Apport d'énergie thermique par une résistance électrique	
Préambule: Transformations des systèmes.	
A mole Pa, Ta, VA A mole	
B Po, To, Vo 1 unde	
1). Le volume de l'enceinte est fixé à 2 vo. Donc [2 vo = VA + VB.]	
Equilibre mécanique du piston	
Comme F= pS, ou en déduit B donc FA = FB.	
que PA = PB = PF	_ - >
A est un gaz parfait: (Pf = RTi / B) est un gaz parfait: Pf = RTi / B (1 mole)	
On en déduit donc $\frac{RT_1}{V_A} = \frac{RT_0}{V_B}$ (=) $\frac{V_B}{V_B} = \frac{V_A}{T_0}$	
Finalement $2V_0 = V_A \left(\Delta + \frac{T_0}{T_1} \right) \iff V_A = \frac{2V_0}{\Delta + \frac{T_0}{T_1}} $ $t \mid V_B = \frac{2V_0}{\Delta + \frac{T_1}{T_0}}$	
$P = \frac{RT_0}{\ell} \left(1 + \frac{T_1}{\ell} \right) douc \left P_f = \frac{R(T_0 + T_1)}{\ell} \right $	
2./ $\Delta U_A = c_{V,m} (T_i - T_o)$ $\Delta U (A+B) = \Delta U (A) + \Delta U(B) = c_{V,m} (T_i - T_o)$	
DUB = 0 (Isotherne)	
3. $\Delta U_{3} = 0 = W + Q_{1} \iff Q_{1} = -W = RT_{0} \ln \left(\frac{2T_{0}}{T_{0} + T_{1}}\right)$	
Comme 2To < To + T1, 2To < 1 et la (2To) < 0.	
$Q_1 < 0$, B cède de l'énergie thermèque au thermostat. $4 \cdot / \Delta U_A = c_{V,m} (T_1 - T_0) = Q_2 + (-W)$	
West le travail effectué par A sur B - West donc le travail effectué par	•
B sur A.	

douc $Q_2 = -cv_{i,m} (T_i - T_o) + W$ $Q_2 = -cv_{i,m} (T_i - T_o) + RT |u| T_o + T_i > 0$ Cette énergre est reçue.