

(v) We are given,

$$3x + 5y = 15$$

We get,

$$y = \frac{15 - 3x}{5}$$

Now, substituting x = 0 in  $y = \frac{15 - 3x}{5}$ , we get

$$v = 3$$

Substituting x = 5 in 
$$y = \frac{15-3x}{5}$$
, we get

$$y = 0$$

Thus, we have the following table exhibiting the abscissa and ordinates of points on the line represented by the given equation

|    |   | 5 |
|----|---|---|
| x  | 0 | 5 |
| 32 | 3 | 0 |



(vi) We are given,

$$\frac{x}{2} - \frac{y}{3} = 2$$

$$3x - 2y = 12$$

$$y = \frac{3x - 12}{2}$$

We get,  $y = \frac{3x - 12}{2}$  Now, substituting x = 0 in  $y = \frac{3x - 12}{2}$ , we get

$$y = -\epsilon$$

Substituting x = 4 in 
$$y = \frac{3x-12}{2}$$
, we get

$$y = 0$$

Thus, we have the following table exhibiting the abscissa and ordinates of points on the line represented by the given equation

|   |    | _ |
|---|----|---|
| X | 0  | 4 |
| v | -6 | 0 |

