Основы программирования в Python

Лекция 3

Классификация

Классификация

- $Y = \{-1, +1\}$
- -1 отрицательный класс
- +1 положительный класс
- a(x) должен возвращать одно из двух чисел

Линейная регрессия

$$a(x) = w_0 + \sum_{j=1}^d w_j x^j$$

Вещественное число!

Линейный классификатор

$$a(x) = \operatorname{sign}\left(w_0 + \sum_{j=1}^d w_j x^j\right)$$

Линейный классификатор

$$a(x) = \operatorname{sign}\left(w_0 + \sum_{j=1}^d w_j x^j\right)$$

Свободный коэффициент

Признаки

Beca

Геометрия линейного классификатора

- Линейный классификатор проводит гиперплоскость
- $\langle w, x \rangle < 0$ объект «слева» от неё
- $\langle w, x \rangle > 0$ объект «справа» от неё

Геометрия линейного классификатора

Геометрия линейного классификатора

Отступ

- $M_i = y_i \langle w, x_i \rangle$
- $M_i > 0$ классификатор дает верный ответ
- $M_i < 0$ классификатор ошибается
- Чем дальше отступ от нуля, тем больше уверенности

Линейный классификатор

- Линейный классификатор разделяет два класса гиперплоскостью
- Чем больше отступ по модулю, тем дальше объект от гиперплоскости
- Знак отступа говорит о корректности предсказания

SVM

SVM

Качество классификации

a(x)	у
-1	-1
+1	+1
-1	-1
+1	-1
+1	+1

• Доля неправильных ответов:

$$\frac{1}{5} = 0.2$$

Качество классификации

• Доля правильных ответов:

$$Q(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) = y_i]$$

• На английском: accuracy

Качество классификации

• Доля правильных ответов:

$$Q(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) = y_i]$$

- На английском: accuracy
- ВАЖНО: не переводите это как «точность»!

Несбалансированные выборки

- Пример:
 - Класс -1: 950 объектов
 - Класс +1: 50 объектов
- a(x) = -1
- Доля правильных ответов: 0.95

Несбалансированные выборки

- q_0 доля объектов самого крупного класса
- Для разумных алгоритмов:

accuracy ∈
$$[q_0, 1]$$

• Если получили большой ассuracy — посмотрите на баланс классов

Цены ошибок

- Пример: кредитный скоринг
- Модель 1:
 - 80 кредитов вернули
 - 20 кредитов не вернули
- Модель 2:
 - 48 кредитов вернули
 - 2 кредита не вернули
- Кто лучше?

Цены ошибок

- Что хуже?
 - Выдать кредит «плохому» клиенту
 - Не выдать кредит «хорошему» клиенту
- Доля верных ответов не учитывает цены ошибок

Матрица ошибок

	y = 1	y = -1
a(x) = 1	True Positive (TP)	False Positive (FP)
a(x) = -1	False Negative (FN)	True Negative (TN)

Матрица ошибок

• Модель $a_1(x)$:

	y = 1	y = -1
a(x) = 1	80	20
a(x) = -1	20	80

• Модель $a_2(x)$:

	y = 1	y = -1
a(x) = 1	48	2
a(x) = -1	52	98

Точность (precision)

• Можно ли доверять классификатору при a(x) = 1?

$$precision(a, X) = \frac{TP}{TP + FP}$$

Точность (precision)

• Модель $a_1(x)$:

	y = 1	y = -1
a(x) = 1	80	20
a(x) = -1	20	80

• precision $(a_1, X) = 0.8$

• Модель $a_2(x)$:

	y = 1	y = -1
a(x) = 1	48	2
a(x) = -1	52	98

• precision(a_2, X) = 0.96

Полнота (recall)

• Как много положительных объектов находит классификатор?

$$\operatorname{recall}(a, X) = \frac{TP}{TP + FN}$$

Полнота (recall)

• Модель $a_1(x)$:

	y = 1	y = -1
a(x) = 1	80	20
a(x) = -1	20	80

• recall(a_1, X) = 0.8

• Модель $a_2(x)$:

	y = 1	y = -1
a(x) = 1	48	2
a(x) = -1	52	98

• recall(a_2, X) = 0.48

Антифрод

- Классификация транзакций на нормальные и мошеннические
- Высокая точность, низкая полнота:
 - Редко блокируем нормальные транзакции
 - Пропускаем много мошеннических
- Низкая точность, высокая полнота:
 - Часто блокируем нормальные транзакции
 - Редко пропускаем мошеннические

Кредитный скоринг

- Неудачных кредитов должно быть не больше 5%
- Ограничение: precision $(a, X) \ge 0.95$
- Максимизируем полноту

Медицинская диагностика

- Надо найти не менее 80% больных
- Ограничение: $\operatorname{recall}(a, X) \ge 0.8$
- Максимизируем точность

Решающие деревья

Линейные модели

$$a(x) = w_0 + \sum_{j=1}^{a} w_j x^j$$

• Веса можно интерпретировать, если признаки масштабированы

Пример

- Предсказание стоимости квартиры
- Признаки: площадь, этаж, число комнат

$$a(x) = 10 * (площадь) + 1.1 * (этаж) + 20 * (число комнат)$$

Пример

- С кубическими признаками будет ещё лучше
- Как интерпретировать признак этаж * (число комнат) 2 ?
- Всего таких признаков 20

Пример

- Можно бинаризовать признаки: $[x^j > t]$
- (этаж > 1), (этаж > 2), ..., (этаж > 30)
- Признаков будет на порядки больше
- Легче интерпретировать:

$$-2[$$
этаж $> 3][площадь $< 40][$ число комнат $< 3]$$

• Можно использовать L_1 -регуляризацию

Логические правила

- Легко объяснить заказчику (если ≤ 5 условий)
- Позволяют извлекать знания из данных
- Не факт, что оптимальны с точки зрения качества

Логические правила

- Как строить?
- Линейные модели
- Решающие деревья

Медицинская диагностика

Принятие решений

Схема диалога с клиентом

Пассажиры Титаника

Решающее дерево

- Бинарное дерево
- В каждой внутренней вершине записано условие
- В каждом листе записан прогноз (решение)

Условия

• Самые популярные варианты:

$$\left[x^{j} \leq t\right] \quad \text{и} \quad \left[x^{j} = t\right]$$

Примеры:

- [этаж = 5]
- [площадь ≤ 30]

Прогноз в листе

- Регрессия:
 - Вещественное число
- Классификация:
 - Класс
 - Вероятности классов

Исход футбольного матча

• Растим дерево от корня к листьям

• Как разбить вершину?

Как сравнить разбиения?

ИЛИ

• Мера неопределённости распределения

• Мера неопределённости распределения

- Дискретное распределение
- Принимает n значений с вероятностями p_1 , ..., p_n
- Энтропия:

$$H(p_1, \dots, p_n) = -\sum_{i=1}^n p_i \log p_i$$

- $H = 1.60944 \dots$
- (0.2, 0.2, 0.2, 0.2, 0.2) (0.9, 0.05, 0.05, 0, 0)
 - $H = 0.394398 \dots$

- (0, 0, 0, 1, 0)
- H = 0

Как сравнить разбиения?

- (0.5, 0.5, 0) и (0, 0, 1)
- H = 0.693 + 0 = 0.693

- (0.33, 0.33, 0.33) и (0.33, 0.33, 0.33)
- H = 1.09 + 1.09 = 2.18

- Выбираем разбиение с наименьшей суммарной дисперсией
- Чем меньше дисперсия, тем меньше неопределённости

Поиск разбиения

- Пусть в вершине m оказалась выборка X_m
- $Q(X_m, j, t)$ критерий ошибки условия $[x^j \le t]$
- ullet Ищем лучшие параметры j и t перебором

Критерий качества

$$Q(X_m, j, t) = H(X_m) - \frac{|X_l|}{|X_m|} H(X_l) - \frac{|X_r|}{|X_m|} H(X_r)$$

Разброс ответов в левом листе

Разброс ответов в правом листе

Критерий информативности

- $\bullet H(X)$
- Зависит от ответов на выборке X
- Чем меньше разброс ответов, тем меньше значение H(X)

Регрессия

$$\bar{y}(X) = \frac{1}{|X|} \sum_{i \in X} y_i$$

$$H(X) = \frac{1}{|X|} \sum_{i \in X} (y_i - \overline{y}(X))^2$$

Классификация

• Доля объектов класса k в выборке X:

$$p_k = \frac{1}{|X|} \sum_{i \in X} [y_i = k]$$

Критерий останова

- В какой момент прекращать разбиение вершин?
- В вершине один объекты?
- В вершине объекты одного класса?
- Глубина превысила порог?

Ответ в листе

- ullet Допустим, решили сделать вершину m листом
- Какой прогноз выбрать?
- Регрессия:

$$a_m = \frac{1}{|X_m|} \sum_{i \in X_m} y_i$$

• Классификация:

$$a_m = \arg\max_{y \in \mathbb{Y}} \sum_{i \in X_m} [y_i = y]$$

Обучение деревьев

Признаки

Разбиения по признаку 1

Разбиения по признаку 1

$$(1, 0)$$

 $H(p) = 0$

$$(1/2, 1/2)$$

H(p) = 0.69

$$\frac{3}{13}H(p_l) + \frac{10}{13}H(p_r) = 0.53$$

Разбиения по признаку 1

$$(3/4, 1/4)$$

H(p) = 0.56

$$(5/9, 4/9)$$

H(p) = 0.69

$$\frac{4}{13}H(p_l) + \frac{9}{13}H(p_r) = 0.65$$

(4/5, 1/5)H(p) = 0.5 (1/2, 1/2)H(p) = 0.69

$$\frac{5}{13}H(p_l) + \frac{8}{13}H(p_r) = 0.62$$

$$\frac{4}{13}H(p_l) + \frac{9}{13}H(p_r) = 0.47$$

$$(1, 0)$$

 $H(p) = 0$

(4/6, 2/6)H(p) = 0.64

$$\frac{7}{13}H(p_l) + \frac{6}{13}H(p_r) = 0.66$$

(4/7, 3/7)H(p) = 0.68

$$(1/2, 1/2)$$

H(p) = 0.69

$$\frac{9}{13}H(p_l) + \frac{4}{13}H(p_r) = 0.53$$

(6/9, 3/9)H(p) = 0.46

$$\frac{4}{13}H(p_l) + \frac{9}{13}H(p_r) = 0.47$$

$$(1, 0)$$

H(p) = 0

Лучшее разбиение!

Регрессия

Регрессия

Резюме

- Линейные классификаторы разделяют классы гиперплоскостью
- Качество классификации: доля правильных ответов, точность и полнота
- Деревья:
 - Восстанавливают сложные закономерности
 - Могут построить сколь угодно сложную поверхность
 - Чем больше глубина тем сложнее поверхность
 - Склонны к переобучению