G53KRR 2018 Answer to Informal Exercise 4

- 1. Rewrite the following first order formulas to clausal form:
 - (a) $\forall x (P(x) \land \neg \exists y R(x, y))$
 - (b) $\forall z (\exists x \exists y R(x, y) \supset Q(x, y, z))$

Answer.

- (a) $[P(x)], [\neg R(x,y)]$
- (b) $[\neg R(x,y), Q(x,y,z)]$

Explanation: (you don't have to provide it in formal exercise/exam, although in may be useful to show working in case you make a small mistake somewhere).

- (a) $\forall x (P(x) \land \neg \exists y R(x, y))$ is equivalent by $\neg \exists x \alpha \equiv \forall x \neg \alpha$ to $\forall x (P(x) \land \forall y \neg R(x, y))$, since y is not free in P(x) it is equivalent to $\forall x \forall y (P(x) \land \neg R(x, y))$ which gives two clauses $[P(x)], [\neg R(x, y)]$.
- (b) $\forall z(\exists x\exists y R(x,y)\supset Q(x,y,z))$ by the definition of implication is equivalent to $\forall z(\neg\exists x\exists y R(x,y)\lor Q(x,y,z))$ which is equivalent to $\forall z(\forall x\forall y\neg R(x,y)\lor Q(x,y,z))$ which gives a clause $[\neg R(x,y),Q(x,y,z)]$.
- 2. Derive by resolution an empty clause from the following clauses:
 - C1 [P(a), P(f(a))] where a is a constant
 - **C2** [Q(f(x))]
 - **C3** $[\neg P(x_1), R(x_1, f(x_1))]$
 - **C4** $[\neg R(x_2, y_2), \neg Q(y_2)]$

Answer. the shortest proof (found in exam answers to exam 2013/14):

- C5 $[\neg R(x_2, f(x))]$ from C2, C4, $y_2/f(x)$
- **C6** $[\neg P(x_1)]$ from C5, C3, x_2/x_1 , x/x_1
- **C7** [P(a)] from C6, C1, $x_1/f(a)$
- **C8** [] from C6, C7, x_1/a

Another proof (one I came up with first for the model answers)

- **C5** [P(f(a)), R(a, f(a))] from C1, C3, x_1/a
- **C6** $[P(f(a)), \neg Q(f(a))]$ from C5, C4, $x_2/a, y_2/f(a)$
- C7 [P(f(a))] from C6, C2, x/a
- **C8** [R(f(a), f(f(a)))] from C7, C3, $x_1/f(a)$
- **C9** $[\neg Q(f(f(a)))]$ from C8, C4, $x_2/f(a)$, $y_2/f(f(a))$
- **C10** [] from C9, C2, x/f(f(a))

- 3. For the pairs of literals below, state whether they unify, and if yes give a unifying substitution. Note that $x, y, z, z_1, z_2, z_3, u$ are variables and a a constant.
 - (a) R(x, f(a, x), g(y), y) and $R(a, z_1, g(z_2), z_3)$
 - (b) P(a, f(a), f(a)) and P(z, g(u), g(u))

Answer.

- (a) R(x, f(a, x), g(y), y) and $R(a, z_1, g(z_2), z_3)$: $x/a, z_1/f(a, a), z_2/y, z_3/y$
- (b) P(a, f(a), f(a)) and P(z, g(u), g(u)): not unifiable.