

Available online at www.sciencedirect.com

ScienceDirect

Procedia
Computer Science

www.elsevier.com/locate/procedia

Procedia Computer Science 00 (2025) 000-000

FinReport: Explainable Stock Earnings Forecasting via News Factor Analyzing Model

International Conference on Machine Learning and Data Engineering (ICMLDE 2025)

Mukesh Kumar^a, Md Azlan^b, Kanishk^c, Kingshuk Chatterjee^d, Gopesh Satapathy^e

- ^aSchool of Computer Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar-751024, India
- ^bSchool of Computer Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar-751024, India
- ^cSchool of Computer Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar-751024, India
- ^dSchool of Computer Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar-751024, India
- ^eSchool of Computer Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar-751024, India

Abstract

Financial market forecasting has become increasingly challenging, as traditional technical analysis does not capture rapid volatility and sentiment-driven price movements. This paper introduces FinReport, a multi-factor framework that integrates historical stock data with real-time financial news sentiment using advanced machine learning and natural language processing techniques. FinReport quantifies six key factors (Market, Size, Valuation, Profitability, Investment, and News Effect) to produce explainable predictions and robust risk assessments using an EGARCH-based volatility model, maximum drawdown methods, and Conditional Value at Risk. Empirical results on 75 Chinese A-share stocks (2018-2021) demonstrate superior performance: mean RMSE 0.2546, MAE 0.2433, $R^2 = 0.5515$ with 15% RMSE and 12% MAE reduction versus LSTM baselines. Top performers achieve $R^2 > 0.98$ (7.1% of stocks), with 20% Sharpe ratio improvement and prediction-actual correlation $\rho = 0.948$. Cross-validation confirms model stability across temporal folds (R^2 : 0.523-0.585).

© 2025 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Peer-review under responsibility of the scientific committee of the International Conference on Machine Learning and Data Engineering.

Keywords: Financial forecasting, stock market prediction, multi-factor analysis, technical indicators, financial news sentiment, natural language processing, machine learning, EGARCH, LSTM, risk assessment, explainable AI, FinReport.

Mukesh Kumar

E-mail address: mukesh.kumarfcs@kiit.ac.in

1877-0509 © 2025 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

E-mail address: mukesh.kumarfcs@kiit.ac.in

^{*} Mukesh Kumar

Peer-review under responsibility of the scientific committee of the International Conference on Machine Learning and Data Engineering.

1. Introduction

Financial markets exhibit unprecedented volatility, with emerging markets like the Shanghai Stock Exchange showing daily volatility of 1.7% versus 0.8-1.2% for developed markets. Traditional econometric models such as ARIMA [1] struggle to capture sentiment-driven price movements and complex market interdependencies [2]. The efficient market hypothesis faces challenges from documented predictable patterns and behavioral factors.

We propose FinReport, a multi-factor framework integrating historical stock data with financial news via machine learning and NLP techniques [3]. Unlike traditional quantitative approaches, FinReport leverages structured numerical and unstructured textual data for enhanced prediction accuracy. The framework computes six factors (market, size, valuation, profitability, investment, and news effect) for explainable predictions with EGARCH-based risk assessment [4].

Experimental results on Chinese A-share stocks (2018-2021) [5] demonstrate 15% RMSE reduction, 12% MAE reduction versus LSTM baselines [6], and 20% Sharpe ratio improvement. This work bridges traditional econometric methods with explainable AI [7, 8], advancing computational finance through interpretable sentiment-quantitative integration.

Paper Organization: Section 2 reviews related literature. Section 3 presents the FinReport system architecture. Section 4 details algorithmic implementations. Section 5 provides experimental results. Section 6 concludes with limitations and future guidance.

2. Literature Review

Early forecasting methods like ARIMA [1] underperformed with RMSE exceeding 0.05 during volatile periods. Multi-factor models by Fama and French [2] improved performance but ignored qualitative inputs. LSTM networks [6] capture long-term dependencies achieving $R^2 \approx 0.45$ on financial datasets. Recent work integrates financial news sentiment using FinBERT [9] and NLP frameworks [10], showing 12% prediction improvement.

Comparative Performance: Bao et al. [3] reported $R^2 = 0.42$ using stacked autoencoders. Nelson's EGARCH [4] achieved volatility prediction accuracy of 78%. Tetlock's sentiment analysis [7] demonstrated 15% return predictability. Our FinReport framework achieves superior $R^2 = 0.5515$, representing 31% improvement over LSTM baselines and 15% over recent sentiment-enhanced models.

However, traditional approaches lack interpretability [8], motivating explainable AI frameworks combining structured numerical with unstructured text analysis. The literature increasingly advocates for explainable models that combine structured numerical data with unstructured text analysis, setting the stage for FinReport's factor-based approach to transparent and robust financial forecasting.

3. System Model And Proposed Mechanism

FinReport integrates traditional multi-factor models [2, 11] with real-time news sentiment analysis [7], extending established financial theory to capture behavioral market dynamics [12]. The system employs a modular design with five interconnected components: (1) Data Integration, (2) News Factor Extraction, (3) Return Forecasting, (4) Risk Assessment, and (5) Dynamic Report Generation [6].

3.1. Data Integration Module

Processes multi-modal financial data combining structured metrics with unstructured news text [13]:

• **Historical Data:** Price, volume, market capitalization, and 50+ technical indicators from Chinese A-shares (2018-2021) [5].

Figure 1: Proposed FinReport System Architecture: Multi-modal data integration framework combining historical stock data, technical indicators, and real-time news sentiment through LSTM-based forecasting with EGARCH risk assessment

- News Processing: Bilingual NLP pipelines for English/Chinese financial news [10].
- Data Preprocessing: Z-score normalization, outlier winsorization, and missing value imputation [6].

3.2. News Factor Extraction Module

Converts unstructured news into quantifiable sentiment metrics through three integrated components [7]:

- FinBERT Configuration: Pre-trained yiyanghkust/finbert-tone with 128-token max length, sentiment scores computed as $(p_{pos} p_{neg}) \times \tanh(2.0)$ [9].
- **Bilingual NLP Pipeline:** English-Chinese processing with financial lexicons (40+ positive, 35+ negative terms), 3x keyword weight multiplier [10].
- Event Extraction: AllenNLP SRL model for financial events, bounded values [-2.0, +2.0] with template generation [7].
- Chinese Market Adaptation: Dual-language sentiment analysis with Chinese financial lexicons, 83.2% accuracy [5].

3.3. Return Forecasting Module

Implements deep learning-enhanced multi-factor model using LSTM architecture with six factors capturing cross-sectional return variation [2, 13]:

- LSTM Architecture: 3-layer network, 128 hidden units, 0.2 dropout, sequence length 10, Monte Carlo dropout for uncertainty [6].
- **Hyperparameter Optimization:** TimeSeriesSplit grid search (243 combinations), optimal: lr=0.001, hidden=128, 3 layers [14].
- Multi-Factor Integration: Six factors with technical indicators: Market (volatility-based, 1.5x amplification), Size (cap-quartiles, 2.0x small-cap), Valuation (B/M, P/E ratios), Profitability (ROA/ROE, 1.5x loss penalty), Investment (M&A detection), News Effect (FinBERT, 2.0x amplification) [2, 13, 7].
- Uncertainty Quantification: Monte Carlo dropout (10 iterations) provides prediction confidence intervals with $\mu = \frac{1}{N} \sum_{i=1}^{N} \hat{y}_i$ and $\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i \mu)^2}$ [14].

3.4. Risk Assessment Module

Implements multi-dimensional risk framework addressing traditional variance-based limitations [15, 16]. The framework incorporates EGARCH modeling for asymmetric volatility responses [4], maximum drawdown calculations following established portfolio risk metrics, and Conditional Value at Risk (CVaR) for tail risk assessment [16]. Risk classifications range from favorable to substantial based on integrated scoring combining volatility, drawdown, and return components.

3.5. Factor Enhancement and Overall Trend Calculation

Combines individual factor signals through multi-stage amplification and weighted aggregation addressing scale heterogeneity [13, 2]. The weighting scheme assigns highest priority to event factors (0.25) due to strong short-term predictive power [12], followed by investment factors (0.20) for medium-term impact, with balanced weighting for market, size, and profitability factors following established multi-factor model conventions [2, 11].

- Enhancement Process: The enhancement methodology employs multiplicative amplification with trend-based adjustments when factors align with dominant market trends. Final processing includes bounded clamping and stochastic variation to ensure robustness while maintaining signal integrity.
- Weighted Aggregation: The trend score computation follows established factor model aggregation with positive bias reflecting long-term equity market upward drift. Classification thresholds distinguish between strongly positive, positive, neutral, negative, and strongly negative market conditions based on empirical distribution analysis.

3.6. Dynamic Report Generation Module

Translates quantitative analyses into actionable insights using hierarchical information architecture, cultural adaptation (red=prosperity, green=decline for Chinese markets), precision control (one decimal), natural language generation with template-based explanations, and multi-stakeholder accessibility [8, 13].

4. Algorithm

4.1. Return Forecast Calculation

The return forecast is computed using a weighted combination of multiple factors [2].

Factor Weight Rationale: Event factor (0.25) receives highest weight due to immediate market impact; Investment factor (0.20) for medium-term effects; Market/Size/Profitability factors (0.15 each) for balanced exposure; Valuation/News factors (0.10 each) for supplementary signals. Weights empirically optimized via cross-validation performance.

$$\begin{aligned} \textbf{predicted_return} &= 0.10 \times \textbf{market_factor} + 0.15 \times \textbf{size_factor} + 0.10 \times \textbf{valuation_factor} \\ &+ 0.10 \times \textbf{profitability_factor} + 0.20 \times \textbf{investment_factor} \\ &+ 0.10 \times \textbf{news_effect_factor} + 0.25 \times \textbf{event_factor} + 0.15 \end{aligned} \tag{1}$$

Each factor employs regime-adaptive amplification [11]:

- Market Factor [2]: Volatility thresholds $\sigma > 4.0\%$ (high), 2.5 4.0% (moderate), < 2.5% (low) with impact ranges [-3.0, -0.5], [-1.5, 0.0], [0.2, 1.8] [4].
- **Size Factor**: Small-cap amplification 2.0x (high volatility) vs 1.0x (low volatility).

- News Effect Factor [7]: Base 2.0x amplification with regime modulation (1.2x high, 1.8x low volatility).
- Investment Factor [12]: Large deals (>1B yuan) receive 1.5x (low volatility) vs 0.8x (high volatility) amplification.

4.2. Risk Assessment Methodology

Risk assessment combines volatility classification, weighted scoring using Equation (2), and metrics including EGARCH-based volatility (Equation 3), Maximum Drawdown, CVaR, and Risk-Adjusted Ratio as detailed in Algorithm 1, Algorithm 2, and Algorithm 3 [15, 16].

$$risk_score = (0.4 \times vol_score) + (0.25 \times drawdown_score) + (0.15 \times var_score) + (0.2 \times return_risk)$$
(2)

EGARCH volatility modeling [4]:

$$\ln(\sigma_t^2) = \omega + \beta \ln(\sigma_{t-1}^2) + \alpha \frac{|r_{t-1}|}{\sigma_{t-1}} + \gamma \frac{r_{t-1}}{\sigma_{t-1}}$$
(3)

Value at Risk (VaR) is calculated using the 95% confidence level based on historical simulation method [15].

- Implementation Details: All algorithms implemented in Python using NumPy for numerical computation and PyTorch for deep learning components. The system processes data in batch format with configurable sequence windows, employing efficient tensor operations for GPU acceleration when available.
- Computational Complexity: LSTM forward pass: $O(T \cdot B \cdot H^2)$ where T is sequence length, B is batch size, H is hidden units. Factor computation: $O(N \cdot F)$ for N stocks and F factors. Overall training complexity: $O(E \cdot T \cdot B \cdot H^2)$ for E epochs.

Algorithm 1 - Maximum Drawdown Calculation: This algorithm computes the maximum peak-to-trough decline in portfolio value over the investment period. Maximum Drawdown is a critical risk metric that measures the worst-case scenario for portfolio performance, indicating the maximum loss an investor would have experienced from the highest portfolio value to the lowest subsequent value. The algorithm iteratively tracks cumulative returns, maintains running maximum values, and calculates drawdowns at each time step to identify the maximum decline period.

Algorithm 1 Maximum Drawdown

```
Require: Returns series R of length n Ensure: Maximum Drawdown (MDD)

1: Initialize C \leftarrow 1, M \leftarrow 1, D \leftarrow 0

2: for t = 1 to n do

3: C \leftarrow C \times (1 + R_t), M \leftarrow \max(M, C)

4: D_t \leftarrow \frac{C-M}{M}, D \leftarrow \min(D, D_t)

5: end for

6: return D
```

Data Preprocessing: Z-score normalization, forward-fill imputation, technical indicators (RSI-14, BIAS-6,12,24), 3-sigma outlier winsorization at 1st/99th percentiles [6].

Algorithm 2 - Conditional Value at Risk (CVaR): This algorithm calculates the expected loss in the worst-case scenarios beyond the Value at Risk threshold. CVaR, also known as Expected Shortfall, provides a more comprehensive risk measure than VaR by considering the magnitude of extreme losses rather than just their probability. The

algorithm sorts historical returns, identifies the VaR threshold at the specified confidence level, and computes the expected value of all losses exceeding this threshold, providing insights into tail risk exposure [16].

Algorithm 2 Conditional Value at Risk (CVaR)

Require: Returns series R of length n, confidence level α

Ensure: Conditional Value at Risk (CVaR)

- 1: **Sort** *R* in ascending order
- 2: Compute VaR: $V \leftarrow$ percentile of R at $100\alpha\%$
- 3: **Select** all losses where $R_t \leq V$, **Compute** CVaR as mean
- 4: return CVaR

Algorithm 3 - Risk-Adjusted Performance Ratio: This algorithm computes the risk-adjusted return metric that normalizes expected returns by their associated volatility, similar to the Sharpe ratio concept. The risk-adjusted ratio enables comparison of investment performance across different volatility regimes and helps identify strategies that generate superior returns per unit of risk. This metric is essential for portfolio optimization and performance evaluation in financial risk management.

Algorithm 3 Risk-Adjusted Ratio

```
Require: Expected return E_R, volatility \sigma
Ensure: Risk-adjusted return ratio
 1: if \sigma \neq 0 then
           R_{\text{adj}} \leftarrow \frac{E_R}{\sigma}
 2:
 3: else
 4:
           R_{\text{adj}} \leftarrow \text{NaN}
 5: end if
 6: return R<sub>adi</sub>
```

4.3. Overall Trend Classification

Overall trend determination uses weighted factor aggregation as shown in Algorithm 4 [11]. This algorithm integrates all computed factors with their respective weights to determine the overall market sentiment and trend direction. The trend classification provides a comprehensive market outlook by combining fundamental, technical, and sentiment-based factors into a single interpretable metric.

```
Algorithm 4 Overall Market Trend
Require: Factor values F
Ensure: Market trend classification
 1: Define weights W: market(0.15), size(0.15), valuation(0.10), profitability(0.15), investment(0.20), news(0.10), event(0.15)
 2: S_w \leftarrow 0, W_s \leftarrow 0
 3: for each f \in W do
 4:
        if f \in F and F[f] \neq None then
 5:
            S_w \leftarrow S_w + F[f] \cdot W[f], W_s \leftarrow W_s + W[f]
 6:
        end if
 7: end for
 8: if 0 < W_s < 1 then
        S_w \leftarrow S_w/W_s
10: end if
11: S_w \leftarrow S_w + 0.15
                                                                                                                                                ▶ Positive bias
12: return classification: \geq 0.6: "Strongly Positive", \geq 0.15: "Positive", \geq -0.15: "Neutral", \geq -0.6: "Negative", else: "Strongly Negative"
```

5. Result Analysis

5.1. Dataset and Implementation Configuration

Stock Selection Methodology: All 75 available stocks used to avoid selection bias, with only minimum data requirement filter (>10 observations) for LSTM compatibility [5].

The evaluation utilized a Chinese A-share dataset covering 75 stocks from Shanghai and Shenzhen exchanges (January 2018 - December 2021). The dataset included 59 feature columns encompassing price data, technical indicators (RSI, BIAS, MFI, CCI), and fundamental factors, complemented by 42,000+ financial news items from 7 major Chinese sources. After preprocessing, 23,567 samples were used for modeling.

- **Dataset Scope:** 4-year timeframe captures diverse market conditions including COVID-19 impacts, providing sufficient temporal variation for robust model validation.
- **Technical Implementation:** PyTorch LSTM (128 units, 3 layers, 0.2 dropout), Adam optimizer (lr=0.001), early stopping (23 epochs average) [14].
- FinBERT Implementation: yiyanghkust/finbert-tone, 83.2% accuracy, 128-token max length, bilingual processing [9].
- Risk Model Configuration: EGARCH(1,1) with parameters $\omega = -0.012$, $\alpha = 0.149$, $\gamma = -0.087$, $\beta = 0.987$. CVaR at 5% level [4].

Figure 2: LSTM Training Convergence: Rapid initial learning with validation loss stabilization after 23 epochs average, demonstrating effective hyperparameter configuration and early stopping mechanism

5.2. Performance Results

• Cross-Validation Results: TimeSeriesSplit validation (3 folds) shows consistent performance: fold-1 $R^2 = 0.523$, fold-2 $R^2 = 0.547$, fold-3 $R^2 = 0.585$, confirming model stability. 60/40 temporal split prevents data leakage [14].

• **Performance Evaluation:** FinReport demonstrates superior performance with mean RMSE of 0.2546 and MAE of 0.2433 across the 75-stock dataset. The model achieves an overall R² of 0.5515, indicating the framework explains 55.15% of return variance. Monte Carlo dropout inference provides prediction uncertainty quantification with confidence intervals for risk assessment [6].

Metric	Value	Interpretation
MSE	0.1104	Relatively low mean squared error indicates limited deviation
		between predicted and actual values, reflecting precise overall
		performance.
RMSE	0.2546	Root mean squared error suggests predictions vary by 25% from
		actual values on average, within acceptable range for financial
		return modeling.
MAE	0.2433	Low mean absolute error confirms consistent and moderate pre-
R^2	0.5515	diction deviation across observations. Model explains 55.15% of variance in actual stock returns, re-
		flecting moderately strong explanatory power in noisy financial
Correlation	0.948	domain. Very high correlation between predicted and actual returns con-
		firms strong linear alignment and model reliability.

Table 1: Model Performance Metrics and Interpretations

The error distribution analysis reveals a slight positive bias, with the mean prediction error recorded at 0.109. This suggests a minor tendency to slightly overestimate returns. Notably, approximately 76% of prediction errors fall within the +/-0.3 range, indicating consistent performance and general stability across most stock instances.

In practical terms, these results demonstrate the model's utility for real-world applications such as portfolio allocation, trend forecasting, and quantitative screening. Despite market noise and inherent volatility, the model maintains a high degree of alignment with actual movements, validating its predictive structure and feature selection.

5.3. Stock-Specific Analysis

Performance varied significantly across 70 stocks, with exceptional performers achieving $R^2 > 0.98$:

Stock	MSE	RMSE	MAE	\mathbb{R}^2
000333.SZ	0.004	0.061	0.051	0.994
600519.SH	0.005	0.070	0.070	0.992
002352.SZ	0.005	0.069	0.061	0.990
601669.SH	0.012	0.110	0.108	0.988
002466.SZ	0.019	0.139	0.118	0.981

Table 2: Top Performing Stocks ($R^2 > 0.98$)

- Hyperparameter Optimization Results: Systematic grid search across 243 parameter combinations using TimeSeriesSplit validation (3 folds) identified optimal configuration through 15.6 hours computation on RTX 4080 GPU. Learning rate sensitivity analysis revealed optimal range [0.0005, 0.001] with performance degradation beyond 0.002. Hidden size scaling showed diminishing returns above 128 units. Layer depth optimization demonstrated 3-layer configuration optimality, with 4+ layers showing overfitting tendencies.
- Economic Significance Analysis: Risk-adjusted performance demonstrates 20% Sharpe ratio improvement (0.342 vs 0.285). EGARCH volatility modeling with CVaR of -8.47% and Maximum Drawdown of -12.47% indicates superior portfolio protection [16, 15].
- Confidence Assessment: Monte Carlo dropout (10 iterations) provides uncertainty quantification. Cross-stock analysis shows 5 exceptional performers (R² > 0.98, 7.1%) and market cap correlation (r=0.78, p<0.001).

The analysis reveals 5 stocks achieving exceptional performance with $R^2 > 0.98$, representing 7.1% of the total sample. These top performers demonstrate remarkably low prediction errors, with MSE values below 0.02 and RMSE below 0.14 [3]. The standout performer 000333.SZ (Midea Group) achieved near-perfect prediction accuracy with $R^2 = 0.994$ and MSE = 0.004, indicating the model captures 99.4% of the stock's return variance through effective factor combination and sentiment integration.

Figure 3: Model Performance Visualization: (Top) Predicted vs Actual returns scatter plot showing strong linear correlation (r=0.948); (Bottom) Error distribution histogram revealing slight positive bias with 76% errors within ±0.3 range

As shown in Fig. 3, the predictions demonstrate a strong linear relationship with actual values (r = 0.948), with most data points clustering along the diagonal perfect prediction line. The error distribution histogram reveals a slight positive bias (mean error 0.109), but 76% of errors fall within the +/-0.3 range, confirming the model's consistent accuracy across varied market conditions.

MSE \mathbb{R}^2 Stock RMSE MAE Sector 601727.SH 1.246 1.116 1.052 -3.985 Industrial 002385.SZ 1.297 1.139 1.139 N/A Agriculture 600340.SH 0.101 0.318 0.318 N/A Real Estate

Table 3: Poorly Performing Prediction Samples

5.4. Sector-Based Analysis

To examine sector-specific performance patterns, stocks were categorized into five primary sectors: Technology, Consumer, Financial, Industrial, and Real Estate. This classification followed standard Global Industry Classification Standard (GICS) sector definitions, with occasional adjustments for China-specific market characteristics. For each sector, performance metrics were aggregated using both simple averages and weighted averages based on market capitalization to avoid distortion from outlier stocks.

R² MSE RMSE MAE Sector Representative Stocks Technology 0.037 0.181 0.173 0.837 300750.SZ, 000063.SZ Consumer 0.023 0.136 0.129 0.863 600519.SH, 000333.SZ 0.019 0.121 0.102 0.815 601628.SH, 601318.SH Financial Industrial 0.068 0.243 0.229 0.681 002352.SZ, 601669.SH Real Estate 0.106 0.316 0.297 0.591 600340.SH, 000002.SZ

Table 4: Sector-wise Average Performance Metrics

- **Statistical Validation:** ANOVA testing (p < 0.01) with Tukey HSD post-hoc analysis confirms significant sector performance differences, with Consumer and Technology sectors showing superior predictability [1, 17].
- Data Leakage Prevention: Chronological splitting with training (2018-2020) and testing (2021) periods. Normalization parameters (μ, σ) computed only on training data [6].

This sector analysis reveals that Consumer and Technology sectors demonstrate superior predictability, likely due to more stable demand and clearer growth trajectories. As evident from the distribution of colored points in Fig. 3 (top), stocks from Consumer and Technology sectors (shown in blue and green) cluster more tightly around the perfect prediction line compared to Real Estate stocks (shown in orange).

Table 5: Market Capitalization Impact on Prediction Accuracy

Market Cap Tier	MSE	RMSE	MAE	R ²
Ultra Large	0.006	0.076	0.071	0.945
Large	0.025	0.149	0.142	0.853
Medium	0.058	0.229	0.213	0.704
Small	0.112	0.319	0.298	0.511
Micro	0.238	0.459	0.421	0.298

5.5. Factor Influence Analysis

Standardized regression analysis quantified relative factor impacts across all stocks:

Table 6: Factor Influence Analysis

Factor	Avg Impact	Std Dev	Observation
Investment	+3.64	1.87	Strong positive indicator
Market	+0.76	3.20	Variable influence
Size	-0.43	3.72	Highly variable impact
Valuation	-0.07	0.86	Minimal overall effect
Profitability	-1.29	3.38	Moderate negative association
News Effect	-4.86	0.28	Strongly negative impact

- Factor Influence Validation: Standardized factor analysis across all stocks reveals consistent patterns: Investment Factor demonstrates strongest positive influence (+3.64±1.87), while News Effect Factor shows remarkable consistency (-4.86±0.28), indicating strong contrarian market behavior where negative sentiment precedes positive returns [7]. Factor stability analysis confirms robust performance across different market conditions.
- Market Regime Performance Analysis: Performance varies across volatility regimes: high (>4.0%, 23% days) RMSE 0.387/R² 0.421, moderate (2.5-4.0%, 41% days) RMSE 0.289/R² 0.634, low (<2.5%, 36% days) RMSE 0.182/R² 0.742. Adaptive amplification ranges from 1.5x defensive to 1.8x aggressive positioning [4].
- Model Robustness: Error distribution analysis shows 76% of prediction errors within ±0.3 range with slight positive bias (mean error 0.109). Performance varies systematically across market capitalization tiers, with ultra-large-cap stocks achieving superior predictability (R² = 0.945) compared to micro-cap stocks (R² = 0.298), validating the model's adaptive capability across different stock characteristics and market regimes.

• **Regime-Specific Error Distribution:** High volatility periods show 31 stocks (41.3%) with MSE > 0.100, moderate volatility demonstrates 46 stocks (61.3%) in range [0.005, 0.100], while low volatility enables 38 stocks (50.7%) achieving MSE < 0.005. Consistent outliers 002385.SZ (MSE = 1.297) and 601727.SH (MSE = 1.246) indicate structural prediction challenges across all regimes.

6. Conclusion

FinReport successfully integrates multi-factor models [2, 11] with news sentiment analysis [7, 9] to deliver explainable stock forecasts. The system achieves $R^2 = 0.5515$ with 15% RMSE reduction over LSTM baselines [6], demonstrating strong predictive capability. News sentiment analysis reveals consistent contrarian effects in Chinese markets, supporting behavioral finance theories [12]. The framework's risk assessment integration [4, 16] and explainable AI approach [8] advance computational finance for emerging markets.

6.1. Limitations and Generalizability

- Market Constraints: Results specific to Chinese A-shares (2018-2021) may not generalize to developed markets with different volatility patterns, regulatory frameworks, or sentiment dynamics. Cultural context in Chinese news processing limits cross-cultural applicability.
- **Temporal Scope:** 4-year training period captures specific market regimes; model performance may degrade during unprecedented events beyond training distribution. Cross-validation on 3 folds confirms robustness within studied timeframe but cannot guarantee future stability.
- **Technical Limitations:** Dataset constraints to 75 stocks introduce selection bias. Missing R² values (29 stocks, 41.4%) indicate systematic prediction challenges requiring investigation.

6.2. Future Validation Guidance

Validation across different markets requires: (1) adaptation of bilingual NLP pipeline for target languages, (2) recalibration of factor weights via local cross-validation, (3) cultural adjustment of sentiment lexicons, (4) regulatory framework consideration for market-specific factors. Recommended validation periods: minimum 3 years with diverse market conditions including crisis periods for robust generalization assessment.

References

- [1] G. E. P. Box, G. M. Jenkins, Time series analysis: Forecasting and control, San Francisco: Holden-Day (1970).
- [2] E. F. Fama, K. R. French, Common risk factors in the returns on stocks and bonds, Journal of Financial Economics 33 (1) (1993) 3-56.
- [3] W. Bao, J. Yue, Y. Rao, A deep learning framework for financial time series using stacked autoencoders and long-short term memory, PLoS ONE 12 (7) (2017) e0180944.
- [4] D. B. Nelson, Conditional heteroskedasticity in asset returns: A new approach, Econometrica 59 (2) (1991) 347–370.
- [5] Kanishk1420, Finreport: Explainable stock earnings forecasting via news factor chinese a-share stock dataset, Available at: https://github.com/Kanishk1420/FinReport-Explainable-Stock-Earnings-Forecasting-via-News-Factor, dataset contains historical stock data (2018-2021), financial news, and pre-computed technical indicators for Chinese A-share stocks (2025).
- [6] T. Fischer, C. Krauss, Deep learning with long short-term memory networks for financial market predictions, European Journal of Operational Research 270 (2) (2018) 654–669.
- [7] P. C. Tetlock, Giving content to investor sentiment: The role of media in the stock market, The Journal of Finance 62 (3) (2007) 1139–1168.
- [8] M. T. Ribeiro, S. Singh, C. Guestrin, Why should i trust you?: Explaining the predictions of any classifier, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016) 1135–1144.
- [9] D. Araci, Finbert: Financial sentiment analysis with pre-trained language models, CoRR abs/1908.10063 (2019).
- [10] T. Loughran, B. McDonald, When is a liability not a liability? textual analysis, dictionaries, and 10-ks, The Journal of Finance 66 (1) (2011) 35–65.
- [11] M. M. Carhart, On persistence in mutual fund performance, The Journal of Finance 52 (1) (1997) 57–82.
- [12] K. Daniel, D. Hirshleifer, A. Subrahmanyam, Investor psychology and security market under-and overreactions, The Journal of Finance 53 (6) (1998) 1839–1885.
- [13] C. R. Harvey, Y. Liu, H. Zhu, ... and the cross-section of expected returns, The Review of Financial Studies 29 (1) (2016) 5-68.
- [14] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv:1412.6980 (2015).

- [15] P. Jorion, Value at Risk: The New Benchmark for Managing Financial Risk, McGraw-Hill, 2001.
- [16] R. T. Rockafellar, S. Uryasev, Optimization of conditional value-at-risk, Journal of Risk 2 (2000) 21–42.
- [17] J. W. Tukey, Comparing individual means in the analysis of variance, Biometrics 5 (2) (1949) 99–114.