Theoretische Informatik

1. Übungsblatt

Paul Winkler 11818749

Aufgabe 1. Bezeichne $L := \{ab, aba\}^*, R := \{\varepsilon\} \cup \{a\}\{ba, baa\}^*\{b, ba\}.$

- Wir zeigen zuerst $L \subseteq R$ induktiv nach der Struktur: Klarerweise sind $\varepsilon, ab, aba \in R$. Sei $w \in L \setminus \{\varepsilon, ab, aba\}$ beliebig. Dann gibt es ein $v \in L \setminus \{\varepsilon\}$, sodass w = abv oder w = abav.
 - Fall 1: w = abv: Es gibt nach Induktionsvoraussetzung ein Wort $v_1 \in \{ba, baa\}^*$, sodass $v = av_1b$ oder $v = av_1ba$, also $w = a(bav_1)b$ oder $w = a(bav_1)ba$. Mit v_1 liegt auch bav_1 in $\{ba, baa\}^*$, also gilt $w \in R$.
 - Fall 2: w = abav: Wieder finden wir ein v_1 wie in Fall 1. Es gilt $w = a(baav_1)b$ oder $w = a(baav_1)ba$; weil mit v_1 auch $baav_1$ in $\{ba, baa\}^*$ liegt, ist auch hier $w \in R$.
- Für den Beweis der anderen Inklusion gehen wir ebenfalls induktiv vor (nach der Struktur des mittleren Wortteils): Offensichtlich sind $\varepsilon, ab, aba \in L$. Sei $w \in R \setminus \{\varepsilon, ab, aba\}$ beliebig. Dann gibt es ein Wort $v \in \{ba, baa\}^+$ mit w = avb oder w = avba.
 - Fall 1: w = avb:
 - * Fall 1.1: $v = bav_1$: Hier gilt $w = ab(av_1b)$. Nach Induktionsvoraussetzung gilt $av_1b \in L$, also auch $w \in L$.
 - * Fall 1.2: $v = baav_1$: Hier gilt $w = aba(av_1b)$, woraus ebenso $w \in L$ folgt.
 - Fall 2: w = avba: Ganz analog zu Fall 1.

Aufgabe 2.

	$\mid a \mid$	$\mid b \mid$
$\overline{\{q_0\}}$	Ø	$\{q_1,q_2\}$
$\boxed{\{q_1,q_2\}}$	$\{q_0\}$	$\{q_1\}$
q_1	$\{q_0\}$	$\{q_1\}$
Ø	Ø	Ø

Aufgabe 3. Ja, die Sprache $L_k := \{w \in \{a,b\}^* \mid |n_a(v) - n_b(v)| \leq k \text{ für jedes Präfix } v \text{ von } w\}$ ist regulär, denn der folgende Automat akzeptiert genau L_k :

Aufgabe 4. Angenommen, $L := \{a^p \mid p \in \mathbb{P}\}$ wäre regulär. Nach dem Pumping-Lemma gibt es ein $n \in \mathbb{N}$, sodass für alle $w \in L$ mit $|w| \ge n$ gilt: w lässt sich schreiben als $v_1v_2v_3$, wobei

(i)
$$v_2 \neq \varepsilon$$
, (ii) $|v_1 v_2| \leqslant n$, (iii) $\forall k \geqslant 0 : v_1 v_2^k v_3 \in L$.

Seien $p \in \mathbb{P}$ mit $p \ge n, p \ge 3$ und $a^p = v_1v_2v_3$ mit $v_2 = a^l$ so, dass (i) – (iii) gilt. Wegen $v_1v_2^kv_3 = a^{p+(k-1)l}$ für $k \ge 1$ gilt nun

$$\{p+kl \mid k \geqslant 0\} \subseteq \mathbb{P}. \tag{1}$$

Aus (i) folgt $l \neq 0$. Wegen (1) müsste aber p + pl = p(1 + l) in \mathbb{P} liegen – Widerspruch.

Aufgabe 5. Der Übersichtlichkeit halber bezeichnen wir hier die Erweiterung einer Übergangsrelation Δ mit $\overline{\Delta}$. Die eine Richtung ist trivial, weil jeder gekürzte NFA auch ein NFA ist. Sei umgekehrt $N = \langle Q, A, \Delta, q_0, F \rangle$ ein NFA mit $L(N) = \{w \in A^* \mid \exists q \in F : (q_0, w, q) \in \overline{\Delta}\} = L$. Wir definieren

$$Q' := \{q_0\} \cup \{q \mid \exists u \in A^* : (q_0, u, q) \in \overline{\Delta}$$

$$\land \exists v \in A^* \exists q_f \in F : (q, v, q_f) \in \overline{\Delta} \}$$

und einen neuen Automaten $N' = \langle Q', A, \Delta \cap (Q' \times A \times Q'), q_0, F \cap Q' \rangle$. Nach Definition ist N' gekürzt und erfüllt $L(N') \subseteq L(N)$.

Es gilt aber auch die umgekehrte Inklusion: Sei dazu $w=x_1\cdots x_n\in L$ beliebig, dann gibt es Zustände $q_1,\ldots,q_n\in Q$ mit $(q_{i-1},x_i,q_i)\in \Delta$, wobei $1\leqslant i\leqslant n$ und $q_n\in F$. (Das folgt aus der Definition von $\overline{\Delta}$, formal müsste man das mit Induktion beweisen.) Für jedes i mit $1\leqslant i\leqslant n$ gilt, wieder nach Definition von $\overline{\Delta}$, $(q_0,x_1\cdots x_i,q_i)$, $(q_i,x_{i+1}\cdots x_n,q_n)\in \overline{\Delta}$ und somit $q_i\in Q'$.

Wir zeigen nun induktiv für $i = n - 1, \dots, 0$, dass

$$(q_i, x_i | x_{i+1} \cdots x_n), q_n) \in \overline{\Delta \cap (Q' \times A \times Q')}.$$
 (2)

Für i = n - 1 haben wir bereits festgestellt, dass $(q_{n-1}, x_n, q_n) \in \Delta \cap (Q' \times A \times Q')$. Sei i < n - 1, dann gilt

$$(q_i, x_i, q_{i+1}) \in \underline{\Delta \cap (Q' \times A \times Q')}$$
 sowie $(q_{i+1}, x_{i+1}(x_{i+2} \cdots x_n), q_n) \in \overline{\Delta \cap (Q' \times A \times Q')}$,

wobei Letzteres nach Induktionsvoraussetzung gilt, und somit nach Definition der erweiterten Übergangsrelation $(q_i, x_i (x_{i+1} \cdots x_n), q_n) \in \overline{\Delta \cap (Q' \times A \times Q')}$. Für i = 0 erhalten wir nun

$$(q_0, w, q_n) \in \overline{\Delta \cap (Q' \times A \times Q')},$$

also $w \in L(N')$.

Aufgabe 6. φ erfüllt also $\varphi(\varepsilon) = \varepsilon$ sowie $\varphi(vw) = \varphi(v)\varphi(w)$ für alle $v, w \in A^*$. Sei $L \subseteq A^*$ regulär, d. h. es gibt einen NFA $N = \langle Q, A, \Delta, q_0, F \rangle$ mit

then NFA
$$N=\langle Q,A,\Delta,q_0,F\rangle$$
 mit $g(x)$ ist heir Buchstale $L(N)=\{w\in A^*\mid \exists q\in F\colon (q_0,w,q)\in\Delta\}=L.$ Soundern ein Wort.

Wir definieren einen neuen NFA $M = \langle Q, \varphi(A), \varphi(\Delta), q_0, F \rangle$, wobei

$$P(\Delta) := \{(q, \varphi(x), r) \mid (q, x, r) \in \Delta\}.$$
 This was a second of the seco

 $\underline{\varphi(\Delta) := \{(q,\varphi(x),r) \mid (q,x,r) \in \Delta\}}. \qquad \text{(fix gesigness D1)}$ Wir wollen nun die erweiterte Übergangsrelation $\overline{\varphi(\Delta)}$ bestimmen. Wir zeigen induktiv erst nachter auf

$$\overline{\varphi(\Delta)} = \{(q, \varphi(v), r) \mid (q, v, r) \in \overline{\Delta}\} \colon \qquad \text{of } \mathbb{R}^{\mathsf{q}} \times \mathbb{Q}' \text{ evueilent.}$$

$$(p, xw, r) \in \overline{\varphi(\Delta)} \iff \exists q \in F \colon (p, x, q) \in \varphi(\Delta) \land (q, w, r) \in \overline{\varphi(\Delta)}$$

$$\iff \exists a \in A, u \in \varphi(A)^*, q \in F \colon \varphi(a) = x \land \varphi(u) = w \land (p, a, q), (q, u, r) \in \overline{\Delta}$$

$$\iff \exists a, u \colon \varphi(au) = xw \land (p, au, r) \in \overline{\Delta}$$

$$\iff \exists v \colon \varphi(v) = xw \land (p, v, r) \in \overline{\Delta}.$$

Wir zeigen nun $L(\varphi(N)) = \varphi(L)$:

- » \subseteq « Sei $w \in L(\varphi(N))$ beliebig, dann gibt es ein $a \in A^*$ mit $\varphi(a) = w$ und ein $q \in F$ mit $(q_0, a, q) \in \Delta$. Damit ist aber $a \in L$ und somit $w \in \varphi(L)$.
- » \supseteq « Sei $w \in \varphi(L)$ beliebig, dann gibt es ein $a \in L$ mit $w = \varphi(a)$. Nun gibt es ein $q \in F$ mit $(q_0, a, q) \in F$, also $(q_0, \varphi(a), q) = (q_0, w, q) \in \varphi(\Delta)$, d. h. $w \in L(\varphi(N))$.