实验3 纯弯曲梁挠度验证实验

姓名: 邹佳驹

学号: 12012127

同组人: 刘鸿磊

1. 实验目的(5分)

- 1、了解梁弯曲时的力学性能;
- 2、了解千分表的使用原理,掌握其使用方法;
- 3、掌握推导纯弯曲梁挠度公式, 计算理论值;
- 4、实验测定纯弯曲梁挠度,验证理论计算结果。

2. 实验原理(公式推导及理论值计算,10分)

Bending stress variation

$$egin{aligned} M &= \int_A y dF = \int_A y \sigma dA = \int_A y \Big(rac{y}{c}\sigma_{ ext{max}}\Big) dA \ M &= rac{\sigma_{ ext{max}}}{c} \int_A y^2 dA = rac{\sigma_{ ext{max}}}{c} I_z \ rac{\sigma_{ ext{max}}}{c} &= rac{-\sigma}{y} \ \sigma &= -rac{My}{I_c} \end{aligned}$$

$$arepsilon = rac{-y}{
ho} = rac{\sigma}{E} = rac{-My}{EI_z}
onumber
onumber
ho = rac{EI_z}{M}$$

$$R(1-\cos heta)=f$$
 $R\sin heta=rac{a_0}{2}$
 $\sin^2 heta+\cos^2 heta=1$
 $R=rac{a_0^2+4f^2}{8f}$
 $R=rac{a_0^2}{8f}$

$$ho = R + rac{h}{2} = rac{a_0^2}{8f} + rac{h}{2} = rac{EIz}{M} \ rac{a_0^2}{8f} = rac{EI_z}{M} - rac{h}{2} \ f = rac{a_0^2}{8(rac{EIz}{M} - rac{h}{2})}$$

不同载荷下相应理论值为:

载荷(N)	理论值(μm)
1000	17.73
1500	26.60
2000	35.47
2500	44.34
3000	53.21
3200	56.76
3500	62.08

(计算过程见附表)

3. 实验仪器设备与工具(5分)

- 1、标定梁与加载梁
- 2、千分表
- 3、三点挠度仪
- 4、应变&力综合测试仪

4. 实验步骤(10分)

- 1、测量标定梁尺寸(截面高度、宽度);
- 2、搭建实验装置,固定标定梁,平衡加载梁,连接实验仪器;
- 3、开始加载,观察实验过程,记录对应载荷下千分表读数;
- 4、实验完成后,关闭实验仪器,规整实验器材。
- 5. 实验数据记录(10分)

载荷(N)	实验值(μm)
1000	18
1500	28
2000	38
2500	46
3000	56
3200	59
3500	65

6. 实验数据处理(数据处理图表整理、实验值与理论值对比等,30分)

载荷(N)	理论值(μm)	实验值(μm)	偏差(%)
1000	17.73	18	1.50
1500	26.60	28	5.26
2000	35.47	38	7.14
2500	44.34	46	3.75
3000	53.21	56	5.25
3200	56.76	59	3.95
3500	62.08	65	4.71
平均值			4.51

7. 实验结论(10分)

通过理论推导并计算出纯弯曲梁在不同载荷下的挠度值,实验进行验证,利用千分表读取并记录数据,将实验值与理论值进行对比,其平均误差为4.51%,在合理范围内。

8. 误差分析(10分)

- 1、实验过程中,由于杆件较粗且未贴合刻度尺,在进行读数时难以定位读数位置。本次实验读数时取值略微偏大,进而导致理论计算所得挠度结果偏小。
- 9. 拓展思考:如何提高实验精度(+10分)
 - 1、调整三点挠度仪和千分表位置,使千分表测头位于两端附加载荷的中点位置:
 - 2、测量前,将千分表固定在可靠的表架上,并夹牢;

- 3、将千分表测头与工件接触时,为保持一定的起始测量力,控制测量杆有 0.3~0.5mm 的压缩量;
- 4、考虑使用电动施加载荷;
- 5、千分表测量杆与被测工件表面尽可能垂直,杠杆千分表的测量杆轴线与被测工件表面的夹角越小,误差就越小。

10. 附件-原始数据记录表(10分)

2.	实验数据记录	a=?	0>
2.	实验数据记录	co ;	12

载荷 (N)	(理论值) (μm)	实验值(μm)	偏差 (%)
1000	17.73	0,018	
1500	26.60	0.028	,
2000	35.47	0.038	
2500	44:34	0.046	
3000	53.21	0.056	
3200	56.76	0.059	
3500	62.08	0.065	
平均值		1	12 14 1

指导教师:

0.02006

0.04022 1.09E-07

80.5642026

6.20778E-05

62.0778

-4.707320377