

CAPSTONE TWO FINAL PROJECT REPORT

Presented by Kanchanah Kannathass

Table of Contents

- Problem Statement
- Dataset
- Data Wrangling
- Exploratory Data Analysis
- Preprocessing
- Model Building

PROBLEM STATEMENT

How can government agencies (federal and state) promote the adoption of EV to constitute 50% of the automotive industry in the next 5 years by identifying the important factor(s) or group of factor(s) that lead to the non-adoption in the US?

DATASET

- 2017 National Household Travel Survey (NHTS)
- Combination of 3 datasets
 - Individual personal and household characteristics
 - Socio-economic characteristics
 - Vehicle ownership and vehicle attributes

DATA WRANGLING

- Variable Type
 - Some variables were converted to numeric and others to characters
- Drop Duplicate Car Information
- Special Codes
 - Codes were converted to NA for the purpose of this project
- Response variable
 - Gas, Diesel and Some other fuel were recoded to non-EV
 - Hybrid, Electric or Alternative fuel were recoded to EV
- Recoding variables
 - Ordinal variables were recoded to depict ordinality and the nominal variables to reduce cardinality

Exploratory Data Analysis - Response Variable

- About 97% own non-EV in the sample
- Most respondents still prefer to use non-EV vehicles as their mode of travel

Correlation between Variables

Notable Correlations

HHSIZE and DRVRCNT

 As the count of household members (HHSIZE) increase, number of drivers (DRVRCNT) could increase as well

HBPPOPDN and HBRESDN

- Category of population density and category of housing units are positively correlated
- As one increases, we would expect the other to increase as well

WRKCOUNT and DRVRCNT

 As the number of workers in the house increases, we would expect drivers to increase as well

Preprocessing

Data Split

Dataset was split 70% into the train and 30% into test dataset

Imputation for Missing Variables

- Numerical variables imputed using the median
- Categorical variables imputed by the most frequent value

Scaling of Variables

Numerical variables were scaled using the min max scaler

Dummies

Dummies created for the categorical variables

Results from Analysis

	F1 score for Train	F1 sore for Test	Precision for Train	Precision for Test	Recall for Train	Recall for Test
Naïve Model	0.956	0.956				
Logistic Regression	0.985	0.985	0.998	0.999	1	1
Poission Regression	0.985	0.985	0.997	0.998	1	1
Random Forest	0.985	0.985	0.995	0.995	1	1

Logistic Regression

Poisson Regression

Random Forest

- Similar confusion matrices for all 3 models
- Further assessment was done using the ROC

Results from Analysis

Random Forest

Poisson Regression

Logistic Regression

- Diagonal plot shown indicate model was guessing how to classify the data
- No pattern seen in the classification

Futher Modeling - Variable Importance

AdaBoost

Gradient Boosting

 HHSTATE_label_PACIFIC, EDUC, HHFAMINC, R_AGE, PLACE and PRICE were chosen as most important

Futher Modeling - Stochastic Gradient
- 100000 Descend (SGD)

- Used most important variables from Adaboost and Gradient Boosting
- Results from this model did not differ from the previous 3 supervised models
- Another method to model the data needs to be considered

UNSUPERVISED LEARNING

K-means

Mini-batch K-means

 Results seem much better than the results from supervised learning as not all observations were predicted as non-EV

Mini-Batch K-means Confusion Matrix with labels

Predicted Values

68.80%

45.35%

Non-EV

31.20%

54.65%

- 0.65

- 0.60

- 0.55

- 0.50

- 0.45

- 0.40

- 0.35

EACH VARIABLE WAS VISUALIZED USING A DASHBOARD

https://projectev.herokuapp.com

Conclusion • The dataset was particularly challenging as the response was imbalanced • Supervised models could not classify the adequately Unsupervised learning model worked better than a supervised model to classify the dataset