

Answer Keys and Solutions

ANSWER K 1. (3)	2. (4)	3. (4)	4. (2)	5. (2)	6. (6)	7. (1)	8. (4)
		ngo /// mathongo	` ´	` '	` ′	` '	` '
(3)							
		ngo /// mathongo					
211 410 -	$= \begin{bmatrix} 12 & -6 & 6 \\ -10 & 6 & 2 \end{bmatrix}$	(1)					
2A - B =	$\begin{vmatrix} 2 & -1 & 5 \\ 2 & -1 & 6 \end{vmatrix} \dots ($	mgo /// mathongo (2)					
Subtractin	g equation (2) from	equation (1) we get					
	$\begin{bmatrix} 5 & -5 \end{bmatrix}$	a equation (1), we get $A = \begin{bmatrix} 1 & 0 & 2 \\ 2 & -1 & 3 \\ -1 & 1 & 1 \end{bmatrix}$					
$5B = \begin{bmatrix} 10 \\ -1 \end{bmatrix}$	$\begin{bmatrix} 0 & -5 & 0 \\ 10 & 5 & 0 \end{bmatrix}$						
Hence B =	$\begin{bmatrix} 0 & 1 & -1 \\ 2 & -1 & 0 \end{bmatrix}$						
/ month on	$\begin{bmatrix} 2 & 1 & 0 \\ -2 & 1 & 0 \end{bmatrix}$	$\begin{bmatrix} -1 & 1 & 1 \end{bmatrix}$					
So $tr(A)$ – (4) $T_r(A^2)$	$-tr(B)=1-(-1)=0$ $=T_r(A)^2$ cannot h	= 2					
		$egin{array}{lll} \mathbf{a} + 2\mathbf{c} & \mathbf{b} + 2\mathbf{d} \\ 3\mathbf{a} + 4\mathbf{c} & 2\mathbf{c} + 4\mathbf{d} \end{array}$					
(1) 1120	[3 4][c d] [3a + 4c 2c + 4d					
BA = a	$\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} a + \\ a \end{bmatrix}$	$\begin{bmatrix} 3b & 2a + 4b \\ 3d & 2c + 4d \end{bmatrix}$					
[c	d][3 4] [c+	3d 2c + 4d]					
if AB = B	3A, then $a + 2c = 3$	a + 3b ngo /// mathongo					
	$b \Rightarrow b \neq 0$						
mathon	go /// mathor						
D + 2d =	2a + 40						
$\Rightarrow 2a - 2a$	d = -3b						
	$\frac{-\frac{3}{2}b}{-\frac{3}{2}b} = -1$						
$\frac{\overline{3b-c}}{3b} = \frac{\overline{3b}}{3b}$	$\frac{-\frac{3}{2}b}{-\frac{3}{2}b} = -1$ mathor						
	$(iB)^2 = i^2B^2 = -$						
$=\begin{bmatrix} 2 & -1 \\ -2 & 2 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 3 \end{bmatrix} = -2Bathon$						
$\Rightarrow A^4 = 0$	$(-2B)^2 = 4B^2 =$	4(2B)=8B					
$\Rightarrow A^8 = $ mathon $(2) f(A)$	$(A^4)^2 = (8B)^2 =$	$64B^2 = 128B$ + A^{16}					
$A = \begin{bmatrix} 0 & 5 \\ 1 & 4 \end{bmatrix}$	$\begin{bmatrix} 1 + A + A + \dots \\ 2 \end{bmatrix} \Rightarrow A^2 = \begin{bmatrix} 0 & 5 \end{bmatrix}$	$\begin{bmatrix} 0 & 5 \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix}$					
$\begin{bmatrix} 0 & 0 \\ A & 3 & A & 2 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 5 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$					
$A^* = A^*$.	$A = \begin{bmatrix} 0 & 0 \end{bmatrix}$. 16 [0 0]					
Similarly .	$A^4 = A^5 = \dots$	$\dots = \mathbf{A}^{16} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$					
$f(\mathbf{A}) = \begin{bmatrix} 0 \end{bmatrix}$	$\begin{bmatrix} 1 \end{bmatrix}^+ \begin{bmatrix} 0 & 0 \end{bmatrix}^+ \begin{bmatrix} 0 \end{bmatrix}$	$\begin{bmatrix} 0 \end{bmatrix} + \dots + \begin{bmatrix} 0 & 0 \end{bmatrix}$					
$=\begin{bmatrix} 1 & 5 \\ 0 & 1 \end{bmatrix}$							

Answer Keys and Solutions

