Random Forest/ Bootstrap Aggregation Mobile classification Case study import pandas as pd In [3]: mobile = pd.read_csv(r'c:\Users\Admin\Desktop\Mobile Classification.csv') mobile.head() Out[3]: battery_power blue clock_speed dual_sim fc four_g int_memory m_dep mobile_wt n_cores ... px_height px_width ram sc_h sc_w talk_time three_g touch_screen wifi price_range 842 2 ... 2.2 0 1 7 0.6 188 756 2549 1021 53 0.7 1988 2631 1 0 3 ... 5 ... 563 1 0.5 1 2 1 41 0.9 145 1263 1716 2603 11 9 1 0 2 0 0 3 615 10 8.0 131 1786 2769 2 ... 1821 1 1.2 0 13 44 0.6 141 1208 1212 1411 15 1 0 5 rows × 21 columns mobile.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 2000 entries, 0 to 1999 Data columns (total 21 columns): Non-Null Count Dtype # Column -------- ----0 battery_power 2000 non-null int64 2000 non-null int64 1 blue 2000 non-null float64 2 clock_speed 2000 non-null int64 3 dual_sim 2000 non-null int64 4 fc four_g 2000 non-null int64 2000 non-null int64 int_memory 2000 non-null float64 m_dep 2000 non-null int64 mobile_wt 9 n_cores 2000 non-null int64 2000 non-null int64 10 pc 11 px_height 2000 non-null int64 2000 non-null int64 12 px_width 13 ram 2000 non-null int64 2000 non-null int64 14 sc_h 2000 non-null int64 15 sc_w 2000 non-null int64 16 talk_time 17 three_g 2000 non-null int64 18 touch_screen 2000 non-null int64 19 wifi 2000 non-null int64 20 price_range 2000 non-null int64 dtypes: float64(2), int64(19) memory usage: 328.2 KB In [5]: mobile.isnull().sum() battery_power blue clock_speed dual_sim four_g int_memory m_dep mobile_wt n_cores рс px_height px_width ram sc_h SC_W talk_time three_g touch_screen wifi price_range dtype: int64 mobile['price_range'].nunique() # Finding out the number of categories in price range mobile['price_range'].unique() array([1, 2, 3, 0], dtype=int64) Assumption:- If the price range 0, the mobiles are cheaper and if the price range is 3, mobiles are costlier. To validate the above assumption, we need to group the price ranges based on average ram. mobile.groupby('price_range')[['ram']].mean().reset_index() price_range ram 0 785.314 1 1679.490 2 2582.816 3 3449.232 # Indentifying the output and input variables y = mobile[['price_range']] x = mobile.drop(columns=['price_range']) # Splitting the data into train and test from sklearn.model_selection import train_test_split $x_{train}, x_{test}, y_{train}, y_{test} = train_{test}, y_{test}, y_{test$ len(x_train), len(x_test), len(y_train), len(y_test) (1600, 400, 1600, 400) Out[20]: **Building Random Forest** from sklearn.ensemble import RandomForestClassifier rf = RandomForestClassifier(n_estimators = 500) model = rf.fit(x_train,y_train)

[0 15 75 9]
[0 0 7 107]]

n [25]: print(accuracy_score(y_test['price_range'],y_test['Prediction']))

0.8725So by building Random forest model we are getting accuracy of 87%.

5 74 13 0]

So by building nation totes: model we are getting accuracy of 67%.