

Previsão de pontos finais de trajetórias de táxi em Porto - Portugal

CAIO CASAGRANDE

Introdução

Sobre o Negócio:

- Com as novas tecnologias atuais, a indústria de táxis precisou se reinventar para não ficar para trás em relação aos seus novos concorrentes
- Um dos **desafios** é a adaptação ao novo sistema eletrônico de despacho em tempo real, instalados nos veículos

Introdução

Sobre o Problema:

- O sistema conta com um problema: a falta de informação sobre o destino final das corridas, pois os motoristas não indicam o destino;
- Os despachantes precisam identificar corretamente qual táxi enviar para uma localização de coleta, o que se torna difícil quando não se sabe o destino final dos táxis em serviço;
- Em razão desse problema, a proposta é **desenvolver um modelo preditivo** que seja capaz de inferir o destino final de corridas de táxi com base em suas localizações de coleta.

Objetivos

- Entender o problema de negócio
- Análise de Dados
- Modelo de Machine Learning
- PowerPoint descrevendo o problema e conclusões
- Enviar notebook (.ipynb) e apresentação (.pdf)

Planejamento

- Saídas: Modelo, Arquivo .ipynb, Apresentação;
- Entrada: Dados
- Passo a passo:
 - Data Overview
 - Pré-processamento
 - Análise Exploratória dos Dados
 - Feature Engineering
 - Modelagem Machine Learning
 - Avaliação
 - Performances
 - Modelo
 - Negócio

Data Overview

- Dataset com 1,710,670 linhas e 9 colunas
- Duas variáveis com dados faltantes: ORIGIN_CALL e ORIGIN_STAND

Variable	Description	Туре
TRIP_ID	Identificação de cada viagem.	int
CALL_TYPE	Identifica a maneira que o serviço aconteceu (A, B ou C)	object
ORIGIN_CALL	Identificação de número de telefone que pediu táxi	float
ORIGIN_STAND	Ponto de táxi em que o pedido foi realizado	float
TAXI_ID	Identificação do Táxi	int
TIMESTAMP	Timestamp indicando quando ocorreu a corrida	int
DAY_TYPE	Indica o tipo de dia (A, B ou C)	object
MISSING_DATA	Indica se há falta de dados	bool
POLYLINE	Sequência de coordenadas geográficas do trajeto	object

Pré-processamento

- Transformação dos nomes das colunas para *snake*_case
- Transformação da variável "timestamp" de segundos para um estilo de data
- Novas variáveis de tempo (hora, dia, mês, ano, dia da semana, semana do ano)
- Criação de colunas com **nomes** para dias da semana e meses
- Filtragem de dados:

Ano == 2013 Meses de Julho a Novembro

 Selecionando apenas linhas em que não havia dados faltantes 'missing_data' == False

Pré-processamento

- Variável 'Polyline' de *string* para lista de elementos (coordenadas)
- Criação da variável 'distance' utilizando Haversine
- Excluindo distâncias muito grandes (> 0.975) e muito pequenas (<0.025)

- 3.1. Quais os tipos de chamadas mais frequentes?
- 3.2. Quais são os telefones que mais solicitaram corridas de táxi?
- 3.3. Quais os pontos de táxi com origem mais frequentes?
- 3.4. Quais os taxistas com maior número de viagens?
- 3.5. Quais taxistas percorreram mais distância em suas viagens?
- 3.6. Qual a distribuição das viagens por dia?
- 3.7. Existe algum comportamento sazonal dentro dos meses?
- 3.8. Qual o dia da semana com mais corridas? Qual dia se percorre as maiores distâncias?
- 3.9. O comportamento das distâncias percorrida muda de acordo com o tipo de chamada?
- 3.10. Qual o comportamento das distâncias percorridas nas semanas do ano?
- 3.11. Qual o comportamento das distâncias percorridas por mês?
- 3.12. Qual o comportamento das distâncias percorridas por hora do dia?

Feature Engineering

- Criação de novas variáveis: posições iniciais e finais de latitude e longitude
- Exclusão de colunas desnecessárias para o modelo:
 - trip_id: um identificador único para cada corrida não influencia no modelo;
 - day_type : todos os valores da coluna são iguais a "A";
 - taxi_id: o identificador único de um táxi não influencia no ponto final de chegada da corrida;
 - timestamp : datetime feature
 - polyline : o trajeto é um resultado final de cada corrida, de maneira que os trajetos passados não são relevantes para prever o ponto final de uma corrida futura;
 - missing_data: todos os valores da coluna são iguais a "False";
 - name_dayofweek : object feature;
 - name_month : object feature;
 - weekofyear : não é relevante para prever corridas em semanas que ainda não aconteceram;
 - day_month_year : datetime feature.

Feature Engineering

- One-Hot Encoding para coluna "call_type"
- Substituindo resultados faltantes em "origin_call" e "origin_stand" por zeros
- Sem riscos de data leakage
- Train-test split com amostra de tamanho 250 mil

Machine Learning

- LightGBM: lightgbm.LGBMRegressor
- Considerando que se trata de um grande dataset
- O modelo é reconhecido pela sua boa performance, rapidez com grandes datasets e eficiência de memória computacional.

Machine Learning

- Primeiro modelagem sem realizar alterações em parâmetros
 - Modelo
 - Predição
 - Avaliação
- Segunda modelagem com GridSearchCV

Primeiro Modelo

Mean Squared Error (Latitude): 0.00036
Mean Absolute Error (Latitude): 0.01227
Mean Squared Error (Longitude): 0.00067
Mean Absolute Error (Longitude): 0.01880

Modelo GridSearchCV

Mean Squared Error (Latitude): 0.00035
Mean Absolute Error (Latitude): 0.01192
Mean Squared Error (Longitude): 0.00065
Mean Absolute Error (Longitude): 0.01828

TAXI PORTO INICIALIDADE DE LA CONTRACTOR DE LA CONTRACTOR

Machine Learning

Mean Absolute Error (Latitude): 0.01192 ~ 1.34 km

TAXI PORTO INICIALIDADE DE LA CONTRACTOR DE LA CONTRACTOR

Machine Learning

Mean Absolute Error (Longitude): 0.01828 ~ 1.53 km

Machine Learning

- Modelo salvo em *pickle*
- Rodando no dataset de teste
- MAE Latitude 1.34 km 0.83 km
- **MAE Longitude** 1.53 km − **1 km**

Dataset de Teste

Mean Squared Error (Latitude): 0.00020
Mean Absolute Error (Latitude): 0.00795
Mean Squared Error (Longitude): 0.00030
Mean Absolute Error (Longitude): 0.01238

Performance

- A base utilizada para a modelagem foi apenas uma fração do total em razão de limites computacionais;
- Acredita-se que utilizando a base inteira, o modelo **LightGBM** possa prever com mais exatidão os pontos de destino;
- Ademais, incrementar o **GridSearchCV** com mais parâmetros também pode resultar em modelos mais precisos;
- Ainda assim, o modelo resultou em bons resultados para a base de treino e resultados ainda melhores para o dataset de teste (erros menores).

Performance

Realizar a previsão do destino final de corridas de táxi com base em pontos iniciais pode trazer diversos benefícios financeiros à empresa, como:

- 1. Minimização de quilometragem vazia
- 2. Maior satisfação do cliente
- 3. Otimização de recursos
- 4. Mais viagens em menos tempo
- 5. Planejamento operacional
- 6. Vantagem competitiva

Previsão de pontos finais de trajetórias de táxi em Porto - Portugal

CAIO CASAGRANDE