Public Health Reports

VOLUME 58 SEPTEMBER 10, 1943 NUMBER 37

IN THIS ISSUE

Trinitrotoluene and Smokeless Powder Wastes
Twenty-year Survival of Bacillus pestis

CONTENTS

	Page
Surveys of liquid wastes from munitions manufacturing. I. Trinitrotoluene (TNT) wastes. II. Smokeless powder wastes. Russell S. Smith and W. W. Walker	1365
Twenty-year survival of virulent Bacillus pestis cultures without transfer.	1000
Edward Francis	1379
Deaths during week ended August 28, 1943:	
Deaths in a group of large cities in the United States	1382
Death claims reported by insurance companies	1382
PREVALENCE OF DISEASE	
United States:	
Reports from States for week ended September 4, 1943, and compari-	
son with former years	1383
Weekly reports from cities:	
City reports for week ended August 21, 1943	1387
Rates, by geographic divisions, for a group of selected cities	1389
Plague infection in Mono County, Calif.	1389
Foreign reports:	
Canada—Provinces—Communicable diseases—Week ended August 7,	
1943	1390
New Zealand—Vital statistics—Year 1942-43	1390
Switzerland—Notifiable diseases—January-March 1943	1391
Reports of cholera, plague, smallpox, typhus fever, and yellow fever received during the current week—	
Plague	1391
Smallpox	1391
Typhus fever	1391
Yellow fever	1392

Public Health Reports

Vol. 58 • SEPTEMBER 10, 1943 • No. 37

SURVEYS OF LIQUID WASTES FROM MUNITIONS MANUFACTURING

I. TRINITROTOLUENE (TNT) WASTES

By Russell S. Smith, Public Health Engineer, and W. W. Walker, Associate Sanitary Chemist, United States Public Health Service, Stream Pollution Investigations, Cincinnati, Ohio

Many large munitions plants are being built in the United States to supply military needs under existing war conditions. Several of these plants will be manufacturing military explosives in unprecedented quantities and will discharge liquid wastes into watercourses.

As there are no published data available on the quantity and character of the wastes to be expected from such manufacturing processes, the United States Public Health Service has made surveys of industrial waste at various types of plants manufacturing military explosives in order to obtain the data necessary for intelligent consideration of the effect of such wastes from any proposed plant on the receiving stream. These surveys were made by sending a mobile laboratory, built in an automobile trailer, to the plant under study. Flow measurements and samples were taken for at least seven 24-hour periods and the samples analyzed in the trailer laboratory.

In this paper, the first of a series of five reports, are presented data on industrial wastes gathered from surveys at three plants manufacturing di- and tri-nitrotoluene (DNT and TNT). The data concern only the actual liquid waste from the manufacture of this explosive. The flows from the power house areas, acid areas (where nitric acid is manufactured and sulfuric acid is reconcentrated), and any areas manufacturing other types of explosives have not been considered.

MANUFACTURING PROCESSES

The different processes in the manufacture of TNT may be summarized as follows:

- (a) Nitration of toluene by treating it with a mixture of nitric and sulfuric acids under controlled temperature conditions. This is done in three stages, producing first mono-, then di-, and finally tri-nitrotoluene.
 - (b) Washing the product until it is free from acid.
 - (c) Graining or crystallizing.

(1305)

(d) Purifying with sodium sulfite and washing to remove the beta- and gammatrinitrotoluenes as water soluble sulfonates from the alpha-trinitrotoluene.

(e) Remelting, flaking, and packing.

A variable amount of the DNT is removed for use after the second stage of nitration, the remainder being carried to completion as TNT.

RAW MATERIALS

The principal raw materials are the toluene and the acids used in the nitration. The sulfuric acid is shipped to the plant, but the nitric acid is usually made on the plant site by the catalytic oxidation of anhydrous ammonia at high temperature and pressure. Sodium sulfite, which is used in the purification of the TNT, is usually made on the plant site by passing sulfur dioxide gas through a sodium carbonate solution.

CHARACTER OF WASTES

A plant for the manufacture of TNT consists of one or more "areas," each containing three "lines." The manufacturing is a batch process and the wastes from any one line fluctuate rapidly in appearance and character. Naturally, the larger the plant and the more areas involved, the less apparent are these fluctuations in the main waste flow.

There are two principal wastes from a plant of this type in addition to the cooling water from the nitrators, graining kettles, and the "fume recovery" or acid recovery house. These are the acid wash waters from the washing after nitration and the so-called "red water" from the sulfite purification and wash. The former is highly acid and has a decided yellow color. The red water from the purification is alkaline and has such an intense color (250,000 or more on the cobalt scale) that it appears black. As the final washings proceed, this red color fades rapidly. The acid waste and the red water are passed through catch tanks to settle out any particles of TNT that may be formed by postcrystallization as the wastes cool and then are usually mixed with the wasted cooling water for discharge to the receiving stream. If it were desirable for waste treatment purposes, the red water, either alone or with the acid wash, could be separated at the outlet of the catch tanks and piped to the treatment process, allowing the cooling water to be discharged directly to the stream. A composite sample of the waste, including the cooling water, over a period of several hours is clear, decidedly acid, and has a deep orange-red color.

FLOW MEASUREMENTS AND SAMPLING

Surveys were made in the TNT areas of three plants which are designated as plants "A," "B," and "C."

At plants "A" and "B" the waste flows were measured by means of a fully contracted rectangular weir set in an open ditch which

carried the waste waters from the entire TNT area. The head on the weir was measured to the nearest 0.01 ft. at regular intervals and the flow computed by standard weir formulae.

In order to obtain samples as representative as possible, an automatic sampler was built and installed in the ditch, well downstream from the weir. The stream was constricted somewhat to increase the velocity of flow and a paddle wheel about 4 feet in diameter was installed to turn with the current. Mounted on the rim of the wheel were two open stainless steel or copper cups with a hole about 1/4 inch in diameter in the side. As these cups passed the top of their arc, a small part of the flow from this side hole entered a trough leading to the sample container. The wheel averaged about 17 r. p. m., thus collecting approximately 2,000 samples per hour. The sample container was changed every 2 hours and the samples combined into 12-hour or 24-hour composites, either uniformly or based on the calculated flows if there was any great flow variation. Sampling was done over a 24-hour period every other day for at least 2 weeks at each plant. In this way it was possible to obtain flow measurements and analytical results representative of a full week's operation at each plant. The 12-hour composite sample periods were from 8 a. m. to 8 p. m., designated as "day," and from 8 p. m. to 8 a. m., designated as "night." All analyses were made in a trailer laboratory of the United States Public Health Service which was set up within the grounds of the munitions plants.

The volume of cooling water used will vary with its temperature. Some plants may use well water for cooling, while others will use water from surface streams. If the cooling water comes from a surface supply, its temperature will vary greatly between winter and summer. For these reasons, the volume and strength of the wastes may vary greatly from one plant to another when considering the total flow from the TNT area.

At plant "C" it was found impractical to measure and sample the entire flow from the area. It was found, however, that the combined red water and acid wash from one line could be readily measured and sampled in a wood trough downstream from the catch tanks before being mixed with the cooling water. A shallow, suppressed weir was built in this trough and weir readings and samples were taken every 10 minutes for three 24-hour periods. The red water has a very intermittent flow, being discharged for 20 to 30 minutes every hour and a half. During one period of 12 hours, the time of start and stop of this flow was noted and depth measurements were made and samples taken every minute during the discharge. Flows were computed by the Chezy formula. From these data taken at plant "C" it is possible to determine the amount and character of

the waste per unit of production that might need treatment before discharge into a stream.

ANALYTICAL DETERMINATIONS

The following laboratory determinations were made on the composite samples of the waste: pH; oxygen consumed; color; threshold odor; sulfates; acidity, both methyl red and phenolphthalein; ammonia nitrogen; nitrite nitrogen; nitrate nitrogen; total solids, volatile and ash; and suspended solids, volatile and ash. Ammonia nitrogen and nitrate nitrogen determinations were not made on the plant "B"

samples.

Where possible, all determinations were made in accordance with "Standard Methods of Analysis for Water and Sewage, Eighth Edition." The pH of the waste was determined potentiometrically using the glass electrode. Oxygen consumed was determined by digestion with potassium dichromate, instead of the more customary potassium permanganate, in accordance with the general practice of the Stream Pollution Investigations laboratory. Color was determined by the use of a standard color comparator using glass standards based on the cobalt scale, the readings being obtained by dilution of the waste with distilled water to bring the color within the range of the standards. Sulfates were determined gravimetrically by precipitation with barium This procedure would also precipitate sulfites, if present, and the amounts of sulfates reported may, therefore, be unduly high Owing to the color of the waste, some difficulty was experienced in getting true end points when titrating for acidity, but pH measurements after titrating showed that the end points were in fair agreement. Nitrate nitrogen was determined by the reduction method. This determination includes nitrite and ammonia nitrogen The latter two were obtained separately and the nitrate nitrogen obtained by subtraction. Nitrite nitrogen was measured colorimetrically and, although interference was encountered in a few cases during the work, satisfactory results were generally obtained. Ammonia nitrogen was determined by distillation into 0.1 normal acid.

Certain customary determinations could not be made on this waste. Because of the deep orange-red color, analyses for nitrate nitrogen by the disulfonic acid method, ammonia nitrogen with Nessler's reagent, and turbidity could not be made. It was found that dissolved oxygen determinations were impossible as some components of the wastes continued to liberate iodine in the final titration, giving erroneously high results. None of the standard modifications of the Winkler method nor other preliminary treatments that were tried would eliminate this interference. B. O. D. determinations were not made as routine work because trials in the field showed no B. O. D. in concentrations up to 5 percent even though the waste was neutralized and seeded.

RESULTS AND DISCUSSION

Tables 1, 2, and 3 show the analytical results for all samples taken at each plant, together with the average, maximum, and minimum results for the individual plant. Table 3A shows the analytical results for red water alone as found at plant "C." .Table 4 presents a comparison of these results for the three plants surveyed and data on the average strength of the wastes for plants of this type. Table 5 shows the pounds of waste materials per 100,000 pounds of explosive produced at the various plants. The averages given in this table are the amounts of the various waste constituents that may be expected per 100,000 pounds of explosive produced (TNT plus DNT) from a TNT manufacturing plant (exclusive of the acid manufacturing area).

TABLE 1 .- Analytical results, plant "A"

										p. p.	m.				
Sample date	Sample period			entration	Aci	dity	nsumed		N	ltrog	en	Total	solids	Su pen sol	ded
		ВH	Color	Odor concentration	Methyl	Phenol- phthalein	Oxygen consumed	804	NH	NO.	NOs	Volatile	Ash	18 12 24 23 25 7 24 17 20 31 25 22 23 37	Ash
1	Day Night	2.4	8, 000 7, 500			504 424		617 535	5.7	10 16		1, 085 933	1, 325 1, 097		
2	Day Night	2.7 2.7	6, 000 7, 000		176 154			587 569	5.9	4 10	92 92	964 937	1, 266 1, 293	24 23	
3	Day Night	2.7 2.7	6, 000 6, 000				718 747	518 527	5.4 4.5	15 20	137 120		1, 345 1, 160	25 7	242 90
4	Day Night	2.4 2.4		32 64				605 587	8.4 5.0	13 26	140 119		1, 490 1, 267	24 17	200 118
5	Day Night		9, 000 9, 000	64 32	283 343	441 505		604 667	5. 4 5. 1	13 20	103 99	1, 106 1, 160		24 22	
6	Day Night		7, 000 6, 000	32 32	261 304	400 428	820 738	562 554	4.5	11 19	110 90	960 852	1, 320 1, 188		249 144
7	Day Night		7, 500 7, 000	64 32			702 759	806 972	5.9 5.7	14 24	124 88	1, 090 1, 190			135 128
A verage Maximum Minimum	************	2.7	7, 100 9, 000 6, 000	70 128 32	676		795 926 702	672 972 518	5.3 8.4 3.8	15 26 4	107 137 76	1,004 1,190 852	1, 273 1, 490 1, 097	22 37 7	144 249 55

Table 4 reveals that there is a great difference in the strength of the wastes at different plants. Acidity, oxygen consumed, and volatile solids all show that the waste from plant "A" is considerably stronger than the waste from plant "B." Table 5 shows that the actual amounts of waste per unit of product were higher at "A" than at "B." The difference might be due to the fact that "A" was being operated at somewhat more than rated capacity, while "B" was slightly under capacity.

Waste flows at "B" were relatively considerably lower than at "A." This may be due to the fact that the water supply at "B" is

Table 2.—Analytical results, plant "B"

										p. p	. m.				
Sample date	Sample period			tration	Aci	dity	pauns		N	itrog	en	Total	solids		ided lids
oampie uate	Sample period	. Hq	Color	Odor concentration	Methyl red	Phenol- phthalein	Oxygen consumed	80,	NH3	NO,	NO	Volatile	Ash	Volatile	Ash
1	DayNight		6, 750 8, 000				738 730			23 32		826 907		14	12
2	Day Night		4, 000 3, 500				557 464	706 560		14 15		597 573	1, 103 947	6	6 5
3	Day Night		8, 500 7, 000	8	112 183	162 218		563 622		12 24		620 678			
4	Day Night	2.8 2.6		8 16	121 171	162 254	494 454			14 13			1, 116 1, 192		
5	Day Night		5, 500 4, 750	8	204 151	280 205	498 516	733 594		25 22		573 728	1, 270 1, 090		31
6	Day Night		4, 500 3, 500	16 16	117 132	187 166	564 558	577 569		16 14		590 675	1, 100 1, 065		39 10
7	Day Night	3.1	6, 000 7, 000	32 16	56 61	121 120	620 618	590 558		20		760 836	1, 163 1, 100		29 3
8	Day Night		9, 000 7, 500	16 16	183	228 143	578 490	658 564		22 25			1, 220 1, 080		19 26
9	Day Night		8, 000 7, 000	16 16	90 92	119 125	435 506	526 497		20 21		730 750	1, 070 1, 060		9 20
Maximum		3. 2	6, 300 9, 000 3, 500	16 32 8	134 259 56	178 291 115	551 738 435	604 733 497		20 32 12		907	1, 136 1, 290 1, 060		15 39 1

Table 3.—Analytical results, plant "C" (concentrated waste from catch tanks)

									p.	p. m					
Sample date '	p			tration	Acie	lity	pauns		N	itrog	en	To		St pen sol	
	Sampe period	рН	Color	Odor concentration	Methyl red	Phenol- phthalein	Oxygen consumed	80,	NH,	NO,	NO,	Volatile	Ash	Volatile	Ash
3	24 hr do do	1. 1 1. 3 1. 2	23, 000 34, 000 46, 000	8 8 16	4, 300 2, 530 2, 860	4, 670 2, 720 3, 000	958	2, 660 2, 600 3, 509	30 26 27	75 55 55	399 279 253	8, 270 5, 410 5, 570	5, 540 4, 380 4, 990	475 21 12	18
Average Maximum Minimum Average 2 and 3		1. 2 1. 3 1. 1 1. 2	34, 000 46, 000 23, 000 40, 000	11 16 8 12	3, 230 4, 300 2, 530 2, 695	3, 460 4, 670 2, 720 2, 860	1, 057 1, 110 958 1, 031	2, 923 3, 509 2, 600 3, 055	28 30 26 27	62 75 55 55	310 399 253 266	6, 417 8, 270 5, 410 5, 490	4, 970 5, 540 4, 380 4, 685	169 475 12 17	18

Note.—During first sampling day the catch tanks were cleaned and an unusual amount of suspended solids appeared in the waste.

'TABLE 3A .- Red water only, plant "C" (from catch tank)

	1						p.	p. n	1.				
рН		tration	Ac	eidity	(methyl	peun		Nit	rogen	Total s	olids i	Su pen- soli	is- ded ids
pii.	Color	Odor concentration	Methyl red	Phenol- phthalein	Alkalinity (methylorange)	Oxygen consum	80,	NH,	NO1+NO1	Volatile	Ash	Volatile	Ash
8.0	190, 000	2			711	4, 480	5, 096	9. 5	1, 082	21, 750	12, 710	15	(

¹ Exploded on ignition; some of the ash lost.

Table 4.—Average of analytical results

								p. p	. m.					
Plant			tration	Acid	dity	consumed		N	itrog	en	Total	solids	Su pene soli	ded
riany	Hd	Color	Odor concentration	Methyl red	Phenol. phthalein	Oxygen cons	80,	NH.	NOs	NO.	Volatile	Ash	Volatile	Ash
"A" "B" Average ("A" & "B")	24 27 26	7, 100 6, 300 6, 700	70 16 43	291 134 212	485 178 332	795 551 673	672 604 638	5.3	15 20	****	1, 004 686 850	1, 273 1, 123 1, 198	22 14	144
"C" (no cooling water)	1. 2	34, 000	11	3, 230		1, 057	2, 923	2.8	18 62	310			18 17	1

TABLE 5 .- Waste quantities

	Waste p	er 100,000 oduced (TN	pounds of NT and DN	explosive
	Plant "A"	Plant "B"	Plant "C"	Average
Flow million gallons	1. 17	1.08		1.12
Free mineral acid as H ₃ SO ₄ pounds. Sulfates do do	2, 070 5, 560	1, 210 5, 450	3, 140 2, 840	2, 140 4, 620
NHs nitrogen do	49. 7 140	179	27. 2	38. 5 116
NO ₃ nitrogendo	1,062	*******	302	684
Oxygen consumeddo	8, 360	4, 990	1,055	4, 800
Volatiledo	9, 460	6, 180	6, 440	7, 360
Ashdo	12, 240	10, 220	4, 980	9, 150
Volatiledo	200	118	170	163
Ashdo	1, 380	130	6	505

from surface streams and the water temperatures were very low during the winter when the survey was made. It is expected that the flow per unit of product at plant "B" would increase considerably during the warm summer months.

As previously mentioned, the results at plant "C" are from sampling the concentrated wastes before they were diluted with the cooling

545235°-43--2

water. At a plant where it was considered necessary to treat the wastes before discharging them into a stream, these concentrated wastes could be readily collected separately and the uncontaminated cooling waters discharged without treatment. The survey showed that these concentrated wastes would average 117,000 gallons per 100,000 pounds of explosive. If it should be found possible to pass the yellow acid wash into the stream and treat only the "red water" or Sellite (sodium sulfite) wash, it would reduce the volume of waste to be treated to approximately 60,000 gallons per 100,000 pounds of explosive. Table 6 shows the pounds of waste products per 100,000 pounds of explosive that may be expected in the "red water."

Table 6.- Waste quantities (red water only)

	Waste per 100,000 pounds of explosive produced		Waste per 100,000 pounds of explosive produced
Flow	0.0306 1,300 2.4 276 1,140	Total solids:	5, 530 3, 240 4

Tests were made at the National Institute of Health, United States Public Health Service, Bethesda, Md., of the toxicity of the concentrated waste as obtained from plant "C." The waste was brought to a pH of 7, made isotonic with sodium chloride, and sterilized in an autoclave for 1 hour. Two mice were each given a ½-ml. intraperitoneal injection of the sterilized waste and a guinea pig was given 2 ml. intraperitoneally. A rabbit was given an intravenous injection of 15 ml. and observed for any temperature rise. All results were negative and the animals showed no ill effects from the different injections. Apparently the waste is nontoxic to warm-blooded animals.

SUMMARY

Waste surveys were made at three plants manufacturing trinitrotoluene. Tables present the average concentration of various constituents of the wastes for plants of this type and the average amounts of various constituents of the wastes to be expected per unit of product.

The waste is generally clear, highly colored, strongly acid, and a high percentage of the solids present are volatile. It has a noticeable chemical odor and a taste best described as "acid." Apparently it is very stable. It does not readily decompose in the stream, nor does it seem to combine with other materials to be found in the normal stream used for water supply to intensify taste and odor troubles. The color apparently cannot be removed by means of coagulation methods

normally used in water treatment and can only be reduced or eliminated by means of adequate dilution. The waste in a concentration of ½ percent in filtered and chlorinated Ohio River water gave no odor and a barely perceptible "acid" taste. There was, however, a very noticeable increase in color. The waste is apparently nontoxic to warm-blooded animals.

II. SMOKELESS POWDER WASTES

By Russell S. Smith, Public Health Engineer, and W. W. Walker, Associate Sanitary Chemist, United States Public Health Service, Stream Pollution Investigations, Cincinnati, Ohio

This paper presents data on industrial wastes gathered from a survey of three plants manufacturing smokeless powder for use as a propellant.

MANUFACTURING PROCESSES

The different processes used in the manufacture of nitrocellulose (pyro smokeless) powder may be summarized as follows:

- (a) Nitration of purified cotton linters by treating with a mixture of nitric and sulfuric acids to produce a cellulose nitrate or "pyrocotton."
- (b) Purification of pyrocotton by boiling, macerating, and washing to remove all traces of free acids, unnitrated cellulose, nitrated oxy- and hydrocellulose, and cellulose sulfate.
- (c) Mixing of pyrocotton with ether-alcohol and a stabilizer and pressing to form a colloid.
- (d) Granulating of the powder by pressing the colloid through steel dies.
- (e) Final processes of solvent recovery, drying, and blending.

The completed powder is shipped to other locations for loading into silk bags, cartridges, and field artillery shells.

RAW MATERIALS

The principal raw materials used in the process are cotton, nitric acid, sulfuric acid, and alcohol. The cotton is received at the plant as purified cotton linters, the cotton having been purified elsewhere by digesting, washing, and bleaching. The sulfuric acid is shipped to the plant and the nitric acid is made on the plant site by the catalytic oxidation of ammonia at high temperature and pressure. Both methyl and ethyl alcohols are used. The methyl alcohol is used to make methylamine and the ethyl alcohol for dehydration of pyrocotton and for the manufacture of ether for use in colloiding.

Other raw materials used in smaller amounts include diphenylamine used as a stabilizer, caustic soda used for scrubbing in the ether production and for neutralization in the production of diphenylamine, and soda ash used for neutralization in the process of powder production. The diphenylamine is made at the plant from benzene.

CHARACTER OF WASTES

There are four principal wastes from a plant producing smokeless These are: (1) the acid that is lost from the wringers after nitrating the cotton and purifying the pyrocotton; (2) gun cotton lost in white water from the boiling and poaching; (3) alcohol wastes slightly contaminated with ether lost from the solvent recovery and the water dry; and (4) aniline from the manufacture of diphenylamine. The white water from the boiling and poaching tubs and the beaters is recirculated through a "save-all" or settling tank, thus reducing the cotton losses. The aniline is settled out with an iron sludge in a separate basin and the sludge removed and sent to aniline manufacturers for aniline recovery. There are also the cooling, condensing, and ash sluicing waters from the power house and acid manufacturing area, but these may usually be separated from the other wastes, put through a pond to settle out the ash, and then admitted to the receiving stream essentially as an uncontaminated flow.

Engineers of the du Pont Company have stated that the wastes mentioned above would represent losses of approximately 89,500 pounds of acid (mixed sulfuric and nitric), 2,500 pounds of alcohol, and 125 pounds of cotton per 100,000 pounds of powder produced and that the waste flow, including cooling and condensing water, would be 8.3 million gallons per 100,000 pounds of powder. It was also stated that if all the aniline escaped from the iron sludge it would

amount to 23 pounds per 100,000 pounds of powder.

FLOW MEASUREMENTS AND SAMPLING

When the survey was made at plant "A" the entire plant was not in operation and no diphenylamine was being manufactured, but it was felt that results obtained would be fairly representative of normal plant operation. The waste water from the power house (condensing and ash sluicing flows) was diverted to a different watercourse from the manufacturing wastes and was not included in the survey. It was estimated by the plant operating officials that this power house flow amounted to about 3 million gallons per 100,000 pounds of powder, but no measurements were available. A fully contracted rectangular weir was installed in a ditch carrying the entire waste flow of the plant. Samples were taken and the head on the weir was read every 40 minutes over a 24-hour period every other day for 2 weeks. The individual samples were made into 24-hour composite samples for the laboratory. Flows were computed from the individual weir readings and averaged to obtain the daily flow.

At plant "B" the waste flow was divided into several sewers and it was necessary to establish eight sampling and measuring points. The sewers varied in size from 12" to 48" and were generally on steep grades with a high velocity of flow. Due to the conditions encountered, it was considered inadvisable to try to construct weirs and all flows were computed from the size and slope of the sewer and the depth of flow. Samples were taken and flow measurements were made every 90 minutes at each sampling point every other day for 2 weeks. The individual samples were composited on the basis of flow into a 24-hour sample for each sampling point and these samples composited into a 24-hour sample for the entire plant on the basis of the average flow at the individual sampling points. The analytical results as recorded are from these "plant" samples.

At plant "C" the wastes from the power house-acid manufacturing area, the nitrocotton or pyrocotton area, and the finishing area were discharged into separate sewers. This complete separation of wastes from various parts of the plant made it practicable to make determinations of the individual wastes, which was not done at the other plants. Sufficient samples were taken of the waste from the power house-acid area to be certain that it was essentially cooling water without serious contamination that could be discharged into the ordinary stream without damage. A few flow measurements were made in order to make an estimate of the flow per unit of production.

Depth measurements were made in and samples taken from the sewer from the pyrocotton area every 20 minutes every other day for over 2 weeks. Flows were computed by the Chezy formula and the individual samples composited on the basis of measured flows into 24-hour samples. A fully contracted weir with a 7-foot crest and an automatic paddle wheel sampler were installed in the ditch carrying the discharge from the finishing area. Weir readings were taken every 3 hours and the 3-hour samples composited according to flow into 24-hour composite samples every other day over a period of 2 weeks. All analyses were made on the 24-hour samples.

ANALYTICAL DETERMINATIONS

All of the analytical work was done in a trailer laboratory of the United States Public Health Service. The following laboratory determinations were made on the composite samples: pH; color; odor concentration; acidity, methyl red and phenolphthalein; 5-day biochemical oxygen demand (B. O. D.); oxygen consumed; sulfates; nitrite nitrogen; nitrate nitrogen; total solids, volatile and ash; suspended solids, volatile and ash; and soap hardness.

Where possible, all determinations were made in accordance with "Standard Methods of Analysis for Water and Sewage, Eighth Edition." Oxygen consumed was determined by digestion with potassium dichromate, instead of the more customary potassium permanganate, in accordance with the general practice of the Stream Pollution Investigations laboratory. Color was determined by use of a standard color comparator using glass standards based on the

cobalt scale. Sulfates were determined gravimetrically by precipitating with barium chloride. All B. O. D. determinations were made on samples neutralized and then seeded with river water.

Determinations of color, odor concentration, total solids, and soap hardness were not made at plant "A" during this survey. However, some samples taken at a later date, when the plant was in nearly complete operation, showed an average color of 228 and odor concentration of 180.

RESULTS AND DISCUSSION

Tables 1, 2, 3A, and 3B show the analytical results for the 24-hour composite samples at the three plants studied. Table 4 presents a ready comparison of the averages of the analytical results obtained at the different plants.

TABLE 1 .- Analytical results, plant "A"

						p. p. m				
Sampling day	pН	Acie	dity		Оху-		Nitr	ogen	Suspe	nded ds
		Methyl red	Phenol- phtha- lein	5-day B.O.D.	gen con- sumed	SO4	NO ₂	NOs	Volatile 30 24 24 26 42 25 31	Ash
1	<1.6 <1.6 <1.6 1.6 1.7 <1.6 <1.6	2, 460 1, 830 2, 400 1, 670 1, 280 1, 340 1, 350	2, 540 2, 110 2, 440 1, 790 1, 680 1, 680 1, 660	57. 6 1 1. 9 43. 6 51. 2 37. 2 62. 8 42. 4	74. 8 71. 6 72. 8 81. 0 75. 9 78. 7 78. 6	1, 761 1, 325 1, 609 1, 156 1, 053 1, 025 1, 033	1. 00 5. 00 2. 00 2. 20 2. 20 4. 00 2. 30	500 200 600 600 600 600 600	30 24 24 26 42 25 31	36 22 23 19 18 13
Average	<1.6 1.7 <1.6	1, 860 2, 460 1, 280	1, 990 2, 540 1, 660	49. 1 62. 8 37. 2	76. 2 81. 0 71. 6	1, 280 1, 761 1, 025	2.70 5.00 1.00	530 600 200	29 42 24	24 39 13

¹ Not included in average.

TABLE 2 .- Analytical results, plant "B"

								p. p	. m.						
Sampling day	рН		concentration	Acid	dity	D.	consumed	•	Niti	rogen	Tot	al ds	Susp ed so	end- olids	88
		Color .	Odor concen	Methyl red	Phenol- phthalein	5-day B. O.	Oxygen con	80°	NOs	NO.	Volatile	Ash	Volatile	Ash	Soap hardness
3	<1.6 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6 <1.7	45 60 35 70 45 45 70 50	16 32 64 16 4 8 32 8	1, 990 1, 740 1, 290 1, 880 1, 280 1, 820 1, 910 1, 130 810	2, 130 1, 640 1, 380 1, 960 1, 560 1, 950 1, 800 1, 240 848	57. 0 50. 0 1 813+ 49. 2 52. 1 44. 9 50. 1 44. 3 33. 7	152. 0 89. 0 94. 4 106. 0 111. 0 105. 0 92. 8 90. 0 58. 4	967 1, 460 930 1, 275	1.5 2.2 1.8 2.6 1.5 2.0 2.4 2.0 1.5	600 600 400 450 320 540 600 520 200	430 1, 340 945 175 674 200 545 1, 080 796	490 140 425 585 506 270 320 300 154	70 66 33 52 86 52 35 49 33	375 23 31 40 341 149 72 160 36	32 16 22 47 19 19 28 17
Average Maximum Minimum	<1.6 1.7 <1.6	53 70 35	21 64 4	1, 540 1, 990 810	1, 610 2, 130 848	47. 6 57. 0 33. 7	99. 8 152. 0 58. 4	1, 100 1, 460 590	1.9 2.6 1.5	470 600 200	687 1, 340 175	354 585 140	54 86 33	136 375 23	24 47 13

¹ Not included in average.

Table 3A .- Analytical results, plant "C", pyrocotton area

44.00								p. p	. m.						
Sampling day	pН		tration	Acid	iity	D.	poursuoo		Nit	rogen	Tot		Susp ed s	end- olids	
Sampling day		Color	Odor concentration	Methyl red	Phenol- phthalein	5-day B. O.	Oxygen con	804	NOs	NOs	Volatile	Ash	Volatile	Ash	Soap hardness
1 2 3 4 4 5 5 5 6 6 7 7 8 5 5 6 6 7 7 8 5 6 6 7 7 8 5 6 6 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	1. 4 1. 2 1. 2 0. 9 1. 0 1. 0 0. 9 1. 3	50 40 30 45 35 30 30 25	4 4 8 4 2 4 2	2, 580 3, 430 3, 950 6, 200 4, 450 5, 190 5, 160 3, 050	3, 060 3, 500 4, 130 6, 330 4, 520 5, 290 5, 290 3, 080	31. 7 43. 8 59. 4 54. 7 75. 8 40. 8 59. 9 52. 8	118 86 98 104 119 93 109 118	2, 105 2, 208 2, 540 2, 210 1, 800 2, 600 2, 680 1, 970	2.8 4.0 3.2	700 850 1, 000 1, 200	2, 900 3, 060 3, 420 5, 932 3, 604 4, 710 4, 777 3, 010	1, 110 250 220 248 196 300 243 200	31 29 31	4 10 5 6 4 8 15 6	1, 500 341 368 322 296 622 511 248
A verage Maximum Minimum	1. 1 1. 4 0. 9	36 50 25	3.6 8 1	4, 250 6, 200 2, 580	4, 400 6, 330 3, 080	52. 3 75. 8 31. 7	106 119 86	2, 265 2, 680 1, 800	2.6 4.0 1.5	1,500	3, 930 5, 932 2, 900	346 1, 110 196	78	7 15 4	526 1, 500 248

Table 3B .- Analytical results, plant "C", finishing area

								p.	p. m						
Sampling day			concentration		orange)	o. D.	consumed			tro-	Tot			nd- d ids	ness
	рH	Color	Odor cone	Acidity	Alkalinity oran	5-day B. C	Oxygen co	80.	NOs	NOs	Volatile	Asb	Volatile	Ash	Soap hardness
	8. 2 8. 4 8. 9 8. 0 8. 9 8. 7 6. 8 7. 9	70 100 110 110 110 105 120 110	64 16 16 16 64 32 8 16		66 67 80 86 80 74 43 47	59. 3 68. 6 83. 4 59. 5 77. 0 65. 6 62. 8 195. 0	52 51 66 44 56 58 42 124	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	2.8 1.0 2.8 3.2 1.4	30 9 6 3 6 4 5	72 50 66 61 94 86 52 67	118 140 120 122 108 132 118 115	13 14 11 15 14 15 13 10	16 70 25 22 13 20 81 13	5. 5. 7. 5. 4. 4. 4. 3. 3.
verage Jaximum Jinimum	8. 2 8. 9 6. 8	104 120 70	29 64 8		68 86 43	83. 9 195. 0 59. 3	62 124 42	1.0 8.0 <1.0	2.3	9 30 4	69 94 50	122 140 108	13 15 10	26 70 13	8 7 3

Table 4.—Average analytical results

					p. p. m.													
Plant	рН		concentration	Acid	lity	D.	consumed		Niti	rogen	Tot soli	al	Susp ed so	end- olids	2			
		Color	Odor concen	Methylred	Phenol- phthalein	5-day B. O.	Oxygen con	, so,	NOs	NO.	Volatile	Ash	Volatile	Ash	Soap hardne			
A" B"C"—combined flow C"—pyrocotton C"—finish	<1.6 <1.6 1.1 8.2	52	21 4 29	1, 860 1, 540 2, 820 4, 250	1, 990 1, 610 2, 970 4, 400	49. 1 47. 6 62. 9 52. 3 83. 9	76. 2 99. 8 91. 4 106. 0 62. 0	1, 100 1, 512	2.7 1.9 2.4 2.6 2.3	530 470 650 970 9	687 2645 3, 930 69	354 229 346 122	29 84 29 37 13	24 136 13 7 26	241 368 526 50			

As previously mentioned, at plant "C" the wastes from the pyrocotton area and the finishing area were discharged separately. The results of the analyses of these wastes as given in tables 3A and 3B show that the waste from the finishing area would not be a serious problem from the viewpoint of possible stream pollution. The waste has a 5-day B. O. D. that is lower than that of the effluents of many plants which give only primary treatment to domestic sewage. Unless this waste would constitute a large portion of the total flow in the receiving stream it would seem unnecessary to give it any treatment. If treatment should be needed, it could probably be done successfully on trickling filters. The waste from the pyrocotton area is strongly acid and in most cases would require neutralization before discharge into a stream.

The averages of the analytical results as given in table 4 show a reasonable agreement among the different plants. It is to be noted, however, that there is a wide variation from day to day in the results at any one plant. Although not shown on these tables, there is a considerable variation in the average daily flow from these plants. These variations in quantity and strength of the wastes are much more noticeable in the individual samples taken during the course of a day than in the composite samples. This variation is shown by the following data obtained at plant "A":

Sampling time	Methyl red acidity, p. p. m.	Relative flow	Sampling time	Methyl red acidity, p. p. m.	Relative flow
7 a. m	206 231 262 42 161 586	1. 00 1. 33 1. 40 1. 73 1. 09 1. 60	11 a. m. 11:40 a. m. 12:20 p. m 1 p. m 1:40 p. m	790 1, 340 1, 350 690 530	1. 12 1. 33 1. 40 1. 69 2. 04

At plant "C" samples of the flow from the pyrocotton area taken at 5-minute intervals from 8:50 a. m. to 12:45 p. m. showed a variation in methyl red acidity from 2,470 p. p. m. to 4,640 p. p. m. with an average of 3,370 p. p. m. These results clearly indicate the advisability of providing an adequate lagoon or balancing pond in connection with any treatment plant installed for the neutralization of the acid wastes from the pyrocotton area. In case neutralization before discharge is not considered necessary, such a balancing pond would help to eliminate sudden flushes of strong acid that might be harmful to the receiving stream.

Table 5 shows the waste quantities per unit of production for the three plants. It is very noticeable that the waste quantities per unit of production are much higher at plant "C" than at the other two plants. This is particularly true for the quantity of acid lost and those items, such as sulfates and nitrate nitrogen, that would vary with the amount of acid in the waste. Production figures show that plant "C" used more acid per pound of powder produced than did plant "B." The reason for this variation is not known.

TABLE 5 .- Waste quantities

	Waste p	er 100,000 prod		powder
	Plant "A"	Plant "B"	Plant "C"	Average
Flow million gailons. Free mineral acid as H ₂ SO ₆ pounds. Sulfates do	4. 68 77, 300 49, 800	4. 18 53, 900 38, 400 66	7, 25 169, 000 91, 300	5. 37 100, 000 59, 800
Nitrite nitrogendo Nitrate nitrogendo Total solids:	20, 800	16, 400	39, 400	25, 500
Volatile do Ash do Suspended solids:		24, 000 12, 340	158, 000 15, 900	91, 000 14, 200
Volatile do	1, 130 900	1, 880 4, 740	1, 800 815	1, 600 2, 150
Oxygen consumed do 5-day B. O. D do Population equivalent (B. O. D.) pounds Total hardness as CaCO ₃ pounds	2, 970 1, 880 11, 100	3, 480 1, 660 9, 760 8, 400	5, 520 3, 840 22, 600 21, 600	3, 990 2, 460 14, 500 15, 000

SUMMARY

Waste surveys were made at three plants manufacturing smokeless powder. Tables present the average concentrations of various constituents of the wastes for plants of this type and the average amounts of these waste products to be expected per unit of product.

Plants of this type have a very large volume of liquid waste. This waste is very strongly acid and high in sulfates and nitrate nitrogen. Except for this acidity, the waste would have less deleterious effect on the receiving stream than the same volume of domestic sewage that had received primary treatment.

TWENTY-YEAR SURVIVAL OF VIRULENT BACILLUS PESTIS CULTURES WITHOUT TRANSFER 1

By Edward Francis, Medical Director (Retired), United States Public Health Service

The present paper concerns a strain of *Bacillus pestis* which retained viability and virulence during 20 years of storage at 10° C. on the slanted surface of beef infusion agar tubes without transfer. The strain P 4-7 was originally isolated from a California ground squirrel (*Citellus beecheyi*) at the plague laboratory of the United States Public Health Service in San Francisco, from which it was received December 11, 1922, at the National Institute of Health, in Washington, D. C.

During 1923 and 1924 the strain was passed through guinea pigs in

From the Division of Infectious Diseases, National Institute of Health.

Washington every 2 or 3 months. At time of each guinea pig passage a culture was isolated by inoculating a few drops of heart blood to the slanted surface of plain beef infusion agar having water of condensation. Each tube thus inoculated was subcultured a few days later to a plain beef infusion agar slant which in turn was subcultured to a third slant, all bearing water of condensation. Thus one-third of the tubes bore the inoculation blood and two-thirds were free from blood but the presence or absence of blood did not affect the longevity of cultures. After growth appeared, the cotton stoppers were discarded and each tube was forcibly plugged with a tight-fitting cork stopper soaked in a hot mixture of half paraffin and half vaseline heated in an open dish to the boiling point of about 250° C. This prevented any evaporation and allowed the water of condensation to remain undiminished 20 years. Forty-eight tubes of the P 4-7 strain were stored at 10° C. in 1923 and 40 in 1924 (the 1924 series awaits test in some future year).

SURVIVAL AFTER 20 YEARS OF STORAGE

On April 23, 1943, the 48 tubes of the 1923 series were subcultured each to a horse meat infusion agar slant, of which 33 showed growth in 2 to 7 days, while 15 failed to grow. The growths from the 33 positive tubes were tested for virulence by injection, each into a guinea pig subcutaneously on the abdomen using a loopful of solid growth for each pig. The results follow: (1) Eleven of the 33 pigs survived and were killed at the end of 2 weeks without having shown effects greater than slight thickening at the site of inoculation or slight enlargement of inguinal lymph nodes. (2) Thirteen died near the end of the first week without showing significant gross change in spleen nor caseation of inguinal lymph nodes. (3) Three were found dead near the end of the first week, showing lesions of acute plague, i. e., edema, hemorrhage and necrosis at site of inoculation, enlarged spleen studded throughout with focal necroses, enlarged caseous inguinal glands, and great numbers of bipolar typical B. pestis in smears of spleen and glands. (4) Six were killed for culturing when dying near the end of the first week and B. pestis was isolated from the heart blood of each. Their sites of inoculation, spleens, and inguinal glands showed typical gross lesions of acute plague and great numbers of B. pestis in smears.

SURVIVAL AFTER 10 YEARS OF STORAGE

Culture tube No. 44 of the 1923 series of strain P 4-7, when tested by Francis (1) in 1932 after 9 years of storage without transfer, was found to grow readily on beef infusion agar, to give the sugar fermentations typical of plague, and to be of maximum virulence for guinea pigs and white rats.

Cultures of four other strains (Hill 1932, Ruiz 1933, Lakeview 1934, and Siam 1939) were stored at 10° C. at time of isolation on beef infusion agar slants and were subcultured for the first time in April 1943 on horse meat infusion agar slants. All grew in 48 hours; their sugar fermentations were unchanged since original isolation and were typical of plague. The virulence for guinea pigs of Ruiz after 10 years, Lakeview after 9 years, and Siam after 4 years was maximum while the Hill strain was nonvirulent after 11 years.

Wilson (2) reported a plague culture as viable and virulent after remaining unopened for 10 years and 5 months.

Table 1.-Virulence of plague cultures stored at 10° C.

Strain	Date of iso- lation	Animal source	Place of origin	By whom isolated	Killed guinea pigs in days	Years since last transfer
P 4-7 Hill Ruiz Lakeview Siam	June 10, 1923 Apr. 8, 1932 Aug. 4, 1933 May 21, 1934 July 26, 1939	California ground squirrel. Norway rat Man do Unknown	California. Los Angeles Peru Oregon Siam	Plague Laboratory, San Francisco. L. V. Dieter E. Francis W. Levin E. Francis	4, 5, 6, 7, 8, 9 4, 5, 6, 6, 7, 8 nonvirulent 4, 5, 5, 7, 7, 8 5, 6, 6, 6, 7, 7 5, 6, 6, 7, 7	9 20 11 10 9 4

Acute virulence as recorded in table 1 consisted of severe local edema at site of inoculation, caseation of enlarged inguinal lymph nodes, and small nodules of focal necrosis studded over the spleen. Smears of the lesions showed typical bipolar bacilli, and cultures from heart blood yielded *B. pestis*.

Fermentation of sugars.—The sugar reactions of the five strains were uniform but glycerin was fermented only by the Siam strain. The latter arrived at Washington on July 26, 1939, by air mail from Bangkok, Siam, in a guinea pig spleen in 20 percent glycerin. The original source of the strain was not stated but at that time 89 cases of plague were reported from Siam. Fermentation tests were made in the semisolid medium proposed by Enlows (3) which is composed of water, peptone, potassium and sodium salts, agar 0.15 percent, brom thymol blue as an indicator, and the fermentable substance.

The fermentation reactions were as follows: (1) Fermentation with production of acid but no gas in dextrose, levulose, mannose, mannitol, xylose, trehalose, salicin, maltose, and galactose; (2) slight fermentation of arabinose, dextrin, and starch; (3) no fermentation of saccharose, lactose, amygdalin, dulcitol, erythritol, inositol, inulin, raffinose, rhamnose, sorbitol, adonitol or litmus milk; gelatin was not liquefied.

CONCLUSION

Bacillus pestis retained viability and virulence for 10 and 20 years on slants of beef infusion agar stored at approximately 10° C. without transfer.

REFERENCES

Francis, Edward: Duration of viability and virulence of Bacillus pestis. Pub.
 Health Rep., 47: 1287-1294 (June 10, 1932).
 Wilson, R. J.: The viability of the Bacillus pestis in stock cultures. Proceedings of the New York Pathological Society, 13: 149-150 (December 1997).

1913).

(3) Enlows, E. M. A.: A sugar-free medium for fermentation studies. Pub. Health Rep., 38: 2129–2132 (September 14, 1923).

DEATHS DURING WEEK ENDED AUGUST 28, 1943

[From the Weekly Mortality Index, issued by the Bureau of the Census, Department of Commerce]

		Correspond- ing week, 1942
Data from 90 large cities of the United States: Total deaths Average for 3 prior years	7, 784 7, 287	7, 400
Total deaths, first 34 weeks of year Deaths under 1 year of age Average for 3 prior years	315, 665 632 547	288, 331 613
Deaths under 1 year of age, first 34 weeks of year Data from industrial insurance companies:	22, 495	19, 316
Policies in force Number of death claims Death claims per 1,000 policies in force, annual rate Death claims per 1,000 policies, first 34 weeks of year, annual rate	65, 764, 051 10, 974 8, 7 10, 0	64, 982, 742 10, 061 8. 1 9. 4

PREVALENCE OF DISEASE

No health department, State or local, can effectively prevent or control disease without knowledge of when, where, and under what conditions cases are occurring

UNITED STATES

REPORTS FROM STATES FOR WEEK ENDED SEPTEMBER 4, 1943 Summary

The incidence of poliomyelitis increased to a total of 956 cases for the current week, as compared with 872 for the preceding week and a 5-year (1938-42) median of 479. The current total is higher than that for the corresponding week of any other year since 1935, when 1,088 cases were reported—the peak week of that year. States reporting the largest numbers currently (last week's figures in parentheses) are as follows: *Increases*—Kansas 90 (66), Utah 76 (13), New York 58 (42), Connecticut 44 (39), Iowa 33 (13), Missouri 30 (24), Massachusetts 20 (8); decreases—Illinois 192 (194), California 114 (138), Texas 62 (75), Colorado 20 (21).

The cumulative total for the first 35 weeks of the year is 5,887, as compared with 1,902 for the same period of last year and a 5-year median of 3,009. The total for the first 35 weeks of 1935 was 5,417, or 50 percent of the total for that year.

A total of 151 cases of meningococcus meningitis was reported, as compared with 166 for the preceding week and a 5-year median of 26. The largest number recorded for a corresponding week of the past 16 years was 87 cases, reported in 1930. The largest numbers reported currently (last week's figures in parentheses) are as follows: New York 19 (25), Pennsylvania 14 (18), California 14 (15), Michigan 13 (7), and Illinois 12 (8). The cumulative total for the first 35 weeks of the year is 13,845, as compared with 2,495 for the same period last year and a 5-year median of 1,470.

The incidence of diphtheria, influenza, measles, typhoid and paratyphoid fever, and whooping cough was slightly below that for the preceding week, while the figures for scarlet fever were slightly higher (821 cases, as compared with 767 last week and a 5-year median of 683). Only 7 cases of smallpox were reported, as compared with none last week and a 5-year median of 16.

Deaths recorded in 89 large cities of the United States totaled 7,812, as compared with 7,754 for the preceding week and 7,472 for the average of the past 3 years. The cumulative figure for the first 35 weeks of the year is 322,451, as compared with 294,979 for the same period last year.

(1383)

Telegraphic morbidity reports from State health officers for the week ended September 4, 1943, and comparison with corresponding week of 1942 and 5-year median

In these tables a zero indicates a definite report, while leaders imply that, although none were reported, eases may have occurred.

	D	lphther	ria	1	Influer	IZB		Measle	9	Men	ingitis, igococo	men-
Division and State	Week	ended	Me-	Week	ended	Me-	Week	ended	Me-	Week	ended	Me-
	Sept. 4. 1943	Sept. 5, 1942	dian 1938– 42	Sept. 4, 1943	Sept. 5, 1942	dian 1938- 42	Sept. 4, 1943	Sept. 5, 1942	dian 1938- 42	Sept. 4, 1943	Sept. 5, 1942	dian 1938– 42
NEW ENGLAND												
Maine. New Hampshire. Vermont. Massachusetts. Rhode Island. Connecticut.	0 0 1 0 0 0	0 0 1 0 0	1 0 0 1 0 0		3		.1 0 1 24 8 9	16 1 29 46 5 15	3 38	0 0 4 3 4	1 0 0 2 0 0	0
MIDDLE ATLANTIC New York New Jersey Pennsylvania	5 2 3	10 2 4	8 1 7	12	1 4 3 1		100 65 30	42 12 15	13	19 1 14	8 1 3	200
EAST NORTH CENTRAL												
Ohio Indiana Illinois Michigan ² Wisconsin	5 8 5 6 2	10 0 14 6 0	10 5 10 6	12 3 1 11	5 8 2 2 11	3	27 1 22 86 93	31 0 10 16 36	14 3 10 16 43	12 13 1	1 3 0 1	1 1 1 0
WEST NORTH CENTRAL												
Minnesota Iowa Missouri North Dakota South Dakota Nebraska Kansas SOUTH ATLANTIC	3 5 0 1 2 4 2	1 3 1 3 1 7	2 6 2 1 0 3	1 13	5	1	16 2 9 13 7 0 5	5 10 4 3 3 3 3 8	5 10 2 3 3 3 2 8	2 1 5 1 0 0 1	1 0 8 0 0 0	000000000000000000000000000000000000000
Delaware Maryland i District of Columbia. Virginia. West Virginia. North Carolina. South Carolina. Georgia. Florida.	1 1 0 5 8 27 9 0 6	0 3 2 5 1 45 12 13 1	0 1 2 15 5 45 10 18 3	1 30 152 5 11	44 1 58 18 3	2 12 3 90 18 3	0 17 3 7 9 10 4 7	0 7 1 1 0 5 0 1	0 4 2 4 1 12 3 4	1 0 2 0 2 4 1 0 4	02001332000	0 1 0 1 1 1 1 0 0
KentuckyTennesseeAlabama Mississippi 2	7 3 6	4 8 20 7	9 6 18 12	2 2 16	3 5 26	2 5 6	10 8 5	2 3 16	2 3 16	3 1 5	1 0 0	1 0 1 0
WEST SOUTH CENTRAL Arkansas Louisiana Oklahoma Texas	0 2 1 18	11 2 3 20	11 5 7 25	1 1 11 226	2 5 1 103	3 3 5 103	6 0 11 46	1 1 1 21	4 1 2 27	1 2 2 6	0 0 0 2	0 1 0 2
MOUNTAIN Montana Idaho W yoming. Colorado. New Mexico. Arizona. Utah ¹ Nevada	0 0 0 14 1 0 0	20030000	2 0 0 4 1 0	11 2 35 1	13 3 28 3	1 3 28	24 1 4 14 4 4 2 0	10 8 3 4 0 4 19	10 3 3 7 1 4 8	0 0 0 0 0 0 0 0 1	000000000000000000000000000000000000000	0 0 0 0 0 0
PACIFIC Washington Oregon	1 6 18	5 1 7	1 1 10	1 2 10	3 20	4 12	17 12 54	44 49 62	6 10 62	5 5 14	0 1 2	0 0 0
Total	198	248	248	565	388	383	808	585	650	151	41	26
1					===	152, 280						1.470

Telegraphic morbidity reports from State health officers for the week ended September 4, 1943, and comparison with corresponding week of 1942 and 5-year median—Con.

	Pol	iomyel	litis	Ber	arlet fe	ver	8	Smallpor			old and	
Division and State	Week	ended	Me-	Week	ended	Me-	Week	ended	Me-	Week	ended	Me-
Division and State	Sept. 4, 1943	Sept. 8, 1942	dian 1938- 42	Sept. 4, 1943	Sept. 5, 1942	dian 1938- 42	Sept. 4, 1943	Sept. 5, 1942	dian 1938- 42	Sept. 4, 1943	Sept. 5, 1942	dian 1938- 42
NEW ENGLAND												,
Maine New Hampshire Vermont Massachusetts R hode Island Connecticut	1 1 0 20 11 44	0 0 1 1 1 6	0 0 2 1 2	13 2 1 47 4 8	3 2 1 62 6 15	1 1 28 2 6	0000	0000	0000	1 0 2 0	0 0 7 1 2	
MIDDLE ATLANTIC New York New Jersey Pennsylvania	58 9 5	19 21 3	20 10 13	66 14 41	52 24 43	46 19 43	000	0	0	5	9 2 19	1:
EAST NORTH CENTRAL									0		13	1:
Ohio	18 3 192 18 18	17 7 36 12 3	17 6 20 26 7	66 11 53 42 35	53 7 30 22 53	34 23 55 41 42	1 0 6 0	0 1 0 0 1	0 1 0 0	1 6 6	10 10 10	16
WEST NORTH CENTRAL					16	15	0	0	3	0	0	
Minnesota Iowa Missourl North Dakota North Dakota Nebraska Kansas	11 33 30 2 0 17 90	3 4 1 1 0 5	614111003	22 13 8 2 11 3 18	18 11 2 9 5 20	17 14 3 9 3 27	0000	0 1 0 0 0	0 1 0 0 0	3 0 0	0 9 0 1 0 1	
SOUTH ATLANTIC	3	0	0	1	2	9	0	0	0	0	2	1
Delaware. Maryland ² District of Columbia. Virginia. West Virginia. North Carolina. South Carolina. Georgia. Florida.	0 0 0 0 3 1 1	2 0 1 6 0 0 1 2	322123	11 2 8 27 56 9 12	8 5 8 21 0 4 12 5	2 8 5 5 11 23 4 12	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0 3 2 1 1 4 8	10 6 10 9 4 6	1
EAST SOUTH CENTRAL			* 1		20	~	0	0	0		15	2
Kentucky Tennessee Alabama Mississippi	10 2 0 2	3 4 3 3	3 4 3 2	14 23 21 6	30 19 26 19	29 10 17 8	0	0	0	7 5	18 8 5	1
west south central ArkansasLouisianaOklahoma Texas	1 1 17 62	5 0 1 2	2023	3 0 5 17	1 5 8 6	4 5 8 18	000	1 0 0 0	0000	8	5 7 6 13	15 12 14 40
MOUNTAIN Montana Idaho Wyoming Colorado. New Mexico. Arizona. Utah † Newada	9 0 5 20 12 1 4 76	2 0 0 0 1 2 2	2 1 0 0 1 2 2	11 2 6 10 4 2 9	8 2 1 4 3 0 2 0	8 3 1 7 1 0 2	000000000000000000000000000000000000000	020000000000000000000000000000000000000	000000000000000000000000000000000000000	0 2 0 3	1 1 0 0 8 4 0	
PACIFIC Washington Oregon	19	2	1 2	14	8	8	0	0	0	5 1	2	1
California	114	12	12	58	25	39	0	0	0	1	2	- 1
Total	1 956	195	479	821	683	683	7	7	16	169	231	379
35 weeks	5, 887	1,902	8,009	99, 317	90, 442	117, 978	616	621	1, 988	3, 655	4, 498	5, 784

See footnotes at end of table.

Telegraphic morbidity reports from State health officers for the week ended September 4, 1943, and comparison with corresponding week of 1942 and 5-year median—Con.

	Who	oping o	ough			N	eek end	led Sept	. 4, 194	3		
Division and State	Week	ended	Me-		r	ysenter	ry	En-		Rccky Mt.		Tr
DIVERSI and State	Sept. 4, 1943	Sept. 5, 1942	dian 1938- 42	An- thrax	Ame- bic	Bacil- lary	Un- speci- fied	ceph- alitis, infec- tious	Lep- rosy	spot- ted fever	Tula- remia	Ty- phus fever
NEW ENGLAND												
Maine New Hampshire Vermont Massachusetts Rhode Island Connecticut	16 0 23 37 6 7	36 1 49 134 10 59	23 0 19 110 10 38	000000000000000000000000000000000000000	0 0 0 0 0	0 0 0 3 0 26	0000	0 0 0 0	0000	0 0	000000000000000000000000000000000000000	
MIDDLE ATLANTIC												
New York New Jersey Pennsylvania	258 127 133	342 144 180	299 96 309	0 1	5 1 0	98 2 1	0	1 0 1	0	1	0 0	
EAST NORTH CENTRAL Ohio Indiana Illinois Michigan 2 Wisconsin	123 27 156 221 208	236 28 270 279 250	209 19 220 279 250	0 0 0	0 0 0 1 0	3 0 1 20 0	000000000000000000000000000000000000000	0 0 0 0 1	0 0 0 0	0 0	0 0 0 0	*
WEST NORTH CENTRAL	4											
Minnesota. Iowa. Missouri. North Dakota. South Dakota. Nebraska. Kansas	50 73 13 42 12 9	69 11 7 11 0 10 32	35 23 8 13 3 3	000000000000000000000000000000000000000	0 0 0 0 0	1 0 0 0 0	0 0 0 2 0	0 0 1 0 0 0	000000000000000000000000000000000000000	0 0 40 0	0 0 0	
SOUTH ATLANTIC												
Delaware Maryland District of Columbia. Virginia West Virginia North Carolina South Carolina Georgia Florida	7 55 24 23 57 100 58 13	3 71 10 32 17 49 17 36	4 56 15 18 17 110 18 17	0	0 0 0 0 0 1 0 0 5	0 0 0 0 19 16 3	0 9 0 175 0 0 0 3	000000000000000000000000000000000000000	000000000000000000000000000000000000000	2 0 4 0 1 0 1	0 0 0 0 0 0	
EAST SOUTH CENTRAL	-											
Kentucky Tennessee Alabama Mississippi 3	23 27 18	52 27 16	29 25 18	0 0 0	0	0 0 0	6 0 0	0 0 0	000	1 0	3	1
WEST SOUTH CENTRAL												
Arkansas Louisiana Oklahoma Texas	14 6 2 139	5 0 4 132	13 6 4 132	0 0 0	. 0	14 2 0 213	0	. 0 0 0 2	0 0 0 1	0	0	
MOUNTAIN							-				*	
Montana Idaho Wyoming Colorado New Mexico Arizona Utah 2 Nevada	17 0 1 32 9 13 60	5 20 6 6	17 3 3 20 8 7 36	0	000000000000000000000000000000000000000	0 0 7 5 0	0 0 0 0 57	0 0 0 8 0 2 1	0 0 0 3 0 0 0	0 0 0	0 0 0	
PACIFIC	-	0			0	U		,				
Washington Oregon	64 46 135	36 20 129	23 14 147	0 0	0 0 1	0 0 11	0 0	0 0 12	0	1	0	1
	2, 536	_	2 894		30	447	252	25	1	4 16		
Total	137,429	4,004	P CA.	44	1, 435	11, 096	2, 220	475	19	_	611	2. 460

New York City only.
 Period ended earlier than Saturday.
 Including paratyphoid fever cases reported separately as follows: New Hampshire, 1; Massachusetts, 2;
 New York, 3; New Jersey, 3; Michigan, 3; Georgia, 1.
 Exclusive of delayed report of 1 case in South Dakota for the week ended July 24, 1943.
 Delayed reports in Utah included.

WEEKLY REPORTS FROM CITIES

City reports for week ended Aug. 21, 1943

This table lists the reports from 87 cities of more than 10,000 population distributed throughout the United States, and represents a cross section of the current urban incidence of the diseases included in the table.

	ses	infec-	Influ	enza		menin- cases	deaths	CRESCS	causes	2	para-	eough
	Diphtheria cases	Encephalitis, infections, cases	Cases	Deaths	Measles cases	Meningitis, meningoccus, cases	Pneumonia d	Pollomyelitis	Scarlet fever	Smallpor cases	Typhoid and p	Whooping
NEW ENGLAND												
Maine: Portland	0	0		0	0	3	2	0	1	0	0	10
New Hampshire: Concord	0	0		0	0	0	1	0	0	0	0	0
Vermont:	0	0		0	0	0	0	0	0	0	0	(
BarreMassachusetts:						1	8	1	20	0	0	27
Boston	0	0		0	8	0	ő	ô	0	0	0	4
Fall River	0	0		0	1	0	0	0	6	0	0	9
worcester	0	0		0	1	0	10	0	3	0	1	0
Rhode Island:	0	0		0	9	1	1	6	2	0	0	13
Providence	U	0					1					
Bridgeport	0	0		0	0	0	1	6	0	0	0	1
New Haven	0	0		0	0	0	0	23	Ô	ő	ĭ	1
MIDDLE ATLANTIC												
New York:					0	3	1	4	1	0	1	1
Buffalo	0 5	0	2	0	90	12	26	27	21	0	5	87
New YorkRochester	0	Ô		ő	4	2	6	0	0	0	0	
Syracuse New Jersey:	0	0		0	3	0	1	0	0	0	0	2
New Jersey:	0	0		0	0	0	1	0	2	0	1	1
Camden Newark	0	0		0	12	0	3	0	0	0	0	38
Trenton	ő	0		0	0	0	1	0	0	0	0	1
Pennsylvania:				1	3	2	14	1	7	. 0	2	70
Philadelphia	1 0	0		0	7	î	11	1	0	0	1	10
Pittsburgh Reading	0	0		0	ò	0	0	0	0	0	0	1
EAST NORTH CENTRAL												
Ohio:					6	1	2	1	4	0	2	
Cincinnati	0 2	0		1 0	2	i	4	3	19	0	1	4
Cleveland	ő	0		0	5	0	2	3	2	0	0	1
Indiana:						0	4	0	0	0	0	
Fort Wayne	0	0		0	0	0	4 3	0	2	0	0	1
Indianapolis South Bend	0	0		0	1	0	0	0	1	0	0	1
Terre Haute	0	0		0	0	0	2	0	0	0	1	1
Illinois:		0		0	16	7	6	91	10	0	0	0
Chicago	3	0		0	2	7 0	3	0	0	0	0	
Michigan:		1								0	1	7
Detrolt	5	0		0	10	3	3	0	5	0	0	1
Flint Grand Rapids	0	0		0	10	1	1	ő	Ô	0	0	2
w isconsin:											0	
Kenosha	0	0		0	2	0	0	0	0 3	0	0	8
Milwaukee	0	0		0	8	0	Ô	0	1	O	0	
Racine Superior	0			0	16	Ö	0	0	0	0	0	1
WEST NORTH CENTRAL												
Minnesota:								2	0	0	0	1
Duluth	0			0	14	0	0	3	6	0	0	1
Minneapolis	0			0	3	0	3	5	1	0	0	3
St. Paul Missouri:			1			1						
Kansas City St. Joseph St. Louis	0			0	2	0	8	5	3 0	0	0	
	- 0	0	1	0	0	0	0	1 0	3	0	3	2

City reports for week ended Aug. 21, 1943-Continued

	ses	infec-	Influ	enza		mentn- cases	deaths	cases	cases	90	para-	congh
	Diphtheria cases	Encephalitis, infectious, cases	Cases	Deaths	Measles cases	Meningitis, m gococcus, e	Pneumonia d	Pollomvelitis	Scarlet fever o	Smallpox cases	Typhoid and para- typhoid fever cases	Whooping cases
WEST NORTH CENTRAL—continued												
North Dakota:												
Fargo Nebraska:	1	0		0	1	0	0	1	0	0	0	8
Omaha	3	0		0	0	0	1	3	0	0	0	1
Kansas: Topeka	0	0		0	0	0	0	2	0	0	0	1
Wichita	0	0	*****	0	0	0	7	7	2	0	0	8
SOUTH ATLANTIC												
Delaware:										1		
Wilmington	1	0		0	1	2	2	0	0	0	0	2
Baltimore Cumberland	1	0	1	1	14	6	6	0	2	0	0	60
Frederick	0	0		0	0	0	0	0	0	0	0	1 0
District of Columbia:												
Washington Virginia:	0	0		0	6	2	. 9	0	4	0	1	17
Lynchburg	0	0		0	27	0	3	0	0	0	0	11
Richmond	0	0		0	9	0	3	0	0	0	0	0
Roanoke												
Wheeling North Carolina:	0	0		0	0	0	1	0	0	0	1	4
Winston-Salem	3	0		0	0	0	0	0	2	0	0	11
South Carolina:	0	0		0	0	0	0	0	0	0	0	0
CharlestonGeorgia:					- 71		0	0	۰	0	0	
Atlanta	3	0	4	0	1	0	1	0	1	0	1	2
Brunswick Savannah	0	0		0	0	0	0	0	ô	0	0	0
Florida:		0		0	0	0	1	0	0	0		0
Tampa	0			۰	0	١	1	١	١	U	0	U
EAST SOUTH CENTRAL							1					
Tennessee: Memphis	0	0		0	0	0	7	0	0	0	1	14
Nashville	0	0		ő	ő	0	ó	0	0	0	ô	13
Alabama: Birmingham	0	0		0	,	0	6	0	0	0	0	0
Mobile	1	0		i	1	ő	2	ő	ĭ	0	0	0
WEST SOUTH CENTRAL												
Arkansas:												
Little RockLouisiana:	0	0		0	0	0	1	0	0	0	0	0
New Orleans	0	0	7	0	1	0	10	7	2	0	2	2
Shreveport	0	0		0	0	0	5	0	0	0	0	0
Texas: Dallas	0	0		0	1	0	3	18	0	0	3	8
Galveston	0 2	0		0	0	0	1	0 2	1	0	0	0
Houston	i	0		0	3	ő	4	ő	0	0	0 2	i
MOUNTAIN												
Montana:						1						
Billings	0	0		0	1	0	1	0	0	0	1	0
Great Falls	0	0	*****	0	3 0	0	0	0	1 0	0	0	4
Helena Missoula	0	0	******	0	0	0	0	0	0	0	0	0
Idaho:	0	0		0	0	0	0	0	0	0	0	0
BoiseColorado:			******									
Denver Pueblo	0	0	2	0	3	0	1 2	5 2	2 0	0	0	30
Utah:			******					-				
Salt Lake City	0 1	0		01	2	0 1	11	41	2 1	0 1	0 1	9

City reports for week ended Aug. 21, 1943-Continued

	Diphtheria cases	Encephalitis, infectious, cases	Influ	Deaths	Mensles cases	Meningitts, menin- gococcus, cases	Pneumonia deaths	Poliomyelitis cases	Scarlet fever cases	Smallpox cases	Typhoid and paratyphoid fever cases	Whooping cough
PACIFIC			_									_
Washington: Seattle	0 0	0 0 0		0 0 0	12 1 1 1	0 0 0	0 0 0	1 0 0	1 4 0	0 0 0	0 0 0	19 6 0
Los Angeles Sacramento San Francisco	0 0	0		0 0	21 0 8	0 0	3 2 6	27 18 5	0	0 0	0 0	27 2 13
Total	37	4	21	5	367	51	224	284	166	0	34	1, 029
Corresponding week, 1942. Average, 1938–42	40 52	7	24 28	17	195 1 215	17	229 1 221	46	180 188	2	27 52	1, 249 1, 274

Anthrax.—Cases: Philadelphia, 1.

Dysentery, ambic.—Cases: Boston, 2; New York, 1; Philadelphia, 1; Detroit, 1.

Dysentery, bacillary.—Cases: Buffalo, 5; Philadelphia, 1; Cincinnati, 6; Cleveland, 1; St. Louis, 4; Baltimore, 6; Charleston, S. C., 7; Los Angeles, 7.

Dysentery, unspecified.—Cases: Cleveland, 4; Baltimore, 1; Richmond, 1; San Antonio, 4.

Rocky Mountain spottled feer.—Cases: Philadelphia, 1; St. Louis, 1; Nashville, 1.

Typhus feter.—Cases: Wichita, 1; Savannah, 5; Dallas, 6; Galveston, 2; Houston, 4; San Antonio, 4;

Los Angeles, 1.

Rates (annual basis) per 100,000 population, by geographic groups, for the 87 cities in the preceding table (estimated population, 1942, 34,314,400)

	case	s, infec-	Influ	ienza	rates	enin-	denth	8	case	rates	para-	cough
	Diphtheria rates	Encephalitis, infections, case rates	Case rates	Death rates	Measles case	Meningitis, menin- gococcus, case rates	Pneumonia d	Poliomyelitis rates	Scarlet fever	Smallpor case rates	Typhoid and p typhoid fever rates	Whooping co
NEW ENGLAND. MIDDLE ATLANTIC. EAST NORTH CENTRAL WEST NORTH CENTRAL SOUTH ATLANTIC. EAST SOUTH CENTRAL WEST SOUTH CENTRAL MOUNTAIN PACTRIC.	0.0 2.7 6.4 9.8 14.2 5.9 8.8 16.1 1.7	0.0 0.4 0.0 3.9 0.0 0.0 2.9 0.0	0.0 0.9 0.0 2.0 8.9 0.0 20.5 16.1 7.0	0.0 0.4 0.6 0.0 1.8 8.9 0.0 0.0	49. 7 53. 1 47. 3 48. 9 102. 9 11. 9 26. 4 80. 4 75. 2	12.4 8.9 8.2 2.0 19.5 0.0 0.0 0.0	57. 1 28. 5 18. 1 39. 1 47. 9 89. 1 82. 1 40. 2 19. 2	91. 9 14. 7 56. 1 56. 7 0. 0 79. 2 88. 4 89. 1	82.0 13.8 28.0 29.3 17.7 5.9 11.7 40.2 33.2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	5.0 4.5 2.9 7.8 5.3 5.9 20.5 8.0 1.7	144 115 208 192 195 160 35 346 117
Total	5.6	0.6	3.2	0.8	55.3	7.7	33.7	42.8	25.0	0.0	8.1	155

PLAGUE INFECTION IN MONO COUNTY, CALIFORNIA

Plague infection has been reported proved in tissue from 9 chipmunks (Eutamias sp.) taken July 19, 1 mile east and 4 miles south of June Lake, Mono County, Calif.

¹ 3-year average, 1940-42, ³ 5-year median.

FOREIGN REPORTS

CANADA

Provinces—Communicable diseases—Week ended August 7, 1943.— During the week ended August 7, 1943, cases of certain communicable diseases were reported by the Dominion Bureau of Statistics of Canada as follows:

Disease	Prince Edward Island	Nova Scotia	New Bruns- wick	Que- bec	On- tarlo	Mani- toba	Sas- katch- ewan	Al- berta	British Colum- bia	Tota
Chickenpox Diphtheria Dysentery (bacillary)	1	10 5	1	23 15 1	61	11 1 1	15	17 1	26	160
Encephalitis, infectious German measles Influenza Measles		22	1	1	15 7 171	24	15	6 72	6 1 65	37
Meningitis, meningococ- cus Mumps Poliomyelitis		8		14	2 86	2 12	1 6	1 26	14	16
Scarlet feverSmallpox	1	3	1	30	49	16	6 2	15	16	13
Tuberculosis (all forms) Typhoid and paraty-	3		22	124	38	3	14	12	31	24
phoid fever			1	19 8 74	127	1 23	19	57	2 32	33

NEW ZEALAND

Vital statistics—Year 1942-43.—Following are the vital statistics for New Zealand for the year 1942-43 as published by the Director-General of Health:

	Num- ber	Rate per 10,000 popu- lation		Num- ber	Rate per 10,000 popu- lation
Live births	33, 574	1 21. 73	Deaths from:—Continued.		
Stillbirths		2 26. 54	Heart disease	5, 625	36, 41
Deaths		1 10.60	Hernia and intestinal obstruc-		
Deaths of infants		2 28. 71	tion	114	.74
Maternal mortality		2 2.53	Influenza (including pneu-		
Deaths from:			monia)	248	1.61
Appendicitis	68	. 44	Measles	31	. 20
Bright's disease	493	3. 19	Pneumonia	235	1. 52
Bronchitis	210	1.36	Scarlet fever	1	.01
Bronchopneumonia	326	2. 11	Senility	468	3. 03
Cancer	2, 020	13.07	Tuberculosis (all forms)	€07	3, 93
Cerebral hemorrhage	1, 530	9.90	Typhoid and paratyphoid		
Diabetes	352	2. 28	fever	8	.05
Diarrhea and enteritis	78	. 50	Violence.	891	8.77
Diphtheria Diseases of the arteries	24 188	1. 22	Whooping cough	. 4	.03

¹ Per 1,000 population.

(1390)

Per 1,000 live births.

SWITZERLAND

Notifiable diseases—January-March 1943.—During the months of January, February, and March 1943, cases of certain notifiable diseases were reported in Switzerland as follows:

Disease	January	February	March	
Cerebrospinal meningitis	5	10	13	
Chickenpox	215	144	256	
Diphtheria and croup	235	218	256	
Dysentery	2	7	25	
German measles	10	11	19	
Hepatitis, epidemic	219	182	187	
nfluenza.	73	60	65	
Leprosy		00	1	
Measles	150	138	315	
Mumps.	152	212	334	
Paratyphoid fever	14	***	001	
Poliomyelitis	6	5		
Scarlet fever	214	172	236	
	214	1/2	200	
	268	327	441	
	16	327	441	
Typhoid fever		7	6	
Undulant fever	3	3	22	
Whooping cough	76	94	138	

REPORTS OF CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER RECEIVED DURING THE CURRENT WEEK

Note.—Except in cases of unusual prevalence, only those places are included which had not previously reported any of the above-mentioned diseases, except yellow fever, during the current year. All reports of yellow fever are published currently.

A cumulative table showing the reported prevalence of these diseases for the year to date is published in the PUBLIC HEALTH REPORTS for the last Friday in each month.

(Few reports are available from the invaded countries of Europe and other nations in war zones.)

Plague

Indochina—Cochinchina.—For the period July 21-31, 1943, 1 fatal case of plague was reported in Cochinchina, Indochina.

Smallpox

Algeria.—Smallpox has been reported in Algeria as follows: July 11-20, 1943, 39 cases; July 21-31, 1943, 30 cases.

Indochina.—Smallpox has been reported in Indochina as follows: July 11-20, 1943, 107 cases; July 21-31, 1943, 111 cases.

Turkey.—Smallpox has been reported in Turkey as follows: Week ended July 10, 1943, 150 cases; week ended July 17, 1943, 133 cases; for the period August 1-15, 1943, 283 cases.

Typhus Fever

Algeria.—Typhus fever has been reported in Algeria as follows: July 11-20, 1943, 94 cases; July 21-31, 1943, 115 cases.

Rumania.—For the 2 weeks ended August 21, 1943, 84 cases of typhus fever were reported in Rumania.

Slovakia.—During the week ended August 7, 1943, 22 cases of typhus fever were reported in Slovakia.

Spain.—Typhus fever has been reported in Spain as follows: For the 2 weeks ended July 3, 1943, 25 cases; week ended July 10, 1943, 11 cases.

Tunisia.—For the period July 11-20, 1943, 50 cases of typhus fever were reported in Tunisia, including 13 cases reported in Tunis.

Turkey.—Typhus fever has been reported in Turkey as follows: Week ended July 10, 1943, 113 cases; week ended July 17, 93 cases; August 1-15, 1943, 206 cases.

Yellow Fever

Brazil—Para State—Ponta de Pedras.—On July 8, 1943, 1 death from yellow fever was reported in Ponta de Pedras, Para State, Brazil.

×