

A DATA SEMANTIC PROJECT

INTRODUCTION

available in **186**countries **40 millions** users **320k** active groups **12k** daily events

OVERVIEW

ontology definition (using JSON-LD format) S. J. Chalk. (2016)

messages enrichment (weather and demographic data)

ONTOLOGY DEFINITION

add context

@context {43}
 @version : 1.1

 schema : https://schema.org/
 mty : https://www.meetology.onto/
 sc : http://rdfs.org/sioc/spec/#term_
 wdt : https://www.wikidata.org/wiki/Property:
 xsd : https://www.w3.org/2001/XMLSchema#
 cff : https://www.w3.org/2005/Incubator/ssn/ssnx/cf/cf-feature#
 seas : http://w3id.org/seas/

format JSON-LD

ENRICHMENT

query geonames docker indexed with ElasticSearch


```
"group": {
    "group_topics": [...],
    "group_city": "New York",
    "group_country": "us",
    "group_id": 7764982,
    "group_name": "USA Divers",
    "group_lon": -73.99,
    "group_urlname": "BeachDivers",
    "group_state": "FL",
    "group_lat": 40.69}
```


messages enriched with geonameid & population

messages enriched with geonameid & population

query wikidata endpoint using SPARQLWrapper

```
query = """SELECT ?city ?pop ?area ?elevation WHERE {
    ?city wdt:P1566 """+'"'+str(geonameid)+'"'+""".
    OPTIONAL { ?city wdt:P1082 ?pop. }
    OPTIONAL { ?city wdt:P2046 ?area. }
    OPTIONAL { ?city wdt:P2044 ?elevation. }
}
limit 1"""
```


geographical data (elevation & area)

enriched messages with geographical data

query OpenWeather API using temporal and spatial information

query Meetup rest API in order to get events description

```
request = requests.get("http://api.meetup.com/2/events", params = params)

data = request.json()
#print(data)

desc = data["results"][0]["description"]

soup = BeautifulSoup(desc, "lxml")

clean = soup.get_text()
message['description'] = clean
message['@context']['description']['@language'] = detect(clean)
```

end of enrichment pipeline

ArangoDB as storage for enriched messages parsed into JSON-LD

TOPIC GENERALIZATION

GENERAL STRATEGY

outodoor bus

from event descriptions predict the event category (m a c r o - t o p i c)

TEXT PROCESSING

(garbage in → garbage out)

html & emoji stripping

language detection (minimize api call)

polyglot

language translation

- Google-translator API
- DeepLAPI
- python-translate API (Microsoft and other providers)

punctuation/special symbols, lowercase

tokenization and stopwords removal

- SnowballStemmer (multilingual)
- PorterStemmer (English)

FIRST APPROACH: BAG OF WORDS

feature extraction by tf-idf vectorization

$$ext{tf-idf}(ext{t,d}) = ext{tf(t,d)} imes ext{idf(t)}$$

classification

multiclass problem

33 classes, some of them slightly unbalanced

where

$$\operatorname{idf}(t) = \log rac{1+n}{1+\operatorname{df}(t)} + 1$$

performance measure (in terms of average F-measure)

- initially (no cleansing) ~55% (still better than a zero rule!)
- after text preprocessing ~68%
- after some tricks ~75% (more on this later!)

issues

td-idf method requires a collection for the vectorization to work well > not suitable for prediction on the fly

PARAGRAPH VECTOR (Doc2Vec)

feature extraction: doc vectorization

- train a (gensim) doc2vec model (10 epochs, 300-dim vec)
- dbow and dm concatenation

	precision	recall	f1-score	support
LGBT	0.99	0.35	0.52	463
alternative lifestyle	0.97	0.78	0.86	223
book clubs	0.68	0.45	0.54	388
career business	0.70	0.83	0.76	4580
cars motorcycles	0.98	0.50	0.66	362
community environment	0.82	0.46	0.59	944
dancing	0.82	0.81	0.82	1090
education learning	0.79	0.48	0.60	1003
fashion beauty	0.71	0.40	0.51	81
fine arts culture	0.82	0.60	0.69	1027
fitness	0.79	0.69	0.74	2269
food drink	0.75	0.56	0.64	1424
games	0.85	0.82	0.83	1469
health wellbeing	0.71	0.81	0.75	4532
hobbies crafts	0.80	0.60	0.68	515
language ethnic identity	0.82	0.66	0.73	1773
movements politics	0.83	0.78	0.80	752
movies film	0.75	0.45	0.56	539
music	0.79	0.61	0.69	895
new age spirituality	0.78	0.74	0.76	3001
outdoors adventure	0.74	0.86	0.79	5385
paranormal	0.60	0.13	0.21	23
parents family	0.89	0.50	0.64	640
pets animals	0.92	0.45	0.61	312
photography	0.95	0.76	0.84	584
religion beliefs	0.84	0.49	0.62	777
sci-fi fantasy	0.86	0.32	0.47	287
singles	0.61	0.32	0.42	844
socializing	0.47	0.73	0.57	5125
sports recreation	0.84	0.83	0.84	2470
support	0.93	0.38	0.54	431
tech	0.82	0.87	0.84	4340
writing	0.90	0.65	0.76	387
accuracy			0.72	48935
macro avg	0.80	0.60	0.66	48935
weighted avg	0.75	0.72	0.72	48935

performances (avg F-measure)

- initially \rightarrow ~ 60%
- after processing → ~ 68%
- after some tricks \rightarrow ~ 72% (more on this later!)

PARAGRAPH VECTOR (Doc2Vec)

CONS a lot of data is needed

(as well as computational time once data is granted)

overfitting in case of small/medium dataset

LATENT DIRICHLET ALLOCATION (LDA)

unsupervised method for topic modeling & topic extraction

generative model (three level bayesian model)

high level idea

assume your texts comes from a latent-topics generated distribution, try to infer the distribution parameters (thus, the latent topics)

(almost) technically

- "LDA takes de Finetti theorem seriously
- compute the probability distribution for words in a doc, for a doc in a corpus and for the corpus itself
 exploiting the main property of exchangeability of words and docs
- use Bayesian inference to obtain the posterior distribution of the latent variables exploiting variational methods to solve (uncouple) intractable (coupled) equations

interesting note

- some Latent topics are well correspondent with our labels while others have no sense but.. that's a good news!
- clusters of "garbage" helps in defining "badwords" to remove in the cleaning process > ~ 5/7% performance gain by only stripping ~20 badwords (the previously introduced "trick")

LATENT DIRICHLET ALLOCATION (LDA)

unsupervised method for topic m

• generative model (three

high level idea

assume your texts comes from a later infer the distribution parameters (thu

(almost) technically

- "LDA takes de Finetti theorer
- compute the probability distr exploiting the m
- use Bayesian inference to ob exploiting variati

interesting note

clusters of "garbage" helps in defining "badwords" to remove in the cleaning process > ~ 5/7% performance gain by only stripping ~20 badwords (the previously introduced "trick")

RDF PARSING


```
#NottsTest - TBA ---Has Category---> tech --Country-->gb
Google AI Workshop: Machine learning with Tensorflow ---Has Category---> tech --Country-->gb
Hands-on Meetup: Create a design system in React with Styled System -TICKET only ---Has Category---> tech --Country-->gb
Reading SEO- On-Page Technical, Power of Information for SEO & Internal Search ---Has Category---> tech --Country-->gb
Emily Jiang- On Stage Hacking: Build 12-Factor Microservices in an Hour ---Has Category---> tech --Country-->gb
Community meetup ---Has Category---> tech --Country-->gb
Agile HR Massive Morning Meetup | London | Fri 13th Sept ---Has Category---> tech --Country-->gb
Marc Gravell - gRPC in .NET - Hosted by IRESS ---Has Category---> tech --Country-->gb
July Gophers --- Has Category---> tech -- Country-->gb
Meet Amazing Data Women - Summer Social! ---Has Category---> tech --Country-->gb
Keynote by Angela Yu on Why I'm Building My Next App in Flutter --- Has Category---> tech -- Country-->gb
London #PowerBI user group with Will Thompson ---Has Category---> tech --Country-->gb
Foolproof design lab ---Has Category---> tech --Country-->gb
Cyber Nottingham - September Meetup ---Has Category---> tech --Country-->gb
Agile team development at Co-op ---Has Category---> tech --Country-->gb
Introduction to Time-Series ---Has Category---> tech --Country-->gb
OWASP Birmingham Chapter Meetup July 2019 --- Has Category---> tech -- Country-->gb
London Scala Workshop: Zainab Ali - Run scalac, run! ---Has Category---> tech --Country-->gb
Hi-tech for high profit: Digital twins, geospatial data and property investment. ---Has Category---> tech --Country-->gb
Wireframing & prototyping using Axure ---Has Category---> tech --Country-->gb
```

CONCLUSIONS

KEY POINTS

- acquires streaming data from Meetup (RSVP messages)
- attaches a semantic structure (by ontology definition)
- integrates data with useful information
- stores the result on ArangoDB
- creates an RDF graph for SPARQL query

IMPROVEMENTS & FUTURE WORK

data from other services, more_enrichment_

improve classification performance

in case use business solution for API

this work might be the skelethon of a future project in which after collecting data through the illustrated pipeline, tries to predict (linear regression) the event participation on spatial and temporal bases

THANK YOU

REFERENCES

- https://www.w3.org/2018/jsonId-cg-reports/json-Id/
- Stuart J. Chalk, (2016). <u>"SciData: a data model and ontology for semantic representation of scientific data"</u>, Journal of Cheminformatics, 8 (1), 1.
- Alper Kursat Uysal and Serkan Gunal, (2014). <u>"The impact of preprocessing on text classification",</u> Information Processing & Management, 50 (1), 104-112, ISSN 0306-4573.
- D. Xue and F. Li, (2015). <u>"Research of Text Categorization Model based on Random Forests"</u>, 2015 IEEE International Conference on Computational Intelligence & Communication Technology, Ghaziabad, 173-176.
- David M. Blei, Andrew Y. Ng, Michael I. Jordan, (2003). "Latent dirichlet allocation",
 The Journal of Machine Learning Research, 3, 993-1022.
- Le Q. and Mikolov T., (2014). <u>"Distributed Representations of Sentences and Documents"</u>,

 Proceedings of the 31st International Conference on Machine Learning, in PMLR, 32(2), 1188-1196.

Thanks to Vanessa Grass for the meetup labelled data

Repository available on <u>gitlab</u> (complete) and <u>github</u> (reduced).

$$p(z_1,...,z_N) = p(z_{\pi(1)},...,z_{\pi(N)})$$

By de Finetti's theorem:

$$p(\mathbf{w}, \mathbf{z}) = \int p(\theta) \left(\prod_{n=1}^{N} p(z_n | \theta) p(w_n | z_n) \right) d\theta$$

Dirac-like topic mixture distribution corpus

 $p(\theta, \mathbf{z}, \mathbf{w} | \alpha, \beta)$ joint distribution of a topic mixture θ , a set of N topics z, and a set of N words w

$$p(\mathbf{w} | \alpha, \beta)$$

marginal distribution of a single document

Inference:

probability of the entire corpus

$$p(\theta, \mathbf{z} | \mathbf{w}, \alpha, \beta) = \frac{p(\theta, \mathbf{z}, \mathbf{w} | \alpha, \beta)}{p(\mathbf{w} | \alpha, \beta)}$$

producing the intractable eq (coupled!) need for variational methods to solve (approx) -> decoupling

$$p(\mathbf{w} | \alpha, \beta) = \frac{\Gamma(\sum_{i} \alpha_{i})}{\prod_{i} \Gamma(\alpha_{i})} \int \left(\prod_{i=1}^{k} \theta_{i}^{\alpha_{i}-1} \right) \left(\prod_{n=1}^{N} \sum_{i=1}^{k} \prod_{j=1}^{V} (\theta_{i} \beta_{ij})^{w_{n}^{j}} \right) d\theta,$$

Paragraph vector: distributed memory

Paragraph vector: distributed bag of words

