Ch. 15 Graphs

- Graph traversals
 - Depth-first search
 - Breadth-first search
- Applications of graphs
 - Topological sorting
 - Spanning trees
 - Shortest paths

Definitions

- Graph G = (V, E)
 - where

V is the set of vertices (nodes) and E is the set of edges

- Subgraph
 - A subset of a graph's vertices and edges
- Two vertices are adjacent if they are joined by an edge

- Path
 - A seq. of connected edges
- Cycle
 - A path whose starting vertex and ending vertex are the same
- Simple path
 - A path that contains no cycle
- Simple cycle
 - A cycle that contains no cycle in it

- Connected graph
 - Every pair of distinct vertices has a path bet'n them
- Complete graph
 - Every pair of distinct vertices has an edge bet'n them
- Directed graph (digraph): undirected graph
 - Whether edges have direction?
- Weighted graph: unweighted graph
 - Whether edges have weights?
- Adjacency, multigraph, loop

A campus map as a graph

A subgraph

Graphs that are

Connected

Disconnected

Complete

- ✓ Usually these are not considered as graphs.
- ✓ They are called as a multigraph and a graph w/ loops.

Graph의 예

사람들간의 친분 관계를 나타낸 그래프

그래프의 예

친밀도를 가중치로 나타낸 친분관계 그래프

그래프의 예

Directed Graph (Digraph, 유향 그래프)

방향을 고려한 친분관계 그래프

그래프의 예

가중치를 가진 Digraph

Graph Representation

N: # of vetices

- Adjacency matrix
 - A graph is represented by an $N \times N$ matrix where matrix[i][j] is 1 if there is an edge bet'n vertex i and vertex j, and 0 otherwise.
 - In case of a digraph, matrix[i][j] is 1 if there is an edge from vertex i to vertex j.
 - In case of weighted graph, matrix[i][j] has the weight value instead of 1.

Undirected Graph의 예

Weighted Undirected Graph의 예

Directed Graph의 예

Weighted Digraph의 예

		0	1	2	3	4	5	6	7	8
		Р	Q	R	S	T	W	Χ	Υ	Z
0	Р	0	0	1	0	0	1	0	0	0
1	Q	0	0	0	0	0	0	1	0	0
2	R	0	0	0	0	0	0	1	0	0
3	S	0	0	0	0	1	0	0	0	0
4	Т	0	0	0	0	0	1	0	0	0
5	W	0	0	0	1	0	0	0	1	0
6	Х	0	0	0	0	0	0	0	0	0
7	Υ	0	0	1	0	0	0	0	0	1
8	Z	0	0	0	0	0	0	0	0	0

Digraph의 다른 예

Weighted Graph의 다른 예

Adjacency list

- A graph is represented by N linked lists
 where list i is the list of vertices that is adjacent to vertex i.
- In case of weighted graphs, the list also contains the weight values.

A Digraph and Its Adjacency Matrix

		0	1	2	3	4	5	6	7	8
		Р	Q	R	S	Т	W	Χ	Υ	Z
0	Р	0	0	1	0	0	1	0	0	0
1	Q	0	0	0	0	0	0	1	0	0
2	R	0	0	0	0	0	0	1	0	0
3	S	0	0	0	0	1	0	0	0	0
4	Т	0	0	0	0	0	1	0	0	0
5	W	0	0	0	1	0	0	0	1	0
6	X	0	0	0	0	0	0	0	0	0
7	Υ	0	0	1	0	0	0	0	0	1
8	Z	0	0	0	0	0	0	0	0	0

A Digraph and Its Adjacency List

A Weighted Digraph and Its Adjacency List

Graph Traversals

- Traversal in a graph G
 - starts at a vertex u and visits all vertices v for which there is a path bet'n u and v.
 - Two representatives
 - Depth-first search
 - Breadth-first search

Depth-First Search

Non-Recursive Version of Depth-First Search

```
DFS(v)
         // All vertices are marked UNVISITED in the beginning
         stack.push(v);
         mark[v] = VISITED;
         while (!stack.isEmpty()) {
                   if (no unvisited vertices are adjacent to the stack-top vertex)
                             stack.pop(); // backtracking
                   else {
                             Select an unvisited vertex w adjacent to the stack-top vertex;
                             stack.push(w);
                             mark[w] = VISITED;
```

Breadth-First Search

```
BFS(v)
         // All vertices are marked UNVISITED in the beginning
         queue.enqueue(v);
         mark[v] = VISITED;
         while (!queue.isEmpty( )) {
                  w = queue.dequeue();
                  for each unvisited vertex u adjacent to w
                            queue.enqueue(u);
                            mark[u] = VISITED;
```

동일한 트리를 각각 DFS/BFS로 방문하기

A Connected Graph with Cycles

The results of a depth-first traversal, beginning at vertex *a*, of the graph in the previous page

Node visited	Stack (bottom to top)
а	a
b	a b
С	a b c
d	a b c d
g	a b c d g
е	a b c d g e
(backtrack)	a b c d g
f	a b c d g f
(backtrack)	a b c d g
(backtrack)	a b c d
h	a b c d h
(backtrack)	a b c d
(backtrack)	a b c
(backtrack)	a b
(backtrack)	a
i	ai
(backtrack)	a
(backtrack)	(empty)

The results of a breadth-first traversal, beginning at vertex *a*, of the graph in the previous page

Node visited	Queue (front to back)
a	а
	(empty)
b	b
f	b f
i	bfi
	fi
С	fic
е	fice
	i c e
g	i c e g
	c e g
	e g
d	e g d
	g d
	d
	(empty)
h	h
	(empty)

Topological Sorting

- Condition
 - Directed graph without cycles
- Topological order
 - An order of vertices in which vertex x precedes
 vertex y if there is an edge from x to y
 - Usually, there are many topological orders for a directed graph.


```
topologicalSort (G)
// G: graph
         for i = 1 to G.size() {
                  Select a vertex v that has no successors;
                  vertex[i] = v;
                  Delete from G vertex v and the edges to v;
         List vertex[G.size()],...,vertex[1]; // a topological order
```



```
topologicalSort2 (G)
// G: graph
         for i = 1 to G.size() {
                  Select a vertex v that has no predecessors;
                  vertex[i] = v;
                  Delete from G vertex v and the edges outgoing from v;
         List vertex[1], ..., vertex[G.size()]; // a topological order
```

Spanning Trees

- Condition
 - Undirected connected graph
- Tree
 - A connected graph with no cycles
 - A tree with n vertices always has n-1 edges.
- Spanning tree of graph *G*
 - A tree as a subgraph of G that contains all of G's vertices

A Spanning Tree

DFS/BFS Spanning Trees

```
DFSTree (v)
      Mark v as visited;
      for (each unvisited vertex u adjacent to v) {
             Mark the edge (u, v);
            DFSTree(u);
```

✓ The edges marked in DFSTree() constitute a DFS spanning tree.

```
BFSTree(v)
         // All vertices are marked UNVISITED in the beginning
         queue.enqueue(v);
         mark[v] = VISITED;
         while (!queue.isEmpty( )) {
                  w = queue.dequeue();
                  for each vertex u adjacent to w
                            queue.enqueue(u);
                            mark[u] = VISITED;
                            Mark the edge (w, u);
```

√ The edges marked in BFSTree() constitute a BFS spanning tree.

The DFS spanning tree algorithm visits vertices in this order: a, b, c, d, g, e, f, h, i. Numbers indicate the order in which the algorithm marks edges.

A DFS spanning tree rooted at vertex a

The BFS spanning tree algorithm visits vertices in this order: a, b, f, i, c, e, g, d, h. Numbers indicate the order in which the algorithm marks edges.

A BFS spanning tree rooted at vertex a

Minimum Spanning Trees

- Condition
 - Weighted undirected graph
- The cost of a spanning tree
 - The sum of the edge weights in the spanning tree
- Minimum spanning tree
 - A spanning tree with the minimum cost

Prim Algorithm

```
PrimAlgorithm (v)
         Mark v as visited and include it in the m.s.t.;
         while (there are unvisited vertices) {
                  Find a least-cost edge (x,u) from a visited vertex x
                                               to an unvisited vertex u;
                  Mark u as visited;
                  Add the vertex u and the edge (x,u) to the m.s.t.;
```

- ✓ Prim's algorithm is an example of greedy algorithm.
- ✓ It is a rare case that a greedy algorithm guarantees global optimality.

A weighted, connected, undirected graph

Prim Algorithm의 작동 예 1

(a) Mark a, consider edges from a

(b) Mark i, include edge (a, i)

(i) Mark b, include edge (a, b)

Prim Algorithm의 작동 예 2

🔵: 방금 S에 포함된 정점

: 방금 이완이 일어난 정점

Shortest Paths

- Condition
 - Weighted digraph
 - Undirected graph can be also thought to be a digraph in which undirected edge (u,v) means two directed edges (u,v) and (v,u).
- Shortest path bet'n two vertices
 - A path that has the smallest sum of edge weights

Dijkstra Algorithm

```
DijkstraAlgorithm (G, s) // s: the starting vertex
         S = \{s\};
         for v = 1 to G.size()
                  distance[v] = weight(s,v);
         for i = 2 to G.size() {
                  Find the smallest distance[v] s.t. v is not in S;
                  S = S \cup \{v\};
                  for each vertex u not in S {
                            if (distance[u] > distance[v] + weight(v,u))
                                     distance[u] = distance[v] + weight(v,u);
                       Relaxation
```

- ✓ Dijkstra's algorithm is an example of greedy algorithm.
- ✓ It is another rare case that a greedy algorithm guarantees global optimality.

A weighted directed graph and its adjacency matrix

An example relaxation

The path 0-4-2-1 is shorter than 0-1

Dijkstra Algorithm의 작동 예

Euler Circuit: The Oldest Graph Application

- ✓ Is there a cycle that uses every edge exactly once?
- ✓ To have an Euler circuit, every vertex must have an even degree.

Pencil and paper drawings

Other Graph Problems

- Traveling salesman problem
- Graph planarity
- Graph coloring
- Graph bisection
- Max flow
- VLSI circuit placement & routing
- Too many more ...