Learning Sentence Representation with Guidance of Human Attention

2017-12-06

Background

- Human read sentences by fixation and saccades
- Based on Siamese CBOW
- Assign different weight to the vectors

Siamese CBOW

- Based on CBOW
- Averaging the embedding of words in a sentence
- Designed specifically for the task of averaging them.

Siamese Network modal

Training objective

$$p_{\theta}(s_i, s_j) = \frac{e^{\cos(\mathbf{s_i^{\theta}, s_j^{\theta}})}}{\sum_{s_i \in S} e^{\cos(\mathbf{s_i^{\theta}, s_i^{\theta}})}} \quad p(s_i, s_j) = \begin{cases} \frac{1}{|S^+|}, & \text{if } s_j \in S^+\\ 0, & \text{if } s_j \in S^-. \end{cases}$$

$$L = -\sum_{s_{j} \in \{S^{+} \cup S^{-}\}} p(s_{i}, s_{j}) \cdot \log(p_{\theta}(s_{i}, s_{j}))$$

$$g_{sentence}(x) = \frac{1}{n} \sum_{i=1}^{n} W_w^{x_i}, \qquad g_{sentence}(x) = \frac{1}{n} \sum_{i=1}^{n} attention(x_i) W_w^{x_i}$$

Human Attention

- Surprisal
- self-information, measures the amount of information conveyed by the target

$$s^{x_t} = -log(P(x_t|x_1, ..., x_{t-1})),$$

$$attention(x_t) = \frac{exp(s^{x_t})}{\sum_{i \in [1,...,n]} exp(s^{x_i})},$$

Human Attention

- POS tags
- give more weights to words with NN and VBG tags, and less weights to words with DT and IN tags.

$$attention(x_t) = \frac{exp(W_w^{x_t} \cdot W_c^{x_t})}{\sum_{i \in [1,..,n]} exp(W_w^{x_t} \cdot W_c^{x_t})},$$

Evaluation

	SCBOW				
	Base	TF-IDF	ATT-SUR	ATT-POS	ATT-CCG
MSRpar	0.429	0.412	0.437	0.414	0.419
MSRvid	0.620	0.611	0.672	0.702	0.734
OnWN	0.687	0.688	0.677	0.695	0.696
SMTeurop	0.537	0.542	0.533	0.538	0.552
SMTnews	0.523	0.525	0.544	0.541	0.557
2012 Average	0.559	0.556	0.573	0.578	0.592
FNWN	0.378	0.375	0.350	0.383	0.392
OnWN	0.584	0.585	0.649	0.609	0.583
headlines	0.693	0.688	0.705	0.704	0.711
2013 Average	0.552	0.549	0.568	0.565	0.562

Dataset: SemEval

data sample: He is smart = He is a wise man.

Microsoft to acquire Linkedin ≠ Linkedin to acquire microsoft

Evaluation: Pearson's r (Spearman's r)