Pr. R. Manikandan

Hint Paper: 4

T. Mani sai Lokesh 19224/05 Artifical Intelligence & Poto schoue Guide! R. Mani kandan

Title: oftimizing social media influence Prediction accuracy for marketing strategy in comparision of Random Forest and support vector Machine.

Paragraph 1:

Defination:

- * The Machine learning techniques to forecost Potential. impact or user content may social media Platform.
- * To Provide insights a user target audience, decision making for marketing Purpose.
- * They Provide Marketers insights, tailor marketing strategies for optimal reach impact dymamic Landscape of social media.

ImPostance:

- Business and Marketing: It servers a Powerful Plotforms for business to reach and target audience. It's cost effective way to framote froduct & services.
- awarness about issues, fromoting activism.
- 3) Best Bilobal connectivity: Breakdown barries connectivity People diverse backgrounds clusters Hobalized digital community

Applications!

- * the network connected with family, friends & collegues
- * To shade information content, videos, Pictures & creative expression from brand awarness.
- * In Real time news & information dissemination Hobal events and trends.
- * customer suffort through social media channels feelback and resolve issues

Paragraph 2!

Number of Articales!

* science direct - sol

* Google Scholar - 1355

Most cited Articles!

- [1] Li, Jing xuan, et al. "social network user influence sense making and dynamic frediction." Expert system with applications 41. 11(2014):5115-5124.
- Predict social media influence operations. "science advances 6.30(2020): cabb 5824.
- algorithium for computional Personality Prediction for social media. IEEE Transctions on computional systems, 7(3) 587-599.

[4] Yu, sheng and subhash tak. "A survey of Prediction using social Media". Orxiv Prefrint Orxiv: 1203-1647 (2012).

Best study:

- * Illustrating the latent capacity of Machine learning techniques in anticipation of social media in similar setting.
- * Business Promotion Powerful for marketing strategy
 and advertising are high income.

Paragraph 3:

Existing Algorithium:

- * Enisting Algorithium the accuray is less because of the comparision of short Period of data.
- * The machine trained used existing can Predict the social media influence in marketing strategy.

 Aim of the Algorithium:
- * utilizing the machine learning Algorithium and social media influence analysis to develop robust models and Predict influence of users on social media content.
- * Enhancing Market strategies Provide insights, ultimately Lecision making Process for business and organisations.

Materials And Methods:

Paragraph 1:

study setting: SIMATS school of Engineering.

No of Groups: 2

Group 1: Random Forest

Group 2: support vector Machine

sample size: 5

Pataset: social media influence.

Paragraph 2:

pata sample PreParation

- * Group 1: Random Forest
- * Information: pataset
- * APPly Random Forest Algorithium.
- * calculate total no of users see
- * calculate taccuracy of social media influence

Poragraph 3:

- * Pata sample Preparation Group 2: Support vector Machine
- * Information: Dataset
- * APPly Artifical Neural Metwork.

- * calculate total no of PeoPle see inPost
- * calculate occuray of social media influence

Paragraph 4:

Testing setup * Google colob

- * in Intel 8th hen
- * 8GB RAM
- Paragraph 3 * windows 10 0s

statistical Analysis:

- * utilizing version 26.0 IBM SPSS Software, computation were Performed
- * Provided values are -> Mean
 - -> standard deviation
 - -> standard Error Mean.
- * IndePendent variable: inden, Age, Education, Field, settlement, QOL, New Vs old Users, lAT
- * Dependent variable: social media time in hows
- * Analysis pone : Yes
- * Result: Random Forest has better Prediction than support vector Machine.

- * Notably independent variable of interest is rough score.
- * pependent variable of Research site and recorded data utilized of T Test outcomes.

Limitations:

- * In order to manimize the fetch time and increase
- * Bulk Pata Analysis is complicated.

- * Accuracy increased using Random Forest Algorithium Testing Procedure: * Prefaring the pataset

 - * Train 70.1. of Dataset
 - * Test 30.1. of Dataset.
- * create Embe Ided model using Random Forest Algorithium and support vector machine Results And Discussions:
- * Improving Accuracy in Prediction of social media influence Analysis in Marketing strategies by minimizing false datasets.
- * using Random Forest Algorithium & support vector Machine Algorithium

* using Random Forest Algorithium and sulport vector Machine Algorithium.

Paragraph 1:

In this study we defined that Random Forest Algorithium has better Prediction than support vector Paragraph 2:

Machine Algorithium.

pata collection:

* Pata is trained

* saved Embeded model

* Input sample potaset.

Age: Above 28

Education: Arts, Psychology [12th grade]

Field: Arts

settlement: Rural

conclusion:

* The analysis of Random Forest and support vector Machine fore costing social media's influence on marketing strategy, both techniaves enhance accuracy.

* model enhances Predictive capabilities, embouring marketess with mose Precise insights

Group Statistics

	ALGORITHM		Mean	Std. Deviation	Std. Error Mean	
ACCURACY	RF	20	93.90	1.744	.390	
	SVM	20	58.65	2,739		

Independent Samples Test

Levene's Test for Equality of Variances

t-test for Equality of Means

		F	Sig.	t	df	Sig. (2- tailed)	Mean Difference	Std. Error Difference	95% Confider of the Diff Lower	
ACCURA CY	Equal variances assumed	7.111	.011	48.546	38	.036	35.250	.726	33.780	36.720
	Equal variances not assumed			48.546	32.232	.036	35.250	.726	33.771	36.729

