100A

Xiaowu Da

\_ . .

Population

C=:=

N A multimer

## STATS 100A: BASICS & EXAMPLES

#### Xiaowu Dai

Department of Statistics and Data Science University of California, Los Angeles



Some pictures are taken from the internet. Credits belong to original authors.





# Sample space

100A

Xiaowu Da

Basics

Populatio

Coin

Markov

 $\textbf{Experiment} \rightarrow \textbf{outcome} \rightarrow \textbf{number}$ 

Example 1: Roll a die



**Sample space**  $\Omega$ : The set of all the outcomes (or sample points, elements).

Randomly sample an outcome from the sample space.





## **Event**

100A

Xiaowu Da

Basics

opulation

regio

Reason

 $\textbf{Experiment} \rightarrow \textbf{outcome} \rightarrow \textbf{number}$ 

**Example 1**: Roll a die



Sample space  $\Omega$ : The set of all the outcomes.

Event A:

- (1) A **statement** about the outcome, e.g., bigger than 4.
- (2) A **subset** of sample space, e.g.,  $\{5,6\}$ .





# Counting equally likely possibilities

100A

Xiaowu Da

Basics

. Opulatio

Region

Markov

Reasonin

 $\textbf{Experiment} \rightarrow \textbf{outcome} \rightarrow \textbf{number}$ 

**Example 1**: Roll a die



Assume the die is fair so that all the outcomes are **equally likely**.

Probability: defined on event:

$$P(A) = \frac{|A|}{|\Omega|} = \frac{2}{6} = \frac{1}{3}.$$

|A| counts the size of A, i.e., the number of elements in A.





## Random variable

100A

#### Basics

**Experiment**  $\rightarrow$  **outcome**  $\rightarrow$  **number** 

**Example 1**: Roll a die



**Random variable**: Let X be the number:

$$P(X > 4) = \frac{1}{3}.$$

An event is a **math statement** about the random variable. We can either use events or use random variables. In Parts 2 and 3, we will focus on random variables.





# Conditional probability

100A

Xiaowu Dai

#### Basics

Populatio

Regio

Markov

**Experiment**  $\rightarrow$  **outcome**  $\rightarrow$  **number Example 1**: Roll a die



**Conditional probability**: Let B be the event that the number is 6. Given that A happens, what is the probability of B?

$$P(B|A) = \frac{1}{2}.$$

**As if** we randomly sample a number from A. **As if** A is the sample space.





# Conditional probability

100A

Xiaowu Da

Basics

Population

Region

Coin

Markov

Reasoni

## $\textbf{Experiment} \rightarrow \textbf{outcome} \rightarrow \textbf{number}$

**Example 1**: Roll a die



#### Random variable

$$P(X = 6|X > 4) = \frac{1}{2}.$$





## Relations

100A

#### **Basics**

#### Example 1: Roll a die



#### Complement

Statement: Not A

Subset:  $A^c = \{1, 2, 3, 4\}.$ 





## Relations

100A

Xiaowu Da

Basics

opulatio<sup>o</sup>

Region

Markov

**Example 1**: Roll a die



Venn diagram

Union

Statement: A or B.

Subset:  $A \cup B$ .





## Relations

100A

Xiaowu Dai

Basics

<sup>o</sup>opulatio

Region

Markov

### **Example 1**: Roll a die

$$A = \{1,2,3,4\}$$
  
 $B = \{3,4,5,6\}$ 

$$A \cap B = \{3,4\}$$





#### Intersection

Statement: A and B.

Subset:  $A \cap B$ .



# Sample space is population

100A

Xiaowu Dai

Basics

Population

C =:=

Markov

Dooconi

 $\textbf{Experiment} \rightarrow \textbf{outcome} \rightarrow \textbf{number}$ 

**Example 2**: Sample a random person from a population of 100 people, 50 males and 50 females. 30 males are taller than 6 ft, 10 females are taller than 6 ft.

The sample space  $\Omega$  is the population.

|                   | $_{\mathrm{male}}$ | female |
|-------------------|--------------------|--------|
| taller than 6 ft  |                    | 10     |
|                   | 30                 |        |
|                   |                    |        |
| shorter than 6 ft |                    |        |
|                   | 50                 | 50     |





## Events as sub-populations

100A

Xiaowu Da

Basics Population

Region

Markov

Reasoni

#### $\textbf{Experiment} \rightarrow \textbf{outcome} \rightarrow \textbf{number}$

**Example 2**: Let A be the event that the person is male. Let B be the event that the person is taller than 6 feet (or simply the person is tall). A is the sub-population of males, and B is the sup-population of tall people.







# Probability is population proportion

100A

Xiaowu Da

Basics

Population

Region

Markov

Reasonin

**Experiment**  $\rightarrow$  **outcome**  $\rightarrow$  **number Example 2**: A male, B tall.

|                   | male | female |
|-------------------|------|--------|
| taller than 6 ft  |      | 10     |
|                   | 30   |        |
| shorter than 6 ft |      |        |
|                   | 50   | 50     |

$$P(A) = \frac{|A|}{|\Omega|} = \frac{50}{100} = 50\%.$$

$$P(B) = \frac{|B|}{|\Omega|} = \frac{30 + 10}{100} = 40\%.$$

Probability = population proportion.





# Conditional probability is proportion of sub-population

100A

Xiaowu Dai

Population
Region
Coin
Markov

Experiment  $\rightarrow$  outcome  $\rightarrow$  number Example 2: A male, B tall.



$$P(A|B) = \frac{|A \cap B|}{|B|} = \frac{30}{40} = 75\%.$$

Among tall people, what is the proportion of males?

$$P(B|A) = \frac{|A \cap B|}{|A|} = \frac{30}{50} = 60\%.$$

Statistics

Among males, what is the proportion of tall people? Conditional probability = proportion within sub-population.



### Random variable as a function of outcome

100A

Xiaowu Da

Dasics

Population Region

Markov

iviarkov

Link between event and random variable.

**Example 2**: A male, B tall.

Let  $\omega\in\Omega$  be a person. Let  $X(\omega)$  be the gender of  $\omega$ , so that  $X(\omega)=1$  if  $\omega$  is male, and  $X(\omega)=0$  if  $\omega$  is female. Let  $Y(\omega)$  be the height of  $\omega$ . Then

$$A = \{\omega : X(\omega) = 1\}, B = \{\omega : Y(\omega) > 6\}.$$

$$P(A) = P(\{\omega : X(\omega) = 1\}) = P(X = 1).$$

$$P(B) = P(\{\omega : Y(\omega) > 6\}) = P(Y > 6).$$

$$P(B|A) = P(Y > 6|X = 1), \ P(A|B) = P(X = 1|Y > 6).$$





# Axiom 0

100A

Xiaowu Dai

Dasics

Population

Coin

Markov

asics

## Equally likely scenario

A real population of people, under purely random sampling or imagined population of equally likely possibilities



$$P(A) = \frac{|A|}{|\Omega|}.$$

Axiom 0.

Can always translate a problem into equally likely setting.





# Conditional probability

100A

Xiaowu Da

Population

Region Coin

Markov

#### **Equally likely scenario**



$$P(A|B) = \frac{|A \cap B|}{|B|} = \frac{|A \cap B|/|\Omega|}{|B|/|\Omega|} = \frac{P(A \cap B)}{P(B)}.$$

**Physical:** sample from B. B defines condition.

**Mental:** know that B happened, as if sample from B.

Axiom 4 or definition of conditional probability.

