let \bar{X}_1 and \bar{X}_2 be the sample means based on independent samples of size n_1 and n_2 drawn from normal distributions with means μ_1 and μ_2 and variances ${\sigma_1}^2$ and ${\sigma_2}^2$ respectively. We already learned that:

$$\bar{X}_1 - \bar{X}_2 \sim N(\mu_1 - \mu_2, \frac{{\sigma_1}^2}{n_1} + \frac{{\sigma_2}^2}{n_2})$$
. Hence, we have,

$$\frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim Z \sim N(0,1)$$

$$\frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\sigma^2(\frac{1}{n_1} + \frac{1}{n_2})}} \sim Z \sim N(0,1), when \ \sigma_1^2 = \sigma_2^2 = \sigma^2$$

Let's define the "pooled variance": $S_p^2 = \frac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1+n_2-2}$.

Then

$$\frac{(n_1 + n_2 - 2)S_p^2}{\sigma^2} \sim \chi^2_{n_1 + n_2 - 2}$$

$$\frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{S_p^2(\frac{1}{n_1} + \frac{1}{n_2})}} \sim T_{n_1 + n_2 - 2}$$

let S_1^2 and S_2^2 be the sample variances based on independent samples of size n_1 and n_2 drawn from normal distributions with means μ_1 and μ_2 and variances ${\sigma_1}^2$ and ${\sigma_2}^2$ respectively. When $\sigma_1 = \sigma_2 = \sigma$, then,

$$\frac{(n_1 + n_2 - 2)S_p^2}{\sigma^2} \sim \chi^2_{n_1 + n_2 - 2}$$

Where, $S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$.

Proof:

According to the problem statement, we have,

$$\frac{(n_1-1)S_1^2}{\sigma^2} \sim X_{n_1-1}^2; \frac{(n_2-1)S_2^2}{\sigma^2} \sim X_{n_2-1}^2$$

Then,

$$\frac{(n_1 + n_2 - 2)S_p^2}{\sigma^2} = \frac{(n_1 - 1)S_1^2}{\sigma^2} + \frac{(n_2 - 1)S_2^2}{\sigma^2} = S_{p_1}^2 + S_{p_2}^2$$

And

$$m_{S_p^2}(t) = m_{S_{p_1}^2}(t) \cdot m_{S_{p_2}^2}(t) = (1 - 2t)^{-(n_1 - 1)/2} \cdot (1 - 2t)^{-(n_2 - 1)/2} = (1 - 2t)^{-(n_1 + n_2 - 2)/2}$$

Hence, we have,

$$\frac{(n_1 + n_2 - 2)S_p^2}{\sigma^2} \sim X_{n_1 + n_2 - 2}^2$$

let \bar{X}_1 and \bar{X}_2 , and S_1^2 and S_2^2 are the sample means and sample variances based on independent samples of size n_1 and n_2 drawn from normal distributions with means μ_1 and μ_2 and variances σ_1^2 and σ_2^2 respectively. When $\sigma_1 = \sigma_2 = \sigma$, then,

$$\frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{S_p^2(\frac{1}{n_1} + \frac{1}{n_2})}} \sim T_{n_1 + n_2 - 2}$$

Where,
$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$
.

Proof:

We already proved that
$$\frac{(n_1+n_2-2)S_p^2}{\sigma^2} \sim X_{n_1+n_2-2}^2$$
. Also, $\frac{(\bar{X}_1-\bar{X}_2)-(\mu_1-\mu_2)}{\sqrt{\sigma^2(\frac{1}{n_1}+\frac{1}{n_2})}} \sim Z \sim N(0,1)$

Following to the definition of T distribution,

nition of T distribution,
$$\frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\sigma^2(\frac{1}{n_1} + \frac{1}{n_2})}} \sim T_{n_1 + n_2 - 2} \Rightarrow \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{S_p^2(\frac{1}{n_1} + \frac{1}{n_2})}} \sim T_{n_1 + n_2 - 2}$$

$$\sqrt{\frac{(n_1 + n_2 - 2)S_p^2}{\sigma^2}} \sqrt{\frac{1}{n_1 + n_2 - 2}} \sim T_{n_1 + n_2 - 2}$$

Find the confidence interval of $\mu_1 - \mu_2$:

$$\frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{S_p^2(\frac{1}{n_1} + \frac{1}{n_2})}} \sim T_{n_1 + n_2 - 2}$$

Then, the bounds of a $100(1-\alpha)\%$ confidence interval on $\mu_1-\mu_2$ are:

$$(\bar{X}_1 - \bar{X}_2) \pm t_{\alpha/2} \sqrt{S_p^2 (\frac{1}{n_1} + \frac{1}{n_2})}$$

 $t_{\alpha/2}$ can be found from the $T_{n_1+n_2-2}$ probability table.

Example: A study is conducted to estimate the difference in the mean occupational exposure to radioactivity in utility workers in the years 1973 and 1979. These data based on independent samples of workers for the 2 years are obtained as:

1973	1979
$n_1 = 16$	$n_2 = 16$
$\bar{x}_1 = 0.94$	$\bar{x}_2 = 0.62$
$s_1^2 = 0.040$	$s_2^2 = 0.028$

Assuming the two populations are normal with means μ_1 and μ_2 and variances σ_1^2 and σ_2^2 respectively. Find the 95% confidence interval of $\mu_1 - \mu_2$.

Solution: We first check for equality of variances by testing: H_0 : $\sigma_1^2 = \sigma_2^2$; H_1 : $\sigma_1^2 \neq \sigma_2^2$ at the $\alpha = 0.2$ level. Assuming H_0 is true, the test statistic $\frac{{S_1}^2}{{S_2}^2} \sim F_{15,15}$. The observed value of the test statistic is $\frac{{s_1}^2}{{s_2}^2} = 0.04/0.028 \approx 1.43$ Since $\frac{{s_1}^2}{{s_2}^2} = \frac{0.04}{0.028} \approx 1.43 > 1$ and the test is two-tailed, $p_{value} = 2P[F_{15,15} \geq 1.43]$

Solution: (continued)

From the F probability table, we find out $P[F_{15,15} \ge 1.972]=0.1$, $P[F_{15,15} \le 1.972]=0.9$. Hence, we have,

$$P[F_{15,15} \ge 1.43] > 0.1$$

Therefore, we have,

$$p_{value} > 0.2$$

We are unable to reject H_0 at the significance level $\alpha=0.2$.

Hence, H_1 : $\sigma_1^2 = \sigma_2^2$ still holds.

Solution: (continued)

Since $\sigma_1^2 = \sigma_2^2$, we can use the pooled variance for the confidence interval estimate:

$$S_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2} = 0.034$$

From the T probability table, we find out that for the degree of freedom of 30, we have, $t_{0.025}=2.042$ The bounds for the 95% confidence interval are:

$$(\bar{X}_1 - \bar{X}_2) \pm t_{\frac{\alpha}{2}} \sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)} = (0.94 - 0.62) \pm 2.042 \times \sqrt{0.034 \times \left(\frac{1}{16} + \frac{1}{16}\right)} = 0.32 \pm 0.13$$
, i.e., $[0.19, 0.45]$

What does this confidence interval tell you?

We can be 95% confident that the difference in mean exposure to radioactivity for the 2 years is between 0.19 and 0.45. This interval does not contain the number 0 and is positive valued throughout. This indicates that the mean exposure in 1973 was higher than that in 1979

Hypothesis test on mean comparison:

I.
$$H_0$$
: $\mu_1 = \mu_2$, H_1 : $\mu_1 > \mu_2$
II. H_0 : $\mu_1 = \mu_2$, H_1 : $\mu_1 < \mu_2$
III. H_0 : $\mu_1 = \mu_2$, H_1 : $\mu_1 \neq \mu_2$

Under the assumption that H_0 is true, the test statistic becomes:

$$\frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)_0}{\sqrt{S_p^2(\frac{1}{n_1} + \frac{1}{n_2})}} \sim T_{n_1 + n_2 - 2}$$

Where $(\mu_1 - \mu_2)_0$ denotes the difference in population means assuming H_0 is true.

This test statistic is used only when the variances of the two populations equal, i.e., $\sigma_1 = \sigma_2$!!! You need to carry out test on comparison of variances before carrying out test on comparison of means!!!

Example: A study of the tensile strength of ductile iron annealed or strengthened at two different temperatures is conducted. It is thought that the lower temperature will yield the higher mean tensile strength. These data results:

1450 °F 1650 °F

$$n_1 = 10$$
 $n_2 = 16$
 $\bar{x}_1 = 18,900psi$ $\bar{x}_2 = 17,500psi$
 $S_1^2 = 1600$ $S_2^2 = 2500$

Solution:

First, let's test if we have $\sigma_1 = \sigma_2$. i.e., we want to test H_0 : $\sigma_1^2 = \sigma_2^2$; H_1 : $\sigma_1^2 \neq \sigma_2^2$

We choose $\frac{S_2^2}{S_1^2}$ as the test statistic. Assuming H_0 is true, $\frac{S_2^2}{S_1^2} \sim F_{15,9}$ and the observed

value of this statistic is $\frac{2500}{1600} = 1.56$

Since the observed value is 1.56 > 1, and this is a two-tailed test, we have,

$$p_{value} = 2P[F_{15,9} \ge 1.56]$$

From the F-table, we have $P[F_{15,9} \ge 2.34] = 0.10 \Rightarrow P[F_{15,9} \ge 1.56] > 0.10$ Hence,

$$p_{value} > 0.20$$

Therefore, H_0 should not be rejected at the significance level of 0.20. i.e., $\sigma_1^2 = \sigma_2^2$ holds.

/10 APPENDIX A

TABLE IX

F distribution (continued)

95% table

1 uis	undundu	(continue	a)					
Y2 Y1	9	10	11	12	13	14	15	16
1	240.543	241.881	242.983	243.905	244.689	245.363	245.949	246.46
2	19.385	19.396	19.405	19.412	19.419	19.424	19.429	19.43
3	8.812	8.786	8.763	8.745	8.729	8.715	8.703	8.69
4	5.999	5.964	5.936	5.912	5.891	5.873	5.858	5.84
5	4.772	4.735	4.704	4.678	4.655	4.636	4.619	4.60
6	4.099	4.060	4.027	4.000	3.976	3.956	3.938	3.92
7	3.677	3.637	3.603	3.575	3.550	3.529	3.511	3.49
8	3.388	3.347	3.313	3.284	3.259	3.237	3.218	3.20
9	3.179	3.137	3.102	3.073	3.048	3.025	3.006	2.98
10	3.020	2.978	2.943	2.913	. 2.887	2.865	2.845	2.82
11	2.896	2.854	2.818	2.788	2.761	2.739	2.719	2.70
12	2.796	2.753	2.717	2.687	2.660	2.637	2.617	2.59
13	2.714	2.671	2.635	2.604	2.577	2.554	2.533	2.51
14	2.646	2.602	2.566	2.534	2.507	2.484	2.463	2.44
15	2.588	2.544	2.507	2.475	2.448	2.424	2.403	2.38
16	2.538	2.494	2.456	2.425	2.397	2.373	2.352	2.33
17	2.494	2.450	2.413	2.381	2.353	2.329	2.308	2.28
18	2.456	2.412	2.374	2.342	2.314	2.290	2.269	2.25
19	2.423	2.378	2.340	2.308	2.280	2.256	2.234	2.21
20	2.393	2.348	2.310	2.278	2.250	2.225	2.203	2.18
21	2.366	2.321	2.283	2.250	2.222	2.197	2.176	2.15
22	2.342	2.297	2.259	2.226	2.198	2.173	2.151	2.13
23	2.320	2.275	2.236	2.204	2.175	2.150	2.128	2.10
24	2.300	2.255	2.216	2.183	2.155	2.130	2.108	2.08
25	2.282	2.236	2.198	2.165	2.136	2.111	2.089	2.06
26	2.265	2.220	2.181	2.148	2.119	2.094	2.072	2.05
27	2.250	2.204	2.166	2.132	2.103	2.078	2.056	2.03
28	2.236	2.190	2.151	2.118	2.089	2.064	2.041	2.02
29	2.223	2.177	2.138	2.105	2.075	2.050	2.027	2.00
30	2.211	2.165	2.126	2.092	2.063	2.037		1.99
31	2.199	2.153	2.114	2.080	2.051		2.015	1.98
32	2.189	2.142	2.103	2.070	2.040	2.026	2.003	
3	2.179	2.133	2.093	2.060	2.030	2.015	1.992	1.97
4	2.170	2.123	2.084	2.050		2.004	1.982	1.96
5	2.161	2.114	2.075	2.041	2.021	1.995	1.972	1.95
6	2.153	2.106	2.067	2.033	2.012	1.986	1.963	1.94
7	2.145	2.098	2.059		2.003	1.977	1.954	1.93
3	2.138	2.091	2.051	2.025	1.995	1.969	1.946	1.920
9	2.131	2.084	2.044	2.017	1.988	1.962	1.939	1,918
)	2.124	2.077	2.038	2.010	1.981	1.954	1.931	1.91
)	2.073	2.026		2.003	1.974	1.948	1.924	1.904
)	2.040	1.993	1.986	1.952	1.921	1.895	1.871	1.850
	1.959	1.910	1.952	1.917	1.887	1.860	1.836	1.815
1		1.710	1.869	1.834	1.803	1.775	1.750	1.728

TABLE IX
F distribution (continued)

90% table

F distribution (commutati)			90% table							
y ₁	11	12	13	14	15	16	17	18	19	20
1	60.473	60.705	60.903	61.072	61.220	61.350	(1.16)			
2	9.401	9.408	9.414	9.420	9.425	9.429	61.464	61.566	61.658	61.740
3	5.223	5.216	5.210	5.205	5.200	5.196	9.432	9.435	9.438	9.441
4	3.907	3.896	3.886	3.878	3.870	3.864	5.193	5.190	5.187	5.185
5	3.282	3.268	3.257	3.247	3.238		3.858	3.853	3.849	3.844
6	2.920	2.905	2.892	2.881	2.871	3.230	3.223	3.217	3.212	3.207
7	2.684	2.668	2.654	2.643	2.632	2.863	2.855	2.848	2.842	2.836
8	2.519	2.502	2.488	2.475		2.623	2.615	2.607	2.601	2.595
9	2.396	2.379	2.364	2.351	2.464	2.455	2.446	2.438	2.431	2.425
10	2.302	2.284	2.269	2.255	2.340	2.329	2.320	2.312	2.305	2.298
1000000	2.227	2.209	2.193		2.244	2.233	2.224	2.215	2.208	2.201
11	2.166			2.179	2.167	2.156	2.147	2.138	2.130	2.123
12		2.147	2.131	2.117	2.105	2.094	2.084	2.075	2.067	2.060
13	2.116	2.097	2.080	2.066	2.053	2.042	2.032	2.023	2.014	2.007
14	2.073	2.054	2.037	2.022	2.010	1.998	1.988	1.979	1.970	1.962
15	2.037	2.017	2.000	1.985	1.972	1.961	1.950	1.941	1.932	1.924
16	2.005	1.985	1.968	1.953	1.940	1.928	1.917	1.908	1.899	1.891
17	1.978	1.958	1.940	1.925	1.912	1.900	1.889	1.879	1.870	1.862
18	1.954	1.933	1.916	1.900	1.887	1.875	1.864	1.854	1.845	1.837
19	1.932	1.912	1.894	1.878	1.865	1.852	1.841	1.831	1.822	1.814
20	1.913	1.892	1.875	1.859	1.845	1.833	1.821	1.811	1.802	1.794
21	1.896	1.875	1.857	1.841	1.827	1.815	1.803	1.793	1.784	1.776
22*	1.880	1.859	1.841	1.825	1.811	1.798	1.787	1.777	1.768	1.759
23	1.866	1.845	1.827	1.811	1.796	1.784	1.772	1.762	1.753	1.744
24	1.853	1.832	1.814	1.797	1.783	1.770	1.759	1.748	1.739	1.730
25	1.841	1.820	1.802	1.785	1.771	1.758	1.746	1.736	1.726	1.718
26	1.830	1.809	1.790	1.774	1.760	1.747	1.735	1.724	1.715	1.706
27	1.820	1.799	1.780	1.764	1.749	1.736	1.724	1.714	1.704	1.695
28	1.811	1.790	1.771	1.754	1.740	1.726	1.715	1.704	1.694	1.685
29	1.802	1.781	1.762	1.745	1.731	1.717	1.705	1.695	1.685	1.676
30	1.794	1.773	1.754	1.737	1.722	1.709	1.697	1.686	1.676	1.667
31	1.787	1.765	1.746	7.729	1.714	1.701	1.689	1.678	1.668	1.659
32	1.780	1.758	1.739	1.722	1.707	1.694	1.682	1.671	1.661	1.652
33	1.773	1.751	1.732	1.715	1.700	1.687	1.675	1.664	1.654 1.647	1.645
34	1.767	1.745	1.726	1.709	1.694	1.680	1.668	1.657 1.651	1.641	1.638 1.632
35	1.761	1.739	1.720	1.703	1.688	1.674	1.662	1.645	1.635	1.626
36	1.756	1.734	1.715	1.697	1.682	1.669	1.656 1.651	1.640	1.630	1.620
37	1.751	1.729	1.709	1.692	1.677	1.663	1.646	1.635	1.624	1.615
38	1.746	1.724	1.704	1.687	1.672	1.658	1.641	1.630	1.619	1.610
39	1.741	1.719	1.700	1.682	1.667	1.649	1.636	1.625	1.615	1.605
40 50	1.737	1.715	1.695	1.678	1.662	1.613	1.600	1.588	1.578	1.568
60	1.703	1.680	1.660	1.643	1.627	1.589	1.576	1.564	1.553	1.543
120	1.680	1.657	1.637	1.619	1.545	1.530	1.516	1.504	1.493	1.482
-0	1.625	1.601	1.580	1.562	1.545					

Example: A study of the tensile strength of ductile iron annealed or strengthened at two different temperatures is conducted. It is thought that the lower temperature will yield the higher mean tensile strength. These data results:

1450 °F 1650 °F
$$n_1 = 10$$
 $n_2 = 16$ $\bar{x}_1 = 18,900psi$ $\bar{x}_2 = 17,500psi$ $S_1^2 = 1600$ $S_2^2 = 2500$

Solution:

Next, let's test if we have $\mu_1 = \mu_2$. i.e., we want to test H_0 : $\mu_1 = \mu_2$; H_1 : $\mu_1 > \mu_2$

Since $\sigma_1^2 = \sigma_2^2$, the pooled variance can be used. i.e., $S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2} = 2162.5$

Assuming H_0 is true, the test statistic $\frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)_0}{\sqrt{S_p^2(\frac{1}{n_1} + \frac{1}{n_2})}} \sim T_{24}$ and the observed value is $\frac{18900 - 17500}{\sqrt{2162.5 \times (\frac{1}{10} + \frac{1}{16})}} = 74.68$

Since this is a right-tailed test, $p_{value} = P[T_{24} \ge 74.68]$

From the T-table, we have, $P[T_{24} \ge 3.745] = 0.0005$

Hence, $p_{value} = P[T_{24} \ge 74.68] < 0.0005$

Therefore, H_0 should be rejected. i.e., the evidence strongly support that $\mu_1 > \mu_2$.

We already know that:

$$\frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{{\sigma_1}^2}{n_1} + \frac{{\sigma_2}^2}{n_2}}} \sim Z$$

When the variances of the two populations unequal, we replace σ_1^2 and σ_2^2 by S_1^2 and S_2^2 . Then,

$$\frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{{S_1}^2}{n_1} + \frac{{S_2}^2}{n_2}}} \sim T_{\gamma}$$

Where the degree of freedom γ has to be estimated from the samples as follows:

$$\gamma = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\frac{\left(\frac{S_1^2}{n_1}\right)^2}{n_1 - 1} + \frac{\left(\frac{S_2^2}{n_2}\right)^2}{n_2 - 1}}$$

 γ will be rounded **down** to the nearest integer.

Example: The following are the information on two independent samples from two normal distributions with means μ_A and μ_B and variances σ_A^2 and σ_B^2 . Test the following hypothesis: H_0 : $\mu_A = \mu_B$, H_1 : $\mu_A > \mu_B$

Population A	Population B
$n_{A} = 25$	$n_B = 16$
$\bar{x}_A = 380$	$\bar{x}_B = 370$
$S_A^2 = 100$	$S_B^2 = 400$

In order to carry out the test on μ_A and μ_B , we have to find out if $\sigma_A^2 = \sigma_B^2$. Hence,

First, we want to do the test on H_0 : $\sigma_A^2 = \sigma_B^2$; H_1 : $\sigma_A^2 \neq \sigma_B^2$

Assuming H_0 is true, the test statistic $\frac{S_B^2}{S_A^2} \sim F_{15,24}$ and the observed value is $\frac{S_B^2}{S_A^2} = 4$

Since $\frac{S_B^2}{S_A^2} = 4 > 1$ and this is a two tailed test, we have,

$$p_{value} = 2P[F_{15.24} \ge 4]$$

From the F-table, we have, $P[F_{15,24} \ge 2.108] = 0.05$

Hence, $P[F_{15,24} \ge 4] < P[F_{15,24} \ge 2.108] = 0.05$

And $p_{value} = 2P[F_{15.24} \ge 4] < 2 \times 0.05 = 0.10$

Therefore, H_0 should be rejected at the significance level of 0.1. i.e., we have $\sigma_A^2 \neq \sigma_B^2$

Example: The following are the information on two independent samples from two normal distributions with means μ_A and μ_B and variances σ_A^2 and σ_B^2 . Test the following hypothesis: H_0 : $\mu_A = \mu_B$, H_1 : $\mu_A > \mu_B$

Population A	Population B
$n_{A} = 25$	$n_B = 16$
$\bar{x}_A = 380$	$\bar{x}_B = 370$
$S_A^2 = 100$	$S_B^2 = 400$

Secondly, let's carry out the test on the means: H_0 : $\mu_A = \mu_B$, H_1 : $\mu_A > \mu_B$ Since $\sigma_A^2 \neq \sigma_B^2$, we choose $\frac{(\bar{X}_A - \bar{X}_B) - (\mu_A - \mu_B)}{\sqrt{\frac{S_A^2}{n_A} + \frac{S_B^2}{n_B}}}$ as the test statistic. Assuming H_0 is true, we have,

$$\frac{(\bar{X}_{A} - \bar{X}_{B}) - (\mu_{A} - \mu_{B})}{\sqrt{\frac{S_{A}^{2}}{n_{A}} + \frac{S_{B}^{2}}{n_{B}}}} \sim T_{\gamma}, where \ \gamma = \frac{\left(\frac{S_{A}^{2}}{n_{A}} + \frac{S_{B}^{2}}{n_{B}}\right)^{2}}{\left(\frac{S_{A}^{2}}{n_{A}}\right)^{2} + \left(\frac{S_{B}^{2}}{n_{B}}\right)^{2}} \approx 19$$

The observed value of this statistic can be calculated as 1.86

Example: The following are the information on two independent samples from two normal distributions with means μ_A and μ_B and variances σ_A^2 and σ_B^2 . Test the following hypothesis: H_0 : $\mu_A = \mu_B$, H_1 : $\mu_A > \mu_B$

Population A	Population B
$n_{A} = 25$	$n_B = 16$
$\bar{x}_A = 380$	$\bar{x}_B = 370$
$S_A^2 = 100$	$S_B^2 = 400$

Since this is a right-tailed test, we have,

$$p_{value} = P[T_{19} \ge 1.86]$$

From T-table, we have,

$$P[T_{19} \ge 1.729] = 0.05; P[T_{19} \ge 2.093] = 0.025$$

Hence,

$$0.025 < p_{value} < 0.05$$

Since $p_{value} < \alpha = 0.1$, H_0 should be rejected at the significance level of 0.1. i.e., the sampled data supports H_1 : $\mu_A > \mu_B$

Example: The following are the information on two independent samples from two normal distributions with means μ_A and μ_B and variances σ_A^2 and σ_B^2 . Test the following hypothesis: H_0 : $\mu_A = \mu_B$, H_1 : $\mu_A > \mu_B$ (Notice that this example is different from the previous example. The sample variances in this example are ten times of those in previous example) .

Population A	Population B
$n_{A} = 25$	$n_B = 16$
$\bar{x}_A = 380$	$\bar{x}_B = 370$
$S_A^2 = 1000$	$S_B^2 = 4000$

In order to carry out the test on μ_A and μ_B , we have to find out if $\sigma_A^2 = \sigma_B^2$. Hence, **First**, we want to do the test on H_0 : $\sigma_A^2 = \sigma_B^2$; H_1 : $\sigma_A^2 \neq \sigma_B^2$

Assuming H_0 is true, the test statistic $\frac{S_B^2}{S_A^2} \sim F_{15,24}$ and the observed value is $\frac{S_B^2}{S_A^2} = 4$

Since $\frac{S_B^2}{S_A^2} = 4 > 1$ and this is a two tailed test, we have,

$$p_{value} = 2P[F_{15,24} \ge 4]$$

From the F-table, we have, $P[F_{15,24} \ge 2.108] = 0.05$

Hence, $P[F_{15,24} \ge 4] < P[F_{15,24} \ge 2.108] = 0.05$

And $p_{value} = 2P[F_{15,24} \ge 4] < 2 \times 0.05 = 0.10$

Therefore, H_0 should be rejected at the significance level of 0.1. i.e., we have $\sigma_A^2 \neq \sigma_B^2$

Example: The following are the information on two independent samples from two normal distributions with means μ_A and μ_B and variances σ_A^2 and σ_B^2 . Test the following hypothesis: H_0 : $\mu_A = \mu_B$, H_1 : $\mu_A > \mu_B$ (Notice that this example is different from the previous example. The sample variances in this example are ten times of those in previous example).

Population A	Population B
$n_{A} = 25$	$n_B = 16$
$\bar{x}_A = 380$	$\bar{x}_B = 370$
$S_A^2 = 1000$	$S_B^2 = 4000$

Secondly, let's carry out the test on the means: H_0 : $\mu_A = \mu_B$, H_1 : $\mu_A > \mu_B$ Since $\sigma_A^2 \neq \sigma_B^2$, we choose $\frac{(\bar{X}_A - \bar{X}_B) - (\mu_A - \mu_B)}{\sqrt{\frac{S_A^2}{n_A} + \frac{S_B^2}{n_B}}}$ as the test statistic. Assuming H_0 is true, we have,

$$\frac{(\bar{X}_{A} - \bar{X}_{B}) - (\mu_{A} - \mu_{B})}{\sqrt{\frac{S_{A}^{2}}{n_{A}} + \frac{S_{B}^{2}}{n_{B}}}} \sim T_{\gamma}, where \ \gamma = \frac{\left(\frac{S_{A}^{2}}{n_{A}} + \frac{S_{B}^{2}}{n_{B}}\right)^{2}}{\left(\frac{S_{A}^{2}}{n_{A}}\right)^{2} + \left(\frac{S_{B}^{2}}{n_{B}}\right)^{2}} \approx 19$$

The observed value of this statistic can be calculated as 0.588

Example: The following are the information on two independent samples from two normal distributions with means μ_A and μ_B and variances σ_A^2 and σ_B^2 . Test the following hypothesis: H_0 : $\mu_A = \mu_B$, H_1 : $\mu_A > \mu_B$ (Notice that this example is different from the previous example. The sample variances in this example are ten times of those in previous example).

Population A	Population B
$n_{A} = 25$	$n_B = 16$
$\bar{x}_A = 380$	$\bar{x}_B = 370$
$S_A^2 = 1000$	$S_B^2 = 4000$

Since this is a right-tailed test, we have,

$$p_{value} = P[T_{19} \ge 0.588]$$

From T-table, we have,

$$P[T_{19} \le 0.257] = 0.6; P[T_{19} \le 0.688] = 0.75$$

Hence,

$$0.25 < p_{value} < 0.4$$

Since $p_{value} > \alpha = 0.1$, H_0 should not be rejected at the significance level of 0.1.