Workshop Part 4 - Data Mining

by Kanda Tiwatthanont

Data Mining Process

Data Mining Process

Data Mining

Data Mining

Supervised Learning

Know targets

Input = X

Output Target = Y

$$Y = f(X)$$

Unsupervised Learning

UnKnow targets
Input = X

f(X)

Data Mining

Overview

Part 4 : Data Mining (DM)

- Tasks
 - Classification with **DT** or **SVM**
 - Clustering with k-mean
- Model Evaluation
- Hands-on
 - Scikit-learn -- Machine Learning Tool for Data Scientist
 - Try predicting data

Classification - Decision Tree

Decision Tree - find the best attribute for decision node

Classification - Decision Tree

Decision Tree

#1: Select the best attribute for root node

#2 Create branches for all possible values

#3: Split instances into subsets

Loop: Repeat recursively (#1,#2,#3) for each branch

Until: All instances of the subset have the same class, or have a single value

Classification - Decision Tree

Decision Tree

The best attribute

The way to select the best attribute

- CART Algorithm → **Gini**
- ID3 Algorithms → Information Gain
- C4.5 Algorithms → **Entropy**

Classification - Support Vector Machine (SVM)

SVM - find the optimal hyperplane

Classification -SVM

SVM - What is the optimal hyperplane?

Classification - SVM

SVM - What is the optimal hyperplane?

find optimal hyperplane that maximum margin

Classification - SVM

SVM - Effective on high dimensional data

Round 2

Data Mining

<u>Supervised</u> or <u>Unsupervised</u> Learning?

<u>Supervised</u> or <u>Unsupervised</u> Learning?

Bank loan dataset

Customer ID	Sex	Income	Year in present job	Make Payment	Criminal record	Decision
1	М	72,000	15	Yes	No	Loan
2	F	35,000	3	Yes	Yes	No Loan
3	М	28,000	2	No	No	Loan

Application of *Decision Tree*

<u>Supervised</u> or <u>Unsupervised</u> Learning?

Insurance: Identifying groups of motor insurance policy holders with a high average claim cost.

Application of *Clustering*

Insurance

Retire Officer

The Yo-Pro

The New driver

<u>Supervised</u> or <u>Unsupervised</u> Learning?

Application of *Naive Bayes* or *SVM*

Spam Filtering

Why Spam Filtering does *not* use Decision Tree?

<u>Supervised</u> or <u>Unsupervised</u> Learning?

Data Mining Tasks

Techniques		Algorithms
Classification	- + + +	Decision Tree Naive bayes SVM
Regression	++	Linear Regression
Clustering		K-means
Association		Apriori FP-Growth
Anomaly Detection Kanda Tiwatthanont @ TNI - Workshop #2 (2017)		One class SVM

Are those all about Data Mining?

Good Enough Model?

k-fold Cross Validation

Training data

k-fold Cross Validation

Precision x Recall

จบ

