Prawdopodobieństwo warunkowe

$$P(E|F) = \frac{P(E \cap F)}{P(F)} \tag{1}$$

$$P(E_1 \cap \dots \cap E_n) = \prod_{i=1}^n P(X_i | X_1, \dots, X_{i-1})$$
 (2)

$$P(E) = \sum_{i=1}^{n} P(E|F_i)P(F_i) \text{ dla } \bigcap_{i=1}^{n} F_i = \Omega$$
(3)

	zmienne dyskretne	zmienne ciągłe
definicja	P(x) = P(X = x)	f(x) = F'(x)
obliczanie prawdopodobieństwa	$P(X \in A) = \sum_{x \in A} P(x)$	$P(X \in A) = \int_A f(x)dx$
skumulowana f. rozkładu	$F(x) = P(X \leqslant x) = \sum_{y \leqslant x} P(y)$	$F(x) = P(X \leqslant x) = \int_{-\infty}^{x} f(y) dy$
całkowite prawdopodobieństwo	$\sum_{x} P(x) = 1$	$\int_{-\infty}^{\infty} f(x)dx = 1$
wartość oczekiwana	$EX = \sum_{x} xP(x)$	$EX = \int x f(x) dx$
wariancja	$VarX = \sigma^2 = E[(X - \mu)^2]$	$VarX = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$

Nierówność Czebyszewa

$$P(|X - \mu| > \epsilon) \leqslant (\frac{\sigma}{\epsilon})^2 \tag{4}$$

Rozkłady dyskretne

Rozkład	P(x)	EX	VarX	
Bernoulli(p)		EX = p	VarX = pq	próba
	$P(x) = \begin{cases} p, & \text{for } x = 1\\ q = (1-p), & \text{for } x = 0 \end{cases}$			
Binomial(n,p)	$P(x) = \binom{n}{x} p^x (1-p)^{n-x} \text{ for } x = 0, 1, \dots$	EX = np	VarX = npq	liczba sukcesów z n prób
Geometric(p)	$ P(x) = (1-p)^{x-1}p \text{ for } x = 1, 2, \dots $ $ P(X > k) = (1-p)^k $	$EX = \frac{1}{p}$	$VarX = \frac{1-p}{p^2}$	liczba prób do sukcesu
$Poiss(\lambda)$	$P(x) = e^{-\lambda} \frac{\lambda^x}{x!} \text{ for } x = 0, 1, \dots$	$EX = \lambda$	$VarX = \lambda$	rozkład zdarzeń rzadkich

Rozkłady ciągłe

Rozkład	f(x), F(x)	EX	VarX	
Unif(a,b)	$f(x) = \frac{1}{b-a} \text{ for } a \leqslant x \leqslant b$	$EX = \frac{a+b}{2}$	$VarX = \frac{(b-a)^2}{12}$	
	$F(x) = \begin{cases} 0, & \text{for } x < a \\ \frac{x-a}{b-a}, & \text{for } a \le x < b \\ 1, & \text{for } x \ge b \end{cases}$			
$\operatorname{Exp}(\lambda)$	$f(x) = \lambda e^{-\lambda x} \text{ for } x \ge 0$ $F(x) = 1 - e^{-\lambda x}$	$EX = \frac{1}{\lambda}$	$VarX = \frac{1}{\lambda^2}$	modelowanie czasu, brak pamięci
$\operatorname{Gamma}(\alpha,\lambda)$	$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}$ $F(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} \int_{0}^{x} t^{\alpha - 1} e^{-\lambda t} dt$	$EX = \frac{\alpha}{\lambda}$	$VarX = \frac{\alpha}{\lambda^2}$	łączny czas α niezależ- nych zdarzeń $\sim Exp(\lambda)$
N(μ, σ)	$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$ $F(x) = \Phi(x) \text{ dla N}(0,1)$	$EX = \mu$	$VarX = \sigma^2$	

$$Bin(n,p) \approx Poiss(\lambda)$$
 (5)

$$P(T \leqslant t) = P(X \geqslant \alpha) \tag{6}$$

 $T \sim Gamma(\alpha, \lambda), X \sim Poiss(\lambda t)$

$$Binomial(n, p) = N(np, \sqrt{np(1-p)})$$

$$X_i \sim Bernoulli(p), S_n = \sum_{i=1}^n X_i, 0.05 \leqslant p \leqslant -.095$$
(7)

Rozkład łączny

$$F_{(X,Y)}(x,y) = P(X \leqslant x \cap Y \leqslant y)$$

$$f_{(X,Y)}(x,y) = \frac{\delta^2}{\delta x \delta y} F_{(X,Y)}(x,y)$$

	zmienne dyskretne	zmienne ciągłe
rozkłady brzegowe	$P(x) = \sum_{y} P(x, y)$ $P(y) = \sum_{x} P(x, y)$	$f(x) = \int_{Y} f(x, y) dy$ $f(y) = \int_{X} f(x, y) dx$
niezależność obliczanie prawdopodobieństwa	$ P(x,y) = P(x)P(y) $ $P((X,Y) \in A) = \sum_{(x,y)\in A} P(x,y) $	$f(x,y) = f(x)f(y)$ $\int \int_{(x,y)\in A} f(x,y)dxdy$

Centralne Twierdzenie Graniczne

$$Z_n = \frac{S_n - E(S_n)}{Std(S_n)} = \frac{S_n - n\mu}{\sqrt(n)\sigma} \to N(0, 1) \text{ for } n \text{ to } \infty$$

$$S_n = \sum_{i=1}^n X_i, E(X_i) = \mu, Std(X_i) = \sigma$$
(8)

Estymatory - Monte Carlo

dla
$$X, p = P(X \in A)$$

$$\hat{p} = \hat{P}(X \in A) = \frac{\#(X_i \in A)}{n}$$

$$E\hat{p} = \frac{1}{n}(np) = p$$

$$Std\hat{p} = \frac{1}{n}\sqrt{np(1-p)} = \sqrt{(\frac{p(1-p)}{n})}$$

Dokładność

$$P(|\hat{p} - p| > \epsilon) = P\left(\frac{|\hat{p} - p|}{\sqrt{\frac{p(1 - p)}{n}}} > \frac{\epsilon}{\sqrt{\frac{p(1 - p)}{n}}}\right) \approx 2\Phi\left(\frac{-\epsilon\sqrt{n}}{\sqrt{p(1 - p)}}\right)$$

Estymacja średniej \bar{X} z X_1, \dots, X_n ze wspólnym μ i σ

$$E\bar{X} = \frac{1}{n}(EX_1 + \dots + EX_n) = \frac{1}{n}n\mu = \mu$$

$$Var\bar{X} = \frac{1}{n^2}(Var(X_1) + \dots + Var(X_n)) = \frac{1}{n^2}n\sigma^2 = \frac{\sigma^2}{n}$$

Estymator wariancji

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

Procesy Markowa

$$P = \begin{bmatrix} p_{11} & p_{12} & \dots & p_{1n} \\ p_{21} & p_{22} & \dots & p_{2n} \\ \dots & \dots & \dots & \dots \\ p_{n1} & p_{n2} & \dots & p_{nn} \end{bmatrix}$$

Rozkład w czasie h: $P_h = P_0 \ast P^h$

Rozkład stacjonarny: $\pi P = \pi$, $\sum \pi_i = 1$

Estymacja: metoda momentów

k-ty moment z populacji
$$\mu_k = E(X^k)$$
 k-ty centralny moment z populacji
$$\mu_k' = E((X - \mu_1)^k)$$
 k-ty moment z próby
$$m_k = \frac{1}{n} \sum_{i=1}^n X_i^k$$
 k-ty centralny moment z próby
$$m_k' = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^k$$

$$\mu_1 = EX, \mu_2 = VarX, \mu_k = m_k$$

Estymacja: metoda największej wiarygodności

$$P(X = (X_1, \dots, X_n)) = P(X_1, \dots, X_n) = \prod_{i=1}^n P(X_i)$$

Szukamy ekstremum: $\frac{\delta P}{\delta \theta}(x)=0,$ używając logarytmu.

Przedziały ufności

$$\hat{\theta} \pm z_{\frac{\alpha}{2}} \sigma(\hat{\theta})$$
$$\bar{X} \pm z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$$

$$\bar{X} - \bar{Y} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}}$$

Rozkład t-studenta

 $t = \frac{\hat{\theta} = \theta}{s(\hat{\theta})} \leftarrow$ zastępujemy $Std(\hat{\theta})$ przez $S(\hat{\theta}),$ n-1 stopni swobody

$$\bar{X} \pm t_{\frac{\alpha}{2}}^{(n-1)} \frac{S}{\sqrt{n}}$$

Z-testy

Null hypothesis	Parameter, estimator		if H_0 is true:	Test statistic
H_0	$\mid heta, \hat{ heta} $	$\mid E(\hat{\theta})$	$Var(\hat{\theta})$	$Z = \frac{\hat{\theta} - \theta_0}{\sqrt{Var(\hat{\theta})}}$
$\mu = \mu_0$	$\mid \mu, \bar{X} \mid$	$\mid \mu_0 \mid$	$\frac{\sigma^2}{n}$	$ \frac{\bar{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} $
$p = p_0$	p, \hat{p}	p_0	$\left \begin{array}{c} \frac{p_0(1-p_0)}{n} \end{array} \right $	$ \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} $
$\mu_X - \mu_Y = D$	$ \begin{vmatrix} \mu_X - \mu_Y, \\ \bar{X} - \bar{Y} \end{vmatrix} $	D	$\left \begin{array}{c} \frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{n} \end{array} \right $	$\frac{\bar{X} + \bar{Y} - D}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}}$
$p_1 - p_2 = D$	$ \begin{vmatrix} p_1 - p_2, \\ \hat{p_1} - \hat{p_2} \end{vmatrix} $	D	$\frac{p_1(1-p_1)}{n} + \frac{p_2(1-p_2)}{m}$	$\sqrt{\frac{\hat{p_1} - \hat{p_2} - D}{\sqrt{\frac{\hat{p_1}(1 - \hat{p_1})}{n} + \frac{\hat{p_2}(1 - \hat{p_2})}{m}}}$
$p_1 = p_2$	$ p_1 - p_2, \\ \hat{p_1} - \hat{p_2} $	0	$ p(1-p)(\frac{1}{n} + \frac{1}{m}) $ where $p = p_1 = p_2$	

T-testy

Hypothesis H_0	Conditions	Test static t	Degrees of freedom
$\mu = \mu_0$	Sample size n ; unknown σ	$t = \frac{\bar{X} - \mu_0}{\frac{s}{\sqrt{n}}}$	n-1
$\mu_X - \mu_Y = D$	Sample sizes n, m unknown but equal $\sigma_X = \sigma_Y$	$t = \frac{\bar{X} - \bar{Y} - D}{s_p \sqrt{\frac{1}{n} + \frac{1}{m}}}$	n+m-2
$\mu_X - \mu_Y = D$	Sample sizes $n, m;$ unknown and unequal $\sigma_X \neq \sigma_Y$	$t = \frac{\bar{X} - \bar{Y} - D}{\sqrt{\frac{s_X^2}{n} + \frac{s_Y^2}{m}}}$	Satterthwaite approximation

P-values - accept if $P \ge 0.1$, reject if $P \le 0.01$

Hypothesis H_0	Alternative H_A	P-value	Computation
$\theta = \theta_0$	$ \begin{array}{c} \text{right-tail} \\ \theta > \theta_0 \end{array} $	$P\{Z \geqslant Z_{obs}\}$	$1 - \Phi(Z_{obs})$
$v = v_0$	left-tail	$P\{Z \leqslant Z_{obs}\}$	$\Phi(Z_{obs})$
	$ \begin{vmatrix} \theta < \theta_0 \\ \text{two-sided} \\ \theta \neq \theta_0 \end{vmatrix} $	$P\{ Z \geqslant Z_{obs} \}$	$2(1 - \Phi(Z_{obs}))$

Rozkład obserwacji o rozkładzie normalnym i wspólnej wariancji σ^2

$$\frac{(n-1)s^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{X_i - \bar{X}}{\sigma}\right)^2 \sim Chi - square(n-1) \sim Gamma\left(\frac{n-1}{2}, \frac{1}{2}\right)$$

Zatem przedział ufności:

$$\left[\frac{(n-1)s^2}{\chi_{\frac{\alpha}{2}}^2}, \frac{(n-1)s^2}{\chi_{1-\frac{\alpha}{2}}^2}\right]$$

Testy Chi kwadrat

H_0	$\mid H_A$	Test statistic	Rejection region	P-value
$\sigma^2 = \sigma_0^2$	$ \begin{vmatrix} \sigma^2 > \sigma_0^2 \\ \sigma^2 < \sigma_0^2 \\ \sigma^2 \neq \sigma_0^2 \end{vmatrix} $	$ \frac{(n-1)s^2}{\sigma_0^2} $	$ \begin{vmatrix} \chi_{obs}^2 > \chi_{\alpha}^2 \\ \chi_{obs}^2 < \chi_{\alpha}^2 \\ \chi_{obs}^2 \geqslant \chi_{\frac{\alpha}{2}}^2 \\ \text{or } \chi_{obs}^2 \leqslant \chi_{\frac{\alpha}{2}}^2 \end{vmatrix} $	$ \begin{vmatrix} P\chi^2 \geqslant \chi_{obs}^2 \\ P\chi^2 \leqslant \chi_{obs}^2 \\ 2min(P\chi^2 \geqslant \chi_{obs}^2, P\chi^2 \leqslant \chi_{obs}^2) \end{vmatrix} $

Statystyka Chi-kwadrat

$$\chi^{2} = \sum_{k=1}^{N} \frac{(Obs(k) - Exp(k))^{2}}{Exp(k)}, R = [\chi_{\alpha}^{2}, +\infty], P = P\chi^{2} \geqslant \chi_{obs}^{2}$$

Rule of thumb: $Exp(k) \ge 5$ for all k = 1, ..., N.

Test Chi-kwadrat niezależności A i B

$$\chi^2_{obs} = \sum_{i=1}^k \sum_{j=1}^m \frac{(Obs(i,j) - \hat{Exp}(i,j))^2}{\hat{Exp}(i,j)}, \hat{Exp}(i,j) = \frac{(n_{i.})(n_{.j})}{n}$$