```
import pandas as pd

# Load the dataset from the uploaded file
df = pd.read_csv("Au_nanoparticle_dataset.csv")

# Create a new dataframe by filtering columns
new_df = df[['N_total', 'N_bulk', 'N_surface', 'R_avg']]

# Display the first 20 samples of the new dataframe
```

print(new_df.head(20))

	${\sf N_total}$	N_bulk	N_surface	R_avg
0	1599	1014	585	17.3706
1	1642	1034	608	17.6061
2	4637	3365	1272	25.3692
3	7189	5292	1897	29.7011
4	11004	8508	2496	34.2831
5	13375	10768	2607	36.6334
6	13795	11155	2640	37.0108
7	13947	11304	2643	37.1672
8	14020	11357	2663	37.2103
9	14056	11389	2667	37.2467
10	1534	966	568	17.1107
11	1559	974	585	17.2101
12	4356	3099	1257	24.8253
13	6550	4675	1875	29.0376
14	10175	7748	2427	33.4399
15	12393	9842	2551	35.6950
16	13207	10590	2617	36.4657
17	13543	10937	2606	36.7871
18	13713	11079	2634	36.9333
19	13791	11151	2640	37.0104

Calculate mean, standard deviation, and quartiles for each feature
feature_stats = new_df.describe()
print(feature_stats)

	N_total	N_bulk	N_surface	R_avg
count	4000.000000	4000.000000	4000.00000	4000.000000
mean	3476.786500	2521.550250	955.23625	20.654363
std	3679.286769	2976.232459	721.87022	7.610716
min	236.000000	89.000000	137.00000	8.528600
25%	1061.000000	618.750000	437.00000	15.160725
50%	1867.000000	1199.000000	666.00000	18.629250
75%	4503.000000	3183.000000	1301.75000	25.525125
max	14277.000000	11580.000000	3190.00000	39.239200

X

✓ 28s completed at 8:48 PM

```
# Plot histograms
plt.figure(figsize=(12, 3))
for idx, col in enumerate(new_df.columns):
    plt.subplot(1, 4, idx + 1)
    plt.hist(new_df[col], bins=20, color='blue', alpha=0.7)
    plt.title(col)
plt.tight_layout()
plt.show()
```


import seaborn as sns

```
# Visualize scatter plots and histograms using pairplot
sns.pairplot(new_df)
plt.show()
```



```
# Create a PairGrid with custom plots
g = sns.PairGrid(new_df)
g.map_upper(sns.histplot) # Bivariate histogram
g.map_diag(sns.histplot) # Univariate histogram
g.map_lower(sns.kdeplot) # Bivariate KDE plot
plt.show()
```

12500

Colab paid products - Cancel contracts here