## Nonlinear Relationships

EC 320: Introduction to Econometrics

Kyle Raze Fall 2019

# Prologue

# Housekeeping

## Final Exam

Review lecture this Wednesday.

• Come prepared with questions.

**Exam:** Tuesday, December 10 at 10:15am in Chapman 220.

Office hours TBA for Monday, December 9.

## **Problem Set 5**

Due Saturday, December 7 by 11:59pm.

• I will post the key immediately after.

# Nonlinear Relationships





## Nonlinear Relationships

Many economic relationships are nonlinear.

• *e.g.*, most production functions, profit, diminishing marginal utility, tax revenue as a function of the tax rate, *etc*.

## The flexibility of OLS

OLS can accommodate many, but not all, nonlinear relationships.

- Underlying model must be linear-in-parameters.
- Nonlinear transformations of variables are okay.
- Modeling some nonlinear relationships requires advanced estimation techniques, such as maximum likelihood.<sup>†</sup>

<sup>†</sup> Beyond the scope of this class.

# Linearity

**Linear-in-parameters:** Parameters enter model as a weighted sum, where the weights are functions of the variables.

One of the assumptions required for the unbiasedness of OLS.

**Linear-in-variables:** Variables enter the model as a weighted sum, where the weights are functions of the parameters.

Not required for the unbiasedness of OLS.

The standard linear regression model satisfies both properties:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_k X_{ki} + u_i$$

# Linearity

Which of the following is **linear-in-parameters**, **linear-in-variables**, or **neither**?

1. 
$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \dots + \beta_k X_i^k + u_i$$

2. 
$$Y_i=eta_0 X_i^{eta_1} v_i$$

3. 
$$Y_i = \beta_0 + \beta_1 \beta_2 X_i + u_i$$

Model 1 is linear-in-parameters, but not linear-in-variables.

Model 2 is neither.

Model 3 is linear-in-variables, but not linear-in-parameters.

## We're Going to Take Logs

The natural log is the inverse function for the exponential function:  $\log(e^x) = x$  for x > 0.

## (Natural) Log Rules

- 1. Product rule:  $\log(AB) = \log(A) + \log(B)$ .
- 2. Quotient rule:  $\log(A/B) = \log(A) \log(B)$ .
- 3. Power rule:  $\log(A^B) = B \cdot \log(A)$ .
- 4. Derivative:  $f(x) = \log(x) \Rightarrow f'(x) = \frac{1}{x}$ .
- 5.  $\log(e) = 1$ ,  $\log(1) = 0$ , and  $\log(x)$  is undefined for  $x \leq 0$ .

#### **Nonlinear Model**

$$Y_i = lpha e^{eta_1 X_i} v_i$$

- Y>0, X is continuous, and  $v_i$  is a multiplicative error term.
- Cannot estimate parameters with OLS directly.

### **Logarithmic Transformation**

$$\log(Y_i) = \log(lpha) + eta_1 X_i + \log(v_i)$$

• Redefine  $\log(\alpha) \equiv \beta_0$  and  $\log(v_i) \equiv u_i$ .

### **Transformed (Linear) Model**

$$\log(Y_i) = \beta_0 + \beta_1 X_i + u_i$$

Can estimate with OLS, but coefficient interpretation changes.

### **Regression Model**

$$\log(Y_i) = \beta_0 + \beta_1 X_i + u_i$$

### Interpretation

- A one-unit increase in the explanatory variable increases the outcome variable by approximately  $eta_1 imes 100$  percent, on average.
- Example: If  $log(Pay_i) = 2.9 + 0.03 \cdot School_i$ , then an additional year of schooling increases pay by approximately 3 percent, on average.

#### **Derivation**

Consider the log-linear model

$$\log(Y) = \beta_0 + \beta_1 X + u$$

and differentiate

$$rac{dY}{Y}=eta_1 dX$$

A marginal (small) change in X (i.e., dX) leads to a  $\beta_1 dX$  proportionate change in Y.

Multiply by 100 to get the percentage change in Y.

# Log-Linear Example

$$\log(\hat{Y}_i) = 10.02 + 0.73 \cdot \mathrm{X}_i$$



**Note:** If you have a log-linear model with a binary indicator variable, the interpretation of the coefficient on that variable changes.

Consider

$$\log(Y_i) = \beta_0 + \beta_1 X_i + u_i$$

for binary variable X.

Interpretation of  $\beta_1$ :

- ullet When X changes from 0 to 1, Y will increase by  $100 imes e^{eta_1} 1$  percent.
- When X changes from 1 to 0, Y will decrease by  $100 imes e^{-eta_1} 1$  percent.

# Log-Linear Example

Binary explanatory variable: trained

- trained = 1 if employee received training.
- trained = 0 if employee did not receive training.

```
lm(log(productivity) ~ trained, data = df2) %>% tidy()
```

**Q:** How do we interpret the coefficient on trained?

**A<sub>1</sub>:** Trained workers 64.2 percent more productive than untrained workers.

**A<sub>2</sub>:** Untrained workers 21.08 percent less productive than trained workers.

## Log-Log Model

#### **Nonlinear Model**

$$Y_i = lpha X_i^{eta_1} v_i$$

- Y>0, X>0, and  $v_i$  is a multiplicative error term.
- Cannot estimate parameters with OLS directly.

### **Logarithmic Transformation**

$$\log(Y_i) = \log(lpha) + eta_1 \log(X_i) + \log(v_i)$$

• Redefine  $\log(lpha) \equiv eta_0$  and  $\log(v_i) \equiv u_i$ .

## **Transformed (Linear) Model**

$$\log(Y_i) = \beta_0 + \beta_1 \log(X_i) + u_i$$

• Can estimate with OLS, but coefficient interpretation changes.

# Log-Log Model

## **Regression Model**

$$\log(Y_i) = \beta_0 + \beta_1 \log(X_i) + u_i$$

### Interpretation

- A one-percent increase in the explanatory variable leads to a  $\beta_1$ percent change in the outcome variable, on average.
- Often interpreted as an elasticity.
- Example: If (Quantity Demanded) $_i = 0.45 0.31 \cdot \text{Income}_i$ , then each one-percent increase in income decreases quantity demanded by 0.31 percent.

# Log-Log Model

#### **Derivation**

Consider the log-log model

$$\log(Y_i) = eta_0 + eta_1 \log(X_i) + u$$

and differentiate

$$rac{dY}{Y}=eta_1rac{dX}{X}$$

A one-percent increase in X leads to a  $\beta_1$ -percent increase in Y.

• Rearrange to show elasticity interpretation:

$$rac{dY}{dX}rac{X}{Y}=eta_1$$

# Log-Log Example



## Linear-Log Model

#### **Nonlinear Model**

$$e^{Y_i} = lpha X_i^{eta_1} v_i$$

- X>0 and  $v_i$  is a multiplicative error term.
- Cannot estimate parameters with OLS directly.

### **Logarithmic Transformation**

$$Y_i = \log(lpha) + eta_1 \log(X_i) + \log(v_i)$$

• Redefine  $\log(lpha) \equiv eta_0$  and  $\log(v_i) \equiv u_i$ .

## **Transformed (Linear) Model**

$$Y_i = eta_0 + eta_1 \log(X_i) + u_i$$

• Can estimate with OLS, but coefficient interpretation changes.

# Linear-Log Model

### **Regression Model**

$$Y_i = eta_0 + eta_1 \log(X_i) + u_i$$

### Interpretation

- A one-percent increase in the explanatory variable increases the outcome variable by approximately  $\beta_1 \div 100$ , on average.
- Example: If  $(Blood \ \hat{Pressure})_i = 150 9.1 \log(Income_i)$ , then a one-percent increase in income decrease blood pressure by 0.091 points.

# Linear-Log Model

#### **Derivation**

Consider the log-linear model

$$Y = \beta_0 + \beta_1 \log(X) + u$$

and differentiate

$$dY=eta_1rac{dX}{X}$$

A one-percent increase in X leads to a  $\beta_1 \div 100$  change in Y.

# Linear-Log Example



## (Approximate) Coefficient Interpretation

| Model                                               | $eta_1$ Interpretation                                                                                                             |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Level-level $Y_i = eta_0 + eta_1 X_i + u_i$         | $\Delta Y = eta_1 \cdot \Delta X$<br>A one-unit increase in $X$ leads to a $eta_1$ -unit increase in $Y$                           |
| Log-level $\log(Y_i) = eta_0 + eta_1 X_i + u_i$     | $\%\Delta Y=100\cdoteta_1\cdot\Delta X$<br>A one-unit increase in $X$ leads to a $eta_1\cdot 100$ -percent increase in $Y$         |
| Log-log $\log(Y_i) = eta_0 + eta_1 \log(X_i) + u_i$ | $\%\Delta Y = eta_1\cdot\%\Delta X$<br>A one-percent increase in $X$ leads to a $eta_1$ -percent increase in $Y$                   |
| Level-log $Y_i = eta_0 + eta_1 \log(X_i) + u_i$     | $\Delta Y = (eta_1 \div 100) \cdot \% \Delta X$<br>A one-percent increase in $X$ leads to a $eta_1 \div 100$ -unit increase in $Y$ |









## **Practical Considerations**

**Consideration 1:** Do your data take negative numbers or zeros as values?

#> [1] -Inf

**Consideration 2:** What coefficient interpretation do you want? Unit change? Unit-free percent change?

**Consideration 3:** Are your data skewed?





# Quadratic Data



## **Regression Model**

$$Y_i=eta_0+eta_1X_i+eta_2X_i^2+u_i$$

### Interpretation

Sign of  $\beta_2$  indicates whether the relationship is convex (+) or concave (-)

Sign of  $\beta_1$ ?

Partial derivative of Y with respect to X is the marginal effect of X on Y:

$$rac{\partial Y}{\partial X}=eta_1+2eta_2 X$$

Effect of X depends on the level of X

```
lm(y \sim x + I(x^2), data = quad_df) %>% tidy()
```

#### What is the marginal effect of X on Y?

$$rac{\partial \mathrm{Y}}{\partial \mathrm{X}} = \hat{eta}_1 + 2\hat{eta}_2 X = 15.69 + -4.99 X$$

```
lm(y \sim x + I(x^2), data = quad_df) %>% tidy()
```

#### What is the marginal effect of X on Y when X = 0?

$$\left. rac{\partial \mathbf{Y}}{\partial \mathbf{X}} \right|_{\mathbf{X}=\mathbf{0}} = \hat{eta}_1 = \mathbf{15.69}$$

```
lm(y \sim x + I(x^2), data = quad_df) %>% tidy()
```

#### What is the marginal effect of X on Y when X = 2?

$$\left. rac{\partial \mathrm{Y}}{\partial \mathrm{X}} \right|_{\mathrm{X}=2} = \hat{eta}_1 + 2 \hat{eta}_2 \cdot (2) = 15.69 - 9.99 = 5.71$$

```
lm(y \sim x + I(x^2), data = quad_df) \%\% tidy()
```

#### What is the marginal effect of X on Y when X = 7?

$$\left. rac{\partial \mathrm{Y}}{\partial \mathrm{X}} \right|_{\mathrm{X}=7} = \hat{eta}_1 + 2 \hat{eta}_2 \cdot (7) = 15.69 - 34.96 = -19.27$$





## Where does the regression $\hat{Y}_i = \hat{eta}_0 + \hat{eta}_1 X_i + \hat{eta}_2 X_i^2$ turn?

• In other words, where is the peak (valley) of the fitted relationship?

**Step 1:** Take the derivative and set equal to zero.

$$rac{\partial \mathrm{Y}}{\partial \mathrm{X}} = \hat{eta}_1 + 2\hat{eta}_2 X = 0$$

**Step 2:** Solve for *X*.

$$X=-rac{\hat{eta}_1}{2\hat{eta}_2}$$

**Example:** Peak of previous regression occurs at X=3.14.

# Anscombe's Quartet

Four "identical" regressions: Intercept = 3, Slope = 0.5,  $R^2 = 0.67$ 

