RICOH RP153L SERIES

150mA DUAL LDO REGULATOR WITH 2 INPUT PINS

NO. EA-201-111020

OUTLINE

The RP153L Series are CMOS-based voltage regulator ICs with high output voltage accuracy, low supply current, low dropout, and high ripple rejection. Each of these voltage regulator ICs consists of a voltage reference unit, an error amplifier, resistors for setting output voltage, a current limit circuit, and a chip enable circuit.

These ICs perform with low dropout voltage due to built-in transistor with low ON resistance, and a chip enable function prolongs the battery life of each system. The line transient response and load transient response of the RP153L Series are excellent, thus these ICs are very suitable for the power supply for hand-held communication equipment.

The output voltage of these ICs is internally fixed with high accuracy. Since the package for these ICs are DFN1216-8, dual LDO regulators are included in each package are high density mounting of the ICs on boards is possible.

In RP153L, the power supply of each circuit can be individually supplied. The transient response characteristic of D and E Version is improved.

FEATURES

Supply Current	Typ. 40μΑ×2 (VR1&VR2)
Supply Current (D/E Version)	Typ. 85μA×2 (VR1&VR2)
Standby Current	Typ. 0.1μA×2 (VR1&VR2)
Ripple Rejection	Typ. 70dB (f=1kHz)
Input Voltage Range	1.4V to 5.25V
Output Voltage Range	0.8V to 3.6V (0.1V steps)
	(For details, please refer to MARK INFORMATIONS.)
Output Voltage Accuracy	±1.0% (Vouт>2.0V, Topt=25°C)
Temperature-Drift Coefficient of Output Voltage	Typ. ±80ppm/°C
Dropout Voltage	Тур. 0.22V (Іоит=150mA, Vоит=2.8V)
Line Regulation	Typ. 0.02%/V
Packages	DFN1216-8
Built-in Fold Back Protection Circuit	Typ. 40mA (Current at short mode)
• Ceramic capacitors are recommended to be used with this IC	0.22μF or more

APPLICATIONS

- Power source for portable communication equipment.
- Power source for electrical appliances such as cameras, VCRs and camcorders.
- Power source for battery-powered equipment.

BLOCK DIAGRAMS

SELECTION GUIDE

The output voltage, auto discharge function, package, and the taping type, etc. for the ICs can be selected at the user's request.

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
RP153Lxxx*-E2	DFN1216-8	5,000 pcs	Yes	Yes

xxx: The combination of output voltage for each channel can be designated by serial numbers. (from 001) The output voltage for each channel can be set in the range from 0.8V to 3.6V in 0.1V steps. (For details, please refer to MARK INFORMATIONS.)

- Designation of Mask Option:
 - (A) without auto-discharge function at off state
 - (B) with auto-discharge function at off state
 - (D) without auto-discharge function at off state, (the transient response improved type)
 - (E) with auto-discharge function at off state, (the transient response improved type)

PIN CONFIGURATIONS

• DFN1216-8

PIN DESCRIPTIONS

• DFN1216-8

Pin No.	Symbol	Description	
1	GND	Ground Pin	
2	V _{OUT1}	Output Pin 1	
3	V оит2	Output Pin 2	
4	GND	Ground Pin	
5	CE2	Chip Enable Pin 2 ("H" Active)	
6	V _{DD2}	Input Pin 2	
7	V _{DD1}	Input Pin 1	
8	CE1	Chip Enable Pin 1 ("H" Active)	

^{*)} Tab is GND level. (They are connected to the reverse side of this IC.)

The tab is better to be connected to the GND, but leaving it open is also acceptable.

ABSOLUTE MAXIMUM RATINGS

Symbol	Item	Rating	Unit
VIN	Input Voltage	6.0	V
Vce	Input Voltage (CE Pin)	−0.3 to 6.0	V
Vout1, Vout2	Output Voltage	-0.3 to V _{IN} +0.3	V
Іоит1, Іоит2	Output Current	180	mA
PD	Power Dissipation (DFN1216-8)*	625	mW
Topt	Operating Temperature Range	−40 to 85	°C
Tstg	Storage Temperature Range	-55 to 125	°C

^{*)} For Power Dissipation, please refer to PACKAGE INFORMATION.

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

ELECTRICAL CHARACTERISTICS

• RP153L

VIN=Set Vout+1.0V (Vout>1.5V), VIN=2.5V (Vout \leq 1.5V), Iout=1mA, CIN=Cout=0.22 μ F, unless otherwise noted. The specification in _____ is checked and guaranteed by design engineering at -40° C \leq Topt \leq 85°C.

VR1/VR2 Topt=25°C

Symbol	ltem	Conditions		Min.	Тур.	Max.	Unit
Vout Output Voltage		Topt=25°C	V _{OUT} > 2.0V	×0.99		×1.01	V
		Τορι–23 Ο	Vout ≤ 2.0V	-20		+20	mV
	Output Voltage	4000 × T × × 0500	V _{OUT} > 2.0V	×0.97		×1.03	V
		$-40^{\circ}\text{C} \le \text{Topt} \le 85^{\circ}\text{C}$	V _{OUT} ≤ 2.0V	-60		+60	mV
Іоит	Output Current			150			mA
		1mA ≤ Іоит ≤ 150mA	$0.8V \le V_{\text{OUT}} < 1.1V$		10	40	
ΔV оυт/	Load Regulation		1.1V ≤ Vouт < 1.6V		15	50	mV
$\Delta {\sf I}$ оит	Load Negulation		$1.6V \le V_{\text{OUT}} < 2.0V$		15	55	IIIV
			$2.0 \text{V} \le \text{V}_{\text{OUT}} \le 3.6 \text{V}$		15	60	
V _{DIF}	Dropout Voltage		Refer to the follow	ing table	€.		
Iss	Commands Commands	J. 0 A	RP153LxxxA/B		40	60	
188	Supply Current	Iоит=0mA	RP153LxxxD/E		85	120	μΑ
Istandby	Standby Current	Vce=0V			0.1	1.0	μΑ
Δ V ουτ/ Δ V ιΝ	Line Regulation	Set Vour+0.5V ≤ ViN ≤ 5.0V			0.02	0.10	%/V
RR	Ripple Rejection	f=1kHz, Ripple 0.2Vp-p V _{IN} =Set V _{OUT} +1V, I _{OUT} =30mA (In case that V _{OUT} ≤ 2.0V, V _{IN} =3V)			70		dB
VIN	Input Voltage*			1.40		5.25	V
ΔV _{OUT} / ΔTopt	Output Voltage Temperature Coefficient	$-40^{\circ}C \leq Topt \leq 85^{\circ}C$			±80		ppm /°C
Isc	Short Current Limit	Vout=0V			40		mA
I PD	CE Pull-down Current				0.3		μА
VCEH	CE Input Voltage "H"			1.0			V
Vcel	CE Input Voltage "L"					0.4	V
en	Output Noise	BW=10Hz to 100kHz			60		μVrms
RLOW	Low Output Nch Tr. ON Resistance (of B/E Version)	V _{IN} =4.0V, V _{CE} =0V			50		Ω

All of units are tested and specified under load conditions such that Tj≈Topt=25°C except for Output Noise, Ripple Rejection, Output Voltage Temperature Coefficient.

^{*)} The maximum Input Voltage of the ELECTRICAL CHARACTERISTICS is 5.25V. In case of exceeding this specification, the IC must be operated on condition that the Input Voltage is up to 5.5V and the total operating time is within 500hrs.

Dropout Voltage by Output Voltage

Output Voltage	Dropout Voltage Vығ (V)			
V оит (V)	Condition	Тур.	Max.	
Vout=0.8		0.63	0.87	
V _{OUT} =0.9		0.55	0.80	
1.0 ≤ V _{OUT} < 1.2	Iоυт=150mA	0.50	0.72	
1.2 ≤ V _{OUT} < 1.4		0.42	0.62	
1.4 ≤ V _{OUT} < 1.7		0.37	0.55	
1.7 ≤ Vouт < 2.1		0.30	0.46	
2.1 ≤ V _{OUT} < 2.5		0.25	0.39	
$2.5 \le V_{\text{OUT}} \le 3.0$		0.23	0.35	
3.0 ≤ Vout ≤ 3.6		0.21	0.32	

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

TYPICAL APPLICATIONS

 C_{IN1} = C_{OUT1} = C_{OUT2} = $C_{\text{eramic }0.22\mu F}$

(External Components)

Murata: GRM155B31A224KE18B

TECHNICAL NOTES

When using these ICs, consider the following points:

Phase Compensation

In these ICs, phase compensation is made for securing stable operation even if the load current is varied.

For this purpose, use capacitors (0.22 μ F or more) for C_{0UT1} and C_{0UT2} with good frequency characteristics and ESR (Equivalent Series Resistance).

(Note: If additional ceramic capacitors are connected with parallel to the output pin with an output capacitor for phase compensation, the operation might be unstable. Because of this, test these ICs with as same external components as ones to be used on the PCB.)

PCB Layout

Make V_{DD} and GND lines sufficient. If their impedance is high, noise pickup or unstable operation may result. Connect capacitors with a capacitance value as much as $0.22\mu F$ or more between V_{DD} and GND pin, and as close as possible to the pins (C_{IN1}/C_{IN2}).

Set external components, especially the output capacitors, as close as possible to the ICs, and make wiring as short as possible (Cout1/ Cout2).

TEST CIRCUITS

Basic Test Circuit

Supply Current Test Circuit

Ripple Rejection & Line Transient Response
Test Circuit

Load Transient Response Test Circuit

TYPICAL CHARACTERISTICS

1) Output Voltage vs. Output Current (Topt=25°C)

2) Output Voltage vs. Input Voltage (Topt=25°C)

3) Supply Current vs. Input Voltage 0.8V(VR1/VR2)

4) Output Voltage vs. Temperature 0.8V(VR1/VR2)

5) Supply Current vs. Temperature 0.8V(VR1/VR2)

6) Dropout Voltage vs. Output Current 0.8V(VR1/VR2)

2.5V(VR1/VR2) Dropout Voltage VDIF (mV) Topt=85°C Topt=25°C Topt=-40°C Output Current Iout (mA)

3.6V(VR1/VR2)

7) Dropout Voltage vs. Set Output Voltage

8) Minimum Operating Voltage

Hatched area is available for 0.8V output

9) Ripple Rejection vs. Input Voltage (C_{IN}=none, C_{OUT1}=C_{OUT2}=Ceramic 0.22μF, Ripple=0.2Vp-p,T_{Opt}=25°C) 2.5V(VR1/VR2) 2.5V(VR1/VR2)

10) Ripple Rejection vs. Frequency (C_{IN}=none, C_{OUT1}=C_{OUT2}=Ceramic 0.22μF, Ripple=0.2Vp-p,T_{Opt}=25°C) 0.8V(VR1/VR2) 2.5V(VR1/VR2)

3.6V(VR1/VR2) VIN=4.6V 100 90 Ripple Rejection RR (dB) 80 70 60 50 40 IOUT=1mA 30 IOUT=30mA 20 IouT=150mA 10 0 10 100 1000 0.1 1 Frequency f (kHz)

11) Input Transient Response (Ioυτ=30mA, tr=tf=5μs, CiN=none, Coυτ₁=Coυτ₂=0.22μF, Topt=25°C) 0.8V(VR1/VR2) 2.5V(VR1/VR2)

Time t (µs)

Time t (µs)

13) Turn On Speed with CE pin (CIN=COUT1=COUT2=0.22 μ F, Topt=25°C)

14) Turn Off Speed with CE pin (CIN=COUT1=COUT2=0.22μF, Topt=25°C)

0.8V B Version (VR1/VR2) V_{IN}=1.8V 2.0 1.5 CE Input Voltage VcE (V) Output Voltage Vour (V) 1.0 CE Input Voltage 0.5 0 8.0 Output Voltage 0.6 IOUT=0mA 0.4 Iout=30mA 0.2 Iоит=150mA 0 20 40 60 80 100 120 140 160 180 Time t (µs)

2.5V B Version (VR1/ VR2)

3.6V B Version (VR1/VR2)

ESR vs. Output Current

When using these ICs, consider the following points:

The relations between IouT (Output Current) and ESR of an output capacitor are shown below.

The conditions when the white noise level is under $40\mu V$ (Avg.) are marked as the hatched area in the graph.

Measurement conditions

Frequency Band : 10Hz to 2MHz Temperature : -40°C to 85°C

C_{IN}, C_{OUT1}, C_{OUT2}: 0.22μF (Murata, GRM155B10J224KE01)

0.8V(VR1/VR2)

2.5V(VR1/VR2)

3.6V(VR1/VR2)

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, firecontainment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

RICOH COMPANY., LTD. Electronic Devices Company

■Ricoh presented with the Japan Management Quality Award for 1999.

Ricoh continually strives to promote customer satisfaction, and shares the achievements of its management quality improvement program with people and society.

■Ricoh awarded ISO 14001 certification.

The Ricoh Group was awarded ISO 14001 certification, which is an international standard for environmental management systems, at both its domestic and overseas production facilities. Our current aim is to obtain ISO 14001 certification for all of our business offices.

http://www.ricoh.com/LSI/

RICOH COMPANY, LTD.
Electronic Devices Company

● Higashi-Shinagawa Office (International Sales)
3-32-3, Higashi-Shinagawa, Shinagawa-ku, Tokyo 140-8655, Japan
Phone: +81-3-5479-2857 Fax: +81-3-5479-0502

RICOH EUROPE (NETHERLANDS) B.V.

Semiconductor Support Centre
 Prof. W.H.Keesomlaan 1, 1183 DL Amstelveen, The Netherlands
 P.O.Box 114, 1180 AC Amstelveen
 Phone: +31-20-5474-309 Fax: +31-20-5474-791

RICOH ELECTRONIC DEVICES KOREA Co., Ltd. 11 floor, Haesung 1 building, 942, Daechidong, Gangnamgu, Seoul, Korea Phone: +82-2-2135-5700 Fax: +82-2-2135-5705

RICOH ELECTRONIC DEVICES SHANGHAI Co., Ltd.
Room403, No.2 Building, 690#Bi Bo Road, Pu Dong New district, Shanghai 201203,
People's Republic of China
Phone: +86-21-5027-3200 Fax: +86-21-5027-3299

RICOH COMPANY, LTD. Electronic Devices Company

● **Taipei office**Room109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan (R.O.C.)
Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623

Ricoh completed the organization of the Lead-free production for all of our products.

After Apr. 1, 2006, we will ship out the lead free products only. Thus, all products that will be shipped from now on comply with RoHS Directive.