

USN

(Autonomous Institute, Affiliated to VTU) (Approved by AICTE, New Delhi & Govt. of Karnataka) Accredited by NBA & NAAC with 'A+' Grade

Semester

Max. Marks:

100

B.E:-Common to CSE/ISE/CSE(CY)/ **Program**

AI & DS / BT / AI & ML / CSE (AI&ML)

Advanced Calculus and Modular **Course Name** Arithmetic

Course Code MAC11 **Duration** 3 Hrs

Instructions to the Candidates:

Answer one full question from each unit.

UNIT - I

a) Write the relation between Cartesian and polar coordinates. CO1 (02)1.

Find $\frac{ds}{dt}$ for the curve: $x = e^t \sin t$, $y = e^t \cos t$. CO₁ (04)

Prove with usual notation $\tan \phi = r \frac{d\theta}{dx}$. CO1 (07)

Show that the radius of curvature of the curve $r^n = a^n \cos n\theta$ varies CO1 (07)inversely as r^{n-1} .

Write the expression for radius of curvature for the curves in polar and CO1 (02)2.

parametric forms. Obtain the radius of curvature for the curve $y=x^2$ at (1,1). CO1 (04)b)

Find the pedal equation of the curve $r^m = a^m(\cos m\theta + \sin m\theta)$. CO1 (07)

Find the angle of intersection of the pair of curves $r^n = a^n \sec(n\theta + \alpha)$ CO1 (07)and $r'' = b'' \sec(n\theta + \beta)$.

Show that the vector $\vec{F} = 3y^2z^2\hat{i} + 4x^3z^2\hat{j} + 3x^2y^2\hat{k}$ is solenoidal. CO₂ (02)3.

b) If $z = e^{ax+by} f(ax-by)$ then show that $b \frac{\partial z}{\partial x} + a \frac{\partial z}{\partial y} = 2abz$. (04)C₀2

CO2 (07)c) Find the constants a and b so that $\vec{A} = (axy + z^3)\hat{i} + (3x^2 - z)\hat{j} + (bxz^2 - y)\hat{k}$ is irrotational and hence find a scalar function ϕ such that $\bar{A} = \nabla \phi$.

u = f(r, s, t) where $r = \frac{x}{v}, s = \frac{y}{z}, t = \frac{z}{x}$ then show

 $xu_x + yu_y + zu_z = 0.$

4. a) Find $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$ for the function $u = \sin^{-1}\left(\frac{y}{x}\right)$. CO2 (02)

b) If $\vec{F} = x^2 y \hat{i} + 2x^2 y z \hat{j} - 3y^2 z \hat{k}$, find $div(\vec{F}), curl(\vec{F})$ at (2,1,1). CO₂ (04)

If the directional derivative of $\phi = axy^2 + byz + cz^3x^3$ at (-1,1,2) has a maximum magnitude of 64 units in the direction parallel to z -axis then find the values of a,b,c.

MAC11

d) Find $\frac{\partial(u,v,w)}{\partial(x,y,z)}$ where $u=x^2+y^2+z^2$, v=xy+yz+zx, w=x+y+z CO2 (07) and also find the functional relation between u,v and w.

UNIT - III

5. a) Evaluate
$$\beta\left(\frac{1}{3}, \frac{2}{3}\right)$$
.

b) Evaluate
$$\iint_{0}^{1/2} \int_{0}^{2} xyz^2 dxdydz$$
.

c) Find the volume of the sphere
$$x^2 + y^2 + z^2 = a^2$$
 using triple integration. CO3 (07)

d) Evaluate
$$\int_{0}^{a} \int_{\sqrt{ax}}^{a} \frac{y^2}{\sqrt{y^4 - a^2 x^2}} dy dx$$
, by changing the order of integration. CO3 (07)

a neat diagram
$$\int_{0}^{1} \int_{0}^{x^{2}} f(x, y) dy dx$$
.

C) Using the transformation
$$x + y = u$$
; $y = uv$, show that
$$\int_{0}^{1-r} \int_{0}^{r} e^{y/y+x} dy dx = \frac{1}{2}(e-1).$$

d) Show that
$$\int_{0}^{\pi/2} \sqrt{\sin \theta} \, d\theta \times \int_{0}^{\pi/2} \frac{1}{\sqrt{\sin \theta}} \, d\theta = \pi.$$

UNIT-IV

- 7. a) State Stoke's theorem.
 - b) Find the total work done in moving particle in a force field CO4 (04) $\bar{F} = 3xy \ \hat{i} 5z \ \hat{j} + 10x \ \hat{k}$ along the curve $x = t^2 + 1$, $y = 2t^2$ and $z = t^3$ from t = 1 to t = 2.
 - c) State and prove Green's theorem in a plane. CO4 (07)
 - d) If $\vec{F} = 4xz \ \hat{i} y^2 \ \hat{j} + yz \ \hat{k}$ then evaluate $\iint_s \vec{F} \cdot \hat{n} ds$ using divergence CO4 (07)

theorem where s is the surface of the cube bounded by x=0, x=1, y=0, y=1, z=0 & z=1.

- 8. a) State Gauss divergence theorem. CO4 (02)
 - b) If $\vec{F} = (5xy 6x^2)\hat{i} + (2y 4x)\hat{j}$ then evaluate $\int_{c} \vec{F} \cdot d\vec{r}$ where c is the CO4 (04)

curve $y = x^3$ from the point (1, 1) to the point (2, 8).

c) Using Stoke's theorem, evaluate
$$\int_{c} (x+y)dx + (2x-z)dy + (y+z)dz$$
 CO4 (07) where c is the boundary of the triangle with vertices at $(2, 0, 0)$, $(0, 3, 0)$ and $(0, 0, 6)$.

d) Verify Green's theorem for
$$\int_{c} (xy + y^{2})dx + x^{2}dy$$
 where c is bounded by CO4 (07) $y = x$ and $y = x^{2}$.

MAC11

UNIT - V 9. a) State division algorithm.	CO5	(02) (04)
b) Using Fermat's theorem, find the remainder When $16^{\circ\circ}$ is divided by 7. c) Find the general solution of the Diophantine equation	CO5	(07)
1485x + 1745 y = 15. d) State and prove Wilson's theorem.	CO5	(07)
 10. a) Define linear congruence modulo m. b) Prove that if (a,b) = 1 = (a,c) then (a,bc) = 1. c) Solve the following system of linear congruence's by Chinese remainder theorem: x ≡ 1(mod3) 	CO5 CO5	(02) (04) (07)
$x \equiv 2 \pmod{5}$ $x \equiv 3 \pmod{7}$ d) Using Fermat's theorem, Solve the linear congruence $37x \equiv 5 \pmod{11}$.	CO5	(07)
