Amini Cocoa Contamination Challenge Report

Team: Brain Blend

Challenge Overview

The goal of the Amini Cocoa Contamination Challenge is to develop machine learning models that can accurately identify **all diseases** present in images of cocoa plants. A key requirement is that these models must:

- Generalize well to unseen diseases not present in the training data.
- Operate efficiently on low-resource smartphones, such as those commonly used by subsistence farmers across Africa.

ETL Process

We used the provided training dataset and prepared the data using the following pipeline:

- Applied 10-fold StratifiedGroupKFold cross-validation to ensure balanced and diverse splits.
- For each fold, the corresponding **YOLO-style annotations (label files)** were matched and copied into images/train, images/val, labels/train, and labels/val directories accordingly.

Modeling Approach

Model Choice:

We selected **YOLO11s**, due to its lightweight nature and excellent performance on edge devices.

Training Strategy:

- Trained on folds 6, 7, and 8.
- For each fold:
 - Validation set was split in half:
 - One half was merged with training data.
 - The other half was used for evaluation.
- Each fold was trained for ~2 hours 30 minutes, totaling 8 hours 33 minutes well within the 9-hour GPU training limit.

Validation Performance (Local mAP):

Fold	mAP
6	0.760
7	0.789
8	0.806

Inference Strategy

Ensemble Method:

We used a Weighted Box Fusion (WBF) ensemble of the 3 trained models.

Multi-scale Inference:

Each model performed inference across the following image sizes:

```
[640, 800, 960, 1120, 1280, 1440]
```

This increased robustness and improved detection accuracy on varying disease patterns.

Runtime Summary:

Notebook Duration

Training 8h 33min

Inference 40min

Total: 9h 13min (training + inference), adhering to the challenge's **3h inference** and **9h training** constraints.

Interpretability

CAM Visualizations:

We implemented **EigenCAM** to visualize model attention maps.

- This method extracts the **first principal component** of 2D activations.
- It helps highlight **regions in the image** most relevant to disease detection.

Notebook: Team_Brain_Blend_Interpretability_Report.ipynb

How to Run the Notebooks

We have included all relevant files (weights + notebooks) in the provided ZIP archive.

To Train:

- Open Team_Brain_Blend_Training_Notebook.ipynb
- Adjust the dataset path if using Google Colab but for reproducible results
 please use Kaggle and use the latest environment since that is what we used
- Run notebook end-to-end to retrain the models

To Run Inference:

- Use Team_Brain_Blend_Inference_Notebook.ipynb
- You can either:
 - Use the pre-trained weights provided in the ZIP
 - Or use weights from the training notebook

Compliance with Resource Restrictions

- The models used (YOLO11s) are designed to be deployed on low-resource devices.
- Inference and training times are within the required limits.
- Models can be exported to **ONNX or TensorFlow Lite**, ensuring compatibility with **entry-level smartphones**.

Although an ensemble was used, no restriction was stated against it, and all ensemble inferences were performed well under the 3-hour limit and the training runtime did not surpass the 9hr limit.

Even individual models are performant and suitable for edge deployment.