Timing

Andrew Lukefahr Indiana University - Bloomington

Calculator.py

- Lets you interact with the FPGA via the keyboard
 - Translates ASCII <--> Binary for you

```
$ python3 calculator.py -s /dev/ttyUSB1
```

\$ python3 calculator.py --help

python3 (not "python")

Overview

- Circuit Timing
- Binary Multiplication

Synchonizers (?)

Review: The Compute Stack

Solive

Review: All logic is NAND

• It's not magic, it's an electronic circuit

Basic Electronics 5/25

Review: MOSFETS

6ND

<u> 790</u>

n FET gate

gate

open >

clos-cè

PFET

-d

- close

open

MOSFETS

Correction: nFET vs. pFET

n-type & p-type MOSFETs

nMOSFET Electron conduction

pMOSFET Hole conduction

FET Delay

Gate Timing

• Assume 5ps / MOSFET

WAND 35 5ps

Flip-Flop Timing

Assume 5ps/ MOSFET

Setup Time Problems

• Assume 5ps/ MOSFET

Scolwad This NP redo time...

Glitch

Setup and Hold Time

Setup Time: minimum time the inputs to a flip-flop must be stable before the clock edge

 Hold Time: minimum time the inputs to a flip-flop <u>must</u> be stable <u>after</u> the clock edge

Hold Time

Setup/Hold Time

Inter Flip-Flop Timing

B441

Inter Flip-Flop Timing

Register to register timing:

- output of a register Q1
- some combinational circuit
- input to the next register D2

Delays:

- t_{co} , clock to output delay,
- t_{pd} , propagation delay in combinational circuit
- t_c , clock period

Timing requirement:

$$t_{co} + t_{pd} + t_{su} < t_c$$

Slack

- Extra time between combinational propagation delay and setup time
- (Time between stable input and next clock edge)

- Vivado:
 - WNS: Worst-case Negative Slack
 - TNS: True Negative Slack

• If this number is <0, your circuit will (probably) not work

Setup/Hold Times on External Signals

What if I don't know when my signal will arrive?

Out-of-Synchronization

Synchronizers

Metastability

Synchronizers for Metastability

Next Time

- Binary Multiplication
- Pipelining