Lógica Digital (1001351)

Máquinas de Estados Finitos: Minimização

Prof. Edilson Kato kato@ufscar.br

Prof. Ricardo Menotti menotti@ufscar.br

Prof. Maurício Figueiredo mauricio@ufscar.br

Prof. Roberto Inoue rsinoue@ufscar.br

Departamento de Computação Universidade Federal de São Carlos

Atualizado em: 7 de junho de 2019

Definições

Dois estados S_i e S_j são ditos equivalentes se e somente se para cada sequência de entradas possível, a mesma sequência de saída será produzida independente de se partir de S_i ou S_j .

Uma partição consiste em um ou mais blocos, onde cada bloco constitui um subconjunto de estados que podem ser equivalentes, mas os estados em um dado bloco são definitivamente não equivalentes aos estados de outro bloco.

Present	Next	state	Output	
state	w = 0	w = 1	z	
A	В	С	1	
В	D	F	1	
C	F	E	0	
D	В	G	1	
E	F	C	0	
F	E	D	0	
G	F	G	0	

$$P_1 = (ABCDEFG)$$

Figure 6.51 State table for Example 6.6.

Present	Next	state	Output	
state	w = 0	w = 1	Z	
A	В	С	1	
В	D	F	1	
C	F	E	0	
D	В	G	1	
E	F	C	0	
F	E	D	0	
G	F	G	0	

$$P_1 = (ABCDEFG)$$

$$P_2 = (ABD)(CEFG)$$

Figure 6.51 State table for Example 6.6.

Present	Next	Output	
state	w = 0	w = 1	Z
A	В	С	1
В	D	F	1
C	F	E	0
D	В	G	1
Е	F	C	0
F	E	D	0
G	F	G	0

$$P_1 = (ABCDEFG)$$

$$P_2 = (ABD)(CEFG)$$

$$P_3 = (ABD)(CEG)(F)$$

Figure 6.51 State table for Example 6.6.

Present	Next	Output	
state	w = 0	w = 1	Z
A	В	С	1
В	D	F	1
C	F	E	0
D	В	G	1
E	F	C	0
F	E	D	0
G	F	G	0

$$P_1 = (ABCDEFG)$$

$$P_2 = (ABD)(CEFG)$$

$$P_3 = (ABD)(CEG)(F)$$

$$P_4 = (AD)(B)(CEG)(F)$$

Figure 6.51 State table for Example 6.6.

Present	Next	Output	
state	w = 0	w = 1	z
A	В	С	1
В	D	F	1
C	F	E	0
D	В	G	1
Е	F	C	0
F	E	D	0
G	F	G	0

$$P_1 = (ABCDEFG)$$

$$P_2 = (ABD)(CEFG)$$

$$P_3 = (ABD)(CEG)(F)$$

$$P_4 = (AD)(B)(CEG)(F)$$

$$P_5 = P_4$$

Figure 6.51 State table for Example 6.6.

Present	Next	state	Output
state	w = 0	w = 1	z
A	В	С	1
В	A	F	1
C	F	C	0
F	C	A	0

$$P_1 = (ABCDEFG)$$

$$P_2 = (ABD)(CEFG)$$

$$P_3 = (ABD)(CEG)(F)$$

$$P_4 = (AD)(B)(CEG)(F)$$

$$P_5 = P_4$$

Figure 6.52 Minimized state table for Example 6.6.

Vending machine

(b) Circuit that generates N

Figure 6.53 Signals for the vending machine.

Vending machine

Figure 6.54 State diagram for Example 6.7.

Present	Nex	Output			
state	DN = 00	01	10	11	z
S1	S1	S3	S2	_	0
S2	S2	S4	S5	_	0
S3	S3	S6	S7	_	0
S4	S1	_	_	_	1
S5	S3	_	_	-	1
S6	S6	S8	S 9	-	0
S7	S1	_	_	_	1
S8	S1	_	_	-	1
S9	S3	-	-	-	1

$$P_{1} = (S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}, S_{7}, S_{8}, S_{9})$$

$$P_{2} = (S_{1}, S_{2}, S_{3}, S_{6})(S_{4}, S_{5}, S_{7}, S_{8}, S_{9})$$

$$P_{3} = (S_{1})(S_{3})(S_{2}, S_{6})(S_{4}, S_{5}, S_{7}, S_{8}, S_{9})$$

$$P_{4} = (S_{1})(S_{3})(S_{2}, S_{6})(S_{4}, S_{7}, S_{8})(S_{5}, S_{9})$$

$$P_{5} = P_{4}$$

Present	Next state				Output
state	DN = 00	01	10	11	z
S1	S1	S3	S2	_	0
S2	S2	S4	S5	_	0
S3	S3	S2	S4	_	0
S4	S1	_	_	_	1
S5	S3	_	_	-	1

$$P_1 = (S_1, S_2, S_3, S_4, S_5, S_6, S_7, S_8, S_9)$$

$$P_2 = (S_1, S_2, S_3, S_6)(S_4, S_5, S_7, S_8, S_9)$$

$$P_3 = (S_1)(S_3)(S_2, S_6)(S_4, S_5, S_7, S_8, S_9)$$

$$P_4 = (S_1)(S_3)(S_2, S_6)(S_4, S_7, S_8)(S_5, S_9)$$

$$P_5 = P_4$$

Figure 6.56 Minimized state table for Example 6.7.

Moore vs Mealy

Figure 6.57 Minimized state diagram for Example 6.7.

Moore vs Mealy

Figure 6.57 Minimized state diagram for Example 6.7. Figure 6.58 Mealy-type FSM for Example 6.7

Particionamento de máquinas incompletas

Present	Next	Next state		Output z	
state	w = 0	w = 1	w = 0	w = 1	
A	В	C	0	0	
В	D	_	0	_	
C	F	E	0	1	
D	В	G	0	0	
E	F	C	0	1	
F	E	D	0	1	
G	F	_	0	_	

$$P_{1} = (ABCDEFG)$$

$$P_{2} = (ABDG)(CEF)$$

$$P_{3} = (AB)(D)(G)(CE)(F)$$

$$P_{4} = (A)(B)(D)(G)(CE)(F)$$

$$P_{5} = P_{4}$$

Figure 6.59 Incompletely specified state table for Example 6.8.

Particionamento de máquinas incompletas

Present	Next state		Output z	
state	w = 0	w = 1	w = 0	w = 1
A	В	C	0	0
В	D	_	0	_
C	F	E	0	1
D	В	G	0	0
Е	F	C	0	1
F	E	D	0	1
G	F		0	_

$$P_{1} = (ABCDEFG)$$

$$P_{2} = (ABDG)(CEF)$$

$$P_{3} = (AB)(D)(G)(CE)(F)$$

$$P_{4} = (A)(B)(D)(G)(CE)(F)$$

$$P_{5} = P_{4}$$

$$P_{1} = (ABCDEFG)$$

$$P_{2} = (AD)(BCEFG)$$

$$P_{3} = (AD)(B)(CEFG)$$

 $P_4 = (AD)(B)(CEG)(F)$

 $P_5 = P4$

Figure 6.59 Incompletely specified state table for Example 6.8.

Bibliografia

► Brown, S. & Vranesic, Z. - Fundamentals of Digital Logic with Verilog Design, 3rd Ed., Mc Graw Hill, 2009

Lógica Digital (1001351)

Máquinas de Estados Finitos: Minimização

Prof. Edilson Kato kato@ufscar.br

Prof. Ricardo Menotti menotti@ufscar.br

Prof. Maurício Figueiredo mauricio@ufscar.br

Prof. Roberto Inoue rsinoue@ufscar.br

Departamento de Computação Universidade Federal de São Carlos

Atualizado em: 7 de junho de 2019

