Geometría y Álgebra Lineal 2

Mauro Polenta Mora

CLASE 14 - 02/06/2025

Complemento ortogonal

Proposición

Sea V un espacio vectorial con producto interno y S un subespacio vectorial de dimensión finita.

Entonces:

$$V = S \oplus S^{\perp}$$

Demostración

Queremos probar que:

1.
$$V = S + S^{\perp}$$

2.
$$S \cap S^{\perp} = \{\vec{0}\}\$$

Consideramos $\mathcal{B}=\{s_1,\dots,s_k\}$ una base ortonormal de S. Dado $v\in V$ definimos: $(v_s=\sum_{i=1}^k \left\langle v,s_i\right\rangle s_i)\in S.$

Veamos que $(v-v_s) \in S^{\perp}$, para esto, verifiquemos que $\left\langle v-v_s, s_j \right\rangle = 0$ para $j=1,\dots,k$.

$$\begin{split} \left\langle v - v_s, s_j \right\rangle &= \left\langle v - \sum_{i=1}^k \left\langle v, s_i \right\rangle s_i, s_j \right\rangle \\ &= \left\langle v, s_j \right\rangle - \sum_{i=1}^k \left\langle v, s_i \right\rangle \left\langle s_i, s_j \right\rangle \\ &= \left\langle v, s_j \right\rangle - \left\langle v, s_j \right\rangle \cdot 1 \\ &= 0 \end{split}$$

Por lo tanto probamos que $(v-v_s)\in S^{\perp}.$ Entonces, podemos decir que:

$$v = v_s + (v - v_s)$$

Donde: 1. $v_s \in S$ 2. $v-v_s \in S^{\perp}$

En conclusión $V = S + S^{\perp}$.

Ahora, queremos demostrar que $S \cap S^{\perp} = \{\vec{0}\}$, para esto, consideremos $v \in S \cap S^{\perp}$: 1. $v \in S$ 2. $v \in S^{\perp}$

Entonces $\langle v, v \rangle = 0 \Rightarrow v = \vec{0}$

Juntando ambas cosas, probamos que $V = S \oplus S^{\perp}$

Observación

Dado $v \in V$ existen únicos $v_s \in S$ y $v_{s^{\perp}} \in S^{\perp}$ tales que $v = v_s + v_{s^{\perp}}$. Nosotros utilizamos una base ortonormal $\{s_1, s_2, \dots, s_k\}$ de S. De donde obtuvimos $v_s = \sum_{i=1}^k \langle v, s_i \rangle s_i$. Si usamos otra base ortonormal diferente, el resultado que obtenemos será el mismo. Esto significa que el cálculo de v_s no depende de la base ortonormal elegida

Proyección ortogonal

Definición

Dado $v \in V$, definimos v_s como la proyección ortogonal de v sobre el subespacio S y se denota:

$$P_S(v) = v_s = \sum_{i=1}^k \langle v, s_i \rangle \, s_i$$

Observación

- 1. La definición de proyección ortogonal no depende de la base ortonormal elegida para calcularla
- 2. Si proyectamos sobre S^{\perp} :

$$v=v_{s^\perp}+v_{(s^\perp)^\perp}=v_{s^\perp}+v_s=P_{S^\perp}(v)+P_S(v)$$

3. $P_S:V\to V$ es un operador lineal. Esto se deriva fácilmente de las propiedades de producto interno.

Ejemplo 1

 $V=P_2[x](\mathbb{R})$ con producto interno: $\langle p,q\rangle=\int_{-1}^1 p(t)q(t)dt$ y $S=[t^2]$. Consideremos p(t)=1+t. Queremos calcular $P_S(p)$ Usaremos la siguiente base ortonormal de $S:\mathcal{B}=\{\sqrt{\frac{5}{2}}t^2\}$ (asumiremos que es ortonormal).

Con todo esto:

$$P_S(v) = \langle p, p_1 \rangle \, p_1(t)$$

Donde:

$$\begin{array}{l} \bullet \quad \langle p,p_1\rangle = \int_{-1}^1 (1+t) \sqrt{\frac{5}{2}} t^2 dt = \int_{-1}^1 \sqrt{\frac{5}{2}} t^2 + \sqrt{\frac{5}{2}} t^3 dt = \sqrt{\frac{5}{2}} \int_{-1}^1 t^2 + t^3 dt = \sqrt{\frac{5}{2}} ((\tfrac{1}{3} + \tfrac{1}{4}) - (\tfrac{-1}{3} + \tfrac{1}{4})) = \sqrt{\frac{5}{2}} \cdot \tfrac{2}{3} = \tfrac{2\sqrt{5}}{3\sqrt{2}} \end{array}$$

Entonces:

$$P_S(v) = \frac{2\sqrt{5}}{3\sqrt{2}} \cdot \frac{\sqrt{5}}{\sqrt{2}} t^2 = \frac{10}{6} t^2 = \frac{5}{3} t^2$$

Ejemplo 2

 $V=\mathbb{R}^3$ producto interno habitual. $S=\{(x,y,z)\in\mathbb{R}^3: x+y+z=0\}$. Consideremos v=(1,0,0), queremos calcular $P_S(v)$. Consideramos la siguiente base ortonormal de S (no verificaremos nuevamente): $\mathcal{B}=\{\frac{1}{\sqrt{2}}(1,-1,0),\sqrt{\frac{2}{3}}(\frac{1}{2},\frac{1}{2},-1)\}$.

Con esto, podemos calcular:

$$\begin{split} P_S(1,0,0) &= \left\langle (1,0,0), \frac{1}{\sqrt{2}}(1,-1,0) \right\rangle \frac{1}{\sqrt{2}}(1,-1,0) + \left\langle (1,0,0), \sqrt{\frac{2}{3}} \left(\frac{1}{2},\frac{1}{2},-1\right) \right\rangle \sqrt{\frac{2}{3}} \left(\frac{1}{2},\frac{1}{2},-1\right) \\ &= \frac{1}{2}(1,-1,0) + \frac{1}{3} \left(\frac{1}{2},\frac{1}{2},-1\right) \\ &= \frac{1}{6} \left(\frac{3}{2},\frac{-1}{2},-1\right) \end{split}$$

Teorema

Sea V un espacio vectorial con producto interno y S un subespacio vectorial. Entonces:

$$\|v-P_s(v)\| \leq \|v-s\| \quad \forall s \in S$$

Este resultado es muy geométrico, no es fácil entender lo que es mirando la expresión. La idea es que la proyección ortogonal del vector v es la que resulta teniendo la menor distancia al vector v en si, con respecto a todos los demás vectores de S.

Demostración

Tomemos un vector cualquiera $s \in S$, entonces:

$$\begin{split} &\|v-s\|^2\\ =&(\text{norma inducida})\\ &\langle v-s,v-s\rangle\\ =&(\text{proposición anterior})\\ &\langle P_S(v)+P_{S^\perp}(v)-s,P_S(v)+P_{S^\perp}(v)-s\rangle\\ =&(\text{propiedades del producto interno})\\ &\langle P_S(v)-s,P_S(v)-s\rangle+\langle P_S(v)-s,P_{S^\perp}(v)\rangle+\langle P_{S^\perp}(v),P_S(v)-s\rangle+\langle P_{S^\perp}(v),P_{S^\perp}(v)\rangle\\ =&(\langle P_S(v)-s,P_{S^\perp}(v)\rangle=0 \text{ y }\langle P_{S^\perp}(v),P_S(v)-s\rangle=0)\\ &\langle P_S(v)-s,P_S(v)-s\rangle+\langle P_{S^\perp}(v),P_{S^\perp}(v)\rangle\\ =&(\text{norma inducida})\\ &\|P_S(v)-s\|^2+\|P_{S^\perp}(v)\|^2 \end{split}$$

Por lo encontrado en el último paso, si consideramos $\|v-s\|^2$ como una función, ésta alcanza su valor mínimo cuando $\|P_S(v)-s\|^2=0$ que es cuando $s=P_S(v)$. Podemos decir que:

$$\|v-s\|^2 \geq \|v-P_S(v)\|^2$$

Como tomamos $s \in S$ cualquiera, este razonamiento es válido para todo s. Lo que concluye la prueba