Álgebra / Matemáticas I

EXAMEN 2 - 13 junio 2020

- 1. Responded razonadamente a los siguientes apartados:
 - (a) Expresad en forma binómica el inverso del siguiente complejo: $1 i\sqrt{3}$
 - (a) ¿Qué valor, o valores, tendrá que tomar m, un número real, para que el número $\frac{5+mi}{3-2i}$ sea un número complejo imaginario puro? Para m=-5, expresad el número complejo 5 + mi en forma polar...

Solución

(a) El inverso del complejo dado es: $(1-i\sqrt{3})^{-1}$. Para hallar su forma binómica multiplicamos y dividimos por el conjugado del denominador (tal como se explica en el apartado 3.3.4, página 26, del material sobre la división de números complejos en forma binómica) y agrupamos parte real y parte imaginaria (recordemos que $i^2 = -1$:

$$(1 - i\sqrt{3})^{-1} = \frac{1}{1 - \sqrt{3}i} = \frac{1(1 + i\sqrt{3})}{(1 - i\sqrt{3})(1 + i\sqrt{3})} = \frac{1 + i\sqrt{3}}{1 - 3i^2} = \frac{1 + \sqrt{3}i}{4} = \frac{1}{4} + \frac{\sqrt{3}}{4}i$$

Por tanto, la respuesta es: $\frac{1}{4} + \frac{\sqrt{3}}{4}i$

(b) Primero miraremos a qué número complejo corresponde la fracción dada. Para esto multiplicaremos y dividiremos por el conjugado del denominador. Posteriormente aplicaremos la definición de número complejo imaginario puro que hay en la página 20 del material.

$$\frac{5+mi}{3-2i} = \frac{(5+mi)(3+2i)}{(3-2i)(3+2i)} = \frac{15+10i+3mi+2mi^2}{9-4i^2} = \frac{(15-2m)+(10+3m)i}{9+4} = \frac{15-2m}{13} + \frac{10+3m}{13}i$$

La definición de un número complejo imaginario puro es que la parte real tiene que ser nula (ver página 20 del material), por tanto, imponemos que la parte real sea 0:

$$\frac{15-2m}{13}=0 \Longleftrightarrow 15-2m=0 \Longleftrightarrow m=\frac{15}{2}$$
 Por tanto, el valor solicitado es $m=\frac{15}{2}$

Para expresar el número 5-5i en forma polar lo haremos tal como se explica en el apartado 3.4, página 27, del material, sobre la forma polar de los números complejos:

$$m = \sqrt{5^2 + (-5)^2} = \sqrt{50} = 5\sqrt{2}$$

$$\alpha = \arctan\left(\frac{-5}{5}\right) = \arctan\left(-1\right) = 315^{\circ}$$

Tenemos, por tanto, que $5-5i=5\sqrt{2}_{315^o}$

NOTA ACLARATORIA: Sabemos que la tangente de un ángulo vale -1 en 135^{o} y en 315° . Como el afijo del punto buscado es (5, -5), el ángulo está en el cuarto cuadrante, es decir, en 315° .

Como se dice en el ejercicio 19 de autoevaluación, cuando queremos pasar un número de forma binómica a polar, es muy importante, de cara a no equivocarnos en el resultado, hacer un dibujo. Por tanto, lo primero que hacemos es dibujar el número 5-5i en el plano complejo. Este número está asociado al punto (5,-5), por tanto, es un número que se encuentra en el cuarto cuadrante.

- **2.** Sean $e_1 = (2, 0, 2, 4)$, $e_2 = (0, 3, 1, 1)$, $e_3 = (-1, 0, -1, -2)$ y $e_4 = (0, -6, -2, -2)$ vectores de \mathbb{R}^4 . Sea $E = \langle e_1, e_2, e_3, e_4 \rangle$. Sea v = (6, -12, 2, 8).
 - (a) Calculad la dimensión de E y una base A. $v \in E$? En caso afirmativo, calculad sus coordenadas en la base A.
 - (b) Sea $w = e_2 e_1$. $B = \{v, w\}$ es una base de E. Calculad la matriz de cambio de base de la base A a la base B y de la base B a la base A.

Solución

(a) Calculamos el rango de la matriz de vectores:

$$rang \begin{pmatrix} 2 & 0 & -1 & 0 \\ 0 & 3 & 0 & -6 \\ 2 & 1 & -1 & -2 \\ 4 & 1 & -2 & -2 \end{pmatrix} = 2$$

Ya que podemos ver directamente que $C_3 = \frac{-C_1}{2}$ y $C_4 = -2 \cdot C_2$. Así la dimensión de E es 2 y una base puede estar formada por los dos primeros vectores ya que son linealmente independientes: contienen el menor $\begin{vmatrix} 2 & 0 \\ 0 & 3 \end{vmatrix} \neq 0$. Así pues $A = \{e_1, e_2\}$.

Para ver si $v \in E$ resolvemos el sistema:

$$\begin{pmatrix} 2 & 0 \\ 0 & 3 \\ 2 & 1 \\ 4 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 6 \\ -12 \\ 2 \\ 8 \end{pmatrix}$$

Que tiene solución x=3 y y=-4. Por tanto, $v\in E$ y sus coordenadas en la base A son (3,-4).

(b) Comenzamos por calcular la matriz de cambio de base de la base B a la base A, ya que para calcularla debemos expresar los vectores de la base de B en función de los de la de A y esto ya lo tenemos (para v lo hemos calculado en el apartado anterior y w está definido directamente como combinación lineal de e_1 y e_2). Así pues la matriz de cambio de base de B a A es:

$$C_{B\to A} = \left(\begin{array}{cc} 3 & -1 \\ -4 & 1 \end{array}\right)$$

Para calcular la matriz de cambio de base de A a B calculamos la inversa:

$$C_{A \to B} = \begin{pmatrix} 3 & -1 \\ -4 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} -1 & -1 \\ -4 & -3 \end{pmatrix}$$

3. Dado el sistema de ecuaciones con un parámetro real k e incógnitas x, y, z

$$\begin{cases}
5x + 5y + (k-2)z = 0 \\
3x + (k+6)y - 3z = 0 \\
(k+2)x - y + z = 0
\end{cases}$$

Se pide:

- (a) Calculad para qué valores de k el sistema sólo admite la solución (x, y, z) = (0, 0, 0).
- (b) Para el valor $k \geq 0$ (k positivo o cero) que hace que el sistema sea compatible indeterminado, obtened todas sus soluciones.
- (c) Determinad la posición relativa de los tres planos definidos por cada una de las ecuaciones del sistema cuando k = -3.

Solución

(a) Para que un sistema homogéneo de tres incógnitas sólo admita la solución trivial (x, y, z) = (0, 0, 0) se debe verificar que el rango(A) = 3 [ver apuntes módulo 3, apartado 5, páginas 17 y 18].

La matriz de coeficientes, A, asociada al sistema es:

$$A = \begin{pmatrix} 5 & 5 & k-2 \\ 3 & k+6 & -3 \\ k+2 & -1 & 1 \end{pmatrix}$$

si calculamos su determinante se obtiene:

$$|A| = \begin{vmatrix} 5 & 5 & k-2 \\ 3 & k+6 & -3 \\ k+2 & -1 & 1 \end{vmatrix} = -k^3 - 6k^2 - 9k = -k \cdot (k+3)^2$$

Si $k \neq 0$ y $k \neq -3$, entonces $|A| \neq 0$ y por lo tanto rang(A) = 3. Así pues,

Para
$$k \neq 0$$
 y $k \neq -3$ el sistema sólo tiene la solución $(x = 0, y = 0, z = 0)$

(b) A partir de los resultados obtenidos en el apartado anterior, podemos afirmar que para k = 0 el rang(A) = 2, puesto que |A| = 0 y $\begin{vmatrix} 5 & 5 \\ 3 & 6 \end{vmatrix} \neq 0$ por lo tanto, como que el sistema es homogéneo y tiene tres incógnitas se obtiene:

$$\operatorname{rang}(A) = \operatorname{rang}(M) = 2 \neq \text{ n.}^{o} \operatorname{inc\'ognitas}.$$

es decir, el sistema es compatible indeterminado.

Para resolver este sistema homogéneo compatible indeterminado

$$\begin{cases}
5x + 5y - 2z = 0 \\
3x + 6y - 3z = 0 \\
2x - y + z = 0
\end{cases}$$

Utilizaremos el método de Gauss [Ver apuntes módulo 3, apartado 6, páginas de la 19 a la 22]:

$$\begin{pmatrix} 5 & 5 & -2 & 0 \\ 3 & 6 & -3 & 0 \\ 2 & -1 & 1 & 0 \end{pmatrix} \xrightarrow{(1)} \begin{pmatrix} 5 & 5 & -2 & 0 \\ 0 & 15 & -9 & 0 \\ 0 & -15 & 9 & 0 \end{pmatrix} \xrightarrow{(2)} \begin{pmatrix} 5 & 5 & -2 & 0 \\ 0 & 15 & -9 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

- (1) $5 \cdot F2 3 \cdot F1 \rightarrow F2$ y $5 \cdot F3 2 \cdot F1 \rightarrow F3$
- (2) $F3 + F2 \to F3$

El sistema equivalente que se obtiene por Gauss es:

$$\begin{vmatrix}
5x + 5y - 2z & = 0 \\
15y - 9z & = 0
\end{vmatrix} \Rightarrow \begin{vmatrix}
5x + 5y - 2z & = 0 \\
y & = \frac{9}{15}z
\end{vmatrix} \Rightarrow \begin{vmatrix}
5x + (3z) - 2z & = 0 \\
y & = \frac{9}{15}z
\end{vmatrix} \Rightarrow \begin{vmatrix}
x & = \frac{-1}{5}z \\
y & = \frac{9}{15}z
\end{vmatrix}$$

Así pues, para k=0 las soluciones del sistema homogéneo son de la forma:

$$(x = \frac{-1}{5}z, \ y = \frac{9}{15}z, \ z)$$

(c) Para k = -3 el sistema a considerar es:

$$\begin{cases}
5x + 5y - 5z = 0 \\
3x + 3y - 3z = 0 \\
-x - y + z = 0
\end{cases}$$

Por lo tanto, tenemos que los tres planos definidos por cada una de las ecuaciones del sistema son:

$$\pi_1: 5x + 5y - 5z = 0$$
 $\pi_2: 3x + 3y - 3z = 0$ $\pi_3: -x - y + z = 0$

Si nos fijamos en las ecuaciones que definen los tres planos, podemos observar que son ecuaciones proporcionales y por lo tanto, podemos afirmar que estos tres planos son coincidentes, es decir $\pi_1 = \pi_2 = \pi_3$.

4. Sea $f:\mathbb{R}^3 \to \mathbb{R}^3$ la aplicación lineal definida en la base canónica por

$$f(x, y, z) = (-11x - 7y - 7z, a \cdot y, 14x + 7y + 10z).$$

- (a) Calculad la matriz de f en la base canónica de \mathbb{R}^3 .
- (b) Cuando a=3 calculad el polinomio característico desarrollando el determinante por la fila que contenga más ceros. Indicad cuáles son los valores propios de f y calculad una base que contenga el número máximo de vectores propios.
- (c) Si $a \neq 3$ y $a \neq -4$ calculad una base de \mathbb{R}^3 que contenga el número máximo de vectores propios de f.

Solución

(a) Para calcular A, la matriz de f en la base canónica de \mathbb{R}^3 , calculamos las imágenes de los tres vectores de la base canónica y los colocamos en columnas.

$$A = \left(\begin{array}{rrr} -11 & -7 & -7 \\ 0 & a & 0 \\ 14 & 7 & 10 \end{array} \right).$$

(b) Para calcular el polinomio característico de f, desarrollamos el determinante de la matriz por la segunda fila:

$$\det(A - t\mathbf{I}) = \begin{vmatrix} -11 - t & -7 & -7 \\ 0 & 3 - t & 0 \\ 14 & 7 & 10 - t \end{vmatrix} =$$

$$(3 - t)((-11 - t)(10 - t) + 14 \cdot 7) = (3 - t)(-110 + 11t - 10t + t^2 + 98) =$$

$$(3 - t)(t^2 + t - 12) = (3 - t)(t - 3)(t + 4)$$

Los valores propios de f son -4 con multiplicidad 1 y 3 con multiplicidad 2.

Para encontrar un vector propio de valor propio -4 buscamos una base del ker(f+4I). O sea, resolvemos el sistema:

$$\begin{pmatrix} -11+4 & -7 & -7 \\ 0 & 3+4 & 0 \\ 14 & 7 & 10+4 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Es decir:

$$\begin{pmatrix} -7 & -7 & -7 \\ 0 & 7 & 0 \\ 14 & 7 & 14 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Podemos aislar de la segunda ecuación y ver que y = 0. De la primera obtenemos -7x - 7z = 0 y por tanto z = -x. De la tercera lo mismo. Una solución es el vector (1,0,-1).

Para encontrar los vectores propios de valor propio 3 buscamos una base del $\ker(f-3I)$. O sea, resolvemos el sistema:

$$\begin{pmatrix} -11 - 3 & -7 & -7 \\ 0 & 3 - 3 & 0 \\ 14 & 7 & 10 - 3 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Es decir:

$$\begin{pmatrix} -14 & -7 & -7 \\ 0 & 0 & 0 \\ 14 & 7 & 7 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

El sistema se reduce a una única ecuación -14x - 7y - 7z = 0. Pueden ser generadores del subespacio de soluciones los vectores (-1, 1, 1) y (0, -1, 1) Por tanto, una base de \mathbb{R}^3 formada por vectores propios de f es $\{(1, 0, -1), (-1, 1, 1), (0, -1, 1)\}$.

(c) El polinomio característico de f en general será: $\det(A - tI) = (a - t)(t - 3)(t + 4)$. Los valores propios de f son -4, 3 y a, todos con multiplicidad 1 porque $a \neq 3$ y $a \neq -4$. El vector propio de f correspondiente al valor propio -4 es el que ya hemos encontrado antes, (1,0,-1), porque de la segunda ecuación se deduce igualmente que y = 0 y las otras dos ecuaciones son iguales.

Para encontrar el vector propio de valor propio 3 buscamos una base del $\ker(f-3I)$. O sea, resolvemos el sistema:

$$\begin{pmatrix} -14 & -7 & -7 \\ 0 & a - 3 & 0 \\ 14 & 7 & 7 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Podemos aislar de la segunda ecuación (a-3)y=0 y ver que y=0 dado que $a \neq 3$. Entonces de la primera obtenemos -14x-7z=0 y por tanto z=-2x. La tercera es equivalente. Una solución es el vector (1,0,-2).

Para encontrar el vector propio de valor propio a buscamos una base del ker(f - aI). O sea, resolvemos el sistema:

$$\begin{pmatrix} -11 - a & -7 & -7 \\ 0 & 0 & 0 \\ 14 & 7 & 10 - a \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Si sumamos las dos ecuaciones (primera y tercera) obtenemos ésta: (3-a)x + (3-a)z = 0. Como $a \neq 3$ podemos aislar z = -x. Y sustituyendo en la segunda 14x + 7y - (10-a)x = 0 de donde $y = \frac{-(4+a)x}{7}$. Una solución es el vector $(1, -\frac{4+a}{7}, -1)$. Por tanto una base con el máximo de vectores propios seria $\{(1, 0, -1), (1, 0, -2), (1, -\frac{4+a}{7}, -1)\}$. Podemos comprobar que el determinante es no nulo porque $a \neq -4$.

NOTA: En la realización de los ejercicios puede ser que necesitéis utilizar algún/os de los siguientes valores:

α	0^o	30^{o}	45^{o}	60^{o}	75^{o}	90°	135^{o}	180^{o}	225^{o}	270^{o}	315^{o}	330^{o}
α	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}+\sqrt{6}}{4}$	1	$\frac{\sqrt{2}}{2}$	0	$-\frac{\sqrt{2}}{2}$	-1	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	$\frac{-\sqrt{2}+\sqrt{6}}{4}$	0	$-\frac{\sqrt{2}}{2}$	-1	$ \frac{\sqrt{2}}{2}$	0	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
$\tan \alpha$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	$\frac{\sqrt{2}+\sqrt{6}}{-\sqrt{2}+\sqrt{6}}$	∞	-1	0	-1	$-\infty$	-1	$-\frac{\sqrt{3}}{3}$