

Simulation eines Golfballflugs

Aufgabennummer: A_026					
Technologieeinsatz:		möglich	\boxtimes	erforderlich	
In einem Simulationsprogramm soll die Flugbahn eines in ebenem Gelände geschlagenen Golfballs dargestellt werden. Sie kann näherungsweise durch folgende Funktion beschrieben werden					
	h(x)	$=-\frac{1}{216\ 000}$	$\frac{1}{5} \cdot x^3 + \frac{x}{5}, \ x \ge 0$		
 x waagrechte Entfernung vom Abschlag in Metern (m) h(x) Höhe des Balls in Metern (m), wenn der Ball sich in x Metern Entfernung vom Abschlag befindet (Annahme: Der Golfball bewegt sich in einer Ebene.) 					
a)	Ein 10 m hoher Baum, der ge gerade noch überflogen. Zeid die möglichen Standorte des Entfernung des Baums vom	chnen Sie Baums ir	den Graphen der Fu der Zeichnung und	nktion. Kennzeichnen Sie	
b)	Der Ball fällt in einen Teich, d kumentieren Sie die erforderli dem der Ball eintaucht, ohne	ichen Lös	ungsschritte zur Ermi	•	
C)	Berechnen Sie die Koordinater rechnung.	n des höcl	hsten Punkts der Flug	bahn mithilfe der Differenzial-	
d)	Begründen Sie, warum die ge	egebene f	- Funktion höchstens e	inen Hochpunkt (lokales	

Hinweis zur Aufgabe:

Maximum) haben kann.

Antworten müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben. Diagramme sind zu beschriften und zu skalieren.

Möglicher Lösungsweg

a)

Der Baum steht in ca. 54 m oder in ca. 176 m Entfernung vom Abschlag. (Hinweis: Eine angemessene Ungenauigkeit beim Ablesen der Werte wird toleriert.)

- b) Um den Winkel zu ermitteln, unter dem der Ball in den Teich eintaucht, sind folgende Schritte notwendig:
 - 1. Eintauchstelle x_E ermitteln: $h(x_E) = 0$, $x_E \neq 0$
 - 2. Steigung der Funktion an der Stelle x_E ermitteln: $k = h'(x_E)$
 - 3. Eintauchwinkel α ermitteln: $\tan \alpha = k \Rightarrow \alpha = \arctan k$

(Hinweis: Auch andere, analoge Lösungswege sind zulässig.)

c) Ermittlung des Maximums:

$$h'(x) = -\frac{x^2}{72\,000} + \,\frac{1}{5}$$

$$h'(x) = 0 \Rightarrow x = 120$$

$$h(120) = 16 \Rightarrow M = (120|16)$$

Der höchste Punkt der Flugbahn ist der Punkt M = (120|16). Der Golfball erreicht seine maximale Flughöhe von 16 m in einer waagrechten Entfernung von 120 m vom Abschlag.

d) h(x) ist eine Polynomfunktion 3. Grades, ihre 1. Ableitung h'(x) ist daher eine quadratische Funktion. Die Gleichung h'(x) = 0 hat höchstens 2 Lösungen, es gibt also maximal 2 lokale Extremwerte. Nur einer davon kann – da h(x) stetig ist – ein Maximum sein.

(Auch andere Argumentationen sind möglich, z. B.: h(x) ist eine Polynomfunktion 3. Grades, mit maximal 3 Nullstellen, also höchstens einem lokalen Maximum.)

Klassifikation

⊠ Teil A □ Teil B					
Wesentlicher Bereich der Inhaltsdimension:					
a) 3 Funktionale Zusammenhängeb) 4 Analysisc) 4 Analysisd) 4 Analysis					
Nebeninhaltsdimension:					
 a) — b) 2 Algebra und Geometrie c) — d) — 					
Wesentlicher Bereich der Handlungsdimension:					
 a) B Operieren und Technologieeinsatz b) C Interpretieren und Dokumentieren c) B Operieren und Technologieeinsatz d) D Argumentieren und Kommunizieren 	b) C Interpretieren und Dokumentierenc) B Operieren und Technologieeinsatz				
Nebenhandlungsdimension:					
a) — b) — c) — d) —					
Schwierigkeitsgrad:	Punkteanzahl:				
a) leichtb) mittelc) mitteld) schwer	a) 2 b) 2 c) 2 d) 1				
Thema: Sport					
Quellen: –					