Zadání Cvičení #9

Popis dat: Pracovní data jsou uložena v souboru data.csv, který je k dispozici ke stažení na Moodle stránce tohoto předmětu, ve složce příslušného cvičení. Pro načtení dat do Matlabu využijte funkce readtable.

Data jsou ve formátu tabulky, která obsahuje data od pacientů s Parkinsonovou nemocí (label **PD**) a data od kontrolní skupiny zdravých lidí (label **HC**). Tabulka obsahuje ID kódy subjektů, identifikátory příslušnosti ke skupině (labely), údaje o pohlaví, věku, a hodnoty těchto dvou akustických parametrů:

- **stdPWR** Směrodatná odchylka intenzity řeči, jednotka dB.
- **stdF0** Směrodatná odchylka F0, jednotka půltóny *semitones* (st).

Oba parametry byly vyhodnoceny z nahrávek souvislé řeči (monologu) pomocí programu PRAAT (viz Boersma and Weenink 2017).

Zadár	ıí úlohy	body
použijt	zujte si data pomocí 2D-scatter grafu. Obě skupiny od sebe barevně odlište a e libovolné značky a velikost tak, aby byly data <u>dobře viditelná</u> . Navíc si můžete ně vykreslit rozdělení dat pomocí boxplotů.	
Odpov	ězte svými slovy na tyto otázky:	
·	Pohledem na vaší vizualizaci zhodnoťte, jak dobře lze oddělit skupiny v 2D prostoru pomocí lineární rozhodovací hranice. Do vizualizace můžete zakreslit (od ruky) kam byste rozhodovací hranici umístili. Zhodnoťte, zda není pro klasifikaci některý z parametrů nadbytečný, a zvažte, jak by se obecně daly nadbytečné (redundantní) parametry automaticky identifikovat ve vícedimenzionálních datasetech.	1
obrázk	ľte klasifikaci dat pomocí následujících metod a pro každou z nich vykreslete do u s daty příslušnou rozhodovací hranici (<i>decision boundary</i>), abyste je mohli mezi snadno vizuálně porovnat:	
1.	 Logistická regrese (Logistic regression) Použijte funkce glmfit a glmval, se standardním nastavením pro binomiální rozdělení výstupní funkce. Rozhodovací hranici můžete vypočítat z definice logistické funkce nebo můžete využít funkci contour na úrovni 0.5. 	1.5
2.	 Lineární diskriminantní analýza (LDA) Pro výpočet LDA modelu použijte funkci fitdiscr. Klasifikaci dat můžete provést pomocí funkce predict. Rozhodovací hranici vykreslete za použití koeficientů z vypočteného LDA modelu. 	

3.	 Support Vector Machine (SVM) s lineárním jádrem Výpočet SVM modelu proveďte pomocí funkce fitcsvm. Pokud chcete, můžete si vykreslit vhodným způsobem do obrázku jaké datové body použil model jako Support Vectors. Koeficienty pro vykreslení rozhodovací hranice SVM modelu získáte 	
Porovr	z Matlabovské proměnné (<i>structure</i>) modelu (pole Beta a Bias). nejte jednotlivé klasifikátory z hlediska výpočetní náročnosti a přesnosti klasifikace.	
-	Pro měření výpočetní náročnosti využijte časoměrné funkce tic a toc. Pro každý z klasifikátorů vypočtěte a zobrazte matici záměn (Confusion matrix) – využijte funkcí confusionmat, resp. confusionchart. Přesnost klasifikace určete jako procento dat, které by model přiřadil do správné skupiny. Zapište časy výpočtu pro všechny modely a procentuální přesnosti klasifikace.	1.5
Implen otesto	Svými slovy zhodnoťte výsledky a porovnejte modely. OVINNÝ bonus: nentujte manuálně algoritmus pro výpočet lineární diskriminační analýzy LDA. Pro vání funkce použijte data uložená v souboru bonus.csv, který je dostupný ke stažení	0.5
	odlu (proměnné jsou značeny x a y). dejte obrázek s vaší kódovou implementací a grafické zobrazení dat a rozhodovací e.	0.5

Reference

Boersma, P. and Weenink, D. (2017). *Praat: doing phonetics by computer* [Computer program]. Version 6.0.30, retrieved 22 July 2017 from http://www.praat.org/