[CSE3081(2반)] 알고리즘 설계와 분석

2020학년도 2학기강의자료(2020.10.15 목요일)

서강대학교 공과대학 컴퓨터공학과 임 인 성 교수

본 강의에서 제작하여 제공하는 PDF 파일, 동영상, 그리고 예제 코드 등의 강의 자료의 저작권은 특별히 명기되어 있지 않은 한 서강대학교에 있습니다.

본인의 학습 목적 외에 공개된 장소에 올리거나 타인에게 배포하는 등의 행위를 금합니다. 협조 부탁합니다.

[주제 4] Dynamic Programming

The Manhattan Tourist Problem

Problem:

- Given two street corners in the borough of Manhattan in New York City, find the path between them with the maximum number of attractions, that is, a path of maximum overall weight.
- Assume that a tourist may move either to east or to south only.

A brute force approach

 Search among all paths in the grid for the longest path!

A greedy approach

- 다음 강의 주제

Courtesy of [Jones & Pevzner 6.3]

Basic idea

How can you use the solutions of smaller problems to build a solution

of a problem?

A given optimization problem can be constructed efficiently from optimal solutions of its subproblems.

→ optimal substructure

Optimal substructure

 $s_{n,m} = ?$

 $s_{i,j} \equiv$ the length of the longest path from (0,0) to (i,j)

1.
$$i, j \ge 1$$

$$s_{i,j} = \max \begin{cases} s_{i-1,j} + \text{weight between } (i-1,j) \text{ and } (i,j) \\ s_{i,j-1} + \text{weight between } (i,j-1) \text{ and } (i,j) \end{cases}$$

2.
$$i = 0, j = 1, 2, ..., n$$

2.
$$i = 0, j = 1, 2, ..., n$$
 $s_{0,j} = s_{0,j-1} + \text{weight between } (0, j-1) \text{ and } (0, j)$

3.
$$i = 0, i = 1, 2, \dots, m$$

3.
$$j = 0, i = 1, 2, ..., m$$
 $s_{i,0} = s_{i-1,0} + \text{weight between } (i-1,0) \text{ and } (i,0)$

4.
$$i = j = 0$$

$$s_{0,0} = 0$$

Table setup and fill

MANHATTANTOURIST($\vec{\mathbf{w}}, \vec{\mathbf{w}}, n, m$)

1
$$s_{0,0} \leftarrow 0$$

2 for
$$i \leftarrow 1$$
 to n

$$s_{i,0} \leftarrow s_{i-1,0} + \overset{\downarrow}{w}_{i,0}$$

4 for
$$j \leftarrow 1$$
 to m

5
$$s_{0,j} \leftarrow s_{0,j-1} + \overrightarrow{w}_{0,j}$$

6 for
$$i \leftarrow 1$$
 to n

for
$$j \leftarrow 1$$
 to m

8
$$s_{i,j} \leftarrow \max \left\{ \begin{array}{l} s_{i-1,j} + \overset{\downarrow}{w}_{i,j} \\ s_{i,j-1} + \overset{\downarrow}{w}_{i,j} \end{array} \right.$$

return $s_{n,m}$

 Given a (n, m) grid, what is the time complexity T(n, m)?

- So far, we have found the cost of the longest path from source to each vertex in the grid.
- Then, how can you print out the actual optimal path from source to sink?

MANHATTANTOURIST(
$$\dot{\mathbf{w}}, \dot{\mathbf{w}}, n, m$$
)

1 $s_{0,0} \leftarrow 0$

2 for $i \leftarrow 1$ to n

3 $s_{i,0} \leftarrow s_{i-1,0} + \dot{w}_{i,0}$

4 for $j \leftarrow 1$ to m

5 $s_{0,j} \leftarrow s_{0,j-1} + \dot{w}_{0,j}$

6 for $i \leftarrow 1$ to n

7 for $j \leftarrow 1$ to m

8 $s_{i,j} \leftarrow \max \begin{cases} s_{i-1,j} + \dot{w}_{i,j} \\ s_{i,j-1} + \dot{w}_{i,j} \end{cases}$

9 return $s_{n,m}$

Chained Matrix Multiplication

In general, to multiply an $a \times b$ matrix with a $b \times c$ matrix using the standard method, it is necessary to do abc elementary multiplications. A, X A 2 X A 3 X ··· X A; X ··· X An doxd, dixda daxda di-ixdi dn-ixdn

Problem

 Determine the minimum number of elementary multiplications, needed to multiply *n* matrices $A_1A_2A_3\cdots A_n$ where $A_i \in R^{d_{i-1} \times d_i}$. a axb bxc = a axe

- Ex:
$$A_1$$
 x A_2 x A_3 x A_4
20 x 2 2 x 30 30 x 12 12 x 8

- $A_1(A_2(A_3A_4))$: 30x12x8 + 2x30x8 + 20x2x8
- $(A_1A_2)(A_3A_4)$:
- $A_1((A_2A_3)A_4)$:
- $((A_1A_2)A_3)A_4$:
- $(A_1(A_2A_3))A_4$:

- = 3,680 multiplications
- = 8,880 multiplications
- = 1,232 multiplications
- = 10,320 multiplications
- = 3,120 multiplications

✓ The order of multiplication is very important!

 $(\alpha x b) x (= \alpha x (bxc)$

Dynamic programming approach

Definition

M(i, j): the minimum number of multiplications needed to multiply A_i through A_j ($i \le j$).

Optimal subtructure

$$M(i,j) = \begin{cases} \min_{i \le k \le j-1} \{ M(i,k) + M(k+1,j) + d_{i-1}d_kd_j \}, & \text{if } i < j, \\ 0, & \text{if } i = j. \end{cases}$$

$$M(i,j) = \begin{cases} \min_{i \le k \le j-1} \{ M(i,k) + M(k+1,j) + d_{i-1}d_k d_j \}, & \text{if } i < j, \\ 0, & \text{if } i = j. \end{cases}$$

• **Example:** M(2, 7)

$$M(2,7) = \min_{2 \le k \le 6} \{ M(2,k) + M(k+1,7) + d_1 d_k d_7 \}$$

$$\frac{A_2 \cdot A_3 \cdot A_4}{d_1 \times d_4} \mid \frac{A_5 \cdot A_6 \cdot A_7}{d_4 \times d_7}$$

$$M(2,4) + M(5,7) + d_1 \times d_4 \times d_7$$

(5 cases)
$M(2,2) + M(3,7) + d_1 \times d_2 \times d_7$
$M(2,3) + M(4,7) + d_1 \times d_3 \times d_7$
$M(2,4) + M(5,7) + d_1 \times d_4 \times d_7$
$M(2,5) + M(6,7) + d_1 \times d_5 \times d_7$
$M(2,6) + M(7,7) + d_1 \times d_6 \times d_7$

i j	1	2	3	4	5	6	7	8	9
1	0								
2		0							
3			0						
4				0					
5					0				
6						0			
7							0		
8								0	
9									0

M(1, 9)

Table fill order

$$M(2,7) = \min_{2 \le k \le 6} \{ M(2,k) + M(k+1,7) + d_1 d_k d_7 \}$$

$$\frac{A_2 \cdot A_3 \cdot A_4}{d_1 \times d_4} \left| \frac{A_5 \cdot A_6 \cdot A_7}{d_4 \times d_7} \right|$$

$$M(2,4) + M(5,7) + d_1 \times d_4 \times d_7$$

j	1	2	3	4	5	6	7	8	9
1	0								
2		0							
3			0						
4				0					
5					0				*
6						0			
7							0		
8								0	
9									0

Time complexity

$$n + (n-1) \cdot 1 + (n-2) \cdot 2 + (n-3) \cdot 3 + \dots + (n-(n-1)) \cdot (n-1)$$

$$= n + \sum_{g=1}^{n-1} (n-g)g$$
$$= O(n^3)$$

Chained matrix multiplication problem

- O(n^3) by Godbole (1973) O(n^2) by Yao (1972)
- O(n log n) by Hu and Shing (1982, 1984)

$$M(2,7) = \min_{2 \le k \le 6} \{ M(2,k) + M(k+1,7) + d_1 d_k d_7 \}$$

Printing optimal order

A, XA2 XA3 XA4 XA5 XA6

```
void order(int i, int j) {
  int k;
  if (i == j)
    printf("A_%d", i);
  else {
    k = P[i][j];
    printf("(");
    order(i, k);
    order(k+1, j);
    printf(")");
}
```

$$P(1,1) = x$$
 $P(2,6) = 5$

 \rightarrow O(n) time

$$(A_1((((A_2A_3)A_4)A_5)A_6))$$

