Bellman - MPM S2.02 Graphe

4 Exemple

Un jeu de données

Livraison	1	2	3	4	5	6	7	8	9
durée	3	8	2	7	5	2	4	3	4
Livraisons précéd.	_	_	1, 2	1, 2	2	2	3, 4	4	5, 6

Table 1 - Contraintes d'antériorité des livraisons dans une mission de drones

Graphe potentiel des libraisons représentant les données

Figure 1 – Graphe potentiel de livraisons

Calcul des horaires de départ au plus tôt

On utilise l'algorithme de Bellman pour déterminer une arborescence de chemins de poids maximum de racine le hub de départ *depart*

Figure 2 – Arborescence obtenue par algorithme de Bellman

1	départ	1	2	3	4	5	6	7	8	9	fin
$t\hat{o}t(I) = \Pi(I)$	0	0	0	8	8	8	8	15	15	13	19
père : P(t)	Ø	depart	départ	2	2	2	2	4	4	5	7

Table 2 - Horaires de départ au plus tôt

Durée globale de la mission

On note D_{min} la durée globale (et optimale) de la mission et : $D = t \hat{o}t(fin)$. Soit 19 pour les données de l'exemple.

Bellman - MPM S2.02 Graphe

Calcul des horaires de début au plus tard

On utilise l'algorithme de Bellman pour déterminer une anti-arborescence de chemins de poids maximum d'anti-racine le sommet *fin*.

Figure 3 – Anti-arborescence obtenue par l'algorithme de Bellman

1	depart	1	2	3	4	5	6	7	8	9	fin
$\Delta(t)$	19	14	19	6	11	9	6	4	3	4	0
fils : F (I)	2	4	4	7	7	9	9	fin	fin	fin	Ø
$tard(I) = 19 - \Delta(I)$	0	5	0	13	8	10	13	15	16	15	19

Table 3 - Horaires de départ au plus tard

Marges

La marge libre d'une livraison l est définie comme suit :

$$m(I) = \min_{x \in V^+(I)} \left\{ t \hat{o}t(x) - (t \hat{o}t(I) + dur\acute{e}(I)) \right\} = \min_{x \in V^+(I)} \left\{ t \hat{o}t(x) \right\} - t \hat{o}t(I) - dur\acute{e}(I)$$

La **marge totale** d'une livraison *l* est définie comme suit :

$$\forall t \in S, M(l) = tard(l) - tôt(l)$$

1	départ	1	2	3	4	5	6	7	8	9	fin
m(l)	0	5	0	5	0	0	3	0	1	2	0
M(1)	0	5	0	5	0	2	5	0	1	2	0

Table 4 - Marges

Livraisons critiques et chemin critique

Une livraison l est dite critique si sa marge totale est nulle, c.-à-d. si l (t) = 0. Un chemin critique est un chemin de poids maximum allant du sommet l au sommet l l sommet l sommets l l un chemin critique représentent des livraisons critiques.

Dans le cas de l'exemple (voir Table 4), les livraisons critiques sont les 2, 4 et 7. Il n'existe qu'un seul chemin critique (voir Figure 2 ou Figure 3) : (départ, 2, 4, 7, fin).