Customer Personality Analysis

```
In [1]:
         # Need to perform clustering to summarize customer segments.
         # The Company can analyze which customer segment is most likely
         # to buy the product and then market the product only on that particular segment.
In [2]:
         # The project has the folloing construction
         # 1. Data Parsing - processing of the raw data (features optimization, transformatio
         # 2. Clusterization of customers
              2.1 Definition of metrics - silhouette analysis
              2.2 Standartization of features
              2.3 Clasterization by KNN method: the final separation to 6 segments
              2.4 Clasterization by Mini-Batch K-means method: the final separation to 4 segm
              2.5 Clustering by Affinity Propagation method: the result is pure
              2.6 Clustering by Agglomerative Агломеративной clustering: the result is worst
         # In conclusion, the clustering in 4 segments by KNN or in 6 segments by Mini-Batch
         # Further analysis should be done (customers statistics for each of the clustering)
In [3]:
         import numpy as np
         import matplotlib.pyplot as plt
         import pandas as pd
         from datetime import datetime
         from sklearn.svm import SVR
         import warnings
         %matplotlib inline
In [4]:
         ###### People
         #ID: Customer's unique identifier
         #Year_Birth: Customer's birth year
         #Education: Customer's education level
         #Marital Status: Customer's marital status
         #Income: Customer's yearly household income
         #Kidhome: Number of children in customer's household
         #Teenhome: Number of teenagers in customer's household
         #Dt_Customer: Date of customer's enrollment with the company
         #Recency: Number of days since customer's last purchase
         #Complain: 1 if the customer complained in the last 2 years, 0 otherwise
         ###### Products
         #MntWines: Amount spent on wine in last 2 years
         #MntFruits: Amount spent on fruits in last 2 years
         #MntMeatProducts: Amount spent on meat in Last 2 years
         #MntFishProducts: Amount spent on fish in last 2 years
         #MntSweetProducts: Amount spent on sweets in last 2 years
         #MntGoldProds: Amount spent on gold in last 2 years
         ###### Promotion
         #NumDealsPurchases: Number of purchases made with a discount
         #AcceptedCmp1: 1 if customer accepted the offer in the 1st campaign, 0 otherwise
         #AcceptedCmp2: 1 if customer accepted the offer in the 2nd campaign, 0 otherwise
```

#AcceptedCmp3: 1 if customer accepted the offer in the 3rd campaign, 0 otherwise #AcceptedCmp4: 1 if customer accepted the offer in the 4th campaign, 0 otherwise #AcceptedCmp5: 1 if customer accepted the offer in the 5th campaign, 0 otherwise #Response: 1 if customer accepted the offer in the last campaign, 0 otherwise

Place

#NumWebPurchases: Number of purchases made through the company's website #NumCatalogPurchases: Number of purchases made using a catalogue #NumStorePurchases: Number of purchases made directly in stores

#NumWebVisitsMonth: Number of visits to company's website in the last month

In [5]: df = pd.read_csv('Data/marketing_campaign.csv', sep='\t', skipinitialspace=True)

In [6]: df.head()

Out[6]:		ID	Year_Birth	Education	Marital_Status	Income	Kidhome	Teenhome	Dt_Customer	Recenc
	0	5524	1957	Graduation	Single	58138.0	0	0	04-09-2012	5
	1	2174	1954	Graduation	Single	46344.0	1	1	08-03-2014	3
	2	4141	1965	Graduation	Together	71613.0	0	0	21-08-2013	2
	3	6182	1984	Graduation	Together	26646.0	1	0	10-02-2014	2
	4	5324	1981	PhD	Married	58293.0	1	0	19-01-2014	9.

5 rows × 29 columns

1. Data Parsing

In [7]: df.describe()

Out[7]:		ID	Year_Birth	Income	Kidhome	Teenhome	Recency	MntWine
	count	2240.000000	2240.000000	2216.000000	2240.000000	2240.000000	2240.000000	2240.00000
	mean	5592.159821	1968.805804	52247.251354	0.444196	0.506250	49.109375	303.93571
	std	3246.662198	11.984069	25173.076661	0.538398	0.544538	28.962453	336.59739
	min	0.000000	1893.000000	1730.000000	0.000000	0.000000	0.000000	0.00000
	25%	2828.250000	1959.000000	35303.000000	0.000000	0.000000	24.000000	23.75000
	50%	5458.500000	1970.000000	51381.500000	0.000000	0.000000	49.000000	173.50000
	75%	8427.750000	1977.000000	68522.000000	1.000000	1.000000	74.000000	504.25000
	max	11191.000000	1996.000000	666666.000000	2.000000	2.000000	99.000000	1493.00000

8 rows × 26 columns

In [8]: df.info()

<class 'pandas.core.frame.DataFrame'>

```
RangeIndex: 2240 entries, 0 to 2239
Data columns (total 29 columns):
    Column
                       Non-Null Count Dtype
    _____
- - -
                       2240 non-null
    ID
0
                                      int64
1
    Year_Birth
                      2240 non-null int64
2
    Education
                      2240 non-null object
    Marital Status
                      2240 non-null object
4
    Income
                       2216 non-null float64
5
    Kidhome
                      2240 non-null int64
6
    Teenhome
                       2240 non-null int64
7
    Dt_Customer
                      2240 non-null object
8
    Recency
                       2240 non-null int64
9
    MntWines
                      2240 non-null int64
10 MntFruits
                      2240 non-null int64
11 MntMeatProducts 2240 non-null int64
12 MntFishProducts 2240 non-null int64
13 MntSweetProducts
                      2240 non-null int64
14 MntGoldProds
                       2240 non-null int64
15 NumDealsPurchases 2240 non-null int64
16 NumWebPurchases
                      2240 non-null int64
17 NumCatalogPurchases 2240 non-null int64
18 NumStorePurchases
                       2240 non-null int64
19 NumWebVisitsMonth 2240 non-null int64
20 AcceptedCmp3 2240 non-null int64
21 AcceptedCmp4
                       2240 non-null int64
22 AcceptedCmp5
                       2240 non-null int64
23 AcceptedCmp1
                       2240 non-null int64
24 AcceptedCmp2
                       2240 non-null int64
25 Complain
                       2240 non-null int64
26 Z CostContact
                      2240 non-null int64
27 Z Revenue
                       2240 non-null int64
28 Response
                       2240 non-null
                                      int64
dtypes: float64(1), int64(25), object(3)
```

1.1 Transform the column "Dt_Customer" to the time since the customer is registered

```
In [9]: # first transform the column to datetime format
    df['Dt_Customer'] = pd.to_datetime(df['Dt_Customer'],format='%d-%m-%Y')

In [10]: # then calculate the time of existing each customer on the web-site in months
    max_date = datetime(2014, 10, 4)
    df['presence'] = df.apply(lambda x: (max_date - x['Dt_Customer']).days/30.0, axis =
```

1.2 Optimize the features

memory usage: 507.6+ KB

1.2.1 Education

```
In [11]: df['Education'].unique()
Out[11]: array(['Graduation', 'PhD', 'Master', 'Basic', '2n Cycle'], dtype=object)

In [12]: df['Education'] = df['Education'].replace({'Basic':'Undergraduate','2n Cycle':'Undergraduate'})
In [13]: df['Education'].unique()
```

```
array(['Postgraduate', 'PhD', 'Undergraduate'], dtype=object)
Out[13]:
         1.2.2 Marital_Status
In [14]:
           df['Marital_Status'].unique()
          array(['Single', 'Together', 'Married', 'Divorced', 'Widow', 'Alone',
Out[14]:
                  'Absurd', 'YOLO'], dtype=object)
In [15]:
           #widow - вдова
           #yolo = absurd
           #together = married
           #alone = single
In [16]:
           df['Marital_Status'] = df['Marital_Status'].replace({'Divorced':'Alone','Single':'Al
In [17]:
           df['Marital_Status'].unique()
          array(['Alone', 'Together'], dtype=object)
Out[17]:
         1.2.3 Year_Birth
In [18]:
           # it is more convenient to deal with age, not year of birth
           df['Age'] = 2014 - df['Year_Birth']
         1.2.4 Keedhome & Teenhome
In [19]:
           # calculate the total number of children
           df['Children'] = df['Kidhome'] + df['Teenhome']
         1.2.5 MntWines & MntFruits & MntMeatProducts & MntFishProducts & MntSweetProducts & MntGoldProds
In [20]:
           # calculate total spending
           df['Spending'] = df['MntWines']+df['MntFruits']+df['MntMeatProducts']+df['MntFishPro
         1.2.6 Rename some features name for simplicity
In [21]:
           df = df.rename(columns={'MntWines': "Wines",'MntFruits':'Fruits','MntMeatProducts':
         1.2.7 Keep only selected features for further analysis
In [22]:
           data=df[['Age','Education','Marital_Status','Income','Spending','presence','Children
In [23]:
           data.head()
Out[23]:
                     Education
                               Marital_Status Income Spending
                                                                presence Children
             Age
          0
               57
                  Postgraduate
                                       Alone
                                             58138.0
                                                          1617
                                                               25.333333
                                                                                0
          1
               60
                  Postgraduate
                                       Alone 46344.0
                                                            27
                                                                7.000000
                                                                                2
          2
                                                                                0
               49
                  Postgraduate
                                    Together 71613.0
                                                          776
                                                               13.633333
          3
               30
                  Postgraduate
                                    Together 26646.0
                                                            53
                                                                7.866667
                                                                                1
```

	Age	Education	Marital_Status	Income	Spending	presence	Children
4	33	PhD	Together	58293.0	422	8.600000	1

1.3 Remove NaN values and outliers

In [24]:

```
# First look at the statictics
data.hist(bins=20, figsize=(15,15),layout=(2,4));
```


In [25]:

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2240 entries, 0 to 2239
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Age	2240 non-null	int64
1	Education	2240 non-null	object
2	Marital_Status	2240 non-null	object
3	Income	2216 non-null	float64
4	Spending	2240 non-null	int64
5	presence	2240 non-null	float64
6	Children	2240 non-null	int64

```
dtypes: float64(2), int64(3), object(2)
         memory usage: 122.6+ KB
In [26]:
          # Income feature is very important and there is only one feature with NaN and outlie
          # Delete all such raws, where Income either outlier or NaN (there are only 24 such r
In [27]:
          data = data.dropna(subset=['Income'])
          data = data[data['Income'] < 600000]</pre>
In [28]:
          data.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 2215 entries, 0 to 2239
         Data columns (total 7 columns):
              Column
                              Non-Null Count Dtype
                              2215 non-null
                                              int64
          0
              Age
                             2215 non-null
                                              object
          1
              Education
              Marital_Status 2215 non-null
          2
                                               object
          3
              Income
                              2215 non-null
                                              float64
                              2215 non-null
          4
              Spending
                                               int64
                              2215 non-null
                                               float64
              presence
          6
                              2215 non-null
              Children
                                               int64
         dtypes: float64(2), int64(3), object(2)
         memory usage: 138.4+ KB
In [29]:
          ### 1.4 Transform nonnumeric features 'Education' and 'Marital_Status' to the set of
In [30]:
          list(data['Education'].unique())
         ['Postgraduate', 'PhD', 'Undergraduate']
Out[30]:
In [31]:
          # functions of creation of new features - educations
          def Edu1(education):
              if education == 'Postgraduate':
                  return 1
              else:
                  return 0
          def Edu2(education):
              if education == 'PhD':
                  return 1
              else:
                  return 0
          def Edu3(education):
              if education == 'Undergraduate':
                  return 1
              else:
                  return 0
In [32]:
          data['PostGr'] = data.apply(lambda x: Edu1(x['Education']), axis = 1)
          data['PhD'] = data.apply(lambda x: Edu2(x['Education']), axis = 1)
          data['UnderGr'] = data.apply(lambda x: Edu3(x['Education']), axis = 1)
In [33]:
          list(data['Marital Status'].unique())
```

```
['Alone', 'Together']
Out[33]:
In [34]:
           # functions of creation of new features - family status
           def Mar1(status):
                if status == 'Alone':
                    return 1
                else:
                    return 0
           def Mar2(status):
                if status == 'Together':
                    return 1
                else:
                    return 0
In [35]:
           data['Alone'] = data.apply(lambda x: Mar1(x['Marital_Status']), axis = 1)
           data['Together'] = data.apply(lambda x: Mar2(x['Marital_Status']), axis = 1)
In [36]:
           ### 1.5 Select features for further clusterization
In [37]:
           data_a = data[['Age','Income','Spending','presence','Children','PostGr','PhD','Under
In [38]:
           data_a
                                                   Children PostGr PhD UnderGr
                                                                                  Alone Together
Out[38]:
                Age
                      Income
                              Spending
                                         presence
              0
                  57
                      58138.0
                                   1617
                                        25.333333
                                                         0
                                                                      0
                                                                                0
                                                                                                0
                                                                 1
                                                                                       1
              1
                      46344.0
                                    27
                                         7.000000
                                                                 1
                                                                      0
                                                                                0
                                                                                                0
              2
                  49
                      71613.0
                                   776
                                       13.633333
                                                         0
                                                                 1
                                                                      0
                                                                                0
                                                                                       0
                                                                                                1
              3
                  30
                      26646.0
                                    53
                                         7.866667
                                                                      0
                                                                                0
                                                                                                1
              4
                      58293.0
                                   422
                                         8.600000
                                                                 0
                                                                                0
                                                                                       0
                  33
                                                         1
                                                                                                1
          2235
                     61223.0
                                       15.933333
                                                                      0
                                                                                0
                                                                                       0
                  47
                                  1341
                                                         1
                                                                 1
                                                                                                1
          2236
                      64014.0
                                   444
                                         3.866667
                                                                 0
                                                                                       0
                                                                                                1
                                                                                                0
          2237
                      56981.0
                                   1241
                                         8.400000
                                                         0
                                                                 1
                                                                      0
                                                                                0
                                                                                       1
                  33
          2238
                      69245.0
                                   843
                                         8.433333
                                                                 1
                                                                      0
                                                                                0
                                                                                                1
          2239
                                   172 23.966667
                                                         2
                                                                 0
                                                                                0
                                                                                      0
                  60 52869.0
                                                                      1
                                                                                                1
```

2215 rows × 10 columns

2. Clustering

```
In [39]: # The main problem is an appraising the optimal number of clusters.
# I have decided to make this appraising by silhouette analysis
# The core of this analysis is calculation of spacial destance between the clusters.
# The final silhouette graph displays a vicinity of each point of one cluster to the
```

```
# and thus provides the visual means of appraising of the number of clusters.

# The final measure has the range [-1, 1].

# The silhouette coefficients near +1 shows that the point is far away from the othe

# 0 - the point is on the border or close to other cluster, negative values show the

# Also the cluster size can be visualized based on its silhouette width on the graph
```

2.1 Metrics of quality for clustering

```
In [40]: from sklearn.metrics import silhouette_samples, silhouette_score import matplotlib.cm as cm
```

```
In [41]:
          def sil_plot(model, data, n_clusters):
              result = model.fit_predict(data)
              sil = silhouette_samples(data, result)
              silhouette_avg = silhouette_score(data, result)
              print("For n_clusters =", n_clusters,
                    "The average silhouette_score is :{:.3f}".format(silhouette_avg))
              y lower = 10
              fig, ax = plt.subplots()
              fig.set_size_inches(18, 7)
              # The silhouette coefficient can range from -1, 1 but in this example all
              # Lie within [-0.2, 1]
              ax.set_xlim([-0.2, 1])
              # The (n clusters+1)*10 is for inserting blank space between silhouette
              # plots of individual clusters, to demarcate them clearly.
              ax.set_ylim([0, len(data) + (n_clusters + 1) * 10])
              for i in range(n_clusters):
                  # Aggregate the silhouette scores for samples belonging to
                  # cluster i, and sort them
                  ith_cluster_silhouette_values = sil[result == i]
                  ith cluster silhouette values.sort()
                  size cluster i = ith cluster silhouette values.shape[0]
                  y_upper = y_lower + size_cluster_i
                  cmap = cm.get cmap("Spectral")
                  color = cmap(float(i) / n_clusters)
                  ax.fill betweenx(np.arange(y lower, y upper),
                                    0, ith_cluster_silhouette_values,
                                    facecolor=color, edgecolor=color, alpha=0.7)
                  # Label the silhouette plots with their cluster numbers at the middle
                  ax.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))
                  # Compute the new y_lower for next plot
                  y_lower = y_upper + 10 # 10 for the 0 samples
              # The vertical line for average silhouette score of all the values
              ax.axvline(x=silhouette_avg, color="red", linestyle="--")
              ax.set_yticks([]) # Clear the yaxis labels / ticks
              ax.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])
              ax.set_xlabel("The silhouette coefficient values")
              ax.set_ylabel("Cluster label")
              plt.suptitle(("Silhouette analysis for clustering on sample data "
```

```
"with n_clusters = %d" % n_clusters),
fontsize=14, fontweight='bold')
```

2.2 Scaling of the features

In [42]:

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaled_data = pd.DataFrame(scaler.fit_transform(data_a), columns = data_a.columns, i
scaled_data.head()
```

Out[42]:

	Age	Income	Spending	presence	Children	PostGr	PhD	UnderGr	Alone
0	0.986016	0.286604	1.675011	1.528882	-1.264487	0.704714	-0.526681	-0.359897	1.348357
1	1.236344	-0.261407	-0.962727	-1.188066	1.405522	0.704714	-0.526681	-0.359897	1.348357
2	0.318476	0.912723	0.279830	-0.205025	-1.264487	0.704714	-0.526681	-0.359897	-0.741643
3	-1.266933	-1.176680	-0.919594	-1.059629	0.070517	0.704714	-0.526681	-0.359897	-0.741643
4	-1.016605	0.293806	-0.307440	-0.950951	0.070517	-1.419016	1.898681	-0.359897	-0.741643
-									

2.3 KNN method

In [43]:

```
# try to run on # of clusters from 3 to 15, appraising the result by silhouettes
for n in range(3,16):
    KMN = KMeans(n_clusters=n, random_state=1)
    sil_plot(KMN, scaled_data, n)
```

```
For n_clusters = 3 The average silhouette_score is :0.253

For n_clusters = 4 The average silhouette_score is :0.237

For n_clusters = 5 The average silhouette_score is :0.251

For n_clusters = 6 The average silhouette_score is :0.280

For n_clusters = 7 The average silhouette_score is :0.285

For n_clusters = 8 The average silhouette_score is :0.287

For n_clusters = 9 The average silhouette_score is :0.255

For n_clusters = 10 The average silhouette_score is :0.265

For n_clusters = 11 The average silhouette_score is :0.259

For n_clusters = 12 The average silhouette_score is :0.262

For n_clusters = 13 The average silhouette_score is :0.241

For n_clusters = 14 The average silhouette_score is :0.244

For n_clusters = 15 The average silhouette_score is :0.243
```


Silhouette analysis for clustering on sample data with n_clusters = 4

Silhouette analysis for clustering on sample data with n_c lusters = 5

Silhouette analysis for clustering on sample data with n_clusters = 7

Silhouette analysis for clustering on sample data with n_c lusters = 8

Silhouette analysis for clustering on sample data with $n_{clusters} = 10$

Silhouette analysis for clustering on sample data with $n_clusters = 11$

Silhouette analysis for clustering on sample data with $n_{clusters} = 13$

Silhouette analysis for clustering on sample data with $n_clusters = 14$


```
In [44]:
# Visually the best result is for 3 and 6 clusters
# Herewith, the average silhouette coefficient for 6 clusters is bigger. So, stop on

KNM = KMeans(n_clusters=6, random_state=1)
    resultKNM = KNM.fit_predict(scaled_data)
# number of customers within each cluster for 6-clustering
    np.unique(resultKNM, return_counts=True)
```

```
Out[44]: (array([0, 1, 2, 3, 4, 5]), array([360, 175, 254, 526, 595, 305], dtype=int64))
```

```
print("the average spending in 1-st segment is: {:.0f}".format(data_a.loc[scaled_dat print("the average spending in 2-nd segment is: {:.0f}".format(data_a.loc[scaled_dat print("the average spending in 3-d segment is: {:.0f}".format(data_a.loc[scaled_data print("the average spending in 4-th segment is: {:.0f}".format(data_a.loc[scaled_dat print("the average spending in 5-th segment is: {:.0f}".format(data_a.loc[scaled_dat print("the average spending in 6-th segment is: {:.0f}".format(data_a.loc[scaled_dat print(
```

the average spending in 1-st segment is: 1271 the average spending in 2-nd segment is: 646 the average spending in 3-d segment is: 407 the average spending in 4-th segment is: 636 the average spending in 5-th segment is: 211 the average spending in 6-th segment is: 691

In [46]: # The first segment is the most important, as the mean spending is much higher for

2.4 Mini-Batch K-means method

In [47]: from sklearn.cluster import KMeans, MiniBatchKMeans, AffinityPropagation

```
In [48]:
# try to run on # of clusters from 3 to 15, appraising the result by silhouettes
warnings.filterwarnings('ignore')
for n in range(3,16):
    MBKM = MiniBatchKMeans(n_clusters=n, random_state=1)
    sil_plot(MBKM, scaled_data, n)
```

```
For n_clusters = 3 The average silhouette_score is :0.259
For n_clusters = 4 The average silhouette_score is :0.287
For n_clusters = 5 The average silhouette_score is :0.252
For n_clusters = 6 The average silhouette_score is :0.257
```

For n_clusters = 7 The average silhouette_score is :0.265
For n_clusters = 8 The average silhouette_score is :0.246
For n_clusters = 9 The average silhouette_score is :0.238
For n_clusters = 10 The average silhouette_score is :0.233
For n_clusters = 11 The average silhouette_score is :0.225
For n_clusters = 12 The average silhouette_score is :0.241
For n_clusters = 13 The average silhouette_score is :0.242
For n_clusters = 14 The average silhouette_score is :0.245
For n_clusters = 15 The average silhouette_score is :0.207

Silhouette analysis for clustering on sample data with n_clusters = 3

Silhouette analysis for clustering on sample data with n_c lusters = 4

Silhouette analysis for clustering on sample data with n_clusters = 5

Silhouette analysis for clustering on sample data with n_clusters = 7

Silhouette analysis for clustering on sample data with n_c lusters = 8

Silhouette analysis for clustering on sample data with n_c lusters = 10

Silhouette analysis for clustering on sample data with $n_clusters = 11$

Silhouette analysis for clustering on sample data with $n_{clusters} = 13$

Silhouette analysis for clustering on sample data with $n_clusters = 14$


```
In [49]:
          # Definitely 4-clustering is the best
          MBKM = MiniBatchKMeans(n_clusters=6, random_state=1)
          resultMBKM = MBKM.fit_predict(scaled_data)
          # number of customers within each cluster for 4-clustering
          np.unique(resultMBKM, return_counts=True)
```

(array([0, 1, 2, 3, 4, 5]), array([245, 361, 252, 443, 593, 321], dtype=int64)) Out[49]:

```
In [50]:
          print("the average spending in 1-st segment is: {:.0f}".format(data_a.loc[scaled_dat
          print("the average spending in 2-nd segment is: {:.0f}".format(data_a.loc[scaled_dat
          print("the average spending in 3-d segment is: {:.0f}".format(data_a.loc[scaled_data
          print("the average spending in 4-th segment is: {:.0f}".format(data_a.loc[scaled_dat
```

the average spending in 1-st segment is: 1328 the average spending in 2-nd segment is: 1265 the average spending in 3-d segment is: 397 the average spending in 4-th segment is: 609

The first two segments are the most important, as the mean spending is much higher

2.5 Affinity Propagation method

In [51]:

```
In [53]:
          # this method find the optimal clasters number
          AFP = AffinityPropagation(random_state=1).fit(scaled_data)
          np.sort(AFP.labels_)
```

array([0, 0, 0, ..., 85, 85, 85], dtype=int64) Out[53]:

```
In [54]:
          sil_plot(AFP, scaled_data, len(set(AFP.labels_)))
```

For n clusters = 86 The average silhouette score is :0.237

In [55]:

This result is pure, so the method doesn't work here

2.6 Agglomerative clustering method

In [57]:

from sklearn.cluster import AgglomerativeClustering

In [58]:

```
# try to run on # of clusters from 3 to 15, appraising the result by silhouettes
for n in range(3,16):
    AMC = AgglomerativeClustering(n_clusters=n)
    sil_plot(AMC, scaled_data, n)
```

```
For n_clusters = 3 The average silhouette_score is :0.223
For n_clusters = 4 The average silhouette_score is :0.286
For n_clusters = 5 The average silhouette_score is :0.244
For n_clusters = 6 The average silhouette_score is :0.272
For n_clusters = 7 The average silhouette_score is :0.272
For n_clusters = 8 The average silhouette_score is :0.273
For n_clusters = 9 The average silhouette_score is :0.236
For n_clusters = 10 The average silhouette_score is :0.237
For n_clusters = 11 The average silhouette_score is :0.244
For n_clusters = 12 The average silhouette_score is :0.242
For n_clusters = 13 The average silhouette_score is :0.243
For n_clusters = 14 The average silhouette_score is :0.234
For n_clusters = 15 The average silhouette_score is :0.233

Silhouette analysis for clustering on sample data with n_clusters = 3
```


4. Clustering_ENG

Silhouette analysis for clustering on sample data with n_clusters = 5

Silhouette analysis for clustering on sample data with n_c lusters = 6

Silhouette analysis for clustering on sample data with n_clusters = 8

Silhouette analysis for clustering on sample data with n_c lusters = 9

Silhouette analysis for clustering on sample data with n_c lusters = 11

Silhouette analysis for clustering on sample data with $n_clusters = 12$

Silhouette analysis for clustering on sample data with n_clusters = 14

Silhouette analysis for clustering on sample data with $n_clusters = 15$

In [59]: # Here 4-clustering looks more or less, but the result is visually worse than K-Mean