2 $\|.\|_1$ small implies D_{\max} small for some large projection

2.1 Classical case

Theorem 2.1. Suppose p,q are probability distributions on \mathcal{X} such that $\frac{1}{2} \|p-q\|_1 \leq \epsilon$, then $S \subseteq \mathcal{X}$ defined as $S \coloneqq \{x \in \mathcal{X} : p(x) \leq (1+\epsilon^{1/2})q(x)\}$ is such that $q(S) \geq 1-\epsilon^{1/2}$ and $p(S) \geq 1-\epsilon^{1/2}-\epsilon$.

Proof. For $S^c := \mathcal{X} \setminus S$, where S is the set defined above we have that

$$\epsilon \ge \frac{1}{2} \|p - q\|_{1} = \max_{H \subseteq \mathcal{X}} |p(H) - q(H)|$$

$$\ge q(S^{c}) \left| \frac{p(S^{c})}{q(S^{c})} - 1 \right|$$

$$\ge q(S^{c}) \left(\frac{p(S^{c})}{q(S^{c})} - 1 \right)$$

$$= q(S^{c}) \left(\frac{\sum_{x \in S^{c}} p(x)}{\sum_{x \in S^{c}} q(x)} - 1 \right)$$

$$\ge q(S^{c}) \left(\frac{\sum_{x \in S^{c}} (1 + \epsilon^{\frac{1}{2}}) q(x)}{\sum_{x \in S^{c}} q(x)} - 1 \right)$$

$$\ge q(S^{c}) \epsilon^{\frac{1}{2}}$$

which implies that $q(S^c) \leq \epsilon^{\frac{1}{2}}$. Now, the statement of the theorem follows.

We can use this above fact to define B_k in the classical approx AEP proof and carry out the proof. We can also use coupling to carry out that proof.

Theorem 2.2. Suppose ρ, σ are quantum states such that $\|\rho - \sigma\|_1 < \epsilon$, then there exists a projector P such that $\operatorname{tr}(P\rho) \ge 1 - \epsilon^{1/2} - \epsilon$ and $\operatorname{tr}(P\sigma) \ge 1 - \epsilon^{1/2}$ and $P\rho P \le (1 + \epsilon^{1/2})P\sigma P$.

Proof. Let $\{v_i\}_{i\in\mathcal{I}}$ be the eigenvectors for $(1+\epsilon^{1/2})\sigma-\rho$. Define the probability distributions

$$p(i) \coloneqq \langle v_i, \rho v_i \rangle$$
$$q(i) \coloneqq \langle v_i, \sigma v_i \rangle.$$

Then, using the classical theorem we can find a subset $S \subseteq \mathcal{I}$ of the such that $p(S) \ge 1 - \epsilon^{1/2} - \epsilon$ and $q(S) \ge 1 - \epsilon^{1/2}$ and for every $i \in S$, $p(i) \le (1 + \epsilon^{1/2})q(i)$. Note that $(1 + \epsilon^{1/2})q(i) - p(i)$ is the eigenvalue of $(1 + \epsilon^{1/2})\sigma - \rho$. This implies that for $\Pi_S := \sum_{i \in S} v_i v_i^*$

$$\Pi_S \left((1 + \epsilon^{1/2}) \sigma - \rho \right) \Pi_S \ge 0.$$

Moreover, $\operatorname{tr}(\Pi_S \rho) = p(S)$, $\operatorname{tr}(\Pi_S \sigma) = q(S)$.