

Workflows for Big Data Platforms

Hong-Linh Truong
Department of Computer Science
linh.truong@aalto.fi, https://rdsea.github.io

Learning objectives

 Understand the role and use cases of workflows in big data platforms

 Understand key concepts and techniques in workflows and able to design workflows

 Able to apply common workflow technologies for practical work

Big data at large-scale: the big picture in this course

Tasks in big data platforms

- Data collection and transformation
 - data transfers, extraction, transformation,
- Data processing, including machine learning
 - data analytics, training, serving machine learning algorithms
- Automation in big platform infrastructures
 - service deployment, resource elasticity, backup/recovery
- Business service integration with big data platforms
 - integration with customer services, bringing insights from data analytics to business decision making

Many complex use cases

- Deployment and configuration
 - for big data components
- ETL, data cleansing and backup
 - access and coordinate many different compute services, data sources, ingestion and extraction applications
- Complex predictive maintenance
 - coordination of machine learning pipelines and communication with humans/optimization services
- Analytics-as a service
 - metrics understanding, user activities analytics, customer understanding

Recall: Orchestration and Reactiveness

Service orchestration in big data platforms: more than just "data"

Example of security data analytics

Figure Source: http://highscalability.com/blog/2015/9/3/how-agari-uses-airbnbs-airflow-as-a-smarter-cron.html

Example of industrial retail forecast

date	id	name	volume	price	cost	promo	category_net	margin	category 1	category2	location	sales
07/01/2018	100	Chicken	38144.0	3.79	2.7	0	451692.0	0.25	Meat	Food	Helsinki	144565.76
14/01/2018	100	Chicken	36420.0	3.79	2.66	0	414342.0	0.25	Meat	Food	Helsinki	138031.8
21/01/2018	100	Chicken	35322.0	3.79	2.66	0	381854.0	0.25	Meat	Food	Helsinki	133870.38

Sellforte: forecast where to put marketing information

Source: Kreics Krists, "Quality of analytics management of data pipelines for retail forecasting, ", Aalto CS Master thesis, 2019

Example of ML workflows

meta-workflow vs inside each phase: pipeline/workflow or other types of programs

Example of ML workflows

Azure ML

Workflows

A workflow specifies a process

- consists of a set of connected steps/tasks
- has steps/tasks carried out by diverse types of software services or humans, each performs a function
- can be automated with/without human intervention
- has data/control task dependencies
- can be reusable (tasks, part of the workflow and the whole workflow)

Workflow technologies

- Given many services offering different capabilities, we can combine them for different cases
 - orchestration of capabilities from different services as the key!
 - reuse/customization of capabilities with a given set of services
- Workflows are flexibly defined and changed
 - services cannot be changed easily
 - but there are many ways to combine such services!
 - the integration is loosely coupled.

We have many workflows that are built in a flexible way for different goals

How to build the workflows and orchestrate tasks in these workflows?

Tasks and workflows

Diverse types of tasks

- task can be simple or complex (e.g., a task running an AI algorithm)
- tasks are performed by software and humans

Workflow

- coordinate/orchestrate many tasks, the function of tasks is not really "carried out" by workflows → orchestration/coordination
- workflow can be simple, like a pipeline of a sequence of tasks or complex with many forks/loops

Workflow and pipeline/data workflow

■ Data workflow → data pipeline

" a pipeline is a set of data processing elements connected in series, where the output of one element is the input of the next one"

Source: https://en.wikipedia.org/wiki/Pipeline_%28computing%29

Two interpretations:

- a pipeline is a simple workflow
- a pipeline coordinates different (sub)workflows

A long history – workflows are well-known!

Business workflows/processes

business processes in enterprise computing (e.g., BI, ERP, and e-commerce)

Scientific workflows

• in scientific computing and high performance computing (e.g., bioinformatics, astrophysics, material science simulations)

Automation in system management

 at system level for automating infrastructure provisioning, system recovery, etc.

Key components

Tasks/activities/steps

- describe a single work (it does not mean small)
- tasks can be carried out by humans, executables, scripts, batch applications, stream applications and other types of services.

Workflow languages

structure/describe tasks, dataflows, and control flows

Workflow engines

- execute the workflow by orchestrating tasks
- usually call remote services to run tasks

Workflows in big data platforms: more than analytics

Common workflow execution models

Major works are carried out in distributed nodes (Kubernetes, Celery, Dask, Ray, Slurm,...)

Executor (Worker Node)

Structured view of workflows

Describing workflows

Programming languages with procedural code

- general- and specific-purpose programming languages, such as Java,
 Python, Swift
- common ways in big data platforms for data analytics and system automation

Descriptive languages with declarative schemas

- BPEL, YAML, JSON and several languages designed for specific workflow engines
- common in business and scientific workflows

Tasks orchestration

School of Science

Runtime aspects

Parallel and distributed execution

 tasks are executed in different machines (by external invoked applications/services), multiple running workflows

Long and/or periodic running

■ can be hours or weeks! → pausing and resuming workflows are normal

Checkpoint and recovery

dealing with failures at different levels: workflows and tasks retry/recovery

Monitoring and tracking

States and performance metrics: queuing, running, idle, suspended, failed

Stateful management

 dependencies among tasks w.r.t control and data, stateful tasks → global services for managing states and data among tasks

Rich data services

- for data storing/retrieving tasks
- Big data computation engines
 - for data processing tasks with different workload: ML and (batch/stream) big data processing
- Different underlying cloud/distributed computing infrastructures
 - for resource management tasks and workflow infrastructures
- REST APIs and message systems integration
 - for widely integration with other services (e.g., business services)

Scheduling

 Scheduling in a large resource pool (e.g., using clusters)

Elasticity

 Elasticity controls of virtualized resources (VMs/containers/Kubernetes) for executing tasks

Multiple levels of parallelism

Cluster level vs node level

Examples

- Periodic cron schedules, backfill, opportunistic schedules
- Increase number of distributed workers/cluster sizes
- Heterogenous resources for tasks: lightweight compute nodes & high-end nodes

Wu, F., Wu, Q. & Tan, Y. Workflow scheduling in cloud: a survey. J Supercomput 71, 3373–3418 (2015). https://doi.org/10.1007/s11227-015-1438-4

Mainak Adhikari, Tarachand Amgoth, and Satish Narayana Srirama. 2019. A Survey on Scheduling Strategies for Workflows in Cloud Environment and Emerging Trends. ACM Comput. Surv. 52, 4, Article 68 (August 2019), 36 pages. https://doi.org/10.1145/3325097

Integration

- Data analytics processes and business processes
- Include human-in-the-loop

Integration

Multiple types of workflows for services/infrastructure provisioning and analytics

Stream analytics/event-driven workflows infrastructure automation \blacksquare stream analytics analytics always receive start batch process send notification analytics notification automation message gueue remove and clean resources +

Existing frameworks for your study

- Apache Oozie
 - designed to work with Hadoop: orchestrating Hadoop jobs
- Serverless-based: Function-as-a-Service
 - e.g., Microsoft, Google, AWS serverless/function-as-a-service
- Apache Airflow
 - a generic workflow framework
- Argo Workflows
 - Container-native workflow engine
- Uber Cadence (https://camunda.com/)
 (https://camunda.com/)
 - Connecting to business activities+ human in the loop

Example with Apache Airflow

https://airflow.apache.org

Airflow overview

- Originally from Airbnb
- Features
 - Dynamic, extensible, scalable workflows
 - Programmable language-based workflows
 - Write workflows as procedural code
- Good and easy to study to understand concepts of workflows/data pipeline
- Google Cloud Composer is a cloud-provided version of Airflow
 - https://cloud.google.com/composer/

Many connectors

- Airbyte
- Alibaba
- Amazon
- Apache Beam
- Apache Cassandra
- Apache Drill
- Apache Druid
- Apache HDFS
- Apache Hive
- Apache Kylin
- Apache Livy
- Apache Pig
- Apache Pinot
- Apache Spark
- Apache Sqoop
- Asana
- Celery
- IBM Cloudant
- Kubernetes
- Databricks
- Datadog
- DBT cloud
- Dingding
- Discord
- Docker

- Elasticsearch
- Exasol
- Facebook
- File Transfer Protocol (FTP)
- Github
- Google
- gRPC
- Hashicorp
- Hypertext Transfer Protocol (HTTP)
- Influx DB
- Internet Message Access Protocol (IMAP)
- Java Database Connectivity (JDBC)
- Jenkins
- Jira
- Microsoft Azure
- Microsoft PowerShell Remoting Protocol (PSRP)
- Microsoft SQL Server (MSSQL)
- Windows Remote Management (WinRM)
- MongoDB
- MySQL
- Neo4J
- ODBC
- OpenFaaS
- Opsgenie
- Oracle

- Pagerduty
- Papermill
- Plexus
- PostgreSQL
- Presto
- Qubole
- Redis
- Salesforce
- Samba
- Segment
- Sendgrid
- SFTP
- Singularity
- Slack
- Snowflake
- SQLite
- SSH
- Tableau
- Telegram
- Trino
- Vertica
- Yandex
- Zendesk

From https://airflow.apache.org/docs/

Cloud integration and big data support

Several supports with known cloud providers

- Microsoft Azure
- Amazon Web Services
- Databricks
- Google Cloud Platform
- Big data supports
 - Hadoop, Hive, Druid, Presto
- Distributed execution

Airflow workflow structure

- Workflow is a DAG (Direct Acyclic Graph)
 - a workflow consists of a set of activities represented in a DAG
 - workflow and activities are programed using Python structures described in code
- Workflow activities are described by Airflow operator objects
 - tasks are created when instantiating operator objects

Airflow operators/tasks

- Tasks are implemented using operators
- Rich set of operators
 - we can program different kinds of tasks and integrate with different systems
- Different types of operators for workflow activities
 - BashOperator, PythonOperator, EmailOperator,
 SimpleHttpOperator, BaseSQLOperator, BaseSensorOperator,
 DockerOperator, HiveOperator,
 SparkSubmitOperator,SageMakerTrainingOperator,
 PrestoToMysqlOperator, SlackAPIPostOperator
- Remember:
 - such operators will be executed by corresponding services

Example of operators

High-level structure is mapped to python and suitable

operators

```
for i in range(5):
    task = PythonOperator(
        task_id='sleep_for_' + str(i),
        python_callable=my_sleeping_function,
        op_kwargs={'random_base': float(i) / 10},
        dag=dag,
)
```

Code and figures captured from Airflow UI:

DAG: example_python_operator

schedule: None

Example of branching

Code and figures captured from Airflow UI DAG: example_branch_operator

schedule: @daily

```
run_this_first = DummyOperator(
    task_id='run_this_first',
    dag=dag,
options = ['branch_a', 'branch_b', 'branch_c', 'branch_d']
branching = BranchPythonOperator(
    task_id='branching',
    python_callable=lambda: random.choice(options),
    dag=dag,
run_this_first >> branching
join = DummyOperator(
    task_id='join',
    trigger_rule='one_success',
    dag=dag,
```


Scheduling and execution

- You can schedule the workflow like a cron job
 - execute once, every minutes, hours, ...
- Trigger from external
 - tasks can be triggered as normal (upstream tasks finishes, dependencies)
 - or specific triggers
- Very suitable ingestion and batch analytics job managements
 - the ingestion and analytics are done within tasks
 - Schedule based on analytics needs

Task lifecycle

Different states

```
success running failed skipped up_for_reschedule up_for_retry queued no_status
```

- Performance metrics can be determined based on states and structures
- Interesting in performance analytics?
 - Check https://doi.org/10.1016/j.future.2007.01.003

Distributed tasks

You can scale Airflow using workers deployed in different nodes managed by Celery (http://www.celeryproject.org)

Distributed tasks

You can scale Airflow to run tasks in Kubernetes

Google Cloud Composer: use Kubernetes

Example

Scenarios: scan various local servers, obtain log files, store log files into Google, and send notifications

Example for uploading state logs

```
fork = DummyOperator(
    task_id='fork',
    trigger_rule='one_success',
    dag=dag
join = DummyOperator(
    task_id='join',
    trigger rule='one success',
    dag=dag
t_downloadlogtocloud= BashOperator(
    task_id="download_state_file",
    bash command=downloadlogscript,
    dag = dag
t_removefile = BashOperator(
    task_id='remove_temp_file',
    bash_command=removetempfile,
    dag=dag,
```

```
## change it suitable to your setting
t_analytics= LocalFilesystemToGCSOperator(
    task_id="uploadtostorage",
   src=destination file.
    dst=qcsdir,
   bucket=GCS BUCKET,
   gcp_conn_id=GCS_CONN_ID,
    daq = daq
## change it suitable for your setting
t sendresult =SimpleHttpOperator(
    task id='sendnotification',
    method='POST',
    http_conn_id='notificationserver',
    endpoint='api/logUpdate',
    data=json.dumps({"source_file": source_file}),
   headers={"Content-Type": "application/json"},
    dag = dag
```

In our GIT course (tutorials)

Example for uploading state logs

upstream task

```
the dependencies among tasks

t_downloadlogtocloud >> t_analytics

t_analytics >> fork

fork >> t_sendresult

t_analytics >> fork

fork >> t_removefile

t_removefile >> join

t_sendresult >> join
```

downstream task

Monitoring UI

Monitoring UI

Summary

Focus:

- practical programming with:
 - Apache Airflow: for data analytics and platform management
 - *Workflows using function-as-a-service: for service integration in clouds*
 - Kubeflow: for machine learning with big data platforms (if you like ML)

Action:

- hands-on and work on concrete examples
 - Try to see if you can implement previous use cases/scenarios in your work with workflows
- offering workflows as a service in your platform!

Thanks!

Hong-Linh Truong
Department of Computer Science

rdsea.github.io

