Simple Models and Biased Forecasts

Pooya Molavi

July 12, 2022

NBER Summer Institute

Rational expectations: agents forecast *as if* they knew the true model of the economy.

- But why can we assume that agents know the true model?
- · Learning literature: let's "make the agents like econometricians."

Rational expectations: agents forecast *as if* they knew the true model of the economy.

- But why can we assume that agents know the true model?
- · Learning literature: let's "make the agents like econometricians."

This paper: agents as econometricians who use flexible but simple time-series models.

Rational expectations: agents forecast *as if* they knew the true model of the economy.

- But why can we assume that agents know the true model?
- Learning literature: let's "make the agents like econometricians."

This paper: agents as econometricians who use flexible but simple time-series models.

- (1) Agents entertain a large and flexible class of time-series models.
 - all state-space models of a given dimension

Rational expectations: agents forecast *as if* they knew the true model of the economy.

- But why can we assume that agents know the true model?
- · Learning literature: let's "make the agents like econometricians."

This paper: agents as econometricians who use flexible but simple time-series models.

- (1) Agents entertain a large and flexible class of time-series models.
 - all state-space models of a given dimension
- (2) All models in the class are too simple relative to the truth, i.e., they are misspecified.
 - the models are low-dimensional

Rational expectations: agents forecast *as if* they knew the true model of the economy.

- But why can we assume that agents know the true model?
- · Learning literature: let's "make the agents like econometricians."

This paper: agents as econometricians who use flexible but simple time-series models.

- (1) Agents entertain a large and flexible class of time-series models.
 - all state-space models of a given dimension
- (2) All models in the class are too simple relative to the truth, i.e., they are misspecified.
 - the models are low-dimensional
- (3) Study the long-run limit when learning is complete.
 - agents settle on pseudo-true models that approximate the true model

The Framework

 $\bullet\,$ Discrete-time economy with a single agent (for now).

- Discrete-time economy with a single agent (for now).
- A sequence of observables $\{y_t\}_{t=-\infty}^{\infty}$.
 - $y_t \in \mathbb{R}^n$

- Discrete-time economy with a single agent (for now).
- A sequence of observables $\{y_t\}_{t=-\infty}^{\infty}$.
 - $y_t \in \mathbb{R}^n$
- Observables are distributed according to some probability distribution $\mathbb{P}.$
 - for now, assume \mathbb{P} is exogenous (will be endogenous in GE)
 - mean zero, stationary, and Gaussian
 - expectation operator ${\mathbb E}$

- Discrete-time economy with a single agent (for now).
- A sequence of observables $\{y_t\}_{t=-\infty}^{\infty}$.
 - $y_t \in \mathbb{R}^n$
- Observables are distributed according to some probability distribution ℙ.
 - for now, assume \mathbb{P} is exogenous (will be endogenous in GE)
 - mean zero, stationary, and Gaussian
 - expectation operator **E**
- The agent is attempting to forecast future values of the observables.
 - time-t information set is $\{y_{\tau}\}_{\tau=-\infty}^{t}$
 - agent uses a model to map past observables to her forecasts:

$$\theta: \{y_{\tau}\}_{\tau=-\infty}^t \mapsto E_t[\cdot]$$

State-Space Models

Main assumption: the agent can only entertain stationary ergodic distributions P that can be represented by state-space models with at most d states.

$$z_t = Az_{t-1} + w_t,$$
 $w_t \sim \text{ i.i.d. } \mathcal{N}(0, Q)$
 $y_t = B'z_t + v_t,$ $v_t \sim \text{ i.i.d. } \mathcal{N}(0, R)$

• $z \in \mathbb{R}^d$ is the set of subjective state variables.

State-Space Models

Main assumption: the agent can only entertain stationary ergodic distributions P that can be represented by state-space models with at most d states.

$$z_t = Az_{t-1} + w_t,$$
 $w_t \sim \text{ i.i.d. } \mathcal{N}(0, Q)$
 $y_t = B'z_t + v_t,$ $v_t \sim \text{ i.i.d. } \mathcal{N}(0, R)$

- $z \in \mathbb{R}^d$ is the set of subjective state variables.
- *d* captures the agent's sophistication.
 - large $d \longrightarrow \text{back to RE}$
 - small $d \longrightarrow \text{model misspecification}$

State-Space Models

Main assumption: the agent can only entertain stationary ergodic distributions P that can be represented by state-space models with at most d states.

$$z_t = Az_{t-1} + w_t,$$
 $w_t \sim \text{i.i.d. } \mathcal{N}(0, Q)$
 $y_t = B'z_t + v_t,$ $v_t \sim \text{i.i.d. } \mathcal{N}(0, R)$

- $z \in \mathbb{R}^d$ is the set of subjective state variables.
- *d* captures the agent's sophistication.
 - large $d \longrightarrow \text{back to RE}$
 - small $d \longrightarrow \text{model misspecification}$
- *d* is the only free parameter.
- $\theta \equiv (A, B, Q, R)$ is estimated endogenously by the agent.

A Dichotomy

A dichotomy: model θ is unconstrained other than the constraint on d.

- The agent can entertain *any* linear cross-sectional relationship between variables.
- But is constrained in the types of time-series relationships she can perceive.

A Dichotomy

A **dichotomy:** model θ is unconstrained other than the constraint on d.

- The agent can entertain *any* linear cross-sectional relationship between variables.
- But is constrained in the types of time-series relationships she can perceive.

Stark assumption, but...

- It allows me to focus on the difficulty of dealing with time-series complexity.
 - \bullet Cross-sectional complexity is the focus of rational inattention, sparsity, etc.
- It leads to a useful linear invariance property for expectations.

▶ limited memory interpretation

Pseudo-True Simple Models

Goodness-of-fit measure: Kullback-Leibler Divergence Rate

$$KLDR(\theta) \equiv \lim_{t \to \infty} \frac{1}{t} \mathbb{E} \left[\log \left(\frac{\mathbf{f}(y_1, \dots, y_t)}{f^{\theta}(y_1, \dots, y_t)} \right) \right]$$

- f^{θ} is the agent's subjective density of $\{y_t\}_t$ under model θ .
- f is the density and $\mathbb{E}[\cdot]$ is the expectation under the true DGP.

Pseudo-True Simple Models

Goodness-of-fit measure: Kullback-Leibler Divergence Rate

$$KLDR(\theta) \equiv \lim_{t \to \infty} \frac{1}{t} \mathbb{E} \left[\log \left(\frac{\mathbf{f}(y_1, \dots, y_t)}{f^{\theta}(y_1, \dots, y_t)} \right) \right]$$

Definition (Pseudo-True *d*-State Models)

 θ^* is a *pseudo-true d-state model* if

$$\theta^* \in \arg\min_{\theta \in \Theta^d} \mathrm{KLDR}(\theta)$$

where

$$\Theta^d \equiv \{ \text{all } d\text{-state models } \theta = (A, B, Q, R) \}$$

learning foundations

Pseudo-True Simple Models

Definition (Pseudo-True *d*-State Models)

 θ^* is a *pseudo-true d-state model* if

$$\theta^* \in \arg\min_{\theta \in \Theta^d} \mathrm{KLDR}(\theta)$$

where

$$\Theta^d \equiv \{ \text{all } d\text{-state models } \theta = (A, B, Q, R) \}$$

Agent recovers the *true* model if we replace $\theta \in \Theta^d$ with $\theta \in \bigcup_{d=0}^{\infty} \Theta^d$.

Relation to the Literature

- Factor analysis of business-cycle: Sargent-Sims (1977), Watson (2004), Angeletos-Collard-Dellas (2020)
 - endogenizes the "main business-cycle shock" of Angeletos et al.
- Noisy information/rational inattention/sparsity: Mankiw-Reis (2002), Sims (2003), Woodford (2003), Gabaix (2014), Angeletos-Lian (2018), ...
 - perfect knowledge of current variables
 - perfect understanding of intratemporal relationships
 - can only understand simple intertemporal relationships
- Learning models in macro: Marcet-Sargent (1989), Evans-Honkapohja (1995), Adam-Marcet (2011), ...
 - · focus on the asymptotics of learning
 - prior rules out the true model
- Misspecified learning: Berk(1966), Esponda-Pouzo (2016, 2021), Molavi (2019), ...

The Plan

The rest of the talk...

- 1. Characterization of pseudo-true 1-state models.
- 2. (Some) implications for agents' forecasts and actions.
- 3. Impulse and propagation: the TFP shock in the RBC model.
- 4. Application to forward guidance in the NK model.

In the paper (but not the talk)...

- 1. Generalization to the d > 1 case.
- 2. Additional implications.
- 3. Propagation of productivity and separation shocks in the DMP model.

Pseudo-True 1-State Models

An Invariance Result

Theorem (Linear Invariance)

Consider two agents:

- Agent i observes y_t with distribution \mathbb{P} and uses a pseudo-true model given \mathbb{P} .
- Agent j observes $\tilde{y}_t = Ty_t$ with distribution $\tilde{\mathbb{P}}$ and uses a pseudo-true model given $\tilde{\mathbb{P}}$.

An Invariance Result

Theorem (Linear Invariance)

Consider two agents:

- Agent i observes y_t with distribution \mathbb{P} and uses a pseudo-true model given \mathbb{P} .
- Agent j observes $\tilde{y}_t = Ty_t$ with distribution $\tilde{\mathbb{P}}$ and uses a pseudo-true model given $\tilde{\mathbb{P}}$.

For any full-rank matrix T,

$$E_{jt}^*[\tilde{y}_{t+s}] = TE_{it}^*[y_{t+s}]$$

An Invariance Result

Theorem (Linear Invariance)

Consider two agents:

- Agent i observes y_t with distribution \mathbb{P} and uses a pseudo-true model given \mathbb{P} .
- Agent j observes $\tilde{y}_t = Ty_t$ with distribution $\tilde{\mathbb{P}}$ and uses a pseudo-true model given $\tilde{\mathbb{P}}$.

For any full-rank matrix T,

$$E_{jt}^*[\tilde{y}_{t+s}] = TE_{it}^*[y_{t+s}]$$

Pseudo-true simple models respect *all* linear intratemporal relationships...

$$E_t^* [\alpha y_{1,t+s} + \beta y_{2,t+s}] = \alpha E_t^* [y_{1,t+s}] + \beta E_t^* [y_{2,t+s}]$$

Autocovariances and Autocorrelations

The 1-state pseudo-true model turns out to depend on the true DGP *only* via the true autocorrelations.

• True autocovariance matrices (standard definition):

$$\Gamma_l \equiv \mathbb{E}[y_t y_{t-l}']$$

Autocovariances and Autocorrelations

The 1-state pseudo-true model turns out to depend on the true DGP *only* via the true autocorrelations.

• True autocovariance matrices (standard definition):

$$\Gamma_l \equiv \mathbb{E}[y_t y_{t-l}']$$

• True autocorrelation matrices (not a standard definition):

$$C_l \equiv \Gamma_0^{-1} \left(\frac{\Gamma_l + \Gamma_l'}{2} \right)$$

- products of two symmetric matrices ⇒ real eigenvalues
- reduce to the usual autocorrelations when n = 1
- by linear invariance, can assume without loss that Γ_0 is invertible

Theorem

Let λ denote the eigenvalue of C_1 largest in magnitude.

Let p and q denote the corresponding right and left eigenvectors (normalized: q'p=1).

Theorem

Let λ denote the eigenvalue of C_1 largest in magnitude.

Let p and q denote the corresponding right and left eigenvectors (normalized: q'p=1).

If an ergodicity assumption is satisfied, then given any pseudo-true 1-state model

$$E_t^*[z_t] = \mathbf{p'}y_t$$

$$E_t^*[z_{t+s}] = \lambda^s E_t^*[z_t]$$

$$E_t^*[y_{t+s}] = qE_t^*[z_{t+s}]$$

 $\verb| | ergodicity assumption |$

Theorem

Let λ denote the eigenvalue of C_1 largest in magnitude.

Let p and q denote the corresponding right and left eigenvectors (normalized: q'p=1).

If an ergodicity assumption is satisfied, then given any pseudo-true 1-state model

$$E_t^*[z_t] = p'y_t$$

$$E_t^*[z_{t+s}] = \lambda^s E_t^*[z_t]$$

$$E_t^*[y_{t+s}] = qE_t^*[z_{t+s}]$$

 $\verb""ergodicity" assumption$

Theorem

Let λ denote the eigenvalue of C_1 largest in magnitude.

Let p and q denote the corresponding right and left eigenvectors (normalized: q'p=1).

If an ergodicity assumption is satisfied, then given any pseudo-true 1-state model

$$E_t^*[z_t] = p'y_t$$

$$E_t^*[z_{t+s}] = \lambda^s E_t^*[z_t]$$

$$E_t^*[y_{t+s}] = q E_t^*[z_{t+s}]$$

 $\verb"" ergodicity assumption"$

Theorem

Let λ denote the eigenvalue of C_1 largest in magnitude.

Let p and q denote the corresponding right and left eigenvectors (normalized: q'p = 1).

If an ergodicity assumption is satisfied, then given any pseudo-true 1-state model

$$E_t^*[y_{t+s}] = \lambda^s q p' y_t$$

 $\verb""ergodicity" assumption$

A Diagonal Example

• True data-generating process:

$$y_{t} = \begin{pmatrix} \alpha_{1} & 0 & \dots & 0 \\ 0 & \alpha_{2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \alpha_{n} \end{pmatrix} y_{t-1} + \begin{pmatrix} b_{1} & 0 & \dots & 0 \\ 0 & b_{2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & b_{n} \end{pmatrix} \epsilon_{t}, \qquad \epsilon_{t} \sim \text{i.i.d. } \mathcal{N}(0, I)$$

where

$$|\alpha_1| > |\alpha_2| > \cdots > |\alpha_n|$$

A Diagonal Example

• True data-generating process:

$$y_{t} = \begin{pmatrix} \alpha_{1} & 0 & \dots & 0 \\ 0 & \alpha_{2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \alpha_{n} \end{pmatrix} y_{t-1} + \begin{pmatrix} b_{1} & 0 & \dots & 0 \\ 0 & b_{2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & b_{n} \end{pmatrix} \epsilon_{t}, \qquad \epsilon_{t} \sim \text{i.i.d. } \mathcal{N}(0, I)$$

where

$$|\alpha_1| > |\alpha_2| > \cdots > |\alpha_n|$$

• The autocorrelation matrix at lag l = 1:

$$C_1 = \begin{pmatrix} \alpha_1 & 0 & \dots & 0 \\ 0 & \alpha_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \alpha_n \end{pmatrix}$$

Pseudo-True Model in the Diagonal Example

• Eigenvalue and eigenvectors...

$$\lambda = \alpha_1, \qquad q = p = (1, 0, \dots, 0)'$$

Pseudo-True Model in the Diagonal Example

• Eigenvalue and eigenvectors...

$$\lambda = \alpha_1, \qquad q = p = (1, 0, ..., 0)'$$

• Forecasts:

$$\begin{split} E_t^*[y_{1,t+s}] &= \alpha_1^s y_{1t} \\ E_t^*[y_{j,t+s}] &= 0, \qquad \forall j \neq 1 \end{split}$$

Pseudo-True Model in the Diagonal Example

• Eigenvalue and eigenvectors...

$$\lambda = \alpha_1, \qquad q = p = (1, 0, \dots, 0)'$$

• Forecasts:

$$E_t^*[y_{1,t+s}] = \alpha_1^s y_{1t}$$

 $E_t^*[y_{j,t+s}] = 0, \quad \forall j \neq 1$

- Persistence bias: forecasts are anchored to the most persistent observable.
 - Forecasts of y_1 coincide with the RE.
 - Forecast y_j for $j \neq 1$ as if i.i.d.

Second Moments

Theorem

The subjective variance under the pseudo-true model coincides with the true variance:

$$E^*[y_t y_t'] = \mathbb{E}[y_t y_t']$$

Second Moments

Theorem

The subjective variance under the pseudo-true model coincides with the true variance:

$$E^*[y_t y_t'] = \mathbb{E}[y_t y_t']$$

- PCA:
 - Project onto the dominant eigenvectors of the variance-covariance matrix, Γ_0 .
 - Purely cross-sectional; uses no information about the serial correlations.
- Pseudo-true simple models:
 - Project onto the dominant eigenvectors of the first autocorrelation matrix, C_1 .
 - No simplification in the cross section; perfectly matches Γ_0 .

Some Implications

· Recall that...

$$E_t^*[y_{t+s}] = \lambda^s q p' y_t$$

· Recall that...

$$E_t^*[y_{t+s}] = \lambda^s q p' y_t$$

• The agent decomposes the observed y_t into the sum of two terms:

$$y_t = \underbrace{y_t^{\parallel}}_{\text{parallel to } p} + \underbrace{y_t^{\perp}}_{\text{orthogonal to } p}$$

· Recall that...

$$E_t^*[y_{t+s}] = \lambda^s q p' y_t$$

• The agent decomposes the observed y_t into the sum of two terms:

$$y_t = \underbrace{y_t^{\parallel}}_{\text{parallel to } p} + \underbrace{y_t^{\perp}}_{\text{orthogonal to } p}$$

• Update expectations in response to y_t^{\parallel} .

· Recall that...

$$E_t^*[y_{t+s}] = \lambda^s q p' y_t$$

• The agent decomposes the observed y_t into the sum of two terms:

$$y_t = \underbrace{y_t^{\parallel}}_{\text{parallel to } p} + \underbrace{y_t^{\perp}}_{\text{orthogonal to } p}$$

- Update expectations in response to y_t^{\parallel} .
- Does not update expectations $at \, all \, \text{in} \, \text{response to} \, \textbf{y}_t^{\perp}$.

· Recall that...

$$E_t^*[y_{t+s}] = \lambda^s q p' y_t$$

• The agent decomposes the observed y_t into the sum of two terms:

$$y_t = \underbrace{y_t^{\parallel}}_{\text{parallel to } p} + \underbrace{y_t^{\perp}}_{\text{orthogonal to } p}$$

- Update expectations in response to y_t^{\parallel} .
- Does not update expectations at all in response to y_t^{\perp} .
- Forecasts behave as if the economy is driven by a single "main shock."

Comovement

Linear best responses:

$$x_{jt} = E_t \left[\sum_{s=1}^{\infty} \beta_j^s c_j' y_{t+s} \right]$$

Comovement

Linear best responses:

$$x_{jt} = E_t \left[\sum_{s=1}^{\infty} \beta_j^s c_j' y_{t+s} \right]$$

Result: for any two forward-looking choices *j* and *k*

$$1 = \left| \texttt{corr} \left(x_{jt}^*, x_{kt}^* \right) \right| \geq \left| \texttt{corr} \left(x_{jt}^{\text{RE}}, x_{kt}^{\text{RE}} \right) \right|$$

Intuition:

- Expectations are unresponsive to y_t^{\perp} .
- It is as if there is a single shock y_t^{\parallel} driving everything.
- This increases the comovement of different choices.

TFP Shocks in the RBC Model

The Loglinearized RBC Model

• TFP:

$$a_t = \rho a_{t-1} + \epsilon_t$$

• Capital:

$$k_t = (1 - \delta)k_{t-1} + \delta i_{t-1}$$

• Consumption (permanent income hypothesis):

$$c_t = \frac{\chi}{\beta} k_t + \chi r_t + \chi \zeta w_t + (\chi - \beta \sigma) \sum_{s=1}^{\infty} \beta^s E_t[r_{t+s}] + \chi \zeta \sum_{s=1}^{\infty} \beta^s E_t[w_{t+s}]$$

- True for arbitrary expectations that satisfy the LIE.
 - the aggregate Euler equation may *not* be valid away from RE (Preston, 2005)
- r_t , w_t , and i_t are linear functions of k_t , a_t , and c_t .

Calibration and Agents' Pseudo-True Model

- Textbook calibration of primitives.
- Persistence of TFP shock: $\rho = 0.95$. The variance is irrelevant.
- Agents have full information.

Calibration and Agents' Pseudo-True Model

- Textbook calibration of primitives.
- Persistence of TFP shock: $\rho = 0.95$. The variance is irrelevant.
- Agents have full information.
- *d* is the *only* additional free parameter.
- $d \ge 2 \implies \text{REE}$
- So, we only need to consider d = 1.

Calibration and Agents' Pseudo-True Model

- Textbook calibration of primitives.
- Persistence of TFP shock: $\rho = 0.95$. The variance is irrelevant.
- Agents have full information.
- *d* is the *only* additional free parameter.
- $d \ge 2 \implies \text{REE}$
- So, we only need to consider d = 1.
- Agents' nowcast of the subjective state

$$E_t^*[z_t] = p'y_t = \mathbf{0.947}k_t + 0.053a_t$$

- Expectations move (almost) one-for-one with changes in capital stock.
 - · almost no (direct) response to changes in TFP
 - · persistence bias

Impulse Response Functions

The Two-Equation New-Keynesian Model

• Dynamic IS curve:

$$\hat{x}_{t} = -\sigma \left(\hat{i}_{t} - r_{t}^{n}\right) + E_{t}^{h} \left[\sum_{s=1}^{\infty} \beta^{s} \left(\frac{1-\beta}{\beta} \hat{x}_{t+s} - \sigma \left(\hat{i}_{t+s} - r_{t+s}^{n} \right) - \frac{\sigma}{\beta} \hat{\pi}_{t+s} \right) \right]$$

NK Phillips curve:

$$\hat{\pi}_t = \kappa \hat{x}_t + \mu_t + E_t^f \left[\sum_{s=1}^{\infty} (\beta \delta)^s \left(\kappa \hat{x}_{t+s} + \frac{1-\delta}{\delta} \hat{\pi}_{t+s} + \mu_{t+s} \right) \right]$$

- No need for the Taylor principle.
 - assume observables *cannot* include sunspots
 - equilibrium is determinate as long as actions are measurable with respect to observables
- Natural rate, cost push-up, and interest-rate shocks.

Information, Calibration, and Estimation

• Textbook calibration of primitives: $\beta = 0.99$, $\sigma = 1$, $\delta = 3/4$, and $\kappa = 0.172$.

Information, Calibration, and Estimation

- Textbook calibration of primitives: $\beta = 0.99$, $\sigma = 1$, $\delta = 3/4$, and $\kappa = 0.172$.
- \cdot *d* is the *only* additional free parameter.
- Assume d = 1.
- Assume agents have full information.

Information, Calibration, and Estimation

- Textbook calibration of primitives: $\beta = 0.99$, $\sigma = 1$, $\delta = 3/4$, and $\kappa = 0.172$.
- *d* is the *only* additional free parameter.
- Assume d = 1.
- Assume agents have full information.
- Choose the DGP for $(r_t^n, \mu_t, \hat{i}_t)$ to target the autocovariance of $(\hat{x}_t, \hat{\pi}_t, \hat{i}_t)$ at lags 0, 1.
 - only identifies the autocovariance of $(r_t^n, \mu_t, \hat{i}_t)$ at lags 0, 1
 - sufficient for my analysis
 - can hit the target perfectly

Pseudo-True 1-State Model

Agents' nowcast of the subjective state:

$$E_t^*[z_t] = p'y_t = \frac{0.022\hat{x}_t - 0.42\hat{\pi}_t - 0.014\hat{t}}{2}$$

- High inflation and high output gap have opposite effects on the agents' nowcast.
- Expectations respond a lot inflation, not so much to the nominal rate.

Pseudo-True 1-State Model

Agents' nowcast of the subjective state:

$$E_t^*[z_t] = p'y_t = \frac{0.022\hat{x}_t - 0.42\hat{\pi}_t - 0.014\hat{i}}{2}$$

- High inflation and high output gap have opposite effects on the agents' nowcast.
- Expectations respond a lot inflation, not so much to the nominal rate.

Persistence of the subjective state:

$$E_t^*[z_{t+1}] = \mathbf{0.985} E_t^*[z_t]$$

- Larger than the estimated persistence of any of the shocks.
- But *not* unit root.

- A credible commitment by monetary authority at time t to

$$\{\hat{i}_{t+1}, \hat{i}_{t+2}, \dots, \hat{i}_{t+T}\}$$

- A credible commitment by monetary authority at time t to

$$\{\hat{i}_{t+1}, \hat{i}_{t+2}, \ldots, \hat{i}_{t+T}\}$$

• Agents' information set at time t under forward guidance:

$$\omega_T \equiv \{\ldots, y_{t-1}, y_t, \hat{i}_{t+2}, \ldots, \hat{i}_{t+T}\}$$

- A credible commitment by monetary authority at time t to

$$\{\hat{i}_{t+1}, \hat{i}_{t+2}, \ldots, \hat{i}_{t+T}\}$$

• Agents' information set at time t under forward guidance:

$$\omega_T \equiv \{\ldots, y_{t-1}, y_t, \hat{i}_{t+2}, \ldots, \hat{i}_{t+T}\}$$

• Subjective expectations:

$$E_t^{*-\mathrm{FG}}[\cdot] = E^*[\cdot|\omega_T]$$

ullet A credible commitment by monetary authority at time t to

$$\{\hat{i}_{t+1}, \hat{i}_{t+2}, \dots, \hat{i}_{t+T}\}$$

• Agents' information set at time *t* under forward guidance:

$$\omega_T \equiv \{\ldots, y_{t-1}, y_t, \hat{i}_{t+2}, \ldots, \hat{i}_{t+T}\}$$

• Subjective expectations:

$$E_t^{*-\mathrm{FG}}[\cdot] = E^*[\cdot|\omega_T]$$

- Agents' subjective model is Gaussian. \implies Conditioning is easy!

$$E^*[\zeta_{t+s}|\omega_T] = \Sigma_{\zeta_s\omega_T} \Sigma_{\omega_T\omega_T}^{-1} \omega_T$$

$$\hat{x}_{t} = v_{xi}^{(T)} \hat{i}_{t} + v_{xn}^{(T)} r_{t}^{n} + v_{x\mu}^{(T)} \mu_{t} + \sum_{s=1}^{T} v_{xi_{s}}^{(T)} \hat{i}_{t+s}$$

$$\hat{\pi}_{t} = v_{\pi i}^{(T)} \hat{i}_{t} + v_{\pi n}^{(T)} r_{t}^{n} + v_{\pi \mu}^{(T)} \mu_{t} + \sum_{s=1}^{T} v_{\pi i_{s}}^{(T)} \hat{i}_{t+s}$$

$$\hat{x}_{t} = v_{xi}^{(T)} \hat{i}_{t} + v_{xn}^{(T)} r_{t}^{n} + v_{x\mu}^{(T)} \mu_{t} + \sum_{s=1}^{T} v_{xi_{s}}^{(T)} \hat{i}_{t+s}$$

$$\hat{\pi}_{t} = v_{\pi i}^{(T)} \hat{i}_{t} + v_{\pi n}^{(T)} r_{t}^{n} + v_{\pi \mu}^{(T)} \mu_{t} + \sum_{s=1}^{T} v_{\pi i_{s}}^{(T)} \hat{i}_{t+s}$$

Concluding Remarks

- I assume agents forecast using simple models that are fit to the DGP.
- Illustration in the context of the RBC and NK models.
- The framework can be embedded in workhorse macro models.

Concluding Remarks

- I assume agents forecast using simple models that are fit to the DGP.
- Illustration in the context of the RBC and NK models.
- The framework can be embedded in workhorse macro models.
- The Julia code is available on my website.
- Paper with Alireza Tahbaz-Salehi and Andrea Vedolin: asset-pricing implications.

A Complementary Interpretation: Limited Memory

Models with d running statistics

• The running statistics

$$s_t \in \mathbb{R}^d$$

• The running statistics are updated linearly over time:

$$s_t = M s_{t-1} + K y_t$$

• Forecasts are linear functions of the running statistics:

$$E_t[y_{t+\tau}] = v_{\tau}' s_t$$

A Complementary Interpretation: Limited Memory

Models with d running statistics

• The running statistics

$$s_t \in \mathbb{R}^d$$

• The running statistics are updated linearly over time:

$$s_t = M s_{t-1} + K y_t$$

• Forecasts are linear functions of the running statistics:

$$E_t[y_{t+\tau}] = v_{\tau}' s_t$$

An equivalence result: d-state models \approx models with d running statistics

Learning Foundations

Theorem (Huber, White, Douc-Moulines, ...)

Assume the agent estimates the parameters of the model $\theta \equiv (A, B, Q, R)$ using (quasi-)MLE. Then asymptotically her point estimate converges to a pseudo-true model.

Learning Foundations

Theorem (Huber, White, Douc-Moulines, ...)

Assume the agent estimates the parameters of the model $\theta \equiv (A, B, Q, R)$ using (quasi-)MLE. Then asymptotically her point estimate converges to a pseudo-true model.

Theorem (Berk, Bunke-Milhaud, Shalizi,)

Assume the agent starts with a full-support prior over the set of d-state models and updates her prior over time using Bayes' rule. Asymptotically the agent's belief concentrates over the set of pseudo-true models.

⊳ back

Ergodicity Assumption

Assumption

For all $l \ge 1$

$$\rho(C_l) \le \rho(C_1)^l$$

where

$$\rho(C_l) = \max\{|\lambda| : \lambda \text{ is an eigenvalue of } C_l\}$$

- Requires autocorrelations to decay sufficiently fast.
- Satisfied for many commonly used specifications.
- Satisfied in all the applications studied in this talk.

⊳ back