Dimensionality reduction

South-African Council for Automation and Control

Exploratory Data Analysis workshop

March 2024

Why dimensionality reduction

- Visualisation
 - Process data consists of many measurements
 - Viewing rows of time series or single feature statistics is not always the most effective method to identify structure in the data

Why dimensionality reduction

- Visualisation
 - Process data consists of many measurements
 - Viewing rows of time series or single feature statistics is not always the most effective method to identify structure in the data
 - Aim to represent high dimensional data in two (or maybe three) dimensions

Why dimensionality reduction

- Curse of dimensionality
 - Higher dimensions are unintuitive
 - In higher dimensions, features become more or less equidistant
 - Overfitting due to correlated features

Average distance between points in an n-d unit cube

Goal of dimensionality reduction

- Transform data in a high-dimensional feature space to a lower-dimensional space while retaining the most important *structures*
- Example of unsupervised learning: no output data

Supervised learning

$$f(X) \to y$$

Unsupervised learning

$$f(X) \rightarrow ?$$

• One easy classification between techniques: linear vs non-linear dimensionality reduction

$$T = XQ$$

- Scores T are a linear transformation of data X subject to constraints
- Usually, we require the transformation to preserve distance, which amounts to Q being a rotation and projection in space
- Most common method: Principal Component Analysis (PCA)

$$q_i = \arg \max_{q_i} [Var(Xq_i)]$$
 s.t. $q_i \cdot q_j = 0$

$$T = XQ$$

- Scores T are a linear transformation of data
 X subject to constraints
- Most common method: Principal Component Analysis (PCA)
- Q amounts to a rotation in space that maximizes variance in projected dimension

$$T = XQ$$

- Scores T are a linear transformation of data
 X subject to constraints
- Most common method: Principal Component Analysis (PCA)
- Q amounts to a rotation in space that maximizes variance in projected dimension

• Often consider the fraction variance explained by the principal components

$$\frac{\sum (\mathbf{t}_i - \mathbf{\mu}_t)^2}{\sum (\mathbf{x}_i - \mathbf{\mu}_x)^2}$$

• Retain PCs which explain >90% (>95%?) of variance for further analysis

- Many methods for non-linear dimensionality reduction exist
 - Kernel PCA
 - t-SNE
 - Isomap
 - Spectral embedding
 - Autoencoders
 - ...

Locally Linear Embedding, Roweiss and Saul, 2000, https://doi.org/10.1126/science.290.5500.2323

- t-distributed Stochastic Neighbour Embedding (t-SNE), Van der Maaten and Hinton, 2008, http://jmlr.org/papers/v9/vandermaaten08a.html
- If x in original space and y in latent (embedded) space, minimize the "difference" between conditional distributions $p_{i|j}$ and $q_{i|j}$

$$p_{i|j} = \frac{\exp\left(-\frac{\left|x_i - x_j\right|^2}{2\sigma_i^2}\right)}{\sum_{k \neq i} \exp\left(-\frac{\left|x_i - x_k\right|^2}{2\sigma_i^2}\right)}$$

$$q_{i|j} = \frac{\exp(-|y_i - y_j|^2)}{\sum_{k \neq i} \exp(-|y_i - y_k|^2)}$$

Resources

https://scikit-learn.org/stable/ unsupervised learning.html

https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/

https://mml-book.github.io/

https://www.statlearning.com/