Gradient Estimation with Stochastic Softmax Tricks

Max B. Paulus and Dami Choi and Daniel Tarlow and Andreas Krause and Chris J. Maddison 2020

Computational graph

Computational graph & backprop

$$rac{dt}{dx} = rac{dh}{dg} rac{dg}{df} rac{df}{dx}$$

Stochastic computational graph

Stochastic computational graph

Действия, которые мы принимаем, чтобы получить награду являются случайными от политики

Stochastic computational graph & backprop?

$$\frac{d\mathbb{E}t}{dx} = ?$$

Stochastic computational graph & backprop?

$$egin{aligned} rac{d\mathbb{E} ext{t}}{dx} &= ? \ rac{d\mathbb{E} ext{t}}{dx} &= rac{1}{dx} \int p(z|f(x))h(z)dz \end{aligned}$$

$$rac{d\mathbb{E}\mathrm{t}}{dx} = rac{1}{dx} \int p(z|f(x))h(z)dz$$

2) REINFORCE

$$\frac{1}{dx} \int p(z|f(x))h(z)dz$$

$$rac{1}{dx}\int p(z|f(x))h(z)dz
ightharpoonup egin{dcases} z=g(\hat{arepsilon},f(x)),\ \hat{arepsilon} \sim r(arepsilon) \end{cases}$$

p(x y)	$r(\epsilon)$	$g(\epsilon, y)$
$\mathcal{N}(x \mu,\sigma^2)$	$\mathcal{N}(\epsilon 0,1)$	$x = \sigma\epsilon + \mu$
$\mathcal{G}(x 1,\beta)$	$\mathcal{G}(\epsilon 1,1)$	$x = \beta \epsilon$
$\mathcal{E}(x \lambda)$	$\mathcal{U}(\epsilon 0,1)$	$x = -\frac{\log \epsilon}{\lambda}$
$\mathcal{N}(x \mu,\Sigma)$	$\mathcal{N}(\epsilon 0,I)$	$x = A\epsilon + \mu$, where $AA^T = \Sigma$

$$rac{1}{dx}\int p(z|f(x))h(z)dz
ightharpoonup \left\{egin{align*} z=g(\hat{arepsilon},f(x)),\ \hat{arepsilon} & r(arepsilon) \end{array}
ight\}$$
 Integral over density function is 1 $rac{d}{dx}h(g(\hat{arepsilon},f(x)))$

$$rac{1}{dx}\int p(z|f(x))h(z)dz
ightharpoonup \left\{egin{align*} z=g(\hat{arepsilon},f(x)),\ \hat{arepsilon} & r(arepsilon) \end{array}
ight\}$$
 Integral over density function is 1 $rac{d}{dx}h(g(\hat{arepsilon},f(x)))$

$$pprox rac{dh}{da}rac{\partial g(\hat{arepsilon}\,,f(x))}{\partial f}rac{df}{dx}.$$

$$rac{1}{dx}\int p(z|f(x))h(z)dz
ightharpoonup \left\{egin{align*} z=g(\hat{arepsilon},f(x)),\ \hat{arepsilon} & r(arepsilon) \end{array}
ight\}$$
 Integral over density function is 1 $rac{d}{dx}h(g(\hat{arepsilon},f(x)))$

$$pprox rac{dh}{dq}rac{\partial g(\hat{arepsilon}\,,f(x))}{\partial f}rac{df}{dx}$$

Seems familiar?

$$rac{1}{dx}\int p(z|f(x))h(z)dz
ightharpoonup \left\{egin{align*} z=g(\hat{arepsilon}\,,f(x)),\ \hat{arepsilon} & r(arepsilon) \end{array}
ight\}$$
 Integral over density function is 1 $rac{d}{dx}h(g(\hat{arepsilon}\,,f(x)))$

$$pprox rac{dh}{dg}rac{\partial g(\hat{arepsilon},f(x))}{\partial f}rac{df}{dx} \qquad \qquad rac{dt}{dx}=rac{dh}{dg}rac{dg}{df}rac{dg}{dx}$$

$$rac{1}{dx}\int p(z|f(x))h(z)dz
ightharpoonup \left\{egin{align*} z=g(\hat{arepsilon},f(x)),\ \hat{arepsilon} & r(arepsilon) \end{array}
ight\}$$
 Integral over density function is 1 $rac{d}{dx}h(g(\hat{arepsilon},f(x)))$

g should be differentiable

$$pprox rac{dh}{dg} rac{\partial g(\hat{arepsilon}, f(x))}{\partial f} rac{df}{dx} \qquad \qquad rac{dt}{dx} = rac{dh}{dg} rac{dg}{df} rac{dg}{dx}$$

Reparametrization examples

p(x y)	$r(\epsilon)$	$g(\epsilon, y)$
$\mathcal{N}(x \mu,\sigma^2)$	$\mathcal{N}(\epsilon 0,1)$	$x = \sigma\epsilon + \mu$
$\mathcal{G}(x 1,\beta)$	$\mathcal{G}(\epsilon 1,1)$	$x = \beta \epsilon$
$\mathcal{E}(x \lambda)$	$\mathcal{U}(\epsilon 0,1)$	$x = -\frac{\log \epsilon}{\lambda}$
$\mathcal{N}(x \mu,\Sigma)$	$\mathcal{N}(\epsilon 0,I)$	$x = A\epsilon + \mu$, where $AA^T = \Sigma$

Slide credit: Dmitry Vetrov

$$rac{1}{dx}\int p(z|f(x))h(z)dz =$$

$$rac{1}{dx}\int p(z|f(x))h(z)dz \ = \int rac{\partial p(z|f(x))}{\partial x}h(z)dz =$$

$$rac{1}{dx}\int p(z|f(x))h(z)dz = \int rac{\partial p(z|f(x))}{\partial x}h(z)dz = \left\{
abla_{ heta}\log p(x; heta) = rac{
abla_{ heta}p(x; heta)}{p(x; heta)}
ight\}$$

$$rac{1}{dx}\int p(z|f(x))h(z)dz \ = \int rac{\partial p(z|f(x))}{\partial x}h(z)dz = \left\{
abla_{ heta}p(x; heta) =
abla_{ heta}\log p(x; heta)p(x; heta)
ight.$$

$$\begin{array}{c|c} \hline \mathsf{f} & \hline \\ \hline \mathsf{p}(\mathsf{z}|\mathsf{f}(\mathsf{x})) & \hline \\ \hline \\ \mathsf{h} \\ \hline \\ \end{smallmatrix} \\ t = h(z), z \sim p(z|f(x)) \\ \hline \\ \end{array}$$

$$rac{1}{dx}\int p(z|f(x))h(z)dz \, = \int rac{\partial p(z|f(x))}{\partial x}h(z)dz = \left\{
abla_{ heta}p(x; heta) =
abla_{ heta}\log p(x; heta)p(x; heta)
ight.$$

$$a pprox \int p(z|f(x)) rac{\partial log p(z|f(x))}{\partial x} h(z) dz$$

$$rac{1}{dx}\int p(z|f(x))h(z)dz \, = \int rac{\partial p(z|f(x))}{\partial x}h(z)dz = \left\{
abla_{ heta}p(x; heta) =
abla_{ heta}\log p(x; heta)p(x; heta)
ight.$$

random variable

$$pprox \int p(z|f(x))rac{\partial log p(z|f(x))}{\partial x}h(z)dz =$$

$$rac{1}{dx}\int p(z|f(x))h(z)dz \, = \int rac{\partial p(z|f(x))}{\partial x}h(z)dz = \, \left\{
abla_{ heta}p(x; heta) =
abla_{ heta}\log p(x; heta)p(x; heta)
ight.
ight.$$

$$a pprox \int p(z|f(x)) rac{\partial log p(z|f(x))}{\partial x} h(z) dz = \left\{ \hat{z} \sim p(z|f(x))
ight\} dz$$

random variable

$$\begin{array}{c|c} \hline \mathsf{f} & \hline \mathsf{p}(\mathsf{z}|\mathsf{f}(\mathsf{x})) \\ \hline \hline \mathsf{x} & \hline \end{array} \\ \begin{array}{c} \mathsf{h} \\ \hline \end{array} \\ \begin{array}{c} \mathsf{t} \\ \mathsf{t} \\ \hline \end{array} \\ \begin{array}{c} \mathsf{h} \\ \mathsf{t} \\ \mathsf$$

$$rac{1}{dx}\int p(z|f(x))h(z)dz \, = \int rac{\partial p(z|f(x))}{\partial x}h(z)dz = \, \left\{
abla_{ heta}p(x; heta) =
abla_{ heta}\log p(x; heta)p(x; heta)
ight.$$

$$\approx \int p(z|f(x)) \frac{\partial log p(z|f(x))}{\partial x} h(z) dz = \begin{cases} \int 0 & \text{Monte Carlo} \\ \hat{z} \sim p(z|f(x)) \end{cases} \approx \frac{\partial log p(\hat{z}|f(x))}{\partial f} \frac{\partial f}{\partial x} h(\hat{z})$$

$$rac{1}{dx}\int p(z|f(x))h(z)dz \, = \int rac{\partial p(z|f(x))}{\partial x}h(z)dz = \, \left\{
abla_{ heta}p(x; heta) =
abla_{ heta}\log p(x; heta)p(x; heta)
ight.
ight.$$

$$pprox \int p(z|f(x)) rac{\partial log p(z|f(x))}{\partial x} h(z) dz = \left\{ \hat{z} \sim p(z|f(x))
ight\} pprox rac{\partial log p(\hat{z}|f(x))}{\partial f} rac{\partial f}{\partial x} h(\hat{z})$$

Leads to high variance

$$rac{d\mathbb{E}\mathrm{t}}{dx} = rac{1}{dx} \int p(z|f(x))h(z)dz$$

- + Uses derivative of h
- Doesn't work with categorical variables

2) REINFORCE

- + Works all the time
- Doesn't use derivative of h

- Gumbel trick defines $g_{\theta}(\varepsilon)$ for z
 - Let $\varepsilon_i = -\log(-\log u_i)$ for $u \sim U[0,1]^d$
 - Let $g_{\theta}(\varepsilon) = \underset{i=1,...,d}{\operatorname{argmax}}(\theta + \varepsilon)$
 - Then $g_{\theta}(\varepsilon) \stackrel{d}{=} z$

- Gumbel trick defines $g_{\theta}(\varepsilon)$ for z
 - Let $\varepsilon_i = -\log(-\log u_i)$ for $u \sim U[0,1]^d$
 - Let $g_{\theta}(\varepsilon) = \underset{i=1,...,d}{\operatorname{argmax}}(\theta + \varepsilon)$
 - Then $g_{\theta}(\varepsilon) \stackrel{d}{=} z$

soft
$$max(\theta) = (0.1, 0.5, 0.4)$$

- Gumbel trick defines $g_{\theta}(\varepsilon)$ for z
 - Let $\varepsilon_i = -\log(-\log u_i)$ for $u \sim U[0,1]^d$
 - . Let $g_{\theta}(\varepsilon) = \underset{i=1,...,d}{\operatorname{argmax}}(\theta + \varepsilon)$
 - Then $g_{\theta}(\varepsilon) \stackrel{d}{=} z$

soft max(
$$\theta$$
) = (0.1,0.5,0.4)
 $u = (0.4,0.3,0.7)$

- Gumbel trick defines $g_{\theta}(\varepsilon)$ for z
 - Let $\varepsilon_i = -\log(-\log u_i)$ for $u \sim U[0,1]^d$
 - . Let $g_{\theta}(\varepsilon) = \underset{i=1,...,d}{\operatorname{argmax}}(\theta + \varepsilon)$
 - Then $g_{\theta}(\varepsilon) \stackrel{d}{=} z$

soft max(
$$\theta$$
) = (0.1,0.5,0.4)
 $u = (0.4,0.3,0.7)$
 $g_{\theta}(\varepsilon) = \arg \max(-2.2, -0.9, +0.1)$
= (0,0,1)

- Gumbel trick defines $g_{\theta}(\varepsilon)$ for z
 - Let $\varepsilon_i = -\log(-\log u_i)$ for $u \sim U[0,1]^d$
 - . Let $g_{\theta}(\varepsilon) = \underset{i=1,...,d}{\operatorname{argmax}}(\theta + \varepsilon)$
 - Then $g_{\theta}(\varepsilon) \stackrel{d}{=} z$

$$\frac{dh}{dg} \frac{\partial g(\hat{\varepsilon}, f(x))}{\partial f} \frac{df}{dx}$$

- Gumbel trick defines $g_{\theta}(\varepsilon)$ for z
 - Let $\varepsilon_i = -\log(-\log u_i)$ for $u \sim U[0,1]^d$

• Let
$$g_{\theta}(\varepsilon) = \underset{i=1,...,d}{\operatorname{argmax}(\theta + \varepsilon)}$$

• Then $g_{\theta}(\varepsilon) \stackrel{d}{=} z$

$$\frac{dh}{dg} \frac{\partial g(\hat{\varepsilon}, f(x))}{\partial f} \frac{df}{dx}$$

Gumbel softmax trick (GST)

Gumbel softmax trick (GST)

Idea: replace arg max(⋅) with soft max(⋅)

• soft $\max(\frac{\theta + \varepsilon}{T}) \stackrel{T \to 0}{\to} \arg \max(\theta + \varepsilon)$

A different view on Argmax

• Rewrite
$$\underset{i=1,...,d}{\operatorname{argmax}} w = \underset{z \in \Delta^d}{\operatorname{argmax}} w^T z$$

• Δ^d is a convex hull of one-hots for z

A different view on Argmax

• Rewrite
$$\underset{i=1,...,d}{\operatorname{argmax}} w = \underset{z \in \Delta^d}{\operatorname{argmax}} w^T z$$

• Δ^d is a convex hull of one-hots for z

$$\underset{z \in \Delta^d}{\operatorname{argmax}}(w^T z + TH(z))$$

$$H(z) = -\sum_{i} z_{i} \log z_{i}$$

A different view on Argmax and Softmax

• Rewrite
$$\underset{i=1,...,d}{\operatorname{argmax}} w = \underset{z \in \Delta^d}{\operatorname{argmax}} w^T z$$

• Δ^d is a convex hull of one-hots for z

• Then soft
$$\max(\frac{w}{T}) = \underset{z \in \Delta^d}{\operatorname{argmax}}(w^T z + TH(z))$$

$$H(z) = -\sum_{i} z_{i} \log z_{i}$$

soft max:

A different view on Gumbel softmax trick

- Equivalently $z = \underset{z \in \Delta^d}{\operatorname{argmax}} ((\theta + \varepsilon)^T z + TH(z))$
 - 1. Perturb θ with ε
 - 2. Find arg max

• Then soft $\max(\frac{w}{T}) = \underset{z \in \Delta^d}{\operatorname{argmax}}(w^T z + TH(z))$

$$H(z) = -\sum_{i} z_{i} \log z_{i}$$

The limitations of GST

• Time is O(d)

• Perturb each θ_i and find max

- For combinatorial z the support is $d \gg 1$
 - Gumbel softmax trick is too slow

Stochastic argmax trick (SMT)

	Gumbel Argmax Trick	Stochastic argmax Trick
Support	$Z = \{e_1,, e_d\} \subset \mathbb{R}^d$	$Z = \{z_1,, z_m\} \subset \mathbb{R}^d$
Perturbation	$w = \theta_i - \log(-\log(u_i)), u \sim U[0,1]^d$	$w = r_{\theta}(\varepsilon)$
Forward pass	$z = \underset{z' \in \text{conv } Z}{\operatorname{argmax}} w^T z'$	$z = \underset{z' \in \text{conv } Z}{\operatorname{argmax}} w^T z'$

Example

- $Z = \{z_1, ..., z_m\} \subset R^{n \times n}$ is a set of permutation matrices on n elements
- m = n!

• Then soft
$$\max(\frac{w}{T}) = \underset{z \in \Delta^d}{\operatorname{argmax}}(w^T z + TH(z))$$

$$H(z) = -\sum_{i} z_{i} \log z_{i}$$

Stochastic *Arg*max → Stochastic *Soft*max

• Add a strongly convex regularizer $f: \mathbb{R}^d \to \{\mathbb{R}, \inf\}$

$$z = \underset{z' \in \text{conv}(Z)}{\operatorname{argmax}} w^T z' \rightarrow z_T = \underset{z' \in \text{conv}(Z)}{\operatorname{argmax}} (w^T z' - Tf(z'))$$

• Then soft $\max(\frac{w}{T}) = \underset{z \in \Delta^d}{\operatorname{argmax}}(w^T z + TH(z))$

$$H(z) = -\sum_{i} z_{i} \log z_{i}$$

Stochastic *Arg*max → Stochastic *Soft*max

• Add a strongly convex regularizer $f: \mathbb{R}^d \to \{\mathbb{R}, \inf\}$

$$z = \underset{z' \in \text{conv}(Z)}{\operatorname{argmax}} \ w^T z' \rightarrow z_T = \underset{z' \in \text{conv}(Z)}{\operatorname{argmax}} \ (w^T z' - T f(z'))$$

Prop 1. If z is a.s. unique, then $\lim_{T\to 0} z_T = z$

• Then soft
$$\max(\frac{w}{T}) = \underset{z \in \Delta^d}{\operatorname{argmax}}(w^T z + TH(z))$$

$$H(z) = -\sum_{i} z_{i} \log z_{i}$$

Stochastic *Arg*max → Stochastic *Soft*max

• Add a strongly convex regularizer $f: \mathbb{R}^d \to \{\mathbb{R}, \inf\}$

$$z = \underset{z' \in \text{conv}(Z)}{\operatorname{argmax}} \ w^T z' \rightarrow z_T = \underset{z' \in \text{conv}(Z)}{\operatorname{argmax}} \ (w^T z' - T f(z'))$$

Prop 1. If z is a.s. unique, then $\lim_{T\to 0} z_T = z$

Prop 2. z_T exists, is unique and differentiable in w

• Then soft $\max(\frac{w}{T}) = \underset{z \in \Delta^d}{\operatorname{argmax}}(w^T z + TH(z))$

$$H(z) = -\sum_{i} z_{i} \log z_{i}$$

Implementation requirements

- Inference
 - Reparametrized r.v. $w = r_{\theta}(\varepsilon)$
 - Solver for argmax $w^T z$ $z \in \text{conv } Z$
- Training
 - Strongly convex regularizer f(z)
 - Solver for $\underset{z \in \text{conv } Z}{\operatorname{argmax}}(w^Tz tf(z))$

1) Gumbel Sinkhorn

- Take permutation matrices as Z
 - Then conv(Z) consists of doubly-stochastic
- Hungarian algorithm solves $\arg \max w^T z$

• Entropy
$$f(z) = \sum_{i,j} z_{i,j} \log z_{i,j}$$

• Sinkhorn algorithm finds $arg max(w^Tz - T \cdot f(z))$

Finding latent permutations: Jigsaw

2) K-subset selection

•
$$Z = \{z \in \{0,1\}^d \mid \sum z_i = k\}$$

• Sort to solve $\arg \max w^T z$

$$Z = \{z \in \{0,1\}^{2d-1} \mid \sum_{i=1}^{n} z_i = k, z_i = z_{i-d} z_{i-d+1} \text{ for } d < i < 2d-1\}$$

- Dynamic programming for arg max
- Exponential family relaxation

BeerAdvocate Interpretability

Pours a slight tangerine orange and straw yellow. The head is nice and bubbly but fades very quickly with a little lacing. Smells like Wheat and European hops, a little yeast in there too. There is some fruit in there too, but you have to take a good whiff to get it. The taste is of wheat, a bit of malt, and a little fruit flavour in there too. Almost feels like drinking Champagne, medium mouthful otherwise. Easy to drink, but not something I'd be trying every night.

Appearance: 3.5 Aroma: 4.0 Palate: 4.5 Taste: 4.0 Overall: 4.0

	Relaxation	k = 5		k = 10		k = 15	
Model		MSE	Subs. Prec.	MSE	Subs. Prec.	MSE	Subs. Prec.
Simple	L2X [17]	3.6 ± 0.1	28.3 ± 1.7	3.0 ± 0.1	25.5 ± 1.2	2.6 ± 0.1	25.5 ± 0.4
	SoftSub [84]	3.6 ± 0.1	27.2 ± 0.7	3.0 ± 0.1	26.1 ± 1.1	2.6 ± 0.1	25.1 ± 1.0
	Euclid. Top k	3.5 ± 0.1	25.8 ± 0.8	2.8 ± 0.1	32.9 ± 1.2	2.5 ± 0.1	29.0 ± 0.3
	Cat. Ent. Top k	3.5 ± 0.1	26.4 ± 2.0	2.9 ± 0.1	32.1 ± 0.4	2.6 ± 0.1	28.7 ± 0.5
	Bin. Ent. Top k	3.5 ± 0.1	29.2 ± 2.0	2.7 ± 0.1	33.6 ± 0.6	2.6 ± 0.1	28.8 ± 0.4
	E.F. Ent. Top k	3.5 ± 0.1	28.8 ± 1.7	2.7 ± 0.1	32.8 ± 0.5	2.5 ± 0.1	29.2 ± 0.8
	Corr. Top k	$\textbf{2.9} \pm \textbf{0.1}$	$\textbf{63.1} \pm \textbf{5.3}$	$\textbf{2.5} \pm \textbf{0.1}$	$\textbf{53.1} \pm \textbf{0.9}$	$\textbf{2.4} \pm \textbf{0.1}$	$\textbf{45.5} \pm \textbf{2.7}$

Conclusions

- Learning structured latent variables is an active research direction
- Stochastic softmax trick generalize gumbel softmax trick
- There is more to be done

Questions

1) Write down either REINFORCEMENT or reparameterization trick final formula

2) Rewrite softmax function as it was discussed (using convex hull)

3) List implementation requirements for SST framework