Работа 2.5.1

Измерение коэффициента поверхностного натяжения жидкости.

Работу выполнил Матренин Василий Б01-006

Цель работы: 1) измерение температурной зависимости коэффициента поверхностного натяжения дистиллированной воды с использованием известного коэффициента поверхностного натяжения спирта; 2) определение полной поверхностной энергии и теплоты, необходимой для изотермического образования единицы поверхности жидкости при различной температуре.

В работе используются: прибор Ребиндера с термостатом и микроманометром; исследуемые жидкости; стаканы.

1 Теоритическая часть

1.1 Формулы

Наличие поверхностного слоя приводит к различию давлений по разные стороны от искривленной границы раздела двух сред. Для сферического пузырька с воздухом внутри жидкости избыточное давление задаётся формулой Лапласа:

$$\Delta P = P_{\text{внутри}} - P_{\text{снаружи}} = \frac{2\sigma}{r},\tag{1}$$

где σ - коэффициент поверхностного натяжения, $P_{\text{внутри}}$ и $P_{\text{снаружи}}$ - давление внутри пузырька и снаружи, r - радиус кривизны поверхности раздела двух фаз. Эта формула лежит в основе предлагаемого метода определения коэффициента поверхностного натяжения жидкости. Измеряется давление ΔP , необходимое для выталкивания в жидкость пузырька воздуха.

1.2 Схема установки

Схема установки представлена на рисунке 1.

Рис. 1. Схема установки

2 Ход работы

2.1 Проверка установки

Проверил герметичность установки - успешно.

2.2 Подбор частоты

Подобрал частоту падения капель из аспиратора так, чтобы максимальное давление манометра не зависело от этой частоты (не чаще, чем 1 капля в 5 секунд).

2.3 Максимальное давление спирта

Измерил максимальное давление $\Delta P_{\text{спирт}}$ при пробулькивании пузырьков воздуха через спирт. Пользуясь табличным значением коэффициента поверхностного натяжения спирта, определил по формуле (1) диаметр иглы.

$$\Delta P_{\text{спирт}} = 0000 \Pi \text{a}$$

$$\sigma_{\text{случ}}^{\Delta P_{\text{спирт}}} = 0000\Pi \text{a}$$

$$d_{\text{иглы}} = 0000 \text{мм}$$

2.4 Максимальное давление для поверхности воды

Перенес предварительно промытую и просушенную от спирта иглу в колбу с дистиллированной водой. Измерил максимальное давление P1 при пробулькивании пузырьков, когда игла лишь касается поверхности воды. Измерил расстояние между верхним концом иглы и !!! любой неподвижной частю !!! прибора h1.

$$P1 = 0000\Pi a$$

h1 = 0000 M

2.5 Максимальное давление на предельной глубине

Утопил иглу до предела (между концом иглы и дном оставил небольшой зазор, чтобы образующийся пузырёк не касался дна). Измерил h2 (как в пункте 4). Измерил максимальное давление в пузырьках P2. По разности давлений $\Delta P = P2 - P1$ определил глубину погружения Δh иглы и сравнил с $\Delta h = h1 - h2$.

h2 = 0000 M

 $P2 = 0000\Pi a$

 $\Delta P = 0000 \Pi \mathrm{a}$

 $\Delta h = !!! = 0000 \text{M}$

 $\Delta h = h1 - h2 = 0000 \mathrm{m}$

Значения Δh , посчитаные разными способами, совпадают в пределах погрешностей.

2.6 Зависимость $\sigma(T)$

Снял зависимость $\sigma(T)$, результаты представлены в таблице 1.

Таблица 1: Зависимость $\sigma(T)$

$t = 25^{\circ}C$		$t = 30^{\circ}C$		$t = 35^{\circ}C$		$t = 40^{\circ}C$	
Р, Па	$\sigma, \frac{H}{m}$						
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

t = 4	45°C	t = 5	50°C	$t = 55^{\circ}C$		
Р, Па	$\sigma, \frac{H}{m}$	Р, Па	$\sigma, \frac{H}{m}$	Р, Па	$\sigma, \frac{H}{m}$	
0	0	0	0	0	0	
0	0	0	0	0	0	