

Drafts
 Pending
 Active
 L1: (125157) thermoplastic or thermoprocessible or thermoprocessable
 L2: (7167) 1 and diisocyanate
 L3: (1810) random near45 (ethylene adj oxide)
 L4: (171) 2 and 3
 L5: (1462) (propylene adj oxide) near45 random
 L6: (145) 4 and 5
 L7: (938) double adj metal
 L8: (131) 6 not 7
 Failed
 Saved
 Favorites
 Tagged (0)
 UDC
 Queue
 Trash

US-PAT-NO: 4582869
DOCUMENT-IDENTIFIER: US 4582869 A
TITLE: Poloxymethylene/polyurethane compositions containing ethylene bis-stearamide
DATE-ISSUED: April 15, 1986
INVENTOR- INFORMATION:
NAME: Waggoneer, Marion G. CITY: Hockessin STATE: DE ZIP CODE: N/A COUNTRY: N/A RULE 47
ASSIGNEE INFORMATION:
NAME: E. I. Du Pont de Nemours and Company CITY: Wilmington STATE: DE ZIP CODE: N/A COUNTRY: D2 TYPE CODE: D2
APPL-NO: 6/579911
DATE FILED: February 21, 1984
PARENT-CASE:
CROSS-REFERENCE TO RELATED APPLICATION This application is a continuation-in-part of copending U.S. patent application Ser. No. 469,758, filed Feb. 25, 1983, now abandoned.
INT-CL: [4] C08K005/20, C08L075/04, C08L075/06, C08L059/04
US-CL-ISSUED: 524/227, 524/195, 524/539, 524/542, 525/399, 264/328.16
US-CL-CURRENT: 524/227, 264/328.16, 524/195, 524/539, 524/542, 525/399
FIELD-OF-SEARCH: 524/227; 524/542 ; 524/539 ; 525/399 ; 264/328.16
REF-CITED:

U.S. PATENT DOCUMENTS		PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
5115243	December 1963				
5235525	February 1966	Jupa et al.	264/328		
5251038	May 1968	Forrester	524/227		
		JOPA	524/542		

12-7-01

Type	Line	Rule	Search-Text	DB#	Time-Stamp	Comments	Examiner-Information	Row
1	BRS	L1	125157 thermoplastic or thermoprocessible or	USPAT	2001/12/06 10:42			0
2	BRS	L2	7167 thermoprocessable 1 and diisocyanate	USPAT	2001/12/06 10:44			0
3	BRS	L3	1810 random near45 (ethylene adj oxide)	USPAT	2001/12/06 10:45			0
4	BRS	L4	171 2 and 3	USPAT	2001/12/06 10:45			0
5	BRS	L5	1462 (propylene adj oxide) near45 random	USPAT	2001/12/06 10:45			0
6	BRS	L6	145 4 and 5	USPAT	2001/12/06 10:46			0
7	BRS	L7	938 double adj metal	USPAT	2001/12/06 10:47			0
8	BRS	L8	131 6 not 7	USPAT	2001/12/06 10:47			0

=> d 5 all

L9 ANSWER 5 OF 5 CAPLUS COPYRIGHT 2002 ACS
AN 1970:112159 CAPLUS
DN 72:112159
TI Water vapor transport in structurally varied polyurethanes
AU Schneider, Nathaniel S.; Dusablon, L. V.; Snell, E. W.; Prosser, R. A.;
Spano, L. A.
CS U. S. Army Natick Lab., Natick, Mass., USA
SO Polym. Prepr., Amer. Chem. Soc., Div. Polym. Chem. (1968), 9(2), 1481-8
CODEN: ACPPAY
DT Journal
LA English
CC 36 (Plastics Manufacture and Processing)
AB Studies were made on the mechanism of water vapor transport in 4 polyurethanes of identical compn. except for the nature of the flexible segment which was varied to include poly(butylene adipate) (I), poly(tetramethylene oxide) (II), poly(propylene oxide) (III), and poly(ethylene oxide) (IV). The H₂O concn. in the I-III polyurethanes was 1.6-3%, but increased to 126% in the IV polyurethane, indicating the occurrence of unique water-polyether interactions in this sample. The H₂O-vapor transmission rates for I and II polyurethanes were equal, despite a 40.degree. lower glass transition temp. for II polyurethane which should lead to a 25 times higher diffusion const. based on the Williams-Landell-Ferry equation. The transmission rate for IV polyurethane increased only tenfold over that of I polyurethane, about one-eighth the increase expected on the basis of the difference in water concns. To explain these discrepancies, sorption isotherms and diffusion consts. were detd. from time-dependent sorption and steady-state transmission at varying upstream pressures. Clustering of water plays an important role in the transport process for all the samples. Addnl., the presence of previously unsuspected amorphous domain structure contributes to the abnormally low diffusion const. in II polyurethane while, due to the high transmission rate in IV polyurethane, correction must be made for the impedance of the external boundary layer.
ST polybutylene adipate; polyethylene oxide; polypropylene oxide;
polytetramethylene oxide; water vapor transmission;
transport water vapor; polyurethanes water permeation
IT Sorption
(of water vapor, by urethane polymers, structure in relation to)
IT Urethane polymers, properties
RL: PEP (Physical, engineering or chemical process); PROC (Process)
(sorption by, of water vapor, structure in relation to)
IT Molecular structure-property relationships
(water vapor sorption of, of urethane polymers)
IT 7732-18-5
RL: PEP (Physical, engineering or chemical process); PROC (Process)
(sorption of, by urethane polymers, structure in relation to)
IT 24936-97-8 25103-87-1 25190-06-1 25322-68-3 25322-69-4
RL: USES (Uses)
(urethane polymers from, water vapor sorption by)

=>