Lab 1

Jordan Small October 1, 2023

CDA3203 Computer Logic Design Fall 2023

Dr. Maria Petrie Florida Atlantic University

Part 1: Design 9 circuits by completing below: Draw the symbol for the gate, its Truth Table, its Simplest Sum of Products Expression, draw its NOT-AND-OR Equivalent Circuit, its all-NAND Equivalent Circuit.

1.1 NOT gate.

Draw NOT gate	Truth Table and Simplest Sum of Products Equation	NOT-AND-OR Equivalent Circuit	all-NAND Equivalent Circuit
A-10	A NOT(A) 1 0 0 1 Y1 = A'	A-DO	A To

1.2- AND gate

Draw AND gate	Truth Table and Simplest Sum of Products Equation			NOT-AND-OR Equivalent Circuit	all-NAND Equivalent Circuit
A - D-	A B AND(A,B) 0 0 0 0 1 0 1 0 0 1 1 1 Y2 = AB		0 0 0 1	A D	A DO-CO-

1.3- OR gate

Draw OR gate	Simple	Table and est Sum of ss Equation	NOT-AND-OR Equivalent Circuit	all-NAND Equivalent Circuit
A — B — B	A B 0 0 0 1 1 0 1 1	0 1 1 1	A — B	

1.4- XOR gate

Draw XOR gate	Truth Table and Simplest Sum of Products Equation	NOT-AND-OR Equivalent Circuit	all-NAND Equivalent Circuit
A))	A B XOR(A,B) 0 0 0 0 1 1 1 0 1 1 1 0 Y4 = AB' + A'B	BATTO	A Dollar

1.5- NAND gate

Draw NAND gate	Truth Table and Simplest Sum of Products Equation	NOT-AND-OR Equivalent Circuit	all-NAND Equivalent Circuit
A Do	A B NAND(A,B) 0 0 1 0 1 1 1 0 1 1 1 0 Y5 = A' + B'	8 DOLD	A Do

1.6- NOR gate

Draw NOR gate	Truth Table and Simplest Sum of Products Equation	NOT-AND-OR Equivalent Circuit	all-NAND Equivalent Circuit
A Do	A B NOR(A,B) 0 0 1 0 1 0 1 0 0 1 1 0 Y6 = A'B'	A -Doll	A Don Don Do

1.7- XNOR gate

Draw XNOR gate	Truth Table and Simplest Sum of Products Equation	NOT-AND-OR Equivalent Circuit	all-NAND Equivalent Circuit
A Do	A B XNOR(A,B) 0 0 1 0 1 0 1 0 0 1 1 1 Y7 = AB + A'B'	A TO DIS	X ₁ To Do Do X ₂ X ₃

1.8 3-input NAND gate

Draw 3-input NAND	Truth Table and Simplest Sum of Products Equation	NOT-AND-OR Equivalent Circuit	all-NAND Equivalent Circuit
X ₁ 7 7	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	X, -20 - 10 - 10 - 10 - 10 - 10 - 10 - 10	X ₁ Do Do V

1.9- 2 to 1 Encoder or Multiplexer (Mux)

Draw 2to1 Mux	Truth Table and Simplest Sum of Products Equation	NOT-AND-OR Equivalent Circuit	all-NAND Equivalent Circuit	
\$ - 1	s X1 X2 Mux 0 0 0 0 0 1 0 1 0 1 1 1 1 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 Y8 = S'X1 + SX2	X ₁ S X ₂	X ₁ S V ₂ V ₃ V ₃ V ₄ V ₄ V ₇ V ₇ V ₈	

1.10 - 2 to 4 decoder or Demultiplexer (DMux)

Draw 2to4	Truth Table and Simplest Sum					Sum	NOT-AND-OR Equivalent	all-NAND Equivalent
DMux	of Products Equation				uatio	n	Circuit	Circuit
	X_1	X_0	<i>Y</i> ₃	Y_2	Y_1	Y_0		
	0	0	0	0	0	1		
	0	1	0	0	1	0		
	1	0	0	1	0	0		
	1	1	1	0	0	0		~ A A
								No - To - Pot - Pot - Jo
X 4.							X. John y.	John y.
X1 42	Y	3= X1	X0				y 500 - y2	J. Dollar Jr.
٧	Y	2= X1	X0'				X,	X, The Day
	Y	1= X1	'X0					
	Y	0=X1'	X0'					

2.1 Create a new project in Altera Quartus using VHDL of a **3-input NAND** circuit call it NAND3_YourName, using all-NAND gates

Project Wizard

3-input NAND Diagram

VHDL code

Successful Compilation

Timing Diagram

2.2 Create a new project in Altera Quartus using VHDL of a **4-input NAND** circuit, call it NAND4_YourName, using all-NAND gates

Project Wizard

Truth Table

VHDL code

```
- - X
NAND4_SmallJordan.vhd
               ■-- 4-inout NAND, built from 2-input NAND
                -- Jordan Small, 09/21/2023
# 15
                LIBRARY ieee;
\overrightarrow{\{\}}
                USE ieee.std_logic_l164.all;
           5
€ €
               ■ ENTITY NAND4_SmallJordan IS
               PORT(A,B,C,D: IN STD_LOGIC;
Y: OUT STD_LOGIC);
16 %
           8
% %
                END NAND4_SmallJordan;
          10
          11
7 0
          12
                -- structural specification
2
          13
          14
               ■ ARCHITECTURE structure OF NAND4 SmallJordan IS
267 ab/
                     SIGNAL w1, w2, w3, w4: STD LOGIC;
               BEGIN
| .....
          17
                     w1 <= A NAND B;
· 🖳
                     w2 <= C NAND B;
          18
                     w3 <= w1 NAND w1;
          19
                    w4 <= w2 NAND w3;
Y <= w3 NAND w4;
          20
          21
                 END structure;
          22
       <
```

Successful Compilation

Timing Diagram

2.3 Create a new project in Altera Quartus using VHDL of a **2 to 1 Multiplexer/Encoder (Mux)** circuit, call it Mux2to1_YourName, using all-NAND gates

Project Wizard

ºº: ∳↓

2.4. Create a new project in Altera Quartus using VHDL of a **4-to-1 Mux** circuit, call it Mux4to1_YourName, using only Mux2to1 components.

VHDL code

```
- - X
Mux4to1_SmallJordan.vhd
                ■-- Mux4tol, built from Mux2tol
---
                 --Jordan Small, 09/28/2023
#4 1.5
                 LIBRARY ieee;
\overrightarrow{\{\}}
                 USE ieee.std_logic_l164.all;
€ €
                ■ENTITY Mux4tol_SmallJordan IS
16 %
                PORT(I0,I1,I2,I3,s1,s0: IN STD_LOGIC;
                                         : OUT STD LOGIC);
% %
                END Mux4tol_SmallJordan;
           10
Z 0
           11
           12
                   -structural architecture
₽
                ■ARCHITECTURE structure OF Mux4tol SmallJordan IS
           13
                SIGNAL fl,f2: STD_LOGIC;
267
268 ab/
                COMPONENT Mux2tol_SmallJordan IS
                PORT(X1,X2,S : IN STD_LOGIC;
Y : OUT STD_LOGIC);
           17
18
           19
                 END COMPONENT Mux2tol_SmallJordan;
           20
           21
                 BEGIN
                 mux0: Mux2tol_SmallJordan PORT MAP(I0,I1,s0,f1); --PORT MAP(x1=>I0, x2=>I1, s=>s0 , f=f1);
           22
                 mux1: Mux2tol_SmallJordan PORT MAP (12,13,s0,f2);
mux2: Mux2tol_SmallJordan PORT MAP (f1,f2,s1,y);
           23
           24
           25
                 END structure;
```

Successful Compilation

Timing Diagram

2.5 Create a new project in Altera Quartus using VHDL of a **8-to-1 Mux**, call it Mux8to1_YourName, using only Mux4to1 and/or Mux2to1components

VHDL code

Successful Compilation

Timing Diagram

2.6 Create a new project in Altera Quartus using VHDL of a 16-to-1 Mux, call it Mux8to1_YourName, using only Mux8to1, Mux4to1 and/or Mux2to1 components

VHDL code

Successful Compilation

Timing Diagram

This project was done by: Jordan Small

following the tutorial videos created by Dr. Petrie and material in the class textbook, with no other outside resources or help with the following exceptions:

- \underline{x} Received help from Teaching Assistant: Harry (Timing diagrams for Mux8to1 and Mux16to1; he said no annotation was necessary for these)
- ____ Found the following material on the internet: show URL
- ___ Other: