7. АППРОКСИМАЦИЯ И ИНТЕРПОЛЯЦИЯ ФУНКЦИЙ

Из математического анализа известно, что в окрестности точки x_0 любую n раз непрерывно дифференцируемую функцию можно аппроксимировать (приблизить) ее многочленом Тейлора:

$$P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)(x - x_0)^k}{k!},$$

причем

Очевидно, такая аппроксимация во многих отношениях является очень хорошей, но она имеет локальный характер, т.е. хорошо аппроксимирует функцию только вблизи точки x_0 . Это главный недостаток аппроксимации с помощью многочлена Тейлора.

Если речь идет об аппроксимации функции на отрезке, применяются другие методы.

Пусть $f(x) \in C[a,b]$ — непрерывная функция. Рассмотрим задачу аппроксимации (приближения) ее более простой функцией (обычно многочленом).

Известно из математического анализа, что в силу теоремы Вейерштрасса, любую функцию можно с какой угодно точностью приблизить многочленом по норме $||f(x)|| = \max_{x \in S} |f(x)|$ пространства C[a, b], т.

е. в смысле равномерной сходимости. Но существуют и другие нормы:

$$||f(x)|| = \int_{a}^{b} |f(x)| dx$$
 или $||f(x)|| = \sqrt{\int_{b}^{a} |f(x)|^{2} dx}$.

Тогда $||f(x) - P(x)|| < \varepsilon$ означает, что площадь или усредненная площади фигуры, заключенной между графиками функции f(x) и многочлена P(x), должна быть меньше ε (заданной точности).

Возможен и другой подход, когда в качестве аппроксимирующей функции берут многочлен или другую достаточно простую функцию, значения которых совпадают со значениями исходной функции в заданных заранее точках, так называемых узлах. Такого рода приближение функций имеет свое собственное название - интерполяция.

7.1. Интерполяционный многочлен

Пусть f(x) — функция, непрерывная на отрезке [a,b]. Выберем на этом отрезке точки, называемые *узлами интерполяции*:

$$a \le x_0 < x_1 < ... < x_n \le b$$
.

Предположим, что известны значения функции в узлах интерполяции: $f(x_k) = y_k$, k = 0,1,...,n.

Ставится задача найти многочлен $P_n(x)$ такой, что

$$P_n(x_k) = y_k, \qquad \forall k = 0,1,\dots,n.$$

$$(7.1)$$

Такой многочлен $P_n(x)$ называется интерполяционным многочленом, а задача его нахождения — задачей интерполяции.

Покажем, что задача интерполяции имеет решение, причем единственное.

Пусть
$$P_n(x) = \sum_{k=0}^n a_k x^{n-k}$$
.

Тогда для определения коэффициентов многочлена из условия (7.1) получаем систему:

$$\begin{cases} a_0 x_0^n + a_1 x_0^{n-1} + \dots + a_n = y_0 \\ a_0 x_1^n + a_1 x_1^{n-1} + \dots + a_n = y_1 \\ \dots \\ a_0 x_n^n + a_1 x_n^{n-1} + \dots + a_n = y_n \end{cases}$$

Ее определитель Δ с точностью до знака совпадает с так называемым определителем Вандермонда.

$$W(x_0,...,x_n) = \begin{vmatrix} 1 & 1 & ... & 1 \\ x_0 & x_1 & ... & x_n \\ x_0^2 & x_1^2 & ... & x_n^2 \\ ... & ... & ... & ... \\ x_0^n & x_1^n & ... & x_n^n \end{vmatrix} = \prod_{i < j} (x_j - x_i) \neq 0.$$

Поскольку все x_i различны, определитель Δ отличен от нуля, и, следовательно, система имеет единственное решение. Отсюда вытекает существование и единственность интерполяционного многочлена.

Погрешность интерполяции.

Обозначим

 $R_n(x) = f(x) - P_n(x)$ и будем искать ее оценку.

Пусть $f(x) \in C^{n+1}[a,b]$. Положим $R_n(x) = \omega(x)r(x)$,

где
$$\omega(x) = (x - x_0)(x - x_1) \cdot ... \cdot (x - x_n)$$
.

Зафиксируем произвольную точку x, отличную от узлов интерполяции x_i , $i = \overline{0,n}$, и построим вспомогательную функцию:

$$F(t) = P_n(t) + \omega(t)r(x) - f(t), \qquad a \le t \le b . \tag{7.2}$$

Очевидно, F(x) = 0 и, кроме того $F(x_k) = 0$, $k = \overline{0, n}$.

Таким образом, функция F(t) имеет по крайней мере (n+2) нуля на отрезке [a,b]. Применим теорему Ролля, по которой между каждой парой нулей функции находится по крайней мере один нуль производной этой функции.

Тогда производная F'(t) имеет по крайней мере (n+1) нулей на данном интервале (a,b). Продолжая рассуждение, получим в итоге, что $F^{(n)}(t)$ имеет, по крайней мере, два нуля, а $F^{(n+1)}(t)$ — один нуль в некоторой точке ξ на (a,b).

Продифференцируем равенство (7.2) (n+1) раз и подставим $t=\xi$. Получим

$$F^{(n+1)}(\xi) = (n+1)! \cdot r(x) - f^{(n+1)}(\xi) = 0.$$

Откуда $r(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}$.

Тогда

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}\omega(x),$$

где $\xi \in [a,b]$ (очевидно формула напоминает остаток формулы Тейлора в форме Лагранжа). В итоге имеем оценку погрешности интерполяции:

$$|R_n(x)| \le \frac{M_{n+1}}{(n+1)!} |\omega(x)|, \quad \text{где} \quad M_{n+1} = \max_{a \le x \le b} |f^{(n+1)}(x)|.$$

Интерполяционный многочлен Лагранжа

Пусть даны узлы на отрезке [a,b], $a \le x_0 < x_1 < ... < x_n \le b$, и значения функции F(x) в узлах

$$\begin{split} f(x_i) &= y_i, & i = \overline{0,n} \;. \\ & \text{Пусть } \omega(x) = (x-x_0)(x-x_1) \cdot \ldots \cdot (x-x_n) \;, \\ & \omega_j(x) = (x-x_0) \cdot \ldots \cdot (x-x_{j-1})(x-x_{j+1}) \cdot \ldots \cdot (x-x_n) \;, \\ \text{т. e.} & \omega_j(x) = \frac{\omega(x)}{x-x_j} \;. \end{split}$$

Положим
$$l_j(x) = \frac{\omega_j(x)}{\omega_j(x_j)}$$
,

T. e.
$$l_{j}(x) = \frac{(x - x_{0}) \cdot ... \cdot (x - x_{j-1})(x - x_{j+1}) \cdot ... \cdot (x - x_{n})}{(x_{j} - x_{0}) \cdot ... \cdot (x_{j} - x_{j-1})(x_{j} - x_{j+1}) \cdot ... \cdot (x_{j} - x_{n})}.$$

Очевидно
$$l_j(x_i) = \begin{cases} 0, & npu \ i \neq j \\ 1, & npu \ i = j. \end{cases}$$

Построим многочлен $L_n(x) = \sum_{j=0}^n l_j(x) y_j$.

Легко видеть, что $L_n(x_i) = l_i(x_i)y_i = 1 \cdot y_i = y_i$, $i = \overline{0,n}$, т.е. это интерполяционный многочлен. Его называют интерполяционным многочленом Лагранжа.

Пример. Рассмотрим задачу интерполяции для функции

$$f(x) = \sin \frac{\pi}{2} x$$
, Ha [0,1].

Выберем в качестве узлов точки $x_0=0$, $x_1=1/3$, $x_2=1$. Тогда значения функции: $y_0=0$, $y_1=1/2$, $y_2=1$.

Получим

Получаем:

$$L_2(x) = \frac{(x-1/3)\cdot(x-1)}{(-1/3)\cdot(-1)} + \frac{x\cdot(x-1)\cdot\frac{1}{2}}{1/3\cdot(-2/3)} + \frac{(x-1/3)\cdot x}{2/3\cdot 1} = -3/4\cdot x^2 + 7/4\cdot x.$$

Оценим погрешность. Поскольку можно показать, что $|\omega(x)| \le 0,079$, то $R_2(x) \le \frac{\pi^3}{3! \cdot 8} \max_{0 \le x \le 1} |\varpi(x)| \le \frac{\pi^3}{3! \cdot 8} \cdot 0,079$.

Линейная интерполяция

Пусть n=1, т. е. даны два узла x_0 , x_1 справа и слева от точки х: $x_0 \le x \le x_1$.

Построим интерполяционный многочлен первой степени по этим узлам. Значения функции f(x) в этих узлах y_0 , y_1 .

$$L_1(x) = \frac{x - x_1}{x_0 - x_1} \cdot y_0 + \frac{x - x_0}{x_1 - x_0} \cdot y_1 = y_0 + \frac{y_1 - y_0}{x_1 - x_0} \cdot (x - x_0).$$

Рис. 7.1.

т. е. графически интерполяционный многочлен представляет собой хорду, соединяющую точки (x_0, y_0) и (x_1, y_1) (рис. 7.1).

Оценим погрешность линейной интерполяции.

Пусть $h = x_1 - x_0$.

Тогда
$$\max_{x_0 \le x \le x_1} \left| \omega(x) \right| = \max \left| (x - x_0) \cdot (x - x_1) \right| = \frac{h^2}{4}$$
,

так как функция $|\omega(x)|$ достигает максимума на $[x_0, x_1]$ в точке $x_m = \frac{x_0 + x_1}{2}$. (рис. 7.2).

Рис.7.2.

Обозначим $M_2 = \max_{x_0 \le x \le x_1} \left| f''(x) \right|$,

тогда
$$\left|R_n(x)\right| \leq \frac{M_{n+1}}{(n+1)!} \max \left|\omega(x)\right| \leq M_2 \frac{h^2}{8},$$

т. е. $|R_1(x)| \le \frac{M_2}{8} h^2$ в случае линейной интерполяции.

Пример. Рассмотрим функцию

 $f(x) = \lg x$ на отрезке [0, 1].

Пусть $h = 10^{-3}$ — расстояние между узлами. Оценим погрешность линейной интерполяции. Получим

$$M_2 = \max \left| -\frac{1}{x^2} \lg e \right| = \lg e = 0,4243,$$

следовательно,

$$|R_1(x)| \le \frac{M_2}{8}h^2 = \frac{0.4243}{8} \cdot 10^{-6} \approx 6 \cdot 10^{-8}.$$

Интерполяционный многочлен Ньютона

Пусть $x_0, x_1, ..., x_n$ — набор узлов интерполирования,

 $y_0, y_1, ..., y_n$ — значения функции f(x) в узлах.

Величину $\Delta y_k = y_{k+1} - y_k$ называют конечной разностью первого порядка в κ -м узле.

Аналогично определяются конечные разности высших порядков.

$$\Delta^2 y_k = \Delta y_{k+1} - \Delta y_k = y_{k+2} - y_{k+1} - (y_{k+1} - y_k) = y_{k+2} - 2y_{k+1} + y_k$$

.....

$$\Delta^{i} y_{k} = \Delta^{i-1} y_{k+1} - \Delta^{i-1} y_{k} = \sum_{i=0}^{n} (-1)^{n-i} C_{n}^{i} y_{k+i} \ \Delta^{i} y_{k} = \Delta^{i-1} y_{k+1} - \Delta^{i-1} y_{k} = \sum_{i=0}^{n} (-1)^{n-i} C_{n}^{i} y_{k+i}.$$

Конечные разности обычно считают по схеме:

x_i	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$
$\begin{array}{c c} x_0 \\ x_1 \\ x_2 \\ x_3 \end{array}$	y ₀ y ₁ y ₂ y ₃	$\Delta y_0 = y_1 - y_0$ $\Delta y_1 = y_2 - y_1$ $\Delta y_2 = y_3 - y_2$	$\Delta^2 y_0 = \Delta y_1 - \Delta y_0$ $\Delta^2 y_1 = \Delta y_2 - \Delta y_1$	$\Delta^3 y_0 = \Delta^2 y_1 - \Delta^2 y_0$

Разделенной разностью первого порядка называется выражение

$$f_1(x_k, x_{k+1}) = \frac{y_{k+1} - y_k}{x_{k+1} - x_k} = \frac{\Delta y_k}{\Delta x_k}.$$

Разделенной разностью второго порядка называется выражение

$$f_2(x_k,x_{k+1},x_{k+2}) = rac{f_1(x_{k+1},x_{k+2}) - f_1(x_k,x_{k+1})}{x_{k+2} - x_k}$$
 и т. д.

Пусть x – любая точка отрезка, не совпадающая с узлами. Тогда

$$f_1(x,x_0) = \frac{y_0 - f(x)}{x_0 - x},$$

откуда
$$f(x) = y_0 + f_1(x, x_0)(x - x_0)$$
. (7.3)

Далее
$$f_2(x, x_0, x_1) = \frac{f_1(x_0, x_1) - f_1(x, x_0)}{x_1 - x}$$
,

откуда $f_1(x,x_0) = f_1(x_0,x_1) + f_2(x,x_0,x_1)(x-x_1)$.

Подставляя в (7.3), получаем

$$f(x) = y_0 + f_1(x_0, x_1)(x - x_0) + f_2(x, x_0, x_1)(x - x_0)(x - x_1).$$
(7.4)

Далее
$$f_3(x,x_0,x_1,x_2) = \frac{f_2(x_0,x_1,x_2) - f_2(x,x_0,x_1)}{x_2 - x}$$
,

откуда
$$f_2(x, x_0, x_1) = f_2(x_0, x_1, x_2) + f_3(x, x_0, x_1, x_2)(x - x_2)$$
.

Подставляя в (4), имеем:

$$f(x) = y_0 + f_1(x_0, x_1)(x - x_0) + f_2(x, x_0, x_2)(x - x_0)(x - x_1) + f_3(x, x_0, x_1, x_2)(x - x_0)(x - x_1)(x - x_2).$$

$$(7.5)$$

Продолжая процесс, получим:

$$f(x) = N_n(x) + f_{n+1}(x, x_0, ..., x_n)(x - x_0)...(x - x_n),$$

где
$$N_n(x) = y_0 + f_1(x_0, x_1)(x - x_0) + ... + f_n(x_0, ..., x_n)(x - x_0)...(x - x_{n-1})$$
.
 Очевидно, при $x = x_i$, $\forall i = \overline{0, n}$, $f(x_i) = N_n(x_i)$, $i = \overline{0, n}$,

т. е. $N_n(x)$ — интерполяционный многочлен. Его называют интерполяционным многочленом Ньютона.

Достоинство интерполяционного многочлена Ньютона: он удобен при расширении интерполяции и добавлении узлов.

Недостаток: в какой-то степени он сложнее в подсчете конечных разностей по сравнению с многочленом Лагранжа.

Интерполяционный многочлен Ньютона - Грегори

Рассмотрим случай задачи интерполяции с равноотстоящими узлами, т. е. пусть

$$h = x_{i+1} - x_i$$
, для всех $i = \overline{0,n}$.

Будем искать интерполяционный многочлен Ньютона в форме

$$N(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0) \cdot \dots \cdot (x - x_{n-1}),$$

где коэффициенты многочлена не определены.

Используем условие

$$N(x_i) = y_i, i = \overline{0,n}$$

Получим:

$$N(x_0) = y_0 = a_0$$

$$N(x_1) = y_1 = a_0 + a_1 h$$

$$N(x_2) = y_2 = a_0 + 2ha_1 + 2h^2a_2$$

......

Откуда
$$a_0=y_0$$
,
$$a_1=\frac{y_1-y_0}{h}=\frac{\Delta y_0}{h},$$

$$y_2=y_0+2h\frac{y_1-y_0}{h}+2h^2a_2,$$

$$a_2=\frac{y_2-y_0-2(y_1-y_0)}{2h^2}=\frac{y_2-2y_1+y_0}{2h^2}=\frac{\Delta^2 y_0}{2h^2}.$$

Продолжая, можем по индукции получить формулу

$$a_k = \frac{\Delta^k y_0}{k! \ h^k}, \qquad k = 1, ..., n.$$

В итоге получаем интерполяционный многочлен Ньютона - Грегори:

$$N(x) = y_0 + \frac{\Delta y_0}{h}(x - x_0) + \frac{\Delta^2 y_0}{2! h^2}(x - x_0)(x - x_1) + \dots + \frac{\Delta^n y_0}{n! h^n}(x - x_0)(x - x_1) \dots (x - x_{n-1}).$$

Пример. Пусть требуется найти интерполяционный многочлен для функции f(x), имеющей в узлах $x_0=0$, $x_1=1$, $x_2=2$, $x_3=3$, $x_4=4$ значения $y_0=5$, $y_1=3$, $y_2=2$, $y_3=4$, $y_4=6$. Вычислим конечные разности:

x_i	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$	$\Delta^4 y_i$
0	5	-2			
1	3	-1	1	2	
2	2	2	3	-3	-5
3	4	2	0		
4	6				

Подставляя их значения в формулу для интерполяционного многочлена Ньютона - Грегори, в итоге получаем

$$N(x) = 5 - 2x + 0.5x(x - 1) + \frac{1}{3}x(x - 1)(x - 2) - \frac{5}{24}x(x - 1)(x - 2)(x - 3).$$

7.2. Аппроксимация по средне квадратичному отклонению

Пусть есть пространство непрерывных функций $C_{[a,b]}$. Введем в нем скалярное произведение и новую норму

$$(f,g) = \int_{a}^{b} f(x)g(x)dx,$$
$$||f|| = \sqrt{\int_{a}^{b} f^{2}(x)dx}.$$

Система функций

$$f_1, ..., f_n$$
 (7.6)

называется линейно-независимой, если равенство $\alpha_1 f_1(x) + ... + \alpha_n f_n(x) = 0$ возможно, тогда и только тогда, когда $\alpha_1 = ... = \alpha_n = 0$. В противном случае система функций называется линейно зависимой.

Известно, что система попарно-ортогональных ненулевых функций всегда линейно независима. Чтобы найти критерий линейной независимости в общем случае, построим определитель, состоящий из скалярных произведений функций:

$$\Gamma(f_{1, \dots, f_n}) = \begin{pmatrix} (f_{1}, f_{1}) & (f_{1}, f_{2}) & \dots & (f_{1}, f_{n}) \\ (f_{2}, f_{1}) & (f_{2}, f_{2}) & \dots & (f_{2}, f_{n}) \\ \dots & \dots & \dots & \dots \\ (f_{n}, f_{1}) & (f_{n}, f_{2}) & \dots & (f_{n}, f_{n}) \end{pmatrix}.$$

Определитель $\Gamma(f_1, \dots, f_n)$ называется определителем Грамма.

Теорема 1: (Критерий линейной независимости). Для того чтобы система функций (7.6) была линейно независима, необходимо и достаточно, чтобы $\Gamma(f_1,...,f_n) \neq 0$.

Доказательство: Докажем утверждение равносильное теореме, т. е. докажем, что система (7.6) линейно зависима тогда и только тогда, когда $\Gamma(f_1, ..., f_n) = 0$.

1) Необходимость. Пусть система линейно зависима, т. е. существуют α_1 , ... , α_n такие, что

$$\alpha_1 f_1(x) + ... + \alpha_n f_n(x) = 0$$
, $M \alpha_1^2 + ... + \alpha_n^2 > 0$.

Будем последовательно умножать это тождество на $f_1, f_2, ..., f_n$. Получим систему

$$\begin{cases} \alpha_{1}(f_{1}, f_{1}) + ... + \alpha_{n}(f_{1}, f_{n}) = 0 \\ \alpha_{1}(f_{2}, f_{1}) + ... + \alpha_{n}(f_{2}, f_{n}) = 0 \\ \\ \alpha_{1}(f_{n}, f_{1}) + ... + \alpha_{n}(f_{n}, f_{n}) = 0. \end{cases}$$

$$(7.7)$$

Это однородная система линейных уравнений относительно неизвестных коэффициентов $a_1, a_2, ..., a_n$ и ее определитель $\Delta = \Gamma(f_1, ..., f_n)$.

Поскольку система (7.7) имеет ненулевые решения, то $\Delta = 0$, т. е. $\Gamma(f_1,...,f_n) = 0$.

2) Достаточность. Пусть $\Gamma(f_1,...,f_n)=0$. Из этого следует, что система (7.7) имеет ненулевые решения $\alpha_1,...,\alpha_n$. Подставим эти решения в систему (7.7) и получим систему тождеств. Перепишем систему в виде

$$(f_1, \alpha_1 f_1 + \dots + \alpha_n f_n) = 0 \qquad \alpha_1$$

$$(f_2, \alpha_1 f_1 + \dots + \alpha_n f_n) = 0 \qquad \alpha_2$$

$$\dots$$

$$(f_n, \alpha_1 f_1 + \dots + \alpha_n f_n) = 0 \qquad \alpha_n$$

и умножим равенства последовательно на α_i , а затем просуммируем:

$$\left(\sum_{i=1}^{n} \alpha_i f_i, \sum_{j=1}^{n} \alpha_j f_j\right) = 0.$$

Последнее означает, что (g(x), g(x)) = 0,

где
$$g(x) = \alpha_1 f_1 + ... + \alpha_n f_n$$
.

Но тогда, поскольку функция g(x) непрерывна,

$$g(x) = \sum_{i=0}^{n} \alpha_i f_i(x) = 0$$

при $\alpha_1^2 + ... + \alpha_n^2 > 0$, т. е. система функций (7.6) линейно зависима.

Теорема доказана.

Рассмотрим функцию f(x) на отрезке [a,b]. Пусть

 $f_1(x), f_2(x), ..., f_n(x)$ — линейно независимые непрерывные функции.

Построим их линейную комбинацию $T_n(x) = \alpha_1 f_1(x) + ... + \alpha_n f_n(x)$, называемую обобщенным многочленом по системе функций $f_1, f_2, ..., f_n$.

Ставится задача: найти такие коэффициенты $\alpha_1,...,\alpha_n$ обобщенного многочлена, чтобы выполнялось условие:

$$||f(x)-T_n(x)|| = \min ||f(x)-T_n(x)||,$$

где минимум берется по всевозможным значениям $\alpha_1,...,\alpha_n$ и

$$||f(x) - T_n(x)|| = \sqrt{\int_b^a [f(x) - T_n(x)]^2 dx}$$
.

Такой обобщенный многочлен называется многочленом наилучшего средне квадратичного отклонения.

Теорема 2. Решение задачи аппроксимации функции по средне квадратичному отклонению существует и единственно.

Доказательство. Рассмотрим функцию от $\alpha_1,...,\alpha_n$.

$$Q(\alpha_1, ..., \alpha_n) = \|f(x) - T_n(x)\|^2 =$$

$$= (f - T_n(x), f - T_n(x)) = (f - \sum_{i=1}^n \alpha_i f_i, f - \sum_{j=1}^n \alpha_j f_j) =$$

$$= (f, f) - 2\sum_{i=0}^{n} \alpha_i(f, f_i) + \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_i \alpha_i(f_i, f_i).$$

Очевидно, Q ($\alpha_1,...,\alpha_n$) принимает наименьшее значение тогда и только тогда, когда $T_n(x)$ — наилучшее приближение в средне квадратичном для функции f(x). Но для того чтобы Q достигло минимума по $\alpha_1,...,\alpha_n$, необходимо, чтобы

$$\begin{split} \frac{\partial Q}{\partial \alpha_1} &= -2(f, f_1) + 2\sum_{i=1}^n \alpha_i(f_i, f_1) = 0, \\ \frac{\partial Q}{\partial \alpha_2} &= -2(f, f_2) + 2\sum_{i=1}^n \alpha_i(f_i, f_2) = 0, \\ \frac{\partial Q}{\partial \alpha_n} &= -2(f, f_n) + 2\sum_{i=1}^n \alpha_i(f_i, f_n) = 0. \end{split}$$

Перепишем систему в виде следующей системы, называемой нормальной системой:

$$\begin{cases} \alpha_{1}(f_{1}, f_{1}) + \alpha_{2}(f_{1}, f_{2}) + \dots + \alpha_{n}(f_{1}, f_{n}) = (f_{1}, f_{1}) \\ \alpha_{1}(f_{2}, f_{1}) + \alpha_{2}(f_{2}, f_{2}) \dots + \alpha_{n}(f_{2}, f_{n}) = (f_{1}, f_{2}) \\ \dots \\ \alpha_{1}(f_{n}, f_{1}) + \alpha_{2}(f_{n}, f_{2}) \dots + \alpha_{n}(f_{n}, f_{n}) = (f_{1}, f_{n}). \end{cases}$$

Ее определитель $\Delta = \Gamma(f_1,...,f_n) \neq 0$, т. к. система функций $(f_1,...,f_n)$ линейно независима. Но тогда нормальная система имеет единственное решение $\alpha_1,...,\alpha_n$.

Убедимся, что $\frac{\partial^2 Q}{\partial \alpha^2} > 0$, т. е. выполнены достаточные условия минимума. Очевидно,

$$\frac{\partial^2 Q}{\partial \alpha^2} = [\Gamma(f_1, ..., f_n)] = \begin{pmatrix} (f_1, f_1) & (f_1, f_2) & ... & (f_1, f_n) \\ (f_2, f_1) & (f_2, f_2) & ... & (f_2, f_n) \\ ... & ... & ... & ... \\ (f_n, f_1) & (f_n, f_2) & ... & (f_n, f_n) \end{pmatrix} - \text{матрица Грамма.}$$

Матрица положительно определена, когда положительно определена соответствующая ей квадратичная форма.

Квадратичная форма $\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j}(f_{i}, f_{j})$, построенная по данной матрице, называется квадратичной формой Грамма.

Ho

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j}(f_{i}, f_{j}) = \left(\sum_{i=1}^{n} \alpha_{i} f_{i}, \sum_{j=1}^{n} \alpha_{j} f_{j}\right) = \left\|\sum_{i=1}^{n} \alpha_{i} f_{i}\right\|^{2} \ge 0,$$

причем, поскольку функции $f_1,...,f_n$ линейно независимы, квадратичная форма равна нулю только тогда, когда все $\alpha_1,...,\alpha_n$ нулевые.

Следовательно, решение нормальной системы доставляет минимум функции $Q(\alpha_1,...,\alpha_n)$.

Теорема доказана.

Следствие. Чтобы численно решить задачу построения среднеквадратичного многочлена, надо составить и решить нормальную систему, а ее решение взять в качестве коэффициентов обобщенного многочлена.

Пример. Пусть $f(x) = \sqrt{x}$, $x \in [0, 1]$. Построим многочлен наилучшего средне квадратичного отклонения по системе линейно независимых функций: 1, x. Обозначим его $T_2(x) = a + b \cdot x$.

Получаем:

$$[\Gamma(1,x)] = \begin{pmatrix} (1,1) & (1,x) \\ (x,1) & (x,x) \end{pmatrix} = \begin{pmatrix} 1 & 1/2 \\ 1/2 & 1/3 \end{pmatrix},$$
$$(\sqrt{x},1) = \int_{0}^{1} \sqrt{x} dx = \frac{2}{3} x^{\frac{3}{2}} \Big|_{0}^{1} = \frac{2}{3},$$
$$(\sqrt{x},x) = \int_{0}^{1} \sqrt{x} \cdot x dx = \frac{2}{5}.$$

Записываем нормальную систему:

$$\begin{cases} a + \frac{1}{2}b = \frac{2}{3} \\ \frac{1}{2}a + \frac{1}{3}b = \frac{2}{5}, \end{cases}$$

решая ее, находим:

$$a = \frac{4}{15}$$
, $b = \frac{4}{5}$, $T_2(x) = \frac{4}{15} + \frac{4}{5}x$.

7.3. Аппроксимация методом наименьших квадратов

Пусть дана функция f(x) на отрезке [a, b]. Разобьем отрезок с помощью узлов

$$a \le x_0 < x_1 < ... < x_n \le b$$
.

Пусть $y_0, y_1, ..., y_n$ — значение функции f(x) в узлах.

Если n — большое число, то интерполяционный $L_n(x)$ — многочлен высокой степени. Зачастую неудобно использовать многочлены очень высокой степени. Очевидно, мы можем отказаться от использования части узлов и тем самым понизить степень интерполяционного многочлена, но тогда теряется

часть информации. Поэтому вместо интерполяционного многочлена будем искать многочлен $P_m(x)$ меньшей степени (m < n), такой что сумма

$$\sum_{i=0}^{n} [f(x_i) - P_m(x_i)]^2$$

принимает наименьшее значение. Данный многочлен называется многочленом наилучшего приближения по методу наименьших квадратов.

Положим

$$P_m(x) = a_0 x^m + ... + a_m$$

и будем искать решение задачи

$$S(a_0,...,a_m) = \sum_{i=0}^n [a_0 x_i^m + ... + a_{m-1} x_i + a_m - y_i]^2 \to \min.$$

Приравнивая к нулю производные S, получим систему линейных уравнений для определения коэффициентов a_i :

$$\frac{\partial S}{\partial a_0} = 2\sum_{i=0}^n [a_0 x_i^m + \dots + a_m - y_i] \cdot x_i^m = 0$$

$$\frac{\partial S}{\partial a_1} = 2\sum_{i=0}^n [a_0 x_i^m + \dots + a_m - y_i] \cdot x_i^{m-1} = 0$$

$$\frac{\partial S}{\partial a_{m-1}} = 2\sum_{i=0}^n [a_0 x_i^m + \dots + a_m - y_i] \cdot x_i = 0$$

$$\frac{\partial S}{\partial a} = 2\sum_{i=0}^n [a_0 x_i^m + \dots + a_m - y_i] \cdot 1 = 0$$

Отсюда получается

$$\begin{cases} a_0 \left(\sum_{i=0}^n x_i^{2m} \right) + a_1 \sum_{i=0}^n x_i^{2m-1} + \dots + a_m \sum_{i=0}^n x_i^m = \sum_{i=0}^n y_i x_i^m \\ a_0 \left(\sum_{i=0}^n x_i^{2m-1} \right) + \dots + a_m \sum_{i=0}^n x_i^{m-1} = \sum_{i=0}^n y_i x_i^{m-1} \\ \dots \\ a_0 \left(\sum_{i=0}^n x_i^n \right) + \dots + a_m \sum_{i=0}^n 1 = \sum_{i=0}^n y_i \end{cases}$$

— нормальная система для определения коэффициентов $a_0, a_1, ..., a_n$.

Когда $m \le n$, можно показать, что нормальная система имеет единственное решение, которое действительно дает минимальное значение для функции S. Получив решения нормальной системы $a_0,...,a_n$, строим многочлен наилучшего приближения по методу наименьших квадратов.

В частном случае, когда m=n, многочлен $P_n(x)$ переходит в интерполяционный многочлен.

Для решения нормальной системы обычно используется следующая таблица:

i	x_i	x_i^2		x_i^{2m}	y_i	$y_i x_i$		$y_i x_i^m$
0	x_o	x_0^2	j:	x_0^{2m}	y_o	$y_0 x_0$		$y_0 x_0^m$
1	x_{I}	x_{1}^{2}		x_1^{2m}	y_I	$y_i x_i$		$y_0 x_0^m \\ y_1 x_1^m$
•	*				*	5 6 2		(3 .6)
•	*	Ĭ		*		•		•
•	•			•	*			•
n	x_n	x_n^2		x_n^{2m}	\mathcal{Y}_n	$y_n x_n$		$y_n x_n^m$
	$\sum_{i=0}^{n} x_{i}$	$\sum_{i=0}^{n} x_i^2$	•••	$\sum_{i=0}^{n} x_i^{2m}$	$\sum_{i=0}^{n} y_{i}$	$\sum_{i=0}^{n} y_{i} x_{i}$	•••	$\sum_{i=0}^{n} y_{i} x_{i}^{m}$

7.4. Интерполяция сплайнами

Рассмотрим задачу интерполяции функции f(x) на отрезке [a, b]. Пусть мы имеем узлы $a = x_0 < x_1 < ... < x_n = b$ и значения функции $y_0, ..., y_n$ в данных узлах. Отрезок разбивается узлами на n элементарных отрезков $[x_{i-1}, x_i]$, где $h_i = x_i - x_{i-1}$ — длина элементарного отрезка, $i = \overline{1,n}$.

Сплайном называется функция S(x), которая на каждом элементарном отрезке является многочленом и непрерывна на всем отрезке [a, b], вместе со своими производными до некоторого порядка.

Степенью сплайна называется наивысший порядок степени многочлена.

 \mathcal{L} ефектом сплайна называется разность между его степенью и наивысшим порядком непрерывной на [a, b] производной.

Пример. Рассмотрим функцию

$$S(x) = \begin{cases} x^2, & 0 \le x < 1 \\ -x^2 + 4x - 2, & 1 \le x < 2 \end{cases}$$

$$2, & 2 \le x < 3$$

$$\frac{x^3}{27} - x + 4, & 3 \le x < 4.$$

Очевидно, функция S(x) является кубическим сплайном на отрезке [0, 4], так как она непрерывна в узловых точках.

Действительно,

$$S(1-0) = S(1+0) = 1$$
, $S(2-0) = S(2+0) = 2$, $S(3-0) = S(3+0) = 2$.

Рис. 7.3.

Найдем дефект сплайна.

$$S'(1-0) = S'(1+0) = 2$$
, $S'(2-0) = S'(2+0) = 0$, $S'(3-0) = S'(3+0) = 0$.

B то же время S''(2-0) = -2, S''(2+0) = 0.

Таким образом, наибольший порядок непрерывной производной функции S на отрезке [0,4] равен 1 и, следовательно, дефект сплайна равен 2. (См. рис. 7.3).

Отметим, что в общем случае сам сплайн многочленом не является. Чтобы он был многочленом, необходимо и достаточно, чтобы его дефект равнялся нулю.

Будем рассматривать кубические сплайны, у которых непрерывны первая и вторая производные.

Тогда на отрезке $[x_{i-1}, x_i]$ сплайн S(x) имеет вид

$$S(x) = a_i + b_i(x - x_{i-1}) + c_i(x - x_{i-1})^2 + d_i(x - x_{i-1})^3, \quad i = \overline{1, n}.$$

Очевидно, $S(x_i) = y_i$, $i = \overline{0,n}$. Найдем S(x). Для этого требуется определить значения 4n неизвестных коэффициентов. Очевидно, для этого необходимо иметь 4n уравнений для определения коэффициентов.

Подставим левый конец отрезка (x_{i-1}) в уравнение:

$$S(x_{i-1}) = y_{i-1} = a_i$$
, $i = \overline{1, n}$
 $S(x_{i+1}) = y_i = a_i + b_i h_i + c_i h_i^2 + d_i h_i^3$, $i = \overline{1, n}$.

В итоге получаем 2n уравнений:

$$\begin{cases} y_{i-1} = a_i & i = \overline{1, n} \\ a_i + b_i h_i + c_i h_i^2 + d_i h_i^3 = y_i & i = \overline{1, n}. \end{cases}$$

Далее во всех внутренних узлах должны совпадать первая и вторая производные S(x). Имеем

$$S'(x) = b_i + 2c_i(x - x_{i-1}) + 3d_i(x - x_{i-1})^2,$$

$$S''(x) = 2c_i + 6d_i(x - x_{i-1}), i = \overline{1, n-1}.$$

Приравниваем во внутренних узлах значения левых и правых производных. Получим:

$$\begin{cases} b_i + 2c_i h_i + 3d_i h_i^2 = b_{i+1} \\ c_i + 3d_i h_i = c_{i+1}, \end{cases} i = \overline{1, n} ,$$

т. е. (2*n*-2) уравнений.

Недостающие два уравнения можно задать разными способами. Обычно берут $S''(x_0) = S''(x_n) = 0$.

Отсюда

$$2c_1 = 0$$
, $2c_n + 6d_n h_n = 0$.

Для удобства положим еще $c_{n+1} = 0$.

Объединяя все уравнения, получим систему

$$\begin{cases} y_{i-1} = a_i & i = \overline{1, n} \\ a_i + b_i h_i + c_i h_i^2 + d_i h_i^3 = y_i & i = \overline{1, n} \\ b_i + 2c_i h_i + 3d_i h_i^2 = b_{i+1} & i = \overline{1, n-1} \\ c_i + 3d_i h_i = c_{i+1} & i = \overline{1, n-1} \\ c_n + 3d_n h_k = 0 \\ c_1 = 0 \\ c_{n+1} = 0. \end{cases}$$

Решая систему, получим

ая систему, получим
$$\begin{cases} b_i h_i + c_i h_i^2 + d_i h_i^3 = y_i - y_{i-1} & i = \overline{1,n} \\ 2c_i h_i + 3d_i h_i^2 = b_{i+1} - b_i & i = \overline{1,n-1} \\ d = \frac{c_{i+1} - c_i}{3h_i} \\ c_1 = c_{n+1} = 0, \end{cases}$$

далее

$$\begin{cases} a_{i} = y_{i-1} & i = \overline{1, n} \\ b_{i}h_{i} + c_{i}h_{i}^{2} + \left(\frac{(c_{i+1} - c_{i})h_{i}^{2}}{3}\right) = y_{i} - y_{i-1} & i = \overline{1, n} \\ 2c_{i}h_{i} + (c_{i+1} - c_{i})h_{i} = b_{i+1} - b_{i} & i = \overline{1, n-1} \\ d = \frac{c_{i+1} - c_{i}}{3h_{i}} & i = \overline{1, n} \\ c_{1} = c_{n+1} = 0. \end{cases}$$

Откуда

$$b_{i} = \frac{y_{i} - y_{i-1}}{h_{i}} - c_{i}h_{i} - \frac{(c_{i+1} - c_{i})h_{i}}{3}, \qquad i = \overline{1, n}.$$

$$2c_ih_i + (c_{i+1} - c_i)h_i = \frac{y_{i+1} - y_i}{h_{i+1}} - c_{i+1}h_{i+1} - \frac{(c_{i+2} - c_{i+1})h_{i+1}}{3} - \frac{y_i - y_{i-1}}{h_i} + c_ih_i + \frac{(c_{i+1} - c_i)h_i}{3}.$$

Таким образом, задача определения коэффициентов сплайна свелась к решению системы

$$c_{i}(\frac{h_{i}}{3}) + c_{i+1}(\frac{2}{3}h_{i} + \frac{2}{3}h_{i+1}) + c_{i+2}(\frac{h_{i+1}}{3}) = \frac{y_{i+1} - y_{i}}{h_{i+1}} - \frac{y_{i} - y_{i-1}}{h_{i}}, \quad i = \overline{1, n-1}$$

$$c_{1} = c_{n+1} = 0.$$

Система трехдиагональна. Будем решать ее методом прогонки. Поскольку для матрицы системы выполнено условие доминирования диагональных элементов

$$\frac{2}{3}h_i + \frac{2}{3}h_{i+1} > \frac{h_i}{3} + \frac{h_{i+1}}{3},$$

то задача имеет решение, причем единственное, и это решение можно найти методом прогонки.