ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФАКУЛЬТЕТ АЭРОКОСМИЧЕСКИХ ТЕХНОЛОГИЙ

Лабораторная работа 3.4.5 Петля гистерезиса (динамический метод) **Цель работы**: изучение петель гистерезиса различных ферромагнитных материалов в переменных полях.

Оборудование: автотрансформатор, понижающий трансформатор, интегрирующая цепочка, амперметр, вольтметр, электронный осциллограф, делитель напряжения, тороидальные образцы с двумя обмотками.

Теоретические сведения: Помимо диа- и парамагнетиков, которые слабо реагируют на внешнее магнитное поле, в природе существуют вещества, способные сильно намагничиваться даже в небольших полях. Такие вещества относят к классу ферромагнетиков. Зависимость намагниченности \mathbf{M} от напряжённости магнитного поля \mathbf{H} у всех ферромагнетиков оказывается нелинейной: магнитная восприимчивость χ не является константой и зависит от \mathbf{H} . Кроме того, анизотропия кристаллической решётки приводит к тому, что χ может иметь тензорный характер.

Как и в случае парамагнетиков, атомы ферромагнетика обладают собственным магнитным моментом. Однако даже в отсутствие внешнего магнитного поля атомы ферромагнетика способны образовывать упорядоченные структуры (домены), в которых все магнитные моменты ориентированы практически в одном направлении. Таким образом, каждый отдельный атом испытывает влияние не только внешнего поля, но и поля, созданного коллективом его соседей.

Модель среднего поля. В качестве простейшей эмпирической модели, описывающей такую ситуацию, можно рассмотреть следующую модель: предположим, что намагниченность элемента среды пропорциональна некоторому эффективному полю $\mathbf{H}_{\text{эфф}}$, складывающемуся из поля \mathbf{H} в данной точке, созданного сторонними токами, и среднего «коллективного» поля, пропорционального величине намагниченности \mathbf{M} :

$$\mathbf{M} = \chi_{\text{пар}} \mathbf{H}_{\text{эфф}}, \quad \mathbf{H}_{\text{эфф}} = \mathbf{H} + \beta \mathbf{M},$$

где $\chi_{\text{пар}}$ – парамагнитная восприимчивость отдельного атома, β – некоторая безразмерная константа, определяемая из опыта.

Модель среднего поля позволяет уточнить закон Кюри. Определяя магнитную восприимчивость по-прежнему как $\chi = M/H$, найдём:

$$\chi = \frac{1}{\chi_{\text{nap}}^{-1} - \beta} \propto \frac{1}{T - \Theta},$$

где параметр Θ имеет размерность температуры.

Это соотношение называют законом Кюри-Вейсса. Он предсказывает существование особой точки – температурной точкой Кюри Θ_{κ} в которой имеет место фазовый переход 2-го рода между парамагнитным (при $T > \Theta_{\kappa}$) и ферромагнитным (при $T < \Theta_{\kappa}$) состояниями среды. Закон Кюри-Вейсса удовлетворительно выполняется вдали от Θ_{κ} , однако нарушается при приближении к точке перехода, где модель среднего поля становится слишком груба.

Образование доменов. Магнитное (диполь-дипольное) взаимодействие между атомами не может привести к упорядочению системы, так как его энергия слишком мала по сравнению с энергией теплового движения молекул уже при температурах порядка $T \sim 1~\rm K$. Единственное взаимодействие, которое способно выстроить в ряд магнитные моменты электронов в атомах при температурах порядка комнатной, — это электростатическое взаимодействие. Как следует из квантовой механики, если магнитные моменты (или спины) электронов соседних атомов сонаправлены, их электростатическое отталкивание становится меньше. Таким образом, магнитным моментам атомов энергетически выгодно ориентироваться в одном направлении. Такое явление получило название *обменного взаимодействия*.

С другой стороны, магнитное дипольдипольное взаимодействие между доменами препятствует выстраиванию всех магнитных моментов среды в одном направлении. Действительно,

энергия такого взаимодействия будет минимальной при антипараллельном расположении магнитных моментов соседних элементов среды. Поэтому при определённом поперечном размере домена оказывается энергетически выгодно иметь соседний домен с противоположно ориентированным моментом. Наложение внешнего поля заставляет домены ориентироваться по нему, что приводит к резкому увеличению намагниченности образца, а при достаточно большом поле достигается состояние насыщения, когда все домены ориентируются по полю.

Ферромагнитный гистерезис. Если состояние некоторой системы зависит не только от мгновенных значений внешних параметров, но от истории их изменений, говорят, что в системе имеет место *гистерезис*.

Именно такими свойствами обладает магнитный момент ферромагнитного образца как функция напряжённости поля M(H). В частности, система может оказаться намагниченной, даже когда внешнее поле выключено – этим объясняется существование постоянных магнитов.

Рис. 1: Начальная кривая намагничивания (ОА) и предельная петля гистерезиса

Наклон кривой намагничивания характеризуется $\partial u \phi \phi$ еренциальной магнитной проницаемостью

 $\mu_{\text{диф}} = \frac{1}{\mu_0} \frac{dB}{dH}.$

С ростом H величина $\mu_{\text{диф}}$ сначала растёт, затем начинает резко падать, приближаясь к единице при насыщении.

Доведём систему до некоторой точки A, лежащей в области насыщения (здесь B_s – индукция насыщения), и начнём уменьшать напряжённость H. Поскольку между доменами есть трение, обратный путь пойдёт не по начальной кривой, а выше неё. При выключения внешних полей, то есть при достижении H=0, в образце сохраняется некоторое собственное намагничивание. Соответствующее значение индукции B_r называют остаточной индукцией. Значение B=0 достигается лишь при некотором отрицательном значении $H=-H_c$. Величина H_c называется коэрцитивным полем. В точке C наступает насыщение для намагничивания в противоположную сторону.

Если теперь попробовать вернуться в точку A, вновь наращивая поле, получим некоторый замкнутый цикл (предельную nem no vucmepesuca). Если в точке A насыщение не достигается, то аналогичным образом получится цикл меньшей площади.

Отметим, что площадь петли гистерезиса ферромагнетика на плоскости H-B есть энергия, необратимо выделяющаяся в виде тепла в единице объёма вещества за один цикл:

$$\Delta\omega = -\oint HdB.$$

Экспериментальная установка: В данной работе кривые гистерезиса ферромагнитных материалов изучаются в поле частоты $\nu_0 = 50 \, \Gamma$ ц с помощью электронного осциллографа.

Магнитную индукцию B удобно определять с помощью ЭДС, возникающей при изменении магнитного потока Φ в катушке, намотанной на образец. Пусть катушка с N витками плотно охватывает образец сечением S, и индукция B в образце однородна. Из закона электромагнитной индукции получаем

$$|B| = \frac{1}{SN} \int \varepsilon dt.$$

Таким образом, для определения B нужно проинтегрировать сигнал, наведённый меняющимся магнитным полем в измерительной катушке, намотанной на образец.

Для интегрирования в работе используется интегрирующая RC-цепочка. «Входное» напряжение от источника $U_{\rm Bx}(t)$ подаётся на последовательно соединённые резистор $R_{\rm u}$ и конденсатор $C_{\rm u}$. «Выходное» напряжение $U_{\rm выx}(t)$ снимается с конденсатора. Предположим, что 1) сопротивление источника мало по сравнению с $R_{\rm u}$, 2) выходное сопротивление (сопротивление на входе осциллографа), напротив, велико: $R_{\rm выx}\gg R_{\rm u}$ и 3) сопротивление $R_{\rm u}$ достаточно велико, так что почти всё падение напряжения приходится на него, а $U_{\rm выx}\ll U_{\rm вx}$. В таком случае ток цепи равен $I=U_{\rm вx}-U_{\rm выx}/R_{\rm u}\approx U_{\rm вx}/R_{\rm u}$, и входное и выходное сопротивление связаны соотношением

$$U_{\text{\tiny BbIX}} = \frac{q}{C_{\text{\tiny H}}} = \frac{1}{C_{\text{\tiny H}}} \int_0^t I dt \approx \frac{1}{\tau_{\text{\tiny H}}} \int_0^t U_{\text{\tiny BX}} dt,$$

где $au_{\mathbf{u}} = R_{\mathbf{u}}C_{\mathbf{u}}$ – постоянная времени RC-цепочки. Для индукции поля получаем

$$|B| = \frac{1}{SN} \int U_{\text{bx}} dt = \frac{\tau_{\text{i}}}{SN} U_{\text{bbix}}.$$

Схема установки изображена на рис. 2. Напряжение сети (220 В, 50 Γ ц) с помощью трансформаторного блока T, состоящего из регулировочного автотрансформатора и разделительного понижающего трансформатора, подаётся на намагничивающую обмотку N_0 исследуемого образца. В цепь намагничивающей катушки, на которую подаётся некоторое напряжение U_0 , последовательно включено сопротивление R_0 . Напряжение на R_0 , равное $U_R = I_0 R_0$, где I_0 ток в намагничивающей обмотке N_0 , подаётся на канал X осциллографа. Связь напряжённости H в образце и тока I_0 рассчитывается по теореме о циркуляции. Действующее значение переменного тока в обмотке N_0 измеряется амперметром A.

Для измерения магнитной индукции B с измерительной обмотки $N_{\rm u}$ на вход RC-цепочки подаётся напряжение $U_{\rm u}$ ($U_{\rm bx}$), пропорциональное производной dB/dt. С интегрирующей ёмкости $C_{\rm u}$ снимается напряжение U_C ($U_{\rm bbix}$), пропорциональное величине B, и подаётся на вход Y осциллографа.

Замкнутая кривая, возникающая на экране, воспроизводит в некотором масштабе (различном для осей X и Y) петлю гистерезиса. Чтобы придать этой кривой количественный смысл, необходимо установить масштабы изображения, т. е. провести калибровку каналов X и Y осциллографа.

Рис. 2: Схема установки для исследования намагничивания образцов

Обработка данных:

1. Стутуначала занесём в таблицу параметры каждого из образцов, а также характеристики цепи и интегрирующей ячейки.

Τ:	аблица	1:	1.	Іараметры	об]	разцов
----	--------	----	----	-----------	-----	--------

	Феррит 1000нн	Пермаллой 50нп	Кремнистое железо
N_0	42	20	25
N_U	400	300	250
S, cm ²	3,0	0,76	2,0
$2\pi R$, cm	25,0	13,3	11,0

Таблица 2: Характеристики цепи и интегрирующей ячейки

R_0 , Om	0,22
$R_{\rm m}$, кОм	20
$C_{\mathtt{m}}$, мк Φ	20

- 2. После этого получим предельную петлю гистерезиса для каждого из образцов.
- 3. Далее, рассчитаем коэффициенты преобразования отклонений по осям 90 в напряженность H и индукцию B.

$$H = \frac{IN_0}{2\pi R} = \frac{K_x N_0}{2\pi R \cdot R_0},$$

$$B = \frac{R_{\scriptscriptstyle \rm H} C_{\scriptscriptstyle \rm H} K_y}{N_{\scriptscriptstyle \rm H} S}.$$

Результаты занесеём в таблицу ниже.

Таблица 3: Значения цены деления при различных измерениях

	K_x , мВ	K_y , мВ	H, А $/$ м	B, Тл $/$ дел
Феррит 1000нн	20	10	$15,\!27$	0,03
Пермаллой 50нп	10	10	6,84	0,18
Кремнистое железо	50	20	51,65	0,16

4. Для каждого образца рассчитаем амплитуду H_{max} , соответствующую состоянию насыщения, индукцию насыщения B_s , а также коэрцитивную силу H_c и остаточную индукцию B_r . Для этого в каждом случае запишем полную ширину и высоту предельной петли ($[2X_s]$ и $[2Y_s]$), соответствующие удвоенной амплитуде колебания напряженности H_s и индукции B_s поля в образце в состоянии насыщения, а также двойные амплитуды для коэрцитивного поля $[2X_c]$ и остаточной индукции $[2Y_r]$. Погрешность измерений равна половине цены деления осей осциллографа. Полученные результаты запишем в таблицу.

Таблица 4: Вычисленные значения

	Форрия 1	000	Пермаллой 50нп		Кремнистое	
	Феррит 1000нн		пермаллои эони		железо	
	Значение	σ	Значение σ		Значение	σ
H_s , A / M	320,727	7,636	85,441	3,417	1239,669	25,826
B_s , Тл	0,533	0,017	2,895	0,088	1,840	0,080
H_c , A / M	38,182	7,636	37,594	3,417	103,306	25,826
B_r , Тл	0,233 0,017		2,807	0,088	0,640	0,080

5. Теперь постепенно будем уменьшать ток намашничивания от насыщения до нуля и записывать значения полной ширины и высоты петли. Вершины петель лежат на начальной кривой намагничивания. Результаты измерений приведены в таблице ниже.

Таблица 5: Результаты измерений

Феррит 1000нн		Пермалл	юй 50нп	Кремнистое		
				железо		
$2X_s$, дел	$2Y_s$, дел	$2X_s$, дел	$2Y_s$, дел	$2X_s$, дел	$2Y_s$, дел	
36	30	16	32	34	20	
30	30	12	24	26	18	
24	27	11	17	20	16	
20	25	10	12	15	15	
18	23	9	8	10	12	
15	20	8	6	7	9	
13	18	8	4	4	6	
10	15			3	5	
8	11					

6. По данным из таблицы оценим начальное и максимальное значения дифференциальной магнитной проницаемости $\mu_{\text{диф}}$. Результаты занесём в таблицу.

Таблица 6: Значения максимальной и начальной магнитной проницаемости

	Феррит 1000ни	Пермаллой 50нп	Кремнистое
	Феррит тооопп	Trepmannon bonn	железо
$\mu_{\text{нач}}, 10^3$	3,127	41,883	24,651
$\mu_{\text{Makc}}, 10^3$	3,127	146,590	24,651

7. Измерим постоянную RC-цепочки $\tau_{\rm u}$, для этого, при условии $U_{\rm вых} \ll U_{\rm вx}$, получаем формулу

$$\frac{U_{\text{bux}}}{U_{\text{rx}}} pprox \frac{1}{\omega_0 au},$$

отсюда, измеряя входное напряжение и напряжение на конденсаторе, найдём постоянную $\tau_{\rm u}$. Для этого при одном и том же значении тока будем измерять количество делений, занимаемых линией сигнала, на осциллографе. Результат приведён в таблице ниже.

Таблица 7: Данные для вычисления постоянной *RC*-цепи

	K_y , мВ	2у, дел.
U_{BX}	1000	31 ± 0.5
$U_{\text{вых}}$	10	28 ± 0.5

$$au_{\text{\tiny M}} = \frac{U_{\text{\tiny BX}}}{U_{\text{\tiny BMX}}} \frac{1}{\omega_0} = (352 \pm 8) \cdot 10^{-3} \text{ c},$$

$$R_{\text{\tiny M}} \cdot C_{\text{\tiny M}} = 0.4 \text{ c}.$$

Как видим, значение отличается от теоретического на $\varepsilon \approx 12\%$.

Далее, проверим справедливость предположения $U_{\text{вых}} \ll U_{\text{вх}}$, которое выполняется, если $R_{\text{и}} \gg \frac{1}{\omega_0 C_{\text{и}}}$.

$$\frac{1}{\omega_0 C_{\scriptscriptstyle \mathrm{M}}} pprox 159{,}15 \ \mathrm{Om} \ll R = 20000 \ \mathrm{Om}.$$

Таким образом, соотношение выполняется, и поэтому можно использовать упрощенную формулу для нахождения индукции магнитного поля внутри образца.

8. Последним пунктом сведём результаты работы в таблицу, сравним полученные значения с табличными.

Таблица 8: Результаты работы

	Феррит 1000нн		Пермаллой 50нп		Кремнистое	
					железо	
	эксп.	справ. эксп.		справ.	эксп.	справ.
H_c , A / M	$38,182 \pm 7,636$	20,000	$37,594 \pm 3,417$	18,000	$103,306 \pm 25,826$	8,000
B_s , Тл	$0,533 \pm 0,017$	7,636	$2,895 \pm 0,088$	1,500	$1,840 \pm 0,080$	2,000
$\mu_{\text{нач}}, 10^3$	3,127	1,000	41,883	7 - 40	24,651	1,500
$\mu_{max}, 10^3$	3,127	3,000	146,590	40 - 1200	24,651	40,000

Вывод: В данной работе были исследованы ферромагнитные свойства феррита 1000нн, пермаллоя 50нп и кремнистого железа. Для каждого изх образцов была получена предельная петля гистерезиса После этого для каждого материала были рассчитаны: коэрцитивная сила H_c , индукция насыщения B_s , начальная магнитная проницаемость $\mu_{\text{нач}}$ и максимальная магнитная проницаемость μ_{max} , значения были сравнены со справочными, результаты приведены в таблице выше. Также, была измерена постоянная RC-цепочки $\tau_{\text{и}}$, после чего была проверена справедливость приближений, использовавшихся в работе.

Рис. 3: Предельная петля гистерезиса феррита 1000нн