ITP 30002 Operating System

Hard Disk Drives

Chapters 37

Shin Hong

Hard Disk Drives (HDD)

- HDD has been the main form of persistent data storage
- Most of the existing file systems have been predicated on the characteristics of HDD
- Interface
 - a drive consists of an array of **sectors**
 - each sector is 512-byte blocks
 - the sectors are numbered from 0 to n-1
 - a single 512-byte write is guranateed to be atomic
 - a disk operation may involve multiple sectors (e.g., read 4 KB)
 - accessing two sectors near one-another is faster than accessing two sectors far apart

Hard Disk Drive

Physical Components

- multiple **platter** with two **surfaces**
 - a platter is an aluminum wafer coated with magnetic layer
 - each surface has a disk head attached to a disk arm
- multiple **tracks** on a surface
 - many thousands of tracks on a surface
 - a disk arm places the disk head to a desired track
 - a track comprises of multiple **sectors**

• spindle

- the platterns are spinning at a constant rate (typically, 7200 to 15000 RPM)
- a disk header can read/write data when the surface is spinning

How do hard drives work? - Kanawat Senanan

Hard Disk Drive

How Disks Work

- for a given request of accessing a sector
 - identify the target surface and the target track
 - move the disk arm to the corresponding track position (seek)
 - acceleration -> coasting -> deceleration -> settling
 - seek time
 - wait for the desired sector to read to the head
 - rotational delay
 - read the magnetic signal or write data on the surface (transfer)

Hard Disk Drive

Operating System 2021-06-04

Example

Hard Disk Drive

Some Other Details

- track skew
 - considering disk arm replacement in consecutive sector accesses
- multi-zoned disk
 - -tracks in an outer zone has more sectors than tracks in an inner zone
- track buffer
 - -write back caching vs. write through

Hard Disk Drive

I/O Time

• I/O time and the rate of I/O

$$T_{I/O} = T_{seek} + T_{rotation} + T_{transfer}$$

$$R_{I/O} = \frac{Size_{Transfer}}{T_{I/O}}$$

High-performance disk and large-capacity disk

	Cheetah 15K.5	Barracuda	e.g., reading 4KB at a random location
Capacity	300 GB	1 TB	-
RPM	15,000	7,200	Cheetah:
Average Seek	4 ms	9 ms	
Max Transfer	$125 \mathrm{MB/s}$	$105\mathrm{MB/s}$	T_{seek} = 4ms
Platters	4	4	$T_{\text{rotation}} = (0 + 60000/15000) / 2 = 2 \text{ ms}$
Cache	16 MB	$16/32 \mathrm{MB}$	$T_{\text{transfer}} = 4 / 125 \sim 0.03 \text{ ms}$
Connects via	SCSI	SATA	transier – 4 / 125 – 0.05 ms

Hard Disk Drive

Operating System 2021-06-04

Disk Scheduling

- Given a set of I/O requests, the OS decides in which order the I/O requests are to be issued to the disk
- Basically, disk schedulers follow the principle of shortest job first
- Approach 1. Shortest Seek Time First (SSTF)
 - -pick requests on the nearest track to the disk header first
 - -estimate the distance between the header and the target sector by the difference of the sector numbers
 - have the starvation problem
 - -example. sector 2 vs. sector 21

Elevator (or SCAN)

- Move the disk head back and forth across tracks to serve the requests for each track
 - -a **sweep** is a single pass across the disk
 - avoid the disk starvation problem
- Variants
 - F-SCAN: freeze the request queue when it starts a new sweep
 - -C-SCAN: sweeks from outer-to-inner only for fair scheduling
- Elevator algorithms are limited to optimize seeking time, but do not count the rotational delay

Hard Disk Drive

Shortest Positioning Time First (SPTF)

- Motivating example
 - -which one is closer, sector 8 or sector 16?
- On modern devices, the seek time and the rotational delay are roughly equivalent, thus, both them must be considered together at scheduling
- To implement SPTF, the OS side picks and issues best few I/O requests, then the disk controller finds the best SPTF order based on the internal information on the disk drive

Hard Disk Drive

Other Scheduling Issues

- merging
 - -cluster requests on consecutive blocks
- anticipatory disk scheduling
 - -instead of serving given requests immediately, wait for a while to receive more requests and then schedule them together (i.e., non-work-conserving approach)

Hard Disk Drive