Chapitre 12 – Intégrales à paramètre

- I Version continue du théorème de convergence dominée
- II Théorème de continuité des intégrales à paramètre
- III Théorème de dérivation des intégrales à paramètre

IV - Bonus

I – Version continue du théorème de convergence dominée

Théorème de CVD version continue

Soient I, J \subset \mathbb{R} *des intervalles et g* : $I \times J \to \mathbb{R}$.

Soient
$$a \in \overline{I}$$
 et $f : x \mapsto \int_{I} g(x,t)dt$.

$$(H_1) \ \forall x \in I, \ t \mapsto g(x,t) \ est \ CPM \ sur \ J$$

 $(H_2) \ \exists h : J \to \mathbb{R} \ CPM \ sur \ J \ telle \ que \ \forall t \in J, g(x,t) \xrightarrow[x \to a]{} h(t)$

 $(H_3) \exists \varphi: J \to \mathbb{R}$ CPM et intégrable sur J telle que $\forall (x,t) \in I \times J, |g(x,t)| \leq \varphi(t)$

$$\Rightarrow \begin{cases} (C_1) \ \forall x \in I, t \mapsto g(x, t) \ int \'egrable \ sur \ J \ et \ h \ int \'egrable \ sur \ J \\ (C_2) \lim_{x \to a} \int_I g(x, t) dt = \int_I \left(\lim_{x \to a} g(x, t) \right) dt \ c\`{a} df(x) \underset{x \to a}{\longrightarrow} \int_I h(t) dt \end{cases}$$

II – Théorème de continuité des intégrales à paramètre

Théorème de continuité des intégrales à paramètre

Soient
$$I,J \subset \mathbb{R}$$
 des intervalles, $g:I \times J \to \mathbb{R}$ et $f:x \mapsto \int_J g(x,t)dt$.

$$(H_1) \ \forall x \in I, \ t \mapsto g(x,t) \ est \ CPM \ sur \ J$$

 $(H_2) \ \forall t \in J, x \mapsto g(x,t) \ est \ continue \ sur \ I$

 $(H_3) \exists \varphi: J \to \mathbb{R} \ CPM \ et \ intégrable \ sur \ J \ telle \ que \ \forall (x,t) \in I \times J, |g(x,t)| \le \varphi(t)$

$$\Rightarrow \begin{cases} (C_1) \ \forall x \in I, t \mapsto g(x,t) \ intégrable \ sur \ J \ (ie \ f \ définie \ sur \ I) \\ (C_2) \ f \ est \ continue \ sur \ I \end{cases}$$

III – Théorèmes de dérivation des intégrales à paramètres

Théorème de Leibniz

Soient $I,J \subset \mathbb{R}$ des intervalles, $g:I \times J \to \mathbb{R}$ et $f:x \mapsto \int_I g(x,t)dt$.

$$\begin{array}{c} (H_1) \ \forall t \in J, x \mapsto g(x,t) \ est \ d\'{e}rivable \ sur \ I \\ (H_2) \ \forall t \in J, x \mapsto \frac{\partial g}{\partial x}(x,t) \ est \ continue \ sur \ I \end{array} \right\} \ (H_{1\&2}) \ \forall t \in J, x \mapsto g(x,t) \ est \ C^1 \ sur \ I \\ (H_3) \ \forall x \in I, \begin{cases} t \mapsto g(x,t) \ \mathit{CPM} \ et \ int\'{e}grable \ sur \ J \\ t \mapsto \frac{\partial g}{\partial x}(x,t) \ \mathit{CPM} \ et \ int\'{e}grable \ sur \ J \end{cases}$$

 $(H_4) \exists \varphi: J \to \mathbb{R} \ CPM \ et \ intégrable \ sur \ J \ telle \ que \ \forall (x,t) \in I \times J, \left| \frac{\partial g}{\partial x}(x,t) \right| \leq \varphi(t)$

$$\Rightarrow \begin{cases} (C_1) \ \forall x \in I, t \mapsto \frac{\partial g}{\partial x}(x, t) \ int\'egrable \ sur \ J \\ (C_2) \ f \ est \ C^1 \ sur \ I \ et \ \forall x \in I, f'(x) = \int_J \frac{\partial g}{\partial x}(x, t) dt \end{cases}$$

Théorème de dérivation des intégrales à paramètre version C^k

Soient $I,J \subset \mathbb{R}$ des intervalles, $g:I \times J \to \mathbb{R}$, $f:x \mapsto \int_I g(x,t)dt$ et $k \in \mathbb{N}^*$.

$$(H_1) \ \forall t \in J, x \mapsto g(x,t) \ est \ C^k \ sur \ I$$

$$(H_2) \begin{cases} a) \ \forall p \in [0;k-1], \forall x \in I, t \mapsto \frac{\partial^p g}{\partial x^p}(x,t) \ est \ CPM \ et \ intégrable \ sur \ J \end{cases}$$

$$b) \ \forall x \in I, t \mapsto \frac{\partial^k g}{\partial x^k}(x,t) \ est \ CPM \ sur \ J$$

 $(H_3) \ \exists \varphi_k : J \to \mathbb{R} \ \textit{CPM et intégrable sur } \textit{J telle que} \ \forall x \in I, \forall t \in J, \left| \frac{\partial^k g}{\partial x^k}(x,t) \right| \leq \varphi_k(t)$

$$\Rightarrow \begin{cases} (C_1) f C^k sur I \\ (C_2) \forall p \in [0; k], \forall x \in I, f^{(p)}(x) = \int_I \frac{\partial^p g}{\partial x^p}(x, t) dt \end{cases}$$

IV - Bonus

Proposition

$$\forall x \in \mathbb{R}_+^*, \Gamma(x+1) = x \cdot \Gamma(x)$$

<u>Démonstration</u>: avec une IPP

Propositions:

 Γ est convexe sur \mathbb{R}_+^*

 Γ est log - convexe sur \mathbb{R}_+^*

<u>Démonstrations</u>:

- 1) On dérive 2 fois
- 2) On dérive $\ln\Gamma$ et on utilise l'inégalité de Cauchy-Schwarz