

# OF

## AD A11559



MICROCOPY RESOLUTION TEST CHART



DEVELOPMENT OF SUPERIOR DENITROGENATION AND ISOMERIZATION CATALYSTS FOR PROCESSING CRUDE OIL DERIVED FROM SHALE. PART II

Final Report on Project N00019-80-K-0507 for Naval Air Systems Command

Interim Report on Total Project.

This report covers the period up to November 1, 1981 when funds were exhausted for Part II funding.

Funding for Part III had not been received.

by

Center for Catalytic Science and Technology
Department of Chemical Engineering
University of Delaware
Newark, Delaware 19711

FILE COPY

Principal Investigators:

James R. Katzer (Now with Mobil Oil Corp.) Harold Kwart Alvin B. Stiles



APPROVED FOR PUBLIC RELEASED TO THE PUBLIC RE

32 00 03 018

### INDEX

|                                                            | Page |
|------------------------------------------------------------|------|
| Preface                                                    | 1    |
| Introduction and Abstract                                  | 2    |
| Literature Pertinent to the Study                          | 3    |
| Catalyst Preparation, Evaluation and Analytical Facilities | 4    |
| Summary of Test Results                                    | 5    |
| Program                                                    | 6    |
| Funds Expended to Date                                     | 7    |
| Tabulation of Data                                         | 9    |





### Preface

This work has been a part of a complete detailed study of hydrodenitrogenation and hydrodesulfurization of the more refractory heterocyclic nitrogen and sulfur-containing compounds. One phase of the study involved a diagnosis of the mechanism and routes for S and N to be removed from these heterocyclic compounds. This information was presented in the eleventh quarterly and final reports of the work to DOE. These were supplied to NASC.

This work is to be continued for DOE as an applied study related to crude from coal and heavy petroleum crudes. An initial project was submitted but was rejected for the reason that funds from DOE were not currently available. It is to be submitted by February 15, 1982, to DOE in response to their request for projects relating to coal processing.

The already completed two parts of this project which was funded by NASC has revealed much that is promising in applying our efforts to derive new catalysts especially designed for processing the shale-derived crude as as the other crudes from heavy petroleum and coal. Subsequently, this will be discussed more completely herein, but presently the pressing need is for renewed funding as requested in our Part III of the project transmitted to NASC early in August 1981.

### Introduction and Abstract

A number of facts have been observed during the course of the study and these have led to further tests or catalyst preparations, some of which have been completed, but many are in obeyance awaiting funding.) The observations and facts are as follows.

- 1. The support is an extremely critical factor influencing the catalyst performance profoundly. Not only is the composition of the support critical but the method of preparation is equally critical. This makes for a complex test network to optimize the support, particularly since the best candidate we presently have is a three-component oxide system.
- 2. The hydrogenation characteristics of the catalyst are critical, and the ratio of MoO<sub>3</sub> to hydrogenation metal also seems to be influenced by the support (possibly acidity or reactivity to form a solid-state reaction product between the composite support and the hydrogenation metal).
- 3. The sulfiding of the catalyst prior to and during use is influenced by the support composition and hydrogenation metal. New presulfiding techniques probably will be required. It was observed in our desulfurization test with one of these unique compositions that the rate of denitrogenation increased about 20% midway through the tests. This is interpreted as a sulfiding effect, and work is planned to

elucidate this observation; it can be a major discovery of factors influencing catalyst performance.

- 4. HDN rates as high as three times that of a standard commercial catalyst (3.5% Ni, 18% MoO<sub>3</sub>, 78% gamma alumina) was achieved for alaphatic amines, but this was not followed by similar improvement in shale oil. This observation is unquestionably important, and it must be resolved.
- 5. Presently more than ten catalysts have been made to pursue the above observations, and more than 20 tests have been designed but cannot be consummated until funding is forthcoming.

### Literature Pertinent to the Study

There is attached a tabulation of the pertinent patent and open literature that we have uncovered that relates to the study. One important new reference is listed, "Improved Routes for Making Jet Fuels from Shale Oil," Chemical Engineering, December 28, 1981, pp. 39-41. In this reference the flow sheets and operating characteristics of the process proposed by UOP, Suntech, Ashland Petroleum Co., and Amoco are briefly described. The Amoco process is the only one (like our objective) which uses a single catalyst to achieve the denitrogenation. This catalyst comprises 1.5% CoO, 10%  $Cr_2O_3$ , 15%  $MoO_3$  on a support composed 50% gamma alumina and 50% molecular sieves (H form of  $\gamma$  type). We have examined

a catalyst of the presumed type, and in our tests found it to be less active than our catalyst of highest activity. Our data do not include life tests, so that may be a factor, although we know of no disclosure of Amoco's catalyst life.

### Catalyst Preparation, Evaluation and Analytical Facilities

The catalyst preparation is simple precipitation and impregnation equipment fabricated from glass or ceramic to minimize contamination from the equipment itself. Drying, calcining, and sulfiding are isolated facilities not used for other catalysts or chemical salts.

The test facility is a 300 ml autoclave capable of operating at 250 psi and up to 450°C at this pressure. There are ports in this agitated autoclave permitting the introduction of the reactants and catalyst as a slurry and the periodic presuring with H<sub>2</sub> as required to restore the pressure to the desired level while hydrogen is absorbed in the reaction. Samples of the reactant slurry also can be withdrawn as needed for analytical purposes.

The overall scheme of catalyst preparation, testing, and analysis has been reliable and reproducible. It gives us confidence in the dependability of the results.

Test results and untested catalysts are all tabulated in the attached Tables Nos. 1, 2 and 3 as to composition, test conditions, and results expressed as K value. The higher the K value, the more active the catalyst.

### Summary of Results

A variety of supports has been prepared and has also been impregnated with catalytic material comprising Co, Mo, or Ni and Mo. The supports have shown a wide difference in performance with the  ${\rm Al_2O_3^{-}TiO_2^{-}Cr_2O_3}$  showing exceptional promise.

The catalyst has been made with Co and with Ni for the denitrogenation of shale oil; the Ni-Mo catalyst appears to be better than Co-Mo. It also appears that higher concentrations of Ni (3.5% vs. 1.5%) produce a better catalyst.

The Ni-Mo catalyst supported on  ${\rm Al}_2{\rm O}_3{\rm -TiO}_2{\rm -Cr}_2{\rm O}_3$  was surprisingly active for the HDN of an alkyl amine, decyl amine. In comparison with commercial catalyst, this exploratory catalyst was more than three times as active. Other modified supports were also more active than commercial, but not as active as that supported on  ${\rm Al}_2{\rm O}_3{\rm -TiO}_2{\rm -Cr}_2{\rm O}_3$ .

The Al<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub>-Cr<sub>2</sub>O<sub>3</sub> catalyst did not attain this differential when used on a heterocyclic aromatic compound. The evidence from other tests is that the Ni-Mo moiety is unsufficiently active for the hydrogenation requirement and this must be enhanced.

A second factor is that the more acidic support  ${\rm Al_2O_3}$ -  ${\rm TiO_2-Cr_2O_3}$  retards sulfiding of the catalyst, and the presulfiding should be performed at a lower temperature or

higher partial pressure of H<sub>2</sub>S. This observation resulted from a marked increase in HDN midway through a test interpreted to mean that optimum sulfiding had occurred midway through the HDN test.

The HDN of shale oil appears to differ from our experience with either aromatic or paraffinic model compounds. Most tests in the future will be conducted on shale oil.

Evidence is that tests should be run at both higher temperature and pressure. This also will be a future policy.

### Program

The program is implied in the abstract section and is evident from the foregoing notations on the above data.

However, a further brief summary of the program is as follows.

1. The single most prominent observation is the profound effect on the catalyst of the support. The most effective support was a coprecipitated alumina-chromio-titania composite. The source of the alumina and chromia was the nitrate, whereas the titania was derived from the hydrolysis of an ester of titania. The ratio of these ingredients should be optimized and the titania should be derived from other sources such as titanium sulfate. Additionally, zirconia, rare earths, ZSM-5 molecular sieves, tellurium modified molecular sieves, vanadia, niobia, and tantala should be studied briefly to determine effect for possibly a more

thorough study. These have been selected because of their likelihood to develop unique surface and pore characteristics.

- 2. The chemical composition of the catalyst will be studied with the emphasis being directed to increasing hydrogenation rate and ammonia desorption. Factors affecting these results are the addition of promoter quantities of rhenium, ruthenium, iridium, rare earths, and magnesium. The latter could be a component aimed at forming a spinel or per vskite for specific geometric effect.
- 3. The sulfiding conditions for the final chemical and physical composition must be optimized as to temperature and pressure. The sulfiding agents also could be briefly considered [H<sub>2</sub>S, CoS, CS<sub>2</sub>, (Me)<sub>2</sub>S)].
- 4. The pore distribution and pore control methods for the support and finished catalyst should be considered.
- 5. Pretreatment of the crude shale oil should be examined for demetallization and arsenic removal.

### Funds Expended to Date

All funds have been exhausted, and accounting of the budgeted and actual expenditures is summarized for both parts on the next page.

### NASC Shale Crude - Phase I

| Category                                   | Awarded         | Expended Encumbered |
|--------------------------------------------|-----------------|---------------------|
| Co-Investigators<br>Katzer                 | 965             | 965                 |
| Kwart<br>Stiles                            | 1,119<br>1,169  | 1,119<br>1,170      |
| Postdoctoral Associate                     | 8,000           | 4,061               |
| Graduate Student                           | 0               | 7,435               |
| Clerical                                   | 800             | 908                 |
| Fringe Benefits                            | 1,194           | 1,094               |
| Supplies & Expense                         | 3,300           | 3,490               |
| Travel                                     | 600             | 116                 |
| Equipment                                  | 5,500           |                     |
| Total Direct Costs<br>Total Indirect Costs | 22,647<br>6,516 | 20,358<br>7,737     |
| Project Totals                             | 29,163          | 28,095              |
| Balance                                    |                 | 1,068               |

### NASC Shale Crude - Phase II

| Category                                      | Awarded               | Expended<br>Encumbered |
|-----------------------------------------------|-----------------------|------------------------|
| Co-Investigators<br>Katzer<br>Kwart<br>Stiles | 965<br>1,119<br>1,460 | 0<br>1,119<br>4,714    |
| Postdoctoral Associate                        | 8,000                 | 8,875                  |
| Graduate Student                              | 4,000                 | 3,664                  |
| Fringe Benefits                               | 1,196                 | 1,720                  |
| Supplies & Expense                            | 4,200                 | 2,349                  |
| Travel                                        | 800                   | 288                    |
| Equipment                                     | 8,500                 | 7,088                  |
| Total Direct Costs Total Indirect Costs       | 30,240<br>9,348       | 29,817<br>9,773        |
| Project Totals                                | 39,588                | 39,590                 |

Balance <2>

Table 1. List of Results of HDN in Quinoline

| Composition         Support         Termp.         Pressure (ps1)           HDS-9A         1.58 coc-158 McO <sub>2</sub> γ-Al <sub>2</sub> O <sub>3</sub> (Harshaw)         350         700           1.58 coc-158 McO <sub>3</sub> γ-Al <sub>2</sub> O <sub>3</sub> 350         700           1.58 coc-158 McO <sub>3</sub> γ-Al <sub>2</sub> O <sub>3</sub> 350         700           1.58 coc-158 McO <sub>3</sub> γ-Al <sub>2</sub> O <sub>3</sub> -208 TiO <sub>2</sub> -108 CC <sub>2</sub> O <sub>3</sub> 350         700           1.58 coc-158 McO <sub>3</sub> 708 Al <sub>2</sub> O <sub>3</sub> -108 TiO <sub>2</sub> -108 CC <sub>2</sub> O <sub>3</sub> 350         700           1.58 NiO-158 McO <sub>3</sub> 708 Al <sub>2</sub> O <sub>3</sub> -208 TiO <sub>2</sub> -108 CC <sub>2</sub> O <sub>3</sub> 350         700           1.58 NiO-158 McO <sub>3</sub> γ-Al <sub>2</sub> O <sub>3</sub> (Harshaw)         350         700           1.58 NiO-158 McO <sub>3</sub> γ-Al <sub>2</sub> O <sub>3</sub> (Harshaw)         350         700           1.58 NiO-158 McO <sub>3</sub> γ-Al <sub>2</sub> O <sub>3</sub> (Harshaw)         350         700           3.58 NiO-188 McO <sub>3</sub> γ-Al <sub>2</sub> O <sub>3</sub> (Harshaw)         350         700           3.58 NiO-188 McO <sub>3</sub> γ-Al <sub>2</sub> O <sub>3</sub> (Harshaw)         350         700           3.58 NiO-188 McO <sub>3</sub> γ-Al <sub>2</sub> O <sub>3</sub> (Harshaw)         350         700           3.58 NiO-188 McO <sub>3</sub> γ-Al <sub>2</sub> O <sub>3</sub> (Harshaw)         350         700           3.58 NiO-188 McO <sub>3</sub> γ-Al <sub>2</sub> O <sub>3</sub> (Harshaw)<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                   | Catalyst                      | yst                                                                                          | Reaction | Reaction Conditions |                   |                     |                                      | _            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------|----------------------------------------------------------------------------------------------|----------|---------------------|-------------------|---------------------|--------------------------------------|--------------|
| HDS-9A  1.58 CDC-158 MDO3  1.58 NiO-158 MDO3  1.58 NiO-188 MDO3  1.50 NiO-188 MDO3  1.50 NiO-188 MDO3  1.50 NiO-188 MDO3  1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 1                 | Composition                   | Support                                                                                      | Temp.    | Pressure<br>(psi)   | Sulfided<br>Temp. | Results<br>K_(1/hr) |                                      |              |
| 1.5% $\infty -15\%$ $\infty > 7-\text{Al}_2O_3$ (Harshaw) 1.5% $\infty -15\%$ $\infty > 7-\text{Al}_2O_3$ (Harshaw) 1.5% $\infty -15\%$ $\infty > 7-\text{Al}_2O_3$ 1.5% $\infty -15\%$ $\infty > 700$ 1.5% $\infty -15\%$ $\infty > 700$ 1.5% $\infty -15\%$ $\infty > 700$ 1.5% $\infty -15\%$ $\infty > 70\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F                   | HDS-9A                        |                                                                                              | 350      | 700                 | 400               | 0.24                |                                      |              |
| 1.5% COC-15% MOO  1.5% MIO-15% MOO  1.5% MIO-16% MOO  1.5% MIO-18% MOO  1.5% MIO-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7                   |                               | Y-Al <sub>2</sub> O <sub>2</sub> (Harshaw)                                                   | 350      | 700                 | 400               | 0.11                |                                      |              |
| 1.5% COC-15% MOC) 1.5% NiO-15% MCO) 1.5% NiO-16%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                   |                               | Alcoas-100 Alos                                                                              | 350      | 700                 | 400               | 0.079               |                                      |              |
| 1.5% COO-15% MOO; 10% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% CC <sub>2</sub> O <sub>3</sub> 350 700 1.5% COO-15% MOO; 90% Al <sub>2</sub> O <sub>3</sub> -10% TiO <sub>2</sub> 10% CC <sub>2</sub> O <sub>3</sub> 350 700 1.5% NiO-15% MOO; 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% CC <sub>2</sub> O <sub>3</sub> 350 700 1.5% NiO-15% MOO; 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% CC <sub>2</sub> O <sub>3</sub> 350 700 1.5% NiO-15% MOO; 7-Al <sub>2</sub> O <sub>3</sub> (Harshaw) 350 700 1.5% NiO-18% MOO; 7-Al <sub>2</sub> O <sub>3</sub> (Harshaw) 350 700 3.5% NiO-18% MOO; 7-Al <sub>2</sub> O <sub>3</sub> (Harshaw) 350 700 3.5% NiO-18% MOO; 7-Al <sub>2</sub> O <sub>3</sub> (Harshaw) 350 700 3.5% NiO-18% MOO; 7-Al <sub>2</sub> O <sub>3</sub> (Harshaw) 350 700 3.5% NiO-18% MOO; 7-Al <sub>2</sub> O <sub>3</sub> (Harshaw) 350 700 3.5% NiO-18% MOO; 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> 20% TiO <sub>2</sub> 350 700 3.5% NiO-18% MOO; 70% Al <sub>2</sub> O <sub>3</sub> 20% TiO <sub>2</sub> 350 700 3.5% NiO-18% MOO; 70% Al <sub>2</sub> O <sub>3</sub> 20% TiO <sub>2</sub> 350 700 3.5% NiO-18% MOO; 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> 20% TiO <sub>2</sub> 350 700 3.5% NiO-18% MOO; 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% CC <sub>2</sub> O <sub>3</sub> 350 700 3.5% NiO-18% MOO; 90% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% CC <sub>2</sub> O <sub>3</sub> 350 700 3.5% NiO-18% MOO; 90% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% CC <sub>2</sub> O <sub>3</sub> 350 700 4.5% NiO-18% MOO; 90% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% CC <sub>2</sub> O <sub>3</sub> 350 700 4.5% NiO-18% MOO; 90% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% CC <sub>2</sub> O <sub>3</sub> 350 700 4.5% NiO-18% MOO; 90% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% CC <sub>2</sub> O <sub>3</sub> 350 700 4.5% NiO-18% MOO; 90% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% CC <sub>2</sub> O <sub>3</sub> 350 700 4.5% NiO-18% MOO; 90% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% CC <sub>2</sub> O <sub>3</sub> 350 700 4.5% NiO-18% MOO; 90% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% CC <sub>2</sub> O <sub>3</sub> 350 700 4.5% NiO-10% CC <sub>2</sub> O <sub>3</sub> 350 700 4.5% NiO-10% MOO; 90% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% CC <sub>2</sub> O <sub>3</sub> 350 700 4.5% NiO-10% CC <sub>2</sub> O <sub>3</sub> 350 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                   | ·                             | n-Al <sub>2</sub> O <sub>3</sub>                                                             | 350      | 700                 | 400               | 0.051               |                                      |              |
| 1.5% NiO-15% Mag) 90% Al <sub>2</sub> O <sub>3</sub> -10% TiO <sub>2</sub> 1.5% NiO-15% Mag) 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% Cr <sub>2</sub> O <sub>3</sub> 350 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% Cr <sub>2</sub> O <sub>3</sub> 350 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% Cr <sub>2</sub> O <sub>3</sub> 1.5% NiO-15% Mag) 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% Cr <sub>2</sub> O <sub>3</sub> 1.5% NiO-15% Mag) 7-Al <sub>2</sub> O <sub>3</sub> (Harshaw) 1.5% NiO-18% Mag) 7-Al <sub>2</sub> O <sub>3</sub> (Harshaw) 3.5% NiO-18% Mag)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                   |                               | 708-A1203-208 TiO2-108 Cr203                                                                 | 350      | 700                 | 400               | 0.070               |                                      |              |
| 1.5% NiO-15% NtC) 1.5% NiO-15% NtC) 1.5% NiO-15% NtCO; 1.5% NiO-15% NtCO; 1.5% NiO-15% NtCO; 1.5% NiO-15% NtCO; 1.5% NiO-18% NtCO; 1.5% NiO-18% NtCO; 3.5% NtC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9                   |                               | 90% Al <sub>2</sub> O <sub>3</sub> -10% TiO <sub>2</sub>                                     | 350      | 700                 | 400               | 0.055               |                                      |              |
| 1.5% NiO-15% MoO <sub>3</sub> 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% Cr <sub>2</sub> O <sub>3</sub> 350 700 1.5% NiO-15% MoO <sub>3</sub> 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% Cr <sub>2</sub> O <sub>3</sub> 350 700 1.5% NiO-15% MoO <sub>3</sub> 7-Al <sub>2</sub> O <sub>3</sub> (Harshaw) 350 700 1.5% NiO-18% MoO <sub>3</sub> 7-Al <sub>2</sub> O <sub>3</sub> (Harshaw) 350 700 3.5% NiO-18% MoO <sub>3</sub> 7-Al <sub>2</sub> O <sub>3</sub> (Harshaw) 350 700 3.5% NiO-18% MoO <sub>3</sub> 7-Al <sub>2</sub> O <sub>3</sub> (Harshaw) 350 700 3.5% NiO-18% MoO <sub>3</sub> 7-Al <sub>2</sub> O <sub>3</sub> (Harshaw) 350 700 3.5% NiO-18% MoO <sub>3</sub> 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> 10% Cr <sub>2</sub> O <sub>3</sub> 3.5% NiO-18% MoO <sub>3</sub> 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> 10% Cr <sub>2</sub> O <sub>3</sub> 3.5% NiO-18% MoO <sub>3</sub> 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> 10% Cr <sub>2</sub> O <sub>3</sub> 3.5% NiO-18% MoO <sub>3</sub> 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> 10% Cr <sub>2</sub> O <sub>3</sub> 350 700 3.5% NiO-18% MoO <sub>3</sub> 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% Cr <sub>2</sub> O <sub>3</sub> 350 700 3.5% NiO-18% MoO <sub>3</sub> 70% Al <sub>2</sub> O <sub>3</sub> -10% Cr <sub>2</sub> O <sub>3</sub> 350 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                   | <del></del>                   | $108 \text{ Al}_2\text{O}_3$ -20% TiO <sub>2</sub> - 10% Cr <sub>2</sub> O <sub>3</sub>      | 350      | 700                 | 400               | 0.06                | The calcined time is the longer than | • - <b>-</b> |
| 1.5% NiO-15% MoO <sub>3</sub> 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% Cr <sub>2</sub> O <sub>3</sub> 350 700 1.5% NiO-15% MoO <sub>3</sub> 7-Al <sub>2</sub> O <sub>3</sub> (Harshaw) 3.5% NiO-18% MoO <sub>3</sub> 7-Al <sub>2</sub> O <sub>3</sub> (Harshaw) 3.5% NiO-18% MoO <sub>3</sub> 7-Al <sub>2</sub> O <sub>3</sub> (Harshaw) 3.5% NiO-18% MoO <sub>3</sub> 7-Al <sub>2</sub> O <sub>3</sub> (Harshaw) 3.5% NiO-18% MoO <sub>3</sub> 7-Al <sub>2</sub> O <sub>3</sub> (Harshaw) 3.5% NiO-18% MoO <sub>3</sub> 7-Al <sub>2</sub> O <sub>3</sub> (Harshaw) 3.5% NiO-18% MoO <sub>3</sub> 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% Cr <sub>2</sub> O <sub>3</sub> 3.5% NiO-18% MoO <sub>3</sub> 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% Cr <sub>2</sub> O <sub>3</sub> 3.5% NiO-18% MoO <sub>3</sub> 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% Cr <sub>2</sub> O <sub>3</sub> 3.5% NiO-18% MoO <sub>3</sub> 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% Cr <sub>2</sub> O <sub>3</sub> 3.5% NiO-18% MoO <sub>3</sub> 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% Cr <sub>2</sub> O <sub>3</sub> 3.5% NiO-18% MoO <sub>3</sub> 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% Cr <sub>2</sub> O <sub>3</sub> 3.5% NiO-18% MoO <sub>3</sub> 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% Cr <sub>2</sub> O <sub>3</sub> 3.5% NiO-18% MoO <sub>3</sub> 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% Cr <sub>2</sub> O <sub>3</sub> 3.5% NiO-18% MoO <sub>3</sub> 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% Cr <sub>2</sub> O <sub>3</sub> 3.5% NiO-18% MoO <sub>3</sub> 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% Cr <sub>2</sub> O <sub>3</sub> 3.5% NiO-18% MoO <sub>3</sub> 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% Cr <sub>2</sub> O <sub>3</sub> 3.5% NiO-18% MoO <sub>3</sub> 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% Cr <sub>2</sub> O <sub>3</sub> 3.5% NiO-18% MoO <sub>3</sub> 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% Cr <sub>2</sub> O <sub>3</sub> 3.5% NiO-18% MoO <sub>3</sub> 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% Cr <sub>2</sub> O <sub>3</sub> 3.5% NiO-18% MoO <sub>3</sub> 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% Cr <sub>2</sub> O <sub>3</sub> 3.5% NiO-18% MoO <sub>3</sub> 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% Cr <sub>2</sub> O <sub>3</sub> 3.5% NiO-18% MOO <sub>3</sub> 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% Cr <sub>2</sub> O <sub>3</sub> 3.5% NiO-18% MOO <sub>3</sub> 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% Cr <sub>2</sub> O <sub>3</sub> 3.5% NiO-18% MOO <sub>3</sub> 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% Cr <sub>2</sub> O <sub>3</sub> 3.5% NiO-10% MOO <sub>3</sub> 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% Cr <sub>2</sub> O <sub>3</sub> 3.5% NiO-10% MOO <sub>3</sub> 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% Cr <sub>2</sub> O <sub>3</sub> 3.5% NiO-10% MOO <sub>3</sub> 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% Cr <sub>2</sub> O <sub>3</sub> 3.5% NiO-10% MOO <sub>3</sub> 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% Cr <sub>2</sub> O <sub>3</sub> 3.5% NiO-10% MOO <sub>3</sub> 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% Cr <sub>2</sub> O <sub>3</sub> 3.5% NiO-10% MOO <sub>3</sub> 70% MOO <sub>3</sub> 70% NiO-10% MO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8                   |                               | 70% Al <sub>2</sub> 0 <sub>3</sub> -20% TiO <sub>2</sub> -10% Cr <sub>2</sub> O <sub>3</sub> | 350      | 700                 | 400               | 0.10                |                                      |              |
| 1.5% NiO-15% MoO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6                   |                               | 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% Cr <sub>2</sub> O <sub>3</sub> | 350      | 700                 | 400               | 0.037               | ર્છ                                  |              |
| 1.5% NiO-18% MbO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9                   | 1.5% NiO-15% MOO3             | $\gamma$ -Al <sub>2</sub> O <sub>3</sub> (Harshaw)                                           | 350      | 700                 | 400               | 0.19                | 7                                    |              |
| 3.5% NiO-18% MbO <sub>3</sub> $\gamma$ -Al <sub>2</sub> O <sub>3</sub> (Harshaw) 350 700 3.5% NiO-18% MbO <sub>3</sub> $\gamma$ -Al <sub>2</sub> O <sub>3</sub> (Harshaw) 350 700 3.5% NiO-18% MbO <sub>3</sub> $\alpha$ -2O <sub>3</sub> | $\widehat{\exists}$ | $1.58 \text{ NiO-158 Mpo}_3$  | n-A1203                                                                                      | 350      | 700                 | 400               | 0.047               |                                      |              |
| $     \begin{array}{lllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [2]                 | 3.5% NiO-18% MOO3             | Y-Al <sub>2</sub> O <sub>3</sub> (Harshaw)                                                   | 350      | 700                 | 400               |                     | Calcined 2 hrs longer                | <del></del>  |
| 3.5% NiO-18% Mac, $Cx_2O_3$<br>3.5% NiO-18% Mac, $TiO_2$<br>3.5% NiO-18% Mac,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13)                 | 3.5% NiO-18% Moo <sub>3</sub> | $\gamma$ -Al <sub>2</sub> O <sub>3</sub> (Harshaw)                                           | 350      | 200                 | 400               | 0.20                |                                      |              |
| 3.5% NiO-18% Maco <sub>3</sub> Tio <sub>2</sub><br>3.5% NiO-18% Maco <sub>3</sub> 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% Cr <sub>2</sub> O <sub>3</sub> 350 700<br>3.5% NiO-18% Maco <sub>3</sub> 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% Cr <sub>2</sub> O <sub>3</sub> 350 700<br>3.5% NiO-18% Maco <sub>3</sub> 90% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% Cr <sub>2</sub> O <sub>3</sub> 350 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (4)                 | 3.5% NiO-18% MOO3             | \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                       | 350      | 700                 | 400               | 0.02                |                                      |              |
| 3.5% NiO-18% Mao <sub>3</sub> 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% $ccc_2O_3$ 350 700 3.5% NiO-18% Mao <sub>3</sub> 70% Al <sub>2</sub> O <sub>3</sub> -20% TiO <sub>2</sub> -10% $ccc_2O_3$ 350 700 3.5% NiO-18% Mao <sub>3</sub> 90% Al <sub>2</sub> O <sub>3</sub> -10% $ccc_2O_3$ 350 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (2)                 | 3.5% NiO-18% MOO3             | $ \operatorname{rio}_2 $                                                                     | 350      | 700                 | 00:               | 0.11                |                                      |              |
| 3.5% NiO-18% NOO3 70% Al $_2$ O $_3$ -20% TiO $_2$ -10% Cr $_2$ O $_3$ 350 700 3.5% NiO-18% NOO3 90% Al $_2$ O $_3$ -10% CrO $_2$ 350 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9                   | 3.5% NiO-18% MOO <sub>3</sub> | 70% $Al_2O_3$ -20% $TiO_2$ -10% $Cr_2O_3$                                                    | 350      | 200                 | 400               | 0.13 }              |                                      |              |
| 3.5% NiO-18% MOO3 90% Al <sub>2</sub> O <sub>3</sub> -10% CrO, 350 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                   | 3.5% NiO-18% MO3              | 70% ${\rm Al_2O_3}$ -20% ${\rm TiO_2}$ -10% ${\rm Cr_2O_3}$                                  | 350      | 700                 | 350               | 0.18                |                                      |              |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>ω</b>            | 3.5% NiO-18% MoO <sub>3</sub> | 90% Al <sub>2</sub> 0 <sub>3</sub> -10% Cro <sub>2</sub>                                     | 350      | 700                 | 400               | 0.17                |                                      |              |

Table 2. List of Results of HDN in Decylamine

| No.         Composition         Support         Temp. ° C         Pressure (psi)         Sulfided (psi)         Results           1)         HDS-9A         350         700         400         0.68           2)         1.5% CoO-15% MoO <sub>3</sub> AlCoas-100 Al <sub>2</sub> O <sub>3</sub> 350         700         400         1.0           3)         1.5% CoO-15% MoO <sub>3</sub> AlCoas-100 Al <sub>2</sub> O <sub>3</sub> 350         700         400         0.93           4)         1.5% CoO-15% MoO <sub>3</sub> 2rO <sub>2</sub> 350         700         400         0.59           5)         1.5% CoO-15% MoO <sub>3</sub> 2rO <sub>2</sub> 350         700         400         0.73           6)         1.5% CoO-15% MoO <sub>3</sub> TiO <sub>2</sub> 350         700         400         0.73           7)         1.5% CoO-15% MoO <sub>3</sub> TiO <sub>2</sub> 350         700         400         0.73           8)         HDS-9A         350         700         400         0.68         1.8           8)         HDS-9A         400         400         0.22 added                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                               | 1.00                                                     |             |                   |          |                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------|----------------------------------------------------------|-------------|-------------------|----------|---------------------------------|
| Composition         Support         Temp. °C         Pressure (ps1)         Temp.           HDS-9A         7-Al <sub>2</sub> O <sub>3</sub> (Harshaw)         350         700         400           1.5% CoO-15% MoO <sub>3</sub> AlCoaS-100 Al <sub>2</sub> O <sub>3</sub> 350         700         400           1.5% CoO-15% MoO <sub>3</sub> AlCoaS-100 Al <sub>2</sub> O <sub>3</sub> 350         700         400           1.5% CoO-15% MoO <sub>3</sub> InO <sub>2</sub> 350         700         400           1.5% CoO-15% MoO <sub>3</sub> TiO <sub>2</sub> 350         700         400           1.5% CoO-15% MoO <sub>3</sub> TiO <sub>2</sub> 350         700         400           1.5% CoO-15% MoO <sub>3</sub> TiO <sub>2</sub> 350         700         400           HDS-9A         350         700         400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Š        | כמיני                         | ııysı                                                    | Reaction Co | nditions          | Sulfided | Results                         |
| HDS-9A  1.5% COO-15% MOO <sub>3</sub> 1 |          | Composition                   | Support                                                  | Temp.°C     | Pressure<br>(psi) | Temp.    | K <sub>D</sub> (1/hr)           |
| 1.5% CoO-15% MoO <sub>3</sub> $\gamma$ -Al <sub>2</sub> O <sub>3</sub> (Harshaw)       350       700       400         1.5% CoO-15% MoO <sub>3</sub> AlCoas-100 Al <sub>2</sub> O <sub>3</sub> 350       700       400         1.5% CoO-15% MoO <sub>3</sub> $ZrO_2$ 350       700       400         1.5% CoO-15% MoO <sub>3</sub> $TiO_2$ 350       700       400         1.5% CoO-15% MoO <sub>3</sub> $TiO_2$ 350       700       400         HDS-9A       350       700       400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1        | HDS-9A                        |                                                          | 350         | 700               | 400      | 0.68                            |
| 1.5% CoO-15% MoO <sub>3</sub> AlCoas-100 Al <sub>2</sub> O <sub>3</sub> 350       700       400         1.5% CoO-15% MoO <sub>3</sub> ZrO <sub>2</sub> 350       700       400         1.5% CoO-15% MoO <sub>3</sub> TiO <sub>2</sub> 350       700       400         1.5% CoO-15% MoO <sub>3</sub> TiO <sub>2</sub> 350       700       400         1.5% CoO-15% MoO <sub>3</sub> 90% Al <sub>2</sub> O <sub>3</sub> -10% TiO <sub>2</sub> 350       700       400         HDS-9A       700       700       400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5        | 1.5% COO-15% MOO3             | $\gamma$ -Al $_2$ O $_3$ (Harshaw)                       | 350         | 700               | 400      | 1.0                             |
| 1.5% CoO-15% MoO <sub>3</sub> 90% Al <sub>2</sub> O <sub>3</sub> -10% ZrO <sub>2</sub> 350       700       400         1.5% CoO-15% MoO <sub>3</sub> TiO <sub>2</sub> 350       700       400         1.5% CoO-15% MoO <sub>3</sub> TiO <sub>2</sub> 350       700       400         1.5% CoO-15% MoO <sub>3</sub> 90% Al <sub>2</sub> O <sub>3</sub> -10% TiO <sub>2</sub> 350       700       400         HDS-9A       700       700       400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3        | 1.5% CoO-15% MOO3             | AlCoaS-100 Al <sub>2</sub> 0 <sub>3</sub>                | 350         | 700               | 400      | 1.2                             |
| 1.5% CoO-15% MoO <sub>3</sub> ZrO <sub>2</sub> 350       700       400         1.5% CoO-15% MoO <sub>3</sub> TiO <sub>2</sub> 350       700       400         1.5% CoO-15% MoO <sub>3</sub> 90% Al <sub>2</sub> O <sub>3</sub> -10% TiO <sub>2</sub> 350       700       400         HDS-9A       350       700       400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>(</b> | 1.5% CoO-15% MoO <sub>3</sub> | 90% Al <sub>2</sub> O <sub>3</sub> -10% ZrO <sub>2</sub> | 350         | 700               | 400      | 0.93                            |
| 1.5% CoO-15% MoO <sub>3</sub> TiO <sub>2</sub> 350 700 400<br>1.5% CoO-15% MoO <sub>3</sub> 90% Al <sub>2</sub> O <sub>3</sub> -10% TiO <sub>2</sub> 350 700 400<br>HDS-9A 350 700 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u></u>  | 1.5% COO-15% MOO3             | zro <sub>2</sub>                                         | 350         | 700               | 400      | 0.59                            |
| 1.5% CoO-15% MoO <sub>3</sub> 90% Al <sub>2</sub> O <sub>3</sub> -10% TiO <sub>2</sub> 350 700 400<br>HDS-9A 350 700 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>.</u> | 1.5% COO-15% MOO3             | TiO <sub>2</sub>                                         | 350         | 700               | 400      | 0.73                            |
| HDS-9A 700 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2        | 1.5% COO-15% MOO <sub>3</sub> | 90% Al <sub>2</sub> O <sub>3</sub> -10% TiO <sub>2</sub> | 350         | 700               | 400      | 1.8                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u> </u> | HDS-9A                        |                                                          | 350         | 700               | 400      | 0.22 added<br>16% wt. shale oil |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                               |                                                          |             |                   |          |                                 |

Table 3. List of Testing Results in Shale Oil

| 5   | Cate                          | Catalyst                                                 | Reaction | Reaction Conditions | Sulfided | Conversion |
|-----|-------------------------------|----------------------------------------------------------|----------|---------------------|----------|------------|
| ·   | Composition                   | Support                                                  | Temp°C   | Pressure (psi)      | · cwb.   | at 10 Hrs. |
| 1)  | HDS-9A                        |                                                          | 350      | 700                 | 400      | 10%        |
| 2)  | HDS-9A                        |                                                          | 350      | 1000                | 400      | 8.4%       |
| 3)  | HDS-9A                        |                                                          | 350      | 1400                | 400      | 18.68      |
| 4)  | 1.5% CoO-15% MOO3             | $\gamma$ -Al $_2$ O $_3$ (Harshaw)                       | 350      | 700                 | 400      | 86         |
| 5)  | 1.5% CoO-15% MoO <sub>3</sub> | TiO <sub>2</sub>                                         | 350      | 700                 | 400      | 13%        |
| (9  | 1.5% CoO-15% MOO3             | $^{z}_{r}^{o}_{2}$                                       | 350      | 700                 | 400      | 12%        |
| (7) | 1.5% CoO-15% MOO3             | 90% Al <sub>2</sub> O <sub>3</sub> -10% TiO <sub>2</sub> | 350      | 700                 | 400      | 10%        |
| (8  | 1.5% COO-15% MOC <sub>3</sub> | AlCat- $10$ % Al $_2$ O $_3$                             | 400      | 1000                | 400      | 32%        |
|     |                               |                                                          |          |                     |          |            |





AD-A111 559

DEVELOPMENT OF SUPERIOR DENITROGENATION AND ISOMERIZATION CALLYSTS FOR P..(U) DELAWARE UNIV NEWARK DEPT OF CHEMICAL ENGINEERING J R KATZER ET AL.

O1 NOV 81 NOV019-80-K-0507

END

PART OF THE CALLYSTS OF P..(U) DELAWARE UNIV NEWARK DEPT OF CHEMICAL ENGINEERING J R KATZER ET AL.

O1 NOV 81 NOV019-80-K-0507

END

PART OF THE CALLYSTS OF P..(U) DELAWARE UNIV NEWARK DEPT OF CHEMICAL ENGINEERING J R KATZER ET AL.

O1 NOV 81 NOV019-80-K-0507

END

PART OF THE CALLYSTS OF P..(U) DELAWARE UNIV NEWARK DEPT OF CHEMICAL ENGINEERING J R KATZER ET AL.

O1 NOV 81 NOV019-80-K-0507

END

PART OF THE CALLYSTS OF P..(U) DELAWARE UNIV NEWARK DEPT OF CHEMICAL ENGINEERING J R KATZER ET AL.

O1 NOV 81 NOV019-80-K-0507



MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

### SUPPLEMENTARY

INFORMATION



### DEPARTMENT OF THE NAVY

NAVAL AR SYSTEMS COMMAND NAVAL AR SYSTEMS COMMAND HEADQUARTERS WASHINGTON DC 20361

IN REPLY REFER TO NAVAIP-OOD4

JM I me

From: Commander, Naval Air Systems Command, Code (AIR-OOD4) Washington, D. C. 20361

To: Administrator

Defense Technical Information Center for Scientific and Technical Information

Cameron Station, Building #5 Alexandria, Virginia 22314

Subj: Technical Report University of Delaware; change of contract number, AD All1 559

1. The subject report was forwarded to your office, 26 February 1982, under an erroneous Contract Number N00019-80-K-0507.

2. It is requested that the contract number be changed to N00019-81-C-0153.

Pat Stone by direction

