5 / 2
Spotify Music Features

Chiou, Ching-Yi

Import Package

import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns

import spotipy.util as util

pip install spotipy

Training

使用csv來訓練情緒的分類

df_feature_selected = df.drop(['f_name', 'a_name', 'title', 'lyrics', 'spot_id', 'sr_json', 'tr_json', "mood"], axis=1)

4	Α	В	С	D	E	F	G	Н	1	J	K	L	М	N
1	f_name	a_name	title	lyrics	spot_id	sr_json	tempo	energy	danceability	loudness	valence	acousticness	r_json	mood
2	angry_a11/50	PJ Harvey	50 Ft Queen:	Hey I'm one	3fJprjhRxTV	{ "tracks": {	126.366	0.667	0.382	-16.077	0.718	0.000652	[1
3	angry_all/A	Keane	A Bad Dreai	Why do I ha	17ScnUBsr3	{ "tracks":{	145.035	0.76	0.405	-4.852	0.316	0.00824	[1
4	angry_all/Ag	The Faint	Agenda Suic	You could fo	4Mhj9IjSxT	{ "tracks": {	144.585	0.703	0.574	-7.789	0.275	0.00658	[1
5	angry_all/Al	Stiff Little F:	Alternative (There's nothi	0MDJjySh4	{ "tracks": {	118.181	0.925	0.6	-9.148	0.382	0.00882	[1
6	angry_all/Ar	The Cranber.	Animal Insti	Suddenly so	3J58Ccc5iTb	{ "tracks": {	132.145	0.823	0.622	-5.381	0.605	0.0946	[1
7	angry_all/Blo	Living Sacrif	Bloodwork	A simple tes	4wmH0KK	{ "tracks":{	86.383	0.879	0.344	-5.111	0.479	0.000427	{	1
8	angry_all/Bc	Pixies	Bone Machi	(This is a sor	58BsYHaW	{ "tracks": {	115.906	0.678	0.63	-12.757	0.964	0.000677	{	1
9	angry_all/Bc	Ice Cube	Bop Gun	At these up l	0oZiK5HCN	{ "tracks": {	103.05	0.837	0.891	-5.402	0.767	0.283	{	1
10	angry_all/Bc	Kaiser Chief	Boxing Chai	We went to	1r7XNA9Cz	{ "tracks": {	119.674	0.553	0.494	-4.848	0.296	0.962	{	1
11	angry_all/Br	Recoil	Breath Contr	Who wouldr	4CSyaZkuA	{ "tracks": {	162.002	0.645	0.58	-9.784	0.546	0.0609	{	1
12	angry_all/Br	Evanescence	Bring Me To	How can you	0COqiPhxzc	{ "tracks": {	189.931	0.945	0.316	-3.169	0.32	0.00895	{	1
13	angry_all/Bu	Nine Inch N	Burn	This world re	OnCvBepOqe	{ "tracks": {	89.919	0.912	0.592	-6.81	0.647	0.00146	{	1
14	angry_all/Ca	Kelis	Caught Out	Yo, this son	lnZkrUFLq2	{ "tracks": {	92.996	0.691	0.848	-6.775	0.922	0.0512	{	1
15	angry_all/Ch	Ice Cube	Check Yo Se	So come on	3NGT0Td7E	trocka • (101.368	0.735	0.934	-6.668	0.768	0.031	{	1

Fit to random forests

clf = RandomForestClassifier(min_samples_split=4, criterion="entropy")

features_train, features_test, labels_train, labels_test = train_test_split(features, labels, test_size=0.20, random_state=91)

Test Accuracy: 0.848314606741573

Precision: 0.8506850837253214

Recall: 0.848314606741573

confusion matrix

[[63 9 3 4]

[983 4 2]

[4 1 69 4]

[4 0 10 87]]

find the accuracy of the model

try other classifier kNN \ SVM \ Decision Tree

Try other classifier

Random Forest Classifier 🗡

RandomForest Train Accuracy: 0.9823943661971831 RandomForest Test Accuracy: 0.8202247191011236

RandomForest Precision: 0.8210756861425652 RandomForest Recall: 0.8202247191011236

RandomForest confusion matrix

[[70 9 11 1]

[10 82 2 6]

[3 5 61 8]

[2 0 7 79]]

Decision Tree Classifier

DecisionTree Train Accuracy: 0.9929577464788732 DecisionTree Test Accuracy: 0.797752808988764

DecisionTree Precision: 0.8009008060227272

DecisionTree Recall: 0.797752808988764

DecisionTree confusion matrix

[[69 10 8 4]

[972 910]

[2 5 61 9]

[3 0 3 82]]

Support Vector Machines, SVM

SVM Train Accuracy: 0.676056338028169 SVM Test Accuracy: 0.5056179775280899

SVM Precision: 0.4998380210144346 SVM Recall: 0.5056179775280899

SVM confusion matrix

[[34 20 20 17]

[22 48 16 14]

[12 17 32 16]

[9 2 11 66]]

K Nearest Neighbor, kNN

kNN Train Accuracy: 0.652112676056338 kNN Test Accuracy: 0.5084269662921348

kNN Precision: 0.5111367785310117 kNN Recall: 0.5084269662921348

kNN confusion matrix

[[43 23 13 12]

[29 48 12 11]

[19 14 32 12]

[15 4 11 58]]

Try other classifier

AdaBoost Classifier

AdaBoost Train Accuracy: 0.5091549295774648 AdaBoost Test Accuracy: 0.46629213483146065

.....

AdaBoost Precision: 0.4817275400870143 AdaBoost Recall: 0.46629213483146065

AdaBoost confusion matrix

[[38 15 18 20]

[17 55 10 18]

[7 7 37 26]

[10 12 30 36]]

code for spotify get meta

username = 'qnwv65t11cplaz4dikhl4mjgi'
CLIENT_ID = '07f9611e9b234caea4fcee288da82e61'
CLIENT_SECRET = '087b1a26a1294bc58a0a89d4a29463e4'
REDIRECT_URI = 'http://localhost/'
SCOPE = 'user-library-read'

My Spotify

An innovative Spotify integration that does creative things.

Client ID 07f9611e9b234caea4fcee288da82e61

HIDE CLIENT SECRET

Account overview

Profile

Username

qnwv65t11cplaz4dikhl4mjgi

Email

chiouchingyi@smail.nchu.edu.tw

Date of birth

1/21/96

Country

TW

```
Spotify Features
                        # 跳舞性 (tempo, rhythm stability, beat strength, and overall regularity)
[{'danceability': 0.674,
                        #強度
 'energy': 0.881,
                        # 調性 (0 = C、1 = C#/Db、2 = D ...,沒偵測到=-1)
 'key': 9,
 'loudness': -2.853,
                        #音軌的總響度(dB)
 'mode': 1,
                        # 模式 (0=小調minor、1=大調major)
 'speechiness': 0.147,
                        #音軌中存在的口語單詞
 'acousticness': 0.296,
                        # acoustic (0-1之間)
 'instrumentalness': 3.01e-06,
                              #預測音軌包含人聲的程度
 'liveness': 0.0793,
                        #檢測錄製中是否有觀眾 (值越高代表是live)
'valence': 0.234,
                        #音樂正向性(值越高情緒越正面)
 'tempo': 98.994,
                        # bpm (每秒幾拍)
 'type': 'audio features',
'id': '5WHTFyqSii0lmT9R21abT8',
 'uri': 'spotify:track:5WHTFyqSii0lmT9R21abT8', #音樂uri
 'track href': 'https://api.spotify.com/v1/tracks/5WHTFyqSii0lmT9R21abT8',
 'analysis_url': 'https://api.spotify.com/v1/audio-analysis/5WHTFyqSii0lmT9R21abT8',
 'duration_ms': 178480, #音軌時間長度(毫秒)
 'time_signature': 4}] # 拍號 (每一小節有多少拍)
```


Table = [['Song Name', 'Singer', 'tempo', 'energy', 'loudness', 'danceability', 'valence', 'acousticness', 'happy', 'angry', 'sad', 'relax', 'Mood Class']]

	Α	В	С	D	E	F	G	Н	- 1	J	K	L	М
1	Havana	Camila C	104.988	0.523	-4.333	0.765	0.394	0.184	12	51.33333	36.66667	0	1
2	Give in To	Lika Morg	124.071	0.871	-4.069	0.769	0.672	0.0873	45	10	35	10	0
3	Sugar	Maroon 5	120.076	0.788	-7.055	0.748	0.884	0.0591	20	16	34	30	2
4	Be Alright	Dean Lew	126.684	0.586	-6.319	0.553	0.443	0.697	23.33333	22.66667	22.5	31.5	3
5	Shape of 3	Ed Sheera	95.977	0.652	-3.183	0.825	0.931	0.581	20	40	30	10	1
6	"Im the O	DJ Khaleo	80.924	0.668	-4.284	0.609	0.811	0.0552	5.714286	26	58.28571	10	2
7	Symphony	Clean Bar	122.863	0.629	4.581	0.707	0.457	0.259	5.714286	40	34.28571	20	1
8	1-800-273	Logic	100.021	0.574	-7.788	0.62	0.352	0.57	15	41.66667	20	23.33333	1
9	DNA.	Kendrick :	139.913	0.523	-6.664	0.638	0.422	0.00454	6	14	60	20	2
10	Return Of	Mark Mor	95.487	0.833	-5.379	0.715	0.612	0.00631	25.71429	6	38.28571	30	2
11	This Is Me	Keala Sett	191.702	0.704	-7.276	0.284	0.1	0.00583	10	6	64	20	2
12	Wolves	Selena Go	124.946	0.807	4.59	0.72	0.305	0.129	15.71429	10	44.28571	30	2
13	When I Fa	Celine Did	68.353	0.241	-13.251	0.19	0.107	0.577	56.66667	0	43.33333	0	0

Song Name Singer 6 features

percent of 4 emotion

emotion result

Problems

yourOutputTest.csv

yourOutputTest2.csv

	Α	В	С	D	E	F	G	Н	1	J	K	L	М
1	Havana	Camila Ca	104.988	0.523	4.333	0.765	0.394	0.184	12	51.33333	36.66667	0	1
2	Give in To	Lika Morg	124.071	0.871	4.069	0.769	0.672	0.0873	45	10	35	10	0
3	Sugar	Maroon 5	120.076	0.788	-7.055	0.748	0.884	0.0591	20	16	34	30	2
4	Be Alright	Dean Lew	126.684	0.586	-6.319	0.553	0.443	0.697	23.33333	22.66667	22.5	31.5	3
5	Shape of Y	Ed Sheerai	95.977	0.652	-3.183	0.825	0.931	0.581	20	40	30	10	1
6	"Im the O	DJ Khaled	80.924	0.668	-4.284	0.609	0.811	0.0552	5.714286	26	58.28571	10	2
7	Symphony	Clean Ban	122.863	0.629	-4.581	0.707	0.457	0.259	5.714286	40	34.28571	20	1
8	1-800-273	Logic	100.021	0.574	-7.788	0.62	0.352	0.57	15	41.66667	20	23.33333	1
9	DNA.	Kendrick 1	139.913	0.523	-6.664	0.638	0.422	0.00454	6	14	60	20	2
10	Return Of	Mark Mor	95.487	0.833	-5.379	0.715	0.612	0.00631	25.71429	6	38.28571	30	2
11	This Is Me	Keala Sett	191.702	0.704	-7.276	0.284	0.1	0.00583	10	6	64	20	2
12	Wolves	Selena Go	124.946	0.807	4.59	0.72	0.305	0.129	15.71429	10	44.28571	30	2
13	When I Fa	Celine Dic	68.353	0.241	-13.251	0.19	0.107	0.577	56.66667	0	43.33333	0	0
	Α	В	С	D	Е	F	G	Н	I	J	K	L	М
1	Havana	Camila Ca	104.988	0.523	4.333	0.765	0.394	0.184	35	40	2.5	22.5	1

	Α	В	С	D	Е	F	G	Н	1	J	K	L	М
1	Havana	Camila Ca	104.988	0.523	4.333	0.765	0.394	0.184	35	40	2.5	22.5	1
2	Give in To	Lika Morg	124.071	0.871	4.069	0.769	0.672	0.0873	25	45	12.5	17.5	1
3	Sugar	Maroon 5	120.076	0.788	-7.055	0.748	0.884	0.0591	23.33333	20	26.66667	30	3
4	Be Alright	Dean Lew	126.684	0.586	-6.319	0.553	0.443	0.697	56	4	20	20	0
5	Shape of Y	Ed Sheerai	95.977	0.652	-3.183	0.825	0.931	0.581	30.83333	26.66667	32.5	10	2
6	"Im the O	DJ Khaled	80.924	0.668	-4.284	0.609	0.811	0.0552	20	68	12	0	1
7	Symphony	Clean Ban	122.863	0.629	4.581	0.707	0.457	0.259	25	50	25	0	1
8	1-800-273	Logic	100.021	0.574	-7.788	0.62	0.352	0.57	49.33333	14	33.33333	3.333333	0
9	DNA.	Kendrick 1	139.913	0.523	-6.664	0.638	0.422	0.00454	15	33	32	20	1
10	Return Of	Mark Mor	95.487	0.833	-5.379	0.715	0.612	0.00631	33.33333	20	36.66667	10	2
11	This Is Me	Keala Sett	191.702	0.704	-7.276	0.284	0.1	0.00583	30	0	50	20	2
12	Wolves	Selena Go	124.946	0.807	4.59	0.72	0.305	0.129	40	50	10	0	1
13	When I Fa	Celine Dic	68.353	0.241	-13.251	0.19	0.107	0.577	15	0	55	30	2

解決:np.random.seed(1) #每一次跑出來都一樣

Music Dataset

Happy: 117

Angry: 134

Sad: 177

Relax: 122

Total: 550

Music Dataset

songdata7_0408.txt singerdata7_0408.txt

移除歌名有feat等等

happy → energy高 / sad → energy低

sad → valence低、energy低

sad \rightarrow valence低、energy低
relax \rightarrow loudness大、tempo(80-140)
happy、angry \rightarrow energy高、loudness大、acousticness低
angry \rightarrow tempo(100-175)

angry、happy 區分?

angry → energy高、loudness大

angry → acousticness低

relax → energy高

angry \rightarrow tempo(90-150) / sad \rightarrow tempo(80-150) / relax \rightarrow tempo(90-150) / happy \rightarrow tempo(100-160)


```
happy `angry \rightarrow loudness大 (\checkmark)
angry \rightarrow energy高 `loudness大 `acousticness低 (\checkmark)
sad `relax \rightarrow loudness大 (\checkmark) `energy高
sad \rightarrow valence (0.2~0.6)
relax \rightarrow valence (0.0~0.5)
```

```
sad \rightarrow valence低
relax \rightarrow loudness大、tempo(80-140)
happy、angry \rightarrow energy高、loudness大、acousticness低
angry \rightarrow tempo(100-175)
```


Spotify Audio Features

Learn more about the audio properties of your favourite tracks, including detailed rhythmic information.

To get these values, we use the Spotify API's Get Audio Analysis for a Track endpoint.

Let's search for a track:

And Now The Day Is Done

SUBMIT

- · Now the Day is Done Frank Howard
- · And Now The Day Is Done Ron Sexsmith

Spotify Audio Features

Learn more about the audio properties of your favourite tracks, including detailed rhythmic information.

To get these values, we use the Spotify API's Get Audio Analysis for a Track endpoint.

Let's search for a track:

Almost Lover

SUBMIT

- Almost Lover A Fine Frenzy
- Almost Lover Jasmine Thompson

Spotify切割區段 - Audio Analysis Object

VALUE TYPE

KEY

segments

tatums

bars	an array of time interval objects	The time intervals of the bars throughout the track. A bar (or measure) is a segment of time defined as a given number of beats. Bar offsets also indicate downbeats, the first beat of the measure.
		The time intervals of beats throughout the track. A beat is the basic time unit of

VALUE DESCRIPTION

an array of time interval objects a piece of music; for example, each tick of a metronome. Beats are typically beats multiples of tatums. Sections are defined by large variations in rhythm or timbre, e.g. chorus, verse, an array of section objects bridge, guitar solo, etc. Each section contains its own descriptions of tempo, key, sections mode, time signature, and loudness.

Audio segments attempts to subdivide a song into many segments, with each an array of segment objects segment containing a roughly consitent sound throughout its duration.

A tatum represents the lowest regular pulse train that a listener intuitively infers from the timing of perceived musical events (segments). For more an array of time interval objects information about tatums.

Spotify Accounts Authentication

download node.js

λ npm install

- authorization_code
- client_credentials
- implicit_grant
- node_modules
- gitignore ...
- LICENSE
- □ package.json
- README.md

```
🔚 app. js 🔀 📙 index.html 🗵
      var express = require('express'); // Express web server framework
      var request = require('request'); // "Request" library
      var cors = require('cors');
      var querystring = require('querystring');
      var cookieParser = require('cookie-parser'); Using your own credentials
      var client id = '07f9611e9b234caea4fcee288da82e61'; // Your client id
      var client secret = '087b1a26a1294bc58a0a89d4a29463e4'; // Your secret
      var redirect uri = 'http://localhost:8888/callback'; // Your redirect uri
 19
 20
       * Generates a random string containing numbers and letters
       * @param {number} length The length of the string
       * @return {string} The generated string
 23
 24
     var generateRandomString = function(length) {
 26
        var text = '';
        var possible = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789';
 27
 28
        for (var i = 0; i < length; i++) {
          text += possible.charAt(Math.floor(Math.random() * possible.length));
 30
 31
 32
        return text;
 33
 34
      var stateKey = 'spotify auth state';
      var app = express();
      app.use(express.static( dirname + '/public'))
         .use(cors())
         .use(cookieParser());
 41
 42
     □app.get('/login', function(req, res) {
 44
 45
        var state = generateRandomString(16);
        res.cookie(stateKey, state);
 46
 47
 48
        // your application requests authorization
        var scope = 'user-library-read user-read-private user-read-email';
        res.redirect('https://accounts.spotify.com/authorize?' +
 51
          querystring.stringify({
 52
            response type: 'code',
 53
            client id: client id,
            scope: scope,
```

Spotify Accounts Authentication

λ cd D:\中興資管所\7 實驗進度\音頻情緒分類\web-api-auth-examples-master\authorization_code

 λ node app.js

current_user_saved_tracks()

print the track that the user saved

```
# 歌車中的歌名以及歌手名稱(最愛的歌曲)
sp = spotipy.Spotify(auth=token)
results = sp.current_user_saved_tracks()
print("最愛的歌曲: ")
for item in results['items']:
    track = item['track']
    print ('| - ' + track['name'] + ' | ' + track['artists'][0]['name'])
```

lyrics emotion

LogisticRegression方法

LogisticRegression方法 Testing accuracy score: 0.7584269662921348 LogisticRegression方法 Traing accuracy score: 0.9316901408450704 LogisticRegression方法 confusion matrix [[71 17 3 2]

[283 2 0] [112648 6]

[5 9 3 68]]

LinearSVC方法

LinearSVC方法 Testing accuracy score: 0.6769662921348315

LinearSVC方法 Traing accuracy score: 0.9316901408450704

LinearSVC方法 confusion matrix

[[71 17 3 2]

[283 2 0]

[11 26 48 6]

[5 9 3 68]]

lyrics emotion

LogisticRegression方法

```
In [11]: 1 pred=model.predict(X_test)
2 print("Testing accuracy score: " + str(model.score(X_test, y_test)))
Testing accuracy score: 0.3177570093457944
```

LinearSVC方法

```
In [13]:  #LinearSVC方法
2  linear_svc = LinearSVC(C=1.0, penalty='l1', max_iter=3000, dual=False)
3  model2 = linear_svc.fit(X_train,y_train)
4  pred = model2.predict(X_test)
5  print("LinearSVC Testing accuracy score: " + str(model2.score(X_test, y_test))
4  LinearSVC Testing accuracy score: 0.30218068535825543
```


Survey Page

Survey Page

How many songs take as a reference? (give several songs for initial user to rate)

THANKS! chiouchingyi@smail.nchu.edu.tw