System Startup and Process Management

Boot Process. System Initialization. Process Monitoring and Management

SoftUni Team Technical Trainers

Software University

https://softuni.bg

Have a Question?

Homework Progress

Solutions for M4 can be submitted until 23:59:59 on 03.04.2025

Solutions for M4 can be submitted until 23:59:59 on 10.04.2025

What We Covered

- 1. Network Basics
- 2. Services Control
- 3. Software Management
- 4. Network Services

About Virtual Networks

- NAT (Adapter | Network)
 - Isolates the VM/VMs from the outside world and at the same time provides access to Internet
- Bridged (External)
 - Attached to the real (physical) network adapter on the host
 - Exposes the VM to the real (physical) network
- Internal Network (Host Only)
 - Virtual network for interconnecting VMs
 - Isolated from the outside world

About Configuration Files and Changes

- A few facts about configuration files
 - Usually, they are text files and reside in /etc directly or indirectly
 - Contain many comments with default or possible values
 - Sample configuration files are (usually) available at /usr/share/doc/<package>/
 - May have extension like .conf, .yaml, .sh, and etc.

About Configuration Files and Changes

- Handle them with care
 - Before making any changes make a copy of the original file
 - Good practice is to add an additional extension: file.conf ->
 file.conf.bak
 - Compare spaces, line ends, and structure with the original
 - Before restarting the service, test the configuration (for example dhcpd -t)

This Module (M5)

Topics and Lab Infrastructure

Table of Contents

- 1. System Startup & Boot Managers
- 2. systemd Components
- 3. Processes and Resources
 - Processes Monitoring & Management
 - Resource Monitoring

Lab Infrastructure

System Startup & Boot Managers

Boot Process

BIOS vs UEFI

- Basic Input / Output System
- Dates to early 80s
- Operates in 16-bit mode
- Slower boot process
- Offers text user interface
- Settings stored in CMOS RAM chip
- Supports only MBR

- Unified ExtensibleFirmware Interface
- Dates to early 2000s
- Operates in 32-bit / 64-bit mode
- Faster boot process
- Offers graphical user interface
- Settings stored on ESP partition

Supports both MBR and GPT

Boot Process (Generalized)

BIOS based systems

POST = Power On Self Test

UEFI based systems

^{*} There is stage 1.5 between those two

Boot Loaders

Overview. GRUB2

Boot Loaders

- LILO (Linux Loader)
 - Old, very rare these days
- GRUB (GNU Grand Unified Boot Loader)
 - Configurable, default on most distributions
- SYSLINUX
 - Used for installation, live, or rescue media
- Loadlin (Load Linux)
 - Used for booting from non-Linux OS

GRUB2

- Grand Unified Boot Loader
- Highly configurable
- Supports many operating systems
- Interactive and default OS selection
- Temporal configuration change
- Integrated command prompt

GRUB2 (BIOS)

- Configuration files
 - /etc/default/grub
 - /etc/grub.d/*
 - /etc/grub2.cfg
- Resulting files
 - /boot/grub2/grub.cfg

It is a symbolic

link to

/boot/grub2/grubenv

grub2-mkconfig

GRUB2 (BIOS) (O

- Configuration files
 - | /etc/default/grub
 - /etc/grub.d/*
- Resulting files
 - /boot/grub/grub.cfg/boot/grub/grubenv

grub-mkconfig update-grub

GRUB2 (BIOS)

- Configuration files
 - /etc/default/grub/etc/grub.d/*
- Resulting files
 - /boot/grub2/grub.cfg/boot/grub2/grubenv

grub2-mkconfig

GRUB2 (UEFI)

- Configuration files
 - | /etc/default/grub
 - | /etc/grub.d/*
 - | /etc/grub2.cfg & /etc/grub2-efi.cfg
- Resulting files
 - /boot/grub2/grub.cfg
 - /boot/grub2/grubenv
 - /boot/efi/EFI/<distribution-name>/grub.cfg

Are symbolic links to

grub2-mkconfig

GRUB2 (UEFI) 🥥 🧔

- Configuration files
 - | /etc/default/grub
 - /etc/grub.d/*
- Resulting files
 - | /boot/grub/grub.cfg
 - /boot/grub/grubenv
 - /boot/efi/EFI/<distribution-name>/grub.cfg

GRUB2 (UEFI) 🛹

- Configuration files
 - | /etc/default/grub
 - /etc/grub.d/*
- Resulting files
 - boot/grub2/grub.cfg
 - /boot/grub2/grubenv
 - /boot/efi/EFI/<distribution-name>/grub.cfg

Default Settings


```
[user@host ~]$ cat -n /etc/default/grub
1 GRUB TIMEOUT=5
2 GRUB_DISTRIBUTOR="$(sed 's, release .*$,,g'
/etc/system-release)"
3 GRUB_DEFAULT=saved
4 GRUB DISABLE SUBMENU=true
 5 GRUB TERMINAL_OUTPUT="console"
 6 GRUB CMDLINE LINUX="rd.lvm.lv=cl/root
rd.lvm.lv=cl/swap rhgb quiet"
7 GRUB DISABLE RECOVERY="true"
[user@host ~]$
```


From Boot to User Space

Next Steps

From Boot to a Running System

Initialization Methods

- SysVinit (System V init or just SysV)*
 - Sequential. Utilizes runlevels
 - Considered obsolete in a way
 - In use by PCLinuxOS, Slackware Linux, Devuan GNU+Linux, etc.
- Upstart
 - Event driven. Created by Canonical
 - Considered obsolete
 - In use by **UBports**. Used by Ubuntu 6.10 14.04, Fedora 9 15, ...

^{*} V stands for the number 5 and not for the letter v

Initialization Methods

OpenRC

- Dependency-based initialization system
- Portable between Linux, FreeBSD, and NetBSD
- In use by Gentoo Linux, Alpine Linux, GhostBSD, etc.
- systemd
 - Dependency-based init system with aggressive parallelization
 - Offers some level of compatibility to SysVinit
 - In use by CentOS, openSUSE, Ubuntu, Fedora, Debian, Arch, etc.

systemd Components

- systemd
 - Systems and services manager
- systemctl
 - State inspection and state controlling utility
- systemd-analyze
 - Utility for performance statistics inspection

systemd Components

journald

Logging component by default. Binary files. Replaceable

consoled

User console daemon

networkd

Provides networking support

logind

Supports X display managers, user logins, and so on

dmesg

- Purpose
 - Print or control kernel ring buffer (RAM area)
- Syntax

```
dmesg [options]
```

Example

```
# Display all messages in human readable format
[root@host ~]# dmesg -H
# Warning kernel related messages in readable form
[root@host ~]# dmesg -H -l warn -f kern
```

efibootmgr

- Purpose
 - Manipulate the EFI Boot Manager
- Syntax

```
efibootmgr [options]
```

Example

```
# Display detailed configuration information
[root@host ~]# efibootmgr -v
# Change boot order
[root@host ~]# efibootmgr -o 0003,0001,0000,0002
```


Units

- Units are the new init scripts (sort of)
- Unit is a file that represents system component configuration
- Naming convention
 - "unit name"."unit type"
- Locations
 - Installed by the distribution /usr/lib/systemd/system/*
 - Runtime /run/systemd/system/*
 - Custom /etc/systemd/system/*

Unit Types

	Туре	Extension	Description
	Service	.service	Describes how to manage a service or application
	Socket	.socket	Describes a network or IPC socket, or a FIFO buffer
	Target	.target	Provides synchronization points for other units when booting or changing states
	Mount	.mount	Defines a mountpoint on the system to be managed by systemd
]	Automount	.automount	Configures a mountpoint that will be automatically mounted
	Device	.device	Describes a device that is managed by systemd
	Scope	.scope	Used to manage sets of externally created system processed
	Timer	.timer	Timer managed by systemd. A matching unit will be started when the timer is reached
	Path	.path	Defines a path that can be used for path-based activation
	Slice	.slice	It is associated with Linux Control Group nodes
	Snapshot	.snapshot	It allows to reconstruct the current state of the system. Used to roll back temporary states
	Swap	.swap	Describes swap space on the system

Service Units

- /usr/lib/systemd/system/sshd.service

```
[Unit]
Description=OpenSSH server daemon
Documentation=man:sshd(8)
man:sshd_config(5)
After=network.target sshd-keygen.service
Wants=sshd-keygen.service
[Service]
Type=notify
EnvironmentFile=/etc/sysconfig/sshd
ExecStart=/usr/sbin/sshd -D $OPTIONS
```

```
ExecReload=/bin/kill -HUP $MAINPID
KillMode=process
Restart=on-failure
RestartSec=42s
RestartPreventExitStatus=255
[Install]
WantedBy=multi-user.target
```

Target Units

| /usr/lib/systemd/system/multi-user.target

```
[Unit]
Description=Multi-User System
Documentation=man:systemd.special(7)
Requires=basic.target
Conflicts=rescue.service rescue.target
After=basic.target rescue.service rescue.target
AllowIsolate=yes
```

Target Units

| /usr/lib/systemd/system/rescue.target

```
[Unit]
Description=Rescue Mode
Documentation=man:systemd.special(7)
Requires=sysinit.target rescue.service
After=sysinit.target rescue.service
AllowIsolate=yes
[Install]
Alias=kbrequest.target
```

Unit Dependencies

Wants

- Stated with Wants=unit2
- When unit1 is run, unit2 will be run as well
- [Unit]
 Description=unit1
 Wants=unit2
- Whether unit2 starts successfully doesn't affect unit1

Requires

- Stated with Requires=unit2
- Both units will run simultaneously
- If unit2 fails, unit1 will be deactivated

[Unit]
Description=unit1
Requires=unit2

Unit Execution Order

- Before
 - Defined with Before=unit2
 - unit1 will be executed fully before unit2 starts
- After
 - Defined with After=unit2
 - unit2 will be executed fully before unit1 starts

[Unit]
Description=unit1
Before=unit2

[Unit]
Description=unit1
After=unit2

Target vs Runlevel

Correspondences between target and runlevel

Runlevel	Target	Action
0	poweroff.target	Shuts down and powers off the system
1	rescue.target	Configures a rescue shell session
2	multi-user.target	Nongraphical multiuser mode typically without network
3	multi-user.target	Nongraphical multiuser mode with network services
4	multi-user.target	Same as 3
5	graphical.target	Graphical multiuser mode with network services
6	reboot.target	Reboots the system

There are symbolic links runlevelX.target as well

System Initialization

Control and Monitoring

Additional systemctl Scenarios

Show default target

```
[root@host ~]# systemctl get-default
```

Show active targets

```
[root@host ~]# systemctl list-units --type=target
```

Change current target

```
[root@host ~]# systemctl isolate runlevel1.target
```

systemd configuration search path

```
[root@host ~]# systemctl -p UnitPath show
```

systemd-analyze

- Purpose
 - Analyze system boot-up performance
- Syntax

```
systemd-analyze [options] [command]
```

```
# Ordered list of all running units
[user@host ~]$ systemd-analyze blame
# Print tree of the time-critical chain of units
[user@host ~]$ systemd-analyze critical-chain
```

journalctl

- Purpose
 - Query the systemd journal
- Syntax

```
journalctl [options] [matches]
```

```
# Display the journal in reverse
[user@host ~]$ journalctl --reverse
# Information only from system services and kernel
[root@host ~]# journalctl --system
```


Processes and Resources

Monitoring and Management

Processes and Jobs

Process

Running program with its own address space

Job

- Interactive program that doesn't detach
- It can be suspended with Ctrl+Z
- It can execute in foreground or background mode

jobs

- Purpose
 - Display status of jobs
- Syntax

```
jobs [options] [jobspec]
```

```
# List all jobs
[user@host ~]$ jobs
# Print all jobs with extended information
[user@host ~]$ jobs -1
```


- Purpose
 - Move job to the foreground
- Syntax

```
fg [jobspec]
```

```
# Moves the current job to the foreground
[user@host ~]$ fg
# Moves particular job to the foreground
[user@host ~]$ fg 2
```

bg

- Purpose
 - Move job to the background
- Syntax

```
bg [jobspec]
```

```
# Move the current job to the background
[user@host ~]$ bg
# Move particular job to the background
[user@host ~]$ bg 2
```


- Purpose
 - Report a snapshot of the current processes
- Syntax

```
ps [options]
```

```
# List every process on the system
[user@host ~]$ ps aux
# Print a process tree
[user@host ~]$ ps axjf
```

pstree

- Purpose
 - Display a tree of processes
- Syntax

```
pstree [options] [pid, user]
```

```
# Display a tree with all processes
[user@host ~]$ pstree
# Display a tree for particular process
[user@host ~]$ pstree 1000
```

pgrep

- Purpose
 - Lookup processes based on name and other attributes
- Syntax

```
pgrep [options] pattern
```

```
# List all sshd processes owned by root user
[user@host ~]$ pgrep -u root sshd
# List all processes owned by root or admin users
[user@host ~]$ pgrep -u root, admin
```

top

- Purpose
 - Display Linux processes
- Syntax

```
top [options]
```

```
# Display all active processes in interactive mode
[user@host ~]$ top
# Display user2's processes with 2 sec delay 5 times
[user@host ~]$ top -d 2 -n 5 -u user2
```

htop

- Purpose
 - Interactive process viewer
- Syntax

```
htop [options]
```

```
# Display all active processes in interactive mode
[user@host ~]$ htop
# Start htop with refresh interval 10 seconds
[user@host ~]$ htop -d 100
```

(Some) Common Signals*

- Signals are a limited form of inter-process communication (IPC)
- A signal is an asynchronous notification sent to a process

Signal	Value	Action
SIGHUP	1	Hang up or shutdown and restart process
SIGINT	2	Interrupt a process (used by Ctrl+c)
SIGKILL	9	Kill the process (cannot be ignored or caught)
SIGTERM	15	Terminate a process (can be ignored or caught)
SIGTSTP	20	Stop the terminal (used by Ctrl+z)

^{*} https://en.wikipedia.org/wiki/Signal_(IPC)

kill

- Purpose
 - Shell built-in and ext. command. Send a signal to a job or process
- Syntax

```
kill [options] pid | jobspec
```

```
# Send SIGKILL to a process with PID=1302
[root@host ~]# kill -9 1302
# List all signals
[user@host ~]$ kill -1
```

killall

- Purpose
 - Kill processes by name
- Syntax

```
killall [options] process
```

```
# Send SIGKILL to all bash processes
[user@host ~]$ killall -9 bash
# Send SIGTERM to all bash process with prompt
[user@host ~]$ killall -i bash
```

pkill

- Purpose
 - Signal (SIGTERM) processes based on name and other attributes
- Syntax

```
pkill [options] pattern
```

```
# Kill all sshd processed owned by root user
[root@host ~]# pkill $(pgrep -u root sshd)
```

Process Priorities

- Niceness is applicable to normal process only and not to the real-time ones
- Priority level corresponds to the CPU time granted to a process
- Only privileged account can lower a nice value

Process Priorities

$$\blacksquare$$
 PR = 20 + NI

nice

- Purpose
 - Run a program with modified scheduling priority
- Syntax

```
nice [options] [command [arg]]
```

```
# Start program with particular niceness
[user@host ~]$ nice -n 15 program
```

renice

- Purpose
 - Alter priority of running process
- Syntax

```
renice [-n] priority [options] identifier
```

```
# Alter priority of a program
[root@host ~]# renice -n -5 program
...
```

watch

- Purpose
 - Executing a program periodically, showing output full-screen
- Syntax

```
watch [options] command
```

```
# Monitor running processes. Refresh every 5 sec
[user@host ~]$ watch -n 5 ps -o pid,nice,cmd,user
```

nohup

- Purpose
 - Run command immune to SIGHUP with output to a file
- Syntax

```
nohup command [args]
```

```
# Run command immune to SIGHUP in background [user@host ~]$ nohup ping abv.bg &
```

screen

- Purpose
 - Screen manager with terminal emulation
- Syntax

```
screen [-r] [options]
```

```
# List sessions
[user@host ~]$ screen -ls
# Re-connect a screen session
[user@host ~]$ screen -r 2815
```

tmux

- Purpose
 - Terminal multiplexer
- Syntax

```
tmux [options]
```

```
# List sessions
[user@host ~]$ tmux ls
# Attach to session #2
[user@host ~]$ tmux attach-session -t 2
```


free

- Purpose
 - Display amount of free and used memory in the system
- Syntax

```
free [options]
```

```
# Display information in human readable format
[user@host ~]$ free -h
# Display information with 10 sec delay 5 times
[user@host ~]$ free -c 5 -s 10
```


- Purpose
 - Report file system disk space usage
- Syntax

```
df [options] [file]
```

```
# Display information in human readable format
[user@host ~]$ df -h
# Display information about particular file (drive)
[user@host ~]$ df -h /dev/sda2
```

du

- Purpose
 - Estimate disk space usage
- Syntax

```
du [options] [file]
```

```
# Display disk space usage in human readable format
[user@host ~]$ du -h
# Display disk space usage for first level folders
[root@host ~]# du -h -d 1 /
```

vmstat

- Purpose
 - Report virtual memory statistics
- Syntax

```
vmstat [options] [delay [count]]
```

```
# Display statistics for 5 times with 5 sec delay
[user@host ~]$ vmstat 5 5
# Display disk statistics
[user@host ~]$ vmstat -d
```

iostat

- Purpose
 - Report CPU and IO statistics
- Syntax

```
iostat [options]
```

```
# Statistics every two seconds
[root@host ~]# iostat -d 2
# Extended statistics
[root@host ~]# iostat -x
```

pidstat

- Purpose
 - Report statistics for Linux tasks
- Syntax

```
pidstat [options]
```

```
# Statistics about process with id 1001 every 2 sec
[root@host ~]# pidstat -p 1001 2
# Statistics about process with name mysql
[root@host ~]# pidstat -C "mysql"
```

sar

- Purpose
 - Display Linux processes
- Syntax

```
sar [options]
```

```
# CPU information 3 times with 1 sec interval
[root@host ~]# sar -u ALL 1 3
# Memory information 3 times with 1 sec interval
[root@host ~]# sar -r 1 3
```

iotop

- Purpose
 - Simple IO monitor
- Syntax

```
iotop [options]
```

```
# Prints only processes with IO
[root@host ~]# iotop -o
# Prints processes 3 times with 1 sec interval
[root@host ~]# iotop -b -n 3 -d 1
```

nmon

- Purpose
 - Performance monitor
- Syntax

```
nmon [options]
```

```
# Start nmon in interactive mode
[root@host ~]# nmon
# Start nmon in data capture mode
[root@host ~]# nmon -f -s 60 -c 120
```

Isof

- Purpose
 - List open files
- Syntax

```
lsof [options]
```

```
# List all open files under a directory
[root@host ~]# lsof +D /etc
# Check which processes are working with a file
[root@host ~]# lsof -t /var/log/file.log
```


Summary

- BIOS and UEFI based systems have different boot process
- After POST is done then the process is handled by the boot loader
- There are many boot loaders, but GRUB2 has huge install base
- Once boot loader is ready the process goes to kernel

Summary

- Kernel initializes the hardware and then loads the Initramfs
- Once kernel is done, it unloads initramfs and starts system initialization process
- Systemd uses units to control services offered by the system
- Units include service, target, mount, and etc. We can define our own units

Resources

- Overview of systemd for RHEL 7
 - https://access.redhat.com/articles/754933
- An introduction to the Linux boot and startup processes
 - https://opensource.com/article/17/2/linux-boot-and-startup
- Introduction to system basics
 - https://documentation.suse.com/sle-micro/6.0/html/Microsystemd-basics/index.html

Questions?

SoftUni Diamond Partners

THE CROWN IS YOURS

Trainings @ Software University (SoftUni)

- Software University High-Quality Education,
 Profession and Job for Software Developers
 - softuni.bg, about.softuni.bg
- Software University Foundation
 - softuni.foundation
- Software University @ Facebook
 - facebook.com/SoftwareUniversity

License

- This course (slides, examples, demos, exercises, homework, documents, videos and other assets) is copyrighted content
- Unauthorized copy, reproduction or use is illegal
- © SoftUni https://about.softuni.bg/
- © Software University https://softuni.bg

