

Fantastic Two

Dokumen Laporan Final Project

(dipresentasikan setiap sesi mentoring)

Latar Belakang Masalah

Problem:

Sebuah perusahaan e-commerce berbasis internasional ingin menemukan insight dari data pelanggan. Berdasarkan data dari perusahaan tersebut, terdapat 59,67% yang mengalami keterlambatan dalam penerimaan barang. Pihak e-commerce ingin meningkatkan performa mereka dikarenakan banyaknya pelanggan yang melakukan complain mengenai ketepatan waktu pengiriman.

Role:

Sebagai konsultan Data Scientist, kami diminta untuk memprediksi apakah pengiriman tepat waktu atau tidak berdasarkan data yang tersedia serta kami diminta untuk menganalisis faktor-faktor apa saja yang mempengaruhi ketepatan waktu pengiriman dan juga memberikan insight dan rekomendasi untuk meningkatkan performa perusahaan.

Distribution of Reached.on.Time_Y.N

Latar Belakang Masalah

Goal:

Meningkatkan persentase ketepatan pengiriman.

Objective:

Membuat model machine learning untuk memprediksi ketepatan waktu pengiriman barang agar persentase keterlambatan menurun. Dengan demikian perusahaan dapat menggunakan model tersebut untuk menentukan keputusan bisnis sehingga meningkatkan tingkat kepuasan pelanggan.

Bussiness Metrics:

Persentase ketepatan waktu pengiriman.

Exploratory Data Analysis

Numeric Data Visualization

- ✓ Discount_offered and prior_purchases have distribution skew.
- \checkmark Weight_in_gms and cost_of_the_product have a bimodal distribution.
- ✓ Customer_care_calls has a normal distribution.

Exploratory Data Analysis

Categorical Data Visualization

- ✓ In addition to the top value in the warehouse_block and mode _of_Shipment, they have the same value
- ✓ In product_importance, it can be seen that the low category has a large number, inversely proportional to the high category which has a small amount
- ✓ The difference in the number of women and men is not too much, almost equal

Exploratory Data Analysis

Percentage of Numerical Data Based on Unique Value

- ✓ More than 80% of customers make 3-5 calls during the shipment process.
- ✓ 60% of shipment delays are on products that have a rating of 3-5.
- ✓ The highest shipment delay occurs in customers who previously made 2-3 purchases.
- ✓ This is also influenced by the high volume of shipments, which is 60%.
- ✓ Prior_purchases above 4 times tends to experience on time shipment.
- ✓ Bad ratings are given to shipments that tend to be on time compared to good ratings.

Percentage of Categorical Data Based on Unique Value

- ✓ Shipments from warehouse_block F have a higher volume of shipments compared to other blocks even though they have almost the same difference in the percentage of lates (< 1%). But, warehouse_block 'F' can accounts for 33% of all shipment volume.
- ✓ 68% of all deliveries are made by ship. Shipment delays by Ship tend to be higher due to higher shipping volumes.
- ✓ In contrast to product_importance high which tends to be late shipment with small shipping volume, it's only 9% of the total shipping volume.

Returns the sum of the unique values for each column df.nunique()

ID	10999
Warehouse_block	5
Mode_of_Shipment	3
Customer_care_calls	6
Customer_rating	5
Cost_of_the_Product	215
Prior_purchases	8
Product_importance	3
Gender	2
Discount_offered	65
Weight_in_gms	4034
Reached.on.Time_Y.N	2
dtype: int64	

Missing Value Check df.isna().sum()

ID 0
Warehouse_block 0
Mode_of_Shipment 0
Customer_care_calls 0
Customer_rating 0
Cost_of_the_Product 0
Prior_purchases 0
Product_importance 0
Gender 0
Discount_offered 0
Weight_in_gms 0
Reached.on.Time_Y.N 0

dtype: int64

Check Duplicates Data
df.duplicated().sum()

.

- ✓ Data contains 12 column with 10999 rows
- ✓ The data type in each column is appropriate
- ✓ No missing values found
- ✓ No Duplicate Data


```
# Label Encoding
label_encoder = preprocessing.LabelEncoder()

# Fit and transform

df_encod['Product_importance'] = label_encoder.fit_transform(df_encod['Product_importance'])

df_encod['Gender'] = label_encoder.fit_transform(df_encod['Gender'])
```

df_encod.head()

	Warehouse_block	Mode_of_Shipment	Customer_care_calls	Cost_of_the_Product	Prior_purchases	Product_importance	Gender
0	D	Flight	4	177	3	1	0
1	F	Flight	4	216	2	1	1
2	А	Flight	2	183	4	1	1
3	В	Flight	3	176	4	2	1

- ✓ Product Importance and Gender use encoding labels.
- ✓ The customer rating category uses ordinal encoding.
- ✓ The Mode of Shipment and Warehouse Block use One Hots Encoding.

One-hot Encoding

```
for column in ['Mode_of_Shipment', 'Warehouse_block']:
    df_encod = onehot_encode(df_encod, column=column)
```

Customer_rating_category	Mode_of_Shipment_Flight	${\bf Mode_of_Shipment_Road}$	Mode_of_Shipment_Ship	$Warehouse_block_A$	$Warehouse_block_B$	Warehouse_block
1	1	0	0	0	0	
3	1	0	0	0	0	
1	1	0	0	1	0	
2	1	0	0	0	1	

STAGE2 - Insights

✓ The higher the cost_of_the_product, the greater the possibility of on time delivery

- ✓ Shipments that have a discount of less than 13.8 tend to experience on time shipments, these shipments account for 77% of the total volume.
- ✓ All shipments that have a discount offer greater than 13.8 experience delays.

STAGE2 - Insights

- ✓ Shipment of products weighing less than 4000 grams (4kg) tends to be late, while those more than 4kg tend to be on time. Shipments more than 4kg account for 56% of the total volume
- ✓ All shipment of products weighing 2370-3739 grams and more than 6477 grams are delayed

STAGE2 - Modelling Experiments

Model	Before		After	
Original Data	Recall		Recall	
Original Data	Test	Train	Test	Train
Logrec	0.661	0.673	0.671	0.674
Knn	0.686	0.796	0.657	1
Decision Tree	0.697	1	0.69	1
XGBoost	0.643	0.887	0.632	1
AdaBoost	0.55	0.579	0.614	0.623
Random Forest	0.633	1	0.632	1

Model	Before		After		
Log-Transformation	Recall		Recall		
Log-Transionnation	Test	Train	Test	Train	
Logrec	0.747	0.754	0.767	0.774	
Knn	0.683	0.802	0.662	1	
Decision Tree	0.698	1	0.663	0.827	
XGBoost	0.643	0.887	0.669	0.721	
AdaBoost	0.55	0.579	0.614	0.623	
Random Forest	0.64	1	0.634	1	

Model	Before		After	
Z-Score	Re	call	call	
2-00010	Test	Train	Test	Train
Logrec	0.646	0.664	0.66	0.668
Knn	0.674	0.781	0.646	1
Decision Tree	0.712	1	0.694	1
XGBoost	0.637	0.901	0.69	0.736
AdaBoost	0.594	0.606	0.623	0.616

0.616

0.614

Random Forest

Recall values before & after hyperparameters with multiple dataset conditions:

- ✓ Without handle outlier & skew
- ✓ With log transformation
- ✓ Handle outliers with IQR
- ✓ Handle outliers with Z-Score

iviodei	Before		After		
IQR	Re	Recall		Recall	
IQIT	Test	Train	Test	Train	
Logrec	0.499	0.501	0.498	0.501	
Knn	0.510	0.699	0.466	1	
Decision Tree	0.574	1	0.571	1	
XGBoost	0.471	0.835	0.546	0.946	
AdaBoost	0.4	0.423	0.428	0.428	
Random Forest	0.466	1	0.462	0.999	

STAGE2 - Modelling Experiments

- ✓ Based on the recall values obtained by each model, we chose logistic regression as the best model for predicting on time delivery. The recall value increases significantly by using features that have been log transformed.
- ✓ After modeling, it was found that the percentage of on time delivery increased by 50.7%.

```
---- Existing -----
                       count percentage
Delivery:
                       10999
Late:
                       6563 . 59.7 %
On Time :
                       4436 , 40.3 %
---- After Modeling -----
                       count percentage
Delivery:
                       10999
Late:
                       6563 , 59.7 %
 Predicted Late: 5034 , 76.7 %
 Predicted On Time :
                       1529 . 23.3 %
Late After Pred: 1529 . 13.9 %
                       4436 , 40.3 %
On Time :
On Time After Pred:
                       9470 , 81.79499999999999 %
On Time Growth rate:
                       50.7 %
```


STAGE3 - Executive Summary & Recommendation

Business recommendations

- ✓ Add estimated delivery time feature delivery status
- ✓ Notifications in real time
- ✓ Notification to customers regarding delivery delays due to Harbolnas
- ✓ Expand the choice of expeditions, especially during big events

Hafidz Alawy

- ✓ Ketua kelompok
- ✓ Peran utama dalam pengerjaan kodingan tiap stage
- ✓ Presenter saat final project

Robby Dipomiharjo

- ✓ Moderator saat mentoring
- ✓ Bantu dalam kodingan
- ✓ presenter saat final project

Annisa Yovinda

- ✓ Moderator yang membuat jadwal mentoring
- ✓ Moderator saat final project
- ✓ Pembuat ppt final project

Jedi Manullang

- ✓ Pembuat laporan tiap stage
- ✓ Bantu dalam kodingan
- ✓ Penjawab pertanyaan saat final project

F. Artha

- ✓ Notulensi saat mentoring
- ✓ Pembuat ppt final project
- ✓ Penjawab pertanyaan saat final project

Marius Iddo

- ✓ Notulensi saat mentoring
- ✓ Pembuat ppt final project
- ✓ Penjawab pertanyaan saat final project

Romaito Silalahi

- ✓ Pembuat laporan tiap stage
- ✓ Bantu dalam kodingan
- ✓ Penjawab pertanyaan saat final project