Algoritmos de Iluminação Global

Sistemas Gráficos/ Computação Gráfica e Interfaces

Algoritmos de Iluminação Global

Objetivo: calcular a cor de cada ponto a partir da iluminação direta de uma fonte de luz, mais a soma de todas as reflexões das superfícies próximas.

Nos modelos de **iluminação local**, vistos anteriormente, a cor de cada ponto é definida somente pela intensidade luminosa que chega diretamente das fontes de luz.

A iluminação Global respeita a Equação de Rendering:

$$I(x,x') = g(x,x') \left[\mathcal{E}(x,x') + \int_{S} \rho(x,x',x'') . I(x',x'') . dx'' \right]$$

I(x, x') Iluminação de x' sobre x g(x, x') Termo geométrico:

 $=\theta$, se x e x' não se vêm mutuamente

= $1/r^2$, se x e x' se vêm (r: dist. entre ambos)

 $\mathcal{E}(x, x')$ Emissão de luz de x' para x

 $\rho(x, x', x'')$ Perc. de lluminação oriunda de x" e que é refletida em x' na direção de x

Algoritmos de Iluminação Global a estudar:

Ray Tracing

Radiosity

Ray Tracing

O algoritmo é uma extensão ao algoritmo Ray-Casting visto anteriormente.

O algoritmo depende da posição do observador (view dependent algorithm).

- •O plano de visualização é discretizado em pontos de amostragem (pixels ou...);
- •Faz-se passar, por cada ponto de amostragem, um raio luminoso que parte do observador em direção ao interior da cena.
- •O rasto (*tracing*) de cada raio vai permitir somar as contribuições de reflexão entre faces próximas.

R₁ é o vetor de reflexão máxima:

$$R_1 = V - 2 (V.N) N$$

A iluminação inicial é (1º nível): $I = I_{local} = k_a I_a + k_d$. Ip. $cos(e) + k_s$. Ip. $cos^n(\alpha)$

O interceção do raio refletido com os restantes objetos é registado para obter as contribuições destes na iluminação do ponto. A atenuação devido à distância da face pode ser considerada. O processo é recursivo.

A intensidade luminosa agora é:

$$| = |_{local} + |_{r} * |_{reflexão}$$

l _{reflexão} é calculada recursivamente

k_r é um coeficiente de Reflexão (semelhante a k_s)

Nota: para cada raio, é necessário determinar os objetos intersetados e, destes, qual o primeiro intersetado

Se os objetos forem transparentes ou semitransparentes é necessário considerar os raios transmitidos para o interior do objeto (ou exterior). Por exemplo, os raio $\mathbf{T_1}$ e $\mathbf{T_2}$.

Para cada pixel constrói-se uma árvore de interseções. A cor final do pixel determina-se percorrendo a árvore das folhas para a raiz e calculando as contribuições de cada ramo de acordo com o modelo de reflexão.

Nos objetos opacos não existe o raio transmitido. O ramo da árvore termina quando o raio atinge um objeto não refletor ou o ramo atinge uma determinada profundidade pré-estabelecida

- O algoritmo de Ray Tracing é vantajoso porque: sombras, reflexões e refrações são facilmente incorporadas simula razoavelmente bem os efeitos especulares
- O algoritmo de Ray Tracing tem custos computacionais elevados porque:
 o custo de cálculo das intersecções é elevado
 não simula bem os efeitos de iluminação difusa
 (necessidade de outras variantes, mais complexas)

A otimização faz-se em duas áreas:

- 1. Diminuição do número de raios a processar.
- 2. Diminuição do número de intersecções a testar

Software freeware de Ray-Tracing: http://www.povray.org

Diminuição do número de raios a processar

- "Item Buffers" determinam-se quais as áreas do ecrã onde se situam os objetos (pré-processam/, ZBuffer)
- "Adaptive Tree-Depth Control" não é necessário levar todos os ramos da árvore de shading à sua profundidade máxima: usa a importância de um raio luminoso sobre o pixel a que pertence; esta importância diminui a cada reflexão ou transmissão
- "Light-Buffers" a cada fonte de luz associam-se listas com os objetos que a rodeiam; os shadow feelers, uma vez definida a sua direção, são primariamente testados com os objetos que se encontram na lista respetiva.

- Diminuição do número de intersecções a testar
 - Volumes Envolventes antes de efetuar o teste de intersecção de um raio com um objeto, tenta-se a sua intersecção com um volume simples (vulgarmente uma caixa) envolvente do objeto. Este teste prévio é muito rápido (a caixa tem as faces alinhadas com os três eixos) e exclui imediatamente muitos testes de intersecção mais complexos.
 - Organização Hierárquica dos Volumes Envolventes a utilização de volumes envolventes de outros volumes envolventes permite economizar muitos testes de intersecção: se um raio não intersecta um volume, então também não intersecta os volumes nele contidos.
 - Divisão Espacial em Grelhas Tridimensionais cada célula resultante desta divisão conhece os objetos que contém, total ou parcialmente. De acordo com a posição e a direção do raio em questão, só determinadas células são visitadas e, deste modo, só os objetos nelas contidos são testados. Dado que a ordem de progressão nas células é definida pelo sentido do raio, a primeira célula onde se detete uma intersecção termina o processo de visita do raio às células.

FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

O algoritmo é independente do ponto de observação. O algoritmo só efetua, realmente, o cálculo de iluminação; trabalha no espaço objeto. É complementado por um algoritmo de cálculo de visibilidade para a produção da imagem final.

Fases do processamento:

- 1. Modela as interações de luz entre objetos e fontes de luz, sem considerar a posição do observador.
- 2. Cria a imagem considerando o observador, efetua cálculo de visibilidade (ex: Z-buffer).

Nos modelos anteriores de iluminação, as fontes de luz foram tratadas de forma diferente das superfícies que iluminam. Pelo contrário, **os métodos de radiosidade** consideram que todas as superfícies podem produzir (emitir) luz. Assim, as fontes de luz são modeladas como superfícies normais, com uma dada área.

O método assume que os processos de emissão e reflexão são <u>difusos ideais</u>. Necessita das faces discretizadas em *patches* de forma a garantir que a *radiosidade se mantém* constante na área correspondente a um *patch*.

A radiosidade (**B**_i) é definida como a energia expelida, por unidade de tempo e de área, de um *patch*, sendo composta por duas partes:

$$\begin{aligned} \textbf{B}_{i} \, \textbf{A}_{i} &= \textbf{E}_{i} \, \textbf{A}_{i} + \boldsymbol{\rho}_{i} \, \boldsymbol{\Sigma}_{j} \, \big(\, \textbf{F}_{j\text{-}i} \, \, \textbf{B}_{j} \, \textbf{A}_{j} \big) \\ \text{energia} & \text{energia} & \text{energia} \\ \text{expelida} & \text{emitida} & \text{refletida} \\ & \text{(produzida)} \end{aligned}$$

Por unidade de área:

$$B_i = E_i + \rho_i \Sigma_j (F_{j-i} B_j A_j / A_i)$$

B_i - radiosidade, energia expelida do *patch* em Watt/m²

E_i - emissão de luz (auto-emitida) pelo *patch* i

ρ_i - refletividade, percentagem da energia incidente que é refletida pelo *patch* i

 $\mathbf{F}_{\mathbf{i}-\mathbf{i}}$ - fator de forma, percentagem de energia que abandona o patch \mathbf{j} e atinge \mathbf{i}

Em ambientes difusos, existe a seguinte relação de reciprocidade entre fatores de forma:

$$A_{i} \cdot F_{i-j} = A_{j} \cdot F_{j-i}$$

Que aplicada na expressão anterior da radiosidade resulta em:

$$B_i = E_i + \rho_i \Sigma_j B_j F_{i-j}$$

Ou:

$$B_{i} - \boldsymbol{\rho}_{i} \Sigma_{j} B_{j} F_{i-j} = E_{i}$$

Assim, a interação de luz entre **patches** pode ser representada por um sistema de equações lineares:

$$\begin{bmatrix} 1 - \rho_1 F_{11} & -\rho_1 F_{12} & \dots & -\rho_1 F_{1n} \\ -\rho_2 F_{21} & 1 - \rho_2 F_{22} & \dots & -\rho_2 F_{2n} \\ \dots & \dots & \dots & \dots \\ -\rho_n F_{n1} & -\rho_n F_{n2} & \dots & 1 - \rho_n F_{nn} \end{bmatrix} x \begin{bmatrix} B_1 \\ B_2 \\ \dots \\ B_n \end{bmatrix} = \begin{bmatrix} E_1 \\ E_2 \\ \dots \\ E_n \end{bmatrix}$$

Criação da imagem:

- 1. Resolvendo o sistema de equações, por eliminação Gaussiana, obtém-se a radiosidade para cada **patch**.
- 2. Definir a posição do observador.
- 3. Aplicar um algoritmo de visibilidade, por exemplo, Z-buffer.
- 4. Calcular a radiosidade dos vértices de cada polígono.
- 5. Aplicar a interpolação de cor (Gouraud).
- A mesma solução do sistema é usada para qualquer posição do observador.
- É necessário resolver novamente o sistema de equações se houver alteração de coeficientes de reflexão ρ ou de valores de emissão Ε.
- É necessário recalcular os fatores de forma se a geometria da cena for alterada (mudança de posição de algum objeto)

Fatores de Forma: A complexidade do método está no cálculo dos fatores de forma.

Fatores de Forma

O fator de forma **Fij** representa a fração (em percentagem) da energia total expelida pelo **patch "i"** que atinge o **patch "j"**, tomando em consideração a forma, orientação relativa e distância entre ambos os patches, bem como os obstáculos que obstruam o caminho.

O fator de forma da área diferencial dA_i para a área diferencial dA_i é dada por:

$$dF_{di-dj} = \frac{\cos\theta_i \cos\theta_j}{\pi r^2} H_{ij} dA_j$$

 \mathbf{H}_{ij} é 1 ou 0, dependendo de $d\mathbf{A}_{j}$ ser visível ou não a partir de $d\mathbf{A}_{j}$.

Para determinar F_{di-j} , o fator de forma da área diferencial dA_i para a área finita A_j , integramos a área da **patch j**:

$$F_{di-j} = \int_{A_j} \frac{\cos \theta_i \cos \theta_j}{\pi r^2} H_{ij} dA_j$$

Finalmente o fator de forma da área A_i para a área A_i é dado por:

$$F_{i-j} = \frac{1}{A_i} \int_{A_i} \int_{A_i} \frac{\cos \theta_i \cos \theta_j}{\pi r^2} H_{ij} dA_j dA_i$$

Verifica-se que o calculo do Fator de Forma F_{di-j} corresponde a projetar as partes de A_j visíveis de dA_i num hemisfério centrado em dA_i , projetando depois esta projeção de forma ortográfica na base do hemisfério e dividindo pela área do circulo. (Analogia de Nusselt)

O cálculo é complexo.

Simplificação de Cohen e Greenberg: método do hemicubo

Em vez de usar a projeção num hemisfério, projeta na parte superior de um cubo centrado em dA_i , sendo a parte superior do cubo paralela com a superfície.

Cada face do hemicubo é dividida num conjunto de células quadradas de igual dimensão (ex: 50 por 50)

Project A_j no hemicubo, registando os quadrados (mini-patch) que são cobertos. Para cada quadrado registar quais as **patches visíveis** A_i e a sua distância.

Guardar apenas a patch mais próxima, uma vez que as outras serão invisíveis: usar algoritmo de visibilidade no espaço imagem, eventualmente (normalmente...) o Z-Buffer!

São calculados fatores de forma elementares \mathbf{F}_q para cada quadrado/célula do hemicubo \mathbf{q} .

O fator de forma **F**_{i-j} é então obtido somando todas as contribuições das <u>células cobertas</u> pelo **patch j**.

$$F_{i-j} = \sum F_q$$

Problemas do algoritmo de radiosidade:

- Algoritmo computacionalmente pesado em processamento e utilização de memória.
- Para obter precisão é necessária a divisão dos objetos em patches de pequena dimensão. Implica Nº fatores de forma para calcular.

Radiosity

20

Radiosity

- Progressive Refinement Radiosity
 - Resolução do sistema de equações lineares...
 - Métodos iterativos com convergência para a solução final
 - Aproveitamento dos resultados intermédios como sendo "provisórios"
 - Imagem é apresentada desde o início dos cálculos
 - Usando os resultados intermédios
 - Qualidade dos resultados vai melhorando com o tempo de processamento
- Junção Ray-tracing + Radiosity
 - Exploração do que cada um processa melhor...
 - Ray-Tracing: reflexão especular
 - Radiosity: reflexão difusa

