NAME:	SIGNATURE:
P525/1 Chemistry Theory 2 ³ / ₄ Hours	

MIDLAND HIGH SCHOOL SENIOR FIVE 2023

UGANDA ADVANCED CERTIFICATE OF EDUCATION

CHEMISTRY

PAPER 1

2 HOURS 45 MINUTES

INSTRUCTIONS TO CANDIDATES:

- Answer all questions in section **A** and **six** questions in section **B**.
- ➤ The questions must be answered in the space provided.
- > The periodic table is provided at the back of the paper.
- ➤ Mathematical calculators (3-figure tables) are adequate or non-programmable scientific electronic calculators may be used.
- > Illustrate your answers with equations where applicable.
- > Where necessary, use:

Gas constant R=8.314J/mol/k, standard pressure= $101325Nm^{-2}=760mmHg$, mole of a gas occupies a volume of $22.4dm^3$

1

						For e	exami	iner's	use	only						
1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.	16.	17.

SECTION A (46 MARKS)

(Attempt all questions)

a) What is meant by the term standard enthalpy of neutrali	zation (01 mark)
b) Explain why the value for heat of neutralization of a stro	ng acid by a strong
ease is 57.0 kjmol ⁻¹ .	(02mark
c) 250cm ³ 0f 0.40M sodium hydroxide solutions were added	
hydrochloric acid in a calorimeter of 500g and specific heat	
1. All the three were initially at 17.05°c and the temperature	
(Assuming that the specific heat capacity of the two solution	ns is 4200jkg ⁻¹ k ⁻¹)
calculate the standard enthalpy of neutralization	(04marks)

		B → ¢1 CH₃CHCH₃
	QН	Cingeriens
CH ₃ CC		H ₃
		tate the condition(s) for the reacti
each cas	e.	(06ma
	Reagent	Condition(s)
A		
В		
c		
D		
An iron (of iron were strongly heated in a	d 65.5% chlorine. When 0.6 of the sealed tube of volume 200cm ³ to the dwas found to be 4.6x10 ⁴ pa.
chloride tempera	e the molecular formula of the ir	on chloride. (03marl
chloride tempera		on chloride. (03mar)
chloride tempera		on chloride. (03mar)

٠.	Write equations to show how the following conversions can be effected
	a) Ethene to 1,2-dichloroethanane (02½ marks)
	b) CH ₃ CH ₂ Cl to H ₄ C ₂ O ₂ (02 ½ marks)
	Complete the following equations for nuclear reactions. a. $^{239}_{94}Pu + ^{4}_{2}He$ \longrightarrow
	b
	c. $^{214}_{83}Bi$ $^{206}_{82}Pb + \dots + 3^{4}_{2}He$ (01 mark)
	d. $^{250}_{98}Cf + \dots $ $^{257}_{103}Lw + 4^{1}_{0}n$ (01 mark)
•	Methane reacts with steam according to the following equation: $CH_{4(g)} + 2H_2O_{(l)} \longrightarrow CO_{2(g)} + 4H_{2(g)} \ H_r = ?$ The enthalpy of formation of methane, water & carbon dioxide gas are -76, -242 & -394KJ/mol.
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

a)	Calculate the enthalpy of reaction . marks)	(03
	$CH_{4(g)} + 2H_2O_{(l)} \longrightarrow CO_{2(g)} + 4H_{2(g)}$	
b)	State whether the reaction above is feasible , give a reason for your ans (01 mark)	swer.
_		
7.	The first three successive ionisation energies of element T are 549 , 10 4226KJ/mol .	64 and
a)	·	marks)
,		,
_		
b)	State the group in the periodic table to which T belongs to. (0)	l mark)
8.	a) Concentrated nitric acid reacts with to form a yellow oily liquid. Stat	e the
٠.	condition under which the reaction occurs and give the IUPAC name of	
vel	llow oily liquid. (02mar	
	condition:	,
	UPAC name:	
	Outline the mechanism for the reaction between nitric acid and benzene	e in

ore —	sence of the conditions given.	(02marks)
_		
 c)	Show how that yellow oily liquid can be converted to phenol	(02marks)
	10.0cm³ of a hydrocarbon P (C _x H _y) was exploded in 90.0cm cooling to room temperature, the residual gases occupied 70 residual gases were passed through potassium hydroxide so reduced to 40.0cm³. i) Write the equation for the reaction between hydrocarbon F (01 mark)	0.0cm ³ , when the plution, the volume
	ii) Determine the molecular formula of hydrocarbon P. (03marks)	
b)	Write equations to show how hydrocarbon P can be prepared (02 marks)	d from propan-2-o

SECTION B (54 MARKS)

(Attempt any 6 questions in this section)

10. Name **one reagent** that can be used to distinguish between each of the

member of the pair is treated with the reagent?	
a) But-2-yne and But-1-yne	
Reagent:	
Observation:	
b) CO ₂ ³⁻ and HCO ₃ ⁻	
b) CO ₂ and TiCO ₃	(03 marks)
Reagent:	
Observation:	
c) Pb ²⁺ and Al ³⁺	(03 mark
Reagent:	
Observation:	
a) The vapour pressure of a solution containing 108.2g	of a substance Y in 10 0
water at 20°C was reduced by 0.186mmHg .	
e vapour pressure of water at 20°C is 17.54mmHg)	
a) Calculate the molecular mass of substance Y .	(04 marks)

-		
b) 	State three assumption made in (a) above	(03 mar
 c)	Explain why the vapour pressure of a solution containess than the vapour pressure of the pure solvent. (
_		
	Write equations to show how the following synthesis of se indicates the necessary reagents and conditions.	can be carried out. In e
	Benzene from ethene.	(03 marks)
_		
_		(03 marks)
	1-chloropropane to propanone	

c) CH:	₃Cl to CH₃CHBrCH₂Br	(03 marks
.a) i) De	fine enthalpy of a reaction.	(01 mark)
	i)State three factors affecting the quanti eaction.	ity of an enthalpy change of a (03 marks
	standard heat of formation of ethanol, o & -285.5KJ/mol respectively. ks)	carbon dioxide and water are -2
i)	Draw a Born-Haber cycle to relate th (02 marks)	e energy changes stated above.

ii)	Calculate the standard he cycle.	at of con	nbustion	of ethan	_	g the draw ½ marks)	
							_ _ _
iii)	From your calculation in the be ideal use of ethanol in (01½ marks)	` '			_		
13.	a) Define the term radioac	etivity.			(01mar	k)	_ _ _
	e table below shows how the	e mass o	f radioac	tive prot	actiniun	n, ²³⁴ Pa va	 ıries
	mass of protactinium (g)	60.0	38.5	26.0	17.2	11.1	
	Time (s)	0	40	80	120	160	
ma	ot a graph of mass of protac					(03	,
(ii) Us	e your graph to determine t	he half-	life of pr		ım. (01 mar	·k)	
_							

(iii) C	Calculate the radioactive decay of protactinium. (02 marks)						
	State the essential conditions and give the IUPAC name for the product						
	when chlorine; (0½ mark each)						
i)	Is added to benzene						
	Conditions;						
	Name of the product						
	ii) Substitutes a hydrogen atom of benzene						
	Conditions;						
	Name of the product						
	iii) Reacts with cyclohexene						
	Conditions;						
	Name of the product						
1	o) Outline the mechanism for the reaction in (03 marks each)						
(ii) a) ii)						

ό.	The table shows					onizati	on ener	gy of so	me
	Elements	Na	Mg	Al	Si	P	S	Cl	
	Atomic radius	0.186	0.160	0.143	0.117	0.110	0.104	0.099	
	1 st I.E(KJ/mol)	496	738	577	787	1060	1000	1251	ı
- ,	State how atomic	c radius	s of the	elemen	ts varie	es acros	s the p	eriod (0	1 m
i) ii)	Explain your ans			elemen	ts varie	es acros	s the p	(03 mar	
				elemen	ts varie	es acros	s the p		
				elemen	ts varie	es acros	s the p		

ii).Why the (03 marks)	first ionization	energy of al	uminium is	lower than tha	at of mag
II. Comi	DICIC ITIC IOHOW	mig cuuamon	is and in eac	ch case outlin	e a suita
mecha	nism for the re	eaction.		ch case outlin	
mecha	nism for the re	eaction.			

$CH_3)_3Br \xrightarrow{NaOH_{(aq)}/CH_3CH_2OH}$ (03)	$3r \frac{\text{NaOH}_{(aq)}/\text{CH}_3\text{CH}_2\text{OH}}{\text{Heat}} \longrightarrow \dots$	NaOH _(aq) /CH ₃ CH ₂ OI Heat	$C(CH_3)_3Br$
---	---	--	---------------

THE PERIODIC TABLE

	T.	T	9			-						T	T	1	T	1	Т
1	2	<u> </u>										3	4	5	6	7	8
1.0 H 1													De co			1.0 H	4.0 H 2
6.9 Li 3	9.0 Be 4											10.8 B 5	12.0 C 6	14.0 N 7	16.0 O 8	19.0 F	20.2 N 10
23.0 Na 11	24.3 Mg 12											27.0 Al 13		31.0 P 15	32.1 S 16	35.4 CI 17	
39.1 K 19	40.1 Ca 20	45.0 Sc 21	47.9 Ti 22	50.9 V 23	52.0 Cr 24	1	1	58.9 Co 27	58.7 Ni 28			V 20 C 20		The same of the sa	79.0 Se 34	79.9 Br 35	83.8 Ki 36
85.5 Rb 37	87.6 Sr 38	88.9 Y 39	91.2 Zr 40		95.9 Mo 42	98.9 Tc 43	101 Ru 44	103 Rh 45	106 Pd 46	108 Ag 47	112 Cd 48	115 In 49	119 Sn 50	122 Sb 51	128 Te 52	127 I 53	131 Xe 54
Cs 55	137 Ba 56	139 La 57	178 Hf 72	181 Ta 73	184 W 74	186 Re 75	190 Os 76	192 Ir 77	195 Pt 78	197 Au 79	201 Hg 80	204 TI 81	207 Pb 82	209 Bi 83	209 Po 84	210 At 85	222 Rn 86
223 Fr 87	226 Ra 88	227 Ac 89				1		6 18 18 18	19 2		41						
=		10	139 La 57	140 Ce 58	141 Pr 59	144 Nd 60		150 Sm 62	152 Eu 63	157 Gd 64	The Victorian Control of the Control	162 Dy 66	165 Ho 67	167 Er 68	169 Tm 69	173 Yb 70	175 Lu 71
		77 2 81	227 Ac 89	232 Th 90	231 Pa 91	238 U 92	237 Np 93	244 Pu 94	243 Am 95		247 Bk 97	251 Cf 98	254 Es 99	257 Fm 100	W. 1200 CO.	254 No 102	260 Lw 103

END