Chapitre 3

Mesure du risque & degré d'aversion

Jusqu'à présent, nous avons vu une mesure spécifique de l'attitude face au risque des individus : la constante k, qui est le coefficient associé à la variance dans les fonctions de Markowitz. Dans ce chapitre, nous allons explorer comment mesurer, de manière monétaire, l'attitude face au risque, quelle que soit la fonction d'utilité utilisée. Ainsi, nous introduirons plusieurs concepts clés, tels que l'équivalent certain, le prix de vente et la prime de risque. De plus, nous verrons comment mesurer le degré d'aversion au risque à travers des indices d'aversion, ce qui nous permettra d'approfondir notre compréhension des comportements des investisseurs face à l'incertitude financière.

3.1 Équivalent certain

Définition : l'équivalent certain d'une richesse aléatoire W est la richesse certaine \bar{w} qui procure la même utilité que la richesse aléatoire W :

$$ar{w} \mid \underbrace{u(ar{w})}_{ ext{Utilit\'e apport\'ee par richesse certaine}} = \underbrace{\mathbb{E}(u(W))}_{ ext{Esp\'erance d'utilit\'e de la richesse al\'eatoire}}$$

$$\Leftrightarrow \bar{w} = u^{-1}(\mathbb{E}(u(W)))$$

Avec u^{-1} la fonction d'utilité réciproque

L'équivalent certain dépend de la partie aléatoire X de la richesse, de sa partie certaine ω , des préférences u de l'individu et des probabilités des états de la nature

3.1.1 Exemple

Soit un individu de préférences $u(w) = \sqrt{w}$ possédant une richesse certaine $\omega = 200$ et confronté à la loterie X suivante :

$$X = \begin{cases} -50 & 100 \\ 0.4 & 0.6 \end{cases}$$

Quel est l'équivalent certain de cette loterie?

$$W = \omega + X = \begin{cases} 200 - 50 & 200 + 100 \\ 0.4 & 0.6 \end{cases} = \begin{cases} 150 & 300 \\ 0.4 & 0.6 \end{cases}$$

Remarque : ω représente la part non risquée de la richesse aléatoire et W représente la part aléatoire de la richesse aléatoire

On calcule l'espérance d'utilité de la richesse aléatoire :

$$\mathbb{E}(u(W)) = \sum_{i=1}^{I} p_i u(w_i)$$
$$= 0.4 \cdot u(150) + 0.6 \cdot u(300)$$
$$= 0.4\sqrt{150} + 0.6\sqrt{300} \approx 15,29$$

On cherche donc l'équivalent certain \overline{w} tel que :

$$u(\bar{w}) = \mathbb{E}(u(W)) = 15,29$$

 $\Leftrightarrow \sqrt{\bar{w}} = 15,29 \Leftrightarrow \bar{w} = 233,78 \in$

Remarque: alternativement on aurait pu utiliser:

$$\bar{w} = u^{-1}(\mathbb{E}(u(W))) = 15,29^2 = 233,78 \in$$

L'agent est indifférent entre la richesse certaine de 233,78 \in et la richesse aléatoire W

Remarque : l'équivalent certain de la richesse aléatoire W est de 233,78 \in , or l'espérance mathématique (en termes monétaires donc) de la richesse aléatoire W est égale à :

$$\mathbb{E}(W) = 0.4 \cdot 150 + 0.6 \cdot 300 = 240 \in$$

Ainsi, le décideur est prêt à recevoir une valeur certaine $(233,78 \in)$ plus faible que la valeur moyenne de la richesse aléatoire W $(240 \in)$ pour être libéré du risque de variation de la richesse, on parle d'aversion au risque

Nous reviendrons sur cet écart lorsque nous évoquerons le concept de prime de risque

$u(\omega + x) = u(w)$ $u(\omega + x^{\max}) = u(w^{\max})$ $E(u(W) = u(w^*)$ $u(\omega + x^{\min}) = u(w^{\min})$ $u^{-1} \left(E(u(W)) \right)$

3.1.2 Représentation graphique

3.2 Prix de vente

Définition : le prix de vente p_{ν} de la partie aléatoire X d'une richesse W est le prix minimal à partir duquel le propriétaire de cette loterie est prêt à la vendre. En vendant une loterie à un prix p_{ν} , le propriétaire cède une richesse aléatoire $W = \omega + X$ en échange d'une richesse certaine $\bar{w} = \omega + p_{\nu}$ où \bar{w} est l'équivalent certain de la richesse W.

Le prix de vente de la loterie est donc égal à $p_v = \overline{w} - \omega$.

Remarque : un prix de vente peut être > 0 ou < 0 : si > 0, le propriétaire exige une rémunération en échange de sa loterie; si < 0, il est prêt à payer l'acheteur pour se débarrasser de sa loterie.

3.2.1 Exemple 1

Reprenons l'exemple précédent. Le prix de vente de la loterie est :

$$p_{v} = \tilde{w} - \omega = 233,78 - 200 = 33,78 \in$$

L'agent est prêt à vendre sa loterie X pour 33,78 \in (ou plus). Remarque : cette loterie rapportant en moyenne $E(X) = 40 \in$, on en déduira que l'agent est prêt à perdre de l'argent pour se débarrasser du risque, ce qui témoigne d'une aversion au risque. Là encore, nous reviendrons sur cet écart lorsque nous évoquerons le concept de prime de risque.

3.2.2 Exemple 2

On considère le même agent, ayant donc toujours les préférences $u(w) = \sqrt{w}$ et une richesse non risquée $\omega = 200 \, \text{\ensuremath{\in}}$, confronté à une nouvelle loterie Y cette

fois:

Soit

$$Y = \begin{cases} 50 & 100 \\ 0.4 & 0.6 \end{cases}$$

Ainsi, la richesse est donnée par

$$W = \omega + Y = \begin{cases} 250 & 100 \\ 0.4 & 0.6 \end{cases}.$$

Calculer l'équivalent certain de la richesse aléatoire *W*Calculer le prix de vente de la loterie *Y*

Comment caractériser les préférences de cet individu face au risque?

Équivalent certain

$$u(w) = \mathbb{E}[u(w)]$$

$$= 0.4 \cdot \sqrt{250} + 0.6 \cdot \sqrt{100} = 12.32$$

$$\sqrt{\overline{w}} = 12.32 \Rightarrow \overline{w} = 151.78 \in$$

$$\mathbb{E}(w) = 0.4 \cdot 250 + 0.6 \cdot 100 = 160 \in$$

On a donc $\mathbb{E}(w) > \overline{w}$, l'agent est riscophobe. L'agent est prêt à échanger sa richesse aléatoire W contre une richesse certaine de $151,78 \in$

Prix de vente

$$p_{\nu} = 151,78 - 200 = -48,22$$
€

L'agent est prêt à payer 48,22 € pour se débarrasser de sa loterie Y

$$\mathbb{E}(Y) = -40$$

$$p_{v} < \mathbb{E}(Y)$$

3.2.3 Prix de vente et préférences

es exemples 1 et 2 soulignent que l'aversion face au risque n'est pas définie par le signe du prix de vente d'une loterie (le prix de vente était > 0 dans l'exemple 1 et < 0 dans l'exemple 2). Quelles que soient les préférences du décideur, le prix de vente d'une loterie peut être positif ou négatif. Ainsi, un agent neutre face au risque u(w) = w pourra également être confronté à des prix de vente aussi bien positifs que négatifs :

$$\overline{w} = E[u(W)] = E[W]$$
 pour un agent neutre au risque

$$p_{v} = \overline{w} - \omega = E[W] - \omega = E[\omega + X] - \omega = E[X] \in \mathbb{R}$$

On pourra toutefois conclure que plus le prix de vente est faible, toutes choses étant égales par ailleurs, plus l'aversion au risque est grande.

3.3 Prime de risque

Définition : la prime de risque π est le montant que le décideur est prêt à payer pour s'affranchir du risque.

La prime de risque π d'une richesse aléatoire $W=\omega+X$ est égale à l'écart entre l'espérance mathématique de la partie aléatoire de la richesse et son prix de vente :

$$\pi = \mathbb{E}[X] - pv$$

On peut également définir la prime de risque π comme l'écart entre l'espérance mathématique de la richesse aléatoire et son équivalent certain :

$$\pi = \mathbb{E}[W] - \bar{w}$$

On peut également définir la prime de risque absolue de la manière suivante :

$$u(\bar{w}) = u(E[W] - \pi) = E[u(W)] \quad \Leftrightarrow \quad \pi = \mathbb{E}[W] - u^{-1}(E[u])$$

3.3.1 Exemples 1 et 2

Exemple 1:

$$\pi = \mathbb{E}[X] - pv = 40 - 33,78 = 6,22 \in$$

$$\pi = \mathbb{E}[W] - \bar{w} = 240 - 233,78 = 6,22 \in$$

Exemple 2:

$$\pi = \mathbb{E}[Y] - pv = -40 - (-48, 22) = 8,22 \in$$

$$\pi = \mathbb{E}[W] - \bar{w} = 160 - 151,78 = 8,22 \in$$

Remarque : Dans ces deux exemples, l'agent est prêt à payer pour se débarrasser du risque, il est donc averse au risque.

3.3.2 Représentation graphique

3.3.3 Prime de risque et préférences

La prime de risque attachée à une richesse certaine est nulle, indépendamment de l'attitude face au risque.

L'aversion face au risque peut se définir par rapport à la prime de risque π associée à une richesse aléatoire W. Plus précisément :

Aversion face au risque : $\pi > 0$ Neutralité face au risque : $\pi = 0$ Goût pour le risque : $\pi < 0$

Un décideur riscophobe (i.e. averse au risque) est prêt à payer pour s'affranchir du risque, alors qu'un décideur riscophile (i.e. ayant un goût pour le risque) est prêt à payer pour acquérir un risque supplémentaire.

3.3.4 Fonction d'utilité et préférences

Sans passer par le calcul de la prime de risque, nous pouvons déduire à partir de la forme de la fonction d'utilité u l'attitude face au risque d'un agent. Pour démontrer cela, nous utilisons la propriété d'inégalité de Jensen : soit f une fonction strictement concave (resp. strictement convexe) et W une variable aléatoire réelle, alors :

$$f\left(\mathbb{E}[W]\right) > \mathbb{E}\left[f(W)\right] \quad \text{(resp. } f\left(\mathbb{E}[W]\right) < \mathbb{E}\left[f(W)\right]\text{)}$$

Remarque : si f est linéaire (donc à la fois concave et convexe), on a l'égalité suivante :

$$f(\mathbb{E}[W]) = \mathbb{E}[f(W)]$$

En utilisant la définition suivante de la prime de risque :

$$\pi = \mathbb{E}[W] - u^{-1} \left(\mathbb{E}\left[u(W) \right] \right)$$

et l'inégalité de Jensen, on en déduit que :

La prime de risque est positive (aversion face au risque) si et seulement si :

$$\mathbb{E}[W] > u^{-1}(\mathbb{E}[u(W)]) \iff u(\mathbb{E}[W]) > \mathbb{E}[u(W)]$$

avec une fonction d'utilité u concave.

La prime de risque est nulle (neutralité face au risque) si et seulement si :

$$u(\mathbb{E}[W]) = \mathbb{E}[u(W)]$$

avec une fonction d'utilité u linéaire.

La prime de risque est négative (goût pour le risque) si et seulement si :

$$u(\mathbb{E}[W]) < \mathbb{E}[u(W)]$$

avec une fonction d'utilité u convexe.

3.3.5 Représentation graphique

On peut vérifier graphiquement (cas d'une richesse aléatoire prenant seulement 2 valeurs) que le signe de la prime de risque dépend uniquement de la concavité l convexité de la fonction élémentaire l

3.3.6 Exercice d'application

Considérons un travailleur qui gagne un revenu r lorsqu'il est en emploi et perçoit une indemnité b < r lorsqu'il est au chômage. La probabilité de chômage est égale à p. Sa richesse initiale est égale à ω et ses préférences sont représentées par la fonction d'utilité $u(w) = \ln(w)$.

- Écrire la loterie sur la richesse du travailleur.
- Calculer l'espérance de la richesse, l'espérance de la part aléatoire de la richesse et l'utilité espérée de la richesse.
- Calculer l'équivalent certain.
- Calculer le prix de vente de la loterie (du risque chômage).
- Calculer, de 2 manières différentes, la prime de risque.
- Application numérique (AN) : r = 1200 ; b = 600 ; p = 0,1. Donner la valeur de la prime de risque lorsque $\omega = 1000$ et lorsque $\omega = 0$. Commentaires ?

Loterie des travailleurs

$$X = \begin{cases} b & r \\ p & 1 - p \end{cases}$$

Richesse totale

$$W = \omega + X = \begin{cases} \omega + b & \omega + r \\ p & 1 - p \end{cases}$$

 $n\ln(a) = \ln(a^n)$ et $\ln(a) + \ln(b) = \ln(ab)$

Rappel

$$\mathbb{E}(X) = b \cdot (1 - p)r$$

$$\mathbb{E} = p(\omega + b) + (1 - p)(\omega + r)$$

$$= p\omega + pb + \omega + r - p\omega - pr$$

$$pb + \omega(1 - p)r$$

$$U(w) = \mathbb{E}(u(w))$$

$$= p\ln(\omega + b) + (1 - p)\ln(\omega + r)$$

$$\ln\left[(\omega + b)^p \omega + r\right]^{1 - p}$$

Équivalent certain

$$\bar{w}$$
 $u(\bar{w}) = \mathbb{E}(u(w))$
 $\bar{w} = u^{-1}[\mathbb{E}(u(w))]$

$$\bar{w} = \exp\left[\ln\left[(\omega+b)^p(\omega+r)^{1-p}\right]\right]$$
$$\bar{w} = (\omega+b)^p(\omega+r)^{1-p}$$

Prix de vente

$$p_{v} = \bar{w} - w = (\omega + b)^{p} (\omega + r)^{1-p} - w$$

Prime de risque

$$\pi = \mathbb{E}(X) - p_{\nu} = pb + (1 - p)r - (\omega + b)^{p}(\omega + r)^{1 - p} + w$$

Application numérique

$$\omega = 1000 \, \mathbf{\in} \tag{1}$$

$$\mathbb{E}(w) = 1000 + 0, 1 \cdot +0, 9 \cdot 1200 = 2140$$

$$\omega = 0 \in$$
 (2)

$$\mathbb{E}(w) = 1140 \in$$

$$\bar{w} = (1600)^{0.1} \cdot (2200)^{0.9} = 2131 \in$$
 (1)

$$\bar{w} = (600)^{0.1} \cdot (1200)^{0.9} = 1120$$
 (2)

$$\pi = \mathbb{E}(w) - \bar{w} = 2140 - 2131 = 9 \, \bullet \tag{1}$$

$$\pi = \mathbb{E}(w) - \bar{w} = 1140 - 1120 = 20 \, \bullet \tag{2}$$

3.3.7 Statique comparative

Toute choses étant égales par ailleurs, l'individu le moins riche est prêt à payer plus chère pour se débarrasser du risque. Il a une prime de risque plus élevé.

3.4 Prime de risque et degré d'aversion

Nous allons ici revenir sur l'interprétation du montant de la prime de risque et sur son lien avec le degré d'aversion face au risque.

1) Si la prime de risque π_A que l'individu A attache à une richesse donnée est supérieure à celle π_B que l'individu B attache à cette même richesse, alors A a une plus grande aversion pour le risque que présente cette richesse que B. Ainsi, le montant de la prime de risque mesure l'aversion d'un individu pour le risque attaché à une richesse. Il dépend de trois éléments : les préférences u, la partie risquée X de la richesse, et la partie certaine ω de la richesse.

Il est également possible de comparer le degré d'aversion au risque de deux individus non pas en comparant les montants de leurs primes de risque, mais en observant leurs préférences, c'est-à-dire la fonction d'utilité élémentaire u. Plus précisément, nous pouvons comparer le degré de concavité de la fonction élémentaire (cf. section 3.3.).

2) Considérons deux individus A et B dotés respectivement des préférences u_A et u_B . Si les préférences de l'individu A peuvent être représentées par une transformation f telle que croissante et concave de celles de l'individu B, c'est-àdire si $u_A(w) = f(u_B(w))$ avec f' > 0 et f'' < 0, alors A est plus riscophobe que

3.4.1 L'indice d'Arrow et Pratt

Considérons une richesse aléatoire composée d'une partie certaine et d'une partie risquée : $W = \omega + X$.

3) Kenneth Arrow et John Pratt (1963-64) ont montré que lorsque le risque X est "petit", il est possible d'approximer la prime de risque par l'expression suivante:

$$\pi \approx \frac{\mathbb{V}(W)}{2} \cdot \left(-\frac{u''(\mathbb{E}[W])}{u'(\mathbb{E}[W])}\right) \approx \frac{\mathbb{V}(X)}{2} \cdot \left(-\frac{u''(\boldsymbol{\omega} + \mathbb{E}[X])}{u'(\boldsymbol{\omega} + \mathbb{E}[X])}\right)$$

 $\frac{\mathbb{V}(W)}{2}$: Caractéristique de la richesse (variance). Mesure l'incertitude associée à la richesse. $\left(-\frac{u''(\mathbb{E}[W])}{u'(\mathbb{E}[W])}\right)$: Caractéristique des préférences. Mesure l'aversion face au risque.

On remarque à partir de la formule d'Arrow et Pratt que :

La prime de risque approximée est du même signe que -u'', c'est-à-dire > 0pour un individu ayant des préférences strictement concaves (aversion au risque), < 0 pour un individu ayant des préférences strictement convexes (goût du risque) et = 0 pour un individu ayant des préférences affines (neutralité face au risque).

La prime de risque augmente avec la variance (i.e. l'incertitude "objective") de la richesse aléatoire W et avec l'aversion au risque (subjective).

La deuxième partie de l'expression approchée de la prime de risque s'appelle Indice d'aversion d'Arrow-Pratt:

$$A_W = -\frac{u''(\mathbb{E}[W])}{u'(\mathbb{E}[W])}$$

Comme $\mathbb{E}[W]$ peut prendre n'importe quelle valeur w, on écrit aussi cet indice :

$$A_w = -\frac{u''(w)}{u'(w)}$$

Ce coefficient mesure le degré de concavité de la fonction d'utilité au voisinage du point w. Plus cet indice est grand, plus le degré d'aversion au risque est important.

3.4.2 Théorème de Pratt

Soient deux individus A et B dont les préférences sont représentées respectivement par $U_A(W) = \mathbb{E}[u_A(W)]$ et $U_B(W) = \mathbb{E}[u_B(W)]$. Ces trois propriétés sont équivalentes :

(i) u_A est une transformation strictement croissante et strictement concave de u_B :

$$\exists f, f' > 0, f'' < 0 \mid u_A(w) = f(u_B(w))$$

(ii) La prime de risque que A associe à la richesse aléatoire W est supérieure à la prime de risque que B associe à la même richesse, pour tout petit risque X:

$$\pi_A > \pi_B$$

(iii) En n'importe quel point w, l'indice d'Arrow-Pratt de A est supérieur à celui de B:

$$\forall w, \quad -\frac{u_A''(w)}{u'(w)} > -\frac{u_B''(w)}{u'(w)}$$

Résumé

Aversion au risque	Neutralité	Goût pour le risque
$\overline{w} < E(W)$ $p_v < E(X)$ $\pi > 0$	$\overline{w} = E(W)$ $p_v = E(X)$ $\pi = 0$	$\overline{w} > E(W)$ $p_{v} > E(X)$ $\pi < 0$
u(E(W)) > E(u(W)) $u strictement concave$ $u'' < 0$	u(E(W)) = E(u(W)) $u affine$ $u'' = 0$	u(E(W)) < E(u(W)) $u strictement convexe$ $u'' > 0$
A(w) > 0	A(w)=0	A(w) < 0

3.5 Les trois primes de risque et les indices d'aversion associés

Dans cette section, nous allons voir qu'il existe trois grands types de risques puis nous étudierons les indices d'aversion associés à ces risques.

1) Jusqu'à présent, nous avons supposé que la partie aléatoire de la richesse, X, venait s'ajouter à la partie certaine ω :

$$W = \omega + X$$

On parle dans ce cas de risque additif.

2) Le risque, que nous notons cette fois Y, peut également être multiplicatif :

$$W = \omega(1+Y)$$

Ce risque s'applique à la totalité de la richesse certaine ω .

Ex : investissement de capitaux propres ω dans une nouvelle technique de production au taux de rendement incertain Y ou encore placement d'argent en actions sur les marchés financiers.

3) Enfin, le risque, que nous noterons cette fois Z, peut être également mixte, ou partiel (combinaison des risques additifs et multiplicatifs) :

$$W = \omega_1 + \omega_2(1+Z), \quad \omega_1 + \omega_2 = \omega$$

Ce risque porte sur une partie ω_2 de la richesse certaine.

On remarque que le risque multiplicatif et le risque partiel peuvent toujours être écrits sous forme additive :

$$\omega(1+Y) = \omega + \omega Y$$
 ; $\omega_1 + \omega_2(1+Z) = \omega + \omega_2 Z$

Tous les résultats établis jusqu'à présent avec un risque additif s'appliquent donc au risque multiplicatif, avec $X = \omega Y$ et au risque partiel, avec $X = \omega_2 Z$.

3.5.1 Prime de risque relatif

Exemple

Prenons un exemple pour introduire la notion de prime de risque relatif : soit un individu de préférences $u(w)=\sqrt{w}$ possédant une richesse certaine $\omega=200$ et confronté à la loterie Y suivante (risque multiplicatif) :

$$Y = \begin{cases} -25\% & +50\% \\ 0,4 & 0,6 \end{cases}$$

Sa richesse aléatoire s'écrit :

$$W = \omega(1+Y) = \begin{cases} 200(1-0.25) & 200(1+0.5) \\ 0.4 & 0.6 \end{cases} = \begin{cases} 150 & 300 \\ 0.4 & 0.6 \end{cases}$$

On retrouve donc la même richesse W et les mêmes préférences que dans l'exemple 1.

L'équivalent certain de W, le prix de vente de la partie risquée ωY et la prime de risque prennent donc les mêmes valeurs que vues précédemment :

$$\bar{w} = \mathbb{E}\left[\sqrt{\omega(1+Y)}\right] \quad \text{soit} \quad \bar{w} = 233,82 \in$$

$$pv = \bar{w} - \omega = 33,82 \in$$

$$\pi = \mathbb{E}[\omega Y] - pv = \omega \mathbb{E}[Y] - pv = 200 \cdot (0, 4 \cdot (-0, 25) + 0, 6 \cdot 0, 5) - 33, 82 = 6, 18 \in \mathbb{E}[W]$$

Cependant, il est beaucoup plus naturel de raisonner sur des taux, plutôt que sur des montants monétaires... ce qui va nous conduire notamment à définir une nouvelle forme de prime de risque : la prime de risque relatif.

Que peut-on dire en termes de taux?

$$\mathbb{E}[Y] = 20\%$$

D'après l'interprétation de l'équivalent certain, l'individu est prêt à céder sa richesse aléatoire $W = \omega(1+Y)$ en l'échange d'une richesse certaine de 233, $82 \in$.

Cela revient à accepter un taux de rendement équivalent certain de la richesse de :

$$\bar{y} = \frac{233,82 - 200}{200} = 16,91\% \quad (\neq 20\%)$$

Formellement, on a:

$$u(\boldsymbol{\omega}(1+\overline{\mathbf{y}})) = \mathbb{E}\left[u(\boldsymbol{\omega}(1+Y))\right]$$

La prime de risque relatif s'écrit alors comme la différence :

$$\pi_R = \mathbb{E}[Y] - \bar{y} = 3,09 \, p.p.$$

Interprétation : l'individu est prêt à soustraire 3,09 points de rendement à $\mathbb{E}[Y]$ pour éliminer le risque.

Définition

Définition : la prime de risque relatif π_R est le nombre de points de rendement auxquels un décideur est prêt à renoncer pour s'affranchir du risque.

Elle est définie par :

$$\pi_R | u(\mathbb{E}[W]) - \omega \pi_R = \mathbb{E}[u(W)] \Leftrightarrow u(\omega(1 + \mathbb{E}[Y]) - \pi_R = \mathbb{E}[u(\omega(1 + Y))]$$

Avec
$$W = \omega (1 + \mathbb{E}[Y])$$

Remarque : la prime π étudiée jusqu'à présent, appelée prime de risque absolu, raisonnait en nombre d'unités monétaires.

3.5.2 Prime de risque partiel

Définition

Définition : la prime de risque partiel π_P est le nombre de points de rendement auxquels un décideur est prêt à renoncer sur la partie risquée de sa richesse pour s'affranchir du risque.

Elle est définie par :

$$\pi_P | u(E[W]) - \omega_2 \pi_P = E[u(W)] \Leftrightarrow u(\omega_1 + \omega_2(1 + E[Z]) - \pi_P = E[u(\omega_1 + \omega_2(1 + Z))]$$

$$\text{Avec } W = \omega_1 + \omega_2(1 + Z)$$

$$\text{Avec } \omega = \omega_1 + \omega_2.$$

Exemple

Calculer, pour chacun des cas ci-dessous, la prime de risque correspondante. Que remarquez-vous?

1. On considère un décideur ayant une richesse certaine $\omega = 100 \, \mathfrak{C}$ et des préférences représentées par $u(w) = \sqrt{w}$. Il est confronté à un risque additif :

$$X = \begin{cases} -25 \\ 0.5 \end{cases} \quad 75 \\ 0.5$$

2. On considère un décideur avec un capital de $\omega = 100$ € et des préférences représentées par $u(w) = \sqrt{w}$. La loterie porte sur le taux de rendement :

$$Y = \begin{cases} -25\% & 75\% \\ 0.5 & 0.5 \end{cases}$$

3. On considère un investisseur avec une richesse certaine $\omega_1 = 50$ et une richesse risquée $\omega_2 = 50$ et des préférences représentées par $u(w) = \sqrt{w}$. Le placement sur la richesse risquée est représenté par la loterie :

$$Z = \begin{cases} -50\% & 150\% \\ 0.5 & 0.5 \end{cases}$$

Réponse 1 : risque additif

$$X = \begin{cases} 75 & 175 \\ 0,5 & 0,5 \end{cases}$$

Equivalent certain:

$$\mathbb{E}(u(w)) = 0.5\sqrt{75} + 0.5\sqrt{175} = 10.9445053$$

On cherche donc l'équivalent certain \bar{w} tel que :

$$u(\bar{w}) = \mathbb{E}(u(W)) = 10,9445053$$

$$\Leftrightarrow \sqrt{\bar{w}} = 10,944505 \Leftrightarrow \bar{w} = 10,944505^2 = 119,7821962$$

$$\pi_A = \mathbb{E}(X) - \bar{w} = 125 - 119,7821962 = 5,217803813$$

Réponse 2 : risque relatif

$$u\left[\omega(1+\mathbb{E}(Y)-\pi_R)\right] = \mathbb{E}\left[u(\underbrace{\omega(1+Y)}_{w})\right]$$

$$W = \omega(1+Y)$$

$$Y = \begin{cases} 100(1-0.25) & 100(1+0.75) \\ 0.5 & 0.5 \end{cases} = \begin{cases} 75 & 175 \\ 0.5 & 0.5 \end{cases}$$

$$\mathbb{E}(Y) = 0.5(-0.25) + 0.5(0.75) = 0.25$$

$$\sqrt{100(1+0.25-\pi_R)} = 0.5\sqrt{75} + 0.5\sqrt{175}$$

$$\sqrt{(125-100\pi_R)} = 10.9445053$$

$$\pi_R = \frac{125-10.945^2}{100} = 0.052178038$$

Il est prêt a payer 5,2 point de rendement pour se débarrasser du risque. Réponse 3 : risque partiel

$$W = \omega_{1} + \omega_{2}(1+Z)$$

$$= 50 + \begin{cases} 50(1-0.5) & 50(1+1.5) \\ 0.5 & 0.5 \end{cases} = 50 + \begin{cases} 25 & 125 \\ 0.5 & 0.5 \end{cases} = \begin{cases} 75 & 175 \\ 0.5 & 0.5 \end{cases}$$

$$\pi_{P} = u \left[\omega_{1} + \omega_{2}(1 + \mathbb{E}(Z) - \pi_{P})\right]$$

$$\mathbb{E} \left[u(\underbrace{\omega(1+Y)}_{w})\right]$$

$$0.5\sqrt{75} + 0.5\sqrt{175}$$

$$\sqrt{50 + 50(1 + 0.5 - \pi_{P})}$$

$$\sqrt{125 - 50\pi_{P}} = 10.945$$

$$\pi_{P} = 0.104$$

Donc 10,4 point de pourcentage

3.5.3 Relation entre primes de risque

Établissons la relation entre les trois primes de risque. Supposons que X,Y,Z sont telles que :

$$W = \omega + X = \omega(1 + Y) = \omega_1 + \omega_2(1 + Z).$$

En utilisant les trois définitions des primes, nous avons :

$$u(E[W] - \pi) = u(E[W] - \omega \pi_R) = u(E[W] - \omega_2 \pi_P).$$

Cela implique que:

$$E[W] - \pi = E[W] - \omega \pi_R = E[W] - \omega_2 \pi_P.$$

Nous pouvons en déduire que :

$$\pi = \omega \pi_R = \omega_2 \pi_P$$
.

Ainsi, nous constatons que toutes ces primes de risque représentent la même grandeur, exprimée de manière différente. En effet, elles peuvent être présentées soit en unités monétaires (prime absolue), soit en point pourcentage de la richesse totale (prime relative), soit en point de pourcentage de la richesse risquée (prime partielle).

3.5.4 Signe des primes de risque

Comme ω , ω_1 , ω_2 sont des paramètres positifs, les trois primes de risque sont de même signe.

La prime de risque est strictement positive pour un individu riscophobe, nulle pour un individu neutre face au risque, et strictement négative pour un individu riscophile.

Comme c'était le cas pour la prime de risque absolue, on peut également comparer le degré d'aversion au risque de deux individus soumis à la même richesse en comparant leurs primes de risque relative ou leurs primes de risque partielle.

3.5.5 Indices d'aversion

À chacune de ces trois primes de risque correspond un indice d'aversion pour le risque différent.

1) Nous avons vu précédemment l'indice d'aversion absolue pour le risque, noté $A_A(w) = -\frac{u''(w)}{u'(w)}$.

2) Nous pouvons, de même, approximer la prime d'un "petit" risque multiplicatif et calculer un indice d'aversion relative pour le risque, noté AR_w :

$$\pi_R pprox rac{\mathbb{V}(Y)}{2} \cdot \left(-\omega rac{u''(\mathbb{E}[W])}{u'(\mathbb{E}[W])}
ight)$$

avec

$$A_R(w, \boldsymbol{\omega}) = \left(-\boldsymbol{\omega} \frac{u''(w)}{u'(w)}\right)$$

3) Enfin, nous pouvons approximer la prime d'un "petit" risque partiel et calculer un indice d'aversion partielle pour le risque, noté AP_w :

$$\pi_P pprox rac{\mathbb{V}(Z)}{2} \cdot \left(-\omega_2 rac{u''(\mathbb{E}[W])}{u'(\mathbb{E}[W])}
ight)$$

avec

$$A_p(w, \omega_2) = \left(-\omega_2 \frac{u''(w)}{u'(w)}\right)$$

On a la relation suivante:

$$A_A(w) = \frac{A_R(w, \boldsymbol{\omega})}{\boldsymbol{\omega}} = \frac{A_P(w, \boldsymbol{\omega}_2)}{\boldsymbol{\omega}_2}$$