

6)
$$\int_{1}^{2} \left(e^{x} + \frac{1}{x}\right) dx$$

6)
$$\int_{1}^{2} \left(e^{x} + \frac{1}{x}\right) dx; \qquad \text{f) } \int_{1}^{2} \left(e^{2x} + \frac{2}{x}\right) dx.$$

Q21.18. a)
$$\int_{3}^{6} \frac{dx}{2x-1}$$
; 6) $\int_{-1}^{0} \frac{dx}{-5x+6}$; B) $\int_{0}^{\frac{1}{2}} \frac{1}{4x+1} dx$; r) $\int_{5}^{8} \frac{dx}{9-x}$.

O21.19. Вычислите:

a)
$$\int_{-3}^{6} f(x)dx$$
, где $f(x) = \begin{cases} x^2, & \text{если } -3 \leqslant x \leqslant 2, \\ 6 - x, & \text{если } x > 2; \end{cases}$

6)
$$\int\limits_{\frac{1}{4}}^{2}f(x)dx$$
, где $f(x)=\begin{cases} \dfrac{1}{\sqrt{x}}, \ \text{если } 0< x\leqslant 1, \\ x^{3}, \ \text{если } x>1. \end{cases}$

О21.20. Вычислите:

a)
$$\int_{-\frac{\pi}{6}}^{\frac{\pi}{3}} f(x) dx$$
, где $f(x) = \begin{cases} \frac{2}{\cos^2 2x} - 1, \text{ если } x < 0, \\ \sin \frac{x}{2}, \text{ если } x \geqslant 0; \end{cases}$

6)
$$\int\limits_{-\frac{\pi}{2}}^{3}f(x)dx$$
, где $f(x)=\begin{cases} -\sin\left(x-\frac{\pi}{2}\right),\ \text{если }x\leqslant0, \\ \frac{1}{\sqrt{x+1}},\ \text{если }x>0. \end{cases}$

 \bigcirc **21.21**. Вычислите $\int_{0}^{2} f(x) dx$, если:

a)
$$f(x) = \begin{cases} 4^x, & x \leq 1, \\ 4x^3, & x > 1; \end{cases}$$

a)
$$f(x) = \begin{cases} 4^x, & x \le 1, \\ 4x^3, & x > 1; \end{cases}$$
 6) $f(x) = \begin{cases} \sqrt{x}, & 0 \le x \le 1, \\ \frac{1}{x}, & x > 1. \end{cases}$

Вычислите:

O21.22. a)
$$\int_{0}^{3} (|x^{2} - 4| + 2x) dx;$$

6)
$$\int_{0}^{1} (|x^{2}+2|+|x-5|)dx;$$

B)
$$\int_{-2}^{2} (|x^2 - 4| + 2x) dx;$$

r)
$$\int_{2}^{1} (|x^4 + 2x^2 + 3| + |x + 1|) dx$$
.

21.23. a)
$$\int_{1}^{1} (|x-1| + |x+1|) dx;$$

6)
$$\int_{0}^{0} (|x-2|-|x+3|)dx;$$

B)
$$\int_{0}^{2} (|x-1| + |x+1|) dx;$$

r)
$$\int_{-4}^{4} (|x-2|-|x+3|) dx$$
.

021.24. Вычислите $\int_{-2}^{3} f(x) dx$, если график функции y = f(x) изображен на заданном рисунке:

а) рис. 1; б) рис. 2.

Рис. 1

Рис. 2

O21.25. Вычислите $\int_{-2}^{3} f(x) dx$, если график функции y = f(x) изображен на заданном рисунке:

а) рис. 3; б) рис. 4.

Рис. 3

Рис. 4

О21.26. Вычислите интеграл:

- а) $\int_{-2}^{1} f(x) dx$, если график функции y = f(x) (парабола) изображен на рис. 5;
- б) $\int_{-1}^{2} f(x) dx$, если график функции y = f(x) (парабола) изображен на рис. 6.

Рис. 5

Рис. 6

 $\bigcirc 21.27.$ Зная, что $\int_{0}^{6} f(x) dx = 12$, найдите:

a)
$$\int_{1}^{2} f(3x) dx;$$

6)
$$\int_{-2.5}^{-1} f(1-2x) dx.$$

Решите уравнение:

O21.28. a)
$$\int_{\frac{1}{4}}^{x} \frac{dt}{\sqrt{t}} = x;$$

B)
$$\int_{5}^{x} \frac{1}{\sqrt{2t-1}} dt = 4;$$

6)
$$\int_{0}^{x} \frac{1}{\sqrt{2t+4}} dt = 2;$$
 r) $\int_{0}^{x} \frac{1}{\sqrt{t+2}} dt = 2.$

r)
$$\int_{0}^{x} \frac{1}{\sqrt{t+2}} dt = 2$$

O21.29. a)
$$\int_{0}^{x} \cos^{2} t \, dt = \frac{x}{2}$$
;

6)
$$\int_{0}^{x} \cos 2t \, dt + \int_{\frac{\pi}{4}}^{x} \sin 2t \, dt = 0;$$

$$B) 2\int_0^x \sin^2 t \, dt = x;$$

r)
$$\int_{0}^{x} (2\cos 2t + 6\cos 6t)dt = 0.$$

•21.30. a)
$$\int_{1}^{x} (18t^{2} - 22t - 4) dt = 4;$$

6)
$$\int_{-1}^{x} (4t^3 + 3t^2 - 4t - 4) dt = 9.$$

●21.31. Сколько корней имеет уравнение:

a)
$$\int_{0}^{x} \cos t \, dt = \frac{1}{4} x;$$

a)
$$\int_{0}^{x} \cos t \, dt = \frac{1}{4}x$$
; 6) $\int_{0}^{x} \sin t \, dt = 0,2x$?

О21.32. При каком значении параметра a уравнение имеет только один корень:

a)
$$\int_{-\frac{\pi}{2}}^{x} \sin t \, dt = a - x^2;$$

6)
$$\int_{0}^{x} \cos t \, dt = \left(x - \frac{\pi}{2}\right)^{2} + a$$
?

Решите неравенство:

O21.33. a)
$$\int_{0}^{x} t dt < 0.5$$
;

B)
$$\int_{0}^{x} t^{3} dt < 0.25;$$

6)
$$\int_{0}^{x} (3t^2 - 8t + 3) dt > 0;$$

$$\Gamma)\int\limits_{0}^{x}(2t+5)dt>6.$$

O21.34. a)
$$\int_{0}^{x} \sin t \, dt < \frac{1}{2}$$
;

$$\mathbf{B}) \int_{0}^{x} \cos t \, dt < -\frac{\sqrt{3}}{2};$$

6)
$$\int_{\frac{\pi}{2}}^{x} \cos 2t \, dt > \frac{1}{2\sqrt{2}};$$

$$\Gamma) \int_{\pi}^{x} \sin \frac{t}{2} dt > \sqrt{3}.$$

●21.35. Решите уравнение:

a)
$$\int_{0}^{t} (e^{x} - 3x^{2} - 2x)dx = e^{t} - 3;$$

6)
$$\int_{3}^{t} \left(\frac{1}{x-2} + 2x - 3 \right) dx = \ln(t-2) - t^3 + 6, \ t > 3.$$

●21.36. Решите неравенство:

a)
$$\int_{0}^{t} 3^{2x-1} dx \le \frac{1}{3 \ln 3}, \quad t > 0;$$

6)
$$\int_{-4}^{t} \left(2x-5-\frac{1}{x+5}\right) dx \ge -30 - \ln{(t+5)}, \ t > -4.$$

Используя геометрические соображения, вычислите интеграл:

O21.37. a)
$$\int_{0}^{4} \sqrt{16 - x^2} dx$$
;

B)
$$\int_{-5}^{0} \sqrt{25-x^2} dx$$
;

$$6) \int_0^{\sqrt{2}} \sqrt{4-x^2} dx;$$

r)
$$\int_{-4}^{4} \sqrt{64 - x^2} dx$$
.

21.38. a)
$$\int_{0}^{4} \sqrt{4x - x^2} dx$$
;

6)
$$\int_{-1}^{0} \sqrt{-x^2 - 2x} \, dx$$
.

21.39. a)
$$\int_{-2}^{3} |x| dx$$
;

B)
$$\int_{0}^{5} |x-1| dx$$
;

6)
$$\int_{0}^{3} (|x-2|+4x) dx$$

6)
$$\int_{-2}^{3} (|x-2|+4x)dx$$
; r) $\int_{-3}^{2} (|x+1|-2x)dx$.

O21.40. Материальная точка движется по прямой со скоростью, определяемой формулой v = v(t) (время измеряется в секундах, а скорость — в сантиметрах в секунду). Какой путь пройдет точка за 3 секунды, считая от начала движения (t = 0), если:

a)
$$v(t) = 3t^2 - 4t + 1$$
;

B)
$$v(t) = 4t^3 - 6t^2$$
;

$$6) v(t) = \frac{1}{\sqrt{5t+1}}$$

6)
$$v(t) = \frac{1}{\sqrt{5t+1}}$$
; $r) v(t) = \frac{1}{\sqrt{7t+4}}$?

O21.41. Материальная точка движется прямолинейно со скоростью, изменяющейся по закону v = v(t) (время t измеряется в минутах, а скорость — в метрах в минуту). За какое время, считая от начала движения, точка пройдет расстояние s метров, если:

a)
$$v(t) = 2t - 3$$
, $s = 4$;

a)
$$v(t) = 2t - 3$$
, $s = 4$; 6) $v(t) = \frac{1}{\sqrt{t+1}}$, $s = 2$?

O21.42. Дан прямолинейный неоднородный стержень [0; l], его плотность в точке x определяется по формуле $\rho = \rho(x)$. Найдите массу стержня, если:

a)
$$\rho(x) = x^2 + x + 1$$
, $l = 6$;

6)
$$\rho(x) = \frac{1}{(x+3)^2}$$
, $l = 3$;

B)
$$\rho(x) = -x^2 + 6x$$
, $l = 2$;

r)
$$\rho(x) = \frac{1}{(2x+1)^2}$$
, $l=1$.

Вычислите площадь фигуры, ограниченной заданными линиями:

O21.43. a)
$$y = x^2$$
, $y = 0$, $x = 4$;

6)
$$y = x^3$$
, $y = 0$, $x = -3$, $x = 1$;

B)
$$y = x^2$$
, $y = 0$, $x = -3$;

r)
$$y = x^4$$
, $y = 0$, $x = -1$, $x = 2$.

O21.44. a)
$$y = x^3 + 2$$
, $y = 0$, $x = 0$, $x = 2$;

$$6) y = -x^2 + 4x, y = 0;$$

B)
$$y = 4 - x^2$$
, $y = 0$;

r)
$$y = -x^3 + 1$$
, $y = 0$, $x = 0$, $x = -2$.

Q21.45. a)
$$y = \frac{1}{r^2}$$
, $y = 0$, $x = 1$, $x = 2$;

6)
$$y = \frac{1}{\sqrt{x}}$$
, $y = 0$, $x = 1$, $x = 9$;

B)
$$y = -\frac{1}{x^2}$$
, $y = 0$, $x = -1$, $x = -3$;

r)
$$y = \frac{2}{\sqrt{x}}$$
, $y = 0$, $x = 1$, $x = 4$.

Q21.46. a)
$$y = \sin x$$
, $y = 0$, $x = \frac{\pi}{2}$;

6)
$$y = \cos 2x$$
, $y = 0$, $x = -\frac{\pi}{6}$, $x = \frac{\pi}{6}$;

B)
$$y = \cos x$$
, $y = 0$, $x = -\frac{\pi}{4}$, $x = \frac{\pi}{4}$;

r)
$$y = \sin \frac{x}{2}$$
, $y = 0$, $x = \frac{\pi}{2}$, $x = \pi$.

Вычислите площадь фигуры, ограниченной линиями:

O21.47. a)
$$y = 1 + \frac{1}{2}\cos x$$
, $y = 0$, $x = -\frac{\pi}{2}$, $x = \frac{\pi}{2}$;

6)
$$y = 1 - \sin 2x$$
, $y = 0$, $x = 0$, $x = \pi$;

B)
$$y = 1 + 2\sin x$$
, $y = 0$, $x = 0$, $x = \frac{\pi}{2}$;

r)
$$y = 2\cos\frac{x}{2}$$
, $y = 0$, $x = 0$, $x = \frac{2\pi}{3}$.

O21.48. a)
$$y = x$$
, $y = -0.5x + 5$, $x = -1$, $x = 3$;

6)
$$y = 2x$$
, $y = x - 2$, $x = 4$;

B)
$$y = -x$$
, $y = 3 - \frac{x}{4}$, $x = -2$, $x = 1$;

r)
$$y = 1 - x$$
, $y = 3 - 2x$, $x = 0$.

O21.49. a)
$$y = 1 - x^2$$
, $y = -x - 1$;

6)
$$y = x^2 - 3x + 2$$
, $y = x - 1$;

B)
$$y = x^2 - 1$$
, $y = 2x + 2$;

$$\Gamma) \ y = -x^2 + 2x + 3, \ y = 3 - x.$$

O21.50. a)
$$y = x^2 - 4x$$
, $y = -(x - 4)^2$;

6)
$$y = x^2 + 2x - 3$$
, $y = -x^2 + 2x + 5$;

B)
$$y = x^2 - 6x + 9$$
, $y = (x + 1)(3 - x)$;

$$y = x^2 - 4x + 3, \quad y = -x^2 + 6x - 5.$$

O21.51. a)
$$y = \cos x$$
, $y = -x$, $x = 0$, $x = \frac{\pi}{2}$;

6)
$$y = \sin 2x$$
, $y = x - \frac{\pi}{2}$, $x = 0$;

B)
$$y = \sin x$$
, $y = -x$, $x = 0$, $x = \frac{\pi}{2}$;

r)
$$y = \cos \frac{x}{2}, y = x - \pi, x = 0.$$

O21.52. a)
$$y = 2\cos 3x - 3\sin 2x + 6$$
, $y = 0$, $x = 0$, $x = \frac{\pi}{6}$;

6)
$$y = 2\sin 4x + 3\cos 2x + 7$$
, $y = 0$, $x = \frac{\pi}{4}$, $x = \frac{5\pi}{4}$.

O21.53. a)
$$y = 0$$
, $x = 4$, $y = \sqrt{x}$;

6)
$$y = 1$$
, $x = 0$, $y = \sqrt[3]{x}$;

B)
$$y = 0$$
, $x = 1$, $x = 3$, $y = \frac{1}{x^2}$;

r)
$$y = 2, x = 0, y = \sqrt{x}$$
.

Вычислите площадь фигуры, ограниченной лин

O21.54. a)
$$y = \sqrt{x}$$
, $y = -2\sqrt{x}$, $x = 4$;

6)
$$y = 2\sqrt{x}, y = -\sqrt{x}, x = 9.$$

21.55. a)
$$y = 2 - \sqrt{x}$$
, $y = \sqrt{x}$, $3x + 5y = 22$;

6)
$$y = \sqrt{x}$$
, $y = 3 - 2\sqrt{x}$, $4x - 5y - 21 = 0$.

O21.56. a)
$$y = 0$$
, $x = 0$, $x = 3$, $y = e^x$;

6)
$$y = 0$$
, $x = 0$, $x = 4$, $y = e^{-x}$;

B)
$$y = 0$$
, $x = -1$, $x = 1$, $y = e^x$;

r)
$$y = 0$$
, $x = -2$, $x = 0$, $y = e^{-x}$.

O21.57. a)
$$x = 1$$
, $y = e^x$, $y = e^{-x}$;

6)
$$y = \frac{1}{x^2}$$
, $y = 1$, $x = -1$;

B)
$$y = e^x$$
, $x = 2$, $x + 2y = 2$;

r)
$$y = e^x$$
, $x = 2$, $x = 0$, $y = -e^x$.

Q1.58. a)
$$y = 0$$
, $x = 1$, $x = e$, $y = \frac{1}{x}$;

6)
$$y = 0$$
, $x = 3$, $x = -1$, $y = \frac{1}{2x + 3}$;

B)
$$y = 0$$
, $x = e$, $x = e^2$, $y = \frac{2}{r}$;

r)
$$y = 0$$
, $x = 2$, $x = 5$, $y = \frac{1}{3x - 5}$.

O21.59. a)
$$y = e^x$$
, $y = \frac{1}{r}$, $x = 2$, $x = 3$;

6)
$$y = \frac{1}{x}$$
, $y = 1$, $x = 5$;

B)
$$y = \sqrt{x}, y = \frac{1}{r}, x = 4;$$

r)
$$y = -\frac{1}{x}$$
, $y = -1$, $x = e$.

O21.60. a)
$$y = 2^x$$
, $y = 3 - x$, $y = 0$, $x = 0$;

6)
$$y = 3^x$$
, $y = 5 - 2x$, $y = 0$, $x = 0$.

Вычислите площадь фигуры, ограниченной линиями:

Q21.61. a)
$$y = \frac{1}{x^2}$$
, $y = 2^x - 1$, $x = 2$;

6)
$$y = \frac{1}{\sqrt{x}}, y = 2^{x-1}, x = 4.$$

Q21.62. a)
$$y = e^x$$
, $y = \frac{e}{r}$, $x = e$, $x = 0$, $y = 0$;

6)
$$y = \left(\frac{1}{3}\right)^x$$
, $y = x^2 + 1$, $x = 2$.

21.63. a)
$$y = x^3$$
, $y = 10 - x$, $x = 0$;

6)
$$y = x^3$$
, $y = 10 - x$, $y = 0$;

B)
$$y = -x^3$$
, $y = 5 + 4x$, $x = 0$;

r)
$$y = -x^3$$
, $y = 5 + 4x$, $y = 0$.

21.64. a)
$$y = |x|$$
, $y = -|x| + 2$;

6)
$$y = |x + 1|$$
, $y = -(x - 1)^2 + 2$;

B)
$$y = |x| - 2$$
, $y = \frac{x}{2}$;

r)
$$y = (x-1)^2$$
, $y = -|x+1| + 2$.

21.65. a)
$$y = 3 - x^2$$
, $y = 1 + |x|$;

6)
$$y = x^2$$
, $y = 2 - |x|$.

21.66. a)
$$y = |x^2 - 4|$$
, $x = 3$, $x = -3$, $y = 0$;

6)
$$y = |x^2 - 2|x|$$
, $x = 3$, $x = -3$, $y = 0$.

21.67. a)
$$y = \sin 2x$$
, $y = \frac{16x^2}{\pi^2}$;

6)
$$y = x^2 - 1$$
, $y = \cos \frac{\pi x}{2}$;

B)
$$y = \cos x$$
, $y = \left(\frac{2x}{\pi} - 1\right)^2$;

r)
$$y = x^2 - 2x$$
, $y = \sin \frac{\pi x}{2}$.

O21.68 Найдите площадь фигуры, ограниченной параболой и прямой, изображенной на заданном рисунке:

а) рис. 7: б) рис. 8.

Рис. 7

Рис. 8

- O21.69. a) Найдите площадь фигуры, ограниченной графиком функции y = 2x - 5 и графиком ее первообразной, проходящей через точку M(1; -3).
 - б) Найдите площадь фигуры, ограниченной графиком функции y = 4x + 1 и графиком ее первообразной, проходящей через точку M(2; 6).
- •21.70. а) Найдите площадь фигуры, ограниченной параболой $y = 2x - x^2$, касательной к ней в точке x = 1 и осью y. б) Найдите площадь фигуры, ограниченной параболой $y = 2x^2 - 6x$, касательной к ней в точке x = 1.5 и осью у.
- ●21.71. a) Вычислите площадь фигуры, ограниченной графиком функции $y=x^{\frac{1}{3}}$, касательной к графику этой функции, проведенной в точке $x_0 = 8$, и осью абсцисс.
 - б) Вычислите площадь фигуры, ограниченной графиком функции $y = x\sqrt[4]{x}$, касательной к графику этой функции, проведенной в точке $x_0 = 1$, и осью ординат.

- •21.72. а) Найдите площадь фигуры, ограниченной графиком функции $y=x^3$, касательной к нему в точке x=1 и осью y. б) Найдите площадь фигуры, ограниченной графиком функции $y=x^3$ и касательными к нему в точках x=0 и x=1.
- •21.73. а) Найдите площадь фигуры, ограниченной графиком функции $y = 3 \frac{1}{2} x^2$ и двумя касательными, проведенными к нему из точки на оси y так, что угол между касательными равен 90° .
 - б) Найдите площадь фигуры, ограниченной графиком функции $y=0,5(x^2+5)$ и двумя касательными, проведенными к нему из точки на оси y так, что угол между касательными равен 90° .
- •21.74. а) Найдите площадь фигуры, ограниченной графиком функции $y=\frac{x^2\sqrt{3}}{2}$ и двумя касательными, проведенными к нему из точки на оси y так, что угол между касательными равен 60° .
 - б) Найдите площадь фигуры, ограниченной графиком функции $y=-rac{x^2}{2\sqrt{3}}$ и двумя касательными, проведенны-

ми к нему из точки на оси y так, что угол между касательными равен 120° .

- **ullet21.75.** а) Найдите площадь фигуры, ограниченной графиком функции $y=x^3-6x^2+9x+1$ и касательной к нему в точке x=3.
 - б) Найдите площадь фигуры, ограниченной графиком функции $y = x^3 3x$ и касательной к нему в точке x = -1.
- •21.76. а) При каком положительном значении параметра a площадь фигуры, ограниченной линиями $y=\frac{1}{x^2},\ y=0,$ $x=1,\ x=a,$ равна $\frac{7}{8}$?
 - б) При каком отрицательном значении параметра a площадь фигуры, ограниченной линиями $y=\frac{1}{x^2}$, y=0, x=-1, x=a, равна $\frac{10}{11}$?

•21.77. Докажите, что площадь S криволинейной трапеции, ограниченной параболой $y = ax^2 + bx + c$ и прямыми $x = \alpha$, $x = \beta$ ($\alpha < \beta$), y = 0 можно найти по формуле

$$S = \frac{\beta - \alpha}{6} \cdot \left(y(\alpha) + y(\beta) + 4y \left(\frac{\alpha + \beta}{2} \right) \right)$$

(формула Симпсона).

§ 22. Вероятность и геометрия

- O22.1. Случайным образом выбирают одно из решений неравенства $x^2 \le 9$. Найдите вероятность того, что оно является решением неравенства:
 - a) $x^2 \le 10$;
- B) $x^2 \ge 10$;
- 6) $2x 3 \le 17$:
- $\Gamma) x^3 + 2x \geqslant 0.$
- \bigcirc 22.2. Случайным образом выбирают одно из решений неравенства $1 \le |x-3| \le 5$. Найдите вероятность того, что оно является решением неравенства:
 - a) $|x| \leq 2$:
- B) $|x| \le 1$;
- 6) $|x-6| \le 2$:
- r) $1 \le |x 6| \le 2$.
- **ullet22.3.** Случайным образом выбирают одно из решений неравенства $\sqrt{x} \leqslant 10$. Найдите вероятность того, что оно:
 - а) является решением неравенства $\sqrt{x} \le 1$;
 - б) принадлежит области определения функции $y = \ln (40x 39 x^2);$
 - в) является решением неравенства $\sqrt{x-10} \le 5$;
 - г) принадлежит области значений функции

$$y = 0.5 \sin\left(2x + \frac{3\pi}{2}\right) + 1.$$

O22.4. Случайным образом выбирают одно из решений неравен-

ства
$$\frac{2x^2 + 15x + 18}{9 + 9x - 4x^2} \ge 0$$
. Что более вероятно:

- а) то, что оно положительно, или то, что оно отрицательно;
- б) то, что оно меньше -3, или то, что оно больше -3;
- в) то, что оно целое, или то, что оно не целое;
- г) то, что оно больше -5, или то, что оно меньше -2?

- O22.5. Случайным образом выбирают одно из положительных решений неравенства $3^x \le 6 3x$. Найдите вероятность того, что:
 - а) оно меньше 0,1;
 - б) оно больше 0,999;
 - в) оно ближе к 0.4, чем к 0.3:
 - г) оно дальше от 0,7, чем от 0,8.
- **О22.6.** В прямоугольнике ABCD со сторонами AB=2, BC=5 случайно выбирают точку. Найдите вероятность того, что она расположена:
 - а) ближе к прямой AB, чем к прямой CD;
 - б) ближе к вершине A, чем к вершине C;
 - в) ближе к прямой AB, чем к прямой BC;
 - \mathbf{r}) ближе к вершине A, чем к точке пересечения диагоналей.
- **•22.7.** В прямоугольнике ABCD со сторонами AB = 5, BC = 10 случайно выбирают точку. Найдите вероятность того, что она расположена:
 - а) ближе к прямой AB, чем к прямой AD;
 - б) ближе к прямой AD, чем к каждой из прямых AB, CD;
 - в) ближе к вершине A, чем к вершинам B и C;
 - г) ближе к прямой AB, чем к прямой AC.
- O22.8. Внутри окружности, описанной около прямоугольного треугольника с катетами 6 и 8, взята точка. Найдите вероятность того, что она:
 - а) лежит внутри треугольника;
 - б) лежит внутри окружности, вписанной в треугольник;
 - в) лежит вне треугольника;
 - г) лежит внутри треугольника, но не внутри вписанной в него окружности.
- O22.9. На оси абсциссе случайным образом выбирают точку B(x; 0), $-2 \le x \le 6$, и соединяют ее с фиксированной точкой A(4; 4). Какова вероятность того, что угол наклона отрезка AB к положительному направлению оси абсцисс: а) тупой; б) меньше 45° ; в) острый; г) больше 60° ?
- O22.10. На оси ординат случайным образом выбирают точку C(0; y), $0 \le y \le 8$, и соединяют ее с фиксированной точкой A(4; 4). Какова вероятность того, что угол наклона отрезка AC к положительному направлению оси ординат:
 - а) тупой; б) меньше 45°; в) острый; г) больше 60°?

- •22.11. Коэффициенты a и b в уравнении прямой y = ax + b случайным образом выбираются из множества $\{-5, -4, ..., -1, 0, 1, ..., 4, 5\}$. Найдите вероятность того, что эта прямая:
 - а) пересекает ось ординат;
 - б) пересекает только две координатные четверти;
 - в) не пересекает ось абсцисс;
 - г) не пересекает вторую координатную четверть.

Указание. Считать, что точки осей координат не принадлежат ни одной четверти.

- O22.12. Из отрезка [-1; 1] произвольно выбирают два числа x и y и на координатной плоскости отмечают точку (x; y). Какова вероятность того, что:
 - а) эта точка лежит в первой координатной четверти;
 - 6) x + y < 0;
 - в) эта точка лежит или во второй, или в четвертой координатной четверти;
 - r) x + y > 0, a xy < 0?
- ●22.13. Случайным образом выбирают два решения x_1 и x_2 неравенства $|x-2| \le 2$ и точку $(x_1; x_2)$ отмечают на координатной плоскости. Найдите вероятность того, что:
 - а) оба решения не больше 2;
 - б) хотя бы одно из решений не больше 2;
 - в) сумма этих решений больше 3;
 - г) x_1 и x_2 отличаются друг от друга (по модулю) не более, чем на 1.
- •22.14. На координатной плоскости даны точки A(0; 3), B(4; 6), C(6; 0). В треугольнике ABC случайным образом выбирают точку. Найдите вероятность того, что она расположена:
 - а) ниже прямой y = 3;
 - б) правее прямой x = 4;
 - в) ближе к прямой AC, чем к прямой AB;
 - г) ближе к прямой AC, чем к прямой BC.
- O22.15. Точка случайным образом выбирается из фигуры, ограниченной параболой $y=x^2$, осью абсцисс и прямой x=3. Найдите вероятность того, что она лежит:
 - а) левее прямой x = 1; в) правее прямой x = 2;
 - б) выше прямой y = 4; г) ниже прямой y = 1.

- O22.16. Точка случайным образом выбирается из фигуры, ограниченной графиком функции $y=e^x$, осью ординат и прямой y=e. Найдите вероятность того, что она лежит:
 - а) в первой координатной четверти;
 - б) правее прямой x = 1;
 - в) правее прямой x = 0.5;
 - г) ниже прямой $y = \sqrt{e}$.
- O22.17. Под аркой синусоиды $y = \sin x$, $0 \le x \le \pi$, случайным образом выбирают точку выше оси абсцисс. Найдите вероятность того, что она лежит:
 - а) выше прямой $y = \sqrt{2}$; в) ниже прямой $y = \frac{\sqrt{3}}{2}$;
 - б) левее прямой $x = \frac{\pi}{3}$; г) правее прямой $x = \frac{3\pi}{4}$.
- **ullet22.18.** Найдите значение параметра a, если известно, что вероятность указанного события равна 0,5:
 - а) точка фигуры, ограниченной параболой $y=x^2$, осью абсцисс и прямой x=1, лежит левее прямой x=a;
 - б) точка фигуры, ограниченной графиком функции $y=\frac{1}{x^2}$, осью абсцисс и прямыми $x=1,\ x=2,$ лежит ниже прямой y=a;
 - в) точка фигуры, ограниченной гиперболой $y = \frac{1}{x}$, осью абсцисс и прямыми x = 1, x = 2, лежит левее прямой x = a;
 - г) точка фигуры, ограниченной осью ординат, прямой y=2 и графиком функции y=|x-1|, лежит правее прямой x=a.
- **О22.19.** Случайным образом на координатной плоскости xOy выбирают точку P(x; y), $0 \le x \le 4$, $0 \le y \le 2$. Отрезок OP является диагональю прямоугольника со сторонами, параллельными осям координат. Какова вероятность того, что периметр этого прямоугольника:
 - а) больше 20;
- в) меньше 4;
- б) не больше 12;
- г) больше 10?
- **•22.20.** Случайным образом на координатной плоскости *хОу* выбирают точку P(x; y), $0 \le x \le 4$, $0 \le y \le 2$. Отрезок *OP* является диагональю прямоугольника со сторонами,

параллельными осям координат. Какова вероятность того, что площадь этого прямоугольника:

- а) больше 9;
- в) меньше 2;
- б) меньше 10:
- г) больше 4?
- O22.21. Числа p и q произвольно выбирают из отрезка [0; 1]. Какова вероятность того, что у приведенного квадратного уравнения $x^2 + px + q = 0$:
 - а) есть хотя бы один корень (действительный или комплексный);
 - б) нет действительных корней;
 - в) есть два различных действительных корня;
 - г) есть хотя бы один положительный корень?
- •22.22. Отрезок единичной длины наудачу разбили на три отрезка. Какова вероятность того, что длина каждого отрезка будет:
 - а) больше 0,34;
 - б) больше 0.25:
 - в) меньше 0,32;
 - г) меньше 0.5?

§ 23. Независимые повторения испытаний с двумя исходами

- O23.1. Найдите вероятность «успеха» в каждом из следующих испытаний:
 - а) вытаскивание одной кости домино; появление дубля «неудача»;
 - б) вытаскивание одной кости домино; появление кости с суммой очков меньше 4 «неудача»;
 - в) вытаскивание одной карты из колоды в 36 карт, появление «пики» «неудача»;
 - г) вытаскивание одной карты из колоды в 36 карт, появление туза, короля или дамы «неудача».
- O23.2. Каждое испытание в задаче 23.1 повторили дважды. Найдите вероятность двукратного появления «успеха» в каждом из случаев а), б), в), г).
- ●23.3. Найдите вероятность появления хотя бы одного «успеха» в каждом из случаев а), б), в), г) задачи 23.2.

- O23.4. Каждое испытание в задаче 23.1 повторили трижды. Что более вероятно в каждом из случаев а), б), в), г): то, что наступит хотя бы один «успех», или то, что наступит хотя бы одна «неудача»?
- О23.5. Какова вероятность того, что при восьми бросаниях монеты:
 - а) орел выпадет ровно пять раз;б) орлов и решек выпадет поровну;
 - в) решка выпадет ровно пять раз;
 - г) решка выпадет чаще орла?
- **О23.6.** Какова вероятность того, что при n бросаниях двух различных игральных костей хотя бы один раз выпадет пара шестерок, если:
 - a) n = 1; 6) n = 2; B) n = 3; n = 10?
- O23.7. Шахматисты A и Б играют несколько партий. Шансы на победу каждого из них в отдельной партии считаются равными. Какой результат A : Б оценивается как более вероятный:
 - а) 2 : 2 или 3 : 1 в четырех партиях;
 - б) 2:2 в четырех партиях или 3:3 в шести партиях;
 - в) 3:1 в четырех партиях или 4:2 в шести партиях;
 - г) 2:3 в пяти партиях или 3:3 в шести партиях?
- ●23.8. Хоккейные команды A и Б играют в финальной стадии «play-off». Шансы на победу команды A в отдельной встрече оцениваются в 40%. Какова вероятность того, что после четырех встреч результат A: Б будет:
 - а) 0:4; б) 2:2; в) 3:1; г) в пользу команды А?
- O23.9. Вероятность успеха в одном испытании равна 0,2. Расположите следующие события в порядке возрастания вероятностей их наступления, предварительно вычислив эти вероятности:
 - A_1 при двух повторениях испытания успех наступает ровно в одном случае;
 - A_2 при трех повторениях испытания успех наступает ровно в одном случае;
 - A_3 при трех повторениях испытания успех наступает ровно в двух случаях;
 - A_4 при трех повторениях испытания успех не наступает ни разу.

- O23.10. Стрелок не очень меток: вероятность поражения мишени при одном выстреле оценивается в $40\,\%$. Оцените (в процентах) вероятности наступления следующих событий при пяти выстрелах этого стрелка:
 - а) в мишень попадут ровно три пули;
 - б) в мишень не попадет ровно одна пуля;
 - в) мищень останется нетронутой;
 - г) мишень будет поражена хотя бы раз.
- О23.11. а) Используя результаты задачи 23.10, составьте таблицу из двух строк: в первой строке запишите варианты количества возможных попаданий стрелка в мишень, во второй — их вероятности. Вычислите и запишите недостающие значения вероятностей.
 - б) Изобразите многоугольник распределения, откладывая по оси абсцисс число попаданий k=0, 1, 2, 3, 4, 5 в мишень, а по оси ординат вероятности $P_{\kappa}(k)$.
- O23.12. При восьми бросаниях монеты орел может выпасть k = 0, 1, 2, 3, 4, 5, 6, 7, 8 раз.
 - а) Найдите соответствующие вероятности $P_8(k)$ (в процентах).
 - б) Составьте таблицу распределения вероятностей.
 - в) Составьте многоугольник распределения вероятностей.
 - г) Найдите наивероятнейшее число выпадений орла.
- O23.13. Вершины квадрата лежат на сторонах правильного треугольника. В треугольнике независимым образом поочередно выбирают четыре точки. Найдите вероятность того, что:
 - а) все точки окажутся в квадрате;
 - б) в квадрате и вне квадрата точек окажется поровну;
 - в) ни одна из точек не окажется в квадрате;
 - г) хотя бы одна точка окажется в квадрате.
- ●23.14. Плоскость, проходящая через концы трех ребер куба, выходящих из одной вершины, отсекает от куба треугольную пирамиду. В кубе независимым образом поочередно выбирают три точки. Найдите вероятность того, что:
 - а) все точки окажутся вне пирамиды;
 - б) в пирамиде окажется ровно одна точка;
 - в) ровно одна точка окажется вне пирамиды;
 - г) хотя бы одна точка окажется вне пирамиды.

- **О23.15.** Даны два концентрических шара радиусов 1 и 2 соответственно. В большем шаре независимым образом поочередно выбирают 3 точки. Найдите вероятность того, что:
 - а) все точки окажутся в меньшем шаре;
 - б) вне меньшего шара окажется ровно одна точка;
 - в) ни одна из точек не окажется в меньшем шаре;
 - г) хотя бы одна точка окажется в меньшем шаре.
- •23.16. Даны две концентрические окружности с радиусами 1 и 2 соответственно. На меньшей окружности отмечена точка P. В кольце между окружностями наудачу выбраны точки A и B. Найдите вероятность того, что:
 - а) отрезок AP имеет с меньшей окружностью только одну общую точку P;
 - б) отрезки AP и BP пересекают меньшую окружность в точках, отличных от точки P;
 - в) хотя бы один из отрезков AP и BP пересекает меньшую окружность в точке, отличной от точки P;
 - г) оба отрезка AP и BP имеют с меньшей окружностью только одну общую точку P.
- \bigcirc 23.17. В соответствии с техническими нормативами вероятность выпуска стандартной детали без дефектов оценивается в $95\,\%$. Найдите наивероятнейшее число бракованных деталей среди n выпущенных деталей, если:
 - a) n = 1119; B) n = 20m + 19;
 - 6) n = 1120; r) n = 20(m + 1).
- •23.18. Вероятность опечатки на одной странице оценивается в 1%. Оцените общее количество n напечатанных в типографии страниц, если число страниц с опечатками оказалось равным:
 - а) 5; б) 10; в) 20; г) 100.
- O23.19. В n испытаниях Бернулли наивероятнейшим числом успехов оказались числа k и k+1. Найдите вероятность успеха в одном из этих испытаний Бернулли, если известно, что:
 - a) n = 9, k = 7; B) n = 999, k = 699;
 - 6) n = 99, k = 70; r) n = 999, k = 7.

- O23.20. В *п* испытаниях Бернулли наивероятнейшим числом успехов оказалось единственное число к. Оцените, в каких пределах может находиться вероятность неудачи в одном из этих испытаний Бернулли, если известно, что:
- a) n = 9, k = 3; b) n = 99, k = 30; c) n = 99, k = 30; r) n = 99, k = 3.

§ 24. Статистические методы обработки информации

В задачах 24.1—24.5 рассматриваются оценки, которые получили студенты одной группы на экзамене по истории. Оценки таковы:

4	3	4	2	3	4	5	3	3	4
3	4	5	4	5	2	4	4	5	2

- 024.1. а) Сколько получено двоек, т. е. какова кратность варианты 2?
 - б) Какова кратность варианты 4?
 - в) Перечислите все варианты полученного ряда данных.
 - г) Выпишите сгруппированный ряд данных.
- 024.2 а) Составьте таблицу распределения кратностей вариант.
 - б) Нарисуйте многоугольник распределения кратностей.
 - в) Составьте таблицу распределения частот и нарисуйте многоугольник распределения частот.
 - г) Для процентных частот нарисуйте гистограмму распределения с шириной столбцов, равной 1.
- 024.3. Вычислите: а) размах; б) моду; в) медиану; г) среднее ряда данных.
- **24.4**. а) Найдите отклонения вариант от среднего значения.
 - б) Проверьте, что сумма всех отклонений равна нулю.
 - в) Найдите квадраты отклонений и сумму квадратов отклонений от среднего значения.
 - г) Вычислите дисперсию и среднее квадратичное.

- ●24.5. Отметки «2» и «3» не позволяют получать стипендию, будем считать их «нулевыми» (для получения стипендии). Отметки «4» и «5» будем считать «единичными». Для распределения отметок по категориям «нулевые» и «единичные»:
 - а) составьте таблицы распределения кратностей и частот;
 - б) постройте гистограмму распределения с шириной столбцов, равной 1;
 - в) вычислите моду и среднее значение;
 - г) вычислите дисперсию и среднее квадратическое отклонение.
- O24.6. В специализированном спортивном магазине продается 50 видов велосипедов.

Они распределены по цене так (граничную цену относят к более дорогой категории):

Цена (тыс. руб.)	до 3	3-6	6-9	9-12	12-15	≥ 15
Кол-во видов	3	8	19	?	11	2

- а) Сколько видов велосипедов стоят от 9 до 12 тыс. р.?
- б) Какова частота очень дорогих (≥ 15 тыс. р.) видов велосипедов?
- в) Какова процентная частота относительно дешевых (< 6 тыс. р.) видов велосипедов?
- г) Какова процентная частота моды проведенного измерения?
- O24.7. В сводной таблице распределения данных некоторого измерения остались пустые места:

Варианта	№ 1	№ 2	№ 3	№ 4	Всего: 4 варианты
Кратность		5			Сумма =
Частота	0,45		0,1		Сумма =
Частота, %		25		20	Сумма = %

- а) Какой столбец можно сразу заполнить, исходя из этих данных?
- б) Какую строку можно заполнить после выполнения пункта а)?
- в) Заполните всю таблицу.
- г) Укажите моду распределения.

O24.8. В сводной таблице распределения данных некоторого измерения остались пустые места. Заполните их.

Варианта	№ 1	№ 2	№ 3	№ 4	№ 5	№ 6	Всего: 6 вариант
Кратность	291		113				Сумма =
Частота		0,122				0,193	Сумма =
Частота, %	29,1			20,2	7,9		Сумма = %

●24.9. Требуется восстановить сводную таблицу распределения данных некоторого измерения по следующей информации:

Варианта	№ 1	№ 2	№ 3	№ 4	Всего: 4 варианты
Кратность		k		2k	Сумма = 100
Частота					Сумма =
Частота, %	3 <i>k</i>	$k^2-7k-33$			Сумма = %

- а) C какого столбца следует начать восстановление данных?
- б) Составьте уравнение, связывающее данные, выбранные в пункте а).
- в) Решите это уравнение и найдите значение k.
- г) Заполните всю таблицу.

●24.10. Дана сводная таблица распределения результатов некоторого измерения:

Варианта	№ 1	№ 2	№ 3	№ 4	Всего: 4 варианты
Кратность		x	y	x + y	Сумма = 50
Частота					Сумма =
Частота, %		23x - 105	y^2-y-70		Сумма = %

- а) Найдите x.
- б) Найдите у.
- в) Восстановите всю таблицу.
- г) Найдите моду этого распределения.

Ниже, в задачах 24.11—24.16 рассматриваются результаты, которые получили выпускники одной из школ на сочинении. Выставлялись две оценки: первая — по литературе, вторая — по русскому языку. Оценки таковы:

5/4 4/5 3/1 4/3 2/3 3/3 4/3 5/3 3/3 1/2 4/4 4/2 2/1 3/5 3/4 4/3 5/5 4/4 5/4 2/2 2/3 4/3 5/4 2/3 3/3

O24.11. Для оценок по литературе:

- а) выпишите сгруппированный ряд данных;
- б) составьте таблицу распределения кратностей:
- в) постройте многоугольник распределения процентных частот:
- г) найдите среднее.

O24.12. Для оценок по русскому языку:

- а) выпишите сгруппированный ряд данных;
- б) составьте таблицу распределения кратностей;
- в) постройте многоугольник распределения процентных частот;
- г) найдите среднее.

О24.13. Для суммы оценок по литературе и русскому языку:

- а) выпишите сгруппированный ряд данных;
- б) составьте таблицу распределения кратностей;
- в) постройте многоугольник распределения процентных частот;
- г) найдите среднее.

Q24.14. Найдите размах, моду и медиану:

- а) оценок по литературе;
- б) оценок по русскому языку;
- в) суммы оценок по литературе и русскому языку;
- г) модуля разности оценок по литературе и русскому языку.

О24.15. а) Вычислите среднее квадратическое отклонение для оценок по литературе.

- б) Вычислите среднее квадратическое отклонение для оценок по русскому языку.
- в) По какому предмету оценки, в среднем, выше?
- г) По какому предмету оценки имеют более устойчивый характер?

- О24.16. Итоговая оценка за сочинение (см. с. 160) была выставлена по инструкции: «2», если сумма оценок меньше 5; «3», если сумма оценок равна 5 или 6; «4», если сумма оценок равна 7 или 8, и «5» в остальных случаях.
 - а) Определите число итоговых двоек.
 - б) Определите число итоговых пятерок.
 - в) Составьте таблицу распределения итоговых оценок.
 - г) Нарисуйте гистограмму распределения итоговых оценок.

О24.17. После урока по теме «Статистика» на доске остался ответ «Среднее значение равно 12» и таблица:

Варианта	3	8	
Кратность	26	13	11

- а) Какое число должно быть записано в пустой клетке?
- б) Укажите размах, моду и медиану распределения.
- в) Допустим, что среднее значение равно M. Что тогда должно стоять в пустой клетке?
- г) Может ли в ответе для среднего значения стоять 15, если все варианты — целые числа?

●24.18. После урока по теме «Статистика» на доске остался ответ «Среднее значение равно 10» и таблица:

Варианта	4	7	11
Кратность	5	2	

- а) Какое число должно быть записано в пустой клетке?
- б) Найдите размах и моду распределения.
- в) Вычислите среднее квадратическое отклонение.
- г) Может ли среднее значение равняться пяти при какомнибудь заполнении пустой клетки?

●24.19. Таблица распределения кратностей имеет вид:

Варианта	0	1	3	5	6
Кратность	19	2	3x - 1	5	4x - 7

- а) Выразите среднее значение через x.
- б) Как выглядит график зависимости среднего значения от x?
- в) Каким может быть число x, если модой является 0?
- г) Может ли мода распределения равняться трем?

●24.20. Таблица распределения кратностей имеет вид:

Варианта	0	1	3	5	6
Кратность	10	2 <i>x</i>	3x-1	5	x + 5

- а) Выразите через x среднее значение.
- б) Как выглядит график зависимости среднего значения от x?
- в) Каким может быть х, если модой является 0?
- г) Может ли мода распределения равняться единице?

§ 25. Гауссова кривая. Закон больших чисел

В пунктах а)—г) задач 25.1-25.2 найдите значения n, k, p, q и выпишите (без вычислений) формулы для $P_{-}(k)$:

- O25.1. a) Вероятность появления ровно 7 «орлов» при 10 бросаниях монеты;
 - б) вероятность появления ровно 3 «решек» при 10 бросаниях монеты;
 - в) вероятность появления ровно 57 нечетных чисел при 100 независимых выборах целых чисел от 0 до 9;
 - г) вероятность появления ровно 75 чисел, кратных трем, при 100 независимых выборах целых чисел от 0 до 9.
- O25.2. а) Каждый из 50 человек независимо называет один из дней недели. «Неудачным» днем считается понедельник. Какова вероятность того, что «удач» будет ровно половина?
 - б) Каждый из 100 человек независимо называет один из дней недели. «Удачными» днями считаются суббота и воскресенье. Какова вероятность того, что «неудач» будет 33?
 - в) Бросание кубика «удачно», если выпадает 5 или 6 очков. Какова вероятность того, что ровно 175 бросаний из 293 будут «удачными»?
 - г) Одновременно бросают три различные монеты; «неудача»: «решек» больше, чем «орлов». Какова вероятность того, что будет ровно три «удачи» в тысяче независимых бросаний?

В пунктах а)—г) задач 25.3-25.5 следует заполнить пропуски в приведенных формулах для подсчета вероятностей по теореме Бернулли, если известно, что вероятность p «успеха» не меньше вероятности q «неудачи»:

O25.3. a)
$$P_{10}(3) = C_7^7 \cdot 0.6^7 \cdot ?^7;$$
 B) $P_{20}(5) = C_7^7 \cdot 0.3^7 \cdot ?^7;$ 6) $P_{100}(99) = C_7^7 \cdot 0.1^7 \cdot ?^7;$ r) $P_{1000}(0) = 0.2^7.$

5)
$$P_{100}(99) = C_7^7 \cdot 0.1^7 \cdot ?^7;$$
 r) $P_{1000}(0) = 0.2^7.$

O25.4. a)
$$P_{?}(5) = C_{50}^{?} \cdot 0.7^{?} \cdot ?^{?};$$
 B) $P_{100}(?) = C_{?}^{3} \cdot 0.5^{?};$ 6) $P_{?}(?) = C_{?}^{?} \cdot 0.6^{?} \cdot ?^{23};$ r) $P_{40}(?) = 0.7^{?}.$

6)
$$P_{?}(?) = C_{?}^{?} \cdot 0.6^{?} \cdot ?^{23};$$
 r) $P_{40}(?) = 0.7^{?}$

O25.5. a)
$$P_{?}(?) = ? \cdot 0.3^{2} \cdot 0.7^{8};$$
 B) $P_{?}(?) = ? \cdot 0.6^{5} \cdot ?^{25};$

6)
$$P_{\gamma}(?) = ? \cdot 0.01^9 \cdot 0.99;$$
 r) $P_{\gamma}(?) = 0.1^{100}.$

O25.6. Объясните, какие ошибки допущены в формуле:

a)
$$P_{10}(3) = 120 \cdot 0.6^3 \cdot 0.7^6$$
;

6)
$$P_{100}(99) = 100 \cdot 0.9^{99} \cdot 0.01;$$

B)
$$P_{20}(2) = 180 \cdot 0.8^2 \cdot 0.2^{18}$$
;

$$P_{1000}(1) = 0.2^{1000}$$
?

O25.7. По таблице значений функции ф найдите:

```
a) \varphi(1), \varphi(2), \varphi(3);
                                                            B) \varphi(0,1), \varphi(1,1), \varphi(2,1);
```

6)
$$\phi(0,5), \ \phi(1,5), \ \phi(2,5);$$
 r) $\phi(0,9), \ \phi(0,99), \ \phi(1,99).$

 $\bigcirc 25.8$. Используя таблицу значений функции ϕ , найдите приближенное значение x, если известно, что:

a)
$$\varphi(x) = 0.1781;$$
 B) $\varphi(x) = 0.3988;$

6)
$$\varphi(x) = 0.1006$$
; Γ $\varphi(x) = 0.0116$.

 $\bigcirc 25.9$. Найдите x > 0, для которого значение $\varphi(x)$ ближе всего к заданному числу:

●25.10. Вероятность рождения мальчика примем равной 50%. Найдите вероятность того, что среди 400 новорожденных будет ровно:

а) 220 мальчиков; в) 210 мальчиков;

б) 180 девочек; г) 300 девочек.

●25.11. При входе на выставку аттракционов стоит урна с четырьмя черными и одним белым шаром. Входящий вытаскивает шар и потом возвращает его обратно. Если шар окажется белым, то посетитель проходит на выставку бесплатно, а если черным, то покупает билет. С помощью таблицы значений функции о найдите приближенно (с точностью до четвертого знака после запятой) вероятность того, что из 2500 посетителей бесплатно пройдут ровно:

- a) 1000:
- б) 500:
- в) 450;
- г) 510 человек.
- ●25.12. Один из этапов отбора участников для игры «Ну и счастливчик!» организован так. Ведущий записывает произвольную цифру от 0 до 9. После этого очередной участник вслух произвольно называет свою цифру от 0 до 9. Если цифры совпали, то участник проходит на следующий этап. С помощью таблицы значений функции ф найдите приближенно (с точностью до четвертого знака после запятой) вероятность того, что из 10 000 игроков на следующий этап пройдут ровно:
 - a) 2000;
- б) 1000;
- в) 970;
- г) 900 человек.
- O25.13. По таблице значений функции Ф найдите:
 - a) $\Phi(1)$, $\Phi(2)$, $\Phi(3)$;
- B) $\Phi(0,1)$, $\Phi(1,1)$, $\Phi(2,1)$;
- 6) $\Phi(0.5)$, $\Phi(1.5)$, $\Phi(2.5)$; r) $\Phi(0.9)$, $\Phi(0.99)$, $\Phi(1.99)$.
- О25.14. Используя таблицу значений функции Ф, найдите приближенное значение x, если известно, что:
 - a) $\Phi(x) = 0.3461$;
- B) $\Phi(x) = 0.004$;
- 6) $\Phi(x) = 0.4441$;
- Γ) $\Phi(-x) = 0.4904$.
- O25.15. Найдите x, для которого значение $\Phi(x)$ ближе всего к заданному числу:
 - а) 0,33; б) 0,46; в) 0,1; г) 0,49.

- 025.16. Вероятность рождения мальчика примем равной 50%. Найдите вероятность того, что среди 900 новорожденных будет:
 - а) от 400 до 450 мальчиков;
 - б) не менее 440 мальчиков;
 - в) от 430 до 470 девочек;
 - г) не более 460 девочек.
- ●25.17. (Продолжение задачи 25.11.) Какова вероятность того, что из 2500 посетителей бесплатно пройдут:
 - а) от 500 до 1000;
- в) от 500 до 520;
- б) от 400 до 600;
- г) от 490 до 510?

- ●25.18. (Продолжение задачи 25.12.) Какова вероятность того, что из 10 000 участников на следующий этап пройдут:
 - а) от 500 до 1000;
- в) от 800 до 1200;
- б) не более 970:
- г) не менее 2000?
- O25.19. Известно, что из всех поступавших в университет абитуриентов в среднем 60% набрали на экзаменах более 20 баллов. Какова вероятность того, что из 100 случайно выбранных абитуриентов более 20 баллов набрали:
 - а) от 50 до 70 человек;
- в) не более 60 человек;
- б) не менее 20 человек;
- г) более 69 человек?
- ●25.20. В большом десятиэтажном доме на каждом этаже живет одинаковое количество жильцов. Какова вероятность того, что из 150 случайным образом опрошенных жильцов этого дома:
 - а) на первом этаже проживают не менее 15 человек;
 - б) на последних двух этажах проживают не более 30 человек;
 - в) на четных этажах живут от 70 до 80 человек:
 - г) выше четвертого этажа живут более 99 человек?

§ 26. Равносильность уравнений

26.1. Равносильно ли уравнение $2^{x} = 256$ уравнению:

a)
$$\log_2 x = 3$$
;

B)
$$3x^2 - 24x = 0$$
;

$$6) x^2 - 9x + 8 = 0;$$

$$\Gamma) \frac{16}{x} = 2?$$

26.2. Равносильно ли уравнение $\sin x = 0$ уравнению:

a)
$$\cos x = 1$$
;

$$B) \cos 2x = 1;$$

$$6) tg x = 0;$$

$$\Gamma) \sqrt{x-1} \cdot \sin x = 0?$$

26.3. Придумайте три уравнения, равносильных уравнению:

a)
$$\sqrt{2x-1} = 3$$
;

$$B) \lg x^2 = 4;$$

$$6) \cos x = 3;$$

$$r) x^{\frac{3}{5}} = -1.$$

26.4. Укажите уравнение-следствие для уравнения:

a)
$$\sqrt{7x + 3} = x$$
;

$$B) \sin (\pi - x) \cdot \operatorname{ctg} x = -0.5;$$

6)
$$\log_2(x-1) - \log_2 x = 0$$
;

6)
$$\log_2(x-1) - \log_2 x = 0$$
; r) $\sin\left(\frac{\pi}{2} - x\right) \cdot \text{tg } x = 0$.

26.5. Объясните, почему равносильны уравнения:

a)
$$x^{37} - 12x^2 + 1 = 0$$
 и $x^{37} + = x^2$

б)
$$\sqrt[5]{x^2 - 2x - 3} = 2$$
 и $x^2 - x - 2 = 332$

26.6. Равносильны ли уравнения:

a)
$$\sqrt{2x^2+2} = \sqrt{x^4+3}$$
 и $2x^2+2 = x^4+3$;

6)
$$\sqrt[4]{\sin^2 x + 1} = 1$$
 и $\sin^2 x = 0$?

Во всех заданиях этой главы предполагается, что переменные принимают только действительные значения.

Равносильны ли уравнения:

26.7. a)
$$3^{\sqrt{x}+4} \cdot \left(\frac{1}{3}\right)^x = 1$$
 $\mu = \sqrt{x} + 4 - x = 0$;

6)
$$\sqrt{0.5^x} \cdot 2^{x^2}\sqrt{2} = 4$$
 и $x^2 - \frac{x}{2} + \frac{1}{2} = 2$?

26.8. a)
$$\frac{x^2 + 3x - 1}{x^2 + 1} = 3$$
 и $x^2 + 3x - 1 = 3x^2 + 3$;

6)
$$\frac{\sin x + 1}{\sin x + 2} = 0.5$$
 и $\sin x + 1 = 0.5 \sin x + 1$?

Докажите, что уравнение не имеет корней

O26.9. a)
$$\sqrt{3x-5} = \sqrt{9-7x}$$
; 6) $\sqrt{x^2-4} + \sqrt{1-x^2} = 4$.

$$6) \sqrt{x^2 - 4} + \sqrt{1 - x^2} = 4.$$

O26.10. a)
$$\lg(x^2 - 9) + \lg(4 - x^2) = 1$$
;

6)
$$\lg (x^2 - 3x) - \lg (2x - x^2) = 0.5$$
.

O26.11. a)
$$\sqrt{7x-6} = x$$
;

B)
$$\sqrt{6x-11} = x-1$$
;

6)
$$x + 3 = \sqrt{2x + 9}$$
;

$$\Gamma) -x - 5 = \sqrt{7x + 23}.$$

O26.12. a)
$$\sqrt{x^4 - 3x - 1} = x^2 - 1$$
; b) $\sqrt{x^4 + x - 9} = 1 - x^2$;

B)
$$\sqrt{x^4 + x - 9} = 1 - x^2$$
;

6)
$$\sqrt{x^4-3x-1}=1-x^2$$
:

6)
$$\sqrt{x^4-3x-1}=1-x^2$$
; r) $\sqrt{x^4+x-9}=x^2-1$.

O26.13. a)
$$\sqrt{x^4 - 5x^2 - 2.5x} = 5 - x^2$$
;

6)
$$\sqrt{x^4-5x^2-2.5x}=x^2-5$$
;

B)
$$\sqrt{x^4 - 3x^2 - 1.5x} = x^2 - 3$$
;

$$\mathbf{r}) \sqrt{x^4 - 3x^2 - 1.5x} = 3 - x^2.$$

Q26.14. a)
$$(x^2 - 9)(\sqrt{3 - 2x} - x) = 0$$
;

6)
$$(x^2 - 16)(\sqrt{4 - 3x} - x) = 0$$
.

Q26.15. a)
$$\sin 2x \cdot \sqrt{4 - x^2} = 0$$
;

6)
$$(\cos 2x - 1) \cdot \sqrt{9 - x^2} = 0$$
:

B)
$$(\cos^2 x - \sin^2 x) \cdot \sqrt{1 - x^2} = 0;$$

r)
$$tg x \cdot \sqrt{16 - x^2} = 0$$
.

●26.16. Найдите целочисленный корень уравнения:

a)
$$\frac{\log_2(7+6x-x^2)-\log_2(x-2)}{10x-24-x^2}=2;$$

6)
$$\frac{\log_{12}(6+5x-x^2)}{x^2-9x+20}=2^{-\sqrt{x-2}}.$$

- **ullet26.17.** а) Найдите сумму натуральных значений параметра a, при которых уравнение $(\sqrt{x-4}-2)(x-a)=0$ имеет единственный корень.
 - б) Сколько имеется натуральных значений параметра а, при которых уравнение $(\log_3(2x-11)-1)(x^2-a^2)=0$ имеет единственный корень?

§ 27. Общие методы решения уравнений

Будет ли уравнение вида h(f(x)) = h(g(x)) равносильно уравнению вида f(x) = g(x)?

27.1. a)
$$3^{2-x} = 3^{x^2-4x}$$
:

B)
$$\sqrt[3]{7-x} = \sqrt[3]{5x+1}$$
:

$$5) (3x^2-2)^4=(x-3)^4;$$

6)
$$(3x^2-2)^4=(x-3)^4$$
; r) $\lg \frac{1}{x}=\lg (2x-7)$.

27.2. a)
$$(2x^4 + 1)^5 = (1 - x^3)^5$$
;

6)
$$\log_{0.2}(2\sin x - 1) = \log_{0.2}(3 - \sin^2 x);$$

B)
$$\sqrt[6]{2^x - 1} = \sqrt[6]{5 - 3 \cdot 2^x}$$
;

$$\Gamma) \cos(3^x - 1) = \cos(3 - 9^x).$$

O27.3. a)
$$2^{\sqrt{x-3}} = \frac{1}{2}\sqrt{32}$$
;

6)
$$10^{\log_2(x-3)} \cdot 0.00001 = 0.1^{\log_2(x-7)}$$
.

$$\bigcirc$$
27.4. a) $0.5^{\sin x - \cos x} = 1$

O27.4. a)
$$0.5^{\sin x - \cos x} = 1;$$
 6) $(\sqrt{3})^{\sin^2 x - 1} \cdot 3\sqrt{3} = \sqrt[4]{729}.$

$$\bigcirc$$
27.5. a) $\log_2(x^2 - 10x + 40) = \log_2(4x - 8);$

6)
$$\log_{0.8}(9x - 4x^2) = \log_{0.8}(x^3 + 4x^2);$$

B)
$$\log_{\sqrt{3}} \frac{x-2}{2x-4} = \log_{\sqrt{3}} \frac{x+1}{x+2}$$
;

r)
$$\log_{0.1} \sqrt{5x-6} = \log_{0.1} \sqrt{x^2-2}$$
.

$$\bigcirc 27.6. \text{ a) } (x^2 - 6x)^5 = (2x - 7)^5;$$

6)
$$(\sqrt{6x-1}+1)^9 = (\sqrt{6x+8})^9$$
;

B)
$$(2^{2x} + 16)^{20} = (10 \cdot 2^x)^{20}$$
;

r)
$$(\log_{0.1}^2 x - 2)^3 = (2 \log_{0.1} x + 1)^3$$
.

Q27.7. a)
$$\sin\left(3x + \frac{\pi}{3}\right) = \sin\left(x - \frac{\pi}{6}\right);$$

6)
$$\operatorname{tg}\left(\frac{\pi}{8}-x\right)=\operatorname{tg}\left(\frac{\pi}{6}+2x\right);$$

B)
$$\cos\left(x-\frac{\pi}{4}\right)=\cos\left(2x+\frac{\pi}{4}\right)$$
;

r) ctg
$$2x = \text{ctg } 3x$$
.

$$\bigcirc$$
27.8. a) $2^{x^2+3} - 8^{x+1} = 0$:

6)
$$27^{5-x^2} - 3^{x^2-1} = 0$$
.

O27.9. a)
$$2^{\log_8 x - \log_8 x^2 + 2.5} = (2\sqrt{2} + 1)^2 - 9$$
;

6)
$$3^{\cos x} \cdot 3\sqrt{3} = \frac{\sqrt{27}}{\sqrt{3}}$$
.

O27.10. a)
$$(\sqrt{3})^{\text{tg}x} = \frac{3\sqrt{3}}{3^{\text{tg}x}};$$

6)
$$\left(\sqrt{2}\right)^{2\cos x} = \frac{1}{2 \cdot 2^{\cos x}}$$
.

O27.11. a)
$$\log_{\frac{2}{3}}(7x + 9) - \log_{\frac{2}{3}}(8 - x) = 1;$$

6)
$$\log_{1,2}(3x-1) + \log_{1,2}(3x+1) = \log_{1,2}8$$
.

Решите уравнение методом разложения на множители:

O27.12. a)
$$x^3 - 9x^2 + 20x = 0$$
;

$$B) x^5 + 8x^4 + 12x^3 = 0;$$

6)
$$x^3 - 3x^2 - 4x + 12 = 0$$
; r) $x^3 + x^2 - 9x - 9 = 0$.

$$x^3 + x^2 - 9x - 9 = 0$$

O27.13. a)
$$\sqrt{x^5} - 3\sqrt{x^3} - 18\sqrt{x} = 0$$
;

6)
$$\sqrt[4]{x^9} - 2\sqrt[4]{x^5} - 15\sqrt[4]{x} = 0.$$

$$\bigcirc$$
27.14. a) $2^x \cdot x - 4x - 4 + 2^x = 0;$

6)
$$3^x \cdot x - 3^{x+1} + 27 = 9x$$
.

Q27.15. a)
$$2x^2 \sin x - 8 \sin x + 4 = x^2$$
;

6)
$$2x^2 \cos x + 9 = 18 \cos x + x^2$$
.

$$027.16.$$
 a) $\sin 2x = \sin x$;

6)
$$\cos^2(\pi - x) + \sin 2x = 0$$
;

$$B) \sqrt{3}\cos 3x = \sin 6x;$$

r)
$$\sin^2\left(\pi + \frac{x}{2}\right) - \frac{1}{2}\sin x = 0.$$

Решите уравнение методом введения новой переменной:

O27.17. a)
$$8x^6 + 7x^3 - 1 = 0$$
;

$$6) x^8 + 3x^4 - 4 = 0.$$

O27.18. a)
$$2^x + 2^{1-x} = 3$$
;

B)
$$5^x + 4 = 5^{2x+1}$$
;

6)
$$25^{-x} - 50 = 5^{-x+1}$$
; r) $3^{x+1} - 29 = -18 \cdot 3^{-x}$.

O27.19. a)
$$7^{2x+1} - 50 \cdot 7^x = -7$$
; b) $4 \sin^2 x + 4 = 17 \sin x$;

B)
$$4\sin^2 x + 4 = 17\sin x$$
;

6)
$$\log_2^2 x + 12 = 7 \log_2 x$$
;

$$\Gamma) \sqrt[3]{x} - \sqrt[6]{x} - 2 = 0.$$

O27.20. a)
$$\lg^2 x^2 + \lg 10x - 6 = 0$$
;

6)
$$3^x + 3^{-x+1} = 4$$
;

B)
$$2\cos^2 x - 7\cos x - 4 = 0$$
;

r)
$$5^{2\sqrt{x}} + 125 = 6 \cdot 5^{\sqrt{x}+1}$$
.

Решите уравнение, используя функционально-графические методы:

O27.21. a)
$$x = \sqrt[3]{x}$$
;

6)
$$|x| = \sqrt[5]{x}$$
.

$$\bigcirc$$
27.22. a) $2^x = 6 - x$;

$$6) \left(\frac{1}{3}\right)^x = x + 4.$$

$$O27.23. a) (x-1)^2 = \log_2 x;$$

6)
$$\log_{\frac{1}{2}} x = \left(x + \frac{1}{2}\right)^2$$
.

O27.24. a)
$$1 - \sqrt{x} = \ln x$$
;

$$6) \sqrt{x} - 2 = \frac{9}{x}.$$

О27.25. Сколько корней имеет уравнение:

a)
$$\log_{\pi} x = \sin x$$
;

$$\mathrm{B)}\ \log_{3\pi}x = \cos x;$$

$$6) x^2 + 1 = \cos x;$$

$$r) \sin x = \frac{1}{9}x?$$

- O27.26. Сколько корней имеет заданное уравнение на заданном промежутке:
 - a) $2^x = \sin x$, [0; $+\infty$);
- B) $7^x = \cos x$, $[0; +\infty)$;
- 6) $\left(\frac{4}{5}\right)^x = \cos x$, $(-\infty; 0]$; r) $\log_3 x = \sin x$, (0; 3]?

O27.27. a)
$$x^3 - 6x^2 + 11x - 6 = 0$$
; B) $x^3 + 2x^2 + 3x + 6 = 0$;

B)
$$x^3 + 2x^2 + 3x + 6 = 0$$

$$6) x^3 + 7x^2 - 6 = 0;$$

$$\Gamma) x^3 + 4x^2 - 24 = 0.$$

$$\bigcirc 27.28. \ a) (x-1)^4 + 36 = 13(x^2 - 2x + 1);$$

6)
$$(2x + 3)^4 - 9 = 8(4x^2 + 12x + 9)$$
.

$$\bigcirc$$
27.29. a) $(x^2 - 5x + 7)^2 - (x - 2)(x - 3) = 1;$

6)
$$((x-2)(x-4))^2 + 2(x-3)^2 - 2 = 0$$
.

O27.30. a)
$$x(x-1)(x-2)(x-3) = 15$$
;

$$6) (x-1)x(x+1)(x+2) = 24.$$

O27.31. a)
$$\frac{3}{1+x+x^2} = 3-x-x^2$$
;

6)
$$\frac{x^2-x}{x^2-x+1}-\frac{x^2-x+2}{x^2-x-2}=1$$
.

- O27.32. a) $\sin^2 x + \cos^2 2x = 1$:
 - 6) $\cos^2 3x \sin^2 3x \cos 4x = 0$.
- $\bigcirc 27.33.$ a) $\cos 5x + \cos 7x \cos 6x = 0$:
 - 6) $\sin 9x \sin 5x + \sin 4x = 0$.
- 027.34. a) $\cos 6x \cos 2x + \cos 8x \cos 4x = 0$;
 - 6) $\sin 3x \sin x + \cos 3x \cos x = 0$.
- O27.35. a) $3 \lg^2 x 8 = 4 \cos^2 x$; 6) $4 \sin^2 x = 4 9 \lg^2 x$.
- O27.36. a) $\sin^3 x \sin^2 x \cos x + 3\cos^3 x = 3\sin x \cos^2 x$;
 - 6) $\sin^3 x + 5\sin^2 x \cos x = 6\cos^3 x$.
- **27.37.** a) $\sin x \cos x 6 \sin x + 6 \cos x + 6 = 0$;
 - 6) $5\sin 2x 11\sin x = 11\cos x 7$.
- O27.38. a) $8^{\sqrt{x}} 3 \cdot 4^{\sqrt{x}} 3 \cdot 2^{\sqrt{x+1}} + 8 = 0$:
 - 6) $4^{\log_5 x} 6 \cdot 2^{\log_5 x} + 2^{\log_5 125} = 0$.

27.39. a)
$$2^x \cdot 5^{\frac{1+x}{x}} = 50;$$
 B) $3^{x-1} \cdot 625^{\frac{x-2}{x-1}} = 225;$

6)
$$3^x \cdot 2^{\frac{3}{x}} = 24$$
; r) $5^x \cdot 2^{\frac{2+x}{x}} = 40$.

O27.40. a)
$$\log_{0.2} \sqrt{5x-4} = \log_{0.2} x$$
;

6)
$$\log_7 \sqrt{3x^2 - 7x + 9} = \log_7 (x + 2);$$

B)
$$\log_3(x-1) = \log_3\sqrt{6x-11}$$
;

$$\Gamma$$
) $\log_{0.4} x = \log_{0.4} \sqrt{x^2 + x}$.

O27.41. a)
$$\log_{0.5}^2 x + 12 = 7 \log_2 x$$
;

6)
$$\log_{0.5}^2 x - 6 \log_{\frac{1}{\sqrt{2}}} \sqrt{x} + 8 = 0;$$

B)
$$9 \log_8^2 x = 11 \log_2 x + 12$$
;

r)
$$\sqrt{\log_2 x + 11} = 3 \log_8 x - 1$$
.

O27.42. a)
$$\log_{x+1}(x^2 - 3x + 1) = 1$$
; 6) $\log_x(2x^2 - 3x - 4) = 2$.

$$027.43.$$
 a) $\ln(0,2^x-7) = \ln(9-3\cdot0,2^x);$

6)
$$9^{\log_3 x} - 12 \cdot 3^{\log_3 x} + 3^{\log_3 27} = 0$$
;

B)
$$e^{\lg (x-2)} \cdot \frac{1}{e} = (e^{-1})^{\lg (x+1)};$$

r)
$$\log_5(2+3\cdot 5^{-x})=x+1$$
.

O27.44. a)
$$10^{\ln^2(3x-e)-5\ln(2x+e)} = (0,1)^{\ln(2x+e)^5-1}$$
;

6)
$$\lg (9^x + 3^{x+1} - 1) - \lg (3^x - 2 \cdot 9^x) = 0$$
.

O27.45. a)
$$\log_{\frac{10}{7}}(\lg(x+1)-1)^{-1} = \log_{0.7}(3\lg(x+1)-1)$$

$$-\log_{0,7}(\lg(x+1)+3);$$

6)
$$\log_{\sqrt{3}}(3x-2\sqrt{3x-1})=2\log_3(2\sqrt{3x-1}+1).$$

O27.46. a)
$$\lg^2 x - 5|\lg x| = 0$$
; 6) $\ln^2 x - \frac{3\ln^2 x}{|\ln x|} = 0$.

O27.47. a)
$$\log_{0.5}^2 x - 3|\log_{0.5} x| + \log_{0.5} x = 0;$$

6)
$$|g^2 x - 9||g x| - |g x| = 0$$
.

$$O27.48.$$
 a) $\log_{\frac{1}{a}}(2\sin x - 1) = \log_{\frac{1}{a}}(2 - \sin^2 x);$

6)
$$\log_5(2\cos^2x - 1) = \log_5(-11\cos x + 5)$$
.

$$027.49.$$
 a) $\log_2 \sin x = \log_2 (-\cos x);$

6)
$$\log_3 \cos x = \log_3 (-\sin x)$$
.

O27.50. a)
$$\sqrt{x} \sin x \log_2 x = 0$$
;

6)
$$\sqrt{3x+1}\cos 2x \lg x = 0$$
.

O27.51. a)
$$2^{5x-1} \left(\sin x - \frac{\sqrt{3}}{2} \right) \log_{0.5} (x+4) = 0;$$

6)
$$(\sin 2x + \cos 2x)(x - 8\sqrt{2x - 15}) = 0.$$

O27.52. a)
$$1 + x^2 = \left(\frac{1}{2}\right)^{|x|}$$
;

6)
$$3 - x^2 = 2^{|x|}$$
.

O27.53. a)
$$2-x-\sqrt[5]{x}=0$$

O27.53. a)
$$2-x-\sqrt[5]{x}=0$$
; 6) $\log_5 x-1+(x-5)^8=0$.

27.54. a)
$$\sin \frac{5\pi}{4}x = x^2 - 4x + 5$$
; 6) $-\cos 7\pi x = x^2 - 6x + 10$.

6)
$$-\cos 7\pi x = x^2 - 6x + 10$$
.

27.55. a)
$$\sqrt{x^2-2x+2} + \log_3 \sqrt{x^2-2x+10} = 2$$
;

6)
$$(x-7)^6 + \log_8 \sqrt{x^2-14x+74} = 1$$
.

27.56. a)
$$\log_2(x^2 - 4x + 8) = \sin\frac{5\pi x}{4} - \cos\frac{\pi x}{2}$$
;

6)
$$\log_3(x^2 + 4x + 13) = \cos \pi x - \sin \frac{\pi x}{4}$$
.

27.57. a)
$$\ln^2(x^2 - 3x - 9) + \sqrt{x^3 - 8x - 8} = 0$$
;

6)
$$\operatorname{arctg}^4(x^3 + 2x^2 - x - 2) + \sqrt[6]{x^4 + x^3 + 2x^2 - x - 3} = 0$$
.

§ 28. Равносильность неравенств

- 28.1. Придумайте три неравенства, равносильных неравенству:
 - a) $x^2 9 \le 0$:

- $6) \frac{1}{-} < \frac{1}{2}$.
- 28.2. Придумайте три неравенства-следствия данного неравенства:
 - a) $\log_{0.2} x < 0$;

- 6) $10^{x-3} < 1$.
- 28.3. Являются ли равносильными неравенства:
 - a) $\sin x + 2\log_3 x > 20$ u $\sin x > 20 2\log_3 x$;
 - 6) $\frac{\sin x}{\sqrt{x^2+1}} \ge 1$ и $\sin x \ge \sqrt{x^2+1}$;
 - B) $13 13^{x^2-4} \ge 10^x$ и $13 \ge 10^x + 13^{x^2-4}$:
 - r) $10^{4x-1} \cdot \lg(x^2-4) < 0$ $u \lg(x^2-4) < 0$?
- 28.4. Данное неравенство замените равносильным рациональным неравенством:
 - a) $\lg(x^2 + 9) > \lg(2x^2 + 4)$;
 - 6) $1.4^{7x-9} \le 1.4^{x^2-6}$:
 - B) $\sqrt[5]{4x-9} \ge \sqrt[5]{7x+9}$:
 - r) $\log_{0.2}(16x^2 + 8) < \log_{0.2}(x^2 + 1)$.

O28.5. a)
$$\begin{cases} 3x - 11 > 2x + 13, \\ 17x + 9 < 9x + 99; \end{cases}$$
 6)
$$\begin{cases} 6x + 2 \le 4x + 24, \\ 2x - 1 \ge x + 7. \end{cases}$$

O28.6. a)
$$\begin{cases} (x+1)^2 - (x-1)^2 \ge 12, \\ (x+4)(x-4) - (x+2)^2 < 9; \end{cases}$$

6)
$$\begin{cases} (x-2)(x^2+2x+4)-x^3<8x,\\ 3x-16 \leq x. \end{cases}$$

O28.7. a)
$$\begin{cases} 7 + 3x < 5x + 3, \\ 7x - 15 < 4x - 3, \\ 11x - 32 > 13x - 42; \end{cases}$$
 6)
$$\begin{cases} 29 + 25x > 2(13x + 9), \\ 2x > 5, \\ 3(5x + 3) < 4(4x + 3). \end{cases}$$

Решите систему неравенств:

O28.8. a)
$$\begin{cases} \frac{3x+5}{7} + \frac{10-3x}{5} > \frac{2x+7}{3} - 8, \\ \frac{7x}{3} - \frac{11(x+1)}{6} > \frac{3x-1}{3} - \frac{13-x}{2}; \end{cases}$$

$$6) \begin{cases} \frac{2x-11}{4} + \frac{19-2x}{2} < 2x, \\ \frac{2x+15}{9} > \frac{1}{5}(x-1) + \frac{x}{3}. \end{cases}$$

O28.9. a)
$$\begin{cases} x^3 < x, \\ 3x^2 - x > 5 - 15x; \end{cases}$$
 6)
$$\begin{cases} \frac{x+5}{x-7} < 1, \\ \frac{3x+4}{4x-2} > -1. \end{cases}$$

O28.10. a)
$$\begin{cases} \frac{x}{x+2} - \frac{24}{(x+2)^2} < 0, \\ -3x < 9; \end{cases}$$

$$6) \begin{cases} \frac{x^2 - 1.5x - 7}{(x - 4)^2} > 0, \\ x^2 < 25. \end{cases}$$

Решите совокупность неравенств:

O28.11. a)
$$\begin{bmatrix} x^2 - 4 > 0, \\ x - 6 < 0; \end{bmatrix}$$
 B)
$$\begin{bmatrix} x(x+1) \le 0, \\ 3x - 9 > 0; \end{bmatrix}$$
 6)
$$\begin{bmatrix} (x+3)^3 \ge 27, \\ 4x - 1 < 12x; \end{bmatrix}$$
 r)
$$\begin{bmatrix} (x+3)(x^2 - 3x + 9) < 54, \\ x^2 - 9 > 0. \end{bmatrix}$$

O28.12. a)
$$\begin{bmatrix} \frac{2x-3}{x+3} > 0, \\ \frac{5x+1}{4x-2} < 0; \end{bmatrix}$$
 B)
$$\begin{bmatrix} (x+3)(x-1) > 0, \\ 2-x^2 \le 0; \end{bmatrix}$$

6)
$$\begin{vmatrix} \frac{2}{x+3} < \frac{5}{x}, \\ \frac{3}{x-2} < \frac{2}{x}; \end{vmatrix}$$
 r)
$$\begin{vmatrix} x^2 < 25, \\ \frac{x-1}{x+3} < 0. \end{vmatrix}$$

Решите неравенство, применяя теоремы о равнсти неравенств:

$$028.13.$$
 a) $\log_{14}(x-1) \leq \log_{14}(2x+3)$;

6)
$$\log_{0.3}(2x+1) < \log_{0.3}(x-3)$$
.

$$\bigcirc$$
28.14. a) $\log_{\frac{1}{x}}(2x^2 - 5x) \ge \log_{\frac{1}{x}}(2x - 3);$

6)
$$\lg (5x^2 - 15x) \le \lg (2x - 6)$$
.

O28.15. a)
$$2^{\sqrt{x+4}} \ge \frac{1}{2}\sqrt{128}$$
; 6) $0.5^{\sin x + \frac{\sqrt{8}}{2}} \le 1$.

$$028.16$$
. a) $\log_{0}(x^{2} - 10x + 40) \le \log_{0}(4x - 8)$;

6)
$$\log_{0.7}(9x-4x^2) \ge \log_{0.7}(x^3+4x^2);$$

B)
$$\log_{\sqrt{2}} \frac{x-2}{2x-4} < \log_{\sqrt{2}} \frac{x+1}{x+2}$$
;

r)
$$\log_{\frac{1}{3}}(5x - 4) < \log_{\frac{1}{3}}x^2$$
.

$$\bigcirc$$
28.17. a) $(x^2 - 6x)^5 \ge (2x - 7)^5$;

$$6) (x^2 - 2x)^9 \le (2x - x^2 - 2)^9;$$

B)
$$(x^2 - 10)^{11} < (5 - 2x)^{11}$$
;

r)
$$(6x^2 - 4x - 2)^7 > (x^2 + 3x + 10)^7$$
.

$$\bigcirc$$
28.18. a) $(2^{x+1} + 1)^6 \ge (2^x + 17)^6$;

6)
$$(2 \cdot 0.1^x + 3)^{10} \le (0.1^x + 103)^{10}$$
;

B)
$$(3 - 3\log_{0.2} x)^{13} < (\log_{0.2} x + 7)^{13}$$
;

r)
$$(3\log_7 x - 24)^5 > (2\log_7 x - 22)^5$$
.

Q28.19. a)
$$2^{x^2+3} - 8^{x+1} \ge 0$$
; 6) $27^{5-x^2} - 3^{x^2-1} < 0$.

O28.20. a)
$$(\sqrt{3})^{\log x} \le \frac{3\sqrt{3}}{3^{\log x}};$$
 6) $(\sqrt{2})^{2\cos x} > \frac{1}{2 + 2^{\cos x}}.$

Решите неравенство методом введения новой переменной:

O28.21. a)
$$3^{2x} - 2 \cdot 3^x - 3 \ge 0$$
:

6)
$$2 \cdot 5^{2x} - 5^x - 1 \leq 0$$
.

O28.22. a)
$$3^{1+x} \cdot 2^{1-x} + 3^x \cdot 2^{-x} \le 10.5$$
;

6)
$$2^x \cdot 5^{1-x} + 2^{x+1} \cdot 5^{-x} \ge 2.8$$
.

$$\bigcirc$$
28.23. a) $\sqrt[3]{x} - \sqrt[6]{x} - 2 > 0$:

6)
$$\sqrt[5]{x} - 6\sqrt[10]{x} + 8 < 0$$
.

$$028.24$$
. a) $3^x + 3^{-x+1} \le 4$:

6)
$$25^{-x} - 50 > 5^{-x+1}$$
.

O28.25. a)
$$\log_2^2 x - 7 \log_2 x + 12 < 0$$
;

6)
$$3\log_{\frac{1}{3}}^2 x - 10\log_{\frac{1}{2}} x + 3 \ge 0$$
.

$$028.26.$$
 a) $\log_2^2(x-1) + 3\log_2(x-1) + 2 \ge 0$;

6)
$$9^{\log_{0,1}x} - 4 \cdot 3^{\log_{0,1}x} + 0.1^{\log_{0,1}3} < 0.$$

O28.27. a)
$$2\sin^2 x - 3\sin x + 1 \le 0$$
;

6)
$$\cos^2 x - 5 \cos x + 4 \le 0$$
.

Решите неравенство, применяя функционально-графические методы:

$$\bigcirc$$
28.28. a) $3^x > 12 - 1,5x;$

B)
$$3^x \le 12 - 1.5x$$
;
F) $2^x \le \sqrt{x}$.

$$6) 3^x > \sqrt{x};$$

$$\Gamma$$
) $2^x \leq \sqrt{x}$

O28.29. a)
$$\log_2 x < 6 - x$$
;

$$B) \log_2 x \ge 6 - x;$$

6)
$$\log_3 x \ge x^3$$
;

$$\Gamma) \log_3 x < x^3.$$

O28.30. a)
$$\lg x < \frac{1}{r} - 1$$
;

6)
$$\log_{1,6} x \ge \frac{1}{r} - 1$$
.

О28.31. Найдите область определения функции:

a)
$$y = \frac{\sqrt{9-x^2}}{\log_7(2-x)}$$
;

6)
$$y = \frac{\sqrt{x^2 - 4}}{\log_8(x - 3)}$$
.

O28.32. a)
$$x^2 + 1 \ge \cos x$$
;

B)
$$x^2 + 1 \le \cos x$$
:

6)
$$\sin x \le -\left(x + \frac{\pi}{2}\right)^2 - 1;$$
 r) $\sin x \ge -\left(x + \frac{\pi}{2}\right)^2 - 1.$

$$\mathbf{r}) \sin x \geqslant -\left(x + \frac{\pi}{2}\right)^2 - 1$$

O28.33. a)
$$3^{\sin^2 x} \ge \cos x$$
;

B)
$$3^{\sin^2 x} \leq \cos x$$

$$6) \sqrt{x^2+1} \leq \cos x;$$

B)
$$3^{\sin^2 x} \leq \cos x$$
;
F) $\sqrt{x^2 + 1} \geq \sin x$.

$$028.34. \text{ a) } 9^{x+2} + 4 \cdot 3^{2x+2} \geqslant 4\frac{1}{3}; \qquad \text{ 6) } 8^{x-2} + 3 \cdot 2^{3x-2} \leqslant 24\frac{1}{2}.$$

Q28.35. a)
$$4^{\sqrt{x}} - 9 \cdot 2^{\sqrt{x}} + 8 < 0$$
; 6) $9^{\sqrt{x}} - 10 \cdot 3^{\sqrt{x}} + 9 < 0$.

O28.36. a)
$$x^4 - 8x - 6x^3 + 12x^2 \ge 0$$
;

6)
$$x^4 + 12x < 13x^2$$
.

O28.37. a)
$$(x-2)\log_4(x+2) \ge 0$$
;

6)
$$(3-x)\sqrt{\log_3(x+5)} \le 0$$
.

O28.38. a)
$$(x-3,1) \ln (x^2-10x+22) \ge 0$$
;

6)
$$(x-7,3) \ln (x^2-8x+8) \le 0$$
.

O28.39. a)
$$(2^x - 3)(3x - 4) \le 0$$
; 6) $(3 \log_3 x - 1)(3x - 4) \ge 0$.

O28.40. a)
$$(x + 3) \log_{\frac{1}{7}} x < 0;$$
 B) $\frac{e^{3x-1} - 1}{x + 8} > 0;$

6)
$$(x-5)\sqrt{x+1} < 0$$
; r) $x\sqrt{x+7} < 0$.

O28.41. a)
$$\sqrt{x} \log_2(x^2 - 8) > 0$$
;

6)
$$3^{x^2-19}\sqrt{x^2-4} < 0$$
;

B)
$$\sqrt{-x} \log_{\frac{1}{8}} (100 - x^2) < 0;$$

r)
$$(2^{x^2-5}-0.5)\log_6(4x+1)>0.$$

O28.42. a)
$$\frac{(x-3)(3^{\frac{1}{x-4}}+0,3)}{x+2} \ge 0;$$

6)
$$\frac{(x+5)\left(2^{\frac{1}{x+1}}+0,2\right)}{x-2} \leq 0.$$

28.43. a)
$$(x^2 - 2x)(tg^2x + 2^{x+1}) \le 0$$
;

6)
$$(x^2 + 4x)(\operatorname{ctg}^2 x + 3^{x-1}) \leq 0$$
.

O28.44. a)
$$\frac{\sqrt{2x+4}}{2^{x-3}} \geqslant \frac{\sqrt{2x+4}}{7^{x-3}};$$
 6) $\frac{\sqrt{7+6x}}{0.2^{x+1}} \leqslant \frac{\sqrt{7+6x}}{0.3^{x+1}}.$

$$\bigcirc$$
28.45. a) $(\sin^2 x + 1)(\lg (2x - 3) - 2) \le 0$;

6)
$$(\sqrt{6x-1}+5)(5^{x^2-1}-0.2)>0$$
;

B)
$$\cos x(2^{x+3} + 3^{x-7}) \ge 0$$
;

r)
$$(2-\sqrt{3x+1})(\log_{0.5}^2(3x-6)+2)<0$$
.

O28.46. a)
$$\left(\frac{1}{7}\right)^{5-2^x} > 7^{-2^x+11};$$
 B) $(3^{-1})^{\sin x - \cos 2x} < 3^{\cos 2x - 0.5};$

6)
$$0.3^{\sqrt{5x-1}-2} \le 1;$$
 r) $10^{\ln(x-2)} \cdot 0.1 \ge (10^{-1})^{\ln(x+2)}.$

O28.47. a)
$$\lg (0,2^x - 5) < \log_{0,1} (95 - 3 \cdot 0,2^x)^{-1};$$

6) $\log_{0,1} (3\sqrt{3x + 1} - 2) > 0,25 \cdot \log_{0,1} \sqrt{3x + 1} \cdot \lg (0,1^{-8}).$

O28.48. a)
$$\sqrt[3]{3^{2-x}-13} < \sqrt[3]{\left(\frac{1}{3}\right)^x+11};$$

6)
$$\sqrt[7]{2\ln^2 x - 3\ln x + 5} > \sqrt[7]{6 - 4\ln x}$$
.

O28.49. a)
$$\log_x (21 - 4x) > 2$$
; 6) $\log_{2x-3} (x^2 - 10x + 9) \le 2$.

28.50.
$$\log_{x+2}(x^2-4x+1) > \log_{\frac{3x-5}{x-6}}1.$$

•28.51.
$$(12x^3 - 16x^2 - 7x + 6)(\log_{\frac{1}{3}}(4 - 2x) + \log_{3}(x + 2)) > 0.$$

28.52.
$$\log_8 \log_9 \log_{7x+6} ((7x+6)^9 + x^2 - x - 56) > 0.$$

28.53.
$$(x^2 - x + 1)^{\frac{x-11}{x-4}} \leq (x^2 - x + 1)^3$$
.

28.54. a)
$$\sqrt{\sin x - 1} \le 4 - x^2$$
; 6) $\sqrt{\cos x - 1} \ge x^2 - 49$.

●28.55. a)
$$6 \log_3 |x-1| \le 14 + 2x - x^2$$
;
6) $\log_2 (x^2 + x - 10) > 25 - 2x - 2x^2$.

28.56. a)
$$\sqrt{4 - \log_{0.5} x} < \sqrt{\log_2 x - 1} + \sqrt{6 - \log_8 x^3}$$
;

6)
$$\sqrt{\log_{\sqrt{3}} \sqrt{x}} \le \sqrt{\log_3 243x} - \sqrt{\log_{\frac{1}{3}} \frac{27}{x}}$$
.

•28.57. a)
$$\frac{(x^2 + x + 1)^2 + 2(x^3 + x^2 + x) - 3x^2}{10x^2 - 17x - 6} \ge 0;$$

6)
$$\frac{(x^2-x-1)^2-2(x^3-x^2-x)-3x^2}{10x^4-43x^3-9x^2} \le 0.$$

28.58. a)
$$(x^2 + 8x + 15) \log_{0.5} \left(1 + \cos^2 \frac{\pi x}{4} \right) \ge 1$$
;

6)
$$(10x - x^2 - 24) \log_5 \left(4 \sin^2 \frac{\pi x}{2} + 1 \right) \ge 1$$
.

§ 29. Уравнения и неравенства с модулями

Решите уравнение:

29.1. a)
$$|x| = 7$$
;

B)
$$|x + 5| = 7$$
;

6)
$$|x-8|=7$$
;

r)
$$|5x - 2| = 1$$
.

29.2. a)
$$|x + 2| = -7$$
;

B)
$$|x + 8| = 2 - \sqrt{7}$$
;

6)
$$|x+5| = -2 + \sqrt{7}$$

6)
$$|x+5| = -2 + \sqrt{7}$$
; r) $|x+5| = 3.14 - \pi$.

29.3. a)
$$\left| \frac{x+1}{x-3} \right| = 1;$$

B)
$$\left| \frac{2x+5}{2-x} \right| = 2;$$

6)
$$\left| \frac{4x-5}{4x+1} \right| = 4;$$

$$\mathbf{r}) \left| \frac{2-3x}{3+x} \right| = 3.$$

029.4. Решите уравнение для каждого значения параметра p:

a)
$$|2x + 1| = p$$
;

B)
$$|2x + 1| = -1 - 5p$$
:

6)
$$|x^2-1|=(p-1)p;$$
 r) $|x^2-1|=4(p-1)-p^2.$

r)
$$|x^2-1|=4(p-1)-p^2$$
.

ullet29.5. Для каждого значения параметра p определите число корней уравнения:

a)
$$|x + 1| = 2 - p$$
;

B)
$$|2-x|=1-2\sin p$$
;

6)
$$|2x - x^2| = \log_5 p$$

6)
$$|2x - x^2| = \log_5 p$$
; r) $|x^2 - 1| = \lg \frac{p}{p-1}$.

- ullet29.6. а) Найдите все значения параметра p, при каждом из которых существует только один корень уравнения |x-1| = p, удовлетворяющий неравенству $x^2 \geqslant 4$.
 - б) Найдите все значения параметра р, при каждом из которых существует корень уравнения |x-1| = p, удовлетворяющий неравенству $x^2 \ge 4$.
 - в) Найдите все значения параметра р, при каждом из которых ни один корень уравнения |x-1| = p не удовлетворяет неравенству $x^2 \ge 4$.
 - г) Найдите все значения параметра р, при каждом из которых уравнение |x-1| = p имеет корни и все они vдовлетворяют неравенству $x^2 ≥ 4$.
- **029.7.** Докажите, что уравнение |f(x)| = h(x) равносильно сис-

TEME
$$\begin{cases} f(x) = h(x), \\ f(x) = -h(x), \\ h(x) \ge 0. \end{cases}$$

$$029.8. \ a) |2x-3| = x;$$

B)
$$|2x-2|=5x+1$$
;

6)
$$|3x - 1| = x + 9$$
;

$$|4x + 3| = -6x - 7.$$

O29.9. a)
$$|x^2 - x| = 4x$$
; B) $|x^2 - 6x + 10| = x$;

B)
$$|x^2 - 6x + 10| = x$$

6)
$$|2x - x^2 + 3| = x + 7;$$
 $|-x^2 + 4x - 5| = -x.$

$$|-x^2 + 4x - 5| = -x$$

29.10. a)
$$|\log_2 x| = \log_2 (2x - 3)$$
;

6)
$$\left|\log_3(3x-2) + \log_3(2x-1)\right| = \log_3(2x-1);$$

B)
$$|\log_5(x+3)| = \log_5(4x+1)$$
;

r)
$$\left|\log_7(2x-7)-\log_7(x-11)\right|=\log_7(x-11)$$
.

29.11. a)
$$|\cos x| = \sin x$$
;

$$|\sin 2x| = \cos x;$$

$$|\sin 5x| = -\sin x$$

029.12. Докажите, что уравнение |f(x)| = |h(x)| равносильно со-

вокупности уравнений
$$\begin{bmatrix} f(x) = h(x); \\ f(x) = -h(x). \end{bmatrix}$$

O29.13. a)
$$|x^2 - 5x| = 4|x|$$
;

6)
$$|2x - x^2 + 3| = |x + 3|$$
;

B)
$$|x^2 - 6x + 10| = |x + 10|$$
;

r)
$$|-x^2 + 4x - 8| = 2|-x|$$
.

O29.14. a)
$$|x-5| + 4|x| = 17$$
; b) $|x+10| - 2|x-10| = 11$;

B)
$$|x + 10| - 2|x - 10| = 11$$

6)
$$2|x-5|-|x+6|=7$$
; r) $3|4x-5|=2|-x|+1$.

$$|x| |3|4x - 5| = 2|-x| + 1$$

O29.15. Докажите, что уравнение
$$|f(x)| + |h(x)| = 0$$
 равносильно системе уравнений
$$\begin{cases} f(x) = 0, \\ h(x) = 0. \end{cases}$$

Решите уравнение:

Q29.16. a)
$$|x^2 - 4x + 3| + |x^2 - 5x + 4| = 0$$
;

6)
$$\left| \frac{4x}{x^2(x+1)} - \frac{5x+1}{x+2} \right| + \left| x^2 + x - 2 \right| = 0;$$

B)
$$|x^2 - 2x| + |2x^2 - 5x + 2| = 0$$
;

r)
$$\left| \frac{3x}{2x+1} - \frac{1-4x}{x^3(x+6)} \right| + \left| x^2 - 6x - 7 \right| = 0.$$

O29.17. a)
$$|1 + \log_2 x| + |1 - \sqrt{2x}| = 0$$
;

6)
$$\left|\log_5(2x^3-x)+\log_2x\right|+\left|\frac{x-1}{x^2+1}\right|=0.$$

29.18. a)
$$\left| \sin x \right| + \left| \cos \frac{x}{2} \right| = 0;$$

6)
$$|\sin 3x + \cos 3x| + |\cos 6x| = 0$$
;

B)
$$|\cos 2x| + |\sin 4x| = 0$$
;

r)
$$\left| \sqrt{3} \sin 3x - \cos 3x \right| + \left| 1 - \cos \left(6x - \frac{\pi}{3} \right) \right| = 0.$$

©29.19. Докажите, что уравнение |f(x)| + |h(x)| = f(x) равносильно CUCTEME $\begin{cases} h(x) = 0, \\ f(x) \ge 0. \end{cases}$

●29.20. Решите уравнение:

a)
$$\left| \frac{x}{x+2} \right| + |x^2 - 2x - 8| = \frac{x}{x+2}$$
;

6)
$$\left| \frac{\sin 2x}{x+4} \right| + \left| x^2 - 5x - 24 \right| = -\frac{\sin 2x}{x+4};$$

B)
$$\left|\frac{x}{x-1}\right| + \left|\sin 2\pi x + \sin \pi x\right| = \frac{x}{x-1}$$
;

r)
$$\left| \frac{x}{\sin x} \right| + \left| 3\sin x - \sin 3x \right| = \frac{x}{\sin x}$$
.

- ●29.21. Докажите, что уравнение |f(x)| + |h(x)| = f(x) + h(x) равносильно системе $\begin{cases} f(x) \ge 0, \\ h(x) \ge 0. \end{cases}$
- ●29.22. Решите уравнение:

a)
$$|x^2 + 2x - 3| + |-x^2 + 2x + 8| = 4x + 5$$
;

6)
$$\left| \frac{x^2}{x-1} - x \right| + \left| \frac{x}{x-1} - 2 \right| = \frac{x^2}{x-1} + \frac{x}{x-1} - x - 2;$$

B)
$$|x^3 - 4x| + |5x^2 - x^3| = 5x^2 - 4x$$
;

r)
$$\left| \frac{x+1}{x} + 4 \right| + \left| \frac{4-x}{x} - 3x \right| = 4 - 3x + \frac{5}{x}$$

- ●29.23. Докажите, что уравнение |f(x)| + |h(x)| = |f(x) + h(x)| равносильно неравенству $f(x) \cdot h(x) \ge 0$.
- ●29.24. Решите уравнение:

a)
$$|x^2 + 4x| + |-x^2 + 9| = |4x + 9|$$
;

6)
$$\left| \frac{(x+1)^2}{x} - x - 1 \right| + \left| \frac{x+1}{x} - 2 \right| = \left| \frac{(x+1)^2}{x} + \frac{x+1}{x} - x - 3 \right|$$

B)
$$|x^3 + 3x^2 - x - 3| + |2x^2 - x^3 + 7x + 4| = |5x^2 + 6x + 1|$$
;

r)
$$\left| \frac{x+2}{x+1} + 4 \right| + \left| \frac{3-x}{x+1} - 3x - 3 \right| = \left| 1 - 3x + \frac{5}{x+1} \right|$$

●29.25. Решите уравнение:

a)
$$|2\sin x + 1| + |-1 + 2\cos x| = 2|\sin x + \cos x|$$
;

6)
$$\left| \frac{\lg^2 x}{4} - 1 \right| + \left| \frac{\lg x - 3}{2} + 1 \right| = \left| \frac{\lg^2 x}{4} + \frac{\lg x - 3}{2} \right|;$$

B)
$$\left| 2\sin 2x - \sqrt{3} \right| + \left| \sqrt{3} + 2\cos x \right| = 2 |\sin 2x + \cos x|;$$

r)
$$|2 - \lg x| + |\log_5(x^2 - 7x + 7) - 2| = |\log_5(x^2 - 7x + 7) - \lg x|$$
.

Решите неравенство:

29.26. a)
$$|x| < 7$$
;

B)
$$|x-8| < 7$$
;

6)
$$|x + 5| > 7$$
;

$$|5x-1|>1.$$

29.27. a)
$$|x + 2| < -7$$
;

B)
$$|x+5| < -2 + \sqrt{7}$$
:

6)
$$|x+8| > 2 - \sqrt{7}$$
;

$$|x + 5| > 3.14 - \pi.$$

$$029.28.$$
 a) $|3x - 9| \ge 6$;

B)
$$|5x + 10| \le 7$$
:

6)
$$|4-2x|<16$$
; Γ) $|9+3x|>12$.

$$\Gamma$$
) $|9 + 3x| > 12$

- \bigcirc 29.29. a) Докажите, что при a < 0 множество решений неравенства |f(x)| > a совпадает с множеством D(f) — областью определения выражения f(x).
 - б) Докажите, что множество решений неравенства |f(x)| >> g(x) совпадает с множеством решений совокупности

$$\begin{cases} f(x) > g(x); \\ f(x) < -g(x). \end{cases}$$

Q29.30. a)
$$\left| x - \frac{4}{r} \right| \ge -1;$$

6)
$$\left| \frac{x}{\sqrt{12x-x^2}} - \sqrt{x^2-2x-8} \right| > \sqrt{2} + \sqrt{3} - \sqrt{10}$$
.

$$\bigcirc 29.31. \ a) |2x - 1| \ge x;$$

6)
$$|4x - 12| + |5x - 15| > 9x - 9$$
;

B)
$$|3x-4| > x+1$$
;

$$\Gamma) |12x + 4| + |9x + 3| \ge -7x.$$

029.32. Решите неравенство:

a)
$$\left| x - \frac{2}{x+2} \right| > 3;$$

6)
$$|x-3| \cdot \left| \frac{3x}{x+2} \right| > 2;$$

B)
$$\left| \frac{x^2}{x+2} - \frac{x^2+2}{x-1} \right| > 5.$$

r)
$$\left| \frac{x}{x+2} + \frac{x}{x-1} \right| \cdot |x^2 + x - 2| > 1.$$

O29.33. Докажите, что множество решений неравенства |f(x)| < g(x) совпадает с множеством решений системы

$$\begin{cases} f(x) < g(x), \\ f(x) > -g(x). \end{cases}$$

Решите неравенство:

O29.34. a)
$$|x+1| \le 2x$$
;

6)
$$|2x-1|+|6x-3|<12$$
;

B)
$$|16 - 8x| < 4x + 2$$
;

r)
$$|12x + 4| + |9x + 3| < 28$$
.

O29.35. a)
$$\left| x - \frac{4}{x} \right| < 3;$$

$$6) \left| x - \frac{4}{x} \right| \cdot \left| \frac{x}{x-2} \right| < 7;$$

B)
$$\left| \frac{x}{x+2} - \frac{x+2}{x-1} \right| < \frac{1}{2};$$

r)
$$\left| \frac{x}{x+2} - \frac{x+2}{x-1} \right| \cdot \left| \frac{x-1}{5x+4} \right| < \frac{1}{10}$$
.

О29.36. Докажите, что множество решений неравенства $|f(x)| \le |h(x)|$ совпадает с множеством решений каждого из неравенств:

a)
$$f^2(x) \leq h^2(x)$$
; 6) $(f(x) - h(x))(f(x) + h(x)) \leq 0$.

O29.37. a)
$$|5x + 3| < |2x - 1|$$
;

B)
$$|3-7x| \leq |x+5|$$
;

6)
$$|9x + 1| > |5 - 9x|$$
;

r)
$$|x-3| \ge |2x+3|$$
.

Q29.38. a)
$$|x^2 - 7x + 3| < |2x^2 + 5x - 10|$$
;

6)
$$|x^2 + 11x - 6| \le 10|x|$$
;

B)
$$|x^2 + 3x - 5| \ge |x^2 - 7x + 5|$$
:

$$\Gamma) |5x^2 - x| \ge |x - 5| \cdot |x + 2|.$$

O29.39. a)
$$\left| \frac{1-x}{1+3x} \right| > |1+x|;$$

$$|1-\frac{1}{r}| \leq |2+\frac{5}{r}|;$$

6)
$$\left| \frac{x - x^2}{1 + x^2 + 2x^2} \right| > |1 - x|;$$

6)
$$\left| \frac{x - x^2}{1 + x - 3x^2} \right| > |1 - x|;$$
 r) $\left| x - \frac{1}{x} \right| \le \left| 2x^2 - \frac{2}{x} \right|.$

- **О29.40.** а) Докажите, что неравенство $|f(x)| \ge f(x)$ выполняется для любого x из области определения выражения f(x).
 - б) Докажите, что неравенство |f(x)| > f(x) равносильно неравенству f(x) < 0.

$$029.41$$
 a) $|x^2 - x| \ge x^2 - x$;

6)
$$\left|x + \frac{1}{|x-2| - |x^2 - 4|}\right| \ge x + \frac{1}{|x-2| - |x^2 - 4|};$$

$$|x| \left| \frac{x}{x^2 - 4} \right| \geqslant \frac{x}{x^2 - 4};$$

r)
$$\left| \frac{1}{|x^3 - 2x^2| - |x - 2|} \right| \ge \frac{1}{|x^3 - 2x^2| - |x - 2|}$$

O29.42. a)
$$|x^2 + 3x - 1| > x^2 + 3x - 1$$
;

6)
$$\left|1-\frac{1}{x}\right| > \frac{x^2-1}{x};$$

B)
$$|5x^2 + x| > 5x^2 + x$$
;

r)
$$|x| \cdot |x-7| > 7x - x^2$$
.

- O29.43. а) Докажите, что неравенство |f(x)| < f(x) не выполняется ни при каких значениях х из области существования f(x).
 - б) Докажите, что каждое из неравенств $|f(x)| \le f(x)$ и $|-f(x)| \le f(x)$ равносильно неравенству $f(x) \ge 0$.

$$029.44.$$
 a) $|x^2 + 4x - 5| \le x^2 + 4x - 5$;

6)
$$\left|x-2-\frac{3}{x}\right| \leq \frac{x^2-2x-3}{x};$$

B)
$$\left| 8x^2 + \frac{1}{x} \right| \leq 8x^2 + \frac{1}{x};$$

$$r) \left| \frac{1-x}{x+2} \right| \cdot |x+2| \leq x-1.$$

O29.45. a)
$$|5x + 7| < 8x - 11$$
; B) $|5x + 7| \le 14x^2 - 2$;

B)
$$|5x + 7| \le 14x^2 - 2$$

6)
$$|5-4x| \leq 8x+17$$
;

6)
$$|5-4x| \le 8x+17$$
; r) $|5-4x| \le 11-10x^2$.

O29.46. a)
$$\left| 5x - \frac{1}{x} \right| < 4x;$$

B)
$$|x-1| \leq \frac{32-14x}{x+2}$$
;

6)
$$\left| \frac{x-1}{x+2} \right| < \frac{17x-39}{20x-20};$$
 Γ) $\left| \frac{x-2}{x+2} \right| \le \frac{x-2}{x}.$

$$\Gamma) \left| \frac{x-2}{x+2} \right| \leqslant \frac{x-2}{x}$$

$$\bigcirc 29.47.$$
 a) $|x^2 + 7x - 7| \le 2x + 7;$

6)
$$|-x^2 + 5x + 1| \le x^2 + 6x + 1$$
;

B)
$$|5-4x-x^2|<7-6x-x^2$$
;

$$\Gamma |x^3 - x^2 - 4x - 2| \leq -x^2 - 3x - 2.$$

O29.48. a)
$$|7x - 11| > 3x + 5$$
;

6)
$$|5x + 7| \ge 3x^2 + 11x - 2$$
;

B)
$$|4-x| > -3x-2$$
;

r)
$$|5-4x| \ge 5-7x-3x^2$$
.

O29.49. a)
$$\left| 5x - \frac{1}{x} \right| > 4x;$$

B)
$$|x-1| \ge \frac{32-14x}{x+2}$$
;

6)
$$\left| \frac{x-1}{x+2} \right| > \frac{17x-39}{20x-20};$$
 r) $\left| \frac{x-2}{x+2} \right| \ge \frac{x-2}{x}.$

$$\left|\frac{x-2}{x+2}\right| \geqslant \frac{x-2}{x}$$

$$|x^2 - 2x - 5| \ge -2x - 5$$

6)
$$|-2x^2 + 5x + 7| \ge 2x^2 - 6x + 7$$
;

B)
$$|5-4x-x^2|>2-x-x^2$$
;

$$\Gamma) |x^3 - x^2 - 4x| \ge -x^3 - 5x - 4.$$

- \bigcirc 29.51. Докажите, что множество решений неравенства |f(x)| + $+ |g(x)| \ge |f(x) + g(x)|$ совпадает с пересечением множеств D(f) и D(g).
- ●29.52. Решите неравенство:

a)
$$|x - \sqrt{3x + 7}| + |2x - \sqrt{3x + 7}| \ge |x|$$
;

6)
$$|x^2 + 2x| \le \left|x^2 + x - \frac{\sqrt{1-x}}{x}\right| + \left|x + \frac{\sqrt{1-x}}{x}\right|$$

- **О29.53.** а) Докажите, что неравенство |f(x)| + |g(x)| > |f(x)| + |g(x)|равносильно неравенству $f(x) \cdot g(x) < 0$.
 - б) Докажите, что неравенство $|f(x)| + |g(x)| \le |f(x) + g(x)|$ равносильно неравенству $f(x) \cdot g(x) \ge 0$.

29.54. a)
$$|3x + 5| + |x^2 - 7| > |x^2 + 3x - 2|$$
;

6)
$$\left|x^2 - \frac{1}{x}\right| + \left|x^2 + \frac{5}{x^2 - 3}\right| > \left|\frac{1}{x} + \frac{5}{x^2 - 3}\right|$$

B)
$$|3x + 5| + |x^2 - 7| \le |x^2 + 3x - 2|$$
;

$$\Gamma) \left| x^2 - \frac{1}{x} \right| + \left| x^2 + \frac{5}{x^2 - 3} \right| \le \left| \frac{1}{x} + \frac{5}{x^2 - 3} \right|.$$

O29.55. a)
$$x^2 - 4|x| + 3 > 0$$
;

6)
$$(x^2 - 3x)^2 + |3x - x^2| - 20 \le 0$$
;

B)
$$(x-2)^2-4|x-2|-96<0$$
;

r)
$$(x^2-5x)^2-5|5x-x^2|-6\geqslant 0$$
.

29.56. Решите неравенство:

a)
$$x^2 + \frac{1}{x^2} - 4 \left| x + \frac{1}{x} \right| - 3 \le 0;$$

6)
$$x^2 + \frac{4}{x^2} + \left| x + \frac{2}{x} \right| - 16 < 0;$$

B)
$$x^2 + \frac{1}{x^2} + 2 \left| x - \frac{1}{x} \right| - 10 \ge 0$$
;

r)
$$x^2 + \frac{9}{x^2} - 4 \left| x - \frac{3}{x} \right| - 2 \le 0$$
.

ullet29.57. Найдите все значения параметра a, при которых уравнение имеет единственный корень:

a)
$$|x + 1| + 2|x - 1| = 1 - a$$
;

6)
$$2|x-5|-|x+6|=2a-1$$
.

- ullet29.58. Найдите все значения параметра t, при которых неравенство $|x+2| + |x-7| \ge t$ выполняется:
 - а) для любых значений х:
 - б) хотя бы для одного значения x;
 - в) для любых значений x > 10;
 - г) для любых значений $x \leq 1$.
- **ullet29.59.** а) Найдите все значения параметра t, при которых неравенство $|x + 2| + |x - 7| + |x + 4| \ge t$ выполняется:
 - а) для любых значений х:
 - б) хотя бы для одного значения x;
 - в) для любых значений $x \leq -7$:
 - г) для любых значений $x \ge -1$.
- **29.60.** Найдите наименьшее значение функции y = f(x):

a)
$$f(x) = |x-1| + |x-2| + ... + |x-10|$$
;

6)
$$f(x) = |x-1| + |x-2| + ... + |x-9|$$
.

- § 30. Уравнения и неравенства со знаком радикала
- 30.1. Решите уравнение:

a)
$$\sqrt{x} = 7$$
; B) $\sqrt{6-x} = 8$;

6)
$$\sqrt[6]{x+1} = -1$$
; $\sqrt[7]{x+1} = -2$.

$$\sqrt[7]{x+1} = -2$$

30.2. a)
$$\sqrt{x^2-4x-3}=3$$
;

B)
$$\sqrt{36-x-12x^2}=5$$
;

6)
$$\sqrt[6]{x^3-2x^2+1}=1$$
;

r)
$$\sqrt[7]{1-x^2-x^3}=1$$
.

O30.3. a)
$$\sqrt{x+2} \cdot \sqrt{3x-2} = 4$$
;

B)
$$\sqrt{x-2} \cdot \sqrt{3x+7} = 4$$
;

6)
$$\sqrt{(x+2)(3x-2)} = 4$$
:

r)
$$\sqrt{(x-2)(3x+7)} = 4$$
.

30.4. a)
$$\sqrt[4]{2\sin x} = 1$$
;

B)
$$\sqrt[4]{4 \operatorname{tg} \frac{x}{4}} = 2;$$

6)
$$\sqrt[6]{1-2\cos 4x} = \sqrt{2} - \sqrt{3}$$
;

r)
$$\sqrt[3]{2\sin 3x + 1} = -1$$
.

$$030.5.$$
 a) $\sqrt{\lg(1-x)} = 1;$

6)
$$\log_{0.2} \sqrt[3]{6x^2 - 25} = -1;$$

B)
$$\sqrt{\log_2(x^2+3x-24)}=2;$$

r)
$$\log_{0.25} \sqrt[4]{x^2 - 6x - 11} = -0.5$$
.

 \bigcirc О30.6. Найдите все действительные значения a, при каждом из которых уравнение имеет хотя бы один действительный корень:

a)
$$\sqrt{x-4} = 2 - a$$
;

B)
$$\sqrt{16-x^2}=a+1$$
;

6)
$$\sqrt[5]{x^2-2x-7}=1-a;$$

$$\Gamma) \sqrt[5]{1 - 4x - x^2} = a.$$

O30.7. Докажите, что уравнение $\sqrt{f(x)} = \sqrt{h(x)}$ равносильно каж-

дой из систем:
$$\begin{cases} f(x) = h(x), & \begin{cases} f(x) = h(x), \\ f(x) \ge 0, \end{cases} & h(x) \ge 0. \end{cases}$$

О30.8. Решите уравнение:

a)
$$\sqrt{x-2} = \sqrt{4-x}$$
;

6)
$$\sqrt{x^3-2x^2+1}=\sqrt{x^3+x^2-8x-2}$$
;

B)
$$\sqrt{25-x^2} = \sqrt{5x-11}$$
;

$$\Gamma$$
) $\sqrt{x^3 - x^2} = \sqrt{2 - x - x^2}$.

O30.9. a)
$$\sqrt{\sin x} = \sqrt{\cos x}$$
;

O30.9. a)
$$\sqrt{\sin x} = \sqrt{\cos x}$$
; b) $\sqrt{2 - \sqrt{3} \sin 2x} = \sqrt{\cos 2x}$;

6)
$$\sqrt{2 - \lg x} = \sqrt{\operatorname{ctg} x}$$
; r) $\sqrt{\lg x} = \sqrt{\operatorname{ctg} x}$.

$$r) \sqrt{tgx} = \sqrt{ctgx}$$

O30.10. a)
$$\sqrt{\lg(1-x)} = \sqrt{\lg x}$$
;

6)
$$\sqrt{\log_{0.2}\sqrt{x-1}} = \sqrt{\log_{0.2}\sqrt{3-x}}$$
;

B)
$$\sqrt{\log_{0,3}(1-x)} = \sqrt{\log_{0,3}x}$$
;

r)
$$\sqrt{\log_{0,2}\sqrt{x-1}} = \sqrt{\log_{0,2}\sqrt{9-x}}$$
.

\bullet30.11. Решите уравнение с параметром a:

a)
$$\sqrt{x+2} = \sqrt{2a-x}$$
;

6)
$$\sqrt{x-2a} = \sqrt{4+2a-5x}$$
:

B)
$$\sqrt{5a-2x+1} = \sqrt{6x-a-7}$$
;

r)
$$\sqrt{4-x^2} = \sqrt{4x+a}$$
.

 $\bigcirc 30.12$. Докажите, что уравнение $\sqrt{f(x)} = h(x)$ равносильно си-

$$\text{CTEME } \begin{cases} f(x) = h^2(x), \\ h(x) \geqslant 0. \end{cases}$$

Решите уравнение:

O30.13. a)
$$\sqrt{x+12} = x$$
;

O30.13. a)
$$\sqrt{x+12} = x$$
; b) $\sqrt{5+12x-x^2} = x-7$;

6)
$$\sqrt{x^3 + x^2 + 1} = x$$
; r) $\sqrt{x^3 + x^2 - 1} = x$.

$$\Gamma) \sqrt{x^3 + x^2 - 1} = x.$$

O30.14. a)
$$\sqrt{x^4 - 3x^2 + 4} = x^2 - 5$$
;

6)
$$\sqrt{x^4-3x-1}=x^2-1$$
;

B)
$$\sqrt{x^4 - 3x^2 + 4} = 5 - x^2$$
:

$$\Gamma) \sqrt{x^4 - 3x - 1} = 1 - x^2.$$

30.15. a)
$$\sqrt{\cos x} = \sin x$$
;

6)
$$\sqrt{0.5 + \sin x + \cos x} = \cos x$$
;

B)
$$\sqrt{\cos 2x} = \sin x$$
;

r)
$$\sqrt{\sin x + \sin 3x} = -\cos x$$
.

O30.16. a)
$$\sqrt{x+3} + \sqrt{5-x} = 4$$
;

6)
$$\sqrt{3x+16}-2\sqrt{x-2}=3$$
;

B)
$$\sqrt{2x+6} + \sqrt{8-x} = 5$$
;

r)
$$5\sqrt{3-x} - 2\sqrt{x+10} = 4$$
.

O30.17. a)
$$\sqrt{x+1} - \sqrt{9-x} = \sqrt{2x-12}$$
;

6)
$$\sqrt{x} - \sqrt{x+1} + \sqrt{x+9} - \sqrt{x+4} = 0$$
;

B)
$$\sqrt{2x+5} + \sqrt{5x+6} = \sqrt{12x+25}$$
;

$$\Gamma$$
) $\sqrt{5 + \sqrt[3]{x}} + \sqrt{5 - \sqrt[3]{x}} = \sqrt[3]{x}$.

O30.18. a)
$$\sqrt{3x^2 - 2x + 15} + \sqrt{3x^2 - 2x + 8} = 7$$
;

6)
$$\sqrt{x^2 + x + 4} + \sqrt{x^2 + x + 1} = \sqrt{2x^2 + 2x + 9}$$
;

B)
$$\sqrt{x^2-3x+3}+\sqrt{x^2-3x+6}=3$$
;

r)
$$\sqrt{x^2 + x + 7} + \sqrt{x^2 + x + 2} = \sqrt{3x^2 + 3x + 19}$$
.

O30.19. a)
$$\sqrt{x} = x - 6$$
;

6)
$$\sqrt{x^2 + x} = 2(x^2 + x) - 3$$
;

B)
$$\sqrt{5-x} = x + 1$$
;

$$r) x + 13 + \sqrt{18x^2 - x - 1} = 18x^2.$$

O30.20. a)
$$\sqrt{\frac{2x+3}{2x-1}} + 4 \cdot \sqrt{\frac{2x-1}{2x+3}} = 4$$
;

6)
$$5 \cdot \sqrt{\frac{x+3}{5x-1}} + \sqrt{\frac{5x-1}{x+3}} = 6$$
.

O30.21. a)
$$(x + 1)(x + 4) - 3\sqrt{x^2 + 5x + 2} = 6$$
;

6)
$$x^2 - 3x + \sqrt{9x^2 + x - \frac{4}{3}} = \frac{34}{27} - \frac{28x}{9}$$
.

O30.22. a)
$$x \cdot \sqrt{\frac{x+5}{x}} + (x+5)\sqrt{\frac{x}{x+5}} = 12;$$

6)
$$(x-5)\sqrt{\frac{x+2}{x-5}} + (x+2)\sqrt{\frac{x-5}{x+2}} = 14\sqrt{2}$$
.

O30.23. a)
$$\sqrt{-2^x + 20} = 2^x$$
;

6)
$$\sqrt{5+12\cdot 3^x-9^x}=3^x-7;$$

B)
$$\sqrt{7-0.5^x} = 0.5^x - 1$$
;

r)
$$5\sqrt{36^x-2}=4^{x+1}\cdot 9^x-14$$
.

30.24. a)
$$\sqrt{|-2^x + 42|} = 2^x$$
; 6) $\sqrt{|5 + 12 \cdot 3^x - 9^x|} = 3^x - 7$.

•30.25. a)
$$\sqrt{x+2\sqrt{x-1}} + \sqrt{x-2\sqrt{x-1}} = x-1$$
;

6)
$$\sqrt{x+8+2\sqrt{x+7}} + \sqrt{x+1-\sqrt{x+7}} = 4$$
.

30.26. a)
$$\sqrt[3]{x+7} + \sqrt[3]{28-x} = 5$$
;

6)
$$\sqrt[3]{x} + \sqrt[3]{2x-3} = \sqrt[3]{12(x-1)}$$
;

B)
$$\sqrt[3]{x^2-1} + \sqrt[3]{x^2+18} = 5$$
;

$$\Gamma$$
) $\sqrt[3]{x} + \sqrt[3]{x - 16} = \sqrt[3]{x - 8}$.

•30.27. a)
$$\sqrt{\lg x + 2\sqrt{\lg x - 1}} + \sqrt{\lg x - 2\sqrt{\lg x - 1}} = \lg x - 1;$$

6)
$$\sqrt{5^x + 8 + 2\sqrt{5^x + 7}} + \sqrt{5^x + 1 - \sqrt{5^x + 7}} = 4$$
.

•30.28. a)
$$\sqrt{x} + \sqrt{x+5} = 9 - x$$
;

6)
$$3\sqrt{x+2} + 5\sqrt{3x+10} = 30 - 2x$$
.

•30.29. a)
$$\sqrt{x+\frac{7}{8}} + \sqrt{8x+3} + 2\sqrt[3]{x} = 6 - 16x;$$

6)
$$\sqrt{3x+1} + 5\sqrt[3]{x} = 20 - x + \sqrt{17-x}$$
.

30.30. a)
$$\sqrt{x^3 + x^2 - 1} + \sqrt{x^3 + x^2 + 2} = 3$$
;

6)
$$\sqrt{x^3-4x^2+x+15}+\sqrt{x^3-4x^2-x+13}=x+1$$
.

•30.31. a)
$$4(\sqrt{1+x}-1)(\sqrt{1-x}+1)=x$$
;

6)
$$x + \sqrt{x} + \sqrt{x+2} + \sqrt{x^2+2x} = 3$$
.

•30.32. a)
$$\sqrt{2-x} + \sqrt[3]{-10-x} = 0$$
;

6)
$$\sqrt{2x-1} + \sqrt[3]{x+7} = 3$$
.

30.33. a)
$$\sqrt{x} < 7$$
;

B)
$$\sqrt{6-x} \leq 8$$
;

6)
$$\sqrt[6]{x+1} \ge -1$$
:

$$\Gamma) \sqrt[7]{x+1} \geqslant -2.$$

O30.34. a)
$$\sqrt{x^2 - 4x - 3} < 3$$
:

B)
$$\sqrt{36-x-12x^2} > 5$$
;

6)
$$\sqrt[6]{x^3 - 2x^2 + 1} \ge 1$$
: r) $\sqrt[7]{1 - x^2 - x^3} \le 1$.

$$\sqrt[7]{1-x^2-x^3} \leq 1$$

O30.35. a)
$$\sqrt{x+3} \cdot \sqrt{4x+5} < 6$$
; B) $\sqrt{x-2} \cdot \sqrt{2x+3} \ge 3$;

B)
$$\sqrt{x-2} \cdot \sqrt{2x+3} \ge 3$$
;

6)
$$\sqrt{(x+3)(4x+5)} < 6$$

6)
$$\sqrt{(x+3)(4x+5)} < 6$$
; r) $\sqrt{(x-2)(2x+3)} \ge 3$.

O30.36. a)
$$\sqrt[4]{2\cos x} > 1$$
;

6)
$$\sqrt[6]{1+2\cos 4x} > \sqrt{2} - \sqrt{3}$$
;

B)
$$\sqrt[4]{8 \cot \frac{x}{2}} < 2;$$

$$\Gamma) \sqrt[3]{2\sin 3x - 1} < -1.$$

О30.37. Решите неравенство:

a)
$$\sqrt{\lg(1-x)} \leq 1$$
;

6)
$$\log_{0.2} \sqrt[3]{6x^2 - 25} \ge -1;$$

B)
$$\sqrt{\log_2(x^2+3x-24)} \leq 2$$
;

r)
$$\log_{0.25} \sqrt[4]{x^2 - 6x - 11} \ge -0.5$$
.

O30.38. Найдите все действительные значения a, при каждом из которых неравенство имеет хотя бы одно решение:

a)
$$\sqrt{x-4} < 2-a$$
; 6) $\sqrt{16-x^2} < a+1$.

O30.39. Найдите все действительные значения a, при каждом из которых неравенство не имеет решений:

a)
$$\sqrt{x-4} \ge 2-a$$
; 6) $\sqrt{16-x^2} \ge a+1$.

O30.40. Докажите, что неравенство $\sqrt{f(x)} \le \sqrt{h(x)}$ равносильно двойному неравенству $0 \le f(x) \le h(x)$.

Решите неравенство:

O30.41. a)
$$\sqrt{x-2} > \sqrt{4-x}$$
;

6)
$$\sqrt{x^3 - x^2} \ge \sqrt{2 - x - x^2}$$
;

B)
$$\sqrt{25-x^2} < \sqrt{5x-11}$$
;

$$\Gamma) \sqrt{x^3 - 2x^2 + 3} \leq \sqrt{x^3 + x^2 - 8x + 8}.$$

O30.42. a)
$$\sqrt{\sin x} < \sqrt{\cos x}$$
; 6) $\sqrt{2 - \sqrt{3} \sin 2x} > \sqrt{\cos 2x}$.

O30.43. a)
$$\sqrt{\lg{(10-5x)}} \ge \sqrt{\lg{x}};$$

6)
$$\sqrt{\log_{0,3}(18-7x)} \leq \sqrt{\log_{0,3}0,25x}$$
.

ullet 30.44. Для каждого значения параметра a решите неравенство:

a)
$$\sqrt{x+2} > \sqrt{2a-x}$$
;

6)
$$\sqrt{x-2a} \ge \sqrt{4+2a-5x}$$
:

B)
$$\sqrt{5a-2x+1} < \sqrt{6x-a-7}$$
;

$$\Gamma) \sqrt{4-x^2} \leqslant \sqrt{4x+a}.$$

$$ext{O30.45.}$$
 а) Докажите, что неравенство $\sqrt{f(x)} < h(x)$ равносильно системе $\begin{cases} f(x) < h^2(x), \\ h(x) > 0, \\ f(x) \geqslant 0. \end{cases}$

б) Докажите, что неравенство
$$\sqrt{f(x)} > h(x)$$
 равносильно $f(x) > 0$ ($f(x) > h^2(x)$)

совокупности двух систем:
$$\begin{cases} f(x) \geqslant 0, & f(x) > h^2(x), \\ h(x) < 0, & h(x) \geqslant 0. \end{cases}$$

O30.46. a)
$$\sqrt{x+6} < x$$
;

B)
$$\sqrt{2x^3 + x^2 - 20} \leq x$$
;

6)
$$\sqrt{5+12x-x^2} > x-7$$
: r) $\sqrt{2x^3+x+3} \ge x\sqrt{6}$.

$$\Gamma$$
) $\sqrt{2x^3 + x + 3} \ge x\sqrt{6}$

O30.47. a)
$$\sqrt{(x+2)(x-5)} < 8-x$$
;

6)
$$\sqrt{x^2-4x} > x-3$$

B)
$$\sqrt{x^2 - 5x + 6} \le x + 4$$
;

$$\Gamma) \ \sqrt{3x^2 - 22x} \ge 2x - 7.$$

O30.48. a)
$$\sqrt{x^4 - 3x^2 + 4} < x^2 - 5$$
;

$$6) \sqrt{x^4 - 3x^2 + 4} > x^2 - 5.$$

O30.49. a)
$$\frac{\sqrt{17-15x-2x^2}}{x+3} > 0;$$

B)
$$\frac{\sqrt{10-7x+x^2}}{x-1} > 0;$$

6)
$$\frac{\sqrt{14-11x-3x^2}}{r+3} \le 0;$$
 r) $\frac{\sqrt{12+8x+x^2}}{r+5} \le 0.$

r)
$$\frac{\sqrt{12+8x+x^2}}{x+5} \le 0.$$

30.50. a)
$$\sqrt{3x+1} + \sqrt{x-4} - \sqrt{4x+5} < 0$$
;

6)
$$2\sqrt{x+1} - \sqrt{x-1} - 2\sqrt{x-3} > 0$$
;

B)
$$2\sqrt{2x-7} - \sqrt{x-4} \ge 2\sqrt{x-3}$$
;

$$(5) \sqrt{6-x} + \sqrt{3x-5} \le \sqrt{4x+1}$$
.

O30.51. a)
$$\sqrt{x^2 + x} \le 3(x^2 + x) - 4$$
;

6)
$$x + 3 + \sqrt{2x^2 - x - 1} \ge 2x^2$$
.

O30.52. a)
$$\sqrt{\frac{2x+3}{2x-1}} + 4 \cdot \sqrt{\frac{2x-1}{2x+3}} > 4$$
;

6)
$$5 \cdot \sqrt{\frac{x+3}{5x-1}} + \sqrt{\frac{5x-1}{x+3}} < 6$$
.

430.53. a)
$$\sqrt{2-x} - \sqrt[3]{3x+5} < 3;$$
 6) $\sqrt{2x-1} + \sqrt[3]{x+7} \ge 3.$

430.54. a)
$$x\sqrt{\frac{x+1}{x}} + (x+1)\sqrt{\frac{x}{x+1}} \le 2\sqrt{2}$$
;

6)
$$(x-5)\sqrt{\frac{x+2}{x-5}} + (x+2)\sqrt{\frac{x-5}{x+2}} \ge 4\sqrt{2}$$
.

•30.55. a)
$$\sin x \sqrt{\cos x} + \cos x \sqrt{\sin x} \le 0$$
;

6)
$$(\sin x + \cos x)\sqrt{\cos x} + \cos x\sqrt{(\sin x + \cos x)} \ge 0$$
.

•30.56. a)
$$\sqrt{-3^x + 12} < 3^x$$
;

6)
$$\sqrt{5+12\cdot 5^x-25^x} > 5^x-7;$$

B)
$$\sqrt{7-0.2^x} \leq 0.2^x-1$$
;

r)
$$5\sqrt{100^x-2} \ge 4^{x+1} \cdot 25^x-14$$
.

30.57. a)
$$\sqrt{\cos x} > \sin x$$
:

6)
$$\sqrt{0.5 + \sin x + \cos x} < \cos x$$
;

B)
$$\sqrt{\cos 2x} \ge \sin x$$
:

$$\Gamma$$
) $\sqrt{\sin x + \sin 3x} \leq \cos x$.

430.58. a)
$$\sqrt{x} + \sqrt{x+5} < 9 - x$$
:

6)
$$3\sqrt{x+2} + 5\sqrt{3x+10} > 30 - 2x$$

B)
$$\sqrt{-x} + \sqrt{7-x} \le x + 16$$
;

$$\Gamma$$
) $\sqrt{2-x} + 3\sqrt{10-3x} \le 2x + 18$.

•30.59. a)
$$\sqrt{x+\frac{7}{8}} + \sqrt{8x+3} + 2\sqrt[3]{x} < 6 - 16x;$$

6)
$$\sqrt{3x+1} + 5\sqrt[3]{x} > 12 - x + \sqrt{17-x}$$
;

B)
$$\sqrt{x+\frac{7}{8}} + \sqrt{8x+3} + 2\sqrt[3]{x} \ge 6 - 16x;$$

r)
$$\sqrt{3x+1} + 5\sqrt[3]{x} \le 12 - x + \sqrt{17-x}$$
.

30.60.
$$\frac{1}{\sqrt{x+1}-1} + \frac{2}{\sqrt{2x+3}-\sqrt{3}} + \frac{3}{\sqrt{3x+7}-\sqrt{7}} > \frac{10+\sqrt{3}+\sqrt{7}}{x}$$
.

ullet 30.61. Для каждого значения параметра a решите неравенство:

a)
$$\sqrt{x-a} < 1 - x$$
:

$$6) \sqrt{x+2} \ge x+2a.$$

●30.62. Решите неравенство:

a)
$$\sqrt{x+3} \ge \frac{x+3}{x+1}$$
;

B)
$$\sqrt{x+4} \le \frac{x+4}{x+2}$$
;

6)
$$\sqrt{x+2} > \frac{4-x}{x-1}$$
;

$$r) \sqrt{2x+3} < \frac{2x}{1-x}.$$

§ 31. Доказательство неравенств

O31.1. Сравните числа a и b, связанные заданным соотношением:

a)
$$a + 6 = b - 5$$
;

B)
$$b - \frac{b^2}{a} = -\frac{b}{a}, a \neq 0, b \neq 0;$$

$$6) \ a^3 - a^2(b+1) + a = b;$$

6)
$$a^3 - a^2(b+1) + a = b$$
; r) $\frac{1}{a^2+1} = \frac{b}{a^3+a^2+a+1}$.

Сравните числа a и b:

O31.2. a)
$$a = 100!$$
, $b = 3^{100}$;

6)
$$a = 100!$$
, $b = 10^{100}$.

431.3. a)
$$a = 3^{369}$$
, $b = 5^{246}$;

6)
$$a = 5^{963}$$
, $b = 11^{642}$.

O31.4. a)
$$a = \sin 1 \sin 2$$
, $b = \cos 1 \cos 2$;

6)
$$a = \cos 1 \sin 2$$
, $b = \sin 1 \cos 2$.

31.5. a)
$$a = \sin(\cos 1)$$
, $b = \cos(\cos 1)$;

6)
$$a = \cos(\sin 1), b = \cos(\cos 1).$$

Сравните числа a и b:

O31.6. a)
$$a = \log_{3.1} 2$$
, $b = \log_{3.2} 2$;

6)
$$a = \log_{0.2} 37, 2, b = \log_{0.3} 37, 2;$$

B)
$$a = \log_{5.4} 0.3, b = \log_{5.3} 0.3;$$

r)
$$a = \log_{0.22} 0.7$$
, $b = \log_{0.33} 0.7$.

31.7. a)
$$a = \log_3 8$$
, $b = \log_2 7$; B) $a = \lg 995$, $b = \log_3 30$;

6)
$$a = \log_{22} 4$$
, $b = \log_{33} 6$; r) $a = \log_{0.2} 7$, $b = \log_{0.3} 17$.

О31.8. Докажите:

а) если
$$a + b \ge 0$$
, то $ab(a + b) \le a^3 + b^3$;

б) если
$$a + b \ge 0$$
, $a \ne 0$, $b \ne 0$, то $\frac{a}{b^2} + \frac{b}{a^2} \ge \frac{1}{a} + \frac{1}{b}$.

Докажите неравенство:

O31.9. a)
$$a^2 + 2b^2 + 2ab + b + 10 > 0$$
;

6)
$$a^2 + b^2 + c^2 + 3 \ge ab + bc + ac$$
;

B)
$$a^2 + b^2 + c^2 + 3 \ge 2(a + b + c)$$
;

r)
$$1 + 2a^4 \ge a^2 + 2a^3$$
.

O31.10. a)
$$x^2 + \frac{1}{x^2} \ge 2$$
 $(x \ne 0)$; 6) $\frac{a^4}{1 + a^8} \le \frac{1}{2}$.

31.11. a)
$$(x^2 + y^2)(x^2y^2 + 1) \ge 4x^2y^2$$
;

6)
$$(a^4 + b^4)(a^4b^4 + 1)(a^2b^6 + a^6b^2) \ge 8a^8b^8$$
.

31.12.
$$a^2b^2c^2(a^2+b^2+c^2)+a^2b^2+b^2c^2+c^2a^2 \ge 6a^2b^2c^2$$
.

O31.13. a)
$$x^2 + \frac{25}{4x^2} \ge 5$$
 $(x \ne 0)$; B) $x^2y^2 + \frac{z^2}{y^2} \ge 2xz$ $(y \ne 0)$;

6)
$$\frac{z^2+10}{\sqrt{z^2+9}} \ge 2$$
; $r = \frac{6\sqrt{c^2+3}}{c^2+12} \le 1$.

O31.14. Докажите, что заданное неравенство выполняется при указанных условиях:

a)
$$a + b \ge 2\sqrt{ab}$$
, $a \ge 0$, $b \ge 0$;

6)
$$a + b + c \ge \sqrt{ab} + \sqrt{bc} + \sqrt{ca}, \ a \ge 0, \ b \ge 0, \ c \ge 0$$

B)
$$(c + a)(a + b)(b + c) \ge 8abc$$
, $a \ge 0$, $b \ge 0$, $c \ge 0$;

r)
$$(1-a)(1-b)(1-c) \ge 8abc$$
, $a+b+c=1$, $a \ge 0$,

$$b \geq 0$$
, $c \geq 0$.

O31.15. Докажите, что заданное неравенство выполняется при указанных условиях:

a)
$$a + b \ge ab + 1$$
, $a > 0$, $b > 0$, $ab = 1$;

6)
$$a + b + c \ge 3$$
, $a > 0$, $b > 0$, $c > 0$, $abc = 1$;

B)
$$a + b + c + d \ge 4$$
, $a > 0$, $b > 0$, $c > 0$, $d > 0$, $abcd = 1$;

r)
$$a_1 + a_2 + a_3 + a_4 + a_5 \ge 5$$
, $a_1 > 0$, $a_2 > 0$, $a_3 > 0$, $a_4 > 0$, $a_5 > 0$, $a_1a_2a_3a_4a_5 = 1$.

Докажите неравенство:

O31.16. a)
$$\sqrt{p+q} \le \sqrt{p} + \sqrt{q}$$
; $p > 0$, $q > 0$;

6)
$$\sqrt{\frac{p+q}{2}} \ge \frac{\sqrt{p}+\sqrt{q}}{2}$$
; $p > 0$, $q > 0$;

B)
$$\sqrt{p+q+r} \le \sqrt{p} + \sqrt{q} + \sqrt{r}$$
; $p > 0$, $q > 0$, $r > 0$;

r)
$$\sqrt{\frac{p^2+q^2+r^2}{3}} \ge \frac{p+q+r}{3}$$
; $p > 0$, $q > 0$, $r > 0$.

431.17. a)
$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} < 1 + \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{(n-1)n}$$
;

6)
$$\frac{1^2}{1+1^4} + \frac{2^2}{1+2^4} + \frac{3^2}{1+3^4} + \dots + \frac{10^2}{1+10^4} < 1.9.$$

•31.18. Докажите, что для любого натурального числа $n \ge 2$ выполняется неравенство:

a)
$$\sqrt{1} + \sqrt{2} + \sqrt{3} + ... + \sqrt{n} > n$$
;

6)
$$\frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{2n} > \frac{1}{2}$$

О31.19. Докажите неравенство:

a)
$$\sqrt{\cos x} < \sqrt{2}\cos\frac{x}{2}, x \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right);$$

6)
$$\sqrt{\sin x} > \sqrt{2} \sin \frac{x}{2}, x \in \left(0; \frac{\pi}{2}\right);$$

B)
$$\sqrt{\cos x} \ge \cos x \ge \cos^2 x$$
, $x \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$;

r)
$$\sqrt{\sin x} \ge \sin x \ge \sin^2 x$$
, $x \in (0; \pi)$.

- O31.20. а) Докажите, что tg A tg B < 1, если A, B острые углы тупоугольного треугольника.
 - б) Докажите, что $\operatorname{tg} A \operatorname{tg} B > 1$, если A, B углы остроугольного треугольника.
- O31.21. Пусть $x \in \left(0; \frac{\pi}{2}\right), \ y \in \left(0; \frac{\pi}{2}\right)$. Докажите, что:

B)
$$\cos \frac{x+y}{2} \geqslant \frac{\cos x + \cos y}{2}$$
;

6)
$$\operatorname{tg} \frac{x+y}{2} \leqslant \frac{\operatorname{tg} x + \operatorname{tg} y}{2}$$
;

r)
$$\operatorname{ctg} \frac{x+y}{2} \leqslant \frac{\operatorname{ctg} x + \operatorname{ctg} y}{2}$$
.

- \bigcirc 31.22. а) Пусть n и k некоторые натуральные числа, бо́льшие или равные 2. Докажите, что $\sin^n x + \cos^k x \le 1$ при всех действительных значениях x.
 - б) Пусть α и β некоторые положительные действительные числа, меньшие 1. Докажите, что $\sin^{\alpha} x + \cos^{\beta} x \ge 1$

при всех
$$x \in \left[0; \frac{\pi}{2}\right]$$
.

Докажите неравенство, воспользовавшись методом математической индукции:

●31.23. a)
$$2^n > n^2$$
, rge $n \ge 5$;

б)
$$2^n > n^3$$
, где $n \ge 10$.

•31.24. а)
$$\sqrt{n} < 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}}$$
, где $n \ge 2$;

6)
$$2\sqrt{n} > 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}}$$
, где $n \ge 2$.

- О31.25. С помощью производной докажите неравенство:
 - a) $\sin x x < 0$ при всех $x \in (0; +\infty)$;

б)
$$\operatorname{tg} x - x > 0$$
 при всех $x \in \left(0; \frac{\pi}{2}\right)$.

O31.26. Докажите неравенство:

а)
$$1 + \ln x \le x$$
 при всех $x \in (0; +\infty)$;

б)
$$e^x \ge 1 + x$$
 при всех $x \in R$.

●31.27. Докажите неравенство:

a)
$$\ln(1+x) > x - \frac{x^2}{2}$$
 при всех $x \in (0; +\infty)$;

6)
$$\sin x > x - \frac{x^3}{6}$$
 при всех $x \in (0; +\infty);$

в)
$$e^x \ge 1 + x + \frac{x^2}{2}$$
 при всех $x \in R$;

г)
$$\cos x > 1 - \frac{x^2}{2}$$
 при всех $x \in (0; +\infty)$.

§ 32. Уравнения и неравенства с двумя переменными

Постройте график уравнения:

32.1. a)
$$x^2 = 1$$
;

B)
$$x^2 - 2x + 1 = 0$$
;

6)
$$y^2 = 9$$
;

$$r) y^2 - 6y + 8 = 0.$$

32.2. a)
$$x = y$$
;

B)
$$x + y = 2$$
;

6)
$$3x - 4y = 12$$
;

$$\Gamma) \ 2y - x - 4 = 0.$$

Решите уравнение f(x; y) = 0 относительно x, т. е. преобразуйте уравнение к виду x = x(y). Найдите все значения у, при которых это решение единственно:

O32.3. a)
$$xy + y - x = 0$$
;

6)
$$xy^2 + xy^5 - (1 + y^3) = 0$$
;

B)
$$xy + y + 2x = 0$$
;

r)
$$xy - (x - 1)y^3 - 1 = 0$$
.

O32.4. a)
$$yx + x + y + 1 = 0$$
; B) $yx + 4x + 2y + 8 = 0$;

B)
$$yx + 4x + 2y + 8 = 0$$
;

6)
$$y^2 + (x + 1)y + x = 0$$
; r) $y^2 + 5xy + 4x^2 = 0$.

$$r) y^2 + 5xy + 4x^2 = 0.$$

O32.5. a)
$$|x| - (x + y) = 0$$
; B) $|y + 1| - (x - y) = 0$;

B)
$$|y + 1| - (x - y) = 0$$
;

6)
$$5|x| - |x + y| = 0$$

Постройте график уравнения:

O32.6. a)
$$x^2 - 3xy = 0$$
;

B)
$$xy + 2y^2 = 0$$
;

a)
$$x^2 - 3xy = 0;$$

b) $xy + 2y^2 = 0;$
c) $(x - 1)(y + 5) = 0;$
r) $xy - 5x + y = 5.$

$$\Gamma) xy - 5x + y = 5.$$

O32.7. a)
$$x^2 - y^2 = 0$$
;

$$x^2 - 3xy + 2y^2 = 0$$

a)
$$x^2 - y^2 = 0$$
;
b) $x^2 - 3xy + 2y^2 = 0$;
c) $x^2 + 7xy - 18y^2 = 0$;
r) $x^2 + xy + y^2 = 0$.

$$\Gamma) x^2 + xy + y^2 = 0$$

Постройте график уравнения:

O32.8. a)
$$\frac{x}{y} = 1;$$

B)
$$\frac{x-y}{x+y-2} = 0;$$

$$6) \ \frac{2x + 3y - 5}{x + y} = 0;$$

6)
$$\frac{2x+3y-5}{x+y} = 0;$$
 r) $\frac{2x^2-4x-2xy+3y-5}{x-y} = 2x.$

32.9. a)
$$|x| + |y| = x + y$$
;

B)
$$|x| + |y| = x - y$$
;

6)
$$|x| + |y| = y - x$$
; r) $|x| + |y| = -x - y$.

$$\Gamma |x| + |y| = -x - y$$

O32.10. a)
$$\frac{x^2 - 9y^2}{(x - 3y)(x + 3y)} = 1;$$

6)
$$\frac{|x+y|}{(x+y)^2} = 1;$$

B)
$$(x + 3y - 1)^2 + (x^2 - 3xy - 4y^2)^2 = 0$$
;

$$\Gamma |x^2 - y - 2| + |x^2 + y^2 - 2| = 0.$$

O32.11. График уравнения f(x; y) = 0 изображен на рисунке 9. Постройте график уравнения:

a)
$$f(-x; y) = 0;$$

b) $f(x; -y) = 0;$

B)
$$f(-x; -y) = 0;$$

6)
$$f(x; -y) = 0$$
;

$$\Gamma) f(y; x) = 0.$$

•32.12. На рисунке 10 изображен график уравнения f(x; y) = 0, имеющий вид четырехугольника, вершины которого точки с целочисленными координатами. Постройте график уравнения:

a)
$$f(|x|; y) = 0;$$

a)
$$f(|x|; y) = 0;$$
 B) $f(|x|; |y|) = 0;$

6)
$$f(x; |y|) = 0$$

6)
$$f(x; |y|) = 0;$$
 r) $f(y; |x|) = 0.$

Рис. 9

Рис. 10

•32.13. График уравнения f(x; y) = 0, изображенный на рисунке 11, имеет вид многоугольника, вершины которого точки с целочисленными координатами. Постройте график уравнения:

a)
$$f(x + 1; y - 1) = 0;$$
 B) $f(2 - x; 1 + y) = 0;$

B)
$$f(2-x; 1+y)=0$$

6)
$$f(|x|; -\frac{y}{2}) = 0;$$

$$\Gamma) f(|y|; -2x) = 0.$$

Рис. 11

●32.14. Постройте график уравнения и вычислите площадь фигуры, которая ограничена этим графиком:

a)
$$2|x| + 3|y| = 6$$
;

6)
$$\frac{1}{3}|x+5|+\frac{1}{5}|y-1|=2$$
;

B)
$$0.5|x| + \frac{1}{3}|y| = 2;$$

r)
$$\frac{|x-a|}{p} + \frac{|y-b|}{q} = 1, p > 0, q > 0.$$

- 32.15. Постройте на координатной плоскости множество точек (x; y) таких, что |x| + 3|y| = 6, и определите все значения, которые на этом множестве принимает выражение:
 - a) x;
- б) и:
- B) x + 3y;
- Γ) x + y.
- ●32.16. Постройте на координатной плоскости множество точек (x; y) таких, что |x - 3| + |y + 3| = 3, и определите все значения, которые на этом множестве принимает выражение:
 - a) -3x 2y; 6) $x^2 + y^2$; B) 5x + 7y; r) xy.

Постройте график уравнения:

O32.17. a)
$$y = \sqrt{4 - x^2}$$
;

B)
$$y = -\sqrt{4 - x^2}$$
;

6)
$$|y| = \sqrt{4 - x}$$
;

$$\Gamma) x = \sqrt{4 - y^2}.$$

O32.18. a)
$$y = \sqrt{1-x^2}$$
;

B)
$$y + 2 = -\sqrt{1 - x^2}$$
;

6)
$$y = -\sqrt{1 - (x - 1)^2}$$
; $|y| = -\sqrt{1 - x^2} + 3$.

$$|y| = -\sqrt{1 - x^2} + 3$$

O32.19. a)
$$|y + 2| = \sqrt{4 - x^2}$$
; B) $|y| + 2 = \sqrt{4 - x^2}$;

B)
$$|y| + 2 = \sqrt{4 - x^2}$$

6)
$$|y| = -\sqrt{4 - x^2} + 2$$
;

6)
$$|y| = -\sqrt{4 - x^2} + 2$$
; r) $|y + 2| = -\sqrt{4 - (x - 1)^2}$.

32.20. a)
$$(x-1)^2 + (y-2)^2 = 16$$
;

6)
$$(x-1)^2 + (|y|-2)^2 = 16$$
;

B)
$$(|x|-1)^2+(y-2)^2=16$$
;

r)
$$(|x|-1)^2+(|y|-2)^2=16$$
.

Решите уравнение в целых числах:

$$\bigcirc$$
32.21. a) $x + 2y = 7$;

B)
$$5x + y = 17$$
;

6)
$$7x + 2u = 1$$
:

$$\Gamma) 7x - 12y = 1.$$

32.22. a)
$$x + 2y^2 = 7$$
;

B)
$$5x^2 + y = 17$$
;

6)
$$x^2 + 2y = 1$$
;

$$\Gamma) 7x - 3y^2 = 1.$$

32.23. a)
$$x^2 - 5xy + 6y^2 = 2$$
;

$$6) x^2 + xy - 6y^2 = 5 - 5y;$$

B)
$$x^2 - xy + 12y^2 = 12$$
;

$$\Gamma) x^2 - 2xy + 8y^2 = 6 - 2x + 2y.$$

Постройте на координатной плоскости множество точек, координаты которых удовлетворяют неравенству:

32.24. a)
$$x \le 5$$
; b) $x > -4$; b) $y \ge -3$; r) $y < 2$.

б)
$$x > -4$$

B)
$$y \ge -3$$
;

r)
$$y < 2$$
.

32.25. a)
$$x + 2y \le 3$$
;

B)
$$3x + 2y \ge -5$$
;

6)
$$x - y > -4$$
;

$$\Gamma$$
) $x - 3y < 4$.

- **32.26.** Укажите на координатной плоскости все точки (x; y) такие, что выражение x + 3y 4 принимает:
 - а) неположительные значения;
 - б) значения, меньшие числа -8.
- **32.27.** Не производя построений, докажите, что точки A(-1; 2) и B(2; 3) лежат по одну сторону от прямой 13x + 7y + 6 = 0, а точки A и C(-13; -11) по разные.
- O32.28. При каких значениях параметра c точки A(-1; 7) и B(2; 11) лежат:
 - а) по одну сторону относительно прямой 3x + cy = 5;
 - б) по разные стороны относительно прямой 5x 4y = c?
- O32.29. Постройте на координатной плоскости множество точек, координаты которых удовлетворяют системе неравенств:

a)
$$\begin{cases} x+y \geq 3, \\ 2x-3y \leq 1; \end{cases}$$
 B)
$$\begin{cases} x-2y \geq 3, \\ x+3y \leq -2; \end{cases}$$

6)
$$\begin{cases} x - y \ge 1, \\ x + y \le 1, \\ x \le 2y; \end{cases}$$
 r)
$$\begin{cases} x - y \ge 2x, \\ x + y \le 3y, \\ 5x \le 2y - 7. \end{cases}$$

Постройте на координатной плоскости множество точек, координаты которых удовлетворяют неравенству:

O32.30. a)
$$\sqrt{3x-y-1} < \sqrt{2x+y-1}$$
;

6)
$$\sqrt{1-u} \ge \sqrt{1-2x^2}$$
:

B)
$$\sqrt{x + y - 1} > \sqrt{2x - y}$$
;

r)
$$\sqrt{y^2 - 1} \ge \sqrt{2x - 1}$$
.

O32.31. a)
$$\sqrt{y+1} < x$$
;

$$6) \sqrt{2xy + y^2} \geqslant x + y;$$

B)
$$\sqrt{-2x-y-1} > -x$$
;

$$r) \sqrt{2xy + x^2} \ge x - y.$$

Постройте на координатной плоскости множество точек, координаты которых удовлетворяют неравенству:

•32.32. a)
$$2|x-3|+2x-3y \le 0$$
;

6)
$$|x-3|+|y+2| \ge 2x+5$$
.

•32.33. a)
$$|x + y| + 2x - y \ge 3$$
;

6)
$$\frac{|x+y|}{x+y}x + |x+y| + y \le 4$$
.

O32.34. a)
$$xy \le 2$$
; 6) $y < \frac{2}{|x|}$; B) $|x| \cdot y < 2$; r) $|x| < \frac{2}{y}$.

O32.35. a)
$$xy > -3$$
; 6) $\frac{-3}{|y|} < x$; B) $y \ge -\frac{3}{x}$; r) $\frac{-3}{y} < |x|$.

32.36. a)
$$|x| + |y| \le 4$$
;

B)
$$2|x| + 3|y| \le 6$$
;

6)
$$|y-3|+|x+1| \ge 5$$
;

6)
$$|y-3|+|x+1| \ge 5$$
; r) $\frac{|x-3|}{2}+\frac{|y+1|}{5} \le 1$.

32.37. a)
$$\frac{4-x^2}{2x+3y-6} \ge 0$$
;

6)
$$\frac{x^2+y^2-4}{|x|+|y|-2} \le 0.$$

О32.38. Найдите площадь фигуры, заданной системой неравенств:

a)
$$\begin{cases} x \leq 2, \\ 3y - x \leq 4, \\ y \geq -x; \end{cases}$$

$$\begin{cases} x + y \le 12; \\ y - x \le 12; \\ y \ge 0. \end{cases}$$

●32.39. Найдите площадь фигуры, заданной неравенством:

a)
$$x^2 + y^2 \le 2(|x| + |y|\sqrt{3})$$
;

6)
$$2(x^2 + y^2) \le |x|\sqrt{3} + |y|$$
.

●32.40. Случайным образом выбирают одно из решений системы

неравенств $\begin{cases} |x-y| \leq 2, \\ |x+y| \leq 2. \end{cases}$ Найдите вероятность того, что

выбранная точка расположена:

- а) ниже прямой y=1; в) правее прямой x=1; б) выше прямой y=0,5; г) выше параболы $y=x^2.$

§ 33. Системы уравнений

Решите систему уравнений методом подстановки:

O33.1. a)
$$\begin{cases} x + y = 3, \\ x^2 + 2y^2 - xy + 2x - 3y = 3; \end{cases}$$

$$\begin{cases} y = 2 + x, \\ x^3 - y^3 = -8; \end{cases}$$

B)
$$\begin{cases} x + y = 5, \\ x^3 + y^3 = 35; \end{cases}$$

r)
$$\begin{cases} x + 2y = 1, \\ 2x^2 + 3xy - 3y^2 = 6. \end{cases}$$

O33.2. a)
$$\begin{cases} x + y = \frac{\pi}{4}, \\ \sin x \sin y = -\frac{1}{2\sqrt{2}}; \end{cases}$$

6)
$$\begin{cases} 3x = y + 1, \\ 7^{y-2x+2} = 7^{y-4x+1} + 6; \end{cases}$$

$$\begin{cases} x = 2y, \\ \log_{\frac{1}{3}}(2y + x) + \log_{\frac{1}{3}}(x - y + 1) = \log_{3}\frac{1}{y + 1}; \end{cases}$$

r)
$$\begin{cases} \sqrt{7 - 6x - y^2} = y + 5, \\ y = x - 1. \end{cases}$$

ОЗЗ.З. Решите систему уравнений методом алгебраического сложения:

a)
$$\begin{cases} 3x + 2y = 1, \\ x - y = -3; \end{cases}$$

B)
$$\begin{cases} x + y^2 = 2, \\ 2y^2 + x^2 = 3; \end{cases}$$

a)
$$\begin{cases} 3x + 2y = 1, \\ x - y = -3; \end{cases}$$
B)
$$\begin{cases} x + y^2 = 2, \\ 2y^2 + x^2 = 3; \end{cases}$$
6)
$$\begin{cases} 2\sqrt{x} - 3\sqrt{y} = 1, \\ 3\sqrt{x} - 2\sqrt{y} = 4; \end{cases}$$
r)
$$\begin{cases} \sqrt[3]{x} + \sqrt[4]{y} = 3, \\ 3\sqrt[3]{x} - 5\sqrt[4]{y} = 1. \end{cases}$$

$$\Gamma) \begin{cases} \sqrt[3]{x} + \sqrt[4]{y} = 3, \\ \sqrt[3]{x} - 5\sqrt[4]{y} = 3. \end{cases}$$

ОЗЗ.4. Решите систему уравнений методом алгебраического сложения:

a)
$$\begin{cases} \log_2 x - \log_3 y = -5, \\ 2\log_2 x + 3\log_3 y = 0 \end{cases}$$

a)
$$\begin{cases} \log_2 x - \log_3 y = -5, \\ 2\log_2 x + 3\log_3 y = 0; \end{cases}$$
 B)
$$\begin{cases} 2^{x+2y} - \sqrt{2x+y} = 6, \\ 3\sqrt{2x+y} - 2^{x+2y} = -2; \end{cases}$$

6)
$$\begin{cases} \cos x + \cos 2y = -0.5, \\ 3\cos 2y - \cos x = 2.5; \end{cases}$$
 r)
$$\begin{cases} 2\sin 2x + \tan 3y = 2, \\ 6\sin 2x - 2\tan 3y = 1. \end{cases}$$

$$\begin{cases} 2\sin 2x + \tan 3y = 2, \\ 6\sin 2x - 2\tan 3y = 1 \end{cases}$$

ОЗЗ.5. Решите систему уравнений методом введения новых переменных:

a)
$$\begin{cases} \frac{5}{3x - y} + \frac{3}{x - 3y} = -2, \\ \frac{15}{3x - y} + \frac{2}{x - 3y} = 1; \end{cases}$$

$$\begin{cases} \frac{3}{x+y} + \frac{6}{x-y} = -1, \\ \frac{5}{x+y} + \frac{9}{x-y} = -2. \end{cases}$$

Решите систему уравнений:

O33.6. a)
$$\begin{cases} 2x + 3y = 12, \\ \log_6^2 xy + 1 = 2\log_6 xy; \end{cases}$$

6)
$$\begin{cases} \sqrt{x} \cdot \sqrt{y} = 10 - 3\sqrt[4]{xy}, \\ 2x - 5y = 6. \end{cases}$$

O33.7. a)
$$\begin{cases} 3\log_{\frac{1}{2}}x + 2^{y+1} = 5, \\ 2^y + \log_2 x = 5; \end{cases}$$

6)
$$\begin{cases} 3\sqrt[3]{x+y} = \log_2 16x^2, \\ \log_2 x^2 + 2\sqrt[3]{x+y} = 6; \end{cases}$$

B)
$$\begin{cases} tg^2 x + \sin y = 2, \\ 3\sin y + tg^2 x = 0; \end{cases}$$

r)
$$\begin{cases} 3^{x-y} - 7|2y - x| = 2, \\ |2y - x| - 3^{x-y-1} = -2. \end{cases}$$

О33.8. Применяя графический метод, определите, сколько решений имеет система уравнений:

a)
$$\begin{cases} y = x^2, \\ y = \cos x; \end{cases}$$

$$\begin{cases}
y = \sin x, \\
y = 0,1x;
\end{cases}$$

$$\begin{cases} x^2 + y^2 = 4, \\ y = 2 - x^2; \end{cases}$$

$$\Gamma) \begin{cases} y + 2 = \sqrt{x + 4}, \\ y + x^3 = 0. \end{cases}$$

Решите графически систему уравнений:

O33.9. a)
$$\begin{cases} y + x = 3, \\ xy = 2; \end{cases}$$

6)
$$\begin{cases} y = x(x - 4), \\ y + 8 = 2x. \end{cases}$$

O33.10. a)
$$\begin{cases} y \cdot 2^{x+1} = 1, \\ \sqrt[3]{x+2} = y; \end{cases}$$

6)
$$\begin{cases} y = 2^{x-1}, \\ |x - 3| = y + 1. \end{cases}$$

O33.11. a)
$$\begin{cases} y - 1 = \sin\left(x - \frac{\pi}{2}\right), \\ y + x^2 = 0; \end{cases}$$

$$\begin{cases} y = \sin 2x, \\ y - 1 = 2x - \frac{\pi}{2}. \end{cases}$$

33.12. Докажите, что система уравнений не имеет решений:

a)
$$\begin{cases} 2x + 3y = 1, \\ 4x + 6y = 5; \end{cases}$$

$$\begin{cases} y - 1 = \left(\frac{1}{3}\right)^x, \\ \sin x = y; \end{cases}$$

6)
$$\begin{cases} \cos(x + y) + \sin xy = 1, \\ 2\sin xy + \cos(x + y) = -1; \end{cases}$$

r)
$$\begin{cases} x^2 + y^2 = 4, \\ y = x - 4. \end{cases}$$

O33.13. a)
$$\begin{cases} y + 2x = 3, \\ x^2 + y^2 = 2; \end{cases}$$

O33.13. a)
$$\begin{cases} y + 2x = 3, \\ x^2 + y^2 = 2; \end{cases}$$
 B)
$$\begin{cases} 2\sin(x + y) - 3\cos(x - y) = 5, \\ 7\cos(x - y) + 5\sin(x + y) = -2; \end{cases}$$

6)
$$\begin{cases} x^4 - y^4 = 15, \\ x^4 + y^4 = 17; \end{cases}$$
 r)
$$\begin{cases} \frac{y}{9} = \left(\frac{1}{3}\right)^x, \\ y = \log_2 x. \end{cases}$$

O33.14. a)
$$\begin{cases} \sqrt{x+1} - y = 2, \\ \log_7 (4-x) = y; \end{cases}$$

B)
$$\begin{cases} 2^{y+x} - 3^{x-y} = 1, \\ 2^{x+y} + 3^{x-y} = 3. \end{cases}$$

6)
$$\begin{cases} \sqrt{\frac{y-x}{2x}} - \sqrt{\frac{x}{x+y}} = \frac{1}{2}, \\ 16\sqrt{\frac{x}{x+y}} - 7\sqrt{\frac{y-x}{2x}} = 1; \end{cases}$$

$$\Gamma) \begin{cases} y + x = 1, \\ 2^{x-y} = \left(\frac{1}{4}\right)^{-1} \cdot \frac{8^{\frac{2}{3}}}{2}. \end{cases}$$

O33.15. a)
$$\begin{cases} (2x+y)(x+3y) = 48, \\ \frac{2x+y}{x+3y} = \frac{3}{4}; \end{cases}$$
 6)
$$\begin{cases} \frac{x-3}{y+2} = 4, \\ (x-3)^2 + (y+2)^2 = 17. \end{cases}$$

O33.16. a)
$$\begin{cases} x^2 + y^2 = 13, \\ x^4 - y^4 = 65; \end{cases}$$
 6)
$$\begin{cases} 2x^4 = x^2y^2 + 1, \\ 3x^4 = x^2y^2 + 2. \end{cases}$$

O33.17. a)
$$\begin{cases} y + x^3 = 4, \\ 3y + y^2 + 2x^3 = 20; \end{cases}$$
 6)
$$\begin{cases} y^4 + x = 3, \\ 2x^2 - 5x + 3y^4 = 1. \end{cases}$$

O33.18. a)
$$\begin{cases} x^3y^5 = 32, \\ x^5y^3 = 8; \end{cases}$$
 6)
$$\begin{cases} (x + 2y)^3(x - 2y)^2 = 9, \\ (x - 2y)^3(x + 2y)^2 = -27. \end{cases}$$

O33.19. a)
$$\begin{cases} \frac{x}{y} - xy = -9, \\ 2xy - \frac{3y}{x} = 23; \end{cases}$$
 6)
$$\begin{cases} \frac{x+y}{x-y} + \frac{x}{y} = -\frac{5}{6}, \\ \frac{x^2 + xy}{xy - y^2} = \frac{1}{6}. \end{cases}$$

•33.20. a)
$$\begin{cases} 2x^2 + xy - y^2 = 0, \\ y^2 - 3xy = 16; \end{cases}$$
 6)
$$\begin{cases} 3x^2 - xy = 10y^2, \\ x^2 - 2xy + y^2 = 4. \end{cases}$$

33.21. a)
$$\begin{cases} x^2 + 3xy + y^2 = -1, \\ 2x^2 - 3xy - 3y^2 = -4; \end{cases}$$
 6)
$$\begin{cases} x^2 + xy + 4y^2 = 6, \\ 3x^2 + 8y^2 = 14. \end{cases}$$

•33.22. a)
$$\begin{cases} x - 2xy + y = -17, \\ x^2 + y^2 = 25; \end{cases}$$
6)
$$\begin{cases} x + y + x^2 + y^2 = 18, \\ xy + x^2 + y^2 = 19. \end{cases}$$

O33.23. a)
$$\begin{cases} \frac{x^2}{y} + \frac{y^2}{x} = 12, \\ \frac{1}{x} + \frac{1}{y} = \frac{1}{3}; \end{cases}$$
 6)
$$\begin{cases} xy(x+y) = 20, \\ \frac{1}{x} + \frac{1}{y} = \frac{5}{4}. \end{cases}$$

O33.24. a)
$$\begin{cases} \sqrt{x-y} + \sqrt{x+3y} = 4, \\ 2x - y = 4; \end{cases}$$

6)
$$\begin{cases} 6x + 2y = 10, \\ \sqrt{2x + y} + \sqrt{6x - 3y} = 2. \end{cases}$$

O33.25. a)
$$\begin{cases} \sqrt[3]{x} + \sqrt[3]{y} = 5, \\ xy = 216; \end{cases}$$
 6)
$$\begin{cases} \sqrt[4]{x} - \sqrt[4]{y} = 1, \\ \sqrt{xy} = 4. \end{cases}$$

O33.26. a)
$$\begin{cases} \sqrt{\frac{x+3y}{y+5}} + 2 = 3 \cdot \sqrt{\frac{y+5}{x+3y}}, \\ xy + 2x = 13 - 4y; \end{cases}$$

6)
$$\begin{cases} x^2 + 4x - y^2 - 3y = 0, \\ \sqrt{\frac{x+y}{x-y}} + 3 \cdot \sqrt{\frac{x-y}{x+y}} = 4. \end{cases}$$

O33.27. a)
$$\begin{cases} \sqrt{\frac{x}{y}} + \sqrt{\frac{y}{x}} = \frac{3}{\sqrt{2}}, \\ \sqrt{x} + \sqrt{y} = \sqrt{2} + 1; \end{cases}$$
 6)
$$\begin{cases} \sqrt{\frac{y}{x}} - 2\sqrt{\frac{x}{y}} = 1, \\ \sqrt{5x + y} + \sqrt{5x - y} = 4. \end{cases}$$

O33.28. a)
$$\begin{cases} \sqrt{x} + \sqrt{y} + \frac{1}{\sqrt{x} + \sqrt{y}} = \frac{10}{3}, \\ x + 2y = 9; \end{cases}$$

6)
$$\begin{cases} 3x - y = 3, \\ \sqrt{x} + 2\sqrt{y} + \frac{1}{\sqrt{x} + 2\sqrt{y}} = \frac{65}{8}. \end{cases}$$

433.29. a)
$$\begin{cases} 2\sqrt{3y+x} - \sqrt{6y-x} = x, \\ \sqrt{3y+x} + \sqrt{6y-x} = 3y; \end{cases}$$

6)
$$\begin{cases} \sqrt{2x - 3y} + \sqrt{4x + 3y} = 2x, \\ 2\sqrt{2x - 3y} = \sqrt{4x + 3y} - 3y. \end{cases}$$

O33.30. a)
$$\begin{cases} 2^{6x-2y} = 4^{x+y+10}, \\ 3^{x^2} = 3^{11+y}; \end{cases}$$
 6)
$$\begin{cases} \frac{343^{\frac{x}{y}}}{7^{x-y}} = 49, \\ \frac{5^{\frac{x}{y}}}{25^{x-y}} = 1. \end{cases}$$

O33.31. a)
$$\begin{cases} 5^{\frac{3}{\sqrt{x}}} = 5^{3-\frac{3}{\sqrt{y}}}, \\ (0,25^x)^y = \frac{1}{2^{16}}; \end{cases} \qquad \qquad 6) \begin{cases} 32^{\frac{3}{\sqrt{x-2y}}} \cdot 8^{\frac{3}{\sqrt{x+y}}} = 2^{13}, \\ \frac{8^{\frac{3}{\sqrt{x-2y}}}}{16^{\frac{3}{\sqrt{x+y}}}} = 4. \end{cases}$$

O33.32. a)
$$\begin{cases} 2^{x} \cdot 0,25^{-y} = 512, \\ \sqrt{x} + 2\sqrt{y} = 5; \end{cases}$$
 6)
$$\begin{cases} 9^{x} \cdot 3^{y-3} = 729, \\ \sqrt{x} - \sqrt{y} = 1. \end{cases}$$

O33.33. a)
$$\begin{cases} 6^{2x} + 6^x \cdot y = 12, \\ y^2 + y \cdot 6^x = -8; \end{cases}$$
 6)
$$\begin{cases} 7^{2y} - 7^y \cdot x = 28, \\ x^2 - x \cdot 7^y = -12. \end{cases}$$

O33.34. a)
$$\begin{cases} \log_{13}(x^2 + y^2) = 0.5 \log_{\pi} \pi^2, \\ \log_{3} x - 1 = \log_{3} 2 - \log_{3} y; \end{cases}$$

6)
$$\begin{cases} \log_7(x+y) = 4\log_7(x-y), \\ \log_7(x+y) = 5\log_7 3 - \log_7(x-y). \end{cases}$$

O33.35. a)
$$\begin{cases} \log_x y + \log_y x = \frac{5}{2}, \\ 4\sqrt{x} - 3\sqrt{y} = 1; \end{cases}$$
 6)
$$\begin{cases} \log_y x - 2\log_x y = 1, \\ x^2 + 2y^2 = 3. \end{cases}$$

O33.36. a)
$$\begin{cases} \log_2^2 y + \log_2 x \log_2 y - 2 \log_2^2 x = 0, \\ 9 x^2 y - x y^2 = 1; \end{cases}$$

6)
$$\begin{cases} 2\log_3^2 x + \log_3 x \log_3 y - \log_3^2 y = 0, \\ xy + \frac{x^2}{y} = 28. \end{cases}$$

•33.37. a)
$$\begin{cases} x^2 + \lg x = y^2 + \lg y, \\ \sqrt{x - y} + \sqrt{x} + \sqrt{y} = 4; \end{cases}$$

6)
$$\begin{cases} x + 2^{\sqrt{x}} = y + 2^{\sqrt{y}}, \\ x^2 + x + y^2 + y = 12. \end{cases}$$

O33.38. a)
$$\begin{cases} \sin x \sin y = 0.25, \\ x + y = \frac{\pi}{3}; \end{cases}$$
 6)
$$\begin{cases} x + y = \frac{\pi}{4}, \\ \sin^2 x + \cos^2 y = 0.5. \end{cases}$$

O33.39. a)
$$\begin{cases} \sin x + \cos y = 0, \\ \sin^2 x + \cos^2 y = \frac{1}{2}; \end{cases}$$
 6)
$$\begin{cases} \cos x + \cos y = 0, 5, \\ \sin^2 x + \sin^2 y = 1, 75. \end{cases}$$

$$\bullet 33.40. a) \begin{cases} \sin x \sin y = -\frac{1}{2}, \\ \tan x \cot y = 1; \end{cases} 6) \begin{cases} \cos y \cos x = -\frac{1}{4}, \\ \tan y = \cot x. \end{cases}$$

Решите систему трех уравнений с тремя переменными:

O33.41. a)
$$\begin{cases} x + 2y - 3z = -3, \\ 2x - 3y + z = 8, \\ -x + y - 5z = -8; \end{cases}$$
 6)
$$\begin{cases} 3x - 5y + z = -13, \\ x + 3y - 2z = 5, \\ 2x - 2y + 5z = -6 \end{cases}$$

O33.41. a)
$$\begin{cases} x + 2y - 3z = -3, \\ 2x - 3y + z = 8, \\ -x + y - 5z = -8; \end{cases}$$

$$\begin{cases} 3x - 5y + z = -13, \\ x + 3y - 2z = 5, \\ 2x - 2y + 5z = -6. \end{cases}$$
O33.42. a)
$$\begin{cases} x + y = -1, \\ x - z = 2, \\ xy + xz + yz = -1; \end{cases}$$

$$\begin{cases} x + y + 2z = 0, \\ x + 2y + z = 1, \\ x^2 + y^2 + z^2 = 5. \end{cases}$$

- O33.43. Составьте уравнение параболы $y = ax^2 + bx + c$, если известно, что она проходит через точки M, P, Q:
 - a) M(1; -2), P(-1; 8), Q(0; 1);
 - б) M(-1; 6), P(2; 9), Q(1; 2).
- ОЗЗ.44. Сумма бесконечной геометрической прогрессии равна 4, а сумма кубов ее членов равна 192. Найдите первый член и знаменатель прогрессии.
- \bigcirc 33.45. Сумма трех чисел равна 8, а сумма их квадратов 26. Найдите эти числа, если известно, что одно из них на 2 больше другого.
- ●33.46. Три числа образуют конечную возрастающую геометрическую прогрессию. Если второе число увеличить на 6, то получится конечная арифметическая прогрессия. Если в этой арифметической прогрессии первое и третье числа увеличить на 5, а второе — на 1, то получится геометрическая прогрессия. Найдите три исходных числа.

•33.47. Три бригады, работая одновременно, выполняют норму по изготовлению подшипников за некоторое время. Если бы первые две бригады работали в два раза медленнее, а третья бригада — в 4 раза быстрее, чем обычно, то норма была бы выполнена за то же время. Известно, что первая и вторая бригады при совместной работе выполняют норму в 2 раза быстрее, чем вторая бригада совместно с третьей. Во сколько раз первая бригада производит подшипников за 1 ч больше, чем третья?

§ 34. Задачи с параметрами

- O34.1. При каких значениях параметра *m* уравнение $mx-x+1=m^2$:
 - а) имеет ровно один корень;
 - б) не имеет корней;
 - в) имеет более одного корня?
- O34.2. При каких значениях параметра b уравнение $b^2x - x + 2 = b^2 + b$:
 - а) имеет ровно один корень;
 - б) не имеет корней;
 - в) имеет более одного корня?

Решите уравнение (относительно x):

O34.3. a)
$$a^2x - 4x + 2 = a$$
;

6)
$$\frac{x}{a} + x - 1 = a$$
.

O34.4. a)
$$\frac{ax-5-x}{x^2-4}=0$$
;

6)
$$\frac{ax+6-2x}{x^2-9}=0.$$

Решите неравенство (относительно x):

O34.5. a)
$$mx - x + 1 \ge m^2$$
;

6)
$$b^2x - x + 1 > b$$
.

O34.6. a)
$$b^2x - bx \ge b^2 + b - 2$$
; 6) $\frac{x}{a} + x \le a + 1$.

$$6) \frac{x}{a} + x \leqslant a + 1.$$

- O34.7. При каких значениях параметра a уравнение $ax^2 + 4x - a + 5 = 0$:
 - а) имеет два различных корня;
 - б) имеет ровно один корень;
 - в) не имеет корней?
- $O34.8.\ \Pi$ ри каких значениях параметра a система уравнений

a)
$$\begin{cases} y = 2x^2 - 5x + 1, \\ y = 3x + a; \end{cases}$$
 6)
$$\begin{cases} y = 3x^2 - 4x - 2, \\ y = -10x + a? \end{cases}$$

- О**34.9.** Найдите наименьшее целочисленное значение параметра b, при котором уравнение имеет два корня:
 - a) $x^2 2bx + b^2 4b + 3 = 0$:
 - 6) $x^2 + 2(b-2)x + b^2 10b + 12 = 0$.
- ullet34.10. При каких значениях a корни уравнения:
 - a) $x^2 8ax + 27 = 0$ относятся как 3:1;
 - б) $x^2 10ax + 24 = 0$ относятся как 2:3?
- O34.11. При каких значениях a уравнение:
 - а) $(\log_3 a)x^2 (2\log_3 a 1)x + \log_3 a 2 = 0$ имеет единственный корень;
 - б) $(\log_4 a)x^2 (2\log_4 a + 1)x + \log_4 a + 2 = 0$ не имеет корней?
- O34.12. Решите уравнение с параметром a:

a)
$$\frac{x^2 - (a-1)x - 2a(a+1)}{x-3} = 0$$
;

6)
$$\frac{x}{a(x+1)} - \frac{2}{x+2} = \frac{3-a^2}{a(x+1)(x+2)}$$
.

- \bigcirc **34.13.** При каком значении a:
 - а) прямая y = 6x + a касается графика функции $y = x^2$;
 - б) прямая y = 4x имеет только одну общую точку с графиком функции $y = x^2 + a$?
- O34.14. При каких значениях b имеют общие точки графики функций:
 - a) $y = x^2 4x + 2$ и y = -2x + b;
 - 6) $y = x^2 + 6x + 7$ y = 2x + b?
- O34.15. При каких значениях a ось симметрии параболы:
 - а) $y = 2x^2 3ax + 2$ пересекает ось абсцисс левее точки (-3; 0);
 - б) $y = 5x^2 2ax + 2$ пересекает ось абсцисс правее точки (4; 0)?
- O34.16. При каких значениях *а* вершина параболы:
 - а) $y = (3a + 1)x^2 + 2x 5$ принадлежит четвертой координатной четверти (координатные оси не принадлежат координатным четвертям);
 - б) $y = 3x^2 + (4a 1)x + 3$ принадлежит первой координатной четверти (координатные оси не принадлежат координатным четвертям);

- O34.17. Определите знаки коэффициентов a, b, c, если известно, что график функции $y = ax^2 + bx + c$ проходит через заданные точки:
 - a) (-4; 0), (0; -2), (-3; -2);
 - 6) $(0, \sqrt{3} + 1), (-1,7, 0), (3,3, \sqrt{3} + 1)$?
- O34.18. При каких значениях *a* неравенство $ax^2 + 4x 3 + a > 0$:
 - а) выполняется при любых x:
 - б) не имеет решений?
- $+2a + 2 \leq 0$:
 - а) выполняется при любых x:
 - б) не имеет решений?
- \bigcirc 34.20. а) При каких значениях параметра a неравенство $(x^3 - 8)(a - x) \ge 0$ имеет единственное решение?
 - б) При каких значениях параметра a в множестве решений неравенства $(x-1)(a-x) \ge 0$ содержится ровно пять целых чисел?
- О34.21. Решите неравенство:
 - a) $\sqrt{x-2}(x-a) \ge 0$; 6) $(6-x)\sqrt{x-a} > 0$.
- ullet 34.22. а) При каких значениях параметра a решением неравенства $(x-a)^2(x-3)(x+1) \le 0$ является отрезок?
 - б) При каких значениях параметра a неравенство $\frac{x-2a-1}{x-a} < 0$ выполняется при всех значениях x из отрезка [1: 2]?
- •34.23. При каких значениях параметра а корни уравнения $(a-2)x^2-2ax+a+3=0$ различны и:
 - а) положительны;
- в) отрицательны;
- б) меньше числа 3; г) принадлежат интервалу (1; 3)?
- **•34.24.** Решите неравенство (относительно x): $(a-1)x^2 + 2(2a+1)x^2 + 2(2a+1)$ $+1)x + 4a + 3 \leq 0.$
- O34.25. а) При каких значениях параметра a функция $y = ax^3 + ax^3$ $+ 3ax^2 + 6x + 7$ возрастает на всей числовой прямой?
 - б) При каких значениях параметра a функция $y = 2x^3 1$
 - $-6a^2x+3$ имеет минимум в точке x=3?

- О34.26. Решите уравнение:
 - a) $\sin x = 3a 2$;
- 6) $\cos^2 x = 2a 1$.
- О34.27. Решите уравнение:
 - a) $\sqrt{3}\sin x + \cos x = a$; 6) $3\sin x + 4\cos x = 2a 1$.
- ullet34.28. При каких значениях параметра a уравнение $\sin 2x = a$ имеет на отрезке [0; 2π] пять корней?
- - а) уравнение $5^{2x} 3 \cdot 5^x + a 1 = 0$ имеет единственный корень:
 - б) уравнение $0.01^x 2(a+1) \cdot 0.1^x + 4 = 0$ не имеет корней?
- ullet34.30. При каких значениях a уравнение имеет хотя бы один корень:
 - a) $9^x + (a + 4) \cdot 3^x + 4a = 0$;
 - 6) $25^x (a 2) \cdot 5^x 2a = 0$?
- ●34.31. Решите уравнение:
 - а) $\sqrt{a\cos 2x + 3\sin 2x} = \cos x$, если известно, что x = 0 корень уравнения;
 - б) $\sqrt{2\sin 2x a\cos 2x} = -\sin x$, если известно, что x = $=-\frac{\pi}{2}$ — корень уравнения.
- ullet 34.32. При каких значениях a уравнение имеет ровно три корня:
 - a) $x(x + 3)^2 + a = 0$;
- 6) $x^3 12x + 1 = a$?
- **ullet34.33.** При каких значениях a:
 - а) уравнение $x^4 8x^2 + 4 = a$ не имеет корней;
 - б) уравнение $3x^4 + 4x^3 12x^2 = a$ имеет не менее трех корней?
- ullet 34.34. При каждом значении параметра a найдите число различных корней уравнения:
 - a) $\sqrt{x} = x a$;
- 6) $\sqrt{4-x^2} = x + a$?
- **•34.35.** При каких значениях *p* уравнение |3x + 6| = px + 2 имеет: а) один корень; б) два корня?
- ullet 34.36. При каких значениях a существуют два решения:
 - a) системы $\begin{cases} y = |x 2|, \\ y = ax + 1; \end{cases}$
 - б) уравнения |x + 4| = ax + 2?

- ullet 34.37. При каких значениях a уравнение $|x^2 4x 5| = a$:
 - а) имеет два корня;
 - б) имеет четыре корня?
- **●34.38.** При каких значениях *a*:
 - а) в уравнении $(x-a)^2 12|x-a| + 35 = 0$ число отрицательных корней равно числу положительных корней;
 - б) в уравнении $(x+a)^2 6|x+a| + 8 = 0$ число положительных корней больше числа отрицательных корней?
- •34.39. а) Сколько корней имеет уравнение ||x|-2|=a при различных значениях параметра a?
 - б) Решите уравнение |x 1| + |x 3| = a.
- •34.40. При каких значениях параметра a графики функций y = a|x+1| и $y = x + a^2|x|$ пересекаются в трех точках?
- •34.41. При каких значениях параметра a система уравнений $\begin{cases} |x^2-7x+6|+x^2+5x+6-12|x|=0,\\ x^2-2(a-2)x+a(a-4)=0 \end{cases}$ имеет два решения?
- ullet 34.42. При каких значениях параметра a система уравнений $\begin{cases} ax^2 + a 1 = y |\sin x|, \\ |\tan x| + |y| = 1 \end{cases}$ имеет единственное решение?
- •34.43. При каких положительных значениях параметра a неравенство $2x^2 a \ln x < 0$ имеет хотя бы одно решение?
- •34.44. При каких значениях параметра a уравнение $4^x + 2 = a \cdot 2^x \cdot \sin \pi x$ имеет единственный корень?
- •34.45. Найдите все положительные значения параметра a, при которых неравенство $|2x+a|x|-13|\geqslant 1$ выполняется для всех x из отрезка [-3; 3].
- •34.46. Найдите все значения параметра a, при которых области определения функции $y = \left(a^{x+0.5} + a^3\sqrt{x} x^{0.5+x\log_x a} a^{3.5}\right)^{0.5}$ принадлежит лишь одно целое число.
- •34.47. Известно, что уравнение $(2a+3)x^2 + ax + 3x + 1 = 0$ имеет хотя бы один корень. При каких значениях параметра a число корней этого уравнения равно числу корней уравнения $\frac{21-a}{1+2x} = 3 + \sqrt{x-3}$?

Дополнительные задачи

●11.79. Решите уравнение:

a)
$$\left(\lg \frac{3\pi}{8} \right)^{x+2} = -7 - x^3;$$

a)
$$\left(\operatorname{tg} \frac{3\pi}{8} \right)^{x+2} = -7 - x^3;$$
 6) $\left(\sin \frac{\pi}{10} \right)^{x-3} = \sqrt[4]{x-2}.$

●11.80. Решите неравенство:

a)
$$5^x + 6^x \ge 11$$
;

6)
$$3^{x-4} + 2^{x-2} \le 11$$
.

•11.81. При каких значениях x график функции y = f(x) располагается не ниже графика функции y = g(x), если:

a)
$$f(x) = 25 \cos 2x - \sin^4 x$$
, $g(x) = 25 \cdot 5^{(\pi - x)^2}$;
6) $f(x) = 7^{1 - |6x - 5|}$, $g(x) = \sin^2 x - \sin x + 7{,}25$?

6)
$$f(x) = 7^{1-|6x-5|}$$
, $g(x) = \sin^2 x - \sin x + 7{,}25$

- ●11.82. Найдите наименьшее и наибольшее целочисленные значения функции $y = 20 \cdot 5^{\sin 4x + \sqrt{3} \cos 4x - 1}$.
- •13.47. а) Найдите количество всех целых решений неравенства $4^{x-1} - 9 \cdot 2^x + 32 \le 0.$
 - б) Найдите сумму всех целых положительных чисел, которые являются решениями неравенства $14^{x-1} < 5^{x+1}$.
 - в) Из всех целых чисел, которые не являются решениями неравенства $(10^{4x-9}-1)(3^{5x-21}-1) \ge 0$ найдите число. наименее удаленное от множества решений этого неравен-
 - r) Укажите наименьшее натуральное число x, при котором число $3 \cdot 2^x$ составляет менее 50% от числа $3^x + 5$.
- 016.66. Вычислите:

$$\begin{split} \log_4 \sin \; \frac{\pi}{16} \; + \log_4 \cos \; \frac{\pi}{16} \; + \log_4 \left(\cos \frac{\pi}{16} \, - \, \sin \frac{\pi}{16} \right) \, - \\ - \, \log_4 \left(\cos \frac{\pi}{16} \, + \, \sin \frac{\pi}{16} \right)^{-1}. \end{split}$$

●17.44. Решите уравнение:

a)
$$\log_2^2(2-x) + 2.5 \log_2 \frac{x^2 - 4x + 4}{3x - 1} = 6 - 10 \log_{16} (3x - 1);$$

6)
$$\log_3^2(6-x) - \log_{\frac{1}{3}}(x+10)^4 - 4\log_3(x+10)(x^2-12x+4)$$

+ 36) = 9.

- ●18.48. а) Найдите сумму всех целых чисел, которые являются решениями неравенства $\log_2(5-x) > \log_{0.5} x - 6$.
 - б) Найдите наименьшее натуральное число, которое явля-

ется решением неравенства
$$\frac{41x - 4x^2 - 100}{\log_{100}(x - 3)} \le 0$$
.

●18.49. Сколько целых чисел содержится в решении неравенства

$$\frac{\sqrt{5+4\log_2 x - \log_2^2 x}}{\log_2 32x^2} \leqslant \frac{\sqrt{\log_2 32x^4 - \log_2^2 x}}{4 - \log_{0.5} x^3}?$$

- •18.50. а) При каких значениях a сумма целочисленных решений неравенства $\log_a^2(2-x)-8 \le \log_a(x-2)^2$ равна нулю?
 - б) При каких значениях a хотя бы одно целое число из интервала $\left(-\sqrt{51}; \lg 0,1\right)$ является решением неравенства $\log_a^2(1-x)-3 \ge 0.5\log_a(x-1)^4$?

Решите неравенство:

$$\bullet 18.51. \ \frac{\log_4(2-x) - \log_{14}(2-x)}{\log_{14}x - \log_{40}x} \le \frac{\log_9 49}{\log_{27} 8}.$$

●18.52.
$$\log_8 (x-3)^2 \cdot \log_{16} (x-5)^6 + \log_2 \frac{(x-3)^3}{x-5} - 3 > 0$$
.

- **26.18.** a) Решите уравнение $\frac{\lg (7x x^2 9) \cdot \lg (9 2x)}{x 2} = 0.$
 - б) Найдите сумму всех корней уравнения $\lg (x^2 10x + 25) \cdot \log_{11} (3x 5) \cdot \log_{12} (x^2 4x + 4) = 0.$
 - в) Решите уравнение $\frac{\lg (8x x^2 14) \cdot \lg (13 3x)}{x 3} = 0.$
 - г) Найдите сумму всех корней уравнения $\log_4{(x^2-12x+36)}\cdot\log_5{(3x-8)}\cdot\log_6{(x^2-6x+9)}=0.$
- **•26.19.** При каких значениях параметра a уравнение $x^2 ax + \sin a = 0$ является следствием уравнения $x + \sin x \sin a = a$?
- ●27.58. Решите уравнение:

a)
$$0.5x^2 + 34 = 2^{3 + \cos(\pi x)} + 6x$$
;

6)
$$20x - 100x^2 = 5^{\sqrt{1-\lg(2.5\pi x)}}$$
:

B)
$$|2x^2 - 11x + 5| + tg^2 \pi x = 0$$
;

r)
$$7 - |2x^2 - 7x + 3| = \frac{7}{\cos^2 \pi x}$$
.

●27.60. Найдите нули функции:

a)
$$y = \ln (3x - 2x^2) - \sqrt[4]{x^3 + x^2 - 2}$$
;

6)
$$y = |x^3 + x^2 - 10x + 8| + \sqrt{\lg(\sin \pi x + x^2 - 15)}$$
.

•28.59. а) При каких значениях параметра
$$a$$
 неравенство $2x + \ln 2 + \ln x - a^2 < 2 \ln a$ имеет решения и любое его решение удовлетворяет неравенству $x^2 - 4ax - 5a^2 \le 0$; б) при каких значениях параметра a ни одно решение неравенства $x + 3^x - 2a - 9^a < 0$ не является решением неравенства $\frac{x - 3a - 1}{x - 5a + 3} < 0$?

●30.63. Решите уравнение:

a)
$$\sqrt{1 - \lg x} = \frac{1}{\cos x}$$
; 6) $\sqrt{4 + \operatorname{ctg} x} - \frac{2}{\sin x} = 0$.

- •30.64. Решите уравнение $\frac{1}{\sqrt{x^2-4x+5}} + \frac{2}{\sqrt{x^2-4x+29}} = \frac{7}{5}.$
- •30.65. При каких положительных значениях параметра a во множество решений неравенства $\sqrt{2ax-x^2}\geqslant a-x$ можно поместить два непересекающихся промежутка длиной $\frac{2+\sqrt{2}}{2}$ каждый?
- **31.28.** Решите уравнение $2\cos^2\frac{x^3+x^2-2x}{6}=7^x+\frac{1}{49}\cdot 7^{2-x}$.
- ●32.41. Решите уравнение:

a)
$$\sqrt{(x-2y+1)^2+1} + \sqrt{(3x-y-2)^2+25} = 6;$$

6)
$$\lg (1000 - 9x^2 - 4y^2 + 12xy) + \frac{1}{\pi} \arccos ((x + y - 5)^2 - 1) = 4.$$

- **•32.42.** Pemure неравенство $\log_2(\cos^2 xy + \cos^{-2} xy) \le \frac{1}{u^2 + 2u + 2}$.
- •32.43. Найдите целочисленные решения неравенства:

a)
$$5\sqrt{3x-2y-4} + 3\sqrt{2x+3y-7} \le 2$$
;

6)
$$4\sqrt{2x+3y}+3\sqrt{3x+4y}<3,5.$$

$$ullet$$
 33.48. Решите систему уравнений $egin{cases} 2^{\left|3\cos^2x+10\sin x+10\right|} = 25\cdot 5^y, \ y^3 = 8(2\sin x+1)^3. \end{cases}$

•34.48. Найдите все значения параметра
$$a$$
, при которых уравнения $x^2 + 2x + 7 - 2a = 0$ и $\frac{2x+1}{a-2} = \frac{3}{\sqrt[4]{x-3} + \ln{(x-2)}}$ одновременно не имеют корней.

ОТВЕТЫ

ПОВТОРЕНИЕ

$$\begin{array}{c} \Pi.1. \ a) \ -; \ b) \ +; \ b) \ -; \ r) \ -. \ \Pi.2. \ a) \sin \frac{7\pi}{5}, \ \sin \frac{6\pi}{7}, \ \sin \frac{\pi}{3}, \ \sin \frac{2\pi}{5}; \\ b) \cos \frac{5\pi}{7}, \ \cos \frac{3\pi}{8}, \ \cos \frac{\pi}{4}, \ \cos \frac{9\pi}{5}; \ b) \cos \frac{11\pi}{9}, \ \cos \frac{2\pi}{5}, \ \cos \frac{16\pi}{9}, \ \cos \frac{\pi}{8}; \\ r) \sin \frac{13\pi}{8}, \ \sin \frac{12\pi}{11}, \ \sin \frac{2\pi}{5}, \ \sin \frac{4\pi}{7}. \ \Pi.3. \ a) \cos t = -\frac{15}{17}, \ tg \ t = -\frac{8}{15}, \\ ctg \ t = -\frac{15}{8}; \ b) \cos t = \frac{24}{25}, \ tg \ t = -\frac{7}{24}, \ ctg \ t = -\frac{24}{7}; \ b) \cos t = -\frac{40}{41}, \\ tg \ t = -\frac{9}{40}, \ ctg \ t = -\frac{40}{9}; \ r) \cos t = -\frac{12}{37}, \ tg \ t = \frac{35}{12}, \ ctg \ t = \frac{12}{35}. \\ \Pi.4. \ a) \sin t = -\frac{5}{13}, \ \cos t = \frac{12}{13}, \ ctg \ t = -\frac{12}{37}, \ tg \ t = \frac{35}{12}, \ ctg \ t = \frac{35}{37}, \\ ctg \ t = -\frac{35}{12}; \ b) \sin t = -\frac{9}{41}, \ \cos t = -\frac{40}{41}, \ ctg \ t = \frac{40}{9}; \ r) \sin t = \frac{24}{25}, \\ \cos t = -\frac{7}{25}, \ ctg \ t = -\frac{7}{24}. \ \Pi.5. \ a) \ 1,2 \ \text{или} \ -1,2; \ b) \ -0,42. \ \Pi.6. \ a) \ 1; \\ b) \ -\frac{1}{\cos \alpha}; \ b) \sin \alpha; \ r) \cos t. \ \Pi.7. \ a) \ 1; \ b) \ 1; \ b) \ 0; \ r) \ \frac{1}{2}. \ \Pi.8. \ 0. \\ \Pi.10. \ \sin \left(\alpha - \frac{\pi}{12}\right) \cos \left(\alpha + \frac{\pi}{12}\right), \ \frac{1}{4}. \ \Pi.11. \ a) \ \frac{\sqrt{3}}{2}; \ b) \ -\frac{\sqrt{3}}{2}; \ b) \ 1; \ r) \ 0. \\ \Pi.12. \ a) \ (-1)^{\alpha} \frac{\pi}{6} + \pi n, \ 2\pi n, \ n \in \mathbb{Z}; \ b) \ \frac{\pi}{6} + 2\pi n, \ \frac{\pi}{3} + \pi n, \ n \in \mathbb{Z}; \\ b) \ (-1)^{\alpha} \frac{\pi}{6} + \pi n, \ \frac{\pi}{4} + \pi n, \ n \in \mathbb{Z}; \ r) \ \frac{\pi}{4} + \pi n, \ -\frac{\pi}{4} + 2\pi n, \ n \in \mathbb{Z}. \ \Pi.13. \ a) \ \frac{\pi}{3} + \pi n, \ n \in \mathbb{Z}; \\ b) \ arctg \ 2 + \pi n, \ arctg \ 4 + \pi n, \ n \in \mathbb{Z}; \ b) \ arctg \ \frac{1}{2} + \pi n, \ -arctg \ 3 + \pi n, \ n \in \mathbb{Z}; \\ c) \ arctg \ 2 + \pi n, \ arctg \ 2 + \pi n, \ n \in \mathbb{Z}. \ \Pi.15. \ a) \ \frac{\pi}{4} + \pi n, \ n \in \mathbb{Z}; \ 6) \ 2\pi n, \\ n \in \mathbb{Z}. \ \Pi.16. \ a) \ -\frac{7\pi}{4}, \ -\frac{5\pi}{4}, \ -\frac{3\pi}{4}, \ -\frac{\pi}{4}, \ \frac{\pi}{4}; \ 6) \ -\frac{\pi}{2}, \ \frac{\pi}{6}, \ \frac{5\pi}{6}. \ \Pi.17. \ \frac{\pi}{2}. \end{array}$$

П.19. а) $6x^2 - \frac{3}{2\sqrt{x}} + 2$; б) $6\sin^2 x \cos x - \frac{12}{\cos^2 4x}$; в) $-6\sin x \cos x + \frac{1}{2\sin^2 \frac{x}{2}}$; г) $x^3 - 10x + \frac{2}{\sqrt{2x+5}}$. П.20. а) $-\frac{1}{3}$; б) $-4\sqrt{3} + 2$; в) $\frac{\sqrt{2}}{2} + 3$; г) -19. П.21. ± 3 . П.22. -2.5, -1. П.23. 0. П.25. $\left(-3; \frac{1}{3}\right)$. П.26. $-2\frac{1}{3}$, -1. П.27. а) y = x + 9; б) $y = -\frac{1}{9}x + 3\frac{5}{9}$; в) $y = -\frac{19}{48}x - \frac{7}{6}$; г) y = 1.5x + 0.5. П.28. (0; -1), (-1; 3). П.29. y = 2x - 0.5. П.30. -13, 3. П.32. Функция возрастает на $(-\infty; -4]$ и $\left[\frac{2}{3}; +\infty\right)$, убывает на $\left[-4; \frac{2}{3}\right]$; точка минимум $\frac{2}{3}$, минимум функции $1\frac{5}{27}$; точка максимума -4, максимум функ-

ГЛАВА 1

6 1 **1.5.** a) $-4x^3 + 12x^2 - 12x + 4$; 6) $x^8 - 1$; B) $3x^2 - 9x + 7$; r) $x^{10} + x^8 + x^6 - x^4 - x^2 - 1$. **1.7.** a) $x^6 + 2x^5 + 3x^4 + 4x^3 + 3x^2 + 2x + 1$; 6) $x^8 - 2x^7 + 3x^8 +$ + $3x^6 - 4x^5 + 5x^4 - 4x^3 + 3x^2 - 2x + 1$. 1.9. a) $x^4 - 2x^3 + 3x^2 - 2x + 1$; 6) $x^6 - 3x^5 + 6x^4 - 7x^3 + 6x^2 - 3x + 1$; B) $-8x^3 - 11x^2 - 7x$; r) $9x^2 - 12x + 1$ $+4. \ 1.10. \ a) \ a = -0.5; \ b) \ a = -2, \ a = 3. \ 1.11. \ a) \ a = -0.75; \ b) \ a = -0.5;$ B) $a = \frac{41}{24}$; r) $a = -\frac{1}{6}$. 1.13. a) 34, 3¹⁷, 2; 6) 17, -2, 0; B) 13, 1, -1; r) 16, 2, 0. 1.16. а) Степень равна 16, свободный член равен 2, старший коэффициент равен 34, сумма всех коэффициентов равна $2^{17} = 131\ 072$, сумма всех коэффициентов многочлена при четных степенях переменной равна $2^{17} = 131\,072$, сумма всех коэффициентов при нечетных степенях переменной равна 0; б) степень равна 197, свободный член равен 0, старший коэффициент равен (-1), сумма всех коэффициентов равна 0, сумма коэффициентов при четных степенях переменной равна 0, сумма коэффициентов при нечетных степенях переменной равна 0. 1.17. a) $\pm \sqrt{5}$; б) $a \neq \pm 2$; в) ± 2 ; г) 1,5. 1.18. а) a = 2, b - произвольное действительное число; б) a=4, b=1. 1.19. a) a=3; б) a=1. 1.25. a) При a=-3, b=2; б) при a = -5, b = 2 и при a = -1, b = 1. 1.27. a) a — любое число, не равное 0, $b = -(x_1 + x_2 + x_3)a$, $c = (x_1x_2 + x_2x_3 + x_3x_1)a$, $d = -(x_1x_2x_3)a$; 6) $a = -(x_1 + x_2 + x_3 + x_4)$, $b = x_1x_2 + x_1x_3 + x_1x_4 + x_2x_3 + x_2x_4 + x_3x_4$, $c = -(x_1x_2x_3 + x_1x_2x_4 + x_1x_3x_4 + x_2x_3x_4), d = x_1x_2x_3x_4$. 1.35. a) a = -5, a = -1, a = 7; 6) $a = -2\frac{3}{4}$, a = 0, a = 4, $a = 6\frac{1}{4}$; B) $a = -\frac{1}{4}$, a = 1, a = 2; r) $a \in$ $\in \left(-\frac{1}{12}; \ 0\right) \cup (0; \ 2) \cup (2; +\infty). \ 1.36. \ a) \ 0, \ \frac{1}{3}, \ -\frac{5}{4}, \ -\frac{5}{2}, \ \frac{1}{6}; \ 6) \ -\frac{10}{11}, \ -\frac{2}{3}, \ \frac{1}{3}, \ \frac$

ции 60.

 $-\frac{2}{9}, \frac{2}{3}, 0, -\frac{4}{3}. 1.37. a) \pm \sqrt{\frac{2}{3}}, \pm 1; 6) 1, \frac{-3 \pm \sqrt{21}}{2}. 1.40. a) -1, 2, 3; 6) \pm 1;$ в) -2, 1; г) -1, 2, корень x = -1 имеет кратность 3. 1.41. а) $p(x) = (x-1)(x+3)(x-5)(x-2)^4;$ б) $p(x) = x(x+2)^2(x-3)^2(x-\sqrt{3})^3(x-0,7)^4;$ в) $p(x) = (x-9)^2(x+0,3)^8(x-\pi)^3;$ г) $p(x) = (x-2)^2(x+3)^3.$ 1.42. a) $(x+2)(x-1)^3(x-3);$ б) $(x+1)^8(x-2)^2;$ в) $(x-1)^2(x-2)^2;$ г) $(x+1)^4(x-1)^8(x-2).$ 1.43. a) $p(x) = -x^2 + 4x - 1;$ б) $p(x) = x^2 - 5,5x - 12.$ 1.44. a) $p(x) = x^3 - 3x^2 + 3x + 1;$ б) $p(x) = x^3 - 5x^2 + 4x.$ 1.47. Если b = 18, c = 8, то $-2 \pm \sqrt{3}$; если b = 14, c = -8, то $-2 \pm \sqrt{5}$. 1.48. Если a = -5, b = 9, c = -7, то 1, 2; если a = 5, b = 9, c = 7, то -1, -2.

§ 2

2.2. a) (x-y)(x-2y); b) (x-y)(7x+12y); b) (x-y)(5x-3y); r) (x+y)(x-2y); e) (x-y)(x-2y); e) (x-y)(x-2y); f) (x-x)(x-2y); f + 2y)(7x + 4y). 2.3. a) (x + y)(x + 1); 6) (2x - 5y - 3)(x - y); B) (2x - y)(2x + y - 4); r) (x - 3y)(3x + 8y + 5). 2.4. a) $(x - y)(x^6 + x^6y + x^4y^2 + x^3y^3 + x^2y^4 + xy^5 + y^6 + 1)$; 6) $(x^2 - 2xy + 2y^2)(x^2 + 2xy + 2y^2)$; B) $(x - y)(x^4 + y^2)(x^2 + 2xy + y^2)$; B) $(x - y)(x^4 + y^2)(x^2 + y^2)(x^2 + y^2)$; B) $(x - y)(x^4 + y^2)(x^2 + y^2)(x^2 + y^2)$; B) $(x - y)(x^4 + y^2)(x^2 + y^2)(x^2 + y^2)$ $+ x^3y + x^2y^2 + xy^3 + y^4 - 1$; r) $(4x^2 - 2\sqrt{2}xy + y^2)(4x^2 + 2\sqrt{2}xy + y^2)$. **2.5.** a) 3(x+y)(x+z)(z+y); 6)(x+y)(x+z)(z+y); B) (x+y)(x+z)(y+z); r) 12xyz(x+y+z). 2.9. a) 19; 6) -72; B) 311; r) -32 325. 2.10. a) $14\frac{1}{\pi} \cdot \sqrt{53}$; 6) $350\sqrt{53}$. 2.12. a) $5x^3 + y^3 + 7x^2y + 4xy^2 + 2x^2 + 6y^2 + 6xy + 13x + 12y + 12x + 12x$ $+8;6)8x^3-y^3-z^3-18x^2y-12x^2z-3xy^2-3y^2z+6xz^2-3yz^2+15xyz.$ **2.16.** a) x = y, x = 4y; 6) x = -5y, x = -0.4y. **2.17.** a) x = 0, x = -y, $x = -\frac{y}{4}$; 6) x = -y, x = -2y, x = -3y. 224. a) (1; 1); 6) (1; -1). 225. a) $\left(-\sqrt{10}; \sqrt{10}\right), \left(\sqrt{10}; -\sqrt{10}\right)$ (4; 2), (2; 4); 6) $\left(\pm 2\sqrt{\frac{3}{7}}; \pm 2\sqrt{\frac{3}{7}}\right)$, $\left(\pm 4\sqrt{\frac{3}{7}}; \pm 2\sqrt{\frac{3}{7}}\right)$. 2.26. a) (5; -5), (-5; 5), $\left(\frac{5\sqrt{6}}{3}; -\frac{5\sqrt{6}}{6}\right), \left(-\frac{5\sqrt{6}}{3}; \frac{5\sqrt{6}}{6}\right); 6) (1; 3), (-1; -3); B) (2; 2), (-2; -2); r) (1; 2),$ (-1; -2). 2.27. a) (-1; 1), (1; 1), $\left(\frac{25}{\sqrt{149}}; -\frac{3}{\sqrt{149}}\right)$, $\left(-\frac{25}{\sqrt{149}}; -\frac{3}{\sqrt{149}}\right)$ 6) (2; 1), (-2; -1), (-2; 1), (2; -1). 2.28. a) (-1; 0), (-1; 1,5), (0; 1); 6) (1; 2), (-1; 0). 2.29. a) (2; -1), (-2; 1); 6) (0,5; 1), (1,75; -0,25), (-0,5; -1), (-1,75; -1,75)0,25). **2.30**. a) (12; 0), (4; 2), (4; -2), (-6; 3), (-6; -3); 6) (5; 5), (-5; -5); $\left(5\sqrt{3}; -\frac{5\sqrt{3}}{3}\right), \left(-5\sqrt{3}; \frac{5\sqrt{3}}{3}\right)$. 2.31. a) (1; 2); 6) (-1; -2), (2; 1). 2.32. a) (2; 3), (3; 2); 6) (1; 3), (3; 1), (3; 4), (4; 3); B) (1; 2), (2; 1); r) (2; -1), (-1; 2).

2.33. a) (1; 1), (-1; -1); 6) $\left(\frac{1}{2}; \frac{1}{3}\right)$, $\left(\frac{1}{3}; \frac{1}{2}\right)$; B) $\left(\sqrt{2}; \sqrt{3}\right)$, $\left(-\sqrt{2}; -\sqrt{3}\right)$, $(\sqrt{2}; -\sqrt{3}), (-\sqrt{2}; \sqrt{3}), (\sqrt{3}; \sqrt{2}), (-\sqrt{3}; -\sqrt{2}), (-\sqrt{3}; \sqrt{2}), (\sqrt{3}; -\sqrt{2});$ r) (1; 1), $\left(\frac{-4+3\sqrt{2}}{2}; \frac{-4-3\sqrt{2}}{2}\right)$, $\left(\frac{-4-3\sqrt{2}}{2}; \frac{-4+3\sqrt{2}}{2}\right)$. 2.34. a) (2; 0), (0; 2), (1; 2), (2; 1); 6) $(0; -\sqrt{3}), (-\sqrt{3}; 0), (\frac{1+2\sqrt{6}}{3}; \frac{2}{3}), (\frac{2}{3}; \frac{1+2\sqrt{6}}{3}).$

2.35. а) 1, -1; 6) 0, -8. 2.36. а) (2; 1), (-2; -1), (0,5; 1,5), (-0,5; -1,5); 6) (1; 1). 2.37. а) (-2; 3); 6) (-3; -5). 2.38. а) (-2; 1); 6) (1; -1). 2.39. а) (-1; 0; -1); 6) (t; t; t), где
$$t \in R$$
. 2.40. а) 3; 6) 6. 2.41. а) 3; 6) $20\frac{1}{6}$. 2.42. а) $7\frac{2}{9}$; 6) $-60\frac{1}{4}$.

§ 3

3.1. а) -1, 0, 4; 6) 0, $\frac{-11 \pm 5\sqrt{5}}{2}$; в) 0; г) 0,5, 1,5, 3. 3.2. а) 0,25, 1; 6) $\frac{9 \pm \sqrt{85}}{2}$, $\frac{-5 \pm \sqrt{21}}{2}$; в) -1, -7, $4 \pm \sqrt{15}$; г) $\frac{-1 \pm \sqrt{5}}{2}$. 3.3. а) ± 1 , 3; 6) 2, $-\sqrt[3]{11}$; в) $\pm \frac{\sqrt{5}}{5}$, 3; г) 1, $\frac{3 \pm \sqrt{5}}{2}$. 3.4. а) При $a = -6$ $x_1 = 2$, $x_{2,3} = \frac{-5 \pm \sqrt{13}}{2}$; 6) при $a = 0$ $x_1 = 1$, $x_{2,3} = \frac{-1 \pm \sqrt{17}}{2}$; в) при $a = -11$ $x_1 = -1$, $x_2 = 4$, $x_3 = -0.5$; г) при $a = 1$ $x_1 = -1$, $x_{2,3} = 2 \pm \sqrt{5}$, а при $a = -2$ $x_1 = -1$. 3.5. а) -4; 6) целых корней нет; в) -3, 1; г) 1, -1, -2, 2. 3.6. а) -0.5; 6) 1, -0.5; в) $\frac{1}{3}$, г) 0,5, -2,5. 3.7. а) -1, 2, 3; 6) -1, 2; в) -1, -3, -5; г) -1. 3.8. а) -0,5; 6) -0,5, 1; в) -0,5; г) -0,5, $\frac{3 \pm 2\sqrt{7}}{19}$. 3.9. а) 1,5, 0,5, -0,25; 6) 1, $\frac{1}{2}$, $\frac{2}{3}$; в) -0,5; г) 0,5, $\frac{-1 \pm \sqrt{7}}{2}$. 3.11. а) Один целый корень при $a = -5$ и при $a = 3$; 6) один целый корень при $a = 1$ и при $a = -9$. 3.12. а) -0,5; 6) -1, 1. 3.13. а) $a = -2$, $b = -1$; 6) $a = -2$, $b = -1$. 3.15. а) 1, $\sqrt[3]{3}$; 6) 3, 4; 8) -1, 2; г) корней нет. 3.16. а) 7; 6) 27; в) $t^2 - 2$; г) $t^2 + 2$. 3.17. а) 13; 6) 37; 8) $t^2 - 12$; г) корней нет. 3.16. а) 7; 6) 27; в) $t^2 - 2$; г) $t^2 + 2$. 3.17. а) 13; 6) 37; 8) $t^2 - 12$; г) корней нет. 3.16. а) -18; 6) $t^3 - 3t$. 3.19. a) -2, -0,5, 1; 6) -2, -0.5, 1; г) -2, -0.5, 1; г)

и при a=3; б) один целый корень при a=1 и при a=-9. 3.12. a) -0.5; 6) -1, 1. 3.13. a) a = -2, b = -1; 6) a = -2, b = -1. 3.15. a) 1, $\sqrt[3]{3}$; 6) 3, 4; в) -1, 2; г) корней нет. 3.16. а) 7; б) 27; в) t^2 - 2; г) t^2 + 2. 3.17. а) 13; б) 37; B) $t^2 - 12$; r) $t^2 + 12$. 3.18. a) -18; 6) $t^3 - 3t$. 3.19. a) -2, -0.5, 1; 6) -2, $-0.5, 1; B) -2, -0.5, 1; C) -2, -0.5, 1. 3.20. a), 6) \frac{1}{2}, 1, \frac{-2 \pm \sqrt{2}}{2}. 3.21. a), 6),$ в) 1, $-\frac{2}{3}$, $\frac{-1 \pm \sqrt{7}}{3}$; г) -1, $\frac{2}{3}$, $\frac{1 \pm \sqrt{7}}{2}$. 3.22. а) -1, $\frac{3 \pm \sqrt{5}}{2}$; б) корней нет; в) 1; г) 1, $-\frac{1}{5}$, $\frac{3 \pm \sqrt{14}}{5}$. 3.23. а) 323; б) -7, 2. 3.24. а) 0,5; б) 0,5, 0. 3.25. а) 3, 4; б) -1, 3; в) $\frac{-5 \pm \sqrt{93}}{2}$; г) $\frac{5 \pm \sqrt{93}}{2}$. 3.26. а) $\frac{8}{5}$, $\frac{13}{12}$; б) $\frac{9}{8}$, $\frac{16}{13}$; в) $\frac{11 \pm \sqrt{105}}{2}$, $\frac{21 \pm \sqrt{421}}{2}$; г) 0, 11, $\frac{2}{7}$. 3.27. а) -2, 1; б) -9, 1, $\frac{-5 \pm \sqrt{61}}{2}$; в) 1, 3, -3 ± $\sqrt{11}$; г) 2, 3, 4 ± $\sqrt{10}$. 3.28. а) -3, 1; б) 0, 0,8; в) -1; г) -0,2. 3.29. а) ±1, $\pm \sqrt{\frac{2}{3}}$; б) -1, 1; в) 1, $\frac{-3 \pm \sqrt{21}}{2}$; г) 2 ± $\sqrt{6}$. 3.31. а) a = -1, b = -1, c = 2, d = -1; б) a = -1, b = -1, c = 1, d = 3; в) a = -1, b = 1, c = 1, d = -5; г) a = 1, b = 3, c = -1, d = -2. 3.32. а) -1 ± $\sqrt{2}$, $\frac{1 \pm \sqrt{5}}{2}$; б) $\frac{1 \pm \sqrt{5}}{2}$; в) $\frac{-1 \pm \sqrt{21}}{2}$; г) -1, 2. 3.33. а) 2; б) $\sqrt{2}$. 3.34. а) 1, 2; б) 1, 2.

ГЛАВА 2

§ 4

4.5. а) Да; б) нет; в) нет; г) да. 4.9. а) $1\frac{1}{2}$; б) $1\frac{1}{2}$; в) $1\frac{2}{3}$; г) $1\frac{1}{2}$. 4.14. а) 6; б) 5; в) 6; г) 4. 4.15. а) -; б) +; в) -; г) -. 4.16. а) 2 и 3; б) -3 и -2, в) 2 и 3; г) -4 и -3. 4.21. а) 1, 8; б) 1, 9; в) 4, -7; г) -4, -3. 4.22. а) ±2; б) $\pm \sqrt[4]{5}$; в) $\sqrt[3]{2}$; г) ±2. 4.23. а) $\sqrt[3]{5}$, 2, $\sqrt[4]{17}$; б) $\sqrt[5]{1000}$, 4, $\sqrt[3]{75}$; в) $\sqrt[3]{7}$, $\sqrt[5]{40}$, 3; г) $\sqrt[6]{60}$, $\sqrt[4]{20}$, 2. 4.24. а) $\sqrt[4]{0,1}$, -1, $\sqrt[3]{-5}$; б) 0, $\sqrt[3]{-0,25}$, $\sqrt[5]{-29}$; в) $\sqrt[5]{-1,5}$, -2, $\sqrt[3]{-9}$; г) $\sqrt[3]{2}$, 1, $\sqrt[3]{-2}$. 4.25. а) $\sqrt[5]{-12}$, $\frac{\pi}{2}$, 2, $\sqrt[6]{70}$; б) $\sqrt[5]{-\pi}$, $\frac{3}{\pi}$, 1, $\sqrt[7]{\pi}$; в) $\sqrt[3]{-2}$, $\frac{\pi}{3}$, 2,5, $\sqrt{2\pi}$; г) $\sqrt[5]{-0,5}$, 0, $\sqrt[3]{200}$, 2 π .

§ 5

5.12. a) $\{2; +\infty; 6\}$ $\{-0,5; 0,5\}$; b) $\{4; +\infty; r\}$ $\{-2; 0,5\}$. 5.13. a) $\{-\infty; -6\}$ \cup \cup $\{2; +\infty; 6\}$ $\{-5; 3\}$; b) $\{-\infty; 2\}$ \cup $\{6; +\infty; r\}$ $\{-4; 1\}$. 5.14. a) $\{-\infty; -1\frac{2}{3}\}$ \cup \cup $\{8; +\infty; 6\}$ $\{-\infty; -1\frac{1}{3}\}$ \cup $\{-1\frac{1}{3}; +\infty\}$; b) $\{-\infty; 3,5\}$ \cup $\{3,5; +\infty\}$;

г) $\left(-4.5; \frac{3}{7}\right]$. 5.15. a) $[-5; -1] \cup [1; 5]$; б) $(-\infty; 0] \cup [5; +\infty)$; в) $[-4; -3] \cup [3; 4]$; г) $[-5; -4] \cup [-2; 3]$. 5.16. a) $(-\infty; -3] \cup [2.5; 3) \cup (3; +\infty)$; б) $(-\infty; -1) \cup [5; +\infty)$. 5.17. a) $(-3; -0.4] \cup [0.5; 2] \cup [7; +\infty)$; б) $[4; +\infty)$; в) $[-4; 3) \cup (5; +\infty) \cup \{2\}$; г) $(-\infty; -6) \cup (-3; 1] \cup \{2\}$. 5.18. a) $[1; 2] \cup (-3; +\infty)$; б) $(-\infty; -1] \cup [0.5; 1) \cup (6; +\infty)$; в) $[3; +\infty)$; г) $(-\infty; -3] \cup (0.25; 0.5] \cup \left[\frac{2}{3}; 2\right] \cup (6; +\infty)$. 5.21. a) 0; б) $\sqrt[3]{2}$. 5.22. a) $[0; +\infty)$; б) $(-\infty; +\infty)$; в) $(-\infty; +\infty)$; г) $[0; +\infty)$. 5.23. a) $[2; +\infty)$; б) $(-\infty; +\infty)$; в) $[-3; +\infty)$; г) $(-\infty; +\infty)$. 5.24. a) $[-2; +\infty)$; б) $(-\infty; 2]$. 5.25. a) [0; 6]; б) $[0; +\infty)$; в) [0; 2]; г) $\sqrt[8]{2}$; $+\infty$. 5.26. a) 0, 2; б) 2; в) 0; г) 2. 5.27. a) 0; б) 1; в) 1; г) -1, 0. 5.28. a) 0, 2; б) -1; в) 1; г) 0, 3. 5.29. a) $-9 \le x < 7$; б) $x \ge 1$; в) $-4 \le x \le 0$; г) $x \ge -1$. 5.30. a) 1; б) 3; в) 1; г) нет решений. 5.31. a) 1; б) 2; в) 2; г) 0.

§ 6

6.10. а) 2; б) -2; в) 3; г) 2. 6.11. а) -25; б) -83. 6.12. а) 144; б) 98; в) 100; г) 54. 6.13. а) 5; б) -3; в) 8; г) 6. 6.14. а) 4; б) -6; в) 4; г) 10. 6.17. а) $\sqrt[4]{26} > \sqrt{5}$; б) $\sqrt[3]{5} < \sqrt{3}$; в) $\sqrt[3]{7} > \sqrt[6]{47}$; г) $-\sqrt[4]{4} > -\sqrt[3]{3}$. 6.19. а) $\sqrt[4]{27b^5}$; б) $\sqrt[6]{32a^8}$; в) $\sqrt[3]{a^4}$; г) $\sqrt[6]{3y^5}$. 6.20. а) $\sqrt[6]{4a^3b^3}$; б) $\sqrt[10]{a^{13}b^8}$; в) $\sqrt[6]{125a^7b^{10}}$; г) $\sqrt[24]{216x^7z^{23}}$. 6.21. а) $\sqrt[4]{a}$; б) $\sqrt[12]{b^{-5}}$; в) $\sqrt[12]{a^7}$; г) $\sqrt[2a^{11}b^{21}$. 6.22. а) $\sqrt[12]{x^5y^6z^7}$; б) $\sqrt[15]{s^{19}p^{15}t^{23}}$; в) $\sqrt[20]{a^{22}b^{25}c^{33}}$; г) $\sqrt[9]{k^4l^{-15}m^3}$. 6.25. а) $-\sqrt[4]{-a^5d^{10}}$; б) $-\sqrt[8]{p^{26}q^9}$ при p > 0 и $\sqrt[8]{p^{26}q^9}$ при p < 0; в) $\sqrt[6]{-m^7n^{19}}$; г) $\sqrt[4]{x^6y^7}$ при x > 0 и $-\sqrt[4]{x^6y^7}$ при x < 0. 6.26. а) $-ab^2\sqrt[4]{a^2b} + ab\sqrt[4]{-a^3b}$; б) $-lm^2\sqrt[6]{-l} + lm^3\sqrt[4]{-m^3}$. 6.27. а) 200; б) $\frac{1}{2}$. 6.28. а) 0, 64; б)16, 81; в) $\frac{1}{64}$; г) 1.

7.7. a) $4\sqrt{2ab}$; 6) $\frac{2ax\sqrt[3]{9a}}{7}$; B) $a^2\sqrt{\frac{a}{2}}$; r) $\frac{2}{n}\sqrt[4]{\frac{5x^3}{3mn}}$. 7.11. a) $\frac{3}{|a|}\sqrt[4]{a^3b^3}$; 6) $-\frac{d^2}{5}\sqrt[3]{c^2d^2}$. 7.16. a) $\sqrt[3]{2mn^2}$; 6) $\sqrt[10]{9x^4y^7}$; B) $\sqrt[15]{64h^2l^5}$; r) $\sqrt[35]{2p^3q^6}$. 7.17. a) $\sqrt[10]{8}$; 6) $\sqrt[24]{\frac{1024}{243}}$; B) $\sqrt[3]{9}$; r) $\sqrt[18]{\frac{32}{243}}$. 7.18. a) $\sqrt[9]{a^5}$; 6) $\sqrt[4]{\frac{m-n}{m+n}}$; B) $-\sqrt[12]{80a^{11}b^4}$; r) $-\sqrt[15]{(x-y)^2}$. 7.19. a) a; 6) 1; B) $\sqrt[4]{x}$; r) $\sqrt[6]{2}$. 7.20. a) $\sqrt[3]{3}$; 6) $4\sqrt[7]{3}$; B) $7\sqrt[5]{2}$; r) $3\sqrt[4]{2}$. 7.21. a) $\sqrt{2} + \sqrt[3]{3}$; 6) $5\sqrt[4]{x} + 5\sqrt{xy}$.

7.26. a)
$$(\sqrt{2} - \sqrt{3})(\sqrt{x} + \sqrt{y})$$
; 6) $(\sqrt[3]{4} + \sqrt[4]{2})(\sqrt[3]{x^2} - \sqrt[4]{y^3})$;

B)
$$(a+b)(\sqrt[3]{a}-\sqrt[3]{b})$$
; r) $\sqrt{ab}(1-\sqrt{ab})(\sqrt{b}+1)$. 7.27. a) $(\sqrt[8]{m}-3)(\sqrt[8]{m}+2)$;

6)
$$(\sqrt[4]{m} + 2)(\sqrt[4]{m} + 3)$$
; B) $(\sqrt[10]{a} + 4)(\sqrt[10]{a} + 3)$; r) $(\sqrt[6]{x} - 1)(2\sqrt[6]{x} + 1)$.

7.31. a)
$$\frac{3\sqrt[3]{x}-1}{\sqrt[3]{x}}$$
; 6) $\frac{\sqrt[4]{x}-2}{\sqrt[3]{x}-1}$. 7.32. a) $-\sqrt[5]{2\cdot\sqrt[4]{10}}<-\sqrt[4]{99}$; 6) $\sqrt{2\sqrt[3]{3}}<\sqrt[3]{5}$;

B)
$$\sqrt[4]{3} > \sqrt[8]{6\sqrt{2}}$$
; r) $-\sqrt{2 \cdot \sqrt[3]{6}} > -\sqrt[3]{5\sqrt{2}}$. 7.33. a) $\sqrt[3]{4}$, $\sqrt[6]{18}$, $\sqrt{3}$; 6) $\sqrt[3]{2}$, $\sqrt[16]{40}$,

$$\sqrt[5]{4}$$
; B) $\sqrt[5]{3}$, $\sqrt[15]{30}$, $\sqrt[3]{2}$; r) $\sqrt[4]{5}$, $\sqrt[6]{12}$, $\sqrt[3]{4}$. 7.34. a) $\sqrt[3]{5}\sqrt{3}$, $\sqrt[6]{100}$, $\sqrt{3\sqrt[3]{4}}$;

6)
$$\sqrt[6]{3\sqrt[3]{3}}$$
, $\sqrt[5]{4}$, $\sqrt{1\sqrt[3]{25}}$; B) $\sqrt[3]{2\sqrt[5]{3}}$, $\sqrt[5]{3\sqrt[3]{5}}$, $\sqrt[3]{3}$; r) $\sqrt[49]{7\sqrt{7}}$, $\sqrt[4]{2\sqrt{1,25}}$, $\sqrt[19]{64}$.

7.37. a)
$$2(2\sqrt[3]{18} + \sqrt[3]{84} + \sqrt[3]{49})$$
; 6) $\sqrt[3]{25} - \sqrt[3]{30} + \sqrt[3]{36}$; B) $\frac{1}{3}(\sqrt[3]{9} - 3 + 3\sqrt[3]{3})$;

r)
$$\frac{1}{3}(\sqrt[3]{225} + \sqrt[3]{90} + \sqrt[3]{36})$$
. 7.38. a) $\frac{(\sqrt{a} + \sqrt{b} - \sqrt{c})(a + b - c - 2\sqrt{ab})}{(a + b - c)^2 - 4ab}$;

6)
$$\frac{(\sqrt{2}+\sqrt{5}+\sqrt{3})(\sqrt{10}-2)}{12}$$
. 7.39. a) $\frac{\sqrt[3]{5}+\sqrt[5]{3}}{4}$; 6) $\frac{9(\sqrt[3]{4}-\sqrt[3]{2})}{2}$;

B)
$$2(\sqrt[3]{2} - \sqrt[3]{7})$$
; r) $\frac{\sqrt[3]{6} + \sqrt[3]{4}}{2}$. 7.40. a) $\sqrt{15} - \sqrt{10} + \sqrt{6} - 2$; 6) $5 + \sqrt{15} - \sqrt{10}$

$$-\sqrt{10}-\sqrt{6}. \ 7.41. \ a) \ \frac{(\sqrt[8]{4}-\sqrt[4]{3})(\sqrt{3}+2\sqrt[8]{2})(9+12\sqrt[8]{4}+32\sqrt[8]{2})}{229};$$

6)
$$(\sqrt{3} - \sqrt{3})(\sqrt[6]{5} + \sqrt[6]{3})(\sqrt[3]{25} + \sqrt[3]{15} + \sqrt[3]{9})$$
;

B)
$$\frac{(\sqrt[3]{5} - \sqrt[4]{2})(\sqrt{2} + \sqrt[3]{25})(4 + 10\sqrt[3]{5} + 25\sqrt[3]{25})}{617};$$

r)
$$\frac{(\sqrt[12]{4} + \sqrt[12]{2})(\sqrt[6]{4} + \sqrt[6]{2})(2\sqrt[3]{2} + 2 + \sqrt[3]{4})}{2}$$
. 7.42. a) 27; 6) 4.

7.43.
$$\frac{(\sqrt{a} + \sqrt{b} - \sqrt{c})(a + b - c - 2\sqrt{ab}) \cdot \sqrt{a}(\sqrt{a_1} - \sqrt{a})}{(a^2 + b^2 + c^2 - 2ab - 2ac - 2bc)(a_1 - a)}$$
. 7.44. a) -1; 6) 3;

B) 1; r)
$$\frac{1}{3}$$
: 7.45. a) $1 + \sqrt{2}$; 6) $\sqrt{3} - 1$. 7.46. a) $1 - a$; 6) $\sqrt[3]{3ax} - \sqrt[3]{bx}$;

B)
$$m - n$$
; r) $\sqrt[3]{4x} + \sqrt[3]{5y}$. 7.47. a) $\frac{b}{b-a}$; 6) $(\sqrt{m} - \sqrt{n})^2$. 7.48. a) 2;

6)
$$-a^2\sqrt[3]{b}$$
. 7.49. a) 8; 6) 27. 7.52. a) $-\sqrt[3]{2} + \sqrt[6]{2}$; 6) 1.

8 8

8.13. a) 10; 6) 4; B)
$$\frac{1}{40}$$
; r) 125. 8.14. a) 2; 6) 9; B) 8; r) 1. 8.15. a) 12;

6) 6; B) 30; r) 20. 8.16. a)
$$8\frac{1}{5}$$
; 6) $7\frac{1}{8}$; B) 5; r) $6\frac{3}{4}$. 8.17. a) $3\frac{1}{4}$; 6) $-\frac{1}{10}$.

8.18. a) 11; 6) 0,5. 8.19. a) 0,2; 6) -12. 8.23. a) a; 6) $c^{-9.1}$; B) x^2 ; r) $b^{-1.2}$. 8.24. a) $x^{\frac{2}{5}}$; 6) y; B) c^2 ; r) a^5b^4 . 8.25. a) $c^{\frac{6}{7}}y$; 6) $p^2q^{\frac{3}{2}}$. 8.31. a) 1+c; 6) $m^{\frac{1}{2}}+m^{\frac{2}{3}}$; B) x+y; r) $-2\sqrt[4]{bc}$. 8.32. a) $4a^{\frac{1}{3}}b^{\frac{1}{3}}$; 6) a^3+25a . 8.33. a) x-1; 6) $\sqrt{k}-\sqrt{l}$. 8.34. a) $\frac{\sqrt{ab}}{\sqrt{a}+\sqrt{b}}$; 6) $\frac{x+y}{x-y}$. 8.35. a) a+b; 6) $\frac{\sqrt{q}+\sqrt{p}}{\sqrt{q}-\sqrt{p}}$. 8.36. a) 0; 6) 0. 8.37. a) 0,3; 6) 0,3.

§ 9

9.14. a) 4; 6) 1; B) 0, 1; F) 8. 9.15. a) (1; 1); 6) (1; 1); B) (0; 0); (1; 1); r) (1; 1). 9.16. a) 1; 6) 0; B) 1; r) 0. 9.20. a) [0; 4); 6) [1; $+\infty$); B) [1; $+\infty$); r) [0; 8). 9.21. a) $2x^{\frac{1}{4}}$; 6) 3x; B) $\frac{1}{3}x^{\frac{1}{4}}$; r) x^{-2} . 9.22. a) $\frac{1}{4}x^{-2}$; 6) x^{4} ; B) $9x^{-\frac{2}{3}}$; r) x^{-8} . 9.32. a) $\frac{2}{3\sqrt[3]{\tan^2 2x \cos^2 2x}}$; 6) $0.4(\sqrt{3x-1} + \cot 2x)^{-0.6}(\frac{3}{2\sqrt{3x-1}} - \frac{2}{\sin^2 2x})$; B) $\frac{3(2\cos x - 3\sin x)}{4\sqrt[4]{2\sin x + 3\cos x}}$; r) $\cos \left(x^5 + 2\sqrt[3]{x} - 5\right) \left(5x^4 + \frac{2}{3\sqrt[3]{x^2}}\right)$. 9.33. a) 1,5; 6) 1; B) -3; r) 2. 9.34. a) $\frac{3}{4}$; 6) $-1\frac{2}{9}$; B) $\frac{2}{3}$; r) 0. 9.35. a) -3; 6) $\frac{\sqrt{3}}{2}$; B) 8; r) $-\frac{\sqrt{2}}{2}$. 9.36. a) 1; 6) 1, 16; B) 8; r) 64. 9.37. a) x > 0; 6) x > 16. **9.38.** a) $\frac{5\pi}{6}$; 6) $\frac{\pi}{4}$. **9.39.** a) $y = \frac{1}{4}x + \frac{5}{4}$; 6) $y = \frac{\sqrt{3}}{3}x + 1 - \frac{\pi\sqrt{3}}{18}$; B) $y = -\frac{1}{27}x + \frac{11}{27}$; r) $y = \frac{\sqrt{3}}{2}x + 1 - \frac{\pi\sqrt{3}}{6}$. 9.40. a) y = x + 3; 6) y = 4 - 3xи y = -4 - 3x. 9.41. a) $y = \frac{1}{4}x + 1$; б) y = 3x. 9.42. a) $y = \frac{2}{3}x + 1$; 6) $y = \frac{4}{3}x + \frac{1}{3}$, $y = \frac{4}{3}x - \frac{1}{3}$. 9.43. a) Убывает на [0; 4], возрастает на $[4; +\infty); x = 4$ — точка минимума, $y_{\min} = -2\frac{2}{3};$ б) возрастает на [0; 1],убывает на $[1; +\infty)$; x=1 — точка максимума, $y_{\max}=\frac{1}{2}$. 9.44. a) Возрастает на $\left[0; \frac{1}{4}\right]$, убывает на $\left[\frac{1}{4}; +\infty\right]$; $x = \frac{1}{4}$ — точка максимума, $y_{\text{max}} = \frac{1}{2}$; б) возрастает на [1; 2], убывает на [2; + ∞); x = 2 — точка максимума, $y_{\text{max}} = \frac{1}{2}$; в) убывает на (0; 1], возрастает на [1; + ∞); x = 1 — точка минимума, $y_{\text{min}} = 2$; г) убывает на $\left[-2; -\frac{4}{3}\right]$, возрастает на $\left[-\frac{4}{3}; +\infty\right]$; $x = -\frac{4}{3}$ — точка минимума, $y_{\text{min}} = -\frac{4\sqrt{6}}{9}$. 9.46. а) 2; б) 2. 9.47. а) $y_{\text{наим}} = -\frac{8}{3}$, $y_{\text{наиб}} = 0$; б) $y_{\text{наиб}} = \frac{1}{2}$, $y_{\text{наим}}$ не существует; в) $y_{\text{наим}} = -\frac{8}{3}$, $y_{\text{наиб}}$ не существует; г) $y_{\text{наим}} = -2$, $y_{\text{наиб}} = \frac{1}{2}$. 9.48. $3\frac{1}{3}$.

§ 10

10.1. a) 0.2 + 2.4i; 6) 0.2 - 0.4i; B) 1.74 + 1.18i; r) 0.2 + 0.1i. 10.2. a) $n=4k+1, k\in \mathbf{Z}$; б) $n=4k, k\in \mathbf{Z}$; в) $n=4k, k\in \mathbf{Z}$; г) нет корней. **10.3.** a) n = 3; b) n = 9; b) n = 5; r) n = 4. **10.4.** a) z_3 , z_4 , z_1 , z_2 ; b) z_1 , z_4 , z_3 , z_2 . 10.5. a) z_1 , z_3 , z_2 , z_4 ; 6) z_1 , z_3 , z_4 , z_2 . 10.7. a) n = 23; 6) n = 12; B) n = 34; r) n = 34. 10.8. a) $5 \pm 2i$; 6) $\pm 2 - 5i$; B) $-15 \pm 4i$; r) $z_1 = i$, $z_2 = -31i$. 10.9. a) -1; 6) $0.5(1 - i\sqrt{3})$; B) $0.5(-1 + i\sqrt{3})$; r) $-0.5(1 + i\sqrt{3})$. **10.10.** a) n = 6; 6) n = 11; B) 20; r) 0. **10.11.** a) $\pm \frac{\sqrt{2}}{2}(1 + i)$; 6) $\pm \frac{\sqrt{2}}{2}(1 - i)$; B) $+0.5(\sqrt{2+2\sqrt{2}}-i\sqrt{2\sqrt{2}-2}); \text{ r) } \pm(\sqrt{0.5\sqrt{101}-5}+i\sqrt{0.5\sqrt{101}+5}).$ **10.12.** a) $z_0 = 2$, $z_1 = -1 + i\sqrt{3}$, $z_2 = -1 - i\sqrt{3}$; 6) $z_0 = 1.5(1 + i\sqrt{3})$, $z_1 = -3$, $z_2 = 1.5(1 - i\sqrt{3});$ B) $z_0 = 0.5(\sqrt{3} + i), z_1 = 0.5(-\sqrt{3} + i), z_2 = -i;$ r) $z_0 = 2(\sqrt{3} - i)$, $z_1 = -2(\sqrt{3} + i)$, $z_2 = 4i$. 10.13. a) $z_0 = 1$, $z_1 = i$, $z_2 = -z_0$, $z_3 = -z_1$; 6) $z_0 = 0.5(\sqrt{2} + i\sqrt{2})$, $z_1 = 0.5(-\sqrt{2} + i\sqrt{2})$, $z_2 = -z_0$, $z_3 = -z_1$. **10.14.** a) $z_0 = 1$, $z_1 = 0.5(1 + i\sqrt{3})$, $z_2 = 0.5(-1 + i\sqrt{3})$, $z_3 = -z_0$, $z_4 = -z_1$, $z_5 = -z_2$; 6) $z_0 = 0.5(\sqrt{3} + i)$, $z_1 = i$, $z_2 = 0.5(-\sqrt{3} + i)$, $z_3 = -z_0$, $z_4 = -z_1$, $z_5 = -z_2$; B) $z_0 = 1$, $z_1 = 0.5(-1 + i\sqrt{3})$, $z_3 = -0.5(1 + i\sqrt{3})$; r) $\pm i$. 10.15. a) $\cos 45^{\circ} + i \sin 45^{\circ}$; 6) $\cos 145^{\circ} + i \sin 145^{\circ}$; B) $\sqrt{2} (\cos 135^{\circ} + i \sin 145^{\circ})$ + $i \sin 135^{\circ}$); r) $\sqrt{3} (\cos (-145^{\circ}) + i \sin (-145^{\circ}))$. 10.16. a) $z_0 = 1$, $z_1 = \cos 72^{\circ} + i \sin 135^{\circ}$ + $i \sin 72^{\circ}$, $z_2 = \cos 144^{\circ} + i \sin 144^{\circ}$, $z_3 = \overline{z}_2$, $z_4 = \overline{z}_1$; 6) $A = \frac{1 - \sqrt{5}}{2}$, $B = \frac{1+\sqrt{5}}{2}$; B) $\cos 72^\circ = \frac{\sqrt{5}-1}{4}$, $\sin 72^\circ = \frac{\sqrt{10+2\sqrt{5}}}{4}$; r) $a_5 = \sqrt{\frac{5-\sqrt{5}}{2}}$,

$$a_{10} = \frac{\sqrt{5}-1}{2}$$
. 10.17. a) $z^3 - 5z^2 + 9z - 5$; 6) $z^3 - 6z^2 + 13z$; b), r) taken

многочленов нет, так как среди корней нет сопряженных чисел. 10.18. a) $z^3-3z^2-15z+125$; б) $z_1+z_2+z_3=3$, $z_1z_2+z_2z_3+z_3z_1=15$, $z_1z_2z_3=-125$. 10.20. a) $z^4+2z^3+3z^2+2z+2$; б) z^4-6z^2+25 ; в) $z^4-12z^3+61z^2-132z+100$; г) таких многочленов нет, так как корни не разбиты на пары сопряженных чисел. 10.21. a) $z_1=2$, $z_{2,3}=\pm i$; б) $z_1=-3$, $z_{2,3}=\pm i\sqrt{5}$; в) $z_1=1$, $z_{2,3}=-2\pm i$; г) $z_1=-10$, $z_{2,3}=3\pm i$. 10.22. a) $z_{1,2}=\pm 1$, $z_{3,4}=\pm i$; б) $z_1=1$, $z_2=2$, $z_{3,4}=\pm 2i$; в) $z_{1,2}=\pm 3$, $z_{3,4}=\pm 2i$; г) $z_1=2$, $z_2=3$, $z_{3,4}=\pm i$.

ГЛАВА 3
§ 11

11.23. a)
$$2^{-\sqrt{2}}$$
, $2^{-\frac{1}{2}}$, 1, $2^{\frac{1}{3}}$, $2^{\sqrt{3}}$, 2^{14} ; 6) 0.3^{9} , $0.3^{\frac{1}{2}}$, $0.3^{\frac{1}{3}}$, 1, $0.3^{-\sqrt{5}}$, 0.3^{-9} .

11.24. a) $(\sqrt{3})^{-\sqrt{2}}$, 1, $(\sqrt{3})^{\frac{2}{3}}$, $(\sqrt{3})^{1.2}$, $(\sqrt{3})^{\sqrt{2}}$, $(\sqrt{3})^{\sqrt{3}}$; 6) $(\sqrt[3]{3} - \sqrt[3]{2})^{0.3}$, $(\sqrt[3]{3} - \sqrt[3]{2})^{0.3}$, $(\sqrt[3]{3} - \sqrt[3]{2})^{0.3}$, $(\sqrt[3]{3} - \sqrt[3]{2})^{0.2}$,

 $f\left(\frac{3}{2}\pi\right) = 0.$ 11.60. a) -4; 6) 5; B) $\frac{1}{4}$; r) $-\frac{23}{27}$. 11.61. a) 1; 6) -1; B) 1; r) -1.

11.62. a) 2; 6) -2; B) 0; r) -1. **11.63.** a) 1; 6) -1; B) 1; r) -1. **11.64.** a) 1; 6) 2. **11.65.** a) 1; 6) 1; B) -4; r) 2. **11.66.** a) 1; 6) 0; B) 0; r) 1. **11.69.** a) $x \ge \frac{1}{3}$;

6) $x \le \frac{1}{4}$; B) $x \le \frac{9}{16}$; r) $x \ge \frac{25}{51}$. 11.70. a) x > 0; 6) x < 0; B) x > 0; r) x < 0.

11.71. а) $(-\infty; +\infty)$; б) $(-\infty; 0)$; в) $(-\infty; +\infty)$; г) $(-\infty; +\infty)$. 11.72. а) x < -1; б) таких значений нет; в) x > 0; г) x < 1. 11.73. а) $x \ge 1$; б) $x \ge -1$; в) x < 1; г) x < -1. 11.74. а) x < 0, $x \ge 1$; б) -1 < x < 0; в) $0 < x \le 1$; г) x < -1, x > 0. 11.75. а) $-\infty < x < \infty$; б) x < 0, x > 0; в) нет решений; г) x = 0. 11.76. а) $x \le 0$; б) $x \le 0$; в) $x \le 0$; в) $x \le 0$; в) $x \ge 0$ в) $x \ge 0$; в) $x \ge 0$

§ 12

12.5. a) -2; 6) -8; B) 2; Γ) 0,2. **12.6.** a) ± 1 ; 6) 0; B) ± 1 ; Γ) $\pm \sqrt{3}$. **12.7.** a) -2; 6) 1,5; B) 3; F) $\frac{2}{3}$. 12.8. a) -1; 6) $-\frac{1}{3}$, 3; B) 2,5; F) -6, -2. 12.9. a) $\frac{1}{6}$; 6) $1\frac{5}{18}$. 12.10. a) -1, 3; 6) -2, 4; B) -1, 7; r) -1, 4. 12.11. a) 2; 6) 1; B) 2; r) 3. 12.12. a) 2, 5; 6) ± 2 ; B) 8; r) 3. 12.13. a) 0; 6) 0; B) 0; r) 0. 12.14. a) 0; 6) 4; B) 0; r) 2. 12.15. a) -1; 6) 1. 12.16. a) 14; 6) 0,5. 12.17. a) 1; 6) 1; B) -3; r) 0.4. 12.18. a) -0.5; 6) 2; B) 0; r) -0.25. 12.19. a) 1; 6) -2; в) 3; г) 3. 12.20. а) 0,5; б) 0,5; в) 2; г) 2. 12.21. а) 1, 2; б) 2; в) -1; г) 0. **12.22.** a) ± 1 ; b) ± 1 ; b) 1; r) 1. **12.23.** a) ± 1 ; b) 1; r) 1. **12.24.** a) 3; 6) -3; B) ± 1 ; r) -2. 12.25. a) ± 2 ; 6) ± 2 . 12.26. a) 6; 6) 5. 12.27. a) -4, 2; 6) -1.5, 1. 12.28. a) 1; 6) -0.5. 12.29. a) ± 1 ; 6) ± 1 . 12.30. a) ± 1 ; 6) -2. 12.31. a) 0; б) ±0,5. 12.32. a) 0; б) 0; в) 0; г) 0. 12.33. a) 0; б) 0,25; в) 2; r) 0,5. **12.34**. a) 2; b) 1, 2. **12.35**. a) -0,5, 2; b) -3, -2. **12.36**. a) 4, -1; 6) 1, 3. 12.37. a) 1; 6) -1; B) -1; Γ) 1. 12.38. a) 0; 6) -3. 12.39. a) $\alpha > 0$; 6) a > -3; B) a < 0; P) $a \ne 0$. 12.40. a) $a \le 3$, $a \ge 27$; 6) a > -1. 12.41. a) 0 < a < 14; 6) -0.5 < a < 0, 4 < a < 4.5. 12.42. a) m = -2, m = 0. 12.43. $a = \pm 1$. **12.44.** a) (1; 3); b) (1; -2); b) (2; 1); r) (-1; 3). **12.45.** a) (2; 1); b) (-0.6; 0.2);

§ 13

B) (-1; 2); r) (2,2; -0,4). 12.46. a) (5; 1); 6) (0; 1). 12.47. a) (1; 3); 6) (1; 3).

13.5. а) x < -5; б) $x \ge -1$; в) $x \ge 7$; г) x > 1. 13.6. а) $x \le -0.8$; б) нет решений; в) $x \ge -5$; г) $-\infty < x < +\infty$. 13.7. а) $x \ge 0.5$; б) $x \le 0.25$; в) x > -0.5; г) x > 13.5. 13.8. а) 2 < x < 3; б) $-2 \le x \le 3$; в) $-2 \le x \le 0.5$; г) 4 < x < 6.

13.9. a) $-\infty < x < +\infty$; 6) x < 1, x > 3; B) $-2 \le x \le 1$; r) $\frac{1}{2} < x < 4$. **13.10.** a) $x \le -0.5$; 6) x > 2; B) $x \ge -0.5$; r) x > -2. **13.11.** a) $x \le 2$; 6) x < 2; B) $x \le 2$; r) x > 2. 13.12. a), 6) 2, 3, 4, 5, ...; B) 2, 3, 4; r) 2, 3, 4, 5, 6, 7. 13.13. a) 1 < x < 3; 6) -2 < x < 1. 13.14. a) x < -2, $x \ge 1.5$; 6) $-\frac{1}{7}$ < x < 2; B) -6 < x \le 1,8; r) x < 2, x > 6. 13.15. a) x > -3; 6) x < -6, $x > -1\frac{2}{3}$; B) x > 8; r) x < -6, x > 8. 13.16. a) 0 < x < 4; 6) $0 < x < \frac{1}{7}$; B) 0 < x < 2; r) $x \le -\frac{1}{8}$, x > 0. 13.17. a) $x \le 2$, $x \ge 3$; 6) $x \le \frac{1}{4}$, $x \ge 3$; B) $-1 \le x \le 5$; r) $-2 \le x \le 3$. 13.18. a) $x \le 2\frac{3}{4}$, $x \ge 3\frac{1}{4}$; 6) $-9\frac{2}{3} \le x \le -8\frac{1}{3}$; B) $x \le 2$; r) $x \le -2$, $x \ge 2$. 13.19. a) $-16 < x < -5\frac{1}{2}$; 6) x < 6, x > 18; B) $x \le 4.5$; r) $x \le \frac{2}{21}$, $x \ge \frac{2}{15}$. 13.20. a) 2; 6) 3; B) 2; r) 1. 13.21. a) -1; 6) 1; B) 0; r) -1. 13.22. a) 5; 6) 3; B) 5; r) 2. 13.23. a) x > 0; 6) $x \ge 0$; B) $x \ge 0$; r) x < 0. 13.24. a) $x \le 2$; 6) x < 1; B) $x < -1\frac{2}{9}$; r) $x \le \frac{1}{6}$. 13.25. a) $x \ge -0.5$; 6) $x \le 2$; B) x > 0; F) $x \ge -0.25$. 13.26. a) x > 1; 6) x < 0. 13.27. a) $0 \le x \le 1$; 6) $x \ge 0$; B) x < 0, x > 1; r) x > 0. 13.28. a) $x \ge 0$; 6) $x \ge \frac{1}{4}$; B) $x \le 0$; r) x > 1. 13.29. a) $x \ge 0$; б) $x > \log_{\frac{1}{2}} 3$; в) нет решений; г) x < 0. 13.30. a) $x \le 0$; 6) $-\infty < x < +\infty$; B) x > 1; r) x < -2. 13.31. a) $x \le -1$, $x \ge 1$; 6) -1 < x < 1; (B) x > 1; (C) $x \le 1$. 13.32. (a) $1\frac{2}{2} \le x \le 2\frac{2}{2}$; (b) $-1 \le x \le 1$; (b) $x \le -\frac{3}{4}$; $x \ge -\frac{1}{4}$; r) -2 < x < 2. 13.33. a) $x \le 2$, $x \ge 4$; 6) $0 \le x \le 2$; B) $-2 \le x \le 4$; r) $x \le -2$, $x \ge 2$. 13.34. a) $x \le 1$; 6) x < 0; B) x > -2; r) $x \ge 1$. 13.35. a) x < 2; 6) $x \ge 1$. **13.36.** a) $x \le 1$; 6) $x \ge -2$. **13.37.** a) x < 0, $x \ge 1$; 6) $0 < x \le 1$. **13.38.** a) x < 2; 6) $x \ge -2$. 13.39. a) x = 1; 6) $-\infty < x < +\infty$. 13.40. a) 1 < x < 4; 6) x < -2; B) -1 < x < 1; r) $0 \le x \le 1$. 13.41. a) $x \ge \frac{1}{2}$; 6) $-2 \le x \le \frac{3}{4}$; B) $x \ge 0$; r) $-\frac{4}{3} \le x < \frac{3}{2}$. 13.42. a) x = -2, x > 3; 6) 3 < x < 5, x > 5; B) $x \le -2$; r) x > 2. 13.43. a) 6 < x < 8; 6) $-\frac{1}{2} < x < 1$. 13.44. a) $x < -\sqrt{2}$, $\sqrt{2} < x < 3$; 6) $-\sqrt{5} \le x \le \sqrt{5}$, x > 3. 13.45. a) 3 < x < 4; 6) $-5 \le x \le 2$.

13.46. a) $1 < a < 1\frac{1}{4}$; 6) $-1 \le a \le 7$.

14.5. a) 4; б) 5; в)
$$-2\frac{1}{3}$$
; г) -6. **14.6.** a) 0; б) 2,5; в) 9; г) $-\frac{1}{3}$. **14.7.** a) 2;

6) 1,5; B)
$$-1,5$$
; r) $-2,5$. 14.8. a) 5,5; 6) 1 $-2\sqrt{3}$; B) 9,6; r) 6. 14.9. a) 1;

B)
$$\frac{5}{9}$$
; r) 24,5. 14.14. a) $\frac{4}{169}$; 6) 8; B) $1\frac{4}{121}$; r) $\frac{\sqrt{10}}{2}$. 14.15. a) 9; 6) $\frac{1}{8}$; B) 16;

r)
$$\frac{1}{9}$$
 14.16. a) 62,5; б) 8; в) 0,05; г) 0,1. 14.17. a) $6\sqrt{2} + 4$; б) $2\sqrt{3} - 144$;

в) 4 -
$$\sqrt{2}$$
; г) 4 + $\sqrt{2}$. 14.23. а) $\log_3 14 - 1$; б) $\frac{\log_4 10 + 4}{5}$; в) 3 - $\log_{\frac{2}{7}} 11$;

r)
$$\frac{8 - \log_{\sqrt{5}} 6}{q}$$
. 14.24. a) $\pm \sqrt{\log_2 7 - 1}$; 6) $\pm \sqrt{\log_3 2}$; b) $\pm \sqrt{2 - \lg 3}$;

r)
$$\pm \sqrt{3 \log_8 10 - 3}$$
. 14.25. a) 1, $\log_2 3$; 6) 0, $\log_4 5$; B) 1, $\log_3 4$; r) 1, $\log_7 2$.

14.26. a) -1,
$$\log_3 2$$
; 6) -1, $\log_5 3$ - 1; B) -1, $\log_2 5$ - 1; r) -1, $-\log_2 6$. **14.27.** a) $x \ge \log_2 9$; 6) $x \le \log_{12} 7$; B) $x > -\log_3 4$; r) $x < -1$. **14.28.** a) $x \ge \log_{12} 7$

14.29. а) $x \le 1$, $x \ge \log_2 3$; б) $0 \le x \le \log_4 5$; в) $1 < x < \log_3 4$; г) $-\infty < x < +\infty$. 14.30. а) x = 0 при $a \le 0$; $x_1 = 0$, $x_2 = \log_2 a$ при a > 0; б) при $a \le -2$ решений нет; $x = \log_3 (a + 2)$ при $-2 < a \le 1$; $x_1 = \log_3 (a + 2)$, $x_2 = \log_3 (a - 1)$ при a > 1.

§ 15

15.8. a)
$$(-\infty; 2) \cup (3; +\infty)$$
; 6) $(-7; 2)$; B) $(-\infty; 1) \cup (12; +\infty)$; r) $(-1; 9)$.
15.9. a) $(-\infty; 2) \cup (3; +\infty)$; 6) $(0; 1)$; B) $(0; 2) \cup (3; +\infty)$; r) $(1; +\infty)$.
15.17. a) $\log_2 0.1$, $\log_2 \frac{1}{6}$, $\log_2 0.7$, $\log_2 2.6$, $\log_2 3.7$; 6) $\log_{0.3} 17$, $\log_{0.3} 3$,

$$\log_{0,3} 2,7, \ \log_{0,3} \frac{2}{3}, \ \log_{0,3} \frac{1}{2}$$
. 15.20. a) $\left\lceil \frac{1}{9}; \ 81 \right\rceil$; 6) [2; 8]. 15.21. a) -1;

6) 0; b) 0; r) -2. **15.22**. a) 7; 6) -5; b) 2; r)
$$-1\frac{3}{4}$$
. **15.23**. a) -2; 6) $\log_2 5$; b) -2;

r)
$$-\log_{0.2} 101$$
. 15.26. a) $y > 0$; 6) $y > 0$; B) $y > 0$; r) $y > 0$. 15.27. a) $y \le -1$;

6)
$$y \le 0$$
; b) $y \le 0$; c) $y \le -2$; 15.28. a) $y \ge 7$; 6) $y \ge -5$; b) $y \ge 2$; c) $y \ge -1\frac{3}{4}$.

15.29. a) 1; б) 1; в) 1; г) 1. 15.30. a) 3; б)
$$\frac{1}{2}$$
; в) 5; г) $\frac{1}{3}$. 15.31. a) — г) Нет

решений. 15.40. a)
$$f(-8) = 27$$
, $f(-6) = 21$, $f(0) = 3$, $f(3) = -1$, $f(9) = -2$.

15.45. a)
$$x > 1$$
; 6) $0 < x < 1$; B) $0 < x < \frac{1}{7}$; r) $x > \frac{1}{3}$. **15.46.** a) $0 < x < 2$;

6) x > 0. 15.47. a) $x \ge 1$; 6) 0 < x < 1; B) $0 < x \le 1$; r) x > 1. 15.48. a) $0 < x \le 3$; 6) $x > \frac{1}{2}$; B) $x \ge 5$; r) $0 < x < \frac{1}{3}$. 15.49. a) $x \ge 2$; 6) $0 < x \le 3$; B) $-2 \le x < 0$; r) $x \le -3$. 15.50. a) $\frac{1}{2} < x < 1$; 6) $0 < x \le 1$; B) $x \ge 1$; r) $x \le -1$.

§ 16

16.7. a) 4; 6) -1,5; B) -12; r) 3. **16.8.** a) $3\frac{1}{3}$; 6) -1; B) $1\frac{1}{3}$; r) 2,5. **16.10.** a) 5; 6) 22. **16.11.** a) 3; 6) 2. **16.12.** a) 20; 6) 3,2; B) 24; r) $\frac{3}{64}$ 16.13. a) 64; б) 49; в) 9; г) 216. 16.14. a) 27; б) 169; в) 9; г) 625. 16.15. a) 18; 6) 5; B) 35; T) 3. **16.16.** a) 3,5; 6) $2\frac{3}{11}$; B) 2; T) 3,5. **16.17.** a) 1; 6) 1; B) 1; T) -4. 16.18. a) 3; б) 2; в) 1; г) 1. 16.19. a) -1; б) 1; в) 1; г) 1. 16.20. a) 0; б) 0; B) $-\frac{1}{2}$; r) 0. **16.21**. a) $\log_3 4 < \sqrt[3]{9}$; 6) $\log_{0.5} 3 < \sin 3$; B) $\log_2 5 > \sqrt[3]{7}$; r) $\log 0.2 < \cos 0.2$. 16.22. a) $\log_3 4 > \sqrt[4]{2}$; 6) $\log_2 3 < \sqrt[3]{7}$. 16.23. a) 4a; 6) m+1; B) b-1; r) -2d. 16.24. a) m+n; 6) 2m+n; B) m+3n; r) 2m+3n. **16.25.** a) c + a; б) 1 - c - a; в) 2c + a; г) $2c - \frac{1}{2}a$. **16.36.** a) 2; б) 2; в) 3; г) 5. **16.41**. a) 0; б) 2; в) 0; г) -1. **16.42**. a) 20; б) 4; в) 16,5; г) 18. **16.43**. a) 68; 6) 44. **16.44**. a) 32; 6) 2. **16.45**. a) 2; 6) $\frac{1}{3}$ **16.46**. a) 6; 6) 6. **16.47**. a) -1; 6) 2. 16.48. a) 890; б) 0,6. 16.49. a) 80; б) $1\frac{2}{7}$. 16.52. a) $\lg 1$, $\log_4 3$, $\log_2 7$; 6) $\log_3 0.5$, $\lg 1$, $\log_{0.5} 0.1$; B) $\log_3 1$, $\log_5 4$, $\log_7 9$; r) $\log_7 0.6$, $\log_2 1$, $\log_{0.2} 0.3$. **16.53.** a) $\log_4 0.9$, $\log_2 1$, $\log_7 3$, $\log_9 10$; б) $\log_{0.9} 5$, $\log_{0.1} 10$, $\log_5 0.7$, $\log_{0.5} 1$. **16.54.** a) $\frac{2}{b}$; 6) $-\frac{2}{b}$; B) $\frac{3}{b}$; r) $-\frac{4}{b}$. **16.55.** a) a; 6) $\frac{1+2a}{3}$; B) 2a; r) $\frac{1+3a}{3}$. **16.56.** a) $1 + \frac{b}{2a}$; 6) $\frac{2b+a}{a+b}$; B) $-\frac{b}{a}$; r) $-\frac{3a+b}{b}$. **16.57.** a) $\frac{a+b}{b}$; 6) $\frac{2a+b}{3}$; B) $\frac{1}{2}b+\frac{1}{4}a$; F) $\frac{2+b}{a+b}$. 16.58. a) $\frac{a+3}{2a+2}$; 6) $\frac{1+2b}{b+2}$. 16.59. a) $\frac{b}{1-a}$; 6) $\frac{2-a}{a+b}$. 16.60. a) $\frac{3a-b+5}{a-b+1}$; 6) $\frac{a+1}{2a+b}$. 16.61. a) $\log_a b$; 6) $\log_a b$. 16.62. a) $a^{\log_2 b}$; 6) $\log_a b$. 16.65. (-3; -3).

17.3. a) 3,5; 6) $1\frac{1}{3}$; B) 4; P) 2. 17.4. a) $\pm \frac{\pi}{6} + 2\pi n$, $n \in \mathbb{Z}$; 6) $\frac{\pi}{4} + \frac{\pi}{2}n$, $n \in \mathbb{Z}$; B) $(-1)^n \frac{\pi}{6} + \pi n$, $n \in \mathbb{Z}$; r) $(-1)^n \frac{\pi}{3} + \pi n$, $n \in \mathbb{Z}$. 17.5. a) -7, 3; 6) -4, 3; в) 5, 7; г) -5, 2. 17.7. а) 10; б) 2; в) -10; г) нет корней. 17.8. а) ± 5 ; б) 4, 5; в) ±6; г) -3, 2. 17.9. а) -0,8; б) 0,5; в) $\frac{4}{3}$; г) нет корней. 17.10. а) 8; б) $2\frac{1}{4}$; в) 8; г) 80. 17.11. а) 0,5; б) 10; в), г) нет корней. 17.12. а) 4; б) 2, $3; \ \mathsf{B}) \ \frac{1}{2}; \ \mathsf{r}) \ 2. \ 17.13. \ \mathsf{a})$ Нет корней; б) $4; \ \mathsf{B}) \ 7; \ \mathsf{r})$ нет корней. 17.14. а) 2; б) 3. 17.17. а) 3; б) нет корней; в) 4; г) -1. 17.18. а) 1; б) нет корней; в) 2, 4; г) -4. 17.19. а) 5; б) 6, -12. 17.20. а) 5; б) 3. 17.21. а) 17; 6) ± 2 ; B) $\frac{1}{3}$; r) $\pm \sqrt{2}$. 17.22. a) 2, 8; 6) $\frac{1}{4}$, 16; B) 2, 4; r) 0,04, 125. 17.23. a) $\frac{1}{\sqrt{5}}$, $\frac{1}{25}$; 6) $\sqrt[3]{4}$, 16; B) 0,0081, $\frac{\sqrt{30}}{3}$; r) $\frac{\sqrt[3]{4}}{2}$, 4. 17.24. a) 100; 6) 81; B) 10; r) 32. **17.25**. a) 0,1; 6) 0,01, 100; B) -100; r) 100, $10^{-\frac{20}{9}}$. 17.26. а) 0,25; б) 3; в) 2; г) 0,0001. 17.27. а) Нет корней; б) 9; в) $\sqrt{10}$, 10; r) 0,0001. 17.28. a) 16; 6) 27. 17.29. a) $\frac{1}{9}$, 3; 6) 5, 25; B) 343, $\frac{1}{49}$; r) 2, 512. 17.30. a) $2^{\sqrt{2}}$, $2^{-\sqrt{2}}$; 6) 2. 17.31. a) 2, $\frac{1}{128}$; 6) 9, $\frac{1}{9}$. 17.32. a) 2; 6) 2, 8. 17.33. a) $\frac{1}{0}$, 9; 6) $\frac{1}{4}$, 4; B) $\frac{1}{4}$, 4; F) $\frac{1}{0}$, 9. 17.34. a) 0,1, 1000; 6) 0,125, 2; B) $\frac{1}{16}$, $\frac{1}{2}$; r) $\frac{1}{27}$, $\frac{1}{3}$. 17.35. a) 1; 6) 2, $\frac{1}{2}$, 4, $\frac{1}{4}$. 17.36. a) $\frac{1}{6}$, 6; 6) $\frac{1}{10^{\sqrt{2}}}$, $10^{\sqrt{2}}$. 17.37. a) 0, 1; 6) 0, 1. 17.38. a) 10; 6) 0,1, 10^5 . 17.39. a) -1, $-2\frac{3}{5}$, 3; 6) 1, 2. 17.40. a) (1; 1), (2; 4); 6) (-12; 31), (2; 3). 17.41. a) (2; 3), (3; 2); 6) (3; 6); B) (4; 1); r) (4; 4). 17.42. a) (1; 3), (3; 1); 6) (2; 1); B) (1; 2); г) нет решений. 17.43. 2.

6 18

18.4. a) $1\frac{1}{3} < x < 2$; 6) x > 1; B) $1.8 < x \le 9$; r) $1 \le x < 1\frac{1}{3}$. 18.5. a) $1.8 < x \le 5$; 6) $-\frac{1}{6} < x \le 7$; B) x < 0; r) x < -1. 18.6. a) $4.2 \le x < 7$;

6) $1.5 < x < 3\frac{1}{6}$; B) $3\frac{3}{4} \le x < 5$; r) $\frac{8}{9} < x < 5$. 18.7. a) 2; 6) 1; B) 3; r) 6. 18.8. а) 2 < x < 3; б) нет решений; в) $-10 \le x < -2\sqrt{2}$; г) x > 14. **18.9.** а) $x \le -3$, $2 \le x < 6$; б) 2 < x < 11; в) нет решений; г) $3\sqrt{3} < x < 9$. **18.10.** a) $3 \le x < 4$; b) $x > 1\frac{3}{4}$. **18.11.** a) x < -1, x > 8; b) $x \le -1$, $x \ge \frac{1}{2}$; B) 2 < x < 4; r) $0 < x \le \frac{1}{9}$, $1 \le x < 1\frac{1}{9}$. 18.12. a) $x < \frac{2}{3}$, $x > 2\frac{1}{3}$; 6) $-1 < \frac{1}{3}$ $< x < 0, \ 3\frac{3}{8} < x < 15\frac{5}{8}; \ _{B}) \ \frac{4}{7} < x \leqslant 1; \ _{r}) \ -\sqrt{7} \ < x < -\sqrt{5}, \ \ -\sqrt{2} \ < x < 0,$ $0 < x < \sqrt{2}$, $\sqrt{5} < x < \sqrt{7}$. 18.13. a) 6; б) 0; в) 2; г) 4. 18.14. a) 0 < x < 1, 3 < x < 4; 6) $1 \le x \le 6$; B) 2 < x < 5; P) $0 < x \le 1$, $9 \le x < 10$. 18.15. a) 4 < x < 6; 6) 1 < x < 2, x > 4; B) $x \ge 44$; P) $x \ge 3$. 18.16. a) 2 < x < 5; 6) $-2 < x \le 3$. 18.17. a) 0 < x < 2, x > 8; 6) 2 < x < 4; b) $\frac{1}{4} \le x \le 16$; г) $0 < x \le \frac{1}{25}$, $x \ge 125$. 18.18. a) $-0.9919 \le x \le -1 + \sqrt{3\frac{1}{3}}$; б) нет решений; B) $-\frac{1}{2} < x < -\frac{1}{2} + \frac{1}{2} \sqrt[3]{\frac{1}{3}}$, x > 4; r) $\frac{1}{729} < x < 27$. 18.19. a) $\frac{1}{\sqrt[4]{2}} \le x \le 16$; 6) $1\frac{1}{3} \le x \le 1 + \sqrt[4]{\frac{1}{27}}$; B) x > 0; r) $5^{-5,75} - 1 < x < -0.96$. 18.20. a) -3; 6) -28; B) $1 < x \le 4$, $x \ge 28$; F) $-4\frac{2}{2} \le x \le 22$. 18.21. a) $0 < x < \frac{1}{2}$, $x \ge \sqrt{2}$; 6) $\frac{1}{4} < x \leqslant \frac{1}{2}$, $x \geqslant 2$; B) 0 < x < 2, x > 4; F) $\frac{1}{125} < x \leqslant 15625$. **18.22.** a) 0 < x < 1, x > 16; b) $0 < x < \frac{1}{10}$, x > 10; b) 0 < x < 0.01, $0,1 < x \le 1000$; r) $0 < x < \frac{1}{4}$, $x > \frac{1}{2}$. 18.23. a) -2 < x < 2; 6) $-\sqrt{6} \le x \le \sqrt{6}$. **18.24.** a) $-1 \le x < 3$; 6) $-5 \le x < -1$. **18.25.** a) $x > \frac{1}{3}$; 6) $\frac{1}{2} < x \le 1$; B) $2 < x \le 1$ < x < 14; r $-4\frac{1}{4} < x < 2\frac{5}{14}$. 18.26. a) 5; 6) 2; B) 3; r) 1. 18.27. a) 10; 6) 3. 18.28. a) 2; 6) 511. 18.29. a) $\frac{1}{5} < x < \frac{2}{5}$; 6) $-1\frac{1}{2} < x < \frac{1}{2}$ $< x < -1; \text{ B) } x < \frac{1}{3}; \text{ r) } x < 4. 18.30. a) \frac{1}{3} < x < \frac{2}{3}, x > 1\frac{2}{3}; \text{ 6) } 2 < x < 3,$ x > 5. 18.31. a) 1 < x < 3; 6) 1 < x < 3. 18.32. a) 2 < x < 3, $3\frac{3}{8} < x < 4$;

6)
$$1\frac{2}{3} < x < 2$$
. 18.33. a) $-\frac{\pi}{6} + 2\pi n < x < 2\pi n$, $2\pi n < x < \frac{\pi}{6} + 2\pi n$, $n \in \mathbb{Z}$; 6) $2\pi n < x < \frac{\pi}{2} + 2\pi n$, $\frac{\pi}{2} + 2\pi n < x < \pi + 2\pi n$, $n \in \mathbb{Z}$; 8) $\frac{\pi}{6} + 2\pi n < x < \frac{\pi}{2} + 2\pi n$, $\frac{\pi}{2} + 2\pi n < x < \frac{5}{6}\pi + 2\pi n$, $n \in \mathbb{Z}$; 7) $-\frac{\pi}{2} + 2\pi n < x < -\frac{\pi}{4} + 2\pi n$, $\frac{\pi}{4} + 2\pi n < x < \frac{\pi}{2} + 2\pi n$, $n \in \mathbb{Z}$. 18.34. a) $-\frac{\pi}{6} + 2\pi n < x < \frac{\pi}{2} + 2\pi n$, $\frac{\pi}{2} + 2\pi n$, $n \in \mathbb{Z}$; 6) $-\frac{2\pi}{3} + 2\pi n < x < \frac{\pi}{2} + 2\pi n$, $n \in \mathbb{Z}$. 18.35. a) $-\sqrt{12} < x < -2$, $2 < x < \sqrt{12}$; 6) $0 < x < 3$, $3\frac{1}{8} < x < \sqrt{10}$; 8) $x > 1$; 7) $x < -\sqrt{10}$, $3\frac{1}{4} < x < 4$. 18.36. a) $\frac{1}{4} < x < 1$, $x > 2$; 6) $0 < x < 1$, $5 < x < 25$. 18.37. a) $0 < x < 1$, $x > 4$; 6) $0 < x < 1$, $x > 7$. 18.38. a) $-3 < x < -\frac{1}{9}$; 6) $x < -4$, $x > -\frac{1}{8}$. 18.39. a) $\frac{1}{2^{\sqrt{2}}} < x < \frac{1}{2}$, $1 < x < 2^{\sqrt{2}}$; 6) $0 < x < \frac{1}{4}$, $x > 1$; 6) $-2 < x < 3$. 18.41. a) $x > 5$; 6) $\frac{1}{2} < x < 2$. 18.42. a) Her решений; 6) $1 < x < 3$. 18.43. a) $0 < x < \frac{1}{4}$, $x > 1$; 6) $-2 < x < 3$. 18.44. a) $3 < x < 3\frac{1}{2}$, $x > 4$; 6) $2 < x < 5$. 18.45. a) $3 < x < 9$; 6) $\frac{1}{3} < x < \frac{1}{2}$; 8) $0 < x < 2$, $5^{0.3} - 1$; 7) $3 < x < 4$; $x > 6$. 18.46. a) $0 < x < \frac{1}{4}$, $1 < x < 1\frac{1}{4}$; 6) $-1\frac{1}{5} < x < -1$, $-\frac{1}{5} < x < 0$. 18.47. a) $x > 3$; 6) $0 < x < 1$; 10 $x < 2$.

§ 19

19.7. а)
$$\frac{4}{e^2}$$
; б) $\frac{4e}{3}$; в) -9,9; г) $-\frac{1}{2e}$. 19.8. а) -1; б) -1; в) 5 - e ; з) 3. 19.9. а) $\frac{\pi}{4}$; б) $\frac{3}{4}\pi$; в) $\frac{3}{4}\pi$; г) $\frac{\pi}{6}$. 19.10. а) -5; б) $-\frac{13}{6}$; в) $\frac{9}{7}$; г) нет решений. 19.11. а) $(-\infty; +\infty)$; б) $\left(-\infty; \frac{3}{4}\right)$; в) $(-\infty; -2)$; г) $\left(-\infty; -\frac{7}{3}\right)$. 19.12. а) $y = ex$; б) $y = e^2x - e^2$; в) $y = x + 1$; г) $y = \frac{x}{e} + \frac{2}{e}$. 19.13. а) $y = 3x$; б) $y = 0.5$;

в)
$$y = -2x + 2$$
; г) $y = 1$. 19.14. a) Да; б) нет. 19.15. a) $y = 2x - \frac{1}{2}$;

6)
$$y = -2x + 3$$
. 19.16. a) $y = 2ex$. 19.17. a) $y = \frac{e}{2}x$; 6) $y = \frac{e}{3}x$.

19.18. а) Возрастает на $(-\infty; -2]$ и на $[0; +\infty)$, убывает на [-2; 0], x=0 точка минимума, x=-2 точка максимума; б) возрастает на $[-0,5; +\infty)$, убывает на $(-\infty; -0,5]$, x=-0,5 точка минимума; в) убывает на $(-\infty; -3]$, возрастает на $[-3; +\infty)$, x=-3 точка минимума; г) убывает на $(-\infty; 0]$ и на (0;1], возрастает на $[1; +\infty)$, x=1 точка минимума. 19.19. а) Возрастает на $\left(-\infty; \ln \frac{1}{2}\right]$ и на $[0; +\infty)$, убывает на $\left[\ln \frac{1}{2}; 0\right]$, $x=\ln \frac{1}{2}$

точка максимума, x=0 — точка минимума; б) убывает на $(-\infty; 0]$ и на $[\ln 1,5; +\infty)$, возрастает на $[0; \ln 1,5]$, x=0 — точка минимума, $x=\ln 1,5$ — точка максимума. 19.20. а) 0, e; б) 0, e; в) $\frac{1}{e}$, $\frac{4}{e^2}$; г) e, $9e^3$. 19.21. а) $a \in \mathbb{R}$

€ $(-7; -1] \cup [0; 6)$; 6) $a \in (-1; 0)$; b) $a \in (-\infty; -7] \cup [6; +\infty)$; r) het takux a.

19.29. a)
$$\frac{x \ln x - (1+x) \ln (1+x)}{x(1+x) \ln^2 x}$$
; 6) $\frac{2(x-1) \ln (x-1) - 2x \ln x}{x(x-1) \ln^2 (x-1)}$.

19.30. a)
$$\frac{6x^4 + 3}{2x^5 - 3x}$$
; 6) $\frac{6 \ln (3x - 4)}{3x - 4}$; B) $\frac{2 + \cos^2 x}{\sin 2x + x \cos^2 x}$; r) $-\frac{1}{5x \ln 2x \sqrt[5]{\ln 2x}}$.

19.32. a)
$$y = 4x - 3$$
; 6) $y = x - 1$; B) $y = -4x + 2e$; r) $y = x - 1$.

19.33. a)
$$y = x + \ln 3 - \frac{1}{3}$$
; 6) $y = 1.5x + \ln 2 - 1.5$. **19.34.** a) $y = \frac{1}{e}x$;

б)
$$y = \frac{3}{e}x$$
. 19.35. a) -1; б) -1. 19.36. a) Убывает на (0; 1], возрастает на

 $[1; +\infty)$, x=1 — точка минимума; б) убывает на (0; 1], возрастает на $[1; +\infty)$, x=1 — точка минимума. 19.37. а) 1, e-1; б) e-1, e^2-2 . 19.38. а) Возрастает на (0; 2] и на $[3; +\infty)$, убывает на [2; 3], x=2 — точка максимума, x=3 — точка минимума; б) возрастает на $[1; +\infty)$, убывает на (0; 1], x=1 — точка минимума. 19.39. а) $-4+\ln 4$, -1; б) 1, $4-\ln 4$. 19.40. а) 1, 5,75; б) 0, 12. 19.41. а) Нет, 1; б) e, нет. 19.45. 12. 19.46. z_1, z_3, z_2, z_4 .

ГЛАВА 4

§ 20

20.8. a) Her; 6) ga. 20.9 a), 6) Ha. 20.16. a)
$$x$$
; 6) tg x ; B) $-\frac{1}{4}\cos 2x$; r) $x - \frac{1}{2}\operatorname{ctg} 2x$. 20.17. a) $-\frac{1}{7}\cos 7x$; 6) $\frac{1}{2}x - \frac{1}{20}\sin 10x$; B) $\frac{1}{5}\sin 5x$; r) $-\frac{1}{12}\cos 6x - \frac{1}{8}\cos 4x$. 20.18. a) $y = \frac{x^5}{5} - x^3 + C$; 6) $y = x - \cos x + C$;

в)
$$y = \frac{x^{13}}{13} - x^8 + C$$
; г) $y = \sin x - 9x + C$.

20.19. a) $y = -\frac{13}{x} + \frac{x^2}{2} + C$; б) $y = \frac{9}{x} - \cos x + C$; в) $y = -\frac{4}{x} - 2x^2 + C$; г) $y = \frac{5}{x} - \sin x + C$. 20.20. a) $x^3 - 2x^2 + 19$; б) $-\frac{3}{x} + x - 8.5$; в) $x^4 + x^3 - 14$; г) $x^2 + \frac{5}{x} - 13\frac{1}{6}$. 20.21. a) $-\cos x + \frac{3}{4}$; б) tg $5x - 2$; в) $\sin x + 0.5$; г) -3 ctg $\frac{x}{3} + 3$. 20.22. a) $-4\cos x + 3$; б) $\sin x + 15$; в) $\sin x + 7$; г) $\sin x + 4 + 4$. 20.23. a) tg $x + 5 - \sqrt{3}$; б) $-2\cot x - 1$; в) $2x + \tan x + 4 + \frac{\pi}{3} + \frac{\sqrt{3}}{3}$; г) $-\cot x - 21 - \frac{\sqrt{3}}{3} - \frac{10\pi}{3}$. 20.24. a) $-\cos x + 21 - \frac{\sqrt{2}}{2}$; 6) $\sin x - 9.5$; в) $-\cos x + 10 - \frac{\sqrt{2}}{2}$; г) $\sin x - 6 - \frac{\sqrt{3}}{2}$. 20.25. a) $F(x) = \frac{x^6}{6} + x^3 - 16$; б) $F(x) = -14\cos x + 23$; в) $F(x) = 2e^{5x - 4} + 3$; г) $F(x) = 1 - \frac{1}{3}\ln(2 - 3x)$. 20.26. a) $F(x) = \cos x - 14.5$; б) $F(x) = -\frac{1}{8}\cos 4x + \frac{1}{4}\cos 2x + \frac{23}{48}$; в) $F(x) = -\sin x + 5.5$; г) $F(x) = \sin 2x + 2\sin x$. 20.27. a) $F(x) = 8\sqrt{3x - 6} + x - 25$; б) $F(x) = -\frac{6}{5}\sqrt{5x + 4} - 8x - \frac{2}{5}$. 20.28. a) -5 , 1, 5; б) -2 , -1 , 1. 20.29. a) $\frac{\pi}{2} + \pi n$, $n \in \mathbb{Z}$; 6) $(-1)^n \frac{\pi}{3} + 2\pi n$, $n \in \mathbb{Z}$. 20.30. a) $-3x^2 + 7x - \frac{1}{12}$; б) $-x^2 + 3x + \frac{7}{4}$. 20.31. 4. 20.32. a) $x^2 + 3x + 2.25$; б) $(3x - 1)^4$. 20.33. a) $x^2 + \frac{9}{4}$; б) $\frac{3}{4}x^4 + \frac{29}{4}$. 20.34. 8. 20.35. $s = t^2 + t - 1$. 20.36. $s = \frac{4}{3}\cos 3t + \frac{2}{3}$. 20.37. $s = -6\sqrt{2t + 1} + 9$. 20.38. $s = \frac{1}{6}(1 + t)^4 + \frac{1}{3}t + \frac{5}{6}$, $v = \frac{2}{3}(1 + t)^3 + \frac{1}{3}$. 20.39. a) 5; б) 5; в) 7; г) -2 . 20.40. a) $F(a) < F(b)$; б) $F(a) > F(b)$; в) $F(a) > F(b)$; г) $F(a) > F(b)$; г)

на $[5; +\infty)$; в) экстремумов нет, функция возрастает на $[0, +\infty)$; г) x = -2 — точка максимума, x = 2 — точка минимума; функция возрастает на $(-\infty; -2]$ и на [2; 2,5), убывает на [-2; 2]. 20.44. а) $\lg x + C$; б) $\frac{1}{2} \sin 2x + C$; в) $-\operatorname{ctg} x + C$; г) $-\frac{1}{4} \cos 2x + C$. 20.45. а) $\frac{1}{8} \sin 4x - \frac{1}{16} \sin 8x + C$; б) $-\frac{1}{2} \cos x - \frac{1}{14} \cos 7x + C$; в) $\frac{1}{4} \sin 2x + \frac{1}{16} \sin 8x + C$; г) $-\frac{1}{20} \cos 10x + \frac{1}{12} \cos 6x + C$. 20.46. а) $\frac{1}{2}x - \frac{1}{4} \sin 2x + C$; б) $\frac{3}{8}x - \frac{1}{4} \sin 2x + \frac{1}{32} \sin 4x + C$; в) $\frac{1}{2}x + \frac{1}{4} \sin 2x + C$; г) $\frac{3}{8}x + \frac{1}{4} \sin 2x + \frac{1}{32} \sin 4x + C$. 20.47. а) $-2 \operatorname{ctg} 2x + C$; б) $-\frac{2}{\sin 2x} + C$.

§ 21

21.2. a) $5\frac{5}{6}$; 6) $4\sqrt{2} - 5.5$; B) 8,2; r) $-1\frac{2}{3}$. **21.3.** a) $20\frac{2}{3}$; 6) $12\frac{1}{3}$; B) -4;

r) -2,5. 21.4. a) 2; 6) $1\frac{1}{3}$. 21.5. a) 9; 6) 47; b) $34\frac{5}{6}$; r) 7,5. 21.6. a) $-2\frac{1}{6}$; 6) $1\frac{5}{6}$; b) $2\frac{1}{3}$; r) -24 $\frac{2}{3}$. 21.7. a) 1; 6) 2; b) 2; r) 1. 21.8. a) $\frac{1}{2}$; 6) $\frac{10\sqrt{3}}{3}$; b) $3(\sqrt{3}-1)$; r) $2\frac{1}{3}$. 21.9. a) -0,4; 6) $\frac{3\pi}{8} - \frac{\sqrt{2}}{4}$; b) $\frac{\sqrt{3}}{8}$; r) π . 21.10. a) 4,5; 6) -2; b) 0,25; r) 1,5. 21.11. a) 1; 6) $3 - 0,5\pi - \sqrt{3}$; b) $-\frac{\sqrt{3}}{3} + 1$; r) $-\frac{\pi}{12} + 2 - \frac{2\sqrt{3}}{3}$. 21.12. a) $\frac{\sqrt{3}}{2}\pi$; 6) $-\frac{1}{2} - \frac{\sqrt{3}}{2}$; r) -2. 21.13. a) $\frac{\sqrt{2}}{2} - \frac{1}{2}$; 6) $\sqrt{3} - 1$; b) $-\frac{\sqrt{2}}{2} + \frac{1}{2}$; r) $\sqrt{3} - 1$. 21.14. a) $18\frac{2}{15}$; 6) $\frac{3}{8}(3\sqrt{3} - 1)$; b) $87\frac{1}{2}$; r) $\frac{3}{5}(2 - \sqrt[3]{3})$. 21.17. a) ln 2; 6) $e^2 - e + \ln 2$; b) 0,1 ln 2; r) $\frac{1}{2}(e^4 - e^2) + 2 \ln 2$. 21.18. a) $\frac{1}{2} \ln 2,2$; 6) $\frac{1}{5} \ln \frac{11}{6}$; b) $\frac{1}{4} \ln 3$; r) ln 4. 21.19. a) $19\frac{2}{3}$; 6) $4\frac{3}{4}$. 21.20. a) $2 - \frac{\pi}{6}$; 6) 3. 21.21. a) $\frac{3}{\ln 4} + 15$; 6) ln $2 + \frac{2}{3}$. 21.22. a) $7\frac{1}{3}$; 6) $6\frac{5}{6}$; B) $10\frac{2}{3}$; r) $14\frac{11}{30}$. 21.23. a) 4; 6) 11; b) 3; r) -5. 21.24. a) 9,5; 6) 6,5. 21.25. a) -3; 6) 1,5. 21.26. a) 0; 6) 0. 21.27. a) 4; 6) 6. 21.28. a) 1; 6) 6; b) 25; r) 7. 21.29. a) $\frac{\pi}{2}n$, $n \in \mathbb{Z}$; 6) $\frac{\pi}{8} + \frac{\pi n}{2}$, $n \in \mathbb{Z}$; B) $\frac{\pi}{2}n$, $n \in \mathbb{Z}$; r) $\frac{\pi n}{4}$, $n \in \mathbb{Z}$.

21.30. a)
$$-\frac{2}{3}$$
, $\frac{1}{2}$, 2; 6) -2, 2. 21.31. a) 3; 6) 5. 21.32. a) -1; 6) 1. 21.33. a) -1 < $x < 1$; 6) $0 < x < 1$, $x > 3$; B) -1 < $x < 1$; 7) $x < -6$, $x > 1$. 21.34. a) $-\frac{\pi}{3} + 2\pi n < x < \frac{\pi}{3} + 2\pi n$, $n \in \mathbb{Z}$; 6) $\frac{\pi}{8} + \pi n < x < \frac{3\pi}{8} + \pi n$, $n \in \mathbb{Z}$; B) $-\frac{2\pi}{3} + 2\pi n < x < -\frac{\pi}{3} + 2\pi n$, $n \in \mathbb{Z}$; 7) $\frac{5\pi}{3} + 4\pi n < x < \frac{7\pi}{3} + 4\pi n$, $n \in \mathbb{Z}$; 21.35. a) $t = 1$; 6) Hert kopheñ. 21.36. a) $0 < t \le \frac{1}{2}$; 6) $-4 < t \le -1$, $t \ge 6$. 21.37. a) 4π ; 6) $\frac{\pi}{2} + 1$; B) $\frac{25\pi}{4}$; r) $\frac{32\pi}{3} + 16\sqrt{3}$. 21.38. a) 2π ; 6) $\frac{\pi}{4}$. 21.39. a) 6.5; 6) 18.5; B) 8.5; r) 11.5. 21.40. a) 12; 6) 1,2; B) 27; r) $\frac{6}{7}$. 21.41 a) 4; 6) 3. 21.42. a) 96; 6) $\frac{1}{6}$; B) $9\frac{1}{3}$; r) $\frac{1}{3}$. 21.43. a) $21\frac{1}{3}$; 6) $20\frac{1}{2}$; B) 9; r) $6\frac{3}{5}$. 21.44. a) 8; 6) $10\frac{2}{3}$; B) $10\frac{2}{3}$; r) 6. 21.45. a) $\frac{1}{2}$; 6) 4; B) $\frac{2}{3}$; r) 4. 21.46. a) 1; 6) $\frac{\sqrt{3}}{2}$; B) $\sqrt{2}$; r) $\sqrt{2}$. 21.47. a) $\pi + 1$; 6) π ; B) $\frac{\pi}{2} + 2$; r) $2\sqrt{3}$. 21.48. a) 14; 6) 18; B) $7\frac{\pi}{8}$; r) 2. 21.49. a) 4.5; 6) $1\frac{1}{3}$; B) $10\frac{2}{3}$; r) 4.5. 21.50. a) $2\frac{2}{3}$; 6) $21\frac{1}{3}$; B) $2\frac{2}{3}$; r) 9. 21.51. a) $1 + \frac{\pi^2}{8}$; 6) $1 + \frac{\pi^2}{8}$; B) $1 + \frac{\pi^2}{8}$; r) $2 + \frac{\pi^2}{2}$. 21.52. a) $\pi - \frac{1}{12}$; 6) 7π . 21.53. a) $5\frac{1}{3}$; 6) $\frac{1}{4}$; B) $\frac{2}{3}$; r) $2\frac{2}{3}$. 21.54. a) 16; 6) 54. 21.55. a) 8.5; 6) $12\frac{2}{3}$. 21.56. a) $e^3 - 1$; 6) $\frac{e^4 - 1}{e^4}$; B) $\frac{e^2 - 1}{e}$; r) $e^2 - 1$. 21.57. a) $\frac{(e - 1)^2}{e}$; 6) $e - 2$; B) $e^2 - 2$; r) $2(e^2 - 1)$. 21.58. a) 1; 6) $\ln 3$; B) 2; r) $\frac{1}{3}$ ln 10. 21.59. a) $e^3 - e^2 + \ln \frac{2}{3}$; 6) 4 - $\ln 5$; B) $\frac{14}{3}$ - $\ln 4$; r) $e - 2$. 21.60. a) $2 + \frac{1}{12}$; 6) $\frac{2}{10}$ 3 + $\frac{9}{4}$. 21.61. a) $\frac{2}{10}$ 2 - 1.5; 6) $\frac{7}{10}$ 2 - 2. 21.62. a) $2e - 1$; 6) $\frac{2}{3}$ (7 - $\frac{4}{3\ln 3}$). 21.63. a) 14; 6) 36; B) $2\frac{3}{4}$; r) $\frac{3}{8}$. 21.64. a) 2; 6) $\frac{1}{6}$; B) $5\frac{1}{3}$; r) $\frac{1}{6}$. 21.65. a) $2\frac{1}{3}$; 6) $2\frac{1}{3}$. 21.66. a) 15 $\frac{1}{3}$;

6) $5\frac{1}{2}$. 21.67. a) $\frac{1}{2} - \frac{\pi}{12}$; 6) $\frac{4}{\pi} + 1\frac{1}{3}$; B) $1 - \frac{\pi}{6}$; r) $\frac{4}{\pi} + \frac{4}{3}$. 21.68. a) 4,5;

6) 4,5. 21.69. a)
$$20\frac{5}{6}$$
; 6) $14\frac{7}{24}$. 21.70. a) $\frac{1}{3}$; 6) 2,25. 21.71. a) $6\frac{6}{7}$; 6) $\frac{5}{72}$. 21.72. a) $\frac{3}{4}$; 6) $\frac{1}{12}$. 21.73. a) $\frac{1}{3}$; 6) $\frac{1}{3}$. 21.74. a) $\frac{\sqrt{3}}{3}$; 6) $\frac{\sqrt{3}}{9}$. 21.75. a) 6,75; 6) 6,75. 21.76. a) 8, $\frac{8}{15}$; 6) -11, $-\frac{11}{21}$.

ГЛАВА 5

§ 22 22.1. a) 1; б) 1; в) 0; г) 0,5. 22.2. a) 0,5; б) 0,5; в) 0,25; г) 0,25. 22.3. а) 0,01; б) 0,38; в) 0,25; г) 0,01. 22.4. а) То, что оно отрицательно; б) то, что оно больше -3; в) то, что оно не целое; г) то, что оно больше -5. **22.5.** a) 0,1; б) 0,001; в) 0,65; г) 0,25. **22.6.** a) 0,5; б) 0,5; в) 0,2; г) 0,21. **22.7.** a) 0,25; б) 0,5; в) $\frac{9}{32} = 0,28125$; г) $\frac{1}{2(1+\sqrt{5})} \approx 0,1545$. **22.8.** a) $\frac{24}{25\pi} \approx 0$ ≈ 0.3 ; 6) 0.16; B) $1 - \frac{24}{25\pi} \approx 0.7$; r) $\frac{24 - 4\pi}{25\pi} \approx 0.145$. 22.9. a) 0.25; 6) 0.25; B) 0,75; r) $\frac{\sqrt{3}+2}{4\sqrt{3}} \approx 0.539$. 22.10. a) 0,5; 6) 0; B) 0,5; r) $\frac{\sqrt{3}+1}{2\sqrt{3}} \approx 0.789$. **22.11.** a) 1; 6) $\frac{20}{121} \approx 0.165$; B) $\frac{10}{121} \approx 0.083$; r) $\frac{36}{121} \approx 0.297$. **22.12.** a) 0.25; 6) 0,5; в) 0,5; г) 0,25. **22.13**. a) 0,25; б) 0,75; в) $\frac{23}{32} \approx 0,719$; г) $\frac{7}{16} = 0,4375$. **22.14.** a) 0,5; b) $\frac{1}{3}$; b) $\frac{3}{3+\sqrt{5}} \approx 0,573$; r) $\frac{3}{3+2\sqrt{2}} \approx 0,515$. **22.15.** a) $\frac{1}{27} \approx 0.037$; b) $\frac{19}{27} \approx 0.704$; 6), r) $\frac{7}{27} \approx 0.259$. **22.16.** a) 1; 6) 0; B) $\sqrt{e} - 0.5e \approx 0.289$; r) $1 - 0.5\sqrt{e} \approx 0.176$. 22.17. a) 0; 6) 0.25;

B) $\frac{6 + \pi\sqrt{3}}{12} \approx 0.9534$; r) $\frac{2 - \sqrt{2}}{4} \approx 0.146$. 22.18. a) $a = 2^{-\frac{1}{3}}$; 6) $a = \frac{1}{4}$;

B) $a = \sqrt{2}$; r) $a = 3 - \sqrt{3.5}$. 22.19. a) 0; 6) 1; B) 0.25; r) 0.0625. 22.20. a) 0;

6) 1; в) $0.25(1 + \ln 4)$; г) $0.5(1 - \ln 2)$. 22.21. a) 1; 6) $\frac{11}{12} \approx 0.917$; в) $\frac{1}{12} \approx 0.917$; в) $\frac{1$ ≈ 0.083 ; r) 0. 22.22. a) 0; 6) 0.0625; B) 0; r) 0.25.

23.1. a) 0,75; 6) $\frac{11}{14} \approx 0,7857$; B) 0,75; r) $\frac{2}{3}$. 23.2. a) 0,5625; 6) 0,6173; в) 0,5625; г) $\frac{4}{9}$. 23.3. а) 0,9375; б) 0,9541; в) 0,9375; г) $\frac{8}{9}$. 23.4. Так как во всех случаях а) — г) вероятность p «успеха» больше вероятности q «неудачи», то $1-q^3>1-p^3$, т. е. более вероятно, что наступит хотя бы один «успех». 23.5. а), в) $\frac{7}{32}\approx 0.219;$ б) $\frac{35}{128}\approx 0.273;$ г) $\frac{93}{256}\approx 0.363.$

23.6. a)
$$1 - \frac{35}{36} \approx 0,028$$
; 6) $1 - \left(\frac{35}{36}\right)^2 \approx 0,055$; B) $1 - \left(\frac{35}{36}\right)^3 \approx 0,081$;

г) 1 –
$$\left(\frac{35}{36}\right)^{10} \approx 0,246$$
. 23.7. a) 2 : 2; б) 2 : 2; в) 3 : 1; г) события равнове-

роятны. 23.8. a) 0.1296; б) 0.3456; в) 0.1536; г) 0.1792. 23.9. $P(A_3) = 0.096 < P(A_1) = 0.32 < P(A_2) = 0.384 < P(A_4) = 0.512$. 23.10. a) 0.23; б) 0.077; в) 0.078; г) 0.922.

23.11.

k	0	1	2	3	4	5	
$P_5(k)$	0,078	0,259	0,346	0,23	0,077	0,01	Сумма = 1

23.12.

k	0	1	2	3	4	5	6	7	8
$P_{5}(k)$	0,004	0,031	0,109	0,219	0,273	0,219	0,109	0,031	0,004

23.13. a) 0,0612; б) 0,375; в) 0,0638; г) 0,9362. **23.14.** a)
$$\left(\frac{5}{6}\right)^3 \approx 0,5787$$
;

б) 0,3472; в) 0,0694; г) 0,9953. 23.15. а) 0,002; б) 0,041; в) 0,67; г) 0,33.

23.16. а)
$$\frac{\frac{4\pi}{3} - \sqrt{3}}{3\pi} \approx 0.2607$$
; б) 0,5466; в) 0,932; г) 0,068. 23.17. а) 55 и 56;

- б) 56; в) m и m+1; г) m+1. 23.18. а) от 499 до 599; б) от 999 до 1099;
- в) от 1999 до 2099; г) от 9999 до 10099. 23.19. a) p = 0.8; б) p = 0.71;
- B) p = 0.7; r) p = 0.008. 23.20. a) 0.6 < q < 0.7; 6) 0.69 < q < 0.7; E) 0.699 < q < 0.7; r) 0.96 < q < 0.97.

§ 24

24.1. a) 3; 6) 8; b) 2, 3, 4, 5; r)
$$\underbrace{2, 2, 2}_{3}$$
, $\underbrace{3, 3, 3, 3, 3}_{5}$,

$$\underbrace{\frac{4,\ 4,\ 4,\ 4,\ 4,\ 4,\ 4,\ 4}{8},\ \underbrace{\frac{5,\ 5,\ 5,\ 5}{4}}.}_{8}$$

24.2. a)

Варианта	2	3	4	5	Bcero: 4
Кратность варианты	3	5	8	4	Сумма = 20

B)

Варианта	2	3	4	5	Bcero: 4
Частота варианты	0,15	0,25	0,4	0,2	Сумма = 1

24.3. a) 3; б) 4; в) 4; г) 3,65.

24.4. a)

Варианта	2	3	4	5
Отклонение от среднего	-1,65	-0,65	0,35	1,35

6)
$$3 \cdot (-1,65) + 5 \cdot (-0,65) + 8 \cdot 0,35 + 4 \cdot 1,35 = -8,2 + 8,2 = 0;$$

в)

Варианта	2	3	4	5
Квадрат отклонения	2,7225	0,4225	0,1225	1,8225

Сумма квадратов =
$$3 \cdot 2,7225 + 5 \cdot 0,4225 + 8 \cdot 0,1225 + 4 \cdot 1,8225 = 18,55$$
; r) $D = \frac{18,55}{20} = 0,9275$, $\sigma = \sqrt{D} \approx 0,9631$.

24.5. a)

Варианта	0	1	Всего: 2
Кратность	8	12	Сумма = 20
Частота	0,4	0,6	Сумма = 1

в) мода равна 1, среднее равно 0,6; г) $D=0,24,\ \sigma=0,4899.$

24.6. а) 7; б) 0,04; в) 0,22; г) 38 %.

24.7. a)

Варианта	№ 1	№ 2	№ 3	№ 4	Bcero: 4
Кратность	9	5	2	4	Сумма = 20
Частота	0,45	0,25	0,1	0,2	Сумма = 1
Частота, %	45	25	10	20	Сумма = 100 %

г) варианта № 1.

24.8.

Варианта	№ 1	№ 2	№ 3	№ 4	№ 5	№ 6	Bcero: 6
Кратность	291	122	113	202	79	193	Сумма = 1000
Частота	0,291	0,122	0,113	0,202	0,079	0,193	Сумма = 1
Частота, %	29,1	12,2	11,3	20,2	7,9	19,3	Сумма = 100 %

24.9. а) Столбец № 2; б)
$$k^2 - 7k - 33 = \frac{k}{100} \cdot 100$$
; в) $k_1 = -3$, $k_2 = 11$,

так как k > 0, то k = 11;

г)

Варианта	№ 1	№ 2	№ 3	№ 4	Bcero: 4
Кратность	33	11	34	22	Сумма = 100
Частота	0,33	0,11	0,34	0,22	Сумма = 1
Частота, %	33	11	34	22	Сумма = 100 %

24.10. B)

Варианта	№ 1	№ 2	№ 3	№ 4	Bcero: 4
Кратность	20	x=5	<i>y</i> = 10	15	Сумма = 50
Частота	0,4	0,1	0,2	0,3	Сумма = 1
Частота, %	40	10	20	30	Сумма = 100 %

г) варианта № 1.

24.11. a) 1,
$$\underbrace{2, 2, 2, 2, 2}_{5}$$
, $\underbrace{3, 3, 3, 3, 3, 3}_{6}$, $\underbrace{4, 4, 4, 4, 4, 4, 4, 4}_{8}$,

$$\underbrace{5, 5, 5, 5, 5}_{5};$$

б)

Оценка по литературе	1	2	3	4	5	Всего: 5
Кратность	1	5	6	8	5	Сумма = 25

24.12. a)
$$\underbrace{1, 1}_{2}$$
, $\underbrace{2, 2, 2}_{3}$, $\underbrace{3, 3, ..., 3, 3}_{11}$, $\underbrace{4, 4, 4, 4, 4, 4, 4}_{6}$, $\underbrace{5, 5, 5}_{3}$;

б)

Оценка по русскому языку	1	2	3	4	5	Всего: 5
Кратность	2	3	11	6	3	Сумма = 25

r) 3,2. **24.13**. a)
$$\underbrace{3, \, 3,}_{2}$$
 $\underbrace{4, \, 4,}_{2}$ $\underbrace{5, \, 5, \, 5,}_{3}$ $\underbrace{6, \, 6, \, 6, \, 6,}_{4}$ $\underbrace{7, \, 7, \, 7, \, 7, \, 7,}_{5}$

$$\underbrace{8, 8, 8, 8}_{4}, \underbrace{9, 9, 9, 9}_{4}, 10;$$

б)

Сумма отметок	3	4	5	6	7	8	9	10	Bcero: 5
Кратность	2	2	3	4	5	4	4	1	Сумма = 25

г) 6,64. **24.14.** a) 4, 4, 4; б) 4, 3, 3; в) 7, 7, 7; г) 2, 1, 1. **24.15.** a)

Кратность	1	5	6	8	5
Отклонение от среднего	-2,44	-1,44	-0,44	0,56	1,56
Квадрат отклонения	5,9536	2,0736	0,1936	0,3136	2,4336

Сумма квадратов = $1\cdot 5,9536+5\cdot 2,0736+6\cdot 0,1936+8\cdot 0,3136+5\cdot 2,4336=32,16;$ $D=\frac{32,16}{25}=1,2864,$ $\sigma=\sqrt{D}\approx 1,134;$

б)

Кратность	2	3	11	6	3
Отклонение от среднего	-2,2	-1,2	-0,2	0,8	1,8
Квадрат отклонения	4,84	1,44	0,04	0,64	3,24

Сумма квадратов = $2 \cdot 4.84 + 3 \cdot 1.44 + 11 \cdot 0.04 + 6 \cdot 0.64 + 3 \cdot 3.24 = 28$; $D = \frac{28}{25} = 1.12$, $\sigma = \sqrt{D} \approx 1.0583$; в) по литературе; г) по русскому языку. **24.16.** а) 4; б) 5; в)

Итоговая отметка	2	3	4	5	Всего: 4
Кратность	4	7	9	5	Сумма = 25

24.17. a) 38; б) 35, 3, 3; в)
$$\frac{50M-182}{11}$$
; г) нет. **24.18**. a) 36; б) 7, 11;

в) 2,333; г) нет. 24.19. а)
$$M=\frac{33x-18}{7x+18};$$
 б) часть одной из ветвей гиперболы;

в) 2, 3, 4, 5, 6; г) нет. **24.20**. а)
$$M = \frac{17x + 52}{6x + 19}$$
; б) последовательность

точек одной из ветвей гиперболы; в) 1, 2, 3; г) нет.

25.1. a), 6)
$$C_{10}^7 \cdot 0.5^{10}$$
; B) $C_{100}^{57} \cdot 0.5^{100}$; r) $C_{100}^{75} \cdot 0.4^{75} \cdot 0.6^{25}$.

25.2. a)
$$C_{50}^{25} \cdot \left(\frac{6}{7}\right)^{25} \cdot \left(\frac{1}{7}\right)^{25};$$
 6) $C_{100}^{67} \cdot \left(\frac{5}{7}\right)^{67} \cdot \left(\frac{2}{7}\right)^{33};$ B) $C_{293}^{175} \cdot \left(\frac{2}{3}\right)^{175} \cdot \left(\frac{1}{3}\right)^{118};$

r)
$$C_{1000}^3 \cdot 0.5^{1000}$$
. **25.3.** a) $P_{10}(3) = C_{10}^3 \cdot 0.6^3 \cdot 0.4^7$; 6) $P_{100}(99) = C_{100}^{99} \cdot 0.1 \cdot 0.9^{99}$;

в) $P_{20}(5) = C_{20}^5 \cdot 0,3^{15} \cdot 0,7^5$; г) $P_{1000}(0) = 0,2^{1000}$. 25.4. а) $P_{50}(5) = C_{50}^5 \cdot 0,7^5 \cdot 0,3^{45}$; б) $P_{30}(7) = C_{30}^7 \cdot 0,6^7 \cdot 0,4^{23}$; в) $P_{100}(3) = C_{100}^3 \cdot 0,5^{100}$; г) $P_{40}(40) = 0,7^{40}$. 25.5. а) $P_{10}(8) = C_{10}^8 \cdot 0,3^2 \cdot 0,7^8$; б) $P_{10}(8) = C_{10}^1 \cdot 0,01^9 \cdot 0,99$; в) $P_{30}(5) = C_{30}^5 \cdot 0,6^5 \cdot 0,4^{25}$; г) $P_{100}(0) = 0,1^{100}$. 25.6. а) $0,6+0,7 \neq 1$; б) $0,9+0,01 \neq 1$; в) $C_{20}^2 \neq 180$; г) $1000 \neq 1$ и $1000 \neq 1000 - 1$. 25.7. а) 0,242, 0,054, 0,00443; б) 0,3521, 0,1295, 0,0175; в) 0,397, 0,2179, 0,044; г) 0,2661, 0,2444, 0,0551. 25.8. а) 1,27; б) 1,66; в) 0,03; г) 2,66. 25.9. а) 0,62; б) 0,6; в) 1,66; г) 2,72. 25.10. а), б) 0,0054; в) 0,0242; г) 0,0004. 25.11. а) 0,6 0,02; в) 0,0009; г) 0,0176. 25.12. а) 0,6 0,0133; в) 0,0081; г) 0.25.13. а) 0,3413, 0,4772, 0,49865; б) 0,1915, 0,4332, 0,4938; в) 0,0398, 0,3643, 0,4821; г) 0,3159, 0,3389; 0,4767. 25.14. a) 1,02; б) 1,59; в) 0,01; г) -2,34. 25.15. а) 0,95; б) 1,75; в) 0,25; г) 2,32. 25.16. а) 0,4995; б) и г) 0,7454; в) 0,8164. 25.17. а) 0,5; б) 1; в) 0,3413; г) 0,383. 25.18. а) 0,5; б) 0,1587; в) 1; г) 0.25.19. а) 0,9586; б) 1; в) 0,5; г) 0,0207. 25.20. а) 0,5; 6) 0,5; в) 0,5878; г) 0,0485.

ГЛАВА 6

§ 26

26.11. а) 1, 6; б) 0; в) 2, 6; г) нет корней. **26.12.** а) 2; б) -0.5; в) нет корней; г) -2.5, 2. **26.13.** а) -2; б) 2,5; в) 2; г) -1.5. **26.14.** а) 1, -3; б) 1, -4. **26.15.** а) 0, $\pm \frac{\pi}{2}$, ± 2 ; б) 0, ± 3 ; в) ± 1 , $\pm \frac{\pi}{4}$; г) 0, $\pm \pi$, ± 4 . **26.16.** а) 5; б) 3. **26.17.** а) 14; б) 6.

§ 27

27.3. a) 5,25; 6) 11. 27.4. a) $\frac{\pi}{4} + \pi n$; 6) $\frac{\pi}{2} + \pi n$. 27.5. a) 6, 8; 6) 1; B) 0; r) 4. 27.6. a) 1, 7; 6) $2\frac{5}{6}$; B) 1, 3; r) 10, 0,001. 27.7. a) $-\frac{\pi}{4} + \pi n$, $\frac{5\pi}{24} + \frac{\pi n}{2}$; 6) $-\frac{\pi}{72} + \frac{\pi n}{3}$; B) $\frac{2\pi n}{3}$, $-\frac{\pi}{2} + 2\pi n$; r) Het kophen. 27.8. a) 3, 0; 6) ± 2 . 27.9. a) 1; 6) $\pm \frac{2\pi}{3} + 2\pi n$. 27.10. a) $\frac{\pi}{4} + \pi n$; 6) $\pm \frac{2\pi}{3} + 2\pi n$. 27.11. a) $-\frac{11}{23}$; 6) 1. 27.12. a) 0, 4, 5; 6) -2, 2, 3; B) 0, -2, -6; r) -3, -1, 3. 27.13. a) 0, 6; 6) 0, 5. 27.14. a) 2, -1; 6) 2, 3. 27.15. a) ± 2 , $(-1)^n \frac{\pi}{6} + \pi n$; 6) ± 3 , $\pm \frac{\pi}{3} + 2\pi n$. 27.16. a) πn , $\pm \frac{\pi}{3} + 2\pi n$; 6) $\frac{\pi}{2} + \pi n$, -arctg $\frac{1}{2} + \pi n$; B) $\frac{\pi}{6} + \pi n$; 6) ± 3 , $\pm \frac{\pi}{3} + 2\pi n$. 27.16. a) πn , $\pm \frac{\pi}{3} + 2\pi n$; 6) ± 2 , ± 2

6) $-\log_5 10$; B) 0; r) 2, $\log_3 2 - 1$. 27.19. a) ± 1 ; 6) 8, 16; B) $(-1)^n \arcsin \frac{1}{4} + \pi n$; r) 64. 27.20. a) 10, $10^{-\frac{5}{4}}$; 6) 0, 1; B) $\pm \frac{2\pi}{3} + 2\pi n$; r) 1, 4. 27.21. a) 0, ± 1 ; 6) 0, 1. 27.22. a) 2; 6) -1. 27.23. a) 1, 2; 6) $\frac{1}{2}$ 27.24. a) 1; 6) 9. 27.25. a) 1; 6) 1; B) 3; F) 7. 27.26. a) 0; 6) 1; B) 1; F) 1. 27.27. a) 1, 2, 3; 6) -1, $-3 \pm \sqrt{15}$; B) -2; r) 2. 27.28. a) 3, 4, -1, -2; 6) 0, -3. 27.29. a) 2, 3; 6) 2, 4. **27.30.** a) $\frac{3 \pm \sqrt{21}}{2}$; 6) 2, -3. **27.31.** a) 0, ±1, -2; 6) 0, 1. **27.32.** a) $\frac{\pi n}{3}$; 6) $\frac{\pi n}{5}$. 27.33. a) $\frac{\pi}{12} + \frac{\pi n}{6}$, $\pm \frac{\pi}{3} + 2\pi n$; 6) $\frac{\pi n}{2}$, $\frac{\pi}{9} + \frac{2\pi n}{9}$, $\frac{\pi}{5} + \frac{2\pi n}{5}$. 27.34. a) $\frac{\pi n}{5}$, $\frac{\pi n}{2}$; 6) πn , $\frac{\pi}{8}$ + $\frac{\pi n}{2}$. 27.35. a) $\pm \frac{\pi}{3}$ + πn ; 6) $\pm \frac{\pi}{6}$ + πn . 27.36. a) $\pm \frac{\pi}{3} + \pi n$, $\frac{\pi}{4} + \pi n$; 6) $\frac{\pi}{4} + \pi n$, arctg $\left(-3 \pm \sqrt{3}\right) + \pi n$. 27.37. a) $\frac{\pi}{2}$ + $+2\pi n$, $\pi + 2\pi n$; 6) $-\frac{\pi}{4} + (-1)^n \arcsin \frac{\sqrt{2}}{10} + \pi n$. 27.38. a) 4, 0; 6) 5, 25. 27.39. a) 1, log₂ 5; б) 1, 3 log₃ 2; в) 3, log₃ 0,12; г) 1, log₅ 4. 27.40. a) 1, 4; 6) $\frac{1}{2}$, 5; в) 6, 2; г) нет корней. 27.41. а) 8, 16; б) $\frac{1}{4}$, $\frac{1}{16}$; в) 0,5, 4096; г) 32. 27.42. a) 4; б) 4. 27.43. a) Нет корней; б) 3, 9; в) 4; г) 0. 27.44. a) $\frac{2e}{3}$ $\frac{e^2+1}{2e}$; 6) -1. 27.45. a) 99; 6) $\frac{1}{3}$, $5\frac{2}{3}$. 27.46. a) 1, 100 000, 0,00001; 6) $e^{\pm 3}$. 27.47. a) $\frac{1}{4}$, 1, 16; 6) 10^{-8} , 1, 10^{10} . 27.48. a) $\frac{\pi}{2}$ + $2\pi n$; 6) нет корней. 27.49. a) $\frac{3\pi}{4} + 2\pi n$; 6) $-\frac{\pi}{4} + 2\pi n$. 27.50. a) 1, πn , $n \in \mathbb{N}$; 6) 1, $\frac{\pi}{4} + \frac{\pi n}{2}$, $n = 0, 1, 2, 3, \dots$ 27.51. a) -3, $(-1)^n \frac{\pi}{3} + \pi n, n = 0, 1, 2, 3, \dots$; 6) 8, 120, $-\frac{\pi}{8} + \frac{\pi n}{2}$, $n = 6, 7, 8, 9, \dots$ 27.52. a) 0; 6) ±1. 27.53. a) 1; 6) 5. 27.54. a) 2; 6) 3. 27.55. a) 1; 6) 7. 27.56. a) 2; 6) -2. 27.57. a) -2; 6) ± 1 .

§ 28

28.5. а) Нет решений; б) $8 \le x \le 11$. **28.6**. а) $x \ge 3$; б) $-1 < x \le 8$. **28.7**. а) 2 < x < 4; б) 2,5 < x < 11. **28.8**. а) x < 5; б) 2,7 < x < 6.

28.9. a) x < -5, $\frac{1}{2} < x < 1$; 6) $x < -\frac{2}{7}$, $\frac{1}{2} < x < 7$. **28.10.** a) -3 < x < -2, -2 < x < 4; 6) -5 < x < -2, 3.5 < x < 4, 4 < x < 5. 28.11. a) $-\infty < x < +\infty$; 6) $x > -\frac{1}{9}$; B) $-1 \le x \le 0$, x > 3; F) x < 3, x > 3. 28.12. a) x < -3, $-\frac{1}{5} < x < \frac{1}{9}$, x > 1.5; 6) x < -3, x > 0; B) $x \le -\sqrt{2}$, x > 1; r) -5 < x < 5. 28.13. a) x > 1; б) x > 3. 28.14. a) $2,5 < x \le 3$; б) нет решений. 28.15. a) $x \ge 2,25$; б) $-\frac{\pi}{2}$ + $+2\pi n \le x \le \frac{4\pi}{2} + 2\pi n$. 28.16. a) $6 \le x \le 8$; 6) $1 \le x \le 2,25$; B) x < -2, 0 < x < 2, x > 2; r) 1 < x < 4. 28.17. a) $x \le 1, x \ge 7$; 6) x = 1; b) -5 < x < 3; r) x < -1, x > 2,4. 28.18. a) $x \ge 4$; 6) $x \ge -2$; B) 0 < x < 5; r) x > 49. **28.19.** a) $x \le 0$, $x \ge 3$; 6) x < -2, x > 2. **28.20.** a) $-\frac{\pi}{2} + \pi n < x \le \frac{\pi}{4} + \pi n$; 6) $-\frac{2\pi}{3} + 2\pi n < x < \frac{2\pi}{3} + 2\pi n$. 28.21. a) $x \ge 1$; 6) $x \le 0$. 28.22. a) $x \le 1$; 6) $x \le 1$. 28.23. a) x > 64; 6) $2^{10} < x < 2^{20}$. 28.24. a) $0 \le x \le 1$; 6) $x < \log_5 0$, 1. **28.25.** a) 8 < x < 16; 6) $0 < x \le \frac{1}{27}$, $x \ge \frac{1}{\sqrt[3]{3}}$. **28.26.** a) $1 < x \le 1,25$, x > 1.5; 6) 0.1 < x < 1. 28.27. a) $\frac{\pi}{6} + 2\pi n \le x \le \frac{5\pi}{6} + 2\pi n$; 6) $x = 2\pi n$. **28.28.** a) x > 2; б) $x \ge 0$; в) $x \le 2$; г) нет решений. **28.29.** a) 0 < x < 4; б) нет решений; в) $x \ge 4$; г) x > 0. 28.30. a) 0 < x < 1; б) $x \ge 1$. 28.31. a) [-3; 1) \cup $(1; 2); 6) (3; 4) (4; +\infty)$. 28.32. a) $-\infty < x < +\infty; 6) x = -\frac{\pi}{2}$; B) x = 0; r) $-\infty < x < +\infty$. 28.33. a) $-\infty < x < +\infty$; 6) x = 0; B) x = 0; r) $-\infty < x < +\infty$. **28.34.** a) $x \ge -1.5$; 6) $x \le \frac{5}{3}$. **28.35.** a) 0 < x < 9; 6) 0 < x < 4. **28.36.** a) $x \le 0$, $x \ge 2$; 6) -4 < x < 0, 1 < x < 3. 28.37. a) $-2 < x \le -1$, $x \ge 2$; 6) $x \ge 3$, x = -4. **28.38.** a) $3 \le x \le 3,1, \ x \ge 7$; 6) $x \le 1, \ 7 \le x \le 7,3$. **28.39.** a) $\frac{4}{2} \le x \le \log_2 3$; 6) $0 < x \le \frac{4}{3}$, $x \ge \sqrt[3]{3}$. 28.40. a) x > 1; 6) -1 < x < 5; B) x < -8, $x > \frac{1}{3}$; г) -7 < x < 0. 28.41. a) x > 3; б) нет решений; в) $-3\sqrt{11} < x < 0$; г) $-\frac{1}{4} < 0$ < x < 0, x > 2. 28.42. a) $x < -2, 3 \le x < 4, x > 4$; 6) $-5 \le x < -1, -1 < x < 2$. **28.43.** a) $0 \le x < \frac{\pi}{2}$, $\frac{\pi}{2} < x \le 2$; 6) $-4 \le x < -\pi$, $-\pi < x < 0$. **28.44.** a) $x \ge 3$, x = -2; 6) $-\frac{7}{6} \le x \le -1$. 28.45. a) 1,5 < $x \le 51,5$; 6) $x \ge \frac{1}{6}$;

B) $-\frac{\pi}{2} + 2\pi n \le x \le \frac{\pi}{2} + 2\pi n$; r) x > 2. 28.46. a) x > 3; 6) $x \ge 1$; B) $\frac{\pi}{6} + 2\pi n < x < \frac{5\pi}{6} + 2\pi n$; r) $x \ge \sqrt{4 + e}$. 28.47. a) -2 < x < -1; 6) $-\frac{5}{27} < x < 0$, x > 1. 28.48. a) x > -1; 6) $0 < x < \frac{1}{e}$, $x > \sqrt{e}$. 28.49. a) 1 < x < 3; 6) x > 9. 28.50. $-1 < x < -\frac{1}{2}$, $-\frac{1}{2} < x < 0$, x > 6. 28.51. $-2 < x < -\frac{2}{3}$, $\frac{1}{2} < x < \frac{2}{3}$, $\frac{3}{2} < x < 2$. 28.52. x > 8. 28.53. $x \le 0$, $\frac{1}{2} \le x \le 1$, x > 4. 28.54. a) $\frac{\pi}{2}$; 6) 0, $\pm 2\pi$. 28.55. a) $-2 \le x < 1$, $1 < x \le 4$; 6) x < -4, x > 3. 28.56. a) 2 < x < 32; 6) $27 \le x \le 81$. 28.57. a) $x \le -2 - \sqrt{3}$, -0, $3 < x \le -2 + \sqrt{3}$, x > 2; 6) $-1 \le x \le 2 - \sqrt{5}$, -0, 2 < x < 0, $0 < x \le 1$, $2 + \sqrt{5} \le x < 4$, 5. 28.58. a) x = -4; 6) x = 5.

8 29

29.4. а) Если p<0, то корней нет; если p=0, то x=-0.5; если p>0, то $x=\frac{\pm p-1}{2}$; 6) если 0< p<1, то корней нет; если p=0 или p=1, то $x=\pm 1$; если $p=\frac{1\pm\sqrt{5}}{2}$, то x=0, $x=\pm\sqrt{2}$; если $1< p<\frac{1+\sqrt{5}}{2}$ или $\frac{1-\sqrt{5}}{2}< p<0$, то $x=\pm\sqrt{1-p+p^2}$, $x=\pm\sqrt{1+p-p^2}$; если $p<\frac{1-\sqrt{5}}{2}$ или $p>\frac{1+\sqrt{5}}{2}$, то $x=\pm\sqrt{1-p+p^2}$; в) если p>-0.2, то корней нет; если p=-0.2, то x=-0.5; если p<-0.2, то $x=\pm(1+5p)-1$; г) если $p\neq 2$, то корней нет; если p=2, то $x=\pm 1$. 29.5. а) Если p>2, то корней нет; если p=2, то 1 корень; если p<2, то 2 корня; 6) если p<1, то корней нет; если p=1 или p>5, то 2 корня; если p=5, то 3 корня; если 1< p<5, то 4 корня; в) если $p=(-1)^n\frac{\pi}{6}+\pi n$, $n\in \mathbb{Z}$, то 1 корень; если $\frac{5\pi}{6}+2\pi k< p<\frac{13\pi}{6}+2\pi k$, $k\in \mathbb{Z}$, то 2 корня; если $\frac{\pi}{6}+2\pi l< p<\frac{5\pi}{6}+2\pi l$, $l\in \mathbb{Z}$, то нет корней; г) если p<1, то нет корней; если $1< p<\frac{10}{9}$, то 2 корня; если $p=\frac{10}{9}$, то 3 корня; если $p>\frac{10}{9}$, то 4 корня. 29.6. а) $1\leq p<3$;

6)
$$p \ge 1$$
; в) $p < 1$; г) $p \ge 3$. 29.8. а) 3, 1; б) -2 , 5; в) $\frac{1}{7}$; г) -2 . 29.9. а) 0, 5; б) -2 , 5; в) 2 , 5; г) нет корней. 29.10. а) 3; б) 1; в) $\frac{2}{3}$; г) 16. 29.11. а) $(-1)^n \frac{\pi}{4} + \pi n, n \in \mathbb{Z}$; б) $\frac{\pi}{2} + \pi n, \pi (1+2n), \pm \frac{3\pi}{4} + 2\pi n, n \in \mathbb{Z}$; в) $\frac{\pi}{2} + \pi n, \pm \frac{\pi}{6} + 2\pi n, n \in \mathbb{Z}$; г) $-\frac{\pi}{2} + 2\pi n, \pi n, (-1)^{n+1} \frac{\pi}{4} + \pi n, (-1)^{n+1} \frac{\pi}{3} + \pi n, (-1)^{n+1} \frac{\pi}{6} + \pi n, n \in \mathbb{Z}$. 29.13. а) 0, 1, 9; б) 0, 1, $\frac{3 \pm \sqrt{33}}{2}$; в) 0, 7; г) 2, 4. 29.14. а) -2 , 4; б) -1 , 23; в) 7, 19; г) 1, 1, 6. 29.16. а) 1; б) 1; в) 2; г) нет корней. 29.17. а) 0,5; б) 1; 29.18. а) $\pi (1+2n), n \in \mathbb{Z}$; б) $\frac{\pi (4n-1)}{12}, n \in \mathbb{Z}$; в) $\frac{\pi (2n+1)}{4}, n \in \mathbb{Z}$; г) $\frac{\pi (6n+1)}{18}, n \in \mathbb{Z}$. 29.20. а) 4; б) 8; в) все целье числа кроме 1, $-\frac{2}{3}$; $\pm \frac{2}{3} + 2k, k \in \mathbb{Z}, k \neq 0$; г) корней нет. 29.22. а) [1; 4]; б) (1; 2]; в) $[-2$; 0] \cup [2; 5]; г) $\left(-\infty$; $-\frac{4}{3}\right] \cup (0$; 1]. 29.24. а) $[-4$; -3] \cup [0; 3]; 6) $[-1$; 0) \cup (0; 1]; в) $[-3$; -1] \cup [1; 4]; г) $\left(-\infty$; $-\frac{7}{3}\right] \cup \left[-\frac{6}{5}$; $-1\right) \cup (-1$; 0]. 29.25. а) $-\frac{\pi}{6} + 2\pi k \le x \le \frac{\pi}{3} + 2\pi k, \frac{\pi}{6} + 2\pi k \le x \le \frac{4\pi}{3} + 2\pi k, k \in \mathbb{Z}$; 6) $[0,01; 10] \cup [100; +\infty)$; в) $\frac{\pi}{6} + 2\pi k \le x \le \frac{\pi}{3} + 2\pi k, \frac{\pi}{6} + 2\pi k \le x \le \frac{4\pi}{3} + 2\pi k, k \in \mathbb{Z}$; г) [9; 100]. 29.28. а) $(-\infty$; 1] \cup [5; $+\infty$); 6) $(-6$; 10); 8) $[-3,4; -0,6]$; г) $(-\infty; -7) \cup (1; +\infty)$. 29.30. а) $(-\infty; 0) \cup (0; +\infty)$; 6) [4; 12). 29.31. а) $\left(-\infty; \frac{1}{3}\right] \cup \left[1, +\infty\right$; 6) $(-\infty; 2)$; 8) $(-\infty; 0,75) \cup (2,5; +\infty)$; г) $(-\infty; -0.5] \cup [-0.25; +\infty)$; 6) $(-\infty; -2) \cup (-2; -1] \cup \left(\frac{1+\sqrt{33}}{2}; -2\right) \cup (-2; -1] \cup \left(\frac{1+\sqrt{33}}{2}; +\infty\right)$; 6) $(-\infty; -2) \cup (-2; -1] \cup (1; 2)$; 7) $(-\infty; -2) \cup (-2; -1; 0)$ (1; + ∞); 6) $(-0; -2; 0)$ 3. (1; $(-\infty; -2) \cup (-2; -1; 0)$ (2; 2) 3. (2) $(-\infty; -2) \cup (-2; -1; 0)$ (3; 4,5);

r)
$$\left(-\frac{5}{3};\ 1\right)$$
. 29.35. a) $(-4;\ -1)\ \cup\ (1;\ 4);\ 6)\ (-9;\ 0)\ \cup\ (0;\ 2)\ \cup\ (2;\ 5);$

$$\mathbf{B})\left(-\infty;\,\frac{-11-\sqrt{97}}{2}\right)\cup\left(-1;\,\frac{-11+\sqrt{97}}{2}\right)\cup(10;\,+\infty);\,\mathbf{r})\,(-\infty;\,-12)\cup(8;\,+\infty).$$

29.37. a)
$$\left(-\frac{4}{3}; -\frac{2}{7}\right)$$
; б) $\left(\frac{2}{9}; +\infty\right)$; в) $\left[-\frac{1}{4}; \frac{4}{3}\right]$; г) [-6; 0].

29.38. a)
$$(-\infty; -13) \cup \left(\frac{1-\sqrt{22}}{3}; 1\right) \cup \left(\frac{1+\sqrt{22}}{3}; +\infty\right);$$

$$\text{6)}\left[-\frac{21+\sqrt{465}}{2};\;-3\right]\cup\left[\frac{-21+\sqrt{465}}{2};\;2\right];\;\text{b)}\;[0;\,1]\cup[2;\,+\infty);\;\text{f)}\;(-\infty;\,-1]\cup\left[-21+\sqrt{465}\right]$$

$$\cup \left[\frac{5}{3}; +\infty\right] \cdot 29.39. \ a) \left(-\frac{5}{3}; -\frac{1}{3}\right) \cup \left(-\frac{1}{3}; \ 0\right); \ 6) \left(-\frac{\sqrt{3}}{3}; \frac{1-\sqrt{13}}{6}\right) \cup$$

$$\cup \left(\frac{1-\sqrt{13}}{6}; -\frac{1}{3}\right) \cup \left(\frac{\sqrt{3}}{3}; \frac{1+\sqrt{13}}{6}\right) \cup \left(\frac{1+\sqrt{13}}{6}; 1\right); \text{ B) } (-\infty; -6] \cup$$

$$\cup \left[-\frac{4}{3}; \ 0\right] \cup (0; +\infty); \ r) \ (-\infty; \ 0) \cup (0; +\infty). \ 29.41. \ a) \ -\infty < x < +\infty;$$

- б) выполняется при всех действительных значениях x, кроме -3, -1, 2;
- в) выполняется при всех действительных значениях x, кроме -2, 2;
- г) выполняется при всех действительных значениях x, кроме -1, 1, 2.

29.42. a)
$$\left(\frac{-3-\sqrt{13}}{2}; \frac{-3+\sqrt{13}}{2}; 6\right)$$
 (-\infty; -1) \cup (0; 1); B) (-0,2; 0);

r)
$$(-\infty; 0) \cup (7; +\infty)$$
, 29.44, a) $(-\infty; -5] \cup [1; +\infty)$; b) $[-1; 0) \cup [3; +\infty)$;

r)
$$(-\infty; 0) \cup (7; +\infty)$$
. 29.44. a) $(-\infty; -5] \cup [1; +\infty)$; d) $[-1; 0) \cup [3; +\infty)$; b) $(-\infty; -0,5] \cup (0; +\infty)$; r) $[1; +\infty)$. 29.45. a) $(6; +\infty)$; d) $[-1; +\infty)$;

B)
$$\left(-\infty; -\frac{9}{14}\right] \cup [1; +\infty); \ r) \ [-0,6; \ 1].$$
 29.46. a) $\left(\frac{1}{3}; \ 1\right); \ 6) \left(-\frac{29}{37}; \ 1\right) \cup [-1, 0]$

$$\cup \left(\frac{14}{3}; \ 7\right); \ \text{b)} \ (-2; \ 2]; \ \text{f)} \ [-1; \ 0) \ \cup \ [2; \ +\infty). \ \textbf{29.47}. \ \text{a)} \ [0; \ 2]; \ \text{6)} \ [0; \ +\infty);$$

B)
$$(-6; 1)$$
; r) -1 . 29.48. a) $(-\infty; 0,6) \cup (4; +\infty)$; 6) $[-5; 1]$; B) $(-3; +\infty)$;

r)
$$(-\infty; -1] \cup [0; +\infty)$$
. 29.49. a) $(-\infty; 0) \cup \left(0; \frac{1}{3}\right) \cup (1; +\infty)$; 6) $(-\infty; -2) \cup$

$$\cup \left(-2; \ -\frac{29}{37}\right) \cup \left(1; \ \frac{14}{3}\right) \cup \ (7; \ +\infty); \ _{B}) \ (-\infty; \ -2) \cup \ [2; \ +\infty); \ _{\Gamma}) \ (-\infty; \ -2) \cup \ [2; \ +\infty); \ (-\infty; \ +\infty)$$

$$\cup$$
 (-2; -1] \cup (0; 2]. 29.50. a) \mathbb{R} ; 6) $\left[0; \frac{11}{4}\right] \cup [14; +\infty)$; B) $(-\infty; 1) \cup (1; +\infty)$;

$$\text{r)}\left(-\infty;\ \frac{-9-\sqrt{65}}{2}\right] \cup [-1;\ +\infty).\ \ \textbf{29.52.} \quad \text{a)}\ \left[-\frac{7}{3};\ +\infty\right];\ \ \textbf{6)}\ \ (-\infty;\ 0) \ \cup \ \ (0;\ 1].$$

29.54. a)
$$\left(-\infty, -\sqrt{7}\right) \cup \left(-\frac{5}{3}; \sqrt{7}\right);$$
 6) $\left(-\infty, -\sqrt{3}\right) \cup (0; 1) \cup \left(\sqrt{3}; +\infty\right);$

B)
$$\left[-\sqrt{7}; -\frac{5}{3}\right] \cup \left[\sqrt{7}; +\infty\right); \text{ r) } \left(-\sqrt{3}; 0\right) \cup \left[1; \sqrt{3}\right). \text{ 29.55. a) } (-\infty; -3) \cup \left[-\sqrt{3}; 0\right]$$

$$\cup$$
 (-1; 1) \cup (3; + ∞); 6) [-1; 4]; B) (-10; 14); r) $x \le -1$, $2 \le x \le 3$, $x \ge 6$.

29.56. a)
$$\left[\frac{-5-\sqrt{21}}{2}; \frac{-5+\sqrt{21}}{2}\right] \cup \left[\frac{5-\sqrt{21}}{2}; \frac{5+\sqrt{21}}{2}\right];$$

6)
$$(-2-\sqrt{2}; -2+\sqrt{2}) \cup (2-\sqrt{2}; 2+\sqrt{2});$$

B)
$$\left(-\infty; -1 - \sqrt{2}\right] \cup \left[1 - \sqrt{2}; 0\right] \cup \left[0; -1 + \sqrt{2}\right] \cup \left[1 + \sqrt{2}; +\infty\right]$$
; r) ± 1 ,

±3. **29.57.** a) a = -1; б) a = -5. **29.58.** a) $t \le 9$; б) при любых действительных t; в) $t \le 15$; г) $t \le 9$. **29.59.** a) $t \le 11$; б) при любых действительных t; в) $t \le 22$; г) $t \le 12$. **29.60.** a) 25; б) 20.

§ 30

30.3. a) 2; б)
$$-\frac{10}{3}$$
, 2; в) 3; г) $-\frac{10}{3}$, 3. **30.5.** a) -9; б) ±5; в) -8, 5;

r) -3, 9. 30.6. a)
$$a \le 2$$
; 6) $a \le 1 + \sqrt[5]{8}$; B) $-1 \le a \le 3$; r) $a \le \sqrt[5]{5}$. 30.8. a) 3;

6)
$$-\frac{1}{3}$$
, 3; B) 4; r) 1. 30.9. a) $\frac{\pi}{4}$ + $2k\pi$, $k \in \mathbb{Z}$; 6) $\frac{\pi}{4}$ + $k\pi$, $k \in \mathbb{Z}$; B) $\frac{\pi}{6}$ + $k\pi$,

$$k \in \mathbb{Z}$$
; г) $\frac{\pi}{4} + k\pi$, $k \in \mathbb{Z}$. 30.10. а) Нет корней; б) 2; в) 0,5; г) нет корней.

30.11. а) При
$$a \ge -1$$
 $x = a - 1$; при $a < -1$ корней нет; б) при $a \le 0,5$ $x = \frac{2(a+1)}{3}$; при $a > 0,5$ корней нет; в) при $a \ge \frac{2}{7}$ $x = \frac{3a}{4} + 1$, при $a < \frac{2}{7}$

корней нет; г) при
$$-8 \le a \le 8$$
 $x = \sqrt{8-a} - 2$, при $|a| > 8$ корней нет.

30.13. а) 4; б) корней нет; в) 11; г) 1. 30.14. а) Корней нет; б) 2; в)
$$\pm \sqrt{3}$$
;

r) -0,5. 30.15. a)
$$\arccos \frac{\sqrt{5}-1}{2} + 2k\pi, k \in \mathbb{Z}; 6$$
 6) $-\frac{\pi}{4} + 2k\pi, k \in \mathbb{Z};$

B)
$$(-1)^k \arcsin \frac{1}{\sqrt{3}} + k\pi, k \in \mathbb{Z}; r) \frac{\pi}{2} + k\pi, \pi - \arcsin \frac{1}{4} + 2k\pi, k \in \mathbb{Z}.$$
 30.16. a) 1;

6) 3; B) -1,
$$\frac{71}{9}$$
; r) -1. 30.17. a) 7, 8; 6) 0; B) 2; r) 64. 30.18. a) $-\frac{1}{3}$, 1;

б) -1, 0; в) 1, 2; г) -2, 1. 30.19. а) 9; б)
$$\frac{-1 \pm \sqrt{10}}{2}$$
; в) 1; г) $-\frac{17}{18}$, 1.

30.20. a)
$$\frac{7}{6}$$
; 6) -3,8, 1. **30.21.** a) -7, 2; 6) $\frac{-1 \pm \sqrt{85}}{18}$. **30.22.** a) 4;

6) 12. 30.23. a) 2; 6)
$$\log_3 11$$
; B) $\log_{0.5} 3$; r) 0,5. 30.24. a) $\log_2 6$; 6) $\log_3 11$, 3.

30.25. a) 5; 6) 2. **30.26.** a) 1, 20; 6) 1, 3; B)
$$\pm 3$$
; r) 8, $8 \pm \frac{12\sqrt{21}}{7}$. **30.27.** a) 10^5 ;

6)
$$\log_5 2$$
. 30.28. a) 4; 6) 2. 30.29. a) 0,125; 6) 8. 30.30. a) 1; 6) 3, $\frac{5 + \sqrt{297}}{8}$.

30.31. a) 0; 6) 0,25. **30.32.** a) -2; 6) 1. **30.34.** a)
$$\left(-2; \ 2-\sqrt{7}\right] \cup \left[2+\sqrt{7}; \ 6\right]$$
;

6)
$$\{0\} \cup [2; +\infty); \ \ _{B}) \left(-1; \ \frac{11}{12}\right); \ \ _{\Gamma}) \ [-1; +\infty). \ \ 30.35. \ a) \left[-\frac{5}{4}; \ 1\right];$$

6)
$$\left(-\frac{21}{4};\ -3\right]\cup\left[-\frac{5}{4};\ 1\right];\ \ \text{B) } [3;\ +\infty);\ \ \text{r) } (-\infty;\ -2,5]\cup[3;\ +\infty).$$

30.36. a)
$$\left(-\frac{\pi}{3} + 2k\pi; \frac{\pi}{3} + 2k\pi\right)$$
, $k \in \mathbb{Z}$; 6) $\left[-\frac{\pi}{6} + \frac{k\pi}{2}; \frac{\pi}{6} + \frac{k\pi}{2}\right]$, $k \in \mathbb{Z}$;

B)
$$(2 \operatorname{arcctg} 2 + 2k\pi; \pi + 2k\pi], k \in \mathbb{Z}; r) \left(-\frac{\pi}{3} + \frac{2}{3}k\pi; \frac{2}{3}k\pi\right), k \in \mathbb{Z}.$$

30.37. a)
$$[-9; 0]; 6)$$
 $\left[-5; -\frac{5}{\sqrt{6}}\right] \cup \left[\frac{5}{\sqrt{6}}; 5\right]; B)$ $\left[-8; \frac{-3-\sqrt{109}}{2}\right] \cup$

$$\cup \left[\frac{-3+\sqrt{109}}{2}; 5\right]; \text{ r) } \left[-3; 3-2\sqrt{5}\right) \cup \left(3+2\sqrt{5}; 9\right]. \text{ 30.38. a) } a < 2;$$

б)
$$a > -1$$
. 30.39. a) Таких a не существует; б) $a > 3$. 30.41. a) (3; 4]; б) 1;

B) (4; 5]; r)
$$[-1; 1] \cup \left[\frac{5}{3}; +\infty\right]$$
. 30.42. a) $\left[2k\pi; \frac{\pi}{4} + 2k\pi\right]$, $k \in \mathbb{Z}$;

6)
$$\left[k\pi - \frac{\pi}{4}; \frac{\pi}{6} + k\pi\right] \cup \left(k\pi + \frac{\pi}{6}; \frac{\pi}{4} + k\pi\right], k \in \mathbb{Z}.$$
 30.43. a) $\left[1; \frac{5}{3}\right];$

б)
$$\left[\frac{17}{7}; \frac{72}{29}\right]$$
. 30.44. a) $(a-1; 2a]$ при $a > -1$; решений нет при $a \le -1$;

б)
$$\left\lceil \frac{2}{3}(a+1); \; \frac{2a+4}{5} \right\rceil$$
 при $a < 0.5; \; x=1$ при $a=0.5;$ решений нет при

$$a>0,5;$$
 в) $\left(1+rac{3a}{4};\;rac{5a+1}{2}
ight]$ при $a>rac{2}{7};\;$ решений нет при $a\leqslantrac{2}{7};\;$ г) [-2; 2]

при $a \geqslant 8; \ \left[-2 + \sqrt{8-a}; \ 2 \right]$ при $-8 < a < 8; \ 2$ при a = -8; решений нет при a<-8. 30.46. a) (3; $+\infty$); б) $\left[6-\sqrt{41};\ 11\right)$; в) $\left[2;\ \sqrt[3]{10}\right]$; г) $\left[-1;\ 1\right]$ \cup $\cup \left[1+\sqrt{2,5}; +\infty\right)$. 30.47. a) $(-\infty; -2] \cup \left[5; \frac{74}{13}\right]$; 6) $(-\infty; 0] \cup (4,5; +\infty)$; в) $\left[-\frac{10}{13}; 2\right] \cup [3; +\infty);$ г) ($-\infty; 0$]. 30.48. а) Нет решений; б) R. 30.49. а) (-3; 1); 6) $\left[-\frac{14}{3}; -3\right] \cup \{1\}; B)$ (1; 2) \cup (5; $+\infty$); r) ($-\infty$; -6] \cup {-2}. 30.50. a) [4; 5); 6) $\left[3; \ 1 + \frac{16\sqrt{15}}{15}\right]$; B) x = 4; r) $\left[\frac{5}{3}; \ 2\right] \cup \left[\frac{15}{4}; \ 6\right]$. 30.51. a) $(-\infty; \frac{-1-\sqrt{73}}{2}] \cup \left[\frac{-1+\sqrt{73}}{2}; +\infty\right];$ 6) $\left[\frac{1-\sqrt{41}}{4}; -0.5\right] \cup \left[1; \frac{1+\sqrt{41}}{4}\right]$. 30.52. a) $(-\infty; -1.5) \cup \left(0.5; \frac{7}{6}\right) \cup \left(0.5; \frac{7}{6}\right)$ $\cup \left(\frac{7}{6}; +\infty\right); \ 6) \left(-\infty; -\frac{19}{5}\right) \cup (1; +\infty). \ 30.53. \ a) \ (-2;2]; \ 6) \ [1;+\infty).$ **30.54.** a) $(-\infty; -1) \cup (0; 1];$ 6) $[6; +\infty)$. **30.55.** a) $\frac{k\pi}{2}$, $k \in \mathbb{Z}$; 6) $\left[-\frac{\pi}{4} + 2k\pi, \frac{\pi}{2} + 2k\pi\right]$, $k \in \mathbb{Z}$. 30.56. a) (1; $\log_3 12$]; 6) ($-\infty$; $\log_5 11$); B) $\left[\log_{0.2} 7; \frac{\pi}{4}\right]$ $\log_{0.2} 3]; \text{ r) } [\log_{100} 2; \log_{100} 6]. \ 30.57. \ a) \ \Bigg[2k\pi \ - \frac{\pi}{2}; \ 2k\pi \ + \arccos\frac{\sqrt{5} - 1}{2} \Bigg], \ k \in \mathbf{Z};$ 6) $\left[2k\pi - \frac{3\pi}{4} + \arccos\frac{\sqrt{2}}{4}; \ 2k\pi - \frac{\pi}{4}\right], \ k \in \mathbb{Z}; \ B) \left[2k\pi - \frac{\pi}{4}; \ 2k\pi + \arcsin\frac{1}{\sqrt{3}}\right] \cup$ $\bigcup \left\lceil (2k+1)\pi - \arcsin\frac{1}{\sqrt{3}}; \ 2k\pi + \frac{5\pi}{4} \right\rceil, \quad k \in \mathbf{Z}; \quad \Gamma) \left\lceil 2k\pi; \ 2k\pi + \arcsin\frac{1}{4} \right\rceil \ \cup$ $\cup \ \left\{ \frac{\pi}{2} + k\pi \right\}, \ k \in \mathbf{Z}. \ \mathbf{30.58.} \ a) \ [0; \ 4); \ 6) \ (2; \ +\infty); \ B) \ [-9; \ 0]; \ r) \ [-2; \ 2].$ **30.59.** a) $\left[-\frac{3}{8}; \frac{1}{8}\right]$; 6) (1; 17]; B) $\left[0,125; +\infty\right)$; r) $\left[-\frac{1}{3}; 1\right]$. **30.60.** $\left[-1; 0\right]$ \cup (3; + ∞). 30.61. a) Если a < 1, то $\left[a; \, \frac{3-\sqrt{5-4a}}{2}
ight]$; если $a\geqslant 1$, то решений нет; б) если $a>\frac{9}{8}$, то решений нет; если $a=\frac{9}{8}$, то x=-1,75; если $1\leqslant a<\frac{9}{8}$, то $\left[\frac{1-4a-\sqrt{9-8a}}{2};\,\frac{1-4a+\sqrt{9-8a}}{2}\right]$; если a<1, то $\left[-2;\,\frac{1-4a+\sqrt{9-8a}}{2}\right]$. 30.62. a) $[-3;\,-1)\cup[1;\,+\infty)$; б) $[-2;\,1)\cup[1;\,+\infty)$

5 31

 \cup (2; +\infty); B) {-4} \cup (-2; 0]; r) (0,5; 1).

31.1. a) a < b; 6) $a \ge b$; B) a < b; r) a < b. **31.2.** a) a > b; 6) a > b. **31.3.** a) a > b; 6) a > b. **31.4.** a) a > b; 6) a > b. **31.5.** a) a < b; 6) a < b. **31.6.** a) a > b; 6) a > b; B) a > b; r) a < b; r) a < b. **31.7.** a) a < b; 6) a < b; B) a < b; r) a > b.

§ 32

32.14. a) 12; 6) 120; B) 48; r) 2pq. 32.15. a) $-6 \le x \le 6$; 6) $-2 \le y \le 2$; B) $-6 \le x + 3y \le 6$; r) $-6 \le x + y \le 6$. 32.16. a) $-12 \le -3x - 2y \le 6$; 6) $4,5 \le x^2 + y^2 \le 45$; B) $-27 \le 5x + 7y \le 15$; r) $-20,25 \le xy \le 0$. 32.21. a) x = 7 - 2k, y = k, rhe $k \in \mathbb{Z}$; f) x = 1 - 2k, y = 7k - 3, rhe $k \in \mathbb{Z}$; B) x = k, y = 17 - 5k, rhe $k \in \mathbb{Z}$; r) x = 12k - 5, y = 7k - 3, rhe $k \in \mathbb{Z}$; 32.22. a) $x = 7 - 2k^2$, y = k, rhe $k \in \mathbb{Z}$; f) x = 1 - 2k, $y = 2k - 2k^2$, rhe $k \in \mathbb{Z}$; B) x = k, $y = 17 - 5k^2$, rhe $k \in \mathbb{Z}$; r) $x = 4 - 18k + 21k^2$, y = 3 + 7k, $x = 7 - 24k + 21k^2$, y = 4 + 7k, rhe $k \in \mathbb{Z}$. 32.23. a) (-4; -1), (-1; -1), (1; 1), (4; 1); 6) (-3; 1), (2; 1); B) (0; -1), (0; 1), (1; 1), (-1; -1); r) (-2; -1), (0; 1). 32.28. a) $c < -\frac{1}{11}$, $c > \frac{8}{7}$; 6) -34 < c < -33. 32.38. a) 6; 6) 144.

32.39. a)
$$8\sqrt{3} + 8\pi$$
; 6) $\frac{1}{2}(\pi + \sqrt{3})$. 32.40. a) $\frac{7}{8}$; 6) $\frac{9}{32}$; B) $\frac{1}{8}$; r) $\frac{7}{24}$.

§ 33

33.1. a) (1; 2), (1,5; 1,5); 6) (0; 2), (-2; 0); B) (2; 3), (3; 2); r) (3; -1), (9; -4). 33.2. a)
$$\left(\frac{3\pi}{8} + \frac{\pi n}{2}; -\frac{\pi}{8} - \frac{\pi n}{2}\right)$$
; 6) (0; -1); B) $\left(\frac{1}{2}; \frac{1}{4}\right)$; r) (-1; -2). 33.3. a) (-1; 2); 6) (4; 1); B) (1; 1), (1; -1); r) (8; 1). 33.4. a) $\left(\frac{1}{8}; 9\right)$; 6) $\left(\pi + 2\pi n; \pm \frac{\pi}{6} + \pi k\right)$; B) $\left(\frac{5}{3}; \frac{2}{3}\right)$; r) $\left((-1)^n \frac{\pi}{12} + \frac{\pi n}{2}; \frac{\pi}{12} + \frac{\pi k}{3}\right)$. 33.5. a) (2; 1);

6) (1; -2). 33.6. a) (3; 2); 6) (8; 2). 33.7. a) (2; 2); 6) (2; 6), (-2; 10);

B)
$$\left(\pm\frac{\pi}{3}+\pi n; -\frac{\pi}{2}+2\pi k\right)$$
; r) (5; 3), (3; 1). 33.8. a) 2; 6) 3; B) 7; r) 1.

33.9. a)
$$(1; 2)$$
, $(2; 1)$; b) $(2; -4)$, $(4; 0)$. **33.10.** a) $(-1; 1)$; b) $(1; 1)$.

33.11. a) (0; 0); 6)
$$\left(\frac{\pi}{4}; 1\right)$$
. **33.13.** a) (1; 1), (1,4; 0,2); 6) (2; 1), (-2; 1),

(2; -1), (-2; -1); B)
$$\left(\frac{3\pi}{4} + \pi(n+k); -\frac{\pi}{4} + \pi(n-k)\right)$$
; P) (2; 1). 33.14. a) (3; 0);

б)
$$(a;3a)$$
, где $a-$ любое число, кроме $0;$ в) $\left(\frac{1}{2};\frac{1}{2}\right);$ г) $(2;-1)$. 33.15. а) $(2;2)$,

$$(-2; -2);$$
 6) $(7; -1),$ $(-1; -3).$ 33.16. a) $(3; 2),$ $(-3; 2),$ $(3; -2),$ $(-3, -2);$

33.18. a) (1; 2), (-1; -2); б) (-1; 1). **33.19.** a) (6; 2), (-6; -2); б)
$$(x; -2x)$$
, $(x; -3x)$, где x — любое число, кроме 0. **33.20.** a) $(2; -2)$, $(-2; 2)$; б) $(4; 2)$,

$$(-4; -2), \left(-\frac{5}{4}, \frac{3}{4}\right), \left(\frac{5}{4}, -\frac{3}{4}\right).$$
 33.21. a) (1; -2), (-1; 2); 6) $\left(2; \frac{1}{2}\right)$,

$$\left(-2; -\frac{1}{2}\right), \left(\frac{\sqrt{10}}{5}; -\frac{2\sqrt{10}}{5}\right), \left(-\frac{\sqrt{10}}{5}; \frac{2\sqrt{10}}{5}\right).$$

33.22. a) (3; 4), (4; 3),
$$\left(\frac{-6+\sqrt{14}}{2}; \frac{-6-\sqrt{14}}{2}\right)$$
, $\left(\frac{-6-\sqrt{14}}{2}; \frac{-6+\sqrt{14}}{2}\right)$;

6) (2; 3), (3; 2),
$$\left(-2+\sqrt{7}; -2-\sqrt{7}\right)$$
, $\left(-2-\sqrt{7}; -2+\sqrt{7}\right)$.

33.23. a) (6; 6),
$$\left(\frac{-3+\sqrt{45}}{2}; \frac{-3-\sqrt{45}}{2}\right)$$
, $\left(\frac{-3-\sqrt{45}}{2}; \frac{-3+\sqrt{45}}{2}\right)$;

6) (1; 4), (4; 1),
$$\left(\frac{5+\sqrt{41}}{2}; \frac{5-\sqrt{41}}{2}\right)$$
, $\left(\frac{5-\sqrt{41}}{2}; \frac{5+\sqrt{41}}{2}\right)$.

33.26. a) (3; 1), (2; 1,5); 6) (-4; 0),
$$\left(-\frac{40}{9}; -\frac{32}{9}\right)$$
. **33.27.** a) (2; 1), (1; 2);

$$(-2; -7); 6) (-1, 6; -2). 33.31. a) (8; 1), (1; 8); 6) \left(\frac{10}{3}; -\frac{7}{3}\right). 33.32. a) (1; 4),$$

$$\left(\frac{49}{9}; \frac{16}{9}\right)$$
; 6) (4; 1). 33.33. a) (1; -4); 6) (3; 1). 33.34. a) (2; 3), (3; 2);

6) (42; 39). 33.35. a)
$$\left(\frac{1}{9}; \frac{1}{81}\right)$$
; 6) $\left(\sqrt{2}; \frac{\sqrt{2}}{2}\right)$. 33.36. a) $\left(\frac{1}{2}; \frac{1}{2}\right)$, $\left(\frac{1}{2}; 4\right)$;

6)
$$\left(3; \frac{1}{3}\right)$$
, (3; 9). 33.37. a) (4; 4); 6) (2; 2). 33.38. a) $\left(\frac{\pi}{6} + \pi n; \frac{\pi}{6} - \pi k\right)$;

6)
$$\left(\pi n; \frac{\pi}{4} - \pi k\right)$$
, $\left(-\frac{\pi}{4} + \pi n; \frac{\pi}{2} - \pi k\right)$. 33.39. a) $\left((-1)^n \frac{\pi}{6} + \pi n; \pm \frac{2\pi}{3} + 2\pi k\right)$,

$$\left((-1)^{n+1}\frac{\pi}{6}+\pi n;\pm \frac{\pi}{3}+2\pi k\right); 6)\left(\frac{\pi}{2}+\pi n;\pm \frac{\pi}{3}+2\pi k\right), \left(\pm \frac{\pi}{3}+2\pi n;\pm \frac{\pi}{2}+\pi k\right).$$

33.40. a)
$$\left(\frac{3\pi}{4} + \frac{\pi}{2}(2\pi + k); -\frac{\pi}{4} + \frac{\pi}{2}(k-2n)\right)$$
;

6)
$$\left(\frac{7\pi}{12} + \frac{\pi}{2}(n+2k); -\frac{\pi}{12} + \frac{\pi}{2}(n-2k)\right), \left(-\frac{\pi}{12} + \frac{\pi}{2}(n+2k); \frac{7\pi}{12} + \frac{\pi}{2}(n-2k)\right).$$

6) (2; 0; -1),
$$\left(-\frac{20}{11}; \frac{14}{11}; \frac{3}{11}\right)$$
. 33.43. a) $y = 2x^2 - 5x + 1$; 6) $y = 3x^2 - 2x + 1$.

33.44.
$$b_1$$
 = 6, $q = -\frac{1}{2}$. 33.45. 1, 3, 4 или $\frac{4}{3}$, $\frac{7}{3}$, $\frac{13}{3}$. 33.46. 3, 9, 27. 33.47. 4.

§ 34

34.1. а) $m \neq 1$; б) таких значений m нет; в) m = 1. 34.2. а) $b \neq \pm 1$; б) b = -1; в) b = 1. 34.3. а) $x = \frac{1}{a+2}$, если $a \neq \pm 2$; x — любое действи-

тельное число, если a=2; нет корней, если a=-2; б) x=a, если $a\neq -1$ и $a\neq 0$; x — любое действительное число, если a=-1; нет корней, если a=0. 34.4. а) Если a=1 или 3,5 или -1,5, то корней нет; в остальных случаях $x=\frac{5}{a-1}$; б) если a=0, или 2, или 4, то корней нет; в осталь-

ных случаях $x = \frac{6}{2-a}$: 34.5. a) $x \ge m+1$, если m > 1; $x \le m+1$, если

$$m < 1; -\infty < x < +\infty,$$
 если $m = 1;$ б) $x > \frac{1}{b+1}$, если $b < -1,$ $b > 1;$ $x < \frac{1}{b+1}$,

если -1 < b < 1; $-\infty < x < +\infty$, если b = -1; нет решений, если b = 1. 34.6. a) $x \geqslant \frac{b+2}{b}$, если b > 1, b < 0; $x \leqslant \frac{b+2}{b}$, если 0 < b < 1;

x — любое действительное число, если b=0, b=1; 6) $x \le a,$ если a>0,a < -1; $x \ge a$, если -1 < a < 0; $-\infty < x < +\infty$, если a = -1; нет решений, если a = 0. 34.7. a) a < 0, 0 < a < 1, a > 4; б) a = 0, 1, 4; B) 1 < a < 4. 34.8. a) $a \ge -7$; 6) $a \ge -5$. 34.9. a) 1; 6) 2. 34.10. a) $\pm 1, 5$; 6) ± 1 . **34.11.** a) a=1, $a=\frac{1}{\sqrt[4]{3}}$; б) $a\leqslant 0$, $a>\sqrt{2}$. **34.12.** a) Если $a=-\frac{1}{3}$, то $x=-\frac{2}{2}$; если a=1,5, то x=-2,5; если a=-4, то x=-8; если $a\neq -\frac{1}{3}$, 1,5, -4, то $x_1 = 2a$, $x_2 = -a - 1$; б) если a = -3, то x = -6; если a = -2, то x = -5; если a = 0, то корней нет; если a = 1, то x = 2; если a = 2, то x = 3; если $a \neq -3$, -2, 0, 1, 2, то $x_1 = a + 1$, $x_2 = a - 3$. 34.13. a) -9; 6) 4. **34.14.** a) $b \ge 1$; 6) $b \ge 3$. **34.15.** a) a < -4; 6) a > 20. **34.16.** a) $a < -\frac{2}{5}$; 6) $-\frac{5}{4} < a < \frac{1}{4}$. 34.17. a) a > 0, b > 0, c < 0; 6) a < 0, b > 0, c > 0; **34.18.** a) a > 4; 6) a < -1. **34.19.** a) $a \le -1$; 6) 0 < a < 1. **34.20.** a) a = 2; б) $-4 < a \le -3$, $5 \le a < 6$. 34.21. a) $x \ge 2$, если a < 2; $x \ge a$, если $a \ge 2$; б) a < x < 6, если a < 6; нет решений, если $a \ge 6$. 34.22. a) $-1 \le a \le 3$; б) $\frac{1}{2} < a < 1$. 34.23. а) a < -3, $2 \le a \le 6$; б) a < 2; $3\frac{3}{4} < a \le 6$; в) ни при каких; г) a=2, $3\frac{3}{4} < a \leqslant 6$. 34.24. Если $a \leqslant -\frac{4}{5}$, то $-\infty < x < +\infty$; если $-rac{4}{5} < a < 1$, то $x \leqslant x_1$, $x \geqslant x_2$; если a = 1, то $x \leqslant -1rac{1}{6}$; если a > 1, то $x_2 \leqslant x \leqslant x_1$; здесь $x_1 = \frac{-(2a+1) + \sqrt{5a+4}}{a-1}$, $x_2 = \frac{-(2a+1) - \sqrt{5a+4}}{a-1}$. 34.25. a) $0 < a \le 2$; б) $a = \pm 3$. 34.26. a) Если $\frac{1}{3} \le a \le 1$, то $x = (-1)^n \arcsin{(3a-2)} + \pi n;$ если $a < \frac{1}{3}$ или a > 1, то корней нет; 6) если $\frac{1}{2} \le a \le 1$, то $x = \pm \frac{1}{2} \arccos{(4a - 3)} + \pi n$; если $a < \frac{1}{2}$ или a > 1, то корней нет. 34.27. a) Если $-2 \le a \le 2$, то $x = \frac{\pi}{3} \pm \arccos \frac{a}{2} + 2\pi n$; если a < -2 или a > 2, то корней нет; б) если $-2 \leqslant a \leqslant 3$, то x == ${\arccos \, \frac{4}{5} \pm \arccos \, \frac{2a-1}{5} \, + \, 2\pi n}; \,\,$ если a < -2 или a > 3, то корней нет. **34.28.** a = 0. **34.29.** a) $a = \frac{13}{4}$, $a \le 1$; b) a < 1. **34.30.** a) a < 0; b) a > 0.

34.31. а) $2\pi n$, $\arctan 6 + 2\pi n$; б) $-\frac{\pi}{2} + 2\pi n$, $\arctan \frac{1}{4} + \pi(2n+1)$. 34.32. а) 0 < a < 4; б) -15 < a < 17. 34.33. а) a < -12; б) $-5 \le a \le 0$. 34.34. а) Нет корней, если $a < -\frac{1}{4}$; один корень, если $a = -\frac{1}{4}$ или a > 0; два корня, если $-\frac{1}{4} < a \le 0$; б) нет корней, если a < -2 или $a > 2\sqrt{2}$; один корень, если $-2 \le a < 2$ или $a = 2\sqrt{2}$; два корня, если $2 \le a < 2\sqrt{2}$. 34.35. а) $p \le -3$, p > 3, p = 1; б) $-3 . 34.36. а) <math>-\frac{1}{2} < a < 1$; б) $-1 < a < \frac{1}{2}$. 34.37. а) a = 0, a > 9; б) 0 < a < 9. 34.38. а) -5 < a < 5; б) $a \le -2$. 34.39. а) Если a < 0, то корней нет; если a = 0 или a > 2, то два корня; если a = 2, то три корня; если 0 < a < 2, то четыре корня; б) если a < 2, то корней нет; если a = 2, то $x_{1,2} = \frac{4 \pm a}{2}$. 34.40. $x_{2,2} = \frac{4 \pm a}{2}$. 34.41. а) $x_{2,2} = \frac{4 \pm a}{2}$. 34.43. $x_{2,3} = \frac{4 \pm a}{2}$. 34.44. $x_{3,4} = \frac{4 \pm a}{2}$. 34.44. $x_{3,4} = \frac{4 \pm a}{2}$. 34.45. $x_{3,4} = \frac{4 \pm a}{2}$. 34.46. $x_{3,4} = \frac{4 \pm a}{2}$. 34.47. $x_{3,4} = \frac{4 \pm a}{2}$. 34.48. $x_{3,4} = \frac{4 \pm a}{2}$.

Дополнительные задачи

11.79. a) -2; 6) 3. 11.80. a) $x \ge 1$; 6) $x \le 5$. 11.81. a) $x = \pi$; 6) $x = \frac{5\pi}{6}$. 11.82. 1; 100. 13.47. a) 4; 6) 10; B) 4; r) 5. 16.66. -1,25. 17.44. a) $1\frac{63}{64}$; 6) $5\frac{2}{3}$. 18.48. a) 10; 6) 7. 18.49. 3. 18.50. a) $\frac{1}{2} < a \le \frac{\sqrt{3}}{3}$; $\sqrt[4]{3} \le a < \sqrt{2}$; 6) 0 < a < 1; 1 < a < 2. 18.51. 0 < x < 1; 1 < x < 2. 18.52. x < 1; $4\frac{7}{8} < x < 5$; $x > 5\frac{1}{8}$. 26.18. a) 4; 6) 13; B) 4; r) 16. 26.19. $a = \pi n$, $n \in \mathbb{Z}$. 27.58. a) 6; 6) 0,1; B) 5; r) 3. 27.60. a) 1; 6) -4. 28.59. a) 0 < $a \le 10$; 6) $a \ge 1$. 30.63. a) $\pi + 2\pi n$, $\frac{3\pi}{4} + 2\pi n$; $n \in \mathbb{Z}$; 6) arcctg $\frac{1}{4} + 2\pi n$, $\frac{\pi}{2} + 2\pi n$; $n \in \mathbb{Z}$. 30.64. 2. 30.65. a > 2. 31.28. 0. 32.41. a) (1; 1); 6) (2; 3). 32.42. $(\pi n; -1)$, $n \in \mathbb{Z}$. 32.43. a) (2; 1); 6) (0; 0), (3; -2). 33.48. $\left(-\frac{\pi}{2} + 2\pi n; -2\right)$, $n \in \mathbb{Z}$. 34.48. $a \le 2$.

$\Pi\,P\,H\,J\,O\,\mathcal{H}\,E\,H\,H\,E$ Таблица значений функций ϕ и Φ

x	φ(<i>x</i>)	Ф(х)	x	φ(<i>x</i>)	Ф(х)	х	φ(<i>x</i>)	$\Phi(x)$
0,00	0,3989	0,0000	0,40	0,3683	0,1554	0,80	0,2897	0,2881
01	3989	0040	41	3668	1591	81	2874	2910
02	3989	0080	42	3653	1628	82	2850	2939
03	3988	0120	43	3637	1664	83	2827	2967
04	3986	0160	44	3621	1700	84	2803	2995
05	3984	0199	45	3605	1736	85	2780	3023
06	3982	0239	46	3589	1772	86	2756	3051
07	3980	0279	47	3572	1808	87	2732	3078
08	3977	0319	48	3555	1844	88	2709	3106
09	3973	0359	49	3538	1879	89	2685	3133
0,10	0,3970	0,0398	0,50	0,3521	0,1915	0,90	0,2661	0,3159
11	3965	0438	51	3503	1950	91	2637	3186
12	3961	0478	52	3485	1985	92	2613	3212
13	3956	0517	53	3467	2019	93	2589	3238
14	3951	0557	54	3448	2054	94	2565	3264
15	3945	0596	55	3429	2088	95	2541	3289
16	3939	0636	56	3410	2123	96	2516	3315
17	3932	0675	57	3391	2157	97	2492	3340
18	3925	0714	58	3372	2190	98	2468	3365
19	3918	0753	59	3352	2224	99	2444	3389
0,20	0,3910	0,0793	0,60	0,3332	0,2257	1,00	0,2420	0,3413
21	3902	0832	61	3312	2291	01	2396	3438
22	3894	0871	62	3292	2324	02	2371	3461
23	3885	0910	63	3271	2357	03	2347	3485
24	3876	0948	64	3251	2389	04	2323	3508
25	3867	0987	65	3230	2422	05	2299	3531
26	3857	1026	66	3209	2454	06	2275	3554
27	3847	1064	67	3187	2486	07	2251	3577
28	3836	1103	68	3166	2517	08	2227	3599
29	3825	1141	69	3144	2549	09	2203	3621
0,30	0,3814	0,1179	0,70	0,3123	0,2580	1,10	0,2179	0,3643
31	3802	1217	71	3101	2611	11	2155	3665
32	3790	1255	72	3079	2642	12	2131	3686
33	3778	1293	73	3056	2673	13	2107	3708
34	3765	1331	74	3034	2703	14	2083	3729
35	3752	1368	75	3011	2734	15	2059	3749
36	3739	1406	76	2989	2764	16	2036	3770
37	3726	1443	77	2966	2794	17	2012	3790
38	3712	1480	78	2943	2823	18	1989	3810
39	3697	1517	79	2920	2852	19	1965	3830
	L	L	1		L	L		

Продолжение таблицы

x	φ(x)	$\Phi(x)$	x	φ(x)	$\Phi(x)$	х	φ(<i>x</i>)	$\Phi(x)$
1,20	0,1942	0,3849	1,70	0,0940	0,4554	2,40	0,0224	0,4918
21	1919	3869	71	0925	4564	42	0213	4922
22	1895	3888	72	0909	4573	44	0203	4927
23	1872	3907	73	0893	4582	46	0194	4931
24	1849	3925	74	0878	4591	48	0184	4934
25	1826	3944	75	0863	4599	50	0175	4938
26	1804	3962	76	0848	4608	52	0167	4941
27	1781	3980	77	0833	4616	54	0158	4945
28	1758	3997	78	0818	4625	56	0151	4948
29	1736	4015	79	0804	4633	58	0143	4951
1,30	0,1714	0,4032	1,80	0,0790	0,4641	2,60	0,0136	0,4953
31	1691	4049	81	0775	4649	62	0129	4956
32	1669	4066	82	0761	4656	64	0122	4959
33	1647	4082	83	0748	4664	66	0116	4961
34	1626	4099	84	0734	4671	68	0110	4963
35	1604	4115	85	0721	4678	70	0104	4965
36	1582	4131	86	0707	4686	72	0099	4967
37	1561	4147	87	0694	4693	74	0093	4969
38	1539	4162	88	0681	4699	76	0088	4971
39	1518	4177	89	0669	4706	78	0084	4973
1,40	0,1497	0,4192	1,90	0,0656	0,4713	2,80	0,0079	0,4974
41	1476	4207	91	0644	4719	82	0075	4976
42	1456	4222	92	0632	4726	84	0071	4977
43	1435	4236	93	0620	4732	86	0067	4979
44	1415	4251	94	0608	4738	88	0063	4980
45	1394	4265	95	0596	4744	90	0060	4981
46	1374	4279	96	0584	4750	92	0056	4982
47	1354	4292	97	0573	4756	94	0053	4984
48	1334	4306	98	0562	4761	96	0050	4985
49	1315	4319	99	0551	4767	98	0047	4986
1,50	0,1295	0,4332	2,00	0,0540	0,4772	3,00	0,00443	0,49865
51	1276	4345	02	0519	4783			
52	1257	4357	04	0498	4793	3,10	00327	49903
53	1238	4370	06	0478	4803	3,20	00238	49931
54	1219	4382	08	0459	4812			
55	1200	4394	10	0440	4821	3,30	00172	49952
56	1182	4406	12	0422	4830	3,40	00123	49966
57	1163	4418	14	0404	4838		6000-	400==
58	1145	4429	16	0387	4846	3,50	00087	49977
59	1127	4441	18	0371	4854			
1,60	0,1109	0,4452	2,20	0,0355	0,4861	3,60	00061	49984
61	1092	4463	22	0339	4868	3,70	00042	49989
62	1074	4474	24	0325	4875	3,80	00029	49993
63	1057	4484	26	0310	4881	l		
64	1040	4495	28	0297	4887	3,90	00020	49995
65	1023	4505	30	0283	4893	4,00	0,0001338	499968
66	1006	4515	32	0270	4898	4 - 0	0000100	400007
67	0989	4525	34	0258	4904	4,50	0000160	499997
68	0973	4535	36	0246	4909	5,00	0000015	49999997
69	0957	4545	38	0235	4913		L	

ОГЛАВЛЕНИЕ

П За	реди адачи	словие для учителяи повторениеи на повторение	$\frac{3}{4}$
		ГЛАВА 1. Многочлены	
\$ \$ \$	1. 2. 3.	Многочлены от одной переменной	$10 \\ 18 \\ 24$
		ГЛАВА 2. Степени и корни. Степенные функции	
§ §	4. 5.	Понятие корня n -й степени из действительного числа Функции $y = \sqrt[n]{x}$, их свойства и графики	29 31 36
<i>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</i>	6. 7. 8. 9. 10.	Свойства корня <i>n</i> -й степени	39 46 50 57
		ГЛАВА 3. Показательная и логарифмическая функции	
ω	11. 12. 13. 14. 15. 16. 17. 18.	Показательная функция, ее свойства и график Показательные уравнения Показательные неравенства Понятие логарифма Логарифмическая функция, ее свойства и график Свойства логарифмов Логарифмические уравнения Логарифмические неравенства Дифференцирование показательной и логарифмической функций	62 73 80 86 89 96 105 111
		ГЛАВА 4. Первообразная и интеграл	
§ §	20. 21.	Первообразная и неопределенный интегралОпределенный интеграл	$\frac{124}{132}$
		ГЛАВА 5. Элементы теории вероятностей и математической статистики	
8888	22. 23. 24. 25.	Вероятность и геометрия	149 153 157 162
		ГЛАВА 6. Уравнения и неравенства. Системы уравнений и неравенств	
	26. 27. 28. 29. 30. 31. 32. 33.	Равносильность уравнений Общие методы решения уравнений Равносильность неравенств Уравнения и неравенства с модулями Уравнения и неравенства со знаком радикала Доказательство неравенств Уравнения и неравенства с двумя переменными Системы уравнений Задачи с параметрами	166 168 174 180 189 198 202 208 215
		нительные задачи	220
	_		
П	рило	ожение	263