(Tıbbi) Görüntü İşleme Medical Image Processing

Hedef

- Görüntü ve piksel kavramı
- Renk uzayları
- Histogram, kontrast, parlaklık
- Griye çevirme yöntemleri
- Döndürme, taşıma, öteleme, boyut değiştirme
- Morfolojik yöntemler
- Eşikleme yöntemleri
- Kenar çıkarma yöntemleri
- Nesne sayma-belirleme yöntemleri
-

Platformlar

- Programlama Dilleri
 - C#
 - Visual Studio 2010-12-15-17 Community
 - Eclipse with C# plugin
 - Python
 - Python 3.5
 - PyCharm Community
- Kütüphaneler
 - Aforge.NET veya Accord.Net kütüphanesi
 - www.aforgenet.com
 - www.accord-framework.net
- Yardımcı Programlar
 - Image Processing Lab
 - ImageJ

Kaynaklar

Kaynaklar

Anonim

• Bir resim on binden fazla kelimeye bedeldir.

İmge, görme, görünüm ve görüntü

- İmge: hayal, yansıma
- Görme: Nesnelerin ışınlar yardımıyla algılanmaları
- Görünüm: Nesnelerin görme ile algılanabilen içeriğine görünüm
- Görüntü: Görünümün elde edilmiş 2B hali ise görüntü (Algılanan 3B görünümün 2B haritası)
- image, imge, resim, fotograf=görüntü

Görüntü

- İçerisinde f(x,y) bilgisi bulunan görsel temsillerin hepsi birer görüntüdür.
- Analog görüntü: Belirli bir max ve min aralığında f(x,y) sürekli değişen bir fonksiyon.
- Dijital görüntü: Analog görüntünün sürekli olmayacak şekilde örneklenmesidir.

Pixel

- Her görüntü sonlu sayıda bileşenden oluşur.
- Dijital görüntünün 2-boyutlu dizi şeklindeki her bir elemanına piksel adı verilir.

Görüntü işleme nedir?

- Elde edilen görüntünün bilgisayar ortamında veya DSP (Digital Sinyal Processor) ile işlenmesidir.
- Girdi/Çıktı=Görüntü
- Amaç: Anlamlı ifadeler elde etmek.
- Sayısal görüntü f(x, y)
 - x ve y 2D düzlem
 - f fonksiyonu ise intensity, gri seviyesi, renk değeri

Görüntü işleme nedir?

- Kesin ayrımlar olmamakla birlikte 3 tip süreçten bahsedilebilir.
 - Alçak/Orta/Yüksek Seviye
- Alçak Seviye:
 - Gürültü azaltmaya yönelik ön işlemler, keskinleştirme, kontrast değiştirme vs.
- Orta Seviye:
 - Bölütleme
- Yüksek Seviye:
 - Anlamlandırma

Kullanım Alanları

- Tıp ve Biyoloji
 - Medikal Görüntüleme (CT, MR, Ultrason)
 - Mikroskobik Görüntüleme (Sitogenetik, patoloji)
- Uzaktan Algılama
 - Güvenlik Sistemleri
 - Uydu ve hava fotoğrafları
- Bitki ve Meteoroloji
 - Fauna
 - Erken Uyarı Sistemleri
- Diğer Mühendislik Alanları
 - CBS İşlemleri
 - Arazi Modelleme
 - Otonom Sistemler
 - Karar Mekanizmaları

Tarihçe

- 1921 Bartlane kablolu iletim sistemi 5 tonlu görüntü
- 1929 Bartlane 15 tonlu görüntü
- 1964 Ranger 7 görüntüleri
- 1979 CT görüntüleri (X ışınları 1901)

•

Işık ve Spektrum

- Işık, uzayda yayılan bir tür dalgadır.
- İnsan gözü tarafından görünebilen ışık dalga boyu 380-780 nanometre arasındadır.
- İşiğin enerjisi frekansı arttıkça artmakta, dalga boyu arttıkça ise azalmaktadır.
- İşik işinlarının frekanslarına ya da dalga boylarına göre sıralanmasıyla işik tayfı elde edilir.

Işık ve Spektrum

IŞIK TAYFI

Radyo Dalgaları

Manyetik Rezonans yöntemi

Güçlü bir mıknatıs ve radyo dalgaları

Mikro Dalgalar

Radar – Bulut, bitki örtüsü ve kuru kum

Flaşlı kamera gibi çalışarak dalga gönderir.

Kızılötesi

Toprak nem/ısıl haritalama

Mineral haritalama

Morötesi

Ultraviyole ışık

Astronomi ve mikroskobi

X Işını

Röntgen CT Anjiyo

Gamma İşını

Kemik Taraması – Yoğun Radyasyon

Diğer Görüntüleme Yöntemleri

Elektron Mikroskobu Ultrason

Görünür İşık

Görünür Işık

Görünür Işık

Görünür Işık

Görüntünün Elde Edilmesi

Görüntü Elde Etme (Image Acquisition)

Uzamsal ve (Intensity)Yeğinsel Çözünürlük

- Uzamsal Çözünürlük:
 Görüntüdeki ayırt
 edilebilir en küçük
 detayın bir ölçüsü
 (dpi)
- Gazeteler 75 dpi, dergiler 133 dpi kuşekağıdı 175 dpi
- (1250,300,150,72)

Ekranlar

 Görüntüleri görmemizi sağlayan cihazlardır.

- Çözünürlük,
 - yatay ve dikey çözünürlük,
 - ekran oranı,
 - ppi veya dpi oranları

PPI, DPI nedir?

 Her görüntü sonlu sayıda bileşenden oluşur.

- PPI=Pixel Per Inch
- DPI=Dot Per Inch

$$ppi = \frac{\sqrt{w^2 + h^2}}{d_s}$$

Çözünürlük, yatay ve dikey

- 800X600~10 inch diagonal
 - Yatayda 800 pixel
 - Dikeyde 600 pixel
 - Ekran oranı 4:3

1920X1080~5 inch telefon ekranı?

Uzamsal ve Yeğinsel(Intensity) Çözünürlük

- Yeğinsel çözünürlük: Yeğinlik(intensity) seviyesindeki (parlaklık, gri) ayırt edilebilir en küçük değişikliktir.
- 2 ve katları olarak ifade edilir. 2 bit, 8 bit, 24 bit,
 32 bit

L=8 bit

L=7 bit

L=6 bit

L=5 bit

L=4 bit

L=3 bit

L=2 bit

L=1 bit

Renk uzayları - RGB

- Red, Green, Blue ışığı temel alarak, doğadaki tüm renklerin kodları bu üç temel renge dayalı olarak belirtilir.
- Her renk %100 oranında karıştırıldığında beyaz ve %0 oranında karıştırıldığında siyah elde edilir.

Bellek hesapları-İkili Sayı Sistemi

- 1 Bit=0-1
- 1 Bayt=8 Bit=A
- 1 KB=1024 Bayt
- 1 MB
- 1 GB
- 1 TB

image kelimesi kaç bit yer kaplar?

Bellek hesapları-İkili Sayı Sistemi

- 1 Bit=0-1
- 1 Bayt=8 Bit=A
- 1 KB=1024 Bayt
- 1 MB
- 1 GB
- 1 TB
- image kelimesi kaç bit yer kaplar?
- 01101001 01101101 01100001 01100111 01100101

Bellek hesapları

 8 bit yoğunluğunda, 800X600 piksel grayscale görüntünün bellekte kapladığı yer?

Bellek hesapları

 8 bit yoğunluğunda, 800X600 piksel grayscale görüntünün bellekte kapladığı yer?

- 800X600=480000 piksel
- 8 bit= 1 bayt
- 480000 bayt = 468 KB

Renkli olsaydı(RGB)?

Bellek hesapları

- 8 bit yoğunluğunda, 800X600 piksel grayscale görüntünün bellekte kapladığı yer?
- 800X600=480000 piksel
- 8 bit= 1 bayt
- 480000 bayt = 468 KB

- Renkli olsaydı-RGB
- 480000X3=1406 KB=1.37 MB

Kaynakça

Gonzalez, Rafael C., ve Richard E. Woods.
 Sayısal Görüntü İşleme: Üçüncü Baskıdan
 Çeviri. Çeviren Ziya Telatar vd., 2013.