Algèbre Linéaire

Partiel 1 - 17 février 2016 Durée : 2 heures. Sans documents ni calculatrices

Exercice 1.

1. Soit E un espace vectoriel sur \mathbb{R} . Donner des conditions nécessaires et suffisantes pour qu'un sous-ensemble F de E soit un sous-espace vectoriel de E.

Pour être un \mathbb{R} -sous espace vectoriel de E, F doit satisfaire les trois conditions nécassaires et suffisantes suivantes : (i) $F \neq \emptyset$; (ii) pour tous $v, w \in F$ on doit avoir $v + w \in F$; (iii) pour tout $v \in F$ et pour tout $\lambda \in \mathbb{R}$ on doit avoir $\lambda v \in F$. La condition (i) peut être remplacée par la condition équivalente (i') $0 \in F$ tandis que les conditions (ii) et (iii) peuvent être remplecées par la condition : pour tous $v, w \in F$ et tous $\lambda, \mu \in \mathbb{R}$ on doit avoir $\lambda v + \mu w \in F$, ou encore pour tous $v, w \in F$ et tout $\lambda \in \mathbb{R}$ on doit avoir $\lambda v + w \in F$.

2. Soient $E = \mathbb{R}^3$ et $F = \{(x, y, z) \in \mathbb{R}^3, x + 3y + 4z = 0 \text{ et } 2x + z = 0\}$. Montrer que F est un sous-espace vectoriel de E dont on déterminera une base et la dimension.

F est l'intersection de deux plans vectoriels de \mathbb{R}^3 donc, d'après le cours, est un \mathbb{R} -sousespace vectoriel de E. Les vecteurs de F sont de la forme (x,7x/3,-2x). Il en suit que Fest une droite vectorielle, donc de dimension 1, et comme base de F on peut prendre un vecteur directeur de la droite : (3,7,-6).

Exercice 2. Soit $A = \{x = (x_1, \dots, x_4) \in \mathbb{R}^4, x_1 + 2x_2 = 0 \text{ et } x_3 = x_4^2\}$. On considère les vecteurs $v_1 = (-2, 1, 1, 1), v_2 = (-2, 1, 4, 2)$ et $v_3 = (0, 0, 1, 1)$.

1. A est-il un sous-espace vectoriel de \mathbb{R}^4 ?

A n'est pas un sous-espace vectoriel de \mathbb{R}^4 . En effet le vecteur v_3 appartient à A car $0+2\times 0=0$ et $1=1^2$, mais $-v_3$ n'y appartient pas $car -1 \neq (-1)^2$.

2. Montrer que les trois vecteurs v_1, v_2 et v_3 appartiennent à A. Sont-ils linéairement indépendants ? On $a(-2) + 2 \times 1 = 0$ et $1 = 1^2$ ce qui montre que v_1 appartient à A. De même $v_2 \in A$ car $(-2) + 2 \times 1 = 0$ et $4 = 2^2$ et on a vu dans le point précédent que $v_3 \in A$. Les trois vecteurs donnès sont linéairement indépendents. En effet, la condition $\alpha v_1 + \beta v_2 + \gamma v_3 = 0$ est équivalente au système

$$\begin{cases}
-2\alpha - 2\beta = 0 \\
\alpha + \beta = 0 \\
\alpha + 4\beta + \gamma = 0 \\
\alpha + 2\beta + \gamma = 0
\end{cases}$$

Les deux premières équations sont équivalentes à $\beta = -\alpha$. En remplaçant dans la troisième on obtient $\gamma = 3\alpha$. La dernière équation devient $\alpha - 2\alpha + 3\alpha = 0$, ce qui donne $\alpha = 0$ et par la suite $\beta = \gamma = 0$.

3. Soit F un sous-espace vectoriel de \mathbb{R}^4 contenant A. Que peut-on dire sur la dimension de F?

D'après le point précédent, F contient une famille libre ayant 3 vecteurs, donc la dimension de F est au moins 3. Par ailleurs, l'hyperplan vectoriel $H = \{x = (x_1, \dots, x_4) \in \mathbb{R}^4, x_1 + 2x_2 = 0\}$ contient A par définition et a dimension 3. Il en suit que V ect(A) = H.

Exercice 3. Dans \mathbb{R}^4 , on considère les vecteurs $v_1 = (-1, 2, 0, 1), v_2 = (-3, 0, -2, 0), v_3 = (0, -3, -1, 1)$ et $v_4 = (-2, 1, -1, 2)$.

1. La famille (v_1, v_2, v_3, v_4) est-elle une famille libre ou liée? Si elle est liée, donner une relation de dépendance entre ces quatre vecteurs.

La condition $\alpha v_1 + \beta v_2 + \gamma v_3 + \delta v_4 = 0$ est équivalente au système

$$\begin{cases}
-\alpha - 3\beta - 2\delta = 0 \\
2\alpha - 3\gamma + \delta = 0 \\
-2\beta - \gamma - \delta = 0 \\
\alpha + \gamma + 2\delta = 0
\end{cases}$$

dont la solution est

$$\begin{cases} \alpha = 7\beta \\ \beta = \beta \\ \gamma = 3\beta \\ \delta = -5\beta \end{cases}$$

Puisque le système admet une solution non triviale, la famille est liée et on a la relation de dépendence $7v_1 + v_2 + 3v_3 - 5v_4 = 0$.

2. Donner une base et la dimension du sous-espace vectoriel F de \mathbb{R}^4 engendré par ces quatre vecteurs.

Considérons la famille (v_1, v_3, v_4) . On obtient une combinason linéare de cette famille en prenant $\beta = 0$ dans la question précédente. Le système vu à la question précédente montre alors que cette famille est libre. Puisque le dimension de F est strictement plus petite que f, elle est aussi une base : la famille est libre maximale.

3. Le vecteur $v_5 = (1,0,0,0)$ appartient-il à F?

On vérifie aisement que le système

$$\begin{cases}
-\alpha - 3\beta - 2\delta = 1 \\
2\alpha - 3\gamma + \delta = 0 \\
-2\beta - \gamma - \delta = 0 \\
\alpha + \gamma + 2\delta = 0
\end{cases}$$

n'a pas de solution. Il s'en suit que $v_5 \notin F$.

On observe que la famille (v_1, v_3, v_4, v_5) est libre et donc $\mathbb{R}^4 = F \oplus Vect(v_5)$.

Exercice 4.

1. Soient F_1 et F_2 deux sous-espaces vectoriels d'un espace vectoriel E. Montrer que $F_1 \cap F_2$ est un sous-espace vectoriel de E.

On utilise la définition donnée dans l'exercice 1. Puisque F_1 et F_2 sont deux sous-espaces vectoriels de E, il doivent contenir 0. Il en suit que $0 \in F_1 \cap F_2$. Supposons maintenant que $u, v \in F_1 \cap F_2$. Puisque les deux vecteurs appartiennent à l'intersection on doit avoir par définition que $u, v \in F_1$ et $u, v \in F_2$. En utilisant le fait que F_1 et F_2 sont deux sous-espaces vectoriels de E, pour tous λ, μ scalaires on doit avoir $\lambda u + \mu v \in F_1$ et $\lambda u + \mu v \in F_2$, ce qui montre bien $\lambda u + \mu v \in F_1 \cap F_2$. Il en suit que $F_1 \cap F_2$ est un sous-espace vectoriel de E.

2. Montrer que si la famille (a_1, a_2, a_3, a_4) est une base d'un espace vectoriel E, alors la famille (b_1, b_2, b_3, b_4) est aussi une base de E avec $b_1 = a_1$, $b_2 = a_1 + a_2$, $b_3 = a_1 + a_2 + a_3$ et $b_4 = a_1 + a_2 + a_3 + a_4$.

En déduire que la famille (f_1, f_2, f_3, f_4) est une base de \mathbb{R}^4 avec $f_1 = (1, 0, 0, 0)$, $f_2 = (1, 1, 0, 0)$, $f_3 = (1, 1, 1, 0)$ et $f_4 = (1, 1, 1, 1)$.

Considérons une combinaison linéaire nulle de la famille $(b_1,b_2,b_3,b_4): 0 = \alpha b_1 + \beta b_2 + \gamma b_3 + \delta b_4$. En écrivant les b_j en fonction des a_i on obtient $0 = \alpha a_1 + \beta (a_1 + a_2) + \gamma (a_1 + a_2 + a_3) + \delta (a_1 + a_2 + a_3 + a_4) = (\alpha + \beta + \gamma + \delta) a_1 + (\beta + \gamma + \delta) a_2 + (\gamma + \delta) a_3 + \delta a_4$. Puisque la famille (a_1,a_2,a_3,a_4) est une base, tous les coefficients de la dernière combinaison linéaire doivent être nuls. Un calcul immédiat montre alors $\alpha = \beta = \gamma = \delta = 0$. Il en suit que la famille (b_1,b_2,b_3,b_4) est libre. Puisque son cardinal est égale a la dimension de E, 4 (cardinal de la base (a_1,a_2,a_3,a_4)), un théorème du cours assure que (b_1,b_2,b_3,b_4) est une base.

En appliquant le résultat précédent à $E = \mathbb{R}_3[X]$ l'espace vectoriel des polynômes à coefficients réels de degré inférieur ou égale à 3 avec $(a_1,a_2,a_3,a_4)=(P_0(X)=1,P_1(X)=X,P_2(X)=X^2,P_3(X)=X^3)$ la base canonique de $\mathbb{R}_3[X]$ et $(b_1,b_2,b_3,b_4)=(Q_0,Q_1,Q_2,Q_3)$ on vérifie que $Q_0=P_0,\ Q_1=P_0+P_1,\ Q_2=P_0+P_1+P_2$ et $Q_3=P_0+P_1+P_2+P_3$ et on en déduit que (Q_0,Q_1,Q_2,Q_3) est une base de $\mathbb{R}_3[X]$.