

Matemática Computacional

Departamento de Matemática Instituto Superior de Engenharia do Porto

2° Semestre 20-21

Conteúdo

- 1 Regressão Linear Múltipla
- 2 Modelo
- 3 Significância do modelo
- 4 Intervalos de confiança
- 5 Testes de hipóteses
- 6 Exemplo

Regressão Linear Múltipla

RLM

Na análise de regressão encontramos situações com mais do que uma variável explicativa. Esse modelo de regressão recebe o nome de modelo de regressão múltipla (RLM).

A variável dependente ou resposta Y pode estar relacionada com k variáveis explicativas ou independentes.

Regressão Linear Múltipla

Modelo matemático

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k + \varepsilon$$

- lacksquare X_1 , X_2 , ..., X_k são k variáveis explicativas independentes não aleatórias
- Y variável aleatória resposta
- ϵ variável aleatória erro
- ullet β_0 , β_1 , β_2 ,..., β_k são os coeficientes de regressão
- β_1 , β_2 ,..., β_k representam a variação da resposta Y por unidade de variação de X_j quando assumimos como constantes as restantes variáveis explicativas.

Modelo matemático

Para qualquer n-uplo de observações

$$(x_{i1}, x_{i2}, ..., x_{ik}, y_i), i = 1, 2, ..., n(n > k)$$

cada resposta y_i obtém-se da seguinte forma

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + ... + \beta_k x_{ik} + \varepsilon_i, \ i = 1, 2, ..., n$$
 (1)

Forma matricial RLM

O modelo (1) apresentado é um sistema de n equações com a representação matricial

$$Y = X\beta + \varepsilon \tag{2}$$

$$\mathbf{Y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \mathbf{X} = \begin{bmatrix} 1 & x_{11} & x_{12} & \vdots & x_{1k} \\ 1 & x_{21} & x_{22} & \vdots & x_{2k} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n1} & x_{n2} & \vdots & x_{nk} \end{bmatrix}, \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{bmatrix}, \boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

Pretende-se encontrar o vetor de estimadores dos mínimos quadrados $\hat{\beta}$ que minimize a soma dos quadrados dos resíduos. Da equação (2) obtemos $\varepsilon = \mathbf{Y} - \mathbf{X}\boldsymbol{\beta}$ e, consequentemente

$$SQ_E = \sum_{i=1}^n \varepsilon_i^2 = (Y - X\beta)^T (Y - X\beta) = Y^T Y - 2\beta^T X^T Y + \beta^T X^T X\beta$$
(3)

O estimador dos mínimos quadrados $\hat{\beta}$ é a solução das seguintes k+1 equações normais:

$$\frac{\partial SQ_E}{\partial \hat{\beta}} = 0 \Leftrightarrow -2X^T Y + 2X^T X \hat{\beta} = 0 \Leftrightarrow X^T X \hat{\beta} = X^T Y \quad \text{(4)}$$

$$\hat{\beta} = \left(X^T X\right)^{-1} X^T Y \tag{5}$$

As matrizes X^TX e X^TY são

$$X^TX = \begin{bmatrix} n & \sum_{i=1}^n x_{i1} & \sum_{i=1}^n x_{i2} & \cdots & \sum_{i=1}^n x_{ik} \\ \sum_{i=1}^n x_{i1} & \sum_{i=1}^n x_{i1}^2 & \sum_{i=1}^n x_{i1} x_{i2} & \cdots & \sum_{i=1}^n x_{i1} x_{ik} \\ \sum_{i=1}^n x_{i2} & \sum_{i=1}^n x_{i2} x_{i1} & \sum_{i=1}^n x_{i2}^2 & \cdots & \sum_{i=1}^n x_{i2} x_{ik} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \sum_{i=1}^n x_{ik} & \sum_{i=1}^n x_{ik} x_{i1} & \sum_{i=1}^n x_{ik} x_{i2} & \cdots & \sum_{i=1}^n x_{ik}^2 \end{bmatrix}$$

$$X^{T}Y = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ x_{11} & x_{21} & x_{31} & \dots & x_{n1} \\ x_{12} & x_{22} & x_{32} & \dots & x_{n2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{1k} & x_{2k} & x_{3k} & \dots & x_{nk} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} y_i \\ \sum_{i=1}^{n} x_{i1} y_i \\ \sum_{i=1}^{n} x_{i2} y_i \\ \vdots \\ \sum_{i=1}^{n} x_{ik} y_i \end{bmatrix}$$

$$\begin{split} \hat{\beta} &= \begin{vmatrix} \beta_0 \\ \hat{\beta}_1 \\ \vdots \\ \hat{\beta}_k \end{vmatrix} = \\ \begin{bmatrix} n & \sum_{i=1}^n x_{i1} & \sum_{i=1}^n x_{i2} & \cdots & \sum_{i=1}^n x_{ik} \\ \sum_{i=1}^n x_{i1} & \sum_{i=1}^n x_{i1}^2 & \sum_{i=1}^n x_{i1} x_{i2} & \cdots & \sum_{i=1}^n x_{i1} x_{ik} \\ \sum_{i=1}^n x_{i2} & \sum_{i=1}^n x_{i2} x_{i1} & \sum_{i=1}^n x_{i2}^2 & \cdots & \sum_{i=1}^n x_{i2} x_{ik} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \sum_{i=1}^n x_{ik} & \sum_{i=1}^n x_{ik} x_{i1} & \sum_{i=1}^n x_{ik} x_{i2} & \cdots & \sum_{i=1}^n x_{ik}^2 \end{bmatrix}^{-1} \begin{bmatrix} \sum_{i=1}^n y_i \\ \sum_{i=1}^n x_{i1} y_i \\ \sum_{i=1}^n x_{i2} y_i \\ \vdots \\ \sum_{i=1}^n x_{ik} y_i \end{bmatrix} \end{split}$$

O modelo de regressão ajustado correspondente a 1

$$\hat{y}_i = \hat{\beta}_0 + \sum_{j=1}^k \hat{\beta}_j x_{ij}, i = 1, ..., n$$
(6)

e matricialmente

$$\hat{Y} = X\hat{\boldsymbol{\beta}} \tag{7}$$

O teste de significância para a regressão é um teste para determinar se existe uma relação linear ente a variável resposta Y e as variáveis independentes (explicativas, regressoras) $x_1, x_2, ..., x_n$. Os testes de hipóteses a realizar pressupoem que os erros ε_i sejam normalmente distribuídos de média 0 e variância σ^2 .

$$H_0: \beta_1 = \beta_2 = \dots = \beta_k = 0$$

$$H_1: \beta_j \neq 0$$
 para algum $j, j = 1, ..., k$

Utilizamos a análise de variância para avaliarmos a significância do modelo.

$$SQ_T = SQ_R + SQ_E$$

onde

$$SQ_T=Y^TY-rac{\left(\sum_{i=1}^ny_i
ight)^2}{n}=Y^TY-nar{y}^2$$
 - mede a variação total das observações em torno da média

 $SQ_R = \hat{\pmb{\beta}}^T X^T Y - n \bar{y}^2$ - mede a variação da variável dependente explicada pelo modelo

$$SQ_E = Y^TY - {m{\hat{eta}}}^TX^TY$$
 - mede a variação não explicada pelo modelo.

Procedimento

$$H_0: \beta_1 = \beta_2 = ... = \beta_k = 0$$

$$H_1: \beta_i \neq 0$$
 para algum $j, j = 1, ..., k$

Estatística de teste :
$$F_0=rac{MQ_R}{MQ_E}$$
 onde $MQ_R=rac{SQ_R}{gl_R}$ e $MQ_E=rac{SQ_E}{gl_E}$

Critério de rejeição: $f_0 > f_{\alpha}(k, n-k+1)$

Fonte de	Soma de	Graus de	Média	Estatística de
variação	quadrados	liberdade	quadrática	de teste f
Regressão	SQ_R	k	$MQ_R = \frac{SQ_R}{k}$	$rac{MQ_R}{MQ_E}$
Erro	SQ_E	n - (k + 1)	$MQ_E = \frac{SQ_E}{n - (k+1)}$	-
Total	SQ_T	n-1		

Decisão:

- i) Se $f_0 > f_\alpha(k,n-(k+1))$ rejeita-se H_0 , o que permite concluir que há pelo menos uma variável independente que contribui significativamente para explicar a variação da variável dependente Y. Diz-se que o modelo de regressão linear apresentado é significativo.
- ii) Se $f_0 \leq f_\alpha(k,n-(k+1))$ não se rejeita H_0 , o que permite concluir que há um mau ajuste do modelo linear apresentado. Diz-se que o modelo não é significativo e não deve ser utilizado.

Coeficiente de determinação

Coeficiente de determinação

Tal como no modelo RLS o coeficiente de determinação é dado por:

$$R^2 = \frac{SQ_R}{SQ_T} = 1 - \frac{SQ_E}{SQ_T}$$

Este coeficiente é uma medida da proporção da variação da variável resposta Y que é explicada pela equação de regressão. Também é utilizado o coeficiente de determinação ajustado que é dado por:

$$R_{ajust.}^2 = 1 - \frac{\frac{SQ_E}{n - (k+1)}}{\frac{SQ_T}{n-1}} = 1 - \left(\frac{n-1}{n - (k+1)}\right) (1 - R^2)$$

Intervalos de confiança

Os estimadores $\hat{\boldsymbol{\beta}} = \left(X^TX\right)^{-1}X^TY$ têm uma distribuição normal multivariada. Portanto $\hat{\boldsymbol{\beta}} \sim N\left(\beta, \sigma^2C\right)$, com $C = \left(X^TX\right)^{-1}$ que é uma matriz simétrica. Logo,

$$\hat{\beta}_j \sim N\left(\beta_j, \sigma^2 C_{jj}\right)$$

 C_{jj} - é o elemento j da diagonal principal da matriz C. A variância σ^2 é estimada por $\hat{\sigma}^2=S^2=rac{SQ_E}{n-(k+1)}=MQ_E$

I.C. para os coeficientes de regressão

O intervalo de confiança a $(1-\alpha)\times 100\%$ para os coeficientes de regressão, β_j 's, com j=0,1,...,k é dado por

$$\hat{\beta}_{j} - t_{1-\alpha/2}[n - (k+1)]\sqrt{\hat{\sigma}^{2}C_{jj}}, \hat{\beta}_{j} + t_{1-\alpha/2}[n - (k+1)]\sqrt{\hat{\sigma}^{2}C_{jj}}$$

Intervalos de confiança

No caso de se pretender estimar o valor esperado da resposta Y dado $x_0^T = \begin{bmatrix} 1 & x_{01} & x_{02} & \dots & x_{0k} \end{bmatrix}$. O valor esperado de \hat{Y} , $E \begin{bmatrix} \hat{Y}_0 \end{bmatrix}$ considerando x_0 , é estimado por $\hat{\mu}_{Y_0} = x_0^T \hat{\beta}$ e a variância $V \begin{bmatrix} \hat{Y}_0 \end{bmatrix}$ é estimada por $\hat{\sigma}^2 x_0^T \left(X^T X \right)^{-1} x_0 = \hat{\sigma}^2 x_0^T C x_0$

I.C. para os valores esperados $E(Y_0)$

O intervalo de confiança a
$$(1-\alpha) \times 100\%$$
 para $E[Y_0]$ é dado por $\Big] \hat{\mu}_{Y_0} - t_{1-\alpha/2[n-(k+1)]} \sqrt{\hat{\sigma}^2 x_0^T C x_0} \Big]$, $\hat{\mu}_{Y_0} + t_{1-\alpha/2[n-(k+1)]} \sqrt{\hat{\sigma}^2 x_0^T C x_0} \Big[$

Intervalos de confiança

No caso de se pretender estimar a previsão da resposta Y dado $x_0^T = [1 \ x_{01} \ x_{02} \ \dots x_{0k}]$, vamos considerar uma estimativa da previsão como $\hat{y}_0 = x_0^T \hat{\beta}$. É possível mostrar que $T = \frac{\hat{Y}_0 - Y_0}{\sqrt{\hat{\sigma}^2(1 + x_0^T C x_0)}} \sim t_{n-(k+1)}$

I.C. para a previsão da resposta
$$Y_0$$

Testes de hipóteses

Um teste de hipóteses para os coeficientes de regressão β_j s obedece ao seguinte procedimento:

$$H_0: eta_j = 0$$

$$H_1: eta_j
eq 0$$
 Estatística de teste : $T_0 = \frac{\hat{\beta}_j}{\sqrt{\hat{\sigma}^2 C_{jj}}}$ Critério de rejeição: $|t_0| > t_{1-lpha/2,n-(k+1)}$

Decisão: A rejeição de H_0 permite concluir que o regressor x_j tem poder explicativo. A não rejeição de H_0 permite concluir que o regressor x_j pode ser "eliminado".

Considere a seguinte tabela de 12 observações.

Y - variável dependente

 X_1 e X_2 - variáveis independentes

observação	Y	X1	X2
1	2256	80	8
2	2340	93	9
3	2426	100	10
4	2293	82	12
5	2330	90	11
6	2368	99	8
7	2250	81	8
8	2409	96	10
9	2364	94	12
10	2379	93	11
11	2440	97	13
12	2364	95	11

O modelo a ser ajustado é:

 $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$ com forma matricial $Y = X\beta + \varepsilon$ Começamos por determinar o vetor de estimadores dos mínimos quadrados $\hat{\beta} = (X^T X)^{-1} X^T Y$. Onde

$$X = \begin{bmatrix} 1 & 80 & 8 \\ 1 & 93 & 9 \\ 1 & 100 & 10 \\ 1 & 82 & 12 \\ \vdots & \vdots & \vdots \\ 1 & 93 & 11 \\ 1 & 97 & 13 \\ 1 & 95 & 11 \end{bmatrix}, X^{T} = \begin{bmatrix} 1 & 1 & 1 & 1 & \dots & 1 & 1 & 1 \\ 80 & 93 & 100 & 82 & \dots & 93 & 97 & 95 \\ 8 & 9 & 10 & 12 & \dots & 11 & 13 & 11 \end{bmatrix}$$

As restantes matrizes necessárias

$$X^T X = \begin{bmatrix} 12 & 1100 & 123 \\ 1100 & 101370 & 11308 \\ 123 & 11308 & 1293 \end{bmatrix}$$

$$\left(X^T X \right)^{-1} = \begin{bmatrix} 16,4449 & -0,1614 & -0,1527 \\ -0,1614 & 0,0020 & -0,0020 \\ -0,1527 & -0,0020 & 0,0331 \end{bmatrix}$$

$$X^TY = \begin{bmatrix} 28219 \\ 2591095 \\ 289809 \end{bmatrix}$$

Obtemos o vetor de estimadores dos coeficientes de regressão

$$\hat{\boldsymbol{\beta}} = (X^T X)^{-1} X^T Y = \begin{bmatrix} 1562,7301 \\ 7,5084 \\ 9,8131 \end{bmatrix}$$

O modelo de regressão fica definido por

$$\hat{Y} = 1562,7301 + 7,5084X_1 + 9,8131X_2$$

Exemplo- significância do modelo obtido

Aplicamos o teste de hipóteses

$$H_0: \beta_1 = \beta_2 = 0, k = 2$$

$$H_1: \beta_i \neq 0$$
 para algum $j, j = 1, 2$

Estatística de teste:
$$F_0=\frac{MQ_R}{MQ_E}$$
 onde $MQ_R=\frac{SQ_R}{gl_R}$ e $MQ_E=\frac{SQ_E}{gl_E}$

Critério de rejeição:
$$f_0 > f_{\alpha}(k,n-(k+1)) = f_{\alpha}(2,12-(2+1))$$

$$SQ_T = Y^T Y - \frac{\left(\sum_{i=1}^n y_i\right)^2}{n} = Y^T Y - n\bar{y}^2 = 41468,9167$$

$$SQ_R = \hat{\boldsymbol{\beta}}^T X^T Y - n\bar{y}^2 = 38223,5606$$

$$SQ_E = Y^T Y - \hat{\boldsymbol{\beta}}^T X^T Y = 3245,3561$$

Exemplo- significância do modelo obtido

Sumariamos na seguinte tabela Anova:

Fonte de	Soma de	Graus de	Média	Estatística de
variação	quadrados	liberdade	quadrática	de teste f
Regressão	38223,5606	2	$MQ_R = 19111,7803$	$\frac{MQ_R}{MQ_E} \approx 53,0007$
Erro	3245, 3561	9	$MQ_E = 360, 5951$	
Total	41468,9167	11		

Decisão: Observando a tabela, verificamos que $f_0 \approx 53,0007$. Considerando $\alpha = 0,05$, obtemos $f_{0,05(2,9)} \approx 4,2565$. Como $f_0 \approx 53,0007 > 4,2565$, rejeita-se H_0 , o que permite concluir que este modelo de regressão é significativo.

Exemplo- Coeficiente de determinação

Verificamos que o modelo de regressão

$$\hat{Y} = 1562,7301 + 7,5084X_1 + 9,8131X_2$$
 é significativo.

O valor do coeficiente de determinação múltiplo é dado por:

$$R^2 = \frac{SQ_R}{SQ_T} = \frac{38223,5606}{41468,9167} = 0,9217$$

O valor do coeficiente de determinação ajustado é dado por:

$$R_{ajust.}^2 = 1 - \left(\frac{n-1}{n-(k+1)}\right) (1-R^2) = 1 - \frac{11}{9}(1-0,9217) = 0,9043$$

I.C. para o coeficiente de regressão β_2

O intervalo de confiança a 95% para o coeficiente de regressão, β_2 é dado por

$$\hat{\beta}_2 - t_{0,975[12-(2+1)]} \sqrt{\hat{\sigma}^2 C_{22}} , \hat{\beta}_2 + t_{0,975[12-(2+1)]} \sqrt{\hat{\sigma}^2 C_{22}} \Big[$$

Com

$$\begin{split} \hat{\beta}_2 &= 9,8131 \\ \hat{\sigma}^2 &= MQ_E = 360,5951 \\ C_{22} &= 0,0331 \text{ , elemento da diagonal principal da matriz } \left(X^TX\right)^{-1} \\ t_{0,975[12-(2+1)]} &= t_{0,975[9]} = 2,2622 \\ \text{O } I.C._{95\%}(\beta_2) &=]1,9990,17,6272 [\end{split}$$

Consideremos
$$x_1=80$$
 e $x_2=8$, isto é , $x_0^T=\begin{bmatrix}1&80&8\end{bmatrix}$

I.C. para o valor esperado $E(Y_0)$

O intervalo de confiança a
$$95\%$$
 para $E\left[Y_{0}\right]$ é dado por $\left]\hat{\mu}_{Y_{0}}-t_{0,975[9]}\sqrt{\hat{\sigma}^{2}x_{0}^{T}Cx_{0}}\right],\;\hat{\mu}_{Y_{0}}+t_{0,975[9]}\sqrt{\hat{\sigma}^{2}x_{0}^{T}Cx_{0}}\right[$

Onde

$$\hat{\mu}_{Y_0} = x_0^T \hat{\boldsymbol{\beta}} = \begin{bmatrix} 1 & 80 & 8 \end{bmatrix} \begin{bmatrix} 1562, 7301 \\ 7, 5084 \\ 9, 8131 \end{bmatrix} = 2241,9060$$

$$\begin{split} \hat{\sigma}^2 x_0^T C x_0 &= \\ 360, 5951 \begin{bmatrix} 1 & 80 & 8 \end{bmatrix} \begin{bmatrix} 16,4449 & -0,1614 & -0,1527 \\ -0,1614 & 0,0020 & -0,0020 \\ -0,1527 & -0,0020 & 0,0331 \end{bmatrix} \begin{bmatrix} 1 \\ 80 \\ 8 \end{bmatrix} \\ &= 149,5319 \end{split}$$
 Assim, o $I.C._{95\%}(\mu_{Y_0}) =]2214,2436 \ ; \ 2269,5684[$

Consideremos novamente $x_1 = 80$ e $x_2 = 8$. Pretendemos estimar a previsão da resposta Y dado $x_0^T = \begin{bmatrix} 1 & 80 & 8 \end{bmatrix}$

I.C. para a previsão da resposta Y_0

O intervalo de confiança a 95% para a previsão da resposta Y_0 é dado por $\left[\hat{y}_{0}-t_{0,975[9]}\sqrt{\hat{\sigma}^{2}\left(1+x_{0}^{T}Cx_{0}\right)}\right],\hat{y}_{0}+t_{0,975[9]}\sqrt{\hat{\sigma}^{2}\left(1+x_{0}^{T}Cx_{0}\right)}\right]$

Onde

$$\hat{y}_0 = x_0^T \hat{\beta} = 2241,9060$$

$$\begin{aligned} x_0^T C x_0 &= \\ \begin{bmatrix} 1 & 80 & 8 \end{bmatrix} \begin{bmatrix} 16,4449 & -0,1614 & -0,1527 \\ -0,1614 & 0,0020 & -0,0020 \\ -0,1527 & -0,0020 & 0,0331 \end{bmatrix} \begin{bmatrix} 1 \\ 80 \\ 8 \end{bmatrix} = 0,4147 \\ \hat{\sigma}^2 \left(1 + x_0^T C x_0 \right) &= 510,1270 \\ \text{Assim} \\ I.C._{95\%}(y_0) &=]2190,8129 \; ; \; 2292,9990 [\end{aligned}$$

Exemplo - Testes de hipóteses

Pretende-se verificar se é possível admitir que o coeficiente de regressão $\beta_2 \neq 0$ com um nível de significância de 5%.

$$H_0: \beta_2 = 0$$
 v.s. $H_1: \beta_2 \neq 0$

Estatística de teste:
$$T_0=\frac{\hat{\beta}_2}{\sqrt{\hat{\sigma}^2C_{22}}}$$
 onde $\hat{\sigma}^2=MQ_E=360,5951$ e $t_0=\frac{9,8131}{\sqrt{360,5951\times0,0331}}=2,8409$

Decisão:

 $|t_0|>t_{0,975,[9]}\approx 2.2622$, rejeita-se H_0 . O teste é conclusivo, o que quer dizer que a um nível de significância de 5% há evidência estatística suficiente para se afirmar que o coeficiente de regressão $\beta_2\neq 0$.