### NBR 5419 - 2015: Análise de Risco

## Cálculo das Componentes de Risco

Riscos devido às descargas atmosféricas na estrutura (S1)

1 - Componente relacionado a ferimentos a seres vivos por choque (Ra)

 $R_A = N_D x P_A x L_A$ 

### Determinação de ND A.2.4 Número de eventos perigosos No para a estrutura



# 26 m

26729 m<sup>2</sup> 9 raios por m² por ano

> Quanto tempo um raio demorará para atingir a estrutura: 8,31 anos

| Localização relativa                                         | CD   |
|--------------------------------------------------------------|------|
| Estrutura cercada por objetos mais altos                     | 0,25 |
| Estrutura cercada por objetos da mesma altura ou mais baixos | 0,5  |
| Estrutura isolada: nenhum outro objeto nas vizinhanças       | 1    |
| Estrutura isolada no topo de uma colina ou monte             | 2    |

Para uma estrutura retangular isolada com comprimento L, largura W, e altura H em um solo plano, a área de exposição equivalente é dada por:



19 17 15 13 11 9 7 5 3 1 0,5

# ▶ Determinação de Pa B.2 Probabilidade P<sub>A</sub> de uma descarga atmosférica em uma estrutura causar ferimentos a seres vivos por meio de choque elétrico $P_A = P_{TA}xP_B$

Fator que depende do nível de proteção do SPDA (Tabela B.2) Fator que depende das medidas de proteção adicionais contra tensões de toque e passo (Tabela B.1)

Tabela B.1 – Valores de probabilidade  $P_{\mathrm{TA}}$  de uma descarga atmosférica em uma estrutura

| causar choque a seres vivos devido a tensões de toque e de passo peri                                                                     | gosas |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Medida de proteção adicional                                                                                                              | PTA   |
| Nenhuma medida de proteção                                                                                                                | 1     |
| Avisos de alerta                                                                                                                          | 10-1  |
| Isolação elétrica (por exemplo, de pelo menos 3 mm de polietileno reticulado<br>das partes expostas (por exemplo, condutores de descidas) | 10-2  |
| Equipotencialização efetiva do solo                                                                                                       | 10-2  |
| Restrições físicas ou estrutura do edifício utilizada como subsistema de descida                                                          | 0     |

Tabela B.2 – Valores de probabilidade P<sub>B</sub> dependendo das medidas de proteção para reduzir

| Características da estrutura                                                                                                                                                                                                             | Classe do SPDA                                                           | PB    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------|
| strutura não protegida por SPDA                                                                                                                                                                                                          | 1 1 1 1 1 1 1 1 1                                                        | 1     |
|                                                                                                                                                                                                                                          | IV                                                                       | 0,2   |
| Estrutura protegida por SPDA                                                                                                                                                                                                             | III                                                                      | 0,1   |
| Estrutura protegida por SPDA                                                                                                                                                                                                             | 11                                                                       | 0,05  |
|                                                                                                                                                                                                                                          |                                                                          | 0,02  |
| Estrutura com subsistema de captação conforme SPDA classe I e uma<br>estrutura metálica contínua ou de concreto armado atuando como um<br>subsistema de descida natural                                                                  |                                                                          |       |
| Estrutura com cobertura metálica e um subsi-<br>cossivelmente incluindo componentes natura<br>de qualquer instalação na cobertura contra di<br>diretas e uma estrutura metálica continua ou<br>stuando como um subsistema de descidas ou | is, com proteção completa<br>escargas atmosféricas<br>de concreto armado | 0,001 |

NOTA 1. Valores de Pig diferentes daqueles formecidos na Tabela B.2 são possíveis, se baseados em uma sivestigação detalhada considerando os requisitos de dimansionamento e critérios de intercepção definidos na ABNT NBS 61:9-1.

NOTA 2 As características do SPDA, incluindo aquelas de DPS para ligação equipotêncial para descarga atmosférica, são descritas na ABNT NBR 5419-3.

Determinação de La C.3 Perda de vida humana (L1)



0.01 120 120 8760 h

L<sub>A</sub> 1,00E-05

Tabela C.3 – Fator de redução r<sub>t</sub> em função do tipo da superfície do solo ou piso
Tipo de superfície D. Resistência de contato

| Tipo de superficie -                                             | kΩ°                                                                            | n                            |
|------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------|
| Agricultura, concreto                                            | ≤1                                                                             | 10-2                         |
| Marmore, cerămica                                                | 1 – 10                                                                         | 10-3                         |
| Cascalho, tapete, carpete                                        | 10 - 100                                                                       | 10-4                         |
| Asfalto, linóleo, madeira                                        | ≥ 100                                                                          | 10-5                         |
| Valores medidos entre um eletrodo di<br>considerado no infinito. | e 400 cm² comprimido com uma força i                                           | uniforme de 500 N e um ponto |
|                                                                  | por exemplo, asfalto, de 5 cm de esp<br>ralmente reduz o perigo a um nível tol |                              |

### C.3 Perda de vida humana (L1)

a) a porda de vida humana é afetada pelas características da zona. Estas são levadas em conta pelos fatores de aumento (h<sub>2</sub>) e diminuição (η, η<sub>0</sub>, η);

Tabela C.2 – Tipo de perda L1: Valores médios típicos de L<sub>T</sub>, L<sub>F</sub> e L<sub>O</sub>

| Tipos de danos                       |    | de perda<br>lípico   | Tipo da estrutura                                          |
|--------------------------------------|----|----------------------|------------------------------------------------------------|
| D1<br>ferimentos                     | LT | 10-2                 | Todos os tipos                                             |
|                                      |    | 10-1                 | Risco de explosão                                          |
|                                      |    | 10-1                 | Hospital, hotel, escola, edificio cívico                   |
| D2<br>danos físicos                  | LF | 5 × 10 <sup>-2</sup> | Entretenimento publico, igreja, museu                      |
| 00/100/110/000                       |    | 2 × 10-2             | Industrial, comercial                                      |
|                                      |    | 10-2                 | Outros                                                     |
|                                      | 9/ | 10-1                 | Risco de explosão                                          |
| D3<br>falhas de<br>sistemas internos | Lo | 10-2                 | Unidade de terapia intensiva e bloco cirúrgico de hospital |
| aratornas internos                   |    | 10-3                 | Outras partes de hospital                                  |

Assim, se pode calcular o valor de RA: Componente relacionado a ferimentos a seres vivos por choque (RA)

R<sub>A</sub> 1,20E-06

2 - Componente relacionado a danos físicos (Ra)

 $R_B = N_D x P_B x L_B$ 

N<sub>D</sub> 1,20E-01 Já definido

Determinação de Pa

1 Tabela B.2

Tabela B.2 – Valores de probabilidade P<sub>B</sub> dependendo das medidas de proteção para reduzi

| Características da estrutura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Classe do SPDA | Pn    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------|
| Estrutura não protegida por SPDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.00          | 1     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IV             | 0,2   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | III.           | 0,1   |
| Estrutura protegida por SPDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | II II          | 0,05  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 19-71        | 0,02  |
| Estrutura com subsistema de captação conforme SPDA classe I e uma<br>estrutura metálica continua ou de concreto armado atuando como um<br>subsistema de descida natural                                                                                                                                                                                                                                                                                                                                               |                |       |
| subsistema de descida natural  Estrubura con cobertura metálica e um subsistema de captação, possiviemente incluíndo componentes naturais, com proteção completa de qualquer instalação na cobertura externator descourges atmosféricas de qualquer instalação na cobertura externator descourges atmosféricas delinidas e uma estrutura metálica contínua con ou currento armado atmosféricame, um subsistema descendise, acta que currento armado atmosféricame, um subsistema descendise, acta que currento armado |                | 0,001 |

NOTA 1. Valores de PB diferentes daqueles formecidos na Tabela B.2 são possíveis, se baseados em uma investigação detalhada considerando os requisitos de dimensionamento e critérios de intercepção definidos a ABAT SIGNE 5410.1

NOTA 2 — As características do SPDA, incluindo aquelas de DPS para ligação equipotêncial para descarga atmosférica, são descritas na ABNT NBR \$419-3.

Determinação de La



Tabela C.4 – Fator de redução r<sub>p</sub> em função das providências tomadas para reduzir as consequências de um incêndio

| Providências                                                                                                                                                                         | rp     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Nenhuma providência                                                                                                                                                                  | 1      |
| Uma das seguintes providências: extintores, instalações fixas operadas<br>manualmente, instalações de alarme manuais, hidrantes, compartimentos à prova<br>de fogo, rotas de escape. | 0,5    |
| Uma das seguintes providências: instalações fixas operadas automaticamente, instalações de alarme automático a                                                                       | 0,2    |
| Somente se protegidas contra sobretensões e outros danos e se os bombeiros puderem<br>menos de 10 min.                                                                               | chegar |

Tabela C.5 – Fator de redução r<sub>1</sub> em função do risco de incêndio ou explosão na estrutura

| Risco                | Quantidade<br>de risco           | n    |
|----------------------|----------------------------------|------|
|                      | Zonas 0, 20 e explosivos sólidos | 1    |
| Explosão             | Zonas 1, 21                      | 10-1 |
|                      | Zonas 2, 22                      | 10-3 |
|                      | Alto                             | 10-1 |
| Incêndio             | Normal                           | 10-2 |
|                      | Baixo                            | 10-3 |
| Explosão ou incêndio | Nenhum                           | 0    |

Tabela C.6 – Fator  $h_{\rm Z}$  aumentando a quantidade relativa de perda na presença

| Tipo de perigo especial                                                                                                                                        | h <sub>2</sub> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Sem perigo especial                                                                                                                                            | - 1            |
| Baixo nível de pánico (por exemplo, uma estrutura limitada a dois andares<br>e número de pessoas não superior a 100)                                           | 2              |
| Nívei médio de pânico (por exemplo, estruturas designadas para eventos<br>culturais ou esportivos com um número de participantes entre 100 e 1 000<br>pessoas) | 5              |
| Dificuldade de evacuação (por exemplo, estrutura com pessoas imobilizadas, hospitais)                                                                          | 5              |
| Alto nível de pânico (por exemplo, estruturas designadas para eventos culturais<br>ou esportivos com um número de participantes maior que 1 000 pessoas)       | 10             |

Tabela C.2 – Tipo de perda L1: Valores médios típicos de L<sub>T</sub>, L<sub>F</sub> e L<sub>O</sub>

| Tipos de danos                       | Valor de perda<br>típico |                      | Tipo da estrutura                                          |
|--------------------------------------|--------------------------|----------------------|------------------------------------------------------------|
| D1<br>ferimentos L <sub>T</sub>      |                          | 10-2                 | Todos os tipos                                             |
|                                      |                          | 10-1                 | Risco de explosão                                          |
|                                      |                          | 10-1                 | Hospital, hotel, escola, edificio cívico                   |
| D2<br>danos físicos                  | LF                       | 5 × 10 <sup>-2</sup> | Entretenimento publico, igreja, museu                      |
| Garios francos                       |                          | 2 × 10-2             | Industrial, comercial                                      |
|                                      |                          | 10-2                 | Outros                                                     |
|                                      |                          | 10-1                 | Risco de explosão                                          |
| D3<br>falhas de<br>sistemas internos | Lo                       | 10-2                 | Unidade de terapia intensiva e bloco cirúrgico de hospital |
| - Itemos                             |                          | 10-3                 | Outras partes de hospital                                  |

Então:

R<sub>B</sub> 3,01E-05

Riscos devido às descargas atmosféricas em linha conectada à estrutura (S3)

Linha de Energia

1 - Componente relacionado a ferimentos a seres vivos por choque (Rup)  $R_{UP} = \left(N_{LP} + N_{DJP}\right)xP_{UP}xL_{UP}$ 

Determinação de NLP (número de sobretensões não inferiores a 1kV na seção da linha)



N<sub>G</sub> 9 descargas por m² por ano
Lp. 200 m²
Ap. 8000 m²
Cy 1
Cy 1
CTr 1
Ntp 7,2E-83



Com a área de exposição equivalente para a linha:

 $A_L = 40 \times L_L$ 

| Tabela | A.2 - | Fator | de | instalação | da | linha | G |
|--------|-------|-------|----|------------|----|-------|---|
|        |       |       |    |            |    |       |   |

| Roteamento                                                                                                   |      |
|--------------------------------------------------------------------------------------------------------------|------|
| Aéreo                                                                                                        | 1    |
| Enterrado                                                                                                    | 0,5  |
| Cabos enterrados instalados completamente dentro de uma<br>maiha de aterramento (ABNT NBR 5419-4:2015, 5.2). | 0,01 |

Tabela A.4 - Fator ambiental da linha CE

| Ambiente                                  | CE   |
|-------------------------------------------|------|
| Rural                                     | 1    |
| Suburbano                                 | 0,5  |
| Urbano                                    | 0,1  |
| Urbano com edificios mais altos que 20 m. | 0,01 |

Tabela A.3 - Fator tipo de linha C<sub>T</sub>

| Instalação                                       | CT  |
|--------------------------------------------------|-----|
| Linha de energia ou sinal                        | 1   |
| Linha de energia em AT (com transformador AT/BT) | 0,2 |

Não existe estrutura adjacente

 Tabela B.6 – Valores da probabilidade Pru de uma descarga atmosférica em uma linha que adentre a estrutura causar choque a seres vivos devido a tensões de toque perigosas Medida de proteção Pru Rienhuma medida de proteção 1

Tabela B.8 – Valores de probabilidade P<sub>11</sub> dependendo de resistência R<sub>2</sub> de bilindagem de cabo e de tensão suportável de impulso U<sub>M</sub> do equipamento.

Tipo da linha (Condições de oretamento, bilindagem Tensão suportável U<sub>M</sub> em XV e interligação (1 1 1,5 2,5 4 6 6 Linha aérea ou enternda, não bilindada ou



| P <sub>TUP</sub> | 1    |
|------------------|------|
|                  |      |
| P <sub>EBP</sub> | 1    |
| D                |      |
| P <sub>LDP</sub> |      |
| C <sub>LDP</sub> | 1    |
| P <sub>UP</sub>  | 1,00 |

| Avisos visíveis de alerta | 10-1 |
|---------------------------|------|
| Isolação elétrica         | 10-2 |
| Restrições físicas        | 0    |

labela B.7 – Valor da probabilidade  $P_{\rm EB}\,$  em função do NP para o qual os DPS foram

| NP      | PEB           |
|---------|---------------|
| Sem DPS | 1             |
| III-IV  | 0,05          |
| 11      | 0,02          |
| 1       | 0,01          |
| NOTA 4  | 0,005 - 0,001 |



| Tipo de linha externa                                                                                                                                                              | Conexão na entrada                                                                    | CLD | CL |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----|----|
| Linha aérea blindada<br>(energia ou sinal)                                                                                                                                         | Blindagem interligada ao mesmo barramento<br>de equipotencialização que o equipamento | 1   | 0  |
| Cabo protegido contra<br>descargas atmosféricas<br>ou cabeamento em dutos<br>para cabos protegido contra<br>descargas atmosféricas,<br>eletrodutos metálicos ou tubos<br>metálicos | Biindagem interligada ao mesmo barramento<br>de equipotencialização que o equipamento | 0   | 0  |
| (Nenhuma linha externa)                                                                                                                                                            | Sem conexões com linhas externas (sistemas<br>independentes)                          | 0   | 0  |
| Qualquer tipo                                                                                                                                                                      | Interfaces isolantes de acordo com a<br>ABNT NBR 5419-4                               | 0   | 0  |

|                         | ÃO de LUP Número de pessoas na zona (dado de projeto)                                                                                                               |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $p = r_{tP} x L_{TP} x$ | $\kappa\left(\frac{n_z}{n_t}\right)\kappa\left(\frac{t_z/8760}{}\right)$ Tempo, durante o qual as pessoas estão presentes zona, expresso em h/ano (dado de projeto) |
|                         | Número total de pessoas na estrutura (dado de projeto)                                                                                                              |
|                         | Número relativo médio típico de vitimas feridas por choque elétrico devido a evento perigoso (Tabela C.2)                                                           |

(365 dias)

| $\mathbf{r}_{\mathrm{Tp}}$ | 0,001  |
|----------------------------|--------|
| L <sub>TP</sub>            | 0,01   |
| nt                         | 120    |
| nz                         | 120    |
| t <sub>z</sub>             | 8760 h |
|                            |        |

1,0E-05

7,20E-08

2 - Componente relacionado a danos físicos (RvP)

$$R_{VP} = (N_{LP} + N_{DJP})xP_{VP}xL_{VP}$$

➤ Determinação de NLP (número de sobretensões não inferiores a 1kV na seção da linha)

| $N_{LP}$ | 7,2E-03 | Já calculado                   |
|----------|---------|--------------------------------|
| $N_{DJ}$ | 0       | Não existe estrutura adjacente |

# Determinação de Pvp

# $P_{VP} = P_{EBP} x P_{LDP} x C_{LDP} \label{eq:PVP}$

B.7 Probabilidade P<sub>V</sub> de uma descarga atmosférica em uma linha causar danos

Os valores da probabilidade P<sub>V</sub> de danos físicos devido a uma descarga atmosférica em uma linha que adentra a estrutura dependem das características da biridagem da linha, da tensão suportável de impuíso dos sistemas internos concetados à linha de asi interfaces isolaries ou dos DPS instalados para as ligações equipotenciais na entrada da linha de acordo com a ABNT NBR 5419-3.

NOTA Um sistema coordenado de DPS de acordo com a ABNT NBR 5419-4 não é necessário para reduzir P<sub>V</sub>, neste caso, DPS de acordo com a ABNT NBR 5419-3 são suficientes. O valor de P<sub>V</sub> é dado por:

| $P_V = P_{EB} \times P_{LD}$ | × CLC |         |               |      |          |             |      | (B.9)    |  |
|------------------------------|-------|---------|---------------|------|----------|-------------|------|----------|--|
| onde                         |       |         |               |      |          |             |      |          |  |
| PFR depende                  | da    | ligação | equipotencial | para | descarga | atmosférica | (EB) | conforme |  |

EB depende da ligação equipotenciai para descarga atmosferica (ED) comornie a ABNT NBR 5419-3 e o nível de proteção contra descarga atmosféricas (NP) para o qual os DPS foram projetados. Valores de PEB são dados na Tabela B.7;

 $P_{\mathrm{LD}}$  é a probabilidade de falha de sistemas internos devido a uma descarga a tmosférica em uma linha conectada dependendo das características da linha, Valores de  $P_{\mathrm{LD}}$  são dados na Tabela B.8;

 $C_{\rm LD}$  é um fator que depende da blindagem, aterramento e condições de isolação da linha. Valores de  $C_{\rm LD}$  são dados na Tabela B.4.

| EBP | 1    |
|-----|------|
|     |      |
|     |      |
| LDP | 1    |
|     |      |
| LDP | 1    |
|     |      |
|     | 1.00 |
| VP  | 1,00 |
|     |      |

Tabela C.3 – Fator de redução n em função do tipo da superfície do solo ou piso

| Tipo de superfície <sup>b</sup> | Resistência de contato<br>k Ω <sup>a</sup> | n    |
|---------------------------------|--------------------------------------------|------|
| Agricultura, concreto           | ≤1                                         | 10-2 |
| Marmore, cerâmica               | 1 – 10                                     | 10-3 |
| Cascalho, tapete, carpete       | 10 - 100                                   | 10-4 |
| Asfalto, linóleo, madeira       | ≥ 100                                      | 10-5 |

A Valores medidos entre um eletrodo de 400 cm² comprimido com uma força uniforme de 500 N e um ponto considerado no linfinito.
Uma camada de matérial isolante, por exemplo, asfalto, de 5 cm de espessura (ou uma camada de cascalho de 15 cm de espessura) geralmente reduz o perigo a um nivel tolerável.

| Tabala C 2 | Tipo do pordo | L1: Valores médi | ion tinione de | 1-1-01- |
|------------|---------------|------------------|----------------|---------|
|            |               |                  |                |         |

| Tipos de danos                       |    | de perda<br>ípico    | Tipo da estrutura                                             |
|--------------------------------------|----|----------------------|---------------------------------------------------------------|
| D1<br>ferimentos                     | LT | 10-2                 | Todos os tipos                                                |
|                                      |    | 10-1                 | Risco de explosão                                             |
| D2<br>danos físicos                  |    | 10-1                 | Hospital, hotel, escola, edifício cívico                      |
|                                      | LF | 5 × 10 <sup>-2</sup> | Entretenimento publico, igreja, museu                         |
| dunos naidos                         |    | 2 × 10-2             | Industrial, comercial                                         |
|                                      |    | 10-2                 | Outros                                                        |
| 2000                                 | 1/ | 10-1                 | Risco de explosão                                             |
| D3<br>falhas de<br>sistemas internos | Lo | 10-2                 | Unidade de terapia intensiva e bloco<br>cirúrgico de hospital |
| orotomos interrios                   |    | 10-3                 | Outras partes de hospital                                     |

Tabela B.7 – Valor da probabilidade  $P_{\mathsf{EB}}$  em função do NP para o qual os DPS foram

| NP      | PEB           |
|---------|---------------|
| Sem DPS | 1             |
| III-IV  | 0,05          |
|         | 0,02          |
| 1       | 0,01          |
| NOTA 4  | 0,005 - 0,001 |

Tabela B.8 – Valores da probabilidade  $P_{\mathrm{LD}}$  dependendo da resistência  $R_{\mathrm{S}}$  da blindagem

| Tipo             | Condições do rote                                                  | eamento, blindagem                                                   | Tensão suportável UW em k |     |      |      |      |  |  |  |
|------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------|-----|------|------|------|--|--|--|
| da linha         | e inte                                                             | rligação                                                             | 1                         | 1,5 | 2,5  | 4    | 4 6  |  |  |  |
|                  |                                                                    | rada, não blindada ou<br>o interligada ao mesmo<br>otencialização do | 1                         | 1   | 1    | 1    |      |  |  |  |
| Linhas de        | Blindada aérea<br>ou enterrada                                     | 5Ω/km < R <sub>S</sub><br>≤ 20 Ω/km                                  | 1                         | 1   | 0,95 | 0,9  | 0,8  |  |  |  |
| energia ou sinal | cuja blindagem<br>està interligada                                 | $1\Omega/\text{km} < R_S \le 5 \Omega/\text{km}$                     | 0,9                       | 8,0 | 0,6  | 0,3  | 0,1  |  |  |  |
|                  | ao mesmo<br>barramento de<br>equipotencialização<br>do equipamento | R <sub>S</sub> ≤ 1 Ω/km                                              | 0,6                       | 0,4 | 0,2  | 0,04 | 0,02 |  |  |  |

Tabela B.4 – Valores dos fatores C<sub>LD</sub> e C<sub>LI</sub> dependendo das condições de blindagem

| Tipo de linha externa                          | Conexão na entrada                                                                           | CLD | CLI |
|------------------------------------------------|----------------------------------------------------------------------------------------------|-----|-----|
| Linha aérea não blindada                       | Indefinida                                                                                   | 1   | - 1 |
| Linha enterrada não blindada                   | Indefinida                                                                                   | -1  | - 1 |
| Linha de energia com neutro<br>multiaterrado   | Nenhuma                                                                                      | .1  | 0,2 |
| Linha enterrada blindada<br>(energia ou sinal) | Blindagem não interligada ao mesmo<br>barramento de equipotencialização que o<br>equipamento | 1   | 0,3 |
| Linha aérea blindada<br>(energia ou sinal)     | Blindagem não interligada ao mesmo<br>barramento de equipotencialização que o<br>equipamento | 1   | 0,1 |
| Linha enterrada blindada<br>(energia ou sinal) | Blindagem interligada ao mesmo barramento<br>de equipotencialização que o equipamento        | 1   | 0   |

| Tipo de linha externa                                                                                                                                                              | Conexão na entrada                                                                 | CLD | CLI |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----|-----|
| Linha aérea blindada<br>(energia ou sinal)                                                                                                                                         | Blindagem interligada ao mesmo barramento de equipotencialização que o equipamento | 1   | 0   |
| Cabo protegido contra<br>descargas atmosféricas<br>ou cabeamento em dutos<br>para cabos protegido contra<br>descargas atmosféricas,<br>eletrodutos metálicos ou tubos<br>metálicos | Blindagem interligada ao mesmo barramento de equipotencialização que o equipamento | 0   | 0   |
| (Nenhuma linha externa)                                                                                                                                                            | Sem conexões com linhas externas (sistemas independentes)                          | 0   | 0   |
| Qualquer tipo                                                                                                                                                                      | Interfaces isolantes de acordo com a<br>ABNT NBR 5419-4                            | 0   | 0   |











Para o cálculo de  $A\iota \tau$ , se tem pela norma :  $A_{LT}=40xL_{LT}$ 

| Roteamento                                                                                                   | Ci   |
|--------------------------------------------------------------------------------------------------------------|------|
| Aéreo                                                                                                        | 1    |
| Enterrado                                                                                                    | 0,5  |
| Cabos enterrados instalados completamente dentro de uma<br>malha de aterramento (ABNT NBR 5419-4:2015, 5.2). | 0,01 |

Tabela B.7 – Valor da probabilidade  $P_{\rm EB}$  em função do NP para o qual os DPS foram projetados

| NP      | PEB           |
|---------|---------------|
| Sem DPS | 1             |
| III-IV  | 0,05          |
| И       | 0,02          |
| i       | 0,01          |
| NOTA 4  | 0,005 - 0,001 |

Tabela B.8 - Valores da probabilidade P<sub>LD</sub> dependendo da resistência R<sub>S</sub> da blindagem

| Tipo             | Condições do rot                                                   | eamento, blindagem                                                   | ortáve | rtável Uw em kV |      |      |      |
|------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|--------|-----------------|------|------|------|
| da linha         | e inte                                                             | rligação                                                             | 1      | 1,5             | 2,5  | 4    | 6    |
|                  |                                                                    | rada, não blindada ou<br>o interligada ao mesmo<br>otencialização do | 1      | 1               | 1    | 1    | 1    |
| Linhas de        | Blindada aérea<br>ou enterrada                                     | 5Ω/km < R <sub>S</sub><br>≤ 20 Ω/km                                  | 1      | 1               | 0,95 | 0,9  | 0,8  |
| energia ou sinal | cuja blindagem<br>está interligada                                 | $1\Omega/\text{km} < R_S \le 5 \Omega/\text{km}$                     | 0,9    | 0,8             | 0,6  | 0,3  | 0,1  |
|                  | ao mesmo<br>barramento de<br>equipotencialização<br>do equipamento | R <sub>S</sub> ≤ 1 Ω/km                                              | 0,6    | 0,4             | 0,2  | 0,04 | 0,02 |

| Tabela C.3 – Fator de redu | ição $r_{\rm t}$ em função do tipo da superfi                                        | cle do solo ou piso                                         | Tipos de danos                       | Valor de perda |          | Tipo da estrutura                                          |
|----------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------|----------------|----------|------------------------------------------------------------|
| Tipo de superfície b       | Resistência de contato<br>k Ω a                                                      | n                                                           | lipos de danos                       | t              | ípico    | Tipo da estrutura                                          |
| Agricultura, concreto      | ≤1                                                                                   | 10-2                                                        | D1<br>ferimentos                     | LT             | 10-2     | Todos os tipos                                             |
| Marmore, cerâmica          | 1 – 10                                                                               | 10-3                                                        |                                      |                | 10-1     | Risco de explosão                                          |
| Cascalho, tapete, carpete  | 10 – 100                                                                             | 10-4                                                        |                                      |                | 10-1     | Hospital, hotel, escola, edificio o                        |
| Asfalto, linóleo, madeira  | ≥ 100<br>o de 400 cm² comprimido com uma força s                                     |                                                             | D2<br>danos físicos                  | LF             | 5 × 10-2 | Entretenimento publico, igreja, r                          |
| considerado no infinito.   |                                                                                      | or exemplo, asfalto, de 5 cm de espessura (ou uma camada de |                                      |                | 2 × 10-2 | Industrial, comercial                                      |
|                            | a, por exemplo, astalto, de 5 cm de esp<br>geralmente reduz o perigo a um nível tole |                                                             |                                      |                | 10-2     | Outros                                                     |
|                            |                                                                                      |                                                             |                                      |                | 10-1     | Risco de explosão                                          |
|                            |                                                                                      |                                                             | D3<br>faihas de<br>sistemas internos | Lo             | 10-2     | Unidade de terapia intensiva e ti<br>cirúrgico de hospital |
|                            |                                                                                      |                                                             | Societios interios                   |                | 10-3     | Outras partes de hospital                                  |

 Tabela A.4 – Fator ambiental da línha Ce

 Ambiente
 Ce

 Rural
 1

 Suburbano
 0.5

 Urbano
 0.1

Urbano com edificios mais altos que 20 m.

| Tabela A.3 - Fator tipo de linha C <sub>T</sub> |     |  |  |  |
|-------------------------------------------------|-----|--|--|--|
| Instalação                                      | CT  |  |  |  |
| Inha de energia ou sinal                        | - 1 |  |  |  |
| inha de energia em AT (com transformador AT/BT) | 0,2 |  |  |  |

| Tabela B.4 - Valores dos fatores CLD e CLI dependendo das condições de blino | lagem |  |  |  |  |  |  |
|------------------------------------------------------------------------------|-------|--|--|--|--|--|--|
|                                                                              |       |  |  |  |  |  |  |

| Tipo de linha externa                          | Conexão na entrada                                                                           | CLD | CLI |
|------------------------------------------------|----------------------------------------------------------------------------------------------|-----|-----|
| Linha aérea não blindada                       | Indefinida                                                                                   | 1   | -1  |
| Linha enterrada não blindada                   | Indefinida                                                                                   | -1  | - 1 |
| Linha de energia com neutro<br>multiaterrado   | Nenhuma                                                                                      |     | 0,2 |
| Linha enterrada blindada<br>(energia ou sinal) | Blindagem não interligada ao mesmo<br>barramento de equipotencialização que o<br>equipamento | 1   | 0,3 |
| Linha aérea blindada<br>(energia ou sinal)     | Blindagem não interligada ao mesmo<br>barramento de equipotencialização que o<br>equipamento |     | 0,1 |
| Linha enterrada blindada<br>(energia ou sinal) | Blindagem interligada ao mesmo barramento<br>de equipotencialização que o equipamento        | 1   | 0   |

R<sub>UT</sub> 3,60E-08 2 - Componente relacionado a danos físicos (Rvr)  $R_{VT} = \left(N_{LT} + N_{DJT}\right) x P_{VT} x L_{VP} T$ ≻Determinação de NLT (número de sobretensões não inferiores a 1kV na seção da linha)  $N_{LT} = N_{LPT}$  3,60E-03  $N_{DJT}=N_{DJP}$  0,00E+00 Já calculado Determinação de P<sub>VT</sub>  $P_{VT} = P_{EBT} x P_{LDT} x C_{LDT}$ P<sub>VP</sub> 1,00E+00  $P_{VT} = P_{VP}$  1,00E+00 ➤ Determinação de Lvr Segundo a norma:  $L_V = L_B$ L<sub>VT</sub>=L<sub>VP</sub> 2,50E-04 Já calculado Então: R<sub>VT</sub> 9,00E-07 Para a avaliação dos riscos de perda de vida humana (R1) para a zona interna da estrutura predial em questão, deve-se resolver a equação:

$$\begin{split} R_1 &= R_{A1} + R_{B1} + (R_{UP1} + R_{UT1}) + (R_{VP1} + R_{VT1}) \\ & \\ R_{31} & \text{1.20E-66} \ \textbf{R}_{81} & \text{3.61E-65} \ \textbf{R}_{CP1} & \text{7.20E-68} \ \textbf{R}_{UII} & \text{3.60E-68} \ \textbf{R}_{VVI} & \text{1.80E-66} \ \textbf{R}_{VVI} & \text{9.00E-67} \end{split}$$

Portanto, há que se observar quais providências são possíveis para que se reduza  $R_1$  para um valor inferior a  $10^{-5}$ .

✓ Para os fatores  $N_D$  (0,117) e  $L_B$  (25  $_{x10}^{-5}$ ) não há o que alterar de forma a contribuir com a redução de  $R_B$ ;

R<sub>1</sub> 3,41E-05 >

✓ Para P<sub>B</sub>, se pode observar que na Tabela B.2, se tomarmos a inclusão de SPDA com nível IV (P<sub>B</sub>=0,2) ou III (P<sub>B</sub>=0,1), se terá uma excelente contribuição para a redução de R<sub>B</sub>;





$$\begin{split} R_1 &= R_{A1} + R_{B1} + (R_{UP1} + R_{UT1}) + (R_{VP1} + R_{VT1}) \\ & & \\ R_{M} & & 1.20246 & R_{M1} & & 3.01246 & R_{171} & & 7.20248 & R_{171} & & 3.60248 & R_{M21} & & 1.00246 & R_{W11} & & 9.001247 \\ & & & \\ R_{1} & & 7.02246 & < & 1.00245 & & Não há risco com SPDA clause III \end{split}$$