Esame di Ricerca Operativa del 13/06/17

(Cognome)	(Nome)	(Numero di Matricola)

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \min \ 12 \ y_1 + 5 \ y_2 + 4 \ y_3 + 6 \ y_4 - 7 \ y_5 - 5 \ y_6 - y_7 \\ y_1 + y_2 - 2 \ y_3 - y_4 - y_5 + y_6 - y_7 = 7 \\ -y_1 - y_3 - y_4 + y_5 + 2 \ y_6 + y_7 = 1 \\ y \ge 0 \end{cases}$$

Base	Soluzione di base	Ammissibile	Degenere (si/no)
		(si/no)	(S1/no)
$\{1, 2\}$	x =		
{4, 6}	y =		

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso duale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				entrante		uscente
1° iterazione	{2,7}					
2° iterazione						

Esercizio 3. Un'industria chimica produce una soluzione per la quale sono utilizzati 3 diversi composti chimici: C_1 , C_2 e C_3 . La composizione di ciascun composto e il costo unitario (Euro/Kg) sono indicati nella seguente tabella:

	% silicio	% calcio	% ferro	Costo
C_1	3	5	8	300
C_2	7	3	2	400
C_3	2	4	7	250

Il prodotto finale deve contenere una percentuale di silicio tra il 3 e l'8 %, una percentuale di calcio tra il 2 e il 7 % ed una percentuale di ferro non inferiore al 5 %. Determinare la composizione della soluzione che minimizza i costi.

variabili decisionali:	
modello:	

COMANDI DI MATLAB						
c=	intlinprog=					
A=	b=					
Aeq=	beq=					
lb=	ub=					

Esercizio 4. Completare la seguente tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,2) (1,4) (4,3)				
(4,6) (5,7) (6,7)	(6,5)	x =		
(1,2) (1,4) (4,3)				
(4,6) (5,4) (5,7)	(6,7)	$\pi = (0,$		

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,3) (1,4) (2,4) (4,6) (5,7) (6,5)	
Archi di U	(3,5)	
x		
π		
Arco entrante		
ϑ^+,ϑ^-		
Arco uscente		

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	ite	r 1	iter 2		ite	r 3	ite	r 4	iter 5		ite	r 6	ite	r 7
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato														
nodo 2														
nodo 3														
nodo 4														
nodo 5														
nodo 6														
nodo 7														
$\stackrel{\text{insieme}}{Q}$														

b) Applicare l'algoritmo FFEK per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v

Taglio di capacità minima: $N_s = N_t = N_t$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \min 8 x_1 + 12 x_2 \\ 17 x_1 + 13 x_2 \ge 60 \\ 11 x_1 + 13 x_2 \ge 51 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione inferiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_I(P)$ =

b) Calcolare una valutazione superiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile = $v_S(P) =$

c) Calcolare un taglio di Gomory.

r = taglio:

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	15	20	63	45
2		97	58	57
3			12	10
4				15

a) Trovare una valutazione inferiore del valore ottimo calcolando il 5-albero di costo minimo.

L		
ł	b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 2.	
Γ		

ciclo: $v_S(P) =$

c) Applicare il metodo del Branch and Bound, utilizzando il 5-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{35} , x_{34} , x_{45} . Dire se l'algoritmo è terminato.

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_1$ sull'insieme

$$\{x \in \mathbb{R}^2: x_1^2 + x_2^2 - 8x_1 \le 0, \quad x_1^2 + x_2^2 - 6x_1 - 4x_2 = 0\}.$$

Soluzioni del sist	Mass	imo	Mini	mo	Sella		
x	λ	μ	globale	locale	globale	locale	
(0,0)							
(6.4, 3.2)							
$(3+\sqrt{13},2)$							

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min \ 4 \ x_1^2 - 2 \, x_1 \, x_2 - 5 \ x_2 \\ x \in P \end{cases}$$

e i vertici di P sono (-4,-5) , (0,5) , (-5,2) e (2,4). Fare un passo del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione	Max spostamento possibile	Passo	Nuovo punto
$\left(\frac{2}{3}, \frac{14}{3}\right)$						

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \min 12 \ y_1 + 5 \ y_2 + 4 \ y_3 + 6 \ y_4 - 7 \ y_5 - 5 \ y_6 - y_7 \\ y_1 + y_2 - 2 \ y_3 - y_4 - y_5 + y_6 - y_7 = 7 \\ -y_1 - y_3 - y_4 + y_5 + 2 \ y_6 + y_7 = 1 \\ y \ge 0 \end{cases}$$

Base	Soluzione di base	Ammissibile	
		(si/no)	(si/no)
{1, 2}	x = (5, -7)	SI	NO
11, 25	x - (0, -1)	51	110
$\{4, 6\}$	y = (0, 0, 0, -13, 0, -6, 0)	NO	NO

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso duale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				entrante		uscente
1° iterazione	{2, 7}	(5, 4)	(0, 8, 0, 0, 0, 0, 1)	5	1	7
2° iterazione	$\{2, 5\}$	(5, -2)	(0, 8, 0, 0, 1, 0, 0)	6	$\frac{8}{3}, \frac{1}{2}$	5

Esercizio 3. Indichiamo con x_1 , x_2 ed x_3 rispettivamente, le quantità percentuali di composto di tipo 1 2 e 3 da usare nella soluzione. Il modello di programmazione lineare è il seguente:

$$\begin{cases} \min 300 \ x_1 + 400 \ x_2 + 250 \ x_3 \\ x_1 + x_2 + x_3 = 1 \\ 0.03 \le 0.03 \ x_1 + 0.07 \ x_2 + 0.02 \ x_3 \le 0.08 \\ 0.02 \le 0.05 \ x_1 + 0.03 \ x_2 + 0.04 \ x_3 \le 0.07 \\ 0.08 \ x_1 + 0.02 \ x_2 + 0.07 \ x_3 \ge 0.05 \\ x \ge 0 \end{cases}$$

COMANDI DI MATLAB

c=[300;400;250]
A=[-3,-7,-2;3,7,2;-5,-3,-4;5,3,4;-8,-2,-7]
b=[-3; 8; -2; 7; -5]
Aeq=[1;1;1] beq=[1]
1b=[0;0;0] ub=[]

Esercizio 4. Completare la tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,2) (1,4) (4,3)				
(4,6) (5,7) (6,7)	(6,5)	x = (-5, 0, 10, 0, 0, -4, 11, 0, 5, 9, 0)	NO	SI
(1,2) (1,4) (4,3)				
(4,6) $(5,4)$ $(5,7)$	(6,7)	$\pi = (0, 7, 7, 3, -6, 6, -2)$	NO	NO

 $\textbf{Esercizio 5.} \ \ \textbf{Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.$

	1° iterazione	2° iterazione
Archi di T	(1,3) $(1,4)$ $(2,4)$ $(4,6)$ $(5,7)$ $(6,5)$	(1,3) (1,4) (2,4) (3,5) (5,7) (6,5)
Archi di U	(3,5)	(4,6)
x	(0, 5, 0, 5, 9, 0, 2, 0, 5, 0, 0)	(0, 2, 3, 5, 6, 0, 5, 0, 5, 3, 0)
π	(0, 0, 10, 3, 16, 6, 20)	(0, 0, 10, 3, 20, 10, 24)
Arco entrante	(3,5)	(4,3)
ϑ^+,ϑ^-	3,5	6, 2
Arco uscente	(4,6)	(1,3)

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter	1	iter	2	iter	. 3	iter	4	ite	r 5	ite	r 6	ite	r 7
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato	1		3		2		5		4	1	7	7	(j
nodo 2	12	1	10	3	10	3	10	3	10	3	10	3	10	3
nodo 3	5	1	5	1	5	1	5	1	5	1	5	1	5	1
nodo 4	$+\infty$	-1	$+\infty$	-1	28	2	28	2	28	2	28	2	28	2
nodo 5	$+\infty$	-1	17	3	17	3	17	3	17	3	17	3	17	3
nodo 6	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	46	4	38	7	38	7
nodo 7	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	31	5	31	5	31	5	31	5
$\begin{matrix} \text{insieme} \\ Q \end{matrix}$	2,	3	2,	5	4,	5	4,	7	6,	7	(3	Q	Ď

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

			1
cammino aumentante	δ	x	v
1 - 2 - 5 - 7	8	(8, 0, 0, 8, 0, 0, 0, 0,	8
1 - 3 - 5 - 7	3	(8, 3, 0, 8, 0, 3, 0, 0, 11, 0, 0)	11

Taglio di capacità minima: $N_s = \{1, 2, 3, 4, 5, 6\}$ $N_t = \{7\}$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases}
\min 8 x_1 + 12 x_2 \\
17 x_1 + 13 x_2 \ge 60 \\
11 x_1 + 13 x_2 \ge 51 \\
x_1 \ge 0 \\
x_2 \ge 0 \\
x_1, x_2 \in \mathbb{Z}
\end{cases}$$

a) Calcolare una valutazione inferiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $\left(\frac{51}{11}, 0\right)$ $v_I(P) = 38$

b) Calcolare una valutazione superiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile = (5,0)

c) Calcolare un taglio di Gomory.

$$r = 1$$
 $10 x_1 + 12 x_2 \ge 47$
 $r = 3$ $5 x_1 + 6 x_2 \ge 24$

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	15	20	63	45
2		97	58	57
3			12	10
4				15

a) Trovare una valutazione inferiore del valore ottimo calcolando il 5-albero di costo minimo.

 $v_I(P) = 72$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 2.

ciclo:
$$2 - 1 - 3 - 5 - 4$$
 $v_S(P) = 118$

c) Applicare il metodo del *Branch and Bound*, utilizzando il 5-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{35} , x_{34} , x_{45} .

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1,x_2)=x_1$ sull'insieme $\{x\in\mathbb{R}^2:\ x_1^2+x_2^2-8x_1\leq 0,\quad x_1^2+x_2^2-6x_1-4x_2=0\}.$

$$\{x \in \mathbb{R}^2 : x_1^2 + x_2^2 - 8x_1 \le 0, \quad x_1^2 + x_2^2 - 6x_1 - 4x_2 = 0\}.$$

Soluzioni del siste	Mass	Massimo		Minimo			
x	λ	μ	globale	locale	globale	locale	
(0,0)	1/8	0	NO	NO	SI	SI	NO
(6.4,3.2)	3/40	-1/5	NO	NO	NO	SI	NO
$(3+\sqrt{13},2)$	0	$-\sqrt{13}/26$	SI	SI	NO	NO	NO

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min \ 4 \ x_1^2 - 2 x_1 x_2 - 5 \ x_2 \\ x \in P \end{cases}$$

 $\mathrm{dove}\,P\,\,\grave{\mathrm{e}}\,\,\mathrm{il}\,\,\mathrm{poliedro}\,\,\mathrm{di}\,\,\mathrm{vertici}\,\,(-4,-5)\,\,,\,(0,5)\,\,,\,(-5,2)\,\,\mathrm{e}\,\,(2,4).\,\,\mathrm{Fare}\,\,\mathrm{una}\,\,\mathrm{iterazione}\,\,\mathrm{del}\,\,\mathrm{metodo}\,\,\mathrm{del}\,\,\mathrm{gradiente}\,\,\mathrm{proiettato}.$

I	Punto	Matrice M	Matrice H	Direzione	Max spostamento	Passo	Nuovo punto
					possibile		
	$\left(\frac{2}{3}, \frac{14}{3}\right)$	(1, 2)	$\begin{pmatrix} 4/5 & -2/5 \\ -2/5 & 1/5 \end{pmatrix}$	$\left(\frac{2}{3}, -\frac{1}{3}\right)$	2	$\frac{1}{8}$	$\left(\frac{3}{4}, \frac{37}{8}\right)$