Tree Ensembles

Using Multiple Decision Trees

Trees are highly sensitive to small changes of the data

Ensemble Model

- Bootstrap Aggregating (Bagging)
 Ex. Random Forest
- Boosting Ex. XGBoost

Bootstrap Aggregating (Bagging)

Tree Ensemble

New test example

Prediction: Cat

Prediction: Not cat

Final prediction: Cat

	Ear shape	Face shape	Whiskers	Cat
(3)	Pointy	Round	Present	1
	Floppy	Not round	Absent	0
(3)	Pointy	Round	Absent	1
	Pointy	Not round	Present	0
()	Floppy	Not round	Absent	0
(w)	Pointy	Round	Absent	1
(20)	Pointy	Round	Present	1
	Floppy	Not round	Present	1
(3)	Floppy	Round	Absent	0
(3)	Pointy	Round	Absent	1

	Ear shape	Face shape	Whiskers	Cat
(27	Pointy	Round	Present	1
	Floppy	Not round	Absent	0
(20)	Pointy	Round	Absent	1
	Pointy	Not round	Present	0
	Floppy	Not round	Absent	0
(· · ·	Pointy	Round	Absent	1
(20)	Pointy	Round	Present	1
	Floppy	Not round	Present	1
3	Floppy	Round	Absent	0
	Pointy	Round	Absent	1

- The chosen subset is called "The Bag".
- The remaining are called "Out of Bag" samples.

Random Forest Algorithm

Generating a tree sample

Given training set of size *m*

For b=1 to B

Use sampling with replacement to create a new training set of size **z** Train a decision tree on the new dataset

Bagged Decision Tree

Random Forest Algorithm

Randomizing The Feature Choice

At each node, when choosing a feature to use to split, if n features are available, if n features are available, pick a random subset of k < n features and allow the algorithm to only choose from that subset of features.

$$k = \sqrt{n}$$