Assignment 1

AI1110: Probability and Random Variables Indian Institute of Technology Hyderabad

M Srimannarayana CS22BTECH11038

10.13.3.36: Question. Two dice are thrown at the same time. Determine the probability distibution based on n,where n is the difference of the numbers on the two dice

Answer:

Let *X* be the random variables representing the outcome for a die.

Assuming the die to be fair, the probability mass function (pmf) is expressed as

$$p_X(k) = \begin{cases} \frac{1}{6} & 1 \le k \le 6\\ 0 & \text{otherwise} \end{cases}$$
 (1)

When 2 dice are rolled, each die will have 6 outcomes and the events are independent

Let the probability of event that difference between the numbers on the dice is n be $p_E(n)$.

$$n \in \{0, 1, 2, 3, 4, 5\}$$

Let us assume X_1 be the outcome of first die and X_2 be the outcome of second die

case (1) for
$$1 \le n \le 5$$

$$X_1 - X_2 = n \tag{2}$$

$$(or) X_2 - X_1 = n$$
 (3)

Let E_1 be the event satisfing (2) and E_2 be the event satisfing (3)

$$p_E(n) = Pr(E_1 + E_2)$$

events E_1 and E_2 are independent

$$p_F(n) = Pr(E_1) + Pr(E_2)$$

Consider E_1

$$Pr(E_1) = Pr(X_1 - X_2 = n) = Pr(X_1 = X_2 + n)$$
$$= \sum_{i} Pr(X_1 = k + n | X_2 = k) p_{X_2}(k)$$
 (4)

after unconditioning. X_1 and X_2 are independent,

$$Pr(X_1 = k + n | X_2 = k) = Pr(X_1 = k + n)$$

= $p_{X_1}(k + n)$ (5)

From (4) and (5),

$$Pr(E_1) = \sum_{k} p_{X_1}(k+n)p_{X_2}(k) = p_{X_1}(n) * p_{X_2}(n)$$
(6)

where * denotes the convolution operation. Substituting from (1) in (5)

$$Pr(E_1) = \frac{1}{6} \sum_{k=1}^{6} p_{X_1}(k+n) = \frac{1}{6} \sum_{1+n}^{6+n} p_{X_1}(k)$$
 (7)

Substituting from (1) in (7)

$$Pr(E_1) = \frac{1}{6} \sum_{1+n}^{6+n} p_{X_1}(k)$$

$$= \frac{1}{6} (\sum_{1+n}^{6} p_{X_1}(k) + \sum_{7}^{1+6} p_{X_1}(k))$$

$$= \frac{1}{6} (6 - n\frac{1}{6} + 0)$$

$$= \frac{6 - n}{36}$$

(8)

Because of symmetry between (2) and (3)

$$Pr(E_2) = P(E_1) = \frac{6-n}{36}$$

Therefore, the probability of $p_E(n)$ is

$$p_E(n) = Pr(E_1) + Pr(E_2)$$

$$= \frac{6 - n}{36} + \frac{6 - n}{36}$$

$$= \frac{12 - 2n}{36}$$

case (3) for n=0

$$X_1 - X_2 = 0 X_1 = X_2$$
 (9)

$$p_E(0) = Pr(X_1 - X_2 = 0) = Pr(X_1 = X_2)$$
$$= \sum_{k} Pr(X_1 = k | X_2 = k) p_{X_2}(k)$$
 (10)

after unconditioning. X_1 and X_2 are independent,

$$Pr(X_1 = k | X_2 = k) = Pr(X_1 = k)$$

= $p_{X_1}(k)$ (11)

From (10) and (11),

$$p_E(0) = \sum_{k} p_{X_1}(k) p_{X_2}(k) = p_{X_1}(n) * p_{X_2}(n)$$
(12)

where * denotes the convolution operation. Substituting from (1) in (5)

$$p_E(0) = \frac{1}{6} \sum_{k=1}^{6} p_{X_1}(k)$$
 (13)

Substituting from (1) in (13)

$$p_E(0) = \frac{1}{6} \sum_{1}^{6} p_{X_1}(k)$$
$$= \frac{1}{6} (\sum_{1}^{6} p_{X_1}(k))$$
$$= \frac{1}{6} (6\frac{1}{6})$$
$$= \frac{6}{36}$$

$$p_{E}(n) = \begin{cases} 0 & n < 0\\ \frac{6}{36} & n = 0\\ \frac{12 - 2n}{36} & 1 \le n \le 5\\ 0 & n > 5 \end{cases}$$
 (14)

Difference	Probability
0	6/36
1	10/36
2	8/36
3	6/36
4	4/36
5	2/36