Crypto Protocols and Network Security (INSE 6120)

Introduction to Crypto
Protocols: Features and Attacks

Security properties of a protocol

Security properties

- The main security properties are:
 - Secrecy/confidentiality
 - Authentication (entity, data origin)
 - Integrity
 - Non-repudiation
 - Anonymity
 - Fairness
 - Availability
 - Certified delivery

Confidentiality

- Secrecy protects against unauthorized disclosure of information
- Only intended parties will learn the info sent
 - □ Generally, all secrets are time-bound
 - □ Nothing remains secret forever
- A protocol preserves the secrecy of one of its parameters if it does not leak this parameter during the execution the protocol
- Parameters could be keys or any sensitive data
- Mechanism to use: encryption

Authentication

- Authentication means proving an identity over the network (principal authentication), or authenticity of data origin (message authentication).
- Authentication is sometimes taken to be of two types:
 - Message authentication: Ensuring, that a message received matches the message sent. Sometimes, it means a proof of the identity of the creator of the message.
 - □ Entity/Principal authentication: Corroborating that a principal is the one claimed. Timeliness is important.

Example

Consider the following:

A (user) \rightarrow B (IoT): CMD, HMAC_{kAB}{CMD}

A's claim: CMD was received by B

B's claim: CMD originated from A

Are these claims valid?

Authorization/access control

 The authorization property stipulates which principal has access to what resource or operation.

- It distinguishes between legal and illegal accesses.
- Legal principals are granted authorization to the resource/operation in question while illegal ones are denied access to the resource or operation.

Integrity

- Integrity is the property of ensuring that information will not be accidentally or maliciously altered or destroyed.
- Integrity protects against unauthorized creation, alteration or destruction of data.

If it were possible for a corrupted message to be accepted, then this would show up as a violation of the integrity property and we would have to deem the protocol to be flawed.

Non-repudiation

- Non-repudiation is defined as the impossibility for one of the entities involved in a communication denying having participated in all or part of the communication.
- It provides a protection against false denial of having been involved in the communication.
- The general goal of non-repudiation is to collect, maintain, make available, and validate irrefutable evidence concerning a claimed event or action in order to resolve disputes about the occurrence or non-occurrence of that event or action.
- Non-repudiation is related to authentication but has strong proof requirements.

Anonymity

- The property of anonymity provides a principal with the ability to make anonymous transactions, which cannot be tracked by another principal.
- More generally, we say that if a system is anonymous over some set of events E, then it should have the following property.
 - □ Whenever an event from E occurs, then an observer, though he may be able to deduce that an event from E has occurred, will be unable to identify which event.
- In the case of e-commerce protocols, this property allows consumers to make anonymous purchases which cannot be tracked by a bank or a merchant to identify the purchaser.

Fairness

- In fair protocols, agents require protection from each other, rather than from an external hostile agent.
- In electronic contract signing, for instance, we will want to avoid one of the participants being able to gain some advantage over another by halting the protocol part-way through.
- Bob could, for example, refuse to continue after Alice has signed up, but before he has signed.
- Some efficient fair protocols are conceived to run between two agents and occasionally call upon a trusted third agent in case of disputes.

Availability

- This property deals with the availability of certain resources manipulated by the protocol.
- □ For instance, for a key-exchange protocol, we would be confident that a session will indeed be established.
- That is, if Alice requests the server to set up a session key between her and Bob, then the system must subsequently reach a state in which Alice and Bob both have knowledge of the fresh session key.
- Generally, to verify the availability property in cryptoprotocols, we have to restrict the capabilities of the intruder. In particular, we cannot allow the intruder unlimited ability to kill messages.

Goals in key establishment

- Key establishment: a process whereby a shared secret becomes available to two or more parties, for subsequent cryptographic use
- Good key: The shared session key is a good key for A to use with B, only if A has the following assurances:
 - the key is fresh (key freshness)
 - the key is known only to: A, B, and mutually trusted parties (key authentication / key confidentiality)
- Key confirmation: Good key + proof that the intended principal has access to the key

Diffie-Hellman key exchange

DH problems

- Who has access to the established key?
- Do we achieve authentication? Key or message confidentiality? Integrity?

Next step: authenticated DH

Example: key establishment

STS (station-to-station) protocol

```
    A → B: g<sup>x</sup>
    A ← B: g<sup>y</sup>, {Sig<sub>B</sub>(g<sup>y</sup>, g<sup>x</sup>)}<sub>K<sub>AB</sub></sub>
    A → B: {Sig<sub>A</sub>(g<sup>y</sup>, g<sup>x</sup>)}<sub>K<sub>AB</sub></sub>
```

- Analysis (from A's perspective):
 - The signature in message 2 can only be formed by B
 - Message 2 is not a replay (x is fresh)
 - □ Signature alone does not prove that B knows K_{AB} . That's why we need the encryption with K_{AB} (key confirmation)
- Another important aspect of a protocol: connections between messages
 - What connects above messages?

Protocol efficiency

- Two types:
 - Computational efficiency
 - ☐ Main cost: cryptographic algorithms (public/symmetric operations), number of operations
 - □ Potential bottleneck
 - Communications efficiency
 - □ Number of messages / rounds
 - ☐ Length of messages

Goal: forward secrecy

- Assume that attackers will store all past communications: including session establishment + messages in a session
- We also assumed before that session keys may leak sometimes
 - Communications protected by those keys will also leak as a consequence
- But a long-term key may also leak
 - ☐ This should not leak session keys established by the key before the compromise
 - Such a feature is called forward secrecy

Forward secrecy

- Generally achieved through the use of ephemeral public keys
 - Keys that are used for key-establishment only, and destroyed immediately afterwards
- For key-agreement protocols: easily achieved if the long-term key is used only to authenticate protocol messages (example: STS)
- For key transport protocols: cannot be achieved if the long-term key is used to encrypt session keys

Forward secrecy – more examples

- A key-transport protocol
 - \square K_T is an ephemeral public key chosen by A
 - \square E_T(.) denotes encryption using K_T
 - ☐ h is a one-way hash function
 - 1. A \rightarrow B: K_T, N_A, Sig_A(K_T, **B**)
 - 2. B \rightarrow A: $E_T(K_{AB})$, $Sig_B(h(K_{AB}), A, N_A)$

Are the above **bold** items significant?

MAC

- MAC-then-Encrypt: Compute the MAC on the cleartext, append it to the data, and then encrypt the whole (TLS)
- Encrypt-and-MAC: Compute the MAC on the cleartext, encrypt the cleartext, and then append the MAC at the end of the ciphertext (SSH)
- Encrypt-then-MAC: Encrypt the cleartext, then compute the MAC on the ciphertext, and append it to the ciphertext (IPSec)

Off-the-record (OTR) messaging

WPES 2004 paper

http://www.cypherpunks.ca/otr/

Off-the-record (OTR) messaging

- Goal: enable casual conversation over instant messaging (IM)
 - Assume Alice and Bob talking to a room alone
 - □ No one else hears or knows what they say or prove what they said
 - ☐ Use: forward secrecy + repudiability

- Protocol overview
 - Assume Alice, Bob know each other's long-term signature keys
 - □ Steps:
 - Authenticated Deffie-Hellman
 - Message transmission
 - 3. Key discard/renewal

OTR – steps

- Step 1
 - \Box A \rightarrow B: q^x , Sig_A(q^x)
 - \square B \rightarrow A: g^y , Sig_B(g^y)
 - \square Shared secret: SS = hash(g^{xy}), EK = hash(SS), MK = hash(EK)
- □ Step 2
 - \square A \rightarrow B: {M}_{EK}, MAC_{MK}({M}_{EK})
- □ Step 3
 - \square A \rightarrow B: $g^{x'}$, MAC_{MK}($g^{x'}$)
 - \square B \rightarrow A: $g^{y'}$, MAC_{MK}($g^{y'}$)
 - \square New secrets: SS' = hash($q^{x'y'}$), EK' = hash(SS'), MK' = hash(EK')
 - □ Discard: SS, EK, MK, x, y

OTR – subsequent messages

$$A oup B: \quad g^{x_1} \ B oup A: \quad g^{y_1} \ A oup B: \quad g^{x_2}, E(M_1, k_{11}) \ B oup A: \quad g^{y_2}, E(M_2, k_{21}) \ A oup B: \quad g^{x_3}, E(M_3, k_{22})$$

□ Here $k_{ij} = hash(g^{x_iy_j})$