Алгоритмы и структурам данных: ДЗ #11, деревья поиска СПБ, CS-Center, осенний семестр 2014

11.Base [1/1]		3
Задача 11 A .	Неявный Ключ [1 sec (2 sec), 256 mb]	3
11.Advanced	[3/5]	4
Задача 11В.	К-ый максимум [0.4 sec (0.8 sec), 256 mb]	4
Задача 11С.	И снова сумма [1.5 sec (3 sec), 256 mb]	5
Задача 11D.	Range Minimum Query [1 sec (2 sec), 256 mb]	6
Задача 11Е.	Вперёд! [1 sec (2 sec), 256 mb]	7
Задача 11F.	Переворачивания [2 sec (4 sec), 256 mb]	8
11.Hard [0/2		9
Задача 11 G .	Вставка ключевых значений [1 sec (2 sec), 256 mb]	9
Залача 11Н	Приказы [1.5 sec (3 sec) 256 mh]	10

Алгоритмы и структурам данных: ДЗ #11, деревья поиска СПБ, CS-Center, осенний семестр 2014

Общая информация:

Bход в контест: http://contest.yandex.ru/contest/941/

Дедлайн на задачи 10-го декабря в 23:59.

К каждой главе есть более простые задачи (base), посложнее (advanced), и сложные (hard).

В скобках к каждой главе написано сколько любых задач из этой главы нужно сдать.

Cайт курса: http://compscicenter.ru/courses/algorithms-1/2014-autumn/

Семинары ведет Сергей Владимирович Копелиович, контакты: burunduk30@gmail.com, vk.com/burunduk1

В каждом условии 2 таймлимита: для C/C++ и для Java, Python.

11.Base [1/1]

Задача 11A. Неявный Ключ [1 sec (2 sec), 256 mb]

Научитесь быстро делать две операции с массивом: \circ add i \mathbf{x} — добавить после i-го элемента x $(0 \leqslant i \leqslant n)$ \circ del i — удалить i-й элемент $(1 \leqslant i \leqslant n)$

Формат входных данных

На первой строке n_0 и m ($1 \le n_0, m \le 10^5$) — длина исходного массива и количество запросов. На второй строке n_0 целых чисел от 0 до 10^9-1 — исходный массив. Далее m строк, содержащие запросы. Гарантируется, что запросы корректны: например, если просят удалить i-й элемент, он точно есть.

Формат выходных данных

Выведите конечное состояние массива. На первой строке количество элементов, на второй строке сам массив.

implicitkey.in	implicitkey.out
3 4	3
1 2 3	9 2 8
del 3	
add 0 9	
add 3 8	
del 2	

11.Advanced [3/5]

Задача 11В. К-ый максимум [0.4 sec (0.8 sec), 256 mb]

Напишите программу, реализующую структуру данных, позволяющую добавлять и удалять элементы, а также находить k-й максимум.

Формат входных данных

Первая строка входного файла содержит натуральное число n — количество команд $(n \leq 100\,000)$. Последующие n строк содержат по одной команде каждая. Команда записывается в виде двух чисел c_i и k_i — тип и аргумент команды соответственно $(|k_i| \leq 10^9)$. Поддерживаемые команды:

- +1 (или просто 1): Добавить элемент с ключом k_i .
- 0: Найти и вывести k_i -й максимум.
- -1: Удалить элемент с ключом k_i .

Гарантируется, что в процессе работы в структуре не требуется хранить элементы с равными ключами или удалять несуществующие элементы. Также гарантируется, что при запросе k_i -го максимума, он существует.

Формат выходных данных

Для каждой команды нулевого типа в выходной файл должна быть выведена строка, содержащая единственное число — k_i -й максимум.

kthmax.in	kthmax.out
11	7
+1 5	5
+1 3	3
+1 7	10
0 1	7
0 2	3
0 3	
-1 5	
+1 10	
0 1	
0 2	
0 3	

Задача 11С. И снова сумма... [1.5 sec (3 sec), 256 mb]

Реализуйте структуру данных, которая поддерживает множество S целых чисел, с котором разрешается производить следующие операции:

- add(i) добавить в множество S число i (если он там уже есть, то множество не меняется);
- sum(l,r) вывести сумму всех элементов x из S, которые удовлетворяют неравенству $l\leqslant x\leqslant r.$

Формат входных данных

Исходно множество S пусто. Первая строка входного файла содержит n — количество операций ($1 \le n \le 300\,000$). Следующие n строк содержат операции. Каждая операция имеет вид либо «+ i», либо «? l r». Операция «? l r» задает запрос sum(l,r).

Если операция «+ i» идет во входном файле в начале или после другой операции «+», то она задает операцию add(i). Если же она идет после запроса «?», и результат этого запроса был y, то выполняется операция $add((i+y) \bmod 10^9)$.

Во всех запросах и операциях добавления параметры лежат в интервале от 0 до 10⁹.

Формат выходных данных

Для каждого запроса выведите одно число — ответ на запрос.

sum2.in	sum2.out
6	3
+ 1	7
+ 3	
+ 3	
? 2 4	
+ 1	
? 2 4	

Задача 11D. Range Minimum Query [1 sec (2 sec), 256 mb]

Компания *Giggle* открывает свой новый офис в Судиславле, и вы приглашены на собеседование. Ваша задача — решить поставленную задачу.

Вам нужно создать структуру данных, которая представляет из себя массив целых чисел. Изначально массив пуст. Вам нужно поддерживать две операции:

- запрос: «? і j» возвращает минимальный элемент между i-ым и j-м, включительно;
- изменение: «+ і \mathbf{x} » добавить элемент x после i-го элемента списка. Если i=0, то элемент добавляется в начало массива.

Конечно, эта структура должна быть достаточно хорошей.

Формат входных данных

Первая строка входного файла содержит единственное целое число n — число операций над массивом ($1 \le n \le 200\,000$). Следующие n строк описывают сами операции. Все операции добавления являются корректными. Все числа, хранящиеся в массиве, по модулю не превосходят 10^9 .

Формат выходных данных

Для каждой операции в отдельной строке выведите её результат.

rmq.in	rmq.out
8	4
+ 0 5	3
+ 1 3	1
+ 1 4	
? 1 2	
+ 0 2	
? 2 4	
+ 4 1	
? 3 5	

Алгоритмы и структурам данных: ДЗ #11, деревья поиска СПБ, CS-Center, осенний семестр 2014

Задача 11E. Вперёд! [1 sec (2 sec), 256 mb]

Капрал Дукар любит раздавать приказы своей роте. Самый любимый его приказ — "Вперёд!". Капрал строит солдат в ряд и отдаёт некоторое количество приказов, каждый из них звучит так: "Рядовые с l_i по l_j — вперёд!"

Перед тем, как Дукар отдал первый приказ, солдаты были пронумерованы от 1 до n, слева направо. Услышав приказ "Рядовые с l_i по l_j — вперёд!", солдаты, стоящие на местах с l_i по l_j включительно, продвигаются в начало ряда, в том же порядке, в котором были.

Например, если в какой-то момент солдаты стоят в порядке 1, 3, 6, 2, 5, 4, то после приказа "Рядовые с 2 по 3 — вперёд!", порядок будет таким: 3, 6, 1, 2, 5, 4. А если потом Капрал вышлет вперёд солдат с 3 по 4, то порядок будет уже таким: 1, 2, 3, 6, 5, 4.

Вам дана последовательность из приказов Капрала. Найдите порядок, в котором будут стоять солдаты после исполнения всех приказов.

Формат входных данных

В первой строке входного файла указаны числа n и m ($2 \le n \le 100\,000$, $1 \le m \le 100\,000$) — число солдат и число приказов. Следующие m строк содержат приказы в виде двух целых чисел: l_i и r_i ($1 \le l_i \le r_i \le n$).

Формат выходных данных

Выведите в выходной файл n целых чисел — порядок, в котором будут стоять солдаты после исполнения всех приказов.

movetofront.in	movetofront.out
6 3	1 4 5 2 3 6
2 4	
3 5	
2 2	

Задача 11F. Переворачивания [2 sec (4 sec), 256 mb]

Учитель физкультуры школы с углубленным изучением предметов уже давно научился считать суммарный рост всех учеников, находящихся в ряду на позициях от l до r. Но дети играют с ним злую шутку. В некоторый момент дети на позициях с l по r меняются местами. Учитель заметил, что у детей не очень богатая фантазия, поэтому они всегда «переворачивают» этот отрезок, т. е. l меняется с r, l+1 меняется с r-1 и так далее. Но учитель решил не ругать детей за их хулиганство, а все равно посчитать суммарный рост на всех запланированных отрезках.

Формат входных данных

В первой строке записано два числа n и m $(1 \le n, m \le 200\,000)$ — количество детей в ряду и количество событий, произошедших за все время. Во второй строке задано n натуральных чисел — рост каждого школьника в порядке следования в ряду. Рост детей не превосходит $2 \cdot 10^5$. Далее в m строках задано описание событий: три числа q, l, r в каждой строке $(0 \le q \le 1, 1 \le l \le r \le n)$. Число q показывает тип события: 0 показывает необходимость посчитать и вывести суммарный рост школьников на отрезке [l, r]; 1 показывает то, что дети на отрезке [l, r] «перевернули» свой отрезок. Все числа во входном файле целые.

Формат выходных данных

Для каждого события типа 0 выведите единственное число на отдельной строке — ответ на этот запрос.

reverse.in	reverse.out
5 6	15
1 2 3 4 5	9
0 1 5	8
0 2 4	7
1 2 4	10
0 1 3	
0 4 5	
0 3 5	

11.Hard [0/2]

Задача 11G. Вставка ключевых значений [1 sec (2 sec), 256 mb]

Bac наняла на работу компания MacroHard, чтобы вы разработали новую структуру данных для хранения целых ключевых значений.

Эта структура выглядит как массив A бесконечной длины, ячейки которого нумеруются с единицы. Изначально все ячейки пусты. Единственная операция, которую необходимо поддерживать — это операция Insert(L,K), где L — положение в массиве, а K — некоторое положительное целое ключевое значение.

Операция выполняется следующим образом:

- Если ячейка A[L] пуста, то присвоить A[L] := K.
- Если ячейка A[L] непуста, выполнить Insert(L+1,A[L]), а затем присвоить A[L]:=K.

По заданной последовательности из N целых чисел L_1, L_2, \ldots, L_N вам необходимо вывести содержимое этого массива после выполнения следующей последовательности операций:

```
Insert(L_1, 1)

Insert(L_2, 2)

...

Insert(L_N, N)
```

Формат входных данных

В первой строке входного файла содержится N — число операций Insert и M — максимальный номер позиции, которую можно использовать в операции Insert. ($1 \le N \le 131\,072$, $1 \le M \le 131\,072$).

В следующей строке даны N целых чисел L_i , которые описывают операции Insert $(1 \leq L_i \leq M)$.

Формат выходных данных

Выведите содержимое массива после выполнения данной последовательности операций Insert. На первой строке выведите W — номер последней несвободной позиции в массиве. Далее выведите W целых чисел — $A[1], A[2], \ldots, A[W]$. Для пустых ячеек выводите нули.

key.in	key.out
5 4	6
3 3 4 1 3	4 0 5 2 3 1

Задача 11H. Приказы [1.5 sec (3 sec), 256 mb]

Вася работает в НИИГСД (НИИ Государственных Структур Данных). Он изучает приказы правительства далёкого государства.

В том государстве все города расположены вдоль одной дороги. Они пронумерованы в порядке обхода. Изначально качество жизни в каждом из них равно нулю.

Далее последовательно издаются указы вида «уровень жизни в городах с i по j должен стать не меньше x».

Также есть некоторые официальные заявления. Они имеют следующую форму: «средний уровень жизни в городах с i по j равен x». Вася нуждается в помощи с проверкой этих утверждений: для каждого из них известны i и j, требуется подсчитать верное значение x.

Можете считать, что каждый приказ исполняется, а также в каждый момент времени каждый город имеет минимальный неотрицательный уровень жизни, удовлетворяющий всем приказам.

Формат входных данных

Ввод состоит из одного или более тестов. Каждый тест начинается строкой с двумя целыми числами n и k — числом городов и событий, соответственно. Следующие k строк содержат по одному описанию события:

- 1. ^ $i \ j \ x$ означает приказ: после этого, все города с номерами от $i \ до \ j$ включительно должны иметь уровень жизни не менее $x \ (1 \leqslant x \leqslant 10^9, \ 1 \leqslant i \leqslant j \leqslant n)$.
- 2. ? i j означает официальное заявление: следует подсчитать средний уровень жизни в городах с i по j включительно $(1 \le i \le j \le n)$.

В конце ввода будет помещён тест с n=k=0, который не требуется обрабатывать. Сумма n по всему вводу не превысит 100 000. Сумма k по всему вводу не превысит 100 000.

Формат выходных данных

Для каждого официального заявления выведите на отдельной строке искомый средний уровень жизни в виде несократимой дроби с наименьшим возможным натуральным знаменателем. Если знаменатель равен 1, выведите вместо дроби целое число. Следуйте формату вывода, как это показано в примере.

orders.in	orders.out
10 10	0
? 1 10	1
^ 1 10 1	10
? 1 10	10
^ 2 3 10	5
^ 3 4 5	27/5
? 2 2	16/5
? 3 3	
? 4 4	
? 1 5	
? 1 10	
0 0	