Math 101 HW 24

Jeff Carney

April 5, 2017

Please grade 17.11, 1, and 2

17.11

Q: Let f be a real-valued function with $dom(f) \subseteq \mathbb{R}$. Prove f is continuous at x_0 if and only if, for every *monotonic* sequence (x_n) in dom(f) converging to x_0 , we have $\lim_{n \to \infty} f(x_n) = f(x_0)$. Hint: Don't forget **Theorem 11.4**.

 (\Rightarrow)

Assume f is continuous at x_0 . Then for every sequence $\{x_n\} \subseteq \text{dom}(f)$ s.t. $x_n \to x_0$ we have $f(x_n) \to f(x_0)$. Note that every sequence in dom(f) includes every monotonic sequence in dom(f). So for every monotonic sequence $\{x_n\}$ in dom(f) converging to x_0 we have $\text{lim } f(x_n) = f(x_0)$.

 (\Leftarrow)

Assume that for every monotonic sequence (x_n) in dom(f) converging to x_0 , we have $\lim f(x_n) = f(x_0)$. Let $\{x_n\} \subseteq dom(f)$ s.t. $x_n \to x_0$. Suppose that $f(x_n) \nrightarrow f(x_0)$. Thus $\exists \varepsilon > 0$ s.t. $\forall N \in \mathbb{N} \exists n > N$ s.t. $|f(x_n) - f(x_0)| \ge \varepsilon$. Let $\{x_{n_k}\}$ be a subsequence of all those elements of $\{x_n\}$ for which the above is true. That is let $\{x_{n_k}\} \subseteq \{x_n\}$ s.t. $\forall k, |f(x_{n_k}) - f(x_0)| \ge \varepsilon$. By theorem 11.4 $\exists \{x_{n_{k_j}}\} \subseteq \{x_{n_k}\}$ s.t. $\{x_{n_{k_j}}\}$ is monotonic. Since $x_n \to x_0 \Rightarrow x_{n_k} \to x_0$ we know $x_{n_{k_j}} \to x_0$. But since $\forall k, |f(x_{n_k}) - f(x_0)| \ge \varepsilon$ we must have $f(x_{n_k}) \nrightarrow f(x_0) \Rightarrow \epsilon$ because we assumed every monotonic sequence $\{y_n\}$ converging to $x_0 \Rightarrow f(y_n) \to f(x_0)$.

17.15

Q: Let f be a real-valued function whose domain is a subset of \mathbb{R} . Show f is continuous at x_0 in dom(f) if and only if, for every sequence $\{x_n\}$ in $dom(f)\setminus\{x_0\}$ converging to x_0 , we have $\lim_{n \to \infty} f(x_n) = f(x_0)$.

 (\Rightarrow)

Assume that f is continuous at x_0 in dom(f).

1

Q: Let $f:[a,b] \to \mathbb{R}$ be a continuous function which has the property that for each $x \in [a,b]$ there is a $y \in [a,b]$ such that $|f(y)| \leq \frac{1}{2}|f(x)|$.

- (a) Prove that there is a sequence $\{x_n\} \subset [a,b]$ such that $f(x_n) \to 0$.
- (b) Prove that there is a point $c \in [a, b]$ such that f(c) = 0.

(a) Let $y \in [a, b]$. Then $\exists x_1 \in [a, b]$ s.t. $|f(x_1)| \leq \frac{1}{2}|f(y)| \Rightarrow -\frac{1}{2}|f(y)| \leq f(x_1) \leq \frac{1}{2}|f(y)|$. And $\exists x_2 \in [a, b]$ s.t. $|f(x_2)| \leq \frac{1}{2}|f(x_1)| \leq \frac{1}{2^2}|f(y)| \Rightarrow -\frac{1}{2^2}|f(y)| \leq f(x_2) \leq \frac{1}{2^2}|f(y)|$. Continuing in this fashion we get the sequence $\{x_n\}$ where $-\frac{1}{2^n}|f(y)| \leq f(x_n) \leq \frac{1}{2^n}|f(y)|$. We know $-\frac{1}{2^n}|f(y)| \to 0$ and $\frac{1}{2^n}|f(y)| \to 0$ and thus, by the squeeze theorem, $f(x_n) \to 0$.

2

Q: Let $a \in \mathbb{R}$ and $f : \mathbb{R} - \{a\} \to \mathbb{R}$. Suppose that for every sequence $\{x_n\} \subseteq \mathbb{R} - \{a\}$ such that $x_n \to a$, we have $f(x_n) \to -\infty$. Prove that for every $M \in \mathbb{R}$ there is a $\delta > 0$ such that if $0 < |x - a| < \delta$ then f(x) < M.

Assume that $\exists M \in R \text{ s.t. } \forall \delta > 0 \ \exists x \in \mathbb{R} - \{a\} \text{ s.t. } 0 < |x - a| < \delta \text{ and } f(x) \geq M.$ Let $\{x_n\} \subseteq \mathbb{R} - \{a\} \text{ s.t. } x_n \to a.$ Let $\delta > 0$. Then $\exists N_1 \in \mathbb{N} \text{ s.t. } \text{ if } n > N_1 \text{ then } |x_n - a| < \delta.$ Since $f(x_n) \to -\infty$ we know that $\forall M < 0 \ \exists N_2 \in \mathbb{N} \text{ s.t. } \text{ if } n > N_2 \text{ then } f(x_n) < M.$ Let $N = \max\{N_1, N_2\}$ and let n > N. Let $M \in \mathbb{R}$. Let $x = x_n$. Since $n > N_1$ we know $|x - a| < \delta$. And since $n > N_2$ we know that $f(x_n) < M$. But since M is arbitrary we know that $f(x_n) < M$ is

true for any M. Thus $\Rightarrow \Leftarrow$ because we assumed that there exists $M \in \mathbb{R}$ s.t. $\forall \delta > 0 \ \exists x \in \mathbb{R} - \{a\} \ \text{s.t.}$ $0 < |x-a| < \delta \ \text{and} \ f(x) \ge M$. Thus for every $M \in \mathbb{R}$ there is a $\delta > 0$ s.t. if $0 < |x-a| < \delta$ then f(x) < M.