17.1 Un théorème de permutation des signes \sum et \int

17.1.1 Cas des fonctions continues

Le résultat suivant nous sera utile.

Lemme 17.1 Si $(F_n)_{n\in\mathbb{N}}$ est une suite décroissante de compacts non vides dans \mathbb{R} , alors l'intersection $F = \bigcap_{n\in\mathbb{N}} F_n$ est un compact non vide.

Démonstration. F est fermé comme intersection de fermés de \mathbb{R} . Comme la suite $(F_n)_{n\in\mathbb{N}}$ est décroissante, on a $F\subset F_0$ et F est borné comme F_0 . L'ensemble F est donc compact.

Comme tous les F_n sont non vides, il existe une suite réelle $(x_n)_{n\in\mathbb{N}}$ telle que $x_n\in F_n\subset F_0$ pour tout n et de cette suite dans le compact F_0 , on peut extraire une sous-suite $(x_{\varphi(n)})_{n\in\mathbb{N}}$ qui converge vers un réel x.

Pour
$$m \in \mathbb{N}$$
 et $n \geq m$, on a $\varphi(n) \geq n \geq m$, donc $x_{\varphi(n)} \in F_{\varphi(n)} \subset F_m$ et $x = \lim_{n \to +\infty} x_{\varphi(n)} \in F_m$ puisque F_m est fermé. On a donc $x \in F = \bigcap_{m \in \mathbb{N}} F_m$ et F est non vide.

Remarque 17.1 Le résultat précédent est faux pour une intersection de fermés comme le montre l'exemple des fermés $F_n =]-\infty, n]$ avec $\bigcap_{n \in \mathbb{N}} F_n = \emptyset$.

Nous aurons aussi besoin de ce deuxième lemme technique.

Lemme 17.2 Si $(f_n)_{n\in\mathbb{N}}$ est une suite de fonctions continues sur I=[a,b] à valeurs réelles positives et f une fonction continue sur I à valeurs réelles positives telles que :

$$\forall x \in I, \ f(x) \le \sum_{n=0}^{+\infty} f_n(x)$$

on a alors:

$$\int_{a}^{b} f(x) dx \le \sum_{n=0}^{+\infty} \int_{a}^{b} f_n(x) dx$$

(les sommes des séries numériques considérées valant $+\infty$ en cas de divergence du fait qu'elles sont à termes positifs.).

Démonstration. Si $\sum_{n=0}^{+\infty} \int_{a}^{b} f_n(x) dx = +\infty$, l'inégalité $\int_{a}^{b} f(x) dx \leq \sum_{n=0}^{+\infty} \int_{a}^{b} f_n(x) dx$ est alors vérifiée.

On suppose donc que la série $\sum \int_{a}^{b} f_{n}(x) dx$ converge.

On se donne un réel $\varepsilon > 0$ et pour tout entier $n \in \mathbb{N}$, on note :

$$F_{n} = \left\{ x \in I \mid \sum_{k=0}^{n} f_{k}(x) \leq f(x) - \varepsilon \right\}.$$

Chaque F_n est fermé comme image réciproque du fermé $]-\infty, -\varepsilon]$ par la fonction continue $\sum_{k=0}^{n} f_k - f$ et comme les fonctions f_k sont à valeurs positives, on a $F_{n+1} \subset F_n \subset I$ pour tout n.

Supposons que $F = \bigcap_{n \in \mathbb{N}} F_n$ soit non vide. Il existe alors un réel $x \in I$ tel que $\sum_{n=0}^{n} f_k(x) \le 1$ $f\left(x\right)-\varepsilon$ pour tout n, ce qui entraı̂ne la convergence de la série à termes positifs $\sum f_{n}\left(x\right)$ avec $\sum_{n=0}^{+\infty} f_n(x) \le f(x) - \varepsilon, \text{ ce qui est en contradiction avec } f(x) \le \sum_{n=0}^{+\infty} f_n(x) \text{ et } \varepsilon > 0.$ L'ensemble F est donc vide et le lemme précédent nous dit alors qu'il existe un entier m tel

que F_m soit vide, ce qui signifie que :

$$\forall x \in I, \sum_{k=0}^{m} f_k(x) > f(x) - \varepsilon$$

et en conséquence :

$$\int_{a}^{b} f(x) dx \leq \sum_{k=0}^{m} \int_{a}^{b} f_{k}(x) dx + \varepsilon (b-a)$$
$$\leq \sum_{n=0}^{+\infty} \int_{a}^{b} f_{n}(x) dx + \varepsilon (b-a)$$

Comme le réel $\varepsilon > 0$ est quelconque, on en déduit que $\int_a^b f(x) dx \le \sum_{n=0}^{+\infty} \int_a^b f_n(x) dx$.

Nous sommes maintenant en mesure de montrer un premier théorème de permutation des signes \sum et \int pour les fonctions continues sur un segment.

Théorème 17.1 Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions continues sur I=[a,b] à valeurs réelles ou complexes telle que :

- 1. la série de fonctions $\sum f_n$ converge simplement sur I vers une fonction continue f;
- 2. la série numérique $\sum \int_{a}^{b} |f_n(x)| dx$ est convergente.

Dans ces conditions, la série numérique $\sum \int_{a}^{b} f_{n}(x) dx$ est convergente et :

$$\int_{a}^{b} f(x) dx = \sum_{n=0}^{+\infty} \int_{a}^{b} f_n(x) dx.$$

Démonstration. Pour tout entier $n \ge 0$, on note $S_n = \sum_{k=0}^n f_k$ la somme partielle d'indice n et $R_n = f - S_n = \sum_{k=n+1}^{+\infty} f_k$ le reste d'indice n. On a alors :

$$\left| \int_{a}^{b} f(x) dx - \sum_{k=0}^{n} \int_{a}^{b} f_{k}(x) dx \right| = \left| \int_{a}^{b} \left(f(x) - \sum_{k=0}^{n} f_{k}(x) \right) dx \right|$$
$$= \left| \int_{a}^{b} R_{n}(x) dx \right| \leq \int_{a}^{b} \left| R_{n}(x) \right| dx$$

avec $|R_n| = |f - S_n|$ continue sur I telle que :

$$\forall x \in I, |R_n(x)| \le \sum_{k=n+1}^{+\infty} |f_k(x)|$$
(17.1)

En effet, dans le cas où $\sum_{k=n+1}^{+\infty} |f_k(x)| = +\infty$, on a automatiquement l'inégalité et dans le cas où $\sum_{k=n+1}^{+\infty} |f_k(x)|$ converge, la série $\sum_{k=n+1}^{+\infty} f_k(x)$ est convergente et :

$$|R_n(x)| = \left| \sum_{k=n+1}^{+\infty} f_k(x) \right| \le \sum_{k=n+1}^{+\infty} |f_k(x)|.$$

Le lemme 17.2 nous dit alors que :

$$\int_{a}^{b} \left| R_{n}\left(x\right) \right| dx \le R_{n} = \sum_{k=n+1}^{+\infty} \int_{a}^{b} \left| f_{k}\left(x\right) \right| dx$$

avec $\lim_{n\to+\infty}R_n=0$ puisque la série $\sum\int_a^b\left|f_n\left(x\right)\right|dx$ est convergente.

On a donc:

$$\lim_{n \to +\infty} \left| \int_{a}^{b} f(x) dx - \sum_{k=0}^{n} \int_{a}^{b} f_{k}(x) dx \right| = 0$$

soit $\int_{a}^{b} f(x) dx = \lim_{n \to +\infty} \sum_{k=0}^{n} \int_{a}^{b} f_{k}(x) dx$, c'est-à-dire l'égalité annoncée.

Un résultat analogue pour les fonctions continues et absolument intégrables sur un intervalle quelconque s'en déduit.

Théorème 17.2 Soient I = [a,b[un intervalle réel avec $-\infty < a < b \le +\infty,$ $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions continues sur I à valeurs réelles ou complexes telle que :

- 1. la série de fonctions $\sum f_n$ converge simplement sur I vers une fonction continue f;
- 2. pour tout $n \in \mathbb{N}$ l'intégrale $\int_a^b f_n(x) dx$ est absolument convergente;
- 3. la série numérique $\sum \int_{a}^{b} |f_{n}(x)| dx$ est convergente.

Dans ces conditions, l'intégrale $\int_a^b f(x) dx$ est absolument convergente, la série numérique $\sum \int_a^b f_n(x) dx$ est convergente et :

$$\int_{a}^{b} f(x) dx = \sum_{n=0}^{+\infty} \int_{a}^{b} f_n(x) dx.$$

Démonstration. Les fonctions $|f_n|$ et |f| sont continues à valeurs positives sur tout segment $[a, x] \subset I$ (où a < x < b) avec :

$$\forall t \in [a, x], |f(t)| \le \sum_{n=0}^{+\infty} |f_n(t)|$$

(la justification est analogue à celle de (17.1)), ce qui entraîne :

$$\int_{a}^{x} |f(t)| dt \le \sum_{n=0}^{+\infty} \int_{a}^{x} |f_{n}(t)| dt \le \sum_{n=0}^{+\infty} \int_{a}^{b} |f_{n}(x)| dx < +\infty$$

La fonction $x \mapsto \int_a^x |f(t)| \, dt$ est donc croissante majorée et en conséquence $\int_a^b |f(t)| \, dt = \lim_{x \to b} \int_a^x |f(t)| \, dt$ est bien définie, ce qui signifie que l'intégrale $\int_a^b f(x) \, dx$ est absolument convergente (on dit aussi que la fonction f est sommable ou absolument intégrable sur I).

Pour tout entier $n \ge 0$, on note $S_n = \sum_{k=0}^n f_k$ la somme partielle d'indice n et $R_n = f - S_n = \sum_{k=n+1}^{+\infty} f_k$ le reste d'indice n. On a alors :

$$\left| \int_{a}^{b} f(x) dx - \sum_{k=0}^{n} \int_{a}^{b} f_{k}(x) dx \right| = \left| \int_{a}^{b} \left(f(x) - \sum_{k=0}^{n} f_{k}(x) \right) dx \right|$$
$$= \left| \int_{a}^{b} R_{n}(x) dx \right| \leq \int_{a}^{b} \left| R_{n}(x) \right| dx$$

avec $\int_{a}^{b} |R_{n}(x)| dx \le +\infty$ et $|R_{n}| = |f - S_{n}|$ continue sur I telle que :

$$\forall x \in I, |R_n(x)| \le \sum_{k=n+1}^{+\infty} |f_k(x)|$$

Le lemme 17.2 nous dit alors que pour tout $x \in]a, b[$, on a :

$$\int_{a}^{x} |R_{n}(x)| dx \leq \sum_{k=n+1}^{+\infty} \int_{a}^{x} |f_{k}(x)| dx$$

$$\leq R_{n} = \sum_{k=n+1}^{+\infty} \int_{a}^{b} |f_{k}(x)| dx$$

et en conséquence :

$$\int_{a}^{b} |R_{n}(x)| \, dx \le R_{n}$$

avec $\lim_{n \to +\infty} R_n = 0$ puisque la série $\sum \int_a^b |f_n(x)| dx$ est convergente.

On a donc:

$$\lim_{n \to +\infty} \left| \int_{a}^{b} f(x) dx - \sum_{k=0}^{n} \int_{a}^{b} f_{k}(x) dx \right| = 0$$

soit
$$\int_{a}^{b} f(x) dx = \lim_{n \to +\infty} \sum_{k=0}^{n} \int_{a}^{b} f_{k}(x) dx$$
, c'est-à-dire l'égalité annoncée.

Le cas des fonctions continues et absolument intégrables sur un intervalle I quelconque s'en déduit facilement.

Remarque 17.2 Dans la démonstration précédente, on a en fait prouvé que :

$$||f - S_n||_1 = \int_a^b |f(x) - \sum_{k=0}^n f_k(x)| dx = \int_a^b |R_n(x)| dx \underset{n \to +\infty}{\longrightarrow} 0$$

ce qui traduit le fait que la série $\sum f_n$ converge en moyenne vers la fonction f.

Exercice 17.1 Montrer que pour tout nombre complexe α tel que $\Re(\alpha) > 0$, on a :

$$\int_0^{+\infty} \frac{x^{\alpha}}{e^x - 1} dx = \Gamma\left(\alpha + 1\right) \sum_{n=1}^{+\infty} \frac{1}{n^{\alpha + 1}}$$

$$où \Gamma(z) = \int_0^{+\infty} x^{z-1} e^{-x} dx \ pour \Re(z) > 0.$$

Solution 17.1 Pour tout réel x > 0, on a :

$$f(x) = \frac{x^{\alpha}}{e^x - 1} = \frac{x^{\alpha}e^{-x}}{1 - e^{-x}} = \sum_{n=0}^{+\infty} x^{\alpha}e^{-(n+1)x} = \sum_{n=0}^{+\infty} f_n(x)$$

avec f et les f_n continues sur $]0, +\infty[$ et :

$$\int_0^{+\infty} |f_n(x)| dx = \int_0^{+\infty} x^{\Re(\alpha)} e^{-(n+1)x} dx < +\infty.$$

Le changement de variable t = (n+1)x donne :

$$\int_{0}^{+\infty} |f_{n}(x)| dx = \frac{1}{(n+1)^{\Re(\alpha)+1}} \int_{0}^{+\infty} t^{\Re(\alpha)} e^{-t} dt = \frac{\lambda}{(n+1)^{\Re(\alpha)+1}}$$

 $avec \sum \frac{1}{(n+1)^{\Re(\alpha)+1}} < +\infty \ pour \Re(\alpha) > 0.$

Le théorème précédent nous dit alors que :

$$\int_0^{+\infty} \frac{x^{\alpha}}{e^x - 1} dx = \sum_{n=0}^{+\infty} \int_0^{+\infty} x^{\alpha} e^{-(n+1)x} dx = \sum_{n=0}^{+\infty} \frac{1}{(n+1)^{\alpha+1}} \int_0^{+\infty} t^{\alpha} e^{-t} dt$$
$$= \Gamma(\alpha + 1) \sum_{n=1}^{+\infty} \frac{1}{n^{\alpha+1}}$$

Par exemple, pour $\alpha = 1$, on a $\Gamma(\alpha + 1) = \Gamma(2) = 1$ et:

$$\int_0^{+\infty} \frac{x^2}{e^x - 1} dx = \sum_{n=1}^{+\infty} \frac{1}{n^2}.$$

17.1.2 Cas des fonctions continues par morceaux

On rappelle tout d'abord la définition d'une fonction continue par morceaux sur un segment I = [a, b].

Définition 17.1 On dit qu'une fonction f définie sur I = [a, b] est continue par morceaux sur cet intervalle s'il existe une subdivision :

$$x_0 = a < x_1 < \dots < x_p < x_{p+1} = b$$

telle que la fonction f soit continue chacun des intervalle $]x_k, x_{k+1}[$ $(0 \le k \le p),$ admette une limite à droite en a, une limite à gauche en b et des limites à droite et à gauche en chacun des points x_k $(1 \le k \le p).$

Avec les notations de cette définition, pour tout entier k compris entre 0 et p, la restriction de la fonction f à l'intervalle $]x_k, x_{k+1}[$ se prolonge en une fonction continue sur $[x_k, x_{k+1}]$.

Une fonction continue par morceaux sur I est donc en particulier intégrable sur cet intervalle. Les résultats qui suivent vont nous permettre de nous ramener aux cas des fonctions continues sur un segment.

Lemme 17.3 Si f est continue par morceaux sur I = [a, b] et à valeurs positives, on peut alors trouver, pour tout réel $\varepsilon > 0$, une fonction g continue sur I telle que $0 \le g \le f$ et $\int_a^b (f(x) - g(x)) dx < \varepsilon$.

Démonstration. Si f est continue, la fonction g = f convient.

Sinon on note $x_1 < x_2 < \cdots < x_p$ les points de discontinuité de f dans]a,b[et on désigne par $\eta > 0$ un réel tel que $[x_k - \eta, x_k + \eta] \subset]a,b[$ pour tout k compris entre 1 et p. Le choix de η sera affiné plus loin en fonction de $\varepsilon > 0$.

On désigne par φ la fonction continue qui coïncide avec f sur $I \setminus \bigcup_{k=1}^p]x_k - \eta, x_k + \eta[$, qui est affine par morceaux sur chaque intervalle $[x_k - \eta, x_k + \eta]$ et vaut 0 en chaque x_k , soit :

$$\varphi(x) = \begin{cases} f(x) & \text{si } x \in I \setminus \bigcup_{k=1}^{p}]x_k - \eta, x_k + \eta[\\ \frac{f(x_k - \eta)}{\eta} (x_k - x) & \text{si } x \in [x_k - \eta, x_k]\\ \frac{f(x_k + \eta)}{\eta} (x - x_k) & \text{si } x \in [x_k, x_k + \eta] \end{cases}$$

(faire un dessin). Cette fonction est à valeurs positives, continue sur $I \setminus \bigcup_{k=1}^{p} \{x_k - \eta, x_k, x_k + \eta\}$ et on vérifie facilement qu'elle est continue en chacun des points $x_k - \eta, x_k, x_k + \eta$.

On définit alors la fonction g par $g = \min(f, \varphi)$. Cette fonction est continue sur $I \setminus \{x_1, \dots, x_p\}$ comme minimum de deux fonctions continues sur cet ensemble et pour chaque x_k , on a :

$$\lim_{x \to x_{k}^{-}} g(x) = \lim_{x \to x_{k}^{-}} \min(f(x), \varphi(x)) = \min\left(\lim_{x \to x_{k}^{-}} f(x), \lim_{x \to x_{k}^{-}} \varphi(x)\right)$$
$$= \min\left(\lim_{x \to x_{k}^{-}} f(x), 0\right) = 0 = g(x_{k})$$

puisque $\lim_{x \to x_k^-} f(x) \ge 0$ (f est à valeurs positives) et $\lim_{x \to x_k^+} g(x) = 0 = g(x_k)$ (même démonstration). La fonction g est donc continue sur I.

Par construction, on a $0 \le g(x) \le f(x)$ pour tout $x \in I$ et:

$$\int_{a}^{b} (f(x) - f(x)) dx = \sum_{k=1}^{p} \int_{x_{k} - \eta}^{x_{k} + \eta} (f(x) - g(x)) dx$$

$$\leq \sum_{k=1}^{p} \int_{x_{k} - \eta}^{x_{k} + \eta} f(x) dx \leq 2p\eta \|f\|_{\infty} < \varepsilon$$

pour
$$0 < \eta < \frac{\varepsilon}{2p \|f\|_{\infty}}$$

Remarque 17.3 Le lemme précédent est encore vrai pour f de signe quelconque, avec g non nécessairement positive, comme on le voit en remplaçant f par $f - \inf_{x \in I} f(x)$ (f continue par morceaux sur [a,b] est minorée).

Lemme 17.4 Si f est continue par morceaux sur I = [a, b] et à valeurs positives, on peut alors trouver, pour tout réel $\varepsilon > 0$, une fonction h continue sur I telle que $0 \le f \le h$ et $\int_a^b (h(x) - f(x)) dx < \varepsilon$.

Démonstration. Comme f est continue par morceaux sur I, elle est majorée et $f_1 = \sup_{x \in I} f(x) - f$ est continue par morceaux positives, on peut donc trouver, pour tout réel $\varepsilon > 0$,

une fonction g_1 continue sur I telle que $0 \le g_1 \le f_1$ et $\int_a^b (f_1(x) - g_1(x)) dx < \varepsilon$. La fonction $h = \sup_{x \in I} f(x) - g_1$ convient alors.

De ces lemmes, on déduit que le lemme 17.2 est encore valable pour les fonctions continues par morceaux.

Lemme 17.5 Si $(f_n)_{n\in\mathbb{N}}$ est une suite de fonctions continues par morceaux sur I=[a,b] à valeurs réelles positives et f une fonction continue par morceaux sur I à valeurs réelles positives telles que :

$$\forall x \in I, \ f(x) \le \sum_{n=0}^{+\infty} f_n(x)$$

on a alors:

$$\int_{a}^{b} f(x) dx \le \sum_{n=0}^{+\infty} \int_{a}^{b} f_{n}(x) dx$$

Démonstration. On se donne un réel $\varepsilon > 0$ et on désigne par g et h_n , pour $n \in \mathbb{N}$, des fonctions continues sur I telles que :

$$0 \le g \le f$$
, $0 \le f_n \le h_n$ et $\int_{\alpha}^{\beta} (f(x) - g(x)) dx < \varepsilon$, $\int_{\alpha}^{\beta} (h_n(x) - f_n(x)) dx < \frac{\varepsilon}{2^n}$

On a alors:

$$0 \le g \le f \le \sum_{n=0}^{+\infty} f_n \le \sum_{n=0}^{+\infty} h_n$$

les fonctions g et h_n étant continues positives. Le lemme 17.2 nous dit alors que :

$$0 \le \int_{a}^{b} g(x) dx \le \sum_{n=0}^{+\infty} \int_{a}^{b} h_{n}(x) dx$$

et en conséquence :

$$0 \le \int_{a}^{b} f(x) dx \le \varepsilon + \int_{a}^{b} g(x) dx \le \varepsilon + \sum_{n=0}^{+\infty} \int_{a}^{b} h_{n}(x) dx$$
$$\le \varepsilon + \sum_{n=0}^{+\infty} \int_{a}^{b} f_{n}(x) dx + \varepsilon \sum_{n=0}^{+\infty} \frac{1}{2^{n}}$$
$$\le 3\varepsilon + \sum_{n=0}^{+\infty} \int_{a}^{b} f_{n}(x) dx$$

Et comme $\varepsilon > 0$ est quelconque, on a bien l'inégalité annoncée.

En reprenant la démonstration faite dans le cas des fonctions continues, on déduit alors le résultat suivant.

Théorème 17.3 Soient I = [a,b[un intervalle réel avec $-\infty < a < b \le +\infty,$ $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions continues par morceaux sur I à valeurs réelles ou complexes telle que :

- 1. la série de fonctions $\sum f_n$ converge simplement sur I vers une fonction continue par morceaux f;
- 2. pour tout $n \in \mathbb{N}$ l'intégrale $\int_a^b f_n(x) dx$ est absolument convergente;
- 3. la série numérique $\sum \int_{a}^{b} |f_{n}(x)| dx$ est convergente.

Dans ces conditions, l'intégrale $\int_a^b f(x) dx$ est absolument convergente, la série numérique $\sum \int_a^b f_n(x) dx$ est convergente et :

$$\int_{a}^{b} f(x) dx = \sum_{n=0}^{+\infty} \int_{a}^{b} f_n(x) dx.$$

Remarque 17.4 Là encore, on a :

$$||f - S_n||_1 = \int_a^b \left| f(x) - \sum_{k=0}^n f_k(x) \right| dx \underset{n \to +\infty}{\to} 0$$

c'est-à-dire que la série $\sum f_n$ converge en moyenne vers la fonction f.

Un théorème de convergence dominée

Théorème 17.4 Soit I = [a, b] un intervalle réel avec $-\infty < a < b \le +\infty$. On se donne une suite $(f_n)_{n\in\mathbb{N}}$ de fonctions continues par morceaux sur I à valeurs réelles positives telle que :

- 1. la suite $(f_n)_{n\in\mathbb{N}}$ converge simplement sur I vers la fonction nulle;
- 2. il existe une fonction φ continue par morceaux sur I à valeurs réelles positives telle l'intégrale $\int \varphi(x) dx$ est convergente et $0 \le f_n \le \varphi$ pour tout $n \in \mathbb{N}$.

Dans ces conditions, on $a : \lim_{n \to +\infty} \int_{-\infty}^{b} f_n(x) dx = 0.$

Démonstration. L'idée de la démonstration est d'utiliser une suite $(g_n)_{n\in\mathbb{N}}$ telle que la série $\sum (g_n - g_{n+1})$ vérifie les conditions du théorème 17.3 avec $0 \le f_n \le g_n$, la suite $(g_n)_{n \in \mathbb{N}}$ convergeant simplement vers 0 (cette suite est de même nature que la série $\sum (g_n - g_{n+1})$).

Pour $n \in \mathbb{N}$ fixé, on définit la suite de fonctions $(f_{n,p})_{p>n}$ par :

$$\forall p \ge n, \ f_{n,p} = \max_{n \le k \le p} (f_k)$$

Les fonctions $f_{n,p}$ sont continues par morceaux à valeurs positives comme max d'une suite finie de fonctions continues par morceaux à valeurs positives et avec $\{f_n, \dots, f_p\} \subset \{f_n, \dots, f_p, f_{p+1}\}$, on déduit que la suite $(f_{n,p})_{p\geq n}$ est croissante. Avec $\{f_{n+1},\cdots,f_p\}\subset\{f_n,f_{n+1},\cdots,f_p\}$, on déduit que $f_{n+1,p}\leq f_{n,p}$ pour tout $p\geq n+1$.

Avec $0 \le f_{n,p} \le f_{n,p+1} \le \varphi$ pour tout $p \ge n$, on déduit que les intégrales $I_{n,p} = \int_{-\infty}^{\infty} f_{n,p}(x) dx$

sont convergentes et que la suite $(I_{n,p})_{p\geq n}$ est croissante majorée par $\int_a^{\infty} \varphi(x) dx$, donc convergente. En notant $I_n = \lim_{p \to +\infty} I_{n,p}$, on peut construire une suite strictement croissante d'entiers $(p_n)_{n\in\mathbb{N}}$ telle que :

$$\forall n \in \mathbb{N}, \ I_n - \frac{1}{2^n} \le I_{n,p_n} \le I_n$$

On définit alors la suite de fonctions $(g_n)_{n\in\mathbb{N}}$ par :

$$\forall n \in \mathbb{N}, \ g_n = f_{n,p_n} = \max\{f_n, f_{n+1}, \cdots, f_{p_n}\}$$

et on a:

$$\forall n \in \mathbb{N}, \ I_n - \frac{1}{2^n} \le I_{n,p_n} = \int_a^b g_n(x) \, dx \le I_n$$

Comme la suite $(f_n)_{n\in\mathbb{N}}$ converge simplement vers 0, pour tout $x\in I$ et tout réel $\varepsilon>0$, on peut trouver un entier $n_{x,\varepsilon}$ tel que :

$$\forall k \geq n_{x,\varepsilon}, \ 0 \leq f_k(x) \leq \varepsilon$$

ce qui entraîne que :

$$\forall n \geq n_{x,\varepsilon}, \ 0 \leq g_n(x) = \max\{f_n(x), \dots, f_{p_n}(x)\} \leq \varepsilon$$

La suite $(f_n)_{n\in\mathbb{N}}$ converge donc simplement vers 0 et la série $\sum (g_n-g_{n+1})$ qui est de même nature que cette suite converge simplement vers g_0 .

Avec:

$$|g_n - g_{n+1}| \le g_n + g_{n+1} \le 2\varphi$$

on déduit que pour tout $n \in \mathbb{N}$ l'intégrale $\int_{a}^{b} (g_n - g_{n+1})(x) dx$ est absolument convergente.

Il nous reste à montrer que la série $\sum \int_a^b |(g_n - g_{n+1})(x)| dx$ est convergente.

On a:

$$g_{n+1} - g_n = f_{n+1,p_{n+1}} - f_{n,p_n} \le f_{n,p_{n+1}} - f_{n,p_n}$$

avec $f_{n,p_{n+1}} - f_{n,p_n} \ge 0$ (les suites $(p_n)_{n \in \mathbb{N}}$ et $(f_{n,p})_{p \ge n}$ sont croissantes), donc :

$$\max(0, g_{n+1} - g_n) \le f_{n, p_{n+1}} - f_{n, p_n}$$

et avec $\max(0, u) = \frac{u}{2} + \frac{|u|}{2}$, soit $|u| = 2 \max(0, u) - u$, on déduit que :

$$|g_{n+1} - g_n| \le 2(f_{n,p_{n+1}} - f_{n,p_n}) - (g_{n+1} - g_n)$$

avec :

$$\int_{a}^{b} (f_{n,p_{n+1}}(x) - f_{n,p_{n}}(x)) dx = \int_{a}^{b} f_{n,p_{n+1}}(x) dx - \int_{a}^{b} f_{n,p_{n}}(x) dx$$
$$= I_{n,p_{n}+1} - I_{n,p_{n}} \le I_{n} - \left(I_{n} - \frac{1}{2^{n}}\right) = \frac{1}{2^{n}}$$

ce qui donne:

$$\int_{a}^{b} |g_{n}(x) - g_{n+1}(x)| dx \le 2\frac{1}{2^{n}} + \int_{a}^{b} g_{n}(x) dx - \int_{a}^{b} g_{n+1}(x) dx.$$

On en déduit alors que :

$$\sum_{k=0}^{n} \int_{a}^{b} |g_{k}(x) - g_{k+1}(x)| dx \le 2 \sum_{k=0}^{n} \frac{1}{2^{k}} + \sum_{k=0}^{n} \int_{a}^{b} g_{k}(x) dx - \sum_{k=0}^{n} \int_{a}^{b} g_{k+1}(x) dx$$

$$\le 2 \sum_{k=0}^{n} \frac{1}{2^{k}} + \int_{a}^{b} g_{0}(x) dx - \int_{a}^{b} g_{n+1}(x) dx$$

$$\le 2 \sum_{k=0}^{+\infty} \frac{1}{2^{k}} + \int_{a}^{b} g_{0}(x) dx \le 4 + \int_{a}^{b} g_{0}(x) dx$$

ce qui signifie que la série $\sum \int_a^b |(g_n - g_{n+1})(x)| dx$ converge.

Enfin avec $0 \le f_n \le g_n$, on obtient:

$$0 \le \int_{a}^{b} f_{n}(x) dx \le \int_{a}^{b} g_{n}(x) dx = \int_{a}^{b} \sum_{k=n}^{+\infty} (g_{k}(x) - g_{k+1}(x)) dx$$

avec:

$$R_{n} = \int_{a}^{b} \sum_{k=n}^{+\infty} (g_{n}(x) - g_{n+1}(x)) dx = \sum_{k=n}^{+\infty} \int_{a}^{b} (g_{k}(x) - g_{k+1}(x)) dx$$

et tenant compte de la convergence de $\sum \int_a^b |(g_n - g_{n+1})(x)| dx$ et de :

$$\left| \int_{a}^{b} (g_{n}(x) - g_{n+1}(x)) dx \right| \leq \int_{a}^{b} |g_{n}(x) - g_{n+1}(x)| dx$$

on déduit que la série $\sum \int_a^b \left(g_n\left(x\right)-g_{n+1}\left(x\right)\right)dx$ est absolument convergente et en conséquence $\lim_{n\to+\infty}R_n=0$.

On a bien, en définitive :
$$\lim_{n\to+\infty} \int_a^b f_n(x) dx = 0$$
.

La restriction aux fonctions à valeurs réelles positives est seulement technique. On a en fait le résultat suivant.

Théorème 17.5 (Convergence dominée) Soit I = [a, b[un intervalle réel avec $-\infty < a < b \le +\infty$. On se donne une suite $(f_n)_{n \in \mathbb{N}}$ de fonctions continues par morceaux sur I à valeurs réelles ou complexes telle que :

- 1. la suite $(f_n)_{n\in\mathbb{N}}$ converge simplement sur I vers une fonction f continue par morceaux;
- 2. il existe une fonction φ continue par morceaux sur I à valeurs réelles positives telle l'intégrale $\int_a^b \varphi(x) dx$ est convergente et $0 \le |f_n| \le \varphi$ pour tout $n \in \mathbb{N}$.

Dans ces conditions les fonctions f_n et f sont absolument intégrables et on a:

$$\lim_{n \to +\infty} \int_{a}^{b} f_{n}(x) dx = \int_{a}^{b} f(x) dx.$$

Démonstration. Avec $0 \le |f_n| \le \varphi$ et $0 \le |f| = \lim_{n \to +\infty} |f_n| \le \varphi$, on déduit que les fonctions f_n et f sont absolument intégrables sur I.

Des hypothèse, on déduit que $\lim_{n\to+\infty}|f_n-f|=0$, les fonction $|f_n-f|$ étant continues par morceaux positives avec $|f_n-f|\leq 2\varphi$. Le théorème précédent nous dit alors que :

$$\lim_{n \to +\infty} \int_{a}^{b} \left| f_{n}\left(x\right) - f\left(x\right) \right| dx = 0$$

et avec
$$\left| \int_{a}^{b} \left(f_{n}(x) - f(x) \right) dx \right| \leq \int_{a}^{b} \left| f_{n}(x) - f(x) \right| dx$$
, on déduit que $\lim_{n \to +\infty} \int_{a}^{b} \left(f_{n}(x) - f(x) \right) dx = 0$, soit $\lim_{n \to +\infty} \int_{a}^{b} f_{n}(x) dx = \int_{a}^{b} f(x) dx$.

Exercice 17.2 Calculer

$$\lim_{n \to +\infty} \int_0^1 n^2 x \left(1 - x\right)^n dx$$

et conclure.

Solution 17.2 Soit $(f_n)_{n\in\mathbb{N}}$ définie par $f_n(x) = n^2x(1-x)^n$ sur I = [0,1]. Cette suite de fonctions converge simplement vers la fonction nulle et :

$$\int_{0}^{1} f_{n}(x) dx = \frac{n^{2}}{(n+1)(n+2)} \underset{n \to +\infty}{\longrightarrow} 1.$$

On peut conclure qu'il est impossible de dominer la convergence.

Exercice 17.3 Calculer $\lim_{n\to+\infty} I_n(\alpha)$, où $\alpha>0$ et:

$$I_n(\alpha) = \int_0^{n^{\frac{1}{\alpha}}} \left(1 - \frac{x^{\alpha}}{n}\right)^n dx.$$

Solution 17.3 On désigne par $(f_n)_{n\geq 1}$ la suite de fonctions définies sur $]0,+\infty[$ par :

$$f_n(x) = \begin{cases} \left(1 - \frac{x^{\alpha}}{n}\right)^n & \text{si } x \in \left]0, n^{\frac{1}{\alpha}}\right[,\\ 0 & \text{si } x \ge n^{\frac{1}{\alpha}}. \end{cases}$$

Chaque fonction f_n est continue et intégrable sur $]0, +\infty[$ avec :

$$\forall x \in]0, +\infty[, \begin{cases} \lim_{n \to +\infty} f_n(x) = e^{-x^{\alpha}}, \\ \forall n \ge 1, \quad |f_n(x)| \le e^{-x^{\alpha}} \end{cases}$$

et:

$$\int_{0}^{+\infty} e^{-x^{\alpha}} dx = \int_{0}^{+\infty} e^{-t} \frac{t^{\frac{1}{\alpha}-1}}{\alpha} dt = \frac{\Gamma\left(\frac{1}{\alpha}\right)}{\alpha}.$$

On déduit alors du théorème de la convergence dominée que :

$$\lim_{n \to +\infty} I_n\left(\alpha\right) = \frac{\Gamma\left(\frac{1}{\alpha}\right)}{\alpha}.$$

Exercice 17.4 Calculer $\lim_{n\to+\infty} I_n(a)$, où a>0 et :

$$I_n(a) = \int_1^{+\infty} n^a \sin\left(\frac{x}{n}\right) e^{-n^2 x^2} dx.$$

Solution 17.4 Soit $(f_n)_{n\in\mathbb{N}}$ définie par $f_n(x)=n^a\sin\left(\frac{x}{n}\right)e^{-n^2x^2}$ sur $I=[1,+\infty[$. On a:

$$\forall x \ge 1, |f_n(x)| \le n^a e^{-n^2} \underset{n \to +\infty}{\longrightarrow} 0$$

avec:

$$\forall x \ge 1, |f_n(x)| \le n^a e^{-\frac{n^2}{2}} e^{-\frac{x^2}{2}} \le \lambda e^{-\frac{x^2}{2}}$$

(la suite $\left(n^a e^{-\frac{n^2}{2}}\right)_{n\geq 1}$ est majorée puisque convergente vers 0). On déduit alors du théorème de la convergence dominée que :

$$\lim_{n \to +\infty} I_n\left(a\right) = 0.$$

Exercice 17.5 1. Montrer que:

$$\lim_{n \to +\infty} \int_0^n \left(1 - \frac{t}{n}\right)^n \ln(t) dt = \int_0^{+\infty} e^{-t} \ln(t) dt.$$

2. Montrer que :

$$\int_{0}^{n} \left(1 - \frac{t}{n}\right)^{n} \ln(t) dt = \frac{n}{n+1} \left(\ln(n) - \sum_{k=1}^{n+1} \frac{1}{k}\right).$$

En déduire la valeur de $\int_0^{+\infty} e^{-t} \ln(t) dt$.

Solution 17.5 1. On désigne par $(f_n)_{n\geq 1}$ la suite de fonctions définies sur $]0,+\infty[$ par :

$$f_n(t) = \begin{cases} \left(1 - \frac{t}{n}\right)^n \ln(t) & \text{si } t \in]0, n[,\\ 0 & \text{si } t \ge n. \end{cases}$$

Chaque fonction f_n est continue et intégrable sur $]0, +\infty[$ avec :

$$\forall t \in]0, +\infty[, \lim_{n \to +\infty} f_n(t) = f(t) = e^{-t} \ln(t)$$

et:

$$\forall t \in]0, n[, |f_n(t)| = \left(1 - \frac{t}{n}\right)^n |\ln(t)| \le \varphi(t) = e^{-t} |\ln(t)|$$
$$\forall t \ge n, |f_n(t)| = 0 \le \varphi(t)$$

 $(pour \ 0 < x < 1, \ on \ a \ \ln(1-x) \le -x, \ donc \ \ln\left(1-\frac{t}{n}\right) \le -\frac{t}{n} \ pour \ t \in]0,n[\ et \\ \left(1-\frac{t}{n}\right)^n \le e^{-t}) \ la \ fonction \ \varphi \ étant \ continue \ et \ intégrable \ sur \]0,+\infty[\ . \ On \ déduit \ alors \ du \ théorème \ de \ la \ convergence \ dominée \ que \ :$

$$\lim_{n \to +\infty} \int_0^n \left(1 - \frac{t}{n}\right)^n \ln\left(t\right) dt = \lim_{n \to +\infty} \int_0^{+\infty} f_n\left(t\right) dt = \int_0^{+\infty} e^{-t} \ln\left(t\right) dt.$$

2. On a:

$$I_n = \int_0^n \left(1 - \frac{t}{n}\right)^n \ln(t) dt = \int_0^1 (1 - x)^n \ln(nx) n dx = \frac{n \ln(n)}{n+1} + n J_n$$

et une intégration par parties donne :

$$J_{n+1} = \int_0^1 (1-x)^{n+1} \ln(x) \, dx = (n+1) \int_0^1 (1-x)^n \, (x \ln(x) - x) \, dx$$
$$= -(n+1) J_{n+1} + (n+1) J_n - (n+1) \int_0^1 x \, (1-x)^n \, dx.$$

On a donc la relation de récurrence $(n+2) J_{n+2} = (n+1) J_n - \frac{1}{n+2}$, avec $J_0 = \int_0^1 \ln(x) dx = -1$, ce qui donne $(n+1) J_n = -\sum_{k=1}^{n+1} \frac{1}{k}$ et $I_n = \frac{n}{n+1} \left(\ln(n) - \sum_{k=1}^{n+1} \frac{1}{k} \right)$. On a alors:

$$\int_{0}^{+\infty} e^{-t} \ln(t) dt = \lim_{n \to +\infty} I_n = \lim_{n \to +\infty} \frac{n}{n+1} \left(\ln(n) - \sum_{k=1}^{n+1} \frac{1}{k} \right)$$
$$= -\gamma \le -0.577215664.$$

Exercice 17.6 Montrer que:

$$\forall x > 0, \ \Gamma(x) = \int_0^{+\infty} e^{-t} t^{x-1} dt = \lim_{n \to +\infty} \int_0^n \left(1 - \frac{t}{n}\right)^n t^{x-1} dt.$$

Puis que :

$$\forall x > 0, \ \Gamma(x) = \lim_{n \to +\infty} \frac{n! n^x}{x(x+1)\cdots(x+n)}.$$

Solution 17.6 On désigne par $(f_n)_{n\geq 1}$ la suite de fonctions définies sur $]0,+\infty[$ par :

$$f_n(t) = \begin{cases} \left(1 - \frac{t}{n}\right)^n t^{x-1} & \text{si } t \in]0, n[,\\ 0 & \text{si } x \ge n. \end{cases}$$

Chaque fonction f_n est continue et intégrable sur $]0, +\infty[$ avec :

$$\forall t \in]0, +\infty[, \quad \begin{cases} \lim_{n \to +\infty} f_n(t) = e^{-t}t^{x-1}, \\ \forall n \ge 1, |f_n(t)| \le e^{-t}t^{x-1} = f(t) \end{cases}$$

la fonction f étant continue et intégrable sur $]0,+\infty[$. On déduit alors du théorème de la convergence dominée que :

$$\lim_{n \to +\infty} \int_0^n \left(1 - \frac{t}{n}\right)^n t^{x-1} dt = \int_0^{+\infty} e^{-t} t^{x-1} dt = \Gamma\left(x\right).$$

 $On \ a :$

$$I_n(x) = \int_0^n \left(1 - \frac{t}{n}\right)^n t^{x-1} dt = \int_0^1 (1 - t)^n t^{x-1} n^x dx = n^x J_n(x).$$

Une intégration par parties donne :

$$J_{n+1}(x) = \int_0^1 (1-t)^{n+1} t^{x-1} dt = \frac{n+1}{x} \int_0^1 (1-x)^n t^x dx = \frac{n+1}{x} J_n(x+1)$$

et par récurrence :

$$J_{n}(x) = \frac{n!}{x(x+1)\cdots(x+n-1)} J_{0}(x+n)$$

$$= \frac{n!}{x(x+1)\cdots(x+n-1)} \int_{0}^{1} t^{x+n-1} dt = \frac{n!}{x(x+1)\cdots(x+n-1)(x+n)}.$$

Donc:

$$\Gamma(x) = \lim_{n \to +\infty} I_n(x) = \lim_{n \to +\infty} \frac{n! n^x}{x(x+1)\cdots(x+n)}.$$

17.3 Exercices supplémentaires

Exercice 17.7 On considère la série de fonctions de terme général $u_n(x) = \frac{2x}{n^2 + x^2}$ pour $n \ge 1$.

- 1. Montrer que cette série converge uniformément sur tout intervalle [a,b]. On notera f sa somme.
- 2. Exprimer sous forme d'une série de fonctions $\int_0^x f(t) dt$ pour $x \in [-1, 1]$.
- 3. Étudier la convergence uniforme sur [-1,1] de la série de fonctions de terme général $v_n(x) = \ln\left(1 + \frac{x^2}{n^2}\right)$.
- 4. Étudier la convergence uniforme sur [-1,1] de la série de fonctions de terme général $w_n(x) = \frac{2(n^2 x^2)}{(n^2 + x^2)^2}$.