*

Лекция 1. Организация функционирования распределённых вычислительных систем

Кулагин Иван Иванович

ст. преп. Кафедры вычислительных систем Сибирский государственный университет телекоммуникаций и информатики

Created by:

Пазников Алексей Александрович к.т.н. доцент Кафедры вычислительных систем

Информация о курсе

Объект курса?

Распределённые вычислительные системы

Предмет курса?

Модели и алгоритмы организации функционирования

Цели распараллеливания

Что хочет пользователь?

- Сокращение времени решения задач.
- Решение задач, требующих огромных объёмов памяти.

В то же время

совершенствование средств ВТ на основе модели вычислителя *не даст кардинального улучшения технических характеристик*.

Распределённые ВС

Распределённая BC – мультипроцессорные BC с MIMD-архитектурой, в которых <u>нет единого ресурса</u>.

Представляется множеством взаимодействующих элементарных машин, оснащенных средствами коммуникаций и внешними устройствами.

Архитектурные особенности

- Иерархическая структура
- Мультиархитектурная организация
- Разнородность состава

Список ТОР500 (июнь 2013)

	Site	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	National University of Defense Technology China	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P NUDT	3,120,000	33,862.7	54,902.4	17,808
2	DOE/SC/Oak Ridge National Laboratory United States	Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560,640	17,590.0	27,112.5	8,209
3	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM	1,572,864	17,173.2	20,132.7	7,890
4	RIKEN Advanced Institute for Computational Science (AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu	705,024	10,510.0	11,280.4	12,660
5	DOE/SC/Argonne National Laboratory United States	Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom IBM	786,432	8,586.6	10,066.3	3,945

Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P

Расположение:	Национальный университет
	оборонных технологий (Китай)
Производитель:	NUDT
Количество ядер:	3,120,000
Производительность Linpack (Rmax)	33,862.7 teraFLOPS
Пиковая производительность (Rpeak)	54,902.4 teraFLOPS
Электрическая мощность:	17,808.00 кВт
Память:	1,024,000 гБ
Внутренняя сеть:	TH Express-2
Операционная система:	Kylin Linux
Компилятор:	icc
Математическая библиотека:	Intel MKL-11.0.0
MPI:	MPICH2 (GLEX channel)

Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P

Titan - Cray XK7, Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x

Расположение: Национальная лаборатория

Оук-Ридж (США)

Производитель: Cray Inc.

Количество ядер: 560,640

Производительность Linpack 17,590.0 teraFLOPS

(Rmax)

Пиковая производительность 27,112.5 teraFLOPS

(Rpeak)

Электрическая мощность: 8,209.00 кВт

Память: 710,144 гБ

Внутренняя сеть: Cray Gemini interconnect

Операционная система: Cray Linux Environment

Titan - Cray XK7, Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x

Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom

Расположение: Ливерморская национальная

лаборатория (США)

Производитель: ІВМ

Количество ядер: 1,572,864

Производительность Linpack 17,173.2 teraFLOPS

(Rmax)

Пиковая производительность 20,132.7 teraFLOPS

(Rpeak)

Электрическая мощность: 7,890.00 кВт

Память: 1,572,864 гБ

Внутренняя сеть: Custom Interconnect

Операционная система: Linux

Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom

K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect

Расположение: Институт вычислительных

систем (Япония)

Производитель: Fujitsu

Количество ядер: 705,024

Производительность Linpack 10,510.0 teraFLOPS

(Rmax)

Пиковая производительность 11,280.4 teraFLOPS

(Rpeak)

Электрическая мощность: 12,659.89 кВт

Память: 1,410,048 гБ

Внутренняя сеть: Custom Interconnect

Операционная система: Linux

K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect

Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom

Расположение: Аргонская национальная

лаборатория (США)

Производитель: ІВМ

Количество ядер: 786,432

Производительность Linpack 8,586.6 teraFLOPS

(Rmax)

Пиковая производительность 10,066.3 teraFLOPS

(Rpeak)

Электрическая мощность: 3,945.00 кВт

Внутренняя сеть: Custom Interconnect

Операционная система: Linux

Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom

Список ТОР500

Список ТОР500 – области применения

Application Area - Systems Share

Список ТОР500 – типы систем

Architecture - Systems Share

Структура современных ВС

Структура современных ВС

Image courtesy of Cray, Inc.

Cray XT4 Scalable Architecture

Структура современных ВС

Перспективные процессорные архитектуры

Intel MIC

Nvidia Echelon

AMD Fusion

Tilera Tile-Gx

Intel MIC

- Более 50 процессорных ядер
- Более 1 teraFLOPS
- Средства разработки: OpenMP, OpenCL, Intel Cilk Plus
- 512-битные векторные АЛУ

AMD Fusion

Объединение центрального многозадачного универсального процессора с графическим параллельным многоядерным процессором в одном кристалле

- 2-4 ядра К12
- GPU класса HD 5000
- 0,5-1 Мб кэша L2 на ядро (кэш L3 отсутствует)

Nvidia Echelon

- 128 потоковых блоков по 8 ядер
- 4 операции двойной точности за такт
- 6-уровневый кэш объёмом 256 Мб
- Внешняя память до 256 Гб.

Tilera Tile-Gx

- До 100 ядер, связанных по не полному графу
- Трёхуровневый кэш до 26 МБ
- До 1 ТБ памяти

Программное обеспечения распределённых ВС

- Распределённая ОС (GNU/Linux)
- Средства разработки параллельных программ (MPI, OpenMP, CUDA, Cray Chapel)
- Системы управления ресурсами (TORQUE, SLURM)
- Системы обеспечения отказоустойчивости (самоконтроль, самодиагностика, контрольные точки)
- Диспетчеры пространственно-распределённых ВС (GridWay, Pegasus)

Средства создания параллельных программ

Общая память

- POSIX Threads
- OpenMP
- Intel TBB
- Intel Cilk
- CUDA
- OpenCL

Распределённая память

- Sockets
- MPI
- PVM

PGAS

- Cray Chapel
- IBM X10
- Unified Parallel C
- HPF

Этапы развития распределённых BC (на примере BC фирмы Cray)

1 ГФЛОПС – 1988: Стау Ү-МР; 8 процессоров

• Задачи гидродинамики

1 ТФЛОПС – 1998: Cray Т3Е; 1 024 процессоров

• Моделирование процессов магнетизма

1 ПФЛОПС – 2008: Cray XT5; 150 000 процессоров

• Моделирование сверхпроводимости

1 ЭФЛОПС – 2018: _____; ~10 000 000 процессоров

• ???

Этапы развития распределённых BC (на примере BC фирмы Cray)

- 1 ГФЛОПС 1988: Стау Ү-МР; 8 процессоров
- Задачи гидродинамики
- Fortran77 + векторизация

- 1 ТФЛОПС 1998: Cray Т3Е; 1 024 процессоров
- Моделирование процессов магнетизма
- Fortran + MPI (Message Passing Interface)

- 1 ПФЛОПС 2008: Cray XT5; 150 000 процессоров
- Моделирование сверхпроводимости
- C/C++/Fortran + MPI + векторизация

- 1 ЭФЛОПС 2018: _____; ~10 000 000 процессоров
- ???
- C/C++/Fortran + MPI + CUDA/OpenCL/OpenMP/OpenACC

Или, может быть, что-то совершенно иное?

Организация функционирования

Цели организации функционирования:

- Минимум времени решения задачи
- Максимальная надёжность
- Максимум прибыли
- Минимизации энергопотребления

•

Могут быть составные показатели.

Режимы функционирования ВС

I Монопрограммный режим

Решение одной сложной задачи — для решения задачи используются все ресурсы ВС.

II Мультипрограммный режим

Обработка набора задач — учитывается не только количество задач, но их параметры: число ветвей, время решения и др.

Обслуживание потока задач – задачи поступают в случайные моменты времени, их параметры случайны.

Вложение параллельных программ в ВС

Вложение High Performance Linpack в подсистему:

стандартными МРІ-утилитами – время выполнения 118 сек. (44 GFLOPS) High Performance Linpack (HPL)

разработанными средствами –

время выполнения 100 сек. (53 GFLOPS)

Иерархическая ВС: 2 узла по 2 Intel Xeon 5150

Мультипрограммный режим

Сеанс работы пользователей в пакетном режиме

- 1. Поставить задачу в очередь.
- 2. Проверить состояние задачи.
- 3. Внести коррективы в задачу (её параметры).
- 4. Получить результат решения задачи.

Системы управления ресурсами распределённых BC (RMS - Resource Management System)

Параллельное мультипрограммирование

Мультизадачные режимы

Обработка наборов задач

Формирование расписаний решения параллельных задач

Вложение программ в ВС, коллективные обмены

Точные, эвристические и стохастические методы и алгоритмы

Обслуживание потоков задач

Генерация подсистем в пределах ВС

- Техника теории игр
- Стохастическое программирование

Системы управления ресурсами

I Монопрограммный режим

Решение одной сложной задачи — для решения задачи используются все ресурсы ВС.

II Мультипрограммный режим

Обработка набора задач — учитывается не только количество задач, но их параметры: число ветвей, время решения и др.

Обслуживание потока задач – задачи поступают в случайные моменты времени, их параметры случайны.

Диспетчеризация параллельных задач

Распределённые вычисления (Вычисления высокой пропускной способности, НТС)

- живучесть, отказоустойчивость (миграция, контрольные точки)
- длительное время решения большого количество заданий
- слабо связанные задания
- большой объём
 задействованных ресурсов

CONDOR, MOSIX, BOINC,
MapReduce

Распределённые вычисления (Вычисления высокой пропускной способности, НТС)

Алгоритмы MapReduce

The overall MapReduce word count process

Высокопроизводительные вычисления (НРС)

- сильно связанные параллельные ветви интенсивный обмен сообщениями быстрые каналы связи
- единая точка доступа к ресурсам
- параллельные программы

Конец слайдов

П.Пикассо. «Герника»