Ce court document présente les outils de terminale dont vous disposez pour justifier des propriétés d'injectivité ou de surjectivité de fonctions réelles de la variable réelle.

Surjectivité

On commence par le TVI et le lien avec la surjectivité.

Théorème 1 (Théorème des valeurs intermédiaires) Soit a < b deux réels, et $f : [a,b] \to \mathbb{R}$ une application continue. Alors tout réel c compris entre f(a) et f(b) possède un antécédent dans [a,b] par f, i.e

$$\forall c \in [\min(f(a), f(b)), \max(f(a), f(b))], \exists x \in [a, b], f(x) = c$$

Il ne s'agit pas strictement de la surjectivité de f, car cette application peut prendre des valeurs en dehors de l'intervalle $[\min(f(a),f(b),\max(f(a),f(b))]$. Prendre par exemple, le cosinus sur l'intervalle $[0,3\pi/2]$. On a $\cos(0)=1$ et $\cos(3\pi/2)=0$, mais $\cos(\pi)=-1 \notin [0,1]$. Rajoutons une hypothèse de monotonie pour nous rapprocher de la surjectivité :

Propriété 1 Soit a < b deux réels, et $f : [a,b] \to \mathbb{R}$ une application **continue** et monotone. En notant $m = \min(f(a), f(b))$ et $M = \max(f(a), f(b))$,

$$\forall c \in [m, M], \exists x \in [a, b], f(x) = c$$

Autrement dit, $f^{|[m,M]|}$ est surjective.

Dans le cas où f est croissante, on a $f(a) \le f(b)$ et $f^{[f(a),f(b)]}$ surjective. Dans le cas où f est décroissante, on a $f(b) \le f(a)$ et $f^{[f(b),f(a)]}$ surjective. Dans le cas où f n'est pas définie sur un segment mais un intervalle plus général, on dispose de la version suivante :

Propriété 2 Soit a < b deux réels ou $\pm \infty$, et $f:(a,b) \to \mathbb{R}$ une application **continue** et monotone. On suppose que f admet des limites (finies ou infinies) en a et en b, notées respectivement L_a et L_b . On note alors $m = \min(L_a, L_b)$ et $M = \max(L_a, L_b)$

$$\forall c \in (m, M), \exists x \in (a, b), f(x) = c$$

Autrement dit, $f^{|(m,M)|}$ est surjective.

Les parenthèses sont là pour synthétiser les différents cas, selon que les extrémités des intervalles considérés sont finies ou non, appartiennent à l'intervalle ou non.

Injectivité

Définition 1 Soit $f: I \to \mathbb{R}$ une application définie sur un intervalle I non vide et non réduit à un point. On dit que f est strictement croissante lorsque

$$\forall (x, y) \in I^2, x < y \Rightarrow f(x) < f(y)$$

On dit que f est strictement décroissante lorsque

$$\forall (x, y) \in I^2, x < y \Rightarrow f(y) < f(x)$$

On dit que f est strictement monotone lorsque f est strictement croissante ou strictement décroissante.

Propriété 3 Soit $f: I \to \mathbb{R}$ une application définie sur un intervalle I non vide et non réduit à un point, strictement monotone. Alors f est injective.

Cela résulte du fait que deux réels distincts peuvent toujours être ordonnés. Vous connaissez des outils de dérivabilité pour justifier de la stricte monotonie d'une fonction.

Propriété 4 Soit $f: I \to \mathbb{R}$ une application définie sur un intervalle I non vide et non réduit à un point. On suppose que f est dérivable.

- Si f' > 0, alors f est strictement croissante (donc injective).
- Si $f' \ge 0$ et f' s'annule en un nombre au plus dénombrable de points, alors f est strictement croissante (donc injective).
- Si f' < 0, alors f est strictement décroissante (donc injective).
- Si $f' \le 0$ et f' s'annule en un nombre au plus dénombrable de points, alors f est strictement décroissante (donc injective).

Cette propriété que vous utilisez depuis longtemps résulte d'outils plutôt élaborés. Nous verrons une caractérisation propre plus tard dans l'année.

Bijectivité

On peut combiner les résultats précédents pour former les différentes versions du « théorème de la bijection ».

Théorème 2 Soit a < b deux réels, et $f : [a,b] \to \mathbb{R}$ une application continue et strictement monotone. En notant $m = \min(f(a), f(b))$ et $M = \max(f(a), f(b))$,

$$\forall c \in [m, M], \exists !x \in [a, b], f(x) = c$$

Autrement dit, $f^{|[m,M]}$ est bijective.

On peut adapter à des intervalles plus généraux que les segments

Propriété 5 Soit a < b deux réels ou $\pm \infty$, et $f:(a,b) \to \mathbb{R}$ une application **continue** et **strictement monotone**. On suppose que f admet des limites en a et en b, notées respectivement L_a et L_b . On note alors $m = \min(L_a, L_b)$ et $M = \max(L_a, L_b)$

$$\forall c \in (m, M), \exists ! x \in (a, b), f(x) = c$$

Autrement dit, $f^{|(m,M)|}$ est bijective.

D'après les critères suffisants de stricte monotonie précédents, on peut établir alors

Propriété 6 Soit a < b deux réels ou $\pm \infty$, et $f : (a, b) \to \mathbb{R}$ une application dérivable. On suppose que

- f admet des limites (finies ou infinies) en a et en b, notées respectivement L_a et L_b . (On note alors $m = \min(L_a, L_b)$ et $M = \max(L_a, L_b)$).
- f' est de signe constant et s'annule qu'un un nombre au plus dénombrable de fois.

Alors $f^{\mid (m,M)}$ est bijective. De plus, la réciproque de cette application a même monotonie que f .

Faites attention, la réciproque n'est pas nécessairement dérivable sur (m, M). Pensez par exemple à la racine carrée qui n'est pas dérivable en 0 et qui est la réciproque de la fonction dérivable $\mathbb{R}^+ \to \mathbb{R}^+, x \mapsto x^2$.