Testing an ansatz for the quark mass matrices

Francis Rhys Ward

March 22, 2018

Contents

T	Abstract	1
2	Fixed eigenvalues 2.1 Set up 2.2 Tests	
3	Treating the eigenvalues as variables 3.1 Set up	
4	Complex case 4.1 Set up 4.2 Tests	
5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Aj	ppendices	18
A	Proof of invariance of D and V under unitary transformations on M	18
В	Approximate observable quantities	19
\mathbf{C}	Proof of Commutator/J relation	20
D	Approximation for J	22
\mathbf{E}	Pseudocode	27

Abstract

The quark mass matrices are defined by two matrices whose eigenvalues are the quark masses (one matrix for each of the up-like and down-like quarks):

$$M_{i}^{'} = \begin{bmatrix} \frac{(r_{i}^{'})^{2}}{s_{i}^{'}} & p_{i}^{'} & 0\\ p_{i} & r_{i}^{'} & q_{i}^{'}\\ 0 & q_{i}^{'} & s_{i}^{'} \end{bmatrix} = U_{i}^{T} D_{i}^{'} U_{i}, \tag{1}$$

where

$$D_{i}^{'} = \begin{bmatrix} \lambda_{1}^{'} & 0 & 0 \\ 0 & \lambda_{2}^{'} & 0 \\ 0 & 0 & \lambda_{3}^{'} \end{bmatrix}_{i} = \begin{bmatrix} m_{u,d} & 0 & 0 \\ 0 & m_{c,s} & 0 \\ 0 & 0 & m_{t,b} \end{bmatrix},$$

$$(2)$$

and U_i is the unitary matrix that diagonalises $M_i^{'}$ to $D_i^{'}$ whose rows are the eigenvectors of $M_i^{'}$. The eigenvectors make up the columns of U^{\dagger} and therefore make up the rows of $U^* = U$ in the real case.

We investigate the normalised mass matrices, $M_i = \frac{M'_i}{s'_i}$ (with eigenvalues approximately equal to the ratio of quark masses):

$$M_{i} = \begin{bmatrix} r_{i}^{2} & p_{i} & 0\\ p_{i} & r_{i} & q_{i}\\ 0 & q_{i} & 1 \end{bmatrix} = U_{i}^{T} D_{i} U_{i}, \tag{3}$$

Since M_i is only changed by a scale factor from M'_i it is diagonalised by the same U_i .

Hence, setting i=u:

$$\begin{bmatrix} \lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{3} \end{bmatrix}_{u} = D_{u} = U_{u} M_{u} U_{u}^{T} = U_{u} \frac{M'_{u}}{s'_{u}} U_{u}^{T} = D'_{u} / s'_{u} = \begin{bmatrix} m_{u} / s'_{u} & 0 & 0 \\ 0 & m_{c} / s'_{u} & 0 \\ 0 & 0 & m_{t} / s'_{u} \end{bmatrix}, \tag{4}$$

Thus:

$$\frac{1}{\lambda_3^u} D_u = \begin{bmatrix} \frac{\lambda_1}{\lambda_3} & 0 & 0\\ 0 & \frac{\lambda_2}{\lambda_3} & 0\\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} m_u/m_t & 0 & 0\\ 0 & m_c/m_t & 0\\ 0 & 0 & 1 \end{bmatrix},$$
(5)

and since $\lambda_3 \approx 1$:

$$D_{u} \approx \begin{bmatrix} \lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}_{u} \approx \begin{bmatrix} m_{u}/m_{t} & 0 & 0 \\ 0 & m_{c}/m_{t} & 0 \\ 0 & 0 & 1 \end{bmatrix}, \tag{6}$$

Hence,

$$D_{u} = \begin{bmatrix} \lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{3} \end{bmatrix}_{u} \approx \begin{bmatrix} m_{u}/m_{t} & 0 & 0 \\ 0 & m_{c}/m_{t} & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$
 (7)

Similarly for M_d

The purpose of this project is to start with some "known" values of the eigenvalues of the M_i (i.e. the approximations $\lambda_1 = m_u/m_t$ etc.) and to construct reasonable estimates for the M_i (i=u,d) by comparing values of the constructed CKM matrix $V_=U_uU_d^T$ to previously measured values. And then to do the same allowing the eigenvalues to vary, and for the case that the p_i and q_i are complex.

Fixed eigenvalues

Set up

We first want to find equations for the p_i and q_i as functions of the λ_i and r_i . Start by noting that, by the unitarity of U_i (dropping the i for simplicity):

$$Det(M) = Det(D) \quad \Rightarrow \quad r^3 - q^2 r^2 - p^2 \quad = \quad \prod_{n=1}^{3} \lambda_n \approx \lambda_1 \lambda_2, \tag{8}$$

$$Tr(M) = Tr(D) \Rightarrow r^2 + r + 1 = \sum_{n=1}^{3} \lambda_n \approx \lambda_1 + \lambda_2 + 1,$$
 (9)

$$\sum_{ij=11,22,33} [M]_{ij} = \sum_{ij=11,22,33} [D]_{ij} \quad \Rightarrow \quad r^3 + r^2 + r - q^2 - p^2 \quad = \quad \lambda_1 \lambda_2 + \lambda_2 \lambda_3 + \lambda_1 \lambda_3 \approx \lambda_1 \lambda_2 + \lambda_2 + \lambda_1. \tag{10}$$

Hence,

$$\sum_{ij=11,22,33} [M]_{ij} - Det(M) = q^2(r^2 - 1) + r^2 + r \approx \lambda_1 + \lambda_2, \tag{11}$$

$$q^2 \approx \frac{\lambda_1 + \lambda_2 - r^2 - r}{r^2 - 1}.\tag{12}$$

And substituting q^2 into Det(M):

$$r^{3} - \left(\frac{\lambda_{1} + \lambda_{2} - r^{2} - r}{r^{2} - 1}\right)r^{2} - p^{2} \approx \lambda_{1}\lambda_{2},\tag{13}$$

$$p^{2} \approx \frac{\lambda_{1}\lambda_{2} - (\lambda_{1} + \lambda_{2} + \lambda_{1}\lambda_{2})r^{2} + r^{4} + r^{5}}{r^{2} - 1}.$$
 (14)

Next we want to find the U_i , we start by finding the ratios of the elements of the eigenvectors. Again dropping the i suffix and using $(M-\lambda_k I)\vec{v}_k = \vec{0}$ (k=1,2,3):

$$\begin{bmatrix} r^2 - \lambda_k & p & 0 \\ p & r - \lambda_k & q \\ 0 & q & 1 - \lambda_k \end{bmatrix} \begin{bmatrix} x_k \\ y_k \\ z_k \end{bmatrix} = \vec{0}.$$
 (15)

Thus,

$$(r^2 - \lambda_k)x_k + py_k = 0, (16)$$

$$\Rightarrow \frac{x_k}{y_k} = \frac{p}{\lambda_k - r^2},\tag{17}$$

$$px_k + (r - \lambda_k)y_k + qz_k = 0, (18)$$

$$qy_k + (1 - \lambda_k)z_k = 0 \quad , \tag{19}$$

$$\Rightarrow \frac{y_k}{z_k} = \frac{\lambda_k - 1}{q}.$$
 (20)

And multiplying (11) and (14) gives:

$$\frac{x_k}{z_k} = \frac{p(\lambda_k - 1)}{q(\lambda_k - r^2)}. (21)$$

Recall that the \vec{v}_k make up the rows of U so:

$$U = \begin{bmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{bmatrix}. \tag{22}$$

And as U is a unitary matrix we can write (since we have assumed real parameters i.e. the phase $\delta=0$ and therefore $e^{i\delta}=1$):

$$U = \begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13} & c_{12}c_{23} - s_{12}s_{23}s_{13} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13} & -c_{12}s_{23} - s_{12}c_{23}s_{13} & c_{23}c_{13} \end{bmatrix},$$
(23)

where $s_{ij} = \sin \theta_{ij}$, $c_{ij} = \cos \theta_{ij}$ and the angles θ_{ij} can lie in any of the four quadrants, so $-1 \le s_{ij} \le 1$, $-1 \le c_{ij} \le 1$. Now we have:

From (11):

$$\frac{\lambda_1 - r^2}{p} = \frac{y_1}{x_1} = \frac{s_{12}c_{13}}{c_{12}c_{13}} = \tan\theta_{12},\tag{24}$$

$$\Rightarrow \theta_{12} = \arctan\left(\frac{\lambda_1 - r^2}{p}\right), \tag{25}$$

From (15):

$$\frac{q(\lambda_1 - r^2)}{p(\lambda_1 - 1)} = \frac{z_1}{x_1} = \frac{s_{13}}{c_{12}c_{13}},\tag{26}$$

$$\Rightarrow \quad \theta_{13} = \arctan\left(\frac{c_{12}q(\lambda_1 - r^2)}{p(\lambda_1 - 1)}\right), \tag{27}$$

From (14):

$$\frac{q}{\lambda_2 - 1} = \frac{z_2}{y_2} = \frac{s_{23}c_{13}}{c_{12}c_{23} - s_{12}s_{23}s_{13}} \approx \frac{s_{23}c_{13}}{c_{12}c_{23}} = \frac{c_{13}\tan\theta_{23}}{c_{12}},\tag{28}$$

$$\Rightarrow \theta_{23} = \arctan\left(\frac{c_{12}q}{c_{13}(\lambda_2 - 1)}\right). \tag{29}$$

So now we can substitute the θ_{ij} into the U_i to get the U_i as functions of λ_1^i , λ_2^i , and r_i and we can easily construct the CKM matrix:

$$V(ru,rd,\lambda_1^u,\lambda_2^u,\lambda_1^d,\lambda_2^d) = U_u(r_u,\lambda_1^u,\lambda_2^u)U_d(r_d,\lambda_1^d,\lambda_2^d)^T.$$
(30)

Tests

To test the accuracy of our constructed CKM matrix, V, we evaluate the χ^2 of the elements of the matrix against their values given by the PDG [1]. Due to the orthogonality of V we only test V_{12} , V_{13} , and V_{23} . We take the observed values of the CKM matrix to be:

$$|V_{ij}^{measured}| = \begin{bmatrix} 0.97427 & 0.22536 & 0.00355 \\ 0.22522 & 0.97343 & 0.0414 \\ 0.00886 & 0.0405 & 0.99914 \end{bmatrix}.$$
(31)

We also define:

$$\sigma_{12} = 0.0025, \, \sigma_{13} = 0.0006, \, \text{and} \, \sigma_{23} = 0.004.$$
 (32)

And now

$$\chi^2 = \sum_{ij} \frac{(|V_{ij}| - |V_{ij}^{measured}|)^2}{\sigma_{ij}^2} \quad (ij = 12, 13, 23). \tag{33}$$

We take the quark masses as known values from the PDG [1]:

$$m_u = 0.0023, m_c = 1.275, m_t = 173.21, m_d = 0.0048, m_s = 0.095, m_b = 4.66.$$
 (34)

Now complications arise as we do not know the signs of the eigenvalues or the p_i and q_i . So there are 256 possible combinations of signs. But due to the invariance of the D_i and V under unitary transformations on the M_i of the form $M'_i = U^{\dagger} M_i U$ (see Appendix: A), we have that V is unchanged by two transformations: i) flipping the signs of both p_u and p_d , and ii) flipping the signs of both q_u and q_d . Therefore every solution that we obtain will be in a set of four equivalent solutions (the three extra solutions gained by the transformations i), ii), i) and ii)).

Since we have assumed $p_i, q_i \in IR$ we have $p_i^2 > 0$, $q_i^2 > 0$. We can use this to obtain allowed ranges for the r_i (we also assume $|r_i| \le 0.5$). We use Wolfram Mathematica to gain solutions of $Min(\chi^2) < 20$ within these bounds, keeping p_u and q_u positive and varying the signs of λ_1^u , λ_2^u , λ_1^d , λ_2^d , p_d , q_d , so that each returned solution represents a set of 4 solutions gained by the above described transformations.

Recall, we have the assumed values: $|\lambda_1^u| = \frac{m_u}{m_t} = 0.0000132787$, $|\lambda_2^u| = \frac{m_c}{m_t} = 0.00736101$, $|\lambda_1^d| = \frac{m_d}{m_b} = 0.00103004$, $|\lambda_2^d| = \frac{m_s}{m_b} = 0.0203863.$

The headings (e.g. (+,-,+,-,+,+)) refer to the signs of $(\lambda_1^u$ -ve, λ_2^u +ve, λ_1^d +ve, λ_2^d +ve, p_d -ve, q_d +ve) respectively.

Table 1: Results									
p_u	1.23×10^{-3}	2.67×10^{-4}	2.51×10^{-4}	1.16×10^{-3}					
q_u	0.0832	0.0731	0.0976	0.0835					
p_d	-1.07×10^{-3}	-5.33×10^{-3}	3.57×10^{-3}	-1.26×10^{-3}					
q_d	0.113	0.0289	0.148	0.114					
$Min(\chi^2)$	17.9	10.3	12.4	15.3					
Min point (r_u, r_d)	(0.0141, 0.0330)	$(-2.01\times10^{-3},0.0198)$	$(2.20 \times 10^{-3}, 0.0414)$	(0.0141, 0.0334)					
rubounds	$7.30 \times 10^{-3} \le r_u \le 0.082$	$-3.64 \times 10^{-3} \le r_u \le 3.64 \times 10^{-3}$	$-3.64 \times 10^{-3} \le r_u \le 3.64 \times 10^{-3}$	$7.32 \times 10^{-3} \le r_u \le 0.0825$					
rdbounds	$0.0321 \le r_d \le 0.134$	$0.0190 \le r_d \le 0.134$	$0.0321 \le r_d \le 0.134$	$0.0321 \le r_d \le 0.134$					
V_{12}	0.225	0.223	-0.224	0.225					
V_{13}	-5.50×10^{-3}	-1.70×10^{-3}	2.30×10^{-3}	-5.40×10^{-3}					
V_{23}	-0.0304	0.0429	-0.0530	-0.0320					
V_{31}	-1.50×10^{-3}	0.0112	9.60×10^{-3}	-1.90×10^{-3}					

Treating the eigenvalues as variables

Set up

Now, instead of holding the eigenvalues as fixed values, we wish to find ansatza for

$$M_{i} = \begin{bmatrix} r_{i}^{2} & p_{i} & 0\\ p_{i} & r_{i} & q_{i}\\ 0 & q_{i} & 1 \end{bmatrix}, \quad i = u, d$$
(35)

by allowing the eigenvalues to vary. The approximation $\lambda_3^i = 1$ is automatically no longer used.

We take the λ_k as functions of p, q, and r, λ_1 being the smallest eigenvalue and λ_3 being the biggest. Now we want to find the U_i . Recall

$$U = \begin{bmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{bmatrix} = \begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13} & c_{12}c_{23} - s_{12}s_{23}s_{13} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13} & -c_{12}s_{23} - s_{12}c_{23}s_{13} & c_{23}c_{13} \end{bmatrix},$$
(36)

where $s_{ij} = \sin \theta_{ij}$, $c_{ij} = \cos \theta_{ij}$ and the angles θ_{ij} can lie in any of the four quadrants, so $-1 \le s_{ij} \le 1$, $-1 \le c_{ij} \le 1$. Again we have:

$$\theta_{12} = \arctan\left(\frac{\lambda_1 - r^2}{p}\right),\tag{37}$$

$$\theta_{13} = \arctan\left(\frac{c_{12}q(\lambda_1 - r^2)}{p(\lambda_1 - 1)}\right),\tag{38}$$

$$\theta_{23} = \arctan\left(\frac{c_{12}q}{c_{13}(\lambda_2 - 1)}\right). \tag{39}$$

So now, remembering that the λ_k^i are function of p_i , q_i , and r_i we can substitute the θ_{ij} into the U_i to get the U_i as functions of p_i , q_i , and r_i and we can easily construct the CKM matrix:

$$V(r_u, p_u, q_u r_d, p_d, q_d) = U_u(r_u, p_u, q_u) U_d(r_d, p_d, q_d)^T.$$
(40)

Tests

To test the accuracy of our constructed CKM matrix, V, we again evaluate the χ^2 of the elements of the matrix against their values given by the PDG. Due to the orthogonality of V we only test V_{12} , V_{13} , and V_{23} . We take the observed values of the CKM matrix to be:

$$|V_{ij}^{measured}| = \begin{bmatrix} 0.97427 & 0.22536 & 0.00355\\ 0.22522 & 0.97343 & 0.0414\\ 0.00886 & 0.0405 & 0.99914 \end{bmatrix}. \tag{41}$$

We also define:

$$\sigma_{12} = 0.0025, \, \sigma_{13} = 0.0006, \, \text{and} \, \sigma_{23} = 0.004.$$
 (42)

And now

$$\chi_v^2 = \sum_{ij} \frac{(|V_{ij}| - |V_{ij}^{measured}|)^2}{\sigma_{ij}^2} \quad (ij = 12, 13, 23). \tag{43}$$

We also test the accuracy of our values for the eigenvalues:

$$\chi_{\lambda_k}^2 = \sum_{k} \frac{(|\lambda_k| - |\lambda_k^{measured}|)^2}{\sigma_{\lambda_k}^2} \quad (k = 1, 2, 3, 4), \tag{44}$$

where $\lambda_1 = \lambda_1^u$, $\lambda_2 = \lambda_2^u$, $\lambda_3 = \lambda_1^d$, $\lambda_4 = \lambda_2^d$, and:

 $\sigma_{\lambda_k}\!=\!(0.000002,\!0.0003,\!0.00005,\!0.0008).$

We now use two methods to minimise $\chi^2\!=\!\chi^2_v\!+\!\chi^2_{\lambda_k}$ with Wolfram Mathematica.

We can recover the solutions from the previous case:

Tab	le 2∙	Recovere	nd so	lutions

	1	Table 2: Recovered solu	3	4
λ_1^u	$\frac{1}{ -1.31\times10^{-5} }$	1.39×10^{-5}	1.39×10^{-5}	1.35×10^{-5}
$\lambda_1 \\ \lambda_2^u$	7.36×10^{-3}	-7.36×10^{-3}	-7.45×10^{-3}	7.37×10^{-3}
$\lambda_2^u \ \lambda_3^u$	1.01	1.01	1.01	1.01
r_u	0.0136	-1.91×10^{-3}	2.19×10^{-3}	0.0141
p_u°	1.19×10^{-3}	2.75×10^{-4}	2.60×10^{-4}	1.16×10^{-3}
q_u	0.0798	0.0740	0.0985	0.0827
λ_1^d	1.01×10^{-3}	-1.06×10^{-3}	9.98×10^{-4}	1.01×10^{-3}
$\lambda_1^d \ \lambda_2^d \ \lambda_3^d$	0.0207	0.0201	0.0205	0.0204
λ_3^d	1.01	1.00	1.02	1.01
r_d	0.0329	0.0195	0.0413	0.0332
p_d	-1.24×10^{-3}	-5.33×10^{-3}	3.67×10^{-3}	-1.32×10^{-3}
q_d	0.110	0.0290	0.145	0.113
$Min(\chi^2)$	16.4	9.36	9.87	14.7
V_{12}	0.225	0.225	-0.225	0.225
V_{13}	-5.33×10^{-3}	-1.80×10^{-3}	2.24×10^{-3}	-5.19×10^{-3}
V_{23}	-0.0307	0.0438	-0.0497	-0.0308
V_{31}	-1.72×10^{-3}	0.0116	8.95×10^{-3}	-1.87×10^{-3}

$T_{\alpha}l_{\alpha}l_{\alpha}$	9.	M	solutions	_

	Table 3: New solutions						
	5	6	7	8			
$\overline{\lambda_1^u}$	1.40×10^{-5}	1.44×10^{-5}	1.40×10^{-5}	1.41×10^{-5}			
$\lambda_2^{\overline{u}}$	7.20×10^{-3}	-7.32×10^{-3}	7.22×10^{-3}	-7.36×10^{-3}			
$\lambda_2^u \ \lambda_3^u$	1.00	1.01	1.00	1.01			
r_u	8.31×10^{-3}	3.56×10^{-4}	7.21×10^{-3}	1.35×10^{-3}			
p_{u}	-6.26×10^{-4}	3.24×10^{-4}	5.22×10^{-4}	-3.00×10^{-4}			
q_u	0.0340	0.0878	5.09×10^{-3}	-0.0936			
λ_1^d	9.26×10^{-4}	1.03×10^{-3}	9.42×10^{-4}	-1.04×10^{-3}			
λ_2^d	-0.0221	-0.0204	-0.0218	0.0203			
$\lambda_1^d \ \lambda_2^d \ \lambda_3^d$	1.00	1.00	1.00	1.00			
r_d	-0.0216	-0.0178	-0.0198	0.0212			
p_d	-3.22×10^{-3}	-3.84×10^{-3}	3.50×10^{-3}	5.45×10^{-3}			
q_d	-4.85×10^{-3}	0.0437	-0.0390	-0.0487			
$Min(\chi^2)$	10.4	6.32	7.96	6.64			
V_{12}	-0.227	-0.225	0.227	-0.225			
V_{13}	-3.37×10^{-3}	-2.13×10^{-3}	2.99×10^{-3}	-2.06×10^{-3}			
V_{23}	0.0388	0.0440	0.0430	-0.0430			
V_{31}	-5.52×10^{-3}	-7.84×10^{-3}	6.83×10^{-3}	0.0120			

Complex case

Now we test

$$M_{i} = \begin{bmatrix} r_{i}^{2} & p_{i} & 0\\ p_{i}^{*} & r_{i} & q_{i}\\ 0 & q_{i}^{*} & 1 \end{bmatrix} = U_{i}^{\dagger} D_{i} U_{i}, \tag{45}$$

with

$$D_{i} = \begin{bmatrix} \lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{3} \end{bmatrix}_{i}, \tag{46}$$

where the r_i , λ_k^i are real and the p_i , q_i are complex.

We have $D_i = U_i M_i U_i^{\dagger}$. Let

$$\Phi_i = \begin{bmatrix} e^{i\phi_1} & 0 & 0\\ 0 & e^{i\phi_2} & 0\\ 0 & 0 & e^{i\phi_3} \end{bmatrix}_i,$$
(47)

then, since the Φ_i are diagonal

$$D_{i} = \Phi_{i} D_{i} \Phi_{i}^{\dagger} = \Phi_{i} U_{i} M_{i} U_{i}^{\dagger} \Phi_{i}^{\dagger} = U_{i}^{\prime} M_{i} (U_{i}^{\prime})^{\dagger}. \tag{48}$$

I.E. the D_i are invariant under transformations of the form $U_i \to \Phi_i U_i$. So we can choose the Φ_i such that the diagonal elements of the U_i are real.

Note that $V = U_u U_d^{\dagger}$ is not invariant under such transformations, instead we have: $V' = \Phi_u U_u U_d^{\dagger} \Phi_d^{\dagger}$. But the physics are unchanged (observable quantities such as |V|)...

We parameterise the complex (transformed) U_i with the general parameterisation (using the orthogonality of U_i)

$$U_{i} \approx \begin{bmatrix} 1 & U_{12} & U_{13} \\ -U_{12}^{*} & 1 & U_{23} \\ U_{31} & -U_{23}^{*} & 1 \end{bmatrix}_{i}.$$
 (49)

Set up

We want to find the U_i , we start by finding the ratios of the elements of the eigenvectors. Dropping the i suffix and using $(M-\lambda_k I)\vec{v}_k = \vec{0}$ (k=1,2,3):

$$\begin{bmatrix} r^2 - \lambda_k & p & 0 \\ p^* & r - \lambda_k & q \\ 0 & q^* & 1 - \lambda_k \end{bmatrix} \begin{bmatrix} x_k \\ y_k \\ z_k \end{bmatrix} = \vec{0}.$$
 (50)

Thus,

$$\frac{x_k}{y_k} = \frac{p}{\lambda_k - r^2},\tag{51}$$

$$\frac{y_k}{z_k} = \frac{\lambda_k - 1}{q^*},\tag{52}$$

$$\frac{x_k}{z_k} = \frac{p(\lambda_k - 1)}{q^*(\lambda_k - r^2)}. (53)$$

The eigenvectors make up the columns of U^{\dagger} and therefore make up the rows of U^* :

$$U^* = \begin{bmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{bmatrix} \Rightarrow U = \begin{bmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{bmatrix}^*.$$
 (54)

Hence,

$$U \approx \begin{bmatrix} 1 & U_{12} & U_{13} \\ -U_{12}^* & 1 & U_{23} \\ U_{31} & -U_{23}^* & 1 \end{bmatrix} \approx \begin{bmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{bmatrix}^*, \tag{55}$$

where $U_{12} = |U_{12}|e^{i\theta_{12}}$ etc.

So, From (51):

$$-U_{12}^* = \left(\frac{x_2}{y_2}\right)^* = \frac{p^*}{\lambda_2 - r^2} = \frac{|p|e^{-i\theta_p}}{\lambda_2 - r^2},\tag{56}$$

$$\Rightarrow |U_{12}|e^{-i\theta_{12}} = \frac{|p|e^{i(\pi - \theta_p)}}{\lambda_2 - r^2},\tag{57}$$

and since $\lambda_2 \gg r^2$:

$$|U_{12}| = \frac{|p|}{\lambda_2 - r^2}$$
, and $\theta_{12} = \pi + \theta_p$. (58)

From (52):

$$U_{23} = \left(\frac{z_2}{y_2}\right)^* = \frac{q}{\lambda_2 - 1} = \frac{|q|e^{i\theta_q}}{\lambda_2 - 1} = \frac{|q|e^{i(\pi + \theta_q)}}{1 - \lambda_2},\tag{59}$$

$$\Rightarrow |U_{23}|e^{i\theta_{23}} = \frac{|q|e^{i(\pi+\theta_q)}}{1-\lambda_2},\tag{60}$$

and since $1 \gg \lambda_2$:

$$|U_{23}| = \frac{|q|}{1 - \lambda_2}$$
, and $\theta_{23} = \pi + \theta_q$. (61)

Now:

$$\frac{U_{13}}{U_{12}} = \left(\frac{z_1}{u_1}\right)^* = \frac{q}{\lambda_1 - 1} = \frac{|q|e^{i(\pi + \theta_q)}}{1 - \lambda_1},\tag{62}$$

hence:

$$|U_{13}|e^{i\theta_{13}} = \frac{|q|e^{i(\pi+\theta_q)}}{1-\lambda_1} \frac{|p|}{\lambda_2 - r^2} e^{i(\pi+\theta_p)},\tag{63}$$

and since $1 \gg \lambda_1$ and $\lambda_2 \gg r^2$:

$$|U_{13}| = \frac{|q||p|}{(1-\lambda_1)(\lambda_2 - r^2)}, \text{ and } \theta_{13} = \theta_q + \theta_p.$$
 (64)

Furthermore:

$$\frac{U_{31}}{-U_{23}^*} = (\frac{x_3}{y_3})^* = \frac{p^*}{\lambda_3 - r^2} = \frac{|p|e^{-i\theta_p}}{\lambda_3 - r^2},\tag{65}$$

hence:

$$|U_{31}|e^{i\theta_{31}} = \frac{|p|e^{-i\theta_p}}{\lambda_3 - r^2} \left(-\frac{|q|e^{-i(\pi + \theta_q)}}{1 - \lambda_2}\right) = \frac{|p||q|e^{-i(\theta_q + \theta_p)}}{(\lambda_3 - r^2)(1 - \lambda_2)},\tag{66}$$

and since $1 \gg \lambda_2$ and $\lambda_3 \gg r^2$:

$$|U_{31}| = \frac{|p||q|}{(\lambda_3 - r^2)(1 - \lambda_2)}, \text{ and } \theta_{31} = -(\theta_q + \theta_p).$$
 (67)

Finally:

$$U \approx \begin{bmatrix} 1 & -\frac{|p|}{\lambda_2 - r^2} e^{\theta_p} & \frac{|q||p|}{(1 - \lambda_1)(\lambda_2 - r^2)} e^{i(\theta_q + \theta_p)} \\ -U_{12}^* & 1 & -\frac{|q|}{1 - \lambda_2} e^{i\theta_q} \\ \frac{|p||q|}{(\lambda_3 - r^2)(1 - \lambda_2)} e^{-i(\theta_q + \theta_p)} & -U_{23}^* & 1 \end{bmatrix} = \begin{bmatrix} 1 & -\frac{p}{\lambda_2 - r^2} & \frac{qp}{(1 - \lambda_1)(\lambda_2 - r^2)} \\ -U_{12}^* & 1 & -\frac{q}{1 - \lambda_2} \\ \frac{p^* q^*}{(\lambda_3 - r^2)(1 - \lambda_2)} & -U_{23}^* & 1 \end{bmatrix},$$

$$(68)$$

thus, as $\lambda_3 \approx 1$, $\lambda_2 \gg r^2$, $\lambda_1 \ll 1$:

$$U \approx \begin{bmatrix} 1 & -\frac{p}{\lambda_2} & \frac{qp}{\lambda_2} \\ \frac{p^*}{\lambda_2} & 1 & -q \\ p^*q^* & q^* & 1 \end{bmatrix}. \tag{69}$$

We can now construct the CKM matrix, $V = U_u U_d^{\dagger}$:

$$V \approx \begin{bmatrix} 1 & -\frac{p}{\lambda_2} & \frac{qp}{\lambda_2} \\ \frac{p^*}{\lambda_2} & 1 & -q \\ p^*q^* & q^* & 1 \end{bmatrix}_u \begin{bmatrix} 1 & \frac{p}{\lambda_2} & qp \\ -\frac{p^*}{\lambda_2} & 1 & q \\ \frac{p^*q^*}{\lambda_2} & -q^* & 1 \end{bmatrix}_d, \tag{70}$$

$$\approx \begin{bmatrix} 1 & \frac{p_d}{\lambda_2^d} - \frac{p_u}{\lambda_2^u} & \frac{p_u(q_u - q_d)}{\lambda_2^u} \\ \frac{p_u^*}{\lambda_2^u} - \frac{p_u^*}{\lambda_d^d} & 1 & q_d - q_u \\ \frac{p_d^*(q_d^* - q_u^*)}{\lambda_d^d} & q_u^* - q_d^* & 1 \end{bmatrix}, \tag{71}$$

hence,

$$V \approx \begin{bmatrix} 1 & U_{12}^u - U_{12}^d & U_{12}^u (V_{23}) \\ -V_{12}^* & 1 & U_{23}^u - U_{23}^d \\ (-U_{12}^d (V_{23}))^* & -V_{23}^* & 1 \end{bmatrix}.$$
 (72)

Tests

To test the accuracy of our constructed CKM matrix, V, we again evaluate the χ^2 of the elements of the matrix against their values given by the PDG. Due to the orthogonality of V we only test V_{12} , V_{13} , V_{31} , and V_{23} . We take the observed values of the CKM matrix to be:

$$|V_{ij}^{measured}| = \begin{bmatrix} 0.97427 & 0.22536 & 0.00355 \\ 0.22522 & 0.97343 & 0.0414 \\ 0.00886 & 0.0405 & 0.99914 \end{bmatrix}.$$
 (73)

We calculate numerical exact values for our constructed V using mathematica.

We also define:

$$\sigma_{12} = 0.0025, \, \sigma_{13} = 0.0006, \, \sigma_{31} = 0.001 \text{ and } \sigma_{23} = 0.004.$$
 (74)

And now

$$\chi_v^2 = \sum_{ij} \frac{(|V_{ij}| - |V_{ij}^{measured}|)^2}{\sigma_{ij}^2} \quad (ij = 12, 13, 23, 31).$$
 (75)

We also test the accuracy of our values for the eigenvalues:

$$\chi_{\lambda_k}^2 = \sum_k \frac{(|\lambda_k| - |\lambda_k^{measured}|)^2}{\sigma_{\lambda_k}^2} \quad (k = 1, 2, 3, 4), \tag{76}$$

where $\lambda_1 = \lambda_1^u$, $\lambda_2 = \lambda_2^u$, $\lambda_3 = \lambda_1^d$, $\lambda_4 = \lambda_2^d$, and:

 $\sigma_{\lambda_k} = (0.000002, 0.0003, 0.00005, 0.0008).$

We now minimise $\chi^2 = \chi_v^2 + \chi_{\lambda_k}^2$. Note that, since we have two unphysical phase degrees of freedom, we can fix a phase convention such that $Arg(p_u) = -Arg(p_d)$ and $Arg(q_u) = -Arg(q_d)$ (see Appendix: A).

And obtain new solutions:

Solution 9 - $\chi^2 = 5.68 \times 10^{-1}$

$$|M_u| = \begin{bmatrix} 7.8 \times 10^{-5} & 6.9 \times 10^{-4} & 0\\ 6.9 \times 10^{-4} & 8.8 \times 10^{-3} & 3.8 \times 10^{-2}\\ 0 & 3.8 \times 10^{-2} & 1 \end{bmatrix}, \quad |M_d| = \begin{bmatrix} 1.7 \times 10^{-4} & 4.3 \times 10^{-3} & 0\\ 4.3 \times 10^{-3} & -1.3 \times 10^{-2} & 8.1 \times 10^{-2}\\ 0 & 8.1 \times 10^{-2} & 1 \end{bmatrix}$$
(77)

Solution 10 - $\chi^2 = 1.56$

$$|M_u| = \begin{bmatrix} 5.5 \times 10^{-5} & 7.1 \times 10^{-4} & 0\\ 7.1 \times 10^{-4} & 7.4 \times 10^{-3} & 1.1 \times 10^{-2}\\ 0 & 1.1 \times 10^{-2} & 1 \end{bmatrix}, \quad |M_d| = \begin{bmatrix} 4.6 \times 10^{-4} & 5.4 \times 10^{-3} & 0\\ 5.4 \times 10^{-3} & 2.1 \times 10^{-2} & 4.8 \times 10^{-2}\\ 0 & 4.8 \times 10^{-2} & 1 \end{bmatrix}$$
(78)

Solution 11 - $\chi^2 = 2.97$

$$|M_u| = \begin{bmatrix} 7.7 \times 10^{-5} & 6.8 \times 10^{-4} & 0\\ 6.8 \times 10^{-4} & 8.8 \times 10^{-3} & 4.0 \times 10^{-2}\\ 0 & 4.0 \times 10^{-2} & 1 \end{bmatrix}, \quad |M_d| = \begin{bmatrix} 3.9 \times 10^{-4} & 3.6 \times 10^{-3} & 0\\ 3.6 \times 10^{-3} & -2.0 \times 10^{-2} & 4.1 \times 10^{-3}\\ 0 & 4.1 \times 10^{-3} & 1 \end{bmatrix}$$
(79)

Solution 12 - $\chi^2 = 1.43$

$$|M_u| = \begin{bmatrix} 7.6 \times 10^{-5} & 6.8 \times 10^{-4} & 0\\ 6.8 \times 10^{-4} & 8.7 \times 10^{-3} & 3.7 \times 10^{-2}\\ 0 & 3.7 \times 10^{-2} & 1 \end{bmatrix}, \quad |M_d| = \begin{bmatrix} 3.6 \times 10^{-4} & 5.3 \times 10^{-3} & 0\\ 5.3 \times 10^{-3} & 1.9 \times 10^{-2} & 7.1 \times 10^{-4}\\ 0 & 7.1 \times 10^{-4} & 1 \end{bmatrix}$$
(80)

Solution 13 - $\chi^2 = 1.41$

$$|M_u| = \begin{bmatrix} 5.3 \times 10^{-5} & 7.0 \times 10^{-4} & 0\\ 7.0 \times 10^{-4} & 7.3 \times 10^{-3} & 3.9 \times 10^{-3}\\ 0 & 3.9 \times 10^{-3} & 1 \end{bmatrix}, \quad |M_d| = \begin{bmatrix} 4.1 \times 10^{-4} & 5.4 \times 10^{-3} & 0\\ 5.4 \times 10^{-3} & 2.0 \times 10^{-2} & 3.4 \times 10^{-2}\\ 0 & 3.4 \times 10^{-2} & 1 \end{bmatrix}$$
(81)

	Table 4: New solutions						
	9 10 11 12 13						
$\overline{\lambda_1^u}$	1.31×10^{-5}	-1.33×10^{-5}	1.37×10^{-5}	1.33×10^{-5}	-1.33×10^{-5}		
λ_2^u	7.42×10^{-3}	7.35×10^{-3}	7.26×10^{-3}	7.37×10^{-3}	7.36×10^{-3}		
r_u^z	8.82×10^{-3}	7.41×10^{-3}	8.77×10^{-3}	8.71×10^{-3}	7.3×10^{-3}		
r_u^2	7.78×10^{-5}	5.49×10^{-5}	7.69×10^{-5}	7.59×10^{-5}	5.34×10^{-5}		
$Re(p_u)$	-4.96×10^{-4}	-6.18×10^{-4}	-5.68×10^{-4}	-5.8×10^{-4}	6.05×10^{-4}		
$Im(p_u)$	4.79×10^{-4}	-3.39×10^{-4}	-3.64×10^{-4}	3.48×10^{-4}	3.48×10^{-4}		
$ p_u $	6.9×10^{-4}	7.05×10^{-4}	6.75×10^{-4}	6.76×10^{-4}	6.98×10^{-4}		
$Arg(p_u)$	2.37	3.64	3.71	2.6	5.22×10^{-1}		
$Re(q_u)$	3.8×10^{-2}	-1.09×10^{-2}	-1.61×10^{-2}	8.98×10^{-3}	4.63×10^{-4}		
$Im(q_u)$	-3.08×10^{-3}	2.55×10^{-4}	-3.61×10^{-2}	3.63×10^{-2}	3.88×10^{-3}		
$ q_u $	3.82×10^{-2}	1.09×10^{-2}	3.95×10^{-2}	3.74×10^{-2}	3.91×10^{-3}		
$Arg(q_u)$	-8.08×10^{-2}	3.12	4.29	1.33	1.45		
λ_1^d	1.05×10^{-3}	-1.02×10^{-3}	1.02×10^{-3}	-1.02×10^{-3}	-1.02×10^{-3}		
λ_2^d	-2.02×10^{-2}	2.04×10^{-2}	-2.04×10^{-2}	2.04×10^{-2}	2.04×10^{-2}		
r_d	-1.29×10^{-2}	2.13×10^{-2}	-1.98×10^{-2}	1.91×10^{-2}	2.02×10^{-2}		
r_d^2	1.66×10^{-4}	4.55×10^{-4}	3.9×10^{-4}	3.63×10^{-4}	4.07×10^{-4}		
$Re(p_d)$	-3.06×10^{-3}	-4.77×10^{-3}	-3.05×10^{-3}	-4.52×10^{-3}	4.64×10^{-3}		
$Im(p_d)$	-2.95×10^{-3}	2.62×10^{-3}	1.96×10^{-3}	-2.72×10^{-3}	-2.67×10^{-3}		
$ p_d $	4.25×10^{-3}	5.44×10^{-3}	3.63×10^{-3}	5.28×10^{-3}	5.36×10^{-3}		
$Re(q_d)$	8.09×10^{-2}	-4.81×10^{-2}	-1.68×10^{-3}	1.7×10^{-4}	3.98×10^{-3}		
$Im(q_d)$	6.55×10^{-3}	-1.12×10^{-3}	3.78×10^{-3}	-6.87×10^{-4}	-3.34×10^{-2}		
$ q_d $	8.11×10^{-2}	4.81×10^{-2}	4.14×10^{-3}	7.07×10^{-4}	3.37×10^{-2}		
Min	5.68×10^{-1}	1.56	2.97	1.43	1.41		
$ V_{12} $	2.25×10^{-1}						
$ V_{13} $	3.9×10^{-3}	3.53×10^{-3}	3.94×10^{-3}	3.51×10^{-3}	3.53×10^{-3}		
$ V_{23} $	4.18×10^{-2}	3.78×10^{-2}	4.24×10^{-2}	3.81×10^{-2}	3.8×10^{-2}		
$ V_{31} $	8.87×10^{-3}	9.72×10^{-3}	7.34×10^{-3}	9.71×10^{-3}	9.67×10^{-3}		
$x = V_{13}/V_{23} $	9.34×10^{-2}	9.33×10^{-2}	9.29×10^{-2}	9.2×10^{-2}	9.3×10^{-2}		
$y = V_{31}/V_{23} $	2.13×10^{-1}	2.57×10^{-1}	1.73×10^{-1}	2.55×10^{-1}	2.55×10^{-1}		
$ p_u / q_u $	1.81×10^{-2}	6.47×10^{-2}	1.71×10^{-2}	1.81×10^{-2}	1.78×10^{-1}		
$ p_d / q_d $	5.24×10^{-2}	1.13×10^{-1}	8.77×10^{-1}	7.46	1.59×10^{-1}		
$ p_u / p_d $	1.62×10^{-1}	1.3×10^{-1}	1.86×10^{-1}	1.28×10^{-1}	1.3×10^{-1}		
$ q_u / q_d $	4.7×10^{-1}	2.27×10^{-1}	9.56	5.29×10^{1}	1.16×10^{-1}		
$\sqrt{ p_u q_u }$	5.13×10^{-3}	2.77×10^{-3}	5.16×10^{-3}	5.03×10^{-3}	1.65×10^{-3}		
$\sqrt{ p_d q_d }$	1.86×10^{-2}	1.62×10^{-2}	3.87×10^{-3}	1.93×10^{-3}	1.34×10^{-2}		

Reducing parameters

We now aim to reduce the number of parameters by setting our ansatz to be:

$$M_{u} = \begin{bmatrix} (z\bar{\lambda}^{3})^{2} & z\bar{\lambda}^{5} & 0\\ z\bar{\lambda}^{5} & z\bar{\lambda}^{3} & \bar{\lambda}^{2}\\ 0 & \bar{\lambda}^{2} & 1 \end{bmatrix}, \quad M_{d} = \begin{bmatrix} (-\bar{\lambda}^{3})^{2} & -i\bar{\lambda}^{4}c/z & 0\\ i\bar{\lambda}^{4}c/z & -\bar{\lambda}^{3} & \bar{\lambda}^{2}/z\\ 0 & \bar{\lambda}^{2}/z & 1 \end{bmatrix}$$
(82)

Or equivalently:

$$M_{u} = \begin{bmatrix} (z\bar{\lambda}^{3})^{2} & 0 & 0\\ 0 & z\bar{\lambda}^{3} & 0\\ 0 & 0 & 1 \end{bmatrix} + \bar{\lambda}^{2} \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 1\\ 0 & 1 & 0 \end{bmatrix} + z\bar{\lambda}^{5} \begin{bmatrix} 0 & 1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}, \tag{83}$$

$$M_d = \begin{bmatrix} (-\bar{\lambda}^3)^2 & 0 & 0\\ 0 & -\bar{\lambda}^3 & 0\\ 0 & 0 & 1 \end{bmatrix} + \frac{\bar{\lambda}^2}{z} \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 1\\ 0 & 1 & 0 \end{bmatrix} + \frac{\bar{\lambda}^4 c}{z} \begin{bmatrix} 0 & -i & 0\\ i & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}.$$
(84)

Essentially we have set:

$$r_u = z\bar{\lambda}^3, \quad r_d = -\bar{\lambda}^3, \tag{85}$$

$$|p_u| = z\bar{\lambda}^5, \quad |p_d| = \frac{\bar{\lambda}^4 c}{z},\tag{86}$$

$$|q_u| = \bar{\lambda}^2, \quad |q_d| = \frac{\bar{\lambda}^2}{z}, \tag{87}$$

$$Arg(p_u) = \frac{\pi}{2}, \quad Arg(p_d) = 0, \tag{88}$$

$$\Rightarrow \Delta \theta = Arg(p_u) - Arg(p_d) = \frac{\pi}{2},\tag{89}$$

$$Arg(q_u) = 0, \quad Arg(q_d) = 0, \tag{90}$$

$$\Rightarrow \Delta \phi = Arg(q_u) - Arg(q_d) = 0, \tag{91}$$

and reduced the number of parameters from eight to three.

Tests

Now we test this ansatz using the χ^2 as before. But now we test the quantities:

$$\lambda_1^u$$
, λ_2^u , λ_1^d , λ_2^d , λ , A , $\sin(2\beta)$, α , (92)

where

$$\lambda = |V_{us}|,\tag{93}$$

$$A = \frac{|V_{cb}|}{\lambda^2},\tag{94}$$

$$\beta = Arg(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}), \tag{95}$$

$$\alpha = Arg(-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}). \tag{96}$$

We take the centered values and errors as (from the PDG):

$$\lambda_1^u = (6.3 \pm 0.5) \times 10^{-6},\tag{97}$$

$$\lambda_2^u = (3.2 \pm 0.1) \times 10^{-3},\tag{98}$$

$$\lambda_1^d = (1.08 \pm 0.05) \times 10^{-3},\tag{99}$$

$$\lambda_2^d = (2.2 \pm 0.06) \times 10^{-2},\tag{100}$$

$$\lambda = 0.2251 \pm 0.0005,$$
 (101)

$$A = 0.95 \pm 0.05,$$
 (102)

$$\sin(2\beta) = 0.691 \pm 0.017,\tag{103}$$

$$\alpha = 87.6^{\circ} \pm 3.5^{\circ}.$$
 (104)

So we minimise the χ^2 :

$$\begin{split} \chi^2 &= \frac{(|\lambda_1^u| - 6.3 \times 10^{-6})^2}{(0.5 \times 10^{-6})^2} + \frac{(|\lambda_2^u| - 3.2 \times 10^{-3})^2}{(0.1 \times 10^{-3})^2} + \frac{(|\lambda_1^d| - 1.08 \times 10^{-3})^2}{(0.05 \times 10^{-3})^2} + \frac{(|\lambda_2^d| - 2.2 \times 10^{-2})^2}{(0.06 \times 10^{-2})^2} \\ &\quad + \frac{(\lambda - 0.2251)^2}{(0.0005)^2} + \frac{(A - 0.95)^2}{(0.05)^2} + \frac{(|\sin(2\beta)| - 0.691)^2}{(0.017)^2} + \frac{(\alpha - \frac{73\pi}{150})^2}{(\frac{7\pi}{260})^2}, \end{split} \tag{105}$$

We minimise the χ^2 with the parameters as functions of z, $\bar{\lambda}$, and c to find:

$$\chi^2 = 5.68$$
 at $(z, \bar{\lambda}, c) = (0.504, 0.223, 0.949)$. (106)

For this solution the mass matrices become:

$$M_{u} = \begin{bmatrix} 3.11 \times 10^{-5} & 2.77 \times 10^{-4} & 0\\ 2.77 \times 10^{-4} & 5.58 \times 10^{-3} & 4.97 \times 10^{-2}\\ 0 & 4.97 \times 10^{-2} & 1 \end{bmatrix}, \quad M_{d} = \begin{bmatrix} 1.22 \times 10^{-4} & 4.64 \times 10^{-3}i & 0\\ -4.64 \times 10^{-3}i & -1.11 \times 10^{-2} & 9.85 \times 10^{-2}\\ 0 & 9.85 \times 10^{-2} & 1 \end{bmatrix}. \quad (107)$$

And the CKM matrix is:

$$|V| = \begin{bmatrix} 0.974 & 0.225 & 4.17 \times 10^{-3} \\ 0.225 & 0.973 & 4.62 \times 10^{-2} \\ 1.01 \times 10^{-2} & 4.53 \times 10^{-2} & 0.999 \end{bmatrix},$$
 (108)

and the eigenvalues become:

$$\lambda_1^u = 6.42 \times 10^{-6},\tag{109}$$

$$\lambda_2^u = 3.13 \times 10^{-3},\tag{110}$$

$$\lambda_1^d = 1.11 \times 10^{-3},\tag{111}$$

$$\lambda_2^d = -2.16 \times 10^{-2}. \tag{112}$$

Examining Parameter Coefficients

Now we test the mass matrices:

$$M_{u} = \begin{bmatrix} (a\bar{\lambda}^{3})^{2} & b\bar{\lambda}^{5} & 0\\ b\bar{\lambda}^{5} & a\bar{\lambda}^{3} & c\bar{\lambda}^{2}\\ 0 & c\bar{\lambda}^{2} & 1 \end{bmatrix}, \quad M_{d} = \begin{bmatrix} (-d\bar{\lambda}^{3})^{2} & -ei\bar{\lambda}^{4} & 0\\ ei\bar{\lambda}^{4} & -d\bar{\lambda}^{3} & f\bar{\lambda}^{2}\\ 0 & f\bar{\lambda}^{2} & 1 \end{bmatrix}, \tag{113}$$

with the extra quantity $\frac{m_b}{m_t} = g\bar{\lambda}^3$.

And we minimise the χ^2 with respect to the quantities:

$$\lambda_1^u$$
, λ_2^u , λ_1^d , λ_2^d , λ , A , $\sin(2\beta)$, α , $\frac{m_b}{m_t}$. (114)

We take the centered values and errors as (from the PDG):

$$\lambda_1^u = (7.15 \pm 0.56) \times 10^{-6},\tag{115}$$

$$\lambda_2^u = (3.49 \pm 0.091) \times 10^{-3},\tag{116}$$

$$\lambda_1^d = (9.55 \pm 0.42) \times 10^{-4},\tag{117}$$

$$\lambda_2^d = (1.93 \pm 0.15) \times 10^{-2},\tag{118}$$

$$\frac{m_b}{m_t} = (1.59 \pm 0.016) \times 10^{-2},\tag{119}$$

$$\lambda = 0.2251 \pm 0.0005,$$
 (120)

$$A = 0.823 \pm 0.013,$$
 (121)

$$\sin(2\beta) = 0.691 \pm 0.017,\tag{122}$$

$$\alpha = 87.6^{\circ} \pm 3.5^{\circ}.$$
 (123)

We now fix $\bar{\lambda}=0.2251$ and minimse the χ^2 with respect to the coefficients $(a,\,b,\,c,\,d,\,e,\,f,\,g)$ to find:

$$\chi^2 = 1.76$$
 at $(a, b, c, d, e, f, g) = (0.5, 0.51, 0.94, 0.85, 1.58, 1.8, 1.39). (124)$

Now we note that:

$$a \approx b \approx \sin(\frac{\pi}{6}) = \frac{1}{2},\tag{125}$$

$$c \approx d \approx \cos(\frac{\pi}{6}) = \frac{\sqrt{3}}{2} \approx 0.866,\tag{126}$$

$$e \approx \frac{\cos^2(\frac{\pi}{6})}{\tan(\frac{\pi}{6})} = \frac{3}{4}\sqrt{3} \approx 1.3,\tag{127}$$

$$f \approx \frac{\cos(\frac{\pi}{6})}{\tan(\frac{\pi}{6})} = \frac{3}{2},\tag{128}$$

$$g \approx \frac{1}{\cos^2(\frac{\pi}{6})} = \frac{2}{\sqrt{3}} \approx 1.16,$$
 (129)

χ ansatz

From these coefficient values we now set the ansatz:

$$M_{u} = \begin{bmatrix} (\sin(\chi)\bar{\lambda}^{3})^{2} & \sin(\chi)\bar{\lambda}^{5} & 0\\ \sin(\chi)\bar{\lambda}^{5} & \sin(\chi)\bar{\lambda}^{3} & \cos(\chi)\bar{\lambda}^{2}\\ 0 & \cos(\chi)\bar{\lambda}^{2} & 1 \end{bmatrix}, \quad M_{d} = \begin{bmatrix} (-\cos(\chi)\bar{\lambda}^{3})^{2} & -\frac{\cos^{2}(\chi)}{\tan(\chi)}i\bar{\lambda}^{4} & 0\\ \frac{\cos^{2}(\chi)}{\tan(\chi)}i\bar{\lambda}^{4} & -\cos(\chi)\bar{\lambda}^{3} & \frac{\cos(\chi)}{\tan(\chi)}\bar{\lambda}^{2}\\ 0 & \frac{\cos(\chi)}{\tan(\chi)}\bar{\lambda}^{2} & 1 \end{bmatrix}, \quad (130)$$

and minimise the χ^2 with respect to the observables from (114) and measured values and errors as in (115) to (123), allowing χ and $\bar{\lambda}$ to vary, to find:

$$\chi^2 = 12.46$$
 at $(\chi, \bar{\lambda}) = (0.483, 0.231)$. (131)

The mass matrices then become:

$$M_{u} = \begin{bmatrix} 3.3 \times 10^{-5} & 3.07 \times 10^{-4} & 0\\ 3.07 \times 10^{-4} & 5.74 \times 10^{-3} & 4.73 \times 10^{-2}\\ 0 & 4.73 \times 10^{-2} & 1 \end{bmatrix}, \quad M_{d} = \begin{bmatrix} 1.2 \times 10^{-4} & 4.28 \times 10^{-3}i & 0\\ 4.28 \times 10^{-3}i & -1.09 \times 10^{-2} & 9.03 \times 10^{-2}\\ 0 & 9.03 \times 10^{-2} & 1 \end{bmatrix}, \quad (132)$$

with the CKM matrix:

$$|V| = \begin{bmatrix} 0.974 & 0.225 & 3.62 \times 10^{-3} \\ 0.225 & 0.974 & 4.07 \times 10^{-2} \\ 8.89 \times 10^{-3} & 3.99 \times 10^{-2} & 0.999 \end{bmatrix},$$
 (133)

and we have the observable quantities:

$$\lambda_1^u = 5.99 \times 10^{-6},\tag{134}$$

$$\lambda_2^u = 3.52 \times 10^{-3},\tag{135}$$

$$\lambda_1^d = 1.03 \times 10^{-3},\tag{136}$$

$$\lambda_2^d = -1.99 \times 10^{-2},\tag{137}$$

$$\frac{m_b}{m_t} = 1.58 \times 10^{-2},\tag{138}$$

$$A = 0.807,$$
 (139)

$$\sin(2\beta) = 0.707,\tag{140}$$

$$\alpha = 82.92,\tag{141}$$

Appendices

Proof of invariance of D and V under unitary transformations on M

We have:

$$D_i = U_i M_i U_i^{\dagger} \quad \Rightarrow \quad M_i = U_i^{\dagger} D_i U_i, \tag{142}$$

and:

$$V = U_u U_d^{\dagger}. \tag{143}$$

Suppose we choose some other matrix $M_i' = U^{\dagger} M_i U$, where U is some arbitrary unitary matrix.

Then

$$(U_i')^{\dagger} D_i' U_i' = M_i' = U^{\dagger} M_i U = U^{\dagger} U_i^{\dagger} D_i U_i U = (U_i')^{\dagger} D_i U_i'. \tag{144}$$

Hence $D_i^{'} = D_i$ i.e. the matrix that is obtained by diagonalising $M_i^{'}$ is the same as the matrix obtained by diagonalising M_i . That is, D_i is invariant under the transformation $M_i \to M_i^{'}$.

Now,

$$V = U_u U_d^{\dagger}. \tag{145}$$

Suppose we have $V' = U'_{u}(U'_{d})^{\dagger}$.

Then

$$V' = U'_u(U'_d)^{\dagger} = U_u U U^{\dagger} U_d^{\dagger} = U_u I U_d^{\dagger} = U_u U_d^{\dagger} = V.$$
 (146)

Thus V is also invariant under this change of mass matrices.

Recall

$$M_{i} = \begin{bmatrix} r_{i}^{2} & p_{i} & 0\\ p_{i} & r_{i} & q_{i}\\ 0 & q_{i} & 1 \end{bmatrix}, \tag{147}$$

and take

$$U = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix},\tag{148}$$

then

$$M_{i}^{'} = U^{\dagger} M_{i} U = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{i}^{2} & p_{i} & 0 \\ p_{i} & r_{i} & q_{i} \\ 0 & q_{i} & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} r_{i}^{2} & -p_{i} & 0 \\ -p_{i} & r_{i} & q_{i} \\ 0 & q_{i} & 1 \end{bmatrix},$$
(149)

so V is invarient under the transformation $p_i \rightarrow -p_i$ i.e. changing the signs of both p_u and p_d . Similarly for

$$U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \equiv q_i \to -q_i, \tag{150}$$

and

$$U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \equiv p_i \to -p_i \text{ and } q_i \to -q_i.$$
 (151)

Similarly D and V are invariant under transformations of the form $M_{i}^{'} = \Phi^{\dagger} M_{i} \Phi$ and if we set:

$$\Phi = \begin{bmatrix} e^{i\phi_1} & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & e^{i\phi_2} \end{bmatrix},$$
(152)

then, with p_i and q_i complex:

$$M_{i}^{'} = \begin{bmatrix} r_{i}^{2} & p_{i}e^{i\phi_{1}} & 0\\ p_{i}^{*}e^{-i\phi_{1}} & r_{i} & q_{i}e^{-i\phi_{2}}\\ 0 & q_{i}^{*}e^{i\phi_{2}} & 1 \end{bmatrix} = \Phi^{\dagger}M_{i}\Phi = \Phi^{\dagger}U_{i}^{\dagger}D_{i}U_{i}\Phi = (U_{i}^{'})^{\dagger}D_{i}U_{i}^{'}.$$
(153)

Hence,

$$V' = U'_u (U'_d)^{\dagger} = U_u \Phi \Phi^{\dagger} U_d^{\dagger} = V. \tag{154}$$

So we have some choice of phase convention, for example, setting $\phi_1 = -\frac{(Arg(p_u) + arg(p_d))}{2} \Rightarrow Arg(p_u) = -Arg(p_d)$. Similarly we can set $Arg(q_u) = -Arg(q_d)$.

Approximate observable quantities

In the complex case:

$$Det(M) = Det(D) \quad \Rightarrow \quad r^3 - |q|^2 r^2 - |p|^2 \quad = \quad \prod_{n=1}^3 \lambda_n \approx \lambda_1 \lambda_2, \tag{155}$$

$$\sum_{ij=11,22,33} [M]_{ij} = \sum_{ij=11,22,33} [D]_{ij} \quad \Rightarrow \quad r^3 + r^2 + r - |q|^2 - |p|^2 \quad = \quad \lambda_1 \lambda_2 + \lambda_2 \lambda_3 + \lambda_1 \lambda_3 \approx \lambda_1 \lambda_2 + \lambda_2 + \lambda_1. \quad (156)$$

Hence,

$$\sum_{ij=11,22,33} [M]_{ij} - Det(M) = |q|^2 (r^2 - 1) + r^2 + r \approx \lambda_1 + \lambda_2, \tag{157}$$

and since $\lambda_1 \ll \lambda_2$ and $r^2 \ll r$ and $1-r^2 \approx 1$:

$$\lambda_2 \approx r - |q|^2,\tag{158}$$

and substituting λ_2 into (90):

$$\lambda_1 \approx r^2 - \frac{|p|^2}{r - |q|^2}.$$
 (159)

And since:

$$V \approx \begin{bmatrix} 1 & \frac{p_d}{\lambda_2^d} - \frac{p_u}{\lambda_2^u} & \frac{p_u(q_u - q_d)}{\lambda_2^u} \\ \frac{p_u^*}{\lambda_2^u} - \frac{p_d^*}{\lambda_2^d} & 1 & q_d - q_u \\ \frac{p_d^*(q_d^* - q_u^*)}{\lambda_2^d} & q_u^* - q_d^* & 1 \end{bmatrix},$$
(160)

we have:

$$V \approx \begin{bmatrix} 1 & \frac{p_d}{r_d - |q_d|^2} - \frac{p_u}{r_u - |q_u|^2} & \frac{p_u(q_u - q_d)}{r_u - |q_u|^2} \\ \frac{p_u^*}{r_u - |q_u|^2} - \frac{p_d^*}{r_d - |q_d|^2} & 1 & q_d - q_u \\ \frac{p_d^*(q_d^* - q_u^*)}{r_d - |q_d|^2} & q_u^* - q_d^* & 1 \end{bmatrix}.$$
(161)

Hence:

$$|V_{12}| \approx \left| \frac{p_d}{r_d - |q_d|^2} - \frac{p_u}{r_u - |q_u|^2} \right|, \tag{162}$$

$$|V_{13}| \approx |\frac{p_u(q_u - q_d)}{r_u - |q_u|^2}|,$$
 (163)

$$|V_{23}| \approx |q_d - q_u|,\tag{164}$$

$$|V_{31}| \approx \left| \frac{p_d^*(q_d^* - q_u^*)}{r_d - |q_d|^2} \right|. \tag{165}$$

Proof of Commutator/J relation

First let the commutator, C , be defined:

$$C = [M_u, M_d] = M_u M_d - M_d M_u, (166)$$

for any two hermitian matrices, M_u and M_d . Then C is anti-hermitian, i.e. $C = -C^{\dagger}$.

Proof:

$$-C^{\dagger} = -(M_u M_d - M_d M_u)^{\dagger} = -M_d^{\dagger} M_u^{\dagger} + M_u^{\dagger} M_d^{\dagger} = M_u M_d - M_d M_u = C \quad \Box$$
 (167)

Now define the Jarlskogg invariant, J, as

$$J = \pm Im(V_{i\alpha}V_{i\beta}^*V_{i\beta}V_{i\alpha}^*). \tag{168}$$

Then,

$$Det(C) = 2i\Delta_u \Delta_d J, \tag{169}$$

where $\Delta_i = (\lambda_1^i - \lambda_2^i)(\lambda_2^i - \lambda_3^i)(\lambda_3^i - \lambda_1^i)$.

Proof

First we perform a unitary transformation on M_u so that:

$$M_u \to M_u' = U M_u U^{\dagger} = D_u, \tag{170}$$

where D_u is diagonal. To keep Det(C) invariant we perform the same transformation on M_d :

$$M_d \rightarrow M_d^{'} = U M_d U^{\dagger} = U U_d^{\dagger} D_d U_d U^{\dagger} = V D_d V^{\dagger}, \tag{171}$$

as $U = U_u$ is the unitary matrix which diagonalises M_u and $V = U_u U_d^{\dagger}$.

So C becomes:

$$C = D_u V D_d V^{\dagger} - V D_d V_{\dagger} D_u \tag{172}$$

.

Recall:
$$D_i = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}_i$$
.

Hence, $C_{ij} = (\lambda_i^u - \lambda_i^u) \sum_{\alpha=1}^3 V_{i\alpha} V_{i\alpha}^* \lambda_{i\alpha}^d$.

Now, by the orthogonality of V we have:

$$\sum_{\alpha=1}^{3} V_{i\alpha} V_{j\alpha}^* = 0 \Rightarrow \sum_{\alpha=1}^{3} V_{i\alpha} V_{j\alpha}^* \lambda_{\beta}^d = 0$$

$$(173)$$

So

$$C_{ij} = (\lambda_i^u - \lambda_j^u) \left(\sum_{\alpha=1}^3 V_{i\alpha} V_{j\alpha}^* \lambda_{\alpha}^d - \sum_{\alpha=1}^3 V_{i\alpha} V_{j\alpha}^* \lambda_{\beta}^d \right) = (\lambda_i^u - \lambda_j^u) \left(\sum_{\alpha=1}^3 (\lambda_{\alpha}^d - \lambda_{\beta}^d) V_{i\alpha} V_{j\alpha}^* \right)$$
, for any β so we choose $\beta \in 1, 2, 3$ such that $\beta \neq i, \beta \neq j$. Cleary if $i = j$ or $\alpha = \beta$ then $C_{ij} = 0$.

Hence,

$$Det(C) = C_{12}C_{23}C_{31} + C_{21}C_{32}C_{13} = C_{12}C_{23}C_{31} - (C_{12}C_{23}C_{31})^*$$
(175)

as $C = -C^{\dagger}$. So.

$$Det(C) = 2iIm(C_{12}C_{23}C_{31}) (176)$$

From (109):

$$C_{12} = (\lambda_1^u - \lambda_2^u)[(\lambda_1^d - \lambda_3^d)V_{11}V_{21}^* + (\lambda_2^d - \lambda_3^d)V_{12}V_{22}^*], \tag{177}$$

$$C_{23} = (\lambda_2^u - \lambda_3^u)[(\lambda_2^d - \lambda_1^d)V_{22}V_{32}^* + (\lambda_3^d - \lambda_1^d)V_{23}V_{33}^*], \tag{178}$$

$$C_{31} = (\lambda_3^u - \lambda_1^u)[(\lambda_1^d - \lambda_2^d)V_{31}V_{11}^* + (\lambda_3^d - \lambda_2^d)V_{33}V_{13}^*], \tag{179}$$

Hence,

$$Det[C] = 2iIm(C_{12}C_{23}C_{31}) = 2iIm((\lambda_1^u - \lambda_2^u)(\lambda_2^u - \lambda_3^u)(\lambda_3^u - \lambda_1^u)[(\lambda_1^d - \lambda_3^d)V_{11}V_{21}^* + (\lambda_2^d - \lambda_3^d)V_{12}V_{22}^*][(\lambda_2^d - \lambda_1^d)V_{22}V_{32}^* + (\lambda_3^d - \lambda_1^d)V_{23}V_{33}^*][(\lambda_1^d - \lambda_2^d)V_{31}V_{11}^* + (\lambda_3^d - \lambda_2^d)V_{33}V_{13}^*])$$

$$=2i\Delta_{u}Im([(\lambda_{3}^{d}-\lambda_{1}^{d})(\lambda_{1}^{d}-\lambda_{2}^{d})^{2}|V_{11}|^{2}V_{21}^{*}V_{22}V_{32}^{*}V_{31}-(\lambda_{1}^{d}-\lambda_{2}^{d})(\lambda_{2}^{d}-\lambda_{3}^{d})(\lambda_{3}^{d}-\lambda_{1}^{d})V_{11}V_{21}^{*}V_{22}V_{32}^{*}V_{33}V_{13}^{*}\\ -(\lambda_{1}^{d}-\lambda_{2}^{d})(\lambda_{3}^{d}-\lambda_{1}^{d})^{2}|V_{11}|^{2}V_{21}^{*}V_{23}V_{33}^{*}V_{31}\\ +(\lambda_{2}^{d}-\lambda_{3}^{d})(\lambda_{3}^{d}-\lambda_{1}^{d})^{2}|V_{33}|^{2}V_{11}V_{21}^{*}V_{23}V_{13}^{*}-(\lambda_{2}^{d}-\lambda_{3}^{d})(\lambda_{1}^{d}-\lambda_{2}^{d})^{2}|V_{22}|^{2}V_{12}V_{32}^{*}V_{31}V_{11}^{*}\\ +(\lambda_{1}^{d}-\lambda_{2}^{d})(\lambda_{2}^{d}-\lambda_{3}^{d})^{2}|V_{22}|^{2}V_{12}V_{32}^{*}V_{33}V_{13}^{*}+(\lambda_{1}^{d}-\lambda_{2}^{d})(\lambda_{2}^{d}-\lambda_{3}^{d})(\lambda_{3}^{d}-\lambda_{1}^{d})V_{12}V_{22}^{*}V_{23}V_{33}^{*}V_{31}V_{11}^{*}\\ -(\lambda_{3}^{d}-\lambda_{1}^{d})(\lambda_{2}^{d}-\lambda_{3}^{d})^{2}|V_{33}|^{2}V_{12}V_{22}^{*}V_{23}V_{13}^{*}]),$$

$$=2i\Delta_{u}Im((\lambda_{1}^{d}-\lambda_{2}^{d})(\lambda_{2}^{d}-\lambda_{3}^{d})(\lambda_{3}^{d}-\lambda_{1}^{d})[V_{12}V_{22}^{*}V_{23}V_{33}^{*}V_{31}V_{11}^{*}-V_{11}V_{21}^{*}V_{22}V_{32}^{*}V_{33}V_{13}^{*}]$$

$$+|V_{11}|^{2}(\lambda_{1}^{d}-\lambda_{2}^{d})(\lambda_{3}^{d}-\lambda_{1}^{d})[(\lambda_{1}^{d}-\lambda_{2}^{d})V_{22}V_{21}^{*}V_{31}V_{32}^{*}-(\lambda_{3}^{d}-\lambda_{1}^{d})V_{23}V_{21}^{*}V_{31}V_{33}^{*}]$$

$$+|V_{22}|^{2}(\lambda_{1}^{d}-\lambda_{2}^{d})(\lambda_{2}^{d}-\lambda_{3}^{d})[(\lambda_{2}^{d}-\lambda_{3}^{d})V_{12}V_{32}^{*}V_{33}V_{13}^{*}-(\lambda_{1}^{d}-\lambda_{2}^{d})V_{12}V_{32}^{*}V_{31}V_{11}^{*}]$$

$$+|V_{33}|^{2}(\lambda_{2}^{d}-\lambda_{3}^{d})(\lambda_{3}^{d}-\lambda_{1}^{d})[(\lambda_{3}^{d}-\lambda_{1}^{d})V_{11}V_{21}^{*}V_{23}V_{13}^{*}-(\lambda_{2}^{d}-\lambda_{3}^{d})V_{12}V_{22}^{*}V_{23}V_{13}^{*}]). \quad (180)$$

Ignore the $2i\Delta_u$ for now and split this into four terms:

$$t1 = Im(\lambda_1^d - \lambda_2^d)(\lambda_2^d - \lambda_3^d)(\lambda_3^d - \lambda_1^d)[V_{12}V_{22}^*V_{23}V_{33}^*V_{31}V_{11}^* - V_{11}V_{21}^*V_{22}V_{32}^*V_{33}V_{13}^*],$$

$$(181)$$

$$t2 = |V_{11}|^2 (\lambda_1^d - \lambda_2^d)(\lambda_3^d - \lambda_1^d)[(\lambda_1^d - \lambda_2^d)V_{22}V_{21}^*V_{31}V_{32}^* - (\lambda_3^d - \lambda_1^d)V_{23}V_{21}^*V_{31}V_{33}^*], \tag{182}$$

$$t3 = |V_{22}|^2 (\lambda_1^d - \lambda_2^d)(\lambda_2^d - \lambda_3^d)[(\lambda_2^d - \lambda_3^d)V_{12}V_{32}^*V_{33}V_{13}^* - (\lambda_1^d - \lambda_2^d)V_{12}V_{32}^*V_{31}V_{11}^*], \tag{183}$$

$$t4 = |V_{33}|^2 (\lambda_2^d - \lambda_3^d)(\lambda_3^d - \lambda_1^d)[(\lambda_3^d - \lambda_1^d)V_{11}V_{21}^*V_{23}V_{13}^* - (\lambda_2^d - \lambda_3^d)V_{12}V_{22}^*V_{23}V_{13}^*]. \tag{184}$$

Now recall $\sum_{\alpha=1}^{3} V_{i\alpha} V_{j\alpha}^* = 0 \Rightarrow V_{31} V_{33}^* = -V_{21} V_{23}^* - V_{11} V_{13}^*$ and $-V_{11} V_{13}^* = V_{21} V_{23}^* + V_{31} V_{33}^*$. Hence, t1 becomes:

$$t1 = \Delta_{d} Im[-V_{12}V_{22}^{*}V_{23}V_{11}^{*}(V_{21}V_{23}^{*} - V_{11}V_{13}^{*}) + V_{21}^{*}V_{22}V_{32}^{*}V_{33}(V_{21}V_{23}^{*} + V_{31}V_{33}^{*})]$$

$$= \Delta_{d}[-|V_{23}|^{2} Im(V_{12}V_{22}^{*}V_{21}V_{11}^{*}) - |V_{11}|^{2} Im(V_{12}V_{22}^{*}V_{23}V_{13}^{*}) + |V_{21}|^{2} Im(V_{22}V_{23}^{*}V_{33}V_{32}^{*}) + |V_{33}|^{2} Im(V_{22}V_{21}^{*}V_{31}V_{32}^{*})]$$

$$= \Delta_{d}[-|V_{23}|^{2}(-J) - |V_{11}|^{2}J + |V_{21}|^{2}J + |V_{33}|^{2}(-J)]$$

$$= \Delta_{d}J[|V_{23}|^{2} - |V_{11}|^{2} + |V_{21}|^{2} - |V_{33}|^{2}]. \quad (185)$$

Now since $J = \pm Im(V_{i\alpha}V_{i\beta}^*V_{j\beta}V_{i\alpha}^*)$.

$$t2 = |V_{11}|^2 (\lambda_1^d - \lambda_2^d)(\lambda_3^d - \lambda_1^d)[(\lambda_1^d - \lambda_2^d)V_{22}V_{21}^*V_{31}V_{32}^* - (\lambda_3^d - \lambda_1^d)V_{23}V_{21}^*V_{31}V_{33}^*]$$

$$= |V_{11}|^2 (\lambda_1^d - \lambda_2^d)(\lambda_3^d - \lambda_1^d)[(\lambda_1^d - \lambda_2^d)(-J) - (\lambda_3^d - \lambda_1^d)J] = |V_{11}|^2 \Delta_d J. \quad (186)$$

Similarly:

$$t3 = |V_{22}|^2 \Delta_d J,\tag{187}$$

and

$$t4 = |V_{33}|^2 \Delta_d J, \tag{188}$$

Hence,

$$Det[C] = 2i\Delta_u \Delta_d J(|V_{23}|^2 - |V_{11}|^2 + |V_{21}|^2 - |V_{33}|^2 + |V_{11}|^2 + |V_{22}|^2 + |V_{33}|^2) = 2\Delta_u \Delta_d J(|V_{21}|^2 |V_{22}|^2 + |V_{23}|^2), \quad (189)$$
and since $\sum_{k=1}^3 |V_{i\alpha}|^2 = 1$

$$Det[C] = 2i\Delta_u \Delta_d J \quad \Box \tag{190}$$

Approximation for J

Recall from (70) we have:

$$V \approx \begin{bmatrix} 1 & -\frac{p}{\lambda_2} & \frac{qp}{\lambda_2} \\ \frac{p^*}{\lambda_2} & 1 & -q \\ p^*q^* & q^* & 1 \end{bmatrix}_u \begin{bmatrix} 1 & \frac{p}{\lambda_2} & qp \\ -\frac{p^*}{\lambda_2} & 1 & q \\ \frac{p^*q^*}{\lambda_2} & -q^* & 1 \end{bmatrix}_d, \tag{191}$$

$$\approx \begin{bmatrix} 1 + \frac{p_{u}p_{d}^{*} + q_{u}p_{u}q_{d}^{*}p_{d}^{*}}{\lambda_{2}^{u}} & \frac{p_{d}}{\lambda_{2}^{d}} - \frac{p_{u}}{\lambda_{2}^{u}} - \frac{q_{u}p_{u}q_{d}^{*}}{\lambda_{2}^{u}} & \frac{p_{u}(q_{u} - q_{d})}{\lambda_{2}^{u}} + p_{d}q_{d} \\ \frac{p_{u}^{*}}{\lambda_{2}^{u}} - \frac{p_{d}^{*}}{\lambda_{2}^{d}} - \frac{q_{u}p_{d}^{*}q_{d}^{*}}{\lambda_{2}^{d}} & 1 + \frac{p_{u}^{*}p_{d}}{\lambda_{2}^{u}} + q_{u}q_{d}^{*} & q_{d} - q_{u} + \frac{p_{u}^{*}p_{d}q_{d}}{\lambda_{2}^{u}} \\ \frac{p_{d}^{*}(q_{d}^{*} - q_{u}^{*})}{\lambda_{2}^{d}} + p_{u}^{*}q_{u}^{*} & q_{u}^{*} - q_{d}^{*} + \frac{p_{u}^{*}q_{u}^{*}p_{d}}{\lambda_{2}^{d}} & 1 + q_{u}^{*}q_{d}(p_{u}^{*}p_{d} + 1) \end{bmatrix}$$
(192)

Hence we can construct J, from (108):

$$J = Im(V_{12}V_{13}^*V_{23}V_{22}^*), \tag{193}$$

$$J \approx \tilde{J} = Im \left[\left(\frac{p_d}{\lambda_2^d} - \frac{p_u}{\lambda_2^u} - \frac{q_u p_u q_d^*}{\lambda_2^u} \right) \left(\frac{p_u (q_u - q_d)}{\lambda_2^u} + p_d q_d \right)^* \left(q_d - q_u + \frac{p_u^* p_d q_d}{\lambda_2^u} \right) \left(1 + \frac{p_u^* p_d}{\lambda_2^u \lambda_2^d} + q_u q_d^* \right)^* \right], \tag{194}$$

$$\tilde{J} = Im \left[\frac{(p_d \lambda_2^u - p_u \lambda_2^d - q_u p_u q_d^* \lambda_2^d)(p_u (q_u - q_d) + \lambda_2^u p_d q_d)^* ((q_d - q_u) \lambda_2^u + p_u^* p_d q_d)(p_u^* p_d + \lambda_2^u \lambda_2^d (1 + q_u q_d^*))^*}{(\lambda_2^u)^4 (\lambda_2^d)^2} \right],$$
(195)

Multiplying the leading order terms we get:

$$\tilde{J} = Im \left[\frac{(p_d \lambda_2^u - p_u \lambda_2^d) p_u^* (q_u - q_d)^* (q_d - q_u)}{(\lambda_2^u)^2 \lambda_2^d} \right], \tag{196}$$

$$\tilde{J} = Im \left[\frac{|q_u - q_d|^2 (|p_u|^2 \lambda_2^d - p_u^* p_d \lambda_2^u)}{(\lambda_2^u)^2 \lambda_2^d} \right], \tag{197}$$

$$\tilde{J} = Im\left[\frac{-|q_u - q_d|^2(|p_u||p_d|e^{-i\Delta\theta})}{\lambda_2^u \lambda_2^d}\right],\tag{198}$$

$$\tilde{J} = \frac{|q_u - q_d|^2 |p_u| |p_d| \sin \Delta \theta}{\lambda_u^2 \lambda_2^d},\tag{199}$$

And hence,

$$\tilde{J} = \frac{|V_{cb}|^2 |p_u| |p_d| \sin \Delta \theta}{\lambda_2^u \lambda_2^d},\tag{200}$$

$$\tilde{J} = |V_{ub}||V_{td}|\sin\Delta\theta,\tag{201}$$

Now, the next highest order terms are:

$$a = Im \left[\frac{p_u^* p_d q_d (\lambda_2^u p_d - \lambda_2^d p_u) \lambda_2^u \lambda_2^d (p_u^* (q_u^* - q_d^*))}{\lambda_2^u \lambda_2^d} \right], \tag{202}$$

$$b = -Im\left[\frac{\lambda_2^d p_u q_u q_d^* \lambda_2^u (q_d - q_u) \lambda_2^u \lambda_2^d p_u^* (q_u^* - q_d^*)}{\lambda_2^u \lambda_2^d}\right], \tag{203}$$

$$c = Im\left[\frac{(p_{u}p_{d}^{*} + \lambda_{2}^{u}\lambda_{2}^{d}q_{u}^{*}q_{d})(\lambda_{2}^{u}(q_{d} - q_{u}))(\lambda_{2}^{u}p_{d} - \lambda_{2}^{d}p_{u})(p_{u}^{*}(q_{u}^{*} - q_{d}^{*}))}{\lambda_{2}^{u}\lambda_{2}^{d}}\right], \tag{204}$$

$$d = Im\left[\frac{\lambda_2^u p_d^* q_d^* \lambda_2^u (q_d - q_u)(\lambda_2^u p_d - \lambda_2^d p_u)\lambda_2^u \lambda_2^d}{\lambda_2^u \lambda_2^d}\right]. \tag{205}$$

Which become:

$$a = \frac{|p_u|^2|p_d||q_d|(\lambda_2^u|p_d||q_d|\sin(2\Delta\theta) - \lambda_2^d|p_u||q_d|\sin(\Delta\theta) + \lambda_2^d|p_u||q_d|\sin(\Delta\theta + \Delta\phi) - \lambda_2^u|p_d||q_u|\sin(2\Delta\theta + \Delta\phi))}{(\lambda_2^u)^3\lambda_2^d}, \quad (206)$$

$$b = -\frac{|p_u|^2 |q_u| |q_d| (|q_u|^2 + |q_d|^2 - 2|q_u| |q_d| \cos(\Delta\phi)) \sin(\Delta\theta)}{(\lambda_2^u)^2},$$
(207)

$$c = \frac{|p_u|(|q_u|^2 + |q_d|^2 - 2|q_u||q_d|\cos(\Delta\phi))(|p_u|^2|p_d|\sin(\Delta\theta) + \lambda_2^u|q_u||q_d|(\lambda_2^u|p_d|\sin(\Delta\theta + \Delta\phi) - \lambda_2^d|p_u|\sin(\Delta\phi)))}{(\lambda_2^u)^3\lambda_2^d}, \quad (208)$$

$$d = -\frac{|p_d||q_d|(\lambda_2^u|p_d||q_u|\sin(\Delta\phi) + \lambda_2^d|p_u||q_d|\sin(\Delta\theta) - \lambda_2^d|p_u||q_u|\sin(\Delta\theta + \Delta\phi))}{\lambda_2^u\lambda_2^d}.$$
 (209)

Numerically, for our complex solutions, we can show that these higher order terms are negligible.

We can also see that the higher order terms in the approximation of J are negligible in the space around our solutions. For example:

Tabl	e 5:	New	SO	lutions

	9	10	11	12	13
J			-2.57×10^{-5}		
			-2.8×10^{-5}		
$\tilde{J}+a+b+c+d$	4.08×10^{-5}	3.19×10^{-5}	-2.82×10^{-5}	-3.29×10^{-5}	3.24×10^{-5}

$\underline{\text{Solution }9}$

J and higher order terms varying $Arg(p_u)$:

Varying $Arg(q_u)$:

Solution 10

Solution 13

Varying $Arg(p_u)$:

Varying $|p_u|$:

Pseudocode

For the complex case we use Wolfram Mathematica to obtain numerically exact V matrices from the inputted parameters $|p_u|$, $|p_d|$, Arg(pu), $|q_u|$, $|q_d|$, Arg(qu), r_u , and r_d (recall that we set the phase convention $Arg(p_u) = -Arg(p_d)$) as follows:

• Define

$$M(r, |p|, argp, |q|, argq) = \begin{bmatrix} r^2 & |p|e^{iargp} & 0\\ |p|e^{-iargp} & r & |q|e^{iargq}\\ 0 & |q|e^{-iargq} & 0 \end{bmatrix};$$
(210)

• Create a list of the eigenvectors of M, ordering the list by the x elements of the eigenvectors as $x1 \gg x2 \gg x3$:

$$Egv(r, |p|, argp, |q|, argq) = [v_1, v_2, v_3];$$
 (211)

• Now create the matrix Ut who's rows are the conjugates of the eigenvectors:

$$Ut(r, |p|, argp, |q|, argq) = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}^* = \begin{bmatrix} x1^* & y1^* & z1^* \\ x2^* & y2^* & z2^* \\ x3^* & y3^* & z3^* \end{bmatrix};$$
(212)

• Create the transformation matrix Φ :

$$\Phi(Ut) = \begin{bmatrix} e^{-I*Arg(Ut[1,1])} & 0 & 0\\ 0 & e^{-I*Arg(Ut[2,2])} & 0\\ 0 & 0 & e^{-I*Arg(Ut[3,3])} \end{bmatrix},$$
th real diagonal elements:

and the Matrix U with real diagonal elements

$$U(r, |p|, argp, |q|, argq) = \Phi(Ut(r, |p|, argp, |q|, argq)).Ut(r, |p|, argp, |q|, argq)$$
 (214)
Recall that the D_i and observable quantities are invariant under such a transformation.

• Now construct V:

$$V(ru, |pu|, argp, |qu|, argq, rd, |pd|, |qd|) = U(ru, |pu|, argpu, |qu|, argqu).U(rd, |pd|, -argpu, |qd|, -argqu)^{\dagger}.$$
(215)

We now wish to minimise $\chi^2 = \chi_v^2 + \chi_{\lambda_k}^2$ from equations (75) and (76) where the λ_k are the numerically exact eigenvalues of M corresponding to the eigenvectors v_k . To minimise:

- Create a random population of 10 sets of arguments within reasonable bounds for the arguments.
- For each set in the start population create a new population of, for example, 99 sets of arguments taken from the normal distribution with mean centered at the argument start value and variance 5% of the start value. So now we have a list of 100 sets of arguments close to the starting arguments (including the start set).
- Compare the χ^2 value for each set in the new population and replace the starting set in the original population with the set with the smallest χ^2 .
- Iterate this process over the population to produce 10 minimised χ^2 values and the minimum points.

References

[1] K. A. Olive et al. [Particle Data Group Collaboration], Chin. Phys. C 38 (2014) 090001. doi:10.1088/1674-1137/38/9/090001