# CS-E4895 Gaussian Processes Lecture 3: Gaussian process regression

Ti John

Aalto University

Monday 6.3.2023

#### Agenda for today

- Quick summary of last session
- Covariance functions
  - Definition and properties
  - Commonly used covariance functions
- Model selection and evaluation
  - Marginal likelihood
  - Mean log posterior predictive likelihood
- Computational complexity of GPs
  - Computational cost
  - Memory requirements

Bonus task: find the mistakes

#### Section 1

Last session

# Last time (I)

• Weight view p(w) vs. function view p(f)

$$p(\boldsymbol{y}, \boldsymbol{w}) = p(\boldsymbol{y}|\boldsymbol{w})p(\boldsymbol{w})$$
 vs.  $p(\boldsymbol{y}, \boldsymbol{f}) = p(\boldsymbol{y}|\boldsymbol{f})p(\boldsymbol{f})$  (1)

- Gaussian processes can be seen as prior distributions over functions
- ullet GPs are characterized by a **mean function**  $m(oldsymbol{x})$  and the **covariance function**  $k(oldsymbol{x}, oldsymbol{x}')$

$$f(x) \sim \mathcal{GP}\left(m(x), k(x, x')\right)$$
 (2)

ullet The choice of covariance function determines the characteristics of the function f at any point  $\mathbf{x} \in \mathcal{X}$ 

$$\mathbb{E}\left[f(\boldsymbol{x})\right] = m\left(\boldsymbol{x}\right) \tag{3}$$

$$cov[f(\boldsymbol{x}), f(\boldsymbol{x'})] = k(\boldsymbol{x}, \boldsymbol{x'})$$
(4)

## Last time (II)

- Goal: Given a training data set  $\{x_n, y_n\}_{n=1}^N$  and the model  $y_n = f(x_n) + \epsilon_n$ , predict the value of the function  $f(x_*)$  evaluated at the test point  $x_*$
- Joint model for training and test data

$$p(\boldsymbol{y}, \boldsymbol{f}, f_*) = p(\boldsymbol{y} | \boldsymbol{f}) p(\boldsymbol{f}, f_*) = \mathcal{N} \left( \boldsymbol{y} | \boldsymbol{f}, \sigma_{\mathsf{obs}}^2 \boldsymbol{I} \right) \mathcal{N} \left( \begin{bmatrix} \boldsymbol{f} \\ f_* \end{bmatrix} | \boldsymbol{0}, \begin{bmatrix} \boldsymbol{K}_{ff} & \boldsymbol{k}_{ff_*} \\ \boldsymbol{k}_{f_*f} & k_{f_*f_*} \end{bmatrix} \right)$$
(5)

where

ullet  $K_{ff}$  is the covariance matrix for training inputs

$$(\mathbf{K}_{ff})_{ij} = \operatorname{cov}(f(\mathbf{x}_i), f(\mathbf{x}_j))$$
(6)

 $oldsymbol{e} k_{f_*f}$  is the covariance vector between test input and training inputs

$$(\mathbf{k}_{f_*f})_j = \operatorname{cov}(f(\mathbf{x}_*), f(\mathbf{x}_j)) \tag{7}$$

•  $k_{f_*f_*}$  is the variance of the test input

$$k_{f_*f_*} = \text{cov}(f(x_*), f(x_*))$$
 (8)

# Last time (III)

• Step 1: Write the joint model

$$p(\boldsymbol{y}, \boldsymbol{f}, f_*) = p(\boldsymbol{y} | \boldsymbol{f}) p(\boldsymbol{f}, f_*) = \mathcal{N} \left( \boldsymbol{y} | \boldsymbol{f}, \sigma_{\mathsf{obs}}^2 \boldsymbol{I} \right) \mathcal{N} \left( \begin{bmatrix} \boldsymbol{f} \\ f_* \end{bmatrix} | \boldsymbol{0}, \begin{bmatrix} \boldsymbol{K}_{ff} & \boldsymbol{k}_{ff_*} \\ \boldsymbol{k}_{f_*f} & k_{f_*f_*} \end{bmatrix} \right)$$
(9)

ullet Step 2: Marginalize over f

$$p(\boldsymbol{y}, f_*) = \int p(\boldsymbol{y} | \boldsymbol{f}) p(\boldsymbol{f}, f_*) d\boldsymbol{f} = \mathcal{N} \left( \begin{bmatrix} \boldsymbol{y} \\ f_* \end{bmatrix} | \boldsymbol{0}, \begin{bmatrix} \boldsymbol{K}_{ff} + \sigma_{\mathsf{obs}}^2 \boldsymbol{I} & \boldsymbol{k}_{ff_*} \\ \boldsymbol{k}_{f_*f} & k_{f_*f_*} \end{bmatrix} \right)$$
(10)

• Step 3: Compute conditional distribution  $p(f_*|\mathbf{y})$ 

$$p(f_{*}|\mathbf{y}) = \mathcal{N}\left(f_{*}|\mu_{*}, \sigma_{*}^{2}\right)$$

$$\mu_{*} = \mathbf{k}_{f_{*}f}\left(\mathbf{K}_{ff} + \sigma_{\text{obs}}^{2}\mathbf{I}\right)^{-1}\mathbf{y}$$

$$\sigma_{*}^{2} = k_{f_{*}f_{*}} - \mathbf{k}_{f_{*}f}\left(\mathbf{K}_{ff} + \sigma_{\text{obs}}^{2}\mathbf{I}\right)^{-1}\mathbf{k}_{f_{*}f}^{\top}$$

$$(11) \quad \begin{array}{c} 1.2 \\ 0.8 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\$$

Area [m2]

#### Non-zero prior mean function

• Step 1: Write the joint model

$$p(\boldsymbol{y}, \boldsymbol{f}, f_*) = p(\boldsymbol{y} | \boldsymbol{f}) p(\boldsymbol{f}, f_*) = \mathcal{N} \left( \boldsymbol{y} | \boldsymbol{f}, \sigma_{\mathsf{obs}}^2 \boldsymbol{I} \right) \mathcal{N} \left( \begin{bmatrix} \boldsymbol{f} \\ f_* \end{bmatrix} | \begin{bmatrix} \boldsymbol{m} \\ m_* \end{bmatrix}, \begin{bmatrix} \boldsymbol{K}_{ff} & \boldsymbol{k}_{ff_*} \\ \boldsymbol{k}_{f_*f} & k_{f_*f_*} \end{bmatrix} \right)$$
(14)

ullet Step 2: Marginalize over f

$$p(\boldsymbol{y}, f_*) = \int p(\boldsymbol{y}|\boldsymbol{f})p(\boldsymbol{f}, f_*)d\boldsymbol{f} = \mathcal{N}\left(\begin{bmatrix} \boldsymbol{y} \\ f_* \end{bmatrix} \middle| \begin{bmatrix} \boldsymbol{m} \\ m_* \end{bmatrix}, \begin{bmatrix} \boldsymbol{K}_{ff} + \sigma_{\mathsf{obs}}^2 \boldsymbol{I} & \boldsymbol{k}_{ff_*} \\ \boldsymbol{k}_{f_*f} & k_{f_*f_*} \end{bmatrix}\right)$$
(15)

• Step 3: Compute conditional distribution  $p(f_*|\mathbf{y})$ 

$$p(f_{*}|\mathbf{y}) = \mathcal{N}\left(f_{*}|\mu_{*}, \sigma_{*}^{2}\right)$$

$$\mu_{*} = \mathbf{k}_{f_{*}f}\left(\mathbf{K}_{ff} + \sigma_{\mathsf{obs}}^{2}\mathbf{I}\right)^{-1}(\mathbf{y} - \mathbf{m}) + m_{*}$$

$$\sigma_{*}^{2} = k_{f_{*}f_{*}} - \mathbf{k}_{f_{*}f}\left(\mathbf{K}_{ff} + \sigma_{\mathsf{obs}}^{2}\mathbf{I}\right)^{-1}\mathbf{k}_{f_{*}f}^{\top}$$

$$(16) \quad \begin{array}{c} 1.2 \\ 0.8 \\ 0.8 \\ 0.4 \\ 0.2 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0$$

#### Example: The components of the posterior distribution I

$$\begin{split} p(f_*|\boldsymbol{y}) &= \mathcal{N}\left(f_*\big|\mu_*, \sigma_*^2\right) \\ \mu_* &= \boldsymbol{k}_{f_*f}\left(\boldsymbol{K}_{ff} + \sigma_{\mathsf{obs}}^2 \boldsymbol{I}\right)^{-1} \boldsymbol{y} \\ \sigma_*^2 &= k_{f_*f_*} - \boldsymbol{k}_{f_*f}\left(\boldsymbol{K}_{ff} + \sigma_{\mathsf{obs}}^2 \boldsymbol{I}\right)^{-1} \boldsymbol{k}_{f_*f}^\top \end{split}$$

- Predict  $f_* \equiv f(x_*)$  for test input  $x_* = 70$
- Observation vector  $\boldsymbol{y} = [y_1, y_2, \dots, y_{31}]^{\top} \in \mathbb{R}^{31 \times 1}$
- Gaussian kernel  $k(x,x') = k(f(x),f(x')) = \exp\left[-\frac{(x-x')^2}{2\cdot 20^2}\right]$
- ullet Cov. matrix of training:  $[{m K}_{ff}]_{ij}=k(x_i,x_j)$
- $\bullet$  Cov. between test and training  $[{\pmb k}_{f_*f}]_j=k(x_*,x_j)$
- Covariance (here: variance) of  $f(x_*)$ :  $k_{f_*f_*} = k(x_*, x_*)$





# Example: The components of the posterior distribution II

- ullet  $\mu_* = oldsymbol{k}_{f_*f} \left( oldsymbol{K}_{ff} + \sigma_{\mathsf{obs}}^2 oldsymbol{I} 
  ight)^{-1} oldsymbol{y}$
- ullet Let's define  $oldsymbol{v}^ op = oldsymbol{k}_{f*f} \left(oldsymbol{K}_{ff} + \sigma_\mathsf{obs}^2 oldsymbol{I}
  ight)^{-1} \in \mathbb{R}^{1 imes 31}$
- The posterior mean is a linear combination of the observations  $\mu_* = {m v}^{ op} {m y} = \sum_{i=1}^{31} v_i y_i$





## Example: The components of the posterior distribution II

- ullet  $\mu_* = oldsymbol{k}_{f_*f} \left( oldsymbol{K}_{ff} + \sigma_{\mathsf{obs}}^2 oldsymbol{I} 
  ight)^{-1} oldsymbol{y}$
- ullet Let's define  $oldsymbol{v}^ op = oldsymbol{k}_{f_*f} \left(oldsymbol{K}_{ff} + \sigma_\mathsf{obs}^2 oldsymbol{I}
  ight)^{-1} \in \mathbb{R}^{1 imes 31}$
- The posterior mean is a linear combination of the observations  $\mu_* = {m v}^{ op} {m y} = \sum_{i=1}^{31} v_i y_i$





Monday 6.3.2023

#### Quiz

$$p(f_*|\mathbf{y}) = \mathcal{N}\left(f_*|\mu_*, \sigma_*^2\right) \tag{22}$$

$$\mu_* = \mathbf{k}_{f_*f} \left( \mathbf{K}_{ff} + \sigma_{\mathsf{obs}}^2 \mathbf{I} \right)^{-1} \mathbf{y} \tag{23}$$

$$\sigma_*^2 = k_{f_*f_*} - \mathbf{k}_{f_*f} \left( \mathbf{K}_{ff} + \sigma_{\mathsf{obs}}^2 \mathbf{I} \right)^{-1} \mathbf{k}_{f_*f}^{\top}$$
 (24)

- What happens to the posterior distribution of  $f_*$  if  $x_*$  is so far away from the training data that the covariances between  $x_*$  and the training data  $\{x_n\}_{n=1}^N$  are effectively equal to zero?
- ② How would the plot of the vector v change (from the previous slide), if we changed the kernel function from k to  $k_2$ ?

$$k(x, x') = \exp\left[-\frac{(x - x')^2}{2 \cdot 20^2}\right]$$
  $k_2(x, x') = \exp\left[-\frac{(x - x')^2}{2 \cdot 40^2}\right]$  (25)

- **3** What is the difference between  $\sigma_{\text{obs}}^2$  and  $\sigma_*^2$ ?
- What is the difference between  $p(f_*|\mathbf{y})$  and  $p(y_*|\mathbf{y})$ ?

# $p(f_*|oldsymbol{y})$ vs. $p(y_*|oldsymbol{y})$

- The model is given by:  $y_n = f(x_n) + \epsilon_n$
- The posterior of the function evaluated at  $x_*$ :

$$p(f_*|\mathbf{y}) = \mathcal{N}\left(f_*\big|\mu_*, \sigma_*^2\right) \tag{26}$$

• The predictive distribution of  $y_*$ :

$$p(y_*|\boldsymbol{y}) = \int p(y_*|f_*)p(f_*|\boldsymbol{y})df_*$$
(27)



#### Section 2

#### Covariance functions

#### Covariance functions

- A covariance function  $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$  maps a pair of inputs  $x_1, x_2 \in \mathcal{X}$  from some input space  $\mathcal{X}$  to the real line  $\mathbb{R}$
- Not all functions of the form  $k(x_1, x_2)$  are valid covariance functions
- Recall: the covariance / kernel matrix given by

$$\mathbf{K}_{ij} = \operatorname{cov}\left(f(\mathbf{x}_i), f(\mathbf{x}_j)\right) = k\left(\mathbf{x}_i, \mathbf{x}_j\right)$$
(28)

Covariance functions must be symmetric & Positive (Semi) Definite such that

(Symmetric) 
$$K = K^{\top}$$
 (29)

(PSD) 
$$\forall x \neq 0: \quad x^{\top} K x \geq 0$$
 (30)

PD matrices are invertible

ullet Must hold for all possible data sets  $\{x_n\}_{n=1}^N\subset\mathcal{X}$  in the input space  $\mathcal{X}$ 

#### Stationary covariance function

• A covariance function k is said to be **stationary** if  $k\left(x_1,x_2\right)$  only depends on the difference of the inputs

$$k(x_1, x_2) = k(x_1 - x_2),$$
 or  $k(x_1, x_2) = k(x_1 + a, x_2 + a)$  (31)

• A covariance function is said to be **isotropic** (or rotation invariant) if  $k(x_1, x_2)$  only depends on the *norm* of the difference of the inputs

$$k(x_1, x_2) = k(||x_1 - x_2||)$$
 (32)

• Quiz: Which of the following kernels are stationary? isotropic?

$$k\left(\boldsymbol{x}_{1},\boldsymbol{x}_{2}\right)=\boldsymbol{x}_{1}^{\top}\boldsymbol{x}_{2} \tag{linear}$$
 
$$k\left(\boldsymbol{x}_{1},\boldsymbol{x}_{2}\right)=\exp\left(-\frac{\|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\|^{2}}{2}\right) \tag{squared exponential 1}$$
 
$$k\left(\boldsymbol{x}_{1},\boldsymbol{x}_{2}\right)=\exp\left(-\frac{\sum_{d=1}^{D}\rho_{d}^{-1}|x_{1,d}-x_{2,d}|^{2}}{2}\right) \tag{squared exponential 2}$$

#### Addendum: Properties of prior vs. posterior

• The posterior of a Gaussian process regression is just another Gaussian process, with mean function  $\mu_*(x)$  and covariance function  $k_*(x,x')$ 

$$\mu_*(x) = \mathbf{k}_{f_*f}(x) \left( \mathbf{K}_{ff} + \sigma_{\mathsf{obs}}^2 \mathbf{I} \right)^{-1} \mathbf{y}$$

$$k_*(x, x') = k(x, x') - \mathbf{k}_{f_*f}(x) \left( \mathbf{K}_{ff} + \sigma_{\mathsf{obs}}^2 \mathbf{I} \right)^{-1} \mathbf{k}_{f_*f}(x')^{\top}$$

$$[\mathbf{k}_{f_*f}(x)]_j = k(x, x_j)$$

- Note: a stationary prior does not imply that the posterior is stationary!
- Just like the posterior mean can be non-zero even with a zero-mean prior

• Interactive GP visualization: http://www.infinitecuriosity.org/vizgp/ Play around with different kernels, kernel combinations, hyperparameters...

#### Table of common covariance functions

#### From the book (ch. 4.2.3)

| covariance function   | expression                                                                                                                                                                                                | S | ND           |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------|
| constant              | $\sigma_0^2$                                                                                                                                                                                              |   |              |
| linear                | $\sum_{d=1}^{D} \sigma_d^2 x_d x_d'$                                                                                                                                                                      |   |              |
| polynomial            | $(\mathbf{x} \cdot \mathbf{x}' + \sigma_0^2)^p$                                                                                                                                                           |   |              |
| squared exponential   | $\exp(-\frac{r^2}{2\ell^2})$                                                                                                                                                                              |   | $\checkmark$ |
| Matérn                | $\frac{1}{2^{\nu-1}\Gamma(\nu)} \left(\frac{\sqrt{2\nu}}{\ell}r\right)^{\nu} K_{\nu} \left(\frac{\sqrt{2\nu}}{\ell}r\right)$                                                                              |   | $\checkmark$ |
| exponential           | $\exp(-\frac{r}{\ell})$                                                                                                                                                                                   |   | $\checkmark$ |
| $\gamma$ -exponential | $\exp\left(-\left(\frac{r}{\ell}\right)^{\gamma}\right)$                                                                                                                                                  |   | $\checkmark$ |
| rational quadratic    | $(1+\frac{r^2}{2\alpha\ell^2})^{-\alpha}$                                                                                                                                                                 |   | $\checkmark$ |
| neural network        | $\sin^{-1}\left(\frac{2\tilde{\mathbf{x}}^{\top}\Sigma\tilde{\mathbf{x}}'}{\sqrt{(1+2\tilde{\mathbf{x}}^{\top}\Sigma\tilde{\mathbf{x}})(1+2\tilde{\mathbf{x}}'^{\top}\Sigma\tilde{\mathbf{x}}')}}\right)$ |   | $\checkmark$ |

(S = stationary, ND = non-degenerate)

Another great resource for covariance functions: www.cs.toronto.edu/~duvenaud/cookbook/

# The squared exponential covariance function (I)

 The squared exponential (also known as Gaussian/exponentiated quadratic/radial basis function/RBF) covariance function

$$k(\mathbf{x}_1, \mathbf{x}_2) = k(\|\mathbf{x}_1 - \mathbf{x}_2\|) = \alpha \exp\left(-\frac{\|\mathbf{x}_1 - \mathbf{x}_2\|^2}{2\ell^2}\right)$$
 (33)

- Parameters
  - **1**  $\alpha$ : variance (magnitude / height)
  - ② ℓ: lengthscale ('wiggliness')
- Stationary
- Produces very smooth functions (infinitely differentiable)
- Some argue that such strong smoothness assumptions are unrealistic for many physical processes



#### The squared exponential covariance function (II)

$$k(x_1, x_2) = \alpha \exp\left(-\frac{\|x_1 - x_2\|^2}{2\ell^2}\right)$$
 (34)



# The Matérn covariance function (I)

Matérn class covariance function

$$k\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) = \alpha \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\sqrt{2\nu} \frac{\|\boldsymbol{x}_{1} - \boldsymbol{x}_{2}\|}{\ell}\right)^{\nu} K_{\nu} \left(\sqrt{2\nu} \frac{\|\boldsymbol{x}_{1} - \boldsymbol{x}_{2}\|}{\ell}\right)$$
(35)

where  $K_{\nu}$  is a modified Bessel function.

- Parameters
  - $oldsymbol{0}$   $\alpha$ : magnitude
  - 2  $\ell$ : lengthscale
  - **3**  $\nu$ : Sample paths are  $\lfloor \nu \rfloor$  times differentiable
- Stationary
- $\nu = \frac{3}{2}$  or  $\nu = \frac{5}{2}$  are often used  $\Rightarrow$  closed form
- $\nu \to \infty$  gives SE kernel



# The Matérn covariance function (II)



## Rational Quadratic (I)

$$k\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) = \alpha \left(1 + \frac{\|\boldsymbol{x}_{1} - \boldsymbol{x}_{2}\|^{2}}{2\beta \ell^{2}}\right)^{-\beta}$$
(37)

- Parameters
  - **1**  $\alpha$ : magnitude
  - $oldsymbol{9}$ : power
  - $\bullet$   $\ell$ : lengthscale
- ullet Becomes identical to the squared exponential as  $eta o\infty$
- Interpretation as scale mixture of squared exponentials (adding many squared exponential kernels with different lengthscales)
- Can model functions that vary across several lengthscales
- Commonly used in spatial statistics (geostatistics, image analysis, etc.)



#### Rational Quadratic (II)



(38)

#### Covariance function for periodic functions

$$k(x_1, x_2) = \alpha \exp\left(-\frac{2}{\ell^2} \sin^2\left(\frac{\pi |x_1 - x_2|}{P}\right)\right)$$
(39)

1.0

0.8

0.0 (X<sub>1</sub>, X<sub>2</sub>) 0.4

0.2

0.0

- Parameters
  - $\bullet$   $\alpha$ : magnitude
  - 2  $\ell$ : lengthscale
  - $\odot$  P: period



Squared exponential Matérn

Rational quadratic

Periodic

 $|x_1 - x_2|$ 

# Building new kernels from old ones (I)

Requirements for valid kernels:

(Symmetric) 
$$K = K^{\top}$$
 (40)

(PSD) 
$$\forall x \neq 0 : \quad x^{\top} K x \geq 0$$
 (41)

② Products of two kernels:  $k(x_1, x_2) = k_1(x_1, x_2) k_2(x_1, x_2)$ 

# Building new kernels from old ones (II)

- Adding two SEs kernels to model long term trends (long length scale) and short term fluctuations (short length scale)
- Adding SE and periodic kernels to model long term trends (long length scale) and periodic fluctuations





# Building new kernels from old ones (III)

#### Techniques for Constructing New Kernels.

Given valid kernels  $k_1(\mathbf{x}, \mathbf{x}')$  and  $k_2(\mathbf{x}, \mathbf{x}')$ , the following new kernels will also be valid:

$$k(\mathbf{x}, \mathbf{x}') = ck_1(\mathbf{x}, \mathbf{x}')$$
(6.13)  

$$k(\mathbf{x}, \mathbf{x}') = f(\mathbf{x})k_1(\mathbf{x}, \mathbf{x}')f(\mathbf{x}')$$
(6.14)  

$$k(\mathbf{x}, \mathbf{x}') = q(k_1(\mathbf{x}, \mathbf{x}'))$$
(6.15)  

$$k(\mathbf{x}, \mathbf{x}') = \exp(k_1(\mathbf{x}, \mathbf{x}'))$$
(6.16)  

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}') + k_2(\mathbf{x}, \mathbf{x}')$$
(6.17)  

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}')k_2(\mathbf{x}, \mathbf{x}')$$
(6.18)  

$$k(\mathbf{x}, \mathbf{x}') = k_3(\phi(\mathbf{x}), \phi(\mathbf{x}'))$$
(6.29)  

$$k(\mathbf{x}, \mathbf{x}') = k_3(\mathbf{x}_a, \mathbf{x}'_a) + k_b(\mathbf{x}_b, \mathbf{x}'_b)$$
(6.21)  

$$k(\mathbf{x}, \mathbf{x}') = k_a(\mathbf{x}_a, \mathbf{x}'_a) + k_b(\mathbf{x}_b, \mathbf{x}'_b)$$
(6.22)

where c>0 is a constant,  $f(\cdot)$  is any function,  $q(\cdot)$  is a polynomial with nonnegative coefficients,  $\phi(\mathbf{x})$  is a function from  $\mathbf{x}$  to  $\mathbb{R}^M$ ,  $k_3(\cdot, \cdot)$  is a valid kernel in  $\mathbb{R}^M$ , A is a symmetric positive semidefinite matrix,  $\mathbf{x}_a$  and  $\mathbf{x}_b$  are variables (not necessarily disjoint) with  $\mathbf{x}=(\mathbf{x}_a,\mathbf{x}_b)$ , and  $k_a$  and  $k_b$  are valid kernel functions over their respective spaces.

Quiz: Can you prove that the squared exponential is a valid kernel?

$$k(x_1, x_2) = \exp\left(-\frac{\|x_1 - x_2\|^2}{2}\right)$$
 (42)

Hint: 
$$\|\boldsymbol{x}_1 - \boldsymbol{x}_2\|^2 = (\boldsymbol{x}_1 - \boldsymbol{x}_2)^{\top} (\boldsymbol{x}_1 - \boldsymbol{x}_2)$$

From Chris Bishop's book: https://www.microsoft.com/en-us/research/people/cmbishop

- Measurements of monthly average atmospheric CO<sub>2</sub> concentrations (in parts per million by volume (ppmv))
- Collected at Mauna Loa Observatory, Hawaii from 1958 to 1998













#### Section 3

#### Model selection

# Hyperparameters & model selection (I)

- Almost all covariance functions have hyperparameters
- How do we choose values for them?
- Ideally, we would like to put prior distributions on the hyperparameters and compute the posterior
- ullet Let  $oldsymbol{ heta}$  be the hyperparameters of interest, then

$$p(\boldsymbol{\theta}|\boldsymbol{y}) = \frac{p(\boldsymbol{y}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\boldsymbol{y})}$$
(43)

but in this case the marginal likelihood is almost always intractable

$$p(\mathbf{y}) = \int p(\mathbf{y}|\boldsymbol{\theta})p(\boldsymbol{\theta})d\boldsymbol{\theta}$$
 (44)

# Hyperparameters & model selection (II)

- Approximation: We will use the MAP (Maximum a posteriori estimate)
- p(y) is constant wrt.  $\theta$

$$p(\boldsymbol{\theta}|\boldsymbol{y}) = \frac{p(\boldsymbol{y}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\boldsymbol{y})} \propto p(\boldsymbol{y}|\boldsymbol{\theta})p(\boldsymbol{\theta})$$
(45)

The MAP estimate is defined as

$$\hat{\theta}_{\mathsf{MAP}} = \arg \max_{\boldsymbol{\theta}} \ln p(\boldsymbol{\theta}|\boldsymbol{y}) = \arg \max_{\boldsymbol{\theta}} \left( \ln p(\boldsymbol{y}|\boldsymbol{\theta}) + \ln p(\boldsymbol{\theta}) \right) \tag{46}$$

• If the prior  $p(\theta) \propto 1$  is uniform

$$\hat{\theta}_{\mathsf{MAP}} = \arg \max_{\boldsymbol{\theta}} \ln p(\boldsymbol{y}|\boldsymbol{\theta}) + \ln k = \arg \max_{\boldsymbol{\theta}} \ln p(\boldsymbol{y}|\boldsymbol{\theta}) = \hat{\theta}_{\mathsf{ML}}$$
(47)

• This is also sometimes called the maximum likelihood type II estimate

## Model complexity for Gaussian processes

- Three GP fits with SE kernels with different lengthscales: 0.1, 1.3, 10
- Which figure corresponds to which lengthscale?



• The lengthscale controls the "effective model complexity"

## Marginal likelihood and Occam's razor

- Occam's razor: "When you have two competing models that produce similar predictions, the simpler one is the better"
- Example: If a simple linear model and a complex neural network produce equally good predictions, we should just choose the linear model
- Same concept goes for Gaussian processes
- The marginal likelihood  $p(y|\theta)$  implements a version of Occam's razor



# The marginal likelihood computation (I)

Marginal likelihood for Gaussian likelihood

$$p(\boldsymbol{y}|\boldsymbol{\theta}) = \int p(\boldsymbol{y}|\boldsymbol{f})p(\boldsymbol{f}|\boldsymbol{\theta})d\boldsymbol{f}$$
(48)

$$= \int \mathcal{N}\left(\boldsymbol{y}\big|\boldsymbol{f}, \sigma_{\mathsf{obs}}^{2}\boldsymbol{I}\right) \mathcal{N}\left(\boldsymbol{f}\big|\boldsymbol{0}, \boldsymbol{K}\right) d\boldsymbol{f} \tag{49}$$

$$= \mathcal{N}\left(\boldsymbol{y}\big|\boldsymbol{0}, \sigma_{\mathsf{obs}}^2 \boldsymbol{I} + \boldsymbol{K}\right) \tag{50}$$

Then

$$\ln p(\boldsymbol{y}|\boldsymbol{\theta}) = \ln \mathcal{N}\left(\boldsymbol{y}|\boldsymbol{0}, \sigma_{\mathsf{obs}}^2 \boldsymbol{I} + \boldsymbol{K}\right) \tag{51}$$

$$= \ln \left[ (2\pi)^{-\frac{N}{2}} \left| \sigma_{\mathsf{obs}}^2 \boldsymbol{I} + \boldsymbol{K} \right|^{-\frac{1}{2}} \exp \left( -\frac{1}{2} \boldsymbol{y}^{\top} \left( \sigma_{\mathsf{obs}}^2 \boldsymbol{I} + \boldsymbol{K} \right)^{-1} \boldsymbol{y} \right) \right]$$
 (52)

$$= -\frac{N}{2}\ln(2\pi) - \frac{1}{2}\ln\left|\sigma_{\mathsf{obs}}^{2}\boldsymbol{I} + \boldsymbol{K}\right| - \frac{1}{2}\boldsymbol{y}^{\top}\left(\sigma_{\mathsf{obs}}^{2}\boldsymbol{I} + \boldsymbol{K}\right)^{-1}\boldsymbol{y}$$
 (53)

# The marginal likelihood computation (II)

$$\ln p(\boldsymbol{y}|\boldsymbol{\theta}) = \underbrace{-\frac{N}{2}\ln(2\pi)}_{\text{Constant}} - \underbrace{\frac{1}{2}\ln\left|\sigma_{\text{obs}}^{2}\boldsymbol{I} + \boldsymbol{K}\right|}_{\text{Complexity penalty}} \underbrace{-\frac{1}{2}\boldsymbol{y}^{\top}\left(\sigma_{\text{obs}}^{2}\boldsymbol{I} + \boldsymbol{K}\right)^{-1}\boldsymbol{y}}_{\text{Data fit}}$$
(54)





## Multimodality of the marginal likelihood



Figure 5.5: Panel (a) shows the marginal likelihood as a function of the hyperparameters  $\ell$  (length-scale) and  $\sigma_n^2$  (noise standard deviation), where  $\sigma_f^2 = 1$  (signal standard deviation) for a data set of 7 observations (seen in panels (b) and (c)). There are two local optima, indicated with '+': the global optimum has low noise and a short length-scale; the local optimum has a high noise and a long length scale. In (b) and (c) the inferred underlying functions (and 95% confidence intervals) are shown for each of the two solutions. In fact, the data points were generated by a Gaussian process with  $(\ell, \sigma_f^2, \sigma_n^2) = (1, 1, 0, 1)$  in eq. (5.1).

## The marginal likelihood computation (III)

• Log marginal likelihood for Gaussian likelihood

$$\ln p(\boldsymbol{y}|\boldsymbol{\theta}) = -\frac{N}{2}\ln(2\pi) - \frac{1}{2}\ln\left|\sigma_{\mathsf{obs}}^{2}\boldsymbol{I} + \boldsymbol{K}\right| - \frac{1}{2}\boldsymbol{y}^{\top}\left(\sigma_{\mathsf{obs}}^{2}\boldsymbol{I} + \boldsymbol{K}\right)^{-1}\boldsymbol{y}$$
 (55)

ullet Optimize  $p(oldsymbol{y}|oldsymbol{ heta})$  wrt.  $oldsymbol{ heta}$  using gradient based methods

$$\nabla_{\boldsymbol{\theta}} \ln p(\boldsymbol{y} | \boldsymbol{\theta}) \tag{56}$$

- Modern ML libraries (Torch, TensorFlow, Julia) have autodiff.
   The gradient has to be derived for non-autodiff software (numpy, Matlab)
- We can also use  $p(y|\theta)$  to compare the quality of the fit for two different kernels (caveat: different numbers of hyperparameters  $\Rightarrow$  BIC, AIC, ...)
- No need for cross-validation using this approach!

$$p(\mathbf{y}) = p(y_1)p(y_2|y_1)p(y_3|y_1, y_2) \cdots p(y_N|y_1, \dots, y_{N-1})$$
(57)

## The marginal likelihood computation (IV)

• In practice, we should avoid computing determinants and inverses!

$$\ln p(\boldsymbol{y}|\boldsymbol{\theta}) = -\frac{N}{2}\ln(2\pi) - \frac{1}{2}\ln\left|\sigma_{\mathsf{obs}}^{2}\boldsymbol{I} + \boldsymbol{K}\right| - \frac{1}{2}\boldsymbol{y}^{\top}\left(\sigma_{\mathsf{obs}}^{2}\boldsymbol{I} + \boldsymbol{K}\right)^{-1}\boldsymbol{y}$$
 (58)

- In numpy:  $det(0.1I_{400\times400}) = 0.0$ , but  $\log det(0.1I_{400\times400}) \approx -921.0$
- ullet Step 1: Compute Cholesky factorization of  $m{C} = \sigma_{
  m obs}^2 m{I} + m{K}$  such that  $m{C} = m{L} m{L}^ op$
- Step 2: Compute the log determinant term as follows

$$\ln |\boldsymbol{C}| = \ln |\boldsymbol{L}\boldsymbol{L}^{\top}| = \ln |\boldsymbol{L}| \cdot |\boldsymbol{L}^{\top}| = \ln |\boldsymbol{L}|^2 = 2\ln |\boldsymbol{L}| = 2\ln \prod_{n=1}^{N} \boldsymbol{L}_{nn} = 2\sum_{n=1}^{N} \ln \boldsymbol{L}_{nn}$$
(59)

• Step 3: Compute quadratic term as follows

$$\boldsymbol{y}^{\top} \boldsymbol{C}^{-1} \boldsymbol{y} = \boldsymbol{y}^{\top} \left( \boldsymbol{L} \boldsymbol{L}^{\top} \right)^{-1} \boldsymbol{y} = \boldsymbol{y}^{\top} \boldsymbol{L}^{-T} \boldsymbol{L}^{-1} \boldsymbol{y} = \left( \boldsymbol{L}^{-1} \boldsymbol{y} \right)^{\top} \underbrace{\left( \boldsymbol{L}^{-1} \boldsymbol{y} \right)}_{=\boldsymbol{v}} = \boldsymbol{v}^{\top} \boldsymbol{v}$$
 (60)

Step 4: Sum components

$$\ln p(\boldsymbol{y}|\boldsymbol{\theta}) = -\frac{N}{2}\ln(2\pi) - \frac{1}{2}2\sum_{n=1}^{N}\ln\boldsymbol{L}_{nn} - \frac{1}{2}\boldsymbol{v}^{\top}\boldsymbol{v}$$
(61)

Note that we never compute the determinant or the inverse of C directly!

#### Two metrics for model evaluation

- Assume we are given a training set  $\{x_n,y_n\}_{n=1}^N$  and now we want to evaluate our model using an independent test set  $\{x_p^*,y_p^*\}_{p=1}^P$
- ullet Let  $\mu_{p*},\sigma_{p*}^2$  be the predictive mean and variance, respectively, of the test point  $\left(x_p^*,y_p^*
  ight)$
- The mean square error metric (does not take uncertainty into account)

$$MSE = \frac{1}{P} \sum_{p=1}^{P} (\mu_{p*} - y_p^*)^2$$
 (62)

• The (pointwise) mean log posterior predictive density (MLPPD) is given by

$$MLPPD = \frac{1}{P} \sum_{p=1}^{P} \ln \mathcal{N} \left( y_p^* | \mu_{p*}, \sigma_{p*}^2 \right)$$
 (63)

- Sometimes called simply negative log likelihood (NLL)
- Sometimes called negative log predictive density (NLPD)

### Section 4

# Computational complexity

## Computational complexity of Gaussian Processes

The key equations for predictions

$$p(f_*|\mathbf{y}) = \mathcal{N}\left(f_*|\mu_*, \sigma_*^2\right) \tag{64}$$

$$\mu_* = \mathbf{k}_{f_*f} \left( \mathbf{K}_{ff} + \sigma_{\mathsf{obs}}^2 \mathbf{I} \right)^{-1} \mathbf{y}$$
 (65)

$$\sigma_*^2 = K_{f_*f_*} - \mathbf{k}_{f_*f} \left( \mathbf{K}_{ff} + \sigma_{\mathsf{obs}}^2 \mathbf{I} \right)^{-1} \mathbf{k}_{f_*f}^{\top}$$
 (66)

- Recall: If  $A \in \mathbb{R}^{N \times M}$  and  $b \in \mathbb{R}^{M}$ , then the cost of computing Ab is  $\mathcal{O}(NM)$
- ullet Recall: If  $oldsymbol{C} \in \mathbb{R}^{N imes N}$ , then the cost of computing  $oldsymbol{C}^{-1}$  is  $\mathcal{O}\left(N^3
  ight)$
- ullet What is computational complexity for computing the posterior distribution for 1 test point based on a data set with N observations? What is the dominating operation?
- What about the memory footprint?

## Key takeaways

- Gaussian process regression
- Covariance functions
  - properties: must be symmetric and PSD
  - what is stationary/isotropic
  - common kernels, their properties & parameters
  - kernel combinations
- Model selection
  - marginal likelihood
  - MAP/ML-II for hyperparameter point estimates
  - "model complexity" vs. data fit
  - multi-modality of marginal likelihood surface
  - how to evaluate numerically stably
- Computational complexity
  - ullet time:  $\mathcal{O}(N^3)$ , memory:  $\mathcal{O}(N^2)$

### Next time

Tomorrow, we'll talk about

- Integration and model selection
- Practical examples

### Assignments

#### Note: lecture slide had some mistakes, please see below for up-to-date information

- Assignment #1: deadline end of Wednesday 8th March
  - Complete and return via JupyterHub. Instructions available on MyCourses.
- Assignment Q&A sessions on Thursday 10:15
  - Participating will grant points towards final grade (2 points).
- Assignment #2 is online on Wednesday 8th March.
- After the assignment #2, you should be able to
  - Implement the squared exponential kernel and explain the interpretation of each parameter.
  - 2 Compute the marginal likelihood and use it for model selection.
- Assignment #2: deadline end of Wednesday 15th of March.