

Huazhong University of Science & Technology

Electronic Circuit of Communications

School of Electronic Information and Commnications

Jiaqing Huang

Multiple Stage Amplifier

Multiple Stage Small Signal Amplifier Input $\dot{V_o}$ R_3

Divide and Conquer

(1) m-stage Gain

Amplifier with m stages, A_{V_1} , A_{V_2} , A_{V_m} , respectively m-stage Gain: $A_m = A_{V_1} \cdot A_{V_2} \cdot \dots \cdot A_{V_m}$

 \succ If every stage has equal A_{V_1}

$$A_m = A_{V_1}^m$$

(2) m-stage Bandwidth $(2\Delta f_{0.7})_m$

If equal stage gain:
$$\frac{A_m}{A_{m_0}} = \frac{1}{\left(\sqrt{1 + \left(\frac{Q_L}{f_0} 2\Delta f\right)^2}\right)^m} = \frac{1}{\sqrt{2}}$$

$$\Rightarrow$$
Total bandwidth: $(2\Delta f_{0.7})_m = \sqrt{2^{\frac{1}{m}} - 1} \cdot 2\Delta f_{0.7}$

Factor < 1,
$$X = \sqrt{2^{\frac{1}{m}} - 1}$$

Note:

> Total Bandwidth < Single Bandwidth

(3) m-stage Selectivity (Rectangle Coefficient)

$$\frac{A_m}{A_{m_0}} = \frac{1}{\left(\sqrt{1 + \left(\frac{Q_L}{f_0} 2\Delta f\right)^2}\right)^m} = 0.1$$

$$\Rightarrow (2\Delta f_{0.1})_m = \sqrt{100^{\frac{1}{m}} - 1 \cdot 2\Delta f_{0.7}}$$

$$\Rightarrow K_{r0.1} = \frac{(2\Delta f_{0.1})_m}{(2\Delta f_{0.7})_m} = \frac{\sqrt{100^{\frac{1}{m}} - 1}}{\sqrt{2^{\frac{1}{m}} - 1}}$$

Note: Far away from ideal 1

m	1	2	3	4	5	6	7	8	9	10
$K_{r0.1}$	9.9499	4.6613	3.7430	3.3805	3.1886	3.0703	2.9902	2.9324	2.8888	2.8547

Instability

Reason of Instability

- ightharpoonup Hybrid $\pi: C_{b'c} \neq 0 \rightarrow \text{Bi-directional} \rightarrow \text{Instable}$
- \triangleright Y parameter: $y_{re} \neq 0$

Reason of Instability

 $Y_F = g_F + jb_F$

 \succ Consider g_{Σ} of $Y_s + Y_i$

$$g_{\Sigma} = g_s + g_{ie} + g_F$$

$$Y_i = y_{ie} - \frac{y_{fe}y_{re}}{y_{oe} + Y_L'} = y_{ie} + Y_F$$

$$\Rightarrow g_F$$
 (function of frequency) <0 $o g_{\Sigma}=0$

$$\Rightarrow Q_L = \frac{\omega_0 C_{\Sigma}}{q_{\Sigma}} \rightarrow \infty$$

Amplifier disabled

Condition of Instability

If
$$Y_S + Y_i = 0$$
, $g_\Sigma = 0$ Instable

$$Y_s + Y_i = Y_s + y_{ie} - \frac{y_{fe}y_{re}}{y_{oe} + Y_L'} = 0 \quad \Rightarrow \quad \frac{(Y_s + y_{ie})(y_{oe} + Y_L')}{y_{fe}y_{re}} = 1$$

Stability Coefficient
$$S = \frac{(Y_S + y_{ie})(y_{oe} + Y_L')}{y_{fe}y_{re}}$$

If
$$S = 1$$
, Instable
If $S >> 1$, Stable $(S = 5 \sim 10)$

Relation between A_{V_o} and S

If
$$S = 5$$
, $(A_{V_o})_{s} = \sqrt{\frac{|y_{fe}|}{2.5\omega_0 C_{re}}}$

$$A_{V_o} \leq (A_{V_o})_s$$

Note:

①
$$f \uparrow (A_{V_o})_s \downarrow$$

- 2 Choose bigger $\frac{|y_{fe}|}{c_{re}}$
- $(A_{V_0})_s$ only consider inner feedback, not outside feedback

Solutions

Clue:

 $y_{re} \neq 0$ ($C_{b'c} \neq 0$) \Rightarrow Bi-directional Device

⇒Unidirectionalize

Neutralization

2

Mismatch

(1) Neutralization:

> To add C_N to construct bridge

- \succ Balancd Bridge, CD (\dot{V}_0) does not feedback to AB
- > Balancd Bridge, impedance ratio are same

$$\therefore \frac{\omega L_1}{\omega L_2} = \frac{\frac{1}{j\omega C_{b'c}}}{\frac{1}{\omega C_N}}$$

$$\Rightarrow C_N = \frac{L_1}{L_2} C_{b'c}$$

Output not affact input

(2) Mismatch:

Gain↓ Stability↑

 \triangleright Clue: Mismatch \Rightarrow Output $\downarrow \Rightarrow$ Feedback $\downarrow \Rightarrow$ Stable

(3) Comparisons

➤ Neutralization

Pros: Simple, High Gain

Cons: 1 not for wideband amplifier

- 2 not effective for changes of tempreture
- 3 not suitable for batch production

> Mismatch

Pros: 1 wideband amplifier

- 2 effective for changes of many factors
- 3 suitable for batch production

Cons: gain ↓