Standard OLS Regression: model - using 300 data points and testing the model1

```
clc
clear all
Data=load('foundry.txt');
Estimation_Data=Data(1:300,:);
Est_X=Estimation_Data(:,1:(size(Estimation_Data,2)-1));
Est_y=Estimation_Data(:,size(Estimation_Data,2));
Validation_Data=Data(301:size(Data,1),:);
Validation_X=Validation_Data(:,1:(size(Estimation_Data,2)-1));
Validation_y=Validation_Data(:,size(Estimation_Data,2));
\% Pre-processing the data
% Scaling using range for each variable - The same line ! We're just
% shifting the data.
RangeEst=range(Est_X,1);
RangeVal=range(Validation_X,1);
for i=1:size(Est_X,1)
Pre1_Est_X(i,:)=(Est_X(i,:)-min(Est_X,[],1))./RangeEst;
end
for i=1:size(Validation_X,1)
Pre1_Validation_X(i,:)=(Validation_X(i,:)-min(Validation_X,[],1))./RangeVal;
end
```

Standard OLS Regression : model - using 300 data points and testing the model with the remaining

```
% Fitting linear model using standard ols (without weights)
mdl = fitlm(Est_X,Est_y)
% Plotting the model
figure(1)
plot(mdl)
CoeffOfDetermination = mdl.Rsquared.Ordinary % R squared Value
%Validating the model using TestData
Predicted_y=feval(mdl, Validation_X);
Pred_Error=Predicted_y-Validation_y;
MaxAbs_Pred_Error=max(abs(Pred_Error))
Standard_Deviation = std(Pred_Error)
figure(2)
hist(Pred_Error,15)
title('Validation Data Error Plot')
xlabel('Predicted value error')
ylabel('Frequency')
% Fitting linear model using standard ols (without weights)
mdl2 = fitlm(Pre1_Est_X,Est_y)
% Plotting the model
figure(3)
plot(mdl2)
CoeffOfDetermination = mdl2.Rsquared.Ordinary % R squared Value
```

```
%Validating the model using TestData
Predicted_y=feval(mdl2,Pre1_Validation_X);
Pred_Error=Predicted_y-Validation_y;
MaxAbs_Pred_Error=max(abs(Pred_Error))
Standard_Deviation = std(Pred_Error)
figure(4)
hist(Pred_Error,15)
title('Validation Data Error Plot')
xlabel('Predicted value error')
ylabel('Frequency')
```

For normal data:

md1 =

Linear regression model:

 $y \sim 1 + x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12$

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	-19.206	24.55	-0.7823	0.43468
x1	-0.8038	1.1561	-0.69529	0.48744
x2	-1.0786	0.5795	-1.8613	0.063724
x3	0.016928	0.0054416	3.1108	0.0020536
x4	-0.21542	0.15118	-1.4249	0.15527
x5	0.35679	0.34044	1.048	0.2955
x6	2.8977	1.7246	1.6802	0.094011
x7	11.224	10.541	1.0648	0.28785
x8	0.056322	0.08127	0.69302	0.48886
x9	0.8312	1.1846	0.70165	0.48346
x10	0.0033919	0.013696	0.24765	0.80458
x11	-0.30063	1.1258	-0.26704	0.78963
x12	-0.34872	0.20822	-1.6747	0.095078

Number of observations: 300, Error degrees of freedom: 287

Root Mean Squared Error: 2.23

R-squared: 0.0939, Adjusted R-Squared 0.056

F-statistic vs. constant model: 2.48, p-value = 0.00425

CoeffOfDetermination =

0.0939

MaxAbs_Pred_Error =

11.8396

Standard_Deviation =

2.4209

For scaled data based on range:

md12 =

Linear regression model:

 $y \sim 1 + x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12$

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	2.5242	1.0471	2.4106	0.016554
x1	-0.64304	0.92485	-0.69529	0.48744
x2	-3.007	1.6155	-1.8613	0.063724
x3	3.7562	1.2075	3.1108	0.0020536
x4	-1.187	0.83301	-1.4249	0.15527
x5	0.82419	0.78641	1.048	0.2955
x6	1.7096	1.0175	1.6802	0.094011
×7	1.6836	1.5811	1.0648	0.28785
x8	0.65146	0.94003	0.69302	0.48886
x9	1.1803	1.6822	0.70165	0.48346
x10	0.31206	1.2601	0.24765	0.80458
x11	-0.30063	1.1258	-0.26704	0.78963
x12	-1.3949	0.83289	-1.6747	0.095078

Number of observations: 300, Error degrees of freedom: 287

Root Mean Squared Error: 2.23

R-squared: 0.0939, Adjusted R-Squared 0.056

F-statistic vs. constant model: 2.48, p-value = 0.00425

CoeffOfDetermination =

0.0939

MaxAbs_Pred_Error =

11.2518

Standard_Deviation =

2.5011

Published with MATLAB® R2014a

Therefore we can see that on scaling the data by range the result does not vary for the case of OLS as is expected.