

일반물리하

제15장. 전하와 전기장

제15장. 전하와 전기장

들어서며

- 물질 질량 m ↔ 만유인력전하 q ↔ 전자기력
- **및 만유인력** vs 전자기력
 - 양성자와 전자 사이에 작용하는 전기력과 만유인력

전기력
$$\simeq 2 \times 10^{39}$$
 만유인력

1. 전하

및 물질을 이루는 기본입자 ? ... → 분자 → 원자

원자 = 원자핵 + 전자

● 원자핵 = 양성자 + 중성자 (수소핵 ¹H: 양성자로만 구성)

🥯 양성자 : 양(+) 전하의 기본 입자

❷ 전자 :음(-) 전하의 기본 입자

▼ 표 15.1 │ 몇 가지 기본 입자의 특성들

입자	기호	전하량	질 량
양성자	p	+e	$1.6726 \times 10^{-27} \mathrm{kg}$
중성자	n	0	$1.6759 \times 10^{-27} \mathrm{kg}$
전 자	e^-	-e	$9.1100 \times 10^{-31} \mathrm{kg}$

^{*} $e = 1.60219 \times 10^{-19} C$

🍳 전하의 양자화

- Benjamin Franklin 시대: 전하를 연속적인 유체
- 오늘날 : 불연속적인 입자인 원자나 분자로 구성
 - 모든 전하는 기본전하의 정수 배 $q=n\epsilon$

예제 15.1 구리 동전 하나의 양전하량

구리 동전 하나의 질량이 1.0 g이라 하자. 구리원자 한 개당 4.6×10^{-18} C 크기의 양전하와 음전하를 갖는다고 가정하고 구리 동전 하나에 들어 있는 총 양전하량을 구하여라(단, 구리의 원자량은 64이다).

풀이]

● 구리조각에 들어 있는 구리 원자의 개수 N(몰 정의 사용)

$$\frac{N}{N_{\rm A}} = \frac{m}{M}$$

$$N = N_{\rm A} \frac{m}{M} = \frac{(6.0 \times 10^{23} \text{ atoms/mol})(1.0 \text{ g})}{(64 \text{ g/mol})} = 9.4 \times 10^{21} \text{ (atom)}$$

 $N_{\rm A}$: 아보가드로 수

m: 동전의 질량

M: 구리의 원자 질량(= 64 g/mol)

$$\therefore q_{tot} = Nq_0 = (9.4 \times 10^{21} \text{ atom})(4.6 \times 10^{-18} \text{ C/atom}) = 4.3 \times 10^4 \text{ C}$$

1. 전하

🍳 전하의 보존

- ◉ 고립 계의 총 전하량 보존
- $e^+ + e^- \leftrightarrow \gamma + \gamma$

🗣 도체와 절연체

- ◉ 물체
 - 도체 (conductor)
 - 전자가 자유로이 이동 가능 (자유전자) [금속]
 - 절연체 (insulator) 또는 유전체 (dielectric)
 - 전자들이 각 원자에 구속 [유리,도기,플라스틱,..]
 - 반도체 (semiconductor)
 - 온도에 따라 절연체에서 도체로 특성 변화 [실리콘,게르마늄]
 - 초전도체 (superconductor)
 - 저항이 없음 [-200° C 이하의 매우 낮은 온도]

2. 쿨롱의 법칙

- 🚇 쿨롱의 법칙 :
 - ◉ 점전하

$$F = \frac{1}{4\pi\varepsilon_o} \left(\frac{q_1 q_2}{r^2} \right)$$

igotimes 진공의 유전률 (\mathcal{E}_o)

$$\frac{1}{4\pi\varepsilon_o} \cong 9 \times 10^9 \,\mathrm{N} \cdot \mathrm{m}^2/\mathrm{C}^2$$
$$\varepsilon_o = 8.854 \times 10^{-12} \,\mathrm{C}^2 /\mathrm{N} \cdot \mathrm{m}^2$$

중첩의 원리 (principle of superposition)

$$\boldsymbol{F} = \boldsymbol{F}_1 + \boldsymbol{F}_2 + \boldsymbol{F}_3 + \cdots$$

$$=\sum_{i} F_{i}$$

예제 15.2 이온의 전하

거리가 7.0×10^{-10} m만큼 떨어져 있는 동일한 두 이온 사이의 전기력의 크기가 1.88×10^{-9} N이다. 각 이온의 전하를 구하여라.

풀이]

🏿 쿨롱의 법칙

$$F = k \frac{q^2}{r^2}$$
= $(8.99 \times 10^9 \text{ N} \cdot \text{m}^2 / \text{C}^2) \frac{q^2}{(7.0 \times 10^{-10} \text{m})^2} = 1.88 \times 10^{-9} \text{ N}$

$$\therefore q = \sqrt{\frac{1.88 \times 10^{-9} \text{ N}}{8.99 \times 10^{9} \text{ N} \cdot \text{m}^{2} / \text{C}^{2}}} \times 7.0 \times 10^{-10} \text{ m} = 3.2 \times 10^{-19} \text{ C}$$

3. 전기장 (Electric Fields)

역 전하와 전하 사이의 상호작용

🥯 전기장 : 전하에서 내보내는 전달자에 대한 정보

lacksquare 전기장의 정의 ($m{E}$) : 단위전하당 받는 힘

$$P \longrightarrow P$$
 q_0

$$E = \lim_{q_o \to 0} \frac{F}{q_o} \quad [N/C]$$

🥯 점전하가 만드는 전기장

$$E = \frac{1}{4\pi\varepsilon_{\rm o}} \frac{q}{r^2}$$

[전기장의 방향: 양전하가 받는 힘의 방향]

3. 전기장

🥯 전기력선 : 전기장을 시각화하는 개념

- 전기력선의 밀도 : 전기장의 세기와 비례
- 전기력선의 접선 : 전기장의 방향

예제 15.3 전기장을 이용한 전기력 계산

균일한 전기장 $E = 1.0 \times 10^4$ N/C이 있는 상자 안에 전자 하나가 있다. 전기장의 방향은 수직 상방이다. 전자에 미치는 전기력을 중력과 비교하라.

풀이]

◉ 전기장 내의 전하가 받는 힘(전기력)

$$F = qE$$

$$F_E = eE = (1.6 \times 10^{-19} \text{ C})(1.0 \times 10^4 \text{ N/C}) = 1.6 \times 10^{-15} \text{ N}$$

$$F_g = mg = (9.1 \times 10^{-31} \text{ kg})(9.8 \text{ m/s}^2) = 8.9 \times 10^{-30} \text{ N}$$

$$\therefore \frac{F_E}{F_g} = \frac{1.6 \times 10^{-15} \text{ N}}{8.9 \times 10^{-30} \text{ N}} = 1.8 \times 10^{14}$$
$$F_E >> F_g$$

예제 15.4 균일한 전기장 내의 전하 운동

질량이 m이고 전하량이 q인 입자를 다음 그림과 같이 균일한 전기장 E가 y방향으로 작용하고 있는 공간에 가만히 놓으면, 이 입자는 전기장에 의해서 가속운동을 한다. 이때 이 입자의 운동을 기술하여라.

풀이]

◉ 전기장 내의 전하가 전기력

$$F = qE$$

가속도:
$$a = \frac{F_E}{m} = \frac{qE}{m}$$

속도:
$$\mathbf{v} = \mathbf{a}t = \frac{q\mathbf{E}t}{m}$$

위치:
$$y = \frac{1}{2}at^2 = \frac{qEt^2}{2m}$$

▲ 그림 15.3 │ 균일한 전기장 안에서의 입자의 운동

t초 후의 운동에너지 :
$$K = \frac{1}{2}mv^2 = \frac{1}{2}m\frac{q^2E^2t^2}{m^2} = qE\frac{qEt^2}{2m} = qEy$$

예제 15.5 균일하게 대전된 링의 전기장 세기

다음 그림과 같이 균일하게 대전된 반지름 a인 고리의 중심에서 거리 x만큼 떨어진 점 p에서의 전기장의 세기를 구하여라. 단, 고리에 대전된 총 전하량의 크기는 q이다.

풀이]

ullet 미분소 ${
m d}s$ 내의 전하량 ${
m d}q$ 에 의한 전기장 ${
m d}s$

$$dq = q \frac{ds}{2\pi a}$$

$$dE = \frac{1}{4\pi\varepsilon_0} \frac{dq}{r^2} = \frac{1}{4\pi\varepsilon_0} \frac{dq}{\left(a^2 + x^2\right)}$$

$$\left(\because \cos\theta = \frac{x}{\sqrt{a^2 + x^2}}\right)$$

그림 15.4 | 균일하게 대전된 링

$$E = \int dE \cos \theta = \frac{1}{4\pi\varepsilon_0} \left[\frac{qx}{\left(a^2 + x^2\right)^{3/2}} \right]$$
$$\approx \frac{1}{4\pi\varepsilon_0} \frac{q}{x^2} (x >> a)$$

4. 쌍극자 전기장

- 전기쌍극자 (electric dipole)
 - 크기는 같고 부호가 다른 전하 쌍(+*q, -q*) 이 서로 떨어져 있는 구조

 - 전기쌍극자 모멘트의 방향: 음전하에서 양전하로 향하는 방향

⁹ 전기쌍극자가 만드는 전기장

k: unit vector to z direction

$$(1+x)^n \cong 1+nx$$

 $(1+x)^2 = 1+2x+x^2$

$$\boldsymbol{E} \cong \frac{1}{4\pi\varepsilon_o} \frac{2\boldsymbol{p}}{r^3} \propto \frac{1}{r^3} \quad [\boldsymbol{p} = p\boldsymbol{k}] \quad \text{for } r >> d$$

4. 쌍극자 전기장

전기쌍극자가 받는 힘

^學 전기쌍극자가 <mark>균일한</mark> 전기장 내에 놓여 있는 경우

- (a) 쌍극자
- (b) 균일한 전기장 속에 놓인 쌍극자
- ▲ 그림 15.5 │ 전기쌍극자의 구조와 외부 전기장 속의 쌍극자
- **থ** 전기쌍극자가 받는 총 힘 : 0
- $oldsymbol{\mathbb{Q}}$ 전기쌍극자가 받는 돌림힘 : $oldsymbol{ au}=oldsymbol{r}_1 imesoldsymbol{F}_1+oldsymbol{r}_2 imesoldsymbol{F}_2$
 - $\exists \exists : |\tau| = dqE\sin(\theta)$
 - 방향:지면을 뚫고 들어가는 방향

$$\tau = p \times E$$

예제 15.6 수소 원자의 쌍극자 모멘트

수소 원자 하나가 균일한 전기장 속에 들어 있는 경우를 고려하자. 수소 원자의 양전하의 질량중심점과 수소 원자의 음전하의 질량중심점이 각각 원래의 중심점으로부터 1 pm만큼씩 이동하였다면, 이 새로운 구조의 수소 원자가 갖는 쌍극자 모멘트를 구하여라.

풀이]

- 양전하와 음전하 사이 거리 2 × 10⁻¹² m
- 🍳 유도 쌍극자 모멘트 크기

$$p = qd$$

$$q = 1.6 \times 10^{-19} \text{ C}$$

$$d = 2 \times 10^{-12} \text{ m}$$

$$p = (1.6 \times 10^{-19} \text{ C})(2 \times 10^{-12} \text{ m}) = 3.2 \times 10^{-31} \text{ C} \cdot \text{m}$$

예제 15.7 쌍극자의 돌림힘

그림 15.5와 같이 균일한 전기장 속에 전기쌍극자가 놓여 있다. 전기쌍극자에 작용하는 돌림힘의 크기가 최대가 되는 각도 θ 를 구하여라.

풀이]

◉ 돌림힘

$$\tau = p \times E$$

$$|\vec{\tau}| = pE\sin\theta$$

$$\theta = 90^{\circ} \text{ or } 270^{\circ}$$

일때 최대, +, -부호는 돌림힘의 방향

:. 쌍극자 모멘트와 전기장이 수직일 때 최대 돌림힘