

第七讲 复杂共圆问题

练1. 连 EN, EM, EB, EC.

由对称性可知, $\angle NEM = \angle NDM = \angle NAM : E \cup N \cup M \cup A$ 四点共圆,

同时, EN = ND, EM = DM,

从而 $\angle EBN = \frac{1}{2} \angle ENA = \frac{1}{2} \angle EMA = \angle ECN$,

 $: E \setminus B \setminus C \setminus A$ 四点共圆.

练2. 设 $P \setminus Q \setminus R \setminus S$ 四点共所在的圆为 O_1, O_2, O_3 .

因为PQ、RS、XY恰为这三个圆两两的根轴,

故 PQ、RS、XY 共点, 记为 H.

由于两圆连心线垂直于公共弦,

所以在 $\triangle O_1O_2H$ 中, $O_1O_3 \perp HO_2$, $O_2O_3 \perp HO_1$,

从而 O_3 为 $\triangle O_1O_2H$ 的垂心.

又 $XY \perp O_1O_2$ 且过点 H,故 O_3 在 XY 上.

练3. 延长 EA 交 DF 于点 F' , 连结 F'H ,

则 $\angle F'EH = \angle ACB = \angle BDF'$, 故 $D \setminus H \setminus E \setminus F'$ 共圆.

 $\therefore \angle EF'H = \angle EDC = \angle ABH$,

 $:: A \setminus H \setminus B \setminus F'$ 四点共圆.

∴ $\angle BFA = \angle BF'A$, $\forall F \vdash F' \equiv f$.

从而D、H、E、F 四点共圆.

