

Computer Security

INFR10067 Fall 2025

Cryptography

Cryptographic hash functions and MACs

Markulf Kohlweiss School of Informatics University of Edinburgh

Introduction

Encryption ⇒ confidentiality against eavesdropping

What about authenticity and integrity against an active attacker?

→ this lecture

One-way functions (OWFs)

A OWF is a function that is easy to compute but hard to invert:

Definition (One-way)

A function f is a one-way function if for all y there is no efficient algorithm which can compute x such that f(x) = y

Constant functions ARE NOT OWFs any
$$x$$
 is such that $f(x) = c$

The successor function in \mathbb{N} IS NOT a OWF given succ(n) it is easy to retrieve n = succ(n) - 1

Multiplication of large primes IS a OWF: integer factorisation is a hard problem - given $p \times q$ (where p and q are primes) it is hard to retrieve p and q

Collision-resistant functions (CRFs)

A function is a CRF if it is hard to find two messages that get mapped to the same value threw this function

Definition (Collision resistance)

A function f is collision resistant if there is no efficient algorithm that can find two messages m_1 and m_2 such that $f(m_1)=f(m_2)$

Constant functions ARE NOT CRFs for all m_1 and m_2 , $f(m_1) = f(m_2)$

The successor function in \mathbb{N} IS a CRF the predecessor of a positive integer is unique

Multiplication of large primes IS a CRF: every positive integer has a unique prime factorisation

Cryptographic hash functions

A cryptographic hash function takes messages of arbitrary length and returns a fixed-size bit string such that any change to the data will (with very high probability) change the corresponding hash value.

Definition (Cryptographic hash function)

A cryptographic hash function $H:\mathcal{M}\to\mathcal{T}$ is a function that satisfies the following 4 properties:

- $|\mathcal{M}| >> |\mathcal{T}|$
- it is easy to compute the hash value for any given message
- it is hard to retrieve a message from it hashed value (OWF)
- it is hard to find two different messages with the same hash value (CRF)

Examples: MD4, MD5, SHA-1, RIPEMD160, SHA-256, SHA-512, SHA-3...

→ In new projects use SHA-256 or SHA-512 or SHA-3

Cryptographic hash functions: applications

- Commitments Allow a participant to commit to a value v by publishing the hash H(v) of this value, but revealing v only later. Ex: electronic voting protocols, digital signatures, ...
- File integrity Hashes are sometimes posted along with files on "read-only" spaces to allow verification of integrity of the files. Ex: SHA-256 is used to authenticate Debian GNU/Linux software packages
- Password verification Instead of storing passwords in cleartext, only the hash digest of each password is stored. To authenticate a user, the password presented by the user is hashed and compared with the stored hash.
- **Key derivation** Derive new keys or passwords from a single, secure key or password.
- Building block of other crypto primitives Used to build MACs, block ciphers, PRG, ...

Collisions are unavoidable

The domain being much larger than the range, collisions necessarily exist

The birthday attack - attack on all schemes

Theorem

Let $H: \mathcal{M} \to \{0,1\}^n$ be a cryptographic hash function ($|\mathcal{M}| >> 2^n$) Generic algorithm to find a collision in time $O(2^{n/2})$ hashes:

- 1. Choose $2^{n/2}$ random messages in \mathcal{M} : $m_1, \dots, m_{2^{n/2}}$
- 2. For $i = 1, ..., 2^{n/2}$ compute $t_i = H(m_i)$
- 3. If there exists a collision ($\exists i, j. t_i = t_j$) then return (m_i, m_j) else go back to 1

Birthday paradox Let $r_1,\ldots,r_\ell\in\{1,\ldots,N\}$ be independent variables. For $\ell=1.2\times\sqrt{N}$,

$$\overline{Pr(\exists i \neq j. \, r_i = r_j)} \ge \frac{1}{2}$$

⇒ the expected number of iteration is 2

$$\Rightarrow$$
 running time $O(2^{n/2})$

The Merkle-Damgard construction

- Compression function: $h: \mathcal{T} \times \mathcal{X} \to \mathcal{T}$
- PB: 1000 ... 0||mes-len (add extra block if needed)
 (different variants!)

Theorem

Let H be built using the MD construction to the compression function h. If H admits a collision, so does h.

Compression functions from block ciphers

Let $E: \mathcal{K} \times \{0,1\}^n \to \{0,1\}^n$ be a block cipher

 $Source: \verb|https://en.wikipedia.org/wiki/One-way_compression_function| \\$

Example of cryptographic hash function: SHA-256

- · Structure: Merkle-Damgard
- · Compression function: Davies-Meyer
- Bloc cipher: SHACAL-2

Computer Security

INFR10067 Fall 2025

Cryptography

Message Authentication Codes (MACs)

Encryption is not always enough

 $e=E(K_E, \text{Transfer 100} \in \text{on Bob's account})$

Royal Bank of Scotland

What if the encryption scheme E is the OTP - $e=K_E\oplus {\sf Transfer}\, {\sf 100} \in {\sf on}\, {\sf Bob's}\, {\sf account}?$

 $\stackrel{e}{\rightarrow}$

 $e \oplus 0$...0Bob0...0 $\oplus 0$...0Eve0...0

 $=E(K_E, \text{Transfer 100} \in \text{on Eve's account})$

Goal: message integrity

A MAC is a pair of algorithms (S, V) defined over $(\mathcal{K}, \mathcal{M}, \mathcal{T})$:

- $S: \mathcal{K} \times \mathcal{M} \to \mathcal{T}$
- $V: \mathcal{K} \times \mathcal{M} \times \mathcal{T} \to \{\mathsf{T}, \bot\}$
- Consistency: V(k, m, S(k, m)) = T

Unforgeability

It is hard to computer a valid pair (m, S(k, m)) without knowing k

File system protection

At installation time

- k derived from user password
- To check for virus file tampering/alteration:
 - reboot to clean OS
 - supply password
 - any file modification will be detected

Block ciphers and message integrity

Let (E,D) be a block cipher. We build a MAC (S,V) using (E,D) as follows:

- S(k,m) = E(k,m)
- V(k, m, t) = if m = D(k, t)then return T else return \bot

But: block ciphers can usually process only 128 or 256 bits

Our goal now: construct MACs for long messages

ECBC-MAC

- $E: \mathcal{K} \times \{0,1\}^n \to \{0,1\}^n$ a block cipher
- $ECBC\text{-}MAC: \mathcal{K}^2 \times \{0,1\}^* \rightarrow \{0,1\}^n$
- → the last encryption is crucial to avoid forgeries!!

Ex: 802.11i uses AES based ECBC-MAC

PMAC

- $E: \mathcal{K} \times \{0,1\}^n \to \{0,1\}^n$ a block cipher
- $P: \mathcal{K} \times \mathbb{N} \to \{0,1\}^n$ an easy to compute function
- $PMAC : \mathcal{K}^2 \times \{0,1\}^* \to \{0,1\}^n$

See also: https://www.youtube.com/watch?v=gZiBYDX9Fpo

HMAC

MAC built from cryptographic hash functions

$$HMAC(k,m) = H(k \oplus OP||H(k \oplus IP||m))$$

IP, OP: publicly known padding constants

Ex: SSL, IPsec, SSH, ...

Naive MAC from Hashing

Simplest way to build a MAC from a hash function, prepend the key:

$$MAC(k, m) = H(k||m)$$

This is not generally secure, but works for SHA3/Keccak as it prevents length extension attack.

Source: https://keccak.team/keccak_strengths.html

See also: https://crypto.stackexchange.com/questions/1070/why-is-hk-mathbin-vert-x-not-a-secure-mac-construction

Computer Security

INFR10067 Fall 2025

Cryptography

Authenticated encryption

Plain encryption is malleable

- The decryption algorithm never fails
- Changing one bit of the ith block of the ciphertext
 - CBC decryption: will affect last blocks after the i^{th} of the plaintext
 - ullet ECB decryption: will only the i^{th} block of the plaintext
 - ullet CTR decryption: will only affect one bit of the i^{th} block of the plaintext

Decryption should fail if a ciphertext was not computed using the key

Goal

Simultaneously provide data confidentiality, integrity and authenticity

--- decryption combined with integrity verification in one step

Encrypt-then-MAC

- 1. Always compute the MACs on the ciphertext, never on the plaintext
- 2. Use two different keys, one for encryption (K_E) and one for the MAC (K_M)

Encryption	Decryption
1. $C \leftarrow E_{AES}(K_E, M)$	1. if $T = HMAC\text{-}SHA(K_M, C)$
2. $T \leftarrow HMAC\text{-}SHA(K_M, C)$	2. then return $D_{AES}(K_E,C)$
3. return $C T$	3. else return ⊥

Do not:

- $\bullet \;\; \mathsf{Encrypt\text{-}and\text{-}MAC} : E_{AES}(K_E,M) || HMAC\text{-}SHA(K_M,M) \\$
- $\bullet \;\; \mathsf{MAC}\text{-}\mathsf{then}\text{-}\mathsf{Encrypt} \text{:}\; E_{AES}(K_E,M||HMAC\text{-}SHA(K_M,M))$

AES GCM

Galois Counter Mode

Combines

- 1. Galois field based One-time MAC for authentication
- 2. AES based Counter Mode for encryption

- Trick: One-time MAC is encrypted too
 ⇒ secure for many messages
- · Widely adopted for its performance
- Many good implementations of this mode