5. Search Strategies: Rotational Ordering

• Rotational Ordering—Once the read/write head is positioned as some track, re-order the requests to optimize the search time.

Once the read/write head has been positioned Con some specific track), reorder the requests to optimize the search time.

Seek time — 5 ms from

track i to it!

Search time — 1 ms from

sector j to j+1

transfer time - Ims

requests Chead is initially at (0.0)

Track	Sector	
0	1	
1	4	
1	3	
2	0	
2	3	
2	4	
3	2	
3	0	

Without rotational ordering

requests	seek t	the	Search thu	e transfer the
Co,1)	0		1	1
(1,4)	5		2	1
(1,3)	O		1	1
(2,0)	5		2	1
(2,3)	0		2	1
(2,4)	0		1	1
(3,2)	5		2	1
(3,0)	0		2	1
	15		13	8 (+ = 361
with rotati	inel	(0,1)	1	
orte	ring:	(1,3)	2	
		(1.4)	1	
		(2,4)	O	
		(2,3)	1	
		(2,0)	2	
		(3,0)	0	
		(3,2)	2	

6. RAID (Redundant Array of Independent Disks)

- Motivation and key idea
 - -1. To close the widening gap between processor speeds and relatively slow disk drives.
 - -2. Instead of using large-capacity disk drives, we use multiple smaller-capacity drives.
 - -3. Distribute data to enable simultaneous access to data from multiple drives.
 - 4. Improve I/O performance and allow easier incremental increases in capacity.

```
RAID 3:
    D It uses a parallel access technique.
   2) It only requires a single randondant dista
Example: Xo, X1, X2, X3 - 4 disk drives for data
                      X4 — panity disk.
     At the ith bit, we have
         X_4(i) = X_3(i) \oplus X_2(i) \oplus X_1(i) \oplus X_0(i)
                                    11 - addition
                                        with no carry,
                                       or execlusive or
    If XI fails,
      add XI(i) ( X4Ci) at
                              both sites
       Xy(i) DX,(i) DXy(i) = X3(i) DX2(i) DXx(i) DXx(i)
                                D X, Ci) D X4 Ci)
              XICI) = X4(i) DX3(i) DX2(i) DX0(i)
      XI is recovered!
```

RAID4, not commercially implemented, but its algorithm is used in RAIDS, RAID6. example. Xo, X1, X2, X3 - data disks X4 - panty disk Suppose a write occurs at X1, for each bit i uptated panisy $X_4(i) = X_3(i) \oplus X_2(i) \oplus X_1(i) \oplus X_0(i)$ 3 reads = X3(i) D X2(i) DXi(i) DXo(i) (i) A K(i) (i) = X4ci) & X1ci) & X1ci) 2 reads 2 urites