Computational Models of American Politics

Kyle A. Joyce

Department of Political Science University of California, Davis

August 11, 2014

Kollman, Miller, & Page (APSR, 1992)

Introduction

- Original spatial models and subsequent extensions rely on unrealistic assumptions to produce equilibria.
- These models assume that political parties are self-interested, have complete information, and can locate optimal strategies regardless of complexity.
- Examine boundedly rational parties in a model of two-party spatial elections.
- Model parties as incompletely informed and adaptive.
- Parties incrementally move toward better regions of the space using search algorithms.

Research Questions

- Do informational and computational constraints lead to arbitrary outcomes, with winning party platforms scattered throughout the policy space?
- Do boundedly rational parties converge toward centrist platforms?
- Do challengers always defeat incumbents?
- Does altering the preferences of parties from vote maximizing to winning with ideals affect the behavior of parties?

Voter Utilities

- Two parties compete for votes (V) in an n-dimensional issue space.
- Voter's preferences are represented by ideal positions and strengths on n issues.
- \circ For each issue there are k possible positions and s possible strengths.
- Voter's utility from a party's platform is:

$$u_j(y) = -\sum_{i=1}^n s_{ji}(x_{ji} - y_i)^2$$
 (1)

where s_{ji} is the jth voter's strength (preference intensity) on the ith issue, x_{ji} is the jth voter's ideal point, and y_i is the party's position on the ith issue.

- Voter's strengths and ideal points are independently and uniformly distributed.
- Each voter casts a ballot for the party providing the highest utility.

Political Parties

- Parties are initially represented by a randomly selected "ideal" platform.
- Assume parties have uniform strengths across all issues.

Political Parties

- Parties are initially represented by a randomly selected "ideal" platform.
- Assume parties have uniform strengths across all issues.
- Consider two types: ambitious and ideological.
- Ambitious: only care about winning elections.
- Ideological: also want to win elections but want to win with a platform close to their ideal platform.

Political Parties

- Ambitious parties attempt to maximize votes because a larger margin of victory may make them more difficult to defeat in subsequent elections.
- Ideological parties primary goal is to win the election and once secured, attempt to get as close to their ideal platform as possible.

Elections

- During each election, the incumbent party's platform is fixed.
- The challenger party attempts to find a platform that defeats the incumbent.
- In the first election the incumbent party remains at its ideal platform.
- In subsequent elections, the incumbent remains at the platform where it won the previous election.
- The challenger party attempts to defeat the incumbent by choosing a new platform.

Campaigns

- Parties do not know voter utility functions.
- The challenger party tests new platforms on voters who have perfect information about both platforms (think political polling).
- The challenger receives feedback from voters in the form of vote totals based on a comparison of the current platform to the incumbent.
- The challenger then adapts their platforms, trying to defeat the incumbent.
- Campaigns are of a finite length, so parties are limited in the number of polls they can conduct.
- During any platform adaptation, the parties are limited by the number of issues they can change and the degree of change on each issue.

- Three types of parties:
 - random adaptive parties (RAPs)
 - climbing adaptive parties (CAPs)
 - genetic adaptive parties (GAPs)
- The search procedures are mechanisms for the party to choose the platform it presents to the voters against the incumbent.

RAPs

- Least adaptive.
- Randomly generate L (length of campaign) platforms in the neighborhood of their previous platform and choose the platform that receives the most votes against the incumbent.

CAPs

- Begin with current platform and experiment, slightly changing positions on a few issues.
- o If new platform fares better against the incumbent than the previous one, the party switches to the new platform.
- These platform tests are hill-climbing iterations, where L
 equals the number of hill-climbing iterations before the
 election.
- Select a candidate and adapt the candidate's platform to the electorate's views by conducting polls.

GAPs

- Use a genetic algorithm to guide their search.
- Potential candidates shift positions by both borrowing from competitors and by testing their own alterations.

GAPs

- Genetic algorithm has three procedures (assume 12 platforms).
 - Reproduction: randomly select (with replacement) 12 pairs of candidates from the list and reproduce only the preferred member from the list.
 - ² Crossover: randomly arrange the candidates in pairs. Each candidate randomly decides (with p=0.5) whether or not to change positions on a few issues. If they decide to switch, they exchange groups of positions.
 - 3 Mutation: each candidate can randomly alter positions on an issue or two.
- Each application of the three procedures is called a generation.
- Each generation is two units of campaign length since both crossover and mutation involve candidates altering platforms.
- \circ At the end of L (L/2 generations), the party chooses the best-to-date platform.

Outcomes of Interest

 Evaluate democratic outcomes using a measure of the goodness of each outcome called centrality:

$$c(y) = \frac{\sum_{j=1}^{V} u_j(median)}{\sum_{j=1}^{V} u_j(y)}$$
 (2)

- The numerator is the sum of the utilities of the individual voters if the winning party were located at the median on all issues.
- The denominator is the sum of the utilities of the individual voters resulting from the winning party in the election.
- The closer the winning candidate is to the weighted center of voter preferences the more responsive the democratic outcome.

Outcomes of Interest

- The ability of ambitious and ideological parties to defeat the incumbent.
- How far ideological parties must stray from their ideal platform to do so.
- The effect of the length of campaigns, which represents the amount of information parties have about voters before an election.

Parameter Settings

- Choose parameter values that seem realistic in the study of democratic elections.
 - Voter types (V): 251
 - Number of issues (n): 15
 - Positions per issue (k): 7
 - Strengths (s_{ji}) : 3
 - Elections: 12
 - Campaign length (L): 40
- Ran 200 simulations for each party and type of algorithm.

Results: Ambitious Parties

Results: Ambitious Parties

- Across all three algorithms, ambitious parties moved in directions of higher centrality (more responsive democratic outcome) as the number of elections increases.
- Across all three algorithms, ambitious challengers have more difficulty defeating incumbents as the number of elections increases.
- Incumbency advantage could be due to the challenger's lack of information, limitations of adaptive search, and the positions of incumbents' previously adapted platforms.

- Compared to <u>ambitious</u> parties, <u>ideological</u> parties have lower centrality.
- Although centrality does increase as the number of elections increase, there is less variance over elections compared to ambitious parties.
- In contrast the ambitious parties, the probability of ideological parties winning stays high as the number of elections increase (except for RAPs).
- CAPs are more likely to win than RAPs and GAPs (and with lower centrality).

- For all three algorithms, the distance to party ideals increases incrementally while the distance to the median decreases as the number of elections increases.
- Dumbell Waltz:
 - Challenging party searches in a neighborhood of its ideal platform until it finds a winning platform.
 - This neighborhood slowly converges to areas of high centrality.
 - Winning platforms consist of two disjoint neighborhoods (one near each ideal platform) and resembles a dumbbell.
 - The ends of the dumbbell slowly converge as the number of elections increases.

Results: Campaign Length

Results: Campaign Length

- Recall that increasing the length of the campaign increases the ability of parties to learn about, and adapt to, voters' collective preferences.
- Both centrality and the probability of winning tend to increase as the length of campaigns increases.
- Increasing campaign length for ambitious CAPs qualitatively increases centrality.
- For ideological parties, centrality varies only slightly with campaign length because more informed ideological parties are able to locate winning platforms near their ideal platforms.

Conclusions

- Boundedly rational parties (even ideological ones) will converge to central regions of the issue space in a Downsian fashion.
- In a two-party system, even simple RAPs can lead to normatively appealing outcomes (high centrality).
- Ambitious parties reach higher centrality than ideological parties.
- All three search procedures for both types of parties produced similar outcomes
- This means there may exist large equivalence classes of adaptive behavior by parties that may allow researchers to undertake a unified analysis.
- A boundedly rational party that adapts in a complex issue space may not be able to defeat a well-positioned incumbent.

Take-Away Points

- Why ABM?
- Very general model.
- Simple rules.

Ensley, Tofias, & de Marchi (AJPS, 2009)

Introduction

- Kollman, Miller, & Page (1992) show that it may be difficult for a challenger to beat a well-positioned incumbent even if a winning platform exists.
- Offer an empirical test of Kollman, Miller, & Page's adaptive parties model.
- Question: does electoral competition decrease with increasing complexity in the electorate?

- In the adaptive parties model, candidates (parties) pick a platform in the political landscape.
- The political landscape represents aggregated voter preferences over the platforms of the two candidates.
- Given the lack of information and a multi-dimensional policy space, candidates do not have the ability to analytically solve for an optimal platform.
- Thus, candidates search electoral landscapes for winning platforms.

- The issue space forms an adaptive landscape.
- Electoral landscapes are like geographical landscapes, where regions of greater height represent policy platforms that will be more successful than lower regions.

- The complexity of a given landscape is characterized by measures of dimensionality and ruggedness.
- Higher dimensional policy spaces are more difficult to search than lower dimensional spaces, and rugged landscapes may have many local optima.
- Alternatively, simple landscapes are one dimensional and may have a single peak or an optimal platform location for a challenger.

- To test the adaptive parties hypothesis they create a measure of complexity based on the policy preferences of the electorate.
- Use the 2000 National Annenberg Election Study (NAES) to investigate elections in House districts.
- Use the NAES to measure preferences at the microlevel and then aggregate up to the district level to create a measure of complexity.

- Two main dimensions of voter preferences are recovered using a principal components factor analysis.
- The measure of district complexity is based on the correlation between the social-welfare and cultural dimensions.
- Each respondent's preference along these two dimensions is measured, and then aggregated to compute the score for each House district.

Measuring District Complexity

- Evidence shows that at least two dimensions are needed to to describe the preferences of voters.
- Thus, there is no way that an incumbent can secure victory by choosing a single "best" platform.
- What matters is the relative quality of the incumbent's choice, which depends on the complexity of the problem faced by the candidates.

Measuring District Complexity

- The correlation of respondents' positions on the two dimensions is a good measure of complexity.
- If the two dimensions are perfectly correlated, then knowing a voter's
 position on one dimension is equivalent to knowing his or her position on
 the other dimension.
- In this situation, and assuming that the incumbent is to some degree fixed, the challenger faces a relatively easy task of finding a superior platform.
- If the two dimensions are uncorrelated, the knowledge of a voter's position on one dimension provides no information about a voter's attitudes on the other dimension.
- The lower the correlation between the two dimensions, the more difficult it is for a challenger to locate a platform that beats an incumbent.
- In short, as the correlation between the two dimensions decreases, the electoral landscape complexity increases.

Measuring District Complexity

The Shape of District Preferences

The high complexity example district is PA-7 and the low complexity example is MI-11. *Data Source*: 2000 National Annenberg Election Study.

Research Design

Dependent Variables: 1) whether district complexity influences the probability that a quality challenger emerged (i.e., one with previous office-holding experience). If district complexity influences an incumbent's electoral prospects, we would expect that quality challengers would be less likely to emerge as district complexity increases;

Research Design

Dependent Variables: 1) whether district complexity influences the probability that a quality challenger emerged (i.e., one with previous office-holding experience). If district complexity influences an incumbent's electoral prospects, we would expect that quality challengers would be less likely to emerge as district complexity increases; 2) incumbents' electoral performance based on percentage of the two-party vote.

Research Design

- Dependent Variables: 1) whether district complexity influences the probability that a quality challenger emerged (i.e., one with previous office-holding experience). If district complexity influences an incumbent's electoral prospects, we would expect that quality challengers would be less likely to emerge as district complexity increases; 2) incumbents' electoral performance based on percentage of the two-party vote.
- Independent Variable: inverse of the absolute correlation between the social-welfare and cultural dimensions as the measure of district complexity.

Results: Quality Challenger

TABLE 2 Probit Regression of Challenger Quality Emergence

		Standard	
Independent Variable	Coefficient	Error	
Complexity	-2.07**	0.99	
Republican Incumbent	11.04**	3.08	
Social Welfare	-0.77	2.16	
Republican Incumbent ×	-0.23	2.73	
Social Welfare			
Cultural	-1.93	1.25	
Republican Incumbent ×	4.65**	1.88	
Cultural			
Partisanship	1.39**	0.63	
Republican Incumbent ×	-2.84**	0.79	
Partisanship			
Sullivan Index	-11.72	9.57	
Social Welfare Roll Call	0.18	1.07	
Republican Incumbent ×	-0.27	1.52	
S.W. Roll Call			
Cultural Roll Call	0.41 □ > <	∂ → (0.40)	

Results: Quality Challenger

- Quality challengers should be more likely to enter races when conditions are favorable (i.e., when the electoral landscape is less complex).
- The negative and statistically significant coefficient on complexity supports this hypothesis.
- Holding other variables at their mean values, the predicted probability of a quality challenger entering the race is 10% (30%) in a district with a complexity score two standard deviations below (above) the mean.

Results: Incumbent Vote Share

Regression Models of Incumbent Share of Two-Party Vote

Independent Variable	OLS		2SLS†	
	Coef.	SE	Coef.	SE
Complexity	6.18**	2.84	6.94*	4.17
Incumbent Spending	-0.46	0.50	1.39	1.46
Challenger Spending	-2.59**	0.15	-4.97**	0.81
Republican Incumbent	-38.47**	7.99	-17.74	14.06
Social Welfare	-13.49**	6.54	-8.80	7.95
Republican Incumbent × Social Welfare	15.59*	8.05	7.51	11.71
Cultural	-7.56*	4.00	-4.81	4.14
Republican Incumbent × Cultural	16.04**	5.34	13.51*	7.54
Partisanship	-7.03**	1.76	-4.05	2.56
Republican Incumbent × Partisanship	10.61**	2.10	4.34	3.78
Sullivan Index	22.88	23.08	41.78	39.07
Social Welfare Roll Call	-2.72	2.54	1.68	3.60
Republican Incumbent × S.W. Roll Call	-2.49	3.45	-3.70	5.40
Cultural Roll Call	2.33**	1.11	0.10	1.74
Republican Incumbent × Cult. Roll Call	-2.55	1.60	-0.54	2.76
Challenger Quality	-0.39	0.61	1.84*	1.14
Freshman	-0.97	0.90	0.27	1.14
Constant	115.08**	11.25	101.41**	23.01
N	327		272	
\mathbb{R}^2	0.79		0.63	
Anderson Exogeneity Test	-		27.5**	

Data weighted by the number of respondents per House district.

† Instrumented: Incumbent Spending, Lagged Challenger Spending,
Excluded instruments: Lagged Incumbent Spending, Lagged Challenger Party Spending (see Appendix B for first-stage regressions).

Entries are coefficient estimates and heteroskedasticity-robust standard errors.

^{**} p < 0.05; * p < 0.10.

Results: Incumbent Vote Share

- The positive and statistically significant coefficient on complexity indicates that as the district becomes more complex the incumbent's vote share goes up.
- If we compare a district with a complexity score two standard deviations below the mean to a district with a score two standard deviations above the mean, there is a 2.5% difference in the incumbent's expected vote share.

Conclusions

- As district complexity increases, a quality challenger is less likely to enter the race.
- As district complexity increases, the incumbent's vote share increases.
- Incumbent's benefit from district complexity.

Take-Away Points

Attempt to test a computational model.