Ref.	ML Technique	Application	Dataset	Features	Output	Evaluation	
		(approach)	(availability)		(training)	Settings	Results ^{ab}
NBP [141]	Supervised: • MLP-NN (<i>offline</i>)	End-to-end path bandwidth availability prediction (75F)	NSF TeraGrid dataset (N/A)	Max, Min, Avg load observed in past 10 s ~ 30 s	Available bandwidth on a end-to-end path in future epoch	Number of features= 3 MLP-NN: · (N/A)	MSE = 8%
Cortez et al. [104]	Supervised: • NNE trained with Rp (offline)	Link load and traffic volume prediction in ISP networks (TSF)	SNMP traffic data from 2 ISP nets, traffic on a transatlantic link aggregated traffic in the ISP backbone (N/A)	Traffic volume observed in past few minutes∼several days	Expected traffic volume	Number of features= 6 ~ 9 5 NNs NNE: all SLPs for dataset1 1 hidden layer MLPs with 6 ~ 8 neurons for dataset2	1h lookahead: \cdot MAPE = 1.43% \sim 5.23% 1h \sim 24h lookahead: \cdot MAPE = 6.34% \sim 23.48%
Bermolen et al. [52]	Supervised: • SVR (offline)	Link load prediction in ISP networks (TSF)	Internet traffic collected at the POP of an ISP network (N/A)	Link load observed at t time scale	Expected link load	Number of features= d samples with $d = 130$ Number of support vectors: varies with d (e.g. ~ 320 for $d = 10$)	RMSE < 2 for $\tau = 1ms$ and $d = 5$ $\therefore \approx AR$ · 10% less than MA
Chabaa et al. [86]	Supervised: MLP-NN with different training algorithms (GD, CG, SS, LM, Rp) (<i>offline</i>)	Network traffic prediction (TSF)	1000 points dataset (N/A)	Past measurements	Expected traffic volume	Number of features (N/A) MLP-NN: • 1 hidden layer	LM:
Zhu et al. [500]	Supervised: MLP-NN with PSO-ABC (offline)	Network traffic prediction <i>(TSF)</i>	2-week hourly traffic measurements (N/A)	N past days hourly traffic volume	Expected next-day hourly traffic volume	Number of features= 5 MLP-NN (5, 11, 1) PSO-ABC: · 30 particles of length=66	MSE = 0.006 on normalized data 50% less than BP
Li et al. [274]	Supervised: MLP-NN (offline)	Traffic volume prediction on an inter-DC link (Regression)	6-week inter-DC traffic dataset from Baidu · SNMP counters data collected every 30 s · Top-5 applications traffic data collected every 5 min (N/A)	Level-N wavelet transform used to extract time and frequency features from total and elephant traffic volumes time series	k × 30-s ahead expected traffic volume	Number of wavelets: $\cdot N = 10$ Number of features= $k \times 120$ for $N = 101$ hidden layer MLP-NN	RRMSE = $4\% \sim 10\%$ for $k = 1 \sim 40$
Chen et al. [94]	Supervised: · KBR · LSTM-RNN (offline)	Inferring future traffic volume based on flow statistics (regression)	Network traffic volume and flow count collected every 5 min over a 24-week period (public)	Flow count	Expected traffic volume	Number of features: • 1 feature (past sample) LSTM-RNN: • (N/A)	RNN · MSE > 0.3 on normalized data · 0.05 higher than KBR · twice as much as RNN fed with traffic
Poupart et al. [365]	Supervised: • GPR • oBMM • MLP-NN (<i>offline</i>)	Early flow-size prediction and elephant flow detection (classification)	3 university and academic networks datasets with over three million flows each (public)	· source IP · destination IP · source port · destination port · protocol · server vs. client · size of 3 first packets	Flow size class; elephant vs. non-elephant	Number of features: • 7 features MLP-NN: • (106,60,40,1)	GPR: - TPR> 80% - TNR> 80% - GBMM: - TPR and TNR \approx 100% on one dataset - TPR < 50% on other datasets MLP-NN: - TPR> 80% - lowest

^a Average values. Results vary according to experimental settings ^b Accuracy metrics: mean square error (MSE), relative prediction error (RPE), mean absolute prediction error (MAPE), average root mean square error (RMSE)