Assignment 3 – Some Practice Problems

Base Conversion (6 points)

Convert each of the following from base 10 to base 2.

a.
$$169_{10} = \underline{\hspace{1cm}} 10101001$$

c.
$$189_{10} = \underline{\hspace{1cm}} 101111101$$

Unsigned Addition in Base 2 and Base 16 (12 points)

Complete each of the following, making sure to express your answer in the base that is specified for each.

a.	What is 100111111 ₂ + 100001 ₂ in base 2?	11000000
b.	What is 111101100 ₂ + 111001 ₂ in base 2?	1000100101
Ο.	7711d1 13 1 1 1 1 0 1 1 0 0 2 1 1 1 1 0 0 1 2 11 1 0 d 3 0 2 ;	1000100101
	What is 1D 471 4729 + CQDQQD in base 142	1 DD 2 A 905 5
C.	What is 1DA71A728 ₁₆ + C8D92D ₁₆ in base 16?	1DB3A8055

d. What is 53084B279₁₆ + CC7D531₁₆ in base 16? 53D4C87AA

Bitwise Operations (14 points)

If we have

char
$$x = C6$$
, $y = 7D$;

what is the result of the following operations?

Note: Your answer must be in the form of exactly two hex digits (i.e. ignore the possibility of promotion to 32-bit ints and behave as though we're living in the land of 8-bit arithmetic).

a. x << 2	03 18
b. x < 1	00
C. X-Y	49
d. !!x	C6
e. ~x	39
f. x & y	44
g. x ^ y ^ y	ВВ
hx	3A
i. x & 0x0F	06
j. ~~x	C6
k. x y	FF
l. x y	FF
m. x∧y	ВВ
n. x && 1	01

Addressing and Byte Ordering (8 points)

Let's say we have

int
$$x = 0x68AD1F04$$
; /* word size = 4 bytes = 32 bits */

which we'll say is stored in addresses 0x100 through 0x103.

Specify the little endian vs. big endian byte ordering below.

Note: Specify only the two hex digits (so without the preceding 0x) that make up each byte.

Little Endian:

Address	Value
0x100	04
0x101	1F
0x102	AD
0x103	68

Big Endian:

Address	Value
0x100	68
0x101	AD
0x102	1F
0x103	04