

데이터 다루기

- Excel
- Matrix
- Pandas: 넘파이를 기반
 - 처리속도가 빠름
 - 행과 열로 구조화된 Dataframe을 제공
 - Dataframe 특화 함수 지원

Numpy 2차원 데이터

- 같은 자료값을 가지는 단순한 수치 정보 중심
- Numpy 다차원 배열 versus Pandas Series + Dataframe

Pandas - Series

- Series: 같은 자료형의 데이터를 저장하는 인덱싱된 1차원 배열
 - Series 클래스를 이용하여 데이터를 만듦

```
import numpy as np
import pandas as pd

series_example = pd.Series([100, 50, 30, 10])
series_example

0    100
1    50
2    30
3    10
dtype: int64
```

```
import numpy as np
import pandas as pd

series_example = pd.Series([100, 50, 30, 10, np.NAN])
series_example

0    100.0
1    50.0
2    30.0
3    10.0
4    NaN
dtype: float64
```

- · 결측치는?
 - Pandas에서 데이터를 감시하고,
 결측치를 리턴하는 함수 제공
 - isna()

Pandas - Series

• Series 내 데이터 접근: 리스트와 동일

series_example[0],series_example[1]
(100.0, 50.0)

- index 갈아끼우기도 가능
 - 기존의 숫자 이외에도 원하는
 index 타입이 있을 경우,
 정의하여 삽입 가능
 - 오른쪽 예시는 index를100, 99, 98...로 바꾸었을 때

```
import numpy as np
import pandas as pd

data = [100, 50, 30, 10, np.NAN]
reverse_series = pd.Series(data, index=[100, 99, 98, 97, 96])
print(reverse_series)

100     100.0
99     50.0
98     30.0
97     10.0
96     NaN
dtype: float64
```


Pandas – Dataframe

딕션으로 각 학생의 중간고사 점수 나타내 보기

```
mid_term = {'StudentA': 95, 'StudentB': 90, 'StudentC': 80, 'StudentD': 60}
mid_term_series = pd.Series(mid_term)
print('Midterm Results')
print(mid_term_series)

Midterm Results
StudentA 95
StudentB 90
StudentC 80
StudentD 60
dtype: int64
```

- 과제 점수나 기말 고사 점수가 추가되어야 한다면?
 - 1차원적인 Series 구조로는 어려움
 - 새로운 Series 구조의 데이터를 만들어 결합이 필요
 - → 2차원 기반의 Dataframe 활용

Pandas – Dataframe

- DataFrame 활용
 - df vs print(df)

• 가장 높은 중간고사

점수와 평균값 출력

Pandas – csv 활용

- CSV 콤마로 구분한 변수를 뜻함 (Comma Separated Variables)
 - *데이터로 사용한 콤마 vs 구분자 콤마
- read_csv()로 파일 읽기
 - 현재 컴퓨터 같은 경로에 있을 때는 아래 (좌)

```
import numpy as np
import pandas as pd
df = pd.read_csv('kborank.csv')
print(df)
 Unnamed: 0 2018 2019 2020 2021
     Doosan
     Hanwha
    Samsung
      Lotte
```

```
import numpy as np
import pandas as pd
df = pd.read_csv('kborank.csv', index_col = 0)
print(df)
         2018 2019 2020 2021
Doosan
Hanwha
Samsung
Lotte
```

파일(F) 편집(E) 서식(O) 보기(V) 도움말(H) ,2018,2019,2020,2021,2022 Doosan, 1, 2, 3, 4, 9 SSG,2,1,9,6,1 Hanwha,3,9,10,10,10 Kiwoom, 4, 3, 5, 5, 3 Samsung, 5, 8, 8, 1, 7 Kia, 6, 7, 6, 9, 5 Lotte,7,10,7,8,8 LG,8,4,4,3,2 KT,9,6,2,2,4 NC,10,5,1,7,6

^{*}온라인 파일도 가능, 다른 경로에 있을 때는 경로 지정 필요

^{*}read_csv() 함수에 index_col이라는 키워드 매개변수에 인자 0 지정 → 첫 번째 열이 인덱스로 사용 (우) 8

Pandas – csv 활용

- 컬럼값, 인덱스값 출력
 - columns, index 활용

```
[16] df.columns
Index(['2018', '2019', '2020', '2021', '2022'], dtype='object')

Index(['Doosan', 'SSG', 'Hanwha', 'Kiwoom', 'Samsung', 'Kia', 'Lotte', 'LG', 'KT', 'NC'], dtype='object')
```

- 특정값 출력: 리스트와 동일 컬럼값 활용
- 리스트로 변환 요청 .tolist() 활용

```
Doosan 9
SSG 1
Hanwha 10
Kiwoom 3
Samsung 7
Kia 5
Lotte 8
LG 2
KT 4
NC 6
Name: 2022, dtype: int64
```


Pandas – csv 활용

- · 새로운 열 만들기 (axis : 방향)
 - 전체 평균 랭크
 - 최근 3년 평균 랭크

```
df['average_3'] = (df['2020']+df['2021']+df['2022'])/3
print(df)
         2018 2019
                   2020
                          2021
                                 2022
                                       average
                                                average 3
                                           3.8
                                                 5.333333
Doosan
                                           3.8
                                                 5.333333
                                                10.000000
Hanwha
                                           8.4
Kiwoom
                                                 4.333333
                                           4.0
                                                 5.333333
                                           5.8
Samsung
Kia
                                           6.6
                                                 6.666667
Lotte
                                                 7.666667
                                           8.0
LG
                                           4.2
                                                 3.000000
ΚT
                                           4.6
                                                 2.666667
                                           5.8
                                                 4.666667
```

df['aver	age']	= df.m	iean(ax	(is=1)		
print(df	·)					
Doosan SSG Hanwha Kiwoom Samsung Kia	2018 1 2 3 4 5	2019 2 1 9 3 8 7	2020 3 9 10 5 8	2021 4 6 10 5 1	2022 9 1 10 3 7	average 3.8 3.8 8.4 4.0 5.8 6.6
Lotte LG KT NC	7 8 9 10	10 4 6 5	7 4 2 1	8 3 2 7	8 2 4 6	8.0 4.2 4.6 5.8
	print(df Doosan SSG Hanwha Kiwoom Samsung Kia Lotte LG KT	print(df) 2018 Doosan 1 SSG 2 Hanwha 3 Kiwoom 4 Samsung 5 Kia 6 Lotte 7 LG 8 KT 9	print(df) 2018 2019 Doosan 1 2 SSG 2 1 Hanwha 3 9 Kiwoom 4 3 Samsung 5 8 Kia 6 7 Lotte 7 10 LG 8 4 KT 9 6	print(df) 2018 2019 2020 Doosan 1 2 3 SSG 2 1 9 Hanwha 3 9 10 Kiwoom 4 3 5 Samsung 5 8 8 Kia 6 7 6 Lotte 7 10 7 LG 8 4 4 KT 9 6 2	2018 2019 2020 2021 Doosan 1 2 3 4 SSG 2 1 9 6 Hanwha 3 9 10 10 Kiwoom 4 3 5 5 Samsung 5 8 1 Kia 6 7 6 9 Lotte 7 10 7 8 LG 8 4 4 3 KT 9 6 2 2	print(df) 2018 2019 2020 2021 2022 Doosan 1 2 3 4 9 SSG 2 1 9 6 1 Hanwha 3 9 10 10 10 Kiwoom 4 3 5 5 3 Samsung 5 8 8 1 7 Kia 6 7 6 9 5 Lotte 7 10 7 8 8 LG 8 4 4 3 2 KT 9 6 2 2 4

Pandas – Visualization

• Plot 활용 – kind ← plot 종류 (bar: 바 그래프, pie: 파이그래프 등)

df['2022'].plot(kind='bar',color=('blue','red','orange','purple','gold','yellow','gray','green','tomato','cyan'))

Pandas – Visualization

- DataFrame은 matplot 과 호환성이 높아 여러 테이블 제시 가능
 - df.plot.bar() 예시

Pandas

- 슬라이싱과 인덱싱
 - 처음 5행: head() / 마지막 5행: tail()
 - 만일 head()와 tail()에 정수를 인자 제시 → 그 정수만큼의 행을 보여줌

특정 행 선택 시: loc 활용*2개 이상일 때, 이중 사용

Pandas

- 슬라이싱과 인덱싱
 - head(), tail() 메소드 : 첫, 마지막 항목 에서 지정 개수 추출
 - [m:n]을 사용 : 지정 구간 m, n의 항목을 추출
 - loc[] : 인덱스에서 특정 레이블이 있는 행 추출
 - iloc[]: 인덱스에서 정수형 인덱스 사용, 특정 위치 행 추출

