DIFFERENTIAL EQUATIONS II

COURSE WORK

1 (a). When are two functions $f_1(x)$ and $f_2(x)$ said to be orthogonal on an interval [a, b]. (b). Obtain the Fourier series expansion of $f(x) = \pi + x$ for $-\pi < x < \pi$. Hence, show that

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$

2. A bar of length 2m is fully insulated along its sides. It is initially at 10^{0} C and at t=0, the ends are plunged into ice and maintained at a temperature of 0^{0} C. Determine an expression for the temperature of a point P, a distance x from one end at any subsequent time t seconds after t=0.

Hint: $\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial u}{\partial t}$ with the boundary condition u(0,t) = 0, u(2,t) = 0, u(x,0) = 10.

SUCCESS