Introdução aos Escoamentos Compressíveis

José Pontes, Norberto Mangiavacchi e Gustavo R. Anjos

GESAR – Grupo de Estudos e Simulações Ambientais de Reservatórios UERJ – Universidade do Estado do Rio de Janeiro

30 de julho a 5 de agosto de 2017

Conteúdo da aula

Resolução Numérica de Escoamentos Compressíveis

- 1. Acústica
 - 1.1 Formulação no domínio da freqüência;
 - Condições de contorno
 - Ressonância
 - Solução com forçagem: resposta em freqüência
 - 1.2 Formulação no domínio do tempo
- 2. Dinâmica dos Fluidos Computacional
 - 2.1 Equação de Euler
 - Lei de Conservação
 - ▶ 1D
 - 2D

Acústica

1. Formulação no domínio do tempo:

$$\frac{1}{c_0^2}\frac{\partial^2 p}{\partial t^2} = \nabla^2 p$$

$$c_0 = \sqrt{rac{\gamma
ho_0}{
ho_0}}$$

Para ondas acústicas adiabáticas propagando em ar a 0°C proximo ao nível do mar, $\gamma = 1.4$, $\rho_0 = 1,29$ [kg/m^3], e $P_0 = 1,01 \times 10^5$ [N/m^2], que resulta em $c_0 = 330$ [m/s].

Formulação no domínio da freqüência

 $\hat{p}=p~e^{j\omega t}$, onde \hat{p} é o campo escalar de pressão no domínio do tempo, p no domínio da frequencia, e $j=\sqrt{-1}$.

$$-\frac{1}{c_0^2}\omega^2 p = \nabla^2 p \tag{1}$$

$$\kappa^2 p + \nabla^2 p = 0; (2)$$

onde $\kappa^2=\frac{1}{c_0^2}\omega^2$ é o número de onda ao quadrado.

Formulação do problema de autovalor real em 1D

No caso unidimensional, a equação se reduz a:

$$\kappa^2 p + D^2 p = 0$$

onde $D = \frac{d}{dx}$

Vamos considerar o caso em que temos uma cavidade fechada em um extremo e aberta no outro, e pretendemos encontrar a freqüência de ressonância (próxima a uma freqüência de interesse $\omega_0=2\pi f_0$) e o modo ou modos associados. Temos que, na forma dimensional, $\kappa^*=2\pi f_0^*$ onde $f_0^*=\frac{f}{f_0}$ é a frequência de ressonância adimensional. Eliminando os * e abusando da notação, o problema de autovalor-autofunção é dado por:

$$D^2p = -\omega^2p \tag{3}$$

Os autovalores $\omega=\frac{\kappa}{c_0^2}$ representam as frequências (angulares) de ressonância adimensionais da cavidade. As auto-funções correspondem aos modos naturais do operador Laplaciano em uma dimensão na cavidade, que estão associadas a ondas estacionárias da solução transiente.

Sobre uma superfície rígida, com direção normal **n** as condições de contorno podem ser expressas em notação vetorial como:

$$\mathbf{n} \cdot \nabla p = 0 \tag{4}$$

No caso 1d, como no caso de um extremo de um tubo fechado em x=0 as condições de contorno se reduzem a

$$\frac{\partial p}{\partial x}(x=0)=0$$

Para um extremo aberto em x = L para a atmosfera podemos considerar

$$p(L)=0$$

Formulação discreta do problema de autovalor real 1D por diferenças finitas

A discretização do problema de autovalor real por diferenças finitas se obtêm pela substituição da derivada espacial por uma aproximação consistente por diferenças finitas. Considerando pontos igualmente espaçados, uma aproximação para a segunda derivada no ponto $x_i = x_0 + \Delta x * i , i = 0, 1, 2, ..., n_x$ é dada por

$$\frac{d^2p}{dx^2} = \frac{p_{i-1} - 2p_i + p_{i+i}}{\Delta x^2} + O(\Delta x^2)$$
 (5)

Substituindo a aproximação acima para a segunda derivada, obtém-se o seguinte sistema linear, expresso na forma matricial:

$$Ap^h = -\kappa^2 M p^h$$

onde as matrizes *A* e *M*, que possuem elementos não nulos dados por:

$$A(i, i - 1) = \frac{1}{\Delta x^2};$$

$$A(i, i) = -\frac{2}{\Delta x^2};$$

$$A(i, i + 1) = \frac{1}{\Delta x^2};$$

$$M(i,i)=-1;$$

são matrizes associadas a rigidez e de massa, respectivamente e p^h representa a pressão nos nós computacionais.

Ressonância em um tubo

Autofunções associadas a uma onda estacionária em um tubo aberto à esquerda e fechado à direita, mostrando a correção do método. Resultado da simulação, mostrando vários modos, mostra que as autofunções são modos de Fourier que satisfazem as condições de contorno Dirichlet homogêneas no contorno à esquerdare de Neumann à direita.

Cavidade retangular

O método implementado pode ser testado em uma cavidade de seção retangular. O domínio retangular possui lados de comprimento adimensional $L_x=2$, e $L_y=1$ de forma que a cavidade possui, teoricamente, modos com frequência de ressonância adimensional f=0,1/2 associadas a um modo modos, e f=1,2,3 associadas aos modos unidimensionais, com dois modos para cada freqüência, além dos modos bidimensionais $f=\sqrt(f_x^2+f_y^2)$.

Figura: Resultados numéricos em malha com apenas 21 x 11 nós computacionais, mostrando dois modos unidimensionais Esquerda: campo de pressão, direita: campo de

Tabela : Resultados do teste com cavidade de seção retangular $L_x=2,\,L_y=1$

n_{x}	n _y	<i>f</i> ₁	f ₂	f ₃	f_4	<i>f</i> ₅
11	6	0.2510	0.5080	0.5081	0.5738	0.7398
21	11	0.2503	0.5020	0.5020	0.5628	0.7157
41	21	0.2501	0.5005	0.5005	0.5600	0.709320
81	41	0.2500	0.5001	0.5001	0.5593	0.7077
161	81	0.2500	0.5000	0.5000	0.5591	0.7072
∞	∞	0.25	0.5	0.5	0.5590	0.7071

Os resultados apresentam convergência satisfatória para a solução analítica.

Apresentamos aqui a implementação do método para o problema com forçagem. Este problema corresponde á resposta no domínio das freqüências de um sistema para uma frequência determinada pelas condições de contorno. Considera-se que uma região da fronteira do domínio se encontra excitada por uma forçagem periódica com amplitude e frequência determinadas.

$$\kappa^2 p + \nabla^2 p = 0$$

onde $\kappa^2 = \frac{\omega^2}{c_0^2}$ é o número de onda ao quadrado. Neste caso ω é conhecido e determinado pelas condições no contorno forçado Γ_f , que no domínio do tempo se expressa:

$$\hat{p}(\Gamma_t, t) = p_0 e^{j\omega t}$$
.

Na próximas seções iremos discutir os resultados da implementação da discretização de Elementos Finitos em uma e duas dimensões do problema forçado.

Vamos considerar o caso em que temos uma cavidada fechada, salvo por uma região onde ocorre a forçagem com-

freqüência fixa, $\omega_0=2\pi f_0$. No caso unidimensional, a equação se reduz a:

$$(\kappa^2 + D^2)p = 0$$

com condição de contorno (forçagem)

$$p(0) = 1$$

A formulação de Galerkin da forma (DG) do problema forçado consiste em escolher as funções de base e de ponderação em espaços de dimensão finita \mathcal{E}^h e \mathcal{W}^h . O problema discretizado se torna: Encontrar $P^h \in \mathcal{P}^h$ e $\omega \in \mathcal{R}$ tal que para todo $W_h \in \mathcal{W}^h$

$$(DP^h, DW^h) = -(\kappa P^h, \kappa W^h)$$

Utilizando bases canônicas de Elementos Finitos em coordenadas cartesianas para os espaços acima, obtem-se o seguinte sistema linear, expresso na forma matricial:

$$A = (DP^h, DW^h);$$

$$M = (\kappa P^h, \kappa W^h)$$

são matrizes associadas a rigidez e de massa, respectivamente e p^h representa a pressão nos nós computacionais. Observa-se que κ é em geral complexo e varia de elemento para elemento. Para o sistema linear acima ter solução única, é necessário completar a definição do problema aplicando as condições de contorno na forma discreta, como descrito abaixo.

No caso de um contorno não reflexiva deseja-se que as ondas se propaguem apenas na direção da normal externa, de forma que não ocorra reflexão de ondas para o interior do domínio. Esta condição pode ser expressa como:

$$\frac{\partial p}{\partial t} + c\mathbf{n} \cdot \nabla p = 0$$

Para o caso da solução no domínio das freqüência, essa condição pode ser expressa como

$$j\omega p + c\mathbf{n} \cdot \nabla p = 0$$

onde *c* representa a velocidade de propagação da onda no meio. Pode-se generalizar esta condição de contorno para o caso de uma parede parcialmente reflexiva. Neste caso teremos:

$$i\alpha\omega p + c\mathbf{n} \cdot \nabla p = 0$$

Para $\alpha=1$ obtemos a condição de fronteira não reflexiva, e no caso de $\alpha=0$ temos uma fronteira totalmente reflexiva (parede rígida). Valores intermediários de α correspondem a fronteiras parcialmente reflexivas (ou parcialmente absorventes). Esta condição de contorno corresponde a uma condição de Robin).

cavidade com forçagem e fronteira parcialmente reflexiva em duas geometrías em função da freqüência de excitação. A primeira geometria é um canal retangular com Lx=1 e Ly=0.1, de modo que a resposta é essencialmente idêntica ao caso unidimensional. A segunda geometria corresponde a um canal com largura variável, produzido por um mapeamento descrito por: Y=Y.*(1+0.5*sin(X*2*pi)).

0.6

0.7

Figura : Geometrias e malhas utilizadas nos testes confessas gen. A primeira geometria é um canal retangular com Lx = 1 e Ly = 0.1 de

0.1

0.1

Figura : Resposta em freqüência para cavidades forçadas, com forçagem na fronteira da esquerda e uma fronteira semi-reflexiva à direita. Resultados numéricos em malha com apenas 21×6 nós computacionais. À esquerda (a), resultado com geometria retangular. À direita (b), geometria modificada. As curvas traçadas com linha sólida, linha tracejada e traço-ponto representam resultados para uma fronteira semi-reflexiva com $\alpha=0.125,\,0.250$ e 0.5 respectivamente.

Observa-se que na cavidade retangular as freqüências de ressonância são igualmente espaçadas, se encontram em f 0.25, 0.75, 1.25. Os máximos das respostas para todas as

función de veces asía é a

Solução no domínio do tempo

Vamos apresentar a solução do problema no domínio do tempo como a solução do sistema:

$$\frac{\partial p}{\partial t} + c_0^2 \nabla \cdot (\rho u) = 0$$

$$\frac{\partial \rho u}{\partial t} + \nabla p = 0$$
(6)

Para o caso unidimensional, podemos escrever este sistema como:

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}}{\partial x} = 0 \quad \text{em } \Omega \times [0, T_{max}]$$
 (7)

onde $\Omega \subset \mathbf{R}$ e $t \in [0, T_{max}]$. O vetor de variáveis conservativas \mathbf{U} e o vetor de fluxos \mathbf{F} são dados por

$$\mathbf{U} = \begin{Bmatrix} p \\ \rho u \end{Bmatrix}, \quad \mathbf{F} = \begin{Bmatrix} c_0^2 \, \rho u \\ p \end{Bmatrix} \tag{8}$$

No caso 1d, como no caso de um extremo de um telesafechado em x = 0 as condições de contorno se reduzem a

Solução no domínio do tempo por diferenças finitas de sistemas de equações de conservação hiperbólicos lineares em 1d

Nesta seção iremos esboçar o método de solução das equações de onda lineares no domínio do tempo como um sistema de equações de conservação hiperbólico linear e apresentar um exemplo computacional utilizando o método de MacCormack com adição do termo de viscosidade artificial de Lapidus.

Método de MacCormack

O método de MacCormack é um método de segunda ordem, de dois passos, que pode ser descrito da seguinte forma:

$$\mathbf{U}_{i}^{\overline{n+1}} = \mathbf{U}_{i}^{n} - \frac{\Delta t}{\Delta x} \left(\mathbf{F}_{i+1}^{n} - \mathbf{F}_{i}^{n} \right)$$
 (9)

$$\tilde{\mathbf{U}}_{i}^{n+1} = \frac{1}{2} \left(\mathbf{U}_{i}^{n} + \mathbf{U}_{i}^{\overline{n+1}} \right) - \frac{\Delta t}{2\Delta x} \left(\mathbf{F}_{i}^{\overline{n+1}} - \mathbf{F}_{i-1}^{\overline{n+1}} \right)$$
(10)

Estes dois passos definem o método de MacCormack. Usualmente, um termo de viscosidade artificial é adicionado como um passo fracionário adicional, conforme proposto por Lapidus:

$$\mathbf{U}_{i}^{n+1} = \tilde{\mathbf{U}}_{i}^{n+1} + \frac{\nu \Delta t}{2\Delta x} \Delta' \left(\| \Delta' \tilde{\mathbf{U}}_{i}^{n+1} \| \cdot \Delta' \tilde{\mathbf{U}}_{i}^{n+1} \right]$$
(11)

onde $\Delta' ilde{\mathbf{U}}_i^n = ilde{\mathbf{U}}_i^n - ilde{\mathbf{U}}_{i-1}^n$

Figura : Construção de um problema de Riemann: um tubo de choque. Choque λ_3 S_3 ; contato C_2 , e rarefação λ_1 (R_1) .

Figura : Solução do problema de um tubo de choque linear, usando o método de MacCormack em uma malha regular de 50 pontos (esquerda) e de 1000 pontos (direita). Linha sólida: solução numérica. Linha pontilhada: solução exata (Cap. 4). Para cada caso, são plotados ρ , u, p, $e - u^2/2$, $e 1/(\gamma - 1)log(p/<math>\rho^{\gamma}$).

Dinâmica dos fluidos computacional

Análise de métodos numéricos para EDPs:

- Consistência e precisão
- Estabilidade
- Aspectos computacionais

Modelarem computacional de escoamentos compressíveis:

- Oscilações, especialmente perto de regiões de choque
- Resultados mais precisos e estáveis podem ser obtidos utilizando formulações estabilizadas, tanto lineares como não lineares.
- formulação de variáveis conservativas, que apresenta vantagens na implementação numérica.

Formulação de variáveis primitivas conservativas

As equações de Euler em variáveis conservativas podem ser escritas como

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}_i}{\partial x_i} = 0 \quad \text{em } \Omega \times [0, T_{\text{max}}]$$
 (12)

onde $\Omega \subset \mathbf{R}^3$ e $t \in [0, T_{max}]$. O vetor de variáveis conservativas **U** e o vetor de fluxos **F**_i são dados por

$$\mathbf{U} = \rho \begin{Bmatrix} 1 \\ u_1 \\ u_2 \\ u_3 \\ e \end{Bmatrix}, \quad \mathbf{F}_i = \rho u_i \begin{Bmatrix} 1 \\ u_1 \\ u_2 \\ u_3 \\ e \end{Bmatrix} + \rho \begin{Bmatrix} 0 \\ \delta_{1i} \\ \delta_{2i} \\ \delta_{3i} \\ u_i \end{Bmatrix}$$
(13)

onde ρ é a densidade, $\mathbf{u} = [u_1, u_2, u_3]^T$ é o vetor velocidade, eé a densidade de energia interna total, p é a pressão, e δ_{ij} é o delta de Kronecker. A equação de estado para um gas ideal

Formulação do problema em 1D

Para o caso de um problema unidimensional, as equações de Euler se restringem a

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}}{\partial x} = 0 \quad \text{em } \Omega \times [0, T_{max}]$$
 (16)

onde $\Omega \subset \mathbf{R}$ e $t \in [0, T_{max}]$. O vetor de variáveis conservativas \mathbf{U} e o vetor de fluxos \mathbf{F} são dados por

$$\mathbf{U} = \rho \begin{Bmatrix} 1 \\ u_1 \\ e \end{Bmatrix}, \quad \mathbf{F} = \rho u_1 \begin{Bmatrix} 1 \\ u_1 \\ e \end{Bmatrix} + \rho \begin{Bmatrix} 0 \\ 1 \\ u_1 \end{Bmatrix}$$
 (17)

No caso 1D, como no caso de um extremo de um tubo fechado em x = 0 as condições de contorno se reduzem a

$$\frac{\partial p}{\partial x}(x=0)=0$$

Para um extremo aberto em x = L para a atmosfera podemos considerar

$$p(L) = 0$$

Solução por diferenças finitas de sistemas de equações de conservação hiperbólicos não-lineares em 1D

Diversos métodos foram desenvolvidos para a solução de sistemas de equações do tipo descrito por eq. 21. Uma excelente revisão é encontrada em Sod (1978) métodos de Godunv, Hyman, Lax-Wendroff (2 passos), MacCormack, Rusanov, Upwind, o método híbrido de Harten and Zwas, o método antidifusão de Boris e Book, o método de compressibilidade artificial de Harten, e o método de Glimm. Exemplo computacional utilizando o método de MacCormack com adição do termo de viscosidade artificial de Lapidus.

Método de MacCormack

O método de MacCormack é um método de segunda ordem, de dois passos, que pode ser descrito da seguinte forma:

$$\mathbf{U}_{i}^{\overline{n+1}} = \mathbf{U}_{i}^{n} - \frac{\Delta t}{\Delta x} \left(\mathbf{F}_{i+1}^{n} - \mathbf{F}_{i}^{n} \right)$$
 (18)

$$\tilde{\mathbf{U}}_{i}^{n+1} = \frac{1}{2} \left(\mathbf{U}_{i}^{n} + \mathbf{U}_{i}^{\overline{n+1}} \right) - \frac{\Delta t}{2\Delta x} \left(\mathbf{F}_{i}^{\overline{n+1}} - \mathbf{F}_{i-1}^{\overline{n+1}} \right)$$
(19)

Estes dois passos definem o método de MacCormack. Usualmente, um termo de viscosidade artificial é adicionado como um passo fracionário adicional, conforme proposto por Lapidus:

$$\mathbf{U}_{i}^{n+1} = \tilde{\mathbf{U}}_{i}^{n+1} + \frac{\nu \Delta t}{2\Delta x} \Delta' \left(\| \Delta' \tilde{\mathbf{U}}_{i}^{n+1} \| \cdot \Delta' \tilde{\mathbf{U}}_{i}^{n+1} \right]$$
(20)

onde $\Delta' \tilde{\mathbf{U}}_{i}^{n} = \tilde{\mathbf{U}}_{i}^{n} - \tilde{\mathbf{U}}_{i-1}^{n}$

Solução numérica do problema do tubo de choque

A metodologia descrita acima foi validada calculando solução do problema de um tubo de choque (problema de Riemann) cuja construção foi apresentada no capítulo 4, usando o método de MacCormack em uma malha regular de 101 pontos e de 1001 pontos, mostrando a correção do método. O resultado da simulação, mostrando a solução em t=1.5, está representado na Fig. 6.

Formulação do problema em 2D

Para o caso de um problema bidimensional, as equações de Euler se restringem a

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}}{\partial x} + \frac{\partial \mathbf{G}}{\partial y} = 0 \quad \text{em } \Omega \times [0, T_{max}]$$
 (21)

onde $\Omega \subset \mathbf{R}^2$ e $t \in [0, T_{max}]$. O vetor de variáveis conservativas **U** e o vetor de fluxos **F** e **G** são dados por

$$\mathbf{U} = \rho \begin{Bmatrix} 1 \\ u_1 \\ u_2 \\ e \end{Bmatrix}, \quad \mathbf{F} = \rho u_1 \begin{Bmatrix} 1 \\ u_1 \\ u_2 \\ e \end{Bmatrix} + \rho \begin{Bmatrix} 0 \\ 1 \\ 0 \\ u_1 \end{Bmatrix} \quad \mathbf{G} = \rho u_2 \begin{Bmatrix} 1 \\ u_1 \\ u_2 \\ e \end{Bmatrix} + \rho \begin{Bmatrix} 0 \\ 0 \\ 1 \\ u_2 \end{Bmatrix}$$
(22)

A definição do problema é completada pela definição das condições iniciais e de contorno adequadas.

Método de MacCormack

$$\mathbf{U}_{ij}^{\overline{n+1}} = \mathbf{U}_{ij}^{n} - \frac{\Delta t}{\Delta x} \left(\mathbf{F}_{i+1 j}^{n} - \mathbf{F}_{ij}^{n} \right) - \frac{\Delta t}{\Delta y} \left(\mathbf{G}_{i j+1}^{n} - \mathbf{G}_{ij}^{n} \right)$$
(23)

$$\tilde{\mathbf{U}}_{i}^{n+1} = \frac{1}{2} \left(\mathbf{U}_{i}^{n} + \mathbf{U}_{i}^{\overline{n+1}} \right) - \frac{\Delta t}{2\Delta x} \left(\mathbf{F}_{ij}^{\overline{n+1}} - \mathbf{F}_{i-1 j}^{\overline{n+1}} \right) - \frac{\Delta t}{2\Delta y} \left(\mathbf{G}_{ij}^{\overline{n+1}} - \mathbf{G}_{i-1 j}^{\overline{n+1}} \right)$$
(24)

termo de viscosidade artificial é adicionado como um passo fracionário adicional, conforme proposto por Lapidus:

$$\mathbf{U}_{ij}^{n+1} = \tilde{\mathbf{U}}_{ij}^{n+1} + \frac{\nu \Delta t}{2\Delta x} \Delta_{x}' \left(\| \Delta_{x}' \tilde{\mathbf{U}}_{i+1 j}^{n+1} \| \cdot \Delta_{x}' \tilde{\mathbf{U}}_{i+1 j}^{n+1} \right) + \frac{\nu \Delta t}{2\Delta y} \Delta_{y}' \left(\| \Delta_{y}' \tilde{\mathbf{U}}_{ij+1}^{n+1} \| \cdot \Delta_{y}' \tilde{\mathbf{U}}_{ij+1}^{n+1} \right)$$
(25)

Problema de um choque oblícuo, usando o método de MacCormack

$$\tan \theta = 2 \cot \beta \frac{M_1^2 \sin^2 \beta - 1}{M_1^2 (\gamma + \cos 2\beta) + 2}$$
 (26)

Figura: Curvas de nível de pressão no choque oblíquo, obtidas pelo código de diferenças finitas (método de MacCormack com viscosidade artificial) Esquerda: Mach=2, usando uma malha de 61 × 61 pontos. Direita: Mach=3, usando uma malha de 161 × 161 pontos.

