

Set Similarity Joins on MapReduce: An Experimental Survey

Fabian Fier

Nikolaus Augsten, Panagiotis Bouros, Ulf Leser, Johann-Christoph Freytag

Set Similarity Join

- Example (self-join):
 - Input:
 - An input data set of records R
 - A similarity function sim
 - A similarity threshold t

– Output:

• All pairs of records from R where $sim(r, s) \ge t$ $(r, s \in R)$

Compared Algorithms

ClusterJoin (CJ): PVLDB, 2014

MRGroupJoin (GJ): PVLDB, 2015

FullFilteringJoin (FF): Assoc. for Comp. Linguistics, 2008

MGJoin (MG): TKDE, 2013

MassJoin (MJ): ICDE, 2014

MRSimJoin (MR): SIGMOD, 2012

• SSJ-2R (S2): ICDM, 2010

VernicaJoin (VJ): SIGMOD, 2010

• V-SMART (VS): PVLDB, 2012

• FS-Join (FS): ICDE, 2017

Main Contribution: Benchmark

		CJ	GJ	FF	MG	MJ	MR	S2	٧J	VS	FS	
ClusterJoin	CJ								=	>		1
MRGroupJoin	GJ											SI
FullFilteringJoin	FF							<	<			Comparisons
MGJoin	MG								>			par
MassJoin	ΜJ								>		<	OM
MRSimJoin	MR											
SSJ-2R	S2								>			Previous
VernicaJoin	٧J									< >	<	Pre
V-SMART	٧S										<	\downarrow
FS-Join	FS											

Algorithm	Approach	Preprocessing	Partitioning	Load balancing	number of MR runs
ClusterJoin	Metric Partitioning	No	Based on random pivots and hashing	Sampling-based	2
MRSimJoin	Metric Partitioning	No	Based on iterative ran- dom pivots	Memory-threshold-based	Random
MassJoin	Filter-and-verify	No	3 V		3
SSJ-2R	Filter-and-verify	Token frequencies	Remainder file	Yes	2
Vernica Join	Filter-and-verify	Token frequencies	Hash-based	Frequency-based	4 ¹
V-SMART Ioin	Filter-and-verify	No	Hach-based	Cardinality-based	22

• • •

- SSJ ≠ SSJ
- Hadoop
- Similarity Measure
- Reimplemented Algorithms

•

5/13

Metric-based Approach

Filter-and-verification Approach

Analysis and Experiments

- Critical Jobs
- Theoretical analysis
- Experiments

Insight 1: Benchmark

- Winners (average rank): VJ, GJ, FS
- 5 algorithms without best runtimes

Dataset	Jaccard threshold									
Dataset	0.6	0.7	0.8	0.9	0.95					
AOL	166	155	84	68	64					
AOL	VJ	VJ	GJ	GJ	GJ					
	MG	MG								
BPOS	123	116	101	101	106					
Bros	VJ	VJ	GJ	GJ	VJ					
	MG	MG			GJ, MJ					
DBLP	342	174	129	112	111					
DBLF	VJ	VJ	VJ	\underline{VJ}	<u>FS</u>					
				MG	VJ					
ENRO	323	230	161	130	127					
LINKO	VJ	MG	MG	FS	FS					
		VJ	FS	MG VJ	MG, VJ					
FLIC	234	163	119	86	85					
TLIC	MG	MG	GJ	GJ	GJ					
	VJ	VJ	MG							
KOSA	138	121	117	113	112					

Insight 2: Bottlenecks

Summary

- Benchmark with surprising winners
- Scalability issue with all algorithms
- Main reason: straggling reducers
 - High/skewed data replication between map and reduce.
 - Specific characteristics of input data.
 - Adding more nodes does not solve this problem.
- Future:
 - Spark, Flink, ...
 - Remove data-dependency of replication and distribution.
 Regard restrictions (memory!) of nodes.
- Code at: https://github.com/fabiyon/ssj-dist

Questions?

Datasets

Table 2: Characteristics of the experimental datasets.

Dataset	# recs	Record 1	ength	Unive	erse ·10 ³	Circ (D)
Dataset	·10 ⁵	max	avg	size	maxFreq	Size (B)
AOL	100	245	3	3900	420	396M
BPOS	3.2	164	9	1.7	240	17M
DBLP	1.0	869	83	6.9	84	41M
ENRO	2.5	3162	135	1100	200	254M
FLIC	12	102	10	810	550	92M
KOSA	6.1	2497	12	41	410	46M
LIVE	31	300	36	7500	1000	873M
NETF	4.8	18000	210	18	230	576M
ORKU	27	40000	120	8700	320	2.5G
SPOT	4.4	12000	13	760	9.7	41M
UNI	1.0	25	10	0.21	18	4.5M
ZIPF	4.4	84	50	100	98	33M

Compared Algorithms

- ClusterJoin (CJ): A. D. Sarma et al.: A similarity joins framework using map-reduce.
 PVLDB, 2014.
- MRGroupJoin (GJ): D. Deng et al.: An efficient partition based method for exact set similarity joins. PVLDB, 2015.
- FullFilteringJoin (FF): T. Elsayed et al.: Pairwise document similarity in large collections with mapreduce. Assoc. for Comp. Linguistics, 2008.
- MGJoin (MG): C. Rong et al.: Efficient and scalable processing of string similarity join. IEEE TKDE, 2013.
- MassJoin (MJ): D. Deng et al.: Massjoin: A mapreduce-based method for scalable string similarity joins. IEEE ICDE, 2014.
- MRSimJoin (MR): Y. N. Silva et al.: Exploiting mapreduce-based similarity joins. ACM SIGMOD, 2012.
- SSJ-2R (S2): R. Baraglia et al.: Document similarity self-join with mapreduce. IEEE ICDM, 2010.
- VernicaJoin (VJ): R. Vernica et al.: Efficient parallel set-similarity joins using mapreduce.
 ACM SIGMOD, 2010.
- V-SMART (VS): A. Metwally et al.: V-smart-join: A scalable mapreduce framework for all-pair similarity joins of multisets and vectors. PVLDB, 2012.
- FS-Join (FS): C. Rong et al.: Fast and scalable distributed set similarity joins for big data analytics. IEEE ICDE, 2017.

Experiments Overview

- Hadoop 2.7 on a 12-node cluster
- 10 real-world, 2 synthetic datasets

Experiments:

- 1. Self-join: all algorithms, all datasets, varying similarity thresholds.
- 2. Scalability: artificially increase dataset sizes.
- 3. Varied system parameters, especially memory settings, which determine the number of YARN containers.

Experiment 1: Small Data

		CJ	GJ	FF	MG	MJ	MR	S2	٧J	VS	FS	
ClusterJoin	CJ									>		1
MRGroupJoin	GJ	>										SI
FullFilteringJoin	FF		<					<	<			Comparisons
MGJoin	MG	>	<	>					>			par
MassJoin	ΜJ	>	<	>	<				>		<	om
MRSimJoin	MR		<		<	<						
SSJ-2R	S2		<		<				>			Previous
VernicaJoin	٧J	>	>	>	>	>	>	>		< >	<	Pre
V-SMART	٧S		<		<	<			<		<	\downarrow
FS-Join	FS	>	<	>	<	>	>	>	<	>		
		\leftarrow	← Our Comparisons →									-

Experiment 1: Small Data

Distributed survey:

Dataset	Jaccard threshold									
	0.6	0.7	0.8	0.9	0.95					
AOL	166	155	84	68	64					
AOL	VJ	VJ	GJ	GJ	GJ					
	MG	MG	45.00	20 000 N	500					
BPOS	123	116	101	101	106					
BPOS	\overline{VJ}	VJ	GJ	GJ	VJ					
	MG	MG	5 55235-362	37 3333	GJ, MJ					
DDID	342	174	129	112	111					
DBLP	VJ	VJ	VI	VI	FS					

Non-distributed survey:

_ V		V								
Dataset	Jaccard threshold									
Dataset	0.5	0.6	0.7	0.75	0.8	0.85	0.9	0.95		
AOL	PEL	PEL	GRP	ALL	GRP	GRP	GRP	GRP		
	333	83.7	13.2	8.58	4.20	1.77	1.46	1.43		
	PPJ	PPJ	ALL	GRP	ALL					
		GRP	PPJ							
BMS-POS	PPJ	PPJ	PPJ	PPJ	ALL	ALL	GRP	GRP		
	44.9	15.6	4.78	2.74	1.27	0.447	0.170	0.068		
			ADP	GRP	GRP	GRP				
			GRP	ADP	PPJ					
	y			ALL			, ,			

Experiment 3: Varying Parameters

Findings:

- Compression used: only good for small datasets; creates overhead for all algorithms on larger datasets
- Number of reducers: only good for small datasets. On larger datasets, only few algorithms profit from more reducers

VernicaJoin: Basic Ideas

$$\operatorname{prefix}_{\operatorname{Jaccard}}(r, \theta) = |r| - floor(\theta * |r|) + 1$$

Example:

r = {Lorem ipsum dolor sit consetetur sadipscing elitr} s = {magna aliquyam erat consetetur sadipscing elitr}

$$prefix_{Jaccard}(r, 0.5) = 7 - 3 + 1 = 5$$

 $prefix_{Jaccard}(s, 0.5) = 6 - 3 + 1 = 4$

Build inverted index only over the prefix: result stays complete.

Optimization: use global token order. Sort each set/document in ascending order (already true for this example).