

香港中文大學 The Chinese University of Hong Kong

CENG2400 Embedded System Design

Lecture 07: Analog Interfacing

Ming-Chang YANG

Thanks to Prof. Q. Xu and Drs. K. H. Wong, Philip Leong, Y.S. Moon, O. Mencer, N. Dulay, P. Cheung for some of the slides used in this course!

Recall: Tiva™ TM4C123GH6PM (MCU) 🞉

Outline

Basics

- Quantization
- Sampling

Digital → Analog

Digital-to-Analog Conversion (DAC)

Analog → Digital

- Analog Comparator
- Analog-to-Digital Conversion (ADC)
- Preview: Lab06

Why Analog $\leftarrow \rightarrow$ Digital?

Digital → Analog:

 To drive headphones or speakers, the MCU must convert the digital values representing the sound signal into analog voltage signals.

Analog → Digital:

- Embedded systems often need to measure values of physical parameters (e.g., temperature, light intensity, etc.)
- These parameters are usually continuous (analog) and not in a discrete (digital) form which computers can process.

Concepts

- Interfacing with analog involves two major steps:
 - ① Quantization: There are a limited number of voltages to represent an analog value.
 - ② Sampling: The MCU operates on an input/output only at a limited rate.
- Example: How to represent a sine waveform digitally?
 - Sine wave has analog value varying continuously over time.

Quantization (1/2)

- Quantization: Process of selecting a discrete digital value to represent an analog value.
 - Each quantized output value represents a range of possible analog input values.
 - The number of discrete values available for use defines the resolution of the quantization.

Quantization (2/2)

An example of two-bit quantization:

Input	Quantized Value		
Voltage	Decimal	Binary	
V _{+ref} = V	3	11	Out of range
0.75 V	3	П	
0.75 V	2	10	
0.5 V	I,	01	
	0	00	
$V_{-ref} = 0 V$	0	00	Out of range

Transfer Function

$$n = round\left(\frac{V_{in} - V_{-ref}}{V_{+ref} - V_{-ref}} \times 2^{B}\right)$$

- V_{in}: the input (analog) voltage
- B: the number of bits used to hold the output value
- *n*: the output (digital) value

- V_{+ref} and V_{-ref} define the boundaries of the conversion.
- A transfer function defines the quantization mathematically.

Class Exercise 7.1

 Suppose the period is 1 second and the sample rate is at 1.5 Hz. What would the waveform look like with two-level and eight-level quantization, respectively?

Sampling

- Sampling: Process of converting a continuous-time signal to a series of discrete-time samples.
 - Any information between the samples is lost.
 - Low frequency (slow sampling) results in a poor approximation.
 - Each sample may be an analog value (one of an infinite number of possible values) until it is quantized.

Class Exercise 7.2

 Suppose the period is 1 second and consider the eight-level quantization. What would the waveform look like if the sample rate is at 5 Hz?

How often to sample?

 Two different cosine signals can be drawn through the same samples:

$$\cos(0.4\pi n) = \cos(2\pi n + 0.4\pi n) = \cos(2.4\pi n)$$

Where does distortion come from?

 Let's consider the frequency spectrum of a signal:

Sampling too slowly causes aliasing:

 Sampling at least twice the highest frequency component eliminates aliasing (Nyquist Criterion).

Outline

- Basics
 - Quantization
 - Sampling
- Digital → Analog
 - Digital-to-Analog Conversion (DAC)
- Analog → Digital
 - Analog Comparator
 - Analog-to-Digital Conversion (ADC)
- Preview: Lab06

Digital-to-Analog Conversion (DAC)

- A digital-to-analog converter (DAC) generates an analog output signal based on the digital input value.
 - Note: The output signal may be a voltage or a current.

Transfer Function

$$V_{out} = V_{ref} \times \frac{n}{2^B}$$
 or $V_{ref} \times \frac{n+1}{2^B}$

- *n*: the input (digital) code
- V_{ref} : the reference (analog) voltage
- *V_{out}*: the output (analog) voltage
- B: the number of bits of resolution

Class Exercise 7.3

 Determine the input code of a 12-bit DAC needed to generate an output voltage of 3.16 V if the reference voltage is 3.3 V.

DAC Architectures

- Two common DAC architectures:
 - Resistor Ladder: uses 2^N resistors of equal value connected in series.

R-2R Resistor Ladder:
uses ~N resistors of one
value (R) and ~N resistors
of twice that value (2R).

Ex: 4-bit R-2R Resistor Ladder

$$R_T = \frac{1}{(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + etc...)}$$

https://www.youtube.com/watch?v=bXUfDLF4MVc

Outline

- Basics
 - Quantization
 - Sampling
- Digital → Analog
 - Digital-to-Analog Conversion (DAC)
- Analog → Digital
 - Analog Comparator
 - Analog-to-Digital Conversion (ADC)
- Preview: Lab06

Analog Comparator

- An analog comparator is a circuit that compares two analog voltages and indicates which is greater.
 - This can be used to determine if a voltage is above or below a given level.

Analog Comparator on Tiva

- Tiva provides two independent integrated analog comparators.
 - Compare external to external pin inputs;
 - Compare external pin input to internal prog. voltage reference;
 - Compare a test voltage against the following:
 - An individual external reference voltage;
 - A shared single external reference voltage;
 - A shared internal reference voltage.

Outline

- Basics
 - Quantization
 - Sampling
- Digital → Analog
 - Digital-to-Analog Conversion (DAC)
- Analog → Digital
 - Analog Comparator
 - Analog-to-Digital Conversion (ADC)
- Preview: Lab06

Analog-to-Digital Conversion (ADC)

- An analog-to-digital converter (ADC) quantizes an analog input voltage to create a digital output code.
 - It is similar to an analog comparator but provides more quantization levels (i.e., higher resolution).

A/D Converter

Transfer Function

$$n = round \left(\frac{V_{in} - V_{-ref}}{V_{+ref} - V_{-ref}} \times 2^{B} \right)$$

- V_{in}: the input (analog) voltage
- V_{ref} : the reference (analog) voltage
- *B*: the number of bits of resolution
- n: the output (digital) value

Class Exercise 7.4

- Consider a 16-bit ADC with an unknown reference voltage operating in single-ended mode (with common ground).
- What is the reference voltage if sampling the 1.0 V band gap reference results in a code of 16,384?

ADC Architectures (1/2)

- Flash Architecture: operates 2^B analog comparators in parallel, each with a different reference voltage.
 - This is called a flash arch. because it is extremely fast.
- Successive Approximation Architecture: uses a single comparator to make a series of comparisons, changing its reference voltage for each.

ADC Architectures (2/2)

- Successive Approximation Architecture (Cont'd)
 - It performs a binary search to quantize the input.

Inputs

Differential

- Use two channels, and compute difference between them
- Very good noise immunity

Multiplexing

- Typically share a single ADC among multiple inputs
- Need to select an input, allow time to settle before sampling

Signal Conditioning

- Amplify and filter input signal
- Protect against out-of-range inputs with clamping diodes

Triggering

- The trigger is a signal that tells the ADC to start sampling and converting an input.
- An ADC will typically include two types of triggers:
 - Software Trigger: requires the software to write a value to a specific ADC control register to start the conversion.
 - Hardware Trigger: requires a hardware signal to be asserted by a circuit or peripheral (e.g., timer).
- The ADC performs sampling and conversion and then indicates that the conversion has completed.
 - This is done by setting a flag in an ADC status register, and possibly also signaling an interrupt request.
 - The result is available in digital in an ADC result register.

ADC Module on Tiva

Outline

Basics

- Quantization
- Sampling
- Digital → Analog
 - Digital-to-Analog Conversion (DAC)
- Analog → Digital
 - Analog Comparator
 - Analog-to-Digital Conversion (ADC)
- Preview: Lab06

Preview: Lab06 (1/2)

- Each ADC module has an onchip internal temperature sensor.
 - To notify the system with the internal temperature;
 - To provide temperature measurements for calibration.

Preview: Lab06 (2/2)

 The temperature reading from the temperature sensor can be given as a function of the ADC value.


```
TEMP = 147.5 - ((75 * (VREFP - VREFN) × ADC<sub>CODE</sub>) / 4096)
```

- We will practice two types of triggers:
 - Software Trigger: requires the software to write a value to a specific ADC control register to start the conversion.
 - Hardware Trigger: requires a hardware signal to be asserted by a circuit or peripheral (e.g., timer).

ADC in TivaWare[™] Library

4.2.2.27 ADCSequenceConfigure

Configures the trigger source and priority of a sample sequence.

Prototype:

Parameters:

ui32Base is the base address of the ADC module.

ui32SequenceNum is the sample sequence number.

ui32Trigger is the trigger source that initiates the sample sequence; must be one of the ADC_TRIGGER_* values.

ui32Priority is the relative priority of the sample sequence with respect to the other sample sequences.

Description:

This function configures the initiation criteria for a sample sequence. Valid sample sequencers range from zero to three; sequencer zero captures up to eight samples, sequencers one and two capture up to four samples, and sequencer three captures a single sample. The trigger condition and priority (with respect to other sample sequencer execution) are set.

The *ui32Trigger* parameter can take on the following values:

- ADC_TRIGGER_PROCESSOR A trigger generated by the processor, via the ADCProcessorTrigger() function.
- ADC_TRIGGER_TIMER A trigger generated by a timer; configured with TimerControlTrigger().

Summary

Basics

- Quantization
- Sampling

Digital → Analog

Digital-to-Analog Conversion (DAC)

Analog → Digital

- Analog Comparator
- Analog-to-Digital Conversion (ADC)
- Preview: Lab06