Data Structures Heaps Analysis

CS 225 Brad Solomon October 14, 2024

Exam 3 (10/23 — 10/25)

Autograded MC and one coding question

Manually graded short answer prompt

Practice exam on PL

Topics covered can be found on website

Registration started October 10

https://courses.engr.illinois.edu/cs225/fa2024/exams/

Learning Objectives

Review the heap data structure

Discuss heap ADT implementations

Prove the runtime of the heap

(min) Heap (Priority Queue)

By storing as a complete tree, can avoid using pointers at all!

If index starts at 1:

leftChild(i): 2i

rightChild(i): 2i+1

parent(i): floor(i/2)

(min)Heap

By storing as a complete tree, can avoid using pointers at all!

If Index starts at 0: Math was indeed nicer at i=1

leftChild(i): 2i+1

rightChild(i): 2(i+1)

parent(i): floor((i-1)/2)

Implementation of heap array

Array List (Pointer implementation)

insert - heapifyUp

```
h=9/09 n)
```

```
template <class T>
      void Heap<T>:: insert(const T & key) {
        // Check to ensure there's space to insert an element
        // ...if not, grow the array
        if ( size_ == capacity_ ) { _growArray(); }
        // Insert the new element at the end of the array
        item [size ++] = key;
        // Restore the heap property
   10
                                                                15
        heapifyUp(size - 1);
   11
   12
   template <class T>
   void Heap<T>:: heapifyUp( size t index ) {
     if (index > 1)
       if ( item [index] < item [ parent(index) ] ) {</pre>
          std::swap( item [index], item [ parent(index) ] );
          heapifyUp( parent(index) ); // index / 2;
10
11
```


removeMin

- 1) Swap root with last item (and remove)(and modify size)
- 2) HeapifyDown() root

removeMin

removeMin - heapifyDown

buildHeap (minHeap Constructor)

How can I build a minHeap?

buildHeap - sorted array

buildHeap - heapifyUp

Do we heapifyUp from top or bottom?

67 B Says 10 Swap!

buildHeap - heapifyUp

Repeatedly heapifyUp(i):

Starting at index _____

Ending at index ______

Starting from top to bottom

Why top to botton?

5 hegpity up 1 Down assume heap property

Do we hDown from top or bottom?

Repeatedly heapifyDown(i):

Starting at index Capacity 2

Ending at index _____

buildHeap

1. Sort the array — its a heap! $O(n \log n)$

2. heapifyUp()

```
1 template <class T>
2 void Heap<T>::buildHeap() {
3   for (unsigned i = 2; i < size_; i++) {
4    heapifyUp(i);
5   }
6 }</pre>
```

3. heapifyDown()

```
1 template <class T>
2 void Heap<T>::buildHeap() {
3 for (unsigned i = size/2; i > 0; i--) {
4 heapifyDown(i);
5 }
6 }
```

$$O\left(\frac{1}{2}\log n\right) \to O(n)$$

$$-Not \text{ right! } O(h)$$

Lets break down the total 'amount' of work:

Lets break down the total 'amount' of work:

Lets break down the total 'amount' of work:

Theorem: The running time of buildHeap on array of size **n** is:

Strategy:

Theorem: The running time of buildHeap on array of size **n** is: $\bigcirc(n)$

Strategy:

- 1) Call heapifyDown on every non-leaf node
- 2) Worst case work for any node is the height of node
- 3) To prove time, simply add up worst case swaps of every node

S(h): Sum of the heights of all nodes in a **perfect** tree of height **h**.

$$S(h) = h + S(h-1) + S(h-1)$$

Claim: Sum of heights of all nodes in a perfect tree: $S(h) = 2^{h+1} - 2 - h$

Base Case:

Claim: Sum of heights of all nodes in a perfect tree: $S(h) = 2^{h+1} - 2 - h$

Base Case:

$$h = 0$$

$$2^{0+1} - 2 - 0 = 0$$

$$2^{1+1} - 2 - 1 = 1$$

Claim: Sum of heights of all nodes in a perfect tree: $S(h) = 2^{h+1} - 2 - h$

Induction Step:

Claim: Sum of heights of all nodes in a perfect tree: $S(h) = 2^{h+1} - 2 - h$

Induction Step: S(i) = i + 2 S(i - 1) is true for all values i < h

$$S(h-1) = 2^{h-1+1} - 2 - (h-1) = 2^h - h - 1$$
 (By IH)

$$S(h) = h + 2 S(h - 1) = h + (2 (2^h - h - 1))$$
 (Plug in)

$$S(h) = 2^{h+1} - 2 - he^{h-\lambda h} \qquad \text{(Simplify)}$$

Theorem: The running time of buildHeap on array of size **n** is O(n)

$$S(h) = 2^{h+1} - 2 - h$$

How can we relate \mathbf{h} and \mathbf{n} ? $\mathbf{h} \subseteq \mathbf{log} M$

How can we estimate running time?

Theorem: The running time of buildHeap on array of size **n** is O(n)

$$S(h) = 2^{h+1} - 2 - h$$

How can we relate **h** and **n**? $h \le log n$

How can we estimate running time?

$$2^{\log n+1} - 2 - \log n \qquad \text{(Plug in)}$$

$$2 * 2^{\log_2 n} - 2 - \log n \qquad \text{(Simplify)}$$

$$2*2^{log_2 n} - 2 - log n$$
 (Simplify)
$$2n - log n - 2 \approx O(n)$$
 (Rearrange)

2. Insert $\rightarrow \bigcirc (\log n)$

3. RemoveMin

minHeap is a good example of tradeoffs:

- 1. Build heap O(n)
- 2. (4|| (enour Min()) 1

 (> nlogn ting

 3. Revuse the array

