# Cryptography – Exam Questions

#### Tim Herbstrith

#### 2020

# Contents

| -                                | ptography principles / Basic model for secrecy / Cryptosys |  |  |
|----------------------------------|------------------------------------------------------------|--|--|
| tem                              | for secrecy                                                |  |  |
| 1.1                              | Cryptography principles                                    |  |  |
| 1.2                              | Different cryptographic concepts                           |  |  |
| 1.3                              | Basic model of a cryptosystem                              |  |  |
| 1.4                              | Definition of Cryptosystem                                 |  |  |
| 1.5                              | Cover time                                                 |  |  |
| Attacks on encryption algorithms |                                                            |  |  |
| 2.1                              | Targets of attacks                                         |  |  |
| 2.2                              | Passive vs active attacks                                  |  |  |
| 2.3                              | Key lengths and sizes                                      |  |  |
| 2.4                              | Assumptions                                                |  |  |
| 2.5                              | Estimates on key length                                    |  |  |
| D 0                              | rences                                                     |  |  |

# 1 Cryptography principles / Basic model for secrecy / Cryptosystem for secrecy

Cryptography principles definitions, (non) examples. Basic cryptography concepts (primitive, protocol, cover time, etc.). Basic model for secrecy: (non)-examples. Cryptosystem for secrecy: definition, examples. Symmetric versus asymmetric cryptosystems.

# 1.1 Cryptography principles

- Confidentiality / secrecy:
  - limit access to information
- Data Integrity
  - $-\,$  data was not altered (intentionally or accidentally)
  - detection of alteration (not prevention)
- Data origin authentication / message authentication
  - confirms the origin of data with no temporal aspect to the **receiver**
  - not necessarily an immediate source / not when
- Entity authentication

- a given entity is involved and currently active
- e.g. log in at web service
- Non-Repudiation
  - a source of data cannot deny to a **third party** being at the origin

Data origin authentication  $\Rightarrow$  Data integrity

Non-Repudiation  $\Rightarrow$  Data origin authentication

Data origin authentication  $\neq$  Entity authentication

Secrecy 

⇒ Data origin authentication

#### 1.2 Different cryptographic concepts

- Cryptography = toolkit
- Cryptographic **primitive** = a basic tool in this toolkit
  - Examples: Encryption, hash function, MAC (message authentication code), digital signature, etc.
- Cryptographic  $\mathbf{algorithm} = \mathbf{Cipher} = \mathbf{a}$  specification of a primitive
- Cryptographic **protocol** = a way to choose primitives and use them for a security goal
- Cryptosystem = implementation of primitives and the infrastructure

# 1.3 Basic model of a cryptosystem



Figure 1: Basic model of a cryptosystem (Martin 2012)

Fig. 1 depicts a sender who wishes to transfer some data to a receiver in such a way that any party intercepting the transmitted data cannot determine the content. The interceptor must not know the decryption key.

Secrecy can be provided by (combination of):

- 1. Cryptography (via encryption)
- 2. Steganography (via information hiding)

3. Access control (via software or hardware)

#### 1.4 Definition of Cryptosystem

Cryptosystem is a 5-tuple  $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$  satisfying:

- $\mathcal{P}$  is a finite set of possible **plaintexts**;
- $\mathcal{C}$  is a finite set of possible **ciphertexts**;
- $\mathcal{K}$ , the keyspace, is a finite set of possible **keys**;
- $\mathcal{E} = \{E_k : k \in \mathcal{K}\}$  consists of encryption functions  $E_k : \mathcal{P} \to \mathcal{C}$ ;
- $\mathcal{D} = \{D_k : k \in \mathcal{K}\}$  consists of decryption functions  $D_k : \mathcal{C} \to \mathcal{P}$ ;
- For all  $e \in \mathcal{K}$  there exists  $d \in \mathcal{K}$  such that for all plaintexts  $p \in \mathcal{P}$  we have:

$$D_d(E_e(p)) = p$$

The cryptosystem is

- symmetric if e = d and
- **public-key** if d cannot be derived from e in a computationally feasible way

#### 1.5 Cover time

**Cover time** = the time for which a plaintext must be kept secret.

# 2 Attacks on encryption algorithms

Main attacks on encryption algorithms. Passive versus active attacks. Keys: length, size. Brute-force attack: assumptions, estimates on key lengths.

#### 2.1 Targets of attacks

- A practical method of determining the **decryption key** is found.
- A weakness in the encryption algorithm leads to a **plaintext**.

#### 2.2 Passive vs active attacks

- The main type of **passive attack** is unauthorised access to data.
- An active attack involves either data being changed in some way, or a process being conducted on the data.

#### 2.3 Key lengths and sizes

- Length of the key = number of bites it takes to represent the key
- Size of the keyspace = number of possible different decryption keys

#### 2.4 Assumptions

- All keys from the keyspace are equally likely to be selected
- The correct decryption key is identified as soon as it is tested

# 2.5 Estimates on key length

If Size = n=2k, then, on average, one needs  $\sim 2k-1$  attempts to find the correct decryption key:

$$\mathbb{E}[X] = \sum_{i=1}^n i \frac{1}{n} = \frac{n \; (n-1)}{2} = \frac{2^k + 1}{2} \sim 2^{k-1}$$

. . .

# References

Martin, Keith M. 2012. Everyday Cryptography: Fundamental Principles and Applications. Oxford University Press.