Appunti di Geometria 2

Anno Accademico 2020/2021

"BEEP BOOP INSERIRE CITAZIONE QUI BEEP BOOP"

INDICE

ii

Indice

Ι TOPOLOGIA GENERALE Spazi topologici Spazio topologico 1.2 Distanza e spazi metrici 4 1.3 Distanza e spazi metrici 1.3.1 Norme esotiche Finezza: confronto di topologia 8 Base della topologia Altri concetti topologici: chiusura, interno, frontiera e densità Intorni 1.7 1.8 Funzioni continue 12 Topologia indotta 1.10 Sottospazio topologico 16 1.10.1 Immersione 17 1.11 Prodotti topologici 1.12 Assiomi di separazione: T1 e Hausdorff 1.13 Proprietà topologica Connessione e compattezza 29 2.1 Connessione 29 II Омоторіа 39

I

Topologia generale

CAPITOLO 1

SPAZI TOPOLOGICI

"BEEP BOOP INSERIRE CITAZIONE QUA BEEP BOOP."

NON UN ROBOT, UN UMANO IN CARNE ED OSSA BEEP BOOP.

1.1 SPAZIO TOPOLOGICO

Definizione 1.1.0. Uno **spazio topologico** (X, \mathcal{T}) è un insieme X con una famiglia di sottoinsiemi $\mathcal{T} \subseteq \mathcal{P}(X)$ detta **topologia** che soddisfano i seguenti assiomi (detti **assiomi degli aperti**):

- 1. Il vuoto e l'insieme stesso sono aperti della topologia: \varnothing , $X \in \mathcal{T}$.
- 2. L'unione arbitraria di aperti è un aperto: dati $\{A_i\}_{i\in I}$ tali che $A_i\in \mathcal{T},\ \forall i\in I\ (|I|\leq \infty),$ allora $\bigcup_{i\in I}A_i=A\in \mathcal{T}$.
- 3. L'intersezione finita di aperti è aperta: dati $\{A_i\}_{i\in I}$ tali che $A_i \in \mathcal{T}$, $\forall i \in I \ (|I| < \infty)$, allora $\bigcap_{i \in I} A_i = A \in \mathcal{T}$.

Gli elementi di $\mathcal T$ si dicono aperti della topologia.

Definizione 1.1.1. Si può definire equivalentemente su X una topologia $\mathcal T$ usando gli assiomi dei chiusi:

- 1. Il vuoto e l'insieme stesso sono chiusi della topologia: \varnothing , $X \in \mathcal{T}$.
- 2. L'unione finita di chiusi è un chiuso: dati $\{C_i\}_{i\in I}$ tale che $C_i \in \mathcal{T}$, $\forall i \in I \ (|I| < \infty)$, allora $\bigcup_{i \in I} C_i = C \in \mathcal{T}$.
- 3. L'intersezione arbitraria di chiusi è un chiuso: dati $\{C_i\}_{i\in I}$ tale che $C_i \in \mathcal{T}$, $\forall i \in I$ $(|I| \leq \infty)$, allora $\bigcap C_i = C \in \mathcal{T}$.

Gli elementi di \mathcal{T} si dicono **chiusi** della topologia.

OSSERVAZIONE. 1.1. Per verificare il terzo assioma degli aperti (o, equivalentemente, il secondo dei chiusi) è sufficiente verificare che sia vero per soli due sottoinsiemi qualunque, in quanto poi è verificato per induzione.

ESEMPIO.

- **Topologia discreta**: $\mathcal{T} = \mathcal{P}(X)$, *tutti* gli insiemi sono *aperti*.
- Topologia banale: $\mathcal{T} = \emptyset$, X, gli *unici* aperti sono *banali*.

1.2 DISTANZA E SPAZI METRICI

Definizione 1.2.0. Su un insieme X una funzione $d: X \times X \to \mathbb{R}$ è una **distanza** se:

- 1. Positività della distanza: $\forall x, y \in X \quad d(x, y) \ge 0 \text{ e } d(x, y) = 0 \iff x = y$
- 2. Simmetria: $\forall x, y \in X \quad d(x, y) = d(y, x)$
- 3. Disuguaglianza triangolare: $\forall x, y, z \in X \quad d(x, z) \le d(x, y) + d(y, z)$

Definizione 1.2.1. Uno **spazio metrico** (X,d) è un insieme su cui è definita una distanza.

DEFINIZIONE 1.2.2. Definita la **palla aperta di centro** x come l'insieme degli elementi di X che soddisfano la seguente condizione:

$$B_{\varepsilon}(x) = \{ y \in X \mid d(x, y) < \varepsilon \} \tag{1.1}$$

Ogni spazio metrico ha una **topologia** \mathcal{T}_d **indotta dalla distanza**, i cui aperti sono definiti come:

$$A \subseteq X$$
 aperto $(A \in \mathcal{T})$ se $\forall x \in A, \exists \varepsilon > 0 : B_{\varepsilon}(x) \subseteq A$.

ESEMPIO.

■ Su un qualunque insieme *X* si può definire la *distanza banale*:

$$d(x, y) = \begin{cases} 0 & \text{se } x = y \\ 1 & \text{se } x \neq y \end{cases}$$
 (1.2)

In questo modo, ogni punto è una palla aperta e dunque ogni sottoinsieme è un aperto, dando allo spazio la *topologia discreta*. In particolare, ogni insieme può essere uno spazio metrico.

■ Su $X = \mathbb{R}$ si può definire come distanza il *valore assoluto* d(x, y) = |x - y|, che induce la **topologia Euclidea** $\mathscr{E}_{u \circ \ell}$, definita con le palle aperte di raggio ε :

$$B_{\varepsilon}(x) = \{ y \in \mathbb{R} \mid |x - y| < \varepsilon \}$$
 (1.3)

nel seguente modo:

$$A \subseteq \mathbb{R}$$
 aperto $(A \in \mathscr{C}_{u,c\ell})$ se $\forall x \in A, \exists \varepsilon > 0 : B_{\varepsilon}(x) \subseteq A$.

Su $X = \mathbb{R}^n$ si può definire come distanza la *norma Euclidea*: d(x, y) = ||x - y|| che induce la *topologia Euclidea* $\mathscr{E}_{u,e\ell}$ in modo analogo al caso precedente.

$$B_{\varepsilon}(x) = \{ y \in \mathbb{R}^n \mid ||x - y|| < \varepsilon \}$$

$$A \subseteq \mathbb{R}^n \text{ aperto } (A \in \mathcal{E}_{u \cdot \varepsilon \ell}) \text{ se } \forall x \in A, \ \exists \varepsilon > 0 : B_{\varepsilon}(x) \subseteq A.$$

Attenzione! Non tutte le topologie sono indotte da una distanza! Definiamo la **topologia dei complementari finiti** sull'insieme *X* nel modo seguente:

$$A \subseteq \mathbb{R}$$
 aperto $(A \in CF)$ se $X \setminus A$ è finito. $C \subseteq \mathbb{R}$ chiuso $(C \in CF)$ se C è finito.

Alcune osservazioni:

• Se un aperto A è tale se il suo complementare $\mathscr{C}A$ è finito, si ha che:

$$A = \mathscr{C}(\mathscr{C}A) = X \setminus (X \setminus A) = X \setminus \{\text{un numero finito di punti}\}$$
 (1.4)

In altre parole A è aperto è pari ad X privato al più di un numero finito di punti.

- Se X è finito, la topologia CF coincide con la topologia discreta: ogni sottoinsieme di X è finito e dunque un aperto.
- Se X è infinito, ad esempio \mathbb{R} , la topologia non è quella discreta: [0, 1] per la topologia discreta è un chiuso ma per quella CF non lo è in quanto non è finito.

Definizione 1.2.3. Si può definire equivalentemente su X una topologia $\mathcal T$ usando gli assiomi dei chiusi:

- 1. Il vuoto e l'insieme stesso sono chiusi della topologia: \emptyset , $X \in \mathcal{T}$.
- 2. L'unione finita di chiusi è un chiuso: dati $\{C_i\}_{i\in I}$ tale che $C_i \in \mathcal{T}, \ \forall i \in I \ (|I| < \infty)$, allora $\bigcup_{i \in I} C_i = C \in \mathcal{T}$.
- 3. L'intersezione arbitraria di chiusi è un chiuso: dati $\{C_i\}_{i\in I}$ tale che $C_i \in \mathcal{T}$, $\forall i \in I$ $(|I| \leq \infty)$, allora $\bigcap_{i \in I} C_i = C \in \mathcal{T}$.

Gli elementi di \mathcal{T} si dicono **chiusi** della topologia.

Osservazione. 1.2. Per verificare il terzo assioma degli aperti (o, equivalentemente, il secondo dei chiusi) è sufficiente verificare che sia vero per soli due sottoinsiemi qualunque, in quanto poi è verificato per induzione.

Esempio.

- Topologia discreta: $\mathcal{T} = \mathcal{P}(X)$, tutti gli insiemi sono aperti.
- **Topologia banale**: $\mathcal{T} = \emptyset$, X, gli *unici* aperti sono *banali*.

1.3 DISTANZA E SPAZI METRICI

Definizione 1.3.0. Su un insieme X una funzione $d: X \times X \to \mathbb{R}$ è una **distanza** se:

- 1. Positività della distanza: $\forall x, y \in X \quad d(x, y) \ge 0 \text{ e } d(x, y) = 0 \iff x = y$
- 2. Simmetria: $\forall x, y \in X \quad d(x, y) = d(y, x)$
- 3. **Disuguaglianza triangolare**: $\forall x, y, z \in X \quad d(x, z) \le d(x, y) + d(y, z)$

Definizione 1.3.1. Uno **spazio metrico** (X,d) è un insieme su cui è definita una distanza.

DEFINIZIONE 1.3.2. Definita la **palla aperta di centro** x come l'insieme degli elementi di X che soddisfano la seguente condizione:

$$B_{\varepsilon}(x) = \{ y \in X \mid d(x, y) < \varepsilon \} \tag{1.5}$$

Ogni spazio metrico ha una **topologia** \mathcal{T}_d **indotta dalla distanza**, i cui aperti sono definiti come:

$$A \subseteq X$$
 aperto $(A \in \mathcal{T})$ se $\forall x \in A, \exists \varepsilon > 0 : B_{\varepsilon}(x) \subseteq A$.

ESEMPIO.

■ Su un qualunque insieme *X* si può definire la *distanza banale*:

$$d(x, y) = \begin{cases} 0 & \text{se } x = y \\ 1 & \text{se } x \neq y \end{cases}$$
 (1.6)

In questo modo, ogni punto è una palla aperta e dunque ogni sottoinsieme è un aperto, dando allo spazio la *topologia discreta*. In particolare, ogni insieme può essere uno spazio metrico.

■ Su $X = \mathbb{R}$ si può definire come distanza il *valore assoluto d* (x, y) = |x - y|, che induce la **topologia Euclidea** $\mathcal{E}_{uc\ell}$, definita con le palle aperte di raggio ε :

$$B_{\varepsilon}(x) = \{ y \in \mathbb{R} \mid |x - y| < \varepsilon \} \tag{1.7}$$

nel seguente modo:

$$A \subseteq \mathbb{R}$$
 aperto $(A \in \mathcal{E}_{u,c,\ell})$ se $\forall x \in A, \exists \varepsilon > 0 : B_{\varepsilon}(x) \subseteq A$.

Su $X = \mathbb{R}^n$ si può definire come distanza la *norma Euclidea*: d(x, y) = ||x - y|| che induce la *topologia Euclidea* $\mathscr{E}_{u \cdot c \cdot \ell}$ in modo analogo al caso precedente.

$$B_{\varepsilon}(x) = \{ y \in \mathbb{R}^n \mid ||x - y|| < \varepsilon \}$$
$$A \subseteq \mathbb{R}^n \text{ aperto } (A \in \mathcal{E}_{u, \varepsilon, \varepsilon}) \text{ se } \forall x \in A, \exists \varepsilon > 0 : B_{\varepsilon}(x) \subseteq A.$$

ATTENZIONE! Non tutte le topologie sono indotte da una distanza! Definiamo la **topologia dei complementari finiti** sull'insieme *X* nel modo seguente:

$$A \subseteq \mathbb{R}$$
 aperto $(A \in CF)$ se $X \setminus A$ è finito. $C \subseteq \mathbb{R}$ chiuso $(C \in CF)$ se C è finito.

Alcune osservazioni:

• Se un aperto A è tale se il suo complementare $\mathscr{C}A$ è finito, si ha che:

$$A = \mathscr{C}(\mathscr{C}A) = X \setminus (X \setminus A) = X \setminus \{\text{un numero finito di punti}\}$$
 (1.8)

In altre parole A è aperto è pari ad X privato al più di un numero finito di punti.

- Se X è finito, la topologia CF coincide con la topologia discreta: ogni sottoinsieme di X è finito e dunque un aperto.
- Se X è infinito, ad esempio \mathbb{R} , la topologia non è quella discreta: [0, 1] per la topologia discreta è un chiuso ma per quella CF non lo è in quanto non è finito.

1.3.1 Norme esotiche

Possiamo definire su \mathbb{R}^n una famiglia di distanze dette **norme**; qui di seguito ne elenchiamo alcune. Definiti i punti $x = (x_1, ..., x_n)$, $y = (y_1, ..., y_n) \in \mathbb{R}^n$ abbiamo:

- Norma infinito: $d_{\infty}(x, y) = \max_{i} |x_i y_i|$
- Norma uno: $d_1(x, y) = \sum_{i=1}^n |x_i y_i|$
- Norma due: $d_2(x, y) = \sqrt{\sum_{i=1}^{n} |x_i y_i|^2}$
- Norma p: $d_p(x, y) = \sqrt[p]{\sum_{i=1}^n |x_i y_i|^p}$

Si ha inoltre $\lim_{p\to +\infty} d_p = d_{\infty}$.

Valgono inoltre le seguenti disuguaglianze:

$$\forall x, y \in \mathbb{R}^n \quad d_{\infty}(x, y) \le d_2(x, y) \le d_1(x, y) \le nd_{\infty}(x, y) \tag{1.9}$$

Dimostrazione. Supponiamo senza perdere di generalità che $d_{\infty}(x, y) = |x_1 - y_1|$.

$$d_2(x, y) = \sqrt{|x_1 - y_1|^2 + \dots + |x_n - y_n|^2} \ge \sqrt{|x_1 - y_1|^2} = |x_1 - y_1| = d_{\infty}(x, y)$$

$$d_2(x, y) = |x_1 - y_1| + \dots + |x_n - y_n| \le |x_1 - y_1| + \dots + |x_1 - y_1| = n|x_1 - y_1| = nd_{\infty}(x, y)$$

Notiamo che $|x_i - y_i|$ sono sempre positive, allora sia $a_i := |x_i - y_i|$. Segue che $a_1^2 + ... + a_n^2 \le (a_1 + ... + a_n)^2$ perché $a_i, ..., a_n \ge 0$. Allora:

$$\sqrt{a_1^2 + \ldots + a_n^2} \le a_1 + \ldots + a_n \implies d_2 \le d_1$$

Queste disuguaglianze danno le seguenti inclusioni¹:

$$B_1(\varepsilon) \subseteq B_2(\varepsilon) \subseteq B_{\infty}(\varepsilon) \subseteq B_1(n\varepsilon)$$
 (1.10)

Questo ci porta a dire che le topologie indotte da queste distanze sono la stessa. Preso adesso $X = \mathcal{C}([0, 1]) = \{f : [0, 1] \to \mathbb{R}, f \text{ continua}\}$, esso è uno spazio vettoriale infinito, con $0_{\mathcal{C}} \equiv O_{[0, 1]}$ (cioè la funzione *identicamente nulla*). In questo caso possiamo comunque adattare le norme precedenti con delle "somme infinite", ovvero degli integrali.

- Norma infinito: $d_{\infty}(\bar{f}, g) = \max_{x \in [0, 1]} |f((x) (y)|$
- Norma uno: $d_1(f, g) = \int_0^1 |f((x) (y))|$
- Norma due: $d_2(f, g) = \sqrt{\int_0^1 |f((x) (y)|^2}$
- Norma p: $d_p(f, g) = \sqrt[p]{\int_0^1 |f((x) (y)|^p}$

A differenza del caso su \mathbb{R}^n , ogni norma genera in realtà una topologia distinta!

1.4 FINEZZA: CONFRONTO DI TOPOLOGIA

DEFINIZIONE 1.4.0. Sia X un insieme e \mathcal{T}_1 , \mathcal{T}_2 due topologie di X. Si dice che \mathcal{T}_1 è **meno** fine di \mathcal{T}_2 se tutti gli aperti della prima topologia sono aperti della seconda:

$$\forall A \in \mathcal{T}_1 \implies A \in \mathcal{T}_2 \tag{1.11}$$

In modo analogo si dice anche che \mathcal{T}_2 è **più fine** di \mathcal{T}_1 .

In altre parole, una topologia più fine ha più aperti rispetto a quella confrontata.

ESEMPIO.

- La topologia banale è la meno fine di tutte, dato che ogni topologia contiene \emptyset , X.
- La *topologia discreta* è la *più fine* di tutte, dato che ogni topologia è contenuta in $\mathcal{P}(X)$.
- Su \mathbb{R} la topologia dei complementari finiti è *meno fine* di quella euclidea. Infatti un aperto $A \in CF$ su \mathbb{R} è definito come $A = \mathbb{R} \setminus \{x_1, ..., x_n\}$, cioè:

$$A = (-\infty, x_1) \cup (x_1, x_2) \cup \ldots \cup (x_n, +\infty)$$

Per n punti gli n+1 intervalli ottenuti sono aperti della topologia euclidea; essendo unione di aperti, anche A è un aperto di $\mathscr{E}_{uc\ell}$

 $^{^{1}}$ Qui usiamo la notazione $B_{i}\left(r\right)$ per indicare la palla aperta di raggio r e centro fissato x rispetto alla norma i.

OSSERVAZIONE. 1.3. Se definiamo due topologie \mathcal{T}_1 e \mathcal{T}_2 sono due topologie di un insieme X, l'intersezione $\mathcal{T}_1 \cap \mathcal{T}_2$ è anch'essa una topologia di X e, per costruzione, è meno fine di \mathcal{T}_1 e \mathcal{T}_2 .

1.5 BASE DELLA TOPOLOGIA

Definizione 1.5.0. Sia (X, \mathcal{T}) uno spazio topologico. \mathscr{B} è una **base** per \mathcal{T} se:

- 1. La base è costituita da paerti per la topologia $\mathcal{T}: A \in \mathcal{B} \implies A \in \mathcal{T}(\mathcal{B} \subseteq \mathcal{T})$.
- 2. Tutti gli aperti della topologia sono unioni degli aperti delle basi: $A \in \mathcal{T} \implies \exists B_i \in \mathcal{B}, \ i \in I: A = \bigcup_{i \in I} B_i$.

Attenzione! La base \mathcal{B} non è detto che sia una topologia! Ad esempio, le unioni sono aperti della topologia, ma non è detto che siano interni alla base \mathcal{B} .

ESEMPIO.

■ Nella topologia euclidea di \mathbb{R}^n una base è

$$\mathcal{B} = \{B_{\varepsilon}(x) \mid x \in \mathbb{R}^n, \ \varepsilon > 0\}$$
 (1.12)

Infatti, $\forall x \in A$ aperto $\exists \varepsilon_x > 0 : B_{\varepsilon_x}(x) \subseteq A$ per la definizione della topologia; segue che $A = \bigcup_{x \in A} B_{\varepsilon_x}(x)$.

■ Nella topologia euclidea di ℝ una base è

$$\mathcal{B} = \{(a, b) \mid a, b \in \mathbb{R}\} \tag{1.13}$$

Un'altra base per \mathbb{R} nella $\mathscr{E}_{uc\ell}$ è

$$\mathcal{B} = \{(a, b) \mid a, b \in \mathbb{Q}\}\$$

Dato $x \in \mathbb{R}$, esiste sempre una successione $\{x_n\} \in \mathbb{Q}$ decrescente o crescente tale che $\lim_{n \to +\infty} x_n = x$, essendo \mathbb{Q} denso in \mathbb{R}^a . Allora presa $a_n \setminus a$ e $b_n \nearrow b$, si ha:

$$(a, b) = \bigcup_{n \in \mathbb{N}} (a_n, b_n)$$

Questa base con estremi razionali ha *infiniti elementi*, ma in *misura minore* rispetto a quella ad estremi reali.

TEOREMA 1.5.0. TEOREMA DELLE BASI. (MANETTI, 3.7)

Sia X un insieme e $\mathcal{B} \subseteq \mathcal{P}(X)$ una famiglia di sottoinsiemi di X. \mathcal{B} è la base di un'*unica* topologia *se e solo se*:

- 1. L'insieme X deve essere scritto come unione di elementi della famiglia: $X = \bigcup B$.
- 2. Per ogni punto dell'intersezione di elementi della famiglia deve esserci un'altro

^aPer una discussione più approfondita a riguardo, si guardi sez. **XXX** a pag. **XXX**.

elemento di essa che contiene il punto ed è sottoinsieme dell'intersezione:

$$\forall A, B \in \mathcal{B} \ \forall x \in A \cap B \ \exists C \in \mathcal{B} : x \in C \subseteq A \cap B$$
 (1.14)

DIMOSTRAZIONE. Sia 38 la famiglia di sottoinsiemi che verifica i punti 1 e 2. Allora devo trovare una topologia di cui \mathcal{B} è base. Definiamo \mathcal{T} tale che:

$$A \in \mathcal{T} \iff A$$
 è unione di elementi di \mathscr{B}

Verifichiamo gli assiomi degli aperti su \mathcal{T} .

I $X \in \mathcal{T}$ per ipotesi 1, $\emptyset \in \mathcal{T}$ perché è l'unione sugli insiemi di indici vuoto $(I = \emptyset)$.

II Sia $A_i = \bigcup_i B_{ii}$, con $B_{ii} \in \mathcal{B}$. Allora:

$$\bigcup_{i} A_{i} = \bigcup_{i} \left(\bigcup_{j} B_{ij} \right) = \bigcup_{i, j} B_{ij} \implies \bigcup_{i, j} A_{i} \in \mathcal{T}$$

III Sia $A, B \in \mathcal{T}$, cioè $A = \bigcup_i A_i$ e $B = \bigcup_j B_j$ con $A_i, B_j \in \mathcal{B}$. Allora:

$$A \cap B = \left(\bigcup_{i} A_{i}\right) \cap \left(\bigcup_{j} B_{j}\right) = \bigcup_{i, j} \left(\underbrace{A_{i} \cap B_{j}}_{\in \mathcal{T} \text{ per l'ipotesi 2}}\right) \in \mathcal{T}$$

Esemplo. Sia $X = \mathbb{R}$ e $\mathscr{B} = \{[a, b) \mid a, b \in \mathbb{R}\}$. Verifichiamo che \mathscr{B} soddisfa il teorema appena enunciato.

- 1. $\mathbb{R} = \bigcup [-n, n)$.
- 2. Preso $[a,b) \cap [c,d)$ si ha che esso è \varnothing o è [e,f), con $e = \max\{a, c\}$, $f = \min\{b, d\}$; in entrambi i casi l'intersezione è elemento di \mathcal{B} .

Esiste dunque una topologia su \mathbb{R} che ha base \mathcal{B} ; questa non è base per la topologia

Euclidea, ad esempio, dato che gli intervalli semiaperti non sono inclusi in $\mathcal{E}_{ue\ell}$. Notiamo inoltre che $(a, b) = \bigcup_{n=0}^{\infty} \left[a + \frac{1}{n}, b \right)$, dunque la topologia definita \mathcal{B} comprende gli aperti della topologia Euclidea: $\mathscr{E}_{uc\ell}$ è meno fine di questa topologia.

ALTRI CONCETTI TOPOLOGICI: CHIUSURA, INTERNO, FRONTIERA E 1.6 DENSITÀ

Ricordiamo che, dato uno spazio topologico (X, \mathcal{T}) e un sottoinsieme $A \subseteq X$, si ha:

- *A aperto* della topologia se $A \in \mathcal{T}$.
- *A chiuso* della topologia se $\mathscr{C}A = X \setminus A \in \mathcal{T}$.

ATTENZIONE! Essere aperto oppure essere chiuso non si escludono a vicenda! Un insieme può essere aperto, chiuso, entrambi o nessuno dei due. Ad esempio, il vuoto e l'insieme stesso sono aperti e chiusi allo stesso tempo, dato che per ipotesi sono aperti i loro

complementari $\mathscr{C} \varnothing = X \setminus \varnothing = X$ e $\mathscr{C} X = X \setminus X = \varnothing$ sono anch'essi aperti.

DEFINIZIONE 1.6.0. Sia X spazio topologico e $A \subseteq X$. La **chiusura** \overline{A} di A è il più piccolo chiuso contente A:

$$\overline{A} = \bigcap_{\substack{A \subseteq C \\ C \text{ chiuso}}} C \tag{1.15}$$

Proprietà:

- \blacksquare $A \subseteq \overline{A}$.
- \blacksquare \overline{A} è un chiuso in quanto intersezione (arbitraria) di chiusi.
- $A \stackrel{.}{\text{e}} \text{ un chiuso} \iff A = \overline{A}.$

DEFINIZIONE 1.6.1. Un punto x è aderente ad A se $x \in \overline{A}$.

Definizione 1.6.2. Sia X spazio topologico e $A \subseteq X$. L'**interno** A^{o} di A è il più grande aperto contenuto in A:

$$A^{o} = \bigcup_{\substack{B \subseteq A \\ B \text{ aperto}}} B \tag{1.16}$$

Proprietà:

- \blacksquare $A^{o} \subseteq A$.
- A° è un aperto in quanto unione (arbitraria) di aperti.
- $A \stackrel{.}{e} \text{ un aperto} \iff A = A^{\circ}.$

DEFINIZIONE 1.6.3. Un punto x è **interno** ad A se $x \in A^{o}$.

Definizione 1.6.4. Sia X spazio topologico e $A \subseteq X$. La **frontiera** ∂A di A sono i punti della chiusura di A non contenuti nel suo interno o, in altri termini, i punti aderenti sia ad A sia al suo complementare.

$$\partial A = \overline{A} \setminus A^{o} = \overline{A} \cap \overline{X \setminus A} \tag{1.17}$$

Proprietà:

- \blacksquare ∂A è un chiuso.

Definizione 1.6.5. Sia X spazio topologico e $A \subseteq X$. A è **denso** è denso in X se $\overline{A} = X$ o, in altri termini, tutti i punti di X sono aderenti ad A.

Esempio. Il più piccolo chiuso contenente \mathbb{Q} è \mathbb{R} , poiché ogni reale è aderente ai razionali. Dunque \mathbb{Q} è denso in \mathbb{R} .

1.7 INTORNI

DEFINIZIONE 1.7.0. Sia X spazio topologico e $x \in X$. V è un **intorno** di x se $\exists A$ aperto tale che $x \in A \subseteq V$ o, in altri termini, se x è interno ad U. Definiamo inoltre la **famiglia degli intorni** di x $I(x) \subseteq \mathcal{P}(X)$:

$$I(x) = \{ V \subseteq X \mid V \text{ è intorno di } x \} \tag{1.18}$$

OSSERVAZIONE. 1.4. Dato $A \subseteq X$, per ogni $x \in A$ tale che A è intorno di x si può definire un aperto $A_x \subseteq A$, con $x \in A_x$. L'unione arbitraria di questi A_x risulta essere contenuta in A e pari al suo interno. Dunque, si può definire l'interno di A come $A^o = \{x \in A \mid A \in I(x)\}$; segue che A è aperto se e solo se A è intorno di ogni punto in A.

Lemma 1.7.0. Proprietà degli intorni. (Manetti, 3.20, 3.21)

- 1. Si possono estendere gli intorni: $U \in I(x)$, $U \subseteq V \implies V \in I(x)$
- 2. Le intersezioni di intorni sono ancora intorni: $U, V \in I(x) \implies U \cap V \in I(x)$
- 3. Caratterizzazione della chiusura per intorni: $B \subseteq X$, allora $x \in \overline{B} \iff \forall U \in I(x) \quad U \cap B \neq \emptyset$.

DIMOSTRAZIONE.

- I L'aperto A che soddisfa la definizione di $U \in I(x)$ è per costruzione contenuto anche in V, dunque A è un aperto che soddisfa la definizione di V intorno di x.
- II Definiti gli aperti $A_U \subseteq U$, $A_V \subseteq V$ che soddisfano la definizione di intorni di x, l'intersezione $A = A_U \cap A_V$ è un aperto contenente x. Dato che $A = A_U \cap A_V \subseteq U \cap V$, $U \cap V$ per definizione di intorno di x.
- III Per contronominale.

$$x \notin \overline{B} \iff x \notin B \land x \notin \partial B$$

$$\iff x \in X \setminus B \land x \notin \overline{B} \cap \overline{X \setminus B}$$

$$\iff x \in X \setminus B \land x \notin \partial (X \setminus B)$$

$$\iff x \in (X \setminus B)^{o}$$

$$\iff \exists U \in I(X) : x \in U \subseteq X \setminus B$$

$$\iff \exists U \in I(x) : U \cap B = \emptyset$$

Definizione 1.7.1. Sia X spazio topologico, $x \in X$ e I(x) la famiglia degli intorni di x. Una sottofamiglia $\mathcal{F} \subseteq I(x)$ è un **sistema fondamentale di intorni** di x se $\forall U \in I(x) \exists V \in \mathcal{F} : V \subseteq U$.

1.8 FUNZIONI CONTINUE

1.8. FUNZIONI CONTINUE 13

Definizione 1.8.0. Siano X, Y spazi topologici. Una funzione $f: X \to Y$ si dice **continua** se la controimmagine di aperti in Y è un aperto in X:

$$\forall A \text{ aperto in } Y, f^{-1}(A) \text{ è aperto in } X$$
 (1.19)

Alternativamente, f è continua se la controimmagine di chiusi in Y è un chiuso in Y.

$$\forall C \text{ chiuso in } Y, f^{-1}(C) \text{ è chiuso in } X$$
 (1.20)

OSSERVAZIONE. 1.5.

■ Si ha la definizione di continuità con i chiusi perché la controimmagine si "comporta bene" con i complementari:

$$f^{-1}(Y \setminus A) = X \setminus f^{-1}(A)$$

■ È sufficiente verificare la definizione per gli aperti una base di Y perché la controimmagine si "comporta bene" con le unioni di insiemi:

$$f^{-1}\left(\bigcup_{i} A_{i}\right) = \bigcup_{i} f^{-1}\left(A_{i}\right)$$

LEMMA 1.8.0. (MANETTI, 3.25)

Siano X, Y spazi topologici e $f: X \to Y$ funzione. f è continua $iff \ \forall A \subseteq X \ f(\overline{A}) \subseteq \overline{f(A)}$.

DIMOSTRAZIONE. Ricordiamo che per ogni funzione si ha:

- $f(f^{-1}(C)) \subseteq C$
- $\blacksquare \quad A \subseteq f^{-1}(f(A))$

 \implies) Sia $A \subseteq X$. Dobbiamo dimostrare che $f(\overline{A})\overline{f(A)}$. Sappiamo che se un insieme è contenuto in un altro, lo stesso vale per le immagini e le controimmagini. Allora:

$$f(A) \subseteq \overline{f(A)}$$
$$A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(\overline{f(A)})$$

 $f^{-1}(\overline{f(A)})$ è un chiuso (in X in quanto controimmagine tramite una funzione continua di un chiuso) che contiene A. Ma allora anche la chiusura, che è il più piccolo chiuso contenente A, è contenuta in $f^{-1}(\overline{f(A)})$. Segue quindi:

$$\overline{A} \subseteq f^{-1}\left(\overline{f\left(A\right)}\right)$$
$$f\left(\overline{A}\right) \subseteq f\left(f^{-1}\left(f\left(A\right)\right)\right) \subseteq \overline{f\left(A\right)}$$

 \Leftarrow) Sia $C \subseteq Y$ chiuso e sia $A = f^{-1}(C)$. Dobbiamo dimostrare che A è chiuso in X.

Poiché $A \subseteq \overline{A}$ è vero per definizione, dimostriamo che $\overline{A} \subseteq A$. Per ipotesi:

$$f\left(\overline{A}\right)\subseteq\overline{f\left(A\right)}$$

$$f\left(\overline{f^{-1}\left(C\right)}\right)\subseteq\overline{f\left(f^{-1}\left(C\right)\right)}\subseteq\overline{C}=C$$

Applicando nuovamente la controimmagine:

$$f\left(\overline{f^{-1}\left(C\right)}\right) \subseteq C$$

$$\overline{A} = \overline{f^{-1}\left(C\right)} \subseteq f^{-1}\left(f\left(\overline{f^{-1}\left(C\right)}\right)\right) \subseteq f^{-1}\left(C\right) = A$$

Dunque la controimmagine A di un chiuso C è un chiuso.

Теоrема 1.8.0. Manetti, 3.26 La composizione di funzioni continue è continua.

$$f: Y \to Z$$
, $g: X \to Y$ continue $\Longrightarrow f \circ g: X \to Z$ continua (1.21)

DIMOSTRAZIONE. La controimmagine della composizione di funzioni $f \circ g$ è definita come $f^{-1}(f \circ g) = g^{-1} \circ f^{-1}$. Allora A aperto in $Z \implies f^{-1}(A)$ aperto $\implies g^{-1}(f^{-1}(A))$ aperto.

DEFINIZIONE 1.8.1. (MANETTI, 3.27)

Siano X, Y spazi topologici e $f: X \to Y$ funzione. Dato $x \in X$ f è **continua** in x se:

$$\forall U \in I(f(x)) \exists V \in I(x) : f(V) \subseteq U \tag{1.22}$$

Questa è la generalizzazione della definizione tradizionale della continuità affrontata in *Analisi UNO*.

TEOREMA 1.8.1. (MANETTI, 3.28)

Siano X, Y spazi topologici e $f: X \to Y$ funzione. f è continua per aperti $\iff f$ è continua in $x \ \forall x \in X$.

DIMOSTRAZIONE. \Longrightarrow) Sia $x \in X$ e $U \in I(f(x))$. Per definizione di intorno $\exists A$ aperto in Y tale che $f(x) \in A \subseteq U$. Basta porre $V = f^{-1}(A)$: per continuità è aperto in X e, dato che $x \in f^{-1}(A)$ perché $f(x) \in A$, allora V è intorno di x. Segue che $f(V) = f(f^{-1}(A)) \subseteq A \subseteq U$.

 \iff Sia $A \subseteq Y$ aperto. Dobbiamo dimostrare che $f^{-1}(A)$ sia aperto. Preso $x \in f^{-1}(A)$ si ha che $f(x) \in A$; dunque A è, in quanto aperto, intorno di f(x). Allora, poiché f è continua in x, $\exists V \in I(x)$ tale che $f(V) \subseteq A$.

Segue che $x \in V \subseteq f^{-1}(A)$, cioè $f^{-1}(A)$ è intorno di x poiché contiene un intorno V dello stesso punto. Dunque $f^{-1}(A)$ aperto perché è intorno di ogni suo punto.

Definizione 1.8.2. Siano X, Y spazi topologici e $f: X \to Y$ funzione.

• f è aperta se $\forall A$ aperto in X f (A) è aperto in Y.

1.8. FUNZIONI CONTINUE 15

• $f \in \mathbf{chiusa}$ se $\forall C$ chiuso in $X f(C) \in \mathbf{chiuso}$ in Y.

Osservazione. 1.6. È sufficiente verificare la definizione di funzione aperta per gli aperti di una base di X perché l'immagine si "comporta bene" con le unioni di insiemi:

$$f\left(\bigcup_{i} A_{i}\right) = \bigcup_{i} f\left(A_{i}\right)$$

una funzione aperta. Si prenda $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ (la proiezione sulla prima coordinata):

• $f \in continua$ per ovvi motivi. Attenzione! Una funzione f aperta che non sia omeomorfismo non è necessariamente

- f è aperta. Infatti, presa una base su \mathbb{R}^2 come $\{B_{\varepsilon}(x, y)\}$, si ha che $f(B_{\varepsilon}(x, y)) =$ $(x - \varepsilon, x + \varepsilon)$ che sono aperti in \mathbb{R} .
- f non è chiusa. Prendiamo $C = \{(x, y) \in \mathbb{R}^2 \mid xy = 1\}$ e definiamo la funzione $g: \mathbb{R}^2 \to \mathbb{R}$ continua; vediamo facilmente come $C = g^{-1}(\{1\})$ e, essendo 1 chiuso in R, C è controimmagine continua di un chiuso e dunque chiuso. Si ha dunque $f(C) = \mathbb{R} \setminus \{0\}$, che tuttavia non è un chiuso della topologia Euclidea in quanto non contiene infiniti punti (una base della $\mathscr{E}_{uc\ell}$ è formata da intervalli, che dunque contengono infiniti punti).

DEFINIZIONE 1.8.3. Siano X, Y spazi topologici e $f: X \to Y$ funzione. f è un **omeomor** fismo se è biunivoca, continua e la sua inversa è continua; più precisamente, esiste $g: Y \to X$ continua tale per cui $g \circ f = Id_X$ e $f \circ g = Id_Y$.

Due spazi topologici si dicono omeomorfi se esiste un omeomorfismo fra i due; in notazione $X \cong Y$.

LEMMA 1.8.1. (MANETTI, 3.31)

Siano X, Y spazi topologici e $f: X \to Y$ funzione continua. Allora vale:

- 1. f omeomorfismo $\iff f$ aperta e biettiva.
- 2. f omeomorfismo \iff f chiusa e biettiva.

Dimostrazione. Dimostriamo la prima condizione, la seconda è analoga.

- \implies) Un omeomorfismo è biettiva per definizione. Dimostriamo dunque che f sia aperta, cioè $\forall A \in X$ aperto $f(A) \in Y$ è aperto. Ma definita $g: Y \to X$ l'inversa continua dell'omeomorfismo f (cioè $f^{-1} = g$), si ha che $\forall A \in X \ g^{-1}(A) = f(A)$ è aperto.
- f è già biettiva e continua per ipotesi. Dobbiamo dimostrare che l'inversa $g: Y \to X$ sia continua, cioè $\forall A \in X$ aperto $g^{-1}(A) \in Y$ è aperto. Ma $g^{-1}(A) = f(A)$ che è aperto perché f è aperta.

1.9 TOPOLOGIA INDOTTA

Definizione 1.9.0. Dati:

- \blacksquare Uno spazio topologico X.
- \blacksquare Un insieme Y.
- Una funzione $f: Y \to X$

Allora su Y si può definire la **topologia indotta** come la topologia meno fine tra tutte quelle che rendono f continua.

SOTTOSPAZIO TOPOLOGICO

Definizione 1.10.0. Sia X uno spazio topologico (X, \mathcal{T}) e $Y \subseteq X$ un suo sottoinsieme. Su Y si può definire la seguente topologia di sottospazio:

$$U \subseteq Y$$
 aperto in $Y \iff \exists V \subseteq X$ aperto in $X(V \in \mathcal{T}) : U = V \cap Y$ (1.23)

Definita l'**inclusione** $i: Y \hookrightarrow X \mapsto Y$, la topologia di sottospazio è la topologia indotta da i, cioè la topologia meno fine fra tutte quelle che rendono continua l'inclusione.

DIMOSTRAZIONE. Dimostriamo la continuità dell'inclusione. Se A aperto in X, $i^{-1}(A) =$ $A \cap Y$ (tutti gli elementi di A contenuti in Y) è aperto in Y per definizione.

Definizione 1.10.1. Sia X uno spazio topologico (X, \mathcal{T}) e $Y \subseteq X$ un suo sottoinsieme. Allora:

- $A \subseteq Y$ aperto in $Y \iff A = U \cap Y$ con U aperto in X.
- $C \subseteq Y$ **chiuso** in $Y \iff C = U \cap Y$ con V chiuso in X.
- Se \mathscr{B} è una base della topologia di $X \implies \mathscr{B}' := \{B \cap Y \mid B \in \mathscr{B}\}$ è base della topologia di sottospazio.

Osservazione. 1.7. Se $A \subseteq Y$ è aperto della topologia di X, allora A è aperto in Y poiché $A = A \cap Y$.

ESEMPIO. Sia $Y = [0, 1] \subset \mathbb{R} = X$ in topologia Euclidea.

- $A = (\frac{1}{2}, 1)$ è aperto in Y in quanto è già aperto in X.
- $A = \begin{bmatrix} \frac{1}{2}, 1 \end{bmatrix}$ è chiuso in Y in quanto è già chiuso in X. $B = (\frac{1}{2}, 1]$ è aperto in Y in quanto si ha, ad esempio, $A = (\frac{1}{2}, \frac{3}{2}) \cap Y$.

LEMMA 1.10.0. (MANETTI, 3.55)

Sia $A \subseteq Y \subseteq X$ con X spazio topologico e Y sottospazio topologico. Definiamo:

- $c\ell_Y(A) = \text{chiusura di } A \text{ in } Y.$
- $c\ell_X(A) = \text{chiusura di } A \text{ in } X.$

Allora $c\ell_Y(A) = c\ell_X(A) \cap Y$.

Dimostrazione. Preso $\mathscr{C} = \{C \subseteq X \mid C \text{ chiuso in } X \in A \subseteq C\}$, per definizione di chiusura si ha:

$$c\ell_X(A) = \bigcap_{C \in \mathscr{C}} C$$

Ora sia $\mathscr{C}' = \{C \cap Y \mid C \in \mathscr{C}\}$. Allora, usando i chiusi del sottospazio:

$$c\ell_{Y}(A) = \bigcap_{C \in \mathscr{C}} (C \cap Y) = \left(\bigcap_{C \in \mathscr{C}} C\right) \cap Y = c\ell_{Y}(A)$$

1.10.1 Immersione

Definizione 1.10.2. Sia $f: X \to Y$ funzione tra X, Y spazi topologici. Se:

- \blacksquare f continua.
- \blacksquare f iniettiva

Allora f è un'**immersione** se e solo se ogni aperto in X è controimmagine di un aperto di Y per f, cioè se e solo se si ha che:

$$B \subseteq X$$
 è aperto in $X \iff B = f^{-1}(A)$, A aperto in Y (1.24)

Osservazione. 1.8. Per costruzione f è immersione se la topologia su X è la topologia indotta, dunque la meno fine che rende f continua.

Se sull'immagine $f(X) \subseteq Y$ mettiamo la topologia di sottospazio di Y, si ha che

$$f: X \to Y$$
 immersione $\iff f_{\bullet}: X \to f(X)$ è omeomorfismo

Esempio. Esempio di *non* immersione.

$$\begin{array}{l}
[0, 1) \rightarrow \mathbb{R}^2 \\
t \mapsto (\cos 2\pi t, \sin 2\pi t)
\end{array}$$
(1.25)

Notiamo innanzitutto che $f([0, 1)) = S^1$. Si ha:

- f_{\bullet} è continua per ovvi motivi
- f_{\bullet} iniettiva, dato che l'unico caso problematico poteva essere t=1 che *non* nel dominio (si avrebbe avuto infatti $f_{\bullet}(0) = f_{\bullet}(1)$).
- f_{\bullet} suriettiva per costruzione.

Tuttavia f_{\bullet} non è immersione, dato che f_{\bullet}^{-1} non è continua. Preso $P = (1, 0) \in S^1$, f_{\bullet}^{-1} non è continua in P. Infatti, gli intorni di 0 in [0, 1) sono del tipo $U = [0, \varepsilon)$, dunque dovrei trovare $\forall U$ un intorno V di $P \in S^1$: $f_{\bullet}^{-1}(V) \subseteq U$.

Tuttavia, solo la parte superiore di $V \in I(P)$ ha la controimmagine interna ad U: la parte inferiore, poiché sono le immagini di punti prossimi all'estremo 1 del dominio, non hanno controimmagini in U. Pertanto, non abbiamo l'omeomorfismo di f_{\bullet} e dunque l'immersione.

Definizione 1.10.3. Sia $f: X \to Y$ funzione tra X, Y spazi topologici.

- f si dice immersione aperta se f è chiusa.
- f si dice immersione chiusa se f è aperta.

Lemma 1.10.1. (Manetti, 3.59)

Sia $f: X \to Y$ funzione *continua* tra X, Y spazi topologici.

- 1. f iniettiva e aperta $\implies f$ è immersione (aperta)
- 2. f iniettiva e chiusa \implies f è immersione (chiusa)

Dimostrazione. Dimostriamo il caso chiuso, il caso aperto è analogo. Preso $C \subseteq X$ chiuso, sappiamo che f(C) è chiuso in Y, ma possiamo sempre dire che $f(C) = f(C) \cap$ f(X) in quanto $f(C) \subseteq \cap f(X)$. Dunque f(C) è un chiuso del sottospazio f(X). Segue che ogni chiuso di C è un chiuso dell'immagine di f, dunque $f_{\bullet}: X \to f(X)$ è:

- \blacksquare Continua perché lo è f.
- Biunivoca perché f_{\bullet} è iniettiva in quanto lo è f e suriettiva per definizione.
- Chiusa per costruzione.

 f_{\bullet} è dunque omeomorfismo ed f è immersione (chiusa).

1.11 PRODOTTI TOPOLOGICI

DEFINIZIONE 1.11.0. Siano P, Q spazi topologici e $P \times Q$ il suo prodotto cartesiano. Definite le **proiezioni**:

$$p: P \times Q \to P$$

$$(x, y) \mapsto x$$

$$(1.26)$$

$$p: P \times Q \to P$$

$$(x, y) \mapsto x$$

$$q: P \times Q \to Q$$

$$(x, y) \mapsto y$$

$$(1.26)$$

La **topologia prodotto** \mathcal{P} è la topologia *meno fine* fra quelli che rendono p e q continue. In particolare, ricordando l'osservazione 1.3, la topologia prodotto è l'intersezione di *tutte* le topologia che rendono continue *p* e *q*.

TEOREMA 1.11.0. (MANETTI, 3.61)

- 1. Una base della topologia \mathcal{P} è data dagli insiemi della forma $U \times V$ dove $U \subseteq P$ aperto, $V \subseteq Q$ aperto.
- 2. p, q sono aperte; inoltre $\forall (x, y) \in P \times Q$ le restrizioni:

$$p_{\mid} : P \times \{y\} \to P$$

$$(x, y) \mapsto x$$
(1.28)

$$q_{\mid} : \{x\} \times Q \to Q$$

$$(x, y) \mapsto y$$

$$(1.29)$$

Sono omeomorfismi.

Data $f: X \to P \times Q$ con X spazio topologico, si ha che:

$$f ext{ continua} \iff f_1 = p \circ f, f_2 = q \circ f ext{ continue}$$
 (1.30)

DIMOSTRAZIONE.

- I Dimostriamo che:
 - A) La famiglia $\{U \times V\}$ è base per una topologia \mathcal{T} .
 - B) Pè meno fine di \mathcal{T} .
 - C) \mathcal{T} è meno fine di P.

In questo modo avremo che la topologia $\mathcal T$ è la topologia prodotto $\mathscr P$ e ne conosceremo una base.

- a) Segue dal teorema delle basi 1.1 (Manetti, 3.7). Infatti
 - i. $P \times Q$ appartiene alla famiglia $\{U \times V\}$, dato che per definizione gli insiemi stessi P e Q sono aperti.
 - ii. L'intersezione di due elementi della famiglia appartiene alla famiglia: $(U_1 \times V_1) \cap (U_2 \times V_2) = (U_1 \cap U_2) \times (V_1 \cap V_2)$.
- b) Per definizione \mathcal{P} è la meno fine fra tutte le topologie sul prodotto. Dunque, per dimostrare A) basta vedere che p, q sono continue rispetto alla topologia \mathcal{T} .

Presa la proiezione p, sia $U \subseteq P$ aperto. Si ha che $p^{-1}(U) = U \times Q$ è aperto in \mathcal{T} in quanto è prodotto di aperti; in particolare sta nella base! Dunque p è continua, e un ragionamento analogo vale per q.

c) Dobbiamo dimostrare che ogni aperto di \mathcal{T} è anche aperto di \mathscr{P} . Presi $U \subseteq P$, $V \subseteq Q$ allora:

$$U \times V = (U \cap P) \times (V \cap Q) = (U \times P) \cap (V \times Q) = p^{-1}(U) \cap q^{-1}(V)$$

Poichè p, q sono continue e U, V sono aperti, anche $p^{-1}(U)$, $q^{-1}(V)$ sono aperti; segue che la loro intersezione è aperta e dunque $U \times V$ è aperto della topologia \mathcal{T} .

II Dimostriamo il caso con p_{\parallel} , dato che il caso con q_{\parallel} è analogo. Preso un aperto della base $U \times V$, studiamo gli aperti del sottospazio $P \times \{y\}$.

$$(U \times V) \cap (P \times \{y\}) = \begin{cases} \varnothing & \text{se } y \notin V \\ U \times \{y\} & \text{se } y \in V \end{cases}$$

Gli aperti del sottospazio $P \times \{y\}$ sono tutte e solo le unioni di $U \times \{y\}$, al variare di Y di aperti dello spazio P. Si ha dunque:

$$p_1(U \times \{y\}) = U$$

Dunque, essendo p_{\parallel} continua perché restrizione della proiezione (che è continua per definizione), biettiva per costruzione e aperta per i risultati appena ottenuti si ha che $P \times \{y\}$ e P sono omeomorfi, cioè p_{\parallel} è omeomorfismo.

Per dimostrare che p sia aperta, preso A aperto in $P \times Q$, si ha:

$$p(A) = p\left[\bigcup_{y \in \mathbb{Q}} (A \cap P \times \{y\})\right] = \bigcup_{y \in \mathbb{Q}} p(A \cap P \times \{y\})$$
 (1.31)

Per i ragionamenti della prima parte, $A \cap P \times \{y\}$ è aperto di $P \times \{y\}$ e sappiamo dunque che $p_{||}(A \cap P \times \{y\})$ è aperto: ne segue che $p(A \cap P \times \{y\})$ è aperto in P al variare di y. Allora anche p(A) è aperto (in quanto è unione di aperti) e dunque p è aperta.

III \Longrightarrow) Poiché $f: X \to P \times Q$, $p: P \times Q \to P$ e $q: P \times Q \to Q$ sono continue, le composizioni $f_1 = p \circ f: X \to P$, $f_2 = q \circ f: X \to Q$ sono banalmente continue. \longleftarrow) Dobbiamo dimostrare che f sia continua. Sia $A = U \times V \subseteq P \times Q$ aperto della base:

$$f^{-1}(U \times V) = f^{-1}(p^{-1}(U) \cap q^{-1}(V)) = f^{-1}(p^{-1}(U)) \cap f^{-1}(q^{-1}(V))$$
$$= (pf)^{-1}(U) \cap (qf)^{-1}(V)$$

Per ipotesi pf, qf sono continue, dunque loro controimmagini di aperti sono ancora aperti; inoltre, essendo la loro intersezione un aperto, segue l'implicazione.

Proposizione 1.11.0. Siano X, Y spazi topologici e $X \times Y$ il prodotto. Allora:

1. Date le basi ${\mathcal B}$ della topologia di X e ${\mathcal C}$ della topologia di Y, allora:

$$\mathcal{D} = \{U \times V \mid U \in \mathcal{B}, \ V \in \mathcal{C}\} \tag{1.32}$$

è una base per la topologia prodotto.

2. Dati $x \in X$, $y \in Y$, siano $\mathcal{U} = \{U_i\}_{i \in I}$ un sistema fondamentale di intorni di x e $\mathcal{V} = \{V_j\}_{j \in J}$ un sistema fondamentale di intorni di y. Poniamo $Wij := U_i \times V_j \subseteq X \times Y$. Allora:

$$W = \left\{ W_{ij} \right\}_{j \in J} \tag{1.33}$$

è un sistema fondamentale di intorni di $(x, y) \in X \times Y$.

3. Se $A \subseteq X$, $B \subseteq Y$, allora $\overline{A \times B} = \overline{A} \times \overline{B}$. In particolare, il prodotto di chiusi è chiuso.

DIMOSTRAZIONE.

- I Segue dalla dimostrazione dal primo punto del teorema 1.4 ((MANETTI, 3.61)).
- II Per definizione di sistema fondamentale di intorni si ha:

$$\forall U \in I(x) \ \exists U_i \in \mathcal{U} : U_i \in U$$

$$\forall V \in I(y) \ \exists V_i \in \mathcal{V} : V_j \in V$$

 \implies) Per ogni intorno U di x e V di y, si ha $W \in I(x, y)$. Inoltre, presi gli intorni U_i e V_j definiti come sopra, si ha che $W_{ij} = U_i \times V_j \in I(x, y)$ per definizione di topologia prodotto; segue che, per ogni intorno W di questa forma esiste W_{ij} tale che:

$$W_{ij} = U_i \times V_j \subseteq U \times V \subseteq W$$

 \iff Prendiamo un intorno $W \in I(x, y)$, esiste un aperto $W' \subseteq W$. Poiché W' appartiene al prodotto $X \times Y$, si ha che $W' = \bigcup_k U_k \times V_k$ con U_k e V_k aperti di X e Y. Preso allora $(x, y) \in W'$, esiste gli aperti U_k e V_k che contengono rispettivamente x e y.

Segue dunque che $U_k \in I(x)$ e $V_k \in I(y)$ e dunque dal sistema fondamentale di intorni si ha che $\exists U_i \in \mathcal{U}, \ V_i \in \mathcal{V}$ tali che $U_i \in U_k, \ V_i \in V_k$. Allora definito

 $W_{ij} = U_i \times V_j$, si ha per ogni intorno W di esiste W_{ij} tale che:

$$W_{ij} = U_i \times V_j \subseteq U_k \times V_k \subseteq W' \subseteq W$$

III

$$(xy) \in \overline{A \times B} \iff \forall W \in I(x, y) \quad W \cap (A \times B) \neq \emptyset$$

$$\iff \forall U \in I(x), \ \forall V \in I(y) \quad (U \times V) \cap (A \times B) \neq \emptyset$$

$$\iff \forall U \in I(x), \ \forall V \in I(y) \quad (U \cap A) \times (V \cap B) \neq \emptyset$$

$$\iff \forall U \in I(x), \ \forall V \in I(y) \quad U \cap A \neq \emptyset, \ V \cap B \neq \emptyset$$

$$\iff \forall U \in I(x) \quad U \cap A \neq \emptyset, \ \forall V \in I(y) \quad V \cap B \neq \emptyset$$

$$\iff x \in \overline{A} \land y \in \overline{B} \iff ()(xy) \in \overline{A} \times \overline{B}$$

In particolare, se A e B sono chiusi, avendo che $A = \overline{A}$ e $B = \overline{B}$, otteniamo:

$$A \times B = \overline{A} \times \overline{B} = \overline{A \times B}$$

Osservazione. 1.9. Il prodotto di un numero **finito** di spazi topologici è pari al prodotto di due spazi:

$$X \times Y \times Z = (X \times Y) \times Z$$

In particolare una base di aperti di $X_1 \times ... \times X_n$ è data da:

$$\mathcal{B} = \{A_1 \times ... \times A_n \mid A_i \text{ aperto in } X_i\}$$

1.12 ASSIOMI DI SEPARAZIONE: T1 E HAUSDORFF

DEFINIZIONE 1.12.0. Uno spazio topologico X si dice T_1 se ogni sottoinsieme finito è chiuso, in particolare se e solo se tutti i punti sono chiusi.

In termini di intorni, X è T_1 se presi due punti distinti x e y esiste un intorno per il punto x che non contiene y e viceversa:

$$\forall x, y \in X \quad x \neq y \implies \frac{\exists U \in I(x) \quad y \notin U}{\exists V \in I(y) \quad x \notin V}$$
 (1.34)

DIMOSTRAZIONE. Dimostriamo che la definizione di T1 implica quella per intorni e viceversa.

- \Longrightarrow) Siano $x, y \in X$ $x \neq y$. Per ipotesi $\{x\}$ è chiuso, dunque $V = X \setminus \{x\}$ è aperto. Poiché $y \neq x$, allora $y \notin \{x\}$ \Longrightarrow $y \in V$, ed essendo V aperto, $V \in I(y)$. Dunque V è intorno di y e banalmente $x \notin V$.
- \iff Dobbiamo dimostrare che $\forall x \{x\}$ è chiuso, cioè $A = X \setminus \{x\}$ è aperto. Sia $y \in A$: $y \notin \{x\} \implies y \neq x$. Per ipotesi allora esiste un intorno V di y tale che $x \notin V$. Necessariamente si ha che $V \subseteq A$, dunque A è anch'esso intorno di y. Per l'arbitrarietà

di y, A è intorno di ogni suo punto, dunque A è aperto.

OSSERVAZIONE. 1.10.

1. $X \grave{e} T_1 se e solo se per ogni punto <math>x \in X si ha$:

$$\{x\} = \bigcap_{U \in I(x)} U \tag{1.35}$$

2. Ogni spazio metrico è T1

DIMOSTRAZIONE.

I \Longrightarrow) Se X è T_1 , allora $\forall \{y\} \subseteq X$ è chiuso. Fissato x, prendiamo $y \in \bigcap_{U \in I(x)} U$. Allora $\forall U \in I(x) \ \{y\} \cap U \neq \varnothing$. Da ciò segue che $x \in \overline{\{y\}} = \{y\}$, cioè y = x. Allora $\{x\} = \bigcap_{U \in I(x)} U$.

 \Leftarrow) Per dimostrare che X è **T1** è sufficiente dimostrare che $\{x\}$ è chiuso, dato che ogni insieme finito in X si può vedere come unione finita di singoletti $\{x\}$ e per gli assiomi dei chiusi otteniamo un chiuso. In particolare, ci basta dimostrare che $\{x\} \subseteq \{x\}$, essendo l'altra implicazione ovvia per definizione.

Sia $y \in \{x\}$. Per definizione di chiusura $\forall V \in I(y) \ V \cap \{x\} \neq \emptyset \implies \forall V \in I(y) \ V \cap \{x\} = \{x\}$, cioè l'intersezione dei V deve incontrare $\{x\}$:

$$\bigcap_{V \in I(y)} V \cap \{x\} = \{x\}$$

Per ipotesi, $\bigcap_{V \in I(y)} V = \{y\}$, dunque $\{y\} \cap \{x\} = \{x\} \implies y \in \{x\} \implies \overline{\{x\}} \subseteq \{x\}$ e vale

le ipotesi.

II Se X è metrico e $x \in X$, il sistema fondamentale di intorni di X sono gli intorni centrati in X di raggio arbitrario, cioè $B_{\varepsilon}(x)$. Allora:

$$\bigcap_{U\in I(x)}U=\bigcap_{\varepsilon>0}B_{\varepsilon}\left(x\right)=\left\{ x\right\}$$

E per la proposizione precedente si ha che X metrico è T_1 .

Definizione 1.12.1. Uno spazio topologico *X* si dice di **Hausdorff** o **T2** se per ogni coppia di punti distinti esistono due intorni disgiunti:

$$\forall x, y \in X \quad x \neq y \implies \begin{cases} \exists U \in I(x) \\ \exists V \in I(y) \end{cases} : U \cap V = \emptyset$$
 (1.36)

OSSERVAZIONE. 1.11.

1. $X \in di$ **Hausdorff** se e solo se per ogni punto $x \in X$ si ha:

$$\{x\} = \bigcap_{U \in I(x)} \overline{U} \tag{1.37}$$

- 2. Essere **Hausdorff** implica essere **T1**, ma non il viceversa.
- 3. Ogni spazio metrico è di Hausdorff.

DIMOSTRAZIONE.

- I \Longrightarrow) Sia X di **Hausdorff**. Fissato x, sia $y \in \overline{U}$, con $U \in I(x)$. Per definizione di \overline{U} , $\forall V \in I(y)$ $V \cap U \neq \emptyset$. Se $y \neq x$, si avrebbe un assurdo, dato che $\nexists V \in I(y)$: $U \cap V = \emptyset$ e dunque X non sarebbe di **Hausdorff**.
 - ⇐⇒) Dobbiamo dimostrare che X è di **Hausdorff**. Sia $x \neq y$. Allora $y \notin \{x\} = \bigcap_{U \in I(x)} \overline{U}$. Allora, per definizione di chiusura si ha che $\forall U \in I(x) \ \exists V \in I(x)$
 - $I(y): V \cap U = \emptyset$. Segue dunque la tesi.
- II Avendo per ogni coppia di punti distinti due intorni disgiunti in quanto **Hausdorff**, banalmente i due intorni verificano la definizione di **T**1 per intorni. Il viceversa *non* è vero: prendendo la topologia dei complementari finiti *CF* su uno spazio *X non* finito, essa è **T**1 ma non **Hausdorff**.
- III Presi $x \neq y$, allora d(x, y) = d > 0. Dunque, per disuguaglianza triangolare si ha sempre che:

$$B_{d/4}(Y) \cap B_{d/4}(Y) = \emptyset$$

Proposizione 1.12.0. 1.21 (MANETTI, 3.6.8)

Sottospazi e prodotti di spazi di Hausdorff sono Hausdorff.

DIMOSTRAZIONE.

- Sia $Y \subseteq X$ con X spazio topologico, Y con la topologia di sottospazio. Prendiamo $x, y \in Y$ con $x \neq y$.
 - X di **Hausdorff** implica che $\exists U, V \subseteq X$ intorni rispettivamente di x e y tali che $U \cap V = \emptyset$. Basta prendere allora $U \cap Y$, $V \cap Y$: sono intorni sempre di x e y in Y che restano comunque disgiunti.
- Sia $X \times Y$ con X, Y spazi topologici. Prendiamo $(x_1, y_1) \neq (x_2, y_2)$. Questo significa che $x_1 \neq x_2$ oppure $y_1 \neq y_2$. Scegliamo senza perdita di generalità $x_1 \neq x_2$. Essendo X di **Hausdorff**, $\exists U_1, U_2$

Scegliamo senza perdita di generalità
$$x_1 \neq x_2$$
. Essendo X di **Hausdorff**, $\exists U_1$, U_2 (intorni) aperti in X tali che $x_1 \in U_1$, $x_2 \in U_2$: $U_1 \cap U_2 = \emptyset$. Allora:

$$U_1 \times Y$$
 intorno di (x_1, y_1) $\Longrightarrow U_1 \times Y \cap U_2 \times Y = (U_1 \cap U_2) \times (Y \cap Y) = \emptyset$

TEOREMA 1.12.0. (MANETTI, 3.69)

Sia X spazio topologico. La **diagonale** $\Delta \subseteq X \times X$ è l'insieme delle coppie che hanno

uguali componenti:

$$\Delta = \{(x, \ x) \mid x \in X\} \tag{1.38}$$

Si ha:

X di **Hausdorff** $\iff \Delta$ chiuso in $X \times X$.

DIMOSTRAZIONE. \Longrightarrow) Dobbiamo dimostrare che Δ è chiuso, cioè $X \times X \setminus \Delta$ aperto, ovvero $X \times X \setminus \Delta$ è intorno di ogni suo punto.

Preso $(x, y) \in X \times X \setminus \Delta \implies x \neq y$ dato che *non* appartiene alla diagonale. Essendo X di **Hausdorff**, $\exists U, V : x \in U, y \in V$ (intorni) aperti disgiunti. Allora $U \times V \cap \Delta = \emptyset$: se così non fosse, ci potrebbero essere dei valori della diagonale che appartengono ad $U \times V$, cioè esisterebbe almeno una coppia (x', y') tale che x' = y', ovvero gli intorni non sarebbero disgiunti. Allora $(x, y) \in U \times V \subseteq X \times X \setminus \Delta$.

 \Leftarrow) Siano $x, y \in X, x \neq y$. Allora $(x, y) \in \subseteq X \times X \setminus \Delta$, che è aperto per ipotesi. Necessariamente esiste un aperto della base della topologia prodotto che contiene la coppia: $(x, y) \in U \times V \subseteq X \times X \setminus \Delta$. Per gli stessi ragionamenti dell'altra implicazione, si ha che $x \in U$, $y \in V$ con U, V aperti (e dunque intorni) disgiunti. Segue che X è di **Hausdorff**.

Proposizione 1.12.1.

1. Siano f, g: $X \to Y$ continue, Y di **Hausdorff**. Sia C il luogo dei punti dove f e g coincidono:

$$C = \{x \in X \mid f(x) = g(x)\}$$
 (1.39)

Allora *C* è chiuso.

2. Sia $f: X \to X$ continua, X di **Hausdorff**. Sia $F_{ix}(f)$ il luogo dei **punti fissi** di f e g coincidono:

$$F_{ix}(f) = \{x \in X \mid f(x) = x\} \tag{1.40}$$

Allora $F_{ix}(f)$ è chiuso.

3. Siano f, $g: X \to Y$ continue, Y di **Hausdorff** e $A \subseteq X$ denso in X. Allora

$$\forall x \in A \quad f(x) = g(x) \implies \forall x \in X \quad f(x) = g(x)$$
 (1.41)

4. Sia $f: X \to Y$ continua, Y di **Hausdorff**. Sia Γ_f il **grafico** di f le insieme delle coppie (x, f(x)) formate dai punti del dominio e le corrispettive immagini tramite f.

$$\Gamma_f = \{(x, y) \in X \times Y \mid y = f(x)\}\$$
 (1.42)

Allora Γ_f è chiuso in $X \times Y$.

DIMOSTRAZIONE.

- I Definiamo la funzione $h: X \to X \times Y$ $x \mapsto (f(x), g(x))$. Essa è continua perché le componenti sono continue; considerata la diagonale Δ_Y di $Y \times Y$, si ha che $C = h^{-1}(\Delta_Y)$ è la controimmagine tramite una funzione continua di un chiuso e quindi chiuso.
- II Basta porre al punto 1 $g = Id_X$.
- III Per ipotesi $A \subseteq h^{-1}(\Delta_Y)$. In quanto A è denso in X, $\overline{A} = X$. Dunque:

$$X = \overline{A} \subseteq \overline{h^{-1}(\Delta_Y)} = h^{-1}(\Delta_Y)$$

Questo è vero in quanto Y è di **Hausdorff** e la diagonale Δ_Y è un chiuso: segue che $h^{-1}(\Delta_Y)$ è chiuso e dunque pari alla sua chiusura. Si ha la tesi.

IV Definiamo la funzione continua $l: X \times Y \to Y \times Y$ $(x, y) \mapsto (f(x), y)$. Allora $\Gamma_f = l^{-1}(\Delta_Y)$ è un chiuso.

1.13 PROPRIETÀ TOPOLOGICA

Definizione 1.13.0. Una **proprietà topologica** P è una caratteristica degli spazi topologici per cui se ogni spazio X che possiede quella proprietà P è omeomorfo ad uno spazio Y, allora anche Y ha quella proprietà (e viceversa):

$$X \cong Y \implies [X \text{ ha } P \iff Y \text{ ha } P]$$
 (1.43)

In altre parole, una proprietà topologica è invariante rispetto agli omeomorfismi.

OSSERVAZIONE. 1.12. Per verificare che P è una proprietà topologica dati due spazi omeomorfi $X \cong Y$, basta in realtà verificare solo che se X ha la proprietà P allora anche Y la ha. Invece, si può verificare che due spazi **non** sono omeomorfi trovando una proprietà topologica che non condividono tra di loro.

Esercizio. (Manetti, 3.56)

Siano X, Y spazi topologici con Y di **Hausdorff**. Se esiste $f: X \to Y$ continua e iniettiva, allora X è di **Hausdorff**.

DIMOSTRAZIONE. Siano $x, y \in X$ con $x \neq y$. Essendo f iniettiva, $f(x) \neq f(y) \in Y$: in quanto Y è di **Hausdorff**, $\exists U, V$ (intorni) aperti disgiunti in Y che contengono rispettivamente f(x) e f(y).

Per continuità di f le controimmagini di questi intorni aperti sono aperti e per iniettività sono ancora disgiunti: $\exists f^{-1}(U), f^{-1}(V)$ (intorni) aperti disgiunti che contengono rispettivamente x e y. Segue che X è di **Hausdorff**.

Proposizione 1.13.0. Essere di Hausdorff è una proprietà topologica, ovvero:

$$X \cong Y \implies [X \text{ è di Hausdorff}] \implies Y \text{ è di Hausdorff}]$$
 (1.44)

Dimostrazione. Sia $f: X \to Y$ un omeomorfismo tra i due spazi. Allora f è per definizione continua e iniettiva. Per l'esercizio 1.1 (Manetti, 3.56) segue che X di Hausdorff.

Теоrема 1.13.0. X, Y di Hausdorff $\iff X \times Y$ di Hausdorff.

DIMOSTRAZIONE.

⇒) Si veda la proprietà (Manetti, 3.6.8).

⇐=) Si fissi $y_0 \in Y$. Definita la funzione $f: X \to X \times Y$ essa è continua ed iniettiva, dunque per l'esercizio 1.1 (Manetti, 3.56) segue che X è di **Hausdorff**. Definito $x_0 \in X$ e $f: Y \to X \times Y$ allo stesso modo si verifica che Y è di **Hausdorff**.

Connessione e compattezza

"BEEP BOOP INSERIRE CITAZIONE QUA BEEP BOOP."

NON UN ROBOT, UN UMANO IN CARNE ED OSSA BEEP BOOP.

2.1 CONNESSIONE

Definizione 2.1.0. Uno spazio topologico X si dice **connesso** se gli unici sottoinsiemi aperti e chiusi sono \emptyset , X.

Uno spazio non *connesso* si dice **sconnesso** oppure **non connesso**.

Lemma 2.1.0. (Manetti, 4.2)

Sono condizioni equivalenti:

- 1. X è sconnesso.
- 2. $X = A \cup B$ con A, B aperti, non vuoti, disgiunti
- 3. $X = A \cup B \text{ con } A$, B chiusi, non vuoti, disgiunti

DIMOSTRAZIONE.

- $2 \iff 3$) Sono equivalenti: se A è aperto e disgiunto da B tale che $X = A \cup B$ significa che $B = \mathscr{C}A = X \setminus A$ e dunque chiuso; analogamente per B aperto si ha che A è chiuso: allora A, B chiusi e aperti propri.
- $1 \implies 2$) Esiste $\varnothing \subsetneq A \subsetneq X$ con A aperto e chiuso. Allora basta porre $B = \mathscr{C}A = X \setminus A$: essendo il complementare di A è aperto e chiuso, sono disgiunti e tali per cui $B \neq X$, $B \neq \varnothing$. A e B soddisfano la tesi.
- $1 \implies 2$) A aperto, B aperto $\implies A$ chiuso perché $A = \mathcal{C}X = X \setminus B$. Inoltre A non vuoto, B non vuoto $\implies A \neq X$. Dunque A è aperto, chiuso e $A \neq \emptyset$, X e pertanto soddisfa la tesi: esiste un sottoinsieme aperto e chiuso che non il vuoto o l'insieme stesso.

Osservazione. 2.1. Il lemma 2.1 (Manetti, 4.2) ci dice che è sufficiente trovare solo due

aperti (o chiusi) che soddisfano la condizione di cui sopra per affermare la sconnessione. Viceversa, per dimostrare la connessione, dobbiamo dimostrare che per ogni coppia di aperti (o chiusi) non vuoti, la cui unione è X, essi non siano disgiunti.

Esempio. Esempi di spazi topologici sconnessi in topologia Euclidea.

- $\blacksquare \quad X = \mathbb{R} \setminus \{0\} = (-\infty, \ 0) \cup (0, +\infty)$
- $X = [0, 1] \cup (2, 3)$

LEMMA 2.1.1. (MANETTI, 4.4)

Sia X spazio topologico e $A \subseteq X$ con A aperto e chiuso. Sia $Y \subseteq X$, Y connesso. Allora $Y \cap A = \emptyset$ (cioè $Y \subseteq Y \setminus A$) oppure $Y \subseteq A$.

DIMOSTRAZIONE. Consideriamo $Y \cap A$: esso è intersezione di due aperti e chiusi per ipotesi (Y è aperto e chiuso perché *connesso*), cioè è aperto e chiuso. Essendo Y *connesso*, un suo sottoinsieme aperto e chiuso o è l'insieme vuoto oppure è l'insieme stesso, cioè $Y \cap A = \emptyset$ (cioè $Y \subseteq Y \setminus A$) oppure $Y \cap A = Y$ (cioè $Y \subseteq A$).

TEOREMA 2.1.0. (MANETTI, 4.6)

Con la topologia Euclidea, X = [0, 1] è connesso.

Dimostrazione. Supponiamo $X = [0, 1] = C \cup D$ con:

- *C, D* entrambi chiusi.
- *C, D* entrambi aperti.

Dobbiamo dimostrare che C, D non sono disgiunti, ovvero $C \cap D \neq 0$. Supponiamo sia $0 \in C$ e poniamo $d = \inf D$. Essendo D un chiuso, $d \in \overline{D} = D$.

- Se d = 0, $d \in C \cap D \neq \emptyset$.
- Se d > 0 allora $[0, d) \subseteq C$ perché *non sta* in D. Il passaggio alla chiusura mantiene l'inclusione, dunque $[0, d] \subseteq \overline{C} = C$. Segue che $d \in C$ e dunque $C \cap D \neq \emptyset$.

TEOREMA 2.1.1. (MANETTI, 4.7)

L'immagine continua di un connesso è un connesso:

$$f: X \to Y \text{ continua, } X \text{ connesso} \implies f(X) \text{ connesso}$$
 (2.1)

Teorema 2.1.2. Sia $Z \subseteq f(X)$, Z aperto, chiuso in f(X) non vuoto. Per dimostrare che f(X) sia connesso ci è sufficiente dimostrare che Z = f(X): in questo modo gli unici aperti e chiusi sono i sottoinsiemi impropri:

- Z aperto: $\exists A$ aperto in $Y: Z = A \cap f(X)$.
- Z chiuso: $\exists C$ chiuso in $Y: Z = C \cap f(X)$.

Allora:

■ $f^{-1}(Z) = f^{-1}(A) \cap f^{-1}(f(X)) = f^{-1}(A) \implies f^{-1}(Z)$ è uguale alla controimmagine continua di un aperto in Y, cioè è uguale ad un aperto di X.

2.1. CONNESSIONE 29

■ $f^{-1}(Z) = f^{-1}(C) \cap f^{-1}(f(X)) = f^{-1}(C) \implies f^{-1}(Z)$ è uguale alla controimmagine continua di un chiuso in Y, cioè è uguale ad un chiuso di XSegue che $f^{-1}(Z)$ è aperto e chiuso in X. Notiamo inoltre che, essendo $Z \neq \emptyset$, allora $f^{-1}(Z) \neq \emptyset$: essendo X connesso per ipotesi, necessariamente $f^{-1}(Z) = X$.

Osservazione. 2.2. Dal teorema precedente segue che essere connesso è una proprietà topologica! Infatti, se vale per una qualunque funzione continua $f: X \to Y$, allora varrà anche per omeomorfismi tra X e Y; in particolare, si avrà per suriettività che f(X) = Y connesso.

Definizione 2.1.1. Un **arco** o **cammino** α da un punto x a un punto y in uno spazio topologico X è una funzione continua che parametrizza un *percorso* finito fra gli estremi x e y:

$$\alpha: [0, 1] \rightarrow X \text{ continua}: \alpha(0) = x, \alpha(1) = y$$
 (2.2)

DEFINIZIONE 2.1.2. Uno spazio topologico X si dice **connesso per archi** o **c.p.a.** o *path-connected* se per ogni coppia di punti in X esiste un arco che li collega:

$$\forall x, y \in X \exists \alpha : [0, 1] \rightarrow X \text{ continua} : \alpha(0) = x, \alpha(1) = y$$
 (2.3)

TEOREMA 2.1.3. (MANETTI, 4.7) X **c.p.a.** $\Longrightarrow X$ connesso.

DIMOSTRAZIONE. Sia $X = A \cup B$, con A, B aperti non vuoti. Vogliamo dimostrare che $A \cap B \neq \emptyset$. Essendo non vuoti, prendiamo $a \in A$, $b \in B$. In quanto X è **c.p.a.**, esiste il cammino (continuo) $\alpha : [0, 1] \to X$ tale che $\alpha (a) = a$, $\alpha (1) = b$. Studiamo la controimmagine di α :

$$\alpha^{-1}(X) = \alpha^{-1}(A \cup B) = [0, 1]$$
$$[0, 1] = \alpha^{-1}(A \cup B) = \alpha^{-1}(A) \cup \alpha^{-1}(B)$$

 $\alpha^{-1}(A)$, $\alpha^{-1}(B)$ sono entrambi aperti e non vuoti in quanto controimmagini (continue) di aperti non vuoti $(0 \in \alpha^{-1}(A), 1 \in \alpha^{-1}(B))$.

Poiché [0, 1] è connesso, allora le controimmagini trovate non sono disgiunte. Segue allora:

$$\exists t \in \alpha^{-1}\left(A\right) \cap \alpha^{-1}\left(B\right) \implies \alpha\left(t\right)\alpha\left(\alpha^{-1}\left(A\right) \cap \alpha^{-1}\left(B\right)\right) \subset \alpha\left(\alpha^{-1}\left(A\right)\right) \cap \alpha\left(\alpha^{-1}\left(B\right)\right) = A \cap B$$

Definizione 2.1.3. Dati due cammini in uno spazio *X*:

$$\alpha: [0, 1] \to X$$
 $\alpha(0) = x, \alpha(1) = y$
 $\beta: [0, 1] \to X$ $\beta(0) = y, \beta(1) = z$

Allora possiamo creare un cammino $\alpha * \beta$ con la **congiunzione di cammini**:

$$(\alpha * \beta)(t) = \begin{cases} \alpha(2t) & \text{se } 0 \le t \le \frac{1}{2} \\ \beta(2t - 1) & \text{se } \frac{1}{2} \le t \le 1 \end{cases}$$
 (2.4)

Lemma 2.1.2. Sia A, B c.p.a, $A \cap B \neq \emptyset \implies A \cup B$ c.p.a.

DIMOSTRAZIONE. Se $x,y \in A$ oppure $x, y \in B$ esiste per ipotesi un arco che li collega. Dobbiamo allora trovare un arco in $A \cup B$ da x a $y \ \forall x \in A, y \in B$. Preso $z \in A \cap B$, per ipotesi esistono due cammini ad esso:

$$\alpha: [0, 1] \to A$$
 $\alpha(0) = x, \alpha(1) = z$
 $\beta: [0, 1] \to B$ $\beta(0) = z, \beta(1) = z$

Usando la giunzione di cammini, si ha:

$$(\alpha * \beta)(t) = \begin{cases} \alpha (2t) & \text{se } 0 \le t \le \frac{1}{2} \\ \beta (2t - 1) & \text{se } \frac{1}{2} \le t \le 1 \end{cases}$$
 (2.5)

Il cammino $\alpha * \beta : [0, 1] \rightarrow A \cup B$ è quello richiesto.

OSSERVAZIONE. 2.3.

■ Usando la giunzione di cammini, si ha che:

$$X \stackrel{.}{e} c.p.a. \iff \exists z \in X : \forall x \in X \quad \exists \alpha : [0, 1] \rightarrow X : \alpha(0) = z, \alpha(1) = x$$

In altre parole, uno spazio è **c.p.a.** se e solo se esiste un punto per cui ogni altro punto è collegato tramite un arco.

■ Per ogni arco α esiste l'arco inverso, percorso al contrario: $\overline{\alpha}(t) = \alpha(1-t)$

DEFINIZIONE 2.1.4. In \mathbb{R}^n , un segmento \overline{PQ} è la combinazione lineare tra i punti P e Q, parametrizzato come:

$$\overline{PQ} = \{ P + tQ \mid t \in [0, 1] \}$$
 (2.6)

2.1. CONNESSIONE 31

Definizione 2.1.5. Un sottoinsieme $Y \subseteq \mathbb{R}^n$ è **convesso** se per ogni coppia di punti esiste un segmento che li collega contenuto interamente in Y.

$$\forall P, Q \in Y \quad \overline{PQ} \subseteq Y$$
 (2.7)

Definizione 2.1.6. Un sottoinsieme $Y \subseteq \mathbb{R}^n$ è **stellato** per P se esiste un $P \in Y$ tale che per ogni altro punto esiste un segmento che li collega contenuto interamente in Y.

$$\exists P \in Y : \forall Q \in Y \quad \overline{PQ} \subseteq Y \tag{2.8}$$

ESEMPIO.

- Gli intervalli aperti e semiaperti sono **c.p.a**, dunque sono *connessi*: l'arco α è banalmente il segmento pari all'intervallo aperto.
- Preso $X \subseteq \mathbb{R}^n$ convesso, qualunque segmento è anche per costruzione un arco: X è anche **c.p.a** e dunque *connesso*.
- $X = \mathbb{R}^2 \setminus \{0\}$ non è convesso (per (0, 1) e (0, -1) non si hanno segmenti interni ad X) ma è **c.p.a.** (basta prendere un cammino che "giri attorno" all'origine) e dunque è connesso.
- Preso $X \subseteq \mathbb{R}^n$ stellato per $P \in X$, qualunque segmento con P è anche per costruzione un arco: X è anche **c.p.a** per l'osservazione 2.3 e dunque connesso.
- Ogni insieme *convesso* è anche *stellato* per *P*, basta fissare un qualunque punto come nostro *P*. In generale, un insieme è convesso se e solo se è stellato per ogni suo punto.

Vediamo ora che conseguenze hanno questi teoremi in $\mathbb R$ con la topologia euclidea.

Теоrема 2.1.4. Sia $I \subseteq \mathbb{R}$. Le seguenti affermazioni sono equivalenti:

- 1. I è un intervallo, ovvero I è convesso
- 2. *I* è c.p.a.
- 3. *I* è connesso

DIMOSTRAZIONE. 1) \Longrightarrow 2) Siccome I è convesso \Longrightarrow I stellato \Longrightarrow I c.p.a. \Longrightarrow I connesso.

- 2) \implies 3) Vale in generale che c.p.a. \implies connesso.
- 3) \implies 1) Per contronominale mostriamo che I non intervallo \implies I sconnesso. I non intervallo significa che

$$\exists a < b < c, \ a, c \in I, \ b \notin I$$

$$b \notin I \Rightarrow I = \left(\underbrace{I \cap (-\infty, b)}_{\in a}\right) \cup \left(\underbrace{I \cap (b, +\infty)}_{\in c}\right)$$

ovvero I è unione di aperti, non vuoti e disgiunti $\Rightarrow I$ sconnesso.

OSSERVAZIONE. 2.4.

- Come conseguenza immediata di questo teorema si ha il teorema di esistenza degli zeri per funzioni continue da \mathbb{R} in \mathbb{R} , infatti se l'immagine continua di un connesso è un connesso, per tali funzioni vale che l'immagine continua di un intervallo è un intervallo.
- Per $n \ge 1$ la sfera $S^n := \{(x_1, ..., x_{n+1}) \mid \sum_{i=1}^{n+1} x_i^2 = 1\}$ è c.p.a., infatti $\forall x, y \in S^n$ si trova sempre un arco come intersezione di S^n e del piano H passante per il centro della sfera, $x \in Y$.

Vediamo ora un risultato per funzioni continue da S^n in \mathbb{R}

Teorema 2.1.5. Sia $f: S^n \to \mathbb{R}$ una funzione continua, Allora $\exists x \in S^n : f(x) = f(-x)$. In particolare f non è iniettiva.

DIMOSTRAZIONE. Costruiamo una funzione g(x) = f(x) - f(-x), essa è continua perché somma di funzioni continue. Siccome S^n è connesso allora $g(S^n) \subseteq \mathbb{R}$ è connesso \Rightarrow per il teorema precedente $g(S^n)$ è un intervallo.

Si considerino un punto $y \in S^n$ arbitrario e le sue immagini g(y) e g(-y): esse appartengono all'intervallo dell'immagine $g(S^n)$, quindi se ne può considerare il loro punto medio:

$$\frac{1}{2}[g(y) - g(-y)] = \frac{1}{2}[f(y) - f(-y) - f(y) + f(-y)] = 0$$

$$\Rightarrow \exists x \in S^n : g(x) = 0, \text{ ovvero } f(x) = f(-x)$$

Come conseguenza di questo teorema si ha che un aperto di \mathbb{R} non sarà mai omeomorfo ad un aperto di \mathbb{R}^n , vediamolo più precisamente.

Теоrема 2.1.6. Sia $I \subseteq \mathbb{R}$ е $U \subseteq \mathbb{R}^n$, con $n \ge 2$. Se I, U sono aperti allora I non è omeomorfo a U.

Dimostrazione. Si consideri un omeomorfismo $g\colon U\to I$. Siccome $U\subseteq\mathbb{R}^n$ aperto allora esiste una palla aperta di raggio ε contenuta in U, se ne considera il bordo $S^n\subseteq U$. Si considera dunque la restrizione $g_{|_{S^n}}\colon S^n\to I$, che per il teorema precedente non è iniettiva. Dunque g non è un omeomorfismo.

Osservazione. 2.5. Il teorema appena visto è un caso particolare del teorema dell'invarianza della dimensione, che cita:

Siano $U \subseteq \mathbb{R}^n$, $V \subseteq \mathbb{R}^m$ aperti. Se $U \cong V \Rightarrow n = m$. Equivalentemente $n \neq m \Rightarrow U \not\cong V$

Теоrема 2.1.7. unione sottospazi connessi Siano $\{X_i\}_{i\in I}$ una famiglia di sottoinsiemi di uno spazio topologico X. Se ogni X_i è connesso e $\bigcap_{i\in I} X_i \neq \emptyset$ allora $\bigcup_{i\in I} X_i$ è connesso.

2.1. CONNESSIONE 33

DIMOSTRAZIONE. Sia $Z \subseteq Y := \bigcup_{i \in I} X_i$ un aperto, chiuso non vuoto. Vogliamo dimostrare che Z = X, cosicché X risulti connesso. Basta l'inclusione $Y \subseteq Z$.

Si considera l'intersezione di Z e di un connesso, dunque essa sarà banale

$$X_i \cap Z = \begin{cases} \emptyset \\ X_i \end{cases}$$

Dimostriamo ora che non è vuota, infatti siccome Z non è vuoto ed è contenuto nell'unione ci sarà un connesso per cui l'intersezione non è vuota:

$$Z \neq \varnothing, \ Z \subseteq \bigcup_{i \in I} X_i \Rightarrow \exists i_0 : X_{i_0} \cap Z \neq \varnothing$$

$$X_{i_0} \ \text{è connesso} \ \Rightarrow X_{i_0} \cap Z = X_{i_0} \Rightarrow X_{i_0} \subseteq Z$$
 Siccome
$$\bigcap_{i \in I} X_i \neq \varnothing \Rightarrow \exists x \in \bigcap_{i \in I} X_i \Rightarrow x \in X_{i_0} \subseteq Z \Rightarrow x \in Z$$
 Siccome
$$x \in \bigcap_{i \in I} X_i \ \text{e} \ x \in Z \Rightarrow \forall i \in I, \ X_i \cap Z \neq \varnothing$$

Quindi per $\forall i, X_i \subseteq Z \Rightarrow Y \subseteq Z \Rightarrow Y = Z$, quindi Y è connesso perché l'unico aperto e chiuso non vuoto è banale (Y).

Теогема 2.1.8. X, Y sono spazi topologici connessi $\iff X \times Y$ è connesso.

Dimostrazione. ←) Si sfrutta la continuità delle proiezioni e che l'immagine continua di un connesos è connessa:

$$p: X \times Y \to X$$
 continua e suriettiva $\Rightarrow p(X) = X$ connesso $q: X \times Y \to Y$ continua e suriettiva $\Rightarrow q(Y) = Y$ connesso

 \Longrightarrow) Si vuole sfruttare il teorema sull'unione di connessi, prestando attenzione che la loro intersezione non sia vuota, quindi si scrive il prodotto come unione di connessi già noti: $X \times Y = \bigcup_{y \in Y} X \times \{y\}$, infatti $X \times \{y\} \cong X$ che per ipotesi è connesso , tuttavia $\bigcap_{v \in Y} X \times \{y\} = \varnothing$!

Cerchiamo dunque di unire un insieme in modo tale che l'intersezione non sia vuota: sia $x_0 \in X$ e $Y_{x_0} = \{x_0\} \times Y$ e poniamo $X_y = X \times \{y\}$ e si ha quanto voluto:

$$X \times Y = \bigcup_{y \in Y} X_y \cup Y_{x_0} \text{ e } X_y \cap Y_{x_0} = (x_0, y)$$
$$\Rightarrow \bigcap_{y \in Y} (X_y \cup Y_{x_0}) \neq \emptyset$$

Dunque $X \times Y$ è unione di connessi la cui intersezione non è vuota, quindi per il teorema precedente è connesso.

Approfondiamo ora la differenza fra essere spazio connesso o cpa mostrando esempi di un tipo ma non dell'altro. Prima però dimostreremo un teorema sulla caratterizzazione di un insieme denso che ci tornerà utile.

Теоrема 2.1.9. Sia X uno spazio topologico e $A \subseteq X$ un suo sottoinsieme, allora

$$A \stackrel{.}{e} denso \iff \forall U \subseteq X \text{ aperto e } U \neq, U \cap A \neq \emptyset$$

DIMOSTRAZIONE. \Longrightarrow) Se A è denso allora $\overline{A} = X$. Supponiamo che $\exists V$ aperto : $V \cap A = \emptyset$. Siccome V è aperto allora $X \setminus V$ è chiuso, inoltre $V \cap A = \emptyset$, quindi $A \subseteq X \setminus V$. Essendo A contenuto in un chiuso allora lo sarà anche la sua chiusura, siccome è il più piccolo chiuso che lo contiene:

$$\overline{A} = X \subseteq X \setminus V \Rightarrow V = \emptyset$$

Ne segue che l'unico aperto che non interseca *A* è l'insieme vuoto.

 \Leftarrow) Consideriamo un chiuso $K \supseteq A$. Siccome è chiuso allora il suo complementare $X \setminus K$ è aperto. Per ipotesi dunque si ha che $V \cap A \neq \emptyset$ oppure $V = \emptyset$, passando al complementare si ottiene che:

$$A \subseteq K \Rightarrow X \setminus K \subseteq X \setminus A \Rightarrow V \subseteq X \setminus A \Rightarrow V \cap A = \emptyset \Rightarrow V = \emptyset \Rightarrow K = X \Rightarrow \overline{A} = X$$

L'ultima implicazione è dovuta al fatto che ogni chiuso che contiene A si è dimostrato essere solo X per cui esso sarà la sua chiusura.

Теоrема 2.1.10. Sia X uno spazio toplogico e $Y \subseteq X$ connesso, allora

$$\forall W \colon Y \subseteq W \subseteq \overline{Y} \Rightarrow W \text{ connesso}$$

In particolare la chiusura di un connesso è connessa.

DIMOSTRAZIONE. Per dimostrare che W è connesso si considera un suo sottinsieme $Z \subseteq W$ aperto, chiuso e non vuoto e si mostra che è pari a W

$$Z \subseteq W$$
 aperto $\Rightarrow A \subseteq X$ aperto : $Z = W \cap A$
 $Z \subseteq W$ chiuso $\Rightarrow C \subseteq X$ chiuso : $Z = W \cap C$

Si vuole sfruttare il fatto che Y è connesso:

$$Z \cap Y = A \cap W \cap Y \stackrel{!}{=} A \cap Y$$
 aperto in $YZ \cap Y = C \cap W \cap Y \stackrel{!}{=} C \cap Y$ aperto in Y

dove il passaggio indicato con (!) è dovuto al fatto che $Y \subseteq W$. Per poter sfruttare la connessione di Y e dedurre che $Z \cap Y = Y$ dobbiamo prima provare che tale intersezione non è vuota e per farlo sfruttiamo il teorema precedente:

$$Y$$
 denso in W , infatti $c\ell_W(Y) = c\ell_X(Y) \cap W = \overline{Y} \cap W = W$
 Z aperto in $W \Rightarrow Z \cap Y \neq \emptyset \Rightarrow Z \cap Y = Y \Rightarrow Y \subseteq Z$

Tuttavia Y è denso in W e Z è chiuso in W che contiene Y, quindi

$$c\ell_W(Y) = W \subseteq Z \Rightarrow W = Z \Rightarrow W \text{ connesso}$$

2.1. CONNESSIONE 35

Vediamo ora degli esempi di spazi connessi ma non c.p.a.

Еѕемрю. seno del topologo Sia $Y \subseteq \mathbb{R}^2$ con la topologia euclidea e $Y = \{(x, \frac{1}{x}) \mid x > 0\}$, detto anche seno del topologo. Esso è c.p.a. perché per connettere due punti basta percorrere la curva stessa del grafico. Quindi Y è connesso, dunque per teorema 27 \overline{Y} è connesso. Tuttavia \overline{Y} non è c.p.a. in quanto $\overline{Y} = Y \cup \{(0,y) \mid -1 \le y \ge 1\}$ ed i punti sull'asse delle y e sulla curva Y non si possono connettere tramite un arco continuo.

Esempio. la pulce ed il pettine Si consideri il "pettine" come il seguente sottospazio di \mathbb{R}^2 con la topologia euclidea:

$$Y = \{(x,0) \mid 0 \le x \ge 1\} \cup \bigcup_{r \in \mathbb{Q}, 0 \le r \ge 1} \{(r,y) \mid 0 \le y \le 1\}$$

Presi due punti su Y si possono collegare fra loro scendendo alla base del pettine [0,1] e risalendo sui "denti" di ascissa razionale. Quindi Y è c.p.a., allora Y è connesso e $\overline{Y} = [0,1] \times [0,1]$.

Si consideri ora la "pulce", ovvero un punto P di ascissa irrazionale ed ordinata 1, ad esempio $P = \left(\frac{\sqrt{2}}{2}, 1\right)$. Sia $Z = Y \cap P$, per il teorema precedente segue che Z è connesso, infatti:

$$Y \subseteq Z \subseteq \overline{Y} = [0,1] \times [0,1]$$

Tuttavia Z non è c.p.a., infatti preso un cammino $\alpha: [0,1] \to Z \subseteq \mathbb{R}^2$ tale che $\alpha(t) = (x(t), y(t))$ con $\alpha(0) = (0,0)$ e $\alpha(1) = P$, per continuità $y(t) \neq 0 \Rightarrow x(t) \in \mathbb{Q}$, che non è vero per P che ha ascissa irrazionale, dunque non esiste un cammino continuo che colleghi l'origine e P. dunque Z non è c.p.a.

Osservazione. 2.6. L'immagine continua di uno spazio c.p.a. è c.p.a., ovvero dato X c.p.a., $f: X \to Y$ continua, allora f(X) è c.p.a.

Dati $a, b \in X$ si vuole trovare un cammino fra f(a) e f(b) in f(X). Si consideri la composizione seguente fra il cammino α fra a e b con la funzione f stessa. Siccome ha come dominio [0,1] ed è continua essendo composizione di funzione continue è in effetti un cammino fra le due immagini:

$$f \circ \alpha[0,1]$$
 rightarrow X rightarrow Y

L'intuizione geometrica che ci ha portati alla definizione di connessione è stata "di quanti pezzi è fatto uno spazio?". Se uno spazio è connesso è fatto di un solo "pezzo", cerchiamo ora di definire cosa sono i "pezzi" e come sono fatti.

DEFINIZIONE 2.1.7. Sia X uno spazio topologico e $C \subseteq X$. Si dice che C è una **componente connessa** se

- *C* è connesso
- C è massimale, ovvero $C \subseteq A$, A connesso $\Rightarrow C = A$

Scelto $x \in X$ si può definire la **componente connessa di un punto**, ovvero $C(x) = \bigcup \{C \mid C \text{connesso}, x \in C\}$

La componente connessa di un punto è effettivamente una componente connessa, infatti è connessa perché unione di connessi con intersezione non vuota (x stesso) e se $C(x) \subseteq A \Rightarrow x \in A \Rightarrow A \subseteq C(x) \Rightarrow A = C(x)$.

Vediamo ora qualche proprietà delle componenti connesse, in particolare che sono chiuse e formano una partizione.

Теоrема 2.1.11. Sia X uno spazio topologico, allora

- 1. le componenti connesse sono chiuse
- 2. le componenti connesse formano una partizione di X

DIMOSTRAZIONE.

- I SiaC una componente connessa. Per ogni insieme vale che $C \subseteq \overline{C}$, ma C è connesso, quindi \overline{C} è connesso. Siccome C è massimale allora $C = \overline{C}$, ovvero è chiuso.
- II Per dimostrare che le componenti connesse formano una partizione di X dobbiamo mostrare che X è unione disgiunta delle componenti connesse. Prima di tutto dimostriamo che sono un ricoprimento

$$\forall x \in X, x \in C(x) \Rightarrow X = \bigcup_{x \in X} C(x)$$

Mostriamo ora che sono disgiunti prendendo due componenti connesse C e D ed analizzando il caso in cui la loro intersezione non è vuota, in particolare sfruttiamo la massimalità:

$$C \cap D \neq \emptyset \Rightarrow C \cup D \text{ connesso } \Rightarrow C = C \cup D = D$$

Esempio. Sia $\mathbb{Q} \subseteq \mathbb{R}$ con la tpoplogia euclidea. La componenti connesse di \mathbb{Q} sono i punti, quindi i punti sono chiusi in \mathbb{Q} , il che è una riconferma dato che sappiamo che \mathbb{Q} è Hausdorff. Tuttavia non possono essere aperti altrimenti avremmo la topologia discreta!

Inoltre siccome $\mathbb Q$ ha più di una componente connessa significa che non è connesso! Invece $\mathbb R$ è connesso grazie all'assimoa di completezza.

OSSERVAZIONE. 2.7. Dati due spazi omeomorfi si ha che hanno lo stesso numero di componenti connesse in quanto l'immagine continua di connessi è connessa. Quindi il numero di componenti connesse ci fornisce un criterio per determinare quando due spazi non sono omeomorfi!

II Omotopia