ГЛАВА 2

Решение задачи

2.1 Источники и структура данных

Исходными данными в задаче выступают множество статей в формате pdf, источником данных выступил Общероссийский портал Math-Net.Ru содержащий архивы статей математических изданий. Были рассмотрены математические журналы, приведенные в таблице 2.1:

Таблица 2.1 – Журналы — источники статей

Название журнала	Код в Math-Net	Число статей
Сибирский математический журнал	smj	998
Алгебра и логика	al	928
Математический сборник	sm	951
Дифференциальные уравнения	de	993

Каждой статье соответствует номер по универсальной десятичной классификации (УДК), определяющий основное направление, освещенное в работе.

На выходе необходимо получить классификатор, обученный на входящих данных, который будет способен с достаточной точностью определить номер УДК, соответствующий новой статье.

2.2 Структура модели

На рисунке 2.1 приведена структурная схема модели:

Рисунок 2.1 – Структурная схема модели

2.3 Алгоритм обучения

Обучение модели будем проводить в следующем порядке:

- 1. Сбор данных.
- 2. Подготовка данных.
- 3. Формирование обучающей и тестовой выборки.
- 4. Формирование словаря и обучение LDA-модели.
- 5. Сопоставление тексту списка ключевых слов.
- 6. Векторизация списка ключевых слов, получение векторного представления текста.
- 7. Обучение классификатора.

2.3.1 Сбор данных

Для организации сбора данных было решено воспользоваться API портала MathNet.ru. Информация об API этого портала не опубликована, поэтому опытным путем была получена следующая ключи:

- jrnid= код журнала.
- paperid= номер статьи.
- wshow=paper информация о статье.
- what=full Выгрузить полный текст статьи.
- option_lang=rus язык страницы русский.

Отметим, что ключи wshow и what одновременно не используются.

Для реализации на языке Python был использован модуль requests [16], позволяющий отправлять запросы $\mathrm{HTTP}/1.1$. Процедура загрузки статьи приведена в листинге 2.1.

Листинг 2.1 – Процедура получения статьи

```
import requests
def get_paper(paper_id, journal_code):
url_full_text = 'http://www.mathnet.ru/php/getFT.phtml' +
  f'?jrnid={journal_code}&paperid={paper_id}&what=fullt&option_lang=rus'
url_summary = 'http://www.mathnet.ru/php/getFT.phtml' +
  f'?wshow=paper&jrnid={journal_code}&paperid={paper_id}&option_lang=rus'
```

```
filename_pdf = f'{journal_code} - {paper_id}.pdf'
filename_summary = f'{journal_code} - {paper_id}-resume.html'
response_text = requests.get(url_full_text)
response_summary = requests.get(url_summary)
f = open(filename_pdf, 'w+b')
f.write(response_text.content)
f.close()
f = open(filename_summary, 'w+b')
f.write(response_summary.content)
f.close()
```

В нем paper_id — номер статьи, journal_code — код журнала, приведенный в таблице 2.1.

Собранные статьи представлены в виде pdf-файлов, поэтому необходимо выделить из них текстовый слой. Его будем сохранять в формате простого текста txt.

Конвертация производилась средствами библиотеки aspose.words, предназначенной для обработки текстовых данных и преобразования их из одного формата в другой. Далее, из сопутствующих статьям файлов с краткой информацией, посредством использования библиотеки beautifulsoup были извлечены номера УДК.

2.3.2 Подготовка данных

При помощи регулярных выражений из текстов были удалены математические символы, латинские и греческие буквы, а также пунктуация. Был сформирован датафрейм, содержащий тексты статей и их номера УДК, и произведено сохранение на диске резервной копии в формате csv.

Из наиболее часто встречаемых во всех статьях, а оттого малоинформативных, слов был сформирован список стоп-слов. К полученному списку были добавлены стоп-слова из библиотеки nltk. На следующем этапе все стопслова были удалены из текстов, а также произведен стемминг с помощью SnowballStemmer из библиотеки nltk.

Был выбран стемминг, по той причине, что из-за математической специа-

лизации текстов лемматизация производилась недостаточно корректно, однако недостатком этого способа предобработки текста является невозможность восстановления исходного слова после подвержения его процессу стемминга.

2.3.3 Формирование обучающей и тестовой выборки

При помощи train test split из библиотеки sklearn было произведено разделение подготовленных данных на тестовую и обучающую выборки, где доля тестовой составила 0.14 от всего объема данных.

2.3.4 Формирование словаря и обучение LDA-модели

Далее были сформированы биграммы и триграммы слов средствами библиотеки gensim. Полученные данные были добавлены в словарь к односложным токенам. К сформированным таким образом для каждого текста словарям была применена модель LDA также из библиотеки gensim. Для каждого текста было выделено по 4 наиболее преобладающих темы. Данное число тем было выбрано по причине того, что дальнейшие темы были малоинформативны за счет небольшого количества терминов, кластеризованных в них.

Таким образом произведено выделение ключевых слов и словосочетаний для каждого текста.

2.3.5 Сопоставление тексту списка ключевых слов

Из полученного путём применения модели LDA списка кортежей с ключевыми слова соответственно с их частотами, был выделен список, содержащий лишь ключевые слова для каждого текста.

Этот список был объединен во фрейм данных с соответствующими текстам номерами УДК, который в дальнейшем был сохранены в качестве резервной копии на диске в формате csv. Пример выделения ключевых слов представлен на рисунке На рисунке 2.2 приведен пример выделения ключевых слов из статьи с номером УДК: 512, то есть её темой является «Алгебра».

Рисунок 2.2 – Пример выделения ключевых слов

"['групп', 'произведен', 'секц', 'сибирск', 'ран', 'гов', 'множ', 'положительн', 'последн', 'люб', 'нор', 'мальн', 'общност', 'силовск', 'следовательн', 'полож', 'ул', 'соответствен', 'котор', 'подгрупп', 'счита', 'фонд', 'рассужден', 'замен', 'номер', 'постро', 'содерж', 'редколлег', 'групп', 'нормальн', 'порядк', 'изоморфн', 'доказательств', 'конечн', 'теор', 'цеп', 'нов', 'одн', 'сил', 'секц', 'либ', 'определ', 'групп', 'нормальн', 'циклическ', 'явля', 'секц', 'произведен', 'существ', 'вопрос', 'чис ел', 'аабутурлакин', 'стар', 'положительн', 'хухр', 'иском']"

2.3.6 Векторизация списка ключевых слов, получение векторного представления текста

Для произведения классификации текстовые данные необходимо привести к числовому виду, то есть векторизовать. Наиболее предпочтительным способом векторизации в данной задаче является векторизация посредством преобразования набора ключевых слов в матрицу функций TF-IDF. Данное значение вычисляется для каждого ключевого слова в каждом тексте. Его основная идея функции TF-IDF состоит в том, чтобы больший вес получают слова с высокой частотой в пределах конкретного документа и с низкой частотой употреблений в других документах. [9] Итоговый вес термина в документе относительно всей коллекции документов вычисляется по формуле:

$$V_{t,d} = TF \cdot IDF$$

TF - оценка важности слова t в пределах одного документа d.

$$TF = \frac{n_{t,d}}{n_d}$$

где $n_{t,d}$ - количество употреблений слова t в документе d, n_d - общее число слов в документе d

IDF - инверсия частоты, с которой слово встречается в документах коллекции.

$$IDF = log(\frac{|D|}{D_t}),$$

где |D| – общее количество документов в коллекции, D_t – количество всех документов, в которых встречается слово t

2.3.7 Обучение классификатора

Был обучен классификатор случайный лес: RandomForestClassifier из библиотеки sklearn, количество деревьев ограничено 100 штуками, так как после этого значения качество на тестовой выборке выходит на асимптоту.

2.4 Описание результатов и их анализ

На выходе была получена классификация тестовой выборки в размере 510 статей. Точность классификации была проверена при помощи матрицы ошибок(confusion matrix) и оценки точности(accuracy score). В таблице 2.2 представлен отчет по произведенной классификации.

Из 510 статей в верные классы были отнесены 324 штуки, что составляет 63%. 8 статей, обладающих устаревшими номерами УДК, были классифицированы в те классы, которые соответствуют их номерам в обновленной классификации УДК. Наиболее популярной тематикой является «Анализ», соответствующая коду УДК 517.

Классификация производится со значением точности (accuracy) = 0.63, большая часть выборки классифицируется в верные классы, однако, у модели ещё остается большой потенциал к усовершенствованию качества производимой классификации.

Значения presicion/recall для тестовой выборки представлены на рисунке 2.3

Рисунок 2.3 – Значения параметров для тестовой выборки

	precision	recall	f1-score	support
510	0.58	0.13	0.22	52
512	0.60	0.59	0.59	129
513.7	0.00	0.00	0.00	2
513.74	0.00	0.00	0.00	1
513.8	0.00	0.00	0.00	1
513.83	0.00	0.00	0.00	1
513.88	0.00	0.00	0.00	1
513.881	0.00	0.00	0.00	2
514	0.00	0.00	0.00	18
515.1	0.00	0.00	0.00	6
517	0.65	0.92	0.76	261
518	0.00	0.00	0.00	1
518.321.1	0.00	0.00	0.00	1
518.322.2	0.00	0.00	0.00	1
519.1	0.00	0.00	0.00	4
519.2	0.00	0.00	0.00	9
519.3	0.00	0.00	0.00	1
519.44	0.00	0.00	0.00	1
519.45	0.00	0.00	0.00	1
519.48	0.00	0.00	0.00	2
519.54	0.00	0.00	0.00	1
519.542	0.00	0.00	0.00	2
519.6	0.00	0.00	0.00	4
519.7	0.00	0.00	0.00	4
537.84	0.00	0.00	0.00	1
62-505	0.00	0.00	0.00	1
917.941.9	0.00	0.00	0.00	1
917.941.92	0.00	0.00	0.00	1
accuracy			0.63	510
macro avg	0.07	0.06	0.06	510
weighted avg	0.54	0.63	0.56	510
0.63333333333	33333			

.6333333333333333

Таблица 2.2 – Отчет по классификации тестовой выборки

Predicted	510	512	515.1	517	All
True					
510	7	17	0	28	52
512	4	76	0	49	129
513.7	0	0	0	2	2
513.74	0	0	0	1	1
513.8	0	0	0	1	1
513.83	0	0	0	1	1
513.88	0	0	0	1	1
513.881	0	0	0	2	2
514	0	4	0	14	18
515.1	0	0	0	6	6
517	1	17	2	241	261
518	0	0	0	1	1
518.321.1	0	0	0	1	1
518.322.2	0	0	0	1	1
519.1	0	3	0	1	4
519.2	0	3	0	6	9
519.3	0	0	0	1	1
519.44	0	1	0	0	1
519.45	0	0	0	1	1
519.48	0	1	0	1	2
519.54	0	1	0	0	1
519.542	0	2	0	0	2
519.6	0	0	0	4	4
519.7	0	2	0	2	4
537.84	0	0	0	1	1
62-505	0	0	0	1	1
917.941.9	0	0	0	1	1
917.941.92	0	0	0	1	1
All	12	127	2	369	510

Пример выделения ключевых слов из статьи Д. С. Аниконова, Д. С. Коноваловой, «Краевая задача для уравнения переноса с чисто комптоновским рассеянием» [14] приведен на рисунке 2.4

Для данной статьи путем классификации был определён УДК: 517, что соответствует теме «Анализ», истинный УДК данной статьи: 517.958, что также соответствует данной теме.

Рисунок 2.4 – Пример

[&]quot;['функц', 'лиш', 'перв', 'зам', 'уд', 'выполня', 'след', 'имеет', 'х', 'крайн', 'содержат', 'буд', 'о', 'кажд', 'решен', 'х', 'рассмотр', 'существ', 'интеграл', 'отличн', 'област', 'неединствен', 'огранич', 'ф', 'ад', 'ми', 'удк', 'кош', 'некотор', 'л', 'буд', 'класс', 'ввид', 'единствен', 'крив', 'отмет', 'след', 'лебег', 'н', 'услов', 'е', 'име', 'указа', 'случа', 'согласн', 'двух', 'прежд', 'обзор', 'линейн', 'ни', 'неединствен', 'наш', 'обе', 'сдела', '-', 'подынтегральн']"