第6章 LR分析

- 6.1 自下而上分析及其LR分析概述
- 6.2 LR(0)分析
- 6.3 SLR(1)分析
- 6.4 LR(1)分析
- 6.5 LALR(1)分析
- 6.6 使用二义文法
- 6.7 语法分析程序的自动构造工具YACC

清华大学出版社

自下而上分析算法:能力强、构造复杂

最常用和最有效的模型:移进-归约

$$S \rightarrow E$$
 $E \rightarrow T \mid E + T$ $T \rightarrow int \mid (E)$

Reduce: 如能找到一产生式 A -> w 且栈中的内容是 qw (q 可能为空),则可以将其归约为 qA,即倒过来用这个产生式。

如上例,若栈中内容是 (int, 我们使用产生式 T-> int 并把栈中内容归约为 (T。

Shift: 如不能执行一个归约且在未消化的输入中还有 token,就把它从输入移到栈中。

如上例,假定栈中内容是(,输入中还有 int+int)#。不能对(执行一个归约,因为它不和任何产生式的右端 匹配。所以把输入的第一个符号移到栈中,于是栈中内容是(int,而余留的输入是 +int)#。

Reduce的一个特殊情况: 栈中的全部内容w归约为开始符号S(即施用S->w),且没有余留输入了,意味着已成功分析了整个输入串。

移进归约分析中还会出现一种情况,就是出错,比如当前的token不能构成一个合法句子的一部分,例如上面的文法,试分析 int+)时就会发生错误。

移进-归约模型分析(int + int)的过程

	STACK	REMAINING INPUT	PARSER ACTION
1		(int + int)#	Shift
2	(int + int)#	Shift
3	(int	+ int)#	Reduce: T -> int
4	(T	+ int)#	Reduce: E -> T
5	(E	+ int)#	Shift
6	(E +	int)#	Shift
7	(E + int)#	Reduce: T -> int
8	(E + T)#	Reduce: $E \rightarrow E + T$
9	(E)#	Shift
10) (E)	#	Reduce: $T \rightarrow (E)$
1	1 T	#	Reduce: E -> T
12	2 E	#	Reduce: S -> E
13	3 S	#	

$$S \rightarrow E$$

$$E \rightarrow T \mid E + T$$

$$T \rightarrow int \mid (E)$$

$$(E + T)$$

Reduce: $E \rightarrow E + T$

为什么不用 E -> T?

)#

若使用了E -> T, 在栈中形成的 (E+E 不是规范句型的**活前缀**(viable prefixes)

(E+E 不能和任何产生式的右端匹配, (E+E) 不是规范句型

活前缀是规范句型的前缀,但不超过句柄

移进归约分析的<u>栈中出现的内容</u>加上<u>剩余输入</u>构成 规范句型

规范推导 规范句型 规范归约

最右推导:在推导的任何一步 $\alpha \Rightarrow \beta$,其中 α 、 β 是句型,都是对 对 α 中的最右非终结符进行替换

最右推导被称为规范推导

由规范推导所得的句型称为规范句型

G[S]:
$$S \rightarrow E$$
 $E \rightarrow E+T|T$ $T \rightarrow (E)|int$
 $S \Rightarrow E \Rightarrow T \Rightarrow (E) \Rightarrow (E+T) \Rightarrow (E+int)$
 $\Rightarrow (T+int) \Rightarrow (int+int)$

规范归约

假定 α 是G的一个句子,称序列 α_n , α_{n-1} ,..., α_0 是 α 的一个规范归约,如果该序列满足:

- (1) $\alpha_n = \alpha$
- (2) α_0 为文法的开始符号
- (3)对任何j, 0 < j <= n, α_{j-1} 是从 α_{j} 经把句柄替换为相应产生式的左部而得到的

文法要求

shift-reduce or reduce-reduce 冲突 (conflicts)

分析程序不能决定是shift 还是 reduce,或者 分析程序归约时有多个产生式可选

例子 (dangling else):

 $S \rightarrow if E then S \mid if E then S else S$

如输入为 if E then if E then S else S, 分析某一时刻:

栈的内容: if E then if E then S, 而下一 token是else,

那么, 归约还是移进?

一种shift-reduce实现技术 LR 分析

LR的含义

R 最右推导

分析器模型和分析算法 LR分析特征(分析表)

LR分析器模型

LR分析表

a c e b d # S A	В
a c e b d # S A	
0 S2 1	
1 acc	
2 S4 3	
3 S5 S6	
4 r2 r2 r2 r2 r2 r2	
5 S8	7
6 r3 r3 r3 r3 r3	
7 S9	
8 r4 r4 r4 r4 r4	
9 rl rl rl rl rl	

LR分析算法

```
置ip指向输入串w的第一个符号
令S为栈顶状态
a是ip指向的符号
repeat begin
    if ACTION[S,a]=S<sub>i</sub>
    then begin PUSH j,a(进栈)
              ip 前进(指向下一输入符号)
        end
    else if ACTION[S,a]=r_i (第j条产生式为A\rightarrowβ)
```

LR分析算法

```
then begin
     pop |β| 项
     令当前栈顶状态为S'
     push GOTO[S', A]和A(进栈)
  end
  else if ACTION[s,a]=acc
     then return (成功)
     else error
end
```

例6.1:

G[S]:
$$S \rightarrow aAcBe[1]$$

 $A \rightarrow b[2]$
 $A \rightarrow Ab[3]$
 $B \rightarrow d[4]$

$$w = abbcde #$$

Step	States	Syms	The rest of input	Actio	n Goto
1	0	#	abbcde#	s2	
2	02	#a	bbcde#	s4	
3	024	#ab	bcde#	r2	goto(2,A)
4	023	#aA	bcde#	s6	
5	0236	#aAb	cde#	r3	
6	023	#aA	cde#	s5	
7	0235	#aAc	de#	s8	
8	02358	#aAcd	e#	r4	
9	02357	#aAcB	e#	s9	
10	023579	#aAcBe	#	r1	
11	01	#S		acc	

文法G[S]:

(1) $S \rightarrow aAcBe$

(2) $A \rightarrow b$

 $(3) A \rightarrow Ab$

(4) $B \rightarrow d$

步骤	/符号栈	UNII输入符	号串 ^{ESS} 动作
1)	#	abbcde#	移进
2)	# a	bbcde#	移进
3)	#ab	bcde#	归约(A→b)
4)	#aA	bcde#	移进
5)	#aAb	cde#	归约(A→Ab)
6)	#aA	cde#	移进
7)	#aAc	de#	移进
8)	# aAcd	e#	归约(B→d)
9)	#aAcB	e#	移进
10)	#aAcBe	. #	归约
11)	# S	#	接受

对输入串abbcde#的移进-归约分析过程

符号串abbcde是否是G[S]的句子

 $S \Rightarrow aAcBe \Rightarrow aAcde \Rightarrow aAbcde \Rightarrow abbcde$

2005	THE RESERVE TO SERVE THE PARTY OF THE PARTY	THE STATE OF	ACT.					
15	步骤	符号栈	输入符号串	TS动作IUA UNIV	状态栈	ACTION	GOTO	
	1)	#	abbcde#	移进	0	S ₂		
	2)	# a	bbcde#	移进	02	S ₄		
	3)	#ab	bcde#	归约(<mark>A→b</mark>)	024	r ₂	3	
	4)	#aA	bcde#	移进	023	r ₂ S ₆		
	5)	#aAb	cde#	归约(A→Ab)	0236	r ₃	3	
	6)	#aA	cde#	移进	023	S ₅		
	7)	#aAc	de#	移进	0235	S ₈		
	8)	#aAcd	e#	归约(B→d)	02358	r_4	7	
	9)	#aAcB	e#	移进	02357	S ₉		
	10)	#aAcBe	#	归约(S→aAcBe)	023579	r_1	1	
	11)	#S	#	接受	01	acc		

对输入串abbcde#的LR分析过程

文法G[S]:

- (1) $S \rightarrow aAcBe$
- (2) $A \rightarrow b$
- (3) $A \rightarrow Ab$
- (4) $B \rightarrow d$

si:移进,将状态i和输入符进栈

r_i:归约,用第i个产生式归约,同时状态栈与符号栈退出相应个符号,并把 GOTO表相应状态和第i个产生式的左 部非终结符入栈。

		•	ACT	ION			G	OTO)
						#			1
	a	С	е	Ь	d	#	S	Α	В
0	S ₂						1		
1						acc			
2				S ₄				3	
3		S 5		S ₆					
4	r ₂								
5					S ₈				7
6	r ₃								
7			S 9						
8	r ₄								
9	r ₁								

LR文法

对于一个cfg文法,如果能够构造一张 LR 分析表,使得它的每一个表项 (entry) 均是唯一的 (si, rj, acc, 空白) ,则称该 cfg 为LR 文法.

LR分析

特征:

- 规范的
- 符号栈中的符号串是规范句型的前缀,且其最右符号不超过句柄的末端(活前缀)
- 分析决策依据—栈顶状态和现行输入符号、识别活前缀的 DFA

四种技术:

• LR(0) SLR(1) LR(1) LALR(1)

LR(0) 分析

LR(0)文法

- 能力最弱,理论上最重要
- 存在识别活前缀的FA
- 如何构造识别活前缀的DFA(LR(0)项目集规范族的构造)
- LR(0)分析表的构造

拓广文法

为使文法的初始符号不出现在任何产生式的右部,需对文法G[S]进行拓广:在原文法G中增加S'→S产生式。

文法G[S]:

- (1) $S \rightarrow aAcBe$
- (2) $A \rightarrow b$
- (3) $A \rightarrow Ab$
- (4) $B \rightarrow d$

文法G[S']:

- (0) 5'→5
- (1) $S \rightarrow aAcBe$
- (2) $A \rightarrow b$
- (3) $A \rightarrow Ab$
- $(4) B \rightarrow d$

最右推导过程:

```
S' \Rightarrow S[0]
```

 \Rightarrow aAcBe[1][0]

 $\Rightarrow aAcd[4]e[1][0]$

 \Rightarrow aAb[3]cd[4]e[1][0]

 \Rightarrow ab[2]b[3]cd[4]e[1][0]

归约时在栈中的句型的前缀

```
ab[2]
aAb[3]
aAcd[4]
aAcBe[1]
S[0]
```

归约前可在栈中出现的前缀(不含句柄)

```
a,ab
a,aA,aAb
a,aA,aAc,aAcd
a,aA,aAc,aAcB,aAcBe
5
```

活前缀

给定文法G=(Vn,Vt, P, S), 若有规范推导:

 $S' \Rightarrow_{R}^{*} \alpha Aw \Rightarrow_{R} \alpha \beta w, \gamma 是 \alpha \beta 的 前缀,$

则称y是文法G的活前缀.

例如:

a,ab a,aA,aAb a,aA,aAc,aAcd a,aA,aAc,aAcB,aAcBe 5

 $S \Rightarrow aAcBe \Rightarrow aAcde \Rightarrow aAbcde \Rightarrow abbcde$

识别活前缀的NFA

$$9 \xrightarrow{a} 10 \xrightarrow{A} 11 \xrightarrow{c} 12 \xrightarrow{d} (13)$$

$S' \Rightarrow S \Rightarrow aAcBe \Rightarrow aAcde \Rightarrow aAbcde \Rightarrow abibcde$

DFA

活前缀及可归前缀的计算

定义(非终结符的左文)

 $LC(A)=\{\beta \mid S' \overset{*}{\Rightarrow} \beta A \omega, \beta \in V', \omega \in V_t^*\},$ 对拓广文法的开始符号S':

$$LC(S')=\{\epsilon\}$$

若 $B \rightarrow \gamma A \delta$, 则: $LC(A) \supseteq LC(B).\{\gamma\}$

清华大学出版社

TSINGHUA UNIVERSITY PRESS

G[S]: (0) S'
$$\rightarrow$$
S (1) S \rightarrow a A c B e
(2)A \rightarrow b (3) A \rightarrow Ab (4)B \rightarrow d

每个非终结符的左文方程组

用代入法求解

$$LC(S')=\{\epsilon\}$$

$$LC(S)=LC(S').\{\epsilon\}$$

$$LC(A)=LC(S).\{a\}\cup LC(A)\{\epsilon\}$$

$$LC(B)=LC(S).\{aAc\}$$

化简为:

$$[S'] = \varepsilon$$

$$[S]=[S']$$

$$[A]=[S]a+[A]$$

$$[B]=[S]aAc$$

$$[S']=\varepsilon$$

$$[S] = \varepsilon$$

$$[A]=a+[A]$$

$$[B]=aAc$$

$$\Leftrightarrow \Sigma = \{ [S'], [S], [A], [B], a, A, c \}$$

则方程两边都是∑上的正规式

清华大学出版社 —

TSINGHUA UNIVERSITY PRESS

 $G[S]: (0) S' \rightarrow S (1) S \rightarrow a A c B e$

 $(2)A \rightarrow b$ (3) $A \rightarrow Ab$ $(4)B \rightarrow d$

定义(产生式的LR(0)左文)

 $LR(0)C(A \rightarrow \alpha) = \{ \gamma | \gamma = \beta \alpha \blacksquare S \stackrel{*}{\underset{R}{\Longrightarrow}} \beta A \omega \underset{R}{\Longrightarrow} \beta \alpha \omega, \omega \in V_{t}^{*} \}$

推论: $LR(0)C(A \rightarrow \alpha) = LC(A).\{\alpha\}$

则有:

 $LR(0)C(S' \rightarrow S)=S$

 $LR(0)C(S \rightarrow aAcBe) = aAcBe$

 $LR(0)C(A \rightarrow b) = ab$

 $LR(0)C(A \rightarrow Ab) = aAb$

 $LR(0)C(B\rightarrow d)=aAcd$

 $(\Sigma = Vn \cup Vt)$ 上的正规式

Forward(DFA)

DFA

LR(0)项目

构造LR(0)项目

LR(0)项目或配置 (item or configuration)
---在右端某一位置有圆点的文法G的产生式

给定A→xyz

 $A \rightarrow xyz$

 $A \rightarrow x.yz$

 $A \rightarrow xy.z$

 $A \rightarrow xyz$.

比如S→aAd

 $S \rightarrow aAd S \rightarrow aAd S \rightarrow aAd S \rightarrow aAd$.

活前缀、句柄、LR(0)项目

为刻划分析过程中文法G的每一个产生式的右部符号已有多大一部分被识别(出现在栈顶)的情况,采用标有圆点的产生式来指示位置:

 $A \rightarrow \beta$. 刻画产生式 $A \rightarrow \beta$ 的右部 β 已出现在栈顶

 $A \rightarrow \beta_1 \cdot \beta_2$ 刻画 $A \rightarrow \beta_1 \beta_2$ 的右部子串 β_1 已出现在栈顶,期待从输入串中看到 β_2 推出的符号

 $A \rightarrow .\beta$ 刻画没有句柄的任何符号在栈顶,此时期望 $A \rightarrow \beta$ 的右部所推出的符号串

对于A→ε的LR(0)项目,只有A→.

LR(0)项目与含句柄活前缀αβ的β对应

给定文法G=(Vn,Vt, P, S), 若有规范推导:

 $S' \Rightarrow_{R}^{*} \alpha Aw \Rightarrow_{R} \alpha \beta w, \gamma 是 \alpha \beta 的 前缀,$

则称y是文法G的活前缀.

- 1. 活前缀已含有句柄的全部符号,表明产生式 $A \rightarrow \beta$ 的右部 β 已出现在栈顶($A \rightarrow \beta$.)
- 2.活前缀只含句柄的一部分符号,表明 $A \rightarrow \beta_1\beta_2$ 的 右部子串 β_1 已出现在栈顶,期待从输入串中看 到 β_2 推出的符号($A \rightarrow \beta_1 \cdot \beta_2$)
- 3. 活前缀不含有句柄的任何符号,此时期望 $A \rightarrow \beta$ 的右部所推出的符号串 $(A \rightarrow .\beta)$

含句柄活前缀αβ的<mark>前缀α</mark>在LR(0)项目中的 (隐含) 对应部分

考虑右句型: $S' \Rightarrow^* \alpha Aw \Rightarrow \alpha \beta w$ 若有项目k: $A \rightarrow \cdot \beta, \quad A \neq S',$ 则一定存在项目i: $X \rightarrow \gamma \cdot A \delta,$ 那么, $\alpha = \alpha' \gamma$

例如: $S \rightarrow aAc.Be B \rightarrow .d$, 那么, $\alpha = \alpha'aAc$, $\gamma = aAc$

由LR(0)项目构造 识别活前缀的NFA

 $G[S]: (0) S' \rightarrow S (1) S \rightarrow a A c B e$

 $(2) A \rightarrow b (3) A \rightarrow Ab \qquad (4)B \rightarrow d$

文法的项目为:

1. S'
$$\rightarrow$$
.S

2. S'
$$\rightarrow$$
S.

3.
$$S \rightarrow aAcBe$$

7. S
$$\rightarrow$$
aAcB.e

8. S
$$\rightarrow$$
aAcBe.

9. A
$$\rightarrow$$
.b

10. A
$$\rightarrow$$
b.

11. A
$$\rightarrow$$
.Ab

12. A
$$\rightarrow$$
 A.b

13. A
$$\rightarrow$$
 Ab.

14. B
$$\rightarrow$$
.d

15. B
$$\rightarrow$$
d.

项目就是状态!

项目(状态)之间的转换

转换方法如下:

若有项目i: $X \rightarrow X_1 X_2 ... X_{i-1} \cdot X_i ... X_n$

项目 $j: X \rightarrow X_1 X_2 \dots X_{i-1} X_i \cdot X_{i+1} \dots X_n$

则从状态i到状态j连一条标记为Xi的箭弧

若有项目i : $X \rightarrow \gamma \cdot A \delta$

项目 $k: A \rightarrow .\beta$

则从状态i画一条标记为e的箭弧到状态k

点在最右边的项目为句柄识别态,即NFA的终态

NFA?!

再将NFA转换成DFA?

Backward(NFA)

Forward(DFA)

LR(0)项目集的规范族

LR(0) 项目集的闭包CLOSURE

若当前处于 $A \rightarrow \alpha \cdot B\beta$ 刻画的情况,则期望移进 First(B)的某些符号;

如有产生式 $B \rightarrow \gamma$,那么 $B \rightarrow \cdot \gamma$ 这个项目便是刻画期望移进 First(B)中某个符号的情况;

所以,

$$A \to \alpha \cdot \mathbf{B}\beta$$

$$\mathbf{B} \to \cdot \gamma$$

这两个项目对应移进-归约分析中的同一个状态,构成一个配置集(项目集);

也就是,对每个配置集,分析表中将有一个状态与之对应

LR(0)项目集闭包的构造

```
LR(0)项目集的闭包CLOSURE
function CLOSURE (I); /* I 是项目集*/
{ J:= I;
  repeat
    for J 中每个项目A \rightarrow \alpha .B \beta 和产生式,B\rightarrow \gamma ,
    若 B→ .γ 不在J中 do
      将 B \rightarrow . \gamma 加到J中
  until 再也没有项目可以再加到J中
  return J
```

转换函数GO(I, X)

GO 函数

GO(I, X) == CLOSURE(J);

其中, I: 项目集, X: 文法符号,

J={任何形如 $A\rightarrow \alpha X$. β 的项目 $|A\rightarrow \alpha .X\beta \in I$ }

LR(0)项目集规范族的构造

```
计算LR(0)项目集的规范族
C = \{ I_0, I_1, ..., I_n \}
procedure Itemsets(G');
begin
   C := \{ CLOSURE (\{S' \rightarrow .S\}) \}
   repeat
       for C中每一项目集I和每一文法符号x do
          if GO(I, x) 非空且不属于C
          then 把 GO(I, x) 放入C中
       endfor
    until C不再增大
end;
```

LR(0)项目集的规范族构成识别一个文法的活前缀的DFA的状态的全体

文法G:

- (0) S' \rightarrow E (1) E \rightarrow aA (2) E \rightarrow bB
- (3) $A \rightarrow cA$ (4) $A \rightarrow d$ (5) $B \rightarrow cB$

(6) $B \rightarrow d$

LR(0) 项目集规范族(识别G的活前缀的DFA):

$$I_0: S' \rightarrow .E$$

$$I_1: S' \rightarrow E$$
.

$$I_2$$
: E \rightarrow a.A

$$E \rightarrow aA$$

$$A \rightarrow cA$$

$$E \rightarrow .bB$$

$$A \rightarrow d$$

I ₃ :	\mathbf{E} -	$\rightarrow \mathbf{b}$.B
-40			

 $I_4: A \rightarrow c.A$

 $I_5: B \rightarrow c.B$

$$B \rightarrow .cB$$

 $A \rightarrow .cA$

$$B \rightarrow .cB$$

$$B \rightarrow d$$

$$A \rightarrow d$$

$$B \rightarrow d$$

$$I_6$$
: E \rightarrow aA.

$$I_7$$
: $E \rightarrow bB$.

$$I_8: A \rightarrow cA$$
.

$$I_0: B \rightarrow cB$$
.

$$I_{10}: A \rightarrow d$$
.

$$I_{11}$$
: $B \rightarrow d$.

LR(0)分析表的构造

假定 $C=\{I_0,\,I_1,\,...\,,\,I_n\}$,令每个项目集 I_k 的下标k为分析器的一个状态,则G'的LR(0)分析表含有状态0,1 , ... , n。

令含有项目 $S' \rightarrow .S$ 的 I_k 的下标k为初态。

ACTION和GOTO可按如下方法构造:

若项目 $A \rightarrow \alpha.a$ β属于 I_k 且GO (I_k , a)= I_j , a为任意终结符,则置ACTION[k, a]为"把状态j和符号a移进栈",简记为"sj";

若项目 $A \rightarrow \alpha$.属于 I_k ,则对任何终结符a,置ACTION[k, a] 为"用产生式 $A \rightarrow \alpha$ 进行归约",简记为" r_j ";其中假定 $A \rightarrow \alpha$ 为文法G'的第j个产生式;

若项目 $S' \rightarrow S$.属于 I_k ,则置ACTION[k, #]为"接受",简记为"acc";

若GO (I_k, A)= I_i, A为非终结符,则置GOTO(k, A)=j;

分析表中凡不能用规则1至4填入信息的空白表项均置上"出错标志"。

按上述算法构造的含有ACTION和GOTO两部分的分析表,如果每个表项不含多重定义,则称它为文法G的一张LR(0)分析表。

具有LR(0)分析表的文法G称为一个LR(0)文法。

LR(0)文法是无二义的。

文法G:(0) S' \rightarrow E (1) E \rightarrow aA (2) E \rightarrow bB

(3) $A \rightarrow cA$ (4) $A \rightarrow d$ (5) $B \rightarrow cB$ (6) $B \rightarrow d$

ACTION					GOTO				
	a	c	b	d	#		Е	A	В
0	S2		S3				1		
1					acc				
2		S4		S10				6	
3		S5		S11					7
4		S4		S10				8	
5		S5		S11					9
6	r1	r1	r1	r1	r1				
7	r2	r2	r2	r2	r2				
8	r3	r3	r3	r3	r3				
9	r5	r5	r5	r5	r5				
10	r4	r4	r4	r4	r4				
11	r6	r6	r6	r6	r6				

LR(0)项目的分类

根据<mark>圆点所在的位置和圆点后是终结符还是非终结符或为空</mark> 把项目分为以下几种:

移进项目,形如 $A \rightarrow \alpha \cdot \alpha \beta$ a 是终结符, $\alpha, \beta \in V^*$ 下同

待约项目,形如 $A \rightarrow \alpha \cdot B\beta$

归约项目,形如 $A \rightarrow \alpha$ •

接受项目,形如 $S' \rightarrow S \bullet$

 $A \rightarrow \epsilon$ 的LR(0)项目只有 $A \rightarrow \cdot$, 是归约项目

例7.1 G[S]为:

 $S \rightarrow a A c B e$

 $A \rightarrow b$

 $A \rightarrow Ab$

 $B \rightarrow d$

- 1) 构造识别活前缀的DFA;
- 2) 构造它的LR(0)分析表;
- 3) 分别给出对输入符号串abbcde和abbce的LR(0)分析步骤。

G[S]拓广为:

- $(0) S' \rightarrow S$
- (1) $S \rightarrow a A c B e$
- $(2) A \rightarrow b$
- $(3) A \rightarrow Ab$
- (4) $B \rightarrow d$

$$I_1: S' \to S$$

S

a

 $\mathbf{I}_0 \colon \mathbf{S'} \to \bullet \mathbf{S}$ $\mathbf{S} \to \bullet \mathbf{a} \mathbf{A} \mathbf{c} \mathbf{B} \mathbf{e}$

TSINGHUA UNIVERSITY I

$G[L] = ab^+cde^-$

$$\mathbf{I}_4 \colon \mathbf{A} \to \mathbf{b} \bullet$$

$$I_6: A \rightarrow Ab$$

 $I_2: S \to a \cdot A \cdot B \cdot e$ $A \to b$

 $A \rightarrow \bullet Ab$

 $\mathbf{I}_3 \colon \mathbf{S} \to \mathbf{a} \, \mathbf{A} \cdot \mathbf{c} \, \mathbf{B} \, \mathbf{e}$ $\mathbf{A} \to \mathbf{A} \cdot \mathbf{b}$

$$\mathbf{I}_5 \colon \mathbf{S} \to \mathbf{a} \, \mathbf{A} \, \mathbf{c} \cdot \mathbf{B} \, \mathbf{e}$$

$$\mathbf{B} \to \mathbf{d}$$

↓ u

 $I_8 \colon B \to d$

$$\mathbf{I}_7 \colon \mathbf{S} \to \mathbf{a} \, \mathbf{A} \, \mathbf{c} \, \mathbf{B} \bullet \mathbf{e}$$

e

 $I_9: S \rightarrow a \land c \land B e \bullet$

DFA

Backward(NFA)

例7.1 G[S]的LR(0)分析表

	ACTION					GOTO			
	a	С	e	Ь	d	#	5	A	В
0	52						1		
1						acc			
2				S ₄				3	
3		S ₅		56					
4	r ₂	r ₂	r ₂	r ₂	r ₂	r ₂			
5					S ₈				7
6	r ₃	r ₃	r ₃	r ₃	r ₃	r ₃			
7			59						
8	r ₄	r ₄	r ₄	r ₄	r ₄	r ₄			
9	r ₁	r ₁	r ₁	r ₁	r ₁	r ₁			

对输入串abbcde#的分析过程

Step	states.	Syms.	The rest of input	action goto	
1	0	#	abbcde#	s2	
2	02	#a	bbcde#	s4	
3	024	#ab	bcde#	r2	3
4	023	#aA	bcde#	s6	
5	0236	#aAb	cde#	r3	3
6	023	#aA	cde#	s 5	
7	0235	#aAc	de#	s8	
8	02358	#aAcd	e#	r4	7
9	02357	#aAcB	e#	s9	
10	023579	#aAcB	Be #	r1	1
11	01	#S	#	acc	

对输入串abbce#的分析过程

Step	States	Syms.	The rest of input	<u>action</u>	goto
1	0	#	abbce#	s2	
2	02	#a	bbce#	s4	
3	024	#ab	bce#	r2	3
4	023	#aA	bce#	s6	
5	0236	#aAb	ce#	r3	3
6	023	#aA	ce#	s 5	
7	0235	#aAc	e#	出错	

说明abbce#不是例7.1的文法G[S]的句子

The end of part 1