- 3. Maximum likelihood methods apply to estimates of prior probabilities as well. Let samples be drawn by successive, independent selections of a state of nature  $\omega_i$  with unknown probability  $P(\omega_i)$ . Let  $z_{ik} = 1$  if the state of nature for the kth sample is  $\omega_i$  and  $z_{ik} = 0$  otherwise.
  - (a) Show that

$$P(z_{i1},...,z_{in}|P(\omega_i)) = \prod_{k=1}^{n} P(\omega_i)^{z_{ik}} (1 - P(\omega_i))^{1-z_{ik}}.$$

(b) Show that the maximum likelihood estimate for  $P(\omega_i)$  is

$$\hat{P}(\omega_i) = \frac{1}{n} \sum_{k=1}^n z_{ik}.$$

Interpret your result in words.

 Let x be a d-dimensional binary (0 or 1) vector with a multivariate Bernoulli distribution

$$P(\mathbf{x}|\boldsymbol{\theta}) = \prod_{i=1}^d \theta_i^{x_i} (1-\theta_i)^{1-x_i},$$

where  $\theta = (\theta_1, ..., \theta_d)^t$  is an unknown parameter vector,  $\theta_i$  being the probability that  $x_i = 1$ . Show that the maximum likelihood estimate for  $\theta$  is

$$\hat{\boldsymbol{\theta}} = \frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_k.$$

5. Let each component  $x_i$  of  $\mathbf{x}$  be binary valued (0 or 1) in a two-category problem with  $P(\omega_1) = P(\omega_2) = 0.5$ . Suppose that the probability of obtaining a 1 in any component is

$$p_{i1} = p$$

$$p_{i2} = 1 - p,$$

and we assume for definiteness p > 1/2. The probability of error is known to approach zero as the dimensionality d approaches infinity. This problem asks you to explore the behavior as we increase the number of features in a single sample — a complementary situation.

(a) Suppose that a single sample  $\mathbf{x} = (x_1, ..., x_d)^t$  is drawn from category  $\omega_1$ . Show that the maximum likelihood estimate for p is given by

$$\hat{p} = \frac{1}{d} \sum_{i=1}^{d} x_i.$$

- (b) Describe the behavior of \(\hat{p}\) as d approaches infinity. Indicate why such behavior means that by letting the number of features increase without limit we can obtain an error-free classifier even though we have only one sample from each class.
- (c) Let  $T = 1/d \sum_{j=1}^{d} x_j$  represent the proportion of 1's in a single sample. Plot  $P(T|\omega_i)$  vs. T for the case P = 0.6, for small d and for large d (e.g., d = 11 and d = 111, respectively). Explain your answer in words.