温度·圧力制御

山内 仁喬

2021年7月17日

1 能勢・Andersen の方法

温度と圧力を制御して定温定圧アンサンブルを得るには、能勢の方法と Andersen の方法を組み合わせ、物理系に熱浴とピストンの両方を付ければよい. 拡張系のハミルトニアンは物理系のハミルトニアンに熱浴とピストンの自由度を付け足した

$$\mathcal{H}_{\text{NA}} = \sum_{i=1}^{N} \frac{\tilde{p}_{i}^{\prime 2}}{2m_{i}s^{2}V^{\frac{2}{3}}} + U(V^{\frac{1}{3}}\tilde{r}_{i}^{\prime}) + \frac{p_{s}^{2}}{2Q} + gk_{B}T_{\text{eq}}\ln s + \frac{p_{V}^{2}}{2W} + P_{\text{eq}}V$$
(1)

で与えられる。ここでは時間と空間のスケールを両方行っている。時間スケールされた変数には', 空間スケールされた変数には'をつける。物理系の変数と拡張系の仮想変数は以下の関係式で結ばれている。

$$\mathbf{r}_i = V^{\frac{1}{3}} \tilde{\mathbf{r}}_i = V^{\frac{1}{3}} \tilde{\mathbf{r}}_i' \tag{2}$$

$$p_i = \frac{p_i'}{s} = \frac{\tilde{p}_i}{V^{\frac{1}{2}}} = \frac{\tilde{p}_i'}{sV^{\frac{1}{2}}}$$
 (3)

$$t = \int^{t'} \frac{dt'}{s} \tag{4}$$

ハミルトニアンより $ilde{r}_i', ilde{p}_i', s, p_s, V, p_V$ についての運動方程式を求めると,

$$\frac{d\tilde{\mathbf{r}}_{i}'}{dt'} = \frac{\partial \mathcal{H}_{\mathrm{NA}}}{\partial \tilde{\mathbf{p}}_{i}'} = \frac{\tilde{\mathbf{p}}_{i}'}{m_{i}s^{2}V^{\frac{2}{3}}}$$
 (5)

$$\frac{d\tilde{\mathbf{p}}_{i}'}{dt'} = -\frac{\partial \mathcal{H}_{\mathrm{NA}}}{\partial \tilde{\mathbf{r}}_{i}'} = -\frac{\partial U}{\partial \tilde{\mathbf{r}}_{i}'} \tag{6}$$

$$\frac{ds}{dt'} = \frac{\partial \mathcal{H}_{\text{NA}}}{\partial p_s} = \frac{p_s}{Q} \tag{7}$$

$$\frac{dp_s}{dt'} = -\frac{\partial \mathcal{H}_{NA}}{\partial s} = \frac{1}{s} \left(\sum_{i=1}^{N} \frac{\tilde{\mathbf{p}}_i'^2}{m_i s^2 V^{\frac{2}{3}}} - g k_B T_{eq} \right)$$
(8)

$$\frac{dV}{dt'} = \frac{\partial \mathcal{H}_{\text{NA}}}{\partial p_V} = \frac{p_V}{W} \tag{9}$$

$$\frac{dp_V}{dt'} = -\frac{\partial \mathcal{H}_{NA}}{\partial V} = \frac{1}{3V} \left(\sum_{i=1}^N \frac{\tilde{\boldsymbol{p}}_i'^2}{m_i s^2 V^{\frac{2}{3}}} + \sum_{i=1}^N \boldsymbol{F}_i \cdot \boldsymbol{r}_i \right) - P_{eq}$$
(10)

となる. さらに実時間 t で時間発展するように書き換える. 座標と運動量をそれぞれ $\tilde{r}_i', \tilde{p}_i'$ から r_i, p_i へと変数変換すると,

$$\frac{d\mathbf{r}_i}{dt} = \frac{\mathbf{p}_i}{m_i} + \frac{\dot{V}}{3V}\mathbf{r}_i \tag{11}$$

$$\frac{d\mathbf{p}_i}{dt} = \mathbf{F}_i - \left(\frac{\dot{s}}{s} + \frac{\dot{V}}{3V}\right) \mathbf{p}_i \tag{12}$$

$$\frac{ds}{dt} = s \frac{p_s}{Q} \tag{13}$$

$$\frac{dp_s}{dt} = \sum_{i=1}^{N} \frac{\mathbf{p}_i^2}{m_i} - gk_B T_{\text{eq}} \tag{14}$$

$$\frac{dV}{dt} = s \frac{p_V}{W} \tag{15}$$

$$\frac{dp_V}{dt} = s \left\{ \frac{1}{3V} \left(\sum_{i=1}^N \frac{\boldsymbol{p}_i^2}{m_i} + \sum_{i=1}^N \boldsymbol{F}_i \cdot \boldsymbol{r}_i \right) - P_{\text{eq}} \right\}$$
(16)

を得る. 運動方程式 (5)-(10) あるいは (11)-(16) にしたがって時間発展させることにより, 定温定圧アンサンブルの分子動力学シミュレーションを行うことができる. ここでも, 粒子の運動量と体積にフィードバックがかかってそれぞれ温度と圧力を制御していることがわかる. 物理系の瞬間温度

$$T(t) = \frac{1}{gk_B} \sum_{i=1}^{N} \frac{p_i^2}{m_i}$$
 (17)

を用いて式(13),(14)を書き換えると,

$$\frac{d}{dt}\left(\frac{\dot{s}}{s}\right) = \frac{gk_B}{Q}(T(t) - T_{\rm eq}) \tag{18}$$

を得る. ここで \dot{s}/s は式 (12) において、運動量に対する抵抗係数のような働きをする. 瞬間温度 T(t) が設定温度 $T_{\rm eq}$ より高い時、 p_i は減少する方向に値が変化し、温度を低くする. 一方で、瞬間温度 T(t) が設定温度 $T_{\rm eq}$ より低い時、 p_i は増加する方向に値が変化し、温度を高くする. また、瞬間圧力

$$P(t) = \frac{1}{3V} \left(\sum_{i}^{N} \frac{\boldsymbol{p}_{i}^{2}(t)}{m_{i}} + \sum_{i}^{N} \boldsymbol{F}_{i}(t) \cdot \boldsymbol{r}_{i}(t) \right)$$

$$(19)$$

を用いて,式(16)を書き換えると,

$$\frac{dp_V}{dt} = s\left(P(t) - P_{\text{eq}}\right) \tag{20}$$

を得る. 瞬間圧力 P(t) が設定圧力 $P_{\rm eq}$ より高い時, 体積 V が膨張する方向に値が変化して圧力を下げる. 瞬間 圧力 P(t) が設定圧力 $P_{\rm eq}$ より低い時, 体積 V が圧縮する方向に値が変化して圧力は高める. このように瞬間 温度と瞬間圧力から粒子の運動量と系の体積にフィードバックをかけることで, 設定温度 $T_{\rm eq}$ と設定圧力 $P_{\rm eq}$ を達成する.

1.1 定温定圧アンサンブルが実現することの証明

ハミルトニアン \mathcal{H}_{NA} は一定値 E をとり、拡張系全体ではミクロカノニカルアンサンブルになる.そのため、拡張系全体の分配関数は

$$Y = \int_0^\infty ds \int_{-\infty}^\infty dp_s \int_0^\infty dV \int_{-\infty}^\infty dp_V \int d\tilde{\boldsymbol{r}}' \int d\tilde{\boldsymbol{p}}'$$

$$\times \delta \left\{ \mathcal{H}_0 \left(V^{\frac{1}{3}} \tilde{\boldsymbol{r}}', \frac{\tilde{\boldsymbol{p}}'}{sV^{\frac{1}{3}}} \right) + \frac{p_s^2}{2Q} + gk_B T_{\text{eq}} \ln s + \frac{p_V^2}{2W} + P_{\text{eq}} V - E \right\}$$
(21)

ここで、仮想系の変数から物理系の変数へと変数変換 $m{r}_i=V^{\frac{1}{3}} ilde{m{r}}_i',\,m{p}_i= ilde{m{p}}_i'/V^{\frac{1}{3}}$ を行う. $ilde{m{r}}_i',\, ilde{m{p}}_i'$ の微分が

$$d\tilde{\boldsymbol{r}}'d\tilde{\boldsymbol{p}}' = s^{3N}d\boldsymbol{r}d\boldsymbol{p} \tag{22}$$

であることから, 分配関数は,

$$Y = \int_{0}^{\infty} ds \int_{-\infty}^{\infty} dp_{s} \int_{0}^{\infty} dV \int_{-\infty}^{\infty} dp_{V} \int d\mathbf{r} \int d\mathbf{p}$$

$$\times s^{3N} \delta \left\{ \mathcal{H}_{0} (\mathbf{r}, \mathbf{p}) + \frac{p_{s}^{2}}{2Q} + gk_{B}T_{\text{eq}} \ln s + \frac{p_{V}^{2}}{2W} + P_{\text{eq}}V - E \right\}$$
(23)

とかける. ここでディラックのデルタ関数 $\delta(x)$ に関する恒等式

$$\delta(f(s)) = \frac{\delta(s - s_0)}{|f'(s)|} \quad 但し f(s_0) = 0$$
(24)

を適用する. 今の場合.

$$f(s) = \mathcal{H}_0(\mathbf{r}, \mathbf{p}) + \frac{p_s^2}{2Q} + gk_B T_{\text{eq}} \ln s + \frac{p_V^2}{2W} + P_{\text{eq}} V - E$$
 (25)

であるので, f(s) = 0 となるような $s(\equiv s_0)$ は

$$s_0 = \exp \left\{ \frac{E - \mathcal{H}_0\left(\boldsymbol{r}, \boldsymbol{p}\right) - \frac{p_s^2}{2Q} - \frac{p_V^2}{2W} - P_{\text{eq}}V}{gk_B T_{\text{eq}}} \right\}$$
(26)

である. さらに, $f'(s) = gk_BT_{eq}/s$ であるので, 分配関数中の s に関する積分を実行すると

$$Y = \int_{0}^{\infty} ds \int_{-\infty}^{\infty} dp_{s} \int_{0}^{\infty} dV \int_{-\infty}^{\infty} dp_{V} \int d\mathbf{r} \int d\mathbf{p} \frac{s^{3N+1}}{gk_{B}T_{eq}} \delta(s - s_{0})$$

$$= \int_{-\infty}^{\infty} dp_{s} \int_{0}^{\infty} dV \int_{-\infty}^{\infty} dp_{V} \int d\mathbf{r} \int d\mathbf{p}$$

$$\times \frac{1}{gk_{B}T_{eq}} \exp \left[\frac{3N+1}{gk_{B}T_{eq}} \left\{ E - \mathcal{H}_{0}(\mathbf{r}, \mathbf{p}) - \frac{p_{s}^{2}}{2Q} - \frac{p_{V}^{2}}{2W} - P_{eq}V \right\} \right]$$
(27)

となる. g = 3N + 1 とすると

$$Y = \int_{-\infty}^{\infty} dp_s \int_{-\infty}^{\infty} dp_V \frac{1}{gk_B T_{\text{eq}}} \exp\left\{ \frac{E - \frac{p_s^2}{2Q} - \frac{p_V^2}{2W}}{k_B T_{\text{eq}}} \right\}$$

$$\times \int_{0}^{\infty} dV \int d\mathbf{r} \int d\mathbf{p} \exp\left\{ -\frac{\mathcal{H}_0(\mathbf{r}, \mathbf{p}) + P_{\text{eq}}V}{k_B T_{\text{eq}}} \right\}$$
(28)

式 (28) の 1 行目は p_s , p_V についてガウス積分することが可能なので定数となる. したがって, 仮想時間 t' で 平均する場合には g=3N+1 とするれば, 定温定圧アンサンブルを得られる. 実時間 t でサンプルする場合には, g=3N とすることで定温定圧アンサンブルを得ることができる. これは, 能勢・Hoover 熱浴の時と同様の方法で示すことができる.

1.2 能勢・Andersen の方法の時間発展

能勢・Andersen の方法を使って温度・圧力を制御するアルゴリズムを使用するには、シミュレーションセルの 1 辺の長さ $L=V^{\frac{1}{3}}$ でスケールした座標 \tilde{r}_i と運動量 \tilde{p}_i を用いると便利である. スケールした座標 \tilde{r}_i と運動量 \tilde{p}_i を使って能勢・Andersen の運動方程式 (5)-(10) あるいは (11)-(16) を書き換え、さらに熱浴粒子の運動方程式を Hoover 形式に書き直すと、

$$\frac{d\tilde{\mathbf{r}}_i}{dt} = \frac{\tilde{\mathbf{p}}_i}{m_i V^{\frac{2}{3}}} \tag{29}$$

$$\frac{d\tilde{\boldsymbol{p}}_i}{dt} = V^{\frac{1}{3}}\boldsymbol{F}_i - \zeta\tilde{\boldsymbol{p}}_i \tag{30}$$

$$\frac{dV}{dt} = s \frac{p_V}{W} \tag{31}$$

$$\frac{dp_V}{dt} = s \left\{ \frac{1}{3V} \left(\sum_{i=1}^N \frac{\tilde{\boldsymbol{p}}_i^2}{m_i V^{\frac{2}{3}}} + \sum_{i=1}^N \boldsymbol{F}_i \cdot \boldsymbol{r}_i \right) - P_{\text{eq}} \right\}$$
(32)

$$\frac{d\eta}{dt} = \zeta \tag{33}$$

$$\frac{d\zeta}{dt} = \frac{1}{Q} \left(\sum_{i=1}^{N} \frac{\tilde{p}_i^2}{m_i V^{\frac{2}{3}}} - gk_B T_{\text{eq}} \right)$$
(34)

となる. ただし,

$$ln s = \eta$$
(35)

$$\boldsymbol{r}_i = V^{\frac{1}{3}} \tilde{\boldsymbol{r}}_i \tag{36}$$

の関係があることに注意する. 運動方程式 (29)-(34) より, 位相空間は $(\tilde{r},\tilde{p},V,p_V,\eta,\zeta)$ で張られる. ある物理量 $A(\tilde{r},\tilde{p},V,p_V,\eta,\zeta)$ の時間発展を記述する演算子 $\mathcal D$ を

$$\dot{A}(\tilde{r}, \tilde{p}, V, p_V, \eta, \zeta) = \mathcal{D}A \tag{37}$$

$$\mathcal{D} \equiv \sum_{i=1}^{N} \frac{d\tilde{\boldsymbol{r}}_{i}}{dt} \cdot \frac{\partial}{\partial \tilde{\boldsymbol{r}}_{i}} + \sum_{i=1}^{N} \frac{d\tilde{\boldsymbol{p}}_{i}}{dt} \cdot \frac{\partial}{\partial \tilde{\boldsymbol{p}}_{i}} + \frac{dV}{dt} \frac{\partial}{\partial V} + \frac{dp_{V}}{dt} \frac{\partial}{\partial p_{V}} + \frac{d\eta}{dt} \frac{\partial}{\partial \eta} + \frac{d\zeta}{dt} \frac{\partial}{\partial \zeta}$$
(38)

のように導入すると、微分方程式の形式解は

$$A(t + \Delta t) = e^{\mathcal{D}\Delta t} A(t) \tag{39}$$

とかける. このままでは時間発展演算子 $e^{\mathcal{D}\Delta t}$ は数値積分できない. そこで, 運動方程式 (29)-(34) を式 (38) に代入する.

$$\mathcal{D} = \sum_{i=1}^{N} \frac{\tilde{\boldsymbol{p}}_{i}}{m_{i}V^{\frac{2}{3}}} \cdot \frac{\partial}{\partial \tilde{\boldsymbol{r}}_{i}} + \sum_{i=1}^{N} \left(V^{\frac{1}{3}} \boldsymbol{F}_{i} - \zeta \tilde{\boldsymbol{p}}_{i} \right) \cdot \frac{\partial}{\partial \tilde{\boldsymbol{p}}_{i}} + s \frac{p_{V}}{W} \frac{\partial}{\partial V}$$

$$+ s \left\{ \frac{1}{3V} \left(\sum_{i=1}^{N} \frac{\tilde{\boldsymbol{p}}_{i}^{2}}{m_{i}V^{\frac{2}{3}}} + \sum_{i=1}^{N} \boldsymbol{F}_{i} \cdot \boldsymbol{r}_{i} \right) - P_{\text{eq}} \right\} \frac{\partial}{\partial p_{V}} + \zeta \frac{\partial}{\partial \eta}$$

$$+ \frac{1}{Q} \left(\sum_{i=1}^{N} \frac{\tilde{\boldsymbol{p}}_{i}^{2}}{m_{i}V^{\frac{2}{3}}} - gk_{B}T_{\text{eq}} \right) \frac{\partial}{\partial \zeta}$$

$$(40)$$

続いて、演算子 D を以下のように分割する.

$$\mathcal{D} = \mathcal{D}_1 + \mathcal{D}_2 + \mathcal{D}_3 + \mathcal{D}_4 + \mathcal{D}_5 \tag{41}$$

$$\mathcal{D}_1 = \sum_{i=1}^N \frac{\tilde{\boldsymbol{p}}_i}{m_i V^{\frac{2}{3}}} \cdot \frac{\partial}{\partial \tilde{\boldsymbol{r}}_i} + s \sum_{i=1}^N \frac{\tilde{\boldsymbol{p}}_i^2}{3m_i V^{\frac{5}{3}}} \frac{\partial}{\partial p_V}$$

$$\tag{42}$$

$$\mathcal{D}_2 = s \frac{p_V}{W} \frac{\partial}{\partial V} \tag{43}$$

$$\mathcal{D}_{3} = V^{\frac{1}{3}} \sum_{i=1}^{N} \mathbf{F}_{i} \cdot \frac{\partial}{\partial \tilde{\mathbf{p}}_{i}} + s \left(\frac{1}{3V} \sum_{i=1}^{N} \mathbf{F}_{i} \cdot \mathbf{r}_{i} - P_{\text{eq}} \right) \frac{\partial}{\partial p_{V}}$$

$$(44)$$

$$\mathcal{D}_4 = \zeta \frac{\partial}{\partial \eta} - \zeta \sum_{i}^{N} \tilde{\boldsymbol{p}}_i \cdot \frac{\partial}{\partial \tilde{\boldsymbol{p}}_i}$$
 (45)

$$\mathcal{D}_5 = \frac{1}{Q} \left(\sum_{i=1}^N \frac{\tilde{p}_i^2}{m_i V^{\frac{2}{3}}} - g k_B T_{\text{eq}} \right) \frac{\partial}{\partial \zeta}$$
 (46)

演算子 \mathcal{D} を 5 つに分割したのに対応して、鈴木・トロッター展開を用いて時間発展演算子 $e^{\mathcal{D}\Delta t}$ を

$$e^{\mathcal{D}\Delta t} = e^{\mathcal{D}_5 \frac{\Delta t}{2}} e^{\mathcal{D}_4 \frac{\Delta t}{2}} e^{\mathcal{D}_3 \frac{\Delta t}{2}} e^{\mathcal{D}_2 \frac{\Delta t}{2}} e^{\mathcal{D}_1 \Delta t} e^{\mathcal{D}_2 \frac{\Delta t}{2}} e^{\mathcal{D}_3 \frac{\Delta t}{2}} e^{\mathcal{D}_3 \frac{\Delta t}{2}} e^{\mathcal{D}_4 \frac{\Delta t}{2}} e^{\mathcal{D}_5 \frac{\Delta t}{2}} + \mathcal{O}\left((\Delta t)^3\right)$$

$$(47)$$

と分割する. 各時間発展演算子による位相空間の時間発展は以下の通りとなる.

$$e^{\mathcal{D}_{1}\Delta t} \begin{bmatrix} \tilde{\boldsymbol{r}}_{i}(t) \\ \tilde{\boldsymbol{p}}_{i}(t) \\ V(t) \\ p_{V}(t) \\ \eta(t) \\ \zeta(t) \end{bmatrix} = \begin{bmatrix} \tilde{\boldsymbol{r}}_{i}(t) + \frac{\tilde{\boldsymbol{p}}_{i}(t)}{m_{i}V^{\frac{2}{3}}} \Delta t \\ \tilde{\boldsymbol{p}}_{i}(t) \\ V(t) \\ V(t) \\ p_{V}(t) + s \sum_{i=1}^{N} \frac{\tilde{\boldsymbol{p}}_{i}^{2}(t)}{3m_{i}V^{\frac{5}{3}}} \Delta t \\ \eta(t) \\ \zeta(t) \end{bmatrix}$$

$$(48)$$

$$e^{\mathcal{D}_{2}\Delta t} \begin{bmatrix} \tilde{r}_{i}(t) \\ \tilde{p}_{i}(t) \\ V(t) \\ p_{V}(t) \\ \eta(t) \\ \zeta(t) \end{bmatrix} = \begin{bmatrix} \tilde{r}_{i}(t) \\ \tilde{p}_{i}(t) \\ V(t) + s\frac{p_{V}}{W}\Delta t \\ p_{V}(t) \\ \eta(t) \\ \zeta(t) \end{bmatrix}$$

$$(49)$$

$$e^{\mathcal{D}_{3}\Delta t} \begin{bmatrix} \tilde{\boldsymbol{r}}_{i}(t) \\ \tilde{\boldsymbol{p}}_{i}(t) \\ V(t) \\ p_{V}(t) \\ \eta(t) \\ \zeta(t) \end{bmatrix} = \begin{bmatrix} \tilde{\boldsymbol{r}}_{i}(t) \\ \tilde{\boldsymbol{p}}_{i}(t) + V^{\frac{1}{3}}\boldsymbol{F}_{i}(t)\Delta t \\ V(t) \\ p_{V}(t) + s\left(\frac{1}{3V}\sum_{i}^{N}\boldsymbol{F}_{i}(t) \cdot \boldsymbol{r}_{i}(t) - P_{\text{eq}}\right)\Delta t \\ \eta(t) \\ \zeta(t) \end{bmatrix}$$
(50)

$$e^{\mathcal{D}_{4}\Delta t} \begin{bmatrix} \tilde{\boldsymbol{r}}_{i}(t) \\ \tilde{\boldsymbol{p}}_{i}(t) \\ V(t) \\ p_{V}(t) \\ \eta(t) \\ \zeta(t) \end{bmatrix} = \begin{bmatrix} \tilde{\boldsymbol{r}}_{i}(t) \\ \tilde{\boldsymbol{p}}_{i}(t)e^{-\zeta\Delta t} \\ V(t) \\ p_{V}(t) \\ \eta(t) + \zeta\Delta t \\ \zeta(t) \end{bmatrix}$$
(51)

$$e^{\mathcal{D}_{5}\Delta t} \begin{bmatrix} \tilde{r}_{i}(t) \\ \tilde{p}_{i}(t) \\ V(t) \\ V(t) \\ p_{V}(t) \\ \eta(t) \\ \zeta(t) \end{bmatrix} = \begin{bmatrix} \tilde{r}_{i}(t) \\ \tilde{p}_{i}(t) \\ V(t) \\ V(t) \\ p_{V}(t) \\ \eta(t) \\ \zeta(t) + \frac{1}{Q} \left(\sum_{i=1}^{N} \frac{\tilde{p}_{i}^{2}}{m_{i}V^{\frac{2}{3}}} - gk_{B}T_{eq} \right) \Delta t \end{bmatrix}$$

$$(52)$$

以上で得られた時間発展演算子を式 (47) の順に作用させることで以下の時間発展アルゴリズムを得る.

$$\zeta \leftarrow \zeta + \frac{1}{Q} \left(\sum_{i=1}^{N} \frac{\tilde{p}_i^2}{m_i V^{\frac{2}{3}}} - gk_B T_{\text{eq}} \right) \frac{\Delta t}{2}$$
 (53)

$$\eta \leftarrow \eta + \zeta \frac{\Delta t}{2}
s \leftarrow e^{\eta}$$
(54)

$$s \leftarrow e^{\eta}$$
 (55)

$$\tilde{\boldsymbol{p}}_i \leftarrow \tilde{\boldsymbol{p}}_i e^{-\zeta \frac{\Delta t}{2}} \tag{56}$$

$$\tilde{\boldsymbol{p}}_i \leftarrow \tilde{\boldsymbol{p}}_i + V^{\frac{1}{3}} \boldsymbol{F}_i \frac{\Delta t}{2} \tag{57}$$

$$p_V \leftarrow p_V + s \left(\frac{1}{3V} \sum_{i=1}^{N} \mathbf{F}_i \cdot \mathbf{r}_i - P_{\text{eq}}\right) \frac{\Delta t}{2}$$
 (58)

$$V \leftarrow V + s \frac{p_V}{W} \frac{\Delta t}{2} \tag{59}$$

$$\tilde{\boldsymbol{r}}_i \leftarrow \tilde{\boldsymbol{r}}_i + \frac{\tilde{\boldsymbol{p}}_i}{m_i V^{\frac{2}{3}}} \Delta t \tag{60}$$

$$p_V \leftarrow p_V + s \sum_{i=1}^N \frac{\tilde{p}_i^2}{3m_i V^{\frac{5}{3}}} \Delta t \tag{61}$$

$$V \leftarrow V + s \frac{p_V}{W} \frac{\Delta t}{2} \tag{62}$$

$$\tilde{\boldsymbol{p}}_{i} \leftarrow \tilde{\boldsymbol{p}}_{i} + V^{\frac{1}{3}} \boldsymbol{F}_{i} \frac{\Delta t}{2} \tag{63}$$

$$p_V \leftarrow p_V + s \left(\frac{1}{3V} \sum_{i=1}^{N} \mathbf{F}_i \cdot \mathbf{r}_i - P_{\text{eq}}\right) \frac{\Delta t}{2}$$
 (64)

$$\eta \leftarrow \eta + \zeta \frac{\Delta t}{2}$$

$$s \leftarrow e^{\eta}$$
(65)
$$(66)$$

$$s \leftarrow e^{\eta}$$
 (66)

$$\tilde{\boldsymbol{p}}_i \leftarrow \tilde{\boldsymbol{p}}_i e^{-\zeta \frac{\Delta t}{2}} \tag{67}$$

$$\zeta \leftarrow \zeta + \frac{1}{Q} \left(\sum_{i=1}^{N} \frac{\tilde{p}_i^2}{m_i V^{\frac{2}{3}}} - g k_B T_{\text{eq}} \right) \frac{\Delta t}{2}$$
 (68)

2 Martyna・Tobias・Klein(MTK) の運動方程式

前章では、仮想時間・スケールされた座標による運動方程式を考えてきた。 ここでは Martyna・Tobias・Klein によって提案された、現実時間・非スケール座標による運動方程式を考える [1]. Andersen の運動方程式

$$\frac{d\tilde{\mathbf{r}}_i}{dt} = \frac{\partial \mathcal{H}_{A}}{\partial \tilde{\mathbf{p}}_i} = \frac{\tilde{\mathbf{p}}_i}{m_i V_{3}^{\frac{2}{3}}} \tag{69}$$

$$\frac{d\tilde{\boldsymbol{p}}_{i}}{dt} = -\frac{\partial \mathcal{H}_{A}}{\partial \tilde{\boldsymbol{r}}_{i}} = -\frac{\partial U}{\partial \tilde{\boldsymbol{r}}_{i}} = V^{\frac{1}{3}}\boldsymbol{F}_{i}$$

$$(70)$$

$$\frac{dV}{dt} = \frac{\partial \mathcal{H}_{A}}{\partial p_{V}} = \frac{p_{V}}{W} \tag{71}$$

$$\frac{dp_V}{dt} = -\frac{\partial \mathcal{H}_A}{\partial V} = \frac{1}{3V} \left(\sum_{i=1}^N \frac{\tilde{\mathbf{p}}_i^2}{m_i V^{\frac{2}{3}}} + \sum_{i=1}^N \mathbf{F}_i \cdot \mathbf{r}_i \right) - P_{\text{eq}}$$
 (72)

をスケールをしていないデカルト座標で書き直すため、次の変換を考える:

$$\tilde{\boldsymbol{r}}_i = V^{-1/3} \boldsymbol{r}_i \tag{73}$$

$$\dot{\hat{r}}_i = V^{-1/3} \dot{r}_i - \frac{1}{3} V^{-4/3} \dot{V} r_i \tag{74}$$

$$\tilde{\boldsymbol{p}}_i = V^{\frac{1}{3}} \boldsymbol{p}_i \tag{75}$$

$$\dot{\tilde{p}}_i = V^{1/3} \dot{p}_i - \frac{1}{3} V^{-2/3} \dot{V} p_i \tag{76}$$

アンダーセンの運動方程式 (69)-(72) に代入すると,

$$\dot{\boldsymbol{r}}_i = \frac{\boldsymbol{p}_i}{m_i} + \frac{1}{3} \frac{\dot{V}}{V} \boldsymbol{r}_i \tag{77}$$

$$\dot{\boldsymbol{p}}_i = \boldsymbol{F}_i - \frac{1}{3} \frac{\dot{V}}{V} \boldsymbol{p}_i \tag{78}$$

$$\dot{V} = \frac{p_V}{W} \tag{79}$$

$$\dot{p}_{V} = \frac{1}{3V} \left(\sum_{i=1}^{N} \frac{\boldsymbol{p}_{i}^{2}}{m_{i}} + \sum_{i=1}^{N} \boldsymbol{F}_{i} \cdot \boldsymbol{r}_{i} \right) - P_{\text{eq}}$$

$$(80)$$

となる. \dot{V}/V の繰り返しを避けるために

$$\epsilon \equiv \frac{1}{3} \ln \frac{V}{V_0} \tag{81}$$

を導入する. V_0 は参照体積であり、例えば t=0 における体積を設定する. ϵ に対する運動量 p_ϵ は

$$\dot{\epsilon} = \frac{p_{\epsilon}}{W} = \frac{\dot{V}}{3V} \tag{82}$$

によって定義される. 便利のため空間の次元をdとおいて,

$$\epsilon = \frac{1}{d} \ln \frac{V}{V_0}, \qquad p_{\epsilon} = \frac{\dot{V}}{dV}$$
(83)

とすると d に対する運動方程式

$$\dot{\boldsymbol{r}}_i = \frac{\boldsymbol{p}_i}{m_i} + \frac{p_\epsilon}{W} \boldsymbol{r}_i \tag{84}$$

$$\dot{\boldsymbol{p}}_i = \boldsymbol{F}_i - \frac{p_\epsilon}{W} \boldsymbol{p}_i \tag{85}$$

$$\dot{\boldsymbol{p}}_{i} = \boldsymbol{F}_{i} - \frac{p_{\epsilon}}{W} \boldsymbol{p}_{i}$$

$$\dot{V} = \frac{dV p_{\epsilon}}{W}$$

$$\dot{p}_{V} = dV (P_{\text{int}} - P_{\text{eq}})$$

$$(85)$$

$$\dot{p_V} = dV(P_{\rm int} - P_{\rm eq}) \tag{87}$$

となる. しかしながら, この運動方程式は正しいアンサンブルを生成しない. Martyna[1] らは運動量を次のよ うにスケールすることを提案した:

$$\dot{\boldsymbol{p}}_{i} = \tilde{\boldsymbol{F}}_{i} - \left(1 + \frac{d}{N_{f}}\right) \frac{p_{\epsilon}}{W} \boldsymbol{p}_{i} \tag{88}$$

$$\dot{p}_{\epsilon} = dV(P_{\text{int}} - P_{\text{eq}}) + \frac{d}{N_f} \sum_{i=1}^{N} \frac{\boldsymbol{p}_i^2}{m_i}$$
(89)

ここで N_f は拘束条件を差し引いた自由度で拘束条件の数 N_c を用いて $(dN-N_c)$ で定義される. $\tilde{\pmb{F}}_i$ は拘束 力を含めた原子iに加わる力である.この運動方程式に、能勢・Hooverの熱浴を組み合わせることで定温定圧 アンサンブルを実現できる.

参考文献

[1] Glenn J. Martyna, Douglas J. Tobias, and Michael L. Klein. Constant pressure molecular dynamics algorithms. The Journal of Chemical Physics, Vol. 101, No. 5, pp. 4177-4189, 1994.