Cadenas de Markov

+

Geometría de la Probabilidad

+

Estadística

Clase 18 Curso Propedéutico 2016/06/27

Cadenas de Markov

• El estado próximo depende sólo del estado actual.

• Más precisamente, las probabilidades de transición están

determinadas por el estado actual.

• Motivación inicial: un modelo para estudiar el lenguaje.

• Para conocer las probabilidades del futuro solo necesitas conocer el presente!

Matemáticamente...

• Si S son todos los posibles "estados" de la cadena (los valores que pueden tomar las X_t) <u>la propiedad de Markov dice</u>:

 $P(X_{t-X}|X_{t-X_{t-1}}) = P(X_{t-X_{t-1}}|X_{t-X_{t-1}})$

Cadenas homogéneas $P(X_{f}, J | X_{f-1}) = P(X_{f-1}, J | X_{f-1})$ Más juna! P(X=i)-P(X+zi)X=i) No ejamplo:

Qué es una cadena de Markov

- Es tres cosas:
- 1. Un conjunto de estados S
- 2. Una distribución inicial para X_0
- 3. Un "Kernel" de transición. Unas probabilidades de transición por cada estado actual.

S finito.... El kernel puede representarse como matriz

$$P = (P_{ij})$$

$$P_{i,j} = P(X_{t+1} = j \mid X_{t} = i)$$

Distribución de X_n dado X_0

- La vez pasado vimos que P^n representa las probabilidades de transición en n pasos.
- Si π es un vector tal que $\pi_j = P(X_0 = j)$ entonces tenemos que

$$P(X_1 = j) = \sum_{i} \pi_i P_{ij}$$

Por lo tanto $\pi^T P$ es un vector que representa la distribución de X_1 .

En general, $\pi^T P^n$ es la distribución de X_n

Teorema ergódico

- El resultado más fundamental de las cadenas de Markov establece que si la cadenas es "regular" entonces en el largo plazo no importa el estado inicial, la distribución de X_n no depende de X_0 .
- Tal distribución se conoce como **distribución estacionaria/límite** y cumple.

$$5\pi = P^{T} \qquad \pi = Im \pi^{(k)} \qquad \pi^{(k)}_{j} = P(Y_{j} = k)$$

Acomo conseavencia:

- Aunque no podemos verlo con detalle, hay que recordar un caso particular en el que el *teorema ergódico* se cumple siempre que:
 - 1. Todos los estados están conectados en el sentido de que existe alguno camino de estados tal que siempre se puede llegar de un estado a otro y de regreso (**irreducibilidad**).
 - 2. El tiempo esperado de retorno a cada estado es finito (recurrencia positiva)

3. La cadena no tiene ciclos determinísticos (aperiodicidad)

Google PageRank

- **Motivación:** El problema de un "buscador": un usuario introduce una *búsqueda*, las páginas web se encuentras *indexadas*.
- S representa el conjunto de páginas web que responden a la búsqueda
- Objetivo: En qué orden listar S al usario.

• Necesitamos un método de rankeo!

FIG. 1

Approach: Define una cadena de Markov que represente cómo se mueve un "usuario" a través de páginas web y ver que estados son los más visitados en el largo plazo.

¿Cómo construir P?

• Una propuesta:

Estimaremos las probas de transición basados en contar qué porcentaje de los *links* dirigen a cada página.

clides

historial etc posses de transiais

Posibles Problemas par que no exista la distribución límite?????

Podra w ser includble

- Los estados podrían estar desconectados!!!!
- Para eso se agrega un pequeño "ruido" que corresponde a moverse completamente aleatoriamente entre cada página web.
- Se escoge un número $\alpha \in (0,1)$ (e.g $\alpha \approx .85$) y se pone

$$p_{ij} = \alpha \frac{l_{ij}}{\sum_{k} l_{ik}} + (1 - \alpha) \frac{1}{n}$$

Donde n es el # total de páginas web y l_{ij} el total de link en la página i con destino j.

LA GEOMETRÍA (Y ÁLGEBRA LINEAL) DE LA PROBABILIDAD

Regarda	turios y	Obstraciones

1. Espacio vectorial: conjunto ayos elementos sabemos sumar y multiplicar por un cicalar, y es curado bajo cotas operaciones Obs1: Sabamos numer varrables aleatoras (X+Y) (w) = X(u)+ Y(u) Tambrin se pruder multiplier por escalar X= a - IR a ell $(\alpha X)(x) = \alpha(X(x))$ (Esto o creto para funciones, no suls vous) Las vorrables aleutoires son un espació vectoral de domensión infinita) no trene base 2. Propredades del producto purto en IR" $\begin{cases} (x,x) \ge 0 & \langle x,x \rangle = 0 \iff x = 0 \end{cases}$ $\begin{cases} (x,y) = \langle y,x \rangle \\ (x,y) = \langle y,x \rangle \end{cases}$ $\langle x,y \rangle = \langle x,z \rangle + \langle x,z \rangle$ $\langle x,y \rangle = \langle x,z \rangle + \langle x,z \rangle$ $\langle x_i y \rangle = x^T y = x \cdot y = \frac{\pi}{2} x_i y_i$

Obsz: Envardoles aleatories (XY)=E(XY) ample las mismas

propredades salvo (X,X)=IE(X2)=0 (=) X=0. En probabiliand $IF(X=0) \Rightarrow IP(X=0)=1$ pro pooné existir ω an $X(\omega)\neq 0$ per $IP(X\neq 0)=0$, entonus es ICOSI'COMO X=0. Formalment se dre X=0 <u>cast seguramente</u>. Por lo tanto, (X,Y)=EMI) $\cos(\Theta(\vec{x},\vec{y})) = \underbrace{ZY,y} \Rightarrow \ln v.a.s \qquad \Theta(X,Y) = \cos'\left(\underbrace{E(XY)}\right)$ $\int (ZX,X)(y,y) dy$ es un producto ponto. i Existen angulos entre variables aleaterns! (Las vias son)
espacies de
Hilbert) $\langle x, x \rangle = \| x \|^2$ En 12" $||X||_{2}^{2} \sqrt{2}X_{i}^{2} = \sqrt{\langle X, X \rangle}$ En v.a:s 11 X 11 = \(\frac{E(X^2)}{} = \(\frac{X^2}{X^2} \)

4. Este approach no da una novera userán de la coraronza y la verenza $Cov(X_iY) = \mathbb{E}(X-I\mathbb{E}(X))(Y-I\mathbb{E}(Y)) = \langle X-I\mathbb{E}(X), Y-I\mathbb{E}(Y) \rangle$ $V \sim (X) = \mathbb{E}((X - \mathbb{E}(X))^2) = \|X - \mathbb{E}(X)\|^2$ l'odemos entoras parar las cosaranzas y varanzas en términer de l'angulos y homas!
Pensar en términos de dragramas de dispersión de datos cs la coordnag NorM) La elenjación del diagrama depode de COV(Xi) $Corr(X,Y) = Cor(X,Y) = \frac{(X-E(X),Y-E(Y))}{(X-E(X),Y-E(Y))}$ Var(x) Var(Y) 11 X-E(X) 11 11 Y- HYN) Continuara....

ESTADÍSTICA

Muestras

- Una **muestra** es una colección de variables $\frac{1}{2}$ aleatorias X_1, \dots, X_m usualmente independientes con una misma distribución F_X
- Usualmente en proba decimos que es una sucesión de v.a.i.i.d.
- Usar la palabra muestra o v.a.i.i.d. es usualmente un problema de *enfoque*.

Vaiids vs Realizaciones

•
$$X_i \text{ vs } X_i(\omega) = x_i$$

Estadística Estimadores

- Una estadística es cualquier cantidad de interés acerca de una distribución F_X (in fancy words: una funcional)
- Dada una muestra $X_1, ..., X_n$, un **estimador** es una función $h(X_1, ..., X_n)$.
- Un estimador es una función que depende de los valores de la muestra y que su propósito es tratar de conocer el valor de alguna estadística.

Ejemplos....

• Teaser: Cómo estimarían la esperanza de una distribución data una muestra?

Teaser: ¿ Cómo estimarían la esperanza de una listribución data una muestra?

Our
$$\int_{\mathbb{R}} x dx = \int_{\mathbb{R}} x f_{2}(x) dx = f(X_{1}) \stackrel{\triangle}{=} y(f_{X})$$

de una muestra X_{1}, \dots, X_{n}
 $f(X_{1}, \dots, X_{n}) = \frac{1}{n} \sum X_{1}$

es la media

n'estrona Minestadistica

¿ como saber si un estimador es breno/milo?

Estadística Paramétrica

- Tenemos una muestra $X = \{X_1, ..., X_n\}$ con distribución común F_X^{θ} y queremos aprender el "valor" de θ . Queremos "decidir" que valores puede tomar θ .
- Ej:
- $F_X^{\theta} \sim N(\mu, \sigma^2)$ $\theta = (\mu, \sigma^2)$
- $F_X^{\theta} \sim Ber(p)$ $\theta = (p)$

En la vida real nosotros acotamos a una familia paramétrica específica dependiendo del tipo de datos. La elección de familia paramétrica se llama el **modelo.**

Inferencia Bayesiana vs Inferencia Frecuentista

Inferencia Frecuentista	Inferencia Bayesiana
Los parámetros θ que queremos conocer son tratados como NÚMEROS	Los parámetros θ que queremos conocer son tratados como VARIABLES ALEATORIAS para modelar nuestra incertidumbre.
NO puedo aportar conocimiento previo.	Puedo aportar conocimiento previo o "a priori" que influye en el resultado final.
Dada una muestra, me devuelve un NÚMERO que un estimador.	Dada una muestra me devuelve una nueva distribución para θ llamada distribución "a posteriori" que combina la "a priori" con los datos.
Máximo verosimilitud es un <i>ejemplo</i> de estimación frecuentista.	Hay un método de inferencia: el método de Bayes y combina la <i>versomilitud</i> con la información a priori.

(just to be clear... El método de máxima verosimilitud es un método 100% frecuentista, pero la verisimilitud tiene un rol importante en la inferencia bayesiana...)

Máxima verosimilitud

• Si $F_X \sim Ber(p)$ y $X_1, ..., X_n$ es una muestra cuya realización fue:

• ¿Qué p es más **creíble**? p = .3 o p = .75? Y maximizarla...

Nuestro objetivo es buscar una "medida" de qué tan creíble es cada p y buscar la p que maximice esta credibilidad: en esencia eso es máxima verosimilitud.

At Chipotle, How Many Calories Are You Consuming?

- Existe una elección de función de "credibilidad" que es muy natural:
- Si en el ejemplo anterior graficamos

 $P(X_1 = x_1, ..., X_n = x_n; p)$ para distintos valores de p tenemos obtenemos algo que se ve así:

• La función de verosimilitud se define como:

$$L(\theta | \mathbf{X}) = P(X_1 = x_1, \dots, X_n = x_n; \theta)$$
$$= \prod_{i} P(X_i = x_i; \theta)$$

Si la distribución es discreta solo hay que reemplazar la probabilidad por la función de densidad:

$$L(\theta|X) = f_X(X_1 = x_1, ..., X_n = x_n; \theta)$$

$$= \prod_i f_X(X_i = x_i; \theta)$$

Métudo de Maxima viosimilitud

Inferencia Clásica: Dada una muesta XIII--, Xn.

Inferencia Clásica: Dada una muesta XIII--, Xn. = argmex Litaix)

Inferencia Bayesiana

Teorema de Bayes:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A^C)P(A^C)} \propto P(B|A)P(A)$$

Llevémoslo a variables aleatorias y pongan θ en vez de A y su muestra $X = \{X_1, \dots, X_n\}$ en vez de B y obtienen

$$f_{\theta|X}(\theta|X) = \frac{L(\theta|X)f(\theta)}{\int L(\tau|X)f(\tau)d\theta}$$

$$\propto L(\theta|X)f(\theta)$$

en el caso continuo... pongan sumas y probabilidades en vez de integrales y densidades en el caso discreto y ya...

"están mezclando la a priori con la verosimilitud"

