

Онлайн-курс

ВВЕДЕНИЕ В ИСКУССТВЕННЫЕ НЕЙРОННЫЕ СЕТИ

9. Задача классификации

Постановка задачи

Задачи предсказания (напоминалка)

Постановка задачи.

Есть множество объектов *M* с известными значениями признака *Y*. Найти (предсказать, оценить) значение признака *Y* для нового объекта *A*. **Признак Y называется целевым**.

Предсказываемый признак Ү может быть:

- количественным;
- меткой класса.

В первом случае задача предсказания называется **задачей регрессии**, а во втором случае – **задачей классификации**.

Каждая из этих задач требует особой архитектуры нейронной сети.

Задачи классификации

Примеры.

- Предсказать пол человека по его фото (физическим данным).
- Предсказать наличие (отсутствие) болезни по результатам анализа.
- Предсказать результат командной многопользовательской игры по характеристикам и истории аккаунтов участников.
- Распознать тип дорожного знака для беспилотного автомобиля.
- По заданному тексту выяснить, сгенерирован он искусственным интеллектом или написан человеком.

Тренировочная выборка (ТВ)

В нашем курсе мы предполагаем, что все объекты для задачи предсказания описываются набором числовых признаков.

Иными словами, тренировочную выборку можно представить в виде таблицы. Для задачи классификации столбец Y содержит метки класса. Будем их обозначать с помощью натуральных чисел {0,1,2...}.

Объект	Признак Р ₁	 Признак P _n	Целевой признак Ү
A ₁	P ₁₁	 p_{1n}	y ₁
A ₂	p ₂₁	 p_{2n}	y ₂
A _m	p _{m1}	 p_{mn}	У _т

Пример ТВ для классификации

Важно помнить: не всё, что обозначается числами, является числом.

Метки класса – это не числа!

Поэтому решать задачу классификации как задачу регрессии плохо!

Пациент	Вес	Пол	Группа крови	Здоров? Ү
A1	50	0	1	0
A2	60	1	2	1
А3	70	1	3	0
A4	80	0	4	1

Архитектура НС для классификации

Как выглядит выходной слой НС, решающей задачу классификации?

Для простоты будем далее считать, что **классификация у нас бинарная**, то есть существует всего два (0,1) возможных значения целевого признака Y.

Тогда НС должна заканчиваться слоем из двух нейронов.

Самая простая сеть для классификации

Для объекта х выходы сети равны

$$R_0 = w_{211}f(xw_{11} + w_{110}) + w_{221}f(xw_{12} + w_{120}) + w_{210},$$

$$R_1 = w_{212}f(xw_{11} + w_{110}) + w_{222}f(xw_{12} + w_{120}) + w_{220}$$

Можно ли считать эти числа вероятностями принадлежности классам?

Есть проблемка...

Выход сети и вероятности

Проблема в том, что числа, выдаваемые НС, могут не вполне годиться на роль вероятностей.

Они могут быть:

- не попадать в интервал [0,1];
- их сумма может не быть равной 1.

Значит, нужно провести «умное» преобразование над числами, выдаваемыми HC.

Softmax

Пусть *a, b* - значения, которые выдал последний слой НС **(не забывайте: у нас бинарная классификация)**.

Тогда числа

$$\frac{e^a}{e^a + e^b}, \frac{e^b}{e^a + e^b}$$

положительны и их сумма равна 1. То есть их можно интерпретировать как вероятности принадлежности классам.

Операцию перехода от чисел *a, b* к указанным выше выражениям называется операцией softmax.

Самая простая сеть для классификации

Нужно к выходам сети R_1, R_2 применить softmax.

То есть сеть выдает вероятности

$$Pr(Y=0) = \frac{e^{R_0}}{e^{R_0} + e^{R_1}}, \ Pr(Y=1) = \frac{e^{R_1}}{e^{R_0} + e^{R_1}}$$

$$R_0 = w_{211}f(xw_{11} + w_{110}) + w_{221}f(xw_{12} + w_{120}) + w_{210},$$

$$R_1 = w_{212}f(xw_{11} + w_{110}) + w_{222}f(xw_{12} + w_{120}) + w_{220}$$

Слой softmax

Фактически преобразование softmax является дополнительным (и последним) слоем НС, решающей задачу классификации.

Получение вероятностей

Если веса HC уже натренированы, то для любого объекта можно получить вероятности принадлежности классам:

Например, если x=0, то на слой softmax приходят числа 0, 4. Softmax выдаст вероятности

$$Pr(Y=0)=1/(1+e^4)=0.02$$
, $Pr(Y=1)=e^4/(1+e^4)=0.98$.

План решения задачи бинарной классификации

(полная аналогия с задачей регрессии)

- **1. Взять тренировочную выборку**, то есть набор объектов с известными значениями целевого признака *Y*. Нейронная сеть должна восстановить зависимость между нецелевыми признаками и целевым признаком.
- 2. Задать основные параметры нейронной сети: количество слоёв, количество нейронов на каждом слое, тип связи между слоями и т.д.
- **3.** Выписать выражения для вероятностей Pr(Y=0), Pr(Y=1). Эти выражения будут содержать вхождения весов w_i .
- 4. По ТВ составим функцию потерь L(w) (допустим, что мы уже умеем это делать).

План решения задачи бинарной классификации

- 5. Функция потерь L(w) содержит вхождения букв w_i (весов НС). Относительно этих переменных мы **находим точку минимума функции** L(w).
- 6. Точка минимума определяет оптимальные веса НС.
- 7. Присваиваем весам НС найденные оптимальные значения. Пусть теперь объект A не принадлежит тренировочной выборке. Мы прогоняем A через НС и на выходе получаем вероятности Pr(Y=0), Pr(Y=1) они и являются предсказанием для объекта A.

Онлайн-курс

ВВЕДЕНИЕ В ИСКУССТВЕННЫЕ НЕЙРОННЫЕ СЕТИ

9. Задача классификации

Функция потерь для классификации

Выбор функции потерь – это искусство

Очевидно, что нужно минимизировать выражение Pr(Y=0) для всех объектов ТВ из класса 1, и одновременно минимизировать выражение Pr(Y=1) для всех объектов ТВ из класса 0.

Или: максимизировать вероятность принадлежности к истинному классу для каждого объекта из ТВ.

Кросс-энтропия

Пусть ТВ состоит из объектов $x_1,...,x_m$, для которых известны их точные метки классов $y_1,...,y_m$, и НС даёт вероятности $p_1,...,p_m$ принадлежности **к истинному классу**. Тогда в качестве функции потерь в задаче классификации берут выражение

$$L(w) = -\ln p_1 - \ln p_2 - \ldots - \ln p_m$$

(18+: это кросс-энтропия распределений $y_1,...,y_m$ и $p_1,...,p_m$)

Кросс-энтропия

$$L(w) = -\ln p_1 - \ln p_2 - \ldots - \ln p_m$$

Насколько логично это выражение?

Во-первых, минимизация функции потерь L(w) означает максимизацию выражения

$$L(w) = \ln p_1 + \ln p_2 + \ldots + \ln p_m$$

Это означает, что нужно максимизировать аргументы логарифмов $p_1,...,p_m$. Следовательно, нужно максимизировать вероятности принадлежности к истинному классу.

Пример идеального классификатора

Пусть для следующих объектов были получены такие вероятности принадлежности к их истинным классам:

Объекты	Истинная метка класса Y	Вероятность принадлежности к истинному классу
A1	0	1
A2	0	1
A3	1	1
A4	1	1

Тогда значение кросс-энтропии равно:

L=-ln(1)-ln(1)-ln(1)=0 – и это идеальный случай.

Пример ужасного классификатора

Пусть для следующих объектов были получены такие вероятности принадлежности к их истинным классам:

Объекты	Истинная метка класса Ү	Вероятность принадлежности к истинному классу
A1	0	0
A2	0	0
A3	1	0
A4	1	0

Тогда значение кросс-энтропии равно:

L=-ln(0)-ln(0)-ln(0)=плюс бесконечность – и это худший случай.

Значения кросс-энтропии на примерах

Объекты	Истинная метка класса Y	Вероятность принадлежности истинному классу
A1	0	0.9
A2	0	0.8
A3	1	0.8
A4	1	0.9
A5	1	0.7

$$L=-(ln (0.9)+ln(0.8)+ln(0.8)+ln(0.9)+ln(0.7))=1.02$$

Пример ГС для классификации

Будем тренировать такую HC, классифицирующую объекты с двумя признаками x_1, x_2 (для простоты в ней нет Φ A).

Выпишем выражения для выходов НС:

Пример ГС для классификации

Выпишем выражения для выходов НС:

$$A = w_{11}x_1 + w_{21}x_2 + w_{01},$$

$$B = w_{12}x_1 + w_{22}x_2 + w_{02},$$

$$Pr(Y = 0) = \frac{e^A}{e^A + e^B},$$

$$Pr(Y = 1) = \frac{e^B}{e^A + e^B}$$

Пример ГС для классификации

Возьмем тренировочную выборку

Слагаемые функции потерь:

$$\ln \frac{e^{w_{11}+w_{01}}}{e^{w_{11}+w_{01}}+e^{w_{12}+w_{02}}},$$

$$\ln \frac{e^{w_{21}+w_{01}}+e^{w_{22}+w_{02}}}{e^{w_{21}+w_{01}}+e^{w_{22}+w_{02}}}$$

x ₁	X ₂	Y
1	0	0
0	1	1

$$A = w_{11}x_1 + w_{21}x_2 + w_{01},$$

$$B = w_{12}x_1 + w_{22}x_2 + w_{02},$$

$$Pr(Y = 0) = \frac{e^A}{e^A + e^B},$$

$$Pr(Y = 1) = \frac{e^B}{e^A + e^B}$$

$$L(w) = -\ln \frac{e^{w_{11} + w_{01}}}{e^{w_{11} + w_{01}} + e^{w_{12} + w_{02}}} - \ln \frac{e^{w_{22} + w_{02}}}{e^{w_{21} + w_{01}} + e^{w_{22} + w_{02}}}$$

$$L(w) = -\ln \frac{e^{w_{11} + w_{01}}}{e^{w_{11} + w_{01}} + e^{w_{12} + w_{02}}} - \ln \frac{e^{w_{22} + w_{02}}}{e^{w_{21} + w_{01}} + e^{w_{22} + w_{02}}}$$

$$-e^{w_{12} + w_{02}}$$

$$e^{w_{11} + w_{01}} + e^{w_{12} + w_{02}}$$

 $-e^{w_{21}+w_{01}}$

 $e^{w_{22}+w_{02}}$

$$\frac{\partial L/\partial w_{22}}{e^{w_{21}+w_{01}}+e^{w_{22}+w_{02}}}$$

$$\frac{\partial L/\partial w_{12}}{\partial L/\partial w_{21}} = \frac{1}{(e^{w_{21}+w_{01}}+e^{w_{12}+w_{02}})}$$

$$\frac{\partial L/\partial w_{21}}{\partial L/\partial w_{21}} = \frac{1}{(e^{w_{21}+w_{01}}+e^{w_{22}+w_{02}})}$$

$$\partial L/\partial w_{21} = 1/(e^{w_{21}+w_{01}} + e^{w_{22}+w_{02}})$$

$$\partial L/\partial w_{01} = \frac{-e^{w_{12}+w_{02}}}{e^{w_{11}+w_{01}} + e^{w_{12}+w_{02}}} + \frac{1}{e^{w_{21}+w_{01}} + e^{w_{22}+w_{02}}}$$

$$\partial L/\partial w_{02} = \frac{-e^{w_{21}+w_{01}}}{e^{w_{21}+w_{01}} + e^{w_{22}+w_{02}}} + \frac{1}{e^{w_{11}+w_{01}} + e^{w_{12}+w_{02}}}$$

В начале ГС все веса равны 0. Значения ЧП в этой точке:

$$\frac{\partial L/\partial w_{11}}{e^{w_{11}+w_{01}} + e^{w_{12}+w_{02}}} = \frac{-e^{w_{12}+w_{02}}}{e^{w_{11}+w_{01}} + e^{w_{12}+w_{02}}} = \frac{\partial L/\partial w_{11}(a_0) = -0.5}{\partial L/\partial w_{22}(a_0) = -0.5}, \\ \frac{\partial L/\partial w_{12}(a_0) = 0.5}{\partial L/\partial w_{12}(a_0) = 0.5},$$

$$_{2} = \frac{-e^{w_{21} + w_{01}}}{e^{w_{21} + w_{01}} + e^{w_{22} + w_{02}}}$$

$$e^{w_{01}} + e^{w_{22} + w_{02}} + e^{w_{12} + w_{02}}$$

 $\partial L/\partial w_{02} = \frac{-e^{w_{21}+w_{01}}}{e^{w_{21}+w_{01}} + e^{w_{22}+w_{02}}} + \frac{1}{e^{w_{11}+w_{01}} + e^{w_{12}+w_{02}}}$

$$\partial L/\partial w_{21} = 1/(e^{w_{21}+w_{01}} + e^{w_{22}+w_{02}})$$

$$\partial L/\partial w_{21} = \frac{1}{(e^{-4\pi + e^{-4\pi + e^{-4\pi$$

$$= \frac{-e^{w_{12}+w_{02}}}{e^{w_{11}+w_{01}}+e^{w_{12}+w_{02}}} -$$

$$=\frac{-e^{w_{12}+w_{02}}}{e^{w_{11}+w_{01}}+e^{w_{12}+w_{02}}}$$

 $-e^{w_{21}+w_{01}}$

$$\frac{\partial L/\partial w_{22} = \frac{\partial L}{\partial w_{21} + w_{01} + e^{w_{22} + w_{02}}} \frac{\partial L}{\partial L}}{\partial L/\partial w_{12} = 1/(e^{w_{11} + w_{01}} + e^{w_{12} + w_{02}})} \frac{\partial L}{\partial L}$$

$$\frac{\partial L/\partial w_{21}(a_0)}{\partial L/\partial w_{01}(a_0)} = 0.5,$$

$$\frac{\partial L/\partial w_{01}(a_0)}{\partial L/\partial w_{02}(a_0)} = 0$$

$$\partial L/\partial w_{02}(a_0) = 0$$

Тогда новые значения весов равны:

$$w_{11} := 0 - 0.1 * (-0.5) = 0.05,$$
 $w_{22} := 0 - 0.1 * (-0.5) = 0.05,$ $w_{12} := 0 - 0.1 * 0.5 = -0.05,$ $w_{12} := 0 - 0.1 * 0.5 = -0.05,$ $w_{21} := 0 - 0.1 * 0.5 = -0.05,$ $w_{21} := 0 - 0.1 * 0.5 = -0.05,$ $w_{21} := 0 - 0.1 * 0 = 0,$ $w_{22} := 0 - 0.1 * 0 = 0,$ $w_{23} := 0 - 0.1 * 0 = 0,$ $w_{24} := 0 - 0.1 * 0 = 0,$ $w_{25} := 0 - 0.1 * 0 = 0,$ $w_{25} := 0 - 0.1 * 0 = 0,$ $w_{25} := 0 - 0.1 * 0 = 0,$ $w_{25} := 0 - 0.1 * 0 = 0,$ $w_{25} := 0 - 0.1 * 0 = 0,$

Насколько логично такое изменение весов для нашей НС и ТВ?

X ₁	x ₂	Y
1	0	0
0	1	1

Через много итераций будет:

И наша сеть для объектов из ТВ предскажет вероятности:

x ₁	x ₂	Y	softmax	Pr(Y=0)	Pr(Y=1)
1	0	0	1, -1	0.88	0.12
0	1	1	-1, 1	0.12	0.88

А если еще подождать:

x ₁	x ₂	Y	softmax	Pr(Y=0)	Pr(Y=1)
1	0	0	2, -2	0.98	0.02
0	1	1	-2, 2	0.02	0.98

Хм... Это тот случай, когда ГС может длиться бесконечно.

Онлайн-курс

ВВЕДЕНИЕ В ИСКУССТВЕННЫЕ НЕЙРОННЫЕ СЕТИ

9. Задача классификации

Многоклассовая классификация

Суть

До этого классификация была бинарной. А если классов больше, чем 2?

Всё аналогично!

Архитектура сети имеет k выходов (k - число классов).

В конце применяется **операция softmax**.

Многоклассовый softmax

Ожидаемая формула:

$$Pr(Y = 0) = \frac{e^{a_0}}{e^{a_0} + \dots e^{a_{k-1}}},$$

$$Pr(Y = k - 1) = \frac{e^{a_{k-1}}}{e^{a_0} + \dots e^{a_{k-1}}}$$

где $a_0,...,a_{k-1}$ – выходы из нейронов последнего слоя.

Многоклассовая функция потерь

Для каждого объекта A_i ТВ можно вычислить величину p_i – вероятность принадлежности к **истинному классу**.

Как и раньше, функция потерь равна

$$L(w) = -\ln p_1 - \ln p_2 - \ldots - \ln p_m$$

А дальше всё, как обычно: минимизируем эту функцию с помощью ГС.

Откуда вообще берётся логарифм в функции потерь?

Всё очень просто: мы же хотим, чтобы «вероятность p_i принадлежности истинному классу» у объекта A_i из ТВ была максимальной?

Значит, **нужно максимизировать все числа** p_{i^*} То есть нужно максимизировать произведение $p_1 \cdot p_2 \cdot \ldots \cdot p_m$

Максимизировать длинное произведение трудно, поэтому переходят к максимизации логарифмов: $\ln p_1 + \ln p_2 + \ldots + \ln p_m$

Ну а максимизировать сумму логарифмов – это всё равно что умножить выражение на -1 и минимизировать. И мы получаем известную функцию потерь.

Онлайн-курс

ВВЕДЕНИЕ В ИСКУССТВЕННЫЕ НЕЙРОННЫЕ СЕТИ

9. Задача классификации

Дурацкий классификатор

Дурацкий классификатор

Он работает так. Берёт ТВ: в ней m объектов, m_0 из них принадлежат классу 0 и m_1 принадлежат классу 1 ($m_0+m_1=m$). И абсолютно для любого объекта классификатор выдает вероятности:

$$Pr(Y=0) = \frac{m_0}{m_0 + m_1}, \ Pr(Y=1) = \frac{m_1}{m_0 + m_1},$$

Такой классификатор может быть реализован с помощью HC (даже без слоя softmax):

Тупой классификатор

Для этой ТВ тупой классификатор строит НС:

Объекты	Y
A1	0
A2	0
А3	1
A4	1
A5	1

то есть $Pr(Y=0)=\frac{2}{5}$, $Pr(Y=1)=\frac{3}{5}$ – у дурацкого классификатора вероятности не зависят от входа x (поэтому он и дурацкий).

Тупой классификатор

Объекты	Истинная метка класса Y	Вероятность принадлежности истинному классу
A1	0	0.4
A2	0	0.4
A3	1	0.6
A4	1	0.6
A5	1	0.6

$$L=-(ln (0.4)+ln(0.4)+ln(0.6)+ln(0.6)+ln(0.6))=3.36$$

У вашей НС функция потерь должна быть ниже, чем у тупого классификатора.

Значение функции потерь

Можно вычислить значение функции потерь дурацкого классификатора

$$-m_0 \ln \frac{m_0}{m_0 + m_1} - m_1 \ln \frac{m_1}{m_0 + m_1}$$

Эта величина позволяет грубо оценить силу вашей НС.

Задача

Пусть ТВ состоит из 10 объектов: 6 объектов принадлежат классу 0, 4 объекта принадлежат классу 1. Дата-саентист Вася натренировал НС такую, что значение функции потерь на ТВ равно 6.75.

Задание: огорчите Васю.

Решение: НС Васи можно сравнить с дурацким классификатором, который для данной ТВ имеет следующее значение функции потерь:

$$-m_0 \ln \frac{m_0}{m_0 + m_1} - m_1 \ln \frac{m_1}{m_0 + m_1} = -6 \ln 0.6 - 4 \ln 0.4 = 6.74$$

То есть дурацкий классификатор сильнее, чем НС Васи.

классификаторами С такими приколами тебе сюда, Вася

Онлайн-курс

ВВЕДЕНИЕ В ИСКУССТВЕННЫЕ НЕЙРОННЫЕ СЕТИ

9. Задача классификации

Выводы

Выводы:

- Мы рассмотрели постановку задачи классификации.
- Была рассмотрена специальная архитектура HC, необходимая для решения задачи классификации.
- Была изучена операция softmax, преобразующая выходы НС в вероятности.
- Для задачи классификации была найдена специальная функция потерь (кросс-энтропия).
- Были найдены оценки точности НС для задачи классификации (точность не должна быть ниже точности «дурацкого» классификатора).