

Caracterización ambiental de los robledales de Quercus pyrenaica Willd. de Sierra Nevada

Pérez-Luque, A.J.; Bonet, F.J.; Benito, B.M. & Zamora, R.

Evidencias científicas cambio global

(IPCC, 2007; Thuiller et al. 2005; Gordo & Sanz, 2010; Tausch, 2008; Hughes, 2000; etc)

Impactos del Cambio Global

+ Regiones Mediterráneas (McCarthy et al 2002)

Significativos en ecosistemas forestales (Regato, 2008)

Áreas de montaña

Sistemas de alerta temprana de los impactos del cambio global

(Spehn & Körner, 2009; Kohler & Maselli, 2009)

Necesidad de estudios

Globales y locales

Evidencias científicas cambio global

(IPCC, 2007; Thuiller et al. 2005; Gordo & Sanz, 2010; Tausch, 2008; Hughes, 2000; etc)

Impactos del Cambio Global

+ Regiones Mediterráneas (McCarthy et al 2002)

Significativos en ecosistemas forestales (Regato, 2008)

Áreas de montaña

Sistemas de alerta temprana de los impactos del cambio global

Necesidad de estudios

Globales y locales

Proyecto MIGRAME

(Spehn & Körner, 2009; Kohler & Maselli, 2009)

5. Conclusiones

Cambio global, Migración altitudinal y colonización de hábitats degradados en montañas mediterráneas

S2- P47. Zamora, R.J.; Pérez-Luque, A.J.; Benito, B.M.; Bonet, F.J.; Navarro, I.; Pérez-Pérez, R.; Hódar, J.A.; Matías, L.

Hipótesis 2

El abandono de los cultivos de montaña y los aclareos en las repoblaciones debe estar favoreciendo la colonización de la vegetación nativa que antaño ocupaba esos hábitats

Hipótesis 1

Los robledales y enebrales deben estar ascendiendo altitudinalmente como consecuencia del incremento de temperaturas

Robledales de Quercus pyrenaica

Sierra Nevada

- **Ecosistemas muy frágiles**(Melendo & Valle, 1996)
- Alto impacto humano (Camacho-Olmedo et al, 2002; Jiménez-Olivencia, 1991)
- Límite meridional de su distribución
- Estado de debilitamiento general
- Predicciones (Benito, 2008; 2009; Benito et al 2011)
 - Disminución de su área de ocupación
 - Migración altitudinal

¿Podemos considerar los robledales de Sierra Nevada como una unidad homogénea respecto a sus variables ambientales?

¿responderán los robledales como una entidad homogénea frente a los posibles cambios futuros?

Caracterización ambiental robledales de *Q. pyrenaica* en Sierra Nevada

¿Podemos considerar los robledales de Sierra Nevada como una unidad homogénea respecto a sus variables ambientales?

¿responderán los robledales como una entidad homogénea frente a los posibles cambios futuros?

Caracterización ambiental robledales de *Q. pyrenaica* en Sierra Nevada

- i. Definir el hábitat óptimo y marginal
- ii. Identificar que variables ambientales explican la variabilidad de los robledales
- iii. Identificar grupos de poblaciones en función de las variables ambientales

¿Existen diferencias entre los grupos para las variables ambientales y forestales?

¿Existe un agrupamiento basándonos en la composición florística de las poblaciones? ¿Se corresponde este agrupamiento con el obtenido para las variables ambientales?

i. Delimitación de las poblaciones de robledal en Sierra Nevada

Fuentes:

- Mapa de vegetación de Sierra Nevada 1:10.000 (Molero et al 2001)
- Mapa de Ecosistemas de Sierra Nevada

(Observatorio de Cambio Global de Sierra Nevada)

Ortofotografía B/N y color (Junta de Andalucía, 2004; 2005)

SIG

Fotointerpretación en detalle

(Navarro-González, 2010; Navarro-González & Bonet García, 2010)

ii. Conjunto de datos (I): variables ambientales

Fuentes:

Modelo Digital de Elevaciones (Junta Andalucía, 2005) Capas temáticas (REDIAM)

Mapas climáticos alta Resolución (Observatorio Cambio Global Sierra Nevada)

Variables

- Topográficas:
 - Elevación
 - Pendiente
 - Orientación: gradientes E-O, S-N; Orientación
 - Radiación (estacional)
 - Cantidad de radiación
 - Horas de sol
 - Exposición topográfica
- Hidrográficas:
 - Índice de Acumulación de sedimentos
 - Índice topográfico de Humedad
- Climáticas (promedios históricos):
 - Precipitación: anual y estacional
 - Temperaturas mínimas y máximas: anual y estacional
- Índice de Intervención Humana
- Distancia al mar

25 Km

ii. Conjunto de datos (II): atributos forestales

Inventario Forestal PN Sierra Nevada (MMA, 2005)

32 parcelas

Atributos forestales

- Composición:
 - Diversidad (Shannon-Weiner)
 - Riqueza

Estructura:

- Fracción de Cabida Cubierta: total, arbórea, arbustiva, herbácea
- Índice diversidad estructural
- Altura, densidad, volumen, área basal

• Función:

Regeneración: total, roble, encina

1. Definición hábitat óptimo y marginal:

iii. Ánalisis estadístico

Análisis descriptivo univariante

2. Identificación variables ambientales que explican la variabilidad de los robledales

Análisis componentes Principales (ACP):

- **Exploratorio:**
 - Escalamiento de los datos
 - > 75 % correlaciones (r Pearson) significativas (p-valor < 0.01)
 - Adecuación muestral (Estadístico KM0=0.7138)
- Componentes a retener: criterio varianza.
- *Correlación variable-componente* > |0.7|
- 3. ¿Existen diferentes grupos de poblaciones en función de las variables ambientales?

Análisis discriminante

4. ¿Existen diferencias entre los grupos para las variables ambientales y forestales? Análisis de la varianza Test no paramétrico Kruskal-Wallis

- Normalidad (Shapiro-Wilk; Kolmogorov-Smirnov)
- Diferencias grupo a grupo: *U* Mann-Whitney

- Homocedasticidad (test Levene)
- Diferencias significativas (post-hoc): LSD Tukey
- 5. ¿Existe un agrupamiento basándonos en la composición florística de las poblaciones?

Escalamiento multidimensional no métrico (NMDS)

- **Distancia Bray-Curtis (Sorensen)**
- Superficies de respuesta de variables ambientales

1. Introducció

1. Hábitat óptimo y marginal

- Atributos forestales:
 - Altos coeficientes de variación (> 80 %)
 - < heterogeneidad en composición
- Variables ambientales
 - Bajos coeficientes de variación (*índice acumulación hídrica, cv=530%)
 - > heterogeneidad topográficas

2. Identificación variables ambientales que explican la variabilidad de los robledales

PC1:

- radiación, precipitacion
- + dist. mar, gradiente_SU_NO Componente Topográfico

PC2:

- temperaturas (max, mín) Componente Energético

PC3:

- + precipitación,
- temp. min verano

Componente Precipitación

PC1(0.32)

3. ¿Podemos agrupar las poblaciones por sus características ambientales?

Función Autovalor % de Varianza acumulado Canónica 1 149.59 68.2 68.2 .997 2 46.05 21.0 89.2 .989 3 18.35 8.4 97.6 .974 4 3.58 1.6 99.2 .884 5 1.01 0.5 99.7 .709 6 0.552 0.3 99.9 596				% Varianza	Correlación
2 46.05 21.0 89.2 .989 3 18.35 8.4 97.6 .974 4 3.58 1.6 99.2 .884 5 1.01 0.5 99.7 .709	Función	Autovalor	% de Varianza	acumulado	Canónica
3 18.35 8.4 97.6 .974 4 3.58 1.6 99.2 .884 5 1.01 0.5 99.7 .709	1	149.59	68.2	68.2	.997
4 3.58 1.6 99.2 .884 5 1.01 0.5 99.7 .709	2	46.05	21.0	89.2	.989
5 1.01 0.5 99.7 .709	3	18.35	8.4	97.6	.974
	4	3.58	1.6	99.2	.884
6 0.552 0.3 99.9 596	5	1.01	0.5	99.7	.709
0.002	6	0.552	0.3	99.9	.596
7 0.212 0.1 100.0 .418	7	0.212	0.1	100.0	.418

Tabla 3.5 Autovalores y porcentaje de varianza explicado por cada función discriminante. Se incluye el valor de la correlación canónica

Contraste de las Funciones	λ de Wilkis	χ^2	gl.	p-valor
1 a la 7	$4.28 \cdot e^{-07}$	35719.12	182	0
2 a la 7	$6.33 \cdot e^{-05}$	23518.70	150	0
3 a la 7	.003	14148.80	120	0
4 a la 7	.058	6940.78	92	0
5 a la 7	.264	3236.94	66	0
6 a la 7	.532	1537.32	42	< 0.00001
7	.825	468.15	20	< 0.00001

Tabla 3.6 Contraste de Lambda de Wilkis de las funciones discriminantes

97 % variabilidad recogidas por las tres primeras funciones

LDA1:

- precipitación (otoño, anual, inv) // + dist. mar

LDA2:

radiación solar // + topográficas

LDA3:

temp. máximas // + influencia humana

Correlaciones intra-grupo combinadas entre var. discriminantes y funciones discriminantes

4. ¿Diferencias entre los grupos para las variables ambientales y forestales?

			Grupos (media \pm SD)					
	χ^2	р	Α		В		С	
hidro_tci	60.738	< 0.001	4.90± 0.08	a	5.08 ± 0.05	b	5.40 ± 0.05	c
hidro_acum	66.219	< 0.001	345.35 ± 97.91	a	175.73 ± 32.95	b	169.57 ± 21.93	c
tp_elev	32.383	< 0.001	1740.05 ± 6.52	a	$1669.84 \pm\ 6.22$	b	1710.33± 4.20	c
tp_pend	568.135	< 0.001	26.10 ± 0.33	a	29.93 ± 0.28	b	20.32 ± 0.25	c
tp_expo_1000	201.903	< 0.001	-22.52 ± 1.73		-22.46 ± 1.64		-1.25 ± 0.75	a
tp_or	656.798	< 0.001	160.25 ± 5.50	a	113.33 ± 2.33	b	262.06 ± 3.14	c
tp_es_oe	442.277	< 0.001	40.37 ± 1.47	a	54.36 ± 0.84	b	28.34 ± 0.58	c
tp_su_no	1363.014	< 0.001	62.33 ± 0.93	a	73.73 ± 0.66	b	27.76 ± 0.54	c
tp_rsd_i	1301.216	< 0.001	1489.98 ± 50.78	a	770.18 ± 31.99	b	$3013.85 \pm\ 25.28$	c
tp_rsd_p	1242.793	< 0.001	3056.60 ± 59.95	a	2140.28 ± 41.68	b	$4619.39 \!\pm\!\ 26.39$	c
tp_rsd_v	1064.834	< 0.001	6835.85 ± 29.69	a	$6352.91 \pm\ 25.49$	b	7419.43 ± 14.46	c
tp_rsd_o	1238.903	< 0.001	5854.49 ± 40.75	a	5205.08 ± 30.85	b	6808.90 ± 17.59	c
tp_rsh_i	1565.276	0	4.77 ± 0.10	a	2.98 ± 0.08	b	8.10 ± 0.05	c
tp_rsh_p	125.570	< 0.001	7.42 ± 0.06	a	6.47 ± 0.06	b	9.13 ± 0.04	c
tp_rsh_v	2.364	.306	11.49 ± 0.05		11.37 ± 0.04		11.58 ± 0.03	
tp_rsh_o	117.907	< 0.001	10.44 ± 0.05		10.37 ± 0.04		11.01 ± 0.03	a
hu_2000_max	983.670	< 0.001	0.00 ± 0.00	a	6.95 ± 0.38	b	19.53 ± 0.45	c
dis_mar	2094.165	0	47.10 ± 0.04	a	$39.52 \pm\ 0.11$	b	25.26 ± 0.04	c
P_inv	926.558	< 0.001	233.38 ± 0.43	a	$246.53 \pm\ 0.27$	b	253.85 ± 0.28	c
P_pri	576.535	< 0.001	135.36 ± 0.39	a	148.30 ± 0.32	b	148.28 ± 0.21	c
P_ver	847.350	< 0.001	67.76 ± 0.39	a	79.57 ± 0.32	b	85.51 ± 0.20	c
P_oto	1703.161	0	$253.82 \pm\ 0.45$	a	$267.02 \pm\ 0.29$	b	$290.49 \pm\ 0.35$	c
P_anual	1142.997	< 0.001	690.32 ± 1.66	a	741.43 ± 1.10	b	778.13 ± 0.95	c
tminl	5.351	.069	0.45 ± 0.04		0.42 ± 0.02		0.37 ± 0.02	
tminP	18.446	< 0.001	4.55 ± 0.04	a	4.37 ± 0.02		4.35 ± 0.02	
tminV	80.106	< 0.001	13.13 ± 0.04	a	12.68 ± 0.03		12.68 ± 0.03	
tminO	28.557	< 0.001	7.15 ± 0.04	a	6.93 ± 0.02		6.89 ± 0.02	
tmaxl	184.761	< 0.001	8.22 ± 0.05	a	9.40 ± 0.05	b	9.16 ± 0.04	c
tmaxP	46.598	< 0.001	13.95 ± 0.04	a	14.35 ± 0.04	b	14.21 ± 0.03	c
tmaxV	87.498	< 0.001	24.93 ± 0.04	a	25.46 ± 0.04	b	25.29 ± 0.03	c
tmaxO	170.760	< 0.001	16.22 ± 0.05	a	17.19 ± 0.05	b	16.97 ± 0.04	c

Tabla 3.10. Diferencias entre las medias de los grupos para las diferentes variables ambientales. Se muesta el valor del éstadistico de la prueba no paramétrica de Kruskal-Wallis. Se ha omitido los grados de libertad que se correponden con g.l.=2. Letras diferentes indican diferencias entre las medias de los grupos. Todas las diferencias entre grupos a un nivel $\alpha < 0.05$

No diferencias:

- temp. min. Invierno
- horas de sol en verano

4. ¿Diferencias entre los grupos para las variables ambientales y forestales?

> Índice de Diversidad

> Riqueza

Regeneración	
B	A
C	

		_
<	regeneración	total

< reg. Robles > reg. Encinas

<	rege	eneración	tota
_		Dables	

				Grupos (media \pm SD)					
	estadístico	g.l.	р	Α		В		С	
regTot	$\chi^2 = .183$	2	.913	19.38 ± 6.25		47.56 ± 16.16		32.67 ± 15.82	
sedQp	$\chi^2 = .389$	2	.823	7.62 ± 3.21		46.39 ± 16.16		29.17 ± 16.30	
sedQi	$\chi^2 = 3.389$	2	.143	5.75 ± 3.40		0.17 ± 0.09		3.50 ± 2.08	
fccTot	$\chi^2 = 4.447$	2	.108	7.50 ± 0.57		8.50 ± 0.54		8.67 ± 0.99	
fccTre	$F_{2,29} = 1.406$	2, 29	.261	1.75 ± 0.62		3.33 ± 0.58		2.67 ± 0.80	
fccShr	$F_{2,29} = 1.960$	2, 29	.159	2.75 ± 0.86		4.50 ± 0.51		5.33 ± 1.54	
fccHer	$\chi^2 = 11.183$	2	.004	6.50 ± 0.60	a	2.83 ± 0.51	b **	4.33 ± 1.12	ab
denTre	$\chi^2 = 3.175$	2	.204	61.57 ± 31.95		226.97 ± 65.10		282.47 ± 86.03	
heiTre	$\chi^2 = 1.148$	2	.563	4.19 ± 1.67		6.96 ± 1.83		7.45 ± 1.76	
abaQp	$\chi^2 = 4.434$	2	.109	0.71 ± 0.47		7.11 ± 2.00		7.71 ± 2.78	
volQp	$\chi^2 = 3.632$	2	.163	7.50 ± 4.92		90.05 ± 29.24		76.66 ± 34.22	
shaEst	$\chi^2 = 2.088$	2	.352	0.85 ± 0.06		0.92 ± 0.04		0.93 ± 0.04	
rich	$F_{2,29} = 2.955$	2, 29	.068	16.62 ± 1.95		11.72 ± 1.21		14.17 ± 0.70	
shaSp	$\chi^2 = 8.670$	2	.013	2.27 ± 0.17	a	1.57 ± 0.13	b **	1.83 ± 0.09	ab

Tabla 3.9. Diferencias entre las medias de los grupos para las diferentes atributos forestales. Se muesta el valor del éstadistico (ANOVA o Kruskal-Wallis). Letras diferentes indican diferencias entre las medias de los grupos. ** < 0.01

NMDS1

- 1. La distancia al mar y la precipitación son las variables que mejor explican la variabilidad observada en los robledales de Sierra Nevada., junto con factores topográficos (radiación) y de energía (temp.) en menor medida.
- 2. Se han identificado tres grupos de poblaciones de robledal con un comportamiento ecológico bien diferenciado.
- 3. La agrupación de las poblaciones según la composición florística concuerda con la agrupación arrojada atendiendo a variables ambientales.

A la hora de abordar estudios utilizando los robledales de Sierra Nevada como objeto de estudio (ej. Proyecto MIGRAME) es necesario considerar tres grupos de poblaciones suficientemente diferenciadas desde el punto de vista ambiental y de composición de especies.

Las poblaciones de una misma sierra y muy próximas pueden tener un comportamiento ecológico diferente. Esta realidad debería ser considerada a la hora de realizar modelos de predicciones de cambios futuros

Gracias por su Atención

Este trabajo se ha realizado en el marco del proyecto MIGRAME (RNM 6734) del Programa de Excelencia para la Investigación del Gobierno Andaluz. AJPL agradece la financiación recibida por el MICINN (PTA 2011-6322-I)

+ info ajperez@ugr.es @ajpelu ajperezluque.com

Entréme donde no supe: y quedéme no sabiendo, toda ciencia trascendiendo San Juan de la Cruz. Poesías