

Report to the Test Director

BLAST MEASUREMENTS

Operation Tumbler-Snapper

Edited by

F. B. Porzel

Los Alamos Scientific Laboratory University of California August 1952

UNCLASSIFIED

SEP 1 2 1995

Approved for public released.

Chambiness Unlimited

19950906 116

DISTRIBUTION STATEMENT A APPLIES PER NATURE REVIEW.

Malent 1. 1/4 DATE 6/20/95

Figures 6.14 to 6.19 on pages 69 to 73 are not in sequence.

UNCLASSIFIED

This document consists of 171 pages

No. 70 of 185 copies, Series A

Report to the Test Director

SEP 1 2 1995

F

BLAST MEASUREMENTS

Operation Tumbler-Snapper

Edited by

F. B. Porzel

Accesio	n For	1							
NTIS		Z.							
DTIC		9							
Unanno Justific									
By									
Availability Codes									
Dist	Avail at								
A-1		٠							

Los Alamos Scientific Laboratory University of California

August 1952

DETRIBUTION STATEMENT &

Approved for public releases
Distributor Universe

UNCLASSIFIED

UNCLASSIFIFD

CONTENTS

				_		,							Page
Part	I—Blast-wave	Mat	eri	al-v	elc	city	/ M	eas	ure	me	nts		
Proje	ects 19.2a and	b)											
\1 10 e	rcis 17.2a gila	D)											
ABSTRA	.ст	•	•	•		•	•	•	•	•	•	•	15
ACKNOV	WLEDGMENTS .	•											17
СНАРТ	ER 1 OBJECTIVES	•								•	.•		19
1,1	Methods of Labeling	Air											19
1.2	_		Pre	ssure	Mea	surer	nent						19
1.3	Additional Information			•		•		•	•				19
СНАРТЕ	ER 2 BACKGROUND												20
		•	•	•	•	•	•	•	•	•	•	•	
2.1	Résumé of Previous		•	•	•	•	•	•	•	•	•	•	20
	2.1.1 General Analy		letho	d	•	•	•	•	•	•	•	•	20
	2.1.2 Mortars and J			•	•	•	•	•	•	•	•	•	20
2.2	Feasibility Test of H				suren	nents	•	•	•	•	•	•	20
2.3	Description of Basic	Instrur	nents	3	•	•	•	•	•	•	•	•	25
СНАРТЕ	R 3 OPERATIONS	•											26
3.1	Division of Responsi	hility											26
3.2	Antiaircraft-gun Bat	-	•	•	•	•	•	•	•	•	•	•	26
3.3	Safety Engineering	ter y	•	•	•	•	•	•	•	•	•	•	26
	Safety Engineering	•	•	•	•	•	•	•	•	•	•	•	20
СНАРТЕ	R 4 INSTRUMENTA	TION						•	•	•			27
4.1	Summary				_								27
4.2	Description of Instru	mentati	on.		•	•	•	•		•		:	28
	4.2.1 Location .	_		•	•	•		•	•				28
	4.2.2 Mortars and J	· · ATO'c	•	•	•	•	•	•	•	•	•	•	28
	4.2.3 90-mm Guns			•	•	•	•		•		•		28
	4.2.4 Cameras .	•		•		•	•	•	•	:	•		37
	4.2.5 Reliability	•	•	•	•	•	•	•	•	•	•	•	37
	1.2.0 Iteliability	•	•	•	•	•	•	•	•	•	•	•	31
CHAPTE	R 5 RESULTS .		•		•	•	•	•					38
5.1	Analysis				_	_		_					38
	5.1.1 Film .	•			•								38
	5.1.2 Meteorologica	ıl Data	-	-									40
	J. T. B. MICHOLOLOGICE			-	•	•	•	-	•	•	-	,	

IINCLASSIFIED

CONTENTS (Continued)

													Page
5.2	Pressure vs Dist	ance .											40
5.3	Time of Arrival		• 17	•	•		•					•	40
СНАРТЕ	ER 6 ANALYSIS C	F DATA											52
6.1	Pressure vs Dist	ance .							,				52
	6.1.1 Summary							Ċ			•	·	52
	6.1.2 Tumbler S												52
	6.1.3 Tumbler S								·				53
	6.1.4 Tumbler S									-			53
	6.1.5 Tumbler-S			5 and	8 6							·	53
6.2	Time of Arrival					Ţ.			•	•	•	•	53
6.3	Further Data Ava				·				•	•	•	•	54
0.0	6.3.1 Triple Poi								•	•	•	•	
	6.3.2 Shock Way		•							•	•	•	54
	6.3.3 Thermal S		•	٠						•	•	•	54
	6.3.4 Dust .		٠		•			•	•	•	•	•	64
	6.3.5 Miscellane			•	•	•	•	•	•	•	•	•	64
	0.5.5 Wisceriane	eous .	•.	•	•	•	•	•	•	•	•	•	74
СНАРТЕ	R 7 CONCLUSIO	NS .								•			75
7.1	Reliability of Data	a .											75
7.2									•	•	•	•	75
7.3	-							-	Ċ	:	:	•	75
						•	•	•	•	•	•	•	
CHAPTE	R 8 RECOMMEN	DATIONS	3 .	•	•	•	•	•	•	•		•	78
8.1	Cameras .												78
8.2	Methods .			•						•	•		78
APPEND	IX A TYPICAL A	NALYSIS	OF	MOR	TAR-	-JATO) FIL	M (E	G&G :	13073	١.		79
											, ,	•	
APPEND	IX B TYPICAL A	NALYSIS	OF	GUN-	-BUR	ST F	LLM (EG&C	i 134	70)	•	•	90
Part I	I—Beta-den	sitome	ate r	F	ansi	hili	tv	Τρεί					
	. Dora den	31101110			. u 3 i								
(Proje	ct 19.2c)												
ABSTRAG	OT.												00
ADSTRA			•	•	•	•	•	•	•	•	•	•	99
CHAPTE	R 1 INTRODUCT	ION .	•	•	•		•	•				•	101
СНАРТЕ	R 2 INSTRUMEN	TATION											102
2.1	Alternating-curre	nt Create-											
2.1	Direct-current Sy	•	.1	•	•	•	•	•	•	.*	•	•	102
2.2	Calibration		•	•	•	•	•	•	•	•	•	•	102 102
2.0	oumbration .												LUZ

CONTENTS (Continued)

															Page
CHAF	TER 3									D IN					
		DENSITO	METER	DES	IGNI	ED F	OR T	UMB:	LER	•	•	•	•	•	110
3	.1 Ge	eneral .													110
3	.2 Al	ternating-cui	rrent S	ysten	ı					•					111
3		rect-current								•					111
CHAP	TER 4	RESULTS											•		112
CHAP	TER 5	CONCLUS	IONS			•	• .		•	•				•	118
CHAP	TER 6	RECOMMI	ENDAT	IONS		•	•	•	•	•	•		•		119
_				_									1		
Part	111-	-Interfer	ome	ter-	ga	uge	Pr	ess	u re	-Tir	ne				
		,				_ •\									
Med	isu r	ements (Proj	ect	19.	.2d)									
ABST	RACT														123
												-		-	
CHAP	TER 1	INTRODUC	CTION												125
		neral Discus		•	•	•	•	•	• '	•	•	•	•	•	125
1.	.2 Se	condary Prob	olems	•	•	•	•	•	•	•	•	•	•	•	125
OTT A D	 0	1001010	***												
CHAP	TER 2	APPARAT	US	•	•	•	•	•	•	•	•	•	•	•	126
2.	1 Ge	neral Discus	sion						•						126
2.	2 Ga	uge Mounting	;				•								126
2.	3 Co	ntrol .									•.				126
2.	4 Fi	lm-speed Det	ermina	ation		•									129
2.		wer .													129
2.		l-filled Press		ansm	issi	on Li	nes	•					•	•	129
2.	7 Ins	stallation Data	a .	•					•	•					129
CHAP	TER 3	PROCEDU	RE AN	D INS	TAL	LAT	ION	•	•	•		•	•		130
3.	1 Ge	neral .													130
-	_	apper 1 Instal	llations	•	•	•	•	•	•	•		•	•	•	130
3.		tallations, Sh				Ť	•	•	•	•				•	135
3.		covery of Re				:		:		:		•	•	•	135
3.		alysis of Data										•			135
•		J === 01 2 400	•	,	-	-	-	٠	-	•	•	•	٠	•	100
CHAP	rer 4	RESULTS													136
					-	-	-	•	•	-	-	-	-	•	
4.		neral .	•	•	•	•	•	•	•	•	•	•	•	•	136
4.		Line . ntrol Annarat	•		•	•	•	. •	•	•	•	•	•	•	136
4.	പ്ര	niroi Annarat	ms and	MOIII	nt G										126

CONTENTS (Continued)

															Page
СНАРТІ	ER 5	DISCUS	SSION OF	RES	ULTS		•								145
5.1			ission Li						•						145
5.2			ission Lin	es	•	٠	•	•	•	•	•	•	•	•	145
5.3	Inst	allations		•	•	٠	•	•	•	•	•	•	•	•	146
СНАРТІ	ER 6	CONCL	JUSIONS A	AND I	RECO	MME	ENDA'	TION	s.	•	•	٠	٠	•	147
Part I	٧	The M	leasure	me	nt c	of P	rest	مدا	k Sa	ouna	1 V	وامر	·itv		
(Proje											•	0.00	y		
		7.21,													
ABSTRA	CT	•		•	•	•	•	•	•	•	•	•	•	٠	151
СНАРТ	ER 1	INTRO	DUCTION	.•											153
1.1	Pur	pose					•								153
1.2	Disc	cussion	•	•		•	•						•		153
СНАРТЕ	ER 2	METHO	DD OF ME	ASU	REME	ENT									154
2.1	Des	cription	of Measu	reme	ent										154
2.2			of Appara		•								:	·	154
СНАРТЕ	ER 3	RESUL	TS .											•	162
СНАРТЕ	ER 4	CONCL	USIONS				•								168
ILLUS	TR	OITA	٧S											*	
Part I	–Bl	ast -w	ave M	ate	rial.	-vel	ocit	y N	leas	urer	nen	ts			
Proje	cts	10 2a	and b												
СНАРТЕ	R 2	BACKG	ROUND												
2.1		O Consti			•				•					•.	21
2.2			ister, and			_		•	•	•	•	•	•	•	22
2.3			Mortar Un		•	•	•	•	. •	•	•	•	•	•	23
2.4	90-r	nm Antia	aircraft G	un	•	•	•	•	•	•	•	•	•	•	24
СНАРТЕ	R 4	INSTRU	MENTAT	ION											
4.1			Frenchma												29
4.2			nd Gun St					•			•	•	•		30
4.3			Tumbler-					8	•	•	•				31
4.4	Mor	tar-JAT	O Timing	and ?	Power	Cir	cuit								32

		1	Page
4.5	90-mm Antiaircraft-gun "Electro-Mechanical" Firing System		33
4.6	Planned Gun Bursts, Tumbler Shot 2	•	34
4.7		•	35
4.8		•	36
СНАРТЕ	ER 5 RESULTS		
5.1	Material Velocity vs Distance, Tumbler Shots 1 and 2		42
5.2	Material Velocity vs Distance, Tumbler Shots 3 and 4		43
5.3	Material Velocity vs Distance, Tumbler Shots 3 and 4		44
5.4	Ducaning in Distance Bunkley Chate 1 and 9		45
5.5	Pressure vs Distance, Tumbler Shots 1 and 2		46
5.6	Pressure vs Distance, Tumbler-Snapper Shots 5 and 8		47
5.7	Time of Arrival, Tumbler Shots 1 and 2		49
5.8	Time of Arrival, Tumbler Shots 3 and 4		50
5.9	Time of Arrival, Tumbler-Snapper Shots 5 and 8		51
	GR 6 ANALYSIS OF DATA		
6.1	Early Mortar-JATO, Tumbler Shot 4, Station 203cc, 5 msec		
	After Zero Time	•	55
6.2	Mortar-JATO and Dust Skirt, Tumbler Shot 4, Station 203cc, 900 msec		
	After Zero Time	•	56
6.3			
	After Zero Time	•	57
6.4	Mortar-JATO and Dust Skirt, Tumbler Shot 4, Station 203cc, 1480 msec		
	After Zero Time	•	58
6.5	· · · · · · · · · · · · · · · · · · ·		
	After Zero Time	•	59
6.6	,,,,,		
	After Zero Time	•	60
6.7	,		
	Before Zero Time	•	61
6.8	Incident and Reflected Shocks, Tumbler Shot 1, Stations F-204cc and F-205cc,		
	775 msec After Zero Time	•	62
6.9	Early Mortar-JATO, Tumbler Shot 1, Station F-209cc, 27 msec		
0.10	Before Zero Time	٠	63
6.10	Mortar-JATO During Motion, Tumbler Shot 2, Station 202, 1060 msec		
0.11	After Zero Time	•	65
	Thermal Shock, Tumbler Shot 4, Station 202cc, 440 msec After Zero Time	•	66
6.12	Thermal and Reflected Shocks, Tumbler Shot 4, Station 202cc, 500 msec		
0.40	After Zero Time	•	67
6.13	Early Mortar-JATO, Tumbler Shot 4, Station 202cc, 5 msec After		
	Zero Time	•	68
	"Before-and-After" Outline	٠	69
	Selected Shock Contours	٠	70
6.16	Preshock Dust, Tumbler Shot 1, Stations F-204cc and F-205cc, 575 msec		
A 1-	After Zero Time	٠	71
6.17	Mortar-JATO Prior to Shock Arrival, Tumbler Shot 1, Station F-209cc,		
	1045 msec After Zero Time		72

									Pag
6.18	Gun Bursts 1 and 2 and Parachute Gauge,					,			
	220 msec After Zero Time								73
6.19	Gun Burst 3 and Parachute Gauge, Tumble	e r-S r	nappe	r Sho	t 5,				
	32 msec After Zero Time	•	•	•	•	•	•	•	73
APPENI	DIX A TYPICAL ANALYSIS OF MORTAR-	JATO	O FIL	M (E	G&G	13073)		
				(,		
A.1 A.2	Smoke-puff Contours	•	•	•	•	•	•	•	80
A.2 A.3	Station F-202cc (Plan) Station F-202cc (Elevation)	•	•	•	•	•	•	•	80
A.4	Displacement vs Frame Number	•						•	81 83
A.5	Geometrical Camera-Object Relation	•						•	85
A.6	Obliquity Effect						:	•	86
A.7	Determination of True Line of Motion	•	•	•	•	•	•	•	86
A.8	Effect of Obliquity on Tower Separation	•	•	•	•	•	•	•	88
	Enter of Conquity on Tower Separation	•	•	•	•	•	•	•	00
APPENI	DIX B TYPICAL ANALYSIS OF GUN-BURS	ST F	ILM (EG&C	3 134	70)			
B.1	Planned and Actual Burst Positions .								91
B.2	Camera-Gun-burst Geometry								92
B.3	Effect of Range Error			•					92
B.4	Displacement vs Frame Number .								94
(Proje	ect 19.2c)								
CHAPTE	R 2 INSTRUMENTATION								
2.1	Arrangement of A-c Beta Densitometer, C	pera	ation	Tumb	ler				103
2.2	Block Diagram of A-c Beta Densitometer								104
2.3	Detailed Circuit Diagram, A-c Densitome								105
2.4	Alternating-current Beta-densitometer Lo					cuit			106
2.5	Arrangement of D-c Beta Densitometer, C							•	106
2.6	Block Diagram of D-c Beta Densitometer				•	•		•	107
2.7	Detailed Circuit Diagram, D-c Beta Densi				•	•	•	•	108
2.8	Gamma-balancing, Filter, and Biasing Cir	cuit	s, A-	c Beta	a				
0.0	Densitometer	•	•	•	•	•	•	•	109
2.9	Circuit for Calibration Foil Release Syste	m	•	•	•	•	•	•	109
СНАРТЕ	R 4 RESULTS								
4.1	Density of Dust-loaded Air as a Function of	of Tir	me. S	tation	7-20	Saa.			
	GR = 3750 Ft, Height of Burst = 1100 Ft								· 113
4.2	Density of Dust-loaded Air as a Function of	f Tir	me, S	tation	7-20	8aa,			
	GR = 6000 Ft, Height of $Burst = 1100 Ft$								114
4.3	Density of Dust-loaded Air as a Function of								
	GR = 3750 Ft. Height of Burst = 3450 Ft								115

				Page
4.4	Density of Dust-loaded Air as a Function of Time, Station 7-208aa,			
	GR = 6000 Ft, Height of Burst = 3450 Ft	•	•	116
4.5	Density of Dust-loaded Air as a Function of Time, Station 7-205aa, GR = 3750 Ft, Height of Burst = 1040 Ft			117
	GR - 3750 Ft, Height of Burst - 1040 Ft	•	•	111
Part I	II—Interferometer-gauge Pressure-Time			
Meası	rements (Project 19.2d)			
СНАРТЕ	CR 2 APPARATUS			
2.1	Oil-filled Pressure-transmission Line for Interferometer Gauge	•	•	127
СНАРТЕ	CR 3 PROCEDURE AND INSTALLATION			
3.1	Completed Gauge Installation, Station F-209			131
3.2		•	•	132
3.3	,	•	•	133
3.4	Power and Control Box, Station F-209	•	•	134
СНАРТЕ	ER 4 RESULTS			
4.1	. , ,			197
4.9	Station 205, 7-in. Air Line	•	•	137
4.2	Station 207, 5-in. Air Line			138
4.3	Interferometer-gauge Pressure vs Time Graph, Snapper 1,	•	•	
	Station 209, 5-in. Air Line			139
4.4				
	Station 203, 7-in. Oil Line	•	•	140
4.5	Interferometer-gauge Pressure vs Time Graph, Snapper 2,			
	Station 205, 5-in. Oil Line	•	•	141
4.6	Interferometer-gauge Pressure vs Time Graph, Snapper 3,			142
4.7	Station 203, 7-in. Oil Line	•	•	142
4.1				143
4.8	Station 209, Flush Gauge	•	•	110
1.0	Station 207, 3-in. Oil Line			144
Part I	V—The Measurement of Preshock Sound Veloci	ty		
(Drain	ct 19.2f)			
roje	CT 19.21)			
CHAPTE	CR 2 METHOD OF MEASUREMENT			
2.1	Block Diagram of Sonic Oscillator		•	155
2.2	Sonic Oscillator Circuit		•	156
2.3	Timing-marker Circuit	•	•	157

					•					Page
2.4	"Zero" Time Marker Circuit .									157
2.5	Relay Network				٠					158
2.6			:	•	•	•			•	159
2.7	Transmitter-Microphone Mounts	•	•	•	•	. •	•	•	•	160
СНАРТІ	ER 3 RESULTS									
3.1	Record of the Temperature Rise, Tun	nbler	4							163
3.2	Air Temperature vs Time (Preshock)	, Son	ic Os					,		
	Station 238, GR 262							•	•	164
3.3	Air Temperature vs Time (Preshock)									4.00
9.4	Station 5, GR 3653	• 76. A.I.	•					•	•	165
3.4	Temperature vs Time (Preshock), 1 F 1344 Ft from Zero, Tumbler 4.									166
3.5	Temperature vs Time (Preshock), Sor								•	100
0,0	Station 7-205, 3589 Ft from Zero, Tur							,		167
	,									
(Proje	cts 19.2a and b)									
CHAPTE	ER 4 INSTRUMENTATION									
4.1	Numbers and Types of Instrumented S	Statio	ns							27
4.2	Instrumentation by Stations .	•	•	•	•	•	•	•	•	28
СНАРТЕ	ER 5 RESULTS									
5.1	Summary of Photographic Results									38
5.2		annec	Gro	ound	Zero)					39
5.3	Meteorological Data							•	•	40
5.4	Slant Range, Material Velocity, and Pe	eak F	ress	sure	•	•	•	•	•	41
5.5	Times of Arrival	•	•	•	•	•	•	•	•	48
APPENI	OIX A TYPICAL ANALYSIS OF MORT	AR-J	АТО	FIL	м (Е	G&G	13073)		
A.1	Displacement vs Frame Number (Mor	rtar I	Puff,	Stati	on 20	2cc)			•	82
APPEND	IX B TYPICAL ANALYSIS OF GUN-E	urs'	r fi	LM (EG&C	3 134	70)			
р 1	Displacement us Frame Number (Tun	ahla=	Sno	nnor	5 P.	ret S)			03

TABLES (Continued)

Part	Part III—Interferometer-gauge Pressure-Time														Page
Measurements (Project 19.2d)															
CHAPT	ER 2	APPARA	ATUS												
2.1	Gau	ige Data	•	•				•			•		•	•	128
СНАРТІ	ER 3	PROCEI	OURE A	ND IN	STA	LLAI	TION								
3.1	Gau	ige Locati	ons and	Shield	ding			•,		•					130
СНАРТІ	ER 5	DISCUSS	ION OF	RESU	JLTS										
5.1	Con	nparison (of Resul	ts		. •		•	•		•			•	145
Part	IV-	-The Λ	Neasu	rem	ent	of	Pre	sho	ck :	Sou	nd \	/elo	city	,	
(Proje	ect	19.2f)													
СНАРТЕ	ER 3	RESULT	S												
3.1	Tab	le of Tem	peratur	es											162

Part 1

BLAST-WAVE MATERIAL-VELOCITY MEASUREMENTS (PROJECTS 19.2a AND b)

by

Daniel F. Seacord, Jr.

ABSTRACT

The Operation Tumbler-Snapper material-velocity experiments were instrumented in a manner similar to that used on Operation Buster-Jangle. Methods of labeling air for photographic recording consisted of mortars and JATO's. In addition, the firing of high-altitude smoke projectiles from guns was included as a feasibility test for similar instrumentation on Operation Ivy.

Tumbler shots 1 to 4 and Tumbler-Snapper shots 5 and 8 were instrumented, and data were obtained on all shots. This part of the report discusses the analysis of data for peak material velocity and overpressure as a function of distance. Further data on time of arrival and thermal shock waves are presented; the latter are in preliminary form. Additional photographic records, not yet analyzed, are discussed, and the extent and value of such future analyses are briefly described.

Two appendixes present the analytical method of data reduction in detail.

ACKNOWLEDGMENTS

The author wishes to acknowledge the assistance of the following officer and men assigned to the project by the Anti-Aircraft Artillery and Guided Missile Center, Fort Bliss, Texas, for installation and maintenance of the 90-mm antiaircraft battery:

Paul B. Barbour, 1st Lt (Artillery) M/Sgt Rafael L. Tafoya Cpl Jack C. Campbell Cpl Gabriel G. Casley Cpl William W. Freeman Cpl Frank B. Luchini Cpl Richard L. Ring

Without the photographic services of Edgerton, Germeshausen & Grier, the extent of the experiment would have been severely limited.

CHAPTER 1

OBJECTIVES

1.1 METHODS OF LABELING AIR

The feasibility of the material-velocity (or "mass-motion") method of measuring peak overpressures associated with a nuclear detonation was demonstrated in Operation Buster-Jangle. The two air-labeling methods there employed (mortars and JATO's) were again used on Operation Tumbler but on a much larger scale. A larger number of stations were instrumented, and there was greater camera coverage by Edgerton, Germeshausen & Grier (EG&G). In addition, a third method of labeling the air for photographic recording was employed. It was essentially a feasibility test for Operation Ivy, but when employed on two shots of Operation Snapper it also provided an independent pressure measurement for calibration of the parachute gauges of Project 1.1. This method involved firing a 90-mm smoke projectile, fuzed to burst at an altitude (1) comparable to the height of bomb burst for the airdrops and (2) above the burst height for the two tower shots on which the method was employed.

1.2 MATERIAL-VELOCITY METHOD OF PRESSURE MEASUREMENT

In relation to the over-all blast-measurement program, the material-velocity method of pressure measurement provided (1) data in a region not covered by other instrumentation and (2) an independent method of pressure measurement in the regions so instrumented. The region of 100 to 300 ft above the blast line was covered by mortar bursts and JATO columns, whereas the experiments conducted by other projects along the blast line were limited to altitudes of 50 ft. The 90-mm gun bursts provided information at and above the altitude of the bomb burst; thus additional data in the region covered by the rockets of Project 1.5 were provided by an independent method.

1.3 ADDITIONAL INFORMATION

Although the present report is concerned solely with the determination of peak overpressure as a function of distance, the material-velocity method is a means of studying many of the hydrodynamic variables associated with the blast wave. Future analysis of the data on hand from Operations Buster-Jangle and Tumbler-Snapper can eventually result in a detailed "blue-print" of the blast wave as a function of time.

CHAPTER 2

BACKGROUND

2.1 RÉSUMÉ OF PREVIOUS WORK

2.1.1 General Analytical Method

The development of the material-velocity method of measurement of the hydrodynamic variables associated with a nuclear explosion has been discussed in the J-10 Buster-Jangle report. The following is a brief description of the general method. Parcels of air are labeled with smoke, and the motion of this visible cloud, when struck by the blast wave, is then recorded photographically. Analysis of the film provides data on the displacement of the smoke cloud, and, with the known camera speed, a displacement-time curve may be drawn. The material velocity associated with the peak overpressure of the blast wave is taken to be the maximum slope of the displacement-time curve. This velocity, u, together with values of ambient sound velocity, c_0 , and ambient pressure, P_0 (from meteorological soundings), when applied to the proper Rankine-Hugoniot equation,* permits the calculation of the peak overpressure, P_0 . From knowledge of the location of the smoke clouds in relation to the bombdetonation point, a pressure-distance curve may be derived.

2.1.2 Mortars and JATO's

Two methods of labeling the air with smoke particles were employed in Operation Buster-Jangle: (1) JATO (jet-assist-take-off) units, which provided a column approximately 150 ft high, and (2) aerial "salutes" (fired from a 3-in. mortar), which burst from 100 to 350 ft above the ground (depending on the ballistics of the salute-mortar system employed). The Buster-Jangle results indicated that the aerial salute was the better method; however, one film of a JATO unit depicted the passage of the triple point through the cloud, thereby providing data on pressures in the free-air and Mach reflection regions. These results led to the decision on instrumentation for Tumbler-Snapper. Salutes were intended as the primary method, supplemented by JATO units in anticipation of determining the path of the triple point.

2.2 FEASIBILITY TEST OF HIGH-ALTITUDE MEASUREMENTS

As a feasibility test for Operation Ivy, a third method of labeling the air was introduced. This method consisted of firing white-phosphorus shells, fuzed for air burst, from 90-mm

$$\label{eq:c0} \begin{array}{l} {}^{*}\frac{\mathbf{u}}{\mathbf{c_{0}}} = \frac{1}{\gamma}\frac{\mathbf{P}}{\mathbf{P_{0}}} \ \frac{1}{\sqrt{\frac{\gamma+1}{2\gamma} \cdot \frac{\mathbf{P}}{\mathbf{P_{0}}} + 1}} \end{array}$$

Fig. 2.1—JATO construction. 1, propellant cartridge. 2, chamber assembly. 3, attachment fittings. 4, forward closure cap. 5, ring-stand. 6, nozzle assembly. 7, igniter assembly. 8, safety pressure release assembly.

Fig. 2.2 — Mortar, canister, and fuze: components.

Fig. 2.3—Assembled mortar unit.

