Koby Miller

Section number: 11207

Assignment number: 6

Date due: 2/28/2020

- 1) Consider the relation R(A,B,C,D) having the Functional Dependencies: $\{BCD \rightarrow A, A \rightarrow D\}$. Prove your answer to these questions.
 - a. Possible minimal keys for R:

{BCD}, {BCA}

There is no way to get BC other than starting with them so it must be in both keys. If you add D, you can use $BCD \rightarrow A$ to get A.

Back to the base of BC, if you add A, you can use $A \rightarrow D$ to get D.

- b. Currently, what is the normal form of R? Not 3NF because $A \rightarrow D$ is not a superkey. It is 2NF.
- c. Preserving dependencies, show how to transform R into BCNF if it is not already in BCNF.

It is not BCNF because $A \rightarrow D$ is not a super key.

$$R = \{A,B,C,D\}$$
 Start
$$R = \{(A,B,C), (A,D)\}$$

$$A \rightarrow D$$

$$R1 = ABC, R2 = AD$$

2) Consider the relation S (A,B,C,D,E) having the Functional Dependencies: $\{AB \to C,DE \to C, B \to D\}$. State any BCNF violations. Then, decompose, as necessary, the relation into a collection of relations that are in BCNF.

Minimal key: {ABE}

$$AB = \{A,B,C,D\} \rightarrow \text{violation, not superkey}$$

$$DE = \{C,D,E\} \rightarrow \text{violation, not superkey}$$

$$B = \{ B,D \} \rightarrow \text{violation, not superkey}$$

$$S = R \{A,B,C,D,E\}$$
 Start

$$S = R \{(A,B,D,E), (A,B,C)\}$$
 AB \rightarrow C

$$S = R \{(A,B,D,E), (A,B,C), (D,E,C)\}$$
 DE \rightarrow C

$$S = R \{(A,B,E), (A,B,C), (D,E,C), (B,D)\}$$
 $B \to D$

- 3) Consider the relation T (A,B,C,D,E,F) having the Functional Dependencies: $\{E \to CF, CA \to B, BD \to E\}$. Prove your answers to these questions.
 - a. What are all the possible <minimal> keys for T? Minimal keys: {A,D,B}, {A,D,C}, {A,D,E}
 - b. Is T in BCNF?
 No none of the FDs are superkeys
 - c. Is T in 3NF?
 No, for the same reason it is not BCNF, none of the FDs are superkeys.