7.8 Inverse of a Matrix. Gauss–Jordan Elimination

Given a **square** matrix **A**:

• The **inverse** of an $n \times n$ matrix $\mathbf{A} = [a_{jk}]$ is denoted by \mathbf{A}^{-1} and is an $n \times n$ matrix such that

(1)
$$AA^{-1} = A^{-1}A = I$$

where I is the $n \times n$ unit matrix (see Sec. 7.2).

- If **A** has an inverse, then **A** is called a **nonsingular matrix**. If **A** has no inverse, then **A** is called a **singular matrix**.
- If **A** has an inverse, the inverse is *unique*: if both **B** and **C** are inverses of **A**, then **AB** = **I** and **CA** = **I** so that we obtain the uniqueness from

$$B = IB = (CA)B = C(AB) = CI = C.$$

THEOREM 1: Existence of the Inverse

- The inverse A^{-1} of an $n \times n$ matrix A exists iff rank A = n, or, equivalently, iff det $A \neq 0$.
- Hence, **A** is nonsingular (inverse exist) if rank $\mathbf{A} = n$, and is singular (inverse not exist) if rank $\mathbf{A} < n$
- Idea: conduct elementary row operations on **A**

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & \cdots & a_{nn} \end{bmatrix} \xrightarrow{\mathbf{Elementary row operations}} \mathbf{R} = \begin{bmatrix} r_{11} & a_{12} & \cdots & \cdots & r_{1n} \\ r_{22} & \cdots & \cdots & r_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots &$$

All r_{ii} nonzero \longrightarrow det $\mathbf{A} \neq 0$ \longrightarrow Rank $\mathbf{A} = n$ \longrightarrow Inverse \mathbf{A}^{-1} exists and \mathbf{A} is nonsingular

EXAMPLE 1:

Finding Matrix Inverse by Gauss-Jordan Elimination

Determine the inverse A^{-1} of

$$\mathbf{A} = \begin{vmatrix} -1 & 1 & 2 \\ 3 & -1 & 1 \\ -1 & 3 & 4 \end{vmatrix}.$$

Solution.

Perform elementary row operations on $n \times 2n = 3 \times 6$ augmented matrix [**A** | **I**].

$$\begin{bmatrix} \mathbf{A} \mid \mathbf{I} \end{bmatrix} = \begin{bmatrix} -1 & 1 & 2 \mid 1 & 0 & 0 \\ 3 & -1 & 1 \mid 0 & 1 & 0 \\ -1 & 3 & 4 \mid 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} -1 & 1 & 2 \mid 1 & 0 & 0 \\ 0 & 2 & 7 \mid 3 & 1 & 0 \\ 0 & 2 & 2 \mid -1 & 0 & 1 \end{bmatrix} \quad \text{Row } 2 + 3 \text{ Row } 1$$
$$= \begin{bmatrix} 0 & 2 & 7 \mid 3 & 1 & 0 \\ 0 & 2 & 2 \mid -1 & 0 & 1 \end{bmatrix} \quad \text{Row } 3 - \text{Row } 1$$

OCCHOIT 1.0 PTOZ

Copyright 2011 by John Whey a Sons. All rights reserved.

EXAMPLE 4 (continued)

Finding Matrix Inverse by Gauss-Jordan Elimination

$$= \begin{bmatrix} -1 & 1 & 2 & 1 & 0 & 0 \\ 0 & 2 & 7 & 3 & 1 & 0 \\ 0 & 0 & -5 & -4 & -1 & 1 \end{bmatrix}$$
 Row 3 - Row 2

Take additional Gauss–Jordan steps to reduce **U** to **I**, i.e., to diagonal form with entries 1 on the main diagonal.

$$= \begin{bmatrix} 1 & -1 & -2 & | & -1 & 0 & 0 \\ 0 & 1 & 3.5 & | & 1.5 & 0.5 & 0 \\ 0 & 0 & 1 & | & 0.8 & 0.2 & -0.2 \end{bmatrix}$$
 - Row 1
0.5 Row 2
-0.2 Row 3

7.8 Inverse of a Matrix. **Gauss-Jordan Elimination**

EXAMPLE 4 (continued) **Finding**

Matrix Inverse by Gauss-Jordan Elimination

$$= \begin{bmatrix} 1 & -1 & 0 & 0.6 & 0.4 & -0.4 \\ 0 & 1 & 0 & -1.3 & -0.2 & 0.7 \\ 0 & 0 & 1 & 0.8 & 0.2 & -0.2 \end{bmatrix}$$
Row 1 + 2 Row 3 Row 2 - 3.5 Row 3 Row 2 - 3.5 Row 3 Row 1 + Row 2
$$= \begin{bmatrix} 1 & 0 & 0 & -0.7 & 0.2 & 0.3 \\ 0 & 1 & 0 & -1.3 & -0.2 & 0.7 \\ 0 & 0 & 1 & 0.8 & 0.2 & -0.2 \end{bmatrix}$$

The last three columns constitute A^{-1} . Check:

$$\begin{bmatrix} -1 & 1 & 2 \\ 3 & -1 & 1 \\ -1 & 3 & 4 \end{bmatrix} \begin{bmatrix} -0.7 & 0.2 & 0.3 \\ -1.3 & -0.2 & 0.7 \\ 0.8 & 0.2 & -0.2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Hence $AA^{-1} = I$. Similarly $A^{-1}A = I$.

EXAMPLE:

Determine the inverse A^{-1} of A.

Determine the inverse
$$\mathbf{A}$$
 for \mathbf{A} .
$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & -2 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} \mathbf{A} \mid \mathbf{I} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \mid 1 & 0 & 0 \\ 0 & 1 & 1 \mid 0 & 1 & 0 \\ 1 & -2 & 0 \mid 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & -2 & 0 \mid 0 & 0 & 1 \\ 0 & 1 & 1 \mid 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & -2 & 0 \mid 0 & 0 & 1 \\ 0 & 0 & 1 \mid 1 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & -2 & 0 \mid 0 & 0 & 1 \\ 0 & 1 & 0 \mid -1 & 1 & 0 \\ 0 & 0 & 1 \mid 1 & 0 & 0 \end{bmatrix}$$

$$\mathbf{A}^{-1} = \begin{bmatrix} -2 & 2 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \leftarrow = \begin{bmatrix} 1 & 0 & 0 \mid -2 & 2 & 1 \\ 0 & 1 & 0 \mid -1 & 1 & 0 \\ 0 & 0 & 1 \mid 1 & 0 & 0 \end{bmatrix}$$

$$\mathbf{Row 1 \text{ swap with Row 3}}$$

$$\mathbf{A}^{-1} = \begin{bmatrix} -2 & 2 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \leftarrow = \begin{bmatrix} 1 & 0 & 0 \mid -2 & 2 & 1 \\ 0 & 1 & 0 \mid -1 & 1 & 0 \\ 0 & 0 & 1 \mid 1 & 0 & 0 \end{bmatrix}$$

$$\mathbf{Row 1 + 2 \text{ Row 2}}$$

Section 7.7 p185

Copyright 2011 by John Wiley & Sons. All rights reserved.

Proof (Optional): Matrix Inverse by Gauss–Jordan Elimination

- Each elementary row operations can be represented by a matrix operation
- •Interchange of two rows : Define $\mathbf{RO}_{swap(Rj,Rk)}$ such that $\overline{\mathbf{A}} = \mathbf{RO}_{swap(Rj,Rk)} \mathbf{A}$ is the matrix \mathbf{A} with row j and k swapped.

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{(1)} \\ \mathbf{a}_{(j)} \\ \mathbf{A} \\ \mathbf{a}_{(k)} \\ \mathbf{a}_{(n)} \end{bmatrix} \qquad \mathbf{\overline{A}} = \begin{bmatrix} \mathbf{A}_{(1)} \\ \mathbf{a}_{(k)} \\ \mathbf{a}_{(j)} \\ \mathbf{a}_{(n)} \end{bmatrix}$$

• Matrix Operator for interchanging Row 2 and Row 4 of a 5x5 matrix: RO _{swap (R2,R4)} =

$$\mathbf{RO}_{swap\,(R2,R4)} = \begin{vmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{vmatrix}$$

(Optional)

Addition of a multiple of a row to another row:

Define $\mathbf{RO}_{add(Rj,cRk)}$ such that $\mathbf{A} = \mathbf{RO}_{add(Rj,cRk)}\mathbf{A}$ is matrix

A with row j added with row k multiplying a constant c.

$$\mathbf{A} = \begin{bmatrix} --- \mathbf{a}_{(1)} --- \\ \vdots \\ -- \mathbf{a}_{(j)} \\ \vdots \\ -- \mathbf{a}_{(k)} --- \end{bmatrix}, \ \overline{\mathbf{A}} = \begin{bmatrix} --- \mathbf{a}_{(1)} --- \\ \vdots \\ --- \mathbf{a}_{(j)} + c \mathbf{a}_{(k)} \\ \vdots \\ --- \mathbf{a}_{(k)} --- \end{bmatrix}$$

• Matrix Operator for adding *c* times Row 4 to Row 2

of a 5 by 5 matrix:

trix:
$$\mathbf{RO}_{add (R2,cR4)} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & c & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Section 7.7 p187

(Optional)

• Multiplication of a row by a nonzero constant *c* :

Define $\mathbf{RO}_{mult(c,R_i)}$ such that $\mathbf{A} = \mathbf{RO}_{mult(c,R_i)}\mathbf{A}$ is matrix

A with row j added by row k multiplying a constant c.

$$\mathbf{A} = \begin{bmatrix} ---- \mathbf{a}_{(1)} ---- \\ \vdots \\ ---- \mathbf{a}_{(j)} \\ \vdots \\ ---- \mathbf{a}_{(k)} ---- \end{bmatrix}, \ \overline{\mathbf{A}} = \begin{bmatrix} ---- \mathbf{a}_{(1)} ---- \\ \vdots \\ ---- \mathbf{c}_{\mathbf{a}_{(j)}} ---- \\ \vdots \\ ---- \mathbf{a}_{(k)} ---- \\ \vdots \\ ----- \mathbf{a}_{(k)} ----- \end{bmatrix}$$

• Matrix Operator for multiplying Row 2 of a 5 by 5 matrix by

constant
$$c$$
:
$$\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & c & 0 & 0 & 0
\end{bmatrix}$$

$$\mathbf{RO}_{mult (c,R2)} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & c & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Section 7.7 p188

7.8 Inverse of a Matrix. Gauss-Jordan Elimination

- Matrix operators for the three elementary row (Optional) operations defined: $\mathbf{RO}_{swap(Rj,Rk)}$, $\mathbf{RO}_{add(Rj,cRk)}$, $\mathbf{RO}_{mult(c,Rj)}$
- Given matrix A, applying a series of elementary row operations, $RO_{1_r}RO_{2_r}RO_{3_r}......$, RO_{L} to convert A to become identity matrix I, i.e.,

$$RO_1 \dots RO_3 RO_2 RO_1 A=I$$

Then the inverse $A^{-1} = (RO_L....RO_3RO_2RO_1)$

For better recording of the ROs performed, conduct elementary row operations on the augmented matrix [A | I]. When A on the left becomes I, the right hand side yield A⁻¹

$$[\mathbf{A} \mid \mathbf{I}] \longrightarrow [\mathbf{I} \mid \mathbf{RO}_{L} \dots \mathbf{RO}_{3} \mathbf{RO}_{2} \mathbf{RO}_{1}]$$

THEOREM 2: Formulas for Inverses

Inverse of a Matrix by Determinants

• The inverse of a nonsingular $n \times n$ matrix $\mathbf{A} = [a_{jk}]$ is given by

(4)
$$\mathbf{A}^{-1} = \frac{1}{\det \mathbf{A}} \begin{bmatrix} C_{jk} \end{bmatrix}^{\mathsf{T}} = \frac{1}{\det \mathbf{A}} \begin{bmatrix} C_{11} & C_{21} & \cdots & C_{n1} \\ C_{12} & C_{22} & \cdots & C_{n2} \\ \vdots & \vdots & \ddots & \ddots \\ C_{1n} & C_{2n} & \cdots & C_{nn} \end{bmatrix},$$

where C_{jk} is the cofactor of a_{jk} in det **A** (see Sec. 7.7).

• Note: In A^{-1} above, the cofactor C_{jk} occupies the same place as a_{kj} (not a_{jk}) does in A.

7.8 Inverse of a Matrix. Gauss–Jordan Elimination

• Particularly, the inverse of a 2 × 2 matrix by this formula is:

(4*)
$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \quad is \quad \mathbf{A}^{-1} = \frac{1}{\det \mathbf{A}} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}.$$

EXAMPLE 2

$$\mathbf{A} = \begin{bmatrix} 3 & 1 \\ 2 & 4 \end{bmatrix}, \qquad \mathbf{A}^{-1} = \frac{1}{10} \begin{bmatrix} 4 & -1 \\ -2 & 3 \end{bmatrix} = \begin{bmatrix} 0.4 & -0.1 \\ -0.2 & 0.3 \end{bmatrix}$$

7.8 Inverse of a Matrix. Gauss-Jordan Elimination

EXAMPLE 3

- Use (4) to find the inverse of $\mathbf{A} = \begin{bmatrix} -1 & 1 & 2 \\ 3 & -1 & 1 \\ -1 & 3 & 4 \end{bmatrix}$.
- Solution.

Obtain det $\mathbf{A} = -1(-7) - 1 \cdot 13 + 2 \cdot 8 = 10$, and in (4),

$$C_{11} = \begin{vmatrix} -1 & 1 \\ 3 & 4 \end{vmatrix} = -7, \quad C_{21} = -\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = 2, \quad C_{31} = \begin{vmatrix} 1 & 2 \\ -1 & 1 \end{vmatrix} = 3,$$

$$C_{12} = -\begin{vmatrix} 3 & 1 \\ -1 & 4 \end{vmatrix} = -13, \quad C_{22} = \begin{vmatrix} -1 & 2 \\ -1 & 4 \end{vmatrix} = -2, \quad C_{32} = -\begin{vmatrix} -1 & 2 \\ 3 & 1 \end{vmatrix} = 7,$$

$$C_{13} = \begin{vmatrix} 3 & -1 \\ -1 & 3 \end{vmatrix} = 8, \quad C_{23} = -\begin{vmatrix} -1 & 1 \\ -1 & 3 \end{vmatrix} = 2, \quad C_{33} = \begin{vmatrix} -1 & 1 \\ 3 & -1 \end{vmatrix} = -2,$$

7.8 Inverse of a Matrix. Gauss-Jordan Elimination

EXAMPLE 3 (continued)

By (4), the inverse is

$$\mathbf{A}^{-1} = \begin{bmatrix} -0.7 & 0.2 & 0.3 \\ -1.3 & -0.2 & 0.7 \\ 0.8 & 0.2 & -0.2 \end{bmatrix}.$$

in agreement with Example 1.

Inverse of Matrix Products obtained by taking the inverse of each factor and multiplying these inverses *in reverse order*,

(7)
$$(AC)^{-1} = C^{-1}A^{-1}.$$

Hence for more than two factors,

(8)
$$(\mathbf{AC} \dots \mathbf{PQ})^{-1} = \mathbf{Q}^{-1}\mathbf{P}^{-1} \dots \mathbf{C}^{-1}\mathbf{A}^{-1}.$$

EXAMPLE: Elimination Theory

- Finding common points to some high-dimensional "surfaces".
- A simple, low dimensional example*: Given 2 polynomials

$$f(x) = -2x^4 + 4x^3 - x^2 + 5x - 1$$
 and $g(x) = x^2 - 6x + 9$

Question: do they share a common root?

• If they share a common root, denoted as $x = x_c$, then

$$f(x) = (Ax^3 + Bx^2 + Cx + D)(x - x_c)$$
 and $g(x) = (Ex + F)(x - x_c)$

Or $f(x)(Ex + F) = g(x)(Ax^3 + Bx^2 + Cx + D)$

• Equating the coefficients of x^5 , x^4 , x^3 , x^2 , x and x^0 (constant) on both side: A + 2E = 0

$$-6A + B - 4E + 2F = 0$$

 $9A - 6B + C + E - 4F = 0$ (E)
 $9B - 6C + D - 5E + F = 0$
 $9C - 6D + E - 5F = 0$
 $9D + F = 0$ *http://aix1.uottawa.ca/~jkhoury/elimination.htm

- We need existence of constant *A*, *B*, *C*, *D*, *E* and *F* so that the equation (E) is satisfied.
- Hence, we desire non-trivial solution for (E))
 → Determinant of coefficient matrix det(A)=0
- Check

$$\begin{vmatrix} 1 & 0 & 0 & 0 & 2 & 0 \\ -6 & 1 & 0 & 0 & -4 & 2 \\ 9 & -6 & 1 & 0 & 1 & -4 \\ 0 & 9 & -6 & 1 & -5 & 1 \\ 0 & 0 & 9 & -6 & 1 & -5 \\ 0 & 0 & 0 & 9 & 0 & 1 \end{vmatrix} \neq 0$$

Hence, no common roots for f(x) and g(x).

• How about $f(x) = -2x^4 + 4x^3 - x^2 + 5x - 6$ and $g(x) = x^2 - 6x + 8$? Do they share common root?

Properties of Matrix Multiplication. Cancellation Laws

Generally,

• Matrix multiplication is not commutative:

$$AB \neq BA$$
.

• AC = AD does NOT imply C = D (even when $A \neq 0$), e.g., $\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.

AB = 0 NOT imply BA = 0
 or A = 0 or B = 0

THEOREM 3.

A is a square matrix.

- If rank A < n (no inverse exists), then rank(BA) < n and rank (AB) < n
- If rank A = n (i.e., A^{-1} exists), AC = AD implies C = D.
- If rank A = n, AB = 0 or BA = 0 implies B = 0.
- Hence, if AB = 0 but $A \neq 0$ and $B \neq 0$, then rank A < n and rank B < n.)

THEOREM 4: Determinant of a Product of Matrices

For any $n \times n$ matrices **A** and **B**,

(10)
$$\det(\mathbf{A}\mathbf{B}) = \det(\mathbf{B}\mathbf{A}) = \det\mathbf{A} \det\mathbf{B}$$
.

Proof (Optional).

- Matrix Operators for elementary row operations:
 - $\det(\mathbf{RO}_{swap(R_j,R_k)}\mathbf{M})=d_{swap(R_j,R_k)}\det(\mathbf{M}); d_{swap(R_j,R_k)}=(-1)$
 - $\det(\mathbf{RO}_{add(Rj,cRk)}\mathbf{M})=d_{add(Rj,cRk)}\det(\mathbf{M}); d_{add(Rj,cRk)}=(+1)$
 - $\det(\mathbf{RO}_{mult(c,Rj)}\mathbf{M})=d_{mult(c,Rj)}\det(\mathbf{M});$ $d_{mult(c,Rj)}=c$
- Hence, $det(\mathbf{RO}_i\mathbf{M})=d_i det(\mathbf{M})$, for i=swap, add or mult.

• For inverse Matrix Operators for elementary row operations: DO-1 DO

$$\mathbf{RO}_{swap(Rj,Rk)}^{-1} = \mathbf{RO}_{swap(Rj,Rk)}$$

$$\mathbf{RO}_{add(Rj,cRk)}^{-1} = \mathbf{RO}_{add(Rj,-cRk)}$$

$$\mathbf{RO}_{mult(c,Rj)}^{-1} = \mathbf{RO}_{swap(c^{-1}Rj)}$$

• Then, obtain $det(\mathbf{RO}_i^{-1})$ using $det(\mathbf{RO}_i)$ on the RHS

$$\det(\mathbf{RO}_{swap(Rj,Rk)}^{-1}) = \det(\mathbf{RO}_{swap(Rj,Rk)}) = (-1)$$

$$\det(\mathbf{RO}_{add(Rj,cRk)}^{-1}) = \det(\mathbf{RO}_{add(Rj,-cRk)}) = (+1)$$

$$\det(\mathbf{RO}_{mult(c,Rj)}^{-1}) = \det(\mathbf{RO}_{swap(c^{-1}Rj)}) = \frac{1}{c}$$

• Hence, $det(\mathbf{RO}_i^{-1})=1/d_i$, for i=swap, add or mult.

• Previously, $A^{-1} = RO_L \dots RO_3 RO_2 RO_1$ (Optional)

$$\rightarrow$$
 A=(**RO**₁)⁻¹(**RO**₂)⁻¹ ···· (**RO**_L)⁻¹

• Hence $\det(\mathbf{A}) = \det(\mathbf{RO}_1^{-1}\mathbf{RO}_2^{-1}\cdots\mathbf{RO}_L^{-1}) = \frac{1}{d_1}\det(\mathbf{RO}_2^{-1}\cdots\mathbf{RO}_L^{-1})$ $= \frac{1}{d_1}\frac{1}{d_2}\det(\mathbf{RO}_3^{-1}\cdots\mathbf{RO}_L^{-1}) = \frac{1}{d_1d_2\cdots d_L}$

• Furthermore, $\det(\mathbf{A}\mathbf{B}) = \det(\mathbf{R}\mathbf{O}_{1}^{-1}\mathbf{R}\mathbf{O}_{2}^{-1}\cdots\mathbf{R}\mathbf{O}_{L}^{-1}\mathbf{B})$ $= \frac{1}{d_{1}}\det(\mathbf{R}\mathbf{O}_{2}^{-1}\cdots\mathbf{R}\mathbf{O}_{L}^{-1}\mathbf{B})$ $= \frac{1}{d_{1}}\frac{1}{d_{2}}\det(\mathbf{R}\mathbf{O}_{3}^{-1}\cdots\mathbf{R}\mathbf{O}_{L}^{-1}\mathbf{B})$ $= \frac{1}{d_{1}}\frac{1}{d_{2}}\det(\mathbf{R}\mathbf{O}_{3}^{-1}\cdots\mathbf{R}\mathbf{O}_{L}^{-1}\mathbf{B})$ $= \frac{1}{d_{1}d_{2}\cdots d_{L}}\det(\mathbf{B}) = \det(\mathbf{A})\det(\mathbf{B})$

Copyright 2011 by John Wiley & Sons. All rights reserved.

DEFINITION

Real Vector Space

Given a nonempty set *V* of elements **a**, **b**, ... is called a **real vector space** (or *real linear space*) if *V* has two algebraic operations (called *vector addition* and *scalar multiplication*) defined as follows.

- I. Vector addition for every pair of vectors a and b of V, there exist a unique vector of V, called the sum of a and b and denoted by a + b, such that the following axioms are satisfied.
 - **I.1** Commutativity. For any two vectors **a** and **b** of V, $\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$.
 - **I.2** Associativity. For any three vectors \mathbf{a} , \mathbf{b} , \mathbf{c} of V, $(\mathbf{a} + \mathbf{b}) + \mathbf{c} = \mathbf{a} + (\mathbf{b} + \mathbf{c})$ (written $\mathbf{a} + \mathbf{b} + \mathbf{c}$).

- **I.3** There is a unique vector in V, called the *zero vector* and denoted by $\mathbf{0}$, such that for every \mathbf{a} in V, $\mathbf{a} + \mathbf{0} = \mathbf{a}$.
- **I.4** For every **a** in *V*, there is a unique vector in *V* that is denoted by $-\mathbf{a}$ and is such that $\mathbf{a} + (-\mathbf{a}) = \mathbf{0}$.
- **II. Scalar multiplication** for every **a** in *V* and every real number *c* there exist a unique vector of *V*, called the *product* of *c* and **a** and denoted by *c***a** (or **a***c*) such that the following axioms are satisfied.
 - **II.1** *Distributivity.* For every scalar c and vectors **a** and **b** in V, $c(\mathbf{a} + \mathbf{b}) = c\mathbf{a} + c\mathbf{b}$.
 - **II.2** *Distributivity.* For all scalars c and k and every \mathbf{a} in V, $(c + k)\mathbf{a} = c\mathbf{a} + k\mathbf{a}$.
 - **II.3** Associativity. For all scalars c and k and every \mathbf{a} in V, $c(k\mathbf{a}) = (ck)\mathbf{a}$ (written $ck\mathbf{a}$).
 - **II.4** For every \mathbf{a} in V, $1\mathbf{a} = \mathbf{a}$.

Examples of Real Vector Space

- Space $R^2 = \{\text{row vector } [x \ y], \text{ with } x, y \text{ finite real numbers}\}.$
- Visualization: arrow from origin to point with coordinate $\begin{bmatrix} x & y \end{bmatrix}$
- Same visualization for Space R^2 ={column vector $[x \ y]^T$, with x, y finite real numbers}.
- Easily extended to Space $R^3 = \{\text{row vector } [x \ y \ z], \text{ with } x, y, z \text{ finite real numbers} \}$, or generally to

 $R^n = \{\text{row (or column) vectors with n-components} [x_1 \ x_2 \ \cdots \ x_n] \}$

Note: Vector Space is not only comprising of Vectors

- Example 1: Vector Spaces of Matrix
 - Real 2x2 matrices form a R⁴ real vector space

$$\left\{ \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix}, x_i \text{ real number, for } i = 1,...,4. \right\}$$

- Dim=4
- A possible Basis:

$$\mathbf{B}_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \mathbf{B}_{11} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \mathbf{B}_{21} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \mathbf{B}_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

- Example 2: Vector space of polynomials
 - The set of polynomial of order 2 or less.

$$\{a_3x^2 + a_2x^2 + a_1, a_i \text{ real number, for } i = 1, 2, 3\}$$

- Dim=3
- A possible basis: $p_1 = 1, p_2 = x, p_3 = x^2$

- Example: Vector Spaces of Functions
 - Real value continuous functions on given interval form a real vector space $\{f(x), g(x), \dots$ on given interval $\alpha \le x \le \beta\}$
 - Dim=infinity
 - A possible Basis for $\alpha = 0 \le x \le \beta = 2\pi$ $\sin x, \sin(2x), \sin(3x), \cdots$

DEFINITION Inner Product Spaces

Real Inner Product Space

A real vector space *V* is called a **real inner product space** (or *real pre-Hilbert space*) if for every pair of vectors **a** and **b** in *V*, there exist an operation called the **inner product** of **a** and **b** and denoted by (**a**, **b**). The inner product is a scalar and satisfies the following axioms.

- I. For all scalars q_1 and q_2 and all vectors \mathbf{a} , \mathbf{b} , \mathbf{c} in V, $(q_1\mathbf{a} + q_2\mathbf{b}, \mathbf{c}) = q_1(\mathbf{a}, \mathbf{c}) + q_2(\mathbf{b}, \mathbf{c})$ (*Linearity*).
- **II.** For all vectors **a** and **b** in *V*,

$$(\mathbf{a}, \mathbf{b}) = (\mathbf{b}, \mathbf{a})$$
 (Symmetry).

III. For every \mathbf{a} in V,

$$(a, a) \ge 0,$$

$$(\mathbf{a}, \mathbf{a}) = 0$$
 if and only if $\mathbf{a} = \mathbf{0}$

Copyright 2011 by John Wiley & Sons. All rights reserved.

- Vectors whose inner product is zero are called orthogonal to each other.
- The *length* or **norm** of a vector in *V* is defined by

(2)
$$\|\mathbf{a}\| = \sqrt{(\mathbf{a}, \mathbf{a})} \quad (\geq 0).$$

• A vector of norm 1 is called a **unit vector**.

From these axioms and from (2) one can derive the basic inequality

(3)
$$\|\mathbf{a}, \mathbf{b}\| \le \|\mathbf{a}\| \|\mathbf{b}\|$$
 (Cauchy - Schwarz inequality)

From this follows

A simple direct calculation gives

(5)
$$\|\mathbf{a} + \mathbf{b}\|^2 + \|\mathbf{a} - \mathbf{b}\|^2 = 2(\|\mathbf{a}\|^2 + \|\mathbf{b}\|^2)$$
 (*Parallelogram equality*). (Proofs of (3), (4), and (5) in Chapter 9)

COPYRIGHT ZOTT BY JOHN WHICH & COHS. All HIGHTS TESCIVED.

Example: Inner Product Space

- Space $R^2 = \{\text{row vector } [x \ y], \text{ with } x, y \text{ finite real numbers} \}$.
- Define for $\mathbf{a} = \begin{bmatrix} x_1 & y_1 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} x_2 & y_2 \end{bmatrix}$ their inner product as

$$(\mathbf{a}, \mathbf{b}) = x_1 x_2 + y_1 y_2$$

- (a,b) satisfies the conditions I, II and III in previous slide
- R^2 becomes an inner product space with (a,b)
- Similarly, R³ and generally, Rⁿ, are inner product spaces

- Example: Vector Spaces of Functions
 - Real value continuous functions on given interval form a real vector space $\{f(x), g(x), \dots$ on given interval $\alpha \le x \le \beta\}$
 - A possible definition of inner product:

$$(f,g) = \int_{\alpha}^{\beta} f(x)g(x)dx$$

Linear Transformations

- Let *X* and *Y* are any vector spaces.
- A **mapping** (or **transformation** or **operator**) of *X* into *Y* defines for *any* vector **x** in *X* a *unique* vector **y** in *Y*.
- A mapping is denoted by a capital letter, say F.
- The vector \mathbf{y} in Y is the **image** of \mathbf{x} under F and is denoted by F(x) (or just $F\mathbf{x}$).

• *X* is the domain of *F* and *Y* is the range of *F*.

Linear Transformations (continued)

F is called a **linear mapping** or **linear transformation** if, for all vectors \mathbf{v} and \mathbf{x} in X and scalars c,

(10)
$$F(\mathbf{v} + \mathbf{x}) = F(\mathbf{v}) + F(\mathbf{x})$$
$$F(c\mathbf{x}) = cF(\mathbf{x}).$$

Example: Linear Transformation of Space \mathbb{R}^n into Space \mathbb{R}^m

• Let $X = R^n$ and $Y = R^m$. Then any real $m \times n$ matrix $\mathbf{A} = [a_{jk}]$ gives a linear transformation of R^n into R^m ,

$$\mathbf{y} = \mathbf{A}\mathbf{x}$$

• Transformation is *linear* because A(u + x) = Au + Ax and A(cx) = cAx.

Example: Linear transformation y = Ax maps R^2 into R^3 .

$$\mathbf{A} = \begin{bmatrix} 1 & -1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \begin{array}{c} x_2 & \text{Domain} \\ x_1 & \\ \end{array}$$

 Image is plane spanned by columns of A.

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

- Image of point (1,1) in \mathbb{R}^2 is as shown
- The point, say, (3,0,0) is not in image plane

• Note: any real $m \times n$ matrix **A** is a linear transformation of R^n into R^m ,

$$\mathbf{y} = \mathbf{A}\mathbf{x}$$

- Actually, any linear transformation from R^n into R^m can be represented by a real $m \times n$ matrix
- **Example:** given a linear transformation F such that for any x in R^3 , we know its image y in on R^2 . Can we find a matrix representation for F?
 - Yes, by the following way: take the standard basis for R^3 , $\lceil 1 \rceil \rceil \lceil 0 \rceil \rceil$

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \mathbf{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

oopyngni 2011 by oonin 11110y a oono. 111 ngnio 10001104.

- Obtain their images on R^2 : $\mathbf{f}_1 = F(\mathbf{e}_1)$, $\mathbf{f}_2 = F(\mathbf{e}_2)$, $\mathbf{f}_3 = F(\mathbf{e}_3)$
- Then a 2×3 matrix **A** to represent *F* is

$$\mathbf{A} = \begin{bmatrix} \mathbf{f}_1 & \mathbf{f}_2 & \mathbf{f}_3 \end{bmatrix}$$

- Why? Given any vector in R^3 expressed in the basis of $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$,

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + x_3 \mathbf{e}_3$$

– Its image $F(\mathbf{x})$ is given by (noting that F is linear transformation):

$$F\mathbf{x} = F(x_1\mathbf{e}_1 + x_2\mathbf{e}_2 + x_3\mathbf{e}_3) = F(x_1\mathbf{e}_1) + F(x_2\mathbf{e}_2) + F(x_3\mathbf{e}_3)$$

$$= x_1F(\mathbf{e}_1) + x_2F(\mathbf{e}_2) + x_3F(\mathbf{e}_3) = x_1\mathbf{f}_1 + x_2\mathbf{f}_2 + x_3\mathbf{f}_3$$

$$= (\mathbf{f}_1 \quad \mathbf{f}_2 \quad \mathbf{f}_3) \mathbf{x}$$

$$= \mathbf{x}_1 \mathbf{f}_2 \quad \mathbf{f}_3 \mathbf{x}_3$$

$$= \mathbf{x}_1 \mathbf{f}_2 \quad \mathbf{f}_3 \mathbf{x}_3$$

Example: Linear Transformation of Space \mathbb{R}^n into Space \mathbb{R}^n

- If **A** is square $n \times n$ matrix, then **A** maps R^n into R^n .
- If **A** is also nonsingular (so **A**⁻¹ exists), then multiply (11) by **A**⁻¹ from the left yields

(14)
$$A^{-1}A x = x = A^{-1} y$$
.

- A^{-1} is the **inverse transformation** mapping every $y = y_0$ back onto x
- **A**⁻¹ is also a matrix and hence linear transformation (the inverse of a linear transformation is itself linear).

Composition of Linear Transformations

- Let *X*, *Y*, *W* be general vector spaces.
- *G* is a linear transformation from *W* to *X*, *F* is a linear transformation from *X* to *Y*.
- *H*, the linear transformation from *W* to *Y*, is called the **composition** of *F* and *G*,

• If *F* and *G* are linear transformations, then composition *H* is also linear transformation