CS3102 Theory of Computation

www.cs.virginia.edu/~njb2b/cs3102

When your professor tries to meme

How to prove $p \rightarrow q$

- Direct Proof $(p \rightarrow q)$
 - Start with premise
 - Repeatedly apply definitions, equivalences, and inferences
 - End with conclusion
- Indirect Proof $(\neg q \rightarrow \neg p)$ AKA, proof by contrapositive
 - Start with negation of the conclusion
 - Repeatedly apply definitions, equivalences, and inferences
 - End with negation of the premise
- Proof by Contradiction $(\neg(p \land \neg q))$
 - Start with $p \land \neg q$
 - Repeatedly apply definitions, equivalences, and inferences
 - End with False

q	$p \rightarrow q$
Т	Τ
F	F
Т	Т
F	Т
	T F T

Proofs Techniques Cont.

- Construction
 - Shows: $\exists x \in S, P(x)$
 - Give/Build an example which works
- Proof by Cases
 - Shows: $\forall x \in S, P(x)$
 - Show $(\forall x \in S_1, P(x)) \land (\forall x \in S_2, P(x)) \land (S_1 \cup S_2 = S)$
- Induction
 - Shows: $\forall x \in \mathbb{N}$, P(x)
 - Show P(0), then show $P(k) \rightarrow P(k+1)$ for $k \ge 0$

Proof: n^2 is even $\leftrightarrow n$ is even

- How would we prove this?
- Recall: $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$
 - Suffice to show both of:
 - $p \rightarrow q$
 - $q \rightarrow p$

Proof: if n^2 is even $\leftarrow n$ is even

Direct Proof :

- Start with premise
- Repeatedly apply definitions, equivalences, and inferences
- End with conclusion

Show that n=2k implies $n^2=2k'$

Start with n = 2k

- 1. n = 2k
- 2. $n^2 = (2k)(2k)$
- 3. $n^2 = 4k^2$
- 4. $n^2 = 2(2k^2)$
- 5. Let $k' = 2k^2$, n^2 is even

Proof: if n^2 is even $\rightarrow n$ is even

Indirect Proof (proof by contrapositive):

- Start with negation of the conclusion
- Repeatedly apply definitions, equivalences, and inferences
- End with negation of the premise

Show that
$$n=2k+1$$
 implies $n^2=2k'+1$

Start with
$$n = 2k + 1$$

1.
$$n = 2k + 1$$

2.
$$n^2 = (2k+1)(2k+1)$$

3.
$$n^2 = 4k^2 + 4k + 1$$

4.
$$n^2 = 2(2k^2 + 2k) + 1$$

5. Let
$$k' = 2k^2 + 2k$$
, n^2 is odd

Proof: $\sqrt{2}$ is not rational

Proof by contradiction

- Start with $p \land \neg q$
- Repeatedly apply definitions, equivalences, and inferences
- End with False

Show that
$$\left(\frac{a}{b}\right)^2=2$$
 and $a,b\in\mathbb{N}$ is impossible

Start with
$$\left(\frac{a}{b}\right)^2 = 2 \wedge a, b \in \mathbb{N}n = 2k + 1$$

- 1. Assume toward reaching a contradiction that $\left(\frac{a}{b}\right)^2 = 2$ and a, b are integers, and $\frac{a}{b}$ is in simplest terms (i.e. $\gcd(a,b) = 1$)
- 2. Since a^2 is even, it must be that a is even, so a^2 is divisible by 4
- 3. For $\left(\frac{a}{h}\right)^2 = \frac{a^2}{h^2} = 2$, it must then be that b^2 is even, meaning b is also even
- 4. Since a, b are both even, $gcd(a, b) \ge 2$, which is a contradiction

Proof: For any integer x, there is a power of 3 larger than x

- Proof by construction:
 - Give/Build an example which works

Show: I can use x to build a power of 3 larger than x

- 1. Note that $3^{\lceil \log_3 x \rceil} \ge x$
- 2. So $3 \cdot 3^{\lceil \log_3 x \rceil} > x$
- 3. $3 \cdot 3^{\lceil \log_3 x \rceil}$ is an integer because $\lceil y \rceil$ is always an integer (by definition of ceiling).

Proof: $n^4 - 4n^2$ is divisible by 3

Proof by Cases:

- 1. Enumerate all possible circumstances for the given
- 2. Show that each circumstance results in the conclusion
- 1. $n^4 4n^2$
- 2. $n^2(n^2-4)$
- 3. $n \cdot n(n-2)(n+2)$
- 4. Cases: $n \equiv 0 \mod 3$, $n \equiv 1 \mod 3$, $n \equiv 2 \mod 3$
 - 1. $n \equiv 0 \mod 3$: 3|n, thus $3|(n^4 4n^2)$
 - 2. $n \equiv 1 \mod 3$: 3|(n+2), thus $3|(n^4-4n^2)$
 - 3. $n \equiv 2 \mod 3$: 3 | (n-2), thus $3 | (n^4 4n^2)$

When writing a proof

- 1. Mention method of proof you're using
- List everything given (all assumptions you're making)
- 3. State formally what you are going to prove
- State your proof as clearly and concisely as you can
 - providing accompanying intuition is often helpful)

Mathematical Induction

- We what to show $\forall x \in \mathbb{N}, P(x)$ for some proposition P(x)
 - E.g. $\forall x \in \mathbb{N}$, Domino x will fall
- Base Case: First show P(0)
 - Show that Domino 0 (the first domino) will fall
- Inductive Hypothesis: Assume P(k) for an arbitrary $k \ge 0$.

- Assume arbitrary domino k will fall
- Inductive Step: Show $P(k) \rightarrow P(k+1)$
 - Show that when arbitrary domino k falls, then the next domino k+1 will fall.

Mathematical Induction

- Base Case: The first domino will fall
- Inductive step: If any domino k falls, then domino k+1 will fall

Hi-Ho-Cherry-O

- Each Player takes turns removing 1, 2, 3, or 4 cherries from play
- First player unable to pick a cherry loses

Player 2 always wins

- If number of cherries is a multiple of 5, then player 2 always wins.
 - ∀ $x \in \mathbb{N}$, Player 2 wins for 5x cherries
- Base Case: when x = 0, player 2 wins
 - Proof: when there are 0 cherries, player 1 has none to take, so player 2 wins
- Inductive Hypothesis: Assume player 2 wins when there are 5k cherries
- Inductive Step: Show that if player 2 wins with 5k cherries, then player 2 wins with 5(k+1) cherries
 - Proof: By construction: If player 1 takes n cherries, where $1 \le n \le 4$, then player 2 can take 5-n cherries. If we had 5(k+1) cherries, then we now have 5(k+1)-n-(5-n)=5k cherries. Therefore player 2 wins by the inductive hypothesis

Problems with induction

- Useless for helping you to find the answer
- You have to know the answer first
- Does not provide insights into why something is true
- Does not give any clues on how to correct if you're wrong