FIG. 1

2/10

FIG. 2

RNC FUNCTIONAL BLOCK DIAGRAM

FIG. 3

4/10

FIG. 4

PO = [{(TMGI) div (K)} mod {(DRX CYCLE LENGTH) div (PBP)}] * PBP + n * (DRX CYCLE LENGTH) + FRAME OFFSET · · · · · (3)

TMGI: TEMPORARY MOBILE GROUP IDENTIFY (IDENTIFIER PECULIAR TO MBMS SERVICE),

K: NUMBER OF EXISTING PAGING CHANNELS (SCCPCH),

DRX (DISCONTINUOUS RECEPTION) CYCLE LENGTH: PERIOD FOR RECEIVING PICH,

PBP: PAGING BLOCK PERIODICITY,

n: INTEGER INCLUDING ZERO (UP TO MAXIMUM NUMBER OF SFN (SERIAL FRAME NUMBER))

FIG. 5

 $Pl = (DRXindex) \mod (Np)$ · · · · · · (4)

DRXindex: (TMGI) div (8192),

Np: (18, 36, 72, 144),

5/10

FIG. 6

FIG. 7

FIG. 8

FIG. 9

FIG. 10

GROUP	PAGING OCCASION
Α	0, 128, 256,
В	1, 129, 257, • • •
С	2, 130, 258, • • •

8/10

FIG. 11

FIG. 12

FIG. 13

NUMBER OF CONTINUOUS BITS OF PI FOR EACH Np

NUMBER OF PIS IN ONE FRAME	NUMBER OF BITS FOR ONE PI
18	18
36	8
72	4
144	2

9/10

FIG. 14

PO = [{(IMSI) div (K)} mod {(DRX CYCLE LENGTH) div (PBP)}] * PBP + n * (DRX CYCLE LENGTH) + FRAME OFFSET · · · · · · · (1)

IMSI: INTERNATIONAL MOBILE SUBSCRIBER IDENTIFY (USER IDENTIFIER FIXEDLY ALLOCATED TO USER),

K: NUMBER OF EXISTING PAGING CHANNELS (SCCPCH),

DRX (DISCONTINUOUS RECEPTION) CYCLE LENGTH: PERIOD FOR RECEIVING PICH,

PBP: PAGING BLOCK PERIODICITY,

n: INTEGER INCLUDING ZERO (UP TO MAXIMUM NUMBER OF SFN (SERIAL FRAME NUMBER))

FIG. 15

 $PI = (DRXindex) \mod (Np)$ · · · · · · (2)

DRXindex: (IMSI) div (8192),

Np: (18, 36, 72, 144),

FIG. 16

