Understanding PyTorch Model Prediction Visualization

A Beginner's Guide to the (dataset_prediction) Function

What Does This Function Do?

The [dataset_prediction] function takes a trained neural network model and shows you:

- Sample images from your test dataset
- What the model predicted for each image
- **The correct answer** (ground truth)
- Visual feedback: Green titles for correct predictions, red for wrong ones

Think of it as a "report card" that shows how well your model is performing on real examples!

Key Concepts for Beginners

What is a DataLoader?

python

test_data: torch.utils.data.DataLoader

- A DataLoader is like a **smart container** that feeds data to your model in batches
- Instead of loading all images at once (which could crash your computer), it loads small groups
- You can't randomly pick from it like a list you have to go through it step by step

What is Model Evaluation Mode?

python

model.eval()

- Tells your model: "We're testing now, not training!"
- Turns off features like dropout that are only used during training
- Essential for getting accurate predictions

What is Inference Mode?

python

with torch.inference_mode():

- Tells PyTorch: "We don't need to calculate gradients"
- Makes predictions faster and uses less memory
- Like telling your calculator it doesn't need to show its work

Step-by-Step Breakdown

Step 1: Setup and Preparation

```
python
model.to(device) # Move model to GPU/CPU
model.eval() # Switch to evaluation mode
```

Why this matters:

- Ensures model is on the same device as your data
- Puts model in the right "mindset" for making predictions

Step 2: Collect Images and Make Predictions

```
python
for batch_images, batch_labels in test_data:
  for i in range(batch_images.size(0)):
     # Process each image individually
```

The Smart Way:

- Go through the DataLoader batch by batch
- Extract individual images from each batch
- Make predictions one by one
- Stop when we have enough samples

Step 3: Make Predictions

```
python
image_input = image.unsqueeze(0).to(device) # Add batch dimension
logits = model(image_input)
                            # Raw model output
preds = torch.softmax(logits, dim=1) # Convert to probabilities
pred_label = torch.argmax(preds, dim=1) # Pick highest probability
```

What's happening here:

unsqueeze(0): Adds a "batch dimension" (models expect batches, even of size 1)

- (softmax): Converts raw numbers to probabilities that sum to 1
- (argmax): Finds the class with highest probability

Step 4: Smart Grid Layout

```
python

if images_num <= 4:
    nrows, ncols = 2, 2
elif images_num <= 9:
    nrows, ncols = 3, 3
# ... and so on</pre>
```

Why not just divide by 2?

- Creates better-looking, more balanced layouts
- Handles different numbers of images gracefully
- Prevents awkward empty spaces

O Common Mistakes (What NOT to Do)

X Wrong: Sampling from DataLoader

```
python
# This will crash!
for label, image in random.sample(list(test_data), k=images_num):
```

Problem: DataLoaders aren't lists - you can't randomly sample from them directly.

X Wrong: Overwriting Predictions

```
python

for image in images:
# ... prediction code ...
label = torch.argmax(preds, dim=1) # Overwrites previous results!
```

Problem: Only keeps the last prediction, loses all others.

X Wrong: Forgetting Batch Dimension

```
python
logits = model(image.to(device)) # Missing batch dimension!
```

Problem: Models expect batches, even for single images.

Best Practices

1. Always Use Proper Evaluation Setup

```
model.eval()
with torch.inference_mode():
# Your prediction code here
```

2. Handle Different Image Formats

```
python

if image.shape[0] == 1: # Grayscale
  plt.imshow(image.squeeze(0), cmap='gray')
elif image.shape[0] == 3: # RGB
  plt.imshow(image.permute(1, 2, 0)) # CHW → HWC
```

3. Provide Clear Visual Feedback

```
python

if pred_label_name == true_label_name:
    plt.title(f'Pred: {pred_label_name}\nTrue: {true_label_name}', c='g') # Green
else:
    plt.title(f'Pred: {pred_label_name}\nTrue: {true_label_name}', c='r') # Red
```

Visualization Tips

Color Coding

- **Green titles** = Correct predictions
- **Red titles** = Wrong predictions X
- Makes it easy to spot patterns at a glance

Grid Layout

- Use square grids when possible (3x3, 4x4)
- For odd numbers, use rectangular layouts
- Always call (plt.tight_layout()) for better spacing

Image Handling

- **Grayscale**: Use cmap='gray'
- RGB: Convert from CHW to HWC format
- Always turn off axes with (plt.axis('off'))

When to Use Each Version

Version 1: Memory Efficient

python

dataset_prediction(model, test_data, classes, 16, device)

Best for:

- Large datasets
- Limited memory
- Quick testing

Limitation: Not truly random (takes first N samples)

Version 2: True Random Sampling

python

dataset_prediction_v2(model, test_data, classes, 16, device)

Best for:

- Smaller datasets
- When you need truly random samples
- More thorough evaluation

Limitation: Uses more memory

Pro Tips for Beginners

- 1. **Start Small**: Try with (images_num=4) first, then increase
- 2. Check Your Classes: Make sure your (classes) list matches your model's output
- 3. **Device Consistency**: Always ensure model and data are on the same device
- 4. Save Your Results: Use (plt.savefig('predictions.png')) to save the visualization
- 5. Batch Size Matters: If your DataLoader has batch_size=1, the function works more predictably

Troubleshooting Common Errors

"Sample larger than population"

Problem: Requesting more images than available in dataset Solution: Check your dataset size first, or use the v2 function which handles this automatically

"Expected 4D tensor, got 3D"

Problem: Forgot to add batch dimension **Solution:** Always use [image.unsqueeze(0)] before feeding to model

"Tensor on different devices"

Problem: Model and data on different devices (CPU vs GPU) **Solution:** Use (.to(device)) consistently

6 Summary

This function is a powerful tool for:

- **Debugging** your model's performance
- **Understanding** what your model gets right/wrong
- **Visualizing** predictions in an intuitive way
- **Building confidence** in your model's abilities

Remember: The goal isn't just to get high accuracy numbers, but to understand HOW and WHY your model makes the decisions it does!