Mathematical Foundations of Reinforcement Learning

tuyaux.winak.be/index.php/Mathematical_Foundations_of_Reinforcement_Learning

Mathematical Foundations of Reinforcement Learning

Richting	Informatica, Wiskunde
Jaar	MWIS, MINF

Examenvragen

2022-2023 : Januari

Oefeningen

- 1. (5pt) Let T=50T=50, and consider the following MDP (see image). Construct a stationary MDP with the same states and at most 2 actions such that all values are preserved.
- 2. (15pt)
 - 1. What is the period of the MDP in question 1?
 - 2. Give an example of a policy such that the resulting Markov chain has at least 2 different stationary distributions.
- 3. (10pt) Give an example of a stationary MDP such that the value iteration algorithm for discounted rewards converges in finitely many steps and one where it converges in infinitely many steps.
- 4. (10pt) Give an example of a statonary MDP such that from state ii, no optimal unichain policy exists for the infinite-horizon expected average reward criterion.
- 5. (5 pt) For the Q-learning algorithm we defined learning rates $\gamma 0=0, \gamma 1, \gamma 2,...$ $\gamma 0=0, \gamma 1, \gamma 2,...$ with $0 \le \gamma k < 1, \forall k \in \mathbb{N} 0 \le \gamma k < 1, \forall k \in \mathbb{N}$. Let NiaNia be the map that maps nn to the timestep at which the state-action pair (a,i)(a,i) is visited for the nn-th time. We required the following conditions: $\sum +\infty n=1\gamma Nia(n)=+\infty \sum n=1+\infty\gamma Nia(n)=+\infty$ and $\sum +\infty n=1\gamma 2Nia(n)<+\infty \sum n=1+\infty\gamma Nia(n)2<+\infty$ Give an example of learning rates that satisfy all the given conditions.

Theorie

1. (10pt) Let MM be a stationary communicating MDP. Prove that there is an optimal unichain policy from \$i\$ for the infinite-horizon expected limit-average reward criterion.

2. (10pt)

- 1. Consider the first condition of question 5 of the exercises. Argue that this implies that every state-action pair is seen infinitely often with probability 1.
- 2. Give an example of a communicating MDP, initial values Q(0)Q(0) such that even under the assumptions, some state-action pair may be visited finitely often with probability 0.
- 3. (15pt) We will now focus on the two mappings U:RN \rightarrow RNU:RN \rightarrow RN and L π :RN \rightarrow RNL π :RN \rightarrow RN defined for any randomized decision rule $\pi\pi$ as follows. {Ux}i=maxa \in A(i){ri(a)+ α \subseteq j \in Spij(a)xj}{Ux}i=maxa \in A(i){ri(a)+ α \subseteq j \in Spij(a)xj}. And L π x=r(π)+ α P(π)xL π x=r(π)+ α P(π)x. Prove the following result. (You must recall the definition of monotone contraction mapping. Also, you may use results proved during the course as auxiliary lemmas. "The mappings UU and L π L π for any randomized decision rule $\pi\pi$ are monotone contraction mappings with contraction factor $\alpha\alpha$. Moreover, va(π ∞)va(π ∞) is the unique fixed point of L π x=xL π x=x."
- 4. (10pt) For the policy iteration algorithm for infinite-horizon discounted rewards, we defined the action set A(i,f)A(i,f) as follows: A(i,f):={a∈A(i)|ri(a)+α∑j∈Spij(a)vαj(f∞)>vαi(f∞)}A(i,f):= {a∈A(i)|ri(a)+α∑j∈Spij(a)vjα(f∞)>viα(f∞)} Take i∈Si∈S and f∞∈C(D)f∞∈C(D). Prove the following statements:
 - 1. If A(i,f)=ØA(i,f)=Ø, for every i∈Si∈S, then f∞f∞ is an αα-discounted optimal policy.
 - 2. If $A(i,f)\neq\emptyset A(i,f)\neq\emptyset$, for some $i\in Si\in S$, then $v\alpha(g^\infty)>v\alpha(f^\infty)v\alpha(g^\infty)>v\alpha(f^\infty)$ for any $g^\infty\in C(D)g^\infty\in C(D)$ with $g\neq fg\neq f$ and $g(i)\in A(i,f)g(i)\in A(i,f)$ when $g(i)\neq f(i)g(i)\neq f(i)$.