<u>Last time</u>	a homotopy equivalence btw
	X and Y is a pair of maps

f: X to Y and g: Y to X

s.t.
$$g \circ f \sim id_X$$
 and $f \circ g \sim id_Y$

Ex suppose X is contractible pick x_0 in X s.t. $id_X \sim (const map at x)$ set $Y = \{x \mid 0\}$

f: X to Y
$$f(x) = x_0$$
, the constant map g: Y to X $g(x \ 0) = x \ 0$, the inclusion

then $(g \circ f)(x) = x_0$, so $g \circ f \sim id_X$ while $f \circ g = id_Y \sim id_Y$ so X is homotopy equivalent to $\{x_0\}$

Thm if f: X to Y and g: Y to X form a homotopy equivalence

then
$$f_* : \pi_1(X, x) \text{ to } \pi_1(Y, f(x)),$$

 $g_* : \pi_1(Y, y) \text{ to } \pi_1(X, g(y))$

are isomorphisms for any \boldsymbol{x} in \boldsymbol{X} and \boldsymbol{y} in \boldsymbol{Y}

 $\begin{array}{ccc} \underline{Pf\ of\ Thm} & suppose\ f: X\ to\ Y\ and\ g: Y\ to\ X\\ s.t.\ g\circ f\sim id_X\ and\ f\circ g\sim id_Y \end{array}$

will show that $f_*: \pi_1(X, x)$ to $\pi_1(Y, f(x))$ is an iso for any x in X [argument for g_* is similar]

by 1),
$$g_* \circ f_* = (g \circ f)_*,$$

 $f_* \circ g_* = (f \circ g)_*$

1) if f : X to Y and g : Y to Z are cts maps then $(g \circ f)_* = g_* \circ f_*$ [from last time]

so by 2), just need (g \circ f)_* and (f \circ g)_* to be isos

2) if ϕ : G to H and ψ : H to K are maps s.t. $\psi \circ \phi$ is bijective then ϕ is injective and ψ is surjective

pick homotopies j from $g \circ f$ to id_X , k from $f \circ g$ to id_Y

3) if α is a path in X from x_0 to x_1 then $\ddot{\alpha}$: $\pi_1(X, x_0)$ to $\pi_1(X, x_1)$ def by

can use 3) to show: if f, f': A to X are cts, h a homotopy from f to f', a in A,

 $\breve{\alpha}([\gamma]) = [\alpha^- * \gamma * \alpha]$

then $f'_* = \check{\alpha}_h \circ f_* : \pi_1(A, a)$ to $\pi_1(X, f'(a))$

is an isomorphism

where $\alpha_h(s) = h(a, s)$, a path from f(a) to f'(a)

apply to j and k:

$$(g \circ f)_* = \check{\alpha}_j \circ id_{X, *} = \check{\alpha}_j$$

 $(f \circ g)_* = \check{\alpha}_k \circ id_{Y, *} = \check{\alpha}_k$

but by 3), $\check{\alpha}_{j}$ and $\check{\alpha}_{k}$ are isos