Problem (1.6)

Lad $(X_n)_{n\in\mathbb{N}}$ være en følge af uafhængige, identisk fordelte stokastiske variable på sandsynlighedsfeltet (Ω, \mathcal{F}, P) , og antag, at deres karakteristiske funktion er, givet ved:

$$\varphi_{X_1}(t) = e^{-|t|}, \quad (t \in \mathbb{R})$$

- (a) Vis, at X_n 'erne er symmetrisk, i den forstand at $X_1 \sim -X_1$, for alle $n \in \mathbb{N}$.
- (b) Vis, at X_n 'erne ikke har middelværdi, altså $\mathbb{E}[|X_1|] = \infty$.
- (c) Vis, at $X_1 \sim (1/n) \sum_{k=1}^n X_k$ for alle $n \in \mathbb{N}$.
- (d) Vis, at X_n 'erne er Cauchy-fordelte, altså at X_1 er absolut kontinuert med tæthed

$$f_{X_1}(x) = \frac{1}{\pi (1 + x^2)}, \quad (x \in \mathbb{R})$$

Vink: Benyt Opgave 12.4 i [M&I].

Solution

(a) Da φ_X er reel, har vi sammen Korollar 1.1.7(iii), at

$$\varphi_{\mathsf{X}}(t) = \overline{\varphi_{\mathsf{X}}(t)} = \varphi_{-\mathsf{X}}(t)$$

Og pr 1.2.5 har vi så,

$$\varphi_{\mathsf{X}} = \varphi_{-\mathsf{X}} \Rightarrow \mathsf{X}_1 \sim -\mathsf{X}_1$$

så X_1 er symmetrisk, og siden $X_n \sim X_1$ er alle X_n symmetriske.

(b) Antag for modstrid, at $\mathbb{E}[|X_1|] < \infty$, så giver sætning 1.3.1, at φ_{X_1} er differentiabel i t = 0, ser vi på grænsen kommende fra højre, så har vi:

$$\varphi'_{X_1}(0) = \lim_{h \to 0^+} \frac{\varphi_{X_1}(0+h) - \varphi_{X_1}(0)}{h} = \lim_{h \to 0^+} \frac{e^{-|0+h|} - e^{-|0|}}{h}$$
$$= \lim_{h \to 0^+} \frac{e^{-(0+h)} - e^{-0}}{h} = \frac{d}{dx}e^{-x} \Big|_{x=0} = -e^{-x} \Big|_{x=0} = -1$$

Fra venstre fâr vi:

$$\varphi'_{X_1}(0) = \lim_{h \to 0^-} \frac{\varphi_{X_1}(0+h) - \varphi_{X_1}(0)}{h} = \lim_{h \to 0^-} \frac{e^{-|0-h|} - e^{-|0|}}{h}$$
$$= \lim_{h \to 0^-} \frac{e^{0+h} - e^0}{h} = \frac{d}{dx} e^x \Big|_{x=0} = e^x \Big|_{x=0} = 1$$

Da de to grænser ikke er ens, så opnår vi modstrid. Hermed må $\mathbb{E}\left[|X_1|\right] = \infty$.

(c) Lad $A = (1/n, 1/n, \dots, 1/n) \in \operatorname{Mat}_{1,n}(\mathbb{R})$ og $X = (X_1, \dots, X_n)^T \in \operatorname{Mat}_{n,1}(\mathbb{R})$. Vi har så:

$$\varphi_{\frac{1}{n}\sum_{k=1}^{n}x_{k}}(t) = \varphi_{AX}(t)$$

$$\stackrel{1.1.7(iv)}{=} \varphi_{X}\left(A^{T}t\right)$$

$$= \prod_{i=1}^{n} \varphi_{X_{i}}\left(\frac{1}{n}t\right)$$

$$= \prod_{i=1}^{n} \varphi_{X_{i}}e^{-\frac{1}{n}|t|}$$

$$= \varphi_{X_{1}}e^{-n\frac{1}{n}|t|}$$

$$= \varphi_{X_{1}}(t) \quad (t \in \mathbb{R})$$

Hvor vi undervejs har gjort brug af 1.1.7 (iv) og (vi). Pr. Sætning 1.2.5, så har vi

$$X_1 \sim \frac{1}{u} \sum_{k=1}^n X_k$$

(d) Lad Z være absolut kontinuert med tætheden givet i opgaven, f(x). Vi ser, at:

$$\varphi_Z(t) = \int_{\mathbb{R}} e^{ixt} \frac{1}{\pi (1+x^2)} \lambda(dx) = \int_{\mathbb{R}} \cos(xt) \frac{1}{\pi (1+x^2)} \lambda(dx) + i \int_{\mathbb{R}} \sin(xt) \frac{1}{\pi (1+x^2)} \lambda(dx)$$

Da vi ved at $\sin(xt)\frac{1}{\pi(1+x^2)}$ er en ulige funktion, så er integralet af $\sin(xt)\frac{1}{\pi(1+x^2)}$ lig 0. Benyttes opgave 12.4(c) fra [M&I], så har vi:

$$\varphi_Z(t) = \int_{\mathbb{R}} \cos(xt) \frac{1}{\pi (1+x^2)} \lambda(dx) = e^{-|t|} = \varphi_{X_1}(t) \quad (t \in \mathbb{R})$$

Vi har herefter pr. sætning 1.2.5, at x_n 'erne er Cauchy-fordelte og er hermed færdige.

Problem (1.8)

Lad X være en stokastisk variabel på et sandsynlighedsfelt $(\Omega, \mathcal{F}, \mathbb{P})$.

- (a) Antag, at der findes $t_0 \in \mathbb{R} \setminus \{0\}$, således at $\varphi_X(t_0) = 1$. Vis da, at X er en diskret stokastisk variabel.
- (b) Antag nu kun, at der findes $t_0 \in \mathbb{R} \setminus \{0\}$, således at $|\varphi_X(t_0)| = 1$. Vis da, at X er diskret.
- (c) Vis, at der for ethvert $t \in (a,b) \setminus \{0\}$ findes $\theta_t \in (-\pi,\pi]$, således at

$$\mathbb{P}\left(t\left(X + \frac{\theta_t}{t}\right) \in \{p2\pi \mid p \in \mathbb{Z}\}\right) = 1$$

(d) Antag, at $c_1, c_2 \in \mathbb{R}$, og at $\mathbb{P}(X = c_1), \mathbb{P}(X = c_2) > 0$. Vis da, at der for alle $t \in (a, b) \setminus \{0\}$ må gælde, at

$$tc_1 + \theta_t \in \{p2\pi \mid p \in \mathbb{Z}\}, \quad \text{og} \quad tc_2 + \theta_t \in \{p2\pi \mid p \in \mathbb{Z}\}$$

og dermed også. at

$$t\left(c_{1}-c_{2}\right)\in\left\{ p2\pi\mid p\in\mathbb{Z}\right\}$$

Konkludér heraf, at $c_1 = c_2$, og at X er konstant \mathbb{P} – n.o.

(e) Antag, at U og V er uafhængige stokastiske variable på $(\Omega, \mathcal{F}, \mathbb{P})$, således at $U + V \sim U$. Benyt da det foregående og Korollar 1.1.7 til at vise, at V = 0 \mathbb{P} -n.o.

Solution

(a) Vi ser, at

$$1 = \varphi_X(t_0) = \mathbb{E}\left[e^{itt_0X}\right] = \mathbb{E}\left[\cos\left(t_0X\right)\right] + \mathbb{E}\left[\sin\left(t_0X\right)\right]$$

Dette viser, at $1 = \mathbb{E} \left[\cos (t_0 X) \right]$ og således også, at $\mathbb{E} \left[1 - \cos (t_0 X) \right] = 0$. Da $1 - \cos (t_0 X) \ge 0$, følger det, at $1 - \cos (t_0 X) = 0$ P-n.o. Dvs. at $t_0 X \in \{p2\pi \mid p \in \mathbb{Z}\}$ P-n.o., så $t_0 X$ er diskret. Da $t_0 \ne 0$, er $X = \frac{1}{t_0} t_0 X$ ligeledes diskret.

(b) Da $|\varphi_X(t_0)| = 1$, er $\varphi_X(t_0) = e^{i\eta, hvor} \eta \in [-\pi, \pi)$. Sæt $\theta = -\eta$, og bemærk, at $e^{i\theta}\varphi_X(t_0) = 1$. Hvis vi benytter Korollar 1.1.7(iv), ser vi, at

$$\varphi_{\theta/t_0+X}\left(t_0\right) = e^{\mathrm{i}t_0\theta/t_0}\varphi_X\left(t_0\right) = e^{\mathrm{i}\theta}\varphi_X\left(t_0\right) = 1$$

Ifølge (a) viser dette, at $\frac{\theta}{t_0} + X$ er diskret. Dermed er X ligeledes diskret. I de følgende to delopgaver antager vi, at der findes $a, b \in \mathbb{R}$, således at a < b. og $|\varphi_X(t)| = 1$ for alle $t \in (a, b)$. Målet er nu at vise, at der findes $c \in \mathbb{R}$. således at $X = c\mathbb{P} - n.0$.

(c) Lad $t \in (a, b) \setminus \{0\}$, I(b) viste vi, at der findes $\theta_t \in (-\pi, \pi]$, således at $\varphi_{\theta_t/t+X}(t) = 1$.I(a) så vi, at dette netop medforer, at

$$\mathbb{P}\left(t\left(X + \frac{\theta_t}{t}\right) \in \{p2\pi \mid p \in \mathbb{Z}\}\right) = 1$$

(d) Hvis $c \in \mathbb{R}$ og $\mathbb{P}\left(t\left(X + \frac{\theta_e}{t}\right) = c\right) > 0$, gælder der, at $c \in \{p2\pi \mid p \in \mathbb{Z}\}$ jf. (c). Idet $\mathbb{P}\left(t\left(X + \frac{\theta_t}{t}\right) = tc_i + \theta_t\right) > 0$ for i = 1, 2, har vi derfor $tc_1 + \theta_t \in \{p2\pi \mid p \in \mathbb{Z}\}$, og $tc_2 + \theta_t \in \{p2\pi \mid p \in \mathbb{Z}\}$ som ønsket. Vi ser nu, at $t\left(c_1 - c_2\right) = tc_1 + \theta_t - (tc_2 + \theta_t) = p_1 2\pi - p_2 2\pi = (p_1 - p_2) 2\pi \in \{p2\pi \mid p \in \mathbb{Z}\}$ Dette gælder for alle $t \in (a, b) \setminus \{0\}$. Vi har altså mængdeindklusionen

$$\{t(c_1 - c_2) \mid t \in (a, b) \setminus \{0\}\} \subseteq \{p2\pi \mid p \in \mathbb{Z}\}$$

Da højresiden er tællelig, må venstresiden nødvendigvis også være det. Dette kan kun lade sig gøre hvis $c_1 = c_2$.

Vi mangler at vise, at X er konstant \mathbb{P} -n.o. Vi ved fra (b), at X er diskret. Dvs. at der findes en tøllelig delmængde $A \subseteq \mathbb{R}$ med $\mathbb{P}(X = c) > 0$ for alle $c \in A$. Vi har netop vist, at A kun indeholder et element, som vi kalder c. Dermed har vi, at

$$\mathbb{P}(X=c) = \mathbb{P}(X \in A) = 1$$

(e) Benytter vi Korollar 1.1.7 (vii), făr vi, at

$$\varphi_U(t) = \varphi_{U+V}(t) = \varphi_U(t) + \varphi_V(t)$$

for alle $t \in \mathbb{R}$. Dvs. at $\varphi_V(t) = 1$ for alle $t \in \mathbb{R}$. Da følger det fra ovenstående, at der findes $c \in \mathbb{R}$, således at $V = c\mathbb{P}$ -n.o. Så er $\varphi_V(t) = \mathbb{E}\left[e^{itc}\right] = e^{itc}$ for alle t. Da vi samtidig ved, at $\varphi_V(t) = 1$ for alle t, må der nødvendigvis gælde, at c = 0. Altså er $V = 0\mathbb{P}$ -n.o.

Problem (1.9)

Lad N, X_1, X_2, \ldots være en følge af uafhængige stokastiske variable defineret på sandsynlighedsfeltet $(\Omega, \mathcal{F}, \mathbb{P})$. Antag, at $N \sim \text{Po}(\ell)$, hvor $\ell \in (0, \infty)$, og antag, at X_n 'erne er identisk fordelte med fordeling givet ved:

$$\mathbb{P}(X_1 = 0) = \mathbb{P}(X_1 = 1) = \frac{1}{2}$$

Sæt endvidere $S_0 = \bar{S}_0 = 0$, og

$$S_n = \sum_{k=1}^n X_k$$
, og $\tilde{S}_n = \sum_{k=1}^n (1 - X_k) = n - S_n$

for $n \in \mathbb{N}$.

- (a) Udregn de karakteristiske funktioner $\varphi_{S_n}, \varphi_{\tilde{S}_n}$, og redegor for, at S_n, S_n er binomialfordelte med antalsparameter n og sandsynlighedsparameter 1/2.
- (b) Vis for vilkårlige $s, t \in \mathbf{R}$, at

$$\varphi_{\left(S_N,\bar{S}_N\right)}(s,t) = \exp\left(\frac{\ell}{2}\left(e^{\mathrm{iss}}-1\right)\right) \exp\left(\frac{\ell}{2}\left(e^{\mathrm{it}}-1\right)\right)$$

(c) Vis, at S_N og \bar{S}_N er uafhængige og identisk Poisson-fordelte med parameter $\ell/2$.

Solution

(a) Bemærk, at X_n' 'erne alle er binomialfordelte med antalsparameter 1 og sandsynlighedsparameter 1/2. Hvis vi sætter $Y_n = 1 - X_n$, udgør Y_n 'erne ligeledes en en følge af uafhængige stokastiske variable, som alle er binomialfordelte med antalsparameter 1 og sandsynlighedsparameter 1/2. Dermed gælder der, at S_n og \tilde{S}_n har samme fordeling. Vi nøjes således med at regne på S_n . Korollar 1.1.7 (vii) giver, at

$$\varphi_{S_n}(t) = \prod_{k=1}^n \varphi_{X_k}(t) = (\varphi_{X_1}(t))^n = \left(1 - \frac{1}{2} + \frac{1}{2}e^{it}\right)^n$$

hvor den sidste lighed kommer fra Opgave 1.4. Vi genkender φ_{S_n} som den karakteristiske funktion for binomialfordelingen med antalsparameter n og sandsynlighedsparameter 1/2. Der galder derfor, at $S_n \sim \text{Bin}(n, 1/2)$ jf. Sætning 1.2.5.

I det følgende betragter vi
 yderligere de stokastiske variable $S_N, \tilde{S}_N,$ som er givet ved

$$S_N(\omega) = S_{N(\omega)}(\omega), \quad \text{og} \quad \tilde{S}_N(\omega) = \tilde{S}_{N(\omega)}(\omega)$$

Alternativt kan man fremstille S_N (o tilsvarende \bar{S}_N) som en uendelig sum:

$$S_N = \sum_{n=0}^{\infty} S_n \mathbb{1}_{\{N=n\}}$$

(b) Lad $s, t \in \mathbb{R}$. Da ser vi, at

$$\varphi_{\left(S_{N},\tilde{S}_{N}\right)}(s,t) = \mathbb{E}\left[e^{isS_{N}+it\tilde{S}_{N}}\right]$$

$$= \mathbb{E}\left[\sum_{n=0}^{\infty} 1_{\{N=n\}}e^{isS_{n}+it\tilde{S}_{n}}\right]$$

$$= \sum_{n=0}^{\infty} \mathbb{E}\left[1_{\{N=n\}}e^{i*S_{n}+it\tilde{S}_{n}}\right]$$

$$= \sum_{n=0}^{\infty} \mathbb{P}(N=n)\mathbb{E}\left[e^{i(s-t)S_{n}+itn}\right]$$

$$= \sum_{n=0}^{\infty} \frac{\ell^{n}}{n!}e^{-\ell}e^{itn}\left(1-1/2+1/2e^{i(s-t)}\right)^{n}$$

$$= e^{-\ell}\exp\left(\ell e^{it}\left(1/2+1/2e^{i(s-t)}\right)\right)$$

$$= \exp\left(\frac{\ell}{2}\left(e^{is}-1\right)\right)\exp\left(\frac{\ell}{2}\left(e^{it}-1\right)\right)$$

(c) Vi bemærker, at den karakteristiske funktion for (S_N, \bar{S}_N) splitter op i produktet af to karakteristiske funktioner for Poisson-fordelingen med parameter $\ell/2$. Korollar 1.2.7 og Sætning 1.2.5 giver det onskede.

Problem (1.11)

- (a) Lad X og Y være stokastiske funktioner med værdier i målelige rum $(\mathcal{X}, \mathcal{E})$ og $(\mathcal{Y}, \mathcal{G})$ og evt. defineret på hver deres sandsynlighedsfelt. Vis da, at der findes et sandsynlighedsfelt $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})$, og stokastiske funktioner \tilde{X}, \tilde{Y} herpå med værdier i hhv. $(\mathcal{X}, \mathcal{E})$ og $(\mathcal{Y}, \mathcal{G})$, således at \tilde{X} og \tilde{Y} er uafhængige, $\tilde{X} \sim X$ og $\tilde{Y} \sim Y$.
- (b) Vis, at for enhver stokastisk funktion X, kan man altid finde et sandsynlighedsfelt, hvorpå der eksisterer to uafhængige kopier X_1 og X_2 af X, dvs. X_1 og X_2 er uafhængige, og $X_1 \sim X \sim X_2$.

Solution

(a) Sæt $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P}) = (\mathcal{X} \times \mathcal{Y}, \mathcal{E} \otimes \mathcal{G}, \mathbb{P}_X \otimes \mathbb{P}_Y)$. For $\omega = (x, y) \in \Omega = \mathcal{X} \times \mathcal{Y}$ sætter vi så $\bar{X}(\omega) = x \operatorname{og} \tilde{Y}(\omega) = y$. For vilkårlige $A \in \mathcal{E}$ og $B \in \mathcal{G}$ har vi nu, at

$$\tilde{\mathbb{P}}(\tilde{X} \in A, \tilde{Y} \in B) = \mathbb{P}_X \otimes \mathbb{P}_y(\{\omega \in \Omega \mid \tilde{X}(\omega) \in A, \tilde{Y}(\omega) \in B\})$$

$$= \mathbb{P}_X \otimes \mathbb{P}_Y(\{(x, y) \in \mathcal{X} \times \mathcal{Y} \mid x \in A, y \in B\})$$

$$= \mathbb{P}_X \otimes \mathbb{P}_Y(A \times B)$$

$$= \mathbb{P}_X(A)\mathbb{P}_Y(B)$$

Dette viser, at \tilde{X} og \tilde{Y} er uafhængige, samt at $\tilde{X} \sim X$, og $\tilde{Y} \sim Y$.

(b) Lad Y = X. Da giver (a), at der findes et sandsynlighedsfelt, hvorpå der eksisterer \bar{X} og \tilde{Y} , således at \bar{X} og \bar{Y} er uafhængige, $\tilde{X} \sim X$ og $\tilde{Y} \sim Y$. Vi sætter nu blot $X_1 = \tilde{X}$ og $X_2 = \tilde{Y}$. Disse stokastiske variable har de ønskede egenskaber.

Problem (1.12)

Lad X være en stokastisk variabel på sandsynlighedsfeltet (Ω, \mathcal{F}, P) . Vis da, at X har kompakt støtte (jvf. Korollar 1.5.4), hvis og kun hvis

$$\sup_{p\in\mathbb{N}}\mathbb{E}[|\mathsf{X}|^p]<\infty.$$

Vink: Benyt sætning 7.3.10 i [M&I]

Solution

(a) Antag, at X har kompakt støtte: Ifølge Korollar 1.5.4, hvis X har kompakt støtte, findes der en konstant b>0, således at $P(X \in [-b,b])=1$. Dette betyder, at $|X| \leq b$ næsten sikkert. Derfor er $|X|^p \leq b^p$ for alle $p \in \mathbb{N}$, og vi får:

$$\mathbb{E}[|\mathsf{X}|^p] \le \mathbb{E}[b^p] = b^p.$$

Da b er en konstant, er $\sup_{p\in\mathbb{N}}\mathbb{E}[|\mathsf{X}|^p] \leq \sup_{p\in\mathbb{N}}b^p = b^\infty < \infty$. Dermed er $\sup_{p\in\mathbb{N}}\mathbb{E}[|\mathsf{X}|^p] < \infty$.

(b) Antag, at $\sup_{p\in\mathbb{N}} \mathbb{E}[|\mathsf{X}|^p] < \infty$: Vi skal vise, at X har kompakt støtte. Lad os antage, at X ikke har kompakt støtte. Dette betyder, at for enhver b>0, findes der en positiv sandsynlighed for, at $|\mathsf{X}|>b$. Vi kan derfor vælge en følge $b_n\to\infty$, således at $P(|\mathsf{X}|>b_n)>0$ for alle n.

Ifølge Sætning 7.3.10 i [M&I], for en funktion f i $\mathcal{M}(\mathcal{E})$, gælder:

$$\lim_{p \to \infty} ||f||_p = ||f||_{\infty}.$$

Anvendt på f = |X|, får vi:

$$\lim_{p\to\infty} \mathbb{E}[|\mathsf{X}|^p]^{1/p} = |||\mathsf{X}|||_{\infty}.$$

Hvis X ikke har kompakt støtte, er $||X||_{\infty} = \infty$, hvilket betyder, at $\mathbb{E}[|\mathsf{X}|^p]^{1/p} \to \infty$ når $p \to \infty$. Dette strider imod antagelsen om, at $\sup_{p \in \mathbb{N}} \mathbb{E}[|\mathsf{X}|^p] < \infty$. Derfor må X have kompakt støtte.

Vi har vist, at X har kompakt støtte, hvis og kun hvis $\sup_{p\in\mathbb{N}} \mathbb{E}[|\mathsf{X}|^p] < \infty$. Dette fuldender beviset.