What is claimed is:

- 1. A method for measuring an indication of attributes of materials containing a fluid state, the method comprising the steps of:
- 5 providing a time-domain signal indicative of attributes of said materials in a single measurement;

constructing a time-domain averaged data train from said signal, the averaging being performed over one or more time intervals Δ_i ; and

computing an indication of attributes of said materials from the time-domain averaged data train.

- 2. The method of claim 1 wherein said one or more time intervals Δ_i are constant.
- 3. The method of claim 1 wherein at least two of said one or more time intervals Δ_i are different.
- 15 4. The method of claim 2 wherein the following expression is used to construct the time-domain averaged data train:

$$S_{\Delta}(t) = \int_{t}^{t+\Delta} dt' S(t') / \Delta$$

where $S_{\Delta}(t)$ is the provided time-domain signal.

- 5. The method of claim 1, wherein the interval Δ_i is fixed and the time-domain averaged data train is constructed at times $t = t_0, t_0 + \Delta, t_0 + 2\Delta, \dots, t_0 + N\Delta$.
- 6. The method of claim 1, wherein the time-domain signal is an NMR echo train.
 - 7. The method of claim 6, wherein the step of computing an indication of attributes is performed using inversion of the constructed time-domain averaged data train into T_2 domain.
- 8. The method of claim 7, wherein the T_2 distribution is estimated using the 30 following expression

$$S_{\Delta}(t) = \sum_{T_2} \phi(T_2) \exp(-t/T_2) (1 - \exp(-\Delta/T_2)) + Noise$$

where ϕ (T₂) is the porosity corresponding to the exponential decay time T₂.

35

- 9. The method of claim 1 further comprising the step of averaging two or more constructed time-domain averaged data trains to increase the signal-to-noise ratio (SNR) of the measurement.
- 5 10. A method for measuring an indication of attributes of materials containing a fluid state, comprising the steps of:

providing an NMR echo-train indicative of attributes of materials along the borehole;

constructing a time-domain averaged data train from said NMR echo train, the averaging being performed over one or more time intervals Δ_i ; and

computing an indication of attributes of said materials from the time-domain averaged data train.

- 11. The method of claim 10 wherein said one or more time intervals Δ_i are constant.
- 15 12. The method of claim 10 wherein at least two of said one or more time intervals Δ_i are different.
 - 13. The method of claim 10 further comprising the step of averaging two or more constructed time-domain averaged data trains to increase the signal-to-noise ratio (SNR) of the measurement.
- 20 14. The method of claim 10 wherein the following expression is used to construct the time-domain averaged data train:

$$Echo_{\Delta}(t) = \int_{t}^{t+\Delta} dt' Echo(t') / \Delta$$

- where $Echo_{\Delta}(t)$ is the provided time-domain signal over a time interval Δ_{i} .
 - 15. The method of claim 10, wherein the time interval Δ_i is constant and the time-domain averaged data train is constructed at times $t = t_0$, $t_0 + \Delta$, $t_0 + 2\Delta$, ..., $t_0 + N\Delta$.
- 16. The method of claim 15, wherein the step of computing an indication of attributes is performed using inversion of the constructed time-domain averaged data train into T₂ domain.
 - 17. The method of claim 16, wherein the T₂ distribution is estimated using the following expression

$$Echo_{\Delta}(t) = \sum_{T_2} \phi(T_2) \exp(-t/T_2) (1 - \exp(-\Delta/T_2)) + Noise$$

20

5

where ϕ (T₂) is the porosity corresponding to the exponential decay time T₂.

18. A method for increasing the spatial resolution of NMR logging measurements, comprising the steps of:

providing an NMR echo-train indicative of attributes of materials of interest; and constructing a time-domain averaged data train from said NMR echo train, the averaging being performed over one or more time intervals Δ_i .

- 19. The method of claim 18 wherein said one or more time intervals Δ_i are constant.
- 10 20. The method of claim 18 wherein at least two of said one or more time intervals Δ_i are different.
 - 21. The method of claim 18 further comprising the step of averaging two or more constructed time-domain averaged data trains to increase the signal-to-noise ratio (SNR) of the measurement.
- 15 22. The method of claim 18 wherein the following expression is used to construct the time-domain averaged data train:

$$Echo_{\Delta}(t) = \int_{t}^{t+\Delta} dt' Echo(t') / \Delta$$

where $Echo_{\Lambda}(t)$ is the provided time-domain signal.

- 23. The method of claim 18 wherein the time interval Δ_i is constant and the time-domain averaged data train is constructed at times $t = t_0$, $t_0 + \Delta$, $t_0 + 2\Delta$, ..., $t_0 + N\Delta$.
- 24. The method of claim 23, wherein the step of computing an indication of attributes is performed using inversion of the constructed time-domain averaged data train into T₂ domain.
 - 25. The method of claim 24wherein the T₂ distribution is estimated using the following expression

30
$$Echo_{\Delta}(t) = \sum_{T_2} \phi(T_2) \exp(-t/T_2) (1 - \exp(-\Delta/T_2)) + Noise$$

where ϕ (T₂) is the porosity corresponding to the exponential decay time T₂.

5

15

20

25

A method for real-time processing of NMR logging signals, comprising the steps of:

providing real-time data corresponding to a single-event NMR echo train indicative of physical properties of materials of interest;

constructing a time-domain averaged data train from said NMR echo train, the averaging being performed over time interval Δ using the expression

$$S_{\Delta}(t) = \int_{t}^{t+\Delta} dt' S(t') / \Delta$$

where S(t) is the provided measurement signal, and the time-domain averaged data train is constructed at times $t = t_0, t_0 + \Delta, t_0 + 2\Delta,, t_0 + N\Delta$; and

computing in real time an indication of the physical properties of said materials based on the constructed time-domain averaged data train.

27. The method of claim 26, further comprising the step of inverting of the constructed time-domain averaged data train into the T₂ domain, wherein the T₂ distribution is modeled using the expression

$$Echo_{\Delta}(t) = \sum_{T_2} \phi(T_2) \exp(-t/T_2)(1 - \exp(-\Delta/T_2)) + Noise$$

where ϕ (T₂) is the porosity corresponding to the exponential decay time T₂.

28. The method of claim 26, further comprising the step of averaging two or more constructed time-domain averaged data trains to increase the signal-to-noise ratio (SNR) of the measurement.

30

35