

Chapter 7

Random-Variate Generation

Contents

- Inverse-transform Technique
- Acceptance-Rejection Technique
- Special Properties

Purpose & Overview

- Develop understanding of generating samples from a specified distribution as input to a simulation model.
- Illustrate some widely-used techniques for generating random variates:
 - Inverse-transform technique
 - Acceptance-rejection technique
 - Special properties

Preparation

- It is assumed that a source of uniform [0,1] random numbers exists.
 - Linear Congruential Method (LCM)
- Random numbers $R, R_1, R_2, ...$ with
 - PDF

$$f_R(x) = \begin{cases} 1 & 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$$

CDF

$$F_R(x) = \begin{cases} 0 & x < 0 \\ x & 0 \le x \le 1 \\ 1 & x > 1 \end{cases}$$

- The concept:
 - For CDF function: r = F(x)
 - Generate r from uniform (0,1), a.k.a U(0,1)
 - Find x_1 , $x = F^{-1}(r)$

- The inverse-transform technique can be used in principle for any distribution.
- Most useful when the CDF F(x) has an **inverse** $F^{-1}(x)$ which is easy to compute.
- Required steps
 - 1. Compute the CDF of the desired random variable *X*
 - 2. Set F(X) = R on the range of X
 - 3. Solve the equation F(X) = R for X in terms of R
 - **4.** Generate uniform random numbers R_1 , R_2 , R_3 , ... and compute the desired random variate by $X_i = F^{-1}(R_i)$

- Exponential Distribution
 - PDF

$$f(x) = \lambda e^{-\lambda x}$$

• CDF

$$F(x) = 1 - e^{-\lambda x}$$

Simplification

$$X = -\frac{\ln(R)}{\lambda}$$

• Since *R* and (1-*R*) are uniformly distributed on [0,1]

• To generate X_1 , X_2 , X_3 ...

Inverse-transform technique for $exp(\lambda = 1)$

• Example:

- Generate 200 or 500 variates X_i with distribution $\exp(\lambda = 1)$
- Generate 200 or 500 R_s with U(0,1), the histogram of X_s becomes:

• Check: Does the random variable X_1 have the desired distribution?

$$P(X_1 \le x_0) = P(R_1 \le F(x_0)) = F(x_0)$$

Inverse-transform Technique: Other Distributions

- Examples of other distributions for which inverse CDF works are:
 - Uniform distribution
 - Weibull distribution
 - Triangular distribution

Inverse-transform Technique: Uniform Distribution

• Random variable *X* uniformly distributed over [*a*, *b*]

F(X) = R	

Inverse-transform Technique: Weibull Distribution

- The Weibull Distribution is described by
 - PDF

$$f(x) = \frac{\beta}{\alpha^{\beta}} x^{\beta - 1} e^{-\left(\frac{x}{\alpha}\right)^{\beta}}$$

CDF

$$F(X) = 1 - e^{-\left(\frac{x}{\alpha}\right)^{\beta}}$$

•	The variate is

Inverse-transform Technique: Triangular Distribution

The CDF of a Triangular
 Distribution with endpoints
 (0, 2) is given by

$$F(x) = \begin{cases} 0 & x \le 0 \\ \frac{x^2}{2} & 0 < x \le 1 \\ 1 - \frac{(2 - x)^2}{2} & 1 < x \le 2 \\ 1 & x > 2 \end{cases} \qquad R(X) = \begin{cases} \frac{X}{2} \\ 1 - \frac{(2 - x)^2}{2} & 1 < x \le 2 \end{cases}$$

$$R(X) = \begin{cases} \frac{X^2}{2} & 0 \le X \le 1\\ 1 - \frac{(2 - X)^2}{2} & 1 \le X \le 2 \end{cases}$$

• *X* is generated by

$$X = \begin{cases} \sqrt{2R} & 0 \le R \le \frac{1}{2} \\ 2 - \sqrt{2(1-R)} & \frac{1}{2} < R \le 1 \end{cases}$$

- When theoretical distributions are not applicable
- To collect empirical data:
 - Resample the observed data
 - Interpolate between observed data points to fill in the gaps

- For a small sample set (size *n*):
 - Arrange the data from smallest to largest

$$X_{(1)} \le X_{(2)} \le ... \le X_{(n)}$$

- Set $x_{(0)} = 0$
- Assign the probability 1/n to each interval $x_{(i-1)} \le x \le x_{(i)}$ i = 1, 2, ..., n
- The slope of each line segment is defined as

$$a_{i} = \frac{x_{(i)} - x_{(i-1)}}{\frac{i}{n} - \frac{(i-1)}{n}} = \frac{x_{(i)} - x_{(i-1)}}{\frac{1}{n}}$$

The inverse CDF is given by

$$X = \hat{F}^{-1}(R) = x_{(i-1)} + a_i \left(R - \frac{(i-1)}{n} \right)$$
 when $\frac{(i-1)}{n} < R \le \frac{i}{n}$

i	Interval	PDF	CDF	Slope a_i
1	$0.0 < x \le 0.8$	0.2	0.2	4.00
2	$0.8 < x \le 1.24$	0.2	0.4	2.20
3	$1.24 < x \le 1.45$	0.2	0.6	1.05
4	$1.45 < x \le 1.83$	0.2	0.8	1.90
5	$1.83 < x \le 2.76$	0.2	1.0	4.65

- What happens for large samples of data
 - Several hundreds or tens of thousand
- First summarize the data into a frequency distribution with smaller number of intervals
- Afterwards, fit continuous empirical CDF to the frequency distribution
- Slight modifications
 - Slope

$$a_i = \frac{x_{(i)} - x_{(i-1)}}{c_i - c_{i-1}}$$
 cumulative probability of the first *i* intervals

The inverse CDF is given by

$$X = \hat{F}^{-1}(R) = x_{(i-1)} + a_i(R - c_{i-1})$$
 when $c_{i-1} < R \le c_i$

 Example: Suppose the data collected for 100 broken-widget repair times are:

Interval		Relative	Cumulative	
(Hours)	Frequency	Frequency	Frequency, c _i	Slope, a i
$0.25 \le x \le 0.5$	31	0.31	0.31	0.81
$0.5 \le x \le 1.0$	10	0.10	0.41	5.00
$1.0 \le x \le 1.5$	25	0.25	0.66	2.00
$1.5 \le x \le 2.0$	34	0.34	1.00	1.47

- Problems with empirical distributions
 - The data in the previous example is restricted in the range $0.25 \le X \le 2.0$
 - The underlying distribution might have a wider range
 - Thus, try to find a theoretical distribution
- Hints for building empirical distributions based on frequency tables
 - It is recommended to use relatively short intervals
 - Number of bins increase
 - This will result in a more accurate estimate

 A number of continuous distributions do not have a closed form expression for their CDF, e.g.

• Normal
$$F(x) = \int_{-\infty}^{x} \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{t-\mu}{\sigma}\right)^{2}\right) dt$$

- Gamma
- Beta
- The presented method does not work for these distributions
- Solution
 - Approximate the CDF or numerically integrate the CDF
- Problem
 - Computationally slow

Inverse-transform Technique: Discrete Distribution

- All discrete distributions can be generated via inversetransform technique
- Method: numerically, table-lookup procedure, algebraically, or a formula
- Examples of application:
 - Empirical
 - Discrete uniform
 - Geometric

Inverse-transform Technique: Discrete Distribution

- Example: Suppose the number of shipments, x, on the loading dock of a company is either 0, 1, or 2
 - Data Probability distribution:

X	P(x)	F(x)
0	0.50	0.50
1	0.30	0.80
2	0.20	1.00

The inverse-transform technique as table-lookup procedure

$$F(x_{i-1}) = r_{i-1} < R \le r_i = F(x_i)$$

• Set $X = x_i$

Inverse-transform Technique: Discrete Distribution

Method - Given *R*, the generation scheme becomes:

$$x = \begin{cases} 0, & R \le 0.5 \\ 1, & 0.5 < R \le 0.8 \\ 2, & 0.8 < R \le 1.0 \end{cases}$$

Table for generating the discrete variate *X*

i	Input r_i	Output x_i
1	0.5	0
2	0.8	1
3	1.0	2

Hence, $X_1 = 1$

Acceptance-Rejection Technique

Acceptance-Rejection Technique

- Useful particularly when inverse CDF does not exist in closed form
 - Thinning
- Illustration: To generate random variates, $X \sim U(1/4,1)$

Procedure:

Step 1. Generate $R \sim U(0,1)$

Step 2. If $R \ge \frac{1}{4}$, accept X=R.

Step 3. If $R < \frac{1}{4}$, reject R, return to Step 1

- R does not have the desired distribution, but R conditioned (R') on the event $\{R \ge \frac{1}{4}\}$ does.
- Efficiency: Depends heavily on the ability to minimize the number of rejections.

Probability mass function of a Poisson Distribution

$$P(N=n) = \frac{\alpha^n}{n!} e^{-\alpha}$$

Exactly n arrivals during one time unit

$$A_1 + A_2 + \dots + A_n \le 1 < A_1 + A_2 + \dots + A_n + A_{n+1}$$

Since interarrival times are exponentially distributed we can set

$$A_i = \frac{-\ln(R_i)}{\alpha}$$

Well known, we derived this generator in the beginning of the class

Substitute the sum by

$$\sum_{i=1}^{n} \frac{-\ln(R_i)}{\alpha} \le 1 < \sum_{i=1}^{n+1} \frac{-\ln(R_i)}{\alpha}$$

- Simplify by
 - multiply by $-\alpha$, which reverses the inequality sign
 - sum of logs is the log of a product

$$\sum_{i=1}^{n} \ln(R_i) \ge -\alpha > \sum_{i=1}^{n+1} \ln(R_i)$$

$$\ln \prod_{i=1}^{n} R_i > \alpha > \ln \prod_{i=1}^{n+1} R_i$$

$$\ln \prod_{i=1}^{n} R_i \ge -\alpha > \ln \prod_{i=1}^{n+1} R_i$$

• Simplify by $e^{\ln(x)} = x$

$$\prod_{i=1}^{n} R_i \ge e^{-\alpha} > \prod_{i=1}^{n+1} R_i$$

- Procedure of generating a Poisson random variate N is as follows
 - 1. Set *n*=0, *P*=1
 - 2. Generate a random number R_{n+1} , and replace P by $P \times R_{n+1}$
 - 3. If $P < \exp(-\alpha)$, then accept N=n
 - Otherwise, reject the current n, increase n by one, and return to step 2.

- Example: Generate three Poisson variates with mean α =0.2
 - $\exp(-0.2) = 0.8187$
- Variate 1
 - Step 1: Set n = 0, P = 1
 - Step 2: R1 = 0.4357, $P = 1 \times 0.4357$
 - Step 3: Since $P = 0.4357 < \exp(-0.2)$, accept N = 0
- Variate 2
 - Step 1: Set n = 0, P = 1
 - Step 2: R1 = 0.4146, $P = 1 \times 0.4146$
 - Step 3: Since $P = 0.4146 < \exp(-0.2)$, accept N = 0
- Variate 3
 - Step 1: Set n = 0, P = 1
 - Step 2: R1 = 0.8353, $P = 1 \times 0.8353$
 - Step 3: Since $P = 0.8353 > \exp(-0.2)$, reject n = 0 and return to Step 2 with n = 1
 - Step 2: R2 = 0.9952, $P = 0.8353 \times 0.9952 = 0.8313$
 - Step 3: Since $P = 0.8313 > \exp(-0.2)$, reject n = 1 and return to Step 2 with n = 2
 - Step 2: R3 = 0.8004, $P = 0.8313 \times 0.8004 = 0.6654$
 - Step 3: Since $P = 0.6654 < \exp(-0.2)$, accept N = 2

- It took five random numbers to generate three Poisson variates
- In long run, the generation of Poisson variates requires some overhead!

N	R_{n+1}	P	Accept/Reject		Result
0	0.4357	0.4357	$P < \exp(-\alpha)$	Accept	<i>N</i> =0
0	0.4146	0.4146	$P < \exp(-\alpha)$	Accept	<i>N</i> =0
0	0.8353	0.8353	$P \ge \exp(-\alpha)$	Reject	
1	0.9952	0.8313	$P \ge \exp(-\alpha)$	Reject	
2	0.8004	0.6654	$P < \exp(-\alpha)$	Accept	<i>N</i> =2

Special Properties

Special Properties

- Based on features of particular family of probability distributions
- For example:
 - Direct Transformation for normal and lognormal distributions
 - Convolution

- Approach for N(0,1)
 - PDF

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

CDF, No closed form available

$$F(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$

- Approach for N(0,1)
 - Consider two standard normal random variables, Z_1 and Z_2 , plotted as a point in the plane:
 - In polar coordinates:
 - $Z_1 = B \cos(\alpha)$
 - $Z_2 = B \sin(\alpha)$

- Chi-square distribution
 - Given k independent N(0, 1) random variables $X_1, X_2, ..., X_k$, then the sum is according to the Chi-square distribution

PDF

$$\chi_k^2 = \sum_{i=1}^k X_i^2$$

$$f(x,k) = \frac{1}{\Gamma(\frac{k}{2})2^{\frac{k}{2}}} x^{\frac{k}{2}-1} e^{-\frac{x}{2}}$$

- The following relationships are known
 - $B^2 = Z_1^2 + Z_2^2 \sim \chi^2$ distribution with 2 degrees of freedom = $\exp(\lambda = 1/2)$.
 - Hence:

$$B = \sqrt{-2 \ln R}$$

• The radius B and angle α are mutually independent.

$$Z_{1} = \sqrt{-2 \ln R_{1}} \cos(2\pi R_{2})$$

$$Z_{2} = \sqrt{-2 \ln R_{1}} \sin(2\pi R_{2})$$

- Approach for $N(\mu, \sigma^2)$:
 - Generate $Z_i \sim N(0,1)$

$$X_i = \mu + \sigma Z_i$$

- Approach for Lognormal(μ , σ^2):
 - Generate $X \sim N(\mu, \sigma^2)$

$$Y_i = e^{X_i}$$

Direct Transformation: Example

- Let $R_1 = 0.1758$ and $R_2 = 0.1489$
- Two standard normal random variates are generated as follows:

$$Z_1 = \sqrt{-2\ln(0.1758)}\cos(2\pi 0.1489) = 1.11$$

$$Z_2 = \sqrt{-2\ln(0.1758)}\sin(2\pi 0.1489) = 1.50$$

• To obtain normal variates X_i with mean μ =10 and variance σ^2 =4

$$X_1 = 10 + 2 \cdot 1.11 = 12.22$$

$$X_2 = 10 + 2 \cdot 1.50 = 13.00$$

Convolution

- Convolution
 - The sum of independent random variables
- Can be applied to obtain
 - Erlang variates
 - Binomial variates

Convolution

- Erlang Distribution
 - Erlang random variable X with parameters (k, θ) can be depicted as the sum of k independent exponential random variables X_i , i = 1, ..., k each having mean $1/(k \theta)$

Summary

- Principles of random-variate generation via
 - Inverse-transform technique
 - Acceptance-rejection technique
 - Special properties
- Important for generating continuous and discrete distributions