MATH 8302 Homework III

David DeMark

28 March 2018

1.)

a.)

Proposition. We let W be a compact 2-manifold embedded in \mathbb{R}^3 with smooth boundary ∂W a closed curve. Then,

$$\int_{W} \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} \right) dx dy = \int_{\partial W} f dx + g dy$$

Proof. We let $\omega = f dx + g dy$. Then, $d\omega = \frac{\partial f}{\partial x} dx \wedge dx + \frac{\partial f}{\partial y} dy \wedge dx + \frac{\partial g}{\partial x} dx \wedge dy + \frac{\partial g}{\partial y} dy \wedge dy = \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y}\right)$. A straightforward application of Stoke's theorem then yields the desired result.

c.)

3.)

Proposition. We let X be a compact m-manifold, and Z a k-submanifold with no boundary. If $\omega \equiv \omega' \mod \operatorname{im} d$ (i.e. ω and ω' are cohomologous), then $\int_Z \omega = \int_Z \omega'$.

Proof. We have that there is some $\alpha \in \Omega^{k-1}(X)$ such that $\omega - \omega' = d\alpha$. Thus, $\int_Z \omega - \int_Z \omega' = \int_Z (\omega - \omega') = \int_Z d\alpha$. By Stokes' theorem, we have that $\int_Z d\alpha = \int_{\partial Z} \alpha$. However, any form integrated over $\partial Z = \emptyset$ has integral 0, so we now have that $\int_Z (\omega - \omega') = 0$ thus yielding our desired result.