ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФАКУЛЬТЕТ ОБЩЕЙ И ПРИКЛАДНОЙ ФИЗИКИ

Лабораторная работа N 4.3.2

Дифракция света на ультразвуковой волне в жидкости

Баранов Даниил Группа Б02-103

Цель: изучение дифракции света на синусоидальной акустической решётке и наблюдение фазовой решётки методом тёмного поля.

Используются в работе: оптическая скамья, осветитель, два длиннофокусных объектива, кювета с жидкостью, кварцевый излучатель с микрометрическим винтом, генератор ультразвуковой частоты, линза, вертикальная нить на рейтере, микроскоп.

1 Теоретическая справка

При прохождении ультразвуковой волны через жидкость в ней возникают периодические неоднородности коэффициента преломления, создается фазовая решетка, которую мы считаем неподвижной ввиду малости скорости звука относительно скорости света. Показатель преломления п изменяется по закону:

$$n = n_0(1 + m\cos\Omega x) \tag{1}$$

Здесь $\Omega=2\pi/\Lambda$ — волновое число для ультразвуковой волны, m — глубина модуляции n ($m\ll 1$).

Положим фазу ϕ колебаний световой волны на передней стенке кюветы равной нулю, тогда на задней поверхности она равна:

$$\phi = knL = \phi_0(1 + m\cos\Omega x) \tag{2}$$

Здесь L — толщина жидкости в кювете, $k = 2\pi/\lambda$ — волновое число для света.

После прохождения через кювету световое поле есть совокупность плоских волн, распространяющихся под углами θ , соответствующими максимумам в дифракции Фраунгофера:

$$\Lambda \sin \theta_m = m\lambda \tag{3}$$

Этот эффект проиллюстрирован на рисунке 1.

Зная положение дифракционных максимумов, по формуле (1) легко определить длину ультразвуковой волны, учитывая малость θ : $\sin \theta \approx \theta \approx l_m/F$, где l_m — расстояние от нулевого до последнего видимого максимума, F — фокусное расстояние линзы. Тогда получим:

$$\Lambda = m\lambda F/l_m \tag{4}$$

Скорость ультразвуковых воли в жидкости, где ν — частота колебаний излучателя:

$$v = \Lambda \nu \tag{5}$$

Рис. 1: Эффект дифракции на ультразвуковой волне

2 Экспериментальная установка

На рисунке 2 изображена схема экспериментальной установки. Источник света Π с помощью конденсора K проецируется на входную щель S. Входная щель ориентирована горизонтально и прикрыта красным светофильтром Φ . Коллиматорный объектив O_1 посылает параллельный пучок на кювету с водой . Излучатель Q создаёт УЗ-волну. Параллельный пучок света, дифграгируя на стоячей звуковой волне, образует дифракционную картину в фокальной плоскости F камерного объектива O_2 . Картину можно наблюдать в микроскоп M.

Рис. 2: Схема экспериментальной установки

3 Ход работы

3.1 Определение скорости звука по дифракционной картине

Изначально была собрана схема и проведена юстировка системы. Для различных частот генератора Q изучаем дифракционную картину. Результаты измерений приведены в таблицах 1 и 2. Сами измерения производились в делениях, одно деление соответствует 4 микрометрам. Абсолютную погрешность считаем равной 1 делению.

Таблица 1: Первая таблица первого пункта

$\nu = 1{,}0084~\mathrm{M}$ Гц		$\nu=1,\!17667~\mathrm{M}\Gamma$ ц		$\nu = 1,51635 \text{ M}$ Гц	
m	x_m , MKM	m	x_m , MKM	m	x_m , MKM
-4	1036	-4		-4	
-3	912	-3		-3	
-2	788	-2	904	-2	988
-1	660	-1	768	-1	836
0	524	0	616	0	632
1	416	1	476	1	444
2	292	2	328	2	256
3	176	3		3	
4	64	4		4	

Таблица 2: Вторая таблица первого пункта

$\nu =$	= 1,9986 МГц	$\nu = 4,43 \ \mathrm{M}\Gamma$ ц		
m	x_m , MKM	m	x_m , MKM	
-2	960	-2		
-1	796	-1	1076	
0	508	0	560	
1	288	1	16	
2	40	2		

По наклонам графиков определяем длину волны для каждой частоты по формуле 4 и скорость звука по формуле 5. Результаты приведены в таблице 3.

Рис. 3: График зависимости x_m от
т для частоты 1,0084 МГц. Наклон кривой $k=-122,3\pm1,1$ мкм

Рис. 4: График зависимости x_m от
т для частоты 1,17667 МГц. Наклон кривой $k=-144\pm 2$ мкм

Рис. 5: График зависимости x_m от
т для частоты 1,51635 МГц. Наклон кривой $k=-185\pm 2$ мкм

Рис. 6: График зависимости x_m от
т для частоты 1,9986 МГц. Наклон кривой $k=-234\pm 4$ мкм

Рис. 7: График зависимости x_m от m для частоты 4,43 МГц. Наклон кривой $k=-530\pm 8$ мкм

Таблица 3: Таблица со значениями длин волн и скоростей, посчитанными для разных частот

ν , М Γ ц	Λ, м	c
1,0084	0,001465	1478
1,17667	0,001244	1464
1,51635	0,000969	1469
1,9986	0,000766	1531
4,43	0,000338	1498

Основную часть относительной погрешности измерения скорости звука составляет погрешность, возникающая из-за того, что фильтр пропускает диапазон частот, суммарная погрешность не превышает 3,5 процентов. Средняя скорость по результатам всех измерений равна $c=1490\pm50~\mathrm{m/c}$, что согласуется с табличным значением $c=1490~\mathrm{m/c}$.

3.2 Определение скорости звука методом тёмного поля

В данном пункте скорость ультразвука измеряется методом тёмного поля, для этого между микроскопом и щелью размещается дополнительная линза. Откалибруем схему, определим цену деления окулярной шкалы 1 дел =1,25 мм.

Меняя частоту, будем наблюдать акустическую решётку. С помощью окулярной шкалы измерим при каждой частоте координаты первой и последней тёмной полосы, а также количество светлых промежутков между ними. Результаты измерений приве-

дены в таблице 4. По данным также расчитаны длины УЗ-волн при разных частотах (с учётом удвоения числа наблюдаемых полос).

Таблица 4: Таблица с измерениями методом тёмного поля

ν , М Γ ц	x_1 , дел	x_n , дел	n-1	Λ , mm	$arepsilon_{\Lambda}$
1,27241	0,35	5	10	1,163	0,022
2,13342	0,5	5,1	17	0,676	0,022
1,13638	0,5	6,1	11	1,273	0,018
1,06176	0,15	6,15	11	1,364	0,017
1,52526	0,1	5,2	13	0,981	0,020
1,76265	0	5,5	16	0,859	0,018

Рис. 8: График зависимости длины волны от обратной частоты

По таблице построен график зависимости длины волны от обратной частоты. Угловой коэффициент наклона равен $c=1415\pm80~\mathrm{m/c}$. Значение получилось сильно заниженным из-за большой погрешности измерений, но, в целом, сходится с тем, что получилось в предыдущем пункте.

4 Вывод

В данной работе была исследована дифракция света на ультразвуковой волне в жидкости. С помощью измерений была определена скорость ультразвука (двумя способами - непосредственно по дифракционной картине и методом тёмного поля). Первый способ позволил достаточно точно определить скорость звука, полученное значение хорошо сошлось с табличным, во втором способе значение получено менее

точно из-за больших погрешностей при измерений координат полос, однако всё же сходится с табличным.

С праздником, Анна Андреевна!