http://goo.gl/W6crOM

Introduction to The ESP8266

Micro Controller

Requirements for this class

Computer – Linux, Mac, or Windows

ESP8266 Development board

USB UART (programming cable)

Arduino IDE

ESP8266 Arduino Core

Outline for this class

Introduction to Micro Controllers & GPIOs

Overview of the ESP8266 Hardware & Software Development

Introduction to Arduino & Arduino IDE

Install the Arduino IDE & Upload a Sketch

Build a Web Server to control the LED on the ESP8266 remotely over WiFi

How to apply what you learned to your own designs

Resources

What is a Micro Controller?

"A microcontroller (or MCU for microcontroller unit) is a small computer on a single integrated circuit. In modern terminology, it is a System on a chip or SoC. A microcontroller contains one or more CPUs (processor cores) along with memory and programmable input/output peripherals. Program memory in the form of Ferroelectric RAM, NOR flash or OTP ROM is also often included on chip, as well as a small amount of RAM. Microcontrollers are designed for embedded applications, in contrast to the microprocessors used in personal computers or other general purpose applications consisting of various discrete chips."

What is a Micro Controller?

Small Computer in a Chip
Special purpose
Does one thing well

All Micro Controllers have

RAM (random-access memory)

ROM (read-only memory)

I/O (input and output)

GPIO

"General-purpose input/output (GPIO) is a generic pin on an integrated circuit or computer board whose behavior—including whether it is an input or output pin—is controllable by the user at run time."

~ Wikipedia

Input

Data from some external source is being fed into the system to be manipulated

Output

Digital

Data (signal) expressed as series of the digits 0 and 1, typically represented by values of a physical quantity such as voltage or magnetic polarization.

Analog

Data (signal) or information represented by a continuously variable physical quantity such as spatial position or voltage.

Specialized GPIO

UART

universal asynchronous receiver/transmitter

SPI

Serial Peripheral Interface

I2C

Inter-Integrated Circuit

ADC

Analog to Digital Converter

DAC

Digital to Analog Converter (PWM)

Special GPIO

Designed by Espressif Systems.

The ESP8266 can be used as a bridge for existing micro controllers to WiFi networks accessible using AT commands

The ESP8266 is capable of running self contained applications using a variety of development environments

Voltage	3.3V
Current consumption	10uA – 170mA
Flash memory attachable	16MB max (512K normal)
Processor	Tensilica L106 32 bit
Processor speed	80-160MHz
RAM	32K + 80K
GPIOs	17 (multiplexed)
Analog to Digital	1 input with 1024 steps
802.11 support	b/g/n/d/e/i/k/r
Max concurrent TCP	5

	ESP8266	Arduino (Uno)	
GPIOs	17	14	
Analog input	1	6	
PWM channels	8	6	
Clock speed	80/160MHz	16MHz	
Processor	Tensilica	Atmel	
SRAM	45KBytes	2KBytes	
Flash	512Kb-16MB	32KB (on chip)	
Operating Voltage	3.3V	5V	
Max current per I/O	12mA	40mA	
UART (hardware)	1 1/2	1	
SPI (hardware)	1(2)	1	
I2c	Yes	Yes	
I2s	Yes	No	
Networking	Built-in (WiFi)	Separate	

There are a variety of board styles available

There is only one ESP8266 processor and it is this processor that is found on ALL breakout

What distinguishes one board from another?

the number of GPIO pins exposed the amount of flash memory provided and the package footprint.

From a programming perspective, they are all the same.

Name	Description			
VCC	3.3V			
GPIO 13	Also used for SPI MOSI			
GPIO 12	Also used for SPI MISO			
GPIO 14	Also used for SPI Clock			
GPIO 16	Regular GPIO			
CH_PD	Chip enable. Should be high for normal operation			
ADC	Analog to digital input			
REST	External reset 0 – Reset 1 – Normal			
TXD	UART 0 transmit (GPIO 1)			
RXD	UART 0 Receive (GPIO 3)			
GPIO 4	Regular GPIO			
GPIO 5	Regular GPIO			
GPIO 0	Should be high on boot, low for flash update			
GPIO 2	Should be high on boot			
GPIO 15	Should be low on boot and flash			
GND	Ground			

WiFi

An ESP8266 can be an Access Point, a Station, or both at the same time.

802.11 b/g/n/d/e/i/k/r

What is Arduino?

Open-Source hardware and software project
User community & support
Licensed under the GNU General Public License
Anyone can manufacture Arduino boards and software
Available commercially or as do-it-yourself kits

What is Arduino IDE?

Integrated Development Environment

What is Arduino IDE?

Integrated Development Environment

Makes it easy to write code and upload it to the board

Cross-platform application ~ Windows, Mac OS & Linux

Programs written with the IDE are called a "sketch"

Supports C and C++ using special rules

Software library for common input and output procedures

Arduino IDE Download

Select version 1.6.8

Windows, Mac OS & Linux

Install the ESP8266 Addon With the Boards Manager

Open up Arduino, go to the Preferences (File > Preferences) Copy this URL into the "Additional Board Manager URLs" text box

http://arduino.esp8266.com/stable/package_esp8266com_index.json

Install the ESP8266 Addon With the Boards Manager

Navigate to the Board Manager by going to Tools > Boards > Boards Manager Look for esp8266
Click on that entry then select Install.

Select the ESP8266 Board

select "Generic ESP8266 Module" from the Tools > Boards menu (Or the appropriate selection for your board)

Upload Blink sketch

select "Blink" from the File > Examples > ESP8266 menu

If using ESP-12 Add

#define LED_BUILTIN 2
Just above the line
void setup() {

Upload sketch from the Sketch > Upload menu

Or Click on the Upload Icon

Create a New Sketch File > New

Every Arduino Sketch has two basic functions

Startup() And Loop()

Source Code

Copy & Paste source code into our Sketch (Use Select All)

GitHub Page

Edit The Variables in the Sketch
Review Source Code Line by Line
Upload The Sketch to the ESP8266
Connect & Control the ESP8266 over WiFi

Resources

http://bbs.espressif.com/

http://www.esp8266.com/

https://www.arduino.cc/en/Guide/HomePage

https://github.com/esp8266/Arduino

https://leanpub.com/ESP8266_ESP32 Neil Kolban ESP8266 pdf

Conclusion