Soluzione degli esercizi del capitolo 11

Esercizio 11.1 (pag. 158)

Nello spazio cartesiano \mathbb{R}^2 , ogni retta passante per l'origine può essere descritta come un particolare sottoinsieme di \mathbb{R}^2 della forma

$$L = \{(x, y) | \alpha x + \beta y = 0\}.$$

Si verichi che L è un sottospazio di \mathbb{R}^2 .

Soluzione

L è un sottospazio vettoriale $\Leftrightarrow \forall (x_1, y_1), (x_2, y_2) \in L$ e $\forall k \in \mathbb{R}$ si ha che

$$(x_1, y_1) + (x_2, y_2) \in L \ e \ k(x_1, y_1) \in L.$$

Per ipotesi
$$\forall (x_1,y_1), (x_2,y_2) \in L \Rightarrow \left\{ \begin{array}{ll} \alpha x_1 + \beta y_1 &= 0 \\ \alpha x_2 + \beta y_2 &= 0 \end{array} \right.$$
da cui, sommando membro a membro, si ottiene $\alpha(x_1+x_2) + \beta(y_1+y_2) = 0$ e

quindi $(x_1 + x_2, y_1 + y_2) \in L$.

Inoltre $\alpha(kx_1) + \beta(ky_1) = k\alpha x_1 + k\beta y_1 = k(\alpha x_1 + \beta y_1) = 0$ da cui segue $(kx_1, ky_1) = k(x_1, y_1) \in L.$

Possiamo quindi concludere che L è sottospazio vettoriale.

Esercizio 11.2 (pag. 158)

Nello spazio vettoriale $Mat_{2\times 2}(\mathbb{R})$, verificare che il sottoinsieme costituito dalle matrici diagonali costituisce un sottospazio.

Soluzione

Sia D l'insieme delle matrici diagonali di $Mat_{2\times 2}(\mathbb{R})$. Come nell'esercizio precedente verifichiamo che $\forall A, B \in D$ e $\forall k \in \mathbb{R}$ si ha che $A + B \in D \in kA \in D$.

Siano
$$A = \begin{bmatrix} a & 0 \\ 0 & c \end{bmatrix}, B = \begin{bmatrix} b & 0 \\ 0 & d \end{bmatrix};$$
 allora
$$A + B = \begin{bmatrix} a+b & 0 \\ 0 & c+d \end{bmatrix} \in D \text{ e } kA = \begin{bmatrix} ka & 0 \\ 0 & kc \end{bmatrix} \in D.$$

Si può concludere che D è un sottospazio vettoriale di $Mat_{2\times 2}(\mathbb{R})$.

Esercizio 11.3 (pag. 158)

Nello spazio vettoriale $\mathbb{R}^{\mathbb{R}}$ di tutte le applicazioni da \mathbb{R} a \mathbb{R} , si consideri il sottoinsieme delle funzioni continue e si mostri che esso costituisce un sottospazio $\operatorname{di} \mathbb{R}^{\mathbb{R}}$.

Soluzione

Sia \mathcal{C} il sottoinsieme di $\mathbb{R}^{\mathbb{R}}$ costituito dalle funzioni continue. Per le proprietà viste nei corsi di Analisi si ha che la somma di due funzioni continue è continua $(\forall f,g\in\mathcal{C}\Rightarrow f+g\in\mathcal{C})$ e che $\forall f\in\mathcal{C}\ \forall k\in\mathbb{R}$ si ha che $kf\in\mathcal{C}$. Segue quindi la tesi.

Esercizio 11.4 (pag. 163)

Nello spazio vettoriale dei polinomi a coefficienti reali di grado $\leq n$, l'insieme $\mathcal{B} = \{1, x, x^2, \dots, x^n\}$ è una base.

Soluzione

Si tratta di verificare che:

a) i vettori di \mathcal{B} sono un sistema di generatori, cioè che qualsiasi polinomio di grado minore od uguale a n si puó scrivere come combinazione lineare dei vettori di \mathcal{B}

Sia $a(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$, con $a_i \in \mathbb{R}$, un polinomio di grado minore o uguale a n. Si vede immediatamente che a(x) è combinazione lineare dei polinomi $1, x, x^2, \ldots, x^n$, con coefficienti dati dagli a_i .

b) i vettori di \mathcal{B} sono linearmente indipendenti (cfr. def 11.7 pag 160). Infatti sia $b_0 + b_1 x + \cdots b_n x^n = 0$ una combinazione lineare che dá il vettore nullo. L'unica soluzione è $b_0 = b_1 = b_2 = \cdots = b_n = 0$.

Esercizio 11.5 (pag. 164)

Dati i seguenti vettori in \mathbb{R}^3 , dire, senza fare calcoli, se sono linearmente indipendenti:

1.
$$v_1 = (1, 4, -1), v_2 = (0, -1, 1), v_3 = (1, 0, 1), v_4 = (-1, 1, 0).$$

2.
$$w_1 = (1, 0, -1), w_2 = (0, -1, 1), w_3 = (1, -1, 0).$$

3.
$$u_1 = (1, 0, -1), u_2 = (0, 1, 2).$$

Soluzione

- 1. I vettori dati sono quattro; poiché appartengono ad uno spazio vettoriale di dimensione 3 essi saranno necessariamente dipendenti.
- 2. Si vede immediatamente che $w_3 = w_1 + w_2$: i tre vettori sono quindi linearmente dipendenti.
- 3. Poiché i vettori sono due e non esiste un $k \in \mathbb{R}$ tale che $u_1 = ku_2$, essi sono linearmente indipendenti.

Esercizio 11.6 (paq. 164)

Si determini per quali valori di h e di k sono linearmente indipendenti i vettori

$$v_1 = (h, 1, 0), \ v_2 = (k, h, 1), \ v_3 = (-2, 0, 2).$$

Soluzione

I vettori v_1, v_2, v_3 sono linearmente indipendenti se (cfr. Definizione 11.7, pag. 160 del testo):

$$av_1 + bv_2 + cv_3 = (0, 0, 0) \Leftrightarrow a = b = c = 0.$$

Poichè da a = b = c = 0 segue $av_1 + bv_2 + cv_3 = (0, 0, 0)$, resta da mostrare l'implicazione inversa. Consideriamo la combinazione:

$$av_1 + bv_2 + cv_3 = a(h, 1, 0) + b(k, h, 1) + c(-2, 0, 2) = (0, 0, 0) \Rightarrow$$

$$(ah, a, 0) + (bk, bh, b) + (-2c, 0, 2c) = (ah + bk - 2c, a + bh, b + 2c) = (0, 0, 0).$$

Poichè due vettori sono uguali se e solo se hanno ordinatamente uguali le componenti, si ottiene il sistema omogeneo:

$$\begin{cases} ah + bk - 2c &= 0 \\ a + bh &= 0 \\ b + 2c &= 0 \end{cases} \Rightarrow \begin{cases} ah + bk - 2c &= 0 \\ a &= -bh \\ b &= -2c \end{cases} \Rightarrow \begin{cases} b(-h^2 + k + 1) &= 0 \\ a &= -bh \\ -2c &= b. \end{cases}$$

Se $-h^2 + k + 1 = 0$ cioè se $h^2 = k + 1$, la prima equazione è verificata per ogni b.

Se ad esempio assumiamo b = -2, otteniamo a = 2h, b = -2, c = 1 che quindi sono una terna di coefficienti non tutti nulli tali che $av_1 + bv_2 + cv_3 = (0, 0, 0)$: i vettori sono perció linearmente dipendenti.

Se invece $h^2 \neq k+1 \Rightarrow b=0$, e quindi si ottiene anche a=0 e c=0 e in questo caso i vettori sono linearmente indipendenti.

Esercizio 11.7 (pag. 164)

Dati i vettori:

a)
$$v = (8, 2, k, -10)$$
 e $v_1 = (3, 1, 2, -3)$ $v_2 = (0, 0, 0, 1)$ $v_3 = (1, 0, 1, 0),$
b) $v = (1, 2, k)$ e $v_1 = (0, 1, 2)$ $v_2 = (1, 1, 1)$ $v_3 = (1, 0, -3),$

rispettivamente in \mathbb{R}^4 e \mathbb{R}^3 , determinare, in ciascun caso, i valori del parametro reale k per i quali il vettore $v \in \langle v_1, v_2, v_3 \rangle$, cioè v appartenga al sottospazio generato da v_1, v_2, v_3 .

Soluzione

a) Dobbiamo trovare i valori di k per cui esistano tre scalari $\ a,\ b,\ c\in\mathbb{R}$ tali che

$$(8, 2, k, -10) = a(3, 1, 2, -3) + b(0, 0, 0, 1) + c(1, 0, 1, 0) = (3a + c, a, 2a + c, -3a + b).$$

Otteniamo il seguente sistema:

$$\begin{cases} 3a+c &= 8 \\ a &= 2 \\ 2a+c &= k \\ -3a+b &= -10 \end{cases} \Rightarrow \begin{cases} 6+c &= 8 \\ a &= 2 \\ 4+c &= k \\ -6+b &= -10 \end{cases} \Rightarrow \begin{cases} c &= 2 \\ a &= 2 \\ c &= k-4 &= 2 \\ b &= -4 \end{cases}$$

Si conclude che k=6.

b) Dobbiamo determinare il valore del parametro reale k in modo che esistano $a, b, c \in \mathbb{R}$ per cui valga l'uguaglianza:

$$(1,2,k) = a(0,1,2) + b(1,1,1) + c(1,0,-3) = (b+c,a+b,2a+b-3c).$$

Si ottiene il sistema:

$$\begin{cases} b+c & = 1 \\ a+b & = 2 \\ 2a+b-3c & = k \end{cases} \Rightarrow \begin{cases} c & = 1-b \\ a & = 2-b \\ 2(2-b)+b-3(1-b) & = k \end{cases} \Rightarrow \begin{cases} c & = 1-b \\ a & = 2-b \\ 2b & = k-1 \end{cases}$$

Otteniamo quindi $c=\frac{3-k}{2},\ a=\frac{5-k}{2},\ b=\frac{k-1}{2},$ e possiamo concludere che ci sono infinite terne soddisfacenti la condizione, cioè le scritture di v come combinazione lineare di $v_1,\ v_2,\ v_3$ sono infinite.

Esercizio 11.8 (pag. 164)

Sia $\mathbb{R}^3 = V_3(\mathbb{R})$ lo spazio vettoriale delle terne di numeri reali e siano $S = \langle (1,1,2), (1,1,1) \rangle$ e $T = \langle (1,2,3), (2,1,2) \rangle$ due sottospazi. Determinare dim S, dim T, dim $S \cap T$, dim (S+T).

Soluzione

Innanzi tutto dim S=2 in quanto i due vettori (1,1,2) e (1,1,1) sono linearmente indipendenti, poiché $(1,1,2) \neq k(1,1,1), \forall k \in \mathbb{R}$.

Analogamente $\dim T = 2$.

Poiché per la formula di Grassmann (cfr Prop. 11.7 pag. 164) si ha che

$$\dim(S+T) = \dim S + \dim T - \dim(S \cap T),$$

ci basta determinare la dimensione di $S \cap T$ oppure quella di S + T.

Determiniamo $S \cap T$ e la sua dimensione.

$$S\cap T=\{(x,y,z)\,|(x,y,z)=a(1,1,2)+b((1,1,1)=c(1,2,3)+d(2,1,2)\,\}$$
 . Otteniamo il sistema

$$\begin{cases} a+b & = c+2d \\ a+b & = 2c+d \\ 2a+b & = 3c+2d \end{cases} \Leftrightarrow \begin{cases} a+b & = c+2d \\ c+2d & = 2c+d \\ 2a+b & = 3c+2d \end{cases} \Leftrightarrow \begin{cases} a+b & = c+2d=3c \\ d & = c \\ 2a+b & = 5c \end{cases}$$

da cui segue a = 2c, b = c, d = c.

Quindi i vettori appartenenti ad $S \cap T$ sono tutti e soli i vettori della forma

$$(x, y, z) = c(1, 2, 3) + c(2, 1, 2) = c(3, 3, 5).$$

Si può concludere che $S \cap T = \langle (3,3,5) \rangle$ ha dimensione 1 e quindi dim(S+T) = 3.

Esercizio 11.9 (pag. 165)

Analogamente al punto precedente si considerino i sottospazi

$$S = \langle (1, -1, 2), (0, 1, 1) \rangle$$
 e $T = \langle (1, 2, -1), (0, 3, 1) \rangle$

e si determinino $\dim S$, $\dim T$, $\dim S \cap T$, $\dim(S+T)$.

Soluzione

Come nell'esercizio precedente $\dim S = 2$ e $\dim T = 2$ poiché né (1, -1, 2) è multiplo di (0, 1, 1), né (1, 2, -1) è multiplo di (0, 3, 1).

$$S \cap T = \{(x, y, z) | (x, y, z) = a(1, -1, 2) + b(0, 1, 1) = c(1, 2, -1) + d(0, 3, 1) \}.$$

Otteniamo il sistema:

$$\begin{cases} a = c \\ -a+b = 2c+3d \Leftrightarrow \begin{cases} a = c \\ b = 3c+3d \Leftrightarrow \\ b = -3c+d \end{cases} \Leftrightarrow \begin{cases} a = c \\ 3c+3d = -3c+d \\ b = -3c+d \end{cases}$$

e quindi a = c, d = -3c, b = -6c.

Deduciamo che gli elementi appartenenti ad $S \cap T$ sono tutti e soli i vettori della forma:

(x,y,z) = c(1,-1,2) - 6c(0,1,1) = (c,-c,2c) + (0,-6c,-6c) = (c,-7c,-4c),e che il sottospazio $S \cap T = \langle (1,-7,-4) \rangle$ ha dimensione 1 e di conseguenza $\dim(S+T) = 3$.

Esercizio 11.10 (pag. 168)

Si provi che la funzione da $f: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, definita da $f(u,v) = u^{\top}v$ è un prodotto scalare.

Soluzione

Per verificare che f è prodotto scalare dobbiamo verificare che sono soddisfatte le condizioni della definizione 11.11 (pag 165) per ogni α , $\beta \in \mathbb{R}$ e per ogni terna di vettori $u = (x_1, x_2, \dots, x_n), v = (y_1, y_2, \dots, y_n), w = (z_1, z_2, \dots, z_n).$

1. Simmetria: Verifichiamo che f(u,v) = f(v,u) cioé che $u^{\top}v = v^{\top}u$.

$$u^{\top}v = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} (y_1, y_2 \dots, y_n) = x_1y_1 + x_2y_2 + \dots + x_ny_n = \sum_{i=1}^{n} x_iy_i.$$

$$v^{\top}u = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{bmatrix} (x_1, x_2, \dots, x_n) = y_1x_1 + y_2x_2 + \dots + y_nx_n = \sum_{i=1}^{n} y_ix_i.$$

I due prodotti sono uguali per la commutatività del prodotto in R.

2. Bilinearità. Verifichiamo che $f(\alpha u + \beta v, w) = \alpha f(u, w) + \beta f(v, w)$

$$f(\alpha u + \beta v, w) = (\alpha u + \beta v)^{\top} w = [(\alpha x_1, \dots, \alpha x_n) + (\beta y_1, \dots, \beta y_n)]^{\top} (z_1, \dots, z_n) = \begin{bmatrix} \alpha x_1 + \beta y_1 \\ \alpha x_2 + \beta y_2 \\ \dots \\ \alpha x_n + \beta y_n \end{bmatrix} (z_1, z_2, \dots, z_n) = \sum_{i=1}^n (\alpha x_i + \beta y_i) z_i \text{ e}$$

$$\alpha f(u,v) + \beta f(u,w) = \alpha u^{\top} w + \beta v^{\top} w =$$

$$\alpha \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} (z_1, z_2, \dots, z_n) + \beta \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} (z_1, z_2, \dots, z_n) = \alpha \sum_{i=1}^n x_i z_i + \beta \sum_{i=1}^n y_i z_i =$$

$$\sum_{i=1}^n \alpha x_i z_i + \beta y_i z_i = \sum_{i=1}^n (\alpha x_i + \beta y_i) z_1.$$

Analogamente

$$f(w, \alpha u + \beta v) = w^{\top}(\alpha u + \beta v) = \begin{bmatrix} z_1 \\ z_2 \\ \dots \\ z_n \end{bmatrix} (\alpha x_1 + \beta y_1, \alpha x_2 + \beta y_2, \dots, \alpha x_n + \beta y_n) = \sum_{i=1}^n z_i(\alpha x_i + \beta y_i) = \sum_{i=1}^n (\alpha x_i + \beta y_i) z_i = \alpha u^{\top} w + \beta v^{\top} w = \alpha f(u, w) + \beta f(v, w).$$

3. Per ogni u si deve ottenere che $f(u,u) \ge 0$ e che $f(u,u) = 0 \iff u = 0$.

Nel nostro caso abbiamo:
$$f(u,u) = u^{\top}u = \sum_{i=1}^{n} x_i^2 \ge 0 \text{ e } \sum_{i=1}^{n} x_i^2 = 0 \text{ se e solo se } x_i = 0 \ \forall i \in \{1,2,\cdots,n\}.$$

Esercizio 11.11 (paq. 168)

Si consideri lo spazio euclideo \mathbb{R}^3 (dotato del prodotto scalare canonico, definito nell'Esempio 11.14). Si dica se i seguenti insiemi sono ortogonali:

1.
$$A = \{a, b\}$$
 con $a = (1, 2, 2), b = (2, 1, -2).$

2.
$$C = \{a, b, c\}$$
 con $a = (1, 2, 2), b = (2, 1, -2), c = (0, 1, 0).$

3.
$$X = \{x, y, z\}$$
 con $x = (0, 2, 1), y = (2, 0, 0), z = (0, -1, 2).$

Soluzione

Verifichiamo se i vettori di ciascun insieme sono a due a due ortogonali (cfr. Def. 11.14 pag.166).

- 1. Poiché il prodotto scalare $(a,b)=1\cdot 2=2\cdot 1+2(-2)=2+2-4=0$, i due vettori sono ortogonali.
 - **2.** Per il punto precedente a e b sono ortogonali.

Consideriamo ora $(a, c) = 1 \cdot 0 + 2 \cdot 1 + 2 \cdot 0 = 2$, quindi a e c non sono ortogonali. Concludiamo quindi che C non è un insieme di vettori ortogonali.

3.
$$(x,y) = 0 \cdot 2 + 2 \cdot 0 + 1 \cdot 0 = 0$$

 $(x,z) = 0 \cdot 0 + 2(-1) + 1 \cdot 2 = 0$
 $(y,z) = 2 \cdot 0 + 0(-1) + 0 \cdot 2) = 0$.

Poiché tutti i prodotti scalari sono nulli si pu
ó concludere che X è un insieme ortogonale.

Esercizio 11.12 (pag. 168)

Nello spazio euclideo \mathbb{R}^3 (dotato del prodotto scalare canonico):

- **1.a** si determini l'insieme S dei vettori ortogonali al vettore $v = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$;
- **1.b** si verifichi che S è un sottospazio di \mathbb{R}^3 ;
- $\mathbf{2.a}$ si determini l'insieme T dei vettori ortogonali ai vettori

$$w = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \quad e \quad t = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix};$$

2.b si verifichi che T è un sottospazio di \mathbb{R}^3 .

Soluzione

$$\mathbf{1.a} \ S = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| \left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right) = 0 \right\} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| x + y + z = 0 \right\} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| z = -x - y \right\}.$$

1.b S è un sottospazio: infatti per ogni coppia di vettori s_1, s_2 di S e per ogni $k \in \mathbb{R}$ si ha che $s_1 + s_2 \in S$ e $ks_1 \in S$. Infatti, siano

$$s_1 = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, s_2 = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in S$$

cioé s_1 , s_2 soddisfino le condizioni x + y + z = 0, a + b + c = 0.

Si ha che

$$s_1 + s_2 = \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} x+a \\ y+b \\ z+c \end{pmatrix}$$

e quindi $s_1 + s_2$ appartiene ad S in quanto le sue componenti soddisfano la condizione data, ((x+a)+(y+b)+(z+c)=(x+y+z)+(a+b+c)=0).

Inoltre

$$k \begin{pmatrix} x \\ y \\ x \end{pmatrix} = \begin{pmatrix} kx \\ ky \\ kx \end{pmatrix}$$
 e quindi anche questo elemento sta in S in quanto $kx + ky + kz = k(x + y + z) = 0$.

Osserviamo che il sottospazio S pu
ó essere descritto anche nel modo seguente:

$$S = \left\{ \begin{pmatrix} x \\ y \\ -x - y \end{pmatrix} \middle| x, \ y \in \mathbb{R} \right\} = \left\langle \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \right\rangle.$$

$$\mathbf{1.a} \ T = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| \begin{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right) = 0, \begin{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right) = 0 \right\} =$$

$$= \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| \left\{ \begin{array}{c} x + z = 0 \\ y = 0 \end{array} \right\} \right\} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| z = -x, y = 0 \right\}.$$

2.b T è un sottospazio: infatti per ogni coppia di vettori t_1 , t_2 di T e per ogni $k \in \mathbb{R}$ si ha che $t_1 + t_2 \in T$ e $kt_1 \in T$. Siano

$$t_1 = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, t_2 = \begin{pmatrix} a \\ b \\ c \end{pmatrix}, \text{ allora } k \begin{pmatrix} x \\ y \\ x \end{pmatrix} = \begin{pmatrix} kx \\ ky \\ kx \end{pmatrix} e$$

$$t_1 + t_2 = \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} x+a \\ y+b \\ z+c \end{pmatrix}.$$

Tali vettori appartengono a T poiché sono soddisfatte le condizioni: ky=0 e x+a+z+c=(x+z)+(a+c)=0, y+b=0 e kx+ky=k(x+z)=0. Come al punto precedente, il sottospazio puó essere descritto anche nel modo seguente:

$$T = \left\{ \left(\begin{array}{c} x \\ 0 \\ -x \end{array} \right) | \forall x \in \mathbb{R} \right\} = \left\langle \left(\begin{array}{c} 1 \\ 0 \\ -1 \end{array} \right) \right\rangle.$$