Step1. 'wine.csv' 파일로부터 데이터 불러오기

In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

In [2]:

```
file_path = "../data/wine.csv"
wines = pd.read_csv(file_path)
```

Step2. info() 함수로 기본 정보 불러오기

In [3]:

```
wines.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 6497 entries, 0 to 6496 Data columns (total 13 columns):

memory usage: 660.0+ KB

#	Column	Non-Null Count Dtype						
0	type	6497 non-null object						
1	fixed acidity	6497 non-null float64						
2	volatile acidity	6497 non-null float64						
3	citric acid	6497 non-null float64						
4	residual sugar	6497 non-null float64						
5	chlorides	6497 non-null float64						
6	free sulfur dioxide	e 6497 non-null float64						
7	total sulfur dioxid	e 6497 non-null float64						
8	density	6497 non-null float64						
9	рН	6497 non-null float64						
10	sulphates	6497 non-null float64						
11	alcohol	6497 non-null float64						
12	quality	6497 non-null int64						
dty	dtypes: float64(11), int64(1), object(1)							

Step3. 함수를 사용해 수치 통계(8개) 구하기

In [4]:

wines.describe()

Out[4]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total su dio
count	6497.000000	6497.000000	6497.000000	6497.000000	6497.000000	6497.000000	6497.000
mean	7.215307	0.339666	0.318633	5.443235	0.056034	30.525319	115.744
std	1.296434	0.164636	0.145318	4.757804	0.035034	17.749400	56.521
min	3.800000	0.080000	0.000000	0.600000	0.009000	1.000000	6.000
25%	6.400000	0.230000	0.250000	1.800000	0.038000	17.000000	77.000
50%	7.000000	0.290000	0.310000	3.000000	0.047000	29.000000	118.000
75%	7.700000	0.400000	0.390000	8.100000	0.065000	41.000000	156.000
max	15.900000	1.580000	1.660000	65.800000	0.611000	289.000000	440.000
4							•

Step4. 함수를 사용해 수치 통계(mean, min, max) 구하기

In [5]:

wines.agg(['mean','min','max'])

Out[5]:

		type	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	d€
r	mean	NaN	7.215307	0.339666	0.318633	5.443235	0.056034	30.525319	115.744574	0.99
	min	red	3.800000	0.080000	0.000000	0.600000	0.009000	1.000000	6.000000	0.98
	max	white	15.900000	1.580000	1.660000	65.800000	0.611000	289.000000	440.000000	1.03
4										•

Step5. 와인의 품질 등급(quality) 단계 알아보기

In [20]:

wines['quality'].unique().tolist()

Out[20]:

[5, 6, 7, 4, 8, 3, 9]

Step6. 와인의 품질 등급(quality)별 수(빈도수) 구하기

In [7]:

wines['quality'].value_counts()

Out[7]:

- 6 2836
- 5 2138
- 7 1079
- 4 216
- 8 193
- 3 30
- 9 5

Name: quality, dtype: int64

Step7. 가장 빈도수가 많은 품질 등급(quality) 구하기

In [8]:

wines['quality'].value_counts().idxmax()

Out[8]:

6

Step8. 유형(type)별로 품질 등급(quality)별 수치 통계 구하기

In [9]:

wines.groupby('type')['quality'].describe()

Out[9]:

		count	mean	std	min	25%	50%	75%	max
	type								
•	red	1599.0	5.636023	0.807569	3.0	5.0	6.0	6.0	8.0
	white	4898.0	5.877909	0.885639	3.0	5.0	6.0	6.0	9.0

Step9. 유형(type)에 따른 품질 등급(quality) 시각화 하기

In [10]:

result = wines.groupby('type')['quality'].agg(['mean','min','max'])
n_groups=len(result.index)

In [17]:

```
n_groups = len(result.index)
n_groups

means = result['mean'].tolist()
mins = result['min'].tolist()
maxs = result['max'].tolist()

index = np.arange(n_groups)
bar_width = 0.2

#평균값에 대한 바 생성
rects1 = plt.bar(index, means, bar_width, color='r', label = 'Mean')
rects2 = plt.bar(index + bar_width, mins, bar_width, color='g', label = 'Min')
rects3 = plt.bar(index + bar_width *2, maxs, bar_width, color='b', label = 'Max')

plt.xticks(index, result.index.tolist())
plt.legend() #범례
plt.show()
```


In [22]:

!pip install seaborn

Requirement already satisfied: seaborn in c:\u03c8users\u03c8yj\u03c8anaconda3\u03c8lib\u03c8site-pa ckages (0.11.2)

Requirement already satisfied: matplotlib>=2.2 in c:\u00c4users\u00c4yj\u00f4anaconda3\u00b4lib\u00b4site-packages (from seaborn) (3.4.3)

Requirement already satisfied: scipy>=1.0 in c:\u00c4users\u00fcyj\u00fanaconda3\u00fclib\u00fcsite-packages (from seaborn) (1.7.1)

Requirement already satisfied: pandas>=0.23 in c:\u03c8users\u03c4yj\u03c8anaconda3\u03c8lib\u03c4s ite-packages (from seaborn) (1.3.4)

Requirement already satisfied: numpy>=1.15 in c:\u00c4users\u00fcyj\u00fcanaconda3\u00fclib\u00fcs ite-packages (from seaborn) (1.20.3)

Requirement already satisfied: pyparsing>=2.2.1 in c:\u00c4users\u00fcyj\u00fcanaconda3\u00fclib>=2.2->seaborn) (3.0.4)

Requirement already satisfied: cycler>=0.10 in c:\u00c4users\u00ccyj\u00f4anaconda3\u00bclib\u00bcsit e-packages (from matplotlib>=2.2->seaborn) (0.10.0)

Requirement already satisfied: kiwisolver>=1.0.1 in c:\u00c4users\u00ccyj\u00fanaconda3\u00falib b\u00fastie-packages (from matplotlib>=2.2->seaborn) (1.3.1)

Requirement already satisfied: pillow>=6.2.0 in c:\u00c4users\u00cc\u00fayj\u00fanaconda3\u00falib\u00fasi te-packages (from matplotlib>=2.2->seaborn) (8.4.0)

Requirement already satisfied: six in c:\u00c4users\u00fayj\u00fanaconda3\u00falib\u00fasite-package s (from cycler>=0.10->matplotlib>=2.2->seaborn) (1.16.0)

Requirement already satisfied: pytz>=2017.3 in c:\u00c4users\u00ccyj\u00fanaconda3\u00falib\u00fasi te-packages (from pandas>=0.23->seaborn) (2021.3)

In [23]:

import seaborn as sns
sns.histplot(data = wines, x ="quality", binwidth=0.5, hue="type", multiple= "dodge")

Out[23]:

<AxesSubplot:xlabel='quality', ylabel='Count'>

