线代作业三

noflowerzzk

2025.3.8

1

$$A^{T}A = \begin{pmatrix} 4 & 8 & 10 \\ 8 & 20 & 26 \\ 10 & 26 & 38 \end{pmatrix}, \quad A^{T}b = \begin{pmatrix} 18 \\ 30 \\ 38 \end{pmatrix}$$
$$\hat{x} = (A^{T}A)^{-1}A^{T}b = \begin{pmatrix} \frac{31}{4} \\ \frac{-9}{4} \\ \frac{1}{2} \end{pmatrix}$$

2

- (1) 取 $\lambda = \mu = 0$, $\mathbf{0} \in A$. $\alpha = (\lambda_1, \lambda_1 + \mu_1^3, \lambda_1 - \mu_1^3), \beta = (\lambda_2, \lambda_2 + \mu_2^3, \lambda_2 - \mu_2^3).$ $\alpha + \beta$ 取 $\lambda = \lambda_1 + \lambda_2, \mu = \sqrt[3]{\mu_1^3 + \mu_2^3}$ 即可. $k\alpha = (k\lambda_1, k\lambda_1 + k\mu_1^3, k\lambda_1 - k\mu_1^3),$ 取 $\lambda = k\lambda_1, \mu = \sqrt[3]{k}\mu_1$ 即可. A 是一个子空间.
- (2) 取 $\alpha = (1, -1, 0) \in B$, $-\alpha = (-1, 1, 0) \notin B$. B 不是一个子空间.
- (3) 当 $\gamma \neq 0$ 时, $\mathbf{0} \notin C$, C 不是一个子空间. 当 $\gamma = 0$ 时,C 是一个子空间. 由于 $\alpha \in C$ 是 ξ_i 的 线性组合易证.
- $(4) \ \ \mathbb{R} \ \ \alpha = (0,1,0) \in D, \ 0.5\alpha = \left(0,\frac{1}{2},0\right) \not\in D, \ \ D \ \ \text{不是一个子空间}.$

3

(1)
$$\dim U_1 = 3 - r(A_1) = 1$$
,解方程组 $\mathbf{A}\mathbf{x} = 0$ 得基础解系 $\boldsymbol{\eta} = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$ 是为其一组基. $\dim U_2 = 3 - r(A_2) = 1$,同理得基础解系 $\boldsymbol{\xi} = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$ 是为其一组基.

(2) $\dim V_1 = r(A_1) = 2$, 初等行变换后得

$$\begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

故其一组基为
$$\eta_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \\ 1 \end{pmatrix}, \eta_2 = \begin{pmatrix} 0 \\ -2 \\ 1 \\ 0 \end{pmatrix}$$

dim $V_2 = r(A_2) = 2$, 初等行变换后得

$$\begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

故其一组基为
$$\eta_1 = \begin{pmatrix} 3 \\ 1 \\ 7 \\ 3 \end{pmatrix}, \eta_2 = \begin{pmatrix} -3 \\ 2 \\ -5 \\ -1 \end{pmatrix}$$

(3) 由于 U_1, U_2 的基线性无关,故 $U_1 \cap U_2 = \{0\}$, dim $U_1 \cap U_2 = 0$, 基为 \emptyset .

由于 V_1, V_2 的列向量组的秩为 2, 故其维数为 2. 又其矩阵化简为 $\begin{pmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ 因此其一组

基为
$$\eta_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \\ 1 \end{pmatrix}, \eta_2 = \begin{pmatrix} 0 \\ -2 \\ 1 \\ 0 \end{pmatrix}$$
 dim $V_2 = r(A_2) = 2$

4

不一定. 例如 $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, 其零空间为 $L((1,0)^T)$, 但是 $A^2 = \mathbf{0}$, 其零空间为 \mathbb{R}^2 .

5

任意 $\boldsymbol{x} \in N(C)$,有 $A\boldsymbol{x} = 0$ 且 $B\boldsymbol{x} = 0$. 因此 $\boldsymbol{x} \in N(A) \cap N(B)$,即 $N(C) \subseteq N(A) \cap N(B)$. 另一方面,任意 $\boldsymbol{x} \in N(A) \cap N(B)$,有 $A\boldsymbol{x} = 0$ 且 $B\boldsymbol{x} = 0$. 因此 $C\boldsymbol{x} = \begin{pmatrix} A\boldsymbol{x} \\ B\boldsymbol{x} \end{pmatrix} = 0$,即 $\boldsymbol{x} \in N(C)$. 因此 $N(A) \cap N(B) \subseteq N(C)$. 综上, $N(C) = N(A) \cap N(B)$.

线代作业三 2025.3.8

6

不一定. 例如 $A=\begin{pmatrix}1&1\\1&0\end{pmatrix}$. A 的行空间和列空间都为 \mathbb{R}^2 , 且由于 A 满秩, A,A^T 零空间均为 $\{0\}$. 但是 A 不是堆成矩阵.

7

列空间为 $L((1,0)^T)$, 且零空间为 $L((1,0)^T)$

8

即 A 的列向量组线性无关,构成其列空间的一组基. 因此 A 的列向量组也构成 B 的列空间的一组基. 因此 r(B) = r(A). 有 N(B) 的维数为 2r(A).

又观察易知 $(x_1,x_2,x_3)^T$ 其中 x_i 为 r(A) 维列向量,且 $x_1+x_2+x_3=0$. 在 B 的零空间内(由于

$$B\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = Ax_1 + Ax_2 + Ax_3 = \mathbf{0})$$
又任意 $x, Bx = 0$,把 x 表示为 $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$,有 $A(x_1 + x_2 + x_3) = \mathbf{0}$.

由于 \vec{A} 可逆,则 $x_1 + x_2 + x_3 = 0$

综上,其零空间为
$$\left\{oldsymbol{x}=egin{pmatrix}oldsymbol{x}_1 \ oldsymbol{x}_2 \ -oldsymbol{x}_1-oldsymbol{x}_2\end{pmatrix}\ oldsymbol{x}_i\in\mathbb{R}^{r(A)}
ight\}$$

9

(1) 证明. 设
$$r(A) = r_1, r(B) = r_2$$
,且 $P_1AQ_1 = \begin{pmatrix} E_{r_1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$, $P_2BQ_2 = \begin{pmatrix} E_{r_2} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$ 故
$$A \otimes B = P_1^{-1} \begin{pmatrix} E_{r_1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} Q_1^{-1} \otimes P_2^{-1} \begin{pmatrix} E_{r_2} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} Q_2^{-1}$$
$$= (P_1^{-1} \otimes P_2^{-1}) \begin{pmatrix} E_{r_1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \otimes \begin{pmatrix} E_{r_2} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} (Q_1^{-1} \otimes Q_2^{-1})$$
$$故 \ r(A \otimes B) = r \begin{pmatrix} E_{r_1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \otimes \begin{pmatrix} E_{r_2} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} = r_1 r_2 = r(A) r(B)$$

(2) 证明. 设 λ_i 为 A 的特征值, μ_i 为 B 的特征值。则由于 $\lambda_i\mu_j$ 为 $A\otimes B$ 的特征值, 故

$$\det(A \otimes B) = \prod_{i=1}^{m} \prod_{j=1}^{n} \lambda_i \mu_j = \left(\prod_{i=1}^{m} \lambda_i^n\right) \left(\prod_{j=1}^{n} \mu_j^m\right) = \det(A)^n \det(B)^m$$