Recursive Functions, Finite-state Machines

Problem 1: Devise a function p(n) such that p(n) is the number of different ways to create postage of n cents using 3-, 4-, and 5-cent stamps.

Proof. Define a(n) to be the number of ways n-cents can be created with only 3-cent coins.

Let b(n) be the number of ways n-cents can be created with with 4 and 3-cent coins ONLY, using at least one 4-cent coin.

Lastly, let c(n) be the number of ways n-cents can be created with 3, 4, and at least one 5-cent coin.

Clearly, p(n) = a(n) + b(n) + c(n) since each component function counts mutually exclusive combinations.

Now,
$$a(n) = \begin{cases} 1 & \text{if } 3|n\\ 0 & \text{otherwise.} \end{cases}$$

Also, b(n) = a(n-4) + b(n-4) since if b(n) counts combinations with at least one 4-cent coin, removing a 4-cent coin either leaves at least one 4-cent coin (b(n-4)) or zero 4-cent coins (a(n-4))

By a similar argument, c(n) = a(n-5) + b(n-5) + c(n-5).

Now we consider base cases for the recursively defined b(n) and c(n).

Trivially, b(n) = 0 = c(0) when n < 3.

Now we list values for $n \in \mathbb{N} \cap [3,7]$ (which only have 1 possible combination each):

n	3-cent coins	4-cent coins	5-cent coins
3	1	0	0
4	0	1	0
5	0	0	1
6	2	0	0
7	1	1	0

Thus, b(4) = b(7) = 1 and c(5) = 1, and c(n) = b(n) = 0 for any other value of $n \le 7$.

Now consider c(n) for n > 7. Since we've defined cases for $n \in \mathbb{N} \cap [1, 7]$, the recursive calls of c(n) will eventually reach a defined base case (since $n \mod 5 < 7$)

A similar argument can be said for b(n).

Thus, p(n) is well defined and is sure to terminate for all $n \in N$.

We know that p(0) = p(1) = 0 and p(n) = 1 for $n \in \mathbb{N} \cap [3,7]$. So, all that's left to do is to use strong induction to prove p(n-1) < p(n) for n > 7. It suffices to show that one case since we assume under the inductive hypothesis that p(n*) < p(n-1) for all n* < n-1.

We will start with the following corollary (which I checked in python, but couldn't do so rigorously):

$$b(n-6) + c(n-6) \le b(n-5) + c(n-4) \tag{1}$$

Also, note that for any consecutive i, j, k: a(i) + a(j) + a(k) = 1 since exactly one of them is divisible by 3.

$$b(n-6) + c(n-6) \le b(n-4) + c(n-5)$$
 (from (1))

$$b(n-5) + b(n-6) + c(n-6) \le b(n-4) + b(n-5) + c(n-5)$$
 (adding $b(n-5)$ to both sides)

$$b(n-5) + b(n-6) + c(n-6) + b(n-4) + b(n-5) + c(n-5) + a(n-4) + a(n-5) + a(n-6) \le a(n-3) + a(n-4) + a(n-5)$$

$$a(n-1) + b(n-1) + c(n-1) \le a(n) + b(n) + c(n)$$

$$p(n-1) \le p(n)$$

as wanted. \Box

Problem 2: Let $\Sigma = \{a, b, c\}$ and $L_{R4} = \{x \in \Sigma^*; |x| = 4 \land x = x^R\}$. Prove that any DFA that accepts L_{R4} has at least nine states.

Proof. Suppose for sake of contradiction that there exists a DFA = $\{Q, \Sigma, \delta, Q_0, F\}$ where |Q| < 9 and accepts L_{R4} .

Let $x \in L_{R4}$. By definition, x = pqqp where $p, q \in \{a, b, c\}$. Since $|\Sigma| = 3$, there are $3 \times 3 = 9$ unique options for prefix pq (by multiplication principle).

Since there are less than 9 total states, there must be at least two unique combinations of pq that send the DFA into the same state (by pigeon-hole principle). Say two of these prefixes are p_0q_0 and p_1q_1 .

Since they are indistinguishable prefixes, any string of the form p_0q_0w and p_1q_1w will end up in the same state. Let $w=q_0p_0$ and we can see that both $p_0q_0q_0p_0$ and $p_1q_1q_0p_0$ will reach the same state, say $S \in Q$

If S is an accepting state, we reach a contradiction since $p_0q_0 \neq p_1q_1$ and therefore $p_0q_0q_1p_1 \neq (p_0q_0q_1p_1)^R = p_1q_1q_0p_0$ (the DFA accepts a string not in L_{R4})

If S is a non-accepting state, we still reach a contradiction since $p_0q_0q_0p_0$ is clearly in L_{R4} (the DFA does not accept all strings in L_{R4}).

Thus, any DFA that accepts L_{R4} must have at least 9 states.

In general, if $L_{Rn} = \{x \in \Sigma^* \mid x = x^R \text{ and } |x| = n\}$ where $|\Sigma| = 3$, then you will need at least $3^{\lfloor n/2 \rfloor}$ states since those are the number of unique prefixes (just before the half-way point) in L_{Rn} .

Problem 3: Let $\Sigma = [0, 9] \cap \mathbb{N}$, $L_n = \{x \in \Sigma^* | x \text{ represents a number equivalent to } n \mod 3 \text{ in base } 10\}$. Construct M_0 that accepts $L_0 \cup \{\varepsilon\}$, M_1 and M_2 that accepts L_1 and L_2 , making sure each machine has exactly 3 states. Then show $\mathbf{Rev}(L_n) = L_n$.

$$M_{0} = \left\{ \begin{array}{l} Q = \{R_{0}, R_{1}, R_{2}\} \\ \Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \\ \delta = \begin{bmatrix} \delta & R_{0} & R_{1} & R_{2} \\ 0, 3, 6, 9 & R_{0} & R_{1} & R_{2} \\ 1, 4, 7 & R_{1} & R_{2} & R_{0} \\ 2, 5, 8 & R_{2} & R_{0} & R_{1} \\ F = \{R_{0}\} \end{array} \right.,$$

$$M_{1} = \left\{ \begin{array}{l} Q = \{R_{0}, R_{1}, R_{2}\} \\ \Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \\ \delta = \begin{bmatrix} \delta & R_{0} & R_{1} & R_{2} \\ 0, 3, 6, 9 & R_{0} & R_{1} & R_{2} \\ 1, 4, 7 & R_{1} & R_{2} & R_{0} \\ 2, 5, 8 & R_{2} & R_{0} & R_{1} \\ \end{array} \right.,$$

$$Q_{0} = \{R_{0}\}$$

$$F = \{R_{1}\}$$

Let $x \in L$ where $L \in \{L_0, L_1, L_2\}$ and consider x^R . Let $d^*(Q_0, x)$ be the **final state of x**.

If we want a DFSM machine M' that takes x^R , simply take the corresponding machine that accepts L (we'll call it M) and:

- (1) Choose the final state of x to be the new starting state.
- (2) If the final state of x is an accepting state, let $F := \{R_0\}$ (the original starting state).
- (3) Invert of all transitions (i.e. If it were a diagram, switch all the arrows backward.)

All these can be done since there are no dead states and all transitions are well-defined.

It is clear that this new machine accepts only x^R since it mimics the backward traversal of x in M.

Now, notice that you get the exact same machine, (albeit, maybe with different labels). Since the labels themselves are arbitrary, and the choice of L is arbitrary, we can see that M = M' and since M' accepts x^R , then it follows that M_0 , M_1 , M_2 also accepts x^R if they accept x.

Therefore
$$L_n = \mathbf{Rev}(L_n)$$
 as wanted.