CSC236 Term Test 1 Version 2 Review

Hyungmo Gu

May 12, 2020

Question 1

• Proof. Define $P(n): f(n) = 3^n$.

I will use complete induction to prove that $\forall n \in \mathbb{N}, P(n)$.

Base Case (n = 0):

Let n = 0.

Then,

$$f(n) = 1$$
 [By def.] (1)

$$\leq 3^{0}$$
 (2)

$$\leq 3^0 \tag{2}$$

$$=3^{n} \tag{3}$$

Thus, P(n) follows in this step.

Base Case (n = 1):

Let n=1.

Then,

$$f(n) = 1$$
 [By def., since $n = 1$] (4)
 $\leq 3^1$ (5)

$$\leq 3^1 \tag{5}$$

$$=3^{n} \tag{6}$$

Thus, P(n) follows in this step.

Base Case (n=2):

Let n=2.

Then,

$$f(n) = 9$$
 [By def., since $n = 2$] (7)

$$\leq 3^{2}$$
 (8)

$$= 3^{n}$$
 (9)

Thus, P(n) follows in this step.

Base Case (n = 3):

Let n=3.

Then,

$$f(n) = f(n-1) + 3f(n-2) +$$

$$9f(n-3)$$

$$= 9 + 3 \cdot 3 + 9 \cdot 1$$

$$= 3^{2} + 3^{2} + 3^{2}$$

$$= 3^{3}$$

$$= 3^{n}$$

$$\leq 3^{n}$$
[By def., since $n - 1 = 2$, $n - 2 = 1$, $n - 3 = 0$] (11)
$$(12)$$

$$(13)$$

$$(14)$$

Thus, P(n) follows in this step.

Case (n > 3):

Let n > 3.

Then, since $0 \le n-3 < n-2 < n-1 < n, P(n-3), P(n-2), P(n-1)$ holds by induction hypothesis. That is, $P(n-3) \le 3^{n-3}, P(n-2) \le 3^{n-2}, P(n-1) \le 3^{n-1}$.

Thus,

$$f(n) = f(n-1) + 3f(n-2) + 9f(n-3)$$
 [By def., since $n > 2$] (16)

$$\leq 3^{n-1} + 3 \cdot 3^{n-2} + 9 \cdot 3^{n-3}$$
 [By header] (17)

$$=3^{n-1}+3^{n-1}+3^{n-1} (18)$$

$$=3^n\tag{19}$$

So, P(n) follows from H(n) in this step.

Question 2

• Proof. Define for convenience

P(x, y, z, w): There are no positive integers x, y, z, w such that $x^4 + 3y^4 + 9z^4 = 27w^4$.

I will prove P(x, y, z, w) by contradiction.

Assume $\neg P(x, y, z, w)$. That is, $\exists x, y, z, w \in \mathbb{N}^+$, $x^4 + 3y^4 + 9z^4 = 27w^4$.

Then, $X = \{x \in \mathbb{N}^+ \mid \exists y, z, w \in \mathbb{N}^+, x^4 + 3y^4 + 9z^4 = 27w^4\}$ is not empty.

Then, by the principle of well-ordering, X has smallest element.

Let $x_0 \in X$ be its smallest element, and let $y_0, z_0, w_0 \in \mathbb{N}^+, x_0^4 + 3y_0^4 + 9z_0^4 = 27w_0^4$.

Then,

$$x_0^4 + 3y_0^4 + 9z_0^4 = 27w_0^4 \Rightarrow x_0 = 27w_0^4 - 3y_0^4 + 9z_0^4$$
(20)

$$\Rightarrow x \mid x_0^4$$
 (21)

$$\Rightarrow 3 \mid x_0$$
 [By hint, since 3 is prime] (22)

Let
$$x_1 \in \mathbb{N}^+$$
, $x_0 = 3x_1 \Rightarrow 3^4 x_1^4 + 3y_0^4 + 9z_0^4 = 27w_0^4$ (23)

$$\Rightarrow 3y_0^4 = 27w_0^4 - 9z_0^4 - 3^4x_1^4 \tag{24}$$

$$\Rightarrow y_0^4 = 9w_0^4 - 3z_0^4 - 3^3x_1^4 \tag{25}$$

$$\Rightarrow 3 \mid y_0^4 \tag{26}$$

$$\Rightarrow 3 \mid y_0$$
 [By hint, since 3 is prime] (27)

Let
$$y_1 \in \mathbb{N}^+$$
, $y_0 = 3y_1 \Rightarrow 3^4 x_1^4 + 3^5 y_1^4 + 9z_0^4 = 27w_0^4$ (28)

$$\Rightarrow 9z_0^4 = 27w_0^4 - 3^5y_1^4 - 3^4x_1^4 \tag{29}$$

$$\Rightarrow z_0^4 = 3w_0^4 - 3^3y_1^4 - 3^2x_1^4 \tag{30}$$

$$\Rightarrow 3 \mid z_0^4 \tag{31}$$

$$\Rightarrow 3 \mid z_0$$
 [By hint, since 3 is prime] (32)

Let
$$z_1 \in \mathbb{N}^+$$
, $z_0 = 3z_1 \Rightarrow 3^4 x_1^4 + 3^5 y_1^4 + 3^6 z_1^4 = 27w_0^4$ (33)

$$\Rightarrow 3x_1^4 + 3^2y_1^4 + 3^3z_1^4 = w_0^4 \tag{34}$$

$$\Rightarrow 3 \mid w_0^4 \tag{35}$$

$$\Rightarrow 3 \mid w_0$$
 [By hint, since 3 is prime] (36)

Let
$$w_1 \in \mathbb{N}^+$$
, $w_0 = 3w_1 \Rightarrow 3^4 x_1^4 + 3^5 y_1^4 + 3^6 z_1^4 = 3^7 w_1^4$ (37)

$$\Rightarrow x_1^4 + 3y_1^4 + 3^2 z_1^4 = 3^3 w_1^4 \tag{38}$$

$$\Rightarrow x_1 \in X \tag{39}$$

Then, since $x_1 < x_0$ and $x_1 \in X$, but x_0 is be the smallest element in X, this leads to contradiction.

Thus, the assumption is false, and P(x, y, z, w) holds.

Question 3

• *Proof.* For convenience, define P(t): left(t) is odd.

I will use structural induction to prove that $\forall t \in \mathcal{T}, P(t)$.

Basis:

Let
$$t = `()'$$
.

Then, left(t) = 1, which is odd.

Thus, P(t) follows in this step.

Inductive Step:

Let $t_1, t_2 \in \mathcal{T}$ be arbitrary elements. Assume $P(t_1)$ and $P(t_2)$. That is left (t_1) and left (t_2) are odd. In other words, $\exists k_1, k_2 \in \mathbb{Z}$, left $(t_1) = 2k_1 + 1$ and left $(t_2) = 2k_2 + 1$. Let (t_1t_2) be parenthesized concatenated string in \mathcal{T} .

I need to show $P((t_1t_2))$ follows. That is, $left((t_1t_2))$ is odd. In other words, $\exists k \in \mathbb{Z}$, $left((t_1t_2)) = 2k + 1$.

Let
$$k = k_1 + k_2 + 1$$
.

Then, starting from left((t_1t_2)), we have

left(
$$(t_1t_2)$$
) = left((t_1)) + left((t_2)) + 1 [Adding initial '(' plus t_1t_2 to left_count] (1)
= $(2k_1 + 1) + (2k_2 + 1) + 1$ [By header] (2)
= $2(k_1 + k_2 + 1) + 1$ (3)
= $2k + 1$ [Since $k = k_1 + k_2 + 1$] (4)

Thus, $P((t_1t_2))$ follows in this step.