MDI0001 MATEMÁTICA DISCRETA

UDESC - Centro de Ciências Tecnológicas Bacharelado em Ciência da Computação

Exercícios Reticulados e Álgebra Booleana

1. Tendo-se $\langle P, R \rangle$ um reticulado e $a, b, c \in P$, prove:

a)
$$a \downarrow (b \downarrow c) = (a \downarrow b) \downarrow c$$

b)
$$a \uparrow (b \uparrow c) = (a \uparrow b) \uparrow c$$

c)
$$a \downarrow b = b \downarrow a$$

d)
$$a \uparrow b = b \uparrow a$$

e)
$$a \downarrow (a \uparrow b) = a$$

f)
$$a \uparrow (a \downarrow b) = a$$

g)
$$a \downarrow a = a$$

h)
$$a \uparrow a = a$$

2. Tendo-se $\langle P, \downarrow, \uparrow, -, 0, 1 \rangle$ uma álgebra booleana e $a, b \in P$, prove:

a)
$$a \downarrow 1 = a$$

b)
$$a \uparrow 0 = a$$

c)
$$a \downarrow 0 = 0$$

d)
$$a \uparrow 1 = 1$$

e)
$$\overline{\overline{a}} = a$$

f)
$$\overline{a \downarrow b} = \overline{a} \uparrow \overline{b}$$

g)
$$\overline{a \uparrow b} = \overline{a} \downarrow \overline{b}$$

3. Suponha $a,\ b$ e c elementos distintos de um conjunto A em uma relação de ordem R. Indique por que a configuração ilustrada na figura a seguir não é possível em um diagrama de Hasse.

4. Considere o conjunto $A=\{a,b,c\}$ e a relação de ordem $\langle 2^A,R\rangle$ ilustrada a seguir. Então:

a) Verifique a existência de elemento inicial e terminal. Justifique sua resposta.

b) Para cada par de conjuntos que segue, determine o ínfimo e o supremo.

(i)
$$\{a\}$$
 e $\{b\}$

(ii)
$$\{a, b\}$$
 e $\{a, c\}$

(iii)
$$\emptyset$$
 e $\{a, b, c\}$

5. Prove que o reticulado a seguir não é distributivo.

- 6. Mostre que, para quaisquer elementos $a,b,c\in P$ de uma álgebra booleana $\langle P, \uparrow, \uparrow, \overline{}, 0, 1\rangle$, sendo $\langle P,R\rangle$ a correspondente relação de ordem:
 - a) se $a \downarrow b = a \downarrow c$ e $a \uparrow b = a \uparrow c$ então b = c
 - b) $(a \downarrow b) = a \Leftrightarrow aRb$
 - c) $(a \uparrow b) = b \Leftrightarrow aRb$
 - d) $aRb \Rightarrow (a \uparrow b) \downarrow (a \downarrow b) = a$