

Normal Season		2019-01-21
N.o N	Name	
Assessment duratio	n: 45 minutes	
	ion: marked with brackets	
•	estions: each wrong answer deducts 1/3 of the question's value	

Theoretical Part 10%

- a. [3.3] The design of WIMP interfaces (Windows, Icons, Menus, Pointer)
 - i. Should not consider the use of accelerator keys because human memory has limitations
 - ii. Should be system-centered rather than user-centered because human behavior is unpredictable
 - iii. Should not draw on real-world analogies
 - iv. None of the above
- b. [3.3] Perspective transformations
 - i. Require the projection center to be always positioned on the origin
 - ii. Are not compatible with the use of homogeneous coordinates
 - iii. Preserve affine combinations
 - iv. None of the above
- c. **[3.3]** Given two different points P and Q and the affine combination $R = (1 \alpha)P + \alpha Q$, what value should be assigned to α so that point R gets positioned twice as far from P than from Q?

- i. $\alpha = -0.33$
- ii. $\alpha = 0.33$
- iii. $\alpha = 1 0.33$
- iv. None of the above

- d. [3.3] Which of the following polygon mesh coding techniques avoids drawing each edge twice?
 - i. Explicit and pointers to a vertex list
 - ii. Pointers to a vertex list and pointers to an edge list
 - iii. Pointers to an edge list and Winged-Edge
 - iv. None of the above
- e. [3.3] The diffuse component of Phong's illumination model
 - i. Can only be defined for directional light sources
 - ii. Is characteristic of materials such as shiny metal
 - iii. Does not depend of the viewer's position
 - iv. None of the above
- f. [3.3] A texture mapping function
 - Returns, for each point of the texture space, the corresponding point of the object's surface
 - ii. Describes the shape used to wrap the object
 - iii. May be based on the parametric description of the object's surface
 - iv. All of the above

Nor	mal Seaso	n				2019-01	-21
N.o		Name					
Prac	ctical Part					2	20%
	_	ce questions: each wrotherwise specified, a	_		•	alue	
a.		ppose you want to n e the one shown in Fi vertex.			_	_	
		Figure 1			Figure 2		
				v3		v2 	
	v0:						
	v1:						
	v2:						
	v3:						
b.	green lig	nsider a sphere made ght source (0.75, 1, 0 pecify the calculations	.75). What are t	•	•		_
	R =						
	G =						
	R -						

Norr	mal Season	2019-01-21
N.o_	Name	
c.		e unit vector normal to the quadrilateral shown in Figure 3. front face, which makes an angle of 45° with the X axis.
		$(0, 10, 0) \qquad (10, 10, -10) \qquad (10, 0, -10) \qquad (0, 0, 0) \qquad 45^{\circ} \qquad x$
		Figure 3
	Normal:,,	
d.	forward, and rotating with the hand model.y and model.z, the directions	e a camera mounted on the handlebar of a bicycle, facing lebar. The position of the handlebar is given by model.x, ection for which the handlebar is oriented is given by the camera relative to the handlebar is given by
	Complete the following information vertical direction is the Z axis direction	in order to obtain the desired camera, considering that the on (positive up).
	Eye:	_,
	Center:	_,
	Up:	

e. **[5.0]** Consider the object illustrated in Figure 4 and the existence of the function box() that draws a unit cube, aligned with the axes and centered on the origin.

Consider that:

- The dimensions of the elements are: element A (L_A , A_A e P_A); elements B and C (L_{BC} , A_{BC} e P_{BC});
- The displacement of element A along the X axis is given by D_A ;
- The absolute value of the rotation angle with respect to the horizontal of elements B and C is given by R_{BC} (note that for B and C the values are symmetrical);
- Element A moves linearly over the XZ plane;
- Elements B and C rotate around the edges of element A, with angles symmetrical with respect to the horizontal;
- The origin of the coordinate system is in the center of element A.

lormal Seas	on					2019-	01-21
l.o	Name	e					
	B R _{BC}	у Т	→ x	$T(t_x, t_y, t_z)$	$ \begin{array}{c} R(r_x, r_y, r_z) \\ \text{ou} \\ R(r, e_x, e_y, e_z) \end{array} $ box()	$S(s_x, s_y, s_z)$	
		Figure 4			Figure 5	_	
promot	te the move		dimension			e transformation hows examples (