SMIA (S1), Algèbre 1 Série N° : 2

Ex. 1 — Soit $f: X \to Y$ une application. Montrer que :

- 1) $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$
- 2) $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$
- 3) $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$
- 4) $f(A_1 \cap A_2) \subset f(A_1) \cap f(A_2)$
- 5) $f^{-1}(Y B) = X f^{-1}(B)$

Ex. 2 — Soit $f: X \to Y$ une application. Montrer que les conditions suivantes sont équivalentes :

- a) f est injective.
- b) $f^{-1}(f(A)) = A$ pour toute partie A de X.
- c) $f(A_1 \cap A_2) = f(A_1) \cap f(A_2)$ pour toutes parties A_1, A_2 de X.

Ex. 3 — Soit $f: X \to Y$ une application. Montrer que les conditions suivantes sont équivalentes :

- a) f est surjective.
- b) $f(f^{-1}(B)) = B$ pour toute partie B de Y.

Ex. 4 — Soit $f:X\to Y$ une application. Montrer que les conditions suivantes sont équivalentes :

- a) f est injective.
- b) Quelles que soient les applications $g, h: Z \to X$,

$$f \circ g = f \circ h$$
 implique $g = h$.

Ex. 5 — Soit $f:X\to Y$ une application. Montrer que les conditions suivantes sont équivalentes :

- a) f est surjective.
- b) Quelles que soient les applications $g, h: Y \to Z$,

$$g \circ f = h \circ f$$
 implique $g = h$.

Ex. 6 — Soit $(A_i)_{i \in I}$ une famille non vide de parties d'un ensemble X. Montrer que

a)
$$X - \bigcup_{i \in I} A_i = \bigcap_{i \in I} (X - A_i).$$

b)
$$X - \bigcap_{i \in I} A_i = \bigcup_{i \in I} (X - A_i).$$

Ex. 7 — Soient $(A_i)_{i\in I}$ et $(B_j)_{j\in J}$ deux familles non vides de parties d'un ensemble X. Montrer que

a)
$$(\bigcup_{i\in I}A_i)\bigcap(\bigcup_{j\in J}B_j)=\bigcup_{(i,j)\in I\times J}(A_i\cap B_j).$$

b)
$$(\bigcap_{i\in I}A_i)\bigcup(\bigcap_{j\in J}B_j)=\bigcap_{(i,j)\in I\times J}(A_i\cup B_j).$$

Ex. 8 — Soit $f: X \to Y$ une application.

1) Soit $(A_i)_{i\in I}$ une famille non vide de parties de X. Montrer que

a)

$$f(\bigcup_{i\in I} A_i) = \bigcup_{i\in I} f(A_i).$$

$$f(\bigcap_{i\in I} A_i) \subset \bigcap_{i\in I} f(A_i)$$

et qu'il y a égalité si f est injective.

2) Soit $(B_j)_{j\in J}$ une famille non vide de parties de Y. Montrer que

a')

$$f^{-1}(\bigcup_{j\in J} B_j) = \bigcup_{j\in J} f^{-1}(B_j).$$

b')

$$f^{-1}(\bigcap_{j\in J} B_j) = \bigcap_{j\in J} f^{-1}(B_j).$$

Ex. 9 — Soient $f:X\to Y,\ g:Y\to Z$ deux applications, et $h=g\circ f$ l'application composée. Montrer que

- a) Si h est injective, f est injective. Si de plus f est surjective, alors g est injective.
- b) Si h est surjective, q est surjective. Si de plus q est injective, alors f est surjective.

Ex. 10 — Soient $f: X \to Y$, $g: Y \to Z$, $h: Z \to T$ des applications. Montrer que si $g \circ f$ et $h \circ g$ sont bijectives, alors f, g et h sont bijectives.

Ex. 11 — Soient X un ensemble et A, B deux parties de X. On définit l'application

$$f: \mathscr{P}(X) \to \mathscr{P}(A) \times \mathscr{P}(B)$$

par

$$f(Y) = (Y \cap A, Y \cap B)$$

pour tout $Y \subset X$.

À quelle condition doivent satisfaire A et B pour que f soit injective? pour que f soit surjective?

Exercices supplémentaires

Ex. 12 — L'application $f: \mathbb{N} \to \mathbb{N}$ définie par $f(n) = n^2$, admet-elle une application inverse à droite? Indiquer deux applications inverses à gauche de f.

Ex. 13 — 1) Soit E un ensemble. Montrer qu'il n'existe pas une application surjective $f: E \to \mathscr{P}(E)$. (Indication : Considérer $A = \{x \in E \mid x \notin f(x)\}$.)

2) Montrer qu'il n'existe aucun ensemble X tel que la relation

$$\mathscr{P}(X) \subset X$$

soit vraie.

Ex. 14 — Soient $f: X \to Y$ une application telle que X ayant au moins deux éléments et Y non vide. Montrer que, si f possède une seule application inverse à gauche g alors f est bijective.

Ex. 15 — Soient X un ensemble et $A \subset X$. L'application $1_A : X \to \{0,1\}$ définie par

$$1_A(x) = \begin{cases} 1 & \text{Si } x \in A \\ 0 & \text{sinon.} \end{cases}$$

est appelée fonction caractéristique de A.

1) Montrer que l'application

$$\mathscr{P}(X) \to X^{\{0,1\}}, \ A \mapsto 1_A$$

est une bijection.

- 2) En déduire que, si le nombre d'éléments de X est n alors celui de $\mathscr{P}(X)$ est 2^n .
- 3) Montrer que
 - (i) $1_{A \cap B} = 1_A.1_B$.
 - (ii) $1_{A \cup B} = 1_A + 1_B 1_{A \cap B}$.

(iii)
$$1_{\bigcup_{i=1}^{n} A_i} = 1 - \prod_{i=1}^{n} (1 - 1_{A_i}).$$

(iv) Si
$$C = (A - B) \cup (B - A)$$
 alors $1_C = 1_A + 1_B$.

Ex. 16 — Montrer qu'une application qui admet une seule application inverse à droite est nécessairement bijective.

Ex. 17 — On considère des ensembles X, Y, Z et des applications

$$f: X \to Y$$
, $g: Y \to Z$, $h: Z \to X$.

On forme les applications composées

$$h \circ g \circ f$$
, $g \circ f \circ h$, $f \circ h \circ g$,

et on suppose soit que les deux premières applications sont injectives et la troisième surjective, soit que les deux premières applications sont surjectives et la troisième injective. Montrer que f, g et h sont bijectives.

Ex. 18 — Soit E un ensemble, et soit f une application croissante de $\mathscr{P}(E)$ dans $\mathscr{P}(E)$ (c'est-à-dire que $X \subset Y$ entraı̂ne $f(X) \subset f(Y)$).

1) Soient

$$\mathscr{F} := \{ X \in \mathscr{P}(E) \mid f(X) \subset X \} \quad \text{et} \quad X_0 := \bigcap_{X \in \mathscr{F}} X.$$

Montrer que $X_0 \in \mathcal{F}$. En déduire $f(X_0) = X_0$.

2) Soient

$$\mathscr{F}' := \{ X \in \mathscr{P}(E) \mid X \subset f(X) \} \text{ et } X_1 := \bigcup_{X \in \mathscr{F}'} X.$$

Montrer que $f(X_1) = X_1$.

3) Montrer que, pour tout $X \subset E$ tel que f(X) = X, $X_0 \subset X \subset X_1$.

Ex. 19 — Soient X et Y deux ensembles.

1) Soient $f: X \to Y$ et $g: Y \to X$ deux applications. Montrer que X et Y peuvent s'écrire comme réunions disjointes :

$$X = X_1 \cup X_2, \quad Y = Y_1 \cup Y_2,$$

avec $f(X_1) = Y_1$ et $g(Y_2) = X_2$ (Considérer l'application

$$\mathscr{P}(X) \to \mathscr{P}(X), \quad A \mapsto X - g[Y - f(A)]$$

et utiliser Ex. 18).

2) Montrer que, s'il existe une injetion de X dans Y et une injection de Y dans X alors il existe une bijection de X sur Y (Théorème de Bernstein-Schröder).