Latent Generative Memory

February 6, 2020

Latent Generative Memory (LGM)

Figure 1: Generative Memory (i.e. a traditional one)

Figure 2: Latent Generative Memory

Remark: one can use any generative model (GAN/VAE/Flows/etc) for their generative memory.

LGM pros and cons

Pros:

- Much simpler computationally since training anything in a latent space is easier
- Should provide better scores than MeRGAN since huge GANs are difficult to train in an image space, especially continually

Cons:

▶ It is not obvious how to make Embedder not forget previous data

Making Embedder less forgetful. Strategy #1.

Strategy #1: Apply EWC (or MAS/AGEM/etc.) to Embedder.

- ▶ Pros: should be easier to implement
- Cons:
 - It is less novel.
 - Can work bad in scenarios where EWC (or MAS/AGEM/etc.) work bad. If this is true then things are bad.

Making Embedder less forgetful. Strategy #2.

Strategy #2: Apply autoencoding distillation loss:

- ▶ Train a decoder $D: u \rightarrow x$ to decode representations again into images
- Apply the following loss:

$$\mathcal{L}^{\mathsf{AE}} = \mathop{\mathbb{E}}_{p_{t-1}^{\mathsf{LGM}}} \left[\| u - E_t(D_{t-1}(u)) \|_2^2 \right]$$

- ▶ Intuition: \mathcal{L}^{AE} directly forces E_t not to change on previous data.
- ► Pros:
 - More novel
 - ▶ Should work well if decoder *D* is perfect
- Cons: we are not sure how good our decoder will be

I GM-VAF overview

Scheme is the same

Figure 3: VAE-based LGM

VAE training specifics:

- ▶ We perform distillation for an encoder and a decoder independently:
 - For decoder we just sample from prior and optimize $||D_t(z) D_{t-1}(z)||^2$
 - For encoder we sample u from the previous GM model and optimize $\|E_t(u) D_{t-1}(u)\|^2$
- ▶ It should be beneficial to train a prior model to memorize data better

LGM-VAE pros and cons

Pros:

- ▶ training is more stable
- gives better scores in preliminary experiments
- gives better scores for "Three scenarios" paper

Cons:

- Distillation is a bit of ill-posed
- GANs should be better at memorizing data?
- ▶ Not obvious how to force hallucinated samples look real

Continual Learning by Memorization

Imagine we have a magic neural network M that:

- ▶ Takes a dataset X as an input and memorizes it
- Outputs the stored dataset X by demand
- Has "reasonable" number of parameters (i.e. less than HAT, for example).

We can "solve" CL by using M:

- ▶ For task 1 store dataset X₁ in M.
- ▶ For task t extract all the previous datasets $X_1, ..., X_{t-1}$, concat them and put into M
- At each timestep t we can extract all the stored data $X_1, ..., X_t$ and train a *joint* classifier (which is an upper bound!).

Will it be a fair approach?

Final thoughts

- ▶ ICCV19 model is not an LGM model since they do not use embedder
- ► LGM model, if done properly, seems to be an individual contribution that can be sold individually (i.e. applying a creativity loss can be a separate project after that)
- If one is going to build LGM through autoencoding loss than the project is likely to consist on 3 sequential projects:
 - 1. Take any autoencoder, train a generative model in its latent space. How good are the samples?
 - Put this setup onto continual learning rails, i.e. it allows us to train LGM with autoencoding loss
 - 3. Apply creativity losses
- "CL through memorization" idea can also have potential for two projects:
 - 1. How to build a "Deep Memorizing Model"?
 - Show that DMMs solve CL perfectly, implying that there is something wrong with our evaluation of CL.