Степень вхождения

Показатели $a_1, a_2, \dots a_k$ в разложении $n = p_1^{a_1} p_2^{a_2} \dots p_k^{a_k}$ называются *сте*-*пенями вхождения* простых чисел p_1, \dots, p_k в число n. Степень вхождения простого числа p в n обозначается через $v_p(n)$

- 1. Докажите, что $v_p(a+b) \geqslant \min(v_p(a), v_p(b))$, причём, если $v_p(a) \neq v_p(b)$, то это неравенство является равенством (но обратное утверждение неверно).
- 2. Докажите, что простых чисел бесконечно много.
- 3. Докажите, что простых чисел вида 4k + 3 бесконечно много.
- 4. Существует ли бесконечная арифметическая прогрессия, состоящая только из простых чисел?
- 5. Чему равны НОД и НОК чисел $p_1^{a_1}p_2^{a_2}\dots p_k^{a_k}$ и $p_1^{b_1}p_2^{b_2}\dots p_k^{b_k}$?
- 6. Докажите тождество $HOД(a,b) \cdot HOK(a,b) = a \cdot b$.
- 7. Докажите, что для любых натуральных чисел a, b и c верно равенство $\mathrm{HOД}(\mathrm{HOK}(a,b),\mathrm{HOK}(b,c),\mathrm{HOK}(c,a)) = \mathrm{HOK}(\mathrm{HOД}(a,b),\mathrm{HOД}(b,c),\mathrm{HOД}(c,a)).$
- 8. Докажите, что $HOK(a,b) + HOД(a,b) \geqslant a+b$ верно для любых натуральных чисел a и b. Когда выполняется равенство?
- 9. Формула Лежандра. Докажите, что для каждого простого числа p и натурального числа n врено равенство $v_p(n!) = \lfloor \frac{n}{p} \rfloor + \lfloor \frac{n}{p^2} \rfloor + \lfloor \frac{n}{p^3} \rfloor + \dots$
- 10. Докажите равенство $v_p(n!) = \frac{n-s_p(n)}{p-1}$, где через s_p обозначена сумма цифр числа n в p-ичной записи.
- 11. Числа $x,y,z\in\mathbb{N}$ таковы, что сумма $\frac{xy^2}{z}+\frac{y^3z^4}{x}+\frac{z^5x^6}{y}$ натуральное число. Докажите, что каждое слагаемое является натуральным числом.
- 12. Докажите, что $\mathrm{HOK}(a,b) \neq \mathrm{HOK}(a+c,b+c)$ при любых натуральных a,b,c.
- 13. Для натурального числа $n \geqslant 3$ через $\alpha_1, \alpha_2, \ldots, \alpha_k$ обозначим последовательность степеней в разложении $n! = p_1^{\alpha_1} p_2^{\alpha_2} \ldots p_k^{\alpha_k}$, где $p_1 < p_2 < \ldots < p_k$ простые числа. Найдите все натуральные числа $n \geqslant 3$, для которых $\alpha_1, \alpha_2, \ldots, \alpha_k$ геометрическая прогрессия.
- 14. Даны натуральные числа a, b, c и d такие, что $ad \neq bc$ и HOД(a, b, c, d) = 1. Множество S состоит из всех значений выражения HOД(an+b, cn+d), когда n пробегает множество всех натуральных чисел. Докажите, что множество S совпадает с множеством всех делителей некоторого натурального числа.