Поле

Определение 1. Множество F называется *полем*, если на нём заданы операции *сложения* и *умно*жения (отображения $+: F \times F \to F$ и $:: F \times F \to F$ соответственно), удовлетворяющие следующим условиям (аксиомам поля):

- (A1) $\forall a, b \in F$: a+b=b+a (коммутативность сложения).
- (A2) $\forall a, b, c \in F$: (a+b)+c=a+(b+c) (ассоциативность сложения).
- (A3) В F существует такой элемент 0, что $\forall a \in F : a + 0 = a$ (существование нуля).
- (A4) $\forall a \in F \quad \exists b \in F : \quad a+b=0 \ (cyweembobahue противоположного элемента).$ Элемент b называется *противоположным* к a и обозначается -a.
- $(M1) \ \forall a,b \in F : \ a \cdot b = b \cdot a \ (коммутативность умножения).$
- $(M2) \ \forall a,b,c \in F : \ (a \cdot b) \cdot c = a \cdot (b \cdot c) \ (accould mushocmb y множения).$
- (M3) В $F \setminus \{0\}$ существует такой элемент 1, что $\forall a \in F : a \cdot 1 = a$ (существование единицы).
- $\exists b \in F : a \cdot b = 1$ (существование обратного элемента). $(M4) \forall a \in F, a \neq 0,$ Элемент b называется обратным к a и обозначается 1/a или a^{-1}).
- (AM) $\forall a, b, c \in F$: $a \cdot (b+c) = a \cdot b + a \cdot c$ (дистрибутивность умножения относительно сложения).

Определение 2. Для любых элементов поля $a, b \in F$ уравнение a + x = b имеет единственное решение x = b + (-a), которое обозначается b - a и называется разностью элементов b и a. Таким образом, в поле определена операция вычитания.

Определение 3. Для любых элементов поля $a,b \in F, \, a \neq 0, \, \text{уравнение} \, a \cdot x = b$ имеет единственное решение $x=b\cdot a^{-1}$, которое обозначается $\frac{b}{a}$ и называется $\mathit{частным}$ элементов b и a. Таким образом, в поле определена операция деления на ненулевые элементы.

Задача 1. Пусть F — поле, $a, b \in F$. Докажите, что

а)
$$-(a+b)=(-a)+(-b);$$
 б) если $a,b\neq 0$, то $(a\cdot b)^{-1}=a^{-1}\cdot b^{-1}.$

Задача 2. Пусть F — поле. Докажите, что

- а) для любого a из F выполнено равенство $a \cdot 0 = 0$;
- **б)** если для элементов a и b из F справедливо равенство $a \cdot b = 0$, то либо a = 0, либо b = 0.
- **в)*** Останется ли верным утверждение пункта б), если отказаться от аксиомы M4?

Задача 3. Пусть F — поле, $a \in F$. Докажите, что

а)
$$a \cdot (-1) = -a$$
; б) $(-a) \cdot (-a) = a \cdot a$; в) если $a \neq 0$, то $(-a)^{-1} = -a^{-1}$.

Задача 4. Пусть
$$F$$
 — поле, $a,b,c,d\in F$, причём $b,d\neq 0$. Докажите, что **a**) $\frac{a}{b}\cdot\frac{c}{d}=\frac{a\cdot c}{b\cdot d};$ **б**) $\frac{a}{b}+\frac{c}{d}=\frac{a\cdot d+b\cdot c}{b\cdot d}.$

Задача 5. Существует ли поле, состоящее из

- а) одного элемента; б) двух элементов; в) трёх элементов; г)* четырёх элементов?
- **Задача 6.** Пусть p произвольное простое число. Постройте поле, состоящее из **a)** $^{\circ}$ p элементов; **б**)* p^2 элементов.

Задача 7*. Существует ли поле, состоящее из шести элементов?

1 a	1 6	2 a	2 6	2 B	3 a	3 6	3 B	$\begin{vmatrix} 4 \\ a \end{vmatrix}$	4 6	5 a	5 6	5 B	5 Г	6 a	6 6	7

Листок №16 Страница 2

Линейно упорядоченное поле

Определение 4. Множество E называется линейно упорядоченным, если на нём задано отношение «меньше или равно» (то есть известно, для каких $a,b \in E$ выполнено неравенство $a \leq b$), причём выполнены следующие аксиомы порядка:

- (O1) $\forall a \in E : a \leq a \ (pednekcubhocmb).$
- (O2) Если $a, b \in E$, причём $a \leq b$ и $b \leq a$, то a = b (антисимметричность).
- (О3) Если $a, b, c \in E$, причём $a \leq b$ и $b \leq c$, то $a \leq c$ (транзитивность).
- $(O4) \ \forall a,b \in E : \$ либо $a \leq b$, либо $b \leq a$ (линейная упорядоченность).

Вместо $a \leqslant b$ пишут также $b \geqslant a$, а записи a < b и b > a означают, что $a \leqslant b$ и $a \neq b$.

Определение 5. Поле F называется yпоряdоченным nолем, если множество F линейно упорядочено, причём выполнены следующие аксиомы:

- (AO) Если $a, b, c \in F$ и $a \leq b$, то $a + c \leq b + c$.
- (MO) Если $a, b, c \in F$, $0 \le c$ и $a \le b$, то $a \cdot c \le b \cdot c$.

Задача 8. Пусть F — упорядоченное поле. Докажите, что

- а) если $a \leq b$ и $c \leq d$, то $a + c \leq b + d$;
- **б)** если $0 \leqslant a \leqslant b$ и $0 \leqslant c \leqslant d$, то $a \cdot c \leqslant b \cdot d$;
- в) если $a \leqslant b$ и $c \leqslant 0$, то $a \cdot c \geqslant b \cdot c$;
- $\mathbf{r}) \ \text{ если } 0 < a \leqslant b, \text{ то } \frac{1}{a} \geqslant \frac{1}{b};$
- д) 1 > 0.

Задача 9. Пусть F — упорядоченное поле, P — множество всех его *положительных* элементов, то есть $P = \{a \in F \mid a > 0\}$. Докажите, что тогда выполнены следующие свойства:

- (P1) $\forall a \in F$: либо $a \in P$, либо a = 0, либо $-a \in P$.
- (P2) Если $a, b \in P$, то $a + b \in P$ и $a \cdot b \in P$.

Задача 10°. Пусть F — поле, P \subset F — подмножество, удовлетворяющее условиям (P1) и (P2) из предыдущей задачи. Докажите, что поле F можно сделать упорядоченным таким образом, что P будет множеством положительных элементов, причём отношение порядка \leqslant однозначно определяется множеством P.

Задача 11. Докажите, что в любом упорядоченном поле бесконечно много элементов.

Задача 12°. Пусть F — упорядоченное поле. Рассмотрим множество рациональных функций от переменной x

$$F(x) = \left\{ \frac{P(x)}{Q(x)} \mid P(x), \, Q(x) - \text{многочлены с коэффициентами в поле } F, \quad Q(x) \neq 0 \right\}$$

с естественными операциями сложения и умножения.

- а)° Проверьте, что F(x) это поле.
- **б)** Докажите, что поле F(x) можно сделать упорядоченным.
- ${\bf B}$)* Докажите, что поле F(x) можно сделать упорядоченным как минимум двумя различными способами.

8 a	8 6	8 B	8 Г	8 Д	9	10	11	12 a	12 6	12 B