- 1. Ktorá z nasledujúcich funkcií je exponenciálna?
 - A $f_1: y = x^{-x}$
- **B** $f_2: y = x.3^x$ (C) $f_3: y = (0.8)^x 2$
- **D** $f_4: y = (x-3)^2$

- 2. Ak a $\sqrt{2}$ \langle a $\sqrt{3}$, potom musí platiť: (1b)
 - A a je celé číslo
- **B** $a \in (0,1)$
- C a < 0
- a > 1

- **3.** Ak $(0,7)^a \ ((0,7)^b)$, potom musí platiť: **(1b)**
 - a je celé číslo
- B b je celé číslo

- 4. Ktoré z tvrdení je <u>nepravdivé?</u> (1b)
 - Každá funkcia f: $y = \log_a x$ je prostá A
 - B Funkcia inverzná k logaritmickej funkcii je exponenciálna funkcia
 - C Grafy exponenciálnej a k nej inverznej logaritmickej funkcie sú osovo súmerné
 - Každá funkcia f: y = 2 * je párna funkcia
- 5. Na obrázku je časť grafu funkcie: (1b)

A/y = 1 +
$$\frac{3}{x-2}$$
 B/y = -2 + $\frac{3}{x-1}$

C/ y = 1 +
$$\frac{3}{x-2}$$
 D/ y = -2 - $\frac{3}{x+1}$

- 6. Načrtnite graf mocninovej funkcie $f: y = (x+1)^{-4}$ (zapíšte súradnice aspoň 3 bodov). Určte D(f), H(f).
- (3b)

[0,1] [-2,1] N

- 7. Upravte na jednoduché čísla:
 - A $\log_3 \sqrt{27} = \sqrt{3^3 \frac{3}{2}}$
- C $\log 20 \log 2 = \log 10$
- B $\log 1000 \log 10 = \log \frac{1000}{10} = \log 100 2$ D $\log_2 \sqrt[3]{128} = \log_2 2^{\frac{3}{2}} = \frac{7}{3}$
- 8. Vydel'te mnohočlen mnohočlenom: (2b)

$$(x^{3} + 2x^{2} - 13x + 10): (x + 5) = \chi^{2} - 3\chi + 2\chi$$

$$-3\chi^{2} - 13\chi$$

9. Nájdite inverznú funkciu k lineárne lomenej funkcii $f: y = \frac{1}{x-1}$. Určte definičný obor a obor hodnôt inverznej funkcie. (3b)

10. Vypočítajte v R koreň rovnice $2^{x} \cdot (0,25)^{2-x} = 16$ a ak je to potrebné, určte podmienky. (3b)

$$2^{\frac{1}{2}} \cdot \frac{1}{h} = 16$$

11. Vypočítajte v R koreň rovnice $\log_3^2 x - \log_3 x = 0$ a ak je to potrebné, určte podmienky. (3b)

1. Ktora z nasledujúcich funkcií je exponenciálna funkcia?

A a je celé číslo

- **A** f_1 : $y = (x+2)^3$ **C** f_3 : $y = \left(\frac{1}{3}\right)^x + 1$ **B** f_2 : $y = 2^x \cdot x$ **D** f_4 : $y = \left(\frac{1}{x}\right)^x$

- 2. Ak $a^{1,2}$ $\rangle a^{2,1}$, potom musí platiť: (1b)
 - $\mathbf{A} \quad \underline{\mathbf{a}} \rangle 0$
- $a \in (0,1)$
- a je celé číslo C
- a > 1

- 3. Ak $(2,7)^a \ ((2,7)^b)$, potom musí platiť: (1b) (1b)
 - b je celé číslo
 - C) a (b
- a)b

- 4. Ktoré z tvrdení je <u>nepravdivé? (1b)</u>
 - A Každá funkcia f: $y = \log_a x$ je párna funkcia
 - B Funkcia inverzná k logaritmickej funkcii je exponenciálna funkcia
 - \mathbf{C} Grafy exponenciálnej a k nej inverznej logaritmickej funkcie sú osovo súmerné
 - Každá funkcia $f y = 2^x$ je prostá D
- 5. Na obrázku je časť grafu funkcie: (1b)

A/ y = 2 +
$$\frac{3}{x-1}$$
 B/ y = 1 - $\frac{3}{x-2}$

C/
$$y = 2 - \frac{3}{x-1}$$
 D/ $y = 1 - \frac{3}{x+2}$

6. Načrtnite graf mocninovej funkcie $e: y = x^{-3} + 1$ (zapíšte súradnice aspoň 3 bodov). Určte D(f), H(f).

(3b)

A
$$\log_3 \sqrt{9} = \log_3 3^{\frac{1}{3}} = \frac{1}{3}$$

A
$$\log_3 \sqrt{9} = \log_3 3^{\frac{2}{3}} = \frac{1}{3}$$

B $\log_2 16 - \log_2 4 = \log_3 4^{\frac{1}{3}} = \log_3 4^{\frac{1}{3}} = 2$

C $\log_3 5 + \log_3 2 = \log_3 6 = 1$

D $\log_3 1000 = \log_3 6 = 3$

$$C \quad \log 5 + \log 2 = \log 40 = 4$$

$$\mathbf{D} \quad \log 1000 = \sqrt[3]{10} \quad \text{and} \quad \text$$

8. Vydel'te mnohočlen mnohočlenom: (2b)

$$(2x^{3} + 3x^{2} + x + 6): (x + 2) = 2x^{2} - x + 3$$

$$-x^{2} + x + 6$$

$$-x^{2} + x + 6$$

$$-x^{2} + x + 6$$

9. Nájdite inverznú funkciú kylineárne lomenej funkcii $f: y = \frac{1}{x+1}$. Určte definičný obor a obor hodnôt inverznej funkcie. (3b)

10. Vypočítajte v R koreň rovnice 5^x . $(0,2)^{1-x} = 125$ a ak je to potrebné, určte podmienky. (3b)

$$2x-1=23$$

 $2x^{2}=23$
 $2x^{2}=23$
 $2x^{2}=23$
 $2x^{2}=23$
 $2x^{2}=2$
 $2x^{2}=2$
 $2x^{2}=3$
 $2x^{2}=3$
 $2x^{2}=3$
 $2x^{2}=3$

11. Vypočítajte v R koreň rovnice $\log_2^2 x - \log_2 x = 0$ a ak je to potrebné, určte podmienky. (3b)

