Optimization in Machine Learning

First order methods: Weaknesses of GD – Curvature

Learning goals

- Effects of curvature
- Step size effect in GD

REMINDER: LOCAL QUADRATIC GEOMETRY

Approx smooth function locally via 2nd order Taylor:

$$f(\mathbf{x}) \approx f(\tilde{\mathbf{x}}) + \nabla f(\tilde{\mathbf{x}})^{\top} (\mathbf{x} - \tilde{\mathbf{x}}) + \frac{1}{2} (\mathbf{x} - \tilde{\mathbf{x}})^{\top} \nabla^{2} f(\tilde{\mathbf{x}}) (\mathbf{x} - \tilde{\mathbf{x}})$$

Source: daniloroccatano.blog.

REMINDER: LOCAL QUADRATIC GEOMETRY

Study Hessian $\mathbf{H} = \nabla^2 f(\mathbf{x}^{[t]})$ in GD to discuss effect of curvature

Recall:

- E-vec \mathbf{v}_{max} (\mathbf{v}_{min}) for E-val λ_{max} (λ_{min}) is dir. of max (min) curvature
- **H** called ill-conditioned if ratio $\kappa(\mathbf{A}) = \frac{|\lambda_{\max}|}{|\lambda_{\min}|}$ is high

EFFECTS OF CURVATURE

Intuitively, curvature of function determines outcome of GD step. . .

Source: Goodfellow et al., (2016), ch. 4

Quadratic objective $f(\mathbf{x})$. Dashed line = 1st order Taylor. Left: f decreases faster than grad predicts; Middle: grad predicts decrease correctly; Right: f decreases more slowly than grad predicts, then increases.

Worst case: **H** is ill-conditioned. What does this mean for GD?

• 2nd order Taylor of $f(\mathbf{x})$ around $\tilde{\mathbf{x}}$ (with grad \mathbf{g})

$$f(\mathbf{x}) \approx f(\tilde{\mathbf{x}}) + (\mathbf{x} - \tilde{\mathbf{x}})^{\top} \mathbf{g} + \frac{1}{2} (\mathbf{x} - \tilde{\mathbf{x}})^{\top} \mathbf{H} (\mathbf{x} - \tilde{\mathbf{x}})$$

• One GD step with step size α yields new parameters $\tilde{\mathbf{x}} - \alpha \mathbf{g}$ and new approx function value

$$f(\tilde{\mathbf{x}} - \alpha \mathbf{g}) \approx f(\tilde{\mathbf{x}}) - \alpha \mathbf{g}^{\mathsf{T}} \mathbf{g} + \frac{1}{2} \alpha^2 \mathbf{g}^{\mathsf{T}} \mathbf{H} \mathbf{g}.$$

• If $\mathbf{g}^{\top} \mathbf{H} \mathbf{g} > 0$, we can solve above for optimal step size α :

$$\alpha^* = \frac{\mathbf{g}^{\mathsf{T}}\mathbf{g}}{\mathbf{g}^{\mathsf{T}}\mathbf{H}\,\mathbf{g}}.$$

• Let's assume grad ${\bf g}$ points into dir. of ${\bf v}_{\rm max}$ (so highest curvature), then optimal step size is:

$$\alpha^* = \frac{\mathbf{g}^{\top}\mathbf{g}}{\mathbf{g}^{\top}\mathbf{H}\,\mathbf{g}} = \frac{\mathbf{g}^{\top}\mathbf{g}}{\lambda_{\max}\mathbf{g}^{\top}\mathbf{g}} = \frac{\mathbf{1}}{\lambda_{\max}},$$

which is small. Large α will make us "overshoot".

• OTOH: if **g** points into dir. of smallest curvature:

$$\alpha^* = \frac{1}{\lambda_{\min}},$$

which corresponds to the largest possible optimal step-size.

 We summarize: We want to perform big steps in directions of low curvature, but small steps in directions of high curvature.

- But what if g doesn't align with these E-vecs?
- Let us consider the 2-dimensional case: We can decompose the direction of g (black) into the two eigenvectors v_{max} and v_{min}
- It would be optimal to perform a big step into the direction of the smallest curvature v_{min}, but a small step into the direction of v_{max}, but the gradient points into a completely different direction.

- GD is unaware of large differences in curvature and can only walk into the direction of the gradient.
- Choosing a too large step-size will then cause the descent direction change frequently ("jumping around").
- ullet α needs to be small enough, which results in slow progress.

Contour lines = poorly cond. quadratic f. GD with small vs. large α . For both, convergence to optimum is slow.

 In the worst case, ill-conditioning of the Hessian matrix and a too big step-size will cause objective to increase

$$f(\tilde{\mathbf{x}} - \alpha \mathbf{g}) \approx f(\tilde{\mathbf{x}}) - \alpha \mathbf{g}^{\mathsf{T}} \mathbf{g} + \frac{1}{2} \alpha^2 \mathbf{g}^{\mathsf{T}} \mathbf{H} \mathbf{g}.$$

which happens if

$$\frac{1}{2}\alpha^2 \mathbf{g}^{\mathsf{T}} \mathbf{H} \, \mathbf{g} > \alpha \mathbf{g}^{\mathsf{T}} \mathbf{g}.$$

• To see if ill-conditioning is problematic in the opt run, we can monitor squared gradient norm $\mathbf{g}^{\mathsf{T}}\mathbf{g}$ and f.

Source: Goodfellow, ch. 6

- Gradient norms increase over time, showing that the training process is not converging to stationary g = 0.
- But f (risk) approx. constant.

$$\underbrace{f(\tilde{\mathbf{x}} - \alpha \mathbf{g})}_{\text{approx. constant}} \approx f(\tilde{\mathbf{x}}) - \underbrace{\alpha \mathbf{g}^{\top} \mathbf{g}}_{\text{increase}} + \underbrace{\frac{1}{2}}_{\text{increase}} \underbrace{\alpha^{2} \mathbf{g}^{\top} \mathbf{H} \mathbf{g}}_{\text{increase}}$$