The Norwegian Insect Monitoring Program

Lessons in metabarcoding-based biomonitoring

Marie Louise Davey, Senior Researcher

Global Insect Decline

RESEARCH ARTICLE

More than 75 percent decline over 27 years in total flying insect biomass in protected areas

Caspar A. Hallmann¹*, Martin Sorg², Eelke Jongejans¹, Henk Siepel¹, Nick Hofland¹, Heinz Schwan², Werner Stenmans², Andreas Müller², Hubert Sumser², Thomas Hörren², Dave Goulson³. Hans de Kroon¹

1 Radboud University, Institute for Water and Wetland Research, Animal Ecology and Physiology & Experimental Plant Ecology, PO Box 9100, 6500 GL Nijmegen, The Netherlands, 2 Entomological Society Krefeld e.V., Entomological Collections Krefeld, Marktstrasse 159, 47798 Krefeld, Germany, 3 University of Sussex, School of Life Sciences, Falmer, Brighton BN1 9QG, United Kingdom

^{*} c.hallmann@science.ru.nl

Global Insect Decline

Defaunation in the Anthropocene

RODOLFO DIRZO, HILLARY S. YOUNG, MAURO GALETTI, GERARDO CEBALLOS, [...], AND BEN COLLEN

Norwegian Insect Monitoring Program

- Funded by the Norwegian Environment Agency
 - Initiated in 2019 with a pilot project in Trøndelag for method development
 - Uses a field design with 50 monitoring sites per habitat type visited on a 5-year rolling basis.
 - Based primarily on malaise traps for flying insects, with supplemental window traps for beetles

Norwegian Insect Monitoring Program

- Launched in 2020 in semi-natural grasslands and forests in eastern Norway
- Program is scaling up to national coverage
 - expanded to seminatural grasslands in central Norway (2021), southern Norway (2022), and northern Norway (2023)

Norwegian Insect Monitoring Program

- A variety of bioclimatic data is recorded at each locality
- Insect biomass caught is monitored at 2 week intervals from April to October
- Monitoring at the «species» level is by metabarcoding-based identification of the insect biomass caught at each locality

NINAGEN Centre for biodiversity genetics

Why metabarcoding for biomonitoring?

- High throughput
- Cost effective
- Standardized for comparable results
- Accurate and precise
- Relevant data for relevant organisms

Why metabarcoding for biomonitoring?

Metabarcoding Morphological

Traps/Sites: 100/100 73/55

Sampling Duration: 1 year 3 years

Processing Time: 3 months 15 years

Completion 100% 1%

Species Recovered: 16 000 4 000

New to Science: ? 700

Cots: 2 million USD 3 million USD*

*20% voluntary labour

 How do we effectively sample insects on a national scale?

- Metabarcoding effectively introduces an additional sampling event
 - sampling of organisms
 - 2. sampling of DNA molecules

 Sufficient sequencing depth is vital in order to rival detection capacity of other methods

- Sufficient sequencing depth is vital in order to rival detection capacity of other methods
- NorIns relies on NovaSeq sequencing that generates 0.5 to 1 million sequences passing quality control per sample

- DNA isolation methods can impact species recovery
- NorIns uses a 3 hour, minimally destructive soft lysis protocol that preserves sufficient morphological characters in hard bodied specimens to allow for later identification

- DNA isolation methods can impact species recovery
- NorIns uses a 3 hour, minimally destructive soft lysis protocol that preserves sufficient morphological characters in hard bodied specimens to allow for later identification

- DNA isolation method can impact species recovery
- Lysis time can impact recovery of hard vs. soft bodied taxa and large vs. small taxa

- PCR conditions need to be optimized, particularly for chimera formation
- Incomplete chimera removal likely leads to inflated alpha diversity estimates
- The solution is to avoid chimera formation in the first place

Three years of monitoring

Three years of monitoring

Three years of monitoring

Beyond species lists: Genetic diversity

Scatopsciara atomaria

Sussaba cognata

Malthodes mysticus

Phyllocnistis labyrinthella

Beyond species lists: Integrated Monitoring

NINAGEN Centre for biodiversity genetics

Beyond species lists: Horizon scanning

Questions?

