

Model Development Phase Template

Date	29 July 2025
Team ID/ Skill Wallet ID	SWUID20250195143
Project Title	Anemia Sense: Leveraging Machine Learning For Precise Anemia Recognitions
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training will be demonstrated through a screenshot in the subsequent update. The model validation and evaluation report will feature classification reports, accuracy scores, and confusion matrices for multiple models, each presented with their respective screenshots.

Initial Model Training Code:


```
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
   decision_tree_model = DecisionTreeClassifier()
decision_tree_model.fit(x_train, y_train)
    y_pred = decision_tree_model.predict(x_test)
    acc_dt = accuracy_score(y_test, y_pred)
    c_dt = classification_report(y_test, y_pred)
    print('Accuracy Score: ', acc_dt)
   print(c_dt)
Accuracy Score: 1.0
                                recall f1-score support
                precision
                       1.00
                                   1.00
                                               1.00
                                               1.00
    accuracy
                                               1.00
   macro avg
                                               1.00
weighted avg
                      1.00
                                  1.00
                                               1.00
    from sklearn.naive_bayes import GaussianNB
   NB = GaussianNB()
NB.fit(x_train, y_train)
    y_pred = NB.predict(x_test)
   acc_nb = accuracy_score(y_test, y_pred)
c_nb = classification_report(y_test, y_pred)
Accuracy Score: 0.9798387096774194
               precision recall f1-score support
   macro avg
weighted avg
                                                          248
   from sklearn.metrics import classification_report
   support_vector = SVC()
support_vector.fit(x_train, y_train)
    y_pred = support_vector.predict(x_test)
   acc_svc = accuracy_score(y_test, y_pred)
c_svc = classification_report(y_test, y_pred)
Accuracy Score: 0.9395161290322581
               precision recall f1-score support
                     0.91
                                0.99
                                           0.95
                                                        135
                                           0.94
                                                        248
    accuracy
   macro avg
                                           0.94
 weighted avg
```


Model Validation and Evaluation Report:

Model	Classification Report						Confusion Matrix
Random Forest	Accuracy Scor 0 1 accuracy macro avg weighted avg	precision 1.00	recall 1.00 1.00 1.00	f1-score 1.00 1.00 1.00 1.00 1.00	support 113 135 248 248 248	81%	Confusion Matrix: [[113 0] [0 135]]
Logistic Regression	Ø	: 0.9919354 precision 1.00 0.99 0.99 0.99	838709677 recall f 0.98 1.00 0.99 0.99	0.99 0.99 0.99 0.99 0.99 0.99	support 113 135 248 248 248	99%	Confusion Matrix: [[111 2] [0 135]]
Gaussian Navies Bayes	Accuracy Score 0 1 accuracy macro avg weighted avg	0.9798387 precision 0.99 0.97 0.98 0.98	096774194 recall † 0.96 0.99 0.98 0.98	0.98 0.98 0.98 0.98 0.98 0.98	support 113 135 248 248 248	98%	Confusion Matrix: [[109 4] [1 134]]

Decision Tree	Accuracy Scor 0 1 accuracy macro avg weighted avg	precision 1.00 1.00	recall 1.00 1.00 1.00	f1-score 1.00 1.00 1.00 1.00	support 113 135 248 248 248	100%	Confusion Matrix: [[113 0] [0 135]]
Support Vector.	Accuracy Scor 0 1 accuracy macro avg weighted avg	precision 0.99 0.91 0.95		1 f1-score 0.93 0.95 0.94 0.94	support 113 135 248 248 248	94%	Confusion Matrix: [[99 14] [1 134]]
Gradient Boosting	Accuracy Scor 0 1 accuracy macro avg weighted avg	1.00 1.00 1.00 1.00	recall 1.00 1.00 1.00	f1-score 1.00 1.00 1.00 1.00 1.00	support 113 135 248 248 248	100%	Confusion Matrix: [[113 0] [0 135]]