+8/1/46+

IPS - S7A - Jean-Matthieu Bourgeot

QCM2

## IPS Quizz du 13/11/2013

Nom et prénom : Wy Xiao Hang

Durée : 10 minutes. Aucun document n'est autorisé. L'usage de la calculatrice est autorisé. PDA et téléphone interdit. Les questions peuvent présenter zéro, une ou plusieurs bonnes réponses. Des points négatifs pourront être affectés à de très mauvaises réponses. Ne pas faire de RATURES, cocher les cases à l'encre.

Classer ses différentes technologies de CAN par ordre de Temps de conversion Question 1 • (du plus rapide au plus lent)?

| •                                                                    |
|----------------------------------------------------------------------|
| approximation successive's - flash - double rampe - simple rampe     |
| approximation successives - flash - simple rampe - double rampe $$   |
| ${\it flash-approximation successives-double\ rampe-simple\ rampe}$  |
| ${\it flash-approximation\ successives-simple\ rampe-double\ rampe}$ |
| double rampe - flash - approximation successives - simple rampe      |

## Question 2 •

2/2

3/3

2/2

On considère une résistance thermométrique Pt100 de résistance  $R_C(T) = R_0(1 + \alpha T)$  où Treprésente la température en °C,  $R_0=1$ k $\Omega$  la résistance à 0°C et  $\alpha=3,85.10^{-3}$ °C  $^{-1}$  le coefficient de température. Cette résistance est conditionnée par le montage potentiométrique suivant



= 1,  $1 \text{k}\Omega$  L'étendu de mesure est [-25°C; 60°C]. Fixer la valeur de  $V_G$  pour que le courant dans le capteur soit toujours inférieur à 5mA.



## Question 3 •

Quelle est la capacité d'un condensateur plan? On note :

- ε : Permittivité du milieu entre les armatures.
- S : Surface des armatures.
- d : Distance entre les armatures.

## Question 4 •

Le capteur sur la photo ci-contre permet de mesurer ...



| /4 | des différences de températures des potentiels des courants des tempér | _ |
|----|------------------------------------------------------------------------|---|
|----|------------------------------------------------------------------------|---|



|     | Question 5 • Pourquoi faire du sur-échantillonnage ?                                                                                                                                                                                                                                                               |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2/2 | Pour réduire le bruit de quantification  Pour supprimer les perturbations de mode commun.  Pour améliorer l'efficacité du filtre antirepliement.                                                                                                                                                                   |
|     | Question 6 • A quoi est reliée la résolution d'un potentiomètre linéaire à piste résistive ?                                                                                                                                                                                                                       |
| 1/1 | La longueur du potentiomètre  La course électrique.  La résistance maximale du potentiomètre  La taille des grains de la poudre utilisée  Le pas de bobinage                                                                                                                                                       |
|     | Question 7 • Des jauges extensométriques permettent de mesurer                                                                                                                                                                                                                                                     |
| 1/1 | des déformations des résistances des courants des températures des flux lumineux des grands déplacements.                                                                                                                                                                                                          |
|     | Question 8 • Un capteur LVDT permet de mesurer :                                                                                                                                                                                                                                                                   |
| 1/1 | des déplacement linéaire des flux lumineux des courants des déplacements angulaires des températures                                                                                                                                                                                                               |
|     | Question 9 • Quels sont les intérêts d'un amplificateur d'instrumentation ?  Les impédances d'entrées sont élevés.                                                                                                                                                                                                 |
| 3/3 | Le gain est fixé par une seule résistance.  Les voies sont symétriques.  De rejeter les perturbations de mode différentiel.  Cela permet d'isoler galvaniquement la chaine d'acquisition et le procédé.                                                                                                            |
|     | Question 10 • Soit un CAN acceptant en entrée des signaux compris entre 0V et 10V, la quantification s'effectue sur 8bits, le temps de conversion est de $T_C = 1$ ms. Quel est le pas de quantification de ce CAN ?                                                                                               |
| 1/1 | 39 mV                                                                                                                                                                                                                                                                                                              |
|     | Question 11 • On rappel que la Fonction de Transfert d'un AOP est $\frac{U_s}{\epsilon}(p) = \frac{A_0}{1+\tau_C p}$ , avec $U_s$ la sortie de l'AOP et $\epsilon = u_+ - u$ . Pour le montage suivant, quel(s) est(sont) le(s) pole(s) de la FT entre $E$ et $U_s$ , Que dire de la stabilité du système bouclé ? |
| 6/6 |                                                                                                                                                                                                                                                                                                                    |