MATH502 — Combinatorics 2

Based on the lectures by Maria Gillespie

Notes written by Ignacio Rojas

Spring 2023

Please note that these notes were not provided or endorsed by the lecturer and have been significantly altered after the class. They may not accurately reflect the content covered in class and any errors are solely my responsibility.

This is the second semester of an introductory graduate-level course on combinatorics. We will be covering symmetric function theory, Young tableaux, counting with group actions, designs, matroids, finite geometries, and not-so-finite geometries.

The goal of this class is to give an overview of the wide variety of topics and techniques in both classical and modern combinatorial theory.

Requirements

Knowledge on theory of enumeration, generating functions, combinatorial species, the basics of graph theory, posets, partitions and tableaux, and basic symmetric function theory is required.

Contents

C	onten	2			
1	Sym	3			
	1.1	Day 1 20230120	3		
	1.2	day 2	6		
	1.3	Day 3 20230125	9		
	1.4	Day 4 20230127	12		
	1.5	Interim 1	13		
	1.6	Day 5 20230130	14		
	1.7	Day 6 20230201	17		
	1.8	Day 7 20230203	20		
	1.9	Day 8 20230206	23		
	1.10	Day 9 20230208	26		
	1.11	Day 10 20230210	27		
Index					
Bibliography					

Chapter 1

Symmetric functions

1.1 Day 1 | 20230120

Definition 1.1.1. $f(x_1, x_2, ...)$ is <u>symmetric</u> if it's fixed under permutations of variables. For a permutation σ this is,

$$f(x_{\sigma(1),x_{\sigma(2)}},\dots) = f(x_1,x_2,\dots).$$

Example 1.1.2. The function

$$f(x_1,\ldots,x_4) = x_1^5 + \cdots + x_4^5$$

is known as p_5 or $m_{(5)}$, where p is the power-sum symmetric function and m, the monomial symmetric function.

We can have the function defined on infinitely many variables. Consider the function g defined as

$$g = x_1^4 x_2 + x_1^4 x_3 + \dots + x_i^4 x_j + \dots + 3x_1 + \dots + 3x_i + \dots = m_{(4,1)} + 3m_{(1)}.$$

Let us recall some **notation**,

$$\begin{cases} \Lambda_R(x_1,\ldots,x_n) \to \text{symmetric functions on } n \text{ variables over } R, \\ \Lambda_R(\underline{x}) \to \text{symmetric functions on } infinitely \text{ many variables over } R. \end{cases}$$

In our case $R = \mathbb{Q}$, so the object of study is $\Lambda_{\mathbb{Q}}$.

Proposition 1.1.3. The space $\Lambda^n_{\mathbb{Q}}$ is the space of symmetric functions of degree n. Its dimension is p(n), the number of partitions of n.

This is because, for every such function we can decompose it into monomials and the monomial symmetric functions form a basis.

Bases of Λ_Q

Suppose $\lambda = (\lambda_1, \dots, \lambda_k) \vdash n \text{ with } \lambda_1 \geqslant \dots \geqslant \lambda_k$.

Monomial Symmetric Functions

The function $m_{\lambda}(\underline{x})$ is the smallest symmetric function which contains the monomial $x_1^{\lambda_1} x_2^{\lambda_2} \dots x_k^{\lambda_k}$ as a term. In general

$$m_{\lambda} = \sum_{i_1 \neq \dots \neq i_k} x_{i_1}^{\lambda_1} \dots x_{i_k}^{\lambda_k}.$$

Example 1.1.4. Consider the partition $(5,3) \vdash 8$. The function $m_{(5,3)}$ will be different depending on the number of variables:

- \diamond In one variable we can't have monomials of the form $x_i x_j$, so $m_{(5,3)} = 0$.
- \diamond In two variables we have $m_{(5,3)}(x,y) = x^5y^3 + y^5x^3$.
- ⋄ In three variables the function is

$$m_{(5,3)}(x,y,z) = x^5y^3 + y^5z^3 + z^5x^3 + y^5x^3 + z^5y^3 + x^5z^3.$$

Considering some special cases, take the partition $(1, 1, 1, 1) \vdash 4$, then

$$m_{(1,1,1,1)}(u,v,x,y,z) = uvxy + vxyz + xyzu + yzuv + zuvx$$
$$= uvxy + uxyz + uvyz + uvxz + vxyz.$$

For cases with less than 4 variables the function is zero and in exactly four, it has 1 term. The partition $(4) \vdash 4$ returns the function

$$m_{(4)}(x) = x^4, m_{(4)}(x,y) = x^4 + y^4, m_{(4)}(x,y,z) = x^4 + y^4 + z^4,$$

and so on with any number of variables.

Remark 1.1.5. The number of terms in $m_{\lambda}(x_1, \ldots, x_d)$ is I actually don't know, while the degree of m_{λ} is $|\lambda| = n$.

Elementary Symmetric Functions

Definition 1.1.6. For any $r \in \mathbb{N}$, the elementary symmetric function e_r is $m_{(1,1,\dots,1)}$ (r ones). For λ , a partition, $e_{\lambda} = \prod e_{\lambda_i}$. As an alternative for $m_{(1,1,\dots,1)}$ we can also write

$$e_r(x_1, \dots, x_d) = \sum_{1 \leqslant i_1 < \dots < i_r \leqslant n} x_{i_1} \dots x_{i_r}.$$

Example 1.1.7. Let us calculate $e_{(2,1)}$ for 1 through 3 variables. When we have $e_{(2,1)}(x) = e_2(x)e_1(x)$, we can't compute $e_2(x)$ because there are no two-term monomials with only one variable. On two variables we have the following

$$e_{(2,1)}(x,y) = e_2(x,y)e_1(x,y) = (xy)(x+y) = x^2y + y^2x$$

and when talking about 3 variables the following happens:

$$e_{(2,1)}(x, y, z) = e_2(x, y, z)e_1(x, y, z)$$

$$= (xy + yz + zx)(x + y + z)$$

$$= x^2y + y^2z + z^2x + y^2x + z^2y + x^2z + 2xyz.$$

Consider now the partitions (2, 2, 2, 2) and (5). Then

$$e_{(2,2,2,2)} = e_2^4 \Rightarrow e_{(r,r,\dots,r)} = e_r^{m_r(\lambda)}$$

where $m_i(\lambda)$ is number of parts of λ equal to i. For the partition (5) we have that $e_{(5)} = e_5$ and in general $e_{(n)} = e_n$.

Remark 1.1.8. As before we don't know how many terms per function, but knowing m implies knowing e. As for the degree, it holds that $deg(e_{\lambda}) = |\lambda|$.

Homogenous Symmetric Functions

- $\qquad \qquad \diamond \ \ \text{Homogenous:} \ h_{\lambda} = \prod h_{\lambda_i} \ \text{and} \ h_d = x_1^d + \dots + x_1^{d-1} x_2 + \dots + x_1^{d-2} x_2^2 + x_1^{d-2} x_2 x_3 + \dots .$ In general $h_d = \sum_{\lambda \vdash d} m_{\lambda}$.
- \diamond Power sum: $p_{\lambda} = \prod p_{\lambda_i}$ and $p_d = \sum x_i^d$.

For Schur basis recall SSYT

Example 1.1.9. Consider $\lambda = (5, 4, 1)$, rows $\leq \rightarrow$ and columns <, we associate the monomial $x_1^2 x_2^3 x_3^3 x_4^2 := x^T$.

 \diamond Schur: $s_{\lambda} = \sum_{T \in SSYT(\lambda)} x^T$ but also $\sum K_{\lambda\mu} m_{\mu}$ where the sum is over SSYT of shape λ , content μ .

Schur function motivation (preview)

The first place they showed up is in the representation theory of Lie group. The function $s_{\lambda}(x_1,\ldots,x_n)$ is a character of irreducible polynomial representations of GL_n . In theoretical physics we have matrix groups acting on particles, representations are smaller matrix groups of things that they are mapping to. We want to take tensor product and direct sums of representations, the tensor product is related to multiplication of Schur function while direct sum into sum of Schur functions.

There's also the Schur-Weyl duality which takes representations into the Weyl group. Under the *Frobenius map*, s_{λ} corresponds to irreducible representations of S_n .

A more modern application of Schur function goes into geometry, s_{λ} correspond to Schubert varieties in Grassmannians. Multiplication corresponds to interesections and sum to unions.

There's also context in Probability Theory. But in the end, Schur positivity is important because of this connections.

Definition 1.1.10. $f \in \Lambda$ is Schur-positive if $f = \sum c_{\lambda} s_{\lambda}$, $c_{\lambda} \ge 0$.

Example 1.1.11. $3s_{(2,1)} + 2s_{(3)}$ schur pos but change 2 to $-\frac{1}{2}$ then not.

1.2 day 2

6

Alg defn Schur fncs

Definition 1.2.1. A function is antisymmetric if for $\pi \in S_n$,

$$f(x_{\pi(1)},\ldots,x_{\pi(n)}) = \operatorname{sgn}(\pi)f(x_1,\ldots,x_n).$$

Example 1.2.2. The following functions are antisymmetric:

- (a) f(x,y) = x y then f(y,x) = -f(x,y).
- (b) g(x,y) = (x-y)(x+y).
- (c) $h(x,y) = x^2y y^2x$.

Notice that the last function can factor as h = -xy(x - y). We claim that this is always the case.

Lemma 1.2.3. Every antisymmetric polynomial f in two variables x, y can factor as f(x, y) = (x - y)g(x, y) where g is symmetric.

Proof

Suppose f is antisymmetric, then f(x,x) = 0 by taking y = x. This means that $(x - y) \mid f$. Thus f(x,y) = (x - y)g(x,y) and we now need to show that g is symmetric.

$$g(y,x) = \frac{f(y,x)}{y-x} = \frac{-f(x,y)}{-(x-y)} = \frac{f(x,y)}{x-y} = g(x,y).$$

Monomial Antisymmetric Functions

Definition 1.2.4. Given a strict partition $\lambda = (\lambda_1, \dots, \lambda_k)$, $\lambda_1 > \dots > \lambda_k$, we define

$$a_{\lambda}(x_1,\ldots,x_n)=x_1^{\lambda_1}\cdots x_k^{\lambda_k}\pm \text{similar terms}=\sum_{\pi\in S_n}\operatorname{sgn}(\pi)\prod_k x_{\pi(k)}^{\lambda_k}.$$

This a_{λ} can be zero.

Example 1.2.5. For two variables we've seen some antisymmetric polynomials. Let us calculate

$$a_{(3,1)}(x,y) = x^3y - y^3x.$$

The smallest possible example in 3 variables is

$$a_{(2,1,0)}(x,y,z) = x^2y + y^2z + z^2x - y^2x - z^2y - x^2z.$$

This can be factored as (x - y)(y - z)(x - z). A similar construction gives us

$$a_{(4,2,0)}(x,y,z) = x^4y^2 + y^4z^2 + z^4x^2 - y^4x^2 - z^4y^2 - x^4z^2,$$

but how does this factor? We get

$$a_{(4,2,0)}(x,y,z) = (x^2 - y^2)(y^2 - z^2)(x^2 - z^2) = a_{(2,1,0)}(x,y,z)(x+y)(y+z)(x+z).$$

Lemma 1.2.6. The set $\{a_{\lambda}\}_{\lambda \text{ strict}}$ is a basis of the antisymmetric polynomials over \mathbb{Q} , $A_{\mathbb{Q}}$. Even more any a_{λ} is divisible by a_{ρ} where $\rho = (n-1, n-2, \dots, 2, 1, 0)$.

As an algebra generator, a_{ρ} is a generator.

Proof

WRITE

Proposition 1.2.7. The a_{ρ} antisymmetric function is also the <u>Vandermonde determinant</u>:

$$a_{\rho} = \det \begin{pmatrix} x_1^{n-1} & x_1^{n-2} & \dots & x_1^2 & x_1 & 1 \\ x_2^{n-1} & x_2^{n-2} & \dots & x_2^2 & x_2 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ x_n^{n-1} & x_n^{n-2} & \dots & x_n^2 & x_n & 1 \end{pmatrix}$$

Schur Polynomials

Definition 1.2.8. The Schur polynomial of $\lambda \in Par$ is

$$s_{\lambda}(x_1,\ldots,x_n) = \frac{a_{\lambda+\rho}(\underline{x})}{a_{\rho}(\underline{x})}.$$

Here $\lambda + \rho$ is the pointwise sum as arrays.

Remark 1.2.9. This is the Weyl character proof.

The following proof is due to Proctor(1987) find ref

Lemma 1.2.10. Any a_{λ} can be seen as a determinant in the following way:

$$a_{\lambda}(\underline{x}) = \det \begin{pmatrix} x_1^{\lambda_1} & x_1^{\lambda_2} & \dots & x_1^{\lambda_n} \\ x_2^{\lambda_1} & x_2^{\lambda_2} & \dots & x_2^{\lambda_n} \\ \vdots & \vdots & \ddots & \vdots \\ x_n^{\lambda_1} & x_n^{\lambda_2} & \dots & x_n \end{pmatrix}$$

Proof

We want to see that

$$\frac{a_{\lambda+\rho}(\underline{x})}{a_{\rho}(x)} = \sum x^{T}$$

where the sum ranges through T's which are SSYT(la) with max entry n.

(a) We will show a recursion for the combinatorial definition that the character formula will also satisfy. It holds that

$$s_{\lambda}(\underline{x}) = \sum s_{\mu}(\underline{x}) x_n^{|\lambda| - |\mu|}$$

where μ has n-1 parts with $\lambda_1 \geqslant \mu_1 \geqslant \lambda_2 \geqslant \mu_2 \dots$

(b) We also show that the ratio of determinants satisfies the same recursion.

Example 1.2.11. Consider $\lambda=(8,8,4,1,1)$ and $\mu=(8,5,2,1)$, then $\lambda\setminus\mu$ is a skew-table in which we can fill in n's

Corollary 1.2.12. *The Schur polynomials are a basis of* $\Lambda_{\mathbb{O}}$.

1.3 Day 3 | 20230125

Recall $\Lambda = \mathbb{Q}[e_1, e_2, \dots]$ where the e_j 's are the elementary symmetric functions. So the e_j 's are algebraic generators of Λ and they're algebraically independent. Equivalently, as a vector space, $\{e_{\lambda} : \lambda \in \operatorname{Par}\}$ is a basis.

Proposition 1.3.1. A homomorphism $f : \Lambda \to \Lambda$ (f(a+b) = f(a) + f(b), f(ab)f(a)f(b) for $a, b \in \Lambda$) is fully determined by where it sends the e'_is .

Definition 1.3.2. The map $\omega \in \operatorname{End}(\Lambda)$ will send e_j to h_j .

Example 1.3.3. Consider $f = 3e_{(2,1)} + 2e_3$, then applying ω we get

$$\omega(f) = \omega(3e_{(2,1)} + 2e_3) = 3h_{(2,1)} + 2h_3.$$

For p_2 , we can decompose to $e_1^2 - 2e_2$. So

$$\omega(p_2) = \omega(e_1^2 - 2e_2) = h_1^2 - 2h_2$$

and we can expand this last expression into

$$(x_1 + x_2 + \dots)^2 - 2(x_1^2 + x_2^2 + \dots + x_1x_2 + x_1x_3 + \dots) = -x_1^2 - x_2^2 - \dots$$

and we recognize this last term as $-p_2$. This is not a coincidence.

Theorem 1.3.4. *The map* ω *is involutive.*

Proof

It suffices to prove that $\omega(h_j) = e_j$. We will use power expansions and generating functions. We have

$$H(t) = \frac{1}{1 - x_1 t} \frac{1}{1 - x_2 t} \cdots = \sum h_n(\underline{x}) t^n,$$

and this comes from expanding the 1/(1-y)'s as geometric series. When collecting the coefficients of t^n we get exactly $h_n(\underline{x})$. Similarly, for the elementary

symmetric functions,

$$E(t) = (1 + x_1 t)(1 + x_2 t) \cdots = \sum e_n t^n$$

When multiplying to obtain the coefficient of t^n we get a plethora of different x_j 's which form the e_j 's. Now from this expressions we have H(t)E(-t)=1 which means that

$$\left(\sum h_n(\underline{x})t^n\right)\left(\sum e_n(\underline{x})(-t)^n\right) \Rightarrow \sum_{k=0}^n (-1)^k e_k h_{n-k} = 0, \ n \geqslant 1.$$

Now applying the map to the equation we get

$$\omega\left(\sum_{k=0}^{n}(-1)^{k}e_{k}h_{n-k}\right) = \sum_{k=0}^{n}(-1)^{k}h_{k}\omega(h_{n-k}) = 0.$$

After reindexing, we get that both e_j 's and $\omega(h_j)$'s are determined recursively by the h_j 's in the same way. Thus we conclude that $\omega(h_j) = e_j$.

Lemma 1.3.5. The following equation holds for the power-sum symmetric functions:

$$\exp\left(\sum \frac{1}{n}p_n(\underline{x})p_n(\underline{y})\right) = \prod_{i,j=1}^{\infty} \frac{1}{1 - x_i y_j} = :\Omega(\underline{x}, \underline{y}).$$

It also holds that

$$\Omega(\underline{x}, \underline{y}) = \sum_{l} a \frac{1}{z^{\lambda}} p_{\lambda}(\underline{x}) p_{\lambda}(\underline{y})$$

where $z_{\lambda} = \prod k^{m_k} m_k!$ where m_k is the number of parts of λ equal to k.

Proof

We will prove both parts separately. For the first equation we will take the logarithm on both sides:

$$\sum \frac{1}{n} p_n(\underline{x}) p_n(\underline{y}) = \log \left(\prod_{i,j=1}^{\infty} \frac{1}{1 - x_i y_j} \right)$$

and after manipulating the logarithm we get

$$\sum_{i,j=1}^{\infty} (\log(1) - \log(1 - x_i y_j)) = \sum_{i,j=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{n} x_i^n y_j^n.$$

We can separate^a into

$$\sum_{n=1}^{\infty} \frac{1}{n} \left(\sum_{i} x_{i}^{n} \right) \left(\sum_{j} y_{j}^{n} \right).$$

Now taking exp on both sides we get equality.

By not removing the exponential we get the following expression

$$\exp\left(\sum \frac{1}{n} p_n(\underline{x}) p_n(\underline{y})\right) = \sum_{k=0}^{\infty} \frac{1}{k!} \left(\sum \frac{1}{n} p_n(\underline{x}) p_n(\underline{y})\right)^k.$$

To get a term of the form $p_{\lambda}(\underline{x})p_{\lambda}(\underline{y})$ we have to choose which parts of the λ come from each of the factors in $\sum \frac{1}{n}p_n(\underline{x})p_n(\underline{y})$. If $\ell(\lambda)=k$ then it comes from the k^{th} term in the exponential sum. If $\lambda=(\lambda_1,dots,\lambda_1,\ldots,2,\ldots,2,1,\ldots,1)$ with m_{λ_1} λ_1 's, m_1 1's, then out of k elements we have to choose m_1 1's and so on. Thus there are $\binom{k}{m_{\lambda_1},\ldots,m_1}$ choices and each i in λ comes with a $\frac{1}{i}$. Therefore the coefficient of $p_{\lambda}(\underline{x})p_{\lambda}(\underline{y})$ is

$$\frac{1}{k!} \frac{k!}{m_1! m_2! \dots} \frac{1}{1^{m_1}} \frac{1}{2^{m_2}} \dots = \frac{1}{z_{\lambda}}.$$

Lemma 1.3.6. *We have the following identities*

$$\exp\left(\sum \frac{(-1)^{n-1}}{n} p_n(\underline{x}) p_n(\underline{y})\right) = \prod_{i,j=1}^{\infty} \frac{1}{1 + x_i y_j} = \sum_{\lambda} \frac{(-1)^{n-\ell(\lambda)}}{z_{\lambda}} p_{\lambda}(\underline{x}) p_{\lambda}(\underline{y}).$$

Lemma 1.3.7. *Another equality for* $\Omega(\underline{x},\underline{y})$ *is*

$$\Omega(\underline{x},\underline{y}) = \sum_{\lambda} m_{\lambda}(\underline{x}) h_{\lambda}(\underline{y})$$

Theorem 1.3.8. It holds that $\omega(p_{\lambda}) = (-1)^{n-k} p_{\lambda}$ where k is the number of parts of λ .

Proof

Applying ω to Ω , but *only working with* \underline{y} *variables* we get

$$\omega(\Omega) = \omega\left(\sum_{\lambda} m_{\lambda}(\underline{x}) h_{\lambda}(\underline{y})\right) = \sum_{\lambda} m_{\lambda}(\underline{x}) e_{\lambda}(\underline{y}) = \prod_{i,j=1}^{\infty} (1 + x_i y_j) = \sum_{\lambda} \frac{1}{z_{\lambda}} (-1)^{n - k_{\lambda}} p_{\lambda}(\underline{x}) p_{\lambda}(\underline{y}).$$

^aAre we using Fubini-Tonelli here?

Comparing coefficients with

$$\omega \left(\sum_{l} a \frac{1}{z^{\lambda}} p_{\lambda}(\underline{x}) p_{\lambda}(\underline{y}) \right)$$

we get the result.

1.4 Day 4 | 20230127

To continue exploring the ring of symmetric functions we need a couple of tools. One of them is the involution which we have already seen. But the other one is a scalar product which is compatible with the multiplication.

Hall Inner Product

Recall an inner product is a function

$$\langle -|-\rangle \colon V \times V \to \mathbb{Q}$$

which is bilinear $\langle u+v|w\rangle=\langle u|w\rangle+\langle v|w\rangle$ and the same on the other entry. For scalars the following behavior is expected $\langle \lambda u|v\rangle=\langle u|\lambda v\rangle=\lambda\langle u|v\rangle$. Recall that if the base field is the complex numbers, then the inner product is Hermitian.

Definition 1.4.1. We say that two vectors are orthogonal when $\langle u|v\rangle=0$.

This gives us a possible decomposition of space into several components. Suppose that $\{u_{\lambda}\}_{{\lambda}\in Par(n)}, \{v_{\lambda}\}_{{\lambda}\in Par(n)}$ are basis of Λ^n . So we would like a condition such as

$$\langle u_{\lambda}|v_{\mu}\rangle = \begin{cases} 0 \ \lambda \neq \mu, \\ 1 \ \lambda = \mu. \end{cases}$$

If we cap the dimension this says that $\langle u|v\rangle$ is the usual dot product. But in infinite dimensions we don't have matrices. We'll call this basis <u>dual</u> to one another. If miraculously we have the same basis, then this basis is <u>orthonormal</u>.

Definition 1.4.2 (Phillip Hall). The Hall inner product is defined so that $\langle m_{\lambda} | h_{\mu} \rangle = \delta_{\lambda\mu}$.

By defining the product on two basis, we have defined it for all other elements by bilinearity.

Lemma 1.4.3. The Hall inner product is symmetric.

Theorem 1.4.4. The Hall inner product is positive definite, this is $\langle f|f\rangle \geqslant 0$ and equality is achieved when f=0.

It's important to note that this statement is symmetric. However we are talking about an asymmetric definition. Last, before proving the statement we need a criteria for dual bases. But importantly, recall the result from last lecture: 1.3.7

Theorem 1.4.5. If u_{λ} , $\{v_{\mu}\}$ are dual, then $\sum_{\lambda} u_{\lambda} v_{\lambda} = \Omega$.

Proof

Fix a partition of n, then

$$\delta_{\lambda\mu} = \langle m_{\lambda} | h_{\mu} \rangle = \left\langle \sum_{\rho \vdash n} \alpha_{\lambda_{\rho}} u_{\rho} \middle| \sum_{\tau \vdash n} \beta_{\mu_{\tau}} v_{\tau} \right\rangle = \sum_{\rho,\tau} \alpha_{\lambda_{\rho}} \beta_{\mu_{\tau}} \left\langle u_{\rho} | v_{\tau} \right\rangle.$$

We want $\langle u_{\rho}|v_{\tau}\rangle=\delta_{\rho\tau}$, to that effect name $A_{\rho\tau}$ the matrix whose entries are $\langle u_{\rho}|v_{\tau}\rangle$.

As u and v are dual bases, we have that $A = \mathrm{id}$. Thus $I = \alpha \beta^{\mathsf{T}}$ and now $\delta_{\rho\tau} = \sum \alpha_{\lambda_{\rho}} \beta_{\lambda_{\tau}}$. We are now going to use the hypothesis and the interpretation of m, h in the u, v basis. We have

$$\Omega = \sum \left(\sum \alpha u\right) \left(\sum \beta v\right) = \sum \left(\sum \alpha \beta\right) uv = \sum uv$$

so the inner sum must be one and thus we are done.

Corollary 1.4.6. For the Hall inner product it holds that $\langle p_{\lambda}|p_{\mu}\rangle=z_{\lambda}\delta_{\lambda\mu}$.

The key is to recall that p_{λ} is an eigenfunction of ω . Also 1.3.5. By using a power-sum decomposition it is possible to prove that the Hall inner product is positive definite.

Corollary 1.4.7. The ω involution is orthogonal with respect to $\langle -|-\rangle$. This is $\langle \omega f | \omega g \rangle = \langle f | g \rangle$.

Once again, the idea is to transfer to power-sum and use the fact that it's an eigenfunction.

1.5 Interim 1

Theorem 1.5.1 (Fundamental Theorem of Sym. Fnc. Thry.). Every symmetric function can be written uniquely in the form $\sum_{\lambda} c_{\lambda} e_{\lambda}$ with $c_{\lambda} \in \mathbb{Q}$.

There are at least two proofs if not more of this fact. The first comes from Maria Gillespie's blog which Mark Haiman presented to her.

Proof

It suffices to prove the transition matrix between m and e is invertible.

For proof 2 read [10] pg. 290. Proof 3 in another Maria post

1.6 Day 5 | 20230130

Exercise 1.6.1. Compute $\omega(s_{(3,1)})$.

Answer

We have that By Jacobi-Trudi

$$s_{(3,1)} = \det \begin{pmatrix} h_3 & h_4 \\ 1 & h_1 \end{pmatrix} = h_{(3,1)} - h_4.$$

Using the omega involution, we get

Recall that $\omega: h_n \leftrightarrow e_n$, $\omega p_k = (-1)^{k-1} p_k$. We have the following questions, where do m and s map to? Also

$$\langle m|h\rangle = \delta, \ \langle p|p/z\rangle = \delta,$$

but what are *e* and *s* dual to?

Definition 1.6.2. We call $\omega m_{\lambda} = f_{\lambda}$ the forgotten basis.

There's not much we could say about them, they are not Schur positive and there's no patterns.

Dual to e

Recall ω is an isometry, so $\langle \omega f | \omega g \rangle = \langle f | g \rangle$, so

$$\langle e_{\lambda}|?\rangle = \langle h_{\lambda}|\omega?\rangle = \delta_{\lambda\mu}.$$

Since $\langle h|m\rangle=\delta$, then applying ω again we get that $\langle e_{\lambda}|f_{\mu}\rangle=\delta_{\lambda\mu}$.

RSK algorithm

We want to show two things:

$$\omega s_{\lambda} = s_{\lambda^{\mathsf{T}}}, \ \langle s_{\lambda} | s_{\mu} \rangle = \delta_{\lambda \mu}.$$

Proposition 1.6.3. It holds that

$$\sum_{\lambda} s_{\lambda}(\underline{x}) s_{\lambda}(\underline{y}) = \Omega = \sum_{\lambda} m_{\lambda}(\underline{x}) h_{\lambda}(\underline{y})$$

Proof

The sum on the left is

$$\sum_{(S,T)SSYT} x^S y^T$$

so we will study pairs (S,T) of SSYT of the same shape to show that they're equal to the sum on the right.

algorithm: process of doing the bijection.

The RSK bijection takes a pair (S,T) of SSYT of the same shape and it maps it to "two-line arrays" of length n.

Definition 1.6.4. A two-line array is a matrix in $\mathcal{M}_{2\times n}(\mathbb{Z}_{\geqslant 0})$ such that

- i) The bottom row is weakly increasing.
- ii) If $b_i = b_{i+1}$, then $a_i \le a_{i+1}$, where a's are the top row and b's the bottom row.

Example 1.6.5. Consider the matrix

$$\begin{pmatrix} 1 & 1 & 2 & 1 & 4 & 2 & 3 & 1 & 2 \\ 1 & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 4 \end{pmatrix}$$

Within "blocks", there is a weak increment. From right-to-left we will find a pair of SSYT. We will "insert" top row letters from left-to-right.

- (a) Place 1st letter 1
- (b) For each letter, if it can go at the end of last row, put it there

$$\boxed{1}\boxed{1}\leftarrow 2, \boxed{1}\boxed{1}\boxed{2}\leftarrow 1$$

but one can't go after 2.

1. Symmetric functions

(c) Otherwise if inserting b_1 , let c be the leftmost > b, "bump c", then insert c into the next row.

 $\begin{array}{|c|c|c|}\hline 1 & 1 & 1 \\ \hline 2 & & \\ \hline \end{array}$

For the bottom row, place in a new square at each step to form a "recording tableau". The recording tableau always matches the shape of the insertion one. The first three

steps lead to $\boxed{1\ 1\ 1}$ in the recording one. But in the fourth step we get $\boxed{2}$. The next step leads us to

then in insertion, 2 bumps 4 and 4 doesn't bump 2 on next row, so we get

The three is no problem so

then the next one bumps out the 2, the 2 bumps the 4 on the second row to get

Finally

16

Why do we get SSYT. The insertion tableau gives us the question, can we make a column non-increasing? No, we are always bumping something bigger. Imagine we bump c > b with b, then c replaces something that goes to the left.

and d>c so it bumps something else. The recording tableau is also a SSYT. Let us prove it.

Lemma 1.6.6 (Key Lemma 1). *The insertion path (sequence of squares that are bumped) moves up and weakly left.*

Lemma 1.6.7 (Key Lemma 2). *If* $a \le b$ *and* T *is a SSYT, computing*

$$T \leftarrow \boxed{a} \leftarrow \boxed{b},$$

the intersection path of a in T lies strictly left of the intersection path of b in $T \leftarrow \boxed{a}$.

Proof

We will do induction on the rows with an example.

Example 1.6.8. Consider

Inserting 1 we bump the 2, then the 3 and finally the 5. We get

so inserting the 2 we bump 3,4,5. And they will be to the side of the last sequence.

1.7 Day 6 | 20230201

Exercise 1.7.1. Apply RSK to $\begin{pmatrix} 3 & 2 & 4 & 1 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix}$

Answer	Answer					
We get $\begin{bmatrix} 1 & 4 & 5 \\ 2 & & \\ \end{bmatrix}$	$ \begin{array}{c c} 1 & 3 & 5 \\ \hline 2 & \\ 4 & \\ \end{array} $					

Notice that we got STANDARD Young tableau. So to prove it's a bijection we will begin with all different numbers.

Lemma 1.7.2. The RSK bijection is a bijection between pairs of standard Young tableaux of the same shape and "permutations" $(2 \times n)$ matrices whose rows are permutations.)

To prove it's a bijection we will find an inverse by reversing the process. Look at the recording tableau, we will bump out the largest number. We will take S as the recording tableau. Then we start with the spot on S,T which corresponds to largest label in S.

- \diamond If *b* is the item in such a square we "un-bump" it.
 - If in bottom row, just remove.
 - Else, let c be the rightmost entry in row below b that is less than b. Then replace b with c and repeat the process with c until the letter that is removed is done by the just removing it.

Then we add the two letters to the matrix from right-t-left.

With the original tableau we remove the 5 and the 5 to get

$$\begin{bmatrix} 1 & 4 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 & 3 \\ 2 \\ 4 \end{bmatrix}$$

then the 4 indicates that in T we must "un-bump" the 3. The three un-bumps the 2, the 2 to the 1 so that we get

$$\begin{bmatrix} 2 & 4 \\ 3 & , & 2 \end{bmatrix}$$

Now we get the matrix $\begin{pmatrix} x & x & x & 1 & 5 \\ x & x & x & 4 & 5 \end{pmatrix}$ and removing the 3 from S just removes the 4 from T as it is in the bottom row.

Now as this two sets are in bijection, this means that they have the same size.

Corollary 1.7.3. Let f^{λ} be the number of standard Young tableau of shape λ . Then

$$\sum_{\lambda \vdash n} (f^{\lambda})^2 = n!.$$

We will generalize one step at a time. Let us now assume that T is semi-standard. On the matrix, we will have that the top row is now random, but the bottom row is still from 1 to n.

Lemma 1.7.4 (Schensted). *There is a bijection between* (S, T), S *is standard,* T *is SSYT, and words of length* n.

Example 1.7.5. Consider the matrix $\begin{pmatrix} 2 & 1 & 3 & 1 & 3 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix}$ which returns the two Young tableau

The proof of the inverse is similar but when un-bumping, we must bump the rightmost entry *strictly* smaller than *b*. But we don't need this, we will do it more creatively.

Definition 1.7.6. Suppose T is a Young tableau. Then

- i) The reading word of T rw(T) is the concatenation of rows from top to bottom.
- ii) The <u>standarization</u> of an SSYT T, std(T), is the unique SYT with same relative order of entries, ties broken with "reading order".
- iii) The standarization of a word is similar

In the previous example, the reading word is

$$\begin{array}{c|c}
\hline
1 & 1 & 3 \\
\hline
2 & 3 \\
\hline
\end{array}
\rightarrow 23113.$$

The standarization are as follows:

We can standarize the matrix

$$\begin{pmatrix} 2 & 1 & 3 & 1 & 3 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & 4 & 1 & 2 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix}$$

$$(S,T) \xleftarrow{RSK} 21313$$

$$std \downarrow \qquad \qquad \downarrow$$
 $(S,T') \xleftarrow{RSK} 31425$

Definition 1.7.7. Given a content $\mu = (\mu_1, \dots, \mu_k)$ with $\sum \mu_k = n$ (not nec. partition). Then the de-standarization with respect to μ of a SYT T is a SSYT T' such that std(T') = T.

In this case

Recall now lemma 1.6.7 about consecutive insertions.

The Full RSK

We are now going to prove that there is an inverse to the original RSK function. Consider the following example

also standarizes to the word table.

Day 7 | 20230203

Exercise 1.8.1. Expand $h_{(3,2)}$ in Schur basis.

Answer

the table 4

This is $s_{(3,2)} + s_{(4,1)} + s_{(5)}$.

Recall that (s_{λ}) form an orthonormal basis and m and h are dual basis. This means that if *f* is a symmetric function then

$$f = \sum_{\lambda} c_{\lambda} s_{\lambda} \Rightarrow c_{\lambda} = \langle f | s_{\lambda} \rangle, \ f = \sum_{\lambda} a_{\lambda} m_{\lambda} \Rightarrow a_{\lambda} = \langle f | h_{\lambda} \rangle.$$

Lets suppose now that *f* is any homogenous symmetric function. We will calculate the coefficient of s_{λ} in an h_{μ} expansion:

$$\langle h_{\mu}|s_{\lambda}\rangle = \langle s_{\lambda}|h_{\mu}\rangle$$

and we can interpret this as the coefficient of m_{μ} in s_{λ} . This amount is precisely the Kostka coefficient $K_{\lambda\mu}$. Thus we have the formula $h_{\mu} = \sum_{\lambda} K_{\lambda\mu} s_{\lambda}$.

Properties of the Schur functions

We wish to show that $\langle s_{\lambda}|s_{\mu}\rangle = \delta_{\lambda\mu}$ and $\omega s_{\lambda} = s_{\lambda^{\mathsf{T}}}$.

Proposition 1.8.2. $\sum_{\lambda} s_{\lambda}(\underline{x}) s_{\lambda}(\underline{y}) = \sum_{\lambda} m_{\lambda}(\underline{x}) h_{\lambda}(\underline{y})$

Proof

Expanding the sum on the left we obtain

$$\sum_{\lambda} s_{\lambda}(\underline{x}) s_{\lambda}(\underline{y}) = \sum_{\lambda} \lambda \left(\sum_{T \in SSYT(\lambda)} x^T \right) \left(\sum_{S \in SSYT(\lambda)} y^S \right) = \sum_{(T,S), \ SSYT \text{same shape}} x^T y^S$$

This is basically an RSK pair and this correspond to two-line arrays, so this sum could be the same as summing over them. Thus this is

$$\sum_{\text{2line arrays}} x_{a_1} \dots x_{a_n} y_{b_1} \dots y_{b_n}.$$

We will now find the coefficient of $m_{\lambda}(\underline{y})$ in this expansion and show that it is $h_{\lambda}(\underline{x})$

What are all the ways to obtain $y_1^{\lambda_1} \dots y_k^{\lambda_k}$?

$$\begin{pmatrix} a_1^{(1)} & \dots & a_k^{(1)} & a_1^{(2)} & \dots & a_k^{(2)} & \dots \\ 1 & 1 & 1 & 2 & 2 & 2 & \dots \end{pmatrix}$$

And note that $a_1^{(i)} \leq \ldots \leq a_{\lambda_i}^{(i)}$ for all i, so the coefficient is

$$\sum_{(a^{(i)})validtuples} x_{a_1^{(1)}} \dots x_{a_{\lambda_k}^{(k)}}$$

but this factors as

$$\prod_{i=1}^{k} \sum_{a_{1}^{(i)} \leq \dots \leq a_{\lambda}^{(i)}} x_{a_{1}^{(i)}} \dots x_{a_{\lambda_{k}}^{(i)}}.$$

We can split this because the choices are independent of the blocks and then multiply the functions together. The last term is h_{λ_i} and the product is h_{λ} .

If
$$(T,S)$$
 RSKs inverse to $\begin{pmatrix} 1 & 3 & 2 \\ 1 & 1 & 2 \end{pmatrix}$ then x^Ty^S is $x_1x_3x_2y_1y_1y_2$.

Corollary 1.8.3. $\omega s_{\lambda} = s_{\lambda^{\mathsf{T}}}$.

Proof

It suffices to show $\langle s_{\lambda^{\mathsf{T}}}|e_{\mu}\rangle=K_{\lambda\mu}$ because $\langle s_{\lambda}|h_{\mu}\rangle=K_{\lambda\mu}$ which implies that $\langle \omega s_{\lambda}|e_{\mu}\rangle=K_{\lambda\mu}$.

In other words, we wish to show that the coefficient of s_{λ} in e_{μ} is $K_{\lambda^{\mathsf{T}}\mu}$, the number of SSYT shape λ^{T} , content μ .

CONT

Pieri Rule

Definition 1.8.4. A skew shape is a diagram formed by subtracting a smaller Young diagram from a larger one.

A <u>horizontal strip</u> is a skew shape where no two boxes are in the same column. Similar a vertical strip doesn't have boxes in the same row.

Example 1.8.5. Suppose $\lambda = (5, 4, 4, 1)$ and $\mu = (4, 2, 2)$. Then

so la/μ is INSERT DIAG. Not horizontal nor vertical.

In a Young tableau, the biggest number forms a horizontal strip, so in general Young tableaux are made up of horizontal strips.

Theorem 1.8.6 (Pieri). *Let* $r \in \mathbb{N}$, *then*

$$e_r s_\lambda = \sum_{
ho/\lambda ext{vert. strip size } r} s_
ho$$

$$h_r s_\lambda = \sum_{
ho/\lambda horiz. \; strip \; size \; r} s_
ho$$

This is basically all the ways to fill up the shapes.

$$h_r s_l a = s_{(r)} s_{\lambda} = \left(\sum_{T \in SSYT((r))} x^T\right) \left(\sum_{S \in SSYT(\lambda)} x^S\right)$$

Example 1.8.7. $h_3s_{(3,1)}$ is x^Tx^S is inserting the boxes of T one at a time in S.

so by 1.6.6 about insertion path, the new squares are a horizontal strip which is the s_{ρ} in the Pieri rule. Unbumping we recover something.

1.9 Day 8 | 20230206

Exercise 1.9.1. Apply RSK to 82357146 and 62235124.

Answer

then 1 bumps the 2, 2 bumps 8

The next one standarizes to the last string. The same recording table but we get for insertion

Consequences of RSK

We will talk about increasing and decreasing subsequences.

Definition 1.9.2. A longest increasing subsequence of a word $w \in \mathbb{N}^n$ is a subsequence $w_{i_1} \leq \ldots \leq w_{i_\ell}$ with $i_1 < \cdots < i_\ell$ such that ℓ is as large as possible. We will write $\ell(w)$ to be the length of the longest increasing subsequence.

A longest decreasing subsequence of a word is $w_{i_1} > \cdots > w_{i_d}$ with $i_1 < \cdots < i_d$. In this case d(w) is the longest decreasing.

Example 1.9.3. In the case of 82357146, we have 2357, 2356, 146, 2346. Notice that this is the length of ?? of the Young tableau. For decreasing we have 821, 831, . . . , the height of the Young tableau is the longest decreasing subsequence.

Theorem 1.9.4. Suppose w is a word, S = ins(w) is the insertion tableau through RSK and $\lambda = sh(S)$ is the shape of the table. Then $\ell(w) = \lambda_1$ and $d(w) = \lambda_1^T$.

To prove this we will develop some tools.

Lemma 1.9.5. For a tableau T, ins(rw(T)) = T.

The reading word of $\boxed{1\ 3\ 4\ 6}$ is 82357146 which inserts to the same table precisely.

Remark 1.9.6. The column reading word also works! For this table it's 82153746. We get a bunch of decreasing subsequences. 821 creates the first column by bumping, then 53 creates the second column and so on.

Let's analyze the longest increasing subsequence of the reading word. Clearly we can get the bottom row as a longest subsequence, but looking in the reading order we need to go to the right. Going down decreases!

Lemma 1.9.7. If
$$\lambda = sh(T)$$
 then $\ell(rw(T)) = \lambda_1$ and $d(rw(T)) = \lambda_1^T$.

Proof

Given an entry $a \in T$, let $b \in T$ such that $a <_{ro} b$. Then b is in a column to the right of a, this means that

$$\ell(\operatorname{rw}(T)) \leqslant \#\operatorname{columns} = \lambda_1.$$

The bottom row is an example of a subsequence where the length is achieved. So equality holds.

For decreasing it's equivalent. Now, how do we tell when two words have the same insertion tableau?

Example 1.9.8. In the case of all permutations in S_3 we have that some are equivalent FILL

Knuth equivalence

Definition 1.9.9. A <u>Knuth move</u> on a permutation swaps two letters a, c if a < b < c (reading order) and one of consecutive subsequences acb, cab, bac, bca appears in the word.

Two words are Knuth-equivalent if they differ by a sequence of Knuth-moves.

In the first case, b is between a, c and those are always together.

Proposition 1.9.10. Knuth equivalence defines an equivalence relation on S_n .

Theorem 1.9.11. Two words π , w are Knuth-equivalent iff $ins(w) = ins(\pi)$.

Example 1.9.12. In size 4, 1234 is in its own class because we don't have any Knuth moves available. Same thing happens with 4321.

Consider 1243, if we apply Knuth moves we can get

For the tableau $\frac{2}{1}$, its reading word is 2413. Applying Knuth moves we get only 2143, which is the column reading word.

The tableau 21 s equivalence class also has size 2.

Proposition 1.9.13. *If two tableau have the same shape, their equivalence classes have the same size.*

We are seeking to prove $\ell(w)$ is invariant under Knuth moves. This will imply the theorem 1.9.4 because once we know that things have the same insertion tableau and the reading word has the same longest increasing subsequence length.

1.10 Day 9 | 20230208

Exercise 1.10.1. Insert f, g and then c into

$$\begin{array}{|c|c|c|c|c|} \hline k \\ \hline e & i & j \\ \hline a & b & d & h & l \\ \hline \end{array}$$

and then f, c and then g.

Example 1.10.2. The Knuth equivalence class of words whose insertion tableau is

The reading word is 34125 and we can Knuth-move it. The 341 can switch into 314 (this has the form bac). From that one we can switch 2 and 5 to get 31452. Once again with 314 we get 34152 and 34512.

In total we have 5 elements.

Proposition 1.10.3. The size of the Knuth equivalence class whose insertion tableau is T with shape λ is $\#SYT(\lambda)$.

Proof

We have one permutation in the Knuth equivalence class for every recording tableau S that can be paired with T.

Also, recall that by that hook-length formula we have that

$$\#SYT(\lambda) = \frac{|\lambda|!}{\prod_{\mathsf{hooks} \subset T} \mathsf{size\ hooks}}.$$

Theorem 1.10.4. Two permutations π , w have the same insertion tableau if and only if π is Knuth-equivalent to w.

Proof

By induction on the length, we can assume π, w differ by a single Knuth-move on the last 3 letters. We separate into cases:

i) Want

$$T' \leftarrow b \leftarrow c \leftarrow a = T' \leftarrow b \leftarrow a \leftarrow c$$

Note that IP(b) < IP(c) by lemma 1.6.7 of consecutive insertions and IP(a) is *weakly left* of IP(b) from which holds IP(a) is strictly left of c's. So we can switch order.

ii) In the other case we want

$$T' \leftarrow c \leftarrow a \leftarrow b = T' \leftarrow a \leftarrow c \leftarrow b.$$

IP(a) is weakly left of c's. If it's strictly, then we can switch, but otherwise the insertion paths of a and c collide. CHECK NOTES

Now on the other direction, we wish to show that two permutations with the same insertion tableau are Knuth-equivalent.

It suffices to show that they are Knuth-equivalent to the reading word. By induction of the size of the word, suppose ins(w') = T'. Then $w' \sim rw(T')$ for w' of length n-1.

Let $w \in S_n$ with $b = w_n$. If $T' = \operatorname{ins}(w_1, \dots, w_{n-1})$, by induction $w_1 \dots w_{n-1} \sim \operatorname{rw}(T') = (first \ row) \dots (last \ row)$.

Example 1.10.5. For the second case consider the table

and we insert 6, 2 then 5 but then 2, 6 and then 5. In the first case, DUNNO In the second case consider

1.11 Day 10 | 20230210

Lemma 1.11.1. *The length of the longest increasing subsequence,* $\ell(w)$ *is invariant under Knuth moves.*

Proof

Given an increasing subsequence, if a Knuth move changes two of its entries a < c, we have two cases:

i) Either b is to the right of ac so we get

$$\dots acb \dots d \dots \rightarrow \dots cab \dots \dots d \dots$$

then replacing c with b gives an increasing subsequence of same length in a new word a < b < c by assumption so $\underline{a} < \underline{b} < c < \underline{d}$ where d is the next element of the subsequence after c.

ii) We have b to the left so we have

$$\dots bac \dots d \dots \rightarrow \dots bca \dots d \dots$$

and the same proof shows that replacing a and b gives s anew subsequence and a new subword of the same length.

Knuth equivalence is natural when it comes to increasing and decreasing subsequences. With the lemmas we have, we can now prove that d is the height of the insertion tableau.

Remark 1.11.2. Dual equivalence is finding 3 values acb so we can switch bca. For example

$$615342 \rightarrow 625341 \rightarrow 624351$$

and dual equivalent words have the same recording tableau.

The result we've been aiming for is

$$\ell(w) = \text{width of ins}(w) = \lambda_1$$

Proof

Suppose $T = \operatorname{ins}(w)$ with $\lambda = \operatorname{sh}(T)$. Then $w \sim \operatorname{rw}(T)$, by the previous lemma we have

$$\ell(w) = \ell(\mathbf{rw}(T)) = \lambda_1$$

and the last equality comes from Monday class. Add references

For decreasing subsequences we have the same argument. To wrap it up we have a theorem we have a theorem from Stanley [10]:

Theorem 1.11.3. A longest i-chain of increasing subsequences of w consists of:

- \diamond An increasing subsequence s_1 of w.
- \diamond An increasing subsequence s_2 of $w \setminus s_1$.
- \diamond (...)An increasing subsequence s_i of $w \setminus s_1 \dots s_{i-1}$.

Then the length of the longest i-chain is $\lambda_1 + \lambda_2 + \cdots + \lambda_i$.

Jeu de taquin

The phrase *jeu de taquin* means "teasing game". This process is equivalent to RSK and insertion. As motivation, inserting $\varnothing \leftarrow w$ and then insert ρ and finally π , then this is the same as

$$w \leftarrow \text{rw}(\text{ins}(\rho) \leftarrow \pi).$$

This means that there's some associativity in this operation.

Definition 1.11.4. A <u>skew-SSYT</u> is a filling of the boxes of a skew shape (skew Ferrers diagram) with $n \in \mathbb{N}$ such that rows are weakly increasing and columns are strictly increasing.

This is analogous to SSYT, so let's see an example

Example 1.11.5. (9, 9, 5, 5, 3)/(7, 6, 3, 3), but the initial partition could've been (10, 10, 6, 6, 4) or (100, 9, 9, 5, 5, 3).

Notice that all rows and columns are adjacent, and there are no leftover squares.

Definition 1.11.6. A <u>corner</u> of a Young diagram μ is a square of μ at the top of its column, right of its row.

An <u>inner corner</u> of λ/μ is a corner of μ . While an <u>outer corner</u> of λ/μ is a square outside λ that is just above its column (poss. o) just right of a row (poss. o).

Remark 1.11.7. Notice that adding an outer corner makes a valid shape for a partition.

The JdT game is defined through the following moves

Definition 1.11.8. An <u>inner slide</u> into an inner corner x of a SSYT T of skew-shape λ/μ is given by the following process:

i) Compare squares a, b in the following shape

$$\begin{bmatrix} a \\ x \end{bmatrix} b$$

If $a \le b$ or there's no b, slide a down. Else slide b left.

ii) Repeat for the new location of x until it becomes an outer corner.

Example 1.11.9. In the previous example we can consider

and slide the 1 because if we slide 2 it's no longer SSYT. But then we get an empty square, so we keep going until it's a valid shape. The end result is

For a bigger example consider

Remark 1.11.10. A slide sends an SSYT to an SSYT. A case like

$$\begin{array}{|c|c|c|c|c|}\hline & 3 \\ \hline 4 & x & 5 \\ \hline \end{array}$$

because there should be an entry there ≤ 3 and > 4.

We can continue applying the process to the following inner corners to get a SSYT.

Definition 1.11.11. The <u>rectification</u> of a skew SSYT is the result of performing JDT slides until we don't have inner corners left. We say that the shape is straight.

Remark 1.11.12. The rw of the skew-shape is the same as the rectification.

Index

antisymmetric, 6

corner, 29

dual, 12

forgotten basis, 14

Hall inner product, 12 horizontal strip, 22

inner corner, 29 inner slide, 30

Knuth move, 25 Knuth-equivalent, 25

orthogonal, 12 orthonormal, 12

outer corner, 29

reading word, 19 rectification, 30

Schur polynomial, 8 Schur-positive, 6 skew shape, 22 skew-SSYT, 29 standarization, 19 straight, 30 symmetric, 3

two-line array, 15

Vandermonde determinant, 8 vertical strip, 22

Bibliography

- [1] François Bergeron, Gilbert Labelle, and Gilbert Leroux. *Combinatorial Species and Tree-like Structures*. Cambridge University Press, 1998.
- [2] Peter Jephson Cameron and Jacobus Hendricus van Lint. *Designs, Graphs, Codes and their Links*. London Mathematical Society Student Texts. Cambridge University Press, 1991.
- [3] William Fulton. *Young Tableaux: With Applications to Representation Theory and Geometry*. London Mathematical Society Student Texts #35. Cambridge University Press, 1999.
- [4] Grayson Graham. The ring of symmetric polynomials. REUsChicago, dunno.
- [5] Ronald Lewis Graham, Donald Ervin Knuth, and Oren Patashnik. *Concrete mathematics: a foundation for computer science*. Addison-Wesley, 2nd ed edition, 1994.
- [6] James Oxley. Matroid Theory. Oxford University Press, USA, 2nd edition, 2011.
- [7] Bruce Eli Sagan. *The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions*. Graduate Texts in Mathematics №203. Springer, 2 edition, 2001.
- [8] Bruce Eli Sagan. *Combinatorics: The Art of Counting*. Graduate Studies in Mathematics. American Mathematical Society, 2020.
- [9] Richard Peter Stanley. *Enumerative Combinatorics: Volume 1*. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2011.
- [10] Richard Peter Stanley and Sergey Fomin. *Enumerative Combinatorics: Volume 2*. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1997.