10 /511341 DT04 Rec'd PCT/PTO 15 OCT 2004

SEQUENCE LISTING

<110>	Kyowa Hakko Kogyo Co., Ltd.	
<120>	Endocrine cell lines and use thereof	
<130>	1480	
<150>	JP 2002-113030	
<151>	2002-04-16	
<160>	198	
<170>	PatentIn version 3.1	
<210>	1	
⟨211⟩	24	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	Inventor: Sasaki, Katsutoshi; Miura, Kazumi; Saeki, Satoshi; Inventor: Yoshizawa, Misako; Kishimoto, Kazuya; Inventor: Kunitomo, Hirofumi; Nishi, Tatsunari; Obinata, Masuo	
<220>		
<223>	synthetic DNA	
<400>	1	
	tggc ttagaatccc ttcg	24
<210>	2	
<211>	21	
<212>	DNA	
<213>	Artificial	
<220>		
, n n n s	num + b n + i n DNA	

<400> 2	•	
atatcactga ttctgcatgc t	•	21
<210> 3		
<211> 23		
<212> DNA		
<213> Artificial		
,		
<220>		
<223> synthetic DNA		
, , , , , , , , , , , , , , , , , , , ,		
<400> 3		
gttgattccc agcctcaggc atc	•	、 23
<210> 4		
<211> 23		
<212> DNA		
<213> Artificial		
<220>		
<223> synthetic DNA		
•		
<400> 4		•
tgaggaacga gctgcagcaa cgg		23
	3	
<210> 5	•	•
<211> 23		
<212> DNA		
<213> Artificial		•
<220>		
<223> synthetic DNA		
•		
<400> 5		
gatgccccat tttcacagca aag	•	23

<210><211><211><212><213>	6 23 DNA Artificial		
<220> <223>	synthetic DNA		
<400> gttctcc	6 ccaa acctttgggg	cag	23
<210><211><211><212><213>	7. 25 DNA Artificial		
<220><223>	synthetic DNA		
<400> ctgagct	7 tcca gacaccatga	acctt	25
<210><211><211><212><213>	8 23 DNA Artificial		
<220> <223>	synthetic DNA		
<400> ttaccg	8 ttgg cctgaaggag	gcg	23
<210><211><212><213>	9 23 DNA Artificial		

<220>			
<223>	synthetic DNA		
			•
<400>	9		
caggac	ctca ccacggaaag	caa	23
		·	
<210>	10		•
<211>	21		
<212>	DNA		
<213>			
<220>			
<223>	synthetic DNA		
-	•	,	
<400>	10		
ggggcg	tctg gctcttctcg	g	21
	,		
<210>	11		
<211>	22		
<212>	DNA		
<213>	Artificial		
<220>			
<223>	synthetic DNA		
<400>	11 .		
ggtacc	cctc caagccggac	aa	22
<210>	12		
<211>	26	•	
<212>	DNA		
<213>	Artificial	,	
	-		
<220>		•	
<223>	synthetic DNA		

<400> 12					
gcaagtttca tttco	ccatca ccacat	t		•	26
				•	
<210> 13					
⟨211⟩ 22					
<212> DNA					
<213> Artificia	al				
<220>					
<223> synthetic	o DNA		•		
•					
<400> 13					
ctgctgtgct gctgc	ctactg.ct				22
			•		
			•		
<210> 14		•			
<211> 23					
<212> DNA					
<213> Artificia	11.				
, , ,					
<220>	n DALA				
<223> synthetic	; DNA		•		
<400> 14	•	,			
caaacctctg gggct	୮ଫ୍ରର୍ଗ୍ ନ୍ରଫ				23
caaaccicig gggci	,gaaac aag				40
<210> 15					
<211> 22					
<212> DNA					
<213> Artificia	11				
`					
<220>					
<223> synthetic	DNA				
	-				
<400> 15					
ctccgcctgg ggaac	ectcaa ca				22

<210>	16	
<211>	24	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	synthetic DNA	
<400>	16	
tttcct	gttg ctgtgagctt gctg	2
	, , , , , , , , , , , , , , , , , , ,	
(010)	1.7	
<210>	17	
<211>	25 DNA	
<212> <213>	DNA Artificial	
\213/	Altilicial	
<220>		
<223>	synthetic DNA	
<400>	17	
aaaaggg	gagg aggaggaaaa agaca	25
<210>		
<211>	24	
<212>	DNA	
<213>	Artificial	
/220 \		
<220> <223>	synthetic DNA	
\4437	Synthetic DNA	•
<400>	18	
	cagg atagggaata cagg	24
000-4		
<210>	19	
<211>	22	
<212>	DNA	
<213>	Artificial	

<220	>	
<223	> synthetic DNA	
	> 19	_
cccag	gagcac cagaaagccc ag	22
<210	> 20	
<2112	' .	
<212		
	> Artificial	
<220	>	
<223	> synthetic DNA	
<400	> 20	
ggcgc	cetett tgacetette ee	22
		•,
<210×		
<212>	· · · · · · · · · · · · · · · · · · ·	
	> Artificial	
		•
<220>	>	
<223>	synthetic DNA	
	*	
<400>	> 21	
gacca	acaaag aacacaggct ccaa	24
<210>	22	
<211>	•	
(212)		
<213>		
<220>	>	
<223>		

<400>	22					
caggta	tcag acttgccaac	aggg				24
			•			
<210>	23					
<211>	24					
<212>	DNA	•				
<213>	Artificial					٠,
<220>				•		
<223>	synthetic DNA					
		•				
	23					
catcta	ctct gccgtggatg	atgc				24
2910 S	0.4				•	
<210><211>	24 23	-				
<211>	DNA					
<213>	Artificial				•	
(213)	Altilitat		,			
<220>						
<223>	synthetic DNA					
<400>	24					
gttcct	cggg gacagtcaca	cag			•	23
			,			
<210>	25					
<211>	24					
<212>	DNA					
<213>	Artificial					
<220>					• .	
<223>	synthetic DNA					
(400)	0.5		,			
<400>	25	44				0.4
ccagcat	tcca tggcatcaag	LLCC				24

<210>	26					`		
<211>	25							
<212>	DNA					,		
<213>	Artificial	•		•		•		
<220>								
<223>	synthetic DNA				•			
				•				
<400>	26							
	caag acaaacagca	tettg						25
040040	, saag asaaasagsa							
	,	•						
<210>	27							•
<211>	23	•		•		•		-
<212>	DNA							
		-			•			
<213>	Artificial		•		•			
<220>	•		*				•	•
	avethetia DNA							
<223>	synthetic DNA							
<400>	27			•				
		goo '		4				23
igacgg	cgat ggtgacgagc	gee				•		20
,	•							
<210>	28							
<211>	23		•					
<212>	DNA							
<213>	Artificial					•		
4000								
<220>								
<223>	synthetic DNA				-			
		,						
<400>	28						•	
cagect	ccca acagcagttg	gcc						23
							,	
.					•			
<210>	29							•
<211>	24							
<212>	DNA							
79135	Artificial							

<220>							
<223>	synthetic DNA		•				
<400>							
ggtgt	ttgtg actctgggtg	tcat				·	24
<210>	30	,					
<211>							
	DNA						
	Artificial						
.210,	111 011110101						
<220>							
<223>	synthetic DNA						
<400>	30			, .			
gtgca	agctg cccagataca	act					23
			•				
			·				
<210>			•				
<211>	27 DNA						
	Artificial						
12107	Aiviiiciai			·			
<220>					*		
<223>	synthetic DNA			. •			
<400>	31						
gaaaa	ggaga aacaacatga	tggacaa					27
.015	0.0						
<210>	32						
<211>							
<212>						•	
<213>	Artificial						
<220>		•					
<223>	synthetic DNA		•				

<400>	32		
agaaga	actg caagtetete	tggaa	25
<210>	33		
<211>	23		
<212>	DNA		
<213>	Artificial		
<220>	·		
<223>	synthetic DNA		
<400>	33		
ggcttt	gcca tctgttctcc	cct	23
		•	
<210>	34		•
<211>	27		
<212>	DNA		
<213>	Artificial		
	`		
<220>			
<223>	synthetic DNA		
	0.4		
<400>	34		0.77
catttt	cttc gagtctgttt	tctttgt	27
<210>	35		
<211>	24		
<211>	DNA	·	
<213>	Artificial		
/UIO/	MI 01110101		
<220>			
<223>	synthetic DNA		
,	SJIIOIIO OTO DIA		
<400>	35	,	
	gcat gtgcaagatc	agtg	24
J-~-0 - W	J 0 000 000 000 000 000 000 000 000 0		

<210>	36		
<211>	28		•
<212>	DNA		
<213>	Artificial		
<220>			
<223>	synthetic DNA	•	
<400>	36		
caatcc	ttgc atacatgata	acaatgag	2
*			
<210>	37		
<211>	20	•	
<212>	DNA		
<213>	Artificial		
<220>	•		
<223>	synthetic DNA	•	
<400>	37		
caatgg	ctac cgggagtgcc		2
	•		
<210>	38	•	
<211>	20		
<212>	DNA		
<213>	Artificial		
	,		
<220>			
<223>	synthetic DNA		
<400>	38		
gtacgt	gage acaatggetg		20
40101	0.0		
<210>	39	·	
<211>	23		
<212>	DNA		
<213>	Artificial	•	•

<220	>		
<223	•		
	•		
<400	> 39		
	gacaag cagaggaagt atg		23
<210	> 40		
<211	> 23		
<212	> DNA		
<213	> Artificial		
	·		
<220	>		
<223	> synthetic DNA		
	•		
<4002	> 40		
gcagg	gtagca gccttccaca aac		. 23
			•
		,	
<210			
<2112			
	> DNA		
<213	> Artificial		
<220			
<223	> synthetic DNA		
<400>			
cttcc	cgcgag ctgcgcacca cc		22
	•		
Z0105			
(210)			
(211)			•
(212)			
<213>	> Artificial		
/000×			
(220)			
<223	> synthetic DNA		

<400>	42		
gctgga	cacc cacaccatga	cg	22
<210>	43		
<211>	22	•	
<212>	DNA		
·<213>	Artificial		
<220>			
⟨223⟩	synthetic DNA		
,220,	,		
<400>	43		
	catg atccaccage	tc	22
800000	caug arccaccage		
	•		
<210>	44		
<211>			
<212>	DNA ·		
	Artificial		
	MI VIII CIGI		
<220>			
<223>	synthetic DNA		
(220)	Symoneore Divi		
<400>	44		
	cagt agaggtcagt	gtó	23
5 054401		8.00	
⟨210⟩	45		
<211>	22		
<212>	DNA		
<213>	Artificial		
	111 011 10141		
<220>			
<223>	synthetic DNA		
-	STRUMOUTO DIM		
<400>	45		
	etge etgeaagate	CC	22
acceact			

<210>	46			•	
<211>	24				
<212>	DNA		•		
<213>	Artificial	,		•	
12107	111 01110141	•			
<220>					
<223>	synthetic DNA				
	Synthetic DIA				
<400>	46				
		. 2200			24
guided	agtc tgctgcatag	aagg	**		4
<210>	47				
<211>	23				
<212>				•	
<213>	Artificial	,			
<220>					
	aunthatia DMA				
<223>	synthetic DNA	•			
<400>	47				
		e a crt			23
gaccii	cagc tccaagagcg	agı		1	. 40
	•			•	
<210>	48		,		
<211>	22				
<212>	DNA				
<213>	Artificial				
\4137	Artificial			•	
<220>				÷	
<223>	synthetic DNA			•	
\4437	Synthetic DNA				
<400>	48				
		og			22
gugaag	aagt ggcgctggtc	.cg	•		44
	•				
<210>	: .	•		•	
	49				
<211>	31	•			
<212>	DNA				

<220>							
<223>	synthetic DNA						
	•						
<400>	49				•		
	cttg tgcacaggat	gcctgacacc	a.				31
44,444		800084040	~				01
					•		
<210>	50						
⟨211⟩	29						
	DNA .		•			•	
<213>	Artificial						
	111 011 10141					*	•
<220>		<u>.</u>		•			•
⟨223⟩	synthetic DNA		,				
	Syllollo 010 Bivil						
<400>	50			• •			
	ggcc gctcagtagg	cetcegect	•				29
444060	9900 9000480488	08 00 8880 0		. •			
		•			•		
<210>	51				,		
<211>	32	•					_
<212>	DNA		•				
<213>	Artificial						
				•			
<220>							
<223>	synthetic DNA		٠		,		
,	·						
<400>	51				,		*
gtataa	gctt gagtgcccct	aacatgcggc	tg				32
•						,	•
.*							
<210>	52						
<211>	37						
<212>	DNA	٠.					
<213>	Artificial		•	٠.			
<220>			. *				
/999N	aunthotic DNA					•	

<400>	52			
aaatgc	ggcc gcttggccaa	acgcaccgtt	ttatttc	37
<210>	53			
<210>	28			
<212>	DNA			
<213>	Artificial			
12107	AI UIII CIGI			
<220>			·	
<223>	synthetic DNA			
<400>	53			
tgccca	ggct tttgtcaaac	agcacctt		28
<210>	54			
⟨211⟩	20			
	DNA			
<213>	Artificial		,	
<220>				
<223>	synthetic DNA			
14437	Synthetic DNA			
<400>	54			
	tgcc aaggtctgaa		•	20
J				
<210>	55			
<211>	24			
<212> -	DNA			
<213>	Artificial	`		
.000				
<220>	.1			
<223>	synthetic DNA			
/ ////>	55		•	
<400>	00 ggat tøtttøtaat	ant a		24

<210>	56		·	-	
<211>	24			•	
<212>	DNA				
⟨213⟩	Artificial		• •		
		,			
<220>			•		
<223>	synthetic DNA				
	5, 110115 5 1 5 1 111				
<400>	56				
	ctct tggtgttcat	caac			24
				-	
<210>	57				
<211>	21		,		
<212>	DNA .				
<213>	Artificial			•	
<220>				. ^	•
<223>	synthetic DNA				
	•	•			
<400>	57				
ccctcg	gace ecagacteeg	t .			21
	•				
					*1
<210>	58		•		
<211>	23			•	
<212>	DNA ,				
<213>	Artificial				
<220>	•				
<223>	synthetic DNA			•	
	:				
<400>	58				
ttcttg	cagc cagctttgcg	ttc			23
		•			
		•	`		
<210>	59				
<211>	24				
<212>	DNA				
⟨213⟩	Artificial				

<220>				
<223>	synthetic DNA		•	
*		•		
<400>	59		•	
tgaaca	gagg gctcaatacg	aaac		24
-				
<210>	60			
<211>	24		•	
<212>	DNA			
<213>	Artificial			
•				
<220>				
<223>	synthetic DNA			
			4	
<400>	60			
agacag	aagg gaggctacaa	atcc		24
				٠
<210>	61			
<211>	26			
<212>	DNA		· · · · · · · · · · · · · · · · · · ·	
<213>	Artificial			
<220>				
<223>	synthetic DNA			
<400>	61			
		† ggagg	:	2 G
taatķa	tgat ggaaaaactg			26
			ur .	
<210>	62			
<211>	26			
<212>	DNA			
<213>	Artificial			
	,			
<220>				
⟨223⟩	synthetic DNA			
	•			

<400>	62				•			
tgctga	taga gatggtgtaa	atgctg						26
			•					
<210>	63							
<211>	24	•						
<212>								
<213>	Artificial							
	•							
<220>			•	٠				
<223>	synthetic DNA	•		•				
					•			
	63		•	*			•	
actetg	aggc attctgggac	atct					•	24
				. ,		•		
<210>	64							
<211>	25		•	•			,	
<212>	DNA	•						
<213>	Artificial							
.210.		,						
<220>	•							
<223>	synthetic DNA		•					
			·					
<400>	64							
gtcatg	ttga tgttcaggtc	tcctc	•		,			25
					ı			
<210>	65							
<211>	21							
<212>	DNA	,						
<213>	Artificial	•						
.002			•					
⟨220⟩	,							
<223>	synthetic DNA							
Z:4.0.0.5	C.E							
<400>	65							0.1
gcagac	tege gaagteeact	C		•				21

```
<210> 66
<211>
       20
<212> DNA
       Artificial
<213>
<220>
<223> synthetic DNA
<400> 66
gcaggtggct gcatacacgc
<210> 67
<211>
       20
<212>
       DNA
<213> Artificial
<220>
<223> synthetic DNA
<400> 67
gccgggtgga gctggcagtg
<210> 68
⟨211⟩
       20
<212> DNA
<213> Artificial
<220>
<223> synthetic DNA
<400> 68
cggtcgcagt ggcgcgatgc
<210> 69
⟨211⟩ 23
```

20

20

20

<212>

<213>

DNA

Artificial

<220>			
<223>	synthetic DNA	•	Ę
	·		
<400×	69		
	agag ggatgcgacc ctg		23
		,	
<210>	70		
<211>	24		
<212>	DNA		
<213>	Artificial		
<220>	•		
<223>	synthetic DNA		
			•
<400>	70		
ccactg	aatc aggatactgc cca	c	24
	,		
•			
<210>	71		
<211>	24		
<212>	DNA		
<213>	Artificial		•
<220>			
<223>	synthetic DNA		
<400>	71		
gagtgc	ccgt ccatctttgc ttg	g	24
			•
<210>	72		
<2 11>	24	·	
<212>	DNA		
<213>	Artificial		
<220>	,		
<223>	synthetic DNA		

<400>	72			
tttctt	ctct tctccacttg	gccc	·	24
<210>	73			
<211>	24			-
.<212>	DNA			
<213>	Artificial			
		1		
<220>				
<223>	synthetic DNA			
<400>	73			٠
	gcct cggaccacga	a ort or		24
cccssa	seer essaceaesa	45 65		4 T
				•
<210>	74	•		
<211>	24			
<212>	DNA		•	
<213>	Artificial			
<220>				
<2 <u>,</u> 23>	synthetic DNA			
·<400>	74			
	tggt ccgctatgcg	0200		24
aagcug	ober coeconiece	cago		. 44
l				
<210>	75			
<211>	24			
<212>	DNA			
<213>	Artificial			
<220>				
<223>	synthetic DNA			
//OOS	75			
<400>	75	toto.		0.4
ggacag	acga gtgcctcagt	$\iota c \iota c$	•	24

<210>	76				
<211>	24				
<212>	DNA				
<213>	Artificial		٠	•	
<220>					
<223>	synthetic DNA				
	•				
<400>	76				
gggctt	ttgc ctgagcgcag	gatc			24
		•		,	
<210>	77				•
<211>	29				
<212>	DNA				
<213>	Artificial		•		٠
<220>					
<223>	synthetic DNA				
<400>	77	•	•		
gaacca	tgtc gctgaccaac	acaaagacg			29
			•		
<210>	78	•			
<211>	25				
<212>	DNA				
<213>	Artificial		• .		
,					
<220>					•
<223>	synthetic DNA				
		•			
<400>	78				•
cgccct	gggt ctccttgtca	ttgtc .			25
<210>	79				
<211>	24				
<212>	DNA				
<213>	Artificial				•

<220>				
<223>	synthetic DNA			
<400>	79			
atcttc	ctggc ctggggtgat gcag			24
	•			
<210>	80			
<211>	24			
<212>	DNA			
<213>	Artificial			
<220>				
<223>	synthetic DNA			
			•	
<400>	80			
gtctcc	egagt ectgettett ettg			24
<210>				
<211>				
				•
<213>	Artificial			
				•
<220>	the contract of the contract o			
<223>	synthetic DNA			
<400>				
aaggga	aacaa catcgtagga			20
<210>				
⟨211⟩	•	•		
<212>				
<213>	Artificial			
.005				
<220>			•	
<223>	synthetic DNA			

<400>	82				
cattgg	cggt cttcatagta				20
		•			
<210>	83	•			
<211>	20				
<212>	DNA				
<213>	Artificial				
<220>					
<223>	synthetic DNA				
<400>	83				
ttagca	actg ggtctgcaat	•			20
				•	
<210>	84				
<211>	20				
<212>	DNA				
<213>	Artificial		-		
	•				
<220>	•				
<223>	synthetic DNA		·,		
			-		
<400>	84				
ggtgta	gtcc tacactcatg	,			20
	-				
	•		•		
<210>	85				
<211>	21				
<212>	DNA				
<213>	Artificial				
<220>	5				
⟨223⟩	synthetic DNA				
<400>	85	•			
	gact gccccaggca g	•			21
00000	0 0	,			

```
<210> 86
 <211>
        20
 <21.2> DNA
 <213>
       Artificial
 <220>
 <223> synthetic DNA
 <400> 86
 ccacctgctc acaccgggcc
                                                                      20
 <210> 87
 <211> 54
 <212> DNA
 <213> Artificial
 <220>
<223> synthetic DNA
 <400> 87
tcgacaaata aagcaatagc atcacaaatt tcacaaataa agcatttttt tcaa
 <210> 88
<211> 54
 <212> DNA
<213> Artificial
 <220>
<223> synthetic DNA
<400> .88
tgcattgaaa aaaatgcttt atttgtgaaa tttgtgatgc tattgcttta tttg
                                                                     54
<210> 89
⟨211⟩ 39
<212> DNA
 <213> Artificial
```

<220>							
	synthetic DNA						
	· ·						
<400>	89						
tgcatte	ctag ttgtggtttg	tccaaactcg	agcccgggg				39
<210>	90						
<211>	39						
<212>	DNA				٠,		
<213>	Artificial			•			
	•						
<220>							
<223>	synthetic DNA			·			
		•					
	90						
gtaccc	ccgg gctcgagttt	ggacaaacca	caactagaa	v			39
			-				
.010.	0.1						
(210)	91						
<211>	40			•			
<212>	DNA				• •		
<213>	Artificial						
<220>						•	
<223>	synthetic DNA				,		
12257	Synthetic DNA		•				
<400>	91	•	-				
	gtat cgattcgact	gacgtcatac	ttgacgtcac				40
11010		00					
					•	,	
<210>	92			•			
<211>	40			•			
<212>	DNA						
<213>	Artificial						
<220>							
<223>	synthetic DNA						

<400>	92		
tcgagt	gacg tcaagtatga	cgtcagtcga atcgataccg	40
<210>	93		
<211>	29		
<212>	DNA		٠
<213>	Artificial	•	
⟨220⟩			
<223≻	synthetic DNA		
<400>	93	-	
	cttg ccgccgccat	gggctgcct	29
,			
	. •		
<210>	94		
<211>	34		
<212>	DNA		
<213>	Artificial		
	•		
<220>	·	•	
<223>	synthetic DNA		
	;	•	
<400>	94		
attgtt	acct ctcttagage	agctcgtact gacg	34
<210>	95		
<211>	28		
<212>	DNA		
<213>	Artificial		
<220>			
<223 ⁵ >	synthetic DNA		
		,	
<400>	95		
an and t		and at a sa	0.0

<210>	96		· -		
<211>	36		-	-	
<212>	DNA			•	
<213>	Artificial	•		·	•
<220>					
<223>	synthetic DNA	•	•	•	
<400>	96				
tcgagi	ttaga ccagattgta	ctcacgaagg tgcat	g		30
<210>	97	•			
<211>	26				
<212>	DNA				
<213>	Artificial				
<220>		* :- * * * * * * * * * * * * * * * * * *			
<223>	synthetic DNA	•			
<400>	97		•		
cacctt	cgtg attgtggtct	ctttta			26
<210>	98				
<211>	35				
<212>	DNA	•		•	
<213>	Artificial				
<220>					
<223>	synthetic DNA				
<400>	98				
aagctt	aaaa gagaccacaa	tcacgaaggt gcatg			. 35
<210>	99				
<211>	30				
<212>	DNA	•			
1010x	1 - 1 2 C 2 - 2 - 1				

<220>								
<223>	synthetic DNA	·						
					,			
<400>	99							
tatgga	tcca gccccaccat	gctcatggcg						30
<210>	100							
<211>	32							
<212>	DNA							
<213>	Artificial		-					
<220>		•					•	
<223>	synthetic DNA	·						
<400>	100							
aatggt	acct cctcacgatg	aagtgtcctt gg						32
•								
<210>	101				•			
<211>	28							
	DNA							
<213>	Artificial							
12107	711,01110141				-	•		
<220>								
<223>	synthetic DNA	,		•				
	•							
<400>	101							
agccaa	gctt gcccgaggat	gggagggc	•			•		28
	•							
<210>	102							
<211>	39							
<212> ·								
<213>	Artificial							
<220>								
<223>	synthetic DNA						•	

<400>	102					
ctcgag	gcgg ccgctcagac	tgctgtggac	tgcttgatg			39
					·	
<210>	103					
<211>	49			,		•
<212>	DNA					
<213>	Artificial		•			
<220>						
<223>	synthetic DNA		-			
	,					
<400>	103					
gttcat	ttca aagcttccgc	catggcatca	tcatcctggc	cccctctag	•	49
					•	
.010	104					
<210>	104					
<211>	41		•			
	DNA	•				
<213>	Artificial	•			,	
<220>				,		
<223>	synthetic DNA					
12207	Synthetic DNA					
<400>	104					
	caat ggtaccttaa	ttccgccaga	aaagttggaa	g		41
	00			J		
•						
<210>	105					
<211>	34			••		
<212>	DNA					
<213>	Artificial					
				·		•
<220>	,					
<223>	synthetic DNA					
	•					•
<400>	105					
agteas	gett cettteteet	graggtarra	tøst			3.4

<210>	106					-	
<211>	37						
<212>	DNA						
<213>	Artificial					,	
<220>							
<223>	synthetic DNA						4
<400>	106		,				
tttata	gegg eegeteaget	agacatcact	gggggag				. 37
40105	1.07			*			
<210>	107						
<211>	29						
<212>	DNA						
<213>	Artificial						
<220>							
<223>	synthetic DNA						
<400>	107						
gcccca	gaag cttaagtgcc	caccatggg					29
<210>	108				•		
<211>	33		٠				
<212>	DNA						
<213>	Artificial						
<220>	-						
<223>	synthetic DNA	•					
<400>	108						
gttcat	tgtg gcggccgcag	catcttcagc	tgc				33
<210>	109						
<211>	32				•		
<212>	DNA	•					
<213>	Artificial						
/UIU/	ur official						

<220>					,	
<223>	synthetic DNA					
<400>	109					
	gctt acgcctgcac	teceteceta	tg			32
,		000000000	•0			-
<210>	110					
(211)	35	•				
	DNA					
	Artificial					
\413/	Alvillerai					
<220>						
	ounthatia DNA		•			
<223>	synthetic DNA					
44005	110	÷				
<400>	110					0.5
tttata	gcgg ccgcttcaga	cctcgctggg	agacc		•	35
				•		
.040.		•		·		
<210>	111				•	
<211>	35			•		
<212>	DNA				•	
<213>	Artificial					
					•	
<220>						
<223>	synthetic DNA					
						,
<400>	111					
agtcaa	gctt gttgaagagg	acaggggtta	aaatg	•		35
		`				
<210>	112				1	
<211>	37			,		
<212>	DNA					
<213>	Artificial					
<220>	,					
(223)	synthetic DNA					

<400> 112				
tttatagcgg ccgcaagggt	gctacacatc	actgggc		37
<210> 113				
<211> 32				
<212> DNA				
<213> Artificial				
<220>				
<223> synthetic DNA				
(400) 110				
<400> 113		a a		วา
agtcaagctt caggcctcat	agecagecat	gg		32
<210> 114				
<211> 33	•			
<212> DNA			-	
<213> Artificial				
<220>				
<223> synthetic DNA		•		
	•			-
<400> 114	•	·		
ttatgcggcc gcgctaccag	gaggccgagg	cag	·	33
•				
		•		
<210> 115				
<211> 39				
<212> DNA	•			
<213> Artificial				
<220>				
<223> synthetic DNA				
Symmetre DNA				
<400> 115				
ctgagcgccg aagcttggcg	cgcaccatga	actcgtgg	•	39

```
<210> 116
<211>
      38
<212> DNA
<213>
      Artificial
<220>
<223> synthetic DNA
<400> 116
ctaaactett cageggeege geggteette acteagae
                                                                      38
<210> 117
⟨211⟩
      33
<212>
      DNA
<213>
      Artificial
<220>
<223> synthetic DNA
<400> 117
                                                                      33
tactaagctt ggcgcagaga catggatgtg act
<210>
      118
⟨211⟩
      35
<212>
      DNA
      Artificial
<213>
<220>
<223> synthetic DNA
<400> 118
                                                                     35
aatagcggcc gcaaggctgt ctacacggca ctgct
<210> 119
<211>
      38
<212>
      DNA
<213> Artificial.
```

synthetic DNA						
119				,		
gctt ccaccatgaa	tggcacctac	aacacctg				38
				•	-	
120						
37					•	
DNA						
Artificial		1	•			
•						
	-			•		
synthetic DNA		•				
				·		
			•	•		
gcgg ccgcttaggc	gagggtcacg	cacagag			-	37
,						
•						
Artificial						
aunthotic DNA			-			
Synthetic DNA			-			
191						
	agettgeagg	tato				34
Scoo Scoo age	4800080488					01
122			•			
	•		,			
	•			,		
synthetic DNA						-
	119 agett ceaceatgaa 120 37 DNA Artificial synthetic DNA 120 agegg cegettagge 121 34 DNA Artificial synthetic DNA 121	119 agett ceaccatgaa tggcacctac 120 37 DNA Artificial synthetic DNA 120 agegg cegettagge gagggteacg 121 34 DNA Artificial synthetic DNA 121 agett getgtagea agettgeagg 122 35 DNA Artificial	119 agett ceaccatgaa tggcacctac aacacctg 120 37 DNA Artificial synthetic DNA 120 agegg cegettagge gagggteacg cacagag 121 34 DNA Artificial synthetic DNA 121 agett getgtageca agettgeagg tate 122 35 DNA Artificial	119 agett ccaccatgaa tggcacctac aacacctg 120 37 DNA Artificial synthetic DNA 120 agegg ccgcttaggc gagggtcacg cacagag 121 34 DNA Artificial synthetic DNA 121 agett gctgtagcca agettgcagg tate 122 35 DNA Artificial	119 agett ccaccatgaa tggcacctac aacacctg 120 37 DNA Artificial synthetic DNA 120 agegg ccgcttaggc gagggtcacg cacagag 121 34 DNA Artificial synthetic DNA 121 agett gctgtagcca agettgcagg tate 122 35 DNA Artificial	119 agett ccaccatgaa tggcacctac aacacctg 120 37 DNA Artificial synthetic DNA 120 agegg ccgcttaggc gagggtcacg cacagag 121 34 DNA Artificial synthetic DNA 121 agett gctgtagcca agettgcagg tate 122 35 DNA Artificial

<400>	122				•			
		++000+++	+++00					25
gateca	aaac cgcggccgca	llacalliga	lllac					35
	,			•				
<210>	123							
<211>	35							•
<212>	DNA					**		
<213>	Artificial							
<220>								
<223>	synthetic DNA							
							•	
<400>	123							
agtcaag	gctt gttgaagagg	acaggggtta	aaatg					35
		•						
		•						•
<210>	124	,						
⟨211⟩	37							
<212>	DNA							
<213>	Artificial		•					
				•				
<220>	•	•						
<223>	synthetic DNA		• •	-				
,					•			
<400>	124		•		•			
tttata	gegg eegcaagggt	gctacacatc	actgggc	•				37
·		- .						
			•					
<210>	125							•
<211>	42							
<212>	DNA							
<213>	Artificial							
-								
<220>			•					
<223>	synthetic DNA	×			· .			
	-y 110110 0 10 D 1111						•	
<400>	125							
	rott googooooo	tagoonooto	00000000	+ a o o				۷.0

```
<210> 126
<211> 23
<212> DNA
<213> Artificial
<220>
<223> synthetic DNA
<400> 126
                                                                     23
tgtgacctgt gcaggggttg gat
<210> 127
<211> 36
<212> DNA
<213> Artificial
<220>
<223> synthetic DNA
<400> 127
ggaagettee accatgacea acteeteete cacate
                                                                     36
<210> 128 .
<211> 28
<212> DNA
<213>
      Artificial
<220>
<223> synthetic DNA
<400> 128
                                                                     28
cgctcgagtt accagtgctg gcccgcgg
<210> 129
<211>
      40
<212> DNA
<213> Artificial
```

<220>			• .	
<223>	synthetic DNA			
<400>	129			
cagtcc	aagc ttccaccatg	ttagccaaca	gctcctcaac	40
J				
<210>	130			
<211>	35			
<212>	DNA	•		
<213>	Artificial			
<220>				
<223>	synthetic DNA			
	•			
<400>	130			
gttata	gcgg ccgctcagag	ggcggaatcc	tgggg	35
		•		
<210>	131			
<211>	35			
<212>	DNA			
<213>	Artificial			
<220>				
<223>	synthetic DNA			
<400>	131			
gaacta	atat aattgcaagc	ttaaaaagga	aaaaa	35
	•			
<210>	132			
<211>	33			
<212>	DNA			
<213>	Artificial			
-				
<220>				
79935	cynthotic DNA			

<400>	132						
cttaaa	cttc gcggccgctc	aaaacatcct	tgg				33
			•				
<210>	133						
<211>	33						
<212>	DNA						
<213>	Artificial	•					
		•					
<220>							
<223>	synthetic DNA	•					
•						*	
<400>	133						
gcccac	ccca agcttaggtg	cactgaccat	gag				33
				•			
<210>	134						
<211>	37						
<212>	DNA ·				•		
<213>	Artificial					٠	
<220>							
<223>	synthetic DNA					•	
	134						
gggaaa	acgc ggccgctgag	aggcttataa	agcacgc				37
				*		•	
.010.		•					
<210>	135						
<211>	38				,		
<212>	DNA		•				
<213>	Artificial	ŕ					
4000s							
(220)	armthati- DNA						
<223>	synthetic DNA				•	•	
. 100s	195						
<400>	135	adodo++222	n++nacaa				3 Q

```
<210> 136
<211> 40
<212> DNA
<213> Artificial
<220>
<223> synthetic DNA
<400> 136
gtttatagcg gccgcttaat gcccactgtc taaaggagaa
                                                                     40
<210> 137
<211> 35
<212> DNA
<213> Artificial
<220>
<223> synthetic DNA
<400> 137
                                                                    35
gggaagatga gaagettetg eegaeggatg etgge
<210> 138
<211> 34
<212> DNA
<213> Artificial
<220>
<223> synthetic DNA
<400> 138
                                                                    34
gaaccacatt ggcggccgca ggacccccaa cctg
<210> 139
<211> 32
<212> DNA
<213> Artificial
```

```
<220>
<223> synthetic DNA
<400> 139
gageceatga gaagettgge eeetteagge ee
                                                                     32
<210> 140
<211> 33
<212> DNA
<213> Artificial
<220>
<223> synthetic DNA
<400> 140
                                                                     33
ctgaaggctg cggccgcacg tggagccacc cgc
<210> 141
<211> 48
<212> DNA
<213> Artificial
<220>
<223> synthetic DNA
<400> 141
agtcaagctt ccaccatggc taaccttgac aaatacactg aaacattc
                                                                     48
<210> 142
<211> 41
<212> DNA
<213> Artificial
<220>
<223> synthetic DNA
```

<400>	142						
tttata	gcgg ccgct	tagec as	atcattgat	gaaccactct	c ´		41
<210>	143						
<211>	37						
<212>	DNA						
<213>	Artificia	l					
<220>				:			
<223>	synthetic	DNA					
						•	
<400>	143						
cagtca	aget tecaco	catga ca	gtccacctg	caccaac			. 37
						-	
<210>	144		•				•
<211>	40						
<212>	DNA						•
<213>	Artificia	1 、					
<220>							
<223>	synthetic	DNA					
<400>	144				•		
gttata	gcgg ccgcgg	gacag tt	tcaaggttt	gccttagaac			40
					•		
.010.				•			
<210>	145						
<211>	38						
<212>	DNA	•			•		
<213>	Artificial	_					
40005	•						
<220>		DM A					
<223>	synthetic	DNA					
//nns	1 / 5						
<400>	145		****	00000000			3 2
	900 I 10090			a a a a a a a a a a a a a a a a a a a			₹ ₩

```
<210> 146
<211>
       36
<212>
      DNA
<213>
      Artificial.
<220>
<223> synthetic DNA
<400> 146
gttatagcgg ccgctcagaa cacactctcc tgcctc
                                                                      36
<210> 147
<211> 41
<212> DNA
<213> Artificial
<220>
<223> synthetic DNA
<400> 147
gaccgctcga gccaccatga accagacttt gaatagcagt g
                                                                    41
<210> 148
<211>
      31
<212> DNA
<213> Artificial
<220>
<223> synthetic DNA
<400> 148
ctcgaggtac cacctgtggg cggctctcaa g
                                                                     31
<210> 149
<211>
      25
<212> DNA
<213> Artificial
```

```
<220>
<223> synthetic DNA
<400> 149
cggagactct agagggtata taatg
                                                                         25
<210> 150 .
<211> 21
<212> DNA
<213> Artificial
<220>
<223> synthetic DNA
<400> 150
ctaatacgac tcactatagg g
                                                                        21
<210> 151
<211> 24
<212> DNA
<213> Artificial
<220>
<223> synthetic DNA
<220>
<221> misc_feature
<222> (8)..(9)
\langle 223 \rangle n is a, g, c or t
<400> 151
                                                                        24
ggccgcgnns agcctggagc gcat
```

<210> 152</211> 24

```
<212> DNA
<213>
       Artificial
<220>
<223>
       synthetic DNA
<220>
<221> misc_feature
<222> (11)..(12)
\langle 223 \rangle n is a, g c or t
<400> 152
ggccgcggtc nnsctggagc gcat
<210> 153
<211> 24
<212> DNA
      Artificial
<213>
<220>
<223> synthetic DNA
<220>
<221> misc_feature
<222> (11)..(12)
<223> n is a, g, c or t
<400> 153
cgcggtcagc nnsgagcgca tggt
<210> 154
<211> 24
```

24

24

<220>

<212>

<213>

DNA

Artificial

```
<223> synthetic DNA
<220>
<221> misc_feature
·<222> (11)..(12)
<223> n is a, g, c or t
<400> 154
ggtcagcctg nnscgcatgg tgtg
                                                                     24
<210> 155
<211> 25
<212> DNA
<213> Artificial
<220>
<223> synthetic DNA
<220>
<221> misc_feature
<222> (11)..(12)
<223> n is a, g, c or t
<400> 155
cagcctggag nnsatggtgt gcatc
                                                                     25
<210> 156
<211> 25
<212> DNA
<213> Artificial
<220>
<223> synthetic DNA
<220>
```

<221> misc_feature

```
<222> (11)..(12)
<223> n is a, g, c or t
<400> 156
cctggagcgc nnsgtgtgca tcgtg
<210> 157
<21:1>
       25
<212> DNA
<213> Artificial
<220>
<223> synthetic DNA
<220>
<221>
       misc_feature
<222>
      (11)..(12)
      n is a, g, c or t
<223>
<400> 157
ggagcgcatg nnstgcatcg tgcac
<210> 158
<211> 25
<212> DNA
<213>
      Artificial
<220>
<223>
      synthetic DNA
```

misc_feature

n is a, g, c or t

(11)..(12)

<220> <221>

<222>

<223>

25 25

```
<400> 158
gcgcatggtg nnsatcgtgc acctg
<210> 159
⟨211⟩ 25
<212> DNA
<213>
      Artificial
<220>
<223> synthetic DNA
<220>
<221>
      misc_feature
<222> (11)..(12)
<223> n is a, g, c or t
<400> 159
catggtgtgc nnsgtgcacc tgcag
<210> 160
<211> 24
<212> DNA
<213> Artificial
<220>
<223> synthetic DNA
<220>
<221> misc_feature
<222> (11)..(12)
      n is a, g, c or t
<223>
```

25

25

24

<400> 160

ggtgtgcatc nnscacctgc agcg

```
<210> 161
<211> 25
<212> DNA
<213> Artificial
<220>
<223>
       synthetic DNA
<220>
<221>
       misc_feature
<222> (12)..(13)
(223) n is a, g, c or t
<400> 161
agtectgetg snncaegegg atetg
                                                                      25
<210>
       162
<211>
       25
<212>
       DNA
<213>
       Artificial
<220>
<223> synthetic DNA
<220>
<221> misc_feature
<222> (12)..(13)
       n is a, g, c or t
<223>
<400> 162
                                                                     25
ggaagtcctg snnggacacg cggat
<210> 163
<211>
       24
<212>
       DNA
```

<213>

Artificial

```
<220>
 <223> synthetic DNA
 <220>
 <221>
       misc_feature
       (11)..(12)
 <222>
 <223>
       n is a, g, c or t
 <400> 163
                                                                       24
 ccggaagtcs nnctgggaca cgcg
 <210> 164
 ⟨211⟩
        24
 <212>
        DNA
       Artificial
 <213>
 <220>
 <223> synthetic DNA
 <220>
 <221> misc_feature
 <222>
       (11)..(12)
 <223> n is a, g, c or t
 <400> 164
gageeggaas nnetgetggg acac
                                                                       24
<210> 165
 <211>
        25
 <212>
       DNA
 <213>
       Artificial
 <220>
```

<223>

synthetic DNA

```
<220>
<221> misc_feature
<222> (12)..(13)
<223> n is a, g, c or t
<400> 165
                                                                        25
ggaagagccg snngtcctgc tggga
<210> 166
⟨211⟩ 25
<212>
      DNA
<213> Artificial
<220>
<223> synthetic DNA
<220>
<221> misc_feature
<222> (11)..(12)
\langle 223 \rangle n is a, g, c or t
<400> 166
gcggaagags nngaagtcct gctgg
                                                                        25
<210> 167
<211> 24
<212> DNA
<213> Artificial
<220>
<223> synthetic DNA
<220>
<221> misc_feature
```

<222> (11)..(12)

<223> n is a, g, c or t

```
<400> 167
ggtgcggaas nnccggaagt cctg.
                                                                        24
<210> 168.
<211>
       24
<212>
       DNA
       Artificial
<213>
<220>
<223>
       synthetic DNA
<220>
<221>
      misc_feature
<222>
      (11)..(12)
      n is a, g, c or t
<223>
<400> 168
gagggtgcgs nngagccgga agtc
                                                                       24
<210> 169
<211>
       25
<212>
       DNA
<213>
       Artificial
<220>
<223>
       synthetic DNA
<220>
      misc_feature
<221>
<222>
      (12)..(13)
<223> n is a, g, c or t
<400> 169
```

ggaagaggt snngaagagc cggaa

25

```
<210>
       170
⟨211⟩
       24
<212>
       DNA
<213>
       Artificial
<220>
       synthetic DNA
<223>
<220>
<221>
       misc_feature
<222>
       (12)..(13)
<223>
       n is a, g, c or t
<400> 170
ggaggaagag snngcggaag agcc
                                                                          24
<210> 171
<211>
       25
<212>
       DNA
<213>
       Artificial
<220>
<223>
       synthetic DNA
<400> 171
{\tt cggagactct\ agagggtata\ taatg}
                                                                          25
<210>
       172
<211>
       21
<212>
       DNA
<213>
       Artificial
<220>
```

<223>

synthetic DNA

<400>							
ctaata	cgac tcactatagg	g					21
<210>	173			•			
<211>	35						
<212>	DNA						
<213>	Artificial						
⟨220⟩					,		
<223>	synthetic DNA						
44005	170						
	173	antontan	+				25
Cigoigo	catc tccgtggcca	gatacciggc	rgrgg				35
		•					
<210>	174					,	٠
<211>	35						
	DNA						
	Artificial						
<220>							
<223>	synthetic DNA	•					
							•
<400>	174			,			
ccacago	ccag gtatctggcc	acggagatgç	agcag				35
		•					
						ų.	
<210>	175						
<211>	33						
<212>	DNA						·
<213>	Artificial						
<220>							
<223>	synthetic DNA		:				
44005	100		•			•	
<400>					•		0.0
ggggtca	attg ccatcgcgcg	ctactatect	gtc				33

<210>	176					
⟨211⟩	34					
<212>	DNA					
<213>	Artificial		-			
<220>						
<223>	synthetic DNA					
<400>	176					
gacago	atag taggcgcgcg atg	gcaatga cccc				34
<210>	177			•		
<211>	34				•	
<212>	DNA					
<213>	Artificial	,		• .		
	ı					
<220>	,					
<223>	synthetic DNA					
. 4 6 6 .	1	٠.	`			
	177	lata a la				0.4
cacggc	catc gccgtggcgc gct	atgtggc cgtg				34
<210>	178				•	
<211>	34					
<212>	DNA					
<213>	Artificial					
	III VIII I OIGI					
<220>						
<223>	synthetic DNA					
<400>	178					
cacggc	caca tagcgcgcca cgg	cgatggc cgtg		•	•	34
<210>	179		•			
<211>	35				•	
<212>	DNA	•				
<213>	Artificial					

<220>					
	synthetic DNA				
	. • • • • • • • • • • • • • • • • • • •				
<400>	179				
	ttgc cgttgcgcgc	tatttøøntø	ttøtc		35
ccugca	0080 0800808080		00800	•	ųι
<210>	180				
<211>	36	•			
(212)			•		
	Artificial	•			
14137	Altilital				
<220>					
•	gynthotic DNA				
<223>	synthetic DNA		-		
4400 \$	100				
	180				n 0
gacaaca	agcc aaatagcgcg	caacggcaat	gcaagg		36
				r	
Z2105	101	•			
<210>	181				
<211>	38		•		
(213)	Artificial				
4000					
<220>	11 / DII			•	
<223>	synthetic DNA			·	
<400>	181			•	
acgtaag	gett ceaceatget	gccggactgg	aagagctc		38
			1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	•	
<210>	182				
<211>	39				
<212>	DNA				
<213>	Artificial				
<220>					
/222	aunthatia DNA				

<400>	182					
ctcga	ggcgg ccggctactc	tgtagtgaag	tccgaactt			3
	•					
<210>	183					
<211>	38					
<212>	DNA					
<213>	Artificial			•		
						•
<220>						
<223>	synthetic DNA					
				-		
<400>	183					
acgta	agctt ccaccatgga	tacaggcccc	gaccagtc	-	•	38
		,				
<210>	184					
<211>	35	•				
<212>	DNA ,					
<213>	Artificial					
	•					
<220>						
<223>	synthetic DNA				,	
					•	
<400>	184					
ctcgag	ggcgg ccgctagctt	tcagcacagg	ccacc			35
<210>	185					
<211>	40 .					4
<212>	DNA					
<213>	Artificial					
		·				
<220>						
<223>	synthetic DNA		,			
<400>	185					
agetag	agett gicccaaatg	tragtgaaar	ceapetagaga			. 40

```
<211>
      40
<212> DNA
      Artificial
<213>
<220>
<223>
       synthetic DNA
<400> 186
ctttatagtg cggccgctac ctcagctggg tgtaagaggc
<210>
      187
<211>
       365
<212>
       PRT
<213>
      Artificial
<220>
<223>
      OGR1S221N
<400> 187
Met Gly Asn Ile Thr Ala Asp Asn Ser Ser Met Ser Cys Thr Ile Asp
1
                5
                                     10
                                                       . 15
His Thr Ile His Gln Thr Leu Ala Pro Val Val Tyr Val Thr Val Leu
          20
                                25
                                                     30
Val Val Gly Phe Pro Ala Asn Cys Leu Ser Leu Tyr Phe Gly Tyr Leu
        35
                            4 Ò
                                                 45
Gln Ile Lys Ala Arg Asn Glu Leu Gly Val Tyr Leu Cys Asn Leu Thr
    50
                        55
                                             60
Val Ala Asp Leu Phe Tyr Ile Cys Ser Leu Pro Phe Trp Leu Gln Tyr
65
                    70
                                        75
                                                             80
```

40

<210> 186

Val Leu Gln His Asp Asn Trp Ser His Gly Asp Leu Ser Cys Gln Val Cys Gly Ile Leu Leu Tyr Glu Asn Ile Tyr Ile Ser Val Gly Phe Leu Cys Cys Ile Ser Val Asp Arg Tyr Leu Ala Val Ala His Pro Phe Arg Phe His Gln Phe Arg Thr Leu Lys Ala Ala Val Gly Val Ser Val Val Ile Trp Ala Lys Glu Leu Leu Thr Ser Ile Tyr Phe Leu Met His Glu Glu Val Ile Glu Asp Glu Asn Gln His Arg Val Cys Phe Glu His Tyr Pro Ile Gln Ala Trp Gln Arg Ala Ile Asn Tyr Tyr Arg Phe Leu Val Gly Phe Leu Phe Pro Ile Cys Leu Leu Leu Ala Ser Tyr Gln Gly Ile Leu Arg Ala Val Arg Arg Ser His Gly Thr Gln Lys Asn Arg Lys Asp Gln Ile Gln Arg Leu Val Leu Ser Thr Val Val Ile Phe Leu Ala Cys

Ser Cys Asp Phe Ala Lys Gly Val Phe Asn Ala Tyr His Phe Ser Leu Leu Leu Thr Ser Phe Asn Cys Val Ala Asp Pro Val Leu Tyr Cys Phe Val Ser Glu Thr Thr His Arg Asp Leu Ala Arg Leu Arg Gly Ala Cys Leu Ala Phe Leu Thr Cys Ser Arg Thr Gly Arg Ala Arg Glu Ala Tyr Pro Leu Gly Ala Pro Glu Ala Ser Gly Lys Ser Gly Ala Gln Gly Glu Glu Pro Glu Leu Leu Thr Lys Leu His Pro Ala Phe Gln Thr Pro Asn Ser Pro Gly Ser Gly Gly Phe Pro Thr Gly Arg Leu Ala

Phe Leu Pro Tyr His Val Leu Leu Leu Val Arg Ser Val Trp Glu Ala

<210> 188

<211> 365

<212> PRT

<213> Artificial

<220>

<223> OGR1D118A

<400> 188

Met Gly Asn Ile Thr Ala Asp Asn Ser Ser Met Ser Cys Thr Ile Asp 1 10 15

His Thr Ile His Gln Thr Leu Ala Pro Val Val Tyr Val Thr Val Leu 20 25 30

Val Val Gly Phe Pro Ala Asn Cys Leu Ser Leu Tyr Phe Gly Tyr Leu 35 40 45

Gln Ile Lys Ala Arg Asn Glu Leu Gly Val Tyr Leu Cys Asn Leu Thr 50 55 60

Val Ala Asp Leu Phe Tyr Ile Cys Ser Leu Pro Phe Trp Leu Gln Tyr 65 70 75 80

Val Leu Gln His Asp Asn Trp Ser His Gly Asp Leu Ser Cys Gln Val 85 90 95

Cys Gly Ile Leu Leu Tyr Glu Asn Ile Tyr Ile Ser Val Gly Phe Leu 100 105 110

Cys Cys Ile Ser Val Ala Arg Tyr Leu Ala Val Ala His Pro Phe Arg 115 120 125

Phe His Gln Phe Arg Thr Leu Lys Ala Ala Val Gly Val Ser Val Val 130 135 140

Ile 145	Trp	Ala	Lys	Glu	Leu 150	Leu	Thr	Ser	Ile	Tyr 155	Phe	Leu	Met	His	Glu 160
Glu	Val	Ile	Glu	Asp 165	Glu	Asn	Gln	His	Arg 170	Val	Cys	Phe	Glu	His 175	Tyr
Pro	Ile	Gln	Ala 180	Trp	Gln	Arg	Ala	Ile 185	Asn	Tyr	Tyr	Arg	Phe 190	Leu	Val
Gly	Phe	Leu 195	Phe	Pro	Ile	Cys	Leu 200	Leu	Leu	Ala	Ser	Tyr 205	Gln	Gly	Ile
Leu	Arg 210	Ala	Val	Arg	Arg	Ser 215	His	Gly	Thr	Glń	Lys 220	Ser	Arg	Lys	Asp
Gln 225	Ile	Gln	Arg	Leu	Val 230	Leu	Ser	Thr	Val	Val 235	Ile	Phe	Leu	Ala	Cys 240
Phe	Leu	Pro	Tyr	His 245	Val	Leu	Leu	Leu	Val 250	Arg	Ser	Val	Trp	Glu 255	Ala
Ser	Cys	Asp	Phe 260	Ala	Lys	Gly	Val	Phe 265	Asn	Ala	Tyr	His	Phe 270	Ser	Leu
Leu	Leu	Thr 275	Ser	Phe	Asn	Cys	Val 280	Ala	Asp	Pro	Val	Leu 285	Tyr	Cys	Phe
Val	Ser 290	Glu	Thr	Thr	His	Arg 295	Asp	Leu	Ala	Arg	Leu 300	Arg	Gly	Ala	Cys

Leu Ala Phe Leu Thr Cys Ser Arg Thr Gly Arg Ala Arg Glu Ala Tyr 305 310 315 320 Pro Leu Gly Ala Pro Glu Ala Ser Gly Lys Ser Gly Ala Gln Gly Glu 325 330 335 Glu Pro Glu Leu Leu Thr Lys Leu His Pro Ala Phe Gln Thr Pro Asn 350 340 345 Ser Pro Gly Ser Gly Gly Phe Pro Thr Gly Arg Leu Ala 355 360 365 ⟨210⟩ 189 <211> 365 <212> PRT <213> Artificial <220> OGR1S221N/D118A <223> <400> 189 Met Gly Asn Ile Thr Ala Asp Asn Ser Ser Met Ser Cys Thr Ile Asp 1 5 10 15 His Thr Ile His Gln Thr Leu Ala Pro Val Val Tyr Val Thr Val Leu 20 25 30 Val Val Gly Phe Pro Ala Asn Cys Leu Ser Leu Tyr Phe Gly Tyr Leu. 35 40 45 . Gln Ile Lys Ala Arg Asn Glu Leu Gly Val Tyr Leu Cys Asn Leu Thr 50 55 60

Val Ala Asp Leu Phe Tyr Ile Cys Ser Leu Pro Phe Trp Leu Gln Tyr Val Leu Gln His Asp Asn Trp Ser His Gly Asp Leu Ser Cys Gln Val Cys Gly Ile Leu Leu Tyr Glu Asn Ile Tyr Ile Ser Val Gly Phe Leu Cys Cys Ile Ser Val Ala Arg Tyr Leu Ala Val Ala His Pro Phe Arg Phe His Gln Phe Arg Thr Leu Lys Ala Ala Val Gly Val Ser Val Val Ile Trp Ala Lys Glu Leu Leu Thr Ser Ile Tyr Phe Leu Met His Glu Glu Val Ile Glu Asp Glu Asn Gln His Arg Val Cys Phe Glu His Tyr Pro Ile Gln Ala Trp Gln Arg Ala Ile Asn Tyr Tyr Arg Phe Leu Val Gly Phe Leu Phe Pro Ile Cys Leu Leu Leu Ala Ser Tyr Gln Gly Ile Leu Arg Ala Val Arg Arg Ser His Gly Thr Gln Lys Asn Arg Lys Asp

Gln Ile Gln Arg Leu Val Leu Ser Thr Val Val Ile Phe Leu Ala Cys Phe Leu Pro Tyr His Val Leu Leu Leu Val Arg Ser Val Trp Glu Ala Ser Cys Asp Phe Ala Lys Gly Val Phe Asn Ala Tyr His Phe Ser Leu Leu Leu Thr Ser Phe Asn Cys Val Ala Asp Pro Val Leu Tyr Cys Phe Val Ser Glu Thr Thr His Arg Asp Leu Ala Arg Leu Arg Gly Ala Cys Leu Ala Phe Leu Thr Cys Ser Arg Thr Gly Arg Ala Arg Glu Ala Tyr Pro Leu Gly Ala Pro Glu Ala Ser Gly Lys Ser Gly Ala Gln Gly Glu Glu Pro Glu Leu Leu Thr Lys Leu His Pro Ala Phe Gln Thr Pro Asn Ser Pro Gly Ser Gly Gly Phe Pro Thr Gly Arg Leu Ala

<210>

<211>

<212> PRT

<213> Artificial

<220>

<223> RE2D124A

<400> 190

Met Ser Leu Asn Ser Ser Leu Ser Cys Arg Lys Glu Leu Ser Asn Leu 1 5 10 15

Thr Glu Glu Gly Gly Glu Gly Gly Val Ile Ile Thr Gln Phe Ile 20 25 30

Ala Ile Ile Val Ile Thr Ile Phe Val Cys Leu Gly Asn Leu Val Ile 35 40 45

Val Val Thr Leu Tyr Lys Lys Ser Tyr Leu Leu Thr Leu Ser Asn Lys 50 55 60

Phe Val Phe Ser Leu Thr Leu Ser Asn Phe Leu Leu Ser Val Leu Val 65 70 75 80

Leu Pro Phe Val Val Thr Ser Ser Ile Arg Arg Glu Trp Ile Phe Gly 85 90 95

Val Val Trp Cys Asn Phe Ser Ala Leu Leu Tyr Leu Leu Ile Ser Ser 100 105 110

Ala Ser Met Leu Thr Leu Gly Val Ile Ala Ile Ala Arg Tyr Tyr Ala 115 120 125

Val Met Ala Leu Val Tyr Ile Trp Leu His Ser Leu Ile Gly Cys Leu Pro Pro Leu Phe Gly Trp Ser Ser Val Glu Phe Asp Glu Phe Lys Trp Met Cys Val Ala Ala Trp His Arg Glu Pro Gly Tyr Thr Ala Phe Trp Gln Ile Trp Cys Ala Leu Phe Pro Phe Leu Val Met Leu Val Cys Tyr Gly Phe Ile Phe Arg Val Ala Arg Val Lys Ala Arg Lys Val His Cys Gly Thr Val Val Ile Val Glu Glu Asp Ala Gln Arg Thr Gly Arg Lys Asn Ser Ser Thr Ser Thr Ser Ser Ser Gly Ser Arg Arg Asn Ala Phe Gln Gly Val Val Tyr Ser Ala Asn Gln Cys Lys Ala Leu Ile Thr Ile Leu Val Val Leu Gly Ala Phe Met Val Thr Trp Gly Pro Tyr Met Val

Val Leu Tyr Pro Met Val Tyr Pro Met Lys Ile Thr Gly Asn Arg Ala

Val Ile Ala Ser Glu Ala Leu Trp Gly Lys Ser Ser Val Ser Pro Ser Leu Glu Thr Trp Ala Thr Trp Leu Ser Phe Ala Ser Ala Val Cys His Pro Leu Ile Tyr Gly Leu Trp Asn Lys Thr Val Arg Lys Glu Leu Leu Gly Met Cys Phe Gly Asp Arg Tyr Tyr Arg Glu Pro Phe Val Gln Arg Gln Arg Thr Ser Arg Leu Phe Ser Ile Ser Asn Arg Ile Thr Asp Leu Gly Leu Ser Pro His Leu Thr Ala Leu Met Ala Gly Gly Gln Pro Leu Gly His Ser Ser Ser Thr Gly Asp Thr Gly Phe Ser Cys Ser Gln Asp Ser Gly Asn Leu Arg Ala Leu

<210> 191

<211> 309

<212> PRT

<213> Artificial

<220>

<223> GPR35D113A

Met Asn Gly Thr Tyr Asn Thr Cys Gly Ser Ser Asp Leu Thr Trp Pro 1 5 10 15

Pro Ala Ile Lys Leu Gly Phe Tyr Ala Tyr Leu Gly Val Leu Leu Val 20 25 30

Leu Gly Leu Leu Leu Asn Ser Leu Ala Leu Trp Val Phe Cys Cys Arg 35 40 45

Ala Asp Leu Cys Leu Leu Cys Thr Leu Pro Phe Val Leu His Ser Leu 65 70 75 80

Arg Asp Thr Ser Asp Thr Pro Leu Cys Gln Leu Ser Gln Gly Ile Tyr 85 90 95

Leu Thr Asn Arg Tyr Met Ser Ile Ser Leu Val Thr Ala Ile Ala Val 100 105 110

Ala Arg Tyr Val Ala Val Arg His Pro Leu Arg Ala Arg Gly Leu Arg 115 120 125

Ser Pro Arg Gln Ala Ala Ala Val Cys Ala Val Leu Trp Val Leu Val 130 135 140

Ile Gly Ser Leu Val Ala Arg Trp Leu Leu Gly Ile Gln Glu Gly Gly 145 150 155 160

Phe Cys Phe Arg Ser Thr Arg His Asn Phe Asn Ser Met Arg Phe Pro 165 170 175

Leu Leu Gly Phe Tyr Leu Pro Leu Ala Val Val Val Phe Cys Ser Leu 180 185 190

Lys Val Val Thr Ala Leu Ala Gln Arg Pro Pro Thr Asp Val Gly Gln
195 200 205

Ala Glu Ala Thr Arg Lys Ala Ala Arg Met Val Trp Ala Asn Leu Leu 210 215 220

Val Phe Val Val Cys Phe Leu Pro Leu His Val Gly Leu Thr Val Arg 225 230 235 240

Leu Ala Val Gly Trp Asn Ala Cys Ala Leu Leu Glu Thr Ile Arg Arg 245 250 255

Ala Leu Tyr Ile Thr Ser Lys Leu Ser Asp Ala Asn Cys Cys Leu Asp 260 265 270

Ala Ile Cys Tyr Tyr Tyr Met Ala Lys Glu Phe Gln Glu Ala Ser Ala 275 280 285

Leu Ala Val Ala Pro Arg Ala Lys Ala His Lys Ser Gln Asp Ser Leu 290 295 300

Cys Val Thr Leu Ala 305 <210> 192

<211> 337

<212> PRT

<213> Artificial

<220>

<223> GPCR25D111A

<400> 192

Met Asn Ser Thr Cys Ile Glu Glu Gln His Asp Leu Asp His Tyr Leu 5 10 15

Phe Pro Ile Val Tyr Ile Phe Val Ile Ile Val Ser Ile Pro Ala Asn.
20 25 30

Ile Gly Ser Leu Cys Val Ser Phe Leu Gln Pro Lys Lys Glu Ser Glu 35 40 45

Leu Gly Ile Tyr Leu Phe Ser Leu Ser Leu Ser Asp Leu Leu Tyr Ala 50 55 60

Leu Thr Leu Pro Leu Trp Ile Asp Tyr Thr Trp Asn Lys Asp Asn Trp 65 70 75 80

Thr Phe Ser Pro Ala Leu Cys Lys Gly Ser Ala Phe Leu Met Tyr Met 85 90 95

Lys Phe Tyr Ser Ser Thr Ala Phe Leu Thr Cys Ile Ala Val Ala Arg 100 105 110

Tyr	Leu	Ala 115	Val	Val	Tyr	Pro	Leu 120	Lys	Phe	Phe	Phe	Leu 125	Arg	Thr	Arg
Arg	Ile 130	Ala	Ļeu	Met	Val	Ser 135	Leu	Ser	Ile	Trp	Ile 140	Leu	Glu	Thr	Ile
Phe 145	Asn	Ala	Val	Met	Leu 150	Trp	Glu	Asp	Glu	Thr 155	Val	Val	Glu	Tyr	Cys 160
Asp	Ala	Glu	Lýs	Ser 165	Asn	Phe	Thr	Leu	Cys 170	Tyr	Asp	Lys	Tyr	Pro 175	Leu
Glu	Lys	Trp	Gln 180	Ile	Asn	Leu	Asn	Leu 185	Phe	Arg	Thr	Cys	Thr 190	Gly	Tyr
Ala	Ile	Pro 195	Leu	Val	Thr	Ile	Leu 200	Ile	Cys	Asn	Arg	Lys 205	Val	Tyr	Gln
Ala	Val 210	Arg	His	Asn	Lys	Ala 215	Thr	Glu	Asn	Lys	Glu 220	Lys	Lys	Arg	Ile
Ile 225	Lys	Leu	Leu	Val	Ser 230	Ile	Thr	Val	Thr	Phe 235	Val	Leu	Cys	Phe	Thr 240
Pro	Phe	His	Val	Met 245	Leu	Leu	Ile	Arg	Cys 250	Ile	Leu	Glu	His	Ala 255	Val
Asn	Phe	Glu	Asp 260	His	Ser	Asn	Ser	Gly 265	Lys	Arg	Thr	Tyr	Thr 270	Met	Tyr

Arg Ile Thr Val Ala Leu Thr Ser Leu Asn Cys Val Ala Asp Pro Ile 275 280 285 Leu Tyr Cys Phe Val Thr Glu Thr Gly Arg Tyr Asp Met Trp Asn Ile 290 295 300 Leu Lys Phe Cys Thr Gly Arg Cys Asn Thr Ser Gln Arg Gln Arg Lys 305 310 315 320 Arg Ile Leu Ser Val Ser Thr Lys Asp Thr Met Glu Leu Glu Val Leu 325 330 335 Glu <210> 193 <211> 361 <212> PRT <213> Artificial <220> <223> PGMO334E135F

<400> 193

Met Ser Pro Glu Cys Ala Arg Ala Ala Gly Asp Ala Pro Leu Arg Ser 1 5 10 15

Leu Glu Gln Ala Asn Arg Thr Arg Phe Pro Phe Phe Ser Asp Val Lys
20 25 30

Gly Asp His Arg Leu Val Leu Ala Ala Val Glu Thr Thr Val Leu Val 35 40 45

Leu Ile Phe Ala Val Ser Leu Leu Gly Asn Val Cys Ala Leu Val Leu Val Ala Arg Arg Arg Arg Gly Ala Thr Ala Cys Leu Val Leu Asn Leu Phe Cys Ala Asp Leu Leu Phe Ile Ser Ala Ile Pro Leu Val Leu Ala Val Arg Trp Thr Glu Ala Trp Leu Leu Gly Pro Val Ala Cys His Leu Leu Phe Tyr Val Met Thr Leu Ser Gly Ser Val Thr Ile Leu Thr Leu Ala Ala Val Ser Leu Phe Arg Met Val Cys Ile Val His Leu Gln Arg Gly Val Arg Gly Pro Gly Arg Arg Ala Arg Ala Val Leu Leu Ala Leu Ile Trp Gly Tyr Ser Ala Val Ala Ala Leu Pro Leu Cys Val Phe Phe Arg Val Val Pro Gln Arg Leu Pro Gly Ala Asp Gln Glu Ile Ser Ile Cys Thr Leu Ile Trp Pro Thr Ile Pro Gly Glu Ile Ser Trp Asp

Val Ser Phe Val Thr Leu Asn Phe Leu Val Pro Gly Leu Val Ile Val Ile Ser Tyr Ser Lys Ile Leu Gln Ile Thr Lys Ala Ser Arg Lys Arg Leu Thr Val Ser Leu Ala Tyr Ser Glu Ser His Gln Ile Arg Val Ser Gln Gln Asp Phe Arg Leu Phe Arg Thr Leu Phe Leu Leu Met Val Ser Phe Phe Ile Met Trp Ser Pro Ile Ile Ile Thr Ile Leu Leu Ile Leu Ile Gln Asn Phe Lys Gln Asp Leu Val Ile Trp Pro Ser Leu Phe Phe Trp Val Val Ala Phe Thr Phe Ala Asn Ser Ala Leu Asn Pro Ile Leu Tyr Asn Met Thr Leu Cys Arg Asn Glu Trp Lys Lys Ile Phe Cys Cys Phe Trp Phe Pro Glu Lys Gly Ala Ile Leu Thr Asp Thr Ser Val Lys

Arg Asn Asp Leu Ser Ile Ile Ser Gly

<210> 194

<211> 361

<212> PRT

<213> Artificial

<220>

<223> PGMO334E135Q

<400> 194

Met Ser Pro Glu Cys Ala Arg Ala Ala Gly Asp Ala Pro Leu Arg Ser 1 5 10 15

Leu Glu Gln Ala Asn Arg Thr Arg Phe Pro Phe Phe Ser Asp Val Lys
20 25 30

Gly Asp His Arg Leu Val Leu Ala Ala Val Glu Thr Thr Val Leu Val 35 40 45

Leu Ile Phe Ala Val Ser Leu Leu Gly Asn Val Cys Ala Leu Val Leu 50 55 60

Val Ala Arg Arg Arg Arg Gly Ala Thr Ala Cys Leu Val Leu Asn 65 70 75 80

Leu Phe Cys Ala Asp Leu Leu Phe Ile Ser Ala Ile Pro Leu Val Leu 85 90 95

Ala Val Arg Trp Thr Glu Ala Trp Leu Leu Gly Pro Val Ala Cys His 100 105 110

Leu Ala Ala Val Ser Leu Gln Arg Met Val Cys Ile Val His Leu Gln Arg Gly Val Arg Gly Pro Gly Arg Arg Ala Arg Ala Val Leu Leu Ala Leu Ile Trp Gly Tyr Ser Ala Val Ala Ala Leu Pro Leu Cys Val Phe Phe Arg Val Val Pro Gln Arg Leu Pro Gly Ala Asp Gln Glu Ile Ser Ile Cys Thr Leu Ile Trp Pro Thr Ile Pro Gly Glu Ile Ser Trp Asp Val Ser Phe Val Thr Leu Asn Phe Leu Val Pro Gly Leu Val Ile Val Ile Ser Tyr Ser Lys Ile Leu Gln Ile Thr Lys Ala Ser Arg Lys Arg

Leu Leu Phe Tyr Val Met Thr Leu Ser Gly Ser Val Thr Ile Leu Thr

Gln Gln Asp Phe Arg Leu Phe Arg Thr Leu Phe Leu Leu Met Val Ser 260 265 270

Leu Thr Val Ser Leu Ala Tyr Ser Glu Ser His Gln Ile Arg Val Ser

Phe Phe Ile Met Trp Ser Pro Ile Ile Ile Thr Ile Leu Leu Ile Leu 275 280 285 Ile Gln Asn Phe Lys Gln Asp Leu Val Ile Trp Pro Ser Leu Phe Phe 290 295 300 Trp Val Val Ala Phe Thr Phe Ala Asn Ser Ala Leu Asn Pro Ile Leu 305 310 315 320 Tyr Asn Met Thr Leu Cys Arg Asn Glu Trp Lys Lys Ile Phe Cys Cys 325 330 335 Phe Trp Phe Pro Glu Lys Gly Ala Ile Leu Thr Asp Thr Ser Val Lys 340 345 350 Arg Asn Asp Leu Ser Ile Ile Ser Gly 355 360 <210> 195 <211> 361 <212> PRT <213> Artificial <220> <223> PGMO334E135A <400> 195 Met Ser Pro Glu Cys Ala Arg Ala Ala Gly Asp Ala Pro Leu Arg Ser 1 10 15 Leu Glu Gln Ala Asn Arg Thr Arg Phe Pro Phe Phe Ser Asp Val Lys

30

25

Gly Asp His Arg Leu Val Leu Ala Ala Val Glu Thr Thr Val Leu Val Leu Ile Phe Ala Val Ser Leu Léu Gly Asn Val Cys Ala Leu Val Leu Val Ala Arg Arg Arg Arg Gly Ala Thr Ala Cys Leu Val Leu Asn Leu Phe Cys Ala Asp Leu Leu Phe Ile Ser Ala Ile Pro Leu Val Leu Ala Val Arg Trp Thr Glu Ala Trp Leu Leu Gly Pro Val Ala Cys His Leu Leu Phe Tyr Val Met Thr Leu Ser Gly Ser Val Thr Ile Leu Thr Leu Ala Ala Val Ser Leu Ala Arg Met Val Cys Ile Val His Leu Gln Arg Gly Val Arg Gly Pro Gly Arg Arg Ala Arg Ala Val Leu Leu Ala

Leu Ile Trp Gly Tyr Ser Ala Val Ala Ala Leu Pro Leu Cys Val Phe

Phe Arg Val Val Pro Gln Arg Leu Pro Gly Ala Asp Gln Glu Ile Ser

Ile Cys Thr Leu Ile Trp Pro Thr Ile Pro Gly Glu Ile Ser Trp Asp Val Ser Phe Val Thr Leu Asn Phe Leu Val Pro Gly Leu Val Ile Val Ile Ser Tyr Ser Lys Ile Leu Gln Ile Thr Lys Ala Ser Arg Lys Arg Leu Thr Val Ser Leu Ala Tyr Ser Glu Ser His Gln Ile Arg Val Ser Gln Gln Asp Phe Arg Leu Phe Arg Thr Leu Phe Leu Leu Met Val Ser Phe Phe Ile Met Trp Ser Pro Ile Ile Ile Thr Ile Leu Leu Ile Leu Ile Gln Asn Phe Lys Gln Asp Leu Val Ile Trp Pro Ser Leu Phe Phe Trp Val Val Ala Phe Thr Phe Ala Asn Ser Ala Leu Asn Pro Ile Leu Tyr Asn Met Thr Leu Cys Arg Asn Glu Trp Lys Lys Ile Phe Cys Cys Phe Trp Phe Pro Glu Lys Gly Ala Ile Leu Thr Asp Thr Ser Val Lys

Arg Asn Asp Leu Ser Ile Ile Ser Gly 355 360

<210> 196

⟨211⟩ 361

<212> PRT

<213> Artificial

<220>

<223> PGMO334D259S

(400) 196

Met Ser Pro Glu Cys Ala Arg Ala Ala Gly Asp Ala Pro Leu Arg Ser 1 5 10 15

Leu Glu Gln Ala Asn Arg Thr Arg Phe Pro Phe Phe Ser Asp Val Lys
20 25 30

Gly Asp His Arg Leu Val Leu Ala Ala Val Glu Thr Thr Val Leu Val 35 40 45

Leu Ile Phe Ala Val Ser Leu Leu Gly Asn Val Cys Ala Leu Val Leu 50 55 60

Val Ala Arg Arg Arg Arg Gly Ala Thr Ala Cys Leu Val Leu Asn 65 70 75 80

Leu Phe Cys Ala Asp Leu Leu Phe Ile Ser Ala Ile Pro Leu Val Leu 85 90 95

Leu Leu Phe Tyr Val Met Thr Leu Ser Gly Ser Val Thr Ile Leu Thr Leu Ala Ala Val Ser Leu Glu Arg Met Val Cys Ile Val His Leu Gln Arg Gly Val Arg Gly Pro Gly Arg Arg Ala Arg Ala Val Leu Leu Ala Leu Ile Trp Gly Tyr Ser Ala Val Ala Ala Leu Pro Leu Cys Val Phe Phe Arg Val Val Pro Gln Arg Leu Pro Gly Ala Asp Gln Glu Ile Ser Ile Cys Thr Leu Ile Trp Pro Thr Ile Pro Gly Glu Ile Ser Trp Asp Val Ser Phe Val Thr Leu Asn Phe Leu Val Pro Gly Leu Val Ile Val Ile Ser Tyr Ser Lys Ile Leu Gln Ile Thr Lys Ala Ser Arg Lys Arg Leu Thr Val Ser Leu Ala Tyr Ser Glu Ser His Gln Ile Arg Val Ser

Ala Val Arg Trp Thr Glu Ala Trp Leu Leu Gly Pro Val Ala Cys His

Gln Gln Ser Phe Arg Leu Phe Arg Thr Leu Phe Leu Leu Met Val Ser 260 265 270 Phe Phe Ile Met Trp Ser Pro Ile Ile Ile Thr Ile Leu Leu Ile Leu 275 280 285 Ile Gln Asn Phe Lys Gln Asp Leu Val Ile Trp Pro Ser Leu Phe Phe 290 295 300 Trp Val Val Ala Phe Thr Phe Ala Asn Ser Ala Leu Asn Pro Ile Leu 305 310 315 320 Tyr Asn Met Thr Leu Cys Arg Asn Glu Trp Lys Lys Ile Phe Cys Cys 325 330 335 Phe Trp Phe Pro Glu Lys Gly Ala Ile Leu Thr Asp Thr Ser Val Lys 340 345 350 Arg Asn Asp Leu Ser Ile Ile Ser Gly 355 360 <210> 197 <211> 330 <212> PRT Artificial <213> <220> <223> GPR43R217P <400> 197 Met Leu Pro Asp Trp Lys Ser Ser Leu Ile Leu Met Ala Tyr Ile Ile

10

15

Ile Phe Leu Thr Gly Leu Pro Ala Asn Leu Leu Ala Leu Arg Ala Phe Val Gly Arg Ile Arg Gln Pro Gln Pro Ala Pro Val His Ile Leu Leu. Leu Ser Leu Thr Leu Ala Asp Leu Leu Leu Leu Leu Leu Pro Phe Lys Ile Ile Glu Ala Ala Ser Asn Phe Arg Trp Tyr Leu Pro Lys Val Val Cys Ala Leu Thr Ser Phe Gly Phe Tyr Ser Ser Ile Tyr Cys Ser Thr Trp Leu Leu Ala Gly Ile Ser Ile Glu Arg Tyr Leu Gly Val Ala Phe Pro Val Gln Tyr Lys Leu Ser Arg Arg Pro Leu Tyr Gly Val Ile Ala Ala Leu Val Ala Trp Val Met Ser Phe Gly His Cys Thr Ile Val Ile Ile Val Gln Tyr Leu Asn Thr Thr Glu Gln Val Arg Ser Gly Asn Glu Ile Thr Cys Tyr Glu Asn Phe Thr Asp Asn Gln Leu Asp Val Val

Leu Pro Val Arg Leu Glu Leu Cys Leu Val Leu Phe Phe Ile Pro Met Ala Val Thr Ile Phe Cys Tyr Trp Arg Phe Val Trp Ile Met Leu Ser Gln Pro Leu Val Gly Ala Gln Arg Pro Arg Arg Ala Val Gly Leu Ala Val Val Thr Leu Leu Asn Phe Leu Val Cys Phe Gly Pro Tyr Asn Val Ser His Leu Val Gly Tyr His Gln Arg Lys Ser Pro Trp Trp Arg Ser Ile Ala Val Val Phe Ser Ser Leu Asn Ala Ser Leu Asp Pro Leu Leu Phe Tyr Phe Ser Ser Ser Val Val Arg Arg Ala Phe Gly Arg Gly Leu Gln Val Leu Arg Asn Gln Gly Ser Ser Leu Leu Gly Arg Arg Gly Lys 300. Asp Thr Ala Glu Gly Thr Asn Glu Asp Arg Gly Val Gly Gln Gly Glu Gly Met Pro Ser Ser Asp Phe Thr Thr Glu

<210> 198
<211> 330
<212> PRT
<213> Artificial
<220>
<223> GPR43R217P/E106D
<400> 198

Met Leu Pro Asp Trp Lys Ser Ser Leu Ile Leu Met Ala Tyr Ile Ile 1 5 10 15

Ile Phe Leu Thr Gly Leu Pro Ala Asn Leu Leu Ala Leu Arg Ala Phe 20 25 30

Val Gly Arg Ile Arg Gln Pro Gln Pro Ala Pro Val His Ile Leu Leu 35 40 45

Leu Ser Leu Thr Leu Ala Asp Leu Leu Leu Leu Leu Leu Leu Pro Phe 50 55 60

Lys Ile Ile Glu Ala Ala Ser Asn Phe Arg Trp Tyr Leu Pro Lys Val 65 70 75 80

Val Cys Ala Leu Thr Ser Phe Gly Phe Tyr Ser Ser Ile Tyr Cys Ser 85 90 95

Thr Trp Leu Leu Ala Gly Ile Ser Ile Asp Arg Tyr Leu Gly Val Ala 100 105 110

Ala	Ala 130	Leu	Val	Ala	Trp	Val	Met	Ser	Phe	Gly	His 140	Cys	Thr	Ile	Val
Ile 145	Ile	Val	Gln	Tyr	Leu 150	Asn	Thr	Thr	Glu	Gln 155	Val	Arg	Ser	Gly	Asn 160
Glu	Ile	Thr	Cys	Tyr 165	Glu	Asn	Phe	Thr	Asp 170		Gln	Leu	Asp	Val 175	Val
Leu	Pro	Val	Arg 180	Leu	Glu	Leu	Cys	Leu 185	Val	Leu	Phe	Phe	Ile 190	Pro	Met
Ala	Val	Thr 195	Ile	Phe	Cys	Tyr	Trp 200	Arg	Phe	Val	Trp	Ile 205	Met	Leu	Ser
	Pro 210	Leu	Val	Gly	Ala	Gln 215	Arg	Pro	Arg	Arg	Ala 220	Val	Gly	Leu	Ala
Val 225	Val	Thr	Leu	Leu	Asn 230	Phe	Leu	Val	Cys	Phe 235	Gly	Pro	Tyr	Asn	Val 240
Ser	His	Leu	Val	Gly 245	Tyŗ	His	Gln	Arg	Lys 250	Ser	Pro	Trp	Trp	Arg 255	Ser
Ile	Ala	Val	Val 260	Phe	Ser	Ser	Leu	Asn 265	Ala	Ser	Leu	Asp	Pro 270	Leu	Leu

Phe Pro Val Gln Tyr Lys Leu Ser Arg Arg Pro Leu Tyr Gly Val Ile

125

120

Phe Tyr Phe Ser Ser Ser Val Val Arg Arg Ala Phe Gly Arg Gly Leu 275 280 285

Gln Val Leu Arg Asn Gln Gly Ser Ser Leu Leu Gly Arg Arg Gly Lys 290 295 300

Asp Thr Ala Glu Gly Thr Asn Glu Asp Arg Gly Val Gly Gln Gly Glu 305 310 315 320

Gly Met Pro Ser Ser Asp Phe Thr Thr Glu 325 330