4 TD4

4.1 Types de risque, questions de cours.

Soit $\mathcal{P} = \{P_{\theta}, \ \theta \in \Theta\}$ un modèle statistique, ℓ une fonction de perte donnée sur $\Theta \times \Theta$ et Π une loi a priori sur Θ .

- 1. Pour T(X) un estimateur quelconque, rappeler les définitions de
 - (a) fonction de risque $R(\theta, T)$ de T
 - (b) risque de Bayes $R_B(\Pi, T)$ de T pour la loi a priori Π
- 2. Rappeler les définitions d'estimateur admissible, de Bayes pour Π , et minimax.

4.2 Estimateurs de Bayes

Soit X une variable aléatoire de loi $\mathcal{N}(\theta, 1)$ sachant θ , et soit $\Pi = \mathcal{N}(0, \sigma^2)$ la loi a priori sur θ , pour $\sigma^2 > 0$ fixé. Soit

$$L(\theta, T) = (\theta - T)^2$$

la fonction de perte quadratique.

- 1. Donner l'estimateur de Bayes de θ pour la fonction de perte L.
- 2. On suppose $\sigma^2 \le 1$ et on considère la fonction de perte pondérée

$$L_w(\theta, T) = \exp\left\{\frac{3\theta^2}{4}\right\} (\theta - T)^2.$$

Déterminer l'estimateur de Bayes associé. Calculer son risque de Bayes.

4.3 Minimaxité

- 1. Démontrer que si un estimateur admissible a un risque constant, il est minimax.
- 2. Soit T un estimateur de Bayes pour Π et soit $R_B(\Pi, T)$ son risque de Bayes.
 - (a) On suppose $R(\theta, T) \leq R_B(\Pi, T)$ pour tout $\theta \in \Theta$. Montrer que T est minimax.
 - (b) En particulier, retrouver qu'un estimateur de Bayes de risque constant est minimax.

4.4 Quantiles

Soit X une variable aléatoire réelle de loi P_{θ} sachant θ , où θ est un réel de loi a priori Π . On suppose que P_{θ} et Π sont à densité par rapport à la mesure de Lebesgue soit $dP_{\theta} = p_{\theta}(x)dx$ et $d\Pi(\theta) = \pi(\theta)d\theta$. Soit la fonction de perte, pour $k_1 > 0, k_2 > 0$,

$$\ell(\theta, T) = \begin{cases} k_2(\theta - T), & \text{si } \theta > T, \\ k_1(T - \theta), & \text{si } \theta \le T. \end{cases}$$

Montrer que l'estimateur de Bayes pour la fonction de perte ℓ est un quantile de la loi a posteriori $\mathcal{L}(\theta \mid X)$, quantile que l'on exprimera en fonction de k_1 et k_2 .

4.5 Affinité entre mesures

Soient P, Q deux mesures de probabilité sur un espace \mathcal{X} muni d'une tribu \mathcal{B} , de densités respectives p, q par rapport à une mesure σ -finie λ . L'affinité entre P et Q est définie par

$$\mathcal{A}(P,Q) = \int (p \wedge q) d\lambda,$$

où $(p \wedge q)(x) := \min(p(x), q(x))$, pour tout $x \text{ de } \mathcal{X}$.

1. Montrer que

$$\mathcal{A}(P,Q) = \inf\{P\varphi + Q(1-\varphi), \ 0 \le \varphi \le 1, \text{ mesurable}\}.$$

Pour cette raison, \mathcal{A} est parfois appelée affinité de test. En déduire en particulier que la définition de \mathcal{A} ne dépend pas du choix de la mesure dominante λ .

2. Montrer que

$$\mathcal{A}(P,Q) = 1 - \frac{1}{2} \int |p - q| d\lambda.$$

4.6 Le phénomène de Hodges

On considère, pour X_1, \ldots, X_n i.i.d. de loi $\mathcal{N}(\theta, 1)$ avec $\theta \in \mathbb{R}$, l'estimateur $T_n = \overline{X}$ ainsi que l'estimateur modifié

$$S_n = \begin{cases} T_n & \text{si } |T_n| \ge n^{-1/4} \\ 0 & \text{si } |T_n| < n^{-1/4} \end{cases}.$$

- 1. Calculer le risque quadratique $R(\theta, T_n) = E_{\theta}((T_n \theta)^2)$ de T_n pour tout réel θ .
- 2. Montrer que pour tout réel θ ,

$$E_{\theta}[(S_n - \theta)^2] \ge \theta^2 \mathbb{P}\left[\left|\mathcal{N}\left(\theta, \frac{1}{n}\right)\right| \le \frac{1}{n^{1/4}}\right].$$

3. En déduire qu'il existe une constante c > 0 telle que

$$\sup_{\theta \in \left[-\frac{1}{n^{1/4}}, \frac{1}{n^{1/4}} \right]} n E_{\theta}[(S_n - \theta)^2] \ge c\sqrt{n}.$$

4. Comparer le risque maximal de T_n à celui de S_n , ce dernier est-il "uniformément bon" ?