Automating Separation Logic using SMT

Ruzica Piskac Thomas Wies Damien Zufferey

MPI-SWS NYU IST Austria

MSR, June 24 2013, Redmond

Motivation

Separation logic (SL) succinctly express invariants of heap configurations.

Good features:

Spatial conjunction (*),

Inductive spatial predicates (list, tree, etc.),

Frame rule.

Not so good features:

Specialized provers for decidable fragments means that extension and combination with other solvers/theories is not straightforward.

```
procedure concat(a: Node, b: Node) returns (res: Node)
  requires lseg(a, null) * lseg(b, null);
  ensures lseg(res, null);
  if (a == null) {
    return b:
  } else {
    var curr: Node;
    curr := a:
    while (curr.next != null)
      invariant curr != null * lseg(a, curr) * lseg(curr, null);
      curr := curr.next;
    curr.next := b:
    return a:
```

```
Specification
procedure concat(a: Node, b: Node) returns (res: Node)
requires_lseg(a, null) * lseg(b, null);
                                                     - me/nost
  ensures lseg(res, null);
  if (a == null) {
    return b:
  } else {
                                           loop invariant
    var curr: Node;
    curr := a;
    while (curr.next != null)
      invariant curr != null * lseg(a, curr) * lseg(curr, null);
      curr := curr.next:
    curr.next := b;
    return a:
```

```
* and inductive predicates
```

```
procedure concat(a: Node, b: Node) returns (res: Node)
requires lseg(a, null)  lseg(b, null);
  ensures lseg(res, null);
  if (a == null) {
    return b:
  } else {
    var curr: Node;
    curr := a;
    while (curr.next != null)
       invariant curr != null * lseg(a, curr) * lseg(curr, null);
       curr := curr.next:
    curr.next := b;
    return a:
```

```
brame inference
procedure concat(a: Node, b: Node) returns (res: Node)
requires lseg(a, null) * lseg(b, null);
  ensures Iseg(res, null):
  if (a == null) {
    return b:
  } else {
    var curr: Node;
    curr := a;
    while (curr.next != null)
      invariant curr != null * lseg(a, curr) * lseg(curr, null);
      curr := curr.next:
    curr.next := b;
    return a;
```

Our work

- Reduce a decidable fragment of SL to a decidable FO theory.
- Fits into the SMT framework.
- Satisfiability, entailment, frame inference, and abduction problems for SL using SMT solvers.
- Combining SL with other theories.
- Implemented in the GRASShopper tool.

Outline

- Theoretical results
 - SLL® to GRASS
 - And back
- 2 Implementation

Decidable SL fragment: SLLB

SLL (separation logic formulas for linked lists) introduced in [Berdine ${\rm et\ al.,\ 2004}$].

SLL

$$\Sigma ::= x = y \mid x \neq y \mid x \mapsto y \mid \mathsf{ls}(x,y) \mid \Sigma * \Sigma$$

With extend SLL to SLL by adding boolean connective on top:

$$H ::= \Sigma \mid \neg H \mid H \wedge H$$

Semantics of $SLL\mathbb{B}$ (1)

$$A, X \models_{\mathsf{SL}} H$$

A: heap interpretation (total)

X: subset of A over which the formula is interpreted (footprint)

$$A, X \models_{\mathsf{SL}} x = y$$
 iff $x^{A} = y^{A}$ and $X^{A} = \emptyset$
 $A, X \models_{\mathsf{SL}} x \neq y$ iff $x^{A} \neq y^{A}$ and $X^{A} = \emptyset$
 $A, X \models_{\mathsf{SL}} x \mapsto y$ iff $h^{A}(x^{A}) = y^{A}$ and $X^{A} = \{x^{A}\}$

$$A, X \models_{\mathsf{SL}} H_{1} * H_{2} \text{ iff } \exists U_{1}, U_{2}. U_{1} \cup U_{2} = X^{A} \text{ and } U_{1} \cap U_{2} = \emptyset \text{ and } A[X \mapsto U_{1}], X \models_{\mathsf{SL}} H_{1} \text{ and } A[X \mapsto U_{2}], X \models_{\mathsf{SL}} H_{2}$$

Semantics of $SLL\mathbb{B}$ (2)

$$\begin{array}{lll} \mathcal{A}, X \models_{\mathsf{SL}} \mathsf{ls}(x,y) & \text{iff } \exists n \geq 0. \ \mathcal{A}, X \models_{\mathsf{SL}} \mathsf{ls}^n(x,y) \\ \mathcal{A}, X \models_{\mathsf{SL}} \mathsf{ls}^0(x,y) & \text{iff } x^{\mathcal{A}} = y^{\mathcal{A}} \text{ and } X^{\mathcal{A}} = \emptyset \\ \mathcal{A}, X \models_{\mathsf{SL}} \mathsf{ls}^{n+1}(x,y) & \text{iff } \exists u \in \mathsf{node}^{\mathcal{A}}. \ \mathcal{A}[z \mapsto u], X \models_{\mathsf{SL}} x \mapsto z * \mathsf{ls}^n(z,y) \\ & & \mathsf{and} \ x^{\mathcal{A}} \neq y^{\mathcal{A}} \text{ and } z \neq x \text{ and } z \neq y \\ \\ \mathcal{A}, X \models_{\mathsf{SL}} H_1 \wedge H_2 & \text{iff } \mathcal{A}, X \models_{\mathsf{SL}} H_1 \text{ and } \mathcal{A}, X \models_{\mathsf{SL}} H_2 \\ \mathcal{A}, X \models_{\mathsf{SL}} \neg H & \text{iff not } \mathcal{A}, X \models_{\mathsf{SL}} H \end{array}$$

GRASS: graph reachability and stratified sets

graph reachability

$$T ::= x \mid h(T)$$

$$A ::= T = T \mid T \xrightarrow{h \setminus T} T$$

$$R ::= A \mid \neg R \mid R \wedge R \mid R \vee R$$

stratified sets

$$S ::= X \mid \emptyset \mid S \setminus S \mid S \cap S \mid S \cup S \mid \{x.R\} \mid x \text{ not below } h \text{ in } R$$

$$B ::= S = S \mid T \in S$$

top level boolean combination

$$F ::= A \mid B \mid \neg F \mid F \land F \mid F \lor F$$

GRASS

The theory \mathcal{T}_{GS} is the disjoint combination of:

- \bullet a theory of reachability in function graphs \mathcal{T}_{G}
 - types: {node}
 - function symbols {h}
 - predicate symbols $\{ \xrightarrow{h \setminus} \}$
- a theory of stratified sets \mathcal{T}_S [Zarba, 2004]
 - types: {node, set}
 - function symbols $\{\emptyset, \cap, \cup, \setminus\}$
 - $\bullet \ \ \mathsf{predicate} \ \mathsf{symbols} \ \{\in\}$

\mathcal{T}_{G} : theory of function graphs

What is a function graph?

A graph where each node has one outgoing edge (per function).

Why a graph and not just functions?

Rather than just the successors we are interested of in paths (transitive closure of the functions).

 $t_1 \xrightarrow{h \setminus t_3} t_2$ is true if there exists a path in the graph of h that connects t_1 and t_2 without going through t_3 .

$$ls(x, y)$$
 is a shortcut for $x \xrightarrow{h \setminus y} y$

$$Btwn(x, y)$$
 is a shortcut for $\{z.x \xrightarrow{h \setminus y} z \land z \neq y\}$

\mathcal{T}_{G} : examples

$\mathsf{SLL}\mathbb{B} \quad o \quad \mathsf{GRASS} \ (1)$

Usual way of translating SL to FO:

- structure: uses \mathcal{T}_G to encode the shape of the heap (pointers)
- ullet footprint: uses \mathcal{T}_{S} to encode the part of the heap used by a formula

Negation ⇒ things get more complicated

- structure: uses \mathcal{T}_G and \mathcal{T}_S to encode the shape of the heap (pointers) and disjointness
- set definition: uses T_S for keep track of the sets that will make the footprint

$SLL\mathbb{B} \rightarrow GRASS: * or below$

$$str_{Y}(x = y) = (x = y, Y = \emptyset)$$

$$str_{Y}(x \neq y) = (x \neq y, Y = \emptyset)$$

$$str_{Y}(x \mapsto y) = (h(x) = y, Y = \{x\})$$

$$str_{Y}(\text{ls}(x,y)) = (x \xrightarrow{h} y, Y = Btwn(x,y))$$

$$str_{Y}(\Sigma_{1} * \Sigma_{2}) = \text{let } Y_{1}, Y_{2} \in \mathcal{X} \text{ fresh}$$

$$\text{and } (F_{1}, G_{1}) = tr_{Y_{1}}(\Sigma_{1})$$

$$\text{and } (F_{2}, G_{2}) = tr_{Y_{2}}(\Sigma_{2})$$

$$\text{in } (F_{1} \land F_{2} \land Y_{1} \cap Y_{2} = \emptyset, Y = Y_{1} \cup Y_{2} \land G_{1} \land G_{2})$$

$SLL\mathbb{B} \rightarrow GRASS$: boolean structure

$$tr_X(\Sigma) = \text{let } Y \in \mathcal{X} \text{ fresh and } (F,G) = str_Y(\Sigma)$$
 $\text{in } (F \wedge X = Y, G)$
 $tr_X(\neg H) = \text{let } (F,G) = tr_X(H) \text{ in } (\neg F, G)$
 $tr_X(H_1 \wedge H_2) = \text{let } (F_1,G_1) = tr_X(H_1) \text{ and } (F_2,G_2) = tr_X(H_2)$
 $\text{in } (F_1 \wedge F_2, G_1 \wedge G_2)$
 $Tr_X(H) = \text{let } (F,G) = tr_X(H) \text{ in } F \wedge G$

a non-empty acyclic list segment from x to z

$$x \neq z * x \mapsto y * \mathsf{ls}(y, z)$$

$$x \neq z \land h(x) = y \land y \xrightarrow{h} z \land Y_2 \cap Y_3 = \emptyset \land Y_4 \cap Y_5 = \emptyset \land X = Y_1 \land Y_1 = Y_2 \cup Y_3 \land Y_2 = \emptyset \land Y_3 = Y_4 \cup Y_5 \land Y_4 = \{x\} \land Y_5 = Btwn(y, z)$$

a non-empty acyclic list segment from x to z

$$x \neq z * x \mapsto y * ls(y, z)$$

$$x \neq z \land h(x) = y \land y \xrightarrow{h} z \land Y_2 \cap Y_3 = \emptyset \land Y_4 \cap Y_5 = \emptyset \land X = Y_1 \land Y_1 = Y_2 \cup Y_3 \land \frac{Y_2 = \emptyset}{2} \land Y_3 = Y_4 \cup Y_5 \land Y_4 = \{x\} \land Y_5 = Btwn(y, z)$$

a non-empty acyclic list segment from x to z

$$x \neq z * x \mapsto y * ls(y, z)$$

$$x \neq z \land h(x) = y \land y \xrightarrow{h} z \land Y_2 \cap Y_3 = \emptyset \land Y_4 \cap Y_5 = \emptyset \land X = Y_1 \land Y_1 = Y_2 \cup Y_3 \land Y_2 = \emptyset \land Y_3 = Y_4 \cup Y_5 \land Y_4 = \{x\} \land Y_5 = Btwn(y, z)$$

a non-empty acyclic list segment from x to z

$$x \neq z * x \mapsto y * \mathsf{ls}(y, z)$$

$$x \neq z \land h(x) = y \land y \xrightarrow{h} z \land Y_2 \cap Y_3 = \emptyset \land Y_4 \cap Y_5 = \emptyset \land X = Y_1 \land Y_1 = Y_2 \cup Y_3 \land Y_2 = \emptyset \land Y_3 = Y_4 \cup Y_5 \land Y_4 = \{x\} \land Y_5 = \underbrace{Btwn(y, z)}$$

a non-empty acyclic list segment from x to z

$$x \neq z * x \mapsto y * \mathsf{ls}(y, z)$$

$$x \neq z \land h(x) = y \land y \xrightarrow{h} z \land Y_2 \cap Y_3 = \emptyset \land Y_4 \cap Y_5 = \emptyset \land X = Y_1 \land Y_1 = Y_2 \cup Y_3 \land Y_2 = \emptyset \land Y_3 = Y_4 \cup Y_5 \land Y_4 = \{x\} \land Y_5 = Btwn(y, z)$$

a non-empty acyclic list segment from x to z

$$x \neq z * x \mapsto y * \mathsf{ls}(y, z)$$

$$x \neq z \land h(x) = y \land y \xrightarrow{h} z \land Y_2 \cap Y_3 = \emptyset \land Y_4 \cap Y_5 = \emptyset \land X = Y_1 \land Y_1 = Y_2 \cup Y_3 \land Y_2 = \emptyset \land Y_3 = Y_4 \cup Y_5 \land Y_4 = \{x\} \land Y_5 = Btwn(y, z)$$

a non-empty acyclic list segment from x to z

$$x \neq z * x \mapsto y * \mathsf{ls}(y, z)$$

$$x \neq z \land h(x) = y \land y \xrightarrow{h} z \land Y_2 \cap Y_3 = \emptyset \land Y_4 \cap Y_5 = \emptyset \land X = Y_1 \land Y_1 = Y_2 \cup Y_3 \land Y_2 = \emptyset \land Y_3 = Y_4 \cup Y_5 \land Y_4 = \{x\} \land Y_5 = Btwn(y, z)$$

a non-empty acyclic list segment from x to z

$$\neg(x \neq z * x \mapsto y * \mathsf{ls}(y, z))$$

ignoring the negation (same as before):

structure

$$x \neq z \land h(x) = y \land y \xrightarrow{h} z \land Y_2 \cap Y_3 = \emptyset \land Y_4 \cap Y_5 = \emptyset \land X = Y_1$$

set definitions

$$Y_1 \! = \! Y_2 \! \cup \! Y_3 \wedge Y_2 \! = \! \emptyset \wedge Y_3 \! = \! Y_4 \! \cup \! Y_5 \wedge Y_4 \! = \! \{x\} \wedge Y_5 \! = \! \textit{Btwn}(y,z)$$

a non-empty acyclic list segment from x to z

$$\neg(x \neq z * x \mapsto y * \mathsf{ls}(y, z))$$

with negation (only the structure part is changed)

structure

$$x = z \lor h(x) \neq y \lor \neg y \xrightarrow{h} z \lor Y_2 \cap Y_3 \neq \emptyset \lor Y_4 \cap Y_5 \neq \emptyset \lor X \neq Y_1$$

set definitions

$$Y_1 = Y_2 \cup Y_3 \land Y_2 = \emptyset \land Y_3 = Y_4 \cup Y_5 \land Y_4 = \{x\} \land Y_5 = Btwn(y, z)$$

Translation: $Tr_X(H) = \text{let } (F,G) = tr_X(H) \text{ in } F \wedge G$ the auxiliary variables Y_i (in G) are existentially quantified below negation, the existential quantifiers should become universal

Translation: $Tr_X(H) = \text{let } (F,G) = tr_X(H) \text{ in } F \wedge G$ the auxiliary variables Y_i (in G) are existentially quantified below negation, the existential quantifiers should become universal the Y_i are defined as finite unions of set comprehensions \rightarrow satisfiable in any given heap interpretation \mathcal{A}

Translation: $Tr_X(H) = \text{let } (F,G) = tr_X(H) \text{ in } F \wedge G$ the auxiliary variables Y_i (in G) are existentially quantified below negation, the existential quantifiers should become universal the Y_i are defined as finite unions of set comprehensions \rightarrow satisfiable in any given heap interpretation \mathcal{A} Due to the precise semantics of SLL \mathbb{B}

 \rightarrow exists exactly one assignment of the Y_i that makes G true in \mathcal{A}

Translation: $Tr_X(H) = \text{let } (F,G) = tr_X(H) \text{ in } F \wedge G$ the auxiliary variables Y_i (in G) are existentially quantified below negation, the existential quantifiers should become universal the Y_i are defined as finite unions of set comprehensions \rightarrow satisfiable in any given heap interpretation A Due to the precise semantics of SLL \mathbb{B} \rightarrow exists exactly one assignment of the Y_i that makes G true in A $\exists Y_1, \ldots, Y_n, F \wedge G$ and

 $\forall Y_1, \dots, Y_n, G \Rightarrow F$ are equivalent.

Decision procedure for GRASS: T_S

1 Transform F in nnf and eliminate all $S_1 \neq S_2$:

$$S_1 \neq S_2 \ \leadsto \ x \in S_1 \setminus S_2 \cup S_2 \setminus S_1 \qquad \text{where } x \in \mathcal{X} \text{ fresh}$$

Eliminate all set comprehensions by applying:

$$C[\{x.R\}] \rightsquigarrow C[X] \land (\forall x.x \in X \Leftrightarrow R)$$
 where $X \in \mathcal{X}$ fresh

3 Instantiate all universal quantifiers as follows. Let t_1, \ldots, t_n be the terms of sort node that do not contain quantified variables. Then apply:

$$(\forall x. \, x \in X \Leftrightarrow R) \rightsquigarrow (t_1 \in X \Leftrightarrow R[t_1/x]) \land \ldots \land (t_n \in X \Leftrightarrow R[t_n/x])$$

This result is a quantifier-free Σ_{GS} -formula.

Decision procedure for GRASS: set reduction example (1)

Consider the GRASS formula (unsat):

$$F \equiv \{x. \, x \xrightarrow{h} y\} = \mathcal{U} \land y \xrightarrow{h} z \land \neg (w \xrightarrow{h} z)$$

After rewriting set operation:

$$F_2 \equiv S = U \land y \xrightarrow{h} z \land \neg (w \xrightarrow{h} z) \land (\forall x. \, x \in S \Leftrightarrow x \xrightarrow{h} y) \land (\forall x. \, x \in U \Leftrightarrow x = x)$$

After instantiating the quantifiers:

$$G \equiv S = U \land y \xrightarrow{h} z \land \neg(w \xrightarrow{h} z) \land$$

$$(y \in S \Leftrightarrow y \xrightarrow{h} y) \land (z \in S \Leftrightarrow z \xrightarrow{h} y) \land (w \in S \Leftrightarrow w \xrightarrow{h} y) \land$$

$$(y \in U \Leftrightarrow y = y) \land (z \in U \Leftrightarrow z = z) \land (w \in U \Leftrightarrow w = w)$$

Decision procedure for GRASS: set reduction example (2)

After instantiating the quantifiers:

$$G \equiv S = U \land y \xrightarrow{h} z \land \neg (w \xrightarrow{h} z) \land$$

$$(y \in S \Leftrightarrow y \xrightarrow{h} y) \land (z \in S \Leftrightarrow z \xrightarrow{h} y) \land (w \in S \Leftrightarrow w \xrightarrow{h} y) \land$$

$$(y \in U \Leftrightarrow y = y) \land (z \in U \Leftrightarrow z = z) \land (w \in U \Leftrightarrow w = w)$$

To see that this formula is unsatisfiable in \mathcal{T}_{GS} , we simplify G to the equivalent formula:

$$G' \equiv S = U \land y \xrightarrow{h} z \land \neg (w \xrightarrow{h} z) \land y \in U \land z \in U \land w \in U \land (y \in S \Leftrightarrow y \xrightarrow{h} y) \land (z \in S \Leftrightarrow z \xrightarrow{h} y) \land (w \in S \Leftrightarrow w \xrightarrow{h} y)$$

Decision procedure for GRASS: \mathcal{T}_G

By [Totla and Wies, 2013] we know \mathcal{T}_G is a local theory extensions [Sofronie-Stokkermans, 2005]. We just need to instantiate a set of axioms on the ground terms in the formula.

Reflexive
$$x \xrightarrow{h \setminus u} x$$

$$\text{Step } x \xrightarrow{h \setminus u} h(x) \lor x = u$$

$$\text{SelfLoop } h(x) = x \land x \xrightarrow{h} y \Rightarrow x = y$$

$$\text{Sandwich } x \xrightarrow{h \setminus x} y \Rightarrow x = y$$

$$\text{Reach } x \xrightarrow{h \setminus u} y \Rightarrow x \xrightarrow{h} y$$

$$\text{Linear1 } x \xrightarrow{h} y \Rightarrow x \xrightarrow{h \setminus y} u \lor x \xrightarrow{h \setminus u} y$$

$$\text{Linear2 } x \xrightarrow{h \setminus u} y \land x \xrightarrow{h \setminus v} z \Rightarrow x \xrightarrow{h \setminus u} z \land z \xrightarrow{h \setminus u} y \lor x \xrightarrow{h \setminus v} y \land y \xrightarrow{h \setminus v} z$$

$$\text{Transitive1 } x \xrightarrow{h \setminus u} y \land y \xrightarrow{h \setminus z} u \land y \xrightarrow{h} z \Rightarrow x \xrightarrow{h \setminus u} y$$

$$\text{Transitive2 } x \xrightarrow{h \setminus z} y \land y \xrightarrow{h \setminus z} u \land y \xrightarrow{h} z \Rightarrow x \xrightarrow{h \setminus u} y$$

Decision procedure for GRASS: \mathcal{T}_{G}

Where are we now?

With the SLLB to GRASS translation we can

- Check for satisfiability
- Check entailment (reduces to satisfiability of $H_1 \wedge \neg H_2$)

For the (anti-)frame inference: finding F in $A \models_{\mathsf{SL}} B * F$ (frame) or $A * F \models_{\mathsf{SL}} B$ (antiframe) we need the inverse translation

$\mathsf{GRASS} \to \mathsf{SLL}\mathbb{B}$

Requirements:

- a GRASS formula F obtained from a SLL® formula (for the sake of simplicity)
- a model generating SMT solver (e.g. Z3),

Steps:

- get for all the partial interpretations that satisfy F
- for all a partial interpretation:
 - construct succ : node → node
 - extract the pure part from the interpretation
 - lift the interpretation to SL using *h* and *succ*.

where *succ* is the closest successor node in the partial interpretation

$\mathsf{GRASS} \to \mathsf{SLL}\mathbb{B}$: example

```
assume(ls(x, z)); if (x \neq z) free_head(x); //frame with precondition x \mapsto y ...

GRASS: x \neq z \land x \xrightarrow{h} z \land h(x) = y \land X = Btwn(x, z) \land Y = \{x\} \land Z = X \setminus Y
```

$\mathsf{GRASS} \to \mathsf{SLL}\mathbb{B}$: example

```
assume(ls(x, z)); if (x \neq z) free_head(x); //frame with precondition x \mapsto y ...

GRASS: x \neq z \land x \xrightarrow{h} z \land h(x) = y \land X = Btwn(x, z) \land Y = \{x\} \land Z = X \setminus Y

Partial interpretations: \mathcal{B}_1 : (x) \longrightarrow (y, z), Z = \emptyset
```

$\mathsf{GRASS} \to \mathsf{SLL}\mathbb{B}$: example

```
assume(ls(x, z));
if (x \neq z)
        free_head(x); //frame with precondition x \mapsto y
GRASS:
x \neq z \land x \xrightarrow{h} z \land h(x) = y \land X = Btwn(x, z) \land Y = \{x\} \land Z = X \setminus Y
                                                              \rightarrow (y,z), Z=\emptyset
Partial interpretations:
                                                              \rightarrow (y) - - \rightarrow (z), Z = \{y\}
tr_z^{-1}(\mathcal{B}_1) = x \neq z * x \neq y * y = z
tr_{\overline{z}}^{-1}(\mathcal{B}_2) = x \neq z * x \neq y * y \neq z * \mathsf{ls}(y, z)
Tr_{z}^{-1}(F) = tr_{z}^{-1}(\mathcal{B}_{1}) \vee tr_{z}^{-1}(\mathcal{B}_{2}) \equiv x \neq z * x \neq y * ls(y, z).
```

Combination with other theories and extensions

- The theories T_G and T_S are stably infinite with respect to sort node. (Nelson-Oppen)
- More pointers: we can extend the signature with field and uses

 with different fields. We can the also do read and write on the fields (array theory).
- Data: we can add data and constraints if it is local. $str_Y(sls(x,y)) = (x \xrightarrow{h} y \land \forall z, w \in Y. z \xrightarrow{h} w \Rightarrow d(z) \leq d(w), Y = Btwn(x,y))$
- More complex data structures, e.g. doubly linked lists $str_Y(dlls(x, a, y, b)) = (x \xrightarrow{n} y \land (x = y \land a = b \lor p(x) = a \land n(b) = y \land b \in Y) \land \forall z \in Y. n(z) \in Y \Rightarrow p(n(z)) = z, Y = Btwn(x, y))$

We are also considering implementing a decision procedure for trees.

Outline

- Theoretical results
- 2 Implementation
 - GRASShopper
 - Implicit frame inference
 - Experimental results

Reduction steps

We have implemented the translation is GRASSHOPPER.

Takes as input a program with SLLB specification and reduces it to a program with FO specification (Boogie-like)

The reduction is as follows:

- if as choose + assume
- 2 replace loops by tail-recursive method
- \odot SLL $\mathbb{B} \to \mathsf{GRASS}$, adding the heap (frame, memory accesses)
- SSA, add assert/assume at call site

Let's look at a concrete example: merge sort.

Frame inference

Reconstructing the frame from the partial interpretations does not work (exponential in the works case).

```
Can we avoid the explicit computation of the frame? (e.g. have an axiomatic definition of the frame rule) In previous example we had:
```

```
assume Frame(Alloc_1, Alloc_2, next, next_1);
```

assume Frame(Alloc_1, Alloc_2, next, next_1);

Meaning: a path which doesn't go through the frame is unchanged.

For this we need the entry point of x in the set X by following h, denoted by $ep_{X,h}(x)$

$$Frame(X, A, h, h') =$$

$$\forall x. \, x \in A \setminus X \Rightarrow \operatorname{sel}(h', x) = \operatorname{sel}(h, x) \land \\ \forall x \, y \, z. \, x \xrightarrow{h \setminus ep_{X,h}(x)} y \Rightarrow \left(x \xrightarrow{h \setminus z} y \Leftrightarrow x \xrightarrow{h' \setminus z} y\right) \land \\ \forall x \, y \, z. \, x \in A \setminus X \land ep_{X,h}(x) = x \Rightarrow \left(x \xrightarrow{h \setminus z} y \Leftrightarrow x \xrightarrow{h' \setminus z} y\right)$$

$ep_{X,h}(x)$

Axioms defining the entry point function:

$$\forall x. x \xrightarrow{h} ep_{X,h}(x)$$

$$\forall x. ep_{X,h}(x) \in X \lor ep_{X,h}(x) = x$$

$$\forall x y. x \xrightarrow{h} y \land y \in X \Rightarrow ep_{X,h}(x) \in X \land x \xrightarrow{h \backslash y} ep_{X,h}(x)$$

epX,h is local (idempotent), we can use the same approach as \mathcal{T}_G .

$$\frac{\operatorname{er}(x)}{(x)} = \frac{1}{x}$$

$$\frac{\operatorname{er}(x)}{(x)} = \frac{1}{x}$$

$$\frac{\operatorname{er}(x)}{(x)} = \frac{1}{x}$$

$$\frac{\operatorname{er}(x)}{(x)} = \frac{1}{x}$$

experiments

program	sl		dl		rec sl		sls		program	sl		dl		rec sl		sls	
	#	t	#	t	#	t	#	t	1	#	t	#	t	#	t	#	t
concat	4	0.1	5	1.3	6	0.6	5	0.2	insert	6	0.2	5	1.5	5	0.2	6	0.4
сору	4	0.2	4	3.9	6	0.8	7	3.5	reverse	4	0.1	4	0.5	6	0.2	4	0.2
filter	7	0.6	5	1.1	8	0.4	5	1.1	remove	8	0.2	8	0.8	7	0.2	7	0.5
free	5	0.1	5	0.3	4	0.1	5	0.1	traverse	4	0.1	5	0.3	3	0.1	4	0.2
insertion sort						10	0.7	double all							7	2.2	
merge sort						25	24	pairwise sum							10	20	

- sl singly-linked list (loop or recursion)
- dl doubly-linked list
- sls sorted lists
- # number of VCs
 - t total time in second

Related work

- Most prominent decidable fragments of SL: linked lists [Berdine et al., 2004], decidable in polynomial time [Cook et al., 2011] (graph-based).
- SL → FO: [Calcagno and Hague, 2005] (no inductive predicate) and [Bobot and Filliâtre, 2012] (not a decidable fragment).
- Alternatives to SL: (implicit) dynamic frames [Kassios, 2011] and region logic [Banerjee et al., 2008, Rosenberg et al., 2012].
- The connection between SL and implicit dynamic frames has been studied in [Parkinson and Summers, 2012].
- SMT-based decision procedures for theories of reachability in graphs [Lahiri and Qadeer, 2008, Wies et al., 2011, Totla and Wies, 2013], decision procedures for theories of stratified sets [Zarba, 2004].

Work in progress, future work

- dealing with the frame (still work in progress)
- more example using other theories (arrays, integers, ...)
- inferring GRASS predicate definition from SLLB definition
- decision procedure for trees
- abstraction/modularity (generic list)
- etc.

heoretical results Implementation Conclusion

Questions?

Theoretical results Implementation Conclusion

Banerjee, A., Naumann, D. A. and Rosenberg, S. (2008).

Regional Logic for Local Reasoning about Global Invariants. In ECOOP vol. 5142, of LNCS pp. 387-411,.

Berdine, J., Calcagno, C. and O'Hearn, P. (2004).

A Decidable Fragment of Separation Logic. In FSTTCS.

Bobot, F. and Filliâtre, J.-C. (2012).

Separation Predicates: a Taste of Separation Logic in First-Order Logic. In ICFEM.

Calcagno, C. and Hague, M. (2005).

From separation logic to first-order logic. In FoSSaCs'05 pp. 395-409, Springer.

Cook, B., Haase, C., Ouaknine, J., Parkinson, M. and Worrell, J. (2011).

Tractable Reasoning in a Fragment of Separation Logic.

In CONCUR. Springer.

Kassios, I. T. (2011)

