Complex Analysis Reference Sheet

Stuyvesant Class of 2022

Nate Strout, Joshua Yagupsky, Francis Zweifler

Created February 15th, 2022

Complex Calculus, Mr. Stern

Contents

1	THE COMPLEX NUMBER SYSTEM		2
	1.1	The Algebra of Complex Numbers	2
	1.2	The Geometry of Complex Numbers	2
		1.2.1 Möbius Transformations and the Riemann Sphere	2
2	CO :	MPLEX FUNCTIONS The Complex Exponential	2
3	TO	POLOGY OF $\mathbb C$	2
	3.1	Compact Sets	2
	3.2	Sequences in $\mathbb C$	2
	3.3	Limits of functions, continuity	2

1 THE COMPLEX NUMBER SYSTEM

- 1.1 The Algebra of Complex Numbers
- 1.2 The Geometry of Complex Numbers
- 1.2.1 Möbius Transformations and the Riemann Sphere

2 COMPLEX FUNCTIONS

- 2.1 The Complex Exponential
- 3 TOPOLOGY OF $\mathbb C$
- 3.1 Compact Sets
- 3.2 Sequences in \mathbb{C}
- 3.3 Limits of functions, continuity

Definition 3.1 (Limit of a function, (ϵ, δ) definition). A function $f: D \to \mathbb{C}$ is said to have a *limit* of L as $z \to a$ if $\forall \epsilon > 0, \exists \delta > 0, \forall z \in D: (0 < |z - a| < \delta \implies |f(z) - L| < \epsilon)$.