

055738 – STRUCTURAL DYNAMICS AND AEROELASTICITY

04 Static Aeroelasticity: swept wings

Giuseppe Quaranta

Dipartimento di Scienze e Tecnologie Aerospaziali

Material

BAH Section 8.4 Swept wing Masarati DCFA Section 8.1.6 Dowell Section 2.6 Cooper & Wright Section 7.4

Reasons to use sweep angle

To improve longitudinal stability by changing the distance between the AC and the CG of the wing

to delay transonic drag rise (compressibility).

Swept back and swept forward wings

Structure of the swept wing

Streamwise segment aligned with asymptotic speed

Swept wing: torsion

$$\Delta \alpha = \bar{\theta} \cos \Lambda$$
$$\phi = \bar{\theta} \sin \Lambda$$

The angle ϕ is causing a rotation of the sectional Lift vector. However the angle $\bar{\theta} \sin \Lambda$ is small,

so this effect can be neglected.

Only a portion of the torsion of the structure results in a change of angle of attack.

The rest is change of direction of Lift

Swept Wing: Bending

When a swept back wing bends up the angle of attack of streamwise sections will reduce.

$$\Delta \bar{y} = c \sin \Lambda$$

Swept Wing: bending

$$\Delta \alpha_B = \frac{z(\bar{y}_1) - z(\bar{y}_2)}{c} = -\frac{1}{c} \frac{\mathrm{d}z}{\mathrm{d}\bar{y}} \Delta \bar{y}$$
$$\Delta \alpha_B = -z' \sin \Lambda$$

Swept wing: total change of angle of attack

$$\Delta \alpha = \Delta \alpha_T + \Delta \alpha_B = \bar{\theta} \cos \Lambda - z' \sin \Lambda$$

The change of the streamwise angle of attack resulting from the elastic deformation is made up of a component coming from the structure twist and o component of slope coming from the wing bending

Swept wing: forces and moments acting along the elastic axis

To solve the bending and torsional problems it is necessary to compute the shear and torsional load along the structure

$$L(y) = qcC_L - mNg$$

$$m(y) = qecC_L + qc^2C_{m_{AC}} - mNgd$$

The total lift is

$$L_T = \int L(y) dy = \int L(\bar{y}) d\bar{y}$$

If we consider that $dy = d\bar{y}\cos\Lambda$, then

$$L(\bar{y}) = (qcC_L - mNg)\cos\Lambda$$

$$m(\bar{y}) = (qecC_L + qc^2C_{m_{AC}} - mNgd)\cos\Lambda$$

The aerodynamic moment could be decomposed in a torsional component along the beam axis $m_{\bar{y}}$ and a bending component about the \bar{x} axis $m_{\bar{x}}$

$$m_{\bar{y}} = m(\bar{y}) \cos \Lambda$$

 $m_{\bar{x}} = m(\bar{y}) \sin \Lambda$

Swept wing: forces and moments acting along the elastic axis

The wing bending is caused by the shear load $L(\bar{y})$ and the moment $m_{\bar{x}}$. This second effect is often neglected.

$$L(\bar{y}) = qcC_{L\alpha}\alpha = qcC_{L\alpha}(\alpha_0 + \bar{\theta}(\bar{y})\cos\Lambda - z'(\bar{y})\sin\Lambda)\cos\Lambda$$

The torsion is caused by the moment $m_{\bar{y}}$

$$m_{t} = (qecC_{L} + qc^{2}C_{m_{AC}} - mNgd)\cos^{2}\Lambda$$

$$m_{t} = (qecC_{L\alpha}\alpha_{0} + qc^{2}C_{m_{AC}} - mNgd)\cos^{2}\Lambda + qecC_{L\alpha}\Delta\alpha\cos^{2}\Lambda$$

$$m_{t} = (qecC_{L}\alpha_{0} + qc^{2}C_{m_{AC}} - mNgd)\cos^{2}\Lambda +$$

$$+qecC_{L\alpha}(\bar{\theta}(\bar{y})\cos\Lambda - z'(\bar{y})\sin\Lambda)\cos^{2}\Lambda$$

$$m_b = (qecC_L\alpha_0 + qc^2C_{m_{AC}} - mNgd)\cos\Lambda\sin\Lambda + qecC_{L\alpha}(\bar{\theta}(\bar{y})\cos\Lambda - z'(\bar{y})\sin\Lambda)\cos\Lambda\sin\Lambda$$

Simple problem (Typical section)

Rigid model with

- ✓ spring at root to represent TORSIONAL STIFFNESS and
- ✓ another spring to represent BENDING STIFFNESS

Write the equilibrium equation using PVW

$$\delta W_{i} = \delta \bar{\theta} k_{\theta} \bar{\theta} + \delta \bar{\varphi} k_{\varphi} \bar{\varphi}$$

$$\delta W_{e} = \int_{0}^{\bar{b}} \delta \bar{\theta}^{T} \bar{e} L(\bar{y}) d\bar{y} + \int_{0}^{\bar{b}} \delta \bar{\varphi}^{T} \bar{y} L(\bar{y}) d\bar{y}$$

$$z(\bar{y}) = \bar{\varphi}\bar{y}, \quad z'(\bar{y}) = \bar{\varphi}$$

To understand the equivalence that exist between the quantities defined using the difference reference systems it is possible to say that

$$dy = \cos \Lambda d\bar{y}$$

$$c = \frac{\bar{c}}{\cos \Lambda} \longrightarrow c dy = \bar{c} d\bar{y}$$

$$\bar{q} = \frac{1}{2} \rho \bar{U}^2 = \frac{1}{2} \rho U^2 \cos^2 \Lambda = q \cos^2 \Lambda$$

$$Ldy = \bar{L}d\bar{y}$$

$$qcC_{L\alpha}\alpha dy = \bar{q}\bar{c}\bar{C}_{L\alpha}\bar{\alpha}d\bar{y}$$

$$\bar{\alpha} = \frac{C_{L\alpha}}{\cos\Lambda}$$

$$\bar{\alpha} = \frac{\alpha}{\cos\Lambda}$$

Write the equilibrium equation using PVW

$$L(\bar{y}) = \bar{q}\bar{c}\bar{C}_{L\alpha}\left(\frac{\alpha_0}{\cos\Lambda} + \bar{\theta} - \bar{\varphi}\tan\Lambda\right)$$

Given the arbitrariness of $\delta \bar{\theta}$ and $\delta \bar{\phi}$

$$k_{\theta}\bar{\theta} = \bar{q}\bar{c}\bar{e}\bar{b}\bar{C}_{L\alpha}\left(\frac{\alpha_{0}}{\cos\Lambda} + \bar{\theta} - \bar{\varphi}\tan\Lambda\right)$$

$$k_{\varphi}\bar{\varphi} = \bar{q}\bar{c}\frac{\bar{b}^{2}}{2}\bar{C}_{L\alpha}\left(\frac{\alpha_{0}}{\cos\Lambda} + \bar{\theta} - \bar{\varphi}\tan\Lambda\right)$$

$$\left(\begin{bmatrix}k_{\theta} & 0\\ 0 & k_{\varphi}\end{bmatrix} - \bar{q}\bar{c}\bar{b}\bar{C}_{L\alpha}\begin{bmatrix}\bar{e} & -\tan\Lambda\bar{e}\\ \frac{\bar{b}}{2} & -\tan\Lambda\frac{\bar{b}}{2}\end{bmatrix}\right)\left\{\bar{\theta}\\\bar{\varphi}\right\} = \frac{\bar{q}\bar{c}\bar{b}\bar{C}_{L\alpha}}{\cos\Lambda}\left\{\bar{e}\\ \frac{\bar{b}}{2}\right\}\alpha_{0}$$

$$\left(\mathbf{K}_{s} - \bar{Q}\mathbf{K}_{A}\right) \begin{Bmatrix} \bar{\theta} \\ \bar{\varphi} \end{Bmatrix} = \frac{Q}{\cos \Lambda} \begin{Bmatrix} \bar{e} \\ \frac{\bar{b}}{2} \end{Bmatrix} \alpha_{0}$$

with
$$\bar{Q} = \bar{q}\bar{c}\bar{b}\bar{C}_{L\alpha} = \bar{q}S\bar{C}_{L\alpha}$$

$$\det(\mathbf{K}_A) = 0$$

The aerodynamic stifffness is singular!

Compute the divergence speed

$$\det\left(\mathbf{K}_s - \bar{Q}\mathbf{K}_A\right) = 0$$

That is equivalent to

$$(k_{\theta} - \bar{Q}\bar{e}) \left(k_{\varphi} + \bar{Q}\frac{\bar{b}}{2}\tan\Lambda \right) + \bar{Q}^{2}\bar{e}\frac{\bar{b}}{2}\tan\Lambda = 0$$
$$k_{\theta}k_{\varphi} + \bar{Q} \left(k_{\theta}\frac{\bar{b}}{2}\tan\Lambda - k_{\varphi}\bar{e} \right) = 0$$

There is only one divergence speed, even if the system is 2-dofs.

$$\bar{Q}_D = \frac{k_\theta k_\varphi}{\bar{e}k_\varphi - k_\theta \frac{\bar{b}}{2} \tan \Lambda}$$

$$\bar{Q} = \bar{q}\bar{c}\bar{b}\bar{C}_{L\alpha} = qS\cos^2\Lambda\bar{C}_{L\alpha}$$

$$q_D = \frac{1}{\cos^2 \Lambda} \frac{k_\theta}{S\bar{e}\bar{C}_{L\alpha}} \frac{1}{1 - \frac{k_\theta}{k_\varphi} \frac{\bar{b}}{\bar{e}} \frac{\tan \Lambda}{2}}$$

Divergence speed

1. if $\Lambda > 0$, i.e. backward sweep angle, and $\bar{e} > 0$

$$\frac{k_{\theta}}{k_{\varphi}} \frac{\bar{b}}{\bar{e}} \frac{\tan \Lambda}{2} > 0$$

In this case it is possible to identify a critical sweep angle $\Lambda_{\text{CRIT}} > 0$ above which no divergence exists, $\frac{\bar{e}}{\bar{b}} =$ because $q_D < 0$.

$$\frac{\bar{e}}{\bar{b}} = \frac{1}{60} \begin{cases} \frac{k_{\varphi}}{k_{\theta}} = 10 & \Lambda_{\text{CRIT}} = 18^{\circ} \\ \frac{k_{\varphi}}{k_{\theta}} = 3 & \Lambda_{\text{CRIT}} = 5.7^{\circ} \end{cases}$$

$$\frac{k_{\theta}}{k_{\varphi}}\frac{\bar{b}}{\bar{e}}\frac{\tan\Lambda_{\text{CRIT}}}{2} = 1, \quad \Lambda_{\text{CRIT}} = \tan^{-1}\left(2\frac{k_{\varphi}}{k_{\theta}}\frac{\bar{e}}{\bar{b}}\right)$$

- 2. $\Lambda < 0$, i.e. forward sweep angle, and $\bar{e} > 0$. The higher is $|\Lambda|$ the lower is q_D
- N.B. q_D grows until it reaches ∞ at Λ_{CRIT} and then starts becoming negative with a modulus that reduces the higher is Λ .

Divergence speed of an elastic swept wing

Fast drop of divergence speed for negative sweep angles. Below -30° divergence speed is close to zero

Compute the Lift effectiveness

Ratio of Lift developed by the elastic model with respect to Lift developed by the rigid model

$$L_R = \bar{q}S\bar{C}_{L\alpha}\frac{\alpha_0}{\cos\Lambda} = \frac{\bar{Q}\alpha_0}{\cos\Lambda}$$

$$\bar{Q}_D = \frac{k_\theta k_\varphi}{\bar{e}k_\varphi - k_\theta \frac{\bar{b}}{2} \tan \Lambda}$$

$$\left(\mathbf{K}_{s} - \bar{Q}\mathbf{K}_{A}\right) \begin{Bmatrix} \bar{\theta} \\ \bar{\varphi} \end{Bmatrix} = \frac{\bar{Q}}{\cos \Lambda} \begin{Bmatrix} \bar{e} \\ \frac{\bar{b}}{2} \end{Bmatrix} \alpha_{0}$$

$$\bar{\theta} = \frac{\bar{Q}\bar{e}\alpha_0}{\cos\Lambda} \frac{k_{\varphi}}{k_{\theta}k_{\varphi} + \bar{Q}\left(k_{\theta}\frac{\bar{b}}{2}\tan\Lambda - k_{\varphi}\bar{e}\right)} = \frac{\bar{Q}\bar{e}\alpha_0}{\cos\Lambda} \frac{k_{\varphi}}{k_{\theta}k_{\varphi}\left(1 - \frac{\bar{Q}}{\bar{Q}_D}\right)}$$

$$\bar{\varphi} = \frac{\bar{Q}\bar{b}\alpha_0}{2\cos\Lambda} \frac{k_{\theta}}{k_{\theta}k_{\varphi} + \bar{Q}\left(k_{\theta}\frac{\bar{b}}{2}\tan\Lambda - k_{\varphi}\bar{e}\right)} = \frac{\bar{Q}\bar{b}\alpha_0}{2\cos\Lambda} \frac{k_{\theta}}{k_{\theta}k_{\varphi}\left(1 - \frac{\bar{Q}}{\bar{Q}_D}\right)}$$

Compute the Lift effectiveness

$$L = \bar{q}S\bar{C}_{L\alpha}\left(\frac{\alpha_0}{\cos\Lambda} + \bar{\theta} - \bar{\varphi}\tan\Lambda\right) \qquad L_R = \bar{q}S\bar{C}_{L\alpha}\frac{\alpha_0}{\cos\Lambda} = \frac{Q\alpha_0}{\cos\Lambda}$$

$$L = \frac{\bar{Q}\alpha_0}{\cos\Lambda}\left(1 + \frac{\bar{Q}\bar{e}}{k_\theta\left(1 - \frac{\bar{Q}}{\bar{Q}_D}\right)} - \frac{\bar{Q}\frac{\bar{b}}{2}}{k_\varphi\left(1 - \frac{\bar{Q}}{\bar{Q}_D}\right)}\tan\Lambda\right)$$

$$L = L_R\frac{1}{k_\theta k_\varphi\left(1 - \frac{\bar{Q}}{\bar{Q}_D}\right)}\left(k_\theta k_\varphi\left(1 - \frac{\bar{Q}}{\bar{Q}_D}\right) + k_\varphi\bar{Q}\bar{e} - k_\theta\bar{Q}\frac{\bar{b}}{2}\tan\Lambda\right)$$

$$L = L_R\frac{1}{k_\theta k_\varphi\left(1 - \frac{\bar{Q}}{\bar{Q}_D}\right)}\left(k_\theta k_\varphi\left(1 - \frac{\bar{Q}}{\bar{Q}_D}\right) + k_\theta k_\varphi\frac{\bar{Q}}{\bar{Q}_D}\right)$$

$$L = L_R\frac{1}{\left(1 - \frac{\bar{Q}}{\bar{Q}_D}\right)}\left(1 - \frac{\bar{Q}}{\bar{Q}_D} + \frac{\bar{Q}}{\bar{Q}_D}\right)$$

$$\frac{L}{L_R} = \frac{1}{1 - \frac{\bar{Q}}{\bar{Q}_D}} = \frac{1}{1 - \frac{\bar{q}}{\bar{q}_D}}$$

Lift Effectiveness

$$\begin{cases} \Lambda < \Lambda_{\text{CRIT}}, \ q_D > 0 & L/L_R > 1 \\ \Lambda = \Lambda_{\text{CRIT}}, \ q_D = \infty & L/L_R = 1 \\ \Lambda > \Lambda_{\text{CRIT}}, \ q_D < 0 & L/L_R < 1 \end{cases}$$

For large positive sweep angles, the divergence disappears but there is a reduction of the lift effectiveness

Control Reversal

Consider a rigid aileron on the rigid wing connected with two springs at the root.

- ✓ Compute torsion and bending due to a unit rotation of the aileron
- ✓ Compute the lift generated including the effects of wing deformation

$$L = \bar{q}S\bar{C}_{L\alpha}\left(\bar{\theta} - \bar{\varphi}\tan\Lambda\right) + \bar{q}S\bar{C}_{L\beta}\beta = \bar{Q}\left(\bar{\theta} - \bar{\varphi}\tan\Lambda\right) + \bar{Q}\frac{C_{L\beta}}{\bar{C}_{L\alpha}}\beta$$

$$M_{AC} = \bar{q}S\bar{c}\bar{C}_{m\beta}\beta = \bar{Q}\bar{c}\frac{\bar{C}_{m\beta}}{\bar{C}_{L\alpha}}\beta$$

$$m_{\theta} = L\bar{e} + M_{AC}$$

$$m_{\phi} = L\bar{e} + M_{AC}$$

Control Reversal

$$\left(\mathbf{K}_{s} - \bar{Q}\mathbf{K}_{A}\right) \begin{Bmatrix} \bar{\theta} \\ \bar{\varphi} \end{Bmatrix} = \bar{Q}\bar{e}\frac{\bar{C}_{L\beta}}{\bar{C}_{L\alpha}} \begin{Bmatrix} 1 + \frac{\bar{c}}{\bar{e}}\frac{\bar{C}_{m\beta}}{\bar{C}_{L\beta}} \\ \frac{\bar{b}}{2\bar{e}} \end{Bmatrix} \beta$$

$$L_R = \bar{Q} \frac{\bar{C}_{L\beta}}{\bar{C}_{L\alpha}} \beta$$

$$\bar{\theta} = \bar{Q}\bar{e}\frac{\bar{C}_{L\beta}}{\bar{C}_{L\alpha}}\left(1 + \frac{\bar{c}}{\bar{e}}\frac{\bar{C}_{m\beta}}{\bar{C}_{L\beta}}\right)\frac{k_{\varphi}}{k_{\theta}k_{\varphi}\left(1 - \frac{\bar{Q}}{\bar{Q}_{D}}\right)}\beta$$

$$\bar{\varphi} = \bar{Q} \frac{\bar{b}\bar{C}_{L\beta}}{2\bar{C}_{L\alpha}} \frac{k_{\theta}}{k_{\theta}k_{\varphi} \left(1 - \frac{\bar{Q}}{\bar{Q}_{D}}\right)} \beta$$

$$L = \bar{Q} \left(\bar{\theta} - \bar{\varphi} \tan \Lambda \right) + \bar{Q} \frac{\bar{C}_{L\beta}}{\bar{C}_{L\alpha}} \beta$$

$$L = L_R \left(1 + \frac{\bar{Q}\bar{e}\left(1 + \frac{\bar{c}}{\bar{e}}\frac{\bar{C}_{m\beta}}{\bar{C}_{L\beta}}\right)}{k_{\theta}\left(1 - \frac{\bar{Q}}{\bar{Q}_D}\right)} - \frac{\bar{Q}\frac{\bar{b}}{2}}{k_{\varphi}\left(1 - \frac{\bar{Q}}{\bar{Q}_D}\right)} \tan\Lambda \right)$$

$$\frac{L}{L_R} = \frac{1}{1 - \frac{q}{q_D}} + \frac{1}{1 - \frac{q}{q_D}} \frac{\bar{Q}\bar{c}\frac{\bar{C}_{m\beta}}{\bar{C}_{L\beta}}}{k_{\theta}} = \frac{1 + \frac{\bar{Q}\bar{c}}{k_{\theta}}\frac{\bar{C}_{m\beta}}{\bar{C}_{L\beta}}}{1 - \frac{q}{q_D}}$$

Control Reversal

$$L_{R} = qS\bar{C}_{L\beta}\cos^{2}\Lambda\beta$$

$$\frac{L}{L_{R}} = \frac{1 + q\frac{S\bar{c}\bar{C}_{L\alpha}}{k_{\theta}}\frac{\bar{C}_{m\beta}}{\bar{C}_{L\beta}}\cos^{2}\Lambda}{1 - \frac{q}{q_{D}}}$$

$$q_{R\Lambda} = -\frac{k_{\theta}}{S\bar{c}\bar{C}_{L\alpha}} \frac{\bar{C}_{L\beta}}{\bar{C}_{m\beta}} \frac{1}{\cos^2 \Lambda}$$

Reversal speed may grow, but due to elastic deformations (also bending causes a reduction of lift) the control effectiveness is rapidly reduced.

Increasing Λ , especially above Λ_{CRIT} , $q_{R\Lambda}$ is increased but the divergence dynamic pressure $q_D < 0$ becomes more negative decreasing significantly the lift effectiveness.

Is it possible to obtain a torsional structural moment when the wing bends and vice-versa?

Consider the case

$$\mathbf{K}_s = \begin{bmatrix} k_\theta & k \\ k & k_\varphi \end{bmatrix}$$

$$\delta W_i = \delta z_1 k_1 z_1 + \delta z_2 k_2 z_2$$

$$\delta W_i = \delta heta L_1^2 k_1 heta + \delta arphi L_2^2 k_2 arphi = \delta heta k_ heta heta + \delta arphi k_arphi arphi$$
 ۽

$$\delta W_i = \delta \begin{bmatrix} \bar{\theta} \\ \bar{\varphi} \end{bmatrix}^T \mathbf{R}^T \begin{bmatrix} L_1^2 k_1 & 0 \\ 0 & L_2^2 k_2 \end{bmatrix} \mathbf{R} \begin{bmatrix} \bar{\theta} \\ \bar{\varphi} \end{bmatrix} \quad \mathbf{k}_i = \mathbf{k}_i$$

$$\delta W_i = \delta \begin{Bmatrix} \bar{\theta} \\ \bar{\varphi} \end{Bmatrix}^T \begin{bmatrix} k_{\theta} \cos^2 \Lambda + k_{\varphi} \sin^2 \Lambda & (k_{\theta} - k_{\varphi}) \sin \Lambda \cos \Lambda \\ (k_{\theta} - k_{\varphi}) \sin \Lambda \cos \Lambda & k_{\theta} \sin^2 \Lambda + k_{\varphi} \cos^2 \Lambda \end{bmatrix} \begin{Bmatrix} \bar{\theta} \\ \bar{\varphi} \end{Bmatrix}$$

 $\det\left(\mathbf{K}_s - \bar{Q}_D \mathbf{K}_A\right) = 0$

That is equivalent to

$$(k_{\theta} - \bar{Q}_{D}\bar{e}) \left(k_{\varphi} - \bar{Q}_{D}\frac{\bar{b}}{2}\tan\Lambda\right) - (k - \bar{Q}_{D}\tan\Lambda\bar{e}) \left(k - \bar{Q}_{D}\frac{\bar{b}}{2}\right) = 0$$

$$k_{\theta}k_{\varphi} - k^{2} - \bar{Q}_{D} \left(k_{\theta}\frac{\bar{b}}{2}\tan\Lambda + k_{\varphi}\bar{e} - k\left(\bar{e}\tan\Lambda - \frac{\bar{b}}{2}\right)\right) = 0$$

$$\bar{Q}_{D} = \frac{k_{\theta}k_{\varphi} - k^{2}}{k_{\theta}\frac{\bar{b}}{2}\tan\Lambda + k_{\varphi}\bar{e} - k\left(\bar{e}\tan\Lambda - \frac{\bar{b}}{2}\right)}$$

The crtitical sweep angle is obtained when $Q_D = \infty$

$$\tan \Lambda_{\text{CRIT}} \left(\frac{\bar{b}}{2} k_{\theta} - k \bar{e} \right) = k_{\varphi} \bar{e} + k \frac{\bar{b}}{2}$$

For a negative swept wing (i.e. forward swept), it is possible to obtain a negative Critical sweep angle if k < 0 and large enough in modulus. It means to implement a washout effect on the forward swept wing

$$\Lambda_{\text{CRIT}} = \tan^{-1} \left(\frac{k_{\varphi}\bar{e} + k\frac{\bar{b}}{2}}{\frac{\bar{b}}{2}k_{\theta} - k\bar{e}} \right)$$

More generally using composite material with appropriate direction for the deposition of the fibers, it is possible to obtain the level of coupling required

Figure 3.7.1 – Laminate re-orientation for shape control

 γ angle between the fibers and the beam axis

$$k = (k_{\varphi} - k_{\theta}) \sin \gamma \cos \gamma$$

$$R = \frac{k_{\theta}}{k_{\varphi}}$$

Changes of the critical sweep angle by changing the direction of the fibers

PVW and Ritz-Galerkin approach

$$\delta W_{i} = \int \delta \bar{\theta}'^{T} G J \bar{\theta}' d\bar{y} + \int \delta z''^{T} E J z'' d\bar{y}$$

$$\delta W_{e} = \int \delta z_{AC}^{T} L(\bar{y}) d\bar{y} + \int \delta \bar{\theta}^{T} M_{AC} d\bar{y}$$

Then use the Ritz-Galerkin approach epproximating

$$\bar{\theta} = \mathbf{N}_{\theta} \mathbf{q}_{\theta}$$

$$z = \mathbf{N}_z \mathbf{q}_z$$

$$z_{AC} = z + e\bar{\theta}$$

Summarizing

Positive sweep:

- ✓ Increases divergence speed (that often disappears)
- ✓ Decreases lift effectiveness
- ✓ Decreases controllability

The opposite is obtained by negative sweep

Aeroelastic tailoring can be used to change this behavior