

Grundlagen Rechnernetze und Verteilte Systeme

IN0010, SoSe 2019

Übungsblatt 7

11. Juni – 21. Juni 2019

Wegen der Pfingsfeiertage wird dieses Blatt am 12. – 14. Juni sowie am 17. und 18. Juni besprochen. Die Übungsgruppen an den anderen Tagen entfallen.

Hinweis: Mit * gekennzeichnete Teilaufgaben sind ohne Lösung vorhergehender Teilaufgaben lösbar.

Aufgabe 1 Packet Pair Probing (Klausuraufgabe Endterm 2012)

Packet Pair Probing ist ein Verfahren, mit dem sich durch geschickte Ausnutzung von Serialisierungs- und Verzögerungszeiten die Bandbreite eines Linkabschnitts bestimmen lässt. Wir wollen dies anhand des in Abbildung 1 dargestellten Beispielnetzwerks nachvollziehen.

Die Knoten 1 und 4 sind mit ihren Routern jeweils über Ethernet mit einer Datenrate von 1 Gbit/s angebunden. Die Verbindung zwischen den Routern 2 und 3 ist jedoch deutlich langsamer. Diese Übertragungsrate r_{23} soll von 1 und 4 bestimmt werden, indem möglichst wenig Last auf der ohnehin langsamen Verbindung erzeugt wird.

Abbildung 1: Netztopologie

Wir leiten in dieser Aufgabe zunächst allgemein ein Verfahren her, mittels dem Knoten 1 und 4 die gefragte Übertragungsrate bestimmen können. Im Anschluss werten wir das Verfahren für konkrete Zahlenwerte aus und diskutieren mögliche Probleme, die in der Praxis auftreten werden.

a)* Geben Sie die Serialisierungszeit $t_s(i, j)$ zwischen zwei benachbarten Knoten i und j in Abhängigkeit der Paketgröße p und der Übertragungsrate r_{ij} an.

$$t_{s}(i,j) = \frac{p}{r_{ij}}$$

b)* Geben Sie die Ausbreitungsverzögerung $t_p(i,j)$ zwischen zwei benachbarten Knoten i und j in Abhängigkeit der Distanz d_{ij} an.

Mit der relativen Ausbreitungsgeschwindigkeit ν (die vom Medium abhängig ist) und der Lichtgeschwindigkeit c_0 ergibt sich:

$$t_p(i,j) = \frac{d_{ij}}{\nu c_0}$$

c)* Erläutern Sie kurz, wie 1 bei Verwendung von IPv4 die maximale MTU auf dem Pfad nach 4 bestimmen kann.

1 sendet ein Paket mit der MTU_{12} des lokalen Segments und setzt das DF-Bit (do not fragment) im IP-Header. Sofern MTU_{12} größer ist als MTU_{23} , so wird 2 das Paket verwerfen und eine entsprechende iCMP-Nachricht Typ 3 Code 4 (Destination Unreachable Fragmentation Needed, DF Set) an 1 zurücksenden. Diese enthält die maximale MTU_{23} für dem Abschnitt von 2 nach 3.

1 sende nun unmittelbar nacheinander zwei Pakete der Länge p an 4. Sie können davon ausgehen, dass sonst kein weiterer Datenverkehr die Übertragung beeinflusst. Die Länge p sei so gewählt, dass keine Fragmentierung

notwendig ist. Eventuelle Verarbeitungszeiten an den Knoten können Sie vernachlässigen.

d) Zeichnen Sie ein Weg-Zeit-Diagramm, welches die Übertragung der beiden Pakete qualitativ richtig darstellt. Berücksichtigen Sie dabei insbesondere $r_{23} < r_{12} = r_{34}$ wie eingangs erwähnt.

Durch die geringe Übertragungsrate zwischen 2 und 3 entsteht an Knoten 3 eine Sendepause Δt zwischen den beiden weitergeleiteten Paketen. Diese kann von 4 gemessen und zur Bestimmung der Übertragungsrate zwischen 2 und 3 verwendet werden.

- e) Markieren Sie Δt in Ihrer Lösung von Teilaufgabe d).
- f) Von welchen Größen hängt Δt ab?

Nur von r_{23} , r_{34} und p, nicht aber von den Ausbreitungsverzögerungen.

g) Geben Sie einen Ausdruck für Δt an. Vereinfachen Sie den Ausdruck soweit wie möglich.

$$\Delta t = t_s(2,3) - t_s(3,4) = \frac{p}{r_{23}} - \frac{p}{r_{34}}$$
 (1)

h) Geben Sie einen Ausdruck für die gesuchte Datenrate r_{23} an. Vereinfachen Sie den Ausdruck soweit wie möglich.

Auflösen von (1) nach r₂₃ ergibt:

$$r_{23} = \frac{p}{\Delta t + \frac{p}{r_{24}}} \tag{2}$$

Wiederholte Messungen an 4 ergeben einen Durchschnittswert von $\overline{\Delta t}$ = 1,2 ms bei einer Paketgröße von $p = 1500 \, \text{B}$.

i) Bestimmen Sie r₂₃ als Zahlenwert in Mbit/s.

$$r_{23} = \frac{p}{\overline{\Delta t} + \frac{p}{f_{24}}} \approx 9,99 \, \text{Mbit/s}$$

Aufgabe 2 Drahthai

Gegeben sei der in Abbildung 2 dargestellte Hexdump in Network-Byte-Order eines Ethernet-Rahmens, ohne Checksum, welcher im Folgenden analysiert werden soll.

	Ethernet Header													IHL				
0x0000	00	16	3e	ff	ff	ff	00	16	3e	6d	cd	0d	08	00	45	00		
								Protocol			EtherType							
0x0010	00	58	9f	47	40	00	40	06	47	33	ac	10	fe	02	ac	10		
											Source Address							
0x0020	fe	01	00	16	da	e2	02	5d	78	9a	f2	3d	99	17	80	18		
Destination Address																		
0x0030	00	e3	54	70	00	00	01	01	80	0a	b3	13	65	ca	11	82		
0x0040	53	20	53	53	48	2d	32	2e	30	2d	74	69	6e	79	73	73		
0x0050	68	5f	6e	6f	76	65	72	73	69	6f	6e	20	5a	34	43	53		
0x0060	69	31	5a	52	0d	0a												

Abbildung 2: Hexdump eines Ethernet-Rahmens, ohne Checksum, in Network-Byte-Order

Hinweis: Zur Lösung der Aufgabe sind Informationen aus dem Cheatsheet notwendig.

- a)* Markieren Sie in Abbildung 2 Beginn und Ende des Ethernet-Headers.
- **b)** Begründen Sie, durch Markieren und Beschreiben relevanter Headerfelder, welches Protokoll auf Schicht 3 verwendet wird.

Der Ethertype gibt den Typ der Layer 2 Payload an. Der hier verwendete Wert 0x0800 steht für IPv4.

c) Beschreiben Sie, wie die Länge des Headers auf Schicht 3 bestimmt wird. Markieren und benennen Sie dafür relevante Abschnitte in Abbildung 2.

Die Headerlänge in IPv4 wird durch das Headerfeld IHL angegeben. Dieses befindet sich im unteren Nibble des ersten Bytes des IPv4 Headers und gibt die Länge des Headers in Vielfachen von $4\,\mathrm{B}$ an. Die Länge des Headers beträgt also $5\cdot4\,\mathrm{B}=20\,\mathrm{B}$.

- d) Markieren Sie alle Schicht 3 Addressen und benennen Sie diese.
- e) Markieren Sie alle in Schicht 3 enthaltenen Extension Header.

Die Schicht 3 Payload ist IPv4. IPv4 kennt keine Extension Header sondern nur Optionen. Aus Teilaufgabe c) wissen wir, dass der Header 20 B lang ist, was auch der minimalen Länge des IPv4 Headers entspricht. Folglich ist nichts zu markieren.

f) Benennen und beschreiben Sie die drei kleinsten Headerfelder von Schicht 3. Geben Sie zudem die Größe der beschriebenen Headerfelder an.

Die drei kleinsten Headerfelder alle eine Größe von 1 bit.

RES reserved, reserviert um unter Umständen in Zukunft verwendet werden zu können

DF do not fragment, weißt den Verarbeitenden an, dass dieses Paket nicht fragmentiert werden darf

MF more fragments, informiert, dass — aufgrund einer vorangegangenen Fragmentierung — zu diesem IPv4 Paket weitere Fragmente gehören.

g) Falls es eine L3-SDU gibt, geben Sie ihren Typ an und begründen Sie die Angabe. Andernfalls, legen Sie Ihren Gedankengang dar und erörtern wie es zu dieser Situation kommen konnte.

Der Wert des IPv4 Headerfelds Protocol ist 0x06. Demnach ist die L3-SDU TCP.

h) Die Bytes 0x0042 und Folgende sind Payload von Schicht 3. Geben Sie die ASCII Darstellung der ersten 7 B der Payload an.

Die ASCII Darstellung von 0x53 53 48 2d 32 2e 30 ist SSH-2.0.

i) Um welches Protokoll der Anwendungsschicht handelt es sich also vermutlich und wozu wird dieses Protokoll verwendet?

Es handelt sich um SSH (Version 2.0), das für eine verschlüsselte Konsolensitzung unter Linux/Unix und neuerdings auch unter Windows verwendet wird.