Matemática Discreta

Relações de Recorrência Linear Homogéneas

Universidade de Aveiro 2018/2019

http://moodle.ua.pt

Matemática Discreta

Relações de recorrência

Dependências recursivas simples

Equações de recorrência lineares homogéneas

Equação característica e raiz característica

Método geral de resolução de uma equação linear homogénea

Exercícios resolvidos

Relações de recorrência

 Alguns problemas combinatórios admitem uma solução que pode ser obtida recursivamente através de uma relação de recorrência:

$$a_n = f(n, a_{n-1}, \dots, a_{n-k}).$$
 (1)

- A relação de recorrência (1) diz- de ordem k ou que tem profundidade k.
- A solução de um problema de ordem n é expressa em função das soluções de problemas idênticos de ordem inferior.

Exemplo (de factorial)

$$F_n = n \cdot F_{n-1}, \qquad n = 2, 3, \dots,$$

onde F_n denota o factorial de n (n!) e $F_1 = 1$.

Matemática Discreta

Relações de recorrência

Solução de uma equação de recorrência

- Uma sucessão $(a_n)_{n\in\mathbb{N}\cup\{0\}}$ diz-se uma solução de uma relação de recorrência se os seus termos satisfazem a relação de recorrência.
- Resolver uma relação de recorrência consiste na determinação de uma fórmula não recursiva (ou fórmula fechada) para a_n. Em geral, é preferível calcular o valor de a_n com uma fórmula não recursiva (com uma fórmula recursiva são executadas n iterações).

Exemplo

 $a_n = 3n$ é uma solução de $a_n = 2a_{n-1} - a_{n-2}$, fazendo $a_1 = 3$, $a_2 = 6$ e uma vez que

$$3n = 2(3(n-1)) - 3(n-2)$$

Dependências recursivas simples

- Determinação de uma solução (método ingénuo):
 - Depois da observação de alguns termos, propor uma fórmula não recursiva.
 - Provar que a fórmula proposta é válida recorrendo, por exemplo, ao princípio de indução.

Exemplo

Vamos determinar o número de permutações do conjunto $[n] = \{1, 2, ..., n-1, n\}.$

Solução. Seja a_n = número de permutações do conjunto [n], $n \in \mathbb{N}$. Para determinar a_n calcula-se o número de possibilidades para a posição do número $n \longrightarrow n$ e o número de permutações dos restantes n-1 números $\longrightarrow a_{n-1}$. Assim, pelo princípio da multiplicação, $a_n = na_{n-1}$, $n \ge 2$.

Matemática Discreta

Dependências recursivas simples

Solução da equação de recorrência

Proposta de uma solução:

$$a_1 = 1$$

 $a_2 = 2 \times 1$
 $a_3 = 3 \times a_2 = 3 \times 2 \times 1$

Será $a_n = n!$, $n \in \mathbb{N}$?

• Prova por indução:

 $n = 1 \longrightarrow a_1 = 1$ (coincide com o n^{o} de permutações do conjunto $\{1\}$)

Hipótese de indução: suponha que para $n \in \mathbb{N}$ (fixo) $a_n = n!$.

- Então $a_{n+1} = (n+1)a_n = ^{(H.I.)} (n+1)n! = (n+1)!$
- Conclusão: $a_n = n!$ para todo o $n \in \mathbb{N}$.

Equações de recorrência lineares homogéneas

 Uma equação de recorrência linear homogénea de ordem r é uma equação de recorrência do tipo:

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_r a_{n-r}$$

onde c_i é uma constante, para i = 1, 2, ..., r.

- Para determinar uma solução são necessárias r condições iniciais.
- Equação característica: $x^r c_1 x^{r-1} c_2 x^{r-2} \cdots c_r = 0$.
- Raízes características: raízes reais ou complexas da equação característica.

Matemática Discreta

Equação característica e raiz característica

Equação característica e raiz característica

Lema 1

Sejam α e β as raízes (não nulas) da equação característica

$$x^2 - c_1 x - c_2 = 0$$

que corresponde à equação de recorrência $a_n = c_1 a_{n-1} + c_2 a_{n-2}$. Se $\alpha \neq \beta$, então a solução geral vem dada por

$$a_n = C_1 \alpha^n + C_2 \beta^n,$$

caso contrário ($\alpha = \beta$),

$$a_n = (C_1 + C_2 n)\alpha^n.$$

Em ambos os casos, os coeficientes C_1 e C_2 são determinados pelas condições iniciais.

Resolução de uma equação linear homogénea particular

Exercício

Determinar a solução da equação de recorrência

$$a_n = 3a_{n-1} - 2a_{n-2}, \ n = 2, 3 \dots,$$

com
$$a_0 = 0$$
 e $a_1 = -2$.

Equação característica: $x^2 - 3x + 2 = 0$.

Raízes características: 1 e 2 (ambas com multiplicidade 1)

Solução geral: $a_n = C_1 + C_2 2^n$, $n \in \mathbb{N} \cup \{0\}$.

Determinação das constantes C_1 e C_2 : $\begin{cases} a_0 = 0 \\ a_1 = -2 \end{cases} \Leftrightarrow$

$$\left\{ \begin{array}{l} C_1+C_2=0 \\ C_1+2C_2=-2 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} C_1=-C_2 \\ C_2=-2 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} C_1=2 \\ C_2=-2 \end{array} \right.$$

Solução: $a_n = 2 - 2^{n+1}$, $n \in \mathbb{N} \cup \{0\}$.

Matemática Discreta

Método geral de resolução de uma equação linear homogénea

Resolução de uma equação linear homogénea (caso geral)

Lema 2. Sejam $\alpha_1, \ldots, \alpha_k$ as raízes da equação característica $x^r - c_1 x^{r-1} - c_2 x^{r-2} - \cdots - c_r = 0$ da equação de recorrência $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_r a_{n-r}$. (1)

Supondo que para cada $i \in \{1, ..., k\}$ α_i tem multiplicidade m_i , pelo que $m_1 + \cdots + m_k = r$, então

$$x^{r} - c_{1}x^{r-1} - \cdots - c_{r} = (x - \alpha_{1})^{m_{1}}(x - \alpha_{2})^{m_{2}}...(x - \alpha_{k})^{m_{k}}$$
 e

$$a_{n} = (D_{0} + D_{1}n + \dots + D_{m_{1}-1}n^{m_{1}-1})\alpha_{1}^{n} + (E_{0} + E_{1}n + \dots + E_{m_{2}-1}n^{m_{2}-1})\alpha_{2}^{n} + (2) + \dots + (Z_{0} + Z_{1}n + \dots + Z_{m_{k}-1}n^{m_{k}-1})\alpha_{k}^{n}$$

é a solução da equação de recorrência, onde as constantes

$$D_0, \ldots, D_{m_1-1}, E_0, \ldots, E_{m_2-1}, \ldots, Z_0, \ldots, Z_{m_k-1}$$

são determinadas pelas condições iniciais.

Prova do Lema 2

Sendo α_1 uma raiz de multiplicidade m_1 da equação característica, então α_1 é raiz dos seguintes polinómios:

- $p(x) = x^n c_1 x^{n-1} \dots c_r x^{n-r}$, pelo que α_1^n verifica (1) e $D_0 \alpha_1^n = \sum_{i=1}^r c_i D_0 \alpha_1^{n-i}$
- $D_0\alpha_1^n = \sum_{i=1}^r c_i D_0\alpha_1^{n-i};$ $xp'(x) = nx^n c_1(n-1)x^{n-1} \cdots c_r(n-r)x^{n-r}$, pelo que $n\alpha_1^n$ verifica (1) e

$$D_1 n \alpha_1^n = \sum_{i=1}^r c_i D_1(n-i) \alpha_1^{n-i};$$
• $x(xp'(x))' = n^2 x^n - c_1(n-1)^2 x^{n-1} - \dots - c_r(n-r)^2 x^{n-r},$
pelo que $n^2 \alpha_1^n$ verifica (1) e

 $D_2 n^2 \alpha_1^n = \sum_{i=1}^r c_i D_2 (n-i)^2 \alpha_1^{n-i};$

:

• $x(...(xp'(x))'...)' = n^{m_1-1}x^n - \cdots - c_r(n-r)^{m_1-1}x^{n-r}$, pelo que $n^{m_1-1}\alpha_1^n$ verifica (1) e

$$D_{m_1-1}n^{m_1-1}\alpha_1^n = \sum_{i=1}^r c_i D_2(n-i)^{m_1-1}\alpha_1^{n-i}.$$

Matemática Discreta

Método geral de resolução de uma equação linear homogénea

Prova do Lema 2 (cont)

Logo,
$$D_0 \alpha_1^n + D_1 n \alpha_1^n + D_2 n^2 \alpha_1^n + \dots + D_{m_1 - 1} n^{m_1 - 1} \alpha_1^n = c_1 D_0 \alpha_1^{n - 1} + \dots + c_r D_0 \alpha_1^{n - r} + c_1 D_1 (n - 1) \alpha_1^{n - 1} + \dots + c_r D_1 (n - r) \alpha_1^{n - r} + c_1 D_2 (n - 1)^2 \alpha_1^{n - 1} + \dots + c_r D_2 (n - r)^2 \alpha_1^{n - r} + \dots + c_r D_{m_1 - 1} (n - 1)^{m_1 - 1} \alpha_1^{n - 1} + \dots + c_r D_{m_1 - 1} (n - r)^{m_1 - 1} \alpha_1^{n - r}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$c_1 D_{m_1 - 1} (n - 1)^{m_1 - 1} \alpha_1^{n - 1} + \dots + c_r D_{m_1 - 1} (n - r)^{m_1 - 1} \alpha_1^{n - r}$$

$$c_1\left(\sum_{j=0}^{m_1-1}D_j(n-1)^j\right)\alpha_1^{n-1}+\ldots+c_r\left(\sum_{j=0}^{m_1-1}D_j(n-r)^j\right)\alpha_1^{n-r}$$
 Consequentemente,

$$a_n = D_0 \alpha_1^n + D_1 n \alpha_1^n + \dots + D_{m_1 - 1} n^{m_1 - 1} \alpha_1^n = \left(\sum_{j=0}^{m_1 - 1} D_j n^j\right) \alpha_1^n$$

é solução de (1) e o mesmo se aplica para $\alpha_2, \dots, \alpha_k$, pelo que

$$a_n = \left(\sum_{j=0}^{m_1-1} D_j n^j\right) \alpha_1^n + \left(\sum_{j=0}^{m_2-1} E_j n^j\right) \alpha_2^n + \cdots + \left(\sum_{j=0}^{m_k-1} Z_j n^j\right) \alpha_k^n.$$

Observação

De acordo com o Lema 2, quando as raízes da equação característica são todas distintas, ou seja, k = r e

$$m_1 = m_2 = \cdots = m_r = 1$$
,

podemos concluir que

$$a_n = C_1 \alpha_1^n + \cdots + C_r \alpha_r^n$$

com $C_1 = D_0$, $C_2 = E_0$, ..., $C_r = Z_0$, de acordo com a expressão (2).

Matemática Discreta

Exercícios resolvidos

Exercício 1

Vamos resolver a equação de recorrência

$$a_n = 2a_{n-1} + 15a_{n-2} + 4a_{n-3} - 20a_{n-4}, \ n > 4$$

com condições iniciais $a_0 = 6$, $a_1 = 3$, $a_2 = 71$ e $a_3 = 203$.

Resolução. Equação característica:

$$x^4 - 2x^3 - 15x^2 - 4x + 20 = 0 \Leftrightarrow (x+2)^2(x-1)(x-5) = 0.$$

Raízes características:

- -2 (com multiplicidade 2),
- ▶ 1 e 5 (ambas com multiplicidade 1).

Solução geral: $a_n = (C_1 + C_2 n)(-2)^n + C_3 + C_4 5^n, \ n \in \mathbb{N} \cup \{0\}.$

Determinação das constantes

Determinação das constantes c₁, c₂, c₃ e c₄:

$$\begin{cases} a_0 = 6 \\ a_1 = 3 \\ a_2 = 71 \\ a_3 = 203 \end{cases} \Leftrightarrow \begin{cases} C_1 + C_3 + C_4 = 6 \\ -2(C_1 + C_2) + C_3 + 5C_4 = 3 \\ 4(C_1 + 2C_2) + C_3 + 25C_4 = 71 \\ -8(C_1 + 3C_2) + C_3 + 125C_4 = 203 \end{cases}$$

$$\begin{cases} C_1 = 3 \\ C_2 = 1 \\ C_3 = 1 \\ C_4 = 2 \end{cases}$$

Solução final: $a_n = (3+n)(-2)^n + 1 + 2 \cdot 5^n, n \in \mathbb{N} \cup \{0\}.$

Matemática Discreta

Exercícios resolvidos

Exercício 2

Vamos determinar a solução da equação de recorrência

$$a_n = -6a_{n-1} - 9a_{n-2},$$

com condições iniciais: $a_0 = 1$, $a_1 = -9$. Resolução.

- Equação característica: $x^2 + 6x + 9 = 0$.
- Raízes características: -3 com multiplicidade 2.
- ► Solução geral: $a_n = (C_1 + C_2 n)(-3)^n, n \in \mathbb{N} \cup \{0\}.$
- ▶ Determinação das constantes C₁ e C₂:

$$\left\{\begin{array}{l} a_0=1\\ a_1=-9 \end{array} \Leftrightarrow \left\{\begin{array}{l} C_1=1\\ -3(C_1+C_2)=-9 \end{array} \right. \Leftrightarrow \left\{\begin{array}{l} C_1=1\\ C_2=2 \end{array} \right.$$

• Solução: $a_n = (1 + 2n)(-3)^n, n \in \mathbb{N} \cup \{0\}.$

Referências e bibliografia I

D. M. Cardoso, J. Szymanski e M. Rostami, *Matemática* Discreta: combinatória, teoria dos grafos e algoritmos, Escolar Editora, 2008.