## A DIAGRAMMATIC APPROACH To Symmetric Lenses

BRYCE CLARKE

bryce.clarke1@hdr.mq.edu.au



APPLIED CATEGORY THEORY 2020

### VERVIEW OF THE TALK



GOAL 1: Develop a diagrammatic framework for lenses.

GOAL 2: Understand the relationship between symmetric & asymmetric lenses.

WHAT IS A LENS? - -CATEGORY objects = states "maintains consistency between states of systems" morphisms = updates SYSTEM ASYMMETRIC LENS SYMMETRIC LENS GET

# THREE CLASSES OF FUNCTORS









$$A \xrightarrow{f} B$$

$$a \cdot \cdot \cdot b = fa$$



$$A \xrightarrow{f} B$$

$$a \cdot \cdot \cdot \cdot fa$$

$$\exists ! \omega \downarrow \qquad \qquad \downarrow u = f\omega$$

$$a' \cdot \cdot \cdot \cdot fa'$$



## COFUNCTORS & FACTORISATION SYSTEMS





"each update u: φa → b ∈ B has
a chosen lift"
+
respects identities and composition



factorisation system







factorisation system







## THE BICATEGORY OF MEALY MORPHISMS





**3** 

## ASYMMETRIC LENSES

LENS

LAWS







#### EXAMPLES

· A, B codiscrete www very well-behaved lenses

$$f: A \longrightarrow B$$
  $\rho: A \times B \longrightarrow A$ 

(PUT-GET)  $f_P(a,b) = b$ 

(PUT-PUT) p(p(a,b),b') = p(a,b')

· A, B monoids has section/retraction

$$\beta \xrightarrow{\varphi} A \xrightarrow{f} B$$



# THE BICATEGORY OF SPANS OF ASYMMETRIC LENSES 1-cells 2-cells 3 3 8, P $\bar{f}, \bar{g} \in \mathcal{D}$

## THE BICATEGORY OF SYMMETRIC LENSES



"suitable pair of Mealy morphisms"



1-cells

$$\bar{g}, \bar{f} \in \mathcal{D}$$



SymLens(A,B)





## MAIN THEOREMS AN ADJOINT TRIPLE





## Summary

GOAL 1: Develop a diagrammatic framework for lenses.

**RESULT:** 



Asymmetric lens



Symmetric lens

GOAL 2: Understand the relationship between symmetric & asymmetric lenses.

RESULT:

where R is reflective & L is coreflective