计算机组织结构

11 冗余磁盘阵列 (RAID)

任桐炜

2022年11月24日

教材对应章节

第8章 互连及输入输出组织

第6章 外部存储器

 冗余磁盘阵列 / 独立磁盘冗余阵列: Redundant Arrays of Independent Disks (RAID)

• 基本思想

- 将多个独立操作的磁盘按某种方式组织成磁盘阵列,以增加容量
- 将数据存储在多个盘体上,通过这些盘并行工作来提高数据传输率
- 采用数据冗余来进行错误恢复以提高系统可靠性

特性

- 由一组物理磁盘驱动器组成,被视为单个的逻辑驱动器
- 数据是分布在多个物理磁盘上
- 冗余磁盘容量用于存储校验信息,保证磁盘万一损坏时能恢复数据

RAID分类

种类	级别	描述	磁盘要求	数据可用性	大 VO 数据 传输能力	小 1/0 请求速率
条带化	0	非冗余	N	比单盘低	很高	读和写都很高
镜像	1	镜像	2 <i>N</i>	比 RAID 2、3、4、5 高; 比 RAID 6 低	读比单盘高;写与 单盘类似	读高达单盘的两 倍;写与单盘类似
# 45 # Ho	2	汉明码冗余	N + m	比单盘高很多,与 RAID 3、4、5 差不多	列表各级中最高	接近于单盘的两倍
并行存取	3	位交错奇偶 校验	N + 1	比单盘高很多; 与 RAID 2、4、5 差不多	列表各级中最高	接近于单盘的两倍
	4	块交错奇偶 校验	N+1	比单盘高很多;与 RAID 2、3、5 差不多	读与 RAID 0 类似; 写低于单盘	读与RAID0类似; 写显著低于单盘
独立存取	5	块交错分布 式奇偶校验	N+1	比单盘高很多; 与 RAID 2、3、4 差不多	读与 RAID 0 类似; 写低于单盘	读与 RAID 0 类似; 写显著低于单盘
	6	块交错分布 式奇偶校验	N + 2	列表各级中最高	读与 RAID 0 类似; 写比 RAID 5 低	读与 RAID 0 类似; 写显著低于 RAID 5

- 数据以条带的形式在可用的磁盘上分布
- 不采用冗余来改善性能(不是RAID家族中的真正成员)
- 用途
 - 高数据传输率
 - · 高速响应I/O请求

RAID 0 (续)

- 采用了数据条带
- 采用简单地备份所有数据的方法来实现冗余

RAID 1 (续)

优点

- 高速响应I/O请求:即便是同一个磁盘上的数据块,也可以由两组硬盘分别响应
- 读请求可以由包含请求数据的两个对应磁盘中的某一个提供服务,可以选择寻道时间较小的那个
- 写请求需要更新两个对应的条带:可以并行完成,但受限于写 入较慢的磁盘
- 单个磁盘损坏时不会影响数据访问,恢复受损磁盘简单

缺点

• 价格昂贵

RAID 1 (续)

- 用途
 - 只限于用在存储系统软件、数据和其他关键文件的驱动器中
- 与 RAID 0 相比
 - 如果有大批的读请求,则RAID 1能实现高速的I/O速率,性能可以达到RAID 0的两倍
 - 如果I/O请求有相当大的部分是写请求,则它不比RAID 0的性能 好多少

RAID 01 vs. RAID 10

- RAID 01 = RAID 0+1: 先做RAID 0, 再做RAID 1
- RAID 10 = RAID 1+0: 先做RAID 1, 再做RAID 0
- 两者在数据传输率和磁盘利用率上没有明显区别,主要区别 是对磁盘损坏的容错能力

- 采用并行存取技术
- 目标
 - 所有磁盘都参与每个I/O请求的执行
- 特点
 - 各个驱动器的轴是同步旋转的,因此每个磁盘上的每个磁头在 任何时刻都位于同一位置
 - 采用数据条带:条带非常小,经常只有一个字节或一个字

RAID 2 (续)

- 纠错
 - 对位于同一条带的各个数据盘上的数据位计算校验码(通常采用海明码),校验码存储在该条带中多个校验盘的对应位置
- 访问
 - 读取: 获取请求的数据和对应的校验码
 - 写入: 所有数据盘和校验盘都被访问

RAID 2 (续)

- 缺点
 - 冗余盘依然比较多, 价格较贵
 - 适用于多磁盘易出错环境,对于单个磁盘和磁盘驱动器已经具备高可靠性的情况没有意义

- 采用并行存取技术
 - 各个驱动器的轴同步旋转
 - 采用非常小的数据条带
- 对所有数据盘上同一位置的数据计算奇偶校验码
 - 当某一磁盘损坏时,可以用于重构数据 $b_0 = P(b) \oplus b_1 \oplus b_2 \oplus b_3$

RAID 3 (续)

- 优缺点
 - 优点: 能够获得非常高的数据传输率
 - 对于大量传送,性能改善特别明显
 - 缺点: 一次只能执行一个I/O请求
 - 在面向多个IO请求时, 性能将受损

- 采用独立存取技术
 - 每个磁盘成员的操作是独立的,各个I/O请求能够并行处理
- 采用相对较大的数据条带
- 根据各个数据盘上的数据来逐位计算奇偶校验条带,奇偶校验位存储在奇偶校验盘的对应条带上

RAID 4 (续)

- 性能
 - 当执行较小规模的I/O写请求时, RAID 4会遭遇写损失
 - 对于每一次写操作,阵列管理软件不仅要修改用户数据, 而且要修改相应的校验位

$$P'(B) = P(B) \oplus B_0 \oplus B_0'$$

- 当涉及所有磁盘的数据条带的较大I/O写操作时,只要用新的数据位来进行简单的计算即可得到奇偶校验位
- 每一次写操作必须涉及到唯一的校验盘,校验盘会成为瓶颈

- 与RAID 4 组织方式相似
- 在所有磁盘上都分布了奇偶校验条带
 - · 避免潜在的I/O瓶颈问题
- 访问时的"两读两写"

$$P'(B) = P(B) \oplus B_0 \oplus B_0'$$

- RAID 5与RAID 0的组合,先作RAID 5,再作RAID 0,也就是对多组RAID 5彼此构成条带访问
- RAID 50在底层的任一组或多组RAID 5中出现1颗硬盘损坏时, 仍能维持运作; 如果任一组RAID 5中出现2颗或2颗以上硬盘 损毁, 整组RAID 50就会失效
- RAID 50由于在上层把多组RAID 5进行条带化,性能比起单纯的RAID 5高,但容量利用率比RAID5要低

- 采用两种不同的校验码,并将校验码以分开的块存于不同的 磁盘中
- 优点
 - 提升数据可用性:只有在平均修复时间间隔内3个磁盘都出了故障,才会造成数据丢失
- 缺点
 - 写损失: 每次写都要影响两个校验块

RAID 比较

级	优 点	缺 点	应用
0	通过将 I/O 负载分散到多个通道和驱动器,极大地改善了 I/O 性能 无奇偶计算开销 很简单的设计 易实现	只要有某一个驱动器失效就 导致阵列全部数据丢失	视频制作和编辑 图像编辑 预压缩应用 任何要求高带宽的应用
1	数据 100%的冗余,意味着磁盘失效时无 需重构,只需对替代盘拷贝即可 某些环境下, RAID 1 能承受多个驱动器 同时失效 最简单的 RAID 存储子系统设计	在所有 RAID 类型中, 磁盘 数开销最大 (100%) ——低效	统计、工资单、财务和任 何要求很高可用性的应用

RAID 比较(续)

2	可能有极高的数据传输率 数据传输率要求得越高,数据盘对 ECC 盘的比值越好 与 RAID3、4 和 5 级相比,控制器设计相 对简单	短字长时, ECC 盘对数据盘的比值非常高——低效 人门级成本很高——要求证实很高数据传输率的需求是恰当的	无商品实现的存在/无商业 化应用
3	很高的读数据传输率 很高的写数据传输率 磁盘失效时对吞吐率无显著影响 ECC (奇偶) 盘对数据盘的低比率意味 着高效率	最好情况(如果主轴同步旋转)下的事务率等同于单盘的事务率 控制器设计相当复杂	视频制作和直播 图像编辑 视频编辑 预压缩应用 任何要求高吞吐率的应用

RAID 比较(续)

级	优 点	缺 点	应 用
4	很高的读数据事务率 ECC (奇偶) 盘对数据盘的低比率意味 着高效率	十分复杂的控制器设计 最差的写事务率和写聚集传 输率 磁盘失效事件中,数据重构 困难并低效	无商品实现的存在/无商业 化应用
5	最高的读数据事务率 ECC(奇偶)盘对数据盘的低比率意味 着高效率 好的聚集传输速率	最复杂的控制器设计 磁盘失效事件中,数据重构 困难(与 RAID 1 级相比)	数据和应用服务器 数据库服务器 Web、E-mail 和新闻组服 务器 Intranet 服务器 用途最多的 RAID 级
6	提供极高的数据故障容忍能力并能承受 多个驱动器同时失效	较复杂的控制器设计 计算奇偶校验地址的控制器 开销非常高	对丢失数据严重的应用是 理想的解决方案

总结

种类	级别	描述	磁盘要求	数据可用性	大 VO 数据 传输能力	小 1/0 请求速率
条带化	0	非冗余	N	比单盘低	很高	读和写都很高
镜像	1	镜像	2 <i>N</i>	比 RAID 2、3、4、5 高; 比 RAID 6 低	读比单盘高;写与 单盘类似	读高达单盘的两 倍;写与单盘类似
14 5 T T 16.	2	汉明码冗余	N + m	比单盘高很多,与 RAID 3、4、5 差不多	列表各级中最高	接近于单盘的两倍
并行存取	3	位交错奇偶 校验	N + 1	比单盘高很多;与 RAID 2、4、5 差不多	列表各级中最高	接近于单盘的两倍
	4	块交错奇偶 校验	N+1	比单盘高很多;与 RAID 2、3、5 差不多	读与RAID 0 类似; 写低于单盘	读与 RAID 0 类似; 写显著低于单盘
独立存取	5	块交错分布 式奇偶校验	N+1	比单盘高很多;与 RAID 2、3、4 差不多	读与 RAID 0 类似; 写低于单盘	读与 RAID 0 类似; 写显著低于单盘
	6	块交错分布 式奇偶校验	N + 2	列表各级中最高	读与 RAID 0 类似; 写比 RAID 5 低	读与 RAID 0 类似; 写显著低于 RAID 5

谢谢

rentw@nju.edu.cn

