CS 221 Logic Design

Fall 2021

By Wessam El-Behaidy & Salwa Osama

SYNCHRONOUS SEQUENTIAL LOGIC ANALYSIS & DESIGN

Lecture 8

ANALYSIS OF CLOCKED SEQUENTIAL CIRCUITS

- Analysis of clocked sequential circuits
- describes what a given circuit will do under certain operating conditions
- Behavior of clocked sequential circuit
- → is determined from the inputs, the outputs, and the state of its flip-flops (present state)
- The analysis of a sequential circuits consists of obtaining:
 - State table (transition table) or
 - State diagram
- It is also possible to write Boolean expressions that describe the behavior of the sequential circuit -> state equations

STATE EQUATIONS

- The sequential circuit consists of:
 - Two D flip-flops (A and B)
 - An input x
 - An output y
- Determine next state of D flip-flops:
 - A(t+1) = A(t)x(t) + B(t) x(t)
 - B(t+1) = A'(t) x(t)
- The present state of the output y:
 - y(t) = [A(t) + B(t)]x'(t)

State equation

specifies the next state as a function of the present state and inputs

STATE TABLE

• The state equations:

- A(t+1) = Ax + Bx
- B(t+1) = A' x
- y= (A+B)x'

Table 5.2

State Table for the Circuit of Fig. 5.15

Present State		Input		ext ate	Output
Α	В	×	Α	В	у
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

STATE TABLE

• The state equations:

- A(t+1) = Ax + Bx
- B(t+1) = A' x
- y=(A+B)x'

Table 5.2

State Table for the Circuit of Fig. 5.15

Present State				ext ate	Output	
Α	В	x	Α	В	у	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	0	1	
0	1	1	1	1	0	
1	0	0	0	0	1	
1	0	1	1	0	0	
1	1	0	0	0	1	
1	1	1	1	0	0	

STATE TABLE

• The state equations:

- A(t+1) = Ax + Bx
- B(t+1) = A' x
- y= (A+B)x'

Table 5.2

State Table for the Circuit of Fig. 5.15

	Present State Input			ext ate	Output
Α	В	x	Α	В	у
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

Two forms of State table

Table 5.2State Table for the Circuit of Fig. 5.15

Present State				ext ate	Output
Α	В	x	Α	В	у
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

Table 5.3Second Form of the State Table

Pres	sent	Next State			Output		
Sta	ate	x =	= 0	x =	= 1	x = 0	x = 1
Α	В	A	В	Α	В	У	у
0	0	0	0	0	1	0	0
0	1	0	0	1	1	1	0
1	0	0	0	1	0	1	0
1	1	0	0	1	0	1	0

• The state equations:

- A(t+1) = Ax + Bx
- B(t+1) = A' x
- y= (A+B)x'

STATE DIAGRAM

 The information available in a state table can be represented graphically in the form of a state diagram

Table 5.3Second Form of the State Table

Present State		Next State			Output		
		x = 0		x = 1		x = 0	x = 1
Α	В	A	В	Α	В	У	у
0	0	0	0	0	1	0	0
0	1	0	0	1	1	1	0
1	0	0	0	1	0	1	0
1	1	0	0	1	0	1	0

ANALYSIS WITH D FLIP-FLOPS

Input equation:

$$D_A = A \oplus x \oplus y$$

FLIP-FLOP EQUATIONS

Output equations:

- A set of Boolean functions describes the part of the <u>combinational circuit</u> that generates external outputs
- Flip-flop Input equations (excitation equations):
 - A set of Boolean functions describes the part of the circuit that generates the inputs to the flip-flops
- Ex: $D_O = x + y$
 - The following input equation specifies an OR gate with inputs x and y connected to D input of a flip-flop whose output is labeled with the symbol Q
- Previous example (fig. 5.15)
 - $D_A = Ax + Bx$
 - $D_B = A' x$
 - y= (A+B)x'

Analysis with JK or T flip-flops

- When JK or T flip-flops are used, it is necessary to refer to the corresponding:
 - characteristic table or
 - characteristic equation

to obtain the next-state values.

Method 1: Using Characteristic table

Clk

ANALYSIS WITH JK FLIP-FLOPS

1. Determine input equations $J_A = B$, $K_A = Bx$

Method 2: Using Characteristic eq.

ANALYSIS WITH JK FLIP-FLOPS

- Determine input equations $J_A = B$, $K_A = Bx'$ $J_B = x'$, $K_B = A'x + Ax' = A + Ax' = Ax$
- Substitute input equations into characteristic eq. to obtain state equations

$$A(t+1) = JA' + K'A$$

 $= BA' + (Bx')' A$
 $= A'B + AB' + Ax$
 $B(t+1) = JB' + K'B$
 $= x'B' + (A \bigcirc x)'B$
 $= B'x' + AB \times A'B \times A'B$

3. Use characteristic state eq. to determine the next state values in state table

JK characteristic eq.

Q(t+1) = JQ' + K'Q

- \rightarrow A(t+1)= JA' +K'A
- →B(t+1)= JB' +K'B

	sent ate	Input		xt ate
A	В	x	A	В
0	0	0	0	1
0	0	1	0	0
0	1	0	1	1
0	1	1	1	0
1	0	0	1	1
1	0	1	1	0
1	1	0	0	0
1	1	1	1	1

ANALYSIS WITH JK FLIP-FLOPS: STATE DIAGRAM

	sent ate	t Input		Next State		
A	В	x	A	В		
0	0	0	0	1		
0	0	1	0	0		
0	1	0	1	1		
0	1	1	1	0		
1	0	0	1	1		
1	0	1	1	0		
1	1	0	O	0		
1	1	1	1	1		

T characteristic eq.

$$Q(t+1) = T \bigoplus Q = TQ' + T'Q$$

ANALYSIS WITH T FLIP-FLOPS

- 1. Determine input equations $T_A = Bx$, $T_B = x$, y = AB
- Substitute input equations into characteristic eq. to obtain state equations

$$A(t+1) = T'A + TA'$$

$$= (Bx)'A + (Bx)A'$$

$$= AB' + Ax' + A'Bx$$

$$B(t+1) = x + B$$

Use characteristic state eq.to determine the next statevalues in state table

ANALYSIS WITH T FLIP-FLOPS

State Table for Sequential Circuit with T Flip-Flops

Next state equations:

$$A(t+1) = AB' + Ax' + A'Bx$$

$$B(t+1) = x \oplus B$$

Pres Sta	ent ite	Input	Ne Sta		Output
Α	В	- x	A	В	у
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	1	0
0	1	1	1	0	0
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	1

Notes:

- * As long as x=1, the circuit behaves as a *binary counter*
- * Here, the output depends on the present state only (**Moore model**) and independent of the input
- → inside each circle (present state/output)

THE DESIGN PROCEDURE

- Design procedure or methodologies specify hardware that will implement a desired behavior.
- Here, we will illustrate manual efforts for small circuits using D, JK and T flip-flops.

THE DESIGN PROCEDURE (CONT.)

- Procedure for designing synchronous sequential circuits:
- 1. From word description and specifications, derive a state diagram for the circuit
- 2. Reduce the number of states if necessary
- Assign binary values to the states
- 4. Obtain the binary-coded state table
- Choose the type of flip-flops to be used
- Derive the simplified flip-flop input and output equations
- 7. Draw the logic diagram

THE DESIGN PROCEDURE (CONT.)

- The part of the design that follows a well-defined procedure is referred to as synthesis
- Designers using logic synthesis tools (software) can follow a simplified process that develops an HDL description directly from state diagram
- The first step is a critical part of the process, because succeeding steps depend on it.

SEQUENCE DETECTOR EXAMPLE

Circuit's word description :

We wish to design a circuit that detects a sequence of 3 or more consecutive 1's in a string of bits coming through an input line

Input:

serial bit stream

Output:

$$Y = 1,$$

when 3 or more consecutive 1's are coming

$$Y = 0,$$

otherwise

→ Moore Model

section 5.8

SEQUENCE DETECTOR EXAMPLE (CONT.)

- Synthesis using D flip-flop
- 3. Assign binary codes to the states $S_0=00$, $S_1=01$, $S_2=10$, $S_3=11$
- 4. Obtain the binary coded state table

- 5. Choose the type of flip-flops to be used
- → 2 D flip-flop
 - \rightarrow Q(t+1) =D_Q
- Next state values specify the D input equations

SEQUENCE DETECTOR EXAMPLE (CONT.)

- Synthesis using D flip-flop
- 6. Simplify the input and output eq.

$$A(t+1) = D_A(A, B, x) = \Sigma(3,5,7)$$

B(t+1)=
$$D_B(A, B, x) = \Sigma(1,5,7)$$

$$y(A, B, x) = \Sigma(6,7)$$

\sqrt{Bx}				В			
A	00	01	11	10			
0	M ₀	re.,	1	m ₁			
$A = \begin{cases} 1 & 1 \end{cases}$	m ₄	1	m, 1	m,			
$D_A = Ax + Bx$							

SEQUENCE DETECTOR EXAMPLE (CONT.)

- Synthesis using D flip-flop
- Draw the logic diagram

Input and output eq.:

$$D_A(A, B, x) = Ax + Bx$$

 $D_B(A, B, x) = Ax + B'x$
 $y(A, B, x) = AB$

الذين لم يمتحنوا امتحان الميدترم

- على الطلاب الاتى اسماءهم الحضور يوم الخميس 9 ديسمبر لمكتبى (في الدور الثالث) الساعة 12 لاعادة امتحان الميدترم:
 - 1-عمر محسن احمد عبدالغنى ابوالليل -202000606
 - 2-محمد ناصر محمد محمود-201900739
 - 3-زياد شعبان محمود عبدالفتاح-201900324
 - 4-احمد حمدى عبد الستار محمد-20180034
 - 5- مصطفى احمد حسين-581****obile:'011
 - -6مؤمن مصطفى عبيد الشيوي-20160448
 - 7-عبدالله ممدوح السيد ابراهيم-202000554
 - 8-بيير اسامه ظريف حنا-202000221
 - 9-تغريد عبدالباسط عبدالعزير عبدالتواب-202000227
 - 10- فيروز ناصر ابراهيم محمود 202000650

THANKS