SVAR OCH ANVISNINGAR

1.

$$\lim_{x \to 0} \frac{e^{\frac{1}{2}x} - e^{-\frac{1}{2}x}}{x} =$$

$$= \lim_{x \to 0} \frac{\left(1 + \frac{1}{2}x + \ldots\right) - \left(1 - \frac{1}{2}x + \ldots\right)}{x} = \lim_{x \to 0} \frac{x + \ldots}{x} = \lim_{x \to 0} (1 + \ldots) = 1.$$

2. Eftersom funktionen f(x) är kontinuerlig på $0 < x < \infty$, $\lim_{x \to 0} f(x) = \lim_{x \to \infty} f(x) = 0$ och det finns en punkt x där f(x) > 0 så har funktionen ett största värde enligt en sats i Adams Calculus. Det största värdet finns i detta fall i en punkt x_0 där antingen $f'(x_0) = 0$, dvs i en kritisk punkt, eller där $f'(x_0)$ inte existerar, dvs i en singulär punkt. Några singulära punkter finns inte på intervallet.

$$f'(x) = 2\frac{(1+x^2)^2 - x \cdot 2(1+x^2) \cdot 2x}{(1+x^2)^4} = 2\frac{1+x^2 - 4x^2}{(1+x^2)^3} = 2\frac{1-3x^2}{(1+x^2)^3}.$$

Den enda kritiska punkten på intervallet är alltså $x_0 = 1/\sqrt{3}$ och det största värdet är

$$2\frac{\frac{1}{\sqrt{3}}}{(1+\frac{1}{3})^2}.$$

3.
$$\int_0^\infty \frac{2x}{(1+x^2)^2} \, dx = -(1+x^2)^{-1} \Big|_0^\infty = -\frac{1}{1+x^2} \Big|_0^\infty = 1.$$

- 4. Eftersom intervallet är slutet har den kontinuerliga funktionen f(x) ett största värde på intervallet. Detta återfinns antingen i en kritisk punkt x_0 , dvs där $f'(x_0) = 0$, i en singulär punkt eller i en ändpunkt. Vi har inga singulära punkter. $f'(x) = e^{-\frac{1}{2}x} + x(-\frac{1}{2})e^{-\frac{1}{2}x}$. Den enda kritiska punkten är därmed $x_0 = 2$. Eftersom denna ligger utanför intervallet $0 \le x \le 1$ måste funktionen anta sitt största värde i någon av ändpunkterna. Då f(0) = 0 och f(1) > 0 så är det största värdet $f(1) = \frac{1}{\sqrt{e}}$.
- 5. Partiell integration ger

$$\int_0^1 x e^{-\frac{1}{2}x} dx = (-2)x e^{-\frac{1}{2}x} \Big|_0^1 - \int_0^1 (-2)e^{-\frac{1}{2}x} dx =$$
$$= (-2)x e^{-\frac{1}{2}x} \Big|_0^1 - 4e^{-\frac{1}{2}x} \Big|_0^1 = 4 - \frac{6}{\sqrt{e}} > 0.$$

6. Definitionsområdet är $x \neq 0$. Funktionens nollställen är $x = \pm 1$.

Vertikal asymptot är x = 0.

$$\lim_{x \to 0+} y = -\infty. \lim_{x \to 0-} +\infty.$$

$$\lim_{x \to +\infty} (y(x) - x) = \mp 0$$
. Linjen $y = x$ är alltså sned asymptot.

$$y'=1+\frac{1}{x^2}>0$$
 alla $x\neq 0$. Funktionen är växande och saknar lokala extrempunkter.

7. Den homogena ekvationen y'' - y = 0 har karakteristiska ekvationen $r^2 - 1 = 0$ med rötterna ± 1 så lösningarna till homogena ekvationen är $y_H = C_1 e^x + C_2 e^{-x}$. För att bestämma en partikulärlösning y_P till den inhomogena ekvationen y'' - y = 1 ansättes $y_P = K$. Derivering och insättning ger K = -1 så den allmänna lösningen till den givna ekvationen ges av

$$y = C_1 e^x + C_2 e^{-x} - 1.$$

Man finner slutligen att villkoret
$$y(0) = -1$$
, $y'(0) = 1$ ger $C_1 = \frac{1}{2}$, $C_2 = -\frac{1}{2}$ så lösningen är $y = \frac{1}{2}e^x - \frac{1}{2}e^{-x} - 1$.

- 8. En integrerande faktor är $e^{-\ln x} = e^{\ln \frac{1}{x}} = \frac{1}{x}$. Efter multiplikation av ekvationen med denna erhålles ekvationen $(\frac{1}{x}y)' = 1$ som ger $\frac{1}{x}y = x + C$ så allmänna lösningen är $y = x^2 + Cx$.
- 9. Serien är geometrisk med kvoten $r=-\frac{1}{2}$. Summan är därför $\frac{1}{1-(-\frac{1}{2})}=\frac{2}{3}$.
- 10. Då konvergensradien är lika med 2 divergerar serien för alla x för vilka |x| > 2 och konvergerar absolut för alla x för vilka |x| < 2. Då x = 2 har vi serien $\sum_{n=1}^{\infty} \frac{1}{n}$ som divergerar (harmoniska serien). För x = -2 har vi serien $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$ som konvergerar enligt satsen om alternerande serier. Denna konvergens är dock endast villkorlig.

- 1. a) Då f(0) = 0 och f(x) < 0 på ett intervall till höger och vänster om origo så är har funktionen ett lokalt maximum i origo.
 - b) $f'(0) = \lim_{x \to 0} \frac{f(x) f(0)}{x} = \lim_{x \to 0} x \ln|x| = 0.$
 - c) Nollställena är $x=\pm 1$ samt x=0. Derivatan

$$f'(x) = 2x \ln|x| + x^2 \cdot \frac{1}{x} = x(2 \ln|x| + 1).$$

Derivatans nollställen är $\pm \frac{1}{\sqrt{e}}$. I dessa punkter har vi, utöver i origo, lokala extrempunkter, t ex enligt derivatans teckenväxling.

2. Kurvan har nollställena $\pm \frac{1}{\sqrt{3}}$. Derivatan $y' = 3x^2 - 3$ har nollställena ± 1 . Lokala extrempunkter finns i $x = \pm 1$ där kurvan antar värdena ∓ 2 . Den horisontella tangenten till kurvan i minimipunkten (1, -2) går genom (2, -2) och vi har därför funnit att en av de sökta tangenternas tangeringspunkt har x-koordinaten lika med 1.

Villkoret för att en linje genom (2,-2) ska tangera kurvan $y=x^3-3x$ är att

$$\frac{x^3 - 3x + 2}{x - 2} = 3x^2 - 3.$$

Vänster led är lutningen av linjen och höger led är lutningen av tangenten i punkten $(x, x^3 - 3x)$, dvs derivatan $y' = 3x^2 - 3$.

Vårt villkor kan förenklas till $x^3 - 3x^2 + 2 = 0$. Vi har redan funnit att x = 1 måste vara en rot. Med faktorsatsen finner vi att de övriga rötterna är $1 \pm \sqrt{3}$.