Fiscomp I Mapa logístico e caos

Alexandre Suaide

Ramal 91-7072

suaide@if.usp.br

O PÊNDULO DUPLO

Applet em http://physlab.net/dbl_pendulum.html

CAOS

- São sistemas determinísticos (não probabilísticos), ou seja, as equações que descrevem a evolução são bem determinadas.
- A evolução temporal é muito dependente das condições iniciais
- As trajetórias são muito irregulares

O pêndulo duplo é caótico

COMO SE CHEGA AO CAOS?

- Bifurcações de período
 - Rota mais comum para o caos (cenário de Feigenbaum)
 - Duplicação dos atratores

$$\lim_{n\to\infty} = \frac{\left(\mu_n - \mu_{n-1}\right)}{\left(\mu_{n+1} - \mu_n\right)} = \delta$$

 $\delta = 4,6692016091029909...$

Algo que represente a resposta do sistema para aquela condição (corrente, tensão em um elemento, população, etc.)

Uma variável de controle do sistema (tempo, número de geração, tensão em uma fonte, etc.)

EXEMPLO SIMPLES: O MAPA LOGÍSTICO

- Crescimento de populações
 - Equação logística Pierre Verhulst (~1845)

$$\frac{dx}{dt} = rx(1-x), \text{ com } x = N/K$$

$$x(t) = \frac{1}{1 + (x_0^{-1} - 1)e^{-rt}}, \text{ função sigmóide}$$

- r = número Malthusiano,
 - Se r<0 → a população morre com o tempo x→0
 - Se r>0 → a população sobrevive

EXEMPLO SIMPLES: O MAPA LOGÍSTICO

- Crescimento de populações
 - Equação logística Pierre Verhulst (~1845)
 - Esta equação possui inconvenientes para o estudo de evolução de populações pois a população em qualquer instante t depende somente das condições iniciais e é contínua
 - É mais desejável haver modelos onde o estágio atual da população dependa apenas da geração anterior e não da condição inicial
 - Assim, costuma-se utilizar o mapa logístico, ao invés da equação logística para o estudo de populações.

EXEMPLO SIMPLES: O MAPA LOGÍSTICO

- Crescimento de populações
 - Mapa logístico

$$x_{n+1} = rx_n(1 - x_n)$$

- Neste caso, r é sempre maior que 1 e é denominado potencial biótico da população
- Como é a evolução temporal da população em função da condição inicial (x_{θ}) e do potencial biótico?

$$x_{n+1} = rx_n(1 - x_n)$$

- Dois métodos de cálculo
 - Excel
 - Fazer uma planilha e observar como as gerações evoluem com os parâmetros iniciais
 - Método gráfico
 - Diagrama de teia
 - Efeito visual mais direto mas depende de um pouco de habilidade gráfica ☺

$$x_{n+1} = rx_n(1 - x_n)$$

- Diagrama de teia
 - Faz-se uma reta com c.a. = 1
 - Faz-se um gráfico superposto da função

$$f(x) = rx(1-x)$$

• Calcula-se f(x) para o valor de x_{θ}

$$x_{n+1} = rx_n(1 - x_n)$$

- Rebate-se o valor para a reta
 - Obtem-se assim o valor de x_1
- Calcula-se f(x) para o valor de x_1
- Rebate-se novamente para a reta para obter x_2

$$x_{n+1} = rx_n(1 - x_n)$$

- E assim sucessivamente tantas quantas forem as interações desejadas
- Os vários comportamentos dependem de r

 $x_{n+1} = rx_n(1 - x_n)$

 Dois conceitos importantes

• Transitório:

 Intervalo de tempo (ou interações) necessário
para atingir uma situação de equilíbrio

• Regime estacionário

Intervalo de tempo (ou interações) após o transitório

$$x_{n+1} = rx_n(1 - x_n)$$

- População que atinge estabilidade
- População que morre com o tempo
- População em estado caótico

O DIAGRAMA DE FASE

- O diagrama de fase corresponde a <u>todos</u> estados do sistema, no regime estacionário, em função de uma variável de controle
- Estado do sistema
 - Variáveis que definem a situação do sistema em um dado instante
 - Ex: tamanho da população, tensão e corrente em um RLC, velocidade e posição de um corpo
- Variável de controle
 - É aquela que podemos controlar e variar ao nosso gosto para testar como o sistema se comporta
 - Ex: Freqüência e tensão do gerador, tamanho de um pêndulo, etc.

DIAGRAMA DE FASE DE UM MAPA LOGÍSTICO

$$x_{n+1} = rx_n(1 - x_n)$$

- Qual o estado?
 - X_n , ou tamanho da população
- Qual é a variável de controle?
 - No nosso caso, apenas r pode ser variada e estudamos como X_n se comporta em função de r.
 - Lembre-se que queremos X_n no regime estacionário
- Como montamos o diagrama, neste caso:
 - Escolhemos r.
 - Definimos que o transitório acaba em, por exemplo, k passos
 - Graficamos todos os valores possíveis de X_n para aquele valor de r após o transitório

DIAGRAMA DE FASE DE UM MAPA LOGÍSTICO

Atividades de hoje

- Estudar o mapa logístico usando ferramentas computacionais
 - Representação gráfica do mapa logístico
 - Evolução do sistema de acordo com os parâmetros e condições iniciais
 - Diagrama de bifurcação
 - Número de Feigenbaum
- Importante: faça as figuras com qualidade visual: nomes nos eixos, pontos de tamanho adequado, etc.

Parte 1

 Sabendo que o mapa logístico pode ser explorado através da relação de recorrência

$$x_{n+1} = rx_n(1 - x_n)$$

 Explore como x depende de n, dados um parâmetro r e um valor para x₀

 Você poderia identificar uns valores de r e x₀ onde há convergência para um único valor? E para dois? E para caos?

Parte 2

 Sabendo que o mapa logístico pode ser explorado através da relação de recorrência

$$x_{n+1} = rx_n(1 - x_n)$$

• Elabore um código onde mostre o cálculo de x_n graficamente, dado um valor de r e x_0

 Você poderia identificar uns valores de r e x₀ onde há convergência para um único valor? E para dois? E para caos?

Parte 3

 Sabendo que o mapa logístico pode ser explorado através da relação de recorrência

$$x_{n+1} = rx_n(1 - x_n)$$

- Obtenha o diagrama de fase para o mapa logístico
- Qual um valor razoável de n para eliminar o transitório?
- Obtenha a constante de Feigenbaum

