

Department of Mathematical Sciences

Examination paper for TMA4145 Linear methods

Academic contact during examination: Eugenia Malinnikova

Phone: 73550257

Examination date: Saturday, 20 December 2014

Examination time (from-to): 9:00-13:00

Permitted examination support material: D: No written or handwritten material are allowed. Calculators Casio fx-82ES PLUS, Citizen SR-270X or Citizen SR-270X College,

Hewlett Packard HP30S are allowed

Other information:

The exam consists of twelve questions, the order is according to the topics in the course not to the level of difficulty. All solutions should be stated in a precise and rigorous way, with any assumptions written down and arguments justified. Each solution will be graded as *rudimentary* (F), *acceptable* (E), *good* (C) or *excellent* (A). Five acceptable solutions guarantee an E; seven acceptable with at least one good a D; seven acceptable with at least five good a C; nine good with at least two excellent a B; nine good with at least seven excellent an A. These are guaranteed limits. Beyond that, the grade is based on the total achievement.

Language: English **Number of pages:** 9

Number pages enclosed: 0

	Checked by:
Date	Signature

Problem 1 Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be norms on a vector space V.

- a) Show that $||x|| = ||x||_1 + ||x||_2$ is also a norm and if $\{x_n\}$ is a Cauchy sequence in $(V, ||\cdot||)$ then $\{x_n\}$ is a Cauchy sequence in $(V, ||\cdot||_1)$.
- **b)** Give an example of a vector space V, two norms $\|\cdot\|_1$ and $\|\cdot\|_2$ on V, and a sequence $\{x_n\}$ such that $\{x_n\}$ is a Cauchy sequence in $(V, \|\cdot\|_1)$ but not in $(V, \|\cdot\|_1)$, where $\|\cdot\|$ was defined in **a**). Prove that the dimension of V has to be infinite for such an example.

Solution

- a) To show that $\|\cdot\|$ is a norm we should check that it (i) is non-negative and is zero only for the zero vector, (ii) is positive homogeneous (iii) satisfies triangle inequality.
- (i) We have $||x|| = ||x||_1 + ||x_2|| \ge 0$ since $||\cdot||_1$ and $||\cdot||_2$ are norms. If ||x|| = 0 then $||x||_1 = 0$ and then x = 0. Also if x = 0 then $||x||_1 = ||x_2|| = 0$ and therefore ||x|| = 0.
- (ii) For $x \in V$ and $\lambda \in \mathbb{R}(\mathbb{C})$ we have $\|\lambda x\| = \|\lambda x\|_1 + \|\lambda x\|_2 = |\lambda| \|x\|_1 + |\lambda| \|x\|_2 = |\lambda| \|x\|$.
- (iii) For any $x, y \in V$, $||x+y|| = ||x+y||_1 + ||x+y||_2 \le ||x||_1 + ||y||_1 + ||x||_2 + ||y||_2 = ||x|| + ||y||$.

Suppose now that $\{x_n\}$ is a Cauchy sequence in $(V, \|\cdot\|)$. We want to check that it is a Cauchy sequence in $(V, \|\cdot\|_1)$. Note that $\|x\|_1 \leq \|x\|$ for any $x \in V$. For any $\epsilon > 0$ there exists N such that $\|x_n - x_m\| < \epsilon$ for n, m > N (since $\{x_n\}$ is a Cauchy sequence in $(V, \|\cdot\|)$). Then we have also $\|x_n - x_m\|_1 \leq \|x_n - x_m\| < \epsilon$ and thus $\{x_n\}$ is a Cauchy sequence in $(V, \|\cdot\|_1)$.

b) Let V be the space of all polynomials,

$$V = \{p(t) = a_0 + a_1t + ... + a_kt^k, a_1, ..., a_k \in \mathbb{C}\}.$$

We consider $||p||_1 = \max_j |a_j|$ and $||p||_2 = \sum_j |a_j|$. Now let $p_n(t) = \sum_{j=1}^n t^j/n$. We have

$$||p_n - p_m||_1 \le ||p_n||_1 + ||p_m||_1 \le \frac{1}{n} + \frac{1}{m}.$$

Then $||p_n - p_m||_1 \le 2/N$ when n, m > N. Clearly, $\{p_n\}$ is a Cauchy sequence in $(V, ||\cdot||_1)$. However for the norm $||\cdot|| = ||\cdot||_1 + ||\cdot||_2$ we have when n < m

$$||p_n - p_m|| \ge ||p_n - p_m||_2 = n \left| \frac{1}{n} - \frac{1}{m} \right| + \frac{m - n}{m}.$$

In particular $||p_n - p_{2n}|| \ge 1$. Thus $\{p_n\}$ is not a Cauchy sequence in $(V, ||\cdot||)$.

If the dimension of V is finite and $\|\cdot\|_1$ and $\|\cdot\|$ are too norms on V then these norms are equivalent. It implies that there exists a constant C such that $\|x-y\| \le C\|x-y\|_1$. Therefore any Cauchy sequence in $(V,\|\cdot\|_1)$ is also a Cauchy sequence in $(V,\|\cdot\|_1)$.

Problem 2 Let

$$A = \begin{bmatrix} 8 & 0 & -1 \\ -2 & 5 & 0 \\ 0 & -4 & 7 \end{bmatrix}, \quad b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$$

- a) Find an LU-decomposition of A and solve the linear system Ax = b.
- **b)** Rewrite the system Ax = b in the form x = Bx + c such that $B : \mathbb{R}^3 \to \mathbb{R}^3$ is a contraction in the norm $||x||_{\infty} = \max\{|x_1|, |x_2|, |x_3|\}, \ x = (x_1, x_2, x_3) \in \mathbb{R}^3$. Show how the new system may be solved by iteration starting from any $x_0 \in \mathbb{R}^3$.

Solution

a) We perform the Gauss elimination on A

$$A = \begin{bmatrix} 8 & 0 & -1 \\ -2 & 5 & 0 \\ 0 & -4 & 7 \end{bmatrix} \to \begin{bmatrix} 8 & 0 & -1 \\ 0 & 5 & -0.25 \\ 0 & -4 & 7 \end{bmatrix} \to \begin{bmatrix} 8 & 0 & -1 \\ 0 & 5 & -0.25 \\ 0 & 0 & 6.8 \end{bmatrix} = U$$

The row operations we used were: (1) add 1/4th of the first row to the second and (2) 4/5th of the second row to the third. Thus the L-matrix in LU decomposition is

$$L = \begin{bmatrix} 1 & 0 & 0 \\ -0.25 & 1 & 0 \\ 0 & -0.8 & 1 \end{bmatrix}$$

Now we can solve the system Ax = b by solving first Ly = b and then Ux = y. We have

$$\begin{bmatrix} 1 & 0 & 0 \\ -0.25 & 1 & 0 \\ 0 & -0.8 & 1 \end{bmatrix} y = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} \quad \Rightarrow \quad y = \begin{bmatrix} 2 \\ 3.5 \\ 6.8 \end{bmatrix}$$

Finally,

$$\begin{bmatrix} 8 & 0 & -1 \\ 0 & 5 & -0.25 \\ 0 & 0 & 6.8 \end{bmatrix} x = \begin{bmatrix} 2 \\ 3.5 \\ 6.8 \end{bmatrix} \quad \Rightarrow \quad x = \begin{bmatrix} 0.375 \\ 0.75 \\ 1 \end{bmatrix}$$

b) We rewrite the system Ax = b in the form

$$8x_1 - x_3 = 2$$
$$-2x_1 + 5x_2 = 3$$
$$-4x_2 + 7x_3 = 4$$

It is equivalent to

$$x_1 = 1/8x_3 + 1/4$$
$$x_2 = 2/5x_1 + 3/5$$
$$x_3 = 4/7x_2 + 4/7$$

The last system has the form x = Bx + c, where

$$B = \begin{bmatrix} 0 & 0 & 1/8 \\ 2/5 & 0 & 0 \\ 0 & 4/7 & 0 \end{bmatrix}, \quad c = \begin{bmatrix} 1/4 \\ 3/5 \\ 4/7 \end{bmatrix}$$

We have $B(x_1, x_2, x_3)^T = (x_3/8, 2x_1/5, 4x_2/7)$ and

$$||Bx||_{\infty} \le \max\{1/8, 2/5, 4/7\} ||x||_{\infty} = 4/7 ||x||_{\infty}.$$

Therefore $B: \mathbb{R}^3 \to \mathbb{R}^3$ is a contraction in the norm $\|\cdot\|_{\infty}$. Further $x \mapsto Bx + c$ is also a contraction since $\|Bx + c - (By + c)\| = \|Bx - By\| \le 4/7\|x - y\|$. The space \mathbb{R}^3 with the norm $\|\cdot\|_{\infty}$ is complete, thus by the Banach fixed point theorem there exists a unique solution to the equation x = Bx + c. It could be found as the limit of the sequence x_n , where $x_0 \in \mathbb{R}^3$ is arbitrary and $x_{n+1} = Bx_n + c$ for $n \ge 0$.

Problem 3

a) Let $C([0,2] \times [0,2], \mathbb{R})$ be an inner-product space with

$$\langle f, g \rangle = \int_0^2 \int_0^2 f(x, y) g(x, y) dx dy.$$

Find an orthogonal basis for span $\{1, x, y\}$ in this space.

b) Find $a, b, c \in \mathbb{R}$ such that $\int_0^2 \int_0^2 |xy - a - bx - cy|^2 dx dy$ is minimal.

Solution

a) We apply the Gram-Schmidt algorithm to find an orthogonal basis for the subspace $W = \text{span}\{1, x, y\}$. We have $v_1 = 1$,

$$\langle x, 1 \rangle = \int_0^2 \int_0^2 x dx dy = 2 \int_0^2 x dx = 4, \quad \langle 1, 1 \rangle = \int_0^2 \int_0^2 1 dx dy = 4.$$

Then $v_2 = x - \langle x, 1 \rangle (\langle 1, 1 \rangle)^{-2} 1 = x - 1$ and

$$v_3 = y - \langle y, 1 \rangle (\langle 1, 1 \rangle)^{-1} 1 - \langle y, x - 1 \rangle (\langle x - 1, x - 1 \rangle)^{-1} x - 1 = y - 1.$$

Therefore $\{1, x - 1, y - 1\}$ is an orthogonal basis for span $\{1, x, y\}$.

b) We want to find the orthogonal projection of the function f(x,y) = xy onto the subspace W generated by $\{1, x, y\}$. This orthogonal projection is of the form a + bx + cy and provides the minimal to

$$||f - a - bx - cy||_2 = \left(\int_0^2 \int_0^2 |f(x, y) - a - bx - cy|^2 dx dy\right)^{1/2}.$$

We have the orthogonal basis for W, $\{1, x - 1, y - 1\}$. Then the orthogonal projection satisfies

$$\Pr_W(xy) = \frac{\langle xy, 1 \rangle}{\langle 1, 1 \rangle} 1 + \frac{\langle xy, x - 1 \rangle}{\langle x - 1, x - 1 \rangle} (x - 1) + \frac{\langle xy, y - 1 \rangle}{\langle y - 1, y - 1 \rangle} (y - 1).$$

Computing the intergals,

$$\int_0^2 \int_0^2 xy dx dy = \int_0^2 x dx \int_0^2 y dy = 4,$$

$$\int_0^2 \int_0^2 y^2 dx dy = \int_0^2 \int_0^2 x^2 dx dy = 2 \int_0^2 x^2 dx = 16/3,$$

$$\int_0^2 \int_0^2 xy^2 dx dy = \int_0^2 \int_0^2 x^2 y dx dy = \int_0^2 x^2 dx \int_0^2 y dy = 16/3,$$

we obtain $\langle xy, 1 \rangle = 4$, $\langle xy, x-1 \rangle = \langle xy, y-1 \rangle = 16/3 - 4 = 4/3$ and $\langle x-1, x-1 \rangle = \langle y-1, y-1 \rangle = 16/3 - 8 + 4 = 4/3$. Finally,

$$Pr_W(xy) = 1 + (x - 1) + (y - 1) = x + y - 1.$$

The answer is a = -1, b = 1, c = 1. (It is easy to check that xy + 1 - x - y is orthogonal to W.)

Problem 4

- a) Let M be a closed subspace of a Hilbert space H. For each $x \in H$ denote by $P_M(x)$ the orthogonal projection of x onto M. Prove that $P_M^2 = P_M$, $P_M^* = P_M$ and $||P_M|| = 1$.
- **b)** Let H be a Hilbert space and $P: H \to H$ be a bounded linear transformation that satisfy $P = P^*$ and $P^2 = P$. Prove that P is the orthogonal projection on some closed subspace M of H.

Solution

a) First, if $v \in M$ then $v = v + \mathbf{0}$ and $P_M(v) = v$ by the projection theorem $(v \in M, \mathbf{0} \in M^{\perp})$. By the definition of the projection $P_M(x) = v \in M$, then $P_M(v) = v$ and $P_M(P_M(x)) = P_M(x)$.

For any $x, y \in H$ let $x = P_M x + u$ and $y = P_m y + w$, where $u, w \in M^{\perp}$. Then

$$\langle P_M x, y \rangle = \langle P_M x, P_M y + w \rangle = \langle P_M x, P_M y \rangle = \langle P_M x + u, P_M y \rangle = \langle x, P_M y \langle x, P_M y \rangle = \langle x$$

Thus $P_M^* = P_M$.

By the Pythagoras theorem $||x||^2 = ||P_M x||^2 + ||x - P_M x||^2$ since $P_M x$ and $x - P_M x$ are orthogonal. Thus $||P_M x|| \le ||x||$ and $||P_M|| \le 1$. If $M \ne \{0\}$ then there exists $v \in M$, $v \ne 0$ such that $P_M v = v$ and therefore $||P_M|| = 1$.

b) Suppose that $P: H \to H$ is bounded linear and $P^2 = P$. Let M = P(H) be the image of P. Then M is a subspace of H, P(y) = y for any $y \in M$. Further, since $P^* = P$, we have

$$||Px||^2 = \langle P(x), P(x) \rangle = \langle x, P(P(x)) \rangle = \langle x, P(x) \rangle \le ||x|| ||Px||$$

by the Cauchy-Schwarz inequality. Thus $||Px|| \le ||x||$ and $\{y : P(y) = y\}$ is a closed subspace $(y_n \to y \text{ and } P(y_n) = y_n \text{ implies } P(y) = y)$.

Further for any $y \in M$ we have $\langle Px, y \rangle = \langle x, Py \rangle = \langle x, y \rangle$. Thus $P(x) - x \in M^{\perp}$. We get x = P(x) + (x - P(x)), $P(x) \in M$ and $x - P(x) \in M^{\perp}$. Thus by the orthogonal projection theorem $P(x) = P_M(x)$.

Problem 5 Let X, Y be Banach spaces and $T: X \to Y$ be a bounded linear transformation.

a) Prove that the kernel of T is a closed subspace of X.

b) Give an example of two Banach spaces X and Y and a bounded linear transformation T for which the range of T is not closed.

Solution

a) Let $W = \ker(T) = \{x \in X : Tx = \mathbf{0}\}$. Then W is a subspace of X, if $x, y \in W$ then $T(\alpha x + \beta y) = \alpha T(x) + \beta T(y) = \mathbf{0}$ since T is linear. To show that W is closed assume that $x_n \in W$ and $x_n \to x$ in X. Since T is a bounded operator and $Tx_n = \mathbf{0}$, we get

$$||Tx|| = ||Tx - Tx_n|| \le ||T|| ||x - x_n||.$$

But $||x - x_n||$ tends to zero as n tends to infinity. Thus ||Tx|| = 0, the definition of a norm implies that then Tx = 0 and $x \in \ker(T)$. Thus W is a closed subspace of X.

b) Consider $X = Y = l_{\infty}$ and define $Tx(j) = j^{-1}x(j)$ when j = 1, 2, ..., where $x = \{x(j)\}_{j=1}^{\infty} \in l_{\infty}$. Then T is a linear operator from l_{∞} to l_{∞} . A bounded sequence is mapped to a bounded sequence and T is linear, $T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$. Further, T is bounded, $||Tx||_{\infty} = \sup_{j} |j^{-1}x(j)| \le \sup_{j} |x(j)| = ||x||_{\infty}$.

We want to show that $T(X) = \operatorname{ran}(T)$ is not closed. Let $x_0(j) = j^{-1/2}, j = 1, 2, ...$. Clearly $x_0 \in l_{\infty}$, $||x_0||_{\infty} = 1$ and $x_0 \notin T(X)$ since the sequence $\{j^{1/2}\}$ is not bounded. Further let $x_n(j) = j^{-1/2}$ if $j \leq n$ and $x_n(j) = 0$ if j > n, n = 1, 2, Then $x_n \to x_0$ in l_{∞} , we have $||x_n - x_0||_{\infty} = \sup_{j>n} |j^{-1/2}| = (n+1)^{-1/2} \to 0$ when $n \to \infty$. Also, $x_n = T(y_n)$ where $y_n(j) = j^{1/2}$ if $j \leq n$ and $y_n(j) = 0$ if j > n, $y_n \in l_{\infty}$. We have constructed a sequence $\{x_n\}$ such that $x_n \in T(X)$, $x_n \to x_0$ and $x_0 \notin T(X)$. Thus T(X) is not closed.

Problem 6 Let

$$A = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 1 & -1 & 3 \end{bmatrix}, \quad x_0 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}.$$

- a) Show that A has two eigenvalues $\lambda_1 = 2$ and $\lambda_2 = 3$ and find the Jordan normal form of A, determine both the matrix J and the change-of-basis matrix T in $A = TJT^{-1}$.
- **b)** Solve the initial-value problem $\dot{x} = Ax$, $x(0) = x_0$.

Solution

a) The characteristic polynomial of A is

$$p_A(\lambda) = \det \begin{bmatrix} 2 - \lambda & 1 & 0 & 0 \\ 0 & 2 - \lambda & 1 & 0 \\ 0 & 0 & 3 - \lambda & 0 \\ 0 & 1 & -1 & 3 - \lambda \end{bmatrix} = (3 - \lambda) \det \begin{bmatrix} 2 - \lambda & 1 & 0 \\ 0 & 2 - \lambda & 1 \\ 0 & 0 & 3 - \lambda \end{bmatrix}$$
$$= (3 - \lambda)^2 \det \begin{bmatrix} 2 - \lambda & 1 \\ 0 & 2 - \lambda \end{bmatrix} = (3 - \lambda)^2 (2 - \lambda)^2.$$

Thus A has two eigenvalues $\lambda_1 = 3$ and $\lambda_2 = 2$ both of algebraic multiplicity two.

To find the Jordan normal form of A we first look at its eigenvectors.

$$A - 3I = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 \end{bmatrix} \sim \begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

thus there are two linearly independent eigenvectors corresponding to $\lambda_1 = 3$, we may choose

$$v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}.$$

For the second eigenvalue $\lambda_2 = 2$, we have

$$A - 2I = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & -1 & 1 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

and there is only one eigenvector corresponding to λ_2 (all others are multiples of this one),

$$v_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

We already know that Jordan form of A is (up to the order of the blocks)

$$J = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

To find the change-of-basis matrix T it is enough to find a generalized eigenvector corresponding to $\lambda_2 = 2$, we look for v_4 such that $(A - 2I)v_4 = v_3$. Applying the Gauss elimination, we get

$$[A-2I|v_3] = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix},$$

thus we may choose

$$v_4 = \begin{bmatrix} 0\\1\\0\\-1 \end{bmatrix}.$$

Now, using v_1, v_2, v_3, v_4 we see that $Av_1 = 3v_1$, $Av_2 = 3v_2$, $Av_3 = 2v_3$ and $Av_4 = v_3 + 2v_4$. It means that the matrix of A in the basis $\{v_1, v_2, v_3, v_4\}$ is J. Thus the change-of-basis matrix is

$$T = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix}.$$

(Note that the answer here is not unique.)

b) We know that the solution to the initial-value problem $\dot{x} = Ax$, $x(0) = x_0$ is given by $x(t) = \exp(tA)(x_0)$ and $\exp(tA) = T \exp(tJ)T^{-1}$. Now, to find $\exp(tJ)$ we write J = D + N, where D is the diagonal matrix with values 3, 3, 2, 2 on the main diagonal and N is a nilpotent matrix,

A simple calculation shows that $N^2 = 0$, then $\exp(tN) = I + tN$ and since N and D satisfy DN = ND we get

$$\exp(tA) = \exp(tD + tN) = \exp(tD) \exp(tN) = \begin{bmatrix} e^{3t} & 0 & 0 & 0 \\ 0 & e^{3t} & 0 & 0 \\ 0 & 0 & e^{2t} & 0 \\ 0 & 0 & 0 & e^{2t} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & t \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} e^{3t} & 0 & 0 & 0 \\ 0 & e^{3t} & 0 & 0 \\ 0 & 0 & e^{2t} & te^{2t} \\ 0 & 0 & 0 & e^{2t} \end{bmatrix}$$

Therefore

$$x(t) = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} e^{3t} & 0 & 0 & 0 \\ 0 & e^{3t} & 0 & 0 \\ 0 & 0 & e^{2t} & te^{2t} \\ 0 & 0 & 0 & e^{2t} \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix}^{-1} x_0.$$

We have $x(t) = T \exp(tA)T^{-1}$. Now, if we solve the system Tc = x then we get $x_0 = c_1v_1 + c_2v_2 + c_3v_3 + c_4v_4$, i.e., $T^{-1}x_0 = (c_1 \ c_2 \ c_3 \ c_4)^t$, and

$$x(t) = T \begin{bmatrix} c_1 e^{3t} \\ c_2 e^{3t} \\ c_3 e^{2t} + c_4 t e^{2t} \\ c_4 e^{2t} \end{bmatrix} = c_1 e^{3t} v_1 + c_2 e^{3t} v_2 + (c_3 + t c_4) e^{2t} v_3 + c_4 e^{2t} v_4.$$

We have $c = (0, 1, 1, 1)^t$ and $x(t) = [(1+t)e^{2t}, e^{2t}, 0, e^{3t} - e^{2t}]^t$.