Работа 3.3.6

Влияние магнитного поля на проводимость полупроводников

Цель работы: измерение магнетосопротивления полупроводниковых образцов различной формы.

Оборудование: стабилизированный источник постоянного тока и напряжения, электромагнит, цифровой вольтметр, амперметр, миллиамперметр, реостат, измеритель магнитной индукции Ш1-10, образцы (InSb) монокристаллического антимонида индия n-типа.

1. Теоретическая справка

Выражение для магнетосопротивления. Рассмотрим проводник с током, помещенный в магнитное поле. Пусть его вектор индукции \vec{B} направлен перпендикулярно вектору напряженности электрического поля \vec{E} (эффектом Холла пренебрегаем). Тогда усредненное по времени уравнение движения в стационарном состоянии имеет вид (здесь и далее все скорости считаются усредненными по времени)

$$\vec{E} + \frac{\vec{v}}{b} + \vec{v} \times \vec{B} = 0, \tag{1}$$

здесь b — подвижность электронов, \vec{v} — скорость. Если электрическое поле направлено вдоль оси x, то отсюда получим выражение для проекции скорости электрона на эту ось:

$$v_x = -\frac{bE}{1 + (bB)^2} \tag{2}$$

Из этого выражения получаем эффективный коэффициент подвижности b^* :

$$b^* = -\frac{v_x}{E} = \frac{b}{1 + (bB)^2}. (3)$$

Подставим это в формулу для удельного сопротивления ρ :

$$\rho = \frac{1}{enb^*} = \frac{1}{enb} \left(1 + (bB)^2 \right) = \rho_0 \left(1 + (bB)^2 \right), \tag{4}$$

где ρ_0 - удельное сопротивление в отсутствии магнитного поля. Таким образом, искомая зависимость квадратична, и линейна в координатах $\rho\left(B^2\right)$. Зависимость сопротивления R от B имеет такой же вид, т.к. $R=A\rho$, где A зависит только от геометрических параметров.

Диск Корбино. На самом деле, пренебрежение эффектом Холла при выводе формулы (4) неправильно, т.к. эффект Холла должен в точности компенсировать магнетосопротивление. Его наличие у проводников обуславливается тем, что Холловское напряжение компенсирует влияние только на электроны, движущиеся со скоростью, близкой к средней. Тем не менее, магнетосопротивление будет зависеть от ориентации. Поэтому в экспериментах обычно используют диск Корбино. В нем напряженность внешнего электрического поля направлена радиально (контакты подсоединены к внешней и внутренней сторонам), а индукция магнитного поля —

перпендикулярно плоскости диска. Магнитное поле вызывает дополнительное трансверсальное движение зарядов, которое не приводит к их накоплению. Отсюда $E_{\rm x}=0$ и формула (4) полностью применима. Если толщина диска h, а внешний и внутренний диаметры D и d соответственно, то сопротивление диска R выражается по формуле

$$R_0 = \frac{\rho_0}{2\pi h} \ln \frac{D}{d} \tag{5}$$

Калибровка 2.

Экспериментальная установка. новка в этой части практически полностью аналогично установке в соответствующей части работы 3.4.1 (вместо милливеберметра на данной установке используется датчик Холла, сразу измеряющий магнитное поле), поэтому не будем повторно приводить описание.

Обработка результатов Результаты измерений B(I) занесены в таблицу 1 (см. часть 3, ток обозначен $I_{\rm m}$), график представлен на рисунке 1. Из него видно, что сердечник магнита почти достигает насыщения, поэтому придумать аппроксимирующую функцию довольно сложно (была проведена гладкая кривая).

Рис. 1: График зависимости B(I)

3. Исследование магнетосопротивления

Экспериментальная установка. Схема экспериментальной установки представлена на рис. 2. Ток I через образец, измеряемый амперметром, регулируется реостатом R_2 , т.к. его сопротивление достаточно большое, значение силы тока практически не меняется в ходе эксперимента. Вольтметр измеряет напряжение U на образце. Таким образом, сопротивление измеряется формулой

жоде эксперимента. Вольтметр те
$$U$$
 на образце. Таким образимеряется формулой $R = \frac{U}{I}$, (6) Рис. 2: Схема ус

Цифровой вольтметр В7-78/1

называемой *законом Ома*. Согласно (4), зависимость $R(B^2)$ должна быть линейной. Для ее получения будем проводить измерения на тех же токах через электромагнит, при которых производилась калибровка.

Обработка результатов. Экспериментальные данные вместе с пересчитанными результатами занесены в таблицу 1. Связь индексов с образцами следующая: 1 — диск Корбино, 2 пластина с шириной вдоль магнитного поля, 3 — пластина с шириной, перпендикулярной магнитному полю. Для диска I=25,0 мA, для пластинки — 10,0 мA. Погрешности (обозначены

Блок управления

Диск

с разъёмом

знаком Δ) были вычислены по следующим формулам:

$$\Delta B = 2 \text{ MT}\pi; \tag{7}$$

$$\Delta U = 0.02 \text{ MB}; \tag{8}$$

$$\Delta I = 0,02 \text{ MA}; \tag{9}$$

$$\Delta B^2 = 2B^2 \frac{\Delta B}{B};\tag{10}$$

$$\Delta R = R\sqrt{\left(\frac{\Delta I}{I}\right)^2 + \left(\frac{\Delta U}{U}\right)^2}.$$
(11)

$I_{\scriptscriptstyle \mathrm{M}},{\scriptscriptstyle \mathrm{M}}\mathrm{A}$	0	0,05	0,1	0,15	0,2	0,25	0,3	0,35	0,39
В, мТл	0	74	132	192	254	303	336	358	369
B^2 , м $T\pi^2/10^3$	0	5,5	17,4	36,9	64,5	91,8	112,9	128,2	136,2
ΔB^2 , м $\mathrm{T}\pi^2/10^3$	0	0,3	0,5	0,8	1,0	1,2	1,3	1,4	1,5
U_1 , м B	0,67	0,79	1,09	1,5	2,01	2,5	2,87	3,12	3,28
U_2 , мВ	2,69	2,73	2,79	2,87	2,95	3,02	3,08	3,11	3,13
U_3 , MB	2,69	2,76	2,88	2,97	3,08	3,19	3,26	3,32	3,38
R_1 , мОм	27	32	44	60	80	100	115	125	131
ΔR_1 , мОм	1	1	1	1	1	1	1	1	1
R_2 , мОм	269	273	279	287	295	302	308	311	313
ΔR_2 , мОм	2	2	2	2	2	2	2	2	2
R_3 , мОм	269	276	288	297	308	319	326	332	338
ΔR_3 , MOM	2	2	2	2	2	2	2	2	2

Таблица 1: Все необходимые данные

Графики зависимостей $R(B)^2$ представлены на рис. 2. Это действительно прямые, причем для пластины нелинейные эффекты не проявляются. Из них находим подвижности, пользуясь (4):

$$b = \sqrt{\frac{k}{R_0}},\tag{12}$$

где k — коэффициент наклона. Погрешности определяются выражением

$$\Delta b = \frac{b}{2} \sqrt{\left(\frac{\Delta k}{k}\right)^2 + \left(\frac{\Delta R_0}{R_0}\right)^2}.$$
 (13)

В итоге получим:

$$k = (7, 5 \pm 0, 1) \text{ OmT} \pi^2;$$
 (14)

$$b = (5, 3 \pm 0, 3) \text{ 1/T\pi}.$$
 (15)

Это значение близко к табличному $(7.8 \ 1/\mathrm{Tr})$.

Рис. 3: График зависимости $R(B^2)$

Теперь из (5) определим удельное сопротивление, предварительно записав параметры диска:

$$h = 1,8 \text{ mm};$$
 (16)

$$d = 3,0 \text{ mm};$$
 (17)

$$D = 18,0 \text{ mm};$$
 (18)

$$\rho = \frac{2\pi h R_0}{\ln \frac{D}{d}} = (1, 7 \pm 0, 1) \cdot 10^{-4} \text{ Om} \cdot \text{m}$$
 (19)

$$\Delta \rho = \frac{\Delta R_0}{R_0} \rho. \tag{20}$$

4. Вывод

Цели работы были достигнуты, все величины были определены, хотя они и не очень хорошо сходятся ${\bf c}$ табличными.