1. Consider the following snapshot of the system. Write C program to implement Banker's algorithm for deadlock avoidance. The program has to accept all inputs from the user. Assume the total number of instances of A,B and C are 10,5 and 7 respectively.

	Allocation	Max	Available
	ABC	ABC	ABC
P_0	010	753	332
P_1	200	322	
P_2	302	902	
P_3	211	222	
P_4	002	433	

- (a) What is the content of the matrix *Need*?
- (b) Is the system in a safe state?
- (c) If a request from process P1 arrives for (1, 0, 2), can the request be granted immediately? Display the updated Allocation, Need and Available matrices.
- (d) If a request from process P4 arrives for (3, 3, 0), can the request be granted immediately?
- (e) If a request from process P0 arrives for (0, 2, 0), can the request be granted immediately?
- 2. Consider the following snapshot of the system. Write C program to implement deadlock detection algorithm.
 - (a) Is the system in a safe state?
 - (b) Suppose that process P2 make one additional request for instance of type C, can the system still be in a safe state?

	Allocation	Request	Available
	ABC	ABC	ABC
P_0	010	000	000
P_1	200	202	
P_2	303	000	
P_3	211	100	
P_4	002	002	