```
CS/ECE 374 FALL 2018
Homework 5 Problem 2
```

Zhe Zhang (zzhan157@illinois.edu) Ray Ying (xinruiy2@illinois.edu) Anqi Yao (anqiyao2@illinois.edu)

2. Let Σ be a finite alphabet and let L_1 and L_2 be two languages over Σ . Assume you have access to two routines $\operatorname{IsStringIn} L_1(u)$ and $\operatorname{IsStringIn} L_2(u)$. The former routine decides whether a given string u is in L_1 and the latter whether u is in L_2 . Using these routines as black boxes describe an efficient algorithm that given an arbitrary string $w \in \Sigma^*$ decides whether $w \in (L_1 \cup L_2)^*$. To evaluate the running time of your solution you can assume that calls to $\operatorname{IsStringIn} L_1(u)$ and $\operatorname{IsStringIn} L_2(u)$ take constant time. Note that you are not assuming any property of L_1 or L_2 other than being able to test membership in those languages.

Solution: boolean values belong[1],belong[2],...,belong[n] are used to indicate whether the substring $w[i,...,n] \in (L_1 \cup L_2)^*$. The outer loop goes from the end of the string w to the start of the string w, and i indicates the index. The inner loop goes from i^{th} position to the end of the string w, and j also indicates the index. j=n is a special case. When $j \neq n$ and belong[j+1] = TRUE which means substring $w[j+1,...,n] \in (L_1 \cup L_2)^*$ so that we only need to check whether $w[i,...,j] \in L_1 \mid \mid w[i,...,j] \in L_2$ or not. If it is in either L_1 or L_2 , we set belong[i] = TRUE which means the substring $w[i,...,n] \in (L_1 \cup L_2)^*$. At the end, if belong[i] = TRUE, then $w \in (L_1 \cup L_2)^*$

```
\frac{\text{FUNCTION}(w):}{\text{boolean belong}[1,2,...,n]} for i \leftarrow n down to 1 \text{belong}[i] = \text{FALSE} for j \leftarrow i to n \text{if } (j==n) \text{if } (\text{IsStringIn}L_1(w[i,...,n]) \mid | \text{IsStringIn}L_2(w[i,...,n])) \text{belong}[i] = \text{TRUE} \text{break} \text{else} \text{if } (\text{belong}[j+1] \text{ && } (\text{IsStringIn}L_1(w[i,...,j]) \mid | \text{IsStringIn}L_2(w[i,...,j]))) \text{belong}[i] = \text{TRUE} \text{break} \text{return belong}[1]
```

The resulting algorithm runs in $O(n^2)$ time.