

This Page Is Inserted by IFW Operations  
and is not a part of the Official Record

## BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,  
please do not report the images to the  
Image Problems Mailbox.**

SIMO MÄENPÄÄ  
P. 2449425

Second Edition

# Field and Wave Electromagnetics

**David K. Cheng**

Life Fellow, I.E.E.E.;  
Fellow, I.E.E.; C. Eng.



ADDISON-WESLEY PUBLISHING COMPANY

Reading, Massachusetts • Menlo Park, California • New York  
Don Mills, Ontario • Wokingham, England • Amsterdam • Bonn  
Sydney • Singapore • Tokyo • Madrid • San Juan

**WORLD STUDENT SERIES EDITION**

This book is in the Addison-Wesley Series in Electrical Engineering

Barbara Riskind: *Sponsoring Editor*  
Karen Myer: *Production Supervisor*  
Hugh Crawford: *Manufacturing Supervisor*  
Joseph K. Vetrone: *Technical Art Consultant*  
Catherine Doran: *Interior Designer*  
Marshall Hearlich: *Cover Designer*  
Pammy DaMoulin: *Production Coordinator*

Copyright © 1989 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America.  
Published simultaneously in Canada.

ISBN 0-201-53820-1

**45678-DO-939291**

**Fourth Printing, January 1991.**

---

## Preface

The many books on introductory electromagnetics can be roughly divided into two main groups. The first group takes the traditional development: starting with the experimental laws, generalizing them in steps, and finally synthesizing them in the form of Maxwell's equations. This is an inductive approach. The second group takes the axiomatic development: starting with Maxwell's equations, identifying each with the appropriate experimental law, and specializing the general equations to static and time-varying situations for analysis. This is a deductive approach. A few books begin with a treatment of the special theory of relativity and develop all of electromagnetic theory from Coulomb's law of force; but this approach requires the discussion and understanding of the special theory of relativity first and is perhaps best suited for a course at an advanced level.

Proponents of the traditional development argue that it is the way electromagnetic theory was unraveled historically (from special experimental laws to Maxwell's equations), and that it is easier for the students to follow than the other methods. I feel, however, that the way a body of knowledge was unraveled is not necessarily the best way to teach the subject to students. The topics tend to be fragmented and cannot take full advantage of the conciseness of vector calculus. Students are puzzled at, and often form a mental block to, the subsequent introduction of gradient, divergence, and curl operations. As a process for formulating an electromagnetic model, this approach lacks cohesiveness and elegance.

The axiomatic development usually begins with the set of four Maxwell's equations, either in differential or in integral form, as fundamental postulates. These are equations of considerable complexity and are difficult to master. They are likely to cause consternation and resistance in students who are hit with all of them at the beginning of a book. Alert students will wonder about the meaning of the field vectors and about the necessity and sufficiency of these general equations. At the initial stage students tend to be confused about the concepts of the electromagnetic model, and they are not yet comfortable with the associated mathematical manipulations. In any case, the general Maxwell's equations are soon simplified to apply to static fields,

---

## Contents

---

### 1 The Electromagnetic Model 1

---

|     |                                  |    |
|-----|----------------------------------|----|
| 1-1 | Introduction                     | 1  |
| 1-2 | The Electromagnetic Model        | 3  |
| 1-3 | SI Units and Universal Constants | 8  |
|     | Review Questions                 | 10 |

---

### 2 Vector Analysis 11

---

|       |                                       |    |
|-------|---------------------------------------|----|
| 2-1   | Introduction                          | 11 |
| 2-2   | Vector Addition and Subtraction       | 12 |
| 2-3   | Products of Vectors                   | 14 |
| 2-3.1 | Scalar or Dot Product 14              |    |
| 2-3.2 | Vector or Cross Product 16            |    |
| 2-3.3 | Product of Three Vectors 18           |    |
| 2-4   | Orthogonal Coordinate Systems         | 20 |
| 2-4.1 | Cartesian Coordinates 23              |    |
| 2-4.2 | Cylindrical Coordinates 27            |    |
| 2-4.3 | Spherical Coordinates 31              |    |
| 2-5   | Integrals Containing Vector Functions | 37 |
| 2-6   | Gradient of a Scalar Field            | 42 |
| 2-7   | Divergence of a Vector Field          | 46 |
| 2-8   | Divergence Theorem                    | 50 |
| 2-9   | Curl of a Vector Field                | 54 |
| 2-10  | Stokes's Theorem                      | 58 |

## Contents

|        |                     |    |
|--------|---------------------|----|
| 2-11   | Two Null Identities | 61 |
| 2-11.1 | Identity I          | 61 |
| 2-11.2 | Identity II         | 62 |
| 2-12   | Helmholtz's Theorem | 63 |
|        | Review Questions    | 66 |
|        | Problems            | 67 |

**3 Static Electric Fields 72**

|        |                                                           |     |
|--------|-----------------------------------------------------------|-----|
| 3-1    | Introduction                                              | 72  |
| 3-2    | Fundamental Postulates of Electrostatics in Free Space    | 74  |
| 3-3    | Coulomb's Law                                             | 77  |
| 3-3.1  | Electric Field Due to a System of Discrete Charges        | 82  |
| 3-3.2  | Electric Field Due to a Continuous Distribution of Charge | 84  |
| 3-4    | Gauss's Law and Applications                              | 87  |
| 3-5    | Electric Potential                                        | 92  |
| 3-5.1  | Electric Potential Due to a Charge Distribution           | 94  |
| 3-6    | Conductors in Static Electric Field                       | 100 |
| 3-7    | Dielectrics in Static Electric Field                      | 105 |
| 3-7.1  | Equivalent Charge Distributions of Polarized Dielectrics  | 106 |
| 3-8    | Electric Flux Density and Dielectric Constant             | 109 |
| 3-8.1  | Dielectric Strength                                       | 114 |
| 3-9    | Boundary Conditions for Electrostatic Fields              | 116 |
| 3-10   | Capacitance and Capacitors                                | 121 |
| 3-10.1 | Series and Parallel Connections of Capacitors             | 126 |
| 3-10.2 | Capacitances in Multiconductor Systems                    | 129 |
| 3-10.3 | Electrostatic Shielding                                   | 132 |
| 3-11   | Electrostatic Energy and Forces                           | 133 |
| 3-11.1 | Electrostatic Energy in Terms of Field Quantities         | 137 |
| 3-11.2 | Electrostatic Forces                                      | 140 |
|        | Review Questions                                          | 143 |
|        | Problems                                                  | 145 |

**4 Solution of Electrostatic Problems 152**

|     |                                       |     |
|-----|---------------------------------------|-----|
| 4-1 | Introduction                          | 152 |
| 4-2 | Poisson's and Laplace's Equations     | 152 |
| 4-3 | Uniqueness of Electrostatic Solutions | 157 |

## Contents

|       |                                                    |     |
|-------|----------------------------------------------------|-----|
| 4-4.  | Method of Images                                   | 159 |
| 4-4.1 | Point Charge and Conducting Planes                 | 161 |
| 4-4.2 | Line Charge and Parallel Conducting Cylinder       | 162 |
| 4-4.3 | Point Charge and Conducting Sphere                 | 170 |
| 4-4.4 | Charged Sphere and Grounded Plane                  | 172 |
| 4-5   | Boundary-Value Problems in Cartesian Coordinates   | 174 |
| 4-6   | Boundary-Value Problems in Cylindrical Coordinates | 183 |
| 4-7   | Boundary-Value Problems in Spherical Coordinates   | 188 |
|       | Review Questions                                   | 192 |
|       | Problems                                           | 193 |

**5 Steady Electric Currents 198**

|     |                                                    |     |
|-----|----------------------------------------------------|-----|
| S-1 | Introduction                                       | 198 |
| S-2 | Current Density and Ohm's Law                      | 199 |
| S-3 | Electromotive Force and Kirchhoff's Voltage Law    | 205 |
| S-4 | Equation of Continuity and Kirchhoff's Current Law | 208 |
| S-5 | Power Dissipation and Joule's Law                  | 210 |
| S-6 | Boundary Conditions for Current Density            | 211 |
| S-7 | Resistance Calculations                            | 215 |
|     | Review Questions                                   | 219 |
|     | Problems                                           | 220 |

**6 Static Magnetic Fields 225**

|       |                                                        |     |
|-------|--------------------------------------------------------|-----|
| 6-1   | Introduction                                           | 225 |
| 6-2   | Fundamental Postulates of Magnetostatics in Free Space | 226 |
| 6-3   | Vector Magnetic Potential                              | 232 |
| 6-4   | The Biot-Savart Law and Applications                   | 234 |
| 6-5   | The Magnetic Dipole                                    | 239 |
| 6-5.1 | Scalar Magnetic Potential                              | 242 |
| 6-6   | Magnetization and Equivalent Current Densities         | 243 |
| 6-6.1 | Equivalent Magnetization Charge Densities              | 247 |
| 6-7   | Magnetic Field Intensity and Relative Permeability     | 249 |
| 6-8   | Magnetic Circuits                                      | 251 |
| 6-9   | Behavior of Magnetic Materials.                        | 257 |
| 6-10  | Boundary Conditions for Magnetostatic Fields           | 262 |
| 6-11  | Inductances and Inductors                              | 266 |

xii

## Contents

|        |                                                       |     |
|--------|-------------------------------------------------------|-----|
| 6-12   | Magnetic Energy                                       | 277 |
| 6-12.1 | Magnetic Energy in Terms of Field Quantities          | 279 |
| 6-13   | Magnetic Forces and Torques                           | 281 |
| 6-13.1 | Hall Effect                                           | 282 |
| 6-13.2 | Forces and Torques on Current-Carrying Conductors     | 283 |
| 6-13.3 | Forces and Torques in Terms of Stored Magnetic Energy | 289 |
| 6-13.4 | Forces and Torques in Terms of Mutual Inductance      | 292 |
|        | Review Questions                                      | 294 |
|        | Problems                                              | 296 |

**7****Time-Varying Fields and Maxwell's Equations 307**

|       |                                                        |     |
|-------|--------------------------------------------------------|-----|
| 7-1   | Introduction                                           | 307 |
| 7-2   | Faraday's Law of Electromagnetic Induction             | 308 |
| 7-2.1 | A Stationary Circuit in a Time-Varying Magnetic Field  | 309 |
| 7-2.2 | Transformers                                           | 310 |
| 7-2.3 | A Moving Conductor in a Static Magnetic Field          | 314 |
| 7-2.4 | A Moving Circuit in a Time-Varying Magnetic Field      | 317 |
| 7-3   | Maxwell's Equations                                    | 321 |
| 7-3.1 | Integral Form of Maxwell's Equations                   | 323 |
| 7-4   | Potential Functions                                    | 326 |
| 7-5   | Electromagnetic Boundary Conditions                    | 329 |
| 7-5.1 | Interface between Two Lossless Linear Media            | 330 |
| 7-5.2 | Interface between a Dielectric and a Perfect Conductor | 331 |
| 7-6   | Wave Equations and Their Solutions                     | 332 |
| 7-6.1 | Solution of Wave Equations for Potentials              | 333 |
| 7-6.2 | Source-Free Wave Equations                             | 334 |
| 7-7   | Time-Harmonic Fields                                   | 335 |
| 7-7.1 | The Use of Phasors—A Review                            | 336 |
| 7-7.2 | Time-Harmonic Electromagnetics                         | 338 |
| 7-7.3 | Source-Free Fields in Simple Media                     | 340 |
| 7-7.4 | The Electromagnetic Spectrum                           | 343 |
|       | Review Questions                                       | 346 |
|       | Problems                                               | 347 |

**8****Plane Electromagnetic Waves 354**

|       |                               |     |
|-------|-------------------------------|-----|
| 8-1   | Introduction                  | 354 |
| 8-2   | Plane Waves in Lossless Media | 355 |
| 8-2.1 | Doppler Effect                | 360 |

## Contents

|        |                                                       |     |
|--------|-------------------------------------------------------|-----|
| 8-2.2  | Transverse Electromagnetic Waves                      | 361 |
| 8-2.3  | Polarization of Plane Waves                           | 364 |
| 8-3    | Plane Waves in Lossy Media                            | 367 |
| 8-3.1  | Low-Loss Dielectrics                                  | 368 |
| 8-3.2  | Good Conductors                                       | 369 |
| 8-3.3  | Ionized Gases                                         | 373 |
| 8-4    | Group Velocity                                        | 375 |
| 8-5    | Flow of Electromagnetic Power and the Poynting Vector | 379 |
| 8-5.1  | Instantaneous and Average Power Densities             | 382 |
| 8-6    | Normal Incidence at a Plane Conducting Boundary       | 386 |
| 8-7    | Oblique Incidence at a Plane Conducting Boundary      | 390 |
| 8-7.1  | Perpendicular Polarization                            | 390 |
| 8-7.2  | Parallel Polarization                                 | 395 |
| 8-8    | Normal Incidence at a Plane Dielectric Boundary       | 397 |
| 8-9    | Normal Incidence at Multiple Dielectric Interfaces    | 401 |
| 8-9.1  | Wave Impedance of the Total Field                     | 403 |
| 8-9.2  | Impedance Transformation with Multiple Dielectrics    | 404 |
| 8-10   | Oblique Incidence at a Plane Dielectric Boundary      | 406 |
| 8-10.1 | Total Reflection                                      | 408 |
| 8-10.2 | Perpendicular Polarization                            | 411 |
| 8-10.3 | Parallel Polarization                                 | 414 |
|        | Review Questions                                      | 417 |
|        | Problems                                              | 419 |

9

## Theory and Applications of Transmission Lines 427

|       |                                                                          |     |
|-------|--------------------------------------------------------------------------|-----|
| 9-1   | Introduction                                                             | 427 |
| 9-2   | Transverse Electromagnetic Wave along a Parallel-Plate Transmission Line | 429 |
| 9-2.1 | Lossy Parallel-Plate Transmission Lines                                  | 433 |
| 9-2.2 | Microstrip Lines                                                         | 435 |
| 9-3   | General Transmission-Line Equations                                      | 437 |
| 9-3.1 | Wave Characteristics on an Infinite Transmission Line                    | 439 |
| 9-3.2 | Transmission-Line Parameters                                             | 444 |
| 9-3.3 | Attenuation Constant from Power Relations                                | 447 |
| 9-4   | Wave Characteristics on Finite Transmission Lines                        | 449 |
| 9-4.1 | Transmission Lines as Circuit Elements                                   | 454 |
| 9-4.2 | Lines with Resistive Termination                                         | 460 |
| 9-4.3 | Lines with Arbitrary Termination                                         | 465 |
| 9-4.4 | Transmission-Line Circuits                                               | 467 |
| 9-5   | Transients on Transmission Lines                                         | 471 |
| 9-5.1 | Reflection Diagrams                                                      | 474 |

xiv

## Contents

|       |                                                    |     |
|-------|----------------------------------------------------|-----|
| 9-5.2 | Pulse Excitation 478                               |     |
| 9-5.3 | Initially Charged Line 480                         |     |
| 9-5.4 | Line with Reactive Load 482                        |     |
| 9-6   | The Smith Chart                                    |     |
| 9-6.1 | Smith-Chart Calculations for Lossy Lines 495       | 485 |
| 9-7   | Transmission-Line Impedance Matching               |     |
| 9-7.1 | Impedance Matching by Quarter-Wave Transformer 497 | 497 |
| 9-7.2 | Single-Stub Matching 501                           |     |
| 9-7.3 | Double-Stub Matching 505                           |     |
|       | Review Questions                                   |     |
|       | Problems                                           | 509 |
|       |                                                    | 512 |

## 10 Waveguides and Cavity Resonators 520

|        |                                                         |     |
|--------|---------------------------------------------------------|-----|
| 10-1   | Introduction                                            |     |
| 10-2   | General Wave Behaviors along Uniform Guiding Structures | 520 |
| 10-2.1 | Transverse Electromagnetic Waves 524                    | 521 |
| 10-2.2 | Transverse Magnetic Waves 525                           |     |
| 10-2.3 | Transverse Electric Waves 529                           |     |
| 10-3   | Parallel-Plate Waveguide                                |     |
| 10-3.1 | TM Waves between Parallel Plates 534                    | 534 |
| 10-3.2 | TE Waves between Parallel Plates 539                    |     |
| 10-3.3 | Energy-Transport Velocity 541                           |     |
| 10-3.4 | Attenuation in Parallel-Plate Waveguides 543            |     |
| 10-4   | Rectangular Waveguides                                  |     |
| 10-4.1 | TM Waves in Rectangular Waveguides 547                  | 547 |
| 10-4.2 | TE Waves in Rectangular Waveguides 551                  |     |
| 10-4.3 | Attenuation in Rectangular Waveguides 553               |     |
| 10-4.4 | Discontinuities in Rectangular Waveguides 555           |     |
| 10-5   | Circular Waveguides                                     |     |
| 10-5.1 | Bessel's Differential Equation and Bessel Functions 563 | 562 |
| 10-5.2 | TM Waves in Circular Waveguides 567                     |     |
| 10-5.3 | TE Waves in Circular Waveguides 569                     |     |
| 10-6   | Dielectric Waveguides                                   |     |
| 10-6.1 | TM Waves along a Dielectric Slab 572                    | 572 |
| 10-6.2 | TE Waves along a Dielectric Slab 576                    |     |
| 10-6.3 | Additional Comments on Dielectric Waveguides 579        |     |
| 10-7   | Cavity Resonators                                       |     |
| 10-7.1 | Rectangular Cavity Resonators 582                       | 582 |
| 10-7.2 | Quality Factor of Cavity Resonator 586                  |     |
| 10-7.3 | Circular Cavity Resonator 589                           |     |
|        | Review Questions                                        |     |
|        | Problems                                                | 592 |
|        |                                                         | 594 |

## Contents

xv

**11 Antennas and Radiating Systems 600**

|        |                                               |     |
|--------|-----------------------------------------------|-----|
| 11-1   | Introduction                                  | 600 |
| 11-2   | Radiation Fields of Elemental Dipoles         | 602 |
| 11-2.1 | The Elemental Electric Dipole                 | 602 |
| 11-2.2 | The Elemental Magnetic Dipole                 | 605 |
| 11-3   | Antenna Patterns and Antenna Parameters       | 607 |
| 11-4   | Thin Linear Antennas                          | 614 |
| 11-4.1 | The Half-Wave Dipole                          | 617 |
| 11-4.2 | Effective Antenna Length                      | 619 |
| 11-5   | Antenna Arrays                                | 621 |
| 11-5.1 | Two-Element Arrays                            | 622 |
| 11-5.2 | General Uniform Linear Arrays                 | 625 |
| 11-6   | Receiving Antennas                            | 631 |
| 11-6.1 | Internal Impedance and Directional Pattern    | 632 |
| 11-6.2 | Effective Area                                | 634 |
| 11-6.3 | Backscatter Cross Section                     | 637 |
| 11-7   | Transmit-Receive Systems                      | 639 |
| 11-7.1 | Friis Transmission Formula and Radar Equation | 639 |
| 11-7.2 | Wave Propagation near Earth's Surface         | 642 |
| 11-8   | Some Other Antenna Types                      | 643 |
| 11-8.1 | Traveling-Wave Antennas                       | 643 |
| 11-8.2 | Helical Antennas                              | 645 |
| 11-8.3 | Yagi-Uda Antenna                              | 648 |
| 11-8.4 | Broadband Antennas                            | 650 |
| 11-9   | Aperture Radiators                            | 655 |
|        | References                                    | 661 |
|        | Review Questions                              | 662 |
|        | Problems                                      | 664 |

**Appendices****A Symbols and Units 671**

|     |                                          |     |
|-----|------------------------------------------|-----|
| A-1 | Fundamental SI (Rationalized MKSA) Units | 671 |
| A-2 | Derived Quantities                       | 671 |
| A-3 | Multiples and Submultiples of Units      | 673 |

**B Some Useful Material Constants 674**

|     |                                           |     |
|-----|-------------------------------------------|-----|
| B-1 | Constants of Free Space                   | 674 |
| B-2 | Physical Constants of Electron and Proton | 674 |

234

## 6 Static Magnetic Fields

Equation (6-23) enables us to find the vector magnetic potential  $A$  from the volume current density  $J$ . The magnetic flux density  $B$  can then be obtained from  $\nabla \times A$  by differentiation, in a way similar to that of obtaining the static electric field  $E$  from  $-\nabla V$ .

Vector potential  $A$  relates to the magnetic flux  $\Phi$  through a given area  $S$  that is bounded by contour  $C$  in a simple way:

$$\Phi = \int_S \mathbf{B} \cdot d\mathbf{s}. \quad (6-24)$$

The SI unit for magnetic flux is weber (Wb), which is equivalent to tesla-square meter ( $T \cdot m^2$ ). Using Eq. (6-15) and Stokes's theorem, we have

$$\Phi = \int_S (\nabla \times \mathbf{A}) \cdot d\mathbf{s} = \oint_C \mathbf{A} \cdot d\mathbf{r} \quad (\text{Wb}). \quad (6-25)$$

Thus, vector magnetic potential  $A$  does have physical significance in that its line integral around any closed path equals the total magnetic flux passing through the area enclosed by the path.

#### 6-4 The Biot-Savart Law and Applications

In many applications we are interested in determining the magnetic field due to a current-carrying circuit. For a thin wire with cross-sectional area  $S$ ,  $d\mathbf{v}'$  equals  $S d\mathbf{r}'$ , and the current flow is entirely along the wire. We have

$$J d\mathbf{v}' = JS d\mathbf{r}' = I d\mathbf{r}', \quad (6-26)$$

and Eq. (6-23) becomes

$$A = \frac{\mu_0 I}{4\pi} \oint_C \frac{d\mathbf{r}'}{R} \quad (\text{Wb/m}), \quad (6-27)$$

where a circle has been put on the integral sign because the current  $I$  must flow in a closed path,<sup>1</sup> which is designated  $C$ . The magnetic flux density is then

$$\begin{aligned} \mathbf{B} &= \nabla \times \mathbf{A} = \nabla \times \left[ \frac{\mu_0 I}{4\pi} \oint_C \frac{d\mathbf{r}'}{R} \right] \\ &= \frac{\mu_0 I}{4\pi} \oint_C \nabla \times \left( \frac{d\mathbf{r}'}{R} \right). \end{aligned} \quad (6-28)$$

<sup>1</sup> We are now dealing with direct (non-time-varying) currents that give rise to steady magnetic fields. Circuits containing time-varying sources may send time-varying currents along an open wire and deposit charges at its ends. Antennas are examples.

## 6-4 The Biot-Savart Law and Applications

235

It is very important to note in Eq. (6-28) that the unprimed curl operation implies differentiations with respect to the space coordinates of the field point, and that the integral operation is with respect to the primed source coordinates. The integrand in Eq. (6-28) can be expanded into two terms by using the following identity (see Problem P.2-37):

$$\nabla \times (f\mathbf{G}) = f\nabla \times \mathbf{G} + (\nabla f) \times \mathbf{G}. \quad (6-29)$$

We have, with  $f = 1/R$  and  $\mathbf{G} = d\ell'$ ,

$$\mathbf{B} = \frac{\mu_0 I}{4\pi} \oint_C \left[ \frac{1}{R} \nabla \times d\ell' + \left( \nabla \frac{1}{R} \right) \times d\ell' \right]. \quad (6-30)$$

Now, since the unprimed and primed coordinates are independent,  $\nabla \times d\ell'$  equals  $\mathbf{G}$ , and the first term on the right side of Eq. (6-30) vanishes. The distance  $R$  is measured from  $d\ell'$  at  $(x', y', z')$  to the field point at  $(x, y, z)$ . Thus we have

$$\begin{aligned} \frac{1}{R} &= [(x - x')^2 + (y - y')^2 + (z - z')^2]^{-1/2}; \\ \nabla \left( \frac{1}{R} \right) &= a_x \frac{\partial}{\partial x} \left( \frac{1}{R} \right) + a_y \frac{\partial}{\partial y} \left( \frac{1}{R} \right) + a_z \frac{\partial}{\partial z} \left( \frac{1}{R} \right) \\ &= -\frac{a_x(x - x') + a_y(y - y') + a_z(z - z')}{[(x - x')^2 + (y - y')^2 + (z - z')^2]^{3/2}} \\ &= -\frac{\mathbf{R}}{R^3} = -a_R \frac{1}{R^2}, \end{aligned} \quad (6-31)$$

where  $a_R$  is the unit vector directed from the source point to the field point. Substituting Eq. (6-31) in Eq. (6-30), we get

$$\boxed{\mathbf{B} = \frac{\mu_0 I}{4\pi} \oint_C \frac{d\ell' \times a_R}{R^2}} \quad (6-32)$$

Equation (6-32) is known as *Biot-Savart Law*. It is a formula for determining  $\mathbf{B}$  caused by a current  $I$  in a closed path  $C$  and is obtained by taking the curl of  $\mathbf{A}$  in Eq. (6-27). Sometimes it is convenient to write Eq. (6-32) in two steps:

$$\boxed{\mathbf{B} = \oint_C d\mathbf{B}} \quad (6-33a)$$

with

$$\boxed{d\mathbf{B} = \frac{\mu_0 I}{4\pi} \left( \frac{d\ell' \times a_R}{R^2} \right)} \quad (6-33b)$$

236

## 6 Static Magnetic Fields



FIGURE 6-5  
A current-carrying straight wire (Example 6-4).

which is the magnetic flux density due to a current element \$dz'\$. An alternative and sometimes more convenient form for Eq. (6-33b) is

$$dB = \frac{\mu_0 I}{4\pi} \left( \frac{dz' \times R}{R^3} \right) \quad (1)$$
(6-33c)

Comparison of Eq. (6-32) with Eq. (6-10) will reveal that Biot-Savart law is, in general, more difficult to apply than Ampère's circuital law. However, Ampère's circuital law is not useful for determining \$\mathbf{B}\$ from \$I\$ in a circuit if a closed path cannot be found over which \$\mathbf{B}\$ has a constant magnitude.

**EXAMPLE 6-4** A direct current \$I\$ flows in a straight wire of length \$2L\$. Find the magnetic flux density \$\mathbf{B}\$ at a point located at a distance \$r\$ from the wire in the bisecting plane (a) by determining the vector magnetic potential \$\mathbf{A}\$ first, and (b) by applying Biot-Savart law.

**Solution** Currents exist only in closed circuits. Hence the wire in the present problem must be a part of a current-carrying loop with several straight sides. Since we do not know the rest of the circuit, Ampère's circuital law cannot be used to advantage. Refer to Fig. 6-5. The current-carrying line segment is aligned with the \$z\$-axis. A typical element on the wire is

$$dz' = a_z dz'$$

The cylindrical coordinates of the field point \$P\$ are \$(r, 0, 0)\$.

a) By finding \$\mathbf{B}\$ from \$\nabla \times \mathbf{A}\$. Substituting \$R = \sqrt{z'^2 + r^2}\$ into Eq. (6-27), we have

$$\begin{aligned} \mathbf{A} &= a_z \frac{\mu_0 I}{4\pi} \int_{-L}^L \frac{dz'}{\sqrt{z'^2 + r^2}} \\ &= a_z \frac{\mu_0 I}{4\pi} \left[ \ln(z' + \sqrt{z'^2 + r^2}) \right] \Big|_{-L}^L \\ &= a_z \frac{\mu_0 I}{4\pi} \ln \frac{\sqrt{L^2 + r^2} + L}{\sqrt{L^2 + r^2} - L} \end{aligned} \quad (6-34)$$

List of References of the M.Sc t<sup>h</sup> of Mr. Pasi Mattila

54

**KIRJALLISUUS**

- [1] Rautio, K., Tunturi T-road juoksumaton ohjelmistosuunnitelma. Mariachi Oy, Turku, 2000.
- [2] Peltonen, P., Toteutusmäärittely TIE käyttöliittymäelektronikka (IUE). Mariachi Oy, Turku, 1998.
- [3] Lamberg, P., T-road schema. Mariachi Oy, Turku, 2000.
- [4] Rautio, K., Tunturi T-road juoksumatto ala- ja yläkortin välinen viestintä. Mariachi Oy, Turku, 2000.
- [5] Rautio, K., TIE IUE ohjelmiston toteutus. Mariachi Oy, Turku, 1998.
- [6] Edwards, S., The Heart Rate Monitor Book. Fleet Feet Press, Sacramento, 1993.
- [7] Polar OEM handbook Version 1.3. Polar Electro Oy, Kempele, 2000.
- [8] Polar Electro, Operational and technical description T31 transmitter. Polar Electro Oy, Kempele, 2000.
- [9] Polar Electro, Operational and technical description T41 transmitter. Polar Electro Oy, Kempele, 2000.
- [10] Polar Electro, PCBA receiver operational and technical description. Polar Electro Oy, Kempele, 2000.
- [11] Cheng, D., Field and Wave Electromagnetics. Addison-Wesley Publishing Company, New York, 1991.
- [12] Voipio, E., Sähkö- ja magneettikentät. Otakustantamo, Helsinki, 1976.
- [13] Millman, J. ja Grabel, A., Microelectronics, 2<sup>d</sup> edition. McGraw-Hill Book Co, Singapore, 1987.
- [14] <http://pdf.toshiba.com/taec/components/Datasheet/C807.pdf>  
www-dokumentti, luettu 10.7.2001.