

Project Overview

Machine Learning: Supervised and Unsupervised learning

Data Understanding

Features

- 1. fLength: continuous # major axis of ellipse [mm]
- 2. fWidth: continuous # minor axis of ellipse [mm]
- 3. fSize: continuous # 10-log of sum of content of all pixels [in #phot]
- 4. fConc: continuous # ratio of sum of two highest pixels over fSize [ratio]
- 5. fConc1: continuous # ratio of highest pixel over fSize [ratio]
- 6. fAsym: continuous # distance from highest pixel to center, projected onto major axis [mm]
- 7. fM3Long: continuous # 3rd root of third moment along major axis [mm]
- 8. fM3Trans: continuous # 3rd root of third moment along minor axis [mm]
- 9. fAlpha: continuous # angle of major axis with vector to origin [deg]
- 10. fDist: continuous # distance from origin to center of ellipse [mm]
- 11. class: g,h # gamma (signal), hadron (background)

g = gamma (signal): 12332

h = hadron (background): 6688

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

Dataset: The data set was generated by a Monte Carlo program, Corsika, described in: D. Heck et al., CORSIKA, A Monte Carlo code to simulate extensive air showers, Forschungszentrum Karlsruhe FZKA 6019 (1998).

pd.read_csv("/content/magic04.data")

```
28.7967 16.0021 2.6449 0.3918 0.1982 27.7004
                                                                  22.011 -8.2027 40
             31 6036
                      11 7235 2 5185 0 5303 0 3773
                                                        26 2722
                                                                  23 8238 _0 0574
cols = ["fLength", "fWidth", "fSize", "fConc", "fConc1", "fAsym", "fM3Long", "fM3Trans", "fAlpha", "fDist", "class"]
df = pd.read_csv("/content/magic04.data", names = cols)
df.head()
         fLength
                   fWidth fSize fConc fConc1
                                                    fAsym fM3Long fM3Trans
                                                                             fAlpha
         28.7967
                  16.0021 2.6449 0.3918 0.1982
                                                  27.7004
                                                           22.0110
                                                                     -8.2027 40.0920
                                                  26.2722
         31.6036
                  11.7235 2.5185 0.5303 0.3773
                                                           23.8238
                                                                     -9.9574
                                                                              6.3609
     2 162.0520 136.0310 4.0612 0.0374 0.0187 116.7410 -64.8580
                                                                    -45.2160 76.9600
         23.8172
                   9.5728 2.3385 0.6147 0.3922
                                                  27.2107
                                                           -6.4633
                                                                     -7.1513 10.4490
        75 1362
                  30 9205 3 1611 0 3168 0 1832
                                                  -5 5277 28 5525
                                                                     21 8393
                                                                              4 6480
df.shape
     (19020, 11)
df.info()
     <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 19020 entries, 0 to 19019
    Data columns (total 11 columns):
     # Column
                   Non-Null Count Dtype
                   19020 non-null float64
         fLength
                   19020 non-null float64
         fWidth
     2
         fSize
                   19020 non-null float64
         fConc
                   19020 non-null float64
         fConc1
                   19020 non-null
                                   float64
                   19020 non-null float64
         fAsym
         fM3Long
                  19020 non-null float64
     6
         fM3Trans 19020 non-null
                                   float64
         fAlpha
                   19020 non-null float64
                   19020 non-null
         fDist
                                   float64
     10 class
                   19020 non-null
                                   object
    dtypes: float64(10), object(1)
    memory usage: 1.6+ MB
df.isna().sum()
     fLength
     fWidth
                0
     fSize
                0
     fConc
                0
     fConc1
                0
     fAsym
                0
     fM3Long
                0
     fM3Trans
                0
     fAlpha
     fDist
                0
    class
                0
    dtype: int64
The dataset is clean, it has no missing values
df["class"].unique()
    array(['g', 'h'], dtype=object)
#transforming the class feature
df["class"] = (df["class"] == 'g').astype(int)
df['class'].unique()
    array([1, 0])
```

```
1 = gamma
```

0 = hadron

df.tail()

	fLength	fWidth	fSize	fConc	fConc1	fAsym	fM3Long	fM3Trans	fAl
19015	21.3846	10.9170	2.6161	0.5857	0.3934	15.2618	11.5245	2.8766	2.4
19016	28.9452	6.7020	2.2672	0.5351	0.2784	37.0816	13.1853	-2.9632	86.7
19017	75.4455	47.5305	3.4483	0.1417	0.0549	-9.3561	41.0562	-9.4662	30.2
19018	120.5135	76.9018	3.9939	0.0944	0.0683	5.8043	-93.5224	-63.8389	84.6
	187.1814	53.0014	3.2093	0.2876	0.1539	-167.3125	-168.4558	31.4755	52.7
4									>

```
for label in cols[:-1]:
    plt.hist(df[df['class']== 1][label], color='blue', label='gamma', alpha=0.7, density=True)
    plt.hist(df[df['class']== 0][label], color='red', label='hadron', alpha=0.7, density=True)
    plt.title('Label')
    plt.ylabel('Probability')
    plt.xlabel(label)
    plt.legend()
    plt.show()
```



```
Splitting the data into Train, validation and Test Set
```

```
train, valid, test = np.split(df.sample(frac=1), [int(0.6*len(df)), int(0.8*len(df))])
#scale of the features is way off
from sklearn.preprocessing import StandardScaler
#oversample our training dataset by increasing the number of hadron
from imblearn.over_sampling import RandomOverSampler
def scale dataset(dataframe, oversample=False):
 X = dataframe[dataframe.columns[:-1]].values\\
 y= dataframe[dataframe.columns[-1]].values
 scaler = StandardScaler()
 X = scaler.fit_transform(X)
 if oversample:
   ros=RandomOverSampler()
   X, y = ros.fit_resample(X, y)
 data = np.hstack((X, np.reshape(y, (len(y),1))))
 return data, X, y
print(len(train[train["class"]==1]))
print(len(train[train["class"]==0]))
     7373
     4039
train, X_train, y_train = scale_dataset(train, oversample=True)
valid, X_valid, y_valid = scale_dataset(valid, oversample =False)
test, X_test, y_test = scale_dataset(test, oversample=False)
Model
K-Nearest-Neighbors
from sklearn.neighbors import KNeighborsClassifier
knn_model = KNeighborsClassifier(n_neighbors=5)
knn_model.fit(X_train, y_train)
     KNeighborsClassifier
     KNeighborsClassifier()
y_pred = knn_model.predict(X_test)
from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred))
                   precision recall f1-score
                                                  support
```

0	0.76	0.73	0.74	1327
1	0.86	0.87	0.87	2477
accuracy			0.82	3804
macro avg	0.81	0.80	0.81	3804
weighted avg	0.82	0.82	0.82	3804

Naive Bayes

from sklearn.naive_bayes import GaussianNB

```
nb_model = GaussianNB()
nb_model.fit(X_train, y_train)
```

y_pred = nb_model.predict(X_test)
print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support
0	0.68	0.41	0.51	1327
1	0.74	0.90	0.81	2477
accuracy			0.73	3804
macro avg	0.71	0.65	0.66	3804
weighted avg	0.72	0.73	0.70	3804

Logistic Regression

from sklearn.linear_model import LogisticRegression

```
lg_model = LogisticRegression()
lg_model = lg_model.fit(X_train, y_train)
```

y_pred = lg_model.predict(X_test)
print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support
0	0.67	0.72	0.70	1327
1	0.84	0.81	0.83	2477
accuracy			0.78	3804
macro avg	0.76	0.77	0.76	3804
weighted avg	0.78	0.78	0.78	3804

Support Vector Machines

from sklearn.svm import SVC

svm_model = SVC()
svm_model = svm_model.fit(X_train, y_train)

y_pred = svm_model.predict(X_test)
print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support
0	0.80 0.89	0.79 0.89	0.80 0.89	1327 2477
accuracy macro avg weighted avg	0.84 0.86	0.84 0.86	0.86 0.84 0.86	3804 3804 3804

#svm has the highest accuracy