```
Animals 90 Pytorch Lightning CNN
import os
import random
import numpy as np
import pandas as pd
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.f unctional as F
from torch.utils.data import random_split
from torch.utils.data import DataLoader, Dataset, Subset
from torch.utils.data import random_split, SubsetRandomSampler
from torchvision import datasets, transforms, models
from torchvision.datasets import ImageFolder
from torchvision.transforms import ToTensor
from torchvision.utils import make_grid
from pytorch_lightning import LightningModule
```

from pytorch_lightning import Trainer

from sklearn.model_selection import train_test_split

from sklearn.metrics import classification_report

import pytorch_lightning as pl

import matplotlib.pyplot as plt

%mat plot lib inline

from PIL import Image

transf or m=transf or ms. Compose([

```
transforms.RandomHorizontalFlip(), #reverse 50% of images
     transforms.Resize(224),
                                        #resize shortest side to 224 pixels
     transforms.CenterCrop(224),
                                           # crop longest side to 224 pixels at center
     transforms.ToTensor(),
     transforms.Normalize([0.485, 0.456, 0.406],
                     [0.229, 0.224, 0.225])
])
dat aset 0=dat aset s.I mageFolder (root = "/kaggle/input/animal-image-dat aset-90-dif f er ent-
animals/animals/animals", transf or m=None)
class_names=dat aset 0.classes
print(class_names)
print(len(class_names))
['antelope', 'badger', 'bat', 'bear', 'bee', 'beetle', 'bison', 'boar', 'butterfly', 'cat',
'caterpillar', 'chimpanzee', 'cockroach', 'cow', 'coyote', 'crab', 'crow', 'deer', 'dog', 'dolphin',
'donkey', 'dragonfly', 'duck', 'eagle', 'elephant', 'flamingo', 'fly', 'fox', 'goat', 'goldfish',
'goose', 'gorilla', 'grasshopper', 'hamster', 'hare', 'hedgehog', 'hippopotamus', 'hornbill',
'horse', 'hummingbird', 'hyena', 'jellyfish', 'kangaroo', 'koala', 'ladybugs', 'leopard', 'lion',
'lizard', 'lobster', 'mosquito', 'moth', 'mouse', 'octopus', 'okapi', 'orangutan', 'otter', 'owl', 'ox',
'oyster', 'panda', 'parrot', 'pelecanif ormes', 'penguin', 'pig', 'pigeon', 'porcupine', 'possum',
'raccoon', 'rat', 'reindeer', 'rhinoceros', 'sandpiper', 'seahorse', 'seal', 'shark', 'sheep',
'snake', 'sparrow', 'squid', 'squirrel', 'starfish', 'swan', 'tiger', 'turkey', 'turtle', 'whale',
'wolf', 'wombat', 'woodpecker', 'zebra']
90
class DataModule(pl.LightningDataModule):
  def __init__(self, transf orm=transf orm, batch_size=32):
     super().__init__()
```

transforms.RandomRotation(10), #rotate +/- 10 degrees

```
self.root_dir = "/kaggle/input/animal-image-dataset-90-different-
animals/animals/animals"
     self.transform = transform
     self .bat ch_size = bat ch_size
  def setup(self, stage=None):
     dataset = datasets.ImageFolder(root=self.root_dir, transf orm=self.transf orm)
     n_data = len(dataset)
     n_{train} = int(0.8 * n_{data})
     n_test = n_data - n_train
     train_dataset, test_dataset = torch.utils.data.random_split(dataset, [n_train,
n_test])
     self.train_dataset = DataLoader(train_dataset, batch_size=self.batch_size,
shuf f le=True)
     self.test_dataset = DataLoader(test_dataset, batch_size=self.batch_size)
  def train_dataloader(self):
     return self.train_dataset
  def test_dataloader(self):
     return self.test_dataset
class ConvolutionalNetwork(LightningModule):
  def __init__(self):
     super(ConvolutionalNetwork, self).__init__()
```

```
self.conv1 = nn.Conv2d(3, 6, 3, 1)
  self .conv2 = nn.Conv2d(6, 16, 3, 1)
  self.fc1 = nn.Linear(16 * 54 * 54, 120)
  self.fc2 = nn.Linear(120, 84)
  self.fc3 = nn.Linear(84, 20)
   self.fc4 = nn.Linear(20, len(class_names))
def forward(self, X):
  X = F.relu(self.conv1(X))
  X = F.max_pool2d(X, 2, 2)
  X = F.relu(self.conv2(X))
  X = F.max_pool2d(X, 2, 2)
  X = X.view(-1, 16 * 54 * 54)
  X = F.relu(self.fc1(X))
  X = F.relu(self.fc2(X))
  X = F.relu(self.fc3(X))
  X = self.fc4(X)
  return F.log_softmax(X, dim=1)
def configure_optimizers(self):
  optimizer = torch.optim.Adam(self.parameters(), Ir=0.001)
  return optimizer
def training_step(self, train_batch, batch_idx):
  X, y = train_batch
```

```
y_hat = self(X)
  loss = F.cross_entropy(y_hat, y)
  pred = y_hat.argmax(dim=1, keepdim=True)
  acc = pred.eq(y.view_as(pred)).sum().item() / y.shape[0]
  self.log("train_loss", loss)
  self.log("train_acc", acc)
  return loss
def validation_step(self, val_batch, batch_idx):
  X, y = val_batch
  y_hat = self(X)
  loss = F.cross_entropy(y_hat, y)
  pred = y_hat.argmax(dim=1, keepdim=True)
  acc = pred.eq(y.view_as(pred)).sum().item() / y.shape[0]
  self.log("val_loss", loss)
  self.log("val_acc", acc)
def test_step(self, test_batch, batch_idx):
  X, y = test_batch
  y_hat = self(X)
  loss = F.cross_entropy(y_hat, y)
  pred = y_hat.argmax(dim=1, keepdim=True)
  acc = pred.eq(y.view_as(pred)).sum().item() / y.shape[0]
  self.log("test_loss", loss)
  self.log("test_acc", acc)
```

```
if __name__ == '__main__':
  datamodule = DataModule()
  dat amodule.set up()
  model = ConvolutionalNetwork()
  trainer = pl.Trainer(max_epochs=20)
  trainer.fit (model, dat amodule)
  dat amodule.set up(stage='test')
  test_loader = datamodule.test_dataloader()
  trainer.test(dataloaders=test_loader)
/opt/conda/lib/python3.7/site-
packages/pytorch_lightning/trainer/configuration_validator.py:110: PossibleUserWarning:
You defined a 'validation_step' but have no 'val_dataloader'. Skipping val loop.
 category=PossibleUserWarning,
/opt/conda/lib/python3.7/site-
packages/pytorch_lightning/trainer/connectors/data_connector.py:229:
PossibleUserWarning: The dataloader, train_dataloader, does not have many workers which
may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 4
which is the number of cpus on this machine) in the `DataLoader` init to improve
performance.
 cat egory = PossibleUser Warning,
Epoch 19: 100%
135/135 [02:37<00:00, 1.17s/it, loss=1.7, v_num=0]
/opt/conda/lib/python3.7/site-
packages/pytorch_lightning/trainer/connectors/checkpoint_connector.py:128:
User Warning: `.test (ckpt_path=None)` was called without a model. The best model of the
previous `fit` call will be used. You can pass `.test(ckpt_path='best')` to use the best model
or `.test(ckpt_path='last')` to use the last model. If you pass a value, this warning will be
silenced.
 +f" You can pass `.{fn}(ckpt_path='best')` to use the best model or"
/opt/conda/lib/python3.7/site-
packages/pytorch_lightning/trainer/connectors/data_connector.py:229:
```

PossibleUserWarning: The dataloader, test_dataloader 0, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 4 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.

category=PossibleUserWarning,

Testing DataLoader 0: 100%

34/34 [00:36<00:00, 1.06s/it]

	Test metric	DataLoader 0	
	test_acc	0.5425925850868225	
 -	test_loss	2.0664007663726807	

for images, labels in datamodule.train_dataloader():

break

im=make_grid(images,nrow=16)

```
plt.f igure(f igsize=(12,12))
```

plt.imshow(np.transpose(im.numpy(),(1,2,0)))

inv_normalize=transforms.Normalize(mean=[-0.485/0.229,-0.456/0.224,-0.406/0.225],

im=inv_normalize(im)

```
plt.f igure(f igsize=(12,12))
```

plt.imshow(np.transpose(im.numpy(),(1,2,0)))

<mat plot lib.image.AxesI mage at 0x71341b417390>

```
device = t or ch.device("cpu") #"cuda:0"
model.eval()
y_true=[]
y_pred=[]
with torch.no_grad():
  for test_data in datamodule.test_dataloader():
     test_images, test_labels = test_data[0].to(device), test_data[1].to(device)
     pred = model(test_images).argmax(dim=1)
     for i in range(len(pred)):
        y_true.append(test_labels[i].item())
       y_pred.append(pred[i].item())
print(classif ication_report(y_true,y_pred,target_names=class_names,digits=4))
           precision recall f1-score support
    ant elope
               0.4167 0.4167
                                 0.4167
                                            12
     badger
               0.5000
                        0.4545 0.4762
                                            11
       bat
              0.2308  0.5455  0.3243
                                           11
              0.3333 0.3636 0.3478
      bear
                                           11
       bee
              0.6250 \quad 0.5000 \quad 0.5556
                                           10
     beet le
              0.6667
                       0.3636 0.4706
                                            11
      bison
              0.6000
                       0.6000 0.6000
                                           10
```

boar	0.4286	0.2500	0.3158	12
butterfly	0.5333	0.7273	0.6154	11
cat	0.3750	0.2000	0.2609	15
cat er pillar	0.8333	0.5882	0.6897	17
chimpanze	e 0.750	0 0.750	0 0.7500	12
cockroach	0.7222	1.0000	0.8387	13
cow	0.3571	0.4545	0.4000	11
coy ot e	0.2857	0.4444	0.3478	9
cr ab	0.7222	0.6500	0.6842	20
crow	0.8125	0.7647	0.7879	17
deer	0.5385	0.4667	0.5000	15
dog	0.4000	0.5455	0.4615	11
dolphin	0.8000	1.0000	0.8889	8
donkey	0.2857	0.1333	0.1818	15
dragonf ly	0.6667	0.5714	0.6154	7
duck	0.2000	0.1176	0.1481	17
eagle	0.6429	0.8182	0.7200	11
elephant	0.6429	0.6429	0.6429	14
f lamingo	0.7222	0.9286	0.8125	14
f ly	0.8667	0.8667	0.8667	15
f ox	0.2308	0.5000	0.3158	6
goat	0.3636	0.6667	0.4706	12
goldfish	0.5455	0.7500	0.6316	8
goose	0.3333	0.0909	0.1429	11
gorilla	0.8000	0.6667	0.7273	12

grasshopper	0.500	0.333	3 0.4000	15
hamst er	0.6667	0.7692	0.7143	13
hare	0.4444	0.3636	0.4000	11
hedgehog	0.3846	5 0.454	5 0.4167	11
hippopot amu	s 0.500	0.55	56 0.5263	9
hornbill	0.5556	0.4167	0.4762	12
horse	0.6429	0.6429	0.6429	14
hummingbir	d 0.533	33 0.72	73 0.6154	. 11
hyena	0.2857	0.3333	0.3077	6
jellyfish	0.7000	0.7778	0.7368	9
kangaroo	0.0000	0.0000	0.0000	15
koala	0.3846	0.4167	0.4000	12
ladybugs	0.5556	0.9091	0.6897	11
leopard	0.7143	0.3846	0.5000	13
lion	0.3810	0.5714	0.4571	14
lizard	1.0000	0.2500	0.4000	16
lobst er	0.5000	0.7500	0.6000	8
mosquit o	0.8182	0.8182	0.8182	11
mot h	0.5455	0.5455	0.5455	11
mouse	0.2500	0.6000	0.3529	5
oct opus	0.2500	0.2500	0.2500	8
okapi	0.6923	0.7500	0.7200	12
or angut an	0.6000	0.8182	2 0.6923	11
otter	0.3158	0.5000	0.3871	12
owl	0.5833	0.6364	0.6087	11

OX	0.8333	0.2778	0.4167	18
oy st er	0.5000	0.7273	0.5926	11
panda	0.3684	0.7778	0.5000	9
parrot	0.6111	0.7333	0.6667	15
pelecanif or me	es 0.37	50 0.40	00 0.387	1 15
penguin	0.7000	0.7000	0.7000	10
pig	0.6250	0.6250	0.6250	16
pigeon	0.5000	0.3636	0.4211	11
porcupine	0.6667	1.0000	0.8000	8
possum	0.4444	0.3333	0.3810	12
raccoon	0.6250	0.3333	0.4348	15
rat	0.6154	0.8000	0.6957	10
reindeer	0.5000	0.4667	0.4828	15
rhinoceros	0.2727	0.4286	0.3333	7
sandpiper	0.7647	0.7647	0.7647	17
seahor se	0.5714	0.5333	0.5517	15
seal	0.5000	0.6154	0.5517	13
shark	0.6429	0.7500	0.6923	12
sheep	0.5556	0.2941	0.3846	17
snake	0.5714	0.3636	0.4444	11
sparrow	0.3333	0.2857	0.3077	7
squid	0.7500	0.5000	0.6000	18
squirrel	0.2857	0.2857	0.2857	14
st ar f ish	0.7143	0.3333	0.4545	15
swan	0.5625	0.7500	0.6429	12

```
9
   tiger
           0.6667
                    0.4444
                            0.5333
  turkey
            0.5833
                    0.7778 0.6667
                                         9
  turtle
           0.5000
                    0.6364
                            0.5600
                                        11
   whale
           1.0000
                    0.4286
                             0.6000
                                        14
   wolf
           0.4375
                    0.7778
                            0.5600
                                        9
  wombat
             0.6000
                     0.5455
                              0.5714
                                          11
                                           14
woodpecker
              0.5455
                      0.4286
                               0.4800
   zebra
           0.9000
                    0.9000
                             0.9000
                                        10
```

accuracy 0.5417 1080 macro avg 0.5462 0.5533 0.5295 1080 weighted avg 0.5607 0.5417 0.5300 1080

/opt/conda/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

```
_warn_prf (average, modifier, msg_start, len(result))
```

/opt/conda/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

```
_warn_prf (average, modifier, msg_start, len(result))
```

/opt/conda/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

```
_warn_prf (average, modifier, msg_start, len(result))
```