All Tracks > Math > Number Theory > Totient Function

Math

Solve any problem to achieve a rankView Leaderboard

Number Theory

- O Basic Number Theory-1
- O Basic Number Theory-2
- O Primality Tests

Totient Function

Combinatorics

Geometry

Totient Function

TUTORIAL PROBLEMS

What is Euler's Totient Function?

Number theory is one of the most important topics in the field of Math and can be used to solve a variety of problems. Many times one might have come across problems that relate to the prime factorization of a number, to the divisors of a number, to the multiples of a number and so on.

Euler's Totient function is a function that is related to getting the number of numbers that are coprime to a certain number X that are less than or equal to it. In short , for a certain number X we need to find the count of all numbers Y where $\gcd(X,Y)=1$ and $1\leq Y\leq X$.

A naive method to do so would be to **Brute-Force** the answer by checking the gcd of X and every number less than or equal to X and then incrementing the count whenever a GCD of 1 is obtained. However, this can be done in a much faster way using Euler's Totient Function.

According to Euler's product formula, the value of the Totient function is below the product over all prime factors of a number. This formula simply states that the value of the Totient function is the product after multiplying the number N by the product of (1-(1/p)) for each prime factor of N.

So,
$$\phi(n) = n \prod_{p ext{ prime } p \mid n} \left(1 - rac{1}{p}
ight)$$

Algorithm steps:

- Generate a list of primes.
- ullet While dealing with a certain N, check and store all the primes that perfectly divide N.
- Now, it is just needed to use these primes and the above formula to get the result.

Implementation:

```
set<> primes;
static void mark(int num,int max,int[] arr)
    int i=2,elem;
    while((elem=(num*i))<=max)</pre>
         arr[elem-1]=1;
         i++;
GeneratePrimes()
{
    int arr[max_prime];
    for(int i=1;i<arr.length;i++)</pre>
         if(arr[i]==0)
         {
              list.add(i+1);
              mark(i+1,arr.length-1,arr);
         }
}
main()
    GeneratePrimes();
    int N=nextInt();
    int ans=N;
    for(int k:set)
    {
```

There are a few subtle observations that one can make about Euler's Totient Function.

- $\bullet\,$ The sum of all values of Totient Function of all divisors of N is equal to N.
- ullet The value of Totient function for a certain prime P will always be P-1 as the number P will always have a GCD of 1 with all numbers less than or equal to it except itself.
- For 2 number A and B, if GCD(A,B) == 1 then $Totient(A) \times Totient(B) = Totient(A \cdot B)$.

Contributed by: Anand Jaisingh

About Us Innovation Management Talent Assessment University Program Developers Wiki Blog Press Careers Reach Us

h