

NAME:

Homework 3

Sinusoidal analysis

Deadline: Wednesday, 11 May 2022, 11:55 PM

You can send your solutions in electronic version to NYU Brightspace/Assignment. **No extended deadline!**

Circuits Page 1 of 4

Exercise 1 -Equivalent impedance/admittance

W-PW

- Determine the equivalent impedance of this network, as a function of the angular frequency ω .
- Which element is it equivalent to when $\omega \to 0$?
- Which element is it equivalent to when $\omega \to \infty$?

• Which element is it equivalent to when
$$\omega = \frac{1}{\sqrt{LC}}$$
?

 $Zab = \frac{1}{R} + jwc + jwc = \frac{R \cdot jwc}{jwc} + R - wcc$
 $W \to 0$
 $Zab \propto \frac{R \cdot jwc}{R} = jwc$

An inductor

 $W \to \infty$
 $Acopya citar$

$$W \rightarrow \infty$$
 $\frac{1}{R} \times 0$ $\frac{1}{|W|} \times 0$ compared to $jw C$

$$W = \sqrt{Lc}$$
 Zob = R A recistor

Circuits Page 2 of 4

Exercise 2 - Thévenin equivalence

Circuits Page 3 of 4

Exercise 3 -Op Amp

The operational amplifier is supposed to be ideal.

Questions:

- 1. Determine the phasor \mathbf{V}_o of $v_o(t)$ as a function of R, L, C, ω , \mathbf{V}_1 (V_1/ϕ_1) , \mathbf{V}_2 (V_2/ϕ_2) and $V_3 (V_3/\phi_3)$
- 2. Supposing that $v_1(t) = v_2(t)$, which angular frequency leads to $v_0(t) = -v_3(t)$?

3. Supposing that
$$v_2(t) = 0$$
 and $v_1(t) = v_3(t)$, which frequency leads to
$$v_o(t) = \frac{\sqrt{2}}{V_1} \cos(\omega t + \phi_1 + 225^\circ)$$

$$V_0 = \frac{\sqrt{2}}{2} V_1 \angle \phi_1 + 225^\circ$$

$$V_1 = \frac{\sqrt{2}}{2} V_1 \angle \phi_1 + 225^\circ$$

$$V_2 = \frac{\sqrt{2}}{2} V_1 \angle \phi_1 + 225^\circ$$

$$V_3 = \frac{\sqrt{2}}{2} V_1 \angle \phi_1 + 225^\circ$$

$$V_1 = \frac{\sqrt{2}}{2} V_1 \angle \phi_1 + 225^\circ$$

$$V_2 = \frac{\sqrt{2}}{2} V_1 \angle \phi_1 + 225^\circ$$

$$V_3 = \frac{\sqrt{2}}{2} V_1 \angle \phi_1 + 225^\circ$$

$$V_1 = \frac{\sqrt{2}}{2} V_1 \angle \phi_1 + 225^\circ$$

$$V_2 = \frac{\sqrt{2}}{2} V_1 \angle \phi_1 + 225^\circ$$

$$V_3 = \frac{\sqrt{2}}{2} V_1 \angle \phi_1 + 225^\circ$$

$$V_4 = \frac{\sqrt{2}}{2} V_1 \angle \phi_1 + 225^\circ$$

$$V_5 = \frac{\sqrt{2}}{2} V_1 \angle \phi_1 + 225^\circ$$

$$V_6 = \frac{\sqrt{2}}{2} V_1 \angle \phi_1 + 225^\circ$$

$$V_7 = \frac{\sqrt{2}}{2} V_1 \angle \phi_1 + 225^$$

$$\Rightarrow V_0 = -R \cdot \left(j w C V_1 + j w L V_2 + \frac{1}{R} V_3 \right)$$

3. Supposing that $v_2(t) = 0$ and $v_1(t) = v_3(t)$, which frequency leads to

$$jwc N = -\frac{1}{jwL}N$$
 $\Rightarrow -jwL \cdot jwc = 1$ $\Rightarrow w^2 = \frac{1}{LC} \Rightarrow w = \frac{1}{LC}$

3)
$$V_2 = 0$$
 $V_1 = V_3$ $V_0 = -R(\hat{j}wcV_1 + \frac{1}{R}V_1) = V_1(-1 - \hat{j}Rwc)$

Assume
$$\phi_1=0$$
 $V_0=\frac{\sqrt{2}}{2}V_1/225^\circ=V_1(-1-jRwc)$ $\Rightarrow Rwc=1 \Rightarrow w=\frac{\sqrt{2}}{Rc}$ $V_1=-V_1(HjRwc)$