

Introduction
Data Selection
Modeling and Methods Used
Interpretation of Analysis /
Model Results
Conclusion

Introduction

- CDC reports that heart disease is one of the leading causes of death for people in the United States with one person dying from it every 34 seconds.
- From financial perspective, the average cost associated with this disease per year was about \$229 billion between 2017 and 2019

Data Selection

- Resoure Link: <u>Personal Key Indicators of Heart Disease</u> | <u>Kaggle</u>
- Has 18 variables
- HeartDisease noted as Yes and No
- Collected by CDC in 2020 by telephonic survey
- Included 300 variables initially
 - Trimmed down to 17

Visualizations

- Bar chart showing count of males and females having heart disease.
- Bar chart showing counts by races having heart disease.
- Bar chart showing counts by age group having heart disease.
- Bar chart showing count by general health having heart disease.

Data Preparation

- Dummy variables were created for categorical variables
- Redundant variables removed after creation of dummy variables
- Checked for normalcy for race and gender categorical variables

Modeling

- Target outcome is Yes or No / Binary
- Created two models:
 - Logistic Regression
 - Nearest Neighbor Algorithm

Visualizations

Visualizations Continued

Presentation Title

Model Result Interpretation

• Logistic Regression

	precision	recall	f1-score	support	
0	0.92	0.99	0.95	54793	
1	0.56	0.11	0.18	5551	
accuracy			0.91	60344	
macro avg	0.74	0.55	0.57	60344	
veighted avg	0.88	0.91	0.88	60344	

Model Result Interpretation - Continued

Nearest Neighbor

	precision	recall	f1-score	support
0	0.92	0.96	0.94	54793
1	0.33	0.18	0.23	5551
accuracy			0.89	60344
macro avg	0.62	0.57	0.59	60344
weighted avg	0.87	0.89	0.88	60344

Presentation Title

Conclusion

- Since the maximum number of people in the data set having heart disease were in good general health, a prediction model becomes important.
- Recommend Logistic Regression

 Higher accuracy together with
 highest precision scores for both
 predicting "heart disease" and
 "no heart disease" between the
 two models created.
- Only slight overfitting observed.

9/3/20XX

Presentation Title

Shashi Bhushan

