

2. Berechnung der Netzwerkantwort im Zeitbereich

Vadim Issakov Sommersemester 2024

Vorgehen bei der Berechnung im Zeitbereich

Differentialgleichung aufstellen

- Linear unabhängige Knotengleichungen
- Linear unabhängige Maschengleichungen
- Zweiggleichungen

Differentialgleichung (DGL) lösen

Die allgemeine Lösung einer inhomogenen DGL setzt sich zusammen aus

- der Lösung der homogenen DGL und
- einer partikulären Lösung der inhomogenen DGL

$$x(t) = x_h(t) + x_p(t)$$

A) Netzwerk 1. Ordnung ohne Quelle nach Schalten

- Netzwerk erster Ordnung mit Gleichstrom- oder Gleichspannungsanregung vor dem Schalten und ohne Anregung (Zero Input) nach dem Schalten
 - Beispiel: RL-Netzwerk
 - Stetiger Anfangswert
 - Netzwerk vor dem Schalten
 - Netzwerk nach dem Schalten
 - Aufstellen der Differentialgleichung (DGL)
 - Lösung der Differentialgleichung
 - Eingeschwungener Zustand

RL-Netzwerk ohne Quelle nach Schalten

RL-Netzwerk mit

$$R > 0, R_1 > 0, L > 0, i_S(t) = I_0 = konst.$$

Es gelte
$$i_L(0^-) = i_L(0) = i_L(0^+)$$
 (stetiger Anfangswert)

Für t < 0 ist der Schalter geschlossen ("lange Zeit") und das Netzwerk im eingeschwungenen Zustand (Erklärung später)

Bestimme zuerst $i_L(t)$. Bestimme dann $u_R(t)$ mit Hilfe von $i_L(t)$.

Stetiger Anfangswert

Schaltzeitpunkt bei t = 0

$$i_L(0^-) = i_L(0) = i_L(0^+)$$
 (Stetiger Anfangswert)

Zeitpunkt direkt **vor** Schalten

Zeitpunkt direkt **nach** Schalten

 $i_L(0^-)$: Grenzwert von $i_L(t)$ für $t \to 0$ von links (negative Zeit)

 $i_L(0^+)$: Grenzwert von $i_L(t)$ für $t \to 0$ von rechts (positive Zeit)

Allgemein: Schaltzeitpunkt bei $t = t_S$

 \triangleright Ersetze 0 durch t_S

Netzwerk für t < 0

Netzwerk im eingeschwungenen Zustand und $i_S(t) = I_0 = konst.$ ist Gleichstromquelle

⇒ Alle Ströme und Spannungen sind konstant, bis Schalter geöffnet wird.

$$\Rightarrow u_L(t) = L \frac{di_L(t)}{dt} = 0$$
 da $i_L(t)$ konstant

- \Rightarrow Induktivität \rightarrow Kurzschluss, da $u_L(t) = 0$
- Mit $u_R(t) = -u_L(t) = 0$ und $u_R(t) = Ri_R(t)$, R > 0 folgt $i_R(t) = 0$
- Mit $u_{R1}(t) = -u_L(t) = 0$ und $u_{R1}(t) = R_1 i_{R1}(t)$, $R_1 > 0$ folgt $i_{R1}(t) = 0$
- \Rightarrow Kein Strom in Zweigen mit R_1 oder R

$$\Rightarrow i_L(t) = I_0, i_R(t) = 0, u_R(t) = 0$$

Netzwerk für t > 0

DGL aufstellen

$$M_1$$
: $u_L(t) + u_R(t) = 0$ (1)

$$\mathbf{K_1}: \quad i_R(t) = i_L(t) \tag{2}$$

Zweiggleichungen:

$$u_R(t) = Ri_R(t) \tag{3}$$

$$u_L(t) = L \frac{di_L(t)}{dt} \tag{4}$$

(4)
$$\Rightarrow \frac{di_L(t)}{dt} = \frac{1}{L}u_L(t) \stackrel{\text{(1)}}{=} -\frac{1}{L}u_R(t) \stackrel{\text{(3)}}{=} -\frac{R}{L}i_R(t) \stackrel{\text{(2)}}{=} -\frac{R}{L}i_L(t)$$

(5)
$$\frac{di_L(t)}{dt} = -\frac{R}{L}i_L(t)$$

Homogene gewöhnliche DGL erster Ordnung mit konstanten Koeffizienten (R, L: konstant)

Lösung der homogenen DGL 1. Ordnung

erste Ordnung

(5)
$$\frac{di_L(t)}{dt} = -\frac{R}{L}i_L(t)$$

- Separation der Variablen:
 - Multiplikation beider Seiten mit dt
 - Division durch $i_L(t)$

$$\Rightarrow \frac{di_L(t)}{i_L(t)} = -\frac{R}{L}dt$$

Integration beider Seiten der Gleichung

$$\Rightarrow \int\limits_{i_L(0^+)}^{i_L(t)} \frac{di_L(t')}{i_L(t')} = -\frac{R}{L} \int\limits_0^t dt' \qquad \qquad i_L(0^+) : \text{Strom am Zeitpunkt } 0^+$$

Lösung der homogenen DGL 1. Ordnung

$$\Rightarrow \int_{i_L(0^+)}^{i_L(t)} \frac{di_L(t')}{i_L(t')} = -\frac{R}{L} \int_{0}^{t} dt'$$

$$\Rightarrow \ln i_L(t) - \ln i_L(0^+) = -\frac{R}{L}(t-0)$$

$$\Rightarrow \ln \frac{i_L(t)}{i_L(0^+)} = -\frac{R}{L}t$$

natürliche Frequenz

$$\Rightarrow i_L(t) = I_0 e^{-(R/L)t}$$

Da
$$i_L(0^-) = i_L(0) = i_L(0^+)$$

und
$$i_L(0^-) = I_0$$
 folgt $i_L(0^+) = I_0$

 I_0 Anfangswert des Stroms durch die Induktivität

Entladekurve der Induktivität

$$i_L(t) = I_0 e^{-(R/L)t}$$
 (6)

Für
$$t < 0$$
 gilt: $i_L(t) = I_0 \Rightarrow i_L(0^-) = I_0$

$$i_L(0^+) = I_0$$
 $(t = 0^+ \text{ in Gl.(6)})$

 $i_L(t)$ ist für $t \ge 0$ definiert, da $i_L(t)$ bei t = 0 stetig ist (**kein** Sprung).

$$i_L(t) = \begin{cases} I_0, & t < 0 \\ I_0 e^{-(R/L)t}, t \ge 0 \end{cases}$$

$i_R(t)$ und $u_R(t)$ nach dem Schalten

$$i_L(t) = I_0 e^{-(R/L)t}$$

Da
$$i_R(t) = i_L(t) = i_L(0^+)e^{-(R/L)t}$$
 für $t > 0$

Anfangswert $i_L(0^-) = I_0 = i_L(0^+)$ wird übernommen

$$\Rightarrow i_R(t) = I_0 e^{-(R/L)t} \text{ für } t > 0$$
 (7)

$$u_R(t) = Ri_R(t) = I_0 Re^{-(R/L)t}$$
 für $t > 0$ (8)

Für
$$t < 0$$
 gilt: $i_R(t) = 0 \Rightarrow i_R(0^-) = 0$

$$u_R(t)=0 \ \Rightarrow \ u_R(0^-)=0$$

$$i_R(0^+) = I_0$$
 $(t = 0^+ \text{ in Gl.}(7))$

$$u_R(0^+) = I_0 R$$
 $(t = 0^+ \text{ in Gl.(8)})$

$i_R(t)$ und $u_R(t)$

$$i_{R}(t) = \begin{cases} 0, & t < 0 \\ I_{0}e^{-(R/L)t}, t > 0 \end{cases} = I_{0}e^{-(R/L)t}\Theta(t)$$

$$0 \qquad \qquad t < 0$$

$$u_R(t) = \begin{cases} 0, & t < 0 \\ I_0 R e^{-(R/L)t}, & t > 0 \end{cases} = I_0 R e^{-(R/L)t} \Theta(t)$$

Verlustleistung im Widerstand

$$t > 0 u_R(t) = Ri_R(t)$$

$$p(t) = u_R(t)i_R(t),$$

$$p(t) = Ri_R^2(t),$$

$$p(t) = u_R(t)i_R(t), \qquad p(t) = Ri_R^2(t), \qquad p(t) = \frac{u_R^2(t)}{R}$$

$$i_R(t) = I_0 e^{-(R/L)t}$$

$$u_R(t) = I_0 R e^{-(R/L)t}$$

$$p(t) = I_0^2 e^{-2(R/L)t}$$

$$\begin{split} w(t) &= \int\limits_0^t p(t)dt' = \int\limits_0^t I_0^2 R e^{-2\left(R/L\right)t'} dt' \\ &= \frac{1}{2(R/L)} I_0^2 R \left(1 - e^{-2(R/L)t}\right) \\ &= \frac{1}{2} L I_0^2 \left(1 - e^{-2(R/L)t}\right), \qquad t \geq 0. \end{split}$$

Nach unendlich langer Zeit ist die Verlustleistung im Widerstand annähernd die gespeicherte Energie in der Induktivität

Zeitkonstante des Netzwerks

$$i_L(t) = I_0 e^{-(R/L)t} \quad t \ge 0$$

$$u_R(t) = I_0 R e^{-(R/L)t}$$

t > 0

Der Koeffizient bei t – hier R/L – bestimmt, mit welcher Rate $i_L(t)$ oder $u_R(t)$ gegen null geht.

Das Reziproke der Rate ist die Zeitkonstante des Netzwerks.

Zeitkonstante τ des *RL*-Netzwerkes:

$$\tau = \frac{L}{R}$$

$$\omega = \frac{1}{\tau} = \frac{R}{L}$$

$$i_L(t) = I_0 e^{-t/\tau}$$

$$u_R(t) = I_0 R e^{-t/\tau}$$

$$p(t) = I_0^2 R e^{-2t/\tau}$$

$$w(t) = \frac{1}{2}LI_0^2 (1 - e^{-2t/\tau})$$

Eingeschwungener Zustand

 $e^{-t/\tau}$ für t als Vielfache von τ :

t	$e^{-t/ au}$	t	$e^{-t/ au}$
au	3.6788×10^{-1}	6 au	2.4788×10^{-3}
2τ	1.3534×10^{-1}	7 au	9.1188×10^{-4}
3τ	4.9787×10^{-2}	8 au	3.3546×10^{-4}
4 au	1.8316×10^{-2}	9τ	1.2341×10^{-4}
5τ	6.7379×10^{-3}	10τ	4.5400×10^{-5}

• Für $t = 5\tau$ ist Strom < 1% vom Anfangswert I_0 .

Für $t > 5\tau$ haben alle Ströme und Spannungen nahezu Ihre Endwerte erreicht.

- Netzwerke mit nur einer Zeitkonstanten
 - 1% Genauigkeit ausreichend
 - "Lange Zeit" bedeutet: t > 5τ.
 - haben nur eine natürliche Frequenz
 - Bezeichnung als Netzwerke erster Ordnung

Eingeschwungener Zustand

 $e^{-t/\tau}$ für t als Vielfache von τ :

t	$e^{-t/ au}$	t	$e^{-t/ au}$
au	3.6788×10^{-1}	6 au	2.4788×10^{-3}
2τ	1.3534×10^{-1}	7 au	9.1188×10^{-4}
3τ	4.9787×10^{-2}	8 au	3.3546×10^{-4}
4 au	1.8316×10^{-2}	9τ	1.2341×10^{-4}
5 au	6.7379×10^{-3}	10τ	4.5400×10^{-5}

Antwort im eingeschwungenen Zustand (steady-state response):

Zustand, der nach langer Zeit erreicht wird (hier: Wenn nach Schalten $t>5\tau$, ist Abweichung vom Endwert < 1% \approx eingeschwungener Zustand)

"lange Zeit" = Zeit, bis zum Erreichen des eingeschwungenen Zustands

Graphische Bestimmung der Zeitkonstanten

Graphische Bestimmung von τ mit Plot von der Antwort des Stroms:

Berechne die Tangente bei $t = 0^+$:

 $di_L(t)/dt$ bei 0⁺(Annahme: Strom ändert sich kontinuierlich)

$$i_L(t) = I_0 e^{-(R/L)t}$$
 Bei $t = \tau$ ist $i_L(t) = I_0 e^{-1} \approx 0.368 I_0$

$$\frac{di_L(t)}{dt} = -\frac{R}{L}I_0e^{-(R/L)t}$$

$$\frac{di_L(t)}{dt}\Big|_{t=0^+} = -\frac{R}{L}I_0 = -\frac{I_0}{\tau}$$
Reminder: $\tau = \frac{L}{R}$

Wenn beim Schalten (t=0) $i_L=I_0$ ist und mit einer konstanten Rate I_0/τ abnimmt, ergibt sich:

$$i_L(t) \approx I_0 - \frac{I_0}{\tau}t$$

 i_L erreicht seinen Endwert 0 in τ Sekunden.

RL-Netzwerk ohne Quelle nach Schalten - Beispiel

Der Schalter war lange Zeit geschlossen. Im Zeitpunkt t=0 wurde der Schalter geöffnet. Berechne: a) $i_L(t)$ für $t\geq 0$; b) $i_o(t)$ für $t\geq 0^+$; c) $v_o(t)$ für $t\geq 0^+$; d) wieviel Prozent der in der Induktivität gespeicherten Energie wurde im 10Ω Widerstand verheizt.

a)
$$i_L(0^+) = 20 \text{ A}$$

$$R_{\text{eq}} = (2 + (40 \parallel 10))\Omega = 10 \Omega$$

$$\tau = \frac{L}{R_{eq}} = \frac{2}{10}$$
 s = 0.2 s

$$i_L(t) = 20e^{-5t/s} A, \qquad t \ge 0$$

RL-Netzwerk ohne Quelle nach Schalten - Beispiel

Der Schalter war lange Zeit geschlossen. Im Zeitpunkt t=0 wurde der Schalter geöffnet.

Berechne: a) $i_L(t)$ für $t \ge 0$; b) $i_o(t)$ für $t \ge 0^+$; c) $v_o(t)$ für $t \ge 0^+$; d) wieviel Prozent der in der Induktivität gespeicherten Energie wurde im 10Ω Widerstand verheizt.

c)
$$v_0 = i_0 40 \Omega = -160 e^{-5t/s} V$$
, $t \ge 0^+$

d)
$$p_{10\Omega}(t) = \frac{v_0^2}{10 \Omega} = 2560 e^{-10t/s} \text{ W}, \qquad t \ge 0^+$$

$$w_{10\Omega}(t) = \int_0^\infty 2560 e^{-10t/s} \text{ W d}t = 256 \text{ J}$$

$$w(0) = \frac{1}{2} Li^2(0) = \frac{1}{2} (2)(400) \text{ J} = 400 \text{ J}$$

$$\frac{256}{400}(100) = 64\%$$

B) Netzwerk 1. Ordnung mit Quelle nach Schalten

- Netzwerk erster Ordnung mit Gleichstrom- oder Gleichspannungsanregung vor dem Schalten und mit Anregung durch eine Strom- oder Spannungsquelle nach dem Schalten
 - Beispiel: RC-Netzwerk
 - Netzwerk vor dem Schalten
 - Netzwerk nach dem Schalten
 - Aufstellen der Differentialgleichung (DGL)
 - Lösung der Differentialgleichung
 - Eingeschwungener Zustand

RC-Netzwerk mit Quelle nach Schalten

RC-Netzwerk mit

$$R > 0, R_1 > 0, C > 0,$$

Spannungsquelle $v_q(t) = V_0 = konst.$,

Stromquelle $i_q(t)$.

Es gelte
$$u_C(t_S^-) = u_C(t_S) = u_C(t_S^+)$$

Für $t < t_S$ sei das Netzwerk im eingeschwungenen Zustand.

Bestimme $u_{\mathcal{C}}(t)$.

RC-Netzwerk mit Quelle nach Schalten

Für $t < t_S$: Schalter auf Stellung a, Netzwerk im eingeschwungenen Zustand und $v_q(t) = V_0 = konst.$ ist Gleichspannungsquelle

⇒ Alle Ströme und Spannungen sind konstant, bis Schalter auf Stellung b wechselt

$$\Rightarrow i_C(t) = C \frac{du_C(t)}{dt} = 0 \quad \text{da } u_C(t) \text{ konstant}$$

 \Rightarrow Kapazität \rightarrow Leerlauf, da $i_L(t) = 0$

$$\Rightarrow u_C(t) = V_0$$

DGL aufstellen

$$K_1$$
: $i_q(t) = i_R(t) + i_C(t)$ (1)

$$M_1$$
: $u_C(t) = u_R(t)$ (2)

$$M_2$$
: $u_R(t) = -u_{iq}(t)$

$$u_R(t) = Ri_R(t) \tag{3}$$

$$i_C(t) = C \frac{du_C(t)}{dt} \tag{4}$$

$$(4) \Rightarrow \frac{du_C(t)}{dt} = \frac{1}{C}i_C(t) = \frac{1}{C}\left(i_q(t) - i_R(t)\right) = \frac{1}{C}i_q(t) - \frac{1}{CR}u_R(t) = \frac{1}{C}i_q(t) - \frac{1}{CR}u_C(t)$$

$$\Rightarrow \frac{du_C(t)}{dt} = -\frac{u_C(t)}{RC} + \frac{i_q(t)}{C}$$

Inhomogene gewöhnliche DGL erster Ordnung mit konstanten Koeffizienten

(5)

Lösung der inhomogenen DGL - 1

$$\frac{du_C(t)}{dt} = -\frac{u_C(t)}{RC} + \frac{i_q(t)}{C}$$
 (5)

Die allgemeine Lösung der inhomogenen DGL setzt sich zusammen aus

- der Lösung der homogenen DGL ($i_q(t) = 0$) und
- einer partikulären Lösung der inhomogenen DGL

$$u_{\mathcal{C}}(t) = u_{\mathcal{C},h}(t) + u_{\mathcal{C},p}(t)$$

Lösung der homogenen DGL

Partikuläre Lösung der inhomogenen DGL

Lösung der inhomogenen DGL - 2

1. Schritt: Lösung der homogenen DGL

$$\frac{du_{C}(t)}{dt} = -\frac{u_{C}(t)}{RC}$$
 Separation der Variablen, Integration

$$\int_{u_{C,h}(t_{S}^{+})}^{u_{C,h}(t)} \frac{du_{C,h}(t')}{u_{C,h}(t')} = -\frac{1}{RC} \int_{t_{S}}^{t} dt'$$

$$\ln u_{C,h}(t) - \ln u_{C,h}(t_S^+) = -\frac{1}{RC}(t - t_S) \implies \ln \frac{u_{C,h}(t)}{u_{C,h}(t_S^+)} = -\frac{1}{RC}(t - t_S)$$

wird später bestimmt

(6)
$$u_{C,h}(t) = \underbrace{u_{C,h}(t_S^+)e^{t_S/RC}}_{\text{Konstante } K_h} e^{-t/RC}$$

$$u_{C,h}(t) = K_h e^{-t/RC}, \qquad t > t_S$$

Lösung der inhomogenen DGL – 3

2. Schritt: Partikuläre Lösung der inhomogenen DGL

Verwende die Methode der Variation der Konstanten

$$u_{\mathcal{C},h}(t) = K_h e^{-t/R\mathcal{C}}$$
, $t > t_S$ Homogene Lösung

Ersetze die Konstante K_h der homogenen Lösung durch eine zeitabhängige Funktion $K_p(t)$ (= Variation der Konstanten)

(7)
$$u_{C,p}(t) = K_p(t)e^{-t/RC}, t > t_S$$

Ersetze in der inhomogenen DGL (Gl. (5)) $u_{\mathcal{C}}(t)$ durch $u_{\mathcal{C},p}(t)$

$$\frac{du_{C,p}(t)}{dt} = -\frac{u_{C,p}(t)}{RC} + \frac{i_q(t)}{C}$$

Setze in diese Gleichung für $u_{\mathcal{C},p}(t)$ jeweils die rechte Seite von Gl. (7) ein

(8)
$$\frac{d}{dt} (K_p(t)e^{-t/RC}) = -\frac{1}{RC} (K_p(t)e^{-t/RC}) + \frac{i_q(t)}{C}$$

Lösung der inhomogenen DGL – 4

2. Schritt: Partikuläre Lösung der inhomogenen DGL

(8)
$$\frac{d}{dt}\left(K_p(t)e^{-t/RC}\right) = -\frac{1}{RC}\left(K_p(t)e^{-t/RC}\right) + \frac{i_q(t)}{C}$$

Differentiation der linken Seite von Gl. (7):

$$e^{-t/RC} \frac{dK_p(t)}{dt} + K_p(t) \left(-\frac{1}{RC} e^{-t/RC} \right) = -\frac{1}{RC} \left(K_p(t) e^{-t/RC} \right) + \frac{i_q(t)}{C}$$

$$\Rightarrow e^{-t/RC} \; \frac{dK_p(t)}{dt} = \frac{i_q(t)}{C}$$

$$\Rightarrow \frac{dK_p(t)}{dt} = \frac{i_q(t)}{C}e^{t/RC}$$
 Integration, um $K_p(t)$ zu erhalten

$$\int_{t'_{S}}^{t} \frac{dK_{p}(t')}{dt'} dt' = \int_{t_{S}}^{t} \frac{i_{q}(t')}{C} e^{t'/RC} dt'$$

$$K_p(t) - K_p(t_S^+) = \int_{t_S}^t \frac{i_q(t')}{C} e^{t'/RC} dt'$$

Lösung der inhomogenen DGL – 5

2. Schritt: Partikuläre Lösung der inhomogenen DGL

(9)
$$K_p(t) = \int_{t_S}^{t} \frac{i_q(t')}{C} e^{t'/RC} dt' + K_p(t_S^+)$$

Setze Gl. (9) in Gl. (7) ein:

(7)
$$u_{C,p}(t) = K_p(t)e^{-t/RC}, t > t_S$$

$$t > t_S$$

$$\Rightarrow u_{C,p}(t) = \left(\int_{t_S}^t \frac{i_q(t')}{C} e^{t'/RC} dt' + K_p(t_S^+)\right) e^{-t/RC}$$

$$\Rightarrow u_{C,p}(t) = \int_{t_S}^{t} \frac{i_q(t')}{C} e^{-(t-t')/RC} dt' + K_p(t_S^+) e^{-t/RC}$$

Lösung der inhomogenen DGL - 6

2. Schritt: Partikuläre Lösung der inhomogenen DGL

$$u_{C,p}(t) = \int_{t_S}^{t} \frac{i_q(t')}{C} e^{-(t-t')/RC} dt' + K_p(t_S^+) e^{-t/RC}$$

Gesucht ist eine partikuläre Lösung.

Wahl: $u_{C,p}(t_S) = 0$ als Anfangswert.

Die Bedingung $u_{C,p}(t_S) = 0$ wird nur erfüllt, wenn $K_p(t_S^+) = 0$ ist.

$$\Rightarrow u_{C,p}(t) = \int_{t_S}^t \frac{i_q(t')}{C} e^{-(t-t')/RC} dt', \qquad t > t_S$$

Lösungen der inhomogenen DGL - 7

Noch nicht bestimmt ist $u_{C,h}(t_S)$ von Gl. (6)

$$u_C(t_S) = u_{C,h}(t_S) + u_{C,p}(t_S) = u_{C,h}(t_S), \text{ da } u_{C,p}(t_S) = 0$$

V₀ Anfangswert der Spannung, die über der Kapazität abfällt

$$u_C(t_S^-) = u_C(t_S) = u_C(t_S^+) = V_0$$
 (Stetigkeit)

Allgemeine Lösung von Gl. (5):

$$u_{\mathcal{C}}(t) = u_{\mathcal{C},h}(t) + u_{\mathcal{C},p}(t)$$

$$= V_0 e^{-(t-t_S)/RC} + \int_{t_S}^t \frac{i_q(t')}{C} e^{-(t-t')/RC} dt', \qquad t > t_S$$

$u_{\mathcal{C}}(t)$ für $t > t_{\mathcal{S}}$ mit Gleichstromanregung

Stromquelle sei Gleichstromquelle: $i_q(t) = I_0 = konst$.

$$u_C(t) = V_0 e^{-(t-t_S)/RC} + \int_{t_S}^{t} \frac{i_q(t')}{C} e^{-(t-t')/RC} dt', \qquad t > t_S$$

Setze I_0 für $i_a(t)$ ein

$$u_C(t) = V_0 e^{-(t-t_S)/RC} + \int_{t_S}^{t} \frac{I_0}{C} e^{-(t-t')/RC} dt', \qquad t > t_S$$

Integration ergibt:

$$u_C(t) = V_0 e^{-(t-t_S)/RC} + \frac{I_0}{C} RC e^{-(t-t')/RC} \Big|_{t'=t_S}^{t'=t}, \qquad t > t_S$$

$$u_C(t) = V_0 e^{-(t-t_S)/RC} + I_0 R (1 - e^{-(t-t_S)/RC}), \qquad t > t_S$$

Eingeschwungener Zustand für $t \ge t_S$:

$$\lim_{t\to\infty} u_C(t) = I_0 R \qquad \text{da} \quad \lim_{t\to\infty} e^{-(t-t_S)/RC} = 0$$

$u_{\mathcal{C}}(t)$ mit $v_q(t)=2$ V für t<0 und $i_q(t)=1$ A für $t>t_{\mathcal{S}}$

$$v_q(t) = V_0 = 2 \text{ V}, \quad i_q(t) = I_0 = 1 \text{ A}$$

Für $t < t_S$: $u_C(t) = V_0 = 2 \text{ V}$

Für
$$t \ge t_S$$
: $u_C(t) = V_0 e^{-(t-t_S)/RC} + I_0 R (1 - e^{-(t-t_S)/RC})$

Eingeschwungener Zustand: $\lim_{t\to\infty} u_{\mathcal{C}}(t) = I_0 R = 10\Omega \cdot 1 A = 10 \text{ V}$

$u_{\mathcal{C}}(t)$ für $t > t_{\mathcal{S}} = 0$ bei harmonischer Anregung ($i_{\mathcal{G}}(t) = I_0 \cos(\omega t)$)

 $u_C(t) = V_0 e^{-(t-t_S)/RC} + \int_{-C}^{T} \frac{i_q(t')}{C} e^{-(t-t')/RC} dt', \qquad t > 0$

Setze $I_0 \cos(\omega t)$ für $i_q(t)$ ein und setze $t_S = 0$

$$u_C(t) = V_0 e^{-t/RC} + \int_0^t \frac{1}{C} I_0 \cos(\omega t) e^{-(t-t')/RC} dt', \qquad t > 0$$

Nach der Eulerschen Formel gilt: $cos(\omega t) = \Re\{e^{j\omega t}\}\$

$$u_C(t) = V_0 e^{-t/RC} + \Re\left\{ \int_0^t \frac{I_0}{C} e^{-j\omega t'} e^{-(t-t')/RC} dt' \right\}, \qquad t > 0$$

Integration ergibt:

$$u_{C}(t) = V_{0}e^{-t/RC} + \Re\left\{\frac{I_{0}}{C} \frac{1}{j\omega + \frac{1}{RC}}e^{j\omega t' - (t - t')/RC} \Big|_{t' = 0}^{t' = t}\right\}, \qquad t > 0$$

$$u_C(t) = V_0 e^{-t/RC} + \Re \left\{ I_0 \frac{R}{i\omega CR + 1} \left(e^{j\omega t} - e^{-t/RC} \right) \right\}, \quad t > 0$$

Eingeschwungener Zustand:

$$\lim_{t \to \infty} u_C(t) = \Re \left\{ I_0 \ \frac{R}{i\omega CR + 1} e^{j\omega t} \right\} \quad \text{da} \quad \lim_{t \to \infty} e^{-t/RC} = 0$$

$$u_{\mathcal{C}}(t)$$
 für $t > t_{\mathcal{S}} = 0$ mit $i_{\mathcal{G}}(t) = I_{0} \cos(\omega t)$

Lösung unter Verwendung der Cosinus-Darstellung

$$u_C(t) = V_0 e^{-t/RC} + \Re \left\{ I_0 \ \frac{R}{j\omega CR + 1} \left(e^{j\omega t} - e^{-t/RC} \right) \right\}, \qquad t \ge 0$$

Um die Darstellung in cos-Form zu erhalten, verwende nochmals die Eulersche Formel

$$u_C(t) = V_0 e^{-t/RC} + I_0 \sqrt{\frac{R^2}{1 + (\omega CR)^2}} \left(\cos(\omega t + \varphi) - e^{-t/RC}\right), \qquad t \ge 0$$

$$\text{mit } \varphi = -\arctan\frac{\omega CR}{1}$$

Eingeschwungener Zustand:

$$\lim_{t \to \infty} u_C(t) = I_0 \sqrt{\frac{R}{1 + (\omega CR)^2}} \cos(\omega t + \varphi) \qquad \text{da} \qquad \lim_{t \to \infty} e^{-t/RC} = 0$$

Eingeschwungener Zustand und asymptotische Stabilität

- Der eingeschwungene Zustand stellt sich nur ein, wenn der Zero-Input (alle Quellen = 0) für $t \to \infty$ null ist.
- Wenn der Zero-Input für $t \to \infty$ null ist, ist ein Netzwerk asymptotisch stabil.
- Dies ist nur der Fall, wenn der Realteil aller natürlichen Frequenzen < 0 ist.</p>
- Es gibt auch <u>nicht</u> asymptotisch stabile Netzwerke! Beispiel: Oszillator

「echnische

Netzwerke höherer Ordnung

- Die Anzahl der in einem Netzwerk vorkommenden reaktiven Elemente (Induktiviäten, Kapazitäten) legt die maximale Ordnung eines Netzwerks fest.
- Ordnung eines Netzwerks nie > als die Anzahl der reaktiven Elemente!
- Netzwerke mit einer Ordnung > 1 haben mehr als ein reaktives Element.
- Ordnung ≥ max. Anzahl unterschiedlicher Zeitkonstanten oder natürlicher Frequenzen.
- Vielfachheiten einer Zeitkonstante oder natürlichen Frequenz sind möglich
- Netzwerke höherer Ordnung sind nur mit einem größeren zeitlichen Aufwand im Zeitbereich lösbar.
- Leichter ist die Lösung mit Hilfe des Frequenzbereichs (eingeschwungener Zustand) oder Laplacebereichs.

