Predicting The Stock Market With Deep Learning

Michael Holmblad

Villnanova University

4/29/2020

Introduction

Intro

•0

• Predicting the stock market?

Conclusion

Introduction

Intro

•0

- Predicting the stock market?
- Deep Learning and prediction

Introduction

- Predicting the stock market?
- Deep Learning and prediction
- Can deep learning be a tool to solve it?

History

• Stock market prediction goes at least back to the 60s

History

Intro

0

- Stock market prediction goes at least back to the 60s
- Data processing issues, back propagation attempt

0

- Stock market prediction goes at least back to the 60s
- Data processing issues, back propagation attempt
- Simulating

S&P 500

• Composes of over 80% of the American stock market

Standouts

S&P 500 Data

- Composes of over 80% of the American stock market
- Popular for usage in stock prediction studies

S&P 500 Data

- Composes of over 80% of the American stock market
- Popular for usage in stock prediction studies
- Everything is in the form of time series data

Event Based Prediction

• Open IE combined with a simple neural network

Event Based Prediction

- Open IE combined with a simple neural network
- Expansion with Neural Tensor Networks and a CNN

Event Based Prediction

- Open IE combined with a simple neural network
- Expansion with Neural Tensor Networks and a CNN
- Common practice for event based prediction

Results

	Index Prediction		Individual Stock Prediction		
	Acc	MCC	Acc	MCC	Profit
Luss [2012]	56.38%	0.07	58.74%	0.25	\$8,671
Ding [2014]	58.83%	0.16	61.47%	0.31	\$10,375
EB-CNN	64.21%	0.40	65.48%	0.41	\$16,774

Figure: (Ding et al, 2015)

Conclusion

 The Private sector mainly used linear models for predicting the stock market

- The Private sector mainly used linear models for predicting the stock market
- Auto Regressive Integrated Moving Average was the standard

- The Private sector mainly used linear models for predicting the stock market
- Auto Regressive Integrated Moving Average was the standard
- Google and other companies teamed up with universities like Stanford to test LSTMs

Limit Order Books

 A record of outstanding limit orders maintained by the security specialist who works at the exchange

Limit Order Books

- A record of outstanding limit orders maintained by the security specialist who works at the exchange
- The FI-2010 dataset, NASDAQ Nordic benchmark dataset

Limit Order Books

- A record of outstanding limit orders maintained by the security specialist who works at the exchange
- The FI-2010 dataset, NASDAQ Nordic benchmark dataset
- Popular for testing European stock market prediction

CNN and LSTM Combinations

Model	Accuracy %	Precision %	Recall %	F1 %				
Prediction Horizon k = 10								
SVM [28]	l -	39.62	44.92	35.88				
MLP [28] CNN-I [26]	-	47.81	60.78	48.27				
CNN-I [26]	-	50.98	65.54	55.21				
LSTM [28]	-	60.77	75.92	66.33				
CNN-II [27]	-	56.00	45.00	44.00				
B(TABL) [25]	78.91	68.04	71.21	69.20				
C(TABL) [25]	84.70	76.95	78.44	77.63				
DeepLOB	84.47	84.00	84.47	83.40				
Prediction Horizon k = 20								
SVM [28]	-	45.08	47.77	43.20				
MLP [28]	-	51.33	65.20	51.12				
CNN-I [26]	-	54.79	67.38	59.17				
LSTM [28]	-	59.60	70.52	62.37				
CNN-II [27]	-	-	-	-				
B(TABL) [25]	70.80	63.14	62.25	62.22				
C(TABL) [25]	73.74	67.18	66.94	66.93				
DeepLOB	74.85	74.06	74.85	72.82				
Prediction Horizon k = 50								
SVM [28]	l -	46.05	60.30	49.42				
MLP [28]	-	55.21	67.14	55.95				
CNN-I [26]	-	55.58	67.12	59.44				
LSTM [28]	-	60.03	68.58	61.43				
CNN-II [27]	-	56.00	47.00	47.00				
B(TABL) [25]	75.58	74.58	73.09	73.64				
C(TABL) [25]	79.87	79.05	77.04	78.44				
DeepLOB	80.51	80.38	80.51	80.35				

Deep ConvLSTM Project

Figure: (Kelotra, 2020)

Reinforcement Learning

Figure: (Dang, 2019)

What We've Learned

• A lot closer to understanding stock market prediction

What We've Learned

- A lot closer to understanding stock market prediction
- Feature Extraction

What We've Learned

Intro

- A lot closer to understanding stock market prediction
- Feature Extraction
- Best at doing this task

Future Work

• Triple check dates, website citations

Future Work

- Triple check dates, website citations
- Try implementing these kind of models

Future Work

- Triple check dates, website citations
- Try implementing these kind of models
- Track how popular the 2019/2020 papers become

Resources

Holmblad, Michael. Survey of Deep Learning and Stock Market Prediction

Questions?

