2019 年普通高等学校招生全国统一考试・全国Ⅱ卷

理科综合(化学部分)

- 一、选择题:本题共7小题,每小题6分,共42分。在每小题给出的四个选项中,只有一项是符合题目要求的。
- 7. "春蚕到死丝方尽,蜡炬成灰泪始干"是唐代诗人李商隐的著名诗句,下列关于该诗句中所涉及物质的说法错误的是()
- A. 蚕丝的主要成分是蛋白质
- B. 蚕丝属于天然高分子材料
- C. "蜡炬成灰"过程中发生了氧化反应
- D. 古代的蜡是高级脂肪酸酯,属于高分子聚合物
- 8. 已知 N_A 是阿伏加德罗常数的值,下列说法错误的是()
- A. $3 g^3 He$ 含有的中子数为 $1N_A$
- B. 1 L 0.1 mol·L⁻¹ 磷酸钠溶液含有的 PO ³⁴ 数目为 0.1N_A
- C. 1 mol $K_2Cr_2O_7$ 被还原为 Cr^{3+} 转移的电子数为 $6N_A$
- D. 48 g 正丁烷和 10 g 异丁烷的混合物中共价键数目为 $13N_A$
- 9. 今年是门捷列夫发现元素周期律 150 周年。如表是元素周期表的一部分,W、X、Y、Z 为短周期主族元素,W与X的最高化合价之和为8。下列说法错误的是()

		w	
X	Y	Z	

- A. 原子半径: W<X
- B. 常温常压下, Y 单质为固态
- C. 气态氢化物热稳定性: Z<W

- D. X 的最高价氧化物的水化物是强碱
- 10. 下列实验现象与实验操作不相匹配的是()

	实验操作	实验现象
A	向盛有高锰酸钾酸性溶液的试管中通入足 量的乙烯后静置	溶液的紫色逐渐褪去,静置后溶液分层
В	将镁条点燃后迅速伸入集满 CO ₂ 的集气瓶	集气瓶中产生浓烟并有黑色颗粒产生
С	向盛有饱和硫代硫酸钠溶液的试管中滴加 稀盐酸	有刺激性气味气体产生,溶液变浑浊
D	向盛有 FeCl ₃ 溶液的试管中加过量铁粉, 充分振荡后加 1 滴 KSCN 溶液	黄色逐渐消失,加 KSCN 后溶液颜色不变

- 11. 下列化学方程式中,不能正确表达反应颜色变化的是()
- A. 向 CuSO₄溶液中加入足量 Zn 粉,溶液蓝色消失

 $Zn+CuSO_4=Cu+ZnSO_4$

B. 澄清的石灰水久置后出现白色固体

 $Ca(OH)_2+CO_2=CaCO_3 \downarrow +H_2O$

C. Na₂O₂在空气中放置后由淡黄色变为白色

 $2Na_2O_2=2Na_2O+O_2$

- D. 向 Mg(OH)₂悬 浊 液 中 滴 加 足 量 FeCl₃溶 液 出 现 红 褐 色 沉 淀 3Mg(OH)₂+ 2FeCl₃=2Fe(OH)₃+3MgCl₂
- 12. 绚丽多彩的无机颜料的应用曾创造了古代绘画和彩陶的辉煌。硫化镉(CdS)是一种难溶于水的黄色颜料,其在水中的沉淀溶解平衡曲线如图所示。下列说法错误的是()

- A. 图中 a 和 b 分别为 T_1 、 T_2 温度下 CdS 在水中的溶解度
- B. 图中各点对应的 K_{sp} 的关系为: $K_{sp}(m) = K_{sp}(n) < K_{sp}(p) < K_{sp}(q)$
- C. 向 m 点的溶液中加入少量 Na₂S 固体,溶液组成由 m 沿 mpn 线向 p 方向移动
- D. 温度降低时, q点的饱和溶液的组成由 q沿 qp线向 p方向移动
- 13. 分子式为 C_4H_8 BrCl 的有机物共有(不含立体异构)()
- A. 8种 B. 10种 C. 12种 D. 14种
- 二、非选择题: 共 58 分。第 $26\sim28$ 题为必考题,每个试题考生都必须作答。第 $35\sim36$ 题为选考题,考生根据要求作答。
- (一)必考题: 共43分。
- 26. 立德粉 ZnS·BaSO₄(也称锌钡白),是一种常用白色颜料。回答下列问题:
- (1)利用焰色反应的原理既可制作五彩缤纷的节日烟花,亦可定性鉴别某些金属盐。灼烧立 德粉样品时,钡的焰色为_____(填标号)。
- A. 黄色 B. 红色 C. 紫色 D. 绿色
- (2)以重晶石(BaSO₄)为原料,可按如下工艺生产立德粉:

①在回转炉中重晶石被过量焦炭还原为可溶性硫化钡, 该过程的化学方程式为

回转炉尾气中含有有毒气体,生产上可通过水蒸气变换反应将其转化为 CO_2 和一种清洁能源 气体,该反应的化学方程式为

								°				
②在潮透 是"还原										《溶性变	差,其	原因
③ 沉	淀	器	中	反	应	的	离	子。	方	程	式	为
(3)成品 ¹ mL 0.100 质硫析出 2S ₂ O ²³⁻ =	0 0 mol·l 日。以淀	L ⁻¹ 的 I 粉为指 S ₄ O ²⁶	I ₂ -KI 溶 示剂, 。 测;	溶液于基 过量的 定时消	其中,并 J I ₂ 用 0 肖耗 Na	・加入乙 .100 0 n a ₂ S ₂ O ₃ ※	酸溶液 nol·L ⁻¹ 容液体	,密闭 Na ₂ S ₂ C 积 <i>V</i>	,置暗》 ₃ 溶液剂 mL。纟	处反应:	5 min, 还应式为	有单 I ₂ +
27. 环戊问题:	文二烯(())是	重要的	有机化	工原料	,广泛	用于农药	芍、橡 周	交、塑料	4等生产	·。回答	下列
(1)已知	(g)=) (g)+1	$H_2(g)$	$\Delta H_1 = 1$	00.3 kJ·	mol^{-1})				
$H_2(g)+I$	$_{2}(g) = 2$	2HI(g)	$\Delta H_2 =$	-11.0	kJ∙mol	-12						
对于反应	ă:	$(g)+I_2$	(g)===	(g	g)+2HI((g)③						
$\Delta H_3 = $	1	ĸJ·mol−	1 0									
(2)某温月 平衡时 ——— 号)。	总压增	加了:	20%,	环戊烷	希的转	化率为	J	, i	亥反应	的平衡	运为 10 ⁵ ;	$K_{\rm p} =$
A. 通入	.惰性气	体			B. 提	高温度						
C. 增加	环戊烯剂	农度			D. 增	加碘浓	度					
(3)环戊二浓度与尿										,溶液	中环戊	二烯

A. $T_1 > T_2$

- B. a 点的反应速率小于 c 点的反应速率
- C. a 点的正反应速率大于 b 点的逆反应速率
- D. b 点时二聚体的浓度为 0.45 mol·L⁻¹

(4)环戊二烯可用于制备二茂铁[$Fe(C_5H_5)_2$,结构简式为 \bigcirc],后者广泛应用于航天、化工等 领域中。二茂铁的电化学制备原理如图所示,其中电解液为溶解有溴化钠(电解质)和环戊二烯的 DMF 溶液(DMF 为惰性有机溶剂)。

该电解池	的阳极为_	,	总反应为_			。电角	解制备需要	在无水
条	件	下	进	行	,	原	因	为

28. 咖啡因是一种生物碱(易溶于水及乙醇,熔点 234.5 \mathbb{C} , 100 \mathbb{C} 以上开始升华),有兴奋大脑神经和利尿等作用。茶叶中含咖啡因约 $1\%\sim5\%$ 、单宁酸(K_a 约为 10^{-6} , 易溶于水及乙醇)约 $3\%\sim10\%$,还含有色素、纤维素等。实验室从茶叶中提取咖啡因的流程如图所示。

索氏提取装置如图所示。实验时烧瓶中溶剂受热蒸发,蒸汽沿蒸汽导管2上升至球形冷凝

管,冷凝后滴入滤纸套筒1中,与茶叶末接触,进行萃取。萃取液液面达到虹吸管3顶端时,经虹吸管3返回烧瓶,从而实现对茶叶末的连续萃取。回答下列问题。

(1)实验时需将勃	5叶研细,放	入滤纸套	筒1中,研	F细的目的是_		o	圆底烧
瓶中加入 95%乙	醇为溶剂,	加热前还要	厚加几粒	o			
(2)提取过程不可	丁选用明火直	[接加热,	原因是		。与常	刀规的萃取	7相比,
采用索氏提取器	的优点是			°			
(3)提取液需经	"蒸馏浓缩	"除去大	部分溶剂。	与水相比,	乙醇作为	萃取剂的	优点是
	· "	蒸馏浓缩"	需选用的值	义器除了圆底烷	尧瓶、蒸馏7	く、温度计	十、接收
管之外,还有	(填标号	·)。					

- A. 直形冷凝管
- B. 球形冷凝管
- C. 接收瓶
- D. 烧杯
- (4)浓缩液加生石灰的作用是中和_____和吸收___。
- (5)可采用如图所示的简易装置分离提纯咖啡因。将粉状物放入蒸发皿中并小火加热,咖啡

因在扎有小孔的滤纸上凝结,该分离提纯方法的名称是。

(二)选考题:共 15分。请考生从 2 道化学题中任选一题作答。如果多做,则按所做的第一题计分。

35. [化学--选修 3: 物质结构与性质]

近年来我国科学家发现了一系列意义重大的铁系超导材料,其中一类为 Fe—Sm—As—F—O组成的化合物。回答下列问题:

(1)元素 As 与 N 同族。	预测 As 的氢化物分子	子的立体结构为	_,	其沸点比 NH ₃ 的
(填"高"或'	'低"),其判断理由是_			

(2)Fe 成为阳离子时首先失去_______轨道电子, Sm 的价层电子排布式为 4f⁶6s², Sm³⁺价层电子排布式为_____。

(3)比较离子半径: F O²⁻(填"大于""等于"或"小于")。

36. [化学--选修 5: 有机化学基础]

环氧树脂因其具有良好的机械性能、绝缘性能以及与各种材料的粘结性能,已广泛应用于涂料和胶黏剂等领域。下面是制备一种新型环氧树脂 G 的合成路线:

己知以下信息:

OH
$$H_3C$$
 R CH_3 CH_3 CH_4 CH_5 CH_5 CH_7 CH_8 CH_8

$$@R' OH + \stackrel{Cl}{\longrightarrow} + NaOH \longrightarrow R' \stackrel{O}{\longrightarrow} + NaCl + H_2O$$

$$R'$$
—O OH O— R''

回答下列问题:

- (1)A 是一种烯烃, 化学名称为 , C 中官能团的名称为 、 。
- (2)由 B 生成 C 的反应类型为。
- (3)由 C 生成 D 的反应方程式为。
- (4)E 的结构简式为。
- (5)E 的二氯代物有多种同分异构体,请写出其中能同时满足以下条件的芳香化合物的结构简式_____、___。
- ①能发生银镜反应:②核磁共振氢谱有三组峰,且峰面积比为3:2:1。
- (6)假设化合物 D、F 和 NaOH 恰好完全反应生成 1 mol 单一聚合度的 G,若生成的 NaCl 和 H_2O 的总质量为 765 g,则 G 的 n 值理论上应等于_____。