《电工与电子技术》(下)课程教学大纲

一、课程基本信息

课程	2060310303	课程	《电工与电子技术》(下)			
编号		名称				
	学分/学时	3.5 学分/64 学时				
	开课时间	第4学期				
	课程性质	专业基础必修课				
	先修课程	《电工与电子技术》(上)				
课程基本情况	考核方式	平时成绩 20%、期中考试 10%、期末考试 70%				
	课程负责人		何志杰、陈曦			
	教材及 参考书	教材: 电工学(第7版)(下册) 电子技术,秦曾煌,高等教育出版社,2009年。 参考书目: ①邱关源主编:《电路》(第五版),高等教育出版社,2006年版; ②康华光主编:《电子技术基础》模拟部分(第五版),高等教育出版社,2006年版; ④康华光主编:《电子技术基础》数字部分(第五版),高等教育出版社,2006年版。				
课程	《电工与电子技术》(下)是福建师范大学物理学专业的专业必修基础课。本课程讲授电子技术的基础知识和基础理论,主要包含模拟电路和数字电路相关知识等。内容涉及集成运算放大电路分析、电路中负反馈、直流电源电路、门电路与组合逻辑电路、触发器和时序逻辑电路、模拟量与数字量转换。通过本课程的学习,促进学习者理解和掌握电子技术的基本理论、基本知识和基本技能。					
	学习目标 1: 掌握模拟电子电路的基本工作原理、基本分析方法和基本应用技能,使学生能够对各种由集成电路或分立元件构成的基本单元进行分析,了解常用实际电路的工作原理,提高模拟电路分析和计算水平。					
课程学习目标		* -2. ,	的基础理论知识,理解基本数字逻辑电路的工作原理,掌 行和设计方法,具有运用数字逻辑电路初步解决数字逻辑问			
学习目标 3: 通过实验操作和仿真模拟,使学生初步具备处理常见电路故手段和方法。主动查询和了解科技前沿,形成反思和良好的自主学习能力的求知欲,培养善于收集信息、发现问题、自行诊断及团队协作能力。						

二、课程学习目标与毕业要求指标点的对应关系

	- 11 140 H 777 N 140 I- 1-	
专业毕业要求	专业毕业要求指标点	对应的课程学习目标
	(3.1) 扎实专业理论基础:系统掌握物理学的基本理论、基	
	本知识以及所需的数学基本知识和能力,建立正确物理图像,	
	掌握基本物理思想和方法,形成科学的物理观念,能运用物	
	理学理论和正确的科学思维方法定性或定量地解释自然现象	
	和解决实际物理问题,并整合形成物理学科教学知识。	
	(3.2)较强专业实践能力:系统掌握物理学的基本实验原理、	
3. 学科素养	实验方法和实验技能,具备较强的物理实验探究能力,尤其	
	学会设计和自制中学物理教学教具并应用于中学物理课堂教	课程学习目标 1,2,3
	学。	
	(3.3) 认识学科作用:了解物理学相关研究方向前沿、发展	
	动态和应用前景,了解物理学在自然科学和人类社会发展过	
	程中的重要作用以及与其他相关学科的密切关系,了解跨学	
	科知识。理解物理学科与社会实践的关系,正确认识科学的	
	本质,树立正确的科学态度和责任感,认识其在学生知识体	
	系形成和道德品质养成中的作用。	
	(4.1)擅长专业教学:具备良好的教学基本技能,熟悉中学	
	物理课程标准,能结合学生身心发展和认知特点,运用物理	
	学科知识独立进行教学设计,同时能以学生为中心有效实施	
a det. NY. Alo. 1	课堂教学,并对学生的学习效果作出科学评价。	
4. 教学能力	(4.2)熟悉技术手段:初步掌握利用计算机、互联网和信息)用和兴豆 日 1 1 2 2
	技术查找、整合和建设教学资源、优化中学物理课堂教学的	课程学习目标 1,2,3
	方法和技能。	
	(4.3) 初具教改能力:了解先进教改理念,能结合具体学情	
	尝试开展中学物理教学改革研究,具备一定的从事教育教学	
	改革研究能力。	
	(8.1) 具有团队协作精神:明确学习共同体的作用,在专业	
	学习、班集体、教育实践等活动中能团结协作,创设和谐的	
	人际氛围,提高工作效率。	
8. 沟通合作	(8.2) 掌握交流沟通技巧:能营造良好的沟通气氛,乐于沟	课程学习目标3
	通,学会换位思考,学会推心置腹的真诚交流,具备良好的	
	沟通交流能力。	

三、课程各要素与课程学习目标的对应关系及达成度分析

(一) 课程教学内容、教学目标、学时分配与课程学习目标的对应关系

第一部分 集成运算放大电路(可支撑课程学习目标1、3)

1.教学目的和要求

通过本部分学习,帮助学生掌握集成运算放大器工作在线性区和非线性区的分析依据,加深理解负反馈的概念,提高应用集成运算放大器的技能。了解集成运算放大器的基本组成及其主要参数的意义;理解运算放大器的电压传输特性,理解理想运算放大器并掌握其基本分析方法;理解用运算放大器组成的比例、加减、微分和积分运算电路的工作原理;了解有源滤波器的工作原理;理解电压比较器、波形产生电路的工作原理和应用。

2.教学内容

- (1) 集成运算放大器的简单介绍、运算放大器在信号运算方面的应用
- (2) 运算放大器在信号处理方面的应用、运算放大器在波形产生方面的应用
- 3.重点:运算放大器在信号运算方面的应用
- 4.难点:运算放大器在信号运算方面的应用
- 5.参考习题: P123(16.2.8\16.2.10)、P124(16.2.11\16.2.13)、P125(16.2.16\16.2.20)、P124(16.3.4\16.3.5)、P129(16.2.28)
- 6.学时: 8 学时 (理论学时: 8 学时)
- 7.实验内容:
 - (1)集成运算放大器的基本运用:反相比例、同相比例运算电路、减法运算电路、 反相加法运算电路(实验学时:2学时)

第二部分 电路中的反馈 (可支撑课程学习目标 1、3)

1. 教学目的和要求

通过本部分学习,学生应重点掌握反馈的基本概念、构成反馈的电路、引入反馈的实际意义等。能辨别电子电路中的直流反馈和交流反馈、正反馈和负反馈以及负反馈的四种类型;了解负反馈对放大电路工作性能的影响;了解RC振荡电路的工作原理。了解正弦波振荡电路的组成、工作原理、振荡频率的计算。

- 2.教学内容
 - (1) 反馈的基本概念
 - (2) 放大电路中的负反馈
 - (3) 振荡电路中的正反馈、正弦波产生电路
- 3.重点: 负反馈四种类型、指标,正弦波电路
- 4.难点: 负反馈四种类型、指标,正弦波电路
- 5.参考习题: P152 (17.2.6\17.2.7\17.2.9)、P153 (17.2.12\17.3.2)
- 6.学时: 8 学时 (理论学时: 8 学时)
- 7.实验内容:
- (1)负反馈放大电路:测量静态工作点、测量基本放大器的各项性能指标、测量负反馈放大器的各项性能指标(实验学时:2 学时)

第三部分 直流稳压电源(可支撑课程学习目标1)

1.教学目的和要求

通过本部分学习,学生应掌握直流稳压电路相关知识。重点掌握单相桥式整流和滤波电路的

工作原理及各项指标的计算。了解稳压管稳压电路的工作原理,重点掌握串联型稳压电路工作原理及输出电压的调节范围和计算,了解三端式集成稳压器的应用。

- 2. 教学内容
 - (1) 整流和滤波电路
 - (2) 稳压电路
 - (4) 集成稳压电源
- 3.重点: 半波整流、桥式整流、稳压电路
- 4.难点: 半波整流、桥式整流、稳压电路
- 5.参考习题: P178(18.1.9\18.1.0)、P179 (18.2.4)、P180 (18.2.7\18.3.4)、P181 (18.3.5\18.3.6\18.3.8) P182(18.3.9)
- 6.学时: 6学时 (理论学时: 6学时)

第四部分 门电路和组合逻辑电路(可支撑课程学习目标 2、3)

1.教学目的和要求

通过本部分学习,学生应掌握逻辑门电路及组合逻辑电路的分析方法,提高分析和设计(综合)组合逻辑电路的能力。掌握与门、或门、非门、与非门、异或门的逻辑功能,了解三态门的概念;了解逻辑代数的基本运算法则和逻辑函数的化简,掌握逻辑代数的表示方法,并能应用逻辑代数运算法则和卡诺图化简逻辑函数;掌握简单组合逻辑电路的分析和设计,能根据组合逻辑电路的设计(综合)步骤,设计(综合),组合逻辑电路,能应用组合逻辑电路部件设计实现其他逻辑功能的组合电路;了解加法器、8421编码器和二进制译码器的工作原理,了解七段LED显示译码驱动器的功能。

2. 教学内容

- (1) 数字和脉冲信号、基本门电路及其组合、TTL 门电路、CMOS 门电路
- (2) 逻辑代数、组合逻辑电路的分析和设计
- (3) 加法器、编码器、译码器和数字显示
- 3.重点:逻辑代数、组合逻辑电路的分析和设计
- 4.难点:逻辑代数、组合逻辑电路的分析和设计
- 5.参考习题: P234(20.2.4\20.2.5)、P291(20.5.12\20.5.13)、P292(20.5.14)、P292(20.6.12) P293(20.6.13\20.6.16\20.6.18)、P294(20.6.2)、P295(20.8.1)、 P296(20.9.3\20.10.1\20.10.2\20.10.3\20.9.6)
- 6.学时: 10 学时 (理论学时: 10 学时)

7.实验内容:

- (1) TTL 集成逻辑门的测试与使用:验证 TTL 集成与非门 74LS20 的逻辑功能、74LS20 主要参数的测试(实验学时:2 学时)
- (2)组合逻辑电路的设计与测试:设计一个四人无弃权表决电路(多数赞成则提案通过)、设计全加器(实验学时:2学时)
- (3) 译码器及其应用:数据拨码开关的使用、74LS138 译码器逻辑功能测试、用 74LS138 构成时序脉冲分配器、四-十六进制译码器实验(实验学时:2 学时)

第五部分 触发器和时序逻辑电路(可支撑课程学习目标 2、3)

1.教学目的和要求

通过本部分学习,学生应掌握双稳态触发器的逻辑功能、时序逻辑电路的分析方法及单稳态触发器、多谐振荡器的波形分析方法。了解双稳态触发器是组成时序逻辑电路的基本单元,掌握各种双稳态触发器的逻辑功能及其描述方法;理解数码寄存器具有存放数码或数据的功能,理解移位寄存器具有存放数码和移位的功能;了解计数器是数字逻辑系统的基本部件之一,掌握计

数器的分析方法;能根据设计要求,设计任意进制的计数器。了解单稳态触发器是常用的波形变换电路,多谐振荡器是产生脉冲波形的基本单元电路,重点掌握波形分析法和基本应用,了解集成定时器的组成、工作原理,重点掌握其应用。

2. 教学内容

- (1) 双稳态触发器、寄存器和移位寄存器
- (2) 计数器
- (3) 单稳态触发器和多谐振荡器、555 定时器
- 3.重点:双稳态触发器、计数器、555定时器
- 4.难点:双稳态触发器、计数器、555定时器
- 5.参考习题: P306(21.1.5)、P350(21.1.13\21.1.14\21.1.17)、P352(21.2.1\21.3.8\21.3.9\21.3.10) P354(21.3.12\21.3.13\21.5.3)、P355(21.5.4)
- 6.学时: 12 学时 (理论学时: 12 学时)

7.实验内容:

- (1)集成触发器及其应用测试基本 RS 触发器的逻辑功能、测试双 JK 触发器 74LS112 的逻辑 功能、测试双 D 触发器 74LS74 的逻辑功能、(实验学时: 2 学时)
- (2) 计数器及其应用:测试 74LS192 同步十进制可逆计数器的逻辑功能、设计一个数字钟移位 60 进制计数并进行实验(实验学时: 2 学时)
- (3)移位寄存器及其应用:测试 74LS194(或 CC40194)的逻辑功能及使用方法、用移位寄存器构成串行累加器和环形计数器(实验学时: 2 学时)

第六部分 模拟量与数字转换(可支撑课程学习目标1、2)

1.教学目的和要求

通过本部分学习,学生应掌握数-模转换器和模-数转换器的基础知识。理解它们都是计算机与外部设备的重要接口,也是数字测量和数字控制系统的重要部件。了解 T 型电阻网络数-模转换器的工作原理。了解逐次逼近型模-数转换器的工作原理及特点。

2. 教学内容

- (1) 数-模转换器
- (2) 模-数转换器
- 3.重点:数-模转换器、模-数转换器
- 4.难点:数-模转换器、模-数转换器
- 5.参考习题: P407(23.1.4\23.1.6\23.2.3\23.1.8)
- 6.学时: 4 学时 (理论学时: 4 学时)

(二)《电工与电子技术》(下)课程学习目标与教学内容达成度矩阵图

章节名称	课程学习	课程学习目	课程学习目
	目标1	标 2	标 3
第一部分 集成运算放大电路	Н		Н
第二部分 电路中的反馈	Н		Н
第三部分 直流稳压电源	Н		
第四部分 门电路和组合逻辑电路		Н	Н
第五部分 触发器和时序逻辑电路		Н	Н
第六部分 模拟量与数字转换	M	M	

(三)《电工与电子技术》(下)课程教学方法与课程学习目标的对应关系矩阵图

课程教学方法	可支撑的课程学习目标
1. 多媒体课件和传统教学相结合,教学方法上要求讲授与讨论、习题讲解等合理安排。为学生掌握基本的电路分析方法及电路识图能力打下基础。	学习目标 1: 掌握模拟电子电路的基本工作原理、基本分析方法和基本应用技能,使学生能够对各种由集成电路或分立元件构成的基本单元进行分析,了解常用实际电路的工作原理,提高模拟电路分析和计算水平。 学习目标 2: 掌握数字电路的基础理论知识,理解基本数字逻辑电路的工作原理,掌握数字逻辑电路的基本分析和设计方法,具有运用数字逻辑电路初步解决数字逻辑问题的能力。
2.教学中,针对实际电路及器件,可适 当通过仿真交互的方式,增强学生对电 路分析方法、电路工作原理的直观感 受,帮组学生理解和掌握相关难点;通 过实验加强对理论原理的理解	学习目标 1: 掌握模拟电子电路的基本工作原理、基本分析方法和基本应用技能,使学生能够对各种由集成电路或分立元件构成的基本单元进行分析,了解常用实际电路的工作原理,提高模拟电路分析和计算水平。 学习目标 2: 掌握数字电路的基础理论知识,理解基本数字逻辑电路的工作原理,掌握数字逻辑电路的基本分析和设计方法,具有运用数字逻辑电路初步解决数字逻辑问题的能力。 学习目标 3: 通过实验操作和仿真模拟,使学生初步具备处理常见电路故障及问题的手段和方法。主动查询和了解科技前沿,形成反思和良好的自主学习能力,激发学生的求知欲,培养善于收集信息、发现问题、自行诊断及团队协作能力。
3. 注意运用互动式教学法。在课堂上运用启发、疏导、讨论等多种教学手段,变教师的单向授课为师生互动、双向交流。	学习目标 1: 掌握模拟电子电路的基本工作原理、基本分析方法和基本应用技能,使学生能够对各种由集成电路或分立元件构成的基本单元进行分析,了解常用实际电路的工作原理,提高模拟电路分析和计算水平。 学习目标 2: 掌握数字电路的基础理论知识,理解基本数字逻辑电路的工作原理,掌握数字逻辑电路的基本分析和设计方法,具有运用数字逻辑电路初步解决数字逻辑问题的能力。

(四)《电工与电子技术》(下)课程学习目标与考核内容、考核方式的关系矩阵图

课程学习目标	考核内容	考核方式
课程学习目标 1	1. 能应用虚短、虚断概念进行运放电路分析; 2. 能分析及判断正负反馈电路; 3. 掌握直流稳压电路相关参数计算方法;	1.课堂出勤 2.课后作业 3.期中考试 4.期末考试
课程学习目标 2	1. 学会逻辑门电路及组合逻辑电路的设计和分析方法; 2. 掌握双稳态触发器逻辑功能、时序逻辑电路的分析方 法及单稳态触发器、多谐振荡器的波形分析方法; 3. 理解 AD 转换基本原理。	1.课堂出勤 2.课后作业 3.期末考试
课程学习目标3	1. 集成运放电路测量 2. 负反馈放大电路测量 3. TTL 逻辑门电路参数测量、组合逻辑电路设计 4. 译码器及其应用、触发器、计数器及移位寄存器设计	1.课堂出勤 2.实验操作

(五)课程考核方法

期末闭卷考试、期中考试、平时成绩(课堂出勤、课后作业、实验)

(六)课程成绩评定方法及其与课程学习目标的关系

平时成绩 20%、期中考试 10%、期末考试 70%

课程学习目标成绩评定方法	期末相关试题 占分比例%	期中相关试题占 分比例%	平时成绩占分比例%	课程分目标达成评价方法
课程学习目标 1	55	100	20	分目标达成度 =0.7×(分目标试题
课程学习目标 2	45		20	平均分/分目标试 题总分)+0.2×(分
课程学习目标 3			60	目标平时成绩/分 目标总分〉+0.1×
合计	100%	100%	100%	(期中小测分目标 平均成绩/分目标 总分)

备注: 该表格项比例允许误差 10%以内

(七)课程学习目标与评分标准的对应关系

	评分标准			
课程学习目标	90-100	80-89	60-79	0-59
	优	良	中/及格	不及格
	能熟练应用虚短、虚断	能应用虚短、虚断概	能基本学会应用虚	未学会应用虚短、虚
	概念进行运放电路分	念进行运放电路分	短、虚断概念进行运	断概念进行运放电
	析; 能熟练掌握分析及	析;能掌握分析及判	放电路分析;能基本	路分析; 未掌握分析
 课程学习目标1	判断正负反馈电路的方	断正负反馈电路的	掌握分析及判断正	及判断正负反馈电
床住子刁日你 I 	法; 熟练掌握直流稳压	方法;掌握直流稳压	负反馈电路的方法;	路的方法; 熟练掌握
	电路相关参数计算方	电路相关参数计算	熟练掌握直流稳压	直流稳压电路相关
	法;	方法;	电路相关参数计算	参数计算方法;
			方法;	
	熟练掌握逻辑门电路及	掌握逻辑门电路及	基本掌握逻辑门电	未掌握逻辑门电路
	组合逻辑电路的设计和	组合逻辑电路的设	路及组合逻辑电路	及组合逻辑电路的
	分析方法; 熟练掌握双	计和分析方法;掌握	的设计和分析方法;	设计和分析方法;未
	稳态触发器逻辑功能、	双稳态触发器逻辑	基本掌握双稳态触	掌握双稳态触发器
课程学习目标2	时序逻辑电路的分析方	功能、时序逻辑电路	发器逻辑功能、时序	逻辑功能、时序逻辑
	法及单稳态触发器、多	的分析方法及单稳	逻辑电路的分析方	电路的分析方法及
	谐振荡器的波形分析方	态触发器、多谐振荡	法及单稳态触发器、	单稳态触发器、多谐
	法。	器的波形分析方法。	多谐振荡器的波形	振荡器的波形分析
			分析方法。	方法。
	能熟练掌握集成运放电	能掌握集成运放电	能基本掌握集成运	未掌握集成运放电
	路测量及分析方法、负	路测量及分析方法、	放电路测量及分析	路测量及分析方法、
	反馈电路测量及分析方	负反馈电路测量及	方法、负反馈电路测	负反馈电路测量及
	法、组合逻辑电路设计	分析方法、组合逻辑	量及分析方法、组合	分析方法、组合逻辑
课程学习目标3	方法、万时序逻辑电路	电路设计方法、万时	逻辑电路设计方法、	电路设计方法、万时
	设计方法等。	序逻辑电路设计方	万时序逻辑电路设	序逻辑电路设计方
		法等。	计方法等。	法等。

执笔人(签名):

审核人(签名):

所在教研室:

学院分管教学领导签字(盖章):

日期: 2019年6月日