Вардумян А.Т. ИУ5-61Б

1 Оглавление

- 2. <u>Задание</u>
- 3. Импорт библиотек
- 4. Загрузка и первичный анализ данных
- 5. Визуализация
- 6. Корреляционный анализ

2 Задание (к оглавлению)

- Выбрать набор данных (датасет). Вы можете найти список свободно распространяемых датасетов здесь.
- Для первой лабораторной работы рекомендуется использовать датасет без пропусков в данных, например из Scikit-learn.
- Пример преобразования датасетов Scikit-learn в Pandas Dataframe можно посмотреть здесь.

Для лабораторных работ не рекомендуется выбирать датасеты большого размера.

- Создать ноутбук, который содержит следующие разделы:
 - 1. Текстовое описание выбранного Вами набора данных.
 - 2. Основные характеристики датасета.
 - 3. Визуальное исследование датасета.
 - 4. Информация о корреляции признаков.

Сформировать отчет и разместить его в своем репозитории на github.

3 Импорт библиотек (к оглавлению)

```
BBOA [1]: import numpy as np import pandas as pd

from sklearn.datasets import load_diabetes

import seaborn as sns import matplotlib.pyplot as plt
%matplotlib inline
```

4 Загрузка и первичный анализ данных (к оглавлению)

```
Ввод [2]: X, y = load diabetes(return X y=True)
         print(load_diabetes()["DESCR"])
```

.. _diabetes_dataset:

Diabetes dataset

Ten baseline variables, age, sex, body mass index, average blood pressure, and six blood serum measurements were obtained for each of n = 1442 diabetes patients, as well as the response of interest, a quantitative measure of disease progression one year after baseline.

Data Set Characteristics:

:Number of Instances: 442

:Number of Attributes: First 10 columns are numeric predictive values

:Target: Column 11 is a quantitative measure of disease progression one year after baseline

:Attribute Information:

- age in years - age
- sex
- bmi body mass index
- bp average blood pressure
- s1 tc, total serum cholesterol
- s2 ldl, low-density lipoproteins - s3
- hdl, high-density lipoproteins
- s4 tch, total cholesterol / HDL
- s5 ltg, possibly log of serum triglycerides level
- s6 glu, blood sugar level

Note: Each of these 10 feature variables have been mean centered and scaled by the standard deviation times `n_samples` (i.e. the sum of squares of each column totals 1).

Out[3]:

https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html (https://www4.stat.ncsu.edu/~boos/var.select/diab etes.html)

For more information see:

Bradley Efron, Trevor Hastie, Iain Johnstone and Robert Tibshirani (2004) "Least Angle Regression," Annals of Statistics (with discussion), 407-499. (https://web.stanford.edu/~hastie/Papers/LARS/LeastAngle_2002.pdf)

BBog [3]: df1 = pd.DataFrame(X, columns=["age", "sex", "bmi", "bp", "tc", "ld1", "hd1", "tch", "ltq", "glu"]) df1

	age	sex	bmi	bp	tc	ldl	hdl	tch	Itg	glu
0	0.038076	0.050680	0.061696	0.021872	-0.044223	-0.034821	-0.043401	-0.002592	0.019908	-0.017646
1	-0.001882	-0.044642	-0.051474	-0.026328	-0.008449	-0.019163	0.074412	-0.039493	-0.068330	-0.092204
2	0.085299	0.050680	0.044451	-0.005671	-0.045599	-0.034194	-0.032356	-0.002592	0.002864	-0.025930
3	-0.089063	-0.044642	-0.011595	-0.036656	0.012191	0.024991	-0.036038	0.034309	0.022692	-0.009362
4	0.005383	-0.044642	-0.036385	0.021872	0.003935	0.015596	0.008142	-0.002592	-0.031991	-0.046641
437	0.041708	0.050680	0.019662	0.059744	-0.005697	-0.002566	-0.028674	-0.002592	0.031193	0.007207
438	-0.005515	0.050680	-0.015906	-0.067642	0.049341	0.079165	-0.028674	0.034309	-0.018118	0.044485
439	0.041708	0.050680	-0.015906	0.017282	-0.037344	-0.013840	-0.024993	-0.011080	-0.046879	0.015491
440	-0.045472	-0.044642	0.039062	0.001215	0.016318	0.015283	-0.028674	0.026560	0.044528	-0.025930
441	-0.045472	-0.044642	-0.073030	-0.081414	0.083740	0.027809	0.173816	-0.039493	-0.004220	0.003064

442 rows × 10 columns

```
Bвод [4]: df2 = pd.DataFrame(y, columns=["disease_progression"]) df2
```

Out[4]:

disea	ase_progression
0	151.0
1	75.0
2	141.0
3	206.0
4	135.0
437	178.0
438	104.0
439	132.0
440	220.0
441	57.0

442 rows × 1 columns

Bвод [5]: df = pd.merge(df1,df2, left_index=True, right_index=True) df

Out[5]:

151.0
75.0
141.0
206.0
135.0
178.0
104.0
132.0
220.0
57.0

442 rows × 11 columns

Ввод [6]: df.describe()

Out[6]:

	age	sex	bmi	bp	tc	ldl	hdl	tch	Itg	
count	4.420000e+02	4.420000								
mean	-3.634285e- 16	1.308343e-16	-8.045349e- 16	1.281655e-16	-8.835316e- 17	1.327024e-16	-4.574646e- 16	3.777301e-16	-3.830854e- 16	-3.412
std	4.761905e-02	4.76190								
min	-1.072256e- 01	-4.464164e- 02	-9.027530e- 02	-1.123996e- 01	-1.267807e- 01	-1.156131e- 01	-1.023071e- 01	-7.639450e- 02	-1.260974e- 01	-1.3770
25%	-3.729927e- 02	-4.464164e- 02	-3.422907e- 02	-3.665645e- 02	-3.424784e- 02	-3.035840e- 02	-3.511716e- 02	-3.949338e- 02	-3.324879e- 02	-3.317!
50%	5.383060e-03	-4.464164e- 02	-7.283766e- 03	-5.670611e- 03	-4.320866e- 03	-3.819065e- 03	-6.584468e- 03	-2.592262e- 03	-1.947634e- 03	-1.077(
75%	3.807591e-02	5.068012e-02	3.124802e-02	3.564384e-02	2.835801e-02	2.984439e-02	2.931150e-02	3.430886e-02	3.243323e-02	2.79170
max	1.107267e-01	5.068012e-02	1.705552e-01	1.320442e-01	1.539137e-01	1.987880e-01	1.811791e-01	1.852344e-01	1.335990e-01	1.35611

Ввод [7]: df.shape

Out[7]: (442, 11)

```
Ввод [8]: df.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 442 entries, 0 to 441
          Data columns (total 11 columns):
                                   Non-Null Count Dtype
          #
             Column
          ___
          0
              age
                                    442 non-null
                                                    float64
          1
              sex
                                   442 non-null
                                                    float64
          2
              bmi
                                    442 non-null
                                                    float64
          3
                                   442 non-null
                                                    float64
              dd
          4
                                   442 non-null
                                                    float64
              tc
          5
              ldl
                                    442 non-null
                                                    float64
           6
              hdl
                                    442 non-null
                                                    float64
               tch
                                    442 non-null
                                                    float64
                                    442 non-null
          8
              ltg
                                                    float64
                                    442 non-null
                                                    float64
              qlu
          10 disease_progression 442 non-null
                                                    float64
          dtypes: float64(11)
          memory usage: 38.1 KB
Ввод [9]: # Количество пустых значений
         total_count = df.shape[0]
          for col in df.columns:
             temp_null_count = df[df[col].isnull()].shape[0]
              temp_perc = round((temp_null_count / total_count) * 100.0, 2)
              print('Колонка {} - {}, {}%'.format(col, temp_null_count, temp_perc))
          Колонка age - 0, 0.0%
          Колонка sex - 0, 0.0%
          Колонка bmi - 0, 0.0%
          Колонка bp - 0, 0.0%
          Колонка tc - 0, 0.0%
          Колонка ldl - 0, 0.0%
          Колонка hdl - 0, 0.0%
          Колонка tch - 0, 0.0%
          Колонка ltg - 0, 0.0%
          Колонка glu — 0, 0.0%
          Колонка disease_progression - 0, 0.0%
```

5 Визуализация (к оглавлению)

Ввод [10]: sns.pairplot(df)

Out[10]: <seaborn.axisgrid.PairGrid at 0x7f9d3e27deb0>


```
Bвод [11]: fig, ax = plt.subplots(2, 1, figsize=(10,10))
sns.violinplot(ax=ax[0], x=df['disease_progression'])
sns.histplot(df['disease_progression'], ax=ax[1])
```

Out[11]: <AxesSubplot:xlabel='disease_progression', ylabel='Count'>

Ввод [12]: # Распределение параметра disease_progression сгруппированные по sex. sns.violinplot(x='sex', y='disease_progression', data=df)

250

200

disease_progression

300

Out[12]: <AxesSubplot:xlabel='sex', ylabel='disease_progression'>

100

150

10

50

```
Ввод [13]: height = 4
             width = 3
             fig, ax = plt.subplots(height, width, figsize=(30,30))
for i in range(height):
                  for j in range(width):
    if i * width+j!= 11:
                             sns.boxplot(x=df[df.columns[i * width+j]], ax=ax[i, j])
```

6 Корреляционный анализ (к оглавлению)

Ввод [14]:	df.corr()											
Out[14]:		age	sex	bmi	bp	tc	ldl	hdl	tch	Itg	glu	disease_progression
	age	1.000000	0.173737	0.185085	0.335427	0.260061	0.219243	-0.075181	0.203841	0.270777	0.301731	0.1878
	sex	0.173737	1.000000	0.088161	0.241013	0.035277	0.142637	-0.379090	0.332115	0.149918	0.208133	0.0430
	bmi	0.185085	0.088161	1.000000	0.395415	0.249777	0.261170	-0.366811	0.413807	0.446159	0.388680	0.5864
	bp	0.335427	0.241013	0.395415	1.000000	0.242470	0.185558	-0.178761	0.257653	0.393478	0.390429	0.4414
	tc	0.260061	0.035277	0.249777	0.242470	1.000000	0.896663	0.051519	0.542207	0.515501	0.325717	0.2120
	ldl	0.219243	0.142637	0.261170	0.185558	0.896663	1.000000	-0.196455	0.659817	0.318353	0.290600	0.1740
	hdl	-0.075181	-0.379090	-0.366811	-0.178761	0.051519	-0.196455	1.000000	-0.738493	-0.398577	-0.273697	-0.3947
	tch	0.203841	0.332115	0.413807	0.257653	0.542207	0.659817	-0.738493	1.000000	0.617857	0.417212	0.4304
	ltg	0.270777	0.149918	0.446159	0.393478	0.515501	0.318353	-0.398577	0.617857	1.000000	0.464670	0.5658
	glu	0.301731	0.208133	0.388680	0.390429	0.325717	0.290600	-0.273697	0.417212	0.464670	1.000000	0.3824
	disease_progression	0.187889	0.043062	0.586450	0.441484	0.212022	0.174054	-0.394789	0.430453	0.565883	0.382483	1.0000

вод [15]:	<pre>df.corr()['disease_progression']</pre>								
Out[15]:	age	0.187889							
	sex	0.043062							
	bmi	0.586450							
	bp	0.441484							
	tc	0.212022							
	ldl	0.174054							
	hdl	-0.394789							
	tch	0.430453							
	ltg	0.565883							
	glu	0.382483							
	disease progression	1.000000							
	Name: disease progres	sion, dtype: float64							

```
Ввод [16]: fig, ax = plt.subplots(1, 1, sharex='col', sharey='row', figsize=(13,10)) fig.suptitle('Корреляционная матрица') sns.heatmap(df.corr(), ax=ax, annot=True, fmt='.3f', cmap='YlGnBu')
```

Out[16]: <AxesSubplot:>

Корреляционная матрица

На основе корреляционной матрицы можно сделать следующие выводы.

Лучше всего с целевым признаком disease_progression коррелируют следующие признаки:

Признак	Корреляция
bmi	0.586
bp	0.441
tch	0.430
lta	0.566

При этом признак sex вообще не коррелирует с целевым признаком. Признаки 1dl и tc сильно коррелируют между собой (0.897), следовательно, необходимо избавиться от одного из них (от 1dl, т.к он меньше коррелирует с целевым признаком).