System F

Reference: Chapter 23 in Pierce's TAPL

Syntax

Reduction

$$\frac{}{\left(\lambda x:\tau.\;M_{1}\right)M_{2}\longrightarrow M_{1}\left[M_{2}/x\right]}\;\text{(E-AppAbs)}$$

$$\frac{M_{1}\longrightarrow M_{1}'}{M_{1}\;M_{2}\longrightarrow M_{1}'\;M_{2}}\;\text{(E-App1)}\qquad \frac{M_{2}\longrightarrow M_{2}'}{M_{1}\;M_{2}\longrightarrow M_{1}\;M_{2}'}\;\text{(E-App2)}$$

$$\frac{M\longrightarrow M'}{\lambda x:\tau.\;M\longrightarrow \lambda x:\tau.\;M'}\;\text{(E-Abs)}$$

Typing

$$\frac{\Gamma, x : \tau_1 \vdash M : \tau_2}{\Gamma, x : \tau \vdash x : \tau} \text{ (T-Var)} \qquad \frac{\Gamma, x : \tau_1 \vdash M : \tau_2}{\Gamma \vdash (\lambda x : \tau_1. \ M) : \tau_1 \to \tau_2} \text{ (T-Abs)}$$

$$\frac{\Gamma \vdash M_1 : \tau \to \tau' \qquad \Gamma \vdash M_2 : \tau}{\Gamma \vdash M_1 \ M_2 : \tau'} \text{ (T-App)}$$

Soundness

Theorem (Preservation)

For all M, M' and τ , if $\bullet \vdash M : \tau$ and $M \longrightarrow M'$, then $\bullet \vdash M' : \tau$.

Theorem (Progress)

For all M and τ , if $\bullet \vdash M : \tau$, then either $M \in \text{Values or } \exists M' . M \longrightarrow M'$.

We can write an infinite number of "doubling" functions in STLC:

```
doubleNat \stackrel{\text{def}}{=} \lambda f : \text{Nat} \to \text{Nat. } \lambda x : \text{Nat. } f(fx)
doubleBool \stackrel{\text{def}}{=} \lambda f : \text{Bool} \to \text{Bool. } \lambda x : \text{Bool. } f(fx)
doubleFun \stackrel{\text{def}}{=} \lambda f : (\text{Nat} \to \text{Nat}) \to (\text{Nat} \to \text{Nat}). \lambda x : \text{Nat} \to \text{Nat. } f(fx)
```

Different types of arguments, but the same function body.

We can write an infinite number of "doubling" functions in STLC:

```
doubleNat \stackrel{\text{def}}{=} \lambda f : \text{Nat} \to \text{Nat. } \lambda x : \text{Nat. } f(fx)
doubleBool \stackrel{\text{def}}{=} \lambda f : \text{Bool} \to \text{Bool. } \lambda x : \text{Bool. } f(fx)
doubleFun \stackrel{\text{def}}{=} \lambda f : (\text{Nat} \to \text{Nat}) \to (\text{Nat} \to \text{Nat}). \lambda x : \text{Nat} \to \text{Nat. } f(fx)
```

Different types of arguments, but the same function body.

Can we abstract out the types?

Polymorphism

poly = many, morph = formAllow a single piece of code to be used with multiple types.

Our focus: parametric polymorphism.

- Code is typed "generically", using variables in place of actual types, and then instantiated with particular types as needed.
- Uniform: all of their instances behave the same.
- By contrast, ad-hoc polymorphism (e.g. overloading) allows the code to exhibit different behaviors at different types.

System F

System F was first discovered by Jean-Yves Girard (1972), in the context of proof theory in logic.

John Reynolds (1974) independently developed a type system with the same power, called *the polymorphic lambda-calculus*.

It is also sometimes called *the second-order lambda-calculus*, because it corresponds, via the Curry-Howard correspondence, to second-order intuitionistic logic, which allows quantification not only over individuals [terms], but also over predicates [types].

Syntax

```
\begin{array}{lll} \text{(Terms)} & M & ::= & x \mid \lambda x : \tau. \ M \mid MM \mid \Lambda\alpha. \ M \mid M \langle \tau \rangle \\ \text{(Types)} & \tau & ::= & \alpha \mid T \mid \tau \rightarrow \tau \mid \forall \alpha. \ \tau \\ \text{(Values)} & v & ::= & \lambda x : \tau. \ M \mid \Lambda\alpha. \ M \end{array}
```

- Type variable α
- ▶ Type abstraction $\Lambda \alpha$. M
- ► Type application $M\langle \tau \rangle$
- ► Universal type $\forall \alpha$. τ

Reduction

$$\frac{\left(\lambda x:\tau.\ M_{1}\right)M_{2}\longrightarrow M_{1}\left[M_{2}/x\right]}{\left(\lambda x:\tau.\ M_{1}\right)M_{2}\longrightarrow M_{1}\left[M_{2}/x\right]} \stackrel{\text{(E-AppAbs)}}{\underbrace{M_{1}\ M_{2}\longrightarrow M_{1}'\ M_{2}}} \left(\text{E-App1}\right) \qquad \frac{M_{2}\longrightarrow M_{2}'}{M_{1}\ M_{2}\longrightarrow M_{1}\ M_{2}'} \stackrel{\text{(E-App2)}}{\underbrace{M_{1}\ M_{2}\longrightarrow M_{1}\ M_{2}'}} \left(\text{E-Abs)}\right) \\ \frac{M\longrightarrow M'}{\lambda x:\tau.\ M\longrightarrow \lambda x:\tau.\ M'} \stackrel{\text{(E-Abs)}}{\underbrace{(E-TAppTAbs)}} \\ \frac{M_{1}\longrightarrow M_{1}'}{M_{1}\langle\tau_{2}\rangle\longrightarrow M_{1}'\langle\tau_{2}\rangle} \stackrel{\text{(E-TApp)}}{\underbrace{(E-TApp)}} \qquad \frac{M\longrightarrow M'}{\Lambda\alpha.\ M\longrightarrow \Lambda\alpha.\ M'} \stackrel{\text{(E-TAbs)}}{\underbrace{(E-TAbs)}}$$

Statics

Type well-formedness: $\Delta \vdash \tau$

Typing judgment: Δ ; $\Gamma \vdash M : \tau$

Type Well-Formedness

$$\frac{\Delta \vdash \tau_1 \qquad \Delta \vdash \tau_2}{\Delta \vdash \tau_1 \qquad \Delta \vdash \tau_2} \qquad \frac{\Delta, \alpha \vdash \tau}{\Delta \vdash \tau_1 \rightarrow \tau_2}$$

An alternative formulation:

$$\frac{\mathit{fv}(\tau) \subseteq \Delta}{\Delta \vdash \tau}$$

$$fv(\alpha) \stackrel{\text{def}}{=} \{\alpha\}$$
 $fv(T) \stackrel{\text{def}}{=} \emptyset$ $fv(\tau_1 \to \tau_2) \stackrel{\text{def}}{=} fv(\tau_1) \cup fv(\tau_2)$
 $fv(\forall \alpha. \ \tau) \stackrel{\text{def}}{=} fv(\tau) - \{\alpha\}$

Typing

$$\frac{\Delta \vdash \tau_{1} \qquad \Delta; \Gamma, x : \tau \vdash x : \tau}{\Delta; \Gamma, x : \tau_{1} \vdash M : \tau_{2}} \text{ (T-Abs)}$$

$$\frac{\Delta \vdash \tau_{1} \qquad \Delta; \Gamma, x : \tau_{1} \vdash M : \tau_{2}}{\Delta; \Gamma \vdash (\lambda x : \tau_{1}. M) : \tau_{1} \rightarrow \tau_{2}} \text{ (T-Abs)}$$

$$\frac{\Delta; \Gamma \vdash M_{1} : \tau \rightarrow \tau' \qquad \Delta; \Gamma \vdash M_{2} : \tau}{\Delta; \Gamma \vdash M_{1} M_{2} : \tau'} \text{ (T-App)}$$

$$\frac{\Delta, \alpha; \Gamma \vdash M : \tau}{\Delta; \Gamma \vdash (\Lambda \alpha. M) : \forall \alpha. \tau} \text{ (T-TAbs)}$$

$$\frac{\Delta; \Gamma \vdash M_{1} : \forall \alpha. \tau \qquad \Delta \vdash \tau_{2}}{\Delta; \Gamma \vdash M_{1} \langle \tau_{2} \rangle : \tau[\tau_{2}/\alpha]} \text{ (T-TApp)}$$

- ightharpoonup id $\stackrel{\text{def}}{=} \Lambda \alpha$. $\lambda x : \alpha$. x
 - ightharpoonup id : $\forall \alpha. \ \alpha \rightarrow \alpha$
 - ightharpoonup id $\langle Nat \rangle$: Nat $\rightarrow Nat$
 - $\qquad \qquad \text{id} \, \langle \text{Nat} \rightarrow \text{Nat} \rangle : \big(\text{Nat} \rightarrow \text{Nat} \big) \rightarrow \big(\text{Nat} \rightarrow \text{Nat} \big) \\$

- ightharpoonup id $\stackrel{\text{def}}{=} \Lambda \alpha$. $\lambda x : \alpha$. x
 - ▶ id : $\forall \alpha. \ \alpha \rightarrow \alpha$
 - id ⟨Nat⟩ : Nat → Nat
 - ▶ $id (Nat \rightarrow Nat) : (Nat \rightarrow Nat) \rightarrow (Nat \rightarrow Nat)$
- ▶ double $\stackrel{\text{def}}{=} \Lambda \alpha$. $\lambda f : \alpha \to \alpha$. $\lambda x : \alpha$. f(fx)
 - ▶ double : $\forall \alpha. (\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$
 - $\blacktriangleright \ \, \mathsf{double}\, \langle \mathsf{Nat} \rangle : \big(\mathsf{Nat} \to \mathsf{Nat}\big) \to \mathsf{Nat} \to \mathsf{Nat} \\$

- ightharpoonup id $\stackrel{\text{def}}{=} \Lambda \alpha$. $\lambda x : \alpha$. x
 - ▶ id : $\forall \alpha. \ \alpha \rightarrow \alpha$
 - id ⟨Nat⟩ : Nat → Nat
 - ▶ $id \langle Nat \rightarrow Nat \rangle : (Nat \rightarrow Nat) \rightarrow (Nat \rightarrow Nat)$
- ▶ double $\stackrel{\text{def}}{=} \Lambda \alpha. \lambda f : \alpha \to \alpha. \lambda x : \alpha. f(fx)$
 - ▶ double : $\forall \alpha. (\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$
 - ▶ double $\langle Nat \rangle$: $(Nat \rightarrow Nat) \rightarrow Nat \rightarrow Nat$
- quadruple $\stackrel{\text{def}}{=} \Lambda \alpha$. double $\langle \alpha \to \alpha \rangle$ (double $\langle \alpha \rangle$)
 - quadruple : $\forall \alpha. (\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$

- ightharpoonup id $\stackrel{\text{def}}{=} \Lambda \alpha$. $\lambda x : \alpha$. x
 - ▶ id : $\forall \alpha. \ \alpha \rightarrow \alpha$
 - id ⟨Nat⟩ : Nat → Nat
 - ▶ id $\langle Nat \rightarrow Nat \rangle$: $(Nat \rightarrow Nat) \rightarrow (Nat \rightarrow Nat)$
- ▶ double $\stackrel{\text{def}}{=} \Lambda \alpha. \lambda f : \alpha \to \alpha. \lambda x : \alpha. f(fx)$
 - ▶ double : $\forall \alpha. (\alpha \to \alpha) \to \alpha \to \alpha$
 - ▶ double $\langle Nat \rangle$: $(Nat \rightarrow Nat) \rightarrow Nat \rightarrow Nat$
- ▶ quadruple $\stackrel{\text{def}}{=} \Lambda \alpha$. double $\langle \alpha \to \alpha \rangle$ (double $\langle \alpha \rangle$)
 - quadruple : $\forall \alpha. (\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$
- ▶ selfApp $\stackrel{\text{def}}{=} \lambda x : (\forall \alpha. \, \alpha \to \alpha). \, x \, \langle \forall \alpha. \, \alpha \to \alpha \rangle x$
 - ▶ selfApp : $(\forall \alpha. \ \alpha \to \alpha) \to (\forall \alpha. \ \alpha \to \alpha)$
 - ▶ Recall in STLC there's no way to type λx . x x.

Properties

Theorem (Preservation)

For all M, M' and τ , if \bullet ; $\bullet \vdash M : \tau$ and $M \longrightarrow M'$, then \bullet ; $\bullet \vdash M' : \tau$.

Theorem (Progress)

For all M and τ , if \bullet ; $\bullet \vdash M : \tau$, then either $M \in \text{Values or } \exists M'. M \longrightarrow M'.$

Strong normalization: Every reduction path starting from a well-typed System F term is guaranteed to terminate.

Church Encodings

Recall in the untyped λ -calculus, we can encode boolean values:

True
$$\stackrel{\text{def}}{=}$$
 $\lambda x. \lambda y. x$
False $\stackrel{\text{def}}{=}$ $\lambda x. \lambda y. y$

In System F:

Church Encodings

Recall in the untyped λ -calculus, we can encode boolean values:

True
$$\stackrel{\text{def}}{=} \lambda x. \lambda y. x$$

False $\stackrel{\text{def}}{=} \lambda x. \lambda y. y$

In System F:

True
$$\stackrel{\text{def}}{=}$$
 $\Lambda \alpha$. $\lambda x : \alpha$. $\lambda y : \alpha$. x
False $\stackrel{\text{def}}{=}$ $\Lambda \alpha$. $\lambda x : \alpha$. $\lambda y : \alpha$. y

Their type: Bool $\stackrel{\text{def}}{=} \forall \alpha. \ \alpha \rightarrow \alpha \rightarrow \alpha.$

not
$$\stackrel{\mathsf{def}}{=} \lambda b : \mathsf{Bool.} \ \Lambda \alpha . \ \lambda x : \alpha . \ \lambda y : \alpha . \ b \langle \alpha \rangle \ y \ x$$

Its type: Bool \rightarrow Bool.

Church Encodings

Recall the untyped Church numerals:

$$\begin{array}{ccc}
\underline{0} & \stackrel{\text{def}}{=} & \lambda f. \ \lambda x. \ x \\
\underline{1} & \stackrel{\text{def}}{=} & \lambda f. \ \lambda x. \ f \ x \\
\underline{2} & \stackrel{\text{def}}{=} & \lambda f. \ \lambda x. \ f \ (f \ x)
\end{array}$$

In System F:

$$\begin{array}{ll} \underline{0} & \stackrel{\mathsf{def}}{=} & \Lambda \alpha. \ \lambda f : \alpha \to \alpha. \ \lambda x : \alpha. \ x \\ \underline{1} & \stackrel{\mathsf{def}}{=} & \Lambda \alpha. \ \lambda f : \alpha \to \alpha. \ \lambda x : \alpha. \ f \ x \\ \underline{2} & \stackrel{\mathsf{def}}{=} & \Lambda \alpha. \ \lambda f : \alpha \to \alpha. \ \lambda x : \alpha. \ f \ (f \ x) \end{array}$$

Read *TAPL* for the encodings of many other data and operators.

Parametricity: polymorphic terms behave uniformly on their type variables.

Given a parametrically polymorphic type, we know quite a bit about the behavior of any term of that type.

Parametricity: polymorphic terms behave uniformly on their type variables.

Given a parametrically polymorphic type, we know quite a bit about the behavior of any term of that type.

Example

Write down all the functions that have type $\forall \alpha. \ \alpha \rightarrow \alpha.$

Parametricity: polymorphic terms behave uniformly on their type variables.

Given a parametrically polymorphic type, we know quite a bit about the behavior of any term of that type.

Example

Write down all the functions that have type $\forall \alpha. \ \alpha \rightarrow \alpha.$

Every term you write behaves identically to $\Lambda \alpha$. $\lambda x : \alpha$. x.

Intuition: Because the term with type $\forall \alpha.\ \alpha \to \alpha$ is polymorphic in α , whatever it wants to do needs to work for every possible type α , and the lambda calculus is so *simple* that the only such thing it can do is to *return the argument*.

Parametricity: polymorphic terms behave uniformly on their type variables.

Given a parametrically polymorphic type, we know quite a bit about the behavior of any term of that type.

Example

Consider the type Bool $\stackrel{\text{def}}{=} \forall \alpha. \ \alpha \to \alpha \to \alpha.$

Only two terms: $\Lambda \alpha$. $\lambda x : \alpha$. $\lambda y : \alpha$. x and $\Lambda \alpha$. $\lambda x : \alpha$. $\lambda y : \alpha$. y.

They are exactly the terms True and False.

Parametricity: polymorphic terms behave uniformly on their type variables.

Given a parametrically polymorphic type, we know quite a bit about the behavior of any term of that type.

Example

Consider the type Bool $\stackrel{\text{def}}{=} \ \forall \alpha. \ \alpha \to \alpha \to \alpha.$

Only two terms: $\Lambda \alpha$. $\lambda x : \alpha$. $\lambda y : \alpha$. x and $\Lambda \alpha$. $\lambda x : \alpha$. $\lambda y : \alpha$. y.

They are exactly the terms True and False.

Read the paper *Theorems for free!* written by Phil Wadler in 1989. It's a fun paper and a famous application of parametricity.

Impredicativity

The polymorphism of System F is often called *impredicative*.

In general, a definition (of a set, a type, etc.) is called *impredicative* if it involves a quantifier whose domain includes the very thing being defined.

For example, in System F, the type variable α in the type $\tau = \forall \alpha. \ \alpha \to \alpha$ ranges over all types, including τ itself (so that, for example, we can instantiate a term of type τ at type τ , yielding a function from τ to τ).

Lambda Cube

Proposed by Henk Barendregt in 1991. The theoretical basis of Coq: Calculus of Inductive Constructions (CC + inductive definitions).