Миронов А. В., Юлдашев Р. В.

Оценка области захвата для систем ФАПЧ 3 порядка

1. Введение. Система фазовой автоподстройки частоты (ФАПЧ) — система с обратной связью, которая подстраивает частоту сигнала генератора, управляемого напряжением (ГУН) под частоту опорного сигнала. В настоящее время системы ФАПЧ применяются в телекоммуникационном оборудовании[1], навигационных системах[6] и д. р. На практике часто используют системы ФАПЧ второго и третьего порядка. Системы ФАПЧ третьего порядка, отличаются хорошим подавлением шума и более низкой стационарной ошибкой[5]. Основными параметрами ФАПЧ являются удержание, захват и захват без проскальзывания. В данной работе будут получены оценки полосы захвата для некоторых фильтров 2 порядка.

2. Математическая модель ФАПЧ.

Рис. 1. Схема классической системы ФАПЧ, где $\theta_{ref}(t)$ — фаза опорного сигнала, $\theta_{vco}(t)$ — фаза сигнала ГУН, $v_f(t)$ — выходной сигнал фильтра, ω_{vco}^{free} — частота свободных колебаний ГУН, $\theta_e(t) = \theta_{ref}(t) - \theta_{vco}(t)$

Хорошо известна система дифференциальных уравнений, описывающих Φ АПЧ [4], рис. 1

$$\dot{x} = Ax + B(\sin(\theta_e) - \gamma),$$

$$\dot{\theta_e} = -K_{vco}C^Tx - K_{vco}D(\sin(\theta_e) - \gamma)),$$
(1)

 $[\]it Muponos~Anexceй~Bладиславович$ – студент, Санкт-Петербургский государственный университет; e-mail: alexmir2015@yandex.ru

 $^{{\}it Nondames\ Penam\ Bnadumuposuu}$ – профессор, Санкт-Петербургский государственный университет; e-mail: renatyv@pm.me

где A — постоянная матрица $n \times n, \ B$ и C постоянные n — мерные векторы, D — константа, x(t) — n-мерный вектор состояний системы, K_{vco} — коэфициент передачи, γ определяется следующим образом

$$\gamma = \frac{\omega_e^{free}}{K_{vco} \left(D - C^T A^{-1} B \right)},\tag{2}$$

где $\omega_e^{free} = \omega_{ref} - \omega_{free}$ — разность частоты опорного сигнала и частоты свободных колебаний ГУН. При этом предполагается, что эталонный генератор работает на постоянной частоте.

3. Оценка области захвата. Введем определение полосы захвата.

Определение 1. Полоса захвата — максимальная разность по модулю частот опорного сигнала и ГУН $|\omega_e^{free}|$, при котором система (1) глобально ассимптотически устойчива. Введем в рассмотрение число:

$$|\nu| = \frac{0.5\pi\gamma}{\gamma \arcsin(\gamma) + \sqrt{1 - \gamma^2}} \tag{3}$$

Следующая теорема дает условие глобальной асимптотической устойчиваюти (1).

Теорема 1 [3]. Пусть все нули функции $\sin(\theta_e) - \gamma$ изолированы, пара (A,B) вполне управляема, все собственные значения матрицы A имеют отрицательные вещественные части и существуют числа $\varepsilon > 0, \delta > 0, \tau \geqslant 0, u \varkappa$, такие что имеют место неравенства:

$$\operatorname{Re}\left(\varkappa W(ix) - \varepsilon \left[W(ix)\right]^2 - \left[W(ix) - ix\right]^T \tau \left[W(ix) + ix\right]\right) \geqslant \delta, \quad \forall x \in \mathbb{R}$$
(4)

$$4\varepsilon\delta > (\varkappa\nu)^2\tag{5}$$

Тогда система (1) глобально ассимптотически устойчива.

Найдем $\varepsilon, \delta, \varkappa, \tau$, удовлетворяющие условию теоремы так, что бы максимизировать ν . Из максимальности ν получим максимальный ω_e^{free} , при котором система (1) глобально ассимтотически устойчива.

3.1. Оценка полосы захвата для систем ФАПЧ с фильтром $\frac{1}{(1+ au_{p1}s)(1+ au_{p2}s)}$. Оценим полосу захвата ФАПЧ для фильтра с передаточной функцией:

$$W(s) = \frac{1}{(1 + \tau_{p1}s)(1 + \tau_{p2}s)}, \quad 0 < \tau_{p1} < 1, \quad 0 < \tau_{p2} < 1$$
 (6)

Подставим (6) в (4) и перенесем все в левую часть неравенства. Тогда оценка ν будет наибольшей при следующих значениях параметров

$$\varkappa = 1, \quad \varepsilon = 1 - \tau - \delta, \quad \tau = \tau_{p1}\tau_{p2} + \delta(\tau_{p1}^2 + \tau_{p2}^2), \quad \delta = \frac{1 - \tau_{p1}\tau_{p2}}{2(\tau_{p1}^2 + \tau_{p2}^2 + 1)}$$

Рис. 2. Численная оценка ν^2 в МАТLAВ с помощью функции fmincon и график ν^2 построенный по (7)

Таким образом, получим следующую оценку:

$$\nu^2 < \frac{(\tau_{p1}\tau_{p2} - 1)^2}{\tau_{p1}^2 + \tau_{p2}^2 + 1} \tag{7}$$

3.2. Оценка полосы захвата для систем ФАПЧ с фильтром $\frac{(1+\tau_{z1}s)^2}{(1+\tau_{p1}s)^2}$. Оценим полосу захвата ФАПЧ для фильтра с передаточной функцией:

$$W(s) = \frac{(1 + \tau_{z1}s)^2}{(1 + \tau_{p1}s)^2}, \quad 0 < \tau_{p1} < 1, \quad 0 < \tau_{p2} < 1, \quad \tau_{p1} \neq \tau_{p2}$$
 (8)

Подставим (8) в (4) и перенесем все в левую часть неравенства. Для максимизации ν положим $\varkappa=1,\, \tau=0.$ Рассмотрим прямые

$$\varepsilon(\delta) = z^2 - z^4 \delta, \quad \varepsilon(\delta) = q - z^2 \delta, \quad \varepsilon(\delta) = 1 - \delta$$
 (9)

где $z=\frac{\tau_{p1}}{\tau_{z1}},\ q=2z-\frac{1}{2}-\frac{1}{2}z^2.$ (9) вместе с прямыми $\delta=0,\ \varepsilon=0$ образуют выпуклый многоугольник. В зависимости от многоугольника положим δ равным одним из $\frac{1}{1+z^2},\ \frac{1-q}{1-z^2},\ \frac{z^2-q}{z^4-z^2},\ \frac{q}{2z^2},\ \frac{1}{2}$ и ε из (9). Тогда $4\varepsilon\delta$ пределяется одним из следущих соотношений:

$$\frac{q^2}{z^2}$$
, 1, $\frac{4z^2}{1+z^2}$, $\frac{4(1-q)(q-z^2)}{1-z^2}$, $\frac{z^2-q}{z^2-1} - \left(\frac{z^2-q}{z^2-1}\right)^2$ (10)

Рис. 3. Численная оценка ν^2 в МАТLAB с помощью функции fmincon и график ν^2 построенный по (10)

3.3. Оценка полосы захвата для систем ФАПЧ с фильтром $\frac{1+\alpha_1\beta_1s+\alpha_2\beta_2s^2}{1+\alpha_1s+\alpha_2s^2}$. Оценим полосу захвата ФАПЧ для фильтра с передаточной функцией:

$$W(s) = \frac{1 + \alpha_1 \beta_1 s + \alpha_2 \beta_2 s^2}{1 + \alpha_1 s + \alpha_2 s^2}, \quad 0 < \beta_1 < \beta_2 < 1, \quad 0 < \alpha_1, \alpha_2$$
 (11)

Рассмотрим управляемую реализацию пары (A, B). Подставим (11) в (4) и перенесем все в левую часть неравенства. Для максимизации оценки ν положим

$$\tau = 0, \quad \varkappa = 1, \quad \varepsilon = 1 - \delta, \quad \delta = \frac{\alpha_1^2 (1 - \beta_1) \beta_1 - \alpha_2 (1 - \beta_2)}{\alpha_1^2 (1 - \beta_1^2) - 2\alpha_2 (1 - \beta_2)}$$
 (12)

Чтобы гарантировать положительность δ потребуем

$$\alpha_1^2 > \frac{\alpha_2(1-\beta_2)}{\beta_1(1-\beta_1)} \tag{13}$$

Тогда, подставив (12) в (4) и применив (5), получим оценку

$$\nu^{2} < 4 \frac{\left[\alpha_{1}^{2}(1-\beta_{1}) - \alpha_{2}(1-\beta_{2})\right]\left[\alpha_{1}^{2}(1-\beta_{1})\beta_{1} - \alpha_{2}(1-\beta_{2})\right]}{\left[\alpha_{1}^{2}(1-\beta_{1}^{2}) - 2\alpha_{2}(1-\beta_{2})\right]^{2}}$$
(14)

Эта оценка была получена в [2], однако вывод был пропущен.

4. Заключение. В настояцее время системы фазовой автоподстройки частоты и их модификации применяются во многих системах, где требуется синхронизация частот. Полученный результат может быть интересен инженерам и может использоваться при проектировании и реализации систем ФАПЧ третьего порядка.

Литература

- 1. Best R. E. Phase-Locked Loops: Design, Simulation, and Applications / McGraw-Hill Education, 2007. P. 115–116.
- 2. Leonov G. A., Kuznetsov N. V. Nonlinear mathematical models of phase-locked loops: stability and oscillations / Cambridge Scientific Publishers, 2014. P. 112–113.
- 3. Леонов Г. А., Селеджи С. М. Системы фазовой синхронизации в аналоговой и цифровой схемотехнике / СПб.: Изд-во Невский диалект, 2014. Р. 58–66.
- 4. Kuznetsov N. V., Leonov G. A., Yuldashev M. V., Yuldashev R. V. Hold-In, Pull-In, and Lock-In Ranges of PLLCircuits: Rigorous Mathematical Definitions and Limitations of Classical Theory // Transactions on Circuits and Systems I: Regular Papers. 2015. Vol. 62, No 10. P. 2455.
- 5. Feng L., Wu C., Jin B., Wu Z. A Passive Third-order Cascade PLL Filter // Trans Tech Publications. 2011. Vol. 255-260. P. 2262.
- Curran J. T., Lachapelle G., Murphy C. C. Digital GNSS PLL Design Conditioned on Thermal and Oscillator Phase Noise // IEEE Transactions on Aerospace and Electronic Systems. 2012. Vol. 48, No 1. P. 180.