

Mammography Al Models and Radiomic Features for Breast Cancer Risk Prediction: A Matched Case-Control Study in an Ethnically-Diverse Cohort

Arianna Bunnell^{1,2}, Thomas Wolfgruber¹, Brandon Quon¹, Cade Kane², Dustin Valdez¹, Brenda Y. Hernandez¹, Karla Kerlikowske³, Peter Sadowski², and John A. Shepherd¹

¹University of Hawai'i Cancer Center, ²University of Hawai'i at Mānoa, ³University of California, San Francisco

- Hawai'i is the most diverse state in the USA. 37% of Hawai'i identifies as Asian alone and 11% as NHPI alone.
- Hawai'i has an age-adjusted breast cancer incidence rate of 139.6 per 100,000.
 - Japanese: 167.8 per 100,000
 - Native Hawaiian: 165.9 per 100,000
 - Filipina: 119.6 per 100,000

Table 1. 10 States With the Highest Diversity Index in 2020

	Diversit	y index	Percentage-
State	2010	2020	point difference
Hawaii	75.1	76.0	0.9
California	67.7	69.7	2.0
Nevada	62.5	68.8	6.3
Maryland	60.7	67.3	6.6
District of Columbia	61.9	67.2	5.3
Texas	63.8	67.0	3.2
New Jersey	59.4	65.8	6.4
New York	60.2	65.8	5.5
Georgia	58.8	64.1	5.3
Florida	59.1	64.1	5.1

US Census Bureau

ANHPI – Asian, Native Hawaiian, and Pacific Islander

Motivating Questions

- 1. How do Al/radiomics models for breast cancer risk perform in an ethnically-diverse ANHPI population?
- 2. Do these Al/radiomics models retain predictive performance when models are adjusted for clinical risk factors?
- 3. Exploratory: Do conventional radiomics add to the predictive performance of the Al models?

- The data used in this study are sourced from the Hawai'i and Pacific Islands Mammography Registry (HIPIMR)
 - Prospective cohort of women
 - Collects breast imaging and breast health information (2009-present)
 - Linked to the Hawai'i Tumor Registry to identify cases
- HIPIMR data consist of imaging, metadata, clinical variables, patient characteristics, and biopsy-confirmed cancer status

Selection Criteria

- Population is all patients with a record of MG imaging in the HIPIMR
- Exclusion Criteria
 - MG is not negative (BI-RADS 1 or 2)
 - Imaging <6 months before diagnosis date
 - Missing R/L CC/MLO views
 - Age <40 or >79
 - Missing race/ethnicity or density
- 1:3 case-control matching on age, race/ethnicity, first visit date, and MG machine type

Data Selection Results – All Women

		Controls	Cases
	Women, N	3,159	1,283
	NHPI	773	272
	White	508	182
	Chinese	138	99
Dana /F4basia ida	Filipina	178	161
Race/Ethnicity	Japanese	476	444
	Hispanic	174	62
	Other/NOS Asian	869	47
	Other	43	16
	Fatty (A)	189	34
Breast Density	Scattered (B)	1,438	610
Breast Density	Heterogeneous (C)	1,272	515
	Extremely dense (D)	260	124
Managaga	Menopausal	2,314	904
Menopause	Pre-menopausal	845	379

Time to diagnosis from imaging:

- 8.2% of cases diagnosed after 10 years
- 3.6% of cases diagnosed before 1 year

Algorithm	Input	Output
OpenBreast Pertuz+ 2019	[mm] [mm]	32 texture features (GLC, GRA, GLH, SFA, GLR)
CaPTk Zheng+ 2019	Any view(s)	328 features (LBP, FD, GLC, GLH, GLR)
Malkov Malkov+ 2016	jus.	17 fractal (FD) features

Algorithm	Input	Output
LIBRA Keller+ 2012	Any view(s)	Percent density
Wu et al. Wu+ 2018	Jan ()	Probability of BI-RADS density [P(A), P(B), P(C), P(D)]
Transpara	R/L CC/MLO views	Volumetric density

Al Models (Academic)

Algorithm	Input	Output
GMIC Shen+ 2019	[3600]	[P(benign finding), P(malignant finding)]
Mirai Yala+ 2021	3 man)	1-, 2-, 3-, 4-, and 5-year risk
Zhu et al. Zhu+ 2021	R/L CC/MLO views	[P(normal), P(screen-detected), P(interval)]

Al Models (Commercial)

Algorithm	Input	Output
ProFound Detection	Jaco; Jaco	Case score (1-100)
Transpara	R/L CC/MLO views	Exam score (1-10)

Statistical Methods

- Features were dropped out when they had Pearson's r > |0.7|
 with another feature in their same family.
- This reduced the number of features from 401 to 58 features
 - CaPTk → reduced from 328 to 32 features
 - Malkov → reduced from 11 to 4 features
 - Mirai → reduced from 5 to 1 feature
 - OpenBreast → reduced from 32 to 9 features
- Model definition: Conditional logistic regression with womanlevel clustered standard errors. Radiomic features/Al model outputs were all standardized.
 - Benjamini-Hochberg adjustment was used to correct for multiple testing.

Baseline models were constructed with *only* clinical risk factors to assess added benefit of radiomics.

Clinical risk factors: Breast density, age, menopausal status

Results - All Women

Race/Ethnicity Subgroups

Subgroup	Baseline Performance (AUC)
Japanese	0.78 (0.77-0.80)
NHPI	0.61 (0.59-0.63)
White	0.57 (0.54-0.59)
Filipina	0.79 (0.77-0.82)

ProFound Detection Mirai 5-Year Risk

Transpara

Adding to Transpara – All Women

Baseline = 0.65 AUC

Adding to Profound Detection – All Women

Baseline = 0.60 AUC

Mahalo nui loa!

Future Work

20% of Hawai'i identifies as mixedrace, how can we account for this in our models?

Exploring multivariate, cross-family modeling with risk factors. Which radiomics add information?

Can we condense down risk information from multiple radiomics into a single "super radiomic"?