

Plano de Ensino

- Apresentação da Disciplina.
- Introdução à Inteligência Artificial.
- Agentes Inteligentes.
- Resolução de Problemas.
- · Mecanismos de Busca.
- Formas de Raciocínio Artificial.
- Representação do Conhecimento.
- Redes Semânticas.
- Aquisição de Conhecimento.
- · Sistemas Especialistas.
- · Sistemas Multiagentes.
- · Redes Neurais.
- · Mineração de Dados.

Livro-Texto

- Bibliografia Básica:
 - » RUSSELL, Stuart J.. Inteligencia Artificial. 2ª ed. Rio de Janeiro: Campus - Elsevier, 2004.
- Bibliografia Complementar:
 - LUGER, G.F.. Inteligência Artificial: Estruturas e Estratégias para a Resolução de Problemas Complexos. 4ª ed. Porto Alegre: Artmed, 2004.

- As estratégias de busca podem ser classificadas em:
 - » Busca sem informação ou busca cega → não existe nenhuma informação adicional sobre estados, além daqueles fornecidos na definição do problema. Tudo que se faz é gerar sucessores e distinguir um estado objetivo de um estado não-objetivo.
 - » Busca com informação ou busca heurística → são estratégias de busca que sabem se um estado não-objetivo é mais promissor que outro.
- Todas as estratégias de busca se distinguem pela ordem em que os nós são expandidos.
 - » Busca em extensão (Breadth-first);
 - » Busca de custo uniforme;
 - » Busca em profundidade (Depth-first);
 - » Busca em profundidade limitada;
 - » Busca de aprofundamento iterativo.

4. Mecanismos de Buscas - Busca Cega

- Busca em Extensão →
 - » É uma estratégia simples em que o nó raiz é expandido primeiro, em seguida todos os sucessores do nó raiz são expandidos, depois os sucessores desses nós e assim por diante.
 - » Todos os nós em uma dada profundidade são expandidos, antes que todos os nós no nível seguinte sejam expandidos.
- Implementação:
 - » A borda é uma fila FIFO (first-in, first-out), isto é, novos itens entram no final.

4. Mecanismos de Buscas – Busca Cega

■ Busca em Extensão →

- Busca em Extensão →
 - » Completa \rightarrow Sim (se b é finito)
 - » Tempo $\rightarrow 1+b+b^2+b^3+...+b^d+b(b^d-1)=O(b^{d+1})$
 - » Espaço $\rightarrow O(b^{d+1})$ (mantém todos os nós na memória)
 - » Ótima → Sim (se todas as ações tiverem o mesmo custo)
- Complexidade →

Profundidade	Nós	Tempo	Memória
2	1100	0,11 segundos	1 Megabyte
4	111.100	11 segundos	106 Megabytes
6	10 ⁷	19 minutos	10 Gigabytes
8	10 ⁹	31 horas	1 Terabyte
10	1011	129 dias	101 Terabytes
12	10 ¹³	35 anos	10 Petabytes
14	10 ¹⁵	3.523 anos	1 Exabyte

4. Mecanismos de Buscas - Busca Cega

- Busca de Custo Uniforme →
 - » É uma estratégia simples em que o nó raiz é expandido primeiro, em seguida todos os sucessores com o caminho de custo mais baixo.
 - » Se todos os custos de passos forem iguais, essa busca será idêntica à busca em extensão.
 - » A busca de custo uniforme n\u00e3o se importa com o n\u00e1mero de passos que um caminho tem, mas apenas com o seu custo total.
- Implementação:
 - » A borda é uma fila ordenada pelo custo do caminho.

4. Mecanismos de Buscas - Busca Cega

■ Busca de Custo Uniforme →

- Busca de Custo Uniforme →
 - » Completa \rightarrow Sim, se o custo de cada passo $\geq \epsilon$
 - » Tempo \Rightarrow # de nós com $g \le$ custo da solução ótima, $O(b^{\lceil C^{\gamma} \ell \rceil})$ onde C é o custo da solução ótima
 - » Espaço \rightarrow de nós com $g \le$ custo da solução ótima, $O(b^{\lceil C^*/\epsilon \rceil})$
 - » Ótima → Sim, pois os nós são expandidos em ordem crescente de custo total.

4. Mecanismos de Buscas - Busca Cega

- Busca em Profundidade →
 - » É uma estratégia que expande o nó mais profundo na borda atual da árvore de busca.
 - » A busca prossegue imediatamente até o nível mais profundo da árvore de busca, onde os nós não tem sucessores.
 - » À medida que os nós são expandidos, são retirados da borda, retornando então ao nó mais raso que ainda possui sucessores inexplorados.
- Implementação:
 - » A borda é uma pilha LIFO (last-in, first out).

4. Mecanismos de Buscas – Busca Cega

■ Busca em Profundidade →

4. Mecanismos de Buscas – Busca Cega	<u>Å</u> Anhanguera
 Busca em Profundidade → Completa → Não: falha em espaços com profundidade in espaços com loops. Se modificada para evitar estados re é completa para espaços finitos. Tempo → O(b^m): péssimo quando m é muito maior que d muitas soluções pode ser mais eficiente que a busca em extensão. Espaço → O(bm), isto é, espaço linear. 118 KB ao invés 10 PB para busca com profundidade d = 12. Ótima → Não. 	petidos . Se há

- Busca em Profundidade Limitada →
 - » Evita o problema de árvores ilimitadas, introduzindo um limite de profundidade $\it l$.
 - » Introduz uma fonte de incerteza, caso o limite de profundidade seja menor que o nível de profundidade do objetivo (l < d), principalmente onde d não é conhecido.
 - » Também não será ótima para os casos onde l > d.
 - » À medida que os nós são expandidos, são retirados da borda, retornando então ao nó mais raso que ainda possui sucessores inexplorados.
- Implementação:
 - » A borda é uma pilha LIFO (last-in, first out) com limite de posições.

4. Mecanismos de Buscas – Busca Cega ■ Busca em Profundidade Limitada → Estado objetivo → G A I = 2 H I J K L M N O

4. Mecanismos de Buscas - Busca Cega Busca de Aprofundamento Iterativo → » É uma técnica de busca que combina a busca em profundidade com a busca por extensão. » A busca de aprofundamento iterativo ocupa pouca memória, fator esse que vem da busca em profundidade e é completo, pois o fator de ramificação é finito, dado pela busca por extensão. » O aprofundamento iterativo é o método de busca sem informação preferido quando existe um espaço de busca gerado grande e a profundidade da solução não é conhecida. » Apesar do overhead inerente, a busca de aprofundamento iterativo é eficiente já que a maior parte dos nós estará no nível 4. Mecanismos de Buscas - Busca Cega Busca de Aprofundamento Iterativo → Limite = 0 4. Mecanismos de Buscas - Busca Cega ■ Busca de Aprofundamento Iterativo → Limite = 1 Estado objetivo → M

4. Mecanismos de Buscas – Busca Cega ■ Busca de Aprofundamento Iterativo → Completa → Sim. Tempo → (d+1)b⁰ + d b¹ + (d-1)b² + ... + b^d = O(b^d). Espaço → O(bd). Ötima → Sim, se custo de passo = 1.

4. Mecanismos de Buscas - Busca Cega Comparativo entre os algoritmos → Completa Tempo Espaço Estratégia de Busca $O(b^{d+1})$ O(bd+1) O(b^{C*/ε}) $O(b^{\lceil C^*/\epsilon \rceil})$ Custo uniforme Sim Sim Profundidade Não $O(b^m)$ O(bm) Não Profundidade Limitada Não Não $O(b^i)$ O(bl) Aprofundamento Iterativo Sim O(bd) O(bd) Sim

O processo de busca pode perder tempo expandindo nós já explorados antes. Estados repetidos podem levar a loops infinitos. Não detectar estados repetidos pode transformar um problema linear em um problema exponencial. Para alguns problemas os estados repetidos são inevitáveis: localização de rotas e quebra-cabeças, por exemplo.

