We Serve the Nation by Serving Education
COLLEGIATE

Page | 1

MCC)'S ●	BY: SIR	AMIR KHAN	• PHYSICS
1.	The dimensions of the l	kinetic energy are:		
	* $\frac{1}{2}ML^2T^2$	* $\underline{ML^2T^{-2}}$	* $\frac{1}{2}ML^2T^2$	* MLT^{-1}
2.	The number of significates * 2	ant figures in 2.500x103 i	is: * 4	* 7
3.	Screw and lever were in * Newton	nvented by: * Al-Farabi	* Archimedes	* Galileo Galilei
4.		'Al-Qanoon-Al-Masoodi * Ibne-Sina		* Al-Beruni
5.	'Dyne' is the unit of: * Angular acceleration		* Displacement	* Force
6.	A light year is a unit of * Energy		* Distance	* Intensity of light
7.	The dimensions of Ang * ML^2T^{-1}		* MLT ²	* MLT ⁻¹
	The most appropriate at * 1x10 ³	* 1×10^{-3}	* 0.1x10 ⁻²	* 1x10 ⁻³
	One Angstrom $1A^{\circ}$ is example 10^{-10} m	* 10 ⁻¹⁰ cm	* 10 ⁻⁶ m	* 10 ⁻⁸ cm
	* S.I unit system	nd, Ampere, Kelvin, Cand * C.G.S. System	* M.K.S. System	sic units of: * F.P.S. System
	* 2	ant figure of 7.050×10^{-2} is 3	s: * <u>4</u>	* 6
	Kitabul-Manazir is writ * Ibn-e-sina	ten by: * <u>Ibn-ul-Haitham</u>	* Al-Razi	* Al-Beruni
	The dimension of G is: ${}^*ML^{-2}T^{-3}$	$*M^{1}L^{-2}T^{-3}$	* $\underline{M}^{1}\underline{L}^{3}\underline{T}^{-2}$	$M^{1}L^{2}T^{2}$
	Dimension of pressure $\frac{ML^{-1}T^{-2}}{2}$	$*ML^2T^{-3}$	* ML ⁻² T ⁻²	* <i>MLT</i> ⁻¹
	Pinhole camera was inv * Al-Beruni	* <u>Ibn-ul-Haitham</u>	2.2	* Ibn-e-sina
16.	-	mbers 5.642 and 4.71 In	-	
17.	* 26.57382 Al-Qanoon-fit-Tib is w	•	* <u>26.6</u>	* 26.5738
18.	_	* Al Razi ant figures in 860.040 is:		* Ibn-e-Sina
19.	* 2 Candela is a unit of:	* 4	* <u>6</u>	* 5
20.	*Intensity of light The dimension of force		* Force	* Mass
21.	* MLT The dimension of Torqu		* MLT ²	* <u>MLT⁻²</u>
22.		* ML ² T ⁻² fors having magnitudes of	* ML ² T ² f 4 units and 3 units are a	* MLT ⁻² added. The resultant has the
23	magnitude of: * 7 units If i i and k are the unit	* 12 units vectors along x, y and z	* 25 units	* <u>5 units</u>
	* I	* <u>-i</u> vits own magnitude, the r	* 1	* -1
	* Position vector	* unit vector ual but opposite vectors i	* null vector	* free vector
20.	* Free vector	* Null vector	* Unit Vector	* None of these

C-1, 14-A, Near Sakhi Hassan Chowrangi, Karachi. 36990042 & 36989454

A-955, Sector 11-B, Near U.P. More, North Karachi, Karachi. 0335-6990041 & 36964755

NAZIMABAD CAMPUS

1-A, 1/4, Nazimabad No. 1, Opposite Govt. College for Men, Karachi. 36620042 & 36620043

MAK WAY GRAMMAR SCHOOL

36672991 & 36633149

MAK SCHOOL SYSTEM MAK WAY PRE-PRIMARY CAMPUS

36943080 & 0341-1248181) 36921059 & 0343-6721059

We Serve the Nation by Serving Education

AK COLLEGIA Page | 2 BY: SIR AMIR KHAN MCQ'S **PHYSICS 26.** $k \cdot (i \times j)$ is equal to: * Zero * One 27. The magnitude of the resultant of two forces F & F of equal magnitude is F, when they are inclined at an * 0° * 90° * 120° * 180° **28.** If $\overrightarrow{A} \cdot \overrightarrow{B} = 0$ and $\overrightarrow{A} \times \overrightarrow{B} = 0$ and $A \neq 0$, then vector B is: * Perpendicular to A * Equal to A * Parallel to A * Zero 29. Two forces of 6N and 8N in same direction can produce a resultant of: * 10N * 1N * 18N **30.** The resultant of two forces of same magnitude F making an angle of 180° with each other is: * 0.5 F * Zero **31.** If $\vec{A} = a\hat{i}$ and $\vec{B} = b\hat{j}$, then $\vec{A} \times \vec{B}$ is equal to: * -abk * abk * None of these 32. Two forces act together on an object; the magnitude of their resultant is minimum when the angle between them is: * 90° * 180° * 0° **33.** This is not a vector quantity: * weight * frequency * momentum * electric field intensity **34.** When $|\vec{A} + \vec{B}| = |\vec{A} - \vec{B}|$, the angle between the vectors \vec{A} and \vec{B} is: * 45° * 60° * zero 35. If a light object collides elastically with a massive body which is at rest, the light object will: * be stopped * Rebound with the same velocity * Rebound with twice the velocity * cause the massive body to move **36.** The acceleration of a body moving on a frictionless inclined plane depends on the: * Angle of inclined plane * Length of inclined plane * Initial velocity of the body * Final velocity of the body 37. A body falling down through a fluid experiences a frictional force which is given by: * Law of Gravitation * Snell's law * Stoke's Law * None of these **38.** Stoke's law holds for: * Bodies of all shapes * Motion through non-viscous medium * Motion through viscous medium * Motion through vacuum 39. When a body slides over a surface, the Kinetic Friction (f_k) and Static friction (f_s) are related as: $* f_{\nu} = 0$ * f_c<f_{\(\psi\)} * $f_s = 0$ * $f_k < f_s$ **40.** How many metre(s) will a 20 kg ball, starting from rest, fall freely in one second?: * 4.0 m * 19.6 m * 9.8 m 41. The acceleration of a body moving down a frictionless place inclined at 30° will be: * 4.9 m/s^2 * 9.8 m/s² * 98 m/s 2 **42.** A one kilogram stone, falling freely from a height of 10 metre, strikes the ground with a velocity of: * 98 m/s * 10 m/s * 19.6 m/s * 14 m/s **43.** A static stone weighing 1kg falling freely from a height of 10m, strikes the ground with speed: * 14 m/s * 98 m/s **44.** The rate of change of linear momentum is equal to: * Torque * Acceleration * Force * Velocity 45. A helicopter weighing 3920N is moving up with a constant speed of 4m/sec. the force on the helicopter is: * 3920N * 3924N * 3916N **46.** The property of fluids due to which they resist their flow is called: * Static friction * Coefficient of friction * Terminal velocity * Viscosity 47. The unit of linear momentum is:

SAKHI HASSAN CAMPUS

C-1, 14-A, Near Sakhi Hassan Chowrangi, 36990042 & 36989454

NORTH KARACHI CAMPUS

A-955, Sector 11-B, Near U.P. More, North Karachi, Karachi. 0335-6990041 & 36964755

1-A, 1/4, Nazimabad No. 1

Opposite Govt. College for Mer 36620042 & 36620043

36672991 & 36633149

MAK SCHOOL SYSTEM 36943080 & 0341-1248181 36921059 & 0343-6721059

36990042 & 36989454

0335-6990041 & 36964755

We Serve the Nation by Serving Education

Page | 3

36921059 & 0343-6721059

MAK SCHOOL SYSTEM MAK WAY PRE-PRIMARY CAMPUS

CQ'S		BT: SIK AWIK KHAN		PHYSICS
* $\frac{N}{S}$	* <u>NS</u>	* JS	$*\frac{J}{S}$	
48. A body fal * 9.8 m	ls freely. The distance cover * 19.6m	ered by it in 2 sec. is: * 39.2 m	* 100m	
49. If the avera * Variable	_	cities of a body are the same, the by elocity * Uniform acceleration		cceleration
50. If the time * velocity	interval is very small (Δt - * instantane	\rightarrow 0), the rate of change of displaceous velocity * average and * average are also as \star and \star are also as \star and \star are also as also a	ement of a body is calle rage velocity * un	iform velocity
* $\frac{4 \text{ m/s}^2}{}$	* 40	f 20 m/s, rounds a curve of radius m/s ² * 200	100 m. its acceleration m/s^2 * 20	00 m/s^2
* In the di	rection of velocity	e direction of acceleration is * opposite to	the direction of veloc	<u>ity</u>
53. A projectil	-	100 ty * 60° to the di 30° with the horizontal having a cerelocity as before at an angle of: *75°	irection of velocity ertain initial velocity. It * 15°	will have the
54. A projectil	e has its speed maximum a	at the moment of:		
	on * Hitting the	ground * <u>Both of these</u> particle, moving about the centre of	* None of these	hv.
				oy.
* $v = w \times$	r * $v = r \times w$	* $w = v \times r$	$\stackrel{\rightarrow}{*}\stackrel{\rightarrow}{w}=\stackrel{\rightarrow}{r}\times\stackrel{\rightarrow}{v}$	
* The cent * The cent * The cent	tripetal force upon him is ripetal force upon him is ed	cing track skids because: ess than the limiting friction greater than the limiting frictio qual to the limiting friction	<u>on</u>	
* None of 7. The horizon	these ontal range of a projectile d	enends unon:		
	e of projection	* The velocity of the	projectile	
* 'g' at the	1 0	* All of them	. 3	
* <u>Parallel</u>	* Non paralle		nd angular velocity ω at *None of the	
* $\frac{4rT^2}{}$	the second representation of a body $* \frac{4\pi^2 r}{}$	y moving body along a circle is: $* \frac{4r^2T^2}{}$		
* $\frac{\pi^2}{\pi^2}$	* $\frac{T^2}{T^2}$	$*\frac{1}{\pi^2}$	* None of th	<u>iese</u>
	e same and it is thrown at a	of 35°, it hits a certain target. It van angle of: * 10°	will have the same rang $*65^{\circ}$	ge if its velocity
	* <u>55°</u> between centripetal acceler * 45°	ration and tangential acceleration in * 90°	= =	
52. An angle s * 84.3°	ubtended at its centre by an * 57.3°	n arc whose length is double to that * 114.6°		
* the horiz	le motion, constant changes ontal component of velocity cal component of velocity	s occurs in: * both horizontal and	vertical components of	velocity
		nn arc whose length is double to th	nat of its radius is: * 168.6°	
form:		itude but opposite in direction and		ame straight line
* Circle	* <u>Couple</u>	* Power	* Torque	
* torque	f change of angular momen * force	* velocity	* acceleratio	n
HASSAN CAMPUS C-1, 14-A,	NORTH KARACHI CAMPUS A-955,	NAZIMABAD CAMPUS GF	MAK WAY RAMMAR SCHOOL	672991 & 36633149

36620042 & 36620043

Near Sakhi Hassan Chowrangi, Karachi.

36990042 & 36989454

0335-6990041 & 36964755

We Serve the Nation by Serving Education

Page | 4

36921059 & 0343-6721059

AICC	('S	B1: 318	AWIIK KHAN		PHYSICS
67.	While spinning, a dance	er suddenly stretches his	arms. The angular velocity	will:	
	* remain the same	* decrease	* <u>increase</u>	* none of t	hese
68.	If the sum of torques ac		nen this will be constant:		
	* Force	* angular momentum		* Pressure	
69.	_		0 to 720 J.S. in 4 sec.; the		ae acting will be:
	* 1440 J.S.	* 360 J.S.	* <u>180 J.S</u>	* 4.5 J.S.	
70.		produces angular accelera			
=4	* Torque	* Power	* Work	* Energy	
71.		e of the couple depends			
	* The distance of (\vec{F}) if	from origin	* The distance of $(-\vec{F})$	from origin	
	* The distance between	n ($ec F$) and (- $ec F$)	* None of these		
72.	If the axis of rotation of	a body passes through t	he body itself, then its mot	ion is called:	
	* Linear motion	* Orbital motion	* Spin motion	* S.H.moti	on
73.	When the angular veloc	ity of a disk increases, a	ngular acceleration α and a	ngular velocity ω	are:
	* Parallel	* Non parallel	* Perpendicular	* None of t	
74.	Torque is defined as the	e time rate of change of:			
	* Angular momentum		* Linear momentum		
	* Angular velocity		* Angular acceleration		
75.		of a particle is conserve			
	* Net torque acting on		* Net force acting on the		
70	* The acceleration of th		* Net displacement of the	•	1 2 4 4
76.		ght from earth's surface	equal to the radius of the ea	artn. His weight re	lative to the
	earth's surface would: * Become half	* remain the same	* become double *	haaama ana faw	u4h
77		a satellite orbiting arou		become one-four	<u>rtii</u>
//.	* Equal to actual weigh		* Zero		
	* Greater than the actual		* Less than the actual wei	ight	
78.		_	lance read if the Elevator i	•	onstant velocity of
	9.8 m/s:	what will the spring our	ance read if the Bievator i	s descending at ec	mistaint voiceity of
	* Zero	* 98 N	* 19.8 N	10 N	
79.	The acceleration due to	gravity on the moon is	$\frac{1}{6}$ th that on the earth's s	surface. What will	be the mass of a
		mass on the earth is m?:			
	* <u>m</u>	ul. c	al.	* <u>m</u>	
	*	* 6m	* <u>m</u>	*	
	·			σ	
80.	The weight of a man is	600 N at the earth; his w	reight on the moon, where g	$g_m = \frac{8}{6}$, will be:	
	* 3600 N	* 600 N	* 300 N	* 100 N	
81		the centre of the Earth v		100 11	
01.	* Maximum	* Minimum	* Zero	* Infinite	
82.	== ==		its mass were to remain		celeration due to
	gravity on the surface o				
	* decrease	* remain the same	* increase	* become a	zero
83.	The dot product of force		more case	become.	-0.0
٠	* Power	* Acceleration	* Energy	* Torque	
84.		e closed path in a conse		1	
	* Positive	* Negative	* zero	* Infinite	
85.	One horse power is equ	_			
	* 400 watts	* 550 watts	* 70 watts	* <u>746 watt</u>	<u>.s</u>
86.			etween force and velocity		
	* 0°	* 45°	* 180°	* <u>90°</u>	
II HAS	SAN CAMPUS NORTH K	ARACHI CAMPUS NAZIN	MA MABAD CAMPUS GRAMM	AK WAY MAR SCHOOL	36672991 & 36633149
C-1	, 14-A,	A-955, 1-A, 1/4,	Nazimabad No. 1,		
		B, Near U.P. More, Opposite Garachi, Karachi.	ovt. College for Men, Karachi.	HOOL SYSTEM 36	<u> 6943080 & 0341-1248181</u>

36620042 & 36620043

We Serve the Nation by Serving Education

We Serve the Nation by Serving Edu

COLLEGIA

Page | 5

MCG)'S •	BY: SI	R AMIR KHAN	PHYSICS
87.	If mass and speed both a	re doubled, the kinetic	energy will be:	
		* four times	* six times	* eight times
88.	Kilowatt hour is a unit o	f:		
	* Energy	* Power	* Time	* Force
89.	A weight lifter consume	s 500J of energy to lift	a load in 2 seconds, the power us	sed by him is:
		* <u>250 watt</u>	* 500 watt	* 1000 watt
90.	Watt-hour is the unit of:			
		* Acceleration	* Velocity	* Energy
	Power is equal to:	_	_	_
	* $\vec{F} \times \frac{\vec{d}}{t}$	\overrightarrow{r} \overrightarrow{v}	\vec{r}	$*\vec{F}\cdot\frac{\vec{d}}{t}$
	$F \times -\frac{t}{t}$	$*\vec{F} \cdot \frac{\vec{v}}{t}$	* F × -	* F . —
92	A bucket of mass 10 kg		in the gravitational field through	gh a distance of lm, the work
<i>74</i> ,	done in this case is equa		in the gravitational field through	gn a distance of this the work
	_	* <u>98 joule</u>	* -98 joule	* 0.1 joule
93.	If the speed of moving b		.	o.1 joure
		* Half	* Three times	* Four times
94.	When a body moves ver			
	* Positive	* Negative	* Zero	* Maximum
95.	When a body moves ver	tically upward, its pote	ntial energy:	
		* Decreases	* Remains the same	* Is maximum
96.			inetic energy at the maximum he	-
		* Minimum	* Equal to potential energy	* Zero
97.	two vibrating bodies hav			
00		* Beats	* Resonance	* Polarization
98.			doubled, its time period will:	* 4 - l
00		* become fourfold	* be halved	* <u>not change</u>
<i>77.</i>	The velocity of sound in * zero	* 330 m/s	* 332 m/s	* 344 m/s
100	The maximum number			344 m/s
100		* 5	* 7	* 9
101	. If two tuning forks of f	requencies 256 Hz and	1 260 Hz are sounded together, the	he number of beats per second
	will be:			r
		* <u>4</u>	* 5	* 7
102	. The distance between ty	wo consecutive nodes of	of a stationary wave will be:	
	* λ	* \(\lambda/2\)	* λ_{Δ}	* \(\lambda/\)6
	70	<u>/2</u>	/4	/6
103	. The earthquake waves a			
		* Infrasonic waves	* Shock waves	* Ultrasonic waves
104	. Power Law determines:			
405		* Work	* Intensity	*Loudness of sound
105	. The time period of simp	ple pendulum depends		
	* mass		* Length * Poth longth and apployetis	an due to guerita
106	* acceleration due to gra	•	* Both length and acceleration edium; no change occurs in its:	on due to gravity
100		* Wavelength	* Amplitude	* Speed
107	The frequency of wave			Speed
10.		* Tension	* Linear density	* All of these
108	The S.I. unit of intensit			
	•	* Dioptre	* Sone	* <u>Decibel</u>
109	$. \sin\theta = \theta$, if θ is specific	ally less then:		
	* 15°	* 10°	* <u>5°</u>	* 90°
	SAN CAMPUS NORTH VA	NAZII CAMBUS	MARAD CAMBUS MAK WA	36672991 & 36633149

C-1, 14-A, Near Sakhi Hassan Chowrangi, Karachi. 36990042 & 36989454

A-955, Sector 11-B, Near U.P. More, North Karachi, Karachi. 0335-6990041 & 36964755

1-A, 1/4, Nazimabad No. 1, Opposite Govt. College for Men, Karachi. 36620042 & 36620043

MAK SCHOOL SYSTEM

MAK WAY PRE-PRIMARY CAMPUS

36943080 & 0341-1248181 36921059 & 0343-6721059

Near Sakhi Hassan Chowrangi, Karachi.

36990042 & 36989454

0335-6990041 & 36964755

Page | 6

36921059 & 0343-6721059

MCQ'S ●	BY: SIR	AMIR KHAN	• PHYSICS
110. This property of sound			
* <u>Amplitude</u> 111. This is compressional v	* Wave length vaves:	* Frequency	* Intensity
	* Sound wave	* Radio wave	* X-Rays
112. Earthquake waves are t			•
	* Infrasonic waves	* Ultrasonic waves	* Shock waves
113. Which of the following			
* A hanging spring supp		* The balance wheel of	a watch
* The wheel of an auto	<u>mobile</u>	* The string of a violin	
114. Pitch depends upon: * Frequency	* Loudness	* Time period	* Distance
115. A sound wave travels f			
	* Wave Length	* Frequency	* Velocity
116. The sound waves of fre	_		v oreore,
		* Ultrasonic waves	* None of these
117. If a stretched string vib		nany anti-nodes are form	ed?:
* <u>1</u>	* 2	* 3	* 4
118. The velocity of a bob s			
	* Minimum	* Zero	* None of these
119. The velocity of sound h	nas maximum value in:	* ~~~~	* 6-22 24-22
	* liquids	* gases	* free space transverse wave in it will increase:
* 4 times	* 8 times	* 2 times	* 16 times
			er, the beats frequency will be:
* 3	* 4	* 5	* <u>6</u>
122. The S. I unit of intensit	y of sound is:		_
* Watt/m ²	* decibel	* weber	* dioptre
123. A body executes simple	e harmonic motion if:		
*A = K.x	* $v = -k.x$	* $a=-\sqrt{k}.x$	* $a = - k x^2$
124. The central spot in the	Newton's Rings appear	dark due to:	
* Phase reversal only			difference zero only
* Both phase reversal an			sity of light is maximum
		ferometer moves a dista	nce equal to wave length of light, the
interference pattern mov	es by:	* 02 Eulerana	
* 01 Fringe * Odd half integral mult	inle of Fringes	* <u>02 Fringes</u> * ½ Fringe	
126. We can see various obj		72 Finige	
* Absorb light	* Reflect light	* Emit Light	* Refract Light
		_	ence is that the path difference must be:
* An odd multiple of the			ple of the whole wavelength
* An integral multiple		* An even num	ber of the wavelength
128. The wave theory of light	-		
* Polarization	* Photoelectric effect	* Interference	* Diffraction
129. Electromagnetic waves	consist of oscillating ele		
* Parallel to each other	thor	* Perpendicular to eac * None of these	<u>n otner</u>
* Non parallel to each of 130. Polarization of light du			
* Reflection	* Selective absorption		* Diffraction
131. According to Maxwell'	·		Difficulti
* Transverse wave	* Longitudinal wave	* Mechanical wave	* Electromagnetic wave
132. Huygen's Principle is u	•		
* Determine the speed o		* Expressed polarization	
* Locate the wave fron	<u>t</u>	* Find the refrective ind	lex
KHI HASSAN CAMPUS NORTH KA	ARACHI CAMPUS NAZIM	ABAD CAMPUS GRA	MAK WAY MMAR SCHOOL 36672991 & 36633149
C-1, 14-A,	A-955, 1-A, 1/4,	Nazimabad No. 1,	CHOOL SYSTEM 36943080 & 0341-1248181)
		Karachi.	CCC-10101-1240101)

36620042 & 36620043

We Serve the Nation by Serving Education

Page | 7

MCQ'S	•	BY: SIR	AMIR KHAN		•	PHYSICS
133. This is r	not the property of soun	d waves:				
* Interfer	ence * Diffra	ction	* Polarization	*	Refraction	
134. Monoch	romatic yellow light is	unable to show:				
* reflection	on * refract	ion	* dispersion	*	interference	
135. Yellow	light from a sodium lan	p is used to for	m Newton's rings. The	central spot	t in Newton's	ring will be:
* Yellow			* Bright		Blue	_
136. The ben	ding ability of light aro	and an obstacle	is known as:			
* interfer	rence * polariz	zation	* refraction	*	diffraction	
137. In Youn	g's double slit experime	ent, if separation	n between slits is increas	sed, then fr	inge spacing w	/ill:
* increase		ise	* remain the same		become infini	
138. This equ	ation represents Bragg					
* $m\lambda = d$			* $2m\lambda = d \sin\theta$	*	$2m\lambda = 3d \sin \theta$)
139. The dist	ance b/w the principal f		tical center is called—			
* Apertur	re * Radiu	s of curvature	* Focal length	*	Principal focu	IS
	ver of a convex lens is 4				1	
* 10 cm	* 20 cm		* 25 cm	*	50 cm	
	trument is used to study					
* Telesco			* Spectrometer	*	Magnifying g	lass
	ower of a converging len				g,g g	
* 25 cm	* 60 cm		* 50 cm	*	40 cm	
	al length of a convex len				<u>10 cm</u>	
* 0.5 dio			* 20 diopters	*	200 diopters	
			converging lens, the im-			
* at F	at 2F	c locus i ol a	* at infinity		n focus & opti-	cal centre
	rrestrial telescope, the c	entral leng ig ng		octweet	ii rocus & opti	car centre
			ower * both of these	*	none of these	
	Fect can be easily correct				none of these	
* Hypero				harration	* Astig	maticm
			the focal length of the			mansm
* 6 cm	* <u>5 cm</u>	incroscope is 0,	* 25 cm		s. -5 cm	
		. i	· 23 CIII	·	-3 CIII	
_	gth of Galilean telescop	e is equal to:				
$\star \frac{f_o}{}$	* f _ :	c	* $f_e - f_o$	*	$f_o + f_e$	
f_{a}	$*f_o - j$	<u>e</u>	Je Jo		$J_{o} + J_{e}$	
140 By using	a adjustable aperture of	a lens we can re	educe the defect of the le	ene syhich i	s called:	
* Astigm		a ichs we can re	* Chromatic Aberration		is called.	
	cal Aberration		* None of them	Ц		
	of colour blindness is cu	red by using:	None of them			
* Convex			* Cylindrical lens	* None o	f thasa	
			are kept in contact w			langth of the
	l lens will be:	10cai lengui (1) are kept in contact w	itii cacii oti	nei. The iocai	length of the
combined			2			
* 2 <i>f</i>	$*\frac{f}{2}$		* $\frac{2}{f}$	* f		
-)	2		f	J		
152. If the po	ower of a lens is one dio	ptre, its focal le	ngth is:			
* 1 metro			* 2 metres	* 4 metre	es	
	_	-				

C-1, 14-A, Near Sakhi Hassan Chowrangi, Karachi. 36990042 & 36989454

A-955, Sector 11-B, Near U.P. More, North Karachi, Karachi. 0335-6990041 & 36964755

NAZIMABAD CAMPUS

1-A, 1/4, Nazimabad No. 1, Opposite Govt. College for Men, Karachi. 36620042 & 36620043

MAK WAY GRAMMAR SCHOOL MAK SCHOOL SYSTEM

36672991 & 36633149

MAK WAY PRE-PRIMARY CAMPUS

36943080 & 0341-1248181) 36921059 & 0343-6721059