# **CS2105**

# An Awesome Introduction to Computer Networks

The Link Layer



© CS2105

### Recap

Application

Transport

Network

Link

Physical

HTTP, DNS, DHCP

TCP, UDP

IP, ICMP

We are here

© CS2105 Link Layer - 3

### Motivation

- Let us look at networking from Bottom-up perspective
- Assuming, we have figured out the electronics of sending and receiving binary data over a communication channel
- Aim: Send data between 2 nodes via cable.
- Solution: Connect the 2 nodes and send data

### Jargon Alert:

- Communication channel: the transmission medium of the data signals. E.g. copper wire, optical fiber, terrestrial radio, Satellite, etc.
- Node: Devices exchanging data.
   E.g. hosts, routers, etc.

# Physical



### Motivation

- Aim: Send data between N nodes via cable.
- Solution: Inter-Connect the N nodes and send data
  - Each link needs to be addressed
  - Drawback: Does not scale
    - N-1 links needed

### Jargon Alert:

• Link: Communication channels that connect adjacent nodes.



### Motivation

- Aim: Send data between N nodes via cable.
- Solution: Inter-Connect the N nodes via a broadcast link
  - Each link needs to be addressed
  - Need to define a protocol
  - Need to handle errors



### The Link Layer

### After the next set of lectures, will understand:

- The role of link layer and the services it could provide.
- How parity and CRC scheme work.
- Different methods for accessing shared medium.
- How ARP allows a host to discover the MAC addresses of other nodes in the same subnet.
- The role of switches in interconnecting subnets in a LAN.

### Roadmap

- 6.1 Introduction to the Link Layer
- 6.2 Error Detection and Correction
- **6.3** Multiple Access Links and Protocols
- 6.4 Switched Local Area Networks

Kurose Textbook, Chapter 6 (Some slides are taken from the book)

# Link Layer: Introduction (1/2)

- Network layer provides communication service between any two hosts.
- An IP datagram may travel through multiple routers and links before it reaches destination.



# Link Layer: Introduction (2/2)

- Link layer sends datagram between adjacent nodes (hosts or routers) over a single link.
  - IP datagrams are encapsulated in link-layer frames for transmission.
  - Different link-layer protocols may be used on different links.
    - each protocol may provide a different set of services.

data-link layer has responsibility of transferring datagram from one node to physically adjacent node over a link

### Jargon Alert:

- Adjacent: A single hop connects the two nodes.
- Frame: layer-2 packet.



# Motivation (revisited)

- Aim: Send data between N nodes via cable.
- Solution: Inter-Connect the N nodes via a broadcast link
  - Each link needs to be addressed
  - Need to define a protocol
  - Need to handle errors

Framing

Link Access

Control

**Detection** 

Reliability



### Possible Link Layer Services (1/2)

#### Framing

 Encapsulate datagram into frame, adding header and trailer.



#### Link access control

 When multiple nodes share a single link, need to coordinate which nodes can send frames at a certain point of time.

humans at a cocktail party (shared air)

### Possible Link Layer Services (2/2)

#### Error detection

- Errors are usually caused by signal attenuation or noise.
- Receiver detects presence of errors.
  - may signal sender for retransmission or simply drops frame

#### Error correction

 Receiver identifies and corrects bit error(s) without resorting to retransmission.

#### Reliable delivery

 Seldom used on low bit-error link (e.g., fiber) but often used on error-prone links (e.g., wireless link).

### Link Layer Implementation



- Link layer is implemented in "adapter" (aka NIC) or on a chip.
  - E.g., Ethernet card, Wi-Fi adapter
- Adapters are semi-autonomous, implementing both link & physical layers.





### Roadmap

- **6.1** Introduction to the Link Layer
- 6.2 Error Detection and Correction
  - 6.2.1 Parity Checks
  - 6.2.3 Cyclic Redundancy Check (CRC)
- 6.3 Multiple Access Links and Protocols
- 6.4 Switched Local Area Networks



#### **Notation:**

- EDC: Error Detection and Correction bits
- D: Data protected by error checking, may include header fields

- Error detection schemes are not 100% reliable!
  - may miss some errors, but rarely.
  - Usually, larger EDC field yields better detection (and even correction).

### **Error Detection**

- Popular error detection schemes:
  - Checksum (used in TCP/UDP/IP)
  - Parity Checking
  - CRC (commonly used in link layer)
- Checksum (review)
  - treat segment contents as sequence of 16-bit integers
  - checksum: 1's complement of the sum of segment contents

### Parity Checking: Single bit

- Suppose that the information to be sent, D, has d bits.
- In an even parity scheme,
  - the sender simply includes one additional bit
  - chooses its value such that the total number of 1s in the
     d + 1 bits is even



### Parity Checking: Single bit

- Can <u>detect</u> single bit errors in data.
  - Actually, can detect odd number of single bit errors
  - Cannot detect even number of single bit error
- Works exceptionally well (Mathematically)
  - Probability of multiple bit errors is low (if errors are independent)
- However, errors are often clustered together in "bursts."
  - The probability of undetected errors in a frame can approach 50%



### Parity Checking 2-D

- the d bits in D are divided into i rows and j columns.
- A parity value is computed for each row and for each column.
  - The resulting i + j + 1 parity bits comprise the link-layer frame's error-detection bits

Parity bit for the column and row parity bits

$$d_{i+1,1} \dots d_{i+1,j} d_{1,j+1} \dots d_{i,j+1}$$

$$d_{i+1,j+11}$$

### Parity Checking 2-D

Can <u>detect and correct</u> single bit errors in data.

| 1 | 0 | 1 | 0 | 1 | 1 |
|---|---|---|---|---|---|
| 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 0 | 1 |
| 0 | 0 | 1 | 0 | 1 | 0 |

| 1 | 0 | 1 | 0 | 1 | 1 |              |
|---|---|---|---|---|---|--------------|
|   |   |   |   |   |   | Parity error |
| 0 | 1 | 1 | 1 | 0 | 1 |              |
| 0 | 0 | 1 | 0 | 1 | 0 |              |

Parity error

Can <u>detect</u> any two-bit error in data.



© CS2105 Link Layer - 22

### Cyclic Redundancy Check: Motivation

- $\bullet$  We want to transfer a non-binary number D without error.
- R: the r digit error detection code.



- ❖ Aim: We need to generate R such that
  - The sender can compute R easily.
  - The receiver can verify the integrity of D easily.
- Solution: Let us use the mathematical properties of "division".
  - We shall use a special r digit number G, called the "Generator".

# Cyclic Redundancy Check: Motivation

- \* Let D = 21027845, r = 3 and G = 401.
- Create a new number X by appending r 9's to D
  - X = 21027845999
  - Mathematically,  $X = D \times 10^r + (10^r 1)$
- Find the remainder y of  $\frac{X}{G}$ 
  - y = X % G
  - y = 281
- ❖ The message M being transmitted is
  - M = X y
  - M = 21027845999 281 = 21027845718
  - M is divisible by G

### Cyclic Redundancy Check: Motivation



$$D = 21027845$$

$$r = 3$$

• 
$$G = 401$$
.

$$\star X = 21027845 999$$

• 
$$y = 281$$

On the Receiver end, we find the remainder



- ❖ D: data bits, viewed as a binary number.
- \* G: generator of r + 1 bits, agreed by sender and receiver beforehand.
- $\star$  R: the r bit CRC.

D: data to be sent

d bits

R:crc bits

r bits

- Calculations are done modulo 2.
  - It does not have carries for addition or borrows for subtraction.
  - Both addition and subtraction are identical to XOR

• 
$$x + y = x - y = x \oplus y$$

• 
$$0 + 1 = 0 - 1 = 0 \oplus 1 = 1$$

- $1011 \oplus 0101 = 1110$
- $1001 \oplus 1101 = 0100$



- 1011 0101 = 1110
- 1001 1101 = 0100

- $\bullet$  For performing division, we append r 0's to D.
- Because of the properties of modulo 2 arithmetic, The remainder directly gives us R



E.g. 
$$D = 101110$$
,  $r = 3$   $G = 1001$ 

Sender sends (D, R)
 101110011

- \* Receiver knows G, divides (D, R) by G.
  - If non-zero remainder: error is detected!



- Easy to implement on hardware
- Powerful error-detection coding that is widely used in practice (e.g., Ethernet, Wi-Fi)
  - Can detect all odd number of single bit errors
  - CRC of r bits can detect
    - all burst errors of less than r+1 bits
    - all burst errors of greater than r bits with probability  $1-0.5^r$
- CRC is also known as Polynomial code
  - A k-bit frame is regarded as the coefficient list for a polynomial with k terms, ranging from  $x^{k-1}$

```
E.g. 110001

\Rightarrow 1x^5 + 1x^4 + 0x^3 + 0x^2 + 0x^1 + 1x^0 = x^5 + x^4 + 1
```

\* E.g. D = 101100, r = 3 and G = 1001



### Summary

- Checksum (used in TCP/UDP/IP)
- Parity Checking
  - Single bit
  - 2-Dimensional
    - Capable of error correction
- Cyclic redundancy Check (CRC)
  - Commonly used in link layer
  - Efficient
  - effective

### Motivation (revisited)

- Aim: Send data between N nodes via cable.
- Solution: Inter-Connect the N nodes via a broadcast link
  - Each link needs to be addressed
  - Need to define a protocoly
  - Need to handle errors





### Roadmap

- **6.1** Introduction to the Link Layer
- 6.2 Error Detection and Correction
- 6.3 Multiple Access Links and Protocols
  - 6.3.1 Channel Partitioning Protocols
  - 6.3.2 Random Access Protocols
  - 6.3.3 Taking-Turns Protocols
- 6.4 Switched Local Area Networks

### Two Types of Network Links

- Type 1: point-to-point link
  - A sender and a receiver connected by a dedicated link



A host connects to router through a dedicated link

- Example protocols: Point-to-Point Protocol (PPP),
   Serial Line Internet Protocol (SLIP)
  - No need for multiple access control

### Two Types of Network Links

- Type 2: broadcast link (shared medium)
  - Multiple nodes connected to a shared broadcast channel.
  - When a node transmits a frame, the channel broadcasts the frame and every other node receives a copy.



© CS2105 Link Layer - 36

### Multiple Access Protocols

- In a broadcast channel, if two or more nodes transmit simultaneously
  - collision if node receives two or more signals at the same time.



### Multiple Access Protocols: Motivation

- The central questions in a conversation carried in a group are who, when and how long one gets to talk.
- Desired Conversational Characteristics: etiquettes
  - Give everyone a chance to speak.
  - Don't speak until you are spoken to.
  - Don't monopolize the conversation.
  - Raise your hand if you have a question.
  - Don't interrupt when someone is speaking.
  - Don't fall asleep when someone is talking.

# Multiple Access Protocols: Motivation

Human Conversation Protocols can be categorized into three broad classes:

#### Random Access

- No coordination, collisions are possible.
- "recover" from collisions.
- E.g. Most of our conversations

#### "Taking turns"

- Each person take turns to talk.
- E.g. Question answer sessions in seminars

#### Channel partitioning

- divide channel into fixed, smaller "pieces" (e.g., time slots, subject).
- allocate piece to a person for exclusive use.
- E.g. U.S. Presidential debates (Mostly)

# Multiple Access Protocols: Motivation

Multiple access protocols can be categorized into three broad classes :

#### Random Access

- channel is not divided, collisions are possible.
- "recover" from collisions.

#### "Taking turns"

Each node take turns to transmit.

#### Channel partitioning

- divide channel into fixed, smaller "pieces" (e.g., time slots, frequency).
- allocate piece to node for exclusive use.

# An ideal multiple access protocol

Given: Broadcast channel of rate R bps

#### **Desired Properties:**

- **L.Collision Free**
- 2. Efficient: when only one node wants to transmit, it can send at rate R.
- 3.Fairness: when M nodes want to transmit, each can send at average rate R/M
- 4.fully decentralized:
  - no special node to coordinate transmissions

Mandatory Requirement: coordination about channel sharing must use channel itself!: no out-of-band channel signaling

### **Channel Partitioning Protocols: TDMA**

- TDMA (time division multiple access)
  - Access to channel in "rounds".
    - Similar to US presidential debates
  - Each node gets fixed length time slots in each round.
    - Length of time slot = data frame transmission time
  - Example: 6 nodes sharing a link
    - Nodes 1, 3, 4 have data to send
    - slots 2, 5, 6 are idle.

### Jargon Alert:

• Frame: Unfortunately, in TDMA, the collection of N time slots is called a Frame. We will disambiguate this by calling a frame as either data frame or time frame.



### **Channel Partitioning Protocols: TDMA**

- Collision Free: Yes
- Efficiency
  - Inefficient
  - Unused slots go idle.
  - The maximum throughput for a node is R/N
- Fairness: Perfectly Fair
- Decentralized: Yes

- **I.**Collision Free
- 2. Efficient
- 3.Fair
- 4.fully decentralized

### **Channel Partitioning Protocols: FDMA**

- FDMA (frequency division multiple access)
  - Channel spectrum is divided into frequency bands.
  - Each node is assigned a fixed frequency band.
  - Unused transmission time in frequency bands go idle.
  - Example: 6 nodes, 1, 3, 4 have frames, frequency bands 2, 5, 6 are idle.



### Channel Partitioning Protocols: FDMA

- Collision Free: Yes
- Efficiency
  - Inefficient
  - Unused slots go idle.
  - The maximum throughput for a node is R/N
- Fairness: Perfectly Fair
- Decentralized: Yes

- **I.**Collision Free
- 2. Efficient
- 3.Fair
- 4.fully decentralized

# Multiple Access Protocols

- Multiple access protocols can be categorized into three broad classes:
  - Channel partitioning
    - · divide channel into fixed, smaller "pieces" (e.g., time slots, frequency).
    - allocate piece to node for exclusive use.
  - "Taking turns"
    - nodes take turns to transmit.
  - Random Access
    - channel is not divided, collisions are possible.
    - "recover" from collisions.

# "Taking Turns" Protocols: Polling

- The polling protocol requires one of the nodes to be designated as a master node.
- The master node polls each of the nodes in a round-robin fashion.
  - master informs node 1, it can transmit up to some maximum number of frames.
  - After node 1 transmits some frames, the master node tells node
     2 it (node 2) can transmit up to the maximum number of frames.
  - The procedure continues in this manner



### "Taking Turns" Protocols: Polling

- Collision Free: Yes
- Efficiency
  - Higher efficiency.
  - Overhead of polling.
- Fairness: Perfectly Fair
- Decentralized:
  - No
  - Master node is a single point of Failure

- **I.**Collision Free
- 2. Efficient
- 3.Fair
- 4.fully decentralized

# "Taking Turns" Protocols: Token Passing

- Special frame, token, is passed from one node to next, sequentially.
- When a node receives a token
  - hold onto the token only if some frames to transmit
    - it sends up to a maximum number of frames and then forwards the token to the next node.
  - otherwise, forward the token to the next node.



### "Taking Turns" Protocols: Token Passing

- Collision Free: Yes
- Efficiency
  - Higher efficiency.
  - Overhead of token passing
- Fairness: Perfectly Fair
- Decentralized: Yes

#### Downside

- Token loss can be disruptive
  - data frame loss
  - System bugs
- Node failure can break the ring

- **I.**Collision Free
- 2. Efficient
- 3.Fair
- 4.fully decentralized

# Multiple Access Protocols

- Multiple access protocols can be categorized into three broad classes:
  - Channel partitioning
    - divide channel into smaller "pieces" (e.g., time slots, frequency).
    - allocate piece to node for exclusive use.
  - "Taking turns"
    - nodes take turns to transmit.
  - Random Access
    - channel is not divided, collisions are possible.
    - "recover" from collisions.

### Random Access Protocols

- When node has data to send
  - transmit at full channel data rate R.
  - no a priori coordination among nodes
- ❖ Two or more transmitting nodes → "collision"
- Random access protocols specify:
  - how to detect collisions
  - how to recover from collisions
- We will explore various protocols
  - Slotted ALOHA, ALOHA
  - CSMA, CSMA/CD

### Slotted ALOHA

- When node has data to send
  - transmit at full channel data rate R.
  - no a priori coordination among nodes

### Design:

- All frames are of equal size, L bits.
- Time is divided into slots of equal length
  - length = time to transmit 1 frame = L/R
- Nodes start to transmit only at the beginning of a slot.
  - Time is synchronized at each node.



### Slotted ALOHA

### Operation:

- When the node has a fresh frame to send
  - wait until the beginning of the next slot and transmits the entire frame in the slot.
  - If no collision: data transmission is a success.
  - If collision: data transmission is a failure.
    - retransmit the frame in each subsequent slot with probability p until success.



### Slotted ALOHA

- Collision Free: No
- Efficiency
  - Yes, when only one node is active, it gets a throughput of R
  - No, when there are many active nodes the maximum efficiency is only 37%
    - Slots are wasted due to both collision and because of being empty
    - ·100 Mbps system will give only 37 Mbps
- Fairness: Perfectly Fair
- Decentralized: Yes

- **I.**Collision Free
- 2.Efficient
- 3.Fair
- 4.fully decentralized

### A Little Side Note

Q: Why is it called ALOHA?





- A: The ALOHAnet, also known as the ALOHA System, or simply ALOHA, was a pioneering computer networking system developed – maybe you can guess it – at the University of Hawaii.
- Norman Abramson was the leader of the team.
- The idea was to use a radio network to connect Oahu and the other Hawaiian islands together. ALOHA made use of one, shared, inbound channel, and thus requiring a novel multiple access protocol.

# Pure (unslotted) ALOHA

- Even simpler than Slotted ALOHA
  - No time slots
  - No Synchronization

### Operation:

- When the node has a fresh frame to send
  - Transmits the entire frame immediately.
  - If no collision: data transmission is a success.
  - If collision: data transmission is a failure.
    - Wait for 1 frame transmission time
    - retransmit the frame with probability p until success.

# Pure (unslotted) ALOHA

- Chance of collision increases:
  - frame sent at  $t_0$  collides with other frames sent in  $(t_0 1, t_0 + 1)$



### Pure (unslotted) ALOHA

- Collision Free: No
- Efficiency
  - Yes, when only one node is active, it gets a throughput of R
  - No, when there are many active nodes the maximum efficiency is only 18%
    - Slots are wasted due to both collision and because of being empty
    - ·100 Mbps system will give only 18 Mbps
- Fairness: Perfectly Fair
- Decentralized: Yes

- **L.Collision Free**
- 2.Efficient
- 3.Fair
- 4.fully decentralized

# Carrier Sense Multiple Access

- One major design flaw in ALOHA
  - a node's decision to transmit is made independently of the activity of the other nodes attached to the broadcast channel.
  - a node pays no attention to whether another node happens to be transmitting when it begins to transmit
- Human analogy
  - Listen before you speak

#### **CSMA**: listen before transmit

- if channel sensed idle: transmit entire frame
- if channel sensed busy: defer transmission

### **CSMA Collisions**

- Collisions can still occur:
  - propagation delay means two nodes may not hear each other's transmission immediately.



# CSMA/CD (Collision Detection)

- One major design flaw in ALOHA and CSMA
  - a node does not stop transmitting even when collision is detected
- Human analogy
  - If someone else begins talking at the same time, stop talking

### CSMA/CD:

Bob Metcalfe

- if channel sensed idle: transmit entire frame
- if channel sensed busy: defer transmission
- If collision detected: Abort transmission
  - Retransmit after a random delay

# CSMA/CD (Collision Detection)





# CSMA/CD Backoff Algorithm

- If collision detected: Abort transmission
  - Retransmit after a random delay
- Motivation: ALOHA
  - If collision: data transmission is a failure.
    - Wait for 1 frame transmission time
    - retransmit the frame with probability p until success.



# CSMA/CD Backoff Algorithm

- If collision detected: Abort transmission
  - Retransmit after a random delay
- Motivation: ALOHA
  - If collision: data transmission is a failure.
    - Wait for 1 frame transmission time
    - retransmit the frame with probability p until success.
  - Major Drawback:
    - The probability of collision in all subsequent time slots remain the same
      - It can even increase if a new node starts transmitting
- Goal: adapt retransmission attempts to estimated current load
  - More collisions implies heavier load.
  - longer back-off interval with more collisions.

# CSMA/CD Backoff Algorithm

# For Ethernet 1 time unit is set as 512 bit transmission times

#### Binary Exponential backoff:

- After 1<sup>st</sup> collision:
  - choose K at random from {0, 1};

$$p = 1/2$$

- wait K time units before retransmission.
- After 2<sup>nd</sup> collision:
  - choose *K* from {0, 1,2, 2<sup>2</sup>-1}.

$$p = 1/4$$

- wait *K* time units before retransmission.
- \* After  $m^{th}$  collision

$$p = 1/2^m$$

- choose *K* at random from {0, 1, ..., 2<sup>m</sup>-1}
- Property: retransmission attempts to estimates current load
  - More collisions implies heavier load.
  - longer back-off interval with more collisions.

### Minimum Frame Size

- What if the frame size is too small?
  - Collision happens but may not be detected by sending nodes.
    - · No retransmission!

For example, Ethernet requires a minimum frame size of 64 bytes.



### CSMA & CSMA/CD

Collision Free: NO

Efficiency: Yes

Fairness: Yes

Decentralized: Yes

- **I.**Collision Free
- 2. Efficient
- 3.Fair
- 4. fully decentralized

### Summary

#### Channel partitioning

- Divide channel by time, used in GSM
- Divide channel by frequency, commonly used in radio, satellite systems

#### Taking turns

- polling from central site, used in Bluetooth
- token passing, used in FDDI and token ring

#### Random access

- ALOHA wireless packet switched network.
- CSMA/CD used in Ethernet