Dan Jurafsky and James Martin Speech and Language Processing

Chapter 6: Vector Semantics

* For AIT590 Only a portion of the contents selected from the original
Authors' textbook slides - Part 1

We'll build a new model of meaning focusing on similarity

Each word = a vectorNot just "word" or word45.

Similar words are "nearby in space"

```
not good
                                                                bad
                                                      dislike
to
       by
                                                                     worst
                                                     incredibly bad
that
        now
                       are
                                                                        worse
                 you
 than
          with
                                            incredibly good
                               very good
                      amazing
                                           fantastic
                                                     wonderful
                  terrific
                                        nice
                                       good
```

We define a word as a vector

Called an "embedding" because it's embedded into a space

The standard way to represent meaning in NLP Fine-grained model of meaning for similarity

- NLP tasks like sentiment analysis
 - With words, requires same word to be in training and test
 - With <u>embeddings</u>: ok if <u>similar</u> words occurred!!!
- Question answering, conversational agents, etc.

We'll introduce 2 kinds of embeddings

Tf-idf

- A common baseline model
- Sparse vectors
- Words are represented by a <u>simple function</u> of the <u>counts</u> of nearby words

Word2vec

- Dense vectors
- Representation is created by training a <u>classifier</u> to distinguish <u>nearby</u> and <u>far-away</u> words

Review: words, vectors, and co-occurrence matrices

Term-document matrix

Each document is represented by a vector of words

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle		0	7	13
good	l 14	80	62	89
fool	36	58	1	4
wit	20	15	2	3

Visualizing document vectors

Vectors are the basis of information retrieval

	As You Like It	Twelfth Night	Julius Caesar	Henry V	
battle		0	7	13	
good	114	80	62	89	
fool	36	58	1	4	
wit	20	15	2	3	

Vectors are similar for the two comedies
Different than the history
Comedies have more fools and wit and
fewer battles.

Words can be vectors too

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good fool	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

battle is "the kind of word that occurs in Julius Caesar and Henry V"

fool is "the kind of word that occurs in comedies, especially Twelfth Night"

More common: word-word matrix (or "term-context matrix")

Two words are similar in meaning if their context vectors are similar

sugar, a sliced lemon, a tablespoonful of apricot their enjoyment. Cautiously she sampled her first **pineapple** well suited to programming on the digital **computer**. for the purpose of gathering data and **information**

jam, a pinch each of, and another fruit whose taste she likened In finding the optimal R-stage policy from necessary for the study authorized in the

	aardvark	computer	data	pinch	result	sugar	
apricot	0	0	0	1	0	1	
pineapple	0	0	0	1	0	1	
digital	0	2	1	0	1	0	
information	0	1	6	0	4	0	

Reminders from linear algebra

dot-product
$$(\vec{v}, \vec{w}) = \vec{v} \cdot \vec{w} = \sum_{i=1}^{N} v_i w_i = v_1 w_1 + v_2 w_2 + \dots + v_N w_N$$

vector length
$$|\vec{v}| = \sqrt{\sum_{i=1}^{N} v_i^2}$$

Cosine for computing similarity

$$cosine(\vec{v}, \vec{w}) = \frac{\vec{v} \cdot \vec{w}}{|\vec{v}||\vec{w}|} = \frac{\sum_{i=1}^{N} v_i w_i}{\sqrt{\sum_{i=1}^{N} v_i^2} \sqrt{\sum_{i=1}^{N} w_i^2}}$$

 v_i is the count for word v in context i w_i is the count for word w in context i.

$$ightarrow
ightarrow
ightarro$$

Cos(v, w) is the cosine similarity of v and w

$$ec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$
 $\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} = \cos \theta$

Cosine as a similarity metric

-1: vectors point in opposite directions

+1: vectors point in same directions

0: vectors are orthogonal

Frequency is non-negative, so cosine range 0-1

$$\cos(\vec{v}, \vec{w}) = \frac{\vec{v} \cdot \vec{w}}{|\vec{v}||\vec{w}|} = \frac{\vec{v}}{|\vec{v}|} \cdot \frac{\vec{w}}{|\vec{w}|} = \frac{\mathring{a}_{i=1}^{N} v_i w_i}{\sqrt{\mathring{a}_{i=1}^{N} v_i^2} \sqrt{\mathring{a}_{i=1}^{N} w_i^2}}$$

Which pair of words is more similar? cosine(apricot,information) =

cosine(digital,information) =

cosine(apricot,digital) =

	large	data	computer
apricot	1	0	0
digital	0	1	2
information	1	6	1

$$\frac{1+0+0}{\sqrt{1+0+0}} \frac{1+36+1}{\sqrt{1+36+1}} = \frac{1}{\sqrt{38}} = .16$$

$$\frac{0+6+2}{\sqrt{0+1+4}\sqrt{1+36+1}} = \frac{8}{\sqrt{38}\sqrt{5}} = .58$$

$$\frac{0+0+0}{\sqrt{1+0+0}} = 0$$

Visualizing cosines (well, angles)

But raw frequency is a bad representation

Frequency is clearly useful; if *sugar* appears a lot near *apricot*, that's useful information.

But overly frequent words like the, it, or they are not very informative about the context

Need a function that resolves this frequency paradox!

tf-idf: combine two factors

tf: term frequency. frequency count (usually log-transformed):

$$tf_{t,d} = \begin{cases} 1 + \log_{10} count(t,d) & \text{if } count(t,d) > 0 \\ 0 & \text{otherwise} \end{cases}$$

Idf: inverse document frequency: tf-

Total # of docs in collection

$$idf_i = \log\left(\frac{N}{df_i}\right)$$

Words like "the" or "good" have very low idf

of docs that have word i

tf-idf value for word t in document d:

$$w_{t,d} = \mathrm{tf}_{t,d} \times \mathrm{idf}_t$$

Summary: tf-idf

Compare two words using tf-idf cosine to see if they are <u>similar</u>

Compare two documents

- Take the centroid of vectors of all the words in the document
- Centroid document vector is:

$$d = \frac{w_1 + w_2 + \dots + w_k}{k}$$