Cząstki elementarne i oddziaływania

ZADANIA 1

- 1. Proton o wysokiej energii zderza się z jonami wodoru. Jaka musi być minimalna energia, aby powstały antyprotony?
- 2. Jaka jest energia i pęd produktów rozpadu pionu (w spoczynku) w procesie: $\pi^+ \to \mu^+ + \nu_u$.
- 3. Jaka jest energia elektronu z rozpadu mionu: $v^- \rightarrow e^+ + \bar{\nu}_e + \nu_u$.
- 4. Rozpatrz ogólny przypadek rozpadu cząstki *X* na α i *b*.
 - a) Pokaż, że w układzie spoczynkowym X, energia cząstki a jest wyrażana poprzez zależność: $E_a=\frac{m_x^2+m_a^2-m_b^2}{2m_x},$
 - b) ile wynosi pęd cząstki a?
 - c) a ile wynosi pędy a i b, gdy są to cząstki o tej samej masie?
- 5. Relatywistyczny ($\gamma \gg 1$, $\beta \approx 1$) neutralny pion rozpada się na dwa fotony: $\pi^0 \to \gamma + \gamma$. Porównaj kąt pomiędzy tymi fotonami w układzie środka masy i laboratoryjnym. Policz go dla pędów pionu: $p_{\pi} = 1$ GeV i $p_{\pi} = 10$ GeV.
- 6. Oblicz średni czas życia mezonu K_s^0 , jeżeli w detektorze obserwuje się, że odległość od miejsca produkcji do rozpadu na dwa naładowane piony wynosi 3.7 cm, a jego pęd wynosi 700 MeV.
- 7. Relatywistyczna cząstka o masie m i pędzie \vec{p} skierowanym wzdłuż osi z zderza się ze spoczywającą cząstką o masie M. Obliczyć energię i pędy obu cząstek w ich układzie środka masy. Jaką energię musi mieć proton zderzający się z tarczą wodorową, aby w układzie środka masy zderzeń proton-proton energia wynosiła 1 TeV.
- 8. Jakie powinny być energie wiązek elektronów, aby możliwa była produkcja:
 - a) jednego bozonu neutralnego o masie $M_Z = 90$ GeV,
 - b) dwóch bozonów naładowanych o masie M_W =80 GeV każdy.
 - c) bozonu Higgsa o masie 125 GeV.
 - d) Jaki akcelerator umożliwi przeprowadzenie ww doświadczeń?
- 9. Świetlność LHC planowana była jako: $\mathcal{L}=2\times 10^{34}~cm^{-2}s^{-1}$ a przekrój czynny na produkcję bozonu Higgsa szacowany jest na 50 fb. Ile trzeba było czekać na pojawienie się pierwszej takiej cząstki?
- 10. Przy świetlności eksperymentu LHCb $\mathcal{L} = 2 \times 10^{32} \ cm^{-2} s^{-1}$ zaobserwowano 20 tysięcy przypadków pewnego procesu w ciągu roku zbierania danych (10^7 s). Jaki jest przekrój czynny na ten proces? Ile wynosi tzw. scałkowana świetlność za rok zbierania danych (wyrażona w fb⁻¹)?