UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICO

TEORÍA DE LOS CONJUNTOS I

HORAS A LA SEMANA/SEMESTRE

SEMESTRE: Quinto o sexto

CLAVE: **0760**

TEÓRICAS	PRÁCTICAS	CRÉDITOS
5/80	0	10

CARÁCTER: **OPTATIVO**. MODALIDAD: **CURSO**.

SERIACIÓN INDICATIVA ANTECEDENTE: Conjuntos y Lógica.

SERIACIÓN INDICATIVA SUBSECUENTE: Teoría de los Conjuntos II.

OBJETIVO(S): El objetivo principal es dar a los alumnos elementos básicos de teoría de conjuntos que les sirvan en su formación matemática. Dos de los elementos principales son la aritmética cardinal y ordinal transfinita y el manejo claro del axioma de elección. Un objetivo inicial es aclarar los malos entendidos y prejuicios sobre los dos conceptos indefinidos: objetos de la teoría (conjuntos y no conjuntos) y la relación de pertenencia. La distinción conjunto-clase y aclaración de paradojas. Otro objetivo opcional es construir los números naturales y probar los axiomas de Peano.

NUM. HORAS	UNIDADES TEMÁTICAS
4	1. Introducción
	1.1 Aclaraciones sobre el concepto de conjunto. Conjuntos y no con-
	juntos. El lenguaje de la teoría de conjuntos.
	1.2 Construcción de conjuntos. ¿Cómo construimos conjuntos?
	1.3 El conjunto universo local. La colección de todos los conjuntos
	no es un conjunto.
19	2. Álgebra de conjuntos
	2.1 Par ordenado, producto cartesiano.
	2.2 Relaciones, particiones y funciones.
	2.3 Funciones. Inyectivas, suprayectivas, biyectivas, monótonas, etc.
	2.4 Ordenes parciales, totales y buenos. Conjuntos bien fundados e
	inducción fuerte.

19	3. Los números naturales, inducción y recursión
	3.1 Construcción de los números naturales. Conjuntos inductivos,
	axioma de infinito, principio de inducción.
	3.2 El Teorema de Recursión para números naturales.
	3.3 Sistemas de Peano. Unicidad.
	3.4 Aritmética en los naturales. Variantes de teorema de recursión.
19	4. Equipotencia, finitud, dominancia y aritmética cardinal
	4.1 Equipotencia. Ejemplos clásicos.
	4.2 Finitud. Propiedades, definiciones alternativas.
	4.3 Dominancia. Teo. Cantor-Bernstein. Teo. Cantor.
	4.4 Aritmética cardinal. Suma, producto y exponenciación.
	4.5 El problema del continuo: la Hipótesis del Continuo (HC) y la
	Hipótesis Generalizada del Continuo (HGC).
19	5. El Axioma de Elección
	5.1 Varios equivalentes del Axioma de Elección (AE). Lema de Zorn,
	Teorema del Buen Orden, la Dominancia es Total.
	5.2 Más aritmética cardinal con AE. Dedekind infinito e infinito.
	5.3 Aplicaciones de AE, en especial de Lema de Zorn.

BIBLIOGRAFÍA BÁSICA:

- 1. Amor, J. A., *Teoría de Conjuntos para Estudiantes de Ciencias*, México: Serv. Editoriales Fac. Ciencias, UNAM, 1997.
- 2. Crossley, J. et al, What is Mathematical Logic, Dufdod: Dufdod University, 1972.
- 3. Devlin, K., The Joy of Sets, New York: Springer Verlag, 1993.
- 4. Enderton, H. B., *Elements of Set Theory*, Boston: Academic Press, 1977.
- 5. Hernández, F., *Teoría de Conjuntos*, México: Aportaciones Matemáticas No.13, SMM, 1998.
- 6. Hrbacek K., Jech T., Introduction to Set Theory, New York: Marcel Dekker, 1984.
- 7. Kamke, E., Theory of Sets, New York: Dover Pub., 1950.
- 8. Malitz, J., Introduction to Mathematical Logic. Part I Set Theory, New York: Springer Verlag, 1984.

BIBLIOGRAFÍA COMPLEMENTARIA:

- 1. Bolzano, B., Las Paradojas del Infinito, México: Mathema, 1985.
- 2. Cantor, G., Contributions to the Founding of the Theory of Transfinite Numbers, New York: Dover, 1955.

SUGERENCIAS DIDÁCTICAS: Lograr la participación activa de los alumnos mediante exposiciones.

SUGERENCIA PARA LA EVALUACIÓN DE LA ASIGNATURA: Además de las calificaciones en exámenes y tareas se tomará en cuenta la participación del alumno.

PERFIL PROFESIOGRÁFICO: Matemático, físico, actuario o licenciado en ciencias de la computación, especialista en el área de la asignatura a juicio del comité de asignación de cursos.