Page 11

- **3.1** We must show that the set $\{x: x \in A \text{ and } x \notin B\}$ exists. Let P(x,A,B) be the property " $x \in A$ and $x \notin B$ ", then P(x,A,B) implies $x \in A$, because A exists, we get $\{x: x \in A \text{ and } x \notin B\} = \{x \in A: x \in A \text{ and } x \notin B\} = \{x \in A: x \notin B\}$, this set exists by the axiom of comprehension, and is unique according to the Lemma 3.4.
- **3.2** By the Weak Axiom of Existence some set exists, call let A. Take the property P(x) to be $x \neq x$, then the set $\{x \in A : x \neq x\}$ exists by comprehension. But this is \emptyset , since every element of any set is self-identical.
- **3.3** (a) Assume that V the set of all sets exists, then by comprehension the set $X = \{x \in V : x \notin x\}$ exists. Now, $x \in X$ iff $x \in V$ and $x \notin x$. Clearly, X is a set, thus $X \in V$, if $X \in X$, then it satisfies the property of being a member of X, thus $X \notin X$. if $X \notin X$, and since $X \in V$ we get by definition $X \in X$, a contradiction.
- (b) Assume to the contrary that there is one A such that every $x, x \in A$, then every set is in A, which means that A = V, which is impossible by the previous argument.
- **3.4** By the axiom of pair the set $\{A, B\}$ exist and the union axiopm implies the existence of $\bigcup \{A, B\}$. Now take the property $\mathbf{P}(x, A, B) = \text{``}(x \in A \land x \notin B) \lor (x \notin B \land x \in A)\text{''}$, now by the comprehension axiom the set $C = \{x \in \bigcup \{A, B\} : \mathbf{P}(x, A, B)\}$ exist. Now it is easy to check $x \in C$ iff either $x \in A$ and $x \notin B$ or $x \in B$ and $x \notin B$.
- **3.5** (a) By the axiom of pair there are the sets $\{A, B\}$ and $\{C\}$. Again by pairing the set $\{\{A, B\}, \{C\}\}$ exists. Now the axiom union implies the existence of $P = \bigcup \{\{A, B\}, \{C\}\}$. But now, $x \in P$ iff $x \in \{A, B\}$ or $x \in \{C\}$ iff x = A or x = B, or x = C.
 - (b) Just repeat the above argument and take $\{C, D\}$ instead of $\{C\}$.
- **3.6** Assume that $\mathcal{P}(X) \subseteq X$ and let $Y = \{x \in X : x \notin x\}$. Clearly $Y \subseteq X$, thus by our assumption $Y \in X$, if $Y \notin Y$ then $Y \in Y$. if $Y \in Y$ then $Y \notin Y$, which is a contradiction.

3.7 (Weak Axiom Of Pair) Take the property $\mathbf{P}(x,A,B) = "x = A \lor x = B"$, then by comprehension the set $X = \{x \in C : \mathbf{P}(x,A,B)\}$ exists. Now it is easy to see $x \in X$ iff x = A or x = B.

(Weak Axiom Of Union) Take $\mathbf{P}(x,S) = "\exists A(A \in S \land x \in A)"$, then by comprehension we get a set Y such that $x \in Y$ iff for some $A \in S$, $x \in S$, thus $Y = \bigcup S$.

(Weak Axiom Of Power Set) Consider the property " $x \subseteq S$ ", then by applying the comprehension to the set P we get the set Z such that $x \in Z$ iff $x \subseteq S$, thus $Z = \mathcal{P}(S)$.