

Estatística Básica

Noções de Assimetria

Professora Ma. Tainara Volan tainaravolan@gmail.com

Noções de Assimetria

- uma distribuição quando simétrica, a média e a moda coincidem;
- a distribuição assimétrica à esquerda ou negativa, a média é menor que a moda;
- e sendo assimétrica à direita ou positiva, a média é maior que a moda.

Baseando-nos nessas relações entre a média e a moda, podemos empregá-las para determinar o tipo de assimetria.

Noções de Assimetria

Distribuição Simétrica

Média = Mediana = Moda

Assimetria à direita ou positiva

Assimetria à esquerda ou negativa

Noções de Assimetria

- Curva SIMÉTRICA: média = mediana = moda
- Curva ASSIMÉTRICA POSITIVA: média > mediana > moda
- Curva ASSIMÉTRICA NEGATIVA: média < mediana < moda

Curva Simétrica

Caracteriza-se por apresentar o valor máximo no ponto central e os pontos equidistantes desse ponto terem a mesma frequência

Curvas Simétricas - exemplos

Curva Assimétrica

- Na prática, não encontramos distribuições perfeitamente simétricas. As distribuições obtidas de medições reais são mais ou menos assimétricas.
- Se a cauda do lado da ordenada máxima é mais alongada à direita, a curva é assimétrica positiva.

Curva Assimétrica

• Se a cauda do lado da ordenada máxima se alonga à esquerda, a curva é chamada assimétrica negativa.

Curva Assimétrica

Curvas Assimétricas - exemplos

Coeficientes de assimetria

O coeficiente de assimetria de Pearson é utilizado para calcular o tipo de assimetria de uma distribuição, dado por:

$$As = \frac{3(\overline{x} - Md)}{s}$$

As = 0 indica simetria

As = valor positivo indica assimetria positiva

As = valor negativo indica assimetria negativa

Se $|As| \le 0.15$, a assimetria é fraca Se 0.15 < |As| < 1, a assimetria é moderada Se $|As| \ge 1$, a assimetria é forte.

Exemplo utilizando a média e moda

Distribuição A

Pesos (kg)	fi
2 - 6	6
6 - 10	12
10 - 14	24
14 - 18	12
18 - 22	6
	= 60

Distribuição B

Pesos (kg)	fi
2 - 6	6
6 - 10	12
10 - 14	24
14 - 18	30
18 - 22	6
	= 78

Distribuição C

Pesos (kg)	fi
2 - 6	6
6 - 10	30
10 - 14	24
14 - 18	12
18 - 22	6
	= 78

Exemplo utilizando a média e moda

Distribuição A

$\overline{x} = 12 kg$ Md = 12 kg Mo = 12 kg s = 4,42 kg

Distribuição B

$$\overline{x} = 12,9 \ kg$$
 $Md = 13,5 \ kg$
 $Mo = 16 \ kg$
 $s = 4,20 \ kg$

Distribuição C

$$\overline{x} = 11.1 kg$$
 $Md = 10.5 kg$
 $Mo = 8 kg$
 $s = 4.20 kg$

Logo:

- A. 12 12 = 0 -> a distribuição e **simétrica**
- B. 12,9 16 = -3,1 kg -> a distribuição é assimétrica negativa
- C. 11,1-8=3,1 kg -> a distribuição e **simétrica**

Exemplo utilizando o coeficiente de assimetria

Distribuição A	Distribuição B	Distribuição C	
$\overline{x} = 12 kg$ $Md = 12 kg$ $Mo = 12 kg$ $s = 4,42 kg$	$\overline{x} = 12,9 \ kg$ $Md = 13,5 \ kg$ $Mo = 16 \ kg$ $s = 4,20 \ kg$	$\overline{x} = 11.1 \ kg$ $Md = 10.5 \ kg$ $Mo = 8 \ kg$ $s = 4.20 \ kg$	$As = \frac{3(\overline{x} - Md)}{s}$

Logo:

A.
$$As = \frac{3(12-12)}{4,42} = 0$$
, simetria

B. $As = \frac{3(12,9-13,5)}{4,20} = -0,429$, assimetria negativa

C. $As = \frac{3(11,1-10,5)}{4,20} = 0,429$, assimetria positiva

Estatística Básica

Curtose

Professora Ma. Tainara Volan tainaravolan@gmail.com

Denominamos **curtose** o grau de achatamento de uma distribuição em relação a uma distribuição padrão, denominada **curva normal** (curva correspondente a uma distribuição teórica de probabilidade).

• Quando a distribuição apresenta uma curva de frequência mais fechada que a normal (ou mais aguda em sua parte superior), ela recebe o nome de leptocúrtica.

Leptocúrtica

• Quando a distribuição apresenta uma curva de frequência mais aberta que a normal (ou mais achatada na sua parte superior), ela recebe o nome de platicúrtica.

Platicúrtica

• A curva normal, que é a nossa base referencial, recebe o nome de mesocúrtica.

Mesocúrtica

Coeficiente de Curtose

Uma fórmula para a medida de curtose é:

$$C = \frac{Q_3 - Q_1}{2(P_{90} - P_{10})}$$

Desse modo, temos:

C = 0,263 -> curva mesocúrtica

C < 0,263 -> curva leptocúrtica

C > 0,263 -> curva platicúrtica

