

- 상용 로그
$$\log_{10}X = Y \rightarrow X = 10^Y$$

- 상용 로그의 성질

번호	성질
1	$\log_{10}(XY) = \log_{10}(X) + \log_{10}(Y)$
2	$\log_{10}\left(X/Y\right) = \log_{10}\left(X\right) - \log_{10}\left(Y\right)$
3	$\log_{10}(X^N) = N \mathrm{log}_{10}(X)$
4	$\log_{10}(\sqrt[N]{X}) = (1/N)\log_{10}X$
5	$\log_{10}(10) = 1$
6	$\log_{10}(1) = 0$
7	$\log_{10}(A) > 0$ if $A > 1$
8	$\log_{10}(A) < 0$ if $0 < A < 1$

- dB의 정의와 활용
 - 데시벨(dB, decibel)
 - 상대적인 양을 측정
 - dB로 표현한 전력비

$$G[\mathrm{dB}] = 10 \mathrm{log_{10}} \left(\frac{P_2}{P_1} \right)$$

 \rightarrow P₁은 입력전력, P₂는 출력전력, G 는 이득(gain)이라 부름

• 손실

$$L[dB] = -10log_{10} \left(\frac{P_2}{P_1} \right) = -G[dB]$$

 \rightarrow P₂ \langle P₁일 때 전력의 손실을 나타낸다.

- dB의 정의와 활용
 - 소자 또는 서브시스템(subsystem)들이 직렬 연결된 경우

• dB로 표현하면 전체 이득은 개별 소자의 이득을 더 하면 된다.

■ dB의 정의와 활용

$\frac{P_2}{P_1}$	G[dB]
0.00001	-50
0.0001	-40
0.001	-30
0.01	-20
0.1	-10
0.5	(-3)
1	0
2	3
10	10
20	13
100	20
1000	30
10000	40
100000	50

→ 이득이 -3dB라는 것은 손실이 +3dB 라는의미 → 입력이 ½로 감소

→ 정확히는 3.0103 흔히 이득이 3dB라는 것은 입력이 2배 증폭된다는 의미

dBI+dBm

예제)

세 개의 광소자가 각각 10, 5, 3dB 손실이 있다고 가정하자. 이 소자들이 직렬 연결되어 있을 때 전체 손실은 얼마인가?

풀이)

Loss(total) = 10+5+3=18 [dB]

- dBm의 정의와 활용
 - dBm
 - 1mW를 기준으로 전력을 데시벨로 표현
 - dBm으로 표현한 전력

$$X[dBm] = 10log_{10} \left(\frac{P_1[mW]}{1mW} \right)$$

- X는 P₁을 dBm으로 표현한 양
- 즉 1mW = 0dBm, 1000mW = 30dBm
- ❖ 참고

1W를 기준으로 하는 dBW, 1μ W를 기준으로 하는 dB μ 도 사용된다.

즉,

$$X[\mathrm{dBW}] = 10 \log_{10}\!\left(\frac{P_1[\mathrm{W}]}{1\mathrm{W}}\right) \qquad X[\mathrm{dB}\mu] = 10 \log_{10}\!\left(\frac{P_1[\mu\mathrm{W}]}{1\mu\mathrm{W}}\right)$$

