AI 적용 예시 정리

SMT 기업 사례, 설비 예지 보전과 머신 러닝

1. 설비 예지보전이란?

설비 예지보전이란, 설비 또는 장비의 이상, 정지, 고장으로 발생하는 경영(운영) 손실을 최소화하기 위한 TPM 차원의 일련의 활동을 말한다. 국제적인 표준으로는 ISO 10816이 있다.

예지보전(PbM): 예측 정비

2. 회전 구동 설비 예지보전 사례

설비예지보전을 하면서 현장에서 가장 많은 관심을 가지는 장치는 회전 구동체 즉 동력을 제공하는 모터다.

모터에 다양한 센서를 붙이고, 시그널 데이터를 수집하여 실시간 분석을 통해 예지보전을 하고자 하는 것

모터 점검항목

<u>Aa</u> 정검항목	≡ 단점	■ 장점
<u>초음파</u>	너무 많은 예산	가장 효과적
<u>진동</u>	현장 환경,장비환경에 따라 변수 많음	
<u>마모분석</u>	설비를 멈추고 분해 등을 통한 접근	
<u>온도</u>		
<u>가청소음</u>	예지보전의 효과가 떨어짐(고정 직전 또는 고장후 감지)	
<u>접촉온도</u>	예지보전의 효과가 떨어짐(고정 직전 또는 고장후 감지)	
<u>전기분석</u>		진동에 비해 진단 및 분석이 용이
<u>비가청소음(초저</u> 울).		진동에 비해 진단 및 분석이 용이

분석 시점 과

3. 정확한 분석을 위한 3가지 방법론

- 모터를 진단하면서 필요한 시그널은 단순히 전기 하나만 있는 것이 아니라는 것이다. 진 동, 전기, 온도, 초저음 등 다양한 시그널이 고장 등의 문제가 일어날 때 어떤 상관관계가 있는지. 넓게는 설비 작동과 어떤 관계가 있는지를 분석하는 방법
- 동일한 설비, 동일한 환경, 동일한 구동 방식을 가진 비슷한 모터나 설비 간 상호 비교 보완을 하게 하는 방법론이다. 이를 군집 분석이라고 부르는데, 이 군집 분석은 하나의 모터를 대상으로 하지 않기 때문에 분석된 결과를 다른 모터를 분석하는데 상호 보완적 역할을 하게 함으로써 진단이나 분석의 정확성을 높이고 있다.
- 이벤트 정의프로그램을 통해 등록된 현장에서 모터 이상의 원인 이벤트를 직접 등록할수 있고, 머신 러닝 알고리즘은 등록된 이벤트를 참조로 분석력과 정확성을 높이게 된다.

포스코 기업 사례

스마트 팩토리 주요 분야

<u>Aa</u> 주요분야	■ Breakthrough	
<u>설비예방정비</u>	다양한 설비 데이터를 수집한 후 인공지능 분석을 적용하여 예방정비	
<u>공정 간 연계</u> <u>제어</u>	예측하기 힘든 공정 간 품질결함을 인공지능 분석을 통해 예측	
<u>젂문가 공정제</u> <u>어</u>	전문가 공정제어에 강화학습 기반의 인공지능을 적용 생산성 성과를 보여줄 것으로 기대	
<u>로봇 자동화</u>	인공지능과 로봇의 융합을 통해 로봇 스스로 학습이 가능해짐으로써 다양핚 작업에 대핚 범용성 증가	

1) 설비 예방정비

- 1. 설비 예방정비의 현황과 이슈
 - IoT 기술이 발달하면서 모터 진동, 소요 전압, 전류, 유량, 압력 등 다양한 데 이터의 모니터링과 통계분석이 가능해져 GE가 자사의 엔진, 발전기 터빈 등의 예방정비에서 성과를 거두기 시작
- 2. RNN4 기반 읶공지능을 활용한 Breakthrough
 - Time Series Data 분석에 효과적읶 RNN(Recurrent Neural Network, 순환 신경망) 기반의 읶공지능 분석 기법이 적용되면서 통계적 인과관계가 분명하지 않은 설비 예방정비에서도 신뢰성 있는 분석 결과를 보여줌
 - GE를 비롯핚 선진기업이 설비 예방정비에 인공지능 분석기법을 도입했으며,
 올해 글로벌 스마트팩토리 컨퍼런스에서도 일부 기업들이 RNN 기반의 설비 예방정비 성공 사례를 발표

2)공정간 연계제어

- 1. 공정간 연계제어의 현황 및 이슈
 - 공정 간 연계제어를 위해서는 주요 설비의 공정 데이터를 실시간으로 통합하고 분석하는 Connected Factory 구축이 요구, 설비 업체별로 서로 다른 데이터 포맷을 통합하고 실시간 DB를 운영하기 위해서는 대규모 투자 필요

- 데이터 통합에 성공했다 하더라도 공정 간 상호작용에 대한 이해 부족, 상호작용을 분석하기 위한 Big Data 인프라 및 분석 역량 부족으로 적용 사례는 일부 반도체 기업에 국한
- 2. Big Data 인프라 + 인공지능 분석을 통한 Breakthrough
 - IoT 기술 도입과 Big Data 읶프라 발전, 공정 데이터 통합을 위핚 OPC-UA 표준이 논의되기 시작하면서 공정 간 데이터 통합이 용이해짐
 - 인공지능 분석을 통해 공정 갂 서로 다른 도메인 지식과 복잡한 통계분석에 의 존하지 않고 품질 불량을 더 정확하게 예측하는 것이 가능

3) 전문가 공정제어

- 1. 전문가 공정제어의 현황 및 이슈
 - 복잡한 제어 특성을 반영한 정확핚 운영 Model 개발 곤란, 약간의 설비 변경, 유지보수 등의 변화에도 Model 재설계가 불가피
- 2. 학습 가능한 인공지능(딥러닝)을 활용한 Breakthrough
 - 안공지능의 장점은 강화학습을 통해 운영 Model을 정확하게 유추할 수 있고, 공정환경의 변화에도 스스로 운영 Model을 수정하면서 최적 제어를 할 수 있 기 때문에 추가 유지보수가 필요 없다는 것

4) 로봇 자동화

- 1. 로봇 자동화의 현황 및 이슈
 - 로봇의 제작 비용이 지속적으로 낮아지고 인건비는 상승
 - 한정된 작업맊 수행 가능한 낮은 범용성과 높은 가격으로 핵심 공 정에만 제한적
- 2. 인공지능과 로봇의 융합을 통한 Breakthrough
 - 작업 방법을 빠르게 습득할 수 있다, 범용성 증가
 - 로봇의 범용성에 따라 로봇으로 대체 가능한 작업이 증가할 것

한컴MDS 제안 , 제조업에서 AI(기계학습)의 활용 분야와 솔루션

1) 제조업에서 AI 활용 분야

- 1. 제품 수요 및 매출 예측 AI
- 2. 제조업 R&D 과정 단축, 재료 분석 및 선정, 테스트 간소화
- 3. 불량품,설비고장 사전 예측,수율 향상
- 4. 제품 사후 관리 자동화
- 5. 스마트 제품

2) 품질 결함 감지

- 1. 한기계학습 모델을 가시화하여 문제 요인을 발견
- 2. 어떤 요인이 불량품의 발생에 영향을주고 있는지, 어떤 요인을 변경하여 품질이 어떻게 바뀌는지 기계학습모델이 발견한 복잡한 패턴을 설명

3) 예방 정비

- 1. 기계학습은 생산 설비에서 나오는 전류, 진동, 소리 등 다양한 데이터를 학습하여 그 설비 자체의 고장 및 잔존 수명을 예측
- 2. 설비 이상 조짐을 파악
- 3. 기계학습 모델의 가시화로 고장 요 인을 특정할 수 있어 이를 바탕으로 유지보수를 사전에 실시하는 것으로 설비의 가동률 향상

4) 특성예측

- 1. 새로운 제품이나 재료를 검증하는 R&D도 제조업의 핵심
- 2. ex) 여러 가지 재료의 혼합 방법을 시뮬레이션을 통해 최적화
- 3. 테스트의 횟수를 줄임으로써 보다 효율적인 R&D가 가능

5) 제조업에서 자주 활용되는 DataRobot 기능

- 1. 기계학습 자동화, 기계학습 모델 가시화
- 2. 주요 활용 기능
 - 특징량의 임팩트
 - 모델 X-Ray
 - 리즌 코드

6) 특징량의 임팩트

- 1. 특징 량의 영향 정도를 100%로 했을 때 다른 특징량이 얼마 나 영향을 미쳤는지 표시
- 2. 재료 선정과 가공조건의 조정을 효율화할 수있다.
- 3. 예를 들어, 영향력이 적은 재료와 가공조건을 제 거하여 재료와 테스트 비용과 시간을 절감

7) 리즌(Reason) 코드

- 1. 예측을 액션에 바로 연결하는데 매우 유용한 기능
- 2. 예를 들어, 불량이나 고장이 생기는 여러 가지 이유를 이해함으로써 불량이나 고장이 발생하지 않도록 세밀한 파라미터의 튜닝(액션)을 할 수 있다.

8) 모델 X-Ray

- 1. 특징량의 값을 바꿀 때 예측에 어떻게 영향을 미치는지 명확하게 확인
- 2. 예를 들어, 파라미터 변경이 불량품이나 설비 고장 예측에 어떤 영향을 미치는지를 이해할 수 있다

9) 이상치 탐지

- 1. 이상치 탐지 는 이상치와 특이성을 데이터에서 검출하는 방법
- 2. 뭔가 평소와 다른 일이 일어 나고 있다는 것을 경고해 준다.
- 3. 과거의 결함이나 고장의 데이터가 충분히 존재하지 않는경우, 지도학습을 할 수 없다.