TP4 : Approximation aux moindres carrés

1. Approximation aux moindres carrés

Nous avons vu en cours l'expression d'une fonction de base spline de degré 2, appelons-la $N_0^2(t)$. Les autres fonctions de base, pour des splines uniformes se déduisent par translation $N_i^2(t-i)$. Une courbe spline s'exprime donc :

$$S(t) = \sum_{i} P_i N_i^2(t-i).$$

A partir de points à approximer (plus que de degré de liberté), déterminer P_i les points de contrôle d'une spline approximant les points de données. Comme pour l'interpolation, il faut choisir pour chaque point (x_i, y_i) à approximer, un paramètre $temps_i$.

Si vous avez le temps, vous pourrez experimenter d'autres degrés.

Quelques compléments

Pour déterminer les points $(P_i)_i$ aux moindres carrés, il faut résoudre un système sur-contraint, c'est à dire, du type :

$$A\beta \sim b$$

où A est une matrice rectangulaire $m \times n$ avec m > n. Chaque ligne correspond à une contrainte, chaque colonne correspond à une inconnue. Les contraintes sont données par les équation :

$$S(temps_j) = \sum_{i} P_i N_i^2(temps_j - i) \sim (x_j, y_j)'$$

qui génère 2 lignes (une pour x une pour y). Les inconnues sont les points de contrôle : il faut considérer tous les points de contrôle P_i correspondant à des fonctions N_i^2 qui sont non nulles sur les intervalles [k, k+1] contenant des $temps_j$. Vous remplissez donc votre matrice A avec les $N_i^2(temps_j)$. Notez que pour n'importe quel $temps_j$ au plus 3 $(N_i^2(temps_j))$ sont non nuls.

Pour qu'il y ait plus de lignes (m) que de colonnes (n), il faut 'serrer' suffisament les $temps_j$ pour avoir plus de contraintes que d'inconnues. L'idée est d'avoir au moins 2 $temps_j$ pour intervalle [k, k+1], prenez par exemple $temps_j = j/3$ pour commencer.

2. Choix des paramètres $(temps_i)_i$

Pour la première partie du projet, illustrez l'influence du choix des paramètres $(temps_i)_i$. Vous pourrez vous inspirer des $(t_i)_i$ dans le cadre de l'interpolation de Lagrange.