

Universidade de São Paulo Instituto de física Física aplicada

Qualificação de Doutorado

Transporte de partículas por ondas eletrostáticas

Acadêmico: André Farinha Bósio

Orientador: Prof. Dr. Iberê Luiz Caldas

Coorientador: Prof. Dr. Ricardo Luiz Viana

São Paulo, 13 de Junho de 2023

Universidade de São Paulo Instituto de física Física aplicada

Qualificação de Doutorado

Transporte de partículas por ondas eletrostáticas

Tese de doutorado submetida à CPG, sob orientação do Prof. Dr. Iberê Luiz Caldas como parte dos requisitos para obtenção do título de doutor em física.

Acadêmico: André Farinha Bósio

Orientador: Prof. Dr. Iberê Luiz Caldas

Coorientador: Prof. Dr. Ricardo Luiz Viana

São Paulo, 13 de Junho de 2023

Conteúdo

1	Hamiltoniano do modelo	2
2	Sistema com duas ondas	3

1 Hamiltoniano do modelo

Nosso modelo

Nosso sistema consiste de uma regiao quadrada do espaço, com lados com comprimento 2π , com condição periodica de contorno Assumindo agora um campo magnético na direção \vec{z} .

$$\vec{B} = B_0 \vec{z} \tag{1}$$

bem como um campo elétrico radial da forma

$$\vec{E} = -\nabla \phi(x, y, t) \tag{2}$$

de tal forma que $\vec{B} \perp \vec{E}$, gerando assim uma velocidade de deriva elétrica

$$\vec{v}_E = \frac{\vec{E} \times \vec{B}}{B^2} \tag{3}$$

Desenvolvendo a equação 3 com nosso campos chegamos em

$$v_x = \frac{dx}{dt} = -\frac{1}{B_0} \frac{\partial}{\partial y} \phi(x, y, t)$$
 $v_y = \frac{dy}{dt} = \frac{1}{B_0} \frac{\partial}{\partial x} \phi(x, y, t)$ (4)

e comparando agora com as equações de Hamilton

$$\frac{dx}{dt} = -\frac{\partial}{\partial y}H(x, y, t) \qquad \frac{dy}{dt} = \frac{\partial}{\partial x}H(x, y, t)$$
 (5)

vemos que o hamiltoniano do sistema está ligada ao potencial elétrico pela relação

$$H(x,y,z) = \frac{\phi(x,y,z)}{B_0} \tag{6}$$

de maneira que x e y formam um par momento coordenada, com x fazendo o papel de momento e y de coordenada. Novamente, seguindo o modelo de Horton [1], o potencial usado será uma soma de ondas eletrostáticas, se propagando na direção poloidal e estacionárias na direção radial, temos ainda um potencial de equilíbrio $\phi_0(x)$

$$\phi(x, y, t) = \phi_0(x) + \sum_i A_i(k_{xi}x)\sin(k_{yi}y - \omega_i t)$$
(7)

Dessa forma nosso hamiltoniano toma a forma

$$H(x, y, t) = \frac{\phi_0(x)}{B_0} + \sum_{i} \frac{A_i}{B_0} (k_{xi}x) \sin(k_{yi}y - \omega_i t)$$
 (8)

Uma onda

Quando o sistema possui apenas uma onda o hamiltoniano se reduz a

$$H(x,y,t) = \frac{\phi_0(x)}{B_0} + \frac{A}{B_0}(k_x x)(k_y y - \omega_i t)$$
(9)

por conveniencia vamos mudar o referencial do sistema para um que se move com mesma velocidade de fase da onda. Faremos isso usando uma transformação canônica utilizando a função

$$F_2 = (10)$$

2 Sistema com duas ondas

Os valores usados para as simulações são:

Com a Δv entre as ondas como 1 por simplicidade, dessa forma os ω_i podem ficar livres, ja que temos o elo entre Δv e as frequencias.

data/A2_D_gamma_phase.pdf

Figura 1: Expoente do deslocamento quadratico medio ao longo do tempo, vemos que algumas combinacoes geram transporte altamente anomalo

Referências

[1] W. Horton, "Onset of stochasticity and the diffusion approximation in drift waves," *Plasma Physics and Controlled Fusion*, vol. 27, no. 9, p. 937, 1985.