Big Data Assignment #3 Logistic Regression: Heart Attack Posibility

Logistic Regression

Logistic Regression atau Regresi logistik (kadang disebut model logistik atau model logit), dalam statistika digunakan untuk prediksi probabilitas kejadian suatu peristiwa dengan mencocokkan data pada fungsi logit kurva logistik. Metode ini merupakan model linier umum yang digunakan untuk regresi binomial. Seperti analisis regresi pada umumnya, metode ini menggunakan beberapa variabel prediktor, baik numerik maupun kategori.

00

Heart Attack Dataset

Intro

Dataset berisi sekumpulan data tentang kondisi seseorang dimana kondisi tersebut dapat berpengaruh terhadap timbulnya serangan jantung.

Info

Set data diambil untuk tujuan pembelajaran. Sumber data: https://archive.ics.uci.edu/ml/datasets/He art+Disease

Sumber Dataset:

https://www.kaggle.com/nareshbhat/healt h-care-data-set-on-heart-attackpossibility

Business Understanding

Ruang Lingkup Bisnis : Kesehatan

Dalam dunia kesehatan, serangan jantung dapat terjadi sewaktuwaktu dan pada siapapun. Terdapat beberapa parameter yang dapat mempengaruhi kemungkinan terjadinya serangan jantung, diantaranya tekanan darah, kolesterol, gula darah, detak jantung maksimal, dan lain sebagainya. Untuk itu, perlu dilakukan penelitian seberapa besar kemungkinan seseorang dapat mengalami serangan jantung dengan kondisi yang ada pada saat ini.

00

Data Understanding

Field Name	Description	Data Type
age	Usia	int64
sex	Jenis kelamin	int64
ср	Jenis nyeri dada (4 jenis)	int64
restbps	Tekanan darah istirahat	int64
chol	Kolesterol dalam mg/dl	int64
fbs	Gula darah puasa > 120 mg/dl	int64
restecg	Hasil elektrokardiografi istirahat (3 nilai)	int64
thalac	Detak jantung maksimal tercapai	int64
exang	Latihan angina yang diinduksi	int64
oldpeak	Depresi yang disebabkan oleh olahraga	float64

00

Data Understanding

Field Name	Description	Data Type
slope	Kemiringan segmen latihan puncak	int64
ca	Jumlah pembuluh utama	int64
thal	Kecacatan (3 jenis)	int64
target	Kemungkinan serangan jantung	int64

Data Preparation

Melakukan pengecekan data

Data dilakukan pengecekan terhadap informasi seperti jumlah data (baris) dan kolom, tipe data dari setiap kolom, data yang memuat nilai null.

♦ Mengecek ringkasan statistik dan hubungan antar variabel

Pengecekan ringkasan data statistik dengan menggunakan fungsi describe() pada DataFrame. Ringkasan data statistik yang ditampilkan adalah jumlah data, nilai min, max, standar deviasi, median, mean, kuartil bawah, kuartil tengah, dan kuartil atas.

Mengecek variabel signifikan

Variabel signifikan dapat dilihat dengan menggunakan library statsmodel.api. Dari hasil perhitungan, terdapat variabel insignifikan dengan nilai p-value dibawah 0.05 yaitu pada kolom age, trestbps, chol, fbs, restecg, dan slope. Maka, kolom dimaksud dihapus dalam DataFrame.

Modeling (Training)

Data dibagi menjadi data training dan data testing dengan komposisi 50:50. Pembagian data menggunakan fungsi train_test_split pada library sklearn.

Melakukan Normalisasi

Normalisasi data dilakukan dengan menggunakan fungsi StandardScaler() terhadap variabel independen data training dan data testing. Fungsi StandarScaler() mengubah data mean menjadi 0 dan varian 1.

Menghitung Nilai Intercept

Menghitung nilai intercept dengan menggunakan fungsi LogisticRegression() terhadap data training. Nilai intercept yang didapatkan adalah 0.08730542

Evaluation (Testing and Accuracy)

Pengetesan (Testing)

Testing dilakukan dengan menjalankan fungsi LogisticRegression() terhadap data testing. Proses ini menghasilkan data prediksi klasifikasi 0 atau 1 pada setiap data.

Penambahan Kolom Hasil Penghitungan

Penambahan kolom nilai probabilitas dan klasifikasi dilakukan terhadap data testing. Penambahan ini untuk menampilkan nilai probabilitas dan klasifikasi pada setiap data.

Penghitungan Akurasi

Pengecekan akurasi dengan menggunakan fungsi classification_report dan menghasilkan nilai akurasi 0.79. Nilai ini menunjukan bahwa akurasi pemodelan yang telah dibuat sebesar 79%.

UB

0

Deployment

Tahap ini dilakukan menggunakan bahasa pemrograman Python dengan IDE Visual Studio Code.

Code secara keseluruhan terdapat pada link Github:

https://github.com/dyanaagustina/Learn-BigData/tree/Big-Data/LR

Thank You