NUMERICAL COMPUTATIONS FOR AN EFFECTIVE MODEL OF TWISTED BILAYER GRAPHENE

ÉRIC CANCÈS, LOUIS GARRIGUE AND DAVID GONTIER

1. Standard monolayer

We recall that

$$a_{1} = a \begin{pmatrix} \frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{pmatrix}, \qquad a_{2} = a \begin{pmatrix} \frac{\sqrt{3}}{2} \\ -\frac{1}{2} \end{pmatrix}$$

$$a_{1}^{*} = \frac{2\pi}{a} \begin{pmatrix} \frac{1}{\sqrt{3}} \\ 1 \end{pmatrix} = \frac{4\pi}{a\sqrt{3}} \begin{pmatrix} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{pmatrix}, \qquad a_{2}^{*} = \frac{2\pi}{a} \begin{pmatrix} \frac{1}{\sqrt{3}} \\ -1 \end{pmatrix} = \frac{4\pi}{a\sqrt{3}} \begin{pmatrix} \frac{1}{2} \\ -\frac{\sqrt{3}}{2} \end{pmatrix}$$

In reduced coordinates, with

$$\mathcal{M}: \mathbb{T}^2 \simeq [0,1]^2 \to \Omega,$$

$$\mathcal{M} := \frac{a}{2} \begin{pmatrix} \sqrt{3} & \sqrt{3} \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} a_1 & a_2 \end{pmatrix}, \qquad \mathcal{M}^{-1} = \frac{1}{a} \begin{pmatrix} \frac{1}{\sqrt{3}} & 1 \\ \frac{1}{\sqrt{3}} & -1 \end{pmatrix}$$

and

$$2\pi \left(\mathcal{M}^{-1}\right)^* = \begin{pmatrix} a_1^* & a_2^* \end{pmatrix} = \frac{2\pi}{a} \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ 1 & -1 \end{pmatrix} =: S$$

1.1. Fourier conventions. We will manipulate functions which are Ω -periodic in \mathbf{x} , but not in z, our Fourier transform conventions will be

$$(\mathcal{F}f)_G(k_z) := \frac{1}{2\pi |\Omega|} \int_{\Omega \times \mathbb{R}} e^{-i(k\mathbf{x} + k_z z)} f(\mathbf{x}, z) d\mathbf{x} dz$$

hence any function can be decomposed as

$$f(\mathbf{x}, z) = \sum_{\mathbf{G} \in \mathbb{T}^*} \int_{\mathbb{R}} e^{i(\mathbf{G}\mathbf{x} + k_z z)} f_{\mathbf{G}}(k_z) dk_z$$

We also recall that $\int_{\mathbb{R}} e^{ipz} dz = 2\pi \delta(p)$.

Now we consider that f and g are L-periodic in z,

$$f(\mathbf{x}, z) = \sum_{\mathbf{G}, G_z} e^{i(\mathbf{G}\mathbf{x} + G_z z)} \widehat{f}_{\mathbf{G}, G_z}$$

or, in reduced coordinates,

$$f(\mathbf{x}, z) = \sum_{\substack{\mathbf{m} \in \mathbb{Z}^2 \\ m_z \in \mathbb{Z}}} e^{i\left(\mathbf{m}\mathbf{a}^* \cdot \mathbf{x} + m_z \frac{2\pi}{L} z\right)} \widehat{f}_{\mathbf{m}, m_z}$$
(1)

We define the scalar product

$$\langle f,g\rangle := \int_{\Omega\times[0,L]} \overline{f}g$$

and compute Plancherel's formula

$$\langle f, g \rangle = L |\Omega| \sum_{\substack{\mathbf{m} \in \mathbb{Z}^2 \\ m_z \in \mathbb{Z}}} \overline{\widehat{f}_{\mathbf{m}, m_z}} \widehat{g}_{\mathbf{m}, m_z}.$$
 (2)

Hence, as a verification, we test that the normalization of the \widehat{u}_j 's is the right one by checking that $\|u_j\|_{L^2}^2 = 1$ via (2).

1.2. **Rotation action.** We know that $R_{\frac{2\pi}{3}}(ma^*) = \left(R_{\frac{2\pi}{3}}^{\text{red}}m\right)a^*$ where

$$R_{\frac{2\pi}{3}}^{\text{red}} = S^{-1} R_{\frac{2\pi}{3}} S = \mathcal{M}^* R_{\frac{2\pi}{3}} (\mathcal{M}^*)^{-1} = \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}, \qquad R_{-\frac{2\pi}{3}}^{\text{red}} = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}$$

and

$$\mathcal{R}_{\frac{2\pi}{3}}f(x) = \sum_{m} f_{m}e^{i\left(\frac{R_{\frac{2\pi}{3}}^{\mathrm{red}}m}{3}\right)a^{*}\cdot x} = \sum_{m} f_{R_{-\frac{2\pi}{3}}^{\mathrm{red}}m}e^{ima^{*}\cdot x}$$

2. Computation of V_{int}

For $\mathbf{s} \in \Omega := [0,1]\mathbf{a}_1 + [0,1]\mathbf{a}_2$, we denote by $V_{\mathbf{s}}^{(2)}$ the true Kohn-Sham mean-field potential for the configuration where the two sheets are aligned (no angle), but with the upper one shifted by a vector \mathbf{s} . We set

$$V_{\text{int,s}}(z) := \frac{1}{|\Omega|} \int_{\Omega} \left(V_{\mathbf{s}}^{(2)}(\mathbf{x}, z) - V(\mathbf{x}, z + \frac{d}{2}) - V(\mathbf{x} - \mathbf{s}, z - \frac{d}{2}) \right) d\mathbf{x}$$

$$= \frac{1}{|\Omega|} \int_{\Omega} \left(V_{\mathbf{s}}^{(2)}(\mathbf{x}, z) - V(\mathbf{x}, z + \frac{d}{2}) - V(\mathbf{x}, z - \frac{d}{2}) \right) d\mathbf{x}$$

$$= \frac{1}{|\Omega|} \sum_{\substack{\mathbf{m} \in \mathbb{Z}^2 \\ m_z \in \mathbb{Z}}} \left(\widehat{\left(V_{\mathbf{s}}^{(2)} \right)}_{\mathbf{m}, m_z} - \widehat{V}_{\mathbf{m}, m_z} e^{im_z \frac{2\pi}{L} \frac{d}{2}} - \widehat{V}_{\mathbf{m}, m_z} e^{-im_z \frac{2\pi}{L} \frac{d}{2}} \right)$$

$$\times \int_{\Omega} e^{i \left(\mathbf{m} \mathbf{a}^* \cdot \mathbf{x} + m_z \frac{2\pi}{L} z \right)} d\mathbf{x}$$

$$= \sum_{m_z \in \mathbb{Z}} e^{im_z \frac{2\pi}{L} z} \left(\widehat{\left(V_{\mathbf{s}}^{(2)} \right)}_{0, m_z} - 2\widehat{V}_{0, m_z} \cos \left(m_z \frac{\pi d}{L} \right) \right)$$

and we obtain the Fourier coefficients

$$\left(\widehat{V_{\mathrm{int,s}}}\right)_{m_z} = \left(\widehat{V_{\mathrm{s}}^{(2)}}\right)_{0,m_z} - 2\widehat{V}_{0,m_z}\cos\left(m_z\frac{\pi d}{L}\right)$$

We then compute

$$V_{\mathrm{int}}(z) := \frac{1}{|\Omega|} \int_{\Omega} V_{\mathrm{int},\mathbf{s}}(z) \mathrm{d}\mathbf{s} = \frac{1}{N^2} \sum_{s_x, s_y \in \mathbb{I}_1, N \mathbb{I}} V_{\mathrm{int}, (\mathbf{s}_{\mathbf{x}}, \mathbf{s}_{\mathbf{y}})}^{\mathrm{array}}(z)$$

and finally obtain the Fourier coefficients

$$\left| \left(\widehat{V_{\text{int}}} \right)_{m_z} = \frac{1}{N^2} \sum_{s_x, s_y \in [\![1, N]\!]} \left(\widehat{V_{\text{int,s}}} \right)_{m_z} \right|$$

and we expect $V_{\text{int},s}$ not to depend too much on s, that is we expect that

$$\begin{split} \delta_{V_{\mathrm{int}}} &:= \frac{\int_{\Omega \times \mathbb{R}} |V_{\mathrm{int,s}}(z) - V_{\mathrm{int}}(z)|^2 \, \mathrm{d}\mathbf{s} \mathrm{d}z}{|\Omega| \int_{\mathbb{R}} V_{\mathrm{int}}(z)^2 \mathrm{d}z} \\ &= \frac{\sum_{m_z} \int_{\Omega} \left| \left(\widehat{V_{\mathrm{int,s}}}\right)_{m_z} - \left(\widehat{V_{\mathrm{int}}}\right)_{m_z} \right|^2 \, \mathrm{d}\mathbf{s}}{|\Omega| \sum_{m_z} \left(\widehat{V_{\mathrm{int}}}\right)_{m_z}^2} \\ &= \frac{\sum_{s_x, s_y, m_z} \left| \left(\widehat{V}_{\mathrm{int,(s_x,s_y)}}\right)_{m_z} - \left(\widehat{V_{\mathrm{int}}}\right)_{m_z} \right|^2}{N^2 \sum_{m_z} \left(\widehat{V_{\mathrm{int}}}\right)_{m_z}^2} \end{split}$$

is small. We also verify that $V_{\text{int}}(-z) = V_{\text{int}}(z)$.

3. Effective potentials

We defined

$$\left(\!(f,g)\!\right)^{\eta,\eta'}(\mathbf{X}) := \frac{1}{|\Omega|} \int_{\Omega \times \mathbb{R}} \overline{f}\left(x - \eta J \mathbf{X}, z - \eta \frac{d}{2}\right) g\left(x - \eta' J \mathbf{X}, z - \eta' \frac{d}{2}\right) \mathrm{d}\mathbf{x} \mathrm{d}z$$

and

$$\langle \langle f, g \rangle \rangle^{\eta, \eta'}(\mathbf{X})$$

$$:= \frac{e^{i(\eta - \eta')\mathbf{K} \cdot J\mathbf{X}}}{|\Omega|} \int_{\Omega \times \mathbb{R}} \overline{f}\left(x - \eta J\mathbf{X}, z - \eta \frac{d}{2}\right) g\left(x - \eta' J\mathbf{X}, z - \eta' \frac{d}{2}\right) d\mathbf{x} dz$$

so $\langle \langle f,g \rangle \rangle^{\eta,\eta'} = e^{i(\eta-\eta')\mathbf{K}\cdot J\mathbf{X}} ((f,g))^{\eta,\eta'}$. Now we make the approximation

$$\int_{\Omega \times \mathbb{R}} \simeq \int_{\Omega \times [0,L]}$$

The situation is drawn on Figure 3. The functions are defined on [-L/2, L/2] but we need to integrate on the common segment, which is $[-\frac{L-d}{2}, \frac{L-d}{2}]$, so on [-L/2, L/2] to recover the initial domain.

Firstly, using the Fourier decomposition (1),

$$\begin{split} &((f,g))^{\eta,\eta'} = L \sum_{\mathbf{m} \in \mathbb{Z}^2} e^{i(\eta - \eta')ma^* \cdot J\mathbf{X}} \sum_{m_z \in \mathbb{Z}} e^{i(\eta - \eta')\frac{2\pi}{L}m_z\frac{d}{2}} \overline{\widehat{f}_{m,m_z}} \widehat{g}_{m,m_z} \\ &= \sum_{\mathbf{m} \in \mathbb{Z}^2} e^{i(\eta - \eta')ma^* \cdot J\mathbf{X}} C_{\mathbf{m}} \end{split}$$

where

$$C_{\mathbf{m}} := L \sum_{m_z \in \mathbb{Z}} e^{i(\eta - \eta') \frac{d\pi}{L} m_z} \overline{\widehat{f}_{m,m_z}} \widehat{g}_{m,m_z}$$

and we also define

$$C_{\mathbf{m}}^{\pm} := L \sum_{m_z \in \mathbb{Z}} e^{\pm i 2 \frac{d\pi}{L} m_z} \overline{\widehat{f}_{m,m_z}} \widehat{g}_{m,m_z}$$

Figure 1. Situation on the z coordinate

Then,

$$\langle\!\langle f,g\rangle\!\rangle^{\eta,\eta'} = e^{i(\eta-\eta')\mathbf{K}\cdot J\mathbf{X}} \left(\!(f,g)\!\right)^{\eta,\eta'} = \sum_{\mathbf{m}\in\mathbb{Z}^2} e^{i(\eta-\eta')(m+m_K)a^*\cdot J\mathbf{X}} C_{\mathbf{m}}$$

Hence

$$\boxed{ ((f,g))^{+-} \left(-\frac{3}{2}J\mathbf{X}\right) = \sum_{\mathbf{m} \in \mathbb{Z}^2} e^{i3ma^* \cdot \mathbf{X}} C_{\mathbf{m}}^+ = \sum_{\mathbf{m} \in \mathbb{Z}^2} e^{ima^* \cdot \mathbf{X}} C_{\frac{\mathbf{m}}{3}}^+,}$$

and

$$\boxed{\langle\!\langle f,g\rangle\!\rangle^{+-} \left(-\frac{3}{2}J\mathbf{X}\right) = \sum_{\mathbf{m}\in\mathbb{Z}^2} e^{i3(m+m_k)a^*\cdot\mathbf{X}} C_{\mathbf{m}}^+ = \sum_{\mathbf{m}\in\mathbb{Z}^2} e^{ima^*\cdot\mathbf{X}} C_{\underline{\mathbf{m}}-3\mathbf{m}_K}^+}$$

where $C_{\frac{m}{n}} := 0$ if n does not divide m_1 and m_2 . Similarly

$$(\!(f,g)\!)^{-+}\left(-\tfrac{3}{2}J\mathbf{X}\right) = \sum_{\mathbf{m}\in\mathbb{Z}^2} e^{-i3ma^*\cdot\mathbf{X}} C_{\mathbf{m}}^- = \sum_{\mathbf{m}\in\mathbb{Z}^2} e^{ima^*\cdot\mathbf{X}} C_{-\frac{\mathbf{m}}{3}}^-,$$

For the potentials, we finally need to implement

$$\mathbb{W}_{j,j'}^{+} = ((\overline{u}_j u_{j'}, V))^{+-}, \qquad \mathbb{W}_{j,j'}^{-} = ((\overline{u}_j u_{j'}, V))^{-+},$$
$$\mathbb{V}_{j,j'} = \langle \langle (V + V_{\text{int}}) u_j, u_{j'} \rangle \rangle^{+-}$$

If $f(z) = \varepsilon f(-z)$, then $\widehat{f}_{-m_z} = \varepsilon \widehat{f}_{m_z}$, from this we see that $\overline{C_{\mathbf{m}}^{u_{j'},u_{j'}}} = C_{\mathbf{m}}^{u_{j},u_{j'}}$ and hence $\mathbb{V}(-X)^* = \mathbb{V}(X)$

3.1. **Magnetic term.** As for the magnetic term, we have

$$(-i\nabla_{\mathbf{x}} + \mathbf{K}) g = \sum_{\mathbf{m}, m_z} (\mathbf{m} + \mathbf{m}_K) \mathbf{a}^* e^{i(\mathbf{m}\mathbf{a}^* \cdot \mathbf{x} + m_z \frac{2\pi}{L} z)} \widehat{f}_{\mathbf{m}, m_z}$$

so

$$\langle\!\langle f, (-i\nabla_{\mathbf{x}} + \mathbf{K})g \rangle\!\rangle^{+-}(\mathbf{X}) = \sum_{\mathbf{m} \in \mathbb{Z}^2} (\mathbf{m} + \mathbf{m}_K) \mathbf{a}^* \ C_{\mathbf{m}} e^{2i(\mathbf{m} + \mathbf{m}_K) \mathbf{a}^* \cdot J\mathbf{X}}$$

and

$$\langle \langle f, (-i\nabla_{\mathbf{x}} + \mathbf{K})g \rangle \rangle^{+-} \left(-\frac{3}{2}J\mathbf{X} \right) = \sum_{\mathbf{m} \in \mathbb{Z}^2} (\mathbf{m} + \mathbf{m}_K) \mathbf{a}^* C_{\mathbf{m}} e^{i3(\mathbf{m} + \mathbf{m}_K)\mathbf{a}^* \cdot \mathbf{X}}$$

so

$$\boxed{ \langle \langle f, (-i\nabla_{\mathbf{x}} + \mathbf{K})g \rangle \rangle^{+-} \left(-\frac{3}{2}J\mathbf{X} \right) = \frac{1}{3} \sum_{\mathbf{m} \in \mathbb{Z}^2} \mathbf{m} \mathbf{a}^* \ C_{\frac{\mathbf{m} - 3\mathbf{m}_K}{3}} e^{i\mathbf{m} \mathbf{a}^* \cdot \mathbf{X}} }$$

so we can implement

$$\mathcal{A}_{j,j'}\left(-\frac{3}{2}J\mathbf{X}\right) = \langle\langle u_j, (-i\nabla_{\mathbf{x}} + \mathbf{K})u_{j'}\rangle\rangle^{+-}\left(-\frac{3}{2}J\mathbf{X}\right)$$

3.2. W's V_{int} term. We write $V_{\text{int}}(z) = \sum_{m_z \in \mathbb{Z}} \widehat{V}_{\text{int}}^{m_z} e^{i\frac{2\pi}{L}m_z z}$ hence

$$\langle u_{j}, V_{\text{int}} u_{j'} \rangle = \sum_{\substack{\mathbf{m} \in \mathbb{Z}^{2} \\ m_{z}, m'_{z}, M_{z} \in \mathbb{Z}}} \left(\widehat{u}_{j} \right)_{\mathbf{m}, m_{z}} \left(\widehat{u}_{j'} \right)_{\mathbf{m}, m'_{z}} \left(\widehat{V}_{\text{int}} \right)_{M_{z}} \int_{z} e^{iz \frac{2\pi}{L} (M_{z} + m'_{z} - m_{z})}$$

$$= L \sum_{\substack{\mathbf{m} \in \mathbb{Z}^{2} \\ m_{z}, m'_{z} \in \mathbb{Z}}} \left(\widehat{u}_{j} \right)_{\mathbf{m}, m_{z}} \left(\widehat{u}_{j'} \right)_{\mathbf{m}, m'_{z}} \left(\widehat{V}_{\text{int}} \right)_{m_{z} - m'_{z}}$$

and the matrix $M_{j,j'} := \langle u_j, V_{\text{int}} u_{j'} \rangle$ is such that $M^* = M$ and $M_{11} = M_{22}$.

4. BM CONFIGURATION

From [1], the BM Hamiltonian is

$$H = \begin{pmatrix} -i\sigma\nabla & T^c(x) \\ T^c(x)^* & -i\sigma\nabla \end{pmatrix},$$

where

$$T_1 = \begin{pmatrix} w_0 & w_1 \\ w_1 & w_0 \end{pmatrix}, \quad T_2 = \begin{pmatrix} w_0 & w_1 e^{-i\phi} \\ w_1 e^{i\phi} & w_0 \end{pmatrix}, \quad T_3 = \begin{pmatrix} w_0 & w_1 e^{i\phi} \\ w_1 e^{-i\phi} & w_0 \end{pmatrix}$$

and where, for $x \in \mathbb{R}^2$,

$$T^{c}(x) := \sum_{j=1}^{3} T_{j} e^{-iq_{j}^{c} \cdot x} = \sum_{j=1}^{3} T_{j} e^{iq_{j}a^{*} \cdot x}, \qquad \widehat{T}_{p} = \sum_{j=1}^{3} T_{j} \delta_{p,q_{j}^{c}}$$

and

$$\begin{split} q_1^c &= \frac{4\pi}{a\sqrt{3}} \begin{pmatrix} 1\\0 \end{pmatrix} = a_1^* + a_2^*, \\ q_2^c &= \frac{4\pi}{a\sqrt{3}} \begin{pmatrix} -\frac{1}{2}\\\frac{\sqrt{3}}{2} \end{pmatrix} = -a_2^*, \qquad q_3^c &= \frac{4\pi}{a\sqrt{3}} \begin{pmatrix} -\frac{1}{2}\\-\frac{\sqrt{3}}{2} \end{pmatrix} = -a_1^*, \end{split}$$

where we took rotated q_i^c 's by J with respect to [1], and with a rescaling of we define the reduced dual vectors $q_j := -\mathcal{M}^* q_j^c / 2\pi$ so

$$T(x) = T^{c}(\mathcal{M}x) = \sum_{j=1}^{3} T_{j}e^{-ix\cdot\mathcal{M}^{*}q_{j}^{c}} = \sum_{j=1}^{3} T_{j}e^{i2\pi x\cdot q_{j}}$$

and we compute

$$q_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \qquad q_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}, \qquad q_3 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

Or

$$T(x) = \sum_{j=1}^{3} T_j e^{iq_j a^* \cdot x}$$

Since $T_j^* = T_j$, then $T(-x)^* = T(x)$

5. Operators in basis

5.1. Goal. Our goal is to study the eigenvalue equation

$$\mathcal{H}\psi = \mathcal{S}\psi$$

where S is Hermitian and positive and

$$\mathcal{H} := \frac{1}{\varepsilon_{\theta}} \mathcal{V} + c_{\theta} T + \varepsilon_{\theta} T^{(1)}$$

where

$$T := v_{\mathrm{F}} \begin{pmatrix} \boldsymbol{\sigma} \cdot (-i\nabla) & \boldsymbol{\mathcal{A}} \cdot (-i\nabla) \\ \boldsymbol{\mathcal{A}}^* \cdot (-i\nabla) & \boldsymbol{\sigma} \cdot (-i\nabla) \end{pmatrix},$$

$$T^{(1)} := v_{\mathrm{F}} \begin{pmatrix} -\boldsymbol{\sigma} \cdot J(-i\nabla) - \frac{1}{2}\Delta & \boldsymbol{\mathcal{A}} \cdot J(-i\nabla) - \frac{1}{2}\Sigma\Delta \\ \boldsymbol{\mathcal{A}}^* \cdot J(-i\nabla) - \frac{1}{2}\Sigma^*\Delta & \boldsymbol{\sigma} \cdot J(-i\nabla) - \frac{1}{2}\Delta \end{pmatrix},$$

$$\mathcal{V} := \begin{pmatrix} \mathbb{W} & \mathbb{V} \\ \mathbb{V}^* & \mathbb{W} \end{pmatrix},$$

and their Bloch transform bec

$$\begin{split} T_k := v_{\mathrm{F}} \left(\begin{array}{ccc} \boldsymbol{\sigma} \cdot (-i\nabla + k) & \boldsymbol{\mathcal{A}} \cdot (-i\nabla + k) \\ \boldsymbol{\mathcal{A}}^* \cdot (-i\nabla + k) & \boldsymbol{\sigma} \cdot (-i\nabla + k) \end{array} \right), \\ T_k^{(1)} := v_{\mathrm{F}} \left(\begin{array}{ccc} -\boldsymbol{\sigma} \cdot J(-i\nabla + k) + \frac{1}{2}(-i\nabla + k)^2 & \boldsymbol{\mathcal{A}} \cdot J(-i\nabla + k) + \frac{1}{2}\Sigma(-i\nabla + k)^2 \\ \boldsymbol{\mathcal{A}}^* \cdot J(-i\nabla + k) + \frac{1}{2}\Sigma^*(-i\nabla + k)^2 & \boldsymbol{\sigma} \cdot J(-i\nabla + k) + \frac{1}{2}(-i\nabla + k)^2 \end{array} \right) \end{split}$$

and we want the middle of the spectrum of

$$\mathcal{H}_k := \mathcal{S}^{-\frac{1}{2}} \left(\frac{1}{\varepsilon_{\theta}} \mathcal{V} + c_{\theta} T_k + \varepsilon_{\theta} T_k^{(1)} \right) \mathcal{S}^{-\frac{1}{2}}$$

5.2. **Basis.** We define $e_m := \frac{1}{\sqrt{|\Omega|}} e^{ima^* \cdot x}$, and

$$e_{\alpha,m} := e_{\alpha} \otimes e_m = e_{\alpha} \frac{e^{ima^* \cdot x}}{\sqrt{|\Omega|}}, \quad \text{where } e_1 := \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \dots$$

5.3. Multiplication-derivation operators. For $A=(A_1,A_2)$ and $A_j=\sum_{\ell}\left(\widehat{A_j}\right)_{\ell}e^{i\ell a^*\cdot x}$, we have

$$\begin{split} \langle e_n, A \cdot (-i\nabla + k) e_m \rangle &= \sum_{\ell} \left(\widehat{A_1} \right)_{\ell} (ma^* + k)_1 \left\langle e_n, e^{i\ell a^* \cdot x} e_m \right\rangle \\ &+ \left(\widehat{A_2} \right)_{\ell} (ma^* + k)_2 \left\langle e_n, e^{i\ell a^* \cdot x} e_m \right\rangle \\ &= \left(\widehat{A_1} \right)_{n-m} (ma^* + k)_1 + \left(\widehat{A_2} \right)_{n-m} (ma^* + k)_2 = \widehat{A}_{n-m} \cdot (ma^* + k) \end{split}$$

For $V = \sum_{\ell} \widehat{V}_{\ell} e^{i\ell a^* x}$, we have

$$\langle e_n, V(-i\nabla + k)^2 e_m \rangle = (ma^* + k)^2 \widehat{V}_{n-m}$$

5.4. On-diagonal potential. For a general $W^{\pm} = \sum_{m} W_{m}^{\pm} e^{ima^{*} \cdot x}$, we have

$$\left\langle e_{\alpha,n}, \begin{pmatrix} W^{+} & 0 \\ 0 & W^{-} \end{pmatrix} e_{\beta,m} \right\rangle = \delta_{\alpha \in \{1,2\}}^{\beta \in \{1,2\}} \left(W_{n-m}^{+} \right)_{\alpha_{1}\beta_{1}} + \delta_{\alpha \in \{3,4\}}^{\beta \in \{3,4\}} \left(W_{n-m}^{-} \right)_{\alpha_{2}\beta_{2}}$$

5.5. Off-diagonal potential. For a general $V=\sum_m V_m e^{ima^*\cdot x}$, we have $V^*=\sum_m V_m^* e^{-ima^*\cdot x}$ and

$$M_{IJ} := \left\langle e_{\alpha,n}, \begin{pmatrix} 0 & V \\ V^* & 0 \end{pmatrix} e_{\beta,m} \right\rangle$$

$$= \sum_{k} \left(\delta_{\alpha \in \{1,2\}}^{\beta \in \{3,4\}} \delta_{m+k-n} \left\langle e_{\alpha_{1}}, V_{k} e_{\beta_{2}} \right\rangle + \delta_{\alpha \in \{3,4\}}^{\beta \in \{1,2\}} \delta_{m-k-n} \left\langle e_{\alpha_{2}}, V_{k}^{*} e_{\beta_{1}} \right\rangle \right)$$

$$= \delta_{\alpha \in \{1,2\}}^{\beta \in \{3,4\}} \left\langle e_{\alpha_{1}}, V_{n-m} e_{\beta_{2}} \right\rangle + \delta_{\alpha \in \{3,4\}}^{\beta \in \{1,2\}} \left\langle e_{\alpha_{2}}, V_{m-n}^{*} e_{\beta_{1}} \right\rangle$$

$$= \delta_{\alpha \in \{1,2\}}^{\beta \in \{3,4\}} \left(V_{n-m} \right)_{\alpha_{1}\beta_{2}} + \delta_{\alpha \in \{3,4\}}^{\beta \in \{1,2\}} \overline{\left(V_{m-n}\right)_{\beta_{1}\alpha_{2}}}$$

and M is also Hermitian.

5.6. Off-diagonal magnetic term. For a general $A = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}$, $A_j = \sum_{\ell} (A_j)_{\ell} e^{i\ell a^* \cdot x}$, we have $A_j^* = \sum_{\ell} (A_j)_{\ell}^* e^{-i\ell a^* \cdot x}$ and we compute

$$\begin{split} & \left\langle e_{\alpha,n}, \begin{pmatrix} 0 & A \cdot (-i\nabla + k) \\ A^* \cdot (-i\nabla + k) & 0 \end{pmatrix} \right. e_{\beta,m} \right\rangle \\ &= \delta_{\alpha \in \{1,2\}}^{\beta \in \{3,4\}} \left((ma^* + k)_1 \left((A_1)_{n-m} \right)_{\alpha_1 \beta_2} + (ma^* + k)_2 \left((A_2)_{n-m} \right)_{\alpha_1 \beta_2} \right) \\ &+ \delta_{\alpha \in \{3,4\}}^{\beta \in \{1,2\}} \left((ma^* + k)_1 \overline{\left((A_1)_{m-n} \right)_{\beta_1 \alpha_2}} + (ma^* + k)_2 \overline{\left((A_2)_{m-n} \right)_{\beta_1 \alpha_2}} \right) \end{split}$$

5.7. **Dirac operator.** We have

$$\begin{split} \sigma \cdot (-i\nabla + k) &= \sigma_1 \left(-i\partial_1 + k_1 \right) + \sigma_2 \left(-i\partial_2 + k_2 \right) \\ &= \begin{pmatrix} 0 & -i \left(\partial_1 - i\partial_2 \right) + \overline{k_{\mathbb{C}}} \\ -i \left(\partial_1 + i\partial_2 \right) + k_{\mathbb{C}} & 0 \end{pmatrix} \end{split}$$

where

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

so, with $k_{\mathbb{C}} := k_1 + ik_2$,

$$\sigma \cdot (-i\nabla + k) \begin{pmatrix} 1 \\ 0 \end{pmatrix} e_m = (ma^* + k)_{\mathbb{C}} \begin{pmatrix} 0 \\ 1 \end{pmatrix} e_m$$
$$\sigma \cdot (-i\nabla + k) \begin{pmatrix} 0 \\ 1 \end{pmatrix} e_m = \overline{(ma^* + k)_{\mathbb{C}}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} e_m$$

Then

$$\begin{pmatrix} \sigma \cdot (-i\nabla + k) & 0 \\ 0 & \sigma \cdot (-i\nabla + k) \end{pmatrix} e_{1,m} = (ma^* + k)_{\mathbb{C}} e_{2,m}$$

$$\begin{pmatrix} \sigma \cdot (-i\nabla + k) & 0 \\ 0 & \sigma \cdot (-i\nabla + k) \end{pmatrix} e_{2,m} = \overline{(ma^* + k)_{\mathbb{C}}} e_{1,m}$$

$$\begin{pmatrix} \sigma \cdot (-i\nabla + k) & 0 \\ 0 & \sigma \cdot (-i\nabla + k) \end{pmatrix} e_{3,m} = (ma^* + k)_{\mathbb{C}} e_{4,m}$$

$$\begin{pmatrix} \sigma \cdot (-i\nabla + k) & 0 \\ 0 & \sigma \cdot (-i\nabla + k) \end{pmatrix} e_{4,m} = \overline{(ma^* + k)_{\mathbb{C}}} e_{3,m}$$

We know that $e^{-ikx}(-i\nabla)e^{ikx} = -i\nabla + k$ hence

$$e^{-ikx}\left(-\frac{1}{2}\Delta\right)e^{ikx}\cdot = \frac{1}{2}\left(-i\nabla + k\right)^2$$

and with $f(x) = \sum_{m} \widehat{f}_{m} e^{ima^{*}x}$

$$(-i\nabla + k) f = \sum_{m} (ma^* + k) \hat{f}_m e^{ima^*x},$$

so

$$\frac{1}{2} (-i\nabla + k)^2 f = \sum_{m} \frac{1}{2} (ma^* + k)^2 \hat{f}_m e^{ima^* x}$$

We have

$$\left\langle e_{\alpha,n}, \frac{1}{2} \left(-i \nabla + k \right)^2 e_{\beta,m} \right\rangle = \frac{1}{2} \left(m a^* + k \right)^2 \delta_{\alpha,\beta} \delta_{m-n}$$

We have

$$\sigma \cdot k = \begin{pmatrix} 0 & \overline{k_{\mathbb{C}}} \\ k_{\mathbb{C}} & 0 \end{pmatrix}, \qquad (Jk)_{\mathbb{C}} = ik_{\mathbb{C}}, \qquad \sigma \cdot Jk = \begin{pmatrix} 0 & -i\overline{k_{\mathbb{C}}} \\ ik_{\mathbb{C}} & 0 \end{pmatrix}$$

SO

$$\begin{pmatrix} -\sigma \cdot J \left(-i\nabla + k \right) & 0 \\ 0 & \sigma \cdot J \left(-i\nabla + k \right) \end{pmatrix} e_{1,m} = -i \left(ma^* + k \right)_{\mathbb{C}} e_{2,m}$$

$$\begin{pmatrix} -\sigma \cdot J \left(-i\nabla + k \right) & 0 \\ 0 & \sigma \cdot J \left(-i\nabla + k \right) \end{pmatrix} e_{2,m} = i \overline{\left(ma^* + k \right)_{\mathbb{C}}} e_{1,m}$$

$$\begin{pmatrix} -\sigma \cdot J \left(-i\nabla + k \right) & 0 \\ 0 & \sigma \cdot J \left(-i\nabla + k \right) \end{pmatrix} e_{3,m} = i \left(ma^* + k \right)_{\mathbb{C}} e_{4,m}$$

$$\begin{pmatrix} -\sigma \cdot J \left(-i\nabla + k \right) & 0 \\ 0 & \sigma \cdot J \left(-i\nabla + k \right) \end{pmatrix} e_{4,m} = -i \overline{\left(ma^* + k \right)_{\mathbb{C}}} e_{3,m}$$

For a general $V=\sum_m \widehat{V}_m e^{ima^*\cdot x}$, we have $V^*=\sum_m \widehat{V}_m^* e^{-ima^*\cdot x}$ and we compute

6. Symmetries

6.1. Particle-hole. We define

$$Su(x) := i \begin{pmatrix} 0 & -\mathbb{1}_{2 \times 2} \\ \mathbb{1}_{2 \times 2} & 0 \end{pmatrix} u(-x)$$

We have

$$\mathcal{S}\begin{pmatrix} 0 & B \\ B^* & 0 \end{pmatrix} \mathcal{S} = -\begin{pmatrix} 0 & B^*(-x) \\ B(-x) & 0 \end{pmatrix}$$

We have $T(-x)^* = T(x)$ hence we should have that

$$SHS = -H$$

We compute

$$S_{IJ} = \langle e_{\alpha,n}, Se_{\beta,m} \rangle = i \left\langle e_{\alpha,n}, \begin{pmatrix} -e_{\beta_2,-m} \\ e_{\beta_1,-m} \end{pmatrix} \right\rangle$$
$$= i \delta_{m+n} \left(\delta_{\alpha \in \{3,4\}}^{\beta \in \{1,2\}} \delta_{\beta_1-\alpha_2} - \delta_{\alpha \in \{1,2\}}^{\beta \in \{3,4\}} \delta_{\beta_2-\alpha_1} \right)$$

6.2. **Mirror.** First, for any function B, we have $\sigma_1 B^* \sigma_1 = \begin{pmatrix} \overline{B_{22}} & \overline{B_{12}} \\ \overline{B_{21}} & \overline{B_{11}} \end{pmatrix}$. The mirror operator for the BM Hamiltonian is

$$\mathcal{M}u(\mathbf{X}) := \begin{pmatrix} 0 & \sigma_1 \\ \sigma_1 & 0 \end{pmatrix} u(\overline{\mathbf{X}})$$

where $\overline{\mathbf{X}} := (X_1, -X_2) =: M\mathbf{X}$, it satisfies $\mathcal{M} = \mathcal{M}^{-1} = \mathcal{M}^*$. Next,

$$\mathcal{M} \begin{pmatrix} 0 & B(\mathbf{X}) \\ B(\mathbf{X})^* & 0 \end{pmatrix} \mathcal{M} = \begin{pmatrix} 0 & \sigma_1 B^*(\overline{\mathbf{X}}) \sigma_1 \\ \sigma_1 B(\overline{\mathbf{X}}) \sigma_1 & 0 \end{pmatrix}$$

In cartesian coordinates, we have

$$T(M\mathbf{X}) = \sum_{j=1}^{3} T_j e^{ix \cdot M^* q_j^c} = \sum_{j=1}^{3} T_j e^{ix \cdot M q_j^c}$$

because $M^* = M$. But

$$\sigma_{1}T^{*}(M\mathbf{X})\sigma_{1} = \begin{pmatrix} w_{0} \left(\sum_{j=1}^{3} e^{ix \cdot Mq_{j}} \right) & w_{1} \left(e^{ix \cdot Mq_{1}} + e^{i\phi} e^{ixMq_{2}} + e^{i2\phi} e^{ix \cdot Mq_{3}} \right) \\ & \cdot & \cdot \\ & \cdot & \cdot \end{pmatrix}$$

$$= \begin{pmatrix} w_{0} \left(\sum_{j=1}^{3} e^{ix \cdot q_{j}} \right) & w_{1} \left(e^{ix \cdot q_{1}} + e^{-i\phi} e^{ixq_{2}} + e^{-i2\phi} e^{ix \cdot q_{3}} \right) \\ & \cdot & \cdot \end{pmatrix} = T(\mathbf{X})$$

where we used that $Mq_1^c=q_1^c$, $Mq_2^c=q_3^c$ and $Mq_3^c=q_2^c$.

We search the action on reduced Fourier coefficients. We have

$$f(Mx) = \sum_{m} e^{ix \cdot M(ma^*)} = \sum_{m} e^{ix \cdot (M^r m)a^*}$$

where
$$M = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
,

$$M^r = S^{-1}MS = \mathcal{M}^*M \left(\mathcal{M}^*\right)^{-1} = \sigma_1$$

7. Change of basis for getting $\Phi_j \in L^2_{ au,\overline{ au}}$

Numerically, DFTK gives

$$\phi, \psi \in \operatorname{Ker}\left(\mathcal{R}_{\frac{2\pi}{3}} - \tau\right) + \operatorname{Ker}\left(\mathcal{R}_{\frac{2\pi}{3}} - \overline{\tau}\right)$$

but we want to separate the spaces and obtain $\phi_1 \in \operatorname{Ker}\left(\mathcal{R}_{\frac{2\pi}{3}} - \tau\right)$ so that $\phi_2(x,z) := \overline{\phi_1}(-x,z) \in \operatorname{Ker}\left(\mathcal{R}_{\frac{2\pi}{3}} - \overline{\tau}\right)$, which existence is ensured by [2]. First we define

$$c := \left\| \left(\mathcal{R}_{\frac{2\pi}{3}} - \tau \right) \phi_a \right\|_{L^2}^2, \qquad s := \left\langle \left(\mathcal{R}_{\frac{2\pi}{3}} - \tau \right) \phi_a, \left(\mathcal{R}_{\frac{2\pi}{3}} - \tau \right) \phi_b \right\rangle.$$

Then we parametrize

$$\phi_1 = e^{i\alpha} \left(\frac{s}{|s|} \cos \theta \phi_a + e^{i\beta} \sin \theta \phi_b \right)$$

and we want $\left(\mathcal{R}_{\frac{2\pi}{3}} - \tau\right)\phi_1 = 0$ which is equivalent to

$$\frac{s}{|s|}\cos\theta\left(\mathcal{R}_{\frac{2\pi}{3}} - \tau\right)\phi_a + e^{i\beta}\sin\theta\left(\mathcal{R}_{\frac{2\pi}{3}} - \tau\right)\phi_b = 0$$

and we take the scalar product with $\left(\mathcal{R}_{\frac{2\pi}{3}} - \tau\right)\phi_a$ so that

$$\frac{c}{|s|}\cos\theta + e^{i\beta}\sin\theta = 0$$

Now we necessarily have $e^{i\beta} = \pm \operatorname{so} \cos \theta = \mp \frac{|s|}{c} \sin \theta$ and finally using $\cos^2 + \sin^2 = 1$,

$$|\cos \theta| = \frac{1}{\sqrt{1 + \left(\frac{c}{|s|}\right)^2}}, \qquad |\sin \theta| = \frac{1}{\sqrt{1 + \left(\frac{|s|}{c}\right)^2}},$$

and also choosing $\alpha=0$ if $\cos\theta\geqslant 0$ and π otherwise, which does not change anything, we have

$$\phi_1 = \frac{s}{|s|} \frac{1}{\sqrt{1 + \left(\frac{c}{|s|}\right)^2}} \phi_a \pm \frac{1}{\sqrt{1 + \left(\frac{|s|}{c}\right)^2}} \phi_b$$

and $\phi_2(x) = \overline{\phi_1(-x)}$. By multiplying by e^{-iKx} , we also obtain

$$u_1 = \frac{s}{|s|} \frac{1}{\sqrt{1 + \left(\frac{c}{|s|}\right)^2}} u_a \pm \frac{1}{\sqrt{1 + \left(\frac{|s|}{c}\right)^2}} u_b$$

and $u_2(x) = \overline{u_1(-x)}$.

8. The 1/3 scaling of coordinates

Taken from [3, Appendix G.3, G.4] for instance, the moiré lattice vectors are

$$a_1 = \frac{2\pi}{3k_{\theta}} \begin{pmatrix} \sqrt{3} \\ 1 \end{pmatrix}, \qquad a_2 = \frac{2\pi}{3k_{\theta}} \begin{pmatrix} -\sqrt{3} \\ 1 \end{pmatrix}$$

and $T(x) = \sum_{j=1}^{3} T_j e^{-iq_j x}$ has

$$q_1 = k_\theta \begin{pmatrix} 0 \\ -1 \end{pmatrix}, \qquad q_{2,3} = \frac{k_\theta}{2} \begin{pmatrix} \pm \sqrt{3} \\ 1 \end{pmatrix}$$

and we remark that $a_1 \cdot q_1 = -\frac{2\pi}{3}$ so actually $q_j \notin \mathbb{L}^*$ but $3q_j \in \mathbb{L}^*$.

References

- [1] S. Becker, M. Embree, J. Wittsten, and M. Zworski, Spectral characterization of magic angles in twisted bilayer graphene, Phys. Rev. B, 103 (2021), p. 165113.
- [2] C. Fefferman and M. Weinstein, *Honeycomb lattice potentials and Dirac points*, J. Am. Math. Soc, 25 (2012), pp. 1169–1220.
- [3] A. B. Watson and M. Luskin, Existence of the first magic angle for the chiral model of bilayer graphene, J. Math. Phys, 62 (2021), p. 091502.