

So, analysing gate by gate we produce the output Q algebraic equation, which carries the same informations as the schematic $Q = f(S_1, S_0, A_1B_1) = (A'+B')' + (A+B)S_1'S_0' + ((S_1S_0B)' \cdot (S_1'+S_0+A+B))$

so now, let's try to operate the expression to find a soft or a Pos. Let's operate (simplify) first the tog brakets:

 $(A'+B')' = A'' \cdot B'' = AB = a simple product$ $(ATB)S'_1S'_2 = S'_1S'_2A + S'_1S'_3B$ (Two products)

(S,SOB)" + (S,'+S+A+B)" = S,SOB + S, SOAB | a minterw!

Finally: $Q = AB + S_1'S_0'B + S_1'S_0'A + S_1S_0B + S_1S_0'A'B'$ (SoP)

so, now let's generate the sum of minterus, which happens to be all the terms 's' in the truth table. Let's add the missing variables term by terms:

 $AB = AB(s_1 + s_1') = ABS_1 + ABS_1'$ $S_1'S_0'AB + S_1'S_0'AB + S_1$

$$S_{1}^{\prime}S_{0}^{\prime}B = S_{1}^{\prime}S_{0}^{\prime}AB + S_{1}^{\prime}S_{0}^{\prime}AB = m_{0011} + m_{0001}$$
 $S_{1}^{\prime}S_{0}^{\prime}A = S_{1}^{\prime}S_{0}^{\prime}AB \rightarrow m_{0010} \quad m_{3} \quad m_{1}$
 $S_{1}^{\prime}S_{0}^{\prime}A = S_{1}^{\prime}S_{0}^{\prime}AB \rightarrow m_{0010} \quad m_{2}$

$$S_1S_0B = S_1S_0AB + S_1S_0A^{\dagger}B^{\dagger} = m_{1111} + m_{1101}$$

 $L_2S_1S_0(A+A^{\dagger})B$
 $m_{15} + m_{13}$

In this way:

$$Q = f(S_1, S_0, A, B) = \sum_{4} m(1, 2, 3, 7, 8, 11, 13, 15)$$
and also:
$$= TTM(0, 4, 7, 6, 9, 10, 12, 14)$$

and the thath table is the same informations, or the karnangh

Sı	So	A	B		Q	
0000000001111	1 1 1 1 0000	0	0 1 0 1		Ø 111000 1 1 0 0	
0	0	1	0		Ì	
õ	- T -	0	0	-	0	
0	1	0	7		0	
0	1	L	0	Π	O	
0	L	1	. <u>4</u>		1	
_	0	0			1	
1	0	0	Ł		0	
1	O	1	. 0			
s	0	_ 4	1		1_	
1 - 1 - L	0 1 1 1	0	0		0 1	
1	1	0	1	1	T	
L	1		0	1	0	
j	1	1	1		11	

SISOB	ØØ	ØL	11_	1.0
ØØ	Ø	1	<u> 1</u>	1 2
Ø1	Ø ₄	Ø	1	B 6
11	Ø 12	1	1	9/19
IP	1	Ø	1	Ø 10

we are not going to use it.

Instead, we'll minimise
functions using software like
minitog. exe