Final is **not** cumulative! Covers this material and onward.

Chapter 5 - Limits and Continuity

5.1.1: Definition (Limits of Functions)

Let: $D \subset \mathbb{R}$, $f: D \longrightarrow \mathbb{R}$, and $c \in D'$ (i.e. c is an accumulation point) We say that $L \in \mathbb{R}$ is a **limit** of f at c if, $\forall \epsilon > 0$, $\exists \delta(\epsilon) > 0$ st

$$|f(x) - L| - \epsilon$$

wherever $x \in D$ and $0 < |x - c| < \delta$ (i.e. the limit as x goes to c of f(x) = L)

$$x \pm c$$

$$-\delta < x - c < \delta$$

$$c - \delta < x < c + \delta$$

Recall the definition of a limit:

$$f(x) = \lim_{h \to \infty} \frac{f(x+h) - f(x)}{h}$$

where x is fixed.

Theorem 5.1.2

Let: $f: D \longrightarrow \mathbb{R}$, $c \in D'$

Then

The limit $x \longrightarrow c$ of f(x) = L exists iff for each neighborhood V of L, \exists a deleted neighborhood U of c st $f(U \cap D) \subset V$.

Proof.

 \longrightarrow

Suppose $\lim x \longrightarrow c$ of f(x) = L.

Then,

for each neighborhood V of L (i.e. for each $\epsilon > 0$, $V = N(L, \epsilon)$), \exists a deleted neighborhood U of c (i.e. $\exists \delta(\epsilon) > 0$ st $N^*(c, \delta) = U$)

st $f(U \cap D) \subset V$

 \leftarrow

The converse is similar.

Remember: definitions are iff

Example 5.1.3

Let: $k \in \mathbb{R}$

Define $f: \mathbb{R} \longrightarrow \mathbb{R}$ by $f(x) = k, \forall x \in \mathbb{R}$

Let $c \in \mathbb{R}$

Show that $\lim x \longrightarrow c$ of f(x) = k

Solution:

For each $\epsilon > 0$,

$$|f(x) - k| = |k - k| = 0 < \epsilon$$

whenever $0 < |\mathbf{x} - \mathbf{c}| < \epsilon$

Example 5.1.4

Confirm that $\lim x \longrightarrow c$ of f(x) = c for the function f(x) = x, where $c \in \mathbb{R}$ and $f : \mathbb{R} \longrightarrow \mathbb{R}$ Solution:

For each $\epsilon > 0$,

$$|f(x) - c| = |x - c| < \epsilon$$

whenever $0 < |\mathbf{x} - \mathbf{c}| < \delta = \epsilon$

Theorem 5.1.8

Let: $f: D \longrightarrow \mathbb{R}$, $c \in D'$

Then,

 $\lim x \longrightarrow c$ of f(x) = L iff for **every** sequence $\{s_n\}$ in D st $s_n \neq c$, \forall $n \in \mathbb{N}$ and $\lim_{n \to \infty} s_n = c$, it follows that the sequence $\{f(s_n)\}$ converges to L.

(i.e. the values of \mathbf{s}_n eventually get within a δ neighborhood of c)

Proof.

 \longrightarrow

Suppose that $\lim x \longrightarrow c f(x) = L$

Let: $\{s_n\}$ be a sequence in D st $s_n \neq c \ \forall \ n \in \mathbb{N}$ and $\lim_{n \to \infty} s_n = c$

Want to show: $\lim_{n\to\infty} f(s_n) = L$

Now, $\forall \ \epsilon > 0, \ \exists \ \delta(\epsilon) > 0 \ \text{st}$

$$|f(x) - L| < \epsilon \tag{1}$$

whenever $0 < |x - c| < \delta$ and $x \in D$ (we need this part so that |f(x) - L| makes sense.

I'd like to know that $|f(s_n) - L|$ gets close to 0, so:

Since $\lim_{n\to\infty} s_n = c, \exists N \in \mathbb{N} \text{ st}$

$$0 < |s_n - c| < \delta \tag{2}$$

for $n \ge N$

From (1) and (2),

$$|f(s_n) - L| < \epsilon$$

for $n \ge N$

(if we think of f(s_n) as our t_n, where t_n \longrightarrow L as n \longrightarrow ∞)

By definition,

 $\lim_{n \to \infty} f(s_n) = L$

Conversely, using the contrapositive,

Assume: $\lim x \longrightarrow c \text{ of } f(x) \text{ does not exist.}$

-Side Note

Negating that:

 $\exists L \in \mathbb{R} \text{ st}$

 $\lim x \longrightarrow c \text{ of } f(x) = L$

 $\forall \epsilon > 0, \exists \delta > 0 \text{ st}$

 $\forall x \text{ st } 0 < |x - c| < \delta,$

 $|f(x) - L| < \epsilon$

Thus,

for each L $\in \mathbb{R}$, $\exists \ \epsilon \ _0 > 0$ st

 $\forall \ \delta > 0, \, \exists \ x \ st \ 0 < |x - c| < \delta \ st$

$$|f(x) - L| \ge \epsilon_0$$

-Side Note-

First we proved $p \Rightarrow q$.

Now we're going to prove $q \Rightarrow p$ by proving:

 $not p \Rightarrow not q$

Want to show: \exists a sequence $\{s_n\}$ in D st $s_n \neq c, \forall n \in \mathbb{N}$ and $\lim_{n \to \infty} s_n = c$

but, $\{f(s_n)\}$ to fail to converge to L.

Let: $\delta_n = \frac{1}{n}$

Now, for each $n \in \mathbb{N}$, $\exists s_n \in D$ st

$$0 < |s_n - c| < \frac{1}{n} \text{ and } |f(s_n) - L| \ge \epsilon_0$$

$$(3)$$

Notice that $s_n \neq c$, $\forall n \in \mathbb{N}$ and $\lim s_n = c$.

Side Note

Is $\lim_{n \to \infty} f(s_n) = L$? For $\epsilon = \frac{\epsilon_0}{2} > 0$,

 $\exists N \in \mathbb{N} \text{ st}$

$$|f(s_n) - L| < \frac{\epsilon_0}{2}$$

for n > N

So, no. $\lim_{n\to\infty} f(s_n) \neq L$

From (3), $\lim_{n\to\infty} f(s_n) \neq L$

(page 166, Theorem 4.1.8 says

 $|\mathbf{s}_n - \mathbf{s}| \le \mathbf{k}|\mathbf{a}_n|$ for $\mathbf{n} \ge \mathbf{N}$

if $\lim_{n\to\infty} a_n = 0$, then $\lim_{n\to\infty} s_n = s$)