Topic 2.3.1 - Asymmetric Encryption

Eric Casanovas

Universitat d'Andorra

23rd February, 2022

Eric Casanovas Cybersecurity

- 1 Basis of Asymmetric key
- 2 Asymmetric key
- **3** RSA

- 4 Diffie-Hellman
- **6** Others
- **6** Exercice

- 1 Basis of Asymmetric key
- 2 Asymmetric key
- **3** RSA

•0000000

- 4 Diffie-Hellman
- Others
- 6 Exercice

Basis

- The key used to encrypt and decrypt are different
- We have 2 keys, a secret key (SK) and a public key (PK)
- The SK must be known only by the owner of the pair of keys
- The PK can be sent to a 3rd person
- The keys are dependent on a "trapdoor function"
- It can be used for Encrypt/Decrypt, Sign and Exchange Keys

00000000

- Function that is easy to perform one way, but has a secret that is required to perform the inverse calculation efficiently
- Are hash functions trapdoor functions?

5 / 59

Trapdoor functions II

Basis of Asymmetric key

00000000

- Are hash functions trapdoor functions?
- No! Hash functions are One-way functions, they are not reversible
- Examples of trapdoor functions:
 - Integer (prime) factorization (RSA)
 - Discrete logarithm (We will see this trapdoor in Diffie-Hellman key exchange)

6 / 59

Example trapdoor function (left to right)

- We have 2 prime numbers: 1093 and 1039
- Multiply this 2 numbers
- 1093 * 1039 = 1,135,627

Basis of Asymmetric key

Example trapdoor function (right to left, no secret) I

- We have this number **N**: 1,135,627
- N is the product of 2 prime numbers
- How can we find these 2 prime numbers?

Basis of Asymmetric key

Example trapdoor function (right to left, no secret) II

- How can we find these 2 prime numbers?
- You have to try all prime numbers from 1 to N/2 and check if N%i = 0 (i is a prime number)
- This is not efficient for large numbers

Basis of Asymmetric key

Example trapdoor function (right to left, knowing secret)

- We have this number N: 1,135,627
- N is the product of 2 prime numbers
- We know that one of these primes is 1039
- How can we find the other prime number?
- 1,135,627 / 1039 = 1093

Basis of Asymmetric key

- Basis of Asymmetric key
- 2 Asymmetric key
- 3 RSA

- 4 Diffie-Hellman
- 6 Others
- 6 Exercic

- Which are the steps to encrypt/decrypt a message?
- Which are the steps to sign/verify a message?

12 / 59

Encrypting/Decripting I

- Bob wants to send a message to Alice:
 - Bob and Alice generate a key pair.
 - Alice sends her public key to Bob
 - Bob encrypts the message m using Alice's public key
 - Bob sends the ciphertext
 - Alice receives the ciphertext and **decrypts** the message using its private key

Encrypting/Decripting II

Eric Casanovas
Cybersecurity

Sign/Verify I

- Bob wants to send a proof that its him to Alice:
 - Bob and Alice generate a key pair.
 - Bob **signs** the message using its own private key
 - Bob sends the ciphertext and its public key
 - Alice receives the ciphertext and verifies the message using Bob's public key

Symmetric vs Asymmetric I

Basis of Asymmetric key

Symmetric v/s Asymmetric

Characteristic	Symmetric Key Cryptography	Asymmetric Key Cryptography One key used for encryption and another, different key is used for decryption	
Key used for encryption / decryption	Same key is used for encryption and decryption		
Speed of encryption / decryption	Very fast	Slower	
Size of resulting encrypted text	Usually same as or less than the original clear text size	More than the original clear text size	
Key agreement / exchange	A big problem	No problem at all	
Number of keys required as compared to the number of participants in the message exchange	Equals about the square of the number of participants, so scalability is an issue	Same as the number of participants, so scales up quite well	
Usage	Mainly for encryption and decryption (confidentiality), cannot be used for digital signatures (integrity and non- repudiation checks)	Can be used for encryption and decryption (confidentiality) as well as for digital signatures (integrity and non-repudiation checks)	

Symmetric vs Asymmetric II

- Symmetric key can be considered a little bit more secure than Asymmetric key
- Thinking about distributed networks:
 - If we have 5 entities to communicate in a secure way we need:
 - Asymmetric key: 2 keys per person (10 keys in total)
 - Symmetric key: (n-1)*n = 20 keys!!
 - Symmetric key doesn't scale well
- It is possible also to mix the 2 techniques, this is named hybrid cryptosystem
- Hybrid cryptosystems tries to improve speed and security at once

Symmetric vs Asymmetric III

- Which technique should you use for?
 - Store data in a database
 - Sign a document
 - Online Chat.
 - Blockchain
 - HTTPS
 - Sending a key

Asymmetric key examples and use cases

Algorithm	Trapdoor	Encrypt	Sign	Key exchange
RSA	Integer factorization	Yes	Yes	No
DSA	Discrete logarithm	No	Yes	No
Diffie Hellman	Discrete logarithm	No	No	Yes
Elliptic curves	Elliptic curve	Yes	Yes	Yes

- Basis of Asymmetric key
 - 2 Asymmetric key
- **3** RSA

- 4 Diffie-Hellman

Universitat d'Andorra

Basis RSA I

Basis of Asymmetric key

- Asymmetric key encryption algorithm
- RSA comes from Rivest Shamir Adleman
- These 3 guys described the algorithm in 1977
- Can be used to encrypt/decrypt or sign
- Security relies on large integer prime factorization
- Keys are from 2,048 to 4,096 bit

22 / 59

How RSA works?

Basis of Asymmetric key

4 steps:

- Mey generation
- Key distribution
- 8 Encrypting/Signing
- Open Decrypting / Verifying

23 / 59

RSA - Key generation I

- Choose two distinct prime numbers p and q (p = 3, q = 11)
 - p and q should be kept secret
- Calculate n such that, n = pq (n = 33)
 - n is a part of the public key
- Compute $\Phi(n)$, where Φ is the Euler's totient function, in sum $\Phi(n) = (p-1)*(q-1) (\Phi(n) = 2*10 \implies \Phi(n) = 20$

RSA - Key generation II

- Determine a d that, $de \equiv 1 \mod \Phi(n)$
 - Choose an e such that $1 < e < \Phi(n)$, and such that e and $\Phi(n)$ share no divisors other than $1 (gcd(\Phi(n), e) = 1)$. e and $\Phi(n)$ are coprimes (e = 7)
 - e is kept as the **public key**, so pk = (7, 33)
 - This can be calculated by the **euclidean algorithm**, one solution is d = 3
 - d is kept as the **private key**, so sk = (3, 33)

RSA - Key distribution

Encryption:

Basis of Asymmetric key

- If bob wants to send a message to Alice
- Alice sends its own e and n, pk = (7, 33)
- Bob receives Alice's public key

Signing:

- If bob wants to sign a message to Alice
- Bob sends to Alice is own e and n, pk = (7, 33)
- Alice receives Alice's public key

In sum, Bob and Alice exchange its public keys

RSA - Encryption/Decryption |

Encryption:

- Bob uses Alice public key to encrypt the message
- The encryption of m = 2 is $c = 2^7 \mod 33 = 128 \mod 33 = 29$
- Bob sends c = 29
- Alice receives c

RSA - Encryption/Decryption II

Decryption:

Basis of Asymmetric key

- Alice receives c
- Alice uses its private key to decrypt the message
- The decryption process if c = 29, $m = 29^3 \mod 33 = 24389 \mod 33 = 2$
- The message is 2!!!

28 / 59

RSA - Decryption/Verifying I

Signing:

- Bob uses it own private key to sign the message
- The signing of m = 2 is $s = 2^3 \mod 33 = 8 \mod 33 = 8$
- Bob sends s = 8
- Alice receives s

RSA - Decryption/Verifying II

Verifying:

- Alice receives s
- Alice uses Bob's public key to verify the signature
- The verifying process if s = 8, $m = 8^7 \mod 33 = 2097152 \mod 33 = 2$
- The signature is 2!!!!

RSA - In short I

Basis of Asymmetric key

Key generation:

Select
$$p,q$$
 p,q both prime calculate $n=p*q$ calculate $\phi(n)=(p-1)*(q-1)$ select integer e $gcd(\phi(n),e)=1;1< e<\phi(n)$ calculate d $FublicKey$ $KU=e,n$ $FrivateKey$ $KR=d,n$

RSA - In short II

Basis of Asymmetric key

- The video: https://youtu.be/sBO3gH1uGzQ?t=40
- Or you can check the books
- Public params: e, n
- Private params: d, p, q, $\Phi(n)$
- Public key = (e, n)
- Private key = (d, n)
- Factoring n must be hard

Correctness:

- $c^d \mod n = (m^e)^d \mod n = m^{ed} \mod n = m$
- $m^{\Phi(n)} \mod n = 1$. Fermat's little theorem

RSA - Security I

- Security resides in Integer factorization
- This scheme is deterministic (for an input we have the same output)
 - Remember modes of operation of symmetric crypto
- For this reason RSA is the base to build a secure asymmetric key encryption method
- Plain RSA has some issues that could be exploited (not explained in this course):
 - Multiplicative homomorphism
 - Blind signatures
 - etc...

RSA - Security II

Basis of Asymmetric key

RSA improvements:

- Probabilistic RSA?
 - Add random padding before encrypting/signing
- Encryption/Decryption schemes:
 - RSAES-OAEP
 - RSAES-PKCS1-v1_5
- Sign/Verify schemes:
 - RSASSA-PSS
 - RSASSA-PKCS1-v1_5

- Basis of Asymmetric key
- 2 Asymmetric key
- **3** RSA

- 4 Diffie-Hellman

Basis Diffie-Hellman I

- Asymmetric key exchange algorithm
- RSA comes from its creators Whitfield Diffie and Martin Hellman
- It was described in 1976.
- Can be used to key exchange
- Security relies on discrete logarithm

How Diffie-hellman works? I

- Alice and Bob publicly agree to use a modulus p = 23 and base g = 5 (which is a primitive root modulo 23)
- Alice chooses a secret integer a=4 and computes $A=g^a \mod p$ $(A=5^4 \mod 23=4)$
- Alice send A to Bob
- Bob chooses a secret integer b = 3 and computes $B = g^b \mod p$ ($B = 5^3 \mod 23 = 10$)
- Bob send B to Alice

How Diffie-hellman works? II

- Alice computes $s = Ba \mod p$ ($s = 10^4 \mod 23 = 18$)
- Bob computes $s = Ab \mod p$ ($s = 4^3 \mod 23 = 18$)
- Alice and Bob now share a secret (the number 18)
- Correctness:
 - $A^b \mod p = g^{ab} \mod p = g^{ba} \mod p = B^a \mod p$
 - $((g^a \mod p)^b \mod p = (g^b \mod p)^a \mod p)$

How Diffie-hellman works? III

Alice		Bob		Eve	
Known	Unknown	Known	Unknown	Known	Unknown
p = 23		p = 23		p = 23	
g = 5		g = 5		g = 5	
a = 6	b	b = 15	a		a, b
A = 5 ^a mod 23		B = 5 ^b mod 23			
$A = 5^6 \mod 23 = 8$		$B = 5^{15} \mod 23 = 19$			
B = 19		A = 8		A = 8, B = 19	
s = B ^a mod 23		s = A ^b mod 23			
s = 19 ⁶ mod 23 = 2		s = 8 ¹⁵ mod 23 = 2			s

Diffie-Hellman security I

- Security resides in discrete logarithm (considered secure)
- Vulnerable to MITM attacks as we will see
- To avoid MITM attacks we need a 3rd party to certificate the public key
- The validator is a trusted entity called PKI (Public Key Infraestructure)

Diffie-Hellman security II

Diffie-Hellman security III

Basis of Asymmetric key

https://www.youtube.com/watch?v=M-0qt6tdHzk

- Basis of Asymmetric key
- 2 Asymmetric key
- **3** RSA

Basis of Asymmetric key

- 4 Diffie-Hellman
- **6** Others

43 / 59

Other asymmetric key algorithms I

DSA

- ElGamal
- Hashed ElGamal
- Paillier
- Elliptic curve
 - ECDSA (Elliptic Curve Digital Signature Algorithm)
 - ECDH (Elliptic Curve Diffie Hellman)
 - ECIES (Elliptic Curve Integrated Encryption Scheme)

DSA I

Basis of Asymmetric key

- Asymmetric key signing algorithm
- DSA comes from Digital Signature Algorithm
- These 3 guys described the algorithm in 1977
- Can be used to sign/verify
- Security relies in discrete logarithm

45 / 59

Others

00000000000

ElGamal I

Basis of Asymmetric key

- Asymmetric key encryption and signing algorithm
- It was described by Taher Elgamal in 1985
- Can be used to sign/verify and encrypt/decrypt
- Security relies in discrete logarithm

47 / 59

ElGamal II

Basis of Asymmetric key

ElGamal Encryption

Key generation

- Pick a large prime p, generator g of Z*_p
- Private key: random x such that $1 \le x \le p-2$
- Public key: (p, g, y = g^x mod p)

Encryption

- Pick random k, $1 \le k \le p-2$
- $E(m) = (g^k \mod p, m \cdot y^k \mod p) = (\gamma, \delta)$

Decryption

- Given ciphertext (γ,δ), compute γ^{-x} mod p
- Recover $m = \delta \cdot (\gamma^{-x}) \mod p$

slide 7

ElGamal III

Basis of Asymmetric key

ElGamal Signature Example

- use field GF(19) q=19 and a=10
- · Alice computes her key:
 - A chooses $x_A=16$ & computes $y_A=10^{16}$ mod 19=4
- Alice signs message with hash m=14 as (3,4):
 - choosing random K=5 which has gcd(18,5)=1
 - computing $S_1 = 10^5 \mod 19 = 3$
 - finding K^{-1} mod $(q-1) = 5^{-1}$ mod 18 = 11
 - computing $S_2 = 11 (14-16.3) \mod 18 = 4$
- · any user B can verify the signature by computing
 - $-V_1 = 10^{14} \mod 19 = 16$
 - $-V_2 = 4^3.3^4 = 5184 = 16 \mod 19$
 - since 16 = 16 signature is valid

Paillier I

- Asymmetric key encryption algorithm
- It was described by Pascal Paillier in 1999
- Can be used to encrypt/decrypt
- Security relies in Integer prime factorization
- Interesting applications as online voting and electronic cash (not bitcoin)
- Interesting homomorphic encryption properties (as ElGamal and RSA)

Paillier II

Basis of Asymmetric key

Key Generation

k, the bit length of prime p $n = p^2q$, the modulus $g \in \mathbb{Z}/n\mathbb{Z}$ s.t. $p|ord_{p^2}(g)$ $g_p = g \mod p^2$ Public-key: (n, g, k), Secret key: p, g_p

Encryption of m

 $m \in \{0, 1, ..., 2^{k-2}\}$, a message $r \in \mathbb{Z}/n\mathbb{Z}$, a random integer $c = q^{m+rn} \mod n$, a ciphertext

Decryption of c

 $m = L(c^{p-1} \bmod p^2) L(g_p^{p-1} \bmod p^2)^{-1} \bmod p$

Elliptic curves I

Basis of Asymmetric key

I DON'T UNDERSTAND WHY
PEOPLE GET CONFUSED ...
I DON'T LOOK ANYTHING
LIKE YOU!

I THINK IT'S THE NAME! LET'S ASK JAVA AND JAVASCRIPT TO SEE HOW THEY DEAL WITH IT

Elliptic curves II

- According to wikipedia elliptic curves are an approach to public-key cryptography based on the algebraic structure of elliptic curves over finite fields
- ECC allows smaller keys compared to non-EC cryptography with equivalent security
- All points in an eliptic curve must satisfy this equation: $y^2 = x^3 + ax + b$
- The main idea of elliptic curves is to replace the groups Z_p in discrete logarithm problem
- Examples: ECIES, ECDSA, ECDH

Elliptic curves III

Exercice

- Basis of Asymmetric key
- 2 Asymmetric key
- **3** RSA

- 4 Diffie-Hellman
- **6** Exercice

Attention I

Basis of Asymmetric key

ATTENTION!!

- This is an exam like exercise
- Any question about how the exam will be?

Statement I

- I want to send a message to someone in this class
- I want that that person answers me
- The message that I want to send is 1GB in size
- The answer is 1kB in size
- Only me and the other person have to know the message and the answer
- How can you do this? Talk me about the technologies, methodologies or algorithms that you will use

Statement II

- I have a ransomware
- Describe me how you will encrypt the victim's hard drive

The END!