

SANGHARSH ASSIGNMENT VECTOR-5

I

1. If $\vec{A} = 2\vec{i} - 3\vec{j} + 7\vec{k}$, $\vec{B} = \vec{i} + 2\vec{k}$ and $\vec{C} = \vec{j} - \vec{k}$ find $\vec{A} \cdot (\vec{B} \times \vec{C})$

2. Find the maximum or minimum values of the function $y = x + \frac{1}{x}$ for x > 0.

- 3. Evaluate $\int_0^t A \sin \omega t dt$ where A and ω are constants.
- 4. The velocity v and displacement x of a particle executing simple harmonic motion are related as $v\frac{dv}{dx} = -\omega^2 x.$

At x = 0, $v = v_0$. Find the velocity u when the displacement becomes x.

- 5. The charge flown through a circuit in the time interval between t and t + dt is given by $dq = e^{-t/\tau}$ dt, where τ is a constant. Find the total charge flown through the circuit between t = 0 to t = τ .
- 6. A vector \overrightarrow{A} makes an angle of 20° and \overrightarrow{B} makes an angle of 110° with the *X*-axis. The magnitudes of these vectors are 3 m and 4 m respectively. Find the resultant.
- 7. Add vectors \vec{A} , \vec{B} and \vec{C} each having magnitude of 100 unit and inclined to the *X*-axis at angles 45°, 135° and 315° respectively.
- **8.** Refer to figure. Find (a) the magnitude, (b) x and y components and (c) the angle with the X-axis of the resultant of \overrightarrow{OA} , \overrightarrow{BC} and \overrightarrow{DE} .

- 9. Two vectors have magnitudes 3 unit and 4 unit respectively. What should be the angle between them if the magnitude of the resultant is (a) 1 unit, (b) 5 unit and (c) 7 unit.
- 10. Two vectors have magnitudes 2 m and 3 m. The angle between them is 60°. Find (a) the scalar

product of the two vectors, (b) the magnitude of their vector product.

- 11. Prove that $\overrightarrow{A} \cdot (\overrightarrow{A} \times \overrightarrow{B}) = 0$.
- 12. A curve is represented by $y = \sin x$. If x is changed from $\frac{\pi}{3}$ to $\frac{\pi}{3} + \frac{\pi}{100}$, find approximately the change in y.
- 13. The electric current in a charging R-C circuit is given by $i = i_0 e^{-t/RC}$ where i_0 , R and C are constant parameters of the circuit and t is time. Find the rate of change of current at (a) t = 0, (b) t = RC, (c) t = 10 RC.
- 14. Find the area bounded under the curve $y = 3x^2 + 6x + 7$ and the *X*-axis with the ordinates at x = 5 and x = 10.
- 15. Find the area bounded by the curve $y = e^{-x}$, the X-axis and the Y-axis.
- 17. Three vectors \vec{P}, \vec{Q} and \vec{R} are shown in the figure. Let S be any point on the vector \vec{R} . The distance between the point P and S is b $|\vec{R}|$ and $\vec{R} = \vec{Q} \vec{P}$. The general relation among vectors \vec{P}, \vec{Q} and \vec{S} is

[JEE ADV. 2017]

(A)
$$\vec{S} = (b-1)\vec{P} + b\vec{Q}$$

(B)
$$\vec{S} = (1-b^2)\vec{P} + b\vec{Q}$$

(C)
$$\vec{S} = (1-b)\vec{P} + b^2\vec{Q}$$

(D)
$$\vec{S} = (1-b)\vec{P} + b\vec{Q}$$

ANSWER KEY

2. at
$$x = 1$$
, y is $y = 2$

3.
$$\frac{A}{\omega}(1-\cos\omega t)$$

4.
$$v = \sqrt{v_0^2 - \omega^2 x^2}$$
.

$$5. \qquad \tau \left(1 - \frac{1}{e}\right)$$

6. (5 m at
$$73^{\circ}$$
 with *X*-axis)

7.
$$(100 \text{ unit at } 45^{\circ} \text{ with } X\text{-axis})$$

9. (a)
$$180^{\circ}$$
 (b) 90° (c) 0

10. (a)
$$3 \text{ m } 2$$
 (b) $3\sqrt{3} \text{ m} 2$

13. (a)
$$\frac{-i_0}{RC}$$
 (b) $\frac{-i_0}{RCe}$ (c) $\frac{-i_0}{RCe^{10}}$

17.
$$\vec{S} = (1-b)\vec{P} + b\vec{Q}$$