Mining the potential relationships between cancer cases and industrial pollution based on high-influence ordered-pair patterns

Abstract This supplementary document presents the proofs and the detail of the function "searchRI".

1. The influence index does not meet the downward closure property.

Proof. We use an example to illustrate the problem. For example, there are three patterns $pc_1 = \langle \{a,b\}, \{B,C\} \rangle$, $pc_2 = \langle \{b\}, \{B,C\} \rangle$, $pc_3 = \langle \{a\}, \{B\} \rangle$ in Figure 1, and table 1 show the table instances of three patterns.

(1)
$$FIR(B, pc_1) = \sum_{B.t \in \pi_{c_j}(TI(pc_1))} SII(B.t) / FIS(B) = (SII(B.1) + SII(B.2)) / FIS(B)$$

$$FIR(B,pc_2) = \sum_{B.t \in \pi_{c_t}(TI(pc_2))} SII(B.t) / FIS(B) = \left(SII(B.1) + SII(B.2)\right) / FIS(B)$$

In the pattern pc_1 , B.1 is affected by a.1 and b.1; in the pattern pc_2 , B.1 is affected by b.1. Based on the definition of superimposed influence, the superimposed influence of B.1 in the pattern pc_1 is bigger than that of B.1 in the pattern pc_2 . The same true for the instance B.2, so $FIR(B,pc_1) > FIR(B,pc_2)$. The same can be obtained, $FIR(C,pc_1) > FIR(C,pc_2)$,

SO
$$PII(pc_1) = min(FIR(B, pc_1), FIR(C, pc_1)) > min(FIR(B, pc_2), FIR(C, pc_2)) = PII(pc_2)$$

Figure 1 an Example of a spatial dataset

Table 1 Table instances of the two patterns in Figure 1

a	b	В	С	b	В	С	а	В
a.1	b.1	B.1	C.1	b.1	B.1	C.1	a.1	B.1
a.2	b.2	B.2	C.2	b.2	B.2	C.2	a.2	B.2
a.4	b.2	B.2	C.4	b.2	B.2	C.4	a.4	B.2
							a.3	B.4
						C C.1 C.2 C.4	a.3	B.3

 $PII(pc_3) = (SII(B.1) + SII(B.2) + SII(B.3) + SII(B.4)) / FIS(B) = (0.414 + 0.308 + 0.413 + 0.555) / 2.086 = 0.81$ $PII(pc_1) \le FIR(B, pc_1) < PII(pc_3)$.

To sum up, $PII(pc_2) \le PII(pc_1) < PII(pc_3)$, so the influence index does not meet the downward closure property.

Lemma 1 (Conditional Monotonicity) If ordered-pair influence patterns have the same influence features, the influence index is anti-monotone as the size of patterns increases. **Proof.** Given two ordered-pair influence patterns $pc = \langle IFS_{pc}, RFS_{pc} \rangle$, $pc' = \langle IFS_{pc}, RFS_{pc'} \rangle$ where $RFS_{pc'} \subseteq RFS_{pc}$.

For a reference feature $c_j \in (RFS_{pc} \cap RFS_{pd})$, any instance of c_j participating in a row instance of the pattern pc also certainly participates in a row instance of the pattern pc', so $FIR(c_j, pc) \leq FIR(c_j, pc')$, that is, the influence ratio of the feature is antimonotone. The influence index of the pattern is also anti-monotone because:

$$PII(pc) = min_{c_i \in RFS_{nc}}(FIR(c_j, pc)) \leq min_{c_i \in RFS_{nc}}(FIR(c_j, pc')) \leq min_{c_j \in RFS_{nc'}}(FIR(c_j, pc')) = PII(pc').$$

Lemma 2 The limit influence index of a pattern is an upper bound of the influence index of the pattern.

Proof. The maximum of the superimposed influence of $c_j t$ is **max superimposed** influence of $c_j t$, so $SII(c_j t) \le MSII(c_j t)$.

$$\begin{split} FIR(c_j,pc) &= \sum_{c_j,l \in \pi_{c_j}(TI(pc))} SII(c_j,l) / FIS(c_j) \leq \sum_{c_j,l \in \pi_{c_j}(TI(pc))} SII(c_j,l) / FIS(c_j) = LIR(c_j,pc) \\ PII(pc) &= min_{c_j \in R}(FIR(c_j,pc)) \leq min_{c_j \in R}(LIR(c_j,pc)) = LII(pc) \,. \end{split}$$

Lemma 3 The limit influence index is anti-monotone as the size of patterns increases.

Proof. Given two ordered-pair influence patterns $C = \langle I, R \rangle$, $C' = \langle I', R' \rangle$ and a feature f_k where $I' \subseteq I$, $R' \subseteq R$, $I' \cup R' \cup \{f_k\} = I \cup R$.

- (1) For an influence feature $c_j \in (I \cap I')$, any instance of c_j that participates in a row instance of the pattern C also certainly participates in a row instance of the pattern C', so $LIR(c_i,C) \leq LIR(c_i,C')$, that is, the limit influence ratio is anti-monotone.
- (2) 1) if f_k is a reference feature, $\langle I', R' \cup \{f_k\} \rangle = \langle I, R \rangle = C$ From Lemma 1, it can be known that $LIR(f_i, \langle I', R' \cup \{f_k\} \rangle) \leq LIR(f_i, \langle I', R' \rangle)$

$$\begin{split} &LII(C) = LII(\langle I', R' \cup \{f_k\}\rangle) = \min_{f_i \in R' \cup \{f_k\}} (LIR(f_i, \langle I', R' \cup \{f_k\}\rangle)) \\ &= \min(LIR(f_i, \langle I', R' \cup \{f_k\}\rangle), LIR(f_k, \langle I', R' \cup \{f_k\}\rangle)) \\ &\leq \min_{f_i \in R'} (LIR(f_i, \langle I', R' \cup \{f_k\}\rangle)) \\ &\leq \min_{f_i \in R'} (LIR(f_i, \langle I', R' \rangle)) = LII(C') \end{split}$$

2) if f_k is an influence feature, $\langle I' \cup \{f_k\}, R' \rangle = \langle I, R \rangle = C$

Because the limit influence ratio is anti-monotone, we can conclude $LIR(c_i,C) \leq LIR(c_i,C')$.

$$LII(C) = \min_{f_i \in R} (LIR(f_i, C)) = \min_{f_i \in R'} (LIR(f_i, C)) \le \min_{f_i \in R'} (LIR(f_i, C')) = LII(C')$$

so the limit influence index is anti-monotone.

Lemma 4 The participating instances of f_i in an ordered-pair influence pattern pc must be included in $CPIS(f_i, pc)$, i.e., $PIS(f_i, pc) \subseteq CPIS(f_i, pc)$.

Proof. $\forall f_i.j \in PIS(f_i,pc)$, there must be a row instance containing $f_i.j$. According to the join method, if $f_i.j$ participate in the row instance of pc, then $f_i.j$ must participate in row instance of pc_1 and row instance of pc_2 at the same time, i.e.,

$$f_i.j \in \{PIS(f_i,pc_1) \cap PIS(f_i,pc_2)\} \text{ , SO } PIS(f_i,pc) \subseteq CPIS(f_i,pc) \text{ .}$$

Lemma 5 For an ordered-pair influence pattern pc and the corresponding feature f_i , $CFIR(f_i,pc) = \sum_{f_i,j \in CFIR(f_i,pc)} SII(f_i\cdot j)/FIS(f_i) \quad \text{is an upper bound of the influence ratio of} \quad f_i$ in pc.

Proof. From Lemma 4, it can be known that $PIS(f_i, pc) \subseteq CPIS(f_i, pc)$

$$\therefore CFIR(f_i, pc) = \sum_{f_i.j \in CFIR(f_i, pc)} SII(f_i.j) / FIS(f_i) \geq \sum_{f_i.j \in PIS(f_i, pc)} SII(f_i.j) / FIS(f_i) = FIR(f_i, pc)$$

```
Algorithm 3: RI = \text{searchRI}(f_i.j, pc = < I, R > , grounNS), candidate participating instance set of features in pc)
```

```
1) k = pc. size ()
2) RI .resize(k) //The capacity of RI is set to k
3) OssArr = \emptyset
4) for f_p \in \{pc - \{f_i\}\}\ do: //obtain the Oss(f_i.j, f_p, pc)
      if (f_p \in I) \cup (f_i \in I) or (f_p \in R) \cup (f_i \in R):
6)
           Oss(f_i.j, f_p, pc) = CPIS(f_p, pc)
7)
      else if (f_i \in R) \cup (f_p \in I):
8)
           Oss(f_i.j, f_p, pc) = CPIS(f_p, pc) \cap groupN(f_p, pc)
9)
      else:
10)
           Oss(f_i.j, f_p, pc) = PIS(f_p, pc) \cap groupN(f_p, pc)
11)
      OssArr[f_p] = Oss(f_i.j, f_p, pc)
12) end for
13) featurePos = 0
14) f_p = pc[featurePos]
15) for instancePos = 0; instancePos < Oss. size(); instancePos + +:
16)
          if (judgeByRowInstance( Oss[instancePos], RI )):
17)
                RI[0] = particiInstanceArr[instancePos]
18)
               gen_Rl_recursion(RI, OssArr, k, featurePos + 1, 0, k - 1)
19)
               if (verifyRowInstance(RI)) return RI
20)
          else:
21)
               gen_RI_recursion(RI, OssArr, k, featurePos, instancePos + 1, k)
               if (verifyRowInstance(RI)) return RI
22)
23)
      return Ø
```

Algorithm 4: gen_Rl_recursion(RI, OssArr, k, featurePos, instancePos, remainder)

- 1) **if** remainder == 0: **return** // The remaining position is 0, exit the recursion
- 2) if featurePos + remainder > k: return // If all instances of a certain feature are not taken, exit the recursion.
- 3) $f_p = pc[featurePos]$
- 4) $Oss = OssArr[f_p]$
- 5) if instancePos+1 > Oss .size(): return // instancePos starts from 0; exceed the size of the search space Oss, then exit the recursion
- 6) **if** (judgeByRowInstance(*Oss*[*instancePos*], *RI*)): // If this element satisfies the definition of a row instance, then take that instance
- 7) RI[featurePos] = Oss[instancePos] //Select the instance, search the next feature
- 8) gen_RI_recursion(RI, OssArr, k, featurePos+1, 0, remainder-1);
- 9) **else**:
- 10) gen_RI_recursion(RI , OssArr , k , featurePos , instancePos+1 , remainder);//Do not select this instance, and search the next instance for the feature

In which, k is the length of the target row instance RI; featurePos is the pos of the feature in the pattern and starts from 0; instancePos is the pos of the instance of a certain feature and starts from 0; remainder indicates the number of elements to be filled in the target row instance RI, and is initialized to k.