アルゴリズムとデータ構造(5)

~順序統計量·動的計画法~

鹿島久嗣

DEPARTMENT OF INTELLIGENCE SCIENCE
AND TECHNOLOGY

順序統計量

順序統計量: 小さい方からk番目の要素は線形時間で発見可能

- ■順序統計量:小さい方からk番目の要素
- 自明なやり方: ソートを使えばO(n log n)
- 工夫すればO(n)で可能:
 - -平均的にO(n)で見つける方法
 - -最悪ケースでO(n)で見つける方法の二つのやり方を紹介する

平均O(n)の順序統計量アルゴリズム: クイックソートと同じ考え方で可能だが、最悪ケースで $O(n^2)$

- - 1. $k \leq q$ であれば、求める要素はA[p:q]にある
 - 2. k > qであれば、求める要素はA[q + 1:r]にある
 - -再帰的にPartitionを呼ぶことで範囲を限定していく
- 平均的には問題サイズは半々になっていくのでO(n)

$$T(n) = T\left(\frac{n}{2}\right) + O(n) = O(n)$$
 $(注: ウイックソートでは2T(rac{n}{2})$ だった

- ■最悪ケースでは問題サイズは定数しか減らないので $O(n^2)$
- ■問題サイズが確実に比率で減っていくようにしたい

最悪O(n)の順序統計量アルゴリズム: うまく「だいたい真ん中」をとってくる

- Order(A, k): Aの中からk番目に小さい要素を見つける
 - 1. A を5個ずつのグループに分け、各グループをソートして中央値(3番目の値)を見つけ、これらを集めてTとする(定数個の要素のソートは定数時間でできることに注意)
 - 2. Tの中央値mをみつける Order(T, [n/10])
 - 3. Aをmより小さいもの(S_1)、同じもの(S_2)、大きいもの(S_3)に分割する
 - 4. (i) $k \le |S_1|$ ならばOrder (S_1, k) を実行 (ii) $|S_1| < k \le |S_1| + |S_2|$ ならば mは目的の要素 (iii) $k > |S_1| + |S_2|$ ならば Order $(S_3, k (|S_1| + |S_2|))$ を実行する。

最悪O(n)の順序統計量アルゴリズム: うまく「だいたい真ん中」をとってくる

- Order(A, k): Aの中からk番目に小さい要素を見つける
 - 1. A を5個ずつのグループに分け、各グループをソートして中央値(3番目の値)を見つけ、これらを集めてTとする(定数個の要素のソートは定数時間でできることに注意)
 - 2. Tの中央値mをみつける Order(T, [n/10])
 - 3. *Aをmより*小もの (*S*₃)
 - 4. (i) $k \le |S_1|$ (ii) $|S_1| < |S_1|$ (iii) $k > |S_1|$ Order(

最悪O(n)の順序統計量アルゴリズム: 計算量の漸化式

- $T(n) = O(n) + T\left(\left[\frac{n}{5}\right]\right) + T\left(\left[\frac{3}{4}n\right]\right) = O(n)$
 - -ステップ4の分岐で (i)Order(S_1, k) が選ばれたとする
 - -中央値m以上の要素が少なくとも $\frac{1}{4}$ n個ある
 - -したがって中央値より小さい要素数は最大 $\frac{3}{4}$ n個
- ■直観的には「各グループの中央値を集めた中の中央値は 概ね全体の中央値になっている」
 - -全体を分割した小グループのそれぞれの中央値をあつめて その中央値をとると、おおむね全体の中央値が取れるはず

最悪O(n)の順序統計量アルゴリズム:計算量の漸化式

$$T(n) = O(n) + T\left(\left[\frac{n}{5}\right]\right) + T\left(\left[\frac{3}{4}n\right]\right) = O(n)$$

-ステップ4の分岐で (i)Order(S_1, k) が選ばれたとする

-中央値m以上の要素が少なくとも $\frac{1}{4}$ n個ある

-したがって中!

■直観的には「~ 概ね全体の中

-全体を分割しての中央値を★

 ${ 1}$ 大 $\frac{3}{4}$ n個

た中の中央値は

中央値をあつめて央値が取れるはず

少なくともれ個

最悪O(n)の順序統計量アルゴリズム: 計算量の導出

*定理: $s_1 + s_2 + \dots + s_d < 1$ としてT(n) $= \begin{cases} c & (n \le n_0) \\ T(s_1 n) + T(s_2 n) + \dots + T(s_d n) + c'n & (n > n_0) \end{cases}$ とするとき、 $T(n) \le \frac{cn}{1 - (s_1 + s_2 + \dots + s_d)} = O(n)$

•今回のケースでは $s_1 = \frac{1}{5}$, $s_2 = \frac{3}{4}$ であり、bの定理を使うと T(n) = O(n)

動的計画法

動的計画法:問題を再帰的に分割しボトムアップに解く

- ■動的計画法と分割統治法はともに問題を再帰的に分割
 - -分割統治法:トップダウン
 - -動的計画法:ボトムアップ
- ■動的計画法の流れ
 - 1. 問題の構造を再帰的に捉える ケ
 - 2. 解を再帰的に構成する
 - 3. ボトムアップで解を計算する

動的計画法のポイント:解の使いまわしによる効率化

- ■分割された問題が重複している場合に差が生じる
 - -トップダウンでは同じ問題を何度も解くことになる
 - -ボトムアップでは解の使いまわしが可能
 - -両者に指数的な差が生じうる
- ●逆にいえば、部分問題が重複していることが動的計画法の カギ

動的計画法のポイント:解の使いまわしによる効率化

■分割された問題が重複している場合に差が生じる

■部分問題が重複していることが動的計画法のカギ

動的計画法の例:

複数の行列積の計算

■入力: 行列 *A*₁, *A*₂, ..., *A*_n

- •出力:積 $A_1A_2\cdots A_n (= A_{1,...,n})$
- ■仮定:隣り合った行列の掛け算はできる
 - $-A_iA_{i+1}$ の計算は $O(p_{i-1} p_i p_{i+1})$ かかる
- • A_1 : 10 × 100, A_2 : 100 × 5, A_3 : 5 × 50 とすると:
 - $-((A_1A_2)A_3) = 7500$
 - $-(A_1(A_2A_3)) = 75000$

解の構成における観察:

全体の最適解は部分最適解の組合せで作られている

- $A_1A_2\cdots A_n (=A_{1,...,n})$ の計算において、k番目の分割が最後にくるとする
 - -つまり $A_{1,...,k}$ と $A_{k+1,...,n}$ を別々に計算して最後に統合する
 - •ちなみに、最後の統合コストは $O(p_0 p_k p_n)$
- これが最適解であるなら、 $A_{1,...,k}$ と $A_{k+1,...,n}$ の計算コストもそれぞれ最小のはず(部分問題の最適解のはず)
 - 一理由:そうでなければ、それぞれをコスト最小のものに置き換えるだけで、全体のコストがもっと下がるはず
- ■つまり、全体最適な解は、部分最適な解でつくられている

解の構成における観察:

全体の最適解は部分最適解の組合せで作られている

- $A_1A_2\cdots A_n (= A_{1,...,n})$ の計算において、k番目の分割が最後にくるとする
 - -つまり $A_{1,...,k}$ と $A_{k+1,...,n}$ を別々に計算して最後に統合する
 - •ちなみに、最後の統合コストは $O(p_0 p_k p_n)$
- これが最適解 それぞれ最小
 - 一理由:そう 換えるだけて
- ■つまり、全体」

D計算コストも はず)

のものに置き

くられている

KYOTO UNIVERSITY

最小コストについて成り立つ再帰式: 部分行列積の最適解を組合わせて大きな最適解をつくる

- $\blacksquare A_{i,...,j}$ を計算する最小のコストをm[i,j]とする
- m[i, j]は再帰的に表現できる:

最小コストについて成り立つ再唱者・

部分行列積の量

ココズ分割す3場合 解をつくる

- ■*A_{i,...,j}を*計算す^戸
- m[i,j]は再帰的

$$m[i,j]$$

$$= \begin{cases} 0 & (i=j) \\ \min_{i \leq k < j} m[i,k] + m[k+1,j] + p_{i-1} p_k p_j & (i \neq j) \end{cases}$$
 \tilde{b} 半の最小 計算コスト 計算コスト 記算コスト のコスト

動的計画法の計算量:ボトムアップ計算により多項式時間で解が求まる

- ■再帰式の適用により最小のm[1,n]を求める
- ■「ボトムアップ」で計算:
 - 1. i = j の場合について計算(全部ゼロ; m[i,i] = 0)
 - 2. i = j 1 の場合について計算 (m[i, i + 1])
 - 3. i = j 2 の場合について計算 (m[i, i + 2])
 - 4. ...
 - -上記がnステップ、それぞれでO(n)個の再帰式評価、それぞれの評価にO(n) 必要なので、全部で $O(n^3)$ の計算量
- ■バックトラック:各再帰式での最良のkを記憶しておくことで 実際の掛け算の順番を得る

動的計画法の計算量: ボトムアップ計算により多項式時間で解が求まる

- ■再帰式の適用により最小のm[1,n]を求める
- ■「ボトムアップ」で計算:

1.
$$i = j$$
 の場合について計算(全部ゼロ; $m[i,i] = 0$)

- 2. i = j 1 の場合について計算 (m[i, i + 1])
- 3. i = j 2 の場合について計算 (m[i, i + 2])
- 4. ...
- ー上記が*nス*ラ ぞれの評価
- バックトラック実際の掛け賃
- 3. i=j-2
 - 2. i=j-1
 - 1. i= }

m[1.3]

M[1,2] m[2,3]

m[1,1] m[2,2] m[3,3]

「、それ 「算量

ことで

動的計画法でやらないと…: 指数的な計算量になる

■解きたい再帰式:

$$m[i,j] = \begin{cases} 0 & (i = j) \\ \min_{i \le k < j} m[i,k] + m[k+1,j] + p_{i-1} p_k p_j & (i \ne j) \end{cases}$$

▶ トップダウン計算(分割統治)だと指数的な計算量になる

$$T(n) = \sum_{k=1}^{n-1} (T(k) + T(n-k) + c) = 2\sum_{k=1}^{n-1} T(k) + cn = O(2^n)$$

最長共通部分系列問題: 2つの系列に共通に含まれる最長の部分系列をみつける

- ■系列 $X = (x_1, x_2, ..., x_m)$ の部分系列(subsequence)とは Xからいくつかの要素を取り除いたもの
- ■2つの系列XとYに対して、系列Zが両方の部分系列のとき これを共通部分系列とよぶ
- ■最長共通部分系列(LCS; Longest Common Sequence):
 - -入力:2つの系列

$$X = (x_1, x_2, ..., x_m), Y = (y_1, y_2, ..., y_n)$$

-出力: $X \succeq Y \cap LCS Z = (z_1, z_2, ..., z_k)$ をひとつ

最長共通部分系列問題: 2つの系列に共通に含まれる最長の部分系列をみつける

- ■系列 $X = (x_1, x_2, ..., x_m)$ の部分系列(subsequence)とは Xからいくつかの要素を取り除いたもの

$$X = (x_1, x_2, ..., x_m), Y = (y_1, y_2, ..., y_n)$$

-出力: $X \succeq Y \cap LCS Z = (z_1, z_2, ..., z_k)$ をひとつ

最長共通部分系列問題:

- 2つの系列に共通に含まれる最長の部分系列をみつける
- ■系列 $X = (x_1, x) = (b, d, c, a, b, a)$ Xからいくつかの! X = (b, c, a) ■ 2つの系列XとY これを共通部分 X = (a, b, c, b, d, a, b)

ubsequence)とは

の部分系列のとき

- ■最長共通部分系列(LCS; Longest Common Sequence):
 - -入力:2つの系列

$$X = (x_1, x_2, ..., x_m), Y = (y_1, y_2, ..., y_n)$$

-出力: $X \succeq Y \cap LCS Z = (z_1, z_2, ..., z_k)$ をひとつ

最長共通部分系列の性質: LCSも再帰的な構造をもつ

- $Z = (z_1, z_2, ..., z_k)$ を XとYの任意のLCSとすると
- ① $x_m = y_n$ のとき、 $x_m = y_n = z_k$ で、 また、 $Z_{k-1} = (z_1, z_2, ..., z_{k-1})$ は X_{m-1} と Y_{n-1} のLCS
 - つまり、最後の文字が一致していれば、 $x_m = y_n = z_k$ としてLCSを1つ伸ばせる
- ② $x_m \neq y_n$ かつ $z_k \neq x_m$ ならば、Zは X_{m-1} とYのLCS
- ③ $x_m \neq y_n$ かつ $z_k \neq y_n$ ならば、Zは $X \succeq Y_{n-1}$ のLCS -つまり、一致していなければ、単にスキップ

最長共通部分系列の性質: LCSも再帰的な構造をもつ

- $Z = (z_1, z_2, ..., z_k)$ を XとYの任意のLCSとすると
- ① $x_m = y_n$ のとき、 $x_m = y_n = z_k$ で、 また、 $Z_{k-1} = (z_1, z_2, ..., z_{k-1})$ は X_{m-1} と Y_{n-1} のLCS
 - つまり、最後の文字が一致していれば、 $x_m = y_n = z_k$ としてLCSを1つ伸ばせる

②
$$x_m \neq y_r$$
 $\chi_{m-1} \vee \chi_{n-1} \circ L(S) + = \chi_m \vee \chi_n \circ L(S) \subset S$
③ $x_m \neq y_r$ $\chi_1, \chi_2, \dots, \chi_{m-1}, \chi_m$ χ_m $\chi_n \circ L(S) \subset S$
 $-\Im \sharp \mathcal{O}, \chi_n, \chi_n, \chi_n, \chi_n$ χ_n χ_n

LCSの長さについて成り立つ再帰式:動的計画法によりO(mn)で計算できる

 X_i と Y_j とのLCSの長さをC[i,j]とする

•
$$c[i,j] = \max$$

$$\begin{cases}
0 & (i = 0 \pm t, t \neq j) \\
c[i-1,j-1] + 1 & (x_i = y_j) \leftarrow 1, t \neq j, t \neq j,$$

•c[m,n]がO(mn)で求まる

解の構成: 実際の解はバックトラックで求まる

- LCSはバックトラックで構成できる
 - -注:LCSは複数ありうる(最適な経路は複数ありうる)
- ■例:

$$-X = (a, b, c, b, d, a, b)$$

$$-Y = (b, d, c, a, b, a)$$

$$-Z = (b, c, b, a)$$

