Sicherheits-

Ersatzwert

art	Spannungsvertenung	Spannungskreis 1)	gleichung	Wei Kstolikeliiwei t	EISALZWEIT	beiwerte 2)	
Zug	F_z A G_z F_z	T Gz	$\sigma_{\rm z} = \frac{F_{\rm z}}{A}$	Duktiler Werkstoff: • Fließen: R_e oder R_p^{3} • Bruch: R_m Spröder Werkstoff: • Bruch: R_m	 	$S_{\rm F} = 1,2 \dots 2,0$ $S_{\rm B} = 2,0 \dots 4,0$ $S_{\rm B} = 4,0 \dots 9,0$	
Druck	F_d A G_d F_d	σ_{d}	$\sigma_{\rm d} = \frac{F_{\rm d}}{A}$	Duktiler Werkstoff: • Fließen: σ_{dF} oder σ_{dp} ⁴⁾ • Knickung: $\sigma_{K} = F_{K} / A$ Spröder Werkstoff: • Bruch: σ_{dB} • Knickung: $\sigma_{K} = F_{K} / A$	R _e oder R _p	$S_{\rm F} = 1,2 \dots 2,0$ $S_{\rm K} = 2,5 \dots 5,0$ $S_{\rm B} = 4,0 \dots 9,0$ $S_{\rm K} = 2,5 \dots 5,0$	
Biegung	M_b M_b M_b	σ	$\sigma_{\rm b} = \frac{M_{\rm b}}{W_{\rm b}}$	Duktiler Werkstoff: • Fließen: σ _{bF} Spröder Werkstoff: • Bruch: σ _{bB}	$R_{\rm e}$ oder $R_{\rm p}^{5)}$	$S_{\rm F} = 1,2 \dots 2,0$ $S_{\rm B} = 4,0 \dots 9,0$	٥
Schub (Abscherung)	F _a F _a	τ _a	$\tau_{\rm a} = \frac{F_{\rm a}}{A}$	$\begin{array}{ll} \textbf{Duktiler Werkstoff:} \\ \bullet \ \text{Bruch:} & \tau_{\text{aB}} \\ \\ \textbf{Spr\"{o}der Werkstoff:} \\ \bullet \ \text{Bruch:} & \tau_{\text{aB}} \\ \end{array}$	$0.60.9 \cdot R_{\rm m}^{7}$ $\approx R_{\rm m}^{8}$	$S_{\rm B} = 2.0 \dots 4.0$ $S_{\rm B} = 4.0 \dots 9.0$	
Torsion	M_t	τ_{t}	$\tau_{t} = \frac{M_{t}}{W_{t}}$	Duktiler Werkstoff: • Fließen: τ_{tF} • Bruch: τ_{tB} Spröder Werkstoff: • Bruch: τ_{tB}	$R_{\rm e}/2 {\rm oder} R_{\rm p}/2 \ 0.6 \dots 0.9 \cdot R_{\rm m}^{7)}$ $R_{\rm m}$	$S_{\rm F} = 1,2 \dots 2,0$ $S_{\rm B} = 2,0 \dots 4,0$ $S_{\rm B} = 4,0 \dots 9,0$	
1) Erläuterung des Mohrschen Spannungskreises siehe Kapitel 3. 2) Anhaltswerte, falls keine einschlägigen Berechnungsvorschriften vorliegen. 3) In der Regel 0,2%-Dehngrenze (R _{p0,2}) 4) In der Regel 0,2%-Stauchgrenze (σ _{d0,2}) 5) Mitunter auch 1,1 1,2·R _{p0,2} 6) Ein ideal annäde Werketeffer σ R _{p0,2} + Fin ennäde metallische Workstoffer σ R _{p0,2} + Fin ennäde metallische Morkstoffer σ R _{p0,2} + Fin ennäde metallische Workstoffer σ R _{p0,2} + Fin ennäde metallische Workstoffer σ R _{p0,2} + Fin ennäde metallische Morkstoffer σ R _p							

Grund-

Werkstoffkennwert

Mohrscher

Belastungs-

Spannungsverteilung

⁶⁾ Für ideal spröde Werkstoffe: $\sigma_{bB} \approx R_m$; für spröde metallische Werkstoffe: $\sigma_{bB} > R_m$, insbesondere für Gusseisen mit Lamellengraphit: $\sigma_{bB} = 2,0 \dots 2,5 \cdot R_m$

⁷⁾ Faktor 0,6 für hochfeste Werkstoffe, Faktor 0,9 für niedrigfeste Werkstoffe. Insbesondere für Stähle mit $R_m \le 1800 \text{ N/mm}^2$: $\tau_{aB} = 0.5 \cdot R_m + 140 \text{ N/mm}^2$ bzw. $\tau_{B} = 0.5 \cdot R_m + 140 \text{ N/mm}^2$

⁸⁾ Gültig für Gusseisen mit Lamellengraphit.