Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1-40. (Cancelled)

41. (Currently Amended) A method for treating an autoimmune disease, comprising administering to a patient in need thereof an effective amount of <u>a the pharmaceutical</u> composition <u>comprising a compound of the following formula: of claim 40 to a patient in need thereof:</u>

$$\begin{array}{c|c}
CO_2R^3 \\
R^1 - X - (CH_2)_n \\
O \\
O
\end{array}$$

Formula I

wherein:

n is 0 or 1;

<u>q is 1;</u>

X is O or NH;

A is a natural or unnatural amino acid of Formula IIa-i:

B is a hydrogen atom, a deuterium atom, C₁₋₁₀ straight chain or branched alkyl, cycloalkyl, phenyl, substituted phenyl, naphthyl, substituted naphthyl, 2-benzoxazolyl, substituted 2-oxazolyl, (CH₂)_mcycloalkyl, (CH₂)_mphenyl, (CH₂)_m(substituted phenyl), (CH₂)_m(1 or 2-naphthyl), (CH₂)_mheteroaryl, halomethyl, CO₂R¹³, CONR¹⁴R¹⁵, CH₂ZR¹⁶, CH₂OCO(aryl), CH₂OCO(substituted aryl), CH₂OCO(heteroaryl), CH₂OCO(substituted heteroaryl), or CH₂OPO(R¹⁷)R¹⁸, where Z is an oxygen or a sulfur atom, or B is a group of the Formula IIIa-c:

R¹ is substituted phenyl, naphthyl, or substituted naphthyl;

 R^2 is hydrogen, lower alkyl, $(CH_2)_pCO_2R^3$, $(CH_2)_m$ (substituted phenyl), $(CH_2)_m$ (1 or 2-naphthyl), or $(CH_2)_m$ tetrazolyl;

R³ is hydrogen or lower alkyl;

and wherein:

R⁴ is alkyl, cycloalkyl, phenyl, substituted phenyl, (CH₂)_mNH₂, (CH₂)_mNHCOR¹⁰, (CH₂)_mN(C=NH)NH₂, (CH₂)_pCO₂R³, (CH₂)_pOR¹¹, (CH₂)_pSR¹², (CH₂)_mcycloalkyl, (CH₂)_mphenyl, (CH₂)_m(substituted phenyl), (CH₂)_m(1 or 2-naphthyl), or (CH₂)_mheteroaryl, wherein heteroaryl includes (but is not limited to) pyridyl, thienyl, furyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, pyrazinyl, pyrimidyl, triazinyl, tetrazolyl, and indolyl;

 R^{4a} is hydrogen, or methyl, or R^4 and R^{4a} taken together are -(CH₂)_d-where d is an interger from 2 to 6;

R⁵ is phenyl, substituted phenyl, (CH₂)_pphenyl, (CH₂)_p(substituted phenyl), cycloalkyl, or benzofused cycloalkyl;

 R^6 is hydrogen, alkyl, cycloalkyl, phenyl, substituted phenyl, $(CH_2)_m$ cycloalkyl, $(CH_2)_m$ (substituted phenyl), or $(CH_2)_m$ (1 or 2-naphthyl);

R⁷ is hydrogen, fluorine, oxo, alkyl, cycloalkyl, phenyl, substituted phenyl, naphthyl, (CH₂)_mcycloalkyl, (CH₂)_mphenyl, (CH₂)_m(substituted phenyl), (CH₂)_m(1 or 2-naphthyl), OR¹¹, SR¹², or NHCOR¹⁰;

 R^8 is hydrogen, oxo, alkyl, cycloalkyl, phenyl, substituted phenyl, naphthyl, $(CH_2)_m$ cycloalkyl, $(CH_2)_m$ phenyl, $(CH_2)_m$ (substituted phenyl), or $(CH_2)_m$ (1 or 2-naphthyl);

 R^9 is alkyl, cycloalkyl, $(CH_2)_m$ cycloalkyl, $(CH_2)_m$ phenyl, $(CH_2)_m$ (substituted phenyl), $(CH_2)_m$ (1 or 2-naphthyl), or COR^{10} ;

R¹⁰ is hydrogen, alkyl, cycloalkyl, phenyl, substituted phenyl, naphthyl, (CH₂)_mcycloalkyl, (CH₂)_mphenyl, (CH₂)_m(substituted phenyl), (CH₂)_m(1 or 2-naphthyl), OR¹³, or NR¹⁴R¹⁵;

R¹¹ is hydrogen, alkyl, cycloalkyl, phenyl, substituted phenyl, naphthyl, (CH₂)_mcycloalkyl, (CH₂)_mphenyl, (CH₂)_m(substituted phenyl), or (CH₂)_m(1 or 2-naphthyl);

 $\frac{R^{12} \text{ is alkyl, cycloalkyl, phenyl, substituted phenyl, naphthyl,}}{(CH_2)_m \text{cycloalkyl, } (CH_2)_m \text{phenyl, } (CH_2)_m \text{(substituted phenyl), or } (CH_2)_m \text{(1 or 2-naphthyl);}}$

 R^{13} is alkyl, cycloalkyl, $(CH_2)_m$ cycloalkyl, $(CH_2)_m$ phenyl, $(CH_2)_m$ (substituted phenyl), or $(CH_2)_m$ (1 or 2-naphthyl);

R¹⁴ is hydrogen, alkyl, cycloalkyl, phenyl, substituted phenyl, naphthyl, substituted naphthyl, (CH₂)_mcycloalkyl, (CH₂)_mphenyl, (CH₂)_m(substituted phenyl), or (CH₂)_m(1 or 2-naphthyl);

R¹⁵ is hydrogen or alkyl; or

R¹⁴ and R¹⁵ taken together form a five, six or seven membered carbocyclic or heterocyclic ring, such as morpholine or N-substituted piperazine;

R¹⁶ is phenyl, substituted phenyl, naphthyl, substituted naphthyl, heteroaryl, (CH₂)_mphenyl, (CH₂)_m(substituted phenyl), (CH₂)_m(1 or 2-naphthyl), or (CH₂)_mheteroaryl;

R¹⁷ and R¹⁸ are independently alkyl, cycloalkyl, phenyl, substituted phenyl, naphthyl, or phenylalkyl, substituted phenylalkyl, or (cycloalkyl)alkyl;

R¹⁹ and R²⁰ are independently hydrogen, alkyl, phenyl, substituted phenyl, (CH₂)_mphenyl, or (CH₂)_m(substituted phenyl), or R¹⁹ and R²⁰ taken together are -(CH=CH)₂-;

 R^{21} is hydrogen, alkyl, phenyl, substituted phenyl, (CH₂)_mphenyl, (CH₂)_m(substituted phenyl);

R²², R²³ and R²⁴ are independently hydrogen or alkyl;

 Y^1 is CH_2 , $(CH_2)_2$, $(CH_2)_3$, or S;

 Y^2 is O or NR²⁴;

 \underline{Y}^3 is CH_2 , O, or NR^{24} ;

a is 0 or 1 and b is 1 or 2, provided that when a is 1 then b is 1;

c is 1 or 2, provided that when c is 1 then a is 0 and b is 1;

m is 1, 2, 3 or 4; and

p is 1 or 2;

or a pharmaceutically acceptable salt thereof, in combination with a pharmaceutically acceptable carrier.

42. (Currently Amended) A method of treating an inflammatory disease, comprising administering to a patient in need thereof an effective amount of <u>a the pharmaceutical</u> composition comprising a compound of the following formula: of claim 40 to a patient in need thereof:

$$R^{1} = X - (CH_{2})_{n}$$

$$R^{2} = A - N$$

$$O$$

$$O$$

$$O$$

Formula I

wherein:

n is 0 or 1;

q is 1;

X is O or NH;

A is a natural or unnatural amino acid of Formula IIa-i:

B is a hydrogen atom, a deuterium atom, C₁₋₁₀ straight chain or branched alkyl, cycloalkyl, phenyl, substituted phenyl, naphthyl, substituted naphthyl, 2-benzoxazolyl, substituted 2-oxazolyl, (CH₂)_mcycloalkyl, (CH₂)_mphenyl, (CH₂)_m(substituted phenyl), (CH₂)_m(1 or 2-naphthyl), (CH₂)_mheteroaryl, halomethyl, CO₂R¹³, CONR¹⁴R¹⁵, CH₂ZR¹⁶, CH₂OCO(aryl), CH₂OCO(substituted aryl), CH₂OCO(heteroaryl), CH₂OCO(substituted heteroaryl), or CH₂OPO(R¹⁷)R¹⁸, where Z is an oxygen or a sulfur atom, or B is a group of the Formula IIIa-c:

R¹ is substituted phenyl, naphthyl, or substituted naphthyl;

 R^2 is hydrogen, lower alkyl, $(CH_2)_pCO_2R^3$, $(CH_2)_m$ (substituted phenyl), $(CH_2)_m$ (1 or 2-naphthyl), or $(CH_2)_m$ tetrazolyl;

R³ is hydrogen or lower alkyl;

and wherein:

R⁴ is alkyl, cycloalkyl, phenyl, substituted phenyl, (CH₂)_mNH₂, (CH₂)_mNHCOR¹⁰, (CH₂)_mN(C=NH)NH₂, (CH₂)_pCO₂R³, (CH₂)_pOR¹¹, (CH₂)_pSR¹², (CH₂)_mcycloalkyl, (CH₂)_mphenyl, (CH₂)_m(substituted phenyl), (CH₂)_m(1 or 2-naphthyl), or (CH₂)_mheteroaryl, wherein heteroaryl includes (but is not limited to) pyridyl, thienyl, furyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, pyrazinyl, pyrimidyl, triazinyl, tetrazolyl, and indolyl;

 R^{4a} is hydrogen, or methyl, or R^4 and R^{4a} taken together are -(CH₂)_d-where d is an interger from 2 to 6;

R⁵ is phenyl, substituted phenyl, (CH₂)_pphenyl, (CH₂)_p(substituted phenyl), cycloalkyl, or benzofused cycloalkyl;

 R^6 is hydrogen, alkyl, cycloalkyl, phenyl, substituted phenyl, $(CH_2)_m$ cycloalkyl, $(CH_2)_m$ phenyl, $(CH_2)_m$ (substituted phenyl), or $(CH_2)_m$ (1 or 2-naphthyl);

R⁷ is hydrogen, fluorine, oxo, alkyl, cycloalkyl, phenyl, substituted phenyl, naphthyl, (CH₂)_mcycloalkyl, (CH₂)_mphenyl, (CH₂)_m(substituted phenyl), (CH₂)_m(1 or 2-naphthyl), OR¹¹, SR¹², or NHCOR¹⁰;

 R^8 is hydrogen, oxo, alkyl, cycloalkyl, phenyl, substituted phenyl, naphthyl, $(CH_2)_m$ cycloalkyl, $(CH_2)_m$ phenyl, $(CH_2)_m$ (substituted phenyl), or $(CH_2)_m$ (1 or 2-naphthyl);

 R^9 is alkyl, cycloalkyl, $(CH_2)_m$ cycloalkyl, $(CH_2)_m$ phenyl, $(CH_2)_m$ (substituted phenyl), $(CH_2)_m$ (1 or 2-naphthyl), or COR^{10} ;

R¹⁰ is hydrogen, alkyl, cycloalkyl, phenyl, substituted phenyl, naphthyl, (CH₂)_mcycloalkyl, (CH₂)_mphenyl, (CH₂)_m(substituted phenyl), (CH₂)_m(1 or 2-naphthyl), OR¹³, or NR¹⁴R¹⁵:

R¹¹ is hydrogen, alkyl, cycloalkyl, phenyl, substituted phenyl, naphthyl, (CH₂)_mcycloalkyl, (CH₂)_mphenyl, (CH₂)_m(substituted phenyl), or (CH₂)_m(1 or 2-naphthyl);

R¹² is alkyl, cycloalkyl, phenyl, substituted phenyl, naphthyl, (CH₂)_mcycloalkyl, (CH₂)_mphenyl, (CH₂)_m(substituted phenyl), or (CH₂)_m(1 or 2-naphthyl);

 R^{13} is alkyl, cycloalkyl, $(CH_2)_m$ cycloalkyl, $(CH_2)_m$ phenyl, $(CH_2)_m$ (substituted phenyl), or $(CH_2)_m$ (1 or 2-naphthyl);

R¹⁴ is hydrogen, alkyl, cycloalkyl, phenyl, substituted phenyl, naphthyl, substituted naphthyl, (CH₂)_mcycloalkyl, (CH₂)_mphenyl, (CH₂)_m(substituted phenyl), or (CH₂)_m(1 or 2-naphthyl);

R¹⁵ is hydrogen or alkyl; or

R¹⁴ and R¹⁵ taken together form a five, six or seven membered carbocyclic or heterocyclic ring, such as morpholine or N-substituted piperazine;

 R^{16} is phenyl, substituted phenyl, naphthyl, substituted naphthyl, heteroaryl, $(CH_2)_m$ phenyl, $(CH_2)_m$ (substituted phenyl), $(CH_2)_m$ (1 or 2-naphthyl), or $(CH_2)_m$ heteroaryl;

R¹⁷ and R¹⁸ are independently alkyl, cycloalkyl, phenyl, substituted phenyl, naphthyl, or phenylalkyl, substituted phenylalkyl, or (cycloalkyl)alkyl;

 R^{19} and R^{20} are independently hydrogen, alkyl, phenyl, substituted phenyl, $(CH_2)_m$ phenyl, or $(CH_2)_m$ (substituted phenyl), or R^{19} and R^{20} taken together are -(CH=CH)₂-;

 R^{21} is hydrogen, alkyl, phenyl, substituted phenyl, $(CH_2)_m$ (substituted phenyl);

R²², R²³ and R²⁴ are independently hydrogen or alkyl;

 Y^1 is CH_2 , $(CH_2)_2$, $(CH_2)_3$, or S;

 Y^2 is O or NR^{24} ;

 Y^3 is CH₂, O, or NR²⁴;

a is 0 or 1 and b is 1 or 2, provided that when a is 1 then b is 1;

c is 1 or 2, provided that when c is 1 then a is 0 and b is 1;

m is 1, 2, 3 or 4; and

p is 1 or 2;

or a pharmaceutically acceptable salt thereof, in combination with a pharmaceutically acceptable carrier.

43. (Currently Amended) A method of treating a neurodegenerative disease, comprising administering to a patient in need thereof an effective amount of <u>a the pharmaceutical</u> composition <u>comprising a compound of the following formula: of claim 40 to a patient in need thereof.</u>

$$R^{1} - X - (CH_{2})_{n}$$

$$Q - A - N$$

$$Q - A - N$$

$$Q - B$$

Formula I

wherein:

n is 0 or 1;

q is 1;

X is O or NH;

A is a natural or unnatural amino acid of Formula Ila-i:

B is a hydrogen atom, a deuterium atom, C_{1-10} straight chain or branched alkyl, cycloalkyl, phenyl, substituted phenyl, naphthyl, substituted naphthyl, 2-benzoxazolyl, substituted 2-oxazolyl, $(CH_2)_m$ cycloalkyl, $(CH_2)_m$ phenyl, $(CH_2)_m$ (substituted phenyl), $(CH_2)_m$ (1 or 2-naphthyl), $(CH_2)_m$ heteroaryl, halomethyl, CO_2R^{13} , $CONR^{14}R^{15}$, CH_2ZR^{16} , CH_2OCO (aryl), CH_2OCO (substituted aryl), CH_2OCO (heteroaryl), CH_2OCO (substituted heteroaryl), or $CH_2OCO(R^{17})R^{18}$, where Z is an oxygen or a sulfur atom, or B is a group of the Formula IIIa-c:

R¹ is substituted phenyl, naphthyl, or substituted naphthyl;

 R^2 is hydrogen, lower alkyl, $(CH_2)_pCO_2R^3$, $(CH_2)_m$ (substituted phenyl), $(CH_2)_m(1 \text{ or } 2\text{-naphthyl})$, or $(CH_2)_m$ tetrazolyl;

R³ is hydrogen or lower alkyl;

and wherein:

R⁴ is alkyl, cycloalkyl, phenyl, substituted phenyl, (CH₂)_mNH₂, (CH₂)_mNHCOR¹⁰, (CH₂)_mN(C=NH)NH₂, (CH₂)_pCO₂R³, (CH₂)_pOR¹¹, (CH₂)_pSR¹², (CH₂)_mcycloalkyl, (CH₂)_mphenyl, (CH₂)_m(substituted phenyl), (CH₂)_m(1 or 2-naphthyl), or (CH₂)_mheteroaryl, wherein heteroaryl includes (but is not limited to) pyridyl, thienyl, furyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, pyrazinyl, pyrimidyl, triazinyl, tetrazolyl, and indolyl;

 R^{4a} is hydrogen, or methyl, or R^4 and R^{4a} taken together are -(CH₂)_d-where d is an interger from 2 to 6;

R⁵ is phenyl, substituted phenyl, (CH₂)_pphenyl, (CH₂)_p(substituted phenyl), cycloalkyl, or benzofused cycloalkyl;

R⁶ is hydrogen, alkyl, cycloalkyl, phenyl, substituted phenyl, (CH₂)_mcycloalkyl, (CH₂)_mphenyl, (CH₂)_m(substituted phenyl), or (CH₂)_m(1 or 2-naphthyl);

R⁷ is hydrogen, fluorine, oxo, alkyl, cycloalkyl, phenyl, substituted phenyl, naphthyl, (CH₂)_mcycloalkyl, (CH₂)_mphenyl, (CH₂)_m(substituted phenyl), (CH₂)_m(1 or 2-naphthyl), OR¹¹, SR¹², or NHCOR¹⁰;

 R^8 is hydrogen, oxo, alkyl, cycloalkyl, phenyl, substituted phenyl, naphthyl, $(CH_2)_m$ cycloalkyl, $(CH_2)_m$ phenyl, $(CH_2)_m$ (substituted phenyl), or $(CH_2)_m$ (1 or 2-naphthyl);

 R^9 is alkyl, cycloalkyl, $(CH_2)_m$ cycloalkyl, $(CH_2)_m$ phenyl, $(CH_2)_m$ (substituted phenyl), $(CH_2)_m$ (1 or 2-naphthyl), or COR^{10} ;

R¹⁰ is hydrogen, alkyl, cycloalkyl, phenyl, substituted phenyl, naphthyl, (CH₂)_mcycloalkyl, (CH₂)_mphenyl, (CH₂)_m(substituted phenyl), (CH₂)_m(1 or 2-naphthyl), OR¹³, or NR¹⁴R¹⁵;

R¹¹ is hydrogen, alkyl, cycloalkyl, phenyl, substituted phenyl, naphthyl, (CH₂)_mcycloalkyl, (CH₂)_mphenyl, (CH₂)_m(substituted phenyl), or (CH₂)_m(1 or 2-naphthyl);

 R^{12} is alkyl, cycloalkyl, phenyl, substituted phenyl, naphthyl, $(CH_2)_m$ cycloalkyl, $(CH_2)_m$ (substituted phenyl), or $(CH_2)_m$ (1 or 2-naphthyl);

 R^{13} is alkyl, cycloalkyl, $(CH_2)_m$ cycloalkyl, $(CH_2)_m$ phenyl, $(CH_2)_m$ (substituted phenyl), or $(CH_2)_m$ (1 or 2-naphthyl);

R¹⁴ is hydrogen, alkyl, cycloalkyl, phenyl, substituted phenyl, naphthyl, substituted naphthyl, (CH₂)_mcycloalkyl, (CH₂)_mphenyl, (CH₂)_m(substituted phenyl), or (CH₂)_m(1 or 2-naphthyl);

R¹⁵ is hydrogen or alkyl; or

R¹⁴ and R¹⁵ taken together form a five, six or seven membered carbocyclic or heterocyclic ring, such as morpholine or N-substituted piperazine;

 R^{16} is phenyl, substituted phenyl, naphthyl, substituted naphthyl, heteroaryl, $(CH_2)_m$ phenyl, $(CH_2)_m$ (substituted phenyl), $(CH_2)_m$ (1 or 2-naphthyl), or $(CH_2)_m$ heteroaryl;

R¹⁷ and R¹⁸ are independently alkyl, cycloalkyl, phenyl, substituted phenyl, naphthyl, or phenylalkyl, substituted phenylalkyl, or (cycloalkyl)alkyl;

 R^{19} and R^{20} are independently hydrogen, alkyl, phenyl, substituted phenyl, $(CH_2)_m$ phenyl, or $(CH_2)_m$ (substituted phenyl), or R^{19} and R^{20} taken together are - $(CH=CH)_2$ -;

 R^{21} is hydrogen, alkyl, phenyl, substituted phenyl, $(CH_2)_m$ (substituted phenyl);

R²², R²³ and R²⁴ are independently hydrogen or alkyl;

 Y^1 is CH_2 , $(CH_2)_2$, $(CH_2)_3$, or S;

 Y^2 is O or NR^{24} ;

 \underline{Y}^3 is CH_2 , O, or NR^{24} ;

a is 0 or 1 and b is 1 or 2, provided that when a is 1 then b is 1;

c is 1 or 2, provided that when c is 1 then a is 0 and b is 1;

m is 1, 2, 3 or 4; and

p is 1 or 2;

or a pharmaceutically acceptable salt thereof, in combination with a pharmaceutically acceptable carrier.

44. (Currently Amended) A method of preventing ischemic injury to a patient suffering from a disease associated with ischemic injury, comprising administering to a patient in need thereof an effective amount of a the pharmaceutical composition comprising a compound of the following formula: of claim 40 to a patient in need thereof.

$$R^{1}-X-(CH_{2})_{n} \xrightarrow{Q} A-N \xrightarrow{CO_{2}R^{3}} B$$
 Formula I

wherein:

n is 0 or 1;

q is 1;

X is O or NH;

A is a natural or unnatural amino acid of Formula IIa-i:

B is a hydrogen atom, a deuterium atom, C₁₋₁₀ straight chain or branched alkyl, cycloalkyl, phenyl, substituted phenyl, naphthyl, substituted naphthyl, 2-benzoxazolyl, substituted 2-oxazolyl, (CH₂)_mcycloalkyl, (CH₂)_mphenyl, (CH₂)_m(substituted phenyl), (CH₂)_m(1 or 2-naphthyl), (CH₂)_mheteroaryl, halomethyl, CO₂R¹³, CONR¹⁴R¹⁵, CH₂ZR¹⁶, CH₂OCO(aryl), CH₂OCO(substituted aryl), CH₂OCO(heteroaryl), CH₂OCO(substituted heteroaryl), or CH₂OPO(R¹⁷)R¹⁸, where Z is an oxygen or a sulfur atom, or B is a group of the Formula IIIa-c:

R¹ is substituted phenyl, naphthyl, or substituted naphthyl;

 R^2 is hydrogen, lower alkyl, $(CH_2)_pCO_2R^3$, $(CH_2)_m$ (substituted phenyl), $(CH_2)_m$ (1 or 2-naphthyl), or $(CH_2)_m$ tetrazolyl;

R³ is hydrogen or lower alkyl;

and wherein:

R⁴ is alkyl, cycloalkyl, phenyl, substituted phenyl, (CH₂)_mNH₂, (CH₂)_mNHCOR¹⁰, (CH₂)_mN(C=NH)NH₂, (CH₂)_pCO₂R³, (CH₂)_pOR¹¹, (CH₂)_pSR¹², (CH₂)_mcycloalkyl, (CH₂)_mphenyl, (CH₂)_m(substituted phenyl), (CH₂)_m(1 or 2-naphthyl), or (CH₂)_mheteroaryl, wherein heteroaryl includes (but is not limited to) pyridyl, thienyl, furyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, pyrazinyl, pyrimidyl, triazinyl, tetrazolyl, and indolyl;

 R^{4a} is hydrogen, or methyl, or R^4 and R^{4a} taken together are - $(CH_2)_{d}$ -where d is an interger from 2 to 6;

R⁵ is phenyl, substituted phenyl, (CH₂)_pphenyl, (CH₂)_p(substituted phenyl), cycloalkyl, or benzofused cycloalkyl;

 R^6 is hydrogen, alkyl, cycloalkyl, phenyl, substituted phenyl, $(CH_2)_m$ cycloalkyl, $(CH_2)_m$ phenyl, $(CH_2)_m$ (substituted phenyl), or $(CH_2)_m$ (1 or 2-naphthyl);

R⁷ is hydrogen, fluorine, oxo, alkyl, cycloalkyl, phenyl, substituted phenyl, naphthyl, (CH₂)_mcycloalkyl, (CH₂)_mphenyl, (CH₂)_m(substituted phenyl), (CH₂)_m(1 or 2-naphthyl), OR¹¹, SR¹², or NHCOR¹⁰;

 R^8 is hydrogen, oxo, alkyl, cycloalkyl, phenyl, substituted phenyl, naphthyl, $(CH_2)_m$ cycloalkyl, $(CH_2)_m$ phenyl, $(CH_2)_m$ (substituted phenyl), or $(CH_2)_m$ (1 or 2-naphthyl);

 \underline{R}^9 is alkyl, cycloalkyl, $(CH_2)_m$ cycloalkyl, $(CH_2)_m$ phenyl, $(CH_2)_m$ (substituted phenyl), $(CH_2)_m$ (1 or 2-naphthyl), or COR^{10} ;

R¹⁰ is hydrogen, alkyl, cycloalkyl, phenyl, substituted phenyl, naphthyl, (CH₂)_mcycloalkyl, (CH₂)_mphenyl, (CH₂)_m(substituted phenyl), (CH₂)_m(1 or 2-naphthyl), OR¹³, or NR¹⁴R¹⁵;

R¹¹ is hydrogen, alkyl, cycloalkyl, phenyl, substituted phenyl, naphthyl, (CH₂)_mcycloalkyl, (CH₂)_mphenyl, (CH₂)_m(substituted phenyl), or (CH₂)_m(1 or 2-naphthyl);

 R^{12} is alkyl, cycloalkyl, phenyl, substituted phenyl, naphthyl, $(CH_2)_m$ cycloalkyl, $(CH_2)_m$ (substituted phenyl), or $(CH_2)_m$ (1 or 2-naphthyl);

 R^{13} is alkyl, cycloalkyl, $(CH_2)_m$ cycloalkyl, $(CH_2)_m$ phenyl, $(CH_2)_m$ (substituted phenyl), or $(CH_2)_m$ (1 or 2-naphthyl);

R¹⁴ is hydrogen, alkyl, cycloalkyl, phenyl, substituted phenyl, naphthyl, substituted naphthyl, (CH₂)_mcycloalkyl, (CH₂)_mphenyl, (CH₂)_m(substituted phenyl), or (CH₂)_m(1 or 2-naphthyl);

R¹⁵ is hydrogen or alkyl; or

R¹⁴ and R¹⁵ taken together form a five, six or seven membered carbocyclic or heterocyclic ring, such as morpholine or N-substituted piperazine;

R¹⁶ is phenyl, substituted phenyl, naphthyl, substituted naphthyl, heteroaryl, (CH₂)_mphenyl, (CH₂)_m(substituted phenyl), (CH₂)_m(1 or 2-naphthyl), or (CH₂)_mheteroaryl;

R¹⁷ and R¹⁸ are independently alkyl, cycloalkyl, phenyl, substituted phenyl, naphthyl, or phenylalkyl, substituted phenylalkyl, or (cycloalkyl)alkyl;

R¹⁹ and R²⁰ are independently hydrogen, alkyl, phenyl, substituted phenyl,

(CH₂)_mphenyl, or (CH₂)_m(substituted phenyl), or R¹⁹ and R²⁰ taken together are -(CH=CH)₂-;

R²¹ is hydrogen, alkyl, phenyl, substituted phenyl, (CH₂)_mphenyl, (CH₂)_m(substituted phenyl);

R²², R²³ and R²⁴ are independently hydrogen or alkyl;

 Y^1 is CH_2 , $(CH_2)_2$, $(CH_2)_3$, or S;

 Y^2 is O or NR^{24} ;

Y³ is CH₂, O, or NR²⁴;

a is 0 or 1 and b is 1 or 2, provided that when a is 1 then b is 1;

c is 1 or 2, provided that when c is 1 then a is 0 and b is 1;

m is 1, 2, 3 or 4; and

p is 1 or 2;

or a pharmaceutically acceptable salt thereof, in combination with a pharmaceutically acceptable carrier.

45-50. (Cancelled)