

PRIOD, APPROVED	PROVE	<u>^a</u>	DATE 4/15/78		8			AC MICHOWAVE ASSOCIATES.	2088	ر بی این این این			118. 3	DS - 3940AIM	1155.01.	!
0. C. APP	APPROVED	à	DATE 7/17/78	8	}		TEST	DATA	A SH	SHEET			SNEET	ET 1	10	C1
SPECIFICATION.	'A T10N	1	DRSEIL-PP	F1.108,	08, Revision 1	ision l DATA	!	107	LOT SIZE	20 A	L'TUK U	VVIRON	SALES	SALES ORDER UO.	0.	
			INS	FIAT	SPIKE	<u></u>	RECOVERY TIME	IMI;			INS	1.1.1	SPIKE	RECC	RECOVERY TIME	IMI:
PARAMETERS		VSWR	LOSS (dB)	PWR (mW)		10 dB (µs)	(srl)	3 dB (µs)		VSWR	(dB)	rwk (mW)	[W.] (W.)	(p. 5.)	(sıl)	(51l)
TEST		= =	9.6-0.6		= 9.3	GHz t	11	.25 µs		F = 9	.65		د .	t a	0.25	Srl
CONDITIONS	TIONS			 	= 20	kW	::	0.001		!) 	0 = 20	× N	DU =	0.001	
MIN.	. د										4	PERFOR	MANCE	PERFORMANCE DEGRADATION	OATION	4
MAX. LIMITS	. 0	1.7	1.3	50	.75	-	2	3		2.0	.3	25	.2	1.0	7.0	1.0
		000	7	9	J y o	9	1.2	. 1.5		1 30	0 1	10	-0-	-0-	0.1	0.2
N/S		•} •	8.	45	. 16	.7	٠ ا			1.59	-0-	3	-0-	-0-	0.1	0.1
		1.32	7.	9	.04	9,	1.2	1.6		1.56	0.2	14	-0-	-0-	-0-	0.2
		1.25	7	20	.08	9.	1,0	1,6		1.26	0.25	5	-0-	-0-	0.1	• 1
s/N S		1.31	7	9	.04	8	1.0	1.2		1.69	0.25	10	-0-	-0-	-0-	0 1
S/N 6		1.31	.7	2	.04	.7	1.2	1.6		1.50	0.25	0	-0-	-0-	-0-	-0-
S/N 7		1.29	.7	32	.12	۲.	8.	1.2		1.30	0.1	3	-0-	-0-	-0-	-0-
8/N 8		1.27	.7	20	.16	9.	1.1	1.6		1.29	0.1	12	-0-	-0-	0.3	-0-
8/N 9		1.31		12	.08	9.	1.0	1.5		1.29	0.1	10	-0-	-	5.0	-0-
5/2	-	1.30	7	25	10	6.	8	• :		1.30	.05	7	-0-	-0-	0.15	-0-
S/i. 11		1.30	9.	9	.04	1.0	1.6	2.2		1.41	7.0		-0-	-0-	2.0	-0-
S/N 12		1.32		32		9.	1.2	8.7		1.46	[3		i	-0-	7.0
s/N 13		1.41	æ .	52	£ .	G	7.1	æ ;		. 1	1	TOOMMEN	7	M 100	-	
N/S		1.41		20	2		1.2	æ; ~-;	:			-	1			
S/N 15	1	1.37	3 - -	32	· · · · · · · · · · · · · · · · · · ·	~ .	1 2	2.0			<u> </u>		BURNOUT LIVEL	7; 	-	
S/N 16		1.57	.2 	c3			· · · · · · · · · · · · · · · · · · ·				1"		_ :			
TESTED BY	E¥.	7.7		1.1	* ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	7) U	APPROVED BY	FD BY	100	16.12	7 11/	DATE	30727
) tot wite i						11. 1107	ز	11. 1 A A A A A A A A A A A A A A A A A		ł						

ABLI TI CONTIDUCTOR YES

PROD. APPROVED		DATE 4/15/78		₹ E	heave week			MEDIANTE ASSOCIATES. INC.	DS - 3940XM	18501.	
O. C. APPROVED	, (d	DATE 7/17/78]		TEST	DATA	,	SHEET	OF 2	1
SPECIFICATION		DRSEEL- PP	P FL108,	-	evision 1		LOT S12E	7E 20	SALES ORDER 110.		
PARAMETERS	VSWR	INS IOSS (dB)	FLAT PWR (mW)	SPIKE FWR (W)	10 dB (µs)	RECOVERY TIME 1 dB 6 dB 3 (145) (145)	IMI. 3 dB				
TEST	F = 9	.0-9.65	1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		GHz t kW DU	= 0.25 = 0.001	25 µs				į
MIN.											
MAX. LIMITS	1.7	1.3	50	,75	7	2	3				
S/N 17	1.37	1.1	32	. 25	۲.	9.	1.2	BURNOUT LEVEL:	EVEL: 31 kW		
s/N 18	1.35	8.	20	. 10	9.	1.2	1.7				
8 s/N 19	1.47	6.	32	.12	.5	1.0	1,5	BURNOUT LEVEL:	LVEL: 10 kW		
s/N 20	1.50	8.	25	. 14	6.	1.5	2.2				-
N/S											
S/N											-
N/S											
S/N											\Box
S/N											
S/N				1	1						
S/N											
3/N	-	:	İ				;				
S/N	:		-	•	i	1	:	1			
71.5				!		:	1			!	i
N/8	:		;		1	!	<u>.</u>				1
3/tı			4 1	- =:							ij
TESTED BY	1000		N.	; - -			:	Pro Ed (Béonales to o f	DATE.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
		; !	1	;		-					7

``

bulk limiters and forty low-level clean-up limiters were assembled and tested to amended specification number P0001, dated 28 April 1978. Forty complete units were shipped to ERADCOM, Fort Monmouth, NJ, upon satisfactory completion of testing. Fourteen units were subjected to various environmental tests. The test results are given in Tables VIII and IX.

PROD. APPROVED		DATE	١	A	AMOG	7	1000	A MOROWANT ASSOCIATED IN	MX 3940XM	į.	1 1
Q. C. APPROVED		DATE	IJ	בי אברי אברי	KOWA	VE A	יין ארניין איניין א איניין איניין איניי	AIES, INC.	4		i
					IEST DATA SHEET	DA	N CH	EE (SHEET		cr 3
SPECIFICATION			į			LOT	LOT SIZE		SALES OBDER NO	Ç	
	L i	VSWR	P f	ь В	Rt @3db		Rt @6db Rt@10d	•			
PANAME IENS	(qp)		(mM)	(mM)	(x x)	(sx)	(ws)				
TEST	- 0.6	9.65 GHz	4 O	20 KW	t _p = 0.	= 0.25 AS fo = 9.32\$	DU =	001			
MIN. LIMITS											
MAX. LIMITS	1.3	1.7	20	750	3.0	2.0	1.0				
S/N 1	.95	1.55	11	50	1.6	<1.2	40.6				
S/N 2	1.0	1.67	10	14	<1.5	<1.2	40.6				
S/N 3	1.0	1.56	10	13	<1.5	41.2	40.6				
S/N 4	1:1	1.64	80	11	<1.5	41.2	9.0				
S/N 5	1.0	1.67	2	10	¢1.5	<1.2	9.03				
9 N/S	0.1	1.56	10	20	ζ1.5	<1.2	40.6				
2/N 7	6.0	1.43	10	20	<1.5	<1.2	9.0>				
S/N 8	1.2	1.57	10	20	<1.5	<1.2	40.6				
S/M 9	1.2	1.57	0	20	<1.5	۲۱.2	9.0>				
s/w 10	1.0	1.65	10	20	د1.5	<1.2	6.0 ×				
S/N 11	1.0	1.56	3	20	¢ 1.5	<1.2	40.6				
S/N 12	1.2	1.68	2	20	<1.5	<1.2	9.0 >				
S/N 13	D ON	UNIT NO. 1	3							-	
S/N 14	7:	· · · · · · · · · · · · · · · · · · ·		02	<1.5	¢1.2	(0.b				
S/N 15				70	<1.5		4.0.5		!	 	
S/N 16	1.2	· -	 }	!!	7.17		C 0.6	· 	-		
TESTED BY	, :	~ .			-		! .				
		1 1		1			0	ALTROVED EV		PoTE:	4/12-112
2 (04 MM C) 4											

TA

PROD. APPROVED		DATE	_	1	7171	AMOC	VE A	JU33	MA MICDOWAWE ACCOUNTED INC		DS MA 3940XM	1 <u>3</u>	
Q. C. APPROVED		DATE	T			FST	ME MY DAT,	TEST DATA SHEET	EET		SHEET 2	Ci	3
SPECIFICATION							101	LOT SIZE			SALES ORDER NO.	0	
	17	VSWR		P	d s	RT @3 db	RT @6dl	RT @3 ab RT @6ab RT @10db	q				
PARAMETERS	(gp)			(MM)	(Mm)	(sw)	(sx)	(SX)		,			
TEST	9.0 -	9.65 GHz	2	P _o = 2	20KW tp fo =	- 0.25	o,	DU#.001					
MIN.													
MAX. LIMITS	1.3	1.7		50	750	3.0	2.0	1.0					
17	1.0	1.57		< 10	32	<1.5	41.2	9.0>					
S/N 18	NO UN	T NO .	#18										
S/N 19	1.1	1.65		410	99	2.8	1.9	6.0					
S/N 20	111	1.61		10	20	2.8	(1.2	9.0>					
S/N 21	8 0	1.49		22	100	2.8	1.9	0.8					
S/N 22	0.8	1.33		210	\$ 20	2.5	1.9	0.5					
S/N 23	0.8	1.42		22	44	2.4	2.0	0.8					
S/N 24	1.2	1.57		د 10	22	2.0	1.0	0.5					
S/N 25	1.3	1.38		¢ 10	27	1.5	<.5	40.2					
S/N 26	1.2	1.65		C 10	20	1.5	1.0	0.6					
S/N 27	1.3	1.55		2.3	09	< 1.5	۲۱.0	6.02					
S/N 2E	9.0	1,32		5	35	2.5	1.8	40.6					
S/N 29	6.0	1.1.			22	2.6	1.8	40.6					
υς N/S	1.1	1.0.1	-	7	2.2	2.4	8.1	6.0					
S/N 31	6.0	1.35			, j. j.	2.7	1.6	0.9		, : 			
S/N 32	1.1		1	•	= !		0.7	0.5					
S/N 33	1.1		ļ į			9.1		0.8		•	! · · i		
TESTED BY	-	-	1	*				Ċ	- WB THVCHORE	(.~)//	oc/ :
-0.98M 707 C										* *		1	

PROD. APPROVED		DATE		A REC	VMVa	VE A	A MICBOWAVE ACCOLIATES INC	INC	DS MA3940XM	===
Q. C. APPROVED		DATE	IJ	ב ב ב	rest	DAT,	TEST DATA SHEET		SHEET 3	Cr 3
SPECIFICATION						LOT SIZE	SIZE		SALES ORDER NO.	
PARAMETERS	Li (dB)	VSWR	P (mm)	d s (Mm)	Rt (33db (As)	Rt @6db (4s)	Rt Cod Rt Clodb (As) (As)			
TEST	9.0 -	9.65 GHz	Po = 20	20 kW tp	p= 0.25.46s 5 GHz		DU=.001			
MIN.										
MAX. LIMITS	1.3	1.7	20	750	3.0	2.0	1.0			
S/N 34	1.1	1.63	10	20	1.5	1.2	0.8			
S/N 35	1:1	1.56	10	21	1.9	1.4	0.9			
S/N 36	1:1	1.56	10	20	1.5	1.2	0.7			
S/N 37	1.0	1.520	9	65	2.9	1.9	0.8			
S/N 38	<u>а</u>	1.49	g.	45	1.7	0.7	9.0			
S/N 39	=	1.64	10	20	1.5	8.0	0.6			
S/N 40	7	1.40	10	16	1.4	1.0	0.4			
N/S	-	1 32	12	20	2.7	1.8	0.0			
S/N 42	6.0	1.58	18	80	1.7	1.4	0.5			
S/N										
S/N										
S/N										
S/N										
N/S					; ;					
S/N										
S/N				· -	i					
TESTED BY			*			;		×4 ×4	7	- Links
FURM 107 C					i 		•	T + 1	1 NO	4,1

President President

CUSTOMER LEGEND

Customer ARMY ELECTRUMICS COM.
Customer P. O. DAABOT-76-C-0039
Part No.
Other Dwg.
"Methods Per

MICROWAVE ASSOCIATES, INC.

LIFE & ENVIRONMENTAL TEST SCHEDULE/SUMMARY

Semiconductor Division

LQT DATE

M/A Type 3940 X/M

Class

M/A SO No.

1	PROGRA	M REOUI	PROGRAM REDUIREMENTS	0	ŒW	Z		Estimated	ated	Act	Actual	REMARKS	
	Examination/Test	Method No.	Test Conditions	- >	-HOHA	щ <u></u>	Test Limits	Start Date	Comp. Date	Start Date	Comp. Date	_	Test Oper.
	Temp. Cycle		-55 to 100°C	3			l cycle			4/2	7/2	one hour at each temp extreme	#
1													
	Vibration		.06 inch Double Ampl. 20 to 26 Hz	3		- 7	2 planes 20 to 2000Hz			4/3	4/3	15 minutes per sweep	£8.
88	Shock [∞] Non-operating		3 shocks in each.	3			6 planes 11 - 1 mil/sec	Ü		1/3	1/3	Total 18 shocks	E
	Humidity		80% to 98% Relative Humidity -10 to 65°C	3			24 hrs. I cycle			4/3	h/ ₇		W
									-				
						i		;					
					Z.	TABLUA	IX — PILOT LINE CAMPIF RESULTS	<u>.</u>		RUSTI	Em		

PROD. A	PROD. APPROVED	DATE	<u> </u>		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	MICE	VMU	VE A	5000	MICDOWAVE ACCOLIATES	Z.		DS MA3940XM			
Q. C. AP	APPROVED	DA	DATE	T			TEST DATA	DAT,	A SH	SHEET		· -,	SHEET	7	C.	2
SPECIFICATION	CATION							LOT	LOT SIZE				SALES ORDER NO.	R NO.		
PARAMETERS	<u> </u>	1B)	VSWR		P f (mw)	P s (mw)	R (0 3 dB	Rt (@ 6 dB	Rt @ 10 dB	В						
TEST	TIONS	9.0	9.65	GHZ	P 0	20 kW	t p = 9.325	= 0.25 GHz	8	DU =	.001					
MIN.																
LIMITS	ري .															
			ENVIRONMENTAL	NMEN	TAL TEST	r results	TS							-		
S/N	Post Te	mpera	Post Temperature Test	13										+	+	
N/S	+	1			;									-	+	
N/S	+		•1		15	40	1.4	1.1	8.0					-		
N/S	39	1.2	1.68		^ 10	15	1.9	6.0	0.0			-		-	+	
N/S	st W	bratio	n Test											-		
S/N	29 1	1.0	1.48		< 10	10	2.7	2.0	0.7							
S/N	30 1	7	1.61		< 10	< 10	2.1	1.9	1,1							
S/N	41 1	0	1.55		< 10	16	2.2	1.6	1.0							
S/N	Post Sh	Shock T	Test													
S/N	25 1	1.	1.5		< 10	12	1.7	< 0.5	< 0.3							
S/N	26 1	7	1.65		< 10	12	1.6	1.1	0.8							
N/S	38 1	7.	1.53			25	1.5	0.9	0.8							
S/N	-													_		
N/S			:	į												
S/N								 - -			!					
TESTED BY:	6		1	•	. C. A. 7.2				0.0	APPROVED BY	1	1	7	DATE	1/12	1/24
106 17803					1											

TABLE IX COLUMN

											i .	1	ſ
PROD. APPROVED		DATE		8		AWAS	VF A	SSOF	MICROWAVE ASSOCIATES INC.		DS - MA3940XM	<u>:</u>	
Q. C. APPROVED		DATE	 	J		EST	DAT	TEST DATA SHEET	IEET		знее 5	C 2	
SPECIFICATION	NOI.						LOT	LOT SIZE			SALES ORDER NO.		
PARAMETERS	Li RS (dB)	VSWR		P T	a,	Rt @3 dB		0					
TEST	9.0 -	9.65 GHz		P 0	20 kW fo	t = 0 $t = 0$ $t = 9.32$	$= 0.25 \mu s$ 9.325 GHz	DQ	- 0001				
MIN. LIMITS MAX.													
LIMITS	POST	POST HUMIDIEY TEST	IY TEST										
s/w 19	1.0	1.36		15	50	2.8	2.1	9.0					
_	6.0	1.36		10	09	2.5	1.6	9.0					
00 S/N 34	1.0	1.57		10	15	1.5	1.1	9.0		-			
S/N													
S/N	BURN	OUT TEST	ST		- 1								
S/N	DII	= .001		t =	1.0 #	s f	11	9.325 GHz					
S/N	Burn (Burn out level	(kW)	'									
S/N B	30	κW											
s/n 12	45 kW	W.											
S/N 17	10 KW	ΚW							-				
s/N 27	DEG 45 KW	ν×	Degraded	ler									
S/N													
S/N													
N/S				-									
S/N				Ī	- 1					i			
N/S				71			1 H 1 H 1 H 1 H 1 H 1 H 1 H 1 H 1 H 1 H						
TESTED BY:	;	-	-	3, 70			# : .	o l	APPROVED BY		DATE. DATE	777	7
FORM 707 C		1		•	1 =	TARI							

TABI

II. COMPLETE PROCESS SPECIFICATIONS

This section contains the Inspection Plan, Life Test Procedures, Qualification Procedures, and Acceptance Test Procedure.

The Qualification Procedures describe the tests, equipment, conditions and methods of performing qualification approval. The Qualification Procedure is contained in Appendix II.

The Acceptance Test Procedure describes, in detail, the methods and conditions of performing acceptance testing of a limiter. The Acceptance Test Procedure is contained in Appendix III.

III. QUALITY CONTROL ENVIRONMENTAL TEST METHODS

This section contains the Quality Control written especially for this Production Engineering Program. The Manual is contained in Appendix ${\tt II}$.

IV. CONCLUSIONS AND RECOMMENDATIONS

On this program, the following achievements were made:

- (1) High Power, X-Band, Complete Solid State Receiver Protectors were fabricated in Production quantities.
- (2) A low cost, narrow-band unit was also developed for marine radar applications.
- (3) Fabrication and delivery of fifteen (15) Engineering
 Samples: twenty (20) Preproduction Limiters, and forty (40)
 Pilot Line Limiter Assemblies. Complete life and environmental tests have been conducted on the preproduction and pilot run limiter assemblies.
- (4) This work should be pursued at millimeter frequencies, especially at Ka-Band frequencies.

V. PUBLICATIONS

- (1) G. Morris, V. Higgins, G. Hall, Y. Anand, R. Billota, and F. Jellison, "Self-Activated, 20 kW, X-Band Bulk Effect Semiconductor Limiter", 1978 GOMAC Conference
- (2) G. Morris, V. Higgins, G. Hall, Y. Anand, R. Billota, and F. Jellison, "X-Band, High Power Solid State Receiver Protector Employing a Bulk Semiconductor Limiter", 1979
 IEEE, MTT-S-INTERNATIONAL, Orlando, Florida

VI. IDENTIFICATION OF TECHNICAL PERSONNEL

The following key technical personnel contributed to this program:

Y. Anand - Project Manager

P. Schaffer - Silicon Manager

W. Sobie - Metallization Manager

G. Allendorf - Material Scientist

R. Billota - Limiter Manager

S. Ellis - Engineer

REFERENCES

- 1. K.E. Mortenson and J.F. White, "Non-Rerrigerated, Bulk Semi-conductor, Microwave Limiters", IEEE Journal of Solid State Circuits, SC-3, pp. 5-11, 1968.
- 2. K.E. Mortenson et al, "Microwave Solid State Limiting Phenomena", Final Report for AFAL, Contract No. F33615-67-C-1858, November 1968.
- 3. K.E. Mortenson et al, "A Review of Bulk Semiconductor Microwave Control Components", IEEE Proc., Vol. 59, No. 8, pp 1191-1201, August 1971.
- 4. K.E. Mortenson et al, "Bulk Semiconductor Limiters", Final Report for U.S. Army ECDM, Technical Report ECOM-0186-F, August 1973.
- 5. A.L. Armstrong et al, "Bulk Semiconductor Limiters" Final Report for U.S. Army ECOM, Technical Report ECOM-01950F, October 1971.
- 6. A.L. Armstrong et al, "Bulk Semiconductor Limiters", Semiannual Report for Contract DAAB07-72-C-0292, March 1973.
- 7. A.L. Armstrong et al, "Bulk Semiconducror Limiters", Final Report for Contract DAAB07-72-C-0292, March 1974.
- 8. Y. Anand et al, "MM&T Program For the Etsablishment of Production Techniques for High-Power Bulk Semiconductor Limiters", First Quaterly Report for Contract DAAB07-76-C-0039, ECOM, U.S. Army Electronics Research and Development Command, Fort Monmouth, NJ, October 1976.
- 9. Y. Anand et al, "MM&T Program for the Establishment of Product:
 Techniques for High-Power Bulk Semiconductor Limiters",
 Third Quarterly Report for Contract DAAB07-76-C-0039, ECOM U.S.
 Army Electronics Research and Development Command, First Montract
 NJ., April 1976.
- 10. Y. Anand et al "MM&T Program for the Establishment of Production Techniques for High-Power Bulk Semiconductor Limiters", Sixth Quarterly Report for Contract DAAB07-76-0039, ECOM, U.S. Army Electronics Research and Development Command, Fort Monmouth, NJ., January 1978.
- 11. J.F. White, Semiconductor Control, 1977.

APPENDIX I (a)

ORIGINAL SPECIFICATIONS (SCS-486)

High Power Bulk Semiconductor Limiter

1. SCOPE: This specification describes a passive, solid state, receiver protector using a bulk semiconductor limiter in combination with a semiconductor diode limiter. Limiter operation will provide isolation from x-Band pulses up to 30 km over a variety of test conditions.

2. APPLICABLE DOCUMENTS

2.1 Documents. - The following documents, of issue in effect on the date of invitation for bids, form a part of this specification to the extent specified herein.

SPECIFICATIONS

MILITARY

MIL-E-1 MIL-P-11268 General Specification for Electron Tube Parts, Materials, and Processes Used in Electronic Equipment

STANDARDS

MILITARY

MIL-STD-105

Sampling Procedures and Tables for Inspection by Attributes

MIL-STD-202

Test Methods for Electronic and Electrical Components Parts

MIL-STD-1311A Microwave Oscillator Test Methods

(Copies of specifications, standards and publications required by contractors in connection with specific procurement functions should be obtained from the procuring factivity or as directed by the contracting officer. Both the title and number of symbol should be stipulated when requesting copies.)

FSC 5961

- 3.1 Function Description. The high power, solid state, limiter specified herein will operate in the frequency band 9.0 9.65 GHZ. A multi-stage configuration is acceptable with the first stage incorporating the principle of avalanche breakdown of near-intrinsic silicon to achieve isolation. This device will be mounted in a fixed turned resonant waveguide cavity designed to provide the necessary avalanche field conditions. The second stage shall be either a bulk effect device or a semiconductor diode limiter. Both limiter devices will be mounted in a common structure and no external bias or drive will be necessary for its operation. The receiver protector is required to operate in unpressurized conditions.
- 3.2 Mechanical Characteristics. The bulk semiconductor limiter structure will conform to the following requirements:

(a) Weight 20 oz max

(b) Input flange mates with UG-408/U

. choke flonge

(c) Output flange mates with UG-135/U

cover flange

(d) Mounting position any

(a) Cooling conduction

- 3.2.1 Physical Dimensions. The bulk semiconductor limiter shall conform to Figure 1.
 - 3.2.2 Construction. Parts and materials will be in accordance with MIL-P-11268.
- 3.3 Electrical characteristics. The bulk semiconductor limiter will conform to the following requirements:
 - (a) Peak Rf Input power, : 30 kw, Du = .001 1/Lsec pulses continuous 10 kw, Du = .01

(b) Insertion Loss : 0.7dB (max)

(c) Low Level VSWR : 1.4:1 (max)

(d) Recovery Time : 0.8% sec (max)

(e) Flat Leakage to 50 mw (max), for 30 kw, .001 duty cycle, 1 µsec . pulse

(f) Spike Leakage : 750 mw (max), for 30 kw, .001 duty cycle, 1 jusec pulse

(g) external bias : none

Parameter	Symbol	Min	Max	Unit
Frequency	F	9.0	9.65	GHZ
Paak Power	P		30	kw
Average Power	Pa		100	w
Ambient Temp.	TA	-55	. +85	*C
Altitude			50,000	: ft

- 3.5 Marking. Each bulk semiconductor limiter shall be marked with the following information:
 - (a) Manufacturer's model number
 - (b) Manufacturer's serial number, individually for each limiter.
 - (c) rf input port.
 - (d) rf output port.

4. QUALITY ASSURANCE PROVISIONS

4.1 Inspection.

4.1.1 Responsibility for inspection. - The contractor is responsible for the performance of all inspection requirements as specified herein. The contractor may utilize his confacilities or any commercial laboratory acceptable to the government. The government reserves the right to perform any of the inspections set forth in the specification where such inspections are deemed necessary to assure supplies and services conform to prescribed requirements. Inspection records of the examinations and tests shall be kept complete and available to the government.

3

cilities shall be of sufficient accuracy, quanty, and quantity to permit performance of the required inspection. The supplier shall establish calibration of inspection equipment to the satisfaction of the government.

- 4.2 Classification of inspection. The examination and testing of limiters shall be classified as follows: . .
 - a. First article inspection (see 4.3).
 - b. Quality conformance inspection (see 4.4.).
- 4.3 First article inspection. First article inspection shall be performed by the supplier, after award of contract and prior to production at a location acceptable to the government. It shall be performed on sample units which have been produced with equipment and procedures which will be used in production. This inspection that consist of QCI-1, QCI-2 and QCI-3 inspection in accordance with 4.4.1, 4.4.2 and 4.4.3.
- 4.3.1 Sample. Twenty (20) limiters shall be submitted for first article inspection.
- P. 14.4 Quality Conformance Inspection.
- 4.4.1 Quality conformance inspection Part 1 (QCI-1). Every limiter shall be tested in all positions of the Quality Conformance Inspection Part 1 (QCI-1). No failures shall be permitted.
- 4.4.2 Quality conformance inspection Part 2 (QCI-2). The Quality Conformance Inspection Part 2 (QCI-2) shall be performed in accurdance with MIL-STD-105, Ins, ection Level S1 with an AQL of 6.5%. In the event of let rejection, required inspection procedures shall be invoked. Normal inspection shall be resumed when two (2) consecutive lots have conformed with QCI-2 tests. If the lot size is less than 50 limiters, the sample size shall be one (1) with an acceptance acro (0). For purposes of inspection, the lot size shall be one (1) months.
- 4.4.3 Quality conformance inspection Part 3 (OCI-3). Three limiters shall undergo continuous life testing for a min. of 2500 hrs. No failures had a
- 4.5 Detailed listings of quality conformance inspection tests. Quality conformance inspection tests shall be conducted in accordance with India I (GCI-I), Table II (GCI-I), and Table III (QCI-3).

	Weths	30		1	100	& •		
	DO	100.		100.	10.	106`		-
11643	PRR Pulses/sec	1000±25		1000±25	10,000 ±150	1000 ±25	1	-
1951 COMO! 11643	h 366	1.0±0.1	CW	1,0±0,1	1.0±0.1	1.40.1	.	,
0/	Po · Watts	. 30,000 ± 500	0.001	1	10,000	32,000	0	0
•	Fo GHZ	9.0, 9.375, 9.65±.01	9.0 - 9.65 ± .01	9.0, 9.375, 9.65±.01	9.0, 9.375, 9.65±.01	9.375±.01		
,	T 40	25±3	25±3	25±3	25±3	25±3		25±3
77	F. netar Unit	101	IC 2	1C 3	10.4	1C 5	10.6	1C 7

, **/**

	Mil Standard	Application Method	Test Condition Symbol	Symbol	Lower	Limits - Upper	Units	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Moximum Leokoge (flot)	1311A	4452A	10 1	م <u>۔</u>		20	æ	1,3
Moximum Leakage (spike)	1311A	4452A	TC 1	ļ. a."		750	ШW	2,3
Insertion Loss	1311A	4416	TC 2 · LI	17	.•	0.7	ф	3,4
Low Level VSWR	1311A	4473	TC 2	Ь		1.4:1		3,4,5
Recovery Timo	1311A	44718 (Method B)	TC 1	ىر		0.8	µ sec	3,8
Firing Power	1311A	4496	10.3	. PFR .	_	150	WE	3,6,8

Quality Conformence Inspection- Part 1 (Ge1.1)

	C	Mil Standard	Application Method	Lest	Condition Symbol	Lower	Upper	Unit) EN
33	Maximum Leakaga (flat)	1311A	4452A	TC 1	a		100	>	1,7
423	Moximum Leakoge (spike)	1311A	.4452A	10.1	۳.	1	400	>	2,7
	Moximum Lookoge (flot)	1311A	4452A	TC 4	. او	[. 02	mw	1,3
	Moximum Leokoge (spike)	13114	4452A	TC 4	۵.	.	750	ΑŒ	2,3
7.	Recovery Characteristic(phase)		1	1C 5	ΔRρ	1	0.5	degree	3,8,9
. •	Recovery Characteristic (amplitude)			TC 5	△ Ra	1	0.1	् व	3,8,9
	Temperatura Cycling(non-oper.)	NIBIA	1027	1C 6	۵۲ _۲ ۵۶ ۵۲		0.2 100 0,2	db mw · A sec	01
	Vibration	202E	204C Method A	TC 7	77 76 77		0.2 100 0.2	db mw K sec	01
	Shock	202E	213B Mathod G	TC 7	17. 10. 10.		0.2	db mw # sec	10
	Homitity	1311A	1011	9 21	Δ _L ; Δ ⁶ 2 0 ⁶ 2	1	000	db mw % sec	. 01

	Mil Standard	Mil Application Standard Mothod	lest Condition	Symbol	Lower	Upper	Unit	Notes
Life Tost	1311A 4551A	4551A .	1C 5	4-	2500		hours	=
Life Test End-Point (1)	1311A 4452A	4452A	IC 1	م _د	٠.	1.0	watt	2,3
Life Test . End-Point (2)	1311A 4416	4416	TC 2	1		0.0	පු	3,4
Life Tast End-Point (3)	1311A	44718	10.1	۲		1.0	A sec	ဗ
Life Test (4)	13114	4452A	10.1	0. 0.		75	WM ·	. 1,3
Life Tost End-Point (5)	1311A	4496		P _F R		170	WE	3,6

Quality Conformance Inspection - tart 2(QC111-3)

naximum flat leakage shall not exceed the specified limits for test irequencies 9 000, 9.375, .9.650GHZ. The incident Rf pulse will have a risctime 50 nanoseconds maximum. Test configuration reference figure 4452 - 16. The peak power measurement will be accomplished by calibrating the deflection of a sampling oscilloscope as described in section 3.2 paragraphs 3.2.1 and 3.2.2 of Mil-Std-1311A.

The maximum spike leakage shall not exceed the specified limits for test frequencies 9.000, 9.375, 9.650 GHZ. Oscilloscope calibration technique as described in section 3.2 paragraphs 3.2.1 and 3.2.2 of Mil-Std-1311A is applicable. Amplitude variation shall be recorded by observing the distribution of spike amplitudes for 1 minute time through open shutter of scope camera.

Quality conformance test to be made using multi-stage limiter. For example using the high power bulk stage followed by the limiter diode.

A swept frequency may be used.

Match Termination used in this test circuit shall have a VSWR of 1.05 or less.

The firming power shall be defined as a decincease of limiter insertion loss impared to the "cold" insertion loss.

Quality conformance test to be made using bulk semiconductor stage only.

For this specification the following abbreviations and symbols in addition to MIL-E-1 abbreviations and symbols shall apply; $\mathcal{L}=$ time (recovery), $\Delta R_{o}=$ variation of phase on recovery (total deviation at a fixed time), $\Delta R_{o}=$ variation of amplitude on recovery (total deviation at a fixed time), $P_{FR}=$ firing power.

The maximum variation in phase and amplitude as measured by dynamic phase and amplitude test facility shall not vary more than the specified limits over a 1 minute integration time period. Measurement to be made at a point 54sec from the cessation of 14sec input pulse.

-Measurement of parameters cited will follow the procedures outlined in QCI -1.

The bulk semiconductor limiter shall operate over the entire duration of the life test. The spike leakage (P_s) will be periodically monitored. Life test will be interrupted each 720 \pm 20 hours intervals to permit testing of end of life test end points.

-5. PREPARATION FOR DELIVERY

 ${\bf \nabla} \cdot {\bf Y}$

5.1 Packaging, Packing and Marking. - Packaging, packing and package rking shall be specified in the contract.

Notes:

- a) all dimensions in inches
- b) all tolerances ± 0.01 unless otherwise speaisied

APPENDIX I (b)

SPECIFICATION (Modification No. P00001)

Modification No. FCOOOL Supplemental Agreement to Contract No. DAABO7-76-C-0039

SECTION F, Description/Specifications is amended as follows:

Delete Subsection F.48.2 in its entirety and substitute therefor:

"Test for Operational Life:

The expected operating life for the production 3L-LFL Assemblies shall be determined by calculation using the operating temperature and silicon device life-versus-temperature experience curve. The mean life expectancy shall be no less than 2500 hours and this shall be confirmed by direct high RF power measurement or by calculation using direct high RF power measurement of the burnout point along with established denating procedures for microwave semiconductors. (See paragraph F.49.5)"

Delete Subsection F.49.4 in its entirety and substitute therefor:

"The contractor will subject the samples to the tests specified in paragraph 6 of this provision. The confirmatory samples and associated test report must demonstrate that all applicable requirements of these specifications have been met before the contractor will be authorized to proceed with the pilot run. This authorization will be granted by the contracting officer. At least 15 calendar days prior to the start of confirmatory samples testing, the contractor shall firmish written notification to Commander, US Army, ERADCOM, Fort Monmouth, NJ 07703, of the time and location of the testing so that the Government may witness such testing if it so elects. A copy of this notification shall be furnished simultaneously to the project engineer addressed as follows: Commander, US Army ERADCOM, ATTN: DELSD-D-PC, Fort Monmouth. NJ 07703, and the Procuring Contracting Officer, Commander, US Army Communications and Electronics Materiel Readiness Command, CERCOM, ATTN: DRSEL-PC-J-CS-2(BAC) Fort Monmouth, New Jersey 07703."

Delete in its entirety Subsection F.19.6 and substitute therefor:

Paragraph F.49.6 change to read:

- "a. Randomly number all units with serial numbers 1 to 20.
- b. Subject the unit to tests in accordance with the following schedule.

TEST SCREDULE

PHYSICAL Fer Figure 1

20 each Serial #1 to 20

TEST SCHEDULE (Cont.)

ELECTRICAL

Group A

20 Units

All units will be tested and shall meet the following RF specifications.

Serial #1 to 20

High Rower (measured at 9.3 + 0.3 GH,)

Peak Power
Pulse Length
Duty Cycle

20 kilowatts

0.25 microseconds

Recovery time

0.001

to within 10 dB of low level loss to within 6 dB of low level loss 2 microsecond to within 3 dB of low level loss 3 microsecond

l microsecond

Maximum Flat Leakage Maximum Spike Leakage

50 mw 750 xw

Low Power (measured throughout the 9.0 - 9.65 GHz range)

Maximum	Insertion	Loss	

1.3 43

Maximum VSWR

1.7

AND THE COMPONING L

Group 3 Temperature Cycling (non-operating)

3 each

Serial #1, 2, 3

Units shall be cycled from 25°C to + 100°C to -55°C to 25°C for one complete cycle. Thereafter they shall meet the Group A specifications above with degradations in performance of no more than:

Recovery time Increase Insertion Loss Increase
Maximum VSWR
Spike Fower Increase
Flat Power Increase

1 microsecond

0.3 43 2.0

200 mw 25 mw

TERATION (non operating)

3 each

Serial #1, 5, 6

The units shall be securely mounted to a vibration table and subjected to simple sine vibration as follows:

> (a) 0.06 inch double amplitude from 20 to 26 Hz, and 2 G minimum from 26 to 2,300 Hz.

Modification No. FCCCCL Supplemental Agreement to Contract No. DAABO7-76-C-CC39

Group C (Cont.)

- (b) Logarithmic sweep from 20 to 2,000 Hz for 15 minutes per sweep.
- (c) or 2.5 G minimum at 50 + 5 Hz.
- (d) 15 minutes per axis, two axes.

Thereafter they shall meet the electrical specifications as explained in Group 3, above.

SHOCK (non operating) Group D

3 each Serial #7, 8, 9

The units shall be subjected to three shocks in each of the two directions along each of the three mutually perpendicular axis (a total of 18 shocks). The shock level shall be 25 G with a duration of 11 - 1 milliseconds. Thereafter they shall neet the electrical specifications as explained in Group 3 above.

HUMIDITY (mon-operating) Group E

3 each Serial #10,11,12

The units shall be subjected to an atmosphere of 80 to 98 percent relative humidity at a temperature of -10° C to $+65^{\circ}$ C for a period of one cycle. Thereafter they shall meet the electrical specifications as explained in Group 3 above.

Fire Storm

- a) Randomly select four samples from Serial #13 thru 20.
- b) Set the pulse width at 1 microsecond and a duty cycle of 0.001.
- c) Set the pulse power amplitude at 5KW peak and apply it to the limiter under test for at least one (1) minute to reach thermal equilibrium.
- d) Increase the pulse power to 1 KW steps, remaining at each level for at least one minute to reach equilibrium before continuing to the next level.
- e) Record the highest peak power level \mathbb{P}_M that is sustained for at least one minute by each sample.

Modification No. FOOCOl Supplemental Agreement to Contract No. DAABO7-76-C-0039

Group F (Cont.)

- f) Verify that the unit failure occured as a result of the gold-silicon eutectic (370°C) by either:
 - 1) removing the bulk silicon element from the resonant iris and confirming the presence of a low DC resistance (less than 100 ohms) thru the sample.
 - 2) or locating the alloy fault thru a "lap and stain" evaluation.
- g) The level obtained in step e) shall be at least 3.5 KW peak.

SECTION H, Deliveries or Performance is amended as follows:

SLIN 0001AB, Confirmatory Samples, delete "23 Dec 77" and substitute the following therefor: "17 July 1978"

SLIT 0001AC, Filot Run, delete "25 June 78" and substitute the following therefor: "19 January 1979".

FIGURE 1

APPENDIX II

QUALITY CONTROL MANUAL

1.0 Purruse

This procedure outlines the test methods to be used in the operation of the MB Vibrator system, Microwave Associates Serial No ber PA 16-94-17.

2.0 <u>Cherating Procedure</u>

- 2.1 Mount specified control accelerometer on test jig in the place of vibration and connect to external control loop.
- 2.2 Check 3-phase power lights to insure they are on.
- 2.3 Push green "START" button (#1) and position Plate Adjust switch (#2) to the up () position on ENDEVCO power supply, model #2623. Switch power supply on.
- 2.4 Switch red control (#3) on automatic Sine Programmer to the "BhCASS" position.
- 2.5 Turn Operation Switch (%-) to the "Scanning Off" position and our Meter Switch (%5) to the "Power Freq. Beat" position.
- 2.6 Position the Frequency Range control (#6) on the "5-5000" position. Place compressor speed control (#7) on "Standard". Place output switch (#8) on the "Linear" position. Place Velocity Generator response control (#3) on "Flat"golicien.
- 2.7 Place Frequency Scanner (#10) on 60 cycles/second. Observe motion of vibration rater (#11) and adjust frequency scale adjustment (#12) until rater needle is observed to have its slowest notion with greatest displace ent.
- 2.8 Move Mater Switch (#5) to the "Vibration Level" position.
- 2.9 Set Function Selector (#13) to the desired program. 1 TE:

 If Auto D-A is used the prossover point is adjusted using the control (#14). Set Frequency Scanner (#10) for desired processor frequency and adjust center control (#14) until acceleration light (#15) "just turns on". Vary frequency scanner to insure correct operation at prossover.
- 2.10 Set Displacement Melocity Range control (#15) for "Wel-Pen".
- 2.11 Set acceleration Pange control (:17) for a g level greater than or equal to the maximum needed for program using A.cel. Gen side of the control.
- 2.12 (st Analizada Control (113) to 454
- 2.13 Set Frequency Scanner (410) to desired frequency point.

SISTRIBUTION

6.D GL

x 71 25.2

519

A

7.1.1.7

T.1 : 0

. .

ĪF

enerating instauctions for M.B. Mistator HA16-54007

10.

2

COLOT

2.0 Courating Procedure - continued

2.13

- 2.13.1 If program is of a frequency scanning nature, adjust maximum and minimum frequency positions with the two sliding knobs on frequency scanner (pl0). Convert maximum and minimum frequencies to degrees using outside scale and figure traverse of program in degrees/minimum.
- 2.13.2 Set Scenning Speed (#19) and Scanning Speed Selector (#20) for desired scan.
- 2.14 Turn Output Voltage Control (#21) clockwise untial a "click" is heard and the "Danger Do Not Switch" lamp (#22) goes on.

CAUTION: This red light means no "Red" controls may be turned or readjusted without causing serious damage to the equipment

- 2.15 Check reter control (#23) to insure that it is in the .3 position.
- 2.16 Move Output Voltage Control (#21) slowly clockwise until a vibration level has been indicated on noters (#11) and (#21). Continue moving Output Voltage Control clockwise and observing meter for compressor suppression until knob is fully clockwise.
- 2.17 Set Acceleration level control (± 26) to desired acceleration level as indicated on Mater (± 24)
 - 2.17.1 For D-A program Set frequency scenner to frequency just before crossover to constant acceleration and set desired acceleration level with Displace ant Level Control (25).
 - 2.17.2 Set Operation Switch to "Scanning Cn" position and monitor program on Meter (#24).

NOTE: IF ANY DIFFICULTY ARISES DURING VISTATION

TURN OUTPUT VOLTAGE CONTROL (21) TO THE OFF

POSITION (FULLY COUNTERCLICKWISE).

3.0 Turn-Off Instructions

- 3.1 Furn both Displacement Level Control (125) and for elements Level Control (126) fully counterslockwise.
- 3.2 Turn Output Voltage Control (421) fully counterclockwise, mile sure red light (422) is off.

2/87% 30 (10N

.....

MINUFFICTURING SPECIFICATION

THE SCO

MICROMANE ACNOCIATES, INC., SEPTEMBRON, MADS.

THEE

SERVICE CREATING INSTRUCTIONS FOR M.S. VIEFATOR MAIS-54007

- 3.0 Turn-Off Instructions continued
- 3.3 Turn Operation Switch (#4) to the "Scanning Off" position.
 - 3.4 Turn Amplitude control (#8) to "0".
 - 3.5 Push red "STOP" button.

SISTE BUT ON

.......... 30.2145 to:

MEW MB VISRATOR CONTROLS

WENUSACTURING SCHOLAGEN MEDIT
eressines GA TB KEC

DIS RECTION

...] :-= -5 10:

<u>)</u>)52.

1.0 PURPOSE

1.1 This instruction describes the procedure to confuct them at shock tests to MIL-STD 202, Merhod 107 and MIL-STD 233, Merhod 1010 to determine the resistance of a part when a poled to extracely low and high telleratures.

2.0 SCOPE

2.1 This instruction shall apply to products tested in the Quality Control Environmental Lab.

3.0 MATERIAL AND EQUIPMENT

- 3.1 Dual Chamber Thormal Test Cabinet. (Slue M Model pwSP-1090-3)
- 3.2 Heat Resistant Pad/Gloves
- 3.3 TO Inch Crescent Wrench
- 3.4 Liquid Nitrogen (4100 cu. ft. Tank-Suburban Wellers, or equivalent)
- 3.5 Test Specimens
- 3.6 Test Trays

4.0 PROCEDURE

- 4.1 Connect 2 full 4100 cu. ft. tanks, to have likes and type test valves. Hores must be accommoded to Liquid With Gaust Ports only.
 - 4.1.1 Open Liquid Withdraval Test Valves.
- 4.2 Open both Caresbury hand valves.
- 4.3 Place diodes in test trays as required.
- 4.4 Place loaded test trays on shelves inside chamber.
 - 4.4.1 Allow air to flow over and under each tray.
- 4.5 Record information of lot on Esterline Angus #400 8.3 red in er as noted on card on front of chamber.
- 4.6 Sat POM-75 control to 25°C.
- 4.7 Turn the transfer ti or suitch to off position.

r . 17.377

ر · · ر TARUPTOTURING SOFERIORATION DARVE ASSOCIATES, INC., TURLING FON, WASS. T ERMAL SHOOK (MELDERANDRE CYCLING) FLUE MIDUAL CHAMBER 4.8 Set the precool and transfer tilers as follows: Precool than....?recools the loan challent fire da elevator leaves the upper chalter. The prescol partied is edjustable from 2 to 55 minutes. The approximate proper setting for the "page of" of an earbe determined from the graph below. 25 -- --20 -PRECOOL TIME 15 . ___!___. (MINUTES) 10 . ___ .! 50 75 100 125 150 175 000 UPPER CHAMIER TEMPERATIVE (°C) STAFFUTION 4.3.1 The graph is approximate and its infor acida must not be construed as final. Several para clars will affact the precedul timer setting. Aring the care the cass of the workload and the time the elevator is in the upper (hear) position. 4.3.2 The precipal sines shown on the graph of its and a consider when performing Mil-2020, Mathod 1070, Staps A, B, C, CF. 4.8.3 The precool tiler should never be set for hime than 2/3 of the time that the elevator is in the loger positive Example: If the program requires 1/2 r. in the agenchalber, the proceed of an Pould out be set for more than 20 minutes. 4.3.4 The precool timer should alluys be set for the Millim M. amount of precopling necessary. The precool timer is located inside the tracele collect. The time setting is determined by the angular specing between the two arms carried by the tilen's later shaft. To set the timing, pull the top arm out and and turn to the new setting. Upon releasing the arm, a spring looks the two arms together. Transfer Timer.....Determines the position of the elevator. To sat the liver, proceed as follows: Set the MOVM orm (right) for the circ de lieux, roust be in the later of them, ALUS the delay set on the product that, Set the MCFillians (left) for the this the elevator most be in the opportunity or, MINOS the Collay set on the proceed at on.

MANUFACTURING SPECIFICATION

THE STATE

THERMAL SHOCK (TEMPERATURE CYCLING)

THE MOUNT OF THE MOUNT CHARGER

THE MOUNT OF THE MOUN

EXAMPLE:

Desired program requires:

- (a) I hr. in upper charler (heat)
- (5) I hr. in least charber (cole)
- (c) Lower charter to be prescoled for 15 minutes

Set Flaxopulse "ON" arm for one (1) hour and 15 minutes. Set "OFF" arm for 45 minutes.
Set precool timer for 15 minutes.

UNIT WILL MOW OFERATE as per desired program.

4.8.5 TIMER HOLICATOR POINTER

- 4.8.5.1 Move the timer indicator pointer to the right until it makes contact with the "on" timer arm.
 - 4.8.5.1.1 Due to the timer's internal locking device, it may be necessary to make the pointer to the extreme left, ie., making contact with the "off" timer arm and then moving it to the extreme right.
- 4.d.S.2 Carafully move the tiver indicator pointer to a point JUST LEFT OF CENTER. The elevator will now be in the upper position.
- 4.9 Set the cycle counter to the desired number of cycles plus one. ie., Cycle Counter = # of cycles +1.
 - 4.9.1 Release look handle to set cycle counter and them in relighten.
 - 4.9.2 The cycle counter will shut the charber off after the last desired hot cycle and the elevator will remain in the hot charber.
 - 4.9.3 Cycle counter does not need to be reset from zero position.
- 4.10 Turn the main curcuit breaker on.
- 4.11 Turn the coolant switch on.
 - 4.11.1 This switch must be "on" in order to perform thermal shock tests.
- 4.12 Turn the transfer tiler switch on.
 - 4.12.1 Transfer Timer Switch.... Used for initial precuoling or heating of the appropriate the ber.

DISTRIBUTION
... Or oles to:

1-311-477 1

MINIMALTHE OF SECRETION

MEDITOR OF THE THERMAL SHOCK (TEMPERATURE CYCLIPS)

THE THERMAL SHOCK (TEMPERATURE CYCLIPS)

THE MOUNT CHICAGO TO THE MOUNT CHICAGO TO THE CHICAGO

4.12.1 (CONTINUED)

NOTE: THIS UNIT IS DESIGNED FOR THEFMAL SHOCK TESTING ONLY ALD CANNOT DE USED FOR SUSYANT DIRECTING AT SEL ER TEMPERATURE ENTREME.

- 4.13 Press in resat byole timer switch.
 - 4.13.1 The chalber will new start and will perform desired number of cycles, and automatically shut off.
- 4.14 Versatronik (Homeywell) Main Coldchamber control.
 - 4.14.1 Set the control to the desired cold temperature by depressing and turning the knob on the front of the Versatronik (Honeywall) Control.
 - 4.14.2 When the knob is released, the rater serves as a temperature indicator.
 - 4.14.3 Versatronik Temperature Control..../bioteins temperature of lower charber.

When the mater face emits a med glow, this indicates that the oven temperature is above—the outpoint and the coolant sclandid valve is exampled. (The outlant pilkt light will also indicate applient sclandid valve openation) A green glow indicates an oven to purcture below the sepoint and the outlant sclandid value is di-opengized.

The red pointer is carely an abjustable reference indicator of suspoint to purature. IT DOES NOT APPEOR TERRORSE

- 4.15 After precial is completed and the charler shelf has raved into the bottom section, set PCM-75 control for the Jasined appear charber temperature.
 - 4.15.1 Overtemperature Protection (OTP)....Provides protection for the chamber workload. In event of an above satpoint temperature, the OTP, control will trip, shutting the chamber off. To operate the OTP, set it approximately 5°C, (3°F.) higher than the setting on the Progred-sation 75 (hot chamber) control. Then, firmly press the black reset button.

TETT HET HEN

TA 515

TO SUPERACTURE OF SPECIFICATION

TA 515

TO SUPERACTURE CYCLING)

- 4.16 Watch temperature indicator on establine Angus Chart Resorder.
 - 4.16.1 Make fine adjustments of hot (FLH-/p) and cold (Tersatronik) chalber controls to produce the proper test temperatures.
- 4.17 As noted in 4.13.1, chamber will operate until the required number of cycles are so pleased, and then automatically that off.
- 4.18 At completion of test check Esterline Augus Recorder to determine that the number of cycles and temperature extremes were correct.
- 4.19 Remove test trays from chamber.

4.19.1 Use pad/Gloves if trays are still bot.

4.20 Return POM-75 to +25°C.

- 4.21 Set Transfer Timer switch to off position.
- 4.22 Close off liquid nitrogen test valves.

5.0 PRECENTIONS

- 5.1 Avoid injury while exchanging liquid niurogen tanks.
- 5.2 Do not allow liquid nitrogen to flow or skin.
- 5.3 Use pad /cloves when removing specimens from the clamber.

2 37-1807:0N

THIS THE

MUNUFACTURING SPECIFICATION

THE MICROWIVE ARROCHARDS, INC., SURLINGTON, MASS.

FOR CORD.

APT I SECULLY

APPLIED

FOR CORD.

1.1 This instruction describes the procedure required to perform the shock test specified in MIL-STD-750 Method 2016 and MIL-STD-202 Method 213. In the event of conflicting requirements, the Military Specification shall govern.

2.0 SCOPE

2.1 This instruction applies to all products tested in the Quality Control Environmental Lab.

3.0 MATTERIAL AND EQUIPMENT

- 3.1 Shock test fixture, per appropriate outline drawing (CD-S)
- 3.2 Test specimens
- 3.3 Shock tests (LAB Serial #14873) or equivalent.
- 3.4 Shock pads
- 3.5 HP oscilloscope Model No. 141B.
- 3.6 Endevco accelerometer type PAG2.
- 3.7 Power supplies, scope, etc. if required.
- 3.8 Craftsman torque wrench model #944643 or equivalent.

4.0 PROCEDURE

4.1 Set-Up

- 4.1.1 Check the applicable specification and determine the required "G" level, number of shack pulses, pulse shape and axes (Figure 1) to be trated.
- 4.1.2 Insure that the proper shock pads are installed on the shock taster.
- 4.1.3 Insure that the shock testor guide rols are clean. Do not apply oil or groups on guide rols. (Clean with trichlorathylane)

CLSTRIBUTION CLOTHE 101

√o. · - ɔ MANUFICTURING SECUPICATION TH 504 ::...**5**-MICROLLAVE ACSOCIATES, MIC., SUPLINGION, MASS. **2** or 3 TILE PART OF THE STATE ATE ₹<u>₹₹6.</u> MACHEMENT SHICK TISTING INCLUMING 3009 จับว ระบร 4.0 PINCEDITE (Continued) 4.1 Sat-Up (Continued) 4.1.4 Adjust drop height as determined using HP oscilloudope and Endavdo acceleronuter.

carriage.

4.2 Obsertion

4.2.1 Mount test specimens in the test fixture.

4.1.5 Clear the area around the shock gad and test

- 4.2.2 Mount the test fixture securely to the test carriage.
 - 4.2.2.1 Torque to approximately 100 inch pounds or as determined from pulse shape.
- 4.2.3 Set test carriage in motion.
- 4.2.4 Shock test the specific and monitor the number of shock pulses.
- 4.2.5 Shut off shock raching after required number of shock pulses.
- 4.2.6 Unload the test specimens from test fixture.
- 4.2.7 Repeat steps 4.2.1 through 4.2.5 as required for additional orientations.

5.0 CAUTIONS

SISTALEUTION.

.... ... Tubles to:

- 5.1 Stand clear of the shock tester while in operation.
- 5.2 Insure that the test carriage does not strike the shock pad more than once for each desired shock below.

MANUFACTURING SPECIFICATION

MOROWAVE ASSOCIATES, INC., BURLINGTON, MASS.

HITLE

MOISTURE RESISTANCE TIST INC. RUCTIONS

SOLVE 1 OF 2

TROCHOT

VARIOUS

1.0 PURPOSE

1.1 This instruction describes the procedure required to perform the moisture resistance test specified in MTL-STD-750 Method 1021 and MIL-STD-202 Method 10 6. In the event of conflicting require into the Military Specification shall govern.

2.0 SCOPE

2.1 This instruction applies to all products totaled by Quality Control.

3.0 MACTERIAL AND BOUISMENT

- 3.1 Moisture Resistance Chamber, Blue M, Mudel FR-2500B or equivalent.
- 3.2 Test specimen holder (non-corrosive).
- 3.3 Recorded charts (U.S. Gauge #12167) or equivalent.
- 3.4 Cams, cut to diplicate chert of Figure 118-1 of MIL-STD-202, Method 106.

4.0 PROCEDURE

4.1 3 10-40

- 4.1.1 Ensure that the water level in the meservoir tank is at least 6 inches above the top of the pump.
 - 4.1.1.1 Use only distilled water.
- 4.1.2 Perform initial conditioning when required in accordance with MIL-STD-750 Method 1001.
- 4.1.3 Ensure that the ink supply in the recorder arm is adequate.
- 4.1.4 Install recording chart and record lane.
 - 4.1.4.1 The recording chart shall be obtained at the beginning of a shall year except weak ends.

CISTRIBUTION

Corlector

CA 52

16/16

00 to 10 to

MANUFACTURING S. ECIF.CATION

MANUFACTURING S. ECIF.CATION

MASS.

OLIGINATION OF ASSIGNATES, INC., SUBLIMISTON, MASS.

OLIGINATIONS OF A COLUMN OF ASSIGNATES ASSISTANCE TEST INSTRUCTIONS

FROM UF ACTURING S. ECIF.CATION

OLIGINATION OF ASSIGNATION OF A COLUMN OF ASSIGNATION
4.0 PROCEDURE (Continued)

- 4.1 Set-Up (Continued)
 - 4.1.5 Ensure that the proper control dam is installed.
 - 4.1.6 Place test specimens in test charber.
 - 4.1.7 Place "Main" switch to "Ch" and ensure that indicator light is on.
 - 4.1.8 Set "High-Low" switch to high.
 - 4.1.9 Ensure that the switches for wet hulb, compressive and dry bulb are in the "On" position.
 - 4.1.10 Set the "-10, + 25°C" switch to whichever temperature is required during the first 5 cycles of the test and reverse the position for the last 5 cycles.
 - 4.1.11 Monitor operation of equipment daily, during 10 day cycle.

DISTRIBUTION

APPENDIX III

MANUFACTURING SPECIFICATION MA45817B/F-45832B/F MICROWAVE ASSOCIATES, INC., BURLINGTON, MASS. SHEET OF TITLE -OR SPEC BULK LIMITER 305 - TEST PROCEDURE 79-4-34 DEPT. USE ONLY PRODUCT APPROVALS BULK LIMITER 79.4-24 33A26433-01 thru -19 Rev. XI and General Spec 63A24952 Rev. X2 33A26433-01FA thru 36A26433-19FA are Unscreened Types MA45817FA thru MA45832FA. 33A26433-01BA thru 36A26433-19BA are screened types (Pre JAN TX) MA45817BA thru MA45832BA. MATERIAL/PVD -ASSEMBLY/PVA - Gold Ribbon with Min. cross section 1.25 sq. mils. OUTLINE: OD-S-31 except flange DIA. = .124" Max and over all height = .095" Max. Cathode heat sink. and Polarity Symbol "26433-Dash No." STRIBUTION Capies to: MIN CONTAINER MARKING: "33A26433-Dash No."; Date Lot Code; 96341-MA Type No.; Serial No. TRACEABLITY - Required for a 2 year period. CERTIFICATE OF COMPLIANCE REQUIRED WITH EACH SHIPMENT. NOTE 1: SCREENING DATA The manufacturer shall provide a copy of the screening variables data. Data shall be correlatable to the device part number, lot date code, and individual device serial number. The minimum data provided shall be: A copy of the lot history showing compliance with or an entry on the certification of compliance to this effect. b. A copy of the delta calculations

c. A copy of the final electrical measurements.

I. ITIATED MANUFACTURING SPECIFICATION MA45817B/F-MA45832B/F / MICROWAVE ASSOCIATES, INC., BURLINGTON, MASS. SHEET TITLE FOR SPEC. BULK LIMITER TEST PROCEDURE 79.4.24 PT. USE ONLY PRODUCT APPROVALS アーイ・シチ BULK LIMITER FOR TYPE MA45817B THRU MA45832B ONLY TABLE 1 100% SCREENING (PER JAN TX REQ'MTS) TEST CONDITIONS 1/ SYM KIMMAX TIKU Hi Temp Life: Method 1032 t: 24 Hrs. TA = 175°C Temp. Cycle: Method 1051 Cond. C 10 cycles Max Temp 175°C t = >15 Min.Constant Acceleration: Method 2006 STRIBUTION Yl Axis, 10,000G's ... Caples to: 5x10⁻⁷ cc/sec Fine Leak: Method 1051 LR: Cond. H Gross Leak: _ Method 1051 Cond. C REAND AND RECORD C_T^4 , $V_{(BR)}$ AND L_R PER TABLE 11. Burn-In: Method 1038 t: 96 Cond. A $V_{R} = 36 + 2 \text{ Vdc}$ TA = 150°C READ AND RECORD C_T4, V_{BR}) NA I_B PER TABLE 11. WITHIN 24 HOURS AND THE FOLLOWING DELTAS APPLY: $\Delta C_T 4 = \pm 1.07$ $\Delta V_{(BR)} = \pm 10\%$ $\Delta I_2 = \pm 50 nA$ FINAL ELECTRICAL MEASUREMENTS TESTS #1-6 AND #4 @ 25°C ONLY PER TABLE 11. READ AND RECORD DATA

ITIATED	MANUFAC	MA45817B/F-45832B/F							
ECKED	<u> </u>	CIATES, INC., BURLINGTON,	SHEET 3 OF 4						
FOR SPEC. T. USE ONLY	TITLE BULK LIMITER	- TEST PROC	- TEST PROCEDURE			CN NO. 9305 79-4-			
PPROVALS	PRODUCT		APPROVE		79-4-5				
	(TABLE 11 T _A = 25°C UNLESS OTHE	RWISE SPEC	(FIED)					
	TEST	CONDITIONS 1/	SYM	MIN	MAX	UNIT			
	l. Total Capacity:	Method 4102	C _T 4:		BLE 111	pF			
		$f = 1 \text{ MHz}$ $V_{R} = -4V$	á	25					
	2. Capacitance Ratio See Note 2	: Method 4102 f = 1 MHz V = 0V VR = -45V	c _r o/c _r 4	f5: SEE '	TABLE 11	1			
STRIBUTION	3. Quality Factor:	Method 4036 f = 50 MHz 1/ V _R = -40V	Q:	SEE TAI	BLE III				
Capies to:	4. Reverse Leakage Current:	Method 4016 V ₂ = -25V 36L/ -55°C <t<sub>2<125°C</t<sub>	Σ _R :		20	ηΑ ∴ nar			
	5. Reverse Breakdown Votlage:	Method 4021 $I_{R} = 10 \mu A$	Ψ _(BR) :	45	**	Volts			
	6. Parallel Resistan	ce: Method 4036 V = 0 AC test voltage =75mV (RMS)	R _{PO} [‡]	10		Mohms			
	7. Temp. Coefficient of Capacity:	Method 4102 f = 1 MHz V = -4V -55°C <t<sub>A<125°C</t<sub>	TC _C :		300	ppm/°C			
	8. Thermal Resistanc Junction to Case: See Note /		ROJC:	tabe	==0 le ///	°C/₩			
,	Note 1 @ "The ta 100 K I = .25A.	measured by (it" with K of measureme	factor	mer :486 usp	usin and be	g SAG			
Foren	Carrolaten	with Umni ting of ea	54 /0	+. +	mi	,,,,,,, J			

<u> </u>						
MITIATED		MANUFACTU	RING SPECI	FICATION	NO. MA45877B/F-	/5222P/T
7901	!	MICROWAVE ASSOCIA	TES, INC., BUF	RLINGTON, MASS.		of 4
FOR SPEC.	TITLE	BULK LIMITER	_	TEST PROCEDUR		79-4-94
APPROVALS	PRODUCT		MITER		APPROVED	10079-4-24
	M:·	45'5 CAPACIT	ANCE, CAPA	CITANCE RATIO	CAPACITANCE RATIO	racioni (Ex
	DASA NO	· / C MA NO.	MIN	MAX		VALUE VIÂX MIN
	-01 .7-	.89 MA45817*	2-30	0.490	2.36	50 3000°
 	-02 .9-	/./O MA45818*	494.	.57}		50 3000
•	-03 /.//	-/34 MA45819*	2-70	0-89	3.32.95	5 28CC
-	-04 / 35	7.5 MA45820*	.213 202 0	۶۴۶. ۱۱۵۰	2.9 3.19	50 2500
-	-05 2.4	-2.99 MA45821*).209 I vli	1.32	ع. ع. د.	45 350
TRIBUTION	-07 .3.°	-3.4 MA45822*	1.37 1.33	1.55	4.6-4.04	45 2400:
Copies to:	-08	MA45823*	1.66	1.98	4.9	2300
••	-09	MA45824* '	1.99	2.42	5.1	2200
- 30	-10	MA45825*	2.43	2.97	10 t 2:2	2200
310	-11	MA45826*	2.98	3.63	7.3	2100
MO AB	-13	MA45827*	3.64	4.29	5.4	2000
JAPIAL	-14	MA45828*	4.30	5.17	5.4	2000
· 144,	-15	MA45829*	5.18	6.16	5.5	1900
-	-16	MA45830*	6.17	7.48	5.6	1800
-	-17	MA45831*	7.49	9.02	5.7	1700
-	-19	MA45832*	9.03	11.0	5.8	1600
~	ļ				BERS.	
	APPROVALS TRIBUTION Capies to: 10 11 12 AB TYPION TYPI	TITLE FOR SPEC. EPT. USE ONLY APPROVALS DASH NO -01 .702 .903 /.// -04 / 35 -05 2.4 -07 3.0 -08 -09 -10 -11 -15 -16 -17 -19 * ADD LE	MANUFACTOR MICROWAVE ASSOCIA TITLE FOR SPEC. EPT. USE CNLY APPROVALS PRODUCT BULK LIMITER BULK LI DASH NO: O MA NO. C1 -01 .789 MA45817* -02 .9-/./O MA45818* -03 /.//-/.34 MA45820* -04 / 35-/-5 MA45820* -05 2.42.99 MA45821* -07 3.0-3.4 MA45822* -08 MA45823* -09 MA45824* -09 MA45825* -10 MA45826* -11 MA45826* -12 MA45826* -13 MA45826* -14 MA45828* -15 MA45828* -16 MA45828* -16 MA45829* -16 MA45830* -17 MA45831* -19 MA45832*	### MICROWAVE ASSOCIATES, INC., BUE FOR SPEC. FIT USE ONLY APPROVALS PRODUCT BULK LIMITER	### MICHOWAVE ASSOCIATES, INC SURLINGTON, MASS. TITLE FOR SPEC. EPT. USE CNLY APPROVALS BULK LIMITER - TEST PROCEDUR BULK LIMITER - TABLE 111 CAPACITANCE, CAPACITANCE RATIO MAN NO. TOTAL CAPACITANCE CT4 SF MAY NO. -01 .7 - 89 MA45817* -02 .9 - 1.0 MA45818* -03 ///-/-34 MA45819* -04 / 35 - 15 MA45820* -05 2 - 2 - 39 MA45821* -07 3 .0 - 3.4 MA45822* -33 - 655 -31 0 -11 MA45824* 1.99 2.42 -10 MA45825* -11 MA45825* -12 MA45827* 3.64 4.29 TYPIOY I -15 MA45828* -14 MA45828* -15 MA45828* -16 MA45829* -17 MA45821* -18 MA45829* -19 MA45829* -19 MA45821* -10 MA45828* -10 MA45828* -11 MA45828* -12 MA45828* -13 MA45828* -14 MA45828* -15 MA45828* -16 MA45828* -17 MA45829* -18 MA45829* -19 MA45831* -19 9.02 -19 MA45832* -10 MA45832* -11 MA45831* -12 MA45832* -13 MA45829* -14 MA45830* -17 MA45831* -19 9.02 -19 MA45832* -19 MA45832* -10 MA45832* -11 MA45832* -12 MA45832* -13 MA45829* -14 MA45830* -15 MA45829* -16 MA45830* -17 MA45831* -19 9.02 -19 MA45832* -10 MA45832* -10 MA45832* -11 MA45832* -12 MA45832* -13 MA45829* -14 MA45830* -15 MA45830* -17 MA45831* -19 MA45832* -10 MA45830* -17 MA45831* -19 MA45832* -10 MA45832* -10 MA45830* -11 MA45830* -11 MA45830* -12 MA45830* -13 MA45829* -14 MA45830* -15 MA45830* -17 MA45831* -19 MA45832* -10 MA45830* -11 MA45830* -11 MA45830* -12 MA45830* -13 MA45830* -14 MA45830* -17 MA45830* -18 MA45830* -19 MA45830* -10 DPRIT NUMBERS.	MACOWAVE ASSOCIATES, INC. BURLINGTON, MASS. TITLE FOR SPEC. BULK LIMITER - TEST PROCEDURE PRODUCT BULK LIMITER TOTAL CAPACITANCE RATIO AND Q VALUE CAPACITANCE, CAPACITANCE RATIO AND Q VALUE CAPACITANCE, CAPACITANCE CAPACITANCE RATIO CAPACITANCE RATIO OT .7 .89 MASS17* 130 0.490 2.34 -01 .789 MASS18* 0.50 0.490 2.34 -02 .9 -1.// O MASS18* 0.50 0.490 2.34 -03 ///-/.3/MASS19* 0.73 0.77 -04 / 35 -15 MASS20* 0.70 1.00 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0

APPENDIX IV

Using relation (from Reference 11):

IL =
$$\left| 1 + \frac{Y Z_0}{2} \right|^2$$

$$Z_0 = 1$$

$$g \begin{cases} jb \end{cases} Z_0$$

$$Z_0 = 1$$

$$Y = g + jb$$

$$\frac{Y}{2} = \frac{g}{2} + \frac{jb}{2}$$

$$\left| 1 + \frac{|Z|^2}{2} \right|^2 = \left| 1 + \frac{y}{2} \right|^2 = \left| \left(1 + \frac{g}{2} \right) + \frac{jb}{2} \right|^2$$

$$= \left| 1 + g + \frac{g^2}{4} + \frac{b^2}{4} \right|$$

at resonance, i.e., at f_0 , jb = 0

At low RF power and f_0 , considering IL = 0.25 dB =

$$1.0593 \qquad = \left| \begin{array}{ccc} 1 & + & \frac{g}{2} \end{array} \right|^2$$

1.0292 = 1 +
$$\frac{g}{2}$$

$$\frac{g}{2} = 0.0292$$

$$g = 0.058401$$

$$r = \frac{1}{g} = 17.12$$

$$R_T^{-} = r Z_0^{-} = r (1 \text{ ohm}) = 17.12 \text{ ohms}$$
 (for low power)

IL (= ISOL) = 24.9 dB = 309.03 =
$$\left| 1 + \frac{g}{2} \right|^2$$

$$17.579 = 1 + \frac{g}{2}$$

$$g = 33.158$$

$$R_{T} = 0.03 \text{ ohm}$$
 (for high power)

If now $Z_0 = 0.5$ ohm (not 1.0 ohm), then:

IL =
$$\left| 1 + \frac{g}{2} \right|^2$$

= $\left| 1 + \frac{0.058401}{(2)} \times \frac{1}{2} \right|^2$

= 0.1259 dB
ISOL =
$$\left| 1 + \frac{1}{0.03} \times \frac{1}{2} \times \frac{1}{2} \right|^2$$

$$=$$
 87.11 $=$ 19.4 dB

(arc loss) =
$$\frac{P_d}{P_i}$$
 = $\frac{g}{\left|1 + \frac{g}{2}\right|^2}$

$$= \frac{16.667}{\left| 1 + \frac{16.667}{2} \right|^2}$$

$$= \frac{16.667}{87.111} = 0.19133$$

# CY		# CY
CDR, DARCOM 1 ATTN: DRCMT (Mr. F. Michel) 5001 Eisenhower Avenue Alexandria, VA 22333	CDR, Naval Surface Weapons Center White Oak Laboratory ATTN: Library Code WX-21 Silver Spring, MD 20910	1
CDR ERADCOM 1 ATTN: DRDEL-ED (Mr. C. O'Rourke) 2800 Power Hill Road Adelphi, MD 20783	Hq, Air Force Systems Command ATTN: DLCA Andrews Air Force Base Washington, DC 20331	1
CDR ERADCOM 1 ATTN: DELET-RM (Mr. J. Key) Ft. Monmouth, NJ 07703	CDR, MICOM Redstone Scientific Info Center ATTN: Chief, Document Section Redstone Arsenal, AL 35809	1
Director Industrial Base Engineering Activity ATTN: DRXIB-MT (Mr. J. Carstens) Rock Island, IL 61299	NASA Scientific & Tech Info Facility Baltimore/Washington Intl Airport PO BOX 8757, MD 21240	1
Director 1 Army Materials & Mechanics Research Center ATTN: DRXMR-PT (Mr. R. Farrow) Watertown, MA 02172	Director USA Ballistic Missile Defense Advanced Technology Center A.T.N: ATC-R, Mr. G. Jones P.O. Box 1500 Huntsville, AL 35807	1
CDR AVRADCOM 1 ATTN: DRDAV-EXT (Mr. R. Vollmer) 12th & Spruce Streets St. Louis, MO 63166	HQ, ESD (DRI) L.G. Hanscom Field Bedford, MA 01731	l
CDR CERCOM 1 ATTN: DRSEL-LE-R (Mr. M. Ides) Ft. Monmouth, NJ 07703	USA Security Agency ATTN: IARDA Arlington Hall Station Arlington, VA 22212	l
CDR MICOM 1 ATTN: DRSMI-ET (Mr. R. Farrison) Redstone Arsenal, AL 35809 MAJ J. Erbacher 1	Defense Technical Information Center ATTN: DTIC-TCA Cameron Station (Bldg 5) Alexandria, VA 22314	1
AFML/LTE Air Force Materials Lab Wright Patterson AFB, Ohio 45433 TEL 513 255 6744/2280	GIDEP Engineering & Support Dept TE Section PO Box 398 Norco, CA 91760	1
Mr. O. Wilsker 1 Naval Material Industrial Resources Office (Code 226) Bldg 537-2, Naval Base Philadelphia, PA 19112 TEL 215 755 3991/2	Director Naval Research Laboratory ATTN: CODE 2627 Washington, DC 20375	1

# CY	# CY
Rome Air Development Center 1 ATTN: Documents Library (TILD) Griffiss AFB, NY 13441	CDR, US Army Signals Warfare Lab 1 ATTN: DELSW-OS Vint Hill Farms Station Warrenton, VA 22186
Director 10 Electronic Components Lab ATTN: DELET-MH-K (G. Morris) Fort Monmouth, NJ 07703	CDR, PM Concept Analysis Centers 1 ATTN: DRCPM-CAC Arlington Hall Station Arlington, VA 22212
Director 1 Electronic Components Lab ATTN: DELET-MH-K (Mr. V. Higgins) Fort Monmouth, NJ 07703	CDR, Night Vision & Electro-Optics 1 ERADCOM ATTN: DELNV-D Fort Belvoir, VA 22060
Naval Research Laboratory 1 ATTN: Code 5211, Mr. Eliot D. Cohen 4555 Overlook Ave., S.W. Washington, DC 20375	CDR, Atmospheric Sciences Lab 1 ERADCOM ATTN: DELAS-SY-S White Sands Missile Range, NM 88002
CDR, Harry Diamond Laboratories 1 ATTN: DELHD-RAA (Mr. Horst W.A. Gerlach) 2800 Powder Mill Road Adelphi, MD 20783	CDR, Harry Diamond Laboratories 1 ATTN: DELHD-CO, TD (in turn) 2800 Powder Mill Road Adelphi, MD 20783
Defense Communications Agency 1 Technical Library Center Code 205 (P.A. Tolovi) Washington, DC 20305	CDR, ERADCOM l ATTN: DRDEL-CG, CD, CS (in turn) 2800 Powder Mill Road Adelphi, MD 20783
Commander l Naval Electronics Laboratory Center ATTN: Library San Diego, CA 92152	CDR, ERADCOM 1 ATTN: DRDEL-CT 2800 Powder Mill Road Adelphi, MD 20783
Deputy for Science & Technology 1 Office, Asst Sec Army (R&D) Washington, DC 20310	Commander l Picatinny Arsenal ATTN: SARPA-FR-S-P Dover, NJ 07801
HQDA (DAMA-ARZ-D/ 1 Dr. F.D. Verderame) Washington, DC 20310	Commander l US Army Missile Command ATTN: AMSMI-IEVL (Mr. R. Buckelew)
Director 1 US Army Material Systems Analysis Actv	Building 4500 Redstone Arsenal, AL 35809
ATTN: DRXSY-T Aberdeen Proving Ground, MD 21005	Office of Defense Research & Englg 1 Communications and Delectronics Room 3D1027
Commander, DARCOM 1 ATTN: DRCDE	Washington, DC 20330
5001 Eisenhower Avenue Alexandria, VA 22333	CDR CORADCOM 1 ATTN: DRDCO-PPA-TP (Mr. S. Esposito) Ft. Monmouth, NJ 07703

# CY		# CY
Commander 1 US Army Materiel Readiness & Development Command	Commander Air Force Materials Lab ATTN: MATE (Mr. J. Wittebort)	1
ATTN: DRCDE-D 5001 Eisenhower Ave. Alexandría, VA 22304	Electronics Branch Wright-Patterson Air Force Base Dayton, OH 45433	
Commander 1 US Naval Air Development Center ATTN: Library Johnsville Warminster, PA 18974	AFAL (AVTA) Electronic Technology Division ATTN: Mr. Robert D. Larson, Chief Advanced Electronics Devices Branch Wright-Patterson Air Force Base Dayton, OH 45433	I
Chief Naval Ship Systems Command		
Dept of the Navy ATTN: Code 681A2b, Mr. L. Gumina Room 3329	Advisory Group on Electron Devices 201 Varick St., 9th Floor New York, NY 10014	1
Washington, DC 20330	Sperry Rand	1
Commander 1	ATTN: G.L. Hanley Gyroscope Division	
Dept of the Navy ELEX 05143A ATTN: A.H. Young	Great Neck, NY 11020	
Electronics System Command	Watkins-Johnson Co.	1
Washington, DC 20360	ATTN: E.J. Crenscenzi, Jr.	•
Commander 1	3333 Hillview Avenue Stanford Industrial Park	
US Naval Research Laboratory	Palo Alto, CA 94304	
ATTN: G. Abraham 5205 Washington, DC 20390	NARDA	l
	ATTN: John Eisenberg	1
Reliability Analysis Center 1 ATTN: RADC-RBRAC	2900 Coranoda Drive	
Griffiss Air Force Base	Santa Clara, CA 95051	
New York 13441	Varian Associates	1
Commander 1	ATTN: Director of R&D 611 Hansen Way	
Defense Electronics Supply Ctr	Palo Alto, CA 94304	
Directorate of Engineering & Standardization	Rockwell International	,
ATTN: (DESC-ECS) Mr. N.A. Hauck	Science Center	1
Dayton, OH 45401	ATTN: Dr. Daniel Chen	
Commander 1	1049 Camino Dos Rios (PO Box 1085) Thousand Oaks, CA 91360	
Air Research & Development Command ATTN: RDTCT		
Andrews Air Force Base	Sperry Research Center ATTN: Dr. Richard Damon	ì
Washington, DC 20330	Director, Applied Physics Lab	
Commander 1	Sudbury, MA 01776	
Rome Air Development Center	Westinghouse Defense & Space Center	1
Griffiss Air Force Base ATTN: (EMERR) Mr. Regis C. Hallow	Attn: H. Goldie Baltimore, MD 21203	
Rome, NY 13440		

	# CY		#CY
Texas Instruments, Inc. Semiconductor Research & Engle ATTN: Dr. Turner E. Hasty, I P.O. Box 5012, M.S. 72 Dallas, TX 75222		Northrup Corporate Labs ATTN: Library 320-61 3401 West Broadway Hawthorne, CA 90250	1
General Electric Co. ATTN: Mr. J. Eshbach P.O. Box 8 Schenectady, NY 12301	1	Sanders Associates, Inc. ATTN: Microwave Dept. 95 Canal Street Nashua, NH	1
Cornell University School of Electric Engineering ATTN: Dr. W.H. Ku Ithaca, NY 14853	1	Texas Instruments Semiconductor Components Div. ATTN: Semiconductor Library P.O. Box 5012 Dallas, TX	1
MIT-Lincoln Laboratories ATTN: Dr. Richard Laton Room C280, P.O. Box 73 Lexington, MA 02173	1	Western Electric ATTN: Mr. R. Moore Maron & Vine Streets Laureldale, PA	1
RCA Laboratories ATTN: Dr. F. Sterzer Princeton, NJ 08540	1	Varian Associates Solid State Div. 8 Salem Road Beverly, MA 01803	1
Hewlett Packard Corp. ATTN: Dr. Robert Archer Page Mill Road Palo Alto, CA 94306	1	Commander Air Force Materiels Lab Wright Patterson AFB ATTN: AFML/STE (Ms.	1
Alpha Industries, Inc. 20 Sylvan Road Dennis Loger Woburn, MA 01801	1	Dayton, OH 34322 Martin Marietta Aerospace	1
Raytheon Missile Systems Division ATTN: Dick Sparks Bedford, MA	1	Radar, Microwave & Antenna Depts. ATTN: Deen Khandelwal P.O. Box 5837 Orlando, FL 32805	
United Technology Corp Norden Division ATTN: Art Levitan Norwalk, CT	1	CDR, ERADCOM ATTN: DELSD-L-S(STINFO) ATTN: DELET-DD ATTN: DELET-DT ATTN: DELET-B ATTN: DELET-I	1 1 1 1
TRW ATTN: Tim Fong Redondo Beach, CA 90278	1	ATTN: DELET-P ATTN: DELET-E ATTN: DELET-M ATTN: DELET-MJ	1 1 1 1
Dr. Robert H. Rediker MIT Bldg. 13-3050 Cambridge, MA 02139		ATTN: DELEC-MM ATTN: DELET-MF ATTN: DELET-M (contr file) Fort Monmouth, NJ 07703	1 1 1

AD-A11		MICR MM&T JUL	OWAVE PROGR 79 Y	ASSOCIA AM FOR ANAND	TES INC THE EST	BURLII MABLISHI	MENT OF	PRODUC	TION TE	CHNIQU B07-76	F/6 ES FOR- -C-0039	13/8 - ETC(U))
UNCLASS				_			DELE	T-TR-76	-0039	ححت	NL		
AD.	of 2												
							:						
							_						

Research and Development Technical Report DELET-TR-76-0039

MM&T Program for the Establishment of Production Techniques for High Power Bulk Semiconductor Limiters

FINAL REPORT
JULY 1979
CONTRACT NUMBER: DAAB07-76-C-0039

Y. ANAND
MICROWAVE ASSOCIATES, INC.
Burlington, MA 01803

DISTRIBUTION STATEMENT
Approved for public release, distribution unlimited

Copy available to DTIC does not permit fully legible reproduction

Prepared for: US ARMY ELECTRONICS TECHNOLOGY & DEVICES LABORATORY

ERADCOM

US ARMY ELECTRONICS RESEARCH & DEVELOPMENT COMMAND FORT MONMOUTH, NEW JERSEY 07703

DISCLAIMER NOTICE

7

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

Disclaimers

The findings in this report are not to be construed as an Official Department of the Army position, unless so designated by other authorized documents.

The citation of trade names and names of manufacturers in this report is not to be construed as official Government indorsement or approval of commercial products of services referenced herein.

Disposition

Destroy this report when it is no longer needed. Do not return it to the originator.

DELET-TR-0039 July, 1979 REPORT CONTROL SYMBOL OSD-1360

MM&T PROGRAM FOR THE ESTABLISHMENT OF PRODUCTION TECHNIQUES

FOR

HIGH POWER BULK SEMICONDUCTOR LIMITERS

FINAL REPORT

JULY, 1979

CONTRACT NUMBER: DAAB07-76-C-0039

Distribution Statement

Approved for public release; distribution unlimited

Objective of Study

To establish the capability to manufacture "High Power Bulk Semiconductor Limiters" at X-band frequencies per Electronic Command Development Description, DAAB07-76-C-0039, on a pilot line including actual fabrication of test samples and a production run.

Prepared By:

Y. Anand

MICROWAVE ASSOCIATES, INC. Burlington, Massachusetts 01803

Prepared For:

U.S. ARMY ELECTRONICS TECHNOLOGY & DEVICES LABORATORY Fort Monmouth, New Jersey 07703

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM	
ECOM-0039 FINAL	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER	
* TITLE (and Substitle) MM&T Program for the Establishment of Production Techniques for High Power Bulk Semiconductor Limiters		5. TYPE OF REPORT & PERIOD COVERED Final Report July, 1979 6. PERFORMING DRG. REPORT NUMBER	
7. Author(s) Dr. Yoginder Anand		DAAB07-76-C-0039	
Microwave Associates, Inc. Burlington, MA 01803		10. PROGRAM ELEMENT, PROJECT, YASK AREA & WORK UNIT NUMBERS	
U.S. Army Electronics Command Fort Monmouth, NJ 07703		12. REPORT DATE July, 1979 13. NUMBER OF PAGES	
14 MONITORING AGENCY NAME & ADDRESS(II dillerent	from Controlling Office)	15. SECURITY CLASS. (of this report) UNCLASSIFIED 15a. DECLASSIFICATION: DOWNGRADING SCHEDULE	

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

18 SUPPLEMENTARY NOTES

15. KEY WORDS (Continue on reverse side if necessary and identify by block number)
Limiters

Bulk Effect Silicon Processing

Switches

11 ABSTRACT (Continue on reverse aide if necessary and identify by block number)

This report describes the Production Engineering of high power bulk semiconductor limiters for X-band frequencies. A high power bulk semiconductor limiter assembly, consisting of a high resistivity silicon bulk limiter and followed by a two-stage junction diode limiter was developed for the frequency band of 9 - 9.65 GHz. This receiver protector handles 20 kW of peak power at a 0.25 µsec pulse width and 4000 Hz pulse repetition frequency. High volume semiconductor batch processed and fabrication techniques were implemented to obtain this

DD : FORM 1473 EDITION OF 1 NOV 55 IS OBSOLETE

UNCLASSIFIED

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered) low cost and reliable receiver protector. A pilot line was established to fabricate the bulk limiters in production quantities for reliability testing and to supply the U.S. Army with eightyfive (85) units.

TABLE OF CONTENTS

				Page No
REPORT D	OCUM:	ENTATIO	ON PAGE (DD Form 1473)	ii
ABSTRACT				viii
PURPOSE				ix
NAR RATIVE	AND	DATA		хi
I.	TECH	NICAL :	PROGRAM DISCUSSIONS	1
	A. B. C. D. E. F. G. H.	Theory Bulk Se Circuit Design of the Fabrica Fabrica Microv Test Re	ering Phase of Bulk Limiter Operation emiconductor Limiter Design Consideration t Analysis of the Bulk Limiter I Improvements and Final Design Bulk Semiconductor Limiter ation of Bulk Limiters ation of the Bulk-Diode Limiter Assembly wave Measurement Facilities and esults ering Samples	26 48 48
II.	СОМ	PLETE P	ROCESS SPECIFICATIONS	91
III.	QUAL:		NTROL ENVIRONMENTAL TEST	92
IV.	CONC	LUSIO	NS AND RECOMMENDATIONS	93
v.	PUBLI	CATION	18	94
VI.	IDENT	IFICAT	ION OF TECHNICAL PERSONNEL	95
	REFER	ENCES		96
APPENDIX APPENDIX	II	- (Specifications Quality Control Manual Test Procedure	

LIST OF ILLUSTRATIONS

Figure No.		Page No.
1	Section of a Checkerboard Limiter Element	8
2	Excess Mobile Charge Distribution Caused by High Level Microwave	9
3	Built In Electric Field Distribution Around Checkerboard Structure	11
4	Limiter Structure and Equivalent Circuit	14
5	Equivalent Circuit with Series Inductance	19
6	Mid-Band Insertion Loss vs Capacitance and Frequency	19
7	Bandwidth vs Capacitance and Frequency	21
8	X-Band Limiter Design Curve	23
9	Limiting Performance At Other Frequencies	24
10	Bulk Limiter Equivalent Circuit	28
11	Capacitive Tuned Bulk Limiter	31
12	Impedance Plane Analysis of Capacitive Tuned Bulk Limiter	33
13	Bulk Limiter Broadband Tuned With Wide Spaced Capacitors	36
14.	Resonant Circuit Broadband Tuning of Bulk Semiconductor Limiters	37
15	Admittance Plane Analysis of Circuit 14(b)	39
16	Three-Stage Filter Test	43
17	Two Stage Filter Test	45
18	Return Loss Characteristics of Limiter Input Filter	47
19	Single-Slot Bulk Limiter	52
20	Low-Level Performance of Single-Slot	53

LIST OF ILLUSTRATIONS (Cont'd)

Figure No.		Page Nc.
21	Dual-Slot Bulk Limiter	54
22	Low-Level RF Performance of Single-Slot Bulk Limiter	55
23	Diode Limiter Cross Section	56
24	Equivalent Circuit of a Diode Mount	5 7
25	Simplified Diode Equivalent Circuits	58
26	Clean-Up Limiter Cross-Section	59
27	Clean-Up Limiter Schematic	61
28	Bulk Diode Limiter	62
29	Low-Level Microwave Test Facility	64
30	Microwave High-Power Test Facility	65
31	Recovery Time Measurement	68

LIST OF TABLES

Table No.		Page No.
I	Bulk Limiter Chip Processing	69
II	Bulk Diode Limiter Package	70
III	DC Characteristics of Bulk Limiter Chips	71
IV (a&b)	Low and High Power Test Results of First Engineering Samples with Clean-Up Limiter	72 73
V (a&b)	Low and High Power Test Results of First Engineering Samples without Clean-Up Limiter	74 75
VI(a)	Test Data Dual and Single Slot Bulk Limiters without any Clean-Up Limiter	76
VI(b)	Test Data Bulk Limiters in Package with Clean-Up Limiter	79
VII	Confirmatory Results	82
VIII	Pilot Line Sample Results	85
ΙΧ	Pilot Line Sample Results	88

ABSTRACT

This report describes the Production Engineering of high power bulk semiconductor limiters for X-band frequencies. A high power bulk semiconductor limiter assembly, consisting of a high resistivity silicon bulk limiter and followed by a two-stage junction diode limiter was developed for the frequency band of 9 - 9.65 GHz. This receiver protector handles 20 kW of peak power at a 0.25 µsec pulse width and 4000 Hz pulse repetition frequency. High volume semiconductor batch processes and fabrication techniques were implemented to obtain this low cost and reliable receiver protector.

A pilot line was established to fabricate the bulk limiters in production quantities for reliability testing and to supply the U.S. Army with eighty-five (85) units.

PURPOSE

The objective of this program is to establish a production capability to manufacture High Power Bulk Semiconductor Limiters per U. S. Army Electronics Command Technical requirements SCS-486.

The specification covers X-band high power bulk semiconductor limiter and low power multistage clean up limiter. Four fundamental requirements are detailed in the specifications. They are, (1) recovery time (2) high power capability, (3) insertion loss and (4) VSWR.

A total of fifteen (15) engineering sample limiters, twenty (20) confirmatory sample limiters and fifty (50) pilot run production limiters will be supplied. A pilot line capable of producing 100 bulk semiconductor limiters per month will be demonstrated. Reports and documentation as required in Sections E, F, G, and H of DAAB07-76-Q-0040 and as detailed in Section 3.5 of ECIPPR No., 15, dated December 1975, will be provided.

The program divides into the following four phases, Phase I - Engineering Samples (300 days), Phase II - Confirmatory Sample Production (240 days), Phase III - Pilot Line Production (180 days), and Phase E' - Final Documentation (30 days). The total program duration is 750 days.

During Phase I of this program, a number of factors in fabricating bulk semiconductor limiters are being investigated. These include iris formation, circuit configuration, material characterization and chip at Efforts during Phase I will be directed toward selecting a single immediately design capable of meeting the objectives of SCS-486.

The optimum device design will be chosen at the end of Phase 1. In Phases II, III, and IV a single device design will be produced.

The major effort of this program will be realization of a single bulk limiter design which meets all the objectives of SCS-486. Individually,

any of the goals described can be currently obtained. Recognizably, it is the development of a single component design which achieves all of the desired performance parameters that is the formidable engineering and manufacturing endeavor.

NARRATIVE AND DATA

This Final Report, in accordance with ECIPPER, No. 15, is divided into three sections. These sections are as follows:

- I Technical Program Discussions
- II Complete Process Specifications
- III Quality Control Environmental Test Methods

I. TECHNICAL PROGRAM DISCUSSIONS

The objective of this Manufacturing Methods and Technology Engineering program was to establish the producibility of the X-band bulk semiconductor limiter and the X-band two-stage PIN limiter by mass-production techniques. The planned production rate was the pilot line capability of one-hundred (100) bulk limiters per month.

Originally, the bulk semiconductor limiter requirements were those called for per the Electronics Command Technical requirements SCS-486 and Amendments to the specification dated 28 March 1975. Based on performance capability established by the engineering samples provided on this program, a revised production specification was established to be used for the preproduction devices for the confirmatory samples and pilot line production.

The final specification of the bulk semiconductor - limiter assembly is given in Appendix I. The pertinent specified characteristics of the limiter are listed below.

• High Power (measured at 9.3 \pm 0.3 GHz)

Peak Power : 20 kW
Pulse Length : 0.25 µsec
Duty Cycle : 0.001

Recovery Time

- to within 10 dB of low level loss: 1 μ sec - to within 6 dB of low level loss: 2 μ sec - to within 3 dB of low level loss: 3 μ sec Maximum Flat Leakage: 50 mW Maximum Spike Leakage: 750 mW

<u>Low Power</u>: (measured throughout the 9.0-9.65 GHz Range)

Maximum Insertion Loss: 1.3 dB

Maximum VSWR : 1.7

External Bias : NONE

Absolute Rating Objectives:

PARAMETER	SYMBOL	MINIMUM	MAXIMUM	UNIT
Frequency	F	9.0	9.65	GHz
Peak Power	P		20	kW

About half-way through the program, a contract modification was made, also increasing the number of confirmatory samples (from limiter assemblies) from four (4) to twenty (20) units.

The overall program schedule, as was actually carried out, is given on the following page.

OVERALL PROGRAM SCHEDULE

		 COMPLETIC	N DATE
PHAS	SE I : ENGINEERING		
•	Design	September	1976
•	Shipment of First Lot of Engineering Samples (five limiters, one clean-up limiter)	October	1976
•	Design Improvement I Shipment of Second Lot of Engineering Samples	January	1977
•	Design Improvement II Shipment of Third Lot of Engineering Samples	April	1977
PHAS	SE II : PREPRODUCTION		
•	Manufacture of Preproduction Samples	February	1978
•	Approval of Test Facilities	March	1978
•	Confirmatory Sample Testing	April	1978
•	Delivery of Confirmatory Samples (twenty bulk limiters, 20 clean-up limiters)	July	1978
•	Acceptance of Preproduction Samples and Authorization to Proceed with Pilot Line	November	1978
PHAS	SE III: PILOT LINE		
•	Preparation of Inspection and Quality Control Plan	February	1979
•	Approval of Above Plan	March	1979
•	Manufacture of Bulk Limiters for Pilot Run Qualification Testing and Shipment of Pilot Run (forty bulk limiters, 40 clean-up limiters)	April	1979

OVERALL PROGRAM SCHEDULE (Cont'd)

	COMPLETION DATE
PHASE III: PILOT LINE (Continued)	
Preparation of the FINAL Report	July 1979
 Preparation of the General Report on Step II 	July 1979
Preparation of the Bill of Materials	July 1979

A. Engineering Phase

The object of this program was to establish the producibility of the X-band bulk semiconductor limiter and the X-band lower power diode multi-stage limiter by mass-production techniques. The two important goals of this Engineering Phase were:

- 1. Optimize the circuit design of the composite limiter to meet SCS-446 objectives.
- 2. Incorporate changes into the basic design developed by RRC which facilitate the manufacture and improve the production yield of production limiter components.

The complete circuit analysis, diode improvements, and final design are discussed in the next two sections.

B. Theory of Bulk Limiter Operation

1. Basic Operation

of high resistivity silicon with two sintered or diffused ohmic contacts. The contacts were connected to a high impedance microwave transmission limit 1-3 circuit. The device has since been developed with improved passivation 4-7 circuit and thermal designs. A major change in the contact surfaces of the device, checkerboard contacts, has been developed which improves the isolation state performance by permitting microwave fields to cause holes and electrons to be injected into the high resistivity silicon. The new social structure also accelerates recombination of holes and electrons after a microwave pulse has terminated; thus, it reduces the recovery time of the device to the order of one microsecond from previous values of approximately ten microseconds.

In operation at low microwave field intensities the bulk limiter element with checkerboard contacts behaves as a high Q capacitor. Thus if it is incorporated into a parallel resonant circuit shunting a waveguide, microwave signals will pass with minimal attenuation at the resonant frequency. At higher power levels the microwave electric field across the device both electrons and holes to be injected into the high resistivity bulk region of the device. These carriers reduce the resistivity of the bulk element of changes its characteristics from a high Q capacitor to a capacitor with should conductance. The table below shows conductivity values calculated from microwave limiting data of bulk limiters at 9.3 GHz as a function of rms microwave field intensity.

E (V/cm)	0 (mho/cm)	o (ohm/cm)
100	3.33×10^{-4}	3000
1,000	1.12×10^{-3}	891
10,000	1.48×10^{-2}	67.7
20,000	4.76×10^{-2}	21
40,000	3.0×10^{-1}	3.3

The isolation state with increased conductance is a non-equilibrium state much like a PIN diode under forward bias. The major difference between the bulk limiter and a thick based PIN diode is the contacts. The checker-board limiter can be self-biased into conduction by a microwave field while a PIN can not. For this reason a thick based PIP, NIN, or PIN structure would all be expected to perform similarly with no limiting until an avalanche field intensity is reached somewhere within the device.

2. Microwave Field Conductivity Modulation

Figure 1 shows an exploded view of a section of a checker-board contact limiter element. Checkerboard P-N doped contacts are present on each side of the limiter element. The central region is high resistivity silicon which is typically about 3 mils thick.

Figure 2 shows the effect of applying a high level microwane field across the device. Only the top contact is shown, but it will be understood that the bottom contact functions in the same manner. In Figure 2a the excess mobile carrier distribution is shown before bias is applied; there are no excess carriers. In Figure 2b the carrier distribution as a result of the first positive half cycle is shown. Mobile carriers, holes, build up a space charge within the intrinsic material. During the negative half cycle, most of the holes are removed by the electric field. The holes near the shorted P-N junction of the contact surface are not removed, however, as their space charge is neutralized by extra electrons injected by the N doped region. This

FIGURE : SUSTION OF A CHECKERBOARD LIMITER ELEMENT

a) NO BIAS

d) AFTER ONE COMPLETE CYCLE

FIGURE 2 EXCESS MOSILE CHARGE DISTRIBUTION

CAUSED BY HIGH LEVEL MICROWAVE

effect is shown schematically in Figure 2(c). At the end of a complete cycle the excess mobile carrier distribution is as shown in Figure 2(d).

The net effect of the checkerboard contact structure is to permit a neutral hole-electron plasma of excess carriers to be injected at the shorted surface P-N junctions in response to an applied microwave electric field.

This plasma has the effect of modulating the bulk conductivity of the intrinsic region so the increase in shunt conductivity across the device terminals can be used to produce a limiting phenomenon. After a short turn-on (spike leaker period, the plasma is distributed substantially uniformly throughout the intrinsic region of the limiter element.

3. Recovery from the Plasma Limiting State

The hole-electron plasma which causes the limiter to extinition isolation performance is present at the end of the high power microwave pulse. After the pulse is over, the plasma must recombine or otherwise be removed from the intrinsic region before the device can return to its low level transmission state. In a PIN diode the built in electric field at the P-I interface prevents electrons from entering the degenerate P region and recombining. Also a similar field at the N-I junction prevents holes from entering the degenerate N region and recombining there.

Figure 3 shows the electric field distribution that is always present at the interface between intrinsic silicon and a checkerboard contact. Far from the shorted surface junction the fields are as they would be in a normal N-I or P-I junction; hence, little recombination occurs there. Near the shorted junction, however, a large electric field exists which drifts excess holes into the P doped contact region and excess electrons into the n doped region. This carrier flow causes an equal current to flow in the metallization layer which shorts the N and P region. The contact surface behaves very much like a shorted silicon photo cell junction. Thus, the checkerboard contact has a matrix of shorted P-N junctions whose built-in

FIGURE 3 BUILT IN ELECTRIC FIELD DISTRIBUTION AROUND CHECKERBOARD CONTACT STRUCTURE

potential recombines holes and electrons when no microwave field is present.

It is this high rate of surface carrier recombination caused by the checkerboard's shorted junctions that is responsible for the rapid recovery of the bulk limiter to the dielectric transmission state from the conductivity modulated isolation state.

C. Bulk Semiconductor Limiter Design Consideration

1. Introduction

The bulk semiconductor limiter is a small, lightweight, solid state device. It has good peak power capability but is limited somewhat in average power ability. It turns on very rapidly (less than 1 nsec), producing an attenuated leakage spike which is only 3 to 7 dB above the ultimate flat depending upon the construction and operating conditions.

2. Choice of Circuit Structure

From basic avalanche phenomenon considerations, it is evident that to achieve appreciable nonlinearity for an applied signal, a field intensity corresponding to the threshold voltage of several tens of kilovolts/cm, would have to be obtained for a silicon limiter. Thus, a microwave structure in a waveguide which would provide a concentration of electric field across a gap of typically 10 mils is needed. Further, the circuit structure employed with the bulk limiter element should yield negligible insertion loss for low signal levels. One of the simplest structures to meet these requirements is the resonant iris.

Thus, for the purpose of evaluating basic limiting properties as well as determining the physical changes occurring in the bulk element, a horizontal slot (typically 25 x 450 mils) is used to form X-band iris. (See Figure 4). This iris in turn is simply sandwiched in between two waveguide flanges (sections) to insert the limiting component into a microwave system. The empty iris is designed to appear inductive at the operating frequency (resonant at a much higher frequency) such that the capacitive loading produced by the relatively lossless ($Qp \approx 500$) silicon element placed across the center of the iris slot would yield a resonant structure. As a result, shunt losses representative of the high resistivity

a) LIMITER STRUCTURE

FIGURE 4 LIMITER STRUCTURE AND EQUIVALENT CIRCUIT

silicon element (at low signal levels) and the metallic diaphragm determine the equivalent shunt conductance appearing across the waveguide and thus the insertion loss. When this circuit structure is exposed to high microwave field intensities, the bulk element becomes progressively more conductive. The transmission of power through the iris slot is thus limited, and the circuit acts primarily as a reflective termination to the incidence power.

In addition to providing the desired low and high power transmission and reflective states, this simple structure also provides moderate 3 dB down bandwidth (typically 10%) in the low level transmission state while yielding the high field concentration at the silicon element. Further, the structure provides good thermal conductance from the element to the heat sink provided by the waveguide walls. This fact insures high power dissipation capability for long pulses and moderate repetition rates.

3. Bulk Semiconductor Limiter Design Characteristics

The derivation and basis for the equations and relationships pertaining to the electrical operation of bulk semiconductor limiters are discussed in references 1 to 8, and will not be repeated in detail here. The objective of the present section is to develop a set of limiter operating characteristics using in a simple manner the expressions developed in the previous reports.

4. Low Level Loss and Bandwidth

The limiter chip positioned in its resonant microwave iris appears as a transformer coupled shunt loading (Y) to the waveguide transmission line (\mathbb{Z}_0). Figure 4 shows the physical limiter structure and its equivalent electrical circuit. The insertion loss (IL), which is defined as the incident power (\mathbb{P}_i) divided by the transmitted power (\mathbb{P}_t), is given by the following expression:

IL =
$$\frac{P_{in}}{P_{t}}$$
 = $\left(1 + \frac{YZ_{o}}{2}\right)^{2}$ (1)

Inserting the circuit elements yields the expression below. 1

IL =
$$\left(1 + \frac{n^2 G}{2}\right)^2 + \left(2 \pi df C n^2\right)^2$$
 (2)

fo + df = operating frequency in hertz where

> fo = circuit resonant frequency $n = transformer turns ratio in (ohms)^{1/2}$

Transmission line impedance is normalized to unity.

limiter element conductance in mhos

This assumes that the dominant loss is in the silicon.

limiter element capacitance in farads

Note that at resonance the last term in Equation (2) is zero. The remaining expression relates the mid band insertion loss to the element conductance, which can in turn be related to the silicon conductivity.

$$G = \sigma C/\epsilon$$

limiter element conductivity in mho/cm where

dielectric constant of silicon element in farads/cm

The relation for the turns ratio (n) is the most controversial of those used in this development. The turns ratio basically represents the coupling between the resonant iris circuit and the transmission line. It is therefore dependent upon the dimensions of the iris openings. It is also dependent upon the limiter element mounting structure and its associated parasitic reactances.

If an iris of fixed height and thickness is loaded with capacitances of different values, a linear relationship is experimentally found between the square of the turns ratio and the element capacitance. Further, if all dimensions are scaled, n^2 will remain constant. Thus, the following empirical relationship results:

$$n^2 = k \quad C(pF) \quad f(GHz) \tag{4}$$

where k is a constant for a given iris type. The factor k is evaluated using experimental capacitance and bandwidth data in conjunction with Equation (2).

Using the relations presented so far, graphs can be generated relating the insertion loss and bandwidth to the element capacitance and operating frequency.

The data provided in this report is generated using the circuit shown in Figure 5. The series inductance element (LW) is added to remission the inductance of the current mounting structures which employ relatively thin wire bonded to the dot contact on the limiter element. The resistive element (R) provides for metallic losses, but these are usually small compared to those in G. The inductance (L) is transformed to the other side of the transformer in Figure 5 simply for convenience. This causes no change in the analysis.

In using the circuit of Figure 5 to calculate the turns ratio (n), the equivalent capacitance of the R-LW-G-C combination must be used in Equation (4). The low level conductance (G) and capacitance can be obtained directly from the element bulk properties and geometry. Assuming R to be negligible LW and n can be obtained from experimental data of the 3 dB bandwidth and maximum achievable (saturation) isolation. The inductance parameter (L) is adjusted to provide resonance at the frequency of operation.

At 8.25 GHz, a limiter with an element capacitance of 0.08 pF is measured to provide a 1.0 GHz bandwidth and 28 dB isolation at saturation. For these conditions, LW is calculated to be 1.18 nH and n² is specified by Equation (4) and LW is adjusted to provide a constant impedance. Effects due to the variation of transmission line impedence with frequency are considered of secondary importance in relation to the purposes here and are neglected.

Having thus specified all the component values of the circuit in Figure 5, the low level insertion loss is computed and presented in Figure 6 as a function of capacitance for several frequencies. As expected, higher capacitance and higher frequencies exhibit higher loss. In comparison with previous calculations, the effect of adding the LW term is to narrow the tolerable range of capacitance for a given loss range. Typical capacitance values for about 0.4 dB loss are listed below for several frequencies.

CAPACITANCE (pF)	FREQUENCY (GHz)
0.150	3.5
0.075	9.5
0.050	16.5
0.030	35.0

FIGURE 5 EQUIVALENT CIRCUIT WITH SERIES INDUCTANCE

CAPACITANCE (pF)

FIGURE 6 MID-BAND INSERTION LOSS vs CAPACITANCE AND FREQUENCY

The 3 dB bandwidth resulting from the circuit in Figure 5 is presented in Figure 7 as a function of capacitance and frequency. The midband insertion loss can be estimated from the dashed lines provided on the graph corresponding to 0.1, 0.4, and 1.0 dB loss.

5. High-Power Limiting

The limiting characteristic is defined by the graph of transmitted power (P_t) versus incident power (P_{in}). As discussed previously, the insertion loss (IL) is given by P_{in}/P_t and is dependent upon the limiter element conduction (σ). At low levels σ is essentially constant having a value dependent upon the impurities in the semiconductor. At higher levels, the value of σ increases due to the impact ionization and the creation of electron-hole pairs which occur in the semiconductor at high electric fields. Both theoretical and empirical expressions relating σ and the average electrical field (E) were described in reference 1. An empirical relation is used in the present design work and is given below:

$$E(\sigma > 0.03) = \frac{\ln (\sigma + 0.00775) - \ln (0.008)}{1.035 \times 10^{-4}}$$

(5)

$$E(\sigma < 0.03) = \frac{\ln \sigma - \ln (0.00754)}{9.21 \times 10^{-5}}$$

This relation was obtained using data from X-band components.

FIGURE 7 BANDWIDTH vs CAPACITANCE AND FREQUENCY

The transmitted power (P_t) is the transmission line voltage squared at the output port divided by the line impedence (Z_o). The transmitted voltage is conveniently obtained by transforming the limiter element voltage which is the limiter element thickness (W) times the average electric field (E), back to the transmission line by means of the circuit in Figure 5. Thus, by choosing values for σ , it is possible to calculate corresponding values for the insertion loss, and the input and output power levels. This data is presented in the limiting characteristics of Figures 8 and 9.

Before discussing these limiter design curves further, consider briefly the temperature within the limiter element. As the peak incident power is increased, the peak element temperature will increase. The temperature distribution and time factors were considered in detail in reference 2. It was indicated there that for the purpose of comparing element geometries a simple thermal capacitance model could be used for pulse lengths of around 1 µsec or less and low duty cycles. Peak temperatures are calculated for this model by means of Equation 6.

TEMP =
$$25 + \frac{P_{\text{in}}^2 \left(\frac{1}{\sqrt{\text{IL}}} - \frac{1}{\text{IL}}\right) \text{tp } \epsilon}{1.77 \text{ Cs W}^2}$$
 (6)

where

Temp = peak temperature at end of RF pulse $(^{\circ}C)$

tp = RF pulse length = $1 \mu sec$

Cs = silicon capacitance (farads)

W = element thickness (cm)

X-BAND HAMPER

PEAK TRANSMITTED POWER

FI 1 . . 9 CIMITING PERFORMANCE AT OTHER PROFESSION

The limiter curves in Figures 8 and 9 are terminated at the power level where the peak temperature reaches 250° C. The large dot on the curves indicates a peak temperature of 125° C. Temperatures resulting from operation with pulse lengths other than 1 µsec will be different and can be calculated using Equation 6.

The design curves in Figure 8 portray the limiting performance to be expected at 9.5 GHz (X-band) by limiters using elements of two different thicknesses (3 and 6 mils). As expected, higher capacitance units provide higher isolation and power capability. For a given capacitance, elements twice as thick give approximately 3 dB less isolation and have about 4 times the power capability.

Notice also from the curves of Figure 8, the rather strong dependence of limiter performance on the element capacitance. Most of the X-band units built during the program have capacitance values in the 0.07 to 0.12 pF range and gave performance as indicated by the 9.5 GHz design curve of Figure 9 which is for 0.075 pF.

Double slit units with an element in each slit are electrically similar to a single slit, single element unit where the capacitance value is equivalent to the series combination of the two element capacitances and the one extra wire inductance (LW). The double slit experimental limiter provided performance in accordance with the 0.05 pF, 6 mil curve of Figure 8.

Notice in Figure 9 that useful limiting performance is projected for all of the frequencies presented. Although the low level loss is the same for these curves, the bandwidth is not (reference Figure 7).

In summary, this section has provided data and curves relating the physical element parameters to the limiting performance expected. This information is useful both in assessing operation in new applications and also in providing the actual fabrication design data.

D. Circuit Analysis of the Bulk Limiter

1. Introduction

The bulk semiconductor limiter element is a high impedance microwave device which has an electrical conductivity which is a function of the microwave voltage across the device. The circuit with which the element is used must meet certain requirements to yield optimum low and high power microwave performance. For example, incident low level microwave power absorbed by the device contributes to insertion loss. The percentage of low level power absorbed by the device can be easily reduced by lowering the circuit impedance at the limiter element terminals. Note that for any given limiter element that lowering circuit impedance would also widen the bandwidth substantially as the capacitive susceptance of the limiter element would have a smaller effect in the lower impedance circuit. Thus, lowering the circuit impedance presented across the limiter element terminals improves the low level characteristics of the completed component.

An examination of the high power isolation state of the limiter device shows the lowering the circuit impedance at the element terminals reduces the isolation which results from a given element conductance. The reduction in isolation results in an increase in dissipated power within the device and consequently reduced power handling capability and increased return loss. Thus, lowering the impedance at the element terminals degrades all high power performance characteristics.

As a consequence, it is necessary to select the transmission line impedance presented to the limiter element terminals at a compromise value which provides both optimum high level and low level performance. Further, in designing tuning circuits to provide for broadband

26

NOTE* ECOM-0292F - Bulk Semiconductor limiter DAAB07-72-C-0292 PP 23 - 36.

(a) NORMALIZED TO 1.0 OHM

(b) IN REDUCED IMPEDANCE LINE

FIGURE 10 BULK LIMITER EQUIVALENT CIRCUIT

D-15463

low level characteristics, it must be remembered that high power performance will be affected by the choice of that design. For optimum performance over the band of operation, a frequency independent impedance at the element terminals is desired.

2. Example

To illustrate the effects of the impedance at the plane of the limiter element, consider the case of the bulk limiter design shown in Figure 10(a). The design has been simplified by eliminating the turns ratio and transforming the reactance values to a normalized 1 ohm transmission line.

Let us consider the following experimental parameters under low and high power conditions of the circuit in Figure 10 (a).

Circuit [10a] Low Power

 $f_0 = 9.32 \text{ GHz}$

BW (3 dB) = 1.25 GHz

IL = 0.25 dB

Circuit [10a] High Power

Isolation = 24.9 dB

Fractional Power Dissipated $\frac{P_d}{P_i} \approx 0.107$

The relationships: (for details see Reference 11)

$$\frac{P_i}{P_t} = \left[1 + \frac{YZ_0}{2} \right]^2$$

and

$$\frac{P_{d}}{P_{i}} = \left| \frac{Z_{o}G}{\frac{Y Z_{o}}{2}} \right|^{2}$$

are used to calculate $\mathbf{R}_{\mathbf{T}}$ parameters.

 R_T (Low-Power) = 17.12 Ω and R_T (high-power) = 0.03 ohm*

Now, assume that the transmission line has a lower impedance in the plane of the limiter element caused by the matching circuitry used. The impedance of the circuit shown in Figure 10(b) is reduced by a factor of two to a value of 0.5 ohm. Again, calculating the low and high power performance of the limiter circuit yields:

- Circuit [10b] Low Power (R_T = 17.12 ohms)
 f_O = 9.32 GHz
 BW (3 dB) = 2.5 GHz
 Calculated Insertion Loss = 0.13 dB*
 Circuit [10b] High Power (R_I = 0.03 ohm)
 Calculated Isolation = 19.4 dB*
 Calculated Fractional Power Dissipated Pd/P.
- * For details see Appendix IV.

Thus, while the circuit of Figure 1(b) improved low power performance greatly by minimizing the insertion loss and broadening the bandwidth of the device, it did so only at the expense of high power performance. The isolation was reduced from 24.9 dB to 19.4 dB and the power absorbed by the device from the incident microwave pulse increased by a factor of 1.79. Thus, the power handling capability of the device was reduced by a similar factor.

The above example was given to illustrate that the impedance presented by the circuit to the limiter element terminals is extremely important in its effects on device operation and power handling capability. A bulk limiter element will be capable of dissipating a fixed amount of energy during a high power microwave pulse. Therefore, in order to maintain both good high and low power performance characteristics, the matching circuitry used to couple the bulk semiconductor state to the lower power stages must be well understood.

3. Capacitive Tuning

Now examine the effect of using symmetrical capacitive tuning arrangement on either side of the bulk limiter. Figure 11(a) shows the geometrical arrangement of tuning screws which will successfully match present bulk limiters to the low level PIN stages at low power levels. Figure 11(b) is an equivalent circuit of the above structure with the wavegard impedance and limiter element values normalized to 1 ohm. C_T represents the capacitance of the tuning screws in the transmission line.

The object is to match the power from the one ohm input port to the load resistor over the frequency band of interest. For the sake of simplicity, we can analyze the transmission state with $R=\infty$, the lossless case. From the transmission line theory, it is known that if one

FIGURE 11 CAPACITIVE TUNED BULK LIMITER

D-15464

divides the transmission line at any point, the impedance of the portion looking toward the source must equal the complex conjugate of the impedance of the portion looking toward the load for maximum power transfer to occur. Thus, if a matched transmission line circuit were cut and the impedance of the load portion were measured at

$$Z_{T} = 0.7 + j 0.5 \text{ ohm}$$

then it follows that the impedance of the source portion would be

$$Z_{S} = 0.7 - j 0.5 \text{ ohm}$$
.

Similarly, if a symmetric circuit were divided at the center, it follows that for a matched condition to exist the impedance of both halves would necessarily be real and equal.

This leads to the analysis of the circuit of Figure 11(b) at 9.32 GHz. The Smith chart of Figure 12shows the impedance of the circuit calculated from the load end. Assume a susceptance value of +j 0.7 has been used for $C_{\rm T}$. Point A is the impedance of the 1 ohm load and transmission line. Point B includes the susceptance of the load side capacitor $C_{\rm T}$. At Point B, the impedance of the cirt looking toward the load is $Z_{\rm B} = 0.67 - {\rm j}~0.47$ ohm. As we move back toward the generator by approximately 1/10 wavelength, Point C, we find the impedance to be entirely real with a value of 0.5 ohm. At resonance, 9.32 GHz, the limiter circuit appears as an open circuit (lossless case) and the impedance at Point D is the same as that at Point C. Moving back another 1/10 wavelength yields a load impedance from Point E of $Z_{\rm E} = 0.67 + {\rm j}~0.47$. This inductive component is cancelled out by the generator side susceptance

FIGURE 12 IMPEDANCE PLANE ANALYSIS OF CAPACITIVE TUNED BULK LIMITER

of C_T = j 0.7 mhos yielding a load side impedance of 1.0 ohms at Point F. Analysis of the same circuit at the band edges of 9.0 and 9.65 GHz yields the following results:

Without Tuning:

fo	s ₁₁	IL
9.0 GHz	0.46 <) -63 °	1.04 dB
9.32 GHz	0 <) 0 0	0.0 dB
9.65 GHz	0.46 <) +63 °	1.04 dB

With Tuning Capacitors spaced 0.098 λ at 9.32 GHz, B = 0.7 mhos @ 9.32 GHz

f o ~	S ₁₁	IL
9.06 GHz	0.24 <) 179 ⁰	0.26 dB
9.32 GHz	0 <) 0°	0.0 dB
9.65 GHz	0.22 <) -38 °	0.21 dB

In performing the analyses, the following impedances were noted as a function of frequency at the iris plane [Point C in Figure 11(a)]:

Frequency	Admittance	Impedance
9.0 GHz	1.91 + j 0.06	0.523 - j 0.016
9.32 GHz	1.98 + j 0	0.505 + j 0
9.65 GHz	2.03 - j 0.1	0.491 + j 0.012

Thus, it is seen that the effect of the two tuning capacitors of Figure 11(a) is primarily to lower the circuit impedance at the plane of the resonant limiter iris. Very little reactive tuning occurs because the capacitors do not present a rapidly varying susceptance at the window plane.

4. Circuits for Consideration

It has been shown that waveguide tuning circuits which do not present rapidly varying reactance at the limiter element plane can only improve low level performance by reducing the resistive impedance component at the limiter element plane. This deteriorates the high level performance severely. Hence, only circuits with long spacial dimensions or rapidly varying reactance versus frequency characteristics will be capable of providing the desired performance (see Figure 13).

Circuits capable of providing the desired performance are shown in Figure 14. Both circuits will show a mid-band frequency shift either upward (for spacings of approximately 0.17 λ) or downward (for spacings of approximately 0.33 λ). One of these two circuits or a variation thereof will have to be used for achieving broadband performance from the bulk limiter in a short length of waveguide.

FIGURE 13 BULK LIMITER BROADBAND TUNED WITH WIDE SPACED CAPACITORS

(a) SINGLE TUNING CIRCUIT DESIGN

(b) DOUBLE TUNING CIRCUIT DESIGN

FIGURE 14 RESONANT CIRCUIT BROADBAND TUNING OF BULK SEMICONDUCTOR LIMITERS

D-15467

Analysis of the two circuits shown in Figure 14 produces the conclusion that circuit 14(b), the double tuning circuit, will provide the best limiting performance. Figure 15 shows a complete analysis of circuit 14(b) using the following circuit parameters:

• <u>Limiter Iris Parameters</u>

 $f_0 = 9.15 \text{ GHz}$

BW (3 dB) = 1.25 GHz

 $R = \infty \text{ (lossless case)}$

C = 254.6 pF

L = 1.88 pHy

• Tuning Iris Parameters

 $f_{O} = 9.15 \text{ GHz}$

BW (3 dB) = 2.50 GHz

C = 127.3 pF

L = 2.376 pHy

Tuning Iris to Limiter Spacing

Spacing = 0.191λ at 9.15 GHz

The analysis was carried out at five frequencies within the operating bandwidth 9.0, 9.15, 9.35, 9.5, and 9.65 GHz. The curves on the admittances plane plot (Figure 15) represent the various lettered points on the circuit diagram [Figure 14(b)] as a function of frequency. All curves are labeled at their low frequency end and the 9.15 GHz point on all curves is coincident with the origin. The input admittance to the circuit (Plane E admittance) is shown by points labeled X on the Smith chart.

FIGURE 15 ADMITTANCE PLANE ANALYSIS OF CIRCUIT 5b

D 15468

It is important to note two factors in this analysis. First, very good matching was obtained over the 9.0 GHz to 9.65 GHz frequency range of interest. The magnitude of S₁₁ is less than 0.14 for all frequencies. This corresponds to a return loss of greater than 17 dB which more than meets the VSWR specification of 1.4:i. Second, the impedance at the limiter element plane does not vary too much with frequency. This can be seen by reading the conductance value off of either curve B or C as a function of frequency. Minimum conductance is 0.78 mhos; maximum is about 1.13 mhos. Thus, the impedance variation is 1.45 to 1. Careful examination of the Smith chart shows that this can be reduced still further by a slightly wider spacing of the tuning elements.

5. Recommended Circuit Configuration for a Multi-Stage Limiter

It is recommended that the left portion of the circuit, Figure 14(b), be the tuning design for the multi-stage limiter component; thus, the circuit should consist of:

- (a) An input pressure window resonant at 9.1 9.15 GHz, with a bandwidth of twice the limiter bandwidth.
- (b) A section of waveguide transmission line approximately 0.19 wavelengths long at the iris f.
- (c) The bulk limiter stage (minimum bandwidth approximately 1.35 GHz).

The remaining reactive tuning, supplied at Plane A ir. Figure 14(h) can be supplied by the low level limiter stage provided that the spacing between the bulk limiter and the low level stage has the proper value.

It is very important to note that as long as the circuit to the left of the bulk limiter contains only those components and

spacings specified, no tuning element placed on the right of the bulk limiter will affect power handling capability adversely. Thus, tuning screws and the like can be used as desired to obtain low frequency performance.

6. Test of Three-Stage Filter Design

A three-stage filter design was analyzed at RRC for achieving the necessary tuning. The bulk limiter stage was assumed to have the following characteristics of frequency and bandwidth:

BW (3 dB) = 1.25 GHz

These values were based, in part, on the results of the first engineering samples. The 1.25 GHz bandwidth should be obtainable simultaneously with a 30 kW power capability if two bulk limiter elements are used in either a double or single slot iris.

Two passive irises with the same center frequency, 9.15 GHz, and twice the 3 dB bandwidth or 2.5 GHz, were used in the design. The completed filter structure has a passive tuning iris, the active bulk semiconductor limiter, and a second passive tuning iris all separated by 0.19 wavelength spaces. The theoretical analysis indicated a bandwidth considerably in excess of the needed 650 MHz. Further, the analysis showed minimal impedance variation of the limiter plane as a function of frequency. Hence, good performance was anticipated.

Unfortunately, in high power testing the circuit, it was found that the electric field across the input tuning iris was very high and arcing occurred during high power testing. Thus, without development of a tuning resonator capable of withstanding the high power pulses without arcing, this circuit cannot be used.

In order to evaluate the effectiveness of the three-stage tuning mechanism, a test was run at RRC to optimize the structure for input VSWR. The test included a two-stage diode limiter similar to MA3940X as part of the structure. No tuning screws were used to optimize the structure, as tuning screws in front of the bulk limier will reduce the impedance at the limiter. The overall mechanical arrangement is as shown in Figure 16, as are the parameters of the three resonant irises used in the experiment. The result of the test was a return loss of 16 dB or greater over the frequency range of 9.080 to 9.805 GHz or a 1.38:1 VSWR over a 725 MHz bandwidth. The insertion loss varied from 0.9 dB at the bottom of the passband to 0.7 dB over the rest of the operating bandwidth.

Thus, the three-stage filter in front of the diode limiter is capable of providing the necessary tuning. However, we cannot implement it without first coming up with a tuning iris that can withstand the high fields caused by the reflected power under high power conditions.

7. Alternate Filter Design

Thus, it is necessary to examine filter structures which do not require an input filter element in front of the bulk semiconductor limiter. The bulk semiconductor limiter becomes conductive under high power conditions. Therefore, it does not are because the electric field is greatly reduced by the shunt conductance at the iris plane. Tuning elements located on the low power side of the bulk limiter are never exposed to high values of electric field because of the shorting action of the bulk limiter. Therefore, any design which utilizes the bulk limiter itself as the input stage will not require high power tuning elements. It should also be noted that no impedance transformation can occur if the bulk limiter is the input stage of the filter structure. Thus, the

IRIS PARAMETERS

IRIS	fo	BW (3 dB)	IL
В3	9.28 GHz	1.21 GHz	0.25 dB
B5	9.30	2.44	0.05
В6	9.30	2.37	0.05

FIGURE 16 THREE STAGE FILTER TEST

power handling, insertion loss and recovery characteristics of the bulk limiter should be essentially independent of frequency.

An analysis of a simple two element filter using identical resonant irises spaced apart by a section of waveguide was performed. Based on geometrical Smith chart observations, two spacings were examined, 0.25 wavelengths and 0.186 wavelengths. The conclusion was reached that using lossless resonant irises with resonant frequencies of 9.15 GHz and 3 dB bandwidths of 1.25 GHz, the maximum 1.4:1 VSWR bandwidth occurs at a spacing of 0.186 wavelength and is approximately 445 MHz. This result did not include possible tuning effects of the diode limiter stage which were difficult to incorporate in the analysis. It was, therefore, decided to conduct a set of experimental tests to evaluate the performance to be expected.

8. Limiter Input Filter Results

Considerable experimentation was performed with the bulk limiter state (a dummy iris with known center frequency, bandwidth, and insertion loss) as the input stage of the filter. The best result was obtained with the tuning structure including the MA3940XM diode limiter stage shown in Figure 8. The diode limiter was adjusted to provide the maximum 1.4:1 VSWR bandwidth as was the tuning screw shown in the Figure. The best result obtained was a passband from 9.045 GHz to 9.634 GHz or a 589 MHz bandwidth. This is slightly less than the 650 MHz desired, but indicates that the circuit is nonetheless usable. It is anticipated that adequate performance could be relaized if the bandwidths of irises B4 and B3 were greater by 15 to 20%.

It is, therefore, concluded from the experimental results of the low power filter testing that a limiter input filter as shown

IRIS PARAMETERS

IRIS	f _o (GHz)	BW (3 dB) (GHz)	IE (dB)
B4	9.29	1.15	0.20
B3	9.28	1.21	0.25

FIGURE 17 TWO STAGE FILTER EXPERIMENTAL TEST

in Figure 17 will yield the desired 650 MHz passband provided that the 3 dB bandwidth of the high power limiter stage is 1.32 GHz or greater. It should be understood that any tuning mechanism used on the low power side of the bulk limiter will neither be required to withstand high levels of mmicrowave power nor reduce the impedance at the limiter plane at any frequency. Hence, the power capability of the bulk stage will not be affected by the tuning or low level stage.

It is also worth noting that the diode clean-up limiter does not have the optimum reactive tuning characteristics to broadband the two-stage bulk semiconductor limiter. It is a wide bandwidth structure designed to have a flat passband. Therefore, it cannot present a matching reactance to the bulk limiter tuning iris circuit in the middle of the operating bandwidth.

Observations of the tuning interaction between the bulk limiter tuning iris stage and the diode limiter stage indicate that the reactance of the diode limiter stage interacts with that of the bulk limiter stage at one of the two-band edges. The spacing of the bulk limiter and tuning iris must be such that the VSWR does not exceed the 1.4:1 specification at the filter's center frequency when tested along. The parameters of the diode limiter can then be adjusted in the assembled package to broaden the passband on either the low or high frequency end. The return loss characteristic observed for the tuned structure of Figure 17is shown in Figure 18. There are three mimima in the return loss characteristic within the 589 MHz bandwidth defined by the 1.4:1 return loss specification.

FREQUENCY (GHz)

FIGURE 18 RETURN LOSS CHARACTERISTIC OF LIMITER INPUT FILTER

O·15471

E. <u>Design Improvements and Final Design of the Bulk</u> Semiconductor Limiter

During the engineering phase, significant improvements in the fabrication procedures of bulk limiters were accomplished. A batch fabrication scheme was introduced to improve the manufacturability of bulk limiters. The delicate diffusion bonding of the bulk limiter chip 10 mil gold wire was replaced by ball bonding the gold wire to a 3 mil etched gold post defining the active area. A high eutectic temperature metallization scheme, consisting of titanium-tungsten (10% Ti and 90% W) and gold was introduced to improve the power handling of bulk limiters.

F. Fabrication of Bulk Limiters

1. <u>High Resistivity Silicon Material</u>

The quality of high resistivity uncompensated silicon material is probably the most important requirement for manufacturing high power and low insertion loss semiconductor bulk limiters. Very high resistivity uncompensated silicon cannot be grown by epitaxial processes. Thus, the use of epitaxial wafers in bulk limiter fabrication is ruled out and all processing must be accomplished using very thin floatzone refines silicon wafers. The important parameters that one must control are low crystalline defect density, controllable doping density, and precisely controllable wafer processing steps.

2. Wafer Dicing and Polishing

High resistivity silicon ingot was used to fabricate the bulk limiters. The ingot was grown by the float-zone method by Wacker Chemical Company, Munich, West Germany. It is ingot number W30736-6, resistivity $10.4-15.0 \times 10^3$ ohm/cm, (111) orientation, p-type, uncompensated with lifetime of 2×10^3 microseconds.

The ingot was mounted on a graphite block with epoxy resin. The wafers were then saw cut 10 mils thick on the <111> orientation on an STC (Silicon Technology Corporation, Oakland, New Jersey) inside diameter slicing machine. At this point in the as-sawn condition, maximum linear thickness variation was less than 0.4 mil and maximum bow was appreximately less than 0.2 mils.

The wafers were then chemically etched to remove at least one mil of silicon from each side. An etching solution of modified 6:1:1 (HNO3:HF:HAc) mixture was used, resulting wafers varying in thickness from 7.8 to 8.4 mils.

These wafers were separated in 0.1 mil thickness increments and mounted on stain less steel polishing blocks. One side was chemically-mechanically polished; the wafers were dismounted and solvent cleaned, then remounted for opposite side polishing. Optimum process conditions of slurry pH, hydraulic pressure, slurry temperature, and polishing time were utilized. A final double-sided wafer polishing thickness for two separate processing runs of 3.5 - 3.6 mils and 3.8 - 4.2 mils respectively, were obtained. Linear thickness variation of 0.2 mil maximum was obtained.

It appears that appropriate processing conditions for slicing, etching, cleaning, mounting, and polishing have been developed to obtain damage-free, very high resistivity, very thin silicon wafers. Further, efforts were made to establish the reproducibility of these processing parameters. This method produced a flatter wafer, without sharp edges which permitted fabrication processes to proceed with lower breakage and consequently, improved yield.

3. Wafer Processing

First, silicon wafers were thinned down to 3.0 mil thickness by polishing and etching techniques. Then, the wafers were phosphorous diffused at 1000° C for 30 minutes(see Table III) using POCl₃ diffusion system. After the completion of phosphorous diffusion, the phosphorous doped glass on the wafer was etched in hydrofluoric acid and 1000° A of a silicon diozide (SiO₂) glass was thermally grown at 1000° C.

Both surfaces of the wafer were then photoprocessed in sequential operations which transfer the 0.75 mil checkerboard pattern of the photoresist mask to the silicon wafer. The checkerboard pattern windows were then etched through the ${\rm SiO}_2$ and phosphorous doped silicon layers by using buffered hydrofluoric acid and 12:1:1 (HNO $_3$:HF:CH $_3$:COOH) respectively. The wafer was then diffused with boron at 950°C for 20 minutes using a boron nitride source. The boron diffused wafer was etched in hydrofluoric acid to remove all glass from the wafer surfaces.

Both surfaces of a wafer were then metallized with o 500 Å layer of titanium-tungsten alloy (10% Ti, 90% W) and a 2000 - 3000 Å layer of gold and then electroplated with pure gold. One surface was plated to a thickness of 0.1 mil while the other was plated to a thickness of 4.0 mils. Then bulk limiter wafers were saw-cut into 40 mil squares and were separated into individual chips. (See Tables I & II).

After diffusion bonding with 8 mil diameter gold wire, the chips were mesa etched in silicon etch and passivated with silicon nitride and Dow Corning DC-643 junction coating. The bulk limiter chips were mounted in copper X-band irises and were tested for both low and high level RF performance.

4. Bulk Limiter Tuning

The bulk diode limiter assembly consists of the bulk limiter followed by a two-stage diode clean-up limiter. In combining the bulk limiter with the diode limiter, as shown in Figure 10, it was necessary to use tuning screws in front and back of the bulk limiter to achieve optimal bandwidth performance. But this had an adverse effect on the peak power handling capability of the bulk diode limiter assembly. The peak power handling capability was reduced approximately by a factor of two. A matching structure was introduced in which all the tuning was accomplished with elements between the bulk limiter and clean-up limiter. A typical single-slot bulk limiter and its low level RF performance is shown in Figure 19 and Figure 20.

A dual-slot bulk limiter was also introduced as shown in Figure 21 and Figure 22. A dual-slot bulk limiter exhibits wider bandwidth (see Figure 22) as predicted by the circuit analysis; but a dual-slot bulk limiter approach was found to be very expensive and time consuming. Besides selecting two bulk limiter chips completely matched, the failure mechanism of dual-slot bulk limiters cannot easily be predicted. A problem was encountered in predicting burnout of (one or two bulk limiters) dual-slot bulk limiters from recovery time measurements. Typically, single-slot units do not burnout until recovery time exceeds 2 microseconds. No pre-burnout indication was found with dual-slot units.

G. Fabrication of the Bulk-Diode Limiter Assembly

The bulk-diode limiter assembly consists of the bulk limiter followed by a two-stage diode clean-up limiter (as shown in Figures 23 through 26). In addition, tuning screws are used to achieve broadband performance. (See Table II).

FIGURE 19 SINGLE SLOT BULK LIMITER

D-15458

BL9C - 3

SINGLE SLOT

 $f_0 = 9.49 \text{ GHz}$

Li @ $f_0 = 0.8 dB$

BANDWIDTH (3dB) = 0.650 GHz

FIGURE 20 LOW LEVEL RF PERFORMANCE OF SINGLE SLOT BULK LIMITER

N-15456

FIGURE 21 DUAL SLOT BULK LIMITER

54

D-15459

(b) $f_O = 10.04 \text{ GHz}$ Li @ $f_O = 0.8 \text{ dB}$ BANDWIDTH (3dB) = 0.690 GHz

BOTTOM SLOT ≈5

f. 1

DUAL SLOT -- 3 & 5

(c) $f_0 = 10.280 \text{ GHz}$ Li @ $f_0 = 0.5 \text{ dB}$ BANDWIDTH (3dB) = 10.01 GHz

Flade For The State of Participant of Dual Slot Bulk Limiter

FIGURE 23 DIODE LIMITER CROSSECTION

FIGURE 24 EQUIVALENT CIRCUIT OF A DIODE MOUNT

FIGURE 25 SIMPLIFIED DIODE EQUIVALENT CIRCUITS

D-15316

 $\mathcal{W}_{\mathbf{v}}$

FIGURE 26 CLEANUP LIMITER CROSSECTION

D 15308

The input stage is a high power PIN diode which does the main limiting job. The output stage is a low power varactor used for additional clean-up isolation. A detector diode is used to provide DC bias to the limiter diodes.

Figure 27 shows a schematic of the biasing arrangement. The resistor is used to provide the diodes with a discharge path to ground. This is necessary to shorten the recovery time. This type of limiter design is a highly reliable one. It will withstand environmental extremes of temperature, shock, vibration, humidity, etc., without degradation. Its insertion loss is only 0.4 dB, while it provides a mimimum of 40 dB isolation across the band.

Bulk-Diode Limiter Package

The bulk-diode limiter package which comprises the first engineering samples is shown in Figure 28. In combining the bulk limiter with the diode limiter, it was necessary to use tuning screws to achieve optimal broadband performance. The bulk limiter is a very narrow band deivce. The effect of the tuning screws is to transform into and out of the bulk limiter stage. Thus, it becomes better matched across the band.

The relative spacings of the screws, the bulk limiter and the clean-up limiter are also critical. Much time was spent in experimentally determining the spacings which would give optimal broadband performance.

One of the goals of this program is to be able to replace bulk limiters without the need for retuning the package. Some experimentation has been done along these lines. It has been found that, in order to achieve this goal, the bulk limiters must be very consistent and uniform.

FIGURE 27 CLEANUP LIMITER SCHEMATIC

FIGURE 28 & BULK DIODE LIMITER

INPUT VIEW

The technique used to obtain replaceable bulk limiters to to tune each bulk limiter in a standard, fixed package. Unfortunately, once the bulk limiter has been constructed, the only tuneable parameter is its center frequency. Thus, care must be taken in the manufacture of the bulk limiters to ensure a consistent and uniform quality in such untuneable parameters as insertion loss and bandwidth.

H. Microwave Measurement Facilities and Test Results

1. <u>Low Power Test Facility</u>

The low power microwave test is shown in Figure 29. It consists mainly of an X-band Alfred sweep oscillator (Model No. 8000/7051) and an Alfred network analyzer (Model No. 650). This test set up is used to tune the device for center frequency, low VSWR and insertion loss (see Figure 29).

The sweep oscillator generated an output which covers the 9.0 - 9.65 GHz band. It also provides a horizontal sweep for the network analyzer. The precision attenuator is set so that the power incident upon the device under test is generally below 1 mW.

The two 10 dB directional couplers measure the incident and reflected power of the device under test. The network analyzer compares these two signals to measure return loss. Then VSWR is calculated from the return loss measurement.

The 10 dB coupler behind the device under test samples the power transmitted through it. The network analyzer then compares this signal with the incident power to measure insertion loss.

2. High Power Test Facility

The high power test facility is shown in Figure 30. It consists of a high power X-band magnetron, Model No. 2J51 and a

FIGURE 29 LOW LEVEL MICROWAVE TEST FACILITY

FIGURE 30 MICROWAVE HIGH POWER TEST FACILITY

modulator (Model No. MA12330); this system is capable of generating 40 kW with 0.001 duty cycle. The magnetron generates the microwave power, while the modulator controls the pulse and duty cycle conditions.

The circulator serves two functions. First, it protects the magnetron from the power reflected by the device under test. Second, it provides a way of injecting the echo source (Varian Klystron Model No. X-13) signal into the main line. The echo signal permits recovery time measurements to be made. The echo signal enters the circulator and is reflected from the magnetron out to the device under test.

The amount of power in the main RF line is sampled by means of the crossguide coupler. The power meter measures average power. The peak power in the main line is calculated by dividing the average power by the duty cycle. The frequency meter is used to measure the RF frequency in the main line.

3. Flat and Spike Leakage Measurement

Following the device under test are a precision attenuator and a detector. The detector is calibrated so as to give an arbitrary deflection on the oscilloscope for a 10 mW input. The spike and flat leakage through the device under test are determined by adjustant the precision attenuator such that the oscilloscope presentation is returned to the previously determined reference level. The amount of leakage power being measured is then equal to the precision attenuator setting (dB) above 10 mW.

4. Recovery Time Measurement

Recovery time is defined as the time between the end of the RF pulse and the point at which the device under test has

returned to within 3 dB of its insertion loss state. For this measurement, echo signal is introduced along with the magnetron power. The oscilloscope presentation for the recovery measurement is shown in Figure 31. The precision attenuator is varied so as to determine a point which is 3 dB below the steady-state level of the echo signal. The recovery time is measured using the calibrated oscilloscope.

I. <u>Engineering Samples</u>

1. Approval Tests

Successful engineering samples were fabricated and sent to the ERADCOM, Fort Monmouth, NJ for their evaluation. Electrical test results on various engineering sample diodes are given in Table I to Table VI.

2. <u>Preproduction Units and Design Improvements</u>

During this phase of the program, work was concentrated to make bulk limiters reproducible and with high yield. Experiments were also conducted to reduce the insertion loss and to improve the power handling capability of the bulk limiters. 9

X-band stamped irises (commercially from 0.062 inche thick, oxygen-free, high conductivity copper) were introduced to reduce the price from a \$15 machined iris to 20 cents (stamped iris). The confirmatory units results are given in Table VII.

3. <u>Discussion of the Pilot Production Run</u>

Low cost stamped irises and "batch processing" for bulk limiter chips were introduced to manufacture bulk limiters at a low cost. Forty (40) pilot production bulk limiter assemblies consisting of forty bulk limiters and forty clean up limiters were assembled and test results are given in Table VIII.

FIGURE 31 RECOVERY TIME MEASUREMENT

68

D-15333

OPERATION	PRODUCTION L'QUIPMENT	RATE UNITS PER B BOURS	VIELD	CINISHED OUTPUT	STATIONS	CONTROLS
Ingot	Dual Micromatic	200 Wafers	85%	9.8	~	Micrometer - Thickness
1.02 - Pollsh Wafer	M/A Pollsher	100 Wafers	95%	06		Standard Wafer
1.03 - Etch Wafer	Fisher Hood	1000 Wafers	85%	81		Visual
1.04 - Check Wafer Thkn	Dual Micromatte	1000 Waters	95%	7.7	~	Micrometer - Thickness
1.05 - Phosphor Offusion	M/A Diffusion Furnace	100 Wafers	856	73	-	4 Point Probe - Resistivity
1.06 - Silane (SiO ₂)	CVD Reactor	100 Wafers	85%	69		Sloan Thickness Monitor
1,07 - Open Checker- Roard Windows	Dark Room	10 Wafers	80%	55	~	Visual
1.08 - Boson Inffusion	M/A Diffusion Furnace	100 Wafers	856 8	52	~	4 Point Probe - Resistivity
1.09 - Annealing	M/A Furnace	50 Wafers	100%	52 Wafers	~-	3 1 5
1.10 - Metallization (TI-W-Au)	MRC:-900	50 Wafers	80%	48 Wafers	~	Visual
1.11 - Electroplate Gold	M/A Electroplating Bath	20 Wafers	856	46 Wafers	-	DecTak - Thickness
1.12 - Define Contacts	Dark Room	20 Wafers	95%	43 Wafers	~	1
1,13 - Otetng	M/A Diamond Saw	4 Wafers	80%	160,000 Chips	~	i i i
1.14 - Electrical Check	Curve Tracer/Boonton	1000 Chips	20%	80,000 Chtps	~	1 1
1.15 - Ball Bonding (5 mil Gold Wire)	M/A Ball Bonder	500 Chlps	80%	60,000 Chtps	-	Visual
1,16 ~ Epoxy Junction	Oven	í ! }	808	54,000 Chips	-	Visual
1.17 - Dice Approval	Curve Tracer/Roonton	500 Chips	808	46,000 Chips	_	Capacitance & 1-V
1.18 - Mounting Chip in Iris	s Manual Mounting	200 Chips	60%	27,000	_	Visual
1.19 - Low Power Testing of Bulk Limiter	X-Band Une	500 Chips	20%	5,400	-	Electrical
2.0 - Tuning of Bulk Limiter	r Manual	500 Chips	80%	4,300	~	Electrical Meets Spec.

TABLE 1 BULK LIMITER CHIP PROCESSING

OPERATION	PRODUCTION <u>EQUIPMENT</u>	RATE UNITS PER 8 HRS	<u> XIELD</u>	OUTPUT 100 STARTS	STATIONS	CONTROLS
2.01 - Assemble Limiter Bodies	Soldering Iron, Set Screw Wrenches	20	%26	97	1	Visual
2.02 - Assemble BDL Package	Screwdriver	80	%26	94	7	Visual
2.03 - Low Power Tune	Network Analyzer	æ	%06	85	1	Electrical Specification
2.04 - High Power Test	High Power Source	16	%06	92	г	Electrical Specification
2.05 - Finish Assembly	Screwdriver Soldering Iron	20	100%	92	-	Visual
2.06 - Electrical Inspection	Network Analyzer, High Power Source	80	100%	92		Electrical Specification
2.07 - Mechanical Inspection	Various Plugs and Gauges	160	100%	92	-	Mechanical Specification

TABLE II BULK DIODE LIMITER PACKAGE

SILICON MATERIAL

MEASUREMENT

Type - p-type

Orientation - (111)

Resistivity - 8000 - 15000 ohm-cm

Phosphor Diffusion (resistivity) - 6 - 7 ohm/cm^{-2}

Boron Liffusion (resistivity) - 20 ohm/cm⁻²

Checkerboard Diameter - 0.75 mil

Contact Area Diameter - 10 mils in diameter

Capacitance on Chip - 0.15 pF

 V_F at 50 mA -2-3 Volts

TABLE III DC CHARACTERISTICS OF BULK LIMITER CHIPS

	}		-											-	
PriOD. APPROVED		DATE		₹	MIC	A MICROWAVE ASSOCIATES.	VE A!	SSOC	IATES	INC.		š	3940XM	ISSUE	
Q. C. APPROVED	:	DATE]			TEST	DATA	A SH	SHEET		; ;	SHEET	т 1	OF	7
SPECIFICATION	SCS-486	486					101	LOT SIZE	2			SALES	SALES ORDER NO.		
PARAMETERS	3	VSWR		Po Note 1	Pf	Ps	qa	ಭ		Po Note 1	P£	Ps	PP.	ts	
TEST	9.0GHz 8 9.65	9.0GHz 9.65		Pre tp	Frequency tp = 1 µs, Du = .001	- 9.0GHz Prr = 1 x	x 10 ³			Pro tp	Frequency - 9.3G tp = 1.0 µs, Prr : DU = .001	- 9.3Œ	1 × 10 ³		
MIN.	1					1	1						1	I	
MAX. LIMITS	0.7dB	1.4:1		3Ckw	50mw	.75w	J	1		30kw	50mw	.75w	1		
PACKAGE	BULK	LIMITER WITH		CLEAN-UP	LIMITER										
S/N 1-30R	1.1	1.46		15kw	50m	1.6w	25mw	8ns		Вки	20mw	1.0v	ЭЛТМ	5ns	
N/S															
9-I N/S	6.	1.48		9kw	60mw	1.6w	60тт	8ns		7kw	<10mw	1.0%	30mw	ens	
S/N															
S/N 1-10-7	1.0	1.35		10kw	50mw	1.6w	50mw	8ns		8kw	<10mw	λ	31mw	5ns	
N/S		-													
S/N															
S/N 1-BL-3-2	6.	1.58		MICROW	AVE ASS	MICROWAVE ASSOCIATES SEMICONDUCTOR MATERIAL	SEMICO	IDUCTOR	MATERI	ij					
S/N 1-BL-3-3	3 1.1	1.7		MICROM	AVE ASS	MICROWAVE ASSOCIATES	SEMICO	IDUCTIOR	SENICONDUCTOR MATERIAL	13					
N/S															
S/N	-	:		:IOTE 1	IN A	IN ALL CASES	Po WAS		DETERMINED WHEN THE	EN THE		RECOVERY TIME	REACHED		!
S/N	:			i	2.0	usec Ar	THE 3	0 dB Ponyr.	DINT.						
N/S		········ •-		1		!									
N/S	•	- -								:					•
N/S	-	<u>.</u> .				TABLE IV (a)		MOI	TO STILL HOME THE HEBIT OF	I POW	E TEST	KESHE	S Corr		
N/S							i'	II ISII	kai.ile	KING		WITH	NVIII	CHEST LACH LEKING AND HOW THE THAN TO THANKE	
TESTED BY.		Ţ	İ	HATE	,	!	•	0 0	O C APPROVED PY	ED PY			PA	DATE	i
FORM JOZE															

Q. C. APPROVED DATE		· · · ·		LAINGOA TUAWAG		3940xM	1920E
		<u>}</u>	5 E	TEST DATA SHEET	.⊢., Hee.	SHEET 2	OF 2
SPECIFICATION SCS-486				LOT SIZE 5		SALES ORDER NO	
PARAMETERS PO PÉ	Ps Ps	æ	\$3				
TEST Frequency CONDITIONS Du = .001	Frequency - 9.6GH tp = 1.0 µs Prr = Du = .001	GHZ = 1 x 10 ³					
	1	1	1				
MAX. 30kw 50mw	. 75w		1				
PACKAGE: BULK LIMITER	TER WITH CL	CLEAN-UP	LIMITER				
S/N 1-30R 10kw <10	<10m, 5w	20тт	5ns				
27 N/S 1-6 10kw <10	<10mw .5w	16mw	SnS				
N/S							
S/N 1-10-7 9kw <10	<10mw .5w	16mw	Sns				
N/S							
N/S							
N/S		NOTE 1		IN ALL CASES PO WAS DETERMINED WHEN	ED WHEN THE RECOVERY	TIME REACHED	
N/S			2.0	usec AT THE 3.0 dB POINT	1		
N/S			:				
S/N		-					
S/N	1	-	i				
S/N	; •		1				
N/S							•
N/S	par indige de la			TABLE IV (b) CNCTAL IN	LOW AND HIGH POWER TEST	RUSULTS CHEIN	LIKST
S/N					KING SAMILLY WILL	II CLIAN OF HMILLS	111.14
TESTED BY	1	(** 6: _		U. t. APP	U. C. APPROVED BY	DATE	
FORM 101 c							

	Γ									
PROD APPROVED		DATE	Š	MICROWAVE ASSOCIATES INC	IVE ASSOC	IATE		۰ م	· Sa	ISSUE
Q. C. APPROVED		DATE	J	TEST	DATA SHEET	TEET.		:	SHEET	0F 2
SPECIFICATION					LOT SIZE				SALES ORDER NO.	
					(1)					
TAKAME I EKS	Ľi		f _o	B.W. (@3 dB	P _O	Pf	۳ s	P _b	t S	
TEST	ĵ o				$\begin{array}{c} Fr \\ t_p = 1 \\ Du \end{array}$	Frequency Frequency Frequ	$V = 9.0 \text{GHz}_3$ $T = 1 \text{X}_10^3$	Hz ₃		
MIN. LIMITS	-				1	-		,		
MAX. LIMITS	1		ii e	-	-	1	-	-	-	
BULK LIMITER ALONE	TER ALC	NE								
S/N 30R	1.4dB		9.20GHz	.670 GHz	15kW	40 W	100W	40 W	20ms	
S/N	aro									
N/S	apo ·		9.10 GHZ	. 850 GHZ	13KW	40 W	160 W	M09	20 ms	
s/w 10-7	1.8 dB		9.15 GHz	.930 GHz	15kW	40 W	130 W	M 09	20 ms	
S/N										
S/N										
s/N BL-3-2	1.0		9.30 GHz	1.010 GHz						
S/N BL-3-3	1.6		9.10 GHz	.770 GHz						
N/S		-								
- N.S.										
N/S	NOTE:	(C)	ALI. C.	ANI. P WAS DETERN	DETERMINED WHEN THE RECOVERY	H. REC		IME RE	TIME REACHED 2.04sec	
N/S										
N/S				TVBIT	V(a) LOW AMI	HSH	OWER	TEST RE	V(a) LOW ANTI HIGH POWER TEST RESULTS OF FIRST	
N/S					HOTOLINE		MPLES	M. T. H.	THOINITHING SAMPLES WOOD CLEAN OF LIMITER	nten -
TESTED BY		i	12	The same of the sa	9 0	A C APPROVED BY	:D BY:	!	DATE	
FUHW 101 C										

PROD. APPROVED		DATE		R	MICR	A MICROWAVE ASSOCIATES. INC.	E AS	SOCI	ATES			DS -		ISSUE	
Q. C. APPROVED		DATE]	-	TEST C	DATA	N SH	SHEET			SHEET	2	OF	2
SPECIFICATION	3						LOT SIZE	IZE				SALES ORDER NO.	ER NO.		
PARAMETERS	(L) 0	ď	a, s	ďa	T _w		(1) P _o	P t	a s	P _D	, t				
TEST	~a	LOUENC 1.0 µse Du =	Y - 9.3 c, Prr 001	GHz 1 X 10	SHz		t FRE	FREQUENC 1 psec, F Du = .0	$CY - 9.6$ $Prr = 1 \times 0.001$	6 GHz X 10 H	2]
MIN.	-	-	!	-	1	•			1 1						;
MAX. LIMITS				:			7.	-	;						
	BULK LIMITER A	ALONE W 16 W	100W	16 W	10 ms		15 kW	25W	100W	50W	20 ms				i i
N/S							1 1								
9 % 75	17kW	v 40W	100W	40W	20 ms		15 kW	20W	130 W	31 W	20 ms		-	+	ì
S/N	!										+	-	+	+	
S/N 10-7	15kW	W 25 W	100W	25 W	20 ms	7	15 kW	25 W	100 W	40 W	20 ms		-		
N/S	: : :	+	1										-		
S/N	NOTE:	Ξ	IN ALL O	ASES R	ا ا	WAS DETERMINED WHEN	INED		HE REC	OVERY	THE RECOVERY TIME REACHED	ACHED			
S/N		62	و انعدد		AT-THE 3.0 df POINT	POINT									
N/S	+	-													
S/N				!					1		:		-	-	ļ
N/S													-		
N/S			+- \				FABIE V	(c)(q)	TABLE V (b)LOW AND	HICH POWER	CWFR	RESUI	RESULTS OF FIRST	FIRST	
S/N			-			-	,			THE SAN		THOUT CITAN UP LIMITER	LEAN	TI TIM	TER
TESTED BY				: ::A TĒ	!		j	0 0	O C APPROVED BY	: D BY			DATE		
FURM 1071															

(1103, 121 LOV 23 DATE				C	DS - 394031	ISSUE
A.C.A. TOVED DATE			EST DATA SHEE		SHEET 1	05 3
TECIFICATION SCO-708	52,		101 5175		SALES ORDER NO	
.ADA:::312.ns	o	, o	250 250 2007 447-74			
, T257 GOMDITICTS						
	-					
101	TI MENT TO		72 CT 1-UP 1 TILER			
6		2.0.5	039.			
			And the state of t	SHOOK ACKE THIS	in & consider	with the
			-	0 + 50 121	1	
10.27	COLUMN TO THE	1000	CINCO LITER			
1 Tes 51st 50	0000	0.5	.700			
10tton 510t	0000	1.0	000.			
555	0083	6.5	1.750			
1 100 810E	3373	0.0	000			
701. 10t	9289	6.3	936			
10 h 210 c			1.550			
	1	TABLEVI (a)	TEST DATA	TEST DATA DUAL AND SINGL, SLOT BULK	ULK	
	!		LIMITERS WITHOUT	AINI CLEAN-UF LIMIT	L'R	
i						
	4				1.73	

DS - 3940)M ISSUE	S'IEET 2 OF 3	SALES ORDER NO.	Po Pf Rt	12:-1.04:20; PX:=1x103F2 1x	1	27 0.81 sad	4.7 100.4 1 5.10	23 31W			3.01.1 31w 2.0µs	3.007 60w 2.0us	10.007 160x 1.8us	10.0kW 25.7 1.8µs	10.0km 16w 1.4us					27.2
		S		C. R.		12021	E-PriOC	17.			0.8	න භ	-0.	10.	30.	9				
		5	^E t	Trribulo Hz	-	O.Eured		2.0us			1.6µs	1.593	1.2;18	1.2,18	1.2με	1.2,3			<u></u>	
	Ö	LOTSIZE	t .1 61	2000) 31 32-9.	1	-	217 117 117 117 117 117 117 117 117 117				1000	1:00 12	10,027,150%	24 25.4		May 100.7	ont'd.			•
	EST DA	_	6.	20-1.0 51.=.6 From:		30357	11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				10.CC	10.00	10.	19.00	10.01	10.0:	TABLE VI (a) Cont'd.			
					-	! (Regional) - 1 - 1 - 1 - 1							TABL			
			c.	0.5		0.0403					1.513	2000	1.2.13	13.00	; ; ;	(1)				
		10	р. Б.	1.1.0.0.0.0.1.7.7.7.7.7.7.7.7.7.7.7.7.7.		<u></u>					1.07	<u> </u>		50.7	15.7		!!	-		ł
E1.00	נאט	503-486	ر م			1 11	55 6		:	-	10.00	19.63	10.000	0.1	10.03	.).(.				· · · · · · · · · · · · · · · · · · ·
	3 C. APROVED	SPECIFICATION	DADAMETERS	. 00 2.11 8.21 1.12 1.13 1.14 1.15 1.15 1.15 1.15 1.15 1.15 1.15	. 65			1			1 Top Slot		SE 10 10 10 10 10 10 10 10 10 10 10 10 10	17. J. T. C. 10th	son Botton \$10t	The Foch Sicks				

Percial Arthores	51.V.3 G					1. (C.0.0.)	(CC)
C. C. APPROVED	DATE		TEST D	DATA SHEET		SHEET	3 05 3
SPECIFICATION	SCS-486	Animal de la company de la com		107 51/5 5	rementation of the control of the co	SALES ORDER NO.	אכי
PARAMETERS	Li at 9.0342	Lû at 9.3Ciz	Ini at 9.65C?	2,0078	VSYR at 5,3G:z	VST-IR at 9.65GIZ	
TEST							
ASIN.		1			-	-	
tikx. Livits	0.733	0.7dB	0.7.3	1.4:1	1.4:1	1.4:1	
	NICA LOIS IND	LINITIAS TONED	7.1	STEEL CLEAN-US LINES	15.18 15.18		
1 3.5	6.83	5.873	5.8.3	12.25	1.29	1.10	
1 }							
H P. S	0.839	0,03	5.8.3	1.24	1.27	1.20	

SH							
S				}			
N.S.							
\$.2							-
33.5							
$n_{\tilde{\epsilon}}$							
3.6							
1.5			TABL	TABLE VI (a) Cont'i.			
	1				+-		
TESTED DY.	P. ife.		17				
F544757.0					- (

,

PROD. APPROVED		DATE		AS COMMENT			() () () () () () () () () ()			DS - 394,0XM	ISSUE	
O. C. APPROVED		DATE	 	ה	TEST DATA SHEET	DAT	A SH	EET		SHEET 1	0F 3	
SPECIFICATION		SCS-486				101	LOT SIZE	5		SALES ORDER NO.		
PARAMETERS	fo	171	3dB Band- width		F1	VSUR	Band- width					
TEST		@fo			9.0GHz to 9.65	9.0GHz to 9.65				·	-	1
MIN. LINITS	-				1	1	1					
MAX. Lihits	(CHz)	-	(CI:z)		.8dB	1.4:1	(CH2)					
	Bulk	Limite	- Alone									
S/N 17ALE-2	9.300	.4	1.20									
S/N 17/1E-3	9.300	.5	1.22									
S/N 17ALE-4	9.310	7.	1.22									Ī
S/N 16A-13	9.300	٠5	1.15									T
S/N 17A-34	9.310	4.	1.030									T
S/N												
S/N		Bulk	Limiters	s in Package	vi n Cle	n-up I	imiter					1
S/N 17ALE-2					1.4	1.47	079.	@ 1.47:1				
5'N 17ALE-3					1.1	1.44	.650	0 1.44:1				Ì
S/N 17ALE-4					1.3	1,45	.650	0 1.45:1				
S/N 16A-13					1.4	1.56	.650	@ 1.56:1				
s.n 17a-34		1			1.6	1.70	.630	0 1.70:1				
N/S		·		TABLE VI (b)		TEST DATA		BULK LIMITERS IN PACKAGE	IN PACK	AGE		
Z, 22			j			VITH CL	-	WITH CLEAN-UP LIMITER				Ì
S'N												
N/S		; ;	1				-					
TESTED BY:							J 0	APPROVED BY:		DATE	ننږ	
FOMW 767 C						1						7

PROD AFPROVED	{	DATE		B	, a		353 443 145	Section Section	23	nu.	•	DS. 3940XM	ISSUE	
Q. C. APPROVED	à	DATE	<u> </u>])	EST	TEST DATA SHEET	SHE	ET			SHEET 2	0F 3	
SPECIFICATION.	SC	SCS-486					LOT SIZE	ZE	5			SALES ORDER NO.		
PARAMETERS	다	P _S	$^{\rm R}_{ m T}$		Ç.	S d	$^{ m R}_{ m T}$		Çı,	S	R			
TEST	Du = Tp = Freque	Du = 001 Tp = 1.0 μs Frequency = 9	9.0GHz		Du = .601 Tp = 1.0 μs Frequency =	.601 1.0 µs tency = 9.	9.3GHz		Du = .0 Tp = 1.	Du = .001 Tp = 1.0 µs Frequency = 9.	. 6GIIz		_	
MIN. LIMITS	PIN = -	5.5 kW	1		PIN = 3	. 5 kW	1		1	•	1			
MAX. LIMITS	(w)	(M)	(ви)		(w)	(v)	(sil)		(W)	(¥)	(hs)			
	Buig	s Limit	s Limiters Alone	ne							-			
S/N 17ALE-2	100	200	2.0		07	200	2.6 .	3,	50	200	3.0			
~~~	50	160	2.0		40	200	2.6	-	50	200	3.0			
O S/N 17ALE-4	40	200	1.5		40	200	1.8	7	45	200	2.0			-
S/N 16A-13	7.0	160	1.4		40	200	1.6	7	40	200	1.8			7
s/N 17A-34	31	100	1.2		31	100	1.2	7	40	100	1.4			
S/N														
1J/S														
N/S														
N/S														
N/S														
S/N														1
S.P.														1
5/17								TABLE VI (b)	(d) I.V					1
S/PI									•					{
		!	!		- - - - -									Ī
			:									The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon		1
TESTED BY:	1	•			1	;	1	4 10 10 10	ANTO ALLE	E B	1	DATE		
	1	•	:	!		i		· · · · · · · · · · · · · · · · · · ·	:	1	:	•	1	

Date   Date   Date   TLEST DATA SHEET			1201010	
PARAMETERS   P.   P.   P.   P.   P.   P.   P.   P	TA SHEET		знеет з	0F 3
PARAMETERS   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Parameters   Par	OT SIZE	5	SALES ORDER NO.	Э.
TEST Du = .001  COMDITIONS Frequency = 9.0CHz  LIMITS  LIMITS  LIMITS  LIMITS  ANA  LIMITS  Somr  LIMITS  Bulk Limi ers in Package with Clean-up Limiter  SN 17ALE-2 <10	R _T	T A	P _S R _T	P _D
MANN	<u>m</u>	Du = .(01 tp = 1.0 μ Frequency PIN = 5.5	. (01 1.0 µsec uency = 9.65 GHZ = 4.5 kW	
MAX. 50mw .75w .8µs (mw) 50mw .75w .8µs .8µs .8µs .8µs .8µs .8µs .8µs .8µs	1	-	1	1
Bulk Limiters in Package with Clean-up Limiter     17ALE-2	.8µв	. 50ши	.75шч .8µв	(mm)
17ALE-2 <10	ter			
17AIE-4 <10 .250 2.6 18 <10 .250 2.7  17AIE-4 <10 .250 1.6 16 <10 .250 1.6  17A-34 <10 .250 1.2 16 <10 .250 1.2  17A-34 <10 .250 1.2  17A-34 <10 .250 1.2  17A-34 <10 .250 1.2	2.7	<10	.250 2.6	15
17A-15-4 <10 .250 1.8 15 <10 .250 2.0 16A-13 <10 .250 1.2 16 <10 .250 1.2 17A-34 <10 .250 1.2 16 <10 .250 1.2	2.7	<10	.250 3.0	<10
16A-13 <10 .250 1.6 16 <10 .250 1.6 1.6 17A-34 <10 .250 1.2 16 <10 .250 1.2	2.0	<10	.250 2.0	18
17A-34 <10 .250 1.2 16 <10 .250 1.2	1.6	<10	.310 1.8	<10
	1.2	<10	.250 1.4	16
		!		
	EVI (b)	!		
				: