

Cortex-M Processors Overview

Introduction

Armv6-M Cortex processors

Armv7-M Cortex processors

Armv8-M Cortex processors

Learning objectives - Introduction

After completing this overview, you will be able to:

- Describe the main features of Cortex-M processors
- Discuss criteria for selecting the Cortex-M processor best suited to your need

Arm Architecture Profiles

Cortex-AHighest performance

Designed for high-level operating systems

Cortex-RFaster responsiveness

Designed for high performance, hard real-time applications

Cortex-M
Smallest/lowest power

Designed for discrete processing and microcontrollers

SecurCore
Tamper resistant

Designed for physical security

Arm Cortex-M processor portfolio

Introduction

Armv6-M Cortex processors

Armv7-M Cortex processors

Armv8-M Cortex processors

Arm Cortex-M0 processor

Armv6-M architecture Thumb[®] technology Nested Vector Interrupt Controller (NVIC) Optional CoreSight[™]-compliant debug Von-Neumann architecture 3-stage core pipeline AMBA®AHB-Lite Master Interface Ultra-low power support Synthesizable - configurable RTL Gate count 12 ~ 25K

Arm Cortex-M0+ processor

Armv6-M architecture

Thumb technology

Nested Vector Interrupt Controller (NVIC)

Optional CoreSight[™]-compliant debug

Optional user/privileged support

Optional MPU

Von-Neumann architecture

2-stage core pipeline

AMBA AHB-Lite master interface

Optional Micro Trace Buffer (MTB)

Optional single cycle IO Port

Optional halfword instruction fetch

Ultra-low power support

Synthesizable - configurable RTL

Introduction

Armv6-M Cortex processors

Armv7-M Cortex processors

Armv8-M Cortex processors

Arm Cortex-M3/M4 processor

Armv7-M Architecture Harvard Architecture Configurable Blocks

- Cortex-M3/M4 Core
 - Optional FPU on M4
- NVIC
 - Interrupts : 1 240
 - Priority bits : 3 8

Optional Blocks

- Debug and Trace Subsystem
- Wakeup Interrupt Controller
- Memory Protection Unit

Configurable Features

 Sleep modes, Endianness, Bit-Banding, and more ...

Differences between Cortex-M3 and Cortex-M4

Cortex-M3 and Cortex-M4 processors are derived from same database

Improvements and new features that make them different

Feature	Cortex-M3	Cortex-M4
Armv7-M architecture variant	Base (Armv7-M)	Extended (Armv7E-M)
SIMD & DSP instructions supported	NO	YES
Supports optional FPv4-SP extension	NO	YES
No of cycles for multiplication operation	1-7	1
Support for fault-robust interface	Present	Absent
Bundle	Example System	Integration Kit

Arm Cortex-M7 processor

Introduction

Armv6-M Cortex processors

Armv7-M Cortex processors

Armv8-M Cortex processors

Arm Cortex-M23 Processor

Baseline profile of Armv8-M Synthesizable - configurable RTL In-order 2 stage pipeline **Optional Security Extension** PMSAv8 memory system architecture MPU supporting up to 16 regions SAU supporting up to 8 regions NVIC supporting up to 240 interrupts Hardware Multiplier (Fast/Small) Hardware Divider (Fast/Small) AMBA5 AHB Master Interface Optional single cycle IO Port Optional halfword instruction fetch CoreSight-compliant Debug & Trace **Ultra-low Power Support** with separate power domains

Arm Cortex-M33 Processor

Mainline profile of Armv8-M Synthesizable - configurable RTL In-order 2/3 stage pipeline **Optional Security Extension** Optional Floating-point Extension (FPv5) **Optional DSP Extension** PMSAv8 memory system architecture MPU supporting up to 16 regions SAU supporting up to 8 regions NVIC supporting up to 480 interrupts AMBA5 AHB Master Interface CoreSight-compliant Debug & Trace Ultra-low Power Support with separate power domains

External coprocessor support

Arm Cortex-M55 Processor

Synthesizable - configurable RTL

Mainline profile of Armv8.1-M with DSP Extension

In-order 3/4 stage pipeline

Optional Security Extension

Optional Floating-point Extension (FPv5)

Optional M-profile Vector Extension (MVE)

PMSAv8 memory system architecture

MPU supporting up to 16 regions

SAU supporting up to 8 regions

NVIC supporting up to 480 interrupts

Tightly Coupled Memory (TCM)

64-bit AMBA AXI5 bus interface

Separate instruction and data L1 caches

32-bit AMBA5 AHB Master Interface

CoreSight-compliant Debug & Trace

Performance Monitoring Unit (PMU)

Ultra-low Power Support with separate power domains

External coprocessor support

Introduction

Armv6-M Cortex processors

Armv7-M Cortex processors

Armv8-M Cortex processors

Security grouping

Cortex-M selection considerations

- CoreMark and Dhrystone (per MHz)
 - Results depends on C compiler used
 - Might not be a good indication of the performance for your real world applications

Actual performance depends on

- System-level design
- Memory wait states
- Clock configurations, etc

Cortex-M23

- **TrustZone**
- HW stack protection

Cortex-M0+ can be faster for simple I/O control tasks because of

- Shorter pipeline
- Single cycle I/O interface

Cortex-M7

- 5.01 CoreMark
- **TCM**
- AXI
- Cache

Cortex-M35P

- Tamper resistance
- TrustZone
- HW stack protection

Cortex-M55

4.2 CoreMark

TCM, AXI, Cache

signal processing

Optimized for ML &

Co-processor

Cortex-M3/Cortex-M4 is high performance

TrustZone

Co-processor

HW stack protection

Cortex-M33

- Richer instruction set
- Harvard bus architecture
- Write buffer
- Speculative fetch of branch targets

