Week 2

Q1. For an Inverter of 2:1 size, evaluate the current when an input voltage of 2 V is applied for a 5V rail voltage. Consider Vt for NMOS, and PMOS as 0.3 V, and -0.3 V respectively, and Widths of 100 nm, and 200 nm for NMOS and PMOS transistors, with channel length of 50 nm, tox=1.05 nm and mobility of 80 cm2/v-sec, and 40 cm2/v-sec for NMOS and PMOS transistors.

- a) 128 μA
- b) 256 μA
- c) 512 µA
- d) 760 mA
- e) 128 mA
- f) 760 μA
- g) 1.28 mA
- h) 7.60 mA

Q2. For a skewing ratio of 0.30 for a 65 nm technology node with a rail voltage of 1V as per the long-channel model, which is the more appropriate statement?

- a) Threshold-voltage of inverter is 0.5 V.
- b) Threshold-voltage of inverter is 1 V.
- c) Threshold-voltage of inverter is 0 V.
- d) Threshold-voltage of inverter falls in between 0.5 and 1 V
- e) Threshold-voltage of inverter falls in between 0.5 and 0 V
- f) Threshold-voltage of inverter is above 1 V
- g) Threshold-voltage of inverter is below 0 V
- h) Threshold-voltage of inverter is 0.3 V

Q3. For an inverter designed to have a threshold voltage of 0.636 V for a rail voltage of 1 V in a 65 nm technology node, which of the following is the most appropriate statement related to the designed inverter?

a) The inverter is unskewed

What is Va for Vg>0.3? Assume Vt=0.3 for both nMOS and pMOS

- a) Va = Vdd Vtp
- b) Va = Vtp
- c) Va = Vdd
- d) Va is floating

Q7) In the provided inverter characteristics figure, which parameters should be plotted on the X and Y axes to represent the observed characteristics, and identify the operating regions of PMOS and NMOS transistors at Point-4?

a) Y: Vout,	X: Vin,	At Point-4: PMOS: Saturation,	NMOS: Linear
b) Y: Vin,	X: Vout,	At Point-4: PMOS: Saturation,	NMOS: Saturation
c) Y: Ids,	X: Vin,	At Point-4: PMOS: Linear,	NMOS: Saturation
d) Y: Vin,	X: Ids,	At Point-4: PMOS: Cut-off,	NMOS: Linear
e) Y: Vout,	X: Ids,	At Point-4: PMOS: Saturation,	NMOS: Linear
f) Y: Ids,	X: Vin,	At Point-4: PMOS: Saturation,	NMOS: Linear

g) Y: Ids,	X: Vout,	At Point-4: PMOS: Linear,	NMOS: Saturation
h) Y: Ids,	X: Vout,	At Point-4: PMOS: Saturation,	NMOS: Linear

- Q8. Employing the short-channel current model, calculate the threshold voltage of an inverter functioning at a nominal voltage of 1 volt. The system exhibits a PMOS width to NMOS width ratio of 2:5, a NMOS velocity saturation ratio to PMOS velocity saturation ratio of 2:4, and possesses threshold voltages of 0.3 volts for both the PMOS and NMOS transistors.
 - a) 0.585
 - b) 0.325
 - c) 0.174
 - d) 0.744
 - e) 0.779
 - f) 0.4
 - g) 0.625
 - h) 0.8
- Q9. N stacked series nMOS transistors with each dimension (w,L) can be equivalently be represented by
- a) w,NL
- b) w/N, L
- c) w/N,NL
- d) Nw,L/N
- Q10. In a transmission gate, when the supply is ramped from 0 to Vdd, which of the following is true?
- a) From $0 \rightarrow Vdd-Vt$, nMOS ON, Vdd-Vt $\rightarrow Vdd$, pMOS ON
- b) From $0 \rightarrow Vdd-Vt$, pMOS ON, Vdd-Vt $\rightarrow Vdd$, nMOS OFF
- c) From $0 \rightarrow Vdd-Vt$, pMOS ON, Vdd-Vt $\rightarrow Vt$, nMOS ON
- d) From Vdd-Vt → Vdd, nMOS OFF, pMOS OFF

Solutions:

1. f

For the given values, nMOS is in saturation and pMOS is in linear Using the nMOS saturation current equation, ids sat= un*Cox(w/2*L)(Vgs-Vth)^2, Id in inverter is 760 uA

2. e

3. h

4. c. 0.7 V nmos passes weak 1

5. h. 0.9 V

6. C

For Vg>0.3 , nMOS is ON, nMOS passes strong 0, so gate of pMOS is at 0 Then for the pMOS, pMOS passes strong 1, so Va= Vdd $\,$

7. G

The plot represents Ids vs Vds characteristics of an inverter point 4 is the point where input is close to 0 and output is close to Vdd, with nMOS in saturation and pMOS in linear

8. D

Wp/Wn = 2/5 = 0.4

Vsat-n/Vsat-p=2/4=> Vsat-p/Vsat-n=4/2=2

r=0.4*2=0.8

Vinv th=(0.8x[1+0.3]+0.3)/(1+0.8)=0.744

- 9. A,b
- 10. A,b

pMOS conducts from 0 to Vdd whereas nMOS conducts only from 0 to Vdd-Vt $\,$