Franced

2.3 Part II: Mathematical Models

2.3.1 Introduction

Œ

Primary objective: Given a context or scenario with a quantity of interest:

1. Express the quantity of interest as a function of ONE variable.

General strategy:

- Draw a picture, if applicable.
- Identify the quantity of interest (call it Q).
- Assign as many variables as you need and express Q.
- If Q has just one variable, then we are good. Otherwise:
 - Look for unused information from the problem,
 - Convert the information into a constraint equation,
 - Use it to eliminate variables in Q.

2. Find the domain of the function.

General strategy: So say the quantity of interest Q is a function of the variable x. Then the domain of Q(x) is all x such that x is contextually realistic. There are two approaches:

- Set up and solve inequalities using that fact that most physical quantities, like measurements and time, cannot be negative.
- Draw extreme pictures. In other words, draw pictures that illustrates the smallest possible (and larges possible) x which is still contextually realistic.

Comic by Bill Amend (www.foxtrot.com).

2.3.2 Examples

wants to use

Example 1. (Tan 8e, Sect. 2.3, e.g.) The owner of the Rancho Los Felix has 2000 yards of fencing with which to enclose a rectangular piece of grazing land along the straight portion of a river. Fencing is not required along the river. Denoting each of the portions of the fencing perpendicular to the river by x.

(a) Express the area of the grazing land as a function of x.

Picture:

But 3000 yards of fencing available $\Rightarrow 2x+y=3000$ \leftarrow Constraint equation y=3000-2x

A = X (3000-2x) War A-8000x-2x2

(b) Find the domain of the function.

The domain of A (a function of x)

IS All the & which yields a realistic preture.

Such & satisfies

X>0 and y>0.

X>0 and 3000-2x>0

X>0 and 1500> x

Thus the domain of A(x) is 0 < x < 1500,

or [0,1500].

Extreme protures.

No is the domain of x=1500

Extreme protures.

No is the x=0, x between if x=1500

Section

Punk: It x=0, x between If x=1500

| Y=3000 | x = 1500 | x = 1500

-> =∂ Example 2. David Hasselhoff is designing a garage for KITT, his sentient 1982 Trans-Am. His garage will consist of a square roof with side length x, three sides with height y, and no floor. The garage mush have a volume of 1600 cubic feet.

(a) Find a function with variable x giving the number of square feet of material needed to construct the garage.

Squire feet of material needed (call it S)

= Area of noof + 3x area of a sidewall = x2 + 3xy

But volume of garage 13/600 on ft^3 => $x^2y = 1600 = 7$ $y = \frac{1600}{x^2}$

Thus $S = \chi^2 + 3\chi \left(\frac{1600}{\chi^2}\right)$ Constrain

or $S = \chi^2 + \frac{4800}{\chi}$

(b) Find the domain of the function.

$$X > 0$$
 and $\frac{1600}{30^2} > 0$

But as long as
$$x > 0$$
,
 $\frac{1600}{22}$ is positive, so $\frac{1600}{22} > 0$

is automatically satisfied

Thus the domain of S(x) is all x such that x >0, or (0, 00)

Rink Extreme prefuse:

X very close to 0:

X Very large pisitive?

$$x = 1000 \text{ ft}$$

$$y = \frac{(600)}{(1000)^2}$$

$$= 0.016 \text{ ft}$$

Example 3. Mary wants to pick up a lot of sand at the beach and transport the sand to her studio for a big art project. Here is a map of her neighbourhood:

Mary has to drive from her home M to some point B on the beachline PQ (not on QR), pick up the sand, and then drive from B to the studio S. The gas cost for driving from M to B is 6 cents per km, but the gas cost for driving from B to S is higher, namely 8 cents per km, because the car is loaded with lots of sand. Express the total yas cost of the whole journey as a function of x and find the domain of the function.

(Total) gas cost for whole journey (aul T)

= (Total) cost for portion MB

+ (Total) cost for portion BS

= Unit cost on MB. We flistence from M toB

+ unit cost on BS. (distance from B toS)

= 6 cents per km. (\frac{1}{2} + \frac{1}{6} \cdots \cd

(Extra space)

Domain of T(x):

Method 1 B must be between P and Q,

so x must be between 0 and 5

So domain of TON is the OSXSS, or LOS]

Method 2

P B S-X O R

Bonnin of 700 13 all x which Smultaneously sattstigs

x>0, 5-x>0, (7-x>0)

 $x \ge 0$, $x \le 5$, $(x \le 7)$

So domain of T(x) is 0 < x < 5

2.3.3 Remark: What are we going to do with these?

Example 2 (Chapd.4-4.5)

Calculus would tell us that the graph of $S(x) = x^2 + \frac{4800}{x}$ over $(0, \infty)$ looks like

So the garage with $\chi = 2.3/300$ (and $y = \frac{1600}{2^{2}(3800)^{2}} = \frac{4}{3}.3/800$)

would require the least amount of material land possibly the most effective)

