Question 1

证明: R2 中至少有一个圆周不含有理数点.

证明. 对于 r>0, 记 $S_r=\{(x,y)\in\mathbb{R}^2|\sqrt{x^2+y^2}=r\}$. 用反证法. 若 $\forall r>0, S_r\cap(\mathbb{Q}\times\mathbb{Q})\neq\emptyset$, 则说明 $\mathbb{Q}\times\mathbb{Q}$ 不可列. 这与 $\mathbb{Q}\times\mathbb{Q}$ 是可列集矛盾.

Question 2

试作一个从开圆盘 $D^{\circ} = \{(x,y)|x^2+y^1<1\}$ 到闭圆盘 $D=\{(x,y)|x^2+y^2\leqslant 1\}$ 的双射.

解. 作一列圆周:

$$A_n = \left\{ (x, y) | x^2 + y^2 = \frac{1}{n} \right\}$$

容易想到从 A_n 到 A_{n-1} 有个一一对应:

$$g: A_n \to A_{n-1}, (x,y) \mapsto \left(\sqrt{\frac{n}{n-1}}x, \sqrt{\frac{n}{n-1}}y\right)$$

注意到

$$D^{\circ} \setminus \left(\bigcup_{n=2}^{+\infty} A_n\right) = D \setminus \left(\bigcup_{n=1}^{+\infty} A_n\right),$$

由此可作出 D° 到 D 的双射如下:

$$f: D^{\circ} \to D, (x,y) \mapsto \begin{cases} (x,y), \ \ \, \stackrel{\text{\not}}{\overline{E}}(x,y) \in D^{\circ} \setminus \left(\bigcup_{n=2}^{+\infty} A_n\right); \\ \left(\sqrt{\frac{n}{n-1}}x, \sqrt{\frac{n}{n-1}}y\right), \ \ \, \stackrel{\text{\not}}{\overline{E}}(x,y) \in A_n, n \geqslant 2. \end{cases}$$

Question 3

对点集 A, 若点 x 的每个邻域都含有 $A \setminus \{x\}$ 中的点, 则称 x 为 A 的聚点(limit point/cluster point/point of accumulation). A 的全体聚点构成的集合 A' 称作 A 的导集(derived set). $\overline{A} = A \cup A'$ 称为 A 的闭包. 换言之, $x \in \overline{A}$ 当且仅当 x 的每个邻域都含有 A 中的点.

设 X,Y 是非空集合. 如果映射 $f:X\to Y$ 满足: 任取 $f(x_0)$ 的邻域 V, 都有 $f^{-1}(V)$ 是 x_0 的邻域, 则称 f 在 x_0 处连续(continuous). 在定义域上处处连续的映射称为连续映射(continuous map).

证明 $f: X \to Y$ 连续与下列命题等价:

(a) Y 中的任意开集的原像都是 X 中的开集;

证明. 条件 (a) 的必要性 (即 f 连续蕴含开集的原像开): 任取 Y 中的开集 V, 则 $\forall x \in f^{-1}(V)$, 因为 V 是 f(x) 的邻域, 所以 $f^{-1}(V)$ 是 x 的邻域. 由 x 的任意性可知 $f^{-1}(V)$ 是开集.

条件 (b) 的充分性 (即开集的原像开蕴含 f 连续): 任取 $x \in X$ 及 f(x) 的邻域 V, 则存在开集 U 使得 f(x)] $inU \subseteq V$. 由于 $f^{-1}(U)$ 也是开集, 而 $x \in f^{-1}(U) \subseteq f^{-1}(V)$, 故 $f^{-1}(V)$ 是 x 的邻域, 这说明 f 在 x 处连续.

(b) Y 中的任意闭集的原像都是 X 中的闭集;

证明. 必须且只需证明 (a)⇔(b).

注意到 $f^{-1}(U)^c = f^{-1}(U^c)$. 于是 $f^{-1}(U)$ 是闭集当且仅当 $f^{-1}(U^c)$ 是开集. 如果 f 满足条件 (a), 则任取闭集 U, 由 U^c 开知道 $f^{-1}(U^c)$ 开, 从而 $f^{-1}(U)$ 闭. 这说明 (a) 蕴含 (b). 同理,(b) 蕴含 (a).

(c) $\forall F \subseteq Y$, 都有 $\overline{f^{-1}(F)} \subseteq f^{-1}(\overline{F})$;

证明. 先证 (b) \Rightarrow (c): $\forall F \subseteq Y$, 根据 $F \subseteq \overline{F}$, 得到 $f^{-1}(F) \subseteq f^{-1}(\overline{F})$, 因此, $\overline{f^{-1}(F)} \subseteq \overline{f^{-1}(\overline{F})}$.

由于闭集的原像闭,所以 $f^{-1}(\overline{F})$ 是闭集,因此 $f^{-1}(\overline{F}) = \overline{f^{-1}(\overline{F})}$,所以 $\overline{f^{-1}(F)} \subseteq f^{-1}(\overline{F})$

再证明 (c)⇒(b): 取任意闭集 $F \subseteq Y$, 则 $F = \overline{F}$, $\overline{f^{-1}(F)} \subseteq f^{-1}(\overline{F}) = f^{-1}(F)$. 这说明 $f^{-1}(F)$ 是闭集, 即闭集的原像闭.

(d) $\forall E \subseteq X, f(\overline{E}) \subseteq \overline{f(E)};$

证明. 先证 (c)⇒(d):

对于任意的 $E \subseteq X$, 注意到 $E \subseteq f^{-1}(f(E))$, 故有 $\overline{E} \subseteq \overline{f^{-1}(f(E))}$.

由于 $f(E) \subseteq Y$, 所以由 (c) 得到 $\overline{f^{-1}(f(E))} \subseteq f^{-1}(\overline{f(E)})$.

因此, $\overline{E} \subseteq f^{-1}(\overline{f(E)})$, 这与 $f(\overline{E}) \subseteq \overline{f(E)}$ 等价.

再证明 $(d) \Rightarrow (c): \forall F \subseteq Y$, 注意到 $f(f^{-1}(F)) \subseteq F$, 因此 $\overline{f(f^{-1}(F))} \subseteq \overline{F}$, 故有

$$f^{-1}(\overline{F}) \supseteq f^{-1}(\overline{f(f^{-1}(F))}) \stackrel{\text{\$ft}(d)}{\supseteq} f^{-1}(f(\overline{f^{-1}(F)})) \supseteq \overline{f^{-1}(F)}$$

Question 4

(a) (微积分中的 $\varepsilon - \delta$ language) 若 f 是 \mathbb{R}^n 上的实值函数, 说明:f 在 x_0 处连续的条件 为何定义为: 任取 $\varepsilon > 0$, 存在 $\delta > 0$, 使得 $|x - x_0| < \delta$ 蕴含 $|f(x) - f(x_0)| < \varepsilon$.

Remark: 微积分中定义的 x_0 的 δ 邻域(neighborhood) 为 $B_{\delta}(x_0) = \{x | |x - x_0| < \delta\}$.

说明. 只需注意到 $\varepsilon - \delta$ 语言可以重新叙述如下:

 $\forall \varepsilon > 0, \exists \delta > 0, \ \text{\'et} \ x \in B_{\delta}(x_0) \ \text{\'eta} \ f(x) \in B_{\varepsilon}(f(x_0)).$

 $\mathbb{P} \forall \varepsilon > 0, \exists \delta > 0, B_{\delta}(x_0) \subseteq f^{-1}(B_{\varepsilon}(f(x_0))).$

即 $f(x_0)$ 的任何 ε 邻域的原像一定包含 x_0 的某个 δ 邻域.

(b) 若 f 是 \mathbb{R}^n 上的实值函数, 证明: f 在 \mathbb{R}^n 上连续 当且仅当 $\forall \lambda \in \mathbb{R}$, 集合 $\{x|f(x) < \lambda\}$ 与 $\{x|f(x) > \lambda\}$ 均为开集.

证明. 必要性: 设 f 在 \mathbb{R}^n 上连续. 任给 $\lambda \in \mathbb{R}$, 对于 $x \in \mathbb{R}^n$, $f(x) < \lambda$. 由连续性, 存在 $\varepsilon > 0$, 使得当 $y \in B_{\varepsilon}(x)$, 有 $f(y) < \lambda$. 故 $\{x|f(x) < \lambda\}$ 的每一点均为内点, 从而它是开集. 同理, $\{x|f(x) > \lambda\}$ 也是开集.

充分性: 设 $\forall \lambda \in \mathbb{R}, \{x | f(x) < \lambda\}$ 和 $\{x | f(x) > \lambda\}$ 是开集. 任取 $a \in \mathbb{R}^n$, 往证 f(x) 在 a 处连续. 令 $f(a) = \beta$. $\forall \varepsilon > 0$, 因为 $\{x | f(x) < \beta + \varepsilon\}$ 和 $\{x | f(x) > \beta - \varepsilon\}$ 是 开集, 故它们的交 $\{x | f(x) < \beta + \varepsilon\} \cap \{x | f(x) > \beta - \varepsilon\} = G$ 也是开集. 因此, 对于 $a \in G$, 存在 $\delta > 0$, 使 $B_{\delta}(a) \subset G$. 这说明当 $y \in B_{\delta}(a)$ 时, $\beta - \varepsilon < f(y) < \beta + \varepsilon$, 即 f 在 a 处连续. 即证.