

**(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION
EN MATIÈRE DE BREVETS (PCT)**

**(19) Organisation Mondiale de la Propriété
Intellectuelle**
Bureau international

(43) Date de la publication internationale
28 octobre 2004 (28.10.2004)

PCT

(10) Numéro de publication internationale
WO 2004/092306 A1

(51) Classification internationale des brevets⁷ : C10G 2/00,
C07C 1/04, B01D 53/047, C10K 1/32

(21) Numéro de la demande internationale :
PCT/FR2004/050141

(22) Date de dépôt international : 2 avril 2004 (02.04.2004)

(25) Langue de dépôt : français

(26) Langue de publication : français

(30) Données relatives à la priorité :
0304698 15 avril 2003 (15.04.2003) FR

(71) Déposant (pour tous les États désignés sauf US) : L'AIR LIQUIDE SOCIETE ANONYME A DIRECTOIRE ET CONSEIL DE SURVEILLANCE POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE [FR/FR]; 75 quai d'Orsay, F-75321 Paris Cedex 07 (FR).

(72) Inventeurs; et
(75) Inventeurs/Déposants (pour US seulement) : WENTINK, Paul [FR/FR]; 27 rue de la Mare Jeanne, F-78810 Feucherolles (FR). CIEUTAT, Denis [FR/FR]; 53 avenue Charles de Gaulle, F-92200 Neuilly Sur Seine (FR). DE SOUZA, Guillaume [FR/FR]; 1 rue du Capitaine Ferber, F-92130 Issy les Moulineaux (FR).

(74) Mandataire : CONAN, Philippe; 75 quai d'Orsay, F-75321 Paris Cedex 07 (FR).

(81) États désignés (sauf indication contraire, pour tout titre de protection nationale disponible) : AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

[Suite sur la page suivante]

(54) Title: METHOD FOR THE PRODUCTION OF HYDROCARBON LIQUIDS USING A FISCHER-TROPF METHOD

(54) Titre : PROCEDE DE PRODUCTION DE LIQUIDES HYDROCARBONES METTANT EN OEUVRE UN PROCEDE FISCHER-TROPSCH

(57) Abstract: The invention relates to a method for converting hydrocarbon gases into hydrocarbon liquids, wherein the Fischer-Tropf method is used. The Fischer-Tropf method produces hydrocarbon liquids and a residual gas comprising at least hydrogen, carbon monoxide and hydrocarbons whose carbon number is 6 maximum, carbon dioxide and optionally nitrogen. According to the invention, the residual gas undergoes a separation process producing at least one gas flow comprising methane and for which the level of recovery of hydrogen and carbon monoxide is at least 60 %, at least one gas flow whose level of recovery of carbon dioxide is at least 40 % and at least one additional gas flow mainly comprising hydrocarbons whose carbon number is at least 2.

WO 2004/092306 A1

(57) Abrégé : L'invention concerne un procédé de conversion de gaz hydrocarbonés en liquides hydrocarbonés dans lequel le procédé Fischer-Tropsch est mis en oeuvre. Le procédé Fischer-Tropsch produit des liquides hydrocarbonés et un gaz résiduaire comprenant au moins de l'hydrogène, du monoxyde de carbone et des hydrocarbures présentant un nombre de carbone d'au plus 6, du dioxyde de carbone et éventuellement de l'azote. Selon l'invention, ce gaz résiduaire est soumis à un procédé de séparation produisant au moins un flux gazeux comprenant du méthane et pour lequel le niveau de récupération de l'hydrogène et du monoxyde de carbone est d'au moins 60 %, au moins un flux gazeux pour lequel le niveau de récupération du dioxyde de carbone est d'au moins 40 %, et au moins un flux gazeux complémentaire comprenant majoritairement des hydrocarbures présentant un nombre de carbone d'au moins 2.

(84) États désignés (*sauf indication contraire, pour tout titre de protection régionale disponible*) : ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), européen (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

— avant l'expiration du délai prévu pour la modification des revendications, sera republiée si des modifications sont reçues

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

Publiée :

— avec rapport de recherche internationale

Procédé de production de liquides hydrocarbonés mettant en œuvre un procédé
Fischer-Tropsch

La présente invention concerne un nouveau procédé de conversion de gaz hydrocarbonés en liquides hydrocarbonés mettant en œuvre un des procédés connus pour la génération de gaz de synthèse, ainsi que le procédé Fischer-Tropsch et notamment une étape particulière de traitement du gaz résiduaire issu du procédé Fischer-Tropsch.

Il est connu de convertir des composés hydrocarbonés gazeux ou solides de base en produits hydrocarbonés liquides valorisables dans l'industrie pétrochimique, en raffineries ou dans le secteur des transports. En effet, certains gisements importants de gaz naturel se situent dans des lieux isolés et éloignés de toute zone de consommation ; ils peuvent alors être exploités par la mise en place d'usines de conversion dites "gaz en liquide" ou "gas to liquid" en anglais (GtL) sur un site proche de ces sources de gaz naturel. La transformation des gaz en liquides permet un transport plus aisément des hydrocarbures. Ce type de conversion GtL se fait habituellement par transformation des composés hydrocarbonés gazeux ou solides de base en un gaz de synthèse comprenant majoritairement H₂ et CO (par oxydation partielle à l'aide d'un gaz oxydant et/ou réaction avec de la vapeur d'eau ou du CO₂), puis traitement de ce gaz de synthèse selon le procédé Fischer-Tropsch pour obtenir un produit qui, après condensation, conduit aux produits hydrocarbonés liquides désirés. Lors de cette condensation, un gaz résiduaire est produit. Ce gaz résiduaire contient des produits hydrocarbonés de faibles poids moléculaire et des gaz n'ayant pas réagi. En conséquence, il est généralement utilisé comme carburant dans un des procédés de l'unité GtL, par exemple dans une turbine à gaz ou une chambre de combustion associée à une turbine à vapeur ou dans une turbine de détente associée à un compresseur de l'unité GtL. Cependant, la quantité de gaz résiduaire à brûler dépasse souvent largement la demande de l'unité GtL en carburant. En outre, le gaz résiduaire comprend également du CO₂, qui diminue l'efficacité de la combustion des produits hydrocarbonés et qui est relargué dans l'atmosphère, ce qui est contraire au respect des normes environnementales. Enfin, le gaz résiduaire comprend généralement des quantités de H₂ et CO non converties : il n'est donc pas économique de les brûler.

Compte-tenu des contraintes environnementales relatives au CO₂, il a été proposé de traiter le gaz résiduaire pour en éliminer le CO₂. US 5,621,155 décrit par exemple un procédé dans lequel une partie du gaz résiduaire du procédé Fischer-Tropsch est traité de manière à en éliminer le dioxyde de carbone et est ensuite recyclé dans l'étape du

procédé Fischer-Tropsch. Toutefois, l'autre partie du gaz résiduaire contenant H₂ et CO est toujours brûlé, ce qui n'est pas économique. En outre, du CO₂ est toujours relargué.

WO 01/60773 décrit également un procédé dans lequel le gaz résiduaire du procédé Fischer-Tropsch est traité pour en éliminer le CO₂. Le gaz résiduaire présentant une teneur en CO₂ abaissée est utilisé comme carburant en divers endroits de l'unité.

US 6,306,917 décrit un procédé dans lequel le dioxyde de carbone est éliminé du gaz résiduaire issu du procédé Fischer-Tropsch. Ce document décrit également le traitement du gaz résiduaire pour en récupérer l'hydrogène à l'aide d'une membrane et le recyclage de cet hydrogène dans le réacteur Fischer-Tropsch. Le composé CO est lui envoyé à la combustion.

Le but de la présente invention est de proposer un procédé de conversion de gaz hydrocarbonés en liquides hydrocarbonés mettant en œuvre le procédé Fischer-Tropsch dans lequel le gaz résiduaire de ce procédé Fischer-Tropsch est traité de manière à permettre d'éviter la perte économique de H₂ et CO par simple combustion.

Un autre but est de proposer un procédé de conversion de gaz hydrocarbonés en liquides hydrocarbonés mettant en œuvre le procédé Fischer-Tropsch dans lequel le gaz résiduaire est traité de manière à permettre à la fois d'éviter la perte économique de H₂ et CO par simple combustion et de réduire fortement le relargage atmosphérique du CO₂ par recyclage des chaînes carbonées.

L'invention a l'avantage de s'adapter à tous les types de gaz résiduaires. En outre, elle permet la réutilisation dans le procédé GtL des hydrocarbures, qui sont contenus dans le gaz résiduaire. L'invention présente l'avantage majeur d'assurer la fonction de redistribuer les différents composés du gaz résiduaire en plusieurs flux gazeux utilisables à différentes étapes du procédé général de conversion de gaz hydrocarbonés en liquides hydrocarbonés.

Dans ce but, l'invention concerne un procédé de conversion de gaz hydrocarbonés en liquides hydrocarbonés dans lequel le procédé Fischer-Tropsch est mis en œuvre, ledit procédé produisant des liquides hydrocarbonés et un gaz résiduaire comprenant au moins de l'hydrogène, du monoxyde de carbone, du dioxyde de carbone et des hydrocarbures présentant un nombre de carbone d'au plus 6, et dans lequel le gaz résiduaire est soumis à un procédé de séparation produisant :

- au moins un flux gazeux comprenant du méthane et pour lequel le niveau de récupération de l'hydrogène et du monoxyde de carbone est d'au moins 60 %,
- au moins un flux gazeux pour lequel le niveau de récupération du dioxyde de carbone est d'au moins 40 %, et

- au moins un flux gazeux complémentaire comprenant majoritairement des hydrocarbures présentant un nombre de carbone d'au moins 2.

D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description qui va suivre. Des formes et des modes de réalisation de l'invention sont donnés à titre d'exemples non limitatifs, illustrés par les dessins joints dans lesquels :

- 5 - les figures 1 et 2 sont des schémas d'une unité GtL intégrant un procédé Fischer-Tropsch selon l'art antérieur,
- la figure 3 est un schéma du procédé selon l'invention.

L'invention concerne donc un procédé de conversion de gaz hydrocarbonés en liquides hydrocarbonés dans lequel le procédé Fischer-Tropsch est mis en œuvre, ledit procédé produisant des liquides hydrocarbonés et un gaz résiduaire comprenant au moins de l'hydrogène, du monoxyde de carbone, du dioxyde de carbone et des hydrocarbures présentant un nombre de carbone d'au plus 6, et dans lequel le gaz résiduaire est soumis à un procédé de séparation produisant :

- 10 - au moins un flux gazeux comprenant du méthane et pour lequel le niveau de récupération de l'hydrogène et du monoxyde de carbone est d'au moins 60 %,
- au moins un flux gazeux pour lequel le niveau de récupération du dioxyde de carbone est d'au moins 40 %, et
- au moins un flux gazeux complémentaire comprenant majoritairement des hydrocarbures présentant un nombre de carbone d'au moins 2.

L'invention concerne tout type de procédé de conversion de gaz hydrocarbonés en liquides hydrocarbonés mettant en œuvre le procédé Fischer-Tropsch. Généralement ces gaz hydrocarbonés sont issus d'une réaction de production d'un gaz de synthèse hydrocarboné (par exemple par oxydation partielle à l'aide d'un gaz oxydant et de vapeur d'eau). Ce gaz de synthèse comprend de l'hydrogène et du CO. Il est habituellement issu d'une unité de préparation d'un gaz de synthèse à partir de gaz naturel ou d'un gaz associé ou de charbon. Selon le procédé de l'invention, ce gaz de synthèse est soumis à une réaction de Fischer-Tropsch par mise en contact avec un catalyseur favorisant cette réaction.

- 25 30 Au cours de la réaction de Fischer-Tropsch, l'hydrogène et le CO sont convertis en composés hydrocarbonés de longueur de chaîne variable selon la réaction suivante :

Du CO₂ est également produit au cours de cette réaction ; par exemple, par les réactions parallèles suivantes :

A la sortie du réacteur mettant en œuvre le procédé Fischer-Tropsch, la température des produits est généralement abaissée d'une température de l'ordre de 130°C à une température de l'ordre de 90 à 60°C si bien que l'on obtient d'une part un condensat, majoritairement composé d'eau et des liquides hydrocarbonés présentant un nombre de carbone supérieur à 4, et d'autre part, un gaz résiduaire comprenant au moins de l'hydrogène, du monoxyde de carbone, des hydrocarbures présentant un nombre de carbone d'au plus 6, du dioxyde de carbone et en outre généralement de l'azote.

La présente invention concerne le traitement de ce gaz résiduaire obtenu. Selon le procédé de l'invention, ce gaz résiduaire est soumis à un procédé de séparation produisant :

- au moins un flux gazeux comprenant du méthane et pour lequel le niveau de récupération de l'hydrogène et du monoxyde de carbone est d'au moins 60 %,
- au moins un flux gazeux pour lequel le niveau de récupération du dioxyde de carbone est d'au moins 40 %, et

- au moins un flux gazeux complémentaire comprenant majoritairement des hydrocarbures présentant un nombre de carbone d'au moins 2. Selon l'invention, le niveau de récupération d'un composé dans un des flux gazeux issus du procédé de séparation correspond à la quantité volumique ou molaire dudit composé présent dans le gaz résiduaire que l'on sépare dudit gaz résiduaire et que l'on produit dans ledit flux gazeux issu du procédé de séparation par rapport à la quantité volumique ou molaire totale de ce composé présente dans le gaz résiduaire. Dans le cas du flux gazeux dont le niveau de récupération de l'hydrogène et du monoxyde de carbone est d'au moins 60 %, la condition de récupération de 60 % s'applique à la fois au composé au CO par rapport à la quantité

de CO présente initialement dans le gaz résiduaire et au composé H₂ par rapport à la quantité de H₂ présente initialement dans le gaz résiduaire. Selon l'invention, on entend par "flux gazeux comprenant majoritairement un composé", un flux gazeux dont la concentration en ce composé est supérieure à 50 % en volume. Selon l'invention, le procédé de séparation visant à traiter le gaz résiduaire est avantagusement un procédé

d'adsorption modulée en pression (ou procédé de séparation PSA ("Pressure Swing Adsorption" en anglais)). Ce procédé de séparation PSA est mis en œuvre à l'aide d'une unité de séparation PSA permettant d'obtenir au moins les trois flux gazeux principaux :

- au moins le premier flux gazeux comprenant du méthane et pour lequel le niveau de récupération de l'hydrogène et du monoxyde de carbone d'au moins 60 %,
- au moins le deuxième flux gazeux pour lequel le niveau de récupération du dioxyde de carbone est d'au moins 40 %, et

- au moins le troisième flux gazeux complémentaire comprenant majoritairement des hydrocarbures présentant un nombre de carbone d'au moins 2. En général, pour le premier flux, le niveau récupération du monoxyde du carbone est moins élevé que le niveau de récupération de l'hydrogène (le niveau de récupération est d'environ 60 à 75 % pour le monoxyde du carbone et d'environ 75 à 85 % pour l'hydrogène) tandis que le niveau de récupération du méthane reste de l'ordre de 55 à 65 % et le niveau de récupération du CO₂ reste inférieur à 1 %. Le niveau de récupération du CO₂ dans le second flux est supérieur à 40 %, de préférence supérieur à 50 %. Le troisième flux est un flux complémentaire, il peut donc présenter un niveau de récupération du CO₂ d'au plus 10 60 %, de préférence d'au plus 50 %. Le deuxième flux gazeux peut comprendre du méthane.

Le procédé de séparation peut également permettre de produire au moins un flux gazeux comprenant majoritairement de l'hydrogène. Selon une première variante du procédé selon l'invention, la même unité de séparation PSA du procédé de séparation 15 visant à traiter le gaz résiduaire peut également permettre de produire au moins un flux gazeux comprenant majoritairement de l'hydrogène. Ce flux peut présenter une concentration en hydrogène supérieure à 98 % en volume. Selon une alternative à cette première variante du procédé selon l'invention, le procédé de séparation visant à traiter le gaz résiduaire peut mettre en œuvre une deuxième unité de séparation PSA destinée à 20 produire au moins un flux gazeux comprenant majoritairement de l'hydrogène. Ce flux peut présenter une concentration en hydrogène supérieure à 98 % en volume.

Le gaz résiduaire peut également comprendre au moins de l'azote et le procédé de séparation du gaz résiduaire peut produire au moins un flux gazeux comprenant au moins de l'azote. Généralement, ce flux gazeux comprenant de l'azote correspond au flux gazeux 25 comprenant majoritairement des hydrocarbures présentant un nombre de carbone d'au moins 2.

De préférence, chaque adsorbeur de l'unité de séparation PSA est composé d'au moins trois lits d'adsorbants,

- le premier lit étant composé d'alumine,
- 30 - le deuxième lit étant composé d'un gel de silice, et
- le troisième lit étant composé d'au moins un adsorbant choisi parmi soit les zéolithes ou les tamis moléculaires carbonés, de tailles de pores moyens compris entre 3,4 et 5 Å et de préférence compris entre 3,7 et 4,4 Å, soit un titano-silicate de tailles de pores moyens compris entre 3,4 et 5 Å, et préférentiellement entre 3,7 et 4,4 Å.

35 En fonction des différents cycles de pression, le procédé de séparation PSA permet d'obtenir successivement :

- un flux gazeux sous pression haute comprenant du méthane et pour lequel le niveau de récupération de l'hydrogène et du monoxyde de carbone est d'au moins 60 %, puis
- un flux gazeux pour lequel le niveau de récupération du dioxyde de carbone est d'au moins 40 %, puis

5 - un flux gazeux complémentaire comprenant majoritairement des hydrocarbures présentant un nombre de carbone d'au moins 2.

L'alumine permet d'éliminer l'eau présente dans le gaz résiduaire ainsi que les composés hydrocarbonés présentant un nombre de carbones supérieur ou égal à 5. Le gel de silice permet d'adsorber les composés hydrocarbonés et notamment les composés

10 hydrocarbonés présentant un nombre de carbones d'au moins 3. De préférence, le gel de silice utilisé présente une concentration en alumine (Al_2O_3) inférieure à 1 % en poids. Par contre, l'alumine et le gel de silice laissent passer H_2 , CO et CH_4 , et CO_2 et N_2 s'ils sont présents dans le gaz résiduaire. Les zéolithes ou les tamis moléculaires carbonés de tailles de pores telles que définies précédemment permettent d'adsorber le dioxyde de

15 carbone, voire partiellement l'azote. Le choix d'un titano-silicate en lieu et place du troisième lit de zéolithe ou de tamis moléculaire carboné permet aussi d'assurer l'arrêt du CO_2 . L'ordre des trois lits d'adsorbants est de préférence le suivant, selon le sens de circulation du gaz résiduaire dans l'adsorbeur : premier lit, puis deuxième lit, puis troisième lit.

20 Selon la première variante de l'invention, chaque adsorbeur de l'unité de séparation PSA peut comprendre également un quatrième lit d'adsorbant selon le sens de circulation du gaz résiduaire dans l'adsorbeur ; ce quatrième lit peut être une zéolithe ou un charbon actif si le troisième lit est un tamis moléculaire carboné. Si l'alternative à la première variante du procédé selon l'invention est mise en oeuvre, l'adsorbeur de la deuxième unité

25 de séparation PSA produisant au moins un flux gazeux relativement pur en hydrogène (concentration en hydrogène supérieure à 98 % en volume) est composé d'un lit d'adsorbant comprenant au moins un charbon actif. Il est alors introduit dans cette deuxième unité d'adsorption au moins une partie du premier flux issu de la première unité d'adsorption.

30 Chaque adsorbeur de l'unité de séparation PSA peut également comprendre un quatrième ou cinquième lit comprenant au moins un titano-silicate ou une zéolithe ; ceci permet l'arrêt, au moins partiel, de l'azote. De préférence, le titano-silicate et la zéolithe présentent une taille de pores moyens d'environ 3,7 Å, soit préférentiellement entre 3,5 et 3,9 Å ; ils sont de préférence échangés au lithium, au sodium, au potassium ou au

35 calcium ou sont une combinaison de ces éléments. La structure de la zéolithe est de

préférence choisie parmi les structures suivantes : LTA, CHA, AFT, AEI-AIPO18, KFI, AWW, SAS, PAU, RHO.

Selon un premier mode, en aval du traitement du gaz résiduaire, le flux gazeux comprenant du méthane et pour lequel le niveau de récupération de l'hydrogène et du monoxyde de carbone est d'au moins 60 % issu du procédé de séparation peut être traité par une unité cryogénique de manière à produire :

soit, selon une première version :

- au moins un flux comprenant essentiellement de l'hydrogène et du monoxyde de carbone, et

10 - au moins un flux comprenant majoritairement du méthane,

soit, selon une seconde version :

- au moins un flux comprenant essentiellement de l'hydrogène,
- au moins un flux comprenant majoritairement du monoxyde de carbone, et
- au moins un flux comprenant essentiellement du méthane.

15 Par "flux comprenant essentiellement" un composé, on entend un flux comprenant au moins 85 % en volume du composé, et préférentiellement au moins 95 %. Ainsi, selon la première version, on peut employer après décarbonatation et refroidissement du flux gazeux comprenant du méthane et pour lequel le niveau de récupération de l'hydrogène et du monoxyde de carbone est d'au moins 60 % une colonne de séparation des phases

20 liquides condensées des phases vapeur; la phase vapeur étant essentiellement composée d'hydrogène et de CO tandis que la phase condensée est majoritairement composée de méthane. Selon la seconde version, on peut employer après décarbonatation et refroidissement à au moins -150°C du flux gazeux comprenant du méthane et pour lequel le niveau de récupération de l'hydrogène et du monoxyde de

25 carbone est d'au moins 60 %, une colonne de lavage au méthane pour absorber le CO et produire : en tête de colonne, en phase vapeur un flux comprenant essentiellement de l'hydrogène, et en bas de colonne, une phase condensée contenant essentiellement du méthane et du CO, qui est envoyée à une colonne de distillation CO/hydrocarbures pour générer : en tête, un flux comprenant majoritairement du CO, et en bas, un flux

30 comprenant essentiellement du méthane.

Selon un deuxième mode, en aval du traitement du gaz résiduaire, le flux gazeux comprenant du méthane et pour lequel le niveau de récupération de l'hydrogène et du monoxyde de carbone est d'au moins 60 % issu du procédé de séparation peut également être traité par un procédé PSA aval de manière à produire :

35 - au moins un flux comprenant essentiellement de l'hydrogène, et

- au moins un flux comprenant majoritairement du monoxyde de carbone et du méthane.

Les différents gaz issus du procédé de séparation du gaz résiduaire peuvent être ensuite valorisés à divers endroits de l'unité GtL. Ainsi, au moins une partie du flux gazeux comprenant du méthane et pour lequel le niveau de récupération de l'hydrogène et du monoxyde de carbone est d'au moins 60 % issu du procédé de séparation du gaz résiduaire peut être utilisé comme gaz réactif dans une unité de préparation d'un gaz de synthèse comprenant H₂ et CO, s'il y en a une, et/ou comme gaz réactif dans le procédé Fischer-Tropsch. De même, au moins une partie du flux gazeux comprenant majoritairement des hydrocarbures présentant un nombre de carbone d'au moins 2 issu du procédé de séparation du gaz résiduaire peut être utilisé comme carburant et/ou comme gaz réactif dans la génération de gaz de synthèse. Au moins une partie du flux gazeux comprenant majoritairement de l'hydrogène issu du procédé de séparation du gaz résiduaire peut être utilisé pour des procédés d'hydrocracking, tel que celui qui permet de traiter les liquides hydrocarbonés présentant un nombre de carbone supérieur à 4 et issus du procédé Fischer-Tropsch. Enfin, au moins une partie du flux gazeux pour lequel le niveau de récupération du dioxyde de carbone est d'au moins 40 % issu du procédé de séparation du gaz résiduaire peut être utilisé comme gaz réactif dans une unité de préparation d'un gaz de synthèse comprenant H₂ et CO, s'il y en a une, ou comme gaz réactif dans le procédé Fischer-Tropsch. Ce dernier cas est utile lorsque le catalyseur Fischer-Tropsch produit du CO₂ à partir de CO ; la réaction peut alors être équilibrée et la surproduction de CO₂ évitée. L'élimination du méthane de certains flux permet d'éviter son accumulation lors du recyclage de ces flux, notamment dans le flux qui est recyclé dans le procédé Fischer-Tropsch.

La figure 1 illustre un procédé selon l'art antérieur dans un site de production type GtL. Un gaz de base (1) est traité dans une unité de préparation d'un gaz de synthèse (A) pour fournir un gaz de synthèse (2) contenant de l'hydrogène et du CO. Ce gaz de synthèse (2) est introduit dans une unité Fischer-Tropsch (B) où il est soumis à une réaction de Fischer-Tropsch puis à une condensation par exemple dans un ballon de décantation. Les produits issus de l'unité Fischer-Tropsch sont :

- le condensat (3) issu de la condensation qui comprend surtout de l'eau. Ce condensat est évacué du site de production GtL.
- des composés hydrocarbonés liquides (4) présentant un nombre de carbones supérieur à 4. Ces composés sont généralement soumis à un traitement (C) permettant de couper leurs longues chaînes et d'obtenir des longueurs de chaîne d'au moins 6 carbones, par exemple à l'aide d'hydrogène. Les composés hydrocarbonés présentant un nombre de carbones inférieur (8) sont utilisés comme carburant dans une unité de génération d'électricité (D).

- un gaz résiduaire (5) comprenant un mélange de H₂, CO, CO₂ et d'hydrocarbures légers, présentant un nombre de carbones d'au plus 6, qui peut être soit en partie (6) réintroduit dans le réacteur Fischer-Tropsch, soit en partie (7) utilisé comme carburant dans une unité de génération d'électricité (D) ou de production de vapeur.

5 La figure 2 reprend le procédé mis en œuvre sur la figure 1 à la différence duquel le gaz résiduaire (5) est traité par une unité (E) d'élimination du CO₂. Le CO₂ récupéré (9) est injecté dans l'unité de production de gaz de synthèse (A).

La figure 3 illustre le procédé selon l'invention. A la différence des procédés de l'art antérieur décrits sur les figures 1 et 2, le gaz résiduaire (5) comprenant un mélange de H₂,

10 CO, CO₂ et d'hydrocarbures légers, présentant un nombre de carbones d'au plus 6, est traité au moins en partie (10) par un procédé de séparation (F) conduisant à :

- un gaz (11) comprenant majoritairement des hydrocarbures présentant un nombre de carbones d'au moins 2, qui peut en partie (11a) être réintroduit dans la génération de gaz de synthèse (A), soit en partie (11b) utilisé comme carburant dans une unité de

15 génération d'électricité (D),

- un gaz (12) comprenant majoritairement de l'hydrogène. Ce gaz (12) peut être utilisé au cours du traitement (C) pour couper les chaînes des composés hydrocarbonés liquides (4) issus du procédé Fischer-Tropsch.

20 - un gaz (13) comprenant de l'hydrogène et du monoxyde de carbone avec un taux de récupération d'au moins 60 % et du méthane, qui est réintroduit dans le réacteur Fischer-Tropsch (B), et

- un gaz (14) comprenant du CO₂ avec un niveau de récupération du dioxyde de carbone d'au moins 40 %, qui est introduit dans l'unité de préparation du gaz de synthèse (A).

REVENDICATIONS

1. Procédé de conversion de gaz hydrocarbonés en liquides hydrocarbonés dans lequel le procédé Fischer-Tropsch est mis en oeuvre, ledit procédé produisant des liquides hydrocarbonés et un gaz résiduaire comprenant au moins de l'hydrogène, du monoxyde de carbone, du dioxyde de carbone et des hydrocarbures présentant un nombre de carbone d'au plus 6, caractérisé en ce que le gaz résiduaire est soumis à un procédé de séparation produisant :
 - au moins un flux gazeux comprenant du méthane et pour lequel le niveau de récupération de l'hydrogène et du monoxyde de carbone est d'au moins 60 %,
 - au moins un flux gazeux pour lequel le niveau de récupération du dioxyde de carbone est d'au moins 40 %, et
 - au moins un flux gazeux complémentaire comprenant majoritairement des hydrocarbures présentant un nombre de carbone d'au moins 2.
- 15 2. Procédé selon la revendication 1, caractérisé en ce que le procédé de séparation met en œuvre une unité de séparation PSA.
- 20 3. Procédé selon la revendication 2, caractérisé en ce que l'unité de séparation PSA produit en outre au moins un flux gazeux comprenant majoritairement de l'hydrogène.
4. Procédé selon la revendication 2, caractérisé en ce que le procédé de séparation du gaz résiduaire met en œuvre une deuxième unité de séparation PSA produisant au moins un flux gazeux comprenant majoritairement de l'hydrogène.
- 25 5. Procédé selon l'une des revendications précédentes, caractérisé en ce que le gaz résiduaire comprend au moins de l'azote et en ce que le procédé de séparation du gaz résiduaire produit au moins un flux gazeux comprenant de l'azote.
- 30 6. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que chaque adsorbeur de l'unité de séparation PSA est composé d'au moins trois lits d'adsorbants,
 - le premier lit étant composé d'alumine,
 - le deuxième lit étant composé d'un gel de silice, et
 - le troisième lit étant composé d'au moins un adsorbant choisi parmi soit les zéolithes ou les tamis moléculaires carbonés, de tailles de pores moyens compris entre 3,4 et 5 Å et
- 35

de préférence compris entre 3,7 et 4,4 Å, soit un titano-silicate de tailles de pores moyens compris entre 3,4 et 5 Å, et préférentiellement entre 3,7 et 4,4 Å.

7. Procédé selon la revendication 6, caractérisé en ce que l'ordre des trois lits d'adsorbants est le suivant, selon le sens de circulation du gaz résiduaire dans l'adsorbeur : premier lit, puis deuxième lit, puis troisième lit.

5 8. Procédé selon les revendications 3 et 6, caractérisé en ce que chaque adsorbeur de l'unité de séparation PSA comprend un quatrième lit d'adsorbant selon le sens de 10 circulation du gaz résiduaire dans l'adsorbeur choisi parmi une zéolithe ou un charbon actif si le troisième lit est un tamis moléculaire carboné.

15 9. Procédé selon la revendication 4, caractérisé en ce que l'adsorbeur de la deuxième unité de séparation PSA produisant au moins un flux gazeux relativement pur en hydrogène est composé d'un lit d'adsorbant comprenant au moins un charbon actif.

10. Procédé selon les revendications 5 et 6, caractérisé en ce que chaque adsorbeur comprend un quatrième ou cinquième lit comprenant au moins un titano-silicate ou une zéolithe.

20 11. Procédé selon l'une des revendications précédentes, caractérisé en ce que, en aval du traitement du gaz résiduaire, le flux gazeux comprenant du méthane et pour lequel le niveau de récupération de l'hydrogène et du monoxyde de carbone est d'au moins 60 % issu du procédé de séparation est traité par une unité cryogénique de manière à 25 produire :

- au moins un flux comprenant essentiellement de l'hydrogène et du monoxyde de carbone, et
- au moins un flux comprenant majoritairement du méthane.

30 12. Procédé selon l'une des revendications 1 à 10, caractérisé en ce que, en aval du traitement du gaz résiduaire, le flux gazeux comprenant du méthane et pour lequel le niveau de récupération de l'hydrogène et du monoxyde de carbone est d'au moins 60 % issu du procédé de séparation est traité par une unité cryogénique de manière à produire :

35

- au moins un flux comprenant essentiellement de l'hydrogène,
- au moins un flux comprenant majoritairement du monoxyde de carbone, et

- au moins un flux comprenant essentiellement du méthane.

13. Procédé selon l'une des revendications 1 à 10, caractérisé en ce que, en aval du traitement du gaz résiduaire, le flux gazeux comprenant du méthane et pour lequel le

5 niveau de récupération de l'hydrogène et du monoxyde de carbone est d'au moins 60 % issu du procédé de séparation est traité par un procédé PSA aval de manière à produire :

- au moins un flux comprenant essentiellement de l'hydrogène, et

- au moins un flux comprenant majoritairement du monoxyde de carbone et du méthane.

10 14. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'au moins une partie du flux gazeux comprenant du méthane et pour lequel le niveau de récupération de l'hydrogène et du monoxyde de carbone est d'au moins 60 % issu du procédé de séparation du gaz résiduaire est utilisé comme gaz réactif dans un procédé de synthèse d'un gaz comprenant H₂ et CO.

15

15. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'au moins une partie du flux gazeux comprenant du méthane et pour lequel le niveau de récupération de l'hydrogène et du monoxyde de carbone est d'au moins 60 % issu du procédé de séparation du gaz résiduaire est utilisé comme gaz réactif dans le procédé

20 Fischer-Tropsch.

25 16. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'au moins une partie du flux gazeux comprenant majoritairement des hydrocarbures présentant un nombre de carbone d'au moins 2 issu du procédé de séparation du gaz résiduaire est utilisé comme carburant.

30 17. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'au moins une partie du flux gazeux comprenant majoritairement des hydrocarbures présentant un nombre de carbone d'au moins 2 issu du procédé de séparation du gaz résiduaire est utilisé comme gaz réactif dans la génération de gaz de synthèse.

18. Procédé selon l'une des revendications 3, 4, 12 ou 13, caractérisé en ce qu'au moins une partie du flux gazeux comprenant majoritairement de l'hydrogène issu du procédé de séparation du gaz résiduaire est utilisé pour des procédés d'hydrocraquage.

19. Procédé selon l'une des revendications 1 à 13, caractérisé en ce qu'au moins une partie du flux gazeux comprenant majoritairement du dioxyde de carbone issu du procédé de séparation du gaz résiduaire est utilisé comme gaz réactif dans un procédé de synthèse de gaz comprenant H₂ et CO.

1/2

FIG.1

FIG.2

2/2

INTERNATIONAL SEARCH REPORT

International Application No
PCT/FR2004/050141

A. CLASSIFICATION OF SUBJECT MATTER				
IPC 7	C10G2/00	C07C1/04	B01D53/047	C10K1/32

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C10G C07C B01D C10K C01B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 02/38699 A (CLARKE SIMON CHARLES ; STEYNBERG ANDRE (ZA); SASOL TECH PTY LTD (ZA)) 16 May 2002 (2002-05-16) claim 1; figure 2 -----	1-19
A	US 4 259 091 A (BENKMANN CHRISTIAN) 31 March 1981 (1981-03-31) claim 1; figure 1 -----	1-19
A	EP 0 317 235 A (BOC GROUP PLC) 24 May 1989 (1989-05-24) page 5 – page 7; claims 1,2 -----	1-19
A	EP 0 411 506 A (AIR PROD & CHEM) 6 February 1991 (1991-02-06) claim 1 -----	1-19

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
3 September 2004	10/09/2004
Name and mailing address of the ISA	Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016	Deurinck, P

INTERNATIONAL SEARCH REPORT

 International Application No
 PCT/FR2004/050141

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 0238699	A	16-05-2002		AU 773977 B2 AU 1418102 A BR 0107452 A EP 1242564 A1 WO 0238699 A1 NO 20023312 A US 2004077736 A1 ZA 200205035 A		10-06-2004 21-05-2002 08-10-2002 25-09-2002 16-05-2002 05-09-2002 22-04-2004 22-09-2003
US 4259091	A	31-03-1981		DE 2840357 A1 AT 5177 T AU 527365 B2 AU 5087479 A BR 7905872 A CA 1137425 A1 DE 2966369 D1 EP 0009217 A1 JP 1365182 C JP 55088824 A JP 61030812 B ZA 7904921 A		03-04-1980 15-11-1983 03-03-1983 27-03-1980 20-05-1980 14-12-1982 08-12-1983 02-04-1980 26-02-1987 04-07-1980 16-07-1986 24-09-1980
EP 0317235	A	24-05-1989		AU 2518888 A CA 1336041 C DE 3851822 D1 DE 3851822 T2 DE 3856113 D1 DE 3856113 T2 DE 3856462 D1 DE 3856462 T2 EP 0317235 A2 EP 0579289 A2 EP 0579290 A2 JP 1246103 A JP 2650738 B2 US 5112590 A US 5234472 A ZA 8808334 A		01-06-1989 27-06-1995 17-11-1994 23-02-1995 19-02-1998 23-04-1998 10-05-2001 22-11-2001 24-05-1989 19-01-1994 19-01-1994 02-10-1989 03-09-1997 12-05-1992 10-08-1993 28-11-1990
EP 0411506	A	06-02-1991	EP	0411506 A2		06-02-1991

RAPPORT DE RECHERCHE INTERNATIONALE

Document de Recherche Internationale No
PCT/FR2004/050141

A. CLASSEMENT DE L'OBJET DE LA DEMANDE
CIB 7 C10G2/00 C07C1/04 B01D53/047 C10K1/32

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement)
CIB 7 C10G C07C B01D C10K C01B

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés)

EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERES COMME PERTINENTS

Catégorie	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
X	WO 02/38699 A (CLARKE SIMON CHARLES ; STEYNBERG ANDRE (ZA); SASOL TECH PTY LTD (ZA)) 16 mai 2002 (2002-05-16) revendication 1; figure 2	1-19
A	US 4 259 091 A (BENKMANN CHRISTIAN) 31 mars 1981 (1981-03-31) revendication 1; figure 1	1-19
A	EP 0 317 235 A (BOC GROUP PLC) 24 mai 1989 (1989-05-24) page 5 – page 7; revendications 1,2	1-19
A	EP 0 411 506 A (AIR PROD & CHEM) 6 février 1991 (1991-02-06) revendication 1	1-19

Voir la suite du cadre C pour la fin de la liste des documents

Les documents de familles de brevets sont indiqués en annexe

* Catégories spéciales de documents cités:

- *A* document définissant l'état général de la technique, non considéré comme particulièrement pertinent
- *E* document antérieur, mais publié à la date de dépôt international ou après cette date
- *L* document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)
- *O* document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
- *P* document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

- *T* document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention
- *X* document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément
- *Y* document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier
- *&* document qui fait partie de la même famille de brevets

Date à laquelle la recherche internationale a été effectivement achevée

3 septembre 2004

Date d'expédition du présent rapport de recherche internationale

10/09/2004

Nom et adresse postale de l'administration chargée de la recherche internationale
Office Européen des Brevets, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+31-70) 340-3016

Fonctionnaire autorisé

Deurinck, P

RAPPORT DE RECHERCHE INTERNATIONALE

Demande Internationale No

PCT/FR2004/050141

Document brevet cité au rapport de recherche		Date de publication	Membre(s) de la famille de brevet(s)		Date de publication
WO 0238699	A	16-05-2002	AU	773977 B2	10-06-2004
			AU	1418102 A	21-05-2002
			BR	0107452 A	08-10-2002
			EP	1242564 A1	25-09-2002
			WO	0238699 A1	16-05-2002
			NO	20023312 A	05-09-2002
			US	2004077736 A1	22-04-2004
			ZA	200205035 A	22-09-2003
US 4259091	A	31-03-1981	DE	2840357 A1	03-04-1980
			AT	5177 T	15-11-1983
			AU	527365 B2	03-03-1983
			AU	5087479 A	27-03-1980
			BR	7905872 A	20-05-1980
			CA	1137425 A1	14-12-1982
			DE	2966369 D1	08-12-1983
			EP	0009217 A1	02-04-1980
			JP	1365182 C	26-02-1987
			JP	55088824 A	04-07-1980
			JP	61030812 B	16-07-1986
			ZA	7904921 A	24-09-1980
EP 0317235	A	24-05-1989	AU	2518888 A	01-06-1989
			CA	1336041 C	27-06-1995
			DE	3851822 D1	17-11-1994
			DE	3851822 T2	23-02-1995
			DE	3856113 D1	19-02-1998
			DE	3856113 T2	23-04-1998
			DE	3856462 D1	10-05-2001
			DE	3856462 T2	22-11-2001
			EP	0317235 A2	24-05-1989
			EP	0579289 A2	19-01-1994
			EP	0579290 A2	19-01-1994
			JP	1246103 A	02-10-1989
			JP	2650738 B2	03-09-1997
			US	5112590 A	12-05-1992
			US	5234472 A	10-08-1993
			ZA	8808334 A	28-11-1990
EP 0411506	A	06-02-1991	EP	0411506 A2	06-02-1991