Chapter 11: Graphs

CS1231 Discrete Structures

Wong Tin Lok

National University of Singapore

2022/23 Semester 2

Butterfly network for 8 processors

Why graphs?

- They provide a more combinatorial view (as opposed to an algebraic view) of relations.
- They are useful in representing all kinds of situations where linkages are involved.
- So theorems about graphs are widely applicable.

Plan

- paths
- cycles
- connectedness

Jpatokal, CC BY-SA 3.0, via Wikimedia Commons

Undirected finite graphs

Let G be an undirected graph, where G = (V, E).

Warning 11.1.1

There are several commonly used, conflicting sets of terminologies for graphs. Always check the definitions being used when looking into the literature.

V(G) = V and E(G) = E.

Definition 11.1.2

(1) Denote by V(G) and E(G) the set of all vertices and the set of all edges in G respectively, i.e.,

- (2) When there is no risk of ambiguity, we may write an edge $\{x, y\}$ as xy.
- (3) The graph G is *finite* if V(G) is finite, else it is *infinite*.

Definition 11.1.3

- (1) We say that an undirected graph H is a <u>subgraph</u> of G, or G <u>contains</u> H (as a subgraph), if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.
- (2) A proper subgraph of G is a subgraph H of G such that $H \neq G$.

Subgraphs: examples

Example 11.1.4

Consider the graph G, where

$$\begin{split} V(G) &= \{b,d,h,k,m,s\}, \\ E(G) &= \{bd,bh,bs,ds,hk,hs,ks,mm,ss\}. \end{split}$$

ightharpoonup The graph G_1 , where

$$V(\textit{G}_1) = \{b,d,h,k,m,s\},$$

$$E(\textit{G}_1) = \{bd,bs,hk,hs\},$$
 is a subgraph of $\textit{G}.$

- ▶ The graph G_2 , where
- $V(G_2) = \{b, d, h, m, s\},\$ $E(G_2) = \{bd, bh, ds, hs, mm\},\$

is a subgraph of G.

Subgraphs: non-examples

Example 11.1.4

Consider the graph G, where

$$V(G) = \{b, d, h, k, m, s\},\$$

 $E(G) = \{bd, bh, bs, ds, hk, hs, ks, mm, ss\}.$

▶ The graph G_3 , where

$$V(G_3) = \{1, 2, 3, 4, 5, 6\},\$$

 $E(G_3) = \{12, 13, 24, 35\},\$

is *not* a subgraph of G because $V(G_3) \not\subseteq V(G)$.

ightharpoonup The graph G_4 , where

$$V(G_4) = \{b, d, h, m, s\},\ E(G_4) = \{bd, bs, dh, hs, mm\},\$$

is *not* a subgraph of G because $E(G_4) \not\subseteq E(G)$.

Paths

Definition 11.1.5

Let G be an undirected graph, and u, v be vertices in G. A path between u and v in G is a subgraph of G of the form

$$(\{x_0,x_1,\ldots,x_\ell\},\{x_0x_1,x_1x_2,\ldots,x_{\ell-1}x_\ell\}),$$

where the x's are all different and $\ell \in \mathbb{N}$, satisfying $u = x_0$ and $v = x_\ell$.

- ▶ Here ℓ is called the *length* of the path.
- ightharpoonup When there is no risk of ambiguity, we may denote the subgraph above by $x_0x_1\ldots x_\ell$.

Picture

$$x_0 \longrightarrow x_1 \longrightarrow x_2 \longrightarrow \cdots \longrightarrow x_{\ell-1} \longrightarrow x_\ell$$

Remark 11.1.6

- (1) Informally speaking, a path links two vertices in a graph via a sequence of edges, each joined to the next, that has no repeated vertex.
- (2) Some consider paths of infinite length. We do not.

Paths: examples

Example 11.1.7

Consider the graph G, where

$$\begin{split} &V(\textit{G}) = \{\mathsf{b},\mathsf{d},\mathsf{h},\mathsf{k},\mathsf{m},\mathsf{s}\}, \\ &E(\textit{G}) = \{\mathsf{bd},\mathsf{bh},\mathsf{bs},\mathsf{ds},\mathsf{hk},\mathsf{hs},\mathsf{ks},\mathsf{mm},\mathsf{ss}\}. \end{split}$$

- The graph P, where $P = \mathsf{dbshk}$, is a path of length 4 between d and k in G.
- The graph Q, where Q = dshb, is a path of length 3 between b and d in G.

Remark 11.1.8

- (1) The subgraph ($\{s\}$, $\{\}$), which we may write as s, is a path of length 0 in G. It is essentially the vertex s with no edge, not even a loop.
- (2) The subgraph $(\{s,h\},\{sh\})$, which we may write as sh, is a path of length 1 in G. It is essentially the edge sh.

Paths: non-examples

Example 11.1.7

Consider the graph G, where

$$\begin{split} &V(\textit{G}) = \{b,d,h,k,m,s\}, \\ &E(\textit{G}) = \{bd,bh,bs,ds,hk,hs,ks,mm,ss\}. \end{split}$$

- ▶ The graph H_1 , where $H_1 = \text{dbsshk}$, is not a path in G because s is in three edges in H_1 .
- ▶ The graph H_2 , where H_2 = bshksd, is not a path in G because s is in four edges in H_2 .

(Note that each vertex in a path is in at most two edges in the path.)

Paths: exercise

Exercise 11.1.9

How many paths are there between 1 and 3 in the undirected graph G with the drawing below?

Combining paths

Lemma 11.1.10

Let G be an undirected graph and u, v, w be vertices in G. Suppose there are a path P between u and v in G, and a path Q between v and w in G. Then there is a path between u and w in G.

Proof

Let $P=x_0x_1\ldots x_k$ and $Q=y_0y_1\ldots y_\ell$, so that $k,\ell\in\mathbb{N}$ and

$$x_0=u, \quad x_k=v=y_0, \quad w=y_\ell.$$

As $x_k = y_0 \in V(Q)$, we know some $t \in \{0, 1, \dots, k\}$ satisfies $x_t \in V(Q)$. Let t be the smallest element of $\{0, 1, \dots, k\}$ such that $x_t \in V(Q)$. By the smallestness of t, none of x_0, x_1, \dots, x_{t-1} is in V(Q). So if $s \in \{0, 1, \dots, \ell\}$ such that $x_t = y_s$, then

$$X_0X_1 \dots X_t Y_{s+1} Y_{s+2} \dots Y_\ell$$

is a path between u and w in G.

Remark 11.1.11

The k above is an element of $\{t \in \{0, 1, ..., k\} : x_t \in V(Q)\}$. This set is thus a nonempty subset of \mathbb{N} , and so must have a smallest element by the Well-Ordering Principle.

Cycles

Definition 11.2.1(1)

A *cycle* in an undirected graph G is a subgraph of G of the form

$$(\{x_1, x_2, \dots, x_\ell\}, \{\{x_1, x_2\}, \{x_2, x_3\}, \dots, \{x_{\ell-1}, x_\ell\}, \{x_\ell, x_1\}\}),$$

where the x's are all different and $\ell \in \mathbb{N}_{\geqslant 3}$. Here ℓ is called the *length* of the cycle. When there is no risk of ambiguity, we may denote the subgraph above by $x_1 x_2 \dots x_\ell x_1$.

Picture

Remark 11.2.2

- (1) Informally speaking, a cycle in a graph is a sequence of at least three edges, each joined to the next, and the last joined to the first, that has no repeated vertex.
- (2) By definition, a cycle has at least three vertices (and thus at least three edges). Therefore, in no sense can a loop be a cycle.

Cycles: examples

Example 11.2.3

Consider the graph G, where

$$\begin{split} V(G) &= \{b,d,h,k,m,s\}, \\ E(G) &= \{bd,bh,bs,ds,hk,hs,ks,mm,ss\}. \end{split}$$

The graph C, where $C = \operatorname{shk}$, is a cycle of length 3 in G.

The graph D, where D = sdbh, is a cycle of length 4 in G.

Cycles: non-examples

Example 11.2.3

Consider the graph G, where

$$V(G) = \{b, d, h, k, m, s\},\$$

 $E(G) = \{bd, bh, bs, ds, hk, hs, ks, mm, ss\}.$

- ▶ The graph H_3 , where shk, is not a cycle in G because it has only two vertices.
- The graph H_4 , where H_4 = bshksdb, is not a cycle in G because s is in four different edges in H_4 .

(Note that every cycle by definition has at least three vertices, and each vertex in a cycle is in exactly two edges in the cycle.)

Cyclic graphs

Definition 11.2.1(2)

An undirected graph is cyclic if it has a loop or a cycle; else it is acyclic.

Drawings of cyclic graphs:

Drawings of acyclic graphs:

At least two paths (1/2)

Theorem 11.2.5

An undirected graph G with no loop is cyclic if and only if it has two vertices between which there are two distinct paths.

Proof of \Rightarrow

Assume G is cyclic. According to the definition of cyclic graphs, as G has no loop, it must have a cycle, say,

$$x_1x_2\ldots x_\ell x_1$$
.

From this, we find two paths between x_1 and x_ℓ :

$$x_1x_\ell$$
 and $x_1x_2...x_\ell x_1$.

These two paths are distinct because the first one has two vertices and the second one has at least three vertices as $\ell \geqslant 3$.

At least two paths (2/2)

Theorem 11.2.5

An undirected graph G with no loop is cyclic if and only if it has two vertices between which there are two distinct paths.

Proof sketch of ←

Let $u, v \in V(G)$ with two distinct paths between them, say,

$$P = x_0 x_1 \dots x_k$$
 and $Q = y_0 y_1 \dots y_\ell$,

where $x_0=u=y_0$ and $x_k=v=y_\ell$, and $k\leqslant \ell$. As $P\neq Q$, we know $x_i\neq y_i$ for some $i\in\{0,1,\ldots,k\}$. Let r be the smallest element of $\{0,1,\ldots,k\}$ such that $x_r\neq y_r$. Here $r\neq 0$ because $x_0=y_0$. So the smallestness of r tells us $x_{r-1}=y_{r-1}$. Let s be the smallest element of $\{r,r+1,\ldots,k\}$ which makes $x_s\in\{y_r,y_{r+1},\ldots,y_\ell\}$. If t is the element of $\{r,r+1,\ldots,\ell\}$ which makes $x_s=y_t$, then

$$X_{r-1}X_r \dots X_s y_{t-1}y_{t-2} \dots y_r y_{r-1}$$

is a cycle in G.

Connected graphs

Definition 11.3.1

An undirected graph is *connected* if there is a path between any two vertices.

Drawings of connected graphs:

Drawings of unconnected graphs:

Connected graphs: quick check

Exercise 11.3.3

Which of the following are drawings of connected graphs?

Connected components

Definition 11.3.4

graph:

Let G be an undirected graph. A *connected component* of G is a maximal connected subgraph of G, i.e., it is a connected subgraph H of G such that no connected subgraph of G contains H as a proper subgraph.

connected components:

m

not connected components:

Every vertex is in a connected component

Proposition 11.3.6

Every vertex v in an undirected graph G is in some connected component of G.

Proof sketch

Define the subgraph H of G by setting

$$V(H) = \{x \in V(G) : \text{there is a path between } v \text{ and } x \text{ in } G\}$$
 and $E(H) = \{xy \in E(G) : x, y \in V(H)\}.$

We know $v \in V(H)$ because $\{v\}, \{\}\}$ is a path between v and v. To finish the proof, we show H is a connected component of G. Note H is connected by Lemma 11.1.10. Let H^+ be a connected subgraph of G which contains H as a subgraph. We want to show that $H^+ = H$. The definition of subgraphs tells us already $V(H) \subseteq V(H^+)$ and $E(H) \subseteq E(H^+)$. So it remains to show $V(H^+) \subseteq V(H)$ and $E(H^+) \subseteq E(H)$. Take any $x \in V(H^+)$. As $v \in V(H) \subseteq V(H^+)$ and H^+ is connected, there is a path between v and x in H^+ , hence in G. So $x \in V(H)$ by the definition of V(H). Take any $xy \in E(H^+)$. Then $x, y \in V(H^+) \subseteq V(H)$ by the previous paragraph. As $xy \in E(H^+) \subseteq E(G)$, the definition of E(H) tells us $xy \in E(H)$.

Connectedness (1/2)

Theorem 11.3.7

Let u, v be vertices in an undirected graph G. Then there is a path between u and v in G if and only if there is a connected component of G that has both u and v in it.

Proof of ←

Assume there is a connected component, say H, of G that has both u and v in it. As H is connected, there is a path between u and v in H, hence in G.

Connectedness (2/2)

Proof of \Rightarrow for Theorem 11.3.7

Assume there is a path between u and v in G, say,

$$P=x_0x_1\ldots x_\ell,$$

where $u=x_0$ and $v=x_\ell$. Use Proposition 11.3.6 to find a connected component H_u of G that has u in it. Define $H=\big(\mathsf{V}(H_u)\cup\mathsf{V}(P),\mathsf{E}(H_u)\cup\mathsf{E}(P)\big)$. We claim that H is a connected subgraph of G. From this, we will deduce $H=H_u$ using the maximality of the connected component H_u ; thus $v\in\mathsf{V}(P)\subseteq\mathsf{V}(H)=\mathsf{V}(H_u)$. Take $a,b\in\mathsf{V}(H)$.

Case 1: suppose $a, b \in V(H_u)$. As H_u is connected, there is a path between a and b in H_u , hence in H.

Case 2: suppose $a, b \in V(P)$. Say $a = x_r$ and $b = x_s$, where $r \leq s$. Then a path between a and b in H is $x_r x_{r+1} \dots x_s$.

Case 3: suppose one of a,b is in H_u and another is in P. Say $a \in V(H_u)$ and $b \in V(P)$. On the one hand, as H_u is connected, and $a,u \in V(H_u)$, one can find a path, say Q_1 , between a and u in H_u , hence in H. On the other hand, if $b = x_t$ where $t \in \{0,1,\ldots,\ell\}$, then $Q_2 = x_0x_1\ldots x_t$ a path between u and v in v. Combining v and v using Lemma 11.1.10, we get a path between v and v in v.

Summary

Remark 11.1.6(1)

Informally speaking, a path links two vertices in a graph via a sequence of edges, each joined to the next, that has no repeated vertex.

Remark 11.2.2(1)

Informally speaking, a cycle in a graph is a sequence of at least three edges, each joined to the next, and the last joined to the first, that has no repeated vertex.

Definition 11.2.1(2)

An undirected graph is cyclic if it has a loop or a cycle; else it is acyclic.

Theorem 11.2.5

An undirected graph ${\it G}$ with no loop is cyclic if and only if it has two vertices between which there are two distinct paths.

Theorem 11.3.7

Let u, v be vertices in an undirected graph G. Then there is a path between u and v in G if and only if there is a connected component of G that has both u and v in it.