BỘ CÔNG THỨC TONY

THỐNG KÊ ỨNG DỤNG (APPLIED STATISTICS)

MỤC LỤC

Bài 1: CÁC LOẠI PHÂN BỐ THƯỜNG GẶP	2
Bài 2: MẪU VÀ MỘT SỐ ĐỊNH LÝ PHÂN BỐ	3
Bài 3: BÀI TOÁN ƯỚC LƯỢNG THAM SỐ	5
Bài 4: ƯỚC LƯỢNG KHOẢNG TIN CẬY	
Bài 5: BÀI TOÁN KIỂM ĐỊNH GIẢ THIẾT	
Bài 6: BÀI TOÁN KIỂM ĐỊNH HAI TỔNG THỂ	
Bài 7: TIÊU CHUẨN PHI THAM SỐ	
Bài 8: SO SÁNH HAI TỶ LỆ VÀ PHƯƠNG SAI	18
Bài 9: PHÂN TÍCH PHƯƠNG SAI	
Bài 10: KIỂM TRA TÍNH ĐỘC LẬP VÀ SO SÁNH	22
Bài 11: Hồi QUY TUYẾN TÍNH	

Bài 1: CÁC LOẠI PHÂN BỐ THƯỜNG GẶP

CÁC LOẠI PHÂN BỐ THÔNG THƯỜNG

1. Phân bố nhị thức:

- Ký hiệu: X ~ B(n, p)
- Công thức:

$$P(X = k) = C_n^k p^k (1-p)^k$$

- EX = np
- $\bigcirc \quad \mathsf{DX} = \mathsf{np} \; (\mathsf{1} \mathsf{p})$
- O Mod X = [(n + 1) p]

2. Phân bố Poisson:

- Ký hiệu: X ~ Poisson(λ)
- Công thức:

$$P(X=k) = \frac{e^{-\lambda}}{k!} \lambda^k$$

- \circ EX = DX = λ
- $\circ \quad \mathsf{Mod} \, \mathsf{X} = [\lambda]$

3. Phân bố chuẩn:

- Ký hiệu: $X \sim N(\mu, \sigma^2)$
- Công thức:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

- ο EX = μ
- \circ DX = σ^2

4. Phân bố mũ:

- Ký hiệu: $X \sim Exp(\lambda)$
- Công thức:

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & x \le 0 \end{cases}$$

- \circ EX = $\frac{1}{\lambda}$
- $O DX = \frac{1}{\lambda^2}$

5. Phân bố đều:

- Ký hiệu: X ~ U([a, b])
- Công thức:

$$f(x) = \sqrt[n]{a^n} = \begin{cases} \frac{1}{b-a}, & x \in [a, b] \\ 0, & \text{ngược lại} \end{cases}$$

- \circ EX = $\frac{b+a}{12}$
- $O DX = \frac{(b-a)^2}{12}$

6. Định lý giới hạn trung tâm:

- Ký hiệu: $s_n = \sum_{i=1}^n x_i \sim {
 m phân} \ {
 m bố}$ chuẩn
- Công thức:

$$P(\frac{s_n - n\mu}{6\sqrt{n}} < X) = \phi(x)$$

Bài 2: MẪU VÀ MỘT SỐ ĐỊNH LÝ PHÂN BỐ

BẢNG TẦN SỐ <=>	$\begin{cases} \sum_{i=1}^k m_i = n \\ \sum_{i=1}^n f_i = 1 \end{cases}$
-----------------	--

x_i	m_i	f_i
x_1	m_1	f_1
x_2	m_2	f_2
x_k	m_k	f_k
X	n	1

1. Trung bình mẫu:

• Ký hiệu:
$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$\circ \quad \mathsf{E} \overline{X} = \mu$$

$$\circ \quad \mathsf{D} \bar{X} = \frac{\sigma^2}{n}$$

2. Phương sai mẫu:

• Ký hiệu:
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

$$\circ \quad (\sigma_{n-1})^2 \quad \rightarrow \quad S^2 = \frac{1}{n-1} \; \hat{S}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$

$$\circ \quad (\sigma_n)^2 \qquad \rightarrow \quad \hat{S}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2 = \frac{1}{n} \sum_{i=1}^n (X_i^2 - (\bar{X})^2)$$

3. Một số định lý về phân phối mẫu:

• Định lý 1: Nếu X_1, X_2, \dots, X_n là mẫu ngẫu nhiên có phân bố chuẩn N(μ, σ^2) thì \overline{X} có phân bố chuẩn N($\mu, \frac{\sigma^2}{n}$)

$$\Rightarrow \tilde{X} \sim N(\mu, \frac{\sigma^2}{n}) \Leftrightarrow \frac{\bar{X} - \mu}{\sigma \sqrt{n}} \sim N(0, 1)$$

• Định lý 2: Nếu X_1, X_2, \dots, X_n là mẫu ngẫu nhiên có phân bố chuẩn N(μ, σ^2) thì \overline{X} và S^2 độc lập với nhau

$$\Rightarrow \frac{n-1}{\sigma^2} S^2 \sim \chi_{n-1}^2 = Z_1^2 + Z_2^2 + ... + (Z_{n-1})^2$$

• Định lý 3: Nếu X_1, X_2, \dots, X_n là mẫu ngẫu nhiên quan sát phân bố chuẩn thì $t_{n-1} \sim T = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}}$ cùng có phân bố t_{n-1} (với T là độ lệch tiêu chuẩn của mẫu)

- Định lý 4: Nếu $X_1, X_2, ..., X_n$ là mẫu ngẫu nhiên quan sát X bất kỳ với kỳ vọng μ thì Z = $\frac{\bar{X} \mu}{\sigma/\sqrt{n}}$ cũng có phân bố chuẩn N(0, 1) khi n --> ∞
- $\bullet \quad \text{ Dịnh lý 5: Cho} \begin{cases} X_1, X_2, \dots, X_n \\ Y_1, Y_2, \dots, Y_n \end{cases} \text{ ta có } \overline{X} \overline{Y} \text{ có phân bố chuẩn với } \begin{matrix} \mu = \mu_1 \mu_2 \\ \sigma^2 = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} \end{matrix}$

Bài 3: BÀI TOÁN ƯỚC LƯỢNG THAM SỐ

1. <u>Ước lượng điểm:</u>

$$\theta^* = T(X_1, X_2, ..., X_n)$$

- Ước lượng không chệch \rightarrow ULKC => E θ^* = θ
- Ước lượng chệch \rightarrow ULC => $E\theta^* = \theta + C$
- Ước lượng điểm của một số tham số quan trọng:
 - o Nếu θ = EX thì $\theta^* = \bar{X}$ → Ước lượng không chệch của EX
 - \circ Nếu θ = DX thì $\theta^* = S^2$ (hoặc \hat{S}^2)
 - $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2 \rightarrow \text{ULKC của DX}$
 - $\hat{S}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i \bar{X})^2 \rightarrow ULC \text{ của DX}$

Với đội chệch C =
$$\frac{-DX}{n}$$

- $\circ \quad \theta = \sigma \Rightarrow \theta^* = S (ho \check{a} c \, \hat{S})$ Với S là mẫu, \hat{S} là tổng thể
- $\theta = p(A) \Rightarrow \theta^* = f = \frac{k}{n}$

2. Phương pháp momen (Momen cấp k):

- Momen cấp k của X => $\mu_k = EX^k = \frac{1}{n} \sum_{i=1}^n x_i^2$
 - \rightarrow Đây là ước lương momen của μ_k

3. Phương pháp ước lượng hợp lý cực đại:

Bước 1: phân bố X ~

$$f(x_i / \text{tham so}) = \dots$$

Bước 2: Hàm hợp lý:

$$L(\text{tham số}) = \prod_{i=1}^{n} f(x_i / \text{tham số})$$

- Bước 3: Logarit 2 vế => l(tham số) = ln(L(tham số))
- Bước 4: Đạo hàm l(tham số) theo tham số

$$\Rightarrow \frac{\partial l(\tanh s \delta)}{\partial (tham s \delta)} = 0 \Rightarrow \tanh s \delta = \theta^*$$

<u>Chú thích:</u>

$$\frac{1}{n}\sum_{i=1}^{n}x_{i}=\overline{X}$$

$$E(x-\overline{X})^{2}=D\overline{X}$$

4. Ước lượng hiệu quả:

• Ước lượng hợp lý cực đại:

$$L_X(\theta) = \prod_{i=1}^n f(x_i, \theta)$$

$$\Rightarrow \begin{bmatrix} \frac{\partial L_X(\theta)}{\partial \theta} = 0 \\ \frac{\partial \ln(L_X(\theta))}{\partial \theta} = 0 \end{bmatrix} \Rightarrow \theta^* = ?$$

• Ước lượng hiệu quả:

$$I_X(\theta) = E\left(\left(\frac{\partial \ln(f_X(x,\theta))}{\partial \theta}\right)^2\right) = -E\left(\frac{\partial^2 \ln(f_X(x,\theta))}{\partial \theta^2}\right)$$

$$\begin{array}{ccc} \circ & \text{N\'eu} \ X_1, X_2, \dots, X_n \ \text{đ\'oc lập} \rightarrow I_X(\theta) = \text{n}I_{X1}(\theta) \\ & \Rightarrow \begin{cases} E \, \theta^*(X_1, X_2, \dots, X_n) = \theta \\ D \, \theta^*(X_1, X_2, \dots, X_n) = \frac{1}{I_X(\theta)} = > Hiệu \ quả \end{cases}$$

Cách so sánh:

•
$$D\theta^* = E(\theta^* - giá trị ước lượng)^2$$

•
$$I(\lambda) = E(\left(\frac{\partial \ln(\lambda)}{\partial \lambda}\right)^2)$$

$$\Rightarrow \mathsf{N\~eu} \left| \begin{array}{l} I(\lambda) = \frac{1}{D\theta^*} --> C\'ohi \hat{e}u \ qu \mathring{a} \\ I(\lambda) \neq \frac{1}{D\theta^*} --> Kh\^ong \ hi \hat{e}u \ qu \mathring{a} \end{array} \right|$$

• Chú thích:

$$Z_{\alpha} => \emptyset(Z_{\alpha}) = 1 - \alpha = \beta$$

$$\Rightarrow Z_{\alpha} = \emptyset^{-1}(1 - \alpha)$$

Bài 4: ƯỚC LƯỢNG KHOẢNG TIN CẬY

1. Ước lượng khoảng tin cậy hai phía:

- a. Giá trị trung bình: $(\theta = EX)$
 - Nếu σ^2 đã biết với n ≥ 30:
 - Khoảng tin cậy $\rightarrow (\bar{X} \pm z_{\frac{\alpha}{2}}, \frac{\sigma}{\sqrt{n}})$
 - Sai số $\rightarrow \varepsilon = z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}$
 - \circ Nếu σ^2 chưa biết với n đủ lớn:
 - Khoảng tin cậy $\rightarrow (\bar{X} \pm z_{\frac{\alpha}{2}}, \frac{S}{\sqrt{n}})$
 - Sai số $\rightarrow \varepsilon = z_{\frac{\alpha}{2}} \cdot \frac{S}{\sqrt{n}}$
 - \circ Nếu σ^2 chưa biết với n nhỏ:
 - Khoảng tin cậy $\rightarrow (\bar{X} \pm t_{\frac{\alpha}{2}; n-1} \cdot \frac{S}{\sqrt{n}})$
 - Sai số $\rightarrow \varepsilon = t_{\frac{\alpha}{2}; n-1} \cdot \frac{s^2}{\sqrt{n}}$
- b. Tỷ lệ: $(\theta = p)$
 - Khoảng tin cậy \rightarrow (f $\pm z_{\frac{\alpha}{2}}$. $\sqrt{\frac{f(1-f)}{n}}$)
 - Tỷ lệ → $f = \frac{k}{n}$
- c. Phương sai: $(\theta = \sigma^2)$
 - $\bigcirc \quad \text{Khoảng tin cậy} \Rightarrow \left(\frac{(n-1)S^2}{\chi^2_{\frac{\alpha}{2};(n-1)}}; \frac{(n-1)S^2}{\chi^2_{\frac{\alpha}{2};(n-1)}} \right)$

2. Cho $\varepsilon \leq a \rightarrow$ Tìm cỡ mẫu n:

- a. Giá trị trung bình: ($\theta = EX$)
 - Nếu σ^2 đã biết với n ≥ 30:
 - Nếu σ^2 chưa biết với n < 30:
 - Nếu σ^2 chưa biết với n < 30:
 - $\bullet \quad t_{\frac{\alpha}{2};\,n-1} \cdot \frac{s}{\sqrt{n}} \leq \mathsf{a} \; \Leftrightarrow \left(t_{\frac{\alpha}{2};\,n-1} \cdot \frac{s}{a}\right)^2 \leq \mathsf{n}$

b. Tỷ lệ:
$$(\theta = p)$$

o Nếu cho f:

• Sai số
$$\varepsilon = z_{\frac{\alpha}{2}} \cdot \sqrt{\frac{f(1-f)}{n}} \le a$$

o Nếu không cho f:

■
$$\sqrt{f(1-f)} \le \frac{f+(1-f)}{2} = \frac{1}{2}$$

→ Sai số: $\varepsilon \le Z_{\frac{\infty}{2}} \cdot \frac{1}{2\sqrt{n}} \le a \to C\tilde{o}$ mẫu n = ?

3. Ước lượng khoảng tin cậy 1 phía:

- a. Giá trị trung bình: ($\theta = EX$)
 - Nếu σ^2 đã biết với n ≥ 30:
 - Khoảng tin cậy bên trái $\rightarrow (-\infty; \bar{X} + Z_{\frac{\infty}{n}}, \frac{\sigma}{\sqrt{n}})$
 - Khoảng tin cậy bên phải $\rightarrow (\bar{X} z_{\frac{\alpha}{2}} \cdot \frac{\sigma^2}{\sqrt{n}}; +\infty)$
 - Nếu σ^2 chưa biết với n ≥ 30:
 - Khoảng tin cậy bên trái $\rightarrow (-\infty; \bar{X} + Z_{\frac{\infty}{2}}, \frac{S}{\sqrt{n}})$
 - Khoảng tin cậy bên phải $\rightarrow (\bar{X} z_{\frac{\alpha}{2}} \cdot \frac{s^2}{\sqrt{n}}; +\infty)$
 - Nếu σ^2 chưa biết với n < 30:
 - Khoảng tin cậy bên trái \rightarrow $(-\infty; \bar{X} + t_{\frac{\alpha}{2}; (n-1)}^{\alpha} \cdot \frac{S}{\sqrt{n}})$
 - Khoảng tin cậy bên phải $\rightarrow (\bar{X} t_{\frac{\alpha}{2};(n-1)}^{\alpha} \cdot \frac{s}{\sqrt{n}}; +\infty)$

b. Tỷ lệ:
$$(\theta = p)$$

- $\qquad \text{O. Khoảng tin cậy bên trái} \ \ \Rightarrow \ \ \text{(0; f} \ + z_{\frac{\propto}{2}} \, . \, \sqrt{\frac{f \, (1-f)}{n}} \, \text{)}$
- Khoảng tin cậy bên phải \rightarrow (f $-z_{\frac{x}{2}}$. $\sqrt{\frac{f(1-f)}{n}}$; 1)

c. Phương sai:
$$(\theta = \sigma^2)$$

- $\qquad \text{O Khoảng tin cậy bên trái } {\color{red} {\color{blue} \rightarrow}} \left(0; \, \frac{(n-1)\,S^2}{\chi^2_{1\,-\,\alpha;\,(n-1)}}\right)$
- Khoảng tin cậy bên phải $\rightarrow \left(\frac{(n-1)S^2}{\chi^2_{\alpha;(n-1)}}; +\infty\right)$

Bài 5: BÀI TOÁN KIỂM ĐỊNH GIẢ THIẾT

1. Tổng quan về kiểm định:

- Các bước làm cho bài toán kiểm định giả thiết:
 - B1: Xác định H_0 ; H_1
 - o B2: Tìm Test thống kê
 - o B3: Tìm miền bác bỏ △
 - O B4: Nếu Δ xảy ra thì Bác bỏ H0 (chấp nhận H1)
 - o B5: Kết luận

Bảng kiểm định giả thiết:

KẾT LUẬN	H0 đúng (H1 sai)	H0 sai (H1 đúng)
Bác bỏ H0 (chấp nhận H1)	SL1	Đúng
Không bác bỏ H0 (không chấp nhận H1)	Đúng	SL2

2. Bài toán tìm tiêu chuẩn thỏa mãn khi biết tổng thể, mẫu, chọn:

- Cho f = $\frac{k}{n}$ biết k là chọn, n là mẫu
- Độ tin cậy $\propto \rightarrow z_{\frac{\alpha}{2}}$
- Xác suất $p \in (f \pm z_{\frac{\alpha}{2}}, \sqrt{\frac{f(1-f)}{n}})$ => Số thỏa mãn = pN Với N là tổng thể

3. Kiểm định cho giá trị trung bình GTTB:

- $\bullet \quad \text{X\'et b\`ai to\'an so s\'anh GTTB} \Leftrightarrow \left\{ \begin{array}{l} \mu = EX \\ \mu_0 \ chwa \ bi\~et \\ m\'wc \ \acute{y} \ ngh\~ia \ \ \ <\! > \ 0 \end{array} \right.$
 - \circ BT1 => giả thiết H0: $\mu=\mu_0$; đối thiết H1: $\mu\neq\mu_0$
 - \circ BT2 => giả thiết H0: $\mu \leq \mu_0$; đối thiết H1: $\mu > \mu_0$
 - \circ BT3 => giả thiết H0: $\mu \geq \mu_0$; đối thiết H1: $\mu < \mu_0$

a) TH1: Nếu DX = σ^2 đã biết, X ~ N(μ , σ^2) với n \geq 30:

- Test thống kê \rightarrow T = $\frac{\bar{X} \mu_0}{\sigma / \sqrt{n}}$
- Miền tiêu chuẩn bác bỏ H0:
 - S1 = { $|T| \ge z_{\frac{\infty}{2}}$ } \rightarrow BT1 S2 = { $|T| \ge z_{\infty}$ } \rightarrow BT2

 - S3 = { $|T| \le -z_{\infty}$ } \rightarrow BT3

b) TH2: Nếu phương sai DX chưa biết với n ≥ 30:

• Test thống kê
$$\rightarrow$$
 T = $\frac{\bar{X} - \mu_0}{S / \sqrt{n}}$

• Miền tiêu chuẩn bác bỏ H0:

o S1 = {
$$|T| \ge z_{\frac{\alpha}{2}}$$
} \rightarrow BT1
o S2 = { $|T| \ge z_{\alpha}$ } \rightarrow BT2
o S3 = { $|T| \le -z_{\alpha}$ } \rightarrow BT3

c) TH3: Nếu phương sai DX chưa biết, $X \sim N(\mu, \sigma^2)$ với n nhỏ < 30:

• Test thống kê
$$\rightarrow$$
 T = $\frac{\bar{X} - \mu_0}{S / \sqrt{n}}$

• Miền tiêu chuẩn bác bỏ H0:

o S1 = {
$$|T| \ge t_{\frac{\alpha}{2};(n-1)}$$
 } \rightarrow BT1
o S2 = { $|T| \ge t_{\alpha;(n-1)}$ } \rightarrow BT2
o S3 = { $|T| \le -t_{\alpha;(n-1)}$ } \rightarrow BT3

4. Kiểm định cho tỷ lệ hay cho xác suất:

• Giả sử p = p(A) là tỷ lệ với
$$p_0$$
 cho tr ước: ($\propto > 0$)
$$f = \frac{k}{n} với np_0 \ge 5 \text{ và n}(1 - p_0) \ge 5$$

• Test thống kê => T =
$$\frac{(f - p_0)\sqrt{n}}{\sqrt{p_0(1 - p_0)}}$$

• Bài toán:

○ BT1 => giả thiết H0:
$$p=p_0$$
 ; đối thiết H1: $p\neq p_0$ \rightarrow Miền $\Delta=\{\,|T|\,\geq\,z_{\frac{\alpha}{2}}\}$ = S1

o BT2 => giả thiết H0:
$$p \le p_0$$
 ; đối thiết H1: $p > p_0$ \Rightarrow Miền $\Delta = \{ |T| \ge z_{\infty} \}$ = S2

$$\circ$$
 BT3 => giả thiết H0: $p\geq p_0$; đối thiết H1: $p< p_0$ \Rightarrow Miền $\varDelta=\{\,|T|\,\leq\,-z_{\propto}\,\}$ = S3

=> Nếu miền thỏa mãn => H0 bác bỏ, H1 chấp nhận

5. Kiểm định phương sai:

• Giả sử $\sigma^2 = DX \, ch wa \, biết$, $\sigma_0^2 \, cho \, trước \, mức \, ý \, nghĩa <math>\propto \, nh \mathring{o} \, > \, 0$:

$$\circ \quad \text{X\'et b\`ai to\'an} \Leftrightarrow \begin{cases} H0: \sigma^2 = \sigma_0^2 \\ H1: \sigma^2 \neq \sigma_0^2 => BT1 \\ H1: \sigma^2 > \sigma_0^2 => BT2 \\ H1: \sigma^2 < \sigma_0^2 => BT3 \end{cases}$$

O Test thống kê: T =
$$\frac{(n-1)S^2}{\sigma_0^2} \sim \chi^2_{(n-1)}$$

Miền bác bỏ giả thiết H0:

$$0 \quad \Delta 2 = \left(\chi^{2}_{\alpha;(n-1)}; +\infty\right)$$

$$\Rightarrow \Delta 2 = \left\{T > \chi^{2}_{(n-1);\alpha}\right\}$$

○
$$\Delta 3 = (0; \chi^2_{1-\alpha;(n-1)})$$

 $\rightarrow \Delta 3 = \{T < \chi^2_{(n-1);1-\alpha}\}$

6. Tiêu chuẩn phù hợp χ^2 :

- Bài toán kiểm định giả thiết khi cho sẵn số liệu và tỷ lệ xác suất:
 - H0: số liệu phù hợp với tỷ lệ đã cho
 - H1: số liệu đã cho không phù hợp với tỷ lệ đã cho
- Tần số quan sát m_i (ứng với tỷ lệ p_i) \rightarrow n = $\sum_{i=1}^k m_i$ => Tần số lý thuyết $\widehat{m_i} = np_i$ (được tính khi H0 đúng)
- Test thống kê T = $\sum_{i=1}^{k} \frac{(m_i np_i)^2}{np_i} = \frac{1}{n} \sum_{i=1}^{k} (\frac{m_i^2}{p_i}) n$
- Miền bác bỏ H0 là: S = { $T \geq \chi^2_{k-1} (\propto)$ } => Tiêu chuẩn sử dụng tốt khi $m_i \geq 5$

Bài 6: BÀI TOÁN KIỂM ĐỊNH HAI TỔNG THỂ

SO SÁNH TRUNG BÌNH HAI TỔNG THỂ

$$\mu_{1} = \text{EX và } \sigma_{1} = DX \quad \text{+BT1} \Rightarrow \begin{cases} \text{H0: } \mu_{1} = \mu_{2} \\ \text{H1: } \mu_{1} \neq \mu_{2} \end{cases}$$

$$\mu_{2} = \text{EY và } \sigma_{2} = DY \quad \text{+BT2} \Rightarrow \begin{cases} \text{H0: } \mu_{1} \leq \mu_{2} \\ \text{H1: } \mu_{1} > \mu_{2} \end{cases}$$

$$\mathbf{GIÅ THIẾT ĐÃ CHO} \quad \text{+BT3} \Rightarrow \begin{cases} \text{H0: } \mu_{1} \leq \mu_{2} \\ \text{H1: } \mu_{1} < \mu_{2} \end{cases}$$

1. Với mẫu độc lập: (X và Y đều có phân bố chuẩn)

- a) TH1: Nếu phương sai σ_1^2 ; σ_2^2 đã biết và n_1 ; $n_2 \ge 30$:
 - Test thống kê \rightarrow T = $\frac{\overline{X} \overline{Y}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$
 - Miền tiêu chuẩn:

o S1 =
$$\left\{ |T| \ge z_{\frac{\infty}{2}} \right\}$$
 \rightarrow BT1
o S2 = $\left\{ T \ge z_{\infty} \right\}$ \rightarrow BT2
o S1 = $\left\{ T \le -z_{\infty} \right\}$ \rightarrow BT3

- b) TH2: Nếu phương sai DX, DY chưa biết (${\sigma_1}^2$ = ${\sigma_2}^2$) và n_i < 30:
 - Test thống kê \rightarrow T = $\frac{\bar{X} \bar{Y} \mu}{\sqrt{\frac{S^2}{n_1} + \frac{S^2}{n_2}}} = \frac{\bar{X} \bar{Y}}{S\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$ $với \ \mu \ là so sánh độ chênh lệch giữa <math>X \ và \ Y$

 - Miền tiêu chuẩn bác bỏ H0:

$$\begin{array}{ll} \circ & \mathrm{S1} = \left\{ |T| \, \geq \, t_{n_1 \, + \, n_2 \, - \, 2}(\frac{\alpha}{2}) \, \right\} & \rightarrow \, \mathrm{BT1} \\ \circ & \mathrm{S2} = \left\{ T \, \geq \, t_{n_1 \, + \, n_2 \, - \, 2}(\alpha) \, \right\} & \rightarrow \, \mathrm{BT2} \\ \circ & \mathrm{S1} = \left\{ T \, \leq \, - \, t_{n_1 \, + \, n_2 \, - \, 2}(\alpha) \right\} & \rightarrow \, \mathrm{BT3} \\ \end{array}$$

- c) TH3: Nếu phương sai DX, DY chưa biết $({\sigma_1}^2 \neq {\sigma_2}^2)$ và $n_i < 30$:

 Test thống kê \Rightarrow T = $\frac{\bar{X} \bar{Y}}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$ Bậc tự do \Rightarrow df = $\frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\left(\frac{S_1^2}{n_1}\right)^2 + \left(\frac{S_2^2}{n_2}\right)^2}$
 - Miền bác bỏ giả thiết H0:

o S1 =
$$\left\{ |T| \ge t_{df}(\frac{\alpha}{2}) \right\}$$
 \rightarrow BT1
o S2 = $\left\{ T \ge t_{df}(\alpha) \right\}$ \rightarrow BT2
o S1 = $\left\{ T \le -t_{df}(\alpha) \right\}$ \rightarrow BT3

$$\circ \quad S2 = \{T \geq t_{df}(\propto) \} \quad \Rightarrow BT2$$

$$\circ \quad S1 = \left\{ T \le -t_{df}(\propto) \right\} \quad \Rightarrow BT3$$

2. Với mẫu phụ thuộc:

- Ta xét $D = X Y \sinh ra bài toán:$
 - o H0: ED = 0 và H1: ED ≠ 0
 - o H0: ED ≤ 0 và H1: ED > 0
 - o H0: ED ≥ 0 và H1: ED < 0
- Bài toán kiểm định so sánh hai giá trị trung bình sẽ được đưa về bài toán so sánh trung bình giữa D với 0 (1 biến → 1 chiều)

Bài 7: TIÊU CHUẨN PHI THAM SỐ

Không phương sai, không phân bố chuẩn, n → 0

1. Tiêu chuẩn hạng (Tiêu chuẩn Mann – Whitney):

- Cho hai mẫu độc lập X và Y biết: $\begin{cases} X &= \{x_1, x_2, \dots, x_n\} \ có \ cỡ \ mẫu \ n \\ Y &= \{y_1, y_2, \dots, y_m\} \ có \ cỡ \ mẫu \ m \end{cases}$ Kiểm định giả thiết: $\begin{cases} H0: "X \ và \ Y \ cùng \ phân \ bố" \\ H1: "X \ và \ Y \ khác \ phân \ bố" \end{cases}$
- Áp dụng tiêu chuẩn Mann Whitney:
 - B1: Gôp 2 mẫu m + n
 - o B2: Sắp xếp m + n giá trị $(x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_m)$ theo thứ tự tăng dần: $c_1 < c_2 < c_3 < \ldots < x_{n+m}$

$$\text{V\'oi} \begin{cases} N \~eu \ x_i \ = \ c_k \ => \ H \verb"ang \ x_i \ l\`a \ k \\ N \~eu \ x_j \ = \ c_k \ => \ H \verb"ang \ x_j \ l\`a \ k \end{cases}$$

- B3: Tìm tổng các hạng:
 - Giả sử x_i có hạng $r_i \rightarrow$ Tổng các hạng của x_i là $R_1 = r_1 + r_2 + ... + r_n$
 - Giả sử y_i có hạng $s_i \rightarrow$ Tổng các hạng của y_i là $R_2 = s_1 + s_2 + \ldots + s_m$ $\Rightarrow R_1 + R_2 = r_1 + r_2 + ... + r_n + s_1 + s_2 + ... + s_m$
- B4: Ta chọn R = $min(R_1, R_2)$

Nếu R =
$$R_1 \rightarrow \begin{cases} m, n \geq 8 \ v \grave{a} \ R_1 \sim \mathrm{N}(\mu, \sigma^2) \\ H0 \ \mathrm{d} \acute{u} n g \end{cases}$$

$$\Rightarrow \operatorname{ER} = \frac{n \ (n + m + 1)}{2}$$

$$\Rightarrow \operatorname{DR} = \frac{n m \ (n + m + 1)}{12}$$

Nếu R =
$$R_2$$
 \rightarrow $\begin{cases} m, n \geq 8 \ v \grave{a} \ R_2 \sim N(\mu, \sigma^2) \\ H0 \ dúng \end{cases}$
 $\Rightarrow \text{ER} = \frac{m \ (n+m+1)}{2} \qquad \Rightarrow \mu_R$
 $\Rightarrow \text{DR} = \frac{nm \ (n+m+1)}{12} \qquad \Rightarrow \sigma_R^2$

- O B5: Test thống kê: $T = \frac{R ER}{\sqrt{DR}} = \frac{R ER}{\sigma_R}$
- B6: Xét miền bác bỏ:

 - $|T| > z_{\frac{\infty}{2}}$ \rightarrow BT1 $|T| > z_{\infty}$ \rightarrow BT2 + BT3

BẢNG TIÊU CHUẨN:

Rank	Value	Biến
1	Val1	Х
2	Val2	Υ
3	Val3*	X, Y
n	Valn	Х

 \triangleright Chọn R = min(R_1, R_2)

<u>Chú ý: Nếu (c;) có nhiều giá trị trùng nhau thì ta quy ước hạng của các giá trị trùng nhau:</u>

$$c_{k-1} < c_k = c_{k+1} < c_{k+2}$$

Hang
$$c_k = \text{hang } c_{k+1} = \frac{k + (k+1)}{2}$$

=> Tổng quát: Hạng
$$r_i = rac{\sum các phần tử trùng nhau}{số phần tử trùng nhau}$$

2. Tiêu chuẩn dấu: (mẫu phụ thuộc)

- Cho (X, Y) là cặp gồm 2 đại lượng ngẫu nhiên: $\Leftrightarrow \begin{cases} X : "Hiệu \ quả \ phương \ pháp \ 1" \\ Y : "Hiệu \ quả \ phương \ pháp \ 2" \end{cases}$ → Tác động lên cùng một cá thể
- Xét bài toán:

$$\begin{cases} H0: "Hiệu quả phương pháp 1 và phương pháp 2 như nhau" \\ & ["Hiệu quả phương pháp 1 và phương pháp 2 khác nhau" \to BT1 \\ H1: & ["Hiệu quả phương pháp 1 > phương pháp 2" \to BT2 \\ "Hiệu quả phương pháp 1 < phương pháp 2" \to BT3 \end{cases}$$

Có (X, Y) = (x_1, y_1) ; (x_1, y_1) ; ...

o B1: Đặt
$$d_i$$
 = $x_i - y_i$ và loại bỏ các $d_i = 0$

- $\circ \quad \text{B1: } \exists \mathsf{A} \mathsf{i} = x_i y_i \text{ và loại bỏ các } d_i = 0 \\ \bullet \quad \mathsf{Biết} \begin{cases} n^+ \text{ là các hạng } d_i \text{ (v\'oi } d_i > 0) \\ n^- \text{ là các hạng } d_i \neq 0 \end{cases}$
 - Nếu H0 đúng thì số hạng dấu + có xu hướng mang -

$$\circ$$
 B2: Độ lệch chuẩn $\sigma = \frac{1}{2\sqrt{\tilde{n}}}$

■ Nếu H0 đúng
$$\rightarrow n^+$$
 có phân bố nhị thức $\begin{cases} p = 0.5 \\ \tilde{n} \end{cases}$ với f = $\frac{n^+}{\tilde{n}}$

O B3: Test thống kê: T =
$$(f - 0.5) 2 \sqrt{\tilde{n}} = \frac{2n^+ - \tilde{n}}{\sqrt{\tilde{n}}}$$

BẢNG TIÊU CHUẨN:

X	Υ	$d_i = x_i - y_i$	Dấu
x_1	y_1	$x_1 - y_1$	+
x_2	y_2	$x_2 - y_2$	-
x_3	y_3	$x_3 - y_3$	0
x_n	\mathcal{Y}_n	$x_n - y_n$	+

$$\circ$$
 Với $\tilde{n} = count (dấu \neq 0)$

o Với
$$n^+$$
= count (dấu > 0)

3. Tiêu chuẩn hạng có dấu Wilcoxon: (mẫu phụ thuộc)

• B1: Đặt
$$d_i = x_i - y_i$$
 và loại bỏ các $d_i = 0$

• B2: Tính hạng
$$(d_i)$$
 với $d_i \neq 0$

o
$$\tilde{n}$$
 là các $d_i \neq 0$

$$\circ \quad \mathit{R}^{+}$$
 là Tổng các hạng $|d_{i}|$ với $d_{i} > 0$

o
$$R^-$$
 là Tổng các hạng $|d_i|$ với $d_i < 0$

B3: Nếu H0 đúng thì R^+ và R^- có cùng phân bố với $\tilde{n} \ge 8$:

$$\circ \quad \text{Kỳ vọng} \rightarrow \mu = ER = \frac{\tilde{n} (\tilde{n} + 1)}{4}$$

O Kỳ vọng
$$\rightarrow \mu = ER = \frac{\tilde{n} (\tilde{n} + 1)}{4}$$
O Phương sai $\rightarrow S^2 = DR = \frac{\tilde{n} (\tilde{n} + 1) (2\tilde{n} + 1)}{24}$

• B4: Test thống kê
$$\rightarrow$$
 T = $\frac{R - ER}{\sqrt{DR}}$

$$\circ$$
 Chọn R = min(R^+ , R^-)

• B5: Kết luận:
$$\begin{bmatrix} |T| > z_{\underline{\alpha}} \to BT1 \\ \frac{1}{2} \\ |T| > z_{\alpha} \to \begin{bmatrix} T > z_{\alpha} \to BT2 \\ T < -z_{\alpha} \to BT3 \end{bmatrix}$$

BẢNG TIÊU CHUẨN:

X	Y	$d_i = x_i - y_i$	$\begin{array}{c} \operatorname{Rank}(d_i) \\ (d_i > 0) \end{array}$	$\begin{array}{c} \operatorname{Rank}(d_i) \\ (d_i < 0) \end{array}$
x_1	y_1	$x_1 - y_1$	$\operatorname{rank}(d_1)$	
x_2	<i>y</i> ₂	$x_2 - y_2$		$\operatorname{rank}(d_2)$
<i>x</i> ₃	y_3	$x_3 - y_3$		
x_n	y_n	$x_n - y_n$	$\operatorname{rank}(d_n)$	
			R ⁺	R ⁻

$$\circ \quad \text{Chọn} \begin{cases} R = \min(R^+, R^-) \\ \tilde{n} \ l \grave{a} \ count \ (d_i \neq 0) \end{cases}$$

Bài 8: SO SÁNH HAI TY LỆ VÀ PHƯƠNG SAI

1. So sánh hai tỷ lệ:

Giả sử p_1, p_2 là hai tỷ lệ chưa biết \rightarrow Cần so sánh:

$$\begin{array}{cccc} \circ & \text{H0:} \ p_1 &=& p_2 \ \text{v\'oi} \ \text{f} = \frac{k_1 + k_2}{n_1 + n_2} \\ \circ & \text{H1:} \begin{cases} p_1 &\neq& p_2 \to BT1 \\ p_1 &>& p_2 \to BT2 \\ p_1 &<& p_2 \to BT3 \end{cases}$$

- Test thống kê: T = $\frac{f_1 f_2}{\sqrt{f(1-f)(\frac{1}{n_1} + \frac{1}{n_2})}}$
- Miền bác bỏ:

$$\circ \quad \mathsf{S1} = \{ |T| \geq z_{\frac{\alpha}{2}} \}$$

$$\circ \quad S2 = \{ |T| \geq z_{\infty} \}$$

$$\circ \quad S3 = \{ |T| \le -z_{\infty} \}$$

2. So sánh hai phương sai:

• Giả sử X, Y có phân bố chuẩn với σ_1^2 , σ_2^2 là phương sai chưa biết:

$$\circ \quad \text{H0: } \sigma_1^2 = \sigma_2^2 \rightarrow \text{giả thiết}$$

o H0:
$$\sigma_1^2 = \sigma_2^2 \rightarrow \text{giả thiết}$$
o H1:
$$\begin{bmatrix} \sigma_1^2 \neq \sigma_2^2 \rightarrow BT1 \\ \sigma_1^2 > \sigma_2^2 \rightarrow BT2 \\ \sigma_1^2 < \sigma_2^2 \rightarrow BT3 \end{bmatrix}$$

- Tính chất phân phối mẫu T = $\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2}$ theo phân bố Fisher $(n_1 1; n_2 1)$
- Test thống kê \rightarrow T = $\frac{S_1^2}{S_2^2}$
- Miền bác bỏ:

$$\circ \quad \text{S1 = } (0; \, f_{n_1-1,\,n_2-1}(1\,-\,\tfrac{\alpha}{2})) \cup (f_{n_1-1,\,n_2-1}(\tfrac{\alpha}{2}); \, inf)$$

o S2 =
$$(f_{n_1-1, n_2-1}(\propto); inf)$$

$$\circ \quad S3 = (0; f_{n_1 - 1, n_2 - 1}(1 - \alpha))$$

Bài 9: PHÂN TÍCH PHƯƠNG SAI

1. Phân tích phương sai 1 nhân tố:

• Cho mẫu các mức nhân tố:

	Các mức nhân tố				
	1	2	3	4	Tổng số
x_1	T ₁₁	T ₁₂	T ₁₃	T_{14}	
x_2	T ₂₁	T_{22}	T ₂₃	T_{24}	
x_3	T_{31}	T_{32}	T_{33}	T_{34}	
•••					
n_i	n_1	n_2	n_3	n_4	n
T_i	$\sum T_1$	$\sum T_2$	$\sum T_3$	$\sum T_4$	Т

- Cho: $\begin{cases} H0: \mu_1 = \mu_2 = ... = \mu_n \\ H1: \exists \ i, j \ sao \ cho \ y_i \neq y_j \end{cases}$
 - o Trung bình mẫu thứ i:

o Trung bình mẫu:

$$\bar{X} = \frac{T}{n} = \frac{\sum \sum x_{ij}}{n}$$

o Tổng bình phương chung:

• SST =
$$\sum_{i} \sum_{j} (X_{ij} - \bar{X})^{2} = \sum_{i,j} (x_{ij})^{2} - \frac{T^{2}}{n} = \sum_{i} T_{i}^{2} - \frac{T^{2}}{n}$$

o Tổng bình phương về sự khác nhau giữa nhóm:

$$SSF = \sum \frac{T_i^2}{n_i} - \frac{T^2}{n} = \frac{T_1^2}{n_1} + \frac{T_2^2}{n_2} + \dots + \frac{T_k^2}{n_k} - \frac{T^2}{n}$$

o Tổng bình phương sai số trong từng nhóm:

• SSE =
$$\sum_{i} \sum_{j} (X_{ij} - \overline{X}_{j})^{2}$$
 = SST – SSF

- → SST = SSF + SSE
- Cho bảng phân tích phương sai:

	Bảng phân tích phương sai					
	<u>Bậc tự do</u>	Tổng bình phương	Trung bình bình phương	<u>Tỷ số F</u>		
Nhân tố	k - 1	SSF	$MSF = \frac{SSF}{k-1}$	_ MSF		
Sai số	n - k	SSE	$MSE = \frac{SSE}{n-k}$	$F = \frac{MSF}{MSE}$		
<u>Tổng</u>	n - 1	SST				

\rightarrow F có phân bố Fisher(k – 1, n – k)

o Miền bác bỏ H0
$$\rightarrow$$
 $\Delta = \{F \geq f_{k-1; n-k}\}$

2. Phân tích phương sai 2 nhân tố:

 $\begin{cases}
A, B & \text{là 2 } nh\text{ân tố} \\
A & \text{có s } m\text{ức tác động} \\
B & \text{có r } m\text{ức tác động}
\end{cases}$

• Bảng các nhân tố:

		Nhân tố A				
		Mức 1	Mức 2		Mức s	Tổng
	Mức 1	<i>x</i> ₁₁	<i>x</i> ₁₂		x_{1s}	T_{10}
Nhân tố B	Mức 2	<i>x</i> ₂₁	<i>x</i> ₂₂	•••	x_{2s}	T_{20}
INITIALIT LO B	•••					
	Mức r	x_{r1}	x_{r2}		x_{rs}	T_{r0}
Tổ	ng	T_{01}	T_{02}		T_{0s}	T

BẢNG PHÂN TÍCH PHƯƠNG SAI

	Bậc tự do	Tổng bình phương	TBBP	Tỷ số F
Nhân tố A	s - 1	SSF_A	MSF_A	$F_A = \frac{MSF_A}{MSE}$
Nhân tố B	r - 1	SSF_B	MSF_{B}	$F_B = \frac{MSF_B}{MSE}$
Tương tác	(s – 1)(r – 1)	SSI	MSI	$F_{AB} = \frac{MSI}{MSE}$
Sai số	n – rs	SSE	MSE	
Tổng	n - 1	SST		

Miền bác bỏ giả thiết (3 bài toán):

$$\circ \quad \Delta_1 = \{F_A \ge f_{s-1; n-rs; \propto}\}$$

$$\circ \quad \Delta_2 = \{F_B \geq f_{r-1;\,n-rs;\,\alpha}\}$$

$$\circ \quad \Delta_1 = \{F_{AB} \ge f_{(s-1)(r-1); n-rs; \alpha}\}$$

Một số lưu ý về công thức:

$$A = \sum X^{2}$$

$$SST = A - \frac{T^{2}}{n}$$

$$SSF_{A} = \frac{T_{01}^{2}}{n_{01}} + \frac{T_{02}^{2}}{n_{02}} + \dots + \frac{T_{0s}^{2}}{n_{0s}} - \frac{T^{2}}{n} = \frac{\sum T_{hang}^{2}}{\sum n_{hang}^{2}} - \frac{T^{2}}{n}$$

$$SSF_{B} = \frac{T_{10}^{2}}{n_{10}} + \frac{T_{20}^{2}}{n_{20}} + \dots + \frac{T_{r0}^{2}}{n_{r0}} - \frac{T^{2}}{n} = \frac{\sum T_{col}^{2}}{\sum n_{col}^{2}} - \frac{T^{2}}{n}$$

$$SSE = A - (\frac{T_{11}^{2}}{n_{11}} + \dots + \frac{T_{rs}^{2}}{n_{rs}})$$

$$SSI = SST - (SSF_{A} + SSF_{B} + SSE)$$

$$0 \quad SSE = A - \left(\frac{T_{11}^2}{T_{11}^2} + \dots + \frac{T_{rs}^2}{T_{rs}^2}\right)$$

$$\circ$$
 SSI = SST - (SSF_A + SSF_B + SSE_A

Bài 10: KIỂM TRA TÍNH ĐỘC LẬP VÀ SO SÁNH

1. Kiểm tra tính độc lập:

- BGKĐGT:
 - H₀: "X và Y độc lập với nhau"
 - H₁: "X và Y không độc lập với nhau"
- Số liệu quan sát:

	y_1	 \mathcal{Y}_{c}	$\sum h$ àn g
x_1	n_{11}	 n_{1c}	n_{10}
x_r	n_{r1}	 n_{rc}	n_{r0}
$\sum c \hat{0} t$	n_{01}	 n_{0c}	n

=> với n_{ij} là số lần mà giá trị $X=x_i$ và $Y=y_j$ \rightarrow Tần số quan sát

• Tần số quan sát:

$$\circ \quad \widetilde{n_{ij}} = \frac{n_{i0} \, n_{0j}}{n} = \frac{T \mathring{o}ng \, h \grave{a}ng \, i \cdot T \mathring{o}ng \, c \grave{o}t \, j}{n}$$

• Test thống kê:

$$\circ \quad \mathsf{T} = \mathsf{n} \left(\sum_{i,j} \frac{n_{ij}^2}{n_{i0} \, n_{0j}} \, - \, 1 \right) = \mathsf{n} \left(\frac{n_{11}^2}{n_{01} \, n_{10}} + \ldots + \frac{n_{r0}^2}{n_{0c} \, n_{r0}} \, - \, 1 \right)$$

• Miền bác bỏ:

$$\circ \quad \Delta = \{T \geq \chi_{(r-1)(c-1); \alpha}\}\$$

2. So sánh nhiều tỷ lệ:

- BTKĐGT:
 - \circ $H_0: p_1 = p_2 = ... = p_k \rightarrow$ phân bố giống
 - H_1 : k tỷ lệ $(p_i)_{i=1}^k$ khác nhau \rightarrow phân bố khác

	Mẫu 1	 Mẫu K	$\sum h$ àn g
Số lần xuất hiện A	m_1	 m_k	m
Số lần xuất hiện $ar{A}$	$n_1 - m_1$	 $n_k - m_k$	n - m
$\sum c$ ộ t	n_1	 n_k	n

• Test thống kê:

$$O T = n \left(\frac{m_1^2}{n_1 m} + ... + \frac{(n_k - m_k)}{(n - m) n_k} - 1 \right)$$

• Miền bác bỏ: $\Delta = \{T \geq \chi_{k-1; \infty}^2\}$ (gộp lại nếu < 5)

3. So sánh chính xác tỷ lệ:

• p_i tỷ lệ cần tính:

$$o f_1 = \frac{k_1}{m_1}; f_2 = \frac{k_2}{m_2}; \dots; f_k = \frac{k_k}{m_k}$$

- Ta có $f_1 < f_2 < f_3 < \ldots < f_k$ \Rightarrow kiểm tra lần lượt $f_1 < f_2$ => So sánh 2 tỷ lệ $\begin{cases} H_0\colon p_1>p_2\\ H_1\colon p_1< p_2 \end{cases}$
 - + Nếu bác bỏ H_0 => H_1 đúng => lấy kết quả
 - + Nếu không bác bỏ => xét tiếp

Bài 11: HỒI QUY TUYẾN TÍNH

1. Hệ số tương quan:

• HSTQ lý thuyết:

$$\circ \quad \rho(x,y) = \frac{cov(X,Y)}{\sqrt{DX\ DY}} = \frac{E[(X - EX)(Y - EY)]}{\sqrt{DX\ DY}}$$

- $0 \le |\rho| \le 1$
 - $N\text{\'e}u |\rho| = 0 \Rightarrow ph\mu thuộc$
 - $N\text{\'e}u |\rho| = 1 \Rightarrow \text{\'e}c l\hat{a}p$
- HSTQ có mẫu quan sát $(x_i; y_i)_{i=1}^n$ (theo cặp):

$$\circ r = \frac{\sum (X_i - \bar{X}) (Y_i - \bar{Y})}{\sqrt{\sum (X_i - \bar{X})^2 \sum (Y_i - \bar{Y})^2}} = \frac{n \sum XY - \sum X \sum Y}{\sqrt{[n \sum X^2 - (\sum X)^2][n \sum Y^2 - (\sum Y)^2]}}$$

- r < 0 ⇒ mối quan hệ nghịch biến</p>
- r > 0 => mối quan hệ đồng biến

2. Các dạng bài tập hồi quy:

- a) Dạng 1: Kiểm tra xem có mối quan hệ tuyến tính tương quan không?
 - $\begin{cases} \rho = 0 => X, Y \text{ không twong quan} \\ \rho \neq 0 => X, Y \text{ có twong quan} \end{cases}$
 - Test thống kê \rightarrow T = $\frac{r\sqrt{n-2}}{1-r^2}$ với r là hệ số tương quan
 - Miền bác bỏ giả thiết:

$$\circ \quad \Delta = \{|T| \geq t_{n-2;\frac{\alpha}{2}}\}$$

b) <u>Dạng 2: Kiểm tra mối quan hệ tương quan của nhân tố có giống nhau không? (tham số cho trước)?</u>

•
$$\begin{cases} \rho = \rho_0 \\ \rho \neq \rho_0 \end{cases} (v \acute{o} i \rho_0 \neq 0 \ cho \ tr w \acute{o} c)$$

- Test thống kê: $T = \frac{u m}{\sigma}$
- Miền bác bỏ: $\Delta = \{|T| \geq Z_{\infty}\}$
- c) Dạng 3: Xác định KTC cho hệ số tương quan ρ_0 ?
 - Ta có $\frac{u-m}{\sigma}$ ~ N(0, 1)
 - Ta xét:

$$\begin{split} & \mathsf{P}(-Z_{\frac{\propto}{2}} < \frac{u-m}{\sigma} < Z_{\frac{\propto}{2}}) = 1 - \infty \\ & \mathsf{P}(-\sigma Z_{\frac{\sim}{2}} < u-m < \sigma Z_{\frac{\sim}{2}}) = 1 - \infty \\ & \mathsf{P}(u-\sigma Z_{\frac{\sim}{2}} < m < u + \sigma Z_{\frac{\sim}{2}}) = 1 - \infty \end{split}$$

Với
$$\theta_1 = \mathbf{u} - \sigma Z_{\frac{\alpha}{2}}$$
; $\theta = m$; $\theta_2 = \mathbf{u} + \sigma Z_{\frac{\alpha}{2}}$

- Khoảng tin cậy 1 $\propto c da \ m \ l$ à: $(m_1; \ m_2) = (u \sigma Z_{\frac{\alpha}{2}}; \ u + \sigma Z_{\frac{\alpha}{2}})$
- Khoảng tin cậy $1 \propto của \rho l\grave{a}: (\frac{e^{2m_1} 1}{e^{2m_1} + 1}; \frac{e^{2m_2} 1}{e^{2m_2} + 1})$

d) <u>Dạng 4: Kiểm tra A, B có phụ thuộc tuyến tính không? (p</u>hi tuyến)

$$\circ \quad H_0 \colon \vartheta^2 - \rho^2 = 0$$

- $H_1: \vartheta^2 \rho^2 \neq 0 \Rightarrow$ có tương quan phi tuyến
- Test thống kê:

$$\bigcirc \qquad \mathsf{F} = \frac{\frac{\widehat{\vartheta}^2 - r^2}{k - 2}}{\frac{1 - \widehat{\vartheta}^2}{k - 2}} = \frac{(\widehat{\vartheta}^2 - r^2)(n - k)}{(1 - \widehat{\vartheta}^2)(k - 2)}$$

- O Biết $\hat{\vartheta}^2 = \frac{SSE}{SST} =$ chỉ số tương quan lý thuyết
- Miền bác bỏ $\rightarrow |F| \ge f_{(k-2; n-k; \frac{\alpha}{2})}$
- Chú thích:

$$\circ \quad SST = \sum x_{ij}^2 - \frac{T^2}{n}$$

$$0 \quad SSF = \sum \frac{T_i^2}{n_i} - \frac{T^2}{n}$$

o Tỷ số tương quan
$$\Rightarrow \vartheta_{Y/X} = 1 - \frac{E[Y - E(Y/X)]^2}{DY}$$

3. Hồi quy tuyến tính thực nghiệm:

$$Y = a + bX + \varepsilon => HQTT$$

$$\widehat{\varepsilon}_i = y_i - \widehat{y}_i$$

$$\bullet \quad a = \frac{\sum y - b \sum x}{n} = A$$

•
$$a = \frac{\sum y - b \sum x}{n} = A$$

• $b = \frac{n \sum xy - \sum x \sum y}{n \sum x^2 - (\sum x)^2}$

• Sai số tiêu chuẩn
$$\rightarrow S_{y/x}^2 = \frac{\sum y^2 - b \sum xy - a \sum y}{n-2} = \frac{\sum \widehat{\varepsilon}_i^2}{n-2}$$

+) Y theo
$$X \rightarrow Y = a + bX$$
 (X độc lập, Y phụ thuộc)

4. Kiểm tra sự phù hợp của mô hình (có hồi quy tuyến tính giữa X và Y không?)

$$Y = a + bX + \varepsilon$$

• BTKĐGT:
$$\begin{cases} b = 0 \\ b \neq 0 \end{cases}$$
 với b là hệ số hồi quy

• Test thống kê: T =
$$\frac{b}{S_B}$$
 với $S_B = \frac{S_{Y/X}}{\sqrt{\sum X^2 - \frac{(\sum X)^2}{n}}}$

• Miền bác bỏ giả thiết:
$$\Delta = \{|T| \geq t_{n-2;\frac{\alpha}{2}}\}$$

5. Hồi quy bội đưa về tuyến tính:

$$Y = a + bx^m$$

• Cách 1: đặt
$$z = x^m = y = a + bz (x_i, y_i) ----> (z_i, y_i)$$

• Cách 2: đặt
$$Z = a' + bX$$

6. Bài toán dự báo:

• Mô hình:
$$Y = a + bX + \varepsilon$$

+) Dự báo cho Y khi X =
$$X_0$$
 là $\rightarrow \widehat{Y}_0 = A + BX_0$

+) Dự báo cho EY khi
$$X = X_0$$
 là \rightarrow E(Y/X = X_0)

➤ KTC 1 -
$$\propto$$
 cho Y khi x = x_0 là:

$$(\widehat{Y}_0 \pm t_{n-2;\frac{\alpha}{2}}; S_{Y/X}) \sqrt{1 + \frac{1}{n} + \frac{(X_0 - \bar{X})^2}{\sum X^2 - \frac{1}{n}(\sum X)^2}})$$

$$ightharpoonup$$
 KTC 1 - \propto cho EY khi x = x_0 là:

$$(\widehat{Y}_0 \pm t_{n-2;\frac{\alpha}{2}}; S_{Y/X} \sqrt{\frac{1}{n} + \frac{(X_0 - \bar{X})^2}{\sum X^2 - \frac{1}{n}(\sum X)^2}})$$

7. Tỷ số tương quan với X và Y độc lập:

•
$$\vartheta_{Y/X}^2 = \frac{SSF}{SST} \text{ với } \begin{cases} \rho^2(X,Y) = \rho^2(Y,X) \\ \vartheta_{Y/X}^2 = \vartheta_{X/Y}^2 \end{cases}$$

• Cho
$$0 \le r^2 \le \vartheta_{Y/X}^2 \le 1$$
:

$$\circ \quad SST = \sum x_{ij}^2 - \frac{T^2}{n}$$

$$\circ \quad \mathsf{SSF} = \sum \frac{T_i^2}{n_i} - \frac{T^2}{n}$$

Y đối với X	X1	X2	Х3	 Xk	
Y1	<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	 x_{1k}	
Y2	<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	 x_{2k}	
Yk	x_{k1}	x_{k2}	x_{k3}	 x_{kk}	
	T1	T2	T3	 Tk	$T = \sum_{i=1}^{k} T_i$
	n1	n2	n3	 nk	$n = \sum_{i=1}^{k} n_i$