Recommendation System Algorithms

- Content based filtering
- Collaborative filtering
 - User based filtering
 - Item based filtering

Content based filtering

Item Vector (I)

	Action	Animation	Children
Mission Impossibl	1	0	0
Star Wars	1	1	0
Toy Story	0	1	1

Movie, books, etc

Eg User Review

	Review	Rating
Mission Impossible	1	Good
Star Wars	1	Good
Toy Story	1	Bad

User Vector (U)

	Action	Animation	Children
Nikhil	9	2	-6
Baby Tom	-6	2	9

Top Recommendations

Nikhil - Star Wars Baby Tom - Toy Story

IxU

	Nikhil	Baby Tom
Mision Impuso	9	-6
Star Wars	11	-4
Toy Story	-6	9

User-Based Collaborative Filtering

what a user is more likely to prefer is highly correlated to what the other users similar to him/her have liked in the past. Used in e-commerce, product and services

To summarise the algorithm of user-based filters:

- 1. Find users similar to the user u (called the peer users) for whom predictions are to be made using any similarity measure like the **correlation coefficient**.
- 2. For each movie m that the user has not seen, calculate the **weighted average** of the ratings given to m by the peer users.
- 3.Recommend the top n movies to the user u.

Pearson correlation coefficient

$$similarity(A, B) = \frac{\sum (A_i - \bar{A})(B_i - B)}{\sqrt{\sum (A_i - \bar{A})^2} \cdot \sqrt{\sum (B_i - \bar{B})^2}} \longrightarrow Nikhil \Leftrightarrow Vivek -> 0.91$$

$$Nikhil \Leftrightarrow Abhirami -> 0.7$$

Item-Based Collaborative Filtering

Collaborative based filtering depends on rating given by users to product movies

Predict rating Nikhil will give for each movie he has not seen

Vivek 5 1 4 pred(Nikhil, Fast & Furious) = Nikhil - 4 2 4.5 Abhirami 1 2 - -	
1VIKIII - 4 2 4.5	
Abhirami 1 2 0.98 ± 0.99	$\frac{9}{-} = 4.25$
Reetesh - 5 Item Vector	

To summarise the algorithm of Item-based filters:

- 1. Find items similar to the movie m (often called peer group of items) using a similarity measure like cosine.
- 2. Calculate the rating that the user will give to the movie m using the weighted average of the ratings given to the nearest movies by the user.
- 3. Recommend the top-n movies to the user.

Consine Similarities

Ai - ratings of Nikhil

Bi - ratings of Vivek

Similarity(A, B) =
$$\frac{\sum A_i B_i}{\sqrt{\sum A_i^2} \cdot \sqrt{\sum B_i^2}}$$

Fast and Furious \Leftrightarrow Star Wars -> 0.99 Fast and Furious \Leftrightarrow Pulp Fiction -> 0.98

Develop Collaborative Recommendation System

Product dataset (train)

id name reviews_rating reviews_username df_pivot = pd.pivot_table(train,index= reviews_username, columns = id, values = reviews_rating)

df pivot(70x6)

id AV14LGOR-jtxr-f38QfS AV16khLE-jtxr-f38VFn AV1d76w7vKc47QAVhCqn AV1h6Gu0glJLPUi8IjA_ AV1h6gSl-jtxr-f31p40 AV118zRZvKc47QAVhnAv

reviews_username						
5742870423	0.0	0.0	0.0	0.0	0.0	3.0
5alarm	0.0	0.0	5.0	0.0	0.0	0.0
allycat	0.0	0.0	0.0	0.0	0.0	3.0
alnscoob97	0.0	0.0	0.0	0.0	0.0	1.0
amanda	0.0	5.0	0.0	0.0	0.0	0.0
anonymous8589	0.0	0.0	0.0	5.0	0.0	0.0
ashley a	0.0	5.0	0.0	0.0	0.0	0.0
beccagrl532	0.0	1.0	0.0	0.0	0.0	0.0
bre234	0.0	1.0	0.0	0.0	0.0	0.0
browns fan	0.0	3.0	0.0	0.0	0.0	0.0

```
dummy_train = train.copy()

# The products not rated by user is marked as 1 for prediction.
dummy_train[value_column] = dummy_train[value_column].apply(lambda x: 0 if x>=1 else 1)
```

dummy_train = pd.pivot_table(dummy_train,index=user_column, columns = product_column, values = value_column)

dummy train(70x6)

id AV14LGOR-jtxr-f38QfS AV16khLE-jtxr-f38VFn AV1d76w7vKc47QAVhCqn AV1h6Gu0glJLPUi8IjA_ AV1h6gS1-jtxr-f31p40 AV118zRzvKc47QAVhnAv

reviews_username						
5742870423	1.0	1.0	1.0	1.0	1.0	0.0
5alarm	1.0	1.0	0.0	1.0	1.0	1.0
allycat	1.0	1.0	1.0	1.0	1.0	0.0
alnscoob97	1.0	1.0	1.0	1.0	1.0	0.0
amanda	1.0	0.0	1.0	1.0	1.0	1.0
anonymous8589	1.0	1.0	1.0	0.0	1.0	1.0
ashley a	1.0	0.0	1.0	1.0	1.0	1.0
beccagrl532	1.0	0.0	1.0	1.0	1.0	1.0
bre234	1.0	0.0	1.0	1.0	1.0	1.0
browns fan	1.0	0.0	1.0	1.0	1.0	1.0

Predict User Rating

user predicted ratings(75x6) = np.dot(user correlation, df pivot)

#since we are interested in products that are not rated by the user, we multiply with dummy train to make it zero user final rating = np.multiplv(user predicted ratings, dummy train)

id	AV13O1A8GV- KLJ3akUyj	AV14LG0R- jtxr-f38QfS	jtxr- f38VFn	AV1YGDqsGV- KLJ3adc-O	AV1YIch7GV- KLJ3addeG	AV1YIENIglJLPUi8IHsX	AV1YmBrdGV- KLJ3adewb
reviews_username							
00sab00	0.0	0.0	1.21	13.58	0.0	0.0	0.0
01impala	0.0	0.0	3.12	15.58	0.0	0.0	0.0
02dakota	0.0	0.0	3.12	15.58	0.0	0.0	0.0
02deuce	0.0	0.0	3.12	15.58	0.0	0.0	0.0
0325home	0.0	0.0	0.00	11.34	0.0	0.0	0.0

user_final_rating

Sentiment Based Product Recommendation

